PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-316871

(43) Date of publication of application: 31.10.2002

(51)Int.Cl.

C04B 35/49 H01L 41/09

H01L 41/187

(21)Application number: 2002-011634

(71)Applicant: MURATA MFG CO LTD

(22) Date of filing:

21.01.2002

(72)Inventor: TANAKA TOMOYA

KIMURA MASANORI

TAKAGI HITOSHI

(30)Priority

Priority number : 2001042530

Priority date: 19.02.2001

Priority country: JP

(54) PIEZOELECTRIC CERAMICS COMPOSITION AND PIEZOELECTRIC ELEMENT **USING THE COMPOSITION**

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a piezoelectric ceramics composition which has high strength without undergoing deterioration in electric characteristics, and to provide a piezoelectric element which can sufficiently deal with high frequencies even when thinned. SOLUTION: The piezoelectric ceramics composition is obtained by allowing a composite oxide having a Perovskite structure as the main component and SiO2 as an assistant component to enter into a solid solution with earth other, and is provided with the compositional rations in the formula of Pba {(Mn2d-1 NbdSb2-3d)xZry Tiz} O3+bSiO2 (wherein, (a) is 0.95 to 0.985; (x) is 0.04 to 0.18; (y) is 0.36 to 0.52; (d) is 0.55 to 0.65; and (b) is 0.01 to 0.05).

Pi. (OMuniNb. Sham), Zr. Till O. Ibsio.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (J P) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-316871 (P2002-316871A)

(43)公開日 平成14年10月31日(2002.10.31)

(51) Int.Cl. ⁷	識別記号	FΙ		テーマコート*(参考)
C 0 4 B	35/49	C 0 4 B	35/49	4G031
H01L	41/09	H01L	41/18 1 0 1 1	
	41/187		41/08	;

審査請求 未請求 請求項の数2 OL (全 10 頁)

	· · · · · · · · · · · · · · · · · · ·		
(21)出願番号	. 特顧2002-11634(P2002-11634)	(71)出顧	•
(22)出顧日	平成14年1月21日(2002.1.21)	(72)発明:	株式会社村田製作所 京都府長岡京市天神二丁目26番10号
(31)優先権主張番号	特願2001-42530 (P2001-42530)	(,)2.,;	京都府長岡京市天神二丁目26番10号 株式
(32)優先日	平成13年2月19日(2001.2.19)		会社村田製作所内
(33)優先権主張国	日本 (JP)	(72)発明	者 木村 雅典
			京都府長岡京市天神二丁目26番10号 株式
			会社村田製作所内
		(74)代理/	L 100080034
			弁理士原 謙三
			最終頁に続く
		[

(54) 【発明の名称】 圧電磁器組成物およびこれを用いた圧電素子

(57)【要約】

【課題】 電気特性を低下させることなく高い強度を有 する圧電磁器組成物および薄肉化しても高周波化に十分 対応できる圧電素子を提供する。

*分としてペロブスカイト構造を有する複合酸化物と副成 分としてSiO, とを互いに固溶してなり、次式の組成 比を備えたものである。 【化6】

【解決手段】 本発明にかかる圧電磁器組成物は、主成*

 $P b_a \{ (M n_{2d-1} N b_d S b_{2-3d})_x Z r_y T i |_z \} O_3 + b S i O_2$

(ただし、aが0.95~0.985、xが0.04~ 0.65 bが0.01~0.05にある)。 0. 18, yが0. 36~0. 52, dが0. 55~

【特許請求の範囲】

【請求項1】一般式ABO、で表されるペロブスカイト 構造を有する複合酸化物を主成分として含んでいる圧電 磁器組成物において、さらに、副成分としてSiO。が*

$P b_a \{ (M n_{2d-1} N b_d S b_{2-3d})_x Z r_y T i_z \} O_3 + b S i O_2$

(ただし、上記aが0.95~0.985の範囲内にあ り、xが0.04~0.18の範囲内にあり、yが0. 36~0.52の範囲内にあり、dが0.55~0.6 5の範囲内にあり、zが0.44~0.52の範囲内に あり、bが0.01~0.05の範囲内にある)で表さ 10 れる固溶体となっていることを特徴とする圧電磁器組成

【請求項2】請求項1に記載の圧電磁器組成物を用いて なることを特徴とする圧電素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、強誘電性の圧電磁 器に有用な圧電磁器組成物、およびこれを用いた圧電素 子に関するものであり、特に、圧電共振子、圧電アクチ ュエータ、圧電ブザー、圧電フィルタ、圧電発振子等に 20 特に有用な圧電素子と、これに好適に用いられる圧電磁 器組成物に関するものである。

[0002]

【従来の技術】圧電素子は、電気振動を機械振動に変換 する作用をもつ素子であり、または機械振動を電気振動 に変換する作用をもつ素子である。この圧電素子の具体 的な用途としては、圧電振動子、圧電共振子、圧電フィ ルタ、および圧電発振子などが挙げられる。従来から、 上記圧電素子用の材料としては、圧電磁器(圧電体磁 器、圧電セラミックス)が広く用いられている。この圧 30 電磁器としては、一般式ABO、で示されるペロブスカ イト構造を有する複合酸化物が非常に好適に用いられて いる。

【0003】たとえば、以前、本出願人によってペロブ スカイト構造を有する圧電磁器用の組成物が提案されて いる(特公昭51-11798号公報)。この組成物 は、特定の組成範囲にあるPb { (Mn, Nb, Sb) Zr, Ti > O, 系の三成分系磁器組成物となってい る。このような磁器組成物では、機械的品質係数Qmを 高いものにすることができるため、機械振動に伴う弾性 40 損失を低減することができる。

【0004】ところで近年、上記圧電素子の技術分野で は、髙周波化に対応するために、圧電素子そのものの薄 肉化が進んでいる。薄肉化した場合には、髙周波の機械 振動においても圧電素子が破壊されないように、十分な 機械的強度が必要となる。通常、圧電素子用の圧電磁器 では、薄肉化した場合でも少なくとも140MPa以上 の抗折強度が必要とされる。したがって、圧電磁器組成 物としては、薄肉化に際しての髙周波振動に耐え得る髙 強度の材料の需要が拡大している。

*含まれており、これら主成分と副成分とが互いに固溶し てなり、次式 【化1】

【0005】また、上述したように圧電素子は種々の目 的で使用されるので、圧電素子用の材料である上記圧電 磁器に対しても使用目的に応じて種々の特性が要求され る。たとえば、圧電フィルタを例に挙げると、この圧電 フィルタは、いろいろな周波数成分を備えた入力信号の 中から、特定周波数帯の信号のみを出力する機能を有す る。そのため、圧電磁器に対しては、高い電気機械結合 係数(K₁₅)だけでなく、髙い信頼性を確保するため に、温度特性として、平坦な周波数の温度係数が要求さ れる。

[0006]

【発明が解決しようとする課題】ところが、前記組成物 も含めた従来の圧電磁器組成物においては、十分な強度 を確保することが困難となっている。十分な強度が得ら れないと、加工中の圧電素子中間体や、加工後の圧電素 子に対して衝撃が加わると容易に破壊することになり、 圧電素子製造における歩留りの低下や、圧電素子そのも のの信頼性の低下といった問題点が生じることになる。 【0007】たとえば前記組成物では、圧電素子を製造 した場合、その抗折強度は概ね110~130MPa程 度の範囲内と、実質的に120MPa近傍の強度しか実 現できない。そのため、薄肉化した圧電素子を製造する ことが困難である。

【0008】さらに、圧電素子においては、薄肉化した 際の強度だけでなく、使用目的に応じた特性も確保され なければならない。特に、前記圧電共振子、圧電振動 子、圧電フィルタ、および圧電発振子では、圧電フィル タで例に挙げたように、強度とともに、高い電気機械結 合係数K₁、や共振周波数の温度特性などといった電気特 性も実現されなければならない。

【0009】しかしながら、圧電磁器組成物として好ま しく用いられるペロブスカイト構造の材料では、上記強 度と電気特性との双方を実現し得るような材料はほとん ど知られていなかった。

【0010】本発明は、上記問題点に鑑みてなされたも のであって、その目的は、薄肉化した状態でも高周波振 動に耐え得る強度を実現し得るとともに、優れた電気特 性も発揮し得る圧電磁器組成物、特に150MPa以上 の抗折強度を実現し得る圧電磁器組成物と、これを用い て得られ、高周波化に十分対応できる高品質の圧電素子 とを提供することにある。

[001|1]

【課題を解決するための手段】本発明者らは、上記問題 点を解消するために鋭意検討した結果、圧電磁器組成物 50 の主成分として用いられる、一般式ABO。で表される

ペロブスカイト構造を有する複合酸化物において、該複 * [0012] 合酸化物が次式

 $P b_a \{ (M n_{2d-1} N b_d S b_{2-3d})_x Z r_y T i_z \} O_3$

[化2]

【0013】に示す組成系を示し、さらに、副成分とし てSiOzが含まれており、かつ、これら主成分と副成 分とが互いに固溶してなる構成であれば、Pb量とSi ○₂量を最適な範囲にすることで、得られる薄肉化圧電 素子の強度および圧電特性をともに向上させ得ることを

見出して、本発明を完成させるに至った。

【0014】すなわち、本発明にかかる圧電磁器組成物※10

$P b_a \{ (M n_{2d-1} N b_d S b_{2-3d})_x Z r_y T i|_z \} O_3 + b S i O_2$

【0016】(ただし、上記aが0.95~0.985 の範囲内にあり、xが0.04~0.18の範囲内にあ り、yが0.36~0.52の範囲内にあり、zが0. 44~0.52の範囲内にあり、dが0.55~0.6 5の範囲内にあり、bが0.01~0.05の範囲内に ある) で表される固溶体となっていることを特徴として いる。

【0017】上記構成によれば、上記一般式ABOュで 表される主成分の複合酸化物における第1元素の量が小 20 さくなっているため、複合酸化物の構造中において、A の位置(以下、適宜Aサイトと称する)に確実に第1元 素が配置されていることになる。それゆえ、複合酸化物 の粒界に未反応の第1元素成分が析出して存在すること が回避される。その結果、得られる圧電素子において、 電気特性を低下させることなく強度を向上させることが できる。

【0018】具体的には、ペロブスカイト構造は、AO 」の3次元構造の隙間にBが入り込んだものと見なすと とができる。そのため、AO, においてAサイトの原子 30 を中心に見れば、単純立方格子にすぎないため、容易に 歪む。それゆえ圧電素子用の材料、すなわち圧電磁器組 成物の主成分としては好適なものである。

【0019】上記ペロブスカイト構造を有する複合化合 物は、出発素材として、第1元素および第2元素群の酸 化物を用い、これらを調合して所定の条件で焼成するこ とによって得ることができる。なお、上記第1元素はP bであるとともに、上記第2元素群は、Zr, Ti, M n, Nb, およびSbからなっている。

【0020】 ここで、Aサイトに入る第1元素が完全に 40 反応せず、複合酸化物の粒界に未反応の状態で析出する と、強度、特に抗折強度が低下することが本発明者らに よって独自に見出された。それゆえ、粒界に未反応の第 1元素が析出することを抑制すべく、第1元素のモル量 が第2元素群の総モル量よりも小さくしており、具体的 には、上述したように、第1元素のモル分率が、第2元 素群の総モルに対して、0.95~0.985の範囲内 となっている。

【0021】したがって、本発明にかかる圧電磁器組成 物の製造方法においては、複合酸化物の出発素材(原

※は、上記の課題を解決するために、一般式ABO、で表 されるペロブスカイト構造を有する複合酸化物を主成分 として含んでいる圧電磁器組成物において、さらに、副 成分とUてSiO、が含まれており、これら主成分と副 成分とが互いに固溶してなり、次式

[0015]

【化3】

料)となる、上記第1元素および第2元素群の酸化物を 調合する際に、第1元素のモル量が第2元素群の総モル 量よりも小さくなるように、各酸化物の配合量を決定す るようになっている。

【0022】上記複合酸化物においては、化学量論的組 成の組成比は、一般式ABO。から明らかなように、理 論上、 $\mathsf{A}:\mathsf{B}=1:1$ となる。ここで、本発明において は、第1元素のモル量が第2元素群の総モル量よりも小 さくなっているので、上記複合酸化物に含まれる、第2 元素群に対する第1元素のモル分率は、化学量論的なモ ル分率(化学量論量とする)より小さな1未満となって

【0023】 このように、第1元素のモル分率が0.9 5~0. 985の範囲内であれば、第1元素の組成が化 学量論量よりも小さな1未満となるので、粒界に未反応 の第1元素が析出することがより一層抑制される。それ ゆえ、圧電素子の抗折強度を140MPa以上とすると とができるとともに、電気機械結合係数K15も十分な値 を確保することができる。

【0024】具体的には、第1元素のモル分率が0.9 5未満となると、Aサイトに入る第1元素の量が少な過 ぎるため、後述する各実施例の結果に示すように、圧電 素子の電気機械結合係数K15が低下するため好ましくな い。一方、0.985を超えると、粒界に未反応の第1 元素が析出し易くなり、後述する実施例の結果に示すよ うに、圧電素子の抗折強度が低下するため好ましくな 45

【0025】また、本発明においては、上記サブ元素 (群)のうち、2-1元素群すなわちMn, Nb, およ びSbの総モル分率は0.04~0.18の範囲内であ ることが必要である。Mn, Nb, Sbの総モル分率が 0.04 未満となっても0.18を超えても、後述する 各実施例の結果に示すように、圧電素子の電気機械結合 係数K15が低下するため好ましくない。

【0026】さらに、上記2-1元素群に含まれるM n, Nb およびSbの組成比としては、

Mn : Nb : Sb = 2d - 1 : d : 2 - 3d(ただし、0.55≦d≦0.65)の関係が成立する 50 ととが必要である。

4

【0027】dが0.55未満または0.65を超える と、後述する実施例の結果に示すように、圧電素子の電 気機械結合係数K.,が低下するため好ましくない。

【0028】また、本発明においては、上記サブ元素 (群)のうち、2-2元素すなわちZrのモル分率が 0.36~0.52の範囲内であることが必要である。 【0029】 Zrのモル分率が0.36未満となっても 0.52を超えても、後述する各実施例の結果に示すよ うに、圧電素子の電気機械結合係数K.、が低下するため 好ましくない。

【0030】なお、上記サブ元素群のうち、2-3元素 すなわちTiの配合量つまりモル分率については、第2 元素群の各モル分率の合計である総モル分率が1になる ような設定されていればよい。具体的には、2-1元素 群のモル分率をxとし、2-2元素のモル分率をyと し、2-3元素のモル分率をzとし、第2元素群の総モ ル分率をMとすると、

x + y + z = M = 1

0.04 (モル分率) ≦ x ≤ 0.18 (モル分率) 0.36 (モル分率) ≤y≤0.52 (モル分率) の関係が成立する。したがって、上記Tiのモル分率に おける最大の範囲は、0.30~0.60の範囲内 〔0.30 (モル分率) ≤ z ≤ 0.60 (モル分率)] となる。

【0031】しかしながら、Tiのモル分率としては、 後述する各実施例の結果に示すように、0、44~0、 52の範囲内〔0.44(モル分率)≤z≤0.52 (モル分率)〕であることが特に好ましい。

【0032】Tiのモル分率が0.44未満となっても 0.52を超えても、圧電素子の電気機械結合係数K₁、30 が低下する。第2元素群に含まれる各サブ元素(群)の モル分率が上記範囲内であれば、優れた物性の圧電素子 を得ることが可能である。それゆえ、圧電素子の抗折強 度のみならず電気機械結合係数K、も向上する。

【0033】 これに対して、各サブ元素 (群) のモル分 率が、上記範囲を外れると、圧電素子の電気機械結合係 数K15が低下するため、圧電素子を圧電フィルタとして 用いる場合に必要となる特性を得られなくなるため好ま

【0034】本発明にかかる圧電磁器組成物において *40

 $P b_a \{ (M n_{2d-1} N b_d S b_{2-3d})_x Z r_y T i|_z \} O_3 + b S i O_2$

【0040】で表される固溶体となっている。ただし、 a, b, x, y, z, およびdには次の関係が成立して いる。

[0041]

0.95 (モル分率) ≦a≦0.985 (モル分率)

0. 01 (wt%) $\leq b \leq 0.05 \text{ (wt%)}$

0.04(モル分率) ≦ x ≤ 0.18(モル分率)

0.36 (モル分率) ≤ y ≤ 0.52 (モル分率)

0.44(モル分率) ≤ z ≤ 0.52(モル分率)

*は、上記Si化合物の含有量は、主成分である上記複合 酸化物100重量%に対して、SiO,に換算して0. ○1重量%~0.05重量%の範囲内にあることが必要 である。Si化合物の含有量が上記範囲内にあれば、圧 電素子の抗折強度として、150MPa以上を実現する ことができる可能になるので、各種電気特性の安定した 高強度の圧電素子を得ることができる。

6

【0035】これに対して、Si化合物の含有量が0. 01重量%未満であれば、後述する実施例の結果に示す 10 ように、圧電素子の抗折強度が150MPa未満となる ため、S i 化合物を副成分として加える意義が薄れる。 一方、〇.05重量%を超えると、圧電素子を形成する ための焼結温度が高くなりすぎる。そのため、特に第1 元素としてPbを用いた場合、焼成中にPbが蒸発し易 くなり、複合酸化物中のPbの組成が設計値から変化し てしまう。そのため圧電素子の電気機械結合係数 K1,が 低下し、その他の特性も制御し難くなるため好ましくな 4.

【0036】さらに本発明にかかる圧電磁器組成物にお 20 いては、副成分としてA120,が含まれていてもよ い。すなわち、本発明にかかる圧電磁器組成物は、上記 複合酸化物を主成分として含み、SiO.を副成分とし て含み、これらを互いに固溶させた二成分系固溶体とな っていることが好ましいが、さらに副成分としてA1, 〇、が含まれた三成分系固溶体となっていても構わな

【0037】なお、A1、O。の含有量は、圧電磁器組 成物の特性に支障を来さない範囲内であればよい。A1 2 ○3 の含有量の一例としては、たとえば0重量%~ 0.08重量%の範囲内が挙げられるが、これに特に限 定されるものではない。但し、Al,O。の含有量が過 剰になると、電気機械結合係数 K15 が低下するなど圧電 磁器組成物の特性に支障を来す場合があるので好ましく

【0038】以上より、本発明にかかる圧電磁器組成物 は、主成分としてペロブスカイト構造を有する複合酸化 物を、副成分としてSiO」を含んでおり、上記主成分 と副成分とが互いに固溶してなり、次式

[0039] 【化4】

0.55

つまり本発明では、主成分である上記複合酸化物の含有 量を100重量%とすると、上記副成分であるSiO, の含有量が0.01重量%~0.05重量%の範囲内と

 $\leq d \leq 0.65$

【0042】さらに、本発明では、上述したように、副 成分としてA1、〇、が含まれていてもよい。すなわ ち、本発明における圧電磁器組成物においては、副成分

50 としてA 1、O, が特性に支障のない範囲で添加され

なるような二成分系固溶体を形成している。

て、三成分系固溶体となっていてもよい。

【0043】本発明にかかる圧電素子は、上述した圧電 磁器組成物を用いてなることを特徴としている。具体的 には、焼成によって上記圧電磁器組成物を得た上で、所 定条件で分極化した上で、これに対して所定の電極パタ ーンを形成することによって、本発明にかかる圧電素子 を得ることができる。該圧電素子の一例は、図2に示す ように、圧電素子本体1に対して、電極パターン2が形 成された構成となっている。また、図中矢印で示すよう に、圧電素子の長手方向に沿って、該圧電素子は分極し 10 ている。

【0044】上記構成によれば、薄肉化しても抗折強度 を150MPa以上とすることが可能である。しかも、 電気機械結合係数K1、を45%~55%の範囲内に制御 できるとともに、共振周波数の温度係数を任意に変化さ せることもできる。その結果、圧電共振子、圧電アクチ ユエータ、圧電ブザー、圧電フィルタ、圧電発振子等と して特に有用に用いることができる。

【0045】上記電極パターンは、圧電素子の用途に応 じて適宜形成されるものであって、特定の電極やパター 20 ンに限定されるものではない。また、分極化する条件に ついても特に限定されるものではなく、従来公知の方法 を用いることができる。

【0046】また、各種圧電素子に必要な電気機械結合 係数K15についても、圧電素子の用途によって異なるた め、特に限定されるものではない。共振周波数の温度係 数の変化についても圧電素子の用途に応じて適宜変化さ せるものであり、特に限定されるものではない。

[0047]

【実施例】以下、実施例および比較例に基づいて本発明 30 をさらに詳細に説明するが、本発明はこれに限定される ものではない。

【0048】 [実施例1]酸化鉛 (PbO₂)、酸化チ タン (TiO₂)、酸化ジルコニウム (ZrO₂)、炭 酸マンガン(MnCO。)、酸化ニオブ(Nb

2 O5)、酸化アンチモン(Sb2O2)、酸化ケイ素 (SiO₂)、および酸化アルミニウム(A1₂O₃) を準備し、これらを表1に示す最終組成となるように配 合して配合粉末を得た。上記配合粉末をボールミルによ り2~24時間湿式混合した後、脱水、乾燥し、さらに 40 果を表2に示す。 900~1000℃で2時間仮焼した。

【0049】仮焼後に得られた配合粉末に適量のバイン ダーを加えた上で、ボールミルにより再度2~24時間 湿式混合・粉砕し、その後脱水することでプレス成形用 粉末を得た。このプレス成形用粉末をブロック状上にプ レス成形した後、1150~1300℃の温度において 2~4時間大気中で焼成し、20mm×30mm×7m mの焼成体すなわち本発明にかかる圧電磁器組成物を得

【0050】得られた焼成体を厚みが6.7mmになる まで研磨した後、焼結体に電極パターンを形成した。さ らに、この焼結体を油中で2.5kV/mm~3.5k V/mm、60°~100°Cの条件にて分極させた。分 極後の焼結体を150℃~240℃で1時間エージング し、さらに6.7mm×30mm×0.260mmの短 冊状にカットした上で、厚みがO. 210mmになるま で研磨した後、さらに両面に電極パターンを形成した。 【005 1】その後、焼結体を6.7mm×1.6mm ×0.2 10mmのサイズに切り出して、本発明にかか る圧電素子(1)を得た。この圧電素子について、抗折 強度、インピーダンスアナライザーを用いた厚みすべり 振動モードの電気特性(電気機械結合係数K15)、およ び共振周波数の温度変化率(-20℃~80℃の範囲 内)を測定した。測定結果を表2に示す。

【0052】〔実施例2〕前記複合酸化物において、P bのモル分率が表1に示すような最終組成となるように 酸化鉛の配合量を変化させた以外は、前記実施例1と同 様にして、圧電素子(2)を得た。この圧電素子につい て、前記実施例1と同様に各種特性を測定した。測定結 果を表2に示す。

【0053】〔比較例1・2〕前記複合酸化物におい て、表1に示すように、Pbのモル分率が0.945ま たは0.99となるように酸化鉛の配合量を変化させた 以外は、前記実施例1と同様にして、比較圧電素子

(1)・(2)を得た。これら圧電素子について、前記 実施例1 と同様に各種特性を測定した。測定結果を表2 に示す。

【0054】 〔比較例3〕前記複合酸化物において、表 1に示すように、Pbのモル分率が1となるように酸化 鉛の配合量を変化させた以外は、前記実施例1と同様に して、比較圧電素子(3)を得た。この圧電素子につい て、前記実施例1と同様に各種特性を測定した。測定結

[0055]

【表1】

9

10

	主成分:	复合酸化物(単位:	モル分率)	副成分(里	单位:wt%)		
	第1元素	9	82元素群			1	
実施例	D.L	2-1 元素群	2-2 元素群	2-3 元素群	S 1 O 2	Al2Os	圧電素子
	Pb (a)	Mn, Nb, Sb	Ζr	Тi	(ъ)	(c)	
		(x)	(y)	(z)			
1	0.95	0.10	0.40	0.50	0.02	0.007	圧電素子(1)
2	0.985	0.10	0.40	0.50	0.02	0.007	圧電素子(2)
比1	0.945	0.10	0.40	0.50	0.02	0.007	比較圧電素子(1)
比2	0.99	0.10	0.40	0.50	0.02	0.007	比較圧電素子(2)
比3	1.00	0.10	0.40	0.50	0.02	0.007	比較圧電素子(3)

※第2元素群に含まれる各元素の組成比は、Mn:Nb:Sb=0.30:0.65:0.05 (d=0.650) 比 → 比較例

[0056]

* * 【表2】

		. 12(5)	
圧電素子	抗折強度 (MPa)	電気機械結合係数 K18 (%)	共振周波数の 温度変化率 fr-TC (ppm/C)
圧電素子(1)	190	4.5	-90
圧電素子(2)	150	4 9	-65
比較圧電素子(1)	190	4 3	-95
比較圧電素子(2)	130	50	-40
比較圧電素子(3)	105	5 1	-30

【0057】表2の結果から明らかなように、比較圧電素子(3)では、抵折強度が大幅に低下しているが、本発明にかかる圧電素子(1)・(2)では、少なくとも抗折強度については高い値を実現できることが分かる。また、本発明にかかる圧電素子(1)・(2)では、第1元素であるPbのモル分率が前述した範囲内となっているので、比較圧電素子(1)・(2)と比べると、抗折強度だけでなく、電気機械結合係数K15 および共振周30波数の温度変化率の双方ともに優れた値を示すことが分かる。

【0058】 (実施例3~7) 前記複合酸化物において、第2元素群に含まれる各サブ元素群のモル分率が表3に示すような最終組成となるように、酸化チタン(TiO_2)、酸化ジルコニウム(ZrO_2)、炭酸マンガン($MnCO_3$)、酸化ニオブ(Nb_2O_3)、および酸化アンチモン(Sb_2O_3)の配合量を変化させた以

外は、前記実施例1と同様にして、圧電素子(3)~(7)を得た。これら圧電素子について、前記実施例1と同様に各種特性を測定した。測定結果を表4に示す。 [005] 比較例4~10] 前記複合酸化物において、第2元素群に含まれる各サブ元素群のモル分率が表3に示すような最終組成となるように、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、炭酸マンガン(Mn 酸化アンサン(Nb2O3)、酸化ニオブ(Nb2O3)、および野化アンサに、前記実施例1と同様にして、比較圧電素子(4)~(10)を得た。これら比較圧電素子について、前記実施例1と同様に各種特性を測定した。測定結果を表4に示す。

【0060】 【表3】

	主成	分:複合酸化物(単	位:モル分	本	副成分(耳	位:wt%)	
	第1元素	第 2	元素群			····	
実施例	Рb	2-1 元素群	2-2 元素	2-3 元素	SiO2	A 1 2 O 3	圧 電素 子
	(a)	Mn, Nb, Sb	Z r	Тi	(ъ)	(c)	
		(x)	(y)	(z)			
3	0.975	0.04	0.52	0.44	0.02	0.007	圧電素子(3)
4	0.975	0.18	0.38	0.44	0.02	0.007	圧電素子(4)
5	0.975	0.18	0.36	0.46	0.02	0.007	圧電素子(5)
6	0.975	0.04	0.44	0.52	0.02	0.007	圧電素子(6)
7	0.975	0.12	0.36	0.52	0.02	0.007	圧電素子(7)
比4	0.975	0.03	0.52	0.45	0.02	0.007	比較圧電素子(4)
比5	0.975	0.19	0.36	0.45	0.02	0.007	比較圧電素子(5)
比6	0.975	0.13	0.35	0.52	0.02	0.007	比較圧電素子(6)
比7	0.975	0.18	0.39	0.43	0.02	0.007	比較圧電素子(7)
比8	0.975	0.03	0.53	0.44	0.02	0.007	比較圧電素子(8)
比9	0.975	0.04	0.43	0.53	0.02	0.007	比較圧電素子(9)
比10	0.975	0.12	0.35	0.53	0.02	0.007	比較圧電素子(10)

※第2元素群に含まれる各元素の組成比は、Mn:Nb:Sb=0.30:0.65:0.05 (d=0.650) 比 → 比較例

[0061]

* *【表4】

圧電素子	抗折強度 (MPa)	電気機械結合係数 K15 (%)	共振周波数の 温度変化率 fr-TC (ppm/℃)
圧電素子(3)	160	4.5	-110
圧電素子(4)	170	4 5	-50
圧電素子(5)	170	4 6	-10
圧 電素 子(6)	160	4.5	-100
圧電素子(7)	160	4 5	-90
比較圧電素子(4)	160	43	-140
比較圧電素子(5)	160	4.3	10
.比較圧電素子(6)	160	4 2	-100
比較圧電素子(7)	160	38	-120
比較圧電素子(8)	160	4 2	-150
比較圧電素子(9)	160	4 3	-110
比較圧電素子(10)	160	4 2	-110

【0062】表4の結果から明らかなように、本発明にかかる圧電素子(3)~(7)では、第2元素群に含まれる各サブ元素(群)のモル分率が前述した範囲内であるので、比較圧電素子(4)~(10)と比べると、抗折強度だけでなく、電気機械結合係数 K_{15} も高い値を示すことが分かる。

【0063】 [実施例8・9] 前記複合酸化物において、第2元素群に含まれるMn, Nb, およびSbの最終組成を変化させるために、表5に示すようにdの数値を変化させた以外は、前記実施例1と同様にして、圧電素子(8)・(9)を得た。これら圧電素子について、

前記実施例1と同様に各種特性を測定した。測定結果を 表6に示す。

【0064】 [比較例11・12] 前記複合酸化物において、第2元素群に含まれるMn, Nb, およびSbの最終組成を変化させるために、表5に示すようにdの数40値を変化させた以外は、前記実施例1と同様にして、比較圧電素子(11)・(12)を得た。とれら比較圧電素子について、前記実施例1と同様に各種特性を測定した。測定結果を表6に示す。

[0065]

【表5】

14

	主成分: 複合酸化物 (単位:モル分率)						阊	成分(単	位: wt%)			
	第1元素	第1元素 第2元素群									1	
実施例	Рb	2-1 元素群 2-2			2-2 元素群	2.3 元素群	S	i O2	AlzOs	圧電素子		
	(a)	d	Mn	NЪ	Sь	Zr	Тi		(b)	(c)		
			2d-1	d	2-3d	(y)	(z)					
8	0.975	0.55	0.10	0.55	0.35	0.40	0.50		0.02	0.007	圧電素子(8)	
9	0.975	0.65	0.30	0.65	0.05	0.40	0.50		0.02	0.007	圧電素子(9)	
比11	0.975	0.54	0.08	0.54	0.38	0.40	0.50		0.02	0.007	比較圧電素子(11)	
比12	0.975	0.66	0.32	0.66	0.02	0.40	0.50		0.02	0.007	比較圧電素子(12)	

※比 → 比較例

[0066]

* *【表6】

part of the second seco			
圧電業子	抗折強度 (MPa)	電気機械結合係数 K15 (%)	共振周波数の 温度変化率 fr-TC (ppm/℃)
圧電素子(8)	150	4 5	-50
圧電素子(9)	180	4.5	-80
比較圧電素子(11)	150	4 0	-20
比較圧電素子(12)	180	38	-90

【0067】表6の結果から明らかなように、本発明に 20% (12)を得た。これら圧電素子について、前記実施例1 かかる圧電素子(8)・(9)では、第2元素群に含ま れる各サブ元素(群)のモル分率が前述した範囲内であ るので、比較圧電素子(11)・(12)と比べると、抗折 強度だけでなく、電気機械結合係数K15も高い値を示す ことが分かる。

【0068】〔実施例10~12〕前記複合酸化物にお いて、表7に示すような含有量となるように、副成分と なる酸化ケイ素(SiO₂)および酸化アルミニウム (Al,O)の配合量を変化させた以外は、前記実施 例1と同様にして、本発明にかかる圧電素子 (10) ~ ※30 【表7】

と同様に各種特性を測定した。測定結果を表8に示す。 【0069】〔比較例13~18〕前記複合酸化物にお いて、表7に示すような含有量となるように、副成分と なる酸化ケイ素(SiO、)および酸化アルミニウム (Al, O,)の配合量を変化させた以外は、前記実施 例1と同様にして、比較圧電素子(13)~(18)を得 た。これら圧電素子について、前記実施例1と同様に各 種特性を測定した。測定結果を表8に示す。

[0070]

	主	成分:複合酸化物()	単位:モル分	率)	副成分(单	位:wt%)	
	第1元素	第	2元素群			1	1
実施例	Рb	2-1 元素群	2-2 元素群	2-8 元素群	SiO2	AlzOa	圧電素子
	(a)	Mn, Nb, Sb	Zr	Ti	(b)	(c)	
		(x)	(y)	(z)			
. 10	0.975	0.10	0.40	0.50	0.01	0.007	圧電素子 (10)
11	0.975	0.10	0.40	0.50	0.05	0.007	圧電素子 (11)
12	0.975	0.10	0.40	0.50	0.02	0.08	圧電素子 (12)
比13	0.975	0.10	0.40	0.50	0.005	0.007	比較圧電素子(13)
比14	0.975	0.10	0.40	0.50	0.06	0.007	比較圧電素子(14)
比15	0.975	0.10	0.40	0.50	0.09	0.007	比較圧電素子(15)
比16	0.975	0.10	0.40	0.50	0.12	0.007	比較圧電素子(16)
比17	0.975	0.10	0.40	0.50	0.02	0.000	比較圧電素子(17)
比18	0.975	0.10	0.40	0.50	0.02	0.09	比較圧電素子(18)

※第2元素群に含まれる各元素の組成比は、Mn:Nb:Sb=0.30:0.65:0.05 (d=0.650) 比 → 比較例

[0071]

圧電素子	抗折強度 (MPa)	電気機械結合係数 K15 (%)	共振周波数の 温度変化率 fr-TC (ppm/℃)	備考
圧電素子 (10)	160	4 8	-70	
圧電素子(11)	200	4 5	-80	
圧 電素 子(12)	170	4 5	-80	
比較圧電素子(13)	120	4 8	-70	
比較圧電素子(14)	205	4 3	-80	
比較圧電素子(15)	220	4 2	-85	
比較圧電素子(16)	225	40	-85	焼結性難
比較圧電素子(17)	160	4 6	-70	
比較圧電素子(18)	175	4 3	-85	

【0072】表8から明らかなように、本発明にかかる 圧電素子(10)~(12)では、副成分の含有量が前述し た範囲内であるので、比較圧電素子 (13) ~(18)に比べ て、抗折強度だけでなく、電気機械結合係数K15も高い 値を示すことが分かる。

[0073]

*【発明の効果】以上のように、本発明にかかる圧電磁器 組成物は、主成分としてペロブスカイト構造を有する複 合酸化物を、副成分としてSiO,を含んでおり、上記 主成分と副成分とが互いに固溶してなり、次式 [0074]

【化5】

$P b_a \{ (M n_{2d-1} N b_d S b_{2-3d})_x Z r_y T i_z \} O_3 + b S i O_2$

【0075】(ただし、上記aが0.95~0.985 の範囲内にあり、xが0.04~0.18の範囲内にあ り、yが0.36~0.52の範囲内にあり、dが0. 55~0.65の範囲内にあり、bが0.01~0.0 5の範囲内にある)で表される固溶体として表現され る。

【0076】さらに、本発明にかかる圧電素子は、上記 圧電磁器組成物を用いてなる構成である。それゆえ、薄 肉化しても抗折強度を150MPa以上とすることが可 30 図である。 能であり、かつ電気機械結合係数K15を45%~55% の範囲内に制御でき、共振周波数の温度係数も任意に変 化させることも可能となる。

【0077】その結果、上記構成は、圧電共振子、圧電※

※アクチュエータ、圧電ブザー、圧電フィルタ、圧電発振 子等として特に有用に用いることができるという効果を 奏する。

【図面の簡単な説明】

【図1】本発明にかかる圧電磁器組成物において、主成 分として含まれる複合酸化物がとるペロブスカイト構造 を示す説明図である。

【図2】本発明にかかる圧電素子の一例を示す概略斜視

【符号の説明】

- 圧電素子本体 1
- 電極パターン 2

【図1】

【図2】

フロントページの続き

(72)発明者 髙木 斉

京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内

Fターム (参考) 4G031 AA11 AA12 AA14 AA19 AA30 AA32 AA34 BA10 CA01