HW₂

This assignment covers several aspects of Linear Regresstion. **DO NOT ERASE MARKDOWN CELLS AND INSTRUCTIONS IN YOUR HW submission**

- Q QUESTION
- A Where to input your answer

Instructions

Keep the following in mind for all notebooks you develop:

- Structure your notebook.
- Use headings with meaningful levels in Markdown cells, and explain the questions each piece of code is to answer or the reason it is there.
- Make sure your notebook can always be rerun from top to bottom.
- Please start working on this assignment as soon as possible. If you are a beginner in
 Python this might take a long time. One of the objectives of this assignment is to help
 you learn python and scikit-learn package.
- Follow README.md for homework submission instructions

Tutorials

- scikit-learn linear model
- train-test-split
- least squares fitting
- Linear Regression
- Seaborn

REGRESSION TASK USING SKLEARN

In jupyter notebook environment, commands starting with the symbol % are magic commands or magic functions. %%timeit is one of such function. It basically gives you the speed of execution of certain statement or blocks of codes.

In []: import pandas as pd
import numpy as np
import seaborn as sns

Data Get the exploratory data and the following files:

https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.names

or Use from our 2023Fall/data repository folder

- Link should automatically download the data
- copy them in your HW folder
- If you are using command line: >> wget https://archive.ics.uci.edu /ml/machine-learning-databases/auto-mpg/auto-mpg.data
 - If wget is not working
 - dowload it from link
 - follow steps

Q1 Read the data using pandas, and replace the ??? in the code cell below to accomplish this taks. Note that auto-mpg.data does not have the column headers. use auto-mpg.names file to provide column names to the dataframe.

A1

Out

```
In [ ]: # Replace ??? with code in the code cell below
    column_names = ['mpg','cylinders','displacement','horsepower','weight','acceleratio
    df = pd.read_csv('../data/auto-mpg.data', names=column_names, na_values = "?", comm

In [ ]: # View head of the data to confirm the correctness of your answer
    df.head()
```

:[]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
	0	18.0	8	307.0	130.0	3504.0	12.0	70	1	NaN
	1	15.0	8	350.0	165.0	3693.0	11.5	70	1	NaN
	2	18.0	8	318.0	150.0	3436.0	11.0	70	1	NaN
	3	16.0	8	304.0	150.0	3433.0	12.0	70	1	NaN
	4	17.0	8	302.0	140.0	3449.0	10.5	70	1	NaN

Data cleaning and manipulation

Use

Q2 Data cleaning and manipulation:

- 1. use pandas.info() method to find columns with large number of NaN values
- 2. remove the column with NaN values
- 3. Check if there are still NaN values in the dataframe using isna() method

A2 Replace ??? with code in the code cell below

```
#1. use pandas.info() method to find columns with large number of NaN values
In [ ]:
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 398 entries, 0 to 397
        Data columns (total 9 columns):
             Column
                           Non-Null Count Dtype
         0
             mpg
                            398 non-null
                                            float64
                            398 non-null
         1
             cylinders
                                            int64
         2
            displacement 398 non-null
                                           float64
         3
            horsepower
                           392 non-null
                                            float64
                            398 non-null
         4
             weight
                                            float64
         5
                                           float64
             acceleration 398 non-null
         6
             model year
                            398 non-null
                                            int64
         7
             origin
                            398 non-null
                                            int64
         8
             car name
                            0 non-null
                                            float64
        dtypes: float64(6), int64(3)
        memory usage: 28.1 KB
        #2. remove the column with NaN values - replace ??? with code
        df.drop(columns=['car name'], inplace=True)
        # Print head
        df.head()
           mpg cylinders displacement horsepower weight acceleration model year origin
Out[ ]:
            18.0
                                307.0
                                                                            70
                                                                                   1
                       8
                                            130.0
                                                  3504.0
                                                                12.0
                       8
                                350.0
                                                                            70
        1
            15.0
                                            165.0
                                                 3693.0
                                                                11.5
                                318.0
                                                                            70
        2
            18.0
                                            150.0 3436.0
                                                                11.0
                                304.0
                                            150.0 3433.0
                                                                12.0
                                                                            70
            16.0
           17.0
                       8
                                302.0
                                            140.0
                                                  3449.0
                                                                10.5
                                                                            70
                                                                                   1
```

```
In [ ]: #3. Check if there are still NaN values in the dataframe using ```isna()``` method
print(df.isna())
  # drop if any left or replace Nan values
df['horsepower'] = df['horsepower'].fillna(130.0)
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	\
0	False	False	False	False	False	False	
1	False	False	False	False	False	False	
2	False	False	False	False	False	False	
3	False	False	False	False	False	False	
4	False	False	False	False	False	False	
• •			• • •			• • •	
393	False	False	False	False	False	False	
394	False	False	False	False	False	False	
395	False	False	False	False	False	False	
396	False	False	False	False	False	False	
397	False	False	False	False	False	False	
	model	year origi	n				

	model year	origin
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
393	False	False
394	False	False
395	False	False
396	False	False
397	False	False

[398 rows x 8 columns]

```
In [ ]: #Print Tail
df.tail(15)
```

Out[]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin
	383	38.0	4	91.0	67.0	1965.0	15.0	82	3
	384	32.0	4	91.0	67.0	1965.0	15.7	82	3
	385	38.0	4	91.0	67.0	1995.0	16.2	82	3
	386	25.0	6	181.0	110.0	2945.0	16.4	82	1
	387	38.0	6	262.0	85.0	3015.0	17.0	82	1
	388	26.0	4	156.0	92.0	2585.0	14.5	82	1
	389	22.0	6	232.0	112.0	2835.0	14.7	82	1
	390	32.0	4	144.0	96.0	2665.0	13.9	82	3
	391	36.0	4	135.0	84.0	2370.0	13.0	82	1
	392	27.0	4	151.0	90.0	2950.0	17.3	82	1
	393	27.0	4	140.0	86.0	2790.0	15.6	82	1
	394	44.0	4	97.0	52.0	2130.0	24.6	82	2
	395	32.0	4	135.0	84.0	2295.0	11.6	82	1
	396	28.0	4	120.0	79.0	2625.0	18.6	82	1
	397	31.0	4	119.0	82.0	2720.0	19.4	82	1

Q3:

- 1. Convert following columns 'cylinders', 'year', 'origin' to dummy variable using pandas get_dummies() function
- 2. Do data normalization on real value/continous columns
 - The formula for normalization is: (Col_value- Mean of the col)/ Standard Deviation of the col

A3 Replace ??? with code in the code cell below

```
In []: # 1. Convert following columns 'cylinders', 'year', 'origin' to dummy variable usi
    cols = ['cylinders', 'model year', 'origin']
    df_dummies = pd.get_dummies(df, columns=cols, prefix=['cylinders', 'model year', 'ori
    #show the head
    df_dummies.head()
```

Out[]:		mpg	displacement	horsepower	weight	acceleration	cylinders-3	cylinders-4	cylinders-5	cyl
	0	18.0	307.0	130.0	3504.0	12.0	0	0	0	
	1	15.0	350.0	165.0	3693.0	11.5	0	0	0	
	2	18.0	318.0	150.0	3436.0	11.0	0	0	0	
	3	16.0	304.0	150.0	3433.0	12.0	0	0	0	
	4	17.0	302.0	140.0	3449.0	10.5	0	0	0	

5 rows × 26 columns

```
In []: # 2. Do data normalization on real value/continous columns
    realcols = ['mpg','displacement','horsepower','weight','acceleration']

for col in realcols:
    mean = df[col].mean()
    std = df[col].std()
    df[col] = (df[col] - mean)/std
```

Regression Task

Given all the information we will try to predict mpg - miles per gallon. The First step toward predicting the mpg from the dataset is to find the correlation between the columns/features of the dataset.

Q4

- 1. Use heatmap chart from seaborn library to findout the correlation between the columns.
- 2. Which of the columns is mostly related to mpg column and why?

A4

The model year class is the most positively correlated class to mpg, which is indicated by having the brightest color and the highest decimal (with annot=True).

Q5

- 1. Draw a lineplot or scattered plot between mpg and your answer from the above cell.
- 2. Use pairplot from sns to plot our data frame df for better understanding of your selection
 - NOTE: 2. should inform 3.
- 3. Choose a set of columns/ features based on pairplot and heatmap for the mpg prediction.
- Justify your answer using some explanation from the heatmap and pairplot graph formulated from the dataset.

A5 For 1. and 2. replace ??? with code in the code cell below.

```
In [ ]: # 1. Draw a lineplot or scattered plot between mpg and your answer from the above c
sns.scatterplot(df, x=df['mpg'], y=df['model year'])
Out[ ]: <Axes: xlabel='mpg', ylabel='model year'>
```


In []: # 2. Use pairplot from sns to plot our data frame df for better understanding of yo
sns.pairplot(df)

Out[]. <seaborn.axisgrid.PairGrid at 0x1074ce64110>

A5

Acceleration appears to be the only other class that has a positive correlation with mpg, but its so scattered that I believe model year is the better option.

Q6 Data Visualization:

1. Now, create a histogram which represents number items with per cylinder class

A6 Replace ??? with code in the code cell below

Data Preparation

Q7 Assign mpg column value to y and rest columns to x, remember x shouldn't have mpg

A7 Replace ??? with code in the code cell below

```
In [ ]: y = df.mpg.values
    df.drop(columns=['mpg'], inplace=True)
    x = df.values
```

Q8 Use train_test_split to split the data set as train:test=(80%:20%) ratio.

A8 Replace ??? with code in the code cell below

Q9 Follow examples from references given in the top of this notebook

- Note:Use linear model to fit regression line and plot
- Our linear model will be of following type
- $Y = b + coef0x0 + coef1x1 + coef2*x2 + \dots$

A9: Replace ??? with code in the code cell below

```
In []: from sklearn import linear_model
    reg = linear_model.LinearRegression()
    reg.fit(xtrain, ytrain)

#Now view the coefficient use .coef_ and shape of .coef_
print(reg.coef_)
print(reg.intercept_)
print(reg.coef_.shape[0])

[-0.06009719    0.18186106  -0.02729565  -0.66792029    0.0636756    0.10231443
         0.19500425]
    -7.743582843840421
7
```

Q10 Relates to the code in the cell below. Why the printed values the same?

```
In [ ]: # Now if you view
print(f'{reg.coef_.shape[0]},{xtrain.shape[1]}, ', f'are equal? {reg.coef_.shape[0]}
7,7, are equal? True
```

A10 The printed values are the same because the LinearRegression model has a coefficient for every column of the xtrain training set

Model Scoring

```
In []: # Model Score
    from sklearn import linear_model
    reg = linear_model.LinearRegression()
    reg.fit(xtrain, ytrain)
    reg.score(xtest,ytest)

# Calculate the score on train and test sets
# Your code goes below
    reg.score(xtrain,ytrain), reg.score(xtest,ytest)
Out[]: (0.828075190981531, 0.7624641363984247)
```

Q11 Each of the sklearn models have different model evaluations core value.

- LinearRegression documentation
- More on model_evaluation

Explain what's the meaning of reg.score return value in this notebook.

A11 When we call score in this notebook, the model predicts ytrain/test using xtrain/test and then compares the accuracy of its prediction to the ytrain/test parameter.

```
In []: # A custom function to calculate r2 score
    # Details on the custom scorers: https://scikit-learn.org/stable/modules/model_eval

def r2score_(ytrue, ypred):
    rss = ((ytrue - ypred)**2).sum()
    tss = ((ytrue - ytrue.mean()) ** 2).sum()
    r2 = 1 - rss/tss
    return r2

# Now do prediction on xtrain and xtest and check your r2 score by printing rescore
    trainpredict = reg.predict(xtrain)
    testpredict = reg.predict(xtest)

print(r2score_(ytrain, trainpredict), r2score_(ytest, testpredict))

# You can see that reg.score values and your custom function output are matched
```

0.828075190981531 0.7624641363984247

One way of achieving linear regression is by minimizing the error between actual y and predicted y. The method is known as least square method. We will make our custom least square optimize to calculate model parameters that minimizes output error.

Q12 Write a function which takes weights(or params), x and y and do following

- 1. calculate dot product between x and params, which is ypredicted
- 1. calculate difference between actual y and ypredicted
- 1. return the difference

A12 complete the code below

```
In []: import scipy.optimize as optimization
    from sklearn.metrics import r2_score

def constraint(params, x, y):
    ypred = x@params
    return y-ypred

# Our initial params is a vector of size equal to dimension of x, or you can say nu
# You can create zeros vector using np.zeros(size)

# complete code
params = np.zeros(x.shape[1])
```

```
In [ ]: # Now study the documentation and complete following code
        params, _ = optimization.leastsq(constraint, params[:], args=(x,y))
In [ ]: # Now we have parameter or weight we can now create our model
        model = lambda x:np.dot(x,params)
In [ ]: # Now predict ytrain using model and see first 5 predicted and actual values
        ypred_train = model(xtrain)
        # see first 5 predicted values
        print(ypred_train[:5])
        # see first 5 actual values
        print(ytrain[:5])
        [-1.30897354 -0.09812014 -0.00611148 1.10555625 0.24601002]
        [-0.96143653 -0.57760772 -0.44966478 1.81492523 -0.06583596]
In [ ]: # Now predict ytest using model and see first 5 predicted and actual values
        ypred_test = model(xtest)
        print(ypred_test[:5])
        print(ytest[:5])
        [-0.24372328 -0.44908153 1.12044306 1.08082811 1.18817558]
        [-0.25775037 \ -0.64157919 \ 1.35433065 \ 1.35433065 \ 2.69773151]
In [ ]: # Now use custom made r2score calculator to calculate r2 score on both train and te
        print(r2score_(ytest, ypred_test), r2score_(ytrain, ypred_train))
        0.7155505537478306 0.7393929147388183
In [ ]: # Now use sklearn build-in r2score calculator to calculate r2 score on both train d
        print(r2_score(ytrain, ypred_train)), print(r2_score(ytest, ypred_test))
        0.7393929147388183
        0.7155505537478306
        (None, None)
Out[ ]:
```