Corso di Laurea in Informatica - A.A. 2013 - 2014 Esame di Fisica - 14/07/2014

Esercizio 1

Si considerino i seguenti punti in piano cartesiano (x, y): P=(1,1), A=(4,1), B=(4,5). Scrivere il vettore \vec{a} che va dal punto P al punto A, il vettore \vec{b} che va dal punto P al punto B e calcolare il prodotto scalare $\vec{a} \cdot \vec{b}$.

Esercizio 2

Una spira circolare è formata da un filo di rame con resistività $\rho=1.7\times10^{-8}~\Omega$ m di lunghezza $\ell=0.94~\mathrm{m}$ e sezione $S=2~\mathrm{mm}^2$. La spira è posta in un campo magnetico \vec{B} uniforme, perpendicolare alla spira, il cui modulo varia nel tempo secondo la legge $B(t)=\alpha t~\mathrm{con}~\alpha=10^{-2}~\mathrm{T/s}$. Determinare:

- a) la corrente indotta che percorre la spira;
- b) il modulo del campo magnetico creato dalla corrente indotta al centro della spira;
- c) la potenza dissipata nella spira per effetto Joule.

Esercizio 3

Nel circuito in figura $R{=}50~\rm{k}\Omega$ e le f.e.m. valgono $\varepsilon_1{=}\varepsilon_2{=}35~\rm{V}.$ Calcolare:

- a) la corrente i_1 ;
- b) la potenza totale dissipata nel circuito.
- c) nel caso si ponesse tra i terminali A e B un condensatore di capacità 5 pF, la carica presente sulle armature in condizioni di stazionarietà.

