EDA ON TITANIC DATASET

Importing the libraries

import pandas as pd import numpy as np

 ${\tt import\ matplotlib.pyplot\ as\ plt}$

import seaborn as sns

df = pd.read_csv('/content/drive/MyDrive/datasets/titanic_test.csv') df.head()

₹	Pass	engerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	11.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	
Next	steps: (Generate	code with d	lf) (View recommended plots N	ew intera	ctive s	heet						

df.shape

→ (891, 12)

Data Preprocessing

#removing the columns df = df.drop(columns=['PassengerId','Name','Cabin','Ticket'], axis= 1)

df.describe()

₹		Survived	Pclass	Age	SibSp	Parch	Fare	
	count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	ıl.
	mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	
	std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429	
	min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	
	25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	
	50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	
	75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	
	max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	

#checking data types

df.dtypes

Passengerld	int64
Survived	int64
Pclass	int64
Name	object
Sex	object
Age	float64
SibSp	int64
Parch	int64
Ticket	object
Fare	float64
Cabin	object

dtype: object

Embarked

#checking for unique value count
df.nunique()

object

#checking for missing value count
df.isnull().sum()

dtype: int64

dtype: int64

Refining the data

```
# replacing the missing values median_age = df['Age'].median()

df['Age'].fillna(median_age, inplace=True)

df['Embarked'] = df['Embarked'].replace(np.nan, 'S')

ipython-input-43-9ee90c9fefc9>:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained ass The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col df['Age'].fillna(median_age, inplace=True)

#type casting Age to integer df['Age'] = df['Age'].astype(int)

#replacing with 1 and female with 0 df['Sex'] = df['Sex'].apply(lambda x : 1 if x == 'male' else 0)

Categorising in groups i.e. Infant(0-5), Teen (6-20), 20s(21-30), 30s(31-40), 40s(41-50), 50s(51-60), Elder(61-100)

# creating age groups - young (0-18), adult(18-30), middle aged(30-50), old (50-100) df['Age'] = pd.cut(x=df['Age'], bins=[0, 5, 20, 30, 40, 50, 60, 100], labels = ['Infant', 'Teen', '20s', '30s', '40s', '50s', 'Elder'])
```

Exploratory Data Analysis

Plotting the Countplot to visualize the number

```
# visulizing the count of the features
fig, ax = plt.subplots(2,4,figsize=(20,20))
sns.countplot(x = 'Survived', data = df, ax= ax[0,0])
sns.countplot(x = 'Pclass', data = df, ax=ax[0,1])
sns.countplot(x = 'Sex', data = df, ax=ax[0,2])
sns.countplot(x = 'Age', data = df, ax=ax[0,3])
sns.countplot(x = 'Embarked', data = df, ax=ax[1,0])
sns.histplot(x = 'Fare', data= df, bins=10, ax=ax[1,1])
sns.countplot(x = 'SibSp', data = df, ax=ax[1,2])
sns.countplot(x = 'Parch', data = df, ax=ax[1,3])
```


Visualizing the replationship between the features

```
fig, ax = plt.subplots(2,4,figsize=(20,20))
sns.countplot(x = 'Sex', data = df, hue = 'Survived', ax= ax[0,0])
sns.countplot(x = 'Age', data = df, hue = 'Survived', ax=ax[0,1])
sns.boxplot(x = 'Sex',y='Fare', data = df, hue = 'Pclass', ax=ax[0,2])
sns.countplot(x = 'SibSp', data = df, hue = 'Survived', ax=ax[0,3])
sns.countplot(x = 'Parch', data = df, hue = 'Survived', ax=ax[1,0])
sns.scatterplot(x = 'SibSp', y = 'Parch', data = df, hue = 'Survived', ax=ax[1,1])
sns.boxplot(x = 'Embarked', y = 'Fare', data = df, ax=ax[1,2])
sns.pointplot(x = 'Pclass', y = 'Survived', data = df, ax=ax[1,3])
```


