# **Project**

# **SPI-Slave with single port RAM**

1) Snippets from the waveforms captured from QuestaSim for the design with inputs assigned values and output values visible.

1<sup>st</sup> test the reset



## 2<sup>nd</sup> test the write address the ns will be 100 which is WRITE state

And the rx\_data will change every clk cycle with 1 bit input seril and after 10 clk cycle (counter==10) the rx\_data is now full with the wr\_address



 $3^{rd}$  now the rx\_data is full and after 1 clk cycle the the rx\_valid=1 . And @  $2^{nd}$  clk cycle the addr\_wr=rx\_data=60.



4<sup>th</sup> now write data begin



Here the bit control become zero and the next clk the rx[9]=0 so it's not changed and @53 ns the rx[8]=1 so it's changed to  $rx_data=01....$  and so on the data in which is 100 decimal.



Here the rx\_valid=1 and the next clk edge the mem changed @addr=60 to be 100 see next fig.



#### 5<sup>th</sup> the read address test.

After we pass the address @rx\_data the addr\_rd changed to be 60



In next figure the cs changed to be 011 which is READ\_DATA state



Now after 2 clk cycle the 2 bit is 11 which is read data so ram will read address 60 and send it to tx\_data and the slave after that convert it into serial output MISO



Now the MISO started to change one by one

 $0\,1\,1\,0\,0\,1\,0\,0$  >> which is 100 in decimal that is the data in address 60 we wrote before .



The remaining part of simulation is test with different numbers only but the same behavior .

### 2) Synthesis snippets for each encoding

• Schematic after the elaboration & synthesis

#### Gray encoding





#### One\_hot encoding





#### Sequential encoding





## • Synthesis report showing the encoding used

#### Gray encoding

```
(* fsm_encoding = "gray" *)
```

| State     | New Encoding | Previous Encoding |  |
|-----------|--------------|-------------------|--|
|           |              |                   |  |
| IDLE      | 000          | 000               |  |
| CHK_CMD   | 001          | 001               |  |
| READ_ADD  | 011          | 010               |  |
| READ_DATA | 010          | 011               |  |
| WRITE     | 111          | 100               |  |

#### One hot encoding

```
:e (* fsm_encoding = "one_hot" *) [
ile 'RAM_SPI' [E:/Digital course/pr
```

| .00 |           |     |              |                   |
|-----|-----------|-----|--------------|-------------------|
| .01 | State     | 1   | New Encoding | Previous Encoding |
| .02 |           |     |              |                   |
| .03 | IDLE      | I   | 00001        | 000               |
| .04 | CHK_CMD   | I . | 00010        | 001               |
| .05 | READ_ADD  | I . | 00100        | 010               |
| .06 | READ_DATA | 1   | 01000        | 011               |
| .07 | WRITE     | I   | 10000        | 100               |
| .08 |           |     |              |                   |
| '   |           |     |              |                   |

### Sequential encoding

(\* fsm\_encoding = "sequential" \*)

Property (\* fsm\_encoding = "sequential" \*)

Property (\* fsm\_encoding = "sequential" \*)

| State     | New Encoding | Previous Encoding |
|-----------|--------------|-------------------|
| IDLE      | 000          | 000               |
| CHK_CMD   | 001          | 001               |
| READ_ADD  | 010          | 010               |
| READ_DATA | 011          | 011               |
| WRITE     | 100          | 100               |

## • Timing report snippet

### Gray encoding

| Setup                        |          | Hold                         |          | Pulse Width                              |          |
|------------------------------|----------|------------------------------|----------|------------------------------------------|----------|
| Worst Negative Slack (WNS):  | 6.714 ns | Worst Hold Slack (WHS):      | 0.164 ns | Worst Pulse Width Slack (WPWS):          | 4.500 ns |
| Total Negative Slack (TNS):  | 0.000 ns | Total Hold Slack (THS):      | 0.000 ns | Total Pulse Width Negative Slack (TPWS): | 0.000 ns |
| Number of Failing Endpoints: | 0        | Number of Failing Endpoints: | 0        | Number of Failing Endpoints:             | 0        |
| Total Number of Endpoints:   | 82       | Total Number of Endpoints:   | 82       | Total Number of Endpoints:               | 40       |

### One\_hot encoding

| Setup                        |          | Hold                         |          | Pulse Width                              |          |
|------------------------------|----------|------------------------------|----------|------------------------------------------|----------|
| Worst Negative Slack (WNS):  | 6.714 ns | Worst Hold Slack (WHS):      | 0.164 ns | Worst Pulse Width Slack (WPWS):          | 4.500 ns |
| Total Negative Slack (TNS):  | 0.000 ns | Total Hold Slack (THS):      | 0.000 ns | Total Pulse Width Negative Slack (TPWS): | 0.000 ns |
| Number of Failing Endpoints: | 0        | Number of Failing Endpoints: | 0        | Number of Failing Endpoints:             | 0        |
| Total Number of Endpoints:   | 82       | Total Number of Endpoints:   | 82       | Total Number of Endpoints:               | 42       |

### Sequential encoding

Design Timing Summary

| Setup                        |          | Hold                         |          | Pulse Width                              |          |
|------------------------------|----------|------------------------------|----------|------------------------------------------|----------|
| Worst Negative Slack (WNS):  | 6.714 ns | Worst Hold Slack (WHS):      | 0.164 ns | Worst Pulse Width Slack (WPWS):          | 4.500 ns |
| Total Negative Slack (TNS):  | 0.000 ns | Total Hold Slack (THS):      | 0.000 ns | Total Pulse Width Negative Slack (TPWS): | 0.000 ns |
| Number of Failing Endpoints: | 0        | Number of Failing Endpoints: | 0        | Number of Failing Endpoints:             | 0        |
| Total Number of Endpoints:   | 82       | Total Number of Endpoints:   | 82       | Total Number of Endpoints:               | 40       |

### • Snippet of the critical path highlighted in the schematic

#### Gray encoding



#### One hot encoding



#### Sequential encoding



## 3) Implementation snippets for each encoding

• Utilization report

#### Gray encoding



#### One hot encoding



#### Sequential encoding



### • Timing report snippet

#### Gray encoding

◆ Design Timing Summary Hold **Pulse Width** Setup Worst Negative Slack (WNS): 6.494 ns Worst Hold Slack (WHS): Worst Pulse Width Slack (WPWS): 0.146 ns 4.500 ns Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Total Number of Endpoints: Total Number of Endpoints: Total Number of Endpoints: 40 All user specified timing constraints are met.

### One\_hot encoding

# Design Timing Summary

| Setup                              |              | Hold                         |          | Pulse Width                              |          |
|------------------------------------|--------------|------------------------------|----------|------------------------------------------|----------|
| Worst Negative Slack (WNS):        | 6.257 ns     | Worst Hold Slack (WHS):      | 0.118 ns | Worst Pulse Width Slack (WPWS):          | 4.500 ns |
| Total Negative Slack (TNS):        | 0.000 ns     | Total Hold Slack (THS):      | 0.000 ns | Total Pulse Width Negative Slack (TPWS): | 0.000 ns |
| Number of Failing Endpoints:       | 0            | Number of Failing Endpoints: | 0        | Number of Failing Endpoints:             | 0        |
| Total Number of Endpoints:         | 83           | Total Number of Endpoints:   | 83       | Total Number of Endpoints:               | 42       |
| All user specified timing constrai | nts are met. |                              |          |                                          |          |

## Sequential encoding

| etup                         |          | Hold                         |          | Pulse Width                              |          |
|------------------------------|----------|------------------------------|----------|------------------------------------------|----------|
| Worst Negative Slack (WNS):  | 6.606 ns | Worst Hold Slack (WHS):      | 0.102 ns | Worst Pulse Width Slack (WPWS):          | 4.500 ns |
| Total Negative Slack (TNS):  | 0.000 ns | Total Hold Slack (THS):      | 0.000 ns | Total Pulse Width Negative Slack (TPWS): | 0.000 n  |
| Number of Failing Endpoints: | 0        | Number of Failing Endpoints: | 0        | Number of Failing Endpoints:             | 0        |
| Total Number of Endpoints:   | 83       | Total Number of Endpoints:   | 83       | Total Number of Endpoints:               | 40       |

# • FPGA device snippet

## Gray encoding



## One\_hot encoding



### Sequential encoding



4) Snippet of the "Messages" tab showing no critical warnings or errors after running elaboration,

synthesis, implementation and a successful bitstream generation.

#### Elaboration

From sequential encoding



#### **Synthesis**

#### From one\_hot encoding



#### Implementation

#### From sequential encoding





#### bitstream generation

from sequential encoding



## After debug choosing gray encoding:

#### **Synthesis**









## Implementation

Note(Flow\_PerfOptimized\_high strategy was used in synthesis settings to avoid clk slack hold time error)





