

Le réseau LoRaWAN

Samia Bouzefrane

Conservatoire National des Arts et Métiers

samia.bouzefrane@lecnam.net

Prévisions du marché de l'IoT

Forecast economic impact of the Internet of Things (IoT) in 2025 (in billion U.S. dollars)

https://www.statista.com/statistics/580778/worldwide-internet-of-things-economic-impact-forecast/

Motivations

Facteurs économiques:

- Baisse des coûts des puces/capteurs
- Besoin de réduire sa facture d'électricité
- Domaine porteur pour les entreprises de l'IoT qui veulent augmenter leur chiffre d'affaires

Facteurs politiques

- Pôles de compétitivité/compétences dans l'IoT (cnrfid, pôle SYSTEMATIC, etc.)
- Nouvelles réglementations européennes en termes de vie privée et d'utilisation des objets connectés
- Investissement dans les projets de villes intelligentes et de développement durable

Facteurs technologiques:

- Miniaturisation des composants
- Nouvelles technologies de communication
- Développement de l'intelligence artificielle
- Nouvelles méthodes pour le traitement de données massives (Big Data)

Facteurs sociétaux

- Vieillissement de la société (besoin de méthodes nouvelles de soin basées sur la technologie)
- Prise de conscience des citoyens sur le fait écologique (privilégier les produits moins polluants, opter pour des solutions plus écologiques, etc.)

Constat

• Objets connectés sont des équipements limités en capacité mémoire, en puissance de calcul et en énergie

• 50% des objets connectés ont besoin d'une faible consommation

• Les réseaux de communication existants ne sont pas adaptés aux applis de l'IoT: portée, autonomie et coût.

Réseaux de communication

- Deux grands types de réseaux de communication radio peuvent être utilisés pour communiquer avec les objets connectés
 - Les réseaux à courte portée: de quelques centimètres à quelques centaines de mètres maximum : Bluetooth, RFID, NFC, ZigBee, WiFi, etc.
 - Les réseaux à grande portée: quelques centaines de mètres à plusieurs dizaines de kilomètres: réseaux cellulaires traditionnels (GSM, GPRS, LTE, etc.)

https://fr.slideshare.net/IoTTunisia/rseau-lora?next_slideshow=1

Pourquoi des réseaux LPWAN?

- Les technologies Zigbee, Wifi, etc. ont une portée limitée,
 - L'utilisation de ces technologies est consommatrice de la batterie,
 - leur coût peut être élevé.
- La solution des réseaux cellulaires traditionnels est surdimensionnée pour les applications IoT
 - Un coût élevé, une grande infrastructure, grande puissance, débit important.
- Les réseaux LPWAN (Low Power Wide Area Networks) est une réponse adaptée au monde de l'IoT
 - Grande portée mais avec une faible consommation d'énergie

Prévisions pour LPWAN selon Machina Cnam Research

https://www.gsma.com/iot/news/lpwa-market-forecast-connections-will-grow-3-billion-ten-years/

Segmentation des technologies IoT

Low Power Wide Area (LPWAN) Internet of Things 45% Low power consumption Low cost Positioning High data rate Emerging standards LoRa

Positionnement des réseaux LPWAN

http://www.linuxembedded.fr/2017/12/introduction-a-lora/

LPWAN: caractéristiques/1

- Ce sont des réseaux sans fil, basse consommation, bas débit et longue portée, optimisés pour les équipements ayant besoin d'une autonomie de plusieurs années
- Les LPWAN utilisent les bandes de fréquences à usage libre sans licence appelées ISM (Industrial, Scientific, Medical)
- L'utilisation des bandes ISM implique le partage des ressources avec les concurrents (comme SigFox) et avec les autres technologies (Wifi, Zigbee, Bluetooth, RFID, etc.)
- Ces bandes de fréquences sont régulées par des autorités organisatrices et il est tenu de respecter des règles d'utilisation.

https://fr.slideshare.net/IoTTunisia/rseau-lora?next_slideshow=1

LPWAN: caractéristiques/2

- LPWAN convient:
 - Aux applications qui ont besoin de communications de longue portée (douzaines de Km) et qui utilisent des objets de faible consommation
- Vitesse de transmission pour LPWAN:
 - de 300 bps à 5 kbps (avec une bande passante de 125 kHz)
- Exemples d'applications: villes intelligentes, agriculture de précision, e-santé, etc.

Domaines d'utilisation

https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-737308.pdf

Les origines de LoraWAN

- LoRaWAN pour Long Range Radio Wide Area Network est un réseau LPWAN
- L'origine de cette technologie est la startup grenobloise Cycléo en 2010, rachetée en 2012 par Semtech (entreprise californienne de semiconducteurs)
- La LoRa Alliance fait la promotion de la technologie open source LoRa
- LoRaWAN est un protocole de communication à bas débit, par radio, d'objets à faible consommation électrique connectés à l'Internet via des passerelles (https://fr.wikipedia.org/wiki/LoRaWAN)

le c**nam**

Créée en 2015, la LoRa

Alliance est un consortium

regroupés autour de LoRa

longue distance LPWAN

dont l'objectif est la

d'industriels et d'opérateurs,

standardisation des réseaux à

LoRa Alliance: membres sponsors

Giesecke & Devrient

LoRaWAN: caractéristiques/1

- LoRaWAN est un réseau basse consommation d'énergie, longue portée, adaptés aux objets connectés dont l'application requiert une autonomie importante
- Utilise des bandes de fréquence à usage libre ISM (partagée par d'autres technologies sans fil)
- Nécessite le respect des règles d'utilisation (puissance d'émission, rapport cyclique et bande passante)
- Exemples d'applis : smart cities, industrie connectée, agriculture de précision, etc.

http://www.linuxembedded.fr/2017/12/introduction-a-lora/

LoRaWAN: caractéristiques/2

- LoRa est la couche physique qui permet des communications sans fil longue distance
- LoRaWAN définit le protocole de communication et l'architecture réseau
- LoRa utilise les bandes de fréquences ISM (868 MHz en Europe et 915 MHz aux USA)
- Une portée comprise entre 15 et 20 km dans les zones rurales et entre 3 et 8 km dans les zones urbaines
- Modulation à étalement de spectre
- Débit faible entre 300bps et 50Kbps selon le facteur d'étalement (spreading factor)

le cnam

Architecture LoRa/1

- Topologie « star-of-stars »
- Au centre : le serveur réseau
- Les équipements sont dits end-devices
- Les end-devices
 communiquent en
 modulation LoRa avec les
 passerelles
- Les passerelles envoient les données vers le réseau via l'IP
- Le serveur réseau communique avec des serveurs applicatifs qui exploitent les données en provenance des enddevices.

Architecture LoRa/2

- Les nœuds extrémités utilisent le protocole LoRa pour communiquer en un seul saut avec l'ensemble des passerelles qui les couvrent (non pas exclusivement avec une passerelle définie).
- Les transmissions entre end-devices et passerelles doivent respecter les règles suivantes :
 - Le end-device change de canal de manière pseudo-aléatoire à chaque transmission.
 - Respect du rapport cyclique autorisé (1% en Europe, soit 36 secondes par heure).
 - Respect de la puissance maximale d'émission autorisée (25mW Europe).
- Le serveur réseau gère la sécurité (E2E, end to end), le débit adaptatif et la redondance.

le cnam

Exemple d'application: Eclairage intelligent

Le protocole *LoRa- MAC* permet aussi des communications point à point entre deux enddevices

Adaptation du débit

- Les end-devices transmettent sur
 n'importe quel canal disponible à un instant donné
- LoRa adapte le débit de données en fonction du débit demandé
- Le débit de données est optimisé en minimisant le temps d'une trame et la consommation énergétique des nœuds
- SF est le facteur d'étalement du spectre (SF) =
 Log₂ (Rc/Rs)

Rc: le débit du message transmis

Rs: le débit du symbole à transmettre

Spreading factor (at 125 kHz)	Bitrate	Range (indicative value, depending on propagation conditions)	Time on Air (ms) For 10 Bytes app payload					
SF7	5470 bps	2 km	56 ms					
SF8	3125 bps	4 km	100 ms					
SF9	1760 bps	6 km	200 ms					
SF10	980 bps	8 km	370 ms					
SF11	440 bps	11 km	740 ms					
SF12	290 bps	14 km	1400 ms					
(with coding rate 4/5; bandwidth 125Khz; Packet Error Rate (PER): 1%)								

Les facteurs d'étalement/1

LoRaWAN supporte 6 facteurs d'étalements: de SF7 à SF12

Le débit utile et la portée en fonction du facteur d'étalement

Les facteurs d'étalement/2

Couches réseau de LoRa

La couche physique

- En Europe, la bande de fréquence ISM est définie par l'ETSI
- Les canaux peuvent être librement fournis par l'opérateur réseau
- Les équipements EU868Mhz doivent être capables d'opérer dans les bandes de fréquences de 863 à 870 MHz
- Chaque équipement LoRa doit supporter par défaut les 3 canaux (868.10 Mhz, 868.30 Mhz, 868.50 Mhz) pour la transmission

La couche MAC: les classes

LoRa MAC offre trois classes de services

- Classe A « All »: offre une communication bidirectionnelle dans laquelle une transmission montante (uplink) est suivie par deux courtes fenêtres de réception (downlink) définies aléatoirement (ALOHA).
- Classe B « Beacon »: Le fonctionnement est le même que pour la classe A avec l'ajout d'un slot de réception programmé en plus des deux fenêtres aléatoires. La planification est permise par l'envoi d'un beacon de synchronisation par la passerelle.
- Classe C « Continuous » : concerne les end-devices qui écoutent le réseau continuellement. Ce mode de fonctionnement est réservé aux périphériques qui n'ont pas de contraintes d'énergie.

Classe A « All »

Les périphériques LoRaWAN implémentent au minimum le mode de fonctionnement décrit par la classe A

C'est la solution la plus économe en énergie pour les devices dont l'application ne nécessite pas d'avantage de réception de messages downlinks.

Couche MAC: transmission

- Après chaque transmission, le end device ouvre deux fenêtres de réception
 - La première après un temps (receive-delay1) de la fin de la transmission montante.
 Cette fenêtre utilise le même canal que la transmission montante
 - La deuxième fenêtre utilise une fréquence et un débit fixes configurés, et commence après un temps (receive-delay2)
- La durée de la fenêtre de réception doit correspondre au moins au temps nécessaire à l'interface radio du nœud extrémité pour détecter le préambule
- Une fois le préambule détecté, le nœud récepteur reste actif jusqu'à la démodulation de la trame envoyée en downlink
- un nœud émetteur ne peut commencer une nouvelle transmission que s'il reçoit un message en downlink dans la première ou deuxième fenêtre

Classe B « Beacon »

La consommation en énergie est plus importante en classe B qu'en classe A

Classe C « Continuous »

Ces end-devices n'ont pas de contraintes de consommation d'énergie et offre la latence la plus faible.

Fréquence 865MHz-870Hz

La réglementation européenne ERC-REC-70-03E France: ARCEP 2012-0612 et 2014-1263 publié au JORF 30/01/2015

Le coefficient d'utilisation limite est le rapport sur 1 heure durant lequel un dispositif émet dans la banque de fréquence concernée

Fréquence 868.0MHz-868.6 Hz

Sigfox utilise 200KHz de bande passante dans laquelle il utilise 200 canaux de 100Hz chacun

LoRaWan utilise 3 canaux de 125KHz chacun

Identifiants dans LoRa

- LoRaWAN identifie les entités suivantes:
 - DevEUI Identifie le end-device, format EUI-64 (unique)
 - AppEUI Identifie l'application, EUI-64 (unique)
 - GatewayEUI Identifie la passerelle, format EUI-64 (unique)
 - DevAddr Adresse du device sur le réseau sur 32 bits (non unique)

Format EUI (Extended Unique Identifier) est un format IPv6 qui s'obtient à partir d'une adresse MAC

https://supportforums.cisco.com/t5/network-infrastructure-documents/understanding-ipv6-eui-64-bit-address/ta-p/3116953

La modulation LoRa: couche physique

- Deux types de modulation en LPWAN
- SigFox Ultra Narrow Band
 - émettre un signal sur une bande de fréquence la plus étroite possible pour maximiser la puissance en un point et passer au dessus du bruit
- LoRa: étalement du spectre
 - émettre le même signal sur plusieurs fréquences pour contourner le bruit
 - Étalement de spectre: *Chirp Spread Spectrum*

Source: SigFox

le cnam

La modulation LoRa: couche physique

- La portée d'une communication LoRa dépend :
 - De la bande passante
 - De la puissance du signal
 - Du facteur d'étalement
- Si l'étalement du signal augmente alors :
 - la portée augmente
 - le débit est réduit
 - avec une transmission plus longue, la consommation d'énergie est plus élevée.

Paramètres régionaux

	Europe	North America	China	Korea	Japan	India
Frequency band	867-869MHz	902-928MHz	470- 510MHz	920- 925MHz	920- 925MHz	865- 867MHz
Channels	10	64 + 8 +8		In definition by Technical Committee	In definition by Technical Committee	In definition by Technical Committee
Channel BW Up	125/250kHz	125/500kHz				
Channel BW Dn	125kHz	500kHz	mittee			
TX Power Up	+14dBm	+20dBm typ (+30dBm allowed)	In definition by Technical Committee			
TX Power Dn	+14dBm	+27dBm	Techni			
SF Up	7-12	7-10	. kq u			
Data rate	250bps- 50kbps	980bps-21.9kpbs	finitio			
Link Budget Up	155dB	154dB	ln de			
Link Budget Dn	155dB	157dB				

En **Europe**: 10 canaux de 125kHz/250kHz(SF7). Une puissance d'émission TXmax de +14dBm. Un débit compris entre 250bps et 50 kbps en LoRaWAN avec modulation FSK. Un bilan de liaison maximal de 155dB (Semtech garantissant une sensiblité des tranceivers jusqu'à -141dBm). dBm=deciBel par mW

Mécanisme d'adaptation du débit ADR

• ADR: Adaptative Data Rate

- permet aux end-devices de changer individuellement leur débit de transmission
- optimise les communications des end-devices en utilisant le débit le plus rapide possible
- Avec un débit rapide
 - Le temps de transmission est réduit
 - la consommation d'énergie est diminuée
 - la capacité du réseau augmente

le cnam

Format de la trame

Le paquet LoRa

Mtype: type du message (montant ou descendant)

Major: version du protocole utilisé

MIC: utilisé pour le contrôle d'intégrité

DevAddr: Adresse de l'équipement Fctrl: permet l'adaptation du débit

FCnt: compteur de trames

FOpts: pour passer des commandes MAC

Fport: port de l'application

le cnam

Comparaison entre technologies LPWAN

Feature	LoRaWAN	Narrow-Band	LTE Cat-1 2016 (Rel12)	LTE Cat-M 2018 (Rel13)	NB-LTE 2019(Rel13+)
Modulation	SS Chirp	UNB / GFSK/BPSK	OFDMA	OFDMA	OFDMA
Rx bandwidth	500 - 125 KHz	100 Hz	20 MHz	20 - 1.4 MHz	200 KHz
Data Rate	290bps - 50Kbps	100 bit/sec 12 / 8 bytes Max	10 Mbit/sec	200kbps – 1Mbps	~20K bit/sec
Max. # Msgs/day	Unlimited	UL: 140 msgs/day	Unlimited	Unlimited	Unlimited
Max Output Power	20 dBm	20 dBm	23 - 46 dBm	23/30 dBm	20 dBm
Link Budget	154 dB	151 dB	130 dB+	146 dB	150 dB
Batery lifetime - 2000mAh	105 months	90 months		18 months	
Power Efficiency	Very High	Very High	Low	Medium	Med high
Interference immunity	Very high	Low	Medium	Medium	Low
Coexistence	Yes	No	Yes	Yes	No
Security	Yes	No	Yes	Yes	Yes
Mobility / localization	Yes	Limited mobility, No loc	Mobility	Mobility	Limited Mobility No Loc

Déploiement de LoRaWAN

LoRaWAN™ NETWORKS

https://www.lora-alliance.org/

Technologies LPWAN: SigFox

- Fournit une connectivité bas débit à travers son propre réseau cellulaire basé sur la technologie radio Ultra Narrow Band (UNB).
- La technologie utilise la bande ISM 868 MHz pour l'Europe/ETSI et 902 MHz pour les USA/FCC (Federal Communication Commissions)
- Une portée entre 30 et 50 Km dans les zones rurales et entre 3 et 10 km dans les zones urbaines
- Plus de 7 millions d'objets l'utilisent en fin 2015 (d'après une interview avec le PDG de SigFox)
- Sigfox offre un débit de 100 bits par seconde
- Un capteur muni d'un module SigFox peut envoyer jusqu'à 140 messages par jour de 12 octets (charge utile) chacun (adapté aux informations de monitoring)

SigFox vs Lora (http://la-rem.eu/2018/01/31/internet-des-objets-baisse-cout/)

https://fr.slideshare.net/IoTTunisia/rseau-lora?next_slideshow=1

SigFox

• Le réseau couvre une grande partie du territoire français et plusieurs pays européens (Espagne, Pays-bas, Royaume-Uni, Portugal, etc.),

Quelques Services:

- contrôler des panneaux publicitaires,
- gérer le système de ventilation et de chauffage des immeubles professionnels ou privés,
- gérer des alarmes d'une maison (détecteur d'incendie, détecteur de fuite de gaz, alarme de sécurité...),
- mieux prévoir les dangers qui menacent la nature (flux d'eau, climat, tremblement de terre, etc.)

https://fr.slideshare.net/IoTTunisia/rseau-lora?next_slideshow=1

Bibliographie

- 1. LoRaWAN Specification 2015: https://www.rs-online.com/designspark/rel-assets/ds-assets/uploads/knowledge-items/application-notes-for-the-internet-of-things/LoRaWAN%20Specification%201R0.pdf
- LoRa Device Developer Guide, Orange Connected Objects & Partnerships, 2016. https://partner.orange.com/wp-content/uploads/2017/11/LoRa-Device-Developer-Guide-Orange.pdf
- 3. LoRaWAN, what it is? A technical overview of LoRa and LoRaWAN, Lora Alliance, Nov. 2015
- 4. https://fr.slideshare.net/Reseauxetservicestpa/rs-10-juin-2015-lora-franck
- 5. https://fr.slideshare.net/loTTunisia/rseau-lora?next_slideshow=1
- 6. https://fr.slideshare.net/RobertVivancoSalcedo/understand-lpwa-tetchnologies-sigfox-and-lora?next slideshow=2
- 7. Etat de l'art des réseaux LPWA, CNRFID: http://www.centrenational-rfid.com/docs/users/file/Etat%20de%20l'art%20r%C3%A9seaux%20LPWA_final.pdf
- 8. https://www.disk91.com/cours/iot/IntroductionAuxReseauxLowPower.pdf