EEEN3006J

Wireless Systems

Declan Delaney

(declan.delaney@ucd.ie)

Brian Mulkeen

Transceiver?

- Combined transmitter and receiver
 - most systems want 2-way communication
 - can share some blocks between tx and rx
- Problems
 - transmitter is major source of interference to receiver

- transmit signal power >>> receive power
- other unwanted interactions...

Transmitter Interference

- Cannot keep transmit signal out of receiver
 - even small fraction of tx signal overloads rx...
 - antenna often shared
- Transmit power could be mW to W
 - short-range device: +10 dBm = 10 mW
 - -3G phone: +24 dBm = 250 mW max (class 3)
- Receive power often < 1 pW

- 3G phone: sensitivity -117 dBm = 2 fW
 - minimum power, in 3.84 MHz bandwidth, for BER 10⁻³
 - 141 dB below max transmit power...

- Transmit and receive at different times
 - simplex or half-duplex system
 - one way at a time, e.g. push-to-talk system. ("Over")
 - time-division duplex (TDD)
 - gives full duplex service to user, in digital system
 - transmit at twice bit rate for half of time
- Transmit and receive on different frequencies
 - frequency-division duplex (FDD)
 - easy to arrange if only two transceivers
 - e.g. mobile phone and base station
 - not for peer-to-peer network

Shared Antenna

- Switch for time division duplex
 - transmit/receive switch simple solution
- Circulator: 3-port network
 - input port 1 -> output port 2
 - input port 2 -> output 3; etc.
 - insertion loss 0.3 1.3 dB
 - but isolation only 16 23 dB

Duplexer

- Pair of filters for FDD transceiver
 - can get 60 80 dB isolation, if good freq. gap
- Transmit path pass transmit signals
 - attenuate any output in receive band
 - can also act as final filter in transmitter

- Receive path pass receive signals
 - attenuate signals in transmit band
 - can also act as band select filter for receiver

- Example: transmit 1 W (20 V p-p into 50 Ω)
 - assume 60 dB attenuation in duplexer
 - still have 1 μW at receiver (>> receive signal)
 - need LNA 1 dB gain compression point $> 1 \mu W$
 - more attenuation in image-rejection filter ?
 - if not, consider mixer non-linearity
 - tx signal blocked by channel-select filter ?

- Example: transmit 1 W (20 V p-p into 50 Ω)
 - assume 60 dB attenuation in duplexer
 - still have 1 μW at receiver (>> receive signal)
- **Options**
- need LNA 1 dB gain compression point $> 1 \mu W$
- more attenuation in image-rejection filter ?
- if not, consider mixer non-linearity
- tx signal blocked by channel-select filter?

Single Channel Full Duplex

Transmit and receive on same frequency, at same time?

Jain et al. Stanford University

Research topic...

- idea: transmit signal is known, so generate copy of unwanted receive signal, subtract it...
- first use circulator or similar to minimise problem
- then analogue (RF) processing get unwanted signal down to level where ADC has enough dynamic range
 - then digital signal processing

Other Interference

- Leakage from any oscillators in tx or rx
 - fundamental and possibly harmonics
 - possible unintended mixing: sum, difference...
- Non-linear power amplifier in transmitter
 - need to consider harmonics of tx signal
 - may leak into receiver circuits...
- Non-linear mixer in receiver
 - many use diodes or transistors as switches
 - effectively multiply by square-wave at LO frequency
 - so all odd harmonics...
 - any imbalance or DC offset: inputs leak through
 - vulnerable to interference at many frequencies
 - e.g. $3f_{LO} \pm f_{IF}$ $5f_{LO} \pm f_{IF}$

Multiple Transceivers ?

- 3G network transceiver, FDD:
 - TX 1920 1980 MHz RX 2100 2170 MHz
- GSM transceiver, FDD in at least 2 bands:
 - TX 880 915 MHz RX 925 960 MHz
 - TX 1710 1785 MHz RX 1805 1880 MHz
- WiFi transceiver: 2400 2483 MHz
- Bluetooth transceiver: 2400 2483 MHz
- GPS receiver: 1559 1610 MHz
- Broadcast FM receiver: 88 108 MHz

Multiple Transceivers ?

WiFi receiver IF 300 MHz, LO below rx freq?

GSM receiver IF 420 MHz, LO below rx freq?

- Example
 - 3G network transceiver, FDD:
 - TX 1920 1980 MHz RX 2100 2170 MHz
 - GSM transceiver, FDD in at least 2 bands:
 - TX 880 915 MHz RX 925 960 MHz
 - TX 1710 1785 MHz RX 1805 1880 MHz
 - WiFi transceiver: 2400 2483 MHz
 - Bluetooth transceiver: 2400 2483 MHz
 - GPS receiver: 1559 1610 MHz
 - Broadcast FM receiver: 88 108 MHz

- FDD: up 890 915 MHz, down 935 960 MHz
 - allocated frequencies always 45 MHz apart
 - band edges only 20 MHz apart need good duplexer
- 270 kbit/s in 200 kHz bandwidth
- 8 users share channel, divided into 8 time slots
 - timing arranged so handset need not transmit and receive at same time, but base station must...

- Duplexer gives some band selection
 - then good image rejection filter, after LNA...
- Shift to intermediate frequency 71 MHz
 - LO adjustable 1006 1031 MHz (above rx freq.)
 - 200 kHz channel selection: 0.28% fractional BW
 - adjustable gain amplifier AGC

Quadrature shift to baseband

fixed oscillator at 4f_{TF} – divider gives 90° shift

Transmit Path

- Direct modulation at tx frequency
 - but no oscillator at tx freq. generate from VCO
 - mix with fixed 116 MHz oscillator, LPF selects diff.
 - VCO 1006 − 1031 MHz, −116 MHz = 890 − 915 MHz
- Adjustable gain pre-amplifier power control

- Duplexer gives harmonic suppression
 - ensures meet spec. on unwanted emissions

- what is happening here?

Example 2 – Chipset

Example 2

IF side

includesfreq.synthesis

Example 3 – ADF4602

- 3G transceiver chip
 - e.g. low-power base station
 - Analog Devices
- Direct conversion receiver
 - 3 LNAs for different bands
 - covers GSM as well as 3G
 - channel select at baseband
- Direct modulation transmitter
 - 2 outputs for different bands
 - precise modulation ?
 - claim no need for external filters

independent tx and rx freq.

Transmit Path

- 80 dB gain control range
- LPFs have 4 MHz corner frequency

Receive Path

- RF gain adjust 30 dB, BB gain adjust 60 dB
- ADCs measure DC at I and Q outputs
 - feedback to DACs apply offset at baseband input

Example 4 – ADF7023

ISM bands, 433 or 868 MHz, low power (max 20 mW) integrated processor to implement protocol...

Ex. 4

Transmit path

- tx power -20 to + 13.5 dBm, -94 dBm when off
- frequency synthesis with 400 Hz resolution
 - operates at 2x or 4x tx freq. to reduce spurious emissions
- simple modulation FSK or OOK, 1 300 kbit/s

- FSK acts directly on frequency synthesis unit
- OOK acts on power amplifier

Receive path

- low-IF receiver quadrature shift to IF of 200 kHz
 - IF bandwidth 100, 150, 200, 300 kHz
- image-rejecting frequency shift, 40-50 dB reduction
 - digital demodulator does the rest
- sensitivity example: -100 dBm for 300 kbit/s
 - with FSM 75 kHz deviation, BER 10⁻³
- max input power +12 dBm
- og amplifier provides AGC (logarithmic characteristic)

 RSSI = receive signal strength indicator
 - available to processor in digital form