河南省高等学校 大学生实践创新训练计划项目申报表

推荐学校:	郑州大学(盖章)				
项目名称:	智能灭火机器人系统				
项目类型:	■ 重点项目 □ 一般项目 □ 创业训练项目 □ 创业实践项目				
所属一级学科名称:	电子、通信与自动控制技术				
项目负责人:	戴镇原				
联系电话:	15038018554				
指导教师:	邓计才				
联系电话:	13663847136				
申报日期:	2017年5月15日				

河南省教育厅 制 二〇一七年

项	目名移	K		智能灭火机器人系统					
项目	关键	词	' ' '	图像处理(OpenCV)、火焰识别、无线收发、远程提醒监控、循迹 趋近、自主灭火、自主归位					
1	目所属 级学科	-	电子、通信与自动控制技术						
项目类型			(■)重点项目()一般项目()创业实践项目						
项目组	实施时	讨间	起始时间: 2017年5月20日 完成时间: 2018年5月20日						
			1、对目前市面上普遍的灭火机器进行系统优化设计,增强其实用、						
			可靠性, 使其具备						
			a、全空间、全方位精确检测、定位火源						
				b、全区域高效循迹趋近火源					
			c、迅速、准确锁定焰心并尝试多种方式扑灭火源						
			d、自主避障、归位						
				e、实时影像监控,远程警报、通知、等功能					
	目简介		2、克服大多数灭火机器火源检测范围小、定位不精准、趋近火源						
(100 -	字以内])	低效、焰心难已锁定和高端智能机器人体积庞大、行动不便、价格						
			十分昂贵等不足,使灭火机器人能够广泛走进现代工业化工厂,为						
			人所用;						
			3、使灭火机器能够在火势蔓延初期迅速、准确定位、扑灭火源,						
			最大限度地减小火灾损失,真正起到火灾初期预防、遏制功效;						
			4、探索新型灭火机器人研发技术,尝试扩大、优化灭火机器人市						
			场,提供优质灭火机器人技术资源;						
		姓	名	年级	学号	所在院系 /专业	联系电 话	E-mail	
申请人或申请团队	主持人	戴钊	真原	2014	2014245 0401	信息工程学院 电子信息工程	1503801 8554	568314913@q q.com	
申请团	成	冯齐全		2015	2015033 0208	化工与能源学院 能源与动力工程	1506753 1952	1215827950@ qq.com	
队	员	李梅杰		2014	2014245 0210	信息工程学院 电子信息工程	1333383 0631	879539353@q q.com	

		窦晨丹	2014	2014245 0105	信息工程学院 电子信息工程	1503719 0027	584158804@q q.com	
		张辉	2015	2015015 0242	机械工程学院 机械工程	1513925 2143	863677122@q q.com	
	指 姓名		邓计才		单位	郑州大学 信息工程学院		
	教师	年龄	53		专业技术职务	教授		
指导教师	主要成果		邓计才教授,所在专业:电子科学与技术。2007年获博士学位,教授,硕士生导师。河南省电子学会和通信学会会员,主要从事射频信号识别、嵌入式系统和数字视频处理等方面的研究,主持和参与河南省自然基金5项、科技攻关项目1项,企业合作横向项目4项;发表学术论文30余篇,其中SCI/EI收录10篇;出版教材2部、学术著作1部;获国家发明专利2项,实用新型专利4项;获河南省科技进步奖二等奖1项,优秀论文一等奖2项					

- 一、申请理由(包括自身具备的知识条件、自己的特长、兴趣、己有的实践创新成果等)
- 1、项目组成员多为郑州大学信息工程学院机器人实验室队员,在机器人实验室期间已经对 STM32、AVR128、STC51等多种单片机进行了深入学习,反复调试机器人的过程中对电路知识也有了一定的了解。项目成员已学习模拟电子电路、数字电子电路、微机原理与接口技术、单片机原理、DSP、通信控制原理、机械原理、机械振动学等多门专业课,对自身专业以及项目相关领域有着浓厚兴趣,希望有机会把自己所学的编程、电路、通信、机械等知识与实际相结合,将所学付诸实践;
- 2、项目依托郑州大学信息工程学院机器人实验室、郑州大学智能机器人协会。实验室有烙铁、电源、示波器、万用表等必要的电路焊接、调试工具,同时有单片机、ARM、DSP等多种开发板,方便学习、实验。实验室和协会都有许多有着同样兴趣爱好、有实力的同学,学术氛围浓厚,研讨、交流问题十分方便。同时项目组负责人也具有丰富的管理、组织经验,能够合理安排工作任务,把各成员的能力充分发挥出来。
- 3、以往参加过的机器人比赛中,灭火机器人项目花样繁多,比赛过程中对其整体方案和工作原理已进行详细了解与探讨。在此基础上进行创新、升级、系统优化设计。
- 4、指导老师多次带领机器人实验室队员参加中国机器人大赛、河南省机器人大赛, 并获得多项奖励,对机器人设计制作、嵌入式系统开发有多年研究经验,可以很好 地指导我们的研究项目。

二、项目方案

具体内容包括:

- 1、项目研究背景(国内外的研究现状及研究意义、项目已有的基础,与本项目有关的研究积累和已取得的成绩,已具备的条件,尚缺少的条件及方法等)
 - 2、项目研究目标及主要内容
 - 3、项目创新特色概述
 - 4、项目研究技术路线
 - 5、研究进度安排
 - 6、项目组成员分工

一、研究背景

- 1、近几十年中,大量的高层、地下建筑与大型的石化企业不断涌现。由于这些建筑的特殊性,发生火灾时,不能快速高效的灭火。消防人员不可能在短时间内到达高处的火灾发生地点,在地下建筑中,由于环境比较潮湿,烟气不易扩散,消防人员不容易快速的判定火源位置;而在石化企业发生火灾时,将产生大量的毒气,消防人员在灭火时极易中毒。为了解决这一问题,尽快救助火灾中的受害者,最大限度的保证消防人员的安全,消防灭火机器人研究被提到了议事日程。
- 2、各国由于火灾造成的损失巨大。而往往火灾尚在初期时,若能及时发现并尝试进行扑灭,火势就很容易得到遏制。但是在一些工业化车间、工厂或其它较危险区域无人监管时,一旦火源出现,便难以及时发现火源并进行处理,后果不堪设想。研制能够用于这些场合的智能灭火机器人(系统),协助消防人员进行火源的检测、定位、灭火,将有极大的社会意义。
- 3、目前市面上大多数自主灭火机器火源检测、定位范围小、不精确,灭火效率低, 高端机器又体积巨大、行动不便,总体来说实用、可行性较差。本项目对目前市面 上普遍的灭火机器进行系统优化设计,克服其不足,探索新型灭火机器人研发技术, 提供优质灭火机器人技术资源。创新的同时提高其实用、可行性,对相关市场也起 到引领、推动作用。

二、研究目标

- 1、对目前市面上普遍的灭火机器进行系统优化设计,增强其实用、可靠性,使其具备
 - a、全空间、全方位精确检测、定位火源
 - b、全区域高效循迹趋近火源

- c、迅速、准确锁定焰心并尝试多种方式扑灭火源
- d、自主避障、归位
- e、实时影像监控,远程警报、通知、等功能
- 2、克服大多数灭火机器火源检测范围小、定位不精准、趋近火源低效、焰心难已锁定和高端智能机器人体积庞大、行动不便、价格十分昂贵等不足,使灭火机器人能够广泛走进现代工业化工厂,为人所用:
- 3、使灭火机器能够在火势蔓延初期迅速、准确定位、扑灭火源,最大限度地减小 火灾损失,真正起到火灾初期预防、遏制功效;
- 4、探索新型灭火机器人研发技术,尝试扩大、优化灭火机器人市场,提供优质灭火机器人技术资源;

三、主要内容

1、主机操作环境配置:

PC 主机需装备与上位机全景摄像头设备相适配的完整编程、操作环境和函数库:

2、上位机全景摄像头硬件置备及程序调试:

购置上位机网络全景摄像头设备并对相关硬件进行装配,编写、调试、优化算法程序并测试、完善上位机全景摄像头功能;

3、下位机机器硬件置备及程序调试:

购置下位机机器完备部件(如主控板、通信模块、驱动模块、火源检测、避障模块以及主体构架材料等)并对其进行硬件检测、调试;设计机器机械结构并组装成型;编写、调试、优化算法程序并导入下位机机器;

4、可灭火区域、趋近火源路径规划、测试

设计、规划多种可灭火覆盖区域、趋近火源路径,不断测试、优化达到可灭火覆盖区域最大化及火源趋近路径最优化;

5、系统整体测试、优化、验收:

整体试运营体验操作,保证各个设备协调运行完好,针对不可行之处予以优化、完善,达到预期目的效果;

6、正式投入运营,并对系统进行实时监测、定期维护、革新完善。

四、创新特色

- 1、全景摄像头检测、定位火源,火源识别高效、范围广;
- 2、循最佳路径趋近火源,迅速、有效;
- 3、近距离自主、遥感结合发现、靠近火源;
- 4、图像、传感器结合准确定位焰心;
- 5、远距离实时监控、通知、遥感,火灾预防多重保障;

五、技术路线

1、核心器件

下位机

系统核心器件总体结构图

智能灭火机器人系统整体由上、下位机两部分组成:

上位机: 网络全景摄像头、主控、移动端;

下位机: 主控板(stm32)、通信模块、火源检测模块、避障模块、循迹模块、驱动(灭火装置、电机)模块、电源;

2、技术原理

①上位机、主控:

网络摄像头|主控 (PC 机)

上位机系统示意图

本项目利用主控 (PC 机)通过网络摄像头在整个空间建立坐标系,并划分易着火区域,均匀覆盖全空间。在可灭火覆盖区域内通过 OpenCV 进行火源检测、识别、定位,主控将得到的火焰图像进行信息分析处理,得到其颜色、外形、坐标等信息并通过无线串口向下位机发送指令。远程移动端可连接网络摄像头进行现场实时监控,掌握现场情况。

②下位机:

下位机: 主控板 (stm32)、通信模块、火源检测模块、避障模块、循迹模块、驱动 (灭火装置、电机) 模块、电源等;

主控板 (STM32)

主控板采用 STM32 作为下位机系统主控卡,连接无线串口接收上位机指令,控制

STM32 电路原理图

通信模块(无线传输模块 XL02-232AP1、远程通信模块 GPRS | GSM 集成模块) 无线通信选用 XL02-232AP1 无线通信模块

XL02-232AP1 电路原理图

远程通信选用 GPRS GSM 集成模块

GPRS GSM 模块管脚图

火源检测模块(摄像头+火焰、烟雾、温度传感器)

火源检测选用摄像头(0V7620)+火焰、烟雾、温度传感器

0V7620

OV7620 是 1/3"CMOS 彩色/黑白图像传感器。它支持连续和隔行两种扫描方式, VGA 与 QVGA 两种图像格式;最高像素为 664×492, 帧速率为 30fps;数据格式包括 YUV、YCrCb、RGB 三种,能够满足一般图像采集系统的要求

火焰传感器电路原理图

远红外火焰传感器能够探测到波长在 700 纳米~1000 纳米范围内的红外光,探测角度为 60,远红外火焰探头将外界红外光的强弱变化转化为电流的变化,通过 A/D 转换器反映为 0~255 范围内数值的变化。外界红外光越强,数值越小;红外光越弱,数值越大。

烟雾传感器选用 MQ-2 烟雾传感器模块,适用于家庭或工厂气体泄漏监测装置

烟雾传感器电路原理图

温度传感器选用 DS18B20 数字温度传感器

温度传感器使用电路原理图

避障模块 (光电、红外测距传感器)

E3F-DS30C4 光电

光电传感器电路原理图

GP2D12 红外测距传感器

循迹模块 (循迹传感器)

循迹使用循迹传感器,即红外对管。和火焰传感器原理相似,红外对管一个发射 一个接收。

循迹传感器外观示意图

驱动 (灭火装置、电机) 模块

驱动选用超大功率 H 桥驱动模块, 驱动电机和灭火装置 (小型高压水泵)

驱动介绍示意图

电机采用 MAXON 直流电机

額定电压 (V)	24
額定电流(mA)	800MA
空载电流(mA)	20MA
转速(转/分)	420rpm(空载)/390rpm(額定)

电机主要性能参数

灭火装置采用小型高压水泵,由传输管连接到移动储存箱(内装灭火剂),检测到 火源并进行焰心锁定后开始喷射灭火剂。

电源

采用 4S 锂电池,容量 5200mah,额定电压 14.8V,35C 超大放电能力。

电源外观图

机器主体机械结构

下位机机器三维立体模型图

以上为本项目下位机灭火机器主体机械结构,整体采用长方体型简约设计,体积适当、行动便捷。主控板、驱动模块、电源经封装后将置于机器中部,通信模块连接其上;在机器四周合理布置火源检测、避障、循迹传感器;将在机器上方配置带摄像头的可调节喷头、小型高压水泵和储存箱,其间由传输管相连;由驱动带动电机和水泵运转,提供机器行动、灭火充足动力。

③软件设计、程序编写:

系统软件、语言示意图

- 3、实现方案
- ①系统主要功能演示:

系统功能演示示意图

在一定空间中,位于上方合理、均匀布置网络全景摄像头覆盖全空间并连接至主控;

上位机网络全景摄像头在可灭火覆盖区域内进行火源检测、识别、定位,主控将得到的火焰图像进行信息分析处理,得到其颜色、外形、坐标等信息并通过无线串口向下位机发送指令;

下位机灭火机器通过无线串口接收指令后循最优路径趋近火源,近火源后开启自主寻找火源模式,依靠自身传感器发现火源,尝试灭火;

同时系统向远程移动端发送信息提示,移动端可以通过连接网络摄像头实时监控现场情况。

②系统核心算法:

③关键技术工作:

- 上位机 | 主控 a、网络全景摄像头硬件功能实现原理:
 - b、主控系统软件、语言、操作环境配置;
 - c、火源检测、定位、无线传输等程序编写及功能实现;
- 下位机 a、机器机械结构设计、优化、制作:
 - b、最优路径循迹趋近火源、焰心锁定、灭火等程序编写及功能实现
 - c、机器硬件功能实现原理、整体组装、电路连接等;
- 可灭火覆盖区域及最优趋近火源路径设计、优化:
- 整体测试、完善、验收;

六、进度安排

- 1、2017年5月—6月,完成项目理论准备;
- 2、2017年7月,机器机械结构设计、完成所有硬件的购买、置备;
- 3、2017年8月,完成上位机与主控适配、下位机机器的组装、电路的连接;
- 4、2017年9月-2018年2月,完成上、下位机主控程序编写,可灭火覆盖区域及最优趋近火源路径设计,实现系统主要功能:
 - 5、2018年3月-2018年5月,系统整体测试、完善、优化、验收,项目完成。

七、成员分工

戴镇原——上位机、主控操作环境配置、程序编写;

冯齐全——下位机操作环境配置、程序编写;

李梅杰——上位机、主控操作环境配置、程序编写:

窦晨丹——下位机操作环境配置、程序编写:

张辉——可灭火区域、最优循迹路径、下位机机器机械结构设计;

- 三**、学校提供条件**(包括项目开展所需的实验实训情况、配套经费、相关扶持政策等)
 - 1、学校开放电工电子、机器人等实验室供项目组进行创新实验;

项目组成员多为郑州大学信息工程学院机器人实验室队员,在机器人实验室期间已经对STM32、AVR128、STC51等多种单片机进行了深入学习,反复调试机器人的过程中对电路知识也有了一定的了解。项目成员已学习模拟电子电路、数字电子电路、微机原理与接口技术、单片机原理、DSP、通信控制原理、机械原理、机械振动学等多门专业课,对自身专业以及项目相关领域有着浓厚兴趣,希望有机会把自己所学的编程、电路、通信、机械等知识与实际相结合,将所学付诸实践:

项目依托郑州大学信息工程学院机器人实验室、郑州大学智能机器人协会。实验室有烙铁、电源、示波器、万用表等必要的电路焊接、调试工具,同时有单片机、ARM、DSP等多种开发板,方便学习、实验。实验室和协会都有许多有着同样兴趣爱好、有实力的同学,学术氛围浓厚,研讨、交流问题十分方便。同时项目组负责人也具有丰富的管理、组织经验,能够合理安排工作任务,把各成员的能力充分发挥出来。

- 2、学校在保证项目经费按时发放的前提下针对优秀项目给予适当奖励,有利于调动学生双创积极性:
- 3、学校专门设立了大学生创新创业机构指导辅助学生进行双创,学生根据实际情况可以申请相关双创支持资金。

四、预期成果

- 1、成功对目前市面上普遍的灭火机器进行系统优化设计,增强其实用、可靠性, 使其具备
 - a、全空间、全方位精确检测、定位火源
 - b、全区域高效循迹趋近火源
 - c、迅速、准确锁定焰心并尝试多种方式扑灭火源
 - d、自主避障、归位
 - e、实时影像监控,远程警报、通知、等功能
- 2、成功克服大多数灭火机器火源检测范围小、定位不精准、趋近火源低效、焰心难已锁定和高端智能机器人体积庞大、行动不便、价格十分昂贵等不足,使灭火机器人广泛走进现代工业化工厂,为人所用;
- 3、成功使灭火机器能够在火势蔓延初期迅速、准确定位、扑灭火源,最大限度地减小火灾损失,真正起到火灾初期预防、遏制功效;
- 4、深入探索新型灭火机器人研发技术,扩大、优化灭火机器人市场,提供优质灭 火机器人技术资源;
- 5、成功发表相关论文、专利,成立"智能灭火机器人系统研发公司",并与其他相关领域公司进行交流、合作,保证能够长期运营下去。

五、经费预算

具体包括:

- 1、调研、差旅费;
- 2、用于项目研发的元器件、软硬件测试、小型硬件购置费等:
- 3、资料购置、打印、复印、印刷等费用;
- 4、学生撰写与项目有关的论文版面费、申请专利费等。
- 1、相关资料及图书购买打印(包括 VS | OpenCV | C | C++等软件语言开发相关书籍,单片机学习相关书籍,电路设计等相关书籍)—0.1万元;
 - 2、网络全景摄像头购买—0.15万元;
 - 3、适配主控(PC)购买(图像处理对主控配置要求较高)—0.5万元;
 - 4、各类传感器购买—0.2万元;
 - 5、通信模块、驱动模块(含灭火装置、电机)、电源购买—0.2万元
 - 6、电路设计加工: 1) 主控板芯片—0.03万元;
 - 2) pcb 板—0.02 万元;
 - 3) 电容电阻等元器件—0.02万元;
 - 4) 焊接工具-0.02万元;
 - 7、机械结构、场地模型设计、加工、制作—0.06万元;
 - 8、发表相关论文、专利费用-0.2万元

六、导师推荐意见

签名:

年 月 日

七、院系推荐意见				
	院系负责人签名:		学阶	完盖章:
		年	月	日
八、学校推荐意见:				
	学校负责人签名:			交公章
		年	月	日

注:表格栏高不够可增加。