

深入探讨EMC解决方案

首席EMC资深专家

huangmc@myemc.net.cn

目录

- 1. EMC三要素深入探讨
- 2. EMC解决方案中的诊断手段
- 3. EMC的正向设计

- 常见的电磁兼容现象
 - 1. 触摸屏不灵;
 - 2. 笔记本触摸板不灵;
 - 3. 电吹风引起音响的噪声;
 - 4. 电视机突然会发出奇怪声音;
 - 5. 电梯"鬼开门"、取款机"神取钱";
 - 6. 打雷后,整个村庄的电视机几乎损坏;
 - 7. 频繁的自动化生产线停线;

- 电磁兼容是一个"古老" 又"年轻"的学科。
- 1996年各国法规的相继强制推行和监控,中国于2001年跟进。
- 与电子相关的行业急需须满足电磁兼容法规。(多行业的需求)

► EMC三要素

整改

设计

什么是电磁兼容问题?

广义的EMC三要素

- 电磁兼容EMC包括电磁干扰EMI和电磁抗干扰EMS
 - EMC: Eletro-Magnetic Compatibility
- 电磁干扰EMI: 被测设备对周边环境的电磁干扰。
 - EMI: Electro-Magnetic Interference
- 电磁抗干扰EMS: 被测设备对周边环境的抗干扰能力。
 - EMS: Electro-Magnetic Susceptibility

- 电磁干扰—EMI:
 - 法规指定频段下的电磁干扰噪声限值。
 - 评判等级: 等级A和B。
- 电磁抗干扰—EMS:
 - 静电ESD、辐射抗扰度RS、传导抗扰度、电快速群脉冲EFT和雷击浪涌Surge、BCI等。
 - •测试等级: 等级1、2、3、4和X开放等级。
 - 评判等级: A、B、C、D。

深入探讨EMC解决方案

- 1. EMC三要素深入探讨
- 2. EMC解决方案中的诊断手段
- 3. EMC的正向设计

1、EMC三要素深入探讨

- 1. 电场与磁场
- 2. 噪声源的时域与频域特性
- 3. 共差模理念与适用法规
- 4. 近远场理念与适用法规
- 5. 传播路径与适用法规
- 6. EMC三大手段的关键点
- 7. EMI 滤波与适用法规
- 8. 小结

电场与磁场

- ▶dv/dt—电压突变
- ▶di/dt—电流突变

磁生电, 电生磁

di/dt '

磁偶极子

电场与磁场

▶电偶极子

• 近场: D <λ/2π

•
$$H = \frac{I \cdot L}{4 \cdot \pi \cdot D^2}$$
 (A/m)

•
$$E = \frac{Z_0 \cdot I \cdot L \cdot}{\lambda_8 \cdot \pi^2 \cdot D^3}$$
 (V/m) Z_{Ω}

• 远场: D >λ/ 2π

•
$$H = \frac{I \cdot L}{2 \cdot \lambda \cdot D}$$
 (A/m)

•
$$E = \frac{Z_0 \cdot I \cdot L}{2 \cdot \lambda \cdot D}$$
 (V/m)

电场与磁场

• 磁偶极子

•
$$H = \frac{I \cdot A}{4 \cdot \pi \cdot D^3}$$
 (A/m)

•
$$E = \frac{Z_0 \cdot I \cdot A}{2 \cdot \lambda \cdot D^2}$$
 (V/m)

· 远场: D >λ/ 2π

•
$$H = \frac{\pi \cdot I \cdot A}{\lambda^2 \cdot D}$$
 (A/m)

•
$$E = \frac{Z_0 \cdot \pi \cdot I \cdot A}{\lambda^2 \cdot D}$$
 (V/m)

1、EMC三要素深入探讨

- 1. 电场与磁场
- 2. 噪声源的时域与频域特性
- 3. 共差模理念与适用法规
- 4. 近远场理念与适用法规
- 5. 传播路径与适用法规
- 6. EMC三大手段的关键点
- 7. EMI滤波与适用法规
- 8. 小结

- 1. 频域下的法规限值dBuV?
- 2. 频域和时域的单位?
- 3. 时域和频域如何对应?

设计

整改

噪声源的时域与频域特性

1. 频域下的EMI法规限值

敏业信息科技(上海)有限

1. 频域下的EMI法规限值

整改

敏业信息科技(上海)有限

1. 频域下的EMI法规限值

▶分贝数与功率

dB=10log[P1/P2]

▶分贝数与电压

dB=20 log[V1/V2]

▶分贝数与电流

dB=20log[11/12]

▶毫瓦与分贝数

dBm=10log[Signal(mW)/1mW]

▶微伏伏与分贝数

dBuV=20log[Signal(uV)/1uV]

> 微安与分贝数

dBuA=20 log [Signal (uA) /1uA]

1. 频域下的EMI 法规限值

• dBW与dBm

> dBuV与dBm

dBm=dBW-30

dBm=dBuV-107

• dBV与dBuV

dBuV=dBV-120

➤ dBuA与dBm

dBm=dBuA-73

- 1. 频域下的EMI 法规限值
 - ▶ dB的定义: dBuV, dBuA, dBm
 - 射频单位之间的换算

1. 频域下的EMI法规限值

- 48 -

CISPR 25:2016 © IEC 2016

整改

Table 5 – Examples of limits for conducted disturbances – Voltage method

		Levels in dB(µV)														
		Class 5		Class 4		C	Class 3		Class 2		Class 1					
Service / Band	Frequency MHz	Peak	Quasipeak	Average	Peak	Quasipeak	Average	Peak	Quasipeak	Average	Peak	Quasipeak	Average	Peak	Quasipeak	Average
BROADC	AST							P		$\Lambda \Lambda$	A _{da}					
LW	0,15 to 0,30	70	57	50	80	67	60	90	77	70	100	87	80	110	97	90
MW	0,53 to 1,8	54	41	34	62	49	42	70	57	50	78	65	58	86	73	66
sw	5,9 to 6,2	53	40	33	59	46	39	65	52	45	71	58	51	77	64	57
FM	76 to 108	38	25	18	44	31	24	50	37	30	56	43	36	62	49	42
TV Band I	41 to 88	34	-	24	40	-	30	46	-	36	52	-	42	58		48

- 1. 频域下的法规限值dBuV?
- 2. 频域和时域的单位?
- 3. 时域和频域如何对应?

2. 时域和频域下的单位

	dB	增益A=10^dB/20	
	0	1. 00	
	1	1. 12	
_	2	1. 26	
	3	1. 41	
	4	1. 58	
	5	1. 78	1
	6	2. 00	
	7	2. 24	
	8	2. 51	N
	9	2. 82	'
	10	3. 16	
	20	10.00	
	30	31. 62	
	40	100. 00	
	50	316. 23	
	60	1,000.00	3

C	lass	Cla			
Peak	Quasipeak	Average	Peak		
70	57	50	80		
54	41	34	62		
53	40	33	59		
38	25	18	44	:	
34	-	24	40	Π	

- > 50dBuV=316uV
- > 34dBuV=54uV
- > 34dBuA=54uA

2. 时域和频域下的单位

-48 -

CISPR 25:2016 © IEC 2016

整改

Table 5 – Examples of limits for conducted disturbances – Voltage method

- > 34dBuV=54uV
- → 34dBuA=54uA

2. 时域和频域下的单位

- 1. 频域下的法规限值dBuV?
- 2. 频域和时域的单位?
- 3. 时域和频域如何对应?

3. 频域和时域如何对应?

• 频点与开关波形的关系?

▶方波的傅里叶展开与传播方式 Frequency Doma i Domain 15 Frequency Radiated Conductive Coupling

▶只有奇数谐波!!!

整改

▶只有奇数谐波!!!

▶偶次谐波出来了!!!

•矩形波的上升沿t_r和脉宽t_w与FC1和FC2

噪声源的时域与频域特性-小结

- 1. 法规下的频域限值: dBuV, dBuA, dBm
- 2. 频域和时域的单位:dBuV∞V。
- 3. 时域和频域如何对应?

噪声源的时域与频域特性一小结

• 进一步的问题

- 2. 6dB余量?
- 3. 2根导线上噪声强度比1根导线强6dB,导线上流的噪声电流是共模、差模还是······?

1、EMC三要素深入探讨

- 1. 电场与磁场
- 2. 噪声源的时域与频域特性
- 3. 共差模理念与适用法规
- 4. 近远场理念与适用法规
- 5. 传播路径与适用法规
- 6. EMC三大手段的关键点
- 7. EMI 滤波与适用法规
- 8. 小结

- •传导干扰: EN55022, 55014, 55015, 55021
 - 共模干扰: 共模传播路径, 对应共模EMI滤波器
 - 差模干扰: 差模传播路径, 对应差模EMI 滤波器

• 浪涌的注入方式—EN61000-4-5

• BCI 大电流注入—IS011452-4

• DBCI: 差模大电流注入, 150mm/450mm

• CBCI: 共模大电流注入, 450mm/750mm

- 进一步的问题
 - 静电抗扰度是否可以用共差模理念? EN61000-4-2
 - 群脉冲? EN61000-4-4
 - 传导抗扰度? EN61000-4-6
 - ?

1、EMC三要素深入探讨

- 1. 电场与磁场
- 2. 噪声源的时域与频域特性
- 3. 共差模理念与适用法规
- 4. 近远场理念与适用法规
- 5. 传播路径与适用法规
- 6. EMC三大手段的关键点
- 7. EMI滤波与适用法规
- 8. 小结

近远场理念与适用法规

- 适用法规: RE、RS(EN61000-4-3)、RI
- 频率与波长: C=f×λ
- 近场与远场: λ/2π
- · 电大尺寸和电小尺寸: λ/10

电场与磁场

▶电偶极子

• 近场: D <λ/2π

•
$$H = \frac{I \cdot L}{4 \cdot \pi \cdot D^2}$$
 (A/m)

•
$$E = \frac{Z_0 \cdot I \cdot L}{\lambda_8 \cdot \pi^2 \cdot D^3}$$
 (V/m)

· 远场: D > λ/ 2π

•
$$H = \frac{I \cdot L}{2 \cdot \lambda \cdot D}$$
 (A/m)

•
$$E = \frac{Z_0 \cdot I \cdot L}{2 \cdot \lambda \cdot D}$$
 (V/m)

电场与磁场

• 磁偶极子

• 近场: D <λ/2π

•
$$H = \frac{I \cdot A}{4 \cdot \pi \cdot D^3}$$
 (A/m)

•
$$E = \frac{Z_0 \cdot I \cdot A}{2 \cdot \lambda \cdot D^2}$$
 (V/m)

• 远场: D >λ/ 2π

•
$$H = \frac{\pi \cdot I \cdot A}{\lambda^2 \cdot D}$$
 (A/m)

•
$$E = \frac{Z_0 \cdot \pi \cdot I \cdot A}{\lambda^2 \cdot D}$$
 (V/m) 20

1、EMC三要素深入探讨

- 1. 电场与磁场
- 2. 噪声源的时域与频域特性
- 3. 共差模理念与适用法规
- 4. 近远场理念与适用法规
- 5. 传播路径与适用法规
- 6. EMC三大手段的关键点
- 7. EMI 滤波与适用法规
- 8. 小结

传播路径与适用法规

- 涉及EMI和EMS法规
 - 磁性耦合
 - 容性耦合
 - 辐射耦合
 - 传导耦合

1、EMC三要素深入探讨

- 1. 电场与磁场
- 2. 噪声源的时域与频域特性
- 3. 共差模理念与适用法规
- 4. 近远场理念与适用法规
- 5. 传播路径与适用法规
- 6. EMC三大手段的关键点
- 7. EMI滤波与适用法规
- 8. 小结

- 屏蔽、滤波、接地与哪个EMC三要素相关?
 - 噪声源?
 - 传播路径?
 - 敏感设备?

- 屏蔽:
 - 弄清楚是电场屏蔽、磁场屏蔽还是电磁场屏蔽?
 - 弄清楚屏蔽噪声的频率段与屏蔽措施的关系?
 - 弄清楚噪声的传播路径和方向?

- 滤波:
 - 确认滤波器是否在噪声的传播路径上?
 - 弄清楚噪声的共模分量和差模分量?
 - 弄清楚噪声的频率段与滤波器截止频率的关系?
 - 弄清楚噪声源的内阻特性?

- 接地:
 - 弄清楚接地阻抗的高频特性?
 - 弄清楚: 数字地、模拟地、功率地和安全地?
 - 弄清楚接地回路的阻抗特性?

1、EMC三要素深入探讨

- 1. 电场与磁场
- 2. 噪声源的时域与频域特性
- 3. 共差模理念与适用法规
- 4. 近远场理念与适用法规
- 5. 传播路径与适用法规
- 6. EMC三大手段的关键点
- 7. EMI滤波与适用法规
- 8. 小结

EMI滤波与适用法规

- EMI 滤波主要用于满足传导干扰法规限值要求
 - IEC61000-3和IEC61000-4 (工业)
 - EN55011 、EN55014 、EN55015 、EN55022
 - GB151B中的CE101、CE102和CE106

EMI滤波与适用法规

• LISN与差共模电流

1、EMC三要素深入探讨

- 1. 电场与磁场
- 2. 噪声源的时域与频域特性
- 3. 共差模理念与适用法规
- 4. 近远场理念与适用法规
- 5. 传播路径与适用法规
- 6. EMC三大手段的关键点
- 7. EMI滤波与适用法规
- 8. 小结

小结—EMC三要素深入探讨

- 1. 频域的单位
- 2. 噪声源时域和频域对应
- 3. 共模和差模的应用
- 4. 近场与远场的应用
- 5. 传播路径与适用法规

小结—EMC三要素深入探讨

- 进一步的EMC诊断问题
 - 1. EMI和EMS问题该如何诊断?
 - 2. 噪声源如何快速和准确地定位?
 - 3. EMI 滤波问题该如何解决?
 - 4. EMC正向设计如何开展?

深入探讨EMC解决方案

- 1. EMC三要素深入探讨
- 2. EMC解决方案中的诊断手段
- 3. EMC的正向设计

2、EMC解决方案中的诊断手段

- 1. EMC诊断手段的关键点
- 2. 如何精确定位噪声源?
- 3. 如何测量噪声源的共差模分量?
- 4. 插入损耗如何应用?
- 5. 如何定位敏感部位?

EMC诊断手段的关键点

- EMI—电磁干扰
 - 定位噪声源—"精确"和"速度"
 - 传播路径—"定量"
- EMS—电磁抗干扰
 - 易感环节—"精确"、"速度"和"定性"

2、EMC解决方案中的诊断手段

- 1. EMC诊断手段的关键点
- 2. 如何精确定位噪声源?
- 3. 如何测量噪声源的共差模分量?
- 4. 插入损耗如何应用?
- 5. 如何定位敏感部位?

• 测试仪器: 评判是否满足电磁兼容法规要求。

• 诊断仪器: 确认为何不能满足电磁兼容法规原因?

• 频谱仪与近场探头: 操作繁琐复杂

• 噪声源定位如手机拍照那样方便

• 时域和频域

2、EMC解决方案中的诊断手段

- 1. EMC诊断手段的关键点
- 2. 如何精确定位噪声源?
- 3. 如何测量噪声源的共差模分量?
- 4. 插入损耗如何应用?
- 5. 如何定位敏感部位?

如何测量噪声源的差共模分量?

原噪声

境温度)

• 噪声共模还是差模?

• 噪声与频率?

• 阻抗匹配?

• 共模容量限制?

案例一

▶ 150W LED驱动器的总噪声

案例一

▶ 150W LED驱动器的差共模分量

如何测量噪声源的差共模分量?

• 智能化的仿真软件

• 噪声中传导总噪声

• 共模和差模分量对比

共模分量@322KHz超标

差模分量@210KHz超标

- 截止频率计算
 - 差模滤波器
 - 差模分量显示在210KHz超标,设定要求在210KHz衰减6db。
 - 截止频率148KHz,使用差模标准LC滤波电路,确定Cx电容为0.1uF,由仿真软件推出电感为12uH。

• N'

案例二

N.

- 共模滤波器
- 共模分量显示在322KHz超标, 若要求为在322KHz衰减4db。
- 由仿真软件计算出截止频率255KHz,使用标准共模LC滤 波电路,确定CY电容为1000pF,由仿真软件推出电感为 0.18mH;

• 滤波器前后的共模和差模分量对比

案例三

> 电驱的差共模分量

如何测量噪声源的差共模分量?

- 差共模分量是EMI 滤波器的设计输入;
- 什么是差共模分量提取的关键技术?
- 差共模分量提取关键指标是哪些?

如何测量噪声源的差共模分量?

- 差共模隔离度
 - 《共差模隔离度》的国家标准制定中;
 - CMRR>40dB;
 - DMRR>40dB.

2、EMC解决方案中的诊断手段

- 1. EMC诊断手段的关键点
- 2. 如何精确定位噪声源?
- 3. 如何测量噪声源的共差模分量?
- 4. 插入损耗如何应用?
- 5. 如何定位敏感部位?

• EMIL滤波器性能如何评价?

敏业信息科技(上海)有限公司

- •插入损耗 a_e: (GB/T 7343: 2017/CISPR17)
 - 标准的测试方法是使用一个50Ω信号源和50Ω接收机进行测试。

$$a_e = 20\log(V_o/2V_2)$$

- a_e: 插入插损,单位为分贝(dB)
- · V。: 50Ω信号源的开路电压,单位(V)
- · V2: 滤波电路的输出端电压, 单位(V)

- 插入损耗 a_e:
 - 共模插损
 - 差模插损

Common Mode / Asymmetrical (L-G)
Differential Mode / Symmetrical (L-L)

• 共模插损(不对称插损)——共模滤波

• 差模插损(对称插损)——差模滤波

UU9. 8_20-40mH

T14*8*7_20mH

D3C-T31HB-120 2.7mH 270uH差模插入损耗和共模插入损耗

D3C-T31HB-150 1.5mH 150uH差模插入损耗和共模插入 损耗

➤ 为何电感引起的传导干扰在9MHz超标!

➤ 为何PFC电感引起的传导干扰在9MHz超标!

2、EMC解决方案中的诊断手段

- 1. EMC诊断手段的关键点
- 2. 如何精确定位噪声源?
- 3. 如何测量噪声源的共差模分量?
- 4. 插入损耗如何应用?
- 5. 如何定位敏感部位?

如何快速定位敏感部位?

• ESD和EFT

• 交变的磁场和电场

小结—EMC解决方案中的诊断手段

- 噪声源定位如手机拍照那样方便, 而且精确。
- 差共模分量的定量测试是EMI 滤波器的关键。
- · 插入损耗是EMI 滤波的核心指标。
- 敏感部位也可以精确定位和确认性质。

一站式EMC诊断系统

- ▶一站式EMI诊断系统
 - 精确定位噪声源
 - 传播路径确认
 - 差共模分离
 - 滤波器仿真设计
 - 插入损耗测试
- ▶现场教学指导演示

一站式EMC诊断系统

- ▶一站式EMS诊断系统
 - 注入局部的突变磁场和电场
 - 精确定位薄弱环节
 - 确认不同整改措施的效果
- >现场教学指导演示

2、深入探讨EMC解决方案

- 1. EMC三要素深入探讨
- 2. EMC解决方案中的诊断手段
- 3. EMC的正向设计

- EMC的跨学科属性
 - 涉及电子学、电力电子学、半导体、电磁场、材

料学、机械、通讯、天线、无机/有机化学、数学、

计算机、地理和气象等。

- EMC的跨行业特性
 - 家电、通讯、电力、医疗、工业设备、机器人、和信息设备等。
 - 新能源发电、输电、配电、用电和储电等。
 - 高铁、地铁、船电和岸电等。
 - 陆军、海军、航空和航天等。

- EMC面临问题解决、规范设计及分析预测三方面的挑战。
 - 专业的测试和设计工程师人才缺乏
 - •测试工程师需要熟知EMC法规、各类设备和测试设置。
 - EMC的跨学科属性导致高校缺乏对应专业和企业缺

少专业岗位

- EMC面临问题解决、规范设计及分析预测三方面 的挑战。
 - 诊断仪器不成系统及使用方法空白导致EMC整改犹如盲人摸象。
 - 设计规范由于EMC的跨学科属性导致很难落地,跨 行业特性需要针对不同行业进行定制。
 - 法规、设计、仿真、整改很难形成闭环。

EMC的正向设计

- 1. 围绕EMC三要素进行正向设计
- 2. 从系统架构,到元器件选型
- 3. 从EMC设计到终端应用设计
- 4. 从仿真设计到产品测试验证

Hot loop with high di/dt currents

see AN139 for details

Magnetic field couples to nearby circuit causing interference

The Figure 2 measurements were taken in an anechoic chamber 12V in 3.3V out at 2A with a fixed switching frequency of 700kHz.

Figure 2. LT8610 and LT8614 700kHz 14V to 3.3V 2A Radiated EMI in GTEM Corrected for OATS 20dB改善

All high di/dt stays in package: customer PCB layout is now non-critical

EMC的正向设计

- 《元器件与电磁兼容》
- 一站式EMC诊断仪器

EMC的正向设计

谢谢!

联系方法:

电邮: myemc@myemc.net.cn

电话: 021-67878771

地址:上海浦东锦绣东路1999弄523室