GPUDirect + SDR: How to Move **One Billion** Samples per Second over PCIe

John Orlando - Epiq Solutions (on behalf of our Sidekiq Development Team)

Company Background

Celebrating 10 years of delivering:

- The smallest commercially available SDR modules in the world
- Delivering complete RF sensing solutions to a broad range of commercial, defense, and security markets
- Team of ~40 (and growing), predominantly engineers
 - RF/hardware, software/DSP, FPGA, mechanical, test/production, sales
 - HQ in Schaumburg, IL (engineering + production/test)
 - "Epiq East" (EE) in Alexandria, VA est 2016 (sales/BD)
 - WE ARE HIRING! STOP BY OUR BOOTH

Regional Account Management (San Diego, CA + Nashua, NH)

Problem Statement

How Much Throughput is Needed These Days?

Wireless Standard	Max Bandwidth per Antenna	Typical Quadrature Sample Rate	# of Antennas	Baseband I/O Bandwidth Required (sans overhead)*	
GSM / 2G	200 KHz	541.667 Ksps	1	2.1 MBps	
UMTS / 3G	5 MHz	7.68 Msps	1	30.72 MBps	
LTE / 4G	20 MHz	30.72 Msps	1 to 4	122.88 MBps to 491.5 MBps	
802.11n	40 MHz	40 Msps	1 to 4	160 MBps to 640 MBps	
802.11ac	160 MHz	160 Msps	1 to 4	640 MBps to 2560 MBps	
5G-NR	400 MHz	491.52 Msps	1 to 4+	1964 MBps to 7856 MBps+	

Options for Compute Elements

(also DSPs, but much less common in SDR these days)

Options for Compute Elements

Eureka! Write software for a GPU to do SDR!

Previous Published Work

GR-GPU work from 2011

(work and image courtesy of Plishker, Zaki, Bhattacharyya, Clancy, and Kuykendall)

Using GPUs with SDR: Classic Architecture

Can We Do Better? Can We Increase Throughput? If So, By How Much?

GPUDirect RDMA

- What is it?
 - Developed by Nvidia, first introduced in 2013
 - Software driver to allow PCIe devices to target DMA transactions for GPU memory instead of CPU memory
 - CUDA-based computation in GPU for highend parallel signal processing
 - CPU sets up transactions and then gets out of the way
 - o In theory:
 - More efficient
 - Higher throughput
 - Fewer CPU cycles
 - Lower system power consumption
 - Winning!

GRCon 2019

From This...

...To This

What You Need - PCIe-based Radio Module

- For installation in rack mounted servers or standard motherboards
- PCIe full height, half length carrier
- Xilinx Kintex Ultrascale FPGA
 Gen3 PCIe x8

- 4x4 MIMO (dual ADRV9009 RFICs from ADI)
- Up to 800 MHz IBW
- Integrated Rx pre-select filters
- Supported by our standard libsidekiq API

GRCon 2019

- For installation in 3U VPX systems
- Xilinx Kintex Ultrascale FPGA + Zynq Ultrascale+ SoC
- Gen3 PCle x8

	Sidekiq MiniPCle	Sidekiq M2	Sidekiq Stretch (M2 2280)	Sidekiq X2	Sidekiq X4	Sidekiq VPX4
Max # RF Rx / Tx	2/1	2/2	1/1	3/2	4 / 4	4 / 4
RF Tuning Range	70 MHz - 6 GHz	70 MHz - 6 GHz	70 MHz - 6 GHz	1 MHz - 6 GHz	1 MHz - 6 GHz	1 MHz - 6 GHz
Integrated Rx Pre-Select Filters	No	No	Yes	Yes	Yes	Yes
Max total IBW	50 MHz	50 MHz	50 MHz	200 MHz	800 MHz	800 MHz
ADC/DAC sample width	12/12-bits	1 <mark>2</mark> /12-bits	12 <mark>/1</mark> 2-bits	16/14-bits	16/14-bits	16/14-bits
FPGA on-board	Xilinx Spartan 6 LX45T	Xilinx Artix 7 XC7A50T	Xilinx Artix 7 XC7A50T	None (FPGA on host)	None (FPGA on host)	Xilinx K <mark>in</mark> tex Ultrascale KU11 <mark>5</mark>
Linux computer on board	None	None	None	None	None	Quad-core ARM A53
Host Interface	Gen1 PCle x1 + USB2	Gen2 PCle x1 + USB2	Gen2 PCle x1	FMC HPC*	FMC HPC*	Gen3 PCle x4 + Ethernet
Typical power consumption	2-2.5 W	2.5-3.5 W	1-2 W	4-10 W	6-18 W	25-50W
Size	30 x 51 mm	30 x 42 mm	30 x 51 mm	69 x 77 mm	69 x 77 mm	
		~ F	0010			

GRCon 2019

*FPGA card would typically provide PCIe interface to host

What You Need - CPU + GPU Compute Element

Quadro P2000

- Motherboard with x86 CPU + Nvidia GPU card
- GPUDirect requires the GPU card and radio device be on same PCIe root complex

- Nvidia Xavier platform
- Integrated octa-core ARM + GPU on embedded module

GRCon 2019

(Linux Only)

How Does GPUDirect Work, Roughly:

- Step 1: CPU pins physical memory buffers in GPU
- Step 2: CPU informs FPGA of physical memory buffers via DMA descriptor list
- Step 3: CPU gets the hell out of the way
- Step 4: FPGA can perform DMA of I/Q directly into GPU pinned memory
- Step 5: GPU crunches I/Q like a champ
- Step 6: Goto Step 4

Does it Work? Let's Find Out...

- Updated the PCle DMA driver used with our Sidekiq SDR cards to support GPUDirect
- Built two hardware test platforms for experimentation
 - Platform 1: Intel Core i7 CPU in Gigabyte motherboard with Nvidia P2000 GPU card
 - Platform 2: Nvidia Xavier platform with octa-ARM + GPU on module
- Both platforms run Linux (GPUDirect isn't supported in Windows)

Test Scenario

- Test 1 (aka "the old way to use a GPU")
 - o FPGA -> CPU -> RAM -> CPU -> GPU
- Test 2 (aka "the GPUDirect way")
 - FPGA -> GPU
- Perform simple computational kernel in GPU
 - FPGA generated known payload in place of I/Q data
 - Calculated average of transported data and returned it to CPU for validation
- Measure transport throughput into GPU

Platform 1

- Test 1 (the old way): 1718 MB/sec
- Test 2 (the GPUDirect way): 1733 MB/sec
- 1% performance improvement!
- Yay? WTH
- Headscratching ensues...
- Check the hardware

Platform 1

- Let's Math
 - PCIe Gen2 = 5 Gbits/sec per lane
 - x4 lanes = 20 Gbits/sec
 - Reduce for 8b/10b coding = 16 Gbits/sec
 - Real-world PCIe bus utilization of ~85% = 13.6
 Gbits/sec
 - o In bytes: 1700 MB/sec
 - o In other words:
 - The PCIe bus is the limiting factor here
 - The FPGA->CPU->RAM->CPU->GPU path is just as fast as the FPGA->GPU path
 - So what now?

Platform 1, Take 2

- FPGA now loaded with a PCIe Gen3 x8 DMA engine
- Motherboard supports up to Gen3 x16
 - PCIe Gen3 = 8 Gbits/sec per lane
 - x8 lanes = 64 Gbits/sec
 - Uses 128b/130b coding = 63 Gbits/sec
 - Should be PLENTY of throughput
- Re-test and hope sanity is restored

Platform 1, Take 2

- Test 2 (the GPUDirect way): 4677 MB/sec
- 45% throughput improvement!
- Sanity is restored

Platform 2

- Test 1 (the old way): 2079 MB/sec
- Test 2 (the GPUDirect way): 3035 MB/sec
- 46% throughput improvement!
- Nearly identical % improvement compared to x86

Yes Virginia...

- ...you can move > 1 billion samples/sec over PCIe into a GPU using GPUDirect RDMA
 - 4677 MB/sec equates to ~1.17 Gsamples/sec for 16-bit 'l' and 16-bit 'Q'
 - Enough to digitize 1 GHz of RF spectrum
- ...SDRs based on PCIe provide the most efficient, scalable, low-power transport out there today
- ...GPUDirect + SDR is a natural fit...and using a PCIe-based SDR is a near optimal solution

Does it Matter?

- If you care about single channel bandwidths in the range of 1 GHz...
- If you care about MIMO (2x2, 4x4, etc) where channel bandwidths are hundreds of MHz...
- If you want to keep your CPU cycles for something else...
- If you want to implement signal processing applications in GPUs...

- ...then YES...GPUDirect matters...BIG TIME
- (It may be the only way to achieve the desired results)

Expanded Processing Options

GPUs can be chained together via NVLink interconnect

GPUDirect Support in Libsidekiq

- Initial support coming in 4Q2019
- Sidekiq X4 capability
 - 4-channel Rx @ 245 Msamples/sec (phase coherent)
 - 2-channel Rx @ 491 Msamples/sec (independently tunable)
 - Support for PCIe carrier (server deployment)
 - Support for 3U VPX carrier (ruggedized deployment)
- Sidekiq Stretch capability
 - 1-channel Rx a 61.44 Msamples/sec

Areas for Exploration

- Improved DMA descriptor management
 - CPU is still involved...for now
- More optimal data transport size
 - o 4K DMA blocks currently, but GPUs like BIG chunks of data
- Handling of meta-data in I/Q stream
 - GPU checks timestamps in GPU?
 - OFPU plucks out gain value for normalization?
 - o Raw I/Q sans meta-data?
- Integration with GPU frameworks
 - Photon (http://photon.mitre.org), others
- OpenCL support?
 - DirectGMA / bus-addressable memory

GRCon 2019

Quick Shout Out

- ...to MITRE Corp for helping fund a portion of this GPUDirect development work
- ...to our Sidekiq team doing the heavy lifting
- ...to our customers that continue to use and deploy Sidekiq in all kinds of interesting applications all over the world

If you are at the top of your game...

- ...and you like building hardware or software
- ...and you like working on hard problems
- ...and you like being surrounded by a team of capable makers that know how to get things done

WE ARE HIRING COME TALK TO US AT OUR BOOTH

(or send an email to jobs@epiqsolutions.com)

THANK YOU GRCON 2019!

