""" Rankin of universities

Name - Shubham Thorat """

""" DATASHEET (1st 20 rows)

World_Rank University_Name CountryTeaching_Rating Inter_Outlook_Rating								_
	Research_Rating Num_Students Stud	-			ting		Score	
1	Harvard University 96.1 20152 8.9	_	of America		_	98.7	98.8	34.5
2	California Institute of 99.9 83.7 96	Technology 2243 6.9	United States 27 33	of Ameri	са	97.7	54.6	98
3	Massachusetts Institu 99.9 87.5 95.6	ite of Technology 11074 9	United States 33 37	of Ameri	са	97.8	82.3	91.4
4	Stanford University 94.3 15596 7.8	United States 22 42	of America	98.3	29.5	98.1	99.2	64.3
5	Princeton University 94.2 7929 8.4	United States 27 45	of America	90.9	70.3	95.4	99.9	
6	University of Cambrid 18812 11.8 34	lgeUnited Kingdo 46	om 90.5	77.7	94.1	94	57	91.2
6	University of Oxford 19919 11.6 34	United Kingdo 46	om 88.2	77.2	93.9	95.1	73.5	91.2
8	University of Californ 97.8 91.1	ia, Berkeley 36186 16.4	United States 15 50	of Ameri	са	84.2	39.6	99.3
9	Imperial College Lond 90.6 15060 11.7		d Kingdom	89.2	90	94.5	88.3	92.9
10	Yale University Unite	ed States of Amer 50	ica 92.1	59.2	89.7	91.5		89.5
11	University of Californ 93.2 87.7	ia, Los Angeles 38206 10.3	United States 15 52	of Ameri	са	83	48.1	92.9
12	University of Chicago 86.9 14221 6.9	United States 21 42	of America	79.1	62.8	87.9	96.9	
13	Johns Hopkins Unive 100 86.4 1512	rsity United 8 3.6 23	d States of Amer 50	ica	80.9	58.5	89.2	92.3
14	Cornell University 83.9 21424 10.2	United States 19 48	of America	82.2	62.4	88.8	88.1	34.7

15	ETH Zurich â Swiss Federal Institute of Technology Zurich					Switzerland		77.5	93.7		
	87.8	83.1	83.4	18178	14.7	37	31				
15	Univer	sity of Michigan 41786 9	United 16	States o 48	f Ameri	ca	83.9	53.3	89.1	84.1	59.6
17	Univer 15	sity of Toronto	Canada	a 75.8		87.9	82.2		82	66198	19.5
18	Columb 81	bia University 25055 5.9	•			73.8	90.9	73.8	92.6		

ann

#Code

importing the libraries

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

importing the data set

```
dataset=pd.read_csv('university_ranking.csv')
```

X = dataset.iloc[:,1:13].values

Y = dataset.iloc[:,0].values

/*

X=

array([['Harvard University', 'United States of America', 99.7, 72.4, 98.7,

98.8, 34.5, 96.1, 20152.0, 8.9, 25.0, nan],

['California Institute of Technology', 'United States of America',

97.7, 54.6, 98.0, 99.9, 83.7, 96.0, 2243.0, 6.9, 27.0, 33.0],

['Massachusetts Institute of Technology',

'United States of America', 97.8, 82.3, 91.4, 99.9, 87.5, 95.6,

```
11074.0, 9.0, 33.0, 37.0],
    ['Stanford University', 'United States of America', 98.3, 29.5,
    98.1, 99.2, 64.3, 94.3, 15596.0, 7.8, 22.0, 42.0],
    ['Princeton University', 'United States of America', 90.9, 70.3,
    95.4, 99.9, nan, 94.2, 7929.0, 8.4, 27.0, 45.0],
   ['University of Cambridge', 'United Kingdom', 90.5, 77.7, 94.1,
    94.0, 57.0, 91.2, 18812.0, 11.8, 34.0, 46.0],
   ['University of Oxford', 'United Kingdom', 88.2, 77.2, 93.9, 95.1,
    73.5, 91.2, 19919.0, 11.6, 34.0, 46.0],
   ['University of California, Berkeley', 'United States of America',
    84.2, 39.6, 99.3, 97.8, nan, 91.1, 36186.0, 16.4, 15.0, 50.0],
    ['Imperial College London', 'United Kingdom', 89.2, 90.0, 94.5,
    88.3, 92.9, 90.6, 15060.0, 11.7, 51.0, 37.0],
    ['Yale University', 'United States of America', 92.1, 59.2, 89.7,
    91.5, nan, 89.5, 11751.0, 4.4, 20.0, 50.0]]
Y=
array([ 1, 2, 3, 4, 5, 6, 6, 8, 9, 10]
# taking care of missing data
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values="NaN", strategy="mean",axis=0)
imputer = imputer.fit(X[:,2:13], y=None)
X[:,2:14] = imputer.transform(X[:,2:14])
array([['Harvard University', 'United States of America', 99.7, 72.4, 98.7,
    98.8, 34.5, 96.1, 20152.0, 8.9, 25.0, 49.2954545454545455],
```

*/

```
['California Institute of Technology', 'United States of America',
    97.7, 54.6, 98.0, 99.9, 83.7, 96.0, 2243.0, 6.9, 27.0, 33.0],
    ['Massachusetts Institute of Technology',
    'United States of America', 97.8, 82.3, 91.4, 99.9, 87.5, 95.6,
    11074.0, 9.0, 33.0, 37.0],
    ['Stanford University', 'United States of America', 98.3, 29.5,
    98.1, 99.2, 64.3, 94.3, 15596.0, 7.8, 22.0, 42.0],
    ['Princeton University', 'United States of America', 90.9, 70.3,
    95.4, 99.9, 51.479136690647486, 94.2, 7929.0, 8.4, 27.0, 45.0],
    ['University of Cambridge', 'United Kingdom', 90.5, 77.7, 94.1,
    94.0, 57.0, 91.2, 18812.0, 11.8, 34.0, 46.0],
    ['University of Oxford', 'United Kingdom', 88.2, 77.2, 93.9, 95.1,
    73.5, 91.2, 19919.0, 11.6, 34.0, 46.0],
   ['University of California, Berkeley', 'United States of America',
    84.2, 39.6, 99.3, 97.8, 51.479136690647486, 91.1, 36186.0, 16.4,
    15.0, 50.0],
    ['Imperial College London', 'United Kingdom', 89.2, 90.0, 94.5,
    88.3, 92.9, 90.6, 15060.0, 11.7, 51.0, 37.0],
   ['Yale University', 'United States of America', 92.1, 59.2, 89.7,
    91.5, 51.479136690647486, 89.5, 11751.0, 4.4, 20.0, 50.0]],
*/
# handling categorical (encoding) data
from sklearn.preprocessing import LabelEncoder
label_encoder_X = LabelEncoder()
label_encoder_Y = LabelEncoder()
X[:,0] = label encoder X.fit transform(X[:,0])
X[:,1] = label encoder X.fit transform(X[:,1])
```

```
/*
X=
[[31, 25, 99.7, 72.4, 98.7, 98.8, 34.5, 96.1, 20152.0, 8.9, 25.0,
    49.29545454545455],
   [10, 25, 97.7, 54.6, 98.0, 99.9, 83.7, 96.0, 2243.0, 6.9, 27.0, 33.0],
   [54, 25, 97.8, 82.3, 91.4, 99.9, 87.5, 95.6, 11074.0, 9.0, 33.0,
    37.0],
    [86, 25, 98.3, 29.5, 98.1, 99.2, 64.3, 94.3, 15596.0, 7.8, 22.0,
    42.0],
   [77, 25, 90.9, 70.3, 95.4, 99.9, 51.479136690647486, 94.2, 7929.0,
    8.4, 27.0, 45.0],
   [121, 24, 90.5, 77.7, 94.1, 94.0, 57.0, 91.2, 18812.0, 11.8, 34.0,
    46.0],
   [159, 24, 88.2, 77.2, 93.9, 95.1, 73.5, 91.2, 19919.0, 11.6, 34.0,
    46.0],
   [113, 25, 84.2, 39.6, 99.3, 97.8, 51.479136690647486, 91.1, 36186.0,
    16.4, 15.0, 50.0],
   [37, 24, 89.2, 90.0, 94.5, 88.3, 92.9, 90.6, 15060.0, 11.7, 51.0,
    37.0],
   [190, 25, 92.1, 59.2, 89.7, 91.5, 51.479136690647486, 89.5, 11751.0,
    4.4, 20.0, 50.0]]
*/
# dividing dataset into test and training dataset
from sklearn.model selection import train test split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = .3,
random state = 0)
/*
X train =
```

```
array([[74, 8, 51.9, 30.7, 37.2, 71.5, 26.4, 52.2, 27862.0, 8.7, 18.0, 48.0],
    [92, 0, 51.8, 74.2, 53.4, 69.0, 57.1, 59.1, 34718.0, 32.7, 27.0,
    53.0],
   [11, 25, 70.3, 39.1, 79.3, 95.7, 53.7, 79.3, 11885.0, 13.1, 35.0,
    39.0],
   [127, 25, 38.4, 16.8, 51.9, 61.3, 100.0, 50.4, 19262.0, 15.9, 10.0,
    56.0],
   [181, 21, 56.6, 87.9, 47.0, 65.0, 43.8, 57.7, 26583.0, 6.5, 19.0,
    57.0]]
Y_train = array([140, 81, 20, 159, 90]
X-test =
array([[121, 24, 90.5, 77.7, 94.1, 94.0, 57.0, 91.2, 18812.0, 11.8, 34.0,
    46.0],
   [42, 2, 57.7, 29.6, 62.9, 45.2, 97.7, 54.8, 42503.0, 41.9, 18.0,
    54.0],
   [40, 25, 80.9, 58.5, 89.2, 92.3, 100.0, 86.4, 15128.0, 3.6, 23.0,
    50.0],
   [17, 12, 55.5, 47.4, 67.7, 29.0, 99.4, 51.3, 15920.0, 19.4, 25.0,
    26.0]]
<u>Y_test</u> =
array([ 6, 119, 13, 151]
*/
# feature scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.fit_transform(X_test)
```

X train =

```
array([[ -4.04763141e-01, -1.15764070e+00, -1.52168502e-01,
    -1.09063038e+00, -1.08154740e+00, -6.53767509e-02,
    -1.28357406e+00, -6.78415565e-01, 2.20222478e-01,
    -7.65960802e-01, -1.22863071e-01, -1.34094097e-01],
   [-8.77922575e-02, -2.08644545e+00, -1.58912001e-01,
    8.10593387e-01, -7.16875795e-02, -2.18811983e-01,
     3.23575635e-01, -1.03386812e-01, 6.51816994e-01,
     1.89704024e+00, 7.43236590e-01, 3.92976952e-01],
   [-1.51416123e+00, 8.16069389e-01, 1.08863516e+00,
    -7.23497512e-01, 1.54284138e+00, 1.41987629e+00,
     1.45585115e-01, 1.58003070e+00, -7.85551383e-01,
    -2.77743944e-01, 1.51310296e+00, -1.08282198e+00],
   5.28540016e-01, 8.16069389e-01, -1.06254076e+00,
    -1.69814786e+00, -1.65193118e-01, -6.91392497e-01,
    2.56939719e+00, -8.28423066e-01, -3.21159208e-01,
     3.29395118e-02, -8.92729437e-01, 7.09219580e-01],
   [ 1.47945267e+00, 3.51667015e-01, 1.64775912e-01,
     1.40936961e+00, -4.70644544e-01, -4.64308354e-01,
    -3.72681399e-01, -2.20059313e-01, 1.39707690e-01,
    -1.01006923e+00, -2.66297752e-02, 8.14633790e-01],
   [-1.54938022e+00, 8.16069389e-01, 3.73824356e-01,
     2.11817167e-01, 1.52725713e-01, 3.15142624e-01,
    2.93225810e-02, 3.79970690e-01, -9.89010175e-01,
```

```
-6.10619074e-01, -2.66297752e-02, 2.46522032e-03],
[-1.58459921e+00, 8.16069389e-01, -9.47901288e-01,
-1.05129471e+00, -1.30596069e+00, 3.33554852e-01,
 2.93225810e-02, -8.36756816e-01, -7.01763124e-01,
 1.99377077e-01, -2.66297752e-02, 4.98391161e-01],
9.86386847e-01, 8.16069389e-01, 2.32210894e-01,
-1.42716884e+00, 9.07003723e-01, 2.35356303e-01,
 2.93225810e-02, 4.38306941e-01, 1.41396910e+00,
 2.65952103e-01, -6.04029549e-01, 2.87562742e-01],
[ 1.35618621e+00, -1.73814367e+00, -1.43343316e+00,
-6.13471669e-02, -3.89606410e-01, 4.01066354e-01,
-1.23122391e+00, -5.78410564e-01, -4.26980443e-01,
 6.54306423e-01, -7.96496141e-01, 7.09219580e-01],
[ 1.00399634e+00, -1.73814367e+00, 1.31058421e-01,
-6.13471669e-02, -3.21035682e-01, -1.26830897e+00,
 2.93225810e-02, -6.61748065e-01, 8.75042513e-01,
 5.21156370e-01, 5.50769999e-01, 8.14633790e-01]])
```

X test =

```
array([[ 0.32873875, 0.79480595, 2.46698117, 1.09473929, 2.19183891, 1.30951793, 0.21425824, 2.41037865, -0.44016799, -0.4420552, 1.61149983, -0.34818888],
[-1.0369244, -1.8747713, 0.0735777, -0.87903318, 0.30629944, -1.35687185, 2.27454172, -0.50530508, 1.56065337, 2.25751567,
```

-0.05950789, 0.48349503], [-1.07149816, 0.91615037, 1.76647284, 0.30687169, 1.89571252, 1.2166314, 2.39097051, 2.02589289, -0.75129989, -1.17748646, 0.46268202, 0.06765308], [-1.46909629, -0.66132709, -0.08695546, -0.14861426, 0.59638244, -2.24202583, 2.36059778, -0.78565928, -0.6844116, 0.23956403, 0.67155799, -2.42739866]])