

UNISONIC TECHNOLOGIES CO., LTD

CD4014B Preliminary CMOS IC

CMOS 8-STAGE STATIC SHIFT REGISTERS

■ DESCRIPTION

The **UTC CD4014** is a 8-stage synchronous parallel or serial input/serial output registers having common CLOCK and PARALLEL/SERIAL CONTROL inputs, a SERIAL data input, and individual parallel inputs to each register stage. Each register is a D-type master-slave flip-flop. Q6, Q7, and Q8 are outputs. With the positive clock line transition in the **CD4014** parallel/serial entry is made into the register synchronously.

In CD4014 serial entry is controlled by the PARALLEL/SERIAL CONTROL input. When the PARALLEL/SERIAL CONTROL input is low, data is serially shifted into the 8-stage register synchronously with the positive transition of the clock line. When the PARALLEL/SERIAL CONTROL input is high, data is jammed into the 8-stage register via the parallel input lines and synchronous with the positive transition of the clock line.

■ FEATURES

- * Up to 20V operation voltage
- * 12MHz (typ.) clock rate at 10V
- * Maximum input current of 1µA at 18V
- * Fully static operation
- * 8 master-slave flip-flops plus output buffering and control gating

■ APPLICATIONS

- * General-purpose register
- * Parallel input/serial output data queueing
- * Parallel to serial data conversion

■ ORDERING INFORMATION

Ordering	Number	Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
CD4014BL-S16-R	CD4014BG-S16-R	SOP-16	Tape Reel	

■ PIN CONFIGURATION

■ LOGIC DIAGRAM

Fig.1 logic diagram

■ TRUE TABLE

CL	SER IN	PAR SER CONTROL	P ₁	P _n	Q ₁ (INTERNAL)	Qn
	X	1	0	0	0	0
	Х	1	1	0	1	0
	Х	1	0	1	0	1
	Х	1	1	1	1	1
	0	0	х	х	0	Q_{n-1}
	1	0	Х	Х	1	Q_{n-1}
	Х	Х	х	Х	Q ₁ (NC)	Q _N (NC)

Note: X = Don't Care Case, NC = No Change

■ ABSOLUTE MAXIMUM RATING (T_A =25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V _{CC}	-0.5 ~ 20	V
Input Voltage		V_{IN}	-0.5 ~ V _{CC} + 0.5	V
Output Voltage		V_{OUT}	-0.5 ~ V _{CC} + 0.5	V
Input Clamp Current (V _{IN} <0, or V _{IN} >V _{CC})		l _{IK}	±10	mA
T ₄ =-55°C to +100°C		Б	500	mW
Power Dissipation	T _A =+100°C to +125°C	P_D	200	mW
Storage Temperature		T _{STG}	-65 ~ +150	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING COMDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNIT	
Supply Voltage	V _{CC}		3	18	V	
		V _{CC} = 5V	180	-		
Clock Pulse Width	t _W	V _{CC} = 10V	80	-	ns	
		V _{CC} = 15V	50	-		
		V _{CC} = 5V	-	3		
Clock Frequency	f _{CL}	V _{CC} = 10V	-	6	MHz	
		V _{CC} = 15V	-	8.5		
	t _r , t _f	V _{CC} = 5V	-	15	μs	
Clock Rise and Fall Time		V _{CC} = 10V	-	15		
		V _{CC} = 15V	-	15		
		V _{CC} = 5V	120	-	ns	
Set-up Time, Serial Input		V _{CC} = 10V	80	-		
		V _{CC} = 15V	60	-	1	
		V _{CC} = 5V	80	-		
Set-up Time, Parallel Input	ts	V _{CC} = 10V	50	-	ns	
		V _{CC} = 15V	40	-		
Set-up Time, Parallel/Serial Control		V _{CC} = 5V	180	-		
		V _{CC} = 10V	80	-	ns	
		V _{CC} = 15V	60	-		

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

■ ELECTRICAL CHARACTERISTICS (T_A =25°C , unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		$V_{IN} = 0, 5 \text{ V}, V_{CC} = 5 \text{ V}$		0.04	5		
				0.04	10		
Quiescent Supply Current	I _{CC}	V _{IN} = 0, 15V, V _{CC} = 15V		0.04	20	μA	
				0.08	100		
		$V_{OUT} = 0.4V, V_{IN} = 0, 5V, V_{CC} = 5V$	0.51	1			
Output Low (Sink) Current	I _{OL}	$V_{OUT} = 0.5V$, $V_{IN} = 0$, $10V$, $V_{CC} = 10V$	1.3	2.6		mA	
		$V_{OUT} = 1.5V, V_{IN} = 0, 15V, V_{CC} = 15V$	3.4	6.8			
		$V_{OUT} = 4.6V, V_{IN} = 0, 5V, V_{CC} = 5V$	-0.51	-1			
Output High (Source) Current	I _{OH}	$V_{OUT} = 2.5V, V_{IN} = 0, 5V, V_{CC} = 5V$	-1.6	-3.2		mA	
Output riigh (Source) Current	ЮН	$V_{OUT} = 9.5V, V_{IN} = 0, 10V, V_{CC} = 10V$	-1.3	-2.6			
		$V_{OUT} = 13.5V, V_{IN} = 0, 15V, V_{CC} = 15V$	-3.4	-6.8			
		$V_{IN} = 0, 5V, V_{CC} = 5V$		0	0.05		
Output Voltage: Low-Level	V_{OL}	$V_{IN} = 0$, 10V, $V_{CC} = 10V$		0	0.05		
		$V_{IN} = 0$, 15V, $V_{CC} = 15V$		0	0.05		
		$V_{IN} = 0, 5V, V_{CC} = 5V$	4.95	5			
Output Voltage: High-Level	V _{OH}	$V_{IN} = 0$, 10V, $V_{CC} = 10V$	9.95	10		V	
		$V_{IN} = 0$, 15V, $V_{CC} = 15V$	14.95	15			
		$V_{OUT} = 0.5, 4.5V, V_{CC} = 5V$			1.5		
Input Low Voltage	V_{IL}	$V_{OUT} = 1, 9V, V_{CC} = 10V$			3	V	
		$V_{OUT} = 1.5, 13.5V, V_{CC} = 15V$			4		
Input High Voltage		$V_{OUT} = 0.5, 4.5V, V_{CC} = 5V$	3.5				
	V_{IH}	$V_{OUT} = 1, 9V, V_{CC} = 10V$	7			V	
		$V_{OUT} = 1.5, 13.5V, V_{CC} = 15V$	11	_			
Input Leakage Current	I _{I(LEAK)}	$V_{IN} = 0$, 18 V, $V_{CC} = 18V$		±10 ⁻⁵	±0.1	μΑ	

■ SWITCHING CHARACTERISTICS ($T_A = 25$ °C, Input t_r , $t_f = 20$ ns, $C_L = 50$ Pf, $R_L = 200$ K Ω)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation Delay Time		V _{CC} =5V		160	320	ns
	t _{PLH} / t _{PHL}	V _{CC} =10V		80	160	
		V _{CC} =15V		60	120	
		V _{CC} =5V		100	200	ns
Transition Time	t_{THL}/t_{TLH}	V _{CC} =10V		50	100	
		V _{CC} =15V		40	80	
		V _{CC} =5V	3	6		MHz
Maximum Clock Input Frequency	f_CL	V _{CC} =10V	6	12		
		V _{CC} =15V	8.5	17		
	t _W	V _{CC} =5V		90	180	ns
Minimum Clock Pulse Width		V _{CC} =10V		40	80	
		V _{CC} =15		25	50	
	t _r / t _f	V _{CC} =5V			15	
Clock Rise and Fall Time		V _{CC} =10V			15	μs
		V _{CC} =15V			15	
		V _{CC} =5V		60	120	
Minimum Setup Time, Serial Inputs	ts	V _{CC} =10V		40	80	ns
		V _{CC} =15V		30	60	
	ts	V _{CC} =5V		40	80	
Minimum Setup Time, Parallel Inputs		V _{CC} =10V		25	50	ns
·		V _{CC} =15V		20	40	
Minimum Hold Time, Serial In, Parallel In, Parallel/Serial Control		V _{CC} =5V			0	
	t _H	V _{CC} =10V			0	ns
		V _{CC} =15V			0	
Average Input Capacitance	Cı	Any Input		5	7.5	pF

■ TEST CIRCUITS AND WAVEFORMS

Inp	outs	V	V	C	R_L	
V_{IN}	t _r , t _f	VM	VLOAD	C_L		
V _{CC}	20 ns	V _{CC} /2	V _{CC}	50 pF	200 ΚΩ	

Fig 2. Voltage Waveforms Input Rise and Fall Times

Fig 3. Voltage Waveforms Propagation Delay and Output Transition Times

Notes: 1. C_L includes probe and jig capacitance.

2. All input pulses are supplied by generators having the following characteristics: PRR \leq 1MHz, Z_0 = 50Ω .

■ TEST CIRCUITS AND WAVEFORMS(Cont.)

Fig 4. Dynamic power dissipation test circuit

Fig 5. Quiescent device current test circuit

■ TEST CIRCUITS AND WAVEFORMS(Cont.)

Fig 6. Input voltage test circuit

Fig 7. Input current test circuit

Note: measure inputs sequentially, to both V_{CC} and GND; connect all unused inputs to either V_{CC} or GND.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.