# TABELLE HASH

#### PIETRO DI LENA

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA UNIVERSITÀ DI BOLOGNA

# Algoritmi e Strutture di Dati Anno Accademico 2022/2023



### Introduzione

- Molte applicazioni richiedono una struttura dati di tipo Dizionario che supporti in maniera estremamente efficiente unicamente le operazioni basilari SEARCH, INSERT, DELETE
  - Esempio: i compilatori utilizzano un Dizionario per memorizzare ed etichettare gli identificatori (chiavi) nel programma
- La Tabella Hash implementa efficientemente la struttura dati Dizionario
  - Idea: generalizzare l'indicizzazione in un array ordinario
- Per quanto le operazioni su una Tabella Hash possano avere un costo pessimo lineare, in media le prestazioni computazionali sono efficienti
  - Sotto ragionevoli assunzioni probabilistiche le operazioni SEARCH, INSERT, DELETE hanno un costo medio O(1)

### Nozioni preliminari

- Indichiamo con
  - *U* = Universo di tutte le chiavi possibili
  - $\blacksquare$  K =Insieme di tutte le chiavi effettivamente utilizzate
- Scelte implementative: dipendono dal dominio di applicazione
- Esempi:
  - $U = \{0, 1, \dots, m-1\}$  con m piccolo,  $|K| \sim |U|$ 
    - Usiamo tabelle ad indirizzamento diretto
  - lacksquare U è un insieme generico molto grande,  $|K|\ll |U|$ 
    - Usiamo Tabelle Hash

### Tabelle ad indirizzamento diretto

- lacksquare Implementazione basata su array  ${\mathcal T}$  di dimensione  $|{\mathcal U}|$
- lacksquare La chiave k è memorizzata nella posizione k dell'array
- Ricordiamo che tutte le chiavi sono distinte



### Tabelle ad indirizzamento diretto

```
1: function SEARCH(HASHTAB T, KEY k) \rightarrow DATA

2: if T[k] == NIL then return NIL

3: else return T[k]. data

4:

5: function INSERT(HASHTAB T, KEY k, DATA d)

6: T[k]. key = new NODE(k, d)

7:

8: function DELETE(HASHTAB T, KEY k)

9: T[k] = NIL
```

- Costo computazionale in termini di tempo: O(1)
- Costo computazionale in termini di memoria:  $\Theta(|T|) = \Theta(|U|)$ 
  - Se  $|K| \sim |U|$  soluzione accettabile
  - Se  $|K| \ll |U|$  soluzione non accettabile
    - Esempio: U = identificatori lunghi massimo 20 caratteri e T array di puntatori (4 bytes per puntatore)

$$|U| > 26 * (26 + 10)^{19} \approx 10^{31} \Rightarrow |T| > 10^{31} * 4$$
bytes  $> 10^{19}$ Terabytes

# TABELLE HASH

- lacksquare Un array di dimensione  $\Theta(|U|)$  richiede troppa memoria se U è grande
- lacksquare Generalmente l'insieme di chiavi K è molto più piccolo rispetto ad U
- Soluzione: Tabelle Hash
  - Usiamo un array  $T[0, \dots, m-1]$  di dimensione  $m = \Theta(|K|)$
  - Usiamo una funzione hash  $h: U \rightarrow [0, \cdots, m-1]$
- Indirizzamento hash
  - Diciamo che h(k) è il valore hash della chiave k
  - La funzione h trasforma una chiave k in un indice dell'array T
  - La chiave k viene mappata nello slot T[h(k)]
  - Se due chiavi hanno lo stesso valore hash abbiamo una collisione
- Problema: evitare e gestire le collisioni hash
  - Idealmente vorremmo funzioni hash che evitino sempre collisioni
  - Non possiamo evitarle, dobbiamo almeno minimizzarle

# TABELLE HASH

- Implementazione basata su array T di dimensione  $\Theta(|K|)$
- La chiave k e i dati sono memorizzati nella posizione h(k) dell'array
- Evitare le collisioni è impossibile anche con buone funzioni hash



### RICAPITOLANDO

- Per implementare una Tabella Hash efficiente abbiamo bisogno di
  - 1 Una funzione hash
    - Deve poter essere calcolata velocemente
    - Deve garantire una buona distribuzione delle chiavi su T
    - Una buona distribuzione minimizza il rischio di collisioni
  - 2 Un metodo per gestire le collisioni
    - Le collisioni sono inevitabili
    - Quando non riusciamo ad evitarle dobbiamo gestirle
  - 3 Un array  $T[0, \dots, m-1]$  di dimensione  $m = \Theta(|K|)$ 
    - Generalmente possiamo solo stimare m
    - Non sappiamo a priori quante chiavi andremo a memorizzare
    - Potrebbe essere necessario ridimensionare T
    - La scelta migliore per la dimensione *m* dipende dalla funzione hash e dal metodo utilizzato per gestire le collisioni

#### Funzioni hash

- Una buona funzione hash soddisfa (approssimativamente) la proprietà di uniformità semplice (hashing uniforme semplice)
  - Una funzione hash h deve distribuire uniformemente le chiavi negli indici  $[0, \cdots, m-1]$  della tabella T
  - Ogni indice i = h(k) deve essere generato con probabilità 1/m
  - Se alcuni indici in  $[0, \cdots, m-1]$  sono *scelti* con maggiore probabilità da h allora avremo un numero maggiore di collisioni
- Per soddisfare la proprietà di uniformità semplice bisogna conoscere la distribuzione di probabilità con cui le chiavi sono *estratte* da *U* 
  - Conoscere tale distribuzione di probabilità è spesso irrealistico
  - Solo in casi specifici tale distribuzione è nota
  - Esempio: assumendo che le chiavi k siano estratte a caso da U = [0,1) (tutte le chiavi in U sono equiprobabili). Allora

$$h(k) = |mk|$$

soddisfa la proprietà di uniformità semplice

# FUNZIONI HASH: ASSUNZIONI

- 1 Tutte le chiavi sono equiprobabili
  - lacktriangle Tutte le chiavi hanno la stessa probabilità di essere estratte da U
  - Non è sempre vero (es. identificatori in un programma)
  - Semplificazione necessaria per proporre un meccanismo generale
- **2** La funzione hash può essere calcolata in tempo O(1)
  - Una codifica hash non O(1) domina il costo delle operazioni
  - Es. costa più calcolare il valore hash che effettuare una ricerca
  - In realtà, ci accontentiamo di hashing sufficientemente veloci
- 3 Tutte le chiavi sono valori interi non-negativi
  - $\blacksquare$  E' sempre possibile trasformare una qualsiasi chiave k in un intero
  - lacktriangle Es. numero decimale ottenuto dalla rappresentazione binaria di k

# Esempio: da stringa ad intero positivo

- Vogliamo trasformare una chiave di tipo stringa in intero
- Idea: trasformiamo i caratteri in un codice binario
- Assumiamo di associare i seguenti codici alle lettere dell'alfabeto  $a=1, b=2, c=3, d=4, e=5\cdots, r=18, \cdots z=26$  in binario sono sufficienti 5 bit per carattere
- Codifica ottenuta concatenando i codici binari $bin("beer") = 00010\ 00101\ 00101\ 10010$  che rappresenta il numero 70.834 in base 10

# Funzione hash: metodo della divisione

- Metodo della divisione:  $h(k) = k \mod m$
- Esempi:
  - Se  $m = 12, k = 100 \Rightarrow h(k) = 4$
  - Se  $m = 10, k = 101 \Rightarrow h(k) = 1$
- Vantaggi:
  - Molto efficiente (richiede solo una divisione intera)
- Svantaggi:
  - Suscettibile a specifici valori di m (potrebbe non usare tutto k)
  - Esempio 1: se m = 10 allora h(k) = ultima cifra di k
  - Esempio 2: se  $m = 2^p$  allora h(k) dipende unicamente dai p bit meno significativi di k e non da tutti i bit di k
  - Soluzione: scegliere m come numero primo distante da potenze di 2 (e di 10)

# FUNZIONE HASH: METODO DELLA MOLTIPLICAZIONE

- Metodo della moltiplicazione:  $h(k) = \lfloor m(kC \lfloor kC \rfloor) \rfloor$ 
  - Sia C una costante 0 < C < 1
  - Moltiplichiamo k per C e prendiamo la parte frazionaria
  - Moltiplichiamo quest'ultima per *m* e prendiamo la parte intera

# Esempi:

- Se  $m = 12, k = 101, C = 0.8 \Rightarrow h(k) = 9$
- Se  $m = 1000, k = 124, C = (\sqrt{5} 1)/2 \approx 0.618 \Rightarrow h(k) = 18$

# Svantaggi:

- La costante *C* influenza la proprietà di uniformità di *h*
- $C = (\sqrt{5} 1)/2$  suggerito da Knuth (*The Art of Computer Programming, Vol 3*)

### ■ Vantaggi:

■ Il valore di *m* non è critico

# Funzione hash: metodo della codifica algebrica

■ Metodo della codifica algebrica:

$$h(k) = (k_n x^n + k_{n-1} x^{n-1} + \dots + k_1 x + k_0) \mod m$$

- $k = k_n k_{n-1} \cdots k_1 k_0$  e  $k_i$  è l'*i*-esimo bit della rappresentazione binaria di k, oppure l'*i*-esima cifra della rappresentazione decimale di k, o anche il codice ascii dell'*i*-esimo carattere
- x è un valore costante
- Esempio: usando la rappresentazione decimale

■ Se 
$$m=12, k=234, x=3 \Rightarrow h(k)=(2\times3^2+3\times3+4) \mod 12=7$$

Vantaggi:

dove

- Dipende da tutti i bit/caratteri della chiave
- Svantaggi:
  - Costoso da calcolare
  - Richiede *n* addizioni e n\*(n+1)/2 prodotti  $(n = \Theta(\log k))$

# Regola di Horner

- Valutazione di un polinomio in un punto
- Un polinomio di grado *n*

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

può essere riscritto nel seguente modo

$$p(x) = a_0 + x(a_1 + x(a_2 + x(\cdots x(a_{n-1} + a_n x))))$$

che richiede n addizioni ed n moltiplicazioni

- La regola di Horner permette di abbassare il costo (da quadratico a lineare sul numero di cifre della chiave k) del calcolo della funzione hash basata sul metodo della codifica algebrica
  - Dato che il numero di cifre di una chiave è tipicamente un numero relativamente piccolo, possiamo assumere un costo costante per il metodo della codifica

# JAVA.LANG.STRING.HASHCODE()

```
1 /**
 2 * Returns a hash code for this string. The hash code for a String
 3 * object is computed as
 4 *
 5 \times s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
 6 *
 7 * using int arithmetic, where s[i] is the ith character of the
 8 * string, n is the length of the string, and ^ indicates
 9 * exponentiation. (The hash value of the empty string is zero.)
10 */
11 public int hashCode() {
12
           int h = hash:
13
           if (h == 0 && value.length > 0) {
14
               char val[] = value;
15
               for (int i = 0; i < value.length; i++)</pre>
16
17
                    h = 31 * h + val[i]:
18
               hash = h:
19
20
           return h;
21| }
```

- Funzione hash di libreria Java della classe String
- Basata sul metodo della codifica algebrica
  - Utilizza i codici ascii dei caratteri
  - Calcolata con il metodo di Horner
  - La costante x è il numero primo 31

# Problema delle collisioni

- Hashing uniforme semplice riduce ma non elimina le collisioni
- Anche assumendo hashing uniforme semplice, la probabilità che ci sia collisione tra due chiavi è (sorprendentemente) molto alta
  - Problema del compleanno: date *n* persone scelte a caso qual è la probabilità che due tra esse compiano gli anni nello stesso giorno?
  - Paradosso del compleanno: in un gruppo di 23 persone tale probabilità è maggiore del 50%
- Come gestire le eventuali collisioni?
  - Dobbiamo trovare collocazioni alternative per le chiavi
  - Se una chiave non si trova nella posizione attesa, bisogna andare a cercare nelle posizioni alternative
  - Le operazioni diventano costose nel caso pessimo
- Vediamo due possibili tecniche
  - Concatenamento (o anche scansione esterna)
  - Indirizzamento aperto (o anche scansione interna)

# RISOLUZIONE COLLISIONI: CONCATENAMENTO

- Concatenamento (chaining)
  - Le chiavi k con lo stesso valore hash h(k) = i sono memorizzate in una lista concatenata (lista di trabocco)
  - Lo slot T[i] contiene il puntatore alla testa della lista contenente tutte le chiavi k con hash h(k) = i



# PSEUDOCODICE: CONCATENAMENTO

```
1: function SEARCH(HASHTAB T, KEY k) \rightarrow DATA
       tmp = LLSEARCH(T[h(k)], k)
       if tmp \neq NIL then return tmp.data
       else return NIL
 5:
   function INSERT(HASHTAB T, KEY k, DATA d)
       tmp = LLSEARCH(T[h(k)], k)
 7:
       if tmp \neq NIL then tmp.data = d
       else LLINSERT(T[h(k)], k, d)
 9:
10:
11: function DELETE(HASHTAB T, KEY k)
       LLDELETE(T[h(k)], k)
12:
```

- LLSEARCH esegue una ricerca lineare su lista concatenata
- LLINSERT esegue un inserimento in testa in una lista concatenata
- LLDELETE esegue una rimozione su una lista concatenata

### ESEMPIO: CONCATENAMENTO

- Funzione hash  $h(k) = k \mod 10$
- Inserimenti nel seguente ordine: 53,75,16,73,10,33,13,76



### Analisi del metodo di concatenamento

- Dimensione della tabella
  - $\blacksquare$  Non impone vincoli sulla dimensione del vettore  $\mathcal{T}[0,\cdots,m-1]$ 
    - Vincoli eventualmente imposti dalla funzione hash
  - Se *m* troppo grande, rischio di sprecare spazio
  - Se m troppo piccolo, liste di collisione lunghe ⇒ nel caso pessimo operazione di ricerca di una chiave ha un costo lineare sulla dimensione della lista
- Quanto costano le operazioni SEARCH, INSERT, DELETE?
  - Sia L la lunghezza della lista di collisione più lunga
  - SEARCH: costo nel caso pessimo O(L), caso ottimo O(1)
  - INSERT: costo nel caso pessimo O(L), caso ottimo O(1)
  - DELETE: costo nel caso pessimo O(L), caso ottimo O(1)
  - N.B. L = O(n), dove n = numero di elementi nella tabella
  - N.B. Il costo pessimo non dipende da m ma dal numero di elementi n
  - Riusciamo a analizzare il caso medio?

# Concatenamento: analisi del caso medio

- Il costo nel caso medio dipende dal numero medio di accessi per cercare (con successo o insuccesso) una chiave
  - Il costo della ricerca di una chiave incide su SEARCH, INSERT e DELETE (tutte richiedono la ricerca di una chiave)
  - Il numero medio di accessi dipende da come vengono distribuite le chiavi dalla funzione hash
- Chiamamo fattore di carico  $\alpha = n/m$  il rapporto tra il numero di elementi e la dimensione di una Tabella Hash
  - $\blacksquare$  n = numero di elementi nella Tabella Hash
  - $\mathbf{m} = \mathsf{numero} \; \mathsf{di} \; \mathsf{slot} \; \mathsf{nella} \; \mathsf{Tabella} \; \mathsf{Hash}$
- Sotto l'assunzione di hashing uniforme semplice ogni slot della tabella ha mediamente  $\alpha$  chiavi
  - Ricordiamo che hashing uniforme semplice  $\Rightarrow$  la funzione hash distribuisce le chiavi uniformemente in  $T[0, \dots, m-1]$

# Analisi del caso medio: ricerca con insuccesso

#### **Teorema**

Sotto l'assunzione di hashing uniforme semplice, una ricerca senza successo in una tabella hash con concatenamento ha costo medio  $\Theta(1+\alpha)$ 

- Dimostrazione
  - Sotto l'assunzione di hashing uniforme semplice, data una chiave k non presente nella tabella, gli m slot di T sono tutti ugualmente probabili per la codifica hash h(k)
  - Se k non compare nella tabella (ricerca con insuccesso), la ricerca visita tutte le chiavi nella lista T[h(k)], che ha in media  $\alpha$  chiavi
  - Costo medio: tempo di hashing h(k) (costo medio 1) + tempo di visita della lista T[h(k)] (costo medio  $\alpha$ )  $\Rightarrow \Theta(1 + \alpha)$

# Analisi del caso medio: ricerca con successo

#### Teorema

Sotto l'assunzione di hashing uniforme semplice, una ricerca con successo in una tabella hash con concatenamento ha costo medio  $\Theta(1+\alpha)$ 

#### Dimostrazione

- Sotto l'assunzione di hashing uniforme semplice, data una chiave k non presente nella tabella, gli m slot di T sono tutti ugualmente probabili per la codifica hash h(k)
- Se k compare nella tabella (ricerca con successo), la ricerca visita in media all'incirca metà delle chiavi nella lista T[h(k)], che ha in media  $\alpha$  chiavi
- Costo medio: tempo di hashing h(k) (costo medio 1) + tempo medio di visita della lista T[h(k)] (costo medio  $\alpha/2$ )  $\Rightarrow$   $\Theta(1 + \alpha/2) = \Theta(1 + \alpha)$

### Riassumendo: analisi del caso medio

- Abbiamo dimostrato che su una Tabella Hash in cui le collisioni siano risolte con concatenamento, sotto l'assunzione di hashing uniforme semplice, la ricerca ha un costo medio  $\Theta(1 + \alpha)$ 
  - n = n numero di elementi nella tabella
  - *m* = numero di slot nella tabella
  - fattore di carico  $\alpha = n/m$
- Il fattore di carico influenza quindi il costo delle operazioni
  - Se n = O(m) allora  $\alpha = O(1) \Rightarrow$  costo medio della ricerca O(1)
  - lacksquare Quindi SEARCH, INSERT, DELETE hanno costo medio O(1)

# RISOLUZIONE COLLISIONI: INDIRIZZAMENTO APERTO

- Indirizzamento aperto (open addressing)
  - Tutte le chiavi sono memorizzate nella stessa tabella
  - Ogni slot contiene una chiave oppure NIL
  - Se uno slot è occupato, se ne cerca uno alternativo nella tabella



### Indirizzamento aperto: ispezioni

- Idea: data una chiave k, se uno slot T[h(k)] è già occupato allora ispezioniamo la tabella alla ricerca di uno slot libero
- Per determinare quale slot ispezionare estendiamo la funziona hash in modo che abbia come parametro anche il passo di ispezione

$$h: U \times [0, \cdots, m-1] \rightarrow [0, \cdots, m-1]$$

■ La sequenza di ispezione

$$h(k,0), h(k,1), \cdots, h(k,m-1)$$

deve fornire una permutazione degli indici della tabella

- Vogliamo visitare ogni slot solo una volta
- Potrebbe essere necessario visitare tutti gli *m* slot

# PSEUDOCODICE: INDIRIZZAMENTO APERTO

```
1: function SEARCH(HASHTAB T, KEY k) \rightarrow DATA

2: i = 0

3: repeat

4: j = h(k, i) \triangleright hash value at step i

5: if A[j].key == k then

6: return A[j].data

7: i = i + 1

8: until A[j] == NIL or i == A.size

9: return NIL
```

#### Attenzione: non funziona correttamente

# PSEUDOCODICE DELETE: INDIRIZZAMENTO APERTO

- Non possiamo sostituire la chiave che vogliamo cancellare con NIL
  - SEARCH si ferma se trova NIL mentre la chiave cercata potrebbe essere presente e verrebbe trovata nelle ispezioni successive
- Soluzione: utilizziamo il valore DELETED invece di NIL per marcare uno slot vuoto dopo la cancellazione
  - SEARCH/DELETE: DELETED trattati come slot pieni
  - INSERT: DELETED trattati come slot vuoti

# PSEUDOCODICE: INDIRIZZAMENTO APERTO

```
1: function SEARCH(HASHTAB T, KEY k) \rightarrow DATA

2: i = 0

3: repeat

4: j = h(k, i) \triangleright hash value at step i

5: if A[j].key == k then

6: return A[j].data

7: i = i + 1

8: until A[j] == NIL or i == A.size

9: return NIL
```

```
1: function INSERT(HASHTAB T, KEY k, DATA d)
2:
      i = 0
3: repeat
4: j = h(k, i)
                  ⊳ hash value at step i
5: if A[j] == NIL or A[j] == DELETED then
6:
           A[i].key = k
7:
           A[j].data = d
8:
            return
9: i = i + 1
10: until i == A.size
11:
      error "overflow"
```

### Analisi del metodo di indirizzamento aperto

- Nel caso pessimo SEARCH, INSERT, DELETE costano O(m)
  - *m* = dimensione della tabella
  - Nel caso pessimo ispezioniamo l'intera tabella
- Quanto costano le operazioni nel caso medio?
  - Costo medio influenzato dalla strategia di ispezione
  - Anche sotto l'assunzione di hashing uniforme semplice
- Vediamo tre strategie di ispezione
  - ispezione lineare
  - ispezione quadratica
  - doppio hashing

# STRATEGIE DI ISPEZIONE: ISPEZIONE LINEARE

■ Funzione di ispezione (m = dimensione della tabella)

$$h(k,i) = (h'(k) + i) \mod m$$

dove h'(k) è una funzione hash ausiliaria

- Quando si ha una collisione, si ispeziona l'indice successivo
  - Il primo indice h'(k) determina l'intera sequenza

$$h'(k), h'(k) + 1, \dots, m - 1, 0, 1, \dots h'(k) - 1$$

- Sono possibili solo *m* sequenze distinte di ispezione
- Ogni slot è ispezionato una sola volta
- Problema: clustering primario
  - Lunghe sotto-sequenze occupate, che diventano sempre più lunghe
  - Assumendo hashing uniforme semplice, uno slot vuoto preceduto da i slot pieni viene riempito con probabilità (i+1)/m
  - I tempi medi di inserimento e cancellazione crescono

# ESEMPIO: ISPEZIONE LINEARE

- Funzione hash  $h(k,i) = (h'(k) + i) \mod 10$  dove  $h'(k) = k \mod 10$
- Inserimenti nel seguente ordine: 53,75,16,73,10,33,13,76

### ESEMPIO: ISPEZIONE LINEARE

$$h(k,i) = (h'(k)+i) \mod 31 \text{ dove } h'(k) = ascii(k) \mod 31 (ascii(A)=65)$$

|    |   |   |   |   |   | С |   | Е |   |    |    | I  |    |    | L  | М  | N  | О  | P  |    | R  | s  | Т  |     | v  |          |     |    |    |    |     |
|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----------|-----|----|----|----|-----|
|    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23  | 24 | 25       | 26  | 27 | 28 | 29 | 30  |
| -[ |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |          |     |    |    |    |     |
| P  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    | P  |    |    |    |    |     |    |          | L   |    |    |    | L   |
| R  |   |   |   |   |   | - |   |   |   |    |    | L. |    | ١  |    |    |    |    | P  |    | R  |    |    |     |    |          |     |    |    |    | _   |
| Е  |   |   |   | L |   |   |   | £ |   |    |    |    |    |    |    |    |    |    | P  |    | R  |    |    |     |    |          |     |    |    |    |     |
| C  |   |   |   |   |   | C |   | Е |   |    |    |    |    |    |    |    |    |    | P  |    | R  |    |    |     |    |          |     |    |    |    | L   |
| 1  |   |   | _ | L |   | С |   | Ε |   |    |    | 1  |    |    |    |    |    |    | P  |    | R  |    |    | L., |    | _        |     |    |    |    | 匚   |
| P  |   |   |   | L |   | С |   | E |   |    |    | I  |    |    |    |    |    |    | P  | P  | R  |    |    |     |    |          |     |    |    |    | 匚   |
| 1  |   | _ |   | L |   | С |   | Е |   |    |    | 1  | I  |    |    |    |    |    |    | P  |    |    |    |     |    | L.       |     |    |    |    | L.  |
| Т  |   |   | _ | L |   | С |   | E |   | L. | _  | I  | I  |    |    |    |    |    | P  | P  | R  |    | T  |     |    |          |     | L  |    |    | _   |
| Ε  |   |   | _ | L |   | С |   | E | E |    |    | I  | I  |    |    |    |    |    | P  | P  | R  |    | T  |     | L. | <u></u>  | L   | L  | L  |    | ட   |
| V  |   |   | L | L | L | C |   | Е | Ε |    |    | I  | I  |    | _  |    |    |    | P  | P  | R  |    | T  |     | ٧  |          |     |    |    |    | 二   |
| 0  |   |   |   |   |   | С |   | E | E |    |    | I  | I  |    |    |    |    |    |    | P  |    |    | T  |     | V  |          |     |    |    |    | 匚   |
| L  |   |   |   | L |   | С |   | Ε | E |    |    | I  | I  |    | L  |    |    | 0  | P  | P  | R  |    | T  |     | V  |          |     |    |    |    | ட   |
| П  |   |   |   | L |   | С |   | Ε | Ε |    |    | I  | I  | 1  | L  |    |    | 0  | P  | P  |    | L  | T  |     | V  | <u> </u> | L   | L_ | L  |    | ட   |
| S  |   |   |   | L |   | С |   | E | E |    |    | I  | I  | I  | L  |    |    | 0  | P  | P  | R  | S  | T  |     | V  |          |     |    |    |    | Ĺ   |
| 5  |   |   |   | L | L | С |   | E | E |    |    | I  | I  | I  | L  |    |    | 0  | P  | P  | R  | S  | T  | S   | V  | L        |     | L_ | _  |    | L   |
| 1  |   | _ |   | L |   | С |   | Ε | E | L  | _  | 1  | I  | 1  | L  | 1  |    | 0  | P  | P  | R  | S  | T  | S   | V  |          |     |    |    |    | Ĺ., |
| м  |   |   |   |   |   | C |   | Е | E |    |    | I  | I  | I  | L  | 1  | M  | 0  | P  | P  | R  | S  | T  | S   | V  | L        | L   | L  |    |    | L   |
| Ε  |   |   | L |   |   | С |   | E | E | E  |    | I  | I  | I  | L  | I  | M  | 0  | P  | P  | R  | S  | Т  | S   | V  |          |     |    |    |    |     |
| V  |   |   |   |   |   | С |   | Е | Е | Е  |    | I  | I  | I  | L  | I  | M  | 0  | P  | P  | R  | S  | T  | S   | ٧  | V        | L., |    |    |    | 匚   |
| 0  |   |   |   |   |   | C |   | E | Е | E  | L  | I  | I  | I  | L  | I  | M  | 0  | P  | P  | R  | S  | T  | S   | V  | V        | 0   |    |    |    | 匸   |
| L  |   |   |   |   |   | С |   | Е | Е | Е  |    | I  | I  | I  | L  | 1  | М  | 0  | P  | P  | R  | S  | T  | S   | ٧  | ٧        | 0   | L  |    |    | 匸   |
| М  |   |   |   |   |   | С |   | Е | Е | Е  |    | I  | I  | I  | L  | 1  | M  | 0  | P  | P  | R  | S  | T  | S   | V  | ٧        | 0   | L  | M  |    | L   |
| Е  |   |   |   |   |   | С |   | E | E | E  | É  | I  | I  | I  | L  | I  | M  | 0  | P  | P  | R  | S  | T  | S   | V  | V        | 0   | L  | M  |    | Ĺ   |
| N  |   |   |   |   |   | C |   | Е | Е | Е  | Е  | I  | I  | I  | L  | I  | M  | 0  | P  | P  | R  | S  | T  | S   | ٧  | ٧        | 0   | L  | M  | N  | 匚   |
| T  |   |   |   |   |   | С |   | Е | Е | Е  | Е  | I  | I  | I  | L  | I  | M  | 0  | P  | P  | R  | S  | T  | S   | V  | V        | 0   | L  | M  | N. | T   |
| E  | E |   |   |   |   | С |   | E | E | E  | E  | 1  | 1  | 1  | L  | I  | M  | 0  | P  | P  | R  | S  | T  | S   | V  | V        | 0   | L  | M  | N  | T   |
|    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23  | 24 | 25       | 26  | 27 | 28 | 29 | 30  |

C. Demetrescu, I. Finocchi, G. F. Italiano, "Algoritmi e strutture dati"

# Strategie di ispezione: ispezione quadratica

- Funzione di ispezione (m= dimensione della tabella)  $h(k,i)=\left(h'(k)+c_1i+c_2i^2\right) \mod m \pmod{con \ costanti} \ c_1\neq c_2)$  dove h'(k) è una funzione hash ausiliaria
- Quando si ha una collisione, si usa un passo quadratico
  - Il primo indice h'(k) determina l'intera sequenza
  - Le ispezione successive hanno un offset che dipende da una funzione quadratica nel numero di ispezione *i*
  - Sono possibili solo *m* sequenze distinte di ispezione
  - lacksquare  $c_1, c_2$  devono garantire una permutazione di  $[0, \cdots, m-1]$
- Problema: clustering secondario
  - Se due chiavi hanno la stessa ispezione iniziale, allora le loro sequenze di ispezione sono identiche

# ESEMPIO: ISPEZIONE QUADRATICA

- Funzione hash  $h(k,i) = (h'(k) + c_1i + c_2i^2) \mod 10$  dove  $h'(k) = k \mod 10$  e  $c_1 = 0, c_2 = 1$
- Inserimenti nel seguente ordine: 53,75,16,73,10,33,13,76

# STRATEGIE DI ISPEZIONE: DOPPIO HASHING

■ Funzione di ispezione (m = dimensione della tabella)

$$h(k,i)=(h_1(k)+ih_2(k))\mod m$$
 dove  $h_1(k)$  e  $h_2(k)$  sono la funzione hash primaria e secondaria

- Quando si ha una collisione, si usa la funzione secondaria e l'indice di ispezione per determinare il successivo slot da ispezionare
  - Evita il clustering primario e secondario
  - lacksquare Se  $h_1 
    eq h_2$  è meno probabile che per una coppia di chiavi a 
    eq b

$$h_1(a) = h_1(b) e h_2(a) = h_2(b)$$

- Sono possibili più di *m* sequenze distinte di ispezione
- Vincoli sulla funzione hash secondaria h<sub>2</sub>
  - Non deve mai dare il valore hash 0
  - Deve permettere di iterare su tutta la tabella

# ESEMPIO: DOPPIO HASHING

- Funzione hash  $h(k, i) = (h_1(k) + ih_2(k)) \mod 10$  dove  $h_1(k) = k \mod 10$  e  $h_2(k) = (k \mod 9) + 1$
- Inserimenti nel seguente ordine: 53,75,16,73,10,33,13,76

# ESEMPIO: DOPPIO HASHING

$$h(k,i) = (h_1(k) + ih_2(k)) \mod 31$$
 dove 
$$h_1(k) = ascii(k) \mod 31 e h_2(k) = (h_1(k) \mod 30) + 1$$

|   |   |   |   |   |   | С |   | Е |   |   |    | I  |    |    | L  | М  | N  | О  | P  |    | R  | s   | Т  |    | v  |    |    |     |    |    |    |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|-----|----|----|----|
|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21  | 22 | 23 | 24 | 25 | 26 | 27  | 28 | 29 | 30 |
|   |   |   |   |   |   |   |   |   |   |   |    | 94 |    |    |    |    |    |    |    |    |    | - 1 |    |    |    |    |    |     |    |    |    |
| P |   |   |   |   |   |   | 1 |   |   |   |    |    |    |    |    |    |    |    | P  |    |    |     |    |    |    |    |    |     |    | 0  |    |
| R |   |   |   |   |   |   |   |   | L |   |    |    |    |    |    |    |    |    | P  |    | R  | 7   |    |    |    |    |    |     |    |    |    |
| Е |   |   |   | _ |   |   |   | E |   |   |    |    |    |    |    |    |    |    | P  |    | R  |     |    |    |    |    |    |     |    |    | 1  |
| C |   |   |   |   |   | C | Ĺ | Е |   |   |    |    |    |    | L  |    |    |    | P  |    | R  |     |    |    |    |    |    |     |    |    |    |
| I |   |   |   |   |   | C |   | Е |   |   |    | 1  |    |    |    |    |    |    | P  |    | R  |     |    |    |    |    |    |     |    |    |    |
| P |   |   |   |   |   | C | P | E |   |   |    | I  |    |    |    |    |    |    | P  |    | R  |     |    |    |    |    |    |     |    |    |    |
| I |   |   |   |   |   | C | P | Е |   |   |    | 1  |    |    |    |    |    |    | P  |    | R  |     |    | Ĺ  |    |    |    |     |    |    |    |
| T |   |   |   |   |   | С |   | E |   |   |    | I  |    |    |    |    | L  |    | P  |    | R  |     | T  | Ι  |    |    |    |     |    |    |    |
| Е |   |   |   |   |   | C |   | E |   |   |    | I  |    |    |    | E  |    |    | P  |    | R  |     | T  | I  |    |    |    |     |    |    |    |
| V |   | L |   |   |   | C | P | Е |   |   |    | I  |    |    |    | Е  |    |    | P  |    | R  |     | T  | I  | V  |    |    | L., |    |    |    |
| 0 |   |   |   |   |   | C | P | Е |   |   |    | I  |    |    |    | Е  |    | 0  | P  | 1  | R  |     | T  | I  | V  |    |    |     |    |    |    |
| L |   |   |   |   |   | С | P | Е | L |   |    | Ι  |    |    | Ĺ  | Е  |    | 0  | P  |    | R  |     | Т  | I  | V  |    |    |     |    |    |    |
| I |   |   |   |   | 1 |   |   | Е |   |   |    | 1  |    |    | L  | Е  |    | 0  | P  |    | R  |     | _  | 1  | V  |    |    |     |    |    |    |
| S |   |   |   |   | I | C | P | Е |   |   |    | I  |    |    | L  | Е  |    | 0  | P  |    |    | S   | T  | I  | V  |    |    |     |    |    |    |
| S |   |   |   |   | I | C | P | E |   |   |    | Ι  | S  |    | L  | Е  |    | 0  | P  |    | R  | S   | T  | I  | V  | 11 |    |     |    |    |    |
| I |   |   |   |   | 1 | С | P | E |   |   |    | 1  | S  |    | L  | E  | 1  | 0  | P  |    | R  | S   | T  | 1  | ٧  |    |    |     |    |    |    |
| M | M |   |   |   | I | C | P | E |   |   |    | I  | S  |    | L  | E  | I  | 0  | P  | 10 | R  | S   | T  | I  | V  |    |    |     |    |    |    |
| Е | M |   |   |   | I | C | P | E | E |   |    | I  | S  |    | L  | E  | I  | 0  | P  |    | R  | S   | T  | 1  | V  |    |    | L   |    |    |    |
| V | M |   |   |   | I |   | P | Ε | Е |   |    | I  | S  |    | L  | Ε  | I  | 0  | P  |    | R  | S   | T  | I  | V  | V  | L  | _   |    |    |    |
| 0 | M | L |   |   | 1 | C | P | Е |   | 0 |    | I  | S  |    | L  | Е  | I  | 0  | P  |    | R  | S   | T  | I  | V  | V  |    |     |    |    |    |
| L | M |   |   |   | I | C | P | Е | E | 0 |    | Ι  | S  |    | L  | E  | Ι  | 0  | P  |    | R  | S   | T  | I  | V  | V  |    |     |    | L  |    |
| M | M | M | j |   | I | C | P | E | Е | 0 |    | Ι  | S  |    | L  | E  | I  | 0  | P  |    | R  | S   | T  | I  | V  | V  |    |     |    | L  |    |
| E | M | M | E |   | I | C | P | E | E | 0 |    | I  | S  |    | L  | E  | 1  | 0  | P  |    | R  | S   | T  | Ì  | V  | V  |    |     |    | L  |    |
| N | M | М | E |   | I | С | P | Е | E | 0 |    | I  | S  |    | L  | E  | 1  | 0  | P  | N  | R  | S   | T  | I  | V  | V  |    |     |    | L  |    |
|   | M |   |   |   | I |   | p | Е | Е | 0 |    | I  | S  | T  | L  | Е  | I  | 0  | P  | N  | R  | S   | T  | I  | V  | V  |    |     |    | L. |    |
| Е | M | M | E |   | I | С | P | E | E | 0 | E  | I  | S  | T  | L  | E  | 1  | 0  | P  | N  | R  | S   | T  | 1  | ٧  | V  |    |     |    | L  |    |
|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21  | 22 | 23 | 24 | 25 | 26 | 27  | 28 | 29 | 30 |

C. Demetrescu, I. Finocchi, G. F. Italiano, "Algoritmi e strutture dati"

# Indirizzamento aperto: analisi del caso medio

- Utilizziamo il fattore di carico  $\alpha = n/m$  anche per l'analisi del costo medio col metodo di indirizzamento aperto
  - In questo caso, poiché  $n \le m$ , abbiamo che  $\alpha < 1$
- Assumiamo hashing uniforme semplice
- Assumiamo inoltre che le permutazioni degli indici  $[0, \cdots, m-1]$  determinate dalle sequenze di ispezione

$$h(k,0), h(k,1), \cdots, h(k,m-1)$$

### siano tutte equiprobabili

- Ogni chiave k ha un'unica sequenza di ispezione associata
- Ogni sequenza di ispezioni è ugualmente probabile
- Questo dipende dalla strategia di ispezione: l'ispezione lineare non soddisfa tale proprietà, mentre è soddisfatta dall'ispezione quadratica e doppio hashing

# Indirizzamento aperto: analisi del caso medio

# Teorema (ricerca senza successo)

Sotto l'assunzione di hashing uniforme semplice e sequenze di ispezione equiprobabili, il numero medio di ispezioni di una ricerca senza successo in una tabella hash con indirizzamento aperto e fattore di carico  $\alpha < 1$  è al massimo  $1/(1-\alpha)$ 

# Teorema (ricerca con successo)

Sotto l'assunzione di hashing uniforme semplice e sequenze di ispezione equiprobabili, il numero medio di ispezioni di una ricerca con successo in una tabella hash con indirizzamento aperto e fattore di carico  $\alpha<1$  è al massimo  $\frac{1}{\alpha}\ln\frac{1}{1-\alpha}$ 

- In entrambi i casi, se  $\alpha$  è costante il tempo di accesso è O(1)
- Se la tabella è piena al 50%, la ricerca senza successo richiede in media al massimo due ispezioni, la ricerca con successo meno di due
- Se la tabella è piena al 90%, la ricerca senza successo richiede in media al massimo dieci ispezioni, la ricerca con successo meno di tre

### Analisi del caso medio: ispezione lineare

- L'ispezione lineare non assicura che le sequenze di ispezione siano tutte equiprobabili (effetto del clustering primario)
- Il costo medio non è caratterizzato dai due teoremi precedenti
  - Il costo medio nel caso di ricerca senza successo è al massimo

$$\frac{(1-\alpha)^2+1}{2(1-\alpha)^2}$$

■ Il costo medio nel caso di ricerca con successo è al massimo

$$\frac{(1-\alpha/2)}{2(1-\alpha)}$$

# Confronto costi medi di ispezione



A. Bertossi, A. Montresor, "Algoritmi e strutture di dati"

# Commenti generali: ruolo del fattore di carico

- lacktriangle Le prestazioni delle tabelle hash sono legate al fattore di carico lpha
- Secondo il paradosso del compleanno, le collisioni sono molto probabili
  - Le collisioni sono praticamente inevitabili anche su sottoinsiemi relativamente piccoli di possibili chiavi
- Strategia: mantenere il fattore di carico basso
  - Un fattore di carico  $\alpha$  < 0.75 è considerato ottimale
  - Ridimensioniamo la tabella quando il fattore di carico supera una certa soglia critica
  - N.B. Ridimensionare la completa ricostruzione della Tabella Hash poiché gli indici hash cambiano

# TABELLE HASH IN JAVA

- JAVA.UTIL.HASHMAP
  - Gestione delle collisioni con concatenamento
  - Java 7: liste di trabocco con liste concatenate
  - Java 8 : liste di trabocco con liste concatenate e alberi bilanciati
    - Liste concatenate troppo grandi sono convertite in albero
    - Gli alberi piccoli sono riconvertiti in liste
    - Costo pessimo logaritmico delle operazioni di ricerca, inserimento, rimozione per liste di trabocco grandi
- Parametri fondamentali:
  - Fattore di carico (default 0.75)
  - Capacità iniziale (default 16)
  - Quando il numero di elementi eccede il prodotto tra fattore di carico e la capacità della Tabella Hash, questa viene ridimensionata (ricostruita completamente da capo)
  - Suggerimenti: evitare il più possibile i ridimensionamenti settando una capacità iniziale opportuna

### Dizionario: riassunto dei costi

|                           | SEA               | RCH         | INS               | ERT         | DEL               | ETE         |
|---------------------------|-------------------|-------------|-------------------|-------------|-------------------|-------------|
|                           | Medio             | Pessimo     | Medio             | Pessimo     | Medio             | Pessimo     |
| Array non ordinati        | O(n)              | O(n)        | O(n)              | O(n)        | Θ(n)              | Θ(n)        |
| Array ordinati            | $O(\log n)$       | $O(\log n)$ | O(n)              | O(n)        | O(n)              | O(n)        |
| Lista concatenata         | O(n)              | O(n)        | O(n)              | O(n)        | O(n)              | O(n)        |
| Albero Binario di Ricerca | $O(\overline{h})$ | O(h)        | $O(\overline{h})$ | O(h)        | $O(\overline{h})$ | O(h)        |
| Albero AVL                | $O(\log n)$       | $O(\log n)$ | $O(\log n)$       | $O(\log n)$ | $O(\log n)$       | $O(\log n)$ |
| Tabelle Hash              | O(1)              | O(n)        | O(1)              | O(n)        | O(1)              | O(n)        |

- $h = \text{altezza dell'albero}, \overline{h} = \text{altezza media dell'albero}$
- Nonostante le Tabelle Hash abbiano un costo pessimo lineare, sotto ragionevoli assunzioni probabilistiche hanno un costo medio costante e sono in pratica molto efficienti
- Le implementazioni di strutture dati di tipo Dizionario fanno tipicamente uso di Tabelle Hash