Linear Regression Bias Variance Tradeoff

BA810: Supervised Machine Learning

Nachiketa Sahoo

Recap

- What is machine learning?
 - A program that improves at a given task with increased experience
- Different types of learning
 - Supervised vs unsupervised
 - Regression vs classification
 - Prediction vs inference
- Tradeoff between flexibility and interpretability of predictive models

- Linear regression
 - $y = f(x) = \beta x + e$
 - Residuals $r_i = y_i \hat{y}_i$
 - Mean Squared Error (MSE): average of squared residuals
 - Linear regression minimizes MSE in the training sample
- Train-test paradigm to measure error out of sample
 - Split the data into two parts; use one for training and the other for testing

Outline

- Interpreting linear regression results
- Overfitting and underfitting
- The bias-variance tradeoff in machine learning

Assessing the Fit of the Model

Given linear regression estimated model

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

- Measure of error: $\sum_i (y_i \hat{y}_i)^2$, aka residual sum of squares (RSS)
- $TSS = \sum_{i=1}^{n} (y_i \bar{y})^2$: Total Sum of Squares (error of the null-model)
- Fit of the model to the data:

$$R^2 = 1 - \frac{RSS}{TSS}$$

 \mathbb{R}^2 : the fraction of the variation in y explained by our fitted model

Interpreting the Coefficients

- $\hat{\beta}_1$: how much y increases when x increases by 1.
- How reliable is the estimated coefficient?
 - Use standard deviation of the \hat{eta}_1 s under repeated sampling
 - Can be approximated from the one data sample used to fit the regression
- The 95% confidence interval $\approx \hat{\beta}_1 \pm 2 \times \text{SE}(\hat{\beta}_1)$
 - Includes 0 → no effect
- p-value:
 - Probability that an estimated coefficient is "as extreme as" $\hat{\beta}_1$ by random chance even when the true β_1 was 0!
 - Unlikely if p-value < 0.05 or 0.01; likely that there was a non-zero effect

Interpreting the Coefficients

Multiple linear regression

Linear regression with more than one explanatory variables

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

 β_2 is how much y increases when x_2 increases by 1 holding x_1 fixed

- Note: "linear" refers to linearity of parameters
 - Using polynomial features x^2, x^3, \dots in a linear regression one can fit highly non-linear lines to data
- Which of the following is a linear regression?

a.
$$y = \beta_0 + \beta_1 x_2 \log(x_1) + \beta_2 e^{x_2} + \epsilon$$

b.
$$y = \beta_0 + \beta_1 x_1 + \log(\beta_2) x_2 + \epsilon$$

Overfitting Underfitting

- Fit a linear regression to training set, then measure the error on training (MSE_{train}) and test data (MSE_{test})
- Which one do you expect to be larger? Why? $MSE_{train} < MSE_{test}$

Overfitting	Underfitting
 MSE_{train} is small, but MSE_{test} is large Potential reasons: model too complex/flexible or too little data 	 Both MSE_{train} and MSE_{test} are large E.g., close to that of null model Potential reasons: model too simple, training incomplete

The Bias-variance Tradeoff

- Reducing MSE on your training data does not necessarily reduce MSE on data you have not trained on
 - MSE_{test} could be going up as MSE_{train} is going down!
 - Because of a fundamental trade-off in machine learning, called the biasvariance trade-off
- What is bias? What is variance?
 - Note: prediction at a point changes with training data
 - Let's get some intuition...

High variance

High bias

Variance

Variance

A little more formal definition

- Suppose we create many datasets from the same source
 - E.g., by randomly sampling a subset from a larger dataset
- For each dataset indexed by $b=1\dots B$ we estimate a model $\hat{f}^{(b)}$ with parameters $\left(\hat{\beta}^{(b)}\right)$

Then for a point x_0 we predict $\hat{y}^{(b)} = \hat{f}^{(b)}(x_0)$

- **Bias:** gap between the average prediction $\frac{\sum_b \hat{y}^{(b)}}{B}$ (over B training sets) and the true value y_0 .
- Variance: variance of predictions at $\{\hat{f}^b(x_0)\}$ as we learn from different samples.

Bias-variance trade-off

- Let Y = f(x) + e
- The average prediction error can be written as:

$$MSE = E\left(\left(Y - \hat{f}(x)\right)^{2}\right) = Var\left(\hat{f}(x)\right) + Bias\left(\hat{f}(x)\right)^{2} + Var(e)$$
Reducible Error

Reducible Error

where
$$Bias(\hat{f}(x)) = f(x) - E(\hat{f}(x))$$

As models become more flexible (bias reduces) they become more sensitive to change in data (variance increases).

Illustration

• True relationship $Sales(AdSpend) = 3 + 4 \times AdSpend - 2 \times AdSpend^2$ but some random noise is added at observation

• Draw five different datasets, i.e., our data are from y = Sales(AdSpend) + e

Fit a linear regression

Predict y at a point that truly is at the red dot

Predict y at a point that truly is at the green dot

Black curve is truth. Red curve on right is MSE_{Te} , grey curve is MSE_{Tr} . Orange, blue and green curves/squares correspond to fits of different flexibility.

Navigating the bias-variance trade-off

- How do we balance model complexity and prediction accuracy?
- Train models with various degrees of complexity, watch test data error
 - Pick the model with the lowest error
- Could work when the number of models to consider are small (e.g., polynomials of degree 1 ... 20)
- The options can grow exponentially in some cases (e.g., which of the 20 features to include?)
 - Need smarter heuristics (to be discussed in a later class)

Summary

- R^2 : fraction of variation in Y explained by the regression
- β_k : how much y increases when x_k increases by 1, holding other xs constant
- p-value of $\hat{\beta}_k$: probability of obtaining as extreme a value by chance even if true β_k was 0

- Overfitting: fitting training data too closely to predict well on test data
 - Simplify model, get more data
- Underfitting: fitting both training and test data poorly
 - Use more flexible model

Summary

- Bias: if we refit the model to different samples, how different is the average prediction from the truth
- Variance: how dispersed are the model predictions for the same point

- Simpler models have higher bias, but lower variance
 - Consider predicting average all the time
- Complex models trade bias for variance