MATH 2106 Homework 6

Wenqi He

November 4, 2018

11.3.2

The partitions are $\{\{a\}, \{b\}, \{c\}\}, \{\{a,b\}, \{c\}\}, \{\{a,c\}, \{b\}\}, \{\{b,c\}, \{a\}\}\}, \text{ and } \{\{a,b,c\}\}\}$. Each partition corresponds to an equivalence relation on $\{a,b,c\}$.

11.3.4

i

- Reflexivity: $\forall x \in A : \exists X \in P \text{ such that } x \in X, \text{ therefore by definition of } R, xRx$
- Symmetry: Suppose xRy, then $\exists X \in P : x \in X \land y \in X$, which also implies yRx.
- Transitivity: Suppose xRy, yRz, then $\exists X \in P : x \in X \land y \in X$, and $\exists Y \in P : y \in Y \land z \in Y$. Furthermore, Y must be the same as X, because $y \in X \cap Y \neq \emptyset$, which cannot be true if $X \neq Y$ since P is a partition. Therefore $z \in Y = X$, and by definition of R, xRz.

Therefore, R is indeed an equivalent relation on A.

ii

Let $S := \{[a], a \in A\}$ be the set of equivalence classes of R. We will show that S = P:

For any $X \in P$, we can pick an arbitrary $x \in X$. Now consider its equivalence class [x]. For any $a \in [x]$, we have aRx, then by definition of R and the fact that X is the only subset that contains x (because P is a partition), $a \in X$. Since $\forall a \in [x] : a \in X$, we have $[x] \subseteq X$. On the other hand, for any $a \in X$, aRx by definition of R, so $a \in [x]$, and therefore $X \subseteq [x]$. The above results imply that X = [x], which means that X is a equivalence class, or expressed formally, $X \in S$. Since $\forall X \in P : X \in S$, we have shown that $P \subseteq S$.

Now for any equivalence class $Y \in S$, we can pick any $a \in Y$, then by definition of equivalence classes, Y = [a]. Since P is a partition, $\exists X \in P$ such that $a \in X$. We can show that $Y = [a] = X \in P$ in the same way as the previous paragraph. Since $\forall Y \in S : Y \in P$, we have shown that $S \subseteq P$.

Therefore, S = P. In other words, P is the set of equivalence classes of R.

12.1.6

Domain: \mathbb{Z} . Codomain: \mathbb{Z} . Range: $\{4n+1:n\in\mathbb{Z}\}$. $f(10)=4\cdot 10+5=45$.

12.1.8

No. There isn't a $(x,y) \in f$ for all $x \in \mathbb{Z}$. For example, suppose x=2, then there doesn't exist an integer y that satisfies the equation.

12.1.12

Yes. Domain: \mathbb{R}^2 . Codomain: \mathbb{R}^3 . Range: $\{(x,y,z)\in\mathbb{R}^3:z=\frac{x}{3}+\frac{y}{2}\}$

12.2.10

Let $y = \left(\frac{x+1}{x-1}\right)^3$, then $x = \frac{1+y^{1/3}}{y^{1/3}-1}$, which means that

$$f^{-1}(x) = \frac{1 + x^{1/3}}{x^{1/3} - 1}$$

Since f is invertible, f must be bijective.

12.2.18

1. Suppose $\frac{(-1)^n(2n-1)+1}{4} = \frac{(-1)^m(2m-1)+1}{4}$, where $n,m \in \mathbb{N}$ then $(-1)^n(2n-1) = (-1)^m(2m-1)$. If n and m have different parities, then

$$2n-1=1-2m \Rightarrow n+m=1$$

which is impossible since $n \ge 1$ and $m \ge 1$. Therefore m and n must have the same parity,

$$2n-1=2m-1 \Rightarrow n=m$$

Since $\forall m, n : f(m) = f(n) \Rightarrow m = n, f$ is injective.

2. For any $z \in \mathbb{Z}$ and z > 0, we have $2z \in \mathbb{N}$, and

$$f(2z) = \frac{(-1)^{2z}(2 \cdot 2z - 1) + 1}{4} = \frac{4z - 1 + 1}{4} = z$$

For any $z \in \mathbb{Z}$ and $z \leq 0$, we have $-2z + 1 > 0 \Rightarrow -2z + 1 \in \mathbb{N}$, and

$$f(-2z+1) = \frac{(-1)^{-2z+1}(2(-2z+1)-1)+1}{4} = \frac{-(-4z+2-1)+1}{4} = z$$

This shows that $\forall z \in \mathbb{Z} : \exists x \in \mathbb{N} : f(x) = z$, therefore f is surjective.

Since f is both injective and surjective, it's bijective.

12.4.8

$$(g \circ f)(m,n) = g(f(m,n)) = g(3m - 4n, 2m + n)$$
$$= (5(3m - 4n) + (2m + n), 3m - 4n)$$
$$= (17m - 19n, 3m - 4n)$$

$$(f \circ g)(m,n) = f(g(m,n)) = f(5m+n,m)$$
$$= (3(5m+n) - 4(m), 2(5m+n) + (m))$$
$$= (11m+3n, 11m+2n)$$

12.4.10

$$(f \circ f)(x,y) = f(f(x,y)) = f(xy, x^3)$$
$$= (xy \cdot x^3, (xy)^3)$$
$$= (x^4y, x^3y^3)$$

12.5.4

Let $y = e^{x^3 + 1}$, then

$$\log y = x^{3} + 1$$

$$x^{3} = \log y - 1$$

$$x = (\log y - 1)^{1/3} = f^{-1}(y)$$

So
$$f^{-1}(x) = (\log x - 1)^{1/3}$$
.

12.5.10

From 12.2.8, the inverse $f^{-1}: \mathbb{Z} \to \mathbb{N}$ is:

$$f^{-1}(z) = \begin{cases} 2z, & z > 0\\ -2z + 1, & z \le 0 \end{cases}$$