Scalar Line Integrals

We've seen how we can integrate vector fields along a path, using vector line integrals. We can also integrate scalar valued functions along a path. For instance, suppose we have a scalar valued function $f: \mathbb{R}^2 \to \mathbb{R}$ and a path $\vec{x}: [a, b] \to \mathbb{R}^2$ in \mathbb{R}^2 . Suppose we look at the portion of the graph of f lying over the path \vec{x} , and drop a "curtain" to the xy-plane.

PICTURE

Integrating f along the path \vec{x} will be equivalent to finding the area of this curtain. We can also describe this as the area between $\vec{x}(t)$ and $f(\vec{x}(t))$.

Scalar line integrals aren't only useful for finding areas of strangely shapes regions. They are also useful throughout physics. For example, if you have the mass density function of a wire, you can compute the scalar line integral of this function to find the total mass of the wire.

Scalar Line Integrals

Suppose we have a function $f: \mathbb{R}^n \to \mathbb{R}$ and a \mathcal{C}' path $\vec{x}: [a, b] \to \mathbb{R}^n$, such that the composition $f(\vec{x}(t))$ is defined on [a, b].

PICTURE

In order to find the area under f and over the path \vec{x} , we will borrow an important idea from single variable calculus: approximating an area with rectangles.

In order to do this, we'll partition the interval [a, b] into n subintervals, determined by

$$a = t_0 < t_1 < t_2 < \dots < t_k < \dots < t_n = b.$$

This partition breaks the path \vec{x} into smaller paths, by restricting to the subintervals.

PICTURE

Our goal will be to approximate the area under f over each of these shorter paths. These approximations will be computed by finding the length of the short path, and multiplying this by a height determined by a test point, t_k^* . We can think of this as a curved rectangle.

PICTURE

Learning outcomes: Understand the definition of scalar line integrals geometrically, and be able to compute them.

Author(s): Melissa Lynn

The specific choice of the test point will be important for simplifying our result - we'll come back to this later.

The height of our curved rectangle will be $f(\vec{x}(t_k^*))$, and the base is the distance Δs_k along the path \vec{x} from t_{k-1} to t_k .

PICTURE

Thinking back to arclength computations, this distance is given by the integral

$$\Delta s_k = \int_{t_{k-1}}^{t_k} \|\vec{x}'(t)\| dt.$$

Now, we need to make a careful choice for our test point t_k^* which will simplify things later. To do this, recall the Mean Value Theorem for Integrals, from single variable calculus.

Theorem 1. Suppose g is a continuous function on the closed interval [a, b]. Then there exists c in [a, b] such that

$$\int_{a}^{b} g(t)dt = (b-a)g(c).$$

Here, we'll take $\|\vec{x}'(t)\|$ for the function g(t). Since \vec{x} is C^1 , $\|\vec{x}'(t)\|$ is continuous. Applying the Mean Value Theorem on the interval $[t_{k-1}, t_k]$, there exists c_k such that

$$\Delta s_k = \int_{t_{k-1}}^{t_k} \|\vec{x}'(t)\| dt = (t_k - t_{k-1}) \|\vec{x}'(c_k)\|.$$

We take this c_k to be our test point, so that $t_k^* = c_k$.

Now, the area of the kth curved rectangle is $F(\vec{x}(t_k^*))\Delta s_k$. We add up these areas and take the limit as the number of rectangles, n, goes to infinity:

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(\vec{x}(t_k^*)) \Delta s_k.$$

Substituting $\Delta s_k = (t_k - t_{k-1}) \|\vec{x}'(c_k)\|$ and writing $\Delta t = t_k - t_{k-1}$, we have

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(\vec{x}(t_k^*)) ||\vec{x}'(c_k)|| \Delta t.$$

We can recognize this as the single variable integral of the function $f(\vec{x}(t)) || \vec{x}'(t) ||$ over the interval [a, b],

$$\int_a^b f(\vec{x}(t)) \|vecx'(t)\| dt.$$

We take this to be the definition of a scalar line integral.

Definition 1. Let $f: X \subset \mathbb{R}^n \to \mathbb{R}$ be a continuous function defined on a C^1 path $\vec{x}: [a,b] \to \mathbb{R}^n$. The scalar line integral of f along \vec{x} is

$$\int_{\vec{x}} f \ ds = \int_{a}^{b} f(\vec{x}(t)) ||\vec{x}'(t)|| dt.$$

Examples

Let's look at some examples of computing scalar line integrals.

Example 1. Consider the function $f(x,y) = x^2 + y^2$ and the path $\vec{x}(t) = (\cos t, \sin t)$ for $t \in [0, \pi]$. We compute the scalar line integral of f over \vec{x} .

$$\begin{split} \int_{\vec{x}} f \, ds &= \int_{a}^{b} f(\vec{x}(t)) \| \vec{x}'(t) \| dt \\ &= \int_{0}^{\pi} f(\cos t, \sin t) \| (-\sin t, \cos t) \| dt \\ &= \int_{0}^{\pi} (\cos^{2} t + \sin^{2} t) \sqrt{\sin^{2} t + \cos^{2} t} dt \\ &= \int_{0}^{\pi} 1 \, dt \\ &= \pi \end{split}$$

Example 2. Consider the function $f(x,y) = e^{\sqrt{xy}}$ and the path $\vec{x}(t) = (t,t)$ for $t \in [0,1]$. We compute the scalar line integral of f over \vec{x} .

$$\int_{\vec{x}} f \, ds = \int_{a}^{b} f(\vec{x}(t)) ||\vec{x}'(t)|| dt$$

$$= \int_{0}^{1} f(t, t) ||(1, 1)|| dt$$

$$= \int_{0}^{1} e^{\sqrt{t^{2}}} \sqrt{2} dt$$

$$= \sqrt{2} \int_{0}^{1} e^{t} dt$$

$$= \sqrt{2} (e^{1} - e^{0})$$

$$= \sqrt{2} e - \sqrt{2}$$