ECCCos from the Black Box

Faithful Model Explanations through Energy-Based Conformal Counterfactuals

Patrick Altmeyer

Mojtaba Farmanbar Arie van Deursen Cynthia C. S. Liem

Delft University of Technology

2024-01-04

Faithfulness first, plausibility second.

Faithfulness first, plausibility second.

We propose *ECCCo*: a new way to generate faithful model explanations that are as plausible as the underlying model permits.

▶ **Idea**: generate counterfactuals that are consistent with what the model has learned about the data.

- ▶ **Idea**: generate counterfactuals that are consistent with what the model has learned about the data.
- ▶ **Method**: constrain the model's energy and predictive uncertainty for the counterfactual.

- ▶ **Idea**: generate counterfactuals that are consistent with what the model has learned about the data.
- ▶ **Method**: constrain the model's energy and predictive uncertainty for the counterfactual.
- Result: faithful counterfactuals that are as plausible as the model permits.

- ▶ **Idea**: generate counterfactuals that are consistent with what the model has learned about the data.
- ▶ **Method**: constrain the model's energy and predictive uncertainty for the counterfactual.
- Result: faithful counterfactuals that are as plausible as the model permits.
- **Benefits**: enable us to distinguish trustworthy from unreliable models.

Pick your Poison?

All of these counterfactuals are valid explanations for the model's prediction.

Which one would you pick?

Figure 1: Turning a 9 into a 7: Counterfactual Examplanations for an Image Classifier.

Reconciling Faithfulness and Plausibility

Counterfactual Explanations

$$\min_{\mathbf{Z}' \in \mathcal{Z}^L} \{ \mathsf{yloss}(M_{\theta}(f(\mathbf{Z}')), \mathbf{y}^+) + \lambda \mathsf{cost}(f(\mathbf{Z}')) \}$$

Counterfactual Explanations (CE) explain how inputs into a model need to change for it to produce different outputs (Wachter, Mittelstadt, and Russell 2017).

Figure 2: Gradient-based counterfactual search.

Plausibility

There's no consensus on the exact definition of plausibility but we think about it as follows:

Definition (Plausible Counterfactuals)

Let $\mathcal{X}|\mathbf{y}^+ = p(\mathbf{x}|\mathbf{y}^+)$ denote the true conditional distribution of samples in the target class \mathbf{y}^+ . Then for \mathbf{x}' to be considered a plausible counterfactual, we need: $\mathbf{x}' \sim \mathcal{X}|\mathbf{y}^+$.

Plausibility has been linked to actionability, fairness and robustness.

Faithfulness

Definition (Faithful Counterfactuals)

Let $\mathcal{X}_{\theta}|\mathbf{y}^+ = p_{\theta}(\mathbf{x}|\mathbf{y}^+)$ denote the conditional distribution of \mathbf{x} in the target class \mathbf{y}^+ , where θ denotes the parameters of model M_{θ} . Then for \mathbf{x}' to be considered a faithful counterfactual, we need: $\mathbf{x}' \sim \mathcal{X}_{\theta}|\mathbf{y}^+$.

If the model posterior approximates the true posterior, faithful counterfactuals are also plausible.

ECCCo

Energy-Constrained (\mathcal{E}_{θ}) Conformal (Ω) Counterfactuals:

$$\begin{split} & \min_{\mathbf{Z}' \in \mathcal{Z}^L} \{ L_{\text{clf}}(f(\mathbf{Z}'); M_{\theta}, \mathbf{y}^+) + \lambda_1 \text{cost}(f(\mathbf{Z}')) \\ & + \lambda_2 \mathcal{E}_{\theta}(f(\mathbf{Z}') | \mathbf{y}^+) + \lambda_3 \Omega(C_{\theta}(f(\mathbf{Z}'); \alpha)) \} \end{split}$$

Figure 3: Gradient fields and counterfactual paths for different generators.

Results

Visual Evidence

Figure 4: Turning a 9 into a 7. ECCCo applied to MLP (a), Ensemble (b), Joint Energy Model (c), JEM Ensemble (d).

ECCCo generates counterfactuals that

- faithfully represent model quality (Figure 4).
- achieve state-of-the-art plausibility (Figure 5).

Figure 5: Results for different generators (from 3 to 5).

The Numbers

High-Level Finding: state-of-the-art faithfulness across models and datasets and approaches state-of-the-art plausibility for more trustworthy models.

		California Housing			GMSC		
Model	Generator	Unfaithfulness \downarrow	Implausibility ↓	Uncertainty ↓	Unfaithfulness ↓	Implausibility \downarrow	Uncertainty ↓
MLP Ensemble	ECCCo ECCCo+	3.69 ± 0.08** 3.88 ± 0.07**	1.94 ± 0.13 1.20 ± 0.09	0.09 ± 0.01** 0.15 ± 0.02	3.84 ± 0.07** 3.79 ± 0.05**	2.13 ± 0.08 1.81 ± 0.05	0.23 ± 0.01** 0.30 ± 0.01*
	ECCCo (no CP)	3.70 ± 0.08**	1.94 ± 0.13	$0.10 \pm 0.01**$	3.85 ± 0.07**	2.13 ± 0.08	0.23 ± 0.01**
	ECCCo (no EBM) REVISE	4.03 ± 0.07 3.96 ± 0.07*	1.12 ± 0.12 0.58 ± 0.03**	$0.14 \pm 0.01**$ 0.17 ± 0.03	4.08 ± 0.06 4.09 ± 0.07	0.97 ± 0.08 $0.63 \pm 0.02**$	$0.31 \pm 0.01*$ 0.33 ± 0.06
	Schut Wachter	4.00 ± 0.06 4.04 ± 0.07	1.15 ± 0.12 1.13 ± 0.12	0.10 ± 0.01** 0.16 ± 0.01	4.04 ± 0.08 4.10 ± 0.07	1.21 ± 0.08 0.95 ± 0.08	$0.30 \pm 0.01*$ 0.32 ± 0.01
JEM Ensemble	ECCCo	1.40 ± 0.08**	0.69 ± 0.05**	0.10 ± 0.01	1.20 ± 0.06*	0.78 ± 0.07**	0.32 ± 0.01 0.38 ± 0.01
	ECCCo+ ECCCo (no CP)	1.28 ± 0.08** 1.39 ± 0.08**	0.60 ± 0.04** 0.69 ± 0.05**	$0.11 \pm 0.00**$ $0.11 \pm 0.00**$	1.01 ± 0.07** 1.21 ± 0.07*	$0.70 \pm 0.07**$ $0.77 \pm 0.07**$	0.37 ± 0.01 0.39 ± 0.01
	ECCCo (no EBM) REVISE	1.70 ± 0.09 1.39 ± 0.15**	0.99 ± 0.08 0.59 ± 0.04**	$0.14 \pm 0.00*$ 0.25 ± 0.07	1.31 ± 0.07 1.01 ± 0.07**	0.97 ± 0.10 0.63 ± 0.04**	0.32 ± 0.01** 0.33 ± 0.07
	Schut Wachter	1.59 ± 0.10* 1.71 ± 0.09	1.10 ± 0.06 0.99 ± 0.08	0.23 ± 0.07 0.09 ± 0.00** 0.14 ± 0.00	1.01 ± 0.07 1.34 ± 0.07 1.31 ± 0.08	1.21 ± 0.10 0.95 ± 0.10	0.33 ± 0.07 0.26 ± 0.01** 0.33 ± 0.01

Table 1: Results for tabular datasets: sample averages +/- one standard deviation across valid counterfactuals. The best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or two (**) standard deviations away from the baseline (Wachter).

Questions?

With thanks to my co-authors Mojtaba Farmanbar, Arie van Deursen and Cynthia C. S. Liem.

CounterfactualExplanations.jl

All the work presented today is powered by CounterfactualExplanations.jl .

There is also a corresponding paper, *Explaining Black-Box Models through Counterfactuals*, which has been published in JuliaCon Proceedings.

References

Wachter, Sandra, Brent Mittelstadt, and Chris Russell. 2017. "Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR." *Harv. JL & Tech.* 31: 841. https://doi.org/10.2139/ssrn.3063289.