Variationsrechnung

Def Sei X ein normierter Raum über \mathbb{R} (bzw. \mathbb{C}), $M \subset X$. Eine Abbildung $F: M \to \mathbb{R}$ (bzw. \mathbb{C}) heißt Funktional.

Def Sei $M \subset C^1[a,b]$. Eine Funktion $\tilde{y} \in M$ heißt schwacher lokaler Minimierer des Funktionals $J \colon M \to \mathbb{R}$, falls es ein $\varepsilon > 0$ gibt, sodass für alle $y \in M$ mit $\|y - \tilde{y}\|_{C^1[a,b]} < \varepsilon$ gilt:

$$J(\tilde{y}) \le J(y).$$

Def Sei X ein normierter Raum, $M \subset X$, $y \in M$, $h \in X$ und $y + th \in M$ für alle $t \in (-\varepsilon, \varepsilon)$, $J : M \to \mathbb{R}$ ein Funktional.

$$\delta J(y,h) := \frac{d}{dt} J(y+th)|_{t=0} = \lim_{t \to 0} \frac{J(y+th) - J(y)}{t}$$

heißt die $erste\ Variation\ von\ J$ an der Stelle y in Richtung h.

Satz 5.3 Unter den Voraussetzungen der letzten Definition gilt: Ist $\tilde{y} \in M \subset C^1[a, b]$ ein lokaler Minimierer von J, so gilt $\delta J(\tilde{y}, h) = 0$ für alle h, für die die erste Variation existiert.

Fundamentallemma der Variationsrechnung Sei $f \in C[a,b]$ und es gelte

$$\int_{a}^{b} f(x)\eta(x) \, dx = 0$$

für alle $\eta \in C_c^{\infty}[a,b]$. Dann ist $f \equiv 0$ auf [a,b].

Satz 5.4 (Euler-Lagrange-Gleichung)

Sei $M := \{ y \in C^2[a, b] : y(a) = A, y(b) = B \} \subset C^1[a, b],$ $F \in C^2([a, b] \times \mathbb{R} \times \mathbb{R}),$

$$J(y) := \int_a^b F(x, y, y') dx.$$

Ist $\tilde{y} \in M$ ein schwacher lokaler Minimierer für J auf M, so gilt die Euler-Lagrange-Gleichung

$$\frac{\partial F}{\partial y}(x, \tilde{y}, \tilde{y}') - \frac{d}{dx} \frac{\partial F}{\partial y'}(x, \tilde{y}, \tilde{y}') = 0.$$

Def Eine Funktion $F: \mathbb{R}^n \to \mathbb{R}$ heißt konvex, falls für alle $x, y \in \mathbb{R}^n$ und für alle $t \in [0, 1]$ gilt:

$$F(tx + (1 - t)y) \le tF(x) + (1 - t)F(y).$$

Satz 5.5 Sei $F \in \mathbb{R}^n \to \mathbb{R}$ konvex, $x \in \mathbb{R}^n$. Ist F differenzierbar in x, so gilt

$$F(y) \ge F(x) + DF_{|x}(y - x)$$

für alle $y \in \mathbb{R}^n$.

Satz 5.6 Sei $M:=\{y\in C^2[a,b]\colon y(a)=A,y(b)=B\}\subset C^1[a,b],$ $F\in C^2([a,b]\times\mathbb{R}\times\mathbb{R})$ konvex bezüglich der letzten beiden Variablen,

$$J(y) := \int_a^b F(x, y, y') dx.$$

Dann ist jede Lösung $\tilde{y} \in M$ der Euler-Lagrange-Gleichung ein globaler Minimierer für J.