Market-Based Mechanisms

Quitzé Valenzuela-Stookey (Duke) Francisco Poggi (Mannheim)

August 2021

Motivation

Many market outcomes aggregate dispersed information.

• E.g. prices in financial markets, macro indicators.

Policy makers use markets to inform decisions.

Motivation

Many market outcomes aggregate dispersed information.

• E.g. prices in financial markets, macro indicators.

Policy makers use markets to inform decisions.

Complication: Market participants are forward-looking.

- Behavior conditioned on anticipated action of policy maker.
- Feedback from policy to markets.

Example: regulating carbon emissions

Regulator wants to limit emissions, but doesn't know distribution abatement cost.

• Firms have private information about abatement costs.

Weitzman (1974) "Prices v.s. Quantities"

Better to set price for emissions, or set quantities?

Example: cap-and-trade

With cap-and-trade policy, regulator sets quantities

- Regulator issues fixed number of credits.
 - 1 credit = 1 ton of carbon
- Credits traded in competitive market.

For fixed issuance, low credit price indicates low abatement cost

- If price lower than expected, regulator will want to lower issuance.
 - Low price creates political pressure to lower issuance (Flachsland et al., 2020).
 - Some systems have price floors, or provisions for adjusting issuance given excess supply (e.g. EU Emissions Trading Scheme).

Example: variable-volume credits

Price can convey information about abatement costs.

• The regulator could explicitly condition issuance on credit price.

Variable-volume credit policy

- 1. Regulator issues a set number of variable-volume credits.
 - 1 credit = ? tons of carbon
- 2. Announces rule mapping credit price to per-credit volume.
- 3. Credits trade in competitive market.
- 4. Market closes, per-credit volume determined by price via announced rule.

Prices and Quantities, not Prices v.s. Quantities

Principal (regulator)

- Chooses action (volume of emissions).
- Doesn't observe state (abatement cost).

Principal (regulator)

- Chooses action (volume of emissions).
- Doesn't observe state (abatement cost).

Market (market for credits)

- Agents in market (firms) have private information about state.
- Behavior of agents depends on beliefs about state and action.
- Aggregate behavior determines a market outcome (credit price).

Principal (regulator)

- Chooses action (volume of emissions).
- Doesn't observe state (abatement cost).

Market (market for credits)

- Agents in market (firms) have private information about state.
- Behavior of agents depends on beliefs about state and action.
- Aggregate behavior determines a market outcome (credit price).

Design instrument

 The principal publicly commits in advance to a decision rule mapping market outcome to action.

Principal (regulator)

- Chooses action (volume of emissions).
- Doesn't observe state (abatement cost).

Market (market for credits)

- Agents in market (firms) have private information about state.
- Behavior of agents depends on beliefs about state and action.
- Aggregate behavior determines a market outcome (credit price).

Design instrument

 The principal publicly commits in advance to a decision rule mapping market outcome to action.

General market-based policy setting.

 $Design/implementation\ approach\ to\ market-based\ policy$

Design/implementation approach to market-based policy

What can the principal achieve with a market-based decision rule?

 What joint distributions of states, market outcomes, and principal actions the principal induce in equilibrium?

Design/implementation approach to market-based policy

What can the principal achieve with a market-based decision rule?

 What joint distributions of states, market outcomes, and principal actions the principal induce in equilibrium?

Additional concerns:

- Equilibrium multiplicity
 - Endogeneity of the action can can lead to equilibrium multiplicity.
 - Non-fundamental volatility, resulting from equilibrium multiplicity, is a first-order concern in many settings (Woodford, 1994).
- Market manipulation
 - Market participants may have small but non-zero market power.
 - The market outcome can be manipulated to influence the action.

Design/implementation approach to market-based policy

What can the principal achieve with a market-based decision rule?

 What joint distributions of states, market outcomes, and principal actions the principal induce in equilibrium?

Additional concerns:

- Equilibrium multiplicity
 - Endogeneity of the action can can lead to equilibrium multiplicity.
 - Non-fundamental volatility, resulting from equilibrium multiplicity, is a first-order concern in many settings (Woodford, 1994).
- Market manipulation
 - Market participants may have small but non-zero market power.
 - The market outcome can be manipulated to influence the action.

How to deal with these concerns?

• What constraints do they impose on the implementable set?

1. General framework

- 1. General framework
- 2. Characterize feasible set
 - Set of implementable joint distributions of states, market outcomes, and principal actions.
 - Focus: unique implementation under robustness to manipulation

- 1. General framework
- 2. Characterize feasible set
 - Set of implementable joint distributions of states, market outcomes, and principal actions.
 - Focus: unique implementation under robustness to manipulation

- 1. General framework
- 2. Characterize feasible set
 - Set of implementable joint distributions of states, market outcomes, and principal actions.
 - Focus: unique implementation under robustness to manipulation

Additional results

3. Unique implementation and robustness to manipulation jointly imply robustness to misspecification/structural uncertainty.

- 1. General framework
- 2. Characterize feasible set
 - Set of implementable joint distributions of states, market outcomes, and principal actions.
 - Focus: unique implementation under robustness to manipulation

Additional results

- 3. Unique implementation and robustness to manipulation jointly imply robustness to misspecification/structural uncertainty.
- 4. Study relaxations of unique implementation requirement.

- 1. General framework
- 2. Characterize feasible set
 - Set of implementable joint distributions of states, market outcomes, and principal actions.
 - Focus: unique implementation under robustness to manipulation

Additional results

- Unique implementation and robustness to manipulation jointly imply robustness to misspecification/structural uncertainty.
- 4. Study relaxations of unique implementation requirement

Some applications

Many policy makers use market outcomes to inform decisions.

With (some) commitment

- Monetary policy (Bernanke and Woodford, 1997).
- Carbon cap-and-trade policies (Flachsland et al., 2020).

Without commitment

- Shareholders replacing firm management (Warner et al., 1988).
- Corporate bailouts (Bond and Goldstein, 2015).

Applications for today

Emissions regulation

- Variable-volume credit policy achieves regulator's first-best.
- No commitment power needed.

Applications for today

Emissions regulation

- Variable-volume credit policy achieves regulator's first-best.
- No commitment power needed.

Merger policy

- Given qualitative features of the environment, identify robust features of optimal policy.
 - Policy highly responsive to markets iff regulator's first-best is not implementable.

Related literature

Broadly: two-way feedback, financial markets \rightleftharpoons real economy Baumol (1965), Dow and Gorton (1997), Angeletos and Werning (2006), Bond et al. (2012), Siemroth (2019)

Related literature

Broadly: two-way feedback, financial markets \rightleftharpoons real economy Baumol (1965), Dow and Gorton (1997), Angeletos and Werning (2006), Bond et al. (2012), Siemroth (2019)

Specifically: policy making with commitment under feedback

Bernanke and Woodford (1997), Bond et al. (2010), Bond and Goldstein (2015), Boleslavsky et al. (2017), Lee (2019), Hauk et al. (2020)

Related literature

Broadly: two-way feedback, financial markets \rightleftharpoons real economy Baumol (1965), Dow and Gorton (1997), Angeletos and Werning (2006), Bond et al. (2012), Siemroth (2019)

Specifically: policy making with commitment under feedback

Bernanke and Woodford (1997), Bond et al. (2010), Bond and Goldstein (2015), Boleslavsky et al. (2017), Lee (2019), Hauk et al. (2020)

Our contribution

- 1. General framework in a tractable form.
- 2. Practical issues
 - Equilibrium multiplicity.
 - Manipulation.
 - Structural uncertainty/misspecification.

Outline

Model

Market representation

Implementation

Robustness

Manipulation Multiplicity

Robust implementation

Applications

Emissions regulation Merger policy

Model

Market representation

Implementation

Robustness Manipulation

Multiplicity

Robust implementation

Applications

Emissions regulation Merger policy

Model

State space $\Theta \subseteq \mathbb{R}^N$, convex.

A compact, convex set \mathcal{A} of principal actions $(\mathcal{A} \subset \mathbb{R}^L)$.

A convex set $\mathcal{P} \subseteq \mathbb{R}$ of market outcomes (price).

Model

State space $\Theta \subseteq \mathbb{R}^N$, convex.

A compact, convex set \mathcal{A} of principal actions $(\mathcal{A} \subset \mathbb{R}^{L})$.

A convex set $\mathcal{P} \subseteq \mathbb{R}$ of market outcomes (price).

Timing

- 0. Principal commits to a decision rule $M: \mathcal{P} \to \mathcal{A}$.
- 1. The price is determined.
- 2. If the price is p, principal takes action M(p)

Mode

Market representation

Implementation

Robustness

Manipulation Multiplicity

Robust implementation

Applications

Emissions regulation Merger policy

- **Step 1.** Redefine problem in outcome space.
 - Space of functions from states to actions and prices.

- **Step 1.** Redefine problem in outcome space.
 - Space of functions from states to actions and prices.
- **Step 2.** Derive reduced-form representation of the market.
 - Model many different types of markets in a unified framework.
 - Facilitate a "state-by-state" analysis.

- **Step 1.** Redefine problem in outcome space.
 - Space of functions from states to actions and prices.
- **Step 2.** Derive reduced-form representation of the market.
 - Model many different types of markets in a unified framework.
 - Facilitate a "state-by-state" analysis.
- **Step 3.** Characterization of implementable outcomes.

Step 1. Outcome space

Principal chooses a decision rule $M: \mathcal{P} \to \mathcal{A}$

In general, principal's ex-ante payoff depends on joint distribution of states, actions, and prices induced in equilibrium.

Describe equilibrium joint distribution via

- action function $Q:\Theta \to \mathcal{A}$.
- price function $P:\Theta\to\mathcal{P}$.

Principal cares about M only through induced Q and P

Step 1. Outcome space

Principal chooses a decision rule $M: \mathcal{P} \to \mathcal{A}$

In general, principal's ex-ante payoff depends on joint distribution of states, actions, and prices induced in equilibrium.

Describe equilibrium joint distribution via

- action function $Q:\Theta \to \mathcal{A}$.
- price function $P:\Theta\to\mathcal{P}$.

Principal cares about M only through induced Q and P

We want to know the set of *implementable* (Q, P).

• What (Q, P) are equilibrium outcomes given some decision rule?

Step 2. Reduction

Market admits a reduced-form representation: there is a *market-clearing* function $R: \mathcal{A} \times \Theta \mapsto \mathcal{P}$

• Interpretation: when all agents anticipate principal action $a \in A$ and the state is $\theta \in \Theta$, market-clearing price is $R(a, \theta)$.

Step 2. Reduction

Market admits a reduced-form representation: there is a market-clearing function $R: \mathcal{A} \times \Theta \mapsto \mathcal{P}$

• Interpretation: when all agents anticipate principal action $a \in A$ and the state is $\theta \in \Theta$, market-clearing price is $R(a, \theta)$.

Key feature: R does not depend on decision rule M.

• $Q(\theta)$ uniquely determines $P(\theta)$ via R in any equilibrium.

Questions

- Why can a market fail to have a RFR? Decision rule *M* affects investors in two ways
 - 1. Forward guidance: anticipated action M(p).
 - 2. Information aggregation: M affects the informativeness of the price.

Questions

- Why can a market fail to have a RFR? Decision rule *M* affects investors in two ways
 - 1. Forward guidance: anticipated action M(p).
 - 2. Information aggregation: *M* affects the informativeness of the price.
- What markets admit a reduced-form representation?
 - Satisfied in variable-volume credits market (private values).
 - What others? Paper: class of REE models.
- Why is this useful?

Benefits of reduced-form

If market admits reduced-form, can proceed with R as our primitive

Benefits of reduced-form

If market admits reduced-form, can proceed with R as our primitive

Other benefits of this approach

- For modeling: Identify qualitative features of R with those of policy.
 Closed form not needed.
- For practice: Addresses Lucas critique. Aggregate data can be used to estimate $R: \mathcal{A} \times \Theta \to \mathcal{P}$, regardless of past policy. Needn't know past policy or market micro-structure.

Mode

Market representation

Implementation

Robustness

Manipulation Multiplicity

Robust implementation

Applications

Emissions regulation Merger policy

(Q, P) are implementable if they are equilibrium outcomes given some M.

(Q, P) are implementable if they are equilibrium outcomes given some M.

Definition

If market admits a reduced form, say (Q, P) is **implementable** if

 $\exists M: \mathcal{P} \rightarrow \mathcal{A} \text{ such that }$

1.
$$Q = M \circ P$$
 (commitment)

2.
$$P(\theta) = R(Q(\theta), \theta) \ \forall \ \theta \in \Theta$$
 (market clearing)

Lemma

(Q, P) is implementable iff

1.

$$Q(\theta) \neq Q(\theta')$$

$$Q(\theta) \neq Q(\theta')$$
 \Rightarrow $P(\theta) \neq P(\theta')$. (measurability)

$$P(\theta) = R(Q(\theta), \theta) \quad \forall \ \theta \in \Theta$$

(market clearing)

Lemma

(Q, P) is implementable iff

1.

$$Q(\theta) \neq Q(\theta')$$
 \Rightarrow $P(\theta) \neq P(\theta')$. (measurability)

2.

$$P(\theta) = R(Q(\theta), \theta) \quad \forall \ \theta \in \Theta$$
 (market clearing)

Say that Q is implementable if (Q, P) is, where $P(\theta) := R(Q(\theta), \theta)$.

Three firms A, B, C in a market. A and B announce intention to merge.

Regulator chooses to block or approve merger

- Wants to allow if and only if merger not too anti-competitive.
- Effect on competition is unknown.

Three firms A, B, C in a market. A and B announce intention to merge.

Regulator chooses to block or approve merger

- Wants to allow if and only if merger not too anti-competitive.
- Effect on competition is unknown.

Empirical literature suggests using stock market to identify effect, when investors may have private information. (Duso et al., 2010)

- i. Merger is pro-competitive \Rightarrow more competition \Rightarrow Bad for C.
- ii. Merger is anti-competitive \Rightarrow less competition \Rightarrow Good for C.

Three firms A, B, C in a market. A and B announce intention to merge.

Regulator chooses to block or approve merger

- Wants to allow if and only if merger not too anti-competitive.
- Effect on competition is unknown.

Empirical literature suggests using stock market to identify effect, when investors may have private information. (Duso et al., 2010)

- i. Merger is pro-competitive \Rightarrow more competition \Rightarrow Bad for C.
- ii. Merger is anti-competitive \Rightarrow less competition \Rightarrow Good for C.

Regulator can learn from change in C's share price after merger proposal

• $C \nearrow =$ anti-competitive, $C \searrow =$ pro-competitive

 ${\cal P}$ is change in competitor's share price

 $\boldsymbol{\Theta}$ is the degree of anti-competitiveness of the merger.

• First-best: approve iff $\theta < \theta^*$

Regulator can randomize

- A = [0, 1], a is probability of blocking.
 - Alternatively, approve with conditions/divestments

First-best
$$(Q^*(\theta) = 0 \text{ iff } \theta < \theta^*)$$
 is implementable

Blue line is price: $P(\theta) := R(Q^*(\theta), \theta)$

An implementing decision rule: allow below p^* , block above p^* .

First-best not implementable, violates measurability at $p_B\dots$

Figure: Implementable

...first-best almost implementable: $\mathit{Q}(\theta) = \mathit{blk}$ iff $\theta = \bar{\theta}$ or $\theta \geq \theta^*$

Figure: Implementable

$$\ldots$$
 first-best almost implementable: $Q(heta)=blk$ iff $heta=ar{ heta}$ or $heta\geq heta^*$

$$M(p) = egin{cases} blk & ext{if} & p = p_B ext{ or } p \geq p^*, \ alw & ext{if} & ext{otherwise} \end{cases}$$

Figure: Implementable

$$\ldots$$
 first-best almost implementable: $Q(heta)=blk$ iff $heta=ar{ heta}$ or $heta\geq heta^*$

$$M(p) = \begin{cases} blk & \text{if} \quad p = p_B \text{ or } p \geq p^*, \\ alw & \text{if} \quad \text{otherwise} \end{cases}$$

Problems

Mode

Market representation

Implementation

Robustness Manipulation Multiplicity

Robust implementation

Applications

Emissions regulation Merger policy

Manipulation

Want to guarantee robustness to small price manipulations.

- Models with infinitesimal agents are a limiting approximation.
- In reality, agents are small, but not infinitesimal.

Manipulation

Want to guarantee robustness to small price manipulations.

- Models with infinitesimal agents are a limiting approximation.
- In reality, agents are small, but not infinitesimal.

Goal: prevent *large* change in principal action from *small* price manipulations.

• Continuity of M.

In fact, continuity only required near possible equilibrium prices

- Discontinuities elsewhere are unreachable via small price changes.
- Imposing continuity everywhere unnecessarily constrains policy.

Manipulation

For any M, let $\bar{P}_M = \cup_{\theta \in \Theta} \{ p \in \mathcal{P} : R(M(p), \theta) = p \}$ be the set of market-clearing prices given M, and let $cl(\bar{P}_M)$ be its closure.

Definition

A function $M: \mathcal{P} \to \mathcal{A}$ is **essentially continuous** if it is continuous on an open set containing $cl(\bar{P}_M)$.

 ${\cal M}$ is the set of essentially continuous decision rules.

Multiplicity

Endogeneity of principal's action can lead to multiple equilibria (Bernanke and Woodford, 1997).

Agents adopt self-fulfilling beliefs about principal's action

Equilibrium multiplicity and non-fundamental volatility a fundamental concern in many market-based design problems (e.g. monetary policy) (Woodford, 1994)

Multiplicity

Endogeneity of principal's action can lead to multiple equilibria (Bernanke and Woodford, 1997).

Agents adopt self-fulfilling beliefs about principal's action

Equilibrium multiplicity and non-fundamental volatility a fundamental concern in many market-based design problems (e.g. monetary policy) (Woodford, 1994)

Objective: characterize the set of *uniquely* implementable (Q, P).

Multiplicity

Endogeneity of principal's action can lead to multiple equilibria (Bernanke and Woodford, 1997).

Agents adopt self-fulfilling beliefs about principal's action

Equilibrium multiplicity and non-fundamental volatility a fundamental concern in many market-based design problems (e.g. monetary policy) (Woodford, 1994)

Objective: characterize the set of *uniquely* implementable (Q, P).

Definition

M is **robust to multiplicity** if

$$\{p: p = R(M(p), \theta)\}$$

is singleton for all θ .

Mode

Market representation

Implementation

Robustness

Manipulation Multiplicity

Robust implementation

Applications

Emissions regulation Merger policy

Robust implementation

Definition

(Q,P) is **continuously uniquely implementable (CUI)** if it is implementable by an essentially continuous M that is robust to multiplicity.

Robust implementation

Definition

(Q, P) is **continuously uniquely implementable (CUI)** if it is implementable by an essentially continuous M that is robust to multiplicity.

(Q, P) is virtually CUI if for any we can approximate them
arbitrarily well on and arbitrarily large subset of the state space with
a sequence of CUI price and action functions.

Robust implementation

Definition

(Q,P) is **continuously uniquely implementable (CUI)** if it is implementable by an essentially continuous M that is robust to multiplicity.

(Q, P) is virtually CUI if for any we can approximate them
arbitrarily well on and arbitrarily large subset of the state space with
a sequence of CUI price and action functions.

Definition

(Q,P) is **virtually CUI** if for any $\varepsilon,\delta>0$ there exists a CUI (\hat{Q},\hat{P}) such that $\{\theta\in\Theta:|Q(\theta)-\hat{Q}(\theta)|>\delta\}$ has Lebesgue measure less than ε .

Characterizing CUI: one-dimensional Θ

Let Θ be an open interval in \mathbb{R} .

Maintained assumption: $R(\cdot, \cdot)$ is continuous.

Can be derived from conditions on underlying market game

Additional assumption: $R(a, \cdot)$ increasing for all a.

- For any action, state has same qualitative effect on market.
- Satisfied in all applications we've encountered.

Characterizing CUI: one-dimensional Θ

Let Θ be an open interval in \mathbb{R} .

Maintained assumption: $R(\cdot, \cdot)$ is continuous.

Can be derived from conditions on underlying market game

Additional assumption: $R(a, \cdot)$ increasing for all a.

- For any action, state has same qualitative effect on market.
- Satisfied in all applications we've encountered.

Theorem

Assume $R(a, \cdot)$ is increasing for all a. If Q is virtually CUI then $P(\theta) := R(Q(\theta), \theta)$ is monotone.

Important point

- Not related to monotonicity of allocation in classical mechanism design.
- P can be decreasing.

Characterizing CUI: one-dimensional Θ

When $R(a, \cdot)$ is strictly increasing, the monotonicity of P is 'almost' sufficient:

Theorem

Assume $R(a, \cdot)$ is strictly increasing for all a. Then Q is CUI iff

- Q is continuous
- $P(\theta) := R(Q(\theta), \theta)$ is strictly monotone.

Minor modifications needed to extend to weakly increasing $R(a, \cdot)$.

Important points

Continuity of Q not implied by continuity of M.

Tractable characterization, useful in applications.

Proof idea: $Q \text{ CUI} \Rightarrow P \text{ monotone}$

Figure: Implementable, not robustly

First-best almost implementable: $Q(\theta) = blk$ iff $\theta = \bar{\theta}$ or $\theta \geq \theta^*$

But vulnerable to manipulation and multiplicity.

Figure: Implementable, not robustly

Attempted corrections . . .

- ... result in non-monotone price.
 - Want to show that this cannot be CUI.

$$\theta_M(p) := \{ \theta \in \Theta : R(M(p), \theta) = p \}$$

- Graph of P contained in graph of θ_M .
- M continuous $\Rightarrow \theta_M$ is convex valued and upper hemicontinuous.

- $\Rightarrow \text{there is multiplicity}$
 - Result extends to essentially continuous *M*.

Mode

Market representation

Implementation

Robustness
Manipulation
Multiplicity

Robust implementation

Applications
Emissions regulation
Merger policy

Optimal policy

In general, principal solves

$$\max_{Q} \int_{\Theta} U(Q(\theta), P(\theta), \theta) dF(\theta)$$

subject to Q continuous and $P := R(Q(\theta), \theta)$ monotone.

Standard control problem, existing techniques for solving.

Optimal policy

In general, principal solves

$$\max_{Q} \int_{\Theta} U(Q(\theta), P(\theta), \theta) dF(\theta)$$

subject to Q continuous and $P := R(Q(\theta), \theta)$ monotone.

Standard control problem, existing techniques for solving.

Monetary policy

Let q be the quantity of "clean air" produced by society.

- Social benefit B(q)
- Cost $C(q, \theta)$, where θ unknown to regulator.

Let q be the quantity of "clean air" produced by society.

- Social benefit B(q)
- Cost $C(q, \theta)$, where θ unknown to regulator.

Regulator issues unit mass of variable-volume credits

- $a \in \mathcal{A}$ is per-credit emissions volume.
- q = 1 a

Let q be the quantity of "clean air" produced by society.

- Social benefit B(q)
- Cost $C(q, \theta)$, where θ unknown to regulator.

Regulator issues unit mass of variable-volume credits

- $a \in \mathcal{A}$ is per-credit emissions volume.
- q = 1 a

First-best action function

$$Q^*(\theta) = \operatorname*{argmax}_a B(1-a) - C(1-a, \theta)$$

Want
$$B'(1-Q^*(heta))=C_1(1-Q^*(heta), heta)$$

Assume $\theta \mapsto C_1(q,\theta)$ continuous and strictly increasing.

Emissions regulation: First best

Emissions regulation: First best

Let $\theta'' > \theta'$

- First-best action function Q^* is continuous and strictly increasing.
- First-best price function P^* is continuous and strictly increasing.

•
$$P^*(\theta) = R(Q^*(\theta), \theta) := C_1(1 - Q^*(\theta), \theta)$$

Figure: First-best policy is CUI

Figure: First-best policy is CUI

Implementing M is strictly increasing and continuous.

Figure: First-best policy is CUI

Implementing M is strictly increasing and continuous.

Figure: First-best policy is CUI

Implementing ${\it M}$ is strictly increasing and continuous.

Figure: First-best policy is CUI

Implementing M is strictly increasing and continuous.

• State revealed, first-best implemented ⇒ no commitment needed.

First-best is implementable.

First-best is virtually CUI. Implementing M features

Certain approval below p*

- Certain approval below p*
- Gradual increase blocking probability over $(p^*, p_B \varepsilon)$.

- Certain approval below p*
- Gradual increase blocking probability over $(p^*, p_B \varepsilon)$.

- Certain approval below p*
- Gradual increase blocking probability over $(p^*, p_B \varepsilon)$.

- Certain approval below p*
- Gradual increase blocking probability over $(p^*, p_B \varepsilon)$.

- Certain approval below p*
- Gradual increase blocking probability over $(p^*, p_B \varepsilon)$.

- Certain approval below p*
- Gradual increase blocking probability over $(p^*, p_B \varepsilon)$.
- Almost surely block above $p_B \varepsilon$

First-best not implementable, but almost:

- Block at $\bar{\theta}$ or above θ^* .
- Allow otherwise.

However non-monotone price \Rightarrow almost-first-best not virtually CUI

Virtually optimal CUI (Q, P).

Implementing decision rule M

• Certain approval below $\hat{p} \in (p_B, p^*)$.

Virtually optimal CUI (Q, P).

- Certain approval below $\hat{p} \in (p_B, p^*)$.
- Sharp increase in blocking probability above \hat{p} .

Virtually optimal CUI (Q, P).

- Certain approval below $\hat{p} \in (p_B, p^*)$.
- Sharp increase in blocking probability above \hat{p} .

Virtually optimal CUI (Q, P).

- Certain approval below $\hat{p} \in (p_B, p^*)$.
- Sharp increase in blocking probability above \hat{p} .

Virtually optimal CUI (Q, P).

- Certain approval below $\hat{p} \in (p_B, p^*)$.
- Sharp increase in blocking probability above \hat{p} .
- Blocking probability bounded away from 1.

Summary

Design/implementation approach to market-based policy

- 1. General framework
 - lacksquare Begin with market game ightarrow reduce to tractable form
- 2. Characterize feasible set in outcome space
 - Set of implementable maps from states to prices and actions.
 - Focus: *unique* implementation under robustness to manipulation.
 - Simplifies problem of finding optimal policy.
 - Widely applicable.

Summary

Design/implementation approach to market-based policy

- 1. General framework
 - lacksquare Begin with market game ightarrow reduce to tractable form
- 2. Characterize feasible set in outcome space
 - Set of implementable maps from states to prices and actions.
 - Focus: *unique* implementation under robustness to manipulation.
 - Simplifies problem of finding optimal policy.
 - Widely applicable.

Extensions

Properties and extensions

- Robustness to manipulation and multiplicity implies robustness to misspecification/structural uncertainty.
- Relaxations of unique implementation requirement.
 - Use characterization results to show that unique implementation is without loss of optimality if principal takes a strict worst-case/adversarial view of multiple equilibria.

Next steps

- Multiple market outcomes
 - E.g. central bank conditions on inflation and unemployment.
- Large identifiable players alongside market
 - E.g. firms in merger example.
- Market design
 - E.g. create derivatives.

Thanks!

Relaxing uniqueness

The principal may tolerate multiple equilibria, provided none are too bad.

Suppose principal takes strict worst-case/adversarial view

• If *M* induces multiple equilibria, evaluate according to worst one.

Relaxing uniqueness

The principal may tolerate multiple equilibria, provided none are too bad.

Suppose principal takes strict worst-case/adversarial view

• If *M* induces multiple equilibria, evaluate according to worst one.

Theorem

Assume the environment is regular. If $M \in \mathcal{M}$ induces multiple equilibria then at least one is virtually CUI.

Regularity guarantees that if $P(\theta) \equiv R(Q(\theta), \theta)$ is increasing then (Q, P) are virtually CUI.

• We can find a continuous Q' that approximates Q and induces a monotone price.

The principal may not know R exactly.

- Misspecification
- Noise in market

The principal may not know R exactly.

- Misspecification
- Noise in market

The decision rule should perform well for small perturbations to R.

Let
$$\tilde{Q}_R(\theta|M) := \{a \in \mathcal{A} : M(R(a,\theta)) = a\}$$

ullet the set of market-clearing actions in state heta.

Let
$$\tilde{Q}_R(\theta|M) := \{a \in \mathcal{A} : M(R(a,\theta)) = a\}$$

• the set of market-clearing actions in state θ .

Definition

A decision rule M is **robust to structural uncertainty** if $R \rightrightarrows \tilde{Q}_R(\theta|M)$ is upper and lower hemicontinuous at R, uniformly over Θ .

In other words, the set of equilibrium price and action functions varies continuously around ${\it R}.$

Theorem

If $M \in \mathcal{M}$ is robust to multiplicity then it is robust to structural uncertainty.

Manipulation

Essential continuity characterizes robustness to small manipulations.

"Off path" manipulation: doesn't influence other's behavior.

• Essential continuity necessary and sufficient by definition.

Manipulation

Essential continuity characterizes robustness to small manipulations.

"Off path" manipulation: doesn't influence other's behavior.

• Essential continuity necessary and sufficient by definition.

"On path" manipulation: may influence other's behavior.

- Manipulation may change $R:\Theta \to \mathcal{P}$
- Will a small perturbation to R cause a large readjustment?

Manipulation

Essential continuity characterizes robustness to small manipulations.

"Off path" manipulation: doesn't influence other's behavior.

• Essential continuity necessary and sufficient by definition.

"On path" manipulation: may influence other's behavior.

- Manipulation may change $R:\Theta\to\mathcal{P}$
- Will a small perturbation to R cause a large readjustment?

Proposition

Assume that *M* induces a unique equilibrium.

- If $M \in \mathcal{M}$ then the set of equilibria induced by M will be continuous (upper and lower hemicontinuous) in R.
- If M has a jump or removable discontinuity on $\bar{P}_M(R)$ then the set of equilibria induced by M will not be continuous in R.

References I

- G.-M. Angeletos and I. Werning. Crises and prices: Information aggregation, multiplicity, and volatility. *American Economic Review*, 96 (5):1720–1736, 2006.
- W. J. Baumol. *The stock market and economic efficiency*. Fordham University Press, 1965.
- B. S. Bernanke and M. Woodford. Inflation forecasts and monetary policy. *Journal of Money, Credit, and Banking*, pages 653–684, 1997.
- R. Boleslavsky, D. L. Kelly, and C. R. Taylor. Selloffs, bailouts, and feedback: Can asset markets inform policy? *Journal of Economic Theory*, 169:294–343, 2017.
- P. Bond and I. Goldstein. Government intervention and information aggregation by prices. *The Journal of Finance*, 70(6):2777–2812, 2015.
- P. Bond, I. Goldstein, and E. S. Prescott. Market-based corrective actions. *The Review of Financial Studies*, 23(2):781–820, 2010.
- P. Bond, A. Edmans, and I. Goldstein. The real effects of financial markets. *Annu. Rev. Financ. Econ.*, 4(1):339–360, 2012.

References II

- J. Dow and G. Gorton. Stock market efficiency and economic efficiency: is there a connection? *The Journal of Finance*, 52(3):1087–1129, 1997.
- T. Duso, K. Gugler, and B. Yurtoglu. Is the event study methodology useful for merger analysis? a comparison of stock market and accounting data. *International Review of Law and Economics*, 30(2): 186–192, 2010.
- C. Flachsland, M. Pahle, D. Burtraw, O. Edenhofer, M. Elkerbout, C. Fischer, O. Tietjen, and L. Zetterberg. How to avoid history repeating itself: the case for an eu emissions trading system (eu ets) price floor revisited. *Climate Policy*, 20(1):133–142, 2020.
- S. J. Grossman and J. E. Stiglitz. On the impossibility of informationally efficient markets. *The American economic review*, 70(3):393–408, 1980.
- E. Hauk, A. Lanteri, and A. Marcet. Optimal policy with general signal extraction. *Economic Research Initiatives at Duke (ERID) Working Paper*, 2020.

References III

- M. Hellwig. On the aggregation of information in competitive markets. *Journal of Economic Theory*, 22(3):477–498, 1980.
- Y.-H. A. Lee. A model of stock market-based rulemaking. *Available at SSRN 3440321*, 2019.
- C. Siemroth. The informational content of prices when policy makers react to financial markets. *Journal of Economic Theory*, 179:240–274, 2019.
- J. B. Warner, R. L. Watts, and K. H. Wruck. Stock prices and top management changes. *Journal of financial Economics*, 20:461–492, 1988.
- M. L. Weitzman. Prices vs. quantities. *The review of economic studies*, 41(4):477–491, 1974.
- M. Woodford. Determinacy of equilibrium under alternative policy regimes. *Economic Theory*, 4(3):323–326, 1994.

Single asset

- Ex-post asset dividend: $\pi(a, \theta)$
- Normalize aggregate supply of asset to 0.
 - Later, consider "noisy REE" with stochastic supply.

Single asset

- Ex-post asset dividend: $\pi(a, \theta)$
- Normalize aggregate supply of asset to 0.
 - Later, consider "noisy REE" with stochastic supply.

Continuum of investors $i \in [0,1]$

- *i* observes private signal s_i (think $s_i = \theta + \varepsilon_i$)
- Ex-post payoff of purchasing x units at price p: $u_i(x \cdot (\pi(a, \theta) p))$
- After observing s_i , submit demand schedules to market maker.
 - Specify demand at every price

Single asset

- Ex-post asset dividend: $\pi(a, \theta)$
- Normalize aggregate supply of asset to 0.
 - Later, consider "noisy REE" with stochastic supply.

Continuum of investors $i \in [0,1]$

- *i* observes private signal s_i (think $s_i = \theta + \varepsilon_i$)
- Ex-post payoff of purchasing x units at price p: $u_i(x \cdot (\pi(a, \theta) p))$
- After observing s_i , submit demand schedules to market maker.
 - Specify demand at every price

Key feature of REE: investors learn about θ from the price.

Fix the principal's decision rule $M: \mathcal{P} \to \mathcal{A}$.

Investors are price takers.

REE consists of price function $P_M:\Theta o\mathcal{P}$ such that

i. Investors optimize, conditioning on signal and price

$$X_i(p, s_i) = \underset{\times}{\operatorname{argmax}} \mathbb{E}\left[u_i(x \cdot (\pi(M(p), \theta) - p)) \mid s_i, P_M(\theta) = p\right]$$

ii. Markets clear in all states

$$\int X_i(P_M(\theta),s_i)\,di=0\quad\forall\quad\theta\in\Theta.$$

(using "continuum law of large numbers" convention)

$$X_i(p, s_i) = \underset{\times}{\operatorname{argmax}} \mathbb{E}\left[u_i(x \cdot (\pi(M(p), \theta) - p)) \mid s_i, P_M(\theta) = p\right]$$

Decision rule M affects investors in two ways

$$X_i(p, s_i) = \underset{\mathsf{x}}{\operatorname{argmax}} \mathbb{E}\left[u_i\left(x \cdot (\pi(M(p), \theta) - p)\right) \mid s_i, P_M(\theta) = p\right]$$

Decision rule M affects investors in two ways

1. Forward guidance: anticipated action.

$$X_i(p, s_i) = \underset{x}{\operatorname{argmax}} \mathbb{E}\left[u_i(x \cdot (\pi(M(p), \theta) - p)) \mid s_i, P_M(\theta) = p\right]$$

Decision rule M affects investors in two ways

- 1. Forward guidance: anticipated action.
- 2. Information aggregation: M shapes price function P_M
 - $\{\theta: P_M(\theta) = p\}$ depends on M.
 - Investor beliefs in state θ depend on price and principal action in θ' .
 - ▶ $Q(\theta), P(\theta)$ may depend on $Q(\theta'), P(\theta')$ for $\theta' \neq \theta$

$$X_i(p, s_i) = \underset{x}{\operatorname{argmax}} \mathbb{E}\left[u_i(x \cdot (\pi(M(p), \theta) - p)) \mid s_i, P_M(\theta) = p\right]$$

Decision rule M affects investors in two ways

- 1. Forward guidance: anticipated action.
- 2. Information aggregation: M shapes price function P_M
 - $\{\theta: P_M(\theta) = p\}$ depends on M.
 - Investor beliefs in state θ depend on price and principal action in θ' .
 - ▶ $Q(\theta), P(\theta)$ may depend on $Q(\theta'), P(\theta')$ for $\theta' \neq \theta$

Question. Does equilibrium price in a given state depend on global properties of decision rule and equilibrium price and action functions?

Difficulty with informational effects

• Let (Q_1, P_1) be implementable.

Difficulty with informational effects

- Let (Q_1, P_1) be implementable.
- Define $Q_2(\theta) \neq Q_1(\theta)$ for $\theta > \theta_2$, $Q_2(\theta) = Q_1(\theta)$ for $\theta \leq \theta_2$

Difficulty with informational effects

- Let (Q_1, P_1) be implementable.
- Define $Q_2(\theta) \neq Q_1(\theta)$ for $\theta > \theta_2$, $Q_2(\theta) = Q_1(\theta)$ for $\theta \leq \theta_2$
- Questions:
 - Is there P_2 such that (Q_2, P_2) are implementable?
 - If so, is $P_2(\theta) = P_1(\theta)$ for $\theta \le \theta_2$?

Difficulty with informational effects

- Let (Q_1, P_1) be implementable.
- Define $Q_2(\theta) \neq Q_1(\theta)$ for $\theta > \theta_2$, $Q_2(\theta) = Q_1(\theta)$ for $\theta \leq \theta_2$
- Questions:
 - Is there P_2 such that (Q_2, P_2) are implementable?
 - If so, is $P_2(\theta) = P_1(\theta)$ for $\theta \le \theta_2$?

• Let
$$\theta^* \in (\theta_1, \theta_2)$$
, so $Q_1(\theta^*) = Q_2(\theta^*) = a^*$.

- Let $\theta^* \in (\theta_1, \theta_2)$, so $Q_1(\theta^*) = Q_2(\theta^*) = a^*$.
 - lacksquare In the (Q_1,P_1) equilibrium, price at $heta^*$ reveals $heta\in[heta_1, heta_3]$

- Let $\theta^* \in (\theta_1, \theta_2)$, so $Q_1(\theta^*) = Q_2(\theta^*) = a^*$.
 - lacksquare In the (Q_1,P_1) equilibrium, price at $heta^*$ reveals $heta\in[heta_1, heta_3]$
- Suppose (Q_2,P_2) implementable, and $P_2(\theta)=P_1(\theta)$ for $\theta\leq \theta_2$

- Let $\theta^* \in (\theta_1, \theta_2)$, so $Q_1(\theta^*) = Q_2(\theta^*) = a^*$.
 - In the (Q_1, P_1) equilibrium, price at θ^* reveals $\theta \in [\theta_1, \theta_3]$
- Suppose (Q_2, P_2) implementable, and $P_2(\theta) = P_1(\theta)$ for $\theta \leq \theta_2$
 - In the (Q_2, P_2) equilibrium, price at θ^* reveals $\theta \in [\theta_1, \theta_2]$

- Let $\theta^* \in (\theta_1, \theta_2)$, so $Q_1(\theta^*) = Q_2(\theta^*) = a^*$.
 - lacksquare In the (Q_1,P_1) equilibrium, price at $heta^*$ reveals $heta\in[heta_1, heta_3]$
- Suppose (Q_2,P_2) implementable, and $P_2(\theta)=P_1(\theta)$ for $\theta\leq \theta_2$
 - In the (Q_2, P_2) equilibrium, price at θ^* reveals $\theta \in [\theta_1, \theta_2]$
- $[\theta_1, \theta_2]$ induces FOSD-lower posteriors than $[\theta_1, \theta_3]$.
 - $lacktriangledown \pi(a^*,\cdot)$ strictly inc. \Rightarrow lower demand in state $heta^*$ under Q_2

Complication: informational effects

• Lower market-clearing price at $\theta \in [\theta_1, \theta_2]$ under Q_2

- Lower market-clearing price at $\theta \in [\theta_1, \theta_2]$ under Q_2
- Price changed in states $\theta < \theta_2$ where action did not.
 - \Rightarrow Global properties of Q determine price at θ^* .

- Lower market-clearing price at $\theta \in [\theta_1, \theta_2]$ under Q_2
- Price changed in states $\theta < \theta_2$ where action did not.
 - \Rightarrow Global properties of Q determine price at θ^* .
- Action not measurable with respect to price if $Q_2(heta')
 eq Q_2(heta^*)$
 - \Rightarrow (Q_2, P_2) not implementable

If market admits a reduced form representation, $P(\theta)$ depends only on $Q(\theta)$, independent of $Q(\theta')$.

Question: When is this true in REE market?

Assume (Q_1, P_1) implementable.

Observation 1. Principal action measurable with respect to price.

Observation 1. Principal action measurable with respect to price.

•
$$(Q_1, P_1)$$
 implementable $\Rightarrow Q_1(\theta') = Q_1(\theta'') = a^* \ \forall \ \theta', \theta'' \in [\theta_1, \theta_3].$

Observation 1. Principal action measurable with respect to price.

• (Q_1,P_1) implementable $\Rightarrow Q_1(\theta')=Q_1(\theta'')=a^* \ \forall \ \theta',\theta''\in [\theta_1,\theta_3].$

Observation 2. Price function reveals its level sets.

Observation 1. Principal action measurable with respect to price.

• (Q_1,P_1) implementable $\Rightarrow Q_1(\theta')=Q_1(\theta'')=a^* \ \forall \ \theta',\theta''\in [heta_1, heta_3].$

Observation 2. Price function reveals its level sets.

• At both θ' and θ'' , price reveals that state is in $[\theta_1, \theta_3]$

Observation 1. Principal action measurable with respect to price.

• (Q_1, P_1) implementable $\Rightarrow Q_1(\theta') = Q_1(\theta'') = a^* \ \forall \ \theta', \theta'' \in [\theta_1, \theta_3].$

Observation 2. Price function reveals its level sets.

• At both θ' and θ'' , price reveals that state is in $[\theta_1, \theta_3]$

But aggregate *private* information higher at θ'' (think $s_i = \theta + \varepsilon_i$)

Observation 1. Principal action measurable with respect to price.

•
$$(Q_1, P_1)$$
 implementable $\Rightarrow Q_1(\theta') = Q_1(\theta'') = a^* \ \forall \ \theta', \theta'' \in [\theta_1, \theta_3].$

Observation 2. Price function reveals its level sets.

• At both θ' and θ'' , price reveals that state is in $[\theta_1, \theta_3]$

But aggregate private information higher at θ'' (think $s_i = \theta + \varepsilon_i$)

- If $\pi(a^*, \cdot)$ strictly inc. on $[\theta_1, \theta_3]$ then higher demand at θ'' than θ'
- Market can't clear at p₁ in both states.

Assuming $\pi(a^*,\cdot)$ weakly increasing, must be constant on $[\theta_1,\theta_3]$.

Consider (Q_2, P_2) as before, where $Q_2(\theta) = Q_1(\theta)$ for $\theta < \theta_2$

• Suppose (Q_2, P_2) implementable, but $P_2 \neq P_1$ on $[\theta_1, \theta_2]$.

Consider (Q_2, P_2) as before, where $Q_2(\theta) = Q_1(\theta)$ for $\theta < \theta_2$

- Suppose (Q_2, P_2) implementable, but $P_2 \neq P_1$ on $[\theta_1, \theta_2]$.
- ullet At $heta^*$, P_2 reveals different information about state than P_1 ...

Consider (Q_2, P_2) as before, where $Q_2(\theta) = Q_1(\theta)$ for $\theta < \theta_2$

- Suppose (Q_2, P_2) implementable, but $P_2 \neq P_1$ on $[\theta_1, \theta_2]$.
- ullet At $heta^*$, P_2 reveals different information about state than P_1 ...
- but same info about payoffs, since $\pi(a^*,\cdot)$ constant on $[\theta_1,\theta_3]$.

Consider (Q_2, P_2) as before, where $Q_2(\theta) = Q_1(\theta)$ for $\theta < \theta_2$

- Suppose (Q_2, P_2) implementable, but $P_2 \neq P_1$ on $[\theta_1, \theta_2]$.
- ullet At $heta^*$, P_2 reveals different information about state than P_1 ...
- but same info about payoffs, since $\pi(a^*, \cdot)$ constant on $[\theta_1, \theta_3]$.

So $P_1(\theta) = P_2(\theta)$ for all $\theta < \theta_2$, as desired.

Key observations

- 1. Principal's action measurable with respect to the price.
- 2. Price function reveals exactly its level sets.

Key observations

- 1. Principal's action measurable with respect to the price.
- 2. Price function reveals exactly its level sets.

One-dimensional Θ , key assumptions:

- i. Monotonicity of demand as function of state for each action
 - e.g. $\pi(a, \cdot)$ weakly increasing for all a.
- ii. Monotonicity of aggregate beliefs as function of state
 - e.g. $s_i = \theta + \varepsilon_i$

Proposition

If $\pi(a,\cdot)$ weakly increasing for all a and $s_i=\theta+\varepsilon_i$ then REE asset market admits reduced-form representation.

Key observations

- 1. Principal's action measurable with respect to the price.
- 2. Price function reveals exactly its level sets.

One-dimensional Θ , key assumptions:

- i. Monotonicity of demand as function of state for each action
 - e.g. $\pi(a, \cdot)$ weakly increasing for all a.
- ii. Monotonicity of aggregate beliefs as function of state
 - e.g. $s_i = \theta + \varepsilon_i$

Proposition

If $\pi(a, \cdot)$ weakly increasing for all a and $s_i = \theta + \varepsilon_i$ then REE asset market admits reduced-form representation.

Multi-dimensional Θ , complication:

- Generally no complete order on Θ such that *i.* and *ii.* hold.
- E.g. noisy REE model (Grossman and Stiglitz, 1980).
 - $m{\Theta} = \Omega imes \mathcal{Z}$, where dividend is $\pi(a, \omega)$ and aggregate supply is z.

Characterizing CUI: multi-dimensional Θ

Complication relative to one-dimensional Θ :

- No complete order on Θ such that beliefs and agent actions are monotone.
 - Harder to derive reduced-form representation.
 - Monotonicity assumptions used to prove characterization.

Characterizing CUI: multi-dimensional Θ

Complication relative to one-dimensional Θ :

- No complete order on Θ such that beliefs and agent actions are monotone.
 - Harder to derive reduced-form representation.
 - Monotonicity assumptions used to prove characterization.

Two approaches:

- 1. Derive reduced form R as before.
 - May need to impose refinements.
- 2. Show that under robustness to multiplicity there exists an *R* that can be used to design policy.

Characterizing CUI: multi-dimensional Θ

Complication relative to one-dimensional Θ :

- No complete order on Θ such that beliefs and agent actions are monotone.
 - Harder to derive reduced-form representation.
 - Monotonicity assumptions used to prove characterization.

Two approaches:

- 1. Derive reduced form R as before.
 - May need to impose refinements.
- 2. Show that under robustness to multiplicity there exists an *R* that can be used to design policy.

Reduced form under uniqueness

Definition

```
The market admits a reduced-form representation under uniqueness if \exists a function R: \mathcal{A} \times \Theta \to \mathcal{P} such that for any Q, P, M, the pair (Q, P) are the unique equilibrium outcomes given M iff for all \theta i. Q(\theta) = M(P(\theta)) (commitment) ii. P(\theta) = R(Q(\theta), \theta) (market clearing) iii. \{p: p = R(M(p), \theta)\} is singleton (uniqueness)
```

Multi-dimensional Θ: noisy REE

As in Grossman and Stiglitz (1980) and Hellwig (1980)

Single asset

- Ex-post dividend: $\pi(a,\omega) = \beta_0^a + \beta_1^a \omega$, with $\beta_1^a > 0$ for all $a \in \mathcal{A}$.
- ullet $z\in\mathcal{Z}$ is stochastic aggregate supply of asset
- $\Theta = \Omega \times \mathcal{Z}$

Multi-dimensional Θ: noisy REE

As in Grossman and Stiglitz (1980) and Hellwig (1980)

Single asset

- Ex-post dividend: $\pi(a,\omega) = \beta_0^a + \beta_1^a \omega$, with $\beta_1^a > 0$ for all $a \in \mathcal{A}$.
- $z \in \mathcal{Z}$ is stochastic aggregate supply of asset
- $\Theta = \Omega \times \mathcal{Z}$

Continuum of investors $i \in [0, 1]$

- *i* observes signal $s_i = \omega + \varepsilon_i$, where $\varepsilon_i \sim N(0, \sigma_i^2)$
- Ex-post payoff of purchasing x units at price p: $u_i(x \cdot (\pi(a, \omega) p))$.
- Submit demand schedules to market maker.

Multi-dimensional Θ: noisy REE

As in Grossman and Stiglitz (1980) and Hellwig (1980)

Single asset

- Ex-post dividend: $\pi(a,\omega) = \beta_0^a + \beta_1^a \omega$, with $\beta_1^a > 0$ for all $a \in A$.
- $z \in \mathcal{Z}$ is stochastic aggregate supply of asset
- $\Theta = \Omega \times \mathcal{Z}$

Continuum of investors $i \in [0, 1]$

- *i* observes signal $s_i = \omega + \varepsilon_i$, where $\varepsilon_i \sim N(0, \sigma_i^2)$
- Ex-post payoff of purchasing x units at price p: $u_i(x \cdot (\pi(a, \omega) p))$.
- Submit demand schedules to market maker.

Limited notion of equilibrium uniqueness

- Roughly: want unique equilibrium fixing the inferences investors draw from each price.
- Alternative interpretation: unique market clearing price given investor's demand schedules.

Noisy REE

Theorem

Assume u is CARA, and z has truncated normal distribution. Define $L^*: \Omega \times \mathcal{Z} \times \mathcal{A} \to \mathbb{R}$ by

$$L^*(\omega, z|a) = \left(\frac{1}{\beta_1^a} \int_i \frac{\tau_i}{\sigma_i^2} di\right) \cdot \omega - z.$$

Then for any M such that there is a unique market clearing price in every state, the level sets of the equilibrium price function P_M are given by

$$\{(\omega,z):P_M(\omega,z)=p\}=\{(\omega,z):L^*(\omega,z|a)=\ell\}$$

for some ℓ .

Corollary

Assume u is CARA, and z has truncated normal distribution. Then the market admits a reduced-form representation under uniqueness.

Figure: Level sets, fixed action a

Slope
$$=-\frac{1}{\beta_1^a}\int_i \frac{\tau_i}{\sigma_i^2} di$$

Figure: Level sets, non-trivial M

The theorem rules out intersecting level sets.

Figure: Level sets, non-trivial M

The theorem rules out intersecting level sets.

Would cause multiplicity.

With CUI Q, level sets must not cross. Implies

1. (ω,z) and a uniquely determine equilibrium price (reduced-form)

With CUI Q, level sets must not cross. Implies

- 1. (ω,z) and a uniquely determine equilibrium price (reduced-form)
- 2. Necessary and sufficient conditions for CUI can be stated for a single chain in $\Omega \times \mathcal{Z}$.