Calling Functions - Scoping - Practice file

In-class practice

Marcus Birkenkrahe (pledged)

January 15, 2023

README

This file covers the lecture "Calling Functions - Scoping" in the Advanced Introduction to Data Science course (DSC 205):

- Scoping rules
- Environments: global, local
- Search path
- Reserved names

Most of this material can be found in Davies, Book of R, Chapter 9. Solutions can be found in GitHub (PDF).

DONE Identify and pledge yourself

- 1. In Emacs, replace the placeholder [yourname] at the top of this file by your own name and write (pledged) next to it
- 2. Go with the cursor on the headline and hange the TODO label to DONE by entering S-<right> ("Shift + right-arrow").

DONE Scoping

Example: data as an argument, and as a function -

1. create a row-wise 3x3 matrix of the numbers {1..9}

2. list all datasets in the built-in dataset ToothGrowth

```
matrix(
  data=1:9,
  nrow=3,
  ncol=3,
  byrow=TRUE)
data(ToothGrowth)
str(ToothGrowth)
head(ToothGrowth, n=3)
     [,1] [,2] [,3]
[1,]
             2
             5
[2,]
                  6
[3,]
'data.frame': 60 obs. of 3 variables:
 $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
 $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
$ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
   len supp dose
1 4.2
         VC
             0.5
2 11.5
         VC
            0.5
3 7.3
         VC 0.5
```

DONE Global environments

Example: create three new objects and confirm their existence in the global environment:

- 1. a numeric variable foo
- 2. a character variable bar
- 3. an anonymous (non-argument) function hello
- 4. check the global environment
- 5. run hello

```
foo <- 3
foo</pre>
```

```
bar <- "Pedro"
bar
hello <- function() print("Hello, Marcus")
ls()
hello()

[1] 3
[1] "Pedro"
[1] "bar" "foo" "hello" "ToothGrowth"
[1] "Hello, Marcus"</pre>
```

${\bf CANCELLED\ Package\ environments\ and\ name spaces}$

1. List the content of built-in data set datasets (no functions)

ls("package:datasets")

[1]	"ability.cov"	"airmiles"	"AirPassengers"
[4]	"airquality"	"anscombe"	"attenu"
[7]	"attitude"	"austres"	"beaver1"
[10]	"beaver2"	"BJsales"	"BJsales.lead"
[13]	"B0D"	"cars"	"ChickWeight"
[16]	"chickwts"	"co2"	"C02"
[19]	"crimtab"	"discoveries"	"DNase"
[22]	"esoph"	"euro"	"euro.cross"
[25]	"eurodist"	"EuStockMarkets"	"faithful"
[28]	"fdeaths"	"Formaldehyde"	"freeny"
[31]	"freeny.x"	"freeny.y"	"HairEyeColor"
[34]	"Harman23.cor"	"Harman74.cor"	"Indometh"
[37]	"infert"	"InsectSprays"	"iris"
[40]	"iris3"	"islands"	"JohnsonJohnson"
[43]	"LakeHuron"	"ldeaths"	"lh"
[46]	"LifeCycleSavings"	"Loblolly"	"longley"
[49]	"lynx"	"mdeaths"	"morley"
[52]	"mtcars"	"nhtemp"	"Nile"
[55]	"nottem"	"npk"	"occupationalStatus"
[58]	"Orange"	"OrchardSprays"	"PlantGrowth"
[61]	"precip"	"presidents"	"pressure"
[64]	"Puromycin"	"quakes"	"randu"
[67]	"rivers"	"rock"	"Seatbelts"

[70]	"sleep"	"stack.loss"	"stack.x"
[73]	"stackloss"	"state.abb"	"state.area"
[76]	"state.center"	"state.division"	"state.name"
[79]	"state.region"	"state.x77"	"sunspot.month"
[82]	"sunspot.year"	"sunspots"	"swiss"
[85]	"Theoph"	"Titanic"	"ToothGrowth"
[88]	"treering"	"trees"	"UCBAdmissions"
[91]	"UKDriverDeaths"	"UKgas"	"USAccDeaths"
[94]	"USArrests"	"UScitiesD"	"USJudgeRatings"
[97]	"USPersonalExpenditure"	"uspop"	"VADeaths"
[100]	"volcano"	"warpbreaks"	"women"
[103]	"WorldPhones"	"WWWusage"	

$2. \ \, {\rm List}$ the visible objects of the ${\tt graphics}$ package:

ls("package:graphics")

[1]	"abline"	"arrows"	"assocplot"	"axis"
[5]	"Axis"	"axis.Date"	"axis.POSIXct"	"axTicks"
[9]	"barplot"	"barplot.default"	"box"	"boxplot"
[13]	"boxplot.default"	"boxplot.matrix"	"bxp"	"cdplot"
[17]	"clip"	"close.screen"	"co.intervals"	"contour"
[21]	"contour.default"	"coplot"	"curve"	"dotchart"
[25]	"erase.screen"	"filled.contour"	"fourfoldplot"	"frame"
[29]	"grconvertX"	"grconvertY"	"grid"	"hist"
[33]	"hist.default"	"identify"	"image"	"image.default"
[37]	"layout"	"layout.show"	"lcm"	"legend"
[41]	"lines"	"lines.default"	"locator"	"matlines"
[45]	"matplot"	"matpoints"	"mosaicplot"	"mtext"
[49]	"pairs"	"pairs.default"	"panel.smooth"	"par"
[53]	"persp"	"pie"	"plot"	"plot.default"
[57]	"plot.design"	"plot.function"	"plot.new"	"plot.window"
[61]	"plot.xy"	"points"	"points.default"	"polygon"
[65]	"polypath"	"rasterImage"	"rect"	"rug"
[69]	"screen"	"segments"	"smoothScatter"	"spineplot"
[73]	"split.screen"	"stars"	"stem"	"strheight"
[77]	"stripchart"	"strwidth"	"sunflowerplot"	"symbols"
[81]	"text"	"text.default"	"title"	"xinch"
[85]	"xspline"	"xyinch"	"yinch"	

3. Load (after installation in the R console buffer) the dplyr package and run the function dplyr::filter.

```
library(dplyr)
dplyr::filter

function (.data, ..., .preserve = FALSE)
{
    UseMethod("filter")
}
<bytecode: 0x0000016a25a7d808>
<environment: namespace:dplyr>
```

DONE Local or lexical environments

```
argument: "OMG", "LOL", "WTF", "YOLO".

youthspeak <- matrix(
  data=c("OMG", "LOL", "WTF", "YOLO"),
  nrow=2)
youthspeak</pre>
```

Example: create a 2x2 matrix named youthspeak and pass as data in the

```
[,1] [,2]
[1,] "OMG" "WTF"
[2,] "LOL" "YOLO"
```

DONE Search Path

1. You can view the search path with search():

```
search()
```

```
[1] ".GlobalEnv" "package:car" "package:carData"
[4] "package:dplyr" "ESSR" "package:stats"
[7] "package:graphics" "package:grDevices" "package:utils"
[10] "package:datasets" "package:methods" "Autoloads"
[13] "package:base"
```

2. Example: create a vector of 5 elements with values between 0 and 3 with seq, and print it:

```
seq(from=0,to=3,length.out=5)
[1] 0.00 0.75 1.50 2.25 3.00
```

- 3. You can look up the environment of any function using environment, e.g.
 - seq
 - abline
 - filter

```
environment(seq)
environment(abline)
environment(filter)
```

```
<environment: namespace:base>
<environment: namespace:graphics>
<environment: namespace:dplyr>
```

4. When a package is loaded with library, it is inserted in the search path right after the global environment, along with all its dependencies: load the package car and print the search path.

```
library(car)
search()
```

```
[1] ".GlobalEnv" "package:car" "package:carData"
[4] "package:dplyr" "ESSR" "package:stats"
[7] "package:graphics" "package:grDevices" "package:utils"
[10] "package:datasets" "package:methods" "Autoloads"
[13] "package:base"
```

5. List the contents of the dependency, the dataset carData

```
ls('package:carData')
```

```
[1] "Adler"
                         "AMSsurvey"
                                              "Angell"
                                                                  "Anscombe"
                                              "BEPS"
 [5] "Arrests"
                         "Baumann"
                                                                  "Bfox"
                         "Burt"
                                                                  "CES11"
 [9] "Blackmore"
                                              "CanPop"
[13] "Chile"
                         "Chirot"
                                              "Cowles"
                                                                  "Davis"
[17] "DavisThin"
                         "Depredations"
                                              "Duncan"
                                                                  "Ericksen"
[21] "Florida"
                         "Freedman"
                                              "Friendly"
                                                                  "Ginzberg"
[25] "Greene"
                         "GSSvocab"
                                              "Guyer"
                                                                  "Hartnagel"
[29] "Highway1"
                         "KosteckiDillon"
                                              "Leinhardt"
                                                                  "LoBD"
[33] "Mandel"
                                              "Moore"
                         "Migration"
                                                                  "MplsDemo"
[37] "MplsStops"
                         "Mroz"
                                              "OBrienKaiser"
                                                                  "OBrienKaiserLong"
[41] "Ornstein"
                         "Pottery"
                                              "Prestige"
                                                                  "Quartet"
[45] "Robey"
                         "Rossi"
                                              "Sahlins"
                                                                  "Salaries"
[49] "SLID"
                         "Soils"
                                              "States"
                                                                  "TitanicSurvival"
                         "UN"
                                              "UN98"
                                                                  "USPop"
[53] "Transact"
[57] "Vocab"
                         "WeightLoss"
                                                                  "Womenlf"
                                              "Wells"
                         "Wool"
                                              "WVS"
[61] "Wong"
```

- 6. An error is thrown if you request a function or object
 - that you haven't **defined**,
 - that doesn't **exist**,

NaN <- 5

• that is in a contributed package that you've forgotten to load

```
neither.here() # undefined function
nor.there # undefined object

Error in neither.here() : could not find function "neither.here"
Error: object 'nor.there' not found
```

DONE Reserved and protected names

1. What happens when you assign a value to an NaN?

```
Error in NaN <- 5 : invalid (do_set) left-hand side to assignment
```

2. Since R is case-sensitive, you can assign values to case variants of these keywords, causing much confusion:

```
nan <- "this"
inf <- "is"
Null <- "very"
False <- "confusing"
paste(nan,inf,Null,False)
[1] "this is very confusing"</pre>
```

3. T and F can also be overwritten - don't do it since they are the abbreviations for TRUE and FALSE:

```
T <- FALSE
F <- TRUE
paste(T, "is", F)
paste("2+2=5 is", (2+2==5)==T)
(2+2==5)==TRUE

[1] "FALSE is TRUE"
[1] "2+2=5 is TRUE"
[1] FALSE</pre>
```

4. With all these confusing changes, clear the global environment now!

TODO Wow! Congratulations!

Well done! You've reached the end of the first in-class practice file.

If you've completed all steps, you upload the Org-mode file to Canvas (see Assignments > In-class practice).