

Elementi di telecomunicazioni

Meccaniche

Sonore

Elettromagnetiche

Meccaniche

Sonore

Andamento sinusoidale

Onde longitudinali (stesso senso della propagazione)

25 Hz - 15000 Hz

Velocità 330 m/s

Elettromagnetiche

- Sia campo elettrico che campo magnetico (prodotto dal campo elettrico)
- Influenzate notevolmente dal mezzo
- Velocità di 3x10^8 m/s per la luce
- Riflessione
- Rifrazione
- Diffrazione
- Diffusione
- Attenuazione

Atmosfera

Mezzo mutevole

Tipi di propagazione

Onda spaziale

Comunicazione a grande distanza

Onda terrestre

Onda diretta
Onda riflessa
Onda di superficie

Tipi di propagazione

Onde terrestri

Onda diretta

Assorbimento dipende da lunghezza d'onda

Stazioni in vista

Onda riflessa

La terra riflette parte dell'irradiazione

Onda di superficie

Onde lunghe scarsa attenuazione

Onde corte a brevi distanze

Caratteristiche di propagazione

Molto disturbate

Frequenze di radiodiffusione (500-1500 kHz)

Attenuazione maggiore di giorno che di notte per la ionizzazione

Onde corte (1,5-3 mHz)

No onda superficiale, usata per onda diretta, onda spaziale sotto certa distanza

Microonde (>30 mHz)

Due antenne a distanza ottica

Antenna

- Permette di irradiare l'energia nello spazio e di captarla
- Fattori di progettazione
 - Frequenza onda da trasmettere
 - Potenza e rendimento
- Maggior attenzione alle trasmittenti che alle riceventi

Funzionamento antenna

- Conduttori alimentati da corrente alternata, si crea un campo elettrico poiché uno si carica negativamente e l'altro positivamente, che cambia con la stessa frequenza della tensione di alimentazione
- Ogni carica determina un campo magnetico
 - Campo indotto, quando tensione e corrente si invertono
 - Campo radiato, che viaggia nello spazio

Diagramma di radiazione

- Un'antenna ideale (isotropa) irradia in tutte le direzione, con legge sferica
- Nella realtà le antenne hanno una direzione privilegiata
 - Il guadagno è il rapporto tra la potenza in una direzione e la potenza isotropa
 - Fasci relativamente stretti
- Selettività e direttività

Dipoli hertziani

- Conduttore metallico con corrente alternata, RLC, distribuiti lungo il circuito → circuito oscillante aperto
- Frequenza di risonanza che dipende da distanza fra oscillatore e estremità a terra
 - Antenna marconiana → ¼ di lunghezza d'onda
 - Antenna hertziana → ½ lunghezza d'onda
- Formano circuiti ad onde stazionarie in quanto gli elementi dissipativi sono trascurabili rispetto a reattanza e suscettanza
- Corrente al massimo alla base, tensione al massimo alla punta
- Antenna a filo

 corrente massima in mezzo e minima ai due estremi, tensione alternata tra gli estremi

Antenne direttive

- Irradiazione lobata, ossia racchiusa entro un dato angolo
- Riflettore parabolico
 - Paraboloide di rotazione metallico nel cui fuoco è presente un dipolo, schermato verso l'esterno
 - Raggi uscenti paralleli fra loro ed all'asse del paraboloide
 - La lunghezza d'onda deve essere molto bassa → onde ultra-corte o microonde (RADAR)

Antenna a telaio

- Molto impiegate nella radiogonometria
- Normale circuito oscillatorio, con forma di spira rettangolare su piano verticale
 - La tensione indotta nell'antenna varia in funzione dell'angolo tra il piano dell'antenna e la direzione di incidenza dell'onda (zeri per 90° e 180°)
 - La direzione della stazione si cerca basandosi sul minimo segnale di ricezione
 - Per il verso si aggiunge un'antenna non direttiva → lo zero è ora solo sul piano del telaio

Radiotrasmissione

Funzionamento generale

Trasmettitore

OSCILLATORE CHE GENERA UNA PORTANTE

MODULATORE

Rivelazione o demodulazione

Ricevitore

Dall'oscillazione modulata ricava una tensione simile a quella nel trasmettitore

Modulazione

$$a = A\cos(\omega t + \varphi_0)$$

- Ampiezza → cambia A
- •Frequenza \rightarrow cambia ω

Radiotrasmettitore

- Generatore di tensione ad alta frequenza
- Trasduttore, capace di trasformare in grandezza elettrica il segnale che si vuole propagare nello spazio
- Modulatore, capace di sovrapporre alla tensione ad alta frequenza la tensione proveniente dal segnale
- Antenna, il cui compito è quello di irradiare le onde elettromagnetiche con una potenza sufficiente perché la propagazione raggiunga il radioricevitore

Radioricevitore

- Ha il compito di rendere disponibile il segnale ricevuto dall'onda elettromagnetica che investe l'antenna
- La corrente pulsata fa variare la magnetizzazione del nucleo della bobina ed attira o respinge la lamina

Selezione del radioricevitore

- Antenna, che per le sue dimensioni può ricevere solo certe lunghezze d'onda
- Filtro (circuito risonante LC in parallelo)
 - Solo se la frequenza della corrente è pari a quella di risonanza del circuito allora il segnale passa
- Induttanza o condensatore dinamico per prendere più frequenze

Multiplexing

Multiplexing

- Nasce per trasmettere più informazioni contemporaneamente
 - Di frequenza
 - Di tempo
 - Doppio

Multiplexing per divisione di frequenza

- Informazioni trasmesse di continuo, senza interruzioni
- Tante frequenze, ossia canali, quante sono le informazioni da trasmettere → sottobande elementari

Multiplexing per divisione di tempo

- Unica frequenza portante, mentre i segnali partono in istanti successivi
- Ognuno di essi imprime la modulazione per un tempo che è circa la metà dell'intervallo tra gli istanti stessi
- Campionatura tramite commutatore