Abstract Algebra (Math 6302), Fall 2024 Homework Assignment 3

Due at 9:59pm on Friday, September 20. Turn in your completed assignment (single .pdf file) on Canvas. For full credit, show your work and justify your answers.

- (1) Draw the lattice of subgroups of Q_8 .
- (2) Draw the lattice of subgroups of $\mathbb{Z}/36\mathbb{Z}$.
- (3) Give an example of a group G and a set $H \subseteq G$ which is closed under multiplication, but which is not a subgroup of G.
- (4) Suppose that G_1, \ldots, G_n are finitely generated groups. Prove that the direct product $G_1 \times \cdots \times G_n$ is finitely generated.
- (5) Let $G = GL_2(\mathbb{Q})$ be the multiplicative group of invertible 2×2 matrices with coefficients in \mathbb{Q} . Prove that G is not finitely generated.
- (6) Suppose that $G = \langle g_1, \ldots, g_n \rangle$ is an Abelian group and that $|g_i| < \infty$ for each $1 \le i \le n$. Prove that

$$|G| \le |g_1||g_2| \cdots |g_n|.$$

(7) Let $\sigma, \tau \in S_{12}$ be defined by

and

- (a) Find the cycle decompositions of σ and τ .
- (b) Write σ and τ as products of transpositions.
- (c) Compute the cycle decomposition of $\sigma^2 \tau$.
- (d) Compute the cycle decomposition of $(\sigma \tau)^{-1}$.
- (8) How many 5-cycles are there in S_{10} ?
- (9) Suppose that $n \geq 36$ and that $\sigma \in S_n$ is a 36-cycle.
 - (a) List all possible values of $|\sigma^k|$, for $k \in \mathbb{Z}$.
 - (b) How many integers $0 \le k < 36$ have the property that $\langle \sigma \rangle = \langle \sigma^k \rangle$?
- (10) Suppose that $n \geq 4$. Give an example of two elements $\sigma_1, \sigma_2 \in S_n$ with the property that

$$|\langle \sigma_1, \sigma_2 \rangle| > |\sigma_1| \cdot |\sigma_2|.$$

(Comment: By Problem 6, this can't happen in an Abelian group.)

- (11) Let $n \in \mathbb{N}$ and suppose that $\sigma_1, \ldots, \sigma_\ell$ are disjoint cycles in S_n . Prove that $|\sigma_1 \sigma_2 \cdots \sigma_\ell| = \text{lcm}(|\sigma_1|, |\sigma_2|, \ldots, |\sigma_\ell|)$.
- (12) Use the result of the previous problem to solve the following two sub-problems:
 - (a) List all possible orders of elements of S_{10} .
 - (b) What is the smallest value of $n \in \mathbb{N}$ with the property that S_n contains a subgroup isomorphic to C_{30} ?
- (13) Prove that $A_4 = \langle (12)(34), (123) \rangle$.
- (14) Determine whether or not the following pairs of groups are isomorphic. For the ones that are, find an explicit isomorphism between them.

(a) $8\mathbb{Z}$ and \mathbb{Z}

(e) $(\mathbb{Z}/49\mathbb{Z})^{\times}$ and $\mathbb{Z}/42\mathbb{Z}$

(b) \mathbb{Z} and \mathbb{Q}

(f) $C_2 \times C_6$ and $C_2 \times C_2 \times C_3$

(c) \mathbb{Q} and \mathbb{R}

(g) $(\mathfrak{P}(\{1,2\}), \triangle)$ and C_4

(d) \mathbb{R} and $SL_2(\mathbb{R})$

- (h) $(\mathcal{P}(\{1,2,3\}), \triangle)$ and $C_2 \times C_2 \times C_2$
- (15) Prove that for all $n \in \mathbb{N}$, there are exactly $\varphi(n)$ distinct automorphisms of the group $\mathbb{Z}/n\mathbb{Z}$.
- (16) Find all automorphisms of the group $C_2 \times C_2$.
- (17) Given that 5 is a primitive root modulo 23, determine all possible integers $0 \le b < 23$ with the property that there is an automorphism ϕ of $(\mathbb{Z}/23\mathbb{Z})^{\times}$ satisfying $\phi(5) = b$.