Exercices: Barbara Tumpach Relecture: François Lescure



# Théorème de convergence monotone, dominée et lemme de Fatou

## **Exercice 1**

1. Soit  $\{g_n\}_{n\in\mathbb{N}}$  une suite dans  $\mathcal{M}^+(\Omega,\Sigma)$ . Montrer que

$$\int_{\Omega} \left( \sum_{n=1}^{+\infty} g_n \right) d\mu = \sum_{n=1}^{+\infty} \int_{\Omega} g_n d\mu.$$

2. Montrer que

$$\int_0^{+\infty} \frac{x^{s-1}}{e^x - 1} dx = \Gamma(s) \zeta(s),$$

où Γ est la fonction d'Euler et où  $\zeta(s) = \sum_{n=1}^{+\infty} n^{-s}$ . (On pourra considérer les fonctions  $g_n(x) = x^{s-1}e^{-nx}\mathbf{1}_{[0,+\infty)}$ .)

Correction ▼

#### **Exercice 2**

Soit  $\Omega = \mathbb{R}$ ,  $\Sigma = \mathscr{B}(\mathbb{R})$  et  $\mu$  la mesure de Lebesgue sur  $\mathbb{R}$ . Si on pose  $f_n = \mathbf{1}_{[0,n]}$ ,  $n \in \mathbb{N}$ , alors la suite  $\{f_n\}_{n \in \mathbb{N}}$ est monotone croissante vers  $f = \mathbf{1}_{[0,+\infty)}$ . Bien que les fonctions  $f_n$  soient uniformément bornées par 1 et que les intégrales des  $f_n$  sont finies, on a :

$$\int_{\Omega} f d\mu = +\infty.$$

Est-ce que le théorème de convergence monotone s'applique dans ce cas?

Correction ▼ [005940]

## Exercice 3

Soit  $\Omega = \mathbb{R}$ ,  $\Sigma = \mathscr{B}(\mathbb{R})$  et  $\mu$  la mesure de Lebesgue sur  $\mathbb{R}$ . Si on pose  $f_n = \frac{1}{n} \mathbf{1}_{[n,+\infty)}$ ,  $n \in \mathbb{N}$ , alors la suite  $\{f_n\}_{n \in \mathbb{N}}$ est monotone décroissante et converge uniformément vers 0, mais

$$0 = \int_{\Omega} f d\mu \neq \lim \int_{\Omega} f_n d\mu = +\infty.$$

Est-ce que cela contredit le théorème de convergence monotone?

Correction ▼ [005941]

## **Exercice 4**

Soit  $f_n = \frac{1}{n} \mathbf{1}_{[0,n]}$ ,  $n \in \mathbb{N}$ , et f = 0. Montrer que  $f_n$  converge uniformément vers f, mais que

$$\int_{\Omega} f d\mu \neq \lim \int_{\Omega} f_n d\mu$$

Est-ce que cela contredit le théorème de convergence monotone?

Correction ▼ [005942]

#### **Exercice 5**

Soit  $\Omega = \mathbb{R}$ ,  $\Sigma = \mathscr{B}(\mathbb{R})$  et  $\mu$  la mesure de Lebesgue sur  $\mathbb{R}$ . Soit  $f_n = -\frac{1}{n}\mathbf{1}_{[0,n]}$ ,  $n \in \mathbb{N}$ , et f = 0. Montrer que  $f_n$  converge uniformément vers f sur  $\mathbb{R}$  mais que

$$\lim\inf_{n\to+\infty}\int_{\Omega}f_nd\mu\ <\ \int_{\Omega}f\,d\mu.$$

Est-ce que cela contredit le lemme de Fatou?

Correction ▼ [005943]

#### **Exercice 6**

Soit  $f \in \mathcal{M}^+(\Omega, \Sigma)$  tel que  $\int_{\Omega} f d\mu < +\infty$ . Montrer que

$$\mu$$
{ $x \in \Omega$ ,  $f(x) = +\infty$ } = 0.

On pourra considérer les fonctions  $f_n = n\mathbf{1}_{\{f \ge n\}}$ .

Correction ▼ [005944]

#### **Exercice 7**

Soit  $(\Omega, \Sigma, \mu)$  un espace mesuré avec  $\mu(\Omega) < +\infty$ . Soit  $\{f_n\}_{n \in \mathbb{N}}$  une suite de fonctions mesurables convergeant presque partout vers une fonction mesurable f. On suppose qu'il existe une constante C > 0 telle que  $|f_n| \le C$  pour tout  $n \ge 1$ . Montrer que

$$\lim_{n\to+\infty}\int_{\Omega}f_n\,d\mu=\int_{\Omega}f\,d\mu.$$

Correction ▼ [005945]

#### Exercice 8

Soit  $f \in \mathcal{L}^1(\mathbb{R})$ . Que vaut la limite

$$\lim_{n\to\infty}\int_{\mathbb{R}}f(x)\cos^n(\pi x)d\lambda(x)?$$

Correction ▼ [005946]

#### **Exercice 9**

On rappelle qu'une fonction  $f: \Omega \to \mathbb{R}$  est dite intégrable si  $f_+ := \max\{f, 0\}$  et  $f_- = \max\{-f, 0\}$  vérifient  $\int_{\Omega} f_+ d\mu < +\infty$  et  $\int_{\Omega} f_- d\mu < +\infty$ . On note  $\mathscr{L}^1(\Omega, \Sigma, \mu)$  l'ensemble des fonctions réelles intégrables. Pour  $f \in \mathscr{L}^1(\Omega, \Sigma, \mu)$ , on pose

$$\int_{\Omega} f d\mu = \int_{\Omega} f_+ d\mu - \int_{\Omega} f_- d\mu.$$

1. Montrer l'équivalence

$$f \in \mathcal{L}^1(\Omega, \Sigma, \mu) \Leftrightarrow |f| \in \mathcal{L}^1(\Omega, \Sigma, \mu)$$

et

$$\left| \int_{\Omega} f \, d\mu \right| \, \le \, \int_{\Omega} |f| \, d\mu. \tag{1}$$

2. Montrer que si f est mesurable, g intégrable et  $|f| \le |g|$ , alors f est intégrable et

$$\int_{\Omega} |f| d\mu \leq \int_{\Omega} |g| d\mu.$$

3. On rappelle qu'une fonction  $f:\Omega\to\mathbb{C}$  est dite intégrable si la partie réelle  $\operatorname{Re} f$  et la partie imaginaire  $\operatorname{Im} f$  de f sont intégrables. On pose alors

$$\int_{\Omega} f d\mu = \int_{\Omega} \operatorname{Re} f d\mu + i \int_{\Omega} \operatorname{Im} f d\mu.$$

Montrer que l'inégalité (1) est vérifiée.

Correction ▼ [005947]

#### Exercice 10

Soit  $(\Omega, \Sigma, \mu)$  un espace mesuré. On dit que  $f_n$  converge vers f en mesure si pour tout  $\varepsilon$ ,

$$\lim_{n\to+\infty} \mu\{x\in\Omega, |f_n(x)-f(x)| > \varepsilon\} = 0.$$

Montrer que si  $f_n \to f$  en mesure, alors il existe une sous-suite  $\{f_{n_k}\}_{k\in\mathbb{N}}$  de  $\{f_n\}_{n\in\mathbb{N}}$  qui converge vers f  $\mu$ -presque partout.

Correction ▼ [005948]

#### **Exercice 11**

Donner un exemple de fonction  $f: \mathbb{R} \to \mathbb{R}$  qui est intégrable au sens de Lebesgue mais pas au sens de Riemann.

## **Exercice 12**

1. Montrer que pour tout  $x \in \mathbb{R}_+$ ,  $\left\{ \left(1 + \frac{x}{n}\right)^n \right\}$  est une suite croissante et

$$\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}.$$

2. Calculer la limite

$$\lim_{n\to\infty}\int_{\mathbb{R}_{+}}\left(1+\frac{x}{n}\right)^{n}\mathrm{e}^{-bx}d\lambda(x)$$

où b > 1.

Correction ▼ [005950]

## **Exercice 13**

Montrer que

- 1.  $\lim_{n \to \infty} \int_0^n \left(1 \frac{x}{n}\right)^n x^m dx = m!$  (pour tout  $m \in \mathbb{N}$ ).
- 2.  $\lim_{n \to \infty} \int_{0}^{n} \left(1 + \frac{x}{n}\right)^{n} e^{-2x} dx = 1$ .

Correction ▼ [005951]

#### Exercice 14

Montrer le théorème suivant,  $\Omega$  étant un espace mesurable. (On pourra utiliser le théorème des accroissements finis.)

**Théorème.**(Dérivation sous le signe  $\int$ )

Soit  $f: \Omega \times \mathbb{R} \to \mathbb{C}$  une fonction telle que

- (i) Pour tout  $s \in [s_1, s_2]$ , la fonction  $x \mapsto f(x, s)$  est intégrable ;
- (ii) pour presque tout x, la fonction  $s \mapsto f(x,s)$  est dérivable sur  $(s_1,s_2)$ ;
- (ii) il existe  $g \in \mathcal{L}^1(\Omega, \mathbb{R}^+)$  tel que pour tout  $s \in [s_1, s_2]$  et pour presque tout  $x \in \Omega$  on ait  $|\frac{\partial f(x, s)}{\partial s}| \le g(x)$ .

Alors la fonction  $I(s) := \int_{\Omega} f(x,s) d\mu(x)$  est dérivable sur  $(s_1, s_2)$  et

$$\frac{dI}{ds} = \int_{\Omega} \frac{\partial f(x,s)}{\partial s} d\mu(s).$$

Correction ▼ [005952]

## **Exercice 15**

Soit  $f \in \mathcal{L}^1(\mathbb{R})$ . Sa transformée de Fourier est la fonction  $\hat{f} : \mathbb{R} \to \mathbb{C}$  définie par

$$\hat{f}(y) := \int_{\mathbb{R}} e^{-ixy} f(x) dx,$$

montrer que

- 1.  $\hat{f}$  est continue,
- 2.  $\hat{f}$  est bornée et  $\sup |\hat{f}| \le \|f\|_{L^1}$  (= $\int_{\mathbb{R}} |f(x)| dx$ ),
- 3. Si  $x \to xf(x)$  est intégrable, alors  $\hat{f}$  est dérivable et on a

$$\frac{d}{dy}\,\hat{f}\,=\widehat{-ixf(x)}.$$

Correction ▼ [005953]





## Correction de l'exercice 1 A

1. Soit  $\{g_n\}_{n\in\mathbb{N}}$  une suite dans  $\mathscr{M}^+(\Omega,\Sigma)$ . Alors  $f_k=\sum_{n=1}^k g_n$  est une suite croissante de  $\mathscr{M}^+(\Omega,\Sigma)$ . D'après le théorème de convergence monotone

$$\int_{\Omega} \left( \sum_{n=1}^{+\infty} g_n \right) d\mu = \sum_{n=1}^{+\infty} \int_{\Omega} g_n d\mu.$$

2. Posons  $g_n(x) = x^{s-1}e^{-nx}\mathbf{1}_{[0,+\infty)}$ . Les  $g_n$  appartiennent à  $\mathcal{M}^+(\Omega,\Sigma)$  pour tout  $n \in \mathbb{N}$ . D'après la question précédente,

$$\int_{\Omega} \left( \sum_{n=1}^{+\infty} g_n \right) d\mu = \sum_{n=1}^{+\infty} \int_{\Omega} g_n d\mu.$$

Or d'une part,

$$\int_{\Omega} g_n d\mu = \int_{\Omega} x^{s-1} e^{-nx} \mathbf{1}_{[0,+\infty)} dx = \frac{1}{n^s} \int_0^{+\infty} y^{s-1} e^{-y} dy = \frac{1}{n^s} \Gamma(s),$$

donc

$$\sum_{n=1}^{+\infty} \int_{\Omega} g_n d\mu = \sum_{n=1}^{\infty} \frac{1}{n^s} \Gamma(s) = \zeta(s) \Gamma(s).$$

D'autre part,

$$\int_{\Omega} \left( \sum_{n=1}^{+\infty} g_n \right) d\mu = \int_0^{+\infty} x^{s-1} \sum_{n=1}^{+\infty} e^{-nx} dx = \int_0^{+\infty} \frac{x^{s-1}}{e^x - 1} dx,$$

d'où l'égalité cherchée.

#### Correction de l'exercice 2

Oui, le théorème de convergence monotone ne dit pas que l'intégrale de f est finie. On a bien

$$+\infty = \int_{\Omega} f d\mu = \lim_{n \to +\infty} \int_{\Omega} f_n d\mu = \lim_{n \to +\infty} n.$$

## Correction de l'exercice 3

Non, le théorème de convergence monotone ne s'applique pas à une suite décroissante de fonctions positives.

## Correction de l'exercice 4 A

Non, la suite de fonctions n'est pas même monotone.

## Correction de l'exercice 5 ▲

En effet, pour tout  $\varepsilon > 0$ , il existe  $N_{\varepsilon} = \left[\frac{1}{\varepsilon}\right] + 1$  tel que  $\forall n \geq N_{\varepsilon}$ ,

$$\sup_{x\in\mathbb{R}}|f_n(x)-f(x)|<\varepsilon,$$

i.e.  $f_n$  converge uniformément vers f sur  $\mathbb{R}$ . On a :

$$\lim\inf_{n\to+\infty}\int_{\Omega}f_n\,d\mu=\lim\inf_{n\to+\infty}-\int_{0}^{n}\frac{1}{n}d\mu=-1.$$

D'autre part  $\int_{\Omega} f d\mu = 0$ . Le lemme de Fatou ne s'applique pas car les fonctions  $f_n$  ne sont pas à valeurs dans  $[0, +\infty]$ .

#### Correction de l'exercice 6

On a

$$\mu(f = +\infty) = \mu(\cap_{n \in \mathbb{N}} \{f \ge n\}).$$

Puisque les ensembles  $A_n := \{ f \ge n \}$  vérifient  $A_1 \supset A_2 \supset A_3 \ldots$  et  $\mu(A_i) < +\infty$   $(i = 1, 2, \ldots)$ , par continuité de la mesure, on a :

$$\mu\left(f=+\infty\right)=\lim_{n\to+\infty}\mu\left(f\geq n\right).$$

Or, comme f est à valeurs positives, les fonctions  $f_n$  définies par  $f_n = n\mathbf{1}_{\{f \ge n\}}$  vérifient  $f_n \le f$ . Ainsi

$$\int_{\Omega} f_n d\mu = \int_{\Omega} n \mathbf{1}_{\{f \geq n\}} d\mu = n\mu (f \geq n) \leq \int_{\Omega} f d\mu < +\infty.$$

On en déduit que

$$\mu(f \ge n) \le \frac{1}{n} \int_{\Omega} f d\mu \to 0,$$

donc

$$\mu(f = +\infty) = 0.$$

## Correction de l'exercice 7 ▲

Puisque  $\mu(\Omega) < +\infty$ , la fonction constante égale à C est intégrable, d'intégrale  $C\mu(\Omega)$ . Une application directe du théorème de convergence dominée donne

$$\lim_{n\to +\infty} \int_{\Omega} f_n d\mu = \int_{\Omega} f d\mu.$$

#### Correction de l'exercice 8

Soit  $f \in \mathcal{L}^1(\mathbb{R})$ . Comme  $\cos(\pi x) < 1$  si  $x \notin \mathbb{Z}$ ,  $\cos^n(\pi x) \to 0$  lorsque  $n \to \infty$  presque partout (pour tout  $x \in \mathbb{R} \setminus \mathbb{Z}$ ). Notons  $f_n(x) = f(x)\cos^n(\pi x)$ . Alors, pour tout  $n \in \mathbb{N}$  on a  $|f_n(x)| \le |f(x)|$  et comme  $|f| \in \mathcal{L}^1(\mathbb{R})$ , par le théorème de convergence dominée de Lebesgue,

$$\lim_{n\to\infty}\int_{\mathbb{R}}f(x)\cos^n(\pi x)d\lambda(x)=\lim_{n\to\infty}\int_{\mathbb{R}}f_n(x)d\lambda(x)=\int_{\mathbb{R}}\lim_{n\to\infty}f_n(x)d\lambda(x)=0.$$

#### Correction de l'exercice 9 A

1. Par définition,  $f \in \mathscr{L}^1(\Omega, \Sigma, \mu)$  si et seulement si  $f_+$  et  $f_-$  sont intégrables. On note que  $|f| = f_+ + f_-$ . Donc  $f \in \mathscr{L}^1(\Omega, \Sigma, \mu) \Rightarrow |f| \in \mathscr{L}^1(\Omega, \Sigma, \mu)$ . Réciproquement, on a  $0 \le f_\pm \le |f|$ , donc  $|f| \in \mathscr{L}^1(\Omega, \Sigma, \mu) \Rightarrow f \in \mathscr{L}^1(\Omega, \Sigma, \mu)$ . D'autre part :

$$\left|\int_{\Omega}f\,d\mu\right| \,=\, \left|\int_{\Omega}f_+\,d\mu - \int_{\Omega}f_-\,d\mu\right| \,\leq\, \int_{\Omega}f_+\,d\mu + \int_{\Omega}f_-\,d\mu \,=\, \int_{\Omega}|f|\,d\mu.$$

2. Par monotonie de l'intégrale, on a

$$\int_{\Omega} |f| d\mu \leq \int_{\Omega} |g| d\mu < +\infty.$$

D'après la question (a), il en découle que f est intégrable.

3. Définissons  $z = \int_{\Omega} f d\mu$ . Comme z est un nombre complexe, il s'écrit  $z = |z|e^{i\theta}$ . Soit u la partie réelle de  $e^{-i\theta}f$ . On a  $u \le |e^{-i\theta}f| = |f|$ . Donc

$$\left| \int_{\Omega} f \, d\mu \right| \, = \, e^{-i\theta} \int_{\Omega} f \, d\mu \, = \, \int_{\Omega} e^{-i\theta} f \, d\mu \, = \, \int_{\Omega} u \, d\mu \, \leq \, \int_{\Omega} |f| \, d\mu,$$

où la troisième égalité découle du fait que le nombre  $\int_{\Omega} e^{-i\theta} f d\mu$  est réel donc est l'intégrale de la partie réelle de  $e^{-i\theta} f$  c'est-à-dire de u.

## Correction de l'exercice 10 ▲

On cherche une sous-suite  $\{f_{n_k}\}_{n\in\mathbb{N}}$  de  $\{f_n\}_{n\in\mathbb{N}}$  telle que pour  $\mu$ -presque tout  $x\in\Omega$ , étant donné un  $\varepsilon>0$ , il existe un  $k\in\mathbb{N}$  (dépendant à priori de x) vérifiant  $j\geq k\Rightarrow |f_{n_j}(x)-f(x)|<\varepsilon$ . Il suffit de montrer que pour  $\mu$ -presque tout x, il existe un  $k\in\mathbb{N}$  tel que  $j\geq k\Rightarrow |f_{n_j}(x)-f(x)|<\frac{1}{2^j}\leq \frac{1}{2^k}$ . Cela revient à montrer que le complémentaire de l'ensemble

$$A := \bigcup_{k=1}^{\infty} \bigcap_{j \ge k} \left\{ |f_{n_j} - f| < \frac{1}{2^j} \right\}$$

est de mesure nulle. Or

$$A^{c} = \bigcap_{k=1}^{\infty} \bigcup_{i > k} \left\{ |f_{n_{i}} - f| \ge \frac{1}{2^{j}} \right\}.$$

Posons  $B_k := \bigcup_{j \ge k} \{|f_{n_j} - f| \ge \frac{1}{2^j}\}$ . On a  $B_1 \supset B_2 \supset B_3 \dots$  avec  $B_1$  de mesure fini; donc par continuité de la mesure, il vient :

$$\mu(A^c) = \lim_{k \to +\infty} \mu(B_k).$$

Par  $\sigma$ -additivité, on a :

$$\mu(B_k) \leq \sum_{j>k} \mu\left(\left\{|f_{n_j}-f|\geq \frac{1}{2^j}\right\}\right).$$

On définit alors la sous-suite  $\{f_{n_k}\}_{n\in\mathbb{N}}$  de la manière suivante. Puisque  $f_n$  converge vers f en mesure, il existe un indice  $n_1$  tel que pour  $n \ge n_1$ ,

$$\mu\left(\left\{|f_n-f|\geq \frac{1}{2}\right\}\right)\leq \frac{1}{2}.$$

Il existe un indice  $n_2 > n_1$  tel que pour  $n \ge n_2$ ,

$$\mu\left(\left\{|f_n-f|\geq \frac{1}{2^2}\right\}\right)\leq \frac{1}{2^2},$$

et ainsi de suite : pour tout  $k \in \mathbb{N}$ , il existe un  $n_k > n_{k-1}$ , tel que pour  $n \ge n_k$ 

$$\mu\left(\left\{|f_n-f|\geq \frac{1}{2^k}\right\}\right)\leq \frac{1}{2^k}.$$

Pour cette sous-suite on a alors:

$$\mu(B_k) \leq \sum_{j\geq k} \mu\left(\left\{|f_{n_j}-f|\geq \frac{1}{2^j}\right\}\right) \leq \sum_{j\geq k} \frac{1}{2^j} = \frac{1}{2^{k-1}}.$$

On a bien

$$\mu(A^c) = \lim_{k \to +\infty} \mu(B_k) = 0.$$

## Correction de l'exercice 11 ▲

La fonction de Dirichlet restreint à l'intervalle [a,b],  $f(x)=\mathbf{1}_{\mathbb{Q}}\big|_{[a,b]}(x)$ , est intégrable au sens de Lebesgue et son intégrale par rapport à la mesure de Lebesgue vaut 0. Mais elle n'est pas intégrable au sens de Riemann :  $\underline{S}(f,\tau)=0$  et  $\overline{S}(f,\tau)=b-a$  pour toute subdivision  $\tau$  de l'intervalle [a,b].

## Correction de l'exercice 12

1. Montrons que pour tout  $x \in \mathbb{R}_+$ ,  $(1 + \frac{x}{n})^n$  est une suite croissante et que  $\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$ . Pour  $n \in \mathbb{N}$  on a

$$\left(1 + \frac{x}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{x}{n}\right)^k = \sum_{k=0}^n a_{n,k} \frac{x^k}{k!},$$

où 
$$a_{n,k} = \frac{n!}{(n-k)!n^k} = \frac{n(n-1)\cdots(n-k+1)}{n^k}.$$

Les assertions suivantes sont vraies :

- i)  $a_{n+1,k} \geq a_{n,k}$ . En effet,  $\frac{n+1-l}{n+1} \geq \frac{n-l}{n}$  pour  $l \in \mathbb{N}$  car  $n^2 + n l \cdot n \geq n^2 + n l \cdot n l$ ,
- ii)  $a_{n,k} < 1$  (évident);
- iii) Pour tout  $k \in \mathbb{N}$ ,  $\lim_{n \to \infty} a_{n,k} = 1$ .

Comme  $a_{n+1,n+1} > 0$ ,  $\left(1 + \frac{x}{n+1}\right)^{n+1} = \sum_{k=0}^{n+1} a_{n+1,k} \frac{x^k}{k!} > \sum_{k=0}^n a_{n+1,k} \frac{x^k}{k!}$ . Il s'ensuit donc de (i) que la suite  $\left\{\left(1 + \frac{x}{n}\right)^n\right\}$  est croissante. Les assertions (ii) et (iii) impliquent que

$$\left(1 + \frac{x}{n}\right)^n = \sum_{k=0}^n a_{n,k} \frac{x^k}{k!} \le \sum_{k=0}^n \frac{x^k}{k!} \le \sum_{k=0}^\infty \frac{x^k}{k!} = e^x$$

et que, pour tout  $m \in \mathbb{N}$ ,  $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n \ge \sum_{k=0}^m \frac{x^k}{k!}$ . Ainsi,  $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$ .

2. Par le théorème de convergence monotone, on a pour b > 1,

$$\lim_{n \to \infty} \int_{\mathbb{R}_+} \left( 1 + \frac{x}{n} \right)^n e^{-bx} d\lambda(x) = \int_{\mathbb{R}_+} \lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n e^{-bx} d\lambda(x)$$
$$= \int_0^\infty e^{(1-b)x} d\lambda(x) = \frac{1}{b-1}.$$

#### Correction de l'exercice 13 A

1. Pour tout  $x \in \mathbb{R}_+$  et  $n \in \mathbb{N}$  on a

$$\left(1-\frac{x}{n}\right)^n \le e^{-x}.$$

En effet, comme  $\ln y \le y - 1$  pour y > 0, on a  $\ln y^{-\frac{1}{n}} \le y^{-\frac{1}{n}} - 1$ , c'est-à-dire  $\left(1 - \frac{\ln y}{n}\right)^n \le y^{-1}$ . Ainsi, en posant  $x = \ln y$ , il vient  $\left(1 - \frac{x}{n}\right)^n \le e^{-x}$ . De plus,

$$\lim_{n \to +\infty} \left(1 - \frac{x}{n}\right)^n = \lim_{n \to +\infty} e^{n \ln\left(1 - \frac{x}{n}\right)} = \lim_{n \to +\infty} e^{n\left(-\frac{x}{n} + \frac{x}{n}\varepsilon\left(\frac{x}{n}\right)\right)},$$

où  $\lim_{u\to 0} \varepsilon(u) = 0$ . Ainsi  $\lim_{n\to +\infty} \left(1-\frac{x}{n}\right)^n = e^{-x}$ .

Posons  $f_n(x) = \left(1 - \frac{x}{n}\right)^n x^m \mathbf{1}_{[0,n]}$ . Alors en utilisant le théorème de convergence dominée et sachant que  $\Gamma(m+1) = \int_0^\infty e^{-x} x^m dx = m!$ , on obtient le résultat.

2. Soit  $f_n(x) = \left(1 + \frac{x}{n}\right)^n e^{-2x} \mathbf{1}_{[0,n]}$ . Comme la suite  $\{f_n(x)\}$  est croissante et  $\lim_{n \to \infty} f_n(x) = e^{-x}$ , on obtient le résultat en appliquant le théorème de convergence monotone.

## Correction de l'exercice 14 A

Cf le théorème 24.2 dans le polycopié de Marc Troyanov.

## Correction de l'exercice 15 ▲

- 1. Notons  $g(x, y) = e^{-ixy} f(x)$ . Alors,
  - i.) pour tout  $y \in \mathbb{R}$ , la fonction  $x \mapsto g(x, y)$  est mesurable;
  - ii.) pour presque tout  $x \in \mathbb{R}$  (pour tout les  $x \in \mathbb{R}$  tels que f(x) est finie) la fonction  $y \mapsto g(x,y)$  est continue pour tout  $y \in \mathbb{R}$ ;
  - iii.)  $|g(x,y)| = |e^{-ixy}f(x)| \le |f(x)|$  et  $|f| \in \mathcal{L}^1(\mathbb{R}, \mathbb{R}_+)$ .

On doit montrer que pour tout suite  $\{y_n\}_{n\in\mathbb{N}}$  convergeant vers y, on a  $\lim_{n\to+\infty} \hat{f}(y_n) = \hat{f}(y)$ . Posons  $g_n(x) = g(x,y_n)$ . D'après le théorème de convergence dominée,

$$\lim_{n\to+\infty} \hat{f}(y_n) := \lim_{n\to+\infty} \int_{\mathbb{R}} g_n(x) \, dx = \int_{\mathbb{R}} g(x,y) dx =: \hat{f}(y).$$

Ainsi  $\hat{f}$  est continue.

2. Pour tout  $y \in \mathbb{R}$ ,  $|\hat{f}(y)| \le \int_{\mathbb{R}} |e^{-ixy}f(x)| dx \le \int_{\mathbb{R}} |f(x)| dx = ||f||_{L_1}$  et donc

$$\sup |\hat{f}| \leq ||f||_{L_1}.$$

- 3. Soit  $g(x,y) = e^{-ixy} f(x)$ . Alors, on a
  - i.) pour tout  $y \in \mathbb{R}$ , la fonction  $x \mapsto g(x, y)$  est intégrable ;
  - ii.) pour presque tout  $x \in \mathbb{R}$  la fonction  $y \mapsto g(x,y)$  est dérivable pour tout  $y \in \mathbb{R}$ ;
  - iii.)  $\left|\frac{\partial g(x,y)}{\partial y}\right| = \left|-ixe^{-ixy}f(x)\right| \le |xf(x)| \text{ avec } x \mapsto xf(x) \text{ intégrable.}$

Ainsi, d'après l'exercice 14 (le théorème de dérivation sous le signe ∫), on a

$$\frac{d}{dy}\hat{f} = \int_{\mathbb{R}} e^{-ixy}(-ixf(x))dx = \widehat{-iyf(y)}.$$