Contents

Exe	rcice 2	
Exe	rcice 3	
3.1	Question 1	
3.2	Question 2	
3.3	Question 3	
3.4	Question 4	
	3.4.1 Résumé	
	3.4.2 Argument	
	3.4.3 Implémentation	
	3.4.4 Sources	
3.5	Question 5	

1 Exercice 1

2 Exercice 2

Installation faites.

3 Exercice 3

3.1 Question 1

Les matrices pour utilisé **BLAS** et **LAPACK** en **C** se font de la même manière que les tableaux en **C**. C'est-à-dire que que pour une matrice donné, il faut la stocké en **1** dimmension.

Par exemple en C :

```
double[2][2] = { {1, 2}, {3, 4} };
```

Pour \mathbf{BLAS} et \mathbf{LAPACK} :

 $double[4] = \{ 1, 2, 3, 4 \};$

3.2 Question 2

- Les constantes $LAPACK_ROW_MAJOR$ et $LAPACK_COL_MAJOR$ signifie la priorité ligne ou colonne respectivement de la représentation de la matrice.
- Effectivement, comme il faut utilisé des tableaux en 1 dimension il faut préciser si on a utilisé une priorité ligne ou colonne pour ranger la matrice.

3.3 Question 3

- De ce que j'ai compris, c'est un argument qui permet de savoir si dans la représentatin de la matrice, les éléments des lignes ou des colonnes, suivant la priorité choisis, sont contigue.
- C'est-à-dire qu'il dois y avoir le même nombre d'élément pour chaque colonne ainsi que dans chaque ligne.

3.4 Question 4

3.4.1 Résumé

La fonction $LAPACKE_dgbsv$ permet de calculer le résultat d'un système linéaire du type A*X=B, avec ${\bf X}$ l'inconnu, ${\bf A}$ une matrice et ${\bf B}$ le second membre, où ${\bf X}$ et ${\bf B}$ peuvent être des vecteurs ou des matrices.

3.4.2 Argument

Elle prend en argument la dimension de la matrice, le nombre du sousdiagonnale ainsi que de sur-diagonnale.

3.4.3 Implémentation

Cette fonction implémente une décomposition LU à pivot partiel et la méthode de dessente et de remonté.

3.4.4 Sources

http://www.math.utah.edu/software/lapack/lapack-d/dgbsv.html

3.5 Question 5

4 Annexe

 ${\rm D\acute{e}p\^{o}t: https://github.com/Sholde/CN/tree/master/partie_2/poisson}$