

1. Concepts of deadlocks

You release the lock first
Once I have finished
my task, you can continue.

Why should 1?
You release the lock first
and walt until
Loomplete my task.

Sus/more Processes are in W Deadlock, if they want for the happening of an event which would never happen; < Infinite
131ocking Deadlock is undesirable, -> Low cpu utilization -> Ineffective utilize of resumos;

1. System Model: Simple Instance -> 'n' - processes m'- Resources Register Multi Instance request Leheare Long waiting 05 (Starvation) 9 ranted deny Blocked Use granted

P1 & 12 are Blocked Balocked Cycle -(P1-R1-P2-R3-P3-R2-P1) Deadbock

61

52

Note 1: If the R.A.G. has multi-Instance Resource, then Cycle is rouly necessary condition

Note 2: If R.A.G has only Single Instance Resource then cycle is necessary & sufficient condition for seadlock;

Deadlock Ignorance

The Ostrich Algorithm

Pretend there is no problem

- Reasonable if
 - Deadlocks occur very rarely;
 - Cost of prevention is high;
- UNIX and Windows take this approach
- It is a trade-off between
 - Convenience
 - Correctness

- Process must release all the resources blf making a fresh request; - Starvation

(10) Circular - wait:

b) Never allow a process to request a lower numbered resource than the last one requested.

Deadlock prevention

- To design a system in such a way that the possibility of a deadlock is excluded a priori.
- Prevention philosophy: We know what the preconditions are; So prevent one or more these from occurring.
- For example: Circular wait can be prevented by linear ordering of the resource types. If a process holds resources of type Rj, then it can request resources of type Rk, k > j, but not Ri where i <= j. Similarly, any other process holding Ri can request Rj but a process holding Rj cannot request Ri.

III. Deadlock Avidance: (Banker's Algorithm) (i) Safety Algorithm (ii) Resource - Request Algo. The main of no seadloth (Safety Algo) System State: of Banker's + is to always Safe System v unsafe - warmag Safe mi m: no. g resources Marimum [1...n,1..m] nxm Man(i,j)=K Pi - K (Rj) Allo cation [1.7,1.7m] mxm Alloc[i,j] = a Pt + the a (Ry) [a & k]

System Parameters that define its State; n': no. g Processes (v) Need (1.1, 1.1) mxm = Man-Alloc Need (i, i) = b Pi des b(Ris) (vi) Request [1.m,1.m)nxm Regiling = e; Pi to e(Ri) @ time t' [e < b] (VIII) Total [1. m) Total[j]= 3 | There are 3 copies

Total[j]= 4 | Ry in System (VIII) Available (1.m) =

Avail (j)=y; There are y(Rj) free avail e't'

(P1-17m) = 33

Avail = 15

Safety Algo: Sys is Said to he Avail - total - SAlloc Safe iff the Need = 34 - 32 = 1) m=5; < Pi-P5) 34-32= R = 35 (1dd) Batisfied with the avail husow in Some Man Alloc Need Avay orde Pid R R ti- (P2; P5; P1): P3; P P1+ 12-6-6 5 - 3 - 3Sake Segmences Pz+ 20-12-8 10

Serriens Algorithm:

R.a.	Allocation A B C 0 1 0 030	Max A B C 7 5 3	Available A B C 3 3 2		3 X
P1	200302	3 2 2	<230>	0 2 0 X	
P2	3 0 2	9 0 2	(210)	6 0 0 X	
P3	2 1 1	2 2 2			Ti P1; P3: P4; Po;
P4	0 0 2	4 3 3		- 431x	

is gramted

