There are a total of six problems. You have to solve any five of them.

Problem 1 (CO1): DFA Minimization (10 points)

Minimize the following DFA. You must **show** all the steps of the minimization algorithm.

Problem 2 (CO3): Nonregular Languages (10 points)

Let $\Sigma = \{0, 1\}$. Consider the following language.

$$L = \{ w \in \Sigma^* : w = 0^n 1^m 0^k \text{ where } n = m \text{ or } m \neq k \}$$

- (a) Use the pumping lemma to **demonstrate** that L is not regular. (8 points)
- (b) Find a string $w \in L$ such that there exist $x, y, z \in \Sigma^*$ with $y \neq \varepsilon$ such that w = xyz and $xy^iz \in L$ for all $i \geq 0$. Does this contradict the pumping lemma? (2 points)

Problem 3 (CO2): Derivations, Parse Trees and Ambiguity (10 points)

Take a look at the grammar below and solve the following problems.

$$A \rightarrow A1 \mid 0A1 \mid 01$$

- (a) Give a leftmost derivation for the string 001111. (3 points)
- (b) **Sketch** the parse tree corresponding to the derivation you gave in (a). (2 points)
- (c) **Demonstrate** that there are two more parse trees (apart from the one you already found in (b)) for the same string. (4 points)
- (d) Find a string w of length six such that w has exactly one parse tree in the grammar above. (1 point)

CSE331: Automata and Computability

Problem 4 (CO2): Chomsky Normal Form (10 points)

Convert the following grammar into Chomsky Normal Form. You must show work. Here a, b, c are terminals and the rest are variables.

$$\begin{split} S &\rightarrow \mathsf{b} X \mathsf{a} Y | Z X \mathsf{b} \\ X &\rightarrow \mathsf{a} Y \mid \mathsf{b} Y \mid Y \\ Y &\rightarrow X \mid \mathsf{c} \mid \varepsilon \\ Z &\rightarrow Z \mathsf{a} X \end{split}$$

Problem 5 (CO4): The CYK Algorithm (10 points)

Apply the CYK algorithm to determine whether the string abcaa can be derived in the following grammar. You must show the entire CYK table. Here a, b, c are terminals and the rest are variables.

$$\begin{split} S &\to CA \\ A &\to AA \mid AD \mid \texttt{a} \\ B &\to AB \mid BC \mid \texttt{b} \\ C &\to CA \mid BC \mid \texttt{c} \\ D &\to \texttt{a} \end{split}$$

Problem 6 (CO2): Models Recognizing CFLs (10 points)

Let $\Sigma = \{0,1\}$. Consider the following language.

$$L = \{ w \in \Sigma^* : w = 0^n 1^n \text{ where } n \text{ is odd} \}$$

- (a) Construct a context-free grammar that generates L. (5 points)
- (b) **Design** a pushdown automaton that recognizes L. (5 points)