Nonparametric Smoothing

Assignment Project Exam Help

https://eduassistpro.github.

- Shootling with Pararla-Watsoccula assist_pre-Choosing Bandwidths
 - Non-parametric density estimation
 - Local linear regression
 - Basis expansion methods

Curve Fitting

Assignment Project Exam Help

- https://eduassistpro.github.
- de towke Chat edu_assist_pressumptions about g except that it is "smooth".

Try and produce methods that fit locally.

Local Fitting

Assignment Project Exam Help

https://eduassistpro.github.

Use the average of a moving window centered at $Add_{\hat{g}(t)} = \text{average of } y_i \text{ wi } \text{edu_assist_pr}$

Or weight by distance from t.

Nadaraya-Watson Estimator

Assignment, $\Pr_{g(t,h)} = \underbrace{\text{Project}_{h}}_{h} \text{Exam Help}$

- https://eduassistpro.github.
 - lacksquare Bandwidth h spreads weight closer or fu

```
NW = Andich (W), ewhat edu_assist_preturn (weighted.mean (Y, dnorm (T))
```

Larger h implies that points further away have influence on curve.

Bias-Variance Trade-off

Need to think about choosing h; what do we want to achieve?

Assignment Project Exam Help

By adhttps://eduassistpro.github. $= bias^2 + variance$

Intuitively day of Meade Charles edu_assist_probut smaller variance (use more points). We'll do this formally in

but smaller variance (use more points). We'll do this formally in density estimation.

This is generally referred to as a trade-off; want to balance these two.

Example: Vancouver Precipitation

Assignment Project Exam Help

Add WeChat edu_assist_pr

https://eduassistpro.github.

- Small h: relies on points close to t: low bias, but high variance.
- Large h: spreads weight across many observations: smaller variance, higher bias.
- Finding an ideal compromise is difficult.

Choosing A Bandwidth

Assignment Project Extant Help

https://eduassistpro.github. This is

interval.

We can think who the there (u beidu assist_predicting a new data point (tnew, ynew)

We will approximate this via cross-validation.

Cross Validation

Cross-validation = estimate on some data, evaluate on others.

Assignment, Project Exam Help

Remove (t_i, y_i) from the data.

- https://eduassistpro.github.
- The cross-validated score is

Add We Chat edu_assist_pr

Treats each i as a "new" observation. Choose h to minimize OCV(h).

Cross Validation

Leave each point out in turn and try to predict it

CVs[i] = CV(hs[i], TT, Y)

```
Assignment Project Exam Help
    err = rep(0,length(Y)) # Prediction Errors
    fo
    https://eduassistpro.github.
    return( sum(err^2) )
   we'll Add we Chat edu assist pr
   hs = 1:20
   for(j in 1:length(hs)){
```

Calculating Cross Validation Efficiently

■ Leaving one point out at a time is computationally expensive.

Assignment Project Exam Help

https://eduassistpro.github. $[S(h)]_{ij} = \frac{1}{\sum_{k=1}^{n} - \frac{1}{k}}$

- Add We Chatedu_assist_pr

$$OCV(h) = \sum_{i=1}^{n} \frac{(y_i - \hat{g}(t_i, h))^2}{(1 - [S(h)]_{ii})^2}$$

This identity means that we can calculate $\mathsf{OCV}(h)$ as efficiently as

```
In Code
```

Kva

```
hs = 1:20 # Bandwidths

OCV = 0*hs # OCV scores
```

Assignment Project Exam Help

```
hat https://eduassistpro.github.

OCV[i] = sum( (Y-hatY)^2/(1-diag(Sh))^2 ) # OCV formula

Add WeChat edu_assist_processing to the sum of the s
```


Generalized Cross Validation

OCV tends to under-smooth and has some mathematically undesirable properties.

Assignment s Projecte Exam Help

gcv[https://eduassistpro.github.within loop above.

Undersmoothing

GCV and OCV generally produce curves that are rougher than is visually appealing.

Assignment unarroje cettic Etx atm ics Help

One suggested change is a little extra penalty in GCV:

One suggested change is a little extra penalty i

https://eduassistpro.github.

Extensions 1: Kernel Density Estimation (Rizzo Ch 10) If $X_1, \ldots, X_n \sim f(\cdot)$ but we don't know f.

Assignment ProjectExam Help

https://eduassistpro.github.

Alternative Kernels

Examples here use the normal density; but any symmetric bump

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Epanechnikov kernel often favored for theoretical reasons.

Bandwidth *h*

Bandwidth controls the "wigglyness" of the estimate.

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Intuitively: smaller h makes estimate more sensitive to data \Rightarrow higher variance.

It works better with all the data

Assignment Project Exam Help

https://eduassistpro.github.

Asymptotics Sketch (details unimportant)

We will look at the *expected* error between $\hat{f}(x)$ and f(x).

Assignment Project Exam Help
$$E(\hat{f}(x) - f(x))^2 = E(\hat{f}(x) - f(x))^2 + (E\hat{f}(x) - f(x))^2$$

^{whic} https://eduassistpro.github.

We will use change of variables:

$$E_{X_i} \frac{1}{h} K \left(\frac{\mathbf{dd}}{h} \right) = \int_{-h}^{h} K \left(\frac{\mathbf{hat}}{h} \right) \mathbf{edu_assist_pr}$$

$$= \int_{-h}^{h} h K(u) f(x + hu) du = \int_{-h}^{h} K(u) f(x + hu) du$$

by setting
$$u = (y - x)/h$$
 or $y = x + hu$.

Bias

We observe that because each $K((X_i - x)/h)$ are i.i.d:

Assignment Project Exam Help bias "s

https://eduassistpro.github. We take two terms of a Taylor expansion of

 $= f(x) + hf'(x) \int uK(u)du + \frac{1}{2}h^2 \int K(u)u^2f''(x + hu^*)du$ $= f(x) + o(h^2)$

so bias decreases at rate h^2 . Need to trade this off with variance.

19 / 42

Variance

Variance of $\hat{f}(x) = \frac{1}{n} \sum K((X_i - x)/h)/h$ is

Assignment Project Exam Help

https://eduassistpro.github.

=
$$\frac{1}{n}$$
 $\frac{1}{h}$ $\frac{$

increases at rate 1/h for a fixed n.

Trade Off

We can do calculus with order notation by looking at

https://eduassistpro.github.

Add We Bahat edu_assist_properties or plugging this back into MSE

$$E(\hat{f}(x) - f(x))^2 = O(n^{-4/5}).$$

21 / 42

Notice that this is slower than the $O(n^{-1})$ rate we usually get for squared error of parameter estimates.

Extensions 2: Local Linear Regression

Re-thinking Nadaraya-Watson; the locally-weighted mean solves

Assignment Project Exam Help

https://eduassistpro.github.

has better statistical properties, especially at edge of data and if you want to take derivatives.

Predict $\hat{\beta}_0(t)$ but we can also get a slope from $\hat{\beta}_1(t)$ Local weighting can be applied to any model in this way.

R Packages

(see Lab for examples, but) a number of packages provide local Assing infirient Project Exam Help

https://eduassistpro.github.

only Gaussian kernels

Add charge Chat edu_assist_pr

locfit (not as clearly documented, but does multivariate local polynomials)

Generally, require evaluation points to be specified beforehand.

Basis Expansions

Alternative, to local methods, we can use regression approaches.

Assignment Project Exam Help $y_i = \beta_0 + x_{1i}\beta_1 + x_{2i}\beta_2 + \dots + \epsilon_i$

Or if th

https://eduassistpro.github.

Which we will write as

Add WeChat edu_assist_prediction
$$y_i = \sum_{c_j \phi_j(t_i) + \epsilon_i} edu_assist_prediction for the second content of the second content o$$

or more compactly

$$g(t) = \mathbf{c}^T \Phi(t)$$

Assing polynomials is generally a bad idea. Many other basis Help

- Splines are polynomial segments joined end-to-end
- https://eduassistpro.github.
 The order m (order = degree+1) of the polynomial segments
- The order m (order = degree+1) of the polynomial segments and
- the delay weeks here the delay assist_pr
- Bsplines are a particularly useful means constraints.

The package splines will be used for this.

Vancouver precipitation with knots at months.

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pro.github.

Same as dividing data into bins and and use mean in each bin.

Vancouver precipitation with knots at months.

Assignment Project Exam Help

https://eduassistpro.github.

Vancouver precipitation with knots at months.

Assignment Project Exam Help

https://eduassistpro.github.

Vancouver precipitation with knots at months. Splines of order 4

Assignment Project Exam Help

https://eduassistpro.github.

Vancouver precipitation with knots at months. Splines of order 5

Assignment Project Exam Help

https://eduassistpro.github.

Vancouver precipitation with knots at months. Splines of order 6

Assignment Project Exam Help

https://eduassistpro.github.

Least-Squares

We have observations

Assignment Project Exam Help

and \boldsymbol{w}

https://eduassistpro.github.

Minim Add We Chrat edu_assist_pr

$$SSE = \sum_{i=1}^{n} (y_i - g(t_i))^2 = \sum_{i=1}^{n} (y_i - \mathbf{c}^T \Phi(t_i))^2$$

This is just linear regression!

The splines Package

To define a B-spline you need

Assignment Project Exam Help On knots

- https://eduassistpro.github.
- Can spread these out like regular knots, or pile ported WeChat edu_assist_prediction

```
library(splines)
```

knots = c(rep(0,3),months,rep(365,3)) # Order 4 splines bvals = splineDesign(x=TT,knots=knots,ord=4)

Linear Regression on Basis Functions

Assignment \mathcal{A} if the N by K matrix \mathcal{A} contains the values $\phi_k(t_j)$, and \mathcal{A} is \mathcal{A} in \mathcal{A} in \mathcal{A} and \mathcal{A} is \mathcal{A} .

https://eduassistpro.github.

Add WeChat) edu_assist_pr Then we have the estimate

$$\hat{g}(t) = \Phi(t)\hat{c} = \Phi(t)\left(\mathbf{\Phi}^T\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^T\mathbf{y}$$

Penalization

Using splines, or other basis expansion, bias/variance trade-off

is in terms of numbered order of basis functions. Help variability.

https://eduassistpro.github.

- $\int g''(t)^2 dt = 0$ if g(t) = a + bt, but large if g is "wiggly"
- \blacksquare λ governs trade-off between the two.
- Use more knots that needed (one each data point if possible) and then control variance with λ .

Penalty Matrices

Observe that

Assignment Project Exam Help

https://eduassistpro.github.

We will approximate

(see numerical integration next) can write this as

$$P = \delta \mathbf{\Phi}''^T \mathbf{\Phi}''$$

splineDesign allows you to specify derives for derivatives.

OCV and GCV

Assignment Project Exam Help $PENSSE(\lambda) = (y_i \quad \Phi(t_i)c)^2 + \lambda c^T P c$

https://eduassistpro.github.

■ Same formulae for OCV and GCV for λ .

Fitting Vancouver

lambd

```
knots = c( rep(0,3),0:365,rep(365,3) ) # Knot every day
bvals = splineDesign(knots=knots,x=TT) # Order 4 is default
```

Assignments-Projecty-Exam Help

```
OCV = https://eduassistpro.github.

Yhats = matrix(0,365,length(lambda))
```

```
for(i Aldreth(lawa) Chatedu_assist_property for (i Aldreth (lawa) Chatedu_assist_property for it is a standard for the standa
```

```
Yhats[,i] = Yhat
}

⟨□⟩⟨∅⟩⟨₹⟩⟨₹⟩⟨₹⟩⟨₹⟩⟨₹⟩
38/42
```

Fitting Vancouver

Assignment Project Exam Help

https://eduassistpro.github.

A Comparison

Assignment Project Exam Help

https://eduassistpro.github.

Broader Uses

■ Splines (and other bases) allow non-parametric terms to be

Assignmentarial reject Exame Help

x₁ and non-parametric effect for x₂:

https://eduassistpro.github.

Works in generalized linear models, non-li

of Aerolaces. We Chat edu_assist_pressure bases

of Aerolaces. We Chat edu_assist_pressure bases

Fourier bases

 $1, \cos(\omega t), \sin(\omega t), \cos(2\omega t), \sin(2\omega t), \cos(3\omega t), \dots$

and wavelets.

Summary

2

Assignment Project Exam Help Weight points to account for those that are closest to t.

https://eduassistpro.github.i

Represent non-parametric effect via a s

Add lenditation to obtain smoothed U_assist_pi

Harder to demonstrate mathematica

In both cases, smoothing parameters (h, λ) must be chosen by cross validation or other methods.