11 Lagrange's theorem and consequences (10/13)

Definition 11.1 (Cosets). Let G be a group and $H \subseteq G$ a subgroup. Given $g \in G$, define

$$gH = \{gh : h \in H\}$$
 and $Hg = \{hg : h \in H\},$

the left and right cosets of H containing g. (Note that $g \in gH$ and $g \in Hg$.) These are subsets of G.

Remark 11.2. When G is written additively, the cosets are often written g + H.

Example 11.3. Suppose we consider the subgroup $H = \{0, 2, 4\}$ of $\mathbb{Z}/6 = \{0, 1, 2, 3, 4, 5\}$. The right cosets

$$\begin{split} H+0&=\{0,2,4\},\\ H+1&=\{1,3,5\},\\ H+2&=\{0,2,4\},\\ H+3&=\{1,3,5\},\\ H+4&=\{0,2,4\},\\ H+5&=\{1,3,5\}. \end{split}$$

This scintillating pattern is explained in Lemma 11.5.

Example 11.4. Suppose we consider the subgroup $H = \{e, (12)\}$ of S_3 . The right cosets are

$$He = \{e, (12)\},\$$

$$H(12) = \{e, (12)\},\$$

$$H(13) = \{(13), (132)\},\$$

$$H(23) = \{(23), (123)\},\$$

$$H(123) = \{(123), (23)\},\$$

$$H(132) = \{(132), (13)\}.$$

Lemma 11.5. Let G be a group and $H \subseteq G$ a subgroup. If $g_0, g_1 \in G$, then the following are equivalent:

- (i) $g_0H \cap g_1H \neq \emptyset$,
- (ii) $g_0^{-1}g_1 \in H$,
- (iii) $g_0H = g_1H$.

Proof. Suppose that $g_0H \cap g_1H \neq \emptyset$. Then, there exist $h_0, h_1 \in H$ such that $g_0h_0 = g_1h_1$, which implies $h_0h_1^{-1} = g_0^{-1}g_1$ (multiplying on the left by g_0^{-1} and on the right by h_1^{-1}). So, (i) implies (ii) since $h_0h_1^{-1}$ is in H as H is a subgroup of G. Assume $g_0^{-1}g_1 \in H$, in which case the inverse $g_1^{-1}g_0$ is also in H. Then, for $h \in H$, we have $g_1h \in g_1H$. But, $g_1g_1^{-1}g_0h = g_0h$ is also in g_1H , so $g_0H \subseteq g_1H$. Similarly, $g_1H \subseteq g_0H$, so (ii) implies (iii). Finally, (iii) implies (i) using that cosets are always nonempty.

Remark 11.6. Lemma 11.5 holds with right cosets instead of left cosets where condition (ii) is replaced by (ii) $g_1g_0^{-1} \in H$.

Remark 11.7. Say that $g_0 \sim g_1$ if the equivalent conditions of Remark 11.6 hold. This defines an equivalence relation on G with equivalence classes given by the varying Hg. The set of equivalence classes (right cosets) is written as G/H. (Note that left and right cosets do not generally agree. There is an example in S_3 .)

Remark 11.8. If H is a subgroup of G we can view it as acting on G via $h \cdot g = hg$. The orbit of H containing g, written $H \cdot g$ in Lecture 10, is the right coset Hg.

Lemma 11.9. Let G be a group, $H \subseteq G$ a subgroup, and $g_0, g_1 \in G$. Multiplication on the right by $g_0^{-1}g_1$ gives a bijection $Hg_0 \to Hg_1$.

Proof. Given hg_0 , we have $(hg_0)(g_0^{-1}g_1) = hg_1$, so this operation defines a function $Hg_0 \to Hg_1$. It has an inverse given by right multiplication by $g_1^{-1}g_0$, so it is a bijection.

Corollary 11.10. If G is a group and $H \subseteq G$ is a finite group, then any two right cosets Hg_0 and Hg_1 have the same number of elements (equal to the number of elements of H).

Proof. Bijective finite sets have the same number of elements and He = H, so the corollary follows from Lemma 11.9.

Theorem 11.11 (Lagrange). Suppose that G is a finite group and $H \subseteq G$ is a subgroup, then the order of H divides the order of G.

Proof. Since the relation \sim introduced in Remark 11.7 is an equivalence relation, G is the disjoint union of some equivalence classes Hg_1, Hg_2, \ldots, Hg_k . Thus,

$$|G| = \sum_{i=1}^{k} |Hg_i|.$$

As each $|Hg_i| = |H|$ by Corollary 11.10, it follows that the sum is equal to k|H|. So, |G| = k|H|, as desired.

Motto 11.12 (|G| = |H||G/H|). If $H \subseteq G$ is a subgroup of a finite group, then the number of (right) cosets times the order of H is equal to the order of G. Indeed, in the proof of Theorem 11.11 the number of right cosets is k.

Corollary 11.13 (Lagrange's theorem for elements). Let G be a finite group and $g \in G$ an element, then |g| divides |G|.

Proof. Let N = |g|. Then, the set $\{1, g, g^2, \dots, g^{N-1}\}$ forms a subgroup of G of order N. By Theorem 11.11, N = |g| divides |G|.

Remark 11.14. The converse does not hold: if G is a finite group and if N > 1 divides |G|, there need not be an element of G of order N. See Exercise 11.1.

Corollary 11.15. If G is a finite group and $g \in G$, then $g^{|G|} = e$.

Proof. Write |G| = |g|k. Then, $g^{|G|} = (g^{|g|})^k = e^k = e$.

11.1 Exercises

Exercise 11.1. The largest order of an element of S_3 is 3. The largest order of an element of S_4 is 4. The largest order of an element of S_5 is 6! The largest order of an element of S_6 is 6. The largest order of an element of S_7 is 12! What are the largest orders of elements in S_8 , S_9 , and S_{10} ? (Recall our previous work on the order of elements of symmetric groups in terms of their cycle decompositions.)

Exercise 11.2. Prove that if G is a finite group of order p, where p is a prime, then $G \cong \mathbf{Z}/p$.

Exercise 11.3. Prove that if $N \ge 1$ and $a \in (\mathbf{Z}/N)^{\times}$, then $a^{\phi(N)} \equiv 1 \mod N$, where ϕ is Euler's totient function.

Exercise 11.4 (Fermat's little theorem). Prove that if p is a prime, then $a^p \equiv a \mod p$ for any $a \in \mathbb{Z}$.