Supervised Learning

Supervised learning is where you have input variables (x) and an output variable (Y) and you use an algorithm to learn the mapping function from the input to the output

It is called Supervised Learning because the process of an algorithm learning from the training

dataset can be thought as a teacher supervising the learning process

Supervised Learning

Supervised Learning

Supervised Learning Algorithms

"Regression analysis is a form of predictive modelling technique which investigates the relationship between a dependent and independent variable"

Regression

Three major uses for regression analysis are

- Determining the strength of predictors
- Forecasting an effect, and
- Trend forecasting

Linear vs Logistic Regression

Basis	Linear Regression	Logistic Regression
Core Concept	The data is modelled	The probability of some
	using a straight line	obtained event is
		represented as a linear
		function of a combination of
		predictor variables.
Used with	Continuous Variable	Categorical Variable
Output/Prediction	Value of the variable	Probability of occurrence of
		event
Accuracy and	measured by loss, R	Accuracy, Precision, Recall,
Goodness of fit	squared, Adjusted R	F1 score, ROC curve,
	squared etc. Confusion Matrix, etc	

Selection Criteria

- Classification and Regression Capabilities
- Data Quality
- Computational Complexity
- Comprehensible and Transparent

Linear Regression used?

- Evaluating Trends and Sales Estimates
- Analyzing the Impact of Price Changes
- Assessment of risk in financial services and insurance domain

Understanding Linear Regression Algorithm

Mean Square Error

$$m = 0.4$$

 $c = 2.4$
 $y = 0.4x + 2.4$

For given m = 0.4 & c = 2.4, lets predict values for y for $x = \{1,2,3,4,5\}$

$$y = 0.4 \times 1 + 2.4 = 2.8$$

 $y = 0.4 \times 2 + 2.4 = 3.2$
 $y = 0.4 \times 3 + 2.4 = 3.6$
 $y = 0.4 \times 4 + 2.4 = 4.0$
 $y = 0.4 \times 5 + 2.4 = 4.4$

06:4

Mean Square Error

What is R-Square?

- R-squared value is a statistical measure of how close the data are to the fitted regression line
- It is also known as coefficient of determination, or the coefficient of multiple determination

Calculation of R^2

x	у	y - y	$(y - y)^2$	y_p	$(y_p - y)$	$(y_p - y)$
1	3	- 0.6	0.36	2.8	-0.8	0.64
2	4	0.4	0.16	3.2	-0.4	0.16
3	2	-1.6	2.56	3.6	0	0
4	4	0.4	0.16	4.0	0.4	0.16
5	5	1.4	1.96	4.4	0.8	0.64

an y 3.6

$$\sum$$
 5.2

$$\sum$$
 1.6

$$R^{2} = \frac{1.6}{5.2} = \frac{\sum (y_{p} - \bar{y})^{2}}{\sum (y - \dot{y})^{2}}$$

Independent Variable

06:35:13

201