Math136 - January 8'th, 2016 Linear Dependency and Basis

Proof Continued From Last Class

 (\Longrightarrow) We can express $\vec{v_i}$ as

$$\vec{v}_i = 0\vec{v}_1 + \dots + 1\vec{v}_i + 0\vec{v}_{i+1} + \dots + \vec{v}_k \in \operatorname{span}(\{\vec{v}_1, \dots, \vec{v}_k\})$$

= $\operatorname{span}(\{\vec{v}_1, \dots, \vec{v}_{i-1}, \vec{v}_{i+1}, \dots, \vec{v}_k\})$

And so \vec{v} is a linear combination of $\vec{v}_1, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_K$ by the definition of span.

E.g. Try to reduce span($\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}2\\0\end{bmatrix},\begin{bmatrix}1\\3\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$)

$$= \operatorname{span}(\left\{\begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}\right\}) \quad \operatorname{since} \begin{bmatrix} 2\\0 \end{bmatrix} = 2 \begin{bmatrix} 1\\0 \end{bmatrix} + 0 \begin{bmatrix} 1\\3 \end{bmatrix} + 0 \begin{bmatrix} 0\\1 \end{bmatrix}$$

$$= \operatorname{span}(\left\{\begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}\right\}) \quad \operatorname{since} \begin{bmatrix} 1\\3 \end{bmatrix} = 1 \begin{bmatrix} 1\\0 \end{bmatrix} + 3 \begin{bmatrix} 0\\1 \end{bmatrix}$$

Of course, there is no way to create either vector from a scalar multiple of the other in this case, so we're done.

Linear Dependency

A set of vectors $\{\vec{v}_1,\ldots,\vec{v}_k\}$ is **linearly dependent** if there are scalars $c_1,\ldots,c_k\in\mathbb{R}$ which are not all 0 such that $c_1\vec{v}_1+\cdots+c_k\vec{v}_k=0$

E.g. (Referring to previous e.g.) we have:

$$2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + (-1) \begin{bmatrix} 2 \\ 0 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\therefore \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \text{ is linearly dependent.}$$

Note that this linear dependency allowed us to show that $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ could be removed.

Linear Independency

If $\{\vec{v}_1,\ldots,\vec{x}_k\}$ is not linearly dependent, then it is **linearly independent**.

E.g. The set of $\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\}$ is linearly independent. To check:

Suppose that
$$c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ so } c_1 = 0, c_2 = 0$$

Hence, only the trivial linear combination (The solution where everything is 0) of these vectors gives $\vec{0}$

1

Note: Any set containing $\vec{0}$ is linearly dependent.

Spanning Set and Basis

If $S \subseteq \mathbb{R}^n$ satisfies $S = \text{span}(\{\vec{v}_1, \dots, \vec{v}_k\})$ then $\{\vec{v}_1, \dots, \vec{v}_k\}$ is called a spanning set for S. Also, S is spanned by $\{\vec{v}_1,\ldots,\vec{v}_k\}$. If $\{\vec{v}_1,\ldots,\vec{v}_k\}$ is also linearly independent, then it is a **basis** for S.

Note: if the spanning set is not linearly independent, we can use Theorem 2 to reduce to a smaller spanning set, and eventually a basis.

Standard Basis

The standard basis for \mathbb{R}^n consists of $\vec{c_1}, \dots, \vec{e^n}$ where $\vec{v_i} \in \mathbb{R}^n$ has it's i'th coordinate equal to 1 and all other coordinates equal to 0.

E.g.
$$\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\right\}$$
 is the standard basis for \mathbb{R}^3

E.g. Find a basis for
$$S = \text{span}(\left\{\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}2\\1\\-1\end{bmatrix},\begin{bmatrix}0\\-1\\-3\end{bmatrix}\right\})$$

Let's check for linear dependency.

$$c_{1} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + c_{2} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} + c_{3} \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\implies \begin{bmatrix} c_{1} + 2c_{2} + 0c_{3} \\ c_{1} + c_{2} - c_{3} \\ c_{1} - c_{2} - 3c_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$c_1 + 2c_2 = 0 \qquad \text{(Equation 1)}$$

$$c_1 + c_2 - c_3 = 0$$
 (Equation 2)

$$c_1 - c_2 - 3_3 = 0$$
 (Equation 3)

Let's solve this with some high-school math.

From eq. 1,
$$c_1 = -2c_2$$

Substitute into eq. 2
 $-2c_2 + c_2 - c_3 = 0 \implies c_3 - c_2$

$$-2c_2 + c_2 - c_3 = 0 \implies c_3 - c_2$$

Substitute both into eq.
$$3$$

$$(-2c_2) - c_2 - 3(-c_2) = 0$$

So, in fact the solutions are given by
$$\begin{bmatrix} c_1 \\ c_2 \\ c_2 \end{bmatrix} = \begin{bmatrix} -2t \\ t \\ -t \end{bmatrix}$$
 for any $t \in \mathbb{R}$

Suppose we looked at t = 1. We would see that:

$$-2\begin{bmatrix}1\\1\\1\end{bmatrix}+1\begin{bmatrix}2\\1\\-1\end{bmatrix}+(-1)\begin{bmatrix}0\\-1\\-3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$

$$2\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 2\\1\\-1 \end{bmatrix} + \begin{bmatrix} 1\\-1\\-3 \end{bmatrix}$$
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 2\\1\\-1 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} 0\\-1\\-3 \end{bmatrix}$$

So by theorem 2, we can remove
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 and we find $S = \text{span}\left\{\begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-3 \end{bmatrix}\right\}$ which is a basis for S .

2

E.g. Describe the set $\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \tau \begin{bmatrix} 1 \\ -1 \end{bmatrix} \mid \tau \in \mathbb{R}$ geometrically.

This is a line with slope (-1) drawn through $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ as shown below.

Line in \mathbb{R}^n

A **line** in \mathbb{R}^n is given by the vector equation:

$$\vec{x} = c_1 \vec{v} + \vec{b}$$

For $c_1 \in \mathbb{R}, \vec{v} \in \mathbb{R}^n, \vec{b} \in \mathbb{R}^n$ and fixed.