NEURAL NETWORKS

THE EARLY DAYS

In the early days of artificial neural networks, data scientists tried to mimic the human brain through computer models.

TYPES OF NEURAL NETWORKS

- Multi-Layer Perceptrons (MLP) neural networks (covered here)
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (e.g. Long Short Term Memory recurrent networks)
- Generative Adversarial Networks
- AutoEncoders
- Transformers»

MULTI-LAYER PERCEPTRONS (MLP) NEURAL NETWORK

- Input Layer: with one or more input neurons.
- **Hidden Layer(s)** one or more hiden layers with one or more hidden neurons.
- Output Layer: with one or more output neurons.
- **Fully connected:** each neuron in each of the layers is connected to all neurons of the following layer.

EXAMPLE FOR AN MLP NEURAL NETWORK WITH ONE HIDDEN LAYER

THE DATA

We will estimate diamond prices based on their physical properties and use the well-known diamonds dataset automatically loaded together with tidymodels:

► Code

```
tibble [53,940 × 10] (S3: tbl_df/tbl/data.frame)
$ carat : num [1:53940] 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
$ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...
$ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 ...
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 ...
$ depth : num [1:53940] 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
$ table : num [1:53940] 55 61 65 58 58 57 57 55 61 61 ...
$ price : int [1:53940] 326 326 327 334 335 336 336 337 337 338 ...
$ x : num [1:53940] 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
$ y : num [1:53940] 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
$ z : num [1:53940] 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...
```

DOMAIN KNOWLEDGE: THE FOUR C S TO APPRAISE A DIAMOND

- Cut: Refers to the facets, symmetry, and reflective qualities of a diamond. The cut of a diamond is directly related to its overall sparkle and beauty.
- 2. **Color:** Refers to the natural color or lack of color visible within a diamond. The closer a diamond is to "colorless," the higher its value.
- 3. **Clarity:** Is the visibility of natural microscopic inclusions and imperfections within a diamond. Diamonds with little to no inclusions are considered particularly rare and highly valued.
- 4. **Carat:** Is the unit of measurement used to describe the weight of a diamond. It is often the most visually apparent factor when comparing diamonds.

DATA ENGENEERING

We start with a very basic model with 2 predictors for Price:

- Carat (the weight of the diamond in metric grams),
- Clarity (eight categories with 8 being the best).

To later increase training speed, we use only 10,000 observations.

Code

```
# A tibble: 6,999 × 3
   Price Carat Clarity
   <int> <dbl>
    506
        0.3
    628 0.28
    753
         0.3
    766
         0.3
    552
         0.35
    743
        0.33
    698
        0.31
    526
     675
```

USE A TRAINED NEURAL NEWORK (βs are known) to predict effectiv inputs to hidden neurons

USE A TRAINED NEURAL NEWORK (βs are known) to predict calculate activity in hidden neurons with logistic function

USE A TRAINED NEURAL NEWORK (eta s are known) to predict calculate prediction from activities in hidden neurons

PREDICTION OF THE NEURAL NETWORK

$$\widehat{P}=eta_7+eta_8A_1^{ct}+eta_9A_2^{ct}$$

A neural network can be transformed into a prediction equation that depends only on the βs and the values of the predictor variables!

We will show this in more detail on the following slides.»

$$\widehat{P}=eta_7+eta_8A_1^{ct}+eta_9A_2^{ct}$$

- ullet A_1^{ct} and A_2^{ct} depend on $I_1^{np\ eff}$ and $I_2^{np\ eff}$ (and the eta s)
- $I_1^{np\ eff}$ and $I_2^{np\ eff}$ depend on the values of predictor variables Carat and Clarity (and the eta s)
- Consequently, prediction depends only on the values of predictor variables and the $\beta s!$

To show the transformation, we move backwards from right to left through the neural network.

$$\widehat{P}=eta_7+eta_8A_1^{ct}+eta_9A_2^{ct}$$

INSIDE THE HIDDEN NEURONS

XX INSIDE THE HIDDEN NEURONS

$$\widehat{P}=eta_7+eta_8A_1^{ct}+eta_9A_2^{ct}$$

$$\widehat{P_i} = eta_7 + \cfrac{1}{1 + e^{-I_1^{np\,eff}}} \cdot eta_8 + \cfrac{1}{1 + e^{-I_2^{np\,eff}}} \cdot eta_9$$

BETWEEN THE INPUT AND THE HIDDEN LAYER

BETWEEN THE INPUT AND THE HIDDEN LAYER

$$\widehat{P}=eta_7+eta_8A_1^{ct}+eta_9A_2^{ct}$$

$$\widehat{P_i} = eta_7 + \overbrace{\frac{1}{1+e^{-I_1^{np\,eff}}} \cdot eta_8 + \overbrace{\frac{1}{1+e^{-I_2^{np\,eff}}} \cdot eta_9}^{A_1^{ct}}$$

$$\widehat{P_i} = eta_7 + \overbrace{\frac{1}{1 + e^{-(eta_1 + eta_2 Carat_i + eta_3 Clarity_i)}}^{A_1^{ct}} \cdot eta_8 + \overbrace{\frac{1}{1 + e^{-(eta_4 + eta_5 Carat_i + eta_6 Clarity_i)}}^{A_2^{ct}} \cdot eta_9}$$

IF WE KNOW THE eta s we can generate predictions!

$$egin{aligned} \widehat{P_i} &= eta_7 \ &+ \overbrace{\frac{1}{1 + e^{-(eta_1 + eta_2 Carat_i + eta_3 Clarity_i)}}^{A_1^{ct}} \cdot eta_8 \ &+ \overbrace{\frac{1}{1 + e^{-(eta_4 + eta_5 Carat_i + eta_6 Clarity_i)}}^{A_2^{ct}} \cdot eta_9 \end{aligned}$$

- initial βs are chosen at random.
- optimal βs are found with the optimizer.

Predictor Variables' Values: Carat=0.3 and Clarity=3

Effective Inputs: Carat=0.3 and Clarity=3

Effective Input 1: Carat=0.3 and Clarity=3

$$eta_1 = 0.1, eta_2 = -0.9, eta_3 = 0.5$$

$$I_1^{np~eff} = eta_1 + eta_2 Carat + eta_3 Clarity$$

$$I_1^{np\ eff} = \underbrace{1\cdot 0.1}_{1\cdot eta_1 = 0.1} + \underbrace{0.3\cdot (-0.9)}_{Carat\cdot eta_2 = -0.27} + \underbrace{3\cdot 0.5}_{Clarity\cdot eta_2 = First5} = 1.33$$

Effective Input 2: Carat=0.3 and Clarity=3

Effective Input 2: Carat=0.3 and Clarity=3

$$\beta_4 = -0.1, \beta_5 = 0.8, \beta_6 = 0.6$$

$$I_2^{np~eff} = eta_4 + eta_5 Carat + eta_6 Clarity$$

$$I_2^{np\ eff} = \underbrace{1\cdot (-0.1)}_{1\cdot eta_4 = -0.1} + \underbrace{0.3\cdot 0.8}_{Carat\cdot eta_5 = 0.24} + \underbrace{3\cdot 0.6}_{Clarity\cdot eta_6 = 1.8} = 1.94$$

Hidden Neurons' Activity: $I_1^{np\ eff}=1.33\ I_2^{np\ eff}=1.94$

Hidden Neurons' Activity: $I_1^{np\ eff}=1.33$ and $I_2^{np\ eff}=1.94$

$$A_{1}^{ct} = rac{1}{1 + e^{-I_{1}^{np\,eff}}}$$

$$A_1^{ct} = rac{1}{1 + e^{-1.33}} = 0.79$$

$$A_{2}^{ct} = rac{1}{1 + e^{-I_{2}^{np\,eff}}}$$

$$A_2^{ct} = rac{1}{1 + e^{-1.94}} = 0.87$$

Prediction:

$$eta_7 = 0.1, eta_8 = 0.8, eta_9 = 0.9, A_1^{ct} = 0.79$$
 and $A_2^{ct} = 0.87$

Prediction:

$$eta_7 = 0.1, eta_8 = 0.8, eta_9 = 0.9, A_1^{ct} = 0.79$$
 and $A_2^{ct} = 0.87$

$$\widehat{P}=eta_7+eta_8A_1^{ct}+eta_9A_2^{ct}$$

$$\widehat{P} = 0.1 + 0.8 \cdot 0.79 + 0.9 \cdot 0.87 = 1.51$$

The predicted price for a 0.3 g diamond with a clarity level of three is \$1.51.

\$1.51 for a diamond???

SUMMARY

- We can make prediction with the neural network if we know the values for the βs . We do know the βs because
 - they are randomly chosen at the beginning, or
 - they are adjusted by the Optimizer.
- when $\beta's$ are randomly chosen the predictions are useually bad, but they can be improved by the *Optimizer*.

This raises the question:

How does the Optimizer gradually change the βs to improve the prediction quality of the neural network?

STEEPEST GRADIENT DESCENT

$$MSE = rac{\sum_{i=1}^{N}(\widehat{P}_i - P_i)^2}{N}$$

$$\widehat{P_i}=eta_7$$

$$+ \frac{1}{1 + e^{-(eta_1 + eta_2 Carat_i + eta_3 Clarity_i)}} \cdot eta_8$$

$$+ \overbrace{\frac{1}{1 + e^{-(eta_4 + eta_5 Carat_i + eta_6 Clarity_i)}}^{1} \cdot eta_9}$$

STEEPEST GRADIENT DESCENT

- Initially βs are chosen randomly.
- ullet Optimizer adjusts eta s incrementally (iteration by iteration; the iterations are called **epochs**)
- Each epoch:
 - Find if individual β needs to be increased or decreased.
 - \circ Increase eta_i and see if MSE increases or not.
 - \circ Decrease β_i and see if MSE increases or not.
 - Reset β_i and note if β_i needs to be increased or decreased.
 - $\circ~$ Repeat for all eta s
 - Increase/Decrease the β 's proportional to the change of MSE they triggered when changed individually multiply by learning rate (e.g., 0.01) to keep change small.
- run process for several hundreds or thousands epochs.

EXAMPLE: APPROXIMATION PROPERTIES OF NEURAL NETWORKS

Let us run an example to see how well a Neural Network can approximate.

The link to the example is in the footer of this slide.

APPROXIMATION PROPERTIES OF NEURAL NETWORKS

"Feedforward networks are capable of arbitrarily accurate approximation to any real-valued continuous function over a compact set."

I.e.: Single hidden layer feedforward networks can approximate any measurable function arbitrarily well

Kurt Hornik, Maxwell Stinchcombe and Halber White (1989), p. 361

INTUITION: APPROXIMATION PROPERTIES OF NEURAL NETWORKS

$$\widehat{y_i} = eta_{10} + \cfrac{1}{\cfrac{1}{1 + e^{-(eta_1 x_i + eta_2)}}} \cdot eta_7 + \cfrac{A_2^{ct}}{\cfrac{1}{1 + e^{-(eta_3 x_i + eta_4)}}} \cdot eta_8 + \cfrac{A_3^{ct}}{\cfrac{1}{1 + e^{-(eta_5 x_i + eta_6)}}} \cdot eta_9$$