Outline

UE StatComp

Reiet Loi uniforme

Simulation de variables aléatoires et méthodes de Monte-Carlo pour l'intégration

Master parcours SSD - UE Statistique Computationnelle

Pierre Mahé - bioMérieux & Université de Grenoble-Alpes

Inversion Rejet Loi uniforme

Loi uniforme

Pour aller plus

oin : réduction de variance

Référence

 Diverses définitions proposées pour caractériser une méthode de Monte Carlo.

- ▶ Nous prendrons celle donnée dans Rizzo (2007, §6.1) : "toute méthode d'inférence statistique ou d'analyse numérique s'appuyant sur des techniques de simulation [de variables aléatoires]".
- Nous nous intéresserons donc à ces deux types d'applications :
 - l'analyse numérique et la problème de l'intégration.
 - ▶ l'inférence statistique pour la caractérisation d'un estimateur ou des performances d'un test statistique.
- Mais avant cela, nous allons nous intéresser à la simulation de variables aléatoires

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Références

Simulation de variables aléatoires

Introduction

Reiet Loi uniforme

 Simuler des variables selon une loi uniforme est un problème bien connu.

- Le logiciel R permet de simuler selon les lois usuelles.
 - uniforme, normale, Poisson, χ^2 , binomiale, ...
- La simulation d'autres lois peut être plus complexe.
- Nous allons illustrer deux méthodes de simulation :
 - ▶ l'inversion de la fonction de répartition.
 - l'algorithme du rejet.

Simulation de lois usuelles avec R.

- La base : la loi normale (centrée réduite)
 - ▶ dnorm : fonction densité (dnorm(0) = $1/\sqrt{2\pi}$)
 - pnorm : fonction de répartition (pnorm(0) = 0.5)
 - qnorm : quantiles (qnorm(0.5) = 0)
 - rnorm : génération de nombres aléatoires

Outline

UE StatComp

Introduction

Simulation o

Introduction

Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Introduction

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction

de variance

Références

La base : la loi normale (centrée réduite)

• dnorm: fonction densité (dnorm(0) = $1/\sqrt{2\pi}$)

pnorm : fonction de répartition (pnorm(0) = 0.5)

qnorm : quantiles (qnorm(0.5) = 0)

rnorm : génération de nombres aléatoires

▶ Pour les autres lois, remplacer norm par un autre suffixe

▶ dunif, punif, qunif, runif pour la loi uniforme

▶ dexp, pexp, qexp, rexp pour la loi exponentielle

Introduction

Rejet Loi uniforme

La base : la loi normale (centrée réduite)

▶ dnorm: fonction densité (dnorm(0) = $1/\sqrt{2\pi}$)

pnorm : fonction de répartition (pnorm(0) = 0.5)

qnorm : quantiles (qnorm(0.5) = 0)

rnorm : génération de nombres aléatoires

▶ Pour les autres lois, remplacer norm par un autre suffixe

dunif, punif, qunif, runif pour la loi uniforme

▶ dexp, pexp, qexp, rexp pour la loi exponentielle

- ► Pour visualiser une distribution empirique
 - ▶ la fonction hist calcule et/ou affiche l'histogramme
 - ► la fonction density calcule la densité par la méthode des noyaux (plot.density pour la visualiser)

?distributions() : densités disponibles en R

R RDocumentation

earch for packages, functions, etc.

omp

Details

The functions for the density/mass function, cumulative distribution function, quantile function and random variate generation are no quantile function and respectively.

For the beta distribution see dbeta .

For the binomial (including Bernoulli) distribution see dbinom

For the Cauchy distribution see deauchy .

For the chi-squared distribution see | dchisq |.

For the exponential distribution see dexp

For the F distribution see df .

For the gamma distribution see dgamma .

For the geometric distribution see dgeom . (This is also a special case of the negative binomial.)

For the hypergeometric distribution see | dhyper |.

For the log-normal distribution see dlnorm.

For the multinomial distribution see dmultinom .

For the negative binomial distribution see dnbinom

For the normal distribution see doorn .

For the Poisson distribution see dpois .

For the Student's t distribution see at .

For the uniform distribution see dunif .

For the Weibull distribution see $\[\underline{\text{dweibull}}\]$.

For less common distributions of test statistics see pbirthday, dsignrank, ptukey and dwilcox (and see the 'See Also' section of

Simulation de lois usuelles avec R.

Exemple :

> rug(x)

```
> n = 1000  # nombre d'échantillons
> x = rnorm(n)  # tirage selon la loi N(0,1)
> plot(density(x), main = "")
> title("loi normale & densité empirique"
```

loi normale & densité empirique

Outline

UE StatComp

Introduction

Simulation de variables

Introduction

Rejet
Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

(Rappel: estimation par noyau - principe)

Principe:

- ▶ on positionne un "noyau" sur chaque observation
- ▶ on les moyenne pour estimer la densité

⇒ méthode de Parzen : Kernel Density Estimation

Outline

UE StatComp

Introductio

Simulation de variables

Introduction Inversion

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

(Rappel : estimation par noyau - définition)

Formellement, à partir de l'échantillon $(x_1,...,x_n)$:

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K(x - x_i), \quad \forall x \in \mathcal{X}$$

où K(.) est un noyau = une fonction :

- non-négative
- dont l'intégrale vaut 1
- qui est centrée sur zéro

Outline

UE StatComp

Introductio

Simulation d variables

Introduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

(Rappel: estimation par noyau - définition)

Formellement, à partir de l'échantillon $(x_1,...,x_n)$:

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K(x - x_i), \quad \forall x \in \mathcal{X}$$

où K(.) est un noyau = une fonction :

- non-négative
- dont l'intégrale vaut 1
- qui est centrée sur zéro

 \Rightarrow Intuitivement : une moyenne locale, avec une notion de proximité définie par K.

Outline

UE StatComp

Introduction

Simulation d variables

Introduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

(Rappel: estimation par noyau - définition)

Formellement, à partir de l'échantillon $(x_1,...,x_n)$:

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K(x - x_i), \quad \forall x \in \mathcal{X}$$

où K(.) est un noyau = une fonction :

- ▶ non-négative
- dont l'intégrale vaut 1
- qui est centrée sur zéro

 \Rightarrow Intuitivement : une moyenne locale, avec une notion de proximité définie par K.

Noyau typique = Gaussien :
$$K(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}x^2)$$
.

Outline

UE StatComp

Introduction

Simulation d variables

Introduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

(Rappel: estimation par noyau - fonction noyau)

Noyaux classiques:

Figure: Noyaux disponibles dans Scikit-Learn (et R).

Outline

UE StatComp

Introduction

Simulation de variables

Introduction

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

(Rappel: estimation par noyau - fonction noyau)

Une question clé : le choix de la largeur de bande

$$\hat{f}(x) = \frac{1}{n} \sum_{i} K(x - x_i) \Rightarrow \hat{f}_h(x) = \frac{1}{nh} \sum_{i} K(\frac{x - x_i}{h})$$

Figure: réalité, h=2, h=0.05, h=0.337

Outline

UE StatComp

Introduction

imulation d ariables

Introduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Simulation de variables aléatoires par inversion

Principe:

- ightharpoonup S'appuyer sur la distribution cumulée F pour simuler selon f.
- ▶ En effet : $si U \rightarrow \mathcal{U}(0,1)$ alors $F^{-1}(U) \xrightarrow{} f$.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Introduction Inversion Rejet

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus oin : réduction de variance

Simulation de variables aléatoires par inversion

Principe:

- ▶ S'appuyer sur la distribution cumulée *F* pour simuler selon *f* .
- ▶ En effet : si $U \to \mathcal{U}(0,1)$ alors $F^{-1}(U) \to f$.

Illustration:

- ► En rouge = densité cible ; en bleu= distribution cumulée.
- ▶ 1) On tire *u* uniformément sur [0, 1].
- ▶ 2) On prend x^* tel que $F(x^*) = u$.

- \Rightarrow On tire u selon l'axe des ordonnées.
- \Rightarrow La probabilité de tirer x est faible dans les zones où F(x) est plate.

Outline

UE StatComp

Introduction

imulation de ariables léatoires

Inversion Rejet

Loi uniforme

pour l'intégration

Pour aller plus loin : réduction de variance

Simulation de variables aléatoires par inversion

Hypothèses de travail :

- on connait la forme analytique de f
- (on sait simuler selon $\mathcal{U}(0,1)$)

Outline

UE StatComp

Introduction

Simulation d

Introduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus oin : réduction le variance

- on connait la forme analytique de f
- (on sait simuler selon $\mathcal{U}(0,1)$)

Procédure:

- 1. calculer la fonction de repartition F(x)
- 2. calculer sa fonction réciproque $F^{-1}(u)$
 - ▶ poser u = F(x)
 - résoudre l'équation en x pour trouver $x = F^{-1}(u)$
- 3. tirer $(u_1, ..., u_n)$ selon $\mathcal{U}(0, 1)$
- 4. calculer $x_i = F^{-1}(u_i)$, pour i = 1, ..., n.

Principe:

▶ On choisit 1) une densité auxiliaire g selon laquelle on sait simuler, et 2) $k \in \mathbb{R}$ tel que $f(x) \leq kg(x), \forall x$.

Outline

UE StatComp

Introduction

Simulation d variables

Introduction Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus oin : réduction de variance

Principe:

▶ On choisit 1) une densité auxiliaire g selon laquelle on sait simuler, et 2) $k \in \mathbb{R}$ tel que $f(x) \leq kg(x), \forall x$.

Illustration:

- ▶ En rouge = densité f; en bleu= "densité" majorante kg.
- ▶ 1) On tire x_0 selon g.
- ▶ 2) On tire u_0 uniformément dans $[0; kg(x_0)]$.
- ▶ 3) Si $u_0 \le f(x_0)$ on garde x_0 , sinon on le rejette.

Figure: Image tirée de Bishop (2006).

 \Rightarrow La probabilité de tirer x dépend de l'écart entre f(x) et kg(x).

⇒ Le taux de rejet augmente en fonction de l'aire grise. Outline

UE StatComp

Introduction

variables aléatoires Introduction Inversion

Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Références

4/42

Hypothèses de travail :

- on connait la forme analytique de f
- ▶ on connait k et g tels que $f(x) \le kg(x), \forall x$
- on sait simuler selon g (et selon $\mathcal{U}(0,1)$)

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Hypothèses de travail :

- on connait la forme analytique de f
- ▶ on connait k et g tels que $f(x) \le kg(x), \forall x$
- on sait simuler selon g (et selon $\mathcal{U}(0,1)$)

Procédure :

- 1. tirer x_i selon g, pour i = 1, ..., n
- 2. tirer u_i selon $\mathcal{U}(0, kg(x_i))$
- 3. conserver x_i si $u_i \leq f(x_i)$

Outline

UE StatComp

Introduction

eriables éatoires ntroduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Hypothèses de travail :

- on connait la forme analytique de f
- ▶ on connait k et g tels que $f(x) \le kg(x), \forall x$
- on sait simuler selon g (et selon $\mathcal{U}(0,1)$)

Procédure:

- 1. tirer x_i selon g, pour i = 1, ..., n
- 2. tirer u_i selon $\mathcal{U}(0, kg(x_i))$
- 3. conserver x_i si $u_i \leq f(x_i)$

En pratique :

- on applique cette procédure jusqu'à obtenir le nombre de tirages voulu (e.g., avec une boucle "tant que").
- ▶ le taux de rejet quantifie l'efficacité de la procédure.

Outline

UE StatComp

Introduction

eriables éatoires ntroduction nversion

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Remarques

Simulation par inversion:

- ► + : simple
- ightharpoonup : on ne sait pas toujours calculer F^{-1}

Simulation par rejet :

- + : plus générique
- : difficile de choisir la densité majorante
- ⇒ extension : méthode du rejet adaptatif

⇒ les tirages rejetés servent à définir une enveloppe autour de f

Figure: Image tirée de Bishop (2006).

Outline

UE StatComp

Rejet Loi uniforme

Et la loi uniforme dans tout ça?

La loi uniforme est à la base de nombreux simulateurs.

via les méthodes d'inversion et de rejet en particulier

Un problème bien connu...mais pas si trivial.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus oin : réduction le variance

Inversion Rejet

Loi uniforme

Pour aller plus

× (/

17/42

La loi uniforme est à la base de nombreux simulateurs.

via les méthodes d'inversion et de rejet en particulier

Un problème bien connu...mais pas si trivial.

Méthode classique = générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

La loi uniforme est à la base de nombreux simulateurs.

via les méthodes d'inversion et de rejet en particulier

Un problème bien connu...mais pas si trivial.

Méthode classique = générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

 \Rightarrow génère une suite de nombres aléatoires x_i .

La loi uniforme est à la base de nombreux simulateurs.

via les méthodes d'inversion et de rejet en particulier

Un problème bien connu...mais pas si trivial.

Méthode classique = générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

- \Rightarrow génère une suite de nombres aléatoires x_i .
- \Rightarrow à (a, b, m) fixés, la suite est determinée par z_0 .
 - ► z₀ est la **graine** (seed) du générateur.

Rejet

Loi uniforme

La loi uniforme est à la base de nombreux simulateurs.

via les méthodes d'inversion et de rejet en particulier

Un problème bien connu...mais pas si trivial.

Méthode classique = générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

- \Rightarrow génère une suite de nombres aléatoires x_i .
- \Rightarrow à (a, b, m) fixés, la suite est determinée par z_0 .
 - ► z₀ est la **graine** (seed) du générateur.
- ⇒ c'est en réalité une suite de nombres pseudo-aléatoires.
 - on peut donc la répéter en fixant la graine.

Simulation de la loi Uniforme

Méthode du générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

⇒ génère une suite de nombres pseudo-aléatoires

Outline

UE StatComp

Introduction

Simulation de variables Iléatoires

Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus oin : réductior de variance

Rejet

Loi uniforme

Méthode du générateur congruentiel :

 $x_n = \frac{z_n}{z_n}$, avec $z_n = (az_{n-1} + b) \pmod{m}$

- ⇒ génère une suite de nombres pseudo-aléatoires
 - $ightharpoonup z_0 = \text{graine (fixée)}; x_n : n\text{-ième valeur obtenue}.$
 - $ightharpoonup z = y \pmod{m}$: le reste de $y/m \rightarrow \in [0, ..., m-1]$
 - x = z/m: ramène z entre 0 et 1.
 - $ightharpoonup m \sim$ le nombre de valeurs distinctes possibles.
 - \triangleright à prendre le + grand possible (e.g., $2^{31} 1$, 10^8).
 - ▶ a, b : à choisir avec soin pour avoir une bonne suite!

Simulation de la loi Uniforme

Méthode du générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

- ⇒ génère une suite de nombres pseudo-aléatoires
 - $ightharpoonup z_0 = \text{graine (fixée)}; x_n : n\text{-ième valeur obtenue}.$
 - ▶ $z = y \pmod{m}$: le reste de $y/m \rightarrow [0, ..., m-1]$
 - x = z/m: ramène z entre 0 et 1.
 - ▶ $m \sim$ le nombre de valeurs distinctes possibles.
 - à prendre le + grand possible (e.g., $2^{31} 1$, 10^8).
 - ▶ a, b : à choisir avec soin pour avoir une bonne suite!
- \Rightarrow voir ?RNG pour la mise en oeuvre R.
- \Rightarrow en pratique, utiliser set.seed() pour fixer la graine.
 - et donc garantir que le script est reproductible.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Outline

UE StatComp

Introduction

Simulation d variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Références

Méthodes Monte-Carlo pour l'intégration

Introduction Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction

Références

o = otateo...p

► La question de l'intégration est au cœur de nombreux domaines : physique, finance, biologie...et statistiques.

- voir 2ème partie du cours sur les approches Bayésiennes
- ► Parfois complexe à résoudre :
 - nombreuses variables couplées par des modèles complexes
 - primitives difficiles à déterminer analytiquement
 - primitives trop longues à résoudre par des techniques d'analyse numérique
- ► L'approche MC s'appuie sur des méthodes de simulation de variables aléatoires pour approximer une intégrale.

Méthodes MC pour l'intégration

- ► La guestion de l'intégration est au cœur de nombreux domaines: physique, finance, biologie...et statistiques.
 - voir 2ème partie du cours sur les approches Bayésiennes
- ▶ Parfois complexe à résoudre :
 - nombreuses variables couplées par des modèles complexes
 - primitives difficiles à déterminer analytiquement
 - primitives trop longues à résoudre par des techniques d'analyse numérique
- L'approche MC s'appuie sur des méthodes de simulation de variables aléatoires pour approximer une intégrale.
- ⇒ une approche stochastique pour un problème déterministe.
- ⇒ approximation = réponse statistique du type "la valeur recherchée se trouve très probablement dans cet intervalle".

Exemples introductifs ¹

Approximation de la superficie d'un lac :

- une armée tire X boulets de canon sur un terrain de taille S.
- ► On compte ensuite le nombre *N* de boulets restés sur le terrain.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Exemples introductifs ¹

Approximation de la superficie d'un lac :

- une armée tire X boulets de canon sur un terrain de taille S.
- ► On compte ensuite le nombre *N* de boulets restés sur le terrain.

 \Rightarrow l'aire du lac peut être approximée comme $S \times \frac{X-N}{X}$.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction Inversion

Rejet Loi uniforme Méthodes MC

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Exemples introductifs ¹

Approximation de la superficie d'un lac :

- une armée tire X boulets de canon sur un terrain de taille S.
- ► On compte ensuite le nombre *N* de boulets restés sur le terrain.

- \Rightarrow l'aire du lac peut être approximée comme $S \times \frac{X-N}{X}$.
- ⇒ sous quelle(s) hypothèse(s) est-ce valide?

Outline

UE StatComp

Introduction

variables
aléatoires
Introduction
Inversion
Rejet
Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Exemples introductifs²

Approximation de π :

- on tire aléatoirement (et <u>uniformément</u>) des points (x, y) dans $[0, 1] \times [0, 1]$.
- ▶ La proportion de points tels que $x^2 + y^2 \le 1$ est une approximation de $\pi/4$.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction Inversion Rejet

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

$$I=\int_0^1 g(x)dx.$$

▶ Principe Monte-Carlo : écrire / comme une espérance.

UE StatComp

Introduction

Simulation de variables

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

$$I=\int_0^1 g(x)dx.$$

- ▶ Principe Monte-Carlo : écrire / comme une espérance.
- ► Rappellons que si *X* est une variable aléatoire de densité *f* , alors par définition :

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx.$$

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction

On cherche à calculer

$$I=\int_0^1 g(x)dx.$$

- ► Principe Monte-Carlo : écrire / comme une espérance.
- ► Rappellons que si *X* est une variable aléatoire de densité *f* , alors par définition :

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx.$$

▶ Par ailleurs, pour toute fonction $g : \mathbb{R} \to \mathbb{R}$, g(X) est une variable aléatoire d'espérance :

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx.$$

Description de la méthode

► On cherche donc à calculer

$$I=\int_0^1 g(x)dx,$$

en l'écrivant comme

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx,$$

où f est une densité de probabilité.

Outline

UE StatComp

Introduction

variables aléatoires Introduction

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Rejet Loi uniforme

pour l'intégration

On cherche donc à calculer

$$I = \int_0^1 g(x) dx,$$

en l'écrivant comme

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx,$$

où f est une densité de probabilité.

▶ Il suffit de considérer que X suit une loi uniforme sur [0, 1], sa densité étant définie comme :

$$f(x) = \begin{cases} 1 & \text{si} \quad 0 \le x \le 1 \\ 0 & \text{sinon.} \end{cases}$$

Description de la méthode

▶ On cherche donc à calculer

$$I = \int_0^1 g(x) dx$$

▶ On l'écrit comme I = E[g(X)] : l'espérance de la variable aléatoire g(X), où $X \mapsto \mathcal{U}(0,1)$.

Outline

UE StatComp

Introduction

Simulation d variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

► On cherche donc à calculer

$$I = \int_0^1 g(x) dx$$

- ▶ On l'écrit comme I = E[g(X)] : l'espérance de la variable aléatoire g(X), où $X \mapsto \mathcal{U}(0,1)$.
- Par conséquent, si on dispose d'un n-échantillon $(X_1,...,X_n)$ iid de loi $\mathcal{U}(0,1)$, on peut approximer I par l'estimateur de la moyenne empirique :

$$S_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$$

Description de la méthode

► On cherche donc à calculer

$$I = \int_0^1 g(x) dx$$

- ▶ On l'écrit comme I = E[g(X)] : l'espérance de la variable aléatoire g(X), où $X \mapsto \mathcal{U}(0,1)$.
- Par conséquent, si on dispose d'un n-échantillon $(X_1,...,X_n)$ iid de loi $\mathcal{U}(0,1)$, on peut approximer I par l'estimateur de la moyenne empirique :

$$S_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$$

 \Rightarrow il suffit de savoir tirer des nombres aléatoires uniformément sur [0,1], i.e., simuler une v.a. uniforme.

Outline

UE StatComp

Introduction

variables
aléatoires
Introduction
Inversion
Rejet
Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Description de la méthode

► En pratique, on s'intéresse souvent à

$$I = \int g(x)f(x)dx,$$

où f est une densité de probabilité quelconque.

Outline

UE StatComp

Introduction

variables aléatoires Introduction

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

► En pratique, on s'intéresse souvent à

$$I = \int g(x)f(x)dx,$$

où f est une densité de probabilité quelconque.

► On conserve la forme générale de l'espérance et on interprète *I* comme

$$I=E[g(X)],$$

où X est distribuée selon f.

Loi uniforme

► En pratique, on s'intéresse souvent à

$$I = \int g(x)f(x)dx,$$

où f est une densité de probabilité quelconque.

 On conserve la forme générale de l'espérance et on interprète / comme

$$I=E[g(X)],$$

où X est distribuée selon f.

 On applique le même principe en simulant une variable aléatoire de loi f.

Justification de la méthode (1/2)

Deux théorèmes bien connus permettent de justifier la validité de cette méthode :

Outline

UE StatComp

Introductio

Simulation d variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus oin : réductior de variance

Rejet Loi uniforme

Deux théorèmes bien connus permettent de justifier la validité de cette méthode :

1. La loi forte des grands nombres qui nous dit que \bar{X}_n converge vers E(X):

$$E(X) = \lim_{n \to +\infty} \bar{X}_n = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n X_i.$$

- ce résultat nous dit donc que l'approximation est valide.
- ▶ (NB : il faut néanmoins que E(|X|) soit intégrable.)

Justification de la méthode (2/2)

Deux théorèmes bien connus permettent de justifier la validité de cette méthode :

2. Le Théorème de la Limite Centrale qui nous dit que

$$\frac{\sqrt{n}}{\sigma}\epsilon_n \to \mathcal{N}(0,1),$$

où $\epsilon_n = E(X) - \bar{X}_n$ est l'erreur d'approximation, et $\sigma^2 = var(X)$.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Justification de la méthode (2/2)

Deux théorèmes bien connus permettent de justifier la validité de cette méthode :

2. Le Théorème de la Limite Centrale qui nous dit que

$$\frac{\sqrt{n}}{\sigma}\epsilon_n \to \mathcal{N}(0,1),$$

où $\epsilon_n = E(X) - \bar{X}_n$ est l'erreur d'approximation, et $\sigma^2 = var(X)$.

▶ ce résultat quantifie la vitesse de convergence de notre estimateur :

$$\epsilon_n \to \mathcal{N}(0, \sigma/\sqrt{n}).$$

▶ "il converge en racine de n" : il faut 4 fois plus de réalisations pour réduire l'erreur de moitié.

Outline

UE StatComp

Introduction

variables
aléatoires
Introduction
Inversion
Rejet
Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Deux théorèmes bien connus permettent de justifier la validité de cette méthode :

2. Le Théorème de la Limite Centrale qui nous dit que

$$\frac{\sqrt{n}}{\sigma}\epsilon_n \to \mathcal{N}(0,1),$$

où $\epsilon_n = E(X) - \bar{X}_n$ est l'erreur d'approximation, et $\sigma^2 = var(X)$.

 ce résultat quantifie la vitesse de convergence de notre estimateur :

$$\epsilon_n \to \mathcal{N}(0, \sigma/\sqrt{n}).$$

- ▶ "il converge en racine de n" : il faut 4 fois plus de réalisations pour réduire l'erreur de moitié.
- par contre il ne permet pas de borner l'erreur...

Utilisation pratique

- le TLC ne nous permet pas de borner l'erreur, mais il nous permet de donner un intervalle de confiance :
 - ▶ Si $N \to \mathcal{N}(0,1)$ alors $p(|N| \le 1.96) = 0.95.^3$
 - On a donc $p(|\epsilon_n| < 1.96 \frac{\sigma}{\sqrt{n}}) = 0.95$.

Outline

UE StatComp

Introduction

Simulation o variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

^{3.} plus généralement : $p(|N| \le t_{\alpha/2}) = 1 - \alpha$, où $t_{\alpha/2}$ est le quantile d'ordre $1 - \alpha/2$ de la loi $\mathcal{N}(0,1)$.

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction

Références

le TLC ne nous permet pas de borner l'erreur, mais il nous permet de donner un intervalle de confiance :

- ▶ Si $N \to \mathcal{N}(0,1)$ alors $p(|N| \le 1.96) = 0.95.$ ³
- On a donc $p(|\epsilon_n| < 1.96 \frac{\sigma}{\sqrt{n}}) = 0.95$.
- \Rightarrow l'intervalle de confiance à 95% de E(X) est donc :

$$\left[\bar{X}_n - 1.96 \frac{\sigma}{\sqrt{n}}; \; \bar{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}\right]$$

^{3.} plus généralement : $p(|N| \le t_{\alpha/2}) = 1 - \alpha$, où $t_{\alpha/2}$ est le quantile d'ordre $1 - \alpha/2$ de la loi $\mathcal{N}(0,1)$.

Rejet Loi uniforme

Méthodes MC pour l'intégration

▶ le TLC ne nous permet pas de borner l'erreur, mais il nous permet de donner un intervalle de confiance :

- ▶ Si $N \to \mathcal{N}(0,1)$ alors $p(|N| < 1.96) = 0.95.^3$
- On a donc $p(|\epsilon_n| < 1.96 \frac{\sigma}{1.7n}) = 0.95$.
- \Rightarrow l'intervalle de confiance à 95% de E(X) est donc :

$$\left[\bar{X}_n - 1.96 \frac{\sigma}{\sqrt{n}} \; ; \; \bar{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}\right]$$

 \triangleright En pratique, on ne connaît pas la variance théorique σ^2 et on l'estime par la variance empirique :

$$\bar{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

^{3.} plus généralement : $p(|N| \le t_{\alpha/2}) = 1 - \alpha$, où $t_{\alpha/2}$ est le quantile d'ordre $1 - \alpha/2$ de la loi $\mathcal{N}(0,1)$.

En résumé

On cherche à calculer $I = \int g(x)f(x)dx$, où f est une densité de probabilité :

Outline

UE StatComp

Introduction

Simulation d variables

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

En résumé

On cherche à calculer $I = \int g(x)f(x)dx$, où f est une densité de probabilité :

1. On simule un n-échantillon (X_1, \ldots, X_n) selon la loi f.

Outline

UE StatComp

Introduction

imulation de ariables léatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

On cherche à calculer $I = \int g(x)f(x)dx$, où f est une densité de probabilité :

- 1. On simule un n-échantillon (X_1, \ldots, X_n) selon la loi f.
- 2. On calcule:

$$S_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$$
 et $V_n = \frac{1}{n-1} \sum_{i=1}^n (g(X_i) - S_n)^2$.

UE StatComp

- On cherche à calculer $I = \int g(x)f(x)dx$, où f est une densité de probabilité :
 - 1. On simule un n-échantillon (X_1, \ldots, X_n) selon la loi f.
 - 2. On calcule:

$$S_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$$
 et $V_n = \frac{1}{n-1} \sum_{i=1}^n (g(X_i) - S_n)^2$.

3. On donne un intervalle de confiance sur I défini comme :

$$\left[S_n-t_{\alpha/2}\sqrt{V_n/n}\;;\;S_n+t_{\alpha/2}\sqrt{V_n/n}\right],$$

où $t_{\alpha/2}$ est le quantile d'ordre $(1-\alpha/2)$ de la loi $\mathcal{N}(0,1)$, pour un intervalle de confiance à $1-\alpha$.

• (en général on prend $\alpha = 0.05$ et $t_{\alpha/2} = 1.96$ pour un intervalle de confiance à 95%).

Remarques

- ► Cette méthode est simple à mettre en œuvre.
 - Le seul pré-requis est de savoir simuler des variables aléatoires selon une loi d'intérêt.

Outline

UE StatComp

Introduction

Simulation d variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

- ► Cette méthode est simple à mettre en œuvre.
 - Le seul pré-requis est de savoir simuler des variables aléatoires selon une loi d'intérêt.
- Sa précision augmente (i.e., la largeur de l'intervalle de confiance décroit) en fonction de √n, quelle que soit la dimension du problème.
 - faible dimension : relativement lent par rapport aux méthodes déterministes.
 - haute dimension : parfois la seule approche donnant une solution dans un temps raisonnable.

- Cette méthode est simple à mettre en œuvre.
 - Le seul pré-requis est de savoir simuler des variables aléatoires selon une loi d'intérêt.
- Sa précision augmente (i.e., la largeur de l'intervalle de confiance décroit) en fonction de √n, quelle que soit la dimension du problème.
 - faible dimension : relativement lent par rapport aux méthodes déterministes.
 - haute dimension : parfois la seule approche donnant une solution dans un temps raisonnable.
- ► En pratique, elle peut être gourmande en temps de calcul à cause (1) de sa faible vitesse de convergence et (2) du coût calculatoire de g qui peut être élevé.
 - ▶ les méthodes de réduction de variance permettent d'accélérer la vitesse de convergence de l'algorithme.

Exemple 1

- ▶ On veut calculer $I = \int_0^1 e^{-x} dx$.
- ▶ La solution est $I = 1 e^{-1} = 0.6321$.

Outline

UE StatComp

Introduction

Simulation o

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

- ▶ On veut calculer $I = \int_0^1 e^{-x} dx$.
- ▶ La solution est $I = 1 e^{-1} = 0.6321$.
- On peut l'approximer en R par :

```
> n = 1000  # nombre de tirages
> x = runif(n) # tirage selon la loi uniforme
> gx = exp(-x)
> I.hat = mean(gx)
```

ce qui donne 4 0.6307344.

UE StatComp

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

> gx = exp(-x)> I.hat = mean(gx)

> alpha = 0.05 > a = gnorm(1-(alpha/2))

ce qui donne 4 0.6307344.

▶ On veut calculer $I = \int_0^1 e^{-x} dx$.

On peut l'approximer en R par :

▶ La solution est $I = 1 - e^{-1} = 0.6321$.

> n = 1000 # nombre de tirages

> x = runif(n) # tirage selon la loi uniforme

> I1 = I.hat - a*sqrt(var(gx)/n)

> I2 = I.hat + a*sqrt(var(gx)/n)

ce qui donne [0.6193152; 0.6421535].

4. selon la graine du générateur de nombres aléatoires.

Exemple 2 : on veut calculer $I = \int_a^b e^{-x} dx$

Outline

UE StatComp

Introductio

Simulation d

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Exemple 2 : on veut calculer $I = \int_a^b e^{-x} dx$

 \Rightarrow Première approche : se baser sur $\mathcal{U}(0,1)$

Outline

UE StatComp

Introduction

Simulation d

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Exemple 2 : on veut calculer $I = \int_a^b e^{-x} dx$

- \Rightarrow Première approche : se baser sur $\mathcal{U}(0,1)$
 - lacktriangle Problème : il faut ramener les limites de l'intégrale à [0,1]

Outline

UE StatComp

Introduction

Simulation do

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

- \Rightarrow Première approche : se baser sur $\mathcal{U}(0,1)$
 - lacktriangle Problème : il faut ramener les limites de l'intégrale à [0,1]
 - ► Solution = changement de variable :

prendre
$$y = \frac{x-a}{b-a}$$
 soit
$$\begin{cases} x = (b-a)y + a \\ dx = (b-a)dy \end{cases}$$

Outline

UE StatComp

Introduction

Simulation de variables Iléatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

- \Rightarrow Première approche : se baser sur $\mathcal{U}(0,1)$
 - ightharpoonup Problème : il faut ramener les limites de l'intégrale à [0,1]
 - ► Solution = changement de variable :

prendre
$$y = \frac{x-a}{b-a}$$
 soit
$$\begin{cases} x = (b-a)y + a \\ dx = (b-a)dy \end{cases}$$

On a donc :

$$I = (b-a) \int_0^1 \exp((a-b)y - a) dy$$

Outline

UE StatComp

Introduction

imulation de ariables

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

- \Rightarrow Première approche : se baser sur $\mathcal{U}(0,1)$
 - lacktriangle Problème : il faut ramener les limites de l'intégrale à [0,1]
 - ► Solution = changement de variable :

prendre
$$y = \frac{x-a}{b-a}$$
 soit
$$\begin{cases} x = (b-a)y + a \\ dx = (b-a)dy \end{cases}$$

On a donc :

$$I = (b-a) \int_0^1 \exp((a-b)y - a) dy$$

Exemple :

ce qui donne 0.1187561 (au lieu de 0.1170196).

Outline

UE StatComp

Introduction

imulation d

Introduction Inversion Rejet

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Outline

UE StatComp

Introductio

Simulation d variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

 \Rightarrow Deuxième approche : tirer dans $\mathcal{U}(a,b)$

Outline

UE StatComp

Introduction

Simulation d variables

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

- \Rightarrow Deuxième approche : tirer dans $\mathcal{U}(a,b)$
 - ► Problème :
 - ▶ la fonction $f(x) = \mathbf{1}(x \in [a, b])$ n'est pas une densité

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

- \Rightarrow Deuxième approche : tirer dans $\mathcal{U}(a,b)$
 - ► Problème :
 - ▶ la fonction $f(x) = \mathbf{1}(x \in [a, b])$ n'est pas une densité
 - ▶ la densité de la loi $\mathcal{U}(a,b)$ est $f(x) = \frac{1}{b-a} \mathbf{1}(x \in [a,b])$

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction

- \Rightarrow Deuxième approche : tirer dans $\mathcal{U}(a,b)$
 - ► Problème :
 - ▶ la fonction $f(x) = \mathbf{1}(x \in [a, b])$ n'est pas une densité
 - ▶ la densité de la loi $\mathcal{U}(a,b)$ est $f(x) = \frac{1}{b-3}\mathbf{1}(x \in [a,b])$
 - ▶ Solution = faire apparaître la densité $\mathcal{U}(a, b)$:

$$I = \int_{a}^{b} e^{-x} dx$$
$$= (b - a) \int_{a}^{b} e^{-x} \frac{1}{b - a} dx$$

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

- \Rightarrow Deuxième approche : tirer dans $\mathcal{U}(a,b)$
 - ► Problème :
 - ▶ la fonction $f(x) = \mathbf{1}(x \in [a, b])$ n'est pas une densité
 - ▶ la densité de la loi $\mathcal{U}(a,b)$ est $f(x) = \frac{1}{b-a}\mathbf{1}(x \in [a,b])$
 - ▶ Solution = faire apparaître la densité U(a, b) :

$$I = \int_{a}^{b} e^{-x} dx$$
$$= (b - a) \int_{a}^{b} e^{-x} \frac{1}{b - a} dx$$

Exemple:

ce qui donne 0.1147875.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Revenons à notre exemple introductif :

- on tire aléatoirement des points (x, y) dans $[0, 1] \times [0, 1]$.
- \triangleright on approxime $\pi/4$ par la proportion de points tels que $x^2 + y^2 < 1$.

Comment peut-on l'écrire formellement sous la forme d'un problème Monte-Carlo?

Loi uniforme

Revenons à notre exemple introductif :

- on tire aléatoirement des points (x, y) dans $[0, 1] \times [0, 1]$.
- \blacktriangleright on approxime $\pi/4$ par la proportion de points tels que $x^2 + v^2 < 1$.

Comment peut-on l'écrire formellement sous la forme d'un problème Monte-Carlo?

$$\Rightarrow$$
 celui d'approximer $I = \int_0^1 \int_0^1 \mathbf{1}(x^2 + y^2 \le 1) dx dy$.

Remarques & conclusions

- ► Simulation de variables aléatoires :
 - méthodes par inversion et par rejet
 - place centrale de la loi $\mathcal{U}(0,1)$
 - pour aller plus loin : rejet adaptatif et échantillonnage préférentiel.

Outline

UE StatComp

Introduction

Simulation variables aléatoires

Inversion Rejet

Loi uniforme

Méthodes MC
pour l'intégration

Pour aller plus loin : réduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Simulation de variables aléatoires :

- méthodes par inversion et par rejet
- ▶ place centrale de la loi U(0, 1)
- pour aller plus loin : rejet adaptatif et échantillonnage préférentiel.
- ► Méthodes MC pour l'intégration :
 - approche stochastique à un problème déterministe
 - solution = estimation + intervalle de confiance
 - parfois la seule solution envisageable
 - e.g., en physique et en finance.
 - attention aux domaines de définition de l'intégrale et de la densité à simuler.
 - changement de variable, normalisation de la densité
 - pour aller plus loin : méthodes de réduction de variance.

Outline

UE StatComp

Introduction

Simulation d variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus

Pour aller plus loin : réduction de variance

Références

Pour aller plus loin... méthodes de réduction de variance

Méthodes de réduction de variance

Objectif:

- Améliorer la vitesse de convergence de l'estimateur d'intégrale / d'espérance.
- L'estimateur MC standard fait une erreur $\epsilon \to N(0, \frac{\sigma}{\sqrt{n}})$: on cherche donc à diminuer sa variance $(\underline{\grave{a}} \ n \ \text{fix} \underline{\acute{e}})$.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

- Améliorer la vitesse de convergence de l'estimateur d'intégrale / d'espérance.
- ▶ L'estimateur MC standard fait une erreur $\epsilon \to N(0, \frac{\sigma}{\sqrt{n}})$: on cherche donc à diminuer sa variance (à n fixé).

Principe:

▶ trouver des moyens de ré-écrire I = E[g(X)] comme I = E[h(Y)], tels que $var(h(Y)) \le var(g(X))$.

Outline

UE StatComp

Introduction

imulation de ariables léatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes de réduction de variance

Objectif:

- Améliorer la vitesse de convergence de l'estimateur d'intégrale / d'espérance.
- L'estimateur MC standard fait une erreur $\epsilon \to N(0, \frac{\sigma}{\sqrt{n}})$: on cherche donc à diminuer sa variance (à n fixé).

Principe:

▶ trouver des moyens de ré-écrire I = E[g(X)] comme I = E[h(Y)], tels que $var(h(Y)) \le var(g(X))$.

Plusieurs approches :

- échantillonnage préférentiel ("importance sampling"),
- utilisation de variables antithétiques,
- utilisation de variables de contrôle,
- (stratification).

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Echantillonnage préférentiel

Principe:

▶ Introduire une nouvelle densité \tilde{f} , et ré-écrire l'intégrale :

$$I = \int g(x)f(x)dx = \int \frac{g(x)f(x)}{\tilde{f}(x)}\tilde{f}(x)dx.$$

Outline

UE StatComp

Introduction

imulation de ariables

Inversion Rejet Loi uniforme

Méthodes MC oour l'intégration

Pour aller plus loin : réduction de variance

Rejet

de variance

Principe:

Introduire une nouvelle densité \tilde{f} , et ré-écrire l'intégrale :

$$I = \int g(x)f(x)dx = \int \frac{g(x)f(x)}{\tilde{f}(x)}\tilde{f}(x)dx.$$

- ▶ On a donc $E[g(X)] = E[\frac{g(Y)f(Y)}{\tilde{f}(Y)}]$, où X est distribuée selon f et Y est distribuée selon \hat{f} .
- \Rightarrow Nouveau schéma avantageux si $var(\frac{g(Y)f(Y)}{\tilde{f}(Y)}) < var(g(X))$.

Principe:

lacktriangle Introduire une nouvelle densité \tilde{f} , et ré-écrire l'intégrale :

$$I = \int g(x)f(x)dx = \int \frac{g(x)f(x)}{\tilde{f}(x)}\tilde{f}(x)dx.$$

- ▶ On a donc $E[g(X)] = E[\frac{g(Y)f(Y)}{\tilde{f}(Y)}]$, où X est distribuée selon f et Y est distribuée selon \tilde{f} .
- \Rightarrow Nouveau schéma avantageux si $var(\frac{g(Y)f(Y)}{\tilde{f}(Y)}) < var(g(X))$.

En pratique :

- ▶ Il faut choisir une densité \tilde{f} proche de $|g \times f|$.
- ▶ Il faut savoir selon simuler selon \tilde{f} .
- $ightharpoonup ilde{f}$ s'appelle la fonction d'importance.

Réduction de variance par variables antithétiques

Principe:

▶ Pour approximer $I = \int_0^1 g(x) dx$ utiliser le fait que si $U \to \mathcal{U}(0,1)$, alors $(1-U) \to \mathcal{U}(0,1)$.

Outline

UE StatComp

Introduction

Simulation de variables

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Simulation d variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Références

Principe:

- Pour approximer $I = \int_0^1 g(x) dx$ utiliser le fait que si $U \to \mathcal{U}(0,1)$, alors $(1-U) \to \mathcal{U}(0,1)$.
- ▶ On peut donc estimer I = E[g(U)] à n fixé par :

$$\frac{1}{n}\sum_{i=1}^n g(X_i)$$
 ou $\frac{1}{n}\sum_{i=1}^{n/2} (g(X_i) + g(1-X_i)).$

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Références

Principe:

- Pour approximer $I = \int_0^1 g(x) dx$ utiliser le fait que si $U \to \mathcal{U}(0,1)$, alors $(1-U) \to \mathcal{U}(0,1)$.
- ▶ On peut donc estimer I = E[g(U)] à n fixé par :

$$\frac{1}{n}\sum_{i=1}^n g(X_i)$$
 ou $\frac{1}{n}\sum_{i=1}^{n/2} (g(X_i) + g(1-X_i)).$

- \Rightarrow Nouveau schéma toujours plus efficace si g est monotone, car g(U) et g(1-U) sont alors anti-corrélées.
 - et var(A + B) = var(A) + var(B) + 2cov(A, B)

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Références

Principe:

- ▶ Pour approximer $I = \int_0^1 g(x) dx$ utiliser le fait que si $U \to \mathcal{U}(0,1)$, alors $(1-U) \to \mathcal{U}(0,1)$.
- ▶ On peut donc estimer I = E[g(U)] à n fixé par :

$$\frac{1}{n}\sum_{i=1}^{n}g(X_{i})$$
 ou $\frac{1}{n}\sum_{i=1}^{n/2}\Big(g(X_{i})+g(1-X_{i})\Big).$

- \Rightarrow Nouveau schéma toujours plus efficace si g est monotone, car g(U) et g(1-U) sont alors anti-corrélées.
 - et var(A + B) = var(A) + var(B) + 2cov(A, B)

En pratique :

- ▶ n'est valable que si g est continue et monotone.
- ▶ U et (1 U) sont dites antithétiques.

- Pour approximer $I = \int g(x)dx$, introduire une fonction h proche de g qui soit facilement intégrable.
- On peut alors écrire :

$$I = E[g(X)] = E[g(X) - h(X)] + E[h(X)]$$

 \Rightarrow Nouveau schéma avantageux si var(g(X) - h(X)) < var(g(X))

Outline

UE StatComp

Introduction

imulation de ariables

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

- Pour approximer $I = \int g(x)dx$, introduire une fonction h proche de g qui soit facilement intégrable.
- On peut alors écrire :

$$I = E[g(X)] = E[g(X) - h(X)] + E[h(X)]$$

 \Rightarrow Nouveau schéma avantageux si varig(g(X) - h(X)ig) < varig(g(X)ig)

En pratique :

- ► Il faut donc trouver h qui soit proche de g et que l'on sache intégrer (i.e., que l'on sache calculer E[h(X)]).
- Le fait que h et g soient corrélées devrait garantir que var(g(X) h(X)) soit faible.
- \blacktriangleright h(X) est la variable de contrôle de g(X).

Références

Outline

UE StatComp

Inversion Rejet Loi uniforme

Références

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Maria L. Rizzo. Statistical Computing with R. CRC Press, 2007.