1. Постановка задачи и построение математической модели

1.1. Постановка задачи на содержательном уровне

Рассмотрим систему массового обслуживания следующего вида (Рис. 1).

Рис. 1. Структурная схема системы обслуживания

Пусть в систему с одним обслуживающим устройством поступают потоки Π_1 , Π_2 , Π_3 и Π_4 . Требования по потоку Π_j становятся в соответствующую очередь O_j с неограниченной вместимостью, $j \in \{1,2,3,4\}$. Для $j \in \{1,2,3\}$ дисциплина очереди O_j , поддерживаемая устройством δ_j , имеет тип FIFO (First In First Out). Таким образом, для обслуживания из соответствующей очереди выбирается то требование, которое пришло раньше. Дисциплина очереди O_4 будет описана ниже. Входные потоки Π_1 и Π_3 формируются внешней средой, которая, будем предполагать, имеет только одно состояние, то есть вероятностная структура потоков не меняется с течением времени. Требования потоков Π_1 и Π_3 формируют независимые между собой неординарные пуассоновские потоки, то есть стационарные, без последействия и ординарные потоки групп требований. Интенсивности соответствующих простейших потоков для Π_1 и Π_3 будем обозначать λ_1 и λ_3 , а распределение числа заявок в груп-

пе по потоку Π_i будем описывать производящей функцией

$$f_j(z) = \sum_{\nu=1}^{\infty} p_{\nu}^{(j)} z^{\nu}, \quad j \in \{1, 3\},$$
 (1)

$$f_j(z) = \sum_{\nu=1}^{\infty} p_{\nu}^{(j)} z^{\nu}, \quad j \in \{1, 3\},$$
 (1.1)

которая предполагается аналитической при любом $z \in \mathbb{C}$ таком, что $|z| < (1+\varepsilon)$, $\varepsilon > 0$. Величина $p_{\nu}^{(j)}$ определяет вероятность того, что по потоку Π_j число требований в группе равно ν . Обслуженные требования потока Π_1 поступают на повторное обслуживание, формируя при этом поток Π_4 . Потоки Π_2 и Π_3 являются конфликтными, что означает запрет на одновременное обслуживание требований этих потоков и, следовательно, исследование системы не может быть сведено к задаче с меньшим числом потоков.

В каждый момент времени обслуживающее устройство находится в одном из конечного множества состояний $\Gamma = \{\Gamma^{(k,r)} \colon k = 0, 1, \dots, d; r = 1, 2, \dots n_k\}$ с заданными натуральными числами d, n_0, n_1, \dots, n_d . В каждом состоянии $\Gamma^{(k,r)}$ обслуживающее устройство находится в течение времени $T^{(k,r)}$. Введем множества $\Gamma^{\rm I}$, $\Gamma^{\rm III}$ и $\Gamma^{\rm IV}$ следующим образом. В состоянии $\gamma \in \Gamma^{\rm I}$ обслуживаются только требования из очередей O_1, O_2 и O_4 . В состоянии $\gamma \in \Gamma^{\rm III}$ обслуживаются только требования из очередей O_2 и O_4 . В состоянии $\gamma \in \Gamma^{\rm III}$ обслуживаются только требования из очередей O_3 и O_4 . В состоянии $\gamma \in \Gamma^{\rm IV}$ обслуживаются только требования из очередей O_3 и O_4 . В состоянии $\gamma \in \Gamma^{\rm IV}$ обслуживаются только требования из очередей O_3 и O_4 . Тогда множество Γ есть объединение $\Gamma = \Gamma^{\rm I} \cup \Gamma^{\rm III} \cup \Gamma^{\rm III}$ непересекающихся подмножеств. Также в дальнейшем нам понадобятся множества $\Gamma^{\rm II} \cap \Gamma^{\rm III}$, $\Gamma^{\rm III} \cap \Gamma^{\rm III}$ обслуживаются множества $\Gamma^{\rm II} \cap \Gamma^{\rm III}$ непересекающихся подмножеств. Также в дальнейшем нам понадобятся множества $\Gamma^{\rm II} \cap \Gamma^{\rm III}$ обслуживаются обслуживаются подмножества $\Gamma^{\rm II} \cap \Gamma^{\rm III}$ непересекающихся подмножеств. Также в дальнейшем нам понадобятся множества $\Gamma^{\rm II} \cap \Gamma^{\rm III}$ обслуживаются обслуживаютс

Смена состояний обслуживающего устройства осуществляется по следующему правилу. Множество состояний $C_k = \{\Gamma^{(k,r)} \colon r=1,2,\dots n_k\}$ будем называть k-м циклом, $k=1,\,2,\,\dots,\,d$ (Рис. 2). При k=0 состояние вида $\Gamma^{(0,r)}$ будем называть состоянием продления, $r=0,\,1,\,\dots,\,n_0$. Положим $r\oplus_k 1=r+1$ для $r< n_k$ и $r\oplus_k 1=1$ при $r=n_k,\,k=0,\,1,\,\dots,\,d$. В цикле C_k выделим подмножества C_k^O выходных, C_k^I входных и $C_k^N=C_k\setminus (C_k^O\cup C_k^I)$ нейтральных состояний. Тогда после состояния $\Gamma^{(k,r)}\in C_k\setminus C_k^O$ обслуживающее устройство переходит в состояние $\Gamma^{(k,r\oplus_k 1)}$ того же цикла C_k . При $\Gamma^{(k,r)}$ принадлежащем множеству C_k^O прибор переходит в состояние $\Gamma^{(k,r\oplus_k 1)}$, если число требований в очереди O_3 в момент переключения больше заданного порога L. В противном случае, то есть если число требований в очереди O_3 меньше либо равно L, то новое состояние прибора будет состоянием продления $\Gamma^{(0,r_1)}$, где $r_1=h_1(\Gamma^{(k,r)})$ и $h_1(\cdot)$ — заданное отображение множества $\bigcup_{k=1}^d C_k^O$ во множество $\{1,2,\dots,n_0\}$. После состояния $\Gamma^{(0,r)}$ выбирается состояние того же вида $\Gamma^{(0,r_2)}$,

если число требований в очереди O_3 меньше или равно L, где $r_2 = h_2(r)$ и $h_2(\cdot)$ — заданное отображение множества $\{1,2,\ldots,n_0\}$ на себя; в противном случае включается входное состояние $\Gamma^{(k,r_3)} \in C_k^{\mathrm{I}}$, где $\Gamma^{(k,r_3)} = h_3(r)$ и $h_3(\cdot)$ — заданное отображение множества $\{1,2,\ldots,n_0\}$ на множество $\bigcup_{k=1}^d C_k^{\mathrm{I}}$. Считается, что все состояния продления $\Gamma^{(0,r)}$ принадлежат множеству ${}^2\Gamma$, а также верны соотношения $C_k^{\mathrm{O}} \subset {}^2\Gamma$ и $C_k^{\mathrm{I}} \subset {}^3\Gamma$. Также будем предполагать, что из любого состояния продления существует ребро во входную вершину некоторого цикла, а все циклы, в свою очередь, имеют ровно одно входное и одно выходное состояние. И последним предположением является то, что все вершины продления образуют один цикл.

Рис. 2. Класс графов переходов. Незакрашенные вершины являются выходными вершинами, красным отмечены входные вершины, черным — нейтральные, наполовину закрашенным вершинам соответствуют состояния продления

Таким образом, смена состояний обслуживающего устройства задается соотношением:

$$h(\Gamma^{(k,r)}, y) = \begin{cases} \Gamma^{(k,r \oplus_{k} 1)}, & \text{если } \Gamma^{(k,r)} \in C_{k} \setminus C_{k}^{O}; \\ \Gamma^{(k,r \oplus_{k} 1)}, & \text{если } \Gamma^{(k,r)} \in C_{k}^{O} \text{ и } y > L; \\ \Gamma^{(0,h_{1}(\Gamma^{(k,r)}))}, & \text{если } \Gamma^{(k,r)} \in C_{k}^{O} \text{ и } y \leqslant L; \\ \Gamma^{(0,h_{2}(r))}, & \text{если } k = 0 \text{ и } y \leqslant L; \\ h_{3}(r), & \text{если } k = 0 \text{ и } y > L. \end{cases}$$

$$(1.2)$$

Рассмотрим введеные обозначения на примере рис. 2. Входными состояниями обслуживающего устройства являются $\Gamma^{(1,1)} \in C_1^{\mathrm{I}}, \Gamma^{(2,1)} \in C_2^{\mathrm{I}}, \Gamma^{(3,1)} \in C_3^{\mathrm{I}}$ и $\Gamma^{(4,1)} \in C_4^{\mathrm{I}}$,

выходных состояний — $\Gamma^{(1,4)} \in C_1^{\rm O}$, $\Gamma^{(2,2)} \in C_2^{\rm O}$, $\Gamma^{(3,4)} \in C_3^{\rm O}$ и $\Gamma^{(4,2)} \in C_4^{\rm O}$, нейтральных состояний — $\Gamma^{(1,2)}$, $\Gamma^{(1,3)} \in C_1^{\rm N}$ и $\Gamma^{(3,2)}$, $\Gamma^{(3,3)} \in C_3^{\rm N}$. Состояния продления на графе представлены вершинами $\Gamma^{(0,1)}$, $\Gamma^{(0,2)}$, $\Gamma^{(0,3)}$ и $\Gamma^{(0,4)}$. Далее, отображение $h_1(\cdot)$ на графе задано таким образом, что оно переводит, например, выходное состояние $\Gamma^{(1,4)}$ в число 1 — номер состояния продления $\Gamma^{(0,1)}$, то есть $h_1(\Gamma^{(1,4)}) = 1$. Аналогично, например, $h_2(1) = 2$ и $h_2(3) = 4$. Примером отображения $h_3(\cdot)$ является $h_3(2) = \Gamma^{(3,1)}$.

Предполагается, что длительности обслуживания различных требований могут быть зависимыми и иметь различные законы распределения, поэтому вместо классического способа, состоящего в указании функции распределения длительности обслуживания произвольного требования, будут использованы потоки насыщения. Потоки насыщения $\Pi_i^{\text{\tiny Hac}}, j \in \{1, 2, 3, 4\}$, определяются как виртуальные выходные потоки при условии максимального использования ресурсов обслуживающего устройства, а для $j \in \{1, 2, 3\}$ еще и при условии максимальной загрузки соответствующих очередей. Поток насыщения $\Pi_j^{\text{\tiny Hac}},\,j\in\{1,2,3\},$ будет содержать неслучайное число $\ell_{k,r,j}$ требований, обслуженных в течение времени $T^{(k,r)}$, если $\Gamma^{(k,r)} \in {}^{j}\Gamma$, и будет содержать 0 требований в противном случае: $\Gamma^{(k,r)} \notin {}^j\Gamma$. Пусть \mathbb{Z}_+ — множество целых неотрицательных чисел. Тогда, при условии, что в очереди O_4 находится $x \in \mathbb{Z}_+$ требований, поток насыщения Π_4^{hac} определим как поток, содержащий все x требований. Наконец, при состоянии обслуживающего устройства $\Gamma^{(k,r)}$ каждое требование из очереди O_4 с вероятностью $p_{k,r}$ и независимо от других завершает обслуживание и отправляется в очередь O_2 потока Π_2 . С вероятностью $1-p_{k,r}$ требование очереди O_4 остается в ней до следующего такта. На следующем такте процесс повторяется.

В качестве наглядной физической интерпретации можно привести тандем из двух перекрестков (рис. 3). В качестве потоков требований, формируемых внешней средой,

Рис. 3. Пример: тандем перекрестков

выступают потоки прибывающих на перекрестки машин: конфликтные потоки Π_1 , Π_5 на первом перекрестке, а также поток Π_3 на втором. Каждая машина из потока Π_1 ,

проезжая первый перекресток, становится в очередь O_4 потока Π_4 и затем с некой вероятностью ($p_{k,r}$ для состояния $\Gamma^{(k,r)}$ обслуживающего устройства) доезжает до следующего перекрестка, или же не успевает это сделать и остается в очереди O_4 до следующего такта обслуживания. В случае, если машина из очереди O_4 успевает доехать до второго перекрестка, она становится в очередь O_2 и ждет своей очереди для его прохождения.

Предполагается, что светофор на первом перекрестке имеет лишь два состояния $\{g_{1,1},g_{1,2}\}$: в состоянии $g_{1,1}$ машины потока Π_1 пропускаются фиксированное количество времени $\widetilde{T}^{(1,1)}$ («зеленый» свет для Π_1); в состоянии $g_{1,2}$ — простаивают в течение времени $\widetilde{T}^{(1,2)}$ («красный» свет для Π_1). Светофор на втором перекрестке обслуживает по алгоритму с продлением: дополнительно к состоянию обслуживания потока Π_3 (состояние $g_{2,1}$), также имеется два состояния обслуживания потока Π_2 (состояния $\{g_{2,2},g_{2,3}\}$). Первое из них включается всегда после завершения обслуживания потока Π_3 , а второе включается, если после очередного такта обслуживания потока Π_2 длина очереди O_3 не превосходит уровня L. Длительности пребывания светофора на втором перекрестке в каждом из состояний суть $\widetilde{T}^{(2,1)}$, $\widetilde{T}^{(2,2)}$ и $\widetilde{T}^{(2,3)}$.

Рассматривая тандем из двух перекрестков как единую систему массового обслуживания и предполагая наблюдение за ней только в (дискретные) моменты переключения состояния хотя бы одного из светофоров, может быть показано, что количество различных состояний у полученной системы конечно. Действительно, положим, например, за состояние объединенной системы вектор $(g^{(1)}, g^{(2)}, s, t)$, где $g^{(1)} \in \{g_{1,1}, g_{1,2}\}$ — состояние 1—го перекрестка, $g^{(2)} \in \{g_{2,1}, g_{2,2}, g_{2,3}\}$ — состояние 2—го перекрестка, $s \in \{0,1,2\}$ — номер последнего сменившего состояние перекрестка (принимает значение 0 в случае, если сменили состояние оба перекрестка) и $t \in \{0,1,2,\ldots,T\}$ — количество времени, оставшееся у продолжающего обслуживание с прошлого такта перекрестка (принимает значение 0, если принимает значение 0 величина s). Здесь T — максимальная длительность нахождения каждого из светофоров в одном состоянии. Тогда количество различных состояний не трудно посчитать и оно не будет превышать величины $2 \times 3 \times 3 \times T$.

В завершение построения примера отметим, что при прохождении перекрестков машины предполагаются движущимися только в прямом направлении, то есть перемешивания конфликтных потоков не допускается. Таким образом, поток Π_5 не представляет интереса для дальнейшего исследования системы и может быть отброшен и, следовательно, построенный пример целиком удовлетворяет структурной схеме на рис. 1.

Теперь продемонстрируем на конкретном числовом примере выделение циклов и состояний продления. Пусть изменение состояний перекрестков и время пребывания (в секундах для определнности) в каждом из состояний задается графами на

рис. 4. За начальное состояние объединенной системы примем $\Gamma_0=(g_{1,1},g_{2,1},0,0),$ то

Рис. 4. Числовой пример тандема перекрестков. Левый граф соответствует первому перекрестку, правый — второму

есть первый перекресток находится в состоянии $g_{1,1}$, второй — в состоянии $g_{2,1}$, и оба только начали свою работу в своем состоянии (этот факт моделируется равенствами s=0 и t=0). Следующая смена состояний случится у обоих перекрестков одновременно и приведет к следующему состоянию $(g_{1,2},g_{2,2},0,0)$. Далее смена состояний произойдет также у первого и второго перекрестков, однако второй перекресток может перейти как в состояние $g_{2,1}$, так и в состояние продления $g_{2,3}$. Таким образом следущим состоянием тандема будет либо опять $(g_{1,1},g_{2,1},0,0)$, либо $(g_{1,1},g_{2,3},0,0)$. Продолжая рассуждения аналогичным образом, получим следущий список всех возможных состояний системы:

$$(g_{1,1},g_{2,1},0,0) = \Gamma^{(1,1)}, \qquad (g_{1,2},g_{2,2},0,0) = \Gamma^{(1,2)}, \qquad (g_{1,1},g_{2,3},0,0) = \Gamma^{(0,1)}, \\ (g_{1,1},g_{2,3},15,2) = \Gamma^{(0,2)}, \qquad (g_{1,2},g_{2,3},0,0) = \Gamma^{(0,3)}, \qquad (g_{1,2},g_{2,3},15,2) = \Gamma^{(0,4)}, \\ (g_{1,2},g_{2,1},15,2) = \Gamma^{(4,1)}, \qquad (g_{1,1},g_{2,1},15,1) = \Gamma^{(4,2)}, \qquad (g_{1,1},g_{2,2},15,2) = \Gamma^{(4,3)}, \\ (g_{1,2},g_{2,2},15,1) = \Gamma^{(4,4)}, \qquad (g_{1,2},g_{2,3},15,2) = \Gamma^{(0,5)}, \qquad (g_{1,2},g_{2,1},0,0) = \Gamma^{(3,1)}, \\ (g_{1,1},g_{2,2},0,0) = \Gamma^{(3,2)}, \qquad (g_{1,1},g_{2,1},15,2) = \Gamma^{(2,1)}, \qquad (g_{1,2},g_{2,1},15,1) = \Gamma^{(2,2)}, \\ (g_{1,2},g_{2,2},15,2) = \Gamma^{(2,3)}, \qquad (g_{1,1},g_{2,2},15,1) = \Gamma^{(2,4)}.$$

В соответсвии с приведенными выше обозначениями, множества C_1 , C_2 , C_3 , C_4 , а также множество состояний продления строятся однозначным образом. Множествами входных состояний будут $C_1^{\rm I} = \{\Gamma^{(1,1)}\}$, $C_2^{\rm I} = \{\Gamma^{(2,1)}\}$, $C_3^{\rm I} = \{\Gamma^{(3,1)}\}$ и $C_4^{\rm I} = \{\Gamma^{(4,1)}\}$. Множествами выходных состояний будут $C_1^{\rm O} = \{\Gamma^{(1,2)}\}$, $C_2^{\rm O} = \{\Gamma^{(2,4)}\}$, $C_3^{\rm O} = \{\Gamma^{(3,2)}\}$ и $C_4^{\rm O} = \{\Gamma^{(4,4)}\}$. Функции $h_1(\cdot)$, $h_2(\cdot)$ и $h_3(\cdot)$ задаются поточечно:

$$h_1(\Gamma^{(1,2)}) = 1$$
, $h_1(\Gamma^{(2,4)}) = 2$, $h_1(\Gamma^{(3,2)}) = 3$, $h_1(\Gamma^{(4,4)}) = 5$,

$$h_2(1) = 2$$
, $h_2(2) = 3$, $h_2(3) = 4$ $h_2(4) = 1$, $h_2(5) = 1$,
 $h_3(1) = \Gamma^{(2,1)}$, $h_3(2) = \Gamma^{(3,1)}$, $h_3(3) = \Gamma^{(4,1)}$ $h_3(4) = \Gamma^{(1,1)}$, $h_3(5) = \Gamma^{(1,1)}$.

Этим завершается построение числового примера.

1.2. Представление рассматриваемой системы обслуживания в виде кибернетической управляющей системы

Описанная в предыдущем разделе на содержательном уровне система массового обслуживания должна рассматриваться как кибернетическая управляющая система обслуживания (см. [3]). Схема управляющей системы приведена на рис. 1. На схеме присутствуют следующие блоки: 1) внешняя среда с одним состоянием; 2) входные полюса первого типа — входные потоки Π_1 , Π_2 , Π_3 , Π_4 ; 3) входные полюса второго типа — потоки насыщения $\Pi_1^{\text{нас}}$, $\Pi_2^{\text{нас}}$, $\Pi_3^{\text{нас}}$, $\Pi_4^{\text{нас}}$; 4) внешняя память — очереди O_1 , O_2 , O_3 , O_4 ; 5) устройство по переработке информации внешней памяти — устройства по поддержанию дисциплины очереди δ_1 , δ_2 , δ_3 , δ_4 ; 6) внутренняя память — обслуживающее устройство (ОУ); 7) устройство по переработке информации во внутренней памяти — граф смены состояний; 8) выходные полюса $\Pi_1^{\text{вых}}$, $\Pi_2^{\text{вых}}$, $\Pi_3^{\text{вых}}$, $\Pi_4^{\text{вых}}$. Координатой блока является номер этого блока на схеме.

Для задания информации блоков введем следующие величины и элементы, а также укажем множества их возможных значений. В качестве дискретной временной шкалы выберем последовательность $\tau_0 = 0, \tau_1, \tau_2, \ldots$ моментов смены состояний обслуживающего устройства. Обозначим Γ_i из множества Γ состояние обслуживающего устройства в течение времени $(\tau_{i-1}; \tau_i]$, количество $\varkappa_{j,i} \in \mathbb{Z}_+$ требований в очереди O_j в момент времени τ_i , количество $\eta_{j,i} \in \mathbb{Z}_+$ требований, поступивших в очередь O_j по потоку Π_j в течение времени $(\tau_i; \tau_{i+1}]$, количество $\xi_{j,i} \in \mathbb{Z}_+$ требований по потоку насыщения $\Pi_j^{\text{нас}}$ в течение времени $(\tau_i; \tau_{i+1}]$, количество $\bar{\xi}_{j,i} \in \mathbb{Z}_+$ реально обслуженных требований по потоку Π_j в течение времени $(\tau_i; \tau_{i+1}], j \in \{1, 2, 3, 4\}$.

Закон изменения состояния обслуживающего устройства будем предполагать заданным соотношением

$$\Gamma_{i+1} = h(\Gamma_i, \varkappa_{3,i}), \tag{1.3}$$

где отображение $h(\cdot,\cdot)$ определено в (1.2). Для определения длительности T_{i+1} состояния обслуживающего устройства в течение времени $(\tau_i; \tau_{i+1}]$ удобно ввести функцию $h_T(\cdot,\cdot)$:

$$T_{i+1} = h_T(\Gamma_i, \varkappa_{3,i}) = T^{(k,r)},$$
 где $\Gamma^{(k,r)} = \Gamma_{i+1} = h(\Gamma_i, \varkappa_{3,i}).$

Функциональная зависимость

$$\overline{\xi}_{j,i} = \min\{\varkappa_{j,i} + \eta_{j,i}, \xi_{j,i}\}, \quad j \in \{1, 2, 3\},$$
(1.4)

между величиной $\overline{\xi}_{j,i}$ и величинами $\varkappa_{j,i},\,\eta_{j,i},\,\xi_{j,i}$ реализует стратегию механизма обслуживания требований. Далее, поскольку

$$\varkappa_{j,i+1} = \varkappa_{j,i} + \eta_{j,i} - \overline{\xi}_{j,i}, \quad j \in \{1,2,3\},$$

то из (1.4) следует соотношение

$$\varkappa_{j,i+1} = \max\{0, \varkappa_{j,i} + \eta_{j,i} - \xi_{j,i}\}, \quad j \in \{1, 2, 3\}.$$
(1.5)

Из формулировки поставленной задачи (см. также структурную схему на рис. 1) следуют соотношения для потока Π_4 :

$$\eta_{4,i} = \min\{\xi_{1,i}, \varkappa_{1,i} + \eta_{1,i}\}, \quad \varkappa_{4,i+1} = \varkappa_{4,i} + \eta_{4,i} - \eta_{2,i}, \quad \xi_{4,i} = \varkappa_{4,i}.$$
(1.6)

Нелокальное описание входных потоков и потоков насыщения состоит в указании некоторых свойств условных распределений выделенных дискретных компонент $\eta_i = (\eta_{1,i}, \eta_{2,i}, \eta_{3,i}, \eta_{4,i})$ и $\xi_i = (\xi_{1,i}, \xi_{2,i}, \xi_{3,i}, \xi_{4,i})$ маркированных точечных процессов $\{(\tau_i, \nu_i, \eta_i); i \geq 0\}$ и $\{(\tau_i, \nu_i, \xi_i); i \geq 0\}$ при фиксированных значениях метки $\nu_i = (\Gamma_i; \varkappa_i)$, где $\varkappa_i = (\varkappa_{1,i}, \varkappa_{2,i}, \varkappa_{3,i}, \varkappa_{4,i})$. Введем функции $\varphi_1(\cdot, \cdot)$ и $\varphi_3(\cdot, \cdot)$ из разложений

$$\sum_{\nu=0}^{\infty} z^{\nu} \varphi_j(\nu, t) = \exp\{\lambda_j t (f_j(z) - 1)\},\,$$

где $f_j(z)$ определены в (1.1), $j\in\{1,3\}$. Функция $\varphi_j(\nu,t)$ есть вероятность поступления $\nu=0,\,1,\,\ldots$ требований по потоку Π_j за время $t\geqslant 0$. Положим $\varphi_j(\nu,t)$ равной нулю при $\nu<0$. Функцию $\psi(\cdot,\cdot,\cdot)$ зададим формулой

$$\psi(k; y, u) = C_u^k u^k (1 - u)^{y-k}.$$

По своему смыслу $\psi(k;y,u)$ есть вероятность поступления k требований по потоку Π_2 при условии, что очередь O_4 содержит y требований и обслуживающее устройство находится в состоянии $\Gamma^{(k,r)}$, так что $u=p_{k,r}$. При нарушении условия $0\leqslant k\leqslant y$ положим $\psi(k;y,u)$ равной нулю.

Пусть $a=(a_1,a_2,a_3,a_4)\in\mathbb{Z}_+^4$ и $x=(x_1,x_2,x_3,x_4)\in\mathbb{Z}_+^4$. Тогда из постановки задачи на содержательном уровне следует, что при фиксированном значении метки $\nu_i=(\Gamma^{(k,r)};x)$ вероятность $\varphi(a,k,r,x)$ одновременного выполнения равенств $\eta_{1,i}=a_1$,

 $\eta_{2,i}=a_2,\,\eta_{3,i}=a_3,\,\eta_{4,i}=a_4$ есть

$$\varphi_1(a_1, h_T(\Gamma^{(k,r)}, x_3)) \times \psi(a_2, x_4, p_{\tilde{k}, \tilde{r}}) \times \varphi_3(a_3, h_T(\Gamma^{(k,r)}, x_3)) \times \delta_{a_4, \min\{\ell(\tilde{k}, \tilde{r}, 1), x_1 + a_1\}},$$
 (1.7)

где $\Gamma^{\left(\tilde{k},\tilde{r}\right)}=h(\Gamma^{\left(k,r\right)},x_{3})$ и $\delta_{i,j}$ есть символ Кронекера

$$\delta_{i,j} = \begin{cases} 1, & \text{если } i = j \\ 0, & \text{если } i \neq j, \end{cases}$$

Пусть $b = (b_1, b_2, b_3, b_4) \in \mathbb{Z}_+^4$. Из содержательной постановки задачи также следует, что вероятность $\zeta(b, k, r, x)$ одновременного выполнения равенств $\xi_{1,i} = b_1$, $\xi_{2,i} = b_2$, $\xi_{3,i} = b_3$, $\xi_{4,i} = b_4$ при фиксированном значении метки $\nu_i = (\Gamma^{(k,r)}; x)$ есть

$$\delta_{b_1,\ell(\tilde{k},\tilde{r},1)} \times \delta_{b_2,\ell(\tilde{k},\tilde{r},2)} \times \delta_{b_3,\ell(\tilde{k},\tilde{r},3)} \times \delta_{b_4,x_4}. \tag{1.8}$$

Из формулы (1.8) следует для $j \in \{1, 2, 3\}$, что вероятность события $\xi_{j,i} = 0$ равна 1 в случае $h(\Gamma^{(k,r)}, x_3) \notin {}^j\Gamma$ и что вероятность события $\xi_{j,i} = \ell_{\tilde{k},\tilde{r},j}$ равна 1, если $\Gamma^{(\tilde{k},\tilde{r})} = h(\Gamma^{(k,r)}, x_3) \in {}^j\Gamma$.

Содержательный смысл следующей теоремы состоит в том, что сформулированные выше функциональные связи и вероятностные свойства введенных объектов непротиворечивы и могут быть реализованы на некотором общем вероятностном пространстве.

Теорема 1.1. Пусть $\gamma_0 = \Gamma^{(k_0,r_0)} \in \Gamma$ и $x^0 = (x_{1,0},x_{2,0},x_{3,0},x_{4,0}) \in \mathbb{Z}_+^4$ фиксированы. Тогда существует вероятностное пространство $(\Omega,\mathcal{F},\mathbf{P}(\cdot))$ и заданные на нем случайные величины $\eta_{j,i} = \eta_{j,i}(\omega), \ \xi_{j,i} = \xi_{j,i}(\omega), \ \varkappa_{j,i} = \varkappa_{j,i}(\omega)$ и случайные элементы $\Gamma_i = \Gamma_i(\omega), \ i \geqslant 0, \ j \in \{1,2,3,4\}, \ \text{такие, что 1})$ имеют место равенства $\Gamma_0(\omega) = \gamma_0$ и $\varkappa_0(\omega) = x^0$; 2) выполняются соотношения $(1.3), (1.5), (1.6); \ 3)$ для любых $a, b, x^t = (x_{1,t}, x_{2,t}, x_{3,t}, x_{4,t}) \in \mathbb{Z}_+^4, \ \Gamma^{(k_t,r_t)} \in \Gamma, \ t = 1,2,\ldots$, условное распределение векторов η_i , и ξ_i имеет вид

$$\mathbf{P}\left(\left\{\omega\colon\eta_{i}=a,\xi_{i}=b\right\}\middle|\bigcap_{t=0}^{i}\left\{\omega\colon\Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t}\right\}\right)=\varphi(a,k_{i},r_{i},x^{i})\times\zeta(b,k_{i},r_{i},x^{i}),$$
(1.9)

где функции $\varphi(\cdot,\cdot,\cdot,\cdot)$ и $\zeta(\cdot,\cdot,\cdot,\cdot)$ определяются формулами (1.7) и (1.8) соответственно, $i\geqslant 0$.

Доказательство. В соответствии с теоремой Ионеску Тулчи (см. [13]) для доказательства достаточно задать на $(\Omega_0, \mathcal{F}_0)$ вероятностную меру $P_0(\cdot)$ и далее, считая

для $0 < i \leqslant n$ и каждого набора элементарных исходов $(\omega_0, \omega_1, \ldots, \omega_{i-1})$ заданной на $(\Omega_i, \mathcal{F}_i)$ вероятностную меру $P(\omega_0, \omega_1, \ldots, \omega_{i-1}; \cdot)$, задать на $(\Omega_{n+1}, \mathcal{F}_{n+1})$ меру $P(\omega_0, \omega_1, \ldots, \omega_n; \cdot)$, причем для любого множества $B \in \mathcal{F}_i$ функции $P(\omega_0, \omega_1, \ldots, \omega_{i-1}; B)$ должны быть измеримыми функциями от $(\omega_0, \omega_1, \ldots, \omega_{i-1})$. Тогда для декартова произведения пространств элементарных исходов $\Omega = \prod_{i=0}^{\infty} \Omega_i$ и произведения σ -алгебр $\mathcal{F} = \bigotimes_{i=0}^{\infty} \mathcal{F}_i$ на (Ω, \mathcal{F}) будет существовать единственная вероятностная мера $\mathbf{P}(\cdot)$ такая, что для любого $i \geqslant 0$ верно равенство

$$\mathbf{P}\{\omega \colon \omega_0 \in A_0, \omega_1 \in A_1, \dots, \omega_i \in A_i\} = P_i(A_0 \times A_1 \times \dots \times A_i), \tag{1.10}$$

где

$$P_i(A_0 \times A_1 \times \ldots \times A_i) = \int_{A_0} P_0(d\omega_0) \int_{A_1} P(\omega_0; d\omega_1) \dots \int_{A_i} P(\omega_0, \omega_1, \ldots, \omega_{i-1}; d\omega_i), \quad (1.11)$$

для любого A_i из \mathcal{F}_i .

Итак, за описание элементарного исхода $\omega_i \in \Omega_i$ для произвольного $i \geqslant 0$ примем набор $(\omega_{1,i}, \omega_{2,i}, \omega_{3,i}), \, \omega_{j,i} \in \mathbb{Z}_+$. Таким образом, $\Omega_i = \mathbb{Z}_+^3$ и в качестве σ -алгебры \mathcal{F}_i возьмем множество всех подмножеств множества Ω_i : $\mathcal{F}_i = 2^{\Omega_i}$. Пусть $\Gamma^{(\tilde{k},\tilde{r})} = h(\Gamma^{(k_0,r_0)}, x_{3,0})$. Тогда поскольку множество Ω_0 счетно, определим вероятностную меру $P_0(\cdot)$ на измеримом пространстве $(\Omega_0, \mathcal{F}_0)$ ее значениями на одноточечных множествах:

$$P_0(\{(a_1, a_2, a_3)\}) = \varphi_1(a_1, h_T(\Gamma^{(k_0, r_0)})) \times \psi(a_2, x_{2,0}, p_{\tilde{k}, \tilde{r}}) \times \varphi_3(a_3, h_T(\Gamma^{(k_0, r_0)})). \tag{1.12}$$

Для $j \in \{1, 2, 3\}$ определим величины

$$\Gamma_0 = \gamma_0, \quad \varkappa_{i,0} = x_{i,0}, \quad \xi_{i,0} = l(\tilde{k}, \tilde{r}, j), \quad \eta_{i,0} = \omega_{i,0},$$
(1.13)

И

$$\varkappa_{4,0} = x_{4,0}, \quad \xi_{4,0} = x_{4,0}, \quad \eta_{4,0} = \min\{\xi_{1,0}, x_{1,0} + \eta_{1,0}\}.$$
(1.14)

Теперь, предполагая заданными на $(\Omega_i, \mathcal{F}_i)$ вероятностные меры $P(\omega_0, \omega_1, \dots, \omega_{i-1}; \cdot)$, заданными величины $\Gamma_i, \varkappa_{j,i}, \xi_{j,i}, \eta_{j,i}, i \in \{0, 1, \dots, n\}, j \in \{1, 2, 3, 4\}$ и фиксируя набор $(\omega_0, \omega_1, \dots, \omega_n)$, определим на $(\Omega_{n+1}, \mathcal{F}_{n+1})$ меру $P(\omega_0, \omega_1, \dots, \omega_n; \cdot)$. Положим для $j \in \{1, 2, 3\}$

$$\Gamma_{n+1} = \Gamma^{(k^*,r^*)} = h(\Gamma_n, \varkappa_{3,n}), \quad \varkappa_{j,n+1} = \max\{0, \varkappa_{j,n} + \eta_{j,n} - \xi_{j,n}\},$$
(1.15)

$$\varkappa_{4,n+1} = \varkappa_{4,n} + \eta_{4,n} - \eta_{2,n}, \quad \xi_{j,n+1} = l(k^*, r^*, j), \tag{1.16}$$

$$\eta_{j,n+1} = \omega_{j,n+1}, \quad \eta_{4,n+1} = \min\{\xi_{1,n+1}, \varkappa_{1,n+1} + \eta_{1,n+1}\}, \quad \xi_{4,n+1} = \varkappa_{4,n+1}.$$
(1.17)

Тогда, по аналогии с построением вероятностной меры $P_0(\cdot)$, зададим меру $P(\omega_0, \omega_1, \dots, \omega_n; \cdot)$ на одноточечных множествах $\{(a_1, a_2, a_3)\}$:

$$P(\omega_0, \omega_1, \dots, \omega_n; \{(a_1, a_2, a_3)\}) =$$

$$= \varphi_1(a_1, h_T(\Gamma_n, x_{3,n})) \times \psi(a_2, x_{4,n}, p_{k^*, r^*}) \times \varphi_3(a_3, h_T(\Gamma_n, x_{3,n})). \quad (1.18)$$

Вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P}(\cdot))$ построено.

Теперь докажем, что введеные с помощью формул (1.13) – (1.17) случайные элементы $\Gamma_i(\omega)$ и случайные величины $\varkappa_{j,i}(\omega)$, $\eta_{j,i}(\omega)$, $\xi_{j,i}(\omega)$, $i \geqslant 0$, $j \in \{1,2,3,4\}$ удовлетворяют условиям теоремы. Из формулы (1.15) следует, что случайные элементы Γ_i удовлетворяют соотношению (1.3), а случайные величины $\varkappa_{j,i}$ для $j \in \{1,2,3\}$ удовлетворяют соотношению (1.5). Из формулы (1.16) заключаем, что $\varkappa_{4,i}$ удовлетворяет соотношению (1.6). Далее, из (1.14) и (1.17) следует справедливость соотношений (1.6) для величин $\eta_{4,i}$ и $\xi_{4,i}$.

Перейдем к доказательству равенства (1.9). Для этого найдем явное выражение для условной вероятности $\mathbf{P}(\{\omega \colon \eta_i = a, \xi_i = b\} | \bigcap_{t=0}^i \{\omega \colon \Gamma_t = \Gamma^{(k_t, r_t)}, \varkappa_t = x^t\})$. Пусть $\Gamma^{(\tilde{k}_i, \tilde{r}_i)} = h(\Gamma^{(k_i, r_i)}, x^i)$. Распишем по определению условной вероятности:

$$\mathbf{P}\left(\left\{\omega\colon\eta_{i}=a,\xi_{i}=b\right\}\middle|\bigcap_{t=0}^{i}\left\{\omega\colon\Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t}\right\}\right) = \\
=\mathbf{P}\left(\left\{\omega\colon\eta_{i}=a,\xi_{i}=b\right\}\cap\bigcap_{t=0}^{i}\left\{\omega\colon\Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t}\right\}\right)\middle/\mathbf{P}\left(\bigcap_{t=0}^{i}\left\{\omega\colon\Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t}\right\}\right). \tag{1.19}$$

Далее из (1.10), (1.11) и того факта, что Γ_i и \varkappa_i не зависят от ω_i (этот факт следует из (1.13) – (1.16)), получим выражение для знаменателя последней дроби

$$\mathbf{P}\left(\bigcap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t},r_{t})}, \varkappa_{t} = x^{t}\}\right) =$$

$$= \sum_{\substack{\omega_{0},\omega_{1},\dots\omega_{i-1} \colon \\ \Gamma_{t} = \Gamma^{(k_{t},r_{t})}, \varkappa_{t} = x^{t}, \forall 0 \leqslant t \leqslant i-1}} P_{0}(\omega_{0}) \times P(\omega_{0}; \{\omega_{1}\}) \times \dots \times P(\omega_{0},\omega_{1},\dots,\omega_{i-2}; \{\omega_{i-1}\}).$$

$$(1.20)$$

Преобразуем множество $\{\eta_i=a,\xi_i=b\}\cap \{\Gamma_i=\Gamma^{(k_i,r_i)},\varkappa_i=x^i\}$, учитывая соотноше-

ния (1.13) - (1.17):

$$\left\{ \eta_{i} = a, \xi_{i} = b \right\} \cap \left\{ \Gamma_{i} = \Gamma^{(k_{i}, r_{i})}, \varkappa_{i} = x^{i} \right\} = \left\{ \Gamma_{i} = \Gamma^{(k_{i}, r_{i})}, \varkappa_{i} = x^{i} \right\} \cap \left\{ \eta_{j,i} = a_{j}, j \in \{1, 2, 3\} \right\} \cap \left\{ \xi_{j,i} = b_{j}, j \in \{1, 2, 3\} \right\} \cap \left\{ \xi_{4,i} = b_{4} \right\} \cap \left\{ \eta_{4,i} = a_{4} \right\} = \left\{ \Gamma_{i} = \Gamma^{(k_{i}, r_{i})}, \varkappa_{i} = x^{i} \right\} \cap \left\{ \omega_{j,i} = a_{j}, j \in \{1, 2, 3\} \right\} \cap \left\{ b_{j} = \ell(\tilde{k}_{i}, \tilde{r}_{i}, j), j \in \{1, 2, 3\} \right\} \cap \left\{ b_{4} = x_{4,i} \right\} \cap \left\{ a_{4} = \min \left\{ \ell(\tilde{k}_{i}, \tilde{r}_{i}, 1), x_{1,i} + a_{1} \right\} \right\}.$$

Тогда для числителя дроби из (1.19) имеем:

$$\mathbf{P}\left(\left\{\omega:\eta_{i}=a,\xi_{i}=b\right\}\cap\bigcap_{t=0}^{i}\left\{\omega:\Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t}\right\}\right) = \\
=\mathbf{P}\left(\left\{\eta_{i}=a,\xi_{i}=b\right\}\cap\left\{\Gamma_{i}=\Gamma^{(k_{i},r_{i})},\varkappa_{i}=x^{i}\right\}\cap\bigcap_{t=0}^{i-1}\left\{\omega:\Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t}\right\}\right) = \\
=\delta_{b_{4},x_{4,i}}\times\delta_{a_{4},\min\left\{\ell(\tilde{k}_{i},\tilde{r}_{i},1),x_{1,i}+a_{1}\right\}}\times\prod_{j=1}^{3}\delta_{b_{j},\ell(\tilde{k}_{i},\tilde{r}_{i},j)}\times \\
\times\mathbf{P}\left(\left\{\omega_{j,i}=a_{j},j\in\left\{1,2,3\right\}\right\}\cap\left\{\Gamma_{i}=\Gamma^{(k_{i},r_{i})},\varkappa_{i}=x^{i}\right\}\cap\bigcap_{t=0}^{i-1}\left\{\omega:\Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t}\right\}\right) \tag{1.21}$$

И по аналогии со знаменателем (выражение (1.20)), распишем последнюю вероятность:

$$\mathbf{P}\left(\left\{\omega_{j,i} = a_{j}, j \in \{1, 2, 3\}\right\} \cap \left\{\Gamma_{i} = \Gamma^{(k_{i}, r_{i})}, \varkappa_{i} = x^{i}\right\} \cap \bigcap_{t=0}^{i-1} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t}, r_{t})}, \varkappa_{t} = x^{t}\}\right) = \sum_{\substack{\omega_{0}, \omega_{1}, \dots \omega_{i-1} \colon \\ \Gamma_{t} = \Gamma^{(k_{t}, r_{t})}, \varkappa_{t} = x^{t}, \forall 0 \leqslant t \leqslant i-1}} P_{0}(\omega_{0}) \times P(\omega_{0}; \{\omega_{1}\}) \times \dots \times P(\omega_{0}, \omega_{1}, \dots, \omega_{i-2}; \{\omega_{i-1}\}) \times \times P(\omega_{0}, \omega_{1}, \dots, \omega_{i-1}; \{(a_{1}, a_{2}, a_{3})\}) = \sum_{t=0}^{i-1} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t}, r_{t})}, \varkappa_{t} = x^{t}\}\right)$$

и подставляя (1.18), получим

$$= \varphi_{1}(a_{1}, h_{T}(\Gamma_{i}, x_{3,i})) \times \psi(a_{2}, x_{4,i}, p_{\tilde{k}_{i}, \tilde{r}_{i}}) \times \varphi_{3}(a_{3}, h_{T}(\Gamma_{i}, x_{3,i})) \times$$

$$\times \sum_{\substack{\omega_{0}, \omega_{1}, \dots \omega_{i-1} : \\ \Gamma_{t} = \Gamma^{(k_{t}, r_{t})}, \varkappa_{t} = x^{t}, \forall 0 \leqslant t \leqslant i-1}} P_{0}(\omega_{0}) \times P(\omega_{0}; \{\omega_{1}\}) \times \dots \times P(\omega_{0}, \omega_{1}, \dots, \omega_{i-2}; \{\omega_{i-1}\}).$$

$$(1.22)$$

Подставляя (1.22) в (1.21), а затем (1.21) и (1.20) в (1.19), получим:

$$\begin{split} \mathbf{P}\left(\left\{\omega\colon\eta_{i}=a,\xi_{i}=b\right\}\middle|\bigcap_{t=0}^{i}\left\{\omega\colon\Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t}\right\}\right) = \\ &=\delta_{b_{4},x_{4,i}}\times\delta_{a_{4},\min\left\{\ell(\tilde{k}_{i},\tilde{r}_{i},1),x_{1,i}+a_{1}\right\}}\times\prod_{j=1}^{3}\delta_{b_{j},\ell(\tilde{k}_{i},\tilde{r}_{i},j)}\times\varphi_{1}(a_{1},h_{T}(\Gamma_{i},x_{3,i}))\times\\ &\times\psi(a_{2},x_{4,i},p_{\tilde{k}_{i},\tilde{r}_{i}})\times\varphi_{3}(a_{3},h_{T}(\Gamma_{i},x_{3,i}))\times\\ &\times\sum_{\substack{\omega_{0},\omega_{1},\ldots,\omega_{i-1}:\\ \Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t},\forall 0\leqslant t\leqslant i-1}}P_{0}(\omega_{0})\times P(\omega_{0};\{\omega_{1}\})\times\ldots\times P(\omega_{0},\omega_{1},\ldots,\omega_{i-2};\{\omega_{i-1}\})/\\ &\int_{\substack{\omega_{0},\omega_{1},\ldots,\omega_{i-1}:\\ \Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t},\forall 0\leqslant t\leqslant i-1}}P_{0}(\omega_{0})\times P(\omega_{0};\{\omega_{1}\})\times\ldots\times P(\omega_{0},\omega_{1},\ldots,\omega_{i-2};\{\omega_{i-1}\})/\\ &\int_{\substack{\omega_{0},\omega_{1},\ldots,\omega_{i-1}:\\ \Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t},\forall 0\leqslant t\leqslant i-1}}} \end{split}$$

и после сокращения одинаковых сумм получаем в точности (1.9).

Следствие 1.1. В условиях предыдущей теоремы верно равенство

$$\mathbf{P}\left(\left\{\omega : \eta_{i} = a, \xi_{i} = b\right\} \middle| \bigcap_{t=0}^{i} \left\{\omega : \Gamma_{t} = \Gamma^{(k_{t}, r_{t})}, \varkappa_{t} = x^{t}\right\}\right) =$$

$$= \mathbf{P}\left(\left\{\omega : \eta_{i} = a, \xi_{i} = b\right\} \middle| \left\{\omega : \Gamma_{i} = \Gamma^{(k_{i}, r_{i})}, \varkappa_{i} = x^{i}\right\}\right) \quad (1.23)$$

Доказательство. Действительно, из (1.9) следует, что вероятность, стоящая в левой части равенства (1.23), равна величине $\varphi(a, k_i, r_i, x^i) \times \zeta(b, k_i, r_i, x^i)$, зависящей только от значения ($\Gamma^{(k_i, r_i)}, x^i$) пары (Γ_i, \varkappa_i) и не зависящей от значений остальных пар (Γ_t, \varkappa_t) $_{0 \leqslant t \leqslant i-1}$. Таким образом, знание о значениях пар (Γ_t, \varkappa_t) $_{0 \leqslant t \leqslant i-1}$ не влияет на вероятность $\mathbf{P}(\{\omega \colon \eta_i = a, \xi_i = b\} | \bigcap_{t=0}^i \{\omega \colon \Gamma_t = \Gamma^{(k_t, r_t)}, \varkappa_t = x^t\})$ и, следовательно, (1.23) верно.

Введем для $y_0, y, \tilde{y} \in \mathbb{Z}_+$ и $t \in \mathbb{R}, t \geqslant 0$ функции

$$\widetilde{\psi}(k, r, y_0, y, \widetilde{y}) = (1 - \delta_{\widetilde{y}, 0}) \psi(\widetilde{y} + \ell(k, r, 2) - y, y_0, p_{k, r}) + \delta_{\widetilde{y}, 0} \sum_{a=0}^{\ell(k, r, 2) - y} \psi(a, y_0, p_{k, r}),
\widetilde{\varphi}_3(k, r, t, y, \widetilde{y}) = (1 - \delta_{\widetilde{y}, 0}) \varphi_3(\widetilde{y} + \ell(k, r, 3) - y, t) + \delta_{\widetilde{y}, 0} \sum_{a=0}^{\ell(k, r, 3) - y} \varphi_3(a, t).$$
(1.24)

причем k и r такие, что $\Gamma^{(k,r)} \in \Gamma$.

Следствие 1.2. Пусть $\Gamma^{(k_{i+1},r_{i+1})} = h(\Gamma^{(k_i,r_i)},x_{3,t})$. Тогда в условиях теоремы 1.1 верны равенства

$$\mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t},r_{t})}, \varkappa_{t} = x^{t}\}) = \widetilde{\psi}(k_{i+1}, r_{i+1}, x_{4,i}, x_{2,i}, x_{2,i+1}),$$

$$(1.25)$$

$$\mathbf{P}(\{\omega \colon \varkappa_{3,i+1} = x_{3,i+1}\} | \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t},r_{t})}, \varkappa_{t} = x^{t}\}) = \widetilde{\varphi}_{3}(k_{i+1}, r_{i+1}, h_{T}(\Gamma^{(k_{i},r_{i})}, x_{3,i}), x_{3,i}, x_{3,i+1}),$$

$$(1.26)$$

Доказательство. Начнем с доказательства равенства (1.25). Распишем по формуле полной вероятности, а затем учтем (1.9) и (1.23):

$$\mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t},r_{t})}, \varkappa_{t} = x^{t}\}) = \\
= \sum_{a,b \in \mathbb{Z}_{+}^{4}} \mathbf{P}(\{\omega \colon \eta_{i} = a, \xi_{i} = b\} | \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t},r_{t})}, \varkappa_{t} = x^{t}\}) \times \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b\} \cap \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t},r_{t})}, \varkappa_{t} = x^{t}\}) = \\
= \sum_{a,b \in \mathbb{Z}_{+}^{4}} \mathbf{P}(\{\omega \colon \eta_{i} = a, \xi_{i} = b\} | \{\omega \colon \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) \times \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) = \\
= \sum_{a,b \in \mathbb{Z}_{+}^{4}} \varphi(a, k_{i}, r_{i}, x^{i}) \zeta(b, k_{i}, r_{i}, x^{i}) \times \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) = \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) = \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) = \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) = \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) = \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) = \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) = \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) = \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = \chi_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) = \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = \chi_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) = \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = \chi_{2,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = \chi_{i}\}) = \\
\times \mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = \chi_{2,i+1}\} | \{\omega \colon \eta_{i} = \lambda, \xi_{i} = \lambda, \xi_{i$$

учитывая функциональную зависимость (1.5) и явное выражение для функций $\varphi(\cdot,\cdot,\cdot,\cdot)$ и $\zeta(\cdot,\cdot,\cdot,\cdot)$, продолжим цепочку рассуждений

$$= \sum_{a,b \in \mathbb{Z}_{+}^{4}} \varphi(a, k_{i}, r_{i}, x^{i}) \zeta(b, k_{i}, r_{i}, x^{i}) \delta_{x_{2,i+1}, \max\{0, x_{2,i} + a_{2} - b_{2}\}} =$$

$$= \sum_{a_{2}, b_{2} \in \mathbb{Z}_{+}} \psi(a_{2}, x_{4,i}, p_{k_{i+1}, r_{i+1}}) \delta_{b_{2}, \ell(k_{i+1}, r_{i+1}, 2)} \delta_{x_{2,i+1}, \max\{0, x_{2,i} + a_{2} - b_{2}\}} \times \sum_{a_{3} \in \mathbb{Z}_{+}} \varphi_{3}(a_{3}, h_{T}(\Gamma^{(k_{i}, r_{i})}, x_{3,i})) \times$$

$$\times \sum_{a_{1} \in \mathbb{Z}_{+}} \varphi_{1}(a_{1}, h_{T}(\Gamma^{(k_{i}, r_{i})}, x_{3,i})) \sum_{a_{4} \in \mathbb{Z}_{+}} \delta_{a_{4}, \min\{\ell(k_{i+1}, r_{i+1}, 1), x_{1,i} + a_{1}\}} \sum_{b_{1} \in \mathbb{Z}_{+}} \delta_{b_{1}, \ell(k_{i+1}, r_{i+1}, 1)} \sum_{b_{3} \in \mathbb{Z}_{+}} \delta_{b_{3}, \ell(k_{i+1}, r_{i+1}, 3)} \times$$

$$\times \sum_{b_{4} \in \mathbb{Z}_{+}} \delta_{b_{4}, x_{4,i}}.$$

Поскольку все кроме одной суммы сокращаются (равны 1), то искомая вероятность

упрощается следующим образом:

$$\begin{split} \mathbf{P}(\{\omega\colon \varkappa_{2,i+1} = x_{2,i+1}\} | & \cap_{t=0}^{i} \{\omega\colon \Gamma_{t} = \Gamma^{(k_{t},r_{t})}, \varkappa_{t} = x^{t}\}) = \\ & = \sum_{a_{2},b_{2}\in\mathbb{Z}_{+}} \psi(a_{2},x_{4,i},p_{k_{i+1},r_{i+1}}) \delta_{b_{2},\ell(k_{i+1},r_{i+1},2)} \delta_{x_{2,i+1},\max\{0,x_{2,i}+a_{2}-b_{2}\}} = \\ & = \sum_{a_{2}\in\mathbb{Z}_{+}} \psi(a_{2},x_{4,i},p_{k_{i+1},r_{i+1}}) \delta_{x_{2,i+1},\max\{0,x_{2,i}+a_{2}-\ell(k_{i+1},r_{i+1},2)\}} \end{split}$$

В случае, когда $x_{2,i+1}$ больше 0, величина $\delta_{x_{2,i+1},\max\{0,x_{2,i}+a_2-\ell(k_{i+1},r_{i+1},2)\}}$ отлична от нуля только при $x_{2,i+1}=x_{2,i}+a_2-\ell(k_{i+1},r_{i+1},2)$, то есть при $a_2=x_{2,i+1}-x_{2,i}+\ell(k_{i+1},r_{i+1},2)$. В случае же, когда $x_{2,i+1}$ равно 0, величина $\delta_{x_{2,i+1},\max\{0,x_{2,i}+a_2-\ell(k_{i+1},r_{i+1},2)\}}$ отлична от нуля только при $0\leqslant a_2\leqslant \ell(k_{i+1},r_{i+1},2)-x_2$. Таким образом,

$$\mathbf{P}(\{\omega \colon \varkappa_{2,i+1} = x_{2,i+1}\} | \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t},r_{t})}, \varkappa_{t} = x^{t}\}) =$$

$$= \sum_{a_{2} \in \mathbb{Z}_{+}} \psi(a_{2}, x_{4,i}, p_{k_{i+1},r_{i+1}}) \delta_{x_{2,i+1}, \max\{0, x_{2,i} + a_{2} - \ell(k_{i+1}, r_{i+1}, 2)\}} =$$

$$= \psi(x_{2,i+1} - x_{2,i} + \ell(k_{i+1}, r_{i+1}, 2), x_{4,i}, p_{k_{i+1},r_{i+1}}) (1 - \delta_{x_{2,i+1},0}) +$$

$$+ \delta_{x_{2,i+1},0} \sum_{a=0}^{\ell(k_{i+1}, r_{i+1}, 2) - x_{2}} \psi(a, x_{4,i}, p_{k_{i+1}, r_{i+1}}) = \widetilde{\psi}(k_{i+1}, r_{i+1}, x_{4,i}, x_{2,i}, x_{2,i+1})$$

и равенство (1.25) доказано.

Аналогичным образом доказывается равенство (1.26). А именно, расписывая по формуле полной вероятности с учетом (1.9) и (1.23), имеем:

$$\mathbf{P}(\{\omega \colon \varkappa_{3,i+1} = x_{3,i+1}\} | \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t},r_{t})}, \varkappa_{t} = x^{t}\}) =$$

$$= \sum_{a,b \in \mathbb{Z}_{+}^{4}} \varphi(a, k_{i}, r_{i}, x^{i}) \times \zeta(b, k_{i}, r_{i}, x^{i}) \times$$

$$\times \mathbf{P}(\{\omega \colon \varkappa_{3,i+1} = x_{3,i+1}\} | \{\omega \colon \eta_{i} = a, \xi_{i} = b, \Gamma_{i} = \Gamma^{(k_{i},r_{i})}, \varkappa_{i} = x^{i}\}) =$$

учитывая (1.5) и явный вид функций $\varphi(\cdot,\cdot,\cdot,\cdot)$ и $\zeta(\cdot,\cdot,\cdot,\cdot)$, продолжим

$$= \sum_{a,b \in \mathbb{Z}_{+}^{4}} \varphi(a,k_{i},r_{i},x^{i}) \zeta(b,k_{i},r_{i},x^{i}) \delta_{x_{3,i+1},\max\{0,x_{3,i}+a_{3}-b_{3}\}} =$$

$$= \sum_{a_{3},b_{3} \in \mathbb{Z}_{+}} \varphi_{3}(a_{3},h_{T}(\Gamma^{(k_{i},r_{i})},x_{3,i})) \delta_{b_{3},\ell(k_{i+1},r_{i+1},3)} \delta_{x_{3,i+1},\max\{0,x_{3,i}+a_{3}-b_{3}\}} \times \sum_{a_{2} \in \mathbb{Z}_{+}} \psi(a_{2},x_{4,i},p_{k_{i+1},r_{i+1}}) \times$$

$$\times \sum_{a_{1} \in \mathbb{Z}_{+}} \varphi_{1}(a_{1},h_{T}(\Gamma^{(k_{i},r_{i})},x_{3,i})) \sum_{a_{4} \in \mathbb{Z}_{+}} \delta_{a_{4},\min\{\ell(k_{i+1},r_{i+1},1),x_{1,i}+a_{1}\}} \sum_{b_{1} \in \mathbb{Z}_{+}} \delta_{b_{1},\ell(k_{i+1},r_{i+1},1)} \sum_{b_{2} \in \mathbb{Z}_{+}} \delta_{b_{2},\ell(k_{i+1},r_{i+1},2)} \times$$

$$\times \sum_{b_{4} \in \mathbb{Z}_{+}} \delta_{b_{4},x_{4,i}} = \sum_{a_{3} \in \mathbb{Z}_{+}} \varphi_{3}(a_{3},h_{T}(\Gamma^{(k_{i},r_{i})},x_{3})) \delta_{x_{3,i+1},\max\{0,x_{3,i}+a_{3}-\ell(k_{i+1},r_{i+1},3)\}}$$

В результате получаем, что

$$\mathbf{P}(\{\omega \colon \varkappa_{3,i+1} = x_{3,i+1}\} | \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t},r_{t})}, \varkappa_{t} = x^{t}\}) =$$

$$= \sum_{a_{3} \in \mathbb{Z}_{+}} \varphi_{3}(a_{3}, h_{T}(\Gamma^{(k_{i},r_{i})}, x_{3,i})) \delta_{x_{3,i+1}, \max\{0, x_{3,i} + a_{3} - \ell(k_{i+1}, r_{i+1}, 3)\}} =$$

$$= (1 - \delta_{x_{3,i+1},0}) \varphi_{3}(x_{3,i+1} - x_{3,i} + \ell(k_{i+1}, r_{i+1}, 3), h_{T}(\Gamma^{(k_{i},r_{i})}, x_{3,i})) +$$

$$+ \delta_{x_{3,i+1},0} \sum_{a=0}^{\ell(k_{i+1}, r_{i+1}, 3) - x_{3,i}} \varphi_{3}(a, h_{T}(\Gamma^{(k_{i},r_{i})}, x_{3,i})) = \widetilde{\varphi}_{3}(k_{i+1}, r_{i+1}, h_{T}(\Gamma^{(k_{i},r_{i})}, x_{3,i}), x_{3,i}, x_{3,i+1}).$$

и следствие полностью доказано.

Таким образом, кибернетический подход позволил построить математическую модель управляющей системы обслуживания в виде последовательности случайных величин и случайных элементов, конструктивно заданных на некотором вероятностном пространстве. Выберем для дальнейшего исследования состояния обслуживающего устройства и длины всех очередей.

1.3. Марковское свойство последовательностей

$$\{(\Gamma_i, arkappa_i); i\geqslant 0\}$$
 и $\{(\Gamma_i, arkappa_{3,i}); i\geqslant 0\}$

Введем следующие события:

$$A_i(k_i; r_i; x^i) = \{\Gamma_i = \Gamma^{(k_i, r_i)} \varkappa_i = x^i\}, \quad B_i(a; b) = \{\eta_i = a, \xi_i = b\}$$

В новых обозначениях равенство (1.23) перепишется следующим образом:

$$\mathbf{P}\left(B_i(a;b)\left|\bigcap_{t=0}^i A_t(k_t;r_t;x^t)\right.\right) = \mathbf{P}\left(B_i(a;b)\left|A_i(k_i;r_i;x^i)\right.\right)$$
(1.27)

Сформулируем и докажем теорему о марковости последовательности $\{(\Gamma_i, \varkappa_i); i \geqslant 0\}.$

Теорема 1.2. Пусть $\Gamma_0 = \Gamma^{(k,r)} \in \Gamma$ и $\varkappa_0 = x^0 \in \mathbb{Z}_+^4$ фиксированы. Тогда последовательность $\{(\Gamma_i, \varkappa_i); i \geqslant 0\}$ является однородной счетной цепью Маркова.

Доказательство. Для доказательства достаточно показать, что

$$\mathbf{P}\left(A_{i+1}(k_{i+1}; r_{i+1}; x^{i+1}) \middle| \bigcap_{t=0}^{i} A_{t}(k_{t}; r_{t}; x^{t})\right) = \mathbf{P}\left(A_{i+1}(k_{i+1}; r_{i+1}; x^{i+1}) \middle| A_{i}(k_{i}; r_{i}; x^{i})\right)$$
(1.28)

Распишем левую часть равенства (1.28). По формуле полной вероятности, получим

$$\mathbf{P}\left(A_{i+1}(k_{i+1}; r_{i+1}; x^{i+1}) \middle| \bigcap_{t=0}^{i} A_{t}(k_{t}; r_{t}; x^{t})\right) = \sum_{a,b} \mathbf{P}\left(B_{i}(a; b) \middle| \bigcap_{t=0}^{i} A_{t}(k_{t}; r_{t}; x^{t})\right) \times \mathbf{P}\left(A_{i+1}(k_{i+1}; r_{i+1}; x^{i+1}) \middle| B_{i}(a; b) \cap \bigcap_{t=0}^{i} A_{t}(k_{t}; r_{t}; x^{t})\right)$$
(1.29)

Из равенства (1.27) следует, что вероятность $\mathbf{P}\left(B_i(a;b) \middle| \bigcap_{t=0}^i A_t(k_t;r_t;x^t)\right)$ не зависит от предыстории $\bigcap_{t=0}^{i-1} A_t(k_t;r_t;x^t)$. Далее, из соотношений (1.3), (1.5) и (1.6) можно заметить, что случайный элемент Γ_{i+1} и случайный вектор \varkappa_{i+1} функционально выражается через Γ_i , \varkappa_i , η_i и ξ_i , поэтому вероятность $\mathbf{P}(A_{i+1}(k_{i+1};r_{i+1};x^{i+1})|B_i(a;b)\cap\bigcap_{t=0}^i A_t(k_t;r_t;x^t))$ не зависит от предыстории. Таким образом

$$\mathbf{P}\left(B_i(a;b)\left|\bigcap_{t=0}^i A_t(k_t;r_t;x^t)\right.\right) = \mathbf{P}\left(B_i(a;b)\left|A_i(k_i;r_i;x^i)\right.\right)$$

И

$$\mathbf{P}\left(A_{i+1}(k_{i+1}; r_{i+1}; x^{i+1}) \middle| B_{i}(a; b) \cap \bigcap_{t=0}^{i} A_{t}(k_{t}; r_{t}; x^{t})\right) =$$

$$= \mathbf{P}\left(A_{i+1}(k_{i+1}; r_{i+1}; x^{i+1}) \middle| B_{i}(a; b) \cap A_{i}(k_{i}; r_{i}; x^{i})\right)$$

откуда заключаем верность равенства (1.28).

Докажем марковость последовательности $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}.$

Теорема 1.3. Пусть $\Gamma_0 = \Gamma^{(k,r)} \in \Gamma$ и $\varkappa_{3,0} = x_{3,0} \in \mathbb{Z}_+$ фиксированы. Тогда последовательность $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}$ является однородной счетной цепью Маркова.

Доказательство. Действительно, поскольку Γ_{i+1} функционально выражается через Γ_i и $\varkappa_{3,i}$ (см. (1.3)), то

$$\mathbf{P}(\{\omega \colon \Gamma_{i+1} = \Gamma^{(k_{i+1}, r_{i+1})}, \varkappa_{3, i+1} = x_{3, i+1}\} | \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t}, r_{t})}, \varkappa_{t} = x^{t}\}) =$$

$$= \delta_{\Gamma^{(k_{i+1}, r_{i+1})}, h(\Gamma^{(k_{i}, r_{i})}, \varkappa_{3, i})} \times \mathbf{P}(\{\omega \colon \varkappa_{3, i+1} = x_{3, i+1}\} | \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t}, r_{t})}, \varkappa_{t} = x^{t}\}).$$

и учитывая равенство (1.26), убеждаемся, что вероятность

$$\mathbf{P}(\{\omega \colon \Gamma_{i+1} = \Gamma^{(k_{i+1}, r_{i+1})}, \varkappa_{3, i+1} = x_{3, i+1}\} | \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t}, r_{t})}, \varkappa_{t} = x^{t}\}) =$$

$$= \delta_{\Gamma^{(k_{i+1}, r_{i+1})}, h(\Gamma^{(k_{i}, r_{i})}, x_{3, i})} \times \widetilde{\varphi}_{3}(k_{i+1}, r_{i+1}, h_{T}(\Gamma^{(k_{i}, r_{i})}, x_{3, i}), x_{3, i}, x_{3, i+1})$$

зависит только от значений пар $(\Gamma_i, \varkappa_{3,i})$ и $(\Gamma_{i+1}, \varkappa_{3,i+1})$. Следовательно

$$\mathbf{P}(\{\omega \colon \Gamma_{i+1} = \Gamma^{(k_{i+1}, r_{i+1})}, \varkappa_{3, i+1} = x_{3, i+1}\} | \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t}, r_{t})}, \varkappa_{t} = x^{t}\}) =$$

$$= \mathbf{P}(\{\omega \colon \Gamma_{i+1} = \Gamma^{(k_{i+1}, r_{i+1})}, \varkappa_{3, i+1} = x_{3, i+1}\} | \cap_{t=0}^{i} \{\omega \colon \Gamma_{t} = \Gamma^{(k_{t}, r_{t})}, \varkappa_{3, t} = x_{3, t}\}) =$$

$$= \mathbf{P}(\{\omega \colon \Gamma_{i+1} = \Gamma^{(k_{i+1}, r_{i+1})}, \varkappa_{3, i+1} = x_{3, i+1}\} | \{\omega \colon \Gamma_{i} = \Gamma^{(k_{i}, r_{i})}, \varkappa_{3, i} = x_{3, i}\}),$$

что доказывает марковость последовательности $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}.$

Убедившись в марковости последовательностей $\{(\Gamma_i, \varkappa_i); i \geqslant 0\}$ и $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}$, приведем формулы для вычисления их переходных вероятностей.

Теорема 1.4. Пусть $x, \tilde{x} \in \mathbb{Z}_+^4$ и $\Gamma^{(k,r)}, \Gamma^{\left(\tilde{k},\tilde{r}\right)} = h(\Gamma^{(k,r)},x_3) \in \Gamma$. Тогда переходные вероятности однородной счетной марковской цепи $\{(\Gamma_i,\varkappa_i); i \geqslant 0\}$ вычисляются по следующей формуле:

$$\mathbf{P}\left(\Gamma_{i+1} = \Gamma^{\left(\tilde{k},\tilde{r}\right)}, \varkappa_{i+1} = \tilde{x} \middle| \Gamma_{i} = \Gamma^{\left(k,r\right)}, \varkappa_{i} = x\right) =$$

$$= \widetilde{\varphi}_{3}(\tilde{k}, \tilde{r}, h_{T}(\Gamma^{\left(k,r\right)}, x_{3}), x_{3}, \tilde{x}_{3}) \times \sum_{(a_{1}, a_{2}) \in A_{\text{trans}}} \varphi_{1}(a_{1}, h_{T}(\Gamma^{\left(k,r\right)}, x_{3})) \psi(a_{2}, x_{4}, p_{\tilde{k},\tilde{r}}), \quad (1.30)$$

где

$$A_{\text{trans}} = A_{\text{trans}}^{0} \bigcap A_{\text{trans}}^{1} \bigcap A_{\text{trans}}^{2},$$

$$A_{\text{trans}}^{0} = \{(a_{1}, a_{2}) \in \mathbb{Z}_{+}^{2} : a_{2} = \min \{\ell(\tilde{k}, \tilde{r}, 1), x_{1} + a_{1}\} + x_{4} - \tilde{x}_{4}\},$$

$$A_{\text{trans}}^{1} = \{(a_{1}, a_{2}) \in \mathbb{Z}_{+}^{2} : \tilde{x}_{1} = \max \{0, x_{1} + a_{1} - \ell(\tilde{k}, \tilde{r}, 1)\}\},$$

$$A_{\text{trans}}^{2} = \{(a_{1}, a_{2}) \in \mathbb{Z}_{+}^{2} : \tilde{x}_{2} = \max \{0, x_{2} + a_{2} - \ell(\tilde{k}, \tilde{r}, 2)\}\}.$$

Доказательство. В случае, если $\Gamma^{(\tilde{k},\tilde{r})}=h(\Gamma^{(k,r)},x_3)$, искомая вероятность упростится следующим образом:

$$\mathbf{P}\left(\Gamma_{i+1} = \Gamma^{\left(\tilde{k},\tilde{r}\right)}, \varkappa_{i+1} = \tilde{x} \middle| \Gamma_{i} = \Gamma^{\left(k,r\right)}, \varkappa_{i} = x\right) = \mathbf{P}\left(\varkappa_{i+1} = \tilde{x} \middle| \Gamma_{i} = \Gamma^{\left(k,r\right)}, \varkappa_{i} = x\right)$$

По аналогии с выводом формул (1.25) и (1.26), для доказательства воспользуемся

формулой полной вероятности и учтем (1.9):

$$\mathbf{P}\left(\varkappa_{i+1} = \tilde{x} \middle| \Gamma_i = \Gamma^{(k,r)}, \varkappa_i = x\right) = \sum_{a,b \in \mathbb{Z}_+^4} \mathbf{P}\left(\eta_i = a; \xi_i = b \middle| \Gamma_i = \Gamma^{(k,r)}, \varkappa_i = x\right) \times \mathbf{P}\left(\varkappa_{i+1} = \tilde{x} \middle| \Gamma_i = \Gamma^{(k,r)}, \varkappa_i = x, \eta_i = a; \xi_i = b\right) = \sum_{a,b \in \mathbb{Z}_+^4} \varphi(a,k,r,x) \zeta(b,k,r,x) \times \mathbf{P}\left(\varkappa_{i+1} = \tilde{x} \middle| \Gamma_i = \Gamma^{(k,r)}, \varkappa_i = x, \eta_i = a; \xi_i = b\right).$$

Теперь учтем функциональные зависимости (1.5) и (1.6), а также явный вид функций $\varphi(\cdot,\cdot,\cdot,\cdot)$ и $\zeta(\cdot,\cdot,\cdot,\cdot)$:

$$\mathbf{P}\left(\varkappa_{i+1} = \tilde{x} \middle| \Gamma_{i} = \Gamma^{(k,r)}, \varkappa_{i} = x\right) = \\ = \sum_{a_{1},b_{1} \in \mathbb{Z}_{+}} \varphi_{1}(a_{1},h_{T}(\Gamma^{(k,r)},x_{3}))\delta_{b_{1},\ell(\tilde{k},\tilde{r},1)}\delta_{\tilde{x}_{1},\max\{0,x_{1}+a_{1}-b_{1}\}} \times \\ \times \sum_{a_{3},b_{3} \in \mathbb{Z}_{+}} \varphi_{3}(a_{3},h_{T}(\Gamma^{(k,r)},x_{3}))\delta_{b_{3},\ell(\tilde{k},\tilde{r},3)}\delta_{\tilde{x}_{3},\max\{0,x_{3}+a_{3}-b_{3}\}} \times \\ \times \sum_{a_{2},b_{2} \in \mathbb{Z}_{+}} \psi(a_{2},x_{4},p_{\tilde{k},\tilde{r}})\delta_{b_{2},\ell(\tilde{k},\tilde{r},2)}\delta_{\tilde{x}_{2},\max\{0,x_{2}+a_{2}-b_{2}\}} \times \\ \times \sum_{a_{4},b_{4} \in \mathbb{Z}_{+}} \delta_{a_{4},\min\{\ell(\tilde{k},\tilde{r},1),x_{1}+a_{1}\}}\delta_{b_{4},x_{4}}\delta_{\tilde{x}_{4},x_{4}+a_{4}-a_{2}}$$

и после упрощения, полагая $a_2 = \min \{\ell(\tilde{k}, \tilde{r}, 1), x_1 + a_1\} + x_4 - \tilde{x}_4$,

$$\mathbf{P}\left(\varkappa_{i+1} = \tilde{x} \middle| \Gamma_{i} = \Gamma^{(k,r)}, \varkappa_{i} = x\right) = \sum_{a_{3} \in \mathbb{Z}_{+}} \varphi_{3}(a_{3}, h_{T}(\Gamma^{(k,r)}, x_{3})) \delta_{\tilde{x}_{3}, \max\{0, x_{3} + a_{3} - \ell(\tilde{k}, \tilde{r}, 3)\}} \times \\ \times \sum_{a_{1} \in \mathbb{Z}_{+}} \left(\varphi_{1}(a_{1}, h_{T}(\Gamma^{(k,r)}, x_{3})) \psi(a_{2}, x_{4}, p_{\tilde{k}, \tilde{r}}) \times \\ \times \delta_{\tilde{x}_{1}, \max\{0, x_{1} + a_{1} - \ell(\tilde{k}, \tilde{r}, 1)\}} \delta_{\tilde{x}_{2}, \max\{0, x_{2} + a_{2} - \ell(\tilde{k}, \tilde{r}, 2)\}}\right) = \tilde{\varphi}_{3}(\tilde{k}, \tilde{r}, h_{T}(\Gamma^{(k,r)}, x_{3}), \tilde{x}_{3}) \times \\ \times \sum_{a_{1} \in \mathbb{Z}_{+}} \left(\varphi_{1}(a_{1}, h_{T}(\Gamma^{(k,r)}, x_{3})) \psi(a_{2}, x_{4}, p_{\tilde{k}, \tilde{r}}) \times \\ \times \delta_{\tilde{x}_{1}, \max\{0, x_{1} + a_{1} - \ell(\tilde{k}, \tilde{r}, 1)\}} \delta_{\tilde{x}_{2}, \max\{0, x_{2} + a_{2} - \ell(\tilde{k}, \tilde{r}, 2)\}}\right),$$

что есть в точности (1.30).

Теорема 1.5. Пусть x_3 , $\tilde{x}_3 \in \mathbb{Z}_+$ и $\Gamma^{(k,r)}$, $\Gamma^{\left(\tilde{k},\tilde{r}\right)} = h(\Gamma^{(k,r)},x_3) \in \Gamma$. Тогда переходные вероятности однородной счетной марковской цепи $\{(\Gamma_i,\varkappa_{3,i}); i \geqslant 0\}$ вычисляются

по следующей формуле:

$$\mathbf{P}\left(\Gamma_{i+1} = \Gamma^{\left(\tilde{k},\tilde{r}\right)}, \varkappa_{3,i+1} = \tilde{x} \middle| \Gamma_{i} = \Gamma^{(k,r)}, \varkappa_{3,i} = x\right) = \widetilde{\varphi}_{3}(\tilde{k}, \tilde{r}, h_{T}(\Gamma^{(k,r)}, x_{3}), x_{3}, \tilde{x}_{3}), \tag{1.31}$$

Доказательство следует из равенства (1.26).

1.4. Классификация состояний марковской цепи $\{(\Gamma_i,\varkappa_i); i \geqslant 0\}$ по арифметическим свойствам

Введем множество

$$X^{(k,r)} = \{ x \in \mathbb{Z}_+^4 \colon x_1 > 0, x_4 \geqslant \ell_{k,r,1} \},\$$

где k и r такие, что $\Gamma^{(k,r)} \in \Gamma$.

Лемма 1.1. Пусть (γ, x) — произвольное состояние цепи $\{(\Gamma_i, \varkappa_i); i \ge 0\}$, $\gamma \in \Gamma$, $x \in \mathbb{Z}_+^4$. Тогда для любого r_1 , $0 \le r_1 \le n_0$, существует $x_{3,1}, x_{3,1} \le L$, такое, что вероятность попасть за конечное число переходов из состояния (γ, x) в состояние продления $(\Gamma^{(0,r_1)}, (0,0,x_{3,1},0))$ положительна.

Доказательство. Доказательство начнем со случая, когда состояние γ соответствует некому циклу. Тогда на каждом последующем такте с ненулевой вероятностью по потокам Π_1 и Π_3 не будет приходить ни одного требования и, одновременно с этим, из очереди O_4 все требования будут перенаправляться в очередь O_2 . Тогда, в конечном итоге, обслуживающее устройство дойдет до выходного состояния этого цикла, в котором очередь O_3 будет содержать $x_{3,1} \leq L$ требований и прибор перейдет в режим продления. После нескольких тактов подобного же рода (отсутствия требований по потокам Π_1 и Π_3 , а также перенаправления всех требований из очереди O_4 в очередь O_2) требования в очередях O_1 , O_2 , O_4 кончатся и система придет в состояние ($\Gamma^{(0,r_1)}$, $(0,0,x_{3,1},0)$).

В случае же, когда состояние прибора соответствует некому состоянию продления, отличие от второй части предыдущего случая состоит в том, что в очереди O_3 может находиться больше L требований. Однако тогда система на следующем же такте "свалится" в один из циклов и задача будет сведена к предыдущей.

Лемма 1.2. Для любых $x_{3,1} \leqslant L$, $x_{3,2} > L$, $0 \leqslant r_1 \leqslant n_0$ и $1 \leqslant k \leqslant d$ вероятность за конечное число переходов из состояния продления $(\Gamma^{(0,r_1)}, (0,0,x_{3,1},0))$ попасть во входное состояние $(\Gamma^{(k,0)}, (0,0,x_{3,2},0))$ положительна.

Доказательство. Пусть $\gamma \in \Gamma$ — состояние продления, из которого обслуживающий прибор может перейти в цикл C_k (в силу предположений о виде рассматриваемых графов такое состояние заведомо существует). Тогда предполагая, что по потокам Π_1 и Π_3 требования не поступают, обслуживающее устройство в конечном итоге дойдет до состояния γ с пустыми очередями O_1 , O_2 и O_4 . На этом самом такте, по потоку Π_3 , в дополнение к уже имеющимся $x_{3,1} \leqslant L$ требованиям, может придти любое количество требований, в том числе и количество, необходимое для перехода в состояние цикла $(\Gamma^{(k,0)}, (0,0,x_{3,2},0)), x_{3,2} > L$.

Лемма 1.3. Для любых $x_{3,1} > L$, $x_2 \in X^{(k,r)} \cap \{x_2 \in \mathbb{Z}_+^4 : x_{3,2} = x_{3,1} - \sum_{t=0}^{r-1} \ell_{k,t,3}\}$, $0 \leqslant r \leqslant n_k$ и $1 \leqslant k \leqslant d$ вероятность за конечное число переходов из входного состояния цикла $(\Gamma^{(k,0)}, (0,0,x_{3,1},0))$ попасть в произвольное состояние цикла $(\Gamma^{(k,r)}, x_2)$ положительна.

Доказательство. Поскольку с ненулевой вероятностью по потоку Π_3 на последующих тактах может приходить любое количество требований, положим, что на всех тактах, когда обслуживающее устройство находится в выходном состоянии $\Gamma^{(k,n_k)}$, в очередь O_3 приходит ровно $\sum_{t=0}^{n_k} \ell_{k,t,3}$ требований. Причем на остальных тактах по потоку Π_3 требования не поступают. Этим обеспечивается сколь угодно долгое пребывание прибора в цикле C_k , при этом сохраняя количество требований в очереди O_3 неизменным и равным $x_{3,1}$.

Далее допустим, что на первом же такте (то есть в состоянии ($\Gamma^{(k,0)}$, $(0,0,x_{3,1},0)$)) по потоку Π_1 пришло $x_{2,2}+x_{4,2}+\ell_{k,r\ominus_k1,2}-\ell_{k,r\ominus_k1,1}$ требований, которые все спустя несколько тактов перешли в очередь O_4 . При этом перемещения требований из очереди O_4 в очередь O_2 не происходило. В состоянии $(0,0,x_{3,2},x_{2,2}+x_{4,2}+\ell_{k,r\ominus_k1,2}-\ell_{k,r\ominus_k1,1})$ очереди могут оставаться сколь угодно долгоо, вплоть до такта, в котором обслуживающее устройство будет находиться в состоянии $\Gamma^{(k,r\ominus_k1)}$. На этом такте по потоку Π_1 придет $x_{1,2}+\ell_{k,r\ominus_k1,1}$ требований и из очереди O_4 уйдет $x_{2,2}+\ell_{k,r\ominus_k1,2}$ требований. Таким образом, на следующем такте состояние системы будет ($\Gamma^{(k,r)}$, $(x_{1,2},x_{2,2},x_{3,1}-\sum_{t=0}^{r-1}\ell_{k,t,3},x_{4,2})$).

Из лемм 1.2 и 1.3 вытекает следующий результат.

Лемма 1.4. Для любых $x_{3,1} \leqslant L$, $x_2 \in X^{(k,r)} \cap \{x_2 \in \mathbb{Z}_+^4 : x_{3,2} > L - \sum_{t=0}^{r-1} \ell_{k,t,3} \}$, $0 \leqslant r_1 \leqslant n_0$, $0 \leqslant r_2 \leqslant n_k$, $1 \leqslant k \leqslant d$ вероятность попасть за конечное число переходов из состояния продления $(\Gamma^{(0,r_1)}, (0,0,x_{3,1},0))$ в состояние цикла $(\Gamma^{(k,r_2)}, x_2)$ положительна.

Лемма 1.5. Для любых $\Gamma^{(k_1,r_1)}$, $\Gamma^{(k_2,r_2)} \in \Gamma$ и $x_1 \in \mathbb{Z}_+^4$, $x_2 \in \mathbb{Z}_+^4 \setminus X^{(k_1,r_1)}$ вероятность перейти на следующем такте из состояния $(\Gamma^{(k_1,r_1)},x_1)$ в состояние $(\Gamma^{(k_2,r_2)},x_2)$ равна нулю.

Доказательство. Действительно, предположим, что в начале очередного такта в очереди O_1 находится $x_{1,2}>0$ требований. Это значит, что за предыдущий такт смогли обслужиться все $\ell_{k_1,r_1,1}$ требований. А поскольку все требования выходного потока $\Pi_1^{\text{вых}}$ без исключения становятся требованиями входного потока Π_4 и требования, пришедшие по потоку Π_4 не покидают очередь O_4 до начала следующего такта, то как минимум $\ell_{k_1,r_1,1}$ требований должно было остаться в очереди O_4 с предыдущего такта. Значит с необходимостью $x_{4,2} \geqslant \ell_{k_1,r_1,1}$.

Лемма 1.6. Для любых $0 \leqslant r_1, r_2 \leqslant n_0$ и $x_{3,1} \leqslant L, x_2 \in X^{(0,r_2)} \cap \{x_2 \in \mathbb{Z}_+^4 \colon L \geqslant x_{3,2} > L - \max_{k=1,2,\dots,d} \{\sum_{t=0}^{n_k} \ell_{k,t,3}\}\}$ вероятность попасть за конечное число переходов из одного состояния продления $(\Gamma^{(0,r_1)}, (0,0,x_{3,1},0))$ в другое состояние продления $(\Gamma^{(0,r_2)}, x_2)$ положительна.

Доказательство. Действительно, из леммы (1.4) следует, что из состояния вида $(\Gamma^{(0,r_1)},(0,0,x_{3,1},0)), x_{3,1} \leqslant L, r_1 \leqslant n_0$, с ненулевой вероятностью и за конечное число шагов можно перейти в выходное состояние вида $(\Gamma^{(k,n_k)},x_3), x_3 \in X^{(k,n_k)} \cap \{x_3 \in \mathbb{Z}_+^4 \colon L - \sum_{t=0}^{n_k-1} \ell_{k,t,3} < x_{3,3} \}$, причем для любого $k=1,2,\ldots,d$. Наложим на количество $x_{3,3}$ требований в очереди O_3 еще одно ограничение: $x_{3,3} \leqslant L + \ell_{k,n_k,3}$. Находясь в состоянии $(\Gamma^{(k,n_k)},x_3)$ и предполагая, что за текущий такт по потоку Π_3 не поступит больше $L-x_{3,3}+\ell_{k,n_k,3}$ требований, система на следующем такте перейдет в состояние продления $(\Gamma^{(0,h_1(\Gamma^{(k,n_k)}))}), x_4)$, где $x_4 \in X^{(0,h_1(\Gamma^{(k,n_k)}))} \cap \{x_4 \in \mathbb{Z}_+^4 \colon L - \sum_{t=0}^{n_k} \ell_{k,t,3} < x_{3,4} \leqslant L \}$. Проведя рассуждения, аналогичные рассуждениям леммы 1.3, можно "опустошить" очереди O_1 , O_2 и O_4 , не допуская при этом поступления требований по потоку Π_3 . Далее по схеме, описанной в лемме 1.3, можно привести систему в любое состояние вида $(\Gamma^{(0,r_2)},x_2)$.

Лемма 1.7. Для любых $1 \leqslant k \leqslant d$, $0 \leqslant r \leqslant n_k$, $0 \leqslant r_1 \leqslant n_0$ и $x_1 \in \{x_1 \in \mathbb{Z}_+^4 : x_{3,1} \leqslant L\}$, $x_2 \in \{x_2 \in \mathbb{Z}_+^4 : x_{3,2} \leqslant L - \sum_{t=0}^{r-1} \ell_{k,t,3}\}$ вероятность попасть за конечное число переходов из состояния продления $(\Gamma^{(0,r_1)}, x_1)$ в состояние цикла $(\Gamma^{(k,r)}, x_2)$ равна нулю.

Доказательство. Действительно, для того, чтобы попасть в состояние цикла из состояния продления, необходимо попасть сначала во входное состояние, в котором количество $x_{3,2}$ требований в очереди O_3 не может быть меньше L+1, то есть $x_{3,2}>L$. А поскольку на каждом такте, с соответствующим состоянием обслуживающего устройства $\Gamma^{(\tilde{k},\tilde{r})}$ в цикле, до момента попадания обслуживающего устройства в состояние $\Gamma^{(k,r)}$ может обслуживаться не более $\ell_{\tilde{k},\tilde{r},3}$ требований, то за время пребывания в цикле обслужиться больше, чем $\sum_{t=0}^{r-1} \ell_{k,t,3}$ требований просто не могло. Поэтому в очереди O_3 останется не меньше $x_{3,2} - \sum_{t=0}^{r-1} \ell_{k,t,3} > L - \sum_{t=0}^{r-1} \ell_{k,t,3}$ требований.

Лемма 1.8. Для любых $1 \leqslant k \leqslant d$, $0 \leqslant r \leqslant n_k$, $0 \leqslant r_1 \leqslant n_0$ и $x_1 \in \mathbb{Z}_+^4$, $x_2 \in \{x_2 \in \mathbb{Z}_+^4 : x_{3,2} > L\} \cup \{x_2 \in \mathbb{Z}_+^4 : x_{3,2} \leqslant L - \max_{k=1,2,\dots,d} \{\sum_{t=0}^{n_k} \ell_{k,t,3}\}\}$ вероятность попасть за конечное число переходов из состояния цикла $(\Gamma^{(k,r)}, x_1)$, $x_1 \in \mathbb{Z}_+^4$ в состояние продления $(\Gamma^{(0,r_1)}, x_2)$ равна нулю.

Доказательство. Действительно, поскольку из каждого состояния продления можно "свалиться" в цикл, то условие $x_{3,2}\leqslant L$ должно быть выполнено в каждом состоянии продления (иначе в конце предыдущего такта было бы принято решение находиться в одном из циклов). А поскольку во время пребывания в цикле в очереди O_3 должно находиться больше $L-\sum_{t=0}^{n_k}\ell_{k,t,3}$ требований, и во время продления требования из очереди O_3 не обслуживаются, то условие $x_{3,2}>L-\max_{k=1,2,\ldots,d}\{\sum_{t=0}^{n_k}\ell_{k,t,3}\}$ также должно быть выполнено.

Введем множества

$$S_{0,r} = \{ (\Gamma^{(0,r)}, x) : x \in X^{(0,r)}, L \geqslant x_3 > L - \max_{k=1,2,\dots,d} \{ \sum_{t=0}^{n_k} \ell_{k,t,3} \} \}, \quad 1 \leqslant r \leqslant n_0$$

$$S_{k,r} = \{ (\Gamma^{(k,r)}, x) : x \in X^{(k,r)}, x_3 > L - \sum_{t=0}^{r-1} \ell_{k,t,3} \} \}, \quad 1 \leqslant k \leqslant d, \quad 1 \leqslant r \leqslant n_k.$$

В следующей теореме перечислены все существенные состояния марковской цепи $\{(\Gamma_i, \varkappa_i); i \geqslant 0\}.$

Теорема 1.6. Множествами существенных состояний марковской цепи $\{(\Gamma_i,\varkappa_i); i \geqslant 0\}$ являются множества $\bigcup_{1\leqslant r\leqslant n_0} S_{0,r}, \bigcup_{\substack{1\leqslant k\leqslant d\\1\leqslant r\leqslant n_i}} S_{k,r}$ и только они.

Доказательство. Пусть система находится в состоянии $(\gamma_1, x_1) \in S_{0,r}$ для некоторого $1 \leqslant r \leqslant n_0$. Тогда в какое бы состояние после этого система ни перешла, по лемме 1.1 за конечное число шагов и с ненулевой вероятностью она попадет в состояние вида $(\Gamma^{(0,\tilde{r}_1)}, (0,0,\tilde{x}_{3,1},0)), \ \tilde{x}_{3,1} \leqslant L, \ 1 \leqslant \tilde{r}_1 \leqslant n_0$. Далее, по лемме 1.6, система из состояния $(\Gamma^{(0,\tilde{r}_1)}, (0,0,\tilde{x}_{3,1},0))$ с ненулевой вероятностью вернется в состояние продления (γ_1, x_1) , из которого она вышла. Следовательно, любое состояние (γ_1, x_1) из $S_{0,r}$ является существенным.

Далее, пусть система находится в состоянии $(\gamma_2, x_2) \in S_{k,r}$ для некоорых $1 \leqslant k \leqslant d$ и $1 \leqslant r \leqslant n_0$. С помощью рассуждений, приведенных выше, используя вместо леммы 1.6 лемму 1.4, можно показать, что в какое бы состояние система в последствии не попала, она с положительной вероятностью и за конечное число шагов вернется в состояние (γ_2, x_2) . Следовательно, любое состояние (γ_2, x_2) из $S_{k,r}$ также является существенным.

Из лемм 1.5, 1.7 и 1.8 следует, что никаких других существенных состояний, кроме $\bigcup_{1\leqslant r\leqslant n_0}S_{0,r}\text{ и}\bigcup_{\substack{1\leqslant k\leqslant d\\1\leqslant r\leqslant n_k}}S_{k,r}\text{, нет.}$

По аналогии введем подмножества пространства состояний цепи $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}$:

$$S_{0,r}^{3} = \{ (\Gamma^{(0,r)}, x_3) \colon x_3 \in Z_+, L \geqslant x_3 > L - \max_{k=1,2,\dots,d} \{ \sum_{t=0}^{n_k} \ell_{k,t,3} \} \}, \quad 1 \leqslant r \leqslant n_0$$

$$S_{k,r}^{3} = \{ (\Gamma^{(k,r)}, x_3) \colon x_3 \in Z_+, x_3 > L - \sum_{t=0}^{r-1} \ell_{k,t,3} \} \}, \quad 1 \leqslant k \leqslant d, \quad 1 \leqslant r \leqslant n_k.$$

Тогда для цепи $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}$ с очевидностью применима аналогичная классификация состояний.

Теорема 1.7. Множествами существенных состояний марковской цепи $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}$ являются множества $\bigcup_{\substack{1 \leqslant r \leqslant n_0 \\ 1 \leqslant r \leqslant n_k}} S_{0,r}^3, \bigcup_{\substack{1 \leqslant k \leqslant d \\ 1 \leqslant r \leqslant n_k}} S_{k,r}^3$ и только они.

Литература

- 1. Zorine, A. V. Study of queues' sizes in tandem intersections under cyclic control in random environment / A. V. Zorine // Modern Probabilistic Methods for Analysis of Telecommunication Networks. Communications in Computer and Information Science. 2013. V. 356. P. 206–215.
- 2. Zorine, A. V. On the conditions for the existence of a stationary mode in a tandem of queuing systems with cyclic control in a random environment / A. V. Zorine // Automatic Control and Computer Sciences. 2013. V. 47. P. 183–191.
- 3. Зорин, А. В. Устойчивость тандема систем обслуживания с бернуллиевским немгновенным перемещением требований / А. В. Зорин // Теория вероятностей и математическая статистика. 2011. Вып. 84. С. 163–176.
- Федоткин, М. А. Оптимальное управление конфликтными потоками и маркированные точечные процессы с выделенной дискретной компонентой. 1 / М. А. Федоткин // Литовский математический сборник. — 1988. — Т. 28. — № 4. — С. 783— 784.
- 5. Федоткин, М. А. Оптимальное управление конфликтными потоками и маркированные точечные процессы с выделенной дискретной компонентой. 2 / М. А. Федоткин // Литовский математический сборник. 1989. Т. 29. № 1. С. 148—159.
- 6. Федоткин, М. А. Нелокальный способ задания управляемых случайных процессов / М. А. Федоткин // Математические вопросы кибернетики. М.: Наука. 1998. Вып. 7. С. 333–344.

- 7. Федоткин, М. А. Процессы обслуживания и управляющие системы / М. А. Федоткин // Математические вопросы кибернетики. М.: Наука. 1996. Вып. 6. С. 51–70.
- 8. Федоткин, М. А. Управление процессами обслуживания / М. А. Федоткин // Вестник Нижегородского госуниверситета им. Н.И. Лобачевского "Математическое моделирование и оптимальное управление". 2001. Вып. 2(24). С. 169–188.
- 9. Хинчин, А. Я. Работы по математической теории массового обслуживания / А. Я Хинчин // М.: Государственное издательство физико-математической литературы. 1963. 236 с.
- 10. Колмогоров, А. Н. Основные понятия теории вероятностей / А. Н. Колмогоров // М.: Наука. 1974. 120 с.
- 11. Колмогоров, А. Н. Элементы теории функций и функционального анализа / А. Н. Колмогоров, С. В. Фомин// М.: Физматилит. 2006.-572 с.
- 12. Гнеденко, Б. В. Курс теории вероятностей / Б. В. Гнеденко // М.: Издательство ЛКИ. 2007. 448 с.
- 13. Ширяев, А. Н. Вероятность: в 2-х кн. Кн. 1 / А. Н. Ширяев // М.: Наука. 2007. 552 с. (С. 348–351).
- 14. Кемени, Дж. Счетные цепи Маркова / Дж. Кемени, Дж. Снелл, А. Кнепп // М.: Наука. 1987. 416 с.