Exercise 1: Conduct the quadrat test for complete spatial randomness on the cells data set. Carry out the analysis using a 2x2 grid, a 3x3 grid, and a 4x4 grid. Is there evidence of regularity or clustering on one scale but not the others? Use $\alpha = .05$, and carry out just 2-sided test.

Please summarize your results, including a table of counts for each for each of the grid sizes and data sets.

the cell data is included in the spatstat package.

```
library(spatstat)
data(cells)
```

Sample code, which you'll need to modify:

```
tmp <- quadratcount(cells, nx=2, ny=2)
tmp
plot(tmp)
quadrat.test(cells, nx=2, ny=2, alternative="two.sided")</pre>
```

Solution:

Let's recall a few ideas behind conducting a formal test for CSR using quadrat data. First note that we obtain counts y_i for each of the m quadrats, and remember that as a rule of thumb it is suggested that we have m > 6 and $y_i > 5$. Our test statistic, the index of dispersion (or χ^2 goodness of fit) is computed by,

$$I = \frac{(m-1)s^2}{\bar{v}}.$$

Note that *I* is approximately distributed by a χ^2 with (m-1) degrees of freedom. Computing the p-values for the various tests we get, two-tailed (2x the smaller direction),

 H_0 : CSR H_a : Not CSR

right-tailed,

 H_0 : CSR

 H_a : Clustered

and left-tailed,

 $H_0: \mathrm{CSR}$

 H_a : Regular

Conducting the tests in R we get the following counts, p-values, and test statistics,

	2	3	4
p-value	0.1518	0.3391	0.0007283
test statistic	0.47619	4.2857	2.9524
count			2
	3		
	3		
	2		
	2		
	3		
	4		
	3		
	2		
	2		
	2		
	2		
	3		
	4		
	2		
	3		