第一原理計算を用いた 新規無限層薄膜超伝導体候補の探索

鳥取大工 1 ,鳥取大AMES 2 , (M1)河野 怜於 1 ,中岡大輝 1 ,榊原 寛史 1,2

【先行研究】

[2] H. Sakakibara et al., Phys. Rev. B 111, 224511 (2025)

- ・無限層ニッケル酸化物 LaNiO₂ d⁹に近い電子配置
- →高濃度ホールドープ(x~1): La_{1-x}Sr_xNiO₂ d⁸に近い電子配置

 $d_{x^2-y^2}$

フェルミ準位の下の 他のd軌道

両者の相互作用によってs±波超伝導が増強!

☆同様の状況を実現する無限層構造をもつ物質の発見を目指す

無限層構造をもちd®に近い電子配置をもつ

超伝導を増強させる要素

- (1) Incipient band(2) OSBM(軌道空間バイレイヤーモデル)

先行研究と同じ状況

背景: Incipient bandとは

[3] M. Nakata, et al. PRB 95, 214509 (2017)

エネルギーとスピン揺らぎ強度の関係[3]

この系は高いTcを実現する

実空間バイレイヤーモデルとの類似性が高いTcを担保している

[4] N. Kitamine, M. Ochi, K. Kuroki, Phys. Rev. Res 2, 042032 (2020).

Quantum Espresso[5]

第一原理バンド 計算

- ·GGA
- ·GGA+U

Wannier90[8]

タイトバインディング近似

構造最適化

[5] P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).

Phonopy[6][7]

フォノン計算

[6] A. Togo et al., J. Phys. Condens. Matter **35**, 353001-1-22 (2023)

[7] A Togo, J. Phys. Soc. Jpn., **92**, 012001-1-21 (2023).

[8] N. Marzari and D. Vanderbilt, Phys. Rev. B **56**, 12847 (1997).

[9] F. Aryasetiawan et al., Phys. Rev. B 79, 195104 (2004).

[10] K. Nakamura et al., Comput. Phys. Commun. **261**, 107781 (2021).

[11] N. E. Bickers, D. J. Scalapino, S. R. White, Phys. Rev. Lett. **62**, 961 (1989).

cRPA[9][10]

電子間相互作用 U, U', J, J'

<u>FLEX近似[11]</u>

超伝導の優位性の 評価値λを計算

[12] M. Ochi, H. Sakakibara, H. Usui, K. Kuroki, Phys.Rev.B 111,064511(2025)

15 Frequency (THz) Wave vector

バルク KCuO₂ (a= 3.7925 Å)

フルリラックス:セル全体の最適化

バルク構造

imaginary phonon

バルク構造においてはどちらも不安定

LaAlO₃(**LAO**) (a=3.787 Å)

 $(LaAlO_3)_{0.3}(SrAl_{0.5}Ta_{0.5}O_3)_{0.7}(\underline{LSAT})$ (a=3.868 Å)

 $SrTiO_3$ (STO) (a=3.905 Å)

 $GdScO_3$ (GSO) (a=3.944 Å)

 $DyScO_3(DSO)$ (a=3.979 Å)

DSO LaCoO₂ (a=3.979 Å 約2.9%増)

R

結果: phonon計算- KCuO2

M X G Z A R Z Wave vector

GSO KCuO₂
(a=3.944 Å 約3.9%增)

DSO KCuO₂
(a=3.979 Å 約4.9%增)

15

Frequency (THz)

	LAO	LSAT	STO	GSO	DSO
LaCoO2	×	×	0	0	0
SrNiO2	0	0	0	-	-
KCuO2	×	×	0	0	0

結果: 第一原理バンド計算-GGA

「電子の密度+その変化」から、物質の性質を計算するよく用いられる**LDA**より精度が良い

<u>先行研究</u> La_{1-x}Sr_xNiO₂

先行研究と同じ<u>Incipient band</u>

GGAに**ハバードU項**を加え、 **強相関電子**を正しく扱う近似

正しい<u>バンドギャップ</u>を再現

GGAにハバードU項を加え、 強相関電子を正しく扱う近似

正しい<u>バンドギャップ</u>を再現

KCuO₂ GGA (a=3.905 Å)

KCuO₂ GGA+U (<u>Cu</u> U=3eV)

手法: FLEX近似

有効相互作用 $\Sigma \sim V[\chi_S, \chi_C]G$

タイトバインディングモデルより 電子相関込の グリーン関数 $G[G_0,\Sigma]$

Dyson方程式を解く 自己無撞着計算

$$G = \frac{1}{G_0^{-1} - \Sigma}$$

自己エネルギー
$$\Sigma \left[rac{\chi_M[G]}{1-U\chi_M[G]}, rac{\chi_M[G]}{1+U\chi_M[G]}
ight]$$
スピン揺らぎ 電荷揺らぎ

線形化エリアシュベルグ方程式

$$\lambda(T)\Delta(k) = -\frac{T}{N}\sum_{k'}V_{\Delta}(k-k')G(k)\Delta(k')G(-k)$$

オンサイト電子間相互作用U,U',I,I'の定義

Bandfillingとんの関係

K.Ushio, et al.,arXiv:2506.20497 (2025).

結果3: FLEX近似- KCuO₂

K.Ushio, et al.,arXiv:2506.20497 (2025).

バンドギャップの適切な評価のためQSGW

VCAを用いた高濃度キャリア,ホールドープ状況下での計算

表3AEの比較

l, m=1, 2, 3, 4, 5が示すのは $d_{x^2-y^2}, d_{3z^2-r^2}, d_{xy}$ d_{yz} d_{xz} である。

l,m	La _{1-x} Sr _x NiO ₂	LaCoO2	
1,2	2.0(eV)	2.0(eV)	
1,3	1.5(eV)	1.7(eV)	
1,4	1.3(eV)	1.6(eV)	

図1 先行研究における λ とキャリア ドープの関係

質問

SrCuO2,CaCuO2などの112系における ホールドープ

本研究で用いた基板より 格子定数が大きいものを用いた場合

+Uの値はどのように決めたのか?

FLEX計算の値がGGAと+Uで異なるのは?

d9からd8へと移っていく電子状態が酷似 これらの系(ホールドープ)におけるフォノン計算 の実施、電子ドープ安定するのか(薄膜)

経験則的な決め方

QSGW計算の必要性 +Uの1~3にして計算しても良いかも

ΔEの大きさとの依存性をとる 反強磁性などを追加して計算