东北大学2016-2017学年第二学期大学物理期末试卷B

选择题

1、在实验室参照系中,静止质量为 m_A .总能量(包括质能)为 E_A 的粒子A与静止质量为 m_B 的静止粒子B碰撞,则由碰撞使使 粒子嬗变而可得的总能量(包括质能)为()

A. $m_Ac^2+m_Bc^2$

B. $E_A + m_B c^2$

C. $[E_A^2 + m_B^2 c^4]^{1/2}$

D. $\left[m_{A}^{2}c^{4}+m_{B}^{2}c^{4}+2E_{A}m_{B}c^{2}\right]^{1/2}$ E. $\left[m_{A}m_{B}c^{4}+4E_{A}m_{B}c^{2}\right]^{1/2}$

2、倔强系数为k的轻弹簧,系一质量为m的物体,物体作简谐振动。如果t=0时,物体的速度为最大值Vmax,且向负方向 运动,则物体的振动方程为()

A. $\sqrt{\frac{k}{m}}v_{\ln a} \propto \cos\sqrt{\left(\frac{m}{k}t + \frac{\pi}{2}\right)}$

B. $\sqrt{\frac{k}{m}} v_{\text{max}} \cos\left(\sqrt{\frac{k}{k}} t - \frac{\pi}{2}\right)$

C. $\sqrt{\frac{m}{k}}v_{\max}\cos\left(\sqrt{\frac{m}{k}}t+\frac{\pi}{2}\right)$

D. $\sqrt{\frac{m}{k}}v_{\mathrm{m}} \operatorname{acos}\sqrt{\left(\frac{m}{k}t-\frac{\pi}{2}\right)}$

3、某质点作简谐运动,其x-t图线如图所示。它的振动方程为()

A. $x = A\cos(\frac{\pi}{6}t + \frac{\pi}{3})$ cm

B. $x = A\cos\left(\frac{7\pi}{6}t + \frac{\pi}{3}\right)$ cm

C. $x = A\cos\left(\frac{5\pi}{6}t - \frac{\pi}{3}\right)$ cm

D. $x = A\cos(\frac{11\pi}{6}t - \frac{\pi}{3})$ cm

4、拍现象是由怎样的两个简谐振动合成?()

A. 同方向、同频率的两个简谐振动

B. 同方向、频率很大但频差甚小的两个简谐振动

C. 振动方向互相垂直,同频率的两个简谐振动

D. 振动方向互相垂直,频率成整倍数的两个简谐 振动合成

5、一质点作简谐振动, 其速度随时问变化的规律律为ν=-ωAcosωt, 那么质点的振动方程为()

A. $x = A \sin \omega t$

B. $x = A\cos\omega t$.

C. $x = A\sin(\omega t + \pi)$

- D. $x = A\cos(\omega t + \pi)$
- 6、用很薄的云母片(n=1.58),覆盖在杨氏双缝实验中的一条缝上,这时屏幕上的中央明纹中心,为原来的第7级明纹中 心所占据。如果入射光的波长h=550 nm, 求这云母的厚度为()

A. 2.4x10-3 mm

B. 6.6x10-3 mm

C. 5.5x10-3mm

- D. 3.9x10-3 mm
- 7、波长为 λ 的单色光在折射率为n的媒质中,由a点传到b点位相改变了 π ,则由a到b的光程和几何路程分别为()

 $(1) \frac{\lambda}{2n}$

 $(2) \frac{\lambda n}{2}$

 $(3) \frac{\lambda}{2}$

 $(4) \lambda$

(5) $n\lambda$

A. (5)(1)

B. (4)(2)

C. (2)(3)

D. (3)(2)

E. (3)(1)

8、	^{8、} 在一氧化碳的近红外光谱中,有一个2144cm ⁻¹ 的强带。CO的零点能应约为(以J/mol为单位)()						
	A.	1.25x105	B.	6.25x104	C.	1.25x104	
	D.	2.56x104	E.	3.75×10 ⁴			
9、		在给定中性多电子原子中只有一个电子受激在较高激发态,受激电子角动量值大的激发态比角动量值小的激发态更接 近氢原子能级,其原因是()					
	A.	+=======++++++++++++++++++++++++++++++	B.	角动量小的电子受到的力与距 离平方成反比的静电力的偏差 比角动量大的电子要大		角动量小的电子开始受到原子 核核力的作用	
	D.	角动量小的电子比角动量大的 电子辐射更强	E.	角动量小的电子开始与围绕核 的介子场相互作用			
10、	、反应e->v _e +y()						
	Α.	是禁戒的,因违反电荷守恒定 律	В.	是禁戒的,因违反重子数守恒 定律	C.	是禁戒的,因违反动量一能量 守恒定律	
	D.	是禁戒的,因违反角动量守恒 定律	E.	是容许的			
填空题 ·							
12、 13、 14、	11、频率为100Hz,传播速度为300 m/ s的平面简谐波,波线上两点振动的相位差为 π /3,则此两点相距m. 12、如图所示,有一平面简谐波沿x轴负方向传播,坐标原点0的振动规律为y=Acos(ω t+ ϕ 0),则B点的振动方程为						
	一平面简谐波沿x轴负方向传播、已知x=x ₀ 处质点的振动方程为y= Acos(ωt+φ ₀).若波速为u,则此波的波动方程为 ———						
16、	在双缝干涉实验中,两缝间距离为2mm,双缝与屏幕相距300cm,波长 λ =600.0 nm的平行单色光垂直照射到双缝上,幕上相邻明纹之间的距离为						
17、	、现有频率为v,初相相同的两相干光,在均匀介质(折射率为n)中传播,若在相遇时它们的几何路程差为r ₂ -r ₁ ,则它们的 光程差为 ,相位差为						
18、	8、含有两种波长 λ_1 , λ_2 的光垂直入射在每毫米有300条缝的衍射光栅上,已知 λ_1 为红光, λ_2 为紫光,在24°角处两和						
	长光的谱线重合,则紫光的波长为。屏幕上可能单独呈现紫光的各级谱线的级次为(只需写出正级次)。 ($\sin 24^\circ = 0.4067, \cos 24^\circ = 0.9135, \lambda_1 = 700 nm$)						
19、)、设光栅平面、透镜均与屏幕平行.则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最 高级数k将						
20、	自然光由空气入射至薄膜表面,入射角为52°45',观察反射光是完全偏振光,则折射角为,反射光与折射 光的夹角为薄膜的折射率n=						
计算题							

- 21、频率为1000Hz的波,波速为350m/s。 试求:
 - (1) 相位差为 $\frac{\pi}{3}$ 的两点之间的距离;
 - (2) 在某点处时间间隔为10-3s的两个振动状态之间的相位差。
- 22、在比较两条单色X射线谱线波长时,注意到谱线A在与某种晶体的光滑表面成30°的掠射角处,出现第一级反射极大。 谱线B (已知具有波长0.097nm)则在于同一晶体的同一表面成60°的掠射角处,出现第三级反射极大,试求谱线A的波 长。
- 23、有波长为 λ_1 和 λ_2 的平行光垂直照射一单缝,在距缝很远的屏上观察衍射条纹,如果 λ_1 的第一衍射极小与 λ_2 的第二级衍射极小相重合。试求
 - (1) 这两种波长之间有何关系?
 - (2) 在这两种波长的衍射图样中是否还有其他的极小会互相重合?
- 24、使自然光通过两个偏振化方向为60°角的偏振片,透射光强为I_c。今在这两个偏振片之间再插入另一偏振片,它的偏振化方向与前两个偏振片构成30°角,试求透射光强为多少?