A Camada de Rede na Internet

Funções da camada de rede em estações, roteadores:

Protocolo Internet (IP)

- □ Protocolo de entrega Host a host da Internet
- □ Protocolo de datagrama não confiável e não orientado a conexão – serviço de entrega com o "melhor esforço"– best-effort
- □ Sem controle de erros ou controle de fluxo
- □ Alguma detecção de erros; descarta se corrompido
- □ TCP é usado se a confiabilidade é importante

Formato do datagrama IP

IP: Fragmentação & Remontagem

- Cada enlace αe rede tem MTU (max.transmission unit) - maior tamanho possível de quadro neste enlace.
 - tipos diferentes de enlace têm MTUs diferentes
- Datagrama IP muito grande dividido ("fragmentado") dentro da rede
 - um datagrama vira vários datagramas
 - "remontado" apenas no destino final
 - bits do cabeçalho IP usados para identificar, ordenar fragmentos relacionados

Routing table for host A

Routing table for R1

Routing table for R2

Destination Route		Destination Route		Destination Route	
Host B	R1, R2, Host B	Host B	R2, Host B	Host B	Host B

a. Routing tables based on route

Routing table for host A

Routing table for R1

Routing table for R2

Destination	Next Hop	
Host B	R1	

Destination	Next Hop		
Host B	R2		

Destination	Next Hop
Host B	2010

b. Routing tables based on next hop

Endereços Classe A

- □ Numericamente os mais baixos
- □ Apenas um byte identifica o tipo da classe e o id da rede
- □ Três bytes para números de host
- □ 126 (2⁷ 2) redes classe A possíveis; máximo de 16,777,214 (2²⁴ – 2) dispositivos em cada rede
- Organizações grande com número grande de hosts ou roteadores
- □ Muitos não utilizados

Blocos na classe A

128 blocks: 16,777,216 addresses in each block

Endereços Classe B

- Primeiros dois octetos são número da rede; últimos dois octetos são número do host
- □ 16,384 (2 ¹⁴) blocos possíveis para atribuição com o máximo de 65,534 (216 - 2) endereços possíveis para hosts em cada rede
- □ Organizações de taman 10 médio
- □ Muitos não utilizados

Blocos na classe B

16384 blocks: 65536 addresses in each block

Endereços Classe C

- Primeiros três octetos são número da rede; último octeto é número de host
- □ 2,097,152 (2²¹) blocos para atribuição
 - □ 56 usados em endereços privados
- □ Primeiros três bytes (netid) são os mesmos
- □ Cada bloco tem apenas 254 (28 2)endereços; menos do que qualquer organização precisa

Blocos na Classe C

2,097,152 blocks: 256 addresses in each block

Endereços para Redes Privadas

- □ Classe A 10.0.0.0 a 10.255.255.255 2²⁴
- □ Classe B 172.16.0.0 a 172.31.255.255 2²⁰
- □ Classe C 192.168.0.0 a 192.168.255.255 2¹⁶

Endereço de Rede

- □ Primeiro endereço do bloco; atribuído a qualquer empresa
- □ Define a rede; não pode ser atribuído a host
- ☐ Tem ambas partes de rede e host, com 0s para id de host
- □ Define a rede para o resto da Internet

Subnetting

- □ Endereçamento IP é hierárquico
- □ Primeiro encontra o dispositivo através do endereço da rede (netid)
- □ Então alcança o host usando a segunda parte do endereço (hostid)
- □ Subnetting pode ser usado para dividir a rede em redes menores ou subredes

Subnetting (cont)

Rede com dois níveis de hierarquia (sem subredes)

Rede com três níveis de hierarquia (com subredes)

Subnetting (cont)

- Cria nível intermediário de hierarquia
- Roteamento do datagrama então envolve três passos: entrega ao site, entrega na subrede, e entrega ao host

Máscara

- □ Extrai o endereço físico da rede a partir do endereço IP
- Usada pelos roteadores dentro da organização

Máscara - Funcionamento

- □ Se números de máscara são 255 ou 0:
 - □ Bytes no endereço IP que correspondem a 255 na máscara são repetidos no endereço da subrede
 - □ Bytes no endereço que correspondem ao 0 na máscara mudam para 0 no endereço da subrede

Endereço IP	45	23	21	8
Máscara	255	255	0	0
Subrede	45	23	0	0

Máscaras Padrão

Classe	Em	Binário	Em Notação Decimal	Usando Barra
A	11111111 00000000	00000000 00000000	255.0.0.0	/8
В	11111111 11111111	00000000 00000000	255.255.0.0	/16
С	11111111 111111111	11111111 00000000	255.255.255.0	/24

Máscaras – Sem uso dos limites padrão

- Se máscaras não estão no limite padrão (número de máscara não são apenas 255 ou 0)
 - □ Bytes no endereço IP correspondentes a 255 na máscara são repetidos no endereço de subrede
 - □ Bytes no endereço IP correspondentes a 0 na máscara mudam para 0 no endereço de subrede
 - □ Para outros bytes, usar a operação AND binária

Exemplo

Endereço IP Máscara	45 255	123 192	21 0	8 0
Subrede	45	64	0	0
123	011	1101	1	
<u>192</u>	110	0000	0	
64	010	0000	0	

Exercício

- Uma máscara de sub-rede de classe A tem quatorze 1s. Quantas sub-redes esta máscara define?
- □ Numa sub-rede classe C sabe-se que o endereço IP de um host é 192.44.82.16 e a máscara tem o endereço 255.255.255.192. Qual é o endereço dessa sub-rede?
- Qual é o número máximo de sub-redes classe C que podem ser criadas a partir da seguinte máscara: 255.255.255.240?

Endereçamento IP: CIDR

	Endereçamento baseado em classes:
	uso ineficiente e esgotamento do espaço de endereços
	□ Exemplo: rede da classe B aloca endereços para 65K estações, mesmo se houver apenas 2K estações nessa rede
ď	CIDR: Classless InterDomain Routing
	□ parte de rede do endereço de comprimento arbitrário
	☐ formato de endereço: a.b.c.d/x, onde x é número de bits na parte de rede do endereço
	parteparte deestação
	11001000 00010111 00010000 00000000

200.23.16.0/23

Endereços IP: como conseguir um?

Rede (parte de rede):

 conseguir alocação a partir do espaço de endereços do seu provedor IP

Bloco do provedor	<u>11001000 00010111 0001</u> 0000	00000000	200.23.16.0/20
Organização 0	<u>11001000 00010111 0001000</u> 0	00000000	200.23.16.0/23
Organização 1	<u>11001000 00010111 0001001</u> 0	00000000	200.23.18.0/23
Organização 2	<u>11001000 00010111 0001010</u> 0	00000000	200.23.20.0/23
***	••••	(5.5.5.5)	***
Organização 7	<u>11001000 00010111 0001111</u> 0	00000000	200.23.30.0/23

Exercício

- □ Dado o endereço IP 201.14.78.65 e a máscara de sub-rede 255.255.255.224 (/27), qual é o endereço da sub-rede a qual pertence esse endereço IP?
- □ Uma empresa recebeu o bloco de endereços 132.45.0.0/16. Você é o administrador da rede e precisa definer oito subredes.
 - Quantos dígitos binários são necessários para definir oito subredes?
 - □ Especifique o Extended Network Prefix (ENP) notação completa do endereço com / (barra) - que permite a criação de oito subredes:

ICMP: Internet Control Message Protocol

	woode way sates 2 t t			
u	usado por estações, roteadores para comunicar informação s/	<u>Tipo</u>	Código	<u>descrição</u>
	camada de rede	0	0	resposta de eco (ping)
	□ relatar erros: estação, rede,	3	0	rede dest. inalcançável
	porta, protocolo inalcançáveis	3	1	estação dest inalcançável
	□ pedido/resposta de eco (usado	3	2	protocolo dest inalcançável
	por ping)	3	3	porta dest inalcançável
	compade de made «colore de » ID	3	6	rede dest desconhecida
u	camada de rede "acima de" IP:	3	7	estação dest desconhecida
	 msgs ICMP transportadas em datagramas IP 	4	0	abaixar fonte (controle de
	datagramas n			congestionamento - ñ usado)
	mensagem ICMP: tipo, código	8	0	pedido eco (ping)
	mais primeiros 8 bytes do	9	0	anúncio de rota
	datagrama IP causando erro	10	0	descobrir roteador
		11	0	TTL (sobrevida) expirada
		12	0	erro de cabeçalho IP

14

NAT (Network Address Translation)

Endereços físicos e ARP

Endereços IP de 32-bit:

- endereços da *camada de rede*
- usados para levar o datagrama até a rede de destino (lembre da definição de rede IP)

Endereço de LAN (ou MAC ou físico):

- usado para levar o datagrama de uma interface física a outra fisicamente conectada com a primeira (isto é, na mesma rede)
- Endereços MAC com 48 bits (na maioria das LANs) gravado na memória fixa (ROM) do adaptador de rede

Sobre Roteamento...

ARP: Address Resolution Protocol

Questão: como determinar o endereço MAC de B dado o endereço IP de B?

- Cada nó IP (Host, Roteador) numa LAN tem um módulo e uma tabela ARP
- Tabela ARP: mapeamento de endereços IP/MAC para alguns nós da LAN
 endereço IP; endereço MAC; TTL>
 - TTL (Time To Live): tempo depois do qual o mapeamento de endereços será esquecido (tipicamente 20 min)

Protocolo ARP

- A deseja enviar um datagrama para B, e conhece o seu endereço IP;
- Suponha que o endereço MAC de B não esteja na tabela ARP de A;
- A envia em broadcast um pacote ARP de consulta com o endereço IP de B
 - todas as máquinas na LAN recebem a consulta
- B recebe o pacote ARP,
 responde a A com o seu
 endereço de camada física
 - Quadro enviado para o endereço MAC de A;

- A armazena os pares de endereço IP-físico até que a informação se torne obsoleta (esgota a temporização)
 - ✓ soft state: informação que desaparece com o tempo se não for reatualizada
- > ARP é "plug-and-play":
 - Nós criam suas tabelas ARP sem a intervenção do administrador da rede;

- A cria o pacote IP com origem A, destino B
- A usa ARP para obter o endereço de camada física de R correspondente ao endereço IP 111.111.111.110
- A cria um quadro Ethernet com o endereço físico de R como destino, o quadro Ethernet contém o datagrama IP de A para B
- A camada de enlace de A envia o quadro Ethernet
- A camada de enlace de R recebe o quadro Ethernet
- R remove o datagrama IP do quadro Ethernet, verifica se destina-se a B
- R usa ARP para obter o endereço físico de B
- R cria quadro contendo um datagrama de A para B e envia para B

Exemplo de Uso do ARP

- arp 150.162.63.1
- 150.162.63.1 (150.162.63.1) at 8:0:20:73:bc:52 permanent published

Address Type

Mostrar o endereço físico e o endereço da Internet de uma máquina na rede

arp -a

200.17.110.2

Interface: 200.17.110.197

Internet Address Physical

02-60-8c-2d-21-e4 Dynamic