Homework 6

Problem 1. Prove that any natural number $n \in \mathbb{N}$ can be written as a sum of mutually distinct Fibonacci numbers.

Problem 2. Express the n^{th} term of the sequences given by the following recurrence relations

1.
$$a_0 = 2$$
, $a_1 = 3$, $a_{n+2} = 3a_n - 2a_{n+1}$ $(n = 0, 1, 2, ...)$.

2.
$$a_0 = 1, a_{n+1} = 2a_n + 3 (n = 0, 1, 2, ...).$$

Problem 3. Solve the recurrence relation $a_{n+2} = \sqrt{a_{n+1}a_n}$ with initial conditions $a_0 = 2$, $a_1 = 8$ and find $\lim_{n\to\infty} a_n$.

Problem 4. Show that for any $n \ge 1$, the number $\frac{1}{2}[(1 + \sqrt{2})^n + (1 - \sqrt{2})^n]$ is an integer.