Calculus I

Derivative of $(a(x))^{b(x)}$

Todor Milev

2019

Differentiate $x^{\tan x}$, where x > 0. $\frac{d}{dx}(x^{\tan x})$

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(x^{\tan x}\right)$$

Differentiate
$$x^{\tan x}$$
, where $x > 0$.
$$\frac{d}{dx} \left(x^{\tan x} \right) = \frac{d}{dx} \left(\left(e^{?} \right)^{\tan x} \right)$$

Convert base to e?

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

$$\frac{d}{dx} (x^{\tan x}) = \frac{d}{dx} (e^{\ln x})^{\tan x}$$

Convert base to e?

Differentiate
$$x^{\tan x}$$
, where $x > 0$.
$$\frac{d}{dx} (x^{\tan x}) = \frac{d}{dx} (e^{\ln x})^{\tan x}$$

$$= \frac{d}{dx} (e^{(\ln x) \tan x})$$

Convert base to e?

Differentiate
$$x^{\tan x}$$
, where $x > 0$.
$$\frac{d}{dx} (x^{\tan x}) = \frac{d}{dx} (e^{\ln x})^{\tan x}$$

$$= \frac{d}{dx} (e^{(\ln x) \tan x})$$

$$= \frac{d}{dx} (e^{u})$$

Convert base to e?

Set $(\ln x) \tan x = u$

Differentiate
$$x^{\tan x}$$
, where $x > 0$.
$$\frac{d}{dx} (x^{\tan x}) = \frac{d}{dx} \left(\left(e^{\ln x} \right)^{\tan x} \right)$$

$$= \frac{d}{dx} \left(e^{(\ln x) \tan x} \right)$$

$$= \frac{d}{dx} (e^u)$$

$$= \frac{d}{du} (e^u) \frac{du}{dx}$$

Convert base to e?

Set
$$(\ln x) \tan x = u$$

Differentiate
$$x^{\tan x}$$
, where $x > 0$.
$$\frac{d}{dx}(x^{\tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}(e^u)$$

$$= \frac{d}{du}(e^u)\frac{du}{dx}$$

$$= ? \frac{d}{dx}((\ln x)\tan x)$$

Convert base to e?

Set $(\ln x) \tan x = u$

Differentiate
$$x^{\tan x}$$
, where $x > 0$.
$$\frac{d}{dx}(x^{\tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}(e^u)$$

$$= \frac{d}{du}(e^u)\frac{du}{dx}$$

$$= \frac{d}{dx}((\ln x)\tan x)$$

Convert base to e?

Set $(\ln x) \tan x = u$

Differentiate
$$x^{\tan x}$$
, where $x > 0$.
$$\frac{d}{dx}(x^{\tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}(e^u)$$

$$= \frac{d}{du}(e^u)\frac{du}{dx}$$

$$= e^u\frac{d}{dx}((\ln x)\tan x)$$

Convert base to e?

Set $(\ln x) \tan x = u$

Differentiate $x^{\tan x}$, where x > 0.

Differentiate
$$x^{tan x}$$
, where $x > 0$.
$$\frac{d}{dx}(x^{tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{u}\right)$$

$$= \frac{d}{du}\left(e^{u}\right)\frac{du}{dx}$$

$$= e^{u}\frac{d}{dx}\left((\ln x)\tan x\right)$$

$$= e^{(\ln x)\tan x}\left((\ln x)'\tan x + (\ln x)(\tan x)'\right)$$

Convert base to e?

Set $(\ln x) \tan x = u$ Chain rule

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

$$\frac{d}{dx}(x^{\tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}(e^u)$$

$$= \frac{d}{du}(e^u)\frac{du}{dx}$$

$$= e^u\frac{d}{dx}((\ln x)\tan x)$$
Convert base to e^x

$$Set (\ln x)\tan x = u$$
Chain rule

 $=e^{(\ln x)\tan x}\left((\ln x)'\tan x+(\ln x)(\tan x)'\right)$ Prod. rule

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

$$\frac{d}{dx}(x^{\tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}(e^u)$$

$$= \frac{d}{du}(e^u)\frac{du}{dx}$$

$$= e^u\frac{d}{dx}((\ln x)\tan x)$$
Convert base to e^x

$$Set (\ln x)\tan x = u$$
Chain rule

 $=e^{(\ln x)\tan x}\left((\ln x)'\tan x+(\ln x)(\tan x)'\right)$ Prod. rule

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

$$\frac{d}{dx}(x^{\tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}(e^u)$$

$$= \frac{d}{du}(e^u)\frac{du}{dx}$$

$$= e^u\frac{d}{dx}((\ln x)\tan x)$$
Convert base to e^x

$$Set (\ln x)\tan x = u$$
Chain rule

 $=e^{(\ln x)\tan x}\left((\ln x)'\tan x+(\ln x)(\tan x)'\right)$ Prod. rule

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

$$\frac{d}{dx}(x^{\tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}(e^u)$$

$$= \frac{d}{dx}(e^u) \frac{du}{dx}$$

$$= e^u \frac{d}{dx}((\ln x)\tan x)$$

$$= e^{(\ln x)\tan x}((\ln x)'\tan x + (\ln x)(\tan x)')$$
Prod. rule
$$= x^{\tan x}\left(\text{? } \tan x + (\ln x)\text{?}\right)$$

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

$$\frac{d}{dx}(x^{\tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}(e^u)$$

$$= \frac{d}{du}(e^u)\frac{du}{dx}$$

$$= e^u\frac{d}{dx}((\ln x)\tan x)$$

$$= e^{(\ln x)\tan x}\left((\ln x)'\tan x + (\ln x)(\tan x)'\right)$$
Prod. rule
$$= x^{\tan x}\left(\frac{2}{2}\tan x + (\ln x)^2\right)$$

Differentiate $x^{\tan x}$, where x > 0.

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

$$\frac{d}{dx}(x^{\tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}(e^u)$$

$$= \frac{d}{du}(e^u)\frac{du}{dx}$$

$$= e^u\frac{d}{dx}((\ln x)\tan x)$$

$$= e^{(\ln x)\tan x}\left((\ln x)'\tan x + (\ln x)(\tan x)'\right)$$
Prod. rule
$$= x^{\tan x}\left(\frac{1}{x}\tan x + (\ln x)?\right)$$

Differentiate $x^{\tan x}$, where x > 0.

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

$$\frac{d}{dx}(x^{\tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}(e^u)$$

$$= \frac{d}{du}(e^u)\frac{du}{dx}$$

$$= e^u\frac{d}{dx}((\ln x)\tan x)$$

$$= e^{(\ln x)\tan x}((\ln x)'\tan x + (\ln x)(\tan x)')$$
Prod. rule
$$= x^{\tan x}\left(\frac{1}{x}\tan x + (\ln x)?\right)$$

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

$$\frac{d}{dx}(x^{\tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{u}\right)$$

$$= \frac{d}{du}\left(e^{u}\right)\frac{du}{dx}$$

$$= e^{u}\frac{d}{dx}\left((\ln x)\tan x\right)$$

$$= e^{(\ln x)\tan x}\left((\ln x)'\tan x + (\ln x)\left(\tan x\right)'\right)$$
Prod. rule
$$= x^{\tan x}\left(\frac{1}{x}\tan x + (\ln x)\sec^{2}x\right)$$

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

Differentiate
$$x^{thin}$$
, where $x > 0$.

$$\frac{d}{dx}(x^{tan x}) = \frac{d}{dx}((e^{\ln x})^{tan x})$$

$$= \frac{d}{dx}(e^{(\ln x) tan x})$$

$$= \frac{d}{dx}(e^u)$$

$$= \frac{d}{du}(e^u)\frac{du}{dx}$$

$$= e^u \frac{d}{dx}((\ln x) tan x)$$

$$= e^{(\ln x) tan x}((\ln x)' tan x + (\ln x)(tan x)')$$
Prod. rule
$$= x^{tan x}(\frac{1}{x} tan x + (\ln x) sec^2 x)$$

Differentiate $(3x + 1)^{\ln x}$, where 3x + 1 > 0. $\frac{d}{dx} \left((3x + 1)^{\ln x} \right)$

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right)$$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = \frac{d}{dx}\left(\left(e^{?}\right)^{\ln x}\right)$$
 Convert base to $e^{?}$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = \frac{d}{dx}\left(\left(e^{\ln(3x+1)}\right)^{\ln x}\right)$$
 Convert base to $e^{?}$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.

$$\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right) \quad | \text{ Convert base to } e^?$$

$$= \frac{d}{dx} \left(e^{\ln(3x+1)\ln x} \right)$$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.

$$\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right) \qquad \text{Convert base to } e^?$$

$$= \frac{d}{dx} \left(e^{\ln(3x+1)\ln x} \right)$$

$$= \frac{d}{dx} \left(e^u \right) \qquad \text{Set } \ln(3x+1)\ln x = u$$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.

$$\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right) \quad | \text{ Convert base to } e^?$$

$$= \frac{d}{dx} \left(e^{\ln(3x+1)\ln x} \right)$$

$$= \frac{d}{dx} \left(e^u \right) = \frac{d}{du} \left(e^u \right) \frac{du}{dx} \quad | \text{ Set } \ln(3x+1)\ln x = u$$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.
$$\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right) \quad | \text{Convert base to } e^?$$

$$= \frac{d}{dx} \left(e^{\ln(3x+1)\ln x} \right)$$

$$= \frac{d}{dx} \left(e^u \right) = \frac{d}{du} \left(e^u \right) \frac{du}{dx} \quad | \text{Set } \ln(3x+1)\ln x = u$$

$$= ? \frac{d}{dx} \left(\ln(3x+1)\ln x \right)$$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.

$$\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right) \quad | \text{Convert base to } e^?$$

$$= \frac{d}{dx} \left(e^{\ln(3x+1)\ln x} \right)$$

$$= \frac{d}{dx} \left(e^u \right) = \frac{d}{du} \left(e^u \right) \frac{du}{dx} \quad | \text{Set } \ln(3x+1)\ln x = u$$

$$= \frac{d}{dx} \left(\ln(3x+1)\ln x \right)$$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.

$$\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right) \quad \text{Convert base to } e^?$$

$$= \frac{d}{dx} \left(e^{\ln(3x+1)\ln x} \right)$$

$$= \frac{d}{dx} \left(e^u \right) = \frac{d}{du} \left(e^u \right) \frac{du}{dx} \quad \text{Set } \ln(3x+1)\ln x = u$$

$$= e^u \frac{d}{dx} \left(\ln(3x+1)\ln x \right)$$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.
 $\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right)$ | Convert base to $e^{?}$
 $= \frac{d}{dx} \left(e^{\ln(3x+1) \ln x} \right)$
 $= \frac{d}{dx} \left(e^{u} \right) = \frac{d}{du} \left(e^{u} \right) \frac{du}{dx}$ | Set $\ln(3x + 1) \ln x = u$
 $= e^{u} \frac{d}{dx} \left(\ln(3x + 1) \ln x \right)$
 $= e^{\ln(3x+1) \ln x} \left((\ln(3x + 1))' \ln x + \ln(3x + 1) (\ln x)' \right)$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.
 $\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right)$ | Convert base to $e^?$
 $= \frac{d}{dx} \left(e^{\ln(3x+1) \ln x} \right)$
 $= \frac{d}{dx} \left(e^u \right) = \frac{d}{du} \left(e^u \right) \frac{du}{dx}$ | Set $\ln(3x + 1) \ln x = u$
 $= e^u \frac{d}{dx} \left(\ln(3x + 1) \ln x \right)$
 $= e^{\ln(3x+1) \ln x} \left(\left(\ln(3x + 1) \right)' \ln x + \ln(3x + 1) \left(\ln x \right)' \right)$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.
 $\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right)$ | Convert base to $e^{?}$
 $= \frac{d}{dx} \left(e^{\ln(3x+1) \ln x} \right)$
 $= \frac{d}{dx} \left(e^{u} \right) = \frac{d}{du} \left(e^{u} \right) \frac{du}{dx}$ | Set $\ln(3x + 1) \ln x = u$
 $= e^{u} \frac{d}{dx} \left(\ln(3x + 1) \ln x \right)$
 $= e^{\ln(3x+1) \ln x} \left(\left(\ln(3x + 1) \right)' \ln x + \ln(3x + 1) \left(\ln x \right)' \right)$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.
 $\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right)$ | Convert base to $e^{?}$
 $= \frac{d}{dx} \left(e^{\ln(3x+1)\ln x} \right)$
 $= \frac{d}{dx} \left(e^{u} \right) = \frac{d}{du} \left(e^{u} \right) \frac{du}{dx}$ | Set $\ln(3x + 1) \ln x = u$
 $= e^{u} \frac{d}{dx} \left(\ln(3x + 1) \ln x \right)$
 $= e^{\ln(3x+1)\ln x} \left((\ln(3x + 1))' \ln x + \ln(3x + 1) (\ln x)' \right)$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.
 $\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right)$ | Convert base to $e^{?}$

$$= \frac{d}{dx} \left(e^{\ln(3x+1) \ln x} \right)$$

$$= \frac{d}{dx} \left(e^{u} \right) = \frac{d}{du} \left(e^{u} \right) \frac{du}{dx}$$
 | Set $\ln(3x + 1) \ln x = u$

$$= e^{u} \frac{d}{dx} \left(\ln(3x + 1) \ln x \right)$$

$$= e^{\ln(3x+1) \ln x} \left((\ln(3x + 1))' \ln x + \ln(3x + 1) (\ln x)' \right)$$

$$= (3x + 1)^{\ln x} \left(? \ln x + \ln(3x + 1)? \right)$$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.
 $\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right)$ | Convert base to $e^{?}$
 $= \frac{d}{dx} \left(e^{\ln(3x+1) \ln x} \right)$
 $= \frac{d}{dx} \left(e^{u} \right) = \frac{d}{du} \left(e^{u} \right) \frac{du}{dx}$ | Set $\ln(3x + 1) \ln x = u$
 $= e^{u} \frac{d}{dx} \left(\ln(3x + 1) \ln x \right)$
 $= e^{\ln(3x+1) \ln x} \left(\left(\ln(3x + 1) \right)' \ln x + \ln(3x + 1) \left(\ln x \right)' \right)$
 $= (3x + 1)^{\ln x} \left(? \ln x + \ln(3x + 1) ? \right)$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.

$$\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right) \quad | \text{Convert base to } e^?$$

$$= \frac{d}{dx} \left(e^{\ln(3x+1)\ln x} \right)$$

$$= \frac{d}{dx} \left(e^u \right) = \frac{d}{du} \left(e^u \right) \frac{du}{dx} \quad | \text{Set } \ln(3x+1)\ln x = u$$

$$= e^u \frac{d}{dx} \left(\ln(3x+1)\ln x \right)$$

$$= e^{\ln(3x+1)\ln x} \left(\left(\ln(3x+1) \right)' \ln x + \ln(3x+1) \left(\ln x \right)' \right)$$

$$= (3x+1)^{\ln x} \left(\frac{(3x+1)'}{3x+1} \ln x + \ln(3x+1) \right)$$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.
 $\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right)$ | Convert base to $e^{?}$
 $= \frac{d}{dx} \left(e^{\ln(3x+1) \ln x} \right)$
 $= \frac{d}{dx} \left(e^{u} \right) = \frac{d}{du} \left(e^{u} \right) \frac{du}{dx}$ | Set $\ln(3x + 1) \ln x = u$
 $= e^{u} \frac{d}{dx} \left(\ln(3x + 1) \ln x \right)$
 $= e^{\ln(3x+1) \ln x} \left((\ln(3x + 1))' \ln x + \ln(3x + 1) (\ln x)' \right)$
 $= (3x + 1)^{\ln x} \left(\frac{(3x + 1)'}{3x + 1} \ln x + \ln(3x + 1)? \right)$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.
 $\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right)$ | Convert base to $e^?$

$$= \frac{d}{dx} \left(e^{\ln(3x+1) \ln x} \right)$$

$$= \frac{d}{dx} \left(e^u \right) = \frac{d}{du} \left(e^u \right) \frac{du}{dx}$$
 | Set $\ln(3x + 1) \ln x = u$

$$= e^u \frac{d}{dx} \left(\ln(3x + 1) \ln x \right)$$

$$= e^{\ln(3x+1) \ln x} \left((\ln(3x + 1))' \ln x + \ln(3x + 1) (\ln x)' \right)$$

$$= (3x + 1)^{\ln x} \left(\frac{(3x + 1)'}{3x + 1} \ln x + \ln(3x + 1) \frac{1}{x} \right)$$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.

$$\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right) \quad | \text{Convert base to } e^?$$

$$= \frac{d}{dx} \left(e^{\ln(3x+1) \ln x} \right)$$

$$= \frac{d}{dx} \left(e^u \right) = \frac{d}{du} \left(e^u \right) \frac{du}{dx} \quad | \text{Set } \ln(3x+1) \ln x = u$$

$$= e^u \frac{d}{dx} \left(\ln(3x+1) \ln x \right)$$

$$= e^{\ln(3x+1) \ln x} \left((\ln(3x+1))' \ln x + \ln(3x+1) (\ln x)' \right)$$

$$= (3x+1)^{\ln x} \left(\frac{(3x+1)'}{3x+1} \ln x + \ln(3x+1) \frac{1}{x} \right)$$

$$= (3x+1)^{\ln x} \left(\frac{3 \ln x}{3x+1} + \ln(3x+1) \frac{1}{x} \right)$$

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.

$$\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right) \quad \text{Convert base to } e^?$$

$$= \frac{d}{dx} \left(e^{\ln(3x+1)\ln x} \right)$$

$$= \frac{d}{dx} \left(e^u \right) = \frac{d}{du} \left(e^u \right) \frac{du}{dx} \quad \text{Set } \ln(3x+1)\ln x = u$$

$$= e^u \frac{d}{dx} \left(\ln(3x+1)\ln x \right)$$

$$= e^{\ln(3x+1)\ln x} \left((\ln(3x+1))' \ln x + \ln(3x+1) (\ln x)' \right)$$

$$= (3x+1)^{\ln x} \left(\frac{(3x+1)'}{3x+1} \ln x + \ln(3x+1) \frac{1}{x} \right)$$

$$= (3x+1)^{\ln x} \left(\frac{3\ln x}{3x+1} + \ln(3x+1) \frac{1}{x} \right)$$

Differentiate $(3x + 1)^{\ln x}$, where 3x + 1 > 0.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = (3x+1)^{\ln x}\left(\frac{3\ln x}{3x+1} + \ln(3x+1)\frac{1}{x}\right)$$

Differentiate $(3x + 1)^{\ln x}$, where 3x + 1 > 0.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = (3x+1)^{\ln x}\left(\frac{3\ln x}{3x+1} + \ln(3x+1)\frac{1}{x}\right)$$

$$\frac{\mathsf{d}}{\mathsf{d}x}\left((a(x))^{b(x)}\right)=(a(x))^{b(x)}\left(\frac{a'(x)}{a(x)}b(x)+\ln(a(x))b'(x)\right),\quad a(x)>0$$

Differentiate $(3x + 1)^{\ln x}$, where 3x + 1 > 0.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = (3x+1)^{\ln x}\left(\frac{3\ln x}{3x+1} + \ln(3x+1)\frac{1}{x}\right)$$

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\left(\frac{\mathsf{a}(x)}{\mathsf{a}(x)}\right)^{b(x)}\right) = \left(a(x)\right)^{b(x)}\left(\frac{a'(x)}{a(x)}b(x) + \ln(a(x))b'(x)\right), \quad a(x) > 0$$

Differentiate $(3x + 1)^{\ln x}$, where 3x + 1 > 0.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = (3x+1)^{\ln x}\left(\frac{3\ln x}{3x+1} + \ln(3x+1)\frac{1}{x}\right)$$

$$\frac{\mathsf{d}}{\mathsf{d}x}\left((a(x))^{b(x)}\right)=(a(x))^{b(x)}\left(\frac{a'(x)}{a(x)}b(x)+\ln(a(x))b'(x)\right),\quad a(x)>0$$

Differentiate $(3x + 1)^{\ln x}$, where 3x + 1 > 0.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = (3x+1)^{\ln x}\left(\frac{3\ln x}{3x+1} + \ln(3x+1)\frac{1}{x}\right)$$

$$\frac{\mathsf{d}}{\mathsf{d}x}\left((a(x))^{b(x)}\right) = \left(\frac{a(x)}{a(x)}\right)^{b(x)}\left(\frac{a'(x)}{a(x)}b(x) + \ln(a(x))b'(x)\right), \quad a(x) > 0$$

Differentiate $(3x + 1)^{\ln x}$, where 3x + 1 > 0.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = (3x+1)^{\ln x}\left(\frac{3\ln x}{3x+1} + \ln(3x+1)\frac{1}{x}\right)$$

$$\frac{\mathsf{d}}{\mathsf{d}x}\left((a(x))^{b(x)}\right)=(a(x))^{b(x)}\left(\frac{a'(x)}{a(x)}b(x)+\ln(a(x))b'(x)\right),\quad a(x)>0$$

Differentiate $(3x + 1)^{\ln x}$, where 3x + 1 > 0.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = (3x+1)^{\ln x}\left(\frac{3\ln x}{3x+1} + \ln(3x+1)\frac{1}{x}\right)$$

$$\frac{\mathsf{d}}{\mathsf{d}x}\left((a(x))^{b(x)}\right)=(a(x))^{b(x)}\left(\frac{a'(x)}{a(x)}b(x)+\ln(a(x))b'(x)\right),\quad a(x)>0$$

Differentiate $(3x + 1)^{\ln x}$, where 3x + 1 > 0.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = (3x+1)^{\ln x}\left(\frac{3\ln x}{3x+1} + \ln(3x+1)\frac{1}{x}\right)$$

$$\frac{\mathsf{d}}{\mathsf{d}x}\left((a(x))^{b(x)}\right)=(a(x))^{b(x)}\left(\frac{a'(x)}{a(x)}\frac{b(x)}{b(x)}+\ln(a(x))b'(x)\right),\quad a(x)>0$$

Differentiate $(3x + 1)^{\ln x}$, where 3x + 1 > 0.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = (3x+1)^{\ln x}\left(\frac{3\ln x}{3x+1} + \ln(3x+1)\frac{1}{x}\right)$$

$$\frac{\mathsf{d}}{\mathsf{d}x}\left((a(x))^{b(x)}\right)=(a(x))^{b(x)}\left(\frac{a'(x)}{a(x)}b(x)+\ln(a(x))b'(x)\right),\quad a(x)>0$$

Differentiate $(3x + 1)^{\ln x}$, where 3x + 1 > 0.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = (3x+1)^{\ln x}\left(\frac{3\ln x}{3x+1} + \ln(3x+1)\frac{1}{x}\right)$$

$$\frac{\mathsf{d}}{\mathsf{d}x}\left((a(x))^{b(x)}\right)=(a(x))^{b(x)}\left(\frac{a'(x)}{a(x)}b(x)+\ln(a(x))\frac{b'(x)}{b}\right),\quad a(x)>0$$