Trigonometry

- P1/5/1: Trigonometrical ratios/graphs
- P1/5/2: Inverse trigonometric functions
 - P1/5/3: Identities
- P1/5/4: Trigonometrical equations
- + P1/5/5: Revision

Prepared by +
Tan Bee Hong

P1/5/1 Trigonometrical ratios / graphs

Learning Outcome

Students should be able to:

- sketch and use graphs of *t*-functions
- use the exact values of sine, cosine and tangent of 30°, 45°, 60° and related angles.

Exact values of some trigonometric functions

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}}$$
; $\sin 45^{\circ} = \frac{1}{\sqrt{2}}$; $\tan 45^{\circ} = 1$

$$\cos 60^{\circ} = \frac{1}{2}; \sin 60^{\circ} = \frac{\sqrt{3}}{2}; \tan 60^{\circ} = \sqrt{3}$$

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$
; $\sin 30^{\circ} = \frac{1}{2}$; $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$

Symmetry properties of the graphs of $\cos \theta^o$, $\sin \theta^o$, and $\tan \theta^o$

Periodic properties:

$$\cos(\theta \pm 360)^{\circ} = \cos\theta^{\circ} \quad \sin(\theta \pm 360)^{\circ} = \sin\theta^{\circ} \quad \tan(\theta \pm 180)^{\circ} = \tan\theta^{\circ}$$

odd/even properties:

$$\cos(-\theta)^{o} = \cos\theta^{o} \quad \sin(-\theta)^{o} = -\sin\theta^{o} \quad \tan(-\theta)^{o} = -\tan\theta^{o}$$

Example 1:

Write down the exact values of the following:

- $(a) \cos(150^\circ)$
- $(b) \sin(-30)^{\circ}$
- $(c) \tan(-60)^{\circ}$
- (a) $\cos(225^{\circ})$

$$y = k \cos(m\theta \pm n)$$

amplitude

If $+ \Rightarrow$ Shift to the left (n/m) units

If $-\Rightarrow$ Shift to the right (n/m) units

Period: cosine and sine $\Rightarrow 2\pi/m$ tangent $\Rightarrow \pi/m$

Example 2:

Sketch the graphs:

(a)
$$\sin 2\theta$$

(b)
$$\tan\left(\frac{\theta}{2} + \frac{\pi}{2}\right)$$

$$(c) \quad 4 - 2\cos\left(\theta - \frac{\pi}{2}\right)$$

Example 3:

- (i) Sketch and label, on the same diagram, the graphs of $y = 2 \sin x$ and $y = \cos 2x$, for the interval $0 \le x \le \pi$.
- (ii) Hence state the number of solutions of the equation $2 \sin x = \cos 2x$ in the interval $0 \le x \le \pi$. [1]

Example 4:

The diagram shows the graph of $y = a \sin(bx) + c$ for $0 \le x \le 2\pi$.

(i) Find the values of a, b and c.

[3]

(ii) Find the smallest value of x in the interval $0 \le x \le 2\pi$ for which y = 0.

Example 5:

The function f is defined by $f: x \mapsto 5 - 3\sin 2x$ for $0 \le x \le \pi$.

- (i) Find the range of f.
- (ii) Sketch the graph of y = f(x).
- (iii) State, with a reason, whether f has an inverse.

Practice Exercise

Pure Mathematics 1 Hugh Neil & Douglas Quadling (2002)

Exercise 10A (Page 141)
Q2(e)(f), 5(k)(o), 6(c)(d), 7(f)(g)

Exercise 10C (Page 149) Q11

P1/5/2 Inverse trigonometric functions

Learning Outcome

Students should be able to:

• use the notation sin ⁻¹, cos ⁻¹ and tan ⁻¹ to denote the principal values of the inverse trigonometric functions.

Example 6:

Given that $x = \sin^{-1}(\frac{2}{5})$, find the exact value of

- (i) $\cos^2 x$,
- (ii) $\tan^2 x$.

Example 7:

Given that

$$\sin \theta^o = \frac{5\sqrt{3}}{14}$$

and the angle θ^o is obtuse, find without using a calculator the values of $\cos\theta^o$ and $\tan\theta^o$.

Example 8:

Find all values of θ in the required interval which satisfy the following equations, giving your answers correct to 1 decimal place where appropriate.

(a)
$$\cos \theta^{\circ} = 0.25$$

$$-180 \le \theta \le 180$$

(*b*)
$$\sin \theta^{o} = -0.67$$

$$-\pi \le \theta \le \pi$$

$$(c) \cos 2\theta^o = \frac{1}{3}$$

$$0 < \theta \le 360$$

$$(d) \cos(3t+135)^o = \frac{1}{2}\sqrt{3}$$

$$0 < \theta \le 360$$

(e)
$$4\tan\theta^o + 3 = 0$$

$$-\pi \le \theta \le \pi$$

$$(f) \tan\left(\frac{3}{2}t - 45\right)^o = -\sqrt{3}$$

$$0 < t \le 360$$

Example 9:

Find the maximum value and minimum value of y:

$$(a) y = 5 + 8\cos 2x^{\circ}$$

$$(b) \quad y = \frac{8}{3 - \sin x^o}$$

and give the least positive values of x at which they occurs.

Practice Exercise

Pure Mathematics 1 Hugh Neil & Douglas Quadling (2002)

Exercise 10C (Page 148)
Q1(k)(n), 3(d)(f), 4(d)(e), 5(e)(f), 7(e)(f), 8(c)

P1/5/3 Identities

P1/5/4: Trigonometrical equations

Learning Outcome

Students should be able to:

• use identities (basic identities)

Learning Outcome

Students should be able to:

 Find all solutions of simple trigonometrical equations lying in a specified interval.

Relations between the trigonometric functions

For all values of θ

$$\tan \theta^o \equiv \frac{\sin \theta^o}{\cos \theta^o},$$

$$\cos^2\theta^o + \sin^2\theta^o \equiv 1$$

provided that $\cos \theta^o \neq 0$;

Example 10:

Prove the identities:

(a)
$$\frac{1}{\cos \theta^o} + \tan \theta^o \equiv \frac{\cos \theta^o}{1 - \sin \theta^o}$$

(b)
$$\frac{1 - \tan^2 x}{1 + \tan^2 x} = 1 - 2\sin^2 x$$

(c)
$$\frac{\sin x}{1-\sin x} - \frac{\sin x}{1+\sin x} \equiv 2\tan^2 x.$$

Example 11:

Solve the following equation for θ , giving solution in the interval $0 \le \theta \le 360$. $\sin \theta^{\circ} = \tan \theta^{\circ}$

Example 12:

Solve the following equation for θ , giving solution in the interval $0 \le \theta \le 360$. $\sin 2\theta^o - \sqrt{3}\cos 2\theta^o = 0$

Example 13:

(i) Given that

$$3\sin^2 x - 8\cos x - 7 = 0,$$

show that, for real values of x,

$$\cos x = -\frac{2}{3}.$$

(ii) Hence solve the equation

$$3\sin^2(\theta + 70^\circ) - 8\cos(\theta + 70^\circ) - 7 = 0$$

for
$$0^{\circ} \le \theta \le 180^{\circ}$$
.

Example 14:

- (i) Prove the identity $\left(\frac{1}{\sin \theta} \frac{1}{\tan \theta}\right)^2 = \frac{1 \cos \theta}{1 + \cos \theta}$.
- (ii) Hence solve the equation $\left(\frac{1}{\sin \theta} \frac{1}{\tan \theta}\right)^2 = \frac{2}{5}$, for $0^\circ \le \theta \le 360^\circ$.

Example 15:

- (i) Sketch, on the same diagram, the graphs of $y = \sin x$ and $y = \cos 2x$ for $0^{\circ} \le x \le 180^{\circ}$. [3]
- (ii) Verify that $x = 30^{\circ}$ is a root of the equation $\sin x = \cos 2x$, and state the other root of this equation for which $0^{\circ} \le x \le 180^{\circ}$.
- (iii) Hence state the set of values of x, for $0^{\circ} \le x \le 180^{\circ}$, for which $\sin x < \cos 2x$. [2]

Practice Exercise

Pure Mathematics 1 Hugh Neil & Douglas Quadling (2002)

Exercise 10D (Page 152) Q2, 3(b)(d), 4(c)(d), 5

Practice Exercise

Pure Mathematics 1 Hugh Neil & Douglas Quadling

Miscellaneous exercise 10 (Page 152) Q5, Q7, Q8, Q10(c)(d), Q11(e)(f), Q12(c)

