The listing of claims presented below replaces all prior versions and listing of claims in the application.

Listing of claims:

(Currently amended) A compound represented by the following general formula
 (I)

$$R_5$$
 R_5
 R_4
 R_7
 R_8
 R_8

wherein characterized in that R³ is selected from the group consisting of H, carboxyl, alkyloxycarbonyl, 5'-(phenyloxadiazol-2'-yl), 5'-(pyridyl-4"-oxadizol-2'-yl),

c_{6H3}, CONHR₉, wherein R₉ is selected from the group consisting of C₂-C₈ fatty acid, benzoxamido, isonicotinamido, un-substituted or mono- or multi-substituted phenyl wherein the substituent is selected from the group consisting of may be hydroxyl, C₁-C₈ alkoxyl, CF₃, carboxyl, alkyloxycarbonyl, OCH₂CO₂H, NO₂, halogen, SO₃H, SO₂NHR₁₁, wherein R₁₁ is selected from the group consisting of hydrogen, amidino, 2"-thiazolyl, 3"-(5"-methylisooxazolyl), 2"-pyrimidinyl, 2"-(4", 6"-dimethylpyrimidinyl), 4"-(5", 6"-dimethoxypyrimidinyl);

R₄ is selected from the group consisting of hydrogen, CONHR₁₀, wherein R₁₀ is selected from the group consisting of C₂-C₈ fatty acid, benzoxamido, isonicotiniamido, un-substituted, mono- or multi-substituted phenyl wherein the substituent may be hydroxyl, C₁-C₈ alkoxyl, CF₃, carboxyl, alkoxycarbonyl, OCH₂CO₂H, NO₂, halogen, SO₃H, SO₂NHR₁₂, wherein R₁₂ is selected from the group consisting of H, amidino, 2"-thiazolyl, 3"-(5"-methylisooxazolyl), 2"-pyrimidinyl, 2"-(4", 6"-dimethyl- pyrimidinyl), 4"-(5", 6"-dimethoxy pyrimidinyl);

R₅ is selected from the group consisting of H, and C₁-C₄ alkyl;

R₆ is selected from the group consisting of H, C₁-C₁₂ alkyl, halogen, NO₂, and CONHR₁₃, wherein R₁₃ is substituted phenyl;

R₇ is selected from the group consisting of H, hydroxyl, C₁-C₄ alkyl or alkoxyl, carboxylalkylenoxyl, <u>and</u> OCH₂CONHR₁₄, wherein R₁₄ is selected from the group consisting of un-substituted, mono- or multi- substituted phenyl wherein the substituent <u>may be is selected from the group consisting of hydroxyl</u>, OCH₃, CF₃, CO₂H, CO₂C₂H₅, and NO₂; <u>and</u>

 R_8 is selected from the group consisting of H, C_1 - C_4 alkyl or alkoxyl, NO_2 ; provided that wherein, in case that R_3 , R_5 and R_5 are H and R_7 is OH, R_4 and R_7 are not groups selected from H, C_{1-6} alkyl or C_{1-6} alkoxy.

2. (Currently amended) The compound according to claim 1, wherein characterized in that R₃ is selected from the group consisting of H, COOH, CO₂C₂H₅, 5'-

(phenyloxadiazol-2'-yl), 5'-(pyridyl-4"-oxadizol-2')-yl, oxadizol-2')-yl, oxadizol-2', oxadizol-2')-yl, oxadizol-2')-yl, oxadizol-2')-yl, oxadizol-2', oxadizol-2')-yl, oxadizol-2')-yl, oxadizol-2')-yl, oxadizol-2', oxadizol-2')-yl, oxadizol-2')-yl, oxadizol-2', oxadizol-2', oxa

 R_4 is selected from the group consisting of H, CONHR₁₀, wherein R_{10} is selected from the group consisting of H, 4'-CO₂H- phenyl, 4'-CO₂C₂H₅phenyl, and 3'-CF₃-phenyl;

R₅ is selected from the group consisting of H, and CH₃;

R₆ is selected from the group consisting of H, C₂H₅, n-C₆H₁₃, NO₂, NH₂, Cl, Br, and CONHR₁₃, wherein R₁₃ is selected from the group consisting of 4-benzoic acid and ethyl 4-benzoate;

R₇ is selected from the group consisting of H, OH, CH₃, OCH₃, and OCH₂CONHR₁₄, wherein R₁₄ is selected from the group consisting of phenyl, o-, m- and p-hydroxyphenol, o-, m- and p-carboxylphenyl, m- and p-ethoxycarbonylphenyl, m-CF₃-phenyl, m-CF₃-p-NO₂-phenyl, p-CH₃O-phenyl, 4-salicylyl, and 3-salicylyl; and

R₈ is selected from the group consisting of H, CH₃, OCH₃, and NO₂;

provided that, in case that when R_3 , R_5 and R_5 are H and R_7 is OH, R_4 and R_7 are not groups selected from H, C_{1-6} alkyl or C_{1-6} alkoxy.

3. (Currently amended) The compound according to claim 1, wherein characterized in that the compound of formula I is represented by the following general formula (Ia)

$$R_6$$
 R_8
 R_8
 R_8
 R_8

wherein R_4 , R_5 , R_6 , R_7 , and R_8 are as defined in claim 1, and

R is selected from the group consisting of

$$R=(CH_2)_3CO_2H$$
, NHCO , and C_6H_5

4. (Currently amended) The compound according to claim 1, eharacterized in that wherein the compound of formula I is represented by the following general formula (Ib)

$$R_{6}$$
 R_{7}
 R_{8}
 R_{8}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}
 R_{15}
 R_{15}

wherein R₄, R₅, R₆, R₇, R₈, are as defined in claim 1,

R'2 is selected from the group consisting of H, OH, CO2H,

R'₃ is selected from the group consisting of H, OH, CO₂H, CF₃, OCH₂CO₂H,

R'4 is selected from the group consisting of H, OH, CO2H, CO2Et, iodo, NO2,

R'5, R'6 are each H.

5. (Currently amended) The compound according to claim 2, wherein characterized in

that R₃, R₄, R₅, R₆, R₇, and R₈ are respectively selected from one of the combinations in the following group consisting of:

R₃=p-CO₂H-phenylamidocarbonyl, R₄=R₅=R₆=R₈=H, R₇=OCH₃;

R₃=m-CO₂H-phenylamidocarbonyl, R₄=R₅=R₆=R₈=H, R₇=OCH₃;

R₃=0-CO₂H-phenylamidocarbonyl, R₄=R₅=R₆=R₈=H, R₇=OCH₃;

 $R_3=0$ -OH-phenylamidocarbonyl, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

R₃=m-OH-phenylamidocarbonyl, R₄=R₅=R₆=R₈=H, R₇=OCH₃;

 R_3 =p-OH-phenylamidocarbonyl, R_4 = R_5 = R_6 = R_8 =H, R_7 =OC H_3 ;

 $R_3=m-OH-p-CO_2H-phenylamidocarbonyl, R_4=R_5=R_6=R_8=H, R_7=OCH_3;$

R₃=m-CO₂H-p-OH-phenylamidocarbonyl, R₄=R₅= R₆=R₈=H, R₇=OCH₃;

R₃=0-CO₂H-p-I-phenylamidocarbonyl, R₄=R₅=R₆=R₈=H, R₇=OCH₃;

R₃=4'-ethoxycarbonylphenylamidocarbonyl, R₄=R₅=R₆=R₈=H, R₇=OCH₃;

 $R_3=m-CF_3$ -phenylamidocarbonyl, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

 $R_3=m-CF_3-p-NO_2-phenylamidocarbonyl, R_4=R_5=R_6=R_8=H, R_7=OCH_3$;

R₃=4'-amidosulfonylphenylamidocarbonyl, R₄=R₅= R₆=R₈=H, R₇=OCH₃;

R₃=4'-guanidinosulfonylphenylamidocarbonyl, R₄=R₅=R₆=R₈=H, R₇=OCH₃;

 $R_3=4$ '-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

 $R_3=4$ '-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, $R_4=R_5=R_6=R_8=H$,

 $R_7 = OCH_3$;

 R_3 =4'-[2"-(4", 6"-dimethylpyrimidinylamidosulfonyl)] henylamidocarbonyl, R_4 = R_5 = R_6 = R_8 =H, R_7 = OCH_3 ;

```
R_3=4'-(5",6"-dimethoxypyrimidinyl-4"-amidosulfonyl)phenylamidocarbonyl, R_4=R_5= R_6=R_8=H, R_7=OCH_3;
```

 R_3 =4'-(5"-methyl-isooxazol-3"-amidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = R_6 = R_8 =H, R_7 =OCH $_3$;

R₃=p-OCH₃-phenylamidocarbonyl, R₄=R₅=R₆=R₈=H, R₇=OCH₃;

R₃=p-SO₃H-phenylamidocarbonyl, R₄=R₅=R₆=R₈=H, R₇=OCH₃;

 $R_3 = p-CO_2H$ -phenylamidocarbonyl, $R_4 = R_5 = R_8 = H$, $R_6 = C_2H_5$, $R_7 = OCH_3$;

 $R_3=m-CO_2H$ -phenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;

 $R_3=0-CO_2H$ -phenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;

 R_3 =p-OH-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2H_5 , R_7 =OCH₃;

 R_3 =m-OH-p-CO₂H-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2 H₅, R_7 =OCH₃;

 R_3 =m-CO₂H-p-OH-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2 H₅, R_7 =OCH₃;

 R_3 =4'-ethoxycarbonylphenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2H_5 , R_7 = OCH_3 ;

 $R_3=m-CF_3$ - phenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;

 $R_3=m-CF_3-4-NO_2$ - phenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;

 $R_3=4$ '-amidosulfonylphenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;

 $R_3=4$ '-guanidinosulfonylphenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;

 $R_3=4$ '-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=C_2H_5$,

 $R_7 = OCH_3$;

 R_3 =4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2H_5 , R_7 = OCH_3 ;

R₃=4'-(4", 6"-dimethylpyrimidinyl-2'-amidosulfonyl) phenylamidocarbonyl,

 $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;

R₃=4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl) phenylamidocarbonyl,

 $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;

 $R_3 = 4 \text{'-}(5\text{''}-CH_3\text{-isooxazol-3''}-amidosulfonyl) phenylamidocarbonyl, } R_4 = R_5 = R_8 = H, R_6 = R_8 = R_8$

 C_2H_5 , $R_7=OCH_3$;

 R_3 =p-OCH₃-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2 H₅, R_7 =OCH₃;

 R_3 =p-SO₃H-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 = C_2 H₅, R_7 =OCH₃;

R₃=p-CO₂H-phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

R₃=m-CO₂H-phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

 $R_3=0$ - CO_2H -phenylamidocarbonyl, $R_4=R_5=R_6=H$, $R_7=OCH_3$, $R_8=CH_3$;

 R_3 =m-OH-p-CO₂H-phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 =OCH₃, R_8 =CH₃;

R₃=m-CO₂H-p-OH-phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

 $R_3=0-CO_2H-p-I-phenylamidocarbonyl, R_4=R_5=R_6=H, R_7=OCH_3, R_8=CH_3$;

R₃=p-ethoxycarbophenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

R₃=m-CF₃-phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

R₃=m-CF₃-4-NO₂-phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

R₃=4'-amidosulfonylphenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

R₃=4'-guanidinosulfonylphenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈=CH₃;

R₃=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃,

 $R_8=CH_3;$

 R_3 =4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 = OCH_3 , R_8 = CH_3 ;

 R_3 =4'-(4", 6"-dimethylpyrimidinyl-2"-amidosulfonyl) phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 = OCH_3 , R_8 = CH_3 ;

 R_3 =4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl) phenylamidocarbonyl,

 $R_4=R_5=R_6=H, R_7=OCH_3, R_8=CH_3;$

R₃=4'-(5"-CH₃-isooxazol-3"-amidosulfonyl)phenylamidocarbonyl,

 $R_4=R_5=R_6=H, R_7=OCH_3, R_8=CH_3;$

R₃=p-OCH₃-phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=OCH₃, R₈= CH₃;

 $R_3=p-SO_3H$ -phenylamidocarbonyl, $R_4=R_5=R_6=H$, $R_7=OCH_3$ $R_8=CH_3$;

 $R_3 = p-CO_2H$ -phenylamidocarbonyl, $R_4 = R_5 = R_6 = H$, $R_7 = R_8 = OCH_3$;

 R_3 =m-OH-p-CO₂H-phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 = R_8 =OCH₃;

 $R_3=m$ - CO_2H -p-OH- phenylamidocarbonyl, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;

R₃=p-ethoxycarbophenylamidocarbonyl, R₄=R₅=R₆=H, R₇=R₈=OCH₃;

 $R_3=m-CF_3$ -phenylamidocarbonyl, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;

 R_3 =m-CF₃-p-NO₂-phenylamidocarbonyl, R_4 = R_5 = R_6 =H, R_7 = R_8 =OCH₃;

R₃=m-HO₂CCH₂O-phenylamidocarbonyl, R₄=R₅=R₆=H, R₇=R₈=OCH₃;

 $R_3=4$ '-amidosulfonylphenylamidocarbonyl, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;

 $R_3=4$ '-guanidinosulfonylphenylamidocarbonyl, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;

 R_3 =p-CO₂H-phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 =CH₃, R_7 = OCH₃;

 R_3 =m-CO₂H-phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 =CH₃, R_7 = OCH₃;

 $R_3=0$ - CO_2H -phenylamidocarbonyl, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;

R₃=0-OH-phenylamidocarbonyl, R₄=R₆=R₈=H, R₅=CH₃, R₇= OCH₃;

R₃=m-OH-phenylamidocarbonyl, R₄=R₆=R₈=H, R₅=CH₃, R₇= OCH₃;

 R_3 =p-OH-phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 = CH_3 , R_7 = OCH_3 ;

R₃=m-OH-p-CO₂H-phenylamidocarbonyl, R₄=R₆= R₈=H, R₅=CH₃ R₇= OCH₃;

R₃=m-CO₂H-p-OH-phenylamidocarbonyl, R₄=R₆=R₈=H, R₅=CH₃, R₇= OCH₃;

R₃=p-ethoxycarbophenylamidocarbonyl, R₄=R₆=R₈=H, R₅=CH₃, R₇=OCH₃;

 R_3 =m-CF₃-phenylamidocarbonyl, R_4 = R_6 = R_8 =H, R_5 = CH_3 , R_7 = OCH_3 ;

 $R_3=m-CF_3-p-NO_2$ -phenylamidocarbonyl, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;

R₃=4'-amidosulfonylphenylamidocarbonyl, R₄=R₆= R₈=H, R₅=CH₃, R₇=OCH₃;

R₃=4'-guanidinosulfonylphenylamidocarbonyl, R₄=R₆= R₈=H, R₅=CH₃, R₇= OCH₃;

R₃=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R₄=R₆=R₈=H, R₅=CH₃,

 $R_7=OCH_3$;

R₃=4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl,

 $R_4=R_6=R_8=H, R_5=CH_3, R_7=OCH_3;$

R₃=4'-(4", 6"-dimethylpyrimidinyl-2"-amidosulfonyl) phenylamidocarbonyl,

 $R_4=R_6=R_8=H, R_5=CH_3, R_7=OCH_3;$

 $R_3=4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl)$ phenylamidocarbonyl, $R_4=R_6=$

 $R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;

R₃=4'-(5"-CH₃-isooxazol-3"-amidosulfonyl)phenylamidocarbonyl,

 $R_4=R_6=R_8=H, R_5=CH_3, R_7=OCH_3;$

 $R_3=p-OCH_3$ -phenylamidocarbonyl, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;

R₃=p-CO₂H-phenylamidocarbonyl, R₄=R₅=R₈=H, R₆=Cl, R₇=OCH₃;

 R_3 =m-OH-p-CO₂H-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 =Cl, R_7 = OCH₃;

R₃=m-CO₂H-p-OH-phenylamidocarbonyl, R₄=R₅=R₈=H, R₆=Cl, R₇= OCH₃;

R₃=p-ethoxycarbophenylamidocarbonyl, R₄=R₅=R₈=H, R₆=Cl, R₇=OCH₃;

 R_3 =m-CF₃-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 =Cl, R_7 = OCH_3 ;

R₃=4'-amidosufonylphenylamidocarbonyl, R₄=R₅= R₈=H, R₆=Cl, R₇=OCH₃;

R₃='4-guanidinosulfonylphenylamidocarbonyl, R₄=R₅=R₈=H, R₆=Cl, R₇=OCH₃;

 R_3 =4'-(5",6"-dimethoxypyrimidinyl-4"-amidosulfonyl) phenylamidocarbonyl, R_4 = R_5 =

 $R_8=H, R_6=Cl, R_7=OCH_3;$

 R_3 =p-CO₂H-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 =Br, R_7 = OCH₃;

 R_3 =0-CO₂H-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 =Br, R_7 = OCH₃;

 R_3 =m-OH-p-CO₂H-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 =Br, R_7 = OCH₃;

 $R_3=0$ - CO_2H -p-I-phenylamidocarbonyl, $R_4=R_5=R_8=H$, $R_6=Br$, $R_7=OCH_3$;

 R_3 =p-ethoxycarbophenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 =Br, R_7 = OCH_3 ;

 $R_3 = m\text{-}CF_3\text{-}phenylamidocarbonyl,} \ R_4 = R_5 = R_8 = H, \ R_6 = Br, \ R_7 = OCH_3;$

 R_3 =4'-amidosufonylphenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 =Br, R_7 = OCH_3 ;

 $R_3 = p\text{-}OCH_3\text{-}phenylamidocarbonyl,} \ R_4 = R_5 = R_8 = H, \ R_6 = Br, \ R_7 = OCH_3;$

 R_3 =p-CO₂H-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 =n-Hex, R_7 =OCH₃;

 $R_3 = 0 - CO_2H - phenylamidocarbonyl, R_4 = R_5 = R_8 = H, R_6 = n - Hex, R_7 = OCH_3;$

 $R_3 \!\!=\!\! m\text{-OH-p-CO}_2 H\text{-phenylamidocarbonyl}, R_4 \!\!=\!\! R_5 \!\!=\!\! R_8 \!\!=\!\! H, R \!\!=\!\! Hex, R_7 \!\!=\!\! OCH_3;$

R₃=0-CO₂H-p-I-phenylamidocarbonyl, R₄=R₅= R₈=H, R₆=n-Hex, R₇=OCH₃;

 $R_3 \!\!=\!\! p\text{-ethoxycarbophenylamidocarbonyl}, R_4 \!\!=\!\! R_5 \!\!=\!\! R_8 \!\!=\!\! H, R_6 \!\!=\!\! Hex, R_7 \!\!=\!\! OCH_3;$

R₃= m-CF₃-phenylamidocarbonyl, R₄=R₅=R₈=H, R₆=Hexyl,

 $R_7 = OCH_3$;

 R_3 =4'-amidosulfonylphenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 =Hex, R_7 = OCH_3 ;

 R_3 =p-OCH₃-phenylamidocarbonyl, R_4 = R_5 = R_8 =H, R_6 =Hex, R_7 = OCH_3 ;

 $R_3=p-CO_2H$ -phenylamidocarbonyl, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;

R₃=m-CO₂H-phenylamidocarbonyl, R₄=R₅ =H, R₆=NO₂, R₇=R₈=OCH₃;

 R_3 =p-OCH₃-phenylamidocarbonyl, R_4 = R_5 =H, R_6 =NO₂, R_7 = R_8 =OCH₃;

 $R_3=m$ -OH-phenylamidocarbonyl, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;

 $R_3=0$ -OH-phenylamidocarbonyl, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;

 R_3 =p-ethoxycarbophenylamidocarbonyl, R_4 = R_5 =H, R_6 = NO_2 , R_7 = R_8 = OCH_3 ;

 $R_3 = m - OH - p - CO_2H - phenylamidocarbonyl, R_4 = R_5 = H, R_6 = NO_2, R_7 = R_8 = OCH_3;$

 $R_3 = m - CO_2H - p - OH - phenylamidocarbonyl, R_4 = R_5 = H, R_6 = NO_2, R_7 = R_8 = OCH_3;$

 $R_3=m-CF_3$ -phenylamidocarbonyl, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;

 R_3 =m-CF₃-p-NO₂-phenylamidocarbonyl, R_4 = R_5 =H, R_6 =NO₂, R_7 = R_8 =OCH₃;

 R_3 =4'-amidosufonylphenylamidocarbonyl, R_4 = R_5 =H, R_6 = NO_2 , R_7 = R_8 = OCH_3 ;

 $R_3=4$ '-guanidinosulfonylphenylamidocarbonyl, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;

R₃=4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl,

 $R_4=R_5=H, R_6=NO_2, R_7=R_8=OCH_3;$

R₃=4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl) phenylamidocarbonyl,

 $R_4=R_5=H, R_6=NO_2, R_7=R_8=OCH_3;$

R₃=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl,

 $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;

R₃=p-CO₂H-phenylamidocarbonyl, R₄=R₅=H, R₆=C₂H₅, R₇=OH, R₈=NO₂;

```
R_3=p-OCH_3-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R_3=m-OH-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R_3=0-OH-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R_3=p-ethoxycarbophenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R_3 = m - OH - p - CO_2H - phenylamidocarbonyl, R_4 = R_5 = H, R_6 = C_2H_5, R_7 = OH, R_8 = NO_2;
R_3=m-CO_2H-p-OH-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R_3=m-CF<sub>3</sub>- phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H<sub>5</sub>, R_7=OH, R_8=NO<sub>2</sub>;
R_3=4'-amidosulfonylphenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R<sub>3</sub>=4'-guanidinosulfonylphenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=C<sub>2</sub>H<sub>5</sub>, R<sub>7</sub>=OH, R<sub>8</sub>=NO<sub>2</sub>;
R<sub>3</sub>=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=C<sub>2</sub>H<sub>5</sub>, R<sub>7</sub>=OH,
R_8=NO_2;
R<sub>3</sub>=p-CO<sub>2</sub>H-phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=C<sub>2</sub>H<sub>5</sub>, R<sub>7</sub>=OCH<sub>3</sub>, R<sub>8</sub>=NO<sub>2</sub>;
R_3=p-OH-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OCH<sub>3</sub>, R_8=NO<sub>2</sub>;
R_3=p-OCH<sub>3</sub>-phenylamidocarbonyl, R_4=R_5=H, R_6=C_2H<sub>5</sub>, R_7=OCH<sub>3</sub>, R_8=NO<sub>2</sub>;
R_3=p-ethoxycarbophenylamidocarbonyl, R_4=R_5=H, R_6=C_2H_5, R_7=OH, R_8=NO_2;
R<sub>3</sub>=4'-guanidinosulfonylphenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=C<sub>2</sub>H<sub>5</sub>, R<sub>7</sub>=OCH<sub>3</sub>, R<sub>8</sub>=NO<sub>2</sub>;
R_3=p-CO<sub>2</sub>H-phenylamidocarbonyl, R_4=R_5=H, R_6=NO<sub>2</sub>, R_7=OH, R_8=CH<sub>3</sub>;
R_3=0-CO_2H-phenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=OH, R_8=CH_3;
R<sub>3</sub>=p-OH-phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=NO<sub>2</sub>, R<sub>7</sub>=OH, R<sub>8</sub>=CH<sub>3</sub>;
R<sub>3</sub>=m-OH-phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=NO<sub>2</sub>, R<sub>7</sub>=OH, R<sub>8</sub>=CH<sub>3</sub>;
R<sub>3</sub>=0-OH-phenylamidocarbonyl, R<sub>4</sub>=R<sub>5</sub>=H, R<sub>6</sub>=NO<sub>2</sub>, R<sub>7</sub>=OH, R<sub>8</sub>=CH<sub>3</sub>;
R_3 = p - OCH_3 - phenylamidocarbonyl, R_4 = R_5 = H, R_6 = NO_2, R_7 = OH, R_8 = CH_3;
```

R₃=p-ethoxycarbophenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OH, R₈=CH₃; $R_3=m-OH-p-CO_2H-phenylamidocarbonyl, R_4=R_5=H, R_6=NO_2, R_7=OH, R_8=CH_3;$ R₃=m-CO₂H-p-OH-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OH, R₈=CH₃ R₃=m-CF₃-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OH, R₈=CH₃ R₃=m-CF₃-p-NO₂-phenylamidocarbonyl,R₄=R₅=H, R₆=NO₂, R₇=OH, R₈=CH₃ R₃=4'-amidosulfonylphenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OH, R₈=CH₃; R₃=4'-guanidinosulfonylphenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OH, R₈=CH₃; R₃=4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OH, $R_8=CH_3$; $R_3=4$ '-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl) phenylamidocarbonyl, $R_4=R_5=$ H, R₆=NO₂, R₇=OH, R₈=CH₃; R₃=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OH, $R_8=CH_3$; R₃=0-CO₂H-p-I-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OH, R₈=CH₃; R_3 =p-CO₂H-phenylamidocarbonyl, R_4 = R_5 =H, R_6 =NO₂, R_7 =OCH₃, R_8 =CH₃; R₃=m-CO₂H-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃; R₃=0-CO₂H-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃; R₃=p-OH-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃; R_3 =m-OH-phenylamidocarbonyl, R_4 = R_5 =H, R_6 =NO₂, R_7 =OCH₃, R_8 =CH₃; R₃=0-OH-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃; R_3 =p-OCH₃-phenylamidocarbonyl, R_4 = R_5 =H, R_6 =NO₂, R_7 =OCH₃, R_8 =CH₃;

R₃=p-ethoxycarbophenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

R₃=m-OH-p-CO₂H-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

R₃=m-CF₃-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

R₃=m-CF₃-p-NO₂-phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

R₃=4'-guanidinosulfonylphenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

R₃=4'-amidosufonylphenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃, R₈=CH₃;

R₃=4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl) phenylamidocarbonyl,

 $R_4=R_5=H$, $R_6=NO_2$, $R_7=OCH_3$, $R_8=CH_3$;

R₃=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R₄=R₅=H, R₆=NO₂, R₇=OCH₃,

 $R_8=CH_3$;

R₃=4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl,

 $R_4=R_5=H$, $R_6=NO_2$, $R_7=OCH_3$, $R_8=CH_3$;

 R_3 =p-CO₂H-phenylamidocarbonyl, R_4 = R_5 =H, R_6 = R_8 =NO₂, R_7 =OH \square

 R_3 =p-OH-phenylamidocarbonyl, R_4 = R_5 =H, R_6 = R_8 =NO₂, R_7 =OH;

R₃=m-OH-phenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OH;

R₃=o-OH-phenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OH;

 R_3 =p-OCH₃-phenylamidocarbonyl, R_4 = R_5 =H, R_6 = R_8 =NO₂, R_7 =OH;

R₃=p-ethoxycarbophenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OH;

R₃=CF₃-phenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OH;

R₃=4'-amidosulfonylphenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OH;

R₃=4'-guanidinosulfonylphenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OH;

R₃=4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R₄=R₅=H, R₆=R₈=NO₂,

R₇=OH;

R₃=4'-(5", 6"-dimethoxypyrimidinyl-4"-amidosulfonyl) phenylamidocarbonyl,

 $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;

R₃=4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R₄=R₅=H, R₆=R₈=NO₂, R₇=OH;

R₃=0-CO₂H-phenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OH;

R₃=p-OH-phenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OCH₃;

R₃=p-ethoxycarbophenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OCH₃;

R₃=p-OCH₃-phenylamidocarbonyl, R₄=R₅=H, R₆= R₈=NO₂, R₇=OCH₃;

R₃=p-OCH₃-phenylamidocarbonyl, R₄=R₅=H, R₆=Cl, R₇=OH, R₈=NO₂;

 R_3 =4'-guanidinosulfonylphenylamidocarbonyl, R_4 = R_5 =H, R_6 =Cl, R_7 =OH, R_8 =NO₂;

R₃=m-OH-pCO₂H-phenylamidocarbonyl, R₄=H, R₅=CH₃, R₇=OH, R₆=Cl, R₈=NO₂;

R₃= p-CO₂H-phenylamidocarbonyl, R₄=H, R₅=CH₃, R₇=OH, R₆=R₈=NO₂;

 $R_3=m-CO_2H$ -phenylamidocarbonyl, $R_4=H$, $R_5=CH_3$, $R_7=OH$, $R_6=R_8=NO_2$;

 $R_3=0$ - CO_2H -phenylamidocarbonyl, $R_4=H$, $R_5=CH_3$, $R_7=OH$, $R_6=R_8=NO_2$;

 $R_3 = p-OCH_3$ -phenylamidocarbonyl, $R_4 = H$, $R_5 = CH_3$, $R_7 = OH$, $R_6 = R_8 = NO_2$;

R₃=p-ethoxycarbophenylamidocarbonyl, R₄=H, R₅=CH₃, R₇=OH, R₆=R₈=NO₂;

R₃=p-amidosulfonylphenylamidocarbonyl, R₄=H, R₅=CH₃, R₇=OH, R₆=R₈=NO₂;

R₃=p-guanidinosulfonylphenylamidocarbonyl, R₄=H, R₅=CH₃, R₇=OH, R₆=R₈=NO₂;

R₃= 4'-(2"-pyrimidinylamidosulfonyl)phenylamidocarbonyl, R₄=H, R₅=CH₃, R₇=OH,

 $R_6 = R_8 = NO_2$;

R₃= 4'-(2"-thiazolamidosulfonyl)phenylamidocarbonyl, R₄=H, R₅=CH₃, R₇=OH,

 $R_6 = R_8 = NO_2$;

 $R_3=4'$ --(4", 6"-dimethylpyrimidinyl-2"-amidosulfonyl) phenylamidocarbonyl, $R_4=H$,

R₅=CH₃, R₇=OH, R₆=R₈=NO₂;

R₃=CONH(CH)₃COOH, R₄=R₅=R₆=R₈=H, R₇=OCH₃;

$$R_3 = {}^{CONHNHCO}$$
, $R_4 = R_5 = R_6 = R_8 = H$, $R_7 = OCH_3$;

$$R_3$$
= $C_{C_6H_5}^{CH_3}$, R_4 = R_5 = R_6 = R_8 = H , R = OCH_3 ;

$$R_3 = R_5 = R_6 = R_8 = H, R_7 = OCH_3;$$

 R_3 =CONH(CH)₃COOH, R_4 = R_5 = R_8 =H, R_6 = C_2 H₅, R_7 =OCH₃;

$$R_3 = {}^{\text{CONHNHCO}}$$
, $R_4 = R_5 = R_8 = H$, $R_6 = C_2H_5$, $R_7 = OCH_3$;

$$R_3 = R_4 = R_5 = R_8 = H, R_6 = C_2H_5, R_7 = OCH_3;$$

$$R_3 = {}^{CONHNHCO}$$
, $R_4 = R_6 = R_8 = H$, $R_5 = CH_3$, $R_7 = OCH_3$;

$$R_3 = R_8 = R_8 = H, R_5 = CH_3, R_7 = OCH_3;$$

$$R_3 = R_8 = R_8 = H, R_5 = CH_3, R_7 = OCH_3;$$

$$R_3 = {}^{CONHNHCO} - {}^{CONHNHCO} - {}^{CONHNHCO} + {}^{CO$$

$$R_3 = {}^{CONHNHCO}$$
, $R_4 = R_5 = R_6 = H$, $R_7 = OCH_3$, $R_8 = CH_3$;

$$R_3$$
= , R_4 = R_5 = R_6 = H , R_7 = OCH_3 , R_8 = CH_3 ;

$$R_3 = \frac{1}{1000}$$
, $R_4 = R_5 = R_6 = H$, $R_7 = OCH_3$, $R_8 = CH_3$;

 $R_3=CO_2H$, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$, $R_8=NO_2$;

 $R_3=CO_2C_2H_5$, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OCH_3$, $R_8=NO_2$;

 $R_3=CO_2H$, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OCH_3$, $R_8=NO_2$;

R₃=CO₂C₂H₅, R₄=R₅=H, R₆= R₈=NO₂, R₇=OH;

 $R_3 = CO_2H$, $R_4 = R_5 = H$, $R_6 = R_8 = NO_2$, $R_7 = OH$;

 $R_3 = CO_2C_2H_5$, $R_4 = R_5 = H$, $R_6 = R_8 = NO_2$, $R_7 = OCH_3$;

 $R_3 = CO_2H$, $R_4 = R_5 = H$, $R_6 = R_8 = NO_2$, $R_7 = OCH_3$;

 $R_3 = CO_2C_2H_5$, $R_4 = R_5 = H$, $R_6 = Cl$, $R_7 = OH$, $R_8 = NO_2$;

 $R_3 = CO_2H$, $R_4 = R_5 = H$, $R_6 = Cl$, $R_7 = OH$, $R_8 = NO_2$;

R₃=CO₂H, R₄=H, R₅=CH₃, R₆=R₈=NO₂, R₇=OH;

 $R_3 = CO_2C_2H_5, R_4 = H, R_5 = CH_3, R_6 = R_8 = NO_2, R_7 = OH;$

$$R_4 = \frac{\text{CONH}}{\text{COOEt}}, R_3 = R_5 = R_6 = R_8 = H, R_7 = CH_3;$$

$$R_4$$
= CONH , R_3 = R_5 = R_6 = R_8 = H , R_7 = CH_3 ;

$$R_4 = {}^{CONH}$$
 $R_3 = R_5 = R_6 = R_8 = H, R_7 = CH_3;$

$$R_3 = R_5 = R_6 = R_8 = H$$
, $R_4 = CH_3$, $R_7 = OCH_2 CONH_3$;

$$R_3 = R_5 = R_6 = R_8 = H$$
, $R_4 = CH_3$, $R_7 = OCH_2 = CONH_3 = OH_3 = CH_3 = CH_3$

$$R_3 = R_5 = R_6 = R_8 = H$$
, $R_4 = CH_3$, $R_7 = OCH_2 CONH_2$ OH;

$$R_3 = R_4 = R_5 = R_7 = R_8 = H$$
, $R_6 =$

- 6. (Currently Amended) The compound according to claim 1, characterized in that wherein the compound includes the pharmaceutically acceptable salts and their hydrates, esters, or pro-drugs thereof.
- 7. (Currently amended) A method for <u>preparing a compound</u> the <u>preparation of the eompounds</u> according to <u>any one of claims</u> claim 1 <u>comprising the steps of</u>; to 6, <u>characterized in condensing the substituted 3-carboxy-, 4-carboxy-, 6-carboxy- coumarin, or 7-carboxy-methylenoxy-coumarin derivative with a corresponding substituted amine or hydrazine.</u>
- 8. (Currently amended) The method according to claim 7, wherein after eharacterized in condensing the substituted 3-carboxy-, 4-carboxy-, 6-carboxy-coumarin, or 7-carboxy-methylenoxy-coumarin derivative with <u>a</u> corresponding substituted hydrazine, followed by cyclization of the so-obtained hydrazide <u>is cyclized</u> to form the <u>a</u> heterocyclic derivatives.
- 9. (Currently amended) The method according to claim 7, eharacterized in that wherein the reactants for the amidation reaction are selected from the group consisting of include phosphorus trichloride, phosphorus oxychloride, phosphorus pentachloride,

thionyl chloride, 1, 3-dicyclohexylcarbodiimide, dipyridylcarbonate (2-DPC), 1, 3-diisopropylcarbodiimide (DIPC), and 1-(3-dimethylamino-propyl)- 3-ethylcarbodiimide (EDCI); and the catalytic agents used are selected from agent is selected from the group consisting of tert-amines, pyridine, 4-dimethylaminopyridine and pyrrolalkylpyridine; the organic solvents used comprising dimethylsulfoxide, dichloromethane, toluene, ethylene glycol dimethyl ether, 1, 2-dichloroethane, tetrahydrofuran and N, N-dimethylformamide.

- 10. (Currently amended) A pharmaceutical composition characterized in comprising a pharmaceutically effective dosage of a compound according to claim 1, and a pharmaceutically acceptable carrier.
- 11. (Currently amended) The pharmaceutical composition according to claim 10, wherein characterized in that, said the pharmaceutical composition is <u>a</u> tablets, capsules, pills, injections, sustained-release, controlled-release or targeted preparations and various or <u>a</u> fine particle delivery systems.

Claims 12 – 18 (Cancelled).

19. (New) A method for inhibiting transforming growth factor $\beta 1$ (TGF- $\beta 1$) comprising administering an effective amount of a compound according to claim 1.

- 20 (New) A method for inhibiting angiotensin II (AngII) receptor converting enzyme comprising administering an effective amount of a compound according to claim 1.
- 21. (New) A method for treating a chronic renal disorder comprising administering an effective amount of a compound according to claim 1.
- 22. (New) A method for treating a cardio-cerebrovascular disease comprising administering an effective amount of a compound according to claim 1.
- 23. (New) A method for treating non-insulin dependent diabetes comprising administering an effective amount of a compound according to claim 1.
- 24. (New) The method according to claim 22 wherein the cardio-cerebrovascular disease is hypertension, cerebral embolism, coronary embolism, myocardial infarction, cerebrovascular accidents, or stroke or a sequelae thereof.
- 25. (New) A method for treating a tumor or pre-cancerous lesion comprising administering an effective amount of a compound according to claim 1.
- 26. (New) A method for prophylaxis of a tumor or pre-cancerous lesion comprising administering an effective amount of a compound according to claim 1.