Announcements

3

Unit 5: Inference for categorical data

4. MT2 Review

Sta 101 - Fall 2015

Duke University, Department of Statistical Science

Dr. Çetinkaya-Rundel

Slides posted at http://bit.ly/sta101_f15

inference	нт	CI
theoretical	Z, T, F, chi-sq	Z, T
simulation	bootstrap centered at null randomization	bootstrap

- ► MT 2 next week
 - Bring a calculator + cheat sheet + writing utensil
 - Tables will be provided
- ▶ MT 2 review session: Sat, Nov 7, 4-5pm, Old Chem 116
 - + office hours as usual: https://stat.duke.edu/courses/Fall15/sta101.002/info/#oh
 - + extra office hours from Dr. Monod: Friday, 1:30-3pm (Old Chem 122A)
- ▶ MT 2 review materials posted on the course website
- ▶ Project 1 due Friday evening (+ work on it in lab on Thursday)
- ► PS 5 due Friday evening, PA 5 due Saturday evening (note day change to allow for review before midterm)

mean $H0 \cdot mu = mu \cdot 0$ bootstrap centered at mu_0 - numerical median H0: median = med 0 randomization one variable S-F check -> Z proportion H0: $p = p_0$ S-F fail -> simulation centered at p. 0 -categorical E >= 5 -> chi-sq GOF H0: p follows 3+ levels proportion hypothesized distribution E < 5 -> randomization HT H0: mu_1 = mu_2 randomization x: 2 levels H0: med 1 = med 2 randomization _y = numerical x = categorical H0: All mu_i are equal ANOVA, F randomization median H0: All med_i are equal randomization two variables S-E check -> 7 - x&y: 2 levels - proportion H0: p_1 = p_2 S-F fail -> randomization y = categorical x = categorical H0: x and v are E >= 5 -> chi-sq independence -x/y: 3+ levels- proportion E < 5 -> randomization

Clicker question

Which of the following is true?

- (a) If the sample size is large enough, conclusions can be generalized to the population.
- (b) If subjects are randomly assigned to treatments, conclusions can be generalized to the population.
- (c) Blocking in experiments serves a similar purpose as stratifying in observational studies.
- (d) Representative samples allow us to make causal conclusions.
- (e) Statistical inference requires normal distribution of the response variable.

Clicker question

Which of the following is the best visualization for evaluating the relationship between two categorical variables?

4

- (a) side-by-side box plots
- (b) mosaic plot
- (c) pie chart
- (d) segmented frequency bar plot
- (e) relative frequency histogram

Clicker question

Two students in an introductory statistics class choose to conduct similar studies estimating the proportion of smokers at their school. Student A collects data from 100 students, and student B collects data from 50 students. How will the standard errors used by the two students compare? Assume both are simple random samples.

5

- (a) SE used by Student A < SE used as Student B.
- (b) SE used by Student A > SE used as Student B.
- (c) SE used by Student A = SE used as Student B.
- (d) SE used by Student A \approx SE used as Student B.
- (e) Cannot tell without knowing the true proportion of smokers at this school.

Clicker question

Which of the following is the best method for evaluating the relationship between two categorical variables?

- (a) chi-square test of independence
- (b) chi-square test of goodness of fit
- (c) anova
- (d) t-test

Clicker question

Which of the following is the best method for evaluating the relationship between a numerical and a categorical variable with many levels?

9

- (a) z-test
- (b) chi-square test of goodness of fit
- (c) anova
- (d) t-test

8

Data are collected at a bank on 6 tellers' randomly sampled transactions. Do average transaction times vary by teller?

Response variable: numerical, Explanatory variable: categorical ${\tt ANOVA}$

Summary statistics:

 $n_5 = 44$, $mean_5 = 81.7295$, $sd_5 = 21.5768$ $n_6 = 29$, $mean_6 = 75.3069$, $sd_6 = 20.4814$

H_O: All means are equal.

H_A: At least one mean is different.

Analysis of Variance Table

Response: data

Residuals 134 58919 439.69

Activity

Data are collected on download times at three different times during the day. We want to evaluate whether average download times vary by time of day. Fill in the ??s in the ANOVA output below.

Response variable: numerical, Explanatory variable: categorical Summary statistics:

n_Early (7AM) = 16, mean_Early (7AM) = 113.375, sd_Early (7AM) = 47.6541 n_Eve (5 PM) = 16, mean_Eve (5 PM) = 273.3125, sd_Eve (5 PM) = 52.1929 n_Late (12 AM) = 16, mean_Late (12 AM) = 193.0625, sd_Late (12 AM) = 40.9023

Analysis of Variance Table

Response: data

Df Sum Sq Mean Sq F value Pr(>F)

group ?? ?? ?? 1.306e-11

Residuals ?? 100020 ??

Total ?? 304661

What is the result of the ANOVA?

Since 1.306e-11 < 0.05, we reject the null hypothesis. The data provide convincing evidence that the average download time is different for at least one pair of times of day.

12 13

Activity:

The next step is to evaluate the pairwise tests. There are 3 pairs of times of day

1. Early vs. Evening: left side of class (facing the board)

2. Evening vs. Late Night: center of class

3. Early vs. Late Night: right side of class

Determine the appropriate significance level for these tests, and then complete the test assigned to your team.

$$\alpha^{\star} = 0.05/3 = 0.0167$$

(1) Early vs. Evening

(2) Evening vs. Late Night

(3) Early vs. Late Night

15

$$T_{45} = \frac{113.375 - 273.3125}{\sqrt{\frac{2223}{16} + \frac{2223}{16}}} \quad T_{45} = \frac{113.375 - 193.0625}{\sqrt{\frac{2223}{16} + \frac{2223}{16}}} \quad T_{45} = \frac{273.3125 - 193.0625}{\sqrt{\frac{2223}{16} + \frac{2223}{16}}}$$

$$= \frac{-159.9375}{16.67} = -9.59 \quad = \frac{-79.6875}{16.67} = -4.78$$

$$p - val < 0.01 \quad p - val < 0.01$$

$$= \frac{80.25}{16.67} = 4.81$$

$$p - val < 0.01$$

Clicker question

What percent of variability in download times is explained by time of day?

Response: data

Df Sum Sq Mean Sq F value Pr(>F)

2 204641 102320 46.035 1.306e-11 group

Residuals 45 100020 2223

 $\frac{204641}{204641+100020} = 0.67$

 $\frac{204641}{100020}$

 $\overline{102320 + 2223}$

16

What is / should be the center of the randomization distribution? What is the result of the hypothesis test?

Clicker question

n = 50 and $\hat{p} = 0.80$. Hypotheses: $H_0: p = 0.82; H_A: p \neq 0.82$. We use a randomization test because the sample size isn't large enough for \hat{p} to be distributed nearly normally $(50 \times 0.82 = 41 < 10; 50 \times 0.18 = 9 < 10)$. Which of the following is the correct set up for this hypothesis test? Red: success, blue: failure, \hat{p}_{sim} = proportion of reds in simulated samples.

- (a) Place 80 red and 20 blue chips in a bag. Sample, with replacement, 50 chips and calculate the proportion of reds. Repeat this many times and calculate the proportion of simulations where $\hat{p}_{sim} \neq 0.82$.
- (b) Place 82 red and 18 blue chips in a bag. Sample, without replacement, 50 chips and calculate the proportion of reds. Repeat this many times and calculate the proportion of simulations where $\hat{p}_{sim} \neq 0.80$.
- (c) Place 82 red and 18 blue chips in a bag. Sample, with replacement, 50 chips and calculate the proportion of reds. Repeat this many times and calculate the proportion of simulations where $\hat{p}_{sim} < 0.80$ or $\hat{p}_{sim} > 0.84$.
- (d) Place 82 red and 18 blue chips in a bag. Sample, with replacement, 100 chips and calculate the proportion of reds. Repeat this many times and calculate the proportion of simulations where $\hat{p}_{sim} < 0.80$ or $\hat{p}_{sim} > 0.84$.

Inference for numerical data:

▶ One numerical:

- Parameter of interest: μ
- T
- HT and CI
- ▶ One numerical vs. one categorical (with 2 levels):
 - Parameter of interest: $\mu_1 \mu_2$

 - HT and CI
 - If samples are dependent (paired), first find differences between paired observations
- ▶ One numerical vs. one categorical (with 3+ levels) mean:
 - Parameter of interest: N/A
 - ANOVA
 - HT only
- ▶ For all other parameters of interest: simulation

18 19

Binary outcome:

- ► One categorical:
 - Parameter of interest: p
 - S/F condition met \rightarrow Z, if not simulation
 - HT and CI
- ▶ One categorical vs. one categorical, each with only 2 outcomes:
 - Parameter of interest: $p_1 p_2$
 - S/F condition met \rightarrow Z, if not simulation
 - HT and CI
- ▶ S/F: use observed S and F for Cls and expexted for HT

3+ outcomes:

- ▶ One categorical, compared to hypothetical distribution:
 - Parameter of interest: N/A
 - At least 5 expected successes in each cell $\rightarrow \chi^2$ GOF, if not simulation
 - HT only
- ▶ One categorical vs. one categorical, either with 3+ outcomes:
 - Parameter of interest: N/A
 - At least 5 expected successes in each cell $\to \chi^2$ Independence, if not simulation
 - HT only