

考研数学笔记

Weary Bird 2025 年 8 月 21 日

相见欢•林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年8月21日

目录

第一章	函数极限连续	1
1.1	函数的性态	1
1.2	极限的概念	3
1.3	函数极限的计算	4
1.4	已知极限反求参数	5
1.5	无穷小阶的比较	5
1.6	数列极限的计算	6
1.7	间断点的判定	9
第二章	一元函数微分学	10
2.1	导数与微分的概念	10
2.2	导数与微分的计算	11
2.3	导数应用-切线与法线	12
2.4	导数应用-渐近线	12
2.5	导数应用-曲率	13
2.6	导数应用-极值与最值	13
2.7	导数应用-凹凸性与拐点	14
2.8	导数应用-证明不等式	15
2.9	导数应用-求方程的根	16
2.10	微分中值定理证明题	16
第三章	一元函数积分学	20
3.1	定积分的概念	20
3.2	不定积分的计算	21

3.3	定积分的计算	24
3.4	反常积分的计算	26
3.5	反常积分敛散性的判定	27
3.6	变限积分函数	29
3.7	定积分应用求面积	32
3.8	定积分应用求体积	32
3.9	定积分应用求弧长	34
3.10	定积分应用求侧面积	34
3.11	证明含有积分的等式或不等式	35
第四章	常微分方程	39
4.1	一阶微分方程	39
4.2	二阶常系数线性微分方程	44
4.3	高阶常系数线性齐次微分方程	47
4.4	二阶可降阶微分方程	48
4.5	欧拉方程	49
4.6	变量代换求解二阶变系数线性微分方程	49
4.7	微分方程综合题	50
第五章	多元函数微分学	54
5.1	多元函数的概念	54
5.2	多元复合函数求偏导数与全微分	57
5.3	多元隐函数求偏导数与全微分	58
5.4	变量代换化简偏微分方程	60
5.5	求无条件极值	61
5.6	求条件极值 (边界最值)	63
5.7	闭区域最值	65
第六章	二重积分	67
6.1	二重积分的概念	67
6.2	交换积分次序	68
63	一重积分的计算	70

6.4	具他製型	74
第七章	无穷级数	76
7.1	数项级数敛散性的判定	76
7.2	交错级数	77
7.3	任意项级数	78
7.4	幂级数求收敛半径与收敛域	80
7.5	幂级数求和	82
7.6	幂级数展开	84
7.7	无穷级数证明题	85
7.8	傅里叶级数	88
第八章	多元函数积分学	91
8.1	三重积分的计算	96
8.2	第一类曲线积分的计算	99
8.3	第二类曲线积分的计算	100
8.4	第一类曲面积分的计算	104
8.5	第二类曲面积分的计算	105

第一章 函数极限连续

1.1 函数的性态

有界性的判定

- (1) 连续函数在闭区间 [a,b] 上必然有界
- (2) 连续函数在开区间 (a,b) 上只需要判断端点处的左右极限, 若 $\lim_{x\to a^+} \neq \infty$ 且 $\lim_{x\to b^-} \neq \infty$, 则连续函数在该区间内有界.
- (3) f'(x) 在有限区间 (a,b) 内有界.

<u>Proof:</u> $\forall x \in (a, b)$, 由拉格朗日中值定理, ∃ ξ

$$f(x) - f(\frac{a+b}{2}) = f'(\xi)(x - \frac{a+b}{2})$$
$$|f(x)| \le |f'(\xi)| \left| x - \frac{a+b}{2} \right| + \left| f(\frac{a+b}{2}) \right|$$
$$|f(x)| \le \frac{b-a}{2} |f'(\xi)| + \left| f(\frac{a+b}{2}) \right| \le M$$

1. 下列函数无界的是

$$\begin{array}{ll} \mathbf{A} & f(x) = \frac{1}{x}\sin x, x \in (0,+\infty) & \quad \mathbf{B} & f(x) = x\sin\frac{1}{x}, x \in (0,+\infty) \\ \mathbf{C} & f(x) = \frac{1}{x}\sin\frac{1}{x}, x \in (0,+\infty) & \quad \mathbf{D} & f(x) = \int_0^x \frac{\sin t}{t} dt, x \in (0,2022) \end{array}$$

Solution

(A)
$$\lim_{x\to 0^+}f(x)=1$$
, $\lim_{x\to +\infty}=0$ 均为有限值, 故 A 在区间 $(0,+\infty)$ 有界

(B)
$$\lim_{x\to 0^+} f(x) = 0$$
, $\lim_{x\to +\infty} = 1$ 均为有限值, 故 B 在区间 $(0,+\infty)$ 有界

(C)
$$\lim_{x\to 0^+}f(x)=+\infty$$
, $\lim_{x\to +\infty}=0$ 在 0 点的极限不为有限值, 故 C 在区间 $(0,+\infty)$ 无界

(D)
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \int_0^x 1dt = 0$$
, $\lim_{x\to 2022^-} f(x) = \int_0^{2022} \frac{\sin t}{t} dt =$ 有限值 故 D 在区间 $(0,2022)$ 有界

无穷 VS 无界

无界 只有有一个子列趋于无穷即可

无穷 任意子列均趋于无穷.

例如 A 选项, 当
$$x_n = \frac{1}{2n\pi + \pi/2}, f(x_n) = 2n\pi + \pi/2, n \to \infty, f(x_n) \to \infty$$
; 当 $x_n = \frac{1}{2n\pi}, f(x_n) = 0, n \to \infty, f(x_n) \to 0$ 不为无穷大, 仅仅是无界.

导函数与原函数的奇偶性与周期性

- 1. 连续奇函数的所有原函数 $\int_0^x f(t)dt + C$ 都是偶函数
- 2. 连续偶函数仅有一个原函数 $\int_0^x f(t)dt$ 为奇函数
- 3. 连续周期函数的原函数为周期函数 $\iff \int_0^T f(x) dx = 0$
- 2. (2002, 数二) 设函数 f(x) 连续,则下列函数中,必为偶函数的是

A
$$\int_0^x f(t^2)dt$$
 B
$$\int_0^x f^2(t)dt$$
 C
$$\int_0^x t[f(t) - f(-t)]dt$$
 D
$$\int_0^x t[f(t) + f(-t)]dt$$

Solution

这种题可以采用奇偶性的定义直接去做,如下面选项 A,B 的解法,也可以按照上述的函数奇偶性的性质判断

(A)
$$\Leftrightarrow F(x) = \int_0^x f(t^2)dt$$

$$F(-x) = \int_0^{-x} f(t^2)dt = -\int_0^x f(t^2)dt = -F(x)$$

则A选项是奇函数

(B)
$$F(-x) = \int_0^{-x} f^2(t)dt = -\int_0^x f^2(-t)dt$$

推导不出B的奇偶性

(C) t[f(t) - f(-t)] 是一个偶函数, 故 C 选项是一个奇函数

(D) t[f(t) + f(-t)] 是一个奇函数, 故 D 选项是一个偶函数

1.2 极限的概念

函数极限的定义

设函数 f(x) 在点 x_0 的某去心邻域内有定义。若存在常数 A,使得对于任意给定的正数 ϵ ,总存在正数 δ ,使得当 x 满足

$$0 < |x - x_0| < \delta$$

时,必有

$$|f(x) - A| < \epsilon$$

则称 A 为函数 f(x) 当 x 趋近于 x_0 时的极限,记作

$$\lim_{x \to x_0} f(x) = A$$

或

$$f(x) \to A \quad (x \to x_0).$$

3. (2014, 数三) 设 $\lim_{n\to\infty}a_n=a$, 且 $a\neq 0$, 则当 n 充分大时有

$$(A)|a_n| > \frac{|a|}{2}$$
 $(B)|a_n| < \frac{|a|}{2}$ $(C)a_n > a - \frac{1}{n}$ $(D)a_n < a + \frac{1}{n}$

Solution

令 $\epsilon = |a|/2$, 则 $|a_n - a| < |a|/2 \ge ||a_n| - |a||$ 即

$$|a|/2 < |a_n| < \frac{3|a|}{2}$$

对于 CD 考虑当

$$a_n = a - \frac{2}{n}$$
 和 $a_n = a + \frac{2}{n}$ 简单来说 $\forall \epsilon$ 这里面的 ϵ 与 n 是无关的.

1.3 函数极限的计算

Remark

这一个题型基本上是计算能力的考察,对于常见未定式其实也没必要区分,目标都是往最简单 $\frac{0}{0}$ 或者 $\frac{\cdot}{\infty}$ 模型上面靠,辅助以 Taylor 公式,拉格朗日中值定理结合夹逼准则来做就可以.

4. (2000, 数二) 若 $\lim_{x\to 0} \frac{\sin 6x + xf(x)}{x^3} = 0$, 则 $\lim_{x\to 0} \frac{6+f(x)}{x^2}$ 为 (A) 0 (B) 6 (C) 36 (D) ∞

Solution

这个题第一次见可能想不到,但做多了就一个套路用 Taylor 就是了.

 $\sin 6x = 6x - 36x^2 + o(x^3)$, 带入题目极限有

$$\lim_{x \to 0} \frac{6x + xf(x) + o(x^3)}{x^3} = \lim_{x \to 0} \frac{6x + xf(x)}{x^3} = 36$$

5. (2002, 数二) 设 y = y(x) 是二阶常系数微分方程 $y'' + py' + qy = e^{3x}$ 满足初始条件 y(0) = y'(0) = 0 的特解, 则当 $x \to 0$ 时, 函数 $\frac{\ln(1+x^2)}{y(x)}$ 的极限 (A)不等于 (B)等于 1 (C)等于 2 (D)等于 3

Solution

由微分方程和 y(0) = y'(0) = 0 可知 y''(0) = 1, 则 $y(x) = \frac{1}{2}x^2 + o(x^2)$, 则

$$\lim_{x \to 0} \frac{\ln(1+x^2)}{y(x)} = \lim_{x \to 0} \frac{x^2}{\frac{1}{2}x^2} = 2$$

6. (2014, 数一、数二、数三) 求极限 $\lim_{x\to\infty} \frac{\int_1^x \left[t^2(e^{\frac{1}{t}}-1)-t\right]dt}{x^2\ln\left(1+\frac{1}{x}\right)}$

Solution

$$\lim_{x \to \infty} \frac{\int_{1}^{x} \left[t^{2} (e^{\frac{1}{t}} - 1) - t \right] dt}{x} = \lim_{x \to \infty} x^{2} (e^{\frac{1}{x}} - 1) - x$$

$$= \lim_{t \to 0} \frac{e^{t} - 1 - x}{x^{2}}$$

$$= \frac{1}{2}$$

7. 求极限 $\lim_{x\to 0^+} \ln(1+x) \ln \left(1+e^{1/x}\right)$

Solution

8. 求极限 $\lim_{x \to \infty} \left(x^3 \ln \frac{x+1}{x-1} - 2x^2 \right)$

Solution

9. (2010, 数三) 求极限 $\lim_{x \to +\infty} (x^{1/x} - 1)^{1/\ln x}$

Solution

10. 求极限 $\lim_{x\to 0} \left(\frac{a^x + a^{2x} + \dots + a^{nx}}{n}\right)^{1/x} \ (a > 0, n \in \mathbb{N})$

Solution

1.4 已知极限反求参数

11. (1998, 数二) 确定常数 a, b, c 的值, 使 $\lim_{x\to 0} \frac{ax - \sin x}{\int_b^x \frac{\ln(1+t^3)}{t} dt} = c \ (c \neq 0)$

Solution

1.5 无穷小阶的比较

12. (2002, 数二) 设函数 f(x) 在 x = 0 的某邻域内具有二阶连续导数, 且 $f(0) \neq 0$, $f'(0) \neq 0$, $f''(0) \neq 0$ 。证明:存在唯一的一组实数 $\lambda_1, \lambda_2, \lambda_3$, 使得当 $h \to 0$ 时, $\lambda_1 f(h) + \lambda_2 f(2h) + \lambda_3 f(3h) - f(0)$ 是比 h^2 高阶的无穷小。

Solution

13. (2006, 数二) 试确定 A, B, C 的值, 使得 $e^x(1 + Bx + Cx^2) = 1 + Ax + o(x^3)$, 其中 $o(x^3)$ 是 当 $x \to 0$ 时比 x^3 高阶的无穷小量。

14. (2013, 数二、数三) 当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x$ 与 ax^n 为等价无穷小, 求 n 与 a 的值。

Solution

1.6 数列极限的计算

方法

- (1) 单调有界准则 (三步走, 先确定单调性, 在确定有界性, 最后解方程求极限) 确定单调性, 可以考虑作差/做商/求导
- (2) 压缩映射原理
 - o1 先猜出极限 x*
 - $\circ 2$ 证明递推式 $|x_{n+1}^* x_n^*| \le k |x_n^*|$ 其中 k < 1
- (3) 夹逼准则
- (4) 定积分的定义 (n 项和/n 项积)
- 15. (2011, 数一、数二)
 - (i) 证明: 对任意正整数 n, 都有 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$
 - (ii) 设 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \ln n \ (n = 1, 2, \dots)$, 证明数列 $\{a_n\}$ 收敛。

Solution

- (1) 是基本不等式的证明,考虑拉格朗日中值即可
- (2) 考研大题, 特别是分成几个小问的题目, 都需要合理利用前面的结论 考虑 $a_{n+1} a_n$ 有

$$a_{n+1} - a_n = \frac{1}{n+1} - \ln(n+1) + \ln(n) = \frac{1}{n+1} - \ln(1+n/1) < 0$$

即 $\{a_n\}$ 单调递减, 考虑其有界性

$$a_n = 1 + 1/2 + 1/3 + \dots + 1/n - \ln(n)$$

 $< \ln(1+1) + \ln(1+1/2) + \dots + \ln(1+n/1) - \ln(n)$
 $= \ln(n+1) - \ln(n) > 0$

即 $\{a_n\}$ 有上界, 故由单调有界定理知数列 $\{a_n\}$ 收敛.

16. (2018, 数一、数二、数三) 设数列 $\{x_n\}$ 满足: $x_1 > 0, x_n e^{x_{n+1}} = e^{x_n} - 1$ $(n = 1, 2, \cdots)$ 。证明 $\{x_n\}$ 收敛, 并求 $\lim_{n \to \infty} x_n$ 。

Solution

这道题的难度在于如何处理条件. 考虑1 的妙用. 有

$$e^{x_{n+1}} = \frac{e^{x_n} - 1}{x} = \frac{e^{x_n} - e^0}{1}$$

= $e^{\xi}, \xi \in (0, x_n)$

而由于 e^x 是单调递增的函数则必然有 $\xi = x_{n+1}$ 即 $0 < x_{n+1} < x_n$ 从而单调递减有下界. 此时 $\{x_n\}$ 极限存在.

不妨设 $\lim_{n\to\infty} x_n = a$ 问题转换为求方程 $ae^a = e^a - 1$ 的解的问题. 显然 a=0 是其一个根. 考虑函数 $f(x) = e^x(1-x) - 1$ 其导数为 $-xe^x$ 在 $(0,\infty)$ 上单调递减故 x=a 是 f(x) 唯一零点, 即 a=0 是唯一解. 故

$$\lim_{n \to \infty} x_n = 0$$

常见的等价代换有

 $\underline{1}$: e^0 , $\sin(\pi/2)$, $\cos(0)$, $\ln(e)$ 具体情况还得看题目, 题目有啥用啥替换

<u>0</u>: $\sin(0)$, $\cos(pi/2)$, $\ln(1)$

17. (2019, 数一、数三) 设
$$a_n = \int_0^1 x^n \sqrt{1-x^2} dx \ (n=0,1,2,\cdots)$$
。

(1) 证明数列
$$\{a_n\}$$
 单调减少, 且 $a_n = \frac{n-1}{n+2}a_{n-2}$ $(n=2,3,\cdots)$

这道题第一问比较重要, 第二问比较简单

(1) 方法一:

可以直接求出 a_n 的值, 令 $x = \sin(t)$

$$\begin{split} a_n &= \int_0^{\pi/2} \sin^n(t) \cos^2(t) \mathrm{d}t \\ &= \int_0^{\pi/2} \sin^n(t) - \int_0^{\pi/2} \sin^{n+2}(t) \mathrm{d}t \\ &= \frac{\text{华里+公式}}{n+2} \, \frac{1}{n+2} \frac{n-1}{n} \dots \frac{1}{2} \frac{\pi}{2}, \, \text{当 n 时偶数的时候} \\ a_{n-2} &= \frac{1}{n-1} \frac{n-1}{n} \dots \frac{1}{2} \frac{\pi/2}{2} \\ a_n &= \frac{n-1}{n+2} a_{n-2} \end{split}$$

当n为奇数的时候同理可得

(1) 方法二:

也可以考虑分部积分法

$$a_{n} = \int_{0}^{1} x^{n} (1 - x^{2})^{1/2} dx$$

$$= -\frac{1}{3} \left[x^{n-1} (1 - x^{2})^{3/2} \right]_{0}^{1} - \int_{0}^{1} (1 - x^{2})^{\frac{3}{2}} dx^{n-1}$$

$$= \frac{n-1}{3} \int_{0}^{1} \sqrt{1 - x^{2}} (1 - x^{2}) x^{n-2} dx$$

$$= \frac{n-1}{3} a_{n-2} - \frac{n-1}{3} a_{n}$$

$$\implies a_{n} = \frac{n-1}{n+2} a_{n-2}$$

(2)

由(1)可知

$$\frac{n-1}{n+2} < \frac{a_n}{a_{n-1}} = \frac{n-1}{n-2} \frac{a_{n-2}}{a_{n-1}} < 1$$

当 $n \to \infty$ 由夹逼准则可知 $\lim_{n \to \infty} \frac{a_n}{a_{n-1}} = 1$

18. (2017, 数一、数二、数三) 求
$$\lim_{n\to\infty}\sum_{k=1}^n \frac{k}{n^2}\ln\left(1+\frac{k}{n}\right)$$

这是最普通的定积分的定义的应用

原式 =
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} \ln(1 + \frac{k}{n})$$

$$\frac{\text{定积分定义}}{\int_{0}^{1} x \ln(1 + x) dx}$$

$$= \frac{1}{2} \int_{0}^{1} \ln(1 + x) dx^{2}$$

$$= \frac{1}{4}$$

间断点的判定 1.7

- 19. (2000, 数二) 设函数 $f(x)=\dfrac{x}{a+e^{bx}}$ 在 $(-\infty,+\infty)$ 内连续, 且 $\lim_{x\to-\infty}f(x)=0$, 则常数 a,b满足

- $\mathbf{A} \quad a<0,b<0 \qquad \quad \mathbf{B} \quad a>0,b>0 \qquad \quad \mathbf{C} \quad a\leq 0,b>0 \qquad \quad \mathbf{D} \quad a\geq 0,b<0$

Solution

第二章 一元函数微分学

导数与微分的概念 2.1

1. (2000, 数三) 设函数 f(x) 在点 x = a 处可导, 则函数 |f(x)| 在点 x = a 处不可导的充分 条件是

A $f(a) = 0 \perp f'(a) = 0$ B $f(a) = 0 \perp f'(a) \neq 0$

C f(a) > 0 且 f'(a) > 0 D f(a) < 0 且 f'(a) < 0

Solution

2. (2001, 数一) 设 f(0) = 0, 则 f(x) 在 x = 0 处可导的充要条件为

 $\text{(A)} \lim_{h \to 0} \frac{1}{h^2} f(1 - \cos h) \; 存在 \qquad \text{(B)} \lim_{h \to 0} \frac{1}{h} f(1 - e^h) \; 存在 \\ \text{(C)} \lim_{h \to 0} \frac{1}{h^2} f(h - \sin h) \; 存在 \qquad \text{(D)} \lim_{h \to 0} \frac{1}{h} [f(2h) - f(h)] \; 存在$

Solution

3. (2016, 数一) 已知函数 $f(x) = \begin{cases} x, & x \le 0 \\ \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n}, n = 1, 2, \cdots \end{cases}$

(A) x = 0 是 f(x) 的第一类间断点 (B) x = 0 是 f(x) 的第二类间断点

(C) f(x) 在 x = 0 处连续但不可导 (D) f(x) 在 x = 0 处可导

Solution

2.2 导数与微分的计算

4. (1997, 数一、数二) 设函数 f(x) 连续, $\varphi(x) = \int_0^1 f(xt)dt$, 且 $\lim_{x \to 0} \frac{f(x)}{x} = A(A$ 为常数), 求 $\varphi'(x)$, 并讨论 $\varphi'(x)$ 在 x = 0 处的连续性。

Solution

5. (2012, 数三) 设函数
$$f(x) = \begin{cases} \ln \sqrt{x}, & x \ge 1 \\ & , y = f(f(x)), \, \bar{x} \, \frac{dy}{dx} \Big|_{x=e} \end{cases}$$

Solution

6. (2007, 数二) 已知函数 f(u) 具有二阶导数,且 f'(0)=1,函数 y=y(x) 由方程 $y-xe^{y-1}=1$ 所确定。设 $z=f(\ln y-\sin x)$,求 $\frac{dz}{dx}\bigg|_{x=0}$ 和 $\frac{d^2z}{dx^2}\bigg|_{x=0}$

Solution

- 7. (2003, 数一、数二) 设函数 y = y(x) 在 $(-\infty, +\infty)$ 内具有二阶导数, 且 $y' \neq 0, x = x(y)$ 是 y = y(x) 的反函数。
 - (i) 将 x=x(y) 所满足的微分方程 $\frac{d^2x}{dy^2}+(y+\sin x)\left(\frac{dx}{dy}\right)^3=0$ 变换为 y=y(x) 满足的微分方程
 - (ii) 求变换后的微分方程满足初始条件 $y(0) = 0, y'(0) = \frac{3}{2}$ 的解

Solution

8. (2008, 数二) 设函数 y=y(x) 由参数方程 $\begin{cases} x=x(t) \\ y=\int_0^{t^2} \ln(1+u)du \end{cases}$ 确定, 其中 x(t) 是初值问题 $\begin{cases} \frac{dx}{dt}-2te^{-x}=0 \\ x|_{t=0}=0 \end{cases}$ 的解, 求 $\frac{d^2y}{dx^2}$

9. (2015, 数二) 函数 $f(x) = x^2 \cdot 2^x$ 在 x = 0 处的 n 阶导数 $f^{(n)}(0) = ______$

Solution

导数应用-切线与法线 2.3

10. (2000, 数二) 已知 f(x) 是周期为 5 的连续函数, 它在 x = 0 的某个邻域内满足关系式 $f(1+\sin x)-3f(1-\sin x)=8x+\alpha(x)$, 其中 $\alpha(x)$ 是当 $x\to 0$ 时比 x 高阶的无穷小, 且 f(x) 在 x = 1 处可导, 求曲线 y = f(x) 在点 (6, f(6)) 处的切线方程。

Solution

11. 曲线
$$\begin{cases} x = \int_0^{1-t} e^{-u^2} du \\ y = t^2 \ln(2 - t^2) \end{cases}$$
 在 $(0,0)$ 处的切线方程为___

Solution

12. (1997, 数一) 对数螺线 $r=e^{\theta}$ 在点 $(e^{\frac{\pi}{2}},\frac{\pi}{2})$ 处切线的直角坐标方程为__

Solution

导数应用-渐近线 2.4

13. (2014, 数一、数二、数三) 下列曲线中有渐近线的是

$$(A) y = x + \sin x$$

(B)
$$y = x^2 + \sin x$$

(A)
$$y = x + \sin x$$
 (B) $y = x^2 + \sin x$ (C) $y = x + \sin \frac{1}{x}$ (D) $y = x^2 + \sin \frac{1}{x}$

(D)
$$y = x^2 + \sin \frac{1}{x}$$

Solution

14. (2007, 数一、数二、数三) 曲线 $y = \frac{1}{x} + \ln(1 + e^x)$ 渐近线的条数为 (A) 0 (B) 1 (C) 2 (D) 3

Solution

2.5 导数应用-曲率

15. (2014, 数二) 曲线
$$\begin{cases} x=t^2+7 & \text{对应于 } t=1 \text{ 的点处的曲率半径是} \\ y=t^2+4t+1 & \\ (A) \frac{\sqrt{10}}{50} & (B) \frac{\sqrt{10}}{100} & (C) 10\sqrt{10} & (D) 5\sqrt{10} \end{cases}$$

Solution

2.6 导数应用-极值与最值

Remark

函数的极值的充分条件

(充分 1) f(x) 连续, 且 f'(x) 在 $x = x_0$ 的左右 <u>去心邻域内</u> 异号

(充分 2) $f'(x_0) = 0, f''(x_0) \neq 0$ 则有

$$f''(x) \begin{cases} > 0 & x_0 是极小值 \\ < 0 & x_0 是极大值 \end{cases}$$

(充分 3) 若 $f'(x_0) = f''(x_0) = \ldots = f^{(n-1)(x_0)=0,f^{(n)}}(x_0) \neq 0$, 且 n 是大于 2 的偶数则有

$$f^{(n)}(x_0) \begin{cases} > 0 & x_0 是极小值 \\ < 0 & x_0 是极大值 \end{cases}$$

- 17. (2000, 数二) 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$, 且 f'(0) = 0, 则
 - (A) f(0) 是 f(x) 的极大值
 - (B) f(0) 是 f(x) 的极小值

- (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点
- (D) f(0) 不是 f(x) 的极值, 点(0, f(0)) 也不是曲线 y = f(x) 的拐点

有题设知 f''(0) = 0, 对等式两边求导有 $f^{(3)}(0) = 1 \neq 0$ 由拐点充分条件可 知,(0, f(0)) 为函数的拐点

18. (2010, 数一、数二) 求函数 $f(x) = \int_{1}^{x^2} (x^2 - t)e^{-t^2}dt$ 的单调区间与极值

Solution

求导有

$$f'(x) = 2x \int_{1}^{x^2} e^{-t^2} dt$$

令 f'(x) = 0 有 x = 0 或 $x = \pm 1$ 并且无其余根, 带入可知 $x = \pm 1, f(\pm 1) = 0$ 为极小值点, $x = 0, f(0) = -\frac{1}{2}(e^{-1} - 1)$ 为极大值点

19. (2014, 数二) 已知函数 y = y(x) 满足微分方程 $x^2 + y^2y' = 1 - y'$, 且 y(2) = 0, 求 y(x) 的 极大值与极小值

Solution

比较简单, 答案为极小值为 y(-1) = 0, 极大值为 y(1) = 1

导数应用-凹凸性与拐点 2.7

Remark

拐点也有三个充分条件

- (充分 1) f(x) 连续, 且 f''(x) 在 $x = x_0$ 的左右去心邻域内 异号
- (充分 2) $f''(x_0) = 0, f'''(x_0) \neq 0$ 则有 $(x_0, f(x_0))$ 为函数拐点
- (充分 3) 若 $f'(x_0) = f''(x_0) = \ldots = f^{(n-1)(x_0)=0,f^{(n)}}(x_0) \neq 0$, 且 n 是大于 3 的奇数则有 $(x_0, f(x_0))$ 为函数的拐点
 - 20. (2011, 数一) 曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是

- (A) (1,0) (B) (2,0) (C) (3,0) (D) (4,0)

直接用高中的穿针引线法画图就可以

2.8 导数应用-证明不等式

Remark

通常优先考虑单调性,较难的题会结合微分中值定理(通常是拉格朗日/柯西/泰勒)

21. (2017, 数一、数三) 设函数 f(x) 可导, 且 f(x)f'(x) > 0, 则

$$(A) \ f(1) > f(-1) \quad (B) \ f(1) < f(-1) \qquad (C) \ |f(1)| > |f(-1)| \quad (D) \ |f(1)| < |f(-1)|$$

Solution

这道题的辅助函数比较好想, 显然 $F(x) = \frac{1}{2}f^2(x)$, 由题设知 F'(x) > 0 恒成立, 故 F(x) 单调递增即 $F(1) > F(-1) \Longrightarrow f^{(2)}(1) > f^{(2)}(-1) \Longrightarrow |f(1)| > |f(-1)|$

22. (2015, 数二) 已知函数 f(x) 在区间 $[a, +\infty)$ 上具有二阶导数, f(a) = 0, f'(x) > 0, f''(x) > 0。设 b > a,曲线 y = f(x) 在点 (b, f(b)) 处的切线与 x 轴的交点是 $(x_0, 0)$,证明 $a < x_0 < b$ 。

Solution

这道题的几何直观非常明显, 证明也不算很难.

由题可知切线方程为 y = f'(b)(x - b) + f(b) 令 y = 0 有 $x_0 = b - \frac{f(b)}{f'(b)}$

$$a < b - \frac{f(b)}{f'(b)} < b$$

$$\Leftrightarrow 0 < \frac{f(b)}{f'(b)} < b - a$$

$$\Leftrightarrow 0 < f(b) < f'(b)(b - a)$$

由 f(a) = 0 和拉格朗日中值定理有 $f(b) = f(b) - f(a) = f'(\xi)(b-a), a < \xi < b,$ 又 f''(x) > 0 故 $f'(\xi) < f'(b)$ 故 f(b) < f'(b)(b-a) 从而原不等式成立

2.9 导数应用-求方程的根

23. (2015, 数二) 已知函数 $f(x) = \int_x^1 \sqrt{1+t^2} dt + \int_1^{x^2} \sqrt{1+t} dt$, 求 f(x) 零点的个数。

Solution

这道题也比较简单, 感觉是高中题现在考研已经不太可能出了 $f'(x) = (2x-1)\sqrt{1+x^2}$, 显然只有唯一根 f'(1/2) = 0 又 f(1) = 0 故 f(1/2) < 0 又 f(-1) > 0 故 f(x) 在 f(-1,1/2) 上必然还有唯一根, 故 f(x) 在 R 上仅有两根

2.10 微分中值定理证明题

Remark

证明含有一个 ξ 的等式

如果不含导数,通常使用单调性+零点存在定理

如果包含导数,通常需要构建辅助函数并使用费马引理/罗尔定理

构建辅助函数中比较困难的题目,可以采用积分还原法做,其基本思路为

- (1) 将 ε 都改写成 x, 变形做不定积分去掉导数
- (2) 改写 C=0. 移项构建辅助函数
- 25. (2013, 数一、数二) 设奇函数 f(x) 在 [-1,1] 上具有二阶导数, 且 f(1) = 1。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;
 - (ii) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$ 。

Solution

- (1) 显然构建 F(x) = f(x) x, 有 F(1) = F(0) = 0 由 roller Th 可知 $\exists \xi \in (0,1), F'(\xi) = 0$ 即 $f'(\xi) = 1$
- (2) 由 f(x) 是可导的奇函数容易得知 f'(x) 偶函数

(方法一) 构建 G(x) = f'(x) + f(x) - x, 则 G(-1) = f'(1) = G(1) 由 roller Th 有...

(方法二) 构建 $G(x) = e^x(f'(x) - 1)$, 则由第一问有 $f'(-\xi) = f'(\xi) = 1$ 带入 G(x), 再由 roller Th 也可以得到答案

26. 设函数 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, f(1)=0, 证明:存在 $\xi \in (0,1)$, 使得 $(2\xi+1)f(\xi)+\xi f'(\xi)=0$ 。

Solution

这道题很难通过观察法得到辅助函数,考虑使用积分还原法

$$\frac{f'(x)}{f(x)} = -(2 + \frac{1}{x})$$

$$\int \frac{f'(x)}{f(x)} \mathrm{d}x = \int -(2 + \frac{1}{x}) \mathrm{d}x$$

即

$$\ln|f(x)| + \ln x + \ln e^{2x} - \ln|C| = 0$$

化简且令 C=0 后有

$$xe^{2x}f(x) = 0$$

故辅助函数 $G(x) = xe^{2x}f(x)$, 又 G(1) = G(0) 由 roller Th 可知原等式成立

Remark

类型二证明含有两个点的等式

若要求的是两个相异的点,则分区间讨论(具体看下题1)

若并不要求两个相异的点,则可能需要一次拉格朗日一次柯西(具体见下题2)

- 27. 设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(0) = 0, f(1) = 1。证明:
 - (i) 存在两个不同的点 $\xi_1, \xi_2 \in (0,1)$, 使得 $f'(\xi_1) + f'(\xi_2) = 2$;
 - (ii) 存在 $\xi, \eta \in (0, 1)$, 使得 $\eta f'(\xi) = f(\eta) f'(\eta)$ 。

Solution

对于(1)这种题目不应该从正面突破,而应该先假设.

假设 $\exists \xi_1 \in (0,c), \xi_2(c,1)$ 有

$$f'(\xi_1) = \frac{f(c) - f(0)}{f}$$

$$f'(\xi_2) = \frac{f(1) - f(c)}{1 - c}$$

带入题设条件 $f'(\xi_1) + f'(\xi_2) = 2 \implies c = \frac{1}{2}$

以上分析均不需要写在试卷上

由 lagrange Th $\exists \xi_1 \in (0,1/2), \xi_2(1/2,1)$ 有....

(2) 由 lagrange Th 可知 $\exists \xi \in (0,1), f'(\xi) = f(1) - f(0) = 1$ 题目要求的为

$$f'(\xi) = \frac{f(\eta)f'(\eta)}{\eta}$$

考虑柯西中值定理, 左侧分式实际是

$$\frac{f^2(1) - f^2(0)}{1^2 - 0^2} = \frac{f'(\eta)f(\eta)}{\eta} = 1 = f'(\xi)$$

Remark

类型三证明含有高阶导数的等式或不等式

基本就是 Taylor 的题, 当然有时也可以通过多次拉格朗日求出来.

这种问题的关键点在于如何寻找展开点,基本思路就是谁信息多展开谁,例如端点,极值点、最值点、零点等等

- 28. (2019, 数二) 已知函数 f(x) 在 [0,1] 上具有二阶导数, 且 f(0) = 0, f(1) = 1, $\int_0^1 f(x) dx = 1$ 。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$;
 - (ii) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) < -2$.

Solution

这道题算是比较难的题目, 当然不是最难的最难的那道比较像数学分析的题

- (方法一) (1) 由积分中值定理可知 $\exists f(c) = 1$ 又 f(1) = f(c) = 1 由 roller Th 可知 $\exists \xi, f'(\xi) = 0$
 - (2) 要证明 $f''(\eta) < -2$ 只需证明对于 $F(x) = f(x) + x^2, \exists \eta, F''(x) < 0$ 分别 在区间 (0,c)(c,1) 上使用 lagrange Th 有

$$F(c) - F(0) = F'(\xi_1)c = 1 + c^2, \xi_1 \in (0, c)$$

$$F(1) - F(c) = F'(\xi_2)(1 - c) = 1 - c^2, \xi_2 \in (c, 1)$$

再在区间 (ξ_1, ξ_2) 使用 lagrange Th 有

$$F'(\xi_2) - F'(\xi_1) = F''(\eta)(\xi_2 - \xi_1), \eta \in (\xi_1, \xi_2)$$

将 $F'(\xi_1), F'(\xi_2)$ 带入上式, 有

$$F''(\eta) = \frac{c-1}{c(\xi_2 - \xi_1)} < 0$$

故原不等式成立

- (方法二) (1) 由题设知在区间 (0,1) 内必然存在最值, 且 $f(\xi) > 1$, 由费马引理可知 $f'(\xi) = 0$
 - (2) 在 $x = \xi$ 处进行 Taylor 展开有

$$f(x) = f(\xi) + f'(\xi)(x - \xi) + \frac{f''(\eta)}{2}(x - \xi)^2$$

带入x = 0点有

$$0 = f(\xi) + \frac{f''(\eta)}{2}\xi^2 \implies f''(\eta) = -\frac{2f(\xi)}{\xi^2} < -2$$

第三章 一元函数积分学

3.1 定积分的概念

2. (2009, 数三) 使不等式 $\int_1^x \frac{\sin t}{t} dt > \ln x$ 成立的 x 的范围是 $(A) (0,1) \quad (B) \left(1, \frac{\pi}{2}\right) \quad (C) \left(\frac{\pi}{2}, \pi\right) \quad (D)(\pi, +\infty)$

Solution

(方法一)利用单调性

$$f(x) = \int_{1}^{x} \frac{\sin t}{t} dt - \ln x$$

$$f'(x) = \frac{\sin x - 1}{x} \begin{cases} x > 0 & , f'(x) < 0 \\ x < 0 & , f'(x) > 0 \end{cases}$$

又 f(1) = 0 故 f(x) 在 (0,1) 上大于 0, 在 $(1,\infty)$ 小于 0 (方法二) 利用几何意义

$$\int_{1}^{x} \frac{\sin t}{t} dt > \ln x = \int_{1}^{x} \frac{1}{t} dt$$

$$\int_{1}^{x} \frac{\sin t - 1}{t} dt > 0$$

由积分的几何意义容易知道, 当 $x \in (0,1)$ 时候上式成立

3. (2003, 数二) 设
$$I_1 = \int_0^{\frac{\pi}{4}} \frac{\tan x}{x} dx$$
, $I_2 = \int_0^{\frac{\pi}{4}} \frac{x}{\tan x} dx$, 则
(A) $I_1 > I_2 > 1$ (B) $1 > I_1 > I_2$
(C) $I_2 > I_1 > 1$ (D) $1 > I_2 > I_1$

由基本不等式 $x \in (0, \frac{\pi}{2})$, $\sin x < x < \tan x$, 故有 $\tan x/x > 1 > x/\tan x$ 由比较定理 有 $I_1 > I_1$, 考虑 I_1 与 1 的关系.

(方法一) 求导用单调性

 $f(x) = \tan x/x$, \mathbb{N}

$$f'(x) = \frac{\sec^2 x \cdot x - \tan x}{x^2}$$
$$= \frac{x - \sin x \cos x}{\cos^2 x x^2} > 0$$

故 f(x) 在 $(0,\pi/4)$ 上单调递增,有 $f(x) < f(\pi/4) = \frac{4}{\pi}$,故 $I_1 < 1$ (方法二) 利用凹凸性

由于 $\tan x$ 在 $(0, \pi/2)$ 上是一个凹函数,则其割线的函数值大于函数的函数值大于切线的函数值 (割线在函数图像的上方,切线在函数图像的下方)则有

$$\frac{4}{\pi} > \tan x$$

从而 $I_1 < 1$

3.2 不定积分的计算

"万能公式如下

4. 计算下列积分 (1) $\int \frac{x^2+1}{x^4+1} dx$;(2) $\int \frac{x^2-1}{x^4+1} dx$

Solution

(1)

原式 =
$$\int \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} dx$$
=
$$\int \frac{d(x - \frac{1}{x})}{(x - \frac{1}{x})^2 + 2}$$

$$\frac{\int \frac{1}{x^2 + a^2} dx}{\sqrt{2}} \frac{1}{\sqrt{2}} \arctan \frac{x - \frac{1}{x}}{\sqrt{2}} + C$$

(2)

原式 =
$$\int \frac{1 - \frac{1}{x^2}}{x^2 + \frac{1}{x^2}}$$
=
$$\int \frac{d(x + \frac{1}{x})}{(x + \frac{1}{x})^2 - 2}$$
=
$$\frac{\int \frac{1}{a^2 - x^2} dx}{-2\sqrt{2}} - \frac{1}{2\sqrt{2}} \ln \left| \frac{\sqrt{2} + (x + \frac{1}{x})}{\sqrt{2} - (x + \frac{1}{x})} \right|$$

5. 计算不定积分
$$\int \ln \left(1 + \sqrt{\frac{1+x}{x}}\right) dx, x > 0$$

原式
$$=\frac{t=\sqrt{\frac{(1+x)}{x}}}{\ln 1+t} \ln 1+t d(\frac{1}{t^2-1})$$

$$=\frac{\text{分部积分}}{\ln (1+t)\cdot \frac{1}{t^2-1}}-\int \frac{1}{t^2-1}\cdot \frac{1}{1+t} dt$$

$$\int \frac{1}{t^2-1}\cdot \frac{1}{1+t} dt = \frac{1}{2}\int \frac{dt}{t^2-1}-\frac{1}{2}\int \frac{dt}{(t+1)^2}$$

$$=-\frac{1}{4}\ln\left|\frac{1+t}{1-t}\right|+\frac{1}{2(1+t)}+C$$
原式 $=\ln (1+t)\cdot \frac{1}{t^2-1}+\frac{1}{4}\ln\left|\frac{1+t}{1-t}\right|+\frac{1}{2(1+t)}+C$

$$6. \ \ \, \cancel{R} \int \frac{1}{1+\sin x + \cos x} dx$$

Solution

(方法一万能代换)

原式
$$= \frac{t = \tan \frac{x}{2}}{1 + t}$$

$$= \ln|1 + t| + C$$

$$= \ln\left|1 + \tan\frac{x}{2}\right| + C$$

(方法二三角公式)

原式
$$\frac{\cos x = 2\cos^2\frac{x}{2} - 1}{2\cos^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2}}$$

$$= \int \frac{\mathrm{d}x}{2\cos^2\frac{x}{2}(1 + \tan x^2)}$$

$$= \int \frac{\mathrm{d}\tan\frac{x}{2}}{1 + \tan\frac{x}{2}}$$

$$= \ln\left|1 + \tan\frac{x}{2}\right| + C$$

3.3 定积分的计算

Remark

定积分除了不定积分的办法还有如下自己独有的办法

其中华里士公式如下

$$\int_0^{\frac{\pi}{2}} \sin^n x dx \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{2}{3} \cdot 1, & n = \frac{\pi}{2} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{1}{2} \cdot \frac{\pi}{2}, & n = \text{ and } \end{cases}$$

cos x 也是一样的结果

7. (2013, 数一) 计算
$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
, 其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$

Solution

(方法一分部积分法)

原式 =
$$2\int_0^1 f(x) d\sqrt{x}$$

= $-2\int_0^1 \frac{\ln(1+x)}{\sqrt{x}} dx$
 $\frac{\sqrt{x}=t}{}$ $-4\int_0^1 \ln(1+t^2) dt$
= $-4t \ln(1+t^2) \Big|_0^1 + 4\int_0^1 \frac{2t^2}{t^2+1} dt$
= $8-4 \ln 2 - 2\pi$

(方法二二重积分)

原式 =
$$\int_0^1 \frac{1}{\sqrt{x}} dx \int_1^x \frac{\ln(1+t)}{t} dt$$

$$\frac{\text{交换积分次序}}{\text{ = } -\int_0^1 \frac{\ln(1+t)}{t} dt \int_0^t \frac{1}{\sqrt{x}} dx}$$

$$= -2 \int_0^1 \frac{\ln(1+t)}{\sqrt{t}} dt$$

$$= \dots$$

$$= 8 - 4 \ln 2 - 2\pi$$

8. 求下列积分: (1) $\int_0^{\frac{\pi}{2}} \frac{e^{sinx}}{e^{sinx} + e^{cosx}} dx$ (2) $\int_0^{\frac{\pi}{2}} \frac{1}{1 + (\tan x)^{\sqrt{2}}} dx$

Solution

这两题都是典型的区间再现的题目

(1)

原式
$$=$$
 $\int_0^{\frac{\pi}{2}} \frac{e^{\cos t}}{e^{\sin t} + e^{\cos t}} dt$

由于积分与变量无关,将上式与原式相加有

原式 =
$$\frac{1}{2} \int_0^{\frac{\pi}{2}} dt = \frac{\pi}{4}$$

(2)

原式 =
$$\int_0^{\frac{\pi}{2}} \frac{(\cos x)^{\sqrt{2}}}{(\sin x)^{\sqrt{2}} + \cos x)^{\sqrt{2}}}$$
$$\frac{\pi - \hat{\pi} + \hat{\pi} + \hat{\pi}}{\pi} \dots$$
$$= \frac{\pi}{4}$$

这道题是比较困难的积分计算题,由于其他方法都不好用不妨考虑区间再现

原式
$$= \int_0^{\frac{\pi}{4}-t} = \int_0^{\frac{\pi}{4}} \ln\left[1 + \tan\left(\frac{\pi}{4} - t\right)\right] \mathrm{d}t$$

$$= \frac{\tan\left(a+b\right) = \frac{\tan a + \tan b}{1 - \tan a \tan b}}{\int_0^{\frac{\pi}{4}}} \left[\ln 2 - \ln\left(1 + \tan t\right)\right] \mathrm{d}t$$
 原式 $= \frac{\pi}{8} \ln 2$

区间再现总结

考试中可能直接考察的区间再现的公式为

$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx$$

其余的就只能见机行事 若其他积分方法都无法做出则可以考虑区间再现

3.4 反常积分的计算

Remark

瑕积分的计算需要注意,若瑕点在内部则需要积分拆开分别计算

10. (1998, 数二) 计算积分
$$\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{dx}{\sqrt{|x-x^2|}}$$

Solution

显然 x=1 是积分的瑕点, 故原积分需要拆成两部分即

原式 =
$$\int_{\frac{1}{2}}^{1} \frac{\mathrm{d}x}{\sqrt{x - x^2}} + \frac{1}{\frac{3}{2}} \frac{\mathrm{d}x}{\sqrt{x^2 - x}}$$

$$\xrightarrow{\underline{\mathbb{R} / 5}} \arcsin 2(x - \frac{1}{2}) \Big|_{\frac{1}{2}}^{1} + \ln \left| x - \frac{1}{2} + \sqrt{(x - \frac{1}{2})^2 - \frac{1}{4}} \right| \Big|_{1}^{\frac{3}{2}}$$

$$= \frac{\pi}{2} + \ln \left(2 + \sqrt{3} \right)$$

积分表的拓展

(1)

$$\int \frac{\mathrm{d}x}{\sqrt{a^2-x^2}} = \arcsin\frac{x}{a} + C$$

$$\int \sqrt{a^2-x^2} \mathrm{d}x = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\arcsin\frac{x}{a} + C$$

(2)

$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \ln\left|x + \sqrt{x^2 + a^2}\right|$$

$$\int \sqrt{x^2 + a^2} \mathrm{d}x = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln\left|x + \sqrt{x^2 + a^2}\right| + C$$

(3)

$$\begin{split} &\int \frac{\mathrm{d}x}{\sqrt{x^2-a^2}} = \ln\left|x+\sqrt{x^2-a^2}\right| \\ &\int \sqrt{x^2-a^2} \mathrm{d}x = \frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2} \ln\left|x+\sqrt{x^2-a^2}\right| + C \end{split}$$

第二个如果是定积分也可以按照几何意义(圆的面积)做

3.5 反常积分敛散性的判定

Remark

反常积分的敛散性感觉不如无穷级数敛散性难

(方法一)使用反常积分的定义,算出其极限值

(方法二) 比较判别法-寻找 x^p

$$(瑕积分) \int_0^1 \frac{1}{x^p} \begin{cases} 0
$$(无穷积分) \int_1^{+\infty} \frac{1}{x^p} \begin{cases} p > 1, & \text{收敛} \\ p \le 1, & \text{发散} \end{cases}$$$$

11. (2016, 数一) 若反常积分 $\int_0^{+\infty} \frac{1}{x^a(1+x)^b} dx$ 收敛, 则

(A) a<1 且 b>1

(B) a>1 且 b>1

(C) a<1 且 a+b>1

(D) a>1 且 a+b>1

Solution

显然 x=0 是该积分的瑕点, 需要分成两部分考虑 $\int_{0}^{+\infty} = \int_{0}^{1} + \int_{1}^{+\infty}$

$$\lim_{x\to 0^+} \frac{x^p}{x^a(1+x)^b} = 1$$

$$\xrightarrow{\text{等价代换}} \lim_{x\to 0^+} \frac{x^p}{x^a} \implies p = a$$

由 p 积分的性质可知当 p < 1 的时候其收敛故 a < 1 的时候原积分中的 \int_{a}^{1} 收敛同 理对于 ∫^{+∞} 有

$$\lim_{x \to +\infty} \frac{x^p}{x^{a+b}} = 1 \implies p = a+b$$

由 p 积分的性质可知当 p>1 即 a+b>1 的时候原积分 $\int_{1}^{+\infty}$ 收敛, 故由反常积分 的定义可知只有 a < 1, a + b > 1 的时候原积分收敛

- 12. (2010, 数一、数二) 设 m, n 均为正整数,则反常积分 $\int_{0}^{1} \frac{\sqrt[m]{\ln^{2}(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性
 - (A) 仅与 m 的取值有关 (B) 仅与 n 的取值有关
- - (C) 与 m,n 的取值都有关 (D) 与 m,n 的取值都无关

Solution

显然 x = 0 和 x = 1 是积分的瑕点, 需要分成两部分考虑, 有 $\int_{0}^{1} = \int_{0}^{\frac{1}{2}} + \int_{1}^{1}$, 想考 虑前一个积分

$$\lim_{x \to 0^+} \int_0^{\frac{1}{2}} x^p \frac{\sqrt[m]{\ln^2{(1-x)}}}{\sqrt[n]{x}} = \lim_{x \to 0^+} \int_0^{\frac{1}{2}} x^p \frac{1}{x^{\frac{1}{n}-\frac{2}{m}}} \implies p = \frac{1}{n} - \frac{2}{m}$$

由 p 积分的性质, 只有 p < 1 上述积分就收敛, 而由于 $(n, m) \in \mathbb{Z}^+, \frac{1}{n} - \frac{2}{m} < \frac{1}{n} < 1$ 故上式恒收敛.

$$\lim_{x\to 1^-} (x-1)^p \frac{\sqrt[m]{\ln{(1-x)^2}}}{\sqrt[n]{x}} = \lim_{x\to 1^-} (x-1)^p \sqrt[m]{\ln{(1-x)^2}} \implies \text{ $\stackrel{\text{$\square$}}{=}$ } 0$$

故上式也恒收敛, 故原式的敛散性与 (n,m) 均无关

3.6 变限积分函数

原函数,可积,变限积分

(一)原函数存在定理

$$\int f(x) \mathrm{d}x$$
存在 \begin{cases} 连续函数原函数必然存在 $\\$ 含有第一类间断点和无穷间断点其原函数必然不存在 $\end{aligned}$ 含有震荡间断点其原函数可能存在

(二)可积性定理

$$\int_a^b f(x) \mathrm{d}x$$
存在 $\left\{egin{array}{l} \hline \mathrm{可积必有界} \ \\ 连续必可积 \ \\ \end{array}
ight.$ 含有有限个间断点的有界函数可积

(三)变限积分

$$F(x) = \int_a^x f(t) \mathrm{d}t \begin{cases} f(x) \mathrm{可积} \implies F(x) \mathrm{连续} \\ f(x) \mathrm{连续} \implies F(x) \mathrm{可导} \\ \\ x = x_0 \mathrm{是函数可去间断点} \implies F(x) \mathrm{可导}, \ \ell \ell, \ \ell$$

13. (2013, 数二) 设函数
$$f(x) = \begin{cases} \sin x, & 0 \le x < \pi \\ 2, & \pi \le x \le 2\pi \end{cases}$$
 , $F(x) = \int_0^x f(t)dt$, 则

- $(A) x=\pi$ 是函数 F(x) 的跳跃间断点
- (B) $x=\pi$ 是函数 F(x) 的可去间断点
- (C) F(x) 在 $x=\pi$ 处连续但不可导 (D) F(x) 在 $x=\pi$ 处可导

Solution

显然由总结可知, 选 C

- 14. (2016, 数二) 已知函数 f(x) 在 $[0, \frac{3\pi}{2}]$ 上连续, 在 $(0, \frac{3\pi}{2})$ 内是函数 $\frac{\cos x}{2x 3\pi}$ 的一个原函数, 且 f(0) = 0.
 - (1) 求 f(x) 在区间 $[0, \frac{3\pi}{2}]$ 上的平均值;
 - (2) 证明 f(x) 在区间 $[0, \frac{3\pi}{2}]$ 内存在唯一零点.

(一) 有题有
$$f(x) = \int_0^x \frac{\cos t}{2t - 3\pi} dt$$
, 所求的平均值为

平均值 =
$$\frac{\int_0^{\frac{3\pi}{2}} f(x) dx}{\frac{3\pi}{2}}$$
=
$$\frac{\int_0^{\frac{3\pi}{2}} \int_0^x \frac{\cos t}{2t - 3\pi} dt}{\frac{3\pi}{2}}$$
=
$$\frac{\frac{5\pi}{2}}{\frac{3\pi}{2}} \frac{\cos t}{2t - 3\pi} dt \int_t^{\frac{3\pi}{2}} dx$$
=
$$\frac{1}{3\pi}$$

(二) 有题可知 $f'(x) = \frac{\cos x}{2x - 3\pi}$,在 $(0, \frac{3\pi}{2})$ 只有唯一零点 $x = \frac{\pi}{2}$,从而有 $0 < x < \frac{\pi}{2}$,f(x) 单调递减,而 $\frac{\pi}{2} < x < \frac{3\pi}{2}$,f(x) 单调递增,且 f(0) = 0,考虑上述平均值,由积分中值定理有 $f(c) = \frac{\pi}{3} > 0$ 故 f(x) 在 $\frac{\pi}{2} \sim \frac{3\pi}{2}$ 上有一个零点. 综上 f(x) 在区间 $(0, \frac{3\pi}{2})$ 仅有一个零点

定积分的应用

(一) 定积分求面积 (也可以用二重积分)

$$A = \begin{cases} \int_{a}^{b} |f(x)| \, \mathrm{d}x, & \text{直角坐标系} \\ \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\theta) \, \mathrm{d}\theta, & \text{极坐标} \\ \int_{\alpha}^{\beta} |y(t)x'(t)| \, \mathrm{d}t, & \text{参数方程} \\ \frac{1}{2} \int_{l} -y \, \mathrm{d}x + x \, \mathrm{d}y, & \text{L 对 D 来说取正向} \end{cases}$$

(二) 定积分求旋转体体积 (可以用微元法推, 也可以用二重积分)

$$V = \begin{cases} \iint_D 2\pi r(x,y) \mathrm{d}\sigma, & \text{二重积分法, 其中}r(x,y)$$
为区域 D 内一点到转轴的距离
$$\int_a^b \pi f^2(x) \mathrm{d}x, & \text{微元法, 绕 x 轴旋转} \\ \int_a^b 2\pi \left| x f(x) \right| \mathrm{d}x, & \text{微元法, 绕 y 轴旋转} \end{cases}$$

(三) 定积分求弧长 (第一类曲线积分)

$$s_{弧长} = \int_C f(x,y) \mathrm{d}s = \begin{cases} \int_a^b \mathrm{d}s = \int_a^b \sqrt{1 + (y')^2} \mathrm{d}x, & \text{直角坐标} \\ \int_\alpha^\beta \mathrm{d}s = \int_\alpha^\beta \sqrt{(x'(t))^2 + (y'(t))^2} \mathrm{d}t, & \text{参数方程} \\ \int_\alpha^\beta \mathrm{d}s = \int_\alpha^\beta \sqrt{r^2(\theta) + r'^2(\theta)} \mathrm{d}\theta, & \text{极坐标} \end{cases}$$

(四) 定积分求侧面积 (第一类曲面积分)

$$S_{\text{侧面积}} = \iint_S \mathrm{d}S = \begin{cases} \int_a^b 2\pi y(x) \sqrt{1 + (y'(x))^2} \mathrm{d}x, & \text{直角坐标} \\ \int_a^\beta 2\pi y(t) \sqrt{(x'(t))^2 + (y'(t))^2} \mathrm{d}t, & \text{参数方程} \\ \int_\alpha^\beta 2\pi r(\theta) \sin \theta \sqrt{r^2(\theta) + r'^2(\theta)} \mathrm{d}\theta, & \text{极坐标} \end{cases}$$

(五)物理应用(微元法,不过数一不太可能考)

3.7 定积分应用求面积

15. (2019, 数一、数二、数三) 求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

Solution
$$A = \int_0^{+\infty} |e^x \sin x| \, \mathrm{d}x$$

$$= \sum_{n=0}^{\infty} (-1)^n \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x \, \mathrm{d}x$$

$$\frac{\left|(e^{\alpha x})' \quad (\sin \beta x)'\right|}{e^{\alpha x} \quad (\sin \beta x)} + C$$
其中
$$\int_{n\pi}^{(n+1)\pi} e^{-x} \sin x \, \mathrm{d}x = \frac{-e^{-x} (\sin x + \cos x)}{2} \Big|_{n\pi}^{(n+1)\pi}$$
故原式
$$= \frac{1}{2} \sum_{n=0}^{\infty} e^{-n\pi} (1 + e^{-\pi})$$

$$= \frac{1 + e^{-\pi}}{2} \cdot \frac{1}{1 - e^{-\pi}} = \frac{1 + e^{\pi}}{2(e^{\pi} - 1)}$$

3.8 定积分应用求体积

- 16. (2003, 数一) 过原点作曲线 $y = \ln x$ 的切线, 该切线与曲线 $y = \ln x$ 及 x 轴围成平面图形 D.
 - (1) 求D的面积A;
 - (2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积 V.

Solution

(1) 有题设可求出其切点为 (e,1) 切线方程为 $y=\frac{x}{e}$

方法一:

$$A = \frac{e}{2} - \int_{1}^{e} \ln x dx$$
$$= \frac{e}{2} - (x \ln x) \Big|_{1}^{e}$$
$$= \frac{e}{2} - 1$$

方法二: 用反函数做 $x = e^y$

$$A = \int_0^1 e^y dy - \frac{e}{2}$$
$$= e - 1 - \frac{e}{2}$$
$$= \frac{e}{2} - 1$$

(2) 方法一:

$$V = \frac{\pi}{3}e^2 - 2\pi \int_1^e (e - x) \ln x dx = \frac{\pi}{6} (5e^2 - 12e + 3)$$

方法二: 用反函数

$$V = \frac{\pi}{3}e^2 - \pi \int_0^1 (e^y - e)^2 dy = \frac{\pi}{6}(5e^2 - 12e + 3)$$

17. (2014, 数二) 已知函数 f(x,y) 满足 $\frac{\partial f}{\partial y} = 2(y+1)$, 且 $f(y,y) = (y+1)^2 - (2-y) \ln y$, 求 曲线 f(x,y) = 0 所围图形绕直线 y = -1 旋转所成旋转体的体积.

Solution

先利用偏积分求出 $f(x,y)=(y+1)^2-(2-x)\ln x$, 故曲线 $f(x,y)=0 \implies (y+1)^2=(2-x)\ln x$ (1 $\leq x \leq 2$) 要根据题目条件求出 x 的范围! 显然曲线关于 y=-1 对称利用微元法有

$$V = \pi \int_{1}^{2} (y+1)^{2} dx$$
$$= \pi \int_{1}^{2} (2-x) \ln x dx$$
$$= 2\pi \ln 2 - \frac{5\pi}{4}$$

3.9 定积分应用求弧长

18. 求心形线 $r = a(1 + \cos \theta)(a > 0)$ 的全长.

Solution

这种极坐标的图像,都可以通过描点法去画(其实画不画也不影响求)

$$S = \int_0^{2\pi} \sqrt{a^2 (1 + \cos \theta)^2 + a^2 \sin \theta^2} d\theta$$
$$= \sqrt{2}a \int_0^{2\pi} \sqrt{1 + \cos \theta} d\theta$$
$$\frac{\cos \theta = 2\cos^2 \frac{\theta}{2} - 1}{2\pi} 2a \int_0^{2\pi} \left| \cos \frac{\theta}{2} \right| d\theta$$
$$= 8a$$

3.10 定积分应用求侧面积

19. (2016, 数二) 设 D 是由曲线 $y = \sqrt{1-x^2} (0 \le x \le 1)$ 与 $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$ 的平面区域, 求 D 绕 x 轴旋转一周所得旋转体的体积和表面积.

Solution

这个参数方程的图像是需要记住即星形线

$$\begin{split} V &= \frac{1}{4} \cdot \frac{4}{3} \pi \cdot 1^3 - \int_0^1 \pi y^2(x) \mathrm{d}x \\ &= \frac{18}{35} \pi \\ S &= \frac{1}{2} \cdot 4 \pi + \int_0^1 2 \pi y(x) \mathrm{d}s \\ &= 2 \pi + \int_0^{\frac{\pi}{2}} 2 \pi \cdot \sin^3 t \sqrt{(3 \cos^2 t (-\sin t))^2 + (3 \sin^2 t \cos t)^2} \mathrm{d}t \\ &= \frac{16 \pi}{5} \end{split}$$

3.11 证明含有积分的等式或不等式

Remark

积分中值定理(三个)

(-) 第一积分中值定理, 若 f(x) 在 [a,b] 上连续, 则

$$\exists c \in [a, b], \int_a^b f(x) dx = f(c)(b - a)$$

(二) 第一积分中值定理的推广, 若 f(x) 在 (a,b) 上连续

$$\exists c \in (a,b), \int_a^b f(x) dx = f(c)(b-a)$$

(三) 第二积分中值定理, 若 f(x), g(x) 在区间 (a,b) 上连续, 且 g(x) 在其上不变号则

$$\exists c \in (a,b), \int_a^b f(x)g(x)\mathrm{d}x = g(c)\int_a^b f(x)\mathrm{d}x$$

比较定理及其推论

设函数
$$f(x), g(x)$$
 在 $[a, b]$ 上可积, 且 $f(x) \le g(x)$, 则 $\int_a^b f(x) \le \int_a^b g(x)$

推论一: 若函数 f(x),g(x) 在 [a,b] 连续, 且 $f(x)\leq g(x)$, 则 $\int_a^b f(x)<\int_a^b g(x)$

推论二: 若 $f(x) \ge 0, x \in [a, b]$, 则 $\int_a^b f(x) dx \ge 0$

推论三: $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$

- 21. (2000, 数二) 设函数 $S(x) = \int_0^x |\cos t| dt$.
 - (1) 当 n 为正整数, 且 $n\pi \le x < (n+1)\pi$ 时, 证明 $2n \le S(x) < 2(n+1)$;
 - (2) $\vec{x} \lim_{x \to +\infty} \frac{S(x)}{x}$

(1) 由比较定理有

$$\int_0^{n\pi} \left|\cos t\right| \mathrm{d}t \le S(x) < \int_0^{(n+1)\pi} \left|\cos t\right| \mathrm{d}t$$

显然 $|\cos t|$ 以 π 为周期故上式容易计算为

$$2n \le S(x) < 2(n+1)$$

(2) 考虑夹逼准则

$$\frac{2}{\pi} \stackrel{\lim_{n \to \infty}}{\longleftarrow} \frac{2n}{(n+1)\pi} \le \frac{S(x)}{x} < \frac{2(n+1)}{n\pi} \xrightarrow{\lim_{n \to \infty}} \frac{2}{\pi}$$

故
$$\lim_{x \to \infty} \frac{S(x)}{x} = \frac{2}{\pi}$$

- 22. (2014, 数二、数三) 设函数 f(x), g(x) 在区间 [a,b] 上连续, 且 f(x) 单调增加, $0 \le g(x) \le 1$. 证明:
 - (1) $0 \le \int_a^x g(t)dt \le x a, x \in [a, b];$

(2)
$$\int_{a}^{a+\int_{a}^{b}g(t)dt} f(x)dx \le \int_{a}^{b} f(x)g(x)dx.$$

Solution

(一) 由比较定理有

$$0 \le \int_a^x g(x) \mathrm{d}x \le \int_a^x \mathrm{d}x = x - a$$

(二) 构建函数用单调性

令

$$F(x) = \int_{a}^{ma + \int_{a}^{x} g(t)dt} f(t)dt - \int_{a}^{x} f(t)g(t)dt$$

则其导数为

$$F'(x) = g(x) \left[f(a + \int_a^x g(t)dt) - f(x) \right]$$

由一可知 $a+\int_a^x g(t)\mathrm{d}t \le x$ 从而可知 F'(x)<0 故而 F(x) 在区间 (a,b) 上单调递减,而 F(a)=0 故 F(b)< F(a)=0 即

$$\int_{a}^{a+\int_{a}^{b}g(t)dt} f(x)dx \le \int_{a}^{b} f(x)g(x)dx$$

第四章 常微分方程

4.1 一阶微分方程

Remark

一阶微分方程

(一) 可分离变量类型: 形如 $\frac{\mathrm{d}y}{\mathrm{d}x}=f(x)g(y)$ 可以转换为 $\frac{\mathrm{d}y}{g(y)}=f(x)\mathrm{d}x$

(二) 一阶线性非齐次: 形如 y' + p(x)y = q(x) 其通解公式为

$$y = e^{-\int p(x)dx} \left[\int e^{\int p(x)dx} q(x)dx + C \right]$$

特殊的, 一阶线性齐次 y' + p(x)y = 0 其通解公式为

$$y = Ce^{-\int p(x)\mathrm{d}x}$$

(三) 一阶齐次方程: 形如 $y' = f(\frac{y}{x})$ 则可以通过 $u = \frac{y}{x}$ 为可分离变量类型

(四) 全微分方程: 形如 P(x,y)dx+Q(x,y)dy=0, 且 $\frac{dQ}{dx}=\frac{dP}{dy}$ 则其解法本质都是求原函数

(I) 特殊路径积分法
$$u(x,y) = \int_{x_0}^x P(x,y_0) dx + \int_{y_0}^y Q(x,y) dy$$

- (II) 偏积分, 一般考虑直接偏积分
- (III) 凑微分

(五) 伯努利方程: 形如 $y'(x) + p(x)y = q(x)y^{\alpha}, \alpha \neq (0,1)$ 其解法如下

- (I) 同除 y^{α} , 转换为 $y^{-\alpha}y' + p(x)y^{1-\alpha} = q(x)$
- (II) 做 $z = y^{1-\alpha}$ 的换元,则原微分方程转换为

(III)
$$\frac{\mathrm{d}z}{\mathrm{d}x} + (1 - \alpha)p(x)z = (1 - \alpha)q(x)$$

(IV) 转换为一阶线性方程可以用公式法直接求

(六) 需要考虑变量互换: 形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{h(y)}{p(y)x + q(y)}, \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{h(y)}{p(y)x + q(y)x^{\alpha}}$$

交换后可以转换为一阶线性/一阶伯努利即

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{p(y)}{h(y)} + \frac{q(y)}{h(y)}, \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{p(y)}{h(y)} + \frac{q(y)}{h(y)}x^{\alpha}$$

1. (1998, 数一、数二) 已知函数 y = y(x) 在任意点 x 处的增量 $\Delta y = \frac{y\Delta x}{1+x^2} + \alpha$, 其中 α 是 Δx 的高阶无穷小, $y(0) = \pi$, 则 y(1) 等于

(A)
$$2\pi$$
 (B) π (C) $e^{\frac{\pi}{4}}$ (D) $\pi e^{\frac{\pi}{4}}$

Solution

两边同除 Δx 且当 $\Delta x \rightarrow 0$, 有 $y' = \frac{y}{1+x^2}$ 原问题转换为求初值问题的解

$$\begin{cases} y' - \frac{y}{1+x^2} = 0\\ y(0) = \pi \end{cases}$$

由公式有 $y = \pi e^{\frac{\pi}{4}}$

2. (2002, 数二) 已知函数 f(x) 在 $(0,+\infty)$ 内可导, f(x) > 0, $\lim_{x \to +\infty} f(x) = 1$, 且满足

$$\lim_{h \to 0} \left(\frac{f(x+hx)}{f(x)} \right)^{\frac{1}{h}} = e^{\frac{1}{x}}$$

求 f(x)。

Solution

由题设有

原式 =
$$e^{\lim_{h\to 0}} \frac{f(x+hx) - f(x)}{hf(x)}$$

= $e^{\frac{f'(x)\cdot x}{x}} = e^{\frac{1}{x}} \implies \frac{f'(x)\cdot x}{f(x)} = \frac{1}{x}$

即原问题转换为如下初值问题的解

$$\begin{cases} f'(x) - \frac{1}{x^2} \cdot f(x) = 0\\ \lim_{x \to \infty} f(x) = 1 \end{cases}$$

带入公式有 $f(x) = e^{-\frac{1}{x}}$

3. (1999, 数二) 求初值问题

$$\begin{cases} (y + \sqrt{x^2 + y^2})dx - xdy = 0 & (x > 0) \\ y|_{x=1} = 0 & \end{cases}$$

Solution

等式两边同时除以 x, 原式化为

$$\left[\frac{y}{x} + \sqrt{1 + (\frac{y}{x})^2}\right] \mathrm{d}x = \mathrm{d}y$$

令
$$u = \frac{y}{x}$$
, 则 $\frac{dy}{dx} = u + x \frac{du}{dx}$ 原式化为

$$\frac{\mathrm{d}u}{\sqrt{1+u^2}} = \frac{\mathrm{d}x}{x}$$

两边同时积分

$$\begin{cases} \frac{y}{x} + \sqrt{1 + (\frac{y}{x})^2} = Cx \\ y(1) = 0 \end{cases} \implies y + \sqrt{x^2 + y^2} = x^2$$

对于带有根式的结果特别需要注意化简, 两边同时乘以 $y-\sqrt{x^2+y^2}$, 可以解出 $y=\frac{1}{2}(x^2+1)$

4. (2010, 数二、数三) 设 y_1, y_2 是一阶线性非齐次微分方程 y' + p(x)y = q(x) 的两个特解。 若常数 λ, μ 使 $\lambda y_1 + \mu y_2$ 是该方程的解, $\lambda y_1 - \mu y_2$ 是该方程对应的齐次方程的解,则

$$(A) \ \lambda = \frac{1}{2}, \ \mu = \frac{1}{2} \qquad (B) \ \lambda = -\frac{1}{2}, \mu = -\frac{1}{2}$$

$$(C) \ \lambda = \frac{2}{3}, \ \mu = \frac{1}{3} \qquad (D) \ \lambda = \frac{2}{3}, \mu = \frac{2}{3}$$

由总结可知,选A

一阶, 二阶线性微分方程 (组) 解的性质

若 y_1, y_2 分别为非齐次特解,则

$$C_1 y_1 + C_2 y_2$$

$$\begin{cases} C_1 + C_1 = 0, & \hat{\mathbf{x}}$$
 次解
$$C_1 + C_2 = 1, & \hat{\mathbf{x}}$$
 非齐次解

- 5. (2018, 数一) 已知微分方程 y'+y=f(x), 其中 f(x) 是 $\mathbb R$ 上的连续函数。
 - (1) 若 f(x) = x, 求方程的通解;
 - (2) 若 f(x) 是周期为 T 的函数,证明:方程存在唯一的以 T 为周期的解。

Solution

(一) 由一阶线性的求解公式有

$$y = e^{-x} \left[\int e^x \cdot x dx + C \right]$$
$$= e^{-x} \left[(x - 1)e^{-x} + C \right]$$
$$= Ce^{-x} + x - 1$$

(二)由一阶线性的求解公式有

$$y = e^{-x} \left[\int f(x)e^x dx + C \right] = e^{-x} \int_0^x e^t f(t)dt + C$$

则

$$\begin{split} y(x+T) - y(x) &= e^{-x} \left[\frac{1}{e^T} \int_0^{x+T} e^t f(t) \mathrm{d}t - \int_0^x e^t f(t) \mathrm{d}t + (\frac{1}{e^T - 1}) C \right] \\ \int_0^{x+T} e^t f(t) \mathrm{d}t &= \int_0^T + \int_T^{x+T} \\ &= \frac{1}{e^t} \int_0^T e^t f(t) \mathrm{d}t + \frac{1}{e^T} \int_T^{x+T} e^T f(t) \mathrm{d}t \\ &= \dots + \frac{1}{e^T} \int_0^T e^{t+T} f(t+T) \mathrm{d}t \\ y(x+T) - y(x) &= e^{-x} \left[\frac{1}{e^T} \int_0^T e^t f(t) \mathrm{d}t + (\frac{1}{e^T - 1}) C \right] \end{split}$$

由周期函数的定义, 只需要令 y(x+T) - y(x) = 0 即

$$C = -\frac{1}{1 - e^T} \int_0^T e^t f(t) \mathrm{d}t$$

的时候该方程的解是周期还是,且唯一.

6. 求解微分方程 $y' - \frac{4}{x}y = x^2\sqrt{y}$.

Solution

令
$$z = \sqrt{y}$$
, 则 $z' - \frac{2}{x}z = \frac{1}{2}x^2$, 则到

$$z = e^{\int \frac{2}{x} dx} \left(\int \frac{1}{2} x^2 e^{-\int \frac{2}{x} dx} dx + C \right) = x^2 \left(\frac{1}{2} \cdot x + C \right)$$

则该方程的通解为 $\sqrt{y} = \frac{1}{2}x^3 + Cx^2$

7. 求解下列微分方程:

$$(1) (2xe^y + 3x^2 - 1)dx + (x^2e^y - 2y)dy = 0;$$

(2)
$$\frac{2x}{y^3}dx + \frac{y^2 - 3x^2}{y^4}dy = 0.$$

Solution

(1) 偏积分法

$$u(x,y) = \int (2xe^y + 3x^2 - 1)dx = x^2e^y + x^3 - x + \phi(y)$$

由于 $\frac{\partial u}{\partial y} = x^2 e^y + \phi'(y)$ 对比题目可知 $\phi'(y) = -2y \implies \phi(y) = -y^2$, 故原方程的解

$$x^2 e^y + x^3 - x - y^2 = C$$

(2) 凑微分法

原式 =
$$(2xe^y + 3x^2 - 1)dx + (x^2e^y - 2y)dy$$

= $(2xe^ydx + x^2e^ydy) + (3x^2 - 1)dx + (-2y)dy$
= $d(x^2e^y) + d(x^3 - x) + d(-y^2)$
= $d(x^2e^y + x^3 - x - y^2) = 0$

$$\mathbb{P} x^2 e^y + x^3 - x - y^2 = C$$

4.2 二阶常系数线性微分方程

Remark

二阶齐次方程的通解, 形如 y'' + py' + qy = 0

求解特征方程 $(r^2 + pr + q = 0)$

$$\begin{cases} r_1 \neq r_2, & \text{通解为} C_1 e^{r_1 x} + C_2 e^{r_2 x} \\ r_1 = r_2 = r, & \text{通解为} (C_1 + C_2 x) e^{r x} \\ r_{1,2} = \alpha \pm \beta, & \text{通解为} e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) \end{cases}$$

二阶非齐次方程的通解, 形如 y'' + py' + qy = f(x), 其解的结构为齐次特解 + 非齐次通解

特解格式
$$\begin{cases} f(x) = P_n e^{\lambda x}, y^* = x^k Q_n(x) e^{\lambda x} \\ f(x) = e^{\alpha x} [P_m(x) \cos \beta x + P_n(x) \sin \beta x] \\ \\ y^* = x^k e^{\alpha} [Q_l(x) \cos \beta x + R_l(x) \sin \beta x], l = \min \{m, n\} \end{cases}$$

- 8. (2017, 数二) 微分方程 $y'' 4y' + 8y = e^{2x}(1 + \cos 2x)$ 的特解可设为 $y^* =$
 - (A) $Ae^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$
 - (B) $Axe^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$
 - $(C) Ae^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$
 - $(D) Axe^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$

Solution

原方程可以转换为如下两式的和

$$y'' - 4y' + 8y = e^2x (4.1)$$

$$y'' - 4y' + 8y = e^2 x \cdot \cos 2x \tag{4.2}$$

解特征方程有

$$r^2 - 4r + 8 = 0 \implies r_{1,2} = \frac{4 + \sqrt{-16}}{2} = 2 \pm 2i$$

则上述两个方程的特解分别为

$$y_1^* = Ae^{2x}$$

$$y_2^* = xe^{2x}(B\sin 2x + C\cos 2x)$$

由叠加原理 可知, 原方程的特解为

$$y^* = Ae^{2x} + xe^{2x}(B\sin 2x + C\cos 2x)$$

- 9. (2015, 数一) 设 $y = \frac{1}{2}e^{2x} + (x \frac{1}{3})e^x$ 是二阶常系数非齐次线性微分方程 $y'' + ay' + by = ce^x$ 的一个特解 则
 - (A) a = -3, b = 2, c = -1 (B) a = 3, b = 2, c = -1

(B)
$$a = 3, b = 2, c = -1$$

(C) a = -3, b = 2, c = 1 (D) a = 3, b = 2, c = 1

(D)
$$a = 3, b = 2, c = 1$$

Solution

(方法一) 带入原方程求解 a,b,c 即

$$\begin{cases} y = \frac{1}{2}e^{2x} + (x - \frac{1}{3})e^x \\ y' = e^{2x} + (x + \frac{2}{3})e^x \\ y'' = 2e^{2x} + (x + \frac{5}{3})e^x \\ y'' + ay' + by = ce^x \end{cases} \implies \begin{cases} 2 + a + \frac{b}{2} = 0 \\ 1 + a + b = 0 \\ \frac{5}{3} + \frac{2a}{3} - \frac{b}{3} = c \end{cases} \implies \begin{cases} a = -3 \\ b = 2 \\ c = -1 \end{cases}$$

(方法二)利用解的特性反推微分方程

$$y = \frac{1}{2}e^{2x} - \frac{1}{3}e^x + xe^x$$

显然其齐次方程的解为 $\frac{1}{9}e^{2x}-\frac{1}{3}e^x$, 非齐次特解为 xe^x , 故可以推导出该微分方程的 齐次通解为 $C_1e^{2x}+C_2e^x$,则其特征方程为(r-2)(r-1)=0,从而可知a=-3,b=2, 将非齐次特解带入可以求出 c = -1

10. (2016, 数二) 已知 $y_1(x) = e^x, y_2(x) = u(x)e^x$ 是二阶微分方程 (2x-1)y'' - (2x+1)y' + 2y =0 的两个解。若 u(-1) = e, u(0) = -1, 求 u(x), 并写出该微分方程的通解。

将 y2(x) 以及如下带入原方程有

$$\begin{cases} y_2'(x) = e^x \left[u'(x) + u(x) \right] \\ y_2''(x) = e^x \left[u''(x) + 2u'(x) + u(x) \right] \end{cases}$$

有

$$(2x-1)u''(x) + (2x-3)u'(x) = 0$$

(方法一) 典型的可降阶方程, 令 u'(x) = p 有

$$(2x-1)p' + (2x-3)p = 0 \implies p = Ce^{-\int \frac{2x-3}{2x-1} dx} = u'(x)$$

(方法二) 分离变量

$$\int \frac{u''(x)}{u'(x)} \mathrm{d}x = \int -\frac{2x-3}{2x-1} \mathrm{d}x$$

即 $\ln |u'(x)| = \ln |2x - 1| - x + \ln |C_1|$

$$u(x) = \int u'(x)dx = -C_1(1+2x)e^{-x} + C_2$$

带入初值条件有

$$u(x) = -(2x+1)e^{-x}$$

- 11. (2016, 数一) 设函数 y(x) 满足方程 y'' + 2y' + ky = 0, 其中 0 < k < 1。
 - (1) 证明反常积分 $\int_0^{+\infty} y(x)dx$ 收敛;

Solution

(1) 解特征方程 $r^2 + 2r + k = 0$ 又 0 < k < 1 故特征方程的解为

$$r_{1,2} = -1 \pm \sqrt{1 - k}$$

从而该方程的齐次通解为

$$y = C_1 e^{r_1 x} + C_2^{r_2 x}$$

方法一: 直接计算方常积分

$$\int_0^\infty \left(C_1 e^{r_1 x} + C_2 e^{r_2 x} \right) \mathrm{d}x = \left(\frac{C_1}{r_1} e^{r_1 x} + \frac{C_2}{r_2} e^{r_2 x} \right) \Big|_0^{+\infty}$$

$$\frac{r_{1,2} < 0}{-\infty} - \left(\frac{C_1}{r_1} + \frac{C_2}{r_2} \right)$$

故原反常积分收敛

方法二: 用比较判别法

$$\lim_{x \to \infty} x^p (C_1 e^{r_1 x} + C_2 e^{r_2 x})$$

又 $r_{1,2} < 0$ 上式恒为 0, 又 p=2 的时候 $\int_1^{+\infty} \frac{1}{x^2} dx$ 收敛由比较判别法可知原反常积分收敛

(2) 方法一: 尝试求根并计算由 y(0) = y'(0) = 1 有

$$\begin{cases} C_1 + C_2 = 1 \\ r_1 C_1 + r_2 C_2 = 1 \end{cases} \implies \begin{cases} C_1 = \frac{r_2 - 1}{r_2 - r_1} \\ C_2 = \frac{1 - r_1}{r_2 - r_1} \end{cases}$$

此时 $C_1r_1 + C_2r_2 = r_1 + r_2 - 1$ 带入积分有

$$\int_0^{+\infty} y(x) dx = -\frac{C_1 r_2 + C_2 r_1}{r_1 r_2} = -\frac{r_1 + r_2 - 1}{r_1 r_2}$$

则由韦达定理有 $\begin{cases} r_1+r_2=-2 \\ \\ r_1r_2=k \end{cases}$ 则原反常积分为 $\frac{3}{k}$

方法二: 利用微分方程替换, 带入 $y = \frac{-1}{k}(y'' + 2y')$ 此时反常积分转换为

$$\int_{0}^{+\infty} -\frac{1}{k} (y'' + 2y') dx = -\frac{1}{k} (y' + 2y) \Big|_{0}^{+\infty}$$
$$= \frac{3}{k}$$

4.3 高阶常系数线性齐次微分方程

12. 求解微分方程 $y^{(4)} - 3y'' - 4y = 0$ 。

高阶齐次的解法和二阶齐次的解法完全一致,解特征方程判断解的结构 该微分方程的特征方程为

$$r^4 - 3r^2 - 4 = 0 \implies (r - 2)(r + 2)(r^2 + 1) = 0 \implies \begin{cases} r_1 = 2\\ r_2 = -2\\ r_{3,4} = \pm i \end{cases}$$

故原方程的通解为

$$y = C_1 e^{2x} + C_2 e^{-2x} + C_3 \cos x + C_4 \sin x$$

4.4 二阶可降阶微分方程

Remark

有两种类型

(一) 缺
$$y$$
型 $y'' = f(x, y')$ 令 $y' = p$,则 $p' = f(x, p)$

(二) 缺
$$x$$
 型 $y'' = f(y', y)$ 令 $y' = p$ 则 $y'' = p \frac{dp}{dy}$

13. 求微分方程 $y''(x+y'^2) = y'$ 满足初始条件 y(1) = y'(1) = 1 的特解。

Solution

本题不含 y, 令 y'=p,y''=p' 则原方程化简为 $p'(x+p^2)=p$ 转换为反函数即

$$\frac{\mathrm{d}x}{\mathrm{d}p} - \frac{1}{p} \cdot x = p \implies x = p(p+C)$$

又
$$p(1) = p'(1) = 1$$
 可知 $C = 0$,从而 $x = p^2 \implies y' = \sqrt{x}$,从而 $y = \frac{2}{3}x^{\frac{3}{2}} + C_1$ 又 $y(1) = 1$ 可知 $y = \frac{2}{3}x^{\frac{3}{2}} + \frac{1}{3}$ 则

4.5 欧拉方程

Remark

对于形如

$$\begin{cases} xy' = Dy \\ x^2y'' = D(D-1)y \\ \dots \\ x^ny^{(n)} = D(D-1)(D-2)\dots(D-n+1)y \end{cases}$$

一般只需要将 $D \rightarrow r$ 求解特征方程即可, 注意换元.

14. 求解微分方程 $x^2y'' + xy' + y = 2 \sin \ln x$ 。

Solution

 $\diamond x = e^t$, 则原方程转换为 $D(D-1)y + Dy + y = 2 \sin t$ 特征方程为

$$r(r-1) + r + 1 = 0 \implies r_{1,2} = \pm i$$

齐次方程的通解为 $y=C_1\cos t+C_2\sin t$, 令 $y^*=t(A\cos t+B\sin t)$, 带入方程有 A=-1,B=0 故原方程的通解为 $y=C_1\cos\ln x+C_2\sin\ln x-\ln x\cdot\cos\ln x$

4.6 变量代换求解二阶变系数线性微分方程

17. (2005, 数二) 用变量代换 $x = \cos t (0 < t < \pi)$ 化简微分方程 $(1 - x^2)y'' - xy' + y = 0$, 并求其满足 $y|_{x=0} = 1, y'|_{x=0} = 2$ 的特解。

Solution

有题设可知

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{1}{\sin t} \frac{\mathrm{d}y}{\mathrm{d}t} \\ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = -\frac{1}{\sin t} \left(\frac{\cos t}{\sin^2 t} \frac{\mathrm{d}y}{\mathrm{d}t} - \frac{1}{\sin t} \frac{\mathrm{d}^2y}{\mathrm{d}t^2} \right) \end{cases}$$

代入方程有

$$y''(t) + y(t) = 0 \implies y = C_1 \cos t + C_2 \sin t = C_1 x + C_2 \sqrt{1 - x^2}$$

带入题设初值条件, 可知 $y = 2x + \sqrt{1-x^2}$

4.7 微分方程综合题

18. (2001, 数二) 设 L 是一条平面曲线, 其上任意一点 P(x,y)(x>0) 到坐标原点的距离, 恒等于该点处的切线在 y 轴上的截距, 且 L 经过点 $(\frac{1}{2},0)$ 。求曲线 L 的方程。

Solution

由题可设切线方程为

$$Y - y = y'(X - x)$$

令 x = 0, 则 Y = -xy' + y 由题设原问题转换为如下初值问题的解

$$\begin{cases} y - xy' = \sqrt{x^2 + y^2} \\ y(\frac{1}{2}) = 0 \end{cases}$$

可以解出 $y = -x^2 + \frac{1}{4}$

19. (2009, 数三) 设曲线 y = f(x), 其中 f(x) 是可导函数, 且 f(x) > 0。已知曲线 y = f(x) 与直线 y = 0, x = 1 及 x = t(t > 1) 所围成的曲边梯形绕 x 轴旋转一周所得的立体体积值是该曲边梯形面积值的 πt 倍, 求该曲线的方程。

Solution

有题设可以得到

$$\pi \int_{1}^{t} f^{2}(x) \mathrm{d}x = \pi t \int_{1}^{t} f(x) \mathrm{d}x$$

两边同时求导有

$$f^2(t) = \int_1^t f(x) \mathrm{d}x + t f(t)$$

变限积分要注意其可能隐藏初值条件 由 f(x) > 0 可知 f(1) = 1 再求导, 此时原问

题转换为如下初值问题的解

$$\begin{cases} 2f(t)f'(t) = tf'(t) + 2f(t) \\ f(1) = 1 \end{cases}$$

可以解出 $x = \frac{2}{3}y + \frac{1}{3\sqrt{y}}$

20. (2016, 数三) 设函数 f(x) 连续, 且满足 $\int_0^x f(x-t)dt = \int_0^x (x-t)f(t)dt + e^{-x} - 1$, 求 f(x)。

Solution

$$\int_0^x f(x-t) dt \xrightarrow{u=x-t} \int_0^x f(u) du$$

故原式等于

$$\int_{0}^{x} f(t)dt = x \int_{0}^{x} f(t)dt - \int_{0}^{x} t f(t)dt + e^{-x} - 1$$

两边同时求导有

$$f(x) = \int_0^x f(t)dt - e^{-x} \implies f(0) = -1$$

再求导则原题转换为如下初值问题的解

$$\begin{cases} f'(x) = f(x) + e^{-x} \\ f(0) = -1 \end{cases}$$

可以解出 $y = -\frac{1}{2}e^{-x} - \frac{1}{2}e^{x}$

21. (2014, 数一、数二、数三) 设函数 f(u) 具有二阶连续导数, $z=f(e^x\cos y)$ 满足

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}$$

若 f(0) = 0, f'(0) = 0, 求 f(u) 的表达式。

有题设可知

$$\begin{cases} \frac{\partial z}{\partial x} = f'(u)e^x \cos y \\ \frac{\partial^2 z}{\partial x^2} = f''(u)e^{2x} \cos^2 y + f'(u)e^x \cos y \\ \frac{\partial z}{\partial y} = f'(u)(-\sin ye^x) \\ \frac{\partial^2 z}{\partial y^2} = f''(u)e^{2x} \sin^2 y + f'(u)(-\cos ye^x) \end{cases}$$

代入题设有

$$f''(u) - 4f(u) = u$$

带入题设初值条件,可以解出

$$f(u) = \frac{1}{16}e^{2u} - \frac{1}{16}e^{-2u} - \frac{1}{4}u$$

22. (2011, 数三) 设函数 f(x) 在区间 [0,1] 上具有连续导数, f(0) = 1, 且满足

$$\iint_{D_t} f'(x+y) \mathrm{d}x \mathrm{d}y = \iint_{D_t} f(t) \mathrm{d}x \mathrm{d}y$$

其中 $D_t = \{(x,y) | 0 \le y \le t - x, 0 \le x \le t\} (0 < t \le 1)$, 求 f(x) 的表达式。

Solution

积分区域如下所示

$$\iint_{D_t} f(t) dx dy = \frac{1}{2} t^2 f(t)$$

$$\iint_{D_t} f'(x+y) dx dy = \int_0^t dx \int_0^{t-x} f'(x+y) dy$$

$$= \int_0^t f(x+y) \Big|_{y=0}^{y=t-x} dx$$

$$= \int_0^t [f(t) - f(x)] dx$$

$$= tf(t) - \int_0^t f(x) dx$$

由题即转换为求解如下初值问题

$$\begin{cases} tf(t) - \int_0^t f(x) dx = \frac{1}{2}t^2 f(t) \\ f(0) = 1 \end{cases}$$

可以解出
$$f(x) = \frac{4}{(x-2)^2}$$

第五章 多元函数微分学

5.1 多元函数的概念

Remark

多元函数微分学的概念

可微的概念 设二元函数 f(x,y) 在点 (x_0,y_0) 的某领域内有定义, 且其全增量可以写成

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + B\Delta y + o(\rho)$$

其中 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$ 其中 A, B 为不依赖于 $\Delta x, \Delta y$, 而仅与 x_0, y_0 有关, 则其在 (x_0, y_0) 可微

全微分 若 f(x,y) 在 (x_0,y_0) 可微,则其全微分为

$$\mathrm{d}z = A\Delta x + B\Delta y$$
 = 可微的必要条件 $f_x'(x_0,y_0)\mathrm{d}x + f_y'(x_0,y_0)\mathrm{d}y$

可微的必要条件 若 f(x,y) 在点 (x_0,y_0) 可微,则 f(x,y) 在该点连续,且两个偏导数都存在 可微的充分条件 若 f(x,y) 在点 (x_0,y_0) 处偏导数存在,且作为二元函数在该点连续,则 f(x,y) 在点 (x_0,y_0) 可微

1. 例 1 求下列重极限:

$$(1)\lim_{\substack{x\to 0\\y\to 0}}\frac{x^{\alpha}y^{\beta}}{x^2+y^2}\quad (\alpha\geq 0,\beta\geq 0);$$

(2)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(x^2 - y^2)}{x^2 + y^2};$$

$$(3) \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y^2}{(x^2 + y^2)^{\frac{3}{2}}}$$

- (1) 即总结
- (2) 重极限也满足极限的四则运算故

原式 =
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^3 y}{x^2 + y^2} - \lim_{\substack{x \to 0 \ y \to 0}} \frac{xy^3}{x^2 + y^2}$$

由结论可知 原式 = 0

(3)

原式 =
$$\lim_{\substack{x \to 0 \\ y \to 0}} \left(\frac{x^{\frac{4}{3}}y^{\frac{4}{3}}}{x^2 + y^2} \right)^{\frac{3}{2}} = 0$$

求重极限的技巧

若需要计算重极限,考虑极坐标换元通常比较简单.对于形如

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^{\alpha} y^{\beta}}{x^2 + y^2}$$

只需要做极坐标换元即可

原式 =
$$\lim_{r \to 0^+} \frac{r^{\alpha+\beta}\cos^{\alpha}\theta\sin^{\beta}\theta}{r^2}$$
, $(\theta \in [0, 2\pi])$ =
$$\begin{cases} 0, & \alpha+\beta-2 > 0 \\ \text{不存在,} & \alpha+\beta-2 \leq 0 \end{cases}$$

- 2. (2012, 数一) 如果函数 f(x,y) 在点 (0,0) 处连续, 那么下列命题正确的是
 - (A) 若极限 $\lim_{\substack{x\to 0\y\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在, 则f(x,y)在点(0,0)处可微
 - (B) 若极限 $\lim_{\substack{x\to 0 \ y\to 0}} \frac{f(x,y)}{x^2+y^2}$ 存在,则f(x,y)在点(0,0)处可微
 - (C) 若f(x,y)在点(0,0)处可微, 则极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在
 - (D) 若f(x,y)在点(0,0)处可微, 则极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{x^2+y^2}$ 存在

(方法一)证明 B 选项正确

$$\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{x^2+y^2} \exists, 且 f(x,y)$$
连续 $\Longrightarrow f(0,0)=0$

脱极限号有

$$f(x,y) = o(\rho)$$

由可微的定义有

$$f(x,y) - f(0,0) = 0 \cdot \Delta x + 0 \cdot \Delta y + o(\rho)$$

从而 f(x,y) 在 (0,0) 可微

(方法二) 特殊值证明 ACD 不正确

对于 A 选项, 当 f(x) = |x| + |y| 不可微

对于 CD 选项, 当 $f(x,y) = C \neq 0$ 的时候, 极限不存在

3. (2012, 数三) 设连续函数 z = f(x, y) 满足

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y-1)^2}} = 0$$

则 $dz|_{(0,1)} =$

Solution

(方法一) 和上面的题目比较相似, 由题设可知 f(0,1) = 1, 脱极限号有

$$f(x,y) - 2x + y - 2 = o(\rho)$$

由可微的定义有

$$f(x,y) - 1 = 2x - (y-1) + o(\rho) = 2\Delta x - \Delta + o(\rho)$$

即

$$d\big|_{(0,1)} = 2\mathrm{d}x - \mathrm{d}y$$

(方法二) 特殊值令 f(x,y)=2x-y+2, 可以直接求出 $d\big|_{(0,1)}=2\mathrm{d}x-\mathrm{d}y$

5.2 多元复合函数求偏导数与全微分

Remark

本质是计算题, 仔细计算即可. 注意点

- (一)链式法则
- (二)一阶全微分形式不变性
- (三)二阶混合偏导数若连续则相等
- 4. (2021, 数一、数二、数三) 设函数 f(x,y) 可微, 且 $f(x+1,e^x)=x(x+1)^2, f(x,x^2)=2x^2\ln x$ 则 df(1,1)=
 - $(A) dx + dy \quad (B) dx dy \quad (C) dy \qquad (D) dy$

Solution

第一个等式两边同时对 x 求导有

$$f_1'(x+1,e^x) + f_2'(x+1,e^x)e^x = (x+1)^2 + 2x(x+1)$$

$$f_1'(1,1) + f_2'(1,1) = 1$$

同理, 第二个等式两边同时对 x 求导有

$$f_1'(x, x^2) + f_2'(x, x^2) \cdot 2x = 4x \ln x + 2x$$

令x=1则

$$f_1'(1,1) + 2f_2'(1,1) = 2$$

联立可以解出

$$\begin{cases} f_1'(1,1) = 0 \\ f_2'(1,1) = 1 \end{cases}$$

故 df(1,1) = dy

5. (2011, 数一、数二) 设 z=f(xy,yg(x)), 其中函数 f 具有二阶连续偏导数, 函数 g(x) 可导, 且在 x=1 处取得极值 g(1)=1, 求 $\left.\frac{\partial^2 z}{\partial x \partial y}\right|_{x=1,y=1}$ 。

由题设可知 g'(1) = 0, g(1) = 0 且

$$\frac{\partial z}{\partial x} = f_1' \cdot y + f_1' \cdot yg'(x)$$

这种求值的题目先带入可以化简

$$\frac{\partial z}{\partial x}\big|_{(x=1)} = f_1' \cdot y$$

$$\frac{\partial^2 z}{\partial x \partial y}\big|_{(x=1)} = f_{11}^{\prime\prime} \cdot y + f_1^{\prime} + f_{12}^{\prime\prime} \cdot g(x)$$

带入y=1有

$$\frac{\partial^2 z}{\partial x \partial y}\big|_{(x=1,y=1)} = f_{11}''(1,1) + f_1'(1,1) + f_{12}''(1,1)$$

5.3 多元隐函数求偏导数与全微分

Remark

三个方法

(方法一) 代入求偏导 z = z(x, y)

(方法二) 公式法
$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}; \frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'}$$

(方法三) 全微分

- 6. (2005, 数一) 设有三元方程 $xy z \ln y + e^{xz} = 1$, 根据隐函数存在定理, 存在点 (0,1,1) 的 一个邻域, 在此邻域内该方程
 - (A) 只能确定一个具有连续偏导数的隐函数z = z(x, y)
 - (B) 可确定两个具有连续偏导数的隐函数x = x(y, z)和z = z(x, y)
 - (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)
 - (D) 可确定两个具有连续偏导数的隐函数x = x(y, z)和y = y(x, z)

由题设有 $F(x,y,z) = xy - 2 \ln y + e^{xz} - 1$ 分别对 x,y,z 求导有

$$\begin{cases} F'_x(0,1,1) = 2 \neq 0 \\ F'_y(0,1,1) = -2 \neq 0 \\ F'_z(0,1,1) = 0 \end{cases}$$

由隐函数存在定理可知仅x,y可以作为因变量

隐函数存在定理

(隐函数存在定理) 如果二元函数 F(x,y) = 0, 满足如下三个条件

- (1) 函数 F(x,y) 在点 (x_0,y_0) 某邻域内有连续偏导数
- (2) $F(x_0, y_0) = 0$
- (3) F; $(x_0, y_0) \neq 0$

则方程 F(x,y) = 0 在点 (x_0,y_0) 某邻域内恒能<mark>唯一</mark>确定一个连续函数 y = y(x), 且

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'}{F_y'}$$

简单来说对谁的偏导数不为零,谁能表示为其余变量的函数(作为因变量)

7. (1999, 数一) 设 y = y(x), z = z(x) 是由方程 z = xf(x+y) 和 F(x,y,z) = 0 所确定的函数, 其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数, 求 $\frac{dz}{dx}$ 。

Solution

记

$$z = xf(x+y) \tag{1}$$

$$F(x, y, z) = 0 (2)$$

分别对 (1) 和 (2) 的两端对 x/y 求导有

$$\frac{\mathrm{d}z}{\mathrm{d}x} = f(x+y) + xf'(1 + \frac{\mathrm{d}y}{\mathrm{d}x}) \tag{3}$$

$$F_1' + F_2' \frac{dy}{dx} + F_3' \frac{dz}{dx} = 0 (4)$$

联立(3)和(4)可以解出

$$\frac{dz}{dx} = \frac{(f + xf')F_2' - xf'F_1'}{F_2' + xf' \cdot F_3'}$$

多元函数组确认函数的情况

本质是方程组思想

- 一个三元方程可以确定一个二元函数
- 二个三元方程可以确定两个二元函数

参考线性代数的方程组的解, 就很容易明白

5.4 变量代换化简偏微分方程

8. (2010, 数二) 设函数 u = f(x, y) 具有二阶连续偏导数, 且满足等式

$$4\frac{\partial^2 u}{\partial x^2} + 12\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} = 0$$

确定 a,b 的值, 使等式在变换 $\xi=x+ay, \eta=x+by$ 下简化为 $\frac{\partial^2 u}{\partial \xi \partial \eta}=0$ 。

Solution

有题设有

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} \\ \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial \xi^2} + 2\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2} \\ \frac{\partial^2 u}{\partial y^2} = a^2 \frac{\partial^2 u}{\partial \xi^2} + 2ab\frac{\partial^2 u}{\partial \xi \partial \eta} + b^2 \frac{\partial^2 u}{\partial \eta^2} \\ \frac{\partial^2 u}{\partial x \partial y} = a\frac{\partial^2 u}{\partial \xi^2} + (a+b)\frac{\partial^2 u}{\partial \xi \partial \eta} + b\frac{\partial^2 u}{\partial \eta^2} \end{cases}$$

带入题设等式有

5.5 求无条件极值

Remark

两个方法

(一) 多元函数微分学的定义

是极值, 一般使用保号性证明 不是极值, 一般取不同路径

(二) $AC - B^2$ 判别法, 若 $f'_x = f'_y = 0$ 且其二阶偏导数存在, 记

$$\begin{cases} A = f''_{xx} \\ B = f''_{xy} \end{cases} \implies AC - B^2 \begin{cases} > 0, & \begin{cases} A > 0, & \text{极小值} \\ A < 0, & \text{极大值} \end{cases} \\ < 0, & \text{不是} \\ = 0, & \text{判别法失效, 无法判断} \end{cases}$$

9. (2003, 数一) 已知函数 f(x,y) 在点 (0,0) 的某个邻域内连续,且

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x,y) - xy}{(x^2 + y^2)^2} = 1$$

则

- (A) 点(0,0)不是f(x,y)的极值点
- (B) 点(0,0)是f(x,y)的极大值点
- (C) 点(0,0)是f(x,y)的极小值点
- (D) 根据所给条件无法判别点(0,0)是否为f(x,y)的极值点

Solution

有题设可知 f(0,0) = 0

方法一: 选特殊路径证明, 脱极限号有 $f(x,y) = xy + o(x^2 + y^2)$

$$\Rightarrow y = x, f(x, x) = x^2 + o(x^2) > 0$$

$$\Rightarrow y = -x, f(x, -x) = -x^2 + O(x^2) < 0$$

故点 (0,0) 不是 f(x,y) 的极值点

方法二: 特殊值用判别法证明, 不妨假设 $f(xy)=xy+(x^2+y^2)^2$ 且 $\frac{\partial f}{\partial x}\Big|_{(0,0)}=$

$$\frac{\partial f}{\partial y}|_{(0,0)}=0$$
 而 $A=0, B=1, C=0$ \implies $AC-B^2=-1<0$ 故 $(0,0)$ 不是极值

10. (2004, 数一) 设 z = z(x,y) 是由 $x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 = 0$ 确定的函数, 求 z = z(x,y) 的极值点和极值。

Solution

对于这种题分两步, 第一步求驻点, 第二步求二阶偏导数并用判别法判断所有驻点. 题目等式两边分别对 x,y 求导有

对
$$x$$
求导 $2x - 6y - 2y\frac{\partial z}{\partial x} - 2z\frac{\partial z}{\partial x} = 0$ (1)

对求导
$$-6x + 20y - 2z - 2y\frac{\partial z}{\partial y} - 2z\frac{\partial z}{\partial y} = 0$$
 (2)

令
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} = 0$$
 有
$$\begin{cases} x = 3y \\ y = z \end{cases}$$
 带入题设等式有可以解出

$$\begin{cases} x = 9 \\ y = z = 3 \end{cases} \quad \overrightarrow{\mathbb{R}} \begin{cases} x = -9 \\ y = z = -3 \end{cases}$$

对(1)两侧对 x,y 求导有, 且带入 $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} = 0$

$$2 - 2y\frac{\partial^2 z}{\partial x^2} - 2z\frac{\partial^2 z}{\partial x^2} = 0 \tag{3}$$

$$-6 - 2y \frac{\partial^2 z}{\partial x \partial y} - 2z \frac{\partial^2 z}{\partial x \partial y} = 0 \tag{4}$$

对(2)两测对 y 求导有, 且带入 $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} = 0$

$$20 - 2y\frac{\partial^2 z}{\partial y^2} - 2z\frac{\partial^2 z}{\partial x \partial y} = 0 ag{5}$$

综上可以解出

$$\begin{cases} \frac{\partial^2 z}{\partial x^2} = \frac{1}{y+z} \\ \frac{\partial^2 z}{\partial x \partial y} = \frac{-3}{y+z} \\ \frac{\partial^2 z}{\partial y^2} = \frac{10}{y+z} \end{cases}$$

带入题设条件可知

5.6 求条件极值(边界最值)

Remark

(方法一)lagrange 乘数法

构造辅助函数 $L(x,y,\lambda) = f(x,y) + \lambda \cdot \varphi(x,y)$ 然后求解

$$\begin{cases} L'_x = \frac{\partial f}{\partial x} + \lambda \cdot \frac{\partial \varphi}{\partial x} = 0 \\ L'_x = \frac{\partial f}{\partial y} + \lambda \cdot \frac{\partial \varphi}{\partial y} = 0 \\ L'_\lambda = \varphi(x, y) = 0 \end{cases}$$

拉格朗日乘数法的关键在于**乘非零因子消去** λ 所有满足上述方程的解 (x, y, λ) 中的 (x, y) 都有可能是条件极值,对于不封闭曲线要和端点比较.

(方法二) 解 $\varphi(x,y) = 0 \implies y = y(x)$ 带入 f(x,y) 转换为一元函数

(方法三) 极坐标变化

(方法四)均值不等式,柯西不等式

对于两个整数 a 和 b, 均值不等式为

$$\sqrt{\frac{a^2 + b^2}{2}} \ge \frac{a + b}{2} \ge \sqrt{ab} \ge \frac{2}{\frac{1}{a} + \frac{1}{b}}$$

柯西不等式的实数形式,对于任意实数 a_1, a_2, \ldots, a_n 和 b_1, b_2, \ldots, b_n 有

$$\left(\sum_{i=0}^{n} a_i b_i\right)^2 \ge \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

- 11. (2006, 数一、数二、数三) 设 f(x,y) 与 $\varphi(x,y)$ 均为可微函数, 且 $\varphi'_y(x,y) \neq 0$ 。已知 (x_0,y_0) 是 f(x,y) 在约束条件 $\varphi(x,y) = 0$ 下的一个极值点, 下列选项正确的是

- $(D) \stackrel{\text{def}}{=} f'_x(x_0, y_0) \neq 0, \quad \inf_{y} f'_y(x_0, y_0) \neq 0$

使用拉格朗日乘数法, 令 $L(x,y,\lambda) = f(x,y) + \lambda \varphi(x,y)$ 则

$$L_x' = f_x' + \lambda \varphi_x' = 0 \tag{1}$$

$$L_y' = f_y' + \lambda \varphi_y' = 0 \tag{2}$$

$$L_{\lambda}' = \varphi = 0 \tag{3}$$

拉格朗日乘数法的关键在于**乘非零因子消去** λ , 由题设可知 $\varphi_y'\neq 0$ 通过 (2) 式可以 求出 $\lambda=-\frac{f_y'}{\varphi_y'}$, 代入 (1) 式有

$$f_x' - \frac{f_y'}{\varphi_y'} \cdot \varphi_x' = 0$$

考虑选项, 只有当 $f_x' \neq 0$ 的时候可以确定 $f_y' \neq 0, \varphi_x \neq 0$

12. (2013, 数二) 求曲线 $x^3 - xy + y^3 = 1 (x \ge 0, y \ge 0)$ 上的点到坐标原点的最长距离与最短距离。

Solution

这题的关键在于转换目标函数若考虑题设其目标函数为 $\sqrt{x^2+y^2}$ 显然根号不好做, 此时需要将目标函数做等价变化即求 x^2+y^2 的条件极值,则设拉格朗日函数为

$$L(x, y, \lambda) = x^{2} + y^{2} + \lambda(x^{3} - xy + y^{3} - 1)$$

分别对 x, y, λ 求导有

$$L_x' = 2x + \lambda(3x^2 - y) = 0 \tag{1}$$

$$L_y' = 2y + \lambda(3y^2 - x) = 0 (2)$$

$$L_{\lambda}' = x^3 - xy + y^3 - 1 = 0 \tag{3}$$

 $x \ge 0, y \ge 0$ 可知 $3x^2 - y \ne 0, 3y^2 - x \ne 0$, 将 $(1) \times (3y^2 - x) - (2) \times (3x^2 - y)$ 有

$$-x^{2} + 3xy^{2} - 3x^{2}y + y^{2} = 0 \implies (y + x + 3xy)(y - x) = 0$$

即 y + x + 3xy = 0或y = x 由于 $x \ge 0, y \ge 0$ 故 y + x + 3xy = 0 不合理舍去,将 y = x 带入(3)式有 $2x^3 - x^2 - 1 = 0 \Longrightarrow (1.1)$ 由于曲线不封闭,需要考虑曲线端点

即(0,1)(1,0)比较可知曲线上距离原点的最大/最小距离为

5.7 闭区域最值

Remark

闭区域最值分两步做

- (一) 求内部驻点
- (二) 求边界的条件极值
- 12. (2014, 数二) 设函数 u(x,y) 在有界闭区域 D 上连续, 在 D 的内部具有二阶连续偏导数, 且满足 $\frac{\partial^2 u}{\partial x \partial y} \neq 0$ 及 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, 则
 - (A) u(x,y)的最大值和最小值都在D的边界上取得
 - (B) u(x,y)的最大值和最小值都在D的内部取得
 - (C) u(x,y)的最大值在D的内部取得,最小值在D的边界上取得
 - (D) u(x,y)的最小值在D的内部取得,最大值在D的边界上取得

Solution

若 $A = \frac{\partial^2 u}{\partial^2 x} \ge 0 \implies C = \frac{\partial^2 u}{\partial^2 y} \le 0$ 且仅当 A = 0 时 C = 0,有 $\frac{\partial^2 u}{\partial x \partial y} = B \ne 0$ 由此可知 $AC - B^2 < 0$,同理当 $A = \frac{\partial^2 u}{\partial^2 x} < 0$,亦有 $AC - B^2 < 0$ 故 u(x,y) 在区域内部无极值点,有由于连续函数在有界闭区间必然有最大/最小值,此时 u(x,y) 的最值均在边界取得.

13. (2005, 数二) 已知函数 z=f(x,y) 的全微分 dz=2xdx-2ydy, 且 f(1,1)=2, 求 f(x,y) 在椭圆域 $D=\{(x,y)|x^2+\frac{y^2}{4}\leq 1\}$ 上的最大值和最小值。

Solution

由题设全微分可以求出 $z=x^2-y^2+2$, 这种题第一步先求区域内最值, 在求条件极值, 区域图像如下所示

$$\diamondsuit \frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = 0$$
 即 $\begin{cases} 2x = 0 \\ 2y = 0 \end{cases} \implies x = y = 0$ 故在内部仅有唯一驻点 $(0,0)$, 且

$$z\big|_{(0,0)} = 2$$

求条件极值

(方法一) 设拉格朗日函数为 $L(x,y,\lambda) = x^2 - y^2 + 2 + \lambda(x^2 + \frac{y^2}{4} - 1)$ 分别对 x,y,λ 求导有

$$L_x' = 2x + 2x\lambda = 0 \tag{1}$$

$$L_y' = 2y + 2y\lambda = 0 \tag{2}$$

$$L_{\lambda}' = x^2 + \frac{y^2}{4} - 1 = 0 \tag{5.1}$$

此时有

$$\begin{cases} x = 0, & y = \pm 2, f(0, \pm 2) = -2 \\ y = 0, & x = \pm 1 f(\pm 1, 0) = 3 \end{cases}$$

而当 $x \neq 0$ 或 $y \neq 0$ 时候与题设矛盾, 综上可知闭区间最值为

(方法二) 有题设可知 $y^2=4(1-x^2)$ 带入 $f(x,y) \implies f(x)=x^2-4(1-x^2)+2=5x^2-2, x\in[-1,1]$ 显然当 $x=0, f_{min}(x)=-2; x=\pm 1, f(x)=3$

(方法三) 令
$$\begin{cases} x = \cos \theta \\ y = 2\sin \theta \end{cases}$$
 其中 $\theta \in [0, 2\pi]$, 此时 $f(\theta) = \cos^2 \theta - 4\sin^2 \theta + 2 = \cos^2 \theta$

 $3-5\cos^2\theta$ 容易得出 $f_{max}=3; f_{min}=-2$

第六章 二重积分

6.1 二重积分的概念

Remark

二重积分的定义

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} f(\frac{i}{n}, \frac{j}{n}) \cdot \frac{1}{n} \frac{1}{n} = \int_{0}^{1} \int_{0}^{1} f(x, y) dx dy$$

和一元函数的积分定义题目一样, 关键是提出 $\frac{1}{n}$

1. (2010, 数—、数二)
$$\lim_{n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)} =$$

$$(A) \int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y^2)} dy \quad (B) \int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y)} dy$$

$$(C) \int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y)} dy \quad (D) \int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y^2)} dy$$

Solution

原式 =
$$\frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \frac{1}{\left(1 + \frac{i}{n}\right) \left[1 + \left(\frac{j}{n}\right)^2\right]}$$

= $\int_0^1 dx \int_0^1 \frac{dy}{(1+x)(1+y^2)}$
= $\frac{\pi}{4} \ln 2$

2. (2016, 数三) 设
$$J_i = \iint_{D_i} \sqrt[3]{x - y} dx dy (i = 1, 2, 3)$$
, 其中
$$D_1 = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\},$$

$$D_2 = \{(x, y) | 0 \le x \le 1, 0 \le y \le \sqrt{x}\},$$

$$D_3 = \{(x, y) | 0 \le x \le 1, x^2 \le y \le 1\},$$
 则

- (A) $J_1 < J_2 < J_3$ (B) $J_3 < J_1 < J_2$
- (C) $J_2 < J_3 < J_1$ (D) $J_2 < J_1 < J_3$

显然区域 D_1 满足轮换对称性, 因此有

$$J_1 = \frac{1}{2} \iint_{D_1} \left(\sqrt[3]{x - y} + \sqrt[3]{y - x} \right) = 0$$

对于区域 D_2 , 可以将 D_1 划分为如下两部分

显然蓝色区域 D_2 等于 $D_1 - D_{2'}$ 其中 $D_{2'}$ 为红色区域即

$$J_2 = \iint_{D_1} - \iint_{D_{2'}} \sqrt{x - y} \mathrm{d}x \mathrm{d}y$$

不难发现在红色区域 y>x 是显然的, 故 $J_2>0$, 同理可以得出 $J_3<0$

$$\boxed{J_3 < J_1 < J_2}$$

交换积分次序 6.2

3. (2001, 数一) 交换二次积分的积分次序: $\int_{0}^{1} dy \int_{0}^{1-y} f(x,y) dx = _$

Solution

交换积分次序的题目,注意原函数的积分上下限即可,画图即可.

原式 =
$$-\int_{-1}^{0} dy \int_{1-y}^{2} f(x,y) dx$$

= $-\int_{1}^{2} dx \int_{1-x}^{0} f(x,y) dy$

4. 二次积分
$$\int_0^1 dy \int_y^1 \left(\frac{e^{x^2}}{x} - e^{y^2} \right) dx = _____$$

原式 =
$$\int_0^1 dy \int_y^1 \frac{e^{x^2}}{x} dx - \int_0^1 dy \int_y^1 e^{y^2} dy$$

= $\int_0^1 e^{x^2} dx - \int_0^1 (1-y)e^{y^2} dy$
= $\int_0^1 xe^{x^2} dx$
= $\frac{1}{2}(e-1)$

5. 交换 $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(r,\theta) dr$ 的积分次序。

Solution

极坐标的积分换序, 不要按照极坐标做就当成 x-y 做

原式 =
$$\int_0^{\frac{\sqrt{2}}{2}a} \mathrm{d}r \int_{-\frac{\pi}{4}}^{\arccos\frac{r}{a}} f(r,\theta) \mathrm{d}\theta + \int_{\frac{\sqrt{2}}{2}a}^a \mathrm{d}r \int_{-\arccos\frac{r}{a}}^{\arccos\frac{r}{a}} f(r,\theta) \mathrm{d}\theta$$

什么时候要变化积分次序

第一种-出现典型的可积不可求的函数如

$$\begin{cases} e^{\pm x^2}, e^{\frac{1}{x}}, \frac{1}{\ln x} \\ \sin x^2, \sin \frac{1}{x}, \boxed{\frac{\sin x}{x}} \\ \cos x^2, \cos \frac{1}{x}, \boxed{\frac{\cos x}{x}} \end{cases}$$

第二种 - 题目明确要求了要进行积分变换

第三种 - 积分区域和积分顺序显然不符合

第四种 - 题目给的积分正常做会非常难算

6.3 二重积分的计算

Remark $\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

6. (2011, 数一、数二) 已知函数 f(x,y) 具有二阶连续偏导数, 且 $f(1,y)=0, f(x,1)=0, \iint_D f(x,y) dx dy=a,$ 其中 $D=\{(x,y)|0\leq x\leq 1,0\leq y\leq 1\},$ 计算二重积分

$$I = \iint_D xy f_{xy}''(x, y) \mathrm{d}x \mathrm{d}y.$$

Solution

有题设可知 $f'_x(x,1) = f'_y(1,y) = 0$

原式 =
$$\int_0^1 dx \int_0^1 xy f''_{xy}(x,y) dy$$
=
$$\int_0^1 x dx \int_0^1 y df'_x(x,y)$$
=
$$-\int_0^1 x dx \int_0^1 f'_x(x,y) dy$$
=
$$-\int_0^1 dy \int_0^1 x f'(x,y) dx$$
=
$$\iint_D f(x,y) dx dy = a$$

7. 计算 $\iint_D \sqrt{|y-x^2|} dx dy$, 其中 $D = \{(x,y)| -1 \le x \le 1, 0 \le y \le 2\}$ 。

积分区域如下所示

显然图像关于x对称,且原函数关于y是偶数故由对称性可知

原式 =
$$2 \iint_{D_1} \sqrt{x^2 - y} dx dy + 2 \iint_{D_2} \sqrt{y - x^2} dx dy$$

= $2 \int_0^1 dx \int_0^{x^2} \sqrt{x^2 - y} dy + 2 \int_0^1 dx \int_{x^2}^2 \sqrt{y - x^2} dy$
 $2 \int_0^1 dx \int_0^{x^2} \sqrt{x^2 - y} dy = \frac{4}{3} \int_0^1 x^3 dx = \frac{1}{3}$
 $2 \int_0^1 dx \int_{x^2}^2 \sqrt{y - x^2} dy = \frac{4}{3} \int_0^1 (2 - x^2)^{\frac{3}{2}} dx$
= $\frac{x = \sqrt{2} \sin t}{3} \frac{16}{3} \int_0^{\frac{\pi}{4}} \cos^4 t dt$
= $\frac{16}{3} \int_0^{\frac{\pi}{4}} (1 + \cos 2t)^2 dt$
= $\frac{2}{3} \int_0^{\frac{\pi}{2}} (1 + \cos t)^2 dt$
= $\frac{\pi}{2} + \frac{4}{3}$
原式 = $\frac{5}{3} + \frac{\pi}{2}$

8. (2018, 数二) 设平面区域 D 由曲线 $\begin{cases} x=t-\sin t \\ y=1-\cos t \end{cases}$ (0 $\leq t \leq 2\pi$) 与 x 轴围成, 计算二重 积分 $\iint_D (x+2y) dx dy$ 。

Solution

题设参数方程即摆线 图像如图所示, 关键性质为其关于 $x=\pi$ 对称

由于摆线关于 $x = \pi$ 对称由形心公式有

$$\iint_D x \mathrm{d}x \mathrm{d}y = \pi \iint_D \mathrm{d}x \mathrm{d}y$$

故有

原式 =
$$\iint_D (\pi + 2y) dx dy$$

$$= \int_0^{2\pi} dx \int_0^{y(x)} (\pi + 2y) dy$$

$$= \int_0^{2\pi} \left[\pi y(x) + y^2(x) \right] dx$$

$$= \frac{x = t - \sin t}{1 - \cos t} \int_0^{2\pi} \left[\pi (1 - \cos t) + (1 - \cos t)^2 \right] (1 - \cos t) dt$$

$$= 3\pi^2 + 5\pi$$

9. (2007, 数二、数三) 设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1\\ \frac{1}{\sqrt{x^2 + y^2}}, & 1 < |x| + |y| \le 2 \end{cases}$$

计算二重积分 $\iint_D f(x,y) dx dy$, 其中 $D = \{(x,y) | |x| + |y| \le 2\}$ 。

Solution

积分区域如图所示

由奇偶性可知

原式 =
$$4(\iint_{D_1} x^2 dx dy + \iint_{D_2} \frac{1}{\sqrt{x^2 + y^2}} dx dy)$$

其中

$$\iint_{D_1} x^2 dx dy = \int_0^1 dx \int_0^{1-x} x^2 dx dy = \frac{1}{12}$$

$$\iint_{D_2} \frac{1}{\sqrt{x^2 + y^2}} dx dy = \int_0^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\sin \theta + \cos \theta}}^{\frac{2}{\sin \theta + \cos \theta}} \frac{1}{r} r \cdot dr$$
$$= \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sin \theta + \cos \theta}$$

方法一 万能代换 =
$$\sqrt{2} \ln (\sqrt{2} + 1)$$

方法二 三角公式 =
$$\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{2}\sin\left(\theta + \frac{\pi}{4}\right)}$$
$$= \frac{1}{\sqrt{2}} \ln\left|\csc\left(\theta + \frac{\pi}{4}\right) - \cot\left(\theta + \frac{\pi}{4}\right)\right|_0^{\frac{\pi}{2}}$$
$$= \sqrt{2} \ln\left(\sqrt{2} + 1\right)$$

综上

原式 =
$$4(\frac{1}{12} + \sqrt{2} \ln (\sqrt{2} + 1))$$

10. (2014, 数二、数三) 设平面区域
$$D=\{(x,y)|1\leq x^2+y^2\leq 4, x\geq 0, y\geq 0\}$$
, 计算

$$\iint_{D} \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} \mathrm{d}x \mathrm{d}y.$$

积分区域如下所示

(方法一)转换为极坐标,此时积分为

原式 =
$$\int_0^{\frac{\pi}{2}} \mathrm{d}\theta \int_1^2 \frac{r \cos \theta \sin (\pi r)}{r (\sin \theta + \cos \theta)} r \cdot \mathrm{d}r$$

$$= \int_0^{\frac{\pi}{2}} \frac{\cos \theta}{\sin \theta + \cos \theta} \mathrm{d}\theta \int_1^2 r \sin (\pi r) \mathrm{d}r$$

$$= \frac{\pi}{4} \cdot \frac{-3}{\pi} = -\frac{3}{4}$$

(方法二)考虑轮换对称性,此时积分为

$$\begin{split} I &= \frac{1}{2} \iint_{D} \sin{(\pi \sqrt{x^2 + y^2})} \mathrm{d}x \mathrm{d}y \\ &= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \mathrm{d}\theta \int_{1}^{2} \sin{(\pi r)} r \cdot \mathrm{d}r \\ &= \frac{\pi}{4} \cdot (-\frac{3}{\pi}) = -\frac{3}{4} \end{split}$$

11. (2019, 数二) 已知平面区域 $D = \{(x,y)||x| \le y, (x^2 + y^2)^3 \le y^4\}$, 计算二重积分

$$\iint_D \frac{x+y}{\sqrt{x^2+y^2}} \mathrm{d}x \mathrm{d}y.$$

Solution

6.4 其他题型

12. (2010, 数二) 计算二重积分 $I = \iint_D r^2 \sin \theta \sqrt{1 - r^2 \cos 2\theta} dr d\theta$ 其中 $D = \left\{ (r, \theta) \mid 0 \le r \le \sec \theta, 0 \le \theta \le \frac{\pi}{4} \right\}$

13. (2009, 数二、数三) 计算二重积分 $\iint_D (x-y) dx dy$ 其中 $D = \{(x,y) | (x-1)^2 + (y-1)^2 \le 2, y \ge x\}.$

Solution

第七章 无穷级数

数项级数敛散性的判定 7.1

Remark

正项级数敛散性的判断

比较判别法(放缩/等价/Taylor展开)

比值判别法 (当出现 n!)

根值判别法 (当出现 n^n)

积分判别法 (P级数/对数 P级数)

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \text{收敛}, & p > 1 \\ \text{发散}, & p \le 1 \end{cases}$$

推广

$$\sum_{n=1}^{\infty} \frac{\ln^{\alpha} n}{n^p} \sim \sum_{n=1}^{\infty} \frac{1}{n^p}$$

对数P级数

$$\sum_{n=2}^{\infty} \frac{1}{n \ln^p n} \begin{cases} \psi \text{ \& }, & p > 1 \\ \text{ & ξ w}, & p \leq 1 \end{cases} \leftarrow \int \frac{\mathrm{d}x}{x \ln^p n} = \int \frac{d \ln x}{\ln^p x}$$

故其与P级数的敛散性与P的关系一致,推广

$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha} \ln^{p} n} \sim \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \begin{cases} \alpha > 1, & \text{收敛} \\ \aleph \leq 1, & \text{发散} \end{cases}$$

1. (2015, 数三) 下列级数中发散的是
$$(A)\sum_{n=1}^{\infty}\frac{n}{3^n}$$
 $(B)\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}\ln\left(1+\frac{1}{n}\right)$

交错级数 7.2

第七章 无穷级数

$$(C) \sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n} \qquad (D) \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

Solution

- (A) 由根值判别法 $\lim_{n\to\infty} \sqrt[n]{\frac{n}{3^n}} = \frac{1}{3} < 1$ 收敛 (B) 由于 $\frac{1}{\sqrt{n}} \ln (1 + \frac{1}{n}) \sim \frac{1}{n^{\frac{3}{2}}}$, 而 $\frac{3}{2} > 1$ 故原级数收敛
- (C) 原级数等于 $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n} + \sum_{n=2}^{\infty} \frac{1}{\ln n}$ 前一个级数由莱布尼兹判别法知收敛, 第二个
- 级数由 P 级数的推广容易得知其发散, 故原级数发散 (D) 由比值判别法有 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^2 = e^{-1} < 1$ 故原级数收敛
- 2. (2017, 数三) 若级数 $\sum_{n=2}^{\infty} \left[\sin \frac{1}{n} k \ln \left(1 \frac{1}{n} \right) \right]$ 收敛, 则 k = 1(A) 1

Solution

原式
$$=\frac{Taylor}{n} \frac{1}{n} - \frac{1}{6n^3} + o(\frac{1}{n^3}) - k\left[\frac{1}{n} - \frac{1}{2n^2} + O(\frac{1}{n^2})\right]$$

$$= \frac{1+k}{n} + \frac{k}{2} \cdot \frac{1}{n^2} + o(\frac{1}{n^2})$$

由 P 级数判别法可知, $1+k=0 \implies k=-1$

交错级数 7.2

Remark

交错级数敛散性的判断

莱布尼兹判别,通项单调递减趋于0可以判断原级数收敛.

取绝对值, 若其绝对收敛则原级数也收敛

3. 判定下列级数的敛散性:

$$(1)\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n - \ln n}$$

$$(2)\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$$

7.3 任意项级数 第七章 无穷级数

Solution

(1) 记 $f(x) = \frac{1}{x - \ln x}$, $f'(x) = -\frac{1 - \frac{1}{x}}{(x - \ln x)^2} < 0$ 从而 u_n 单调递减, 又 $\lim_{n \to \infty} u_n = 0$ 故 由莱布尼兹判别法可知 $\sum_{i=1}^n \frac{(-1)^{n-1}}{n - \ln n}$ 收敛

原式 =
$$\sum_{n=0}^{\infty} \frac{(-1)^n \sqrt{n}}{n-1} - \sum_{n=1}^{\infty} \frac{1}{n-1}$$

由莱布尼兹判别法易知第一个级数收敛,第二个级数由 P 级数可知其发散. 故原级数发散

7.3 任意项级数

Remark

任意项级数

收敛级数的定义(部分和极限存在)

$$S_n = u_1 + u_2 + \dots u_n = \sum_{i=1}^n u_i, 若级数收敛 \iff \lim_{n \to \infty} S_n \exists$$

级数的性质 - 线性组合 $\begin{cases} \psi + \psi = \psi \\ \psi + \xi = \xi \\ \xi + \xi = \end{cases}$

级数的性质 改变有限项级数的敛散性不变

级数的性质 结合律, 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛, 则<u>不改变其项的次序间任意添加符号</u>, 并把每个括号内的数作为一项, 这样得到的新奇数仍然收敛, 且其和不变. 反之不然.

结合律的推论1若加括号后的级数发散,则原级数必然发散

结合律的推论 2 若 $\lim_{n\to\infty}=0$ 又其相继两项加括号后的级数收敛, 则原级数也收敛, 且和相等

收敛级数的必要条件 若 $\sum_{n=1}^{\infty} u_n$ 收敛, 则 $\lim_{n\to\infty} u_n = 0$

4. (2002, 数一) 设
$$u_n \neq 0 (n = 1, 2, 3, \cdots)$$
, 且 $\lim_{n \to \infty} \frac{n}{u_n} = 1$

任意项级数 7.3

第七章 无穷级数

则级数 $\sum_{i=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right)$

(A) 发散 (B) 绝对收敛 (C) 条件收敛 (D) 敛散性根据所给条件不能判定

Solution

这种题首先判断是否绝对收敛, 由 $\lim_{n\to\infty}\frac{n}{u_n}=1$ 可知其一定不可能绝对收敛 让后判断级数本身是否收敛,这种形式的题目大概率就是要使用定义,求其部分和

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1}{u_1} + \frac{1}{u_2} - \frac{1}{u_2} - \frac{1}{u_3} + \dots + (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right) \right)$$

故

$$\lim_{n \to \infty} S_n = \frac{1}{n_1}$$

因此原级数条件收敛

- 5. (2019, 数三) 若级数 $\sum_{n=1}^{\infty} nu_n$ 绝对收敛, $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 条件收敛, 则
 - (A) $\sum_{n=1}^{\infty} u_n v_n$ 条件收敛 (B) $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛
 - (C) $\sum_{n=0}^{\infty} (u_n + v_n)$ 收敛 (D) $\sum_{n=0}^{\infty} (u_n + v_n)$ 发散

Solution

这种题目比较好的解法是用特殊值筛选掉错误答案. 如令 $u_n=0$ 则 A 错误, $v_n=0$ $(-1)^n$ 则 B 错误, $v_n = \frac{(-1)^n}{\ln n}$ 则 D 错误

证明 B 选项正确, 关键点考虑 极限的有界性 由 $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 收敛可知

$$\lim_{n\to\infty}\frac{v_n}{n}=0$$

由极限的有界性, 可知

$$\exists M, \forall n, \left| \frac{v_n}{n} \right| \leq M$$

从而

$$|u_n v_n| = \left| n u_n \cdot \frac{v_n}{n} \right| \le M |nn|$$

故B选项正确

7.4 幂级数求收敛半径与收敛域

Remark

方法一: 阿贝尔定理. 收敛的幂级数在收敛区间内绝对收敛, 在收敛域外发散, 在边界点

上可能收敛也可能发散,可能绝对收敛也可能条件收敛

方法二: 比值定理/根值定理

方法三:柯西判别法 最常用

逐项求导/逐项积分,收敛区间不变,需要注意边界点,其敛散性可能发生改变.

6. (2015, 数一) 若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数

$$\sum_{n=1}^{\infty} na_n(x-1)^n$$
 的

- (A) 收敛点, 收敛点
- (B) 收敛点, 发散点
- (C) 发散点, 收敛点
- (D) 发散点, 发散点

Solution

由题设条件可知级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛区间为 (-1,1)

$$\sum_{n=1}^{\infty} n a_n (x-1)^n = (x-1) \sum_{n=1}^{\infty} n a_n (x-1)^{n-1}$$
$$= (x-1) \left[\sum_{n=1}^{\infty} n a_n (x-1)^n \right]'$$

故其收敛区间为 $-1 < x - 1 < 1 \implies x \in (0,2)$ 由阿贝尔定理可知 $x = \sqrt{3}$ 为绝对收敛点,x = 3 为发散点

7. 求幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{3^n(2n+1)}$ 的收敛域.

Solution

这种题目优先考虑柯西定理,即

$$\lim_{n\to\infty} \sqrt[n]{|u_n(x)|} = \frac{x^2}{3} < 1$$

即 $x \in (-\sqrt{3}, \sqrt{3})$ (收敛区间). 接着判断边界点的敛散性. 当 $x = \pm \sqrt{3}$ 有

$$\sum_{n=1}^{\infty} (-1)^n \frac{\pm \sqrt{3}}{2n+1}$$

由莱布尼兹判别法可知其条件收敛, 故原级数的收敛域为 $\left[-\sqrt{3},\sqrt{3}\right]$

7.5 幂级数求和 第七章 无穷级数

7.5 幂级数求和

Remark

关键就是六组公式

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, x \in (-\infty, +\infty)$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}, x \in (-\infty, +\infty)$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}, x \in (-\infty, +\infty)$$

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{2n+1}, x \in (-\infty, +\infty)$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n}, x \in (-1, 1)$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^{n} x^{n}, x \in (-1, 1)$$

$$\ln (1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}, x \in (-1, 1]$$

$$\ln (1-x) = -\sum_{n=1}^{\infty} \frac{x^{n}}{n}, x \in [-1, 1)$$

8. (2005, 数一) 求幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)} \right] x^{2n}$$
 的收敛区间与和函数 $f(x)$.

Solution

这种题都可以说是套路题,第一步先求收敛域.由柯西定理有

$$\lim_{n \to \infty} \sqrt[n]{\left| (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)} \right] x^{2n} \right|} = x^2 < 1$$

故收敛区间为 (-1,1)

$$S(x) = \sum_{n=1}^{\infty} (-1)^{n-1} x^{2n} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} x^{2n}$$

其中

$$S_1(x) = \sum_{n=1}^{\infty} (-1)^{n-1} x^{2n} = \frac{x^2}{1+x^2}, x \in (-1,1)$$

7.5 幂级数求和 第七章 无穷级数

$$\begin{split} S_2(x) &= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} x^{2n} \\ &= 2x \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \cdot x^{2n-1} - \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{2n} \\ &= 2x \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \cdot x^{2n+1} - \ln(1+x^2) \\ &= 2x \arctan x - \ln(1+x^2) \end{split}$$

综上, 和函数为 $f(x) = \frac{x^2}{1+x^2} + 2x \arctan x - \ln(1+x^2)$

9. (2012, 数一) 求幂级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 的收敛域及和函数.

Solution

由柯西定理有

$$\lim_{n \to \infty} \sqrt[n]{\frac{4n^2 + 4n + 3}{2n + 1} \cdot x^{2n}} = x^2 < 1$$

从而收敛区间为 $x \in (-1,1)$ 当 $x = \pm 1$ 时级数为

$$\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1}$$

显然发散. 故收敛域为 (-1,1), 接下来求和函数.

$$S(x) = \sum_{n=0}^{\infty} (2n+1)x^{2n} + \frac{2}{x} \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}, \mathbf{x} \neq \mathbf{0}$$

其中

$$S_1(x) = \sum_{n=0}^{\infty} (2n+1)x^{2n} = \left(x\sum_{n=0}^{\infty} x^{2n}\right)' = \left(\frac{x}{1-x^2}\right)' = \frac{1+x^2}{(1-x^2)^2}$$
$$S_2'(x) = \sum_{n=0}^{\infty} x^{2n} = \frac{1}{1-x^2}$$

故

$$S_2(x) = \frac{S_2(0)}{1 - x} + \int_0^x S'(t) dt = \frac{1}{2} \ln \frac{1 + x}{1 - x}$$

需要单独计算 S(0) = 3

综上和函数为
$$S(x)$$

$$\begin{cases} \frac{1+x^2}{(1-x^2)^2} + \frac{1}{x} \ln \frac{1+x}{1-x}, & x \in (-1,0) \cup (0,1) \\ 3, & x = 0 \end{cases}$$

7.6 幂级数展开

第七章 无穷级数

10. (2004, 数三) 设级数 $\frac{x^4}{2\cdot 4}+\frac{x^6}{2\cdot 4\cdot 6}+\frac{x^8}{2\cdot 4\cdot 6\cdot 8}+\cdots$ $(-\infty < x < +\infty)$ 的和函数为 S(x)。求:

- (1) S(x) 所满足的一阶微分方程;
- (2) S(x) 的表达式.

Solution

(1) 求上述级数求导

$$S'(x) = \frac{x^3}{2} + \frac{x^5}{2 \cdot 4} + \dots$$
$$= x \left(\frac{x^2}{2} + \frac{x^4}{2 \cdot 4} + \dots \right)$$
$$= x \left[\frac{x^2}{2} + S(x) \right]$$

且有初值 S(0) = 0. (2) 上述问题转换为如下初值问题

$$\begin{cases} y' - xy = \frac{x^3}{2} \\ y(0) = 0 \end{cases}$$

可以解出 $S(x) = e^{\frac{x^2}{2}} - \frac{x^2}{2} - 1$

7.6 幂级数展开

11. (2007, 数三) 将函数 $f(x) = \frac{1}{x^2 - 3x - 4}$ 展开成 x - 1 的幂级数, 并指出其收敛区间.

Solution

$$f(x) = \frac{1}{(x-4)(x+1)} = \frac{1}{5} \left(\frac{1}{x-4} - \frac{1}{x+1} \right)$$

其中

$$\frac{1}{x-4} = \frac{1}{-3+x-1}$$

$$= -\frac{1}{3} \frac{1}{1-\frac{x-1}{3}}$$

$$= -\frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{x-1}{3}\right)^n, x \in (-2,4)$$

$$= \sum_{n=0}^{\infty} -\frac{1}{3^{n+1}} (x-1)^n$$

同理另一部分为

$$\frac{1}{x+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x-1)^n, x \in (-1,3)$$

故

$$f(x) = -\frac{1}{5} \sum_{n=0}^{\infty} \left[\frac{1}{3^{n+1}} + \frac{(-1)^n}{2^{n+1}} \right] (x-1)^n, x \in (-1,3)$$

7.7 无穷级数证明题

12. 设
$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$$

(I) 求
$$\sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2})$$
 的值

(II) 证明任意常数
$$\lambda > 0$$
, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛

Solution

(1)

$$a_{n+2} = \int_0^{\frac{\pi}{4}} \tan^{n+2} x \mathrm{d}x$$

$$a_n + a_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x (1 + \tan^2 x) dx$$
$$= \frac{\tan^{n+1} x}{n+1} \Big|_0^{\frac{\pi}{4}}$$
$$= \frac{1}{n+1}$$

故原级数等于

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{n \to \infty} \left(1 - \frac{1}{2} + \frac{1}{2} - \ldots + \frac{1}{n} - \frac{1}{n+1} \right) = 1$$

(2) 由一可知

$$a_n = \frac{1}{n+1} - a_{n+2} \implies a_n < \frac{1}{n+1}$$

故要证级数的通项满足

$$\frac{a_n}{n^{\lambda}} < \frac{1}{n^{\lambda}(n+1)} < \frac{1}{n^{(\lambda+1)}}$$

当 $\lambda > 0$ 级数 $\sum_{n=1}^{\infty} \frac{1}{n^{(\lambda+1)}}$ 收敛, 由比较判别法可知原级数收敛

- 13. (2016, 数一) 已知函数 f(x) 可导, 且 $f(0) = 1,0 < f'(x) < \frac{1}{2}$ 。 设数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)(n=1,2,\cdots)$ 。 证明:
 - (I) 级数 $\sum_{n=1}^{\infty} (x_{n+1} x_n)$ 绝对收敛;
 - (II) $\lim_{n\to\infty} x_n$ 存在, 且 $0 < \lim_{n\to\infty} x_n < 2$.

(1) 本质考察的为压缩映射的证明

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})|$$

$$= |f'(\xi)| \cdot |x_n - x_{n-1}|$$

$$< \frac{1}{2} |x_n - x_{n-1}|$$

$$\cdots$$

$$< \frac{1}{2^{n-1}} |x_2 - x_1|$$

由级数 $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ 收敛, 故原级数收敛

(2) 由 (1) 级数的收敛有

$$\lim_{n \to \infty} S_n \exists \implies \lim_{n \to \infty} x_{n+1} = A + x_1 = a$$

故极限存在, 有题设有 f(a)=a 记 g(x)=x-f(x) 有 g'(x)=1-f'(x)>0 故 g(x) 单调递增, 又 g(0)=-1<0

$$g(2) = 2 - f(2) = 1 - [f(2) - f(0)] = 1 - 2f'(\xi) > 0, \xi \in (0, 2)$$

由零点存在定理可知有且仅有唯一零点且 0 < a < 2

- 14. (2014, 数一) 设数列 $\{a_n\}$, $\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}$, $0 < b_n < \frac{\pi}{2}$, $\cos a_n a_n = \cos b_n$, 且级数 $\sum_{n=1}^{\infty} b_n$ 收敛。
 - (1) 证明 $\lim_{n\to\infty} a_n = 0$;
 - (2) 证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

(1) 由题设条件有

$$\cos b_n > \cos a_n \implies 0 < a_n < b_n$$

无穷级数

由于级数 $\sum_{n=1}^{\infty} b_n$ 收敛, 故 $\lim_{n\to\infty} b_n = 0$ 再由夹逼定理有

$$\lim_{n \to \infty} a_n = 0$$

(2) 方法一: 拉格朗日中值定理

$$\begin{split} \frac{a_n}{b_n} &= \frac{\cos a_n - \cos b_n}{b_n} \\ &= \frac{-\sin \xi (a_n - b_n)}{b_n}, \xi \in (a_n, b_n) \\ &= \frac{(b_n - a_n) \cdot \sin \xi}{a_n} < b_n - a_n < b_n \end{split}$$

方法二: 等价代换

$$\frac{a_n}{b_n} = \frac{\cos a_n - \cos b_n}{b_n} < \frac{1 - \cos b_n}{b_n} \sim \frac{1}{2}b_n$$

级数 $\sum_{n=1}^{\infty} b_n$ 收敛, 故原级数收敛

7.8 傅里叶级数

Remark

傅里叶级数就两个考点

(一) 求傅里叶级数的展开式(以 2l 为周期)

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x \right)$$

其中系数为

$$\begin{cases} a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x dx, n = 0, 1, 2, \dots \\ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x dx, n = 1, 2, 3, \dots \end{cases}$$

- (二) 狄利克雷收敛定理 (充分条件) 若函数在区间 [-1,1] 上满足
 - (1) 连续,或只有有限个间断点,且都是第一类间断点

7.8 傅里叶级数 第七章 无穷级数

(2) 只有有限个极值点

则 f(x) 在区间 (-l, l) 上的傅里叶级数收敛, 且满足

$$f(x)$$
对应傅里叶级数 =
$$\begin{cases} f(x), & x$$
为连续点
$$\frac{1}{2} \left[f(x+0) + f(x-0) \right], & x$$
为第一类间断点
$$\frac{1}{2} \left[f(-l+0) + f(l-0) \right], & x$$
为区间端点

15. 设函数

$$f(x) = \begin{cases} e^x, & -\pi \le x < 0\\ 1, & 0 \le x < \pi \end{cases}$$

则其以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于?, 在 $x = 2\pi$ 收敛于?.

Solution

由狄利克雷收敛定理知, f(x) 以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于

$$S(\pi) = \frac{f(\pi - 0) + f(-\pi + 0)}{2} = \frac{1 + e^{-\pi}}{2}$$

在 $x = 2\pi$ 收敛于

$$S(2\pi) = S(0) = \frac{f(0-0) + f(0+0)}{2} = \frac{1+1}{2} = 1$$

16. 将 $f(x) = 1 - x^2, 0 \le x \le \pi$, 展开成余弦级数, 并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

Solution

对 $f(x) = 1 - x^2$ 进行偶延拓, 由 $f(x) = 1 - x^2$ 为偶函数, 知 $b_n = 0$ 。

$$a_0 = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) dx = 2\left(1 - \frac{\pi^2}{3}\right)$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) \cos nx dx = \frac{4(-1)^{n+1}}{n^2} \quad (n = 1, 2, \dots)$$

$$f(x) = 1 - x^{2} = \frac{a_{0}}{2} + \sum_{n=1}^{\infty} a_{n} \cos nx = 1 - \frac{\pi^{2}}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^{2}} \cos nx$$

令
$$x=0$$
, 代入上式, 得

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$$

第八章 多元函数积分学

三维向量

$$\vec{a} = (a_x, a_y, a_z), \vec{b} = (b_x, b_y, b_z)$$

数量积
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = a_x b_x + a_y b_y + a_z b_z$$

性质 1 判断空间向量垂直 $\vec{a} \cdot \vec{b} = 0 \iff a \perp b$

性质 2 求空间两直线的夹角 $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$

向量积
$$a \times b = |a||b|\sin\theta = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

性质 1 判断空间直线平行 $\vec{a} \times \vec{b} = 0 \iff a \parallel b$

性质 2 求平面四边形的面积 $S = \left| \vec{a} \times \vec{b} \right|$

混合积
$$(\vec{a}\vec{b}\vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} \cdot |\vec{c}| = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

性质 1 判断三个向量是否共面 共面 \iff $(\vec{abc}) = 0$

性质 2 平行六面体的体积 $V = \left| (\vec{a}\vec{b}\vec{c}) \right|$

直线与平面

(一)平面

平面的点法式 假设平面过点 (x_0,y_0,z_0) 且该平面的法向量为 $\vec{n}=\{A,B,C\}$ 则平面方程为

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

平面的一般式 将点法式展开

$$Ax + By + Cz + D = 0$$

平面的截距式

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

其中a,b,c分别是该平面与x,y,z轴的截距

点到平面的距离公式 假设平面外一点 (x_0, y_0, z_0) 到平面的距离

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

(直线)

直线的点向式 假设直线过点 (x_0, y_0, z_0) 且该直线的方向向量为 $\vec{s} = \{l, m, n\}$ 则该直线的直线方程为

$$\frac{x_0 - x}{l} = \frac{y_0 - y}{m} = \frac{z - z_0}{n}$$

直线的参数式

$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \\ z = z_0 + nt \end{cases}$$

直线的一般式(两平面的交线)

$$\begin{cases} A_1x + B_1y + C_1z + D = 0 \\ A_2x + B_2y + C_2z + D = 0 \end{cases}$$

平面束方程 过某一直线的所有平面的方程 $\lambda(A_1x+B_1y+C_1z+D)+\mu(A_2x+B_2y+C_2z+D_2)=0$ 其中 λ,μ 不同时为 0,(...) 即该直线一般式的两平面方程

曲面与曲线

假设直线外一点 (x_0, y_0, z_0) 其到直线的距离为

$$d = \frac{|(x_1 - x_0, y_1 - y_0, z_1 - z_0) \times (l, m, n)|}{\sqrt{l^2 + m^2 + n^2}}$$

平面与直线的关系基本只需要考察 市和 彭的关系即可

旋转曲面

假设曲线
$$L = \begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases} \implies \begin{cases} x = x(z) \\ y = y(z) \end{cases}$$
 则曲线 L 绕 z 轴旋转而来的旋转曲

面方程为

$$x^2 + y^2 = x^2(z) + y^2(z)$$

求旋转曲面的问题, 捉住旋转过程中的不变量进行处理, 例如绕 z 轴旋转, 则旋转曲面上的点到 z 轴的距离和 z 坐标都与原来曲线的点一致即

$$P_0 = \begin{cases} x_0 = x(z_0) \\ y_0 = y(z_0) \end{cases} ; P = \begin{cases} x^2 + y^2 = x_0^2 + y_0^2 \\ z = z_0 \end{cases}$$

消去 z₀ 即可得到答案

常见曲面的类型

| 球面
$$x^2 + y^2 + c^2 = R^2$$
 | 圆柱面 $x^2 + y^2 = R^2$ | 横球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ | 排物面 $\frac{x^2}{2p} + \frac{y^2}{2p} = z(p > 0)$ | 圆锥面 $z = a\sqrt{x^2 + y^2}$ 上圆锥面 | 单叶双曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ | 双叶双曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$

曲面与曲线

与线代考点的综合题 二次型的特征值的正负对应图像的情况

投影曲线, 往 xoy 面的投影曲线只需要消去 z 即可

$$\begin{cases} F(x,y,z) = 0 & \xrightarrow{\text{ji.s. z}} \begin{cases} H(x,y) = 0 \\ z = 0 \end{cases}$$

曲面的法向量与切平面

若曲面是显示给出的即 F(x,y,z) = 0 则其法向量为

$$\vec{n} = \{F_x', F_y', F_z'\}$$

若曲面的是隐式给出的即 z = z(x, y) 则其法向量为

$$\vec{n} = \{-z'_x, -z'_y, 1\}$$

切平面方程为

$$F_x'(x - x_0) + F_y'(y - y_0) + F'z(z - z_0) = 0$$

曲线的切向量

若曲线是以参数式给出即 $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ 则其切向量为 z = z(t)

$$\tau = (x'(t), y'(t), z'(t))$$

若以两曲面的交线形式给出,即 $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 此时切向量为

 $\tau = \vec{n_1} \times \vec{n_2}$,其中 n_1, n_2 分别为两曲面的法向量

方向导数与三度

方向导数

$$\frac{\partial f}{\partial \vec{l}}\big|_{x_0,y_0} = \lim_{t\to 0^+} \frac{f(x_0+t\cos\alpha,y_0+t\cos\beta)-f(x_0,y_0)}{t}$$

其中 α 为与 x 轴正方向的夹角, β 为与 y 轴正方向的夹角 t 是趋于 0^+ 若 f(x,y) 可微分,则

$$\frac{\partial f}{\partial \vec{l}} = f'_x \cos \alpha + f'y \cos \beta = gr\vec{ad} \ f \cdot \vec{l_0}$$

梯度, 散度, 旋度

$$gr\vec{a}d f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \cdot (\vec{i}, \vec{j}, \vec{k})$$
$$div\vec{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$
$$ro\vec{t} A = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

方向导数沿梯度方向取得最大值,沿梯度反方向取得最小值,值为

$$\pm \left| \vec{grad} \ f \right| = \pm \left| (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) \right|$$

三度之间的关系,要求二阶偏导连续

$$\begin{aligned} & \textit{div grad} \ f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \\ & \vec{rot} \textit{grad} \ f = \vec{0} \\ & \textit{divrot} = 0 \end{aligned}$$

8.1 三重积分的计算

Remark

三重积分

(三重积分的定义)三维物体的质量

$$\iiint_{\Omega} f(x, y, z) dV = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta V_i$$

三重积分的性质 (8条)

线性, 区域可加性, 比较定理, 中值定理, 估值定理, 轮换对称性, 奇偶性, 形心公式 若函数图像关于 xoy 平面对称

$$\iiint_{\Omega} = \begin{cases} 2 \iiint_{\Omega'} f(x, y, z) dV, & f(x, y, -z) = f(x, y, z) \\ 0, & f(x, y, -z) = -f(x, y, z) \end{cases}$$

直接坐标计算(两种)

$$\begin{cases} \int_{a}^{b} \mathrm{d}z \iint_{D_{z}} f(x,y,z) \mathrm{d}x \mathrm{d}y, & \text{先二后一, 截面法} \\ \iint_{D_{xy}} \mathrm{d}x \mathrm{d}y \int_{z_{1}(x)}^{z_{2}(x)} f(x,y,z) \mathrm{d}z, & \text{先一后二, 投影法} \end{cases}$$

柱坐标 (x, y 转换为极坐标)

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ z = z \\ \mathrm{d}V = r\mathrm{d}r\mathrm{d}x\mathrm{d}y \end{cases}$$

球坐标

$$\begin{cases} x = r \sin \varphi \cos \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \varphi \\ dV = r^2 \sin \varphi dr d\varphi d\theta \end{cases}$$

其中 θ 是与x轴正方向的夹角, φ 是与z轴正反向的夹角

- 1. (2013, 数一) 设直线 L 过 A(1,0,0),B(0,1,1) 两点,将 L 绕 z 轴旋转一周得到曲面 Σ,Σ 与 平面 z = 0, z = 2 所围成的立体为 Ω .
 - (I) 求曲面 Σ 的方程;
 - (II) 求 Ω 的形心坐标.

$$x^2 + y^2 = 2z^2 - 2z + 1$$

(2) 对于三重积分以及后面的积分, 最大的误区可能就是上来二话不说先画图, 然 后发现图画不出来就不会做. 其实完全没必要画图观察曲面方程, 容易发现其关于 xoz, yoz 平面对称, 故 $\bar{x} = \bar{y} = 0$ 由形心公式有

$$\bar{z} = \frac{\iiint_{\Omega} z dV}{\iiint_{\Omega} dV}$$

由题设条件 $z \in [0,2]$ 已经提示了该用截面法喽, 从而有

$$\iiint_{\Omega} dV = \int_{0}^{2} dz \iint_{D_{z}} dxdy$$

$$= \int_{0}^{2} \pi \cdot (2z^{2} - 2z + 1) dz$$

$$= \frac{10}{3} \pi$$

$$\iiint_{\Omega} z dV = \int_{0}^{2} dz \iint_{D_{z}} z dxdy$$

$$= \int_{0}^{2} \pi \cdot (2z^{3} - 2z^{2} + z) dz$$

$$= \frac{14}{3} \pi$$

综上形心坐标为

$$(0,0,\frac{7}{5})$$

2. (2019, 数一) 设 Ω 是由锥面 $x^2 + (y-z)^2 = (1-z)^2 (0 \le z \le 1)$ 与平面 z=0 围成的锥体, 求 Ω 的形心坐标.

Solution

这个图像张啥样, 其实也一定都不重要. 只要能把握其在某一二维平面的投影即可, 观察曲面表达式, 显然其关于 yoz 平面堆成故 $\bar{x}=0$, 而由形心公式可知要求 3 个三重积分, 分别做吧

$$\iint_{\Omega} dV = \int_{0}^{1} dz \iint_{D_{z}} dxdy$$

$$= \int_{0}^{1} \pi (1-z)^{2} dz$$

$$= \frac{1}{3}\pi$$

$$\iint_{\Omega} z dV = \int_{0}^{1} dz \iint_{D_{z}} z dxdy$$

$$= \int_{0}^{1} \pi z (1-z)^{2} dz$$

$$= \frac{1}{12}\pi$$

$$\iint_{\Omega} y dV = \int_{0}^{1} dz \iint_{D_{z}} y dxdy$$

$$= \int_{0}^{1} \pi z (1-z)^{2} dz$$

$$= \frac{1}{12}\pi$$

$$= \frac{1}{12}\pi$$

综上,该区域的形心为

$$\left| (0, \frac{1}{4}, \frac{1}{4}) \right|$$

8.2 第一类曲线积分的计算

Remark

一类线

定义

$$\int_{L} f(x,y) ds = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta s_{i}$$

其中 ds 是弧微分

一类线的性质 (8条)

线性,区域可加性,比较定理,中值定理,估值定理,轮换对称性,奇偶性,形心公式计算公式,曲线方程带入

$$\int_{L} f(x,y) \mathrm{d}s \begin{cases} \int_{\alpha}^{\beta} f(x(t),y(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2}} \mathrm{d}t, & \text{ 参数方程} \\ \int_{a}^{b} f(x,y(x)) \sqrt{1 + (y'(x))^{2}} \mathrm{d}x, & \text{ 直接坐标} \\ \int_{\alpha}^{\beta} f(r(\theta)\cos\theta, r(\theta)\sin\theta) \sqrt{r^{2}(\theta) + (r'(\theta))^{2}} \mathrm{d}\theta, & \text{ 极坐标} \end{cases}$$

3. (2018, 数一) 设 L 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 的交线,则 $\oint_L xyds =$

Solution

这道题是比较显然的轮换对称性的题目

原式 =
$$\frac{1}{3} \oint_L (xy + yz + xz) ds$$

= $\frac{1}{6} \oint_L \left[(x + y + z)^2 - (x^2 + y^2 + z^2) \right]$
= $\frac{\text{曲线方程带入}}{\text{=}} -\frac{1}{6} \oint_L ds$
= $-\frac{1}{3}\pi$

4. 设连续函数 f(x,y) 满足 $f(x,y) = (x+3y)^2 + \int_L f(x,y) ds$,其中 L 为曲线 $y = \sqrt{1-x^2}$,求曲线积分 $\int_L f(x,y) ds$.

不妨设 $A = \int_{L} f(x,y) ds$ 同时对等式两边同时求一类线有

$$A = \int_{L} \left[(x+3y)^2 + A \right] ds$$

$$= A\pi + \int_{L} (x+3y)^2 ds$$

$$= A\pi + \int_{L} (x^2 + 6xy + 9y^2) ds$$

$$= (1+A)\pi + 8 \int_{L} y^2 ds$$

$$= (1+A)\pi + 8 \int_{0}^{2\pi} \sin^2 \theta d\theta$$

$$= (5+A)\pi \implies A = \frac{5\pi}{1-\pi}$$

计算过程中优先考虑使用性质化简, 而非直接套公式

对于曲线/曲面/定积分/二重积分/三重积分, 它在某区域内积分后就是一个数, 变限积分和不定积分仍然是一个函数.

8.3 第二类曲线积分的计算

Remark

- 二类线
- 二类线的定义: 沿曲线做功

$$\int_{L} P(x,y) dx + Q(x,y) dy = \lim_{\lambda \to 0} \sum_{i=1}^{n} \left[P(\xi_i, \eta_i) \Delta x_i + Q(\xi_i, \eta_i) \Delta y_i \right]$$

其中 $dx = ds \cdot \cos \alpha$, $dy = ds \cdot \cos \beta$, 其中 $(\cos \alpha, \cos \beta)$ 为切向量的单位向量性质 (3 条)

线性,区域可加性,方向性

$$\int_{L} = -\int_{L}', L 和 L' 方 向相反$$

计算方式(两种)

$$\int_{L} P(x,y) dx + Q(x,y) dy = \begin{cases} \int_{\alpha}^{\beta} \left[P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) \right] dt, & \text{参数方程} \\ \int_{\alpha}^{b} \left[P(x, f(x)) + Q(x, f(x)) f'(x) \right] dx, & \text{直角坐标} \end{cases}$$

注意此时 $\alpha \to \beta$, $a \to b$ 均为起点指向终点, 和大小无关

格林公式 设闭区域 D 由分段光滑的曲线 L 围成,L 取正向,P(x,y),Q(x,y) 在 D 上有一阶 连续偏导数,则

$$\oint_{L} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

积分与路径无关 (四个充分条件) 设 P(x,y), Q(x,y) 在单连通闭区域 D 上有一阶连续偏导数, 则

$$\begin{split} \frac{\partial Q}{\partial x} &= \frac{\partial P}{\partial y} \\ \iff D$$
内任意曲线 $L, \oint_L P \mathrm{d} x + Q \mathrm{d} y = 0 \\ \iff D$ 任意两点 $A, B, \int_A^B P \mathrm{d} x + Q \mathrm{d} y$ 与路径无关
$$\iff \exists u(x,y), \mathrm{d} u = P(x,y) \mathrm{d} x + Q(x,y) \mathrm{d} y, \ \exists u(x,y) = \int_{(x_0,y_0)}^{(x,y)} P \mathrm{d} x + Q \mathrm{d} y \end{split}$$

曲线方程带入

曲线积分基本定理

设 P(x,y),Q(x,y) 在区域 D 内连续,u(x,y) 满足 $\mathrm{d}u=P(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y$,则区域 D 内任意两点 A,B 曲线积分 $\int_A^B P\mathrm{d}x+Q\mathrm{d}y$ 与路径无关,且 $\int_A^B P\mathrm{d}x+Q\mathrm{d}y=u(B)-u(A)$

- 5. (2021, 数一) 设 $D \subset \mathbb{R}^2$ 是有界单连通闭区域, $I(D) = \iint_D (4 x^2 y^2) dx dy$ 取得最大值的积分域记为 D_1 .
 - (I) 求 $I(D_1)$ 的值;

(II) 计算
$$\int_{\partial D_1} \frac{(xe^{x^2+4y^2}+y)dx+(4ye^{x^2+4y^2}-x)dy}{x^2+4y^2}$$
, 其中 ∂D_1 是 D_1 的正向边界.

(1) 由二重积分的几何意义, 使得 $4-x^2-y^2 \ge 0$ 始终成立的区域即为积分最大的区域, 即

$$D_1 = \{(x, y) \mid x^2 + y^2 \le 4\}$$

此时积分为

$$I = \int_0^{2\pi} d\theta \int_0^2 (4 - r^2) r dr = 8\pi$$

(2) 显然 (0,0,0) 点是被积函数的奇点, 此时考虑挖去该点, 即设

$$L': x^2 + 4y^2 = 1$$
, 取顺时针

此时有

$$I = \oint_{\partial D_1 + L'} - \oint_{L'}$$

对于前一个积分,用 Green 公式有

$$\oint_{\partial D_1 + L'} = \iint_{D_1/D_{L'}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}x \mathrm{d}y = 0$$

对于后一个积分, 先将曲线方程带入表达式后有

$$\oint_{L'} = \oint_{L'} (ex + y) \, \mathrm{d}x + (4ey - x) \, \mathrm{d}y$$

$$\xrightarrow{\text{\tiny \frac{R + M \triangle \vec{\pi}}{2}}} - \iint_{D_{L'}} (-1 - 1) = 2S_{D_{L'}} = \pi$$

故

$$I = 0 - \pi = -\pi$$

6. (2011, 数一) 设 L 是柱面 $x^2+y^2=1$ 与平面 z=x+y 的交线,从 z 轴正向往 z 轴负向 看去为逆时针方向,则曲线积分 $\oint_L xzdx+xdy+\frac{y^2}{2}dz=$

Solution

这种问题仅有三种解法,推荐解法3,但三种解法都需要掌握.

(解法一 公式法) 设曲线的参数方程为 $\begin{cases} x=\cos t\\ y=\sin t & \text{由于从 } z\text{ 轴正向往 } z\text{ 轴}\\ z=\sin t+\cos t \end{cases}$

负向看去为逆时针方向,故 $t:0\to 2\pi$,此时原积分等于

$$\begin{split} I &= \int_0^{2\pi} \left\{ \left[\cos t (\sin t + \cos t) (-\sin t)\right] + \cos^2 t + \frac{\sin^2 t}{2} (\cos t - \sin t) \right\} \mathrm{d}t \\ &= \int_0^{2\pi} \cos^2 \theta = \pi \end{split}$$

(解法二 斯托克斯公式) 注意斯托克斯公式一般转换为一类面来做 (公式法)

曲面法向量为 $\vec{n}=(-Z_x',-Z_y',1)=(-1,-1,1)$ 其单位向量为 $\vec{n_0}=(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$ 此时由斯托克斯公式有

$$\oint_{L} = \iint_{\Sigma} \begin{vmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xz & x & \frac{y^{2}}{2} \end{vmatrix} dS$$

$$= -\frac{1}{\sqrt{3}} \iint_{\Sigma} (y - x - 1) dS$$

$$\stackrel{\triangle \vec{x} \not\equiv}{=} -\frac{1}{\sqrt{3}} \iint_{D_{xy}} (y + x - 1) \sqrt{1 + 1 + 1} dx dy$$

$$= \pi$$

(解法三 转换为平面二类型) 由 z=x+y 消去原曲线积分中的所有 z, 注意 dz=dx+dy 此时积分转换为其中 $L':x^2+y^2=1$ 取逆时针方向

$$I = \oint_{L'} (x^2 + xy + \frac{y^2}{2}) dx + (x + \frac{y^2}{2}) dy$$
格林公式
$$\iint_D (1 - x - y) dx dy = \pi$$

8.4 第一类曲面积分的计算

Remark

一类面

一类面的定义

$$\iint_{\Sigma} f(x, y, z) dS = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i$$

性质 (8条)

线性,区域可加性,比较定理,中值定理,估值定理,轮换对称性,奇偶性,形心公式计算公式(一投,二代)

$$\iint_{\Sigma} f(x,y,z)\mathrm{d}S = \iint_{D_{xy}} f(x,y,z(x,y)) \sqrt{1 + (Z_x')^2 + (Z_y')^2} \mathrm{d}x\mathrm{d}y$$

曲面方程带入

7. (2010, 数一) 设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 的切平面与 xOy 面垂直,求 P 点的轨迹 C,并计算曲面积分

$$I = \iint_{\Sigma} \frac{(x + \sqrt{3})|y - 2z|}{\sqrt{4 + y^2 + z^2 - 4yz}} dS,$$

其中 Σ 是椭球面 S 位于曲线 C 上方的部分.

Solution

一类面的难点肯定在于如何求出该平面, 计算都是小意思用公式就可以.

S 在点 P 处的切平面, 其法向量为 $\vec{n_1} = (F_x', F_y', F_z' = 2x, 2y - z, 2z - y)$ 而 xoy 面的 法向量为 $\vec{n_2} = (0,0,1)$ 由题设知 $\vec{n_1} \cdot \vec{n_2} = 0$ 即 2z - y = 0 带入 S 的方程化简有, 曲线 C 的方程为

$$\begin{cases} x^2 + \frac{3}{4}y^2 = 1\\ y = 2z \end{cases}$$

即一个椭球柱与平面的交线, 将曲线往 xoy 面投影, 其区域为 $D_{xy}: \{(x,y) \mid x^2 + \frac{3}{4}y^2 \le 1\}$

$$dS = \sqrt{1 + (Z'_x)^2 + (Z'_y)^2} dx dy = \frac{\sqrt{4 + y^2 + z^2 - 4yz}}{|y - 2z|} dx dy$$

原积分由公式法等于

$$I = \iint_{D_{xy}} (x + \sqrt{3}) \mathrm{d}x \mathrm{d}y = 2\pi$$

8.5 第二类曲面积分的计算

Remark

- 二类面
- 二类面的定义: 流量

$$\iint_{\Sigma} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} [P(\xi_i, \eta_i, \zeta_i)(\Delta S_i)_{yz} + Q(\xi_i, \eta_i, \zeta_i)(\Delta S_i)_{zx} + R(\xi_i, \eta_i, \zeta_i)(\Delta S_i)_{xy}]$$

其中 $\mathrm{d}y\mathrm{d}z=\mathrm{d}S\cdot\cos\alpha$ 其余类似, 而 $(\cos\alpha,\cos\beta,\cos\gamma)$ 为平面 \sum 的法向量的单位向量性质 $(3\ \$)$

线性,区域可加性,方向性

计算公式(三合一投影法)

$$\begin{split} &\iint_{\Sigma} P(x,y,z) \mathrm{d}y \mathrm{d}z + Q(x,y,z) \mathrm{d}z \mathrm{d}x + R(x,y,z) \mathrm{d}x \mathrm{d}y \\ &= \pm (P(x,y),Q(x,y),R(x,y)) \cdot (-Z_x',-Z_y',1) \\ &= \pm \iint_{D_{xy}} \left[P(x,y,z(x,y))(-Z_x') + Q(x,y,z(x,y))(-Z_y') + R(x,y,z(x,y)) \right] \mathrm{d}x \mathrm{d}y \end{split}$$

上侧为正,下侧为负

高斯公式 设闭区域 Ω 由分片光滑的曲面 \sum 围成, \sum 取外侧,P,Q,R 在其上有一阶连续偏导数,则

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right)$$

曲面方程带入

斯托克斯公式 设 P,Q,R 在曲面 \sum 围成的区域 Ω 内有一阶连续偏导数, \sum 的边界曲线

L的方向与 \sum 所取的法向量满足右手法则,则

$$\oint_{L} P dx + Q dy + R dz = \iint_{\sum} \begin{vmatrix} dy dz & dz dx & dx dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} dS$$

即将三维的二类线转换为一类面或者二类面来做

8. (2009, 数一) 计算曲面积分

$$I = \iint_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}},$$

其中 Σ 是曲面 $2x^2 + 2y^2 + z^2 = 4$ 的外侧.

Solution

显然点 (0,0,0) 是被积函数的奇点, 需要挖去这一个点, 不妨设

$$\sum_{1} : x^2 + y^2 + z^2 = 1$$
, 取外侧

记

$$\Omega: \{(x, y, z) \mid x^2 + y^2 + z^2 \ge 1, 2x^2 + 2y^2 + z^2 \le 4\}$$

$$\Omega_1: \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$

此时原积分等于

$$I = \iint_{\sum + \sum_{1}} - \iint_{\sum_{1}}$$

其中

$$\iint_{\Sigma + \Sigma_1} \frac{\exists \mathbb{M} \mathbb{E}_{\mathbb{E}}}{\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) = 0$$

对于第二个积分, 先带入 \sum_{i} 的曲面方程此时有

$$\iint_{\Sigma_1} = \iint_{\Sigma_1} x dy dz + y dz dx + z dx dy$$
$$= - \iiint_{\Omega_1} 3 dV$$
$$= -4\pi$$

综上有

$$I = 0 + 4\pi = 4\pi$$

9. 计算

$$\iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{(x^2 + y^2 + z^2)^2},$$

其中 Σ 为下半球面 $z=-\sqrt{a^2-x^2-y^2}$ 的上侧,a 为大于零的常数.

Solution

发现这个曲面不是封闭的, 立刻补上, 即设

$$\sum_{1}: \begin{cases} x^2 + y^2 \le a^2 \\ z = 0 \end{cases}, 取下侧$$

注意,虽然被积函数在 (0,0,0) 处貌似是奇点,但注意到可以通过带入曲线方程消去分母,就不需要挖点了

$$\begin{split} I &= \frac{1}{a} \iint_{\Sigma} ax \mathrm{d}y \mathrm{d}z + (z+a)^2 \mathrm{d}x \mathrm{d}y \\ &= \frac{1}{a} (\iint_{\Sigma + \sum_{1}} - \iint_{\sum_{1}}) \end{split}$$

记 \sum_{1} , \sum 围成的区域为 Ω , 则有

$$\iint_{\Sigma + \Sigma_1} = - \iiint_{\Omega} = - \iiint_{\Omega} \left[a + 2(z + a) \right] dV = -\frac{3}{2} \pi a^4$$

记 $D_{xy}: \{(x,y) \mid x^2 + y^2 \le a^2\}$ 则有

$$\iint_{\sum_{1}} \frac{\sin x}{x} - \iint_{D_{xy}} a^{2} dx dy = -\pi a^{4}$$

综上有

$$I = -\frac{\pi a^3}{2}$$

10. (2020, 数一) 设 Σ 为曲面 $z = \sqrt{x^2 + y^2} (1 \le x^2 + y^2 \le 4)$ 的下侧, f(x) 为连续函数, 计算 $I = \iint_{\Sigma} [xf(xy) + 2x - y] \mathrm{d}y \mathrm{d}z + [yf(xy) + 2y + x] \mathrm{d}z \mathrm{d}x + [zf(xy) + z] \mathrm{d}x \mathrm{d}y.$

Solution

因为 f(xy) 仅连续, 高斯的条件为封闭外侧, 偏导连续, 只能使用三合一投影法

记区域
$$D_{xy}: \{(x,y) \mid 1 \le x^2 + y^2 \le 4\}$$

$$I = -\iint_{D_{xy}} \left([xf(xy) + 2x - y] \left(-\frac{x}{\sqrt{x^2 + y^2}} \right) + [yf(xy) + 2y + x] \left(-\frac{y}{\sqrt{x^2 + y^2}} \right) + \left[\sqrt{x^2 + y^2} f(xy) + \sqrt{x^2 + y^2} \right] \right) dx dy$$

$$= \iint_{D_{xy}} \sqrt{x^2 + y^2} dx dy$$

$$= \int_0^{2\pi} d\theta \int_1^2 r^2 dr = \frac{14}{3}\pi$$