Logik för dataloger, DD1350 Kurskompendium

Andreas Lundblad, Dilian Gurov, Karl Palmskog

Senast uppdaterat: 2013-05-30

Innehåll

1	Lösningsförslag till utvalda övningar	3
	Exercises 1.1	3
	Exercises 1.2	
	Exercises 1.4	11
	Exercises 2.1	13
	Exercises 2.2	15
	Exercises 2.3	16
	Exercises 2.4	18
	Exercises 3.4	20
	Exercises 4.3	23
2	Exempel på strukturell induktion: binära träd	26
	Definition av binära träd	26
	Trädhöjd	26
	Lövantal	27
	Kompletta binära träd	27
3	Exempel på strukturell induktion: listor	29
	Introduktion	29
	Definition av listor	
	Omvändning av listor	

Kapitel 1

Lösningsförslag till utvalda övningar

Exercises 1.1 (page 78)

- 1. Use \neg , \rightarrow , \wedge and \vee to express the following declarative sentences in propositional logic; in each case state what your respective propositional atoms p, q, etc. mean:
 - (b) Robert was jealous of Yvonne, or he was not in a good mood.

```
p \vee \neg q
```

p: Robert was jealous of Yvonne.

q: Robert was in a good mood.

(c) If the barometer falls, then either it will rain or it will snow.

 $p \to q \vee r$

p: The barometer falls.

q: It will rain.

r: It will snow.

Alternative solution for exclusive or: $p \to (q \land \neg r) \lor (\neg q \land r)$

(e) Cancer will not be cured unless its cause is determined and a new drug for cancer is found.

 $\neg q \vee \neg r \to \neg p$

p: Cancer will be cured.

q: Its cause is determined.

r: A new drug for cancer is found.

(f) If interest rates go up, share prices go down.

 $p \to q$

p: Interests rates go up.

q: share prices go down.

(g) If Smith has installed central heating, then he has sold his car or he has not paid his mortgage.

$$p \to (q \vee \neg r)$$

p: Smith has installed central heating.

q: Smith has sold his car.

r: Smith has paid his mortgage.

Exercises 1.2 (page 78)

1. Prove the validity of the following sequents:

(a)
$$p \to q \to r \vdash q \to p \to r$$

(b)
$$\vdash (p \rightarrow q) \rightarrow (p \rightarrow r) \rightarrow (q \rightarrow r \rightarrow s) \rightarrow p \rightarrow s$$

```
1
                                                              assumption
        p \to q
 2
                                                              assumption
        p \rightarrow r
 3
        q \rightarrow r \rightarrow s
                                                              assumption
 4
                                                               assumption
 5
                                                               \rightarrowe 4,1
 6
                                                               \rightarrowe 4,2
 7
                                                               \rightarrowe 5,3
 8
                                                               \rightarrowe 6,7
 9
                                                              →i 4-8
10
        (q \to r \to s) \to (p \to s)
                                                             →i 3-9
        11
                                                              →i 2-10
12
                                                             →i 1-11
```

(d) $(p \wedge q) \wedge r, s \wedge t \vdash q \wedge s$

```
\begin{array}{cccc} 1 & (p \wedge q) \wedge r & \text{premise} \\ 2 & s \wedge t & \text{premise} \\ 3 & p \wedge q & \wedge e_1 \ 1 \\ 4 & q & \wedge e_2 \ 3 \\ 5 & s & \wedge e_1 \ 2 \\ 6 & q \wedge s & \wedge i \ 4,5 \end{array}
```

(d)
$$p \to (p \to q), p \vdash q$$

$\rightarrow (p \rightarrow q)$	premise
	premise
$\rightarrow q$	\rightarrow e 2,1
	$\rightarrow e \ 2,\!3$

(g) $p \vdash q \to (p \land q)$

1	p	premise
2	q	assumption
3	$p \wedge q$	∧i 1,2
4	$q \to (p \land q)$	→i 2-3

(k) $p \to (q \to r), p \to q \vdash p \to r$

1	$p \to (q \to r)$	premise
2	$p \to q$	premise
3	p	assumption
4	q	\rightarrow e 3,2
5	$q \rightarrow r$	\rightarrow e 3,1
6	r	\rightarrow e 4,5
7	$p \rightarrow r$	→i 3-6

(m) $p \lor q \vdash r \to (p \lor q) \land r$

1	$p \lor q$	premise
2	r	assumption
3	$(p \lor q) \land r$	∧i 1, 2
4		→i 2-3

(p) $p \to q \vdash ((p \land q) \to p) \land (p \to (p \land q))$

1	$p \rightarrow q$	premise
$\frac{1}{2}$	$p \rightarrow q$ $p \wedge q$	assumption
$\begin{bmatrix} 2\\3 \end{bmatrix}$	$p \wedge q$ p	$\wedge e_1 \ 2$
4	$(p \land q) \to p$	\rightarrow i 2-3
5	\overline{p}	assumption
6	q	\rightarrow e 5,1
7	$p \wedge q$	∧i 5,6
8	$p \to (p \land q)$	→i 5-7
9	$((p \land q) \to p) \land (p \to (p \land q))$	∧i 4,8

(q) $\vdash q \to (p \to (p \to (q \to p)))$

1	q	assumption
2		assumption
3	p	assumption
4	$ \cdot q$	assumption
5	$ \ \ \ \ \ \ \ \ \ \$	copy 2
6	$ q \rightarrow p$	→i 4-5
7	$p \to (q \to p)$	→i 3-6
8	$p \to (p \to (q \to p))$	→i 2-7
9	$q \to (p \to (p \to (q \to p)))$	→i 1-8

(s) $(p \to q) \land (p \to r) \vdash p \to q \land r$

(t)
$$\vdash (p \to q) \to ((r \to s) \to (p \land r \to q \land s))$$

1 [p o q	assumption
2	$r \rightarrow s$	assumption
3	$p \wedge r$	assumption
4	$\parallel p$	$\wedge e_1 3$
5	$\parallel q$	\rightarrow e 4,1
6	$\parallel r$	∧e ₂ 3
7	s	\rightarrow e 6,2
8	$q \wedge s$	∧i 5,7
9	$p \wedge r \to q \wedge s$	→i 3-8
10	$(r \to s) \to (p \land r \to q \land s)$	→i 2-9
11	$(p \to q) \to ((r \to s) \to (p \land r \to q \land s))$	→i 1-10

(v)
$$p \lor (p \land q) \vdash p$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$p \lor (p \land q)$	premise
$ \begin{array}{c cccc} 4 & p \wedge q & \text{assumption} \\ 5 & p & \wedge e_1 & 4 \end{array} $	2	p	assumption
$5 p \wedge e_1 4$	3	p	copy 2
1		$p \wedge q$	assumption
6 p \vee e 1,2-3,4-5		p	
	6	$\overline{}$	$\vee e 1,2-3,4-5$

(w)
$$r, p \to (r \to q) \vdash p \to (q \land r)$$

1	r	premise
2	$p \to (r \to q)$	premise
3	p	assumption
4	$r \rightarrow q$	\rightarrow e 2,3
5	q	\rightarrow e 4,1
6	$q \wedge r$	∧i 5,1
7	$p \to (q \wedge r)$	→i 3-6

2. For the sequents below, show which ones are valid and which ones aren't:

(b)
$$\neg p \lor \neg q \vdash \neg (p \land q)$$

The sequent is valid. Proof:

1	$\neg p \vee \neg q$	premise
2	$p \wedge q$	assumption
3	$\neg p$	assumption
$4 \mid$	p	$\wedge e_1 \ 2$
5		¬e 4,3
5	$\neg q$	assumption
7	q	$\wedge e_2 \ 2$
3		¬e 7,6
9		∨e 1,3-5,6-8
0	$\neg (p \land q)$	¬i 2-9

(d) $p \lor q, \neg q \lor r \vdash p \lor r$

The sequent is valid. Proof:

1	$p \lor q$	premise	
2	$\neg q \vee r$	premise	
3	p	assumption	
4	$p \lor r$	$\vee i_1 \ 3$	
5	q	assumption	
6	$\neg q$	assumption	
7		copy 5	
8		¬e 7,6	
9	r	⊥e 8	
10	r	assumption	
11	r	copy 10	
12	r	∨e 2,6-9,10-11	
13	$p \lor r$	$\vee i_2$ 12	
14	$p \lor r$	\vee e 1,3-4,5-13	

(e) $p \to (q \lor r), \neg q, \neg r \vdash \neg p$ without using the MT rule

The sequent is valid. Proof:

(f)
$$\neg p \land \neg q \vdash \neg (p \lor q)$$

The sequent is valid. Proof:

1	$\neg p \land \neg q$	premise
2	$p \lor q$	assumption
3	p	assumption
4	$ \ \ \neg p$	∧e ₁ 1
5		¬e 3 4
6	q	assumption
7	$ \ \ \neg q$	∧e ₂ 1
8		¬e 6 7
9		∨e 2,3-5,6-7
10	$\overline{\neg(p\lor q)}$	¬i 2-9
	(1 1)	

(h)
$$p \to q, s \to t \vdash p \lor s \to q \land t$$

The sequent is not valid. Consider for instance the following valuation:

$$\{p:F,s:T,q:F,t:T\}$$

3. Prove the validity of the sequents below:

(e)
$$\neg (p \to q) \vdash q \to p$$

1	$\neg(p \to q)$	premise
2	q	assumption
3	p	assumption
4		copy 2
5	$p \rightarrow q$	→i 3-4
6		¬e 5,1
7	p	⊥e 6
8	$q \rightarrow p$	→i 2-7

(g)
$$\vdash \neg p \lor q \to (p \to q)$$

$1 \mid \neg p \lor q$	assumption
$2 \mid \neg p$	assumption
$3 \mid p$	assumption
4	¬e 3,2
$5 \mid \parallel q$	⊥e 4
$6 \mid p \rightarrow q$	→i 3-5
$7 \mid q$	assumption
8 p	assumption
$9 \mid \parallel q$	copy 7
10 $p \rightarrow q$	→i 8-9
11 $p \rightarrow q$	∨e 1,2-6,7-10
12 $\neg p \lor q \to 0$	$(p \to q)$ $\to i 1-11$

(i)
$$(c \land n) \to t, h \land \neg s, h \land \neg (s \lor c) \to p \vdash (n \land \neg t) \to p$$

Exercises 1.4 (page 82)

2. Compute the complete truth table of the formula

(d)
$$(p \land q) \to (p \lor q)$$

p	q	$p \wedge q$	$p \lor q$	$(p \land q) \to (p \lor q)$
T	T	Т	Т	T
T	F	F	Т	T
F	T	F	T	T
F	F	F	F	Т

(e)
$$((p \rightarrow \neg q) \rightarrow \neg p) \rightarrow q$$

p	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$(p \to \neg q) \to \neg p$	$((p \to \neg q) \to \neg p) \to q$
T	Т	F	F	F	T	Т
T	F	F	Т	T	F	Т
F	Т	Т	F	T	T	Т
F	F	Т	Т	T	Т	F

(f) $(p \to q) \land (p \to \neg q)$

p	q	$\neg q$	$p \rightarrow q$	$p \to \neg q$	$(p \to q) \land (p \to \neg q)$
T	T	F	T	F	F
T	F	Т	F	T	F
F	Т	F	T	T	Т
F	F	Т	T	Т	Т

(g)
$$((p \to q) \to p) \to p$$

p	q	$(p \rightarrow q)$	$(p \to q) \to p$	$((p \to q) \to p) \to p$
T	T	T	T	Т
T	F	F	T	Т
F	T	T	F	T
F	F	T	F	Т

(h)
$$((p \lor q) \to r) \to ((p \to r) \lor (q \to r))$$

p	q	r	$((p \lor q) \to r)$	$((p \to r) \lor (q \to r))$	$((p \lor q) \to r) \to ((p \to r) \lor (q \to r))$
T	Т	T	Т	T	T
T	Т	F	F	F	Τ
T	F	T	Т	Т	Т
T	F	F	F	Т	T
F	Т	Т	Т	Τ	T
F	Т	F	F	Т	T
F	F	T	Т	Т	T
F	F	F	Т	T	T

(i) $(p \to q) \to (\neg p \to \neg q)$

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg p \rightarrow \neg q$	$(p \to q) \to (\neg p \to \neg q)$
T	T	F	F	Τ	T	T
T	F	F	T	F	Т	T
F	T	T	F	Т	F	F
F	F	T	T	Т	T	Т

- 7. These exercises let you practice proofs using mathematical induction. Make sure that you state your base case and inductive step clearly. You should also indicate where you apply the induction hypothesis.
 - (c) Use mathematical induction to show that $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Let
$$sqsum(n) = 1^2 + 2^2 + 3^2 + \ldots + n^2$$
.

Basecase

$$sqsum(1) = 1$$
 {Def. $sqsum$ }
= $\frac{1(1+1)(2\cdot 1+1)}{6}$ {arithmetics}

Induction step

Assume

$$sqsum(k) = \frac{k(k+1)(2k+1)}{6}$$
 (I.H.)

$$sqsum(k+1) = sqsum(k) + (k+1)^{2}$$
 {Def. $sqsum$ }

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$
 {I.H.}

$$= \frac{2k^{3} + k^{2} + 2k^{2} + k + 6k^{2} + 12k + 6}{6}$$
 {arithmetics}

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$
 {arithmetics}

$$= \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$
 {arithmetics}

- 12. Show that the following sequents are not valid by finding a valuation in which the truth values of the formulas to the left of \vdash are T and the truth value of the formula to the right of \vdash is F.
 - (a) $\neg p \lor (q \to p) \vdash \neg p \land q$

$$\{p:T,\ q:F\}$$
 yields $\neg p \lor \underbrace{(q \to p)}_T \vdash \neg p \land \underbrace{q}_F$

(b)
$$\neg r \to (p \lor q), r \land \neg q \vdash r \to q$$

$$\{p: T, q: F, r: T\}$$
 yields $\underbrace{\neg r}_{T} \to (p \lor q), \underbrace{r}_{T} \land \underbrace{\neg q}_{T} \vdash \underbrace{r \to q}_{F}$

- 17. Does $\models \phi$ hold for the ϕ below? Please justify your answer.
 - (a) $(p \to q) \lor (q \to r)$

 $\vDash (p \to q) \lor (q \to r)$ holds since either q is true (in which case $p \to q$ is true), or q is false (in which case $q \to r$ is true).

Exercises 2.1 (page 157)

- 4. Let F(x, y) mean that x is the father of y; M(x, y) denotes x is the mother of y. Similarly, H(x, y), S(x, y), and B(x, y) say that x is the husband/sister/brother of y, respectively. You may also use constants to denote individuals, like 'Ed' and 'Patsy.' However, you are not allowed to use any predicate symbols other than the above to translate the following sentences into predicate logic:
 - (a) Everybody has a mother.

$$\forall a \; \exists b \; M(b,a)$$

(b) Everybody has a father and a mother.

$$\forall a \; \exists b, c \; M(b, a) \land F(c, a)$$

(c) Whoever has a mother has a father.

$$\forall a \ (\exists b \ M(b,a) \to \exists c \ F(c,a))$$

(d) Ed is a grandfather.

$$\exists a, b \ (F(Ed, a) \land (M(a, b) \lor F(a, b)))$$

(e) All fathers are parents.

$$\forall a \ ((\exists b \ F(a,b)) \to \exists b \ P(a,b))$$

where $P(x,y) = F(x,y) \vee M(x,y)$ means that "x is a parent of y".

(f) All husbands are spouses.

$$\forall a \ (\underbrace{(\exists b \ H(a,b))}_{a \ \text{is a husband}} \ \rightarrow \underbrace{\exists b \ Q(a,b)}_{a \ \text{is a spouse}})$$

where $Q(x,y) = H(x,y) \vee H(y,x)$ means that "x is spouse of y".

(g) No uncle is an aunt.

An uncle is either the brother of a parent or the husband of a sister of a parent. A woman with an equivalent relationship is an aunt,

$$\forall a \ (\underbrace{(\exists b \ U(a,b))}_{a \text{ is an uncle}} \rightarrow \neg \underbrace{\exists b \ A(a,b)}_{a \text{ is an aunt}})$$

where

$$U(x,y) = \exists z \ P(z,y) \land (B(x,z) \lor \exists v \ S(v,z) \land H(x,v)) \text{ means "x is an uncle of y"}.$$

$$A(x,y) = \exists z \ P(z,y) \land (S(x,z) \lor \exists v \ B(v,z) \land H(v,x)) \text{ means "x is an aunt of y"}.$$

(h) All brothers are siblings.

$$\forall a \ ((\exists b \ B(a,b)) \to \underbrace{(\exists b \ B(b,a) \lor S(b,a))}_{a \text{ is a sibbling}})$$

(i) Nobody's grandmother is anybody's father.

$$\forall a \ ((\exists b \ G(a,b)) \to \neg \exists b \ F(a,b))$$

where

$$G(x,y) = \exists z \ (P(z,y) \land M(x,z))$$
 means "x is a grandmother of y" $P(x,y) = F(x,y) \lor M(x,y)$ means "x is a parent of y".

(j) Ed and Patsy are husband and wife.

$$H(Ed, Patsy)$$
 or $H(Ed, Patsy) \wedge W(Patsy, Ed)$ where $W(x, y) = H(y, x)$ means "x is wife of y".

(k) Carl is Monique's brother-in-law.

A brother-in-law is one's sibling's husband, or one's spouse's brother.

$$\exists a \ (S(a, Monique) \land H(Carl, a)) \lor \exists a \ (H(a, Monique) \land B(Carl, a))$$

Exercises 2.2 (page 158)

2. Draw the parse tree of the term (2-s(x))+(y*x), considering that -, +, and * are used in infix in this term. Compare your solution with the parse tree in Figure 2.14.

- 4. Let ϕ be $\exists x \ (P(y,z) \land (\forall y \ (\neg Q(y,x) \lor P(y,z))))$, where P and Q are predicate symbols with two arguments.
 - (c) Is there a variable in ϕ which has free and bound occurrences?

y occurs both bound and free.

$$\phi = \exists x \ (P(\underbrace{y}_{free}, z) \land (\forall y \ (\neg Q(\underbrace{y}_{bound}, x) \lor P(\underbrace{y}_{bound}, z))))$$

- (d) Consider the terms w (w is a variable), f(x) and g(y, z), where f and g are function symbols with arity 1 and 2, respectively.
 - i. Compute $\phi[w/x]$, $\phi[w/y]$, $\phi[f(x)/y]$, $\phi[g(y,z)/z]$

$$\phi[w/x] = \phi$$
 (no free occurences of x .)
$$\phi[w/y] = \exists x \ (P(w,z) \land (\forall y \ (\neg Q(y,x) \lor P(y,z)))) \text{ (only first } y \text{ is free.)}$$

$$\phi[f(x)/y] = \exists x' \ (P(f(x),z) \land (\forall y \ (\neg Q(y,x') \lor P(y,z)))) \text{ (avoid capturing } x!)$$

$$\phi[g(y,z)/z] = \exists x \ (P(y,g(y,z)) \land (\forall y' \ (\neg Q(y',x) \lor P(y',g(y,z))))) \text{ (avoid capturing } y!)$$

ii. Which of w, f(x) and g(y, z) are free for x in ϕ ?

$$w, f(x), g(y, z)$$
 (no free occurrences of $x!$)

iii. Which of w, f(x) and g(y, z) are free for y in ϕ ?

w, g(y, z) (there is a free occurrence of y in the scope of $\exists x$, thus f(x) is not free for y in ϕ .)

(e) What is the scope of $\exists x \text{ in } \phi$?

$$\exists x \ \underbrace{\left(P(y,z) \land \left(\forall y \ (\neg Q(y,x) \lor P(y,z)\right)\right)\right)}_{scope \ of \ \exists x}$$

Exercises 2.3 (page 160)

1. Prove the validity of the following sequents using, among others, the rules =i and =e. Make sure that you indicate for each application of =e what the rule instances ϕ , t_1 and t_2 are.

(a)
$$(y = 0) \land (y = x) \vdash 0 = x$$

Where

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} = e$$

$$t_1 \equiv y$$

$$t_2 \equiv 0$$

$$\phi \equiv z = x$$

$$\begin{cases} \phi[t_1/z] \equiv y = x & (\text{row } 3) \\ \phi[t_2/z] \equiv 0 = x & (\text{row } 4) \end{cases}$$

9. Prove the validity of the following sequents in predicate logic, where F, G, P, and Q have arity 1, and S has arity 0 (a 'propositional atom'):

(x) (not in the book)
$$\exists x \ (P(x) \to q) \vdash \forall x \ P(x) \to q$$

1	$\exists x (P(x) \to q)$	premise	
2	$\forall x P(x)$	assumption	
3	$x_0 P(x_0) \rightarrow q$	assumption	
4	$ \ \ P(x_0)$	$\forall x e 2$	
5	$ \ \ \ q$	\rightarrow e 4,3	
6	q	∃x e 1, 3-5	
7	$\forall x P(x) \to q$	→i 2-6	

(c)
$$\exists x \ P(x) \to q \vdash \forall x \ (P(x) \to q)$$

$$\begin{array}{c|cccc}
1 & \exists x \ P(x) \rightarrow q & \text{premise} \\
2 & x_0 & & & \\
3 & P(x_0) & \text{assumption} \\
4 & \exists x P(x) & \exists x \text{ i } 3 \\
5 & q & \rightarrow \text{e } 4,1 \\
6 & P(x_0) \rightarrow q & \rightarrow \text{i } 3-5 \\
7 & \forall x (P(x) \rightarrow q) & \forall x \text{ i } 2-6
\end{array}$$

(k)
$$\forall x \ (P(x) \land Q(x)) \vdash \forall x \ P(x) \land \forall x \ Q(x)$$

$$1 \qquad \forall x \ (P(x) \land Q(x)) \quad \text{premise}$$

$$2 \qquad x_0$$

$$3 \qquad P(x_0) \land Q(x_0) \qquad \forall x \in 1$$

$$4 \qquad P(x_0) \qquad \land e_1 \ 3$$

$$5 \qquad \forall x \ P(x) \qquad \forall x \ i \ 2-4$$

$$6 \qquad x_1$$

$$7 \qquad P(x_1) \land Q(x_1) \qquad \forall x \in 1$$

$$8 \qquad Q(x_1) \qquad \land e_2 \ 7$$

$$9 \qquad \forall x \ Q(x) \qquad \forall x \ i \ 6-8$$

$$10 \qquad \forall x \ P(x) \land \forall x Q(x) \qquad \land i \ 5,9$$

(y) (not in book) $\exists x \; (P(x) \vee Q(x)) \vdash \exists x \; P(x) \vee \exists x \; Q(x)$

1	$\exists_m(D(n) \setminus O(n))$	nyomiao
1	$\exists x (P(x) \lor Q(x))$	premise
2	$x_0 P(x_0) \vee Q(x_0)$	assumption
3	$P(x_0)$	assumption
4	$\exists x P(x)$	∃x i 3
5	$\exists x P(x) \lor \exists x Q(x)$	∨i1 4
6	$Q(x_0)$	assumption
7	$\exists x Q(x_0)$	∃x i 6
8	$\exists x P(x) \lor \exists x Q(x)$	∨i 2 7
9	$\exists x P(x) \lor \exists x Q(x)$	∨e 2, 3-5, 6-8
10	$\exists x P(x) \lor \exists x Q(x)$	$\exists x \ e \ 1,2-9$

(r) $\neg \exists x \ P(x) \vdash \forall x \ \neg P(x)$

1	$\neg \exists x P(x)$	premise	
2	x_0		
3	$P(x_0)$	assumption	
4	$\exists x P(x)$	∃x i 3	
5		¬e 4,1	
6	$\neg P(x_0)$	¬i 3-5	
7	$\forall x \neg P(x)$	∀x i 2-6	
	• •		

(z) (not in book) $\exists x \neg P(x) \vdash \neg \forall x \ P(x)$

1	$\exists x \neg P(x)$	premise	
2	$\forall x P(x)$	assumption	
3	$x_0 \neg P(x_0)$	assumption	
4	$ P(x_0)$	$\forall x e 2$	
5		$\neg e 4,3$	
6		∃x e 1,3-5	
7	$\neg \forall x P(x)$	¬i 2-6	_

Exercises 2.4 (page 163)

3. Let P be a predicate with two arguments. Find a model which satisfies the sentence $\forall x \ \neg P(x, x)$; also find one which doesn't.

$$\mathcal{M}_1: A \stackrel{def}{=} \{a, b\} \quad P^{\mathcal{M}_1} \stackrel{def}{=} \{(a, b), (b, a)\}$$

```
\mathcal{M}_{1} \vDash_{l} \forall x \neg P(x, x)
\Leftrightarrow \mathcal{M}_{1} \vDash_{l[x \mapsto a]} \neg P(x, x) \text{ and } \mathcal{M}_{1} \vDash_{l[x \mapsto b]} \neg P(x, x)
\Leftrightarrow \text{ not } \mathcal{M}_{1} \vDash_{l[x \mapsto a]} P(x, x) \text{ and not } \mathcal{M}_{1} \vDash_{[x \mapsto b]} P(x, x)
\Leftrightarrow \text{ not } (a, a) \in P^{\mathcal{M}_{1}} \text{ and not } (b, b) \in P^{\mathcal{M}_{1}}
\Leftrightarrow T \text{ (true)}
\mathcal{M}_{2} : A \stackrel{def}{=} \{a, b\} \quad P^{\mathcal{M}_{2}} \stackrel{def}{=} \{(a, a), (a, b)\}
\mathcal{M}_{2} \vDash_{l} \forall x \neg P(x, x)
\Leftrightarrow \dots
\Leftrightarrow \text{ not } (a, a) \in P^{\mathcal{M}_{2}} \text{ and not } (b, b) \in P^{\mathcal{M}_{2}}
\Leftrightarrow F \text{ (false)}
```

Exercises 3.4 (page 247)

- 6. Consider the system \mathcal{M} in Figure 3.40.
 - (b) Determine whether $\mathcal{M}, s_0 \vDash \phi$ and $\mathcal{M}, s_2 \vDash \phi$ hold and justify your answer, where ϕ is the LTL or CTL formula:

i.
$$\neg p \rightarrow r$$

 $\mathcal{M}, s_0 \vDash \neg p \to r \text{ holds since } r \text{ holds in } s_0.$

 $\mathcal{M}, s_2 \vDash \neg p \to r \text{ holds since } r \text{ holds in } s_2.$

iii. $\neg \mathsf{EG}\ r$

 $\mathcal{M}, s_0 \models \neg \mathsf{EG}\ r$ does not hold, since $\mathsf{EG}\ r$ holds in s_0 (take for instance (s_0, s_0, s_0, \ldots)).

 $\mathcal{M}, s_2 \vDash \neg \mathsf{EG}\ r$ does not hold, since $\mathsf{EG}\ r$ holds in s_2 (take for instance $(s_2, s_1, s_2, s_1, \ldots)$).

vi. EF q

 $\mathcal{M}, s_0 \vDash \mathsf{EF}\ q \text{ holds since } q \text{ holds in } s_0.$

 $\mathcal{M}, s_2 \vDash \mathsf{EF}\ q$ holds since q holds in s_2 .

vii. EG r

Both $\mathcal{M}, s_0 \models \mathsf{EG}\ r, \mathcal{M}, s_2 \models \mathsf{EG}\ r \text{ hold. See (iii)}.$

- 8. Consider the model \mathcal{M} in Figure 3.41. Check whether $\mathcal{M}, s_0 \models \phi$ and $\mathcal{M}, s_2 \models \phi$ hold for the CTL formulas ϕ :
 - (a) AF q

$$\frac{\frac{-}{\mathcal{M}, s_0 \vdash_{[]} q} \ ^p}{\mathcal{M}, s_0 \vdash_{[]} \mathsf{AF} \ q} \ \mathsf{AF}_1$$

$$\frac{\frac{-}{\mathcal{M}, s_0 \vdash_{[]} q} p}{\frac{\mathcal{M}, s_0 \vdash_{s_2} \mathsf{AF} q}{\mathsf{AF}_q} \mathsf{AF}_1} \frac{\frac{-}{\mathcal{M}, s_3 \vdash_{[]} q} p}{\mathcal{M}, s_3 \vdash_{s_2} \mathsf{AF}_q} \underset{\mathsf{AF}_2}{\mathsf{AF}_q} \mathsf{AF}_1} \underset{\mathsf{AF}_2}{\mathsf{AF}_q}$$

(b) AG (EF $(p \lor r)$)

See Figure 1.1

(c) EX (EX r)

$$\frac{\frac{-}{\mathcal{M}, s_1 \vdash_{\parallel} r} p}{\mathcal{M}, s_1 \vdash_{\parallel} \mathsf{EX} r} \mathsf{EX}$$

$$\frac{\mathcal{M}, s_0 \vdash_{\parallel} \mathsf{EX}(\mathsf{EX} r)}{\mathcal{M}, s_0 \vdash_{\parallel} \mathsf{EX}(\mathsf{EX} r)} \mathsf{EX}$$

$$\frac{\frac{-}{\mathcal{M}, s_3 \vdash_{\parallel} r} p}{\mathcal{M}, s_0 \vdash_{\parallel} \mathsf{EX} r} \mathsf{EX}$$

$$\frac{\mathcal{M}, s_0 \vdash_{\parallel} \mathsf{EX} r}{\mathcal{M}, s_2 \vdash_{\parallel} \mathsf{EX}(\mathsf{EX} r)} \mathsf{EX}$$

(d) AG (AF q)

 $\mathcal{M}, s_0 \vDash \mathsf{AG}(\mathsf{AF}\ q)$ does not hold since $\mathsf{AF}\ q$ does not hold for $(s_0, s_1, s_1, s_1, \ldots)$. $\mathcal{M}, s_2 \vDash \mathsf{AG}(\mathsf{AF}\ q)$ does not hold since $\mathsf{AF}\ q$ does not hold for $(s_2, s_0, s_1, s_1, s_1, \ldots)$.

(x) (not in book) EF (EG r)

$$\frac{\frac{-}{\mathcal{M}, s_1 \vdash_{[]} r} p \quad \frac{-}{\mathcal{M}, s_1 \vdash_{[s_1]} \mathsf{EG} \, r}}{\frac{\mathcal{M}, s_1 \vdash_{[s_0]} \mathsf{EF} \, (\mathsf{EG} \, r)}{\mathcal{M}, s_1 \vdash_{[s_0]} \mathsf{EF} \, (\mathsf{EG} \, r)}} \frac{\mathsf{EG}_1}{\mathsf{EF}_2}} \mathsf{EG}_2$$

- 10. Which of the following pairs of CTL formulas are equivalent? For those which are not, exhibit a model of one of the pair which is not a model of the other:
 - (a) EF ϕ and EG ϕ

(b) EF $\phi \vee$ EF ψ and EF $(\phi \vee \psi)$

$$\mathsf{EF}\ \phi \lor \mathsf{EF}\ \psi \equiv \mathsf{EF}(\phi \lor \psi)$$

 \Rightarrow : If EF ϕ holds there is a path in which ϕ eventually holds, thus there is a path in which $\phi \lor \psi$ eventually holds. If EF ψ holds there is a path in which ψ eventually holds, thus there is a path in which $\phi \lor \psi$ eventually holds. It follows that EF($\phi \lor \psi$) holds. (Think of it as an or-elimination.)

 \Leftarrow : If $\mathsf{EF}(\phi \lor \psi)$ holds there is a path in which ϕ eventually holds or in which ψ eventually holds. In the former case, $\mathsf{EF}\ \phi$ holds, and in the latter case, $\mathsf{EF}\ \psi$ holds, thus $\mathsf{EF}\ \phi \lor \mathsf{EF}\ \psi$ holds. (Again, think of it as an or-elimination.)

(c) AF $\phi \vee$ AF ψ and AF $(\phi \vee \psi)$

(d) AF $\neg \phi$ and $\neg EG \phi$

$$\begin{array}{lll} \mathsf{AF} \neg \phi \equiv \neg \mathsf{EG} \ \phi \mathrm{:} \\ & \mathsf{Page} \ 216 \ \mathrm{in} \ \mathrm{the} \ \mathrm{course} \ \mathrm{book} \ \mathrm{states} \ \mathrm{that} \\ & \mathsf{By} \ \mathrm{replacing} \ \phi \ \mathrm{with} \ \neg \phi \ \mathrm{we} \ \mathrm{get} \\ & \mathsf{Negating} \ \mathrm{both} \ \mathrm{sides} \ \mathrm{results} \ \mathrm{in} \\ & \mathsf{Removing} \ \mathrm{double} \ \mathrm{negations} \ \mathrm{gives:} \end{array} \quad \begin{array}{ll} \neg \mathsf{AF} \ \phi \equiv \mathsf{EG} \ \neg \phi \\ & \neg \mathsf{AF} \ \neg \phi \equiv \neg \mathsf{EG} \ \neg \neg \phi \\ & \mathsf{AF} \ \neg \phi \equiv \neg \mathsf{EG} \ \neg \neg \phi \end{array}$$

(e) EF $\neg \phi$ and $\neg AF \phi$

Exercises 4.3 (page 300)

5. Use the proof rule for assignment and logical implication as appropriate to show the validity of

(a)
$$\vdash_{par} (x > 0) y = x + 1; (y > 1)$$

$$\frac{-}{(x+1)} \frac{-}{(x+1)} \frac{-}{(x+1)} \frac{-}{(x+1)} \frac{Assignment}{(x>0)} y = x+1; (y>1)$$
 Implied

10. Prove the validity of the sequent $\vdash_{\mathsf{par}} (\!\!\mid \top \!\!\mid P (\!\!\mid z = \min(x, y) \!\!\mid))$, where $\min(x, y)$ is the smalest number of x and y - e.g. $\min(7, 3) = 3$ – and the code of P is given by

if
$$(x > y)$$
 { $z = y$; } else { $z = x$; }

By proof tree:

$$\frac{- \text{ true } \land x > y \xrightarrow{\checkmark} y = \min(x,y) \quad \frac{-}{(y = \min(x,y) \|z = y; (z = \min(x,y))} \text{ Assignment }}{(\text{true} \land x > y) \|z = y; (z = \min(x,y))} \quad \frac{A}{(\text{true}) \text{ if } (x > y) \{z = y; \}} \text{ else } \{z = x; \} (z = \min(x,y))$$

$$\frac{-true \land \neg(x > 0) \to x = min(x, y) \quad \overline{(x = min(x, y))z = x; (z = min(x, y))}}{\underbrace{(true \land \neg(x > y))z = x; (z = min(x, y))}_{A}} \quad \text{Assignment}$$

By proof tableaux:

13. Show that $\vdash_{par} (x \ge 0)$ Copy1 (x = y) is valid, where Copy1 denotes the code

$$\begin{array}{l} a = x; \\ y = 0; \\ \textbf{while} \ (a \ != 0) \ \{ \\ y = y + 1; \\ a = a - 1; \\ \} \end{array}$$

The loop invariant is in this case a + y = x

Here is a proof tableaux

We get the following three proof obligations:

14. Show that $\vdash_{par} (y \ge 0)$ Mult1 $(z = x \cdot y)$ is valid, where Mult1 is:

$$\begin{array}{l} a = 0; \\ z = 0; \\ \textbf{while} \ (a \ != y) \ \{ \\ z = z + x; \\ a = a + 1; \\ \} \end{array}$$

The proof tableaux is similar to the one in the previous solution, but with the invariant $z = a \cdot x$.

Kapitel 2

Exempel på strukturell induktion: binära träd

Definition av binära träd

Vi definierar den induktiva datatypen BTree i BNF med en 0-ställig funktionssymbol leaf och en 2-ställig funktionssymbol btree enligt nedan.

$$BTree ::= leaf \mid btree(BTree, BTree)$$

Två exempel på BTree-termer är som följer.

leaf
btree(leaf, btree(leaf, leaf))

Övning 2.1. (A) Formulera en induktionsprincip för BTree-termer. Kvantifiera över alla enställiga predikat P som tar en sådana termer som argument.

Trädhöjd

Vi definierar en induktiv funktion **height** som tar en *BTree*-term som argument och returnerar höjden på det binära träd som termen representerar.

Definition 2.1.

$$\begin{aligned} & \mathbf{height}(\mathsf{leaf}) \stackrel{\mathsf{def}}{=} 0 \\ & \mathbf{height}(\mathsf{btree}(t_1, t_2)) \stackrel{\mathsf{def}}{=} 1 + \mathbf{max}(\mathbf{height}(t_1), \mathbf{height}(t_2)) \end{aligned}$$

Övning 2.2. (E) Bevisa genom att veckla ut definitionen för height att

```
\mathbf{height}(\mathsf{btree}(\mathsf{leaf},\mathsf{btree}(\mathsf{leaf},\mathsf{leaf}))) = 2
```

```
\begin{aligned} &\mathbf{height}(\mathsf{btree}(\mathsf{leaf},\mathsf{btree}(\mathsf{leaf},\mathsf{leaf}))) \\ &= 1 + \mathbf{max}(\mathbf{height}(\mathsf{leaf}),\mathbf{height}(\mathsf{btree}(\mathsf{leaf},\mathsf{leaf}))) & \{\mathsf{Def.}\ 2.1\} \\ &= 1 + \mathbf{max}(0,1 + \mathbf{max}(\mathsf{height}(\mathsf{leaf}),\mathsf{height}(\mathsf{leaf}))) & \{\mathsf{Def.}\ 2.1\} \\ &= 1 + \mathbf{max}(0,1 + \mathbf{max}(0,0)) & \{\mathsf{Def.}\ 2.1\} \\ &= 1 + \mathbf{max}(0,1 + 0) & \{\mathsf{Def.}\ \mathbf{max}\} \\ &= 1 + 1 & \{\mathsf{Def.}\ \mathbf{max},\ \mathsf{Aritmetik}\} \\ &= 2 & \{\mathsf{Aritmetik}\} \end{aligned}
```

Lövantal

Vi definierar en induktiv funktion numleaves som tar en BTree-term som argument och returnerar antalet löv i det binära träd som termen representerar.

Definition 2.2.

```
\mathbf{numleaves}(\mathsf{leaf}) \stackrel{\mathsf{def}}{=} 1
\mathbf{numleaves}(\mathsf{btree}(t_1, t_2)) \stackrel{\mathsf{def}}{=} \mathbf{numleaves}(t_1) + \mathbf{numleaves}(t_2)
```

Övning 2.3. (E) Bevisa genom att veckla ut definitionen för numleaves att

```
numleaves(btree(leaf, btree(leaf, leaf))) = 3
```

```
\begin{aligned} & \mathbf{numleaves}(\mathsf{btree}(\mathsf{leaf},\mathsf{btree}(\mathsf{leaf},\mathsf{leaf}))) \\ &= \mathbf{numleaves}(\mathsf{leaf}) + \mathbf{numleaves}(\mathsf{btree}(\mathsf{leaf},\mathsf{leaf})) & \{\mathsf{Def.}\ 2.2\} \\ &= 1 + \mathbf{numleaves}(\mathsf{leaf}) + \mathbf{numleaves}(\mathsf{leaf}) & \{\mathsf{Def.}\ 2.2\} \\ &= 1 + 1 + 1 & \{\mathsf{Def.}\ 2.2\} \\ &= 3 & \{\mathsf{Aritmetik}\} \end{aligned}
```

Kompletta binära träd

Vi definierar ett induktivt predikat **complete** i form av en funktion som tar en BTree-term som argument och returnerar true om alla löv i det motsvarande binära trädet är på samma höjd, och false annars.

Definition 2.3.

```
\mathbf{complete}(\mathsf{leaf}) \stackrel{\mathsf{def}}{=} true
\mathbf{complete}(\mathsf{btree}(t_1, t_2)) \stackrel{\mathsf{def}}{=} \mathbf{complete}(t_1) \wedge \mathbf{complete}(t_2) \wedge \mathbf{height}(t_1) = \mathbf{height}(t_2)
```

Övning 2.4. (A) Bevisa genom att använda strukturell induktion att

$$\forall t \; \mathbf{complete}(t) \to \mathbf{numleaves}(t) = 2^{\mathbf{height}(t)}$$

Låt t vara en BTree-term. Vi gör induktion över strukturen för t.

• Fall t = leaf.

Vi har att **complete**(leaf) är *true* enligt Def. 2.3 och

$\begin{aligned} & \mathbf{numleaves}(\mathsf{leaf}) \\ &= 1 \\ &= 2^0 \\ &= 2^{\mathbf{height}(\mathsf{leaf})} \end{aligned} \qquad \begin{aligned} & \{ \mathrm{Def.\ 2.2} \} \\ &= 2^{\mathbf{height}(\mathsf{leaf})} \end{aligned} \qquad \{ \mathrm{Def.\ 2.1} \}$

• Fall $t = btree(t_1, t_2)$ för t_1 och t_2 BTree-termer.

Antag som första induktionshypotes (IH₁) att **complete** $(t_1) \rightarrow \mathbf{numleaves}(t_1) = 2^{\mathbf{height}(t_1)}$ och som andra induktionshypotes (IH₂) att **complete** $(t_2) \rightarrow \mathbf{numleaves}(t_2) = 2^{\mathbf{height}(t_2)}$. Antag sedan som hypotes (H) att **complete**(btree (t_1, t_2)) för att visa implikationen.

```
\begin{aligned} & \mathbf{numleaves}(\mathsf{btree}(t_1, t_2)) \\ &= \mathbf{numleaves}(t_1) + \mathbf{numleaves}(t_2) & & \{ \mathsf{Def.} \ 2.2 \} \\ &= 2^{\mathbf{height}(t_1)} + 2^{\mathbf{height}(t_2)} & & \{ \mathsf{H,} \ \mathsf{IH}_1, \ \mathsf{IH}_2 \} \\ &= 2^{1+\mathbf{max}(\mathbf{height}(t_1), \mathbf{height}(t_2))} & & \{ \mathsf{H,} \ \mathsf{Def.} \ 2.3, \ \mathsf{Aritmetik} \} \\ &= 2^{\mathbf{height}(\mathsf{btree}(t_1, t_2))} & & \{ \mathsf{Def.} \ 2.1 \} \end{aligned}
```

Kapitel 3

Exempel på strukturell induktion: listor

Introduktion

I detta kapitel presenteras en övning i användningen av strukturell induktion, i ett scenario som ibland förekommer i systemutveckling—en given funktion ska ersättas av en funktion med samma specifikation som är mer effektiv. Här ska dock bevisas att den nya funktionen har samma beteende som den ursprungliga och att den faktiskt är effektivare.

Definition av listor

Vi börjar med att i BNF definiera den induktiva datatypen *List*, som tolkas som en lista av termer av typen *Letter*, bokstäver.

$$List ::= empty \mid cons(Letter, List)$$

Övning 3.1. (A) Formulera en induktionsprincip för List-termer. Kvantifiera över alla enställiga predikat P som tar en sådana termer som argument.

```
\forall P \left( P(\mathsf{empty}) \land \left( \forall a \ \forall u' \ P(u') \rightarrow P(\mathsf{cons}(a, u')) \right) \right) \rightarrow \forall u \ P(u) Tolkning: \begin{bmatrix} \text{F\"{o}r att visa} \ \forall u \ P(u) : \\ & \text{- visa} \ P(\mathsf{empty}) & \text{(basfall)} \\ & \text{- ta godtyckliga} \ a \ \text{och} \ u' & \text{(induktionssteg)} \\ & \text{antag} \ P(u') & \text{(induktionshypotes)} \\ & \text{visa} \ P(\mathsf{cons}(a, u')) \end{bmatrix}
```

Listors längd

Vi definierar en induktiv funktion **length** från mängden av listor till de naturliga talen som ger en listas längd.

Definition 3.1.

$$\begin{aligned} & \mathbf{length}(\mathsf{empty}) \stackrel{\text{\tiny def}}{=} 0 \\ & \mathbf{length}(\mathsf{cons}(a, u)) \stackrel{\text{\tiny def}}{=} 1 + \mathbf{length}(u) \end{aligned}$$

Övning 3.2. (E) Bevisa stegvis genom att veckla ut definitionen för length att

$$\forall a \ \forall b \ \mathbf{length}(\mathsf{cons}(a,\mathsf{cons}(b,\mathsf{empty}))) = 2.$$

 $\begin{aligned} & \operatorname{length}(\operatorname{cons}(a,\operatorname{cons}(b,\operatorname{empty}))) \\ &= 1 + \operatorname{length}(\operatorname{cons}(b,\operatorname{empty})) \\ &= 1 + 1 + \operatorname{length}(\operatorname{empty}) \end{aligned} & \left\{ \begin{aligned} \operatorname{Def. 3.1} \right\} \\ &= 1 + 1 + 0 \\ &= 1 + 1 + 0 \end{aligned} & \left\{ \begin{aligned} \operatorname{Def. 3.1} \right\} \\ &= 2 \end{aligned} & \left\{ \end{aligned} \end{aligned} & \left\{ \end{aligned} \end{aligned}$

Konkatenering av listor

Vi definierar en konkateneringsfunktion **conc** som tar två listor som argument och returnerar en sammanslagen lista.

Definition 3.2.

$$\begin{aligned} &\mathbf{conc}(\mathsf{empty}, v) \stackrel{\mathsf{def}}{=} v \\ &\mathbf{conc}(\mathsf{cons}(a, u), v) \stackrel{\mathsf{def}}{=} \mathsf{cons}(a, \mathbf{conc}(u, v)) \end{aligned}$$

Övning 3.3. (E) Bevisa stegvis genom att veckla ut definitionen för conc att

$$\forall a \ \forall b \ \mathbf{conc}(\mathsf{cons}(a,\mathsf{empty}),\mathsf{cons}(b,\mathsf{empty})) = \mathsf{cons}(a,\mathsf{cons}(b,\mathsf{empty}))$$

 $\begin{aligned} & \mathbf{Lat} \ a \ \text{och} \ b \ \text{vara} \ Letter\text{-termer.} \\ & \mathbf{conc}(\mathsf{cons}(a,\mathsf{empty}),\mathsf{cons}(b,\mathsf{empty})) \\ & = \mathsf{cons}(a,\mathbf{conc}(\mathsf{empty},\mathsf{cons}(b,\mathsf{empty}))) \\ & = \mathsf{cons}(a,\mathsf{cons}(b,\mathsf{empty})) \end{aligned} \qquad & \{ \mathsf{Def.} \ 3.2 \} \\ & = \mathsf{cons}(a,\mathsf{cons}(b,\mathsf{empty})) \end{aligned}$

Övning 3.4. (C) Bevisa genom att använda strukturell induktion att

$$\forall u \ \mathbf{conc}(u, \mathsf{empty}) = u$$

Låt u vara en List-term. Vi gör induktion över strukturen för u.

• Fall u = empty.

$$egin{aligned} \mathbf{conc}(\mathsf{empty}, \mathsf{empty}) \\ &= \mathsf{empty} \end{aligned} \qquad \{ \mathrm{Def.} \ 3.2 \}$$

• Fall u = cons(a, u') för a en Letter-term och u' en List-term.

Antag som induktionshypotes (IH) att $\mathbf{conc}(u', \mathsf{empty}) = u'$.

$$\begin{split} &\mathbf{conc}(\mathsf{cons}(a,u'),\mathsf{empty}) \\ &= \mathsf{cons}(a,\mathbf{conc}(u',\mathsf{empty})) \\ &= \mathsf{cons}(a,u') \end{split} \tag{$\{\mathsf{IH}\}$}$$

Övning 3.5. (A) Bevisa genom att använda strukturell induktion att **conc** är associativ, dvs bevisa att

$$\forall u \ \forall v \ \forall w \ \mathbf{conc}(u, \mathbf{conc}(v, w)) = \mathbf{conc}(\mathbf{conc}(u, v), w)$$

Låt u vara en List-term. Vi gör induktion över strukturen för u.

• Fall u = empty.

Låt v och w vara List-termer.

$$\begin{aligned} &\mathbf{conc}(\mathsf{empty}, \mathbf{conc}(v, w)) \\ &= \mathbf{conc}(v, w) \\ &= \mathbf{conc}(\mathbf{conc}(\mathsf{empty}, v), w) \end{aligned} \qquad \qquad \{ \text{Def. 3.2} \}$$

• Fall u = cons(a, u') för a en Letter-term och u' en List-term.

Låt v och w vara List-termer och antag som induktionshypotes (IH) att $\forall v \ \forall w \ \mathbf{conc}(u', \mathbf{conc}(v, w)) = \mathbf{conc}(\mathbf{conc}(u', v), w)$.

```
\begin{aligned} &\mathbf{conc}(\mathsf{cons}(a,u'),\mathbf{conc}(v,w)) \\ &= \mathsf{cons}(a,\mathbf{conc}(u',\mathbf{conc}(v,w))) & & \{\mathsf{Def. 3.2}\} \\ &= \mathsf{cons}(a,\mathbf{conc}(\mathbf{conc}(u',v),w)) & & \{\mathsf{IH}\} \\ &= &\mathbf{conc}(\mathsf{cons}(a,(\mathbf{conc}(u',v)),w) & & \{\mathsf{Def. 3.2}\} \\ &= &\mathbf{conc}(\mathbf{conc}(\mathsf{cons}(a,u'),v),w) & & \{\mathsf{Def. 3.2}\} \end{aligned}
```

Omvändning av listor

En första omvändningsfunktion

Vi definierar en initial omvändningsfunktion reverse.

Definition 3.3.

```
\begin{split} \mathbf{reverse}(\mathsf{empty}) &\stackrel{\mathsf{def}}{=} \mathsf{empty} \\ \mathbf{reverse}(\mathsf{cons}(a, u)) &\stackrel{\mathsf{def}}{=} \mathbf{conc}(\mathbf{reverse}(u), \mathsf{cons}(a, \mathsf{empty})) \end{split}
```

Övning 3.6. (E) Bevisa stegvis genom att veckla ut definitionen för reverse att

 $\forall a \ \forall b \ \mathbf{reverse}(\mathsf{cons}(a, \mathsf{cons}(b, \mathsf{empty}))) = \mathsf{cons}(b, \mathsf{cons}(a, \mathsf{empty}))$

```
 \begin{split} \mathbf{reverse}(\mathsf{cons}(a,\mathsf{cons}(b,\mathsf{empty}))) &= \mathbf{conc}(\mathbf{reverse}(\mathsf{cons}(b,\mathsf{empty})),\mathsf{cons}(a,\mathsf{empty})) & \{\mathsf{Def.\ 3.3}\} \\ &= \mathbf{conc}(\mathbf{conc}(\mathbf{reverse}(\mathsf{empty}),\mathsf{cons}(b,\mathsf{empty})),\mathsf{cons}(a,\mathsf{empty})) & \{\mathsf{Def.\ 3.3}\} \\ &= \mathbf{conc}(\mathbf{conc}(\mathsf{empty},\mathsf{cons}(b,\mathsf{empty})),\mathsf{cons}(a,\mathsf{empty})) & \{\mathsf{Def.\ 3.2}\} \\ &= \mathbf{conc}(\mathsf{cons}(b,\mathsf{empty}),\mathsf{cons}(a,\mathsf{empty})) & \{\mathsf{Def.\ 3.2}\} \\ &= \mathsf{cons}(b,\mathsf{conc}(\mathsf{empty},\mathsf{cons}(a,\mathsf{empty}))) & \{\mathsf{Def.\ 3.2}\} \\ &= \mathsf{cons}(b,\mathsf{cons}(a,\mathsf{empty})) & \{\mathsf{Def.\ 3.2}\} \\ &= \mathsf{cons}(b,\mathsf{cons}(a,\mathsf{empty})) & \{\mathsf{Def.\ 3.2}\} \end{split}
```

Övning 3.7. (A) Bevisa med strukturell induktion och resultaten från övning 3.4 och 3.5 att reverse distribuerar över conc, dvs att

```
\forall u \ \forall v \ \mathbf{reverse}(\mathbf{conc}(u, v)) = \mathbf{conc}(\mathbf{reverse}(v), \mathbf{reverse}(u))
```

Låt u vara en List-term. Vi gör induktion över strukturen för u.

• Fall u = empty.

Låt v vara en List-term.

```
\begin{split} \mathbf{reverse}(\mathbf{conc}(\mathsf{empty}, v)) &= \mathbf{reverse}(v) & \{ \mathsf{Def. 3.2} \} \\ &= \mathbf{conc}(\mathbf{reverse}(v), \mathsf{empty}) & \{ \mathsf{\"{O}vn. 3.4} \} \\ &= \mathbf{conc}(\mathbf{reverse}(v), \mathbf{reverse}(\mathsf{empty})) & \{ \mathsf{Def. 3.3} \} \end{split}
```

• Fall u = cons(a, u') för a en Letter-term och u' en List-term.

Antag som induktionshypotes (IH) att $\forall v \ \mathbf{reverse}(\mathbf{conc}(u', v)) = \mathbf{conc}(\mathbf{reverse}(v), \mathbf{reverse}(u'))$, och låt $v \ \text{vara en } \mathit{List}\text{-term}$.

```
 \begin{aligned} \mathbf{reverse}(\mathbf{conc}(\mathsf{cons}(a,u'),v)) &= \mathbf{reverse}(\mathsf{cons}(a,\mathbf{conc}(u',v))) & & & \{\mathsf{Def.\ 3.2}\} \\ &= \mathbf{conc}(\mathbf{reverse}(\mathbf{conc}(u',v)),\mathsf{cons}(a,\mathsf{empty})) & & \{\mathsf{Def.\ 3.3}\} \\ &= \mathbf{conc}(\mathbf{conc}(\mathbf{reverse}(v),\mathbf{reverse}(u')),\mathsf{cons}(a,\mathsf{empty})) & & \{\mathsf{IH}\} \\ &= \mathbf{conc}(\mathbf{reverse}(v),\mathbf{conc}(\mathbf{reverse}(u'),\mathsf{cons}(a,\mathsf{empty}))) & & \{\mathsf{\"{O}vn.\ 3.5}\} \\ &= \mathbf{conc}(\mathbf{reverse}(v),\mathbf{reverse}(\mathsf{cons}(a,u'))) & & \{\mathsf{Def.\ 3.3}\} \end{aligned}
```

En effektivare omvändningsfunktion?

Vi definierar en funktion rev som en hjälpfunktion till en ny omvändningsfunktion reverse'.

Definition 3.4.

$$\begin{aligned} \mathbf{rev}(\mathsf{empty}, v) &\stackrel{\mathsf{def}}{=} v \\ \mathbf{rev}(\mathsf{cons}(a, u), v) &\stackrel{\mathsf{def}}{=} \mathbf{rev}(u, \mathsf{cons}(a, v)) \\ \mathbf{reverse}'(u) &\stackrel{\mathsf{def}}{=} \mathbf{rev}(u, \mathsf{empty}) \end{aligned}$$

Övning 3.8. (E) Bevisa stegvis genom att veckla ut definitionen för reverse' att

 $\forall a \ \forall b \ \mathbf{reverse}'(\mathsf{cons}(a, \mathsf{cons}(b, \mathsf{empty}))) = \mathsf{cons}(b, \mathsf{cons}(a, \mathsf{empty}))$

Låt a och b vara Letter-termer.

$$\begin{aligned} \mathbf{reverse'}(\mathsf{cons}(a,\mathsf{cons}(b,\mathsf{empty}))) \\ &= \mathbf{rev}(\mathsf{cons}(a,\mathsf{cons}(b,\mathsf{empty})),\mathsf{empty}) & \{\mathsf{Def.\ 3.4}\} \\ &= \mathbf{rev}(\mathsf{cons}(b,\mathsf{empty}),\mathsf{cons}(a,\mathsf{empty})) & \{\mathsf{Def.\ 3.4}\} \\ &= \mathbf{rev}(\mathsf{empty},\mathsf{cons}(b,\mathsf{cons}(a,\mathsf{empty}))) & \{\mathsf{Def.\ 3.4}\} \\ &= \mathsf{cons}(b,\mathsf{cons}(a,\mathsf{empty})) & \{\mathsf{Def.\ 3.4}\} \end{aligned}$$

Övning 3.9. (A) Bevisa med strukturell induktion och resultatet från övning 3.5 att

$$\forall u \ \forall v \ \mathbf{conc}(\mathbf{reverse}'(u), v) = \mathbf{rev}(u, v)$$

Låt u vara en List-term. Vi gör induktion över strukturen för u.

• Fall u = empty.

Låt v vara en List-term.

$$\begin{aligned} &\mathbf{conc}(\mathbf{reverse}'(\mathsf{empty}), v) \\ &= \mathbf{conc}(\mathbf{rev}(\mathsf{empty}, \mathsf{empty}), v) \\ &= \mathbf{conc}(\mathsf{empty}, v) \\ &= v \\ &= \mathbf{rev}(\mathsf{empty}, v) \end{aligned} \qquad \begin{aligned} &\{ \mathrm{Def. \ 3.4} \} \\ &\{ \mathrm{Def. \ 3.2} \} \\ &\{ \mathrm{Def. \ 3.2} \} \end{aligned}$$

• Fall u = cons(a, u') för a en Letter-term och u' en List-term.

Antag som induktionshypotes (IH) att $\forall v \ \mathbf{conc}(\mathbf{reverse}'(u'), v) = \mathbf{rev}(u', v)$, och låt v vara en List-term.

```
\begin{aligned} &\mathbf{conc}(\mathbf{reverse}'(\mathsf{cons}(a,u')),v) \\ &= \mathbf{conc}(\mathbf{rev}(u',\mathsf{cons}(a,\mathsf{empty})),v) & \{\mathsf{Def.\ 3.4}\} \\ &= \mathbf{conc}(\mathbf{conc}(\mathbf{rev}(u',\mathit{empty}),\mathsf{cons}(a,\mathit{empty})),v) & \{\mathsf{IH},\ \mathsf{Def.\ 3.4}\} \\ &= \mathbf{conc}(\mathbf{rev}(u',\mathsf{empty}),\mathbf{conc}(\mathsf{cons}(a,\mathsf{empty}),v)) & \{\mathsf{\"Ovn.\ 3.5}\} \\ &= \mathbf{conc}(\mathbf{reverse}'(u'),\mathsf{cons}(a,v)) & \{\mathsf{Def.\ 3.4},\ \mathsf{Def.\ 3.2}\} \\ &= \mathbf{rev}(\mathsf{cons}(a,u'),v) & \{\mathsf{IH},\ \mathsf{Def.\ 3.4}\} \end{aligned}
```

Övning 3.10. (C) Bevisa med hjälp av resultatet från övning 3.9 och strukturell induktion att

$$\forall u \ \mathbf{reverse}(u) = \mathbf{reverse}'(u)$$

Låt u vara en List-term. Vi gör induktion över strukturen för u.

• Fall u = empty.

$$\begin{aligned} &\mathbf{reverse}(\mathsf{empty}) \\ &= \mathsf{empty} \\ &= \mathbf{rev}(\mathsf{empty}, \mathsf{empty}) \\ &= \mathbf{reverse}'(\mathsf{empty}) \end{aligned} \qquad \begin{aligned} &\{\mathrm{Def.\ 3.4}\} \\ &\{\mathrm{Def.\ 3.4}\} \end{aligned}$$

• Fall u = cons(a, u') för a en Letter-term och u' en List-term. Antag som induktionshypotes (IH) att reverse(u') = reverse'(u').

```
\begin{aligned} \mathbf{reverse}(\mathsf{cons}(a, u')) &= \mathbf{conc}(\mathbf{reverse}(u'), \mathsf{cons}(a, \mathsf{empty})) & & & \{\mathsf{Def. 3.3}\} \\ &= \mathbf{conc}(\mathbf{reverse}'(u'), \mathsf{cons}(a, \mathsf{empty})) & & & \{\mathsf{IH}\} \\ &= \mathbf{reverse}'(\mathsf{cons}(a, u')) & & & \{\mathsf{\"Ovn. 3.9}\} \end{aligned}
```

Effektivitetsanalys

Effektivitetsmått

För att uttrycka funktioners effektivitet kan man låta dem returnera tuplar, där den ena delen är ett effektivitetsmått och den andra delen är det önskade resultatet. De olika delarna görs sedan åtkomliga med tilläggsfunktioner enligt följande.

Definition 3.5.

$$\mathbf{cost}(\langle s, d \rangle) \stackrel{\text{def}}{=} s$$
$$\mathbf{result}(\langle s, d \rangle) \stackrel{\text{def}}{=} d$$

Mätbara varianter av funktioner

Betrakta en mätbar variant av funktionen conc.

Definition 3.6.

$$\begin{aligned} \mathbf{mconc}(\mathsf{empty}, v) &\stackrel{\mathsf{def}}{=} \langle 0, v \rangle \\ \mathbf{mconc}(\mathsf{cons}(a, u'), v) &\stackrel{\mathsf{def}}{=} \mathbf{let} \ r = \mathbf{mconc}(u', v) \ \mathbf{in} \\ & \langle 1 + \mathbf{cost}(r), \mathsf{cons}(a, \mathbf{result}(r)) \rangle \end{aligned}$$

Övning 3.11. (C) Bevisa genom att använda strukturell induktion att **conc** och resultatdelen av **mconc** sammanfaller för alla listor, dvs att

$$\forall u \ \forall v \ \mathbf{result}(\mathbf{mconc}(u, v)) = \mathbf{conc}(u, v)$$

Låt u vara en List-term. Vi gör induktion över strukturen för u.

• Fall u = empty.

Låt v vara en List-term.

```
\begin{aligned} &\mathbf{result}(\mathbf{mconc}(\mathsf{empty}, v)) \\ &= \mathbf{result}(\langle 0, v \rangle) & & \{ \mathsf{Def. 3.6} \} \\ &= v & \{ \mathsf{Def. 3.5} \} \\ &= \mathbf{conc}(\mathsf{empty}, v) & \{ \mathsf{Def. 3.2} \} \end{aligned}
```

• Fall u = cons(a, u') för a en Letter-term och u' en List-term.

Antag som induktionshypotes (IH) att $\forall v \ \mathbf{result}(\mathbf{mconc}(u',v)) = \mathbf{conc}(u',v)$, och låt v vara en List-term.

```
 \begin{aligned} \mathbf{result}(\mathbf{mconc}(\mathsf{cons}(a, u'))) \\ &= \mathsf{cons}(a, \mathbf{result}(\mathbf{mconc}(u', v))) \\ &= \mathsf{cons}(a, \mathbf{conc}(u', v)) \\ &= \mathbf{conc}(\mathsf{cons}(a, u'), v) \end{aligned} \qquad \begin{aligned} &\{ \mathrm{Def.\ 3.6,\ Def.\ 3.5} \} \\ &\{ \mathrm{Def.\ 3.2} \} \end{aligned}
```

Övning 3.12. (A) Bevisa genom att använda strukturell induktion att resultatdelen av mconc har den sammanlagda längden av båda argumenten, dvs att

```
\forall u \ \forall v \ \mathbf{length}(\mathbf{result}(\mathbf{mconc}(u,v))) = \mathbf{length}(u) + \mathbf{length}(v)
```

Låt u vara en List-term. Vi gör induktion över strukturen för u.

• Fall u = empty.

Låt v vara en List-term.

```
\begin{split} & \mathbf{length}(\mathbf{result}(\mathbf{mconc}(\mathsf{empty}, v))) \\ &= \mathbf{length}(\mathbf{result}(\langle 0, v \rangle)) & \{ \mathsf{Def. 3.6} \} \\ &= \mathbf{length}(v) & \{ \mathsf{Def. 3.5} \} \\ &= 0 + \mathbf{length}(v) & \{ \mathsf{Aritmetik} \} \\ &= \mathbf{length}(\mathsf{empty}) + \mathbf{length}(v) & \{ \mathsf{Def. 3.1} \} \end{split}
```

• Fall u = cons(a, u') för a en Letter-term och u' en List-term.

Antag som induktionshypotes (IH) att $\forall v \ \mathbf{length}(\mathbf{result}(\mathbf{mconc}(u',v))) = \mathbf{length}(u') + \mathbf{length}(v)$, och låt v vara en List-term.

```
\begin{split} & \mathbf{length}(\mathbf{result}(\mathbf{mconc}(\mathsf{cons}(a,u'),v))) \\ &= \mathbf{length}(\mathsf{cons}(a,\mathbf{result}(\mathbf{mconc}(u',v))) \\ &= 1 + \mathbf{length}(\mathbf{result}(\mathbf{mconc}(u',v))) \\ &= 1 + \mathbf{length}(u') + \mathbf{length}(v) \\ &= \mathbf{length}(\mathsf{cons}(a,u')) + \mathsf{length}(v) \\ &= \mathbf{length}(\mathsf{cons}(a,u')) + \mathsf{length}(v) \end{split} \qquad \qquad \{ \text{Def. 3.1} \}
```

Övning 3.13. (C) Bevisa att kostnadsdelen av mconc är precis längden av det första argumentet, dvs att

$$\forall u \ \forall v \ \mathbf{cost}(\mathbf{mconc}(u, v)) = \mathbf{length}(u)$$

Låt u vara en List-term. Vi gör induktion över strukturen för u.

• Fall u = empty.

Låt v vara en List-term.

$$\begin{aligned} & \mathbf{cost}(\mathbf{mconc}(\mathsf{empty}, v)) \\ &= \mathbf{cost}(\langle 0, v \rangle) & \{ \mathrm{Def. \ 3.6} \} \\ &= 0 & \{ \mathrm{Def. \ 3.5} \} \\ &= \mathbf{length}(\mathsf{empty}) & \{ \mathrm{Def. \ 3.1} \} \end{aligned}$$

• Fall u = cons(a, u') för a en Letter-term och u' en List-term.

Antag som induktionshypotes (IH) att $\forall v \ \mathbf{cost}(\mathbf{mconc}(u', v)) = \mathbf{length}(u')$, och låt v vara en List-term.

```
\begin{aligned} & \mathbf{cost}(\mathbf{mconc}(\mathsf{cons}(a, u'), v)) \\ &= 1 + \mathbf{cost}(\mathbf{mconc}(u', v)) \\ &= 1 + \mathbf{length}(u') \\ &= \mathbf{length}(\mathsf{cons}(a, u')) \end{aligned} \qquad \begin{aligned} & \{ \text{Def. 3.6, Def. 3.5} \} \\ &\{ \text{IH} \} \end{aligned}
```

Betrakta nu en mätbar variant av funktionen reverse.

Definition 3.7.

```
\begin{aligned} \mathbf{mreverse}(\mathsf{empty}) &\stackrel{\mathsf{def}}{=} \langle 0, \mathsf{empty} \rangle \\ \mathbf{mreverse}(\mathsf{cons}(a, u')) &\stackrel{\mathsf{def}}{=} \mathbf{let} \ rr = \mathbf{mreverse}(u') \ \mathbf{in} \\ &\mathbf{let} \ rc = \mathbf{mconc}(\mathbf{result}(rr), \mathsf{cons}(a, \mathsf{empty})) \ \mathbf{in} \\ & \langle 1 + \mathbf{cost}(rc) + \mathbf{cost}(rr), \mathbf{result}(rc) \rangle \end{aligned}
```

Övning 3.14. (C) Bevisa genom att använda strukturell induktion och resultatet från övning 3.11 att reverse och resultatdelen av mreverse sammanfaller för alla listor, dvs att

$$\forall u \ \mathbf{result}(\mathbf{mreverse}(u)) = \mathbf{reverse}(u)$$

Låt u vara en List-term. Vi gör induktion över strukturen för u.

• Fall u = empty.

```
\begin{aligned} & \mathbf{result}(\mathbf{mreverse}(\mathsf{empty})) \\ &= \mathbf{result}(\langle 0, \mathsf{empty} \rangle) & & \{ \mathrm{Def. 3.7} \} \\ &= \mathsf{empty} & & \{ \mathrm{Def. 3.5} \} \\ &= \mathbf{reverse}(\mathsf{empty}) & & \{ \mathrm{Def. 3.3} \} \end{aligned}
```

```
• Fall u = \cos(a, u') för a en Letter-term och u' en List-term.

Antag som induktionshypotes (IH) att \mathbf{result}(\mathbf{mreverse}(u')) = \mathbf{reverse}(u').

\mathbf{result}(\mathbf{mreverse}(\cos(a, u')))
= \mathbf{result}(\mathbf{mconc}(\mathbf{result}(\mathbf{mreverse}(u')), \cos(a, \mathbf{empty}))) \qquad \{\text{Def. 3.6}\}
= \mathbf{conc}(\mathbf{result}(\mathbf{mreverse}(u')), \cos(a, \mathbf{empty})) \qquad \{\ddot{\mathbf{O}} \text{vn. 3.11}\}
= \mathbf{conc}(\mathbf{reverse}(u'), \cos(a, \mathbf{empty})) \qquad \{\text{IH}\}
= \mathbf{reverse}(\cos(a, u')) \qquad \{\text{Def. 3.3}\}
```

Övning 3.15. (A) Bevisa genom att använda strukturell induktion och resultatet från övning 3.12 att resultatdelen av mreverse är längden av argumentet, dvs att

$$\forall u \ \mathbf{length}(\mathbf{result}(\mathbf{mreverse}(u))) = \mathbf{length}(u)$$

Låt u vara en List-term. Vi gör induktion över strukturen för u.

• Fall u = empty.

```
\begin{split} & \mathbf{length}(\mathbf{result}(\mathbf{mreverse}(\mathsf{empty}))) \\ &= \mathbf{length}(\mathbf{result}(\langle 0, \mathsf{empty} \rangle)) \\ &= \mathbf{length}(\mathsf{empty}) \\ &= \mathbf{length}(\mathsf{empty}) \end{split} \qquad \qquad \{ \text{Def. 3.7} \}
```

• Fall u = cons(a, u') för a en Letter-term och u' en List-term.

Antag som induktionshypotes (IH) att length(result(mreverse(u'))) = length(u').

```
\mathbf{length}(\mathbf{result}(\mathbf{mreverse}(\mathsf{cons}(a, u')))))
```

```
= \mathbf{length}(\mathbf{result}(\mathbf{mrconc}(\mathbf{result}(\mathbf{mreverse}(u')), \mathsf{cons}(a, \mathsf{empty})))) \qquad \{ \mathrm{Def. \ 3.7} \}
= \mathbf{length}(\mathbf{result}(\mathbf{mreverse}(u'))) + \mathbf{length}(\mathsf{cons}(a, \mathsf{empty})) \qquad \{ \mathrm{\ddot{O}vn. \ 3.12} \}
= 1 + \mathbf{length}(\mathbf{result}(\mathbf{mreverse}(u'))) \qquad \{ \mathrm{Aritmetik} \}
= 1 + \mathbf{length}(u') \qquad \{ \mathrm{IH} \}
= \mathbf{length}(\mathsf{cons}(a, u')) \qquad \{ \mathrm{Def. \ 3.1} \}
```

Övning 3.16. (A) Bevisa genom att använda strukturell induktion och resultaten från övning 3.13 och 3.15 att dubbla kostnadsdelen av **mreverse** är lika med kvadraten av argumentets längd plus argumentets längd, dvs att

$$\forall u \ 2 \times \mathbf{cost}(\mathbf{mreverse}(u)) = \mathbf{length}(u) \times \mathbf{length}(u) + \mathbf{length}(u)$$

Låt u vara en List-term. Vi gör induktion över strukturen för u.

```
• Fall u = \text{empty}.
              2 \times \mathbf{cost}(\mathbf{mreverse}(\mathsf{empty}))
              = 2 \times \mathbf{cost}(\langle 0, \mathsf{empty} \rangle)
                                                                                                  \{Def. 3.7\}
              = 0
                                                                                                  \{ \text{Def. } 3.5 \}
              = 0 \times 0 + 0
                                                                                                  {Aritmetik}
              = length(empty) \times length(empty) + length(empty)
                                                                                                  \{Def. 3.1\}
• Fall u = cons(a, u') för a en Letter-term och u' en List-term.
   Antag som induktionshypotes (IH) att 2 \times \mathbf{cost}(\mathbf{mreverse}(u')) = \mathbf{length}(u') \times
   length(u') + length(u').
   2 \times \mathbf{cost}(\mathbf{mreverse}(\mathsf{cons}(a, u')))
   = 2 \times (1 + \mathbf{length}(\mathbf{result}(\mathbf{mreverse}(u'))) + \mathbf{cost}(\mathbf{mreverse}(u')))  {Def. 3.7, Övn. 3.13}
                                                                                                  {Övn. 3.15}
   = 2 \times (1 + \mathbf{length}(u') + \mathbf{cost}(\mathbf{mreverse}(u')))
   = 2 \times (1 + \mathbf{length}(u')) + 2 \times \mathbf{cost}(\mathbf{mreverse}(u'))
                                                                                                  {Aritmetik}
   = 2 \times (1 + length(u')) + length(u') \times length(u') + length(u')
                                                                                                  {HI}
   = (1 + \mathbf{length}(u')) \times (1 + \mathbf{length}(u')) + (1 + \mathbf{length}(u'))
                                                                                                  {Aritmetik}
   = length(cons(a, u')) \times length(cons(a, u')) + length(cons(a, u'))
                                                                                                  \{Def. 3.7\}
```

Betrakta nu mätbara varianter av funktionerna rev och reverse'.

Definition 3.8.

$$\begin{aligned} \mathbf{mrev}(\mathsf{empty}, v) &\stackrel{\mathsf{def}}{=} \langle 0, v \rangle \\ \mathbf{mrev}(\mathsf{cons}(a, u')) &\stackrel{\mathsf{def}}{=} \mathbf{let} \ r = \mathbf{mrev}(u', \mathsf{cons}(a, v)) \ \mathbf{in} \\ & \langle 1 + \mathbf{cost}(r), \mathbf{result}(r) \rangle \\ \mathbf{mreverse}'(u) &\stackrel{\mathsf{def}}{=} \mathbf{mrev}(u, \mathsf{empty}) \end{aligned}$$

Övning 3.17. (C) Bevisa genom att använda strukturell induktion att resultatet av **rev** och resultatelen av **mrev** sammanfaller för alla listor, dvs att

$$\forall u \ \forall v \ \mathbf{result}(\mathbf{mrev}(u, v)) = \mathbf{rev}(u, v)$$

Låt u vara en List-term. Vi gör induktion över strukturen för u.

• Fall u = empty.

Låt v vara en List-term.

```
result(mrev(empty, v))
= \mathbf{result}(\langle 0, v \rangle) \qquad \qquad \{\text{Def. 3.8}\}
= v \qquad \qquad \{\text{Def. 3.5}\}
= \mathbf{rev}(\text{empty}, v) \qquad \qquad \{\text{Def. 3.4}\}
```

• Fall u = cons(a, u') för a en Letter-term och u' en List-term.

Antag som induktionshypotes (IH) att $\forall v \ \mathbf{result}(\mathbf{mrev}(u',v)) = \mathbf{rev}(u',v)$, och låt $v \ \text{vara}$ en List-term.

$$\begin{aligned} &\mathbf{result}(\mathbf{mrev}(\mathsf{cons}(a, u'), v)) \\ &= &\mathbf{result}(\mathbf{mrev}(u', \mathsf{cons}(a, v))) \\ &= &\mathbf{rev}(u', \mathsf{cons}(a, v)) \end{aligned} \qquad \qquad \{ \text{Def. 3.8} \}$$

Övning 3.18. (E) Bevisa genom att använda resultatet från övning 3.17 att reverse' och resultatdelen av mreverse' och sammanfaller för alla listor, dvs att

$$\forall u \ \mathbf{result}(\mathbf{mreverse}'(u)) = \mathbf{reverse}'(u)$$

```
Låt u vara en List-term.  \begin{aligned} &\mathbf{result}(\mathbf{mreverse}'(u)) \\ &= \mathbf{rev}(u, \mathsf{empty}) \\ &= \mathbf{reverse}'(u) \end{aligned} \qquad \qquad \{ \ddot{\mathbf{O}} \text{vn. } 3.17 \} \\ &= \mathbf{reverse}'(u) \qquad \qquad \{ \mathrm{Def } 3.4 \} \end{aligned}
```

Övning 3.19. (A) Bevisa genom att använda strukturell induktion att kostnadsdelen av mrev är lika med första argumentets längd, dvs att

$$\forall u \ \forall v \ \mathbf{cost}(\mathbf{mrev}(u, v)) = \mathbf{length}(u)$$

Låt u vara en List-term. Vi gör induktion över strukturen för u.

• Fall u = empty.

Låt v vara en List-term.

$$\begin{split} & \mathbf{cost}(\mathbf{mrev}(\mathsf{empty}, v)) \\ &= \mathbf{cost}(\langle 0, v \rangle) \\ &= 0 \\ &= \mathbf{length}(\mathsf{empty}) \end{split} \qquad \qquad \{ \text{Def. 3.8} \}$$

• Fall u = cons(a, u') för a en Letter-term och u' en List-term.

Antag som induktionshypotes (IH) att $\forall v \ \mathbf{cost}(\mathbf{mrev}(u',v)) = \mathbf{length}(u')$, och låt v vara en List -term.

```
\begin{aligned} & \mathbf{cost}(\mathbf{mrev}(\mathsf{cons}(a, u'), v) \\ &= 1 + \mathbf{cost}(\mathbf{mrev}(u', \mathsf{cons}(a, v))) \\ &= 1 + \mathbf{length}(u') \\ &= \mathbf{length}(\mathsf{cons}(a, u')) \end{aligned} \qquad \begin{aligned} & \{ \text{Def. 3.8, Def. 3.5} \} \\ &= \{ \mathbf{length}(\mathsf{cons}(a, u')) \} \end{aligned}
```

 $\ddot{\mathbf{O}}$ vning 3.20. (E) Bevisa genom att använda resultatet från övning 3.19 att kostnadsdelen av $\mathbf{mreverse'}$ är lika med argumentets längd, dvs att

$$\forall u \ \mathbf{cost}(\mathbf{mreverse}'(u)) = \mathbf{length}(u)$$

```
Låt u vara en List-term.  \begin{aligned}  & \mathbf{cost}(\mathbf{mreverse}'(u)) \\ &= \mathbf{cost}(\mathbf{mrev}(u, \mathsf{empty})) \\ &= \mathbf{length}(u) \end{aligned} \qquad \qquad \{ \begin{aligned} & \text{Def } 3.8 \} \\ &= \mathbf{length}(u) \end{aligned}
```