

Sampling for Bayesian Program Learning

Kevin Ellis, Armando Solar-Lezama, and Joshua B. Tenenbaum Massachusetts Institute of Technology

Problem statement

Bayesian Program Learning: Learn programs from input/output examples, framed as Bayesian inference. Given a description-length prior over programs, condition on examples. Approximate the posterior by a set of samples.

- Efficient in practice: synthesizes non-trivial programs in minutes
- Theoretical guarantees: our algorithm, ProgramSample, generates iid samples from a distribution that provably approximates the true posterior

Sampling text edit programs:

Two Key Ingredients

How can we get practical performance and theoretical guarantees for a problem that feels so obviously intractable?

- Sketching: Constrain the program structure by a sketch, like a recursive grammar over expressions. Consider *finite* programs (bounded size/runtime), modeled in a SAT solver, which does the heavy lifting of searching for programs.
- Sampling via random XOR constraints: Sample SAT solutions (programs) by adding random XOR constraints to the SAT formula, an idea first introduced in Gomes et al. 2006.

Bayesian Program Learning & Other Approaches

- Assumes strong prior knowledge, allowing learning from one or a few examples; large data sets possible but difficult in practice. Contrast with eg Neural Turing Machines
- Explicitly models **uncertainty**, contrast with eg program synthesis
- Theoretical guarantees, like much program synthesis work, contrast with eg genetic programming

Example: Learning to Sort

Examples	\mathbf{MDL}	Sampled correct?	Posterior is
$(7 4 3) \rightarrow (3 4 7)$	reverse	X	diffuse
$(7\ 4\ 3) \rightarrow (3\ 4\ 7)$ $(5\ 2\ 3) \rightarrow (2\ 3\ 5)$	buggy code	√	diffuse
$(7 \ 4 \ 3) \rightarrow (3 \ 4 \ 7)$ $(5 \ 2 \ 3) \rightarrow (2 \ 3 \ 5)$ $(1 \ 6 \ 4) \rightarrow (1 \ 4 \ 6)$	sort		peaky
$(3\ 2\ 4\ 1) \rightarrow (1\ 2\ 3\ 4)$	count up to list length	X	peaky
$(3\ 2\ 4\ 1) \rightarrow (1\ 2\ 3\ 4)$ $(1\ 6\ 2\ 0) \rightarrow (0\ 1\ 2\ 6)$	sort	√	peaky

Background: Program Synthesis by SAT Solving

Figure 2: Synthesizing a program via sketching and constraint solving. Typewriter font refers to pieces of programs or sketches, while math font refers to pieces of a constraint satisfaction problem. The variable i is the program input.

Sampling by Random XOR Constraints

Sample approximately uniformly from E by fixing the parity of random sums (XOR's) of SAT variables. Main idea in Ermon et al. 2013.

Definition: Tilt. The *tilt* of $p(\cdot)$ is $\frac{\max_x p(x)}{\min_x p(x)}$.

A problem. Very inefficient if the posterior p(x) is highly tilted. PROGRAM-Sample approximates p(x) by a low tilt distribution q(x). Rejection sampling corrects this distortion: A(x) is acceptance probability.

Approximate

Theoretical guarantees

PROGRAMSAMPLE takes two real-valued parameters, γ and Δ .

Proposition 1: Distribution of samples is close in KL to the true posterior. Write Ar(x) to mean the distribution of the samples. Then $KL(p||Ar) < \log\left(1 + \frac{1+2^{-\gamma}}{1+2^{\Delta}}\right)$

Proposition 2: Not too much work is needed to get a sample. The expected number of calls to the solver per sample is bounded above by $\overline{(1+2^{-\gamma})^{-1}(1+2^{-\Delta})^{-1}-2^{-\Delta}}$.

Domain: Learning text edit scripts

Programming By Example: Learn a string editing program from a few examples. Systems like this ship in Microsoft Excel.

Examples		A program
Input don steve g. Kevin Jason Mat Jose Larry S Arthur Joe Juan Raymond F. Timothy	Output dsg KJM JLS AJJ RFT	SubStr(0,1)+ SubStr(Pos(' ',",0),Pos(' ',",0))+ SubStr(Pos(' ',",-1),Pos(' ',",1))
1/23/2009 1 $4/12/2023$ 4 $6/23/15$ 6	out .31 .23 .12 .23 .15	SubStr(0,Pos(",'/',0))+ Constant('.')+ SubStr(Pos('/',",0),Pos(",'/',-1))

Key problem: PBE systems target end-users who are unwilling to provide more than one or a few examples, leaving the intended behavior highly ambiguous. Model this ambiguity using sampling.

Sketching a Program Space

```
Program ::= Term | Program + Term
        ::= String | substr(Pos, Pos)
        ::= Number
           pos (String, String, Number)
Number ::= 0 | 1 | 2 | \dots
          | -1 | -2 | \dots
String := Character
           Character + String
Character ::= a | b | c | ...
```

Learning from very few examples

Results averaged across 19 problems. Solid: PROGRAMSAMPLE . Dashed: enumerating 100 programs. Dotted: MDL.

Figure 2: MDL learner vs Program-SAMPLE on one-shot learning. Predictions marginalize out the program.

c=2 c=3

Within top C predictions

-- MDL

Good performance needs tilt correction. w/o low-tilt approximation, get no samples for any of these problems after an hour, vs ≈ 1 minute w/ Program-SAMPLE

Domain: List Manipulation

Computer Aided Programming: Synthesize source code consistent with a specification. We tackle these problems:

- Sort: synthesize quicksort
- Reverse: recursively reverse a list
- Count: count occurrences of list head in list tail

Multiple implementations might satisfy the spec, especially if the specs are examples. Model the ambiguity by sampling plausible implementations.

Sketching a Program Space

```
Program ::=
 (if Bool List
    (append RecursiveList
           RecursiveList
           RecursiveList))
Bool ::= (<= Int) | (>= Int)
Int := 0 | (1+ Int) | (1- Int)
        (length List) | (head List)
List ::= nil | (filter Bool List)
      X | (tail List) | (list Int)
RecursiveList ::= List
                 (recurse List)
```

Learner Generalizes to Longer Sequences

Trained to sort, reverse, or count on lists of length ≤ 3 ; tested on lists of length $\leq 14.$

Sampling aids generalization. Even if the most likely program has a bug, the posterior puts enough mass on correct programs that the ensemble of samples acts as a probabilistic algorithm with a high probability of succeeding.