Lesson 8: Forward Kinematics (cont'd)
I. Product of Exponentials (MLS 3.2)
II. Mathematica Examples
I. Product of Exponentials
Recall if § is a twist, then RB motion along that
twist is $g_{ab}(\Theta) = e^{\frac{2}{5}\Theta}g_{ab}(0)$
Stepl: Define the reference configuration of the kinematic
chain $g_{st}(0)$, i.e. the RBT between T and S
when config. Vector $O = O \leftarrow zero$
- Defined based on coordinate system (angular conventions
- Note: 9st (0) = 9ln, + from D-H
Step 2: Construct unit twist 5: corresponding to the motion
for it joint for all i \{ \{ \lambda \lambda \lambda \} \} at the reference
configuration $(\Theta = \emptyset)$:
- revolute [-w. × 9.]
- revolute $ \xi = \begin{bmatrix} -\omega : \times g_i \\ \omega : \end{bmatrix} \text{where} \ \omega_i\ = 1 \text{ and } g_i $ is any point on axis $\lambda \omega_i$
- prismatic
-prismatic $\xi_i = \begin{bmatrix} v_i \\ 0 \end{bmatrix}$, where $\ v_i\ = 1$
- helical joints as well

Figure 3.3: SCARA manipulator in its reference configuration.

Step 1: Ref. Config:
$$g_{st}(0) = \begin{bmatrix} I & 0 \\ I & l_0 \\ l_0 \end{bmatrix}$$

$$\omega_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \omega_2 = \omega_3 \qquad \omega_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$q_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad q_2 = \begin{bmatrix} 0 \\ \ell_1 \\ 0 \end{bmatrix} \qquad q_3 = \begin{bmatrix} 0 \\ \ell_1 + \ell_2 \\ 0 \end{bmatrix}$$

• Revolute twists
$$\xi_{1} = \begin{bmatrix} v_{1} \\ w_{1} \end{bmatrix} = \begin{bmatrix} -\omega_{1} \times \varrho_{1} \\ \omega_{1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \xi_{2} = \begin{bmatrix} -\omega_{2} \times \varrho_{2} \\ \omega_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\xi_3 = \begin{bmatrix} -\omega_3 \times q_3 \\ \omega_3 \end{bmatrix} = \begin{bmatrix} \ell_1 + \ell_2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Prismatic tuists
$$\begin{cases}
\xi_{4} = \begin{bmatrix} V_{4} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\
\vdots \\ 0 \end{bmatrix}$$
Step 3: Matrix exponentials
$$\begin{bmatrix}
\cos \alpha, & -\sin \alpha & 0 & 0 \\
\sin \alpha, & \cos \alpha, & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, etc...$$
Step 4: Combine
$$\begin{aligned}
g_{34}(\Theta) &= e^{\frac{2}{3}} \Theta_{1} &= e^{\frac{2}{3}} \Theta_{2} &= e^{\frac{2}{3}} \Theta_{4} \\
g_{34}(\Theta) &= e^{\frac{2}{3}} \Theta_{1} &= e^{\frac{2}{3}} \Theta_{2} &= e^{\frac{2}{3}} \Theta_{4}
\end{aligned}$$
Able: Can also use POE on a homogeneous point an the robot:

Let $\overline{p}(0)$ be a reference location of a point on the i^{th} link of the robot
$$\overline{p}(\Theta) &= e^{\frac{2}{3}} \Theta_{1} \dots e^{\frac{2}{3}} \Theta_{2} \quad \overline{p}(0)$$

