Перцептрон и его друзья

Хахулин Тарас

МФТИ ФРТК

Deep Learning School, 2017

Outline

1 Перцептрон

История развития
Перцептрон: введение
Логика на перцептроне
ХОК проблема

- Обучение перцептрона Многослойные сети Градиентный спуск
- З Различные активационные функции Друзья перцептрона
- Обучение v.2
 Правила обновления весов
 Стохастический градиентый спуск

Перцептрон

История развития

Перцептрон: введение Логика на перцептроне XOR проблема

- Обучение перцептрона Многослойные сети Градиентный спуск
- З Различные активационные функции Друзья перцептрона
- Обучение v.2
 Правила обновления весов
 Стохастический градиентый спуск

История развития

- Модель Розенблата.
- Критика со всех сторон.
- Застой на долгие годы.

1 Перцептрон

История развития

Перцептрон: введение

Логика на перцептроне XOR проблема

- Обучение перцептрона Многослойные сети Градиентный спуск
- З Различные активационные функции Друзья перцептрона
- Обучение v.2
 Правила обновления весов
 Стохастический градиентый спуск

I SURVIVED THE A. I. WINTER (1974-80)

$$f(x,w,b) = egin{cases} 1 & & ext{если } \sum_{i=1}^n x_i w_i + b > 0 \ 0 & & ext{если } \sum_{i=1}^n x_i w_i + b <= 0 \end{cases}$$

Где x_i - входы $i=\{1,n\}$, w_i - веса модели, b - смещение, f(x) - выходная активация

Перцептрон

История развития Перцептрон: введение Логика на перцептроне

XOR проблема

- Обучение перцептрона Многослойные сети Градиентный спуск
- З Различные активационные функции Друзья перцептрона
- Обучение v.2
 Правила обновления весов
 Стохастический градиентый спуск

Перцептрон

$$f(x,w,b) = egin{cases} 1 & \mathsf{если}\langle w,x
angle > 0 \ 0 & \mathsf{если}\langle w,x
angle <= 0 \end{cases}$$

Упражнение

Попробуйте понять какую функцию воспроизводит вектор

$$\vec{w} = \begin{bmatrix} -1, 5 \\ 1 \\ 1 \end{bmatrix} \tag{1}$$

1 Перцептрон

История развития
Перцептрон: введение
Логика на перцептроне
XOR проблема

- Обучение перцептрона Многослойные сети Градиентный спуск
- З Различные активационные функции Друзья перцептрона
- Обучение v.2
 Правила обновления весов
 Стохастический градиентый спуск

XOR проблема

$$\begin{cases} w_1 + w_2 > P \\ w_1 < P \\ w_2 < P \\ 0 > P \end{cases}$$

0 - -1 -2 -1 0 1 2

1

Кто видит противоречие?

XOR проблема

XOR решение

Перцептрон

История развития Перцептрон: введение Логика на перцептроне XOR проблема

- Обучение перцептрона Многослойные сети Градиентный спуск
- З Различные активационные функции Друзья перцептрона
- Обучение v.2
 Правила обновления весов
 Стохастический градиентый спуск

Пример

Обучение

small change in any weight (or bias) causes a small change in the output

Обучение

Подвинь веса при обучении:

$$\Delta w_i = (\hat{y} - y)x_i$$
, $\hat{y} = f(x, w)$

Перцептрон

История развития Перцептрон: введение Логика на перцептроне XOR проблема

- Обучение перцептрона Многослойные сети Градиентный спуск
- З Различные активационные функции Друзья перцептрона
- Обучение v.2
 Правила обновления весов
 Стохастический градиентый спуск

Постановка

Задача: найти минимум функции $J(\vec{w}) = \frac{1}{2n} \sum_i (f(\langle w, x \rangle) - y)^2$ Варианты плоскостей:

- Задача: найти минимум функции $J(\vec{w})$
- Инициализируем \vec{w}_0

- Задача: найти минимум функции $J(\vec{w})$
- Инициализируем \vec{w}_0
- Посчитаем градиент. $\nabla J(\vec{w}_0)$

- Задача: найти минимум функции $J(\vec{w})$
- Инициализируем \vec{w}_0
- Посчитаем градиент. $\nabla J(\vec{w}_0)$
- $w_1 = w_0 \alpha \nabla J(\vec{w_0})$, α скорость обучения

- Задача: найти минимум функции $J(\vec{w})$
- Инициализируем \vec{w}_0
- Посчитаем градиент. $\nabla J(\vec{w}_0)$
- $w_1 = w_0 \alpha \nabla J(\vec{w_0})$, α скорость обучения
- while True:

$$ec{w}_{i+1} = ec{w}_i - \alpha \nabla J(ec{w}_i)$$
if $|ec{w}_{i+1} - ec{w}_i| < \epsilon$
break

Результат

Перцептрон

История развития Перцептрон: введение Логика на перцептроне XOR проблема

- Обучение перцептрона Многослойные сети Градиентный спуск
- З Различные активационные функции Друзья перцептрона
- Обучение v.2
 Правила обновления весов
 Стохастический градиентый спуск

Линейный нейрон

Линейный нейрон

Активационная функция: f(x) = x

Сигмоидальный нейрон

$$f(x) = \sigma(x)$$
 $\sigma(x) = \frac{1}{1+e^{-x}}$ Производная: $\sigma'(x) = ?$

Сигмоидальный нейрон

$$f(x) = \sigma(x)$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

ReLu нейрон

$$relu(x) = max(0, x)$$

 $relu(x)' = ?$

Гиперболический тангенс

$$f(x) = th(x)$$

 $th(x) = \frac{\exp x - \exp - x}{\exp x + \exp - x}$
Гиперболический тангенс.
Упражнение:
выразите $th(x)$ через $\sigma(x)$

Перцептрон

История развития Перцептрон: введение Логика на перцептроне XOR проблема

- Обучение перцептрона Многослойные сети Градиентный спуск
- З Различные активационные функции Друзья перцептрона
- Обучение v.2
 Правила обновления весов
 Стохастический градиентый спуск

Градиенты целевых функций

Регрессия

$$\frac{\partial J}{\partial w_j} = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - y^{(i)}) x_j^{(i)}$$

$$\nabla J = \begin{pmatrix} \dots \\ \frac{\partial J}{\partial w_j} \\ \dots \end{pmatrix}$$

Классификация

$$\frac{\partial J}{\partial w_j} = \frac{1}{n} \sum_{i=1}^{n} \left(\sigma \left(w^T x^{(i)} \right) - y_i \right)$$

$$\sigma \left(w^T x^{(i)} \right) \left(1 - \sigma \left(w^T x^{(i)} \right) \right) x_j^{(i)}$$

Перцептрон

История развития Перцептрон: введение Логика на перцептроне XOR проблема

- Обучение перцептрона Многослойные сети Градиентный спуск
- З Различные активационные функции Друзья перцептрона
- Обучение v.2
 Правила обновления весов
 Стохастический градиентый спуск

Стохастический градиентный спуск

- Задача: найти минимум функции $J(\vec{w})$
- Инициализируем точку w_0

Стохастический градиентный спуск

- Задача: найти минимум функции $J(\vec{w})$
- Инициализируем точку w₀
- Выберем случайно индекс t от 1 до n
- while True: Выберем случайно индекс t от 1 до n $w_{i+1} = w_i \alpha \nabla J(w_i, x_t, y_t)$ if $|w_{i+1} w_i| < \epsilon$ break

Mini-batch градиентный спуск

- ullet Задача: найти минимум функции $J(ec{w})$
- Инициализируем точку w₀
- w₀ Инициализация

• while True:

Выберем случайно индекс $t_1\cdots t_u$ от 1 до n $g_t=\sum\limits_{c=1}^u \nabla J(w_i,x_c,y_c)$ $w_{i+1}=w_i-\alpha g_t$ if $|w_{i+1}-w_i|<\epsilon$ break

Градиентные методы: итог

Достоинства

- Допускает потоковое обучение(online)
- Позволяет найти экстремум не по всем данным
- Применяется к любым функциям потерь

Недостатки

- Локальная сходимость
- Подбор гиперпараметров
- Начальное приближение весов

Итоги

- Посмотрели на перцептрон, как решение задачи классификации .
- Изучили простейшие методы оптимизации.
- Окунлись в целый мир активационных функций.
- Узнали как обучить простейший нейрон.

Литература I

На будущее можно почитать.

M. Nielsen https://neuralnetworksanddeeplearning.com/

A. Moskvichev https://stepik.org/course/401