Group 5 PDR

Cheng Yi A0211035B Chia Le, Isaac A0281812H Himani Vinod Vasnani A0301024E Oh Keng Yong A0305654E Ng Zing Hng A0307745Y

System Overview

Overall System Architecture

System Description of Solution

Mechanical

Launching System

Feeder + Flywheel System

Launching System

Machine elements

Fasteners (M3 screws and nuts)	25 screws, 18 nuts
DC Motors	2
Stepper Motor	1
Flywheels	2
Rotor	1

Assembly plan

Screws and Nuts:

Feeder - Barrel

Barrel - Motor

Turtlebot - Launcher

Feeder - Motor

Fabrication plan

3D print (our own printers)

Barrel

Feeder

Rotor

Buy online

• DC Motor (Aliexpress)

https://www.aliexpress.co

Stepper Motor

<u>link</u>

Flywheels (Shopee)

Link

Get from lab

Screws and nuts

Calculation

Required height = 1.5m
Height to centre of wheels is 13cm

$$h = 1.5 - 0.13$$

= 1.37(m)

$$v = r\omega$$
; $\omega = RPM \times 2\pi/60$

$$\frac{1}{2}$$
 mv² = mgh
 $\frac{1}{2}$ (rRPM/60 x 2 π)² = 9.81 x 1.37
RPM² = (2 x 9.81 x 1.37 x 3600)/4 π ²r²

Our flywheel's radius, r = 17.5mm
RPM =
$$\sqrt{(8003615)}$$

= 2829

Motor loaded speed: 4500 ± 1500 rpm >2829

Overall CAD

Center of Gravity

 CG:
 20.26222103
 31.30267985
 62.33789643

 Forward
 Vertical
 Horizontal

 X
 Y
 Z

Reference Point: Outermost side of the right wheel on the wheel axis of rotation

X: 20.26mm

Y: 31.30mm

Z: 62.34

No	Part	Malaba (a)	X	Υ	Z	CGX	CGY	CGZ
	1st Laver Waffle Plate	Weight (g) 80	32	-17.68	88.15	2560	-1414.4	7052
	Right Motor	56	11.04	-0.19	34.55	618.24	-1414.4	1934.8
	Right Wheel	27	0	0.19	9.53	010.24	0	257.31
	Left Motor	56	11.04	0.19	141.75	618.24	10.64	7938
	Left Wheel	27	0.01	0.01	166.77	0.27	0.27	4502.79
	Battery	137	34.16	-0.5	87.65	4679.92	-68.5	12008.05
	Ball Bearing	4	81	-26.62	88.15	324	-106.48	352.6
	Standoff	6	-32	1.25	64.15	-192	7.5	384.9
	Standoff	6	-32	-1.25	112.15	-192	-7.5	672.9
10	Standoff	6	96	-1.45	64.15	576	-8.7	384.9
11	Standoff	6	96	1.25	112.15	576	7.5	672.9
12	L Bracket	2	84	-10.89	87.42	168	-21.78	174.84
13	L Bracket	2	-16.27	-10.69	79.15	-32.54	-21.38	158.3
14	L Bracket	2	38	-6.18	66.59	76	-12.36	133.18
15	L Bracket	2	-16.27	-10.69	97.15	-32.54	-21.38	194.3
16	L Bracket	2	38	-6.18	109.72	76	-12.36	219.44
17	2nd Layer Waffle Plate	80	32	19.33	88.15	2560	1546.4	7052
18	Standoff	6	56	40.55	152.15	336	243.3	912.9
19	Standoff	6	56	43.05	24.15	336	258.3	144.9
20	Standoff	6	-32	43.25	100.15	-192	259.5	600.9
21	Standoff	6	-32	40.75	76.15	-192	244.5	456.9
22	PCB Support	2	-9.89	25.53	65.33	-19.78	51.06	130.66
23	PCB Support	2	-9.89	25.53	110.97	-19.78	51.06	221.94
	PCB Support	2	73.89	25.53	110.97	147.78	51.06	221.94
25	PCB Support	2	73.89	25.53	65.33	147.78	51.06	130.66
	Open CR	64	25.63	35.13	89.38	1640.32	2248.32	5720.32
	3rd Layer Waffle Plate	80	32	66.62	88.15	2560	5329.6	7052
	Standoff	6	96	87.85	64.15	576	527.1	384.9
	Standoff	6	96	90.35	112.15	576	542.1	672.9
	Standoff	6	8	90.55	152.15	48	543.3	912.9
	Standoff	6	-32	88.05	112.15	-192	528.3	672.9
	Standoff	6	-32	90.55	64.15	-192	543.3	384.9
	Standoff	6	8	88.05	24.15	48	528.3	144.9
	PCB Support	2	71.78	72.83	116.74	143.56	145.66	233.48
	PCB Support	2	42.78	72.83	118.36	85.56	145.66	236.72
	PCB Support	2	71.78	72.83	58.74	143.56	145.66	117.48
	PCB Support	2	42.78	72.83	60.36	85.56	145.66	120.72
	RPi	47	53.96	84.88	71.63	2536.12	3989.36	3366.61
	4th Layer Waffle Plate	80	32 57.26	114.12	88.15	2560	9129.6	7052
	PCB Support	2	57.26 18.49	120.53 120.33	112.74	114.52 36.98	241.06 240.66	225.48 209.22
	PCB Support	2	18.49 57.25		104.61 63.57			127.14
	PCB Support	2		120.53 120.33	63.57 71.7	114.5 36.98	241.06	127.14
	PCB Support Lidar		18.49		0.000	36.98 4096	240.66 16640	1,7,000,000
		128 395.18	32 146.66	130 32.17	88.15 100.04	4096 57957.0988	16640 12712.9406	11283.2 39533.8072
45	Launcher	1379.18	146.bb	32.17	100.04	20.26222103	31.30267985	62.33789643
		13/9.18						
						Forward	Vertical	Horizontal

Electrical

Electronics System Architecture (E3 Assignment Requirement)

Wiring diagram

Component selection (E3 Assignment Requirement)

- IR temperature sensor
- Launcher mechanism
 - Motors for flywheel and feeder
 - Motor driver
 - Power source

Temperature sensor

	Option 1: MLX90614	Option 2: AMG8833
Function	Single-point measurement	8x8 array (64 data points)
Communication protocol	I2C	I2C
FOV	90°	60°
Detection distance	2-5cm	Up to 7m
Cost	\$17.82 from Cytron	\$38.40 from Shopee

• Can use AMG8833 from the lab if we manage to get it

Flywheel motors

- Size 130 DC motors
- Operating range 4.5-9V
- Loaded RPM 4500 ± 1500
- Small size
- Use PWM+MOSFET (IRL3803PbF) to control voltage output to motors

Option 2: high speed DC motors (like what they use for model aircraft/drones)

- More expensive
- Tend to need more voltage (7.4-12V)
- Faster (eg. no-load RPM of 10000)

Rated Load: 10 g*cm

No-load Current: 70 mA max

• No-load Speed: 9100 ±1800 rpm

Loaded Current: 250 mA max

Loaded Speed: 4500 ±1500 rpm

Starting Torque: 20 g*cm

Starting Voltage: 2.0

Stall Current: 500mA max

Body Size: 27.5mm x 20mm x 15mm

Shaft Size: 8mm x 2mm diameter

Weight: 17.5 grams

Stepper

- FIT0503
- Weight: 14g
- 5-12V
- 30Ω coil resistance

Option 2: Servo (SG90)

FIT0503

Stepper Motor, Single Shaft, 12 mm, 18 °, 0.0784 N-m

Motor driver: L298N

- Max current output: 2A per channel
- 4 channels → can be used to control stepper motor
- In lab

- Option 2: L293D
 - o 600mA max output
 - Not in lab

Power source

- 12V from OpenCR
 - Max 55W total supplied from both the 5V and 12V outputs

Power budget

Component	Voltage/V	Current/A	Power/W	Remarks
Turtlebot during operation	12.00	0.66	7.92	From E2 assignment
AMG8833	3.3	0.045	0.1485	3.3V from RPi
Motors x2	6	0.5*2 = 1	6.0	Loaded current is 0.25A per motor Stall current is 0.5A per motor
Stepper + L298N	12	0.5 + 0.36 = 0.86	10.32	L298N consumes up to 36mA Stepper is rated for max 0.5A
Total			24.4 < 55	

Battery life (Turtlebot)

Turtlebot3 LiPo battery: Lithium polymer 11.1V 1800mAh / 19.98Wh 5C Given Data:

- Battery: 11.1V, 1,800mAh
- Battery energy: 11.1V x 1.8Ah = 19.98Wh.

Assume 15W average power use, since motors are only used when firing flares Estimated battery life = 19.98Wh/15W = 1.3h

Software

Key concepts

Nodes

Topics

Services

Parameters

Actions

Key concepts

Move by publishing to /Cmd_Vel

Subscribe to /Odom for robot orientation

Subscribe to /Scan for Lidar information

Subscribe to /Map to get SLAM information

Algorithms

Mapping Algorithm

Pathfinding Algorithm

Overall Navigation Algorithm

Mapping Algorithm

Frontier Exploration

Prioritise frontiers
 based on distance
 and size of frontier

Pathfinding Algorithms

A* Navigation

- Gives cells values
 based on G cost and H
 cost
- Shortest path is very close to walls

Pathfinding Algorithm

Collision Costmap

- Grids near walls = high cost
- Grids away from walls = low cost
- Prioritise using low cost grids to build path

Pathfinding Algorithm

A* Navigation + Collision Costmap

Pathfinding Algorithm

Pure Pursuit

- Pick a point on the path which is a set distance ahead of the robot
- Make the robot move directly towards that path
- Distance too small > Robot will overcorrect
- Distance too large > Robot may move very close to walls

Overall Navigation Algorithm

Mapping Phase: Focus on mapping

Searching Phase: Mapping complete, focus on searching

Scenario 1:

- Robot finds both targets before it completes mapping
- Robot completes mapping

Scenario 2:

- Robot completes mapping before finding both targets
- Robot focuses on searching for remaining targets

Overall Navigation Algorithm

Overall Algorithm Structure

Searching Phase:

- Search Area Footprint (Rotate 360 once in a while)
- Cost Map of areas thermally searched
- Cost Map of areas rotated
- BFS if desperate

Overall Navigation Algorithm

ROS2 Implementation

RQT Graph during rslam, r2auto_nav, r2occupancy2

ROS2 Implementation

ROS2 Implementation

Embedded firmware

AMG8833

- I2C
 - Default address 0x69
 - SDA to GPIO 2, SCL to GPIO 3 (corresponding I2C pins on RPi)
- Adafruit AMG88xx python** library
 (https://github.com/adafruit/Adafruit CircuitPython AMG88xx)
- Read data: 8x8 array of values
 - Heatmap (for visualisation/debugging)
 https://makersportal.com/blog/2018/1/25/heat-mapping-with-a-64-pixel-infrared-sensor-and-raspberry-pi

def pixels(self) -> List[List[float]]:

sensor."""

"""Temperature of each pixel across the sensor in Celsius.

Temperatures are stored in a two dimensional list where the first index is the row and

the second is the column. The first row is on the side closest to the writing on the

^{**}Actually a circuitpython library but possible to run it without circuitpython: <a href="https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/running-circuitpython-code-without-circuitpython-name="https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/running-circuitpython-code-without-circuitpython-name="https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/running-circuitpython-code-without-circuitpython-name="https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/running-circuitpython-code-without-circuitpython-name="https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/running-circuitpython-code-without-circuitpython-name="https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/running-circuitpython-code-without-circuitpython-name="https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/running-circuitpython-code-without-circuitpython-name="https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/running-circuitpython-code-without-circuitpython-name="https://learn.adafruit.com/circui

Embedded firmware

AMG8833: finding heat signature

- Basic idea: If any pixel is above a threshold temperature (which we would set based on tests with the heat source), initiate survivor zone sequence
- Option 1: Search through the array; check if any entry is above our threshold temperature
- Option 2: INT pin on AMG8833
 - Connect interrupt pin to GPIO pin (may have to add 10k ohm pull-up resistor)
 - Read value of interrupt pin
 - INT pin outputs low/raises interrupt flag whenever any pixel reaches above/below threshold temperature

BOM

Component	Part no.	Cost per unit	No. of units	Total cost	Link
IR temperature sensor	AMG8833	\$27.61	1	\$27.61	https://shopee.sg/AMG8833-I R-8*8-MLX90640-32*24-Cam era-Module-Thermal-Imager- Array-Temperature-Sensor-8 x8-32x24-Infrared-MLX90640 BAA-MLX90640BAB-i.24078 2317-23649387689*sp_att=4 3ffb058-cc48-46c0-82d7-65f1 fd7e1ff28xptdk=43ffb058-cc4 8-46c0-82d7-65f1fd7e1ff2 (or from electronics lab)
Motor	FC-130SA-20120 DC Motor	\$1.94	4 (2 spare)	\$7.76	https://shopee.sg/130-Micro-Mini-M otor-DC-3-To-9.6V-19200RPM-High -Speed-FC-130A-13220-Carbon-Br ush-for-Four-wheel-Motor-Small-for- DIY-Motor-I.925005537.239138935 847xptikl=F5d8c1d1-56e8-4134-8f0 7-191c2d7625ce
Stepper	28BYJ-48	\$1.96	1	\$1.96	https://shopee.sg/1set-28BYJ-48-5 V-4-phase-Stepper-Motor-Driver-Bo ard-ULN2003-for-Arduino-1-x-Stepp er-motor-1x-ULN2003-Driver-board- i.161750523.72348569147sp_atk=4 57a612f-dcb8-465b-b9f0-970304bd 023c&xptdk=457a612f-dcb8-465b-b 9f0-970304bd023c
Flywheel	PU60835-18	\$5.71	2	\$11.42	https://shopee.sg/product /362240629/2442594074 8?d_id=68a20&uls_tracki d=524r0an901r2&utm_co ntent=3WQ2YUUU9WQg Tr8zPZ6cKL66Er9M
Filament roll (1kg)		\$17	1	\$17	
Total				\$65.75	

Testing plan

The plan

- Buy parts
- Begin working on navigation
- Begin printing launcher and testing
- Once parts arrive: sensor stuff + launcher
- Integrating subsystems

Plan B

Hardware failure: Use spares

Launcher design flaw: Redesign in 1 day, print in 1 day -> Total 2 days

Backup launcher mechanism: 9x spring loaded firing mechanisms

Parts don't arrive on time: find alternative sources

If LIDAR cannot see the guy on the floor: borrow basic IR distance sensor and put it near the bottom of the turtlebot

Mapping Measures of Performance: The robot must be able to map the maze.

		Technical Performance Measures: The robot must be able to accurately store and retrieve a map of the maze representing a 5 meter by 5 meter space.											
Navigation	and	Measures	of Performar	nce: The robot	must navigate	the maze to	two heat sou	rces (incandesce	ent light bull	bs) that are	within		
Localization		the	maze	behind	acrylic	walls	without	bumping	into	the	walls.		
		Technical	Performance	Measures: Ro	hot must be al	ole to return	to the starting	nosition with dev	viation of un	nder 5 cm a	fter 25		

maze.

Identification of Measures of Performance: The robot must identify heat signals, detecting their distance from the robot and identifying their heat sources

position relative the to Technical Performance Measures: The robot must identify an incandescent bulb (a local maximum temperature) within 20 cm and approach the heat signal. Measures of Performance: The robot must store up to 9 ping pong balls and launch 3 ping pong balls at a set time interval

Firing mechanism

Technical Performance Measures: The robot should be able to launch 3 ping pong balls 1.5m vertically with a time interval of 2-4-2s

Scaling a ramp

Measures of Performance: The robot should be able to identify and scale a ramp

Technical Performance Measures: The robot should be able to scale a 10° ramp without slipping.

minutes of movement. The robot must be able to stop and recalibrate its path if it were to move within 5 cm of the wall.