

An Empirical Study of Partial Deduction for MINIKANREN

Kate Verbitskaia, Daniil Berezun, Dmitry Boulytchev

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg State University

27.08.2020

input program

```
let rec eval° fm s r = fm \equiv neg x \& not^o a r \& eval^o x s a \mid \dots
```

input program

```
let rec eval° fm s r =  fm \equiv neg \ x \ \& \ not^\circ \ a \ r \ \& \ eval^\circ \ x \ s \ a \ | \\ ...  known argument  eval^\circ \ fm \ s \ true \leftarrow
```

input program


```
let rec eval° fm s r =
...
fm ≡ conj x y &
and° a b r &
eval° x s a &
eval° y s b |
...
eval° fm s true
```


Driving: Unfolding

```
| let rec eval° fm s r = ...
| fm ≡ conj x y & and° a b r & eval° x s a & eval° y s b | ...
| let and° x y r = ocanren {
| fresh xy in (nand° x y xy & nand° xy xy r) }
| let rec nand° x y r = ocanren {
| (x ≡ true & y ≡ true & r ≡ false) | (x ≡ true & y ≡ false & r ≡ true) | (x ≡ false & y ≡ true & r ≡ true) | (x ≡ false & y ≡ false & r ≡ true) }
| (x ≡ false & y ≡ false & r ≡ true) }
```

Driving: Unfolding

```
let rec evalo fm s r =
 fm \equiv conj x y \& and^o a b r \&
  evalo x s a & evalo y s b |
let and v v r =
  ocanren {
    fresh xy in
      (nando x v xv & nando xv xv r) }
let rec nando x y r =
  ocanren {
    (x \equiv true \& y \equiv true \& r \equiv false)
    (x \equiv true \& y \equiv false \& r \equiv true)
    (x \equiv false \& y \equiv true \& r \equiv true)
    (x \equiv false \& y \equiv false \& r \equiv true)}
                                 evalo fm s true
```


Partial Deduction

```
let rec eval° fm s r =
...
fm ≡ conj x y & and° a b r &
eval° x s a & eval° y s b |
....
eval° fm s true
```

Partial Deduction

```
let rec eval° fm s r =
...
fm = conj x y & and° a b r &
eval° x s a & eval° y s b |
...
eval° fm s true
```


Conjunctive Partial Deduction: Left-to-right Unfolding

CPD: Split is Necessary

```
let rec eval° fm s r =
...
fm = conj x y & and° a b r &
eval° x s a & eval° y s b |
...
eval° fm s true
```


CPD: Split is Necessary

Split: Which Way is the Right Way?

Decisions in Partial Deduction

- What to unfold: which calls, how many calls?
 - CPD: the leftmost call, which does not have a predecessor embedded into it
- How to unfold: to what depth a call should be unfolded?
 - CPD: unfold once
- When to stop driving?
 - When a goal is an instance of some goal in the process tree
- When to split?
 - When there is a predecessor embedded into the goal

Evaluator of Logic Formulas: Unfolding Step 1

```
let rec eval° fm s r =
    ocanren { fresh v x y a b in
        (fm \equiv v & lookup° v s r) |
        (fm \equiv neg x & eval° x s a & not° a r) |
        (fm \equiv conj x y & eval° x s a & eval° y s b & and° a b r) |
        (fm \equiv disj x y & eval° x s a & eval° y s b & oro° a b r) }
```


Evaluator of Logic Formulas: Unfolding Step 2

Unfolding of Boolean Connectives

Unfolding Boolean Connectives First

Evaluator of Logic Formulas: Conservative PD

Evaluator of Logic Formulas: Conservative PD

Conservative Partial Deduction

- Split conjunction into individual calls
- Unfold each call in isolation
- Unfold until embedding is encountered
- Find a call which narrows the search space (less-branching heuristics)
- Join the result of unfolding the selected call with the other calls not unfolded
- Continue driving the constucted conjunction

Less-branching Heuristics

Less-branching heuristics is used to select a call to unfold

If a call in the context unfolds into less branches than it does in isolation, select it

Evaluation

We implemented the Conservative Partial Deduction and compared it with CPD for ${\tt MINIKANREN}$ and CPD with branching heuristics on the following relations

- Two implementations of an evaluator of logic formulas
- A program to compute a unifier of two terms
- A program to search for paths of a specific length in a graph

Evaluator of Logic Formulas: Order of Calls

boolean connective last

```
let rec eval° fm s r =
  ocanren { fresh v x y a b in
    (fm = var v & lookup° v s r) |
    (fm = neg x & eval° x s a & not° a r) |
    (fm = conj x y & eval° x s a & eval° y s b & and° a b r) |
    (fm = disj x y & eval° x s a & eval° y s b & oro° a b r) }
```

Evaluator of Logic Formulas: Order of Calls

boolean connective last

```
let rec eval° fm s r =
  ocanren { fresh v x y a b in
    (fm = var v & lookup° v s r) |
    (fm = neg x & eval° x s a & not° a r) |
    (fm = conj x y & eval° x s a & eval° y s b & and° a b r) |
    (fm = disj x y & eval° x s a & eval° y s b & oro° a b r) }
```

boolean connective first

```
let rec eval° fm s r =
  ocanren { fresh v x y a b in
    (fm = var v & lookup° v s r) |
    (fm = neg x & not° a r & eval° x s a) |
    (fm = conj x y & and° a b r & eval° x s a & eval° y s b) |
    (fm = disj x y & oro° a b r & eval° x s a & eval° y s b) }
```

Evaluator of Logic Formulas: Compexity of Relations

table-based implementation

```
let rec ando x y r =
  ocanren {
    (x = true & y = true & r = true) |
    (x = true & y = false & r = false) |
    (x = false & y = true & r = false) |
    (x = false & y = false & r = false) }
```

Evaluator of Logic Formulas: Compexity of Relations

table-based implementation

```
let rec and ^{\circ} x y r = ocanren { (x \equiv true & y \equiv true & r \equiv true) | (x \equiv true & y \equiv false & r \equiv false) | (x \equiv false & y \equiv true & r \equiv false) | (x \equiv false & y \equiv false & r \equiv false) }
```

implementation via nand^o

```
let and° x y r =
  ocanren {
    fresh xy in
        (nand° x y xy & nand° xy xy r) }

let rec nand° x y r =
  ocanren {
    (x = true & y = true & r = false) |
    (x = true & y = false & r = true) |
    (x = false & y = true & r = true) |
    (x = false & y = false & r = true) }
}
```

Evaluator of Logic Formulas: Evaluation

Implementations:

- last: boolean connectives last, implemented via nand^o
- plain: boolean connectives first, straightforward implementation

Query: find 1000 formulas which evaluate to true

	last	plain
Original	1.06s	1.84s
CPD	_	1.13s
Branching	3.11s	7.53s
ConsPD	0.93s	0.99s

Table: Evaluation results

Unification

Relation to find a unifier of two terms

Query: unification of terms f(X, X, g(Z, t)) and f(g(p, L), Y, Y)

Path Search

Relation to search for paths in a graph

Query: find 5 paths in a graph with 20 vertices and 30 edges

Evaluation Results

	last	plain	unify	isPath
Original	1.06s	1.84s	_	_
CPD	_	1.13s	14.12s	3.62s
Branching	3.11s	7.53s	3.53s	0.54s
ConsPD	0.93s	0.99s	0.96s	2.51s

Table: Evaluation results

Conclusion

- We developed and implemented Conservative Partial Deduction
 - Less-branching heuristics
- Evaluation shows some improvement, but not for every query
- Future work:
 - Develop models to predict execution time
 - Develop specialization which is more predictable, stable and well-behaved