Project Part Three: Multiple Regression

Michael Ortiz, Joshua Head, Alexander Zommer

July 11, 2021

1 Data Preparation

Our dataset contains 51 observations, a maximum of 7 continuous predictor variables, 1 categorical variable with 8 categories, and 1 response variable (Perceptions of Happiness). The data is visualized below.

Before we can build an appropriate model, we need to perform some minor data cleaning.

1.1 Simplifying the categorical variable

We have too many categories for Regional Indicator, and one of those categories (Sub-Saharan Africa) contains only one observation, which will not bode well for our model. Therefore, we remove that observation from the set; our total number of observations is now 50. We also consolidate the remaining categories into 4 larger ones represented by dummy variables: North America, Latin America and Caribbean, Europe, and Asia. The box plots of these categories given their happiness scores are shown below.

2 Checking Collinearity

Before we build our model, it is a good idea to get an idea of how our predictors relate to each other. We visualize the scatter plots of each predictor plotted against each other, and we produce a correlation matrix to get a numerical idea of the collinearity.

Our plots imply that there may be strong collinearity between our predictors Logged GDP, Social Support, and Life Expectancy. We will need to account for this when building our model.

3 Selecting a Model

3.1 Model using all Predictors

			9	0.849	uared:	R-sq	SS	of_happine	Perceptions_	Dep. Variable:
)	0.810	uared:	dj. R-sq	LS A	0		Model:
			5	21.95	itistic:	F-sta	es	east Squar	L	Method:
			3	5.01e-13	tistic):	b (F-stat	21 Pro	u, 22 Jul 20	Thu	Date:
			3	-20.593	ihood:	og-Likel	13 L	08:27:		Time:
			9	63.19	AIC:		50	:		No. Observations:
			2	84.22	BIC:		39	:		Df Residuals:
							10	:		Df Model:
oles VIF	variables						ıst	nonrobu		Covariance Type:
pita 5.972201	Logged_GDP_per_capita	0	0.97	[0.025	P> t	t	std err	coef		
pita 5.572201	Logged_ODI _pei_eapita	•	-0.2	-6.148	0.034	-2.200	1.456	-3.2034	Intercept	
port 3.478019	Social support	1	0.0	-0.050	0.784	0.277	0.029	0.0080	expectancy	Healthy_life
			6.3	0.250	0.035	2.188	1.514	3.3116	cial_support	Soc
ncy 4.078158	Healthy_life_expectancy	2	0.8	-0.007	0.054		0.203			Logged_GDF
			-0.3	-1.776		-2.874		-1.0422		
ices 1.785210	Freedom_to_make_life_choices	3	0.0	-1.573		-1.965		-0.7749	•	_
city 1 620002	Generosity	4	0.1	-1.388		-1.680			tin_America	
sity 1.638883	deficiosity	4	0.1	-1.637		-1.738			rth_America	
tion 3.097564	Perceptions of corruption	5	3.9 1.2	0.629 -0.788	0.008	2.797 0.429	0.813		Generosity	Freedom_to_make_
1011 31037304	. c. ceptions_or_corruption	_	0.7		0.670				-	Doverntions of
rice 2.446397	Dollar price	6	0.7	-1.020 0.045		-0.266 2.542	0.446		-	Perceptions_of
	_p		0.3	0.045	0.015	2.542	0.086	0.2185	Dollar_price	

Surprisingly, our model constructed using all of our predictors performed very well, with an $R^2 = 0.849$ and an adjusted $R^2 = 0.810$, but there are a handful of issues which we will address shortly.

Our F-Statistic of 21.95 and P-Value of 5.01e-13 indicate that, for any reasonable value of α , our model is significant for predicting values of Perceptions of happiness. We calculated the Variance Inflation Factor (VIF) for each of our continuous variables, and as we suspected, GDP, Social Support, and Life Expectancy are prime suspects of collinearity. We also performed t-tests using $\alpha=0.05$ on each of our predictors to test for their significance in predicting happiness.

Despite the implication of collinearity, our VIF values are nonetheless relatively small, yet some of our predictors featured extremely large P-Values when performing the t-test. Therefore, our strategy is to address that first by removing the variable with the largest P-Value, one at a time, until all predictors return p < 0.05.

3.2 Remove Corruption Predictor

Dep. Variable:	Perceptions_of_happiness				R-squared:			9
Model:	OLS				Adj. R-squared:			5
Method:	Least Squares				F-statistic:			7
Date:	Thu	, 22 Jul 20	021	Prob (F-statistic):			9.97e-1	1
Time:		08:29	:28	Log-Likelihood:			-20.63	3
No. Observations:		50	AIC:			61.28		
Df Residuals:		40			BIC:	80.40)	
Df Model:			9					
Covariance Type:		nonrob	ust					
		coef	str	l err	t	P> t	[0.025	0.975]
	Intercept	-3.4638		.066	-3.250	0.002	-5.618	-1.310
Healthy life e	-	0.0079	0	.029	0.276	0.784	-0.050	0.066
72 -	ial support	3.2553		.481	2.198	0.034	0.262	6.249
Logged GDP		0.4221		.190	2.223	0.032	0.038	0.806
99	Europe	-0.8383		.311	-2.700	0.010	-1.466	-0.211
	Asia	-1.1064		.267	-4.137	0.000	-1.647	-0.566
Nort	th America	-0.8192		.363	-2.259	0.029	-1.552	-0.086
	in America	-0.6998		.263	-2.665	0.011	-1.231	-0.169
Freedom to make I	-	2.3799	_	.698	3.410	0.001	0.969	3.790
	Generosity	0.2179		.488	0.446	0.658	-0.769	1.205
	ollar_price	0.2273		.078	2.898	0.006	0.069	0.386
	onal_price	0.2273	U	.070	2.090	0.000	0.003	0.500

Our model from section [3.1] computed a terrible P-Value of 0.792 for Perceptions of Corruption, so we removed it first. $R^2 = 0.849$ did not change at all, yet adjusted $R^2 = 0.815$ increased. This is a great sign that this predictor was not contributing much of anything to our model.

3.3 Removing Life Expectancy

Dep. Variable:	Perceptions_of_happiness			R-sq	0.84	9	
Model:	OLS			dj. R-sq	0.81	9	
Method:	Least Squares			F-sta	28.7	2	
Date:	Thu	, 22 Jul 20)21 Pro	b (F-sta	tistic):	1.85e-1	4
Time:		08:36	:28 L	.og-Likel	ihood:	-20.68	6
No. Observations:	50				AIC:	59.3	7
Df Residuals:			41		BIC:	76.5	8
Df Model:			8				
Covariance Type:		nonrob	ust				
		coef	std err	t	P> t	[0.025	0.975
	Intercept	-3.3409	0.957	-3.490	0.001	-5.274	-1.40
Soci	al_support	3.3188	1.447	2.294	0.027	0.397	6.240
Logged_GDP_	per_capita	0.4520	0.154	2.929	0.006	0.140	0.764
	Europe	-0.8126	0.293	-2.774	0.008	-1.404	-0.22
	Asia	-1.0726	0.235	-4.564	0.000	-1.547	-0.598
Lati	n_America	-0.6662	0.230	-2.897	0.006	-1.131	-0.202
Nort	h_America	-0.7895	0.342	-2.306	0.026	-1.481	-0.098
Freedom_to_make_li	fe_choices	2.3881	0.689	3.464	0.001	0.996	3.780
(Generosity	0.1762	0.459	0.384	0.703	-0.751	1.104
D	ollar_price	0.2343	0.073	3.190	0.003	0.086	0.383

Our next predictor to go was Healthy Life Expectancy, with model [3.2] showing a P-value of 0.784. Yet again \mathbb{R}^2 remained unchanged at 0.849, and adjusted \mathbb{R}^2 increased to 0.819.

3.4 Final Model

Dep. Variable:	Perceptions_of_happiness	R-squared:	0.848
Model:	OLS	Adj. R-squared:	0.823
Method:	Least Squares	F-statistic:	33.49
Date:	Fri, 23 Jul 2021	Prob (F-statistic):	3.28e-15
Time:	19:21:08	Log-Likelihood:	-20.775
No. Observations:	50	AIC:	57.55
Df Residuals:	42	BIC:	72.85
Df Model:	7		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]			
Intercept	-3.3436	0.948	-3.528	0.001	-5.256	-1.431		variables	VIF
Social_support									2 521 457
Logged_GDP_per_capita	0.4430	0.151	2.934	0.005	0.138	0.748)	Logged_GDP_per_capita	3.521457
Europe	-0.8187	0.290	-2.828	0.007	-1.403	-0.234		Casial support	2 227201
Asia	-1.0672	0.232	-4.596	0.000	-1.536	-0.599	L	Social_support	3.327201
Latin_America	-0.6876	0.221	-3.114	0.003	-1.133	-0.242	Frond	om_to_make_life_choices	1 10/655
North_America	-0.7701	0.335	-2.297	0.027	-1.447	-0.094	z rieeu	om_to_make_me_choices	1.194055
Freedom_to_make_life_choices	2.4766	0.643	3.852	0.000	1.179	3.774	2	Dollar_price	1 785743
Dollar_price	0.2403	0.071	3.383	0.002	0.097	0.384	•	Dollar_price	1.705745

The final predictor we removed was Generosity, with model [3.3] reporting a P-Value of 0.703. This model insignificantly reduced $R^2 = 0.848$ from 0.849, and increased adjusted R^2 to 0.823. At this point, for $\alpha = 0.05$,

all predictors are significant. With that information, we recalculated the VIF scores for the remaining variables and we are no longer seeing signs of collinearity using VIF > 5 as an indication. Any further attempts at adjusting the model by either removing terms, adding interaction terms, or transforming predictors resulted in significantly worse performance.

To summarize, between models [3.1] and [3.4] our R^2 reduced by 0.001 from 0.849 to 0.848, adjusted R^2 increased to 0.823 from 0.810, our F-Statistic increased from 21.95 to 33.49, we removed all insignificant predictors via t-tests, and our VIF scores no longer hint at collinearity.

4 Analyzing the Model

4.1 Diagnostic Plots

4.2 Interpreting the Plots

The random scatter in the residual plot, combined with the shape of the residual histogram and linearity in the Q-Q plot strongly indicate that our residuals are normally distributed and we not in violation of the homoscedasticity assumption. We confirm this by performing the shapiro test which resulted as (statistic = 0.9799081087112427, pvalue = 0.5480934381484985). We now have overwhelming evidence of normality in our residuals. We also suspect, however, that there are anywhere from 1 to 3 outliers in our data. Our first 3 plots indicate there is an outlier with an extreme negative residual, and our leverage plot indicates that there are 2 points with high leverage. We analyze further by visualizing Cook's Distance via an influence plot. In this plot, the larger an observation is, the more influential (higher Cook's Distance) it is.

We see that our extreme negative residual does not end up being that influential, but our observations with high leverage (30 and 19) are significantly more influential than the others and may in fact be outliers. The model may benefit from their removal. Nonetheless, our model has shown significant evidence that it is a strong predictor of happiness. We further confirm this by plotting our predicted vs actual values of happiness and observe a strongly positive correlation.

