U2

Dano:

$$R_1 = 100u$$

 $R_2 = 200u$
 $R_3 = 500u$
 $C = \frac{500}{3}uup = \frac{500}{3}, 10^{-6}p = \frac{161}{3}p = \frac{5}{3}.10^{-6}p$

перейден в комплексные ампитуды Z,= R, == R2

$$\frac{2}{3} = \frac{1}{5} = \frac{1}{5}$$

Решение: 1) Найден Иг негодой контурных токов

$$\begin{cases} I_{11}(\Xi_{2}+\Xi_{4}) + -I_{22}\Xi_{2} = E_{1} \\ I_{22}(\Xi_{1}+\Xi_{2}+\Xi_{3}) - I_{11}\Xi_{2} = 0 \end{cases} \Rightarrow \begin{cases} I_{11}(\Xi_{2}+\Xi_{4}) - I_{22}\Xi_{2} = E_{1} \\ I_{22}(\Xi_{1}+\Xi_{2}+\Xi_{3}) - I_{11}\Xi_{2} = 0 \end{cases} \Rightarrow \begin{cases} I_{11}(\Xi_{2}+\Xi_{4}) - I_{22}\Xi_{2} = E_{1} \\ I_{22}(\Xi_{1}+\Xi_{2}+\Xi_{3}) - I_{11}\Xi_{2} = 0 \end{cases} \Rightarrow \begin{cases} I_{11}(\Xi_{2}+\Xi_{4}) - I_{22}\Xi_{2} = E_{1} \\ I_{22}(\Xi_{1}+\Xi_{2}+\Xi_{3}) - I_{11}\Xi_{2} = 0 \end{cases} \Rightarrow \begin{cases} I_{11}(\Xi_{2}+\Xi_{4}) - I_{22}\Xi_{2} = E_{1} \\ I_{22}(\Xi_{1}+\Xi_{2}+\Xi_{3}) - I_{22}\Xi_{2} = E_{1} \end{cases} \end{cases}$$

 $\prod_{i,j} (z_{2} + z_{4} - \frac{z_{2}^{2}}{z_{1} + z_{2} + z_{3}}) = E_{1} i \prod_{i,j} \frac{(z_{2} + z_{4})(z_{1} + z_{2} + z_{3}) - z_{1}^{2}}{Z_{1} + z_{2} + z_{3}} = E_{1} i$ $\frac{1}{2} \int_{1}^{1} \frac{Z_{2}(2_{1}+Z_{3})+Z_{4}(2_{1}+2_{2}+Z_{3})}{Z_{1}+Z_{2}+Z_{3}} = \dot{E_{1}} = \sum_{1}^{1} \frac{Z_{1}+Z_{2}+Z_{3}}{Z_{2}(Z_{1}+Z_{3})+Z_{4}(Z_{1}+Z_{2}+Z_{3})} = \dot{E_{1}}$ $\frac{Z_{1}+Z_{2}+Z_{3}}{Z_{2}(Z_{1}+Z_{3})+Z_{4}(Z_{1}+Z_{2}+Z_{3})} = \dot{E_{1}}$

Подставим (3) $\delta(2)$: $\vec{I}_{22} = \vec{E}_1 \frac{Z_2}{Z_2(Z_1+Z_3)+Z_4/Z_1+Z_2+Z_3)}$

Torga: Uz = I1, = 3/+ I22 =3 m

 $\tilde{U}_{2} = \tilde{E}_{1} \frac{\mathbb{Z}_{3} \cdot \mathbb{Z}_{2} + \mathbb{Z}_{4}(\mathbb{Z}_{1} + \mathbb{Z}_{2} + \mathbb{Z}_{3})}{\mathbb{Z}_{2}(\mathbb{Z}_{1} + \mathbb{Z}_{3}) + \mathbb{Z}_{4}(\mathbb{Z}_{1} + \mathbb{Z}_{2} + \mathbb{Z}_{3})}$

Haroncy unique Kumo: $K_{1} = \frac{\ddot{U}_{2}}{\ddot{u}_{1}} = \frac{Z_{3} - Z_{2} + Z_{1}(Z_{1} + Z_{2} + Z_{3})}{Z_{2}(Z_{1} + Z_{3}) + Z_{1}(Z_{1} + Z_{2} + Z_{3})} = \frac{\ddot{Z}_{3}}{\ddot{Z}_{1}}$

Bephence R R L C:

 $K_{n}(\omega) = \frac{R_{2}R_{3} + \frac{1}{j\omega c}(R_{1} + R_{2} + R_{3})}{R_{2}(R_{1} + R_{3}) + \frac{1}{j\omega c}(R_{1} + R_{2} + R_{3})} = \frac{j\omega c}{j\omega c} \frac{R_{2}R_{3} + eR_{7} + R_{2} + R_{3}}{j\omega c}$ - Zabuthewith Wound поэдо, передами от Hanpance Hus

2) Получии дориции Ачхи ФИХ,

 $|K_{4}(w)| = \frac{\sqrt{w^{2}c^{2}R_{2}^{2}R_{3}^{2} + (R_{1} + R_{2} + R_{3})^{2}}}{\sqrt{w^{2}c^{2}R_{2}^{2}(R_{1} + R_{3})^{2} + (R_{1} + R_{2} + R_{3})^{2}}} - A4x$

arg(Ky(w)) = arety (WCR2R3) -arcty (WCR2(R+R3)) - PUX

$$|K_{u}(w)| = \sqrt{w^{2}(\frac{5}{3} \cdot 10^{4}, 20 \cdot 50)^{2} + (10 + 20 + 50)^{2}} = \sqrt{w^{2}\frac{1}{3} + 6400}$$

$$\sqrt{w^{2}(\frac{5}{3} \cdot 15^{4}, 20(10 + 50))^{2} + (10 + 20 + 50)^{2}} = \sqrt{w^{2}\frac{1}{3} + 6400}$$

$$\sqrt{w^{2}(\frac{5}{3} \cdot 15^{4}, 20(10 + 50))^{2} + (10 + 20 + 50)^{2}} = \sqrt{w^{2}\frac{1}{3} + 6400}$$

$$\sqrt{w^{2}(\frac{5}{3} \cdot 15^{4}, 20(10 + 50))^{2} + (10 + 20 + 50)^{2}} = \sqrt{w^{2}\frac{1}{3} + 6400}$$

$$\sqrt{w^{2}(\frac{5}{3} \cdot 15^{4}, 20(10 + 50))^{2} + (10 + 20 + 50)^{2}}$$

$$arg(k_{4}(w)) = aretg(\frac{\omega.\frac{5}{3}.70^{-4}.20.50}{10+20+50}) - arctg(\frac{\omega.\frac{5}{3}.10^{-4}.20(10+50)}{10+20+50}) =$$

= arcty (w)-arcty (w); lim arg(Ku(w)) = D

Построим градоми завишности ДИХ и ФИХ от w:

,, ,		-	1	1	1		Tadu	ya. 1.
W	0	100	200	400	660	800	1000	ADDO
1K(w)[1	0,991	0,969	0,920	0,888	0,869		

Ku(w)1	0,99	11 0,	769	0,920	,					
0,9				-	National Confession in Con-	9,888	8	0,869	j.	0,858
0,8										
0,7										
0,6										
95										
0,4										
0,3										
0,2						i e				
0,1 CAM										
0	100	200	300	400	500	600	700	800	900	1000 W

puc. 1 Tpagpux AYX

		1	1	1.			1	radinya:	2.			
W	0	100	200	300	400	500	600	800	1000	1400	1800	2200
arge Ku(w))	0,000	0,069 -0,040	-0,069	-0, 085	-0,090	-0,090	-0,087	-0,074_	0,067	-0,052		-9035

pac, 2 PUX

Дия этого резложим Кити, на действительную и иминую составляющие.

 $K_{11}(w) = \int \frac{W C R_{2} R_{3} + (R_{1} + R_{2} + R_{3})}{\int w C R_{2}(R_{1} + R_{3}) + (R_{1} + R_{2} + R_{3})} + \frac{(R_{1} + R_{2} + R_{3})}{\int w C R_{2}(R_{1} + R_{3}) + (R_{1} + R_{2} + R_{3})}$

 $=\frac{(R_1+R_2+R_3)^2+\omega^2C^2R_2^2(R_1+R_3)R_3}{(R_1+R_2+R_3)^2+\omega^2C^2R_2^2(R_1+R_3)^2}+\int\omega CR_2 \frac{(R_3-(R_1+R_3))(R_1+R_2+R_3)}{(R_1+R_2+R_3)^2+\omega^2C^2R_2^2(R_1+R_3)^2}$

Rogerabua R1, R2, R3, C

$$\ddot{K}_{4}(w) = \frac{6400 + w^{2} \cdot \frac{7}{30}}{6400 + w^{2} \cdot \frac{1}{25}} + \frac{3w(-\frac{8}{3})}{6400 + w^{2} \cdot \frac{1}{25}} = \frac{6400 + w^{2} \cdot \frac{1}{30}}{6400 + w^{2} \cdot \frac{1}{25}} + \frac{w^{\frac{8}{3}}}{6400 + w^{2} \cdot \frac{1}{25}}$$

Ku(0) = 1+0j Ku (10) = 0,995-0,004j

Ku (100) = 0,990 - 0,039j Ku (1000) = 0,856 - 0,057j

Ky (2-1000) = 9,839 - 9,032

Kulma) = 5 +0.j

4) Подключии к входу шетены истой Іт

 R_1 R_2 R_2 R_2 R_3 R_4 R_4 R_5 R_6 R_7 R_8

$$\ell(t) = 10\cos(wt)$$

 $|\dot{K}_u(2000)| = 0,840$

ary (ky (2000)) = -0,038

$$\ddot{k}_{u} = \frac{\dot{u}_{2}}{\dot{u}_{1}} = \lambda \dot{u}_{2} = \ddot{k}_{u}\dot{u}_{1} = 0.840.10.\cos(wt - 0.038) = 0.840.10.\cos(wt - 0.038)$$

= 8,4 cos(wt-0,038)

Coctabau	Tac	Suyy	cannun Tyganu rapuonun:							Таблица В. значения акивк для				
	K	0	1	2	3	4	5	6	7	8	9	pazmingix K.		
	an	1	0	0	0	0	0	0	0	0	0			
	Ex.	0	2	0	371	0	2 577	0	2 规	0	2 97			

Гермоники входного сагнала:

$$e^{(0)}(t) = \frac{1}{2}$$

$$e^{(1)}(t) = \frac{2}{\pi} \sin \omega t$$

$$e^{(3)}(t) = \frac{2}{3\pi} \sin 3\omega t$$

$$e^{(4)}(t) = 0$$

$$e^{(S)}(t) = \frac{2}{5\pi} \sin Swt$$

$$e^{(b)}(t) = 0$$

$$e^{(7)}(t) = \frac{2}{\pi} \sin 7wt$$

$$e^{(9)}(t) = \frac{2}{9\pi} \sin 9\omega t$$

Maŭgen	гарионики вы		tadauya 4.				
	n	0	1	3	5	7	9
	1 K (2000m) 1	1	0,8403	0,834	1 0, 8336	0,8334	0,8334
	tary (Ku (2000 in	0	- 0,0381	-0,0132	-90079	-0,0057	-0,0044

 $\tilde{\mathcal{U}}_{2}^{(n)} = K_{u}(n \cdot \omega), \, \epsilon^{(n)}$

$$\tilde{\mathcal{U}}_{2}^{(1)} = 0.8403 \cdot \frac{2}{8} \sin(wt - 0.0381) = 0.535 \sin(wt - 0.0381)$$

$$U_2^{(3)} = 9.8341. \frac{2}{3\pi} \sin(wt - 0.0732) = 0.177 \sin 3wb - 0.0732)$$

$$u_{2}^{(5)} = 0,8336.\frac{2}{5\pi} \sin(wt - 9,00.79) = 0,106 \sin(wt - 9,00.79)$$

$$U^{(7)}_{2} = 0,8334. \frac{2}{4\pi} \sin(w + -90057) = 0,015 \sin(w + -90057)$$

рис. 5 церный - входной сигнал шний - ваходной сигнал в) Изобразии на графиках модуль спектра входкого сигнала, модуль спектра выходкого сигнала, модуль спектра дразы виходного сигнала.

pull chentp exogues cureau

рис. 7 спектр воходти стнаса

puc. 8 enents page baxoguoro cumais

$$Z_{13} = Z_1 + Z_3$$

$$\overline{Z}_{123} = \frac{\overline{Z}_1 \ \overline{Z}_{13}}{\overline{Z}_2 + \overline{Z}_{13}} = \frac{\overline{Z}_2(\overline{Z}_1 + \overline{Z}_3)}{\overline{Z}_1 + \overline{Z}_2 + \overline{Z}_3}$$

$$\frac{Z_{odiy} = Z_{123} + Z_{y} = \frac{Z_{z}(Z_{1} + Z_{3})}{Z_{1} + Z_{z} + Z_{3}} + Z_{y} = \frac{R_{z}(R_{1} + R_{3})}{R_{1} + R_{z} + R_{3}} + \frac{1}{j\omega c} = \frac{R_{z}(R_{1} + R_{3})}{R_{1} + R_{z} + R_{3}} - \frac{1}{j\omega c}$$

$$Z_{z}(\omega) = R_{z}(R_{1} + R_{2})$$

$$Z_{2}(w) = \frac{R_{2}(R_{1}+R_{3})}{R_{1}+R_{2}+R_{3}} + \frac{1}{3} \frac{(-1)}{wc} - 3abuenowctb nonmerchow bxoynoro narpamenum or 4actorb)$$

$$|Z(w)| = \sqrt{\frac{R_2^2(R_1 + R_3)^2}{(R_1 + R_2 + R_3)^2 + \frac{1}{w^2c^2}}} = \sqrt{225 + \frac{9 \cdot 108}{25w^2}}$$

$$arg(Z(w)) = arctg\left(\frac{(R_1 + R_2 + R_3)}{wC R_2(R_1 + R_3)}\right) = arctg\left(\frac{400}{w}\right)$$

$$Re\{Z(w)\} = \frac{R_2(R_1 + R_3)}{R_1 + R_2 + R_3} = 15$$

$$Im\{Z(w)\} = -\frac{1}{wC} = -\frac{50000}{3Cw}$$

$$|m\{Z(w)\} = \frac{1}{wC} = \frac{50000}{3CL}$$

РИСЭ. Ураза Компенсию сопротивиемия

pue. 11 Kolmone M. P. W. MININGKON LONDO TUBLEMEN

8) Naugen zaluce mocto una toka ot lepenoru. Popu
$$w = 2 \cdot 10^3 P_{29}^{29}$$

$$\ddot{I}_{i} = \frac{\dot{U}_{i}}{Z} = \frac{1}{R_{2}(R_{1} + R_{3})} + \frac{1}{I} = \int \frac{\dot{W}C(R_{1} + R_{2} + R_{3})}{\dot{W}C(R_{2}(R_{1} + R_{3}) + (R_{1} + R_{2} + R_{3})}$$

$$|\ddot{I}| = \frac{\int \dot{W}^{2}(Z^{2}(R_{1} + R_{2} + R_{3})^{2}}{\sqrt{(R_{1} + R_{2} + R_{3})^{2}}} = \frac{\sqrt{26}'}{78} = 0,065$$

$$\arg(\ddot{I}) = \arctan\left(\frac{\dot{W}C(R_{1} + R_{2} + R_{3})}{\sqrt{(R_{1} + R_{2} + R_{3})^{2}}}\right) - \arctan\left(\frac{\dot{W}C(R_{2}(R_{1} + R_{3}))}{R_{1} + R_{2} + R_{3}}\right) = \frac{\ddot{I}}{2} - 7,373 = 0,497$$

$$\ddot{I}_{0} = \frac{\dot{I}}{\sqrt{R_{1} + R_{2} + R_{3}}} + \frac{1}{\sqrt{R_{1} + R_{2} + R_{3}}}$$

$$\ddot{I}_{0} = \frac{\dot{I}}{R_{1} + R_{2} + R_{3}} + \frac{1}{\sqrt{R_{1} + R_{2} + R_{3}}}$$

$$\ddot{I}_{0} = \frac{\dot{I}}{R_{1} + R_{2} + R_{3}} + \frac{1}{\sqrt{R_{1} + R_{2} + R_{3}}}$$

$$\ddot{I}_{0} = \frac{\dot{I}}{R_{1} + R_{2} + R_{3}} + \frac{1}{\sqrt{R_{1} + R_{2} + R_{3}}}$$

$$\ddot{I}_{0} = \frac{\dot{I}}{R_{1} + R_{2} + R_{3}} + \frac{1}{\sqrt{R_{1} + R_{2} + R_{3}}}$$

$$\ddot{I}_{0} = \frac{\dot{I}}{R_{1} + R_{2} + R_{3}} + \frac{1}{\sqrt{R_{1} + R_{2} + R_{3}}}$$

$$\ddot{I}_{0} = \frac{\dot{I}}{R_{1} + R_{2} + R_{3}} + \frac{1}{\sqrt{R_{1} + R_{2} + R_{3}}}$$

$$\ddot{I}_{0} = \frac{\dot{I}}{R_{1} + R_{2} + R_{3}} + \frac{1}{\sqrt{R_{1} + R_{2} + R_{3}}}$$

$$\ddot{I}_{0} = \frac{\dot{I}}{R_{1} + R_{2} + R_{3}}$$

$$\ddot{I}_{0}$$

pul 12 cua Toka ot specieru Kip = 15, W = 2.103 pag, Egx = 16

 $K_{TP} = \frac{u_{pez}}{u_{bax}} = 15 = \lambda \frac{u_{pez}}{u_{bax}} = \frac{u_{bax}}{u_{bax}} = \frac{u_{pez}}{u_{bax}} = \frac{u_$

 $R_{12} = \frac{R_{3}R_{4}R_{3}}{R_{12}} \quad R_{12} = R_{1} + R_{2}; \quad R_{423} = \frac{R_{3}(R_{1} + R_{2})}{R_{1} + R_{2} + R_{3}}; \quad R_{123L} = \frac{R_{3}(R_{1} + R_{2})}{R_{1} + R_{2} + R_{3}} + \frac{1}{jwc} = 18,75 - \frac{6\alpha r_{3}}{cc}$ Franka rentuas chang Z= R1232/w=2000 = 18,75-3j

$$\frac{z}{z_3} = k_{Tp}^2 z$$

$$\frac{z}{z_3} = 225 \cdot (18,75-3j) = 4218,75-675j$$