ち	O	2	12	42	69	99		
8	6	(1	18	15	9	87		
201	250		16	56	78	0		
		-	ļ				+ ₩	

10×10

-1	0	١
-1	0	١
-1	O	ı

$$G_y(i,j) = \sum_{k=-1}^1 \sum_{l=-1}^1 I(i+k,j+l) \cdot G_y(k+1,l+1)$$

T considered to be the mean of G

$$G_X(i,j) = \sum_{k=-1}^{1} \sum_{l=-1}^{1} I(i+k,j+l) \cdot G_X(k+1,l+1)$$

$$\mathrm{Edge}(i,j) = egin{cases} 1 & \mathrm{if}\ G(i,j) > T \\ 0 & \mathrm{if}\ G(i,j) \leq T \end{cases}$$

$$M(i,j) = \sqrt{G_x(i,j)^2 + G_y(i,j)^2}$$