CS112: Data Structures

Lecture 06
Add / Delete / Search
Trees

Review: Add / Delete / Search

- Basic task:
 - Set of data items
 - E.g. "Al", "Bob", "Cindy"
 - Operations:
 - Add an item
 - Delete an item
 - Search for an item
- Goal: minimize

worst case O(add + delete + search)

Unordered Array

Add Alice

numberOfNames

3

numberOfNames

4

Unordered Array

Remove Anne

numberOfNames

4

numberOfNames

3

Unordered Array

- Insert O(1) if there's space
- Delete O(1) (move last element)
- Search O(n) where n is size of set
- Overall O(n)

Ordered Array

Add Alice

numberOfNames

3

numberOfNames

4

Ordered Array

Remove Anne

numberOfNames

4

numberOfNames

3

Searching an ordered array Binary search

- requires sorted values
- each comparison rules out half of the remaining elements
- O(log(n)) we will prove this later
- Find A, find R

Searching an array Performance

- Search among 1 Billion entries
- Check 1 million entries per second
 - Sequential search
 - 1 billion operations needed
 - Requires 1000 seconds about 20 minutes
 - Binary search
 - 30 operations needed
 - Requires 30 microseconds
 - 30 million times faster

Searching an array Performance

- Search among 1 Million entries
- Check 1 million entries per second
 - Sequential search
 - 1 million operations needed
 - Requires 1 second
 - Binary earch
 - 20 operations needed
 - Requires 20 microseconds
 - **50,000** times faster

Searching + Insert Performance

- 1 billion entries, process 1 million/sec
- Insert O(n)
 - 1 billion operations needed
 - Requires 1000 seconds about 20 minutes
- Binary search O(log n)
 - 30 operations needed
 - Requires 30 microseconds
- Together: 1000.0003 seconds

Searching + Insert Performance

- 1 million entries, process 1 million/sec
- Insert O(n)
 - 1 million operations needed
 - Requires 1 second
- Binary search O(log n)
 - 20 operations needed
 - Requires 20 microseconds
- Together: 1.00002 seconds

Ordered Array

- Insert O(n)
- Delete O(n)
- Search O(log n) Binary Search
- Overall O(n)

Unordered Linked List

- **Insert O**(1)
- **Delete O(1)**
- Search O(n)
- Overall O(n)

Ordered Linked List

- Insert O(n)
- **Delete O(1)**
- Search O(n)
 - Jump to A[middle] is O(n) not O(1) so linear search faster than binary search
- Overall O(n)

Links Speed Up Add/Delete

- Idea: Use linked list to make add / delete faster
- Problem: Search of linked list is O(n)
 - Why not binary search on linked list?

Links Speed Up Add/Delete

- Idea: Use linked list to make add / delete faster
- Problem: Search of linked list is O(n)
 - Why not binary search on linked list?
- Idea: links to two places

New Trees

- Nodes and arcs (edges)
- Relationships:
 - Parent and Child
 - Root and Subtree

Trees

- Root has no parents
- Leaf node has no children
- All nodes except the root have a single parent
- There is exactly one path from root to any node

Trees

Height of tree

• Depth of a node

Binary tree

- each node has at most 2 subtrees
 - left and right subtree
- Examples of binary trees
 - 20 questions game (after animal/vegetable/mineral)
 - Arithmetic expressions

Family Tree

22

Binary tree

- Strict binary tree
 - only 0 or 2 subtrees
 - why not "only 2 subtrees"?
- Complete binary tree
 - every level but last is full,
 - last filled left-to-right

Recursive Data Structures

- Recursive definition of a binary tree
 - empty (i.e. null)
 - not empty
 - the root
 - a left subtree, which is a binary tree
 - a right subtree, which is a binary tree

Recursive functions

Common form of function on a tree is recursive

f(tree):	
if (tre	ee = = null) return
else	return (data, f(tree.lst), f(tree.rst))
	is a value and a function

Recursive functions height

```
height(tree):

if (tree = = null) return -1

else return 1 + max ( height (tree.lst),

height (tree.rst))
```

Recursive functions height

Recursive functions nodeCount

Recursive functions nodeCount

Recursive functions Sum

Recursive functions has0

Recursive functions has0

```
has0(tree):

if (tree = = null) return false
else return or (tree.data = = 0,
has0(tree.lst),
has0(tree.rst))
```

Static vs NonStatic

- Problem in Java:
 - Null is not an object, so can't send it a message, so can't do

```
class TreeNode{
   int maxData(TreeNode node){
    if (node = = null){ ...
```

See TreeNode.java

Back to: Add / Delete / Search

- Basic task:
 - Set of data items
 - E.g. "Al", "Bob", "Cindy"
 - Operations:
 - Add an item
 - Delete an item
 - Search for an item
- Goal: minimize

worst case O(add + delete + search)

Binary Search Trees

- Why can't we do binary search on a linked list?
 - can't jump to middle
- Suppose we could jump to middle
 - use more pointers

This looks like a tree!

Binary Search Tree

- data at a node is > any data in left subtree
- data at a node is < any data in right subtree
- Therefore, to print a BST in data order:
 - Print left subtree in data order
 - Print data
 - Print right subtree in data order

Search

- Searching a BST is easy
 - if node = null, search fails
 - if node.data equals target, found
 - if target < node.data, search on left subtree</p>
 - else search on right subtree

Insert

· Search, fail, insert where failed

Insert

· Search, fail, insert where failed

Delete

- Three cases
 - node to delete had no children => delete it
 - node to delete has 1 child => replace node with child
 - node to delete has 2 children

Deleting node with 2 children

 Observation: for node with left child, inorder predecessor has no right child

If C exists, C>B and C < A

So B cannot be inorder predecessor of A

Deleting node with 2 children

- Replace data at node with data of inorder predecessor
- Delete inorder predecessor (which must have either 0 or 1 child)

Cost of using BST

- Search: O(depth)
 - what is depth of tree?
 - with n nodes, best depth is log n
 - but worst depth is n
 - wait I thought binary search was O(log n) worst case!?!

Binary Search Trees

 Problem: insertion & deletion can give tree of any shape - even

Worst case depth is order n, not logn

•Goal: O(log n) complexity

- Goal: to be able to maintain a list with all operations at worst O(log(# nodes))
 - Insert, delete, search
- Binary search tree is O(depth) but depth is, worst case, #nodes
- AVL tree is like Binary search tree but depth is roughly log(#nodes)

AVL Trees

- Binary Search Tree
 - Inorder traversal = data order
- Almost balanced
 - At every node, subtree heights same +/- 1

Labeling an AVL Tree

Label each node as

- left & right subtrees equally high
- \ right subtree higher

Problem: insert/delete -> not balanced

• Solution: Rotation

- Solution: Rotation
 - Highside child of A has same label as A

- Solution: Rotation
 - Highside child of A has same label as A

- Solution: Rotation
 - Highside child of A has opposite label from A

CS112: Slides for Prof. Steinberg's lecture

• Solution: Rotate BC First

CS112: Slides for Prof. Steinberg's lecture

54

• Solution: Then Rotate AC

