Mid Level Image Features : Shapes

Eun Yi Kim

INDEX

Shapes

Approaches to Shape description

- Region based shape descriptors
- Boundary based descriptors
- Interest Operator + Descriptor

Applications

Shapes

- Shape goes one step further than color and texture.
- Color and Texture are both global attributes of an image; shape is not an image attributes
 - Shape tends to refer to a specific region of an image
 - Segmentation is still a crucial problem to be solved, so interests operator is employed for shape description
- Two-dimensional shape recognition is an important aspect of image a nalysis (image matching/retrieval)

Shape descriptors

- There are three approaches to defining shapes
 - 1. Shape represented by its region descriptors Simple!!
 - 2. Shape represented by its Boundary
 - 3. Shape represented by its interests points (corners)

Region based Shape Descriptors

Geometric and Shape Properties

- area
- centroid
- perimeter
- perimeter length
- circularity, elongation
- mean and standard deviation of radial distance
- second order moments (row, column, mixed)
- bounding box
- extremal axis length from bounding box
- lengths and orientations of axes of best-fit ellipse

Often want features independent of position, orientation, scale

Zero-order moment

- Why use moments?
 - Geometric moments of different orders represent spatial characteristics of the image distribution
- Zero-order moment

$$A = \sum_{i=1}^n \sum_{j=1}^m B[i,j]$$

- Total intensity of image
- For binary image → area

Centroid

- An object's position in the image determines its spatial location.
- center of area (a centroid, center of mass): first order moment
 - Intensity centroid
 - Geometrical center in binary image

$$\begin{cases}
\overline{x} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} jB[i,j]}{A} & \text{: average (mean) of } j \text{ coordinates of object (1) pixels} \\
\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} iB[i,j]}{A} & \text{: average of } i \text{ coordinates of object (1) pixels}
\end{cases}$$

- A precision of tenths of a pixel is often justifiable for the centroid.
- Centroids of regions can be interesting points for analysis and matching

Second Moments

There are three second-order spatial moments of a region

Second-order row moment

$$\mu_{rr} = \frac{1}{A} \sum_{(r,c) \in R} (r - \overline{r})^2$$

Second-order mixed moment

$$\mu_{rc} = \frac{1}{A} \sum_{(r,c) \in R} (r - \overline{r})(c - \overline{c})$$

Second-order column moment

$$\mu_{cc} = \frac{1}{A} \sum_{(r,c) \in R} (c - \overline{c})^2$$

Moment Invariants

• Geometric transformation: translation, scale, mirroring, rotation

Contrast second moments

- For the letter 'I'
- Versus the letter 'O'
- Versus the underline '_'

Perimeter and Perimeter Length

$$\begin{split} \text{Perimeter} \quad P_4 &= \{ \; (r,c) \in R \; | \; N_8(r,c) - R \neq \emptyset \; \} \\ P_8 &= \{ \; (r,c) \in R \; | \; N_4(r,c) - R \neq \emptyset \; \} \\ \text{Perimeter Length} \\ & | \; P \; | \; = | \; \{ k \; | \; (r_{k+1},c_{k+1}) \in N_4(r_k,c_k) \; \} \; | \; + \sqrt{2} \; | \; \{ k \; | \; (r_{k+1},c_{k+1}) \in N_8(r_k,c_k) - N_4(r_k,c_k) \} \; | \end{split}$$

Perimeter can vary significantly with object orientation

Perimeter and Perimeter Length

4-connected adjacency

8-connected adjacency

Perimeter and Perimeter Length

4-connected adjacency

8-connected adjacency

Circularity

 Common measure of circularity of a region is length of the perimeter sq uared divided by area

• Circularity (1):
$$C_1 = \frac{|P|^2}{A}$$

Circularity as variance of "radius"

- A second measure uses variation off of a circle
- Circularity (2): $C_2 = \frac{\mu_R}{\sigma_R}$

 $-\mu_R$ and σ_R^2 are the mean and variance of the distance from the centroid of the shape to the boundary pixels (r_k, c_k) .

$$\mu_R = rac{1}{K} \sum_{k=0}^{K-1} \|(r_k, c_k) - (\bar{r}, \bar{c})\|$$

$$\sigma_R^2 = \frac{1}{K} \sum_{k=0}^{K-1} [\|(r_k, c_k) - (\bar{r}, \bar{c})\| - \mu_R]^2$$

Invariant descriptors

Orientation (1)

- Define the orientation of an object as the orientation of the axis of elongation.
 - ≡ axis of least <u>second order moment</u>

variation(分散) = spread of data

- ≡ axis of least inertia
- The axis of least second moment for an object is the line which gives

$$\min_{line} \chi^2 = \min_{line} \sum_{i=1}^n \sum_{j=1}^n r_{ij}^2 B[i,j]$$

where \mathcal{V}_{ij} the perpendicular distance from an object point [i, j] to the line (axis)

Orientation (2)

Polar representation of a straight line

why polar representation instead of

$$y = ax + b$$
 cannot represent the vertical line

$$\frac{(x,y) \cdot (\cos \theta, \sin \theta) = \rho}{x \cos \theta + y \sin \theta = \rho}$$
projection of (x,y) onto the direction $(\cos \theta, \sin \theta)$

Then,
$$r^2 = (x\cos\theta + y\sin\theta - \rho)^2$$

$$\chi^2 = \sum_{i=1}^n \sum_{j=1}^n (x_{ij}\cos\theta + y_{ij}\sin\theta - \rho)^2 B[i,j]$$

Problem: Find P and θ that minimizes χ^2

Orientation (3)

Solution:
$$\frac{\partial \chi^2}{\partial \rho} = 0$$
 and $\frac{\partial \chi^2}{\partial \theta} = 0$

•The elongation E of the object
$$\equiv \frac{\chi_{\max}}{\chi_{\min}}$$

Orientation (4) : Axis with Least Second Moment

Orientation (4) : Axis with Least Second Moment

Orientation (4)

: Axis with Least Second Moment

Orientation (5) : Axis with Least Second Moment

- Invariance to orientation?
 - : Need a common alignment

Axis for which the squared distance to 2d object points is minimized

Basic Properties of a Region

ij	0	0	Ö	0	0	Q	0	0	0	Ø	0	0	Q.	0	0
ō	0	Ō.	0	Ô.	Ō.	0	0	0	0	Ō.	0	0	0	0	0
ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ō	0	ō.	0	ō	Ô	0	0	0	0	1	1	1	1	0	0
2	2	2	2	ő	Õ	0	ő	0	1	ī	1	ī	1	1	ā
2	2	2	2	ō	0	0	ō	1	i	ī	1	ī	1	1	1
													_		_
2	2	2	2	0	0	Û	0	1	1	1	1	1	1	1	1
2	2	2	2	0	0	ū	0	1	1	1	1	1	1	1	1
3	2	2	2	0	0	0	0	0	1	1	1	1	1	1	0
2	2	2	2	0	0	0	0	0	0	1	1	1	1	0	0
3	2	2	2	0	ø	0	0	0	0	Ō.	0	0	0	0	0
3	2	2	2	0	Ō	0	0	0	0	0	0	0	0	0	0
2	2	2	2	0	0	3	3	3	0	0	0	0	0	0	0
2	2	2	2	0	0	3	3	3	0	0	0	0	0	0	0
2	2	2	2	0	0	3	3	3	0	0	0	0	0	0	0
2	2	2	2	0	Ō	0	0	0	0	Ō	0	0	0	0	0

region	region	row of	col of	perim.	circu-	circu-	radius	radius
num.	area	center	center	length	$larity_1$	$larity_2$	mean	var.
1	44	6	11.5	21.2	10.2	15.4	3.33	.05
2	48	9	1.5	28	16.3	2.5	3.80	2.28
3	9	13	7	8	7.1	5.8	1.2	0.04

Topological Region Descriptors

- Topological properties: properties of image preserved under rubber-she et distortions
 - -# holes in the image
 - -# connected components

H=0, C=3

H=1, C=1

H=2, C=1

