Рубежный контроль №1

Киреев Андрей ИУ5-64Б

Задача №1.

Для заданного набора данных **(googleplaystore.csv)** проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Для студентов группы ИУ**5-64**Б, ИУ**5**Ц**-84**Б - для произвольной колонки данных построить график "Скрипичная диаграмма (violin plot)".

Загрузка библиотек:

```
In [147]:
```

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

Загрузка датасета:

```
In [148]:
```

```
data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/googleplaystore.csv")
```

In [149]:

```
data.head()
```

Out[149]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating	Genres	Last Updated	Cu
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19 M	10,000+	Free	0	Everyone	Art & Design	January 7, 2018	
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0	Everyone	Art & Design;Pretend Play	January 15, 2018	
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7 M	5,000,000+	Free	0	Everyone	Art & Design	August 1, 2018	
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen	Art & Design	June 8, 2018	V; d€
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone	Art & Design;Creativity	June 20, 2018	

Количество строк/столбцов: In [150]: data.shape Out[150]: (10841, 13)Проверка на наличие пропусков: In [151]: data.isnull().sum() Out[151]: 0 App Category 0 1474 Rating 0 Reviews 0 Size 0 Installs 1 Type Price 0 Content Rating 1 Genres 0 Last Updated 8 Current Ver Android Ver 3 dtype: int64 Т.к. пропусков не много, а нам нужен чистый датасет, то удалим нулевые строки: In [152]: data = data.dropna(axis=0) data.shape Out[152]: (9360, 13)In [153]: data.isnull().sum() Out[153]: 0 App 0 Category 0 Rating Reviews 0 Size 0 0 Installs

Определим типы столбцов:

0

0

0

0

0

0

```
In [154]:
```

Type

Price

Genres

Content Rating

Last Updated

Current Ver Android Ver

dtype: int64

```
Out[154]:
App
                   object
                   object
Category
                  float64
Rating
Reviews
                   object
Size
                   object
Installs
                   object
Type
                   object
Price
                   object
Content Rating
                   object
Genres
                   object
Last Updated
                   object
Current Ver
                   object
Android Ver
                   object
dtype: object
Будем использовать в качестве целевого признака переменную Rating
Приведем некоторые категориальные признаки к числовому формату:
In [155]:
#Преобразование Reviews
arr before = []
arr after = []
for i in range(data.shape[0]):
    arr before.append(data["Reviews"].iloc[i])
    data["Reviews"].iloc[i] = int(data["Reviews"].iloc[i])
    arr after.append(data["Reviews"].iloc[i])
print("До кодирования:")
print(arr before[:50])
print("После кодирования:")
print(arr after[:50])
data = data.astype({"Reviews": "int64"})
/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1732: SettingWithCopyWarni
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user g
uide/indexing.html#returning-a-view-versus-a-copy
  self. setitem single block(indexer, value, name)
До кодирования:
['159', '967', '87510', '215644', '967', '167', '178', '36815', '13791', '121', '13880',
'8788', '44829', '4326', '1518', '3632', '27', '194216', '224399', '450', '654', '7699',
'118', '192', '20260', '203', '136', '223', '1120', '227', '5035', '1015', '353', '564',
'8145', '36639', '158', '591', '117', '176', '295221', '2206', '26', '174531', '1070', '8
5', '845', '367', '1598', '284']
После кодирования:
[159, 967, 87510, 215644, 967, 167, 178, 36815, 13791, 121, 13880, 8788, 44829, 4326, 151
8, 3632, 27, 194216, 224399, 450, 654, 7699, 118, 192, 20260, 203, 136, 223, 1120, 227, 5
035, 1015, 353, 564, 8145, 36639, 158, 591, 117, 176, 295221, 2206, 26, 174531, 1070, 85,
845, 367, 1598, 284]
In [156]:
#Преобразование Installs
arr before = []
arr after = []
for i in range(data.shape[0]):
    str = data["Installs"].iloc[i][:-1]
    arr before.append(str)
    data["Installs"].iloc[i] = int(str.replace(",", ""))
    arr after.append(data["Installs"].iloc[i])
```

data.dtypes

print("До кодирования:")

```
print(arr before[:50])
print("После кодирования:")
print(arr after[:50])
data = data.astype({"Installs": "int64"})
/usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1732: SettingWithCopyWarni
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_g
uide/indexing.html#returning-a-view-versus-a-copy
        self. setitem single block (indexer, value, name)
До кодирования:
 ['10,000', '500,000', '5,000,000', '50,000,000', '100,000', '50,000', '50,000', '1,000,00
0', '1,000,000', '10,000', '1,000,000', '1,000,000', '10,000,000', '100,000', '100,000',
'500,000', '10,000', '5,000,000', '10,000,000', '100,000', '100,000', '500,000', '500,000', '10,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,000', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100,00', '100
00,000', '10,000', '100,000', '500,000', '5,000,000', '10,000', '500,000', '10,000', '100
 ,000', '10,000,000', '100,000', '10,000', '10,000,000', '100,000', '100,000', '100,000',
'100,000', '1,000,000', '100,000']
После кодирования:
 [10000, 500000, 5000000, 50000000, 100000, 50000, 50000, 1000000, 1000000, 1000000
 , 1000000, 10000000, 100000, 100000, 500000, 10000, 5000000, 10000000, 100000, 100000, 50
0000, 50000, 10000, 500000, 100000, 100000, 100000, 100000, 50000, 100000, 100000, 100000,
100000, 500000, 5000000, 10000, 500000, 10000, 100000, 1000000, 100000, 100000, 1000000,
100000, 100000, 100000, 100000, 1000000, 100000]
In [157]:
 #Преобразование Туре
 arr before = []
arr after = []
for i in range(data.shape[0]):
        arr before.append(data["Type"].iloc[i])
arr = []
leType = LabelEncoder()
le arr = leType.fit transform(data["Type"])
data["Type"] = le arr
for i in range(data.shape[0]):
        arr after.append(data["Type"].iloc[i])
print("До кодирования:")
print(arr before[:50])
print("После кодирования:")
print(arr after[:50])
data = data.astype({"Type":"int64"})
До кодирования:
['Free', 'Free', 'Free
ee', 'Free', '
', 'Free', 'Fr
 'Free', 'Free', 'Free', 'Free']
После кодирования:
In [158]:
 #Преобразование Price
arr before = []
arr_after = []
 for i in range(data.shape[0]):
                arr before.append(data["Price"].iloc[i])
                if data["Price"].iloc[i] != "0":
                               data["Price"].iloc[i] = data["Price"].iloc[i][1:]
                               data["Price"].iloc[i] = float(data["Price"].iloc[i])
                              data["Price"].iloc[i] = 0
                arr after.append(data["Price"].iloc[i])
print("До кодирования:")
print(arr before[:50])
```

```
print ("После кодирования:")
 print(arr_after[:50])
 data = data.astype({"Price":"float64"})
 /usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py:1732: SettingWithCopyWarni
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user g
uide/indexing.html#returning-a-view-versus-a-copy
         self. setitem single block(indexer, value, name)
До кодирования:
После кодирования:
 In [159]:
 #Преобразование Content Rating
 arr before = []
 arr_after = []
 for i in range(data.shape[0]):
          arr before.append(data["Content Rating"].iloc[i])
 leContent = LabelEncoder()
 le_arr = leContent.fit_transform(data["Content Rating"])
 data["Content Rating"] = le arr
 data["Content Rating"].unique()
 for i in range(data.shape[0]):
         arr after.append(data["Content Rating"].iloc[i])
print("До кодирования:")
print(arr before[:50])
print("После кодирования:")
print(arr after[:50])
data = data.astype({"Content Rating":"int64"})
До кодирования:
 ['Everyone', 'Everyone', 'Ever
e', 'Everyone', 'Everyone', 'Everyone', 'Teen', 'Everyone', 'Every
yone', 'Everyone', 'Everyone',
one', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone',
 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Every
 ', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'Everyone', 'E
veryone', 'Everyone', 'Everyone', 'Everyone']
После кодирования:
 [1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,
In [160]:
 #Преобразование Category
 arr before = []
arr after = []
 for i in range(data.shape[0]):
          arr before.append(data["Category"].iloc[i])
 leCategory = LabelEncoder()
 le arr = leCategory.fit transform(data["Category"])
data["Category"] = le arr
data["Category"].unique()
 for i in range(data.shape[0]):
          arr after.append(data["Category"].iloc[i])
print("До кодирования:")
print(arr before[:50])
print("После кодирования:")
print(arr after[:50])
data = data.astype({"Category":"int64"})
До кодирования:
 ['ART_AND_DESIGN', 'ART_AND_DESIGN', 'ART_AND_DE
```

, 'ART_AND_DESIGN', 'ART_AND_D

In [161]:

#Результаты преобразования data.dtypes

Out[161]:

App	object
Category	int64
Rating	float64
Reviews	int64
Size	object
Installs	int64
Type	int64
Price	float64
Content Rating	int64
Genres	object
Last Updated	object
Current Ver	object
Android Ver	object
dtype: object	

In [162]:

data.head()

Out[162]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating	Genres	Last Updated	Current Ver	Android Ve
0	Photo Editor & Candy Camera & Grid & ScrapBook	0	4.1	159	19 M	10000	0	0.0	1	Art & Design	January 7, 2018	1.0.0	4.0. and uլ
1	Coloring book moana	0	3.9	967	14M	500000	0	0.0	1	Art & Design;Pretend Play	January 15, 2018	2.0.0	4.0. and uլ
2	U Launcher Lite – FREE Live Cool Themes, Hide	0	4.7	87510	8.7 M	5000000	0	0.0	1	Art & Design	August 1, 2018	1.2.4	4.0. and uլ
3	Sketch - Draw & Paint	0	4.5	215644	25M	50000000	0	0.0	4	Art & Design	June 8, 2018	Varies with device	4.2 and u
4	Pixel Draw - Number Art Coloring Book	0	4.3	967	2.8M	100000	0	0.0	1	Art & Design;Creativity	June 20, 2018	1.1	4.4 and uլ
4													

Выведем скрипичную диаграмму в соответствии с вариантом:

In [163]:

```
sns.violinplot(x=data['Rating'])
```

Out[163]:

<matplotlib.axes. subplots.AxesSubplot at 0x7efcb886d790>

In [164]:

```
sns.violinplot(x='Content Rating', y='Rating', data=data)
```

Out[164]:

<matplotlib.axes. subplots.AxesSubplot at 0x7efcb86b0090>

In [165]:

```
fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(10,10))
mask = np.zeros_like(data.corr(), dtype=np.bool)
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `np.b ool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.

Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations

0.6

Out[165]:

<matplotlib.axes. subplots.AxesSubplot at 0x7efcb85d0d50>

Вывод: В соответствии с корреляционной матрицей, можно сделать вывод, что с целевым признаком **Rating** остальные признаки слабо коррелируют. Из-за слабой связанности признаков между собой данный датасет мало пригоден к обучению модели.

Нецелевые признаки **Reviews** и **Installs** сильно коррелируют между собой, поэтому можно оставить только один - **Installs**