Accélération de particule et production de gamma

Module Recherche en physique moderne RECH 601

Mathieu De Bony (lavergne@lapp.in2p3.fr)

The Electromagnetic Spectrum

Sources

Oven

Very-High Energy Cosmic Source

Rayons Cosmiques

- Presque linéarité sur 12 ordre de grandeur en énergie et 32 en flux
- Questions principales en astrophysique
 - Origine ?
 - Propagation?
 - Composition ?

Rayons Cosmiques

- Orgine des particules chargés?
- Avant genou : origine galactique
- Cheville : extragalactique

Processus d'émission des Gamma

• Décroissance de π^0

$$\begin{array}{c}
\text{RC} \\
p
\end{array}$$

$$\begin{array}{c}
\text{Cible} \\
p
\end{array}$$

$$\begin{array}{c}
0 + \pi^{-} + \pi^{+} + \dots \\
 & \longrightarrow \\
 & \gamma + \gamma
\end{array}$$

Des protons vont interagir et produire de nombreuses nouvelles particules

Processus d'émission

Compton inverse

Photon va rentrer en contact avec un électron. L'électron va lui transmettre une partie de son énergie et le photon devient plus énergétique

Processus d'émission

Bremsstrahlung (ou rayonnement de freinage)

Une particule chargée qui bouge dans un champ électrique est ralentie. Cette perte d'énergie est émise sous forme de rayonnement

Processus d'émission

Synchrotron

Une particule qui bouge dans un champs électromagnétique va voir sa trajectoire changer et émettre un rayonnement Synchrotron.

Sources émettrices de rayonnements gamma

Sources galactiques	Sources extra-galactiques
Restes de supenovaePulsar	Sursaut gammaNoyaux actifs de galaxie
• Emission diffuse	

Matière noire ?

Les restes de supernova

- Une à trois par siècle dans la Voie lactée.
- Tout ou partie de la matière stellaire (éjecta) est projetée à très grande vitesse (quelques 10 000 km/s) dans le milieu interstellaire.

Un example: SN 1006

SN 100 observé en rayons X par Chandra.

SN 1006 observé en rayon gamma par Fermi

SN 1006 observé en rayon gamma par HESS

Les pulsars: découverte

1967 : découverte des pulsars par Hewish & Bell

1968 : identification des pulsars comme des étoiles à neutrons en rotation rapide et fortement magnétisée (Gold)

1968 : découverte des pulsars du Crabe et de Vela : lien avec les supernovae

Jocelyn Bell

Les pulsars

• Etoile à neutron (cadavre d'étoile) en rotation rapide qui émet de la matière à ses pôles magnétique.

• Les périodes des pulsars sont très brèves : la plus longue est de 4s, et la plus courte est celle du pulsar du Crabe : 0,033s.

Pulsar du Crabe et sa nébuleuse

Les pulsars en gamma

H.E.S.S. Crab Nebula (2017)

X-rays (Chandral, courtesy of Welsskopf & Kolodziejczak

Pulsations du Crabe par VERITAS

Cercle bleu
-> Emission Gamma du
Pulsar du Crabe par HESS

Les sursauts gamma

Découvert dans les Années 60 par les satellites VELA

But : surveiller l'émission gamma d'essais nucléaires

Les flash gamma proviennent de l'espace

déclassifiées en 1973

- Processus encore mal connu
- Flash très bref et intense de rayonnement à toutes les longueur d'onde
- Emission très grande d'énergie

Les sursauts gamma

Fusion d'objets compacts

2 types de sursaut gamma

Effondrement d'étoiles massives

Les sursauts gamma

Les noyaux actifs de galaxies

Les noyaux actifs de galaxies

- 10% des galaxies sont dite actives
- Visible sur tout le spectre

Centaurus A

Plus proche galaxie radio

870-microns submillimètre, de LABOC sur APEX, sont montrées en orange.

Les données rayons X de l'Observatoire Rayons X de Chandra sont montrées en bleu.

Les données de lumière visible du Wide Field Imager (WFI) du MGP/ESO télescope de 2.2 mètres situé à La Silla

Centaurus A en Gamma

X, Visible Fermi-GeV HESS-TeV

L'émission diffuse

80% des photons détectés par Fermi LAT proviennent de l'émission diffuse.

- Interaction RC+gaz
- Fond diffus extragalactiquec

Fermi bubbles

Connection avec le Centre Galactique

Reste d'activité?

La matière noire

 Production de particules détectables par nos instruments (directement ou indirectement)

Annihilation de matière noire

Des questions?

Accélération des rayons cosmiques

Accélération de Fermi du premier ordre

$$\frac{\Delta E}{E} = -2\frac{\mathbf{v} \cdot \mathbf{V}}{c^2}.$$

Accélération des rayons cosmiques

Accélération de Fermi du deuxième ordre

$$\frac{\Delta E}{E} = \frac{\beta(\cos\theta'_{\rm out} - \cos\theta_{\rm in}) + \beta^2(1 - \cos\theta_{\rm in}\cos\theta'_{\rm out})}{1 - \beta^2}$$

$$\langle \cos heta_{
m in}
angle = -rac{1}{3}eta_{
m in}$$

$$\left\langle \frac{\Delta E}{E} \right\rangle = \frac{4}{3} \frac{\beta^2}{1-\beta^2} \simeq \frac{4}{3} \beta^2$$