Lógica Proposicional

Pergunta: Como formalizamos as definições e raciocínios que usamos em nossas provas?

Roteiro

- Lógica Proposicional
 - Conectores lógicos básicos.
 - Tabelas verdade.
 - Equivalências lógicas.

é, por si mesma, verdadeira ou falsa.

Uma proposição é uma afirmação que

Exemplos de Proposições

- Cães são mais fofos que gatinhos.
- Gatinhos são mais fofos do que cães.
- Usain Bolt pode superar todos nesta sala.
- Esta é a última entrada nesta lista.

Coisas Que Não São Proposições

• Os comandos não podem ser verdadeiros ou falsos.

Coisas Que Não São Proposições

• As perguntas não podem ser verdadeiras ou falsas.

Lógica Proposicional

- A lógica proposicional é um sistema matemático para raciocinar sobre proposições e como elas se relacionam umas com as outras.
- Cada declaração na lógica proposicional consiste em variáveis proposicionais combinadas por meio de conectivos proposicionais.
 - Cada variável representa alguma proposição, como "Você gostou" ou "Você deveria ter colocado um anel nisso".
 - Os conectivos codificam como as proposições estão relacionadas, como "Se você gostou, então deveria ter colocado um anel nisso".

Variáveis Proposicionais

- Cada proposição será representada por uma variável proposicional.
- Variáveis proposicionais são geralmente representadas como letras minúsculas, como p, q, r, s, etc.
- Cada variável pode ter um de dois valores: verdadeiro ou falso.

Conectivos Proposicionais

NOT Lógico: ¬p

- Leia "não p"
- ¬p é verdadeiro se e somente se p é falso.
- Também chamada de **negação lógica**.

• AND Lógico: p A q

- Leia "p e q."
- p Λ q é verdadeiro se, e somente se, p e q forem verdadeiros.
- Também chamada de conjunção lógica.

• OR Lógico: p v q

- Leia "p ou q."
- p v q é verdadeiro se e somente se pelo menos um de p ou q for verdadeiro (OR inclusivo)
- Também chamada de disjunção lógica.

Tabelas Verdade

- Uma tabela verdade é uma tabela que mostra o valor verdade de uma fórmula lógica proposicional como uma função de suas entradas.
- Útil por vários motivos:
 - Elas fornecem uma definição formal do que um conectivo "significa".
 - Elas nos fornecem uma maneira de descobrir o que uma fórmula proposicional complexa diz.

A Ferramenta Tabela Verdade

Resumo de Pontos Importantes

- O conectivo v é um "ou" inclusivo. É verdade se pelo menos um dos operandos for verdadeiro.
 - Semelhante ao | operador em C, C++, Java e o operador or em Python.
- Se precisarmos de um operador "ou" exclusivo, podemos construí-lo com o que já temos.

Tabela Verdade para XOR

Esta é a tabela verdade para XOR. Podemos escrever XOR com os seguintes Operadores lógicos:

 $(p \lor q) \land \neg (p \lor q)$

Р	q	p XOR q
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Implicação Matemática

Implicação

- O conectivo → é usado para representar implicações.
 - Seu nome técnico é operador condicional material.
- Uma tabela de verdade mostra como a verdade ou falsidade de uma declaração composta depende da verdade ou falsidade das declarações simples a partir das quais ela é construída.

Tabela Verdade Implicação

P	q	$p \rightarrow q$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

Por que esta Tabela Verdade?

- Os valores de verdade do → são como são porque são definidos dessa forma.
- A intuição:
 - Cada fórmula proposicional deve ser verdadeira ou falsa - isso é apenas um princípio de design orientador por trás da lógica proposicional.
 - Queremos que p \rightarrow q seja falso apenas quando p $\land \neg q$ for verdadeiro.
 - Em outras palavras, $p \rightarrow q$ deve ser verdadeiro sempre que $\neg(p \land \neg q)$ for verdadeiro.

Tabela Verdade Implicação

P	q	$p \rightarrow q$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

A implicação é apenas false se **p** for verdadeiro e **q** não. Caso contrário é verdadeiro.

O Conectivo Bicondicional

O Conectivo Bicondicional

- Especificamente, p ↔ q significa que p → q e que q → p.

Bicondicionais

- Aqui está sua tabela verdade:

Р	q	p ↔ q	Γ	
F	F	Т		Uma interpretação de ↔ é pensa nisso como igualdade: as duas proposições devem ter valores
F	Т	F		
Т	F	F		de verdade iguais.
Т	Т	Т		

Verdadeiro e Falso

- Existem mais dois "conectivos" para falar: verdadeiro e falso.
 - O símbolo ⊤ é um valor sempre verdadeiro.
 - O símbolo \perp é um valor que é sempre falso.
- Frequentemente, são chamados de conectivos, embora não conectem nada.
 - (Ou melhor, eles conectam nada.)

Prova por Contradição

- Suponha que você queira provar que p é verdadeiro usando uma prova por contradição.
- A configuração é semelhante a esta:
 - Suponha que p é falso.
 - Derive algo que sabemos ser falso.
 - Conclua que p é verdadeiro.
- Na lógica proposicional:

$$(\neg p \rightarrow \bot) \rightarrow p$$

Precedência de Operadores

Como analisamos essa declaração?

$$\neg x \rightarrow y \ V \ z \rightarrow x \ V \ y \ \Lambda \ z$$

• Precedência de operador para lógica proposicional:

٨

١,

 \rightarrow

 \leftrightarrow

- Todos os operadores são associativos à direita.
- Podemos usar parênteses para eliminar a ambigüidade.

Precedência de Operadores

Como analisamos essa declaração?

$$(\neg x) \rightarrow ((y \lor z) \rightarrow (x \lor (y \land z)))$$

• Precedência de operador para lógica proposicional:

Λ

V

 \rightarrow

 \leftrightarrow

- Todos os operadores são associativos à direita.
- Podemos usar parênteses para eliminar a ambigüidade.

Precedência de Operadores

- Os principais pontos a serem lembrados:
 - ¬ liga-se a tudo o que o segue imediatamente.
 - Λ e V ligam-se com mais força do que \rightarrow .
- Normalmente escreveremos expressões como p ∧ q → r sem adicionar parênteses.
- Para expressões mais complexas, tentaremos adicionar parênteses.

A Grande Tabela

Conectivo	Ler Como	Versão C++	Nome
7	"não"	!	Negação
۸	"e"	&&	Conjunção
V	"ou"	II	Disjunção
\rightarrow	"implica"		Implicação
\leftrightarrow	"se e apenas se"		Bicondicional
Т	"verdadeiro"	true	Verdade
Т	"falso"	false	Falsidade

Revisão

- Uma variável proposicional é uma variável verdadeira ou falsa.
- Os conectivos proposicionais são
 - Negação: ¬p
 - Conjunção: p Λ q
 - Disjunção: p v q
 - Implicação: p → q
 - Bicondicional: $p \leftrightarrow q$
 - Verdadeiro: ⊤
 - Falso: ⊥

Traduzindo para Lógica Proposicional

Exemplos de Proposições

a: estarei no caminho da totalidade.

b: Vou ver um eclipse solar total.

c: Há um eclipse solar total hoje.

"Se eu estiver no caminho da totalidade, mas não houver eclipse solar hoje, não verei um eclipse solar total."

a
$$\Lambda \neg c \rightarrow \neg b$$

рΛq

"P, mas q"

Se traduz em

Importante: Para Lembrar

- Ao traduzir para ou fora da lógica proposicional, tome muito cuidado para não se confundir com as nuances da língua portuguesa.
 - Na verdade, esta é uma das razões pelas quais temos uma notação simbólica em primeiro lugar!
- Muitas frases proposicionais levam a traduções contra-intuitivas; certifique-se de verificar novamente!

Equivalências Proposicionais

Pergunta Rápida:

O que eu teria para mostrar a você para convencê-lo de que a afirmação p A q é falsa?

Pergunta Rápida:

O que eu teria para mostrar a você para convencê-lo de que a afirmação **p v q** é falsa?

Leis de Morgan

Usando tabelas verdade, concluímos que

```
¬(p ∧ q)
É equivalente a
¬p ∨ ¬a
```

Também vimos que

```
\neg(p \lor q)
```

É equivalente a

 $\neg p \land \neg q$

• Essas duas equivalências são chamadas de Leis de Morgan.

Equivalência Lógica

- Como ¬(p Λ q) e ¬p V ¬q têm as mesmas tabelas verdade, dizemos que são equivalentes.
- Denotamos isso escrevendo

$$pr V qr \equiv (p \Lambda q)r$$

- O símbolo ≡ não é um conectivo
 - A afirmação ¬(p Λ q) ↔ (¬p V ¬q) é uma fórmula proposicional. Se você inserir diferentes valores de p e q, será avaliado como um valor verdadeiro. Acontece que sempre é avaliado como verdadeiro.
 - A declaração ¬(p Λ q) ≡ ¬p V ¬q significa "essas duas fórmulas têm exatamente a mesma tabela verdade."
- Em outras palavras, a notação φ ≡ ψ significa "φ e ψ sempre têm os mesmos valores verdade, independentemente de como as variáveis são atribuídas."

Uma Equivalência Importante

 Anteriormente, falamos sobre a tabela verdade para p → q. Nós escolhemos ela de forma que

$$p \rightarrow q \equiv \neg (p \land \neg q)$$

 Mais tarde, essa equivalência será extremamente útil:

$$\neg(p \rightarrow q) \equiv p \land \neg q$$

Outra Equivalência Importante

Aqui está uma equivalência útil. Começar com
 p → q ≡ ¬(p ∧ ¬q)

$$p \rightarrow q \equiv \neg(p \land \neg q)$$

 $p \rightarrow q \equiv \neg p \lor \neg \neg q$
 $p \rightarrow q \equiv \neg p \lor q$

Sendo assim, p → q ≡ ¬p V q

Outra Equivalência Importante

• Aqui está uma equivalência útil. Começar com

$$p \rightarrow q \equiv \neg (p \land \neg q)$$

Pelas leis de Morgan:

$$p \rightarrow q \equiv \neg(p \land \neg q)$$

 $p \rightarrow q \equiv \neg p \lor \neg \neg q$
 $p \rightarrow q \equiv \neg p \lor q$

se p for falso, então ¬p v q é verdadeiro. Se p for verdadeiro, então q deve ser verdadeiro para que toda a expressão seja verdadeira.

Sendo assim, p → q ≡ ¬p V q²

Uma Última Equivalência

O Contrapositivo

O contrapositivo da afirmação

• Estes são logicamente equivalentes, razão pela qual a prova por contrapositivo funciona:

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

Porque tudo isso é Relevante

Porque tudo isso é Relevante

 Suponha que queremos provar a seguinte afirmação:

"Se x + y = 16, então x
$$\ge$$
 8 ou y \ge 8"
x + y = 16 \rightarrow x \ge 8 v y \ge 8

"Se x < 8 e y < 8, então x + y \ne 16"

Teorema: Se x + y = 16, então $x \ge 8$ ou $y \ge 8$

Prova: Por contrapositivo. Vamos provar que se x < 8 e y < 8, então $x + y \ne 16$. Sejam x e y números arbitrários tais que x < 8 e y < 8.

Perceba que

$$x + y < 8 + y$$

$$x + y < 8 + 8$$

$$x + y = 16$$
.

Isso significa que x + y < 16, então x + y ≠ 16, que é o que precisamos mostrar.■

Conclusão

- A lógica proposicional é uma ferramenta para raciocinar sobre como várias declarações afetam umas às outras.
- Para entender melhor como provar um resultado, muitas vezes ajuda primeiro a traduzir o que você está tentando provar em lógica proposicional.
- Dito isso, a lógica proposicional não é expressiva o suficiente para capturar todas as afirmações.
 Para isso, precisamos de algo mais poderoso.