Corso di Laurea in Informatica I parziale di Analisi Matematica 22 Dicembre 2021

Cognome:	
Nome:	
Numero di matricola:	
Email:	
Risultati	
1.(pt.6)	
2.(pt.9)	

Risolvere gli esercizi seguenti, scrivendo e motivando <u>dettagliatamente</u> il procedimento seguito. Soluzioni prive di calcoli e spiegazioni NON SARANNO VALUTATE.

È possibile scrivere sul retro dei fogli nel caso in cui lo spazio previsto per la risposta non sia sufficiente.

Esercizio 1(pt. 6)

Sapendo che, per $t \to 0$,

•
$$\ln(1+t) = t - \frac{1}{2}t^2 + \frac{1}{3}t^3 - \frac{1}{4}t^4 + \frac{1}{5}t^5 - \frac{1}{6}t^6 + o(t^6),$$

•
$$\arctan(t) = t - t^3/3 + t^5/5 - t^7/7 + o(t^7)$$

calcolare

$$\lim_{x \to 0} \frac{\ln(1 + \arctan(x)) + \frac{1}{2}\ln(1 + x^2) - x}{x^4}$$

Risposta:

CALCOLARE gli sviluppi di Taylor delle seguenti funzioni, NELLA FORMA in cui saranno usati nel limite dato (con tutte le semplificazioni algebriche effettuate) e risolvere il limite assegnato:

•
$$\ln(1+x^2) =$$

•
$$\ln(1 + \arctan(x)) =$$

Quindi:
$$\ln(1 + \arctan(x)) + \frac{1}{2}\ln(1 + x^2) - x =$$

e infine

$$\lim_{x \to 0} \frac{\ln(1 + \arctan(x)) + \frac{1}{2}\ln(1 + x^2) - x}{x^4} =$$

Esercizio 2(pt. 9)

Sia data la funzione $\mathcal{D}(f) \to \mathbf{R}$

$$f(x) = e^{\frac{3x+3}{x^2 - 3x}}.$$

- I Disegnare il suo grafico (dominio di f, limiti ai bordi del dominio di f, zeri e segno della derivata prima).
- II Calcolare l'immagine di f sul suo dominio naturale $\mathcal{D}(f).$
- III Stabilire per quali $K \in \mathbf{R}$ l'equazione f(x) = K ha un'unica soluzione.