STAT40810 — Stochastic Models

Brendan Murphy

Week 3

Locally Weighted Regression (LOWESS)

Locally Weighted Regression Smoothing (LOWESS)

- Suppose we have a dataset with values $(x_1, y_1), \dots, (x_n, y_n)$.
- We want to study the relationship between the x and the y values.
- In other words, we want to estimate the function $f(x_i)$, where $y_i = f(x_i) + \epsilon_i$.
- A crucial input into LOWESS is the the span (s). The span determines what proportion of the data is used when estimating f(x) near a point $x = x_i$.
- The span is a number between 0 and 1; it controls the smoothness of the estimate $\hat{f}(x)$.

LOWESS (I)

- To estimate the value of f at the point x_i , that is $\hat{f}(x_i)$ we take the following steps:
 - **1** Compute the value of $k = \lceil sn \rceil$.
 - **2** Find the k nearest neighbors of x_i . These points constitute a neighborhood $N(x_i)$ of x_i .
 - 3 Calculate the largest distance between x_i and another point in the neighborhood:

$$\Delta(x_i) = \max_{x \in N(x_i)} |x_i - x|.$$

LOWESS (II)

9 Assign weights to each point in $N(x_i)$ using the tri-cube weight function:

$$w\left(\frac{|x-x_i|}{\Delta(x_i)}\right)$$

where

$$w(u) = \left\{ egin{array}{ll} (1 - |u|^3)^3 & ext{for } |u| \leq 1 \ 0 & ext{otherwise} \end{array}
ight..$$

- **3** Calculate the weighted least squares fitting line on the data in the neighborhood $N(x_i)$.
- **1** Let $\hat{f}(x_i) = \hat{y}_i = \hat{a} + \hat{b}x_i$.

LOWESS Steps (1)

• Suppose we want to compute $\hat{f}(x_i)$. Suppose s=0.5 and n=24. Hence, k=12.

LOWESS Steps (2)

• Compute the neighbourhood $N(x_i)$.

LOWESS Steps (3)

ullet Compute the value of Δ

LOWESS Steps (4a)

• The tri-cube weight function is computed.

LOWESS Steps (4b)

• The weights are computed.

LOWESS Steps (5)

• A weighted least squares fit is found.

LOWESS Steps (6)

• The fitted value is found.

LOWESS Fits

• The steps are repeated for each $i=1,2,\ldots,n$. This gives the LOWESS curve.

LOWESS (Span=0.2)

• If the span is smaller, then we get a more "wiggly" fit.

LOWESS Fits (Span=0.8)

• If the span is larger, then we get a more "smooth" fit.

LOWESS Fits (Span=1.0)

• If the span is even larger, then we get an even "smoother" fit.

LOWESS

- LOWESS is very easy to implement in R.
- Here's code to model the motorcycle data.

```
# Load the data
library(MASS)
data(mcycle)

# Plot the data
plot(mcycle)

# Fit a lowess regression
# The value of f controls the span
fit <- lowess(mcycle$times,mcycle$accel,f=2/3)

# Add the fitted values to the plot
points(fit,pch=3,col="red")

# Assess fit using mean squared error (MSE)
MSE <- mean((mcycle$accel-fit$y)^2)
MSE
```