READING GROUP

INTRODUCTION TO THE FOUNDATIONS OF CAUSAL DISCOVERY

BY FREDERICK EBERHARDT
BY SERGEY PLIS

READING GROUP

The goal is to indicate that for a large variety of different settings the assumptions necessary and sufficient for causal discovery are now well understood.

READING GROUP

INTRODUCTION

READING GROUP

WINE AND CARDIOVASCULAR DISEASE

READING GROUP

RANDOMIZED EXPERIMENT ASSIGNMENT

READING GROUP

FISHER VS. NEWTON

READING GROUP

WHY CAUSALITY

Causal relations are of interest because only an understanding of the underlying causal relations can support predictions about how a system will behave when it is subject to intervention.

READING GROUP

WHY CAUSALITY

Causal relations are of interest because only an understanding of the underlying causal relations can support predictions about how a system will behave when it is subject to intervention.

READING GROUP

AMBIGUITY OF PROBABILISTIC REPRESENTATION

READING GROUP

DO CALCULUS

READING GROUP

CAUSAL GRAPHICAL MODELS

READING GROUP

SET OF VARIABLES

READING GROUP

DEFINITIONS

path
directed path
descendent
child
collider
non-collider

READING GROUP

ASSUMPTIONS

READING GROUP

KINDS OF INFERENCE

Statistical inference
Causal discovery
Causal inference

READING GROUP

CAUSAL DISCOVERY

... the problem of identifying as much as possible about the causal relations of interest (ideally the whole graph G) given a dataset of measurements over variables \mathbf{V} .

READING GROUP

CAUSATION DOES NOT IMPLY CORRELATION

READING GROUP

D-SEPARATION

READING GROUP

CAUSAL MARKOV ASSUMPTION

- why it makes sense
- when it appears violated (quantization!)

READING GROUP

FAITHFULNESS ASSUMPTION

READING GROUP

LINEAR GAUSSIAN AND MULTINOMIAL

4 .

READING GROUP

4 . 2

READING GROUP

LINEAR NON-GAUSSIAN

READING GROUP

READING GROUP

NONLINEAR ADDITIVE NOISE

READING GROUP

6.2