Estructuras de datos Solución de Problemas con Programación (TC1017)

M.C. Xavier Sánchez Díaz sax@tec.mx

Outline

Operaciones

2 Estructuras matemáticas

Operaciones vectorizadas

Como ya vimos, existen distintos tipos de datos con los que podemos trabajar en la computadora:

- Números enteros (integer numbers)
- Números decimales (floating point numbers)
- Cadenas de caracteres alfanuméricos (strings)

Como ya vimos, existen distintos tipos de datos con los que podemos trabajar en la computadora:

- Números enteros (integer numbers)
- Números decimales (floating point numbers)
- Cadenas de caracteres alfanuméricos (strings)

Como ya vimos, existen distintos tipos de datos con los que podemos trabajar en la computadora:

- Números enteros (integer numbers)
- Números decimales (floating point numbers)
- Cadenas de caracteres alfanuméricos (strings)

Como ya vimos, existen distintos tipos de datos con los que podemos trabajar en la computadora:

- Números enteros (integer numbers)
- Números decimales (floating point numbers)
- Cadenas de caracteres alfanuméricos (strings)

Datos como resultados Datos y operaciones

Antes de usar la computadora o la calculadora para hacer cálculos, solíamos hacer las operaciones a mano. Por ejemplo, si queremos calcular 1270×35 , una manera de hacerlo podría ser. . .

$$1270 \times 35 =$$

$$= (1200 + 70) \times (7)(5)$$

$$= (12)(7)(5)(100) + (7)(7)(5)(10)$$

$$12 \times 5 = 60$$

$$60 \times 7 = 6 \times 7 \times 10 = 420$$

$$420 \times 100 = 42000$$

$$7 \times 7 = 49$$

$$49 \times 10 = 490$$

$$490 \times 5 = 490 \times 10/2 = 2450$$

$$42000 + 2450 = 44450 \quad \Box$$

$$1270 \times 35 =$$

$$= (1200 + 70) \times (7)(5)$$

$$= (12)(7)(5)(100) + (7)(7)(5)(10)$$

$$12 \times 5 = 60$$

$$60 \times 7 = 6 \times 7 \times 10 = 420$$

$$420 \times 100 = 42000$$

$$7 \times 7 = 49$$

$$49 \times 10 = 490$$

$$490 \times 5 = 490 \times 10/2 = 2450$$

$$42000 + 2450 = 44450 \quad \Box$$

$$1270 \times 35 =$$

$$= (1200 + 70) \times (7)(5)$$

$$= (12)(7)(5)(100) + (7)(7)(5)(10)$$

$$12 \times 5 = 60$$

$$60 \times 7 = 6 \times 7 \times 10 = 420$$

$$420 \times 100 = 42000$$

$$7 \times 7 = 49$$

$$49 \times 10 = 490$$

$$490 \times 5 = 490 \times 10/2 = 2450$$

$$42000 + 2450 = 44450 \quad \Box$$

$$1270 \times 35 =$$

$$= (1200 + 70) \times (7)(5)$$

$$= (12)(7)(5)(100) + (7)(7)(5)(10)$$

$$12 \times 5 = 60$$

$$60 \times 7 = 6 \times 7 \times 10 = 420$$

$$420 \times 100 = 42000$$

$$7 \times 7 = 49$$

$$49 \times 10 = 490$$

$$490 \times 5 = 490 \times 10/2 = 2450$$

$$42000 + 2450 = 44450 \quad \Box$$

$$1270 \times 35 =$$

$$= (1200 + 70) \times (7)(5)$$

$$= (12)(7)(5)(100) + (7)(7)(5)(10)$$

$$12 \times 5 = 60$$

$$60 \times 7 = 6 \times 7 \times 10 = 420$$

$$420 \times 100 = 42000$$

$$7 \times 7 = 49$$

$$49 \times 10 = 490$$

$$490 \times 5 = 490 \times 10/2 = 2450$$

$$42000 + 2450 = 44450 \quad \Box$$

$$1270 \times 35 =$$

$$= (1200 + 70) \times (7)(5)$$

$$= (12)(7)(5)(100) + (7)(7)(5)(10)$$

$$12 \times 5 = 60$$

$$60 \times 7 = 6 \times 7 \times 10 = 420$$

$$420 \times 100 = 42000$$

$$7 \times 7 = 49$$

$$49 \times 10 = 490$$

$$490 \times 5 = 490 \times 10/2 = 2450$$

$$42000 + 2450 = 44450 \quad \Box$$

$$1270 \times 35 =$$

$$= (1200 + 70) \times (7)(5)$$

$$= (12)(7)(5)(100) + (7)(7)(5)(10)$$

$$12 \times 5 = 60$$

$$60 \times 7 = 6 \times 7 \times 10 = 420$$

$$420 \times 100 = 42000$$

$$7 \times 7 = 49$$

$$49 \times 10 = 490$$

$$490 \times 5 = 490 \times 10/2 = 2450$$

$$42000 + 2450 = 44450 \quad \Box$$

$$1270 \times 35 =$$

$$= (1200 + 70) \times (7)(5)$$

$$= (12)(7)(5)(100) + (7)(7)(5)(10)$$

$$12 \times 5 = 60$$

$$60 \times 7 = 6 \times 7 \times 10 = 420$$

$$420 \times 100 = 42000$$

$$7 \times 7 = 49$$

$$49 \times 10 = 490$$

$$490 \times 5 = 490 \times 10/2 = 2450$$

$$42000 + 2450 = 44450 \quad \Box$$

$$1270 \times 35 =$$

$$= (1200 + 70) \times (7)(5)$$

$$= (12)(7)(5)(100) + (7)(7)(5)(10)$$

$$12 \times 5 = 60$$

$$60 \times 7 = 6 \times 7 \times 10 = 420$$

$$420 \times 100 = 42000$$

$$7 \times 7 = 49$$

$$49 \times 10 = 490$$

$$490 \times 5 = 490 \times 10/2 = 2450$$

$$42000 + 2450 = 44450 \quad \Box$$

$$1270 \times 35 =$$

$$= (1200 + 70) \times (7)(5)$$

$$= (12)(7)(5)(100) + (7)(7)(5)(10)$$

$$12 \times 5 = 60$$

$$60 \times 7 = 6 \times 7 \times 10 = 420$$

$$420 \times 100 = 42000$$

$$7 \times 7 = 49$$

$$49 \times 10 = 490$$

$$490 \times 5 = 490 \times 10/2 = 2450$$

$$42000 + 2450 = 44450 \quad \Box$$

$$1270 \times 35 =$$

$$= (1200 + 70) \times (7)(5)$$

$$= (12)(7)(5)(100) + (7)(7)(5)(10)$$

$$12 \times 5 = 60$$

$$60 \times 7 = 6 \times 7 \times 10 = 420$$

$$420 \times 100 = 42000$$

$$7 \times 7 = 49$$

$$49 \times 10 = 490$$

$$490 \times 5 = 490 \times 10/2 = 2450$$

$$42000 + 2450 = 44450 \quad \Box$$

Datos como resultados Datos y operaciones

La operación completa se hace poco a poco, y por tanto necesitamos "recordar" ciertos pasos intermedios que ya tenemos calculados.

Así como nosotros tenemos que tener en claro cuáles son esos pasos intermedios, la computadora debe saber *dónde está* la información que tiene que leer para trabajar y hacer cálculos más elaborados.

Para eso, podemos usar las estructuras de datos, para **ordenarlos** de manera conveniente y poder tener acceso a ellos de manera que se vayan necesitando.

Datos y operaciones

La operación completa se hace poco a poco, y por tanto necesitamos "recordar" ciertos pasos intermedios que ya tenemos calculados.

Así como nosotros tenemos que tener en claro cuáles son esos pasos intermedios, la computadora debe saber *dónde está* la información que tiene que leer para trabajar y hacer cálculos más elaborados.

Para eso, podemos usar las estructuras de datos, para **ordenarlos** de manera conveniente y poder tener acceso a ellos de manera que se vayan necesitando.

Datos como resultados Datos y operaciones

La operación completa se hace poco a poco, y por tanto necesitamos "recordar" ciertos pasos intermedios que ya tenemos calculados.

Así como nosotros tenemos que tener en claro cuáles son esos pasos intermedios, la computadora debe saber *dónde está* la información que tiene que leer para trabajar y hacer cálculos más elaborados.

Para eso, podemos usar las estructuras de datos, para **ordenarlos** de manera conveniente y poder tener acceso a ellos de manera que se vayan necesitando.

Estructuras matemáticas

La forma más simple de guardar un solo dato es usando una variable.

En álgebra, hemos usado estas *variables* para expresar qué hace una funciór y saber su resultado:

$$y = 2x^2 + 3x + 5$$

- ullet x es una variable la cual no sabemos su valor en este momento, pero sabemos qué hacer con ella
- y es otra variable (porque tiene distinto nombre) y no sabemos su valor ahora, pero sabemos que guardará el resultado de la operación

Estructuras matemáticas

$$y = 2x^2 + 3x + 5$$

- ullet x es una variable la cual no sabemos su valor en este momento, pero sabemos qué hacer con ella
- ullet y es otra variable (porque tiene distinto nombre) y no sabemos su valor ahora, pero sabemos que guardará el resultado de la operación

Estructuras matemáticas

$$y = 2x^2 + 3x + 5$$

- ullet x es una variable la cual no sabemos su valor en este momento, pero sabemos qué hacer con ella
- ullet y es otra variable (porque tiene distinto nombre) y no sabemos su valor ahora, pero sabemos que guardará el resultado de la operación

Estructuras matemáticas

$$y = 2x^2 + 3x + 5$$

- $m{x}$ es una variable la cual no sabemos su valor en este momento, pero sabemos qué hacer con ella
- ullet y es otra variable (porque tiene distinto nombre) y no sabemos su valor ahora, pero sabemos que guardará el resultado de la operación

Estructuras matemáticas

$$y = 2x^2 + 3x + 5$$

- ullet x es una variable la cual no sabemos su valor en este momento, pero sabemos qué hacer con ella
- ullet y es otra variable (porque tiene distinto nombre) y no sabemos su valor ahora, pero sabemos que guardará el resultado de la operación

Estructuras matemáticas

$$y = 2x^2 + 3x + 5$$

Si ahora le damos valor a x, por ejemplo, x=3...

- ullet x guarda el valor de 3
- y guarda $2(3)^2 + (3)(3) + 5 = 18 + 9 + 5 = 32$

Estructuras matemáticas

$$y = 2x^2 + 3x + 5$$

Si ahora le damos valor a x, por ejemplo, x = 3...

- \bullet x guarda el valor de 3
- y guarda $2(3)^2 + (3)(3) + 5 = 18 + 9 + 5 = 32$

Estructuras matemáticas

$$y = 2x^2 + 3x + 5$$

Si ahora le damos valor a x, por ejemplo, x = 3...

- ullet x guarda el valor de 3
- y guarda $2(3)^2 + (3)(3) + 5 = 18 + 9 + 5 = 32$

Estructuras matemáticas

Asumamos que quiero saber las calificaciones de las Tareas 1, 2 y 3 de uno de mis alumnos. Para esto, necesitaría un lugar para guardar esos **3 datos**:

- ullet $t_1=90$ será la variable para la Tarea 1
- ullet $t_2=75$ será la variable para la Tarea 2
- ullet $t_3=87$ será la variable para la Tarea 3

- ¿Cuál fue la calificación para la Tarea 2?
- ¿Cuál fue el promedio del alumno?
- ¿Cuál es la tarea en la que mejor le fue!

Estructuras matemáticas

Asumamos que quiero saber las calificaciones de las Tareas 1, 2 y 3 de uno de mis alumnos. Para esto, necesitaría un lugar para guardar esos **3 datos**:

- $t_1 = 90$ será la variable para la Tarea 1
- $t_2 = 75$ será la variable para la Tarea 2
- $t_3 = 87$ será la variable para la Tarea 3

- ¿Cuál fue la calificación para la Tarea 2?
- ¿Cuál fue el promedio del alumno?
- ¿Cuál es la tarea en la que mejor le fue?

Estructuras matemáticas

Asumamos que quiero saber las calificaciones de las Tareas 1, 2 y 3 de uno de mis alumnos. Para esto, necesitaría un lugar para guardar esos **3 datos**:

- $t_1 = 90$ será la variable para la Tarea 1
- ullet $t_2=75$ será la variable para la Tarea 2
- $t_3 = 87$ será la variable para la Tarea 3

- ¿Cuál fue la calificación para la Tarea 2?
- ¿Cuál fue el promedio del alumno?
- ¿Cuál es la tarea en la que mejor le fue?

Estructuras matemáticas

Asumamos que quiero saber las calificaciones de las Tareas 1, 2 y 3 de uno de mis alumnos. Para esto, necesitaría un lugar para guardar esos **3 datos**:

- $t_1 = 90$ será la variable para la Tarea 1
- $t_2 = 75$ será la variable para la Tarea 2
- $t_3 = 87$ será la variable para la Tarea 3

- ¿Cuál fue la calificación para la Tarea 21
- ¿Cuál fue el promedio del alumno?
- ¿Cuál es la tarea en la que mejor le fue?

Estructuras matemáticas

Asumamos que quiero saber las calificaciones de las Tareas 1, 2 y 3 de uno de mis alumnos. Para esto, necesitaría un lugar para guardar esos **3 datos**:

- $t_1 = 90$ será la variable para la Tarea 1
- $t_2 = 75$ será la variable para la Tarea 2
- $t_3 = 87$ será la variable para la Tarea 3

- ¿Cuál fue la calificación para la Tarea 21
- ¿Cuál fue el promedio del alumno?
- ¿Cuál es la tarea en la que mejor le fue?

Estructuras matemáticas

Asumamos que quiero saber las calificaciones de las Tareas 1, 2 y 3 de uno de mis alumnos. Para esto, necesitaría un lugar para guardar esos **3 datos**:

- $t_1 = 90$ será la variable para la Tarea 1
- $t_2 = 75$ será la variable para la Tarea 2
- $t_3 = 87$ será la variable para la Tarea 3

- ¿Cuál fue la calificación para la Tarea 2?
- ¿Cuál fue el promedio del alumno?
- ¿Cuál es la tarea en la que mejor le fue?

Estructuras matemáticas

Asumamos que quiero saber las calificaciones de las Tareas 1, 2 y 3 de uno de mis alumnos. Para esto, necesitaría un lugar para guardar esos **3 datos**:

- $t_1 = 90$ será la variable para la Tarea 1
- ullet $t_2=75$ será la variable para la Tarea 2
- $t_3 = 87$ será la variable para la Tarea 3

- ¿Cuál fue la calificación para la Tarea 2?
- ¿Cuál fue el promedio del alumno?
- ¿Cuál es la tarea en la que mejor le fue?

Estructuras matemáticas

Asumamos que quiero saber las calificaciones de las Tareas 1, 2 y 3 de uno de mis alumnos. Para esto, necesitaría un lugar para guardar esos **3 datos**:

- $t_1 = 90$ será la variable para la Tarea 1
- ullet $t_2=75$ será la variable para la Tarea 2
- $t_3 = 87$ será la variable para la Tarea 3

Con esta información, ahora contesta:

- ¿Cuál fue la calificación para la Tarea 2?
- ¿Cuál fue el promedio del alumno?
- ¿Cuál es la tarea en la que mejor le fue?

Estructuras matemáticas

¿La pregunta ahora es...realmente necesito **3 variables** para guardar **3 datos**? Podemos *arreglar* los datos de tal manera que **su posición** nos aporte algo más:

$$\mathbf{t} = \langle 90, 75, 87 \rangle$$

La **posición** en esta *lista ordenada* nos indica qué número de tarea fue, y el valor que haya en dicha posición guarda la calificación. Por lo mismo, podemos usar "una sola variable" para guardar de manera ordenada la información requerida, y referirnos sólo a la posición deseada:

$$t_2 = 75$$

Estructuras matemáticas

¿La pregunta ahora es...realmente necesito **3 variables** para guardar **3 datos**? Podemos *arreglar* los datos de tal manera que **su posición** nos aporte algo más:

$$\mathbf{t} = \langle 90, 75, 87 \rangle$$

La **posición** en esta *lista ordenada* nos indica qué número de tarea fue, y el valor que haya en dicha posición guarda la calificación. Por lo mismo, podemos usar "una sola variable" para guardar de manera ordenada la información requerida, y referirnos sólo a la posición deseada:

$$t_2 = 75$$

Estructuras matemáticas

¿La pregunta ahora es...realmente necesito **3 variables** para guardar **3 datos**? Podemos *arreglar* los datos de tal manera que **su posición** nos aporte algo más:

$$\mathbf{t} = \langle 90, 75, 87 \rangle$$

La **posición** en esta *lista ordenada* nos indica qué número de tarea fue, y el valor que haya en dicha posición guarda la calificación. Por lo mismo, podemos usar "una sola variable" para guardar de manera ordenada la información requerida, y referirnos sólo a la posición deseada:

$$t_2 = 75$$

Estructuras matemáticas

$$\mathbf{x} = \langle 1, 2, 10, 23, 2, -1, 70, 15 \rangle$$

- Usamos negritas para denotar la diferencia entre la variable x que guarda un valor, y la variable x que guarda múltiples valores
- Usamos angle brackets (cuñas les dicen en español) para delimitar las de sus valores
- A diferencia de un conjunto, el orden de los valores sí importa

Estructuras matemáticas

$$\mathbf{x} = \langle 1, 2, 10, 23, 2, -1, 70, 15 \rangle$$

- Usamos negritas para denotar la diferencia entre la variable x que guarda un valor, y la variable x que guarda **múltiples** valores
- Usamos angle brackets (cuñas les dicen en español) para delimitar la lista de sus valores
- A diferencia de un conjunto, el orden de los valores sí importa

Estructuras matemáticas

$$\mathbf{x} = \langle 1, 2, 10, 23, 2, -1, 70, 15 \rangle$$

- Usamos negritas para denotar la diferencia entre la variable x que guarda un valor, y la variable x que guarda **múltiples** valores
- Usamos *angle brackets* (*cuñas* les dicen en español) para delimitar la lista de sus valores
- A diferencia de un conjunto, el orden de los valores sí importa

Estructuras matemáticas

$$\mathbf{x} = \langle 1, 2, 10, 23, 2, -1, 70, 15 \rangle$$

- Usamos negritas para denotar la diferencia entre la variable x que guarda un valor, y la variable x que guarda **múltiples** valores
- Usamos *angle brackets* (*cuñas* les dicen en español) para delimitar la lista de sus valores
- A diferencia de un conjunto, el orden de los valores sí importa

Estructuras matemáticas

Supongamos que ahora necesito saber las calificaciones de las tres tareas, pero ahora de varios alumnos.

Esto significa que ahora necesitamos varios vectores, pero en su lugar podemos *arreglar* los datos como una lista de listas:

$alumno_1$
$alumno_2$
$alumno_3$
$alumno_4$

90	75	87
100	100	95
90	70	88
85	65	50

Estructuras matemáticas

Supongamos que ahora necesito saber las calificaciones de las tres tareas, pero ahora de varios alumnos.

Esto significa que ahora necesitamos varios vectores, pero en su lugar podemos *arreglar* los datos como **una lista de listas**:

$alumno_1$	Г 90	75	87
$alumno_2$	100	100	95
$alumno_3$	$\begin{bmatrix} 90 \\ 100 \\ 90 \\ 85 \end{bmatrix}$	70	88
$alumno_{A}$	L 85	65	50

$$A = \begin{bmatrix} 90 & 75 & 87 \\ 100 & 100 & 95 \\ 90 & 70 & 88 \\ 85 & 65 & 50 \end{bmatrix}$$

- Una matriz es una lista de listas y solemos usar mayúsculas para los nombres de variables
- ullet En este caso, A tiene 4 filas y 3 columnas, es decir que es de 4×3
- El elemento A_2 es $\langle 100, 100, 95 \rangle$
- El elemento $A_{3,2}$ es 70

$$A = \begin{bmatrix} 90 & 75 & 87 \\ 100 & 100 & 95 \\ 90 & 70 & 88 \\ 85 & 65 & 50 \end{bmatrix}$$

- Una matriz es una lista de listas y solemos usar mayúsculas para los nombres de variables
- \bullet En este caso, A tiene 4 filas y 3 columnas, es decir que es de 4×3
- El elemento A_2 es (100, 100, 95)
- El elemento $A_{3,2}$ es 70

$$A = \begin{bmatrix} 90 & 75 & 87 \\ 100 & 100 & 95 \\ 90 & 70 & 88 \\ 85 & 65 & 50 \end{bmatrix}$$

- Una matriz es una lista de listas y solemos usar mayúsculas para los nombres de variables
- ullet En este caso, A tiene 4 filas y 3 columnas, es decir que es de 4 imes 3
- El elemento A_2 es $\langle 100, 100, 95 \rangle$
- El elemento $A_{3,2}$ es 70

$$A = \begin{bmatrix} 90 & 75 & 87 \\ 100 & 100 & 95 \\ 90 & 70 & 88 \\ 85 & 65 & 50 \end{bmatrix}$$

- Una matriz es una lista de listas y solemos usar mayúsculas para los nombres de variables
- ullet En este caso, A tiene 4 filas y 3 columnas, es decir que es de 4 imes 3
- El elemento A_2 es $\langle 100, 100, 95 \rangle$
- El elemento $A_{3,2}$ es 70

De uno en uno...

Operaciones vectorizadas

Los **arreglos** (ya sean vectores o matrices) tienen, por sí solos, una especie de orden. Este orden da pie a pensar en una **secuencia**, y entonces operar usando **ciclos** es *natural*:

```
1 % sum 10 to each number
2 x = [1 2 3 4 5];
3
4 for i = x
    r(i) = x(i) + 10;
6 end
7
8 disp(r)
```

¿Cuál es el resultado de r?

...o todos a la vez

Operaciones vectorizadas

Sin embargo, existen ciertas operaciones que están pensadas para operar directamente sobre **vectores**, y funcionan justo como lo esperaríamos:

Command Window

```
>> x = [1 2 3 4 5];
>> x + 10
ans =
11 12 13 14 15
```

Estas operaciones son conocidas como operaciones vectorizadas, y trabajan con cada uno de los valores al mismo tiempo, en lugar de uno por uno.