Sparse dictionary learning

Colloque Jeunes probabilistes et Statisticiens 2021

C. Butucea (ENSAE), J.-F. Delmas (Ecole des Ponts), A. Dutfoy (EDF R&D),

C. Hardy (EDF R&D, Ecole des Ponts)

Déconvolution de pics

La spectroscopie infrarouge

Wave numbers (cm-1)	Peak assignment
3690-3400-3364-3200-3014	-OH
2952-2920-2850	$\nu - CH_2, CH_3$ Aliphatic
1731	$\nu - C = O$
1647	$\nu - C = C \operatorname{de} HC = CH_2$
1540	$\nu - C = C \text{ de R-CR=CH-R}, \delta \text{ CH2 Aliphatic}$
1419	δCH_2 , δ -CH Aliphatic
1160-1082	ν Si-O (SiO_2)
1009-909	ν Si-O (Si-OH)
825	C-Cl
664	CH Aromatic

Table des positions des pics et groupes chimiques associés pour des échantillons de néoprène ([Tchalla, 2017]).

$$\mathbf{y(t)} = \sum_{k=1}^{s^{\star}} \beta_k^{\star} \, \phi(\theta_k^{\star}, t) + w(t), \quad (\phi(\theta, \cdot), \theta \in \Theta) \text{ dictionnaire continu}.$$

Déconvolution de pics

Choix du dictionnaire continu : $\phi(\theta,t) = \frac{\varphi(\theta,t)}{\|\varphi(\theta,\cdot)\|}$,

$$\begin{split} \varphi_{\textit{Gauss}} \colon \Theta \times \mathbb{R} &\to \mathbb{R} \\ & \big(\big(\mu, \nu \big), t \big) \mapsto \mathrm{e}^{-\frac{(t-\mu)^2}{2\nu^2}}, \end{split}$$

$$arphi_{Lorentz} \colon \Theta imes \mathbb{R} o \mathbb{R}$$

$$((\mu, \nu), t) \mapsto \frac{1}{1 + \frac{(t - \mu)^2}{2\nu^2}}.$$

Déconvolution de pics

$$\mathbf{y(t)} = \sum_{k=1}^{s^\star} eta_k^\star \phi(heta_k^\star, t) + w(t).$$

ightarrow Retrouver le nombre s^{\star} de fonctions paramétriques dans le mélange.

ightarrow Retrouver la position des pics θ_k^\star pour identifier les groupes chimiques.

 \to Retrouver les amplitudes des pics β_k^\star pour déterminer les concentrations des espèces chimiques.

Inversion d'une transformée de Laplace

$$\mathbf{y(t)} = \sum_{k=1}^{s^{\star}} \beta_k^{\star} \, \phi(\theta_k^{\star}, t) + w(t).$$

$$\phi(\theta,t) = \frac{\varphi(\theta,t)}{\|\varphi(\theta,\cdot)\|} \cdot \qquad \qquad \rightarrow \text{Retrouver } s^\star, \ \left(\beta_k^\star, 1 \leq k \leq s^\star\right) \text{ et } \\ \left(\theta_k^\star, 1 \leq k \leq s^\star\right) \text{ pour reconstruire } f.$$

$$\varphi \colon \Theta \times \mathbb{R} \to \mathbb{R}$$

$$(\theta, t) \mapsto e^{-t \theta}.$$

Sommaire

I) Le modèle

II) Problème d'optimisation

III) Borne sur le risque de prédiction

On observe un signal y sur le support d'une mesure λ_T .

- λ_T discrète (ex: $\lambda_T = \Delta_T \sum_{j=1}^T \delta_{t_j}$) \rightarrow observations sur une grille.
- λ_T continu (ex: $\lambda_T = Lebesgue$) \rightarrow observations continues.

On observe un signal y sur le support d'une mesure λ_T .

- λ_T discrète (ex: $\lambda_T = \Delta_T \sum_{j=1}^T \delta_{t_j}$) \rightarrow observations sur une grille.
- λ_T continu (ex: $\lambda_T = Lebesgue$) \rightarrow observations continues.

On observe un signal y bruité par un processus stochastique w_T .

• Pour tout $f \in L^2(\lambda_T)$, $Var \langle f, w_T \rangle_T \leq \sigma^2 \Delta_T \|f\|_T^2$.

On définit,

$$\langle f,g\rangle_T = \int_{\mathbb{R}} f(t)g(t)\,\lambda_T(dt)$$
 et $\|f\|_T = \langle f,f\rangle_T^{1/2}$ pour $f,g\in L^2(\lambda_T)$.

On observe un signal y sur le support d'une mesure λ_T .

- λ_T discrète (ex: $\lambda_T = \Delta_T \sum_{j=1}^T \delta_{t_j}$) \rightarrow observations sur une grille.
- λ_T continu (ex: $\lambda_T = Lebesgue$) \rightarrow observations continues.

On observe un signal y bruité par un processus stochastique w_T .

• Pour tout $f \in L^2(\lambda_T)$, $Var \langle f, w_T \rangle_T \leq \sigma^2 \Delta_T \|f\|_T^2$.

On définit,

$$\langle f,g \rangle_T = \int_{\mathbb{R}} f(t)g(t) \, \lambda_T(dt) \quad \text{et} \quad \|f\|_T = \langle f,f \rangle_T^{1/2} \quad \text{pour} \quad f,g \in L^2(\lambda_T).$$

Le paramètre T correspond à la qualité des observations: $\Delta_T \to 0.$ $T \to +\infty$

On observe le signal

$$y = \beta^* \Phi_T(\vartheta^*) + w_T, \quad \lambda_T - p.p.$$
 (modèle)

Pour tout $\theta = (\theta_1, \cdots, \theta_K) \in \Theta^K$,

$$\Phi_{\mathcal{T}}(\vartheta) = \begin{pmatrix} \phi_{\mathcal{T}}(\theta_1) \\ \vdots \\ \phi_{\mathcal{T}}(\theta_K) \end{pmatrix}$$

est la fonction multivariée $\Phi_T(\vartheta)$ définie sur \mathbb{R} à valeurs dans \mathbb{R}^K , $t \mapsto \Phi_T(\vartheta, t)$.

Le paramètre K est une borne arbitrairement grande pour s^{\star} .

• Exemple discret: Grille régulière sur [0,1], $\lambda_T = \Delta_T \sum_{j=1}^{r} \delta_{t_j}$ avec $t_j = j/T$ et $\Delta_T = 1/T$, $w_T(t_j) \underset{i.i.d}{\sim} \mathcal{N}(0,\sigma^2)$.

$$y\left(\frac{j}{T}\right) = \beta^* \Phi_T\left(\vartheta^*, \frac{j}{T}\right) + w_j, \quad w_j \underset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2), \quad j = 1, \cdots, T.$$

• Exemple discret: Grille régulière sur [0,1], $\lambda_T = \Delta_T \sum_{j=1}^{r} \delta_{t_j}$ avec $t_j = j/T$ et $\Delta_T = 1/T$, $w_T(t_j) \underset{i.i.d}{\sim} \mathcal{N}(0,\sigma^2)$.

$$y\left(\frac{j}{T}\right) = \beta^* \Phi_T\left(\vartheta^*, \frac{j}{T}\right) + w_j, \quad w_j \underset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2), \quad j = 1, \cdots, T.$$

• Exemple continu: $\lambda_T = Lebesgue \text{ sur } [0,1]$ et w_T est un Brownien: $w_T = \sigma \sqrt{\Delta_T} B$, $\Delta_T = 1/T$,

$$y = \beta^* \Phi(\vartheta^*) + \frac{\sigma}{\sqrt{T}} B$$
, Lebesgue-p.p.

• Exemple discret: Grille régulière sur [0,1], $\lambda_T = \Delta_T \sum_{j=1}^I \delta_{t_j}$ avec $t_j = j/T$ et $\Delta_T = 1/T$, $w_T(t_j) \underset{i.i.d}{\sim} \mathcal{N}(0,\sigma^2)$.

$$y\left(\frac{j}{T}\right) = \beta^* \Phi_T\left(\vartheta^*, \frac{j}{T}\right) + w_j, \quad w_j \underset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2), \quad j = 1, \cdots, T.$$

• Exemple continu: $\lambda_T = Lebesgue \text{ sur } [0,1]$ et w_T est un Brownien: $w_T = \sigma \sqrt{\Delta_T} B$, $\Delta_T = 1/T$,

$$y = \beta^* \Phi(\vartheta^*) + \frac{\sigma}{\sqrt{T}} B$$
, Lebesgue-p.p.

Dans les deux cas : $\forall f \in L^2(\lambda_T)$, $Var \langle f, w_T \rangle_T \leq \sigma^2 \Delta_T \|f\|_T^2$.

$$y = \beta^* \Phi_T(\vartheta^*) + w_T, \quad \lambda_T - p.p.$$
 (modèle)

On considère une extension non linéaire du modèle de régression parcimonieuse en grande dimension : $S^\star = \{k, \quad \beta_k^\star \neq 0\}$, $Card\ S^\star = s^\star < K$.

$$y = \beta^* \Phi_T(\vartheta^*) + w_T, \quad \lambda_T - p.p.$$
 (modèle)

On considère une extension non linéaire du modèle de régression parcimonieuse en grande dimension : $S^* = \{k, \quad \beta_k^* \neq 0\}$, $Card\ S^* = s^* < K$.

→ Estimateurs pour
$$\beta^*$$
 et $\vartheta_{S^*}^*$?
→ Risque de prévision ?

(à une permutation jointe sur les composantes de β^* et ϑ^* près)

Formulation d'un problème d'optimisation avec une pénalisation Lasso pondérée par $\kappa>0$:

$$(\hat{\beta}, \hat{\vartheta}) \in \underset{\beta \in \mathbb{R}^K, \vartheta \in \Theta_T^K}{\operatorname{argmin}} \quad \frac{1}{2} ||y - \beta \Phi(\vartheta)||_T^2 + \kappa ||\beta||_{\ell_1}$$

 $\Theta_T \subset \Theta$, intervalle compact.

On suppose que pour tout $k \in S^\star$, $\theta_k^\star \in \Theta_T$.

Problème non-convexe mais des méthodes numériques performantes existent (sliding Franck-Wolfe algorithm [Denoyelle et al, 2019]).

On peut réécrire le modèle

$$y = \beta^* \Phi_T(\vartheta^*) + w_T, \quad \lambda_T - p.p$$

sous la forme

$$y = \int \phi_T(\theta) \mu^*(d\theta) + w_T, \quad \lambda_T - p.p$$

avec
$$\mu^\star = \sum_{k=1}^{s^\star} \beta_k^\star \delta_{\theta_k^\star}.$$

Formulation d'un problème sur un espace de mesures (Beurling Lasso [De Castro & Gamboa 2012]),

$$ilde{\mu} \in \mathop{\mathrm{argmin}}_{\mu \in \mathcal{M}(\Theta)} \quad \frac{1}{2} ||y - \int \phi_{\mathcal{T}}(\theta) \mu(d\theta)||_{\mathcal{T}}^2 + \kappa ||\mu||_{\mathcal{T}V}.$$

Problème convexe!

Remarque: pour
$$\mu = \sum\limits_{k=1}^s \beta_k \delta_{\theta_k}$$
 on a $\|\mu\|_{TV} = \|\beta\|_{\ell_1}$.

$$ilde{\mu} \in \operatorname*{argmin}_{\mu \in \mathcal{M}(\Theta)} \ \ rac{1}{2} ||y - \int \phi_{\mathcal{T}}(heta) \mu(extsf{d} heta)||_{\mathcal{T}}^2 + \kappa ||\mu||_{\mathcal{T}V}.$$

Obtient-on une mesure $\tilde{\mu}$ discrète ?

$$ilde{\mu} \in \operatorname*{argmin}_{\mu \in \mathcal{M}(\Theta)} \ \ rac{1}{2} ||y - \int \phi_{\mathcal{T}}(heta) \mu(extsf{d} heta)||_{\mathcal{T}}^2 + \kappa ||\mu||_{\mathcal{T}V}.$$

Obtient-on une mesure $\tilde{\mu}$ discrète ?

- \rightarrow Lorsque λ_T est discrète, si l'ensemble des solutions est non vide, il existe une solution discrète [Boyer et al, 2019].
- ightarrow Sous des hypothèses sur φ et μ^* et lorsque κ et $\frac{\|w_T\|_T}{\kappa}$ sont suffisamment petits les solutions sont discrètes et composées de s^* Diracs [Duval & Peyré 2015].

$$ilde{\mu} \in \mathop{\mathrm{argmin}}_{\mu \in \mathcal{M}(\Theta)} \quad \frac{1}{2} ||y - \int \phi_{\mathcal{T}}(\theta) \mu(d\theta)||_{\mathcal{T}}^2 + \kappa ||\mu||_{\mathcal{T}V}.$$

Borne sur le risque de prévision $\left\|\tilde{\beta}\Phi_T(\tilde{\vartheta}) - \beta^*\Phi_T(\vartheta^*)\right\|_T$?

$$\tilde{\mu} = \sum_{k=1}^{\tilde{s}} \tilde{\beta}_k \delta_{\tilde{\theta}_k}.$$

$$ilde{\mu} \in \operatorname*{argmin}_{\mu \in \mathcal{M}(\Theta)} \ \ rac{1}{2} ||y - \int \phi_{\mathcal{T}}(heta) \mu(extsf{d} heta)||_{\mathcal{T}}^2 + \kappa ||\mu||_{\mathcal{T}V}.$$

Borne sur le risque de prévision $\left\| \tilde{\beta} \Phi_T(\tilde{\vartheta}) - \beta^* \Phi_T(\vartheta^*) \right\|_T$?

$$\tilde{\mu} = \sum_{k=1}^{\tilde{s}} \tilde{\beta}_k \delta_{\tilde{\theta}_k}.$$

ightarrow Pour $(\varphi(\theta): t \mapsto e^{i2\pi t\theta}, \theta \in \mathbb{T})$ et $\Delta_T = 1/T$, on peut choisir κ de telle sorte que

$$\left\| \tilde{\beta} \Phi_T(\tilde{\vartheta}) - \beta^* \Phi_T(\vartheta^*) \right\|_T = \mathcal{O}_{\mathbb{P}} \left(\sigma \sqrt{\frac{s^* \log T}{T}} \right) \text{ [Tang et al 2014]}.$$

III) Borne pour le risque de prédiction

On définit sur
$$\Theta \times \Theta$$
, $\mathcal{K}_{\mathcal{T}}(\theta, \theta') = \langle \phi_{\mathcal{T}}(\theta), \phi_{\mathcal{T}}(\theta') \rangle_{\mathcal{T}}$

Theorem $(\Theta \subset \mathbb{R})$

Hypothèses:

- w_T Gaussien et pour tout $f \in L^2(\lambda_T)$, $Var \langle f, w_T \rangle_T \leq \sigma^2 \Delta_T \|f\|_T^2$.
- La fonction φ est suffisamment régulière.
- $\forall 1 \leq k \neq \ell \leq s^*$, $\mathfrak{d}_{FR}(\theta_k^*, \theta_\ell^*) > \delta$
- K_T est suffisamment proche de K_{∞} .

Alors pour $\kappa \geq C_0 \sigma \sqrt{\tau \Delta_T \log T}$ et $\tau > 0$ on a

$$\left\|\hat{\beta}\Phi_{\mathcal{T}}(\hat{\vartheta}) - \beta^{\star}\Phi_{\mathcal{T}}(\vartheta^{\star})\right\|_{\mathcal{T}} \leq C_{1}\sqrt{s^{\star}}\,\kappa,$$

avec probabilité au moins $1 - \mathcal{C}_2\left(\frac{|\Theta_T|}{T^\tau \log T} \vee \frac{1}{T^\tau}\right)$.

III) Borne pour le risque de prédiction

Le théorème montre que pour $\Delta_T=1/T$ et en prenant $\kappa=\mathcal{C}_0\sigma\sqrt{\tau\Delta_T\log T}$,

$$\left\| \hat{\beta} \Phi_{T}(\hat{\vartheta}) - \beta^{*} \Phi_{T}(\vartheta^{*}) \right\|_{T} \lesssim \sigma \sqrt{\frac{s^{*} \log T}{T}},$$

en grande probabilité.

Lorsque ϑ^\star est connu $\hat{\beta}$ est l'estimateur Lasso. Sous des hypothèses de cohérence sur le dictionnaire, on peut choisir κ tel que :

$$\left\| (\hat{\beta} - \beta^*) \Phi_{\mathcal{T}}(\vartheta^*) \right\|_{\mathcal{T}} \lesssim \sigma \sqrt{\frac{s^* \log K}{\mathcal{T}}},$$

en grande probabilité ([Bickel et al, 2009]). Cette vitesse est minimax à un facteur logarithmique près ([Candès & Davenport, 2013]) .

III) Borne pour le risque de prédiction

Le théorème montre que pour $\Delta_T=1/T$ et en prenant $\kappa=\mathcal{C}_0\sigma\sqrt{\tau\Delta_T\log T}$,

$$\left\|\hat{\beta}\Phi_{T}(\hat{\vartheta}) - \beta^{\star}\Phi_{T}(\vartheta^{\star})\right\|_{T} \lesssim \sigma\sqrt{\frac{s^{\star}\log T}{T}},$$

en grande probabilité.

Lorsque ϑ^\star est connu $\hat{\beta}$ est l'estimateur Lasso. Sous des hypothèses de cohérence sur le dictionnaire, on peut choisir κ tel que :

$$\left\| (\hat{\beta} - \beta^*) \Phi_{\mathcal{T}}(\vartheta^*) \right\|_{\mathcal{T}} \lesssim \sigma \sqrt{\frac{s^* \log K}{\mathcal{T}}},$$

en grande probabilité ([Bickel et al, 2009]). Cette vitesse est minimax à un facteur logarithmique près ([Candès & Davenport, 2013]) .

L'estimation des paramètres non linéaires dégrade les vitesses d'un facteur logarithmique.