SfePy Documentation

July 1, 2008

Contents

1	Not	ation	3
2 List of all terms			
3	Intr	oduction	6
	3.1	Term call syntax	6
4	Terr	ms in termsMass	6
	4.1	dw_mass	6
	4.2	dw_mass_scalar	7
	4.3	dw_mass_scalar_fine_coarse	7
	4.4	dw_mass_scalar_r	7
	4.5	dw_mass_scalar_variable	7
	4.6	dw_mass_vector	7
	1.0	aw_mass_rootor	·
5	Terr	ms in termsBasic	8
	5.1	d_surface_dot	8
	5.2	d_surface_integrate	8
	5.3	d_volume	8
	5.4	d_volume_dot	8
	5.5	d_volume_integrate	8
	5.6	d_volume_wdot	8
	5.7	de_volume_average_mat	9
	5.8	di_volume_integrate_mat	9
	5.9	dw_volume_integrate	10
	0.0	dw_volume_wdot	10
			10
		dw_volume_wdot_dt	10
	5.13	$dw_volume_wdot_th \dots \dots$	11
6	Terr	ms in termsLaplace	11
	6.1	d_diffusion	11
	6.2	de_diffusion_velocity	11
	6.3	dw_diffusion	11
	6.4	dw_diffusion_r	11
	6.5	dw_laplace	12
	6.6	dw_permeability_r	12
	0.0	aw_permeasing_r	14

7	Teri	ns in termsNavierStokes 1	
	7.1		2
	7.2	10	2
	7.3	1	2
	7.4	dw_convect	2
	7.5	dw_div	3
	7.6	dw_div_grad	3
	7.7	dw_div_r	3
	7.8	dw_grad	3
	7.9	dw_grad_dt	3
	7.10	dw_lin_convect	4
	7.11	dw_st_grad_div	4
		<u> </u>	4
			4
			4
	7.15	dw_st_supg_p	4
	_		
8		as in termsPoint 1	
	8.1	dw_point_lspring	5
9	Teri	as in termsVolume 1	5
•	9.1		5
10		as in termsSurface 1	
	10.1	dw_surface_ltr	5
11	Teri	as in termsLinElasticity 1	5
		· ·	5
			5
		·	6
		v	6
			6
			6
			6
			7
	11.0	uw_mi_viscous_tii	'
12	Teri	as in termsBiot 1	7
	12.1	d_biot_div	7
	12.2	dw_biot_div	7
	12.3	dw_biot_div_dt	7
	12.4	dw_biot_div_r	8
	12.5	dw_biot_div_th	8
	12.6	dw_biot_grad	8
	12.7	dw_biot_grad_dt	8
	12.8	dw_biot_grad_r	8
			9
	_		_
13			9
		y =	9
			9
		5 *** ***	9
		n e e e e e e e e e e e e e e e e e e e	9
		n n n n n n n n n n n n n n n n n n n	9
	13.6	$state_in_volume_qp$	9

1 Notation

Ω	volume (sub)domain
Γ	surface (sub)domain
$\mid t \mid$	time
y	any function
\underline{y}	any vector function
\underline{n}	unit outward normal
q, s	scalar test function
p, r	scalar unknown or parameter function
\bar{p}	scalar parameter function
\underline{v}	vector test function
w, \underline{u}	vector unknown or parameter function
<u>b</u>	vector parameter function
$\underline{\underline{e}}(\underline{u})$	Cauchy strain tensor $(\frac{1}{2}((\nabla u) + (\nabla u)^T))$
\underline{f}	vector volume forces
f	scalar volume force (source)
ρ	density
ν	kinematic viscosity
c	any constant
$\delta_{ij}, \underline{\underline{I}}$	Kronecker delta, identity matrix

The suffix $"_0"$ denotes a quatity related to a previous time step. Term names are prefixed according to the following conventions:

dw	discrete weak	terms having a virtual (test) argument and zero or more unknown arguments, used for FE assembling
d	discrete	terms having all arguments known, the result is the scalar value of the integral
di	discrete integrated	like 'd' but the result is not a scalar (e.g. a vector)
continued		

	$\dots continued$		
dq	discrete quadrature	terms having all arguments known, the result are the values in quadrature points of elements	
de	discrete element	terms having all arguments known, the result is a vector of integral averages over elements (element average of 'dq')	

2 List of all terms

section	name	definition
(12.1)	d_biot_div	$\int_{\Omega} r \alpha_{ij} e_{ij}(\underline{w})$
(6.1)	d_diffusion	$\int_{\Omega} K_{ij} \nabla_i \bar{p} \nabla_j r$
(7.1)	$d_{-}div$	$\int_{\Omega} ar{p} abla \cdot \underline{w}$
(11.1)	d_lin_elastic	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{b}) e_{kl}(\underline{w})$
(5.1)	d_surface_dot	$\int_{\Gamma} pr, \int_{\Gamma} \underline{u} \cdot \underline{w}$
(5.2)	d_surface_integrate	$\int_{\Gamma} y$, for vectors: $\int_{\Gamma} \underline{y} \cdot \underline{n}$
(5.3)	d_{-} volume	$\int_{\Omega} 1$
(5.4)	d_{volume_dot}	$\int_{\Omega} pr, \int_{\Omega} \underline{u} \cdot \underline{w}$
(5.5)	$d_{volume_integrate}$	$\int_{\Omega} y$
(5.6)	d_volume_wdot	$\int_{\Omega} ypr, \int_{\Omega} y\underline{u} \cdot \underline{w}$
(11.2)	de_cauchy_strain	vector of $\forall K \in \mathcal{T}_h$: $\int_{T_K} \underline{\underline{e}}(\underline{w}) / \int_{T_K} 1$
(11.3)	de_cauchy_stress	vector of $\forall K \in \mathcal{T}_h$: $\int_{T_K} D_{ijkl} e_k l(\underline{w}) / \int_{T_K} 1$
(6.2)	$ m de_diffusion_velocity$	
(5.7)	de_volume_average_mat	$\forall K \in \mathcal{T}_h: \int_{T_K} m/\int_{T_K} 1$
(5.8)	$di_volume_integrate_mat$	$\int_{\Omega} m$
(7.2)	dq_{-grad}	$(\nabla p) _{qp}$
(7.3)	dq_lin_convect	$((\underline{b}\cdot\nabla)\underline{u}) _{qp}$
(12.2)	dw_biot_div	$\int_{\Omega} q \; \alpha_{ij} e_{ij}(\underline{u})$
(12.3)	$dw_biot_div_dt$	$\int_{\Omega} q \alpha_{ij} \frac{e_{ij}(\underline{u}) - e_{ij}(\underline{u}_{\underline{0}})}{\Delta t}$
(12.4)	dw_biot_div_r	$\int_{\Omega} q \alpha_{ij} e_{ij}(\underline{w})$
(12.5)	$dw_biot_div_th$	$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \mathrm{d}\tau \right] q$
(12.6)	dw_biot_grad	$\int_{\Omega} p \alpha_{ij} e_{ij}(\underline{v})$
continued		

$\dots continued$		
(12.7)	dw_biot_grad_dt	$\int_{\Omega} \frac{p - p_0}{\Delta t} \alpha_{ij} e_{ij}(\underline{v})$
(12.8)	dw_biot_grad_r	$\int_{\Omega} r \alpha_{ij} e_{ij}(\underline{v})$
(12.9)	$dw_biot_grad_th$	$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) p(\tau) \right) d\tau \right] e_{ij}(\underline{v})$
(7.4)	dw_convect	$\int_{\Omega}((\underline{u}\cdot abla)\underline{u})\cdot\underline{v}$
(6.3)	dw_diffusion	$\int_{\Omega} K_{ij} \nabla_i q \nabla_j p$
(6.4)	dw_diffusion_r	$\int_{\Omega} K_{ij} \nabla_i q \nabla_j r$
(7.5)	dw_div	$\int_{\Omega} q abla \cdot \underline{u}$
(7.6)	dw_div_grad	$\int_{\Omega} u abla \underline{v} : abla \underline{u}$
(7.7)	dw_div_r	$\int_{\Omega} q abla \cdot \underline{w}$
(7.8)	dw_grad	$\int_{\Omega} p \nabla \cdot \underline{v}$
(7.9)	dw_grad_dt	$\int_{\Omega} rac{p-p_0}{\Delta t} abla \cdot \underline{v}$
(6.5)	dw_laplace	$ \begin{array}{c cccc} c \int_{\Omega} \nabla s & \cdot & \nabla r & \text{or} \\ \sum_{K \in \mathcal{T}_h} \int_{T_K} c_K & \nabla s \cdot \nabla r & \end{array} $
(7.10)	dw_lin_convect	$\int_{\Omega} ((\underline{b} \cdot \nabla)\underline{u}) \cdot \underline{v}$
(11.4)	dw_lin_elastic	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u})$
(11.5)	dw_lin_elastic_iso	$ \int_{\Omega} D_{ijkl} = e_{ij}(\underline{v})e_{kl}(\underline{u}) \text{ with } D_{ijkl} = \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \lambda \delta_{ij}\delta_{kl} $
(11.6)	dw_lin_elastic_r	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{w})$
(11.7)	dw_lin_viscous	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) \frac{e_{kl}(\underline{u}) - e_{kl}(\underline{u}_0)}{\Delta t}$
(11.8)	dw_lin_viscous_th	$\int_{\Omega} \left[\int_{0}^{t} \mathcal{H}_{ijkl}(t-\tau) \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \mathrm{d}\tau \right] e_{ij}(t)$
(4.1)	dw_mass	$\int_{\Omega} \rho \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$
(4.2)	dw_mass_scalar	$\int_{\Omega}qp$
(4.3)	dw_mass_scalar_fine_coarse	$\int_{\Omega}q_{h}p_{H}$
(4.4)	dw_mass_scalar_r	$\int_{\Omega}qr$
(4.5)	dw_mass_scalar_variable	$\int_{\Omega} cqp$
(4.6)	dw_mass_vector	$\int_{\Omega} ho \ \underline{v} \cdot \underline{u}$
(6.6)	dw_permeability_r	$\int_{\Omega} K_{ij} \nabla_j q$
(8.1)	dw_point_lspring	$\begin{array}{c c} \underline{f}^i & = \\ -k\underline{u}^i & \forall \text{ FE node } i \text{ in region} \end{array}$
(7.11)	dw_st_grad_div	$\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$
(7.12)	$dw_st_pspg_c$	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$
(7.13)	dw_st_pspg_p	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$
(7.14)	dw_st_supg_c	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot ((\underline{b} \cdot \nabla)\underline{u})$
(7.15)	dw_st_supg_p	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ \nabla p \cdot ((\underline{b} \cdot \nabla)\underline{v})$
(10.1)	dw_surface_ltr	$\int_{\Gamma} \underline{v} \cdot \underline{\underline{\sigma}} \cdot \underline{n}$
	continue	

$\dots continued$		
(5.9)	$dw_volume_integrate$	$\int_{\Omega}q$
(9.1)	dw_volume_lvf	$\int_{\Omega} \underline{f} \cdot \underline{v} \text{ or } \int_{\Omega} fq$
(5.10)	dw_volume_wdot	$\int_{\Omega} yqp, \int_{\Omega} y\underline{v} \cdot \underline{u}$
(5.11)	$dw_volume_wdot_dt$	$\int_{\Omega} y q \frac{p - p_0}{\Delta t}, \int_{\Omega} y \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$
(5.12) dw_volume_wdot_r $\int_{\Omega} yqr, \int_{\Omega} y\underline{v} \cdot \underline{w}$		$\int_{\Omega} yqr, \int_{\Omega} y\underline{v}\cdot\underline{w}$
(5.13)	dw_volume_wdot_th	$\int_{\Omega} \left[\int_0^t \mathcal{G}(t-\tau) p(\tau) d\tau \right] q$

3 Introduction

Equations in SfePy are built using terms, which correspond directly to the integral forms of weak formulation of a problem to be solved. As an example, let us consider the Laplace equation:

$$c\Delta t = 0 \text{ in } \Omega, \quad t = \bar{t} \text{ on } \Gamma.$$
 (1)

The weak formulation of (1) is: Find $t \in V$, such that

$$\int_{\Omega} c \, \nabla t : \nabla s = 0, \quad \forall s \in V_0 \ . \tag{2}$$

In the syntax used in SfePy input files, this can be written as

$$dw_{laplace.i1.0mega(coef, s, t) = 0,$$
 (3)

which directly corresponds to the discrete version of (2): Find $t \in V_h$, such that

$$oldsymbol{s}^T(\int_{\Omega_h} c \ oldsymbol{G}^T oldsymbol{G}) oldsymbol{t} = 0, \quad orall oldsymbol{s} \in V_{h0} \ ,$$

where $\nabla u \approx \mathbf{G}\mathbf{u}$. The integral over the discrete domain Ω_h is approximated by a numerical quadrature, that is named i1 in our case.

3.1 Term call syntax

In general, the syntax of a term call in SfePy is:

where <i> denotes an integral name (i.e. a name of numerical quadrature to use) and <r> marks a region (domain of the integral). In the following, <virtual> corresponds to a test function, <state> to a unknown function and parameter> to a known function arguments. We will now describe all the terms available in SfePy to date.

4 Terms in termsMass

4.1 dw_mass

Class: MassTerm

Description: Inertial forces term (constant density).

Definition:

$$\int_{\Omega} \rho \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$$

material.rho	ρ
ts.dt	Δt
parameter	\underline{u}_0

 $Syntax: \ \, \text{dw_mass.} \\ <\text{i>.} <\text{r>(<ts>, <material>, <virtual>, <state>, <parameter>)}$

4.2 dw_mass_scalar

Class: MassScalarTerm

Description: Scalar field mass matrix/rezidual.

Definition:

 $\int_{\Omega} qp$

Syntax: dw_mass_scalar.<i>.<r>(<virtual>, <state>)

4.3 dw_mass_scalar_fine_coarse

 ${\bf Class:}\ {\bf MassScalarFineCoarseTerm}$

Description: Scalar field mass matrix/rezidual for coarse to fine grid interpolation. Field p_H

belong to the coarse grid, test field q_h to the fine grid.

Definition:

 $\int_{\Omega} q_h p_H$

Syntax: dw_mass_scalar_fine_coarse.<i>.<r>(<virtual>, <state>, <iemaps>, <pbase>)

4.4 dw_mass_scalar_r

Class: MassScalarRTerm

Description: Scalar field mass rezidual — r is assumed to be known.

Definition:

 $\int_{\Omega} qr$

Syntax: dw_mass_scalar_r.<i>.<r>(<virtual>, <parameter>)

4.5 dw_mass_scalar_variable

Class: MassScalarVariableTerm

Description: Scalar field mass matrix/rezidual with coefficient c defined in nodes.

Definition:

 $\int_{\Omega} cqp$

Syntax: dw_mass_scalar_variable.<i>.<r>(<material>, <virtual>, <state>)

4.6 dw_mass_vector

Class: MassVectorTerm

Description: Vector field mass matrix/rezidual.

Definition:

 $\int_{\Omega} \rho \ \underline{v} \cdot \underline{u}$

Syntax: dw_mass_vector.<i>.<r>(<material>, <virtual>, <state>)

5 Terms in termsBasic

5.1 d_surface_dot

Class: DotProductSurfaceTerm

Description: Surface $L^2(\Gamma)$ dot product for both scalar and vector fields.

Definition:

$$\int_{\Gamma} pr, \int_{\Gamma} \underline{u} \cdot \underline{w}$$

Syntax: d_surface_dot.<i>.<r>(<parameter_1>, <parameter_2>)

5.2 d_surface_integrate

Class: IntegrateSurfaceTerm

Definition:

$$\int_{\Gamma} y$$
, for vectors: $\int_{\Gamma} \underline{y} \cdot \underline{n}$

Syntax: d_surface_integrate.<i>.<r>(

5.3 d_volume

 ${\bf Class:}\ {\rm VolumeTerm}$

Description: Volume of a domain. Uses approximation of the parameter variable.

Definition:

$$\int_{\Omega} 1$$

5.4 d_volume_dot

Class: DotProductVolumeTerm

Description: Volume $L^2(\Omega)$ dot product for both scalar and vector fields.

Definition:

$$\int_{\Omega} pr, \int_{\Omega} \underline{u} \cdot \underline{w}$$

5.5 d_volume_integrate

Class: IntegrateVolumeTerm

Definition:

$$\int_{\Omega} u$$

Syntax: d_volume_integrate.<i>.<r>(

5.6 d_volume_wdot

Class: WDotProductVolumeTerm

Description: Volume $L^2(\Omega)$ weighted dot product for both scalar and vector fields.

Definition:

$$\int_{\Omega} ypr, \int_{\Omega} y\underline{u} \cdot \underline{w}$$

material	weight function y
material	weight function g

Syntax: d_volume_wdot.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

5.7 de_volume_average_mat

 ${\bf Class:}\ {\bf AverageVolumeMatTerm}$

Description: Material parameter m averaged in elements. Uses approximation of y variable.

Definition:

$$\forall K \in \mathcal{T}_h: \int_{T_K} m/\int_{T_K} 1$$

Arguments:

material	m (can have up to two dimensions)
parameter	$\mid y \mid$
shape	shape of material parameter parameter
mode	'const' or 'vertex' or 'ele- ment_avg'

Syntax: de_volume_average_mat.<i>.<r>(<material>, <parameter>, <shape>, <mode>)

5.8 di_volume_integrate_mat

 ${\bf Class:}\ {\bf IntegrateVolumeMatTerm}$

Description: Integrate material parameter m over a domain. Uses approximation of y variable.

Definition:

$$\int_{\Omega} m$$

Arguments:

material	m (can have up to two dimensions)
parameter	y
shape	shape of material parameter parameter
mode	'const' or 'vertex' or 'ele- ment_avg'

Syntax: di_volume_integrate_mat.<i>.<r>(<material>, <parameter>, <shape>, <mode>)

5.9 dw_volume_integrate

Class: IntegrateVolumeOperatorTerm

Definition:

 $\int_{\Omega} q$

Syntax: dw_volume_integrate.<i>.<r>>(<virtual>)

5.10 dw_volume_wdot

Class: WDotProductVolumeOperatorTerm

Description: Volume $L^2(\Omega)$ weighted dot product operator for scalar and vector (not imple-

mented!) fields. **Definition**:

$$\int_{\Omega} yqp, \int_{\Omega} y\underline{v} \cdot \underline{u}$$

Arguments:

material	weight function y
----------	---------------------

Syntax: dw_volume_wdot.<i>.<r>(<material>, <virtual>, <state>)

5.11 dw_volume_wdot_dt

 ${\bf Class:}\ {\bf WDotProductVolumeOperatorDtTerm}$

Description: Volume $L^2(\Omega)$ weighted dot product operator for scalar and vector (not imple-

mented!) fields. **Definition**:

$$\int_{\Omega} yq \frac{p-p_0}{\Delta t}, \int_{\Omega} y\underline{v} \cdot \frac{\underline{u}-\underline{u}_0}{\Delta t}$$

Arguments:

material	weight function y

Syntax: dw_volume_wdot_dt.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

5.12 dw_volume_wdot_r

 ${\bf Class:}\ {\bf WDotProductVolumeOperatorRTerm}$

Description: Volume $L^2(\Omega)$ weighted dot product operator for scalar and vector (not imple-

mented!) fields (to use on a right-hand side).

Definition:

$$\int_{\Omega} yqr, \int_{\Omega} y\underline{v} \cdot \underline{w}$$

material | weight function y

Syntax: dw_volume_wdot_r.<i>.<r>(<material>, <virtual>, <parameter>)

5.13 dw_volume_wdot_th

Class: WDotProductVolumeOperatorTHTerm

Definition:

$$\int_{\Omega} \left[\int_0^t \mathcal{G}(t-\tau) p(\tau) \, d\tau \right] q$$

Syntax: dw_volume_wdot_th.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

6 Terms in termsLaplace

6.1 d_diffusion

 ${\bf Class:}\ {\bf DiffusionIntegratedTerm}$

Description: Integrated general diffusion term with permeability K_{ij} constant or given in mesh

vertices. **Definition**:

$$\int_{\Omega} K_{ij} \nabla_i \bar{p} \nabla_j r$$

Syntax: d_diffusion.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

6.2 de_diffusion_velocity

Class: DiffusionVelocityTerm

Description: Diffusion velocity averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h: \int_{T_K} K_{ij} \nabla_j r / \int_{T_K} 1$$

Syntax: de_diffusion_velocity.<i>.<r>(<material>, <parameter>)

6.3 dw_diffusion

Class: DiffusionTerm

Description: General diffusion term with permeability K_{ij} constant or given in mesh vertices.

Definition:

$$\int_{\Omega} K_{ij} \nabla_i q \nabla_j p$$

Syntax: dw_diffusion.<i>.<r>(<material>, <virtual>, <state>)

6.4 dw_diffusion_r

Class: DiffusionRTerm

Description: General diffusion term with permeability K_{ij} constant or given in mesh vertices.

The argument r is a known field (to use on a right-hand side).

Definition:

$$\int_{\Omega} K_{ij} \nabla_i q \nabla_j r$$

Syntax: dw_diffusion_r.<i>.<r>(<material>, <virtual>, <parameter>)

6.5 dw_laplace

Class: LaplaceTerm

Description: Laplace term with c constant or constant per element.

Definition:

$$c \int_{\Omega} \nabla s \cdot \nabla r$$
 or $\sum_{K \in \mathcal{T}_b} \int_{T_K} c_K \nabla s \cdot \nabla r$

Syntax: dw_laplace.<i>.<r>(<material>, <virtual>, <state>)

6.6 dw_permeability_r

Class: PermeabilityRTerm

Description: Special-purpose diffusion-like term with permeability K_{ij} constant or given in mesh

vertices (to use on a right-hand side).

Definition:

$$\int_{\Omega} K_{ij} \nabla_j q$$

Syntax: dw_permeability_r.<i>.<r>(<material>, <virtual>, <index>)

7 Terms in termsNavierStokes

$7.1 d_{-}div$

Class: DivIntegratedTerm

Description: Integrated divergence term (weak form).

Definition:

$$\int_{\Omega} \bar{p} \, \nabla \cdot \underline{w}$$

Syntax: d_div.<i>.<r>(<parameter_1>, <parameter_2>)

7.2 dq_grad

Class: GradQTerm

Description: Gradient term (weak form) in quadrature points.

Definition:

$$(\nabla p)|_{qp}$$

Syntax: dq_grad.<i>.<r>(<state>)

7.3 dq_lin_convect

Class: LinearConvectQTerm

Description: Linearized convective term evaluated in quadrature points.

Definition:

$$((\underline{b} \cdot \nabla)\underline{u})|_{ap}$$

Syntax: dq_lin_convect.<i>.<r>(

7.4 dw_convect

Class: ConvectTerm

Description: Nonlinear convective term.

Definition:

$$\int_{\Omega} ((\underline{u} \cdot \nabla)\underline{u}) \cdot \underline{v}$$

Syntax: dw_convect.<i>.<r>(<virtual>, <state>)

$7.5 \, dw_div$

 ${\bf Class:}\ {\rm DivTerm}$

Description: Divergence term (weak form).

Definition:

$$\int_{\Omega} q \, \nabla \cdot \underline{u}$$

Syntax: dw_div.<i>.<r>(<virtual>, <state>)

7.6 dw_div_grad

Class: DivGradTerm

Description: Diffusion term.

Definition:

$$\int_{\Omega} \nu \ \nabla \underline{v} : \nabla \underline{u}$$

Syntax: dw_div_grad.<i>.<r>(<material>, <virtual>, <state>)

$7.7 \, dw_div_r$

Class: DivRTerm

Description: Divergence term (weak form) with a known field (to use on a right-hand side).

Definition:

$$\textstyle\int_\Omega q \ \nabla \cdot \underline{w}$$

Syntax: dw_div_r.<i>.<r>(<virtual>, <parameter>)

7.8 dw_grad

Class: GradTerm

Description: Gradient term (weak form).

Definition:

$$\int_{\Omega} p \, \nabla \cdot \underline{v}$$

 $Syntax: dw_grad. <i>.<r>(<virtual>, <state>)$

$7.9 \ dw_grad_dt$

Class: GradDtTerm

Description: Gradient term (weak form) with time-discretized \dot{p} .

Definition:

$$\int_{\Omega} \frac{p - p_0}{\Delta t} \nabla \cdot \underline{v}$$

Arguments:

ts.dt	Δt
parameter	p_0

Syntax: dw_grad_dt.<i>.<r>(<ts>, <virtual>, <state>, <parameter>)

7.10 dw_lin_convect

Class: LinearConvectTerm

Description: Linearized convective term.

Definition:

$$\int_{\Omega} ((\underline{b} \cdot \nabla)\underline{u}) \cdot \underline{v}$$

Syntax: dw_lin_convect.<i>.<r>(<virtual>, <parameter>, <state>)

7.11 dw_st_grad_div

Class: GradDivStabilizationTerm

Description: Grad-div stabilization term (γ is a global stabilization parameter).

Definition:

$$\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$$

Syntax: dw_st_grad_div.<i>.<r>(<material>, <virtual>, <state>)

7.12 dw_st_pspg_c

Class: PSPGCStabilizationTerm

Description: PSPG stabilization term, convective part (τ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_b} \int_{\mathcal{T}_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$$

Syntax: dw_st_pspg_c.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

$7.13 \quad dw_st_pspg_p$

Class: PSPGPStabilizationTerm

Description: PSPG stabilization term, pressure part (τ is a local stabilization parameter), alias

to Laplace term dw_laplace.

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$$

Syntax: dw_st_pspg_p.<i>.<r>(<material>, <virtual>, <state>)

$7.14 \, dw_st_supg_c$

Class: SUPGCStabilizationTerm

Description: SUPG stabilization term, convective part (δ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_b} \int_{T_K} \delta_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot ((\underline{b} \cdot \nabla)\underline{v})$$

Syntax: dw_st_supg_c.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

$7.15 \quad dw_st_supg_p$

Class: SUPGPStabilizationTerm

Description: SUPG stabilization term, pressure part (δ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{\mathcal{T}_K} \delta_K \ \nabla p \cdot ((\underline{b} \cdot \nabla) \underline{v})$$

Syntax: dw_st_supg_p.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

8 Terms in termsPoint

8.1 dw_point_lspring

Class: LinearPointSpringTerm

Description: Linear springs constraining movement of FE nodes in a reagion; use as a relaxed

Dirichlet boundary conditions.

Definition:

$$\underline{f}^i = -k\underline{u}^i \quad \forall \text{ FE node } i \text{ in region}$$

Syntax: dw_point_lspring.<i>.<r>(<material>, <virtual>, <state>)

9 Terms in termsVolume

9.1 dw_volume_lvf

Class: LinearVolumeForceTerm

Description: Vector or scalar linear volume forces (weak form) — a right-hand side source term.

Definition:

$$\int_{\Omega} f \cdot \underline{v} \text{ or } \int_{\Omega} fq$$

Syntax: dw_volume_lvf.<i>.<r>(<material>, <virtual>)

10 Terms in termsSurface

10.1 dw surface ltr

Class: LinearTractionTerm

Description: Linear traction forces (weak form), where, depending on dimension of 'material' argument, $\underline{\underline{\sigma}} \cdot \underline{\underline{n}}$ is $\bar{p}\underline{\underline{I}} \cdot \underline{\underline{n}}$ for a given scalar pressure, $\underline{\underline{f}}$ for a traction vector, and itself for a stress tensor.

Definition:

$$\int_{\Gamma} \underline{v} \cdot \underline{\sigma} \cdot \underline{n}$$

Syntax: dw_surface_ltr.<i>.<r>(<material>, <virtual>)

11 Terms in termsLinElasticity

11.1 d_lin_elastic

 ${\bf Class:}\ {\bf Linear Elastic Integrated Term}$

Description: Integrated general linear elasticity term.

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{b}) e_{kl}(\underline{w})$$

Syntax: d_lin_elastic.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

11.2 de_cauchy_strain

Class: CauchyStrainTerm

Description: Cauchy strain tensor averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h : \int_{T_K} \underline{\underline{e}}(\underline{w}) / \int_{T_K} 1$$

Syntax: de_cauchy_strain.<i>.<r>>(

11.3 de_cauchy_stress

Class: CauchyStressTerm

Description: Cauchy stress tensor averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h: \int_{T_K} D_{ijkl} e_k l(\underline{w}) / \int_{T_K} 1$$

Syntax: de_cauchy_stress.<i>.<r>(<material>, <parameter>)

11.4 dw_lin_elastic

Class: LinearElasticTerm

Description: General linear elasticity term, with D_{ijkl} given in the usual matrix form exploiting symmetry: in 3D it is 6×6 with the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it is 3×3 with the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u})$$

Syntax: dw_lin_elastic.<i>.<r>(<material>, <virtual>, <state>)

11.5 dw_lin_elastic_iso

Class: LinearElasticIsotropicTerm

Description: Isotropic linear elasticity term.

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u}) \text{ with } D_{ijkl} = \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \lambda \ \delta_{ij}\delta_{kl}$$

Syntax: dw_lin_elastic_iso.<i>.<r>(<material>, <virtual>, <state>)

11.6 dw_lin_elastic_r

Class: LinearElasticRTerm

Description: General linear elasticity term with a known field (to use on a right-hand side).

Definition:

$$\int_{\Omega} D_{ijkl} e_{ij}(\underline{v}) e_{kl}(\underline{w})$$

Syntax: dw_lin_elastic_r.<i>.<r>(<material>, <virtual>, <parameter>)

11.7 dw_lin_viscous

Class: LinearViscousTerm

Description: General linear viscosity term, with D_{ijkl} given in the usual matrix form exploiting symmetry: in 3D it is 6×6 with the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it is 3×3 with the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) \frac{e_{kl}(\underline{u}) - e_{kl}(\underline{u}_0)}{\Delta t}$$

ts.dt	Δt	
material	D_{ijkl}	
continued		

$\dots continued$		
virtual	$ \underline{v} $	
state	\underline{u} (displacements of current time step)	
parameter	\underline{u}_0 (known displacements of previous time step)	

Syntax: dw_lin_viscous.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

11.8 dw_lin_viscous_th

Class: LinearViscousTHTerm

Definition:

$$\int_{\Omega} \left[\int_{0}^{t} \mathcal{H}_{ijkl}(t-\tau) \, \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \, \mathrm{d}\tau \right] \, e_{ij}(\underline{v})$$

Syntax: dw_lin_viscous_th.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

12 Terms in termsBiot

12.1 d_biot_div

Class: BiotDivRIntegratedTerm

Description: Integrated Biot divergence-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} r \, \alpha_{ij} e_{ij}(\underline{w})$$

Syntax: d_biot_div.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

12.2 dw_biot_div

Class: BiotDivTerm

Description: Biot divergence-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} q \, \alpha_{ij} e_{ij}(\underline{u})$$

Syntax: dw_biot_div.<i>.<r>(<material>, <virtual>, <state>)

12.3 dw_biot_div_dt

Class: BiotDivDtTerm

Description: Biot divergence-like rate term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} q \, \alpha_{ij} \frac{e_{ij}(\underline{u}) - e_{ij}(\underline{u_0})}{\Delta t}$$

Syntax: dw_biot_div_dt.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

12.4 dw_biot_div_r

Class: BiotDivRTerm

Description: Biot divergence-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12]. The argument \underline{w} is a known field (to use on a right-hand side).

Definition:

$$\int_{\Omega} q \, \alpha_{ij} e_{ij}(\underline{w})$$

 $Syntax: \ \, dw_biot_div_r. < i>. < r> (< material>, < virtual>, < parameter>)$

12.5 dw_biot_div_th

Class: BiotDivTHTerm

Definition:

$$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij} (t - \tau) \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \, \mathrm{d}\tau \right] q$$

Syntax: dw_biot_div_th.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

12.6 dw_biot_grad

Class: BiotGradTerm

Description: Biot gradient-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} p \ \alpha_{ij} e_{ij}(\underline{v})$$

Syntax: dw_biot_grad.<i>.<r>(<material>, <virtual>, <state>)

12.7 dw_biot_grad_dt

Class: BiotGradDtTerm

Description: Biot gradient-like term (weak form) with time-discretized \dot{p} and α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} \frac{p - p_0}{\Delta t} \, \alpha_{ij} e_{ij}(\underline{v})$$

Arguments:

ts.dt	Δt
parameter	p_0

Syntax: dw_biot_grad_dt.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

12.8 dw_biot_grad_r

Class: BiotGradRTerm

Description: Biot gradient-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12]. The argument r is a known field (to use on a right-hand side).

Definition:

$$\int_{\Omega} r \ \alpha_{ij} e_{ij}(\underline{v})$$

Syntax: dw_biot_grad_r.<i>.<r>(<material>, <virtual>, <parameter>)

12.9 dw_biot_grad_th

Class: BiotGradTHTerm

Definition:

$$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) p(\tau) \right) d\tau \right] e_{ij}(\underline{v})$$

Syntax: dw_biot_grad_th.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

13 Term caches in cachesBasic

13.1 cauchy_strain

Class: CauchyStrainDataCache
cache = term.getCache('cauchy_strain', <index>)
data = cache(<data name>, <ig>, <ih>, state)

13.2 div_vector

Class: DivVectorDataCache
cache = term.getCache('div_vector', <index>)
data = cache(<data name>, <ig>, <ih>, state)

13.3 grad_scalar

Class: GradScalarDataCache
cache = term.getCache('grad_scalar', <index>)
data = cache(<data name>, <ig>>, <ih>>, state)

13.4 mat_in_qp

Class: MatInQPDataCache
cache = term.getCache('mat_in_qp', <index>)
data = cache(<data name>, <ig>, <ih>, mat, ap, assumedShapes, modeIn)

13.5 state_in_surface_qp

Class: StateInSurfaceQPDataCache
cache = term.getCache('state_in_surface_qp', <index>)
data = cache(<data name>, <ig>, <ih>, state)

13.6 state_in_volume_qp

Class: StateInVolumeQPDataCache
cache = term.getCache('state_in_volume_qp', <index>)
data = cache(<data name>, <ig>>, <ih>>, state)

13.7 volume

```
Class: VolumeDataCache
cache = term.getCache( 'volume', <index> )
data = cache( <data name>, <ig>>, <ih>>, region, field )
```