Analisi e progettazione di algoritmi

(III anno Laurea Triennale - a.a. 2022/23)

Prova scritta 18 gennaio 2023

Esercizio 1 Si consideri il seguente grafo pesato.

Si costruisca il minimo albero ricoprente utilizzando:

- 1. l'algoritmo di Kruskal (per ogni iterazione, si diano l'arco esaminato e la foresta corrente)
- 2. l'algoritmo di Prim a partire dal nodo A (per ogni iterazione, si diano le distanza provvisorie dist di tutti i nodi e l'albero corrente, evidenziandone la parte definitiva). Non dovete sisegnare lo heap.

Nel caso di più scelte possibili si usi come convenzione l'ordine alfabetico.

Soluzione

1. Per semplicità di scrittura rappresentiamo la foresta corrente come insieme di archi.

arco esaminato	foresta corrente
(A,F)	(A, F)
(D,E)	(A,F)(D,E)
$\overline{(A,E)}$	(A, E)(A, F)(D, E)
$\overline{(B,C)}$	(A, E)(A, F)(B, C)(D, E)
(D,F)	(A, E)(A, F)(B, C)(D, E)
(E,F)	(A, E)(A, F)(B, C)(D, E)
(A,B)	(A, B)(A, E)(A, F)(B, C)(D, E)
(C,D)	(A,B)(A,E)(A,F)(B,C)(D,E)
(B,F)	(A, B)(A, E)(A, F)(B, C)(D, E)

2. Diamo solo le distanze modificate. Anche in questo caso rappresentiamo l'albero corrente come insieme di archi (quelli in neretto sono definitivi).

\mathbf{getMin}	d(A)	d(B)	d(C)	d(D)	d(E)	d(F)	
	0	∞	∞	∞	∞	∞	
A		3			2	1	(A,B)(A,E)(A,F)
\overline{F}				2			$(A,B)(A,E)(\mathbf{A},\mathbf{F})(F,D)$
\overline{D}			3		1		$(A,B)(\mathbf{A},\mathbf{F})(\mathbf{F},\mathbf{D})(D,C)(D,E)$
\overline{E}							$(A,B)(\mathbf{A},\mathbf{F})(\mathbf{F},\mathbf{D})(D,C)(\mathbf{D},\mathbf{E})$
\overline{B}			2				(A,B)(A,F)(F,D)(D,E)(B,C)
\overline{C}							(A,B)(A,F)(F,D)(D,E)(B,C)

Esercizio 2 Rispondere alle seguenti domande, giustificando la risposta.

- 1. Un algoritmo ottimo può essere esponenziale?
- 2. Dato il seguente grafo:

si diano almeno due ordinamenti topologici diversi, e un ordine totale dei nodi che non sia topologico, spiegando perché.

3. Ci sono dei casi nei quali l'algoritmo induttivo (ossia, divide-et-impera) per la LCS risulta più efficiente di quello di programmazione dinamica?

Soluzione

- 1. Sì, per esempio per il problema delle torri di Hanoi.
- 2. Due ordinamenti topologici sono 1,2,3,4,5,6 e 1,3,2,4,6,5. Un ordine totale dei nodi che non sia topologico è, per esempio, 2,1,3,4,5,6, perché 2 non può precedere 1 essendoci l'arco (1, 2).
- 3. Se le due stringhe sono uguali si effettua sempre una sola chiamata ricorsiva quindi l'algoritmo divide-et-impera risulta lineare (il numero di confronti effettuati è uguale alla lunghezza della stringa).

Esercizio 3 Supponi di applicare il test di Miller Rabin per n = 9. Per quale motivo 3 e 6 sono certamente testimoni del fatto che n è composto? Mostra che anche 2 e 4 sono testimoni.

Soluzione Scriviamo 9 come $9 = q2^s + 1$ con q = 1 e s = 3.

- 1. Poiché 3 e 6 hanno divisori in comune con 9 non può essere che una potenza di 3 o una potenza di 6 siano uguali a 1 mod 9. Un altro modo di dire la stessa cosa è che $\mathbb{Z}_9^{\star} = \{1, 2, 4, 5, 7, 8\}$ contiene solo i naturali coprimi di 9 mod 9. Vale anche osservare che, poiché non sono coprimi di 9, la sequenza (a^1, a^2, a^4) per a = 3 e a = 6 da un certo punto in poi vale certamente 0. Infatti, per a = 3 abbiamo (3, 0, 0) e per a = 6 abbiamo (6, 0, 0).
- 2. La sequenza $(2^1, 2^2, 2^4) = (2, 4, 7)$ dice che 2 è testimone.