

Motivation

Business

Computers are cool

Data

Model	
Brand	DELL
Series	OptiPlex
Model	3050 (K01HD)
Part Number	K01HD
Quick Info	
Туре	Business Desktops & Workstations
Form Factor	Mini Tower
Usage	Business
Colors	Black
Processor	Intel Core i5-7500 3.40 GHz
Processor Main Features	64 bit Quad-Core Processor
Cache Per Processor	6 MB L3 Cache
Memory	8 GB DDR4 2400
Storage	1 TB 7200 RPM
Optical Drive	8x DVD+/-RW 9.5 mm Optical Disk Drive
Graphics	Intel HD Graphics 630
Operating System	Windows 10 Pro 64-Bit

Model design

 Cross validated linear regression

Standard Scaling

Feature engineering

Results

• R^2 - .74

• MSE - 3882

Performs well in real world

Conclusions

• Low RAM = cheap computer

High capacity SSDs are expensive

 Processors with many cores are expensive

Next steps

GPU data

Different brands

Experiment with more feature engineering

Thank you!

Appendix

Response transform

Residual plot

Q-Q Plot

Variables

- Price
- Number of cores in processor
- Speed of processor
- Memory capacity
- Storage capacity
- SSD or not
- Integrated graphics or not
- Nvidia graphics or not
- (SSD capacity)^2
- (Number of cores * speed)^2
- DDR4 RAM or not
- Presence of both SSD and DDR4
- Presence of both Nvidia and a SSD