Varignon's Theorem and the Midpoint Quadrilateral

A well-known result called Varignon's Theorem states that if you connect the midpoints of the sides of any quadrilateral in order, you get a parallelogram whose area is exactly half the area of the original quadrilateral.
1. State the Setup
Let ABCD be any quadrilateral. Denote:
- E as the midpoint of AB,
- F as the midpoint of BC,
- G as the midpoint of CD,
- H as the midpoint of DA.
We want to show that the quadrilateral EFGH is a parallelogram with area (1/2) of the area of ABCD.
2. Show EFGH is a Parallelogram
- Since E and F are midpoints. EF is a mid-segment of triangle ABC, meaning EF II AC.

- Similarly, HG is a mid-segment in triangle ADC, so HG || AC as well.

- Therefore, EF || HG.

- Using similar reasoning, EH || FG.

Thus, EFGH is a parallelogram.

- 3. Show the Area is Half
- **Method A: Decompose into Triangles**
- 1. Draw diagonal AC in quadrilateral ABCD. This splits ABCD into two triangles: ABC and ADC.
- 2. In triangle ABC, the segment EF is a mid-segment. It divides the triangle into two equal areas.
- 3. Similarly, HG divides triangle ADC into two equal areas.
- 4. Thus, the parallelogram EFGH has exactly half the area of ABCD.
- **Method B: Vector Approach**
- 1. Assign coordinates to A, B, C, D as vectors.
- 2. Compute midpoints E, F, G, H.
- 3. Using vector cross products, verify that Area(EFGH) = (1/2) Area(ABCD).

Key Takeaways:

- **Varignon's Theorem**: Connecting the midpoints of consecutive sides of any quadrilateral produces a parallelogram.
- **Half-Area Property**: That parallelogram has exactly half the area of the original quadrilateral.