Алгебра. Глава 9. Квадратичные формы и скалярное произведение

Квадратичные формы. Матрицы квадратичной формы в разных базисах.

Квадратичные формы

- Здесь и далее K поле характеристики не 2 (то есть, $2 \neq 0$ в поле K).
- Мы будем иметь дело с линейным пространством V над K с базисом $\{e_1, \dots, e_n\}$.
- Элементы V будут записываться как столбцы координат в этом базисе: $X = (x_1, \dots, x_n)^T$.

Определение

• Функция f:V o K, заданная формулой

$$f((x_1,\dots,x_n)^T) = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1 \leq i < j \leq n} 2 a_{i,j} x_i x_j,$$

где все коэффициенты $a_{i,j} \in K$, называется **квадратичной формой**.

- Зачем в определении фигурирует $2a_{i,j}x_ix_j$ при i
 eq j?
 - Для того, чтобы была возможность расписать этот член как $a_{i,j}x_ix_j+a_{j,i}x_jx_i$, где $a_{i,j}=a_{j,i}.$
- Рассмотрим симметричную матрицу $A=(a_{i,j})_{i,j\in\{1,\dots,n\}}\in M_n(K)$ (то есть, удовлетворяющую условию $a_{i,j}=a_{j,i}$ для всех пар индексов) и вектор $X=(x_1,\dots,x_n)^T.$
- Тогда значение квадратичной формы f на векторе X может быть переписано как $f(X) = X^T A X.$
- Матрица A называется матрицей квадратичной формы f.

Замена базиса

• Как меняется матрица квадратичной формы при замене базиса V?

- Пусть базис $\{e_1,\ldots,e_n\}$ меняется на $\{e'_1,\ldots,e'_n\}$, в котором координаты записываются как $X'=(x'_1,\ldots,x'_n)^T$ (мы считаем, что столбец координат без штрихов в старом базисе соответствует столбцу со штрихами в новом), а матрица квадратичной формы f обозначается A'.
- \circ Это означает, что квадратичная форма f в исходном базисе записывается как X^TAX , а в новом базисе как $(X')^TA'X'$.
- Как нам известно, изменение координат при замене базиса делается умножением на матрицу перехода.
 - \circ Пусть C матрица перехода от $\{e_1',\ldots,e_n'\}$ к $\{e_1,\ldots,e_n\}.$
 - ullet Тогда X=CX' и

$$X^{T}AX = (CX')^{T}A(CX') = (X')^{T}(C^{T}AC)X'.$$

 \circ Следовательно, $A' = C^T A C$.

Приведение квадратичной формы к диагональному виду.

Определение

- Квадратичная форма имеет диагональный вид, если она записывается $f(x_1,\dots,x_n)=\sum_{i=1}^n a_i x_i^2$, то есть, её матрица диагональная.
- Привести квадратичную форму к диагональному виду значит найти такой базис, в котором эта форма имеет диагональный вид.

Теорема 1

• Любую квадратичную форму f:V o K можно привести к диагональному виду.

Доказательство

- Индукция по количеству переменных n.
- База n=1 очевидна. Также утверждение очевидно в случае, когда все коэффициенты квадратичной формы равны 0 (такая форма уже имеет диагональный вид).
- Пусть n>1, для меньшего числа переменных теорема доказана, и мы рассматриваем в базисе e_1,\dots,e_n квадратичную форму:

$$f((x_1,\dots,x_n)^T) = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1 \leq i < j \leq n} 2 a_{i,j} x_i x_j,$$

имеющую хотя бы один ненулевой коэффициент.

Случай 1: $a_{i,i} eq 0$ для $i \in \{1,\ldots,n\}$

• Пусть i=1. Рассмотрим члены f, содержащие x_1 :

$$a_{1,1}x_1^2 + 2a_{1,2}x_1x_2 + \cdots + 2a_{1,n}x_1x_n = a_{1,1}(x_1 + rac{a_{1,2}}{a_{1,1}}x_2 + \cdots + rac{a_{1,n}}{a_{1,1}}x_n)^2 - a_{1,1}\sum_{i=2}^n rac{a_{1,i}}{a_{1,1}}x_i^2.$$

- Построим новый базис $e_1'=e_1$ и $e_i'=e_i-rac{a_{1,i}}{a_{1,1}}e_1$ при $i\in\{2,\dots,n\}$. (Очевидно, вектора e_1',\dots,e_n' линейно независимы, а значит, образуют базис n-мерного пространства.)
- Тогда вектор $(x_1, \dots, x_n)^T$ в исходном базисе в новом базисе имеет вид $(x_1', x_2', \dots, x_n')^T$, где:

$$x_1'=x_1+rac{a_{1,2}}{a_{1,1}}x_2+\cdots+rac{a_{1,n}}{a_{1,1}}x_n,\quad x_i'=x_i$$
 при $i\in\{2,\ldots,n\}.$

• Поэтому, ввиду вышеуказанного преобразования, получаем:

$$f(x_1,\ldots,x_n)=a_{1,1}(x_1')^2+g(x_2',\ldots,x_n'),$$

где g — квадратичная форма, которую можно привести к диагональному виду по индукционному предположению.

• Сделаем это и оставим без изменений базисный вектор e_1' , в результате получится базис, в котором f имеет диагональный вид.

Случай 2: все коэффициенты $a_{i,i}=0$

- Но есть ненулевой коэффициент тогда, не умаляя общности, можно считать, что $a_{1,2} \neq 0$.
- Рассмотрим новый базис, в котором изменён только первый вектор: $e_1', e_2, e_3, \dots, e_n$, причём $e_1' = e_1 e_2$.
- Нетрудно понять, что вектор с координатами $(x_1,\ldots,x_n)^T$ в исходном базисе в новом базисе имеет вид $(x_1',x_2',\ldots,x_n')^T$, где:

$$x_2'=x_2+x_1,\quad x_i'=x_i$$
 при $i
eq 2.$

- Одночлен $2a_{1,2}x_1x_2=2a_{1,2}x_1'(x_2'-x_1')$ в новом базисе содержит $-2a_{1,2}(x_1')^2$.
- В других одночленах $(x_1')^2$ появиться не может, поэтому мы получаем $a_{1,1}' = -2a_{1,2} \neq 0$ и попадаем в разобранный выше случай 1.

Закон инерции квадратичных форм.

Вещественные квадратичные формы

- В этом разделе мы рассмотрим вещественные квадратичные формы, то есть, случай $K=\mathbb{R}$
- Вещественные числа в первую очередь хороши тем, что на них есть отношение порядка больше-меньше.
- Следующую теорему называют законом инерции квадратичных форм.

Теорема 2

• Пусть $f((x_1,\ldots,x_n)^T)$ — вещественная квадратичная форма, которая двумя способами приведена к диагональному виду:

$$g((y_1,\ldots,y_n)^T) = \sum_{i=1}^n a_i y_i^2, \quad h((z_1,\ldots,z_n)^T) = \sum_{i=1}^n b_i z_i^2.$$

• Тогда среди a_1, \ldots, a_n и b_1, \ldots, b_n поровну положительных коэффициентов. Также среди a_1, \ldots, a_n и b_1, \ldots, b_n поровну отрицательных коэффициентов, а значит, и поровну нулевых коэффициентов.

Доказательство

- Достаточно доказать равенство количеств положительных коэффициентов. Утверждение для отрицательных коэффициентов доказывается аналогично, после чего утверждение для нулевых выводится.
- Предположим противное, пусть, скажем, у g положительных коэффициентов меньше, чем у h.
- Можно занумеровать коэффициенты так, чтобы $a_1, \dots, a_p > 0, b_1, \dots, b_{p+q} > 0$, а все остальные коэффициенты не превосходили 0.
- По определению, диагональный вид квадратичной формы это её запись в другом базисе, то есть, существуют такие невырожденные матрицы перехода $C,D\in M_n(\mathbb{R})$, что:

$$f((x_1,\ldots,x_n)^T) = a_1 y_1^2 + \cdots + a_n y_n^2 = b_1 z_1^2 + \cdots + b_n z_n^2,$$

где
$$(y_1,\dots,y_n)^T=C(x_1,\dots,x_n)^T, (z_1,\dots,z_n)^T=D(x_1,\dots,x_n)^T.$$

- Попробуем подобрать такой ненулевой вектор $(x_1,\dots,x_n)^T$, что для него $y_1=\dots=y_p=z_{p+q+1}=\dots=z_n=0.$
- Равенство нулю каждой координаты это линейное уравнение на x_1, \ldots, x_n , вместе получаем ОСЛУ с переменными x_1, \ldots, x_n :

$$egin{cases} y_1=c_{1,1}x_1+c_{1,2}x_2+\cdots+c_{1,n}x_n=0,\ \cdots \ y_p=c_{p,1}x_1+c_{p,2}x_2+\cdots+c_{p,n}x_n=0,\ z_{p+q+1}=d_{p+q+1,1}x_1+d_{p+q+1,2}x_2+\cdots+d_{p+q+1,n}x_n=0,\ \cdots \ z_n=d_{n,1}x_1+d_{n,2}x_2+\cdots+d_{n,n}x_n=0. \end{cases}$$

• Значит, существует ненулевое решение — вектор x_0 , которому соответствуют:

$$Cx_0=y_0=(0,\dots,0,y_{p+1},\dots,y_n),\quad Dx_0=z_0=(z_1,\dots,z_{p+q},0,\dots,0).$$

Тогда:

$$f(x_0) = \sum_{i=p+1}^n a_i y_i^2 \leq 0, \quad f(x_0) = \sum_{i=1}^{p+q} b_i z_i^2 \geq 0,$$

откуда следует, что $f(x_0)=0$ и $z_1=\dots=z_{p+q}=0.$

• Таким образом, $z_0=0$, а это значит, что $D\cdot x_0=0$ для $x_0\neq 0$, что для невырожденной матрицы D невозможно. Противоречие.

Положительно определенные квадратичные формы.

Положительно определенные квадратичные формы

• Пусть V — линейное пространство над $\mathbb R$.

Определение

- Вещественная квадратичная форма $f:V o \mathbb{R}$ называется **положительно определенной**, если для любого $x\in V, x
 eq 0$, мы имеем f(x)>0.
- На всякий случай заметим, что для квадратичной формы всегда выполнено $f(0) = f((0,\dots,0)^T) = 0.$

Теорема 3

• Пусть положительно определенная квадратичная форма $f:\mathbb{R}^n o \mathbb{R}$ приведена к диагональному виду $a_1y_1^2+\dots+a_ny_n^2$. Тогда все коэффициенты a_1,\dots,a_n положительны.

Доказательство

- Пусть это не так и, скажем, $a_1, \ldots, a_p > 0, a_{p+1}, \ldots, a_n \leq 0, p < n.$
- По определению, диагональный вид квадратичной формы это её запись в другом базисе.
- Это означает, что существует такая невырожденная матрица перехода $C \in M_n(\mathbb{R})$, что:

$$f((y_1,\ldots,y_n)^T) = a_1 y_1^2 + \cdots + a_n y_n^2, \quad (y_1,\ldots,y_n)^T = C(x_1,\ldots,x_n)^T.$$

- Попробуем подобрать такой ненулевой вектор $(x_1,\dots,x_n)^T$, что для него $y_1=\dots=y_p=0.$
- Получаем ОСЛУ:

$$egin{cases} y_1 = c_{1,1}x_1 + c_{1,2}x_2 + \cdots + c_{1,n}x_n = 0, \ \cdots \ y_p = c_{p,1}x_1 + c_{p,2}x_2 + \cdots + c_{p,n}x_n = 0. \end{cases}$$

- В этой ОСЛУ n переменных и p < n уравнений, а значит, существует ненулевое решение вектор x_0 .
- Так как матрица C невырождена, вектор $Cx_0 = y_0 = (0, \dots, 0, y_{p+1}, \dots, y_n)$ не равен 0.
- Тогда:

$$f(x_0) = \sum_{i=1}^n a_i y_i^2 = \sum_{i=p+1}^n a_i y_i^2 \leq 0,$$

что противоречит положительной определенности f.

Кривые второго порядка на плоскости.

Кривые второго порядка на плоскости

Определение

• Кривая второго порядка — это все точки $(x,y) \in \mathbb{R}^2$, являющиеся решением уравнения:

$$a'x^2 + b'y^2 + c'xy + d'x + e'y = f',$$

где коэффициенты $a',b',c',d',e',f'\in\mathbb{R}$, среди которых a',b',c' есть ненулевые.

Уменьшение числа ненулевых коэффициентов

- Невырожденной заменой координат можно привести квадратичную форму $a'x^2 + b'y^2 + c'xy$ к диагональному виду (при этом изменятся коэффициенты d', e', f').
- Таким образом, достаточно рассматривать уравнения вида:

$$ax^2 + by^2 + c''x + e''y = f''.$$

- Легко видеть, что хотя бы один из коэффициентов a,b не равен 0.
- Вне зависимости от способа приведения квадратичной формы к диагональному виду, количество положительных, отрицательных и нулевых коэффициентов среди a и b по закону инерции будет одним и тем же.

Случай 1: Коэффициенты a,b одного знака

- Пусть a > 0 и b > 0 (иначе умножим уравнение на -1).
- Уравнение:

$$ax^2 + by^2 + e''x + d''y = f'' \implies a\left(x + rac{d''}{2a}
ight)^2 + b\left(y + rac{e''}{2b}
ight)^2 = f'' - rac{(d'')^2}{4a} - rac{(e'')^2}{4b}.$$

• После замены переменных получится уравнение вида:

$$ax^2 + by^2 = f.$$

- При f < 0 уравнение не имеет решений.
- При f=0 единственное решение точка (0,0).
- При f>0 получаем кривую на плоскости, которая называется эллипсом.
- От исходной системы координат на плоскости мы перешли к итоговой с помощью обратимого линейного оператора (замены базиса) и параллельного переноса на вектор $\left(\frac{d''}{2a}, \frac{e''}{2b}\right)$.

Случай 2: Коэффициенты a,b разных знаков

- Пусть a > 0 и b < 0 (иначе умножим уравнение на -1).
- Аналогично случаю 1, заменой переменных уравнение приводится к виду:

$$ax^2 + by^2 = f.$$

• Поделим x на \sqrt{a} , а y на $\sqrt{-b}$ и получим в новых координатах уравнение:

$$x^2 - y^2 = f.$$

- При f=0 решение этого уравнения две прямые x=y и x=-y.
- При f
 eq 0 сделаем еще одну невырожденную замену переменных: x' := x + y, y' := x y и получим уравнение:

$$x'y'=f.$$

• Такая кривая на плоскости называется гиперболой.

Случай 3: Один из коэффициентов a,b равен 0

- Пусть a>0 и b=0 (иначе переобозначим переменные и при необходимости умножим уравнение на -1).
- Уравнение:

$$ax^2 + d'x + e'y = f'.$$

• Аналогично случаю 1, заменой переменных уравнение приводится к виду:

$$dy = ax^2 + f.$$

- При d=0 уравнение задает на плоскости параболу.
- При $d \neq 0$ решение:

$$x=-f$$
. При $f>0$ решений нет, при $f=0$ решения — прямая $x=0$, а при $f<0$ — две параллельные прямые $x=\sqrt{-f}$ и $x=-\sqrt{-f}$.\

- От исходной системы координат на плоскости мы перешли к итоговой с помощью обратимых линейных операторов и параллельного переноса.
- Эти преобразования плоскости обратимы и переводят прямую в прямую, а параллельные прямые в параллельные прямые.
- Поэтому в случаях, когда получается прямая или две параллельные прямые или когда нет решений, то же самое получается и в исходных координатах.

Вещественное и комплексное скалярное произведение. Свойства. Матрица Грама

Вещественное скалярное произведение

Определение

- Пусть V линейное пространство над $\mathbb R$, а отображение $(,):V imes V o \mathbb R$ удовлетворяет следующим условиям:
 - 1. (lpha x + eta y, z) = lpha(x,z) + eta(y,z) для любых $lpha, eta \in \mathbb{R}$ и $x,y,z \in V$;
 - 2. (x,y) = (y,x) для любых $x,y \in V$;
 - 3. (x, x) > 0 для любого $x \in V$, отличного от 0.
- Тогда (,) называется вещественным скалярным произведением, а V пространством со скалярным произведением, или Евклидовым пространством.

Комплексное скалярное произведение

Определение

- Пусть V линейное пространство над $\mathbb C$, а отображение $(,):V\times V\to \mathbb C$ удовлетворяет следующим условиям:
 - 1. (lpha x + eta y, z) = lpha(x,z) + eta(y,z) для любых $lpha, eta \in \mathbb{C}$ и $x,y,z \in V$;
 - 2. $(x,y)=\overline{(y,x)}$ для любых $x,y\in V$;
 - 3. Для любого $x \in V$, отличного от 0, число (x,x) вещественное и положительное.
- Тогда (,) называется комплексным скалярным произведением, а V пространством со скалярным произведением, или Эрмитовым пространством.

Свойство 1

• Пусть V — пространство со скалярным произведением над $\mathbb C$. Тогда:

$$(z, lpha x + eta y) = lpha(z, x) + eta(z, y)$$

для любых $lpha,eta\in\mathbb{C}$ и $x,y,z\in V$.

Доказательство

$$oldsymbol{\cdot} \ (z,lpha x+eta y)=\overline{(lpha x+eta y,z)}=\overline{lpha (x,z)+eta (y,z)}=\overline{lpha}\cdot\overline{(x,z)}+\overline{eta}\cdot\overline{(y,z)}=\overline{lpha}\cdot\overline{(x,z)}+\overline{eta}\cdot\overline{(y,z)}=\overline{lpha}(z,x)+\overline{eta}(z,y).$$

Свойство 2

• Пусть V — пространство со скалярным произведением над $K,x\in V$. Тогда:

$$(0,x)=(x,0)=0$$

для любого $x \in V$.

Доказательство

• Ввиду определения, нам достаточно доказать, что (0,x)=0. Это очевидно следует из:

$$(0,x) = (0+0,x) = (0,x) + (0,x).$$

Определение

- Пусть $K\in\{\mathbb{C},\mathbb{R}\}$, V пространство со скалярным произведением над K, а e_1,\dots,e_n базис V.
- Матрица Грама базиса e_1,\dots,e_n это матрица $G=(g_{i,j})_{i,j\in\{1,\dots,n\}}$, где $g_{i,j}=(e_i,e_j)$.

Свойства матрицы Грама

• Непосредственно из определений можно вывести свойства матрицы Грама.

Свойство 3

• Пусть V — пространство со скалярным произведением над K. Тогда на главной диагонали матрицы Грама стоят положительные вещественные коэффициенты.

Свойство 4

• Пусть V — пространство со скалярным произведением над $\mathbb R$. Тогда матрица Грама симметрична (то есть, $G^T=G$).

Свойство 5

• Пусть V — пространство со скалярным произведением над $\mathbb C$. Тогда $G^T=\overline G$ (то есть, $g_{i,j}=\overline{g_{j,i}}$).

Неравенство Коши-Буняковского-Шварца.

Неравенство Коши-Буняковского-Шварца над $\mathbb R$

Теорема 4

• Пусть V — пространство со скалярным произведением над $\mathbb{R}, x,y \in V$. Тогда:

$$(x,y)^2 \le (x,x) \cdot (y,y).$$

Доказательство

• По определению вещественного скалярного произведения, для любого $\lambda \in \mathbb{R}$:

$$0 \leq (\lambda x - y, \lambda x - y) = \lambda^2(x,x) - 2\lambda(x,y) + (y,y).$$

• При фиксированных x и y мы имеем квадратный трехчлен относительно λ , у которого, очевидно, не более одного корня, а значит, его дискриминант неположителен:

$$4(x,y)^2 - 4(x,x)(y,y) \le 0,$$

откуда следует доказываемое неравенство.

Неравенство Коши-Буняковского-Шварца над ${\mathbb C}$

Теорема 5

• Пусть V — пространство со скалярным произведением над $\mathbb{C}, x,y \in V$. Тогда:

$$|(x,y)|^2 \le (x,x) \cdot (y,y).$$

Доказательство

- Пусть $(x,y)=|(x,y)|e^{iarphi}.$
- Тогда $\overline{(x,y)}=|(x,y)|e^{-i\varphi}.$
- По определению комплексного скалярного произведения и сказанному выше, для любого $t \in \mathbb{R}$

$$0 \leq (tx + e^{i\varphi}y, tx + e^{i\varphi}y) = (tx, tx) + (e^{i\varphi}y, tx) + (tx, e^{i\varphi}y) + (e^{i\varphi}y, e^{i\varphi}y).$$

• Раскрывая скобки:

$$t^2(x,x)+t\cdot ((e^{iarphi}y,x)+(x,e^{iarphi}y))+e^{iarphi}\cdot \overline{e^{iarphi}}(y,y).=\ t^2(x,x)+t\cdot (e^{iarphi}\overline{(x,y)}+\overline{e^{iarphi}}(x,y))+N(e^{iarphi})(y,y)=\ t^2(x,x)+t\cdot (e^{iarphi}e^{-iarphi}|(x,y)|+e^{-iarphi}e^{iarphi}|(x,y)|)+(y,y)=\ t^2(x,x)+2t|(x,y)|+(y,y)$$

• При фиксированных x и y мы имеем квадратный трехчлен относительно t, у которого, очевидно, не более одного корня, а значит, его дискриминант неположителен:

$$4|(x,y)|^2 - 4(x,x)(y,y) \le 0,$$

откуда следует доказываемое неравенство.

Длина вектора.

Длина вектора

Определение

• Пусть $K\in\{\mathbb{C},\mathbb{R}\}$, V — пространство со скалярным произведением над $K,x\in V$. Длина вектора x — это:

$$\|x\|:=\sqrt{(x,x)}.$$

• Длина ненулевого вектора — положительное вещественное число.

Свойство 1

• Если $\lambda \in K$, то:

$$\|\lambda x\| = |\lambda| \cdot \|x\|.$$

Доказательство

• При $K=\mathbb{R}$ считаем, что $\lambda=\overline{\lambda}$:

$$\|\lambda x\| = (\lambda x, \lambda x) = \lambda \cdot \overline{\lambda} \cdot (x, x) = |\lambda|^2 \cdot (x, x) = |\lambda| \cdot \|x\|.$$

Свойство 2

• Если $x,y\in V$, то:

$$||x + y|| \le ||x|| + ||y||.$$

Доказательство

- $||x+y||^2 = (x+y,x+y) = (x,x) + (y,y) + (x,y) + (y,x)$.
- При $K=\mathbb{R}$ по <u>Теореме 4</u> (Нер-во КБШ) имеем $(x,y)=(y,x)\leq \|x\|\cdot \|y\|$, и продолжаем:

$$\|x+y\|^2 \le \|x\|^2 + \|y\|^2 + 2\|x\| \cdot \|y\| = (\|x\| + \|y\|)^2,$$

откуда следует доказываемое неравенство.

• При $K=\mathbb{C}$ по Теореме 5 имеем:

$$(x,y) + (y,x) = 2\operatorname{Re}((x,y)) \le 2|(x,y)| \le 2\|x\| \cdot \|y\|,$$

и продолжаем точно так же, как в вещественном случае.

Свойство 3

• (Неравенство треугольника). Если $x,y,z\in V$, то:

$$||x-y|| \le ||x-z|| + ||z-y||.$$

Доказательство

• Так как x-y=(x-z)+(z-y), утверждение следует из Свойства 2.

Ортогональный и ортонормированный базис. Вычисление скалярного произведения.

Ортогональный и ортонормированный базис

Определение

- Пусть $K \in \{\mathbb{R}, \mathbb{C}\}$, а V пространство со скалярным произведением.
- Пусть e_1, \ldots, e_n базис V.
 - 1. Базис называется **ортогональным**, если его матрица Грама диагональна, и **ортонормированным**, если его матрица Грама равна E_n .
 - 2. Векторы $x,y\in V$ называются ортогональными, если (x,y)=0.
- Ортогональность базиса эквивалентна тому, что $(e_i,e_j)=0$ при $i \neq j$ (то есть, любые два различных базисных вектора ортогональны).
- Базис является ортонормированным, если и только если он ортогональный и $(e_i,e_i)=1$ для каждого базисного вектора.

Свойство 1

• Пусть V — пространство со скалярным произведением над $\mathbb{R}, e_1, \dots, e_n$ — ортонормированный базис $V, x, y \in V$, причем $x = (x_1, \dots, x_n)^T$ и $y = (y_1, \dots, y_n)^T$ — координаты векторов в указанном базисе. Тогда:

$$(x,y)=\sum_{i=1}^n x_iy_i.$$

Доказательство

•
$$(x,y)=\left(\sum_{i=1}^n x_i e_i,\sum_{j=1}^n y_j e_j\right)=\sum_{i=1}^n \sum_{j=1}^n x_i y_j (e_i,e_j)=\sum_{i=1}^n x_i y_i,$$
 так как $(e_i,e_i)=1$ и $(e_i,e_j)=0$ при $i\neq j$. \square

Свойство 2

• Пусть V — пространство со скалярным произведением над $\mathbb{C}, e_1, \dots, e_n$ — ортонормированный базис $V, x, y \in V$, причем $x = (x_1, \dots, x_n)^T$ и $y = (y_1, \dots, y_n)^T$ — координаты векторов в указанном базисе. Тогда:

$$(x,y) = \sum_{i=1}^n x_i \cdot \overline{y_i}.$$

• $(x,y)=\left(\sum_{i=1}^n x_ie_i,\sum_{j=1}^n y_je_j\right)=\sum_{i=1}^n\sum_{j=1}^n x_i\cdot\overline{y_j}(e_i,e_j)=\sum_{i=1}^n x_i\cdot\overline{y_i},$ так как $(e_i,e_i)=1$ и $(e_i,e_j)=0$ при $i\neq j.$

Ортогонализация набора векторов.

Ортогонализация Грама-Шмидта

Теорема 6

• Пусть V — пространство со скалярным произведением над K, а $e_1,\dots,e_m\in V$. Тогда существует такой ортогональный набор векторов $f_1,\dots,f_m\in V$, что для любого $p\in\{1,\dots,m\}$ выполнено $\mathrm{Lin}(f_1,\dots,f_p)=\mathrm{Lin}(e_1,\dots,e_p)$.

Доказательство

- Будем доказывать утверждение индукцией по m.
- База для m=1 очевидна: возьмем $f_1=e_1.$
- **Переход**. Пусть набор f_1,\ldots,f_k уже построен.
- Будем искать следующий вектор в виде:

$$f_{k+1}=e_{k+1}+\sum_{i=1}^k lpha_i f_i.$$

• Так как $\mathrm{Lin}(e_1,\ldots,e_k)=\mathrm{Lin}(f_1,\ldots,f_k)$ и по построению f_{k+1} , мы имеем:

$$\operatorname{Lin}(f_1,\ldots,f_k,f_{k+1})=\operatorname{Lin}(f_1,\ldots,f_k,e_{k+1})=\operatorname{Lin}(e_1,\ldots,e_k,e_{k+1}).$$

- ullet Если $f_i=0$, коэффициент $lpha_i$ может быть любым. Пусть $f_i
 eq 0$.
- Для того, чтобы найти коэффициент $lpha_i$ (где $i \in \{1,\dots,k\}$), заметим, что:

$$0=(f_{k+1},f_i)=(e_{k+1},f_i)+\sum_{j=1}^klpha_j(f_j,f_i)=(e_{k+1},f_i)+lpha_i(f_i,f_i),$$

откуда
$$lpha_i = -rac{(e_{k+1},f_i)}{(f_i,f_i)}.$$

• Если векторы e_1,\dots,e_k (где $k\leq m$) попарно ортогональны, то алгоритм ортогонализации их не изменит, и мы получим $f_i=e_i$ для всех $i\in\{1,\dots,k\}$.

Следствие 2

- Любое подпространство W < V имеет ортогональный и ортонормированный базис.

Доказательство

- Рассмотрим базис W и подвергнем его ортогонализации получится ортогональный базис e_1, \dots, e_n .
- Базис e_1',\dots,e_n' , где $e_i'=\frac{e_i}{\sqrt{(e_i,e_i)}}$, ортонормированный (извлечение квадратного корня корректно, так как (e_i,e_i) положительное вещественное число).

Ортогональное дополнение: теорема о размерности и прямой сумме.

Ортогональное дополнение

Определение

- Пусть $K \in \{\mathbb{R}, \mathbb{C}\}$, а V пространство над K со скалярным произведением.
- Для W < V определим ортогональное дополнение как:

$$W^{\perp}=\{x\in V: orall w\in W\ (x,w)=0\}.$$

Теорема 7

- ullet Пусть $W < V, \dim(V) = n, \dim(W) = m.$ Тогда:
 - $\bullet W^{\perp} < V$.
 - $\circ \dim(W^{\perp}) = n m,$
 - $\bullet \ W \oplus W^{\perp} = V$
 - $\circ \ (W^\perp)^\perp = W.$

Доказательство

- Пусть f_1,\ldots,f_m ортогональный базис W, который мы уже научились строить.
- Дополним его до базиса V, пусть получился базис $f_1, \ldots, f_m, e_{m+1}, \ldots, e_n$.
- Применим к этому базису ортогонализацию Грама-Шмидта, пусть в результате получились векторы $f_1,\dots,f_m,f_{m+1},\dots,f_n$ (напомним, что первые m векторов не изменились!).
- Рассмотрим $U = \operatorname{Lin}(f_{m+1}, \dots, f_n)$.

Утверждение 1

• $U \subset W^{\perp}$.

Доказательство

- ullet Пусть $u\in U,w\in W.$ Нам нужно доказать, что (w,u)=0.
- Тогда $w=\sum_{i=1}^m lpha_i f_i$ и $u=\sum_{j=m+1}^n eta_j f_j$, где $lpha_i,eta_j\in\mathbb{R}.$ Так как для любых $i\in\{1,\dots,m\}$ и $j\in\{m+1,\dots,n\}$ мы имеем $(f_i,f_j)=0$:

$$(w,u) = \sum_{i=1}^m \sum_{j=m+1}^n lpha_i \cdot \overline{eta_j} \cdot (f_i,f_j) = 0.$$

Утверждение 2

• $U\supset W^{\perp}$.

Доказательство

- ullet Пусть $x\in W^\perp$. Тогда $x=\sum_{i=1}^n lpha_i f_i$.
- Для любого $s \in \{1, \dots, m\}$ имеем:

$$0=(x,f_s)=\sum_{i=1}^n lpha_i(f_i,f_s)=lpha_s(f_s,f_s),$$

откуда следует, что $lpha_s=0$. Но тогда $x\in U$.

Итог

- ullet Таким образом, $W^\perp = U = \mathrm{Lin}(f_{m+1},\ldots,f_n)$ и $\mathrm{dim}(W^\perp) = n-m$.
- ullet Так как $f_1,\ldots,f_m,f_{m+1},\ldots,f_n$ базис V, то 0 единственным образом представляется в виде линейной комбинации этих векторов.
- Следовательно:

$$V = \operatorname{Lin}(f_1, \dots, f_m) \oplus \operatorname{Lin}(f_{m+1}, \dots, f_n) = W \oplus W^\perp.$$

- Теперь возьмем ортогональный базис f_{m+1},\ldots,f_n пространства W^\perp , дополним его векторами f_1, \ldots, f_m до базиса V.
- Этот базис и так ортогонален, и мы аналогично сказанному выше получаем, что:

$$(W^\perp)^\perp = \operatorname{Lin}(f_1,\ldots,f_m) = W.$$

Свойства ортогонального дополнения: сумма и пересечение.

Свойства ортогонального дополнения

Свойство 1

ullet Пусть W, U < V, причем $W \subset U$. Тогда $U^\perp \subset W^\perp$.

Доказательство

• Непосредственное следствие определения.

Свойство 2

• Пусть W, U < V. Тогда:

$$(W+U)^{\perp}=W^{\perp}\cap U^{\perp}.$$

Доказательство

ullet По Свойству 1, $(W+U)^\perp\subset W^\perp$ и $(W+U)^\perp\subset U^\perp$, следовательно:

$$(W+U)^{\perp}\subset W^{\perp}\cap U^{\perp}.$$

- Наоборот, пусть $a \in W^\perp \cap U^\perp$.
- Рассмотрим любой вектор $x \in W + U$. Тогда x = y + z, где $y \in W$ и $z \in U$.
- ullet Так как $a\in W^\perp$, мы имеем (a,y)=0. Так как $a\in U^\perp$, мы имеем (a,z)=0.
- Но тогда:

$$(a,x) = (a,y+z) = (a,y) + (a,z) = 0.$$

• Следовательно:

$$W^\perp\cap U^\perp\subset (W+U)^\perp.$$

Свойство 3

• Пусть W, U < V. Тогда:

$$(W\cap U)^\perp=W^\perp+U^\perp.$$

Доказательство

• По Свойству 2 мы имеем:

$$(W^\perp + U^\perp)^\perp = (W^\perp)^\perp \cap (U^\perp)^\perp = W \cap U.$$

• Следовательно:

$$(W\cap U)^\perp=(W^\perp+U^\perp)^{\perp\perp}=W^\perp+U^\perp.$$

Теорема об изоморфизме, сохраняющем скалярное произведение.

Теорема 8

Утверждение

• Пусть V и U — два пространства со скалярным произведением над $K \in \{\mathbb{R}, \mathbb{C}\}$, $\dim(V) = \dim(U) = n$. Тогда существует изоморфизм (то есть, биективное линейное отображение) $\varphi: V \to U$, сохраняющий скалярное произведение (то есть, $(x,y) = (\varphi(x), \varphi(y))$ для любых $x,y \in V$).

Доказательство

- Пусть e_1, \ldots, e_n ортонормированный базис V, а f_1, \ldots, f_n ортонормированный базис U.
- Зададим arphi формулами $arphi(e_i) = f_i$ для всех $i \in \{1, \dots, n\}.$
- Если $(x_1,\dots,x_n)^T$ координаты $x\in V$ в базисе e_1,\dots,e_n , то $\varphi(x)$ имеет такие же координаты в базисе f_1,\dots,f_n .
- Аналогично, пусть $(y_1,\dots,y_n)^T$ координаты $y\in V$ в базисе e_1,\dots,e_n и arphi(y) в базисе f_1,\dots,f_n .

Случай $K=\mathbb{R}$

Тогда:

$$f(x,y)=\sum_{i=1}^n x_iy_i=(arphi(x),arphi(y)).$$

Случай $K=\mathbb{C}$

Тогда:

$$f(x,y) = \sum_{i=1}^n x_i \cdot \overline{y_i} = (arphi(x), arphi(y)).$$