Ayudantía 5

Teoría Macroeconómica I - EAE320B Profesor: Alexandre Janiak Ayudante: Pablo Vega (pavega7@uc.cl)

1 Adaptado Tarea 2 2021-II

1.1 Deudas en el ciclo de vida

Considere una economía habitada por un continuo de agentes. El tiempo es discreto y los agentes viven un horizonte de T periodos. Cada periodo nace una nueva masa de agentes de tamaño $\frac{1}{T}$, manteniendo constante la cantidad total de agentes a través del tiempo. Los agentes tienen preferencias separables en el tiempo, descontando el futuro a un factor β y valoran el consumo c de acuerdo a la función de utilidad CRRA¹

Los agentes están dotados de un ingreso laboral exógeno ε_t cada periodo. En esta economía existe un mercado financiero donde los agentes pueden intercambiar activos a a tasa endógena r. Sin embargo, existen restricciones de liquidez que impiden a los agentes tomar deuda por un monto mayor a b. Finalmente, suponga que los agentes nacen sin activos y que no pueden morir endeudados. La ecuación de Bellman que caracteriza el problema de un agente de edad t es:

$$V_t(a_t) = \max_{a_{t+1}, c_t} u(c_t) + \beta V_{t+1}(a_{t+1})$$
(2)

s.a.

$$a_{t+1} + c_t = \omega_t + (1+r)a_t, \tag{3}$$

$$a_{t+1} \ge -b \tag{4}$$

La tasa de interés de equilibrio satisface la siguiente condición de oferta agregada nula de activos netos:

$$\frac{1}{T} \sum_{t=1}^{T} a_{t+1} = 0. (5)$$

Para resolver numéricamente el problema del agente, considere como referencia una grilla de activos \mathcal{A} de 1001 puntos en el intervalo [-15, 25].

1.2 Equilibrio parcial

Considere en primera instancia el problema en equilibrio parcial y sin restricciones de liquidez $(b \to \infty)$. Para las siguientes preguntas, suponga una tasa de interés r exógena de 4%.

- (a) Resuelva numéricamente el problema del agente. Realice un subplot con las trayectorias de ingreso laboral (identificando el ingreso medio), activos, ahorros y consumo de los agentes. Explique económicamente sus resultados.
- (b) Repita el proceso variando σ y r. Inteprete.

1

$$u(c) = \begin{cases} \log c & \text{si } \sigma = 1\\ \frac{c^{1-\sigma} - 1}{1 - \sigma} & \text{si } \sigma \neq 1 \end{cases}$$
 (1)

1.3 Equilibrio general

- (a) Grafique la oferta de activos en función de la tasa de interés. Considere $r \in [2\%, 8\%]$.
- (b) (Tarea) Obtenga un valor aproximado de la tasa de equilibrio de mercado de capitales sin hacer cálculos.

Seguimiento 5

Desarrolle el seguimiento en base a los resultados obtenidos en la presente ayudantía. Utilice (1) como función de utilidad.

Contexto

Una buena forma de evaluar la calidad de las aproximaciones de la resolución numérica del agente es utilizando los residuos e de la ecuación de Euler definidos por:

$$u'(c_t(1+e_t)) = \beta R u'(c_{t+1}) \tag{6}$$

Responda las siguientes preguntas:

- (a) Obtenga la ecuación de Euler del agente. Interprete.
- (b) Grafique el error de aproximación e_t asociado a la trayectoria de consumo. Interprete.
- (c) Repita el proceso con una grilla de activos A de 5001^2 . ¿Cambian sus resultados con respecto al ítem anterior? Explique.

²Verifique que la grilla contiene el 0.