Problem 6.6:1. On [a,b], let α be a strictly increasing function and f a continuous function, and for $x \in [a,b]$ define $F(x) = \int_a^x f(t) d\alpha(t)$. Show that for all $x \in [a,b]$, $\frac{dF(x)}{d\alpha(x)} = f(x)$, where the left-hand side is defined as $\lim_{t \to x} \frac{F(x) - F(t)}{\alpha(x) - \alpha(t)}$, and the equality includes the assertion that the limit exists.

Proof. First, we note that because $f \in \Re(\alpha)$ on [a,b]

$$F(x) - F(t) = \int_{a}^{x} f(s)d\alpha(s) - \int_{a}^{t} f(s)d\alpha(s) = \int_{t}^{x} f(x)d\alpha(s)$$

For all partitions P,

$$\int_{t}^{x} f(s)d\alpha(s) \leq \sum_{x_{i} \in P} M_{i} \Delta \alpha_{i} \leq \left(\sup_{s \in [x,t]} f(s)\right) \sum_{x_{i} \in P} \Delta \alpha_{i} = \left(\sup_{s \in [x,t]} f(s)\right) (\alpha(x) - \alpha(t))$$

Since $\alpha(x)$ is strictly increasing, $\alpha(x) - \alpha(t) > 0$ when $x \neq t$, so

$$\frac{F(x) - F(t)}{\alpha(x) - \alpha(t)} \le \sup_{s \in [x, t]} f(s)$$

Taking the limit as t approaches x on both sides gives

$$\lim_{t \to x} \frac{F(x) - F(t)}{\alpha(x) - \alpha(t)} \le \lim_{t \to x} \sup_{s \in [x, t]} f(s)$$

Lemma 0.0.0.1.

$$\lim_{t \to x} \sup_{s \in [x,t]} f(s) = f(x)$$

Proof. Let x_n be an arbitrary sequence such that $\forall n \in \mathbb{N}, x_n > x$ and $\lim_{n \to \infty} x_n = x$. Since $[x, x_n]$ is a closed, bounded interval on \mathbb{R} and f is continuous, there exists a sequence of points $p_n \in [x, x_n]$ such that $f(p_n) = \sup_{s \in [x, x_n]} f(s)$. $x_n \to x$ implies $p_n \to x$ by the Squeeze Theorem, and the continuity of f implies that $f(p_n) \to f(x)$.

Thus

$$\lim_{t \to x} \frac{F(x) - F(t)}{\alpha(x) - \alpha(t)} \le f(x)$$

The analogous result for the lower integral and the Squeeze Theorem complete the proof.

Problem 6.6:2.

(a). Show that if f is continuous, then

$$\int_{t=a}^{b} \left(\int_{s=a}^{t} f(s)ds \right) dt = \int_{t=a}^{b} (b-t)f(t)dt$$

Proof. Let $x \in [a,b]$. Define $P(x) = \int_{t=a}^{x} \left(\int_{s=a}^{t} f(s) ds \right) dt$ and $Q(x) = \int_{t=a}^{x} (x-t)^{s} dt$

f(t) being continuous on [a, b] implies that it is Riemann-integrable. This implies that $f^*(t) = \int_{s=a}^t f(s)ds$ is continuous, and that $P(x) = \int_a^x f^*(t)dt$ is continuous and differentiable. Similarly, (b-t)f(t) is continuous on [a,b], so Q(x) is continuous and differentiable.

By the Fundamental Theorem of Calculus,

$$P'(x) = \int_{s=a}^{x} f(s)ds$$

For Q(x), since t and tf(t) are Riemann-integrable,

$$Q(x) = x \int_{t=a}^{x} f(t)dt - \int_{t=a}^{x} tf(t)dt$$

x is trivially differentiable. Since t and tf(t) are continuous,

$$Q'(x) = \int_{t=a}^{x} f(t)dt + xf(x) - xf(x) = \int_{t=a}^{x} f(t)dt$$

Thus, P'(x) = Q'(x). Integrating both sides from a to c, then setting c = b, produces the desired result.

(c). Show that the result of Part (a) continues to hold if f is merely assumed Riemann-integrable, but not necessarily continuous.

Proof. P(x) has the same derivative as in Part (a), as the derivation only assumed that P(x) is Riemann-integrable. Similarly, for $x_0 \in [a,b]$ where $f(x_0)$ is continuous, the above derivations hold for Q(x).

Let x_0 be a point where $f(x_0)$ is discontinuous. First, we will prove two lemmas.

Lemma 0.0.0.2. If f(x) is bounded, then $(x-x_0)f(x)$ is continuous at x_0 .

Proof. Let $M = \sup |f(x)|$. Then $(x - x_0)f(x) \le |(x - x_0)f(x)| \le |(x - x_0)|M$, which can be made arbitrarily small.

Lemma 0.0.0.3. If f(x) is continuous, then $(x-x_0)f(x)$ is differentiable at x_0 with derivative $f(x_0)$.

Proof. By the definition of differentiability,

$$\lim_{x \to x_0} \frac{(x - x_0)f(x) - (x_0 - x_0)f(x_0)}{x - x_0} = \lim_{x \to x_0} f(x) = f(x_0)$$

by continuity.

We can rewrite Q(x) as

$$Q(x) = \int_{t=a}^{x} ((x - x_0) + (x_0 - t))f(t)dt = (x - x_0) \int_{t=a}^{x} f(t)dt + \int_{t=a}^{x} (x_0 - t)f(t)dt$$

because the sub-functions are trivially Riemann-integrable. $\int_{t=a}^{x} f(t)$ is a continuous function, so by Lemma 0.0.0.3 $(x-x_0) \int_{t=a}^{x} f(t) dt$ is differentiable at $x=x_0$ with derivative $\int_{t=a}^{x_0} f(t) dt$. Similarly, f(t) is bounded because it is Riemann-integrable, so by Lemma 0.0.0.2 $(x_0-t)f(t)$ is continuous at $t=x_0$. Therefore $\int_{t=a}^{x} (x_0-t)f(t) dt$ is differentiable at $x=x_0$, with derivative 0.

Therefore, Q(x) is differentiable at $x = x_0$, and $Q'(x_0) = \int_{t=a}^{x} f(t)dt$. The proof then follows using the same logic as in Part (a).

To build intuition for Problem 6.6:4, we first solve a special case.

Problem 6.6:4 Special Case. Let α , β be monotonically increasing nonnegative functions on [a, b] such that $\alpha \in \mathfrak{R}(\beta)$, and $\beta \in \mathfrak{R}(\alpha)$. Prove that

$$\int d(\alpha\beta) = \int \alpha d(\beta) + \int \beta d(\alpha)$$

Proof. Note that the function 1 is trivially Riemann-Stieltjes integrable with respect to $\alpha\beta$.

Due to Riemann-integrability, there are partitions P, P_1 , and P_2 such that

$$0 \le |\int d(\alpha\beta) - \sum_{j \in P} \Delta(\alpha\beta)_j| \le \frac{\epsilon}{3}$$
$$0 \le |\int \alpha d(\beta) - \sum_{k \in P_1} \alpha_k \Delta\beta| \le \frac{\epsilon}{3}$$
$$0 \le |\int \beta d(\alpha) - \sum_{l \in P_2} \beta_{l-1} \Delta\alpha| \le \frac{\epsilon}{3}$$

Taking the common partition $P^* = P \cup P_1 \cup P_2$ and using the Triangle Inequality,

$$0 \le |\int \alpha d(\beta) + \int \beta d(\alpha) - \int d(\alpha\beta) + \sum_{i \in P^*} (-\Delta(\alpha\beta)_i + \alpha_i \Delta\beta + \beta_{i-1} \Delta\alpha)| \le \epsilon$$

For any partition P,

$$\alpha_i \Delta \beta_i + \beta_{i-1} \Delta \alpha_i$$

$$= \alpha_i \beta_i - \alpha_i \beta_{i-1} + \alpha_i \beta_{i-1} - \alpha_{i-1} \beta_{i-1}$$

$$= \alpha_i \beta_i - \alpha_{i-1} \beta_{i-1}$$

$$= \Delta (\alpha \beta)_i$$

Substituting,

$$0 \le |\int \alpha d(\beta) + \int \beta d(\alpha) - \int d(\alpha\beta)| \le \epsilon$$

Since ϵ can be made arbitrarily small, the proof is complete.

Problem 6.6:4. Let f be a function on [a, b], and α , β monotonically increasing nonnegative functions on [a, b] such that $f \in \mathfrak{R}(\alpha) \cap \mathfrak{R}(\beta)$, $\alpha \in \mathfrak{R}(\beta)$, and $\beta \in \mathfrak{R}(\alpha)$. Prove that

$$\int f d(\alpha \beta) = \int f \alpha d(\beta) + \int f \beta d(\alpha)$$

Proof. Note that from previous results in Problem 6.2.1, $f \in \mathfrak{R}(\alpha) \cap \mathfrak{R}(\beta)$ implies $f \in \mathfrak{R}(\alpha\beta)$. Since all of the above Riemann integrals are well-defined, for arbitrary $\epsilon > 0$, let P_1 , P_2 , and P_3 be partitions of [a, b] such that

- (1) $U(P_1, f, \alpha\beta) L(P_1, f, \alpha\beta) < \epsilon$
- (2) $U(P_2, f\alpha, \beta) L(P_2, f\alpha, \beta) < \epsilon$
- (3) $U(P_3, f\beta, \alpha) L(P_3, f\beta, \alpha) < \epsilon$

Let P be their common partition. Let $x_0 < x_1 ... < x_n$ denote the points of P. For all i in (1, 2...n), let $t_i \in (x_{i-1}, x_i)$ be arbitrary, fixed points, and let $P^* = (x_0, t_1, x_1 ... x_{i-1}, t_i, x_i ... t_n, x_n)$. Trivially, P^* partitions [a, b] and is a refinement of P.

Consider $\int f d(\alpha \beta)$ and its associated Riemann-Stieltjes sum over P^* . Since P^* is a refinement of P_1 , for arbitrary points $u_i \in [x_{i-1}, t_i]$ and $v_i \in [t_i, x_i]$,

$$\left| \sum_{i=1}^{n} \left[f(u_i)(\alpha_{t_i}\beta_{t_i} - \alpha_{x_{i-1}}\beta_{x_{i-1}}) + f(v_i)(\alpha_{x_i}\beta_{x_i} - \alpha_{t_i}\beta_{t_i}) \right] - \int fd(\alpha\beta) \right| < \epsilon$$

Letting $u_i = x_{i-1}$ and $v_i = x_i$ for all i,

$$\left| \sum_{i=1}^{n} \left[f_{x_{i-1}}(\alpha_{t_i}\beta_{t_i} - \alpha_{x_{i-1}}\beta_{x_{i-1}}) + f_{x_i}(\alpha_{x_i}\beta_{x_i} - \alpha_{t_i}\beta_{t_i}) \right] - \int f d(\alpha\beta) \right| < \epsilon$$

Now consider $\int f\alpha d(\beta)$ and its associated Riemann-Stieltjes sum over P. Letting $u_i = x_i$ for all i,

$$\left| \sum_{i=1}^{n} \left[f_{x_i} \alpha_{x_i} (\beta_{x_i} - \beta_{x_{i-1}}) \right] - \int f \alpha d(\beta) \right| < \epsilon$$

Similarly, considering $\int f \beta d(\alpha)$ over P and letting $u_i = x_{i-1}$ for all i,

$$\left| \sum_{i=1}^{n} \left[f_{x_{i-1}} \beta_{x_{i-1}} (\alpha_{x_i} - \alpha_{x_{i-1}}) \right] - \int f \beta d(\alpha) \right| < \epsilon$$

Adding the inequalities and using the Triangle Inequality gives

$$\left| \int f d(\alpha \beta) - \int f \alpha d(\beta) - \int f \beta d(\alpha) \right|$$

$$\sum_{i=1}^{n} \left[- \left[f_{x_{i-1}} (\alpha_{t_i} \beta_{t_i} - \alpha_{x_{i-1}} \beta_{x_{i-1}}) + f_{x_i} (\alpha_{x_i} \beta_{x_i} - \alpha_{t_i} \beta_{t_i}) \right] + f_{x_i} \alpha_{x_i} (\beta_{x_i} - \beta_{x_{i-1}}) + f_{x_{i-1}} \beta_{x_{i-1}} (\alpha_{x_i} - \alpha_{x_{i-1}}) \right] \right| < 3\epsilon$$