Part of Speech Tagging

Natural Language Processing: Jordan Boyd-Graber

University of Maryland

Viterbi

Adapted from material by Jimmy Lin and Jason Eisner

• Given an unobserved sequence of length L, $\{x_1, ..., x_L\}$, we want to find a sequence $\{z_1 ... z_L\}$ with the highest probability.

- Given an unobserved sequence of length L, $\{x_1, ..., x_L\}$, we want to find a sequence $\{z_1 ... z_L\}$ with the highest probability.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- · Base case:

$$\delta_1(k) = \pi_k \beta_{k,x_i} \tag{1}$$

$$\delta_n(k) = \max_{j} \left(\delta_{n-1}(j) \theta_{j,k} \right) \beta_{k,x_n} \tag{2}$$

- Given an unobserved sequence of length L, $\{x_1, ..., x_L\}$, we want to find a sequence $\{z_1 ... z_L\}$ with the highest probability.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$\delta_1(k) = \pi_k \beta_{k,x_i} \tag{1}$$

$$\delta_n(k) = \max_{j} \left(\delta_{n-1}(j) \theta_{j,k} \right) \beta_{k,x_n}$$
 (2)

- Given an unobserved sequence of length L, $\{x_1, ..., x_L\}$, we want to find a sequence $\{z_1 ... z_L\}$ with the highest probability.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- · Base case:

$$\delta_1(k) = \pi_k \beta_{k,x_i} \tag{1}$$

$$\delta_n(k) = \max_{j} \left(\delta_{n-1}(j) \frac{\theta_{j,k}}{\theta_{j,k}} \right) \beta_{k,x_n}$$
 (2)

- Given an unobserved sequence of length L, $\{x_1, ..., x_L\}$, we want to find a sequence $\{z_1 ... z_L\}$ with the highest probability.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- · Base case:

$$\delta_1(k) = \pi_k \beta_{k,x_i} \tag{1}$$

$$\delta_n(k) = \max_{j} \left(\delta_{n-1}(j) \theta_{j,k} \right) \beta_{k,x_n}$$
 (2)

- The complexity of this is now K^2L .
- In class: example that shows why you need all O(KL) table cells (garden pathing)
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$\Psi_n = \operatorname{argmax}_j \delta_{n-1}(j) \theta_{j,k}$$
 (3)

- The complexity of this is now K^2L .
- In class: example that shows why you need all O(KL) table cells (garden pathing)
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$\Psi_n = \operatorname{argmax}_j \delta_{n-1}(j) \theta_{j,k}$$
 (3)

Let's do that for the sentence "come and get it"

POS	π_k	β_{k,x_1}	$\log \delta_1(k)$
MOD	0.234	0.024	-5.18
DET	0.234	0.032	-4.89
CONJ	0.234	0.024	-5.18
N	0.021	0.016	-7.99
PREP	0.021	0.024	-7.59
PRO	0.021	0.016	-7.99
V	0.234	0.121	-3.56

come and get it

Why logarithms?

- 1. More interpretable than a float with lots of zeros.
- 2. Underflow is less of an issue
- 3. Addition is cheaper than multiplication

$$log(ab) = log(a) + log(b)$$
 (4)

POS	$\log \delta_1(j)$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18	
DET	-4.89	
CONJ	-5.18	
N	-7.99	
PREP	-7.59	
PRO	-7.99	
V	-3.56	

POS	$\log \delta_1(j)$	$\log \delta_2({\sf CONJ})$
MOD	-5.18	
DET	-4.89	
CONJ	-5.18	???
N	-7.99	
PREP	-7.59	
PRO	-7.99	
V	-3.56	

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2({\sf CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		

$$\log(\delta_0(V)\theta_{V, CONJ}) = \log\delta_0(k) + \log\theta_{V, CONJ} = -3.56 + -1.65$$

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56	-5.21	

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2({\sf CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99	≤-7.99	
PREP	-7.59	≤ −7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	???
N	-7.99	≤-7.99	
PREP	-7.59	≤ −7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	???
N	-7.99	≤-7.99	
PREP	-7.59	≤ −7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤ −7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

$$\log \delta_1(k) = -5.21 - \log eta_{ extsf{CONJ}, \text{ and}} =$$

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(\text{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤ −7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

$$\log \delta_1(k) = -5.21 - \log \beta_{\text{CONJ, and}} = -5.21 - 0.64$$

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	-6.02
N	-7.99	≤-7.99	
PREP	-7.59	≤ −7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

POS	$\delta_1(k)$	$\delta_2(k)$	<i>b</i> ₂	$\delta_3(k)$	<i>b</i> ₃	$\delta_4(k)$	<i>b</i> ₄
MOD	-5.18						
DET	-4.89						
CONJ	-5.18	-6.02	V				
N	-7.99						
PREP	-7.59						
PRO	-7.99						
V	-3.56						
WORD	come	and		g	et	it	

POS	$\delta_1(k)$	$\delta_2(k)$	<i>b</i> ₂	$\delta_3(k)$	<i>b</i> ₃	$\delta_4(k)$	<i>b</i> ₄
MOD	-5.18	-0.00	Χ				
DET	-4.89	-0.00	Χ				
CONJ	-5.18	-6.02	V				
N	-7.99	-0.00	Χ				
PREP	-7.59	-0.00	Χ				
PRO	-7.99	-0.00	Χ				
V	-3.56	-0.00	Χ				
WORD	come	and		g	et	it	

POS	$\delta_1(k)$	$\delta_2(k)$	<i>b</i> ₂	$\delta_3(k)$	<i>b</i> ₃	$\delta_4(k)$	<i>b</i> ₄
MOD	-5.18	-0.00	Χ	-0.00	Χ		
DET	-4.89	-0.00	Χ	-0.00	Χ		
CONJ	-5.18	-6.02	V	-0.00	Χ		
N	-7.99	-0.00	Χ	-0.00	Χ		
PREP	-7.59	-0.00	Χ	-0.00	Χ		
PRO	-7.99	-0.00	Χ	-0.00	Χ		
V	-3.56	-0.00	Χ	-9.03	CONJ		
WORD	come	and		get		it	

POS	$\delta_1(k)$	$\delta_2(k)$	<i>b</i> ₂	$\delta_3(k)$	<i>b</i> ₃	$\delta_4(k)$	<i>b</i> ₄
MOD	-5.18	-0.00	Χ	-0.00	Χ	-0.00	Χ
DET	-4.89	-0.00	Χ	-0.00	Χ	-0.00	Х
CONJ	-5.18	-6.02	V	-0.00	Χ	-0.00	Х
N	-7.99	-0.00	Χ	-0.00	Χ	-0.00	Х
PREP	-7.59	-0.00	Χ	-0.00	Χ	-0.00	Χ
PRO	-7.99	-0.00	Χ	-0.00	Χ	-14.6	V
V	-3.56	-0.00	Χ	-9.03	CONJ	-0.00	Χ
WORD	come	and		get		it	

What if you don't have training data?

- You can still learn a hmm
- Using a general technique called expectation maximization

What if you don't have training data?

- You can still learn a hmm
- Using a general technique called expectation maximization
 - Take a guess at the parameters
 - Figure out latent variables
 - Find the parameters that best explain the latent variables
 - Repeat

Model Parameters

We need to start with model parameters

Model Parameters

π, β, θ

We can initialize these any way we want

Model Parameters

$$\pi,\,\beta,\,\theta$$

E step

We compute the E-step based on our data

Each word in our dataset could take any part of speech

Model Paramete	Latent Variables				
π, β, θ	E step	come	and	get	it
		\bigcirc	\bigcirc	\bigcirc	\bigcirc
		\bigcirc	\bigcirc	\bigcirc	\bigcirc

But we don't know which state was used for each word

Determine the probability of being in each latent state using Forward / Backward

Calculate new parameters:

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k \mathbb{E}_p[n_k] + \alpha_k} \tag{5}$$

Where the expected counts are from the lattice

Replace old parameters (and start over)

Hard vs. Full EM

Hard EM

Train only on the most likely sentence (Viterbi)

• Faster: E-step is faster

Faster: Fewer iterations

Full EM

Compute probability of all possible sequences

 More accurate: Doesn't get stuck in local optima as easily

Warning about next homework(s)

- Kaggle competition
- Thus, late days not very useful
- Following homework is not computational

Garden Pathing

What is the probability of the sequence "a/Det blue/Adj boat/N"?

Garden Pathing

What is the probability of the sequence "a/Det blue/Adj boat/N"?

$$\pi_{d}\beta_{d,the}\theta_{d,a}\beta_{a,blue}\theta_{a,n}\beta_{n,boat} =$$
 (5)

$$0.3*0.6*0.4*0.3*0.5*0.1 = 0.00108$$
 (6)

Garden Pathing

What is the probability of the sequence "a/Det blue/Adj boat/N"?

$$\pi_d \beta_{d,the} \theta_{d,a} \beta_{a,blue} \theta_{a,n} \beta_{n,boat} =$$
 (5)

$$0.3*0.6*0.4*0.3*0.5*0.1 = 0.00108$$
 (6)

1.
$$\delta_1(a) = -4.6$$

- 1. $\delta_1(a) = -4.6$
- 2. $\delta_1(v) = -5.7$

- 1. $\delta_1(a) = -4.6$
- 2. $\delta_1(v) = -5.7$
- 3. $\delta_1(d) = -1.7$

- 1. $\delta_1(a) = -4.6$
- 2. $\delta_1(v) = -5.7$
- 3. $\delta_1(d) = -1.7$
- 4. $\delta_1(n) = -4.6$

1.
$$\delta_2(a) = \max\left(\underbrace{-5.8}_{a}, \underbrace{-7.3}_{v}, \underbrace{-2.6}_{d}, \underbrace{-7.6}_{n}\right) + -1.2 = -2.6 + -1.2 = -3.8$$

1.
$$\delta_2(a) = \max\left(\underbrace{-5.8}_{a}, \underbrace{-7.3}_{v}, \underbrace{-2.6}_{d}, \underbrace{-7.6}_{n}\right) + -1.2 = -2.6 + -1.2 = -3.8$$

2.
$$\delta_2(v) = \max\left(\underbrace{-6.9}_{a}, \underbrace{-7.3}_{v}, \underbrace{-4.7}_{d}, \underbrace{-4.8}_{n}\right) + -2.3 = -4.7 + -2.3 = -7.0$$

1.
$$\delta_2(a) = \max\left(\underbrace{-5.8}_{a}, \underbrace{-7.3}_{v}, \underbrace{-2.6}_{d}, \underbrace{-7.6}_{n}\right) + -1.2 = -2.6 + -1.2 = -3.8$$

2.
$$\delta_2(v) = \max\left(\underbrace{-6.9}_{a}, \underbrace{-7.3}_{v}, \underbrace{-4.7}_{d}, \underbrace{-4.8}_{n}\right) + -2.3 = -4.7 + -2.3 = -7.0$$

3.
$$\delta_2(d) = \max\left(\underbrace{-6.9, -6.9, -4.0, -7.6}_{\mathbf{d}}\right) + -3.7 = -4.0 + -3.7 = -7.7$$

1.
$$\delta_2(a) = \max\left(\underbrace{-5.8}_{a}, \underbrace{-7.3}_{v}, \underbrace{-2.6}_{d}, \underbrace{-7.6}_{n}\right) + -1.2 = -2.6 + -1.2 = -3.8$$

2.
$$\delta_2(v) = \max\left(\underbrace{-6.9}_{a}, \underbrace{-7.3}_{v}, \underbrace{-4.7}_{d}, \underbrace{-4.8}_{n}\right) + -2.3 = -4.7 + -2.3 = -7.0$$

3.
$$\delta_2(d) = \max\left(\underbrace{-6.9}_{\mathbf{a}}, \underbrace{-6.9}_{\mathbf{v}}, \underbrace{-4.0}_{\mathbf{d}}, \underbrace{-7.6}_{\mathbf{n}}\right) + -3.7 = -4.0 + -3.7 = -7.7$$

4.
$$\delta_2(n) = \max\left(\underbrace{-5.3}_{a}, \underbrace{-6.9}_{v}, \underbrace{-2.5}_{d}, \underbrace{-6.9}_{n}\right) + -1.9 = -2.5 + -1.9 = -4.4$$

1.
$$\delta_3(a) = \max\left(\underbrace{-5.0}_{a}, \underbrace{-8.6}_{v}, \underbrace{-8.6}_{d}, \underbrace{-7.4}_{n}\right) + -2.3 = -5.0 + -2.3 = -7.3$$

1.
$$\delta_3(a) = \max\left(\underbrace{-5.0}_{a}, \underbrace{-8.6}_{v}, \underbrace{-7.4}_{d}, \underbrace{-7.4}_{n}\right) + -2.3 = -5.0 + -2.3 = -7.3$$

2.
$$\delta_3(v) = \max\left(\underbrace{-6.1}_{a}, \underbrace{-8.6}_{v}, \underbrace{-10.7}_{d}, \underbrace{-4.6}_{n}\right) + -0.9 = -4.6 + -0.9 = -5.5$$

1.
$$\delta_3(a) = \max\left(\underbrace{-5.0}_{a}, \underbrace{-8.6}_{v}, \underbrace{-8.6}_{d}, \underbrace{-7.4}_{n}\right) + -2.3 = -5.0 + -2.3 = -7.3$$

2.
$$\delta_3(v) = \max\left(\underbrace{-6.1}_{a}, \underbrace{-8.6}_{v}, \underbrace{-10.7}_{d}, \underbrace{-4.6}_{n}\right) + -0.9 = -4.6 + -0.9 = -5.5$$

3.
$$\delta_3(d) = \max\left(\underbrace{-6.1}_{\mathbf{a}},\underbrace{-8.2}_{\mathbf{V}},\underbrace{-10.0}_{\mathbf{d}},\underbrace{-7.4}_{\mathbf{n}}\right) + -3.7 = -6.1 + -3.7 = -9.8$$

1.
$$\delta_3(a) = \max\left(\underbrace{-5.0}_{a}, \underbrace{-8.6}_{v}, \underbrace{-8.6}_{d}, \underbrace{-7.4}_{n}\right) + -2.3 = -5.0 + -2.3 = -7.3$$

2.
$$\delta_3(v) = \max\left(\underbrace{-6.1}_{a}, \underbrace{-8.6}_{v}, \underbrace{-10.7}_{d}, \underbrace{-4.6}_{n}\right) + -0.9 = -4.6 + -0.9 = -5.5$$

3.
$$\delta_3(d) = \max\left(\underbrace{-6.1}_{a}, \underbrace{-8.2}_{V}, \underbrace{-10.0}_{d}, \underbrace{-7.4}_{n}\right) + -3.7 = -6.1 + -3.7 = -9.8$$

4.
$$\delta_3(n) = \max\left(\underbrace{-4.5}_{\mathbf{a}}, \underbrace{-8.2}_{\mathbf{v}}, \underbrace{-8.5}_{\mathbf{d}}, \underbrace{-6.7}_{\mathbf{n}}\right) + -0.9 = -4.5 + -0.9 = -5.4$$

1.
$$\delta_4(a) = \max\left(\underbrace{-8.5, -7.2, -10.7, -8.4}_{\mathbf{d}}\right) + -3.4 = -7.2 + -3.4 = -10.6$$

1.
$$\delta_4(a) = \max\left(\underbrace{-8.5, -7.2, -10.7, -8.4}_{\mathbf{V}}\right) + -3.4 = -7.2 + -3.4 = -10.6$$

2.
$$\delta_4(v) = \max\left(\underbrace{-9.6}_{a},\underbrace{-7.2}_{v},\underbrace{-12.8}_{d},\underbrace{-5.7}_{n}\right) + -3.4 = -5.7 + -3.4 = -9.1$$

1.
$$\delta_4(a) = \max\left(\underbrace{-8.5}_{a}, \underbrace{-7.2}_{v}, \underbrace{-10.7}_{d}, \underbrace{-8.4}_{n}\right) + -3.4 = -7.2 + -3.4 = -10.6$$

2.
$$\delta_4(v) = \max\left(\underbrace{-9.6}_{a},\underbrace{-7.2}_{v},\underbrace{-12.8}_{d},\underbrace{-5.7}_{n}\right) + -3.4 = -5.7 + -3.4 = -9.1$$

3.
$$\delta_4(d) = \max\left(\underbrace{-9.6}_{a}, \underbrace{-6.8}_{v}, \underbrace{-12.1}_{d}, \underbrace{-8.4}_{n}\right) + -0.5 = -6.8 + -0.5 = -7.3$$

1.
$$\delta_4(a) = \max\left(\underbrace{-8.5}_{\mathbf{q}}, \underbrace{-7.2}_{\mathbf{q}}, \underbrace{-10.7}_{\mathbf{d}}, \underbrace{-8.4}_{\mathbf{n}}\right) + -3.4 = -7.2 + -3.4 = -10.6$$

2.
$$\delta_4(v) = \max\left(\underbrace{-9.6}_{a}, \underbrace{-7.2}_{v}, \underbrace{-12.8}_{d}, \underbrace{-5.7}_{n}\right) + -3.4 = -5.7 + -3.4 = -9.1$$

3.
$$\delta_4(d) = \max\left(\underbrace{-9.6}_{a}, \underbrace{-6.8}_{v}, \underbrace{-12.1}_{d}, \underbrace{-8.4}_{n}\right) + -0.5 = -6.8 + -0.5 = -7.3$$

4.
$$\delta_4(n) = \max\left(\underbrace{-8.0, -6.8, -10.6, -7.7}_{\mathbf{d}}\right) + -3.4 = -6.8 + -3.4 = -10.2$$

1.
$$\delta_5(a) = \max\left(\underbrace{-11.8}_{a}, \underbrace{-10.7}_{v}, \underbrace{-8.2}_{d}, \underbrace{-13.2}_{n}\right) + -2.3 = -8.2 + -2.3 = -11$$

1.
$$\delta_5(a) = \max\left(\underbrace{-11.8}_{a}, \underbrace{-10.7}_{V}, \underbrace{-8.2}_{d}, \underbrace{-13.2}_{n}\right) + -2.3 = -8.2 + -2.3 = -11$$

2.
$$\delta_5(v) = \max\left(\underbrace{-12.9}_{a}, \underbrace{-10.7}_{v}, \underbrace{-10.3}_{d}, \underbrace{-10.4}_{n}\right) + -1.6 = -10.3 + -1.6 = -12$$

1.
$$\delta_5(a) = \max\left(\underbrace{-11.8}_{a}, \underbrace{-10.7}_{V}, \underbrace{-8.2}_{d}, \underbrace{-13.2}_{n}\right) + -2.3 = -8.2 + -2.3 = -11$$

2.
$$\delta_5(v) = \max\left(\underbrace{-12.9}_{a}, \underbrace{-10.7}_{v}, \underbrace{-10.3}_{d}, \underbrace{-10.4}_{n}\right) + -1.6 = -10.3 + -1.6 = -12$$

3.
$$\delta_5(d) = \max\left(\underbrace{-12.9}_{a}, \underbrace{-10.3}_{V}, \underbrace{-9.6}_{d}, \underbrace{-13.2}_{n}\right) + -3.7 = -9.6 + -3.7 = -13$$

1.
$$\delta_5(a) = \max\left(\underbrace{-11.8}_{a}, \underbrace{-10.7}_{v}, \underbrace{-8.2}_{d}, \underbrace{-13.2}_{n}\right) + -2.3 = -8.2 + -2.3 = -11$$

2.
$$\delta_5(v) = \max\left(\underbrace{-12.9}_{a}, \underbrace{-10.7}_{v}, \underbrace{-10.3}_{d}, \underbrace{-10.4}_{n}\right) + -1.6 = -10.3 + -1.6 = -12$$

3.
$$\delta_5(d) = \max\left(\underbrace{-12.9}_{\mathbf{a}}, \underbrace{-10.3}_{\mathbf{v}}, \underbrace{-9.6}_{\mathbf{d}}, \underbrace{-13.2}_{\mathbf{n}}\right) + -3.7 = -9.6 + -3.7 = -13$$

4.
$$\delta_5(n) = \max\left(\underbrace{-11.3}_{a}, \underbrace{-10.3}_{v}, \underbrace{-8.1}_{d}, \underbrace{-12.5}_{n}\right) + -1.2 = -8.1 + -1.2 = -9.3$$

Reconstruction

Reconstruction

For "the old man", the reconstruction starts with the best part of speech at Position 3, which is noun (-5.4), which has an adjective back pointer, which as a back pointer to determiner. The overall sequence is "The/det old/adj man/n".

Reconstruction

For "the old man", the reconstruction starts with the best part of speech at Position 3, which is noun (-5.4), which has an adjective back pointer, which as a back pointer to determiner. The overall sequence is "The/det old/adj man/n".

For "the old man the boats", the reconstruction starts with the best part of speech at Position 5, which is a noun (-9.3), which leads to the sequence "The/det old/n man/v the/det boats/n".