DESIGN PROCEDURES FOR LOW SPEED WATERJETS SUITABLE FOR APPLICATION IN AMP. (U) STEVENS INST OF TECH HOBOKEN NJ DAYIDSON LAB J K ROPER MAR 85 SIT-DL-85-9-2518 NA0014-83-C-0780 F/G 21/7 AD-A153 266 1/2 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

STEVENS INSTITUTE OF TECHNOLOGY

CASTLE POINT STATION
HOBOKEN, NEW JERSEY 07030

DAVIDSON LABORATORY

Report SIT-DL-85-9-2518 March 1985

DESIGN PROCEDURES FOR LOW SPEED WATERJETS SUITABLE FOR APPLICATION IN AMPHIBIOUS VEHICLES

by

John K. Roper Consultant

Prepared for

Code 1120
David W. Taylor Naval Ship Research and Development Center

Under

Office of Naval Research Contract N00014-83-C-0780

(DL Project 5154/160)

DISTRIBUTION STATEMENT A

Approved for public releases

Distribution Unlimited

REPRODUCED AT GOVERNMENT EXPERS

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER 2. CONT. ACCESSION NO.	S. RECIPIENT'S CATALOG NUMBER		
SIT DL 85-9-2518 HISO OUC			
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED		
	Final Report		
Design Procedures for Low Speed Waterjets	·		
Suitable For Application in Amphibious Vehicles	6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(a)		
John K. Roper	N00014-83-C-0780		
	July - October 1984		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Davidson Laboratory			
Stevens Institute of Technology			
Hoboken, New Jersey 07030	12. REPORT DATE		
Office of Naval Research	March 1985		
800 North Quincy Street	13. NUMBER OF PAGES		
Arlington, VA 22217 14 MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)	15. SECURITY CLASS. (of this report)		
David W. Taylor Naval Ship Research and	UNCLASSIFIED		
Development Center			
Code 1120	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
Bethesda, MD 20034			
16. DISTRIBUTION STATEMENT (of this Report)			
Approved for public release: Distribution unlimited			
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different fro	om Report)		
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identity by block number)		
Waterjet			
Amphibian			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)			
Trials performance of an axial flow pump, used for waterjet propulsion in a manned testcraft, was analyzed, compared to design predictions, and then used to modify pump design procedures as appropriate. Performance estimates have been made for a new waterjet unit for the testcraft, and also for a larger unit which could be used in a prototype high-speed amphibious vehicle.			

STEVENS INSTITUTE OF TECHNOLOGY DAVIDSON LABORATORY

Castle Point Station, Hoboken, New Jersey 07030

Report SIT-DL-85-9-2518

March 1985

DESIGN PROCEDURES FOR LOW SPEED WATERJETS SUITABLE FOR APPLICATION IN AMPHIBIOUS VEHICLES

Ву

John K. Roper Consultant

For David W. Taylor Naval Ship Research and Development Center Code 1120

under
Office of Naval Research
Contract N00014-83-C-0780

Davidson Laboratory Project 5154/160

APPROVED:

Daniel Savitsky

Director

TABLE OF CONTENTS

INTRODUCTION	1
PREDICTED PUMP PERFORMANCE CHARACTERISTICS	1
ANALYSIS OF PUMP TEST RESULTS	
ESTIMATED PUMP PERFORMANCE CHARACTERISTICS	ŧ
ESTIMATED PERFORMANCE FOR 14 INCH DIAMETER PUMP	7
ESTIMATED PERFORMANCE FOR 16 INCH DIAMETER PUMP	8
REFERENCES	9
APPENDICES A THROUGH F	

INTRODUCTION

The U.S. Marine Corps is supporting an effort to increase the efficiency of waterjet propulsion units in existing amphibious vehicles. Reference 1 details the design of three axial-flow pumps, including one for an existing LVTP-7A1 which runs at speeds below 8 miles per hour. The other two pumps were designed to provide cavitation-free performance at propulsive coefficients in the region of 40 to 45 percent at a vehicle water speed of 20 mph. State-of-the art composite material technology was used wherever possible to reduce weight.

Next, a manned testcraft was constructed to evaluate a 14-inch diameter waterjet unit at vehicle speeds up to 25 mph in water. Reference 2 presents an analysis of initial trials conducted in August 1983.

A more comprehensive trial of the testcraft was run in July 1984 and test data have been reduced and analyzed. This report presents:

- A comparison of waterjet design predictions and July 1984 trial results.
- A waterjet design procedure, modified as appropriate to reflect trial experience.
- Performance estimates for a new 14-inch diameter axialflow pump, designed for the existing testcraft.
- Performance estimates for a 16-inch diameter axial-flow pump unit, designed for possible use in a prototype highspeed amphibious vehicle.

This work was performed under Office of Naval Research Contract N00014-83-C-0780. Mr. Walter Zeitfuss of the U.S. Marine Corps Program Office, Code 112 DTNSRDC, was technical monitor of the project.

PREDICTED PUMP PERFORMANCE CHARACTERISTICS

Design procedures detailed in Reference 1 were applied to predict head losses in the waterjet system as follows.

- a. For inlet entrance lengths of 33, 23 and 19.5 inches
 - Head losses: at entrance; in duct; and due to impeller shaft.

- b. Losses due to duct-to-casing transition, shaft bearing tube and struts.
- c. Losses due to friction in impeller casing.
- d. Losses in 10.5-inch and 12.25-inch exit diameter nozzles; losses due to drag of pitot tubes and pitot tube rack.

All of these head losses were expressed as functions of flow rate Q. Total head loss, less inlet head recovery as a function of vehicle speed, must equal the pump head required $H_{\rm p}$. A prediction of power required to drive the pump is:

SHP =
$$H_p Q \rho g/550 \eta_p$$

where pump efficiency n_p was taken as 0.72 based on testcraft trial results. Appendix A presents nomenclature for this and subsequent sections. Appendix B contains all the calculations of pump performance predictions.

ANALYSIS OF PUMP TEST RESULTS

Waterjet testcraft trials in July 1984 covered an extensive matrix of three inlet lengths, three (nozzle dia./casing dia.) ratios, and three impeller area ratios. A review of trial data showed that a detailed analysis of the 1.5 area ratio impeller coupled with the 12.25-inch exit diameter nozzle and the three inlet lengths, would furnish the most useful results for comparison with design predictions.

Accordingly, tabulations of performance data for the chosen impeller and nozzle at each of the three inlet lengths are presented on Pages C-1 through C-3 of Appendix C. Trends of waterjet thrust, SHP, and overall propulsive coefficient with testcraft speed are charted on pages C-4, 5 and 6 respectively. Bollard pull test results for pump efficiency η_p and impeller advance coefficient J are charted against SHP on Pages C-7 and C-8 respectively. The trends show that η_p and J are reasonably constant with SHP, and therefore, η_p = 0.72 and J = 0.82 were chosen for use in subsequent design predictions.

Next, a tabulation was prepared to show a comparison between measured bollard pull and predicted jet thrust as calculated from measured flow velocity, Page C-9. A chart of measured and predicted thrust versus flow rate Q shows good agreement between the two sets of thrust values, Page C-10.

Inlet losses, in the bollard test condition were predicted by using the relationships developed in Appendix B and summarized on Page B-15. Predicted losses were then compared to static head measurements taken at the aft end of the inlet duct, for each of the three inlet lengths, Pages C-11 through C-16. Good agreement between predicted and measured head loss in the three inlets is demonstrated for the bollard test condition.

Actual head recovery in the inlet was assumed equal to the difference between inlet loss at forward speed and inlet loss at zero speed (bollard pull test) at a given flow rate Q. Tabulations on Pages C-17, 18 and 19 list measured static head at the aft end of the inlet duct during speed runs for each of the three inlet lengths; also listed are flow rate Q and craft speed. Bollard test inlet loss was then calculated by using the inlet loss prediction relations, Page B-15, and measured flow rate Q. Speed test inlet loss was determined from measured static head in the inlet.

A chart on Page C-20 presents head recovered, $\rm H_{O}$, versus craft speed $\rm V_{O}$. Actual test values of $\rm H_{O}$ are compared to a predicted curve of $\rm H_{O}$ based on an assumption of a 100 percent recovery of dynamic head $\rm V^2/2g$. The chart shows that 100 percent dynamic head recovery is a reasonable assumption.

Total pump head \mathbf{H}_p was determined from measurements of impeller shaft thrust $\mathbf{T}_\mathbf{S}$ by:

$$H_p = T_s/\rho gA$$

where casing area A = 1.087 square feet. Total pump head required was predicted using measured flow rate Q and vehicle speed $V_{\rm O}$ in the equations summarized on Page B-15. Tabulations of measured and predicted pump head are presented on Pages C-21, 22 and 23. A chart on Page C-24 shows good agreement between measured and predicted $H_{\rm D}$.

Shaft horsepower SHP was determined from impeller shaft torque and revolution measurements. An SHP prediction was obtained for each test run by using measured flow rate Q and predicted pump head ${\rm H}_{\rm D}$ in:

Predicted SHP =
$$H_pQ\rho g/550\eta_p$$

where a pump efficiency η_p = 0.72 was chosen on the basis of bollard pull test results. Tabulations of Actual and Predicted SHP are given on pages C-25 and C-26; a chart of Predicted versus Actual SHP, Page C-27, shows

generally good agreement between the two SHP values.

Cavitation Inception

where:

This waterjet propulsion system uses a marine-type propeller as the impeller of an axial flow pump. In evaluating cavitation inception limits, cavitation criteria for pumps and for marine propellers were used.

Reference 3, for example, defines the term "net positive suction head" or NPSH as the excess of absolute pressure over vapor pressure at a pump inlet, and also cites a dimensional characteristic "suction specific speed", S, as a useful index of pump rating:

$$S = N\sqrt{Q'} / (NPSH) \cdot ^{75}$$
 $N = \text{shaft rpm}$
 $Q' = \text{flow rate, gpm}$
 $(NPSH) = \text{net head, ft}$

For application to the waterjet system, the equation has been adapted as follows:

S = 21.19 N/Q /
$$(H_{IS} - H_{VAP})^{.75}$$

Q = flow rate, cu.ft/sec
 H_{IS} = static head in inlet, ft abs
 H_{VAP} = head equivalent of vapor pressure, ft abs

Pages C-28 through C-30 show tabulations of S and impeller shaft thrust coefficient $K_{\rm T}$ for the 1.5 area ratio impeller/12.25 inch nozzle and three inlet lengths. $K_{\rm T}$ is charted versus S on Page C-31.

As shaft speed N increases, Q increases and net head at the inlet decreases, resulting in a large increase in S. The chart shows that:

- * $K_{\overline{T}}$ is essentially constant as S increases for all bollard pull test runs.
- K_{T} gradually decreases as S increases for all speed runs.

Cavitation inception would be indicated by a sharp drop in thrust coefficient at high values of S; no such drop is evident for the test conditions shown.

Ė

Next, calculations of criteria for cavitation inception on marine propellers were made for all trial data (3 impellers, 3 nozzle openings, 3 inlet lengths). Cavitation index σ is usually calculated as the ratio (net head at propeller blade tip) / (dynamic head due to resultant tip velocity) However, trial results have shown that advance coefficient J is essentially constant over the impeller operating range, i.e. the ratio of (axial fluid velocity) / (tangential tip velocity) is constant. This suggests that a cavitation index based on axial fluid velocity would be a useful simplification.

Pages C-32 through C-34 are tabulations of thrust coefficient K_T and conventional cavitation index σ_t based on resultant tip velocity. Page C-35 is a chart of K_T versus σ_t for all tests of the 1.50 area ratio impeller/12.25 inch nozzle with three inlet lengths. Since σ_t varies approximately as the inverse of pump specific speeds, trends of K_T as σ_t decreases are similar to trends of K_T as S increases, Page C-31.

Page C-36 shows tabulations of σ , K_T and pump efficiency n_p for bollard pull tests of the three impellers with a common nozzle (12.25 inch) and inlet length (33 inches), where σ is based on axial flow velocity at the impeller. K_T is charted versus σ on Page C-37, and n_p is plotted against σ on Page C-38. In each chart, there is a sharp drop in thrust coefficient and pump efficiency for the 1.0 area ratio impeller at the highest flow rate (lowest σ), implying a possible inception of cavitation.

Page C-39 lists inlet pressures from bollard pull tests of three impellers combined with a 33-inch inlet length and selected nozzle openings. These measured pressures are plotted versus flow rate Q on Page C-40. Also shown is a curve of predicted inlet pressures from the equation for inlet head loss, Page C-15, which is in good agreement with measured pressures.

On the basis of the cavitation criteria examined, it may be tentatively concluded that:

- A 1.0 area ratio impeller shows evidence of cavitation inception at a σ below 2, whereas the two larger area impellers show no such evidence to a σ of about 0.75 at the highest speed tested.
- For cavitation-free performance and highest pump efficiency, the 1.5 area ratio is the choice over the 2.25 area ratio impeller.

Thus, attention in subsequent comparisons will be focused on the 1.5 area ratio impeller.

Calculations of σ , K_T , n_p and J are listed on pages C-41 through C-43 for the 1.5 area ratio impeller/12.25 inch nozzle with three inlet lengths. Charts of the latter three quantities versus σ appear on pages C-44, C-45 and C-46.

While during the bollard tests all three quantities remained essentially constant, showing no sign of degradation with decreasing cavitaion number, the tests at speed showed a reduction in $K_{\rm T}$ with decreasing σ .

Since it was felt that this might be due to aeration of the flow into the pump when planing at high speeds, a plot of thrust coefficient against volume Froude number was made showing that $K_{\rm T}$ decreases as $F_{\rm V}$ increases, a result which tends to confirm the presence of ventilation. The data for this plot, shown on page C-49, are tabulated on pages C-47 and C-48.

In any case, for volume Froude numbers corresponding to full scale speeds of 15-25 mph, (hump-cruise) $K_{\rm T}$ is diminished only slightly to approximately 85 percent of its maximum value. This degradation could be restored by an increase in impeller speed of only 7 or 8 percent.

ESTIMATED PUMP PERFORMANCE CHARACTERISTICS

This section presents a waterjet system design procedure which integrates practical design factors obtained during the July 1984 trials. The initial application is in a design of a modified 14-inch diameter axial flow pump which can be evaluated using the existing testcraft hull and engine. The following particulars and design factors were selected:

- Inlet entrance length of 19.5 inches to minimize overall length of system, since trial results showed no consistent penalty associated with this shortest of the inlet lengths tested.
- A nozzle with a profile as sketched on Page E-1, and an exit diameter of 12 inches.
- 100 percent recovery of dynamic head due to vehicle velocity.
- Limiting values of cavitation index σ ranging from 0.75 to 1.0.

 Propeller characteristic estimates based on a pump efficiency of 0.72 and an impeller advance coefficient of 0.82.

Nozzle configuration and experimental data on nozzle performance were taken from Reference 4. The nozzle profile, Page E-1, causes a contraction of the waterjet beyond the nozzle mouth. This effective waterjet diameter and a head loss coefficient were obtained from the referenced data.

Using the above design particulars, estimates of pump performance characteristics are detailed on Pages D-1 through D-14.

ESTIMATED PERFORMANCE FOR 14 INCH DIAMETER PUMP

Design procedures developed in the previous section have been applied to predict performance of the pump system shown on Page E-1.

The initial step was to develop curves of pump shaft horsepower for nominal values of flow rate and vehicle speed, Page E-4. These curves were then used to obtain flow rate corresponding to nominal values of shaft power and vehicle speed, leading to the construction of curves of jet thrust versus vehicle speed for each nominal shaft horsepower, Page E-9. Nominal values of SHP were chosen to cover the operating range of the existing testcraft engine.

To avoid cavitation, flow rate is limited by a relationship with vehicle speed and a minimum value of cavitation index σ . This equation, developed on Page D-13, was evaluated for σ = 0.75 and 1.0 to yield cavitation-free flow rate and jet thrust. Curves of jet thrust versus vehicle speed for the two values of cavitation index are superposed on the chart on Page E-9. The two sets of curves show clearly that at top vehicle speed, full engine power should be absorbed by the pump without inception of cavitation.

A chart of predicted overall propulsive coefficient versus SHP, Page E-10 shows that a target of 40 to 45 percent propulsive efficiency can be achieved at a vehicle speed of 20 mph. A chart of pump rpm versus pump SHP predicts that full engine power can be absorbed at top vehicle speed within the engine shaft speed limit.

ESTIMATED PERFORMANCE FOR 16 INCH DIAMETER PUMP

A proposed pump for a high-speed amphibious vehicle is sketched on Page F-1. This 16-inch diameter pump is geometrically similar in certain respects to the 14-inch pump described in the previous section. Inlet dimensions and nozzle exit diameter have been increased by a ratio (16/14), but the overall length of the unit has been changed only two percent. Given the above similarities, performance of the 16-inch pump has been predicted by making the following assumptions.

- Range of craft speed $V_{\rm O}$ will be identical with that used for 14-inch pump.
- * Waterjet velocity \mathbf{V}_j and pump head \mathbf{H}_p will be independent of pump diameter
- Impeller advance coefficient J = 0.82 and pump efficiency $n_p = 0.72$ as for 14-inch pump.
- Flow rate of 16-inch pump $Q_{16} = Q_{14} (16/14)^2$

It then follows that.

- Since SHP H_{pQ}/n_p , $SHP_{16} = SHP_{14} (16/14)^2$
- Since T_j Q $(V_j V_0)$, $T_{j_{16}} = T_{j_{14}} (16/14)^b$
- Since J V/ND = (Q/A)/ND

or ND Q/AJ

But Q/AJ has been assumed constant

Thus ND is constant and $N_{16} = 14N_{14}/16$

These relations were applied to the 14-inch pump predictions to obtain performance estimates for a 16-inch pump. Calculations and charts of performance characteristics are detailed on Pages F-2 through F-9.

REFERENCES

- 1. Roper, John K. "Development of Waterjet Propulsion Unit", Davidson Laboratory Report 2328, March 1982.
- 2. Numata, E., "Performance Trial of a Manned Waterjet Testcraft", Davidson Laboratory Report 2390, March 1984.
- 3. Marks' Standard Handbook for Mechanical Engineers (8th. Ed.), McGraw-Hill Book Company.
- 4. Ellis, W.E. and Sobolewski, A.D. "Propulsion Experiment with a Planing Hull Having Two Flush Inlet Configurations" DTNSRDC/SPD-0786-01, March 1978.

APPENDIX A

NOMENCLATURE

Az ·	=	MUST AREA (UUST AMEND OF PEOP.)	er"
Q J	•	UST ALEA (AT MINIMUM UST DAM.)	FT
Qp	•	FLOW ALEA AT PLOP. (= AI)	FT
A051	-	MEASURED PRESSURE IN INLET (NUST AMEND OF PEOP)	7519
D	-	PROP. DIAM.	FT
Harm.		HEAD DUG TO ATHOSPHERIC TUESSUE	FT
Hz.		INLET STATIC HEAD	#F
Ho	=	HEAD RECOVERED FROM FREE STREAM	ET
40	=	PUMP HEAD	ET
Hoer	•	PUMP HEAD AT CAVITATION LINIT	FT
Hrap.	=	HEAD CORRESPONDING TO VAPOR PRESSURE	pt.
HLe	=	CASING HEAD LOSS	<i>₹</i> 7.
HLE	-	INLET WEAD LOSS	FF
HLS	=	NOZZLE 1.EAD 1055	F7
HLy	=	HEAD LOSS DUE TO MEASURING EQUIP.	er.
d	a	PROP. ADVANCE COEF. = 1/2 ND	
Ke	=	CAVITATION INDEX = HolDAR HIL - HAR	
Kr	-	PROP. THRUST COEF. = T	
		PROP. SPEED	245
N	=	PROP SPEC	RPM
opc	=	OVERALL PROPULSIVE COCK = T. VO SSDSHP	
PAR	•	PROVECTED AREA RATTO OF DRUP.	
Q	=	FLON RATE	or/see
R.	•	RESISTANCE OF MEASURILY EQUIP.	***

NOMENCLATURE (CONT.)

RPR	=	RAM PRESSURE RECOVERY RATIO = Ho	
${\cal S}$	•	BUCTION SPECIFIC SPEED = 21.19 (Q) 12 (Hz, - MIAP) 314	
SHP	•	PONEL TO PUMP	HP
70		BOLLARD DULL	#
75	#	uet thrust	*
75	=	SHART (PRUP.) THRUST	•
VE		INLET VELOCITY (JUST AND A)	FT/SEC
Vs	7	VET VELOCITY (AT MINIMUM VET DIAM)	ET/SEC
VMPU	æ	CRAFT SPEEL	MPH
V6	=	CRAFT SPEED	FT/SE
Vp	#	VELOCITY AT PROP. (= VI)	FT/SEC
Rp	=	DUMP. EEFICIENCY = PAHOQ 5505HP	

PREDICIED WEST LOSSES

SUMMARY

	33" huer	23 /NET	19.5/20
ENRONE	,8669	1.7856	2.4820
DUCTERCION + BEND	1.8365	2.655	3,3875
Sugar	. 3232	.2699	1.1249
TENSITION	1.4691	1.4691	1.4691
BERRIA TUBE (ERICTION)	.0752	.0752	.0752
Beson's Tube (commi)	, 3247	.32 47	CHSE,
STEUTS (ROFIE)	.1866	.1866	.1866
STEUTS (INTEREMENCE)	.0093	0093	0093
HLI	5.0915	2.2259	9.1093
R = HKE =	,002037	,0028 90	.00 3755

PREDICTED LAKET LOSSES

ENTRANCE (19.5', NLS)

PREDICTED LIVET LOSSES

Duer Faction & Bons (33 INVER)

$$4/L = f\left(\frac{L}{2}\right) \frac{1}{23} = (.209) \frac{(.205)}{(.201)} \frac{(30.10)}{2(.51)} = 1.8325'$$

PREDICTED LAKET LOSSE'S

PREDICTED WET LOSSE'S

$$4/L = \int \left(\frac{L}{28}\right) \frac{\sqrt{2}}{28} = (0097) \left(\frac{3145}{2192}\right) \left(\frac{3027}{2(121)}\right)^2 = 3.3875'$$

PREDICTED LAKET LOSSES

PREDICTED INLET LOSES

PREDICTED WEET LOSSES

TRANSITION

BENEIN, TUBE (FELETON)

BECANG TUBE (FRONTAL)

REDICTED WLET LOSSES

STRUTS (INTERFERENCE)

PREDICTED CASING LOSS

Cosus

$$HL = f\left(\frac{L}{d}\right)\frac{V^{2}}{25} = (.0095)\left(\frac{1.33}{1.11(1)}\right)\frac{(42)^{2}}{2(021)} = .3537'$$

PREDICTED NOZZLE LOSSES

10.5 "DIAM. NOZZLE

(EAN ENS. = 6. 35)

12.25" Diay, Norzet

$$HL = \frac{V^{2}}{28} (116)$$

$$\frac{V^{2}}{28} = \frac{2}{73} \frac{1}{23}$$

$$A = (28)^{2} (223)^{2} / 144 = .8180 = 1$$

$$\frac{1}{23} = \frac{Q^2}{(100)(1)(312)} = .0232 Q^2$$

PREDICTED NOZZLE LUSSES

ESTIMATED MENSUREMENT LOSES (12.25 NOWLE)

KACK

PITOT TUBES

100000

PREDICTED MET PRESSURE RECOVERY

$$H_0 = RR \frac{16^2}{29}$$
 $RR = 1.00$
 $H_0 = (1.00) \frac{16^2}{2(32.)} = .015516^2$

PREDICTED PUMPILEND KIR YMED

Ho = HLz + HLc + HL, + Ling - Ho

110	.019350 Q' - 0155 K' .019350 Q' - 0155 K' .018523 Q'0155 K'	103102- D C2C1EO. 10300-1010 - 101510. 10300-1010 - 101510.	.052793Q0155K .05.1928Q0155K .05.1075Q0155K
1/2	3 55 kg.		
11/1	. 8320) Q		
III.	.013142 Qt	· 02 4664 Q	.045690 Q2
HKe	.00141 Q		
HLE	.00.25.90 Q. .00.20.30 Q.	.0037 C. Q. .003840 Q. .002037 Q.	.00 25 43 Q. .00 25 43 Q. .00 20 43 Q.
Me. Ther	6. 6 W	29. ES	A.S. 23
Ž	14:00	7.25 19.C 23 23	10.50 PA.5-

PREDICTED SHP REQUIRED

PREFORMANCE DATA CINNA

1,5 FROD /18,25 NORL/23 NAS. 0

Rin"	Vapa	75	فرسى	200	<u> </u>	10	<u>Q</u>
201	4.95	3 5 ·	/ 3	, 11.2 d	. 39	3	15.26
202	17.20	923	133	. 2 3	,20	.:	32 9 -
203	25 3	705	125	490	.90	,77	40.3.
204	2530	737	154	1201	. 70	,;;	40.27
205	26.23	1654	.98	,234	.63	.21	42.05
126	مة در	965	24	ታ •	. 4)	. 21	27.48
205	10 93	11:5	23	, 	.49	, 22	29.3.3
20%	99	992	51	145	.63	. 30	20.0
7:00	الله ع	123.	51	. 457	.19	. %	22 50
20	2 20	32.	25	.454	117	7	21.7-
2:1	2.23	522	2%	.453	. 69	./,3	27.77
212	~	154	3	1	0ء .	٤<,	8.33
213	<i>C</i>	4" ,	· •	9	,),"	.22.	14.76
214		248	40	0	,22	.)3	20,04
210	~	15 %	ž -	2	36	, ; ,	وجتره
200	2	220-	· 5 7	9	.29	. 3 /	31.10
- 2		2050	2/5	9	. <u>i</u> 1	.73	3,726
212	ڊ ۽	192	-	.403	. 18	.73	925
د ع		:90	141	.300	.88	. 2 6	41.34
220	: 5.7	1001	501	.340	.80	, , ,	~ Y'

PERFORMANCE DATA CUMMAR!

1.50 From /12.25 1/02 , 19 = 1-1LET A

Pu"	VMPH	75	SHF	200		22	3
22	426	17	÷,-	20 <u>1</u>	.40	.75	12.3%
226	5.42	1.3	16.	. 32 7	.44	. 8 3	12.7
25 S	5.23	336	10	192	. 63	19	751
1:s s	1896	8 K'4	73 -	.3°10	. 76	.54	33.81
552	20.93	343	/3/	. 375	. %	سيد.	34.3K
2 262	12 -	2-3	W)	,335	. 84	. 23	26,16
ことつ	1.2	: +1	38	. 1 %	.87	.71	23 34
22.8	0	308	4	0	.85	.62	1141
227	2	624	2	9	.84	, x o	16.: -
233	9	1223	47	<i>5</i>		,25	22.)
23,	9	1,52	7 9	5	.81	. 2	26.34
232	9	2354	151	9	.86	.57	31.27
232	2	2305	10	9	.52	در.	31.05
233	0	3. Z.S	221	0	.83	.73	36.35
234	4 22	3 ~	سر	.397	. 83	.77	11.71
23 -	4 35	437	10	.361	.92	.84	16.8-
234	13 -2	343	, 38	350	.8%	.24	و: مو
437	9%	1398	æ	×	×	K	3530
233	ئ. ک	2.7	192	283	عد,	. =3	3 63
137	155	1200	5	>-	.71	0: ،	33
247	62.25	9	133	. 3+ £	.47	.24	34 .2
541	ə. ´	3:-	4+	. يۇ تى .	. 56	.73	:ر د ت
20	781	2.4	30	+53	وډ .	· ·	53 1.
ۆ ' .	- ·	ت از	/1	40 l	31	.77	14.99

PERFORMANCE JATA ZAMARY

1.50 PROP/12.2: 1.622 / 33 ,MET [

RON"	Vrgan	7.	در بری	200	U	70	2
241		23	سب	,203	.59	. 28	12.02
24.	4.35	:5	,	. 32 2	.73	. £ ¥	12.25
24,	4.5	٠ ب	12	. 32 -	.87	.19	16.23
247	21.57	100%	120	٠:٠-	.71	.31	38,50
2.8	64 81	1232	155	160	.72	. 36	4212
2.0	10.31	1135	9 .	47	, 42	<i>:9</i>	SO .;
250	2, 20	756	40	, ,2!	,22)	ئ . آدي
251	0	674	سح	9	, ž.	ė,	15.77
254		613	≟ ⊃	9	۵ ک ر	. 24	16 27
253	0	1041	40	9	. 31	.>3	ودر ر ۾
253	0	11 Sé	***	9	. 29	. 25-	2:
الإنتاجي	2	1430	88	(?)		, -3	24 9%
2550	9	23.10	150	2	(4.	,3	3: 23
256	9	3235	222	9	.5 •	,7 #	36,37

STATIC THEUST COMPARISON

1.50 Peop.

		MIGT	Q	Pero.	Act.
212	12.25		8.07	144	200
213		9	14.36	481	500
214			20,04	887	850
215			25.30	1413	1400
216			31.10	2135	2200
2/7			35.38	2763	2800
228	12.25	A.5	11.41	287	220
229		ک	168	583	520
227		_	22.76	1144	850
22			204	1497	1400
24			31.))		2100
			31.55	2211	2100
2 <i>33</i>			36.35	0917	2720
257	12 25	33 '	10.33	256	5.n0
252	12.25	1	16.07	570	530
253		~	21 20	924	رَدَوْ
253			على ال	1036	رَ د و
254			24.96	1325	1400
255			3, 18	2160	2100
25-			36 79	3021	מנרפ
			•		

INLET LOSS COMPARISON (BOLLARD TEST)

1.50 PROD. / 12.25 NOZZ / 23" MAET

G

$$H_{z_{s}} = H_{0} - H_{L_{z}} - \frac{I_{z}^{2}}{22}$$

$$H_{0} = 7$$

$$H_{L_{z}} = .00227 2^{2}$$

$$\frac{\sqrt{r}}{20} = \frac{Q}{10435} = \frac{1}{2(32.1)} = .0143Q^{2}$$

C-12

INLET LOSS COMPARISON (BOLLARS TEST)

1,50 Peop. /12.25 NOVE. /19.5 " -LET

$$H_{z_s} = H_0 - HL_z - \frac{V_z^2}{z_0^2}$$

$$H_0 = 0$$

$$HL_{2} = .003035Q^{2}$$

$$\frac{V_{2}^{2}}{Z_{3}^{2}} = \frac{Q}{1.043Q^{2}} = .0143Q^{2}$$

 \mathfrak{D}

2 to C-14

MLET LOSS COMPARISON

1.00 FOOD /12.25 NOUL / 33" IMET

$$H_{r_{s}} = H_{0} - H/L_{x} - \frac{V_{x}}{V_{x}}$$

$$H_{0} = 0$$

3

Q

C-16

INLET PRESIDE PEROVERY CONFORIZON)

1,000 /200 /12.25 NOS. 123" NAET 0

4,00 30.62 -6.24 1.44

$$r_{3} = \frac{\sqrt{6}}{2g} = \frac{\sqrt{6}}{2(32.1)}$$

219

INLET PRESIDE RECOVER, Compression)

150 Peap / 12.25 Mos: 175 LAKET A

INLET PRESSURE RECOVER, COMPARISON

1.50 PROP /12.25"NOZZ 33 MIET 0

REQUIRED FUMP HEAD COMPARISON

1.50 Peop. /12.25" NOZZ. / Q3" INCET

Ho = . 030761 Q - . 0155 %

(Perces)

Riv	<u>a</u>	Vo	Ho	Act.
201	16.06	2.28	211	4,36
202	32 95	25.87	23.02	20.68
20 3	40.35	36.24	24.93	20 70
204	40.27	32.28	28.34	27.66
205	42.05	38.50	31.35	£9.43
204	27.48	15.08	19.00	16.95
20)	29.80	16.07	23.31	18.75
208	26.70	12.48	18,70	1150
209	26.50	12.35	19.34	11,20
21)	2102	10.29	11 75	6.90
211	20.49	10.33	11.90	6.78
212	801	0	2.00	2.48
213	14 %	0	6.70	6. 75
214	20.04	0	12 35	12.78
215	25,30	J	19:09	20,91
21's	31.10	0	2975	31.33
217	3538	0	38 50	39.20
218	7.25	3.95	2.34	2.58
• 47	36 24	32.7	25,30	24 86
225	41 20	32 0 -	49.77	28,62

REQUIRED Pump HEAD COMPAR IN

1.50 POR/12.25 "NOW. / 19.5" NLET

Hp = .031767 Q - . 3155 16 =

(PEED COED)

			TA-0	Her	
RW.	\mathcal{Q}	Va	عدد بر	J.J.	
					
221	10.30	6.29	2.0	2.93	
555	16.06	2.99	2.21	2 27	
273	15.1	2.8¥	6.72	2 33	
224	53.4	22.90	28.18	25 48	
225	34 36	29.44	2411	25.21	
22.	26.8	15.02	18 28	، ک. عد	
227	23 39	12.10	15.11	2.22	
278	11.41	9	414	301	
Z 29	16.25	0	2.39	2-0	
2 <i>3</i> 0	22.7.	9	16 46	13.55	
23/	21. 24	9	21.54	21.58	
232	3, 77	9	32 de	30.90	
232	3. 0.	2	31.82	31.68	
233	36 3	2	41.97	3867	
234	11.71	. 39	3.7%	304	
235	16.62	2/3	825	6.23	
212	34.25	Z> X6	25.79	213 33	
737	30.30	13.32	26.3	1 %	~
. 27	3.3/	3232	21 02	28 78	*
237	33.14	20 25	28 11	21 45	
٠,٠٠٠	غر ×3	59.17	24.61	2505	
÷ 11	26.60	رو 3/	. 9 72	15.44	
211	23,74	13	16 10	10,23	
2 13	14.30	2.56	८८३	459	

REQUIRED PUMP HEAD COMPARISON

1.50 Peap. /12.25" NOV. / 33 , NICET

Hp = .030049 Q - 1/62

(PREDETED)

22	2	Vo	Pero	HAT
244	12.02	5.31	3.90	3.05
245	12.05	6.62	806	659
246	16,2)	667	2.26	668
54)	38.20	31.74	22.71	22.65
24%	42.12	36.74	32.39	28.41
2119	29.2)	15,74	21.90	16 35
z 🕉	25-13	11.02	17.55	10.57
251	10.00	9	3 19	3.42
252	16,57	9	2.76	2.84
2 53	2100	9	13.25	14.09
25 3	21.35	2	14.10	14.15
254	24.96	0	15.72	21.60
255	31.28	9	29.40	31 34
250	36,29	0	41.11	39.4L

SHP COMPARISON

SHP = . 1577 QHP

(Revers)

Ru"	- Mark	Nozz	huer	<u>a</u>	PRED. HP	PAED SHP	Acron SUP	
201	1.50	12.25	23"	16,06	2.11	18	13	
202				32.95	23,02	120	103	
203				40.35	28.93	184	165	
204				40,27	28.31	180	14	
205				42.05	3/35	208	1951	
206				27.48	A.X	85	24	
207				2980	23 .31	110	83	
206				26.20	1620	22	57	
209					P. 34	81	57	
210				2102	1195	40	2.	
2//				20.99	11.90	<i>1</i> 9	26	
2/2				8:07	2 30 4.10	3	3)
2.3 214				14.26 20.04	12.35	16 39	16	Bonne Tess
215				25.30	12.38	7 9	85	DOLLAR ESS
213				31 10	29.35	146	157	
210				3538	36.00	215	سكام)
218				9.25	2 39	4	2	_
2.9				36.94	25.70	147	141	
220				41.00	29.33	192	201	
221	1.50	12.25	A.5"	10.37	2.85	5	5	
222				16.06	2.21	18	170	
223				15.54	6.72	16	•	
22-				33.81	28.8	150	144	
225				34.38	24.11	131	, 2	
225				26.18	18,28	75	22	
227				23.39	15.11	56	3;	
228				11.41	4 .4	2	•	
229				16.25	8.79	22	,4	/
230				25 76	13.00	59	47 ~	
231				26.04	2154		70	Bane Tests
232				31.))	32.X	161	161	
232				31.65		159	161 221	
2 33 2 34					41.97 3)6	241 2	221	
سروح				11.21 16.82	5,20	<i>2</i> 2	16	
236					25.79	139	175	
232					2653	127	2	٠. د
238					21.69	126	192	1
239					28.11	150	135	
240					24.61	134	: 13	
241				26.67	A.72	83	44	
242				23.94	16.16	61	37	
243				14.97	26,23	15	19	

SHP COMPARISON

Rw"	Ros	162.	huer	Q	Hess.	SHP	Aerua SHP	
	صغتيت							
244	1.50	12.25	<i>3</i> 3′	1202	3.90	2	5	
245				12.05	8.06	<i>2</i> 2	15	
246				16.27	2.26	19	16	
247				36.a	27.91	168	120	
246				42.12	32 39	215	128	
200				2927	21.90	101	21	
250				25.43	12.55	20	40	_
25				10,77	3.49	6	سمح	
252				16 07	276	20	20	!
253				21.00	13.25	44	46	
253				21.66	14.10	48	46	Bouned Tests
254				24 96	18.72	24	88	
255				31.28	29 40	145	160	
25%				36 79	41.11	240	2:2	J

COVITATION LIMES (BOLLER TELTS)

1.50 Peop/1225 NOLL

Ron =	laux -	$\frac{\mathcal{N}}{\mathcal{N}}$	2	DO:	2	7.	<u> </u>
212	23′′	433	807	- , , -	4330	168	.42
2.3	<i>•</i>	919	14.20	-1.28	1000	4.8	, x¥
2:4		12/3	27 74	-1.12	2.35	867	59
215		156	و ډ تر ته	43,	.7887	1429	52
216		18-2	3 2	5.72	2.029	3.25	<i>ق</i> د
217		8-53	3736	8 +9	32573	ا زواته	3 د .
820	19.5	- 17	• /	دۇ .	3528	204	5 2
7	-77	? >	^	1.50	6340	5) <u>.</u>	او
د - ٥		2/1	27 🍃	£ . 6.7	10670	3.3	قد
231		1500	£ , ~ ,	4.22	25 د و ؛	,	سر و
2772		1814	? `;	. 6.05	2.57 1	و: ۲ ک	.3
20.		1819		6.00	27 17	¿ .c	
2 3 3		2042	36 35	<i>3 .</i> 7	15804	25	تحد
251	33	527	277	رو. ر	31115	232	>
252	I	720	. 27	, •	6205	5' à Z	,3
253		1215	2 32	٦٠ ثير	12:20	2: -	
		12 .	٠. ء	6.3	15 %	3.5	_
,		1 27	رد - :	~ ·	, - , 23	, -	
£ 35		. 5 77	3 : 1	2.37	25002	7	<u>-</u> -
حاكونة		275	i. 17	į ·	33331	,	.3

CAVITATION LIMITS (CARECTES.)

1.50 Pap/1225 Nove.

S = 21.19N VQ (1-12, -1/1) 3/4

4175 - Harm + AASI (144) + 35

Harn - 32.12'

(1:20 -)

His - 32, 12 + 2,402 CARSI + 15 - 32 (1, +2306 ARE)

S = 21/9 N/ 1 2 = 21/9 N TQ (3201+2308 APSI-1) M = (3187+2308 APSI)

Rw"	1000-	11	\overline{z}	AC.	<u></u>	7.	<u> </u>
20,	23	847	16.06	12.54	4812	296	,41
20%	9	1723	32.95	-299	187-3	1403	.47
ق ^ر به		217	40.35	-4.29	61.6.7	1811	.41
2 ~		2097-	40,27	- 3.5	69113	1876	.43
مند ب		238-	42 35	-5-5-	258 3	190%	.35
20%		1444	27 48	+1.24	2.0	1,50	بزد
27			29.37	- 6.26	, 5280	1272	
200		1331	24.20	-5.20	30-	252	, 40
209		133.	5 . 6	-3,++	14010	صز :	7 9
210		1.53	٤. ٥٤	-20	7.14	738	3:
211		1 23	5-77	-2	9091	4.5	36
218		~3 -	7.25	- , -3	2-35	. 🕶	58
119		190	36 24	-4 4,	2520)	ے ؤ و ،	44
220		24,00	4100	-6.64	26.	24.	34

CAVITATION LIMITS (SPEED TESTS)

1.50 Peop/12.25"NOZZ (CONT.)

Pw.	LLET	<u> </u>	Q	APSI	_ك	73	<u> </u>
2 2;	19.5	619	, 2 37	%	3165	149	.54
555	Δ	8 72	15.56	- ,89	5437	493	۽ پ
2 Z Z		933	15.54	- 99	5815	497	, 4
22-		1547	33 .	-3.>√	21525	1728	آد
225		1273	3438	402	22457	17 10	49
2?。		1458	20,8	2.68	13855	1175	.55
22)		1257	2339	2.01	11238	5 93	44
Z 34		ś 43	2 27	.48	3570	206	€2 ،
235		362	1 84	, 89	5871	470	ت . ع
234		187	34.25	هز چ	21727	1786	.57
237		520	30, 36	. 24	4664	133	.49
23%		2412	36.71	٥٢,٠٥	34510	766	.34
عز 2		1278	<i>∓3,</i> ∶√	3 -9	18620	1489	.5
517		1872	34.62	3%	221,8	1599	.19
2 '		1430	64.07	30	14008	1247	.52
B42.		144	23.71	. 2 .7	11186	694	4.
243		: 95	1172	1 25	5221	311	.19
244	<i>33</i> °	6 37)	12 32	-	3000	وم	.57
Q1-	<u>:</u>	82	17:25	1.4	5202	447	اه.
246		172	12.27	1/2	52-5	453	حي
247		1890	36.20	2	22353	.536	·\$
248		=146	42.12	3 B	27257	1937	42
£ 49		14 95	29.27	2.64	14382	1150	52
250		1296	55 B	- 2.52	, 2009	2:6	• 3

CAVITATION LIMITS (BOLLAND TOUTS)

1.50 PROP.

$$C_{4} = \frac{H_{2} - H_{100}}{V_{4}^{2}}$$

$$H_{2} = H_{2104} + APSI \left(\frac{144}{4214}\right) + .75$$

$$H_{4174} = 32.12^{1}$$

$$H_{1} = 32.12 + 2308 ARSI + .75^{2} = 32.87 + 2308 APSI^{2}$$

$$H_{100} = 1.00^{1}$$

$$\frac{V_{1}^{2}}{29} = \frac{Q^{2}}{(2)^{2}} + \frac{(1-D_{1}^{2})^{2}}{(2)^{2}} = \frac{Q^{2}}{(10434)^{2}(2)(321)} + \frac{(1.167)^{2}N^{2}}{(10434)^{2}(2)(321)}$$

$$= .0143 Q^{2} + .000058N^{2}$$

$$K_{\tau} = \frac{T_{s}}{p n' D'} = \frac{T_{s}}{(1.90)(\frac{\pi}{40})(\frac{\pi}{40})} = 1002 \frac{T_{s}}{N^{2}}$$

Rw*	Moss	West	Q	APSI	$\overline{\mathcal{N}}$	<u>OF</u>	7.	Kr
212	122		♀ ⊃7	52	. 33	, 27	168	42
213		<i>⊙</i>	17.70	- 1. is	719	56	458	5 ⁷² 4
214			20 34	-1.7	1213	32	حرع	<i>: 4</i>
215			2 . 30	4 31	1518	.15	ون ٠	ی
210			3 2	6.72	1840	08	5	. 3
<i>خ</i> ا			35 36	8.49	2057	25	وترصتم	٠3
225	12.25	75	11 41	. %	630	· 20	254	5 -
229		Δ	15 25	150	910	.55		اه)
z 30			22 0	20)	1211	27	, ,	u3
231			2. 24	470	1500	15	٠٠	۔ کون
232			3))	سمعا ز	1819	28	7.	3 ى
્રેટ			مرد نو	6.5	15 19	38		کی
÷ 33			30 25	307	2042	35	S 10 255	ن ئ
251	1225	33	12 77	در	587	141	J 42	⊌ 7
252		<i>-</i> Ξ	15 27	/ %	7:0	54	,^;:	w
253			î X	2 %	1215	27	می د ۲	25
فذع			ھ نے	ر. 🔏	1215	28	فعاد	
254			64 96	4 3	507	./-	455	5
255			3. 13	7330	1827	,58	ست تو	. de
256			36 79	-8 4-	2055	.05	2004	3ء.

CAVITATION LIMITS (SPEED TESTS)

150 Peap

$$\frac{1}{2\pi} = \frac{1}{2\pi} + \frac{1}{2\pi} + \frac{1}{2\pi} + \frac{1}{2\pi} = \frac{1}{2\pi} = \frac{1}{2\pi} + \frac{1}{2\pi} = \frac{1}{2\pi}$$

$$\frac{32 \times 7 + 2.30 \times APS I - I}{.0143 Q^2 + .00005 \times N^2} = \frac{31.17 + 230 \times APS I}{.0143 Q^2 + .00005 \times N^2}$$

RN"	Nois	1200	Q	APSI		<u>J</u>	<u>/s</u>	<u> </u>
801	12.25	23	16.06	- 2.54	248	,51	296	,-11
722		\mathcal{O}	32 15	-2.79	1723	.13	· >3	47
703			47.35	-429	2.01	.૦૪	. 8 ./	٦/
204			-2 27	-3.5	2012	٦٤.	ى: د	13
205			42 35	-552	4364	.05	? 219	کذ
206			2745	- 1.27	14 57	ت: ا	5	``.
207			29 33	- 3,76	-	.30	272	(-
708			2 م	- 3 30	, 3 44	.20	20	~ >
ະກ າ			م کر در کر	- 3 +4	13 24	.19	حد ب	39
277			2, 22	- 4	1139	35	1.6	34
211			<u>.</u> : 29		ماور	.35	حي ل	35
218			- : - ·	- 4	495	2 30	/	, *
			ريات الاثاري	- / 45	1761	,59	وبا أو ج	
219			23 °7 ~ 29		2400	25	3.,	3+
2 20			رر بـ	'	2,00			- ,

CAVITATION LIMITS (SPEED TESTS)

1.50 POP. (CONF.)

Rw"	Mer	LLET	<u>a</u>	46:1	~	Œ	7.5	1-
221	12.25	195"	10.37	- 3.	610	, 34	20	54
222		•	1606	5 9	89Z	جو ر ص	/ 39	
223		_	,554	- ,77	ده	. 	473	ري.
z 24			33.6 I	۰۰۰ لاد و	1849		4 10 1228	.64
225			34.38	-4.32	1873	.10	17.0	49
Z 24			26.18	-2.56	1458	.10 .19	11.25	م مکند.
z 27			23.39	-2.61	1257	۱۱. م2.	0 43	, 44 ,
234			11.71	- 45	443	1.19	20%	
235			16.82	- ,19	862	68	470	,50
23L			34.20	مر. د	1875	,11		ن. آک
237			30,36	- ,54	520	, oG	1286	,51 ,4 1
z 38			36.91	٥٥ ئى -	2412	.05	133 1966	,¥1 , 3 4
239			3 3 ,14	-3.09	1678	.14		ودر
240			34,62	- 3,75	1872	.74	1489	
Z 41			26.67	3,10	ما کا کا د	.19	1.37	,49
242			23,9√	- 10 51	1245	•	1247	`2 <u>.5</u> 5
z 43			14.49	-1,25	295	.27	24	. 45
z 44	12.25	33"	/2.52	- /, Zs 51	-	,73	3//	,19
245		<u> </u>	12.05		437	1.19	<i>2</i> :00	اک.
=4 6		7		-1.16	350	,62	4 47	امد
247			16.27	-1.19	872	.61	₹३	,60
247			38.26	-3.11	1837	.//	1 * 😜	.43
24			42.12	-2 43	ع د ع	.08	1322	, * L
250			29.27	بر. و-	~ 25°	.18	/ S	~ _
750			25,43	-2,52	1296	,24	5,6	13

CANTATON LIMIT: (BOUREL TESTS)

PROP COMPRESON

$$O = \frac{1/2}{V^{-1}/2}$$

$$\frac{V_{z}^{2}}{z_{3}^{2}} = \frac{Q^{2}}{z_{3}^{2}} - \frac{Q^{2}}{(1.0434)^{2}(32)} - .0143Q^{2}$$

Rin	POF	16:	INST	3	PH.	<u> </u>	73	<u>//</u>	<i>Y</i> -	1	<u></u>
251	1.50	12 25	3 3 ′	10))	- 10	18.38	£32	587	(ت.	!	, ê •
Q .	2			16.27	1.38	2.23	5 2 _	720	فحر	٤٠.	i -
3>5				2100	-2 74	3.78	750	-215	آخ ا	:3	í 💓
ستى تە				2496	-4 7	2.47	465	23	<u></u>	۾	26
23/				31 28	-6.37	3	وندر	.5 27		د ر	12
25.				36 A	-5 7 L	, • 7	2004	2055	3	34	• 7
3,0	225	12.25	<i>3</i> 3"	10	حث	17.1	55-	ان.	.,	. J 3	. <u>: -</u> 2 🔐
311				13.80	- ,89	103.	315	8 24	. 41	٠	٠
312				20 24	-2.03	کیس ہے	226	12.4	رخ.	5ء	25
3,3				24 31	-3.69	2.76	127	111 39	.55	<u> </u>	:
3.4				29.7	-589	146	10.07	18.8	٠,٠٠	٠.	.,
315				34 25	808	. 29	2410	22.5	. 3.5	544	:> 🕳
	100	12 25	<i>3</i> 3″	10.31	65	1998	220	220	.50	<u>ئ</u> ى،	. 76
	4			1571	-1.63	296	500	2.9	ھ). -	/
				20 98	-3.05	3.74	700	1200	3د.	و (. 5 <
				25.25	-4.50	2.36	.3.2	14 19	. 20	.25	e • 💣
				30.4	-6.70	1.19	16 70	1165	.78	54	.>>

INLET PRESSURE

33" INLET (BOLLAR. TE.TE)

	<u> </u>	Nec	Q	Æ.
1.5AR	4.51	12 2	2 27	حع
	250	3	16.27	131
	253		\$1.00	290
	223		ص و. ا ع	2:0
	254		2495	4.9
	255		31.28	637
	ھ کا جھ		36.29	8.72
2.25AR	293	10.5	÷7	.46
	234	ح	8.2-	يتر ر
	£9		12 5	12.
	0%		15.13	1.54
	697		16.54	£ 7
2.25AR	310	n.c.	10.65	. 2 .
	31.	2	13.80	.47
	3,2		20,24	2,23
	33		24.31	3, 4
	3		=7-1	571
	3.5		34.10	1.77
2.25AR	F3_	/H 70	11 23	74
	22.	J	16 2-	1.30
	"، ۾ مو		8,72	3,24
	2 47		27,0	5
	,		=295	فهر يج
	5-4j		37 15	13,5,
1.00AR	7.7	"تدرور	206	.31
	11	Δ	8 47	۽ ت
	= 7		11.25	4 .7
	: -)		16.54	4
	۶.		16.71	183

C

Q

CAVITATION LIMITS (BOUND TEUS)

Rap	Non	MET	Q	ABI	<u> </u>	7.	~	K	J	20
212	12.25	23	8,07	- , 👟	32.83	108	623	. ۲۷	ص.	,23
213	'		14. X	- / 28	7.28	4.76	2.2	.5-4	. 75	.) 2
2:4			20 04	-/17	5-5	337	2.3	.59	.22	>3
215			2530	- 431	840	در: -	15.8	62	, אר	21
2 👝			31 10	-672	1.13	1 2 7	8-0	.43	بج	.71
ン・ウ			3538	- 5 73	و تي .	3,53	20,2	.43	٠, د	23
121	12.25	1:	11.41	- 84	16 25	521	130	52	<u>-ره</u>	رد
• •	42		25	<i>- 1. بخ</i>	2-2	73 L	2)	1	, 1	.20
× 30			ss 🗡	2 47	3 →	2 7	=,,	3		.25
231			26.0	- 4 36	2 15	نين	500	5	. 8/	. 21
2 4 2			51 >>	60.	, , ₹	2230	ė 7	3	., `_	.67
2.32			316	- 2 86	۰. / کـ	= -7	. Y . 7			. 70
£ 33			36 3	(و غ	٠3	2336	2772	3	. 3	د ر
257	12 25	<i>33</i> .	19.77	د	8.38	232	587)	<u>-</u> ه	.57
252	=		16 27	136	2.27	(T)	7:0	3ن .	, =	72
253			2, 2	2 73	3.78	25.	1215	.65	.67	ور
2:3			2, 🕶	2.30	3.82	740	سحرته ر		🗸	کر آ
ية ديمة —			24 %	4,7	2 - 7	1-5.	1-07	مسكوعة .	.5	(g
25			3: 17	12.32	/ 23	6 6 6	18 27	. 4	, <u>, ,</u> ,	69
25-			FL 79	3.42	.64	80.1	2255	3		.74

CAVITATION LIMIT- (SAEES TEST)

1.50 Peop.

Har = 32.12'

Uma - 1.00'

$$\frac{\sqrt{2}}{23} = \frac{Q^{2}}{(A)^{2}} = \frac{Q^{2}}{($$

$$\mathcal{F} = \frac{32.67 + 2.308 \, \text{ABS} / -1}{.0143 \, Q^2} = \frac{31.87 + 2.308 \, \text{ABS} /}{.0143 \, Q^2}$$

K.	160	MET		Like		75	_//	<u>K+</u>		30
231	12.25	£3	1606	+2,34	792	S 20	8 1K	.41	, 69	3ن,
202		9	32 4;	- 2.99	1.61	1403	1923	.47	.90	25
233			4235	-4,24	.9+	1811	2101	.41	90	24
254			40.27	- 3 ,53	: 3	1870	2092	43	90	27
ستان نه			42 05	-552	مان.	230	23/4	. 35	13	21
22.			27.44	+ 1.24	3:2	. 50	,414	, C.	87	3 7
200			29 43	+606	3.00	2:2		72	19	72
201			26 10	- 3.30	2 -7,	262	2 J.	43	**	ين
233			26.50	-3	237	حده	- 77	7)	.19	JJ
210			2:52	-2,:4	4 26	<u>:</u> ر	1127	32	19	
2:1			20 12	-2.14	427	حدہ	1.20	=6	. 57	3
2 8			7 25	- , 43	2	~ /	42,	.8	.26	73
د ء			3. 3.	- 4 45	111	و ؤ و	301	, 4	46	. 2₽
ددد			4, 20	-6.24	.73	941	2.3	74	, W	

CAVITATION LIMITS (SUCED TESTS)

1.50 PEOP (CONT.)

Rost*	Nez	Luci	2	251	5	7.	<u>~</u>	K-	<u> </u>	10
221	12.25	A5.	10.3D	- ,36	20,18		-10	.54	, w	٠,٠
-22		Δ	16.06	A	8.08		892	ئو	54	.3
223			15.54	99	8.57		883	. ∀	83	79
224			33 KI	-3.54	1.42		1849	57	«	;√
225			34 3K	402	1.34		1873	49	.80	>5
z 2.			26.18	- 2.6K	262		1458	25	.84	>3
. 22)			23 39	2.41	3.30		1252	.74	87	.21
234			11 >1	.48	15.69		643	50	65))
235			16.82	. 87	237		662	ھ.	.9L	. 64
236			71.15	3.60	1,41		1875	.57	86	,>∀
237			30.34	,14	232		5°2 5	.49	274	254
235			30,31	5.20	.76		2412	,3∀	. ۲۷	3.
239			33)4	3.09	1.52		1678	.53	94	ئىد .
2 49			3462	378	1.35		18 72	.19	.87	. >∀
24/			27	3.7	243		126	.52	. 88	د ر ِ
212			23 74	R 57	3.18		275	.45-	30	. 25
23			7.71	1,25	902		295	.49	K	.22
244	12.25	<i>3</i> 3	12,52	,61	1474		427	.51	• 🕶	. 78
2 4.			17 05	1.16	202		ور خ	1	23	
246			16 2)	1.19	267		عار ج	ھ.		ټر .
247			3: 3	3.11	1.7		121	~3	, 4 /	.01
248			- 2 . 2	3.43	.24		2140	~2	.92	و .
240			2727	-2.44	و ۾		100	<u> </u>	92	<i>ب</i> ر
255			25.43	-2,5%	282		1295	43	جد	:>

 \mathbf{O}

(

Q

VENTLATON (Specs Tours)

$$F_{\tau} = \frac{\sqrt{6}}{\sqrt{8}}$$

$$\nabla^{1/3} = \frac{(\frac{7802}{42.4})^{1/3}}{(\frac{7802}{42.4})^{1/3}} = 4.53$$

$$F_{\tau} = \frac{\sqrt{6}}{\sqrt{(322)(\sqrt{33})}} = .0828 \sqrt{6} = .1217 \sqrt{494}$$

$$K_{\tau} = \frac{T_3}{pn^2 D^4} = \frac{T_3}{(94)(\frac{N}{40})^{\frac{1}{2}}} = 1002 \frac{T_5}{N^2}$$

$$V = .63$$

Pw*	Mon	/wit	Vno-	Fr	7.	~	<u>K</u> -	Krau
201	12.25	23	495	,60	و ۾ چ	848	,41	.65
202			17 20	214	14 23	1723	. 47	. 72
203			25 3	3.36	500	2,21	~ /	25
ZUY			2536	3.29	/ B 🐎	2072	43	ًا و .
205			26 23	3.7	220	2=, 4	.3	مكّد
20%			10.2	25	5		52	, 2 3
20%			10 93	-3	2:22		ے ّد	83
2			4 49	3	? s 2	3 % /	,-3	.63
-7			9 40	ے د	5 ~3	· 3 20	3 4	,42_
ءَ، يَ			200	,,´	- · · · ·	ر،	, f	60
Z/1			2 23	و ڏر	~_^	:-	ಸ	وءَ
ا 8 نه			هي.چ	;3		~ 2.7	25	.72
219			22 31	ے، و	16 6	٠	. • 🗡	X
÷ 20			25.59	3	1941	<i>\$</i> 3	34	¥.

VENTILATION

1.50 Paop (Cour.)

Pal*	Nous	/axer	Van-	F7 73	· //	Kr	K-
700							
2 2 i	12.2;	95	428	,52	- 0	.54	.86
212			542	صاف.	9-2-1	,62	98
223			5.33	.65	÷ 3	54	102
22+			18.98	231	j ə	, 57	.81
22.			20.03	2 44	s 23	.49	,78
22.,			10,26	1.25	- 28	. 55-	.87
22)			8,23	100	1257	44	, סכ
234			422	.57	6-3	, so	.>4
235			4 55	.57	8.3	ن .	1.00
236			18.42	224	15.5	.57	.81
237			9.56	1.10	520	.49	.78
238			2192	267	24,2	.34	. 54
239			15 5,	159	1678	.53	54
2 +0			2005	2 44	1872	49	.78
24.			9.25	, i 3	حندس	.52	. 4 3
242			281	.35	12.5	سکو٠.	.51
2-3			5".4	3	?a.	47	کاد.
244	12.25	<i>3</i> 3′	2 57	.33	632	.51	.51
245			→ ::1	15 m	3.49	ابئ	.97
246			455	,55	3 - 2	ω	.95
247			2,59	2-3		ي ر	.68
248			2-31	306	÷	.1-	در د
263			/5 7 i	/ 30	. 3 💆	Ł	¥3
255			25	. 71	: 🐔	دا .	َ و ُنو ِ

Vous	F-
	6 7
	. 33
. L'	12)
2	2 21

APPENDIX D

ESTIMATED WEET LOSSES

SUNMARY

ENTENICE /NTALE FAICTON + BEND	1.5825
GUART TRANSITION BEAUN; TUBE (FAIRTIEN)	.4207 .9402 .0384
PENEWS (DEC. E) STRUTS (DECE. E) STRUTS (INTERFERENCE)	,2079 ,7245 <u>.0060</u>
4L= =	4.3352
$k = \frac{44kz}{Q^2} = \frac{4.3^272}{40)^2} = .0027$	
/// - m2202	

ESTMATED MET LOSSES

ENTRANCE

INTAKE FRICTION + BEND

(sing to Durant + 12 115)

EST MATED LILE-LOWE :

CHAPT

Co = DEAL CORF. DUE 10 CADES FLOW = 1/12 = 1/12 = 1/12 = 1.24

1 = mer velocity = 63.41 er/sec

L = seper ... dir : 2 = 1.42'

& = CHART PHANE 1.7/2 = ,12:

D = 3,000 200. Oct. 122 - 122 (194) (194) (10) - 3274

NL = D = 3500 . . 4227'

TEANSITION

Q = 40 =1 1/5=2

19 = DEED AT SHALL END = (96)(18)/141 = 1.0434 -- 3

1 = VELDE-, a- sim = D/a = 40/10421 - 38.31-/100

Carrie and the

No market the first of the

100 = K/L = (C4/2)(263)/265 , = . 7-32

BEANNY TIE GERTON,

1 - 32 = 1/20

(1

U

P = TUBE AEIRIN

Ec - 1/2 = 1/2 - 2 - 2 - 1

3 - TURE NETT_ ONE = 10, 7- 020, = 17. 00

D = TUBE ZEAR - Concor, Entre 1 - 1031. 2 cor, 10, (20) 38 25 - 325

12.20 (20.00)

ESTIMATED /NE- 105:Es

BraRING TUBE (FRONTAL)

ESTIMATED MIET LOWES

CTRUT (INTERFERENCE)

A = 1.0434 er

V = 38.34 FT/126

A = 316.7 11 - 1042

 $C_{3} = .75 \frac{1}{1/2} - .2003 = .773(1041) - .773 = .7555$ $D = .007 \cdot .007 = .003 + .007 = .003 = .003 = .7827$

416 1 D 1 1317 . , 2063

ESTIMATED CAING LOSS

CASING

ESTIMATED NOZZLE LOSS

$$HL_{3} = \frac{V_{1}^{3}}{23} (1+K)$$

$$Q = 40 = 7/3 e_{-}$$

$$Q_{1} = \frac{1}{200}$$

$$Q_{2} = \frac{1}{200} = \frac{1}{200}$$

$$Q_{3} = \frac{1}{200} = \frac{1}{200}$$

NOTTLE CHORACTERISTICS VET DIAM

Men	& A	A. D
/	.5081	.46 43
2	.5086	سح ت 4 شد
3	.6508	.60 30
4	.२०२२	.6575
Nove	1.00	1.00

LOSS COEF.

Nas #	A D	<u>a</u>	X
3	.6508	.4245	,0733
4	,702)	.4940	,0688
News	1.00	1.00	0

0-10

ESTIMATED WAGT PROSURE RECOVERY

$$H_0 = RPR \frac{V_0^2}{28}$$
 $RPR = 1.00$
 $H_0 = (1.00) \frac{V_0^2}{2(324)} = .0155 / 0^4$

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ESTIMATED Parp HEAD REQUIED

Horea =
$$4kz + 4k_c + 4k_s - 46$$
 $4kz = .0027 Q^2$
 $4k_c = .000 / 45 Q^2$
 $4k_s = .0328 Q^2$
 $4k_s = .0155 \sqrt{6}^2$
 $4k_s = (.0027 + .000 / 47 + .0328) Q^2 - .0155 \sqrt{6}^2$

= .0356 Q^2 - .0155 \(\frac{1}{2} \)

ESTIMATED CAVITATION LIMITS

$$O = \frac{H_{5} - H_{10}}{85/23}$$

$$H_{5} = H_{00} + H_{5} - H_{5} - \frac{V_{5}^{2}}{23}$$

$$H_{0} = .3300^{3}$$

$$H_{0} = .0155 V_{0}^{2}$$

$$H_{5} = .0020 Q^{2}$$

$$\frac{V_{5}^{2}}{23} = \frac{Q^{2}}{(10434)^{3}} \frac{1}{2(32.2)} = .0143 Q^{2}$$

$$H_{5} = .33.00 + .0155 V_{0}^{2} - .0020 Q^{2} - .0143 Q^{2}$$

$$= .3300 + .0155 V_{0}^{2} - .010 Q^{2}$$

$$H_{100} = 1.00^{3}$$

$$O = \frac{.3300 + .0155 V_{0}^{2} - .010 Q^{2} - 1}{.0143 Q^{2}} = \frac{.32.00 + .0155 V_{0}^{2} - .010 Q^{2}}{.0143 Q^{2}}$$

$$.0143 Q^{2} = .010 Q^{2} = .32.01 + .0155 V_{0}^{2}$$

$$Q^{2} = .32.01 + .0155 V_{0}^{2}$$

$$0143 Q^{2} = .010 Q^{2} = .010 Q^{2} + .010 Q^{2}$$

Sugges 0 -. 25

0-13

ESTMATED PROFELLER CHARACTERISTICS

Pump Exercisicy (1.50 Pom /12.25 NOLL)

ESTMATED FROM EVERES OF 3p-VS-O AND 3p-VS-SHP

USE 3p = 172

PROP. ADVANCE COEF (1.50 DOOD / 17.75 MULL)

ESTIMATED FROM CURIE'S OF J-15-0 AND J-15-SHP

USE J= .82

SHP REQUIRED

CALCULATION NOTES

VMPS = CRAFT SOETS -MAN (NONINAL VALUES)

Vo = 1.47 (Vman)

Q = FLOW RATE ~ FT 3/SEC (NOMINAL MALVES)

Hp = REQD PUMPHEND = .0356 Q -. 0155 16

30 = PUND EFFICIENCY = . 72

SHP = POWER REQD. BY DUMP = PRQ 40 550 7p

SHP REQUIRED CALCULATION

Vnon	Vo	Q	40	20	<u> حری</u>
0	0	20	17.24	.)۷	46
		30	32.24		155
		40	56.96		366
		50	19.00		219
10	14,70	20	10.89	, کد	35
		5 0	28.0		139
		40	53.61		347
		D	85.6		692
15	22,05	20	6.70	,عر,	22
		30	24.50		119
		40	49.42		317
		50	81.46		658
20	29.40	20	, 54	, کد	3
		3 0	18.64		91
		40	43.56		282
		50	25.00		61!
25	弘.75	20	-6.67	, عد	-
		30	11.11		54
		40	3:s.73		2 ?3
		.3	68.07		550

System Preprince (Ponce Limit)

CALCULATION NOTES

VMON = CRAFT SPEED ~ MPH (NOMINAL MILVES)

Vo = 1.47 Know

SHP = DOWER TO DUMP ~ HP (NOW WAL VALUES)

Q = FLON RATE ~ ET \$/SEC (FROM SHP201), CURVES)

A) · VET MEA ~ ET

Vs = ver nevocry = Q

To = DET THRUST = PQ(V,-V0)

OPC = PROPULSIE CORE = T. V.
550 SHP

I PEOP ADMINICE COEF. = .82

N - 7200 ZAN - 49.29 Q

SYSTEM PERFORMANCE (PONER LMIT)

Vijau	16	SIP	Q	As	1/3	7	OPC	7	N
0	C	100	2.8	.2043	34.43	1878	-	,82	1551
		153	£9.)		42.19	2489	_		1785
		200	32.9		46.71	3054	_		1978
		الاه	35.4		50,26	35 X	_		2128
		300	37.6		53.39	3990			2260
10	14.70	100	27.1		38.48	1281	.342	. ي 2	1629
		150	3 0 .5		43.73	1217	317		1851
		200	33.8		47.99	2236	,299		2032
		25	3 6.3		51.54	265%	.284		2182
		300	38.4		54.52	3039	.271		2308
15	2:25	1:00	28.0		40.51	1055	.423	.42	1219
		(د/	32. L		45.22	1515	405		1936
		220	35.1		49.84	1939	.389		2110
		20	37.4		53.10	2308	.320		2248
		£XV	39.4		55.94	2654	.355		2368
37	29.4)	120	30.7		43.59	866	.463	.82	1845
		15	34.0		48.27	1275	454		2044
		כעיה	36.7		52.11	1657	.443		2206
		20	348		55.09	1981	424		2332
		žù	40.7		57.29	22.47	.409		2446
47	未汗	100	33.0		46 16	663	.443	.82	1484
		15	34.3		51.11	1027	.458	-	2164
		دد سے	386		5481	1330	,		2320
		~ · · · ·	40.8		57.93	.7.6	9		2452
		£20	42.8		60.77	فبردي	73 5		2573

System PERFORMANCE (CAVITATION LAIR)

CALCULATION NOTES

O = CANTATION INDEX, BASED ON MET AIM FILM (SCLECTED VALLES) :

lique = cener speci - mon (Nominal values)

Vo = 1.47 Vapu

Q = FLOW 24TE = 32.07 + .0155 16

As = VET ALEA ~ ET?

Vy = VET VELOCITY = Q

To - VET THRUST = PQ (Vs-Vo)

System PREFORMANCE (CAVITATION LIMIT)

<u> </u>	Yuan.	Yo_	<u>a</u>	A.	<u>/</u> ,	工
1.00	0	0	32.01	,2043	45.45 47.76	2892
	15	22.05	35.57		50.51	2012
	20 25	29.40 36,75	36.11 41.15		54.12 58.43	
.25	0	0	34.01	.2043	48.29	3264
,,,,	10		35.74	,,2	50,25	
	سحار	22.05				2305
	20 25	29.40 36.75			57.50 62.08	
	23	J6, J3				

4

ESTIMATED PERFORMET (POWER LIMIT)

CALCULATION NOTES

ESTIMATED PERFORMANICE (POMER LIMIT)

VMPH	SHA	SHOP	Tin	7,6	No	Nic	SHE	<u> 7.</u>
0	100	/3/	1878	£453	1551	1357	وں ۾	3330
	190	196	2489	3257	1785	1562	300	4360
	200	261	3057	3989	1978	1731	400	52 80
	250	327	3536	4618	2128	1862		
	300	392	39 90	5211	2260	1978		
10	100	13/	1281	1673	1639	1425	200	2380
	150	19%	1277	2320	1457	1620	300	シカ
	200	261	2236	2920	2035	1778	400	4040
	250	327	2658	みつて	2185	1909		
	300	392	30 39	3969	530K	2020		
15	100	13,	1055	1378	1719	1504	200	2020
	150	196	1515	1979	1936	1694	300	2820
	200	261	1939	2533	2110	1846	400	3530
	250	32)	2308	3015	2248	1967		
	300	392	2654	3466	2368	2072		
20	100	17/	866	1131	1845	1614	200	1720
	150	195	1275	1665	2044	1788	300	24 30
	200	241	1657	2164	2206	1930	400	30 60
	250	327	1941	2587	2332	2040		
	300	392	2297	3000	2446	2140		
25	130	131	663	84	1984	1736	200	.3 \$3
	153	19:	122)	1341	2164	1894	300	20 80
	220	261	13 86	1810	2320	2030	400	2720
	230	327	1718	2244	2452	2146		
	300	392	2043	2668	2573	2251		

F-4

 \mathcal{J}

ESTMATED PREFERENCE (CAVITATION LINIT)

CALCULATION NOTES

ESTIMATED PERFORMANCE (CALITATION LIMIT)

Vinpu	_	1,4	7.6
0	1.00 .75	2892 3264	3777 4263
10	1.00 .25	2210 2560	2887 3344
15	1.00	2012 2375	2628 3102
20	25.	/8)2 2262	24 45 2954
25	1.00	177 3 2201	2316

DISTRIBUTION LIST

(Contract N00014-83-C-0780)

Copies

7 David W. Taylor Naval Ship Research And Development Center Bethesda, MD 20084 S.S. Scharf, Code 1240 J.G. Stricker, Code 2721 Library, Code 522 1 Office of Naval Research 800 N. Quincy Arlington, VA 22217 Attn: Scientific Officer, Code 438 1 Office of Naval Research Resident Representative 715 Broadway, 5th. Floor New York, New York 10003 Defense Technical Information Center Building 5, Cameron Station

Alexandria, VA 22314

END

FILMED

5-85

DTIC