Московский физико-технический институт (государственный университет) Факультет биологической и медицинской физики Кафедра кафедра молекулярной и трансляционной медицины

«»	2017 г
	Лазарев В.Н.
зав. кафедрой	
Диссертация допущен	на к защите
Π	

Выпускная квалификационная работа на соискание степени МАГИСТРА

Тема: **Количественный протеогеномный** анализ туберкулеза и ещё чего-нибудь

Направление:	010900 — Прикл	адные математика і	и физика
Магистерская программа:)10982 — Физико	э-химическая биоло	гия и биотехнология
Выполнил студент гр. 1114			Смоляков А.В.
Научный руководитель,			
к. б. н.			Лазарев В.Н.

Оглавление

1.	Спис	ок сокращений	4
2.	Введе	ение	5
3.	Литеј	ратурный обзор	6
	3.1.	Mycobacterium tuberculosis	6
	3.2.	Применение масс-спекртрометрии в протеомике	6
	3.3.	Orbitrap	6
	3.4.	Количественная протеомика	6
	3.5.	Безметочная квантификация	6
		Относительная квантификация по интенсивности MS-1 сигнала	6
	3.6.	Коилчественный анализ по количеству спектров	6
4.	Мате	риалы и методы	8
	4.1.	Получение бактерий	8
	4.2.	Проведение масс-спектрометрического эксперимента	8
	4.3.	Контроль качества	8
	4.4.	Протеогеномика W -148	8
		Создание поисковых баз	8
		Поиск GSSP	9
		Идентификация новых белков	9
		Уточнение N-концов	9
	4.5.	Сравнение идентификаций против W -148 и H 37 Rv	9
		Поиск новый генов	9
		Уточнение N-концов	9
		Анализ SAP	9
	4.6.	Идентификация пептидов и белков	9
5.	Резул	вътаты и обсуждение	10
	5.1.	Протеогеномика W -148	10
		Идентификация	10
		Новые гены и их валидация	10
		Уточнение N-концов	10
	5.2.	Сравнение идентификаций против W -148 и H 37 Rv	10

Новые гены и их валидация
Уточнение N-концов
Валидация SAP
6. Выводы
исок литературы

1. Список сокращений

2. Введение

3. Литературный обзор

- 3.1. Mycobacterium tuberculosis
- 3.2. Применение масс-спекртрометрии в протеомике
- 3.3. Orbitrap
- 3.4. Количественная протеомика

3.5. Безметочная квантификация

Вне зависимости от выбранного метода безметочного количественного анализа, эксперимент должен включать в себя следующие шаги: 1. пробоподготовка, включая извлечение белков, их очистку, трипсинолиз и прочие шаги 2. разделение пептидов при помощи различных хроматографических методов с последующий MS/MS анализом 3. анализ полученных результатов: идентификация, количественный анализ и статистический анализ В целом, методы безметочного количественного анализа можно разделить на две групы: на основе интенсивности ионов или за счет spectral counting [1].

Относительная квантификация по интенсивности MS-1 сигнала

При ионизации электроспреем, интесивность MS-1 иона коррелирует с его концентрацией [2]. Впернвые количественный анализ белков и пептидов за счет интенсивности LC-MS пиков был проведен на миоглобине. Были проанализированы концентрации в диапазоне от 10 фемтамоль до 100 пикомоль. После

3.6. Коилчественный анализ по количеству спектров

Квантификация по спектральному показателю основана на сравнении количества идентифицированных тандемных спектров для одного и того же белка из различных проб. Луи и соавторы изучали связь между относительной концентрацией белка и следующими тремя факторами: процентом идентифицированной (покрытой) части белка, количеством наблюдаемых пептидов и спектральным показателем. Было показано, что среди этих факторов только спектральный показатель имеет сильную линейную корреляцию с относительной концентрацией белка (коэффициент детерменации r2 = 0.9997), в динамическом диапазоне, составляющем два порядка.

Таким образом, спектральный показатель можно использовать для определения относительной представленности белка в данном образце. Зайбелов и соавторы провели исследование мембранных белков S. cerevisiae. Они провели идентификацию и количественный анализ, используя подход спектрального показателя и мечением 15N. Была показана высокая корреляция между двумя методами для белков, с высоким отношением "сигнал/шум". Так же было установлено, что метод спектрального показателя имеет больший динамический диапазон и воспроизводимость.

4. Материалы и методы

4.1. Получение бактерий

4.2. Проведение масс-спектрометрического эксперимента

4.3. Контроль качества

4.4. Протеогеномика W-148

Создание поисковых баз

В работе использовалось 2 типа баз: белковая и геномная. Белковая база - аннотированные последовательности, для данного штамма. Геноманя - база, полученная в результате транслирования генома в шести рамках. Белковые базы для *M.tuberculosis W-148* и *M.tuberculosis H37Rv* были составлены из аннотированных белков штаммов (NCBI Reference Sequence: NZ_CP012090.1, 4244 аминокислотных последовательностей для *W-148* и). Геномные базы были получены в результате 6 рамочного транслирования от стоп- до стоп-каднона геномов штаммов *M.tuberculosis W-148* и *M.tuberculosis H37Rv*, используя программу Artemis версия 16.0.0 [3]. При транслировании использовалась 11 трансляционная таблица NCBI. Минимальная длинна рамки была установлена в 100 нуклеиновых кислот. К каждой базе были добавлены последовательности 26 контаминантных белков (кератины, альбумины, трипин).

Поиск GSSP

Идентификация новых белков

Уточнение N-концов

4.5. Сравнение идентификаций против W-148 и H37Rv

Поиск новый генов

Уточнение N-концов

Анализ SAP

4.6. Идентификация пептидов и белков

Данные полученные в результате LC-MS/MS эксперимента (Raw формат) были сконвертированы в пик-лист (MGF формат), используя ProteoWizard msconvert [4]. Идентификация проходила против двух белковых и двух геномных баз с использованием Mascot Search Engine version 2.5.1 [5]. Параметры поиска были следующими: триптические пептиды, не более двух пропущенных сайтов трипсинолиза, ошибка массы прекурсера 20 ppm, ошибка массы фрагментов 0.5 Да, заряды прекурсера 2+, 3+, 4+. Oxidation(M), Carbamidomethylation(C) and Deamidated(NQ) были устанолвены как возможнные модификации пептидов. Для подсчета FDR и порогового скоринга использовался поиск против decoy-базы, полученной в результате реверса исходной базы. FDR был выбран на уровне 5%. Пептид считался идентифицированным, если его скор выше порогового скоринга и ранг равен еденице. Белок считался идентифицированным, если для него нашлось два и более уникальых пептидов.

5. Результаты и обсуждение

5.1. Протеогеномика W-148

Идентификация

Новые гены и их валидация

Уточнение N-концов

5.2. Сравнение идентификаций против W-148 и H37Rv

Новые гены и их валидация

Уточнение N-концов

Валидация SAP

6. Выводы

Список литературы

- 1. Zhu W., Smith J. W., Huang C.-M. Mass spectrometry-based label-free quantitative proteomics // BioMed Research International. 2009. Vol. 2010.
- Voyksner R. D., Lee H. Investigating the use of an octupole ion guide for ion storage and high-pass mass filtering to improve the quantitative performance of electrospray ion trap mass spectrometry // Rapid Communications in Mass Spectrometry. 1999.
 Vol. 13, no. 14. P. 1427–1437.
- 3. Rutherford K., Parkhill J., Crook J. et al. Artemis: sequence visualization and annotation // Bioinformatics. 2000. Vol. 16, no. 10. P. 944–945.
- 4. Chambers M. C., Maclean B., Burke R. et al. A cross-platform toolkit for mass spectrometry and proteomics // Nature biotechnology. 2012. Vol. 30, no. 10. P. 918–920.
- Cottrell J. S., London U. Probability-based protein identification by searching sequence databases using mass spectrometry data // electrophoresis. 1999. Vol. 20, no. 18. P. 3551–3567.