Activité 07 Actions réciproques

Document 1 : principe des actions réciproques (3ème loi de Newton)

Si deux corps sont en interaction, la force exercée par le corps A sur le corps B est de même valeur, de même direction et de sens opposé à celle exercée par le corps B sur A.

Document 2

Dans un spectacle « capilotracté », deux femmes sont suspendues à des câbles via un anneau d'accrochage

Document 3 : le dynamomètre

Edmé Régnier (1751-1825) était un arquebusier (arme à feu) devenu mécanicien, ingénieur et inventeur. Il inventa le dynamomètre, capable de mesurer une force grâce à un ressort.

Développement du dynamomètre Régnier

Dynamomètre de Régnier exposé au musée des Arts et Métiers à Paris

Dynamomètres d'aujourd'hui

Matériel disponible :

- o Dynamomètre
- Crochet
- o Potence
- o Masse marquée de 50 g
- o On prendra l'intensité de la pesanteur de 9,81 N/kg
- Proposer un protocole permettant de vérifier la troisième loi de Newton entre la masse marquée et le crochet du dynamomètre.

Ana

Attention	n, il faudra t						_
éa							
ea							
	ainsi que l	ous l'expé es vecteu		une éche	lle adapté	e pour la	
forces a	ainsi que l			une éche	lle adapté	ée pour la	
forces a	ainsi que l			une éche	lle adapté	ée pour la	
forces a	ainsi que l			une éche	lle adapté	ée pour la	
forces a	ainsi que l			une éche	lle adapté	ée pour la	
forces a	ainsi que l			une éche	lle adapté	e pour la	
forces a	ainsi que l			une éche	lle adapté	ée pour la	
forces a	ainsi que l			une éche	lle adapté	ée pour la	
forces a	ainsi que l			une éche	lle adapté	ée pour la	
forces a	ainsi que l			une éche	lle adapté	ée pour la	
forces a	ainsi que l			une éche	lle adapté	ée pour la	
forces a	ainsi que l			une éche	lle adapté	e pour la	

)				