

THESIS

BY

TIGRAN SAIDNIA

Emission kernel of parton shower

Emission kernel of parton shower

Karlsruhe institute for Technology (KIT)
Institute of theoretical physics

Referents: PD Dr. Stefan Gieseke

Dr. Simon Plätzer

Supervisor: Emma Simpson

statement of originality
I hereby confirm that I have written the accompanying thesis by myself, without
contributions from any sources other than those cited in the text and acknowledgements. This applies also to all graphics, drawings, maps and images included in the thesis.
Karlsruhe, February 5, 2019
Tigran Saidnia

Contents

Ta	able o	of contents 2		
	0.1	Old parametrisation		
	0.2	new kinematic		
		0.2.1 useful relations		
	0.3	Single emission part		
	0.4	Common scalar products		
	0.5	Altarelli-Parisi splitting functions		
	0.6	Colour factor calculation		
1	Quark antiquark gluon emission kernel			
	1.1	qg- $ar{q}$		
	1.2	\bar{q} g-q		
	1.3	$M_1 M_2^{\dagger} \dots \dots$		
	1.4	$ M^2 $		
2	Glu	on gluon gluon emission kernel		
_	2.1	Gluon-Emitter Bubble		
		2.1.1 One-loop corrections to the gluon self-energy diagram(Gluon-Emitter		
		Bubble)		
	2.2	Gluon-Spectator Bubble		
		2.2.1 One-loop corrections to the gluon self-energy diagram (Gluon-Spectator		
		Bubble)		
	2.3	Interference term $M_1 M_2^{\dagger}$		
	2.4	$ M^2 $		
3	Qua	ark gluon quark emission kernel 27		
•	3.1	Gluon-Emitter Quark loop		
	3.2	Gluon-Spectator Quark loop		
	3.3	Gluon-Emitter Quark loop		
	3.3			
4	Glu	on quark quark emission kernel 31		
	4.1	M_1		
	4.2	M_2		
	4.3	$M1M_2^{\dagger}$		

0.1 Old parametrisation

$$q_{i}^{\mu} = zp_{i}^{\mu} + y(1-z)p_{j}^{\mu} + \sqrt{zy(1-z)}m_{\perp}$$

$$q^{\mu} = (1-z)p_{i}^{\mu} + yzp_{j}^{\mu} - \sqrt{zy(1-z)}m_{\perp}$$

$$q_{j}^{\mu} = (1-y)p_{j}^{\mu}$$

$$y = \frac{q_{i}q}{p_{i}p_{j}}$$

$$q_{i} + q = p_{i} + yp_{j}$$

$$q_{j} + q = (1-z)p_{i}^{\mu} + (1+yz-y)p_{j}^{\mu} - \sqrt{zy(1-z)}m_{\perp}$$

$$q_{i} \cdot q = y(1-2z+2z^{2})(p_{i} \cdot p_{j})$$

$$q_{i} \cdot q_{j} = z(1-y)(p_{i} \cdot p_{j})$$

$$q_{j} \cdot q = (1-z)(1-y)(p_{i} \cdot p_{j})$$

$$q_{j} \cdot q = (1-z)(1-y)(p_{i} \cdot p_{j})$$

$$q_{j} \cdot q = (1-z)(1-y)(p_{i} \cdot p_{j})$$

0.2 new kinematic

$$k_{l}^{\mu} = \alpha_{l} \alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} + y \beta n^{\mu} + \sqrt{y \alpha_{l} \beta_{l}} n^{\mu}_{\perp,l} \qquad l = 1, ..., m$$

$$q_{i}^{\mu} = (1 - \sum_{l=1}^{m} \alpha_{l}) \alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} + y (1 - \sum_{l=1}^{m} \beta_{l}) n^{\mu} - \sqrt{y \alpha_{l} \beta_{l}} n^{\mu}_{\perp,l}$$

$$q_{k}^{\mu} = \alpha \Lambda^{\mu}_{\nu} p_{k}^{\nu} \qquad k = 1, ..., n \qquad k \neq i$$
(2)

0.2.1 useful relations

$$q_{i}^{2} = p_{i}^{2} = q_{k}^{2} = k_{l}^{2} = p_{j}^{2} = p_{k}^{2} = n^{2} = 0 \quad \text{All hard momenta are on-shell}$$

$$Q^{\mu} = q_{i}^{\mu} + \sum_{l=1}^{m} k_{l}^{\mu} + \sum_{k=1}^{m} q_{k}^{\mu} = p_{i}^{\mu} + \sum_{k=1}^{m} p_{k}^{\mu} \quad \text{total momentum}$$

$$n^{\mu} = Q^{\mu} - \frac{Q^{2}}{2p_{i} \cdot Q} p_{i}^{\mu} \qquad n^{\mu} \text{ is the recoil}$$

$$q_{i}^{\mu} + \sum_{l=1}^{m} k_{l}^{\mu} = \alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} + y n^{\mu}$$

$$\alpha \Lambda^{\mu}_{\nu} Q^{\nu} = Q^{\mu} - y n^{\mu}$$

$$\alpha \Lambda^{\mu}_{\nu} Q^{\nu} = Q^{\mu} - y n^{\mu}$$

$$n^{\mu}_{\perp,l} \Lambda^{\mu}_{\nu} p_{i}^{\nu} = n_{\perp,l} \cdot n = n_{\perp,l} \cdot Q = 0$$

$$n^{\mu}_{\perp,l} \cdot p_{k} \neq 0$$

$$n^{2}_{\perp,l} = -2\alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} n_{\mu}$$

$$n^{2}_{\perp,1} = -2p_{i} \cdot Q$$

$$\alpha_{1} = 1 - \beta_{1}$$

 $\alpha = \sqrt{1-y}$

Lorenz trafo

$$\alpha \Lambda^{\mu}{}_{\nu} = p_{i}{}^{\mu} p_{i\nu} \frac{-y^{2} Q^{2}}{4(p_{i} \cdot Q)^{2} (1 + \sqrt{1 - y} - \frac{y}{2})} + p_{i}{}^{\mu} Q_{\nu} \frac{y(1 + \sqrt{1 - y})}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} + Q^{\mu} p_{i\nu} \frac{(-y^{2} - y - y\sqrt{1 - y})}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \eta^{\mu}{}_{\nu}$$

$$(4)$$

$$\hat{p}_{i}^{\mu} = \alpha \Lambda^{\mu}_{\ \nu} p_{i}^{\nu} = p_{i}^{\mu} p_{i\nu} p_{i}^{\nu} \frac{-y^{2} Q^{2}}{4(p_{i} \cdot Q)^{2} (1 + \sqrt{1 - y} - \frac{y}{2})} + p_{i}^{\mu} Q_{\nu} p_{i}^{\nu} \frac{y(1 + \sqrt{1 - y})}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} + Q^{\mu} p_{i\nu} p_{i}^{\nu} \frac{(-y^{2} - y - y\sqrt{1 - y})}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \eta^{\mu}_{\ \nu} p_{i}^{\nu}$$

$$(5)$$

$$\hat{p}_{i}^{\mu} = p_{i}^{\mu} (Q \cdot p_{i}) \frac{y(1 + \sqrt{1 - y})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} p_{i}^{\mu}$$

$$= p_{i}^{\mu} \left[\frac{y(1 + \sqrt{1 - y})}{(2 + 2\sqrt{1 - y} - y)} + \sqrt{1 - y} \right] = p_{i}^{\mu}$$
(6)

$$\widehat{p_i}^{\mu} = \alpha \Lambda^{\mu}_{\ \nu} p_i^{\ \nu} = p_i^{\ \mu}$$
(7)

$$\hat{p_k}^{\mu} = \alpha \Lambda^{\mu}{}_{\nu} p_k{}^{\nu} = p_i{}^{\mu} p_{i\nu} p_k{}^{\nu} \frac{-y^2 Q^2}{4(p_i \cdot Q)^2 (1 + \sqrt{1 - y} - \frac{y}{2})} + p_i{}^{\mu} Q_{\nu} p_k{}^{\nu} \frac{y(1 + \sqrt{1 - y})}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + Q^{\mu} p_{i\nu} p_k{}^{\nu} \frac{(-y^2 - y - y\sqrt{1 - y})}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \eta^{\mu}{}_{\nu} p_k{}^{\nu}$$

$$(8)$$

$$\hat{p_k}^{\mu} = \alpha \Lambda^{\mu}{}_{\nu} p_k^{\nu} = p_i^{\mu} \left[\frac{-y^2 Q^2(p_i \cdot p_k)}{4(p_i \cdot Q)^2 (1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_k)}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} \right] + Q^{\mu} \left[\frac{(-y^2 - y - y\sqrt{1 - y})(p_i \cdot p_k)}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} \right] + \sqrt{1 - y} p_k^{\mu}$$

$$(9)$$

$$\begin{split} \hat{p_k}^{\mu} &= \alpha \Lambda^{\mu}{}_{\nu} p_k{}^{\nu} = p_i{}^{\mu} [\frac{-y^2 Q^2 (p_i \cdot p_k)}{4(p_i \cdot Q)^2 (1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_k)}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}] \\ &+ Q^{\mu} [\frac{(-y^2 - y - y\sqrt{1 - y})(p_i \cdot p_k)}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}] + \sqrt{1 - y} p_k{}^{\mu} \end{split}$$

with

$$A_{1} \equiv \frac{-y^{2}Q^{2}(p_{i} \cdot p_{k})}{4(p_{i} \cdot Q)^{2}(1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}$$

$$A_{2} \equiv \frac{(-y^{2} - y - y\sqrt{1 - y})(p_{i} \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}$$
(10)

$$\hat{p}_k^{\mu} = A_1 \, p_i^{\mu} + A_2 \, Q^{\mu} + \sqrt{1 - y} p_k^{\mu}$$
(11)

$$\hat{Q}^{\mu} = \alpha \Lambda^{\mu}{}_{\nu} Q^{\nu} = p_{i}{}^{\mu} \left[\frac{-y^{2} Q^{2} (p_{i} \cdot Q)}{4(p_{i} \cdot Q)^{2} (1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})Q^{2}}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} \right] + Q^{\mu} \left[\frac{(-y^{2} - y - y\sqrt{1 - y})(p_{i} \cdot Q)}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} \right] + \sqrt{1 - y} Q^{\mu}$$

with

$$S_{1} \equiv \frac{Q^{2}}{2p_{i} \cdot Q} \left[\frac{-y^{2}}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})}{(1 + \sqrt{1 - y} - \frac{y}{2})} \right] = \frac{Q^{2}}{2p_{i} \cdot Q} y$$

$$S_{2} \equiv \frac{(-y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y}$$

$$(12)$$

$$\hat{Q}^{\mu} = \frac{Q^2}{2p_i \cdot Q} y \, p_i^{\mu} + S_2 \, Q^{\mu}$$
(13)

0.3 Single emission part

$$k_{1}^{\mu} = (\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\mu} + y\beta_{1}Q^{\mu} + \sqrt{y\alpha_{1}\beta_{1}}n^{\mu}_{\perp,1}$$

$$q_{i}^{\mu} = (1 - \alpha_{1} - \alpha_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\mu} + y\alpha_{1}n^{\mu} - \sqrt{y\alpha_{1}\beta_{1}}n^{\mu}_{\perp,l}$$

$$q_{k}^{\mu} = \alpha\Lambda^{\mu}_{\nu}p_{k}^{\nu} \qquad k = 1, ..., n \qquad k \neq i$$
(14)

$$k_1^{\mu} = \zeta_1 p_i^{\mu} + \lambda_1 Q^{\mu} + \sqrt{y \alpha_1 \beta_1} n^{\mu}_{\perp,1}$$

$$q_i^{\mu} = \zeta_q p_i^{\mu} + \lambda_q Q^{\mu} - \sqrt{y \alpha_1 \beta_1} n^{\mu}_{\perp,l}$$

$$q_k^{\mu} = A_1 p_i^{\mu} + A_2 Q^{\mu} + \sqrt{1 - y} p_{k\perp,l}^{\mu}$$

0.4 Common scalar products

$$k_{1} \cdot q_{i} = (\zeta_{1}\lambda_{q} + \lambda_{1}\zeta_{q})p_{i} \cdot Q + \lambda_{1}\lambda_{q}Q^{2} - y\alpha_{1}\beta_{1}n^{2}_{\perp,1}$$

$$= [(\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))y\alpha_{1} + y\beta_{1}(1 - \alpha_{1} - \alpha_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))] p_{i} \cdot Q$$

$$y^{2}\beta_{1}\alpha_{1} Q^{2} + 2y\alpha_{1}\beta_{1} p_{i}Q$$

$$\Rightarrow k_{1} \cdot q_{i} = [y\alpha_{1}^{2} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}) + y\beta_{1} - y\alpha_{1}\beta_{1} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})] p_{i} \cdot Q$$

$$y^{2}\beta_{1}\alpha_{1} Q^{2} + 2y\alpha_{1}\beta_{1} p_{i}Q$$

$$(15)$$

$$k_1 \cdot q_i = 2y(\alpha_1^2 + \beta_1) p_i \cdot Q$$

$$\tag{16}$$

$$k_{1} \cdot q_{k} = (\zeta_{1}A_{2} + \lambda_{1}A_{1})p_{i} \cdot Q + \zeta_{1}\sqrt{1 - y} p_{i} \cdot p_{k} + \lambda_{1}A_{2} Q^{2} + \lambda_{1}\sqrt{1 - y} Q \cdot p_{k} + \sqrt{\alpha_{1}\beta_{1}y(1 - y)}p_{k} \cdot n_{\perp,1}$$

$$= \{ [(\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))\frac{(-y^{2} - y - y\sqrt{1 - y})(p_{i} \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}]$$

$$+ y\beta_{1} [\frac{-y^{2}Q^{2}(p_{i} \cdot p_{k})}{4(p_{i} \cdot Q)^{2}(1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}] \} p_{i} \cdot Q$$

$$+ (\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))\sqrt{1 - y} p_{i} \cdot p_{k} + y\beta_{1} \frac{(-y^{2} - y - y\sqrt{1 - y})(p_{i} \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} Q^{2}$$

$$+ y\beta_{1}\sqrt{1 - y}Q \cdot p_{k} + \sqrt{\alpha_{1}\beta_{1}y(1 - y)}p_{k} \cdot n_{\perp,1}$$

$$(17)$$

$$k_{1} \cdot q_{k} = \alpha_{1} \frac{(-y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k}) - y\beta_{1} (\frac{Q^{2}}{2p_{i} \cdot Q}) \frac{(-y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k})$$

$$+ y\beta_{1} \frac{-y^{2}Q^{2}}{4(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k}) + y\beta_{1} \frac{y(1 + \sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} Q \cdot p_{k}$$

$$+ \alpha_{1}\sqrt{1 - y} p_{i} \cdot p_{k} - y\beta_{1} (\frac{Q^{2}}{2p_{i} \cdot Q}) \sqrt{1 - y} p_{i} \cdot p_{k}$$

$$+ y\beta_{1} (\frac{Q^{2}}{2p_{i} \cdot Q}) \frac{(-y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k})$$

$$+ y\beta_{1} (\frac{Q^{2}}{2p_{i} \cdot Q}) \frac{(-y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k}) + y\beta_{1}\sqrt{1 - y}(Q \cdot p_{k})$$

$$+ \sqrt{\alpha_{1}\beta_{1}y(1 - y)} p_{k} \cdot n_{\perp,1}$$

$$(18)$$

$$k_{1} \cdot q_{k} = \left[\alpha_{1} \frac{(-y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + y\beta_{1} \frac{-y^{2}Q^{2}}{4(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + \alpha_{1}\sqrt{1 - y}\right]$$
$$-y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})\sqrt{1 - y} p_{i} \cdot p_{k} + \left[y\beta_{1} \frac{y(1 + y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + y\beta_{1}\sqrt{1 - y}\right](Q \cdot p_{k}) + \sqrt{\alpha_{1}\beta_{1}y(1 - y)}p_{k} \cdot n_{\perp, 1}$$
(19)

0.5 Altarelli-Parisi splitting functions

$$\langle \hat{P}_{qq} \rangle = C_F \left[\frac{1+z^2}{1-z} - \varepsilon (1-z) \right]$$

$$\langle \hat{P}_{gq} \rangle = T_R \left[1 - \frac{2z(1-z)}{1-\varepsilon} \right]$$

$$\langle \hat{P}_{qg} \rangle = C_F \left[\frac{1+(1-z)^2}{z} - \varepsilon z \right]$$

$$\langle \hat{P}_{gg} \rangle = 2C_A \left[\frac{z}{1-z} + \frac{1-z}{z} + z(1-z) \right]$$
splitting functions (20)

0.6 Colour factor calculation

fundamental representation in SU(2) and SU(3)

$$T^a = \tau^a \equiv \frac{\sigma^2}{2}$$
 with Pauli matrices σ^a (21)
$$T^a = \vartheta^a \equiv \frac{\lambda^2}{2}$$
 with Gell – Mann matrices λ^a

$$\lambda^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 \end{pmatrix}, \quad \lambda^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \\ 0 \end{pmatrix}, \quad \lambda^{3} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad \lambda^{4} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\lambda^{5} = \begin{pmatrix} -i \\ i & 0 \end{pmatrix}, \quad \lambda^{6} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \lambda^{7} = \begin{pmatrix} 0 & 0 & -i \\ i & 0 \end{pmatrix}, \quad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 \\ 0 & -2 \\ 0 & 0 \end{pmatrix}$$
(22)

As we can see, λ^3 and λ^8 are diagonal. These generators satisfy:

$$[T^a, T^b] = i\epsilon^{abc}T^c \tag{23}$$

The most common convention for the normalization of the generators in physics is:

$$\sum_{c,d} f^{acd} f^{bcd} = N \delta^{ab} \tag{24}$$

The main relation we will use later for SU(N):

$$tr(T^aT^b) = T_{ij}{}^aT_{ji}{}^b = T_F\delta^{ab}$$
(25)

$$\sum_{a} (T^a T^a) = C_F \delta^{ij} \tag{26}$$

$$f^{acd}f^{bcd} = C_A \delta^{ab} \tag{27}$$

With $T_F = \frac{1}{2}$, $C_A = N$ and $C_F = \frac{N^2 - 1}{2N}$.

$$f^{abc} = -2itr(T^a[T^b, T^c]) \tag{28}$$

$$d^{abc} = 2tr(T^a T^b, T^c) (29)$$

$$T^{a}T^{b} = \frac{1}{2}(\frac{1}{N}\delta_{ab} + (d^{abc} + if^{abc})T^{c})$$
(30)

$$tr(T^a T^b T^c) = \frac{1}{4} (d^{abc} + i f^{abc}) \tag{31}$$

$$tr(T^a T^b T^a T^c) = \frac{-1}{4N} \delta_{bc} \tag{32}$$

$$f^{acd}f^{bcd} = N\delta^{ab} \tag{33}$$

$$f^{acd}d^{bcd} = 0 (34)$$

$$f^{ade}f^{bef}f^{cfd} = \frac{N}{2}f^{abc} \tag{35}$$

Fierz identity:

$$\sum_{a} T_{ij}{}^{a} T_{kl}{}^{a} = \frac{1}{2} \left(\delta_{il} \delta_{kj} - \frac{1}{N} \delta_{ij} \delta_{kl} \right) \tag{36}$$

Chapter 1

Quark antiquark gluon emission kernel

$1.1~{\sf qg}$ - \bar{q}

$$M_{1} = \left[\bar{u}_{\sigma}(q_{i})(-ig_{s}\gamma^{\mu} \times [T^{a}]_{o}^{l})\frac{i(\not q_{i} + \not q)}{(q_{i} + q)^{2}}\varepsilon^{\lambda_{1}}{}_{\mu}(q)\right]\left[v_{\tau}(q_{j})\right]$$
(1.1)

$$(b, \mu', \lambda_2)$$

$$q$$

$$q_i + q$$

$$(k, \beta)$$

$$(f', \tau') \xrightarrow{q_j} (n, \delta)$$

$$M_1^{\dagger} = \left[\frac{-i(\not q_i + \not q)}{(q_i + q)^2} \left(ig_s \gamma^{\mu'} \times [T^b]_{\sigma'}^{k} \right) u_{\sigma'}(q_i) \varepsilon^{\lambda_2}{}_{\mu'}(q) \right] \left[\bar{v}_{\tau'}(q_j) \right]$$
(1.2)

$$(l, \alpha) \xrightarrow{q_i + q} (o, \sigma) (o', \sigma') \xrightarrow{q_i} (h, \alpha)$$

$$(m, \gamma) \xrightarrow{q_j} (f, \tau) (f', \tau') \xrightarrow{q_j} (n, \delta)$$

$$|M_{1}|^{2} = M_{1} M_{1}^{\dagger} = [\bar{u}_{\sigma}(q_{i}) (-ig_{s}\gamma^{\mu} \times [T^{a}]_{o}^{l}) \frac{i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} \varepsilon^{\lambda_{1}}{}_{\mu}(q)][v_{\tau}(q_{j})]$$

$$[\frac{-i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} (ig_{s}\gamma^{\mu'} \times [T^{b}]_{o'}^{k}) u_{\sigma'}(q_{i}) \varepsilon^{\lambda_{2}}{}_{\mu'}^{*}(q)][\bar{v}_{\tau'}(q_{j})]$$

$$(1.3)$$

$$|M_{1}|^{2} = \left[\frac{-i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} \left(ig_{s}\gamma^{\mu'} \times [T^{b}]_{o'}^{k}\right) \bar{u}_{\sigma}(q_{i}) u_{\sigma'}(q_{i}) \varepsilon^{\lambda_{2}}_{\mu'}^{*}(q) \varepsilon^{\lambda_{1}}_{\mu}(q) \right. \\ \left. \times \left(-ig_{s}\gamma^{\mu} \times [T^{a}]_{o}^{l}\right) \frac{i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} \left[\left[\bar{v}_{\tau'}(q_{j})v_{\tau}(q_{j})\right]\right] \right]$$

$$(1.4)$$

and after sum over the lorenz index (σ, σ') and (τ, τ') and unsing the spin addition relation:

$$\sum_{\sigma,\sigma'} \bar{u}_{\sigma}(q_i) \ u_{\sigma'}(q_i) = \not q_i \delta^{oo'},$$

$$\sum_{\tau,\tau'} \bar{v}_{\tau}(q_j) \ v_{\tau'}(q_j) = \not q_j \delta^{ff'}$$
(1.5)

and sum over polarization index (λ_1, λ_2) :

$$\sum_{\mu,\mu'} \varepsilon^{\lambda_2^*}_{\mu'}(q) \varepsilon^{\lambda_1}_{\mu}(q) = -g_{\mu\mu'} \delta^{ab}$$
(1.6)

$$|M_1|^2 = \frac{-g_s^2 [T^a]_o^k [T^a]_o^l}{(q_i + q)^2 (q_i + q)^2} [(\not q_i + \not q) \ \gamma^{\mu'} \ \not q_i \ g_{\mu'\mu} \gamma^{\mu} (\not q_i + q)] [\not q_j]$$
(1.7)

from here and after contraction between all indices we can actually make statements about the last result.

$$|M_1|^2 = \frac{-g_s^2 [T^a]_o^{\ k} [T^a]_o^{\ l}}{(q_i + q)^2 (q_i + q)^2} [(\not q_i + \not q) \ \gamma^{\mu'} \ \not q_i \ \gamma_{\mu'} (\not q_i + q)] [\not q_j]$$
(1.8)

In other words we expect the tree level diagram from LO and a number: Which means:

$$|M^2| = \left| \begin{array}{c|c} P_i & q_i & q_i \\ \hline \\ P_j & \end{array} \right|^2 \otimes \left| \begin{array}{c|c} q_i & q_i \\ \hline \\ q_i + q & Q \\ \hline \end{array} \right|^2$$

contribution from LO

 $a\ complex\ number$

$$|M_1|^2 = \frac{-g_s^2 [T^a]_o^{\ k} [T^a]_o^{\ l}}{(q_i + q)^2 (q_i + q)^2} [P_i] [P_j] \otimes (a \ complex \ number)$$
 (1.9)

Let's calculate the contribution and compare the final result with this expectation:

$$N =: \gamma^{\mu'} \not A_i \gamma_{\mu'} = q_{i\sigma} \gamma^{\mu'} \gamma^{\sigma} \gamma_{\mu'}$$

$$= q_{i\sigma} (\{\gamma^{\mu'}, \gamma^{\sigma}\} - \gamma^{\sigma} \gamma^{\mu'}) \gamma_{\mu'}$$

$$= q_{i\sigma} 2g^{\mu'\sigma} \gamma_{\mu'} - d \gamma^{\sigma}$$

$$= (2 - d) \not A_i$$

$$(1.10)$$

$$|M_1|^2 = -(2-d) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{(q_i+q)^2 (q_i+q)^2} [(\not q_i + \not q) \quad \not q_i \quad (\not q_i+q)][\not q_j]$$
(1.11)

$$|M_1|^2 = -(2-d) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{(q_i+q)^2 (q_i+q)^2} [\not q_i \not q_i \not q_i + \not q_i \not q_i \not q_i$$
(1.12)

For the momenta are on-shell which means:

$$A_i A_i = q_i^2 = m_i^2$$

$$A_i A_j = q^2 = m^2$$

$$A_j A_j = q_j^2 = m_j^2$$
(1.13)

we can first neglect the mass of patrons and ignore each term with $\not q_i \not q_i$ and $\not q \not q$ as well.

$$|M_1|^2 = -(2-d) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{(2q_i q)(2q_i q)} [\not A \not A_i \not A] [\not A_j]$$
(1.14)

$$L = \not A \not A_i \not A = \not A [q_{i\sigma}q_{\mu} (\{\gamma^{\mu}, \gamma^{\sigma}\} - \gamma^{\sigma}\gamma^{\mu})]
\not A [2q_i{}^{\mu}q_{\mu} - q_{i\sigma}q_{\mu}\gamma^{\mu}\gamma^{\sigma}
= \not A (2q_iq) - q_{\mu}q_{i\sigma}q_{\mu}[\gamma^{\mu}\gamma^{\mu}\gamma^{\sigma}]
= \not A (2q_iq) - q_{\mu}q_{i\sigma}q_{\mu}[\frac{\gamma^{\mu}\gamma^{\mu}}{2} + \frac{\gamma^{\mu}\gamma^{\mu}}{2}]\gamma^{\sigma}
= \not A (2q_iq) - q_{\mu}q_{i\sigma}q_{\mu}[g^{\mu\mu}]\gamma^{\sigma}
= \not A (2q_iq) - q_{\mu}q_{i\sigma}q^{\mu}\gamma^{\sigma}
= \not A (2q_iq) - q^2 \not A_i
= \not A (2q_iq)$$
(1.15)

After inserting the last result of L and simplify the term $(2q_iq)$ from the denominator and nominator because, we get:

$$|M_1|^2 = -(2-d) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{2y(1-2z+2z^2)(p_i \cdot p_j)} [\not q] [\not q_j]$$
(1.16)

Now we are going to use the parametrisation from equation (1) to reduce the 3-member matrix element to 2-member and take out the singularity term from the amplitude.

$$|M_1|^2 = (d-2) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{2y(1-2z+2z^2)(p_i \cdot p_j)} [(1-z) \not p_i + zy \not p_j - \sqrt{zy(1-z)} \not m_\perp] [(1-y) \not p_j]$$

$$(1.17)$$

Multiplying the both sides

$$|M_{1}|^{2} = (d-2) \frac{g_{s}^{2} [T^{a}]_{o}^{k} [T^{a}]_{o}^{l}}{2y(1-2z+2z^{2})(p_{i} \cdot p_{j})} [(1-z)(1-y) \not p_{i} \not p_{j}$$

$$+zy(1-y) \not p_{j} \not p_{j} + (1-y)\sqrt{zy(1-z)} \not m_{\perp} \not p_{j}]$$

$$(1.18)$$

and under consideration of the fact that p_i and p_j are the on-shell momenta of the emitter and spectator partons, we can ignore the terms with $\not p_i$ $\not p_i$ and $\not p_j$ $\not p_j$. The $p_i \cdot m_{\perp}$ and $p_j \cdot m_{\perp}$ are always 0 because the p_i and p_j are lightlike, i.e. zero transverse component. So those terms can be neglected.

$$|M_1|^2 = (d-2)(1-z)(1-y) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{2y(1-2z+2z^2)(p_i \cdot p_j)} [p_i] [p_j]$$
 (1.19)

1.2 \bar{q} g-q

$$M_2 = \left[\frac{i(\not q_j + \not q)}{(q_i + q)^2} (-ig_s \gamma^{\nu} \times [T^c]_f^m) v_{\tau}(q_j) \varepsilon^{\lambda_3}{}_{\nu}(q) \right] [u_{\sigma}(q_i)]$$
 (1.20)

$$(d, \nu', \lambda_4)$$

$$q \qquad q_j + q$$

$$(f', \tau') \qquad q_j \qquad (n, \delta)$$

$$(o', \sigma') \qquad q_i \qquad (k, \beta)$$

$$M_{2}^{\dagger} = [\bar{v}_{\tau'}(q_{j}) (ig_{s}\gamma^{\nu'} \times [T^{d}]_{f'}^{n}) \frac{-i(\not q_{j} + \not q)}{(q_{i} + q)^{2}} \varepsilon^{\lambda_{4}}_{\nu'}(q)] [\bar{u}_{\sigma'}(q_{i})]$$
(1.21)

$$(m, \gamma) \xrightarrow{q_j + q} (f, \tau) (f', \tau') \xrightarrow{q_j} (n, \delta)$$

$$(l, \alpha) \xrightarrow{q_i} (o, \sigma) (o', \sigma') \xrightarrow{q_i} (k, \beta)$$

$$|M_{2}|^{2} = M_{2} M_{2}^{\dagger} = \left[\frac{i(\not q_{j} + \not q)}{(q_{j} + q)^{2}} \left(-ig_{s}\gamma^{\nu} \times [T^{c}]_{f}^{m}\right) v_{\tau}(q_{j}) \varepsilon^{\lambda_{3}}{}_{\nu}(q)\right] \left[u_{\sigma}(q_{i})\right]$$

$$\left[\bar{v}_{\tau'}(q_{j}) \left(ig_{s}\gamma^{\nu'} \times [T^{d}]_{f'}^{n}\right) \frac{-i(\not q_{j} + \not q)}{(q_{j} + q)^{2}} \varepsilon^{\lambda_{4}}{}_{\nu'}(q)\right] \left[\bar{u}_{\sigma'}(q_{i})\right]$$

$$(1.22)$$

$$|M_{2}|^{2} = \frac{g_{s}^{2} [T^{c}]_{f}^{m} [T^{d}]_{f'}^{n}}{(q_{j} + q)^{2} (q_{j} + q)^{2}} [(\not q_{j} + \not q)\gamma^{\nu} v_{\tau}(q_{j})\bar{v}_{\tau'}(q_{j}) \varepsilon^{\lambda_{3}}{}_{\nu}(q)\varepsilon^{\lambda_{4}}{}_{\nu'}(q)\gamma^{\nu'}(\not q_{j} + \not q)]$$

$$[u_{\sigma}(q_{i})] [\bar{u}_{\sigma'}(q_{i})]$$

$$(1.23)$$

and after sum over the lorenz index (σ, σ') and (τ, τ') and unsing the spin addition relation:

$$\sum_{\sigma,\sigma'} \bar{u}_{\sigma}(q_i) u_{\sigma'}(q_i) = \not q_i \delta^{oo'},$$

$$\sum_{\tau,\tau'} \bar{v}_{\tau}(q_j) v_{\tau'}(q_j) = \not q_j \delta^{ff'}$$
(1.24)

and sum over polarization index (λ_3, λ_4) :

$$\sum_{\nu,\nu'} \varepsilon^{\lambda_4}_{\nu'}^*(q) \varepsilon^{\lambda_3}_{\nu}(q) = -g_{\nu\nu'} \delta^{cd}$$
(1.25)

$$|M_2|^2 = \frac{g_s^2 [T^c]_f^m [T^c]_f^n}{(q_i + q)^2 (q_i + q)^2} [(\not q_j + \not q)\gamma^{\nu} \not q_j (-g_{\nu\nu'})\gamma^{\nu'} (\not q_j + \not q)] [\not q_i]$$
(1.26)

After the same calculation from the last part, we'll get:

$$|M_2|^2 = (d-2)\frac{g_s^2 \left[T^c\right]_f^m \left[T^c\right]_f^n}{(2qq_i)} [\not q] [\not q_i]$$
(1.27)

finally:

$$|M_2|^2 = -(d-2)yz^2 \frac{g_s^2 \left[T^c\right]_f^m \left[T^c\right]_f^n}{2(1-z)(1-y)(p_i \cdot p_j)} [p_i] [p_j]$$
(1.28)

1.3 $M_1 M_2^{\dagger}$

$$M_{1} M_{2}^{\dagger} = \left[\bar{u}_{\sigma}(q_{i}) \left(-ig_{s}\gamma^{\mu} \times [T^{a}]_{o}^{l}\right) \frac{i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} \varepsilon^{\lambda_{1}}{}_{\mu}(q)\right] \left[v_{\tau}(q_{j})\right]$$

$$\left[\bar{v}_{\tau'}(q_{j}) \left(ig_{s}\gamma^{\nu'} \times [T^{d}]_{f'}^{n}\right) \frac{-i(\not q_{j} + \not q)}{(q_{j} + q)^{2}} \varepsilon^{\lambda_{4}}{}_{\nu'}(q)\right] \left[u_{\sigma'}(q_{i})\right]$$

$$(1.29)$$

$$M_{1} M_{2}^{\dagger} = \frac{g_{s}^{2} [T^{a}]_{o}^{l} [T^{d}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)} [\not q_{i} \gamma^{\mu} (\not q_{i} + \not q_{i})] \varepsilon^{\lambda_{1}}_{\mu}(q) \varepsilon^{\lambda_{4}}_{\nu'}(q)$$

$$[\not q_{j} \gamma^{\nu'} (\not q_{j} + \not q_{i})]$$
(1.30)

$$M_{1} M_{2}^{\dagger} = \frac{g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)} [\not q_{i} \gamma^{\mu} (\not q_{i} + \not q)] - g_{\mu\nu'}$$

$$[\not q_{j} \gamma^{\nu'} (\not q_{j} + \not q)]$$

$$(1.31)$$

$$M_1 M_2^{\dagger} = \frac{-g_s^2 [T^a]_o^l [T^a]_{f'}^n}{(2q_i q)(2q_j q)} [\not q_i \gamma^{\mu} (\not q_i + \not q)] [\not q_j \gamma_{\mu} (\not q_j + \not q)]$$
(1.32)

Expectation:

$$M_1 M_2^{\dagger} = \frac{-g_s^2 [T^a]_o^{\ l} [T^a]_{f'}^n}{(2q_i q)(2q_j q)} [(\not q_i + \not q) \gamma^{\mu} \not q_i] [(\not q_j + \not q) \gamma_{\mu} \not q_j]$$
(1.33)

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)} [-(\not q_{i} + \not q) \not q_{i} \gamma^{\mu} + 2(\not q_{i} + \not q) q_{i}^{\mu}]$$

$$[-(\not q_{j} + \not q) \not q_{j} \gamma_{\mu} + 2(\not q_{j} + \not q) q_{j\mu}]$$

$$(1.34)$$

$$|M^2| = \left| \begin{array}{c|c} P_i \\ \hline \\ P_j \end{array} \right|^2 \otimes \left| \begin{array}{c|c} OOO & \end{array} \right|^2$$

contribution from LO

 $a\ complex\ number$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)}$$

$$[(\not A_{i} + \not A) \not A_{i} \gamma^{\mu}] [(\not A_{j} + \not A) \not A_{j}\gamma_{\mu}]$$

$$-2[(\not A_{i} + \not A) \not A_{i} \gamma^{\mu}] [(\not A_{j} + \not A)q_{j\mu}]$$

$$-2[(\not A_{i} + \not A) q_{i}^{\mu}][(\not A_{j} + \not A) \not A_{j} \gamma_{\mu}]$$

$$+4[(\not A_{i} + \not A) q_{i}^{\mu}][(\not A_{j} + \not A)q_{j\mu}]$$

$$(1.35)$$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)}$$

$$[A A_{i} \gamma^{\mu}] [A A_{j} \gamma_{\mu}]$$

$$-2[A A_{i} \gamma^{\mu}] [(A + A_{j}) q_{j\mu}]$$

$$-2[(A_{i} + A_{j}) q_{i}^{\mu}][A A_{j} \gamma_{\mu}]$$

$$+4[(A_{i} + A_{j}) q_{i}^{\mu}][(A_{j} + A_{j}) q_{j\mu}]$$

$$(1.36)$$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{4(1-z)(1-y)y(1-2z+2z^{2})(p_{i}\cdot p_{j})(p_{i}\cdot p_{j})}$$

$$[y(1-2z+2z^{2}) \not p_{i} \not p_{j} \gamma^{\mu}] [(1-z)(1-y) \not p_{i} \not p_{j} \gamma_{\mu}]$$

$$+4(q_{i}^{\mu} \cdot q_{j\mu})[(\not q_{i}+\not q_{j})][(\not q_{j}+\not q_{j})]$$

$$(1.37)$$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} \left[T^{a}\right]_{o}^{l} \left[T^{a}\right]_{f'}^{n}}{4(1-z)(1-y)y(1-2z+2z^{2})(p_{i}\cdot p_{j})(p_{i}\cdot p_{j})}$$

$$\left[y(1-2z+2z^{2})\not p_{i}\not p_{j}\gamma^{\mu}\right] \left[(1-z)(1-y)\not p_{i}\not p_{j}\gamma_{\mu}\right]$$

$$+4(p_{i}\cdot p_{j})\left[\cancel{p}_{i}+y\not p_{j}\right]\left[(1-z)\not p_{i}+(1+yz-y)\not p_{j}-\sqrt{zy(1-z)}\not m\right]$$

$$(1.38)$$

$$M_1 M_2^{\dagger} = \frac{-g_s^2 [T^a]_o^l [T^a]_{f'}^n}{(1-z)(1-y)y(1-2z+2z^2)(p_i \cdot p_j)} z(1-y)[\not p_i][\not p_j]$$
(1.39)

$$M_1 M_2^{\dagger} = \frac{-g_s^2 [T^a]_o^l [T^a]_{f'}^n}{(1-z)y(1-2z+2z^2)(p_i \cdot p_j)} z[p_i][p_j]$$
(1.40)

1.4 $|M^2|$

$$|M|^2 = |M_1|^2 + |M_2|^2 + M_1 M_2^{\dagger} + M_1^{\dagger} M_2$$
(1.41)

$$|M|^2 = |M_1|^2 + |M_2|^2 + \frac{2RE(M_1 M_2^{\dagger})}{}$$
(1.42)

$$|M|^{2} = (d-2)(1-z)(1-y) \frac{g_{s}^{2}[T^{a}]_{o}^{k} [T^{a}]_{o}^{l}}{2y(1-2z+2z^{2})(p_{i}\cdot p_{j})} [\not p_{i}][\not p_{j}]$$

$$-(d-2)yz^{2} \frac{g_{s}^{2}[T^{c}]_{f}^{m} [T^{c}]_{f}^{n}}{2(1-z)(1-y)(p_{i}\cdot p_{j})} [\not p_{i}][\not p_{j}]$$

$$+2RE((\frac{-2z}{z-1})\frac{g_{s}^{2}[T^{a}]_{o}^{l}[T^{a}]_{f}^{n}}{2y(1-2z+2z^{2})(p_{i}\cdot p_{j})} [\not p_{i}][\not p_{j}])$$
(1.43)

$$T^{a}{}_{ok} T^{a}{}_{lo} = \frac{1}{2} (\delta_{oo} \delta_{lk} - \frac{1}{N} \delta_{ok} \delta_{lo}) = \frac{1}{2} (N \delta_{lk} - \frac{1}{N} \delta_{lk}) = C_F \delta_{lk}$$
 (1.44)

After summation over the final colour states and averaging over initial colour states we get:

$$T^{a}{}_{ok} T^{a}{}_{lo} = C_{F} \delta_{lk} = \frac{1}{N} \sum_{l=1}^{N} \delta_{lk} C_{F} = C_{F}$$
 (1.45)

The same calculation for $T^c_{mf} T^c_{fn}$ and $T^a_{ol} T^a_{fn}$ turns C_F out as the colour factor. Now we are going to compute the splitting function in the case of the colinearity, wich means, if:

$$y \longrightarrow 0$$
 (1.46)

$$|M|^{2} = (d-2)(1-z)(1-y) \frac{g_{s}^{2}C_{F}}{2y(1-2z+2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$-(d-2)yz^{2} \frac{g_{s}^{2}C_{F}}{2(1-z)(1-y)(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$+2RE((\frac{-2z}{z-1}) \frac{g_{s}^{2}C_{F}}{2y(1-2z+2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$
(1.47)

$$|M|^{2} = C_{F}((d-2)(1-z) - \frac{4z}{z-1}) \frac{g_{s}^{2}}{2y(1-2z+2z^{2})(p_{i} \cdot p_{j})} [p_{i}][p_{j}]$$
(1.48)

for

$$d = 4 - 2\epsilon \tag{1.49}$$

$$|M|^{2} = C_{F}((4 - 2\epsilon - 2)(1 - z) + \frac{4z}{1 - z}) \frac{g_{s}^{2}}{2y(1 - 2z + 2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$= C_{F}(\frac{2(1 - \epsilon)(1 - z)^{2} + 4z}{1 - z}) \frac{g_{s}^{2}}{2y(1 - 2z + 2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$C_{F}(\frac{2 - 4z + 2z^{2} - \epsilon(1 - z)^{2} + 4z}{1 - z}) \frac{g_{s}^{2}}{2y(1 - 2z + 2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}] \qquad (1.50)$$

$$= C_{F}(\frac{(1 + z^{2})}{1 - z} - \epsilon(1 - z)) \frac{g_{s}^{2}}{y(1 - 2z + 2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$= \langle \hat{P}_{qq} \rangle \frac{g_{s}^{2}}{q_{i} \cdot q} [\not p_{i}] [\not p_{j}]$$

Chapter 2

Gluon gluon emission kernel

2.1 Gluon-Emitter Bubble

$$M_{1} = \left[\frac{-i}{(q+q_{i})^{2}} (-g_{s} f^{a \circ l} (g^{\mu \zeta} (q-q_{i})^{\eta} + g^{\zeta \eta} (-q - (q+q_{i}))^{\mu} + g^{\eta \mu} (q_{i} + q_{i} + q)^{\zeta})\right]$$

$$\varepsilon^{\lambda_{1}}{}_{\mu}(q) \varepsilon^{\lambda_{6}}{}_{\zeta}(q) \left[\varepsilon^{\theta}{}_{\tau'}(q_{j}) \right]$$
(2.1)

$$M_{1} = \left[\frac{-i}{(q_{i} + q)^{2}} \left(-g_{s} f^{a \, o \, l} \left(g^{\mu \zeta} (q - q_{i})^{\eta} - g^{\zeta \eta} (2q + q_{i})^{\mu} + g^{\eta \mu} (2q_{i} + q)^{\zeta} \right) \right.$$

$$\left. \varepsilon^{\lambda_{1}}{}_{\mu} (q_{i}) \varepsilon^{\lambda_{6}}{}_{\zeta} (q) \right] \left[\varepsilon^{\theta}{}_{\tau'} (q_{j}) \right]$$

$$(2.2)$$

$$M_{1}^{\dagger} = \left[\frac{i}{(q_{i}+q)^{2}}(-g_{s}f^{a'ko'}(-g^{\mu'\eta'}(2q_{i}+q)^{\zeta'}+g^{\eta'\zeta'}(2q+q_{i})^{\mu'}+g^{\zeta'\mu'}(q_{i}-q)^{\eta'})\right]$$

$$\varepsilon^{\lambda_{2}}_{\mu'}{}^{*}(q_{i})\varepsilon^{\lambda_{5}}_{\zeta'}{}^{*}(q)\right]\left[\varepsilon^{\theta'}_{\tau'}{}^{*}(q_{j})\right]$$
(2.3)

$$|M_{1}|^{2} = \left[\frac{-i}{(q_{i}+q)^{2}}(-g_{s}f^{a\,o\,l}(g^{\mu\zeta}(q-q_{i})^{\eta} - g^{\zeta\eta}(2q+q_{i})^{\mu} + g^{\eta\mu}(2q_{i}+q)^{\zeta})\right]$$

$$\varepsilon^{\lambda_{1}}{}_{\mu}(q_{i})\,\varepsilon^{\lambda_{2}}{}_{\mu'}{}^{*}(q_{i})\varepsilon^{\lambda_{6}}{}_{\zeta}(q)\,\varepsilon^{\lambda_{5}}{}_{\zeta'}{}^{*}(q) \qquad (2.4)$$

$$(-g_{s}f^{a'\,k\,o'}(-g^{\mu'\eta'}(2q_{i}+q)^{\zeta'} + g^{\eta'\zeta'}(2q+q_{i})^{\mu'} + g^{\zeta'\mu'}(q_{i}-q)^{\eta'})\frac{i}{(q_{i}+q)^{2}}[g_{\gamma\delta}]$$

$$N \equiv g_{\mu\mu'}g_{\zeta\zeta'}[-g^{\mu\zeta}g^{\mu'\eta'}(q-q_{i})^{\eta}(2q_{i}+q)^{\zeta'}+g^{\mu\zeta}g^{\eta'\zeta'}(q-q_{i})^{\eta}(2q+q_{i})^{\mu'} +g^{\mu\zeta}g^{\zeta'\mu'}(q-q_{i})^{\eta}(q_{i}-q)^{\eta'}+g^{\zeta\eta}g^{\mu'\zeta'}(2q+q_{i})^{\mu}(2q_{i}+q)^{\zeta'} -g^{\zeta\eta}g^{\eta'\zeta'}(2q+q_{i})^{\mu}(2q+q_{i})^{\mu'}-g^{\zeta\eta}g^{\zeta'\mu'}(2q+q_{i})^{\mu}(q_{i}-q)^{\eta'} -g^{\eta\mu}g^{\mu'\eta'}(2q_{i}+q)^{\zeta}(2q_{i}+q)^{\zeta'}+g^{\eta\mu}g^{\eta'\zeta'}(2q_{i}+q)^{\zeta}(2q+q_{i})^{\mu'} +g^{\eta\mu}g^{\zeta'\mu'}(2q_{i}+q)^{\zeta}(q_{i}-q)^{\eta'}][g_{\gamma\delta}]$$

$$(2.5)$$

$$N \equiv \left[-(q - q_i)^{\eta} (2q_i + q)^{\eta'} + (q - q_i)^{\eta} (2q + q_i)^{\eta'} + d(q - q_i)^{\eta} (q_i - q)^{\eta'} + (2q + q_i)^{\eta'} (2q_i + q)^{\eta} - g^{\eta\eta'} (2q + q_i)^{\mu} (2q + q_i)_{\mu} - (2q + q_i)^{\eta} (q_i - q)^{\eta'} \right]$$

$$-g^{\eta\eta'} (2q_i + q)^{\zeta} (2q_i + q)_{\zeta} + (2q_i + q)^{\eta'} (2q + q_i)^{\eta} + (2q_i + q)^{\eta} (q_i - q)^{\eta'} \left[g_{\gamma\delta} \right]$$
(2.6)

$$N \equiv \left[-(q^{\eta}q^{\eta'} + 2q^{\eta}q_{i}^{\eta'} - q_{i}^{\eta}q^{\eta'} - 2q_{i}^{\eta}q_{i}^{\eta'}) + (2q^{\eta}q^{\eta'} + q^{\eta}q_{i}^{\eta'} - 2q_{i}^{\eta}q^{\eta'} - q_{i}^{\eta}q_{i}^{\eta'}) + (4q^{\eta}q_{i}^{\eta'} - 2q_{i}^{\eta}q^{\eta'} - 4q_{i}^{\eta}q_{i}^{\eta'}) + (4q^{\eta'}q_{i}^{\eta} + 2q^{\eta'}q^{\eta} + 2q_{i}^{\eta'}q_{i}^{\eta} + q_{i}^{\eta'}q^{\eta}) + (-2q^{\eta}q^{\eta'} + 2q^{\eta}q_{i}^{\eta'} - q_{i}^{\eta}q^{\eta'} + q_{i}^{\eta}q_{i}^{\eta'}) + (2q^{\eta'}q^{\eta} + q^{\eta'}q_{i}^{\eta} + 4q_{i}^{\eta'}q^{\eta} + 2q_{i}^{\eta'}q_{i}^{\eta}) + (-q^{\eta}q^{\eta'} + q^{\eta}q_{i}^{\eta'} - 2q_{i}^{\eta}q^{\eta'} + 2q_{i}^{\eta}q_{i}^{\eta'}) - g^{\eta\eta'}(5q^{2} + 5q_{i}^{2} + 8qq_{i})\right][g_{\gamma\delta}]$$

$$(2.7)$$

$$N \equiv [(6-d)q^{\eta}q^{\eta'} + (d+3)q^{\eta}q_i^{\eta'} + (d+3)q_i^{\eta}q^{\eta'} + (6-d)q_i^{\eta}q_i^{\eta'} -g^{\eta\eta'}(5q^2 + 5q_i^2 + 8qq_i)][g_{\gamma\delta}]$$
(2.8)

$$|M_{1}|^{2} = \frac{g_{s}^{2} f^{a \circ l} f^{a k \circ o}}{(q_{i} + q)^{2} (q_{i} + q)^{2}} [(6 - d)q^{\eta}q^{\eta'} + (d + 3)q^{\eta}q_{i}^{\eta'} + (d + 3)q_{i}^{\eta}q^{\eta'} + (6 - d)q_{i}^{\eta}q_{i}^{\eta'} - g^{\eta\eta'} (5q^{2} + 5q_{i}^{2} + 8qq_{i})][g_{\gamma\delta}]$$

$$(2.9)$$

2.1.1 One-loop corrections to the gluon self-energy diagram(Gluon-Emitter Bubble)

$$|M_1|_{Ghost \, loop}^2 = \frac{g_s^2 \, f^{\, a \, o \, l} \, f^{\, a \, k \, o}}{(q_i + q)^2 (q_i + q)^2} [-q_i^{\, \eta} q^{\eta'} - q^{\eta} q_i^{\, \eta'}] [g_{\gamma \delta}]$$
(2.10)

$$|M'_{1}|^{2} = |M_{1}|^{2} + |M_{1}|_{Ghost \, loop}^{2}$$

$$= \frac{g_{s}^{2} f^{a \, o \, l} f^{a \, k \, o}}{(q_{i} + q)^{2} (q_{i} + q)^{2}} [(6 - d) q^{\eta} q^{\eta'} + (d + 3) q^{\eta} q_{i}^{\eta'}$$

$$+ (d + 3) q_{i}^{\eta} q^{\eta'} + (6 - d) q_{i}^{\eta} q_{i}^{\eta'} - g^{\eta \eta'} (5q^{2} + 5q_{i}^{2} + 8qq_{i}) - q_{i}^{\eta} q^{\eta'} - q^{\eta} q_{i}^{\eta'}] [g_{\gamma \delta}]$$

$$(2.11)$$

$$|M_1'|^2 = \frac{g_s^2 f^{a \circ l} f^{a k \circ o}}{(q_i + q)^2 (q_i + q)^2} [(6 - d)q^{\eta} q^{\eta'} + (d + 2)q^{\eta} q_i^{\eta'} + (d + 2)q^{\eta} q_i^{\eta'} + (d + 2)q_i^{\eta} q_i^{\eta'} + (6 - d)q_i^{\eta} q_i^{\eta'} - g^{\eta\eta'} (5q^2 + 5q_i^2 + 8qq_i)][g_{\gamma\delta}]$$
(2.12)

2.2 Gluon-Spectator Bubble

$$|M_{2}|^{2} = \left[\frac{-i}{(q_{j}+q)^{2}}(-g_{s}f^{bfm}(g^{\tau\gamma}(-2q_{j}-q)^{\rho}+g^{\gamma\rho}(2q+q_{j})^{\tau}+g^{\rho\tau}(q_{j}-q)^{\gamma})\right]$$

$$g_{\tau\tau'}g_{\rho\rho'}(-g_{s}f^{b'nf'}(g^{\rho'\delta}(-2q-q_{j})^{\tau'}+g^{\delta\tau'}(2q_{j}+q)^{\rho'}+g^{\tau'\rho'}(q-q_{j})^{\delta})\frac{i}{(q_{j}+q)^{2}}][g_{\eta\eta'}]$$

$$(2.13)$$

$$|M_{2}|^{2} = \frac{g_{s}^{2} f^{b f m} f^{b' n f'} \delta^{aa'} \delta^{f f'} \delta^{bb'}}{(q_{j} + q)^{2} (q_{j} + q)^{2}} [g_{\tau \tau'} g_{\rho \rho'} (g^{\tau \gamma} (2q_{j} + q)^{\rho} g^{\rho' \delta} (2q + q_{j})^{\tau'} - g^{\tau \gamma} (2q_{j} + q)^{\rho} g^{\delta \tau'} (2q_{j} + q)^{\rho'} - g^{\tau \gamma} (2q_{j} + q)^{\rho} g^{\tau' \rho'} (q - q_{j})^{\delta} - g^{\gamma \rho} (2q + q_{j})^{\tau} g^{\rho' \delta} (2q + q_{j})^{\tau'} + g^{\gamma \rho} (2q + q_{j})^{\tau} g^{\delta \tau'} (2q_{j} + q)^{\rho'} + g^{\gamma \rho} (2q + q_{j})^{\tau} g^{\tau' \rho'} (q - q_{j})^{\delta} - g^{\rho \tau} (q_{j} - q)^{\gamma} g^{\rho' \delta} (2q + q_{j})^{\tau'} + g^{\rho \tau} (q_{j} - q)^{\gamma} g^{\delta \tau'} (2q_{j} + q)^{\rho'} + g^{\rho \tau} (q_{j} - q)^{\gamma} g^{\tau' \rho'} (q - q_{j})^{\delta}] [g_{\eta \eta'}]$$

$$(2.14)$$

$$|M_{2}|^{2} = \frac{g_{s}^{2} f^{bfm} f^{bnf}}{(q_{j} + q)^{2} (q_{j} + q)^{2}} [(2q + q_{j})^{\gamma} (2q_{j} + q)^{\delta} - g^{\delta \gamma} (2q_{j} + q)^{\rho} (2q_{j} + q)_{\rho} - (2q_{j} + q)^{\gamma} (q - q_{j})^{\delta} - g^{\delta \gamma} (2q + q_{j})^{\tau} (2q + q_{j})_{\tau} + (2q_{j} + q)^{\gamma} (2q + q_{j})^{\delta} + (2q + q_{j})^{\gamma} (q - q_{j})^{\delta} - (q_{j} - q)^{\gamma} (2q + q_{j})^{\delta} + (q_{j} - q)^{\gamma} (2q_{j} + q)^{\delta} + d(q_{j} - q)^{\gamma} (q - q_{j})^{\delta}] [g_{\eta \eta'}]$$

$$(2.15)$$

$$|M_{2}|^{2} = \frac{g_{s}^{2} f^{bfm} f^{bnf}}{(q_{j} + q)^{2} (q_{j} + q)^{2}} [(3+d)q^{\gamma} q_{j}^{\delta} + (6-d)q^{\gamma} q^{\delta} + (6-d)q_{j}^{\gamma} q_{j}^{\delta} + (3+d)q_{j}^{\gamma} q^{\delta} - g^{\delta\gamma} (5q_{j}^{2} + 5q^{2} + 8qq_{j})$$

$$[g_{\eta\eta'}]$$
(2.16)

2.2.1 One-loop corrections to the gluon self-energy diagram (Gluon-Spectator Bubble)

$$|M_1|_{Ghost \, loop}^2 = \frac{g_s^2 f^{b f m} f^{b n f}}{(q_i + q)^2 (q_i + q)^2} [-q_j^{\gamma} q^{\delta} - q^{\delta} q_j^{\gamma}] [g_{\gamma \delta}]$$
(2.17)

$$|M_2'|^2 = \frac{g_s^2 f^{bfm} f^{bnf}}{(q_j + q)^2 (q_j + q)^2} [(2+d)q^{\gamma} q_j^{\delta} + (6-d)q^{\gamma} q^{\delta} + (6-d)q_j^{\gamma} q_j^{\delta} + (2+d)q_j^{\gamma} q^{\delta} - g^{\delta\gamma} (5q_j^2 + 5q^2 + 8qq_j)$$

$$[g_{\eta\eta'}]$$
(2.18)

2.3 Interference term $M_1 M_2^{\dagger}$

$$M_{1}M_{2}^{\dagger} = \left[\frac{-i}{(q_{i}+q)^{2}}(-g_{s}f^{alo}(-g^{\mu\eta}(2q_{i}+q)^{\zeta}+g^{\eta\zeta}(2q+q_{i})^{\mu}+g^{\zeta\mu}(q_{i}-q)^{\eta})\right]$$

$$\varepsilon^{\lambda_{1}}{}_{\mu}(q_{i})\varepsilon^{\lambda_{6}}{}_{\zeta}(q)\left[\varepsilon^{\theta}{}_{\tau}^{*}(q_{j})\right]$$

$$\left[\frac{i}{(q+q_{j})^{2}}(-g_{s}f^{f'nb'}(-g^{\tau'\delta}(2q_{j}+q)^{\rho'}+g^{\delta\rho'}(2q+q_{j})^{\tau'}+g^{\rho'\tau'}(q_{j}-q)^{\delta})\right]$$

$$\varepsilon^{\theta'}{}_{\tau'}^{*}(q_{j})\varepsilon^{\lambda_{8}}{}_{\rho'}^{*}(q)\left[\varepsilon^{\lambda_{2}}{}_{\mu'}^{*}(q_{i})\right]$$

$$(2.19)$$

$$M_{1}M_{2}^{\dagger} = \frac{g_{s}^{2} f^{a l o} f^{f' n b'} \delta^{aa'} \delta^{ob'} \delta^{ff'}}{(q_{i} + q)^{2} (q_{j} + q)^{2}} [g_{\mu\mu'} g_{\zeta\rho'} g_{\tau\tau'} (-g^{\mu\eta} (2q_{i} + q)^{\zeta} + g^{\eta\zeta} (2q + q_{i})^{\mu} + g^{\zeta\mu} (q_{i} - q)^{\eta}) (-g^{\tau'\delta} (2q_{j} + q)^{\rho'} + g^{\delta\rho'} (2q + q_{j})^{\tau'} + g^{\rho'\tau'} (q_{j} - q)^{\delta})]$$

$$(2.20)$$

$$M_{1}M_{2}^{\dagger} = \frac{g_{s}^{2} f^{a l o} f^{f n o}}{(q_{i} + q)^{2} (q_{j} + q)^{2}} [g_{\mu\mu'} g_{\zeta\rho'} g_{\tau\tau'}$$

$$(g^{\mu\eta} (2q_{i} + q)^{\zeta} g^{\tau'\delta} (2q_{j} + q)^{\rho'} - g^{\mu\eta} (2q_{i} + q)^{\zeta} g^{\delta\rho'} (2q + q_{j})^{\tau'} - g^{\mu\eta} (2q_{i} + q)^{\zeta} g^{\rho'\tau'} (q_{j} - q)^{\delta}$$

$$-g^{\eta\zeta} (2q + q_{i})^{\mu} g^{\tau'\delta} (2q_{j} + q)^{\rho'} + g^{\eta\zeta} (2q + q_{i})^{\mu} g^{\delta\rho'} (2q + q_{j})^{\tau'} + g^{\eta\zeta} (2q + q_{i})^{\mu} g^{\rho'\tau'} (q_{j} - q)^{\delta}$$

$$-g^{\zeta\mu} (q_{i} - q)^{\eta} g^{\tau'\delta} (2q_{j} + q)^{\rho'} + g^{\zeta\mu} (q_{i} - q)^{\eta} g^{\delta\rho'} (2q + q_{j})^{\tau'} + g^{\zeta\mu} (q_{i} - q)^{\eta} g^{\rho'\tau'} (q_{j} - q)^{\delta})]$$

$$(2.21)$$

$$M_{1}M_{2}^{\dagger} = \frac{g_{s}^{2} f^{a l o} f^{f n o}}{(q_{i} + q)^{2} (q_{j} + q)^{2}} [g_{\eta'}{}^{\eta} g_{\gamma}{}^{\delta} (2q_{i} + q)_{\rho'} (2q_{j} + q)^{\rho'}}$$

$$-g_{\eta'}{}^{\eta} (2q_{i} + q)^{\eta} (2q + q_{j})_{\gamma} - g_{\eta'}{}^{\eta} (2q_{i} + q)^{\delta} (q_{j} - q)^{\delta}}$$

$$-g_{\gamma}{}^{\delta} (2q + q_{i})_{\eta'} (2q_{j} + q)^{\eta} + g^{\eta\delta} (2q + q_{i})_{\eta'} (2q + q_{j})_{\gamma}$$

$$+g_{\gamma}{}^{\eta} (2q + q_{i})_{\eta'} (q_{j} - q)^{\eta} - g_{\gamma}{}^{\delta} (q_{i} - q)^{\eta} (2q_{j} + q)_{\eta'}$$

$$+g_{\eta'}{}^{\delta} (q_{i} - q)^{\eta} (2q + q_{i})_{\gamma} + g_{\eta'}{}^{\tau'} g_{\gamma\tau'} (q_{i} - q)^{\eta} (q_{j} - q)^{\delta}]$$

$$(2.22)$$

2.4 $|M^2|$

Chapter 3

Quark gluon quark emission kernel

3.1 Gluon-Emitter Quark loop

3.2 Gluon-Spectator Quark loop

3.3 Gluon-Emitter Quark loop

Chapter 4

Gluon quark quark emission kernel

4.1 M_1

4.2 M_2

4.3 $M1M_2^{\dagger}$

