Perspectives on the merits of cubic silver antimony sulfide-selenide thin films for solar cells

This manuscript (<u>permalink</u>) was automatically generated from <u>jesuscapistran/mymanuscript@d337475</u> on January 7, 2022.

Authors

- Jesús Capistrán-Martínez
 - © 0000-0001-8555-5440 · © jesuscapistran · **Y** capis Renewable Energy Institute - UNAM · Funded by Grant XXXXXXXX
- Roman Romano Trujillo
 - © 0000-0001-8824-025X

Centro de Investigaciones en Dispositivos Semiconductores - BUAP · Funded by Grant XXXXXXXX

Abstract

Symposium: C7 Photovoltaics, Solar Energy Materials and, Technologies

Modality: Virtual Poster

URL: https://jesuscapistran.com/courses/silver-antimony-sulfide-selenide/

• The silver antimony sulfide-selenide – cubic- $AgSb(S,Se)_2$ is a potential p-type semiconductor for application in thin-film solar cells. In this work, we present perspectives of $AgSb(S,Se)_2$ to develop high-efficiency solar cells using this cubic metal chalcogenide semiconductor.

- Material characterization of the $AgSbS_{1.3}Se_{0.7}$ solid solution confirms p-type conductivity with a bandgap of 1.48 eV and photoconductivity (σ) of $10^5~\Omega^{-1}{\rm cm}^{-1}$.
- The merit of incorporating silver atoms into the novel antimony chalcogenides (Sb_2S_3 , Sb_2Se_3) comes from the transformation of orthorhombic structure into an FCC lattice, similar to that in rock salt structure.
- The absorption coefficient of $\alpha>10^5{
 m cm}^{-1}$ in the visible region of solar radiation in $AgSbS_{1.3}Se_{0.7}$ allows a maximum photo-generated current density of 29 mA/cm² for a 1 $\mu{
 m m}$ thick film under standard air-mass 1.5 global (1000 W/m²) solar radiation.
- The thin film solar cells of CdS/ $AgSbS_{1.3}Se_{0.7}$ heterojunction presents a fill factor of 0.64, open-circuit voltage of 537 mV, but a low short circuit current density of 2 mA/cm².
- At this stage, chemical deposition has served for prototyping the solar cells. Improvements are expected using industrial chalcogenide growth techniques, which would enhance their carrier collection.

•
$$\sqrt{a+b^2}$$

•
$$\sigma = 2 \times 10^{-8} \, \Omega^{-1} cm^{-1}$$

Introduction

The antimony chalcogenides are present in the development of thin-film solar cells, now we can observe thThe antimony chalcogenides are present in the development of thin-film solar cells, now we can observe thThe antimony chalcogenides are present in the development of thin-film solar cells, now we can observe The antimony chalcogenides are present in the development of thin-film solar cells, now we can observe thThe antimony chalcogenides are present in the development of thin-film solar cells, now we can observe thThe antimony chalcogenides are present in the development of thin-film solar cells, now we can observe

References