Natural Language Processing CSE 325/425

Sihong Xie

Lecture 24:

- Training alignment models
- Phase-based translation

leurn $P(f; |e_{a_j})$ from data $\left\{ (E_{S}, F_{S}) \right\}_{S=1}^{|S|}$

Training alignment models

- We have describe two alignment models

o IBM Model-1
$$\circ \text{HMM} \qquad P(F,A|E) = P(J|I) \times \prod_{j=1}^{J} P(a_{j}|a_{j-1},I) P(f_{j}|e_{a_{j}})$$
 parameters to be learned,
$$\circ \text{Comes from Alignment matrix } A$$
 and is • How to find he probability $P(f_{j}|e_{a_{j}})$ where $\circ_{j} = \text{index of word in } E \text{ translated unknown}$ of Given an alignment A of two sentences (E,F) , this probability can be from j-th.

- - o Given an alignment A of two sentences (E,F) , this probability can be found using MLE.
 - \circ Example: P(verde|green) is estimated by the number of times *verde* is aligned with *green*, divided by number of *green*.

- However, we don't have a large corpus of aligned source and target sentences and need to estimate both $P(f_j|e_{a_j})$ and A .
 - \circ Global model parameter: translation probability $P(f_j|e_{a_j})$
 - \circ Local hidden (latent) variables A ($arepsilon_{\mu}$ $arepsilon_{\mu}$

- Similar to the EM training for HMM with model parameters and latent tags.
- E-step: given translation probabilities, estimate probability of each possible |E| = I All possible Alismments: alignment of each (E,F) . P(F,A|E){ T+1) J
- M-step: given the distribution of alignments, estimate translation probabilities.

neither the Model - 2, nor the HMM

- Assume a simplified model $P(F,A|E) = \prod_{j=1}^J P(f_j|e_{a_j})$ with the phase based phase based Translation
 - This is the common portion of both IBM Model-1 and HMM.
- Use the example training corpus of two pairs of (E,F)

green house
$$(A)$$
?

 (A) ?

 (A) ?

 (A) ?

 (A) ?

 (A) ?

Parameters: translation probabilities initialized uniformly

Max Entropy

P(casa green)=1/3	P(verde green)=1/3	P(la green)=1/3	
P(casa house)=1/3	P(verde house)=1/3	P(la house)=1/3	L English.
P(casa the)=1/3	P(verde the)=1/3	P(la the)=1/3	
	Spanish		

• E-step 1a: for each pair and each possible alignment ${\cal A}$, find

P(casa green)=1/3	P(verde green)=1/3	P(la green)=1/3
P(casa house)=1/3	P(verde house)=1/3	P(la house)=1/3
P(casa the)=1/3	P(verde the)=1/3	P(la the)=1/3

• E-step 1b: for each pair and each possible alignment A , find

$$P(A|E,F) = P(A|E) = \frac{P(F,A|E)}{\sum_{A} P(F,A|E)}$$

$$= \frac{P(F,A|E)}{\sum_{A} P(F,A|E)}$$

$$= \frac{P(F,A|E)}{P(F,A|E)}$$

$$= \frac{P(F,A|E)}{P(F,A|E)}$$

$$= \frac{P(F,A|E)}{P(F,A|E)}$$

$$= \frac{P(F,A|E)}{P(E,A|E)}$$

$$= \frac{P(E,A|E)}{P(E,A|E)}$$

$$= \frac{P(F,A|E)}{P(E,A|E)}$$

$$= \frac{P(F,A|E)$$

• E-step 1c: find expected counts of word translation. = 2 Prob (when 'casa' is

count(casa green)=1/2	count(verde green)=1/2	count(la green)=0	Total(green)=1 "Sreen"	,)
count(casa house)=1/2+1/2	count(verde house)=1/2	count(la house)=1/2	Total(house)=2	
count(casa the)=1/2	count(verde the)=0	count(la the)=1/2	Total(the)=1	

Hw 67

M-step 1: re-estimate the translation probabilities by row normalization

count(casa green)=1/2	count(verde green)=1/2	count(la green)=0	Total(green)=1
count(casa house)=1/2+1/2	count(verde house)=1/2	count(la house)=1/2	Total(house)=2
count(casa the)=1/2	count(verde the)=0	count(la the)=1/2	Total(the)=1

P(casa green)=1/2	P(verde green)=1/2	P(la green)=0
P(casa house)=1/2	P(verde house)=1/4	P(la house)=1/4
P(casa the)=1/2	P(verde the)=0	P(la the)=1/2

- Observation: the unlikely translation has a smaller probability.
- Then go to E-step 2, M-step 2, E-step 3, and so on ...

Phase-based translation

- We have been working with word-based translation models.
- Phase-based translation has some more advantages:
 - o phase are constituent unit that can somehow be move freely in a sentence.

phases have more contexts for faithful and robust translations.

Mary didn't slap the green witch

Maria no dió una bofetada a la bruja verde

Mary not gave a slap to the witch green

