Video 28: Summations

- Sum and Product Notation
- Closed formula for geometric series
- Important summation formulae

Summation Notation

Given a sequence $\{a_n\} = \{a_1, a_2, a_3, ...\}$

The notations

$$\sum_{j=m}^{n} a_j \qquad \sum_{j=m}^{n} a_j \qquad \sum_{m \le j \le n} a_j$$

denote the sum of the terms $a_m, a_{m+1}, ..., a_n$

$$a_m + a_{m+1} + \dots + a_n$$

The variable j is called the **index of summation**. It runs through all the integers starting with its **lower limit** m and ending with its **upper limit** n.

Example

$$r^{0} + r^{1} + r^{2} + r^{3} + \dots + r^{n} = \sum_{j=0}^{n} r^{j}$$

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \sum_{i=1}^{\infty} \frac{1}{i}$$

The upper limit can be infinite!

Summation over Sets

More generally for a set S we can denote

$$\sum_{j \in S} a_j$$

Example:

If
$$S = \{2, 5, 7, 10\}$$
 then $\sum_{j \in S} a_j = a_2 + a_5 + a_7 + a_{10}$

Product Notation

Given a sequence $\{a_n\} = \{a_1, a_2, a_3, \dots\}$

The notations

$$\prod_{j=m}^{n} a_j \qquad \prod_{j=m}^{n} a_j \qquad \prod_{m \le j \le n} a_j$$

denote the product of the terms $a_m, a_{m+1}, \ldots, a_n$

$$a_m \times a_{m+1} \times \cdots \times a_n$$

Sums as Sequences

We may define a sequence $\{s_n\}$ by a summation formula

$$s_n = \sum_{j=0}^n f(j)$$

An important task is to find a **closed formula** s(n) such that $s(n) = s_n$

Important Summation Formulae

TABLE	Some Useful Summation Formulae.
	Bonic Osciul Summanom Pormuac.

Sum	Closed Form
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

We will be able to prove these using induction.

We will be able to prove these using generating functions

Summary

- Sum and Product Notation
- Important summation formulae

Telescoping given
$$a_{0,1}, a_{n} : \sum_{j=1}^{n} (a_{j} - a_{j-1}) = a_{n} - a_{0}$$

Proof: $\sum_{j=n}^{n} (a_{j} - a_{j-1}) = \sum_{j=1}^{n-1} a_{j} + a_{n} - \sum_{j=1}^{n-1} a_{j-1} = \sum_{j=1}^{n-1} a_{j} + a_{n} - \sum_{j=0}^{n-1} a_{j} = \sum_{j=0}^{n-1} a_{j} + a_{n} - \sum_{j=0}^{n-1} a_{j} = a_{n} - a_{0}$

Example: set a; = j2

Then
$$a_{j} - a_{j-1} = j^{2} - (j-1)^{2} = 2j - 1$$

Therefore $\sum_{j=1}^{n} 2j - 1 = n^{2} \quad (a_{n} = n^{2}, a_{0} = 0^{2})$

sum of odd numbers up to 2n-1 is n2