Hoja de Trabajo #5.

Capacitancia

1. a) Encontrar la capacitancia equivalente del siguiente circuito entre las terminales a y b. b) Si entre los puntos a y b se aplica una diferencia de potencial de 10V, determine la diferencia de potencial en los bornes del capacitor uno (C_1) . R:/a) $2\mu F$; b) V=3.33V

2. ¿Cuál es la energía total almacenada en el grupo de capacitores mostrados en la figura si la diferencia de 50 μ F potencial V_{ab} es 50 V?

a. 48mJ b. 27 mJ c. 37 mJ d. 19 mJ e. 10mJ

20 μF

3. Determine la carga almacenada en C_1 cuando $C_1=20\mu F$; $C_2=10\mu F$; $C_3=30\mu F$; $V_o=18V$

a) 0.37mC b) 0.24mC c) 0.32mC d) 0.40mC e) 0.50mC

4. ¿Cuál es la energía almacenada en C_3 si $C_1=50~\mu F$; $C_2=30~\mu F$; $C_3=36~\mu F$; $C_4=12~\mu F$ y $V_0=30~V$?

- 5. Un capacitor de placas paralelas de $120\mu F$ tiene placas de $120cm^2$ y mica como dieléctrico K=6.2. El voltaje máximo que puede aplicarse al capacitor es 90V. Calcule: a) la resistencia dieléctrica de la mica. La carga inducida. R: $E_{max} = 1.64 \times 10^{10} V/m \ Q_{ind} = 9.058 \times 10^{-3} C$
- 6. Dos placas paralelas se cargan con la misma cantidad de carga pero opuesta en signo, $Q=8.9\times 10^{-7}C$; área de 0.01~metros~cuadrados, el campo eléctrico en el material dieléctrico es $1.4\times 10^6~V/m$. Calcule el valor de K y la carga inducida en el dieléctrico. R: \ K=7.18 $Q_{ind}=7.66\times 10^{-7}C$
- 7. Para el sistema de capacitores que se muestra en la figura adjunta, se sabe que el cuarto capacitor C_4 posee una carga $Q_4=50\mu C$; $C_1=5\mu F$, $C_2=C_3=C_4=10\mu F$.

La carga eléctrica que posee C_1 , en μC , está dada por:

a) 75 b) 90	c) 50	d) 30	e) NEC
-------------	-------	-------	--------

La diferencia de potencial entre los puntos A y B del sistema, en V, está dada por:

a) 20	b) 24	c) 15	d) 4	e) NEC
-------	-------	-------	------	--------

La energía almacenada en el capacitor C_3 , en μJ , está dada por:

a) 6	b) 10	c) 31	d) 45	e) NEC

Se sabe que el cuarto capacitor está relleno con un dieléctrico con constante dieléctrica (permitividad relativa) $\kappa = 5$. La carga inducida en el dieléctrico, en μC , está dada por:

\ 0.0		١ ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،	13 40	١ ، ، ا
l a) 24	l h) 20	r) 48	l d) 4()	(P) NF(
u, 21	0, 20	C) +0	u, 10	C) IVEC

Problema 8.

En el circuito que se muestra ε = 10.0 V, C₁= 5.00 μ F, C₂= 2.00 μ F, C₃= 3.00 μ F, C₄= 4.00 μ F, C₅= 1.00 μ F a) Calcular la capacitancia equivalente del circuito (en μ F) Respuesta: 2.90 tolerancia = \pm 0.05 b) La carga en el capacitor C₅ es de: (en μ C) Respuesta: 8.00 tolerancia = \pm 0.05 c) ¿Qué cantidad de energía almacena (en μ J) el capacitor C₁? Respuesta: 22.5 tolerancia = \pm 0.5

Problema 9.

Un capacitor C_1 de placas planas paralelas y aire en las placas, se coloca en serie con un capacitor C_2 , que tiene un área de 0.100 m², una distancia de separación de placas de 1.00 mm y contiene un dieléctrico de constante 5.40. Si se desea una capacitancia equivalente de los capacitores de 2.75 nF.

a) ¿Que tamaño de capacitor C₁ (en nF) deberá colocarse para mantener la relación de la capacitancia equivalente? Respuesta: 6.50 tolerancia = ± 0.05

b) Si el voltaje en el capacitor C₁ es 8750 V, y la distancia de separación de placas 2.50 mm, cuál sería su densidad de energía (en J/m³)

Respuesta: 54.2 tolerancia = ± 0.5