機器學習

Lecture 7 集成方法

Why Ensemble Works?

Ensemble gives the global picture!

Ensemble Methods (集成)

Why Ensemble Works?

結合具有不同優缺點的預測模型,那些準確預測 的模型往往會互相加強,同時抵銷錯誤的預測

前提:總體所包含的模型不能有同樣的錯誤,亦即模型必須是不相關的

Bootstrap Sample (自助樣本)

- □ 假設有 n 個原始樣本的觀察值,Bootstrap的執行步驟如下:
 - 1. 抽取一個觀察值,記下其值後放回原始樣本集合中混合均匀,再重 新抽取
 - 2. 重覆步驟 1 n 次,就可以得到一組Bootstrap的訓練樣本集合
 - 3. 重覆步驟 1 和 2 B 次,就可以得到 B 組Bootstrap的訓練樣本集合
- □ 假設有 10 個原始樣本觀察 值 X = {13, 106, 203, 131, 160, 8, 67, 11, 301, 61}:
 - 每一組Bootstrap訓練樣本有10個抽取值。未被抽取到的觀察值則設為測試樣本,用以測試訓練樣本所建構之模型的正確率。
 - B組Bootstrap的樣本集合

Bagging

Random Forest (隨機森林)

- 1. 定義大小為 n 的隨機(取出後放回)自助樣本 (bootstrap sample)
- 2. 從自助樣本中導出決策樹。對每一節點:
 - (1) 隨機(取出不放回)選擇 d 個特徵
 - (2) 使用特徵分割該節點,依據『目標函數』找出 最佳方式,如最大化『資訊增益』
- 3. 重複 k 次步驟 1 和 2
- 4. 以多數決 (majority voting)的方式匯總所有決策 樹的預測

Random Forest

Random Forest

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Records that are wrongly classified will have their weights increased
 - Records that are classified correctly will have their weights decreased

Boosting

AdaBoost

Given: $(x_1, y_1), \ldots, (x_m, y_m)$ where $x_i \in \mathcal{X}$, $y_i \in \{-1, +1\}$.

Initialize $D_1(i) = 1/m$ for $i = 1, \ldots, m$.

For $t = 1, \ldots, T$:

- Train weak learner using distribution D_t .
- Get weak hypothesis $h_t : \mathscr{X} \to \{-1, +1\}$.
- Aim: select h_t with low weighted error:

$$\varepsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$$
 Error of model

———— Train model

• Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$.

Coefficient of model

• Update, for $i = 1, \dots, m$:

$$\left[D_{t+1}(i) = rac{D_t(i) \exp(-lpha_t y_i h_t(x_i))}{Z_t}
ight]$$
 — Update Distribution

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$
 Final average

Training set: 10 points (represented by + or -)

Original Status:

Equal Weights

$$\epsilon = 3/10 = 0.3$$

$$\alpha = 0.5 \cdot \ln \frac{1 - 0.3}{0.3} \approx 0.42$$

Round 1: Three "+" points are not correctly classified; They are given higher weights

預測正確 $\Rightarrow y \times h(x) > 0$ \Rightarrow 降低權重

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$\chi^{(i)}$	$y^{(i)}$	weights	$h_1(x)$	correct?	Updated weights
1	1	0.1	1	Y 公子·	0.072 0.1*exp(-0.42)
2	1	0.1	1	Υ΄, ΄, ΄,	0.1%CAP(0.42)
3	-1	0.1	-1	Υ	0.072
4	-1	0.1	-1	Y	0.072
5	1	0.1	-1	N N 7 • 0 1 v	0.167
6	1	0.1	-1	分子:0.1* N	exp(-0.42*-1) 0.167
7	-1	0.1	-1	Υ	0.072
8	1	0.1	-1	N	0.167
9	-1	0.1	-1	Υ	0.072
10	-1	0.1	-1	Y	0.072

$$\epsilon = 3/10 = 0.3$$

$$\alpha = 0.5 \cdot \ln \frac{1 - 0.3}{0.3} \approx 0.42$$

Round 1: Three "+" points are not correctly classified; They are given higher weights

$$\epsilon = 3 * 0.072 = 0.216$$

 $\alpha \approx 0.65$

Round 2: Three "-" points are not correctly classified; They are given higher weights

$$\epsilon = 3 * 0.072 = 0.216$$

 $\alpha \approx 0.65$

Round 2: Three "-" points are not correctly classified; They are given higher weights

Round 3: One "-" and two "+" points are not correctly classified; They are given higher weights

 $\alpha \approx 0.92$

Final Classifier: integrate the three "weak" classifiers and obtain a final strong classifier

XGBoost

• Start from constant prediction, add a new function each time

$$\hat{y}_{i}^{(0)} = 0$$

• Start from constant prediction, add a new function each time

$$\hat{y}_{i}^{(0)} = 0
\hat{y}_{i}^{(1)} = f_{1}(x_{i}) = \hat{y}_{i}^{(0)} + f_{1}(x_{i})$$

• Start from constant prediction, add a new function each time

$$\hat{y}_{i}^{(0)} = 0
\hat{y}_{i}^{(1)} = f_{1}(x_{i}) = \hat{y}_{i}^{(0)} + f_{1}(x_{i})$$

Start from constant prediction, add a new function each time

Model at training round t

Keep functions added in previous round

Start from constant prediction, add a new function each time

Model at training round t

Keep functions added in previous round

Pros & Cons

- Pros
 - Decision tree 不要求對資料進行預處理
 - random forest 可以平行處理 (參數n_job 設 為CPU的個數,若不確定電腦CPU個數,可設 n_job = -1)
 - Adaboost 考慮每個分類器的權重
 - 集成方法結合不同的分類模型,以抵消各自的弱點,形成一個穩定且表現良好的模型

Pros & Cons

- Cons
 - 集成方法會增加計算的複雜度,花費更多的計算成本。
 - ■使用集成方法時要權衡「計算複雜度」和 「效能改進」

Python code

■訓練「隨機森林」模型

隨機森林裡有 25棵決策樹

Python code

■訓練「AdaBoost」模型

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier

tree = DecisionTreeClassifier(criterion='entropy', 單層決策樹 max_depth=1, random_state=1)

ada = AdaBoostClassifier(base_estimator=tree, n_estimators=500, learning_rate=0.1, random_state=1)

ada = ada.fit(X_train, y_train)
```

Python code

■訓練「XGBoost」模型

```
from xgboost import XGBClassifier

xgbc = XGBClassifier()
xgbc.fit(X_train, y_train)
```