Équations Différentielles Linéaires d'ordre 2 $_{\text{Corrigé}}$

DARVOUX Théo

Novembre 2023

\mathbf{E}	Exercices.		
	Exercice 12.1	2	
	Exercice 12.2	2	

Exercice 12.1 $[\Diamond \Diamond \Diamond]$

Résoudre le problème de Cauchy ci-dessous :

$$\begin{cases} y'' + 2y' + 10y = 5\\ y(0) = 1 \quad y'(0) = 0 \end{cases}$$

Polynome caractéristique : $r^2 + 2r + 10$. $\Delta = -36$. $r_{\pm} = -1 \pm 3i$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto e^{-x} (\alpha \cos(3x) + \beta \sin(3x)) \mid (\alpha, \beta) \in \mathbb{R}^2 \}$

Solution particulière : $S_p: x \mapsto \frac{1}{2}$.

Solution générale : $S = \{x \mapsto \frac{1}{2} + e^{-x} (\alpha \cos(3x) + \beta \sin(3x)) \mid (\alpha, \beta) \in \mathbb{R}^2 \}.$

Conditions initiales.

Soit $(\alpha, \beta) \in \mathbb{R}^2 \mid \forall x \in \mathbb{R}, \ y(x) = \frac{1}{2} + e^{-x} (\alpha \cos(3x) + \beta \sin(3x)).$

On a $y(0) = 1 \iff \frac{1}{2} + \alpha = 1 \iff \alpha = \frac{1}{2}$.

On a $y'(0) = 0 \iff -\frac{1}{2} + 3\beta = 0 \iff \beta = \frac{1}{6}$.

L'unique solution de ce problème de Cauchy est : $x \mapsto \frac{1}{2} + e^{-x} \left(\frac{1}{2} \cos(3x) + \frac{1}{6} \sin(3x) \right)$

Exercice 12.2 $[\Diamond \Diamond \Diamond]$

Résoudre :

$$y'' - y' - 2y = 2\operatorname{ch}(x)$$

On réecrit d'abord cette équation comme : $y'' - y' - 2y = e^x + e^{-x}$.

Polynome caractéristique : $r^2 - r - 2$. $\Delta = 9$. $r_1 = -1$ et $r_2 = 2$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda e^{-x} + \mu e^{2x} \mid (\lambda, \mu) \in \mathbb{R}^2\}.$

Équation auxiliaire $1: y'' - y' - 2y = e^x$. Solution particulière $: S_{p,1}: x \mapsto Be^x \mid B \in \mathbb{R}$.

Soit $x \in \mathbb{R}$, $B \in \mathbb{R}$ et $y : x \mapsto Be^x$.

On a $y''(x) - y'(x) - 2y(x) = e^x \iff -2Be^x = e^x \iff B = -\frac{1}{2}$.

Ainsi, $S_{p,1}: x \mapsto -\frac{1}{2}e^x$.

Équation auxiliaire $2: y'' - y' - 2y = e^{-x}$. Solution particulière $: S_{p,2}: x \mapsto Cxe^{-x} \mid C \in \mathbb{R}$.

Soit $x \in \mathbb{R}$, $C \in \mathbb{R}$ et $y : x \mapsto Cxe^{-x}$.

On a $y''(x) - y'(x) - 2y(x) = e^{-x} \iff -3Ce^{-x} = e^{-x} \iff C = -\frac{1}{3}$.

Ainsi, $S_{p,2}: x \mapsto -\frac{1}{3}xe^{-x}$.

Par superposition, l'ensemble des solutions est :

$$\{x \mapsto \lambda e^{-x} + \mu e^{2x} - \frac{1}{2}e^x - \frac{1}{3}xe^{-x} \mid (\lambda, \mu) \in \mathbb{R}^2\}$$