

Understanding the alignment of LHCb's SciFi Tracker

Nils Breer*, Sophie Hollitt, Johannes Albrecht

08.03.2023

TU Dortmund, Fakultät Physik

Overview and Motivation

Motivation

- Studying permormance of different alignments on run 256145 data
- → unexpected different results!
- → analysis of individual quarters

Overview

- The SciFi Detector Upgrade
- Alignment how to
- Analysis of SciFi quarters in different alignment versions

N.Breer | 08.03.2023 2 / 21

The Scintillating Fibre Tracker

- Higher luminosity
 - detector must operate well with expected radiation damage
- detector readout electronics need to operate at 40 MHz, 25ns usable time per collision
- tracking efficiency and hit detection improvements aim for about 98% hit detection rate

N.Breer | 08.03.2023 3 / 21

The Scintillating Fibre Tracker

Abbildung: Visualization of the SciFi tracking

- single detector type vs. IT + OT
- less timing information needed for readout
- less detector material
 - less multiple scattering and material interactions
- SiPM technology improvements yield better resolution and speed

What is Alignment?

- top: ideal detector, bottom: physical detector
- Surveys are used to find the rotation and position of each detector component
- Are used as starting positions for software alignment (this talk!)

N.Breer | 08.03.2023 5 / 21

Alignment: track fits with the Kalman Filter

- Minimise χ^2 with respect to the track parameters for the track fit
- Minimise χ^2 with respect to the alignment parameters α during the alignment
- Update the alignment constants α and repeat until convergence criterium for χ^2 is reached

N.Breer | 08.03.2023 6 / 21

Alignment versions in use

V1:

use full length Modules alignable degrees of freedom: Tx Rz (x translation, rotation around z →beam pipe axis) lowμ:

use half modules
uses VELO alignment on
run 256145 data
μ = look it up

V2:

newest alignment version half modules (top half and bottom half) uses newest time alignment utilizes VELO alignment from run 256145

 $\mu \approx 2.26$ (value taken from run database)

Why analyse the quarters separately?

- perfomance in each quarter might be very different from one another
- $\rightarrow \chi^2$ per layer might be different from χ^2 per quarter
- v2 alignment shows improvements from v1 alignment but not across the whole SciFi

• find and resolve possible issues is easier

N.Breer | 08.03.2023 8 / 21

Hit distribution per quarter in V1 and V2 alignment

- V1(left)- and V2(right) alignment on 20000 events with run 256145 data
- C-side: negative x direction, A-side: positive x
- plotted is x-coordinate against number of hits in each quarter coded by colour.
- 9 minimum hits per quarter (solid lines), minimum hits (dashed lines)

This hints that something is not right in Q0

Abbildung: track χ^2 per dof comparing each alignment for Quarter 0.

Abbildung: Residual in each module for each alignment in Quarter 0.

N.Breer | 08.03.2023 10 / 21

Abbildung: track χ^2 per dof comparing each alignment for Quarter 1.

Abbildung: Residual in each module for each alignment in Quarter 1.

N.Breer | 08.03.2023 11/21

Abbildung: track χ^2 per dof comparing each alignment for Quarter 2.

Abbildung: Residual in each module for each alignment in Quarter 2.

N.Breer | 08.03.2023 12 / 21

Abbildung: track χ^2 per dof comparing each alignment for Quarter 3.

Abbildung: Residual in each module for each alignment in Quarter 3.

N.Breer | 08.03.2023

X^2 against ϕ angle distribution in V2 alignment

Abbildung: X^2 against ϕ distribution for each quarter for V2 alignment.

- X^2 against ϕ distribution for each quarter in V2
- information of layers are combined for each quarter
 - → information of problematic layer in given quarter hidden
 - aim: flat distribution across all angles
 - A-side quarters (Q1: blue, Q3: black) quite flat
 - C-side quarters (Q0: green, Q2: red) have small X^2 around 0

N.Breer | 08.03.2023 14 / 21

Track residuals in bottom half SciFi quarters

- left: Quarter 0, right: Quarter 1
- use cuts on LayerID to extract information about each layer

(a) Quarter 0

(b) Quarter 1

N.Breer | 08.03.2023 15 / 21

Track residuals in top half SciFi quarters

- left: Quarter 2, right: Quarter 3
- use cuts on LayerID to extract information about each layer

(a) Quarter 2

(b) Quarter 3

N.Breer | 08.03.2023 16 / 21

Conclusion

Abbildung: mean Residual per layer weighted with quarter hits.

mean residual per quarter weighted:

hits quarter of layer

 $Res_Q = \sum_{\text{layer,quarter}} \frac{\text{hits quar}}{\text{hits}}$

hits layer

goal: residual around 0 per layer

V2: quite good except second C-frame in T2

V1: everywhere worse than V2

low μ : quite ok except for back T2

→ V2 best performing alignment version for now, but still uses half modules → long modules

N.Breer | 08.03.2023 17 / 21

Track residuals in top half SciFi quarters

- V1: left, V2, right
- Hits on tracks as XY distribution resembling SciFi Layers
- C-side: negative x, A-side: positive x
- ullet information of all layers are combined for each quarter ullet hard to see whats going on

Track residuals in top half SciFi quarters

• V1: left, V2, right

Conclusion

text

N.Breer | 08.03.2023 20 / 21

Sources

• SciFi Conference Talk:

https://twiki.cern.ch/twiki/pub/LHCb/SciFiConference/fee_2018.pdf

• LHCb SciFi: From performance requirements to an operational detector:

https://indico.cern.ch/event/1163878/

N.Breer | 08.03.2023 21 / 21