Лабораторна робота

Освоєння технології та принципів програмування роботи з двовимірними масивами на С++

Мета роботи

Освоїти технології та принципи програмування роботи з двовимірними масивами та отримати практичні навички виконання дій з їх елементами на C++.

Хід роботи

- 1) Ознайомитись з методичними вказівками до лабораторної роботи та повторити тему "Масиви";
- 2) відповідно до завдання розробити схему алгоритму програми, що виконує зчитування чи заповнення масиву за вказаною схемою;
 - 3) за схемою алгоритму написати програму на мові С++;
 - 4) зробити висновки;
- 5) підготувати звіт про виконання лабораторної роботи, що включає наступні пункти: номер, тема, мета та хід лабораторної роботи, завдання, схема алгоритму програми, лістинг програми з коментуванням кожної інструкції, результат роботи програми (скріншот), висновки.

Теоретичні відомості та рекомендації до виконання

Людина завжди прагне до спрощення сприйняття навколишнього світу. Одним з проявів є сортування об'єктів і об'єднання їх у групи за будь-якою ознакою. Таким самим чином роблять і в програмуванні, об'єднуючи змінні з однаковим типом даних під одним ім'ям і користуючись ними як елементами групи. Це спрощує задачу сприйняття та обробки безлічі змінних одного типу даних. Такі групи називають *масивами*. Масиви можуть слугувати як для зберігання N-ї кількості значень, так і для виконання з ними операцій. Причому використання масивів не обмежується роботою з послідовністю значень. Існують також поняття багатовимірних масивів, які являють собою послідовності з послідовностей значень, що досить часто може бути зручно. В основному використовуються одновимірні, двовимірні та тривимірні масиви.

При виконанні завдання до лабораторної роботи студент повинен ознайомитися з особливостями оголошення та ініціалізації двовимірних масивів в мові C++, а також навчитися виконувати операції над ними.

Виконання лабораторної роботи починається ознайомленням з теоретичними відомостями про масиви. Потім студент приступає до розробки схеми алгоритму програми. Залежно від заданого викладачем варіанту завдання, виконується читання/запис значень; двовимірного масиву розмірністю 5х5 значеннями згідно з табл. 5.9, та заповнення елементів масиву з"0" та "1" за алгоритмом, що зазначено в табл. 5.10 та виведення на друк. За схемою алгоритму здійснюється написання програми мовою С++. Всі схеми, наведені в таблицях, формуються на основі

формул залежностей між індексами за розмірностями. Так, для кожної з діагоналей двовимірного масиву

для правих діагоналей

i/j	0	1	2	3	4	
0	0,0	0,1	0,2	0,3	0,4	
1	1,0	1,1	1,2	1,3	1,4	i+j=
2	2,0	2,1	2,2	2,3	2,4	i+j=
3	3,0	3,1	3,2	3,3	3,4	i+j=
4	4,0	4,1	4,2	4,3	4,4	i+j=

для лівих діагоналей

палс	YI.					
i/j 0	0	1	2	3	4	
0	0,0	0,1	0,2	0,3	0,4	i-j=-4
1	1,0	1,1	1,2	1,3	1,4	i-j=-3
2	2,0	2,1	2,2	2,3	2,4	i-j=-2
3	3,0	3,1	3,2	3,3	3,4	i-j=-1
4	4,0	4,1	4,2	4,3	4,4	275-1
		15.428				
	i-j=4	i-j=3	i-j=2	<u></u>		i-j=0.
	. _	. 土 '		٠. ـــــــ ,		. J

i-j=0.

для правих діагоналей

	j+j=(i+j=1	j+j=2	<u>:</u>		i+j=4
i/j	0	1	2	3	4	
i/j 0	0,0	0,1	0,2	0,3	0,4	
1	1,0	1,1	1,2	1,3	1,4	i+j=5
2	2,0	2,1	2,2	2,3	2,4	i+j=5 i+j=6
3	3,0	3,1	3,2	3,3	3,4	i+j=7
4	4,0	4,1	4,2	4,3	4,4	i+j=8,

для лівих діагоналей

i/j	0	1	2	3	4	
0	0,0	0,1	0,2	0,3	0,4	i-j=-4
1	1,0	1,1	1,2	1,3	1,4	i-j=-3
2	2,0	2,1	2,2	2,3	2,4	i-j=-2
3 4	3,0	3,1	3,2	3,3	3,4	i-j=-1
4	4,0	4,1	4,2	4,3	4,4	
			2002			
	j=4	i-j=3	j=2	Ī		i-j=0.
	Ξ.	. 1.	$: \mathbf{\Gamma}$:		. J

При правильному виборі алгоритму заповнення масиву програма дозволить виконувати заповнення масиву будь-якої розмірності!

У висновках до звіту студент повинен розкрити призначення теми "Принципи роботи з двовимірними масивами". Висновок має бути поданий в формі пояснення сфери застосування вивченого матеріалу згідно із розумінням його студентом.

Завдання для самостійного виконання

Розробити схему алгоритму та написати програму на мові C++, яка виконує (складність завдання обирається викладачем):

- а) для парних варіантів читання, для непарних запис значень елементів двовимірного масиву Arr[5,5] відповідно до вказаної у табл. 5.9 схеми. Результати як читання, так і запису повинні бути відображені на консолі. Значення елементів масиву приймаються від 1 до 25;
- б) заповнення двовимірного масиву Arr[5,5] значеннями "0" та "1" згідно з зазначеною у табл. 5.10 схемою і вивід отриманої матриці на консоль.

Варіанти завдань складності А

Таблиця 5.10

Варіанти завдань складності Б

						_						_						_											$\overline{}$
1						2						3						4						5					
	1	1	1	_	1		0	0	1	0	0		1	0	1	0	1		1	1	1	1	1		0	1	1	0	1
	1	1	1	1	0		0	1	1	1	0		0	1	0	1	0		1	0	0	0	1		1	1	0	1	1
	1	1	1	0	0		1	1	1	1	1		1	0	1	0	1		1	0	1	0	1		1	0	1	1	0
	1	1	0	0	0		0	1	1	1	0		0	1	0	1	0		1	0	0	0	1		0	1	1	0	1
	1	0	0	0	0		0	0	1	0	0		1	0	1	0	1		1	1	1	1	1		1	1	0	1	1

2 '	_	Z 10
Закінчення	таол.	5.10

6						7						8						9						10)		.021		
	1	0	1	1	0		0	0	0	0	1	-	1	1	0	1	1		0	1	0	1	0		0	0	0	0	0
	1	1	0	1	1		0	0	0	1	1		1	0	0	0	1	1	1	0	1	0	1		0	1	1	1	0
	0	1	1	0	1		0	0	1	1	1		0	0	0	0	0	1	0	1	0	1	0		0	1	0	1	0
	1	0	1	1	0		0	1	1	1	1		1	0	0	0	1	1	1	0	1	0	1		0	1	Ť	1	0
	1	1	0	1	1		1	1	1	1	1		1	1	0	1	1	1	0	1	0	1	0		0	0	0	0	0
11	-					12)			1 -		13	<u>. </u>	•		•	•	14	_					15	_				
	1	0	0	1	0		1	0	0	0	0		1	1	1	1	1		1	1	1	0	0		1	1	1	1	1
	0	0	1	0	0		0	1	0	0	0		0	1	1	1	1	1	1	1	0	0	0		0	0	0	0	0
	0	1	0	0	1		0	0	1	0	0		0	0	1	1	1	1	1	0	0	0	1		1	1	1	1	1
	1	0	0	1	0		0	0	0	1	0		0	0	0	1	1	1	0	0	0	1	1		0	0	0	0	0
	0	0	1	0	0		0	0	0	0	1		0	0	0	0	1		0	0	1	1	1		1	1	1	1	1
16)					17	7					18	}					19						20)				
	0	0	0	0	0		0	1	0	0	1		0	0	0	0	1		1	0	0	0	0		0	0	1	1	1
	1	1	1	1	1		0	0	1	0	0		0	0	0	1	0		1	1	0	0	0		0	0	0	1	1
	0	0	0	0	0		1	0	0	1	0		0	0	1	0	0		1	1	1	0	0		1	0	0	0	1
	1	1	1	1	1		0	1	0	0	1		0	1	0	0	0		1	1	1	1	0		1	1	0	0	0
	0	0	0	0	0		0	0	1	0	0		1	0	0	0	0		1	1	1	1	1		1	1	1	0	0
21						22	<u> </u>	<u> </u>		<u> </u>		23	,	<u> </u>				24	<u> </u>					25					
	1	1	0	0	0		0	1	1	1	0		0	0	1	0	0		0	1	1	1	1		0	1	1	1	1
	1	1	1	0	0		1	0	1	0	1		1	0	0	1	0		1	0	1	1	1		0	0	1	1	1
	0	1	1	1	0		1	1	0	1	1		0	1	0	0	1		1	1	0	1	1		0	0	0	1	1
	0	0	1	1	1		1	0	1	0	1		0	0	1	0	0		1	1	1	0	1		0	0	0	0	1
	0	0	0	1	1		0	1	1	1	0		1	0	0	1	0		1	1	1	1	0		0	0	0	0	0
26)					27	7					28	}					29)					30)				
	0	0	0	0	0		0	0	0	1	1		1	0	0	0	1		0	0	1	0	0		1	1	1	1	0
	0	0	0	0	1		0	0	1	1	1		0	1	0	1	0		0	1	0	0	1		1	1	1	0	1
	0	0	0	1	1		0	1	1	1	0		0	0	1	0	0		1	0	0	1	0		1	1	0	1	1
	0	0	1	1	1		1	1	1	0	0		0	1	0	1	0		0	0	1	0	0		1	0	1	1	1
	0	1	1	1	1		1	1	0	0	0		1	0	0	0	1		0	1	0	0	1		0	1	1	1	1

Приклад виконання завдання

Складність А: необхідно заповнити двовимірний масив значеннями від 1 до 25 за наведеною нижче схемою і вивести отриману матрицю на консоль:

На схемі можна побачити, що при такому алгоритмі запису значень елементи кожного рядка перебираються від 0 до 4, а самі рядки від 4 до 0.

Виходячи з цього, розробимо схему алгоритму програми (рис. 5.9).

Рис. 5.9. Схема алгоритму програми, що заповнює двовимірний масив значеннями від 1 до 25

Згідно зі схемою алгоритму напишемо програму на мові С++:

```
#include <stdio.h>
                                   //підключення бібліотеки вводу/виводу
void main()
                                   //оголошення та визначення головної функції
     int Arr[5][5];
                       //оголошення цілочисельного масиву з розмірністю 5х5
     int k=1;
                             //оголошення та визначення змінної лічильника
     int i, j;
                                   //оголошення змінних лічильників для циклів
     for(i=4; i>=0; i--)
                                   //цикл перебору рядків у зворотному порядку
           for(j=0; j<5; j++)
                                   //цикл перебору елементів рядка
                 Arr[i][j]=k;
                                   //визначення поточного елемента
                 k++;
                                   //збільшення лічильника
     }
```

Результат виконання програми буде наступним

```
21 22 23 24 25
16 17 18 19 20
11 12 13 14 15
6 7 8 9 10
1 2 3 4 5
```

Якщо в якості граничного значення для заповнення масиву використовувати змінну, що оголошена та визначена на початку програми, то алгоритм заповнення можна використовувати для правильного масиву будь-якої розмірності.

Змінимо програму, наведену вище, додавши змінну граничного значення та пов'язавши всі цикли з її значенням:

```
#include <stdio.h>
                                   //підключення бібліотеки вводу/виводу
void main()
                                   //оголошення та визначення головної функції
      int n=7;
                             //оголошення та визначення граничної змінної
      int Arr[7][7]; //оголошення цілочисельного масиву з розмірністю 7x7
      int k=1;
                             //оголошення та визначення змінної лічильника
      int i, j;
                                   //оголошення змінних лічильників для ииклів
      for(i=n-1; i>=0; i--)
                                   //цикл перебору рядків у зворотному порядку
                                         //цикл перебору елементів рядка
           for(j=0; j< n, j++)
                 Arr[i][j]=k;
                                         //визначення поточного елемента
                                         //збільшення лічильника
                  k++:
      for(i=0; i< n; i++)
                                         //цикл перебору рядків
           for(j=0; j< n; j++)
                                         //цикл перебору елементів рядка
                 printf("%2i ", Arr[i][j]);
                                               //вивід поточного значення
           printf("\r\n");
                                         //перехід на новий рядок
}
```

Результат виконання програми буде наступним:

```
44 45
           46
               47
                   48
43
                       49
       38
           39
               40
                   41
36
    37
                       42
29
    30 31
           32
               33
                   34
                       35
22
    23 24
           25
               26
                   27
                       28
15
    16
       17
           18
               19
                   20
                       21
 8
         10
            11
               12
                   13
                       14
  1
          3
                 5
                         7
             4
                     6
```

Складність Б: необхідно заповнити масив Arr[9][9] значеннями "0" та

"1" за наступною схемо

1	1	1	1	1
1	1	0	1	1
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Як видно за схемою, значенням "1" заповнюються перший і останній стовпці, перший і останній рядки та діагоналі, всі інші елементи містять значення "0". Виходячи з цього, розробимо схему алгоритму роботи програми (рис. 5.10).

Рис. 5.10. Схема алгоритму програми, що заповнює двовимірний масив значеннями "0" та "1"

Згідно зі схемою алгоритму напишемо програму на мові С++:

```
#include<stdio.h>
                                        //підключення бібліотеки вводу/виводу
void main()
                                        //оголошення та визначення головної функції
                                  //оголошення та визначення граничної змінної
      int n=9;
      int Arr[9][9];
                          //оголошення цілочисельного масиву з розмірністю 9х9
      int i, j;
                                  //оголошення та визначення змінної лічильника
      for(i=0; i< n; i++)
                                               //цикл перебору рядків
             for(j=0; j<n; j++)
                                               //цикл перебору елементів рядка
//умова для запису значення "1"
                    if(i = 0 \parallel i = n-1 \parallel j = 0 \parallel j = n-1 \parallel i = j \parallel i+j = n-1)
                           Arr[i][j]=1;
                                               //визначення поточного елементу
                                               //інакше, запис значення "0"
                    else
                           Arr[i][j]=0;
                                               //визначення поточного елемента
      for(i=0; i < n; i++)
                                               //цикл перебору рядків
             for(j=0; j< n; j++)
                                               //цикл перебору елементів рядка
                    printf("%2i ", Arr[i][j]); //вивід поточного елемента
             printf("\r\n");
                                               //перехід на новий рядок
}
     Результат роботи програми буде наступним:
            110000011
                 10100010
                     10010100
                          10001000
                              10010100
                                   10100010
                                        110000011
                                            111111111
       1111111111
```

Питання для підготовки до захисту лабораторної роботи

- 1) Які види багатовимірних масивів є найбільш поширеними?
- 2) Для чого застосовуються багатовимірні масиви?
- 3) За якими правилами можна пов' язувати елементи діагоналей матриці?
- 4) Як отримати доступ до елемента багатовимірного масиву?
- 5) Застосування яких операторів спрощує роботу з масивами?
- 6) Яка умова дозволяє вибірково заповнювати елементи правої діагоналі матриці?