IMPORTING LIBRARIES

```
In [1]:  import warnings
    import numpy as np
    import pandas as pd
    import warnings
    warnings.filterwarnings("ignore", category=FutureWarning)
```

Loading Data With Pandas

In [3]: ▶ customers_df.head(3)

Out[3]:

	CustomerID	CustomerName	Region	SignupDate
0	C0001	Lawrence Carroll	South America	2022-07-10
1	C0002	Elizabeth Lutz	Asia	2022-02-13
2	C0003	Michael Rivera	South America	2024-03-07

In [4]: products_df.head(3)

Out[4]:

	ProductID	ProductName	Category	Price
0	P001	ActiveWear Biography	Books	169.30
1	P002	ActiveWear Smartwatch	Electronics	346.30
2	P003	ComfortLiving Biography	Books	44.12

Out[5]:

	TransactionID	CustomerID	ProductID	TransactionDate	Quantity	TotalValue	Price
0	T00001	C0199	P067	2024-08-25 12:38:23	1	300.68	300.68
1	T00112	C0146	P067	2024-05-27 22:23:54	1	300.68	300.68
2	T00166	C0127	P067	2024-04-25 07:38:55	1	300.68	300.68

Data Preprocessing

Merge Customer and Transaction Data

Combine customers_df and transactions_df to create a consolidated dataset that includes customer profiles and their transaction data.

```
    ★ transactions_with_customer = pd.merge(transactions_df, customers_df, on='CustomerID'

In [6]:
 In [7]:
             # Aggregate transaction data for each customer
              customer_transactions = transactions_with_customer.groupby('CustomerID').agg(
                  total_spend=('TotalValue', 'sum'),
                  total_transactions=('TransactionID', 'count'),
                  avg_transaction_value=('TotalValue', 'mean'),
                  recency=('TransactionDate', lambda x: (pd.to datetime('today') - pd.to datetime(x
              ).reset index()
 In [8]:
             # Merge aggregated data with customer profiles
              customer data = pd.merge(customer transactions, customers df, on='CustomerID', how='1
In [10]:
             customer_data.head(2)
   Out[10]:
                 CustomerID total_spend total_transactions avg_transaction_value recency CustomerName
                                                                                                 Region
                                                                                        Lawrence
                                                                                                  South
              0
                      C0001
                               3354.52
                                                    5
                                                                   670.904
                                                                               86
                                                                                          Carroll
                                                                                                 America
                      C0002
                               1862.74
                                                                   465.685
                                                                               56
                                                                                     Elizabeth Lutz
                                                                                                    Asia
```

Convert Categorical Features

Encode the categorical columns like Region.

```
from sklearn.preprocessing import LabelEncoder
In [12]:
             encoder = LabelEncoder()
In [13]:
             customer data['Region'] = encoder.fit transform(customer data['Region'])
             customer data['Region']
In [15]:
   Out[15]: 0
                     3
                     0
                     3
             3
                     3
                     0
             194
                    1
             195
                    1
             196
                    1
             197
                    1
             Name: Region, Length: 199, dtype: int32
```

Clustering

Feature Selection

465.685

681.345

56

156

0

Scale the Features

1862.74

2725.38

1

2

Standardize features to ensure they are on the same scale.

Apply Clustering Algorithm

K- Means

Evaluation Metrics

Visualize Clusters PCA

Plot clusters

```
In [97]:
             plt.figure(figsize=(10, 6))
              for cluster in range(num_clusters):
                  cluster_data = customer_data[customer_data['Cluster'] == cluster]
                  plt.scatter(cluster_data['PCA1'], cluster_data['PCA2'], label=f'Cluster {cluster}
             plt.title('Customer Clusters (PCA)')
             plt.xlabel('PCA1')
             plt.ylabel('PCA2')
             plt.legend()
             plt.show()
                                                                                           Cluster 0
                                                                                           Cluster 1
                  3
                  2
                  1
              PCA2
                  0
                 -1
                 -2
```

Cluster Distribution

```
In [98]:  # Distribution of customers per cluster
    customer_data['Cluster'].value_counts().plot(kind='bar', color='skyblue')
    plt.title('Distribution of Customers per Cluster')
    plt.xlabel('Cluster')
    plt.ylabel('Number of Customers')
    plt.show()
```


Results:

Davies-Bouldin Index (DBI):

A lower DBI score indicates well-separated clusters. Based on the code, the exact score will depend on the dataset used but should typically be below 1.0 for good clustering.

Silhouette Score:

This value ranges between -1 and 1:

Values close to 1 indicate well-separated clusters.

Values near 0 indicate overlapping clusters.

Negative values indicate incorrect clustering.

A Silhouette Score > 0.5 is considered decent.

Cluster Distribution:

The bar chart of customer distribution provides insights into the size of each cluster.

If one cluster dominates, it might suggest imbalance or the need for more clusters.

In []: **M**