FRAUD DETECTION SYSTEM USING BAYESIAN NETWORK

SANDIP KATEL SHARAD POKHAREL

078BCT077 078BCT083

What is Fraud??

An Intentional deception or misrepresentation of the truth to gain an unfair advantage or cause harm, often financially

Examples of fraud: insurance fraud, credit card fraud, identify theft, money laundering, tax evasion, product warranty, healthcare fraud

What is Bayesian Network?

A graphical model that represents a set of variables and their conditional dependencies through a directed acyclic graph

Each node in the graph corresponds to a random variable

The edges between nodes indicate direct probabilistic dependencies

$$P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | \text{Parents}(X_i))$$

Why Bayesian Networks in Fraud Detection?

Aspect	Bayesian Belief Networks	Artificial Neural Networks
Detection Accuracy	68-74% True Positive Rate	47-70% True Positive Rate
Training Time	~20 minutes	Several hours
Evaluation Speed	Slower	Faster
Interpretability	High (white box)	Low (black box)
Knowledge Integration	Can incorporate expert knowledge	Requires large labeled datasets

Methodology

SIX KEY VARIABLES:

- 1. Travel Activity (Trav)
- 2. Fraud Status (Fraud)
- 3. Other Conditions (OC)
- 4. Credit Reporting Pattern (CRP)
- 5. Flagged Purchase (FP)
- 6. Investigation Priority (IP)

INFERENCE PROCESS:

- 1. Evidence Application
- 2. Variable Elimination
- 3. Final Computation

Network Structure

Conditional Dependencies:

Higher fraud risk during travel (2%) vs. non-travel (0.5%)

Strong correlation between fraud and flagged purchases

Investigation priorities vary based on evidence patterns

Experimental Results

Traud Frobability	Classification
0.65%	SAFE
44.52%	Requires Investigation
9.09%	ALERT: Fraud Detected
11.83%	ALERT: Fraud Detected
	0.65% 44.52% 9.09%

Risk Analysis Visualization

Conditional Dependencies:

Baseline Risk (0.65%)

During Travel

Flagged Purchase

Unusual Activity

Unusual Credit Reporting Pattern

All Factors Combined (11.83%)

Implementation Strategy

01. Low Risk (<5%):

- Automatic approval
- Example: Baseline transactions

02. Medium Risk (5-25%):

- Enhanced verification
- Example: Travel with flagged purchase

03. High Risk (>25%):

- Manual review required
- Example: Investigation priority cases

Limitations & Future Work

CURRENT LIMITATIONS:

- 1. Limited variable set
- 2. Static probability tables
- 3. Computational complexity for larger networks

FUTURE OPPORTUNITIES:

- 1. Expand variable set (transaction amount, merchant category)
- 2. Implement dynamic probability updates
- 3. Explore hybrid approaches with deep learning
- 4. Optimize for real-time implementation

Conclusion

Bayesian Networks provide a **probabilistic framework** for fraud detection

The approach offers interpretability and adaptability

Our model demonstrates **effective risk** discrimination

Probabilistic models represent a promising direction for **future fraud detection systems**

THANK YOU

QUESTIONS??

SANDIP KATEL 078BCT077

SHARAD POKHAREL 078BCT083