Autovalores y autovectores. Transformaciones lineales diagonalizables.

Martes 5 de noviembre

Ejercicio 1. Para cada una de las siguientes transformaciones lineales $T: \mathbb{R}^n \to \mathbb{R}^n$, hallar sus autovalores, y para cada autovalor, dar una base de autovectores del espacio propio asociado. Decidir en cada caso si la transformación lineal es o no diagonalizable.

- (a) T(x,y) = (y,0).
- (b) T(x, y, z) = (x y + 4z, 3x + 2y z, 2x + y z).
- (c) T(x, y, z, u) = (-5x 5y 9z + 7u, 8x + 9y + 18z 9u, -2x 3y 7z + 4u, 2u)
- (d) T(x, y, z, w) = (2x y, x + 4y, z + 3w, z w).
- (e) T(x, y, z, u, v) = (3x + 2y + 4z, 2x + 2z, 4x + 2y + 3z, 3u + v, 2u + 2v).

Ejercicio 2. Sean V un \mathbb{k} -espacio vectorial y $T \in \text{Hom}(V, V)$.

- (a) Supongamos que T es un isomorfismo, y sea $\lambda \in \mathbb{k}$ no nulo. Probar que λ es un autovalor de T si y sólo si λ^{-1} es un autovalor de T^{-1}
- (b) Probar que si T es un múltiplo de Id_V , entonces todos los elementos de V son autovectores de T.
- (c) Supongamos que $\mathbb{k} = \mathbb{C}$ y que dim V = 2. Probar que toda $T \in \text{Hom}(V, V)$ es triangularizable. Es decir, existe una base de V tal que la matriz de T en esa base es triangular superior.
- (d) Decidir si el enunciado anterior es verdadero o falso cuando $\mathbb{k} = \mathbb{R}$.

Ejercicio 3. Hallar los autovalores, autovectores y autoespacios de las siguientes matrices A, y decidir si son diagonalizables. En caso que lo sean, dar una matriz C tal que $D = C^{-1}AC$ es diagonal. Considerarlas primero como matrices en \mathbb{R} y luego en \mathbb{C} :

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{pmatrix}, \qquad \begin{pmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{pmatrix}.$$

Para cada una de las matrices A anteriores, calcular P(A), donde $P = 4x^4 - 2x^3 + x^2 - 3x + 1$. **Ejercicio 4.** Sea $A \in \mathbb{k}^{2 \times 2}$.

- (a) Probar que el polinomio característico de A es $x^2 tr(A)x + det(A)$.
- (b) Probar que si A no es inversible, entonces sus autovalores son 0 y $\operatorname{tr}(A)$.

Ejercicio 5. Sea $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix} \in \mathbb{k}^{n \times n}$ una matriz triangular superior. Calcular su polinomio

característico y sus autovalores. Calcular también los autovalores de $A^m, m \geq 2$.

Definición

Sea \mathbb{k} un cuerpo y $A \in \mathbb{k}^{n \times n}$.

- (a) Se dice que A es nilpotente si existe $m \in \mathbb{N}$ tal que $A^m = 0$.
- (b) Se dice que A es idempotente si $A^2 = A$.

Ejercicio 6.

Práctico 8

- (a) Probar que si $A \in \mathbb{k}^{n \times n}$ es nilpotente, entonces 0 es el único autovalor de A.
- (b) Probar que si $E \in \mathbb{R}^{n \times n}$ es idempotente y no nula, entonces 0 y 1 son sus únicos autovalores.

Jueves 7 de noviembre

Ejercicio 7. Probar que existe una única transformación lineal $T : \mathbb{R}^3 \to \mathbb{R}^3$ tal que (1,1,1) y (-1,1,0) son autovectores de autovalor 2 y (0,-2,1) es autovector de autovalor 1. Para tal T, calcular det T y dar la matriz de T en la base canónica.

Ejercicio 8. Sean V un k-espacio vectorial y $T \in \text{Hom}(V, V)$.

- (a) Decidir si la recíproca del **Ejercicio 2 (b)** es verdadera o falsa.
- (b) Supongamos que T conmuta con toda $S \in \text{Hom}(V, V)$. Probar que T es un múltiplo de Id_V .
- (c) Supongamos que dim Im T = k. Probar que T tiene a lo sumo k + 1 autovalores distintos.
- (d) Sean $\lambda_1, \ldots, \lambda_h$ los autovalores (distintos) no nulos de T. Sea $d_j = \dim \operatorname{Nu}(T \lambda_j \operatorname{Id}_V)$. Probar que $d_1 + \cdots + d_h \leq \dim \operatorname{Im} T$.

Ejercicio 9. Sea $A \in \mathbb{C}^{n \times n}$.

- (a) Probar que el término independiente del polinomio característico de A es $(-1)^n \det(A)$ y que el coeficiente del término de grado n-1 es $-\operatorname{tr}(A)$.
- (b) Probar que si c_1, \ldots, c_n son los autovalores de A (contados con la multiplicidad repetida), entonces $\det(A) = c_1 \ldots c_n$ y $\operatorname{tr}(A) = c_1 + c_2 + \cdots + c_n$.

Ejercicio 10. Hallar una matriz $A \in \mathbb{C}^{3\times 3}$ tal que $A^3 - A^2 + A - \operatorname{Id}_3 = 0$. Decidir si A es diagonalizable.

Ejercicio 11. Sea $A \in \mathbb{k}^{n \times n}$. Probar que A y A^t tienen los mismos autovalores. Dar un ejemplo en el que los autovectores sean distintos.

★ Ejercicio 12. Sean V un espacio vectorial y $T \in \text{Hom}(V, V)$. Probar que si $T^2 = T$, entonces $V = \text{Nu } T \oplus \text{Im } T$.

Definición

Sea \mathbbm{k} un cuerpo. Se dice que dos matrices $A, B \in \mathbbm{k}^{n \times n}$ son semejantes si existe una matríz inversible $C \in \mathbbm{k}^{n \times n}$ tal que $B = C^{-1}AC$.

★ Ejercicio 13.

- (a) Probar que la relación de semejanza en $\mathbb{k}^{n\times n}$ es una relación de equivalencia.
- (b) Probar que dos matrices semejantes tienen la misma traza, el mismo determinante y los mismos autovalores.
- (c) Sea V un espacio vectorial de dimensión finita. Supongamos que tenemos dos bases \mathbb{B}_1 y \mathbb{B}_2 de V, y sea $T \in \text{Hom}(V, V)$. Probar que $[T]_{\mathbb{B}_1}$ y $[T]_{\mathbb{B}_2}$ son semejantes.
- (d) Si $B = C^{-1}AC \in \mathbb{k}^{n \times n}$ y V es cualquier espacio vectorial de dimensión n, entonces existen bases \mathbb{B}_1 y \mathbb{B}_2 de V y $T \in \text{Hom}(V, V)$ tales que $B = [T]_{\mathbb{B}_2}$, $C = \mathcal{C}(\mathbb{B}_2, \mathbb{B}_1)$ y $A = [T]_{\mathbb{B}_1}$.
- \bigstar Ejercicio 14. Sean $A \in \mathbb{k}^{m \times n}$, $B \in \mathbb{k}^{n \times m}$
 - (a) Probar que las matrices $\begin{pmatrix} AB & 0 \\ B & 0 \end{pmatrix}$ y $\begin{pmatrix} 0 & 0 \\ B & BA \end{pmatrix}$ en $\mathbb{k}^{(m+n)\times(m+n)}$ son semejantes.
 - (b) Asumir ahora que m = n. Utilizar el resultado anterior para concluir que los polinomios característicos de AB y de BA coinciden. Deducir que AB y BA tienen los mismos autovalores.