Project Name

Author

Sunday 2nd June, 2024

Contents

1	Introduction	1			
2	Design	2			
3	3 Implementation				
4	Conclusion	4			
Re	eferences	5			
Αŗ	A.1 Equations	6 6 6 7			
Αr	opendix B Program Code	7			

1 Introduction

Introduction to Project. Example cite $^{[1]}$ and example references are in appendix A.

2 Design

How this project is designed to do

3 Implementation

How the project was implemented

4 Conclusion

How the project turned out in the end

References

[1] Dr. Michael J. Robers. *Fundamentals of Signals & Systems*. McGraw-Hill, first edition, 2008.

Appendix A Example Elements

A.1 Equations

Equations with numbers with label A.1:

$$y = mx + c (A.1)$$

Multiline equation (numbered)

$$e(t) = \omega_{setpoint} - \omega_{feedback}$$

$$u = K_p e(t) + K_d \frac{e(t)}{dt} + K_i \int_0^t e(t)dt$$
(A.2)

Equation without number

$$f(x) = g(\omega)$$

Inline mathematics $u(x) = \delta(x)$

Multiline equation (non-numbered)

$$e(t) = \omega_{setpoint} - \omega_{feedback}$$
$$u = K_p e(t) + K_d \frac{e(t)}{dt} + K_i \int_0^t e(t) dt$$

A.2 Lists

- Item 1
- Item 2

To Do Box:

- Task 1
- Task 2
- Task 3

A.3 Tables

Non captioned Tables:

Date	Time	Task
7th April 2014	2hrs	Project Introduction
1st May 2014	2hrs	Final Design Logistics

Captioned Tables:

Date	Time	Task
7th April 2014	2hrs	Project Introduction
1st May 2014	2hrs	Final Design Logistics

Table A.1: Example of a customized captioned tabularx table

A.4 Images

Auto placed Picture

Figure A.1: Variable Length Manifold

Appendix B Program Code

Hello World in C (from file)

```
#include <stdio.h>

int main(void)
{
    printf("hello, world\n");
}
```

Hello World in python (inline)

```
print("Hello World")
```