Step-1

The 8 by 8 Hilbert Matrix is

1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$	$\frac{1}{8}$
$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$	$\frac{1}{8}$	$\frac{1}{9}$
$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$	$\frac{1}{8}$	$\frac{1}{9}$	$\frac{1}{10}$
$\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{8}$	$ \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{6} \frac{1}{7} \frac{1}{8} $	$ \begin{array}{c} \frac{1}{3} \\ \frac{1}{4} \\ \frac{1}{5} \\ \frac{1}{6} \\ \frac{1}{7} \\ \frac{1}{8} \\ \frac{1}{9} \\ \frac{1}{10} \end{array} $	$ \frac{1}{4} \frac{1}{5} \frac{1}{6} \frac{1}{7} \frac{1}{8} \frac{1}{9} \frac{1}{10} $	$\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}{9}$ $\frac{1}{10}$	$\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}{9}$ $\frac{1}{10}$	$\frac{\frac{1}{9}}{\frac{1}{10}}$	$\frac{1}{8}$ $\frac{1}{9}$ $\frac{1}{10}$ $\frac{1}{11}$ $\frac{1}{12}$
$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$	$\frac{1}{8}$	$\frac{1}{9}$	$\frac{1}{10}$	$\frac{1}{11}$	$\frac{1}{12}$
$\frac{1}{6}$	$\frac{1}{7}$	$\frac{1}{8}$	$\frac{1}{9}$	$\frac{1}{10}$	$\frac{1}{11}$	$\frac{1}{12}$	$\frac{1}{13}$
$\frac{1}{7}$	$\frac{1}{8}$	$\frac{1}{9}$	$\frac{1}{10}$	$\frac{1}{11}$	$\frac{1}{12}$	$\frac{1}{13}$	$\frac{1}{14}$
$\frac{1}{8}$	$\frac{1}{9}$	$\frac{1}{10}$	$\frac{1}{11}$	$\frac{1}{12}$	$\frac{1}{13}$	$\frac{1}{14}$	$\frac{1}{14}$ $\frac{1}{15}$

We have to compute λ_{max} and λ_{min} for the given Hilbert matrix.

Step-2

If A is a 8×8 Hilbert matrix, then its characteristic equation is $|A - \lambda I| = 0$

$$\begin{vmatrix} 1-\lambda & 0.5 & 0.33 & 0.25 & 0.2 & 0.166 & 0.143 & 0.125 \\ 0.5 & 0.33-\lambda & 0.25 & 0.2 & 0.166 & 0.143 & 0.125 & 0.111 \\ 0.33 & 0.25 & 0.2-\lambda & 0.166 & 0.143 & 0.125 & 0.111 & 0.1 \\ 0.25 & 0.2 & 0.166 & 0.143-\lambda & 0.125 & 0.111 & 0.1 & 0.091 \\ 0.2 & 0.166 & 0.143 & 0.125 & 0.111-\lambda & 0.1 & 0.091 & 0.083 \\ 0.166 & 0.143 & 0.125 & 0.111 & 0.1 & 0.091-\lambda & 0.083 & 0.077 \\ 0.143 & 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077-\lambda & 0.071 \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 & 0.1 & 0.091 & 0.083 & 0.077 & 0.0714 & 0.06-\lambda \\ 0.125 & 0.111 &$$

$$\begin{split} \Rightarrow 4.1\times10^{-9} - 1.2156\times10^{-8}\,\lambda - 10^{-10}\,\lambda^2 + 1.81\times10^{-8}\,\lambda^3 \\ + 0.0000202315\lambda^4 - 0.0141032315\lambda^5 + 0.55090732\lambda^6 \\ - 2.0212\lambda^7 + \lambda^8 = 0 \end{split}$$

Step-3

Solving this equation, we get $\lambda = 0.2982, 1.6952$ and the remaining are the complex eigenvalues

$$\lambda=0.04465\pm0.022i$$

$$=-0.0348\pm0.022i$$

$$=0.00404\pm0.044i$$

We know that if λ is the eigenvalue and x the corresponding eigenvector of A, then

 $Ax = \lambda x$ where λx is the column vector which can be comfortably seen as b.

Given that $||b||_{=1}$

So,
$$x = A^{-1}b$$
 and $||x|| = ||A^{-1}b||$

$$\leq ||A^{-1}|| ||b||$$

$$\leq ||A^{-1}||$$

$$\leq \frac{1}{\lambda_{\min}(A)} \left(\text{Since } \lambda_{\min}(A) = \frac{1}{\|A^{-1}\|} \right)$$

Therefore, $\frac{1}{\lambda_{\min}(A)}$ is maximum value of $\|x\|$.

Step-4

Given that b is rounded off to less than 10^{-16} error.

So, the largest error caused in ||x|| is given by

$$\|\delta x\| \le \|A^{-1}\| \|\delta b\|$$

$$\leq \frac{1}{\sqrt{\lambda_{\min}\left(\boldsymbol{A}^{T}\boldsymbol{A}\right)}} \times 10^{-16}$$

$$\leq \frac{1}{\lambda_{\min}(A)} \times 10^{-16}$$

So the maximum possible error in x is $\frac{1}{\lambda_{\min}(A)} \times 10^{-16}$