Bad Actor, Good Advisor: Exploring the Role of LLMs in Fake News Detection

Beizhe Hu^{1,2}, Qiang Sheng¹, Juan Cao^{1,2}, Yuhui Shi^{1,2}, Yang Li^{1,2}, Danding Wang¹, Peng Qi³

Motivation

- > Challenge: Fake news detection needs understanding of the realworld background, which is tough for methods based on Small Language Models (SLMs).
- Potential: Large Language Models (LLMs) like GPT3.5-turbo have shown impressive emergent abilities on various tasks and are considered promising as general task solvers.
- Questions: Can LLMs help detect fake news with their internal knowledge and capability? What solution should we adopt to obtain better performance using LLMs?

Is the LLM a Good Detector?

Usage	Chinese	English
Zero-Shot	0.676	0.568
Zero-Shot CoT	0.677	0.666
Few-Shot	0.725	0.697
Few-Shot CoT	0.681	<u>0.702</u>
Fine-tuning	0.753 (+3.8%)	0.765 (+9.0%)
	Zero-Shot Zero-Shot CoT Few-Shot Few-Shot CoT	Zero-Shot 0.676 Zero-Shot CoT 0.677 Few-Shot 0.725 Few-Shot CoT 0.681

- ↑ The LLM underperforms the finetuned **SLM** using all four prompting approaches.
- → The LLM is capable of generating human-like rationales on news content from various perspectives.
- → It's plausible to gain a performance better than any LLM or SLM-only methods if we could adaptively combine their advantages.

LLM could be a good advisor for the **SLM** by providing rationales

Danson 4!	Chine	Chinese		sh		
Perspective	Proportion	macF1	Proportion	macF1		
Textual Description	on 65%	0.706	71%	0.653		
News: Everyone! Don't buy cherries anymore: Cherries of this year are infested with maggots, and nearly 100% are affected. LLM Rationale:The tone of the news is extremely urgent, seemingly trying to spread panic and anxiety. Prediction: Fake Ground Truth: Fake						
Commonsense	71%	0.698	60%	0.680		
geousSuch a situation is incredibly rare in reality and even could be thought impossible. Prediction: Fake Ground Truth: Fake Factuality 17% 0.629 24% 0.626						
Prediction: Fake Factuality	17%	0.629	24%	0.626		
	17% Iational Congress Ist 18 years old First, the clair can register the	0.629 ess has ap are now n that Ch eir marri	24% oproved that is eligible to mainese individuals age is real, as	ndivid- arry luals at		
Factuality News: The 18th N uals who are at lea LLM Rationale: least 18 years old stipulated by Chin	17% Iational Congress Ist 18 years old First, the clair can register the	0.629 ess has ap are now n that Ch eir marri	24% oproved that is eligible to mainese individuals age is real, as	ndivid- arry luals at		
Factuality News: The 18th N uals who are at lea LLM Rationale: least 18 years old stipulated by Chin Prediction: Real Others	17% Iational Congress Ist 18 years old First, the clair can register th ese law Ground Tri	0.629 ess has apare now that Cheir marris	24% oproved that is eligible to mainese individuals age is real, as	ndivid- arry luals at s this is		

News: The 18th National Congress has approved that individuals who are at least 18 years old are now eligible to marry LLM Rationale: First, the claim that Chinese individuals at least 18 years old can register their marriage is real, as this is						
stipulated by Chinese law Prediction: Real Ground Truth: Fake						
Others 4% 0.649 8% 0.704						
Model	Usage	Chinese	English			
GPT-3.5-turbo	Zero-Shot CoT from Perspective TD from Perspective CS	0.677 0.667 0.678	0.666 0.611 0.698			
BERT	Fine-tuning	0.753	0.765			
Ensemble	Majority Voting Oracle Voting	0.735 0.908	0.724 0.878			

(3) Rationale Usefulness Evaluation: Assess the contributions of different rationales and adjust their weights for subsequent veracity prediction.

> **Evaluation**: Regard if the judgment along with the rationale is correct as the usefulness labels, and predict the rationales' usefulness:

$$\hat{u}_t = \text{sigmoid}(\text{MLP}(\mathbf{f}_{\mathbf{x} \to \mathbf{t}})), L_{et} = \text{CE}(\hat{u}_t, u_t)$$

 \triangleright Reweighting: Obtain a weight number from vector $f_{x\to t}$ to reweight the rationale-aware news vector $\mathbf{f_{t \to x}}$:

$$\mathbf{f_{x \to t}}' = w_t \cdot \mathbf{f_{x \to t}}$$

Module c: Prediction

We aggregate news vector and rationale-aware news vectors for the final judgment. For news item x, we aggregate vectors with different weights:

$$\mathbf{f_{cls}} = w_x^{cls} \cdot \mathbf{x} + w_t^{cls} \cdot \mathbf{f'_{t \to x}} + w_c^{cls} \cdot \mathbf{f'_{c \to x}}$$

Module d: Distillation for Rationale-Free Model

We build a rationale-free model ARG-D based on the trained ARG model via knowledge distillation

Our Method: Adaptive Rationale Guidance (ARG) Network

Module a: Representation

> Employ two BERT models separately as the news and rationale encoder to obtain semantic representations

Module b: News-Rationale Collaboration

(1) News-Rationale Interaction: Introduce a news-rationale interactor with a dual cross-attention mechanism, which generates content-base and rationale-base attention-feature respectively.

$$CA(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax} \left(\mathbf{Q}' \cdot \mathbf{K}' / \sqrt{d} \right) \mathbf{V}'$$

$$\mathbf{f_{t \to x}} = \operatorname{AvgPool} \left(CA(\mathbf{R_t}, \mathbf{X}, \mathbf{X}) \right)$$

$$\mathbf{f_{x \to t}} = \operatorname{AvgPool} \left(CA(\mathbf{X}, \mathbf{R_t}, \mathbf{R_t}) \right)$$

(2) LLM Judgement Prediction: Predict the LLM judgment of the news veracity according to the given rationale.

$$\hat{m}_t = \text{sigmoid}(\text{MLP}(\mathbf{R_t}))$$

$$L_{pt} = \text{CE}(\hat{m}_t, m_t)$$

Evaluation

	Madal		Chinese			English			
Model		macF1	Acc.	$\mathrm{F1}_{\mathrm{real}}$	$F1_{\rm fake}$	macF1	Acc.	$\mathrm{F1}_{\mathrm{real}}$	$F1_{\rm fake}$
G1: LLM-Only	GPT-3.5-turbo	0.725	0.734	0.774	0.676	0.702	0.813	0.884	0.519
G2: SLM-Only	Baseline	0.753	0.754	0.769	0.737	0.765	0.862	0.916	0.615
	$EANN_{\mathrm{T}}$	0.754	0.756	0.773	0.736	0.763	0.864	0.918	0.608
	Publisher-Emo	0.761	0.763	0.784	0.738	0.766	0.868	0.920	0.611
	ENDEF	0.765	0.766	0.779	0.751	0.768	0.865	0.918	0.618
G3: LLM+SLM	Baseline + Rationale	0.767	0.769	0.787	0.748	0.777	0.870	0.921	0.633
	SuperICL	0.757	0.759	0.779	0.734	0.736	0.864	0.920	0.551
	ARG	0.784	0.786	0.804	0.764	0.790	0.878	0.926	0.653
	(Relative Impr. over Baseline)	(+4.2%)	(+4.3%)	(+4.6%)	(+3.8%)	(+3.2%)	(+1.8%)	(+1.1%)	(+6.3%)
	w/o LLM Judgment Predictor	0.773	0.774	0.789	0.756	0.786	0.880	0.928	0.645
	w/o Rationale Usefulness Evaluator	0.781	0.783	0.801	0.761	0.782	0.873	0.923	0.641
	w/o Predictor & Evaluator	0.769	$\overline{0.770}$	0.782	0.756	0.780	0.874	0.923	0.637
	ARG-D	0.771	0.772	0.785	0.756	0.778	0.870	0.921	0.634
	(Relative Impr. over Baseline)	(+2.4%)	(+2.3%)	(+2.1%)	(+2.6%)	(+1.6%)	(+0.9%)	(+0.6%)	(+3.2%)

Experiment: 个

- > The ARG outperforms all other compared methods in macro F1
- The rationale-free ARG-D still outperforms all compared methods except ARG and its variants

Cost Analysis in Practice: →

By sending only 23% of the data to the ARG, we could achieve 0.784 in macro F1, which is the same as the performance fully using the ARG.

Conclusion

- **Answer 1:** We found that the large LM (GPT-3.5) underperforms the task-specific small LM (BERT), but could provide informative rationales and complement small LMs in news understanding.
- **Answer2**: We designed the ARG network to flexibly combine the respective advantages of small and large LMs and developed its rationale-free version ARG-D for cost-sensitive scenarios.

GitHub Repo