Trabajo Práctico Final Diseño de una investigación basado en una base de datos

Materia: Bioestadística Alumnos:

- Axel Cesar Wood Niella
- Lucía Bernochi
- Priscilla Vanesa Tenas Vai

Elección de base de datos

Presentación del diseño de una investigación basado en una base de datos de interés que en este caso se trató de biomarcadores urinarios del cáncer de páncreas y posterior análisis estadístico de la misma.

TABLE OF CONTENTS

O Introducción

Breve descripción del problema, objetivo y PICO.

Métodos

Incluye: diseño del estudio, lugar donde se desarrollará el estudio y marco temporal, entre otros.

O3. Data Set

Base de datos de interés y tratamiento de la misma.

04. Resultados

Identificación de variables, análisis univariado y multivariado.

O 5 Conclusiones

Interpretación de los resultados obtenidos.

01.

Introducción

Introducción

Importancia

La tasa de supervivencia a cinco años es inferior al 10%.

Actualidad

No existen biomarcadores específicos con la capacidad de generar una detección temprana.

Objetivo

Encontrar una prueba de diagnóstica capaz de identificar posibilidades de desarrollar la enfermedad.

Objetivo

Creatinina

000

000

La elevación implica menor perfusión renal provocada en los casos graves de pancreatitis.

REGIB

Actúa como factor de crecimiento en la regeneración de los islotes pancreáticos.

LYVEI

000

. . .

Receptor que tiene un papel activo en la linfangiogénesis y remodelación endotelial.

TFFI

Factor involucrado en el desarrollo y la progresión de varios tipos de cáncer.

Pregunta PICO

Población (P)

Hombres y mujeres con un rango etario entre 26 y 89 años con historias clínicas diferentes.

Intervención (I)

Medición de biomarcadores.

Comparación (C)

Pacientes con adenocarcinoma ductal pancreatico vs. sin.

Outcomes (O)

Presencia o no de cáncer pancreático.

02.

Métodos

Diseño del estudio

Casos y controles

Baja prevalencia

Hospital Boston EEUU

Previo a intervención quirúrgica o quimioterapéutico

Muestras

- Preservadas según procedimiento estándar.
- Sin afecciones pancreáticas
- Sin neoplasias malignas conocidas
- Adenocarcinoma ductal pancreatico
- Grupo benigno

Variables

Data sources / measurement

000

Grupos de 40

Muestras duplicadas para confirmación de resultados

Creatinina

ILab Aries del Laboratorio de Instrumentación

mmol/l

REGIB

TMB Substrate Set y Stop Solution de BioLegend

FLUOstar Omega Microplate Reader

000

...

Límites de detección:

CA19_9:0.3 U/ml

TFF1: 3.91 pg/ml

REG1B: 8 pg/ml

LYVE1: 56 pg/ml

Sesgos

Sesgo de Selección Se usaron muestras de pacientes entre 26 y 89 años.

Las funciones renales de pacientes mayores de edad pueden no funcionar de la manera esperada

Tamaño del estudio

Determinado por la cantidad de personas que se sometieron una intervención quirúrgica o a un tratamiento quimioterapéutico para el tratamiento de cancer de pancreas durante 6 meses

Sexo

Se tomaron muestras tanto de hombres como mujeres

Edad

Se tomaron muestras de pacientes en el rango etario de interés

Muestras benignas

000

...

- PancreatitisCronica
- Casos de dolor Abdominal
- Enfermedades de vesícula biliar

Variables Cuantitativas

Variables Explicativas Fueron agrupadas dependiendo del diagnóstico del paciente. No se agrupo por edad.

Analisis Multivariado Las variables fueron agrupadas en dos grupos utilizando un valor umbral 03.

Data Set

https://www.kaggle.com/johnjdavisiv/urinary-biomarkers-for-pancreatic-cancer

1

Controles Saludables

3

Pacientes con adenocarcinoma ductal pancreático

2

Pacientes con afecciones pancreáticas no cancerosas, como pancreatitis crónica

Datos faltantes < 20%
En su lugar se reemplazó la media correspondiente a cada variable

000

04.

Resultados

•••

Tabla 0: Identificación de variables, su forma de medirlas y su distribución.

Tabla 0: Identificación de variables, su forma de medirlas y su distribución.

Variable	Tipo
Sex	factor
Age	integer
Creatinine	numeric
LYVE1	numeric
REG1B	numeric
TFF1	numeric
Diagnosis	factor

Variable: Sex

	No	Si
Fem	68	12
Masc	29	16

Variable explicatoria cualitativa nominal categórica que en consecuencia posee una distribución binomial.

Comparación mediante TEST CHI CUADRADO.

Variables: Age, Creatinine, LYVEI, REGIB, TFFI

En primer lugar: Análisis de normalidad.

```
##
## Shapiro-Wilk normality test
##
## data: x
## W = 0.9901, p-value = 0.6925
##
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: x
## data: x
## D = 0.058762, p-value = 0.5633
```

Grupo 0

Variables: Age, Creatinine, LYVEI, REGIB, TFFI

En primer lugar: Análisis de normalidad.

```
##
## Shapiro-Wilk normality test
##
## data: x
## W = 0.9459 p-value = 0.1561
##
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: x
## D = 0.1557, p-value = 0.08022
```

Grupo I

Variables: Age, Creatinine, LYVEI, REGIB, TFFI

En segundo lugar: Comparación

Distribución Normal

Para ambos grupos la distribución fue del tipo Normal.

0 0 0

Test Z

Condiciones:

- Homocedasticidad
- → Muestra mayor a 30

Tabla resumen

Variable	Respuesta o explicatoria	Tipo	Unidad	Dist. de Prob.	Test
Sex	Explicatoria	Cual. Dicotómica	-	Binomial	Chi Cuadrado
Age	Explicatoria	Cuant. cont.	Años	Normal	Test Z
Creatinine	Explicatoria	Cuant. cont.	mmol/l	No normal	Wilcoxon
LYVE1	Explicatoria	Cuant. cont.	pg/ml	No normal	Wilcoxon
REG1B	Explicatoria	Cuant. cont.	pg/ml	No normal	Wilcoxon
TFF1	Explicatoria	Cuant. cont.	pg/ml	No normal	Wilcoxon
Diagnosis	Respuesta	Cual. Dicotómica	-	Binomial	-

Tabla I: Analisis Univariado

H0: Se trata de variables independientes.

H1: No se trata de variables independientes

Test Z

 $H0: \mu Grupo0 - \mu Grupo1 = 0$

H1: μGrupo0 − μGrupo1 ≠ 0

 $H0: \theta Grupo0 - \theta Grupo1 = 0$

H1: θ Grupo0 - θ Grupo1 \neq 0

Tabla I: Analisis Univariado

Chi Cuadrado

HO: Se trata de variables independientes.

H1: No se trata de variables independientes

Test Z

 $H0: \mu Grupo0 - \mu Grupo1 = 0$

H1: µGrupo0 - µGrupo1 ≠ 0

 $H0: \theta Grupo0 - \theta Grupo1 = 0$

H1: θ Grupo0 - θ Grupo1 \neq 0

Variable: Sex

TEST CHI CUADRADO

```
>> chisq.test(tf, correct = TRUE) donde tf es la tabla de frecuencias
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: tf
## X-squared = 5.8681, df = 1, p-value = 0.01542
Menor al n
```

Menor al nivel de significancia (5%)

Sex y el cancer de pancreas no son variables independientes

Tabla I: Analisis Univariado

Test Z

 $H0: \mu Grupo0 - \mu Grupo1 = 0$

H1: μGrupo0 - μGrupo1 ≠ 0

HO: Se trata de variables independientes.

H1: No se trata de variables independientes

H0: θ Grupo0 – θ Grupo1 = 0

H1: θ Grupo0 − θ Grupo1 ≠ 0

Variable: Age

TEST DE LEVENE Y TEST Z

>> z.test(edad0,edad1, mu = 0, sigma.x=sigma.x, sigma.y =sigma.y,
conf.level = 0.95)

La diferencia entre las medias de edad del grupo 0 y del grupo 1 es distinta de cero

Tabla I: Analisis Univariado

H0: Se trata de variables independientes.

H1: No se trata de variables independientes

Test Z

 $H0: \mu Grupo0 - \mu Grupo1 = 0$

H1: μ Grupo0 - μ Grupo1 \neq 0

 $HO: \theta Grupo O - \theta Grupo I = O$

H1: θ Grupo0 - θ Grupo1 \neq 0

Variables: Creatinine, LYVEI, REGIB, TFFI

```
## Wilcoxon rank sum test with continuity correction
##
## data: creatinina0 and creatinina1
## W = 1285.5, p-value = 0.6698
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## -0.2375452 0.1470490
## sample estimates:
## difference in location
## -0.03394606
```

TEST DE WILCOXON

Mayor al nivel de significancia (5%)

La mediana de la creatinina del grupo 0 no difiere de la del grupo 1.

Variables: Creatinine, LYVEI, REGIB, TFFI

```
TEST DE WILCOXON
```

Mediana -31.78906 pg/ml

95 %

• • (

(-31.79223; -31.61921) pg/ml.

La mediana de la LYVEI del grupo 0 difiere de la del grupo 1.

Tabla resumen: Analisis univariado

Variable	Test	Hipotesis	p-valor	Inferencia
Sex	Chi Cuadrado	H_0 : Se trata de variables independientes	0.01542	Se rechaza H_0
Age	Test Z	$H_0: \mu_{Grupo0} - \mu_{Grupo1} = 0$	0.0001176	Se rechaza H_0
Creatinina	Wilcoxon	$H_0: \theta_{Grupo0} - \theta_{Grupo1} = 0$	0.6698	Se acepta H_0
LYVE1	Wilcoxon	$H_0: \theta_{Grupo0} - \theta_{Grupo1} = 0$	1.845e-10	Se rechaza H_0
REG1B	Wilcoxon	$H_0: \theta_{Grupo0} - \theta_{Grupo1} = 0$	0.07389	Se acepta H_0
TFF1	Wilcoxon	$H_0: \theta_{Grupo0} - \theta_{Grupo1} = 0$	5.53e-05	Se rechaza H_0

Tabla 2: Análisis Multivariado

Tabla resumen: Analisis univariado

Variable	Test	Hipotesis	p-valor	Inferencia
Sex	Chi Cuadrado	H_0 : Se trata de variables independientes	0.01542	Se rechaza H_0
Age	Test Z	$H_0: \mu_{Grupo0} - \mu_{Grupo1} = 0$	0.0001176	Se rechaza H_0
Creatinina	Wilcoxon	$H_0: \theta_{Grupo0} - \theta_{Grupo1} = 0$	0.6698	Se acepta H_0
LYVE1	Wilcoxon	$H_0: \theta_{Grupo0} - \theta_{Grupo1} = 0$	1.845e-10	Se rechaza H_0
REG1B	Wilcoxon	$H_0: \theta_{Grupo0} - \theta_{Grupo1} = 0$	0.07389	Se acepta H_0
TFF1	Wilcoxon	$H_0: \theta_{Grupo0} - \theta_{Grupo1} = 0$	5.53e-05	Se rechaza H_0

Variables dicotómicas

- Se tomaron las variables explicativas relevantes.
- Se las volvió variables dicotómicas utilizando un valor umbral (media)

LYVE1D		$\overline{\text{TF}}$	F1D
0	93	0	117
1	28	1	8

Test de Chi cuadrado de Pearson

• 80% de las celdas deben tener una frecuencia esperada mayor o igual a 5 y ninguna frecuencia menor a 1

	Cáncer de pa	ncreas	
TFF1D	0	1	Row Total
0	79 72.168	18 24.832	97
1	14 20.832	14 7.168	28
Column Total	93	32	125

	Cáncer de pa	ncreas	
LYVE1D	0	1	Row Total
0	95	2 6. 208	97
1	22 26.208	6 1.792	28
Column Total	117	8	125

P valor = 0.001854415

• P valor = 0.001153486

Odds Ratio

TFF1

Point estimates and 95% CIs:

Inc risk ratio	1.25 (1.03, 1.52)
Odds ratio	12.95 (2.45, 68.55)
Attrib risk *	19.37 (3.91, 34.83)
Attrib risk in population *	15.03 (-0.76, 30.82)
Attrib fraction in exposed (%)	19.77 (2.44, 34.03)
Attrib fraction in population (%)	16.06 (1.54, 28.43)

Test that OR = 1: chi2(1) = 13.604 Pr>chi2 = <0.001 Wald confidence limits
CI: confidence interval
* Outcomes per 100 population units

Un valor de TFF1 alto incrementa en 12.95 las chances de tener cancer de pancreas IC(2.45,68.55)

LYVE1

Point estimates and 95% CIs:

Test that OR = 1: chi2(1) = 11.279 Pr>chi2 = <0.001 Wald confidence limits
CI: confidence interval

* Outcomes per 100 population units

Un valor de LYVE1 alto incrementa en 4.39 las chances de tener cancer de pancreas IC(1.78,10.80)

```
call:
glm(formula = diagnosis ~ TFF1D, family = "binomial", data = datafinal)
Deviance Residuals:
   Min
           1Q Median 3Q
                                  Max
-1.0727 -0.5712 -0.5712 -0.5712 1.9460
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
TFF1D1 1.4791 0.4594 3.219 0.00128 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 132.98 on 124 degrees of freedom
Residual deviance: 122.66 on 123 degrees of freedom
AIC: 126.66
Number of Fisher Scoring iterations: 4
```

```
call:
glm(formula = diagnosis ~ LYVE1D, family = "binomial", data = datafinal)
Deviance Residuals:
   Min 1Q Median 3Q Max
-1.6651 -0.6454 -0.6454 -0.6454 1.8282
coefficients:
          Estimate Std. Error z value Pr(>|z|)
LYVE1D1 2.5614 0.8501 3.013 0.00259 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 132.98 on 124 degrees of freedom
Residual deviance: 122.10 on 123 degrees of freedom
AIC: 126.1
Number of Fisher Scoring iterations: 4
```

```
call:
glm(formula = diagnosis ~ TFF1D + LYVE1D, family = "binomial",
   data = datafinal)
Deviance Residuals:
   Min
            10 Median 30
                                    Max
-2.0290 -0.5258 -0.5258 -0.5258 2.0235
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.9090 0.3117 -6.125 9.07e-10 ***
TFF1D1 1.3998 0.4842 2.891 0.00384 **
LYVE1D1 2.4311 0.8866 2.742 0.00611 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 132.98 on 124 degrees of freedom
Residual deviance: 113.86 on 122 degrees of freedom
AIC: 119.86
Number of Fisher Scoring iterations: 4
```

CURVAS ROC

- Morado LYVE1
- Verde TFF1
- Amarillo LYVE1 + TFF1

Tabla resumen: Analisis Multivariado

	Variables Utilizadas	AUC
Modelo 1	LYVE1	0.5968
Modelo 2	TFF1	0.6572
Modelo 3	LYVE1 + TFF1	0.7204

05.

Conclusiones

Conclusiones

. .

Las variables explicativas LYVE1 y TFF1 pueden ser utilizadas como biomarcadores para la detección temprana del cáncer de páncreas.

...

El modelo de regresión logística que provee mejores resultados es el que usa las dos variables (LYVE1 y TFF1).

. . .

En futuros trabajos utilizar otros valores umbral de modo de analizar si se consiguen mejores resultados.

Muchas Gracias!