Chapitre I A.U. 2020/21

Introduction au multimédia

I. Définitions et champs d'application.

- ① Multimédia : est mot apparu vers la fin des années 80, lorsque les CD-ROM se sont développés.
- ② Selon la norme AFNOR: Technique de communication associant sur *un seul support* des données *Audiovisuelles* et *Informatiques* permettant une utilisation interactive...
- 3 Selon la norme ISO 2382 du JTC1 de l'ISO/CEI:

	Média	nom	Moyen physique par lequel les données sont <u>perçues</u> , <u>représentées</u> , <u>stockées</u> ou <u>transmises</u>	
	Monomédia	adjectif	Relatif à l'utilisation d'un seul média	
	Multimédia	adjectif	Relatif à l'utilisation combinée de plusieurs <u>médias</u>	
		nom	Domaine des applications et des techniques multimédias	
	Hypermédia	adjectif	Relatif à l'utilisation combinée multimédia/hypertexte (<u>représentation de données</u> sous forme de <u>nœuds connectés</u>)	
		nom	Domaine des applications, des notions et des techniques hypermédias	

(4) Composants multimédia

(5) **Média continu** (actif): L'information se comprend que par l'évolution temporelle de grandeurs physiques (dépendance). Exemple: son, musique, vidéo.

Attention: Le terme continu se réfère à la perception de l'usager et pas à la représentation interne.

- *Traitement*: i. Critique du point de vue temporel.
 - ii. Volume non limité que par la durée,
 - iii. Nécessite un débit élevé.
- **Média discret** (passif): L'information est donnée <u>sans référence temporelle</u> (indépendant). Exemple: Texte, graphiques, images fixes.

Traitement: i. Non conditionné par des contraintes temporelles,

- ii. Se fait dans un temps contraint uniquement par l'application.
- iii. Volume limité,

7 Classes de médias

- **Echange (stockage/transmission): Flash Disque, CD-ROM, Câble, Ondes Hertziennes
- Information/Représentation (Objets): Caractères, Graphiques, Photographies, Vidéo
- Présentation (Entrée/Sortie): Ecran N/B, Ecran couleur, Papier, Haut-parleur.
- Perception (Usager): Clavier, Souris, Microphone, Caméra.

8 Métiers:

- Journaliste, Graphiste, Webdesigner,
- Animateur 3d, Monteur vidéo, Infographiste,
- Art numérique, Développement, Impression...

Domaines:

- Production audio visuelle numérique (CD, film, vidéo),
- Edition Hors ligne (CD, DVD, Blu-Ray),
- Edition En ligne (site web, télévision interactive, WAP, 4G...),

F ...

Chirurgie virtuelle

II. Numérisation

La numérisation des données (texte, image, son) est la 1^{ère} des **conditions de possibilité du multimédia** *Pourquoi une représentation numérique* ?

- Un ordinateur ne manipule que des données numériques,
- Seul les données *numériques* sont susceptibles d'être traitées,
- Une fois numérisées, les données peuvent être manipulées, stockées et modifiées.

En quoi consiste la numérisation?

Les techniques de numérisation sont complexes, mais le principe général est simple :

- **Echantillonnage:** Transformer une variation continue en une succession d'échantillons discontinus,
- **Quantification**: approximer les échantillons discontinus par des valeurs d'un ensemble discret,
 - **Codage**: Représenter numériquement les valeurs quantifiées.

Comment créer un produit multimédia,

- Rassembler sur un même support des médias différents: Discrets et continus, Sonores et visuels, Fixes et animés
- Accorder à l'utilisateur la possibilité d'interaction (chemin, rythme de consultation): traiter, structurer, synchroniser, ...

III. Caractéristiques des médias,

Les signaux manipulés dans les systèmes multimédias sont caractérisés par :

- **(1)** Volume (très important),
 - ✓ 1 image vidéo couleur 24 bits à la définition de 620×560 pixels correspond à environ 1 MO.
 - ✓ 1 seconde de vidéo correspond à 30 MO (a la cadence de 30 images/s).
 - ✓ 1 application multimédia typique peut faire appel à 30 minutes de vidéo, soit: 2.000 images et 30 minutes de son stéréo. Elle nécessite donc:
 - i. 50 GO de stockage pour la vidéo,
 - ii. 15 GO pour les images,
 - iii. 0,3 GO pour la partie audio,

Un total de 65,3 GO

La vidéo demande une très grosse bande passante!

o **Ali** regarde sur Facebook une photo de 200Ko toutes

o **Manel** écoute de la Musique sur *iTunes* encodée à

o **Khalifa** regarde de la Vidéo encodée à 2Mbps.

Ali= 80 Mo, Manel= 64 Mo et Khalifa= 1 Go!!! La vidéo représente 90% du trafic internet...

2 Débit (élevé),

- la vidéo (non comprimée) se situe entre 140 et 216 Mb/s,
- ✓ l'audio type CD de l'ordre de 1,4 Mb/s,
 - la parole 64 kb/s.

Problème: Il faut un débit d'entrée/sortie de 30×28 Mb/s, alors que, la technologie actuelle de transfert est limitée.

Solution: Comprimer les données avant le transfert / les Décomprimer à la re-lecture

Exemple:

les 10 secondes.

Après **1h07** de consommation :

128 Kbps.

- - Il en découle des aspects : temps réel,

Avancées techniques,

Les avancées techniques les plus importantes:

- Puissance des calculateurs,
- ② Capacité des systèmes de **stockage**,
- 3 **Débit** des réseaux,
- 4 Méthodes de traitement des images et de la vidéo (incluant les aspects image de synthèse),
- Méthodes de traitement de l'audio (y compris pour la musique de synthèse et les effets spéciaux),
- Traitement de la **parole** (reconnaissance de locuteur et conversion texte vers parole),
- 8 Algorithmes de **compression** de la parole, de l'audio, de l'image et de la vidéo.

3 Flux continu (propre aux médias continus):

⇒ Flux faible pour l'audio,

⇒ Flux important pour la vidéo.

- synchronisation et contrôle des flux.
- 4 Qualités de services (en terme de taux d'erreur):
 - ⇒ Taux faibles pour l'audio.
 - ⇒ Taux modérés pour la vidéo,

Applications et Services,

- On distingue *deux classes d'applications*:
 - Applications locales, développées autour d'un micro-ordinateur et caractérisées par une horloge locale.
 - Applications distribuées, communiquent à travers des réseaux et imposent une synchronisation.
- Il y a trois types de services de base :
 - ① Communication interpersonnelle:
 - ☑ *Individuelle* ou *de masse*,
 - ☑ Synchrone / asynchrone. (synchrones ont des impératifs temps réels: Exemple, téléphonie sur Internét).
 - 2 Recherche d'information: Regroupe les fonctions de:
 - ☑ Archivage d'information (serveurs),
 - ₽ Présentation (terminal, fonction kiosque..),
 - ☑ Distribution.
 - ☑ *Niveau de stockage*: varie du bas niveau (information stockée) jusqu'à un niveau de méta-information rejoignant la problématique *base de données multimédia*.
 - ③ *Édition et archivage*: Pose de multiples problèmes, en particulier pour les fonctions *d'enregistrement* et *d'édition*.

Qualité de service,

- **Délai moyen : temps moyen séparant l'entrée d'un paquet dans le réseau de sa sortie.
- **Délai maximum : temps maximum séparant l'entrée d'un paquet dans le réseau de sa sortie.
- Gigue : quantifie la moyenne de <u>l'incertitude dans le temps d'arrivée du paquet</u>
- Taux d'erreur binaire : rapport entre le nombre de bit reçus erronés et le nombre de bit émis.
- Taux d'erreur paquets : rapport entre le nombre de paquets reçus erronés et le nombre de paquets émis.

o

Synchronisation inter-média,

Dépend de la configuration des sources et des destinations.

- ① *Une source locale*: Une seule source distribue le flot de données aux divers systèmes de lecture.
 - Tant que les systèmes de lecture ont la même vitesse, aucune synchronisation n'est nécessaire.
- 2 Plusieurs sources locales: Plus d'une source distribue l'information aux systèmes de lecture.
 - Exemple: projection de diapositives+bande audio. La synchronisation est à l'intérieur de l'ordinateur.
- ③ Une source distribuée: Une source distribue à travers un réseau à un ou plusieurs sites de lecture.
 - Exemple: <u>TV par câble</u>; synchronisation d'horloge+ vitesse constante de déroulement des lecteurs.
 - 4 Plusieurs Sources distribuées (Streaming):

Plus d'une source distribue à plusieurs systèmes de lecture répartis sur des nœuds multiples :

- Multiple sources sur le même nœud, distribué sur un autre nœud (ex. visiophone);
- Multiple sources depuis un ou plusieurs nœuds vers un autre nœud (ex. télé-medecine);
- Multiple sources depuis un nœud vers un ou plusieurs nœuds (ex. TVHD);
- Multiple sources depuis un ou plusieurs nœuds vers un ou plusieurs nœuds (ex. visioconférence).

V. Réseaux multimédias,

- Réseau multimédia = Réseau qui manipule de l'Audio ou/et Vidéo
- Les objets multimédias sont stockés sur un *serveur* et rejoués sur le site d'un ou de plusieurs *client(s)* (unicast/multicast).
- Un réseau multimédia est caractérisé par un débit (ou bande passante) élevé.

Applications

Trois grands types d'applications possibles :

- 1. Streaming stocké (audio, vidéo).
 - o Peut être joué avant d'être entièrement téléchargé.
 - o Stocké sur un serveur (peut être envoyé plus rapidement que reçu : nécessite un buffer côté client) (ou P2P (Spotify)).
 - **Exemple**: Youtube, Netflix, télévision en replay...
- 2. Conversations (audio/vidéo sur IP)
 - **Exemple**: WebRTC, Skype, Google, WhatsApp...
- 3./Streaming live audio/vidéo :
 - Exemple Wirecast, Broadcam, Yawcam, OBS Studio, Periscope de Twitter,
 Snapchat de Facebook, ...

Exemple: Streaming de vidéo enregistrée Trois catégories:

- sur UDP
- sur HTTP (TCP)
- sur HTTP adaptatif

Streaming sur UDP

- Serveur transmet avec débit = débit de lecture du client *Exemple*: paquets de 8000 bits, lecture à 2 Mb/s → 1 paquet toutes les 4ms
- Utilise protocole RTP (Real-Time Transport Protocol), adapté au transport de données Audio/Vidéo
- problèmes :
- Débit du réseau variable (problème de lecture en continu)
 - Nécessite serveur de contrôle multimédia (ex. RTSP: Real Time Streaming Protocol)
 - Les firewall bloquent en général UDP

Streaming sur HTTP

- · Vidéo stockée comme les autres objets par le serveur web, accès par URL
- Client fait requête GET sur URL
- Serveur envoie le fichiers vidéo dans **msg** HTTP de réponse aussi vite que possible (dépend de TCP) → utilisé par beaucoup de serveurs de média (ex. Youtube)
 - Variation de débit et de délai
 - + Traverse les firewall et NAT

+ Pas besoin de serveur de contrôle de média Bufférisation + préchargement

//Enregistrer un extrait de flux vidéo HTTP import requests url = "https://files3.lynda.com/VBR_MP4h264_"

chunk_size = 256

r = requests.get(url, stream =True) with open("lynda.mp4", "wb") as f:

for chunk in r.iter_content(chunk_size=chunk_size): f.write(chunk)

out periodic from buffer,

HTTP adaptatif: DASH (Dynamic Adaptative Streaming over HTTP)

- Chaque vidéo codée sous différentes versions avec différents débits (et qualités) à différentes URLs,
- Serveur maintient fichier contenant la liste des versions et leur débit de lecture,
- Client : 1 requête GET pour chaque morceau (chunk) de vidéo
- Mesure la bande passante en réception → adaptation de débit coté client
- Si bande passante diminue, choix des morceaux suivants à débit moindre
- Souvent même fonctionnement pour le son → choix dynamique des morceaux de vidéo et son puis synchronisation locale

Réseaux de diffusion de contenus: CDN (Content Delivery Network)

- des millions de vidéos sont distribuées à la demande chaque jours sur Internet

 besoin d'infrastructure performante chez les gros distributeurs
 - 2 stratégies :
 - O Près des utilisateurs (ex. Akamai, spécialisée dans la mise à disposition de serveurs de cache pour les entreprises)
 - Près des PoP des ISP

Protocoles pour applications interactives Transport Signalisation du média H.261, MGCP. MPEG Qualité de service Megaco SDP RTSP RSVP RTCP H.323 SIP TCP UDP, SCTP IPv4, IPv6 PPP, ATM, Ethernet, ...

- ** Avant: Il fallait être uniquement un bon programmeur pour réaliser un logiciel multimédia interactif.
- Aujourd'hui: Des nombreux outils ont été mis au point pour aider à la création d'applications multimédia. Ces outils sont appelés systèmes auteurs (environnement de développement de haut niveau).
- Les systèmes auteurs sont classés en fonction du niveau de puissance offert et de la métaphore qu'ils emploient pour intégrer les différents média entre eux.
- Exemples: Adobe Flash, Adobe Director, Anime Studio, Adobe Premiere, PowerDirector,

