NAME	ID#

Please show all your work for full credit and box off your answers.

Partial credit will be given when you show your work.

Good luck!

Suppose you have a Markov chain with four possible states {0, 1, 2, 3}. All problems below will deal with different (1 step) transition matrices for those states.

Problem (20 pts total). (10 pts) Consider the following (one step) transition matrix:

States	0	1	2	3
0	0	1.0	0	0
1	0	0	1.0	0
2	0	0	0	1.0
3	1	0	0	0

- a) (5 pts) Draw a transition diagram.
- b) (5 pts) Indicate how many classes and which states belong to which classes. Help
 c) (5 pts) What is the period of every state in each class?
- d) (5 pts) What is the expected number of visits to state =1?

2. Problem (50 pts total). Nov stipp Syon have that (1 mg (24) presenting mansition probabilities, such that 0<a1<1 and 0<a2<1. Consider the following transition matrix:

States	0	1	2	3
0	Wad W	that now	* 100	*
1	和uu WE	onat pow	*OUCI	0
2	a2	0	0	*
3	0	1.0	*	*

- a) (5 pts) Fill in the missing entries, marked with *.
- b) (5 pts) Draw a transition diagram. (Label transition probabilities in terms of a1 and a2).
- c) (5 pts) Identify number of classes; which elements belong to which class; periodicity of each class.
- d) **(5 pts)** Looking at your answer from part (b) determine the values of $p_{11}^{(2)}$, $p_{11}^{(3)}$, $p_{11}^{(4)}$, $p_{11}^{(5)}$, $p_{11}^{(6)}$ (You need to include a short explanation of how you got this answer.)
- e) (5 pts) Same question as (d) for p_{13} , $p_{13}^{(2)}$, $p_{13}^{(3)}$ (You need to include a short explanation of how you got this answer.)

In the next set of questions, assume a1=0.2, a2=0.1:

Also, the following formula for the sum of geometric series may be useful to you: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ if |x| < 1.

- f) (5 pts) Assuming the process starts in State=1, find the expected number of visits to that state.
- g) (10 pts) Find the expected number of visits to State=0.
- h) (10 pts) Does your answer to part (g) depend on where the process starts? Does your answer to part (f) depend on where the process starts?