CSE596: Introduction to the Theory of Computation

Glossary

Jinghao Shi jinghaos@buffalo.edu

December 11, 2013

CONTENTS CSE596 Glossary

Contents

1	Pre	liminaries	3
	1.1	Words and Language	3
	1.2	Partial Functions	3
	1.3	Propositional Logic	3
	1.4	cardinality	3
	1.5	Misc	4
2	Tur	ing Machine and RAM	5
	2.1	Turing Machine	5
	2.2	Turing Machine Concepts	5
	2.3	Variations of Turing Machines	5
		2.3.1 Multitape Turing Machines	5
		2.3.2 Nondeterministic Turing Machines	5
	2.4	Church's Thesis	6
	2.5	RAMs	6
		2.5.1 Turing Machines for RAMS	6
3	Line	decidability	7
J	3.1	Decision Problems	7
	3.2	Undecidable Problems	7
	3.3	Pairing Functions	7
	3.4	Computably Enumerable Sets	7
	3.5	Halting Problem, Reductions, and Complete Sets	8
	0.0	3.5.1 Complete Problems	8
	3.6	S-m-n Theorem	9
	3.7	Recursion Theorem	9
	3.8		10
	3.9		10
4	Tntn	roduction to Complexity Theory	Ι1
4	4.1		11
	1.1	Complexity Classes and Complexity Modelies	
5			12
	5.1		12
	5.2		12
	5.3		12
	5.4		12
			13
	5.5	1	$\frac{14}{14}$
	5.6	1 0	14
		5.6.1 Tally Languages	15
6	Nor	ndeterminism and NP-Completeness	۱6
	6.1	Characterizing NP	16
	6.2	The Class P	16
	6.3	Enumerations	16
	6.4	*	16
	6.5		17
	6.6		17
			17
		6.6.2 Some Natural NP-Complete Problems	17
7	D -1	ativa Computability	١Q

CONTENTS CSE596 Glossary

7.1	NP-Hardness	18
7.2	Search Problems	18
7.3	The Structure of NP	L
	7.3.1 Composite Number and Graph Isomorphism	19
7.4	The Polynomial Hierarchy	LS

1 PRELIMINARIES CSE596 Glossary

1 Preliminaries

1.1 Words and Language

Alphabet A finite set of symbols. $\Sigma = \{a_1, a_2, \dots, a_k\}.$

Word A finite sequence of symbols.

Language A set of words. $L \in \Sigma^*$.

1.2 Partial Functions

Partial Function $f: X' \to Y$, where $X' \subset X$.

Total Function When X' = X.

Converge When f(x) is defined. Noted as $f(x) \downarrow$.

Diverge When f(x) is not defined. Noted as $f(x) \uparrow$.

1.3 Propositional Logic

Satisfiable A formula F is satisfiable if there exists an assignment to its variables that satisfies it.

Tautology A formula is valid (or is a tautology) if every assignment to its variables satisfies it

Conjunction $A_1 \wedge A_2 \wedge \cdots \wedge A_n$

Disjunction $A_1 \lor A_2 \lor \cdots \lor A_n$

Clause Disjunction of literals.

Conjunctive Normal Form (CNF) Conjunction of clauses.

1.4 cardinality

Same Cardinality card(A) = card(B) iff. $\exists f : A \to B$ is a bijection.

Countable A set A is countable if card(A) = card(N) or A is finite.

Countable Infinite card(A) = card(N).

Enumerable A set is enumerable if it is the empty set or there is a function $f: N \to_{onto} A$, i.e., $A = range(f) = \{a_0, a_1, \ldots\}$

Enumerable \Rightarrow **Countable** Define h as follows:

$$h(0) = f(0)$$

$$h(n+1) = f(\min\{x|f(x) \notin \{h(0), h(1), \dots, h(n)\}\})$$

- h is one-to-one since $h(n+1) \notin \{h(0), h(1), \dots, h(n)\}.$
- $range(h) \subseteq range(f) = S$.
- f(0) = h(0), suppose by induction that $f(n) \in \{h(0), h(1), \dots, h(n)\}$ and $f(n+1) \notin \{h(0), h(1), \dots, h(n)\}$, then $n+1 = \min\{x | f(x) \notin \{h(0), h(1), \dots, h(n)\}\}$, so h(n+1) = f(n+1). So $\forall n, f(n) \in \{h(0), h(1), \dots, h(n)\}$, $S = range(f) \subseteq range(h)$.

1 PRELIMINARIES CSE596 Glossary

Thus $S = range(f) = range(h), h : N \rightarrow_{1-1} S, card(N) = card(S)$

Theorem 1.3. A set A is countable if and only if $card(A) \leq \aleph_0$.

$$card(A) \leq \aleph_0$$

 $\Rightarrow \exists f: A \to_{1-1} N$
 $\Rightarrow f[A]$ doesn't have a largest number (otherwise, A is finite.)
 $\Rightarrow a_0 = min\{f[A]\}, a_{n+1} = min\{f[A] - \{f(0), f(1), \dots, f(n)\}\}$
 $\Rightarrow A$ is enumerable.
 $\Rightarrow A$ is countable.

Theorem 1.4. The set of all functions from N to N is not countable.

Let $A = \{f | f : N \to N\}$, suppose for contradiction that A is countable, then $A = \{f_1, f_2, \ldots\}$, define $g(x) = f_x(x) + 1$ and $g = f_k$ for some k, but $g(k) = f_k(k) + 1 \neq f_k(k)$.

Theorem 1.5. $\mathscr{P}(N)$ has cardinality greater than \aleph_0 .

Let $A = \mathscr{P}(N) = \{S | S \subseteq N\}$ is power set of N. Suppose for contradiction that A is enumerable, then $A = \{S_0, S_1, \ldots\}$, define $T = \{k | k \notin S_k\}$ and $T \in A$. However, $\forall k \ T \neq S_k$ since $k \in T \Leftrightarrow k \notin S_k$.

1.5 Misc

onto/surjection $f: A \to_{onto} B$ iff. $\forall b \in B, \exists a \in A \text{ s.t. } f(a) = b$ one-to-one/injection $f: A \to_{1-1} B$ iff. $f(a) = f(b) \Rightarrow a = b$ bijection Both one-to-one and onto.

2 Turing Machine and RAM

2.1 Turing Machine

Turing Machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, B, q_{accept}, q_{reject} \rangle$

2.2 Turing Machine Concepts

Definition 2.1. Let M be a Turing machine. The language accepted by M is $L(M) = \{w \in \Sigma^* | M \text{ accepts } w\}$.

TM-acceptable A language $L, L \subseteq \Sigma^*$, is Turing-machine-acceptable if there is a Turing machine that accepts L.

Definition 2.2. A language L is Turing-machine-decidable if L is accepted by some Turing machine that halts on every input, and a Turing machine that halts on every input and accepts L is called a decider for L.

M computes ϕ M eventually enter an accepting configuration of $\phi(w_1,\ldots,w_n)q_{accept}$ iff. $\phi(w_1,\ldots,w_n)\downarrow$.

Partial Computable A partial function ϕ is partial computable if there is some Turing machine that computes it.

Total Computable $\phi(w_1, \ldots, w_n) \downarrow$ for all w_1, \ldots, w_n . If M computes a total computable function, $L(M) = \Sigma^*$.

Theorem 2.2. A language L is decidable if and only if both L and \overline{L} are acceptable. Parallel simulation.

Proposition 2.1. If L is decidable, then \overline{L} is decidable.

2.3 Variations of Turing Machines

2.3.1 Multitape Turing Machines

Definition 2.3. Two Turing machines are equivalent if they accept the same language.

Theorem 2.1. Every multitape Turing machine has an equivalent one-tape Turing machine.

Corollary 2.1. For every multitape Turing machine there is a one-tape Turing machine that computes the same partial computable function.

Theorem 2.2. A language L is decidable if and only if both L and \overline{L} are acceptable.

2.3.2 Nondeterministic Turing Machines

Theorem 2.3. Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Corollary 2.2. If every computation path of a nondeterministic Turing machine N halts on every input word, then there is a deterministic Turing machine M that decides the language L(N).

2.4 Church's Thesis

2.5 RAMs

RAM

```
\begin{array}{lll} 1_j & X \ \mathbf{add}_j \ Y & \text{append} \ a_j \ \text{to} \ Y \\ 2 & X \ \mathbf{del} \ Y & \text{delete right most symbol of} \ Y \\ 3 & X \ \mathbf{clr} \ Y & Y \to \lambda \\ 4 & X \ Y \leftarrow Z & Y = Z \\ 5 & X \ \mathbf{jmp} \ Y \\ 6_j & X \ Y \ \mathbf{jmp}_j \ X' \\ 7 & X \ \mathbf{continue} \end{array}
```

Theorem 2.4. Every RAM program can be effectively transformed into an equivalent one that uses only instructions of types 1, 2, 6, and 7.

2.5.1 Turing Machines for RAMS

3 Undecidability

3.1 Decision Problems

3.2 Undecidable Problems

Characteristic Function $f_S(x) = \begin{cases} 0 & \text{if } x \in S \\ 1 & \text{if } x \notin S \end{cases}$

Proposition 3.1. A set S is decidable if and only if its characteristic function is computable.

 w_M The word that encodes M.

Gödel Number e The code for a Turing machine M.

 $\phi_e = \lambda x. U(e, x).$ ϕ_e is the partial function of one argument that is computed by M_e .

Theorem 3.1. The Program Termination problem (Example 3.2) is undecidable. There is no algorithm to determine whether an arbitrary partial computable function is total. Thus, there is no algorithm to determine whether a Turing machine halts on every input.

Define

$$TEST(i) = \begin{cases} "yes" & \text{if } \phi_i \text{ halts on every input.} \\ "no" & \text{otherwise} \end{cases}$$

$$\delta(k) = \begin{cases} \phi_k(k) + 1 & \text{if TEST(i)="yes"} \\ 0 & \text{if TEST(k)="no"} \end{cases}$$

Thus δ is total computable. Let $\delta = \phi_e$, then TEST(e) is "yes". $\delta(e) = \phi_e(e) + 1 \neq \phi_e(e)$.

3.3 Pairing Functions

Paring function Computable one-to-one mapping $<,>: N \times N \to N$, whose inverse $\tau_1(< x, y >) = x$ and $\tau_2(< x, y >) = y$ are also computable. Example, $< x, y >= \frac{1}{2}(x^2 + 2xy + y^2 + 3x + 1)$.

3.4 Computably Enumerable Sets

Computable enumerable (c.e.) A set S is c.e. if $S = \emptyset$ or S = range(f) in which f is a total computable function.

index set Let $\mathscr C$ be any set of partial computable functions, then $P(\mathscr C)=\{e|\phi_e\in\mathscr C\}$ is called index set.

Effectively enumerable A collection of Turing machines is effectively enumerable if the corresponding set of Gödel numbers is c.e.

Homework 3.3 $A = \{(e, j) | L(M_e) = L(M_j)\}$ is not decidable. Suppose by contradiction that A is decidable, let $L(M_j) = \Sigma^*$, then $\{e | L(M_e) = \Sigma^*\} = \{e | \phi_e \text{ is total computable}\}$ is decidable, this contradicts **Theorem 3.1**.

Theorem 3.2. $\{e|\phi_e is \text{ total computable}\}\$ is not computably enumerable. Let $S = \{e|\phi_e \text{ is total computable}\}\$ and suppose for contradiction that S is c.e., then S = range(g) for some

total computable function g. Define $U_S(e,x) = \phi_{g(e)}(x)$ and $h(x) = U_S(x,x) + 1$, so $\exists k \in S$ s.t. $h = \phi_k$ and $\exists e$ s.t. k = g(e). Finally,

$$\phi_k(e) = h(e)$$

$$= U_S(e, e) + 1$$

$$= \phi_{g(e)}(e) + 1$$

$$= \phi_k(e) + 1$$

Theorem 3.3. A set S is computably enumerable if and only if there is a decidable relation R(x, y) such that

$$x \in S \Leftrightarrow \exists y R(x, y).$$

Theorem 3.4. A set S is computably enumerable if and only if it is Turing-machine- acceptable.

Corollary 3.1. A set S is decidable if and only if S and \overline{S} are both computably enumerable.

Corollary 3.2. A set S is computably enumerable if and only if S is the domain of some partial computable function.

Homework 3.4 Prove that an infinite set is decidable if and only if it can be enumerated in increasing order by a one-to-one total computable function.

Homework 3.6 Prove that every infinite c.e. set contains an infinite decidable subset.

$$h(0) = f(0)$$

$$h(n+1) = f(\min\{x | f(x) \notin \{h(0), h(1), \dots, h(n)\}\})$$

 $W_e = dom(\phi_e)$

3.5 Halting Problem, Reductions, and Complete Sets

Diagonal Set $K = \{x | \phi_x(x) \downarrow\} = \{x | U(x,x) \downarrow\} = \{\text{TM that accepts its own code.}\}$. Since $\lambda x.U(x,x)$ is partial computable, K is c.e.

Theorem 3.5. K is not decidable. In particular, \overline{K} is not c.e. Suppose $\overline{K} = W_e = dom(\phi_e)$, then $e \in \overline{K} \Leftrightarrow \phi_e(e) \downarrow \Leftrightarrow e \in K$.

Many-one reducible $A \leq_m B$ if there is a total computable function s.t. $x \in A \Leftrightarrow f(x) \in B$

Lemma 3.2. 1. If $A \leq_m B$ and B is c.e., then A is c.e.

2. If $A \leq_m B$ and B is decidable, then A is decidable.

Theorem 3.6. The Halting problem is undecidable. Specifically, the set $L_U = \{(e, w) | M_e \text{ accepts } w\}$ is not decidable.

 $x \in K \Leftrightarrow (x, x) \in L_U, x \mapsto (x, x) \text{ is total, so } K \leq_m L_U.$

3.5.1 Complete Problems

Many-one complete L is many-one complete if

- 1. *L* is c.e.
- 2. For every c.e. set $A, A \leq_m L$

Homework 3.8 Show that K is a many-one complete set. Note that it suffices to show that $L_U \leq_m K$. Need to show $(e, w) \in L_U \Leftrightarrow f((e, w)) \in K$ for some total computable function f. Define f((e, w)) = e' where M'_e is defined as follows.

on input x; if M_e accepts w then \mid ACCEPT; else \mid REJECT; end

Then we have

$$(e, w) \in L_U \Leftrightarrow L(M'_e) = \Sigma^*$$

 $\Leftrightarrow e' \in L(M'_e)$
 $\Leftrightarrow e' \in K$

Decidable sets are a proper subclass of the set of all c.e. sets

3.6 S-m-n Theorem

Corollary 3.3. For every partial computable function $\lambda x.\Psi(e,x)$, there is a total computable function f so that $\phi_{f(e)}(x) = \Psi(e,x)$.

Theorem 3.9. There is a total computable function f such that $range \phi_{f(e)} = dom \phi_e$. Define

$$\Psi(e, x) = \begin{cases} x & \text{if } x \in dom\phi_e \\ \uparrow & \text{otherwise.} \end{cases}$$

So $range(\lambda x.\Psi(e,x)) = dom\phi_e$, and $\phi_{f(e)} = \Psi(e,x)$, so $range(\phi_{f(e)}) = dom\phi_e$.

Homework 3.9 Prove that there is a total computable function g such that $dom\phi_{g(e)} = range\phi_e$. Define

$$\Psi(e, x) = \begin{cases} 1 & \text{if } x \in range\phi_e \\ \uparrow & \text{otherwise.} \end{cases}$$

So $range(\Psi(e, x)) = range(\phi_{g(e)}(x)) = range(\phi_e)$

3.7 Recursion Theorem

Theorem 3.10. For every total computable function f there is a number n such that $\phi_n = \phi_{f(n)}$. A number n with this property is called a fixed point of f.

Corollary 3.5. There is a number (i.e., program) n such that ϕ_n is the constant function with output n. Define $\Psi(e,x)=e$, then $\Psi(e,x)=\phi_{f(e)}(x)=\phi_{e}(x)=e$.

 $W_n = \{n\}$ Define

$$\Psi(e, x) = \begin{cases} e & \text{if } x = e \\ \uparrow & \text{otherwise} \end{cases}$$

$$\Psi(e, x) = \phi_{f(e)}(x) = \phi_e(x), dom\phi_e = \{e\}$$

 $W_n = \{n^2\}$ Define

$$\Psi(e, x) = \begin{cases} e & \text{if } x = e^2 \\ \uparrow & \text{otherwise} \end{cases}$$

$$\Psi(e,x) = \phi_{f(e)}(x) = \phi_e(x), dom\phi_e = \{e^2\}$$

Homework 3.11 Show that there is no algorithm that given as input a Turing machine M, where M defines a partial function of one variable, outputs a Turing machine M' such that M' defines a different partial function of one variable.

Suppose for contradiction that such $\exists f \forall n \phi_n \neq \phi_{f(n)}$, and f is total.

Theorem 3.11. For every partial computable function $\Psi(e,x)$, there is a value e_0 such that $\Psi(e_0,x) = \phi_{e_0}(x)$.

Observe that there is a standard pattern to the proof of these results. First, we use the s-m-n theorem or its corollary to obtain a total computable function f with whatever property we find useful. Then, we use the recursion theorem or its corollary to select a fixed point of f.

3.8 Rice's Theorem

Theorem 3.12. An index set $P_{\mathscr{C}}$ is decidable if and only if $P_{\mathscr{C}} = \emptyset$ or $P_{\mathscr{C}} = N$. Suppose $P_{\mathscr{C}} \neq \emptyset$ and $P_{\mathscr{C}} \neq N$, let $j \in P_{\mathscr{C}}$ and $k \notin P_{\mathscr{C}}$, define

$$f(x) = \begin{cases} k & \text{if } x \in P_{\mathscr{C}} \\ j & \text{if } x \notin P_{\mathscr{C}} \end{cases}$$

Suppose for contradiction that $P_{\mathscr{C}}$ is decidable, then f is total, then f has a fixed point n such that $\phi_n = \phi_{f(n)}$. Since n and f(n) is the code for same partial functions, either they both belong to $P_{\mathscr{C}}$ or both belong to $\overline{P_{\mathscr{C}}}$, but $x \in P_{\mathscr{C}} \Leftrightarrow f(x) \notin P_{\mathscr{C}}$.

To use Rice's theorem to show that a set A is not decidable, the set A must be an index set. Therefore, if one program e to compute ϕ_e belongs to A, then every program i such that $\phi_i = \phi_e$ must also belong to A. Thus, Rice's theorem only applies to machine-independent properties.

3.9 Turing Reductions and Oracle Turing Machines

 M^A an oracle TM with A as its oracle.

Definition 3.5. A is decidable in B if $A = L(M^B)$, where M^B halts on every input.

Definition 3.6. A is Turing-reducible to B if and only if A is decidable in B. In notation: $A \leq_T B$.

Homework 3.13 Prove each of the following properties:

- 1. \leq_T is transitive;
- 2. \leq_T is reflexive;
- 3. For all sets $A, A \leq_T \overline{A}$;
- 4. If B is decidable and $A \leq_T B$, then A is decidable;
- 5. If A is decidable, then $A \leq_T B$ for all sets B;
- 6. $A \leq_m B \Rightarrow A \leq_T B$;
- 7. $\exists A, B[A \leq_T B \text{ and } A \nleq_m B];$

 $\overline{K} \leq_T K$ but $\overline{K} \nleq_m K$.

8. $\exists A, B[A \leq_T B \text{ and } B \text{ is c.e. and } A \text{ is not c.e.}]. \overline{K} \leq_T K, K \text{ is c.e., } \overline{K} \text{ is not c.e.}$

4 Introduction to Complexity Theory

4.1 Complexity Classes and Complexity Measures

Online TM An online Turing machine is a multitape Turing machine whose input is written on one of the work tapes, which can be rewritten and used as an ordinary work tape.

Time-bounded M is a T(n) time-bounded Turing machine if for every input of length n, M makes at most T(n) moves before halting.

DTIME(T(n)) to be the set of all languages having time complexity T(n).

NTIME(T(n)) to be the set of all languages accepted by nondeterministic T(n) time-bounded Turing machines.

Offline TM An off-line Turing machine is a multitape Turing machine with a separate read-only input tape. The Turing machine can read the input but cannot write over the input.

Space-bounded M is an S(n) space-bounded Turing machine if, for every word of length n, M scans at most S(n) cells over all storage tapes.

Complexity classes

- 1. L = DSPACE(log(n))
- 2. NL = NSPACE(log(n))
- 3. POLYLOGSPACE = $\bigcup \{ DSPACE((logn)^k) | k \ge 1 \}$
- 4. DLBA = $\bigcup \{DSPACE(kn) | k \ge 1\}$
- 5. LBA = $\bigcup \{ NSPACE(kn) | k \ge 1 \}$
- 6. PSPACE = $\bigcup \{DSPACE(n^k) | k \ge 1\}$
- 7. $P = \{ | \{ DTIME(n^k) | k > 1 \} \}$
- 8. NP = $\bigcup \{ \text{NTIME}(n^k) | k \ge 1 \}$
- 9. $E = \bigcup \{DTIME(k^n) | k \ge 1\}$
- 10. NE = $\bigcup \{ \text{NTIME}(k^n) | k \ge 1 \}$
- 11. EXP = $\bigcup \{ \text{DTIME}(2^{p(n)}) | p \text{ is a polynomial} \}$
- 12. NEXP = \bigcup {NTIME $(2^{p(n)})|p$ is a polynomial}

5 Basic Results of Complexity Theory

5.1 Linear Compression and Speedup

Big-Oh Notation $g(n) \in O(f(n)) \Leftrightarrow \exists c > 0, \forall n, g(n) \leq cf(n).$

Theorem 5.1 (Space Compression with Tape Reduction). For every k-tape S(n) space-bounded off-line Turing machine M and constant c > 0, there exists a one- tape cS(n) space-bounded off-line Turing machine N such that L(M) = L(N). Furthermore, if M is deterministic, then so is N.

Corollary 5.1. The following identities hold:

```
DSPACE(S(n)) = DSPACE(O(S(n)))
NSPACE(S(n)) = NSPACE(O(S(n)))
```

This implies DLBA = DSPACE(n), and LBA = NSPACE(n).

Theorem 5.2 (Linear Speedup). If L is accepted by a k-tape T(n) time-bounded Turing machine M, k > 1, and if $n \in o(T(n))$, then for any c > 0, L is accepted by a k-tape cT(n) time-bounded Turing machine N. Furthermore, if M is deterministic, then so is N.

5.2 Constructible Functions

Space-constructible There is an S(n) space-bounded Turing machine M such that for each n there is some input of length n on which M uses exactly S(n) cells.

Property of Space-constructible

- Space-constructible implies fully space-constructible for space bounds S(n) such that S(n) > n.
- If $S_1(n)$ and $S_2(n)$ are space-constructible, then so are $S_1(n)S_2(n)$, $2^{S_1(n)}$, and $S_1(n)^{S_2(n)}$

5.3 Tape Reduction

Theorem 5.5 Let M be a k-tape T(n) time-bounded Turing machine such that $n \in o(T(n))$. There is a one-tape $T^2(n)$ time-bounded Turing machine N such that L(N) = L(M). Furthermore, if M is deterministic, then so is N.

Oblivious TM A Turing machine is oblivious if the sequence of head moves on the Turing machine's tapes is the same for all input words of the same length. That is, for $t \ge 1$, the position of each of the heads after t moves on an input word x depends on t and |x|, but not on x.

Theorem 5.6. If L is accepted by a k-tape T(n) time-bounded Turing machine M, then L is accepted by an oblivious two-tape Turing machine N in time O(T(n)logT(n)). Furthermore, if M is deterministic, then so is N.

Theorem 5.7. If L is accepted by a k-tape T(n) time-bounded non- deterministic Turing machine M, then there are a constant c > 0 and a two-tape nondeterministic Turing machine N that accepts L such that for each word $x \in L$, the number of steps in the shortest computation of N on x is at most cT(n).

5.4 Inclusion Relationships

Theorem 5.8. For every function f, $DTIME(f) \subseteq DSPACE(f)$ and $NTIME(f) \subseteq NSPACE(f)$

Theorem 5.9. If L is accepted by an S(n) space-bounded Turing machine, $S(n) \ge log n$, then L is accepted by an S(n) space-bounded Turing machine that halts on every input.

Corollary 5.6. For $S(n) \ge log(n)$, DSPACE $(S(n)) \subseteq \bigcup \{DTIME(c^{S(n)}) | c \ge 1\}$

Theorem 5.10. NTIME $(T(n)) \in DSPACE(T(n))$.

Corollary 5.7. $NP \subseteq PSPACE$.

Theorem 5.11. NTIME $(T(n)) \subseteq \bigcup \{ \text{DTIME}(c^{T(n)} | c \ge 1 \}.$

Corollary 5.8. If S is fully time-constructible and $S(n) \ge log(n)$, then $\text{NSPACE}(S(n)) \subseteq \bigcup \{\text{DTIME}(c^{S(n)}|c \ge 1\})$.

Theorem 5.13 (Savitch). If S is fully space-constructible and $S(n) \ge log(n)$, then NSPACE $(S(n)) \subseteq DSPACE(S^2(n))$.

Corollary 5.9.

$$\begin{split} \text{PSPACE} &= \bigcup \{ \text{DSPACE}(n^c) | c \geq 1 \} \\ &= \bigcup \{ \text{NSPACE}(n^c) | c \geq 1 \} \\ \text{POLYLOGSPACE} &= \bigcup \{ \text{DSPACE}(log(n)^c) | c \geq 1 \} \\ &= \bigcup \{ \text{NSPACE}(log(n)^c) | c \geq 1 \} \end{split}$$

Corollary 5.10.

$$NSPACE(n) \subseteq DSPACE(n^2)$$

 $NL \subseteq POLYLOGSPACE.$

5.4.1 Relations Between the Standard Classes

Savitch (NSPACE(S(n)) \subseteq DSPACE($S^2(n)$))

- $NL \subseteq POLYLOGSPACE$
- LBA \subseteq PSPACE

Space Hierarchy

 POLYLOGSPACE
 DLBA

DSPACE $(S(n)) \subseteq \bigcup \{ \mathbf{DTIME}(c^{S(n)}) | c \ge 1 \}$

- $L \subseteq P$
- DLBA \subseteq E
- PSPACE \subseteq EXP

 $NSPACE(S(n)) \subseteq \bigcup \{DTIME(c^{S(n)}) | c \ge 1\}.$

- $NL \subseteq P$
- LBA \subseteq E

 $\mathbf{NTIME}(S(n)) \subseteq \mathbf{DSPACE}(S(n))$

• $NP \subseteq PSPACE$

5.5 Separation Results

Theorem 5.15 (Space Hierarchy Theorem). Let S(n) be fully space- constructible. There is a language $L \in DSPACE(S(n))$ such that for every function S'(n), if $S'(n) \in o(S(n))$, then $L \notin DSPACE(S(n))$.

Corollary 5.13. $L \subset POLYLOGSPACE$, $POLYLOGSPACE \subset DLBA$, and $DLBA \subset PSPACE$.

POLYLOGSPACE =
$$\bigcup \{ DSPACE((logn)^k) | k \ge 1 \}$$

 $\subseteq DSPACE(n^{\frac{1}{2}})$
 $\subseteq DLBA.$

Corollary 5.14. LBA \subset PSPACE.

```
LBA = NSPACE(n), by Corollary 5.1

\subseteq DSPACE(n^2), by Theorem 5.13

\subset DSPACE(n^3), by Theorem 5.15

\subseteq PSPACE.
```

Theorem 5.16 (Time Hierarchy Theorem). Let T be a fully time-constructible function and assume that there exists a function T'(n) so that $T'(n)log(T'(n)) \in o(T(n))$. Then there is a language $L \in DTIME(T(n))$ such that for every function T'(n) such that $T'(n)log(T'(n)) \in o(T(n))$, $L \notin DTIME(T'(n))$.

Corollary 5.15. For every constant c > 0, DTIME $(n^c) \subset \text{DTIME}(n^{c+1})$ and DTIME $(2^{cn}) \subset \text{DTIME}(2^{(c+1)n})$.

Corollary 5.16. $P \subset E$ and $E \subset EXP$.

5.6 Translation Techniques and Padding

Lemma 5.2. Let S(n) and f(n) be fully space-constructible functions, where $S(n) \ge n$ and $f(n) \ge n$. For a language L, define $p(L) = \{x10^i | x \in L \text{ and } |x10^i| = f(|x|)\}$. Then $L \in \text{NSPACE}(S(f(n))) \Leftrightarrow p(L) \in \text{NSPACE}(S(n))$.

Theorem 5.17. Let $S_1(n), S_2(n)$, and f(n) be fully space-constructible functions, where $S_1(n) \ge n$, $S_2(n) \ge n$ and $f(n) \ge n$. Then $\text{NSPACE}(S_1(n)) \subseteq \text{NSPACE}(S_2(n))$ implies $\text{NSPACE}(S_1(f(n))) \subseteq \text{NSPACE}(S_2(f(n)))$.

Example 5.5. $NSPACE(n^2) \subset NSPACE(n^3)$.

Suppose for contradiction that $NSPACE(n^3) \subseteq NSPACE(n^2)$, then we have

$$NSPACE(n^6) \subseteq NSPACE(n^4)$$
 with $f(n) = n^2$
 $NSPACE(n^9) \subseteq NSPACE(n^6)$ with $f(n) = n^3$

Then we have the following.

$$NSPACE(n^9) \subseteq NSPACE(n^6)$$

$$\subseteq NSPACE(n^4)$$

$$\subseteq DSPACE(n^8), \text{ by Savitch theorem}$$

$$\subset DSPACE(n^9), \text{by space hierarchy theorem}$$

$$\subseteq NSPACE(n^9)$$

Example 5.6. We use the analog of Theorem 5.17 for deterministic time to show that $DTIME(2^n) \subset DTIME(n2^n)$.

Suppose for contradiction that $DTIME(n2^n) \subseteq DTIME(2^n)$, then we have

$$\begin{aligned} \operatorname{DTIME}(2^n 2^{2^n}) \subseteq \operatorname{DTIME}(2^{2^n}) \text{ with } f(n) = 2^n \\ \operatorname{DTIME}((n+2^n) 2^{n+2^n}) \subseteq \operatorname{DTIME}(2^{n+2^n}) \text{ with } f(n) = n+2^n \\ \operatorname{DTIME}((n+2^n) 2^n 2^{2^n}) \subseteq \operatorname{DTIME}(2^{2^n}) \text{ combine above two.} \end{aligned}$$

Which violate the time hierarchy theorem.

5.6.1 Tally Languages

Definition For $L \in \Sigma^*$, let Tally(L) = $\{1^{n(w)} | w \in L\}$.

Theorem 5.18. $NE \subseteq E$ if and only if every tally language in NP belongs to P.

Corollary 5.17. P = NP implies E = NE.

6 Nondeterminism and NP-Completeness

6.1 Characterizing NP

Theorem 6.1. A set A belongs to NP if and only if there exist a polynomial p and a binary relation R that is decidable in polynomial time such that for all words in Σ^* , $x \in A \Leftrightarrow \exists y[|y| \leq p(|x|) \land R(x,y)]$.

Verifier Define a verifier for a language A to be an algorithm V such that $A = \{x | \exists y [V \text{ accepts } \langle x, y \rangle] \}$.

Corollary 6.1. NP is the class of all languages A having a polynomial-time verifier.

6.2 The Class P

6.3 Enumerations

Definition 6.1. A class of sets \mathscr{C} is effectively presentable if there is an effective enumeration $\{M_i\}_i$ of Turing machines such that every Turing machine in the enumeration halts on all inputs and $\mathscr{C} = \{L(M_i)|i \geq 0\}$.

Theorem 6.2. There is no effective enumeration of the class of all deterministic Turing machines that operate in polynomial time. That is, $S = \{i | DM_i \text{ operates in polynomial time} \}$ is not a computably enumerable set.

Theorem 6.3. P and NP are effectively presentable:

 $NP = \{L(NP_i)|i \ge 0\};$ $P = \{L(P_i)|i \ge 0\};$

6.4 NP-Completeness

Definition 6.2. A set A is many-one reducible in polynomial time to a set B (notation: $A \leq_m^P B$) if there exists a function f that is computable in polynomial time so that $x \in A \Leftrightarrow f(x) \in B$.

Theorem 6.4. $NP \neq E$.

Definition 6.3. A set A is \leq_m^P -complete for NP (commonly called NP-complete) if

- 1. $A \in NP$;
- 2. for every set $L \in NP$, $L \leq_m^P A$.

Theorem 6.5. If A is NP-complete, then $A \in P$ if and only if P = NP.

Universal set for NP $\mathscr{U} = \{\langle i, x, 0^n \rangle | \text{ some computation of NP}_i \text{ accepts } x \text{ in fewer than } n \text{ steps} \}$

Theorem 6.6. \mathscr{U} is NP-complete.

For each S in NP, there is some i such that $S = L(NP_i)$. Given $S = L(NP_i)$, define f so that for every word x, $f(x) = \langle i, x, 0^{p_i(|x|)} \rangle$. Then we have

$$x \in S \Leftrightarrow \operatorname{NP}_i \text{accepts } x$$

$$\Leftrightarrow \operatorname{NP}_i \text{accepts } x \text{ in } p_i(|x|) \text{ steps}$$

$$\Leftrightarrow \langle i, x, 0^{p_i(|x|)} \rangle \in \mathscr{U}$$

$$\Leftrightarrow f(x) \in \mathscr{U}$$

6.5 The Cook-Levin Theorem

Theorem 6.7. SAT belongs to NP.

Theorem 6.8. (Cook-Levin) CNF-SAT is an NP-complete problem.

6.6 More NP-Complete Problems

Proposition 6.1. If A is NP-complete, $A \leq_m^P B$, and $B \in NP$, then B is NP-complete.

Corollary 6.2. SAT is NP-complete.

6.6.1 The Diagonal Set Is NP-Complete

 $K K = \{i | NP_i \text{ accepts } i \text{ within } |i| \text{ steps} \}.$

6.6.2 Some Natural NP-Complete Problems

Theorem 6.10. 3SAT is NP-complete.

Vertex cover A vertex cover of a graph G = (V, E) is a subset V' of V that, for each edge $(u, v) \in E$, contains at least one of the adjacent vertices u and v.

VERTEX COVER

instance A graph G = (V, E) and a positive integer $k \le ||V||$. **question** Is there a vertex cover of size $\le k$ for G?

Theorem 6.11. VERTEX COVER is NP-complete.

Fig. 6.2 The instance of VERTEX COVER that results from the instance $(\overline{u_1} \lor u_2 \lor \overline{u_3}) \land (\overline{u_1} \lor \overline{u_2} \lor u_3)$ of 3SAT, with the vertex cover that corresponds to the satisfying assignment $t(u_2) = 1$ and $t(u_1) = t(u_3) = 0$

Clique A complete subgraph of G

CLIQUE

instance A graph G = (V, E) and a positive integer $j \le ||V||$. **question** Does G contain a clique of size j or more?

Theorem 6.12. CLIQUE is NP-complete.

7 Relative Computability

L(M,A) The language accepted by M with oracle A is denoted L(M,A)

Definition 7.1. A set A is Turing-reducible to B in polynomial-time $(A \leq_T^P B)$ if there exists a deterministic polynomial-time-bounded oracle Turing machine M such that A = L(M, B).

Theorem 7.1. There is a decidable set A such that $\overline{A} \leq_m^P A$ (and $A \neq \Sigma^*$ and $A \neq \emptyset$).

7.1 NP-Hardness

Definition 7.2. A set A is NP-hard if, for every $L \in NP$, $L \leq_T^P A$.

- An NP-hard set does not need to belong to NP
- We use Turing reducibility this time instead of many-one reducibility
- Every NP-complete set is NP-hard
- The complement of every NP-complete set is NP-hard

Proposition 7.1. If A is NP-hard and $A \in P$, then NP = P.

Theorem 7.3 . For each decidable set $A \notin P$, there is a decidable set B such that $A \leq_T^P B$ but $A \nleq_m^P B$. In particular, $A \leq_T^P B$ by a reduction procedure that on every input makes two queries to the oracle.

Corollary 7.1. If $P \neq NP$, then there exists a set that is \leq_T^P -hard for NP but not \leq_m^P -hard for NP.

Theorem 7.4. If A is \leq_T^P -complete for NP, then $A \in P$ if and only if P = NP.

7.2 Search Problems

Definition 7.3. Let $L \in NP$ and let R_L and p_L define L. Prefix $(R_L, p_L) = \{\langle x, u \rangle | u \text{ is a prefix of a witness } y \text{ such that } |y| \leq p_L(|x|) \text{ and } R_L(x,y)\}.$

Proposition 7.2.

- 1. $\operatorname{Prefix}(R_L, p_L) \in \operatorname{NP}$.
- 2. $L \leq_m^P \operatorname{Prefix}(R_L, p_L)$.
- 3. If L is NP-complete, then $Prefix(R_L, p_L)$ is NP-complete.
- 4. If L is \leq_T^P -complete for NP, then $\operatorname{Prefix}(R_L, p_L)$ is \leq_T^P -complete for NP.

Theorem 7.5. The search problem for R_L and p_L is Turing-reducible in polynomial time to Prefix (R_L, p_L) .

7.3 The Structure of NP

Definition 7.6. Two sets A and B are equal almost everywhere (A = B a.e.) if the symmetric difference of A and B, $A \triangle B$, is a finite set. A class of sets $\mathscr C$ is closed under finite variations if $A \in \mathscr C$ and A = B a.e. implies $B \in \mathscr C$.

The complexity classes P and NP are closed under finite variation.

Fast function Define a function $f: N \to N$ to be fast if the following two properties hold:

- 1. For all $n \in N$, f(n) > n, and
- 2. There is a Turing machine M that computes f in unary notation such that M writes a symbol on its output tape every move of its computation. In particular, for every n, $f(n) = T_M(n)$.

Proposition 7.3. For every total computable function f, there is a fast function f' such that, for all n, f'(n) > f(n).

G[f] $G[f] = \{x \in \Sigma^* | f^n(0) \le |x| < f^{n+1}(0), \text{ for even } n\}.$

Lemma 7.1. If f is fast, then $G[f] \in P$.

Theorem 7.6. Let A and B be decidable sets and let \mathcal{C}_1 and \mathcal{C}_2 be classes of decidable sets with the following properties:

- 1. $A \notin \mathscr{C}_1$ and $B \notin \mathscr{C}_2$;
- 2. \mathcal{C}_1 and \mathcal{C}_2 are effectively presentable; and
- 3. \mathcal{C}_1 and \mathcal{C}_2 are closed under finite variations.

Then there exists a decidable set C such that

- 1. $C \notin \mathscr{C}_1$ and $C \notin \mathscr{C}_2$, and
- 2. If $A \in P$ and $B \neq \emptyset$ and $B \neq \Sigma^*$, then $C \leq_m^P B$.

Lemma 7.2. The class of all \leq_T^P -complete sets for NP is effectively presentable.

Corollary 7.4. If $P \neq NP$, then there exists a set C in NP-P that is not \leq_T^P -complete for NP. Let $A = \emptyset$, B = SAT, and let \mathscr{C}_1 be collection of all \leq_T^P -complete sets of NP, and $\mathscr{C}_2 = P$.

- 1. $C \notin P$ and C is not \leq_T^P -complete for NP
- 2. $C \leq_m^P SAT$, so $C \in NP$.

 $\mathbf{X} \oplus \mathbf{Y}$ $X \oplus Y = \{0x | x \in X\} \bigcup \{1x | x \in Y\}.$

Corollary 7.5. If $P \neq NP$, then there exist \leq_T^P -incomparable members of NP. That is, there exist sets C_0 and C_1 in NP such that $C_0 \nleq_T^P C_1$ and $C_1 \nleq_T^P C_0$.

Corollary 7.6. If $P \neq NP$, then for every set $B \in NP$ -P, there is a set $C \in NP$ -P such that $C \leq_T^P B$ and $B \nleq_T^P C$.

If $P \neq NP$, then NP contains countably many distinct \leq_T^P -degrees that form an infinite descending hierarchy.

Corollary 7.7. If $P \neq NP$, then NP-P is not effectively presentable.

7.3.1 Composite Number and Graph Isomorphism

7.4 The Polynomial Hierarchy

For any set A, let $P^A = \{B | B \leq_T^P A\}$ and let $NP^A = \{B | B \leq_T^{NP} A\}$. So $P^A(NP^A)$ is the class of sets accepted deterministically (nondeterministically, respectively) in polynomial time relative to the set A.

Polynomial hierarchy $\Sigma_0^P = \Pi_0^P = \Delta_0^P = P$

$$\Sigma_{k+1}^P = NP^{\Sigma_k^P}$$

$$\Pi_{k+1}^P = \text{co-}\Sigma_{k+1}^P$$

$$\Delta_{k+1}^P = P^{\Sigma_k^P}$$

Proposition 7.4. For all $k \geq 0$, $\Sigma_k^P \bigcup \Pi_k^P \subseteq \Delta_{k+1}^P \subseteq \Sigma_{k+1}^P \cap \Pi_{k+1}^P$.

Proposition 7.5. PH \subseteq PSPACE, where PH= $\bigcup \{\Sigma_k^P | k \ge 0\}$.

Theorem 7.10. If for some $k \ge 1, \Sigma_k^P = \Pi_k^P$, then for all $j \ge k, \Sigma_j^P = \Pi_j^P = \Sigma_k^P$.

Corollary 7.8. $A \leq_m^P B$ and $B \in \Sigma_n^P$ implies $A \in \Sigma_n^P$.