Konu Başlıkları

- ➤ Lineer Denklem Sistemlerinin Çözümü
- ➤ İntegral ve Türev
 - İntegral (Alan)
 - Türev (Sayısal Fark)
- Diferansiyel Denklem çözümleri
- Denetim Sistemlerinin Tasarımı ve Analizi
- Laplace Dönüşümü
- > Fourier Dönüşümü

Lineer Denklem Sistemlerinin Çözümü

Lineer denklem sistemlerinin Matlab Programı ile çözümü 3 ana başlıkta incelenebilir.

- 1. Cramer Metodu
- 2. Matris Tersi Yöntemi
- 3. "\" Operatörü Yöntemi

Denklem Sayısı ve Bilinmeyen Sayısı Eşit Olan Denklemler

- ➤Bu tip lineer denklemlerin oluşturdukları katsayılar matrisi KARE MATRİS olacaktır.
- ➤Bu tip Denklem sayısı ve bilinmeyen sayısı eşit olan denklem takımlarının çözümün de Cramer Metodu, Matris İnversi yöntemi yada "\" operatörü ile çözüm yöntemi kullanılabilir.

➤ Cramer yöntemi, denklem sayısı ile bilinmeyen sayısının eşit olması durumunda, katsayılar matrisinin determinantı sıfırdan farklı ise uygulanır.

$$2x + y - 2z = 0$$

 $x - 2y + z = 5$
 $x + 3y - 2z = -3$

Lineer denklemi verilmiş olsun. Burada x, y, z değişkenlerini bulmak için önce değişken katsayılarının matrisi ve eşitliğin sağındaki sayılar sütun vektörü biçiminde yazılmalıdır.

Cramer Metodu

%eşitliğin sağındaki sayılar sütun vektörü olarak girildi

%A matrisi m1 değişkenine atandı

%m1 matrisinin birinci sütununa B vektörü yazdırıldı

%A matrisi m2 değişkenine atandı

%m2 matrisinin ikinci sütununa B vektörü yazdırıldı

%A matrisi m3 değişkenine atandı

%m3 matrisinin üçüncü sütununa B vektörü yazdırıldı

>>x_y_z=[det(m1);det(m2);det(m3)] / det(A) %klasik çözüm Cramer Metodu

 $x_y_z =$

2.2

-0.4

2.0

Matris Tersi Yöntemi

>>x_y_z=inv(A) * B %matris tersini kullanarak çözüm

NOT: Sadece kare matrislerin tersleri bulunmaktadır.

Gauss Eliminasyon Yöntemi(\)

İntegral ve Türev

MATLAB'ta bazı fonksiyonlar sayısal matrisle çalışmazlar, bunun yerine matematiksel fonksiyonlarla çalışırlar.

Bunlara Fonksiyon Fonksiyonları denir. Bu fonksiyonlar aşağıdaki gibi sınıflandırılabilir.

- -Sayısal integral hesapları
- -Lineer olmayan denklem çözümleri
- -Diferansiyel denklem çözümleri

İntegral

Matlab'ı kullanarak sembolik ve sayısal integral hesabı yapılabilir. Bunun için "int" fonksiyonu kullanılır.

Örnek1: $\int (x^2+1)dx$ fonksiyonunun integralini hesaplayınız.

```
>> f='x^2+1';
int(f)
ans =
1/3*x^3+x
```

İntegral

Örnek2: $\int [x \sin(x)] dx$ fonksiyonunun integralini hesaplayınız.

```
>> f='x*sin(x)';
int(f)
ans =
sin(x)-x*cos(x)
```

Limitleri Belirli İntegral Hesabı

Limitleri verilen integral hesabı için "int" fonksiyonu aşağıdaki gibi kullanılır.

İnt(işlem, alt limit, üst limit)

Örnek3: $\int_{1}^{10} (x^2+1)dx$ fonksiyonunun integralini hesaplayınız.

```
>> f='x^2+1';
int(f,1,10)
```

ans =

İntegral

```
Örnek4: \int_{0}^{\pi} [x \sin(x)] dx fonksiyonunun integralinihesaplayınız.
```

```
>> f='x*sin(x)';
int(f,o,pi)
```

ans =

pi

Sayısal İntegral Hesaplama(Alan)

Bir fonksiyon ve eksenler arasında kalan alanın hesaplanmasında karelere ayırma yöntemi uygulanır.

Karelere ayırmada kullanılan MATLAB komutları aşağıda verilmiştir.

quad:Uygunlaştırılmış Simpson Kuralı

quad8: Uygunlaştırılmış Newton Kuralı

Örnek5:
$$f(x) = \frac{1}{(x-0.3)^2 + 0.01} + \frac{1}{(x-0.9)^2 + 0.04} - 6$$

Fonksiyonu için x=(-2,2) aralığında integralini bulunuz.

f(x)'i fonksiyon.m olarak tanımlayalım.

Simpson Kuralı ile f(x)'in integralini bulacak olursak;

```
>>x=-2:0.1:2;
y=fonksiyon(x);
plot(x,y)
alan=quad('fonksiyon',-2,2)
alan = 20.8809
```

Newton Kuralı ile f(x)'in integralini bulacak olursak;

>> alan=quad('fonksiyon',-2,2) alan = 20.8809

Simpson Kuralı ile f(x)'in x=(0,1) arası integralini bulacak olursak;

>>alan=quad('fonksiyon',0,2)

alan = 19.8307

Newton Kuralı ile f(x)'in x=(0,1) arası integralini bulacak olursak;

>> alan=quad8('fonksiyon',0,2) alan = 19.8307 Örnek6: $y=2x^2-4$ ve $y=x^2+5$ parabollerinin sınırladığı

bölgenin alanını bulunuz.

```
>> x=-4:.5:4;
a=2*x.^2-4;
b=x.^2+5;
plot(x,a,'-',x,b,'.');
grid
xlabel('x Ekseni')
ylabel('y Ekseni')
```


text(-3.7,27,'\leftarrow y=2x^2-4','Fontsize',18) text(-1.8,9,'\leftarrow y=x^2+5','Fontsize',18) Alan=quad('fonksiyon1',-3,3)