西南交通大学 2016-2017 学年第(1) 学期考试试卷

课程代码 3121500 课程名称 信号与系统 考试时间 120 分钟

题号	_	=	Ξ	四	五	六	七	八	九	+	总成绩
得分											

阅卷教师签字:

一、选择题: (20分)

体题共10个小题, 每题回答正确得2分, 否则得零分。每小题所给答案中只有一个是正确的。

1.
$$x(n) = e^{j\frac{2}{3}n} + e^{j(\frac{4\pi}{3})n}$$
,该序列的基波周期是(A)。

A.
$$N = \infty$$
 B. $N = 3$ **C.** $N = 3/8$ **D.** $N = 24$

2.一周期信号
$$x(t) = \sum_{n=-\infty}^{\infty} \delta(t-5n)$$
,其傅立叶变换 $X(j\omega)$ 为(A)。

A.
$$\frac{2\pi}{5}\sum_{k=-\infty}^{\infty}\delta(\omega-\frac{2\pi k}{5})$$
 B. $\frac{5}{2\pi}\sum_{k=-\infty}^{\infty}\delta(\omega-\frac{2\pi k}{5})$

B.
$$\frac{5}{2\pi}\sum_{k=-\infty}^{\infty}\delta(\omega-\frac{2\pi k}{5})$$

C.
$$10\pi \sum_{k=-\infty}^{\infty} \delta(\omega - 10\pi k)$$
 D. $\frac{1}{10\pi} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{\pi k}{10})$

$$\mathbf{D.} \ \frac{1}{10\pi} \sum_{k=-\infty}^{\infty} \delta(\boldsymbol{\omega} - \frac{\pi k}{10})$$

3.离散时间信号 $x(n)=\{\stackrel{\downarrow}{1},2,3,4\}*\{-1,\stackrel{\downarrow}{1},2\}$,则x(1)=(D)

4.信号 f(t) 如题 4 图所示,其频谱函数 $F(j\omega)$ 为(D)。

A.
$$2Sa(2\omega)e^{-j\omega}$$

B.
$$2Sa(2\omega)e^{-j2\omega}$$

C.
$$4Sa(2\omega)e^{j2\omega}$$

D.
$$4Sa(2\omega)e^{-j2\omega}$$

5.信号 f(t) 是实偶函数,其傅氏变换一定是(A)。

A.实偶函数 B.纯虚函数 C.任意复函数 D.任意实函数

6. 零输入响应是(B)。

A.全部自由响应

B.部分自由响应

C.部分零状态响应

D.全响应与强迫响应之差

ØI

olp

排

7.单边拉氏变换 $F(s) = \frac{e^{-(s+3)}}{s+3}$ 的原函数 $f(t) = (C)$
A. $e^{-3(t-1)}u(t-1)$ B. $e^{-3(t-3)}u(t-3)$ C. $e^{-3t}u(t-1)$ D. $e^{-3t}u(t-3)$
$8. \int_{-\infty}^{\infty} \delta\left(-2t-1\right) \left(t+\frac{3}{2}\right) dt = \left(\mathbf{D}\right)$
A. 1 B. $-\frac{5}{2}$ C. $\frac{5}{2}$ D. $\frac{1}{2}$
9.信号 $x(t)$ 的带宽为 20KHz,则信号 $x^2(2t)$ 的奈奎斯特采样频率为(\mathbf{D})。
A. 20KHz B. 40KHz C. 80KHz D. 160KHz 10.若序列 x(n)的 Z 变换为 X(z),则 (-0.5)" x(n)的 Z 变换为 (D)
A. $2X(2z)$ B. $2X(-2z)$
C. X(2z) D. X(-2z) 二、判断题 (每题 2 分, 共 10 分)
对以下各题的说法,认为对的在括号内填"√",认为错的在括号内填"×"
1.(×)一个系统的零状态响应就等于它的自由响应。
2. (×) 若一个连续 LTI 系统是因果系统,它一定是一个稳定系统。
3. (×) 信号 $f(t)$ 和 $y(t)$ 为周期信号,其和 $f(t)$ + $y(t)$ 是周期的。
4. (\times) $f(t)\cdot\delta(t-t_0)=f(t_0)$.
5.(√)连续周期信号的频谱是离散的线状谱。
三、填空题: (10分)5个小题,每小题2分
1.一个连续因果 LTI 系统可由微分方程 $y''(t)+3y'(t)+2y(t)=x'(t)+3x(t)$ 来描述,则该系统的频
率响应的表达式 $H(j\omega)=(\frac{j\omega+3}{(j\omega)^2+3j\omega+2})$ 。
2.已知 $X(s) = \frac{1}{s+4} + \frac{1}{s+5}$, 收敛域为 $-5 < \text{Re}\{s\} < -4$,则 $X(s)$ 的逆变换为
$x(t) = \left(e^{-5t}u(t) - e^{-4t}u(-t) \right)$
3. 计算卷积 $u(t)*u(t)=(t\cdot u(t))$ 。
4.连续时间信号 $x(t)$ 的傅里叶变换为 $\frac{1}{j\omega+1}$,则信号 $tx(t)$ 的傅里叶变换为 ($\frac{1}{(j\omega+1)^2}$)。

5.积分器的频域系统函数 $H(j\omega) = \left(\frac{1}{j\omega} + \pi\delta(\omega)\right)$ 。

四、(5分)已知一连续时间信号x(t),如下图所示,请画出信号 $2x(4-\frac{t}{2})$,给出求解过程;

解: 先时移: $x(t) \rightarrow x(t+4)$

再尺度扩展:
$$x(t+4) \rightarrow x(\frac{t}{2}+4)$$

再反转和幅度扩大 2 倍: $x(\frac{t}{2}+4) \rightarrow 2x(-\frac{t}{2}+4)$

五、(15分)已知某系统的结构如图 A 所示, 其频响特性及激励信号的频谱分别如图 B 和 C 所示,

- (1) 画出 y(t)的幅度频谱 $|Y(j\omega)|$;
- (2) 若 p(t)=cos(1000t), 写出 $y_s(t)$ 的频谱 $Y_s(j\omega)$ 与 $Y(j\omega)$ 的关系式,并画出幅度频谱 $|Y_s(j\omega)|$;

(3) 若
$$p(t) = \sum_{k=-\infty}^{+\infty} \delta(t - \frac{\pi}{30}k)$$
, 画出幅度频谱 $|Y_s(j\omega)|$ 。

答案: 1)

2)
$$Y_s(j\omega) = \frac{1}{2} \{ Y[j(\omega + 1000)] + Y[j(\omega - 1000)] \}$$

3)
$$p(t) = \sum_{k=-\infty}^{+\infty} \delta(t - \frac{\pi}{30}k), T_s = \frac{\pi}{30}, \Omega_s = 60, Y_s(j\Omega) = \frac{1}{T_s} \sum_{k=-\infty}^{+\infty} Y(j(\Omega - k\Omega_s))$$

六、(20分)一连续时间 LTI 系统的输入和输出,由下列微分方程表征:

$$\frac{dy^2(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t)$$

- (1) 求该系统的系统函数H(s),并画出H(s)的零极点图;
- (2) 求系统是稳定的情况下,系统的单位冲激响应h(t);
- (3) 求系统是因果的情况下,系统的单位冲激响应 h(t);
- (4) 画出系统直接型实现的模拟框图。

解:

(1)
$$H(s) = \frac{1}{s^2 - s - 2} = \frac{1/3}{s - 2} - \frac{1/3}{s + 1}$$
, 极点—1,2

- (2)若系统稳定,则一1 < Re{s} < 2, $h(t) = -\frac{1}{3}e^{2t}u(-t) \frac{1}{3}e^{-t}u(t)$
- (3)若系统因果,则Re{s} > 2, $h(t) = \frac{1}{3}e^{2t}u(t) \frac{1}{3}e^{-t}u(t)$

$$H(s) = \frac{s^{-2}}{1 - s^{-1} - 2s^{-2}}$$

(4)

七、(10 分)已知某连续时间 LTI 系统,满足以下条件:系统是因果的;系统是有理的,且仅有两个极点 s=-2, s=-3;有一个一阶零点,但具体值未知;当输入信号 f(t)=1, $(-\infty < t < +\infty)$ 时,系

统输出 $y(t) = \frac{1}{3}$; 系统的单位冲激响应 h(t) 在 $t = 0^+$ 时的值为 2。试确定系统函数 H(s) 及其收敛域。

解: (1) 由于系统是有理的,且只有两个极点,一个零点,所以设 $H(s) = \frac{as+b}{(s+2)(s+3)}$

(2) 信号 e^{s_0t} 是系统的特征函数,因此有 $y(t) = H(s_0)e^{s_0t}$,而输入信号 f(t) = 1 可以看做 $f(t) = e^{s_0t}\Big|_{s_0=0} = 1$,并且系统是因果的,收敛域应为 Re[s] > -2 ,则 $s_0 = 0$ 在系统函数的收敛域内,

所以有
$$y(t) = H(s_0)e^{s_0t} = \frac{as_0 + b}{(s_0 + 2)(s_0 + 3)} = \frac{1}{3}$$
, 因此有 $b = 2$ 。

(3) 根据初值定理,有 $h(0^+) = \lim_{s \to 1} sH(s)$ 有

$$\lim_{s \to \infty} sH(s) = \frac{as^2 + 2}{(s+2)(s+3)} = 2 \iff a = 2$$

所以
$$H(s) = \frac{2s+2}{(s+2)(s+3)}$$
, Re[s] > -2

解法 2: (1) 由于系统是有理的,且只有两个极点,一个零点,所以设 $H(s) = \frac{as+b}{(s+2)(s+3)}$

则微分方程为: y''(t)+5y'(t)+6y(t)=af'(t)+bf(t)

将输入信号 f(t)=1,系统输出 $y(t)=\frac{1}{3}$ 代入微分方程,得 b=2。

(2) 根据初值定理,有 $h(0^+) = \lim_{s \to \infty} sH(s)$ 有

$$\lim_{s \to \infty} sH(s) = \frac{as^2 + 2}{(s+2)(s+3)} = 2 \ \text{ (4.13)}$$

所以
$$H(s) = \frac{2s+2}{(s+2)(s+3)}$$
, Re[s] > -2

八、(10分)已知离散因果系统的模拟框图如下,试求

- (1) 系统函数 H(z), 并判断稳定性;
- (2) 写出差分方程;
- (3) 求单位函数响应 h(n)。

#: (1)
$$H(z) = \frac{2z^{-1} - \frac{5}{6}z^{-2}}{1 - \frac{5}{6}z^{-1} + \frac{1}{6}z^{-2}} H(z) = \frac{2z - \frac{5}{6}}{z^2 - \frac{5}{6}z + \frac{1}{6}} = \frac{2z - \frac{5}{6}}{(z - \frac{1}{2})(z - \frac{1}{3})},$$

两个极点: $z_1 = \frac{1}{2}, z_2 = \frac{1}{3}$,极点在单位圆内,系统稳定。

(2)
$$H(z) = \frac{2z^{-1} - \frac{5}{6}z^{-2}}{1 - \frac{5}{6}z^{-1} + \frac{1}{6}z^{-2}} = \frac{Y(z)}{X(z)}, \quad Y(z) - \frac{5}{6}z^{-1}Y(z) + \frac{1}{6}z^{-2}Y(z) = 2z^{-1}X(z) - \frac{5}{6}z^{-2}X(z)$$

所以
$$y(n) - \frac{5}{6}y(n-1) + \frac{1}{6}y(n-2) = 2x(n-1) - \frac{5}{6}x(n-2)$$

(3)
$$H(z) = \frac{2z - \frac{5}{6}}{(z - \frac{1}{2})(z - \frac{1}{3})} = \frac{1}{z - \frac{1}{2}} + \frac{1}{z - \frac{1}{3}}$$
, 系统因果,则

$$h(n) = \left(\frac{1}{2}\right)^{n-1} u(n-1) + \left(\frac{1}{3}\right)^{n-1} u(n-1)$$

或者
$$H(z) = -5 + \frac{-\frac{13}{6}z^{-1} + 5}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{3}z^{-1})} = -5 + \frac{2}{1 - \frac{1}{2}z^{-1}} + \frac{3}{1 - \frac{1}{3}z^{-1}}$$

$$h(n) = 3\left(\frac{1}{3}\right)^n u(n) + 2\left(\frac{1}{2}\right)^n u(n) - 5\delta(n)$$