



Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 1

# INFORME DE LABORATORIO

(formato estudiante)

| INFORMACION BASICA                                                        |                    |                            |       |                |  |     |   |  |  |  |  |
|---------------------------------------------------------------------------|--------------------|----------------------------|-------|----------------|--|-----|---|--|--|--|--|
| ASIGNATURA:                                                               | Programacion web 2 |                            |       |                |  |     |   |  |  |  |  |
| TITULO DE LA<br>PRACTICA:                                                 | Python             |                            |       |                |  |     |   |  |  |  |  |
| NÚMERO DE<br>PRÁCTICA:                                                    | 5                  | AÑO LECTIVO:               | 2024  | NRO.<br>SEMEST |  | RE: | 3 |  |  |  |  |
| FECHA<br>DE PRE-<br>SENTACIÓN:                                            | 2024/6/1           | HORA DE PRE-<br>SENTACIÓN: | 16:35 |                |  |     |   |  |  |  |  |
| INTEGRANTE (s): HUAMANI CONDORI JEANPIERO SIXTO  Nota colocada el docente |                    | -                          |       |                |  |     |   |  |  |  |  |
| DOCENTE(s):                                                               |                    |                            |       |                |  |     |   |  |  |  |  |
| LINO JOSE PINTO OPPE                                                      |                    |                            |       |                |  |     |   |  |  |  |  |

#### RESULTADOS Y PRUEBAS

-github Lab 5: click aquí

-codigo latex: click aquí

#### I. EJERCICIOS RESUELTOS:

 $\bullet$ horizontal Mirror: Devuelve el espejo horizontal de la imagen

• negative: Devuelve un negativo de la imagen

• join: Devuelve una nueva figura poniendo la figura del argumento al lado derecho de la figura actual

• up: Devuelve una nueva figura poniendo la figura recibida como argumento, encima de la figura actual

• under: Devuelve una nueva figura poniendo la figura recibida como argumento, sobre la figura actual





Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 2

- horizontal Repeat: Devuelve una nueva figura repitiendo la figura actual al costado la cantidad de veces que indique el valor de n
- vertical Repeat: Devuelve una nueva figura repitiendo la figura actual debajo, la cantidad de veces que indique el valor de n

#### Ejercicios:

- Para resolver los siguientes ejercicios sólo está permitido usar ciclos, condicionales, definición de listas por comprensión, sublistas, map, join, (+), lambda, zip, append, pop, range.
- Implemente los métodos de la clase Picture. Se recomienda que implemente la clase picture por etapas, probando realizar los dibujos que se muestran en la siguiente preguntas.
- Usando únicamente los métodos de los objetos de la clase Picture dibuje las siguientes figuras (invoque a draw):

#### Commits:







Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 3

# Clase Picture implementada:

```
from colors import *
class Picture:
 def __init__(self, img):
    self.img = img;
 def __eq__(self, other):
    return self.img == other.img
 def _invColor(self, color):
    if color not in inverter:
      return color
    return inverter[color]
 def verticalMirror(self):
    \verb|""" Devuelve_lel_lespejo_lvertical_lel_la_limagen_l"""
    vertical = []
    for value in self.img:
      vertical.append(value[::-1])
    return Picture(vertical)
 def horizontalMirror(self):
    """_Devuelve_el_espejo_horizontal_de_la_imagen_"""
    horizontal = []
    for i in range(len(self.img) - 1, -1, -1):
      horizontal.append(self.img[i])
    return horizontal
 def negative(self):
    \verb"""" Devuelve \verb"ununegativo \verb"de" la \verb"imagen" """
    negative = []
    for value in self.img:
      linea = ''
      for char in value:
        linea +=self._invColor(char)
      negative.append(linea)
    return negative
```





Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

```
def join(self, p):
         \verb|"""| \verb|Devuelve|| \verb|una|| \verb|nueva|| figura|| poniendo|| \verb|la|| figura|| del|| argumento
uuuuuuuuualuladouderechoudeulaufigurauactualu"""
        try:
           imagen = p.img
        except:
           imagen = p
         joined=[]
         for index in range(len(self.img)):
           joined.append(self.img[index]+imagen[index])
        return joined
      def up(self, p):
         try:
           imagen = p.img
         except:
           imagen = p
        return p.img+imagen
      def under(self, p):
         try:
           imagen = p.img
         except:
           imagen = p
        return self.img+imagen
      def horizontalRepeat(self, n):
         \verb|"""|_{\sqcup} Devuelve_{\sqcup} una_{\sqcup} nueva_{\sqcup} figura_{\sqcup} repitiendo_{\sqcup} la_{\sqcup} figura_{\sqcup} actual_{\sqcup} al_{\sqcup} costado
repeated = self.img
        for i in range(n):
           repeated=self.join(repeated)
        return repeated
      def verticalRepeat(self, n):
        repeated = self.img
        for i in range(n):
           repeated= self.under(repeated)
        return repeated
```





Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 5

```
#Extra: Slo para realmente viciosos
def rotate(self):
    """Devuelve_una_figura_rotada_en_90_grados,_puede_ser_en_sentido_horario
"""
    longitud= len(self.img[0])
    rotated=[]
    for i in range(longitud):
        line=''
        for values in range(len(self.img) - 1, -1, -1):
            line+=self.img[values][i]
        rotated.append(line)

return rotated
```

# Ejercicios implementados:

# Ejercicio (a)

```
from interpreter import draw
from chessPictures import *

caballosArriba=knight.join(knight.negative())
caballosAbajo=Picture(knight.negative()).join(knight)
figura=Picture(caballosArriba).under(caballosAbajo)
draw(figura)
```

# Ejercicio (b)

```
from interpreter import draw
from chessPictures import *
caballosArriba=Picture(knight.join(knight.negative()))
caballosAbajo=Picture(Picture(knight.negative()).join(knight)).verticalMirror()
figura=caballosArriba.under(caballosAbajo)
draw(figura)
```





Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 6

### Ejercicio (c)

```
from interpreter import draw
from chessPictures import *
reinas=queen.horizontalRepeat(3)
draw(reinas)
```

# Ejercicio (d)

```
from interpreter import draw
from chessPictures import *

fila=square
for i in range(7):
    if(i%2==0):
        fila=Picture(fila.join(square.negative()))
    else:
        fila=Picture(fila.join(square))
```

# Ejercicio (e)

```
from interpreter import draw
from chessPictures import *

fila=Picture(square.negative())
for i in range(7):
    if(i%2==0):
        fila=Picture(fila.join(square))
    else:
        fila=Picture(fila.join(square.negative()))

draw(fila)
```





Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 7

### Ejercicio (f)

```
from interpreter import draw
from chessPictures import *
def generarFilaEmpiezaConNegro():
   fila=Picture(square.negative())
   for i in range(7):
        if(i%2==0):
            fila=Picture(fila.join(square))
            fila=Picture(fila.join(square.negative()))
   return fila
def generarFilaEmpiezaConBlanco():
   fila=square
   for i in range(7):
        if(i%2==0):
            fila=Picture(fila.join(square.negative()))
        else:
            fila=Picture(fila.join(square))
   return fila
tablero= generarFilaEmpiezaConBlanco()
for i in range(3):
   if(i%2==0):
        tablero=Picture(tablero.under(generarFilaEmpiezaConNegro()))
   else :
        tablero=Picture(tablero.under(generarFilaEmpiezaConBlanco()))
draw(tablero)
```

# Ejercicio (g)

```
from interpreter import draw
from chessPictures import *
def generarFilaEmpiezaConNegro():
    fila=Picture(square.negative())
    for i in range(7):
        if(i%2==0):
```





Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

```
fila=Picture(fila.join(square))
        else:
            fila=Picture(fila.join(square.negative()))
   return fila
def generarFilaEmpiezaConBlanco():
   fila=square
   for i in range(7):
        if(i%2==0):
            fila=Picture(fila.join(square.negative()))
            fila=Picture(fila.join(square))
   return fila
def printArr(arr):
   for i in arr:
        print(i)
def generarTablero():
   tablero= generarFilaEmpiezaConBlanco()
   for i in range(7):
        if(i%2==0):
            tablero=Picture(tablero.under(generarFilaEmpiezaConNegro()))
        else :
            tablero=Picture(tablero.under(generarFilaEmpiezaConBlanco()))
   return tablero
def generarCuadradoVacio():
   cuadrado=[]
   for i in range(58):
        fila=''
        for j in range(58):
            fila+=','
        cuadrado.append(fila)
   return cuadrado
def generarFilaSinPiezas():
    cuadrado=Picture(generarCuadradoVacio())
   filaVacia=cuadrado.horizontalRepeat(7)
   return filaVacia
def ponerPiezas(tablero,piezas):
   try:
      imagen = piezas.img
   except:
      imagen = piezas
```





Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 9

```
try:
     tabImagen = tablero.img
    except:
     tabImagen = tablero
   newTab=[]
   for i in range(len(tabImagen)):
       newFila=''
       for j in range(len(tabImagen[i])):
            try:
                if(imagen[i][j] == "_{\sqcup}"):
                    newFila+=tabImagen[i][j]
                else:
                    newFila+=imagen[i][j]
            except:
               newFila+=tabImagen[i][j]
       newTab.append(newFila)
   return newTab
tablero=generarTablero()
filaSinPiezas=generarFilaSinPiezas()
fila1=Picture(Picture(Picture(Picture(Picture(Picture(Picture(Picture(rock.join(knight)).join(bishop))
.join(queen)).join(king)).join(bishop)).join(knight)).join(rock)).negative())
fila2=Picture(pawn.horizontalRepeat(7)).negative()
fila7=Picture(pawn.horizontalRepeat(7))
fila8=Picture(Picture(Picture(Picture(Picture(Picture(Picture(rock.join(knight)).join(bishop))
.join(queen)).join(king)).join(bishop)).join(knight)).join(rock))
piezas=Picture(Picture(Picture(Picture(Picture(fila1.under(fila2)).under(filaSinPiezas))
.under(filaSinPiezas)).under(filaSinPiezas)).under(filaSinPiezas)).under(fila8)
tablero=ponerPiezas(tablero,piezas)
draw(tablero)
```

### II. PRUEBAS





Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación







Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación







Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación







Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación







Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación







Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación







Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación







Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 17

#### III. CUESTIONARIO:

Explique: ¿Para qué sirve el directorio pycache?

El directorio pycache en Python es utilizado para almacenar los archivos bytecode compilados de los módulos Python.

Estos archivos tienen la extensión .pyc (o a veces .pyo si se crean en un modo de optimización). La razón principal de la existencia de este directorio y los archivos que contiene es mejorar la eficiencia en la ejecución de los programas Python.

#### Compilación:

Cuando ejecutas un programa Python, el intérprete primero compila el código fuente (.py) en bytecode, un formato intermedio que es más fácil y rápido de ejecutar por la máquina virtual de Python (PVM). Este bytecode compilado es lo que se almacena en los archivos .pyc dentro del directorio pycache.

#### Ejecución:

La próxima vez que ejecutes el mismo módulo, si no ha cambiado, el intérprete de Python puede cargar directamente el bytecode compilado desde el archivo .pyc en lugar de volver a compilar el código fuente.

Esto ahorra tiempo de ejecución, ya que la compilación puede ser un proceso costoso en términos de tiempo, especialmente para programas grandes o complejos.

### CONCLUSIONES

Para las conclusiones tenemos que python es un lenguaje poderoso, en este laboratorio usamos la libreria pygame para convertir un string , en este caso fichas del juego ajedrez a interfaz grafica. Tambien utilizamos las clases en python y me di cuenta que es parecido a java

## METODOLOGÍA DE TRABAJO

Para la metodologia utilizada , fue primero llenar la clase picture para poder , realizar todos sus metodos sobre las pictures (las fichas de ajedrez) , luego de implementar la clase picture se procedio a realizar los ejercicios de interfaz grafica que pedia el laboratorio





Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 18

### Estructura de directorios lab 5:

```
jhuamanicond/
|-- pw2-24a
    |-- lab05
        |-- Tarea-del-Ajedrez
            |-- .gitignore
            |-- Ejercicio2a.py
            |-- Ejercicio2b.py
            |-- Ejercicio2c.py
            |-- Ejercicio2d.py
            |-- Ejercicio2e.py
            |-- Ejercicio2f.py
            |-- Ejercicio2g.py
            |-- chessPictures.py
            |-- colors.py
            |-- interpreter.py
            |-- picture.py
            '-- pieces.py
        '-- latex
            |-- lab05.pdf
            '-- lab05.tex
```





Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 19

|               | Contenido y demostración                                                                                                                                                                                                                                                        | Puntos | Checklist | Estudiante | Profesor |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|------------|----------|
| 1. GitHub     | Repositorio se pudo clonar y se evidencia la<br>estructura adecuada para revisar los entrega-<br>bles. (Se descontará puntos por error o onser-<br>vación)                                                                                                                      | 4      | <b>√</b>  | 4          |          |
| 2. Commits    | Hay porciones de código fuente asociado a los<br>commits planificados con explicaciones deta-<br>lladas. (El profesor puede preguntar para re-<br>frendar calificación).                                                                                                        | 4      | <b>√</b>  | 3          |          |
| 3. Ejecución  | Se incluyen comandos para ejecuciones y prue-<br>bas del código fuente explicadas gradualmente<br>que permitirían replicar el proyecto. (Se des-<br>contará puntos por cada omisión)                                                                                            | 4      | <b>√</b>  | 3          |          |
| 4. Pregunta   | Se responde con completitud a la pregunta for-<br>mulada en la tarea. (El profesor puede pregun-<br>tar para refrendar calificación).                                                                                                                                           | 2      | <b>√</b>  | 2          |          |
| 7. Ortografía | El documento no muestra errores ortográficos.<br>(Se descontará puntos por error encontrado)                                                                                                                                                                                    | 2      | V         | 1          |          |
| 8. Madurez    | El Informe muestra de manera general una evolución de la madurez del código fuente con explicaciones puntuales pero precisas, agregando diagramas generados partir del código fuente y refleja un acabado impecable. (El profesor puede preguntar para refrendar calificación). | 4      | <b>√</b>  | 3          |          |
|               | Total                                                                                                                                                                                                                                                                           |        |           | 16         |          |

## REFERENCIAS

 ${\rm https://www.w3schools.com/python/python}_{r} eference.asp$ 

https://docs.python.org/3/tutorial/'