Доказательство трансцендентности числа е

В 1874 году Шарль Эрмит доказал трансцендентность числа е. Здесь мы имеем существенное обобщение классической постановки вопроса; там речь шла только о том, чтобы построить е при помощи циркуля и линейки, а это, как мы знаем, аналитически сводится к тому, чтобы представить е как результат нескольких последовательных извлечений корня квадратного из рациональных чисел. Теперь же доказывается не только то, что это невозможно, но нечто гораздо большее; а именно, показано, что е есть число трансцендентное, т. е. что его вообще нельзя связать с целыми числами никаким алгебраическим соотношением. Другими словами, е не может быть корнем алгебраического уравнения

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0, \quad a_0 \neq 0,$$

каковы бы ни были целые коэффициенты a_o , \cdots , a_n и показатель n. Самое существенное здесь — это целые коэффициенты, достаточно было бы, собственно, сказать «рациональные» коэффициенты, потому что, приводя к общему знаменателю и отбрасывая его, мы всегда можем свести уравнение с рациональными коэффициентами к уравнению с целыми коэффициентами. Нам предстоит доказать, что предположение существования равенства

$$a_0 + a_1 e + a_2 e^2 + \dots + a_n e^n = 0$$
, (1)

где $a_0 \neq 0$ и коэффициенты a_0 , ..., a_n — целые числа, ведет к противоречию; это противоречие обнаружится на самых простых свойствах целых чисел. Нам придется ссылаться из теории чисел только на самые элементарные теоремы о делимости, в частности на то, что каждое целое положительное число можно разложить на простые множители только одним способом, и на то, что существует бесчисленное множество простых чисел.

План доказательства заключается в следующем: мы покажем, как можно находить очень хорошие рациональные приближенные значения для числа *е* и его степеней, имеющие следующий вид:

$$e=\frac{M_1+\varepsilon_1}{M}$$
, $e^2=\frac{M_2+\varepsilon_2}{M}$, ..., $e^n=\frac{M_n+\varepsilon_n}{M}$, (2)

где M, M_1, \dots, M_n — целые числа, а $\frac{\varepsilon_1}{M}, \frac{\varepsilon_2}{M}, \dots, \frac{\varepsilon_n}{M}$ — чрезвычайно малые дроби. Умножая затем обе части равенства (1) на M, мы придадим ему такой вид:

$$(a_0M + a_1M_1 + a_2M_2 + \dots + a_nM_n) + + (a_1\varepsilon_1 + a_2\varepsilon_2 + \dots + a_n\varepsilon_n) = 0._{(3)}$$

Первое слагаемое в левой части является целым числом, и мы докажем, что оно не равно нулю; второе слагаемое нам удастся, выбирая достаточно малые значения для чисел ε_1 , ε_2 , ..., ε_n сделать правильной дробью. Мы придем, таким образом, к противоречию, заключающемуся в том, что сумма целого отличного от нуля числа $a_0M + a_1M_1 + \cdots + a_nM_n$ и правильной отличной от единицы дроби $a_1\varepsilon_1 + \cdots + a_n\varepsilon_n$ равна нулю; отсюда и будет вытекать невозможность равенства (1).

При этом большую услугу вам окажет следующее предложение: целое число, которое не делится на некоторое определенное число, непременно отлично от нуля (потому что нуль делится на всякое число); именно, мы покажем, что числа M_1, \dots, M_n делятся на некоторое простое число p, а число a_0M на него заведомо не делится; таким образом, сумма $a_0M + a_1M_1 + \dots + a_nM_n$ не делится на p и, значит, отлична от нуля.

Главным орудием для осуществления доказательства, идея которого только что намечена, является один определенный интеграл; его впервые в таких рассуждениях стал употреблять Эрмит, и поэтому мы можем назвать его интегралом Эрмита; построить его значило найти ключ ко всему доказательству. Мы увидим, что значение этого интеграла есть целое число, и он определит нужное нам число M:

$$M = \int_{0}^{\infty} \frac{z^{p-1} \left\{ (z-1) \left(z-2 \right) \dots \left(z-n \right) \right\}^{p} e^{-z}}{(p-1)!} dz; \tag{4}$$

Здесь n есть степень предполагаемого уравнения (1), а p — некоторое простое число, которое мы определим дальше. При помощи этого интеграла мы найдем также вышеупомянутые приближенные значения (2) для степеней e^{ν} ($\nu = 1, 2, \dots, n$); для этого мы разобьем интервал $0 < z < \infty$ на два интервала при помощи числа ν и положим

$$M_{\nu} = e^{\nu} \int_{\nu}^{\infty} \frac{z^{p-1} \{(z-1) \dots (z-n)\}^{p} e^{-z}}{(p-1)!} dz,$$

$$\varepsilon_{\nu} = e^{\nu} \int_{0}^{\nu} \frac{z^{p-1} \{(z-1) \dots (z-n)\}^{p} e^{-z}}{(p-1)!} dz.$$
(4a)

Перейдем теперь к самому доказательству.

1. Исходным пунктом является формула, хорошо известная из элементарной теории функции Г:

$$\int_{0}^{\infty} z^{\rho-1}e^{-z} dz = \Gamma(\rho).$$

Нам придется применять эту формулу только в предположении, что р есть число целое; в этом случае $\Gamma(\rho)=(\rho-1)!$, и я сейчас это докажу. При помощи интегрирования по частям найдем

$$\int_{0}^{\infty} z^{\rho-1}e^{-z} dz = [-z^{\rho-1}e^{-z}]_{0}^{\infty} + \int_{0}^{\infty} (\rho - 1) z^{\rho-2}e^{-z} dz =$$

$$= (\rho - 1) \int_{0}^{\infty} z^{\rho-2}e^{-z} dz.$$

Второй множитель в правой части представляет собой интеграл того же вида, но только в нем показатель при z на единицу меньше; применяя это преобразование несколько раз, мы дойдем при ρ целом до z^1 а так

$$_{\rm KaK} \int_0^\infty e^{-z} dz = 0$$
 то мы получим окончательно

$$\int_{0}^{\infty} z^{\rho-1} e^{-z} dz = (\rho-1)(\rho-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1 = (\rho-1)!. (5)$$

При целом ρ этот интеграл есть, таким образом, целое число, которое очень быстро возрастает с возрастанием ρ .

Рис. 1

Чтобы сделать этот результат геометрически наглядным, изобразим графически ход изменения функции $z^{\rho-1}e^{-z}$ для различных значений ρ (рис. 1); значение интеграла будет равно площади фигуры, заключенной между кривой и осью z и простирающейся до бесконечности.

Чем больше ρ , тем теснее кривая примыкает к оси абсцисс вблизи точки z=0, но зато тем круче она идет вверх, начиная от точки z=1; затем она достигает, каково бы ни было ρ , максимума при $z=\rho-1$ причем с возрастанием ρ этот максимум увеличивается и перемещается вправо; начиная от этой точки получает преобладающее значение множитель e^{-z} , кривая начинает падать и, наконец, опять очень близко подходит к оси абсцисс. Теперь понятно, что площадь — наш интеграл — всегда остается конечной, но с возрастанием ρ сильно возрастает.

2. Пользуясь доказанной формулой, мы теперь легко найдем значение интеграла Эрмита (4). Если мы в числителе раскроем скобки и расположим подынтегральную функцию по убывающим степеням *z*:

$$\{(z-1)(z-2)\dots(z-n)\}^p = \{z^n - \dots + (-1)^n n!\}^p = z^{np} - \dots + (-1)^n (n!)^{p \cdot 153}\}$$

(здесь выписаны члены только с высшей и низшей, т. е. нулевой, степенью z), то этот интеграл примет вид

$$M = \frac{(-1)^n (n!)^p}{(p-1)!} \int_0^\infty z^{p-1} e^{-z} dz + \sum_{\rho=p+1}^{p+np} \frac{C_\rho}{(p-1)!} \int_0^\infty z^{\rho-1} e^{-z} dz;$$

здесь C_{ρ} — постоянные и притом целые числа, которые получаются при указанном выше раскрытии скобок в многочлене. Применяя формулу (5) к каждому из полученных интегралов, мы получим

$$M = (-1)^n (n!)^p + \sum_{\rho = p+1}^{p+np} C_{\rho} \frac{(\rho - 1)!}{(p-1)!}.$$

 ρ -1)

Все значения индекса суммирования ρ больше p, и, значит, отношения (p-1)! — целые числа, содержащие, кроме того, множитель p; если его вынести за скобку, то мы получим

$$M = (-1)^{n} (n!)^{p} + p \{C_{p+1} + C_{p+2}(p+1) + C_{p+3}(p+1)(p+2) + \ldots \}.$$

Отсюда мы видим, что М делится или не делится на p в зависимости от того, делится или не делится на p первое слагаемое $(-1)^n(n!)^p$. Но так как p есть число простое, то это слагаемое заведомо не будет делиться на p, если p не входит в состав ни одного из его сомножителей $1, 2, \dots, n$, а это заведомо будет

иметь место, если p > n. Этому условию удовлетворяет бесчисленное множество простых чисел; выбрав любое из них, мы достигнем того, что $(-1)^n(n!)^p$, а значит, и M, заведомо не будет делиться на p.

Так как, по предположению, $a_0 \neq 0$, то нам легко сделать так, чтобы и a_0 не делилось на p; для этого достаточно только выбрать p большим, чем a_0 что, как следует из сказанного выше, конечно, возможно. Но тогда

произведение a_0M также не делится на p, и мы достигли, таким образом, нашей первой цели.

3. Исследуем теперь числа M_{ν} ($\nu = 1, 2, \dots, n$), определенные равенствами (4a). Внесем множитель e^{ν} под знак интеграла и введем новую переменную $\zeta = z - \nu$ принимающую значения от 0 до ∞ , когда z изменяется от ν до ∞ ; тогда мы получим

$$M_{\nu} = \int_{0}^{\infty} \frac{(\zeta + \nu)^{p-1} \{(\zeta + \nu - 1)(\zeta + \nu - 2)...\zeta ... (\zeta + \nu - n)\}^{p} e^{-\zeta}}{(p-1)!} d\zeta^{154}).$$

Это интеграл того же вида, что и рассмотренный ранее интеграл M, и мы можем здесь применить аналогичные преобразования. Раскрыв скобки в числителе подынтегральной функции, мы получим сумму степеней переменной ζ с целыми коэффициентами, причем низшая из этих степеней есть ζ^p . Интеграл выражения, стояшего в числителе, представится теперь в виде суммы интегралов

$$\int_{0}^{\infty} \zeta^{p} e^{-\zeta} d\zeta, \quad \int_{0}^{\infty} \zeta^{p+1} e^{-\zeta} d\zeta, \quad \ldots, \quad \int_{0}^{\infty} \zeta^{(n+1) p-1} e^{-\zeta} d\zeta$$

с целыми коэффициентами, а так как эти последние интегралы имеют, согласно равенствам (5), соответственно значения p!, (p+1)!, \cdots , то эту сумму можно представить в виде числа p! умноженного на некоторое целое число A_{ν} , таким образом, для каждого из рассматриваемых интегралов мы имеем

$$M_{\nu} = \frac{p!A_{\nu}}{(p-1)} = p \cdot A_{\nu} \quad (\nu = 1, 2, ..., n),$$

т. е. все они являются целыми числами, кратными p.

Если мы сопоставим это с доказанным в п. 2, то мы увидим, что можно применить указанное выше предложение и сказать: целое число $a_0M + a_1M_1 + \cdots + a_nM_n$ заведомо не делится на p и, следовательно, отлично от нуля.

4. Вторая часть доказательства относится к сумме $a_1\varepsilon_1 + \cdots + a_n\varepsilon_n$, где, согласно равенству (4a),

$$\varepsilon_{\nu} = \int_{0}^{\nu} \frac{z^{p-1} \{(z-1) (z-2) \dots (z-n)\}^{p} e^{-z+\nu}}{(p-1)!} dz,$$

и нам нужно доказать, что, придавая числу p надлежащие значения, можно сделать эти ε_{ν} сколь угодно малыми; при этом мы воспользуемся тем, что мы можем считать p сколь угодно большим, так как те условия, которым мы пока подчинили простое число p (p > n, $p > a_0$) могут быть удовлетворены произвольно большими простыми числами.

Изобразим, прежде всего, геометрически ход изменения подынтегральной функции (рис. 2).

Рис. 2

При z=0 кривая касается оси z, при $z=1,2,\cdots$, n она касается оси z и в то же время пересекает ее (так как p — число нечетное). Мы сейчас увидим, что под влиянием знаменателя (p-1)! кривая во всем промежутке (0,n) не поднимается высоко над осью z, если только взять p достаточно большим; таким образом, очевидно, что интеграл ε_{ν} будет очень мал, Заметим, что вне этого промежутка (при z>n) подынтегральная функция быстро возрастает и затем асимптотически приближается к оси z, как и рассмотренная выше функция $z^{\rho-1}e^{-z}$ [для $\rho=(n+1)p$]; это объясняет, как получаются эти быстро возрастающие с возрастанием p значения интеграла M, взятого по всему промежутку от 0 до ∞ .

Для того чтобы действительно оценить величины интегралов ε_{ν} оказывается достаточным применить следующий грубый прием. Обозначим через G и g_{ν} наибольшие значения модуля функции z, (z-1), \cdots , (z-n) и функции z, (z-1), \cdots , $(z-n)e^{-z+\nu}$ в промежутке (0,n), так что

$$\begin{array}{l} |z(z-1)\ldots(z-n)| \leqslant G, \\ |(z-1)(z-2)\ldots(z-n)e^{-z+\nu}| \leqslant g_{\nu} \end{array} \right\} \text{ при } 0 \leqslant z \leqslant n.$$

Так как модуль интеграла не превышает интеграла от модуля подынтегральной функции, то для каждого v мы имеем

$$|\varepsilon_{\mathbf{v}}| \leqslant \int_{0}^{\mathbf{v}} \frac{G^{p-1}g_{\mathbf{v}}}{(p-1)!} dz = \frac{G^{p-1}g_{\mathbf{v}}\mathbf{v}}{(p-1)!}.$$
 (6)

Числа G, g_{ν} , ν не зависят от p, а стоящий в знаменателе факториал (p-1)! возрастает, как известно, $\frac{G^{p-1}}{(p-1)}$ быстрее, чем степень G^{p-1} или, точнее, при достаточно большом $p^{\frac{q-1}{(p-1)}}$ дробь делается меньше какого угодно наперед

заданного числа, как бы мало оно ни было. Равенство (6) показывает, таким образом, что, принимая за p достаточно большое число, мы можем сделать сколь угодно малым каждое из чисел ε_{ν} .

Отсюда непосредственно следует, что мы можем сделать сколь угодно малой сумму $a_1\varepsilon_1 + \cdots + a_n\varepsilon_n$ состоящую из n членов; в самом деле,

$$|a_1\varepsilon_1 + a_2\varepsilon_2 + \dots + a_n\varepsilon_n| \leq$$

$$\leq |a_1| \cdot |\varepsilon_1| + |a_2| \cdot |\varepsilon_2| + \dots + |a_n| \cdot |\varepsilon_n|;$$

согласно равенству (6) это выражение не превосходит

$$(|a_1| \cdot 1g_1 + |a_2| \cdot 2g_2 + \ldots + |a_n| \cdot ng_n) \cdot \frac{G^{p-1}}{(p-1)!};$$

а так как множитель, заключенный в $\frac{G^{p-1}}{(p-1)}$ скобки, имеет постоянное не зависящее от p значение, то благодаря $\overline{(p-1)}$ множителю мы можем всю правую часть, а

следовательно, и левую, т. е. $|a_1\varepsilon_1 + \cdots + a_n\varepsilon_n|$ сделать как угодно малой в частности меньше единицы.

Но это приводит нас к тому противоречию с равенством (3):

$$(a_0M + a_1M_1 + \ldots + a_nM_n) + (a_1\varepsilon_1 + \ldots + a_n\varepsilon_n) = 0,$$

которое мы выше имели в виду; оно состоит в том, что целое число, отличное от нуля, после прибавления к нему правильной дроби должно обратиться в нуль. Поэтому последнее равенство не может иметь места, и таким образом доказана трансцендентность числа е.

Список литературы.

- 1.Клейн Ф. "Элементарная математика с точки зрения высшей", Наука, 1987.
- 2. https://en.wikipedia.org/wiki/Transcendental_number