

TEST REPORT No. I19Z60710-WMD01

for

TCL Communication Ltd.

LTE/UMTS/GSM mobile phone

Model Name: 5005R

FCC ID: 2ACCJH103

with

Hardware Version: 04

Software Version: FY23UA30

Issued Date: 2019-06-03

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I19Z60710-WMD01	Rev.0	1st edition	2019-06-03

CONTENTS

1. TEST LABORATORY	4
1.1. INTRODUCTION & ACCREDITATION	4
1.2. TESTING LOCATION	
1.4. PROJECT DATA	
1.5. SIGNATURE	5
2. CLIENT INFORMATION	6
2.1. APPLICANT INFORMATION	6
2.2. MANUFACTURER INFORMATION	6
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1. ABOUT EUT	
3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	7
3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
3.4. NORMAL ACCESSORY SETTING	
3.5. GENERAL DESCRIPTION	
4. REFERENCE DOCUMENTS	
4.1. REFERENCE DOCUMENTS FOR TESTING	
5. LABORATORY ENVIRONMENT	
6. SUMMARY OF TEST RESULTS	
6.1. SUMMARY OF TEST RESULTS	10
6.2. EXPLANATION OF RE-USE OF TEST DATA	10
7. TEST EQUIPMENTS UTILIZED	11
ANNEX A: MEASUREMENT RESULTS	12
A.1 OUTPUT POWER	12
A.2 EMISSION LIMIT	22
A.3 FREQUENCY STABILITY	30
A.4 OCCUPIED BANDWIDTH	
A.5 EMISSION BANDWIDTH	
A.6 BAND EDGE COMPLIANCE	
A.7 CONDUCTED SPURIOUS EMISSION	
A.8 PEAK-TO-AVERAGE POWER RATIO	69
ANNEX B: ACCREDITATION CERTIFICATE	70

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2005 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0, and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (CN0066). The detail accreditation scope can be found on NVLAP website.

1.2. <u>Testing Location</u>

Location 1: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China 100191

Location 2: CTTL(Shouxiang)

Address: No. 51 Shouxiang Science Building, Xueyuan Road,

Haidian District, Beijing, P. R. China 100191

Location 3:CTTL (BDA)

Address: No.18A, Kangding Street, Beijing Economic-Technology

Development Area, Beijing, P. R. China 100176

1.3. Testing Environment

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

1.4. Project data

Testing Start Date: 2018-10-08
Testing End Date: 2019-05-31

1.5. Signature

Dong Yuan
(Prepared this test report)

Zhou Yu (Reviewed this test report)

赵瑟麟

Zhao Hui Lin
Deputy Director of the laboratory
(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: TCL Communication Ltd.

7/F, Block F4, TCL Communication Technology Building, TCL

Address / Post: International E City, Zhong Shan Yuan Road, Nanshan District,

Shenzhen, Guangdong, P.R. China 518052

Contact: Gong Zhizhou

Email: zhizhou.gong@tcl.com Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

2.2. Manufacturer Information

Company Name: TCL Communication Ltd.

7/F, Block F4, TCL Communication Technology Building, TCL

Address / Post: International E City, Zhong Shan Yuan Road, Nanshan District,

Shenzhen, Guangdong, P.R. China 518052

Contact: Gong Zhizhou

Email: zhizhou.gong@tcl.com Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description LTE/UMTS/GSM mobile phone

Model Name 5005R

FCC ID 2ACCJH103 Antenna Embedded

Output power 31.81dBm maximum EIRP measured for PCS1900

Extreme vol. Limits 3.5VDC to 4.4VDC (nominal: 3.8VDC)

Extremetemp. Tolerance -10°C to +55°C

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL.

3.2. <u>Internal Identification of EUT used during the test</u>

 EUT ID*
 IMEI
 HW Version
 SW Version
 Date of receipt

 UT44a
 015462000204383
 04
 FY23UA30
 2019-05-10

3.3. Internal Identification of AE used during the test

AE ID* Description AE1 Battery

AE1

Model CAB2110002C1

Manufacturer BYD Capacitance 2200mAh

3.4. Normal Accessory setting

Fully charged battery was used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of LTE/UMTS/GSM mobile phone with embedded antenna. Manual and specifications of the EUT were provided to fulfil the test.

^{*}EUT ID: is used to identify the test sample in the lab internally.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

The felletting decaments lieted in this cooler are referred for teeting.				
Reference	Title	Version		
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	10-1-18		
		Edition		
FCC Part 22	PUBLIC MOBILE SERVICES	10-1-18		
		Edition		
ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment	2016		
	Measurement and Performance Standards			
ANSI/TIA-102.CAAA	DIGITAL C4FMCQPSK TRANSCEIVER MEASUREMENT	2016		
-E	METHODS			
ANSI C63.26	American National Standard for Compliance Testing of	2015		
	Transmitters Used in Licensed Radio Services			
KDB 971168 D01	MEASUREMENT GUIDANCE FOR CERTIFICATION OF	v03r01		
	LICENSED DIGITAL TRANSMITTERS			

5. LABORATORY ENVIRONMENT

Control room / conducted chamber did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =20 %, Max. = 80 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2 M
Ground system resistance	< 0.5

Fully-anechoic chamber 2 (8.6 meters × 6.1 meters × 3.85 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2 M
Ground system resistance	< 1
Site voltage standing-wave ratio (S _{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 4000 MHz

Semi-anechoic chamber 2 / Fully-anechoic chamber 3 (10 meters × 6.7 meters × 6.15 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 2 M
Ground system resistance	< 0.5
Normalised site attenuation (NSA)	< ±3.5 dB, 3 m distance
Site voltage standing-wave ratio (S _{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

6. SUMMARY OF TEST RESULTS

6.1. Summary of Test Results

GSM850

Items	List	Clause in FCC rules	Verdict
1	Output Power	22.913(a)	Р
2	Emission Limit	2.1051/22.917	Р
3	Frequency Stability	2.1055	BR
4	Occupied Bandwidth	2.1049(h)(i)	BR
5	Emission Bandwidth	22.917(b)	BR
6	Band Edge Compliance	22.917(b)	BR
7	Conducted Spurious Emission	2.1057/22.917	BR

PCS1900

Items	List	Clause in FCC rules	Verdict
1	Output Power	24.232(c)	Р
2	Emission Limit	2.1051/24.238	Р
3	Frequency Stability	2.1055/24.235	BR
4	Occupied Bandwidth	2.1049(h)(i)	BR
5	Emission Bandwidth	24.238(b)	BR
6	Band Edge Compliance	24.238(b)	BR
7	Conducted Spurious Emission	2.1057/24.238	BR
8	Peak-to-Average Power Ratio	24.232(d)	BR

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.	
NP	Not Perform, The test was not performed by CTTL	
NA	Not Applicable, The test was not applicable	
BR	Re-use test data from basic model report.	
F	Fail, The EUT does not comply with the essential requirements in the	
	standard	

6.2. Explanation of re-use of test data

The Equipment Under Test (EUT) model 5005R (FCC ID: 2ACCJH103) is a variant product of A501DL (FCC ID: 2ACCJH099), according to the declaration of changes provided by the applicant and FCC KDB publication 484596 D01, spot check measurements were performed on this device, all the results are derived from test report No.I18Z61763-WMD01. Please refer Annex A for detail spot check verification data and reference data.the spot check test results are consistent with basic model.

For detail differences between two models please refer the Declaration of Changes document.

7. Test Equipments Utilized

NO.	Description	TYPE	series number	MANUFACTURE	CAL DUE DATE	Calibration interval
1	EMI Antenna	VULB9163	9163-235	Schwarzbeck	2019-11-20	1 year
2	EMI Antenna	3117	00058889	ETS-Lindgren	2020-01-12	1 year
3	EMI Antenna	3117	00119024	ETS-Lindgren	2020-02-25	1 year
4	Universal Radio Communication Tester	CMU200	108646	R&S	2020-01-03	1 year
5	Spectrum Analyzer	FSU26	200030	R&S	2019-06-04	1 year
6	EMI Antenna	9117	177	Schwarzbeck	2019-08-22	1 year
7	Signal Generator	SMF100A	101295	R&S	2019-11-27	1 year
8	Climate chamber	SH-242	93008556	ESPEC	2019-12-21	2 year
9	Test Receiver	E4440A	MY48250642	Agilent	2020-03-18	1 year
10	Universal Radio Communication Tester	CMW500	143008	R&S	2019-11-26	1 year
11	Power Amplifier	5S1G4	0341863	AR	/	

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER

A.1.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure max power transmission and proper modulation. In all cases, output power is within the specified limits.

A.1.2 Conducted

A.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0MHz and 1909.8MHz for PCS1900 band; 824.4MHz, 836.6MHz and 848.8MHz for GSM850 band. (bottom, middle and top of operational frequency range).

Spot check Measurement Results:

GSM850

	Power step	Nominal Peak
		output power (dBm)
GSM	5	33dBm(2W)
GPRS	3	33dBm(2W)
EGPRS	6	33dBm(2W)

Measurement result

GSM(GMSK)

,		
Frequency(MHz)	Power Step	Output power(dBm)
824.2	5	31.54
836.6	5	31.62
848.8	5	31.63

GPRS(GMSK,1Slot)

Frequency(MHz)	Power Step	Output power(dBm)
824.2	3	31.54
836.6	3	31.61
848.8	3	31.55

Frequency(MHz)	Power Step	Output power(dBm)
824.2	6	25.67
836.6	6	25.72
848.8	6	25.92

PCS1900

	Power step	Nominal Peak output
		power (dBm)
GSM	0	30dBm(1W)
GPRS	3	30dBm(1W)
EGPRS	5	30dBm(1W)

Measurement result

GSM(GMSK)

Frequency(MHz)	Power Step	Output power(dBm)
1850.2	0	30.16
1880.0	0	30.04
1909.8	0	29.90

GPRS(GMSK,1Slot)

Frequency(MHz)	Power Step	Output power(dBm)
1850.2	3	30.16
1880.0	3	30.03
1909.8	3	29.94

Frequency(MHz)	Power Step	Output power(dBm)
1850.2	5	25.49
1880.0	5	25.59
1909.8	5	25.75

Reference Measurement Results from basic model: GSM850

	Power step	Nominal Peak
		output power (dBm)
GSM	5	33dBm(2W)
GPRS	3	33dBm(2W)
EGPRS	6	33dBm(2W)

Measurement result

GSM(GMSK)

Frequency(MHz)	Power Step	Output power(dBm)
824.2	5	32.61
836.6	5	32.64
848.8	5	32.60

GPRS(GMSK,1Slot)

Frequency(MHz)	Power Step	Output power(dBm)
824.2	3	32.53
836.6	3	32.56
848.8	3	32.52

Frequency(MHz)	Power Step	Output power(dBm)
824.2	6	26.52
836.6	6	26.51
848.8	6	26.58

PCS1900

	Power step	Nominal Peak output
		power (dBm)
GSM	0	30dBm(1W)
GPRS	3	30dBm(1W)
EGPRS	5	30dBm(1W)

Measurement result

GSM(GMSK)

<u>'</u>		
Frequency(MHz)	Power Step	Output power(dBm)
1850.2	0	30.62
1880.0	0	30.65
1909.8	0	30.57

GPRS(GMSK,1Slot)

Frequency(MHz)	Power Step	Output power(dBm)			
1850.2	3	30.55			
1880.0	3	30.60			
1909.8	3	30.56			

Frequency(MHz)	Power Step	Output power(dBm)		
1850.2	5	25.46		
1880.0	5	25.74		
1909.8	5	25.94		

A.1.3 Radiated

A.1.3.1 Description

This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

A.1.3.2 Method of Measurement

The measurements procedures in TIA-603E-2016 are used.

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere

with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna.

The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)=P_{Mea}- P_{Ag} - P_{cl} - G_a

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

Spot check Measurement Results: GSM 850-ERP

Limits

	Power Step	Burst Peak ERP (dBm)
GSM	5	≤38.45dBm (7W)
GPRS	3	≤38.45dBm (7W)
EGPRS	6	≤38.45dBm (7W)

Measurement result

GSM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	Ga Antenna Gain(dBi)	Correction (dB)	ERP(dBm)	Limit(dBm)	Margin(dB)	Polarization
824.20	-13.84	2.26	45.79	0.96	2.15	28.50	38.45	9.95	Н
836.60	-12.95	2.26	45.66	0.82	2.15	29.12	38.45	9.33	Н
848.80	-13.38	2.28	45.54	0.79	2.15	28.52	38.45	9.93	Н

GPRS

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	Ga Antenna Gain(dBi)	Correction (dB)	ERP(dBm)	Limit(dBm)	Margin(dB)	Polarization
824.20	-13.80	2.26	45.79	0.96	2.15	28.54	38.45	9.91	Н
836.60	-12.88	2.26	45.66	0.82	2.15	29.19	38.45	9.26	Н
848.80	-13.27	2.28	45.54	0.79	2.15	28.63	38.45	9.82	Н

EGPRS-8PSK

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	Ga Antenna Gain(dBi)	Correction (dB)	ERP(dBm)	Limit(dBm)	Margin(dB)	Polarization
824.20	-17.17	2.26	45.79	0.96	2.15	25.17	38.45	13.28	Н
836.60	-17.25	2.26	45.66	0.82	2.15	24.82	38.45	13.63	Н
848.80	-18.64	2.28	45.54	0.79	2.15	23.26	38.45	15.19	Н

Frequency: 836.60MHz

 $Peak\ ERP(dBm) = P_{Mea}(-12.88dBm) - P_{cl}(2.26dB) - P_{Ag}(-45.66dB) - G_a\ (-0.82dBi) - 2.15dB = 29.19dBm$

PCS1900-EIRP

Limits

	Power Step	Burst Peak EIRP (dBm)
GSM	0	≤33dBm (2W)
GPRS	3	≤33dBm (2W)
EGPRS	5	≤33dBm (2W)

Measurement result

GSM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	Ga Antenna Gain(dBi)	EIRP(dBm)	Limit(dBm)	Margin(dB)	Polarization
1850.20	-15.77	2.93	43.75	4.87	29.92	33.00	3.08	Н
1880.00	-16.92	2.85	43.75	4.82	28.80	33.00	4.20	Н
1909.80	-16.68	2.89	43.77	4.76	28.96	33.00	4.04	Н

GPRS

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	Ga Antenna Gain(dBi)	EIRP(dBm)	Limit(dBm)	Margin(dB)	Polarization
1850.20	-15.74	2.93	43.75	4.87	29.95	33.00	3.05	Н
1880.00	-16.89	2.85	43.75	4.82	28.83	33.00	4.17	Н
1909.80	-16.61	2.89	43.77	4.76	29.03	33.00	3.97	Н

EGPRS-8PSK

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	Ga Antenna Gain(dBi)	EIRP(dBm)	Limit(dBm)	Margin(dB)	Polarization
1850.20	-20.43	2.93	43.75	4.87	25.26	33.00	7.74	Н
1880.00	-21.95	2.85	43.75	4.82	23.77	33.00	9.23	Н
1909.80	-21.81	2.89	43.77	4.76	23.83	33.00	9.17	Н

Frequency: 1850.20MHz

 $Peak \; EIRP(dBm) = P_{Mea}(-15.74dBm) - P_{cl}(2.93dB) - P_{Ag}(-43.75dB) - G_a \; (-4.87dBi) = 29.95dBm$

Reference Measurement Results from basic model: GSM 850-ERP

Limits

	Power Step	Burst Peak ERP (dBm)
GSM	5	≤38.45dBm (7W)
GPRS	3	≤38.45dBm (7W)
EGPRS	6	≤38.45dBm (7W)

Measurement result

GSM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	Ga Antenna Gain(dBi)	Correction (dB)	ERP(dBm)	Limit(dBm)	Margin(dB)	Polarization
824.20	-14.26	2.26	45.79	0.96	2.15	28.08	38.45	10.37	Н
836.60	-14.79	2.26	45.66	0.82	2.15	27.28	38.45	11.17	Н
848.80	-15.96	2.28	45.54	0.79	2.15	25.94	38.45	12.51	Н

GPRS

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	Ga Antenna Gain(dBi)	Correction (dB)	ERP(dBm)	Limit(dBm)	Margin(dB)	Polarization
824.20	-14.57	2.26	45.79	0.96	2.15	27.77	38.45	10.68	Н
836.60	-14.83	2.26	45.66	0.82	2.15	27.24	38.45	11.21	Н
848.80	-15.66	2.28	45.54	0.79	2.15	26.24	38.45	12.21	Н

EGPRS-8PSK

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	Ga Antenna Gain(dBi)	Correction (dB)	ERP(dBm)	Limit(dBm)	Margin(dB)	Polarization
824.20	-19.98	2.26	45.79	0.96	2.15	22.36	38.45	16.09	Н
836.60	-20.34	2.26	45.66	0.82	2.15	21.73	38.45	16.72	Н
848.80	-21.52	2.28	45.54	0.79	2.15	20.38	38.45	18.07	Н

Frequency: 824.20MHz

 $Peak\ ERP(dBm) = P_{Mea}(-14.26dBm) - P_{cl}(2.26dB) - P_{Ag}(-45.79dB) - G_a\ (-0.96dBi) - 2.15dB = 28.08dBm$

PCS1900-EIRP

Limits

	Power Step	Burst Peak EIRP (dBm)
GSM	0	≤33dBm (2W)
GPRS	3	≤33dBm (2W)
EGPRS	5	≤33dBm (2W)

Measurement result

GSM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	Ga Antenna Gain(dBi)	EIRP(dBm)	Limit(dBm)	Margin(dB)	Polarization
1850.20	-14.62	2.93	43.75	4.87	31.07	33.00	1.93	Н
1880.00	-15.12	2.85	43.75	4.82	30.60	33.00	2.40	Н
1909.80	-13.94	2.89	43.77	4.76	31.70	33.00	1.30	Н

GPRS

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	Ga Antenna Gain(dBi)	EIRP(dBm)	Limit(dBm)	Margin(dB)	Polarization
1850.20	-14.65	2.93	43.75	4.87	31.04	33.00	1.96	Н
1880.00	-15.18	2.85	43.75	4.82	30.54	33.00	2.46	Н
1909.80	-13.83	2.89	43.77	4.76	31.81	33.00	1.19	Н

EGPRS-8PSK

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	Ga Antenna Gain(dBi)	EIRP(dBm)	Limit(dBm)	Margin(dB)	Polarization
1850.20	-18.84	2.93	43.75	4.87	26.85	33.00	6.15	Н
1880.00	-19.64	2.85	43.75	4.82	26.08	33.00	6.92	Н
1909.80	-18.13	2.89	43.77	4.76	27.51	33.00	5.49	Н

Frequency: 1909.80MHz

 $Peak \; EIRP(dBm) = P_{Mea}(-13.83dBm) - P_{cl}(2.89dB) - P_{Ag}(-43.77dB) - G_a \; (-4.76dBi) = 31.81dBm$

A.2 EMISSION LIMIT

A.2.1 Measurement Method

The measurement procedures in TIA-603E-2016 are used.

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set as outlined in Part 24.238 and Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900 and GSM850.

The procedure of radiated spurious emissions is as follows:

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the

substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test.

A amplifier should be connected in for the test.

The Path loss (Ppl) is the summation of the cable loss and the gain of the amplifier.

The measurement results are obtained as described below:

Power(EIRP)=P_{Mea} - P_{pl} - G_a

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

A.2.2 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz) and GSM850 band (824.2MHz, 836.6MHz, 848.8MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 ,GSM850 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.2.4 Measurement Results Table

Frequency	Channel	Frequency Range	Result
GSM 850MHz	Low	30MHz-10GHz	Pass
	Middle	30MHz-10GHz	Pass
	High	30MHz-10GHz	Pass
GSM 1900MHz	Low	30MHz-20GHz	Pass
	Middle	30MHz-20GHz	Pass
	High	30MHz-20GHz	Pass

A.2.5 Sweep Table

ALLIO ONCOP TUDIO				
Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
. ,	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
850MHz	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
1900MHz	5~8	1 MHz	3 MHz	3
1900IVITZ	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

Spot check Measurement Results: GSM Mode Channel 128/824.2MHz

Fraguanov/MUz)	D (dDm)	Path	Antenna	Correction	Peak	Limit	Morgin(dD)	Polarization	
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	(dB)	ERP(dBm)	(dBm)	Margin(dB)	Fularization	
1648.01	-54.60	3.56	5.23	2.15	-55.08	-13.00	42.10	Н	
2472.00	-46.63	4.59	6.02	2.15	-47.35	-13.00	34.40	Н	
3297.02	-48.31	5.29	7.71	2.15	-48.04	-13.00	35.00	Н	
4124.02	-49.40	6.04	9.02	2.15	-48.57	-13.00	35.60	Н	
4946.01	-54.59	6.70	9.85	2.15	-53.59	-13.00	40.60	V	
5773.01	-50.70	7.23	10.55	2.15	-49.53	-13.00	36.50	Н	

GSM Mode Channel 190/836.6MHz

Fraguage (MIII-)	D (dDm)	Path	Antenna	Correction	Peak	Limit	Margin(dD)	Delerization	
Frequency(MHz) P _{Mea} (dBr		Loss	Gain	(dB)	ERP(dBm)	(dBm)	Margin(dB)	Polarization	
1672.01	-51.46	3.58	5.19	2.15	-52.00	-13.00	39.00	Н	
2510.00	-43.69	4.63	6.12	2.15	-44.35	-13.00	31.30	Н	
3347.02	-46.78	5.32	7.83	2.15	-46.42	-13.00	33.40	Н	
4186.02	-45.94	6.17	9.09	2.15	-45.17	-13.00	32.20	Н	
5022.01	-54.40	6.57	9.93	2.15	-53.19	-13.00	40.20	Н	
5858.01	-51.97	7.26	10.53	2.15	-50.85	-13.00	37.80	Н	

GSM Mode Channel 251/848.8MHz

Fraguanov/MHz)	D. (dDm)	Path	Antenna	Correction	Peak	Limit	Margin(dD)	Polarization	
Frequency(MHz) P _{Mea} (dBn		Loss Gain		(dB) ERP(dBm)		(dBm)	Margin(dB)	Fulanzation	
1698.01	-53.73	3.60	5.14	2.15	-54.34	-13.00	41.30	V	
2546.00	-44.32	4.66	6.18	2.15	-44.95	-13.00	32.00	V	
3395.02	-54.30	5.36	7.95	2.15	-53.86	-13.00	40.90	V	
4248.02	-53.41	6.24	9.15	2.15	-52.65	-13.00	39.70	Н	
5097.01	-54.53	6.76	10.04	2.15	-53.40	-13.00	40.40	Н	
5948.01	-52.44	7.47	10.51	2.15	-51.55	-13.00	38.50	Н	

GSM Mode Channel 512/1850.2MHz

Fraguenov(MHz)	D. (dDm)	Path	Antenna	Peak	Limit	Margin(dP)	Polarization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	EIRP(dBm)	(dBm)	Margin(dB)	Polarization
3701.02	-56.13	6.42	8.48	-54.07	-13.00	41.07	Н
5556.02	-42.87	7.19	10.59	-39.47	-13.00	26.47	Н
7404.01	-54.78	8.13	12.08	-50.83	-13.00	37.83	V
9258.01	-46.81	9.06	13.25	-42.62	-13.00	29.62	V
11109.01	-49.36	9.80	13.18	-45.98	-13.00	32.98	V
12961.01	-49.97	10.48	13.48	-46.97	-13.00	33.97	Н

GSM Mode Channel 661/1880.0MHz

Fragueney(MHz)	D. (dDm)	Path	Antenna	Peak	Limit	Margin(dD)	Polarization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	EIRP(dBm)	(dBm)	Margin(dB)	Polarization
3758.02	-57.16	6.27	8.56	-54.87	-13.00	41.87	Н
5643.02	-43.82	7.27	10.57	-40.52	-13.00	27.52	Н
7525.01	-51.54	8.29	12.22	-47.61	-13.00	34.61	Н
9406.01	-46.37	9.07	13.34	-42.10	-13.00	29.10	Н
11287.01	-50.81	9.92	13.14	-47.59	-13.00	34.59	V
13159.01	-48.33	10.68	13.72	-45.29	-13.00	32.29	Н

GSM Mode Channel 810/1909.8MHz

Fraguanay/MUz)	D. (dDm)	Path	Antenna	Peak	Limit	Margin(dB)	Polarization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	EIRP(dBm)	(dBm)	iviargin(ub)	Polarization
3823.02	-57.37	6.07	8.65	-54.79	-13.00	41.79	V
5735.02	-45.12	7.29	10.55	-41.86	-13.00	28.86	Н
7643.01	-51.53	8.17	12.31	-47.39	-13.00	34.39	Н
9558.01	-43.70	9.33	13.34	-39.69	-13.00	26.69	Н
11461.01	-50.97	9.91	13.11	-47.77	-13.00	34.77	Н
13377.01	-48.84	10.57	14.03	-45.38	-13.00	32.38	Н

Reference Measurement Results from basic model: GSM Mode Channel 128/824.2MHz

Fragues av/MHz)	D (dDm)	Path	Antenna	Correction	Peak	Limit	Margin(dD)	Delerization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	(dB)	ERP(dBm)	(dBm)	Margin(dB)	Polarization
1648.01	-53.13	3.56	5.23	2.15	-53.61	-13.00	40.60	V
2472.00	-51.88	4.59	6.02	2.15	-52.60	-13.00	39.60	Н
3297.02	-47.15	5.29	7.71	2.15	-46.88	-13.00	33.90	V
4124.02	-47.75	6.04	9.02	2.15	-46.92	-13.00	33.90	Н
4950.01	-48.73	6.69	9.85	2.15	-47.72	-13.00	34.70	Н
5774.01	-52.90	7.23	10.55	2.15	-51.73	-13.00	38.70	Н

GSM Mode Channel 190/836.6MHz

Fraguage (MIII-)	D (dDm)	Path	Antenna	Correction	Peak	Limit	Margin(dD)	Delerization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	(dB)	ERP(dBm)	(dBm)	Margin(dB)	Polarization
1674.01	-50.62	3.58	5.19	2.15	-51.16	-13.00	38.20	Н
2510.00	-43.39	4.63	6.12	2.15	-44.05	-13.00	31.00	Н
3346.02	-44.49	5.31	7.83	2.15	-44.12	-13.00	31.10	Н
4186.02	-44.79	6.17	9.09	2.15	-44.02	-13.00	31.00	Н
5025.01	-45.01	6.56	9.94	2.15	-43.78	-13.00	30.80	Н
5861.01	-53.33	7.27	10.53	2.15	-52.22	-13.00	39.20	V

GSM Mode Channel 251/848.8MHz

Fraguanov/MHz)	D. (dDm)	Path	Antenna	Correction	Peak	Limit	Margin(dD)	Polarization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	(dB)	ERP(dBm)	(dBm)	Margin(dB)	Polarization
1698.01	-52.10	3.60	5.14	2.15	-52.71	-13.00	39.70	Н
2546.00	-44.31	4.66	6.18	2.15	-44.94	-13.00	31.90	V
3395.02	-39.39	5.36	7.95	2.15	-38.95	-13.00	26.00	Н
4245.02	-43.48	6.24	9.15	2.15	-42.72	-13.00	29.70	Н
5093.01	-46.85	6.75	10.03	2.15	-45.72	-13.00	32.70	Н
5942.01	-51.13	7.47	10.51	2.15	-50.24	-13.00	37.20	Н

GSM Mode Channel 512/1850.2MHz

Fraguenov/MUz)	D. (dDm)	Path	Antenna	Peak	Limit	Margin(dD)	Polarization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	EIRP(dBm)	(dBm)	Margin(dB)	Polarization
3700.02	-44.63	6.43	8.48	-42.58	-13.00	29.58	Н
5551.02	-56.31	7.18	10.59	-52.90	-13.00	39.90	V
7400.01	-52.70	8.12	12.08	-48.74	-13.00	35.74	Н
9257.01	-45.79	9.06	13.25	-41.60	-13.00	28.60	Н
11105.01	-45.60	9.81	13.18	-42.23	-13.00	29.23	V
12951.01	-44.00	10.49	13.47	-41.02	-13.00	28.02	Н

GSM Mode Channel 661/1880.0MHz

Fraguenov(MHz)	D. (dDm)	Path	Antenna	Peak	Limit	Margin(dD)	Polarization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	EIRP(dBm)	(dBm)	Margin(dB)	Polarization
3760.02	-49.97	6.26	8.56	-47.67	-13.00	34.67	Н
5641.02	-55.74	7.27	10.57	-52.44	-13.00	39.44	V
7519.01	-51.24	8.31	12.22	-47.33	-13.00	34.33	Н
9404.01	-45.84	9.06	13.34	-41.56	-13.00	28.56	Н
11288.01	-41.13	9.92	13.14	-37.91	-13.00	24.91	V
13172.01	-46.50	10.62	13.74	-43.38	-13.00	30.38	V

GSM Mode Channel 810/1909.8MHz

Fraguenov(MHz)	D. (dDm)	Path	Antenna	Peak	Limit	Margin(dB)	Polarization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	EIRP(dBm)	(dBm)	iviargifi(ub)	Polarization
3819.02	-46.71	6.08	8.65	-44.14	-13.00	31.14	Н
5732.02	-52.81	7.29	10.55	-49.55	-13.00	36.55	Н
7642.01	-51.94	8.16	12.31	-47.79	-13.00	34.79	Н
9558.01	-45.45	9.33	13.34	-41.44	-13.00	28.44	Н
11465.01	-45.24	9.90	13.11	-42.03	-13.00	29.03	Н
13369.01	-43.54	10.57	14.02	-40.09	-13.00	27.09	Н

A.3 FREQUENCY STABILITY

A.3.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at 0℃.
- With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call
 on mid channel of PCS 1900 and GSM850, measure the carrier frequency. These
 measurements should be made within 2 minutes of Powering up the EUT, to prevent
 significant self-warming.
- 4. Repeat the above measurements at 10°C increments from 0°C to +50°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 C increments from +50 °C to 0 °C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 °C during the measurement procedure.

A.3.2 Measurement Limit

A.3.2.1 For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.5VDC and 4.4VDC, with a nominal voltage of 3.8VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

A.3.2.2 For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section

2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

A.3.3 Measurement results GSM 850

Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.5	16.85	0.0201
3.8	15.24	0.0182
4.4	15.30	0.0183

Frequency Error vs Temperature

, , , , , , , , , , , , , , , , , , ,		
temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
0	16.47	0.0197
10	15.56	0.0186
20	13.56	0.0162
30	13.56	0.0162
40	15.50	0.0185
50	16.08	0.0192

EGPRS 850 - 8PSK

Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.5	17.27	0.0206
3.8	17.18	0.0205
4.4	19.79	0.0237

Frequency Error vs Temperature

temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
0	14.98	0.0179
10	18.18	0.0217
20	20.92	0.0250
30	15.76	0.0188
40	18.85	0.0225
50	17.08	0.0204

PCS 1900

Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.5	35.51	0.0189
3.8	34.74	0.0185
4.4	33.45	0.0178

Frequency Error vs Temperature

temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
0	26.86	0.0143
10	31.25	0.0166
20	29.90	0.0159
30	27.83	0.0148
40	40.10	0.0213
50	34.48	0.0183

EGPRS 1900 - 8PSK

Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.5	24.31	0.0129
3.8	24.09	0.0128
4.4	19.82	0.0105

Frequency Error vs Temperature

temperature(℃)	Frequency error(Hz)	Frequency error(ppm)
0	28.99	0.0154
10	30.38	0.0162
20	31.80	0.0169
30	29.38	0.0156
40	26.18	0.0139
50	27.31	0.0145

A.4 OCCUPIED BANDWIDTH

Reference

FCC: CFR Part 2.1049(h)(i)

A.4.1 Occupied Bandwidth Results

Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.

The measurement method is from KDB 971168:

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.
- d) Set the detection mode to peak, and the trace mode to max hold.
- e) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

GSM 850(99% BW)

Frequency(MHz)	Occupied Bandwidth (99% BW)(kHz)
824.2	245.19
836.6	244.39
848.8	244.39

GSM 850 Channel 128-Occupied Bandwidth (99% BW)

Channel 190-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 10:07:47

Channel 251-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 10:08:59

GPRS 850(99% BW)

Frequency(MHz)	Occupied Bandwidth (99% BW)(kHz)
824.2	244.39
836.6	245.19
848.8	244.39

GPRS 850

Channel 128-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 11:21:12

Channel 190-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 11:22:23

Channel 251-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 11:23:35

EGPRS 850-8PSK(99% BW)

Frequency(MHz)	Occupied Bandwidth (99% BW)(kHz)
824.2	253.21
836.6	254.81
848.8	253.21

EGPRS 850-8PSK

Channel 128-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 12:20:45

Channel 190-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 12:21:56

Channel 251-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 12:23:08

PCS 1900(99% BW)

Frequency(MHz)	Occupied Bandwidth (99% BW)(kHz)
1850.2	242.79
1880.0	245.19
1909.8	245.19

PCS 1900 Channel 512-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 10:11:06

Channel 661-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 10:12:18

Channel 810-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 10:13:29

GPRS 1900(99% BW)

Frequency(MHz)	Occupied Bandwidth (99% BW)(kHz)
1850.2	245.99
1880.0	244.39
1909.8	245.19

GPRS 1900

Channel 512-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 11:26:00

Channel 661-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 11:27:11

Channel 810-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 11:28:23

EGPRS 1900-8PSK(99% BW)

Frequency(MHz) Occupied Bandwidth (99% BW)(
1850.2	248.40
1880.0	252.40
1909.8	250.80

EGPRS 1900-8PSK

Channel 512-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 12:25:19

Channel 661-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 12:26:31

Channel 810-Occupied Bandwidth (99% BW)

Date: 8.OCT.2018 12:27:42

A.5 EMISSION BANDWIDTH

Reference

FCC: CFR Part 22.917(b), 24.238(a)

A.5.1Emission Bandwidth Results

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

GSM 850

Frequency(MHz)	Emission Bandwidth (kHz)
824.2	314.10
836.6	319.71
848.8	312.50

GSM 850

Channel 128-Emission Bandwidth

Date: 8.OCT.2018 10:15:42

Channel 190-Emission Bandwidth

Date: 8.OCT.2018 10:16:53

Channel 251-Emission Bandwidth

Date: 8.OCT.2018 10:18:05

GPRS 850

Frequency(MHz) Emission Bandwidth (kHz)	
824.2	315.71
836.6	315.71
848.8	313.30

GPRS 850

Channel 128-Emission Bandwidth

Date: 8.OCT.2018 11:30:43

Channel 190-Emission Bandwidth

Date: 8.OCT.2018 11:31:55

Channel 251-Emission Bandwidth

Date: 8.OCT.2018 11:33:07

EGPRS 850-8PSK

Frequency(MHz) Emission Bandwidth (kHz	
824.2	316.51
836.6	318.11
848.8	319.71

EGPRS 850-8PSK

Channel 128-Emission Bandwidth

Date: 8.OCT.2018 12:30:00

Channel 190-Emission Bandwidth

Date: 8.OCT.2018 12:31:12

Channel 251-Emission Bandwidth

Date: 8.OCT.2018 12:32:24

PCS 1900

Frequency(MHz)	Emission Bandwidth (kHz)
1850.2	308.49
1880.0	311.70
1909.8	314.90

PCS 1900

Channel 512-Emission Bandwidth

Date: 8.OCT.2018 10:20:14

Channel 661-Emission Bandwidth

Date: 8.OCT.2018 10:21:26

Channel 810-Emission Bandwidth

Date: 8.OCT.2018 10:22:37

GPRS 1900

Frequency(MHz)	Emission Bandwidth (kHz)
1850.2	315.71
1880.0	316.51
1909.8	316.51

GPRS 1900

Channel 512-Emission Bandwidth

Date: 8.OCT.2018 11:35:22

Channel 661-Emission Bandwidth

Date: 8.OCT.2018 11:36:33

Channel 810-Emission Bandwidth

Date: 8.OCT.2018 11:37:45

EGPRS 1900-8PSK

Frequency(MHz)	Emission Bandwidth(kHz)
1850.2	320.51
1880.0	311.70
1909.8	322.12

EGPRS 1900-8PSK

Channel 512-Emission Bandwidth

Date: 8.OCT.2018 12:34:33

Channel 661-Emission Bandwidth

Date: 8.OCT.2018 12:35:45

Channel 810-Emission Bandwidth

Date: 8.OCT.2018 12:36:56

A.6 BAND EDGE COMPLIANCE

Reference

FCC: CFR Part 22.917(b), 24.238(a)

Measurement limit

On any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

According to KDB 971168 6.0, a relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

GSM 850 LOW BAND EDGE BLOCK-A (GSM850)-Channel 128

Date: 8.OCT.2018 10:28:58

HIGH BAND EDGE BLOCK-C (GSM850) -Channel 251

Date: 8.OCT.2018 10:34:15

GPRS 850

Date: 8.OCT.2018 11:44:06

HIGH BAND EDGE BLOCK-C (GSM850) -Channel 251

Date: 8.OCT.2018 11:49:22

EGPRS 850-8PSK

LOW BAND EDGE BLOCK-A (GSM850)-Channel 128

Date: 8.OCT.2018 12:43:19

HIGH BAND EDGE BLOCK-C (GSM850) -Channel 251

Date: 8.OCT.2018 12:48:36

PCS 1900 LOW BAND EDGE BLOCK-A (PCS-1900)-Channel 512

Date: 8.OCT.2018 10:40:27

HIGH BAND EDGE BLOCK-C (PCS-1900) -Channel 810

Date: 8.OCT.2018 10:45:43

GPRS 1900

LOW BAND EDGE BLOCK-A (PCS-1900)-Channel 512

Date: 8.OCT.2018 11:55:38

HIGH BAND EDGE BLOCK-C (PCS-1900) -Channel 810

Date: 8.OCT.2018 12:00:54

EGPRS 1900-8PSK

LOW BAND EDGE BLOCK-A (PCS-1900)-Channel 512

Date: 8.OCT.2018 12:54:49

HIGH BAND EDGE BLOCK-C (PCS-1900) -Channel 810

Date: 8.OCT.2018 13:00:06

A.7 CONDUCTED SPURIOUS EMISSION

Reference

FCC: CFR Part 2.1057, 22.917, 24.238.

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz.
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
- According to KDB 971168 6.0, the applicable rule part specifies the reference bandwidth for measuring unwanted emission levels (typically, 100 kHz if the authorized frequency band/block is at or below 1 GHz and 1 MHz if the authorized frequency band/block is above 1 GHz)

GSM850 Transmitter

Channel	Frequency (MHz)
128	824.2
190	836.6
251	848.8

PCS1900 Transmitter

Channel	Frequency (MHz)
512	1850.2
661	1880.0
810	1909.8

A. 7.2 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.7.3 Measurement result

GSM850

Channel 128: 30MHz - 8.49GHz

Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.

Date: 8.OCT.2018 10:47:04

Channel 190: 30MHz – 8.49GHz Spurious emission limit –13dBm

NOTE: peak above the limit line is the carrier frequency.

Date: 8.OCT.2018 10:47:19

Channel 251: 30MHz – 8.49GMHz Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.

Date: 8.OCT.2018 10:47:35

PCS1900

Channel 512: 30MHz - 19.1GHz

Spurious emission limit -13dBm.

Date: 8.OCT.2018 10:48:49

Channel 661: 30MHz - 19.1GHz

Spurious emission limit –13dBm

Date: 8.OCT.2018 10:49:04

Channel 810: 30MHz - 19.1GHz

Spurious emission limit –13dBm

Date: 8.OCT.2018 10:49:20

A.8 PEAK-TO-AVERAGE POWER RATIO

Reference

FCC: CFR Part 24.232 (d)

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

According to KDB 971168 5.7.1:

- a)Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- c) Set the number of counts to a value that stabilizes the measured CCDF curve;
- d) Set the measurement interval to 1 ms
- e)Record the maximum PAPR level associated with a probability of 0.1%

A.8.1 Measurement limit

not exceed 13 dB

A.8.2 Measurement results

	Frequency(MHz)	PAPR(dB)
PCS1900	1880.0	7.76
GPRS1900	1880.0	7.76
EGPRS1900(8PSK)	1880.0	10.16

ANNEX B: Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2018-09-28 through 2019-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

END OF REPORT