NEURAL NETWORKS AND DEEP LEARNING

Transformer

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML19.html

李宏毅Transformer教程:

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML19.html

Transformer Blog:

https://slds-lmu.github.io/seminar_nlp_ss20/attention-and-self-attention-for-nlp.html

https://lilianweng.github.io/posts/2018-06-24-attention/

http://jalammar.github.io/illustrated-transformer/

LLM in NLP

LLM in Time-series

Figure 1: Roadmaps of representative TSFMs.

https://arxiv.org/pdf/2403.14735

Transformer in Time-series

- Vanilla Transformer, NeurIPS 2017
- Informer, AAAI 2021
- Autoformer, NeurIPS 2021
- FEDformer, ICML 2022
- ... (Transformer variants)
- Dlinear, AAAI 2023
- ... (non-Transformer model)
- PatchTST, ICLR 2023
- ... (Patching based Transformer)
- Time-series Foundation model
- ... (TSFM)

Sequence

Hard to parallel!

Using CNN to replace RNN CNN can parallel!

Filters in higher layer can consider longer sequence

不同卷积核得到的hidden vector, 有多少个卷积核对应output hidden vector有多少channel

虽然higher layer filters能够捕捉longer sequence,但lower layer filters始终只能捕捉shorter(局部)sequence

Using CNN to replace RNN (CNN can parallel)

 b^i is obtained based on the whole input sequence. $\frac{1}{2}$ \frac

Anyway, you can try to replace any thing that has been done by RNN with self-attention.

https://arxiv.org/abs/1706.03762

Time

https://papers.neurips.cc > paper > 7181-attention... PDF

Attention is All you Need

by A Vaswani | Cited by 140492 - We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely.

11 pages

4x5x5

- 4: batch size
- 5: sequence length
- 5: feature dimension

对于time-series数据而言, attention一般 作用在sequence维度(第二个维度)上

https://arxiv.org/abs/1706.03762

q: query (to match others)

$$q^i = W^q a^i$$
 不同时间步embedding

k: key (to be matched)

$$k^i = W^k a^i$$

不同时间步embedding 对应的 W^q , W^k , W^v 是 同一个,换句话说qkv 的projection parameter matrix在不同时间步上 是shared

v: information to be extracted

$$v^i = W^v a^i$$

q: query (to match others)

$$q^i = W^q a^i$$

k: key (to be matched)

$$k^i = W^k a^i$$

v: information to be extracted

$$v^i = W^v a^i$$

Time-LLM: Time Series Forecasting by Reprogramming Large Language Models, ICLR 2024

Paper: https://openreview.net/pdf?id=Unb5CVPtae

Blog: https://zhuanlan.zhihu.com/p/676256783

(a) Patch Reprogramming

Pretrained LLM (embedder)是在文本语料上预训练的,具有文本modality上的知识,但现在我们需要的是time-series modality上做forecasting任务,因此需要以time-series data (embedding)作为query去match text embedding (text embedding是被matched),然后再从text embedding里面extract信息,相当于将text中和当前time-series embedding相似度高的部分(例如up, short)提取出来

q: query (to match others)

$$q^i = W^q a^i$$

k: key (to be matched)

$$k^i = W^k a^i$$

v: information to be extracted

$$v^i = W^v a^i$$

刚才介绍的是cross-attention,涉及两个data modality之间的信息交互, self-attention就是自己和自己算attention, qkv来自于同一个data modality

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^{\top}}{\sqrt{d_k}})V$$

qk之间做dot product (element-wise相乘相加), 会随着元素个数, 即维度d的增大而使得variance增大, 因此用根号d做scaled

拿每個 query q 去對每個 key k 做 attention

d is the dim of q and k

Considering the whole sequence

拿每個 query q 去對每個 key k 做 attention

$$b^2 = \sum_{i} \hat{\alpha}_{2,i} v^i$$

 b^1 , b^2 , b^3 , b^4 can be parallelly computed.

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^\top}{\sqrt{d_k}})V$$

$$ext{cosine similarity} = S_C(A,B) := \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \cdot \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

Attention 本质上在计算 token之间的相似度(与 cosine similarity的计算类似),然后用归一化的相似度去加权得到output token

重复之前的操作

$$b^2 = \sum_{i} \hat{\alpha}_{2,i} v^i$$

$$b^2 = \sum_{i} \hat{\alpha}_{2,i} v^i$$

Self-attention W^q K Self-Attention Layer K^{T}

反正就是一堆矩陣乘法,用 GPU 可以加速

- Multi-head attention
- Masked multi-head attention
- Attention中的permutation invariant问题
- Transformer整体结构解读
- Transformer/Attention变体

Multi-head Self-attention (2 heads as example)

Multi-head Self-attention (2 heads as example)

Multi-head Self-attention (2 heads as example) $b^{i,1}$ Again, Parallel $q^{i,1}$ $q^{i,2}$ $k^{i,1}$ $k^{i,2}$ $v^{i,1}$ $v^{i,2}$ $q^{j,1}$ $q^{j,2}$ $k^{j,1}$ $k^{j,2}$ $v^{j,1}$ $v^{j,2}$

Multi-head Self-attention

(2 heads as example)

```
# multi-head attention layer
class AttentionLayer(nn.Module):
   def init (self, configs,
               attention: nn.Module): 可以嵌套多种attention
       super(AttentionLayer, self). init ()
       d model = configs['model']['d model']
       n heads = configs['model']['n heads']
       seq len = configs['model']['seq len']
       self.configs = configs
                                   input size 维的输入先通过 input
       d queries = d model // n heads
                                   embedding (linear projection) + positional
       d keys = d model // n heads
                                   encoding 到 d_model 维, 然后通过
       d values = d model // n heads
                                   n heads等分
       self.attention = attention
       self.query projection = nn.Linear(d model, d queries * n heads)
       self.key projection = nn.Linear(d model, d keys * n heads)
       self.value projection = nn.Linear(d model, d values * n heads)
       self.out projection = nn.Linear(d values * n heads, d model)
       self.n heads = n heads
   def forward(self, q, k, v, attn mask=None):
      B, L, _ = q.size()
       _, S, _ = k.size()
      H = self.n heads
                                                  从矩阵角度来看multi-head只是reshape
      q = self.query projection(q).view(B, H, L, -1)
                                                  了一下,把原来的特征空间等分维多个
       k = self.key projection(k).view(B, H, S, -1)
                                                  特征子空间,然后再不同特征子空间的
      v = self.value_projection(v).view(B, H, S, -1)
                                                  角度、关注序列中的不同信息。
```

out = out.view(B, L, -1) # concat multi-head attention calculated results

This multi-dimensionality allows the attention mechanism to jointly attend to different information from different representation at different positions

即在每个特征子空间上做self-attention,每个特征子空间关注到的序列信息不同

out, attn = self.attention(q, k, v)

Masked Multi-head Self-attention

NLP: 确保模型在生成每个词时,只能关注到当前和之前的词,而不能关注到未来的词;

Time-series: 确保模型只能关注到当前时间步及 之前时间步的信息, 而不用未来信息作弊

Masked Multi-head Self-attention

$$\begin{vmatrix}
 \alpha_{1,1} & k^1 \\
 \alpha_{1,2} \\
 \alpha_{1,3} \\
 \alpha_{1,4}
 \end{vmatrix} = \begin{bmatrix}
 k^2 \\
 k^3 \\
 k^4
 \end{bmatrix}
 q^1$$

应该让主对角线下方的 attention score变成0

Masked Multi-head Self-attention

```
class MaskGenerator():
   def init (self, batch size, seq length, device):
        # broadcast on the attention heads dimension
       mask_shape = [batch_size, 1, seq_length, seq_length]
       with torch.no_grad():
            self.mask = torch.triu(torch.ones(mask shape, dtype=torch.bool), diagonal=1).to(device)
   @property
    def mask(self):
       return self.mask
  # self-attention
  class FullAttention(nn.Module):
      def __init__(self, configs):
          super(FullAttention, self). init ()
          self.mask = configs['model']['mask']
          self.dropout = nn.Dropout(p=configs['model']['dropout'])
      def forward(self, q, k, v, attn_mask=None):
          # qkv的输入维度分别是batch size, attention heads, sequence length, embedding dim
          # b, h, d分别代表batch size, attention heads个数,以及embedding维度
          # 1和s分别是query和key的sequence length, 只是因为输出矩阵bhss是不合法的, 需要取两个变量
          # QK^T, lxdxdxs=lxs, 再考虑batch size和attention heads为bxhxlxs的张量
          attn scores = torch.einsum("bhld,bhsd->bhls", q, k)
          if self.mask:
              attn mask = MaskGenerator(batch size=q.size(0), seq length=q.size(2), device=q.device)
             attn scores.masked fill (attn mask.mask, -np.inf)
          # 只考虑最后两个维度的话1xs,即softmax计算每个query对于所有key的attention scores
          attn scores = self.dropout(torch.softmax(1. / sqrt(q.size(-1)) * attn scores, dim=-1))
          weighted_values = torch.einsum("bhls,bhsd->bhld", attn_scores, v)
          # .contiguous()确保张量的数据在内存中是连续的,以提高后续操作的效率
          # The .contiguous() ensures the memory of the tensor is stored contiguously
          # which helps avoid potential issues during processing.
          return attn scores, weighted values.contiguous()
```

Mask那些位于主对角线 下方的元素

$$\hat{\alpha}_{1,i} = exp(\alpha_{1,i}) / \sum_{j} exp(\alpha_{1,j})$$

让那些元素值变成-inf, 这样过 softmax 之后 probability就变成了0

Positional Encoding

- No position information in self-attention.
- Original paper: each position has a unique positional vector e^i (not learned from data)

• In other words: each x^i appends a one-hot vector p^i

Attention is all you need: https://arxiv.org/pdf/1706.03762

```
PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\rm model}})
        PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})
class PositionalEmbedding(nn.Module):
    def init (self, d model, max len=5000):
        super(PositionalEmbedding, self). init_()
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max len, d model).float()
        pe.require_grad = False
        position = torch.arange(0, max_len).float().unsqueeze(1)
        div term = (torch.arange(0, d model, 2).float()
                    * -(math.log(10000.0) / d model)).exp()
        pe[:, 0::2] = torch.sin(position * div term)
        pe[:, 1::2] = torch.cos(position * div_term) 2j+1
        pe = pe.unsqueeze(0)
        self.register buffer('pe', pe)
    def forward(self, x):
        return self.pe[:, :x.size(1)]
```


source of image: http://jalammar.github.io/illustrated-transformer/

Transformer machine Output learning Probabilities Softmax Using Chinese to English Linear translation as example Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward $N \times$ Add & Norm N× Add & Norm Masked Encoder Decoder Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Input Output Embedding Embedding

幾器學習

Inputs

Outputs (shifted right)

<BOS> machine

Transformer

http://jalammar.github.io/illustrated-transformer/

Transformer

Attention Visualization

Attention Visualization

https://colab.research.google.com/github/tens orflow/tensor2tensor/blob/master/tensor2ten sor/notebooks/hello_t2t.ipynb#scrollTo=OJKU 36QAfqOC

Multi-head Attention

每个attention head学到的知识不同

https://arxiv.org/pdf/2202.07125

Transformers in Time Series: A Survey

Qingsong Wen¹, Tian Zhou², Chaoli Zhang², Weiqi Chen², Ziqing Ma², Junchi Yan³, Liang Sun¹

¹DAMO Academy, Alibaba Group, Bellevue, USA ²DAMO Academy, Alibaba Group, Hangzhou, China

³Department of CSE, MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University {qingsong.wen, tian.zt, chaoli.zcl, jarvus.cwq, maziqing.mzq, liang.sun}@alibaba-inc.com, yanjunchi@sjtu.edu.cn

