Chapter 11

Minimum Spanning Tree Recitation.

11.1 The Spanning Tree Problem.

Definition 11.1.1. A spanning tree T of a graph G = (V, E) is an edges subset of E such that T is a tree (having no cycles), and the graph (V, T) is connected.

Problem 11.1.1 (MST). Let G=(V,E) be a weight graph with weight function $w:E\to\mathbb{R}$. Let's extends the weight for E's subsets by defining for the weight of $X\subset E$ to be $w(X)=\sum_{e\in X}w(e)$. The minimum spanning tree of G is the spanning tree of G that has the minimal weight according to w.

Definition 11.1.2. Let $U \subset V$ we will define the cut associated by U as the outer edges of U, namely all the edges $(u,v) \in E$ such $u \in U$ and $v \notin U$. We use the following $C = (U,\bar{U})$ to denote the cut. We will say that $X \subset E$ respects the cut if $X \cap C = \emptyset$.