

Deep k-Nearest Neighbors

Towards Confident, Interpretable and Robust Machine Learning

Nicolas Papernot and Patrick McDaniel

Overview

- Motivation
 - o robustness
 - model confidence
 - interpretability
- Proposed method
 - o DkNN
- Evaluation

Mina Remel

Motivation

What is the matter with vanilla softmax classification?

Vanilla Classification

proposed EU regulations on AI systems (new!)

Layer name **Neural architecture** softmax output = "confidence values" **Softmax** Issues: Prediction isn't robust 3rd hidden small perturbation to input can cause misclassification dataset shift 2nd hidden Higher confidence → greater likelihood of correctly assigned label? not necessarily true... 1st hidden Interpretability: why this prediction? black-box GDPR - <u>need</u> interpretable output Inputs

Robustness

- DNNs are vulnerable to input perturbations, which can cause them to misclassify
- Adversarial examples
 - perturb input images, without changing semantic meaning
 - To the human eye, the adversarial example would still look like a panda.
 - but causes model to misclassify...

Model confidence

Probabilities output by DNNs are **bad** indicators of model confidence

Model is more confident on adversarial example!

Interpretability

- Lack of explanations on model predictions
 - Often very important in evaluating fairness in ML!

Is this prediction based on a racial bias?

Prediction: Basketball (68%)

Proposed method

DkNN in a nutshell

- new inference method
- Exploits hidden layer representations
 - uses k-NN
 - analyzes nearest train sample labels
- more robust
- helps interpretability
- supports prediction w/ training samples

Nonconformal

9 9

999

Deep k-Nearest Neighbors

Representation spaces

School Bus

Nearest neighbors

Nonconformal

<u>≘</u> ≡, ∈

Conformal

9 g @

Locality-Sensitive Hashing (LSH)

 Outputs of intermediate layers are often high-dimensional

- LSH is an efficient algorithm for looking up neighboring representations in high-dimensional spaces.
 - designed to maximize the collision of similar hashes
 - contrary to cryptographic hashes...
 - nearest neighbors according to cosine similarity

Non-conformity

- Measures how different a test input is from training samples with the same label.
- Non-conformity of input x with label j:

$$\alpha(x,j) = \sum_{\lambda \in 1...l} |i \in \Omega_{\lambda} : i \neq j|$$

... where Ω_{λ} is the multi-set of labels for the training points whose representations are closest to the test input's at layer λ .

What is the non-conformity of these pictures?

Nearest neighbors

Where j = "panda"

Credibility

- Measures the *support* of *predicted label j* with regards to the *training data*.
 - o uses **non-conformity** to do this

- We want low credibility...
 - on out-of-distribution data
 - o and adversarial examples

Input: x (test sample)

Output: credibility for all possible labels **j**

- 1. Separate a holdout dataset (X^H, Y^H) from the test set.
- 2. Compute nonconformity values on $(X^H, Y^H) \rightarrow A$.
- 3. For each possible label j, compute the non-conformity of x and the credibility of label j:

$$\operatorname{credibility}_j(x) = rac{|\{lpha \in A: lpha \geq lpha(x,j)\}|}{|A|}$$

Prediction

The label with the highest credibility.

$$rg \max_{j} ig(ext{credibility}_{j}(x) ig)$$

Dataset	DNN Accuracy	DkNN Accuracy	
MNIST	99.2%	99.1%	
SVHN	90.6%	90.9%	
GTSRB	93.4%	93.6%	

Limited or no impact on accuracy!

Evaluation

Datasets

- MNIST
 - o digits (0-9)

- SVHN
 - o colored house numbers (0-9)

traffic sign images

Credibility

- ✓ Is lower on out-of-distribution samples.
 - in-distribution: MNIST
 - out-of-distribution: NotMNIST (unicode chars) + rotated MNIST

Credibility (2)

Can even find test inputs whose label in the original dataset is wrong.

Credibility (3)

- well-calibrated credibility should be linearly aligned with accuracy
 - high credibility → greater probability of correct prediction → high accuracy
- softmax seems to have this linear property
 - too confident on majority of test data...
- if the task is difficult, DkNN assigns lower credibility

Interpretability

- ✓ DkNNs give explanations by example
 - examples are training samples whose representations are closest to the test sample

Not only skin color, but ball might also contribute to misclassification!

Prediction: Basketball (68%)

Robustness

 Dataset
 DNN Accuracy
 DkNN Accuracy

 MNIST
 99.2%
 99.1%

 SVHN
 90.6%
 90.9%

 GTSRB
 93.4%
 93.6%

- Less adversarial examples are misclassified
 - adversarial example classification accuracy is higher

Dataset	Attack	Attack Parameters	DNN	DkNN
MNIST	FGSM	ε =0.25	27.1%	54.9%
	BIM	ε =0.25, α =0.01, i =100	0.7%	16.8%
	CW	κ =0, c =10 ⁻⁴ , i =2000	0.7%	94.4%
SVHN	FGSM	$\varepsilon = 0.05$	9.3%	28.6%
	BIM	ε =0.05, α =0.005, i =20	4.7%	17.9%
	CW	$\kappa = 0, c = 10^{-4}, i = 2000$	4.7%	80.5%
GTSRB	FGSM	$\varepsilon = 0.1$	12.3%	22.3%
	BIM	ε =0.1, α =0.005, i =20	6.5%	13.6%
	CW	κ =0, c =10 ⁻⁴ , i =2000	3.0%	74.5%

For most adversarial examples credibility is < 0.5.

Robustness (2)

- Softmax
 - high confidence on majority of adversarial examples

- DkNN
 - credibility is < 0.5 for most adversarial examples

Robustness (3)

- ✓ Adaptive adversarial attacks against DkNNs are not imperceptible.
 - Feature adversaries: Forces hidden layer representation of adversarial example to resemble training data representations of the desired label.
 - e.g. panda in hidden layers should look more like a school bus
 - adversarial panda morphs into a school bus, making the attack obvious

This happens despite small perturbation budget!

Representation spaces

Conclusions

- DkNN exploits intermediate representations to make predictions
 - withstand adversarial perturbation better (robustness)
 - that are supported by training data (credibility)
 - interpretable by providing similar examples
- Questions that remain open:
 - Metric that measures likelihood of prediction being correct, given the training set.
 - confidence