

Target: ECU555-80 (DEV)

Floating Point: single (32 bits) Stacks - FGND: 4096 BGND: 2048 IDLE: 1024 IRQ: 1280

eap Size: 4096

DLL Filename: BaseEngin_002

SRZ Filename: BaseEngineController_LS_002

Total FLASH:
Total EEPROM:
Total RAM:
App FLASH:
App EEPROM:
App RAM:

MotoHawk (RTW) Fault Manager Definition

Storage: FLASH X/Y Data Type: uint16 Read Access: 1 Write Access: 1 Clear Access: 1

Main Power Relay

MotoHawk Trigger Definition

FGND_RTI Period: 5 ms BGND_BASE Period: 50 ms (FGND x 10)

MotoHawk CAN Definition

Name: CAN_1
Bus: CAN1

Bit Timing: 500 kbaud

TX Queue: 16 messages

RX Queue: 16 messages

MotoTune Protocol Enabled
City ID: 0x0B (PCM-1)

MotoHawk CAN Definition

Name: CAN_2
Bus: CAN2
Bit Timing: 500 kbaud

Bit Timing: 500 kbaud

TX Queue: 16 messages

RX Queue: 16 messages

MotoTune Protocol Enabled City ID: 0x0B (PCM-1)

CCP Handler
Instance: CCP1
Station Addr: 0x0031
DAQs: 10
ODTs: 8
ODT Storage: CAL

Rx ID: 0x18ef0231 (ext)
Tx ID: 0x18ef3102 (ext)

CCP CAN Protocol

MotoHawk CCP DAQ Triggers:

- FGND_RTI_PERIODIC
- FGND_5XRTI_PERIODIC
- FGND_MID_TDC_EVENT
- FGND_20XRTI_PERIODIC

BGND BASE PERIODIC

Trigger

Enable

Rate Limiter - Limit allowable change in signal per timestep

Trigger

Enable

Enable

Enable

f() function

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Л

boolean(1) boolean

Data Write

data ShutDownTasksComplete

boolean

Calibrations

BaseAirflowOfstMaxValue	%	Maximum value that can be adapted into the BaseAirflowOfst table. MotoTune Path: Engine Control Run RPM Control Min Gov Min Gov Config
BaseAirflowOfstMinValue	%	Minimum value that can be adapted into the BaseAirflowOfst table. MotoTune Path: Engine Control Run RPM Control Min Gov Min Gov Config

Calibratable wrapper around the Saturation block


```
Normal/
du: EquivOut = EquivIn;
du: SparkOut = 0;

[DFCO_Off/
en: count = 0;
en: EquivStart = EquivIn;
du: count = count + 1;
du: EquivOut = (EquivStart/thresh)*count;
du: SparkOut = (SparkRet/thresh)*count;
```


Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Calibratable wrapper around the Saturation block

Move into On State if RPM > EntryCriteria or Target.

Move into Trans State if APP falls below TPS, PID controller is frozen during Trans State, but output is based on APP.

When in AllSpeedGov mode, switch to Trans if AllSpeedGov setpoint is less than MaxGov setpoint minus hyst.

Move from Trans State back to On State if RPM > Target.

Move from Trans State to Off if RPM < Entry Criteria.

1st-Order Ramp Up y[k] = a*x[k] + (1-a)*y[k-1] where a = t/T

1st-Order Ramp Down y[k] = a*x[k] + (1-a)*y[k-1] where a = t/T

Calibratable wrapper around the Saturation block

Determine if RPM is falling

1st-Order Ramp Down y[k] = a*x[k] + (1-a)*y[k-1] where a = t/T

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

AC Fault

Tunable 1st-Order Low-Pass Filter

Count up to "BARO_Count" samples

Collect samples by summing, and divide by the total, to obtain average

Engine Steady-State Flag

Enable

Enable

Rate Limiter - Limit allowable change in signal per timestep

Collect samples by summing, and divide by the total, to obtain average

Collect samples by summing, and divide by the total, to obtain average

Out

double

f()

f()

Sample Crank-Synchronous MAP Once at Startup

Out

double

Out

double

Out

double

else { }

Action Port

Out

double

1 In

Volatile Data TDC double

Always execute Main Power Relay control in the background.

The saving and restoring of non-volatile variables must be called from a background priority task.

NonVolatile Memory Store/Restore Hooks from MotoTune

Post Shutdown two ticks before MPRD off

Loop Forever Causing Watchdog Reset

Save NV Vars one tick before MPRD off

Delay the rising and falling of a boolean signal

Post Shutdown two ticks before MPRD off

Trigger

Enable

Inline Code

Include: Start:

Output: while (1);

Loop Forever Causing Watchdog Reset

f()

do { ... } while

While new CCP Command

MotoHawk Absolute Override

MotoHawk Relative Override

f()

Trigger

motohawk_sfun_restore_nvmem

f()

Trigger

motohawk_sfun_store_nvmem

MotoHawk (RTW) Code Coverage Test Bit

Output true once on falling edge of event display variable

Output function-call once on falling edge of event display variable

f()

Trigger

MotoHawk(RTW) Event Call

MotoHawk (RTW)
Code Coverage Test Bit

Check how input compares to 'val'

Discrete Derivative

1st-Order Low-Pass Filter

$$y[k] = a*x[k] + (1-a)*y[k-1]$$

where a = t/T

Tunable 1st-Order Low-Pass Filter

Convert a boolean input signal to a more slowly ramping 'alpha' from 0 to 1

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Discrete Integrator, with output and state saturation.

Output 'In' when between Min and Max, and saturate against limits otherwise.

Calibratable wrapper around the Saturation block

Output the time since enabled, by summing up 'dt'.

If this block is in an enabled subsystem that resets its states, then the count will reset as well.

Otherwise, the count will resume from where it left off.

Note that when the Sample Time of the the 'dt' is non-positive, the block will only output its Initial Value if the enabled subsystem is set to reset its state. This means that the count will immediately 'catch up' if the enabled subsystem holds its states.

Rate Limiter - Limit allowable change in signal per timestep

Rate Limiter - Limit allowable change in signal per timestep

The outputs of this block are designed to be directly connected to a MotoHawk PWM block.

EmptySubsystem

