Notes for General Topology

Zhao Wenchuan

November 28, 2021

Contents

1	Topological Spaces			
	1.1	Basic Definitions	2	
	1.2	Subspaces	3	

Chapter 1.

Topological Spaces

§1.1 Basic Definitions

Definition 1.1.1. Let X be any set.

A family $\mathcal{T} \subseteq \mathcal{P}(X)$ is a topology on X iff it satisfies the Open Set Axioms. That is,

- 1. $X \in \mathcal{T}$;
- 2. For any $\mathcal{U} \subseteq \mathcal{T}$, $\bigcup \mathcal{U} \in \mathcal{T}$;
- 3. For any finite $\mathcal{F} \subseteq \mathcal{T}$, $\bigcap \mathcal{U} \in \mathcal{T}$;

The ordered pair (X, \mathcal{T}) is called a topological space.

Theorem 1.1.1. $\emptyset \in \mathcal{T}$.

Proof. As \emptyset is the subset of any set, $\emptyset \subseteq \mathcal{T}$. Then, we have

$$\bigcup\emptyset=\emptyset.$$

By Open Set Axiom 2, $\emptyset \in \mathcal{T}$.

Definition 1.1.2. Let \mathcal{T} and \mathcal{T}' be topological spaces on X. \mathcal{T} is *coarser* than \mathcal{T}' , or \mathcal{T}' is *finer* than \mathcal{T} , iff $\mathcal{T} \subseteq \mathcal{T}'$.

Example 1.1.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, \mathcal{T} is a *indiscrete topology on* X, iff $\mathcal{T} = \{\emptyset, X\}$. It is the coarsest topology on X.

Example 1.1.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, \mathcal{T} is a discrete topology on X, iff $\mathcal{T} = \mathcal{P}(X)$. It is the finest topology on X.

§1.2 Subspaces

Definition 1.2.1. Let $\mathbb{X} = (X, \mathcal{T})$ be any topological space, and let $A \subseteq X$. The *subspace topology of* A *induced by* \mathcal{T} is defined as

$$\mathcal{T}_A := \{ U \cap A : U \in \mathcal{T} \} .$$

The ordered pair (A, \mathcal{T}_A) is called a *topological subspace*, or just *subspace*, of \mathbb{X} .

Theorem 1.2.1. Let $\mathbb{A} = (A, \mathcal{T}_A)$ be a subspace of \mathbb{X} .

 \mathcal{T}_A is a topology on A; i.e., A is a topological space.

Proof. As $X \in \mathcal{T}$, by Definition 1.2.1, $A = X \cap A \in \mathcal{T}$. Thus, \mathcal{T}_A satisfies Open Set Axiom 1.

Let I be an indexed set and let $\{U_i\}_{i\in I}\subseteq \mathcal{T}_A$. For any $i\in I$, there exists a $U_i'\in \mathcal{T}$, such that $U_i=U_i'\cap A$. Thus, we have

$$\bigcup_{i \in I} U_i = \bigcup_{i \in I} (U'_i \cap A)$$
$$= A \cap \bigcup_{i \in I} U'_i.$$

As \mathcal{T} is closed under arbitrary union, $\bigcup_{i \in I} U_i \in \mathcal{T}$. By Definition 1.2.1,

$$A\cap \bigcup_{i\in I}U_i'\in \mathcal{T}_A.$$

Thus, \mathcal{T}_A satisfies the Open Set Axioms 2. \square