Chapter 1: System of Numeration

1. System of Numeration Conversion

Table 1: Conversion between two different base numbers.

	Binary	Octal	Decimal	Hexadecimal
Binary	1		$(A_j A_0)_2 = \sum_{i=0}^{j} A_i 2^i$	$ \begin{array}{c} \left(B_{4j+3} B_{4j+2} B_{4j+1} B_{4j} \dots B_2 B_1 B_0 \right)_2 \\ = \left(\overline{H_j \dots H_0} \right)_{16} \end{array} $
Octal	$= \overline{\left(B_{3j+2}B_{3j+1}B_{3j} \dots B_{2}B_{1}B_{0}\right)_{2}}$	1	$(A_j A_0)_8 = \sum_{i=0}^j A_i 8^i$	$ \begin{array}{l} \left(\overline{O_{2j+1}O_{2j}\dots O_{1}O_{0}}\right)_{16} \\ = \left(\overline{H_{j}\dots H_{0}}\right)_{16} \end{array} $
Decimal	Division by 2 rule	Division by 2 rule Division by 8 rule		Division by 16 rule
Hexa- decimal	$= \left(\overline{B_{4j+3}B_{4j+2}B_{4j+1}B_{4j} \dots B_{2}B_{1}B_{0}}\right)_{2}$	$= \left(\overline{\left(\mathbf{H}_{\mathbf{j}} \dots \mathbf{H}_{0} \right)}_{16} \right)_{16}$ $= \left(\overline{\mathbf{O}_{2\mathbf{j}+1} \mathbf{O}_{2\mathbf{j}} \dots \mathbf{O}_{1} \mathbf{O}_{0}} \right)_{16}$	$(A_j A_0)_{16} = \sum_{i=0}^{j} A_i 16^i$	1

Note that:

- 1. **Table 1** shows the way to convert a number at base of row to number at base of column.
- 2. B_j , O_j , and H_j are notations for the digit of number in Binary, Octal, Hexadecimal, respectively.
- 3. See **Table 2** to converse between Binary, Octal, and Hexadecimal.

Example:

$$(\underline{1110} \ \underline{1100} \ \underline{0011})_2 = (EC3)_{16};$$
 $(\underline{111} \ \underline{011} \ \underline{000} \ \underline{011})_2 = (7303)_8$
 $(1100 \ \underline{0011})_2 = 1.2^7 + 1.2^6 + 0.2^5 + 0.2^4 + 0.2^3 + 0.2^2 + 1.2^1 + 1.2^0 = 195$
 $(EC3)_{16} = 14.16^2 + 12.16^1 + 3.16^0 = 3779$

Table 2: First 16 numbers in some special system of numeration.

Decimal	Binary	Octal	Hexa- decimal	Decimal	Binary	Octal	Hexa- decimal
0	0000	00	0	8	1000	10	8
1	0001	01	1	9	1001	11	9
2	0010	02	2	10	1010	12	A
3	0011	03	3	11	1011	13	В
4	0100	04	4	12	1100	14	С
5	0101	05	5	13	1101	15	D
6	0110	06	6	14	1110	16	Е
7	0111	07	7	15	1111	17	F

Chapter 2: Boolean Algebra and Logic Components

1. Boolean Theorems

$$\mathsf{A} \cdot \mathsf{0} = \mathsf{0}$$

$$1 + A = 1$$

Table 3: Boolean algebra properties. $A \cdot A = A$

$$A \cdot A = A$$

Α	+	Α	=	Α

Property	AND	OR	
Commutative	AB = BA	A + B = B + A	
Associative	(AB)C = A(BC)	(A + B) + C = A + (B + C)	
Distributive	A(B+C) = AB + BC	A + (BC) = (A + B)(A + C)	
Identity	$A \cdot 1 = A$	A + 0 = A	
Complement	$A \cdot \overline{A} = 0$	$A + \overline{A} = 1$	
DeMorgan's	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A} \cdot \overline{B}$	
Absorption	$A \cdot (A + B) = A$	A + AB = A	
Common Identities	$A \cdot \left(\overline{A} + B \right) = \overline{A} + B$	$A + \overline{A}B = A + B$	
Summation	$x + xy = x + \overline{x}y = \overline{x} + xy = \overline{x}$	= x + y	

2. Minterm - Maxterm

Given a function with 3 variable C, B, A or f(C, B, A). m_i represents for i-th minterm and M_i represents for i-th maxterm. Minterm and maxterm are compliment of each other, namely, $m_i = \overline{M}_i$ or $M_i = \overline{m}_i$

Example:

$$\begin{split} m_6 &= CB\overline{A}, \qquad \left(6 = 110_2 \to CB\overline{A}\right) \\ M_5 &= \overline{C} + B + \overline{A}, \qquad \left(5 = 101_2 \to \overline{C\overline{B}A} = \overline{C} + B + \overline{A}\right) \end{split}$$

3. Basic Logic Components

3. 1. Basic Logic Gates

Table 4: Logic gates.

Gate	Boolean Expression	Logic Diagram Symbol	Truth Table
NOT	$Q = \overline{A}$	A — Q	A Q 0 1 1 1 0
AND	Q = A • B	A D Q	A B Q 0 0 0 0 1 0 1 0 0 1 1 1
OR	Q = A + B	$A \longrightarrow Q$	A B Q 0 0 0 0 1 1 1 0 1 1 1 1

Gate	Boolean Expression	Logic Diagram Symbol	Truth Table
NAND	$Q = \overline{A \bullet B}$	A D Q	A B Q 0 0 1 0 1 1 1 0 1 1 0 0
NOR	$Q = \overline{A + B}$	A DO	A B Q 0 0 1 0 1 0 1 0 0 1 1 0
XOR	$Q = A \oplus B$ $= \overline{A}B + A\overline{B}$	A B Q	A B Q 0 0 0 0 1 1 1 0 1 1 1 0
XNOR	$Q = \underline{A \odot B}$ $= \overline{A \oplus B}$ $= \overline{A} \overline{B} + AB$	A B Q	A B Q 0 0 1 0 1 0 1 0 0 1 1 1

3. 2. Universal Gates

 Table 5: Universal gates.

LF (1)	Logic Gates	NAND	NOR
NOT	A-Q	A	A-1)-Q
AND	AQ	AQ	A-LDO-Q B-LDO-Q
OR	AQ	A-T-DO-Q B-T-DO-Q	AQ
NAND	>		A-TDO-TO-O
NOR	A-1	A-LDO-LDO-O	

⁽¹⁾ LF: Logic function.

LF	Logic Gates	NAND	NOR		
		Delay 3 times	Delay 3 times		
von	A-110-0				
XOR	В	Delay 4 times	Delay 4 times		
			A DOLDO		

Chapter 3: Integrated Circuit

1. Adder

1. 1. Half Adder

INF	UT	OUTPUT		
Α	В	S	С	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

1.2. Full Adder

	INPUT	OUTPUT		
C _{in}	Α	В	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

2. Decoder

2. 1. Decoder 2→4

CONTROL	INP	UT	г оитрит			
G	В	Α	\overline{Y}_3	\overline{Y}_2	\overline{Y}_1	\overline{Y}_0
1	×	×	1	1	1	1
0	0	0	1	1	1	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	1

2. 2. Decoder 3→8

CO	CONTROL INPUT			OUTPUT									
G1	G2A	B2B	С	В	Α	\overline{Y}_7	$\overline{\overline{Y}}_6$	$\overline{\overline{Y}}_5$	$\overline{\overline{Y}}_4$	\overline{Y}_3	\overline{Y}_2	\overline{Y}_1	$\overline{\overline{Y}}_0$
0	×	×	×	×	×	1	1	1	1	1	1	1	1
×	1	×	×	×	×	1	1	1	1	1	1	1	1
×	×	1	×	×	×	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	0	0	1	1	1	0	1	1	1	1
1	0	0	1	0	1	1	1	0	1	1	1	1	1
1	0	0	1	1	0	1	0	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1	1	1	1

3. Multiplexer (MUX)

3. 1. Mux 4→1

CONTROL	INPUT		OUTPUT
G	В	Α	Y
1	×	×	0
0	0	0	C_0
0	0	1	C_1
0	1	0	C_2
0	1	1	C_3

The output Y is given by

$$Y = C_0 m_0 + C_1 m_1 + C_2 m_2 + C_3 m_3$$

Where: m_i is the i-th minterm of function 2 variables B and A.

Example:

$$m_2 = B\overline{A}$$
, $(2 = 10_2 \rightarrow B\overline{A})$; $m_3 = BA$, $(3 = 11_2 \rightarrow BA)$

3. 2. Mux $8\rightarrow 1$

CONTROL	INPUT			OUTPUT
G	С	В	Α	Y
1	×	×	×	0
0	0	0	0	D_0
0	0	0	1	D_1
0	0	1	0	D_2
0	0	1	1	D_3
0	1	0	0	D_4
0	1	0	1	D_5
0	1	1	0	D_6
0	1	1	1	D_7

The output Y is given by

$$Y = D_0 m_0 + D_1 m_1 + D_2 m_2 + D_3 m_3 + D_4 m_4 + D_5 m_5 + D_6 m_6 + D_7 m_7$$

Where: m_i is the i-th minterm of function 3 variables C, B, A. <u>Example:</u>

$$m_2 = \overline{C}B\overline{A}, (2 = 010_2 \rightarrow \overline{C}B\overline{A}); m_6 = CB\overline{A}, (6 = 110_2 \rightarrow CB\overline{A})$$

4. Logic Map for DLD

