School of Information Technology & Engineering

BIG DATA ANALYSIS

ITE2013

PROJECT

RAIN PREDICTION

by

Om Purohit (17BIT0368)

Jash Shah (17BIT0337)

Sawar Pratap Singh(17BIT0270)

Under the guidance of

Prof. Kathiravan

ABSTRACT:

The biggest problem we face nowadays is not knowing whether it is going to rain or not. Imagine planning for something big, and all your plan gets cancelled just because it starts raining. Sounds pretty irritating, doesn't it? Well, now we have a solution to this problem and we call it the **Rain Predictor**. Rain Predictor is a software which will help us predict whether it is going to rain on a particular day or not. Rain Prediction will be done on the basis of different factors which affect the rain conditions, such as temperature, evaporation, humidity, wind speed, etc. On the basis of the available dataset with around 400 records of past data and the weather factors of a day, we can predict whether it is going to rain on that day or not. We are going to do the prediction of rain on the basis of different factors that are responsible for affecting the rain conditions.

LITERATURE SURVEY

Sn o	Title	Dataset	Brief Desciption	Parameters	Advantages of the model	Limitations of the model
1	Prediction of Rain	Rain rate data are taken from	Prediction of signal	Site location,	The present study shows	Normallya 2.2648
	Attenuation Statistics from Measured Rain Rate Statistics using Synthetic	ITU-R data bank for different tropical and temperate locations to show the applicability of	attenuation due to rain are important in the conception of microwave and millimetre wave communication	Latitude, Longitude, Elevation, Frequency	how SST can be successfully used to convert measured rain rate statistics	accuracy is a good accuracy but since this is managing realtime disasters we require

	Storm	the SST to	system design.		into	an almost
	Technique	predict rain	_		attenuation	perfect
	for Micro	attenuation	Since it is not		statistics at	model
	and	statistics from	feasible to use		Ku and K	
	Millimeter	rain rate	large fade		band by	
	wave	statistics. Data	margins, such		properly	
	Communicati	sets from	systems will		selecting	
	on System	Kolkata,Hongko	implement		the time	
	·	ng and	dynamic fade		gap	
		Singapore(in	countermeasur		between	
		tropical region),	e s, FCMs, to		two rain	
		Spino d' Adda	react to fading		rate	
		and	effects		samples	
		Walthum(two				
		locations in				
		temperate				
		region) have				
		been used in				
		this				
		paper				
2	Rain rate	This data is	Rain induced	The	The ITU	The model
	and rain	available at	attenuation is	prominent	and RH	works at
	attenuation	the Kitami	a prominent	ITU - R rain	models	certain
	prediction	Institute of	loss factor for	rate model	show good	frequency
	with	Technology	communication	as detailed	performance	only such
	experimental	databank	system design	in [4] is	at low rain	as
	rain		in the	based on	rates while	31.4 GHZ
	attenuation		terrestrial and	the use of	Kitami	
	efforts in		satellite- earth	meteorologic	model	
	south-		links. Its	al	shows the	
	western		severity is	parameters	worst result	
	Nigeria		more	available	for the	
			pronounced at	from ITU's	location.	
			frequencies	3M Group	Fig	
			above	website. The	. 3 shows	
			10GHz [1]	Kitami rain	the	
				rate	predicted	
				distribution	rain	
				model	attenuatio	
				employs two	n at	
				regional	12.736	

	cl	imatic GHz, rameters 12.522 ; GHz,	

				the	12.722 GHz	
				thunderstorm	and 12.245	
				ratio and	GHz for	
				average	different	
				annual	percentages	
				precipitation	of an	
				and the 290	average	
				datasets for	year.	
				30 countries		
				(including		
				the tropics)		
				as proposed		
				by Ito and		
				Hosoya		
3	Novel	A disdrometer	Rain	The	The	We get
	integration-	has been	attenuation	instability	nowcasting	results at
	time	used for rain	prediction	parameters	technique is,	22.24, 23.8,
	conversion of	accumulation	model is	are estimated	therefore,	26.4 and
	rain-rate	measurements	important for	from	able	31GHz but
	statistics for	Thirty rain	both satellite	radiometric	to predict	only
	rain	events during	and terrestrial	data to point	both rain	optimal and
	attenuation	2011-2012 are	communication	the	occurrence	consiferable
	prediction	considered``	s.	development	and rain	is at
	models			of	accumulatio	31.4Ghz
				atmospheric	n.	
4	A model of	DAH is a	In this paper a	Because of	In this	B5esides,
	rain	prediction	new rain attenuation	more	paper, a	this new
	attenuation in	model, which	model based on Wiener	parameters	new rain	model of
	Ka band	is proposed by	on wiener prediction is	, more	attenuatio	3 th order
	based on	Allnutt,	established	complex	n model is	has only 3
	the Wiener prediction	Dissanayake and Haidara	after analyzing the DAH	process of calculation	introduced based on	parameter s, and
			model in Ka			

		after analyzing	band.	and the	the	there are
		the data that		need of	analysis of	no close
		come from		renewing	DAH	relationshi
		series of		all the	model.	p between
		experiments		parameters	Simulatio	the
		based on			n results	parameter
		INTEL SAT			show that	s and
		satellite			this new	frequency.
		system,			model can	
					achieve	
					the same	
					effect with	
					DAH	
					model	
5	A New Rain	Based on the	Earth-space	Twelve	A new rain	ut also
	Attenuation	measurement	communicati	parameters	attenuatio	over
	Prediction	data by	on systems	sets, one for	n	various
	Model for the Earth-Space Links	Meteorologic al radar, a rain attenuation prediction model was	are now utilizing the <i>Ku</i> - and <i>Ka</i> - frequency	each month of the year, are available. The model	prediction model for the earth- space links is	ranges of latitudes, frequencie s, and

_						
6	Rain rate anid	This	Rain induced	The	The ITU	The warksle
	rain n	doto is	attenuation is	prominent	and RH	certain 1 at
	attenuation	data is available	a prominent	ITU - R	models	frequency
	prediction		loss factor	rain	show good	only such as
	with	at the	for	rate	performanc	31.4
	experimental		communicatio	model as	e at low	GHZ
	rain	Kitami	n system	detailed in	rain rates	
	attenuation	Institute	design in the	[4] is based	while	
	efforts south-	of	terrestrial and	on the use	Kitami	
	western	Technolog	satelliteearth	of	model	
	Nigeria	У	links. Its	meteorologic	shows the	
		databank.	severity is	al	worst result	
			more	parameters	for the	
			pronounced	available	location.	
			at	from	Fig . 3	
			frequencies	ITU's 3M	shows the	
			above		predicted	
			10GHz	Group	rain	
				website.	attenuation	
				The	at	
				Kitami rain	12.736	
				rate	GHz,	
				distribution	12.522	
				model	GHz,	
				employs two	12.722 GHz	
				regional	and 12.245	
				climatic	GHz for	
					different	
				parameters; the	percentages	
				thunderstor	of an	
					average	
				m ratio and	year.	
				average	•	
				annual		
				precipitation		
				and the 290		
				datasets for		
				30 countries		
				(including		
				the tropics)		
				as proposed		
				by Ito and		
				Hosoya		
7	Validation the	Tropical	The spatial	The model	The results	the similar
	Applicability	Rair	ıf adi nfall is one	parameters	show	
	of		of the key	are		

				_		
	Satellit e	data	inputs for the	optimized through a	that the	water balance
	Based		distributed	trial and	WATLAC	analysis
	Daseu		hydrological	uiai ailu	(Water	results are
	Rainfall		model, and	error	Flow Model	
	Data		their		for	received, the
	for		precisions	method	Lake	1000111011, 1110
	Runoff		heavily	against	Catchment)	different
	Simulat		neavity	observed	model using	rainfall
	ion and		affect the	daily	moder using	data
	Water		accuracy of	discharge	conventional	source
	Water			at the	rain gauge	source
	Balance		streamflow	Meigang	data produces	have an
	Analysi		predictions from	Wiciguit	an overall	trivial effect
	s		a hydrological	station and	good fit, but	on the
				the Nash-		components
			model.	Sutcliffe	the results for	of water
			Satellitebased	efficiency	TRMM rainfall	budget.
			precipitation	(Ens),	data are	Juu000
			products are	correlation	discontented	
			expected to			
				coefficient		
			offer an	(R2) and		
			alternative to	the		
			ground based	relative		
			rainfall	runoff		
			estimates in the	depth error		
			present and the	(DE) were		
			foreseeable			
				used for		
			future	evaluate		
				the		
				model		
				performanc		
				-		
8	The SC	Preliminary	presents the	e. probability	knowledge of	Despite the
8		·	-	-		_
	EXCELL	tests are carried out to	prediction of	levels	which may lead to	need of
	model		monthly rain	equal to or		additional
	for the	validate this	attenuation	higher	significant	
	predicti	<u> </u>	statistics by	than	benefits	tests,
		fagainst the	means of	5×10 – 3%	in	Ovvome11 41-
	monthl	extensive set	the	ha 	the	overall, the
	•	raon rain	Stratiform/	ve	design and	results
	attenua	attenuation	Convect ive (SC)	1	operation	obtained in
	tion	data collected	EXCELL model.	been	of	this work
	statistic	at the	The assumption	considered	advanced	show that,
	s	experimental	put forth in this	in the tests	systems taking	although
		station of	contribution is	so as to	advantage of	originally
		Spino d'Adda	that, although	maintain a	the high	developed
		during the	developed for	good	spatial and	for
		Italsat	the prediction of	degree of		the
1	1					1
		propagation	yearly statistics,	statistical stability	temporal variability of	prediction of

		(years 1994-2000)	solid physical basis, SC EXCELL can be applied as is also to estimate monthly rain attenuation statistics, provided that suitable inputs (i.e. monthly rain rate statistics and monthly rain height) are used	in the P(A)ms.	the rainfall process (e.g. design of communication systems for Earth Observation missions or of broadcast systems on the basis of worst month rain attenuation statistics	statistics, thanks to its solid physical basis, SC EXCELL can be used as is with satisfactory accuracy also for the prediction of P(A)ms
9	Rain Predicti on Using Radiom etric	A disdrometer has been	Nowcasting of intense rain is important in	The instability parameters are	The nowcasting technique is,	We get results at 22.24, 23.8, 26.4 and 31GHz but
10	Observ ations at a Tropica l Locatio n	used for rain accumulation measurements Thirty rain events during 2011-2012 are considered	various fields of life. In this paper, radiometric brightness temperature measurements at Ka and V bands are utilized to predict rain event associated with impending convective processes.	estimated from radiometric data to point the developme nt of atmospheri c instability and an estimation of liquid water content is made from brightness temperatur e at 31.4 GHz, prior to rain events	around 80%.	only optimal and consiferable is at 31.4Ghz
11	Analysi s of the Synthet	relies on rain rate time series and rain	aims to investigate the utilization of the Synthetic Storm	model requires the speed (m/s) of	investigate the utilization of the Synthetic	generate rain attenuation time series by relying on

	attamusati an	Toologies (CCT)	maim11-	Ctomm	main mat-
ic	attenuation	Technique (SST)	rain cells,	Storm	rain rate
Storm	time series	to convert rain	the length	Technique	data
Techni	measured at	rate time series	of link	(SST) to	measured for
que	University	to rain	path	convert rain	one month in
Using	Science	attenuation time	between	rate time	USM campus
Ra	i M alaysia	series using the	satellite	series to rain	
Height	(USM)	ITU-R P.839,	and base	attenuation	
Models	campus	Stutz man and	station	time series	
to		Bryant	(km) and		
Predict		rain height	the rain		
Rain		models	rate time		
Attenu			series		
ation			which was		
in			measured		
Tropica			at the		
1 1			desired		
Regions			site. The		
			model		
			consists of		
			two layers,		
			namely,		
			the rain		
			layer		
			(layer A)		
			and the		
			melting		
			layer P)		
			(layer B)		

12	Flood	data it	Flood is one	network	The flood	Normallya
	Prediction	gathered	of the most	showed a	prediction	2.2648
	Using	from sensors	destructive	very good		accuracy
	Multi-	integrated in	natural	goodness-of-	system	is a good
	Layer	a realtime	•	fit	showed an	accuracy
	Artificial	monitoring	phenomena	specifically	RMSD value	but since
	Neural	system.	that happens	0.99889 for	of 2.2648	this is
	Network in		on most part	the training	which	managing
			of the world.	dataset,	signifies a	realtime
	Monitoring		Notably in	0.99362 for	small	disasters
	System		the	the test data	overall	we
	with Rain		Philippines,	set, 0.99764	difference	require
	Gauge,		this was a	for the	between the	an
	Water		major issue	validation	predicted	almost
	Level, Soil		as it can lead	dataset and	flood level	perfect
	Moisture		to damage	0.99795	and actual	model
	Sensors					
			of properties,		flood level	
			damage to		across the	
			infrastructures		whole	
			or even loss		dataset	

			. C 19		4	
			of lives.		tested in the	
			Current		actual setup.	
			systems			
			adhere to			
			solve issues			
			to prevent			
			devastating			
			disasters			
			caused by			
			floods. In this			
			study, a			
			system is			
			"			
			developed			
			to predict			
			_			
			flood level			
			based on			
			real-time			
			monitoring			
			sensors and			
			systems.			
		_				
13	Validation	Tropical	The spatial	The model	The results	the similar
	the	Rainfall data	rainfall is one	parameters	show that	water
	Applicabilit		of the key	are	the	balance
	y of		inputs for the	optimized		_
	Satellite			through a	WATLAC	analysis
	Based		distributed	trial and	(Water Flow	results are
			hydrological		Model for	received,
	Rainfall		model, and	error method	Lake	the
	Data for		their	against	Catchment)	different
	Runoff		precisions	observed	model using	rainfall
	Simulation		heavily	daily		data source
			пеачну	<u>~</u>	conventional	data source
	and Water		affect the	discharge at	rain gauge	have an
	Balance		accuracy of	the Meigang	data	trivial
	Analysis		streamflow	station and		
	viigiysis				-	
			predictions	the Nash-	overall good	the
			from a	Sutcliffe	fit, but	components
			hydrological	efficiency	tho ====14=	of water
			, ,	(Ens),	the results	budget.
			model.	correlation	for TRMM	
			Satellite-based		rainfall data	
			precipitation	coefficient	are	
			products are	(R2) and the	discontented	
			expected to	relative		
			_	runoff depth		
			offer an	error (DE)		
			alternative to			
	1	I .	mornance m		İ	ı

			ground based rainfall estimates in the present and the foreseeable future	were used for evaluate the model performance.		
14	Prediction of convective rainfall using multi- technique observation s	radio environment over Kolkata (22.650 N, 88.450 E) using a multi frequency profiler radiometer (RPGHATPRO) and an electric field monitor. The multi- frequency microwave radiometer measures brightness temperatures at 14 frequencies at two frequency bands	Nowcasting of rain and especially its amount is very important view of ad verse effects caused by rainfall	monitoring of brightness temperature at 31.4 GHz, the frequency having strong absorption due to liquid water, can give an estimate of rain accumulation with a prediction efficiency of ~ 80 % and a lead time of 75 minutes.	In this study, an effort has been made to predict the quantity of precipitation using multitechnique observations at a tropical location. It is seen that both the brightness temperature at 31.4 GHz and the atmospheric electric field show definite changes before convective rain	The model works at certain frequency only such as 31.4 GHZ
15	Rain Prediction Using Radiometri c Observatio ns at a Tropical Location	A disdrometer has been used for rain accumulation measurements Thirty rain	Nowcasting of intense rain is important in various fields of life. In this paper, radiometric	The instability parameters are estimated from radiometric data to point	The nowcasting technique is, therefore, able to predict both rain occurrence	We get results at 22.24, 23.8, 26.4 and 31GHz but only optimal and consiferable is at

		events during	brightness	the	and rain	31.4Ghz
		2011-2012 are	temperature	development of	accumulation	
		considered	measurements at Ka and V	atmospheric	The model,	
			bands are	instability	when	
			utilized to	and an	validated,	
			predict	estimation of	gives a	
			rain event	liquid water content is	reasonable prediction	
			associated with	made from	efficiency of	
			impending	brightness	around 80%.	
			convective	temperature		
			processes	at 31.4 GHz,		
			processes.	prior to		
				rain events		
16	Modelling	This is	address in	Twelve	It	ITU-R
	Rain Rate	the ITU-R,	this paper	parameters sets, one for	is expected	requirement s is very
	of Arrival	standard for	current work	each month	that through	limited
	Processes	predicting	toward the	of the	the study of	given that
		rain induced attenuation	generation of synthetic time		arrivals: first	the main
		For one, the	series of	year, are available.	of rain gauge	users of
		availability of		The model	tips and,	rain
		rain intensity	rain rate, R,	assumes	possibly,	information
		records	in mm/h with an integration	three states:	drop arrivals, a	(weather
		adapted to	time of 1	(1) intense	more faithful	prediction,
		the	min.	rainy state,	reproduction	water managemen
		ITU-R		(2) wet	of	t, etc.)
		requirements		state, and	rain induced	
				(3) dry state (little or no	effects on	do not require
				rain)	radio links	such a
					could be	short
					achieved.	integration
						time and
						data with
						longer
						accumulatio
						n periods,
						even exceeding 1
						hour, are
						commonly

			found.

BIG DATA LIFE CYCLE

PHASE 1: Discovery

Domain knowledge

Our project is to predict that on the given weather conditions what is the possibility of rain to happen. Rain is the collection of water droplets that falls from the clouds. Cloud takes water in form vapours from oceans, trees, lakes etc. The vapours coming from these sources are dependent on different factors such as, if temperature is high then the possibility of occurrence rain is more. Similarly, it depends on evaporitic pressure and sunshine too. Humidity, wind direction and wind speed are also playing a very important role. If humidity is high then chances of rain are much more. Wind direction and wind speed actually tells us that when and where the rain is going to happen.

Resources

The data required can be taken from different resources.

The given data can be taken from two resources -

1) From Sensors

The humidity, temperature, evaporitic vapours are the data which can be recorded with the help of different types of sensors.

2) From satellite

The data like wind speed, wind direction and clouds can be obtained from satellite.

Link- https://www.kaggle.com/arpina/weather

Data

Stakeholder & User

- Private weather services- they are the weather data providers. A single weather service cannot succeed on basis of its collected data, but requires contribution from different services. The system should accept this historical weather data which shall be helpful for developing patterns for rain prediction.
- 2. Weather researchers- End users of the system. These stakeholders would be studying the predictions provided by our system.
- Requirement Engineers- This stakeholder works with customers and other stakeholder to translate needs into requirement. Specifies domain, categories, requirements into functional and non-functional. Refines requirements as needed.
- 4. Software Architect- This stakeholder is the lead in development of prediction system. He will be responsible for the architecture of the system, guides design and implementation.
- 5. Project Manager- This stakeholder is the lead in development of prediction system. The manager will be required to plan, manage, coordinate interactions and keep the team focused.
- 6. Sponsors People who will be providing funds for the project.

Framing of problem

Today, the major problem that we are facing is the accurate prediction of rain. It is difficult because we are unaware of the factors affecting the rain

and the extent to which these factors affect it. Rain Prediction is a complex and often challenging skill that involves observing and processing vast amounts of data. It can range from small, short lived thunderstorms only a few miles in diameter that last a couple hours to large scale rain and snow storms up to a thousand miles in diameter and lasting for days. Therefore, obtaining a suitable model can be a tedious task.

PHASE 2- DATA PREPARATION

> Preprocessing

Data pre-processing is an important step in the data mining process. The phrase "garbage in, garbage out" is particularly applicable to data mining and machine learning projects. Data-gathering methods are often loosely controlled, resulting in out-of-range values (e.g., Income:–100), impossible data combinations (e.g., Sex: Male, Pregnant: Yes), missing values, etc.

Here we have done preprocessing using weka tool. In this, we first import the dataset & then visualize all the attributes of the data one by one. Such that we come to know about the attributes that which of them attribute is neither numeric nor nominal. After identifying those attributes we removed those attribute before applying any algorithm such as decision tree, random forest, etc. So that we can get to that which algorithm will be suited best for to get the maximum percentage of correctly classified data.

> Feature selection

This preprocessed data tells us about the unwanted attribute present in the data. Here it shows that the attributes Sunshine, WindGustSpeed, WindSpeed9am are neither numeric nor nominal. Therefore, for doing the predictions we have to remove these attributes.

PHASE 3- MODEL PLANNING

Proposed System/Models:

RANDOM FOREST

Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees.[Random decision forests correct for decision trees' habit of overfitting to their training set

The first algorithm for random decision forests was created by Tin Kam Ho using the random subspace method which, in Ho's formulation, is a way to implement the "stochastic discrimination" approach to classification proposed by Eugene Kleinberg.

An extension of the algorithm was developed by Leo Breiman and Adele Cutler who registered "Random Forests" as a trademark (as of 2019, owned by Minitab, Inc.). The

extension combines Breiman's "bagging" idea and random selection of features, introduced first by Ho[1] and later independently by Amit and Geman in order to construct a collection of decision trees with controlled variance.

NAIVE BAYES

In machine learning, naïve Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naïve) independence assumptions between the features. They are among the simplest Bayesian network models. But they could be coupled with Kernel density estimation and achieve higher accuracy levels.

Naïve Bayes has been studied extensively since the 1960s. It was introduced (though not under that name) into the text retrieval community in the early 1960s, and remains a popular (baseline) method for text categorization, the problem of judging documents as belonging to one category or the other (document categorization)(such as spam or legitimate, sports or politics, etc.) with word frequencies as the features. With appropriate pre-processing, it is competitive in this domain with more advanced methods including support vector machines. It also finds application in automatic medical diagnosis.

Naïve Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features/predictors) in a learning problem. Maximum-likelihood training can be done by evaluating a closed-form expression,718 which takes linear time, rather than by expensive iterative approximation as used for many other types of classifiers.

K MEANS CLUSTERING

k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. It is popular for cluster analysis in data mining. k-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes

Euclidean distances. For instance, better Euclidean solutions can be found using k-medians and k-medoids.

The problem is computationally difficult (NP-hard); however, efficient heuristic algorithms converge quickly to a local optimum. These are usually similar to the expectation-maximization algorithm for mixtures of Gaussian distributions via an iterative refinement approach employed by both k-means and Gaussian mixture modeling. They both use cluster centers to model the data; however, k-means clustering tends to find clusters of comparable spatial extent, while the expectation-maximization mechanism allows clusters to have different shapes.

DECISION TREE

A decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains conditional control statements.

Decision trees are commonly used in operations research, specifically in decision analysis, to help identify a strategy most likely to reach a goal, but are also a popular tool in machine learning A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test, and each leaf node represents a class label (decision taken after computing all attributes). The paths from root to leaf represent classification rules.

Different classification algorithms are tested for building the suitable model.

The following are-

> Random Forest

Correctly Classified Instances	308	84.153 %
Incorrectly Classified Instances	58	15 847 %

> Random Tree

Correctly Classified Instances 280 76.5027 %

Incorrectly Classified Instances 86 23.4973 %

> Decision Table

Correctly Classified Instances 302 82.5137 %

Incorrectly Classified Instances 64 17.4863 %

> Classification via Regression

Correctly Classified Instances 315 86.0656 %

Incorrectly Classified Instances 51 13.9344 %

➤ Naïve Bayes

Correctly Classified Instances 303 82.7869 %

Incorrectly Classified Instances 63 17.2131 %

PHASE 4- MODEL BUILDING

On classifying the data by applying various algorithms like Random forest, random tree, decision table, classification via regression and naïve Bayes, accuracy percentage of regression is maximum. Thus, we could state that classification via regression is best suited as the percentage of correctly classified data is maximum in it. Next suited algorithm that can be used is Random forest.

Regression analysis consists of a set of machine learning methods that allow us to predict a continuous outcome variable (y) ,according to our dataset it will predict whether it will rain or not, based on the value of one or multiple predictor variables (x) such as temperature, humidity, wind etc. Briefly the goal of regression model is to build a mathematical equation that defines y as a function of the x variables. Next, this equation can be used to predict the outcome (y) on the basis of new values of the predictor variables (x).

We'll randomly split the data into training set (80% for building a predictive model) and test set (20% for evaluating the model).

The phases of Model Planning and Model Building overlap quite a bit, and in practice one can iterate back and forth between the two phases for a while before settling on a final model

PHASE 5- COMMUNICATION RESULTS

As the best suited model is regression model, thus for assessing the overall performance of a regression model, the most commonly known evaluation metrics include:

- 1. **R-squared** (R2), which is the proportion of variation in the outcome that is explained by the predictor variables. In multiple regression models, R2 corresponds to the squared correlation between the observed outcome values and the predicted values by the model. The Higher the R-squared, the better the model.
- 2. **Root Mean Squared Error** (RMSE), which measures the average error performed by the model in predicting the outcome for an observation. Mathematically, the RMSE is the square root of the *mean squared error* (*MSE*), which is the average squared difference between the observed actual outcome values and the values predicted by the model. So, MSE = mean ((observeds predicteds) ^ 2) and RMSE = sqrt (MSE). The lower the RMSE, the better the model.
- 3. **Residual Standard Error** (RSE), also known as the *model sigma*, is a variant of the RMSE adjusted for the number of predictors in the model. The lower the RSE, the better the model. In practice, the difference between RMSE and RSE is very small, particularly for large multivariate data.
- 4. **Mean Absolute Error** (MAE), like the RMSE, the MAE measures the prediction error. Mathematically, it is the average absolute difference between observed and predicted outcomes, MAE = mean (abs (observeds predicteds)). MAE is less sensitive to outliers compared to RMSE.

These metrics are also used as the basis of model comparison and optimal model selection. These regression metrics are all internal measures, that is they have been computed on the same data that was used to build the regression model. They tell you how well the model fits to the data in hand, called training data set.

We check whether the model we build is a success or a failure by comparing the outcomes to our criteria.

PHASE 6- OPERATIONALIZE

In this phase, we will need to assess the benefits of the work that's been done, that is with the help of the model we will get to know the status of rain today and tomorrow, and setup a pilot so we can deploy the work in a controlled way before broadening the work to a full enterprise or ecosystem of users. This phase can bring in a new set of team members – namely those engineers who are responsible for the production environment, who have a new set of issues and concerns. They want to ensure that running the model fits smoothly

into the production environment and the model can be integrated into downstream processes.

Assess whether the model is meeting goals and expectations, and if desired changes are actually occurring. If these outcomes are not occurring, determine if this is due to a model inaccuracy, or if its predictions are not being acted on appropriately. If needed, automate the retraining/updating of the model. In any case, we will need ongoing monitoring of model accuracy, and if accuracy degrades, we will need to retrain the model.

Final result is determined in this phase, model along with the documents are submitted and delivered.

Implementation screenshots:

Decision tree


```
df.head()
Out[3]:
          MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir WindGustSpeed WindDir9am WindDir9am WindDir9am WindSpeed9am ... Humidity9am Humidity3p
              8.0
                     24.3
                             0.0
                                       3.4
                                                6.3
                                                                       30.0
                                                                                   12
                                                                                                         6.0 ...
                                                                                                                       68
              14.0
                      26.9
                                                 9.7
                                                                       39.0
                              3.6
                                        4.4
                                                                                             13
                                                                                                          4.0
                                                                                                                        80
        2 13.7 23.4
                                      5.8
                             3.6
                                                3.3
                                                                       85.0
                                                                                   3
                                                                                             5
                                                                                                         6.0
                                                                                                                       82
              13.3
                      15.5
                             39.8
                                        7.2
                                                 9.1
                                                                       54.0
                                                                                   14
                                                                                             13
                                                                                                         30.0
                                                                                                                        62
        4 7.6 16.1 2.8
                                      5.6
                                             10.6
                                                                       50.0
                                                                                                        20.0
                                                                                                                        68
                                                            10
                                                                                   10
        5 rows × 21 columns
       4
```

Feature Selection

```
In [4]: X = df.iloc[:, 0:20].values
y = df.iloc[:, 20].values
```

```
In [5]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
```

Training the model

```
In [6]: from sklearn.tree import DecisionTreeClassifier
    classifier = DecisionTreeClassifier()
    classifier.fit(X_train, y_train)
```

```
Out[6]: DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best')
```

```
In [7]: y_pred = classifier.predict(X_test)
```

Evaluating the model

In [7]: y_pred = classifier.predict(X_test)

Evaluating the model

```
In [8]: from sklearn.metrics import classification_report, accuracy_score
         print(classification_report(y_test, y_pred))
print(accuracy_score(y_test, y_pred))
                        precision recall f1-score support
                     1
                             0.48
                                        0.62
                                                   0.54
                                                                 16
                             0.79
                                         0.79
                                                   0.79
                                                                 82
            micro avg
         macro avg
weighted avg
                              0.69
                                         0.73
                                                    0.70
                                                                  82
                             0.82
                                       0.79
                                                   0.80
                                                                 82
         0.7926829268292683
```

Demo Prediction

Out[9]: 0

```
In [ ]:
```

K-MEAN CLUSTERING


```
<code>n_clusters=2, n_init=10, n_jobs=None, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0)</code>
In [25]: y_pred=km.predict(X_test)
            Evaluating the Model
In [26]: from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
    print(confusion_matrix(y_test, y_pred))
    print(classification_report(y_test, y_pred))
    print(accuracy_score(y_test, y_pred))
            [[30 36]
             [11 5]]
                              precision recall f1-score support
                                    0.73
                                                 0.45
                                                                             66
16
                                    0.12
                                                0.31
                                                             0.18
                                                              0.43
                 accuracy
                                    0.43
                                             0.38
0.43
                macro avg
                                                              0.37
                                                                             82
            weighted avg
                                    0.61
                                                              0.49
                                                                              82
            0.4268292682926829
            Demo Prediction
In [27]: demo=[[10,29.5,1,4,4.1,6,48,5,6,19,17,70,48,1026.1,1022.7,7,8,14.1,18.9,0],[8,29.5,1,5,4.1,6,58,5,7,19,17,70,48,1026.1,1022.7,8,
            y=km.predict(demo)
int(round(y[1],0))
           4
Out[27]: 1
 In [ ]:
```

RANDOM FOREST


```
0 8.0 24.3 0.0 3.4 6.3
                                                                                                              4.0 ...
              14 0
                       26.9
                               3.6
                                          44
                                                   97
                                                                           39.0
                                                                                        0
                                                                                                  13
                                                                                                                             80
        2
              13.7 23.4 3.6
                                         5.8 3.3
                                                              7
                                                                          85.0
                                                                                       3
                                                                                                 5
                                                                                                              6.0 ...
                                                                                                                             82
                               39.8
                                          7.2
                                                                           54.0
                                                                                                              30.0
        4 7.6 16.1 2.8 5.6
                                                  10.6
                                                              10
                                                                          50.0
                                                                                       10
                                                                                                             20.0 ...
                                                                                                                             68
        5 rows × 21 columns
        Feature Selection
In [4]: X = df.iloc[:, 0:20].values
y = df.iloc[:, 20].values
In [5]: from sklearn.model_selection import train_test_split
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
        Training the model
In [6]: from sklearn.ensemble import RandomForestRegressor
        regressor = RandomForestRegressor(n_estimators=20, random_state=0)
        regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
        Evaluating the model
                                                                                                                                       Acti
In [7]: from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
        y_pred = regressor.predict(X_test)
         Evaluating the model
 In [7]: from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
         print(classification_report(y_test, y_pred.round()))
         print(accuracy_score(y_test, y_pred.round()))
                       precision recall f1-score support
                           0.86 0.92 0.89
0.38 0.44
                    0

    0.82
    0.82
    82

    0.65
    0.67
    82

    0.82
    0.80
    82

                            0.82
            micro avg
            macro avg
                            0.70
         weighted avg
         0.8170731707317073
         Demo Prediction
In [11]: demo=[[10,29.5,1,4,4.1,6,48,5,6,19,17,70,48,1026.1,1022.7,7,8,14.1,18.9,0],[8,29.5,1,5,4.1,6,58,5,7,19,17,70,48,1026.1,1022.7,8,7]
         y=regressor.predict(demo)
         int(round(y[1],0))
Out[11]: 0
 In [ ]:
                                                                                                                                        Acti
```

RANDOM FOREST IMPLEMENTATION

CODE USED:

Random Forest Algorithm on Weather Dataset

```
from random import seed
from random import randrange
from csv import reader
from math import sqrt
```

Load a CSV file

```
def load_csv(filename):
    dataset = list()
    with open(filename, 'r') as file:
        csv_reader = reader(file)
        for row in csv_reader:
        if not row:
            continue
            dataset.append(row)
        return dataset
```

Convert string column to float

```
def str_column_to_float(dataset, column):
    for row in dataset:
        row[column] = float(row[column].strip())
```

Convert string column to integer

```
def str_column_to_int(dataset, column):
    class_values = [row[column] for row in dataset]
    unique = set(class_values)
    lookup = dict()
    for i, value in enumerate(unique):
```

```
lookup[value] = i
for row in dataset:
    row[column] = lookup[row[column]]
return lookup
```

Split a dataset into k folds

```
def cross_validation_split(dataset, n_folds):
    dataset_split = list()
    dataset_copy = list(dataset)
    fold_size = int(len(dataset) / n_folds)
    for i in range(n_folds):
        fold = list()
        while len(fold) < fold_size:
            index = randrange(len(dataset_copy))
            fold.append(dataset_copy.pop(index)))
        dataset_split.append(fold)
    return dataset_split</pre>
```

Calculate accuracy percentage

Evaluate an algorithm using a cross validation split

def evaluate_algorithm(dataset, algorithm, n_folds, *args):

```
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds:
       train_set = list(folds)
       train_set.remove(fold)
       train_set = sum(train_set, [])
       test_set = list()
       for row in fold:
              row_copy = list(row)
              test_set.append(row_copy)
              row_copy[-1] = None
       predicted = algorithm(train_set, test_set, *args)
       actual = [row[-1] for row in fold]
       accuracy = accuracy_metric(actual, predicted)
       scores.append(accuracy)
return scores
```

Split a dataset based on an attribute and an attribute value

```
def test_split(index, value, dataset):
    left, right = list(), list()
    for row in dataset:
        if row[index] < value:
            left.append(row)
        else:
            right.append(row)
    return left, right</pre>
```

Calculate the Gini index for a split dataset

```
def gini_index(groups, classes):
       # count all samples at split point
       n_instances = float(sum([len(group) for group in groups]))
       # sum weighted Gini index for each group
       gini = 0.0
       for group in groups:
              size = float(len(group))
              # avoid divide by zero
              if size == 0:
                     continue
              score = 0.0
              # score the group based on the score for each class
              for class_val in classes:
                     p = [row[-1] for row in group].count(class_val) / size
                     score += p * p
              # weight the group score by its relative size
              gini += (1.0 - score) * (size / n_instances)
       return gini
# Select the best split point for a dataset
def get_split(dataset, n_features):
       class_values = list(set(row[-1] for row in dataset))
       b_index, b_value, b_score, b_groups = 999, 999, 999, None
       features = list()
       while len(features) < n_features:
              index = randrange(len(dataset[0])-1)
              if index not in features:
```

features.append(index)

Create child splits for a node or make terminal

```
def split(node, max_depth, min_size, n_features, depth):
    left, right = node['groups']
    del(node['groups'])
    # check for a no split
    if not left or not right:
        node['left'] = node['right'] = to_terminal(left + right)
        return
    # check for max depth
    if depth >= max_depth:
        node['left'], node['right'] = to_terminal(left), to_terminal(right)
        return
# process left child
```

```
if len(left) <= min_size:</pre>
               node['left'] = to_terminal(left)
       else:
               node['left'] = get_split(left, n_features)
               split(node['left'], max_depth, min_size, n_features, depth+1)
       # process right child
       if len(right) <= min_size:</pre>
               node['right'] = to_terminal(right)
       else:
    node['right'] = get_split(right, n_features)
    split(node['right'], max_depth, min_size, n_features, depth+1)
# Build a decision tree
def build_tree(train, max_depth, min_size, n_features):
  root = get_split(train, n_features)
  split(root, max_depth, min_size, n_features, 1)
  return root
# Make a prediction with a decision tree
def predict(node, row):
  if row[node['index']] < node['value']:</pre>
    if isinstance(node['left'], dict):
    return predict(node['left'], row)
```

else:

else:

return node['left']

if isinstance(node['right'], dict):

return predict(node['right'], row)

```
else:
return node['right']
```

Create a random subsample from the dataset with replacement

```
def subsample(dataset, ratio):
    sample = list()
    n_sample = round(len(dataset) * ratio)
    while len(sample) < n_sample:
        index = randrange(len(dataset))
        sample.append(dataset[index])
    return sample</pre>
```

Make a prediction with a list of bagged trees

```
def bagging_predict(trees, row):
    predictions = [predict(tree, row) for tree in trees]
    return max(set(predictions), key=predictions.count)
```

Random Forest Algorithm

```
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
    trees = list()
    for i in range(n_trees):
        sample = subsample(train, sample_size)
        tree = build_tree(sample, max_depth, min_size, n_features)
        trees.append(tree)
    predictions = [bagging_predict(trees, row) for row in test]
    return(predictions)
```

Test the random forest algorithm

```
seed(2)
# load and prepare data
filename = 'weather_processed.csv'
dataset = load_csv(filename)
# convert string attributes to integers
for i in range(0, len(dataset[0])-1):
  str_column_to_float(dataset, i)
# convert class column to integers
str_column_to_int(dataset, len(dataset[0])-1)
# evaluate algorithm
n_folds = 5
max_depth = 10
min_size = 1
sample_size = 1.0
n_features = int(sqrt(len(dataset[0])-1))
for n_trees in [1, 5, 10]:
  scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size,
sample_size, n_trees, n_features)
  print('Trees: %d' % n_trees)
  print('Scores: %s' % scores)
  print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))
```

OUTPUT:

Trees: 1

Scores: [83.07692307692308, 70.76923076923077, 75.38461538461539, 81.53846153846153, 78.46153846153847]

Mean Accuracy: 77.846%

Trees: 5

Scores: [90.76923076923077, 86.15384615384616, 86.15384615384616, 86.15384615384615384616, 78.46153846153847]

Mean Accuracy: 85.538%

Trees: 10

Scores: [90.76923076923077, 84.61538461538461, 81.53846153846153, 89.23076923076924, 86.15384615384616]

Mean Accuracy: 86.462%

CONCLUSION AND FUTURE WORK

Here by applying certain algorithms like decision tree, k-mean and random forest We can conclude that whether the rain going to be happen tomorrow or not. Here, Random forest is the most accurate algorithm which gives the accuracy of 81% whereas decision tree & k-mean algorithms are having lesser percentage of accuracy. we can predict whether it is going to rain on that day or not. We had done the prediction of rain on the basis of different factors that are responsible for affecting the rain conditions. Here the factors have their different impact on the prediction. Some of them are having higher impact & some have lesser impact. This shows that the factors which have lesser impact can be neglected. Here the factors like windspeed, winddirection, humidity are more impactable and also most important as concerning future work regarding it we can move on from machine learning to deep learning models, as well as we can apply a **STACKED** model consisting of the various models we have implemented above