ER DIAGRAM

Instructor

Dr. Sanam Shahla Rizvi

PhD in Information and Communication from Ajou University, Korea

ENTITY-RELATIONSHIP MODEL

- Entity-Relationship (ER) model is a popular conceptual data model.
- This model is used in the design of database applications
- The model describes data to be stored and the constraints over the data.
- E-R model views the real world as a collection of **entities** and **relationships** among entities.

OUTLINE

- Entity
 - Relationship
 - Binary relationship
 - Weak Entity/Strong Entity
 - Class Hierarchy
 - Relationship
 - Non-Binary relationship

- An **entity** is an object in the real world that is distinguishable from other objects
 - E.g.,
 - A classroom
 - A teacher
 - The address of the teacher

• An **entity** is described using a set of **attributes** whose values are used to distinguish one entity from another of same type

• An **entity set** is a collection of entities of the same type

• All entries in a given entity set have the same attributes (the values may be different).

employee = (name, address, age, phone)

name = Wasif Alu address = G8, Islamabad age = 28 phone = 1234-5667

employee 1

employee 2

ER DIAGRAM

• The ER model can be presented graphically by an ER diagram

8

DIFFERENT ATTRIBUTE TYPES

- Simple attribute
- Composite attribute
- Multi-valued attribute
- Derived attribute

SIMPLE ATTRIBUTE

• Simple attribute

• contains a single value

COMPOSITE ATTRIBUTE

Composite attribute

• Contains several components

Multi-valued attribute

Multi-valued attribute

Contains more than one value

DERIVED ATTRIBUTE

Derived attribute

Computed from other attributes

o Key

- A set of attributes that can uniquely identity an entity
- E.g., Identity card number

Composite Key

- Two or more attributes are used to serve as a key
- E.g., Name or Address alone cannot uniquely identify an employee, but together they can

- An entity may have more than one key
- E.g., {CNIC #} and {Name, Address} both are two keys

- A minimal set of attributes that uniquely identifies an entity is called a candidate key.
- E.g., {CNIC #} and {Name, Address} both are two candidate keys

If there are many candidate keys, we should choose one candidate key as the **primary key**.

- o Sometimes, artificial keys can be created
- E.g., if there is no CNIC # stored in Employee, we can create a new attribute called "EmpID"

OUTLINE

- Entity
- Relationship
 - Binary relationship
 - Weak Entity/Strong Entity
 - Class Hierarchy
 - Relationship
 - Non-Binary relationship

RELATIONSHIP

- A relationship is an association among several entities
- The **degree** refers to the number of entity sets that participate in a relationship set.
- Relationship sets that involve two entity sets are **binary** (or degree two).
- Relationships among more than two entity sets are rare.

BINARY RELATIONSHIP

- Employees work in departments
- "Work_in" is a relationship between Employees and Departments

BINARY RELATIONSHIP

• A relationship can also have attributes which are used to describe the record information about the **relationship** (instead of the information of each individual entity).

RECURSIVE RELATIONSHIP

Recursive Relationship

- Entity sets of a relationship need not be distinct
- Sometimes, a relationship might involve two entities in the same entity set
- E.g., Employees related to employees

RECURSIVE RELATIONSHIP

 Since employees report to other employees

- Every relationship in "Reports_To" is of form (emp1, emp2) where both emp1 and emp2 are entities in employees.
- However, they play different roles.
 - emp1 reports to emp2, which is reflect in the role indicators supervisor and subordinate in the diagram

CONSTRAINTS

- The model describes data to be stored and the **constraints** over the data.
- Cardinality Ratio specifies the number of relationship instances in which an entity can participate.

CONSTRAINTS

• The mapping of a binary relationship can be classified into the following cases:

ONE-TO-ONE RELATIONSHIP

- One-to-one (1-to-1) relationship
 - An entity in A is related to at most one entity in B
 - An entity in B is related to at most one entity in A.

ONE-TO-ONE RELATIONSHIP

- A customer is associated with at most one loan via the relationship borrower
- A loan is associated with at most one customer via borrower

ONE-TO-MANY RELATIONSHIP

- One-to-many (1-to-Many) relationship
 - An entity in B can be associated with at most one entity in A

ONE-TO-MANY RELATIONSHIP

- A loan is associated with at most one customer via borrower
- A customer is associated with several (including
 loans via borrower

MANY-TO-ONE RELATIONSHIP

- Many-to-one (Many-to-1) relationship
 - Similar to 1-to-many

MANY-TO-ONE RELATIONSHIP

- A loan is associated with several (including 0) customers via borrower,
- A customer is associated with at most one loan via borrower

MANY-TO-MANY RELATIONSHIP

- Many-to-many Relationship
 - An entity in A is associated with any number of entities in B
 - An entity in B is associated with any number of entities in A
 - That is, there is no restriction in the mapping.

MANY-TO-MANY RELATIONSHIP

- A customer is associated with several (possibly 0) loans via borrower
- A loan is associated with several (possibly 0) customers via borrower

PARTICIPATION CONSTRAINT

- The above constraints (e.g., 1-to-many) tells us that a customer borrows some loans.
- A natural question to ask is to whether every loan is borrowed by at least one customer.
- Suppose that each loan is borrowed by at least one customer. Such a constraint is called a **participation constraint**.

PARTICIPATION CONSTRAINT

• We can classify participation in relationships as follows.

Total

• Each entity in the entity set must be associated in at least one relationship

Partial

• Each entity in the entity set may (or may not) be associated in a relationship

PARTICIPATION CONSTRAINT

- The participation of loan in borrower is total
 - Every loan must be borrowed by a customer
- The participation of customer in borrow is partial
 - Some customers may (or may not) borrow loans

OUTLINE

- Entity
- Relationship
 - Binary relationship
- Weak Entity/Strong Entity
 - Class Hierarchy
 - Relationship
 - Non-Binary relationship

WEAK ENTITIES

Strong Entity

- An entity can be uniquely identified by some attributes related to this entity
- E.g., Employee has an attribute EmpID (which can be used to uniquely identify each employee)

• Weak Entity

• An entity cannot be uniquely identified by all attributes related to this entity

WEAK ENTITIES

Example

- Suppose employees can purchase insurance policies to cover their dependants.
- The attribute of the dependents entity set are pname and age
- The attribute pname cannot uniquely identify a dependent
- Dependent is a weak entity set.
- A dependent can only be identified by considering some of its attributes in conjunction with the primary key of employee (identifying entity set).
- The set of attributes that uniquely identify a weak entity for a given owner entity is called a **discriminator** or **partial key**.

- A dependent cannot be uniquely identified by "pname".
- Note:
 - A child may not be old enough to have a CNIC number
 - Even if he/she has a CNIC number, the company may not be interested in keeping it in the database.

41

- Definition: If a weak entity set W is dependent on a strong entity set E, we say that E owns W.
 - E.g., Employee owns Dependent

- A payment itself cannot be identified by "payment-number"
- loan owns payment

OUTLINE

- Entity
- Relationship
 - Binary relationship
- Weak Entity/Strong Entity
- Class Hierarchy
- Relationship
 - Non-Binary relationship

• Sometimes, it is natural to classify the entities in an entity set into subclasses

- Attributes are **inherited** by the entity set in the subclass.
 - E.g., the attributes defined for an Hourly_Emps entity are the attributes for Employees plus that of Hourly_Emps
- A class hierarchy can be viewed in one of the two ways.
 - A class is specialized into subclasses.
 - The subclasses are generalized by a superclass.

• We can specify two kinds of constraints with respect to IS A hierarchies

Overlap constraints

• Determine whether two subclasses are allowed to contain the same entity e.g., Can an employee be an Hourly_Emps as well as a Contract_emps entity?

Covering constraints

• Determine whether the entities in the subclasses collectively include all entities in the superclass. E.g., Does every Employees entity also have to be an Hourly_Emps or a Contract_emps

- Reason why we use class hierarchy
 - Add descriptive attribute that make sense only for the entities in a subclass
 - E.g., Hourly_wages does not make sense for a Contract_Emps entity.
 - Identify the set of entities that participate in some relationships
 - E.g., We may want to have a relationship called "Bonus" with Contract_Emps (not Hourly_Emps)

OUTLINE

- Entity
- Relationship
 - Binary relationship
- Weak Entity/Strong Entity
- Class Hierarchy
- Relationship
 - Non-Binary relationship

Non-binary Relationship

- Ternary Relationship
 - (i.e., a relationship involving 3 entities)
- An employee works for the department in a location

Non-binary Relationship

• In general, any non-binary relationship can be represented using binary relationships by creating an artificial entity set.

CLASS WORK

• Construct an ER diagram for a university department headed by a chair person. Department has a number of faculty members and students. Where each of student is enrolled in one/many classes/courses and each of faculty member teaches one/many courses.

HOME WORK

• Construct an ER diagram for a car company that has a set of customers, each of whom owns one/many car. Each car has associate with it zero to any number of recorded accidents.