Positions and times of the produced hadrons

June 4, 2015

Let's first compute positions and times of hadrons produced by the recombination of partons. We calculate a coordinate of center of mass of partons forming a hadron in their center-of-mass frame and it is given by

$$\mathbf{r}' = \frac{\sum_{i} m_{i} \mathbf{r}'_{i}}{\sum_{j} m_{j}} \tag{1}$$

where \mathbf{r}_i' are coordinates of the partons in the center-of-mass frame (the hadron rest frame). When the time of the latest born parton is t_f' in the center-of-mass frame and speed of the center-of-mass of the partons in the lab frame is $\mathbf{v} = \mathbf{P}/E$, taking the Lorentz boost with speed $-\mathbf{v}$ to the four-coordinate (\mathbf{r}', t_f') , we have the position and time of the recombined hadron in the lab frame.

Prior to find the space-time information of the hadrons produced of the string fragmentation of partons, we obtain the center of mass of a string \mathbf{r}_s and the time of the latest born remnant parton t_s . Then, the formation time of a hadron is given by

$$t_f = E/m_T^2, (2)$$

where E is the energy of the hadron and m_T is the transverse mass of the hadron defined by $m_T = \sqrt{m^2 + p_T^2}$. The position and time of each hadron produced from the string fragmentation are written by

$$t_H = t_s + t_f$$

$$\mathbf{r}_H = \mathbf{r}_s + \mathbf{v}t_f \tag{3}$$