## Principle of Microeconomics

National Taiwan University Fall 2020 Hsien-Chen Chu

## Midterm Cheat Sheet

Last Edited: [2020.11.11]

Hsien-Chen Chu (T09303304)

## 1 Preference

- **a** Check [SM] is satisfied:  $\forall x_1, x_2 > 0$ ,  $MU_1 > 0$ ,  $MU_2 > 0$ . Check [SC] is satisfied:  $\frac{\partial |MRS|}{\partial x_1} < 0$  (diminishing in  $x_1$ ) or  $\frac{\partial |MRS|}{\partial x_2} > 0$  (increasing in  $x_2$ ).
- b After checking [SM]&[SC], while both holding, we can link these features to our optimal choice problem.

## 2 Choices: Find $x_1^m, x_2^m$

- a The maximization problem is:  $\max_{x_1,x_2} u(x_1,x_2)$ , s.t.  $p_1x_1+p_2x_2=I$ . Suppose the utility function  $u(x_1,x_2)$  holds [SM]&[SC]: The Lagrange is:  $\max_{x_1,x_2} \mathcal{L} = u(x_1,x_2) + \lambda(I-p_1x_1-p_2x_2)$ . By F.O.C, we obtain  $\frac{\partial \mathcal{L}/\partial x_1}{\partial \mathcal{L}/\partial x_2} = |MRS| = \frac{p_1}{p_2}$ . And then plug this relation back in given Budget Constraint:  $x_1^* = x_1(p_1,p_2,I) = x_1^m; x_2^* = x_2(p_1,p_2,I) = x_2^m$ .
- **b** Whether satisfies "Law of Demand": check  $\varepsilon_1 < 0 \Leftrightarrow \frac{\partial x_1}{\partial p_1} < 0$ .

# 3 Elasticity

- $\mathbf{a}$   $\varepsilon_1 = \frac{\partial x_1}{\partial p_1} \frac{p_1}{x_1}$ , if  $\varepsilon_1 < 0$ : Ordinary good  $\Leftrightarrow$  satisfies L.O.D. Otherwise, Giffen good.
- **b**  $\varepsilon_{ij} = \frac{\partial x_i}{\partial p_j} \frac{p_j}{x_i}$ . Suppose  $x_i, x_j$  are ordinary goods: If  $\varepsilon_{ij} > 0 \Leftrightarrow$  Substitutes. Otherwise, Complements.
- **c**  $\varepsilon_{iI} = \frac{\partial x_i}{\partial I} \frac{I}{x_i}$ , if  $\varepsilon_{iI} > 0 \Leftrightarrow \text{Normal good.}$  Otherwise, Inferior good.

### 4 Sellers & Incentives

The seller's problem has three parts: [1] Production, [2] Costs(Oppor.Cost), [3] Revenue. We assume the market structure here is "Perfectly Competitive", which implies that both suppliers and demanders are "price taker" and suppliers has free cost of entering and exiting the market.

Ultimate goal for firms: Profit Maximization  $\pi$ .

#### a. Production Function :

$$y = AF(k, n)$$

$$\begin{cases}
MPL = AF_n(k.n) = \frac{\partial AF(k,n)}{\partial n}, \\
MPK = AF_k(k.n) = \frac{\partial AF(k,n)}{\partial k}.
\end{cases}$$
(1)

Now considering costs, a firm's profit(dividends) be like:

$$d = AF(k, n) - wn$$

From all above, we can observe: [1] FOC:  $MPL \ge 0$ ,  $MPK \ge 0$  [2] SOC: Marginal Product <u>diminishes</u> (n  $\uparrow \Rightarrow MPL \downarrow$ ,  $k\uparrow \Rightarrow MPK \downarrow$ )  $\Leftrightarrow$  "Law of Diminishing Returns" [3] A firm's marginal gain is <u>MPL</u>, while its marginal cost is w.

#### b. Costs of Production :

If a firm uses inputs, it must consider the production costs. In the short-run, Total Cost can be represented as the sum of Variable Cost and Fixed Cost:

$$TC = VC + FC$$

We can divide the TC equation by quantity Q, obtaining:

$$\frac{TC}{Q} = \frac{VC}{Q} + \frac{FC}{Q} \Rightarrow ATC = AVC + AFC$$

where **ATC** stands for <u>Average</u> Total Cost, and so on. **Graph: U-shaped.** (Expl.: The first half of ATC is similar to AFC since Q is yet small. While Q is large enough, the other half of ATC is more alike to AVC.)

Now we further introduce the idea of  $\underline{\text{Marginal Cost}}$  (MC), which measuring the additional costs induced by additional Q. We then mathematically define:

$$MC = \frac{\partial TC}{\partial Q} = \frac{\Delta TC(Q)}{\Delta Q} = \frac{\Delta VC}{\Delta Q} + \frac{\Delta FC}{\Delta Q} = \frac{\Delta VC}{\Delta Q}$$

Apparently, we're calculating how the marginal, or changing, units of output  $(\Delta Q)$  affect the change in total cost  $(\Delta TC)$ . It is worth noting that FC is a constant, implying Fixed Cost is literally FIXED and won't vary with the change in quantity of output:  $\frac{\Delta FC}{\Delta Q} = 0$ .

Another crucial idea is that MC will always intersect ATC at ATC's minimum point. Mathematically, this statement can be easily verified:

*Proof.* Since the extremum occurs when FOC = 0, let

$$\frac{dATC}{dQ} = 0 \Rightarrow \frac{d(\frac{TC}{Q})}{dQ} = \frac{(MC \cdot Q) - TC}{Q^2} = \frac{MC - ATC}{Q} = 0$$

Because ATC is U-shaped, we have the minimum when MC = ATC.

#### c. Revenue & Profits :

Total Revenue (**TR**), Average Revenue (**AR**), Marginal Revenue (**MR**):

$$\begin{cases}
TR = P \cdot Q \\
AR = \frac{TR}{Q} = P \\
MR = \frac{\Delta TR}{\Delta Q} = P
\end{cases}$$
(2)

Thus, we have our first relation: MR = AR = P.

Now consider the ultimate Profit Maximization problem:

$$max \pi = TR - TC$$

yielding FOC = 0:

$$\Rightarrow \frac{\Delta \pi}{\Delta Q} = \frac{\Delta TR}{\Delta Q} - \frac{\Delta TC}{\Delta Q} = MR - MC = 0$$

So, a firm optimizes its profit when output  $Q^*$  satisfies the relation: MR = MC. Additionally, based on MR=P, we can conclude the final relation that maximize profit: P = MR = MC.

$$\Rightarrow \max \pi = TR - TC = (P \cdot Q^*) - (ATC \cdot Q^*) = (P - ATC) \cdot Q^*$$

#### d. Shutdown :

A short-run decision of temporarily stop producing if  $\underline{TR < VC} \Leftrightarrow \mathbf{Shutdown\ point}$ :  $P = P^{exit} = AVC$ , i.e., shutdown when  $P = SMC \leq AVC = P^{exit}$ . (SMC: Short-run MC)

- $\rightarrow$  Why shutdown only when TR < VC ? Consider 2 cases:
- (1) continue to produce:  $\pi_1 = TR TC = TR (VC + FC) = (TR VC) FC$
- (2) shutdown:  $\pi_s = TR TC = TR (VC + FC) = 0 (0 + FC) = -FC$
- $\forall_{TR}|TR < VC, \pi_s > \pi_1 \Rightarrow \text{better shutdown.} \blacksquare$

Based on the previous inference, we know the Short-run Supply Curve is the upper segment of SMC which is above AVC.