スキーム論速成コース

ゆじ

2021年7月5日

1 定義周辺

1.1 最低限の可換環論

1.1.1 中山の補題

Lemma 1.1. M を有限生成 A-加群とすると、M は極大部分加群を持つ、すなわち、M/N が非自明な部分 加群を持たないような部分加群 $N \subset M$ が存在する。とくに、環 A には極大イデアルが存在する。

Proof. 生成元を $m_1, \dots, m_r \in M$ として部分加群の集合

 $\{N \subset M | \exists i, m_i \notin N\}$

に Zorn の補題を使えば示せる。

Theorem 1.2 (中山の補題). A を局所環、k を A の剰余体、M を有限生成 A-加群とする。このとき、M=0 であるための必要十分条件は $M\otimes_A k=0$ である。

Proof. 必要性は明らかである。十分性は極大部分加群の存在より従う。

Remark 1.3. M が有限生成でない場合は反例がある。たとえば A が DVR で M=K が商体である場合、 $K\otimes_A k=0$ である。

Corollary 1.4. A を環、M を有限生成加群、 \mathfrak{p} を A の素イデアルとするとき、 $\mathfrak{p} \in \operatorname{Supp}(M)$ であるための 必要十分条件は $M \otimes_A k(\mathfrak{p}) \neq 0$ である。

1.1.2 平坦性

Definition 1.5. A を環とする。

- ullet A-加群 M が平坦であるとは、函手 $(-)\otimes_A M$ が完全函手であることを意味する。
- 環の射 $A \to B$ が**平坦**であるとは、B が A-加群として平坦であることを意味する。
- 環の射 $A \to B$ が忠実平坦であるとは、0 でない任意の A-加群 $M \neq 0$ に対し、 $M \otimes_A B \neq 0$ となることを意味する。

Examplpe 1.6. A を環とする。

- 元 $f \in A$ での局所化 $A \to A_f$ や素イデアル $\mathfrak{p} \subset A$ での局所化 $A \to A_{\mathfrak{p}}$ は平坦である。
- 0 は平坦 A-加群である。
- 体の拡大は忠実平坦な環の射である。

Lemma 1.7. $\varphi: A \to B$ を環の射とする。

- (i) φ が忠実平坦であるとする。 $p:M\to N$ を A-加群の射とする。このとき、 $p\otimes \mathrm{id}:M\otimes_A B\to N\otimes_A B$ が単射 (resp. 全射) であれば、p も単射 (resp. 全射) となる。とくに、A-加群の複体が完全であることの必要十分条件は、B への基底変換のあとで完全となることである。
- (ii) φ が忠実平坦であるとする。このとき、 φ は単射である。
- (iii) φ が平坦であるとする。このとき、 φ が忠実平坦であるための必要十分条件は、 φ が引き起こす射 $f: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ が全射となることである。

Proof. (i) を示す。 φ は平坦であるから、自然な射 $\ker(p) \otimes_A B \xrightarrow{\sim} \ker(p \otimes \mathrm{id})$ (resp. $\mathrm{coker}(p \otimes \mathrm{id}) \xrightarrow{\sim} \mathrm{coker}(p) \otimes_A B$) は同型射である。これと φ が忠実平坦であることから (i) が従う。

(ii) を示す。 $\varphi\otimes \mathrm{id}: B\to B\otimes_A B$ は掛け算写像 $B\otimes_A B\to B$ というレトラクトを持つので単射である。従って、(i) より、 φ は単射である。

(iii) を示す。必要性を示す。 φ が忠実平坦であると仮定する。 $\mathfrak p$ を A の素イデアルとすると、 $k(\mathfrak p) \neq 0$ なので、 φ が忠実平坦であることから、 $k(\mathfrak p) \otimes_A B \neq 0$ となる。これは $f^{-1}(\mathfrak p) \neq \varnothing$ 、すなわち f の全射性を示している。以上で必要性の証明を完了する。十分性を示す。 φ が平坦であり、さらに f が全射であると仮定する。 $M \neq 0$ を 0 でない A-加群とする。 φ が忠実平坦であることを示すためには、 $M \otimes_A B \neq 0$ を示せばよい。 $M \neq 0$ であるから、0 でない有限生成部分加群 $0 \neq N \subset M$ が存在する。 $N \neq 0$ であるから、 $Supp(N) \neq \varnothing$ である。さらに、f は全射であるから、点 $\mathfrak q \in f^{-1}(Supp(N)) \subset Spec(B)$ が存在する。 $\mathfrak p : \stackrel{\mathrm{def}}{=} f(\mathfrak q) \in Supp(N)$ と書く。

- $\mathfrak{p} \in \operatorname{Supp}(N)$ なので、中山の補題より、 $N \otimes_A k(\mathfrak{p}) \neq 0$ である。
- 体の拡大 $k(\mathfrak{p}) \subset k(\mathfrak{q})$ はいつでも忠実平坦なので、

$$N \otimes_A B \otimes_B k(\mathfrak{q}) \cong N \otimes_A k(\mathfrak{p}) \otimes_{k(\mathfrak{p})} k(\mathfrak{q}) \neq 0$$

となる。

• $\forall \zeta \in \mathcal{C}, N \otimes_A B \neq 0 \text{ σ}$

 φ は平坦なので、射 $0 \neq N \otimes_A B \hookrightarrow M \otimes_A B$ は単射である。従って、 $M \otimes_A B \neq 0$ となる。以上ですべての主張の証明が完了した。

Example 1.8. A を環、 $f_1, \cdots, f_r \in A$ を元とする。 $\bigcup_{i=1}^r D(f_i) = \operatorname{Spec}(A)$ であると仮定する。このとき、 $\operatorname{Spec}(\prod_{i=1}^r A_{f_i}) = \coprod_{i=1}^r \operatorname{Spec}(A_{f_i})$ であるので、 $\operatorname{Lemma} 1.7$ (iii) より、自然な射 $A \to \prod_{i=1}^r A_{f_i}$ は忠実平坦である。

Corollary 1.9. $\varphi: A \to B$ を忠実平坦な環の射とする。このとき、

$$M \xrightarrow{m \mapsto m \otimes 1} M \otimes_A B \xrightarrow{m \otimes b \mapsto m \otimes b \otimes 1} M \otimes_A B \otimes_A B$$

はイコライザーの図式である。

Proof. Lemma 1.7 (i) より、主張を示すためには、

$$M \otimes_A B \xrightarrow{\quad m \otimes b \mapsto m \otimes 1 \otimes b \quad} M \otimes_A B \otimes_A B \xrightarrow{\quad m \otimes b_1 \otimes b_2 \mapsto m \otimes b_1 \otimes 1 \otimes b_2 \quad} M \otimes_A B \otimes_A$$

がイコライザーの図式であることを示せば十分である。左側の射を f とおき、右上の射を f_1 、右下の射を f_2 とおく。掛け算射を $\varphi: B\otimes_A B\to B$ とする。f は $\mathrm{id}_M\otimes\varphi$ というレトラクトを持つので単射である。 $\psi: \stackrel{\mathrm{def}}{=} \mathrm{id}_M\otimes\mathrm{id}_B\otimes\varphi$ とおくと、

$$\psi(f_1(m \otimes b_1 \otimes b_2)) = \psi(m \otimes b_1 \otimes 1 \otimes b_2) = m \otimes b_1 \otimes b_2,$$

$$\psi(f_2(m \otimes b_1 \otimes b_2)) = \psi(m \otimes 1 \otimes b_1 \otimes b_2) = m \otimes 1 \otimes b_1 b_2 = f(m \otimes b_1 b_2)$$

となるので、 $f_1(m \otimes b_1 \otimes b_2) = f_2(m \otimes b_1 \otimes b_2)$ であれば、 $m \otimes b_1 \otimes b_2 = f(m \otimes b_1 b_2)$ となる。以上より、上記の図式がイコライザーの図式であることが示された。

Corollary 1.10. A を環、 $f_1, \dots, f_r \in A$ を元とする。 $\operatorname{Spec}(A) = \bigcup_{i=1}^r D(f_i)$ と仮定する。このとき、

$$M \xrightarrow{m \mapsto m/1} \prod_{i=1}^r M_{f_i} \xrightarrow{m/f_i \mapsto mf_j/(f_if_j)} \prod_{i,j} M_{f_if_j}$$

はイコライザーの図式である。

Proof. Example 1.8と Corollary 1.9より従う。

2 スキームの定義と基本性質

2.1 スキームの定義

Lemma 2.1. X を位相空間、 $\mathcal{B} : \stackrel{\mathrm{def}}{=} \{B_i \subset X\}_{i \in I}$ を (有限交差で閉じる) 開基とする。 \mathcal{B} は包含関係によって圏とみなす。 $F: \mathcal{B}^{\mathrm{op}} \to \mathsf{Set}$ を函手とする。任意の $B \in \mathcal{B}$ と \mathcal{B} の元による B の開被覆 $\{B_j \in \mathcal{B}\}_{j \in J}$ に対し、

$$F(B) \longrightarrow \prod_{j} F(B_{j}) \Longrightarrow \prod_{j_1,j_2} F(B_{j_1j_2})$$

がイコライザーの図式であるとする。このとき、任意の開集合 $U\subset X$ に対して、U に属する $\mathcal B$ の元からなる $\mathcal B$ の充満部分圏を $\mathcal B|_U$ と表すとき、

$$\tilde{F}(U) := \lim_{B \in \mathcal{B}|_U} F(B)$$

とおけば、 \tilde{F} は X 上の層となる。

Proof. 開集合の包含関係 $U_1 \supset U_2$ があれば、函手 $\mathcal{B}|_{U_2} \to \mathcal{B}|_{U_1}$ ができるので、これによって F は前層となる。極限どうしの順序交換によって層であることが確認できる。

Definition 2.2. A を環、M を A-加群とする。 $\mathcal{B} : \stackrel{\mathrm{def}}{=} \{D(f)|f \in A\}$ と置く。 $f \in A$ に対して、 $S_f : \stackrel{\mathrm{def}}{=} \bigcap_{\mathfrak{p} \in D(f)} (A \setminus \mathfrak{p})$ とおくと、これは積閉集合である。また、 S_f は開集合 D(f) のみにより決定され、f のとり 方によらない。 $F(D(f)) : \stackrel{\mathrm{def}}{=} (S_f)^{-1} M$ とするとき、F は Lemma 2.1の仮定を満たし、 $\operatorname{Spec}(A)$ 上の層を定

める。とくに M=A の場合、 $\mathrm{Spec}(A)$ 上の環の層が定まる。これを**構造層**といい、 $\mathcal{O}_{\mathrm{Spec}(A)}$ で表す。一般 の M に対して上の手続きにより構成される層を \tilde{M} で表す。これは $\mathcal{O}_{\mathrm{Spec}(A)}$ -加群である。

Remark 2.3. • $(S_f)^{-1}M \cong M_f$ である。

- 構成より、 $\tilde{M}(D(f))\cong M_f$ である。とくに、 $\Gamma(\operatorname{Spec}(A),\tilde{M})\cong M$ である。
- 各点 $\mathfrak{p} \in \operatorname{Spec}(A)$ に対して、stalk は $\tilde{M}_{\mathfrak{p}} \cong \operatorname{colim}_{\mathfrak{p} \in D(f)} M_f \cong M_{\mathfrak{p}}$ となる。特に、環つき空間 $(\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)})$ は局所環つき空間である。

Definition 2.4. (Spec(A), $\mathcal{O}_{\operatorname{Spec}(A)}$) と同型な局所環つき空間のことを**アフィンスキーム**という。局所環つき空間 (X,\mathcal{O}_X) が**スキーム**であるとは、ある開被覆 $X=\bigcup_i U_i$ が存在し、 $(U_i,\mathcal{O}_X|_{U_i})$ がアフィンスキームとなることを言う。スキーム X 上の \mathcal{O}_X -加群 F が**準連接層**であるとは、各アフィン開集合 $U\subset X$ に対して、ある $\mathcal{O}_X(U)$ -加群 M が存在し、 $F|_U\cong \tilde{M}$ となることを言う。さらにこの M がいつも有限表示となるとき、F は**連接層**であると言う。

2.2 スキームの張り合わせ