Matemática Discreta

2ª Prova de Avaliação Discreta	$09/05/2014$ \setminus
Nome:	
N.º mecanográfico: Curso	
	Grupo I Grupo II - 1 Grupo II - 2 Total
Grı	іро І
correta que deve assinalar com uma × no 🗌 c Uma resposta correta é cotada com 16 pontos resposta errada com -4 pontos.	olha múltipla. Cada questão tem uma só opção orrespondente. , uma resposta em branco com 0 pontos e uma se entre os 11 e os 20 anos vão assistir a um jogo de para que se garanta que pelo menos 5 têm a mesma
	no máximo por 36 pessoas. No entanto a primeira fila stação estava esgotada, determine de quantas maneiras

3. Considere um sistema computacional onde se usam endereços de 16 dígitos binários (zeros e uns). O número de endereços que se podem formar com 12 zeros e 4 uns, que começam por 1 e que terminam em 0001 são: $\frac{16!}{4!12!};$ $\frac{16!}{4!12!} \times \frac{16!}{12!4!};$ $\frac{11!}{9!2!}$; $\frac{10!}{8!2!}$. 4. De quantas maneiras uma professora pode distribuir 7 cromos iguais e 15 cromos diferentes pelos seus 10 alunos? 5. Um navio que se encontra a fazer um cruzeiro pelo mediterrâneo leva 40 passageiros e pára em Barcelona, Roma e Atenas. Sabendo que 20 passageiros visitaram Barcelona, 17 visitaram Roma, 15 visitaram Atenas, 10 visitaram Barcelona e Roma, 5 visitaram Barcelona e Atenas, 7 visitaram Roma e Atenas e 4 visitaram as três cidades. Quantos passageiros não visitaram nenhuma das cidades? \square 7; 34;

 $\boxed{10};$

nenhuma das anteriores.

Grupo II

Justifique devidamente todas as respostas

(50 val.)1) (a) Considere a sucessão definida recursivamente por

$$\begin{cases} a_0 = -2 \\ a_n = 3a_{n-1} - 2; \ n \ge 1 \end{cases}$$

Prove, por indução sobre n, que $a_n = -3^{n+1} + 1$, para todo $n \in \mathbb{N} \cup \{0\}$.

- (70 val.)2) (a) Calcule o desenvolvimento de $(a+b)^4$ e use-o para determinar $c_0, c_1, c_2, c_3, c_4 \in \mathbb{N}$ tais que $5^4 = c_0 4^0 + c_1 4^1 + c_2 4^2 + c_3 4^3 + c_4 4^4.$
 - (b) Determine $n \in \mathbb{N}$ de modo a que $35\,x^{11}$ seja um termo do desenvolvimento de $(x^3+\sqrt{x})^n$. Sugestão: recorra ao triângulo de Pascal.
 - (c) Determine o coeficiente de xy^2z^3 no desenvolvimento de $(x+\frac{y}{x}+2z)^8$.