The Decomposition in Block Terms

Lieven De Lathauwer

CNRS ETIS - Cergy-Pontoise France delathau@ensea.fr

Tucker's decomposition and best rank- (R_1,R_2,R_3) approximation

PARAFAC

Decomposition in rank-(L,L,1) terms

Uniqueness

$$\min(\left\lfloor \frac{I_1}{L} \right\rfloor, R) + \min(\left\lfloor \frac{I_2}{L} \right\rfloor, R) + \min(I_3, R) \geqslant 2R + 2$$
 cf.
$$\min(I_1, R) + \min(I_2, R) + \min(I_3, R) \geqslant 2R + 2 \quad \text{(PARAFAC)}$$

Decomposition in rank- $(L_r, L_r, 1)$ terms

Decomposition in rank- (R_1, R_2, R_3) **terms**

L. De Lathauwer

Decomposition in rank-(2,2,2) **terms**

Not unique:

$$\mathcal{A} = S_1 + S_2
= (U_1 \circ V_1 \circ W_1 + U_2 \circ V_2 \circ W_2) + (U_3 \circ V_3 \circ W_3 + U_4 \circ V_4 \circ W_4)
= (U_1 \circ V_1 \circ W_1 + U_3 \circ V_3 \circ W_3) + (U_2 \circ V_2 \circ W_2 + U_4 \circ V_4 \circ W_4)
= \tilde{S}_1 + \tilde{S}_2$$

Decomposition in rank-(2, 2, 3) terms:

unique if

$$\left\lfloor \frac{I_1}{2} \right\rfloor + \left\lfloor \frac{I_2}{2} \right\rfloor + \left\lfloor \frac{I_3}{3} \right\rfloor \geqslant 2R + 2$$

Type-2 decomposition in rank- (R_1,R_2,\cdot) terms

Block Factor Analysis, a new concept for signal separation

A decomposition structure

 $(I_1 \times I_2 \times I_3)$ tensor \mathcal{A} :

- rank
- generalization SVD
- typical rank
- degeneracy
- complex factors cf. [Kaporin, '05]

ALS algorithm

Decomposition in rank- (R_1, R_2, R_3) terms:

$$\mathbf{M}(\{\mathbf{U}_r^{(2)}\}, \{\mathbf{U}_r^{(3)}\})X = A$$

$$x(1:I_1R_2R_3) \sim \mathbf{U}_1^{(1)} \cdot \mathbf{S}^{(1)}$$

 $(I_1 \times R_1)(R_1 \times R_2R_3)$

Perspectives

- Simultaneous matrix decompositions
- Enhanced line search
- Levenberg-Marquardt
- Model order and model structure selection