A. 1.10.1 (a) Gibt es eine Groppe mit genow einem Element? Gibt es einen Körper mit genau ehnem Element?

- (6) Stelle die Verknüpfungstafeln der Restklassenkörper Zz, Zz und Zs auf.
- (c) Lose durch probiesen die quadratische akichung x2 + x + 1 = 0 in Zz, Zz und Zz. In welchen Fällen lässt sich die aus der Schule geläufige Lösungsformel für quadratische Gleichungen anwenden?
- (a) Ja, es gift eine avuppe mit genau einem Element. Diese Gruppe lautet ([e],), wobei e das neutrale Element ist. Das gilt jedoch nicht für Körper, da der kleinste mägliche Körper 66B die Elemente O und I enthält.
- (6) Die Elemente dieser Körper sind Aquivalenzklassen.

\mathbb{Z}_{z}	+ 0 1				. 0 1					(c) Keine Lösung	
	1	1	0		1	0	0				
72										$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
\mathbb{Z}_3	÷	0	1	2	~	0	0	1	2	$\frac{1}{3} = \overline{3} = \overline{0}$	
	1	1	2	0		1	0	1	2	3 - 0	
	1 2	2	0	1		2	0	2	1	(genau) eine Lösung	
77										Kaine Lösung	

A1.10.2 (a) Seine N und Vn E R + v E03. Beweise: Q(Vi):= Ea + 6 Vn | a,6 & Q3 ist ein Unterkörper von R.

Beweis: Um zu zeigen, dass $Q(V\overline{u}) \in \mathbb{R}$, gehen wir in 4 Schriften vor:

· (Q(Vn), +) ist eine abel'sche Gruppe:

((a+6Vn)+(c+dVn))+(e++Vn) =

(a+6 Vn)+ ((c+d Vn)+(e+f Vn)), also git Associativitat.

(0+0 Vn) = 0 & Q(Vn), also ist 0 das neutrale Element, weil

a+6\n+0 = a+6\n.

(a+6Vn)- (a+6Vn) = 0 und daher ist -a-6Vn das inverse

Element vou a + 6 Vn.

(a + 6 Vn) + (c + d Vn) = (c + d Vn) + (a + 6 Vn) zeigt die

Kommutativität.

(Q(Vn) \ 803, ·) ist eine abelsche Gruppe:

((a + 6 Vn) · (c + d Vn)) · (e + f Vn) = (a + 6 Vn) · ((c + d Vn) · (e + f Vn)),
also ailt Assoziativität.

 $(1+0 \, \text{Vm}) = 1 \in \mathcal{Q}(\text{Vm}) \setminus \{0\}$, also ist 1 das neutrale Element, weil $(a+6 \, \text{Vm}) \cdot 1 = (a+ \, \text{Vm})$.

 $(a + 6 \text{ Vm}) \cdot (a + 6 \text{ Vm})^{-1} = 1$ and daher ist $(a + 6 \text{ Vm})^{-1}$ das inverse Element von a + 6 Vm (, wobei $a + 6 \text{ Vm} = 0 \notin \mathbb{Q}(\text{Vm}) \setminus \{0\}$),

(a+6Vn)· (c+dVn) = (c+dVn)· (a+6Vn) zeigt die Kommutativität.

Das Distributivgesetz gilt zwischen und +: $(a+6Vn)\cdot((c+dVn)+(e+fVn))=$ (a+6Vn)(c+dVn)+(a+6Vn)(e+fVn)

· a(va) = R:

Nachdem $Q \subseteq \mathbb{R}$ folgt $a, b \in Q \Rightarrow a, b \in \mathbb{R}$. We'ters ist $\mathbb{R}^+ \subseteq \mathbb{R}$, also $\forall u \in \mathbb{R}^+ \Rightarrow \forall u \in \mathbb{R}$. We'll der körper \mathbb{R} durch die Operationen + und · abgeschlossen ist, gi'lt also $a + 6 \forall u \in Q(\forall u) \Rightarrow a + 6 \forall u \in \mathbb{R}$

Anhang: + und: $\sin d$ im Körper a(u) auch abgeschlosseu, da $(a+6 V\pi)+(c+dV\pi)=(a+6)+((6+d) V\pi)\in a(V\pi)$ und $(a+6 V\pi)(c+dV\pi)=ac+adV\pi+6 V\pi c+6 V\pi dV\pi=(ac+6d\pi)+((ad+6c) V\pi)\in a(V\pi)$, we'll $n\in N\subseteq a$,

A 1.10.9 Gegeben sei die Kompkxen Zahl

$$U = \frac{1}{2} \left(1 + \sqrt{3} i \right).$$

-

5

-9

- (a) Beredne |v|, v² und v³. Gib damn für alle n E Z die Komplexen Zahlen vn an. (Alle gesuchten Komplexen Zahlen sollen so wie v durch ihren Real- und Imagingrieil festgelegt werden.)
- (6) Zeige | v" | = 1 für alle ne Z.

Hinwais' lu der Gaußschen Zahlenebene bilden die Zahlen 1, v, v, v, v ein regelmäßiges Sechseck mit der Seitenlänge 1 (A66: Wung 1.8). Das darf nicht zur Herleitung der Ergebnisse verwendet werden, wohl aber zur anschaulichen Kantrolle der Redmungen.

- (a) $v = \frac{1}{2} + \frac{\sqrt{3}i}{2}$ and daher $|v| = \sqrt{(\frac{\sqrt{2}}{2})^2 + (\frac{\sqrt{3}}{2})^2}$ $= \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1$. Weiters ist $v^2 = (\frac{1}{2} + \frac{\sqrt{3}i}{2})^2 = \frac{1}{4} + \frac{2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}i}{2} + (\frac{\sqrt{3}i}{2})^2}$ $= \frac{1}{4} + \frac{\sqrt{3}i}{2} + \frac{3}{4} = -\frac{1}{2} + \frac{\sqrt{3}i}{2}$ and $v^3 = v^2 \cdot v = (-\frac{1}{2} + \frac{\sqrt{3}i}{2})(\frac{1}{2} + \frac{\sqrt{3}i}{2}) = -\frac{1}{4} - \frac{1}{2} \cdot \frac{\frac{3}{4}i}{2} + \frac{1}{4} \cdot \frac{3}{4} = -\frac{1}{4} \cdot \frac{3}{4} = -\frac{1}{4}$
- (6) Um $|u^n| = 1$ für alle $n \in \mathbb{Z}$ zo zeigen, genügt es, zo sehen, dass |u| = 1 und $|u^{n+1}| = |u^n| \cdot |u| = |u^n| \cdot 1 = |u^n|$.

A 1.11.1 Beweise: Die Abbildung 4: C+ > 1R+ : z > 121 ist ein socjektiver Gruppenhomomorphismos von (Cx,) auf (Rx,). Bestimme ferner Ker 4, die Nebeuklassen des Kerns in Cx und veranschauliche die Ergebnisse in der Gaußschen Zahlenebene. Beweis Die Multiplikation muss durch 4 in IR erhalten bleiben, also Y(x·y) = Y(x). Y(y), wenn

x = a + 6; and y = c + di.

-

5

-

Y(x.y) = Y((a+6i)(c+di)) = Y(ac+adi+bic-bd)

= Y((ac - 6d) + (ad + 6c)i) = V(ac - 6d)2 + (ad +6c)2 =

= Va2c2 - Zabed + 62d2 + a2d2 + Zabed + 62c2 und

 $\Psi(x) \cdot \Psi(y) = \sqrt{a^2 + 6^2} \cdot \sqrt{c^2 + d^2} = \sqrt{(a^2 + 6^2)(c^2 + d^2)} =$

= \azc2 + a2d2 + 62c2 + 62d2 und somit gilt tatsächlich

 $\Psi(x \cdot y) = \Psi(x) \cdot \Psi(y)$

4 ist surjektiv, weil IR+ = C+, siehe x = IR und

x = x + 0; c C*. Also | x + 0; l = x, weil x > 0.

ker 4 ist die Menge jener Elemente aus Ct, die auf das

neutrale Element 1 & (Rx, .) abacbildet werden, d.h.

Ker 4 = {z ∈ (x: |z| = 13, genaver z = a + 6i und

 $|a+6i| = | \Rightarrow \sqrt{a^2 + 6^2} = | \Rightarrow a^2 + 6^2 = | \Rightarrow a^2 = | -6^2$

⇒ a = ± √1-62, wobei 6 € [-1,1], also

ker 4 = {a+6; ∈ C : 6 ∈ [-1,1] A a = = √1-6= 3.

Eine beliebige Nebenvestklasse van ker 4 lautet r. ker 4 =

Eze Cx: 121 = 1713. Der Betrag von r wird verwendet, weil

r E C' möglich ist

A 1.11.6 Es seion Greine Gruppe und UGG eine Untergruppe. Nach 1.11.10 ist die Relation ~u mit a ~u b genau für ab' EU eine Äquivalenzvelution auf G.

- (a) Beweise, dass alle Äquivalenzklassen von ~u gleichmächtig Sind.
- (6) Leite aus (a) den folgenden Satz von Lagrange 5 ab: 1st
 U eine Untergruppe einer endhichen Gruppe G, so ist # U ein
 Teiler von # G.

Beweis? Um zu zeigen, dass alle Aquivalenzklassen deichmüchtig sind, müssen wir eine Bijektion zwischen zwei beliebigen Äquivalenzklassen finden. Sollten zwei [a], n [b], # Ø, dann ist diese Bijektion bloß die Identität. Sind diese aber disjunkt, so gehen wir wie folgt vor

[a] = [x: x ~ a] = [x: xa' \ U]

99

-5

Autarund der Definition einer Nebenklasse Ua, die Menge aller Elemente $u \in U$, punktweise multipliziert mit a, tolgt $xa' \in U \Leftrightarrow (xa')a \in Ua \Leftrightarrow x \in Ua$. Deswegen ist $[a]_{xu} = Ua$, Weiters ist Ue = U.

Wir stellen also eine Bijektion $Ua \Rightarrow U6 = Ua \Rightarrow Ue \Rightarrow U6$ aut, wobei $\{a' : x \mapsto x \cdot a' \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot a \mid und \{a' : x \mapsto x \cdot b', sowie \}$ $\{a' : x \mapsto x \cdot b', sowie$

Es ist uns, nach dem Auswahlaxiom, möglich, aus jeder
Äquivalenzklasse genau eine Repräsentante auszuwählen, und
diese in der Menage R zusammenzufassen. Die Auzahl der
Äquivalenzklassen entspricht also # R E N'. Weil [e] = Ue = U,
besitzt die Äquivalenzklasse [e] udie Mächtigkeit # U, also
auch alle anderen Äquivalenzklassen.

Daher gilt #R . #U = #G und #U teilt #G.

A 1.11.9 Es seien G, G', G" Gruppen und Y: G → G' sowie Y': G' → G" Homomorphismen. Beweise:

- (a) Für die neutralen Elemente e, e' von G 6zw. G'gilt 4(e) = e'.
- (6) 4(a-1) = (4(a)) für alle a e a.
- (c) 1st 4 ein Isomorphismus, so ist 4 ebenfalls ein Isomorphismus.
- (d) Die zusammengesetzte Abbildung 4'0 4: G → G" ist ein Hommomorphismos.

Beweis: $\Psi(a + 6) = \Psi(a) \cdot \Psi(6) \Rightarrow \Psi(e + e) = \Psi(e) \cdot \Psi(e)$ $\Rightarrow \Psi(e) = \Psi(e) \cdot \Psi(e) \Rightarrow \Psi(e) = \Psi(e) \cdot e' \Rightarrow \Psi(e) = e'$ and $\Psi(a - a) = \Psi(a) \cdot \Psi(-a) = e' \Rightarrow \Psi(-a) = (\Psi(a))^{-1}$, wodurch (a) and (b) getten.

Damit (c) gilt, muss Ψ^{-1} bijektiv sein und mit den Rednenoperationen verträglich sein. Da Ψ bijektiv ist, ist Ψ^{-1} ebenfalls bijektiv. $\Psi^{-1}(\Psi(a) \cdot \Psi(b)) = \Psi^{-1}(\Psi(a+b)) = a+b = \Psi^{-1}(\Psi(a)) + \Psi^{-1}(\Psi(b))$, weil Ψ und Ψ^{-1} bijektiv sind, also $\Psi \circ \Psi^{-1} = id_a$, and $\Psi^{-1} \circ \Psi = id_a$.

Paunit (d) gilt, muss $\Psi' \circ \Psi$ verträglich mit den jeweiligen Rechenoperationen sein ' $(\Psi' \circ \Psi)(a'+6) = \Psi'(\Psi(a+6)) = \Psi'(\Psi(a) \cdot \Psi(6)) = \Psi'(\Psi(a)) * \Psi'(\Psi(6)) = (\Psi' \circ \Psi)(a) * (\Psi' \circ \Psi)(6)$ 1.11. × Entscheiden Sie, welche folgenden Aussagen a, 6, c, d
für alle Gruppen G gelten. Finden Sie für jede der Aussagen,
die NICHT für alle Gruppen gilt, ein Gegenbeispiel (also
eine Gruppe und einen Homomorphismus, für die die Aussage
nicht gilt)

- a. Jeder Homomorphismus f ' a -> a ist surjektiv.
- 6. Jeder Homomorphismus f' G > G ist injektiv.
- c. Für alle Homomorphismen f : G > G gilt : wenn t surjektiv ist, damn ist ker(f) leer.
- d. Für alle Homomorphismen f: G > G gilt : wenn f surjektiv ist, dann ist ker(f) nicht leer.

Betrachte den Homamorphismos f: G > G: X >> e, wobei e das neutrale Element von G ist.

- a. f ist nicht notwendigerweise surjektiv, da £e3 f G möglich ist.
- 6. -"- injektiv -"-

-

- c. Angenommen, $f: G \Rightarrow G$ ist ein Automorphismos, dann ist $\ker(f) = \mathcal{E} \times \mathcal{B}$, mit $\times \mathcal{E} G$, also niddleer.
- d. Wenn der Homomorphismos f: G > G surjektiv ist, dann ailt f(G) = G und somit Injektivität (und Bjektivität).

 Doher ist f ein Automorphismus und Ker(f) ist nichtleer.