Math Notes

Yuchen Wang

February 1, 2019

Contents

1	Hyperbolic Functions	2
2	Trigonometric Formulas	2
3	Arc functions	2
4	Cross Product	2
5	Derivative of Logarithmic Functions	3
6	Common Taylor Series	3
7	ε definition of supremum and infimum	3

1 Hyperbolic Functions

$$sinh(x) = \frac{e^x - e^{-x}}{2}$$
$$cosh(x) = \frac{e^x + e^{-x}}{2}$$

2 Trigonometric Formulas

$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$
$$\cos (a+b) = \cos a \cos b - \sin a \sin b$$
$$\sin (a+b) = \sin a \cos b + \cos a \sin b$$
$$\cos^2 a = \frac{1 + \cos 2a}{2}$$
$$\sin^2 a = \frac{1 - \cos 2a}{2}$$

3 Arc functions

Name	Usual notation	Definition	Domain	Range
arcsine	$y = \arcsin(x)$	$x = \sin(y)$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
arccosine	$y = \arccos(x)$	$x = \cos(y)$	[-1, 1]	$[0,\pi]$
arctangent	$y = \arctan(x)$	$x = \tan(y)$	\mathbb{R}	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

4 Cross Product

Definition In 3-dimensional Euclidean space only, the cross product of vectors ${\bf a}$ and ${\bf b}$ is

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

Remark "xia, dafan, shang"

Properties

- 1. $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}
- 2. $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$. This says that the length $\mathbf{a} \times \mathbf{b}$ equals the area of the parallelogram generated by \mathbf{a} and \mathbf{b} .
- 3. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 4. $(c_1\mathbf{a}_1 + c_2\mathbf{a}_2) \times \mathbf{b} = c_1\mathbf{a}_1 \times \mathbf{b} + c_2\mathbf{a}_2 \times \mathbf{b}$
- 5. $\mathbf{i} \times \mathbf{j} = \mathbf{k}$ and $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ and $\mathbf{k} \times \mathbf{i} = \mathbf{j}$
- 6. Not associative: $(a \times b) \times c \neq a \times (b \times c)$

5 Derivative of Logarithmic Functions

$$\frac{d}{dx}\log_a x = \frac{1}{x \cdot ln(a)}$$

6 Common Taylor Series

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \tag{1}$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \tag{2}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \tag{3}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \tag{4}$$

Remark Take the primitive of (4) to get the Taylor polynomial of $\ln(1-x)$.

7 ε definition of supremum and infimum

Definition Let S be a nonempty subset of the real numbers that is bounded above. The upper bound u is said to be the supremum of S iff

$$\forall \varepsilon > 0, \exists x \in S, u - \varepsilon < x$$

Notes by Y.W. 7 ε DEFINITION OF SUPREMUM AND INFIMUM

Definition Let S be a nonempty subset of the real numbers that is bounded below. The lower bound w is said to be the infimum of S iff

$$\forall \varepsilon > 0, \exists x \in S, x < w + \varepsilon$$