Transcript comprehensive comparison

IsoComp team

Introduction

- 20,000 protein coding genes, they produce at least 100,000 splice isoforms
 - Alternative splicing is crucial regulator of gene expression and a key contributor to both normal developmental processes and disease states
- Long-read able bypass the transcript reconstruction challenges of short reads
- Integration of transcript similarity is as important as well as their genome coordinates

Why long reads?

- -Sequence DNA in real time
- -~ 20kb
- -Low error rate (<1% PacBio HiFi and <4% ONT)

Gene Annotation Formats

- GTF (Gene Transfer Format) and GFF (General Feature Format)
- GffRead, GffCompare, AGAT, bedtools, and parse eval are sources for manipulate GTF/GFF files
- Comparison is based on transcript coordinates only
- Transcripts can exhibit variability due to genetic variants or RNA editing processes
- Thus, there is a demand for a comprehensive Transcript Comparison

Our approach

- N number of samples
- Agnostic input (ONT or PacBio)
- Coordinate and Sequence level comparison
- We utilized samples HG002 (3 replicates), HG004, and HG005

Implementation

Running the pipeline

Installation

pip install isocomp==0.3.0

For guidelines run:

isocomp --help

Step 1. Create windows

isocomp create_windows -i sample1.gtf sample2.gtf sample3.gtf -f transcript -o clustered_file.gtf

Step 2. Find unique isoforms across multiple samples

isocomp find_unique_isoforms -a clustered_file.gtf -f fasta_map.csv

Output (intermediate)

- Run time and CPUs
 - ~ 15 minute
 - 16 CPUs (DNAnexus)
 - ~8G RAM

Functionality

- Find intervals
- Compare intervals
- Multithreading
- Easy installation
- Convenient TSV output (coming soon...)

Awesome job!!

cluster	chr	isoform1_source	isoform1_name	isoform1_start	isoform1_end	isoform1_strand	isoform2_source	isoform2_name	isoform2_start	isoform2_end	isoform2_strand	normalized_edit_dist	cigar
4869	chr11	NA24385.filtered	PB.18360.36	10797054	10808926	-	NA26105.filtered	PB.12585.43	10797054	10808926	-	0.11	222=2 3=1 1=
4869	chr11	NA24385.filtered	PB.18360.36	10797054	10808926	-	NA26105.filtered	PB.12585.42	10797054	10808926	-	0.11	858=1 1=4 2=
4869	chr11	NA24385.filtered	PB.18360.36	10797054	10808926	-	NA26105.filtered	PB.12585.33	10797054	10808926	-	0.12	858=1 1=4 2=
4869	chr11	NA24385.filtered	PB.18360.36	10797054	10808926		NA24385.filtered	PB.18360.55	10797054	10808926	-	0.12	858=1 1=4 2=
4869	chr11	NA24385.filtered	PB.18360.36	10797054	10808926	(*)	NA24385.filtered	PB.18360.46	10797054	10808926	-	0.07	1096=1011=7
4869	chr11	NA24385.filtered	PB.18360.36	10797054	10808926	:(=)	NA24385.filtered	PB.18360.44	10797054	10808926		0.09	858=1 1=4 2=
4869	chr11	NA24385.filtered	PB.18360.36	10797054	10808926	-	NA24385.filtered	PB.18360.30	10797054	10808926		0.17	415=1I1=1X2
4869	chr11	NA24385.filtered	PB.18360.36	10797054	10808926	-	NA27730.filtered	PB.12427.42	10797054	10808926	-	0.12	222=1 1=14 1
4869	chr11	NA24385.filtered	PB.18360.36	10797054	10808926	-	NA27730.filtered	PB.12427.38	10797054	10808926	-	0.11	858=111=412=
4869	chr11	NA24385.filtered	PB.18360.36	10797054	10808926	-	NA27730.filtered	PB.12427.41	10797054	10808926	-	0.12	858=1 1=4 2=
4869	chr11	NA26105.filtered	PB.12585.43	10797054	10808926		NA26105.filtered	PB.12585.42	10797054	10808926	-	0.03	222=2D3=1D
4869	chr11	NA26105.filtered	PB.12585.43	10797054	10808926	123	NA26105.filtered	PB.12585.33	10797054	10808926	-	0.05	222=2D3=1D
4869	chr11	NA26105.filtered	PB.12585.43	10797054	10808926		NA24385.filtered	PB.18360.55	10797054	10808926	-	0.05	222=2D3=1D
4869	chr11	NA26105.filtered	PB.12585.43	10797054	10808926	-	NA24385.filtered	PB.18360.46	10797054	10808926	-	0.04	222=2D3=1D
4869	chr11	NA26105.filtered	PB.12585.43	10797054	10808926		NA24385.filtered	PB.18360.44	10797054	10808926	-	0.02	222=2D3=1D
4869	chr11	NA26105.filtered	PB.12585.43	10797054	10808926		NA24385.filtered	PB.18360.30	10797054	10808926	-	0.22	222=2D3=1D
4869	chr11	NA26105.filtered	PB.12585.43	10797054	10808926		NA27730.filtered	PB.12427.42	10797054	10808926	-	0.02	222=1 1=5 1=
4869	chr11	NA26105.filtered	PB.12585.43	10797054	10808926		NA27730.filtered	PB.12427.38	10797054	10808926		0.03	222=2D3=1D

Results: Most Isoforms are unique by TSS and/or TTS

Results: Sequence comparison alone is difficult to classify

Current State

 Proof of concept: There exist isoforms equivalent by coordinate which possess sequence variants

Future Directions

- Other tools possess more sophisticated methods of comparing intervals
 - Implement interval/comparison with interval tree
 - Using this, we can both classify isoform diversity with labels such as differential start/end site, exon usage, splice site variants etc.
 - And, for those transcripts which appear identical by coordinate, resolve any differences at the sequence level
- Output format Current results table represents an intermediate step. The results still must be refined into a usable format

Acknowledge

Sej Modha

Chase Mateusiak

Trinh Tat

Jędrzej Kubica

Medhat Mahmoud

- Muhammad Sohail Raza
- Rupesh Kesharwani
- Sejal Modha
- Umran Yaman
- Yutong Qiu
- Abdullah Al Nahid
- Bida Gu
- Chia Sin Liew
- Evan Biederstedt
- Luis Fernández

Example 2

3375/3564 (94.7%)

Similarity: 3375/3564 (94.7%)

Aligned_sequences: 2
1: PB.13463.14

Length: 3564
Identity: