

Exercise 7A

Question 3

(i) LHS =
$$\sin^2 \theta + \frac{1}{1 + \tan^2 \theta} \left[\because \left(1 + \tan^2 \theta \right) = \sec^2 \theta \right]$$

= $\sin^2 \theta + \frac{1}{\sec^2 \theta}$
= $\sin^2 \theta + \cos^2 \theta = 1 = RHS$

: LHS = RHS

(ii) LHS =
$$\frac{1}{\left(1 + \tan^2 \theta\right)} + \frac{1}{\left(1 + \cot^2 \theta\right)}$$

= $\frac{1}{\sec^2 \theta} + \frac{1}{\cos \sec^2 \theta} \begin{bmatrix} \because \left(1 + \tan^2 \theta\right) = \sec^2 \text{ or } \\ \left(1 + \cot^2 \theta\right) = \csc^2 \theta \end{bmatrix}$
= $\cos^2 \theta + \sin^2 \theta = 1 = \text{RHS}$

Question 4

(i) LHS =
$$(1 + \cos \theta)(1 - \cos \theta)(1 + \cot^2 \theta)$$

= $(1 - \cos^2 \theta)(1 + \cot^2 \theta)$
= $\sin^2 \theta \times \csc^2 \theta$
 $\left[\because (1 - \cos^2 \theta) = \sin^2 \theta$
and $(1 + \cot^2 \theta) = \csc^2 \theta\right]$
= $\sin^2 \theta \times \frac{1}{\sin^2 \theta} = 1 = RHS$

: LHS = RHS

(ii) LHS =
$$\csc\theta (1 + \cos\theta)(\csc\theta - \cot\theta)$$

= $\left(\cos \cot\theta + \frac{\cos\theta}{\sin\theta}\right)(\csc\theta - \cot\theta)$
= $(\cos \cot\theta + \cot\theta)(\csc\theta - \cot\theta)$
= $(\cos \cot\theta - \cot\theta)$
= $(\cos \cot\theta - \cot\theta)$

********* FND *******