Universidad de San Carlos de Guatemala
Facultad de Ingeniería
Escuela de Ciencias y Sistemas
Organización Computacional

PRÁCTICA #1 SIMULACIÓN DE UN VISUALIZADOR DE 7 SEGMENTOS

201900532 Juan José Gerardi Hernández 202209714 Ángel Enrique Alvarado Ruiz 202300848 Brayan Emanuel García 202300824 Alexander Samuel Us Upún 202300768 Norma Elizabeth Canú Xico

INTRODUCCIÓN

En la era digital, los circuitos combinacionales desempeñan un papel fundamental en el diseño y funcionamiento de sistemas electrónicos. Estos circuitos, compuestos por compuertas lógicas como AND, OR, NOT, entre otras, permiten la transformación de señales binarias para realizar operaciones específicas. En esta práctica, se desarrolla la simulación de un visualizador de 7 segmentos, un componente ampliamente utilizado en dispositivos electrónicos para representar información numérica y alfanumérica. El objetivo principal es aplicar los conocimientos de lógica combinacional y diseño de circuitos para la implementación de un sistema funcional, utilizando compuertas transistorizadas y tecnologías TTL en el desarrollo del prototipo.

OBJETIVOS

General

Aplicar los conocimientos teóricos aprendidos en clase magistral y laboratorio para la construcción de circuitos combinacionales.

Específicos

- 1. Poner en práctica los conocimientos de Lógica Combinacional y Mapas de Karnaugh.
- 2. Conocer el funcionamiento de transistores y realización de compuertas lógicas transistorizadas.
- 3. Crear un dispositivo de visualización a mayor escala.
- 4. Utilizar lógica negativa y positiva durante el desarrollo de la práctica.

CONTENIDO

a. Funciones booleanas.

SEGMENTOS

Segmento A
 Función: X(X ° Z)

Segmento B

Función: X (Y ⊗ Z)

• Segmento C Función: Z + XY

Segmento D
 Función: X' + Z +Y

 Segmento E Función: 0

 Segmento F Función: (X+Z)'

Segmento G
 Función: Z + X

SEGMENTOS (espejo)

 Segmento A Función: X'(X ° Z)

Segmento B
 Función: X'Z' + X

Segmento C Función: Z + XY

Segmento D
 Función: X' + Z +Y

Segmento E
 Función: Z + XY

• Segmento F Función: X (Y⊗Z)

Segmento G
 Función: Z + X

b. Mapas de Karnaugh.

<u>Normal</u>

SEGMENTO A

Мара:

Se	g	Α										
	Χ	Υ	Z									
	0	0	0	1								
	0	0	1	0	~Y	Z	0	0	01	11	10	
	0	1	0	0		0		1	0	0	0	
	0	1	1	0		1	-	0	0			
	1	0	0	0								
	1	0	1	1			X"	Y'	XY'Z			
	1	1	0	0			Υ'((X	XZ)			
	1	1	1	0			Υ'((X	°Z)			

• SEGMENTO B

Мара:

S	eg	В									
	Χ	Υ	Z		~YZ	7					
	0	0	0	0	X	(00	01	11	10	
	0	0	1	0		0	0	0	0	0	
	0	1	0	0		1	0	1	0	1	
	0	1	1	0							
	1	0	0	0			XY'	Z + X	YZ'		
	1	0	1	1			X(Y	Z + Y	Z')		
	1	1	0	1			X ()	/⊗Z)		
	1	1	1	0							

SEGMENTO C

S	eg	С										
	Χ	Υ	Z		•	۰YZ	Z					
	0	0	0	0		Χ			00	01	11	10
	0	0	1	1				0	0	1	1	0
	0	1	0	0				1	0	1	1	1
	0	1	1	1								
	1	0	0	0								
	1	0	1	1					Z +)	ΧY		
	1	1	0	1								
	1	1	1	1								

SEGMENTO D

Мара:

X	Υ	Z							
0	0	0	1	۰YZ	Z				
0	0	1	1	Χ		00	0 1	11	10
0	1	0	1		0	1	1	1	1
0	1	1	1		1	0	1	1	1
1	0	0	0						
1	0	1	1			X' +	Z +	Υ	
1	1	0	1						
1	1	1	1						

Мара:

Seg	E									
X	Υ	Z		~YZ	7					
0	0	0	1	X		00	01	11	10	
0	0	1	1		0	1	1	1	1	
0	1	0	1		1	1	1	1	1	
0	1	1	1							
1	0	0	1			0				
1	0	1	1							
1	1	0	1							
1	1	1	1							

SEGMENTO F

Seg	F									
X	Υ	Z								
0	0	0	1	~\	YΖ					
0	0	1	0)	(00	01	11	10	
0	1	0	1		0	1	0	0	1	
0	1	1	0		1	0	0	0	0	
1	0	0	0							
1	0	1	0			X'Z'				
1	1	0	0			(X+	Z)'			
1	1	1	0							

SEGMENTO G

Mapa:

Seg	G								
X	Υ	Z							
0	0	0	0	^	·YΖ				
0	0	1	1		Χ	00	01	11	10
0	1	0	0		0	0	1	1	0
0	1	1	1		1	1	1	1	1
1	0	0	1						
1	0	1	1			Z+)	X		
1	1	0	1						
1	1	1	1						

Espejo:

• SEGMENTO A

Мара:

eg	Α							
X	Υ	Z						
0	0	0	1	~YZ				
0	0	1	0	X	00	01	11	10
0	1	0	0	0	1	0	0	0
0	1	1	0	1	0	0		
1	0	0	0					
1	0	1	1		X'Y'	Z' +)	XY'Z	
1	1	0	0		Y'(X	XZ)		
1	1	1	0		X'(X	(°Z)		

SEGMENTO B

• SEGMENTO C

Мара:

S	eg	С													
	X	Υ	Z		,	~YZ	Z								
	0	0	0	1		X			00	(01	1:	1	10	
	0	0	1	1				0	1		1		1	1	
	0	1	0	1				1	1		1		1	1	
	0	1	1	1											
	1	0	0	1										0	
	1	0	1	1											
	1	1	0	1											
	1	1	1	1											

SEGMENTO D

Мара:

Se	eg	D								
	X	Υ	Z							
	0	0	0	1	۰YZ	Z				
	0	0	1	1	Χ		00	01	11	10
	0	1	0	1		0	1	1	1	1
	0	1	1	1		1	0	1	1	1
	1	0	0	0						
	1	0	1	1			X' +	Z +\	1	
	1	1	0	1						
	1	1	1	1						

• SEGMENTO E

• SEGMENTO F

Мара:

0 0 0 1 0 1	Z 0 0 1 1 0		~\		00	0.1	4.4		
0 0 0 1 0 1 1 0	1	0			00	0.1			
0 1 0 1 1 0			>	(00	0.1	4.4		
0 1	0	0			_	O I	11	10	
1 0		_		0	0	0	0	0	
	1	0		1	0	1	0	1	
1 0	0	0							
10	1	1			XY'	Z + X	YZ'		
1 1	0	1			X(Y	Z + \	(Z')		
1 1	1	0			X ()	/⊗Z	<u>'</u>)		

• SEGMENTO G

S	eg	G															
	Χ	Υ	Z														
	0	0	0	0		^	·YΖ										
	0	0	1	1			Χ	0	0	0	1	1	1	1	0		
	0	1	0	0			0		0		1		1		0		
	0	1	1	1			1		1		1		1		1		
	1	0	0	1													
	1	0	1	1				Z	+)	X							
	1	1	0	1													
	1	1	1	1													

- c. Diagramas del diseño del circuito.
 - LETRA A Normal

• LETRA B Normal Diagrama:

• LETRA C Normal Diagrama:

• LETRA D Normal Diagrama:

LETRA F Normal

• LETRA G Normal

• LETRA A Espejo Diagrama:

• LETRA B Espejo Diagrama:

• LETRA D Espejo Diagrama:

LETRA F Espejo Diagrama:

LETRA E Espejo Diagrama:

• LETRA G Espejo Diagrama:

DESCRIPCIÓN CIRCUITO:

Display:

En esta parte del circuito se encuentra la principal representación visual del resultado obtenido. Se tiene la representación de dos display de siete segmentos a partir de leds. Para la obtención de cada fórmula se utilizaron herramientas como tablas de verdad, mapas de Karnaugh dependiendo de la palabra que se requería representar, en el caso de este proyecto, la palabra es COLORADO. Cada segmento se relaciona a una fórmula booleana que es representada también con transistores o con compuertas lógicas

Representación Segmento A

El segmento A está representado por la función booleana X(X ° Z), anteriormente se puede ver el modelo para la representación en simulación, en esta parte se utilizaron transistores para representar la expresión booleana. Esta parte del circuito sirve tanto para el segmento A normal como el segmento A del espejo.

Segmento F

El segmento F normal está siendo representado por la fórmula booleana X ($Y \otimes Z$) y en el circuito se encuentra en una placa que consta de transistores, resistencias y borneras para poder conectarlas con el segmento respectivo del display.

Segmentos D y G

Los segmentos normales y espejo D y G están siendo representados por una serie de transistores que se encuentran montados en una placa y se encuentran conectados al segmento de display correspondiente para su correcta ejecución. El resultado viene dado por las fórmulas booleanas: X' + Z +Y para D normal, (X+Z)' para F.

F espejo y B normal

Los segmentos vinculados a F espejo y B normal están siento representados por la fórmula booleana X (Y \otimes Z) y en esta parte del circuito están siendo representadas por compuertas lógicas XOR y AND, conectadas al respectivo segmento del display para su correcto funcionamiento.

Segmento B espejo

El segmento de B espejo está representando la función booleana X'Z' + X y en el circuito se está abordando con compuertas lógicas AND y NOT y conectada al segmento de display que corresponde a B espejo.

E espejo y C normal

Estos segmentos están representados por la función booleana Z + XY y están siendo abordados con transistores para llevar a cabo su objetivo, y además están conectados también a cada respectivo segmento de display.

Circuito completo:

- d. Equipo utilizado.
 - 1. Protoboard (1 galleta)

Precio: Q 39.00

2. Resistencias múltiples

Precio: Q 0.50-Q 0.75
3. Transistor 2N2222

Precio: Q 0.90

4. Compuertas Lógicas (diversas)

Precio: Q 5.00 - Q 6.00

5. Leds

Precio: Q 0.80

6. Switch

Precio: Q 2.00

7. Cable

Precio: Q 3.00 por metro 8. Borneras de 2/3 pines

Precio: Q 2.00 - 2.50

e. Presupuesto

Componente	Modelo	Cantidad	Precio		Total		
Resistencia 510 ohm a 1/4W	RE02A5100	10	Q	0.75	Q	7.50	
Resistencia 220 Ohmn a 1/4W	RE02A2200	50	Q	0.60	Q	30.00	
Resistencia 300 Ohm a 1/4 W	RE02A3000	10	Q	0.75	Q	7.50	
Resistencia 100 Ohm a 1/4W	RE02A1000	10	Q	0.75	Q	7.50	
Resisistencia 330 Ohm a 1/4W	RE02A3300	100	Q	0.53	Q	53.00	
LED rojo 5mm	DL5RO	70	Q	0.80	Q	56.00	
Transistor NPN 2N2222	2N2222A	30	Q	0.90	Q	27.00	
Protoboard 1 galleta	MB-102-GT	7	Q	39.00	Q	273.00	
Compuerta XOR 74LS86	XD74LS86	2	Q	6.00	Q	12.00	
Compuerta AND SN74LS08N	XD74LS08	2	Q	5.00	Q	10.00	
Compuerta OR SN74LS32	XD74LS32	2	Q	5.50	Q	11.00	
Bornera 2 pines	-	5	Q	2.00	Q	10.00	
Bornera 3 pines	-	4	Q	2.50	Q	10.00	
Dip Switch 3 posiciones	-	1	Q	2.00	Q	2.00	
Metro de cable para protoboard	-	8	Q	3.00	Q	24.00	
Pela Cables	-	1	Q	35.00	Q	35.00	
TOTAL:							

APORTE INDIVIDUAL DE CADA INTEGRANTE

201900532	Juan José Gerardi Hernández						
Aporte Económico							
Armazón Circuito Físico							
Placas							
202209714	Ångel Enrique Alvarado Ruiz						
Aporte Económico							
Armazón Circuito Físico							
Placas							
202300848	Brayan Enanuel García						
Aporte Económico							
Armazón Circuito Físico							
Placas							
Cálculos Funciones Booleanas							
Simulación Proteus							
202300824	Alexander Samuel Us Upún						
Aporte Económico							
Armazón Circuito Físico							
202300768	Norma Bizabeth Canú Xico						
Aporte Económico							
Armazón Circuito Físico							
Documentación	Documentación						

CONCLUSIONES

A través de esta práctica, se logró una comprensión más profunda de la lógica combinacional y su aplicación en el diseño de circuitos digitales. La implementación de un visualizador de 7 segmentos permitió poner en práctica la simplificación de funciones lógicas mediante Mapas de Karnaugh y el uso de compuertas transistorizadas y TTL para la manipulación de señales. Además, se evidenció la importancia de una correcta planificación del circuito, asegurando la funcionalidad y estabilidad del sistema. Finalmente, este ejercicio refuerza la relevancia de los circuitos digitales en el desarrollo de dispositivos electrónicos modernos y su impacto en la tecnología actual.

ANEXOS

SEGMENTO	FUNCION
A NORMAL	X(X°Z)
B NORMAL	X (Y⊗Z)
C NORMAL	Z + XY
D NORMAL	X' + Z +Y
E NORMAL	0
F NORMAL	(X+Z)'
G NORMAL	Z + X
A ESPEJO	X(X°Z)
B ESPEJO	X'Z' + X
C ESPEJO	0
D ESPEJO	X' + Z +Y
E ESPEJO	Z + XY
F ESPEJO	X (Y⊗Z)
G ESPEJO	Z + X

Tabla de verdad de la palabra											
	X	Υ	Z	a	b	C	d	е	f	g	Letra
	0	0	0	1	0	0	1	1	1	0	С
	0	0	1	0	0	1	1	1	0	1	0
	0	1	0	0	0	0	1	1	1	0	L
	0	1	1	0	0	1	1	1	0	1	0
	1	0	0	0	0	0	0	1	0	1	R
	1	0	1	1	1	1	1	1	0	1	Α
	1	1	0	0	1	1	1	1	0	1	D
	1	1	1	0	0	1	1	1	0	1	0

RESUMEN FU		
SEGMENTOS	FUNCION	
ANIAE	Y'(X ° Z)	Y'(X'Z' + XZ)
BN FE	X (Y ⊗ Z)	X(Y'Z + YZ')
CNIEE	Z + XY	
DNIDE	X' + Z +Y	
ENICE	0	
FN	(X+Z)'	
GN GE	Z + X	
BE	X'Z' + X	

Vídeo

https://drive.google.com/drive/folders/17kxYhrwvTsufHutfbcs6mewOTvaESKd1?usp=sharing

Diseño Placas:

