Predicting Future Sales

PANKAJ ACHARYA

SPRINGBOARD DATA SCIENCE CAREER TRACK

FEBRUARY 2019 COHORT

MENTOR: KEVIN GLYNN

The Problem

To predict next month's sales of items from different shops based on historical data to help optimize the stocks.

Why is this interesting?

- Having the product in stock for too long costs a lot.
- Short supply will also lead to lost of revenue and customer trust.
- In current situation of competition, maintaining a balance between over- and under- stock is challenging.

Description of Data

- * Kaggle competition data set
- sales_train.csv with daily historical data for 33 months
- test.csv for test data to forecast the sales for next month
- * items.csv with supplemental information about the items/products
- item_categories.csv with supplemental information about the items categories.
- shops.csv with supplemental information about the shops

Data Wrangling

- Test file contains shop id and item id. Each shop and item combination is given a unique id and prediction is to be made about the sales of that unique id (meaning sales of that particular item from that particular shop)
- These information have been combined before proceeding.

Exploratory Data Analysis

Exploratory Data Analysis (contd..)

Exploratory Data Analysis (contd..)

Feature Engineering

```
# Add lag features, i.e. add data for one, two, three or more months earlier
# Here date block num comes handy
lag feature list = [1,2,3,6,12]

for lag in lag feature list:
    shifted col name = ('item ont month lag's' % lag)
    train(shifted col name) = train.sort_values('date_block_num').groupby(['shop_id', 'item_ont_month'].shift(lag)
    train[shifted_col_name].fillna(0, implace=True)

train.head(10).T
```

	0	- 1	2	3	4	5	6	7	- 8	9
date_block_num	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
shop_id	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
itom_id	5572.0	5643.0	5583.0	7893.0	7894.0	7895.0	7956.0	1409.0	1467.0	3076.0
item_category_id	2.0	2.0	5.0	5.0	6.0	6.0	6.0	19.0	19.0	19.0
item_cnt_month	9.0	1.0	2.0	3.0	1.0	4.0	2.0	1.0	1.0	1.0
item_cnt_month_lag1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
item_cnt_month_lag2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
item_cnt_month_lag3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
item_cnt_month_lag6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
item_cnt_month_lag12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Data Modeling

- Linear Regression
- Ridge Regression
- Lasso Regression
- Decision Tree
- Bagging Regressor
- Random Forest
- ❖ Adaptive Boost Regressor
- Gradient Boost
- XGBoost
- LightGBM

Model Performance (with default parameters)

Algorithm	r ²	rmse		
Gradient Boost	0.677656	1.505827		
XGBoost	0.674566	1.500516		
Linear Regression	0.661112	1.349141		
LightGBM	0.653470	1.546350		
Ridge Regression	0.629179	1.351676		
Random Forest	0.626711	1.531725		
Bagging Tree	0.625435	1.542834		
Decision Tree	0.502483	1.934200		
Lasso Regression	-0.000437	2.453177		
Adaptive Boost	-3.260495	2.512668		

Model Performace (with tuned parameters)

Algorithm	Tuned r ²	Tuned rmse		
Gradient Boost	0.675227	1.461838		
XGBoost	0.669124	1.468157		
Random Forest	0.664986	1.457858		
Bagging Tree	0.661905	1.425319		
LightGBM	0.656737	1.533018		

Final Prediction

❖ Picked Gradient Boost with default parameters as it had the best scores among all the models tested (with default or tuned parameters).

Future Directions

- As shown in EDA, the sales in general is in decline over time. It would be nice to have the data for later years to make a better understanding of there is an actual decline in sales of the items or something else.
- * It would be nice to take into account some special events (like holidays, festivals etc).