CS 188: Artificial Intelligence

Hidden Markov Models

Instructor: Anca Dragan --- University of California, Berkeley
[These slides were created by Dan Klein, Pieter Abbeel, and Anca. http://ai.berkeley.edu.]

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - O Speech recognition
 - O Robot localization
 - O User attention
 - O Medical monitoring
- Need to introduce time (or space) into our models

Markov Models

O Value of X at a given time is called the state

- O Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- O Stationarity assumption: transition probabilities the same at all times
- O Same as MDP transition model, but no choice of action
- O A (grouphle) RNI, We can always use generic RNI reasoning on it if we

Markov Assumption: Conditional Independence

- Basic conditional independence:
 - O Past and future independent given the present
 - O Each time step only depends on the previous
 - O This is called the (first order) Markov property

Example Markov Chain: Weather

Mon

• States: $X = \{rain, sun\}$

Initial distribution: 1.0 sun

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Wed

Tue

Thu

Example Markov Chain: Weather

O Initial distribution: 1.0 sun

• What is the probability distribution after one step?

$$P(X_2 = sun) = \sum_{x_1} P(x_1, X_2 = sun) = \sum_{x_1} P(X_2 = sun | x_1) P(x_1)$$

$$P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain})$$

 $0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$

Mini-Forward Algorithm

Ouestion: What's P(X) on some day t?

$$P(x_1) = known$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
Forward simulation

Example Run of Mini-Forward Algorithm

From initial observation of sun

From initial observation of rain

From yet another initial distribution $P(X_1)$: $\begin{pmatrix} p \\ 1-p \end{pmatrix} \qquad \cdots \qquad \begin{pmatrix} 0.75 \\ 0.25 \end{pmatrix}$ $P(X_1)$

[Demo: L13D1,2,3]

Video of Demo Ghostbusters Basic Dynamics

Video of Demo Ghostbusters Circular Dynamics

Video of Demo Ghostbusters Whirlpool Dynamics

Stationary Distributions

• For most chains:

- O Influence of the initial distribution gets less and less over time.
- O The distribution we end up in is independent of the initial distribution

Stationary distribution:

- The distribution we end up with is called the stationary distribution R the chain
- It satisfies

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

Example: Stationary Distributions

• Question: What's P(X) at time t = infinity?

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow X_4$$

$$P_{\infty}(sun) = P(sun|sun)P_{\infty}(sun) + P(sun|rain)P_{\infty}(rain)$$

$$P_{\infty}(rain) = P(rain|sun)P_{\infty}(sun) + P(rain|rain)P_{\infty}(rain)$$

$$P_{\infty}(sun) = 0.9P_{\infty}(sun) + 0.3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 0.1P_{\infty}(sun) + 0.7P_{\infty}(rain)$$

$$P_{\infty}(sun) = 3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 1/3P_{\infty}(sun)$$

$$P_{\infty}(sun) = 3/4$$

$$P_{\infty}(rain) = 1/4$$

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Application of Stationary Distribution: Web Link Analysis

PageRank over a web graph

- O Each web page is a possible value of a state
- O Initial distribution: uniform over pages
- O Transitions:
 - O With prob. c, uniform jump to a random page (dotted lines, not all shown)
 - O With prob. 1-c, follow a random outlink (solid lines)

Stationary distribution

- Will spend more time on highly reachable pages
- O E.g. many ways to get to the Acrobat Reader download page
- O Somewhat robust to link spam.
- O Google 1.0 returned the set of pages containing all your

Hidden Markov Models

Pacman – Sonar

Video of Demo Pacman – Sonar (no beliefs)

Hidden Markov Models

- Markov chains not so useful for most agents
 - O Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - O Underlying Markov chain over states X
 - O You observe outputs (effects) at each time step

Example: Weather HMM

O An HMM is defined by:

O Initial distribution: $P(X_1)$

O Transitions: $P(X_t \mid X_{t-1})$

O Emissions: $P(E_t \mid X_t)$

R_{t-1}	R_{t}	$P(R_{t} R_{t-1})$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Example: Ghostbusters HMM

- O $P(X_1) = uniform$
- P(X|X') = usually move clockwise, but sometimes move in a random direction or stay in place
- O $P(R_{ij}|X)$ = same sensor model as before: red means close, green means far away.

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

 $P(X_1)$

1/6	16	1/2
0	1/6	0
0	0	0

P(X | X' = <1,2>)

Video of Demo Ghostbusters – Circular Dynamics -- HMM

Conditional Independence

- O HMMs have two important independence properties:
 - O Markov hidden process: future depends on past via the present
 - O Current observation independent of all else given current state

Real HMM Examples

• Robot tracking:

- Observations are range readings (continuous)
- O States are positions on a map (continuous)

• Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- O States are specific positions in specific words (so, tens of thousands)

• Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_t(X) = P_t(X_t \mid e_1, ..., e_t)$ (the belief state) over time
- We start with $B_1(X)$ in an initial setting, usually uniform
- \circ As time passes, or we get observations, we update B(X)
- O The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Example from Michael Pfeiffer

Prob 0 1 t=0

Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

Prob 0 1

Prob 0 1

Prob 0 1

Inference: Find State Given Evidence

• We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

- O Idea: start with P(X₁) and derive B_t in terms of B_{t-1}
 - o equivalently, derive B_{t+1} in terms of B_t

Two Steps: Passage of Time + Observation

Inference: Base Cases

$$P(X_1|e_1)$$

$$P(X_1|e_1) = \frac{P(X_1, e_1)}{\sum_{x_1} P(x_1, e_1)}$$

$$P(X_1|e_1) = \frac{P(e_1|X_1)P(X_1)}{\sum_{x_1} P(e_1|x_1)P(x_1)}$$

$$P(X_2)$$

$$P(X_2) = \sum_{x_1} P(x_1, X_2)$$

$$P(X_2) = \sum_{x_1} P(X_2|x_1) P(x_1)$$

Passage of Time

Assume we have current belief P(X | evidence to date)

$$B(X_t) = P(X_t|e_{1:t})$$

• Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t)B(x_t)$$

- O Basic idea: beliefs get "pushed" through the transitions
 - O With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

O As time passes, uncertainty "accumulates"

T = 1

T = 2

(Transition model: ghosts usually go clockwise)

T = 5

Observation

• Assume we have current belief P(X | previous evidence):

$$B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$$

O Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t})/P(e_{t+1}|e_{1:t})$$

$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

Or, compactly:

$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

• As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

 $B(X) \propto P(e|X)B'(X)$

Example: Weather HMM

R_{t}	R_{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R _t	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

The forward algorithm does both at once (and doesn't normalize)

The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

We can derive the following updates

$$P(x_{t}|e_{1:t}) \propto_{X_{t}} P(x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_{t}|x_{t-1}) P(e_{t}|x_{t})$$

$$= P(e_{t}|x_{t}) \sum_{x_{t-1}} P(x_{t}|x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end...

Pacman – Sonar

[Demo: Pacman - Sonar - No Beliefs(L14D1)]

Video of Demo Pacman – Sonar (with beliefs)

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

.	

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, $N \ll |X|$
 - O Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - O So, many x may have P(x) = 0!
 - O More particles, more accuracy
- For now, all particles have a weight of 1

Particles: (3,3) (2,3) (3,3) (3,2) (3,3) (3,2) (1,2) (3,3) (3,3) (2,3)

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(3,3)
(2,3)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$

$$B(X) \propto P(e|X)B'(X)$$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particles: (3,2) (2,3) (3,2) (3,1) (3,3) (3,2) (1,3) (2,3) (3,2)

Particles:

(2,2)

(2,3) w=.2

(3,2) w=.9

(3,1) w=.4

(3,3) w=.4

(3,2) w=.9

(1,3) w=.1

(2,3) w=.2

(3,2) w=.9

(2,2) w=.4

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particles:

(3,2) w=.9

(2,3) w=.2

(3,2) w=.9

(3,1) w=.4

(3,3) w=.4

(3,2) w=.9

(1,3) w=.1

(2.3) w=.2

(3,2) w=.9

(2,2) w=.4

(New) Particles:

(3,2)

(2,2)

(3,2)

(2,3)

(3,3) (3,2)

(1,3)

(1,3)

(2,3)

(3,2)

(3,2)

Recap: Particle Filtering

• Particles: track samples of states rather than an explicit distribution

Video of Demo – Moderate Number of Particles

Video of Demo – One Particle

Video of Demo – Huge Number of Particles

Robot Localization

• In robot localization:

- O We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- O State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- O Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Dieter Fox, et al.]

Particle Filter Localization (Laser)

[Dieter Fox, et al.] [Video: global-floor.gif]

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - O State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1

Particle Filter SLAM – Video 2

[Dirk Haehnel, et al.]