The number of k-subsets of $\{1, 2, ..., m\}$ is

$$\frac{m(m-1)(m-2)...(m-k+1)}{k!}$$

Proof:

Let L be the set of all ordered k-tuples of distinct elements of $\{1, 2, ..., m\}$ (e.g for m = 3, k = 2, L = (1, 2), ..., (3, 2),))

Then
$$|L| = m(m-1)(m-2)...(m-k+1) = 6$$

We could also count |L| by listing all the k-subsets of $\{1, ..., m\}$ and ordered each in all k! possible ways.

I.e

$$\{1,2\} \rightarrow (1,2) \ and \ (2,1)\}$$

 $\{1,3\} \rightarrow (1,3) \ and \ (3,1)\}$
 $\{2,3\} \rightarrow (2,3) \ and \ (3,2)\}$

So
$$|L| = B(m, k) * k!$$

Where B(m, k) is the binomial coefficient!

We use notation as $\binom{m}{k}$

Note: This expression is defined for all non-negative integers k, and all $m \in \mathbb{R}$ or even $(\mathbb{C})!$

• when $m \geq k$ is an integer

$$\begin{pmatrix} m \\ k \end{pmatrix}$$

$$= \frac{m!}{(m-k)!k!}$$

$$\begin{pmatrix} m \\ m-k \end{pmatrix}$$

- wheb $m \le k$ is an integer $\binom{m}{k} = 0$
- 0! this is the *empty product* so

$$\binom{m}{0} = 1$$

Bijections

A bijection (or 1-1 correspondence) from a set S to a set T is a function

$$f: S \to T$$

this is

- 1-1 (means: if $f(s_1) = f(s_2) \implies s_1 = s_2$)
- onto (means: for each $t \in T$ there exists $s \in S$ with f(s) = t)

e.g.

There is a bijection from

 $S = \text{set of all subsets of } \{1, .., m\}$

to $T = \{0, 1\}^m$ (m^{th} cartesian power of $\{0, 1\}$)

(called the set of binary strings of length m) e.g. (0,1,0,1,0,0)

Must demonstrate that there is a corresponding element to each set!

We define $f: S \to T$ by $f(A) = (a_1, ..., a_m)$ where a_i is 1 if $i \in A$ and 0 otherwise

E.g. when m=3

$$f(\{1,3\}) = 101$$

The function f also gives a bijection from $S_k = \text{set of all k-subsets of } \{1, ..., m\}$ to

 $T_k = \text{set o fall binary strings of length } m \text{ that have exactly } k \text{ 1s}$

Next we learn that a bijective function must have an inverse.

Then we will be able to conclude that the number of elements of S will be the same value as the number of elements of T. Since we will prove that if f is a bijection the |S| = |T|.

For functions $f: S \to T$ and $g: T \to U$ recall the *composition* functions

$$g \circ f : S \to U$$

is defined by

$$q \circ f(s) = q(f(s))$$

We say that $g: T \to S$ is the *inverse* of $f: S \to T$ if $g \circ f(s) = s$ for every $s \in S$. (i.e. $g \circ f$ is the *identity function*)

AND that $f \circ g(t) = t \ \forall t \in T$.

note that the inverse must be unique by its properties.

lemma: if $f: S \to T$ has an inverse then it is a bijection

(note that the converse is also true: if f is a bijection then it has an inverse)

Proof: let $g: T \to S$ be the inverse of f.

Check f is 1-1: if $f(s_1) = f(s_2)$ then $g(f(s_1)) = g(f(s_2))$ then $s_1 = s_2$.

Hence f is 1-1.

Check f is onto: let $t \in T$, let s = g(t).

Then f(s) = f(g(t)) = t.

Hence f is onto.

Hence f is a bijection \square

The inverse of f (if it exists) is denoted f^{-1}

In our example:

The inverse of $f: S \to T$ is the function $g: T \to S$ by

$$g(a_1, a_2, ..., a_m) = \{i : a_i = 1\}$$

Clearly you get the same binary string you entered into it.

_e.g.

A =
$$\{1, 3\}$$
 then $f(A) = (1, 0, 1)$
 $g(1, 0, 1) = \{1, 3\}$

Conclusion: the number of subsets of $\{1,2,...,m\}$ is the same as $|\{0,1\}^m|=2^m$

Corollary:

$$\sum_{k=0}^{m} \binom{m}{k} = 2^m$$

We are writing the size of the set of all subsets of $\{1,...,m\}$ in two different ways.

We have just demonstrated a $combinatorial\ proof$ of an identity.