* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]this invention relates to the surface treatment art of a metallic material, in more detail, has neither a dimensional change of a base material, nor a problem of a heat history, and relates to the surface treatment method which forms in the surface the precise layer which has the desired characteristics, such as heat resistance, corrosion resistance, abrasion resistance, and hardness.

[0002]

[Description of the Prior Art]Conventionally, CVD (chemical vacuum deposition), PVD (vacuum deposition), electrodeposition, nitriding, electrochemical plating, nonelectrolytic plating, etc. are known as a means for giving abrasion resistance, corrosion resistance, etc. to a surface of metal.

[0003]However, in order that each CVDPVD may go up and coat the temperature of a base material to not less than 360 ** and about 1100 **, it is known widely that there is a fault that a base material produces a dimensional change or a hardness fall. A hardening layer is also as thin as several micrometers. Nitriding also has the difficulty of heating and processing steel materials at about 500 **.

[0004]Since the surface by electrodeposition only deposits or deposits in a base material and the deposited metal has not diffused it in it, it is known well that it will be easy to exfoliate. There is a fault, such as producing hydrogen embrittlement.

The same may be said of the case of electrochemical plating and nonelectrolytic plating. [0005]It is already known that the thing made to deposit on a base material surface by thermal spraying will be porosity, and it will be easy to exfoliate. Since heat input becomes uneven by the position of a spot and a striation is generated on the boundary of beam advance even if you are going to make it remelt this by a laser beam, the beautiful surface cannot be obtained. In a laser beam, application is difficult for three-dimensional working shape as shown in

drawing 1 on structure.

[0006]Since diffusion hardly arises in the conventional surface treatment method, it is difficult to coat with sufficient thickness (an example, several 10 micrometers - 100 micrometers) the material which fine ceramics etc. do not diffuse easily.

[0007]In this invention, the problem of the above-mentioned conventional technology is solved and the whole metallic material of a base material is maintained at an elevated temperature. Therefore, there are no faults to produce, such as a dimensional change, a fall of the hardness (intensity) of a base material, and coat exfoliation, and it aims at providing the surface treatment method which can form the firm enveloping layer which moreover has the surface characteristic of a corrosion-resistant, heat-resistant request by sufficient thickness.

[8000]

[Means for Solving the Problem]In order to solve said technical problem, this invention persons repeated research wholeheartedly first about a surface treatment method which does not need to put the whole metallic material to an elevated temperature. As a result, if covering material is deposited by a method of not heating temperature of a base material to an elevated temperature on the surface of a metallic material, it can be spread in a base material and it can be made to remelt the sediment in an infinitesimal area and to mix it microscopically, Neither modification of a base material nor a hardness fall was generated, but knowledge that a firm enveloping layer can moreover be formed was acquired.

[0009]Then, when research was further repeated about such a policy that may remelt a sediment microscopically, a possible thing was found out by applying pulse discharge processing. Although an electron discharge method was the processing method generally well known as a processing method which carries out removal processing of the shape using a discharge phenomenon, this invention persons developed completely new directions of remelting a sediment microscopically by energy of discharge.

[0010]This invention namely, by making this sediment remelt for every infinitesimal area by pulse discharge processing in liquid, a gas, or a vacuum, after covering metal or a nonmetal material to a base material surface which consists of metallic materials, This covering material is diffused, and it mixes with a base material, and let a surface treatment method of a metallic material forming a precise enveloping layer in a base material surface be a gist.

[0011]This invention is explained still in detail below.

[0012]

[Function]

[0013]As mentioned above, making covering material deposit [adhere it and] and deposit on the surface of a metallic material by thermal spraying, electrodeposition, vacuum evaporation, and discharge deposit is known. The discharge depositing method is a surface treatment

method which this invention persons proposed previously (the "Japan Society for precision Engineering spring convention academic lecture meeting lecture collected papers in the 1991 fiscal year" (March 26, 1991) p.463), It is the method of depositing green compact material to other party metal, by fabricating the conductive material which should deposit as a green compact, using as an electrode of an electron discharge method and processing it. However, since these sediments are not diffused in a base material, their bond strength is weak.

[0014]Without raising most mean temperature of a base material to such a sediment by adding a pulse discharge in liquid, a gas, or a vacuum with the technique of an electron discharge method, this invention is remelted by generating of high temperature selectively (discharge point), and a base material is made to diffuse it.

[0015]In this invention, although there is no restriction in particular as a means to cover covering material on the surface of a metallic material, the method which does not put a base material to high temperature is recommended. For example, although the above-mentioned spraying process, an electrodeposition process, a low-temperature-evaporation method, the discharge depositing method using the electrode which is easy to exhaust, etc. are mentioned, it is not necessary to say not being restricted to these. If it carries out from a relation with pulse discharge processing performed as a post process, the discharge depositing method is preferred.

[0016]As covering material, various metallic materials or nonmetal materials are possible, for example, they are metal or an alloy, a nonmetallic element, ceramics, carbide, a nitride, boride, etc. concrete -- as hard material -- nitrides (fine ceramics), such as borides, such as carbide, such as WC, TiC, TaC, ZrC, and SiC, TiB₂, and ZrB₂, TiN, and ZrN, etc. -- a simple substance -- or where a sintering aid is added, it can cover. Corrosion-resisting materials, such as metallic materials, such as W and Mo, aluminum, Ti, nickel, Cr, and Co, can also be used. Even if there is no conductivity like diamond, aluminum₂O₃, and Si₃N₄, it may mix with conductive materials, such as iron powder, cobalt powder, nickel powder, chromium powder, and copper powder, and may cover. What is necessary is in short, just to choose material due to the surface characteristic made to give.

[0017]After covering covering material on the surface of a metallic material, pulse discharge processing is microscopically applied for every infinitesimal area, a sediment is remelted, it is spread in a base material and it is mixed. This pulse discharge processing can carry either in liquid, a gas, and a vacuum out, uses a sediment as one electrode, and generates discharge between the electrodes of another side.

[0018]It is desirable to use the electrode which is hard to exhaust on the occasion of pulse discharge processing, and to use the electrode of the presentation near a sediment. For example, when WC is made to deposit on the metallic material surface as a subject, the material (an example, a byte's charge of a chipped material) which sintered WC-Co is used for

an electrode.

[0019]Discharge is generated in about tens of thousands of times from hundreds of times in 1 second. A processed surface is the surface which small microscopic discharge marks accumulated. Although discharge marks current density is a minute area, it is as high as tens of thousands A/cm², and produces high temperature high pressure in a short time for several 10 microseconds - about 1000 microseconds. Although the skin temperature of a discharge point turns into a boiling point grade of the material, the pressure of the point serves as several 1000 kgf/cm² and the dissolved part has some dispersing, the portion which remained is remelted and is diffused in a base material. Since a charging time value is a short time, a discharge point is cooled promptly and the mean temperature of a base material does not rise. [0020] The desirable conditions of pulse discharge processing are power-supply-voltage: 60-100V, pulse discharge current value (Ip):1 - 100A, pulse width (taup):5-2000microsecond, and quiescent-period (taur):5-2000microsecond. In Ip=3A, when taup is also brief, for example like [in Ip=50A] taup=2000taus when Ip is small when taup=16microsecond and Ip are large when the pulse discharge current value Ip is small, and Ip is generally large, long taup is taken. [0021]According to the surface treatment method of this invention, the precise layer which has the desired characteristics, such as heat resistance, corrosion resistance, abrasion resistance, and hardness, can be formed in the surface of metallic materials, such as ferrous materials, such as cheap carbon steel. Even if it is the material which is hard to diffuse in steel materials like fine ceramics, the diffusion and adhesion over a base material can be strengthened by remelting. If the material which dissolves easily to a ferrous material like aluminum, Ti, nickel, Cr, and Co also carries out pulse discharge processing, the still still firmer surface treatment of it will become possible. Namely, in order to make speed of a discharge deposit quick, when using a high current and performing a high-speed discharge deposit, even if it is the material which dissolves easily to a ferrous material like aluminum, Ti, nickel, Cr, and Co, the diffusion to a base material is insufficient, and unevenness also of a separation state becomes intense, but. According to pulse discharge processing, diffusion by remelting is promoted. If plating speed is raised with large current density with electrodeposition or electroplating, only the rude small plating layer of adhesion power will be obtained, but if pulse discharge processing is performed, a surface layer with large adhesion power can be formed. To what mixed and coated non-conducting hard material, such as diamond, aluminum $_2\mathrm{O}_3$, and $\mathrm{Si}_3\mathrm{N}_4$, with conductive metals, such as iron powder, cobalt powder, nickel powder, chromium powder, and copper powder. If pulse discharge processing is performed, a conductive metal will remelt and non-conducting hard material will adhere to a base material surface firmly. [0022]Material with lopsidedness can also be manufactured. Lopsidedness material is the material which a base material is used as a metallic material, and the content ratio of fine

ceramics increases gradually from the base material side for example, and raised the content ratio of fine ceramics for the material-list side remarkably. Since there are little generating of the shearing stress of a plane of composition and generating of bending stress by a difference with a remarkable expansion coefficient compared with the material which only joined or coated a metallic material and fine ceramics even if such a lopsidedness material has a rise in heat, a fracture in use etc. do not produce it easily due to high temperature. This is because it is eased as stress, even if the thermal expansion by a rise in heat occurs. [0023]Next, the example of this invention is shown.

[0024]

[Example 1] Fe-Al alloy layer was obtained by discharge deposit on the surface of the base material (S50C, temper material) in the way which compresses the powder of aluminum and is shown in <u>drawing 1</u> as one electrode. It is because apparent thermal conductivity will fall in 1 / 2 - 1/3, and the intensity of an electrode material will also become weak, if having used aluminum green compact uses aluminum as a granular material and it is used for it, so it is easy to deposit by discharge on a parent metal. Electron discharge method conditions [Table 1]

項目	A1圧粉体による放電析出加工条件						
電極	A1圧粉体、成形圧力:4 ton、その他:表3参照						
被加工材	S50C(調質材)						
加工液	ダイヤモンドEDF						
電極極性	(-)						
加工条件	Ip: 10A, τp: 256 μs, τr: 256 μs						
加工時間	5 min						

It is alike and is shown.

[0025]The analysis result according the analysis result by EPMA of the obtained alloy layer to an X diffraction to $\underline{\text{drawing 2}}$ is shown in $\underline{\text{drawing 3}}$. From $\underline{\text{drawing 2}}$, while aluminum of an electrode material has lopsidedness (inside few [mostly] on the surface), it exists in the processed surface at 30 micrometers in thickness. The peak of very strong $\text{AlFe}_3\text{C}_{0.5}$ is seen from $\underline{\text{drawing 3}}$. This compound is known as an intermetallic compound excellent in oxidation resistance. Thus, sufficient surface treatment may be possible for the case of aluminum by discharge deposit.

[0026]However, it is difficult for the material of a high-melting point like fine ceramics (WC, TiC, TaC, ZrC, SiC, TiB₂, ZrB₂, TiN, ZrN, etc.), and W and Mo for you to make it fully spread to the inside of a base material only in a discharge deposit in many cases. So, by this example, the discharge deposit of the WC of them is carried out, and the case where pulse discharge

processing treatment is applied to this is shown.

[0027]First, WC powder (mean particle diameter of 3 micrometers) was mixed at the end of Fe powder (mean particle diameter of 9.8 micrometers), and a rate of 1:1, compression molding (compression-pressure 4 t/cm²) was performed, and it was considered as the green compact. This was pasted up on the copper round bar with electroconductive glue, and it was considered as the electrode. Subsequently, carbon steel (S55C green wood) was used as the base material, processing conditions (Ip, taup, taur) were changed, and the electron discharge method experiment was conducted in the way shown in drawing 1.

[0028]As a result, although the arc according [D.F (duty factor)] to discharge concentrated and the electrode was destroyed in comparatively large processing conditions, on 1.5% or less of conditions, it was stabilized, and D.F was exhausted, without WC electrode collapsing, and adhered to the base material surface. The processing conditions at that time are Ip=20A, taup=16microsecond, and taur=1024microsecond.

[0029]As a result of carrying out an X diffraction to the specimen surface after processing, as shown in <u>drawing 4</u>, the peak of WC appeared. The result of having measured the coating weight (height from a base material surface) of WC by floor to floor time by the depth-of-focus method, [Table 2]

加工時間	20分	30分	50分	90分	
加工髙さ					
中心部(µm)	6.6	11.1	19.6	51.9	
縁 部(μm)	5.5	27.1	80.7	65.4	

It is alike, and the coating weight of WC of a base material surface increases by lengthening floor to floor time so that it may be shown. WC adhering to a base material surface had weak adhesion force, and was what will exfoliate if it rubs with a driver etc.

[0030]Next, pulse discharge processing was carried out in the following ways into the material obtained by the aforementioned electron discharge method.

[0031]First, the WC-Co sintered compact was pasted up on the copper round bar with electroconductive glue, and it was considered as the electrode (finishing electrode).

Subsequently, pulse discharge processing was performed using this finishing electrode from on WC and Fe sedimentary layers adhering to a base material surface. Processing conditions considered electrode polarity as minus, changed Ip, taup, and taur, and were processed by the circuitry shown in <u>drawing 5</u> so that a base material might not be processed too much. A pulse shape (square wave) is shown in <u>drawing 6</u>. The result of having carried out the X diffraction of the surface is shown in <u>drawing 7</u> after processing, and it is the analysis result. [Table 3]

I p τ p(τ r)	20	1 0	3
16(1024)	×	0	0
64(256)	0	0	0
1024(1024)	0	0	0

(注)×:WCは検出されないO:WCが検出された

It is alike and is shown. As shown in the table, when pulse width (taup) was short, the current value (Ip) was high and floor to floor time was long, the sediment ****(ed), but taup was slightly long, the current value (Ip) could lessen scattering of the sediment of WC-Fe in a little low conditions, and WC was detected.

[0032]In the discharge deposit, as shown in <u>drawing 8</u> (section microphotograph), the adhesion force of WC-Fe was weak, but when pulse discharge processing was performed to this, it was checked that WC is spread in the base material as shown in <u>drawing 9</u> (section microphotograph) and drawing 10 (section SEM photograph).

[0033]A section shows the distance from the surface, and the relation of Vickers hardness number (Hc) to drawing 11. The hardness of the usual WC-Co alloy is about 800 to 1400 Hv, and the hardness (Hv 1000-1400) (the hardening penetration of S55C is 800 or so Hv(s)) of the surface treatment layer comparable as it was accepted in this experiment. The thickness which can obtain 1000 or more Hv(s) in this experiment has large thickness at about 60 micrometers.

[0034]

[Example 2] The base material was used as steel materials (special tool steel), and the granular material electrode which mixed TiB₂ as fine ceramics and mixed Fe powder as an auxiliary agent was used. First, it laminated by the discharge deposit by a granular material electrode like drawing 12. Pulse ****** was performed after lamination. It carried out by being two kinds, the case where lamination and pulse discharge processing are performed for every layer, and when pulse ****** is performed after all ending lamination, at that time. [0035]As a result, lopsidedness material with the enveloping layer in which the content of TiB₂ decreases gradually from the surface was obtained. Adhesion force was tough although time and effort required former one. The Vickers hardness number of the part with the Vickers hardness number of a surface part near Hv=2000-2500 and a base material was Hv=550-600. [0036]

[Example 3] The base material was used as steel materials (special tool steel), and the granular material electrode which mixed diamond powder and cobalt powder was used as hard

material. First, it laminated by the discharge deposit by a granular material electrode like drawing 13. Pulse discharge processing was performed after lamination. It carried out by being two kinds, the case where lamination and pulse discharge processing are performed for every layer, and when pulse ****** is performed after all ending lamination, at that time. [0037]As a result, lopsidedness material with the enveloping layer in which the content of a diamond decreases gradually from the surface was obtained. The Vickers hardness number of the part with the Vickers hardness number of a surface part (part with many diamonds) near Hv=3500-4000 and a base material was Hv=550-600. [0038]

[0038] [Example 4] Processing as shown in drawing 1 was performed, and the precise enveloping layer was formed in the inner surface of a mold by fine ceramics or WC-Co. First, as shown in drawing 1, three-dimensional shape working was performed to the electrode using the material used for the electron discharge methods [exhausting / usual low], such as copper or graphite. Then, thermal spraying which mixed cobalt powder about 20% to ${\rm TiB}_2$ powder was performed to the inner surface of the work. The thickness is about 100 micrometers. The spraying film is deposited a little irregularly, as shown in drawing 14. [0039] and pulse discharge processing treatment was again performed using the electric discharge machine by the electrode (that by which what was used previously amended the shape dimension -- or the electrode of eye small ** may be somewhat sufficient) shown in drawing 1. These processing conditions are discharge voltage =100V order Ip=3A, taup=64microsecond, and taur=256microsecond. The cavity covered with high accuracy of form as the work surface was shown in drawing 15 was obtained. According to this processing, the die-casting die which performs elevated-temperature teeming can be made. [0040]Here, when performing pulse discharge finishing somewhat using the electrode of eye small **, it carries out like the rocking process (it is the method of carrying out eccentric motion horizontally and processing only an eccentric size greatly rather than an electrode size, and, thereby, the machined surface granularity of the side and the bottom carries out the factory of the electrode) which an electron discharge method may be sufficient as, is known, and is. [0041]This method of this example carries out the electron discharge method of the shape of a cavity with difficult processing, makes that inner surface deposit materials, such as fine ceramics, by thermal spraying etc., and makes an it top remelt by pulse discharge processing by the usual processing method. It is impossible or difficult to carry out melting by other laser, high frequency induction heating, etc., and is a very big advantage of this invention. [0042]In the above-mentioned example, although the discharge deposit and the spraying process were used as a covering means of covering material, it is not necessary to say that other means, such as an electrodeposition process and a low-temperature-evaporation method, can be used, and it can use combining various covering means.

[0043]

[Effect of the Invention]As explained in full detail above, according to this invention, there are no faults, such as a dimensional change of a base material, a hardness (intensity) fall, and coat exfoliation, and the precise and firm enveloping layer which moreover has the surface characteristic of a corrosion-resistant, heat-resistant request by sufficient thickness can be formed easily. For example, the high temperature gas or the steamy bombardment part of a high-temperature-service turbine blade, and the die cavity portion which casts elevated-temperature molten-metal hot water, It can use for coating only the shot blast nozzle portion of a liquid-metal-forging metallic mold, other portions (for example, injection molding machine pipe portion etc.), and the cutting blade portion of steel metallic molds with fine ceramics etc. [0044]The functionally gradient material to which the presentation had to the surface what is called a gradient-function film that changes gradually on the base material can also be manufactured cheaply.

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-148615

(43)公開日 平成5年(1993)6月15日

(51)Int.Cl. ⁵ C 2 3 C	10/28	=	識別記	号	庁内整理番号 8116-4K	FΙ			技術表示箇所
B 2 2 F	3/24		102	Z					
C 2 1 D	1/38			Z					
C 2 3 C	12/02				8116-4K				
	26/00			Е					
						審查請求	未請求	請求項の数 5 (全 11 頁)	最終頁に続く
(21)出願番号		特願平3	3-329	499		(71)	出願人	390014535	
								新技術事業団	
(22)出願日		平成3年	年(199	1)11)	∃18 ⊟			東京都千代田区永田町2丁目5番2号	
						(72)	発明者	齋藤長男	
								愛知県春日井市岩成台9丁	目12番地の12
						(72)	発明者	毛利尚武	
								爱知県名古屋市天白区八事	石坂661八事住
								宅	
						(74)	代理人	弁理士 中村 尚	

(54)【発明の名称】 金属材料の表面処理方法

(57)【要約】

【目的】 母材の金属材料全体を高温に保つことにより 生ずる寸法変化、母材の硬度(強度)の低下、皮膜剥離等 の欠点がなく、しかも充分な厚みで耐食性、耐熱性等々 の所望の表面特性を有する強固な被覆層を安価に形成す る。

【構成】 金属材料からなる母材表面に金属又は非金属材料を被覆した後、液中、気体中又は真空中でパルス放電加工によって該堆積物を微小領域ごとに再溶融させることにより、母材と該被覆材料を拡散、混合することにより、母材表面に緻密な被覆層を形成する。被覆材料として、金属又は合金、非金属元素、セラミックス、炭化物、窒化物、硼化物などが用いられる。被覆材料の被覆手段として、溶射法、電着法、低温蒸着法、消耗し易い電極を用いた放電析出法などが用いられる。パルス放電加工は、消耗しにくい電極をマイナス極として行うのが好ましい。被覆材料の被覆とパルス放電加工とを1層毎に行い、被覆層に傾斜性を持たせいわゆる傾斜機能性材料も製造できる。

1

【特許請求の範囲】

【請求項1】 金属材料からなる母材表面に金属又は非金属材料を被覆した後、液中、気体中又は真空中でパルス放電加工によって該堆積物を微小領域ごとに再溶融させることにより、母材と該被覆材料を拡散、混合し、母材表面に緻密な被覆層を形成することを特徴とする金属材料の表面処理方法。

【請求項2】 被覆材料が、金属又は合金、非金属元素、セラミックス、炭化物、窒化物、硼化物の1種又は2種以上からなる請求項1に記載の方法。

【請求項3】 被覆材料の被覆手段が、溶射法、電着法、低温蒸着法、消耗し易い電極を用いた放電析出法のいずれかである請求項1に記載の方法。

【請求項4】 パルス放電加工は、消耗しにくい電極をマイナス極として行う請求項1に記載の方法。

【請求項5】 被覆材料の被覆とパルス放電加工とを1 層毎に行い、被覆層に傾斜性を持たせる請求項1に記載 の方法。

【発明の詳細な説明】

【 0 0 0 1 】本発明は金属材料の表面処理技術に係り、より詳しくは、母材の寸法変化や熱履歴の問題がなく、表面に耐熱性、耐食性、耐摩耗性、硬度など所望の特性を有する緻密な層を形成する表面処理方法に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】従来より、金属表面に耐摩耗性、耐食性などを与えるための手段として、CVD(化学蒸着)、PVD(真空蒸着)、電着、窒化、電気化学的めっき、無電解めっき等が知られている。

【0003】しかし、CVD、PVDはいずれも、母材の温度を360℃以上、1100℃程度まで上昇してコーティングするため、母材が寸法変化又は硬度低下を生じるという欠点があることは、広く知られている。硬化層も数μmと薄い。また、窒化も、鋼材を500℃程度にまで加熱して処理するという難点がある。

【0004】電着による表面は、母材に析出金属が単に 堆積若しくは析出するだけであり、拡散していないた め、剥離し易いことは良く知られており、また水素脆性 を生ずるなどの欠点がある。電気化学的めっき、無電解 めっきの場合も同様である。

【0005】溶射により母材表面に堆積させたものは、 多孔質で且つ剥離し易いことは既に知られている。また、これをレーザー光で再溶融させようとしても、入熱 がスポットの位置により不均一となり、またビーム進行 の境界に条痕を発生するため、美麗な表面を得ることが できない。また、レーザー光等では、図1に示すような 三次元の加工形状には、構造上、適用困難である。

【0006】また、従来の表面処理法では、拡散が殆どで加えることによって、母材の平均温度生じないので、ファインセラミックスなどの拡散しにくることなく、部分的(放電点)に高温度のい材料を充分な厚さ(例、数10μm~100μm)でコー 50 溶融し、母材に拡散させるものである。

ティングすることは困難である。

【 0 0 0 7 】本発明は、上記従来技術の問題点を解決し、母材の金属材料全体を高温に保つことにより生ずる寸法変化、母材の硬度(強度)の低下、皮膜剥離等の欠点がなく、しかも充分な厚みで耐食性、耐熱性等々の所望の表面特性を有する強固な被覆層を形成し得る表面処理方法を提供することを目的とするものである。

[0008]

【課題を解決するための手段】前記課題を解決するため、本発明者らは、まず、金属材料全体を高温に曝す必要のない表面処理方法について鋭意研究を重ねた。その結果、金属材料の表面に母材の温度を高温に加熱しない方法で被覆材料を堆積しておき、その堆積物を微視的に、すなわち、微小領域にて再溶融して母材に拡散、混合させることができるならば、母材の変形も硬度低下も発生せず、しかも、強固な被覆層が形成できるとの知見を得た。

【0009】そこで、そのような微視的に堆積物を再溶融し得る方策について更に研究を重ねたところ、パルス 放電加工を適用することにより可能であることを見い出した。放電加工は、放電現象を利用して形状を除去加工する加工法として一般に良く知られている加工法であるが、本発明者らは、放電のエネルギーによって堆積物を微視的に再溶融するという全く新規な利用法を開発したのである。

【0010】すなわち、本発明は、金属材料からなる母材表面に金属又は非金属材料を被覆した後、液中、気体中又は真空中でパルス放電加工によって該堆積物を微小領域ごとに再溶融させることにより、母材と該被覆材料を拡散、混合し、母材表面に緻密な被覆層を形成することを特徴とする金属材料の表面処理方法を要旨とするものである。

【0011】以下に本発明を更に詳細に説明する。

[0012]

【作用】

【0013】前述のように、金属材料の表面に溶射、電着、蒸着、放電析出により被覆材料を付着、析出し、堆積させることは知られている。なお、放電析出法とは、本発明者らが先に提案した表面処理法であり(「199401年3月26日)p.463)、析出すべき導電性材料を圧粉体として成形し、放電加工の電極として用いて加工することにより、相手側金属に圧粉体材料を析出させる方法である。しかし、これらの堆積物は、母材中に拡散しないため、付着強度が弱い。

【0014】本発明は、このような堆積物に対し、パルス放電を放電加工の手法により液中、気体中又は真空中で加えることによつて、母材の平均温度を殆ど上昇させることなく、部分的(放電点)に高温度の発生により、再次融上、母材に拡散させるものである。

【0015】本発明において、金属材料の表面に被覆材料を被覆する手段としては、特に制限はないが、母材を高温度に曝さない方法が推奨される。例えば、前述の溶射法、電着法、低温蒸着法、消耗し易い電極を用いた放電析出法などが挙げられるが、これらに制限されないことは云うまでもない。後工程として行うパルス放電加工との関係からすれば、放電析出法が好ましい。

【0016】被覆材料としては、様々な金属材料又は非金属材料が可能であり、例えば、金属又は合金、非金属元素、セラミックス、炭化物、窒化物、硼化物などであ 10 る。具体的には、硬質材料として、WC、TiC、TaC、ZrC、SiCなどの炭化物、TiB2、ZrB2などの硼化物、TiN、ZrNなどの窒化物など(ファインセラミックス)を単体で若しくは焼結助剤を加えた状態で被覆できる。また、W、Moなどの金属材料やA1、Ti、Ni、Cr、Coなどの耐食性材料も利用できる。更に、ダイヤモンド、A12O3、Si3N4の如く、導電性はなくとも、鉄粉、コバルト粉、ニツケル粉、クロム粉、銅粉などの導電性材料と混合して被覆しても良い。要するに、付与させる表面特性の関係で材料を選択すれば良 20 い。

【0017】金属材料の表面に被覆材料を被覆した後、パルス放電加工を微視的に又は微小領域ごとに適用して、堆積物を再溶融し、母材に拡散、混合させる。このパルス放電加工は、液中、気体中、真空中のいずれでも実施でき、堆積物を一方の電極とし、他方の電極との間で放電を発生させる。

【0018】パルス放電加工に際しては、消耗しにくい電極を使用し、また堆積物に近い組成の電極を使用するのが望ましい。例えば、金属材料表面にWCを主体として堆積させた場合、WC-Coを焼結した材料(例、バイトのチップ材料)を電極に用いる。

【0019】放電は、1秒間に数百回から数万回程度で発生させる。加工面は小さい微視的な放電痕の累積した表面である。放電痕電流密度は、微小な面積であるが、数万A/cm²と高く、高温高圧を数10μs~1000μs程度の短時間で生ずる。放電点の表面温度は、その材料の沸点程度となり、その点の圧力は数1000kgf/cm²となり、溶解した一部分は飛散するものもあるが、残った部分は再溶融し、母材に拡散する。放電時間が短時間のため、放電点が直ちに冷却され、母材の平均温度は上昇することがない。

【0020】パルス放電加工の好ましい条件は、電源電 $E:60\sim100$ V、パルス放電電流値(Ip): $1\sim100$ A、パルス幅(τp): $5\sim2000$ μs 、休止時間(τr): $5\sim2000$ μs である。一般的に、パルス放電電流値 Ipが小さい時、例えば、Ip=3 Aなどでは τp

4

 $=16 \mu s$ 、Ipが大きい時、<math>Ip=50 Aなどでは $\tau p=2000 \tau s$ のように、 $Ipの小さい時は<math>\tau p$ も短かく、 $Ipの大きい時は<math>\tau p$ を長くとる。

【0021】本発明の表面処理方法によれば、低廉な炭 素鋼などの鉄鋼材料等の金属材料の表面に、耐熱性、耐 食性、耐摩耗性、硬度など所望の特性を有する緻密な層 を形成することができる。ファインセラミックスのよう に鋼材の中に拡散しにくい材料であっても、再溶融によ って母材に対する拡散と密着性を強固にすることができ る。また、A1、Ti、Ni、Cr、Coのように鉄鋼材料 に固溶し易い材料でも、パルス放電処理すれば、なお一 層強固な表面処理が可能となる。すなわち、放電析出の 速度を速くするために大電流を用いて高速放電析出を行 う場合、A1、Ti、Ni、Cr、Coのように鉄鋼材料に 固溶し易い材料であっても、母材への拡散が不十分であ り、また析出状態も凹凸が激しくなるが、パルス放電処 理によれば再溶融による拡散が促進される。また、電着 や電気めっき法により大電流密度でめっき速度を上げる と、荒く密着力の小さいめっき層しか得られないが、パ 20 ルス放電加工を行うと、密着力の大きい表面層を形成す ることができる。ダイヤモンド、Al2O3、Si3N4など の非導電性の硬質材料に鉄粉、コバルト粉、ニツケル 粉、クロム粉、銅粉等の導電性金属を混入してコーティ ングしたものに、パルス放電処理を行うと、導電性金属 が再溶融して非導電性硬質材料が強固に母材表面に固着

【0022】また、傾斜性を持つ材料を製作することもできる。傾斜性材料とは、例えば、母材を金属材料とし、母材側から次第にファインセラミックスの含有割合が多くなり、材料表面をファインセラミックスの含有割合を著しく高めたような材料である。このような傾斜性材料は、単に金属材料とファインセラミックスとを接合若しくはコーティングした材料に比べ、温度上昇があっても膨張係数の著しい差異による接合面の剪断応力の発生や曲げ応力の発生が少ないため、高温度で使用中の破断等が生じにくい。これは、温度上昇による熱膨張が発生しても、応力としては緩和されるためである。

【0023】次に本発明の実施例を示す。

[0024]

0 【実施例1】A1の粉末を圧縮して一方の電極として、図1に示す要領で、放電析出により母材(S50C、調質材)の表面にFe-A1合金層を得た。A1圧粉体を使用したのは、A1を粉体にして用いると、見掛けの熱伝導率が1/2~1/3に下がり、また電極材料の強度も弱くなるため、放電によって母材金属に堆積し易いからである。放電加工条件を

【表1】

5

9	O					
項目	A1圧粉体による放電析出加工条件					
電極	A1圧粉体、成形圧力:4 ton、その他:表3参照					
被加工材	S 5 0 C (調質材)					
加工液	ダイヤモンドEDF					
電極極性	(-)					
加工条件	Ip: 10A, τp: 256 μs, τr: 256 μs					
加工時間	5 min					

に示す。

【0025】得られた合金層のEPMAによる分析結果を図2に、X線回折による分析結果を図3に示す。図2より、電極材料のA1が傾斜性を持ちながら(表面に多く内部に少ない)、厚さ30μmで加工面に存在している。また、図3より、極めて強いA1Fe $_3$ C $_0$.5のピークが見られる。この化合物は耐酸化性に優れた金属間化合物として知られている。このように、A1の場合は放電析出により充分な表面処理が可能である場合がある。

【0026】しかし、ファインセラミックス(WC、TiC、TaC、ZrC、SiC、TiB2、ZrB2、TiN、ZrNなど)や、W、Moなどのように高融点の材料は、放電析出だけでは母材の内部まで充分に拡散させることが困難である場合が多い。そこで、本例では、そのうちのWCを放電析出させ、これにパルス放電加工処理を適用した場合について示す。

【0027】まず、WC粉(平均粒径3μm)をFe粉末 *

*(平均粒径9.8μm)と1:1の割合で混合し、圧縮成形 (圧縮圧力4 t / cm²)を施して圧粉体とした。これを銅 の丸棒に導電性接着剤にて接着し電極とした。次いで、 炭素鋼(S55C生材)を母材とし、加工条件(Ip、τ p、τr)を変化させて、図1に示す要領にて放電加工実 験を行った。

【0028】その結果、D.F(デューティーファクター)が比較的大きい加工条件では、放電によるアークが集中し電極が破壊されたが、D.Fが1.5%以下の条件でWC電極は崩れることなく安定して消耗し母材表面に付着した。そのときの加工条件は、Ip=20A、τp=16μs、τr=1024μsである。

【0029】加工後の試料表面にX線回折を行った結果、図4に示すように、WCのピークが現われた。加工時間によるWCの付着量(母材表面からの高さ)を焦点深度法により測定した結果、

* 【表2】

11 0 初(下の位置)及血	1 C 1 C 1 D 1 7 1 5	1302	- 4		
加工時間	20分	30分	50分	90分	
加工高さ					
中心部(µm)	6.6	11.1	19.6	51.9	
縁 部(μm)	5.5	27.1	80.7	65.4	

に示すように、加工時間を長くすることにより、母材表面のWCの付着量が増加する。母材表面に付着したWCは、付着力が弱く、ドライバー等でこすると剥離してくる程度のものであった。

【0030】次に、前記の放電加工により得られた材料に、以下の要領でパルス放電加工を実施した。

【0031】まず、WC-Co焼結体を導電性接着剤に て銅丸棒に接着し電極(仕上げ電極)とした。次いで、こ※ ※の仕上げ電極を用いて、母材表面に付着したWC、Fe 堆積層の上からパルス放電加工を行った。加工条件は、 母材を加工しすぎないように、電極極性をマイナスと し、Ip、でp、でrを変化させ、図5に示す回路構成で 加工した。パルス波形(矩形波)を図6に示す。加工後、 表面をX線回折した結果を図7に示し、その解析結果を

40 表面を X線回折した結果を図7に示し、その解析結果を 【表3】

7				8
Ιp	20	10	3	
τρ(τr)				
16(1024)	×	0	0	
64(256)	0	0	0	
1024(1024)	0	0	0	

(注)×:WCは検出されないO:WCが検出された

に示す。同表に示すように、パルス幅 (τp) が短く、電流値(Ip)が高く、加工時間が長いと、堆積物が消出するが、 τp がやや長く、電流値(Ip)がやや低い条件では、WC-Feの堆積物の飛散を少なくすることができ、WCが検出された。

【0032】放電析出では、図8(断面顕微鏡写真)に示すようにWC-Feの付着力は弱いが、これにパルス放電加工を行うと、図9(断面顕微鏡写真)及び図10(断面SEM写真)に示すようにWCが母材に拡散していることが確認された。

【0033】また、断面で表面からの距離とビッカース 硬さ(Hc)の関係を図11に示す。通常のWC-Co合金 の硬度は $Hv800\sim1400$ 程度であり、本実験では それと同程度の表面処理層の硬度($Hv1000\sim140$ 0)(S55Cの焼入硬度はHv800強である)が認められた。また、本実験においてHv1000以上を得られる厚みは 60μ m程度で、厚みが大きい。

[0034]

【実施例2】母材を鋼材(特殊工具鋼)とし、ファインセ 30 ラミックスとして TiB_2 、助剤としてFe粉を混合した 粉体電極を使用した。まず、図12の如く、粉体電極に よる放電析出によって積層した。積層後、パルス電加工を行った。その際、積層とパルス放電加工を1層毎に行 う場合と、積層を全部終了した後にパルス電加工を行う 場合の2通りで行った。

【0035】その結果、表面から徐々にTiB2の含有量が減少する被覆層を持った傾斜性材料が得られた。また、前者の方が手間がかかるが、付着力等は強靱であった。なお、表面部のビッカース硬さはHv=2000~2500、母材に近い個所のビッカース硬さはHv=550~600であった。

[0036]

【実施例3】母材を鋼材(特殊工具鋼)とし、硬質材料としてダイヤモンド粉末及びコバルト粉末を混合した粉体電極を使用した。まず、図13の如く、粉体電極による放電析出によって積層した。積層後、パルス放電加工を行った。その際、積層とパルス放電加工を1層毎に行う場合と、積層を全部終了した後にパルス電加工を行う場合の2通りで行った。

*【0037】その結果、表面から徐々にダイヤモンドの 含有量が減少する被覆層を持った傾斜性材料が得られ た。なお、表面部(ダイヤモンドの多い個所)のビッカー ス硬さはHv=3500~4000、母材に近い個所の ビッカース硬さはHv=550~600であった。

[0038]

【実施例4】図1に示すような加工を行って、型の内面にファインセラミックス若しくはWC-Coなどで緻密20 な被覆層を形成した。まず、図1に示すように電極に銅又はグラファイトなどの通常低消耗放電加工に用いられる材料を利用して、三次元形状加工を行った。その後、加工物の内面に、TiB2粉末にコバルト粉を20%程度混合した溶射を行った。その厚みは100μm程度である。溶射膜は図14に示すようにやや不規則に堆積している。

【0039】そして、再び、図1に示した電極(先に使用したものでも、形状寸法を修正したもの、或いは多少小さ目の電極でもよい)で、放電加工機を使用してパルス放電加工処理を行った。この加工条件は、Ip=3A、τp=64μs、τr=256μs、放電電圧=100 V前後である。加工物表面は図15に示すように高い形状精度で被覆されたキャビティが得られた。この加工によると、高温注湯を行うダイカスト金型を作ることができる。

【0040】ここで、多少小さ目の電極を使用してパルス放電仕上げを行う場合は、放電加工でよく知られていいる揺動加工(電極を水平方向に偏心運動をさせ、電極寸法よりも偏心寸法だけ大きく加工する方法で、これに40より側面及び底面の仕上げ面粗さが工場する)と同様にして行う。

【0041】本実施例のこの方法は、通常の加工法では加工困難なキャビティの形状を放電加工しておき、その内面にファインセラミックス等の材料を溶射等により堆積させ、その上をパルス放電加工によって再溶融させるものである。他のレーザーや高周波加熱等によって溶融させることは不可能若しくは困難であり、本発明の極めて大きな利点である。

【0042】なお、上記実施例では、被覆材料の被覆手 *50 段として放電析出や溶射法を利用したが、電着法、低温 9

蒸着法などの他の手段も利用でき、また各種被覆手段を 組み合わせて利用できることは云うまでもない。

[0043]

【発明の効果】以上詳述したように、本発明によれば、母材の寸法変化、硬度(強度)低下、皮膜剥離等の欠点がなく、しかも充分な厚みで耐食性、耐熱性等々の所望の表面特性を有する緻密で強固な被覆層を容易に形成することができる。例えば、高温用タービンブレードの高温ガス又は蒸気射突部や、高温溶融金属湯を鋳込むダイキャビティー部分、溶湯鍛造金型のショットブラストノズ 10ル部分やその他の部分(例えば射出成形機管部分など)、また鋼製金型の切刃部分のみにファインセラミックスをコーティングする等に利用できる。

【0044】また、母材上に表面まで組成が徐々に変化するいわゆる傾斜機能膜を持った傾斜機能材料も安価に製造できる。

【図面の簡単な説明】

【図1】圧粉体電極による放電析出の要領を説明する図である。

【図2】実施例1において放電析出により得られたA1被覆層のEPMAによる分析結果を示す図である。

【図3】実施例1において放電析出により得られたA1 被覆層のX線回折による分析結果を示す図である。

【図4】実施例1において放電析出により得られたWC -Fe被覆層のX線回折結果を示す図である。

【図5】パルス放電加工の回路構成を説明する図であ

る。

【図6】パルス放電加工のバルス波形を示す図である。

1.0

【図7】実施例1においてWC-Fe被覆層にパルス放電加工(仕上げ加工)を行って得られたWC-Fe被覆層のX線回折結果を示す図である。

【図8】実施例1において放電析出により得られた試料(金属組織)の断面顕微鏡写真である。

【図9】実施例1において放電析出により得られたWC - Fe被覆層にパルス放電加工(仕上げ加工)を行って得られた試料の断面(金属組織)の顕微鏡写真である。

【図10】実施例1において放電析出により得られたW C-Fe被覆層にパルス放電加工(仕上げ加工)を行って 得られた試料の断面(金属組織)のSEM写真である。

【図11】実施例1において放電析出により得られたWC-Fe被覆層にパルス放電加工(仕上げ加工)を行って得られた試料断面の表面からのビッカース硬さ(Hv)の分布を示す図である。

【図12】実施例2における被覆材料の積層要領を説明 する図である。

20 【図13】実施例3における被覆材料の積層要領を説明する図である。

【図14】実施例4において放電加工及び溶射により得られるキャビティ形状を示す図である。

【図15】実施例4においてパルス放電加工後のキャビ ティ形状を示す図である。

【図1】

【図2】

【図8】

【図9】

【図14】

【手続補正書】

【提出日】平成5年2月15日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0042

【補正方法】変更

【補正内容】

【0042】 なお、上記実施例では、被覆材料の被覆手段として放電析出や溶射法を利用したが、電着法、低温蒸着法などの他の手段も利用でき、また各種被覆手段を組み合わせて利用できることは云うまでもない。また、放電析出加工(1次加工)と放電再溶融加工(2次加工)を同一条件で或いは異なる条件で複数回繰り返すことができることも云うまでもなく、以下にその実施例を示す。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0043

【補正方法】変更

【補正内容】

[0043]

【実施例5】 本例は放電析出加工(1次加工)と放電再溶融加工(2次加工)をそれぞれ1回ずつ行うことを1回の工程と数え、これを複数回繰り返した一例である。放電析出加工(1次加工)による母材被覆後にパルス放電再溶融加工(2次加工)を1回行っただけでは、部分的に表面層が吹き飛ばされて母材表面が露出する部分が生じたり、或いは厚い表面処理層を形成することができない場合に適用すると効果的である。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0044

【補正方法】変更

【補正内容】

【0044】 まず、1回目のパルス放電析出加工(1次加工)の加工条件は、電極材料:粉体電極(実施例1に用いたWC-Fe電極と同じ)、電極極性:マイナス、<math>Ip:25A、 $\tau p:8$ μ sec、 $\tau r:512$ μ sec、加工時間:5分の条件とし、2回目のパルス放電再溶融加工

(2次加工)の加工条件は、電極材料:銅電板、電極極 性:マイナス、Ip:15A、 τ p:1024 μ s、 τ r: 1024 µs、加工時間:7分の条件とした。他の条件 は実施例1と同様である。そして、実施例1と同様の要 領で放電析出により母材表面にWC-Feの堆積合金層 を形成した後、2次加工を行うという工程を5回繰り返 した。図16に光学顕微鏡による試料の断面写真を、図 17にX線回折による分析結果を示す。図16より厚さ 約50μmの一様な広がりの堆積層が確認された。また 図17よりWCの存在が確認された。試料の断面の硬さ を測定したところ、平均で約Hv1650であり、非常 に硬度の高いことが確認された。なお、図18は、母材 被覆と、前記2次加工条件によるパルス放電再溶融加工 をそれぞれ1回ずつ行った場合の試料の光学顕微鏡によ る断面写真であり、表面処理層が途切れて一様でない状 態を示している。図19は1次加工後のX線回折による 分析結果である。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0045

【補正方法】追加

【補正内容】

[0045]

【発明の効果】 以上詳述したように、本発明によれば、母材の寸法変化、硬度(強度)低下、皮膜剥離等の欠点がなく、しかも充分な厚みで耐食性、耐熱性等々の所望の表面特性を有する緻密で強硬な被覆層を容易に形成することができる。例えば、高温用タービンブレードの高温ガス又は蒸気射突部や、高温溶融金属湯を鋳込むダイキャビティ部分、溶湯鍛造金型のショットブラストノズル部分やその他の部分(例えば射出成形機管部分など)、また鋼製金型の切刃部分のみにファインセラミックスをコーティングする等に利用できる。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0046

【補正方法】追加

【補正内容】

【0046】 また、母材上に表面まで組成が徐々に変化するいわゆる傾斜機能膜を持った傾斜機能材料も安価に製造できる。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】図16

【補正方法】追加

【補正内容】

【図16】 実施例5において放電析出(1次加工)とパルス放電再溶融加工(2次加工)を5回繰り返して得られた試料(金属組織)の断面の顕微鏡写真(×160)である。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】図17

【補正方法】追加

【補正内容】

【図17】 実施例5において1次加工と2次加工の工程を繰り返して得られた試料のWC-Fe被覆層のX線回折結果を示す図である。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】図18

【補正方法】追加

【補正内容】

【図18】 実施例5において1次加工と2次加工の工程をそれぞれ1回として得られた試料(金属組織)の断面の顕微鏡写真(×160)である。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】図19

【補正方法】追加

【補正内容】

【図19】 実施例5において1次加工後の試料のX線回折結果を示す出である。

【手続補正10】

【補正対象書類名】図面

【補正対象項目名】図16

【補正方法】追加

【補正内容】

【図16】

【手続補正11】 【補正対象書類2

【補正対象書類名】図面

【補正対象項目名】図17

【補正方法】追加

【補正内容】

【図17】

Diffraction angle

【手続補正12】 【補正対象書類名】図面 【補正対象項目名】図18 【補正方法】追加 【補正内容】 【図18】

【手続補正13】 【補正対象書類名】図面 【補正対象項目名】図19 【補正方法】追加 【補正内容】

フロントページの続き

 (51) Int. Cl.5
 識別記号
 庁内整理番号
 F I
 技術表示箇所

 C 2 5 D
 5/50

PAT-NO: JP405148615A

DOCUMENT-IDENTIFIER: JP 05148615 A

TITLE: TREATMENT FOR SURFACE OF

METALLIC MATERIAL

PUBN-DATE: June 15, 1993

INVENTOR-INFORMATION:

NAME COUNTRY

SAITO, NAGAO

MORI, NAOTAKE

ASSIGNEE-INFORMATION:

NAME COUNTRY

RES DEV CORP OF JAPAN N/A

APPL-NO: JP03329499

APPL-DATE: November 18, 1991

INT-CL (IPC): C23C010/28 , B22F003/24 ,

C21D001/38 , C23C012/02 , C23C026/00 , C25D005/50

US-CL-CURRENT: 148/206 , 148/238 , 148/243 ,

205/238 , 205/261 , 427/427

ABSTRACT:

PURPOSE: To inexpensively form a rigid coated layer with a sufficient thickness free from defects such as dimensional changes, deterioration

in the hardness (strength) of a base metal and film peeling caused by holding the temp. of the whole body of the metallic materials of a base metal to a high one.

CONSTITUTION: The surface of a base metal constituted of metallic materials is coated with metallic or nonmetallic materials. After that, the deposits are remelted for each minute area by pulse electric discharge machining in liq., gas or vacuum, by which the base metal and the coated materials, are diffused and mixed to form a dense coated layer on the surface of the base metal. As the coating materials, metals, alloys, nonmetallic elements, ceramics, carbides, nitrides, borides or the like are used. As the coating means for the coating materials, a thermal spraying method, an electrodepositing method, a low temp. depositing method, a discharge precipitating method using an electrode easy to consume or the like are used. As for the pulse electric discharge machining, it is executed preferably by using an electrode hard to consume as a minus electrode. The material called as a functionally gradient material in which the coating of the coating materials and pulse electric discharge machining are executed per layer and the coated layer is provided with gradient properties can also be manufactured.

COPYRIGHT: (C) 1993, JPO& Japio