Problem Set 4

COSC 290 Spring 2018

Caio Brighenti

 $March\ 19,\ 2018$

1 Problem 1: Direct proof and proof by contrapositive

1.1 DLN 4.45

Claim: $A \times B = B \times A \iff (A = \emptyset) \vee (B = \emptyset) \vee (A = B)$

This proof will be subdivided into two smaller proofs. The first being a direct proof of the \implies and the second a contrapositive of \iff . If both are proved true, then the overall claim must be true by mutual implication.

Proof 1 will directly show that $A \times B = B \times A \implies (A = \emptyset) \vee (B = \emptyset) \vee (A = B)$.

Given that $A \times B = B \times A$ is true.

Want to show that $(A = \emptyset) \lor (B = \emptyset) \lor (A = B)$ is true.

This proof can exist in two cases: either one of A or B contains no elements and is an empty set, or both sets contain at least one element and are equal. The product of $A \times B$ produces the Cartesian product of the sets, defined by:

$$A \times B = P\{(a,b)|a \in A, b \in B\}$$

If either A or B is equal to \emptyset , the Cartesian products A x B and B x A will also be \emptyset , as there cannot be any (a, b) pair as defined above, because either A, B or both contain no elements to begin with.

The other way in which A and B can exist is if neither are equal to \emptyset , and thus contain at least one element. In this situation, A must equal B as both the Cartesian products of A and B are given as equal. This is because if $A \times B = B \times A$, then every (a,b) pair must exactly equal one (b,a) pair, without exception. If A and B contained different elements, there would exist (a,b) pairs that would not match any (b,a) pairs. Thus, given $A \times B = B \times A$, A and B must either exist such that at least one of them is equal to \emptyset , or they must be equal.

Proof 2 will show that $A \times B = B \times A \iff (A = \emptyset) \vee (B = \emptyset) \vee (A = B)$ by the contrapositive. The contrapositive claim is: $\neg (A \times B = B \times A) \implies \neg (A = \emptyset) \wedge \neg (B = \emptyset) \wedge \neg (A = B)$

Given that $\neg (A \times B = B \times A)$ is true.

Want to show that $\neg (A = \emptyset) \land \neg (B = \emptyset) \land \neg (A = B)$ is true.

In this case, neither A nor B can equal \emptyset , as the Cartesian products of A and B are known to not be equal. Per the definition of Cartesian products shown in proof 1, if either of the operands in a Cartesian product are equal to \emptyset , the result will also be equal to \emptyset . As it is given that $\neg(A \times B = B \times A)$, then neither A or B can be \emptyset . As such, $\neg(A = \emptyset) \land \neg(B = \emptyset)$ must be true.

It is also not possible that A is equal to B. If A and B were equal, there would be no distinction between elements $a \in A$ and elements $b \in B$, as we would have $A \equiv B$. Thus, there would be no difference between the ordered pairs (a,b) and (b,a), and consequently no difference between the products $A \times B$ and $B \times A$. As such, $\neg (A = B)$ must be true, thus proving our contrapositive claim, and subsequently the original claim of **Proof 2**.

As **Proof 1** proves the \Longrightarrow aspect of the original claim, and **Proof 2** proves the \longleftarrow side of it, then the original claim $A \times B = B \times A \iff (A = \emptyset) \vee (B = \emptyset) \vee (A = B)$ must be true by mutual implication.

2 Problem 2: Proof by contradiction

2.1 DLN 4.60

Claim: For any array A[1...n], A contains at most one strictly majority element.

Proof by contradiction: Assume the claim is false, and that there are two distinct elements x and y in A such that both x and y are strictly majority elements.

The definition of a strictly majority element is:

$$|i \in \{1, 2, ..., n\} : A[i] = x| > \frac{n}{2}$$

In natural language, this states that the cardinality of set X, where X contains all elements i in A such that A[i] = x, is more than half of the cardinality of set A where n is that cardinality, meaning more than half the elements are equal to x. As we assume both x and y are strictly majority elements, then there exists two sets X and Y such that each contain all elements equal to x and y respectively, in the same manner defined above. By the definition of strictly majority, it must be true that:

$$|X| > \frac{n}{2}$$

$$|Y| > \frac{n}{2}$$

As x and y are distinct elements, there are no elements A[i] such that $A[i] = x \wedge A[i] = y$, thus $A \cap B = \emptyset$, meaning each element in X and Y is unique to the set it belongs to. Therefore:

$$|X| + |Y| > \frac{n}{2} + \frac{n}{2}$$

$$|X| + |Y| > 2(\frac{n}{2})$$

$$|X| + |Y| > n$$

This statement is inherently contradictory, as it states that the sum of the cardinality of two unique subsets of n is greater than the cardinality of n. In the case that every element in A was in either X or Y, it would hold that |X| + |Y| = n, and subsequently n > n, an obviously contradictory statement. Thus, the claim that for any array A only a single strictly majority element can exist must be true.

3 Problem 3: Proof analysis

3.1 DLN 4.101

The error in the proof lies at the very end of the second part of the proof. The proof states that because r < 12, adding r^2 to a number divisible by 12 will always result in a number not divisible by 12. While that would be true for simply adding r, as a number smaller than 12 cannot be divisible by 12, but raising r to the 2nd power creates the possibility of resulting in a number divisible by 12. For instance, if r = 6, then $r^2 = 36$. Adding 36 to a multiple of 12 would not make it no longer a multiple of 12, and thus the statement that adding r^2 always results in a number not divisible by 12 is false.

3.2 DLN 4.102

The clearest way to disprove the claim that $12|n\iff 12|n^2$ is to provide a counterexample. The proof represents a number n not divisible by 12 as n=12k+r, where k is an integer and r is an integer belonging to 1,2,...,11. n^2 would thus be equal to $12(12k^2+2kr)+r^2$. If there is a k,r pair such that $\neg 12|n$ and $12|n^2$, the claim would be disproved.

One such example is k=1 and r=6. In this case, n=12+6, thus being not divisible, as a number not divisible by 12 is being added to a multiple of 12. On the other hand, $n^2=12(...)+r^2=12(...)+36$. The contents of the parentheses have been omitted for simplicity as they are irrelevant. For n^2 , a number divisible by 12 is being added to another multiple of 12, resulting in $12|n^2$. This means that $12|n^2 \implies 12|n$ is false, as the left hand side is true while the right hand side is false, thus making the overall claim $12|n \iff 12|n^2$ false.