

Name: Vivi Student ID: 24S153073

 $Grade: _$

Problem 1 Score: _____. Properties of g-convex sets and functions

Let $(\mathcal{M}, \langle \cdot, \cdot \rangle)$ be a Riemannian manifold and consider a geodesically convex subset $S \subseteq \mathcal{M}$. Let $f, f_1, \dots, f_n : S \to \mathbb{R}$ be g-convex functions.

(1) Sublevel sets of g-convex functions are g-convex sets.

Let $s \in \mathbb{R}$. Show that the sublevel set

$$L_f(s) = \{x \in S : f(x) < s\}$$

is g-convex.

(2) Intersections of sublevel sets are g-convex sets. Let $s_1, s_2 \in \mathbb{R}$. Show that the intersection

$$\bigcap_{j=1}^{n} L_{f_j}(s_j)$$

is g-convex.

(3) Sums of nonnegatively scaled g-convex functions are g-convex functions. Let $\alpha_1, \dots, \alpha_n \geq 0$. Show that the function

$$g(x) = \sum_{j=1}^{n} \alpha_j f_j(x)$$

is g-convex.

(4) The pointwise maximum of g-convex functions is g-convex. Show that the function

$$h(x) = \max_{j=1,\dots,n} f_j(x)$$

is g-convex.

Solution: (1) Let $x, y \in L_f(s)$ and $\gamma : [0,1] \to S$ be a geodesic segment with $\gamma(0) = x$ and $\gamma(1) = y$. Since S is g-convex, we have $\gamma(t) \in S$ for all $t \in [0,1]$. By the g-convexity of f, for all $t \in [0,1]$, we have

$$f \circ \gamma(t) \le (1 - t)f(x) + tf(y)$$

$$< (1 - t)s + ts = s,$$

which implies that $\gamma(t) \in L_f(s)$ for all $t \in [0,1]$. Therefore, $L_f(s)$ is g-convex.

(2) Let $x, y \in \bigcap_{j=1}^n L_{f_j}(s_j)$ and $\gamma : [0,1] \to S$ be a geodesic segment with $\gamma(0) = x$ and $\gamma(1) = y$. Since S is g-convex, we have $\gamma(t) \in S$ for all $t \in [0,1]$. By the g-convexity of f_j , for all $t \in [0,1]$, we have

$$f_j \circ \gamma(t) \le (1 - t)f_j(x) + tf_j(y)$$

$$\le (1 - t)s_j + ts_j = s_j$$

which implies that $\gamma(t) \in L_{f_j}(s_j)$ for all $j = 1, \dots, n$ $\forall t \in [0, 1]$, then $\gamma(t) \in \bigcap_{j=1}^n L_{f_j}(s_j)$. Therefore $\bigcap_{j=1}^n L_{f_j}(s_j)$ is g-convex.

(3) Let $x, y \in S$ and $\gamma : [0,1] \to S$ be a geodesic segment with $\gamma(0) = x$ and $\gamma(1) = y$. Since S is g-convex, we have $\gamma(t) \in S$ for all $t \in [0,1]$. By the g-convexity of f_j , for all $t \in [0,1]$, we have

$$g \circ \gamma(t) = \sum_{j=1}^{n} \alpha_j f_j \circ \gamma(t)$$

$$\leq \sum_{j=1}^{n} \alpha_j ((1-t)f_j(x) + tf_j(y))$$

$$= (1-t)\sum_{j=1}^{n} \alpha_j f_j(x) + t\sum_{j=1}^{n} \alpha_j f_j(y)$$

$$= (1-t)g(x) + tg(y)$$

for all $t \in [0,1]$. Therefore, g is g-convex.

(4) Let $x, y \in S$ and $\gamma: [0,1] \to S$ be a geodesic segment with $\gamma(0) = x$ and $\gamma(1) = y$. Since S is g-convex, we have $\gamma(t) \in S$ for all $t \in [0,1]$. By the definition of h, we have

$$h \circ \gamma(t) = \max_{j=1,\dots,n} f_j \circ \gamma(t)$$

$$\leq \max_{j=1,\dots,n} ((1-t)f_j(x) + tf_j(y))$$

$$\leq (1-t) \max_{j=1,\dots,n} f_j(x) + t \max_{j=1,\dots,n} f_j(y)$$

$$= (1-t)h(x) + th(y)$$

for all $t \in [0,1]$. Therefore, h is g-convex.

Problem 2 Score: _____. Intersection of g-convex sets

The intersection of two convex subsets of a Euclidean space is convex. However, in general, the intersection of two g-convex sets is not g-convex.

(1) Give an example of a Riemannian manifold $(\mathcal{M}, \langle \cdot, \cdot \rangle)$ and two g-convex sets $S_1, S_2 \subseteq \mathcal{M}$ such that $S_1 \cap S_2$ is not g-convex.

If we make additional assumptions, then the intersection of two g-convex sets is g-convex. A subset $S \subseteq \mathcal{M}$ is geodesically strongly convex if for any two points $x, y \in S$, among all geodesics segments $\gamma: [0,1] \to S$ with $\gamma(0) = x$ and $\gamma(1) = y$, exactly one of them is minimizing and this minimizing geodesic lies entirely in S.

(2) Let $S_1, S_2 \subseteq \mathcal{M}$ be two geodesically strongly convex sets. Show that $S_1 \cap S_2$ is geodesically strongly convex.

Solution: (1) Let $\mathcal{M} = \mathbb{S}^1$ be the unit circle in \mathbb{R}^2 with the standard metric. Define the following two g-convex sets:

$$S_1 = \mathbb{S}^1 \setminus \{(0,1)\}$$

 $S_2 = \mathbb{S}^1 \setminus \{(0,-1)\}.$

Then S_1 and S_2 are g-convex sets. However, the intersection $S_1 \cap S_2 = \mathbb{S}^1 \setminus \{(0,1),(0,-1)\}$ is not g-convex because it's not connected.

(2) Let $x, y \in S_1 \cap S_2$ and $\gamma : [0,1] \to S_1 \cap S_2$ be the unique geodesic segment with $\gamma(0) = x$ and $\gamma(1) = y$. Since S_1, S_2 are geodesically strongly convex, $\gamma(t) \in S_1$ and $\gamma(t) \in S_2$ for all $t \in [0, 1]$. Therefore, $\gamma(t) \in S_1 \cap S_2$ for all $t \in [0, 1]$, which implies that $S_1 \cap S_2$ is geodesically strongly convex.

Problem 3 Score: _____. Fréchet mean on hemisphere

Write some code to generate random points x_1, \dots, x_n on a hemisphere

$$\mathbb{S}^{d-1}_{+} := \{ x = (x^{(1)}, \cdots, x^{(d)}) \in \mathbb{R}^{d} : x^{(d)} > 0, ||x|| = 1 \}$$

near the north pole, and implement the cost function for the intrinsic averaging, that is

$$f: \mathbb{S}^{d-1}_+ \to \mathbb{R}, \quad f(x) = \frac{1}{2n} \sum_{i=1}^n \text{dist}(x, x_i)^2.$$

A global minimizer of f is called the Fréchet mean of x_1, \dots, x_n . Recall that the squared distance between two points $x, y \in \mathbb{S}^{d-1}_+$ is given by

$$\operatorname{dist}(x, y)^2 = \arccos^2(x^{\top}y),$$

and the Riemannian gradient of the squared distance is given by

$$\operatorname{grad}\left(x\mapsto\frac{1}{2}\operatorname{dist}(x,y)\right)(x)=\frac{\operatorname{dist}(x,y)}{\sin(\operatorname{dist}(x,y))}(\cos(\operatorname{dist}(x,y))x-y).$$

Problem 4 Score: ______. Robust covariance estimation Consider n points $x_1, \dots, x_n \in \mathbb{R}^d$ sampled independently and identically distributed from a distribution P with zero

mean. We want to estimate the covariance matrix of P. If P is a zero-mean normal distribution with covariance $\Sigma_{true} \in \mathbb{R}^{d \times d}$, then the maximum likelihood estimation amounts to minimizing the negative log-likelihood

$$\Sigma \mapsto \log(\det \Sigma) + \frac{1}{n} \sum_{j=1}^{n} x_j^{\top} \Sigma^{-1} x_j$$

over the $d \times d$ positive definite matrices

$$\mathcal{P}_d = \{ \Sigma \in \mathbb{R}^{d \times d} : \Sigma = \Sigma^\top, \Sigma \succ 0 \}.$$

The sample covariance matrix $\Sigma^* = \frac{1}{n} \sum_{j=1}^n x_j x_j^{\top}$ is a minimizer of this nagetive log-likelihood. The sample covariance is not robust to outliers. So if P is not normal but some heavy-tailed distribution, then the sample covariance is not suitable. We can obtain a robust estimation of the covariance by minimizing the function

$$f: \mathcal{P}_d \to \mathbb{R}, \quad f(\Sigma) = \log(\det \Sigma) + \frac{1}{n} \sum_{j=1}^n d \log(x_j^{\top} \Sigma^{-1} x_j),$$

which places less emphasis on outliers (points far from the mean). A minimizer of this function is called "Tyler's Mestimator of scatter". It does not have a closed form solution, and the cost function f is non-convex in the Euclidean sense. However, it is g-convex in an appropriate metric, and so a minimizer can be found efficiently (e.g., with RGD). We consider $\mathcal{M} = \mathcal{P}_d$ as an open subset of the symmetric $d \times d$ matrices, and endow it with the Fisher-Rao metric

$$\langle \dot{\Sigma}_1, \dot{\Sigma}_2 \rangle_{\Sigma} = \text{Tr}(\Sigma^{-1} \dot{\Sigma}_1 \Sigma^{-1} \dot{\Sigma}_2),$$

for $\Sigma \in \mathcal{P}_d$ and $\dot{\Sigma}_1, \dot{\Sigma}_2 \in \mathcal{T}_{\Sigma} \mathcal{P}_d = \{\dot{\Sigma} \in \mathbb{R}^{d \times d} : \dot{\Sigma} = \dot{\Sigma}^{\top}\}$. In this Riemannian metric, \mathcal{P}_d is complete and geodesically strongly convex. For every $\Sigma_0, \Sigma_1 \in \mathcal{P}_d$, there is a unique geodesic segment between them, given by

$$\gamma(t) = \Sigma_0^{1/2} (\Sigma_0^{-1/2} \Sigma_1 \Sigma_0^{-1/2})^t \Sigma_0^{1/2}, \quad t \in [0, 1].$$

This geodesic segment is minimizing. Alternatively, for every $\Sigma_0, \Sigma_1 \in \mathcal{P}_d$, there exists an invertible $V \in \mathbb{R}^{d \times d}$ and a diagonal $D \in \mathcal{P}_d$ such that $\Sigma_0 = VV^\top, \Sigma_1 = VDV^\top$. In this case,

$$\gamma(t) = VD^tV^\top, \quad t \in [0, 1].$$

- (1) Show that the function $\Sigma \mapsto \log(\det \Sigma)$ is g-convex.
- (2) Show that if $g: \mathcal{P}_d \to \mathbb{R}$ is g-convex, then the function $h(\Sigma) = g(\Sigma^{-1})$ is g-convex.
- (3) Show that if $x \in \mathbb{R}^d$, then the function $\Sigma \mapsto \log(x^{\top}\Sigma x)$ is g-convex.
- (4) Conclude that the function f is g-convex.

Solution: (1) Let $\Sigma_0, \Sigma_1 \in \mathcal{P}_d$, then the unique geodesic segment between Σ_0 and Σ_1 is given by

$$\gamma(t) = \Sigma_0^{1/2} (\Sigma_0^{-1/2} \Sigma_1 \Sigma_0^{-1/2})^t \Sigma_0^{1/2}, \quad t \in [0,1].$$

For all $t \in [0, 1]$, we have

$$\begin{split} \log(\det \gamma(t)) &= \log(\det(\Sigma_0^{1/2}(\Sigma_0^{-1/2}\Sigma_1\Sigma_0^{-1/2})^t\Sigma_0^{1/2})) \\ &= \log\left(\det(\Sigma_0^{1/2})\det(\Sigma_0^{-1/2}\Sigma_1\Sigma_0^{-1/2})^t\det(\Sigma_0^{1/2})\right) \\ &= \log(\det(\Sigma_0)) + t\log(\det(\Sigma_0^{-1/2}\Sigma_1\Sigma_0^{-1/2})) \\ &= \log(\det(\Sigma_0)) + t\log\left(\det(\Sigma_0^{-1/2})\det(\Sigma_1)\det(\Sigma_0^{-1/2})\right) \\ &= \log(\det(\Sigma_0)) + t\log(\det(\Sigma_1)) - t\log(\det(\Sigma_0)) \\ &= (1-t)\log(\det(\Sigma_0)) + t\log(\det(\Sigma_1)) \end{split}$$

Therefore, $\log(\det \Sigma)$ is g-convex. Moreover, it's g-affine.

(2) Let $\Sigma_0, \Sigma_1 \in \mathcal{P}_d$, then the unique geodesic segment between Σ_0 and Σ_1 is given by

$$\gamma(t) = \Sigma_0^{1/2} (\Sigma_0^{-1/2} \Sigma_1 \Sigma_0^{-1/2})^t \Sigma_0^{1/2}, \quad t \in [0, 1].$$

Let $g: \mathcal{P}_d \to \mathbb{R}$ be g-convex, then for all $t \in [0, 1]$, we have

$$h(\gamma(t)) = g(\gamma(t)^{-1})$$

$$\leq (1 - t)g(\Sigma_0^{-1}) + tg(\Sigma_1^{-1})$$

$$= (1 - t)h(\Sigma_0) + th(\Sigma_1).$$

Therefore, h is g-convex.

(3) Fix $x \in \mathbb{R}^d \setminus \{0\}$ and $F : \mathcal{P}_d \to \mathbb{R}$ given by $F(\Sigma) = \log(x^{\top}\Sigma x)$. Let $\Sigma \in \mathcal{P}_d$ and $\dot{\Sigma} \in \mathcal{T}_{\Sigma}\mathcal{P}_d$, then the differential of F at Σ in the direction $\dot{\Sigma}$ is given by

$$DF(\Sigma)(\dot{\Sigma}) = \frac{d}{dt} \log(x^{\top} (\Sigma + t\dot{\Sigma})x) \Big|_{t=0}$$
$$= (x^{\top} \Sigma x)^{-1} x^{\top} \dot{\Sigma} x$$
$$= (x^{\top} \Sigma x)^{-1} \operatorname{Tr}(\dot{\Sigma} x x^{\top}).$$

Then the Euclidean gradient of F at Σ is given by

$$\operatorname{grad}_{\mathcal{E}} F(\Sigma) = \frac{xx^{\top}}{x^{\top} \Sigma x}.$$

The Euclidean Hessian of F at Σ is given by

$$\begin{aligned} \operatorname{Hess}_{\mathcal{E}} F(\Sigma)(\dot{\Sigma}) &= D \operatorname{grad}_{\mathcal{E}} F(\Sigma)(\dot{\Sigma}) \\ &= D \left(\frac{x x^{\top}}{x^{\top} \Sigma x} \right) (\dot{\Sigma}) \\ &= -\frac{x x^{\top} x^{\top} \dot{\Sigma} x}{(x^{\top} \Sigma x)^2}. \end{aligned}$$

Then the Riemannian Hessian of F at Σ is given by

$$\begin{aligned} \operatorname{Hess}_{\mathcal{M}} F(\Sigma)(\dot{\Sigma}) &= \Sigma \operatorname{Hess}_{\mathcal{E}} F(\Sigma)(\dot{\Sigma}) \Sigma + \frac{\dot{\Sigma} \operatorname{grad}_{\mathcal{E}} F(\Sigma) \Sigma + \Sigma \operatorname{grad}_{\mathcal{E}} F(\Sigma) \dot{\Sigma}}{2} \\ &= -\frac{\Sigma x x^{\top} x^{\top} \dot{\Sigma} x \Sigma}{(x^{\top} \Sigma x)^{2}} + \frac{\dot{\Sigma} x x^{\top} \Sigma + \Sigma x x^{\top} \dot{\Sigma}}{2 x^{\top} \Sigma x} \\ &= \frac{1}{2 x^{\top} \Sigma x} (\dot{\Sigma} x x^{\top} \Sigma + \Sigma x x^{\top} \dot{\Sigma} - \frac{2 \Sigma x x^{\top} x^{\top} \dot{\Sigma} x \Sigma}{x^{\top} \Sigma x}). \end{aligned}$$

To show the Riemannian Hessian is positive semidefinite,

$$\langle \operatorname{Hess}_{\mathcal{M}} F(\Sigma)(\dot{\Sigma}), \dot{\Sigma} \rangle_{\Sigma} = \operatorname{Tr} \left(\Sigma^{-1} \operatorname{Hess}_{\mathcal{M}} F(\Sigma)(\dot{\Sigma}) \Sigma^{-1} \dot{\Sigma} \right)$$

$$= \frac{1}{2x^{\top} \Sigma x} \operatorname{Tr} \left(\Sigma^{-1} (\dot{\Sigma} x x^{\top} \Sigma + \Sigma x x^{\top} \dot{\Sigma} - \frac{2\Sigma x x^{\top} x^{\top} \dot{\Sigma} x \Sigma}{x^{\top} \Sigma x}) \Sigma^{-1} \dot{\Sigma} \right)$$

$$= \frac{1}{2x^{\top} \Sigma x} \operatorname{Tr} \left(\Sigma^{-1} \dot{\Sigma} x x^{\top} \dot{\Sigma} + x x^{\top} \dot{\Sigma} \Sigma^{-1} \dot{\Sigma} - \frac{2x x^{\top} x^{\top} \dot{\Sigma} x \dot{\Sigma}}{x^{\top} \Sigma x} \right)$$

$$= \frac{1}{x^{\top} \Sigma x} \left(x^{\top} \dot{\Sigma} \Sigma^{-1} \dot{\Sigma} x - \frac{(x^{\top} \dot{\Sigma} x)^{2}}{x^{\top} \Sigma x} \right)$$

$$= \frac{1}{(x^{\top} \Sigma x)^{2}} \left[(x^{\top} \Sigma x) (x^{\top} \dot{\Sigma} \Sigma^{-1} \dot{\Sigma} x) - (x^{\top} \dot{\Sigma} x)^{2} \right] \geq 0.$$

Therefore, $F(\Sigma) = \log(x^{\top}\Sigma x)$ is g-convex.

(4) As shown in (1), (2), and (3), the functions $\log(\det \Sigma)$, $\log(\det \Sigma^{-1})$, and $\log(x^{\top}\Sigma x)$ are g-convex. Therefore, the function f is g-convex as a non-negative combination of g-convex functions.