

Trainer: Yogesh Chavan

yogesh.chavan@sunbeaminfo.com

Q. Find the least number which when divided by 12,15,24 leaves a remainder of 5 in each case

- Soln:
- Find LCM(12,15,24) = ?

If a, b, c are three numbers that divide a number n to leave the same remainder r, the smallest value of 'n' is

$$n = (LCM of a, b, c) + r$$
 e.g 3,4,5 & rem 1

- LCM = 120
- In an LCM problem, if remainder is common then,

$$= 120+5 = 125$$

Q. Find the smallest number which when divided by 20,36,45 leaves a remainder 15,31 and 40 respectively.

- Soln:
- Find LCM(20,36,45)
- In LCM problem , if difference is common(constant) then,
- Result = LCM Common difference

Q. Four numbers are in the ratio of 10: 12: 15: 18. If their HCF is 3, then find their LCM.

A. 420

B. 540

C. 620

D. 680

Ans: B

Q. Find the least number which when divided by 5,6,7 and 8 leaves a reminder of 3 but when divided by 9 leaves no remainder.

A. 1677

B. 2523

C. 3363

D. 1683

Ans: D

HCF/LCM with Decimal point

- Find HCF of 1.08, 0.36 and 0.9
- Soln:
- 1. Convert each of the decimals into like decimals.
- 1.08, 0.36 and 0.90
- 2. Write each number without decimal point.

HCF(108,36,90) = 18

3. Put decimal point after the numbers which are in like decimals.

Here it is after 2 numbers(digits)

HCF (1.08, 0.36 and 0.90) = 0.18

Rules to Remember

• Fractions:

LCM = **LCM** of **Numerators** / **HCF** of **Denominators**

HCF = HCF of Numerators / LCM of Denominators

LCM of 25/12 & 35/18

LCM = 175/6

HCF of 25/12 & 35/18

HCF = 5/36

Q. What is the least number which when divided by 18, 24 and 36 leaves 3 as a remainder in each case?

A. 75

B. 93

C. 111

D. 99

E. None of the these

Ans: A

HCF(Assignment)

Q. In a school of 437 boys & 342 girls it was decided to divide the girls & boys into separate classes. However it was required that each class consist of the same number of students. What would be the number of classrooms required?

A. 41 classrooms B. 14 classrooms C. 17 classrooms D. 26 classrooms

Ans: A

Same Class Size = HCF (Boys, Girls)

- \rightarrow HCF (437,342) = 19
- \rightarrow Boys Classes = 437/19 = 23
- \rightarrow Girls Classes = 342/19 = 18
- → Total Classes = 23 + 18 = 41

Q. Find the least number which when divided by 12,15,40 leaves a remainder of 5 in each case

A. 120

B. 125

C. 130

D. 140

Ans: B

Q. If the product of two numbers is 324 and their HCF is 3, then their LCM will be =?

A. 972

B. 327

C. 321

D. 108

Ans: D

Q. Three number are in the ratio of 3:4:5 and their L.C.M. is 2400. Their H.C.F. is:

A. 40

B. 80

C. 120

D. 200

Ans: A

Q. Find the least number which when divided by 16,18,20 and 25 leaves a reminder of 4 but when divided by 7 leaves no remainder.

A. 17004

B. 18000

C. 18002

D. 18004

Ans: D

Q. The HCF of two numbers is 8. Which one of the following can never be their LCM?

A. 24

B. 48

C. 56

D. 60

Ans: D

If HCF = 8 then LCM should have a factor of 8 Going by options 60 does not have a factor 8. So never be their LCM.

Q. The LCM of three different numbers is 120. Which of the following cannot be their HCF?

A. 8

B. 12

C. 24

D. 35

Ans: D

Q. HCF of 204,1190,1445

A. 17

B. 18

C. 19

D. 21

Ans: A

Q. LCM of 22,54,108,135 and 198 is -

A. 330

B. 1980

C. 5940

D. 11880

Ans: C

Q. Find HCF of 36 and 84

A. 4

B. 6

C. 12

D. 18

Ans: C

Numbers(Assignment)

Q. The number nearest to 43582 divisible by each of 25, 50 and 75 is?

A. 43500

B. 43550

C. 43600

D. 43650

Ans: D

Numbers(Assignment)

Q. What is the smallest 5 digits number which is divisible by 12, 15, and 18?

A.10010

B. 10015

C.10020

D. 10080

Ans: D

HCF & LCM Fractions(Assignment)

- Find HCF & LCM of 5/9 and 25/36
- Ans : HCF = 5/36 and LCM = 25/9

Q. There are three numbers, these are co-prime to each other are such that the product of the first two is 551 and that of the last two is 1073. What will be the sum of three numbers:

A. 80

B. 82

C.85

D. 87

Soln:

numbers are co primes, so there is only 1 as their common factor. Given that two products have the middle number in common.

So, middle number = H.C.F. of 551 and 1073 = 29;

So first number is : 551/29 = 19 Third number = 1073/29 = 37

So sum of these numbers is = (19 + 29 + 37) = 85

Ans: C

Properties of Square Numbers

- A square can't end with odd number of zeroes. The number of 0's of perfect square is always even and the non-zero part should also be a perfect square.
- A square can't end with 2, 3, 7 or 8.

1 2 3 4 5

6 7 8 9 0

- Square of odd no. is odd & even no. is even
- Whenever last digit of square is 6, then second last digit is always odd.
- Whenever last digit of square is 5, then second last digit is always 2.
- Whenever last digit of square is 1,4,9, then second last digit is always even.

Properties of Square Numbers

 Square of number ending in 0 : Square of the number of tens and append two zeroes to right.

e.g.
$$(130)^2 = (13^2)00 = 16900$$

 Square of number ending in 5: Multiply number of tens by next higher integer and append 25 to right.

e.g
$$105^2 = 105^2 = (10x11)25 = 11025$$

• Square of numbers ending in 1,9, 4 or 6

e.g. for
$$(71)^2 = 70^2 + (2x70x1) + 1^2 = 4900 + 140 + 1 = 5041$$

for $(89)^2 = 90^2 - (2x90x1) + 1^2 = 8100 - 180 + 1 = 7921$

Number system(Assignment)

Q. Find a positive number x, such that the difference between the square of this number and 21 is the same as the product of 4 times the number?

A. 9

B. 27

C. 7

D. 13

Ans: C

Arithmetic Progression:

- If quantities increase or decrease by a common difference then they are said to be in AP e.g. 3, 5, 7, 9,11,....
- If a is first term, d is the common difference, I is the last term then
- General form: a, a+d, a+2d, a+3d,...,a+(n-1)d
- nth term Tn = a + (n-1)d , n = 1, 2, ...
- Sum of n terms Sn = $\frac{n}{2}$ [2a + (n-1)d]

$$Sn = \frac{n}{2}(a + I)$$

- Prove that the sum Sn of n terms of an Arithmetic Progress (A.P.) whose first term 'a' and common difference 'd' is
- S = n/2[2a + (n 1)d]
- Or, S = n/2[a + l], where l = last term = a + (n 1)d
- Proof:
- a, a+d, a+2d, a+3d,...., a(n-2)d, a(n-1)d, as I = last term
- a, a+d, a+2d, a+3d,...., I-d, I
- S = a + a+d + a+2d + a+3d + + I-d + I ----------------1
- Writing equation 1 in reverse order(sum remains same even if we write in reverse order)
- S = I + I-d + I-2d + I-3d + + a+d + a-----2
- Adding equation 1 and 2
- 2S = (a + I) + (a + I) + (a + I) + ----- + (a + I) + (a + I)
- So for n terms,
- 2S = n(a + 1)
- $S = \frac{n}{2} (a + 1)$

Q. The sum of all two digit numbers divisible by 3 is

A. 550

B. 1550

C. 1665

D. 1680

Soln

Two digit numbers divisible by 3 are:

12, 15, 18, 21,, 96, 99.

This is an A.P. with a = 12, d = 3, l = 99

Let n be the number of terms.

Last term = a + (n-1)d

$$99 = 12 + (n-1)x3$$

$$3n = 90$$
 , $n = 30$

Sum =
$$n/2$$
 (a + I) = $30/2$ x (12+99)

= 1665

Ans: C

Q. Find the sum of all natural numbers between 10 and 200 which are divisible by 7

A. 2835

B. 2865

C. 2678

D. 2646

Soln:

Two digit numbers divisible by 7 are:

14, 21, 28, 35,, , 196.

This is an A.P. with a = 14, d = 7, l=196

Last term = a + (n-1)d

OR

196= 14 + (n-1)x7

196-14 = (n-1)x7

n-1 = 26

n = 27

Sum = n/2 (a + I)

 $= 27/2 \times (14+196)$

 $= 27 \times 210 / 2$

 $= 27 \times 105$

= 2835

Ans: A

$$n = \frac{LastTerm - FirstTerm}{d} + 1$$

Progression(Assignment)

Q. Find the sum of the series 3,8,13,18,,93

A. 912

B. 925

C. 998 D. 936

Ans: A

• Geometric Progression:

- If quantities increase or decrease by a constant factor then they are said to be in GP e.g. 4, 8, 16, 32,
- If a is first term, r is the common ratio, then
- General form: a, ar, ar², ar³,...., arⁿ⁻¹
- n^{th} term $Tn = ar^{(n-1)}$
- Sum of n terms Sn = $\frac{a(r^n-1)}{(r-1)}$

Geometric Progression of n terms:

- To prove that the sum of first n terms of the Geometric Progression whose first term 'a' and common ratio 'r' is given by-
- $S = a + ar + ar^2 + ar^3 + ar^4 + \dots + ar^{n-1}$ ------ 1
- Multiply both sides of this equation by r

- Eq 2 Eq 1
- Sr S = $ar^n a$
- $S(r-1) = a(r^n 1)$
- $S = \frac{a(r^n 1)}{(r 1)}$

Geometric Progression

Q. Find the 10th term of the series: 4,16, 64, 256, 1024,

A. 4¹⁰

B. 48

C. 4⁹ D. 1022480

Soln:

The given series is in geometric progression

Where a = 4, r = 4

So T10 = $a \times r^{(10-1)}$

 $= 4 \times 4^{(10-1)}$

 $=4^{10}$

Ans: A

- What is the difference between arithmetic progression and geometric progression?
- A sequence is a set of numbers, called terms, arranged in some particular order.
 An arithmetic sequence is a sequence with the difference between two consecutive terms constant. The difference is called the common difference. A geometric sequence is a sequence with the ratio between two consecutive terms constant.

