Due Friday, September 6, before 5 pm.

Work in groups (of 1 or more). Each group should turn in ONE solution set, preferably by email in LaTeX format. Each group should solve at least $\max(\# \text{ of group members, 4})$ problems. Write down what group members contributed to which problems.

 $AG=alg.\ geom.,\ CO=combinatorial,\ AP=applied,\ M2=\ computational,\ B=beginner,\ *=advanced.$

- 1 (B -Polynomials in one variable) (a) Prove that every ideal of $\mathbb{C}[x]$ is principal.
- (b) Let $f \in \mathbb{C}[x]$. Describe V((f)) and I(V(f)).
- **2** (B -Properties of multideg) Let $f, g \in R$ be nonzero polynomials. Prove that:
 - (a) $\operatorname{multideg}(fg) = \operatorname{multideg}(f) + \operatorname{multideg}(g)$
 - (b) If $f + g \neq 0$, then multideg(f + g) $\leq \max(\text{multideg}(f), \text{multideg}(g))$; in addition, if multideg(f) \neq multideg(g), then equality occurs.
 - (c) Suppose that $\operatorname{multideg}(f) = \operatorname{multideg}(g)$ and $f + g \neq 0$. Give examples to show that $\operatorname{multideg}(f + g)$ may or may not equal $\operatorname{max}(\operatorname{multideg}(f), \operatorname{multideg}(g))$.
- **3 (AG)** Let $I = (y x^2, z x^3) \subset R = k[x, y, z]$ be the ideal of the affine twisted cubic.
 - (a) Compute a Gröbner basis of *I*. Is it minimal? Reduced?
 - (b) For every $f \in R$, show that f%I is a polynomial in $\mathbb{R}[x]$
 - (c) Adapt the idea above to find $\mathbf{I}(V)$, where V is parametrized by $(t, t^m, t^n), m, n \geq 2$.
- 4 (B, CO 2-dimensional monomial ideals) Let $I = (x^6, x^2y^3, xy^7) \subset k[x, y]$.
 - (a) In the (x,y)-plane, plot the set of exponent vectors (m,n) of monomials $x^my^n \in I$
 - (b) If $f \in k[x, y]$, use the picture in part (a) to explain what terms can appear in the remainder f%I.
- **5** (B -True or false?) If true, give a proof, otherwise give a counterexample.
 - (a) If G and G' are two Gröbner bases of the same ideal I with respect to the same monomial order than f%G = f%G' for any polynomial f.
 - (b) S(f,g) does not depend on the monomial order for any polynomials f,g.
 - (c) (fg)%G = ((f%G)(g%G))%G for any polynomials f, g and any Gröbner basis G.
- **6 (Minimal Gröbner basis)** (a) Show that a Gröbner basis G of I is minimal if and only if LC(g) = 1 for all $g \in G$ and LT(G) is a minimal generating set of the monomial ideal LT(I).

- (b) Conclude that two minimal Gröbner bases of the same ideal have the same number of elements.
- **7** (*) Suppose you travel to a country whose currency has four coins valued 20, 24, 25, and 31. What is the largest amount of money which cannot be expressed by these coins?

Hint: knowing about Hilbert functions may help. It is ok to use Macaulay2 for this problem. I am specifically requiring a computational commutative algebra solution for this problem.

8 (*, M2) Find (experimentally) all the possible initial ideals with respect to all the possible monomial orders on $\mathbb{C}[x,y,z]$ for I, where I is the ideal of a set of 7 general points in \mathbf{P}^2 (use the code below to build this ideal).

Hint: every monomial order is given by a weight vector \mathbf{w} . Can you reduce the possibilities to be considered for \mathbf{w} ? Experiment with a large number of vectors to find several distinct $LT_{\mathbf{w}}(I)$. Explore the continuity of $LT_{\mathbf{w}}(I)$ as a function of \mathbf{w} . What seem to be the cut-off weights? I am not looking for a proof, just a well documented guess.

The code computes the defining ideal of a set of 7 general points in \mathbf{P}^2 out of their coordinates (stored in the matrix M) and its initial ideal w.r.t. the weights 3,2,1. The ideal of the 7 points is stored in the variable G and the initial ideal is stored in the variable in G.

```
loadPackage "Points";
M = random(ZZ^3, ZZ^7);
R = QQ[x,y,z, Weights =>{3,2,1}];
(Q,inG,G) = points(M,R);
```