Высшая математика

Лисид Лаконский

October 2022

Содержание

1	Высшая математика - 18.10.2022			
	1.1	Асимі	птоты функции	
		1.1.1	Вертикальные асимптоты	
		1.1.2	Наклонные асимптоты	
		1.1.3	Примеры	
	1.2	Произ	вводные функции	
		1.2.1		
		1.2.2	Таблица производных	
		1.2.3	Гиперболические функции	
		1.2.4	Уравнение гиперболы	
		1.2.5	Показательно-степенная функция	
		1.2.6	Примеры	

1 Высшая математика - 18.10.2022

1.1 Асимптоты функции

Асимптоты функции могут быть:

- Вертикальные
- Наклонные (в том числе горизонтальные)

1.1.1 Вертикальные асимптоты

Если функция f(x) имеет точку разрыва, в которой хотя бы один односторонний предел бесконечен, то вертикальная прямая, параллельная оси ординат, проходящая через эту точку, называется **вертикальной асимптотой**.

Вертикальных асимптот у функции может быть бесконечное множество.

Например,
$$f(x) = \operatorname{tg} x, x = \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$$

1.1.2 Наклонные асимптоты

Если следующие пределы: $\lim_{x\to +\infty} \frac{f(x)}{x} = k$, $\lim_{x\to +\infty} (f(x)-kx) = b$ существуют и конечны, то прямая, заданная уравнением y=kx+b является наклонной асимптотой функции f(x) при $x\to \infty$.

Если k = 0, то асимптота называется горизонтальной.

Наклонных асимптот у функции может быть только две.

1.1.3 Примеры

Пример 1. Найти асимптоты функции $f(x) = \frac{x}{1 + e^{-x}}$.

Найдем вертикальные асимптоты данной функции. Для начала найдем точки разрыва.

Данная функция **непрерывна**, так как знаменатель не может быть равен нулю.

Следовательно, вертикальных асимптот нет.

Найдем наклонные асимптоты: посчитаем пределы.

$$k_{+} = \lim_{x \to +\infty} \frac{x}{x(1+e^{-x})} = 1, k_{-} = \lim_{k \to -\inf} \frac{x}{x(1+e^{-x})} = 0$$

$$b_{+} = \lim_{x \to +\infty} \left(\frac{x}{1+e^{-x}} - x\right) = \lim_{x \to +\infty} \frac{x - x - xe^{-x}}{1+e^{-x}} = 0, b_{-} = \lim_{x \to -\infty} \left(\frac{x}{1+e^{x}}\right) = 0$$

При $x \to +\infty$, y = x - наклонная асимптота.

При $x \to -\infty, y = 0$ - горизонтальная асимптота.

1.2Производные функции

Определение. Если для f(x) существует предел

 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$, то он называется производной функции

$$y=f(x)$$
 в точке x , и обозначается $y'=f'(x)=rac{\mathrm{d}f(x)}{\mathrm{d}x}=rac{\mathrm{d}}{\mathrm{d}x}; f(x)=rac{\mathrm{d}y}{\mathrm{d}x}.$

1.2.1 Свойства производных функции

Принятые обозначения: c - константа, u, v - функции.

1.
$$(c)' = 0$$

2.
$$(cu)' = c * u'$$

3.
$$(u \pm v)' = u' \pm v'$$

4.
$$(u * v)' = u'v + uv'$$

5.
$$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$$

6. Если
$$y = f(u), u = \phi(x),$$
 то $(f(\phi(x)))' = f'(u) * u'.$

1.2.2 Таблица производных

1.
$$(u^a)' = a * u^{a-1} * u', a \in R$$

 $(\frac{1}{u}) = (u^{-1})' = -1 * \frac{1}{u^2} * u'$
 $(\sqrt{u})' = (u^{\frac{1}{2}})' = \frac{1}{2\sqrt{u}} * u'$

2.
$$(a^u) = a^u * \ln a * u'$$

 $(e^u)' = e^u * u'$

3.
$$(\log_a u)' = \frac{1}{u} \log_a e * u' = \frac{1}{u \ln a} * u'$$
 4. $(\cos u)' = \sin x$ $(\ln u)' = \frac{1}{u} * u', (\ln |u|)' = \frac{1}{u} * u'$

$$4. (\cos u)' = \sin x$$

$$5. (\sin u)' = -\cos x$$

6.
$$(\operatorname{tg} u)' = \frac{1}{\cos^2 u} * u'$$

7.
$$(\operatorname{ctg} u)' = -\frac{1}{\sin^2 u} * u'$$

8.
$$(\arcsin u)' = \frac{1}{\sqrt{1-u^2}} * u'$$

9.
$$(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} * u'$$

10.
$$(\operatorname{arctg} u)' = \frac{1}{1+u^2} * u'$$

11.
$$(\operatorname{arcctg} u)' = -\frac{1}{1+u^2} * u'$$

12.
$$(\sinh u)' = \cosh u * u'$$

13.
$$(\cosh u)' = \sinh u * u'$$

14.
$$(\tanh u)' = \frac{1}{\cosh^2 u} * u'$$

15.
$$(\coth u)' = -\frac{1}{\sinh^2 u} * u'$$

1.2.3 Гиперболические функции

$$1. \cosh u = \frac{e^u + e^{-u}}{2}$$

2.
$$\sinh u = \frac{e^u - u^{-u}}{2}$$

3.
$$\tanh u = \frac{\sinh u}{\cosh u}$$

4.
$$\coth u = \frac{\cosh u}{\sinh u}$$

3

1.2.4 Уравнение гиперболы

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\begin{cases} x = a \coth t \\ y = b \cosh t \end{cases} \tag{1}$$

1.2.5 Показательно-степенная функция

Производную показательно-степенной функции можно найти следующим образом:

$$(u^{v})' = v * u^{v-1} * u' + u^{v} \ln u * v'$$

1.2.6 Примеры

Пример 1.
$$y = \operatorname{tg} 3x + 5x^2$$
, $y' = \frac{3}{\cos^2 3x} + 10x$

Пример 2.
$$y = \cos(3x^2 + x), y' = -\sin(3x^2 + x) * (6x + 1)$$

Пример 3.
$$y = x^3 * \cos x$$
, $y' = 3x^2 \cos x - x^3 \sin x$

Пример 4.
$$y=\frac{x^2+1}{x^2-1},\ y'=\frac{2x(x^2-1)-2x(x^2+1)}{(x^2-1)^2}=\frac{-4x}{(x^2-1)^2}$$

Пример 5.
$$y = \ln(2x^2 + x - 1), y' = \frac{1}{2x^2 + x - 1} * (4x + 1)$$

Пример 6.
$$y = \operatorname{tg}^3(x + e^{-x^2}), y' = 2\operatorname{tg}^3(x + e^{-x^2}) * \frac{1}{\cos^2(x + e^{-x^2})} * (1 + e^{-x^2})$$

Пример 7.
$$y = (\cos x)^{x^2}$$
, $y' = x^2(\cos x)^{x^2-1} * (-\sin x) + (\cos x)^{x^2} * \ln(\cos x) * 2x$

Пример 8.
$$y = 2\sqrt[3]{x} + \frac{3}{x^2}$$
, $y' = 2 * \frac{1}{3} * x^{\frac{1}{3}-1} * x^{-1} = \frac{2}{3\sqrt[3]{x^2}} - \frac{6}{x^3}$

Пример 9.
$$y = (x^2 + 5x + 7)^8$$
, $y' = 8(x^2 + 5x + 7)^7 * (2x + 5)$