CheggSolutions - Thegdp

Kinetics of Second-Order Reactions

Given and Introduction:

The reaction \(A \rightarrow \text{product} \) is a second-order reaction with a rate constant \(k = 0.540 \, M^{-1} \, s^{-1} \). The objective is to find the time at which the concentration of species A becomes \(\frac{1}{3} \) of its original concentration.

Second-Order Reaction Formula:

For a second-order reaction, the integrated rate law is given by:

```
\[\frac{1}{[A]} = kt + \frac{1}{[A]_0} \]
```

Where:

\([A] \) = concentration of A at time t

\(k \) = rate constant

(t) = time

 $([A]_0) = initial concentration of A$

Step-by-Step Solution:

- 1. Identify given values and what needs to be found:
 - $\circ \ \ ([A]_t = \frac{1}{3} [A]_0 \) (concentration of A at time t is one-third of its initial concentration)$
 - \(k = 0.540 \, M^{-1} \, s^{-1} \)
 - ∘ Initial concentration \([A] 0 \)

Explanation: The problem provides the rate constant and the fraction of the initial concentration. Based on these values, the goal is to find the time needed for the concentration of A to drop to \(\) \(\) frac{1}{3} \) of its original value.

2. Substitute the known values into the integrated rate law equation:

```
[ \frac{1}{\pi c_{1}} {A]_0} = kt + \frac{1}{[A]_0}
```

Explanation: By substituting $\ (\ \frac{1}{3} [A]_0 \)$ for $\ (\ [A] \)$, the integrated rate law equation can be rearranged to solve for time $\ (\ t \)$.

3. Simplify the equation:

```
\[ 3 \cdot \frac{1}{[A]_0} = kt + \frac{1}{[A]_0} \]
```

Explanation: Multiply the left side by 3 since \(\frac{1}{\frac{1}{3} [A] 0}\) simplifies to \(3 \cdot \frac{1}{[A] 0}\).

4. Rearrange to solve for \(t \):

```
\[ 3 \cdot \frac{1}{[A]_0} - \frac{1}{[A]_0} = kt \]
\[ \frac{3 - 1}{[A]_0} = kt \]
\[ \frac{2}{[A]_0} = kt \]
```

Explanation: Separate the terms involving \([A]_0 \) and isolate \(t \).

5. Solve for \(t \):

```
\[ t = \frac{2}{k[A]_0} \]
```

Explanation: Rearrange the equation to solve for (t) by dividing both sides by (k) and (A_0) .

6. Substitute the value of \(k \):

```
[t = \frac{2}{0.540}, M^{-1} , s^{-1} \times [A]_0]
```

Explanation: Substitute the given rate constant into the equation.

7. Calculate the value of \(t \): Since \([A]_0 \) cancels out, the equation becomes:

```
\[ t = \frac{2}{0.540} \]
\[ t \approx 3.70 \, \text{s} \]
```

Explanation: Perform the division to find the value of $\ (\ t\)$.

Final Solution:

The time required for the concentration of species A to become \(\frac{1}{3} \) of its original concentration is approximately \(\boxed{3.70 \, \text{s}} \).