Architecture of Grammar, day 5 DGfS Summerschool 2024 University of Göttingen

Uli Sauerland Leibniz-Centre General Linguistics (ZAS), Berlin

DGfS Summerschool 2024, University of Göttingen, Aug. 12-16, 2024

Recap

- 'movement' relates multiple independent, semantically compatible DPs
- derivational view of 'movement' reliant on the Y-model creating identical copies / plain multidominance not tenable
- sketch of a model starting with planar LFs

Earlier argument for semantically contentful traces (Sauerland 2004):

- (2) a.*Polly visited every town that is near the lake Erik did Δ . (Δ = visit t)
 - b. Polly visited every town that is near the one Erik did Δ . (Δ = visit t)

Effability & Economy

Can any conceptual representation that can be articulated in one language also articulated in another if the basic concepts are expressible in both languages?

Counterexample:

- (1) a. Der wievielte Tag des Monats ist heute? (GERMAN) the how-many-th Tag des Monats is today
 - b. *The how manyth day of the month is (it) today?
 - c. Which day of the month is today?

But semantic and syntactic conditions exhibit more flexibility.

cases: Scope and Binding Economy

Wide scope blocked first, then becomes available:

- (2) Some boy admires every teacher. Every girl does too. $(\exists \gg \forall, *\forall \gg \exists)$
- (3) Some boy admires every teacher. Some girl does too. $(\exists \gg \forall, \forall \gg \exists)$

Long binding blocked first, then becomes available:

- (4) a. John said that he likes his mother. Bill does too.
 - b. *Bill said that John likes Bill's mother.
- (5) a. John said that Mike likes his mother. Bill does too.
 - b. Bill said that Mike likes Bill's mother.

cases: Superiority and Weak Crossover

Pesetsky (1987): Object over subject blocked first, then becomes available.

- (6) a. Who invited who?
 - b. *Who did who invite?
- (7) a. Which girl invited which boy?
 - b. Which boy did which girl invite?

Weak crossover (Postal 1993): Binding blocked first, then becomes available.

- (8) *Which lawyer_i did his_i clients hate?
- (9) Which lawyer_i did only his_i clients hate?

cases: Inclusive Plurals

 Φ on pronominals (after Sauerland 2002, Percus 2005): Inclusive plural blocked first, then becomes available.

- (10) *Everyone who has only a single son invited them.
- (11) Everyone who has one or more sons invited them.

Examples with duality:

- (12) Everyone who has two sons invited *all/both of them.
- (13) Everyone who has two or more sons invited all/*both of them.

Plural address of singular individual (Sauerland 2002, Wang 2023):

- (14) [addressing friend] *Wie geht es Ihnen? (How are they?)
- (15) [addressing boss] Wie geht es Ihnen?

Accounting for effability

Y-model:

■ requires look-ahead to meaning

Meaning first model:

- preference for economical conceptual representations
- closely related to exhaustification

Binding Economy

Longer dependencies are less economical:

(14) [[the 'J] [
$$\lambda_x$$
 [@ [x [said [he $_x$ [λ_y [y [like [the [his $_y$ mother]]]]]]]]]]] (15) *[[the 'J] [λ_x [@ [x [said [he $_x$ [like [the [his $_x$ mother]]]]]]]]]

Relevant alternatives of p for economy calculation are structures q with:

- \blacksquare q must have same meaning as p
- \blacksquare q must only contain the same atoms p contains
- \blacksquare q can have a different pronunciation for p (contra Fox 1998)

Only the most economical structure (i.e. lowest dependency complexity) is licit.

Scope Economy

Fox (1998): lowering of the raised subject for narrow scope

- (16) a. [[every girl] λ_x [[every teacher] λ_y [x [likes y]]]
 - b. [[every teacher] λ_y [[every girl] [likes y]]]]

Sauerland (2018): representations different

(19) a. [[every girl] [λ_x [[every teacher] [λ_y [@ [x [admire y]]]]]]] b. *[[every teacher] [λ_y [[every girl] [λ_x [@ [x [admire y]]]]]]]

Dependency length exponentially contributes to complexity.

(10) Dependency Complexity (DC) Let $\operatorname{var}(\mathbf{A})$ be the set of occurrences of bound⁶ variables in A and $\operatorname{len}(x)$ be the number of complex concept units between a single occurrence $x \in \operatorname{var}(\mathbf{A})$ and its binder λ_x within **A**. Then we define the dependency complexity of **A** as:

$$DC(\mathbf{A}) = \sum_{x \in var(\mathbf{A})} 2^{len(x)}$$

Account of superiority

- (17) a. Which girl invited which boy?
 - b. Which boy did which girl invite?

Singular which has uniqueness presupposition, who doesn't:

- (18) a. Which girl invited the teacher? Mary / #None of them / Mary and Sue.
 - b. Who invited the teacher? Mary / No one / Mary and Sue.

The uniqueness presuppositions project differently in (17a) and (17b):

- (19) a. Each girl invited exactly one boy.
 - b. Each boy invited exactly one girl.

(24)	a.	Abe Ben Cid	b.	Abe Ben Cid	с.	Abe Ben Cid
	Ann	*	Ann		Ann	*
	Bea	*	Bea	* *	Bea	* *
	Cel	*	Cel	*	Cel	

Weak Crossover

- (20) a. *? Which lawyer did his clients hate?
 - b. Which lawyer's clients hate him?
- (21) a. Which lawyer did only his clients hate?

 Joe is the only lawyer x such that x's clients hate Joe
 - b. Only which lawyer's clients hate him?

 Joe is the only lawyer's x such that x's clients hate x

Strong crossover doesn't improve:

(22) *Which lawyer does only he hate?

Predicted if only he must bind the lower position.

Inclusive plurals

Strong plural interpretation derives from exh:

(23)
$$\operatorname{exh}_{\{\operatorname{SG}(x)\}}\operatorname{PL}(x) = \neg \operatorname{atom}(x)$$

Pruning of SG allowed if singular and unpruned plural not possible:

- (24) Everyone who has one or more sons invited them / *him.
- Pruning of SG not allowed in Percus-style example:
- (25) Everyone who has only a single son invited *them / him.

Additional economy measure: Pruning of an alternatives is uneconomical.

Also accounts for politeness plurals (and otherwise unmarked forms).

(26) [addressing boss] Wie geht es Ihnen / *[Dir]? (How are they/*you)?

Relation to exhaustification

Basic exhaust operator (Fox 2008):

(27)
$$\operatorname{exh}_{\mathcal{C}} p = p \land \bigwedge \{ \neg q \mid q \in \operatorname{Excl}(\mathcal{C}, p) \}$$

Excl(C, p) is the intersection of all maximal subsets C' of C such that $\{\neg q \mid q \in C'\}$ consistent with p.

Disjunction case:

(28) A
$$\vee$$
 B – possible elements of C: $A, B, A \wedge B, \neg A \wedge B, A \wedge \neg B, \dots$

Katzir's (2006) condition: Elements of C must not be structurally more complex than p.

Innocent exclusion: A not excluded, B not excluded.

(29)
$$\mathsf{Excl}(p \lor q, p) = \{p \land q\}$$

Structural complexity (from Katzir 2007)

- (18) Substitution Source (first version, to be revised in 41): Let ϕ be a parse tree. The *substitution source* for ϕ , written as $L(\phi)$, is the lexicon of the language.
- (19) Structural Complexity: Let ϕ, ψ be parse trees. If we can transform ϕ into ψ by a finite series of deletions, contractions, and replacements of constituents in ϕ with constituents of the same category taken from $L(\phi)$, we will write $\psi \lesssim \phi$. If $\psi \lesssim \phi$ and $\phi \lesssim \psi$ we will write $\phi \sim \psi$. If $\psi \lesssim \phi$ but not $\phi \lesssim \psi$ we will write $\psi < \phi$.
- (20) Structural Alternatives: Let ϕ be a parse tree. The set of *structural alternatives* for ϕ , written as $A_{str}(\phi)$, is defined as $A_{str}(\phi) := \{\phi' : \phi' \lesssim \phi\}$.

Blocking exclusion of simpler structures

Assume $\psi < \phi$ and $\psi \equiv \phi$: Blocking of too complex structures could be predicted:

(30) if $\psi \in \mathbf{Excl}(\phi, C)$, then $\mathbf{exh}(\phi) = \phi \wedge \neg \psi \wedge \cdots = \#$

Magri's (2009) constraint: If an alternative ψ is contextually equivalent to the assertion ϕ it cannot be pruned [restated].

- (31) #Some Italians live in a beautiful country.
- Our situation: ϕ asserted, ψ equivalent:
- (32) Magri's constraint applies also to exclusion of alternatives of ϕ that are structurally distinct.