Let X^+ , $X^+ \sim N(\mu_{X^+}, \sigma^2)$ be response in subgroup A^+ , and X^- , $X^- \sim N(\mu_{X^-}, \sigma^2)$ be response in subgroup A^- . Let n_1 and n_2 be the sample sizes in A- and A+ subgroups. Denote \overline{X}^+ to be the sample average of responses in the biomarker positive subgroup and \overline{X}^- be the sample average of responses in the biomarker negative subgroup.

$$\left(\frac{\overline{X}^{+}}{\overline{X}^{-}} \right) \sim \left(N \begin{pmatrix} \mu_{X^{+}} \\ \mu_{X^{-}} \end{pmatrix}, \begin{pmatrix} \frac{\sigma^{2}}{n_{1}} & 0 \\ 0 & \frac{\sigma^{2}}{n_{2}} \end{pmatrix} \right)$$

We apply isotonic regression when $\overline{X}^- > \overline{X}^+$. Let $p = n_1 / (n_1 + n_2)$ be the sampling proportion of A^+ in the cohort, Then the sample average in the pooled sample of A^+ and A^- is $X = p\overline{X}^+ + (1-p)\overline{X}^-$. We will keep the raw estimate if we observe $\overline{X}^+ \ge \overline{X}^-$.

The goal is to find the distribution of \overline{X}^+ and \overline{X}^- when $\overline{X}^+ \ge \overline{X}^ X^+ \ge X^-$, and the distribution of \overline{X} when $\overline{X}^- > \overline{X}^+$ $X^- > X^+$.

Now, let $W = \overline{X}^+ - \overline{X}^-$, the conditional distribution of $X^+ \mid W \ge 0$ can be derived from:

$$\begin{pmatrix} \overline{X}^+ \\ W \end{pmatrix} \sim \begin{pmatrix} N \begin{pmatrix} \mu_{X^+} \\ \mu_{X^+} - \mu_{X^-} \end{pmatrix}, \begin{pmatrix} \frac{\sigma^2}{n_1} & \frac{\sigma^2}{n_1} \\ \frac{\sigma^2}{n_1} & \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2} \end{pmatrix} \tag{1}$$

Using the formula in the appendix B of the paper, we can calculate from (1) that:

$$\begin{split} E[\overline{X}^{+} \mid W \geq 0] &= E\left[E[\overline{X}^{+} \mid W \geq 0, W]\right] \\ &= E\left[\mu_{X^{+}} + \frac{\sqrt{\frac{\sigma^{2}}{n_{1}}}}{\sqrt{\frac{\sigma^{2}}{n_{1}} + \frac{\sigma^{2}}{n_{2}}}} \frac{\sigma^{2}}{\sqrt{\frac{n_{1}}{n_{1}}} + \frac{\sigma^{2}}{n_{2}}} (W - (\mu_{X^{+}} - \mu_{X^{-}})) \middle| W > 0\right] \\ &= E\left[\mu_{X^{+}} + \frac{\frac{\sigma^{2}}{n_{1}}}{\sqrt{\frac{\sigma^{2}}{n_{1}} + \frac{\sigma^{2}}{n_{2}}}} \frac{W - (\mu_{X^{+}} - \mu_{X^{-}})}{\sqrt{\frac{\sigma^{2}}{n_{1}} + \frac{\sigma^{2}}{n_{2}}}} \middle| \frac{W - (\mu_{X^{+}} - \mu_{X^{-}})}{\sqrt{\frac{\sigma^{2}}{n_{1}} + \frac{\sigma^{2}}{n_{2}}}} > \frac{-(\mu_{X^{+}} - \mu_{X^{-}})}{\sqrt{\frac{\sigma^{2}}{n_{1}} + \frac{\sigma^{2}}{n_{2}}}} \right] \\ &= \mu_{X^{+}} + \frac{\frac{\sigma^{2}}{n_{1}}}{\sqrt{\frac{\sigma^{2}}{n_{1}} + \frac{\sigma^{2}}{n_{2}}}} E\left[Z|Z > \frac{-(\mu_{X^{+}} - \mu_{X^{-}})}{\sqrt{\frac{\sigma^{2}}{n_{1}} + \frac{\sigma^{2}}{n_{2}}}}\right] \\ &= \mu_{X^{+}} + \sigma\sqrt{\frac{n_{2}}{(n_{1} + n_{2})n_{1}}} E\left[Z|Z > \frac{-(\mu_{X^{+}} - \mu_{X^{-}})}{\sqrt{\frac{\sigma^{2}}{n_{1}} + \frac{\sigma^{2}}{n_{2}}}}\right] \end{split}$$

where Z is a standard normal random variable and define

$$h_m(t) = E[Z^m \mid Z \ge t] = \{1 - \Phi(t)\}^{-1} \int_{t}^{+\infty} u^m \phi(u) du$$

m = 1,2, where $\phi(.)$ is the density function of a standard normal random variable and $\Phi(.)$ is the corresponding cumulative distribution function. Then

$$E[\overline{X}^{+} | W \ge 0] = \mu_{X^{+}} + \sigma \sqrt{\frac{n_{2}}{(n_{1} + n_{2})n_{1}}} h_{1}(w^{*}),$$

where $w^* = \frac{-(\mu_{X^+} - \mu_{X^-})}{\sqrt{\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}}}$, and the conditional variance is

$$Var[\overline{X}^{+} \mid W \ge 0] = \frac{\sigma^{2}}{n_{1}} \left[1 - \frac{n_{2}}{n_{1} + n_{2}} \left\{ 1 - h_{2}(w^{*}) + \left(h_{1}(w^{*}) \right)^{2} \right\} \right].$$

Similarly, the joint distribution of $X^- \mid W \ge 0$ is derived from the joint distribution

$$\begin{pmatrix} \overline{X}^- \\ W \end{pmatrix} \sim N \begin{pmatrix} \mu_{X^-} \\ \mu_{X^+} - \mu_{X^-} \end{pmatrix}, \begin{pmatrix} \frac{\sigma^2}{n_2} & -\frac{\sigma^2}{n_2} \\ -\frac{\sigma^2}{n_2} & \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2} \end{pmatrix} \tag{2}$$

Using similar method outlined above, we can get:

$$E[\overline{X}^{-} | W \ge 0] = \mu_{X^{-}} - \sigma \sqrt{\frac{n_{1}}{(n_{1} + n_{2})n_{2}}} h_{1}(w^{*}),$$

where $w^* = \frac{-(\mu_{X^+} - \mu_{X^-})}{\sqrt{\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}}}$, and the conditional variance is

$$Var[\overline{X}^{-} | W \ge 0] = \frac{\sigma^{2}}{n_{2}} \left[1 - \frac{n_{1}}{n_{1} + n_{2}} \left\{ 1 - h_{2}(w^{*}) + \left(h_{1}(w^{*}) \right)^{2} \right\} \right].$$

The joint distribution related to $X \mid W < 0$ is

$$\begin{pmatrix} X \\ W \end{pmatrix} \sim N \left(\begin{pmatrix} \frac{n_1}{n_1 + n_2} \mu_{X^+} + \frac{n_2}{n_1 + n_2} \mu_{X^-} \\ \mu_{X^+} - \mu_{X^-} \end{pmatrix}, \begin{pmatrix} \frac{\sigma^2}{n_1 + n_2} & 0 \\ 0 & \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2} \end{pmatrix} \right)$$
(3)

We find that they are independent random variable. Thus, we can write the conditional mean and variance as

$$E[X \mid W < 0] = \frac{n_1}{n_1 + n_2} \mu_{X^+} + \frac{n_2}{n_1 + n_2} \mu_{X^-},$$

$$Var[X | W < 0] = \frac{\sigma^2}{n_1 + n_2}$$

Note that, from Johnson and Kotz (1970, pp 81-83), $h_1(t) = \phi(t)/\{1-\Phi(t)\}$ and $h_2(t) = 1+t\times h_1(t)$. Under the null hypothesis, $\mu_{X^+} = \mu_{X^-}$, thus w=0, $h_1(0) = 2\phi(0)$ and $h_2(0) = 1$. Thus, do not pull the response rate,

$$E[\overline{X}^{+} | W \ge 0] = \mu_{X^{+}} + 2\phi(0)\sigma\sqrt{\frac{n_{2}}{(n_{1} + n_{2})n_{1}}}$$

$$Var[\overline{X}^{+} | W \ge 0] = \frac{\sigma^{2}}{n_{1}} \left[1 - 4\phi^{2}(0) \frac{n_{2}}{n_{1} + n_{2}} \right]$$

$$E[\overline{X}^{-} | W \ge 0] = \mu_{X^{-}} - 2\phi(0)\sigma\sqrt{\frac{n_{1}}{(n_{1} + n_{2})n_{2}}}$$

$$Var[\overline{X}^{+} | W \ge 0] = \frac{\sigma^{2}}{n_{1}} \left[1 - 4\phi^{2}(0) \frac{n_{1}}{n_{1} + n_{2}} \right]$$