LISTING OF THE CLAIMS

The following listing of the claims replaces all prior versions and listings of claims for this application. Within this listing of the claims, claims 1, 6, 9, 16, 24, 25, 30, 33, 40, 48, 55, and 75 are currently amended and claims 7, 8, 31, 32, and 59 are canceled.

- 1. (Currently amended) A nonpolymeric silsesquioxane in which at least one silicon atom is bound to at least one acid-cleavable <u>alicyclic</u> substituent R^{CL} , wherein the silsesquioxane has a glass transition temperature T_g of greater than 50°C and R^{CL} is cleavable upon exposure to acid at a temperature below T_g , and further wherein the silsesquioxane is additionally substituted with at least one polar substituent R^P .
- 2. (Original) The silsesquioxane of claim 1, wherein R^{CL} is cleavable upon exposure to acid at a temperature that is at least 5°C below T_g .
- 3. (Original) The silsesquioxane of claim 1, selected from: (a) a polyhedral silsesquioxane optionally having one to three open vertices; and (b) a macromer of two to four polyhedral silsesquioxanes that may be the same or different, with each polyhedral silsesquioxane optionally having one to three open vertices.
- 4. (Original) The silsesquioxane of claim 3, wherein the polyhedral silsesquioxane of (a) and the polyhedral silsesquioxanes of (b) have from 4 to 10 faces.
- 5. (Original) The silsesquioxane of claim 1, wherein each silicon atom of the silsesquioxane is covalently bound to a moiety selected from: hydrogen; R^{CL} ; an acid-inert, polar substituent R^{P} ; and an acid-inert, nonpolar substituent R^{NP} .
- 6. (Currently amended) The silsesquioxane of claim 1, wherein the silsesquioxane is additionally substituted with at least one of R^{P} -and non-polar substituent R^{NP} .
 - 7-8. (Canceled)
 - 9. (Currently amended) The silsesquioxane of claim 1, wherein R^{CL} has the structure

Application No. 10/721,302 Amendment dated June 6, 2006 Reply to Office Action of March 22, 2006

(I)
$$-(L^{1})_{m}-(X)_{n}-[(L^{2})_{q}-R^{1}]_{r}$$

in which:

m[[, n,]] and q are independently zero or 1;

n is 1;

r is an integer of at least 1;

 L^1 is selected from -O-SiR²R³-, C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, C_5 - C_{14} heteroarylene, substituted C_5 - C_{14} heteroarylene, C_6 - C_{14} aralkylene, substituted C_6 - C_{14} aralkylene, C_6 - C_{14} heteroaralkylene, wherein R^2 and R^3 are hydrogen or C_1 - C_{12} hydrocarbyl, and further wherein when L^1 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^1 may be linear, branched, or cyclic;

X is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, C_5 - C_{14} heteroarylene, substituted C_5 - C_{14} heteroarylene, C_6 - C_{14} aralkylene, substituted C_6 - C_{14} aralkylene, and substituted C_6 - C_{14} heteroaralkylene, and further wherein when L^2 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^2 may be linear, branched, or cyclic; and

R¹ is selected from acid-cleavable ester, oligomeric ester, ether, carbonate, acetal, ketal, and orthoester substituents.

10. (Original) The silsesquioxane of claim 9, wherein:

r is 1 or 2;

L¹ is selected from -O-SiR²R³- and C₁-C₁₂ alkylene;

 R^2 and R^3 are hydrogen or C_1 - C_6 hydrocarbyl;

X is C₃-C₁₈ alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene;

 R^1 is selected from -(CO)-O- R^4 , -[Q 1 -(CO)-O-] $_h$ - R^5 , -O- R^6 , and -O-(CO)-O- R^7 ;

h is an integer in the range of 2 to 8 inclusive;

 Q^1 is C_1 - C_{12} alkylene or C_1 - C_{12} fluoroalkylene;

Application No. 10/721,302 Amendment dated June 6, 2006 Reply to Office Action of March 22, 2006

R⁴ and R⁶ are selected from (a) hydrocarbyl substituents with a tertiary carbon attachment point, (b) substituents having the structure -CR⁸R⁹-O-CR¹⁰R¹¹R¹², and (c) substituents having the structure -CR¹³(OR¹⁴)₂;

 R^5 , R^7 , and R^{14} are selected from C_4 - C_{12} hydrocarbyl, substituted C_4 - C_{12} hydrocarbyl, heteroatom-containing C_4 - C_{12} hydrocarbyl, and substituted heteroatom-containing C_4 - C_{12} hydrocarbyl; and

R⁸, R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from hydrogen, C₄-C₁₂ hydrocarbyl, substituted C₄-C₁₂ hydrocarbyl, heteroatom-containing C₄-C₁₂ hydrocarbyl, and substituted heteroatom-containing C₄-C₁₂ hydrocarbyl, and further wherein any two of R⁸, R⁹, R¹⁰, R¹¹, and R¹² may be linked to form a three- to eight-membered cyclic group.

11. (Original) The silsesquioxane of claim 10, wherein:

L¹ is selected from -O-SiR²R³- and C₁-C₆ alkylene;

R² and R³ are hydrogen or C₁-C₆ alkyl;

X is C₆-C₁₂ alicyclic; and

 L^2 is of the formula -CR¹⁵R¹⁶- wherein R¹⁵ is hydrogen, C₁-C₁₂ alkyl, or C₁-C₁₂ fluoroalkyl, and R¹⁶ is C₁-C₁₂ alkyl or C₁-C₁₂ fluoroalkyl.

12. (Original) The silsesquioxane of claim 11, wherein:

R¹ is of the formula -(CO)-O-R⁴, wherein R⁴ is selected from cyclic and acyclic hydrocarbyl substituents with a tertiary carbon attachment point, such that when r is 1, then R^{CL} has the structure

(II)
$$-(L^{1})_{m}-(X)_{n}-(CR^{15}R^{16})_{q}-(CO)-O-R^{4}.$$

13. (Original) The silsesquioxane of claim 11, wherein:

 R^1 is of the formula -O-R⁶, wherein R⁶ is selected from cyclic and acyclic hydrocarbyl substituents with a tertiary carbon attachment point, such that when r is 1, then R^{CL} has the structure

(III)
$$-(L^{1})_{m}-(X)_{n}-(CR^{15}R^{16})_{q}-O-R^{6}.$$

14. (Original) The silsesquioxane of claim 12, wherein R⁴ is selected from t-butyl, adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclo-pentadienyl-cyclohexyl, 1-methylcyclohexyl, 1-methylcyclopentyl,

tetrahydropyranyl (THP), tetrahydrofuranyl (THF), 1-ethoxyethyl, 1-methoxy-cyclohexyl, and 1-methoxypropyl.

- 15. (Original) The silsesquioxane of claim 13, wherein R⁶ is selected from t-butyl, adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclo-pentadienyl-cyclohexyl, 1-methylcyclohexyl, 1-methylcyclopentyl, tetrahydropyranyl (THP), tetrahydrofuranyl (THF), 1-ethoxyethyl, 1-methoxy-cyclohexyl, and 1-methoxypropyl.
 - 16. (Currently amended) The silsesquioxane of claim [[7]] 1, wherein R^P has the structure

(IV)
$$-(L^3)_{m1}-(Y)_{n1}-(L^4)_{q1}-R^{18}$$

in which:

m1, n1, and q1 are independently zero or 1;

 L^3 is selected from -O-SiR 19 R 20 -, C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, C_5 - C_{14} heteroarylene, substituted C_5 - C_{14} aralkylene, substituted C_6 - C_{14} aralkylene, substituted C_6 - C_{14} aralkylene, C_6 - C_{14} heteroaralkylene, wherein R^{19} and R^{20} are hydrogen or C_1 - C_{12} hydrocarbyl, and further wherein when L^3 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^1 may be linear, branched, or cyclic;

Y is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^4 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, C_5 - C_{14} heteroarylene, substituted C_5 - C_{14} heteroarylene, C_6 - C_{14} aralkylene, substituted C_6 - C_{14} aralkylene, C_6 - C_{14} heteroaralkylene, and further wherein when L^4 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^4 may be linear, branched, or cyclic; and

R¹⁸ is an acid-inert polar organic group containing a heteroatom with a Pauling electronegativity greater than about 3.00.

17. (Original) The silsesquioxane of claim 16, wherein:

L³ is selected from -O-SiR¹⁹R²⁰- and C₁-C₁₂ alkylene;

Y is C₃-C₁₈ alicyclic; and

 L^4 is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene.

18. (Original) The silsesquioxane of claim 17, wherein:

L³ is selected from -O-SiR¹⁹R²⁰- and C₁-C₆ alkylene;

Y is C₆-C₁₂ alicyclic; and

 L^4 is of the formula -CR²¹CR²²- wherein R²¹ is hydrogen, C_1 - C_{12} alkyl, or C_1 - C_{12} fluoroalkyl, and R²² is C_1 - C_{12} alkyl or C_1 - C_{12} fluoroalkyl, such that R^P has the structure

(V)
$$-(L^3)_{m1}-(Y)_{n1}-(CR^{21}R^{22})_{q1}-R^{18}.$$

- 19. (Original) The silsesquioxane of claim 18, wherein the heteroatom within R^{18} is O or N.
- 20. (Original) The silsesquioxane of claim 19, wherein R^{18} is selected from hydroxyl, carboxyl, C_1 - C_{12} alkoxy, C_1 - C_{12} fluoroalkoxy, hydroxyl-substituted C_1 - C_{12} alkoxy, hydroxyl-substituted C_1 - C_{12} alkoxyalkyl, fluorinated C_2 - C_{12} alkoxyalkyl, hydroxyl-substituted C_2 - C_{12} alkoxyalkyl, fluorinated hydroxyl-substituted C_2 - C_{12} alkoxyalkyl, hydroxyl-substituted C_1 - C_{12} alkyl, hydroxyl-substituted C_1 - C_{12} alkyl, carboxyl-substituted C_1 - C_{12} fluoroalkyl, C_2 - C_{12} acyl, fluorinated C_2 - C_{12} acyl, hydroxyl-substituted C_2 - C_{12} acyl, fluorinated hydroxyl-substituted C_2 - C_{12} acyl, C_2 - C_{12} acyloxy, fluorinated C_2 - C_1 acyloxy, hydroxyl-substituted C_2 - C_1 acyloxy, fluorinated hydroxyl-substituted C_2 - C_1 acyloxy, amino, mono- and di- $(C_1$ - C_1 alkyl)-substituted amino, amido, mono- and di- $(C_2$ - C_1 alkyl)amido, sulfonamido, N-heteroalicyclic, oxo-substituted N-heterocyclic, and, where the substituents permit, combinations of two or more of the foregoing.
 - 21. (Original) The silsesquioxane of claim 20, wherein R¹⁸ is hydroxyl.
 - 22. (Original) The silsesquioxane of claim 19, wherein n is 1.
 - 23. (Original) The silsesquioxane of claim 22, wherein q is zero.
- 24. (Currently amended) The silsesquioxane of claim [[8]] $\underline{6}$, wherein R^{NP} is C_1 - C_{18} hydrocarbyl or fluorinated C_1 - C_{18} hydrocarbyl.

- 25. (Currently amended) A lithographic photoresist composition comprising a photoacid generator and a nonpolymeric silsesquioxane in which at least one silicon atom is bound to an at least one acid-cleavable alicyclic substituent R^{CL} , wherein the silsesquioxane has a glass transition temperature T_g of greater than 50°C and R^{CL} is cleavable upon exposure to acid at a temperature below T_g and further wherein the silsesquioxane is additionally substituted with at least one polar substituent R^P .
- 26. (Original) The composition of claim 25, wherein R^{CL} is cleavable upon exposure to acid at a temperature that is at least 5°C below $T_{\rm g}$.
- 27. (Original) The composition of claim 25, selected from: (a) a polyhedral silsesquioxane optionally having one to three open vertices; and (b) a macromer of two to four polyhedral silsesquioxanes that may be the same or different, with each polyhedral silsesquioxane optionally having one to three open vertices.
- 28. (Original) The composition of claim 27, wherein the polyhedral silsesquioxane of (a) and the polyhedral silsesquioxanes of (b) have from 4 to 10 faces.
- 29. (Original) The composition of claim 25, wherein each silicon atom of the silsesquioxane is covalently bound to a moiety selected from: hydrogen; R^{CL} ; an acid-inert, polar substituent R^{P} ; and an acid-inert, nonpolar substituent R^{NP} .
- 30. (Currently amended) The composition of claim 25, wherein the silsesquioxane is additionally substituted with at least one of R^P and non-polar substituent R^{NP} .
 - 31-32. (Canceled)
 - 33. (Currently amended) The composition of claim 25, wherein R^{CL} has the structure

(I)
$$-(L^1)_m -(X)_n - [(L^2)_q - R^1]_r$$

in which:

m[[, n,]] and q are independently zero or 1;

n is 1;

r is an integer of at least 1;

 L^1 is selected from -O-SiR²R³-, C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, C_5 - C_{14} heteroarylene, substituted C_5 - C_{14} heteroarylene, C_6 - C_{14} aralkylene, substituted C_6 - C_{14} aralkylene, C_6 - C_{14} heteroaralkylene, and substituted C_6 - C_{14} heteroaralkylene, wherein R^2 and R^3 are hydrogen or C_1 - C_{12} hydrocarbyl, and further wherein when L^1 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^1 may be linear, branched, or cyclic;

X is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, C_5 - C_{14} heteroarylene, substituted C_5 - C_{14} heteroarylene, C_6 - C_{14} aralkylene, substituted C_6 - C_{14} aralkylene, and substituted C_6 - C_{14} heteroaralkylene, and further wherein when L^2 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^2 may be linear, branched, or cyclic; and

R¹ is selected from acid-cleavable ester, oligomeric ester, ether, carbonate, acetal, ketal, and orthoester substituents.

34. (Original) The composition of claim 33, wherein:

r is 1 or 2;

 L^1 is selected from -O-SiR²R³- and C₁-C₁₂ alkylene;

R² and R³ are hydrogen or C₁-C₆ hydrocarbyl;

X is C₃-C₁₈ alicyclic;

 L^2 is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene; and

 R^1 is selected from -(CO)-O- R^4 , -[Q 1 -(CO)-O-] $_h$ - R^5 , -O- R^6 , and -O-(CO)-O- R^7 ;

h is an integer in the range of 2 to 8 inclusive,

Q1 is C1-C12 alkylene or C1-C12 fluoroalkylene,

R⁴ and R⁶ are selected from (a) hydrocarbyl substituents with a tertiary carbon attachment point, (b) substituents having the structure -CR⁸R⁹-O-CR¹⁰R¹¹R¹², and (c) substituents having the structure -CR¹³(OR¹⁴)₂;

 R^5 , R^7 , and R^{14} are selected from C_4 - C_{12} hydrocarbyl, substituted C_4 - C_{12} hydrocarbyl, heteroatom-containing C_4 - C_{12} hydrocarbyl, and substituted heteroatom-containing C_4 - C_{12} hydrocarbyl; and

 R^8 , R^9 , R^{10} , R^{11} , R^{12} , and R^{13} are independently selected from hydrogen, C_4 - C_{12} hydrocarbyl, substituted C_4 - C_{12} hydrocarbyl, heteroatom-containing C_4 - C_{12} hydrocarbyl, and substituted heteroatom-

containing C₄-C₁₂ hydrocarbyl, and further wherein any two of R⁸, R⁹, R¹⁰, R¹¹, and R¹² may be linked to form a three- to eight-membered cyclic group.

35. (Original) The composition of claim 34, wherein:

L¹ is selected from -O-SiR²R³- and C₁-C₆ alkylene;

R² and R³ are hydrogen or C₁-C₆ alkyl;

X is C₆-C₁₂ alicyclic; and

 L^2 is of the formula -CR¹⁵R¹⁶- wherein R¹⁵ is hydrogen, C_1 - C_{12} alkyl, or C_1 - C_{12} fluoroalkyl, and R¹⁶ is C_1 - C_{12} alkyl or C_1 - C_{12} fluoroalkyl.

36. (Original) The composition of claim 35, wherein R^1 is of the formula -(CO)-O- R^4 , wherein R^4 is selected from cyclic and acyclic hydrocarbyl substituents with a tertiary carbon attachment point, such that when r is 1, then R^{CL} has the structure

(II)
$$-(L^1)_m - (X)_n - (CR^{15}R^{16})_q - (CO) - O - R^4$$
.

37. (Original) The composition of claim 35, wherein R^1 is of the formula -O- R^6 , wherein R^6 is selected from cyclic and acyclic hydrocarbyl substituents with a tertiary carbon attachment point, such that when r is 1, then R^{CLf} has the structure

(III)
$$-(L^{1})_{m}-(X)_{n}-(CR^{15}R^{16})_{q}-O-R^{6}.$$

- 38. (Original) The composition of claim 36, wherein R⁴ is selected from t-butyl, adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclo-pentadienyl-cyclohexyl, 1-methylcyclohexyl, 1-methylcyclopentyl, tetrahydropyranyl (THP), tetrahydrofuranyl (THF), 1-ethoxyethyl, 1-methoxy-cyclohexyl, and 1-methoxypropyl.
- 39. (Original) The composition of claim 36, wherein R⁶ is selected from t-butyl, adamantyl, norbornyl, isobornyl, 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclo-pentadienyl-cyclohexyl, 1-methylcyclohexyl, 1-methylcyclopentyl, tetrahydropyranyl (THP), tetrahydrofuranyl (THF), 1-ethoxyethyl, 1-methoxy-cyclohexyl, and 1-methoxypropyl.

40. (Currently amended) The composition of claim [[31]] 25, wherein R^P has the structure

(IV)
$$-(L^3)_{m1}-(Y)_{n1}-(L^4)_{q1}-R^{18}$$

in which:

m1, n1, and q1 are independently zero or 1;

 L^3 is selected from -O-SiR¹⁹R²⁰-, C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, C_5 - C_{14} heteroarylene, substituted C_5 - C_{14} heteroarylene, C_6 - C_{14} aralkylene, substituted C_6 - C_{14} aralkylene, C_6 - C_{14} heteroaralkylene, and substituted C_6 - C_{14} heteroaralkylene, wherein R^{19} and R^{20} are hydrogen or C_1 - C_{12} hydrocarbyl, and further wherein when L^3 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^1 may be linear, branched, or cyclic;

Y is selected from C₃-C₃₀ alicyclic and substituted C₃-C₃₀ alicyclic;

 L^4 is selected from C_1 - C_{12} alkylene, substituted C_1 - C_{12} alkylene, C_1 - C_{12} heteroalkylene, substituted C_1 - C_{12} heteroalkylene, C_5 - C_{14} arylene, substituted C_5 - C_{14} arylene, C_5 - C_{14} heteroarylene, C_6 - C_{14} aralkylene, substituted C_6 - C_{14} aralkylene, C_6 - C_{14} heteroaralkylene, and substituted C_6 - C_{14} heteroaralkylene, and further wherein when L^4 is optionally substituted and/or heteroatom-containing C_3 - C_{12} alkylene, L^4 may be linear, branched, or cyclic; and

R¹⁸ is an acid-inert polar organic group containing a heteroatom with a Pauling electronegativity greater than about 3.00.

41. (Original) The composition of claim 40, wherein:

 L^3 is selected from -O-SiR¹⁹R²⁰- and C₁-C₁₂ alkylene;

Y is C₃-C₁₈ alicyclic; and

 L^4 is selected from C_1 - C_{12} alkylene, hydroxyl-substituted C_1 - C_{12} alkylene, C_1 - C_{12} fluoroalkylene, and hydroxyl-substituted C_1 - C_{12} fluoroalkylene.

42. (Original) The composition of claim 41, wherein:

L³ is selected from -O-SiR¹⁹R²⁰- and C₁-C₆ alkylene;

Y is C₆-C₁₂ alicyclic; and

 L^4 is of the formula -CR²¹CR²²- wherein R²¹ is hydrogen, C_1 - C_{12} alkyl, or C_1 - C_{12} fluoroalkyl, and R²² is C_1 - C_{12} alkyl or C_1 - C_{12} fluoroalkyl, such that R^P has the structure

(V)
$$-(L^3)_{m1}-(Y)_{n1}-(CR^{21}R^{22})_{q1}-R^{18}.$$

- 43. (Original) The composition of claim 42, wherein the heteroatom within R¹⁸ is O or N.
- 44. **(Original)** The composition of claim 43, wherein R¹⁸ is selected from hydroxyl, carboxyl, C₁-C₁₂ alkoxy, C₁-C₁₂ fluoroalkoxy, hydroxyl-substituted C₁-C₁₂ alkoxy, hydroxyl-substituted C₁-C₁₂ fluoroalkoxy, C₂-C₁₂ alkoxyalkyl, fluorinated C₂-C₁₂ alkoxyalkyl, hydroxyl-substituted C₂-C₁₂ alkoxyalkyl, fluorinated hydroxyl-substituted C₂-C₁₂ alkoxyalkyl, hydroxyl-substituted C₁-C₁₂ alkyl, hydroxyl-substituted C₁-C₁₂ alkyl, carboxyl-substituted C₁-C₁₂ alkyl, carboxyl-substituted C₁-C₁₂ fluoroalkyl, C₂-C₁₂ acyl, fluorinated C₂-C₁₂ acyl, hydroxyl-substituted C₂-C₁₂ acyl, fluorinated hydroxyl-substituted C₂-C₁₂ acyloxy, fluorinated C₂-C₁₂ acyloxy, hydroxyl-substituted C₂-C₁₂ acyloxy, fluorinated hydroxyl-substituted C₂-C₁₂ acyloxy, amino, mono- and di-(C₁-C₁₂ alkyl)-substituted amino, amido, mono- and di-(C₂-C₁₂ alkyl)amido, sulfonamido, N-heteroalicyclic, oxo-substituted N-heterocyclic, and, where the substituents permit, combinations of two or more of the foregoing.
 - 45. (Original) The composition of claim 44, wherein R¹⁸ is hydroxyl.
 - 46. (Original) The composition of claim 43, wherein n is 1.
 - 47. (Original) The composition of claim 46, wherein q is zero.
- 48. (Currently amended) The composition of claim [[32]] $\underline{30}$, wherein R^{NP} is C_1 - C_{18} hydrocarbyl or fluorinated C_1 - C_{18} hydrocarbyl.
 - 49. (Original) The composition of claim 25, further comprising a dissolution modifying additive.
- 50. (Original) The composition of claim 49, wherein the dissolution modifying additive is a dissolution inhibitor.
- 51. (Original) The composition of claim 25, further comprising a polymer selected to provide transparency at a predetermined wavelength.

- 52. (Original) The composition of claim 51, wherein the polymer is selected from siliconcontaining polymers and fluorinated polymers.
 - 53. (Original) The composition of claim 25, further comprising a solvent.
- 54. (Original) The composition of claim 25, wherein the photoacid generator is an onium salt selected from sulfonium salts and iodonium salts.
 - 55. (Currently amended) A process for patterning a substrate, comprising:
- (a) coating a substrate with a photoresist composition comprised of (i) a nonpolymeric silsesquioxane in which at least one silicon atom is bound to an acid-cleavable substituent R^{CL} , wherein the silsesquioxane has a glass transition temperature T_g of greater than 50°C, and (ii) a photoacid generator, thereby forming a film;
- (b) <u>baking the coated substrate at a post-application bake temperature in the range of about 90°C</u> to about 150°C;
- [[(b)]] (c) patternwise exposing the film to an imaging radiation source so as to form a latent, patterned image in the film;
 - [[(c)]] (d) baking the exposed film at a post-exposure bake temperature below T_g ; and
 - [[(d)]] (e) developing the latent image with a developer to form a patterned substrate.
- 56. (Original) The process of claim 55, wherein the nonpolymeric silsesquioxane is selected from: (a) a polyhedral silsesquioxane optionally having one to three open vertices; and (b) a macromer of two to four polyhedral silsesquioxanes that may be the same or different, with each polyhedral silsesquioxane optionally having one to three open vertices.
- 57. (Original) The process of claim 55, wherein the post-exposure bake temperature is at least 5° C below T_g .
- 58. (Original) The process of claim 57, wherein the post-exposure bake temperature is at least 10° C below T_{g} .
 - 59. (Canceled)

- 60. (Original) The process of claim 57, further including, subsequent to (a) and prior to (b), baking the coated substrate at a post-application bake temperature in the range of about 90°C to about 150°C.
- 61. (Original) The process of claim 58, further including, subsequent to (a) and prior to (b), baking the coated substrate at a post-application bake temperature in the range of about 80°C to about 120°C.
- 62. (Original) The process of claim 55, wherein the radiation is electron-beam, x-ray, ultraviolet, or extreme ultraviolet radiation.
 - 63. (Original) The process of claim 62, wherein the radiation is ultraviolet radiation.
- 64. (Original) The process of claim 63, wherein the ultraviolet radiation has a wavelength of 248 nm, 193 nm, 157 nm, or 13.4 nm.
- 65. (Original) The process of claim 64, wherein the ultraviolet radiation has a wavelength of 193 nm.
 - 66. (Original) The process of claim 55, further comprising etching the patterned substrate.
 - 67. (Original) The process of claim 66, wherein the etching comprises ion etching.
- 68. (Original) The process of claim 55, wherein the film is insoluble, and wherein the developer renders the film soluble where exposed to the imaging radiation source.
 - 69. (Original) The process of claim 68, further comprising removing the soluble film.
- 70. (Original) The process of claim 55, wherein the substrate comprises a silicon wafer, a photolithographic mask blank, or a printed circuit board.

- 71. (Original) The process of claim 55, wherein the substrate coated in (a) has a surface layer of an organic material, such that the patterned substrate is composed of a patterned bilayer resist having an underlayer of the organic material.
- 72. (Original) The process of claim 71, wherein the organic material is selected from diazonaphthoquinone/novolac, polyimides, polyesters, and polyacrylates.
 - 73. (Original) The patterned substrate prepared by the process of claim 55.
- 74. (Original) The silsesquioxane of claim 2, wherein R^{CL} is cleavable upon exposure to acid at a temperature that is at least 10°C below $T_{\rm g}$.
- 75. (Currently amended) The composition of claim [[25]] $\underline{26}$, wherein R^{CL} is cleavable upon exposure to acid at a temperature that is at least 10°C below T_g .