ÁRVORES DE DECISÃO

Benjamin Grando Moreira

O QUE É

- Modo de representar conhecimento
- Uma das formas de algoritmo de aprendizado mais simples e de maior sucesso
- Uma árvore de decisão tem como entrada um objeto ou situação descritos por um conjunto de atributos e como saída uma "decisão" (previsão do valor de saída dada a entrada)
- Uma árvore de decisão toma as suas decisões através de uma sequência de testes
- Forma mais simples:
 - Lista de perguntas: respostas "sim" ou "não"
- Hierarquicamente arranjadas

O QUE É

Estrutura da árvore determinada por meio de aprendizado

 Árvores de decisão também podem ser representadas como um conjunto de regras SE-ENTÃO

EXEMPLO - RESTAURANTE

- Problema: Esperar por uma mesa em um restaurante
- O objetivo é aprender uma definição para o predicado "vai esperar"
- Primeiramente é necessário definir quais atributos estão disponíveis para descrever alguns exemplos nesse domínio

EXEMPLO - ATRIBUTOS

- Alternativa: Verdadeiro se existe um restaurante alternativo adequado nas proximidades.
- Bar: Verdadeiro se o restaurante tem uma área de bar confortável para ficar esperando.
- Sex/Sab: Verdadeiro se o dia da semana for sexta ou sábado.
- Faminto: Verdadeiro se estamos com fome.
- Pessoas: Quantas pessoas estão no restaurante (os valores são Nenhuma, Algumas e Cheio).
- **Preço**: Preço do restaurante de (\$, \$ \$, \$\$\$).
- Chuva: Verdadeiro se está chovendo lá fora.
- Reserva: Verdadeiro se nós fizemos uma reserva.
- **Tipo**: Tipo de restaurante (Francês, Italiano, Tailandês, Hambúrguer).
- EstimativaEspera: Tempo de espera estimado (00-10, 10-30, 30-60, > 60 minutos).

EXEMPLO - RESTAURANTE

GERAÇÃO DA ÁRVORE DE DECISÃO

- É possível gerar uma árvore de decisão a partir de um conjunto de exemplos.
- Exemplos positivos são aqueles que levam a uma resposta positiva.
 - Exemplo: "vai esperar" = Sim.
- Exemplos negativos são aqueles que levam a uma resposta negativa.
 - Exemplo: "vai esperar" = Não.

CONJUNTO DE TREINAMENTO

	Atributos				Obj.						
Exemplo	Alt.	Bar	s/s	Fam.	Pes.	Pre.	Chov.	Res.	Tipo	Est.	Esp.
X ₁	Sim	Não	Não	Sim	Algumas	\$\$\$	Não	Sim	Fran.	0-10	Sim
X ₂	Sim	Não	Não	Sim	Cheio	\$	Não	Não	Tai.	30-60	Não
X ₃	Não	Sim	Não	Não	Algumas	\$	Não	Não	Ham.	0-10	Sim
X ₄	Sim	Não	Sim	Sim	Cheio	\$	Sim	Não	Tai.	10-30	Sim
X ₅	Sim	Não	Sim	Não	Cheio	\$\$\$	Não	Sim	Fran.	>60	Não
X ₆	Não	Sim	Não	Sim	Algumas	\$\$	Sim	Sim	Ital.	0-10	Sim
X,	Não	Sim	Não	Não	Nenhuma	\$	Sim	Não	Ham.	0-10	Não
X ₈	Não	Não	Não	Sim	Algumas	\$\$	Sim	Sim	Tai.	0-10	Sim
X ₉	Não	Sim	Sim	Não	Cheio	\$	Sim	Não	Ham.	>60	Não
X ₁₀	Sim	Sim	Sim	Sim	Cheio	\$\$\$	Não	Sim	Ital.	10-30	Não
X ₁₁	Não	Não	Não	Não	Nenhuma	\$	Não	Não	Tai.	0-10	Não
X ₁₂	Sim	Sim	Sim	Sim	Cheio	\$	Não	Não	Ham.	30-60	Sim

RAZÕES GEOMÉTRICAS

EXERCÍCIO

Tempo	Temperatura	Umidade	Vento	Joga
Sol	Alta	Media	Não	Não
Sol	Alta	Alta	Sim	Não
Nublado	Alta	Alta	Não	Sim
Chuva	Baixa	Alta	Não	Sim
Chuva	Baixa	Media	Não	Sim
Chuva	Baixa	Baixa	Sim	Não
Nublado	Baixa	Baixa	Sim	Sim
Sol	Media	Alta	Não	Não
Sol	Baixa	Baixa	Não	Sim
Chuva	Media	Media	Não	Sim
Sol	Media	Baixa	Sim	Sim
Nublado	Media	Alta	Sim	Sim
Nublado	Alta	Baixa	Não	Sim
Chuva	Baixa	Alta	Sim	Não

GERAÇÃO DA ÁRVORE DE DECISÃO

GERAÇÃO DA ÁRVORE DE DECISÃO

- Seguindo o principio de Ockham, devemos encontrar a menor árvore de decisão que seja consistente com os exemplos de treinamento:
 - "Qualquer fenómeno deve assumir apenas as premissas estritamente necessárias à explicação do fenómeno e eliminar todas as que não causariam qualquer diferença aparente nas predições da hipótese ou teoria."
- A ideia básica do algoritmo é testar os atributos mais importantes primeiro
 - O atributo mais importante é aquele que faz mais diferença para a classificação de um exemplo
- Dessa forma, esperamos conseguir a classificação correta com um pequeno número de testes.

VANTAGENS

- Interpretação: percebe-se a razão da decisão
- Facilidade em lidar com diversos tipos de informação
 - Real, nominal, ordinal, etc
 - Não é necessário definir "importância relativa"
- Insensível a fatores de escala
- Escolha automática dos atributos mais relevantes em cada caso
 - Atributos mais relevantes aparecem mais acima na árvore
- Adaptável também a problemas de regressão
 - Modelos locais lineares como folhas
- O conjunto de dados do treinamento pode conter erros ou valores de atributos faltando

DESVANTAGENS

- Fronteiras lineares e perpendiculares aos eixos
- Sensibilidade a pequenas perturbações no conjunto de treino (geram redes muito diferentes)

OUTRA MANEIRA DE VER ÁRVORES

Vista de cima: permite ver também o número de dados abrangidos, e o poder discriminante da pergunta

ENTROPIA

- A Entropia é uma medida que caracteriza a aleatoriedade (impureza) de uma coleção arbitrária de exemplos.
- Dado uma coleção S de exemplos positivos e negativos de um conceito alvo, a entropia de S a esta classificação booleana é:

Entropia(S) = -
$$p_{\oplus} \log_2 p_{\oplus}$$
 - $p_{\ominus} \log_2 p_{\ominus}$

- p⊕ é a proporção de exemplos positivos em S
- p é a proporção de exemplos negativos em S

Uma coleção S com 14 exemplos sendo 9 positivos (sim) e 5 negativos (não) [9+, 5-] o valor da entropia é:

Entropia ([9+,5-]) =
$$-(\frac{9}{14}\log_{2}\frac{9}{14} - \frac{5}{14}\log_{2}\frac{5}{14})$$

= 0.940

GANHO DE INFORMAÇÃO

- A construção de uma árvore de decisão é guiada pelo objetivo de diminuir a entropia, ou seja, a aleatoriedade - dificuldade de previsão - da variável que define as classes.
- Ganho de Informação é a redução esperada na entropia causada pela partição dos exemplos de acordo com o teste no atributo A.

$$Gain(S,A) \equiv Entropia(S) - \sum_{v \in Valores(A)} \frac{|S_v|}{|S|} Entropia(S_v)$$

Ganho de Informação para o atributo Tempo = Sol

Tempo	Temperatura	Umidade	Vento	Joga
Sol	Alta	Media	Não	Não
Sol	Alta	Alta	Sim	Não
Sol	Media	Alta	Não	Não
Sol	Baixa	Baixa	Não	Sim
Sol	Media	Baixa	Sim	Sim

- \blacksquare p (sim | tempo = sol) = 2/5
- p (não | tempo = sol) = 3/5
- Entropia (joga | tempo = sol) =
 - -(2/5) * log2 (2/5) (3/5) * log2 (3/5) = 0.971

Ganho de Informação para o atributo Tempo = Chuva

Tempo	Temperatura	Umidade	Vento	Joga
Chuva	Baixa	Alta	Não	Sim
Chuva	Baixa	Media	Não	Sim
Chuva	Baixa	Baixa	Sim	Não
Chuva	Media	Media	Não	Sim
Chuva	Baixa	Alta	Sim	Não

- \blacksquare p (sim | tempo = Chuva) = 3/5
- p (não | tempo = Chuva) = 2/5
- Entropia (joga | tempo = chuva) =
 - -(3/5) * log2(3/5) (2/5) * log2(2/5) = 0,971

Ganho de Informação para o atributo Tempo = Nublado

Tempo	Temperatura	Umidade	Vento	Joga
Nublado	Alta	Alta	Não	Sim
Nublado	Baixa	Baixa	Sim	Sim
Nublado	Media	Alta	Sim	Sim
Nublado	Alta	Baixa	Não	Sim

- p (sim | tempo = Nublado) = 1
- p (não | tempo = Nublado) = 0
- Entropia (joga | tempo = nublado) =
 - (1/4) * log2 (1/4) 0 * log2 (0) = 0

- Ganho de Informação obtida no atributo Tempo
- Informação (tempo) =
 5/14 * 0.971 + 4/14 * 0 + 5/14 * 0.971 = 0.693
- Ganho (S, Tempo) = Entropia (joga) Informação (tempo)
- **Ganho** (S, Tempo) = 0.940 0.693 = 0.247

Ganho (S, Umidade) = 0.057 Ganho (S, Vento) = 0.048 Ganho (S, Temperatura) = 0.029

Ganho (S, Tempo) = 0,247

PROBLEMA COM O GANHO

- Dá preferência a atributos com muitos valores possíveis
- Um exemplo desse problema ocorreria ao utilizar um atributo totalmente irrelevante;
- Nesse caso, seria criado um nó para cada valor possível, e o número de nós seria igual ao número de identificadores;
- Essa divisão geraria um ganho máximo, embora seja totalmente inútil;

RAZÃO DE GANHO

- A Razão de Ganho é o ganho de informação relativo (ponderado) como critério de avaliação;
- A razão não é definida quando o denominador é igual a zero, ou seja, quando o valor da entropia do nó é zero;
- Além disso, a razão de ganho favorece atributos cujo o valor da entropia é pequeno.

$$Raz\~ao~de~ganho = rac{Ganho}{Entropia}$$

$$Razão de ganho(tempo) = \frac{Ganho(s, tempo)}{Entropia(tempo)}$$

Razão de ganho(tempo) =
$$\frac{0,247}{0,940}$$

$$= 0.263$$

Atributo	Ganho de Informação	Razão de Ganho
Tempo	0,247	0,263
Temperatura	0,029	0,031
Umidade	0,057	0,06
Vento	0,048	0,051

ALGORITMOS POPULARES

- ID3
- **C4.5**
- CART

TRABALHOS

Avaliação de risco no transporte urbano: uma aplicação ao metrô do Rio de Janeiro:

http://www.scielo.br/scielo.php?pid=S1415-65552005000100006&script=sci_arttext

ANÁLISE DA SUSTENTABILIDADE DE TRENS TURÍSTICOS NO BRASIL:

http://www.pet.coppe.ufrj.br/index.php/producao/teses-de-dsc/doc_download/108-analise-da-sustentabilidade-de-trens-turisticos-no-brasil

REFERÊNCIAS

- http://www.dcc.fc.up.pt/~ines/aulas/MIM/arvores_de_decisao.p df
- http://www.isegi.unl.pt/docentes/vlobo/escola_naval/SAD/SAD_ EN_8_arvores.pdf
- http://mestrado.deinfo.uepg.br/docs/Aula%20Arvoredecisao.pdf
- ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/ia004_1s10/n otas_de_aula/topico7_IA004_1s10.pdf
- http://www.slideshare.net/myrmonica/rvores-de-deciso
- http://edirlei.3dgb.com.br/aulas/ia_2012_2/IA_Aula_14_Arvore s_de_Decisao_2012.pdf
- http://kdbio.inescid.pt/~atf/bioinformatics.ath.cx/bioinformatics.ath.cx/indexf23d .html?id=199