11.6 Differential Derivatives and the Gradient Vector

 $D_{\vec{u}}f(x_0,y_0), \vec{u}$ is a unit vector

Def

The directional derivative of f at (x_0, y_0) is the direction of a unit vector $\hat{u} = \langle a, b \rangle$ is

$$D_{\vec{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h_0, y_0 + h_0 - f(x_0, y_0))}{h}$$

if this limit exists.

Theorem

If f is a differentiable function of x & y, then

$$D_{\vec{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b$$
 $\vec{u} = < a,b > \& \vec{u} = \text{unit vector}$

Note

If \vec{u} makes angle θ with the positive x-axis, then $\vec{u} = \cos \theta, \sin \theta$.

$\mathbf{Ex} \ \mathbf{1}$

Find $D_{\vec{u}} = f(x,y)$ if $f(x,y) = x^3 - 3xy + 4y^2$ & \hat{u} is the unit vector given by angle $\theta = \frac{\pi}{6}$. What is $D_{\vec{u}}f(1,2)$?

$$a = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$$
 $b = \sin\frac{\pi}{6} = \frac{1}{2}$

$$f_x(x,y) = 3x^2 - 3y$$
 $f_y(x,y) = -3x + 8y$

$$D_u f(x,y) = (3x^2 - 3y)\frac{\sqrt{3}}{2} + (-3 + 8y)\frac{1}{2}$$

$$D_u f(x,y) = (3(1)^{2-3(2)}) \frac{\sqrt{3}}{2} + (-3(1) + 8(2)) \frac{1}{2}$$

$$D_u f(x,y) = -\frac{3\sqrt{3}}{2} + \frac{13}{2}$$

$$D_u f(x,y) = \frac{-3\sqrt{3} + 13}{2}$$

The Gradient Vector

$$D_u = f(x,y) = f_x(x,y)a + f_y(x,y)b$$

$$< f_x(x,y), f_y(x,y) > \cdot < a,b >$$

$$D_u f(x,y) = \nabla f(x,y) \cdot \hat{u} \qquad \nabla f(x,y) = \text{gradient vector of } f$$

Ex 2

Find the directional derivative of the function $f(x,y) = x^2y^3 - 4y$ of the point (2,-1) in the direction of the vector $\vec{v} = 2\vec{i} + 5\vec{j}$

$$\nabla f(x,y) = <2xy^3, 3x^2y^2 - 4>$$

$$\nabla f(2,-1) = <2(2)(-1)^3, 3(2)^2(-1)^2 - 4 >$$

$$\nabla f(2,-1) = <-4, 8 >$$

$$\hat{u} = \frac{\vec{v}}{|\vec{v}|} = \frac{<2,5>}{\sqrt{29}}$$

$$D_u f(2,-1) = \nabla f(x,y) \cdot \hat{u}$$

$$D_u f(2, -1) = <-4.8 > \cdot < \frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}} >$$

$$D_{\vec{u}}f(2,-1) = \frac{32}{\sqrt{29}}$$

Functions of 3 Variables

For a function f of 3 variables, the gradient vector ∇f is

$$\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle$$

The directional derivative of f at (x_0, y_0, z_0) in the direction of a unit vector $\hat{u} = \langle a, b, c \rangle$ is

$$D_u f(x_0, y_0, z_0) = \nabla f(x_0, y_0, z_0) \cdot \hat{u}$$

Ex 4A

If $f(x, y, z) = x \sin(yz)$, find ∇f

$$f_x(x, y, z) = \sin y, z$$
 $f_y(x, y, z) = x \cdot \cos yz \cdot z = xz \cos yz$ $f_z(x, y, z) = x \cdot \cos yz \cdot y = xy \cos (yz)$

$$\nabla f = \langle \sin(yz), xz\cos(yz), xy\cos yz \rangle$$

Ex 4B

Find the directional derivative of f at (1,3,0) in the direction of $\vec{v} = <1,2,-1>$

$$\hat{u} = \frac{\vec{v}}{|\vec{v}|} = \frac{<1,2,-1>}{\sqrt{6}} = <\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}>$$

$$D_u f(x, y, z) = \nabla f(x, y, z) \cdot \hat{u}$$

$$D_{\vec{u}}f(x,y,z) = \frac{\sin(yz)}{\sqrt{6}} + \frac{2xz\cos(yz)}{\sqrt{6}} - \frac{xy\cos(yz)}{\sqrt{6}}$$

$$D_u f(1,3,0) = \frac{\sin 0}{\sqrt{6}} + 0 - \frac{3\cos 0}{\sqrt{6}}$$

$$D_u f(1,3,0) = -\frac{3}{\sqrt{6}}$$

Maximizing the Directional Derivative

Supppouse that we have a multi-variable function f and we consider all possible directional derivatives of f at a given point. These give the rate of changes of f in all possible directions. From there, we can ask the following questions, "In which of these directions does f change the fastest" and "What is the maximum rate of change?". These questions can be answered by the following theorem.

Theorem 15

Supposes f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_u f(x)$ is $|\nabla f(x)|$ (the magnitude of $\nabla f(x)$) and it occurs when u has the same direction as the gradient vector $\nabla f(x)$.

Ex 5A

If $f(x,y) = xe^y$, find the rate of change of f at the point P(2,0) in the direction from P to $Q(\frac{1}{2},2)$.

$$\nabla f(x,y) = \langle f_x, f_y \rangle = \langle e^y, xe^y \rangle$$

$$\nabla(2,0) = <1,2>$$

$$u = \vec{PQ} = <-1.5,2>, \hat{u} = <-\frac{3}{5},\frac{4}{5}>$$

$$D_{\hat{u}} = \nabla f(2,0) \cdot \hat{u}$$

$$D_{\hat{u}} = <1, 2> \cdot < -\frac{3}{5}, \frac{4}{5}>$$

$$D_{\hat{u}} = 1$$

Ex 5B

According to Theorem 15, f increases fastest in the direction of the gradient vector $\nabla f(2,0) = <1,2>$. The maximum rate of change is

$$|\nabla f(2,0)| = |\langle 1,2 \rangle| = \sqrt{5}$$

Ex 6

Suppose that the temperature at a point (x, y, z) in space is given by $T(x, y, z) = \frac{80}{1 + x^2 + 2y^2 + 3z^2}$, where T is

measured in degrees Celsius and x, y, z in meters. In which direction does the temperature increase fastest at the point (1, 1, -2)? What is the maximum rate of increase?

$$\nabla T = \frac{\partial T}{\partial x}i + \frac{\partial T}{\partial y}j + \frac{\partial T}{\partial z}k$$

$$\nabla T = -\frac{160x}{(1+x^2+2y^2+3z^2)^2}i + \frac{320y}{(1+x^2+2y^2+3z^2)^2} - \frac{480z}{(1+x^2+2y^2+3z^2)^2}$$

$$\nabla T = \frac{160}{(1+x^2+2y^2+3z^2)^2}(-xi+2yj-3zk)$$

At the point (1, 1, -2) the gradient vector is

$$\nabla T(1,1,-2) = \frac{160}{256}(-i-2j+6k) = \frac{5}{8}(-i-2j+6k)$$
$$u = -i-2j+6k, \hat{u} = \frac{-1,-2,6}{\sqrt{41}}$$
$$|\nabla T(1,1,-2)| = \frac{5}{8}| < -\frac{1}{\sqrt{41}}, -\frac{2}{\sqrt{41}}, \frac{6}{\sqrt{41}} > | =$$