Математическая статистика Лекция 1

Математическая статистика

• Математическая статистика — наука, которая разрабатывает математические методы систематизации и применения статистических данных для практических и научных выводов

План

- Основные понятия
- Точечное оценивание
- Интервальное оценивание
- Тестирование гипотез

Понятие генеральная совокупности

- Совокупность всех наблюдений случайной величины *X*, которые могли бы быть сделаны при данном комплексе условий, называется **генеральной совокупностью** случайной величины *X*, или просто *генеральной совокупностью X*.
- Распределение случайной величины *X* называется *распределением генеральной совокупности*. Число элементов для конечной генеральной совокупности, называют *объёмом* генеральной совокупности. Генеральная совокупность может быть как конечным, так и бесконечным множеством.

Понятие случайной выборки

• Совокупность независимых случайных величин X₁,...,X_n, каждая из которых имеет то же распределение, что и наблюдаемая случайная величина X, называется случайной выборкой из генеральной совокупности X. При этом число n называют объёмом случайной выборки, а случайные величины $X_1,...,X_n$ — элементами случайной выборки. Любую реализацию x_1, x_2, \ldots, x_n случайной выборки $X_1,...,X_n$ будем называть **выборкой** из генеральной совокупности X_n или выборочной совокупностью. Выборка из генеральной совокупности X представляет собой некоторое подмножество этой генеральной совокупности.

Пример

• Пример 1. Эксперимент состоит в подбрасывании правильной игральной кости. Случайная величина X — число очков, выпавшее на верхней грани, возможные значения случайной величины Х: 1,...,6. В результате эксперимента получаем случайное число х – реализацию случайной величины X, . При повторении эксперимента n раз получаем выборку $x_1,...,x_n$ наблюдений случайной величины X, или, что то же самое, единственное наблюдение случайной выборки X₁,...,X_n объёма n. Генеральная совокупность случайной величины Х содержит бесконечное число значений 1,...,6 в равных пропорциях.

Способы формирования выборки

- Полностью случайный отбор
- Простой отбор с помощью регулярной процедуры
- Стратифицированный отбор
- Серийные выборки
- Комбинированный отбор

• 1) Вариационный ряд.

Элементы реализации выборки x_1, x_2, \ldots, x_n упорядочим по возрастанию

$$x_{(1)} \leqslant x_{(2)} \leqslant \ldots \leqslant x_{(n-1)} \leqslant x_{(n)}$$

где
$$x_{(1)} = \min\{x_1, x_2, \dots, x_n\}, x_{(n)} = \max\{x_1, x_2, \dots, x_n\}.$$

- получится новый набор значений случайных величин, называемый вариационным рядом
- Вариационный ряд выборки x_1, x_2, \ldots, x_n можно рассматривать как реализацию вариационного ряда случайной выборки X_1, \ldots, X_n .
- Случайную величину $X_{(k)}$ называется k -м членом вариационного ряда или k -й порядковой статистикой.
- $X_{(1),}X_{(n)}$ экстремальные статистики

- 2) Эмпирическая функция распределения.
- Пусть выборка x_1, x_2, \ldots, x_n объёма n берется из распределения с функцией распределения $F(x) = P(X_i \le x)$.

Эмпирической функцией распределения, построенной по случайной выборке X_1, X_2, \ldots, X_n объёма \mathbf{n} , называется случайная функция

$$\widehat{F}_n(x) = \frac{\text{количество } X_i \epsilon(-\infty, x]}{n} = \frac{\sum_{i=1}^n I(\{X_i \le x\})}{n}$$

где
$$I(\{X_i \le x\}) = \begin{cases} 1, \text{если } X_i \le x \\ 0, \text{если } X_i > x \end{cases}$$

Пример

Пример 1. Пусть дана числовая выборка

$$\vec{X} = (0;\ 2;\ 1;\ 2,6;\ 3,1;\ 4,6;\ 1;\ 4,6;\ 6;\ 2,6;\ 6;\ 7;\ 9;\ 9;\ 2,6).$$

Построим по ней вариационный ряд

$$(0; 1; 1; 2; 2,6; 2,6; 2,6; 3,1; 4,6; 4,6; 6; 6; 7; 9; 9)$$

и эмпирическую функцию распределения (рис. 1).

Рис. 1. Эмпирическая функция распределения

Эта функция является функцией распределения случайной величины, принимающей значение 0 с вероятностью $\frac{1}{15}$, значение 1 с вероятностью $\frac{2}{15}$, значение 2 с вероятностью $\frac{1}{15}$ и т. д.

- 3) Гистограмма Эмпирическим аналогом таблицы или плотности распределения является гистограмма.
- Гистограмма строится по группированным данным. Предполагаемую область значений случайной величины X (или область выборочных данных) делят на некоторое количество не обязательно одинаковых интервалов. Пусть A_1, \ldots, A_k интервалы на прямой, называемые интервалами группировки. Обозначим для $j = 1, \ldots, k$ через v_j число элементов выборки, попавших в интервал A_i :

$$v_i = \sum_{i=1}^n I(\{X_i \in A_i\})$$
 — количество $X_i \in A_i$ $n = \sum_{j=1}^k v_j$

На каждом из интервалов A_j строят прямоугольник, площадь которого пропорциональна v_i . Общая площадь всех прямоугольников должна равняться единице. Если l_j — длина интервала A_i , то высота f_i прямоугольника над этим интервалом равна

$$\hat{f}_j = \frac{v_j}{n \cdot l_j}$$

Полученная фигура, состоящая из объединения прямоугольников, называется гистограммой.

Пример

Пример 2. Имеется вариационный ряд из примера 1:

(0; 1; 1; 2; 2,6; 2,6; 2,6; 3,1; 4,6; 4,6; 6; 6; 7; 9; 9).

Разобьём отрезок [0, 10] на четыре равных отрезка. Отрезку [0, 2,5) принадлежат четыре элемента выборки, отрезку [2,5,5) — шесть, отрезку [5,7,5) — три, и отрезку [7,5,10] — два элемента выборки. Строим гистограмму (рис. 2). На рис. 3 — гистограмма для той же выборки, но при разбиении области на пять равных отрезков.

Рис. 2. Гистограмма при k=4

Рис. 3. Гистограмма при k=5

Чем больше интервалов группировки, тем лучше: фигура, состоящая из более узких прямоугольников, точнее приближает истинную плотность распределения. С другой стороны, бессмысленно брать число интервалов k(n) порядка n: тогда в каждый интервал попадёт в среднем по одной точке и гистограмма не будет приближаться к плотности с ростом n.

4) Выборочные моменты

Истинные моменты	Оценки
$E(X)=E(X_1)=\mu$	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
$D(X)=D(X_1)=\sigma^2$	$S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$
α_k	$\widehat{\alpha_k} = \frac{1}{n} \sum_{i=1}^n X_i^k$
eta_k	$\widehat{\beta_k} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$

Свойства выборочной функции

Рассмотрим случайную выборку $X_1,...,X_n$ - (независимые одинаково распределенные случайные величины) из распределения F

• 1)
$$E(\widehat{F}_n(x)) = F(x)$$

• 2)
$$D(\widehat{F}_n(x)) = \frac{1}{n}F(x)(1 - F(x))$$

• 3)
$$\widehat{F}_n(x) \stackrel{p}{\to} F(x)$$
, при $n \to \infty$

• Доказательство (см лекцию)

• 4)
$$\sup_{x} \left[\widehat{F}_{n}(x) - F(x) \right] \stackrel{\text{п.н.}}{\longrightarrow} 0$$
, при $n \to \infty$

(теорема Гливенко-Кантелли), сильная состоятельность

Свойства выборочной функции

• 5) $n\hat{F}_n(x) = \sum_{i=1}^n I(\{x_i \le x\}) \sim B(n, F(x))$ — биномиальное распределение

• 6)
$$\frac{\widehat{F}_n(x) - F(x)}{\sqrt{\frac{1}{n}F(x)(1 - F(x))}} \xrightarrow[n \to \infty]{d} z \sim N(0,1)$$

Напомним, что по ЦПТ $\frac{\overline{\xi}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow[n \to \infty]{d} z \sim N(0,1),$

где
$$\bar{\xi}_n = \frac{S_n}{n}$$
, $E(\xi_1) = \mu$, $D(\xi_1) = \sigma^2$

Свойства выборочного среднего

 $X_1,...,X_n$ независимые одинаково распределенные случайные величины

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Пусть $E(X_1) < \infty$, $E(X_1) = \mu$, $D(X_1) = \sigma^2$

1)
$$E(\bar{X}) = E(X_1) = \mu$$
, $D(\bar{X}) = \frac{D(X_1)}{n} = \frac{\sigma^2}{n}$

2)
$$\overline{X} \xrightarrow{p} \mu$$
 (из ЗБЧ)

3)
$$\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \xrightarrow{n \to \infty} z \sim N(0,1)$$
 (из ЦПТ)

Свойства выборочной дисперсии

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

1)
$$E(S^2) \neq \sigma^2$$
 , $E(S^2) = \frac{n-1}{n} \sigma^2$

Исправленная выборочная дисперсия (несмещенная оценка)

$$S_0^2 = \frac{n}{n-1} S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

2)
$$S^2 \xrightarrow{p} \sigma^2$$
, $S_0^2 \xrightarrow{p} \sigma^2$

2)
$$S^2 \xrightarrow{p} \sigma^2$$
, $S_0^2 \xrightarrow{p} \sigma^2$
3) $\xrightarrow{S^2 - \sigma^2} \xrightarrow{d} \xrightarrow{d} z \sim N(0,1)$, $\xrightarrow{S_0^2 - \sigma^2} \xrightarrow{d} z \sim N(0,1)$

Конечный размер генеральной совокупности

 X_1, X_2, \ldots, X_n –одинаково распределенные, но не являются независимыми

$$E(X_i) = E(X_1)$$
, r. e. $E(\bar{X}) = E(X_1) = \mu$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\underline{\mathsf{YTB 1.}}\ cov(X_i, X_j) = \frac{-\sigma^2}{N-1}$$

Док-во. (смотри лекцию)

Утв 2.
$$D(\bar{X}) = \frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1} \right)$$

Док-во. (смотри лекцию)