Nested Named Entity Recognition

2020/04/21

CQU 1701 Online Meeting

Contents

- Problem Definition
- Datasets
- Sequence Labeling Methods
- Sub-Sequence Classifier Methods
- Summary

Problem Definition

Embedded names which are included in other entities

The premier of the western Canadian province of British Columbia

该文提出一种基于Lattice-LSTM的多粒度中文分词模型

Problem Definition

- Give a sequence $X = \{x_1, x_2, ..., x_n\}$
- Predict a sequence of label $Y = \{y_1, y_2, \dots, y_n\}$
- y_n contains a list of labels not a single label: $y_n = \{y_n^1, y_n^2, ..., y_n^m\}, \quad m = nested_layer$

A multi-label classification problem

Nested Type

- A nested entity contains more than 1 entity:
 - the western Canadian province of British Columbia
- A nested entity extended from 1 flat entity + key words:
 - 多粒度中文分词模型

Datasets

- GENIA
- ACE2005
- NNE

	Text Type	Doc Number	Mentions	Entity Types	Nested Level
GENIA	Biomedical	2,000	92,681	36	4
	Text				
ACE2005	News	464	30,966	7	6
NNE	News	2,312	279,795	114	6

Raw & Processed format

PMice⁴T5 transgenic for the Phuman T cell leukemia virus⁴T7 (PHTLV-I⁴T8) PTax⁴T9 gene⁴T6 develop Pfibroblastic tumors⁴T10 that express PNF-kappa B-inducible early genes⁴T11.

<sentence id="S2"><term id="T5" sem="Multicellular_organism">Mice</term> transgenic for the <term id="T6" sem="DNA_domain_or_region"><term id="T7"
sem="Virus">human T cell leukemia virus</term> (<term id="T8" sem="Virus">HTLV-I</term>) <term id="T9" sem="Protein_molecule">Tax</term> gene</term> develop <term id="T10" sem="Tissue">fibroblastic tumors</term> that express <term id="T11" sem="DNA_family_or_group">NF-kappa B-inducible early genes</term>.</sentence>

```
These
data
indicate
that
      0
IL B-protein O
  I-protein
  I-protein
suppresses 0
the 0 0
induction 0
               0 0
of 0 0
transcription B-protein 0 0 0
factors I-protein 0 0 0
in O
human 0 B-cell_type 0 0
activated
         0 I-cell_type 0 0
         B-cell_type I-cell_type 0 0
monocytes
```

Sequence Labeling Methods

- Combined Label
- Neural Layered Model

BILOU Encoding(Combined Label)

Flat NER:

```
Begin, Inside, Outside
Type1, Type2, Type3
B-Type1, I-Type1, .....
```

Nested NER:

```
in
the
                B-ORG
US
                I-ORG|U-GPE
Federal
                I-ORG
District
               I-ORG|U-GPE
Court
                I-ORG
of
                I-ORG
                I-ORG|B-GPE
New
Mexico
                L-ORG | L-GPE
                0
```

Neural Architectures for Nested NER through Linearization, ACL 2019

Neural Layered Model

A Neural Layered Model for Nested Named Entity Recognition, NAACL-HLT 2018

Problems

- Combined Label:
 - The number of Labels grows exponentially
 - Label distribution is too sparse
- Layered Model:
 - Error propagation
 - Can not train model parallelly

Sub-Sequence Classifier Methods

- Deep Exhaustive Model
- Boundary-aware Neural Model
- Connection-aware Model

Simple Idea

- Give a sequence $X = \{x_1, x_2, ..., x_n\}$
- Enumerate all sub-sequences of X, $S = \{s_1, s_1 s_2, s_1 s_2 s_3, \dots, s_2, s_2 s_3, \dots, s_n\}$
- Train a Classifier C, predict the label of each sub-sequence: $Y = \{y_1, y_2, ..., y_m\}, \qquad m = len(S)$

Deep Exhaustive Model

Deep Exhaustive Model for Nested Named Entity Recognition, EMNLP 2018

Boundary-aware Model

A Boundary-aware Neural Model for Nested Named Entity Recognition, EMNLP-IJCNLP 2019

Connection-aware Model

Merge and Label: A Novel Neural Network Architecture for Nested NER. ACL 2019

Problems

- Negative Samples
- Length of sub-sequence
- High complexity

Results on GENIA

	P	R	F
Neural Layered	78.5	71.3	74.7
Deep Exhaustive	73.3	68.3	70.7
Linearization(Flair)	/	/	78.31
Boundary-aware	75.9	73.6	74.7

Results on ACE2005

	P	R	F
Neural Layered	74.2	70.3	72.2
Linearization(Flair)	/	/	84.33
Merge and Label	82.7	82.1	82.4

Summary

- The trend is use sub-sequence classifier
- Most work aims to reduce the number of negative samples and complexity

- Layered model still work
- Combined label performs well due to BERT/ELMo.