Réunion 3

DATES:

Rapport de projet : 9 janvierSoutenance : 14/15 janvier

A) Le cube

Le plus simple pour faire un cube est de centrer le cube en (0, 0, 0) afin de ne faire que des rotations rendant la tâche plus aisée.

Propriétés du cube :

- Lorsque l'on choisit un point du cube, pour pouvoir trouver les trois points les plus proche de celui-ci, il suffit d'inverser le signe de x ou de y ou z (ex : si notre point A se trouve en (1, 1, 1), les trois les plus proches sont (-1, 1, 1), (1, -1, 1) et (1, 1, -1)

B) Mesurer une distance entre deux points en 3d

Une translation revient à soustraire les coordonnées pour passer d'un point A à un point B. Pour calculer la distance entre deux points il suffit de :

- Prendre un point, de le mettre à l'origine ($(xp, yp, zp) \rightarrow (0, 0, 0)$)
- Le second point, prendre ces coordonnées et soustraire les anciennes coordonnées du premier point. ((xq, yq, zq) → (xq-xp, yq_yp, zq-zp))
- Et ensuite d'applique cette formule : $||pq||^2 = \sqrt{(xq xp)^2 + (yq yp)^2 + (zq zp)^2}$ (Les soustractions présentes dans cette formule sont au carré permettant qu'en inversant p ou q dans cet exemple, le résultat reste inchangé).

C) Travail à réaliser pour la prochaine fois

- Installer une interface git sous Windows (pour ceux qui codent sur Windows)
- Regarder comment debugger à la source avec Eclipse (petite astuce : il existe le breakpoint qui permet de sortir de tout processing et d'aller directement dans le Main par exemple)
 - 2/3 polygones en 2d
 - Pour Vincent : Sachant que x>0, on dit que $y = \sqrt{x}$ ssi y²=x et y>0

Ex : soit y et $z \ge 0$ montrer que $\sqrt{y*z} = \sqrt{y}*\sqrt{z}$

- PLANNING!!!!

$$\binom{n}{m} = \frac{n(n-1)\dots(n-(m-1))}{m!}$$