Assignment 5 Solutions:

Equations / statements marked in blue casey | point each. Alternate solutions are accepted (as long as they are well reasoned). Message any of the TAS if you have a problem.

- 1. Let A, BE and A+Bbe singular. For any materix norm 111 111, show that 111 BIII > 1/11A-1111.
- A. A+B = A+AA-1B = A(I+A-1B) Since A is invertible & A+B is singular, I+A-1B has to be singular er neell. - 1 =) det (I+ A-1B) = 0
- $\Rightarrow \exists x \neq 0$ such that $(I + A^{-1}B)x = 0$ \Rightarrow -Ix = $A^{-1}Bx$
 - => 1 \le 111A-1111. 111B111 (Submultiplicativity)
 - =) ||B|||7 |/||A-11|

Alt: $1 \cdot A + B = A + AA^{-1}B = A(I + A^{-1}B)$ Since A is insecrtible & A+B is singular, $I + A^{-1}B$ has to be singular as neell. -1

If I a materix norm | | 11 | 11 such that | 11 I - C | 1 | then C is invertible.

Consider the contrapositive of the above: If C is singular, then there exists no matrix norm 111.111 such that 111I-CIII < 1.

Thus, for a singular C, IIII-UII 71 of III.

Hence for any 111.111, 111 I- (I+A-1 B)11 >1.

) | | A-1BIII > | => | HI | IN A-1B | II > |

=> III A-1 III IIIBNI > (Submultiplicativity)

> IIIBIII > 1/ IIIAIII

L Provee or disprove the following properties of
the spectral radius S(·) on Cn×n:
@ Non-negativity B Positivity @ Homageneity
@ Triangle inequality @ Submultiplicativeity
De Triangle inequality @ Submultiplicativeity Is the spectral radius (() a matrix norm on (?
A. @ Non-negativity: SC.) is a non-negative quantity <u>Proof:</u> Let A E C ^{nxn} .
\Rightarrow $S(A) = \max \{ \lambda : \lambda \text{ is an EVal of } A\}$
As IXI 20, SCA) which is a maximum of such
non-negative quantities is also non-negative.
\Rightarrow $S(A) > 0$. $-(1)$ m
B Positivity: $S(.)$ does NOT eatisfy positivity Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \lambda = 0 \Rightarrow S(A) = 0$ $A \neq 0$
Let $A = [0] \Rightarrow \lambda = 0 \Rightarrow \beta(A) = 0$
(00) -> A+O
Thus $S(A) = 0 \Rightarrow A=0$ — 2
(c) Homogeneity: S(·) satisfies the homogeneity property.
Proof: Let B = c A
$\Rightarrow S(A) = \max \{ \lambda : \lambda \text{ is an EVal of } A \}$
& $S(B) = \max \{ \lambda : \lambda \text{ is an EVal of } B\}$
$Ax = \mu x \Rightarrow Bx = cAx = (c \cdot \mu)x$
=) Chis an EVal of B when Mis an EVal of A -3
- China mission of a most in as an Evanofit

=> Spectral radius satisfies Homogeneity.

(d) Triangle Ineq:
$$S(\cdot)$$
 does not satisfy triangle ineq.
Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = S(A) = S(B) = 0$

A+B=
$$\{0\ 1\}$$
 => $\lambda^2-1=0$ => $\lambda=\pm 1$
=> $\{(A+B)=1\}$
=> $\{(A+B) \neq S(A) + S(B)$ = $\{(A+B)=1\}$

© Submit:
$$S(\cdot)$$
 does not eatisfy submittiplicationity
$$AB = \begin{bmatrix} 1 & 0 \end{bmatrix} \Rightarrow AB \times XI = 0$$

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \Rightarrow (1-\lambda)(-\lambda) = 0 \Rightarrow \lambda = 0, 1$$

=> S(AB)=1=> S(AB) & S(A).S(B) -6

Thus $S(\cdot)$ satisfies only the non-negativeity and the homogeneity proposities. It does not eatisfy the other three proposities. Hence $S(\cdot)$ is not a matrix norm. $-\overline{0}$