

Grundlagen der Elektrotechnik für Maschinenbau & Logistik

Übungsblatt 3 & 4

Aufgabe 3.1:

- a) Durch einen Widerstand R=150 Ω fließt ein Strom von 3 A. Wie groß ist die Spannung U, die über dem Widerstand abfällt?
- b) Ein Draht der Länge 80 cm und der Querschnittsfläche A = 10 mm² hat einen spezifischen Widerstand ρ = 0,02 Ω mm²/m. Wie groß ist der elektrische Widerstand R des Drahtes?
- c) Wie groß ist die elektrische Leitfähigkeit κ des Drahtes aus Aufgabenteil b)?

Aufgabe 3.2:

Eine Glühlampe mit einer Nennleistung von 60 Watt und Nennspannung von 12 Volt wird mit einer Sicherung abgesichert, die einen Strom bis 5 A toleriert (bei größerem Strom brennt sie also durch).

Hinweis: Die Nennwerte sind für den Dauerbetrieb der Lampe angegeben.

- a) Wieviel Strom I fließt im Dauerbetrieb durch die Lampe?
- b) Wie groß ist der elektrische Widerstand R der Lampe im Dauerbetrieb?
- c) Warum leuchtet die Glühlampe eigentlich?
- d) Die Glühwendel braucht nach dem Einschalten eine kurze Zeit, um sich auf die Betriebstemperatur aufzuheizen. Was bedeutet das für die Sicherung? Geben Sie eine kurze Begründung für Ihre Antwort!

Aufgabe 3.3:

Ein Kupferdraht hat einen Durchmesser von 2,8 mm und die Länge I = 420 m.

- a) Wie groß ist sein Widerstand bei 20°C, bei 80°C und bei 0°C?
- b) Stellen Sie für die in Aufgabenteil a) gefundenen Widerstandswerte graphisch das Ohmsche Gesetz in einem U(I) Graphen für einen Strombereich von 0-1 A dar.

Werkstoff	spez. Widerstand (20°C)	Leitfähigkeit (20°C)	Temperaturkoeffizient
	$\left[\Omega \cdot mm^2\right]$	$\mathcal{L}^{[S \cdot m]}$	(0 < 9 < 100°C)
	$\rho \left[\overline{m} \right]$	$\chi \left[\frac{1}{mm^2} \right]$	$\alpha \left[\frac{1}{\circ C} \right]$
Aluminium	0,0282	35,5	0,004
Blei	0,208	4,8	0,0038
Bronze	0,0275	36,4	0,004
Cadmium	0,076	13,2	-
Chrom-Nickel	1,1	0,91	0,00025
Eisen	0,13	7,7	0,0048
Stahl	0,12	8,3	-
Konstantan	0,5	2	0,00005
Kupfer	0,0175	57	0,00392
Magnesium	0,0461	21,7	0,0039
Messing	0,08	12,5	0,0015
Nickel	0,1	10	0,0044
Platin	0,1	10	0,0039
Quecksilber	0,955	1,05	0,0009
Silber	0,0165	60,5	0,0036
Wolfram	0,0555	18	0,0041
Zink	0,063	15,8	0,0037
Zinn	0,12	8,35	0,0044

Tab.1: Kennwerte von Widerstandsmaterial bei 20°C

(nach VEM Taschenbuch für den Starkstromanlagenbau, 2.Auflage, S526. Berlin: VEB Verlag Technik 1966)

Aufgabe 3.4:

Beim Entrümpeln einer alten Laborkiste finden Sie ein seltsames Kabel. Dieses besteht aus zwei aufgewickelten Leitern, die an ihren beiden Enden fest zusammen verlötet sind (Knoten b und c). Schematisch ergibt sich die in der Abbildung gezeigte Konfiguration.

An einem der beiden Leiter ist ein Zettel mit der Beschriftung "Aluminium; 0,2km; 0,1mm²" angebracht. Der zweite Leiter besteht augenscheinlich aus einem anderen Material und der zugehörige Zettel ist nicht vollständig lesbar. Sie können nur folgendes entziffern: "…; 200m, 0,0025cm²".

Der Kiste liegt noch folgende Tabelle bei:

	$\begin{array}{c} \text{spezifischer Widerstand} \\ \text{bei T}_0 = 20 \ ^{\circ}\text{C}, \\ \\ \rho(\text{T}_0) \text{ in } \left[\frac{\Omega \cdot \text{mm}^2}{\text{m}} \right] \end{array}$	linearer Temperaturkoeffizient α in $\left[\frac{1}{K}\right]$
Aluminium	0,0264	0,0039
Blei	0,22	0,00422
Eisen	0,12	0,0056
Gold	0,0244	0,0039
Konstantan	0,5	0,00005
Kupfer	0,0178	0,0038
Messing	0,07	0,0015
Silber	0,0159	0,0038
Wolfram	0,07	0,004

Sie möchten nun bestimmen aus welchem Material Leiter 2 besteht. Dazu klemmen Sie eine 6V-Batterie an die Knoten a und d an und messen im geschlossenen Stromkreis zwischen den Knoten c und d einen Strom von 221mA (bei einer Temperatur von 20°C). Anschließend erhitzen Sie die beiden Leiter auf 140°C und messen einen resultierenden Strom von 168mA. Einflüsse von Messgerät und Spannungsquelle sind vernachlässigbar.

Bestimmen Sie das Leitermaterial 2! Dokumentieren Sie Ihren Lösungsweg hinreichend.