BUSCA INFORMADA

(PARTE 3 - RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA)

Material

Capítulo 4 - Rusell & Norvig

Roteiro

BUSCA INFORMADA

- Busca informada utiliza conhecimento do problema para guiar a busca.
- Este conhecimento utilizado está além da própria definição (formulação) do problema.
 - Estado inicial, modelo de transição (função sucessora), custo de ação, estado objetivo
- Podem encontrar soluções de forma mais eficiente do que as buscas cegas.

Resolução de problemas por meio de busca

BUSCA DE MELHOR ESCOLHA (BEST-FIRST)

Busca Melhor Escolha (BEST-FIRST)

Melhor escolha é uma abordagem geral de busca informada. Pode ser especializada em: <u>Gulosa</u> e <u>A*</u>

Melhor escolha seleciona o nó a ser expandido utilizando uma função de avaliação denominada f(n)———

f(n) é uma função de custo, então o nó que apresentar menor f(n) é expandido primeiro.

Implementação é idêntica ao da busca de <u>custo uniforme</u> substituindo-se g(n) por f(n)

Busca Melhor Escolha: F(N)

Ideia: usar uma **função de avaliação f(n)** para cada nó

- estimar o grau em que um nó é "desejável" como caminho
- expandir os nós mais desejáveis

$$f(n) = g(n) + h(n)$$

g(n) = Custo do caminho do estado inicial até o nó n

h(n) = Custo estimado de n ao estado objetivo pelo caminho mais barato

Resolução de problemas por meio de buscas

BUSCA GULOSA (GREEDY-FIRST)

Busca Gulosa

- A cada passo tenta chegar mais perto do estado objetivo sem se preocupar com os passos futuros.
- Utiliza somente a componente heurística da função f(n)

$$f(n) = g(n) + h(n)$$

- Logo, f(n) = h(n)
- Busca que expande os nós mais baratos baseando-se somente em h(n)

h(n) = distâncias estimadas em linha reta até Bucareste

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

h(n) = distância linha reta

Vermelho: caminho ótimo

15

Vermelho: caminho ótimo

Vermelho: caminho ótimo

18

Vermelho: caminho ótimo

19

Avaliação da Busca Gulosa

Espacial	O(b ^m)
Tempo	O(b ^m)
Completo	Sim , para busca em grafo, se o espaço de estados for finito
Ótimo	Não

Resolução de problemas por meio de buscas

Busca A*

• Ideia: podar caminhos que são caros

```
    Função de avaliação f(n) = g(n) + h(n)
    g(n) = custo para chegar ao nó n
    h(n) = custo estimado para ir de n até o objetivo
    f(n) = custo estimado total do caminho para chegar do estado inicial ao objetivo passando por n
```

```
O algoritmo é idêntico ao da busca de custo uniforme e gulosa exceto por: A^* \qquad \qquad f(n) = g(n) + h(n) \\ Custo Uniforme f(n) = g(n) \\ Gulosa f(n) = h(n)
```


h(n) distância em linha reta de n até Bucareste

Fronteira lista ordenada por f(n)

Sibiu (393) < Timisoara (447) < Zerind (449)

Fronteira lista ordenada por f(n)

Rimnicu (413) < Fagaras (415) < Timisoara (447) < Zerind (449) < Oradea (671)

- X Estado já explorado; não está na fronteira (somente na árvore)
- Nó da fronteira substituído por um melhor ou não incluído por já ter um melhor

Fronteira lista ordenada por f(n)

Fagaras (415) < Pitesti (417) < Timisoara (447) < Zerind (449) < Craiova (526) < Oradea (671)

Fronteira lista ordenada por f(n)

Pitesti (417) < Timisoara (447) < Zerind (449) < Bucharest (450) < Craiova (526) < Oradea (671)

Condição parada

Ao expandir Fagaras, Bucharest aparece na fronteira. Porém, o algoritmo só para quando Bucharest for o primeiro da lista

Fronteiral lista ordenada por f(n)

Bucharest (418) < Timisoara (447) < Zerind (449) < Craiova (526) < Rimnicu (607) < Oradea (671)

condição de parada é atingida!

ANÁLISE DE COMPLEXIDADE DE A*

- A otimalidade de A* depende da componente h(n)
- Condições para otimalidade:
 - h(n) deve ser uma heurística admissível:
 - nunca superestimar o custo real para alcançar o estado objetivo
 - Garante que f(n) é não-decrescente (para espaços de estados que são árvores)
 - Para busca em espaços de estados que são árvorer basta ser admissível
 - h(n) deve ser consistente
 - respeitar o princípio da desigualdade triangular para garantir que f(n) seja não-decrescente
 - Para busca em espaço de estados que sejam grafos tem que ser admissível e consistente

Heurística Admissível

Uma heurística h(n) é admissível se todo nó n:

$$h(n) \leq h^*(n),$$

onde h*(n) é o custo "real" (modelado) para se alcançar o estado-objetivo a partir de n

DEVE SER OTIMISTA!

Heurística Consistente

Heurística admissível e inconsistente

A questão é: como impedir que um nó que tenha f(n) maior do que outro (ex. C) seja selecionado antes?

Heurística Consistente

R: Todo sucessor de n (denominado n') DEVE ter $f(n') \ge f(n)$ Diferença entre as heurísticas de n e n' deve ser otimista $h(n) - h(n') \le c(n, a, n')$

Corrigindo a heurística: $h(A)-h(C) \le c(A, a, C)$ $h(A)-1 \le 1$ $h(A) \le 2$


```
h(S) - h(A) \le c(S, a, A) :: 2 - 2 \le 1
h(A) - h(C) \le c(A, a, C) :: 2 - 1 \le 1
h(C) - h(G) \le c(C, a, G) :: 1 - 0 \le 3
h(S) - h(B) \le c(S, a, B) :: 2 - 1 \le 1
h(B) - h(C) \le c(B, a, C) :: 1 - 1 \le 2
h(C) - h(G) \le c(C, a, G) :: 3 - 0 \le 3
```

Heurística Consistente

- Em conclusão: para A* com BUSCA-EM-GRAFO há uma condição adicional para a f(n):
 - ser CONSISTENTE ou MONOTÔNICA;
 - i.e. a f(n) deve ser não-decrescente
 - Deve respeitar o teorema da DESIGUALDADE TRIANGULAR

O tamanho de um lado não pode ser maior do que a soma dos tamanhos dos outros dois lados.

Heurística Consistente (MONOTONICIDADE)

Se h é consistente então $f(n) \le f(n')$ i.e. f(n) é não-decrescente ao longo de qualquer caminho.

Dado que:

$$f(n) = g(n) + h(n)$$

 $f(n') = g(n) + c(n, a, n') + h(n')$

Tem-se que uma heurística é consistente se para cada nó n, cada sucessor n' de n gerado por qualquer ação a,

$$h(n) \le c(n, a, n') + h(n')$$

Teorema: Se *h(n)* é consistente, A* é ótima (para busca em grafo)

Heurística consistente

 Consistência implica admissibilidade

Porém,

 admissibilidade não
 implica em
 consistência

Propriedades de A*

- A* expande nós pela ordem do valor de f (nunca decresce)
- Gradualmente v\u00e3o sendo adicionados os "f-contornos" = n\u00f3s selecionados para expans\u00e3o: ARAD > SIBIU > ...
- O Contorno *i* possui todos os nós com $f=f_i$, onde $f_i < f_{i+1}$
- Quando A* seleciona n para expansão significa que já encontrou o caminho de menor custo até ele
- A^* nunca expande nós que tenham $f(n) > C^*$

Otimalidade de A* (prova)

Provar que mesmo que haja um objetivo sub-ótimo G2 na fronteira, A^* alcança o objetivo ótimo G, pois f(G2) > f(G)

Seja *n* um nó não expandido na fronteira tal que n está no caminho **mais barato** para chegar a um objetivo ótimo G.

- 1. f(G2) = g(G2) como h(G2) = 0
- 2. f(G) = g(G) como h(G) = 0
- 3. g(G2) > g(G) como G2 é sub-ótimo
- 4. f(G2) > f(G) como conseqüência de 1, 2 e 3

Otimalidade de A* (prova)

Prova: mesmo que um objetivo subótimo (G2) esteja na fronteira, ele não será selecionado se há um nó num caminho mais barato para atingir o objetivo ótimo.

Daí $f(G_2) > f(n)$ e A* nunca seleciona G_2 para ser expandido

- 1. $f(G) < f(G_2)$ do exposto anteriormente
- 2. $h(n) \le h^*(n)$ dado que $h \notin admissível$; $h^*(n) = custo real (sem aproximação)$
- 3. $g(n) + h(n) \le g(n) + h^*(n)$ incluindo g(n) nos dois lados da ineq. 2
- 4. $f(n) \le f(G) < f(G2)$ de 3 e 1

Propriedades de A*

- Completa?
 - Sim, desde que não existam infinitos nós com $f(n) \le C^*$
 - C* custo do caminho da solução ótima
 - (A* expande todos os nós tal que $f(n) < C^*$)
- Tempo?
 - Exponencial: O(b[△])
 - Δ = h* h (erro absoluto da heurística)
- Espaço?
 - Guarda todos os nós na memória
 - problema: normalmente explode para espaços de estados grandes
- Ótima?
 - Sim,
 - se heurística for admissível e consistente

Solução de problemas por meio de busca

HEURÍSTICAS ADMISSÍVEIS

Heurísticas Admissíveis

E.g., para o quebra-cabeça de 8 peças

- $h_1(n)$ = número de pedras fora do lugar
- $h_2(n)$ = distância total à la Manhattan

(i.e., número de quadrados da localização desejada de cada pedra)

• $h_1(S) = ?$

• $h_2(S) = ?$

Start State

Heurísticas Admissíveis

E.g., para o quebra-cabeça de 8 peças

- $h_1(n)$ = número de pedras fora do lugar
- $h_2(n)$ = distância total à la Manhattan

(i.e., número de quadrados da localização desejada de cada pedra)

•
$$h_1(S) = ?8$$

Start State

Goal State

•
$$h_2(S) = ?3+1+2+2+3+3+2 = 18$$

Dominância

- Se h2(n) ≥ h1(n) para todo n (ambas admissíveis)
 - então h2 domina h1
 - h2 é melhor para busca
- Custos de busca típicos (número médio de nós expandidos):
- d=12 BAI = 3.644.035 nós Busca por Aprofundamento Iterativo
 - A*(h1) = 227 nós
 - A*(h2) = 73 nós
- d=24
 BAI = muitos nós!!!
 - A*(h1) = 39.135 nós
 - A*(h2) = 1.641 nós

Problemas com menos restrições

- Um problema com menos restrições nas ações é chamado de <u>problema</u>
 relaxado → relaxação permite obter heurísticas admissíveis/consistentes
- O custo da solução ótima para um problema relaxado é uma heurística admissível para o problema original
- h1 = relaxa as regras do quebra-cabeças com 8 peças tal que uma pedra possa ser movimentada para qualquer posição (passando por cima das outras)
- h2 = relaxa as regras para que as pedras possam ir para qualquer quadrado adjacente (menos relaxada que h1)