ECE569 Module 27

• Matrix Multiplication – Thread Divergence

1

Performance Impact of Control Divergence

```
if (Row < Width && t * TILE WIDTH+tx < Width)
 ds M[ty][tx]=M[Row*Width+p*TILE WIDTH+tx];
else
  ds M[ty][tx] = 0.0;
   (p*TILE WIDTH+ty < Width && Col < Width)
 ds N[ty][tx]=N[(p*TILE WIDTH +ty)*Width+Col];
else
 ds N[ty][tx] = 0.0;
```

Two types of blocks in loading M Tiles

Type 1

 Blocks whose tiles are all within valid range until the last phase.

Type 2

 Blocks whose tiles are partially outside the valid range all the way

Analysis of Control Divergence Impact

 Assume 16x16 tiles and thread blocks, and matrices of 100x100. How many thread blocks are allocated? How many phases will each thread go through?

Analysis of Control Divergence Impact

- Assume 16x16 tiles and thread blocks
- Assume square matrices of 100x100
- How many thread blocks are allocated?
 - There are 49 thread blocks (7 in each dimension)
- How many phases will each thread go through?
 - Each thread will go through 7 phases (ceiling of 100/16)

- How many Type 1 Blocks?
- How many warps in Type 1?
- How many warp phases in Type 1?
- How many warps observe control divergence in Type 1?

- How many Type 1 Blocks?
 - 6 rows, 7 columns => 42 blocks
- How many warps in Type 1?
 - Each block 16x16, 8 warps => 336 warps
- How many warp phases in Type 1?
 - 7 phases per warp => 7*336 = 2352
- How many warps observe control divergence in Type 1?
 - Only last phase observes divergence
 - 1*336 = 336 warps have control divergence

- How many Type 2 Blocks?
- How many warps in Type 2?
- How many warp phases in Type 2?
- How many warps observe control divergence in Type 2?

- How many Type 2 Blocks and Warps?
 - 7 blocks , each 8 warps => 56 warps
- How many warp phases in Type 2?
 - -7 phase each => 7*56 = 392
- How many warps observe control divergence in Type 2?
 - 100x100 => last 4 rows of the matrix are processed by blocks in row 7.
 - Each row 16 elements => 64 elements
 - 2 warps/block process valid data unit last phase.
 - Each phase requires boundary check 2*7 = 14 warps
 - 6 remaining warps outside the valid range (not a concern)

Overall Impact of Control Divergence

Type 1 Blocks:

336 out of 2,352 warp-phases have control divergence

Type 2 Blocks:

- 14 out of 392 warp-phases have control divergence
- The performance impact is expected to be less than 12%

Conclusions

- The calculation of impact of control divergence in loading N tiles is somewhat different and is left as an exercise
- The estimated performance impact is data dependent.
 - For larger matrices, the impact will be significantly smaller
- In general, the impact of control divergence for boundary condition checking for large input data sets should be insignificant
 - One should not hesitate to use boundary checks to ensure full functionality
- The fact that a kernel is full of control flow constructs does not mean that there will be heavy occurrence of control divergence
 - We will cover some algorithm patterns that naturally incur control divergence (such as parallel reduction)

Next

Atomic Operations