Machine learning

Scaling exercise

Exercise II

תרגול רקע סטטיסטי בסיסי וסילום

נושאים:

א מושגים ותרגול – תזכורת (מההרצאה בשבוע שעבר) ₪

משתנה מקרי - תזכורת

משתנה מקרי: הוא פונקציה המתאימה כל אירוע אפשרי במרחב הסתברות לערך מספרי.

דוגמאות:

- התאמת צד מטבע לערך \$\\ 0, וצדו השני לערך 1;
 - התאמת ערך שלהתאמת לאחת 6,...,1הפאות בקוביה.
 - גובהו של אדם שנבחרבאקראי הוא גם כןמשתנה מקרי.

משתנה מקרי בדיד ורציף - תזכורת

- 🌣 משתנה מקרי בדיד קבוצת הערכים האפשרית (מרחב המדגם) סופית
 - ♦ למשל: ערכי המספרים בקוביה

- 🌣 משתנה מקרי רציף קבוצת הערכים האפשרית (מרחב המדגם) אין סופית
 - למשל: טמפרטורה של מים

מרחב המדגם Ω - תזכורת

מרחב המדגם Ω: קבוצת כל התוצאות האפשריות בניסוי.

דוגמאות:

- * מטבע לערך 0, וצדו השני לערך * (0,1} ;1
- התאמת ערך של 1,...,6 בהתאםלאחת הפאות בקוביה.{1,2,3,4,5,6}
- קבוצת המספרים הממשיים בין 0
 ל-100, (היכולה לתאר למשל
 טמפרטורה אפשרית של מים).

[0,100]

הערה: אין חובה שמ"מ יתאר בהכרח משהו מהעולם האמיתי (יכול סתם לתאר מס' ממשי אקראי בין 0 ל-100)

מאורע / תצפית על מאורע (observation) - תזכורת

מאורע: תוצאה נצפת מסויימת בניסוי מסויים.

דוגמאות:

- התוצאה 3 בזריקתקוביה;
 - גובה 1.72 של סטודנט.

דוגמה 1 – תמונות מכוניות – הסתברויות בסיסיות - תזכורת

Example No.	Color	Type	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

?dataset-שאלה: כמה מכוניות אדומות יש ב-

5 :תשובה: ♦

?שאלה: מהי ההסתברות להמצאות מכונית אדומה?

$$p(Color = red) = \frac{5}{10} = 0.5$$
 *

שאלה: מהי ההסתברות להמצאות מכונית ספורט?

$$p(Type = Sports) = \frac{6}{10} = 0.6$$
 *

התפלגות נורמלית - תזכורת

: התפלגות נורמלית

התפלגות z – ההתפלגות הנורמלית הסטנדרטית - תזכורת

התפלגות z – סוג מיוחד של התפלגות נורמלית עם תוחלת z וסטיית תקן

התפלגות במדגם (ב-training set) - תזכורת

בסטטיסטיקה – כל התפלגות ניתן להפוך להתפלגות t, אם ידועות הממוצע וסטיית התקן במדגם

ב נהוג לסמן ממוצע במדגם ע"י

* סטיית התקן במדגם:

$$s = \sqrt{rac{1}{n-1}\sum_{i=1}^n (x_i-\overline{x})^2}$$

n-12 שימו לב, שבשונות במדגם מחלקים ב

התפלגות t - תזכורת

התפלגות – t התפלגות המבוססת על מידע שנאסף במדגם.

- שואפת להתפלגות z, כאשר גודל המדגם שואף לאינסוף &
- (z בפועל מתייחסים לערכים הרבה יותר קטנים (כדי להחשיב כקירוב להתפלגות *
- כל בעזרת התפלגות + בעזרת התפלגות לנורמלית
- בעזרת התפלגות t ניתן בעצם
 להשוות את הסולם (טווח הערכים)
 של המאפיינים השונים

דוגמה 2 – The Iris dataset – תזכורת

- אחד ה-datasets המפורסמים
- מכיל feature vectors שמתארים מופעים של אירוסים

נייצג כל instance ע"י מאפיינים הנוגעים לעלי הכותרת ועלי הגביע

:feature vectors-זוגמאות ל

sepal		petal	
length	ength width		width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5	3.6	1.4	0.2

:(Feature set-ה) Iris Dataset מאפייני ה-

- :(sepal) עלי גביע
 - אורך, רוחב
- :(petal) עלי כותרת
 - אורך, רוחב 🗆

דוגמה 2 – The Iris dataset – תזכורת

(feature vectors בצורת) dataset- גניח שיש לנו נתונים עבור 5 אירוסים ב

se	pal	pet	tal
length	width	length	width
5.1	. 3.5	1.4	0.2
4.9	3	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5	3.6	1.4	0.2

?(sepal length) שאלה: מהו האורך הממוצע של עלי הגביע

$$\overline{X_1} = \frac{5.1 + 4.9 + 4.7 + 4.6 + 5}{5} = 4.86$$
 את המאפיין כ-3.1 אפיין כ-3.1 אפיין את המאפיין כ-3.1 אפיין כ-3.

מהי סטיית התקן?

$$S_{X_1} = \sqrt{\frac{1}{4} \cdot \left((5.1 - 4.86)^2 + (4.9 - 4.86)^2 + (4.7 - 4.86)^2 + (4.6 - 4.86)^2 + (5 - 4.86)^2 \right)}$$

$$= \sqrt{(0.0576 + 0.0016 + 0.0256 + 0.0676 + 0.0196)/4} \approx 0.207$$

סילום (Scaling) של מאפיינים

סילום (Scaling):

סילום מאפיינים - הוא שיטה המשמשת לקביעת טווח חדש של ערכי המאפיינים. המטרה: סילום מחדש, בדומה למעבר מאינץ' לס"מ

1) הופכת ל-0, וסטיית התקן, הופכת ל-1 (t-distribution) standardization

t משתמשים בהתפלגות

הינם 0 ו-1 בהתאמה. - minmax normalization הסילום מתבצע כך שערך המינימום והמקסימום החדשים, הינם -

t-distribution standardization - סילום

התפלגות -t שואפת להתפלגות z, כאשר גודל המדגם שואף לאינסוף

בפועל מתייחסים לערכים הרבה יותר קטנים

t-distribution Standardization

- ניקח את ההתפלגות של כל מאפיין,ונעביר אותה להפלגות להפלגות
- (\bar{x}) השיטה: מפחיתים את הממוצע * מהערך של המאפיין ומחלקים בסטיית התקן במדגם (s)

The Iris dataset – 3 דוגמה t-distribution standardization

sepal				pet	tal	
length width		length		width		
5.	1	3.5		1.4		0.2
4.	9	3		1.4		0.2
4.	7	3.2		1.3		0.2
4.	6	3.1		1.5		0.2
	5	3.6		1.4		0.2

- feature בצורת מים ב-dataset (בצורת בניח שיש לנו נתונים עבור 5 אירוסים ב-vectors (vectors
 - 4.86:(sepal length) ממוצע אורך של עלי הגביע
 - 0.207pprox 0.207 סטיית התקן

תשובה:

t-distribution שאלה: בצעו סילום למאפיין 'עלי הגביע' ע"י standardization

השיטה: מכל ערך מפחיתים את הממוצע ומחלקים בסטיית התקן

Sepal length				
before scaling after scaling				
5.1	(5.1-4.86)/0.207= 1.16			
4.9 (4.9-4.86)/0.207= 0.19				
4.7	(4.7-4.86)/0.207= -0.77			
4.6 (4.6-4.86)/0.207= -1.25				
5	(5-4.86)/0.207= 0.67			

סילום - Oinmax normalization

שוואה פשוטה של הסולם, ע"י קביעת סולם בטווח - Minmax normalization אחיד.

* מכונה גם נרמול מינימום ומקסימום.

טווחים מקובלים:

minmax normalization בד"כ בטווח זה ב-[0,1]

[-1,1] *

The Iris dataset – 4 דוגמה Minmax normalization

(feature vectors בצורת dataset-ב אירוסים ב-5 אירוסים עבור לני נתונים עבור לאירוסים ב-15 אירוסים ב-16 אירוסים

ע"י (sepal length) שאלה: בצעו סילום למאפיין 'עלי הגביע'

[0,1] כך שהערכים המתקבלים בטווח, Minmax normalization

תשובה: השיטה - מכל ערך מפחיתים את המינימום ומחלקים במקסימום פחות המינימום.

S	Sepal length				
before scaling after scaling					
5.1	(5.1-4.6)/(5.1-4.6) = 1				
4.9	(4.9-4.6)/(5.1-4.6) = 0.6				
4.7	(4.7-4.6)/(5.1-4.6) = 0.2				
4.6	(4.6-4.6)/(5.1-4.6) = 0				
5	(5-4.6)/(5.1-4.6) = 0.8				

שאלה: מה יש לעשות, כדי לעשות סילום של Minmax normalization עבור הטווח בור הטווח כנ"ל עבור הדוגמה הראשונה והשלישית.

תשובה: נוכל לעשות חישוב דומה, להכפיל ב2 ולהפחית 1:

- 2*(5.1-4.6)/(5.1-4.6)-1=1 עבור הדוגמא הראשונה: 3 עבור עבור עבור איינה: 4 עבור הדוגמא
- 2*(4.7-4.6)/(5.1-4.6)-1 = -0.6 עבור הדוגמא השלישית:

sepal		pe	tal	
length	width		length	width
5.	.1	3.5	1.4	0.2
4.	.9	3	1.4	0.2
4.	.7	3.2	1.3	0.2
4.	.6	3.1	1.5	0.2
	5	3.6	1.4	0.2

The Iris dataset – 4 דוגמה סיכום - Minmax normalization

(feature vectors בניח שיש לנו נתונים עבור 5 אירוסים ב-dataset) לניח שיש לנו נתונים עבור

ע"י (sepal length) שאלה: בצעו סילום למאפיין 'עלי הגביע'

:סיכום ל-2 הטווחים Minmax normalization

sepal		pet	tal
length	width	length	width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5	3.6	1.4	0.2

Sepal length - scaling with minmax normalization - 2 ranges					
before scaling	after scaling [0,1] range	after scaling [-1,1] range			
5.1	(5.1-4.6)/(5.1-4.6) = 1	2*(5.1-4.6)/(5.1-4.6)-1 = 1			
4.9	(4.9-4.6)/(5.1-4.6) = 0.6	2*(4.9-4.6)/(5.1-4.6)-1 = 0.2			
4.7	(4.7-4.6)/(5.1-4.6) = 0.2	2*(4.7-4.6)/(5.1-4.6)-1 = -0.6			
4.6	(4.6-4.6)/(5.1-4.6) = 0	2*(4.6-4.6)/(5.1-4.6)-1 = -1			
5	(5-4.6)/(5.1-4.6) = 0.8	2*(5-4.6)/(5.1-4.6)-1 = 0.6			