Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ИНФОРМАТИКИ И РОБОТОТЕХНИКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ

Направление 231000 – Программная инженерия

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Тема: Программа для рассчета вероятности пересечения стволов нефтяных скважин

	ФИО	Подпись	Дата
Студент	Синявский Г. Н.		
Руководитель работы	Еникеева К. Р.		
Консультант	Еникеева К. Р.		
Контроль программного продукта			
Председатель комиссии по предзащите			
Рецензент			

	Допуі	цен к защите
	Зав. кафедро	й ВМК, д.т.н., проф.
		Н.И. Юсупова
"	,,	2015 г.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ИНФОРМАТИКИ И РОБОТОТЕХНИКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ

Направление 231000 – Программная инженерия

'УТВЕРЖДАЮ" З	Зав. кафедрой ВМК, д.т	.н., проф.
	Н.И.	Юсупова
"		2015 г.

ЗАДАНИЕ

на подготовку выпускной квалификационной работы

студента Синявского Глеба Николаевича

- 1. Тема работы Программа для рассчета вероятности пересечения стволов нефтяных скважин (утверждена распоряжением по факультету No 100500 от "01" Июня 2015г.)
- 2. Срок представления работы "01" Января 2015г.
- 3. Описание задачи

Необходимо разработать программный продукт, позволяющий усреднять и визуализировать замеры стволов нефтяных скважен, а так же позволять оценивать вероятность пересечения стволов.

- 4. Математическая часть *???*
- 5. Спецификация входных и выходных данных Входные данные csv-файлы, содержащие результаты замера ствола скважины. Выходные визуализация скважины в пространстве, визуализации оценки расстояний между стволами.
- 6. Применяемые инструментальные средства Библиотека построение графического интерфейса Qt. СУБД SQLite. Библиотека визуализации MathGL.

- 7. Особые условия эксплуатации программного продукта Основная ОС для запуска программного продукта Windows 7 и старше, но продукт должен разрабатываться как кросс-платформенный и иметь возможность запуска под управлением ОС Linux.
- 8. Дополнительные условия Продукт должен иметь возможность импортировать csv произвольного формата, для этого должен быть разработан мастер импорта, позволяющий выбирать диапазон ячеек таблицы и указывать их тип.

Руководитель работы _	
Консультант	

Оглавление

A	нота	при					
Вв	веден	ие					
	Опи Мот Цел	сание предметной области ивация, актуальность проблемы и, задачи ВКР ержание работы по главам					
1.	Ана	Анализ проблемы и постановка задачи					
	1.1	Анализ предметной области					
	1.2	Содержательная постановка проблемы					
	1.3	Формальная постановка задачи					
	1.4	Структура решения задачи, декомпозиция задачи на подзадачи					
2.	Мат	сематическое и информационное обеспечение					
	2.1	Классификация подзадач (отнесение подзадач к классу задач)					
	2.2	Математические модели подзадач (где применимо)					
	2.3	Методы решения подзадач (где применимо)					
	2.4	Информационные модели для подзадач (где применимо)					
	2.5	Алгоритмы и структуры данных для подзадач					
3.	Про	граммное обеспечение					
	3.1	Аналитический обзор существующих программных технологий, применимых при					
		решении поставленных задач					
	3.2	Архитектура разрабатываемого программного продукта					
	3.3	Язык программирования и инструментальные средства разработки					
		3.3.1 Язык С++					
		3.3.2 SQLite					
		3.3.3 Qt					
		3.3.4 MathGL					
	2.4	3.3.5 Обоснованность выбора технологий					
	3.4	Технологии разработки ПО (моделирование разработки ПО, управление					
	2.5	разработкой ПО, конфигурирование ПО, технологии тестирования ПО)					
	3.5 3.6	Описание структуры программного продукта					
4.		нка качества рещения					
	4.1 4.2	Тестирование ПО					
	4.2	Оценка качества программного продукта					
	4.3	Вычислительный эксперимент и анализ результатов					
3A		ОЧЕНИЕ					
	•	льтаты работы					
	Выв	ОДЫ					
CI	пис	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 1					

приложения при		
Программная документация	. 1	
Техническое задание	. 1	
Руководство программиста	. 1	
Руководство пользователя	. 1	

Аннотация

Введение

Описание предметной области

Мотивация, актуальность проблемы

Цели, задачи ВКР

Целью дипломной работы является разработка программиного обеспечения, позволяющего визуализировать, усреднять и производить анализ замеров стволов нефтяных скважин, на основании данных, полученных с измерительного оборудования. Для достижения поставленной цели необходимо решить следующие задачи:

- провести анализ существующих программных продуктов;
- разработка функциональной и информационной моделей, программного обеспечения;
- разработка модуля импорта данных
- разработка системы управления содержимым БД и усреднения замеров
- разработка модуля визуализации замеров
- разаботка модуля рассчетов расстояний между стволами
- разработка модуля визуализации расстояний между стволами

Содержание работы по главам

1. Анализ проблемы и постановка задачи

- 1.1 Анализ предметной области
- 1.2 Содержательная постановка проблемы
- 1.3 Формальная постановка задачи

Формальной постановке задачи соответствует контекстная диаграмма методологии IDEF0, описывающая входные и выходные данные, управляющие воздействия и механизмы, влияющие на систему в целом, приведенная на рисунке 1.1.:

1.4 Структура решения задачи, декомпозиция задачи на подзадачи

- 2. Математическое и информационное обеспечение
- 2.1 Классификация подзадач (отнесение подзадач к классу задач)
- 2.2 Математические модели подзадач (где применимо)
- 2.3 Методы решения подзадач (где применимо)
- 2.4 Информационные модели для подзадач (где применимо)
- 2.5 Алгоритмы и структуры данных для подзадач

3. Программное обеспечение

- 3.1 Аналитический обзор существующих программных технологий, применимых при решении поставленных задач
- 3.2 Архитектура разрабатываемого программного продукта
- 3.3 Язык программирования и инструментальные средства разработки

3.3.1 Язык С++

На данный момент, C++ остается одним из самых популярных и производительных языков программирования и применяется практически во всех прикладных областях программирования, от низкоуровневого программирования для микроконтроллеров, до высокопроизводительных серверных приложений и компьютерных игр.

3.3.2 SQLite

SQLite — это встраиваемая кроссплатформенная СУБД, которая поддерживает достаточно полный набор команд SQL и доступна в исходных кодах (на языке C). На данный момент является самой популярной встраиваемой СУБД. Применяется как на персональный компьютерах, так и в мобильных ОС и "умных" телевизорах.

3.3.3 Ot

Qt — кроссплатформенный инструментарий разработки ПО на языке программирования C++, доступен в исходных текстах. Позволяет создавать кросс-платформернные приложения с богатыми возможностями графического интерфейса, работой с сетью, мультимедиа, БД и 3D-графикой. В окружении каждой поддерживаемой ОС будет выглядеть максимально похоже на "родные" приложения системы.

3.3.4 MathGL

MathGL — кроссплатформенная библиотека для визуализации данных. Имеет интеграцию с Ot.

3.3.5 Обоснованность выбора технологий

На данный момент указанные технологии являются единственным способом, как выполнить требования о кроссплатформенности, так и получить легкий в поддержке продукт, базирующийся на надежных и поддерживаемых библиотеках.

- 3.4 Технологии разработки ПО (моделирование разработки ПО, управление разработкой ПО, конфигурирование ПО, технологии тестирования ПО)
- 3.5 Описание структуры программного продукта
- 3.6 Описание интерфейса пользователя

- 4. Оценка качества рещения
- 4.1 Тестирование ПО
- 4.2 Оценка качества программного продукта
- 4.3 Вычислительный эксперимент и анализ результатов

ЗАКЛЮЧЕНИЕ

Результаты работы

Выводы

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

приложения

Программная документация

Техническое задание

Наименнование программы

"Приложение для рассчета вероятности пересечения стволов нефтяных скважин "Collisions"

Характеристика области применения программы

Программа ("Collisions") разрабатывается в рамках выпускной квалификационной работы. Программа находится в стадии внедрения.

Основания для разработки

Разработка программного обеспечения ведется в соответствии с заданием на дипломное проектирование, составленным совместно с руководителем дипломной работы и утвержденным кафедрой ВМиК.

Назначение разработки

Программа предназначена для визуализации, усреднения замеров стволов нефтяных скважин, а так же для анализа вероятности пересечения стволов.

Требования к функциональным характеристикам

Данный программный комплекс должен обладать следующими функциями:

- внесение, редактирование и удаление данных о заказчиках;
- внесение, редактирование и удаление данных о клиентах;
- внесение, редактирование и удаление данных о месторождениях;
- внесение, редактирование и удаление данных о кустах;
- внесение, редактирование и удаление данных о скважинах;
- внесение, редактирование и удаление данных о стволах;
- внесение, редактирование и удаление данных о замерах;
- импорт данных замера из csv файлов, полученных от изменительного оборудования;
- визуализация кустов, скважин, стволов и замеров;
- усреднение замеров ствола;
- рассчет и визуализация расстояний между стволами скважин в кусте;

Требования к надежности

Программный продукт (ПП) должен обеспечивать: устойчивую и корректную работу с базой данных, сохранность информации в случаях возникновения сбоев.

Требования к обеспечению надежного функционирования программы

Надежное (устойчивое) функционирование программы должно быть обеспечено выполнением Заказчиком совокупности организационно-технических мероприятий, перечень которых приведен ниже:

а) организацией бесперебойного питания технических средств;

- б) регулярным выполнением рекомендаций Министерства труда и социального развития РФ, изложенных в Постановлении от 23 июля 1998 г. Об утверждении межотраслевых типовых норм времени на работы по сервисному обслуживанию ПЭВМ и оргтехники и сопровождению программных средств»;
- в) регулярным выполнением требований ГОСТ 51188-98. Защита информации. Испытания программных средств на наличие компьютерных вирусов

Время восстановления после отказа

Время восстановления после отказа, вызванного сбоем электропитания технических средств (иными внешними факторами), не фатальным сбоем (не крахом) операционной системы, не должно превышать 30-ти минут при условии соблюдения условий эксплуатации технических и программных средств.

Время восстановления после отказа, вызванного неисправностью технических средств, фатальным сбоем (крахом) операционной системы, не должно превышать времени, требуемого на устранение неисправностей технических средств и переустановки программных средств.

Отказы из-за некорректных действий пользователей системы

Отказы программы вследствие некорректных действий пользователя при взаимодействии с программой недопустимы.

Требования к квалификации и численности персонала

Минимальное количество персонала, требуемого для работы программы, должно составлять не менее 2 штатных единиц — систе мный администратор и конечный пользователь программы — оператор.

В перечень задач, выполняемых системным администратором, должны входить:

- а) задача поддержания работоспособности технических средств;
- б) задачи установки (инсталляции) и поддержания работоспособности системных программных средств операционной системы;
 - в) задача установки (инсталляции) программы.

Требования к составу и параметрам технических средств

Для выполнения программы желательна следующая аппаратная конфигурация:

- ПК с х86 соместимым процессором 1ГГц и выше;
- оперативная память не менее 512Мб;
- минимум 200Мб свободного пространство на диске;
- OS Windows 7 или старше или ОС на базе ядра Linux

Требования к организации входных данных

Входными данными являются:

- данные замера ствола, полученные от измерительного оборудования;
- данные о заказчиках, клиентах, месторождениях, кустах, скважинах, стволах и замерах;

Требования к формированию выходных данных

Выходными данными являются графическое представление замеров стволов, а так же графическое представление расстояний между стволами.

Требования к реализуемым методам решения

Методы решения, используемые в работе программы, должны быть эффективными и высокопроизводительными, позволять получать верный результат за приемлемое время, а также контролировать случаи возникновения некорректной работы.

Требования к исходным кодам и языкам программирования

Система должна быть написана на языке С++ и иметь удобный графический интерфейс.

Состав и требования к программной документации

В состав программной документации должны входить:

- техническое задание;
- руководство программиста;
- руководство пользователя.

Руководство программиста

Назначение и условия применения программы

Приложение для рассчета вероятности пересечения стволов нефтяных скважин. Программный продукт должен работать на любых ПК с х86-совместимым процессором с частотой 1Ггц и выше, оперативной памятью не менее 512мб и досупным дисковым пространством минимум 200Мб, работающий под управлением ОС Windows 7 или ОС на базе ядра Linux.

Структура программы

Программа написана с использованием архитектурного подхода MVC и состоит из набора классов. Один срр файл содержит только один класс, каждый срр файл имеет соответствующий одноименный h файл. Файлы исходных кодов сгруппированы в следующие поддиректории:

- корень проекта содержит классы основных окон, виджеты для визуализации данных и некоторые вспомогательные классы;
- delegates т.н. делегаты, классы, отвечающие за отображение данных в ячейках таблиц и списков;
- dialogs классы, отвечающие за логику работы диалоговых окон;
- entities классы, описывающие базовые структуры данных, вроде Заказчика или Месторождения;
- import wizard классы, отвечающие за логику мастера импорта данных;
- log классы, отвечающие за логику журналов;
- menus классы, отвечающие за различные контекстные меню;
- mixins вспомогательные классы, от которых наследуются некоторые классы приложения;
- models модели данных, большая часть из них описывает таблицы БД;
- views классы, отвечающие за отображение моделей;

Программа хранит свои настройки с использованием абстракции над стандартной системой хранения настроек для текущей платформы: для Windows это реестр, для Linux-систем - это текстовый файл /.config/SPT/Collisions.conf.

БД продукта представляет собой файл db.sqlite, он может быть прочитан и отредактирован любой, поддерживащией формат sqlite утилитой.

Сообщения программисту

В программе не предусмотрен вывод сообщений специально для программиста, однако в ходе работы программы могут появиться общие сообщения программы.

Руководство пользователя

Назначение и условия применения программы

Приложение для рассчета вероятности пересечения стволов нефтяных скважин. Пользование программой не требует специальной квалифицированной подготовки.

Условия применения программы

Программный продукт должен работать на любых ПК с х86-совместимым процессором с частотой 1Ггц и выше, оперативной памятью не менее 512мб и досупным дисковым пространством минимум 200Мб, работающий под управлением ОС Windows 7 или ОС на базе ядра Linux.

Требования к квалификации пользователя программы

- знакомство с любой из поддерживаемых ОС
- знакомство с руководством пользователя
- знакомство с руководством пользователя

Установка программы

Копировать директорию с $\Pi\Pi$ на компьютер, при необходимости создать на рабочем столе(зависит от OC)

Запуск программы

Для запуска программы необходимо исполнить бинарный файл Collisions(или Collisions.exe для ОС Windows)

Интерфейс программы

После запуска программы открывается главное окно программы (Рис.1)

Для добавления подрядчика в базу необходимо воспользоваться пунктом меню Program->Add contractor (Программа->Добавить подрядчика)(Рис.2)

В появившемся диалоге ввести название/имя подрядчика, и, при необходимости, комментарий (Puc.3)

После нажания Ок Подрядчик будет добавлен в базу(Рис.4)

Другие элементы добавляются в базу отличным от подрядчика методом. Для добавления элемента необходимо кликнуть по его родителю (для заказчика это подрядчик, для месторождения - заказчик и т.д) в дереве базы и в открывшейся справа таблице нажать Insert. В таблице появится пустая строка для добавления нового элемента, первое поле строки будет активно для редактирования (Рис.5 и Рис.6)

Для перемещения между полями новой строки необходимо использовать Tab, для сохранения элемента в базе - Enter. Все остальные элементы (Месторождения, кусты, скважины, стволы, замеры и точки замера) добавляются аналогично. См. изображения (Рис.7, Рис.8 и Рис.6)

Рис. 1: Главное окно программы: (1) главное меню программы (2) панель инструментов (3) панель дерева базы данных

Рис. 2: Меню добавления нового заказчика

Программа поддерживает импорт замеров из буфера обмена и некоторых форматов текстовых файлов(например, csv). Для импортирования замера необходимо выбрать ствол в дереве базы и

Add co	ntractor			? ×	
Name	Contractor				i
Comment					
			OK (Cancel	
		V II 3	_	navigatio	n sy

Рис. 3: Диалог добавления нового заказчика

Рис. 4: Созданный подрядчик

нажать на кнопку Import(Импорт) на панели инструментов. (Рис. 10)

После нажатия появится мастер импорта замера(Рис.11)

При импорте из файла необходимо ввести путь к файлу в соответствующее поле или нажать на кнопку "...". При нажатии на нее откроется стандартный диалог выбора файлов. После выбора файла(если импорт проиходит не из буфера обмена) и заполнения остальных полей формы можно перейти на следующую страницу мастера, это делается кнопкой Next(Далее). На следущей странице необходимо выбрать те столбцы и строки, которых содержат необходимы данные. Для импотра замеров необходимы: измеренная глубина, зенит и азимут. Выделить данные в таблице можно зажав правую кнопку мыши и потянув курсов в нужную сторону. (Рис.12 и Рис.13)

После выделения элементов с данными можно переходить на следующую страницу мастера.(Puc.14)

На этой странице необходимо выбрать какие столбцы содержат нужные данные (глубину, зенит

Рис. 5: Таблица для редактирования и просмотра содержимого элемента базы

Рис. 6: Добавление нового элемента в таблицу

и азимут). В выпадающих списках вверху диалога нужно выбрать соответствующие номера столбцов. После нажатия кнопки Finish(Завершить) в базу будут добавлен замер и соответвующие точки (Рис.15)

Для создания усредненного замера ствола нужно воспользоваться кнопкой Create aver-

Рис. 7: Таблица месторождений

Рис. 8: Добавление месторождения

аде(Создать усредненный) на панели инструментов

После нажания в базу будет добавлен усреденный замер с именем <Имя ствола>-average. Если замер у ствола был один, то он продублируется.

Проектные замеры необходимы, чтобы для каждого ствола можно было индивидуально задать

Рис. 9: Таблица стволов

Рис. 10: Кнопка импорта

минимально и максимально допустимые расстояния. В случае, если проектный замер для ствола задан, будут использоваться его настройки, иначе - указанные в настройках.

Приложение Collisions позволяет визуализировать отдельные замеры, скважины и кусты, для отображение графика элемента нужно использовать кноку $Plot(\Gamma paфик)$ на панели инструментов (Puc.17)

После нажатия кнопки появится диалог просмотра (Рис.18) В открывшемся диалоге будут изображены:

- Для замера его графики
- Для ствола все его замеры

Рис. 11: Мастер импорта замера: (1,2) источник импорта, файл или буфер обмена (3) название замера (4) дата создания замера (4) символ, используемых для разделения столбцов(для CSV это обычно запятая или точка с запятой, для буфера обмена - символ табуляции)

- Для скважины усредненные замеры всех ее стволов
- Для куста все его скважины

Диалог настроек позволяет настроить значения по-умолчанию для минимально и максимально допустимого расстояния между стволами. (Рис.19)

Для просмотра графика расстояний между стволами нужно выбрать куст в дереве базы и воспользоваться кнопкой Anticollision(Предупреждение пересечения стволов) на панели иструментов. В открывшемся диалоге необходимо выбрать ствол, который будет принят за основной, а так же указать с какими стволами будут расчитываться расстояния

Для просмотра графика расстояний между стволами нужно выбрать куст в дереве базы и воспользоваться кнопкой Anticollision(Предупреждение пересечения стволов) на панели иструментов. В открывшемся диалоге необходимо выбрать ствол, который будет принят за

Рис. 12: Страница с данными

основной, а так же указать с какими стволами будут расчитываться расстояния (Рис.20)

После нажатия Ок откроется диалог с графиком расстояний. Зеленой зоной выделено расстояние между минимально и максимально допустимыми расстояними. (Puc.21)

Для каждого ствола скважины можно задать координаты устья либо выбрать точку из соседних стволов этой же скважины. Окно свойств вызывется из контекстного меню ствола в дереве базы данных (Puc.22 , Puc.23 и Puc.24)

Рис. 13: Выбор элементов с данными

Рис. 14: Страница выбора столбцов с данными

Рис. 15: Импортированный замер

Рис. 16: Кнопка добавления усредненного замера

Рис. 17: Кнопка просмотра графика

Рис. 18: Даилог просмотра графиков: (1) просмотр плана (2) просмотр профиля (3) управление отображеним графика(показ/скрытие осей и сетки) (4) автоматическа раскраска графиков (5) - легенда, настроки цвета и отображение графиков.

Рис. 19: Диалог настроек

Рис. 20: Диалог настроек процесса предупреждение пересечения стволов: (10) выбор базовой скважины (2) выбор базового ствола (3) дерево стволов для отображениия

Рис. 21: Диалог графика предупреждения пересечения стволов

Рис. 22: Меню свойств ствола

Рис. 23: Установка устья ствола вручную

Wellbore properties	? ×
Head	
MD	40,0000
Inclination	0,0000
Azimuth	0,0000
Easting	0,0000
Northing	0,0000
TVD	40,0000
© Point of other wellbore m2: 40 m2: 10	-
m2: 20 m2: 30 m2: 40	
	ОК Отмена

Рис. 24: Установка устья ствола из соседнего ствола той же скважины