2/22/22	
matrix and linear algebraic property:	
2) Dimensionality Reduction (calc 3)	
Linear Algebra Peview:	
· linearly independent: aivit +an vn = 3 for ai=0	
· Determinant: $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $\det(A) = ad - bc$	
Also works for 3x3 (can define it recursively)	
· create matrix for n dimensional space	
· m > n ? Sol: No	
· rank : dimension of vector space	
for nxn dataset, rank is the full column list	
Approximation	
1) like rank to reduce values	
For nxm matrix, storing takes m·n values	
Use Rank. rank of matrix is k. is storny is k(n+m) values i' k < m	
e' using rank leduces /	
2) Forbigue W rank K El bienes fourtion	
3) $rank-k$ approximation: $A^{(k)} = arg min dF(A, B)$	
tB1 romk(B)=k3	
Goal: find matrix B	
approximate matrix w/ lawer Raula matrix to define A.	
4) SVD: singular Value Decomposition. A=UIVT	
- U.U are othogonal 2 unit length	
$\Sigma = \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} O \downarrow \text{Diagonal matrix}$ $O G_{\Gamma} \downarrow$	
$-A^{(k)} = U_1 \Sigma_1 V_1^T$ has rank k.	

take matrix and broak thto 3 matrices (U, V, Σ)

- better represent each doc by: frequency $(n/\overline{z}n)$ and $\overline{1}$ tiDf

