MATH 220 Homework 10

Xander Naumenko

November 28, 2021

Question 1. We will use proof by contradiction so suppose not, i.e. suppose that $\exists a \in \mathbb{N} \text{ s.t. } \equiv 2 \mod 6$ and $a \equiv 7 \mod 9$. Then $\exists m, n \text{ s.t. }$

$$a = 6m + 2 = 9n + 7 \implies 6m - 9n = 5 \implies 3(2m - 3n) = 5$$

Clearly 5 isn't divisible by 3 so this is impossible, so the only possibility is that our original assumption was wrong and no such a exists. \square

Question 2. As the hint suggests, consider the equation modulo 4. When doing so we get that

$$y^2 \equiv 3 \mod 4$$

There are two possible cases: either y could be even or odd. If it is even then $\exists a \in \mathbb{Z} \text{ s.t. } y^2 = (2a)^2 = 4a^2 \equiv 0 \mod 4$, and if it is odd then $\exists b \in \mathbb{Z} \text{ s.t. } y^2 = (2b+1)^2 = 4(b^2+b)+1 \equiv 1 \mod 4$. In either case it is not possible that $y^2 \equiv 3 \mod 4$ which is a necessary condition for the original equation to have solutions, so no such $x, y \in \mathbb{Z} \text{ exist. } \square$

Question 3a. We will use proof by contradiction so suppose that the inverse wasn't unique. Then there are two functions f_1^{-1} , f_2^{-1} such that they are both inverses of f but $\exists y_1 \in Y$ s.t. $f_1^{-1}(y_1) \neq f_2^{-1}(y_1)$. We proved in class that if f permits an inverse then it must be bijective, and the definition of the inverse implies

$$f(f_1^{-1}(y_1)) = x_1 = f(f_2^{-1}(y_1))$$

The injectivity of f implies then that $f_1^{-1}(x_1) = f_2^{-1}(x_1)$, but this contradicts the assumption that the two inverses were unique. Thus that assumption must have been incorrect and only one inverse function exists. \square

Question 3b. We will first show that $f^{-1} \circ g^{-1}$ is an inverse, and by part a it is also the unique inverse. For any $y \in Y$, we have that

$$f^{-1} \circ g^{-1}(g \circ f(x)) = f^{-1}(g^{-1}(g(f(x)))) = f^{-1}(f(x)) = x$$

Thus $f^{-1} \circ g^{-1}$ fulfills the definition of being an inverse, so it must be unique by part a. \square **Question 4.** We will use proof by contradiction, so suppose not. Then $\exists a \in \mathbb{Z}, b \in \mathbb{N}, \gcd(a, b) = 1 \text{ s.t. } \sqrt[3]{25} = \frac{a}{\hbar}$. Expanding we get that

$$25 = (\frac{a}{b})^3 \implies a^3 = 25b^3$$

Since $5|25b^3$, this means that $5|a^3$ as well. Since 5 is prime this means that $5|a \implies \exists c \in \mathbb{Z} \text{ s.t. } a = 5c$. Plugging this in again we get

$$125c^3 = 25b^3 \implies b^3 = 5c^3$$

Using the exact same logic as before 5|b, but this contradicts our assumption that gcd(a,b)=1. Thus our assumption must be wrong and $\sqrt[3]{25} \notin \mathbb{Q}$. \square

Question 5. Proof by contradiction: suppose that it was a perfect square, i.e. suppose that $\exists l \in \mathbb{N} \text{ s.t. } l^2 = 2n$. Then we would have

$$l = \sqrt{2n} = \sqrt{2}\sqrt{n} = m\sqrt{2}$$

By assumption l and m are natural numbers, and in class we proved that $\sqrt{2} \notin \mathbb{Q} \implies \sqrt{2} \notin \mathbb{N}$. Thus the left side is a natural number and the right side isn't, clearly violating equality. The only possibility is that our original assumption was false and 2n isn't a perfect square. \square

Question 6. To show it is bijective we will show that it is injective and surjective. For surjective, let $m \in \mathbb{Z}$. If m is even then choose n = m - 7 which is odd, and we have that f(n) = f(m - 7) = m - 7 + 7 = m. If m is odd then choose n = -m - 3 which is even, and we have that f(n) = f(-m - 3) = m - 3 + 3 = m. Thus $\forall m \in \mathbb{Z}, \exists n \in \mathbb{Z} \text{ s.t. } f(n) = m$, so f is surjective.

For injective, Let $n_1, n_2 \in \mathbb{Z}$. Suppose $f(n_1) = f(n_2)$, we will show that $n_1 = n_2$. There are three cases: the two numbers are both odd, both even or one of each. If they are both even, then we have that

$$f(n_1) = -n_1 + 3 = f(n_2) = -n_2 + 3 \implies n_1 = n_2$$

If they are both odd, then we have that

$$f(n_1) = n_1 + 7 = f(n_2) = n_2 + 7 \implies n_1 = n_2$$

If one is odd and one is even, without loss of generality assume that n_1 is the even one. Then we get that

$$f(n_1) = f(2m_1) = -2m + 1 = f(n_2) = f(m_2 + 1) = 2m_2 + 8 = 2(m_2 + 4)$$

The left side is odd and the right side is even, so it is not possible that n_1 has different parity then n_2 . Thus all possible cases are either not possible or agree with $n_1 = n_2$, so f is injective. Since it is both injective and surjective it is bijective.

For the inverse, it is the following:

$$f^{-1}(m) = \begin{cases} -m - 3 & m \text{ odd} \\ m - 7 & m \text{ even} \end{cases}$$

To show that this is the case, let $m \in \mathbb{Z}$. Then if m is even we have that m-7 is odd and

$$f^{-1}(f(m)) = f^{-1}(m-7) = m$$

If m is odd then -m-3 is even and we have

$$f^{-1}(f(m)) = f^{-1}(-m-3) = m$$

Thus f^{-1} is the inverse. \square

Question 7a. Expanding we get

$$f \circ f \circ f \circ f(x) = f \circ f(1 - \frac{1}{x}) = f(1 - \frac{1}{1 - \frac{1}{x}}) = f(1 - \frac{x}{x - 1}) = 1 - \frac{1}{1 - \frac{x}{x - 1}}$$
$$= 1 - \frac{x - 1}{-1} = x = i_A$$

Question 7b. First, note that $i_A = x$ is a bijective function on A. This means that for every $y \in A, \exists x \in A \text{ s.t. } \exists z \in A \text{ s.t. } g \circ g(y) = x \text{ and } g(x) = y$, which is the definition of being surjective.

For injectivity, we will use proof by contradiction so suppose g wasn't injective. Then we have that $\exists x_1, x_2 \in A$ s.t. $g(x_1) = g(x_2)$ and $x_1 \neq x_2$. Using the identity for g we know that $g(g(g(x_1))) = g(g(g(x_2)))$ and $g(g(g(x_1))) = x_1$ and $g(g(g(x_2))) = x_2$. This would imply that $x_1 = x_2$ which contradicts our assumption, so it must be that g is injective as well. Since g is injective and surjective this means that g is bijective. \square

Question 7c. By part a f is bijective, so it must have an inverse. the inverse is the following: $f^{-1}(x) = \frac{1}{1-x}$. Plugging in we have $f^{-1}(f(x)) = 1 - \frac{1}{\frac{1}{1-x}} = x$ so it is an inverse, and by question 3 it is the unique inverse. \square

Question 8. We will use proof by contradiction, so suppose that such an integer k exists that is rational. Then we would have that $\exists a \in \mathbb{Z}, b \in \mathbb{N} \text{ s.t. } \gcd(a,b) = 1 \text{ and } \sqrt{k} = \frac{a}{b}$. Then we have that

$$k = \frac{a^2}{b^2} \implies a^2 = kb^2$$

Then $k|a^2$. Since k isn't a perfect square it must have a prime factor p with an odd degree, since if all prime factors had even degrees it would be a perfect square. Then $p|a^2$, and since p|k with odd degree it means that p|a as well. Then we have that $\exists c \in \mathbb{Z} \text{ s.t. } a = cq$. Then we have that $kb^2 = q^2c^2$. Since k is divisible by an odd number of q either q|b or q|c. In the latter case we can repeat this process, and since k this process will eventually terminate and the former case will occur. When this happens we have that q|b, which contradicts our assumption that $\gcd(a,b) = 1$ and thus no such k exists. \square