Politechnika Warszawska Wydział Mechaniczny Energetyki i Lotnictwa

Obliczenia inżynierskie w chmurze
Program liczący zmęczeniowy współczynnik
bezpieczeństwa - sprawozdanie

Szymon Kramarczyk 313636

Warszawa

25.01.2025r.

1. Opis projektu

Celem projektu było opracowanie narzędzia umożliwiającego aproksymację współczynników mechanicznych na podstawie danych tabelarycznych za pomocą metod interpolacji numerycznej. W projekcie wykorzystano dwuwymiarową interpolację regularną do oszacowania wartości współczynników potrzebnych do policzenia zmęczeniowego współczynnika bezpieczeństwa.

Projekt zakładał także integrację danych wczytywanych z plików tekstowych oraz uwzględnienie analizy danych pochodzących z pliku .json, z możliwością łatwej modyfikacji i rozszerzenia ich zawartości. Realizacja projektu wymagała zastosowania biblioteki scipy, w celu użycia zawartej w niej metody interpolacji RegularGridInterpolator.

2. Działanie programu

Program umożliwia aproksymację zmęczeniowego współczynnika bezpieczeństwa geometrii sworznia z osadzeniem o pewnym promieniu, wykonanym ze stali, na podstawie wartości wejściowych dostarczanych przez użytkownika. Przykładowa geometria, dla której przeprowadzone zostały obliczenia przedstawiona została poniżej:

Wartościami potrzebnymi do obliczeń, opisującymi powyższa część są:

- d Mniejsza średnica sworznia
- D Większa śrenica sworznia
- r Promień zaokrąglenia karbu
- R_e i R_m Granica plastyczności i wytrzymałości doraźnej stali z której wykonany jest sworzeń

- Rodzaj naprężeń w sworzniu jednostronnie odzerowo tętniące lub obustronnie symetryczne
- σ_{max} Maksymalne obciążenia (Von Misesa) zaobserwowane w analizie MES obiektu, po obciążeniu zadaną siłą
- Typ obróbki powierzchni materiału toczenie zgrubne, szlifowanie etc.
- Stan materiału ulepszony, surowy lub wyżarzony

Do przykładowej analizy przyjęto następujące wartości (geometria sworznia mocującego siłownik hydrauliczny do otwierania stalowego włazu bunkra magazynowego):

- d-40mm
- D − 56mm
- r 8mm
- $R_e 235MPa$
- R_m -360MPa
- Obciążenia jednostronnie odzerowo tętniące o wartości maksymalnej σ_{max} =76MPa
- Obróbka zwykłym toczeniem
- Surowa stal konstrukcyjna

Dane te pozwoliły na policzenie współczynników i innych danych potrzebnych do dalszych obliczeń:

- Współczynnik kształtu α_k
- Materiałowy współczynnik wrażliwości na działanie karbu η
- Współczynnik wrażliwości na działanie karbu β_k
- Współczynnik stanu powierzchni β_p lub β_{ps}
- Współczynnik wielkości przedmiotu γ

Każda z tych wartości musi być odczytana z odpowiednich wykresów, ich wartości zmieniają się wraz z najmniejszymi zmianami w modelu oraz w założeniach, przez co ręczne liczenie zmęczeniowego współczynnika bezpieczeństwa potrafi być bardzo uciążliwe i podatne na błędy odczytów "na oko".

Pierwszym krokiem pisania programu było stworzenie siatki punktów odpowiadającej każdemu z wykresów w programie Excel i eksportowanie danych do plików .txt

Rozciąganie próbki okrągłej z osadzeniem							
alpha k		D/d					
		2	1,25	1,05	1,01		
ro/d	0,01	4	2,96	2,27	1,7		
	0,02	3,25	2,51	1,98	1,53		
	0,03	2,88	2,29	1,83	1,44		
	0,05	2,47	2,02	1,66	1,34		
	0,075	2,2	1,84	1,55	1,28		
	0,1	2	1,7	1,45	1,22		
	0,2	1,63	1,45	1,29	1,13		
	0,3	1,44	1,32	1,2	1,08		
	0,5	1,27	1,2	1,13	1,04		
	0,75	1,2	1,16	1,1	1,02		

Dane tabelaryczne następnie są wczytywane z plików tekstowych, które zawierają zarówno wartości zmiennych niezależnych, jak i odpowiadające im wartości współczynników z użyciem poniższej funkcji:

```
def load_table(file_path):
    with open(file_path, 'r') as f:
        lines = f.readlines()
    header_1 = list(map(float, lines[0].split()))  # Pierwsza linia
    header_2 = list(map(float, lines[1].split()))  # Druga linia
    table = np.array([list(map(float, line.split())) for line in lines[2:]])  # Tabela
    return header_1, header_2, table
```

Program wykorzystuje funkcję RegularGridInterpolator do przeprowadzenia dwuwymiarowej interpolacji, co pozwala na uzyskanie precyzyjnych wyników w przypadku wartości spoza dostępnych danych tabelarycznych.

```
# Wczytywanie danych z plików
Zgo,stan_stali,eta_table = load_table('./notch.txt')

# Tworzenie interpolatorów
eta_interpolator = RegularGridInterpolator((Zgo,stan_stali), eta_table, bounds_error=False, fill_value=None)

# Funkcja obliczająca Współczynnik podatności na działanie karbu
def Notch_sens_factor(Zgo,stan_stali, eta_interpolator):
    point = np.array([Zgo,stan_stali])
    return eta_interpolator(point).item()
```

W dalszej części kodu wczytywane są dane początkowe na których podstawie liczone są wartości potrzebne do wykonania odczytów z wykresów:

Ostatnim krokiem jest wywołanie funkcji aproksymujących wartości współczynników i podstawienie ich do wzoru na zmęczeniowy współczynnik bezpieczeństwa:

```
alpha_k = Shape_factor(ro_d, D_d,alpha_values_load(load_type))
eta = Notch_sens_factor(Zo,stan_stali,eta_interpolator)
beta_k = 1+eta*(alpha_k-1)
beta_p = Surface_finish_factor(Rm,typ_obrobki,beta_p_values_load(load_type))
beta = beta_k*beta_p
gamma= Size_factor(Zo, alpha_k, d)
safety_coeff = Zo/((beta*gamma*sigma_a)+sigma_m*((2*Zo/Zj)-1))
```

3. Platforma Azure

Ostatnim krokiem projektu było stworzenie wirtualnej maszyny na platformie Azure, na której skompilowany będzie projekt. Jako że siatka punktów wykresów jest dosyć rzadka, (dane te są ekperymentalne i przez to mało dostępne) program w obecnej formie nie jest zbyt skomplikowany obliczeniowo. Z tego powodu zdecydowano się na użycie najtańszej wirtualnej maszyny, z systemem Ubuntu 24.04. Parametry komputera zostały przedstawione poniżej:

```
Running Standard DS1 v2 (1 vcpu, 3.5 GiB memory)

Location Public IP address

West Europe (Zone 2) 50.85.81.211

Subscription (move) Virtual network/subnet

Azure for Students szymon-vnet/default
```

Następnie połączono się z maszyną wirtualną za pomocą protokołu SSH wykorzystując terminal maszyny macierzystej:

Kolejnym krokiem było zaktualizowanie repozytoriów oraz zainstalowanie Dockera poprzez komendy:

```
[szymon@szymon:~$ sudo apt update
```

```
szymon@szymon:~$ sudo apt install docker.io
```

Po tym kroku można użyć programu Filezilla do wgrania plików programu na maszynę wirtualną. W tym kroku z początku napotkano pewne problemy z programem Filezilla, dlatego najpierw wgrano pliki z użyciem innego podejścia, używając komendy pokazanej poniżej:

```
-r OBLICZENIA\ INZ\ W\ CHMURZE szymon@50.85.81.211:/home/s]
                                                                                                 Dockerfile
zymon@50.85.81.211's password:
                                                                                                - alpha_rozciaganie.txt
- alpha_skrecanie.txt
eta_p_skrecanie.txt
                                                                3.8KB/s
                                                                            00:00
                                                      223
                                                                3.7KB/s
                                                                                                 alpha_zginanie.txt
                                                      135
                                                                2.3KB/s
                                                                                                 beta_p.txt
beta_p_skrecanie.txt
config.json
gamma_table.txt
                                                      988
805
onfig.json
                                                               13.3KB/s
amma_table.txt
                                                               12.7KB/s
otch.txt
                                                      177
                                                                2.9KB/s
lpha_rozciaganie.txt
                                                                                                 notch.txt
lpha_zginanie.txt
                                                                                                 wspolcynnik_bezpieczenstwa.py
spolcynnik_bezpieczenstwa.py
                                                               46.8KB/s
                                                                                                 x_table.txt
lpha skrecanie.txt
                                                                5.2KB/s
                                                                            00:00
 table.txt
                                                                                        2 directories, 11 files
```

W kolejnych krokach rozwiązano jednak problem i uzyskano połączenie w przewidywany na zajęciach sposób:

Ostatnimi krokami były odpowiednio zbudowanie obrazu na podstawie napisanego dockerfile oraz jego wykonanie przez komendę dockera:

[szymon@szymon:~/OBLICZENIA INZ W CHMURZE\$ sudo docker build -t python .

```
[szymon@szymon:~/OBLICZENIA INZ W CHMURZE$ sudo docker run --name python -it] python

Aproksymowany współczynnik kształtu: 1.41

Aproksymowany współczynnik jakości powierzchni: 1.10

Aproksymowany współczynnik wrażliwości na karb: 0.67

Aproksymowany współczynnik wielkości przedmiotu: 1.24

Obliczony zmęczeniowy współczynnik bezpieczeństwa: 2.47

szymon@szymon:~/OBLICZENIA INZ W CHMURZE$
```

4. Podsumowanie

Otrzymane wyniki zgadzają się z wynikami odczytywanymi "ręcznie", a nawet pomogły znaleźć błąd w obliczeniach wspominanego wcześniej sworznia mocującego siłownik. Poprawne ręczne obliczenia przedstawiono w tabeli poniżej:

	Re	Rm			Formula	FOR \$235JR	FOR \$355JR	
S235JR	235	360		Shape factor	αk	plot 18.12	1,40	1,40
S355JR	355	470		Material notch sensitivity factor	η	plot 18.9	0,68	0,73
				Notch sensitivity factor	βk	1+ η(αk-1)	1,27	1,29
Pin smaller diameter	d	40,00		Surface finish factor	βр	plot 18.6	1,10	1,08
Pin larger diameter D		56,00	Fatigue stress concentration factor		β	βk*βp	1,40	1,40
Fillet radius	ρ	8,00		Size factor	Υ	plot 18.1	1,25	1,25
	D/d	1,40		Fatigue strength under alternating bending	Zgo	0,5*Rm	180	235
	p/d	0,20		Fatigue strength under unidirectional bending	Zgj	0,85*Rm	306	399,5
Max stress	σmax	76,00		Bending yield strength	Qz	1,2*Re	282	426
Stress amplitude	σа	38				$x_r = \frac{Z_o}{\beta \gamma \sigma_a + \sigma_m \left(\frac{2Z_o}{Z_j} - 1\right)} \ge x_{rm}$		
Mean stress	σm	38		fatigue safety coefficient	XZ		2,46	3,22
Safety factor	х	x 2,00		laugue salety coefficient	X.E	$x_x = \frac{Q_r}{\beta \gamma \sigma_a + \sigma_m} \ge x_{rw}$		
							2,70	4,09

Aproksymacja jest wystarczająco dokładna na potrzeby tych obliczeń oraz upraszcza i co najważniejsze znacznie skraca obliczeń proces wytrzymałościowych analizowanego obiektu. Uniwersalna metoda wprowadzania danych pozwala również na przyszłe modyfikacje i dostosowanie programu do pomocy przy obliczeniach innych geometrii oraz materiałów a także do przyjęcia dokładniejszych danych do aproksymacji współczynników.