Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Normally the first step in debugging is to attempt to reproduce the problem. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. It is very difficult to determine what are the most popular modern programming languages. Ideally, the programming language best suited for the task at hand will be selected. Following a consistent programming style often helps readability. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Whatever the approach to development may be, the final program must satisfy some fundamental properties. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug.