DaeYoung Lim and SeoYoon Cho

2016.05.16 (Mon)

Contents

- Dirichlet Distribution
- Definition of Dirichlet Process
- Properties of DP
- Dirichlet Process Mixtures

Dirichlet-Multinomial Model

Prior and Model

$$\begin{split} Y_i|p &\overset{ind}{\sim} & \mathsf{Multinomial}(p), \qquad i=1,\cdots,n \\ p = (p_1,\cdots,p_k) &\sim & \mathsf{Dirichlet}(\alpha_1,\cdots,\alpha_k) \\ \pi(p) &= & \frac{\Gamma(\sum \alpha_i)}{\prod_{i=1}^k \Gamma(\alpha_i)} \prod_{i=1}^k p_i^{\alpha_i-1} \end{split}$$

- Posterior

$$\mathsf{Dirichlet}(\alpha_1 + \sum I(Y_i = 1), \cdots, \alpha_k + \sum I(Y_i = k))$$

 Prior has full support and is conjugate, thus leading to an easy update

Dirichlet Distribution

DD to DP

Dirichlet Distribution

Dirichlet Distribution

$$G \sim \mathsf{Dir}(\alpha), \ \theta_i | G \sim G$$

- For any measurable set A, partition R into A and A^c
- Dirichlet-Multinomial (Beta-Binomial) model on A and A^c

$$P(\theta_i \in A) = \frac{\alpha(A)}{\alpha(\mathbf{R})}$$

Dirichlet Process

$$G \sim \mathsf{DP}(MG_0), \ \theta_i | G \sim G$$

Baseline probability distribution G_0 , mass(precision) parameter M, MG_0 : base measure of DP

Ferguson (1973)

- ▶ Probability Space : (Θ, A, G)
- arbitrary partition $\{A_1, \cdots, A_k\}$ of Θ
- $G \sim DP(M, G_0)$ if

$$(G(A_1),\cdots,G(A_k)) \sim DP(MG_0(A_1),\cdots,MG_0(A_k))$$

well-defined infinite dimensional model p(G) because of Kolmogorov's consistency conditions (guarantees suitably consistent collection of finite-dimensional distributions define a stochastic process.)

Kolmogorov's Consistency Conditions

- Let T: interval, $n \in \mathbb{N}$. Then for each $k \in \mathbb{N}$ and finite sequence of times $t_1, \dots, t_k \in T$, let $v_{t_1 \dots t_k}$ be a probability measure on $(\mathbf{R}^n)^k$
- 1. \forall permutations π of $\{1, \dots, k\}$, measurable sets $F_i \subseteq \mathbf{R}^n$,

$$\mathbf{v_{t_{\pi(\mathbf{1})}\cdots t_{\pi(\mathbf{k})}}}(\mathbf{F_{\pi(\mathbf{1})}\times \cdots \times \mathbf{F_{\pi(\mathbf{k})}}}) = \mathbf{v_{t_1\cdots t_k}}(\mathbf{F_1}\times \cdots \times \mathbf{F_k})$$

2. For \forall measurable sets $F_i \subseteq \mathbf{R}^n, m \in \mathbf{N}$,

$$v_{t_1\cdots t_k}(F_1\times\cdots\times F_k)=v_{t_1\cdots t_kt_{k+1}\cdots t_{k+m}}(F_1\times\cdots\times F_k\times\mathbf{R}^n\times\cdots\times\mathbf{R}^n)$$

When the two conditions satisfied, ∃ a probability space (Ω, F, P) and a stochastic process $X: T \times \Omega \to \mathbf{R}^n$ s.t.

$$v_{t_1\cdots t_k}(F_1\times\cdots\times F_k)=P(X_{t_1}\in F_1,\cdots,X_{t_k}\in F_k)$$

for all $t_i \in T$, $k \in \mathbb{N}$, and measurable sets $F_i \subset \mathbb{R}^n$

ightharpoonup X has $v_{t_1 \cdots t_k}$ as its finite-dimensional distribution relative to times t_1, \cdots, t_k

Sethuraman (1994)

- Stick-Breaking Construction
 - $\delta_{\theta}(\cdot)$: point mass at θ
 - if $(\tilde{\theta}_h) \stackrel{iid}{\sim} G_0$
 - $v_h \stackrel{iid}{\sim} \text{Beta}(1, M)$
 - $w_h = v_h \prod_{k < h} \{1 v_k\}$

$$G(\cdot) = \sum_{h=1}^{\infty} w_h \delta_{\tilde{\theta}_h}(\cdot) \sim DP(M, G_0)$$
 prior

Simulation

- $G_0 = \mathsf{Unif}(0,1)$, 1000 samples from $G(\cdot)$

Simulation

- $G_0 = N(0,1)$, 1000 samples from $G(\cdot)$

Simulation Interpretation

- $M \uparrow$: reduce the variability
- $M\downarrow$: small number of weights concentrate most of the probability mass

Predictive Probability Function

- \bullet $\theta_i|G \stackrel{iid}{\sim} G$ where $G \sim DP(M,G_0)$.
- ▶ k_n : number of unique values among $\{\theta_1, \dots, \theta_n\}$
- $\{\theta_1^*, \cdots, \theta_{k_n}^*\}$ be these unique values
- $\blacktriangleright n_{n_j}$: number of draws among $\{\theta_1,\cdots,\theta_n\}$ that are equal to θ_i^*

$$p(\theta_{n+1}|\theta_n,\cdots,\theta_1) \propto \sum_{j=1}^{k_n} n_{n_j} \delta_{\theta_j^*} + MG_0$$

Blackwell and MacQueen (1973)

$$p(\theta_{n+1}|\theta_n,\cdots,\theta_1) \propto \sum_{j=1}^{k_n} n_{n_j} \delta_{\theta_j^*} + MG_0$$

- new $\theta_i = \theta_i^*$ with probability $\propto n_{n_i}$ or
- new θ_i sampled from G_0 with probability $\propto M$.
- After integrating G, observations are **exchangeable**, have identical marginal distribution G_0 but are not independent.

Polya Urn (Chinese Restaurant Process)

- ▶ Urn has initially M black and one colored ball (color is randomly selected according to G_0)
- If a colored ball is drawn, return it along with another ball of the same color to the urn
- If a **black** ball is drawn, return it along with a ball of a **new** color randomly selected according to G_0

Simulation

- $G_0 = \text{Unif}(0,1)$, M = 5, 10 predictive samples

Predictive Distribution

Normalized Random Measure with Independent Increments (NRMI)

Dirichlet from Gamma

$$\begin{array}{ccc} y_1, \cdots, y_k & \stackrel{iid}{\sim} & \mathsf{Gamma}(\alpha_i, 1) \\ x_i & = & \frac{y_i}{\sum_{i=1}^k y_i} \\ \Rightarrow (x_1, \cdots, x_k) & \stackrel{iid}{\sim} & \mathsf{Dir}(\alpha_1, \cdots, \alpha_k) \end{array}$$

- $\mu(A) \sim \text{Gamma}(MG_0(A), 1)$ for any $A \subset \Theta$
- $G(\cdot) \equiv \frac{\mu(\cdot)}{\mu(\Theta)} \sim DP(M, G_0)$

Simulation

- $y_i \sim G$ with prior $G \sim DP(M, G_0)$
- M = 1 and $G_0 = Poi^+(2)$
- ▶ 10 posterior draws

Large Weak Support

- Under mild conditions, any distribution with the same support as G_0 can be well approximated weakly by a DP random probability measure
- ▶ Let $supp(Q) \subset supp(G_0)$. For any finite number of measurable sets A_1, \dots, A_k and $\epsilon > 0$,

$$\pi\{|G(A_i) - Q(A_i)| < \epsilon, \text{ for } i = 1, \dots, k\} > 0$$

Ferguson's Definition

▶ Random Variable G(A) for any $A \subset \Theta$

$$G(A) \sim \text{Beta}(MG_0(A), M(1 - G_0(A)))$$

$$E[G(A)] = G_0(A), \quad Var[G(A)] = \frac{G_0(A)(1 - G_0(A))}{M + 1}$$

- G₀: expected shape of G
- M: controls the variability of the realizations around G_0

-
$$E(w_h) = \frac{1}{M+1} \left(\frac{M}{M+1}\right)^{h-1} \quad \because v_h \stackrel{iid}{\sim} \mathsf{Beta}(1,M)$$

Conjugacy

- $\triangleright \theta_1, \cdots, \theta_n$ iid
- $\theta_i | G \sim G$ and $G \sim DP(M, G_0)$
- Posterior

$$\Rightarrow G|\theta_1, \cdots, \theta_n \sim \mathsf{DP}\left(M+n, \frac{MG_0 + \sum \delta_{\theta_i}}{M+n}\right)$$

Posterior Mean

$$E(G|\theta_1, \cdots, \theta_n) = \frac{M}{M+n}G_0 + \frac{n}{M+n} \frac{\sum_{i=1}^n \delta_{\theta_i}}{n}$$

Consistency

since empirical cdf is consistent if iid, for some true distribution G_T , as $n \to \infty$, $G(A)|\theta_1, \cdots, \theta_n \stackrel{p}{\to} G_T(A)$ for any measurable set A

Dirichlet Process 19 of 31

Simulation (Consistency)

- true $G \sim N(2, 2^2)$
- baseline $G_0 \sim N(0,1)$
- -M = 5

Dirichlet Process Mixtures

- Motivation
 - Discrete nature of DP
 - However, unknown distribution may be continuous
 - For some hierarchical models, DP prior may lead to inconsistent estimator when the true distribution is continuous.
- Mitigation
 - Add a convolution with a continuous kernel to G
- DPM

$$y_1, \dots, y_n \sim F(y_i) = \int P(y_i|\theta) G(d\theta), \quad G \sim \mathsf{DP}(M, G_0)$$

where $p(y_i|\theta)$ is a parametric distribution indexed by a finite dimensional parameter θ .

4 D > 4 B > 4 B > B + 9 Q P

Stick-Breaking Construction

$$\begin{aligned} y_i|(w_h), (\tilde{\theta}_h) \sim \sum_{h=1}^{55} w_h P(y_i|\tilde{\theta}_h) &= F(y_i) \end{aligned}$$
 where $w_h = v_h \prod_{\ell < h} (1-v_\ell), \ v_h \sim \text{Beta}(1,M), \ \tilde{\theta}_h \sim G_0$

- countable mixtures with an infinite number of components
- support on a large classes of distributions

Clustering

DPM induces clustering among the observations, with ${\cal M}$ controlling the a priori expected number clusters in the sample.

- $M \to 0$: model reduces to a single component mixture (fully parametric model)

$$y_i \stackrel{iid}{\sim} p(y|\theta), \quad \theta \sim G_0$$

- $M \to \infty$: each observation assigned its own singleton cluster

$$y_i \stackrel{iid}{\sim} \int p(y_i|\theta)G_0(d\theta)$$

Hierarchical Model

▶ latent random effects θ_i

$$y_i|\theta_i \sim p(y_i|\theta_i), \quad \theta_i|G \sim G, \quad G \sim \mathsf{DP}(M,G_0)$$

• highlighting the nature of clusters generated by ties among the θ_i

$$y_i|\theta_i \sim p(y_i|\theta_i), \quad (\theta_1, \cdots, \theta_n) \sim p(\theta_1, \cdots, \theta_n)$$

▶ cluster indicator variables (s_i) s.t. $\theta_i = \theta_{s_i}^*$

$$y_i|s_i, (\theta_i^*) \sim p(y_i|\theta_{s_i}^*), \quad \theta_i^* \sim G_0,$$

$$p(s_1, \dots, s_n) = \frac{\Gamma(M)}{\Gamma(M+n)} M^k \prod_{j=1}^k \Gamma(n_j)$$

where k: number of distinct values among s_1, \cdots, s_n and $n_j = \sum_i I(s_i = j)$

- prior distribution on all possible partitions of the data into at most n groups
- for any finite sample size n, at most n distinct $\tilde{\theta}$ are sampled as θ_i^*

Posterior Simulation for DPM Models

$$y_i|\theta_i \sim p(y_i|\theta_i), \quad \theta_i|G \sim G(\theta_i), \quad G \sim \mathsf{DP}(M, G_0)$$

- kernel $p(y_i|\theta_i)$
- unknown mixing measure $G \sim \mathsf{DP}$ prior

Collapsed Gibbs Samplers (Conjugate models)

Species Sampling Model

$$\theta_n | \theta_{n-1}, \cdots, \theta_1 \sim \sum_{j=1}^{k_n-1} \frac{n_{n-1,j}}{M+n-1} \delta_{\theta_j^*} + \frac{M}{M+n-1} G_0$$

where $n_{n-1,j}$: number of θ_i equal to θ_i^*

- **exchangeable**: full conditional prior distribution for any θ_i given θ_{-i}

Full Conditional Posterior Distribution for θ_i

$$\theta_{i}|\theta_{-i}, y \propto \sum_{j=1}^{k^{-}} n_{j}^{-} p(y_{i}|\theta_{j}^{*-}) \delta_{\theta_{j}^{*-}} + M p(y_{i}|\theta_{i}) G_{0}(\theta_{i})$$

$$= \sum_{j=1}^{k^{-}} \{n_{j}^{-} p(y_{i}|\theta_{j}^{*-})\} \delta_{\theta_{j}^{*-}} + \left\{ M \int p(y_{i}|\theta_{i}) dG_{0}(\theta_{i}) \right\} p(\theta_{i}|y_{i}, G_{0})$$

where $\bar{}$: the appropriate quantity with θ_i excluded.

- $p(\theta_i|y_i,G_0)=rac{p(y_i|\theta_i)\,dG_0(\theta_i)}{\int p(y_i|\theta_i)\,dG_0(\theta_i)}$: posterior on θ_i in a singleton cluster
- $\int p(y_i|\theta_i)\,dG_0(\theta_i)$: prior marginal distribution for y_i under G_0

Dirichlet Process 28 of 31

Gibbs Sampler for θ_i

- **sample** θ_i equal to one of the unique θ_i^* 's with probability $\propto n_i^- p(y_i | \theta_i^*)$ or
- \triangleright sample from the posterior distribution based solely on y_i with probability $\propto M \int p(y_i|\theta_i) dG_0(\theta_i)$
- when the mixture components are well separated, slow mixing
- faster mixing by including an additional transition probability
- more efficient sampler by first sampling indicators from $p(s_i|s^-,y)$ sequentially and then sampling each θ_i^* from $p(\theta_i^*|y,s)$

$$p(s_i|s^-,y)$$

hierarchical model

$$p(s_i = j | s^-, \theta^{*-}, y) \propto \begin{cases} n_j^- p(y_i | \theta_j^{*-}) & j = 1, \dots, k^- \\ M \int p(y_i | \theta_i) dG_0(\theta_i) & j = k^- + 1 \end{cases}$$

and

$$p(\theta_i|s_i = j, s^-, \theta^{*-}, y) = \begin{cases} \delta_{\theta_j^{*-}} & j = 1, \dots, k^- \\ p(\theta_i|y_i, G_0) & j = k^- + 1 \end{cases}$$

- $\mathbf{y}_{i}^{*-} = (y_{\ell}; s_{\ell} = j \text{ and } \ell \neq i)$: obs in the jth cluster w/o y_{i}
- Remove θ_i^{*-} from the conditioning set by integrating with respect to $p(\theta_{i}^{*-}|s^{-},y) = p(\theta_{i}^{*-}|y_{i}^{*-})$

$$p(s_i = j | s^-, y) \propto \begin{cases} n_j^- \int p(y_i | \theta_j^{*-}) dp(\theta_j^{*-} | y_j^{*-}) & j \leq k^- \\ M \int p(y_i | \theta_i) dG(\theta_i) & j = k^- + 1 \end{cases}$$

- Full conditional posterior for θ_i^*

$$p(\theta_j^*|s,y) \propto G_0(\theta_j^*) \prod_{\{i:s_i=j\}} p(y_i|\theta_j^*)$$

- When $G_0(\theta)$ is conjugate to $p(y_i|\theta)$, all of $\int p(y_i|\theta_i^{*-}) dp(\theta_i^{*-}|y_i^{*-}), \ \int p(y_i|\theta_i) dG_0, \ p(\theta_i^{*}|s,y)$ are usually available in closed form and implementation of the algorithm is straightforward. ←□→ ←同→ ←豆→ ←豆→ □□

Dirichlet Process 31 of 31