2^{ème} année

Correction série d'exercices Nº2

Exercice 1

La loi demi-normale de paramètre $\sigma=1$ a pour densité :

$$f(x) = \begin{cases} \sqrt{\frac{2}{\pi}} e^{-\frac{x^2}{2}} & \text{si } x > 0\\ 0 & \text{sinon} \end{cases}$$

- 1. Donner l'algorithme de simulation de la loi de densité f par la méthode de rejet.
- 2. Donner la probabilité d'acceptation de l'algorithme.

Solution exercice 1

Pour tout x > 0, on a donc, en prenant pour g une exponentielle $\mathcal{E}(1)$.

$$\frac{f(x)}{g(x)} = \frac{\sqrt{\frac{2}{\pi}} \exp\left(-\frac{x^2}{2}\right)}{\exp(-x)}$$

$$= \sqrt{\frac{2}{\pi}} \exp\left(-\frac{x^2 - 2x}{2}\right)$$

$$= \sqrt{\frac{2}{\pi}} \exp\left(-\frac{(x-1)^2 - 1}{2}\right)$$

$$\leq \sqrt{\frac{2}{\pi}} \exp\left(\frac{1}{2}\right) = c$$

Il est facile de simuler suivant la densité d'une exponentielle $\mathcal{E}(1)$

$$g(x) = \begin{cases} e^{-x} & \text{si } x \geqslant 0\\ 0 & \text{si } x < 0 \end{cases}$$

L'algorithme de rejet correspondant est donc : Jusqu'à ce que
$$U\leqslant \frac{f(X)}{cg(X)}=\exp\left(-\frac{1}{2}(X-1)^2\right)$$
 Générer $X\sim\mathcal{E}(1)$ Générer $U\sim\mathcal{U}(0,1)$ Sortir X

Exercice 2

Pour a > 0 donné, on désigne par f la fonction

$$f(x) = \begin{cases} e^{-x} & \text{si } x \in [0, a] \\ 0 & \text{sinon} \end{cases}$$

- 1. Trouver une constante k telle que kf soit une densité de probabilité.
- 2. Trouver une constante $c_1 > 1$ telle que $kf(x) \leq \frac{c_1}{a} I_{[0,a]}(x)$, pour tout $x \in \mathbb{R}$.
- 3. Trouver une constante $c_2 > 1$ telle que $kf(x) \le c_2 I_{[0,+\infty[}(x)e^{-x}; x \in \mathbb{R}$.
- 4. On veut mettre en place une méthode de rejet pour simuler la loi de densité kf en utilisant la loi uniforme sur [0,a] ou la loi exponentielle de paramètre 1. Laquelle vaut-il mieux choisir?

Solution exercice 2

Soit a > 0 donné et f la fonction $f(x) = \mathbb{I}_{[0,a]}(x)e^{-x}$

- 1. On calcule $\int_0^a e^{-x} dx = [-e^{-x}]_0^a = 1 e^{-a}$ Donc, pour que kf soit une densité de probabilité, on prend $k = \frac{1}{1-e^{-a}}$
- 2. Pour tout $x \in [0, a]$; $e^{-x} \leq 1$. Donc, on peut prendre $c_1 = ak$ pour que $kf(x) \leq c_1 \frac{\mathbb{I}_{[0,a]}(x)}{a}, x \in \mathbb{R}$
- 3. Pour tout $x\geqslant 0$; $\mathbb{I}_{[0,a]}(x)\leqslant \mathbb{I}_{[0,+\infty[}(x)$. Donc, on peut prendre $c_2=k$ pour que $kf(x)\leqslant c_2\mathbb{I}_{[0,+\infty[}e^{-x},x\in\mathbb{R}$
- 4. La loi uniforme sur [0, a] a pour densité $x \in \mathbb{R} \mapsto \frac{1}{a}\mathbb{I}_{[0,a]}(x)$. La loi exponentielle de paramètre 1 a pour densité $x \in \mathbb{R} \mapsto \mathbb{I}_{[0,+\infty[}(x)e^{-x}$. Pour tout $x \in \mathbb{R}, kf(x) \leqslant ak \times \frac{\mathbb{I}_{[0,a]}(x)}{a}$, (*)

et on a égalité pour x=0 (donc, on ne trouve pas plus petite constante k' telle que $kf(x) \leqslant k' \frac{\mathbb{I}_{[0,a]}(x)}{a}$.

La méthode de rejet pour simuler suivant la densité kf (en proposant des variables de loi uniforme sur [0,a]) basée sur l'inégalité (*) effectue en moyenne ak opérations.

Pour tout $x \in \mathbb{R}, kf(x) \leq k \times \mathbb{I}_{[0,+\infty[}(x)e^{-x}, (**)$

et on a égalité pour x=0 (donc on ne trouve pas plus petite constante k'' telle que $kf(x) \leq k'' \times \mathbb{I}_{[0,+\infty[}(x)e^{-x})$.

La méthode de rejet pour simuler suivant la densité kf (en proposant des variables de loi uniformes sur [0, a]) basée sur l'inégalité (**) effectue en moyenne k opérations.

Si $a \leq 1$, on choisira donc la méthode basée sur (*) et si a > 1, on choisira la méthode basée sur (**).