F09 - Hashtabell, Prioritetskö, Hög

5DV149 Datastrukturer och algoritmer Kapitel 13.5, 14.5–14.8

Niclas Börlin niclas.borlin@cs.umu.se

2024-02-08 Tor

Innehåll

- Hashtabell
- Prioritetskö:
 - Modell
 - Organisation
 - Konstruktioner
 - Listor
 - ► Heap (Hög)

Hashtabell

Långsam sökning i Tabell

- ► Problem: Sökningen i en generell Tabell är O(n)
- Vi vill hitta ett snabbare sätt att söka

Principskiss Hashtabell

Öppen hashtabell

Sluten hashtabell

О.	
0	127
1	21
2	32
3	43
4	92
5	127
6	127
7	127
8	28
9	127

Tabell som Fält

Om vi kan konstruera tabellen med ett Fält blir operationerna Lookup, Insert, Remove O(1)

Tabell-funktion	Fält-funktioner
Lookup	Has-value och Inspect-value
Insert	Set-value
Remove	Set-value

- En teoretisk begränsning är att nyckeltypen måste gå att använda som index
- En praktisk begränsning är att grundmängden för nycklarna kan bli stor
 - Ex. nyckelmängden 32-bitars heltal kräver ett Fält med 4 miljarder element

Hashtabell

- En Hashtabell är en variant på tabell som har följande egenskaper
 - 1. I princip lika generell som Tabell
 - Lite större krav på indextypen
 - 2. I princip lika snabb som Fält
 - Alla operationer går att göra i O(1) tid, med vissa begränsningar
 - 3. Kräver mycket mindre minne än Fält

Hashtabell, krav på nyckeltypen

- Precis som för Tabell så kräver vi att likhet är definierat för nyckeltypen
- Dessutom kräver vi att det finns en speciell nyckel-hashfunktion implementerad f\u00f6r nyckeltypen
- Önskade egenskaper för nyckel-hashfunktionen:
 - Nyckel-hashfunktionen är definierad för alla objekt k av nyckeltypen
 - Nyckel-hash-funktionen tar ett objekt k av nyckeltypen och returnerar ett heltal
 - Nyckel-hash-funktionen bör vara snabb att beräkna
 - Nyckel-hash-värdena för olika nycklar bör vara olika
- Begränsning
 - Vi har i princip ingen begränsning i storlek på heltalet
 - ▶ I praktiken brukar en fysisk datatyp bli begränsningen, t.ex. 32-bitars heltal

Gränsyta för Hashtabell

```
abstract datatype Hashtable(arg, val)

Empty(kh: function(arg)) → Hashtable(arg, val)

Insert(k: arg, v: val, t: Hashtable(arg, val))

→ Hashtable(arg, val)

Isempty(t: Hashtable(arg, val)) → Bool

Lookup(k: arg, t: Hashtable(arg, val)) → (Bool, val)

Remove(k: arg, t: Hashtable(arg, val))

→ Hashtable(arg, val)

Kill(t: Hashtable(arg, val)) → ()
```

Exempel på nyckel-hashfunktion (1)

För indextypen Sträng så är det vanligt att iterera över alla element i strängen, t.ex.

```
Algorithm String-hash(s: String)

// Compute a hash value that depends on all characters in the string
seed ← 131 // Magic number
hash ← 0

for i from 0 to length(s) - 1 do
hash ← (hash * seed) + char-to-int(lowercase(Inspect-value(s, i)))
return hash
```

- Notera att hash-värdet kan bli stort!
 - ► Strängen "Jan" får hash-värdet 1831883

Exempel på nyckel-hashfunktion (2)

- För en Post bör alla relevanta fält påverka hashvärdet
- ▶ För en Post med fälten item_number (Heltal) och serial_number (Sträng) skulle nyckel-hashfunktionen kunna vara

```
Algorithm Record-hash(r: Record)
return r.item_number * String-hash(r.serial_number)
```

► Posten (1412, "LE74D") får då hash-värdet 1412 · 32033999426 = 45232007189512

Notera

- Det var vanligt att motiveringen till hashtabeller är att det är möjligt att använda strängar som nycklar
- Jag vill poängtera att det går att använda vilken datatyp som helst som nyckel, så länge en nyckel-hashfunktion finns definierad

Tabell-hashfunktion

- Alla hashtabeller är konstruerade med något sorts Fält
- Vi skulle i princip kunna välja att använda nyckel-hashvärdena direkt som index i Fältet
 - Det slösar dock stora mängder minne
- För att slippa skapa onödigt stora Fält kommer vi att använda en tabell-hashfunktion
- ► Tabell-hashfunktionen avbildar en stor indextyp A på en mindre indextyp B, t.ex.
 - ► A=32-bitars heltal, B=8-bitars heltal
 - ► A=heltal i intervallet 0-99, B=heltal i intervallet 0-6
- ▶ Vi lagrar sedan våra tabellvärden i ett Fält med indextyp B

Tabell-hashfunktion, önskade egenskaper

- En hashfunktion h(a) bör följande egenskaper:
 - Funktionen kan avbilda alla element a i A på något element b = h(a) i B
 - 2. De avbildade elementen b = h(a) bör ha en bra spridning för de förväntade värdena i A
 - 3. Funktionen är snabb att beräkna för alla a
- ► För exemplet postnummer med intervallen A=10000–99999, B=0–99 skulle hashfunktionen

$$h(x) = |x/1000|$$

ha egenskap 1 och 3 men inte 2:

- Inget värde avbildas på 0–9
- ► Fler värden avbildas troligtvis på 11 än 98 (fler postnummer 11xxx än 98xxx)

Operatorn mod

- Den överlägset vanligaste tabell-hashfunktionen använder operatorn mod som beräknar heltalsrest vid division
 - Operatorn än snabb och har bra spridningsegenskaper på många indata
 - För Heltal a, n > 0 så avbildar

$$h(a) = a \mod n$$

alla heltalen a på heltalen $[0, 1, \dots, n-1]$

► Ex.

$$0 \mod 4 = 0,$$
 $4 \mod 4 = 0,$ $1 \mod 4 = 1,$ $5 \mod 4 = 1,$ $2 \mod 4 = 2,$ $6 \mod 4 = 2,$ $3 \mod 4 = 3.$ $7 \mod 4 = 3$

Om a är ett nyckel-hash-värde och n är storleken på fältet så kan $h(a) = a \mod n$ användas som index i hashtabellen (fältet)

Summering (1)

Nyckel-hashfunktionen

$$a = n(k) \in A$$

ger oss generalitet för nyckeltypen men riskerar att ge stora hash-värden

Tabell-hashfunktionen

$$h(a) = h(n(k)) \in B$$

reducerar nyckel-hashvärdena till ett litet intervall och ger oss lågt minnesutnyttjande

Summering (2)

- Atterstår att visa att funktionerna Lookup, Insert, Remove går att implementera i *O*(1) tid
- Alla funktionerna har behov av att hitta en plats (index) i hashtabellen (fältet) givet en nyckel k
 - Nyckeln k duger inte som index, då k typiskt inte är av indextypen för fältet
 - Nyckel-hash-värdet n (k) är ett heltal, men kan vara för stort
 - ► Tabell-hash-värdet h (n (k)) går att använda som index, men flera nycklar kan avbildas på samma hashvärde
 - Detta kallas för en kollision
 - Vi kommer att använda oss av en sökalgoritm som hanterar kollisioner

Kollisionshantering

Förenkling

När vi diskuterar kollisionshantering kommer vi att använda nyckeltypen Heltal dvs. nyckel-hashfunktionen är identitetsfunktionen

```
Algorithm Int-hash(i: Int)
// The hash value for an integer is the value itself
return i
```

- Vi kommer också att använda nyckelvärdet som tabellvärde
 - ▶ I princip implementera ett Lexikon
- Senare kommer vi att titta på exempel för mer generella nyckeltyper och tabeller

Kollisioner

- En kollision är när två nycklar avbildas på samma hash-värde
 - ► En bra hashfunktion förväntas generera "få" kollisioner
 - Kollisioner går ej att undvika helt
- Exempelvis skulle

$$h(x) = x \mod 10$$

avbilda nyckelvärdena 89 och 59 på index 9

- Kollisioner kan hanteras med
 - 1. Sluten hashning
 - 1.1 Linjär teknik
 - 1.2 Kvadratisk teknik
 - 2. Öppen hashning

Sluten hashning

Sluten hashning, sökning

- Vid sluten hashning används en cirkulär, noll-baserad vektor (fält) för att lagra datat
 - Statisk tabell med fast antal platser
 - ▶ Index i en tabell av storlek n räknas modulo n
 - Det f\u00f6rsta elementet f\u00f6ljer efter det sista
- Vi kommer att behöva reservera två värden som markörer i tabellen
 - ► Värdet HASH_EMPTY kommer att användas som en markör att platsen är ledig
 - Värdet HASH_REMOVED kommer att användas som en markör att platsen är ledig, men att ett värde har tagis bort från platsen någon gång
- Markörvärdena får inte vara giltiga tabellvärden
 - Om vi vill lagra värden 0–99 i hashtabellen kan vi t.ex. välja
 - ► HASH EMPTY = 100, HASH REMOVED = 101 eller
 - ► HASH_EMPTY = -1, HASH_REMOVED = -2

Sluten hashning, sökning med linjär teknik

- Sökning (Lookup) efter ett element k börjar på index h(k) och fortsätter eventuellt framåt
 - Om värdet inte påträffats före nästa lediga plats så finns det inte i tabellen
- Vid sökning med linjär teknik testas följande index i sekvens:

```
(h(k) + 0) \mod n

(h(k) + 1) \mod n

(h(k) + 2) \mod n

(h(k) + \vdots) \mod n

(h(k) + n - 1) \mod n
```

Sökning i sluten Hashtabell med linjär teknik

```
Algorithm Hash-table-lookup-closed-linear-simplified(x: Hashvalue, t: Hashtable)
// Lookup in a closed hashtable using linear collision handling.
// Returns True/False and optionally the index where x was found.
// Values are stored in a zero-indexed vector t.v of size TABLE SIZE.
// Map hash value to the table size
h ← x mod TABLE SIZE
// Check each available index
for i from 0 to TABLE SIZE - 1 do
 // Compute index with linear collision handling
j ← (h + i) mod TABLE SIZE
 // Inspect element at index j in the internal vector
 e ← Array-inspect-value(t.v, j)
 if e = x then
  // We found the value
   return (True, j)
 if e = HASH EMPTY then
   // We found an empty slot; the value cannot be in the table
   return (False, None)
// We have checked all indices without finding the value
return (False, None)
```

Sluten hashning, insättning

- Vid insättning av ett element görs först en sökning
 - Om sökningen hittar värdet så ersätts värdet i tabellen
 - Om sökningen inte hittar värdet så sätts värdet in på den första lediga platsen
- Vilken plats ett element hamnar på beror alltså på två saker:
 - 1. Dess hashvärde h (n (k)) och
 - vilka värden som redan finns i tabellen

1

2

3

4 5

6 7

8

10

11

12

13

14 15

16

17

18

19

20

 $\frac{21}{22}$

23

Insättning i sluten Hashtabell med linjär teknik

```
Algorithm Hash-table-insert-closed-linear-simplified(x: Hashvalue, t: Hashtable)
// Insert in a closed hashtable using linear collision handling.
// Returns the updated hash table.
// Values are stored in a zero-indexed vector t.v of size TABLE SIZE.
// Map hash value to the table size
h ← x mod TABLE SIZE
// Check each available index
for i from 0 to TABLE SIZE - 1 do
  // Compute index with linear collision handling
j ← (h + i) mod TABLE SIZE
  // Inspect element at index j in the internal vector
  e ← Array-inspect-value(t.v, j)
  if e = HASH EMPTY or e = HASH REMOVED then
   // We found a free index; insert the value here
  t.v ← Array-set-value(t.v, j, x)
    return t
// We have checked all indices without finding an empty one
return Error ("Could not find an empty slot")
```

- ▶ Talen $\{0, ..., 125\}$ ska lagras i en hashtabell av storlek 10
 - Vi har alltså hashfunktionen

$$h(x) = x \mod 10$$

► Låt 127 betyda "ledig" (HASH_EMPTY) och 126 betyda "borttagen" (HASH_REMOVED)

$$h(x) = x \mod 10$$

► Sätt in talen 89, 18, 49, 58, 9 med

$$h(x) = x \mod 10$$

Insert (89)

$$h(x) = x \mod 10$$

$$h(x) = x \mod 10$$

Insert(89)		89)	Insert(18)			Insert (49)		
0	127		0	127		0	127	
1	127		1	127		1	127	
2	127		2	127		2	127	
3	127		3	127		3	127	
4	127		4	127		4	127	
5	127		5	127		5	127	
6	127		6	127		6	127	
7	127		7	127		7	127	
8	127		8	18		8	18	
9	89		9	89		9	89	

$$h(x) = x \mod 10$$

$$h(x) = x \mod 10$$

$$h(x) = x \mod 10$$

$$h(x) = x \mod 10$$

Insert(89)		Ins	Insert (18)		Ins	ert(49)	Insert (58			
0	127		0	127		0	49		0	49	
1	127		1	127		1	127		1	127	
2	127		2	127		2	127		2	127	
3	127		3	127		3	127		3	127	
4	127		4	127		4	127		4	127	
5	127		5	127		5	127		5	127	
6	127		6	127		6	127		6	127	
7	127		7	127		7	127		7	127	
8	127		8	18		8	18		8	18	
9	89		9	89		9	89		9	89	

$$h(x) = x \mod 10$$

$$h(x) = x \mod 10$$

Ins	ert(89)	Ins	ert(18)	Ins	ert(49)	Ins	ert(58)	Ins	sert	(9)
0	127		0	127		0	49		0	49		0	49	
1	127		1	127		1	127		1	58		1	58	
2	127		2	127		2	127		2	127		2	127	
3	127		3	127		3	127		3	127		3	127	
4	127		4	127		4	127		4	127		4	127	
5	127		5	127		5	127		5	127		5	127	
6	127		6	127		6	127		6	127		6	127	
7	127		7	127		7	127		7	127		7	127	
8	127		8	18		8	18		8	18		8	18	
9	89		9	89		9	89		9	89		9	89	

$$h(x) = x \mod 10$$

$$h(x) = x \mod 10$$

Ins	Insert(89) Insert		ert((18) Insert (49)		Insert (58)			Insert (9)					
0	127		0	127		0	49		0	49		0	49	
1	127		1	127		1	127		1	58		1	58	
2	127		2	127		2	127		2	127		2	9	
3	127		3	127		3	127		3	127		3	127	
4	127		4	127		4	127		4	127		4	127	
5	127		5	127		5	127		5	127		5	127	
6	127		6	127		6	127		6	127		6	127	
7	127		7	127		7	127		7	127		7	127	
8	127		8	18		8	18		8	18		8	18	
9	89		9	89		9	89		9	89		9	89	

➤ Sök efter 49, 79, respektive 9:

➤ Sök efter 49, 79, respektive 9:

Lookup(49) = True

Lookup	(49)	= True	Lookup	(79)	=
		1			\neg
0	49		0	4.9	€
1	58		1	58	3
2	9		2	9	
3	127		3	12	7
4	127		4	12	7
5	127		5	12	7
6	127		6	12	7
7	127		7	12	7
8	18		8	18	3
9	89		9	8.9	9

ookup	(49)	= True	Lookup	(79)	= False	9
0	49]	0	49]	
1	58		1	58	1	
2	9		2	9		
3	127		3	127		
4	127		4	127		
5	127		5	127		
6	127		6	127		
7	127		7	127		
8	18		8	18		
9	89		9	89		

ookup	(49)	= True Lookup	(79)	= False	Lookup	(9)	=
0	49	0	49		0	49	
1	58	1	58		1	58	
2	9	2	9		2	9	
3	127	3	127		3	127	
4	127	4	127		4	127	
5	127	5	127		5	127	
6	127	6	127		6	127	
7	127	7	127		7	127	
8	18	8	18		8	18	
9	89	9	89		9	89	

Sluten hashning, borttagning

- Vid borttagning av ett element används samma sökalgoritm
 - Om värdet hittas i tabellen kan platsen inte lämnas tom (HASH EMPTY) — då kan senare sökningar misslyckas
 - ▶ I stället sätts markören HASH_REMOVED in i tabellen

Borttagning i sluten Hashtabell med linjär teknik

```
Algorithm Hash-table-remove-closed-linear-simplified(x: Hashvalue, t: Hashtable)
// Remove in a closed hashtable using linear collision handling.
// Returns the updated hash table.
// Values are stored in a zero-indexed vector t.v of size TABLE SIZE.
// Map hash value to the table size
h ← x mod TABLE SIZE
// Check each available index
for i from 0 to TABLE SIZE - 1 do
  // Compute index with linear collision handling
j ← (h + i) mod TABLE_SIZE
  // Inspect element at index i in the internal vector
  e ← Array-inspect-value(t.v, j)
  if e = x then
   // We found the value; insert the REMOVED value
  t.v ← Array-set-value(t.v, j, HASH REMOVED)
   return t
  if e = HASH EMPTY then
   // We found an empty slot; return the unchanged table
    return t
// We have checked all indices without finding the value; return the unchanged table
return t
```

Sluten hashning, linjär teknik, borttagning

- ► Ta bort 49:
 - Sätt in "borttagen"-markören på 49:ans plats

Före borttagning Efter borttagning

0	126
1	58
2	9
3	127
4	127
5	127
6	127
7	127
8	18
9	89

Sökning efter borttagning av 49

➤ Sök efter 49, 79, respektive 9:

➤ Sök efter 49, 79, respektive 9:

9 89

Lookup (Looku	ıp (79)		
0	126			0	126
1	58			1	58
2	9			2	9
3	127			3	127
4	127			4	127
5	127			5	127
6	127			6	127
7	127			7	127
8	18			8	18
9	89			9	89

Lookup(49) = False		= False Lookup(79)	= False	Lookup(9) =			
0	126	0	126		0	126		
1	58	1	58		1	58		
2	9	2	9		2	9		
3	127	3	127		3	127		
4	127	4	127		4	127		
5	127	5	127		5	127		
6	127	6	127		6	127		
7	127	7	127		7	127		
8	18	8	18		8	18		
9	89	9	89		9	89		

Sluten hashning, linjär teknik, komplexitet

- ▶ Värstafallskomplexiteten för samtliga operationer är O(n), där n är antalet element som finns insatta i tabellen
- Är dock ytterst osannolikt
 - Alla element måste ligga i en följd
- Under förutsättning att tabellen inte fylls mer än till en "viss del" får man i medeltal O(1) för operationerna
 - Hur mycket är "till en viss del"?

Fyllnadsgrad

- ► En Hashtabells fyllnadsgrad (λ) definieras som *kvoten* mellan antalet insatta element och antalet platser i tabellen
- ► En tom tabell har $\lambda = 0$ och en full $\lambda = 1$

Hashtabeller, medelkomplexitet

- Det finns formler f\u00f6r medelantalet platser som m\u00e4ste pr\u00f6vas vid olika fyllnadsgrader
- För en halvfull tabell $\lambda = 0.5$ gäller

	Medelantalet			
Operation	sökningar			
Insättning	2.5			
Misslyckad sökning	2.5			
Lyckad sökning	1.5			

- Slutsats:
 - ► Medelkomplexiteten för Lookup, Insert, Remove är O(1) om fyllnadsgraden $\lambda < 1/2!$

Hashtabeller, klustring

Linjär teknik ger upphov till klustring, dvs. att de upptagna positionerna tenderar att bli "ihopklumpade"

Låt oss studera ett alternativ till linjär teknik...

Sluten hashning, kvadratisk teknik

Vid sökning med linjär teknik testas följande index i sekvens:

```
(h(k) + 0^{1}) \mod n

(h(k) + 1^{1}) \mod n

(h(k) + 2^{1}) \mod n

(h(k) + \vdots) \mod n

(h(k) + (n-1)^{1}) \mod n
```

Vid sökning med kvadratisk teknik testas i stället följande index i sekvens:

```
(h(k) + 0^2) \mod n

(h(k) + 1^2) \mod n

(h(k) + 2^2) \mod n

(h(k) + \vdots) \mod n

(h(k) + (n-1)^2) \mod n
```

Sökning i sluten Hashtabell med kvadratisk teknik

Endast en rad modifierad i pseudokoden!

```
1
      Algorithm Hash-table-lookup-closed-quadratic-simplified(x: Hashvalue, t: Hashtable)
 2
      // Lookup in a closed hashtable using quadratic collision handling.
      // Returns True/False and optionally the index where x was found.
      // Values are stored in a zero-indexed vector t.v of size TABLE SIZE.
      // Map hash value to the table size
8
      h ← x mod TABLE SIZE
9
10
      // Check each available index
11
      for i from 0 to TABLE SIZE - 1 do
12
        // Compute index with linear collision handling
13
      j ← (h + i^2) mod TABLE_SIZE
14
15
        // Inspect element at index j in the internal vector
16
        e ← Arrav-inspect-value(t.v. i)
17
        if e = x then
18
          // We found the value
19
          return (True, i)
20
21
        if e = HASH EMPTY then
22
          // We found an empty slot; the value cannot be in the table
23
          return (False, None)
24
25
      // We have checked all indices without finding the value
26
      return (False, None)
```

▶ Dito för Insert och Remove

$$h(x) = x \mod 10$$

► Sätt in talen 89, 18, 49, 58, 9 med

$$h(x) = x \mod 10$$

Insert (89)

$$h(x) = x \mod 10$$

$$h(x) = x \mod 10$$

Insert(89)		89)	Ins	ert(18)	Insert (49)			
0	127		0	127		0	127		
1	127		1	127		1	127		
2	127		2	127		2	127		
3	127		3	127		3	127		
4	127		4	127		4	127		
5	127		5	127		5	127		
6	127		6	127		6	127		
7	127		7	127		7	127		
8	127		8	18		8	18		
9	89		9	89		9	89		

$$h(x) = x \mod 10$$

$$h(x) = x \mod 10$$

$$h(x) = x \mod 10$$

$$h(x) = x \mod 10$$

Insert(89) Ins		ns	ert (18) Insert (49)			49)	Insert (58				
0	127		0	127		0	49		0	49	
1	127		1	127		1	127		1	127	
2	127		2	127		2	127		2	127	
3	127		3	127		3	127		3	127	
4	127		4	127		4	127		4	127	
5	127		5	127		5	127		5	127	
6	127		6	127		6	127		6	127	
7	127		7	127		7	127		7	127	
8	127		8	18		8	18		8	18	
9	89		9	89		9	89		9	89	

$$h(x) = x \mod 10$$

$$h(x) = x \mod 10$$

Insert(89) Ins		ert(18) Ins			sert(49) Inse			ert (58) Ins			sert	(9)	
0	127	0	127		0	49		0	49		0	49	
1	127	1	127		1	127		1	127		1	127	
2	127	2	127		2	127		2	58		2	58	
3	127	3	127		3	127		3	127		3	127	
4	127	4	127		4	127		4	127		4	127	
5	127	5	127		5	127		5	127		5	127	
6	127	6	127		6	127		6	127		6	127	
7	127	7	127		7	127		7	127		7	127	
8	127	8	18		8	18		8	18		8	18	
9	89	9	89		9	89		9	89		9	89	

$$h(x) = x \mod 10$$

$$h(x) = x \mod 10$$

Ins	ert(89)	Ins	ert(18)	Ins	ert(49)	Ins	ert(58)	Ins	sert	(9)
0	127		0	127		0	49		0	49		0	49	
1	127		1	127		1	127		1	127		1	127	
2	127		2	127		2	127		2	58		2	58	
3	127		3	127		3	127		3	127		3	9	
4	127		4	127		4	127		4	127		4	127	
5	127		5	127		5	127		5	127		5	127	
6	127		6	127		6	127		6	127		6	127	
7	127		7	127		7	127		7	127		7	127	
8	127		8	18		8	18		8	18		8	18	
9	89		9	89		9	89		9	89		9	89	

Hashtabeller, klustring igen

Klustringen är ett mindre problem för kvadratisk teknik än för linjär

Linjär

Kvadratisk

0	49
1	127
2	58
3	9
4	127
5	127
6	127
7	127
8	18
9	89

Kvadratisk teknik, problem

- Med olyckligt vald hashfunktion och tabellängd finns risk att man inte hittar en ledig plats även om den finns!
- Exempel:
 - ► Tabellstorlek = 16, hashfunktion $h(x) = x \mod 16$
 - ► Efter att ha stoppat in elementen 0, 16, 32, och 64, dvs.

▶ De enda positioner som testas är 0, 1, 4, 9, ..., som redan är upptagna!

Lösning

- ► Om kvadratisk teknik används och tabellens storlek är ett primtal så kan ett nytt element alltid stoppas in om $\lambda < 1/2$
 - Ger mindre klustring än linjär hashning
 - ► Medelantal sonderinger för $\lambda = 1/2$:

Operation	linjär teknik	kvadratisk teknik
Insättning	2.5	2.0
Misslyckad sökning	2.5	2.0
Lyckad sökning	1.5	1.4

Slutsats:

- ► Medelkomplexiteten för Lookup, Insert, Remove är O(1) om fyllnadsgraden $\lambda < 1/2!$
- Om tabellens storlek är ett primtal kan kvadratisk teknik användas och är då snabbare än linjär teknik

Blank

Öppen hashning

Öppen hashning

► I stället för en Vektor av nyckel-värden används en k-Vektor av Lista av nyckel-värden

$$h(x) = x \mod k$$

- Vi får en dynamisk tabell, ingen begränsning på antalet element
- Alla element med hashvärde x hamnar i listan med index x

Insert i öppen Hashtabell

```
Algorithm Hash-table-insert-open-simplified(x: Hashvalue, t: Hashtable)

// Insert in a open hashtable. Returns the updated hash table.

// Does not check whether the value is already in the table.

// Values are stored in lists. The lists are stored in a zero-indexed

// vector t.v of size TABLE_SIZE.

// Map hash value to the table size

h 	— x mod TABLE_SIZE

// Insert in the list at index h

l 	— Array-inspect-value(t.v, h)

// Insert at the first position in the list

l 	— List-insert(l, List-first(l), x)

t.v 	— Array-set-value(t.v, h, l)

return t
```

Öppen hashning, exempel

➤ Sätt in talen 89, 18, 49, 58, 9 i en Hashtabell med 10 platser:

- 0
 - 1 •
- 2 •
- 3 •
- 4 •
- 5 •
- 6 •
- _
- */* __•
- 8 58 18
- 9 9 49 89

Lookup i öppen Hashtabell

```
Algorithm Hash-table-lookup-open-simplified(x: Hashvalue, t: Hashtable)
// Lookup from a open hashtable. Returns True/False.
// Values are stored in lists. The lists are stored in a zero-indexed
// vector t.v of size TABLE SIZE.
// Map hash value to the table size
h ← x mod TABLE SIZE
// Lookup in the list at index h
1 ← Array-inspect-value(t.v, h)
// Iterate over the list
p ← List-first(1)
while not List-isend(1, p) do
 if List-inspect(l, p) = x then
   // We found the requested element.
    return True
 else
   // Advance in the list
   p ← List-next(l, p)
// We've checked all elements in the list.
// The element is not there.
return False
```

Remove i öppen Hashtabell

```
Algorithm Hash-table-remove(x: Hashvalue, t: Hashtable)
// Remove from a open hashtable. Returns the updated hash table.
// Values are stored in lists. The lists are stored in a zero-indexed
// vector t.v of size TABLE SIZE.
// Map hash value to the table size
h ← x mod TABLE SIZE
// Remove in the list at index h
1 ← Array-inspect-value(t.v. h)
// Iterate over the list
p ← List-first(1)
while not List-isend(l, p) do
  if List-inspect(l, p) = x then
    // Remove the current element. The returned position is the
    // position AFTER the removed. Continue to traverse the list
   // since we may have duplicates.
    (1, p) \leftarrow List-remove(1, p)
  else
   // Advance in the list
    p \leftarrow List-next(1, p)
// Remove in list complete, now re-insert the list in the array
t.v ← Array-set-value(t.v, h, 1)
return t
```

Öppen hashning (3)

- Värstafallskomplexitet:
 - O(n) för alla operationer (alla element i samma lista), där n är antalet insatta element
- Medelfallskomplexitet:
 - Insättning och misslyckad sökning blir n/k
 - Lyckad sökning blir ungefär n/2k
- ► Tumregel: Maximalt 2k element bör sättas in

Mer avancerade hashfunktioner

Mer avancerade hashfunktioner kommer från talteori, t.ex.

$$h(x) = ((c_1x + c_2) \mod p) \mod m,$$

- ightharpoonup divisorn p är ett stort primtal > m, t.ex. 1048583,
- ▶ konstanterna c_1 och c_2 är heltal > 0 och < p.
- Ännu mer avancerade
 - ▶ md5 (https://en.wikipedia.org/wiki/MD5)
 - ► SHA-1, SHA-2 (https://en.wikipedia.org/wiki/Shalsum)
 - kryptografiska

Tabell som Hashtabell (1)

- I exemplen har vi hittills använt heltal som nycklar och tabellvärden
 - I princip implementerat ett Lexikon
 - Dessutom har inga exempel innehållit hash-dubletter (olika nycklar som genererar samma hash-värde)

Tabell som Hashtabell (2)

- Följande exempel visar mer realistiska Tabell-operationer
 - ➤ Vi använder en nyckel-hashfunktion (Key-hash-value) för att beräkna ett hashvärde från ett nyckelvärde
 - Vi använder mod för att trunkera nyckel-hashvärdet så det ryms i Hashtabellen
 - ► För att kunna hantera hash-dubletter jämför vi både hash-värden och nyckel-värden (Key-compare) för att hitta en match
 - ► Vi lagrar tabellvärden i Tabellen
- ► Tabellen är konstruerad som en post (record) med ett enda fält (field) v som är ett fält (array)
 - Varje element som är lagrat i fältet är en post med tre fält:

```
hash nyckel-hash-värdet
key nyckel-värdet
value tabell-värdet
```

Sluten hashning, linjär teknik, insert

```
Algorithm Hash-table-closed-insert-linear(k: Key, v: Value, t: Hashtable)
// Insert the key-value pair (k, v) in the hashtable t. If the key is
// already in the table, replace the value. Returns the modified table.
// Compute the size of the hash table
size \leftarrow High(t.v) - Low(t.v) + 1
// Use the user-defined hash function to compute the key hash value
key-hash ← Key-hash-value(k)
// Map to the table size
h ← kev-hash mod size
// Check each available index
for i from 0 to size - 1 do
 // Compute index with linear technique to handle collisions
 p \leftarrow (h + i) \mod size
 // Inspect element at index p in the internal vector
 e ← Arrav-inspect-value(t.v. p)
 if e.hash = HASH EMPTY or e.hash = HASH REMOVED then
   // We've found a free slot; insert the value here
    r ← Create-record("hash", key-hash, "key", key, "value", v)
   t.v ← Array-set-value(t.v, p, r)
   return t
 if e.hash = kev-hash then
   // We've found the hash value, now compare the actual keys
   if Key-compare(k, e.key) then
     // The kevs match: replace the value associeated with the kev
     r 		 Create-record("hash", key-hash, "key", key, "value", v)
     t.v ← Array-set-value(t.v, p, r)
     return t
// We have checked all indices without finding an empty slot
return Error ("Could not find an empty slot")
```

Sluten hashning, linjär teknik, lookup

```
Algorithm Hash-table-lookup-closed-linear(k: Key, t: Hashtable)
// Look up the key k in the hashtable t.
// If the kev is found, returns (True, v), where v is the table value associated with k.
// Otherwise returns (False, None)
// Compute the size of the hash table
size \leftarrow High(t.v) - Low(t.v) + 1
// Use the user-defined hash function to compute the key hash value
kev-hash ← Kev-hash-value(k)
// Map to the table size
h ← key-hash mod size
// Check each available index
for i from 0 to size - 1 do
 // Compute index with linear technique to handle collisions
 p \leftarrow (h + i) \mod size
 // Inspect element at index p in the internal vector
 v ← Array-inspect-value(t.v, p)
 if v.hash = HASH EMPTY then
   // We found an empty slot; the key cannot be in the table
   return (False, None)
 if v.hash = key-hash then
   // We've found the hash value, now compare the actual keys
    if Key-compare(k, v.key) then
      // The keys match; return the value associated with the key
     return (True, v.value)
// We have checked all indices without finding a matching key
return (False, None)
```

Sluten hashning, linjär teknik, remove

```
Algorithm Hash-table-closed-remove-linear(k: Kev, t: Hashtable)
// Remove the key-value pair with the key k from the hashtable t. Returns the modified table
// Compute the size of the hash table
size \leftarrow High(t.v) - Low(t.v) + 1
// Use the user-defined hash function to compute the "object" hash value
kev-hash ← Kev-hash-value(k)
// Map to the table size
h ← key-hash mod size
// Check each available index
for i from 0 to size - 1 do
 // Compute index with linear technique to handle collisions
 p \leftarrow (h + i) \mod size
 // Inspect element at index p in the internal vector
 e ← Array-inspect-value(t.v, p)
 if e.hash = key-hash then
   // We've found the hash value, now compare the actual keys
   if Key-compare(k, e.key) then
     // The keys match; mark the element as REMOVED
      r 		 Create-record("hash", HASH REMOVED, "key", None, "value", None)
     t.v ← Array-set-value(t.v, p, r)
      return t
return Error ("Did not find the kev")
```

Exempel, Month-to-days, sluten hashning (1)

10

Key	Jan	Feb	Mar	Apr	May	Jun
Hash	1831883	1763751	1883370	1679403	1883377	1834503
mod 19	17	0	14	12	2	15
Key	Jul	Aug	Sep	Oct	Nov	Dec
Hash	1834501	1680047	1986858	1917956	1902369	1729430

9

mod 19

13

12

13

Exempel, Month-to-days, sluten hashning (2)

Linjär teknik

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Feb	Oct	May							Sep	Aug		Apr	Jul	Mar	Jun	Nov	Jan	Dec
28	31	31							31	31		30	31	31	30	30	31	31

Kvadratisk teknik

Jämförelse

	Antal		
	lediga	Lyckad	Misslyckad
	sekvenser	sökning	sökning
Linjär	2	21/12=1.75	77/19=4.05
Kvadratisk	3	17/12=1.42	53/19=2.79

Exempel, Month-to-days, öppen hashning

Size	Hash Mod	Jan 1831883	Feb 1763751	Mar 1883370	Apr 1679403	May 1883377	Jun 1834503
6		5	3	0	3	1	3
	Hash	Jul	Aug	Sep	Oct	Nov	Dec
Size	Mod	1834501	1680047	1986858	1917956	1902369	1729430
6		1	5	0	2	3	2

► Öppen hashning, storlek 6

0	Sep	Mar		
1	Jul	May		
2	Dec	Oct		
3	Nov	Jun	Apr	Feb
4				
5	Aug	Jan		

► Lyckad sökning: 22/12 = 1.83

Misslyckad sökning: 15/6 = 2.5

Prioritetskö

Prioritetskö

- Modell:
 - Patienterna på en akutmottagning kommer in i en viss tidsordning men behandlas utifrån en annan ordning
- Organisation:
 - En mängd vars grundmängd är linjärt ordnad av en prioritetsordning:
 - Avläsningar och borttagningar görs endast på det element som har högst prioritet
 - Andra mängdoperationer är inte aktuella

Informell specifikation av prioritetskö (1)

```
abstract datatype Pqueue(val, R)
  Empty() → Pqueue(val, R)
  Isempty(p: Pqueue(val, R)) → Bool
  Insert(v: val, p: Pqueue(val, R)) → Pqueue(val, R)
  Inspect-first(p: Pqueue(val, R)) → val
  Delete-first(p: Pqueue(val, R)) → Pqueue(val, R)
  Kill(p: Pqueue(val, R)) → ()
```

- R är relationen för prioritetsordningen
 - ► Om t.ex. R är "<" så är "a R b" sann om a < b

Informell specifikation av prioritetskö (2)

- Empty returnerar en tom prioritetkö
- ► Isempty returnerar True om kön är tom
- ► Insert stoppar in ett element i kön
- Inspect-first returnerar värdet på elementet med högst prioritet i kön
- Delete-first tar bort elementet med högst prioritet i kön
- ► Kill lämnar tillbaka alla resurser

Fråga

► Hur hanteras element med samma prioritet?

Formell specifikation av prioritetskö

OBS! Fel i boken!

```
Ax 1 Isempty (Empty)
Ax 2 ¬Isempty (Insert (v, p))
Ax 3 Inspect-first (Insert (v, Empty)) = v
Ax 4 Inspect-first (Insert (v1, Insert (v2, p))) =
                               if v1 R v2
                               then Inspect-first (Insert (v1, p))
                               else Inspect-first (Insert (v2, p))
Ax 5 Delete-first (Insert (v, Empty)) = Empty
Ax 6 Delete-first (Insert (v1, Insert (v2, p))) =
                               if v1 R v2
                               then Insert (v2, Delete-first (Insert (v1, p)))
                               else Insert (v1, Delete-first (Insert (v2, p)))
```

Formell specifikation av prioritetskö

OBS! Fel i boken!

```
Ax 1 Isempty (Empty)
Ax 2 ¬Isempty (Insert (v, p))
Ax 3 Inspect-first (Insert (v, Empty)) = v
Ax 4 Inspect-first (Insert (v1, Insert (v2, p))) =
                               if v1 R v2
                               then Inspect-first (Insert (v1, p))
                               else Inspect-first (Insert (v2, p))
Ax 5 Delete-first (Insert (v, Empty)) = Empty
Ax 6 Delete-first (Insert (v1, Insert (v2, p))) =
                               if v1 R v2
                               then Insert (v2, Delete-first (Insert (v1, p)))
                               else Insert (v1, Delete-first (Insert (v2, p)))
```

Frågor:

- Om R är "<" och två lika värden stoppas in, vilket plockas ut först?
- Dito om R är "<".</p>

Exempel (1)

- För val=heltal, R=<, dvs. "a R b" är sann om a < b:
- ▶ p ← Empty()

ightharpoonup p \leftarrow Insert (25,p)

 \triangleright p \leftarrow Insert (15,p)

 \triangleright p \leftarrow Insert (20,p)

 \triangleright p \leftarrow Insert (15,p)

Exempel (2)

- ► För val=3-tippel med (name, age, sex),
 - ► R= a.age < b.age:

Exempel (3)

- ► För val=3-tippel med (name, age, sex)
 - ► R= F R M (kvinnor prioriteras före män):

Stack och Kö som specialfall av Prioritetskö

- Om R är en strikt partiell ordning, t.ex. >, kommer lika element behandlas som en kö
- ➤ Om R är icke-strikt partiell ordning, t.ex. ≥, behandlas lika element som en stack
- Om R är den totala relationen, dvs. sann för alla par av värden blir prioritetskön en stack
- Om R är den tomma relationen, dvs. falsk för alla par av värden, blir prioritetskön en kö

Fråga

► Hur lagras elementen internt i prioritetskön?

Konstruktioner av Prioritetskö

- Utgår ofta från konstruktioner av:
 - Mängd
 - Lista eller
 - ► Hög

▶ val=heltal, R="<":</p>

- ▶ val=heltal, R="<":</p>
 - ► Insert: *O*(1)

- ▶ val=heltal, R="<":</p>
 - ► Insert: *O*(1)

val=heltal, R="<":</p>
Insert: O(1)

Niclas Börlin — 5DV149, DoA-C

- ▶ val=heltal, R="<":</p>
 - ► Insert: *O*(1)

► Inspect-First, Delete-first: O(n)

- ▶ val=heltal, R="<":</p>
 - ► Insert: *O*(1)

► Inspect-First, Delete-first: O(n)

- ▶ val=heltal, R="<":</p>
 - ► Insert: *O*(1)

► Inspect-First, Delete-first: O(n)

- ▶ val=heltal, R="<":</p>
 - ► Insert: O(n)

► Inspect-first, Delete-first: O(1)

- ▶ val=heltal, R="<":</p>
 - ► Insert: O(n)

Inspect-first, Delete-first: O(1)

Hög (heap), informellt

- ► En Hög (heap) är ett partiellt sorterat binärt träd
- ► I en Hög så ligger det viktigaste elementet överst
 - Det gäller rekursivt
 - Varje delträd är också en Hög

Hög, formellt

- Ett binärt träd är en Hög eller har hög-egenskapen för en relation R om och endast om:
 - Trädet är sorterat så att etiketterna för alla föräldra-barn-par uppfyller p R c, där p är föräldraetiketten och c är barnetiketten
- Exempel: Är följande träd en Heap med R <?</p>

Insättningar och borttagningar blir effektiva om dom görs så att trädet hålls komplett

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:
- Exempel: Sortera in 30:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:
- Exempel: Sortera in 30:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:
- Exempel: Sortera in 30:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:
- Exempel: Sortera in 30:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:
- Exempel: Sortera in 30:

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:
- Exempel: Sortera in 30:

Komplexitet f\u00f6r ins\u00e4ttning av ett element i en H\u00f6g med n element?

Heap — Algoritm för insättning

- 1. Sätt in det nya elementet på den första lediga platsen
- 2. Sortera om grenen tills trädet är en Hög
- Exempel: Sortera in 10:
- Exempel: Sortera in 30:

- Komplexitet f\u00f6r ins\u00e4ttning av ett element i en H\u00f6g med n element?
 - \triangleright $O(\log n)$

- 1. Ta bort toppelementet
- 2. Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- 1. Ta bort toppelementet
- 2. Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- 1. Ta bort toppelementet
- 2. Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- 1. Ta bort toppelementet
- 2. Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- 1. Ta bort toppelementet
- 2. Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- 1. Ta bort toppelementet
- 2. Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- 1. Ta bort toppelementet
- 2. Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- 1. Ta bort toppelementet
- 2. Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- 1. Ta bort toppelementet
- 2. Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- 1. Ta bort toppelementet
- 2. Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- 1. Ta bort toppelementet
- 2. Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- 1. Ta bort toppelementet
- 2. Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- 1. Ta bort toppelementet
- Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

Komplexitet f\u00f6r borttagning av ett element i en H\u00f6g med n element?

- 1. Ta bort toppelementet
- Flytta sista elementet till toppen
- 3. Om nödvändigt,
 - 3.1 Byt ut toppelementet mot det minsta av dess barn
 - 3.2 Fortsätt nedåt i den påverkade grenen
- Exempel: Remove-first:

- Komplexitet f\u00f6r borttagning av ett element i en H\u00f6g med n element?
 - **▶** *O*(log *n*)

Komplexitet för olika konstruktioner av Prioritetskö

	Insättning	Avläsning	Borttagning
Lista	<i>O</i> (1)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
Sorterad lista	<i>O</i> (<i>n</i>)	<i>O</i> (1)	<i>O</i> (1)
Hög	<i>O</i> (log <i>n</i>)	<i>O</i> (1)	<i>O</i> (log <i>n</i>)

Tillämpningar

- Operativsystem som fördelar jobb mellan olika processer
- Enkelt sätt att sortera något:
 - Stoppa in allt i en heap och plocka ut det igen heapsort
- Hjälpmedel vid traversering av graf:
 - Jfr stack och kö används vid traversering av träd