

Todays Goal

-> H/W, PhD on Goaph:-

(Part-02)

(2/2) gouph.

$$= \frac{Jv^2}{Jv} \cdot \left(\frac{Jv}{Jx}\right)$$

$$\left(\frac{dn^2}{dn} - 2n\right)$$

$$\int a \, \alpha' \, d^{n} = \frac{slope \, of(y^{2} \, x)}{2}$$

fint air

accor is maxim at :2??

velocity may not but act 12

Area of alt graph is charge in velocity

rccn - time graph:-

aunis zero at tz.

accn is tre
$$8/\omega$$
 o to t_2 # accn is $-re 8/\omega$ o to t_3

9f intial velocity of object is - 10m/s, Then find velocity of t=85e%

Area = = (4+8)x 10 = 1 42 × 10 Uf-Vi- 60 Uf +10 = 60 Vf=(60-10)=50 m/s

MW

(Vi=0)

A particle starts from rest. Its acceleration (a) versus time (t) is as shown in the figure. The maximum speed of the particle will be [IIT-JEE (Screening) 2004]

- 110 m/s
- 2 55 m/s //
- 3 550 m/s
- 4 660 m/s

A particle starts from rest at t = 0 and moves in a straight line with an acceleration as shown below. The velocity of the particle at t = 3s is

- 1 2 m/s
- 2 3 m/s
- 3 4 m/s
- 4 6 m/s

$$\Delta V = Area$$
 $V_5 - 0 = 6 - 3 = 3$
 $V_5 - 0 = \sqrt{V_5 = 3m/s}$

1 a/n graph.

$$=\left(\frac{dv}{dx}dx\right)$$

$$-\left(\frac{\sqrt{2}}{2}\right)u^{2} = \frac{\sqrt{2}u^{2}}{2}$$

 $= \int \frac{dv}{dt} dx \times \frac{dv}{dx}$ $= \int \frac{dv}{dt} dx \times \frac{dv}{dx} = \int \frac{v^2 u^2}{2} = Area \text{ of a Jraph:} = \int \frac{dv}{dt} dx \times \frac{dv}{dx} = \int \frac{v^2 u^2}{2} = Area \text{ of a Jraph:} -$

$$\frac{\sqrt{2} - \sqrt{2}}{2} = \frac{1}{2} (4+8) \times 10^{5}$$

$$\frac{\sqrt{2} - 1^{2}}{2} = \frac{1}{2} (4+8) \times 10^{5}$$

$$\frac{\sqrt{2} - 1}{2} = \frac{1}{2} = \frac{1}{2$$

	graph B/W	Stope	Area.
1.	$\chi - t$		\backslash
2.	V-+		
3.	V-x		
4.	V2-X		
5,	a-+	X	
6.	a - 2	X	

*

Area = frist = otm

Velocity = slope of x(Position) time grain

Comment nature of motion for given graph?

at to 1=te

(iii)

Stope tre 3 V velocity on le L

Uplocitie tre & Incre nitially at rest

Osles Speed 1

a=-ve speat v

V=-ve Z=-ve Spec J

 $V^{2}O_{a=+e}$

Figures (i) and (ii) below show the displacement-time graphs of two particles moving along the *x*-axis. We can say that

- Both the particles are having a uniformly accelerated motion
- Both the particles are having a uniformly retarded motion

- Particle (i) is having a uniformly accelerated motion while particle (ii) is having a uniformly retarded motion
- Particle (i) is having a uniformly retarded motion while particle (ii) is having a uniformly accelerated motion

Acceleration for given position-time graph is

- 2 +ve
- 3 zero
- 4 increasing

#