MANUAL ÁLGEBRA LINEAL

2021

MSC. Norma Angélica Álvarez Torres
MA. Juan Luis Coronado Palomares
ME. Verónica Alida Romo García
MC. Omar Velarde Anaya

ÍNDICE

UNIDAD I. SISTEMAS DE NUMERACION	
1.1 Clasificación de los números reales	1
1.1.1 Números naturales	1
1.1.2 Números enteros	1
1.1.3 Números racionales	2
1.1.4 Números irracionales	2
1.1.5 Números reales	3
Ejemplo1.1	3
Ejercicio 1.1	
Ejercicio 1.2	5
1.2 Números complejos	
1.2.1 Números imaginarios	6
1.2.2 Representación geométrica de los números	
complejos	7
1.2.3 Nomenclatura y notación	8
1.2.4 Transformaciones entre cartesiano y polar	
a) De cartesiana a polar	
´Tarea 1.1	
b) De polar a cartesiana	
Tarea 1.2	
1.3 Sistemas de numeración	
1.3.1 Sistemas numéricos	
1.3.2 Conversión decimal al binario	
1.3.3 Conversión decimal al hexadecimal	
Ejercicio 1.3	
Ejercicio 1.4	
Ejercicio 1.5	
Ejercicio 1.6	
,	
UNIDAD II. ÁLGEBRA	23
2.1 Expresiones algebraicas y su clasificación	
2.1.1 Notación algebraica	
2.1.2 Fórmula algebraica	
2.1.3 Signos del álgebra	
a) Signos de operación	
b) Signos de relación	
c) Signos de agrupación	
2.1.4 Concepto de expresiones algebraicas	
i i j	

	Operaciones algebraicas	25
	2.2.1 Signos implícitos	25
	2.2.2 Suma y resta de monomios	
	2.2.3 Multiplicación y división de monomios	26
2.3	Productos notables	
	2.3.1 Suma por diferencia	27
	2.3.2 Cuadrado de binomio	27
	2.3.3 Cubo de un binomio	28
	Ejercicio 2.1	29
	Ejercicio 2.2	30
2.4	Factorización	
	2.4.1 Factor común monomio	31
	2.4.2 Factor común polinomio	31
	2.4.3 Factor común por agrupamiento	32
	2.4.4 Factorización de un trinomio de la forma x ² + bx + c.	32
	2.4.5 Factorización de la diferencia de dos cuadrados	33
	2.4.6 Factorización de un trinomio cuadrado perfecto	33
	Ejercicio 2.3	34
	Ejercicio 2.4	35
	DAD III. ECUACIONES E INECUACIONES	
3.1	Ecuaciones de primer grado	
	3.1.1 Definición de ecuación lineal	36
	3.1.1 Definición de ecuación lineal Ejemplo 3.1	36 36
	3.1.1 Definición de ecuación lineal Ejemplo 3.1 Ejercicio 3.1	36 36 37
	3.1.1 Definición de ecuación lineal	36 36 37
	3.1.1 Definición de ecuación lineal	36 36 37 37
	3.1.1 Definición de ecuación lineal	36 37 37 37
	3.1.1 Definición de ecuación lineal Ejemplo 3.1 Ejercicio 3.1 Desigualdades lineales 3.2.1 Concepto de desigualdad lineal e intervalo	36 37 37 37 39 de una
3.2	3.1.1 Definición de ecuación lineal	36 37 37 39 de una 40
3.2	3.1.1 Definición de ecuación lineal Ejemplo 3.1 Ejercicio 3.1 Desigualdades lineales 3.2.1 Concepto de desigualdad lineal e intervalo. 3.2.2 Propiedades de las desigualdades lineales 3.2.3 Representación gráfica y de intervalo de la solución desigualdad lineal. Sistemas de ecuaciones lineales con dos incógnitas.	36 37 37 39 de una 40
3.2	3.1.1 Definición de ecuación lineal Ejemplo 3.1 Ejercicio 3.1 Desigualdades lineales 3.2.1 Concepto de desigualdad lineal e intervalo 3.2.2 Propiedades de las desigualdades lineales 3.2.3 Representación gráfica y de intervalo de la solución desigualdad lineal Sistemas de ecuaciones lineales con dos incógnitas 3.3.1 Definición de sistemas de ecuaciones	36 37 37 39 de una 40 41
3.2	3.1.1 Definición de ecuación lineal Ejemplo 3.1 Ejercicio 3.1 Desigualdades lineales 3.2.1 Concepto de desigualdad lineal e intervalo 3.2.2 Propiedades de las desigualdades lineales 3.2.3 Representación gráfica y de intervalo de la solución desigualdad lineal Sistemas de ecuaciones lineales con dos incógnitas 3.3.1 Definición de sistemas de ecuaciones 3.3.2 Método de reducción o suma y resta	36 37 37 39 de una 40 41
3.2	3.1.1 Definición de ecuación lineal Ejemplo 3.1 Ejercicio 3.1 Desigualdades lineales 3.2.1 Concepto de desigualdad lineal e intervalo. 3.2.2 Propiedades de las desigualdades lineales 3.2.3 Representación gráfica y de intervalo de la solución desigualdad lineal. Sistemas de ecuaciones lineales con dos incógnitas. 3.3.1 Definición de sistemas de ecuaciones 3.3.2 Método de reducción o suma y resta 3.3.3 Método de igualación.	36 37 37 39 de una 40 41 41
3.2	3.1.1 Definición de ecuación lineal Ejemplo 3.1 Ejercicio 3.1 Desigualdades lineales 3.2.1 Concepto de desigualdad lineal e intervalo 3.2.2 Propiedades de las desigualdades lineales 3.2.3 Representación gráfica y de intervalo de la solución desigualdad lineal Sistemas de ecuaciones lineales con dos incógnitas 3.3.1 Definición de sistemas de ecuaciones 3.3.2 Método de reducción o suma y resta 3.3.3 Método de igualación 3.3.4 Método de sustitución	36 37 37 39 de una 40 41 41 43
3.2	3.1.1 Definición de ecuación lineal	36 37 37 39 de una 40 41 41 43
3.2	3.1.1 Definición de ecuación lineal Ejemplo 3.1 Ejercicio 3.1 Desigualdades lineales 3.2.1 Concepto de desigualdad lineal e intervalo. 3.2.2 Propiedades de las desigualdades lineales 3.2.3 Representación gráfica y de intervalo de la solución desigualdad lineal. Sistemas de ecuaciones lineales con dos incógnitas. 3.3.1 Definición de sistemas de ecuaciones 3.3.2 Método de reducción o suma y resta 3.3.3 Método de igualación. 3.3.4 Método de sustitución. Ecuaciones de segundo grado 3.4.1 Definición.	36 37 37 39 de una 40 41 41 43 44
3.2	3.1.1 Definición de ecuación lineal	36 37 37 39 de una 40 41 41 42 43

UNIDAD IV. ÁLGEBRA LINEAL	. 47
4.1 Matrices	. 47
4.1.1 Concepto de matriz	
4.1.2 Tipos de matrices	. 47
4.1.3 Orden o tamaño de una matriz	. 49
4.1.4 Igualdad de matrices	. 49
Ejercicio 4.1	. 50
Ejercicio 4.2	. 51
Ejercicio 4.3	. 51
Ejercicio 4.4	. 52
Ejercicio 4.5	. 52
Ejercicio 4.6	. 53
Matriz diagonal	. 53
Ejercicio 4.7	. 54
4.1.5 Operaciones con matrices	. 55
a) Suma y resta de matrices	
b) Multiplicación de una matriz por una constante	
c) Multiplicación de matrices	
4.2 Determinantes	. 57
4.2.1 Regla o esquema de Sarrus	
4.3 Sistemas de ecuaciones lineales con matrices	
4.3.1 Regla de Cramer	
4.3.2 Operaciones con matrices y regla de Cramer	
4.3.3 Solución de sistema de matriz 3 x 3 por Cramer y Sarrus	s 63

UNIDAD I. "SISTEMAS DE NUMERACIÓN"

1.1 CLASIFICACIÓN DE LOS NÚMEROS REALES

1.1.1 Números naturales

Con los números naturales contamos los elementos de un conjunto (número cardinal). O bien expresamos la posición u orden que ocupa un elemento en un conjunto (ordinal).

Los números cardinales son los que utilizamos para contar y para realizar operaciones aritméticas (suma, resta, multiplicación, división...): 1, 2, 3, ..., 20, 21, ..., 98, 99, 100... Los números ordinales se utilizan para indicar la posición (expresan orden): Primero, segundo, tercero... El conjunto de los números naturales está formado por:

$$N = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9...\}$$

1.1.2 Números enteros

Los números enteros son del tipo:

$$\mathbb{Z} = \{...-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5 ...\}$$

Nos permiten expresar: el dinero adeudado, la temperatura bajo cero, las profundidades con respecto al nivel del mar, entre otros.

1.1.3 Números racionales

Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero.

$$\mathbb{Q} = \left\{ \frac{a}{b} / a \in \mathbb{Z}_r^* \mid b \in \mathbb{Z}_r^* \mid b \neq 0 \right\}$$

1.1.4 Números irracionales

Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto, no se pueden expresar en forma de fracción.

El número irracional más conocido es π , que se define como la relación entre la longitud de la circunferencia y su diámetro.

$$\pi$$
 = 3.141592653589...

1.1.5 Números reales

El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por $\mathbb R$.

Con los números reales podemos realizar todas las operaciones, excepto la radicación de índice par y radicando negativo y la división por cero.

EJEMPLO 1.1 SOBRE CLASIFICACIÓN DE LOS NÚMEROS REALES

 $\sqrt{3}$ = 1.732050 Número Irracional (I)

-4 = Número Entero(Z)

3/7= Número Racional (Q)

0.12777777 = Número Racional (Q)

8/2=4 Número Natural (N)

 $\sqrt{-1}$ = Número Imaginario

EJERCICIO 1.1 CLASIFICACIÓN DE LOS NÚMEROS REALES.

Clasifique los enunciados como verdadero (v) o falso (f).

#	ENUNCIADO	VERDADERO/ FALSO
1.	-7 es un entero	
2.	-3 es un número natural	
3.	5 es racional	
4.	√25 no es un entero positivo	
5.	0/6 es racional	
6.	-3 está a la derecha de -4 en la recta de los números reales	
7.	1/6 es racional	
8.	0 no es racional	
9.	7/0 es un número racional	
10.	¶ es un número real	
11.	√3 es un número natural	
12.	Todo entero es positivo o negativo	
13.	$\frac{2}{3}$ es un número natural	
14.	$\frac{1}{9}$ es un número racional	
15.	$\sqrt{5}$ es un número real	
16.	-3 es un número entero, pero no es un	
	número natural	
17.	El 0 es un número real	
18.	Los números negativos son naturales	
19.	Los números que tienen expansión	
	decimal infinita, no periódica, son	
	racionales	
20.	La unión de los números racionales con	
	los irracionales, forman los números reales	

EJERCICIO 1.2 OPERACIONES CON NÚMEROS REALES

Resuelve las siguientes operaciones

2 . (1)	
-2 + (-4) =	
-6 + 2 =	
7 - (-4) =	
-6 - (-11) =	
-8 - (-6) =	
(-2)(9) =	
(7)(-9) =	
(-2)(-12) =	
(-1)6 =	
-(-9) =	
-2/(-4) =	
4/(-2) =	
3[-2(3)+6(2)] =	

1.2 NÚMEROS COMPLEJOS

1.2.1 Números Imaginarios

Un número imaginario se denota por bi, donde:

b es un número real

i es la unidad imaginaria: $\sqrt{-1} = i$

Los **números imaginarios** permiten calcular raíces con índice par y radicando negativo.

$$x^2 + 9 = 0$$

$$x^{2} = -9$$

$$x = \pm \sqrt{-9}$$

$$x_{1} = 3i$$

$$x_{2} = -3i$$

$$i^0 = 1$$

$$i^1 = i$$

$$i^2 = -1$$

$$i^3 = -i$$

$$i^4 = 1$$

Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto vale una determinada potencia de *i*, se divide el exponente entre 4, y el resto es el exponente de la potencia equivalente a la dada.

1.2.2 Representación geométrica de los números complejos

Si al representar geométricamente los números reales se llenó totalmente la recta numérica, es decir, se ocuparon todos los puntos en una dimensión, debe necesariamente pasarse a la siguiente escala que es la de dos dimensiones, o sean los puntos en el plano.

Para definir la ubicación de un punto situado en una recta (una dimensión), basta dar una coordenada.

Para definir la ubicación de un punto situado en un plano (dos dimensiones), se requieren dos coordenadas.

Hay dos maneras de definir la ubicación de un punto en el plano: por coordenadas cartesianas o por coordenadas polares.

En las coordenadas cartesianas, respecto de un origen, se da la distancia horizontal (abscisa o distancia sobre el eje x) y la distancia vertical (ordenada o distancia sobre el eje y).

Como cada punto del plano representa a un número complejo, se dirá entonces que ese número complejo está escrito en forma cartesiana.

En las coordenadas polares, respecto de un punto sobre una línea de referencia, se da la distancia de separación entre el punto arbitrario y el ángulo que se forma. En este caso, se dirá que ese número complejo está escrito en forma polar.

1.2.3 Nomenclatura y notación

La escritura para simbolizar a un número complejo: Una es la forma cartesiana y la otra la forma polar.

En forma cartesiana se considera como una suma de vectores para desplazarse desde el origen hasta el punto en el plano que representa al número complejo. El desplazamiento sobre el eje *x* se representa por la letra *a* y el desplazamiento por el eje *y* con la letra *b*, agregándole la letra *i*, origen y clave de los números complejos.

De acuerdo con el cuadrante en el que esté ubicado el punto que represente al número complejo, tanto *a* como *b* pueden ser positivos o negativos.

La forma Cartesiana de un número complejo es:

a + bi

en donde:

a: parte real;bi: parte imaginaria;a y b: números reales.

En forma polar, a la distancia r se le llama m'odulo y al ángulo θ se le llama argumento.

La forma polar de un número complejo es:

 $r \perp \theta$

en donde:

r : módulo (distancia)θ : argumento (ángulo)

EJEMPLO 1.

El número 4 + 3i en forma cartesiana es el mismo que 5 \perp 36.869 en forma polar

NOTA: 5 ∟36 se lee "cinco, ángulo de treinta y seis"

4+ 3i

$$r = \sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
 (distancia)
 $a = arc tan \frac{3}{4} = 36.86$ (ángulo)

Por lo tanto 4 + 3i en forma cartesiana es igual a $5 \bot 36.86$ en forma polar

1.2.4 Transformaciones entre cartesiano y polar

Para realizar transformaciones, ya sea de forma cartesiana a polar o viceversa, se hacen coincidir el origen del plano cartesiano con el origen del polar, y se aplica la trigonometría de los cuadrantes.

a) De cartesiana a polar

Se tienen conocidos los valores de a y de b, a partir de los cuales deben encontrarse r y θ .

$$r_2 = a_2 + b_2$$

de donde

$$r = \sqrt{a^2 + b^2}$$

Sea θ el ángulo formado por el eje x positivo y por r, medido en sentido contrario al de las manecillas del reloj (sentido positivo conforme a la

trigonometría de los cuadrantes) y sea α el ángulo agudo formado por r y el eje x más próximo. Ver los cuatro incisos de la figura 11.4. Entonces, del triángulo rectángulo del inciso a), figura 11.4, puede verse que por trigonometría que:

$$\tan \alpha = \frac{b}{a}$$

de donde se obtiene la siguiente relación para el ángulo α ,

$$\alpha = arc \ tan \left| \frac{b}{a} \right|$$

Conocido el ángulo α en cualquier cuadrante, se puede deducir el valor del ángulo θ de la siguiente manera:

 $\theta = \alpha$ si Z está en el primer cuadrante;

 θ = 180 - α si Z está en el segundo cuadrante;

 θ = 180 + α si Z está en el tercer cuadrante;

 θ = 360 - α si Z está en el cuarto cuadrante;

Representación número complejo (cartesiano)= a + bi

Ejemplo: Convertir a forma polar el número complejo Z = 15 - 36i

$$r = \sqrt{15^2 + \left(-36\right)^2} = 39$$

$$\alpha = \arctan \left| \frac{-36}{15} \right| = 67.38$$

como está en el cuarto cuadrante, $\theta = 360 - \alpha$, es decir,

$$\theta = 360 - 67.38 = 292.619$$
,

de manera que

$$15 - 36i = 39$$
 292.619

TAREA 1.1

Realiza las siguientes conversiones de forma cartesiana a polar, debe incluir número de cuadrante, procedimiento y gráfica

PROCEDIMIENTO	CUADRANTE	GRÁFICA
3 + 4i		
PROCEDIMIENTO	CUADRANTE	GRÁFICA
-20 + 15i		
L. L.	L	
PROCEDIMIENTO	CUADRANTE	GRÁFICA
-5 - 12i		
I	<u>l</u>	
PROCEDIMIENTO	CUADRANTE	GRÁFICA
24 - 10i		

b) De polar a cartesiana

Se tienen conocidos los valores de r y θ , a partir de los cuales deben encontrarse a y b.

$$\cos \theta = \frac{a}{r}$$
; de donde $a = r \cos \theta$

$$sen \theta = \frac{b}{r}$$
; de donde $b = r sen \theta$

Ejemplo: Convertir a forma cartesiana el número complejo $35 \mid 40$

$$a=35 \cos 40^{\circ} = 26.811$$

 $b=35 \sin 40^{\circ} = 22.497$

Forma cartesiana de un número polar: a + bi

De manera que:

$$35 \ 40 = 26.811 + 220497i$$

NOTA: recordar que b contiene el valor de "i"

TAREA 1.2

Realiza las siguientes conversiones de forma cartesiana a polar, debe incluir procedimiento

- 1) 4∟25
- 2) 5∟152
- 3) 9∟277
- 4) 19∟302

1.3 SISTEMAS DE NUMERACIÓN

1.3.1 Sistemas numéricos

Definición.

Sistemas que se han usado o se usan para representar cantidades contables denominadas números. Un sistema numérico está definido por la base que utiliza y entre ellos se encuentran:

- a) BINARIO (0,1). Binario significa dos, y es el principio fundamental en que se basan las computadoras digitales. Muchos de los componentes electrónicos de una computadora pueden estar en dos estados (encendido/apagado), comúnmente se denotan por 1 y 0, que son los dígitos del sistema binario. Es el sistema de numeración con base b=2 y sus dígitos (0 y 1) se llaman bits.
- b) OCTAL (0,1,2,3,4,5,6,7). Es un sistema de numeración que emplea ocho dígitos, tiene como base b=8 y sus dígitos octales son 0,1,2,3,4,5,6,7.
- c) DECIMAL (0...9). Decimal, significa 10, es el sistema de numeración universal que usa 10 dígitos denotados por los símbolos 0,1,2,3,4,5,6,7,8,9 y que representan los enteros de cero a nueve, respectivamente. Así, la base del sistema decimal es b=10
- d) HEXADECIMAL (0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F). Hexa, significa dieciséis; un sistema numérico de base 16 usado como una forma abreviada de representar todos los valores posibles de un byte. Su base b=16 y requiere 16 dígitos, para los cuales se utilizan los 10 dígitos decimales, junto con las 6 primeras letras del alfabeto.

1.3.2 Conversión decimal al binario

a) Divida la cantidad decimal entre 2, de la división se obtienen dos números, uno llamado **residuo** y otro llamado **cociente.**

- b) Con ambos realice una lista poniendo al lado izquierdo el cociente y al lado derecho el residuo.
- c) Se aplica sucesivamente, hasta que el cociente sea menor al divisor.
- d) Para agrupar o contar la cantidad binaria resultante, comience de la parte inferior.

Ejemplo:

Decimal a Binario

 $164 = 10100100_2$

Progreso

DIVISIÓN	COCIENTE	RESIDUO
164/2 =	82	0
82/2=	41	0
41/2=	20	1
20/2=	10	0
10/2=	5	0
5/2=	2	1
2/2=	1	0
1/2=	0	1

1.3.3 Conversión decimal al hexadecimal

- a) Divida la cantidad decimal entre 16, de la división se obtienen dos números, uno llamado **residuo** y otro llamado **cociente.**
- b) Con ambos realice una lista poniendo al lado izquierdo el cociente y al lado derecho el residuo.
- c) Se aplica sucesivamente, hasta que el cociente sea cero o menor a 16.
- d) Para agrupar o contar la cantidad binaria resultante, comience de la parte inferior.

Ejemplo:

Decimal a Hexadecimal

 $1523 = 5F3_{16}$

Progreso

DIVISIÓN	COCIENTE	RESIDUO
1523/16 =	95	3
95/16=	5	15(F)
5/16=	0	5

ECTURA

Hexadecimal	Decimal	Binario
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

EJERCICIO 1.3. CONVERSIONES DEL SISTEMA DECIMAL A BINARIO Y HEXADECIMAL

a) Convertir de Decimal a Binario

156810=

 1111_{10} =

b) Convertir de Decimal a Hexadecimal

 $2600_{10} =$

552310=

EJERCICIO 1.4 CONVERSIÓN DEL BINARIO AL HEXADECIMAL

- a) Agrupe las cantidades binarias en grupos de 4 en 4, iniciado por el lado derecho, si al terminar de agrupar, no completa 4 dígitos, entonces agregue ceros a la izquierda.
- b) Posteriormente, vea el valor que corresponde de acuerdo a la tabla:
- c) La cantidad correspondiente en Hexadecimal, se agrupa de izquierda a derecha (ARRIBA-ABAJO)

Ejemplos:

Binario a Hexadecimal

110111010₂ = **1BA**₁₆

0001 1011 10102

-					
0	0	0	1	=	1
1	0	1	1	=	11(B)
1	0	1	0	=	10 (A)
	0 1 1	1 0	1 0 1	1 0 1 1	1 0 1 1 =

0000
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal Decimal Binario

0110 1111 0101₂ = **6F5**₁₆

8	4	2	1		
0	1	1	0	=	6
1	1	1	1	=	15(F)
0	1	0	1	=	5

0011 0100 10012 = **349**16

8	4	2	1		
0	0	1	1	=	3
0	1	0	0	=	4
1	0	0	1	=	9

EJERCICIO 1.5 CONVERSIONES ENTRE SISTEMAS NUMÉRICOS

DECIMAL	BINARIO	HEXADECIMAL
328 ₁₀		
55 ₁₀		
752 ₁₀		
1024 ₁₀		
971 ₁₀		
BINARIO	DECIMAL	HEXADECIMAL
1111 0010 ₂		
1111 0000 1010 ₂		
110 0111 10012		
1111 11112		
1111 1111 1111 0000 ₂		

EJERCICIO 1.6 REPASO UNIDAD I

NÚMEROS REALES

1.- Clasifica los siguientes números reales colocando en el paréntesis la letra que corresponda:

N Naturales E Enteros R Racionales I Irracionales

2.- Calcula:

a)
$$2 \times 5 + 4 =$$

c)
$$-4(7-2) =$$

b)
$$(1 + 3) \times 6 =$$

a)
$$2 \times 5 + 4 =$$

b) $(1 + 3) \times 6 =$
c) $-4(7-2) =$
d) $4 + 10 \div 2 - 7 =$

3.- Encuentra el número faltante:

NÚMEROS COMPLEJOS

4.- Convertir a forma polar y graficar:

6+3i=

-8-10i=

5.- Convertir a forma cartesiana y graficar:

2 ∟ 20=

10 ∟ 100=

SISTEMAS NUMERICOS

6.- Convertir de decimal a binario y hexadecimal

32010=

4510=

 $90_{10} =$

7.- Convertir de binario a decimal y hexadecimal

1111 10102=

101112=

UNIDAD II. "ÁLGEBRA"

2.1 EXPRESIONES ALGEBRÁICAS Y SU CLASIFICACIÓN

En álgebra, para lograr la generalización, las cantidades se representan por medio de letras, las cuales pueden representar todos los valores.

2.1.1 Notación algebraica

Los símbolos más usados en álgebra para representar las cantidades, son los números y las letras.

Los números se emplean para representar cantidades conocidas y determinadas.

Las letras se emplean para representar toda clase de cantidades.

2.1.2 Fórmula algebraica

Es la representación, por medio de letras, de una regla o de un principio general.

2.1.3 Signos del álgebra

Los signos empleados en álgebra son de tres clases: signos de operación, de relación y de agrupación.

a) SIGNOS DE OPERACIÓN

- Signo Suma es +, que se lee más (a + b = " a mas b"
- Signo Resta es -
- Signo Multiplicación es * (Entre factores literales o numéricos, el signo se omite, ejemplos: a*b*c = abc; 5*x*y = 5xy
- Signo División es /
- Signo Elevación a potencia es el exponente a³=aaa
- Signo Raíz $\sqrt{\ }$, signo radical. $\sqrt{\ }$ a, raíz cuadrada; $\sqrt{\ }$ a, raíz cúbica

b) SIGNOS DE RELACIÓN

Se emplean para indicar la relación que existe entre dos cantidades. Los principales son:

- =, igual a (a=b, "a igual a b"
- >, mayor que
- <, menor que

c) SIGNOS DE AGRUPACIÓN

Paréntesis ordinario ()
Paréntesis angular o corchete []
Llaves {}

2.1.4 Concepto de expresiones algebraicas

MONOMIOS Y POLINOMIOS

Mono = uno

Poli = muchos

Un monomio consta de un solo término, ejemplo:

- a) $5x^{2}$
- b) *y*
- c) 5

Un polinomio consta de 2 o más términos, ejemplo:

- a) $5x^2 + 3x^2$
- b) $6y^3 + 2$
- c) $5x + 3x + y^2$

De esta forma, se dice que

- a) Un binomio es un polinomio de 2 términos
- b) Un trinomio es un polinomio de 3 términos
- c) Un cuatrinomio es un polinomio de 4 términos
- d) Etc.

Las partes de un monomio o polinomios son las siguientes:

- a) Coeficiente: es el número (entero o fracción) que acompaña a la literal. Cuando no aparece indicado, se considera como coeficiente el 1.
- b) Exponente: potencia a la que esta elevada la variable.
- c) Variable: es la letra o incógnita

d) Grado: la mayor potencia a la que esta elevado un monomio o polinomio. Cuando se tienen mas de una variable en un monomio, se suman los exponentes (aunque no sean de la misma literal)

2.2 OPERACIONES ALGEBRÁICAS

Para llevar a cabo operaciones algebraicas primero es necesario considerar algunos conceptos básicos.

2.2.1 signos implícitos

a) <u>SUMA:</u> este símbolo (+) puede no ir a la izquierda de la primera expresión, pero se obvia o se entiende que sí está.

Caso contario es el símbolo de la RESTA (-) siempre debe ir a la izquierda de la expresión, no se puede obviar.

$$-10x$$

b) <u>MULTIPLICACIÓN</u>: en las expresiones algebraicas no es necesario incluir el signo de multiplicación (x) entre los elementos.

Sin embargo, a veces se puede incluir un punto, un asterisco (*) o paréntesis para indicar alguna multiplicación de manera especial.

c) <u>POTENCIA DE 1:</u> cuando alguna variable esta elevada a una potencia de 1, no es necesario poner dicho número.

$$2x^1 = 2x$$

d) <u>COEFICIENTE:</u> cuando una variable no tiene coeficiente a su izquierda, se obvia que es 1.

$$1x^3 = x^3$$

2.2.2 Suma y resta de monomios

Para esto se aplican las leyes de los signos y es NECESARIO QUE TENGAN LA MISMA PARTE LITERAL y solamente se suman o restan los coeficientes.

a)
$$9x - 5x = 4x$$

- b) $4a + 2a^2$ = (no tienen la misma parte literal, no se pueden sumar)
- c) -3bc 10bc = -13bc
- d) $6x^2y 5yx^2 = x^2y$ (aparentemente el orden de las partes literales no es igual, pero si se reordenan, se observa que si son iguales)

e)
$$5x^2 - (2x + x^2) = 5x^2 - 2x - x^2 = 4x^2 - 2x$$

f)
$$(6x-3)-(2x-7)=6x-3-2x+7=4x+4$$

2.2.3 Multiplicación y división con monomios

Para llevar a cabo estas operaciones, <u>NO</u> ES NECESARIO TENER LA MISMA PARTE LITERAL. Se multiplican o dividen los coeficientes y se aplican las leyes de los exponentes en el caso de las literales.

a) $3x * 4x = 12x * x^2 = 12x^3$ (Se multiplican los coeficientes y se suman exponentes de las literales iguales)

b)
$$2a(-4ab^2) = -8a^2b^2$$

c) $\frac{9m^3}{3m^2} = 3m$ (se dividen los coeficientes 9/3, se restan los exponentes de las literales iguales y éstas se quedan en la posición (arriba o abajo) de la que tenga mayor exponente).

d)
$$\frac{-20x^4y}{-2y^2} = \frac{10x^4}{y}$$

2.3 PRODUCTOS NOTABLES

Existen multiplicaciones de expresiones algebraicas que por sus características se pueden resolver en forma rápida, sin necesidad al desarrollo término a término, con la reducción de términos semejantes. En otras palabras, estas multiplicaciones se pueden resolver aplicando una regla práctica y por ello reciben el nombre de productos notables.

2.3.1 Suma por diferencia

Es el producto de dos binomios que tienen los mismos términos, pero difieren en el signo del segundo término.

$$(a + b) (a - b)$$

REGLA:

"Cuadrado del primer término, menos el cuadrado del segundo término"

$$(a + b) (a - b) = a^2 - b^2$$

Ejemplo:

$$(x + 3) (x - 3) = x^2 - 9$$

$$(a + 5) (a - 5) = a^2 - 25$$

2.3.2 Cuadrado de binomio

El cuadrado de un binomio es el producto de dos binomios iguales.

$$(a + b)^2 = (a + b) (a + b) = a^2 + ab + ab + b^2$$

REGLA:

"Cuadrado del primer término, más o menos el doble producto del primer por el segundo, más el cuadrado del segundo término"

Ejemplo:

$$(x + 5)^2 = x^2 + 10x + 25$$

$$(x - 4)^2 = x^2 - 8x + 16$$

2.3.3 Cubo de un binomio

Es el producto de tres binomios iguales

$$(a + b)^3 = (a + b)(a + b)(a + b) = a^3 \pm 3 a^2b + 3 ab^2 \pm b^3$$

REGLA:

"El cubo del primer término, más o menos el triple producto del cuadrado del primer término por el segundo, más el triple del producto del primer término por el cuadrado del segundo, más o menos el cubo del segundo término"

Ejemplo:

$$(x + 2)^3 = x^3 + 3(x^2)(2) + 3(x)(2^2) + 2^3 = x^3 + 6x^2 + 12x + 8$$

$$(x - 4)^3 = x^3 - 3(x^2)(4) + 3(x)(4^2) - 2^3 = x^3 - 12x^2 + 48x + 64$$

$$(2 a + 3b)^3 = (2 a)^3 + 3(2a^2) (3b) + 3(2a) (3b^2) + 3b^3 = 8a^3 + 36 a^2b + 54 ab^2 + 27b^3$$

RESUMEN DE APOYO

Suma por diferencia: 1ero ² - 2do ²

Cuadrado de binomio: 1ero² ± 2* 1ero.*2do + 2do²

Cubo de un binomio: $1 \text{ero}^3 \pm 3 \text{*} 1 \text{ero}^2 \text{*} 2 \text{do} + 3 \text{*} 1 \text{ero} \text{*} 2 \text{do}^2 \pm 2 \text{do}^3$

EJERCICIO 2.1 IDENTIFICACIÓN DEL TIPO DE PRODUCTO NOTABLE.

Anota en cada expresión, si es suma por diferencia, cuadrado de binomio o cubo de un binomio y resuelve:

a)
$$(2 a + 5) (2 a - 5) =$$

b)
$$(x + 2)^2 =$$

c)
$$(x + 2)^3 =$$

d)
$$(2b + 4) (2b - 4) =$$

e)
$$(4x + 5y) (4x - 5y) =$$

f)
$$(2x + 3)^3 =$$

g)
$$(x + 3)^2 =$$

h)
$$(3x - 1)^3 =$$

i)
$$(6m + 5n) (6m - 5n) =$$

j)
$$(7x - 5y)^3 =$$

k)
$$(2x - 1)^2 =$$

I)
$$(x - 5y)^2 =$$

EJERCICIO 2.2 RESOLVER EMPLEANDO PRODUCTOS NOTABLES

a) Resolver cada suma por diferencia

- 1. (x-2)(x+2) =
- 2. (3x + 2)(3x 2) =
- 3. (5x + 10y) (5x 10y) =

b) Resolver cada cuadrado de binomio

- 1. $(3x + 2)^2$ =
- 2. $(x^2-5)^2=$
- 3. $(6x 5y)^2 =$

c) Resolver cada cubo de binomio

- 1. $(x-3)^3 =$
- 2. $(a + 2)^3 =$

d) En cada producto notable, encontrar el error o errores.

- 1. $(x-7)(x+7) = x^2 + 49$
- 2. $(x-8)^2 = x^2 + 16x 64$
- 3. $(x-6)^2 = x^2 + 6x + 36$
- 4. $(4x + 2) (4x 2) = 4x^2 4$
- 5. $(x + 3)^3 = x3 + 9x + 27 + 27$
- 6. $(x-1)^3 = \frac{x^3 x^2 + 3x + 1}{x^3 x^2 + 3x + 1}$

2.4 FACTORIZACIÓN

Factorizar una expresión algebraica consiste en escribirla como un producto.

Ejemplos:

$$2x^3 - 6x^2 + 4x = 2x (x^2 - 3x + 2)$$

 $x^2 + 12x + 35 = (x + 7) (x + 5)$

Como se puede apreciar, la factorización es el proceso inverso de la multiplicación, y es de extrema importancia en las Matemáticas.

Existen varios casos de factorización:

2.4.1 Factor común monomio: Es el factor que está presente en cada término de un polinomio.

Ejemplo 1: ¿cuál es el factor común en 12x + 18y - 24z?

Entre los coeficientes es el 6, y no se repiten variables, por lo tanto, su factorización sería:

$$6(2x + 3y - 4z)$$

Ejemplo 3:
$$6x^2y - 30 xy^2 + 12x^2y^2 =$$

2.4.2 Factor común polinomio: Es el polinomio que aparece en casa término de la expresión:

Ejemplo 1:

Factoriza
$$x (a + b) + y (a + b)$$

Existe un factor común que es (a + b)

Por lo tanto, el resultado sería: (a + b) (x + y)

Ejemplo 2:

2.4.3 Factor común por	agrupamiento:	Se	trata	de	extraer	un
doble factor común.						

Ejemplo 1:

Factoriza ap + bp + aq + bq

Se extrae factor común "p" de los dos primeros términos y "q" de los dos últimos:

$$p$$
 (a+b) + q (a + b)

Después se obtiene el factor común polinomio (2):

$$(a + b) (p + q)$$

Ejemplo 2:

$$a^2 + ab + ax + bx =$$

2.4.4 Factorización de un trinomio de la forma x² + bx + c.

Se puede descomponer en dos factores binomiales, mediante el siguiente proceso:

Ejemplo 1:

$$x^2 + 6x + 5$$

PASO 1. Encontrar dos factores que, multiplicados, den el primer término

PASO 2. Encontrar dos números que multiplicados den el tercer término, y sumados o restados, den el segundo término.

NOTA: Como la suma debe ser +6, se debe utilizar 1 * 5

$$(x + 1) (x + 5)$$

Ejemplo 2:

Factoriza
$$x^2 + 4xy - 12y^2 =$$

2.4.5	Facto	orización (de la	dife	rencia d	le dos cua	drados:	Se
	puede	descompor	ner en	dos	factores	binomiales,	mediante	е
	siguien	ite procedim	niento:					

Ejemplo 1:

$$9x^2 - 16y^2$$

PASO 1. Se factoriza el primer término $9x^2 = 3x * 3x$

PASO 2. Se factoriza el segundo término $-16y^2 = +4y * -4y$

PASO 3. Después de factorizar, se hacen dos términos (3x + 4y) (3x - 4y)

Ejemplo 2:

Factoriza **9a**² **– 25b**² **=** _____

2.4.6 Factorización de un trinomio cuadrado perfecto: Se identifican los dos términos que son cuadrados perfectos y el tercer término, corresponde al doble producto de las raíces de los dos anteriores.

Ejemplo 1:

$$9x^2 - 30x + 25$$

PASO 1. Halla la raíz principal del primer término $9x^2 = 3x * 3x$

PASO 2. Halla la raíz principal del tercer término, con el signo del segundo término **25 = -5 * -5**

PASO 3. Después de factorizar, se hacen dos términos (3x - 5) (3x - 5)

Ejemplo 2:

Factoriza $b^2 - 12b + 36 =$

EJERCICIO 2.3 FACTORIZACIÓN

a) FACTOR COMÚN MONOMIO

$$24 a - 12ab =$$

 $8 a^3 - 6 a^2 =$
 $b^4 - b^3 =$

b) FACTOR COMÚN POLIMONIO

$$m (2 a + b) + p (2 a + b) =$$

 $a (2 + x) - (2 + x) =$

c) FACTOR COMÚN POR AGRUPAMIENTO

$$a^2 + ab + ax + bx =$$

 $ab - 2a - 5b + 10 =$

d) <u>FACTORIZACIÓN DE UN TRONOMIO DE LA FORMA x² + bx</u> + c

$$b^2 + 8b + 15 =$$

 $r^2 - 12r + 27 =$

e) FACTORIZACIÓN DE LA DIFERECIA DE DOS CUADRADOS

$$16x^2 - 100 =$$

$$49x^2 - 64 t^2 =$$

f) FACTORIZACIÓN DE UN TRINOMIO CUADRADO

$$4 a^{2} + 4 a + 1 =$$
 $x^{2} + 10x + 25 =$
 $25m^{2} - 70mn + 49n^{2} =$
 $36x^{2} - 84xy + 49y^{2} =$

EJERCICIO 2.4 REPASO GENERAL

I. EXPRESIONES ALGEBRAICAS

El doble de un número

La mitad de un número

II. OPERACIONES ALGEBRAICAS

La edad de A es el doble que la de B, y ambas edades suman 36 años. Encontrar las edades.

III. PRODUCTOS NOTABLES

SUMA POR DIFERENCIA	1ero ² - 2do ²
CUADRADO DE BINOMIO	1ero ² +/-(2)1ero*2do + 2do ²
CUBO DE UN BINOMIO	1ero ³ +/- (3) 1ero ² *2do + (3)1ero*2do ² +/-2do ³

Suma por diferencia	Cuadrado de	Cubo de un binomio
	<u>binomio</u>	
(a + b) (a - b) =	$(a + b)^2 =$	$(x + 2)^3 =$
(6m + 5n) (6m - 5n) =	$(x - 4)^2 =$	$(x + 3)^3 =$

IV. FACTORIZACIÓN

Factor común monomio	Factor común polinomio	Factor común por agrupamiento
12m ² n + 24m ³ n ² – 36m ⁴ n ³ =	$x^2(p + q) + y^2(p + q) =$	6ab + 4a -15b – 10=
$10x - 15x^2 =$	(1-x) + 5c(1-x)=	am – bm + an – bn=
Factorización de un trinomio de la forma	Factorización de la diferencia de dos	Factorización de un trinomio cuadrado
$x^2 + bx + c$	cuadrados	perfecto
$x^2 + 5x + 4 =$	$4x^2 - 1 =$	$49x^2 - 14x + 1 =$
r ² – 12r + 27=	121 x ² -144 y ² =	$X^2 + 10x + 25 =$

V. Soluciona las siguientes operaciones con expresiones algebraicas:

X + 2X=	½ a + ½ a=
15x + 20x + x =	-m ^{x+1} -5 m ^{x+1} =
-8x+5x-19x=	(7 a + 6b - 3c) - (5 a - 4b + 8c) =

UNIDAD III. "ECUACIONES E INECUACIONES"

3.1 ECUACIONES DE PRIMER GRADO

La ecuación es una igualdad en la que intervienen letras, cuyos valores son desconocidos, las cuales se denominan INCÓGNITAS, y regularmente se indican con las últimas letras del alfabeto.

Existen diferentes tipos de ecuaciones, dentro de las más comunes se encuentran:

3.1.1 Definición de ecuación lineal. Son llamadas lineales porque representan rectas en el sistema cartesiano. Involucra solamente sumas y restas de una variable a la primera potencia.

$$4x - 8 = 12$$

EJEMPLO 3.1 SOLUCIÓN DE ECUACIONES LINEALES

1.
$$6x - 7 = 17$$

 $6x - 7 + 7 = 17 + 7$
 $6x = 17 + 7$

$$\frac{6x}{6} = \frac{24}{6}$$

2.
$$-10 - x = 3$$

 $-x = 3 + 10$
 $-1(-x = 13)$
 $X = -13$

3.
$$6x - 3 = 2x + 5$$

 $6x - 2x = 5 + 3$
 $4x = 8$
4

EJERCICIO 3.1 SOBRE LA SOLUCIÓN DE ECUACIONES LINEALES

Encuentra el valor de "x", en cada una de las siguientes ecuaciones lineales.

a)
$$3 - 2x = 4$$

x=

c)
$$3x + 2 = 7$$

 $x =$

3.2 DESIGUALDADES LINEALES

3.2.1 Concepto de desigualdad lineal e intervalo

Una desigualdad o inecuación es aquella expresión matemática que contiene los símbolos:

< (menor que)

> (mayor que)

 \leq (Menor o igual que)

 \geq (mayor o igual que)

Una ecuación se identifica por que incluye el signo (=), por ejemplo: 2x - 10 = 8,

y generalmente solo tiene una o dos valores que la hacen verdadera (x = 9, para el caso anterior)

En cambio, una DESIGUALDAD puede tener un conjunto o intervalos de números que representan la solución. Por ejemplo,

Todos los números menores al 5, la hacen verdadera.

De esta forma, para definir los valores que resuelven una desigualdad se emplean los INTERVALOS.

Existen básicamente 5 tipos de intervalos

a) INTERVALO ABIERTO. Sean "a" y "b" dos números tales que "a" sea menor que "b", el conjunto de todos los números "x" comprendidos entre "a" y "b", recibe el nombre de intervalo abierto de "ab" y se escribe "a < x < b", (se lee "equis mayor que a, pero menor que b"). Como sugerencia y para evitar confusiones, en las desigualdades siempre se recomienda leer a partir de la "x" o variable en cuestión.

Tipo de	Notación	Notación	Grafica
Intervalo	de Intervalo	de desigualdad	Lineal
INTERVALO ABIERTO	(a,b)	(a < x < b)	x

^{*}Se usan paréntesis () para indicar que no se incluyen a "a" ni "b" como parte de la solución. También se emplean círculos "vacíos" en lugar de los paréntesis.

b) INTERVALO CERRADO. Sean "a" y "b" dos números tales que "a" sea menor que "b", el conjunto de todos los números "x" comprendidos entre "a" y "b", que INCLUYEN a "a" y "b" recibe el nombre de intervalo cerrado de "ab" y se escribe " $a \le x \le b$ ", (se lee "equis mayor o igual que a, pero menor o igual que b").

^{*}observa que se usan corchetes [] para indicar que sí se incluyen a "a" y "b" como parte de la solución. También se emplean círculos "rellenos" en lugar de los paréntesis.

c) INTERVALO SEMI-ABIERTO POR LA IZQUIERDA.

_				
	INTERVALO	/- h1	/ a h 1	
	SEMI-ABIERTO	(a,b]	(a < x <u><</u> b]	 x
	POR LA IZQUIERDA			a b

d) INTERVALO SEMI-ABIERTO POR LA IZQUIERDA.

3.2.2 Propiedades de las desigualdades lineales

Las propiedades de las desigualdades son similares a las propiedades de las ecuaciones, con dos excepciones importantes: cuando ambos lados de una desigualdad se multiplican o dividen por un número negativo, el sentido de la desigualdad debe invertirse.

Por lo tanto, resolver una desigualdad lineal es similar a resolver una ecuación lineal, salvo cuando se tienen las dos excepciones mencionadas anteriormente. Por ejemplo, si deseamos encontrar la solución de las siguientes desigualdades, tenemos que:

a)
$$x + 3 < 5$$

 $x < 5 - 3$
 $x < 2$

b)
$$x - 10 < -14$$

 $x < 10 - 14$
 $x < -4$

c)
$$8x - 10 \le 4x + 2$$
$$8x - 4x \le 10 + 2$$
$$4x \le 12$$
$$x \le \frac{12}{4}$$
$$x < 3$$

*Cuando se divide o multiplica por un número negativo

d)
$$2+3x < 5x+8$$

 $3x-5x < -2+8$
 $-2x < 6$ se pasará el -2 dividiendo al otro lado

 $x > \frac{6}{-2}$ y se cambia el sentido del signo de desigualdad x > -3

e)
$$7 < 3x - 2 \le 13$$

 $7 + 2 < 3x - 2 + 2 \le 13 + 2$ se suma +2 en cada parte para eliminar -2 del centro de la desigualdad

$$9 < 3x \le 15$$
 ahora se dividirá entre 3 cada parte

$$3 < x \le 5$$

3.2.3 Representación gráfica y de intervalo de la solución de una desigualdad

La solución a los tres ejemplos anteriores, se puede representar gráficamente mediante intervalo y gráfica como se muestra a continuación

c)
$$(-\infty, 3]$$

d)
$$(-3, +\infty)$$

3.3 SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

3.3.1 Definición de sistemas de ecuaciones

Es un conjunto de dos o más ecuaciones con dos o más incógnitas.

Para resolver un sistema de esta clase, es necesario obtener de las dos ecuaciones dadas, una sola ecuación con una incógnita. Esta operación se llama eliminación.

Son tres los métodos de eliminación más usuales: método de igualación, sustitución y reducción, también llamado este último de suma o resta.

3.3.2 Método de reducción o suma y resta

- a) En este método se hacen iguales los coeficientes de cada una de las incógnitas. Se obtiene el mínimo común múltiplo de los coeficientes y se multiplica la segunda ecuación por el valor obtenido.
- b) Los coeficientes que se han igualado, deben tener signos distintos para que al momento de sumar o restar las ecuaciones, sea posible eliminar una de las variables. Se resuelve haciendo el procedimiento de suma y resta de expresiones, hasta obtener el resultado de una de las variables.
- c) Sustituyendo el valor encontrado en cualquiera de las ecuaciones originales, se obtiene el segundo valor.

EJEMPLO:

$$5x + 6y = 20$$

 $2(4x - 3y = -23)$
 $5x + 6y = 20$
 $8x - 6y = -46$
 $13x = -26$
 13

$$X = -2$$

$$5x + 6y = 20$$

$$5(-2) + 6y = 20$$

$$-10 + 6y = 20$$

$$6y = 20 + 10$$

$$\underline{6y} = \underline{30}$$

$$6 \quad 6$$

$$Y = 5$$

3.3.3 Método de igualación

- a) Se despeja una incógnita de cada una de a ecuaciones, la incógnita debe ser la misma para que el método pueda dar resultado.
- b) Con los dos valores de las incógnitas despejadas en las ecuaciones, se forma una ecuación con una sola incógnita, la cual se despeja y se conoce su valor.
- c) Después, el valor conocido se sustituye en cualquiera de las dos ecuaciones originales, o en las que se obtuvieron en el despeje, determinando de esta forma el valor de la otra incógnita.

EJEMPLO:

```
(1)5x + 6y = 20
                            (2)4x - 3y = -23
X = (20 - 6y)/5
                                                           x=(-23+3y)/4
                        (20 - 6y)/5 = (-23 + 3y)/4
                         4(20 - 6y) = 5(-23 + 3y)
                          80 - 24y = -115 + 15y
                          -24y -15y = -115-80
                               <u>-39</u>y <u>=-195</u>
                                -39 -39
                                  Y= 5
                             X = (20 - 6y)/5
                            X = (20 - 6(5))/5
                             X = (20-30)/5
                                X = -10/5
                                  X=-2
```

3.3.4 Método de sustitución

- a) Este método consiste en despejar una de las incógnitas que forman parte del sistema de ecuaciones.
- b) Después el valor despejado de la incógnita se sustituye en la ecuación contraria a la que se realizó el despeje, obteniendo con esto una nueva ecuación con una sola variable, la cual se despeja y se conoce su valor.
- c) Este valor ya conocido, se sustituye en cualquiera de las dos ecuaciones originales, obteniéndose también una ecuación con una sola incógnita, a la cual se aplica el mismo procedimiento de despejar para conocer el segundo valor.

3.4 ECUACIONES DE SEGUNDO GRADO

3.4.1 Definición

ECUACIONES CUADRÁCTICAS ax² + bx + c

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

FÓRMULA GENERAL	FACTORIZACIÓN
$x^2 + 4x + 4 = 0$	$x^2 + 4x + 4 = 0$
$X^2 + x - 12 = 0$	

A=1
B=1 C=-12
$X = \frac{- (1) \pm \sqrt{(1)^2 - 4(1)(-12)}}{2(1)}$
$X = \frac{-1 \pm \sqrt{1 + 48}}{2}$
$X = \frac{-1 \pm \sqrt{49}}{2}$
X= <u>-1 ±7</u> 2
$X_1 = -\frac{1 + 7}{2} = \frac{6}{2} = 3$
$X_2 = \frac{-1}{2} = -8/2 = -4$

$$x^{2} + 4x + 4 = 0$$

 $(x + 2)(x + 2)=0$
 $X_{1} = -2$
 $X_{2} = -2$
 $X_{2}^{2} + x - 12 = 0$
 $(x + 4)(x - 3)=0$
 $X_{1} = -4$
 $X_{2} = 3$

EJERCICIO 3.2 ECUACIONES CUADRÁTICAS

Resuelve las siguientes ecuaciones cuadráticas, una por fórmula general y otra más por factorización, según indica en orden de la tabla

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

FÓRMULA GENERAL	FACTORIZACIÓN
$x^2 + 3x - 2 = 0$	$x^2 + 2x - 24 = 0$
$X_1 = 0.5615$	$x_1 = -6$
$X_2 = -3.5615$	x ₂ =4

EJERCICIO 3.3 REPASO UNIDAD III

I. ECUACIONES LINEALES

Resuelve las siguientes ecuaciones lineales

1.
$$6x - 7 = 17$$

2.
$$-10 - x = 3$$

$$3. 5x = 8x - 15$$

II. ECUACIONES CUADRÁTICAS

Resuelve la siguiente ecuación cuadrática por FACTORIZACIÓN Y FÓRMULA GENERAL

1.
$$x^2 + 9x + 20 = 0$$

III. SISTEMAS DE ECUACIONES

Resuelve el siguiente sistema de ecuaciones lineales por SUMA Y RESTA, IGUALACIÓN Y SUSTITUCIÓN

1.
$$15x - y = 40$$

$$19x + 8y = 236$$

RESULTADOS

- 1.1 x=4
- 1.2 x=-13
- 1.3 x = 5
- 2.1 $x_1 = -4 x_2 = -5$ (ambos métodos)
- 3.1 x=4 y= 20 (los tres métodos)

UNIDAD IV. "ÁLGEBRA LINEAL"

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}$$

4.1 MATRICES

4.1.1 Concepto de matriz. Es un arreglo rectangular de números reales, encerrado en grandes paréntesis rectangulares. Las matrices por lo regular se denotan con letras mayúsculas y negritas.

4.1.2 Tipos de matrices

- Matriz fila.
- Matriz columna.
- Matriz cuadrada.
- Matriz transpuesta.
- Matriz simétrica.
- Matriz anti simétrica.
- Matriz triangular.
- Matriz identidad

Una **matriz cuadrada** es la que tiene el mismo número de filas que de columnas.

Ejemplo:

Entonces A y B son matrices cuadradas de orden 3 y 2 respectivamente.

Ejemplos de matrices:

Los números reales que forman el arreglo se denominan **entrada o elemento** de la matriz. Los elementos en cualquier línea horizontal forman un **renglón** y aquellos que se encuentran en cualquier línea vertical forman una **columna** de la matriz. Por ejemplo, la matriz **B** (que está arriba) tiene 3 renglones y cuatro columnas. Los elementos del

primer renglón son 3,4,5 y 6 y los que pertenecen a la tercera columna son 5,9 y 3.

Una matriz que solo tiene un renglón a menudo se le conoce como matriz renglón o vector renglón. De manera similar, una matriz que solo tiene una columna se denomina matriz columna o vector columna. En los ejemplos anteriores, **D** es un vector renglón y **C** es un vector columna.

Si todos los elementos de la matriz son cero, la llamamos **matriz cero** y la denotamos por **0**.

Una matriz cuadrada, se denomina **matriz identidad** si todos los elementos de su diagonal son iguales a 1 y todos los elementos fuera de su diagonal son iguales a cero.

En una matriz cuadrada de orden "n", las entradas están sobre la diagonal "principal" que va desde la esquina superior izquierda hasta la esquina inferior derecha es llamada diagonal principal.

La diagonal principal consiste en A11, A22 y A33

Una matriz cuadrada se dice que es una **matriz triangular superior** si todas las entradas debajo de la diagonal principal son cero.

Una matriz se dice que es una **matriz triangular inferior** si todas las entradas por arriba de la diagonal principal son cero.

Si **A** es una matriz, la matriz formada a partir de A intercambiando sus renglones por sus columnas es llamada **transpuesta de A.**

, ENCONTRAR A^T

4 5 6

$$A^{T} = 1 4$$

2 5

3 6

4.1.3 Orden o tamaño de una matriz

- A) La matriz 1
- 1 2 0 , tiene orden 1 x 3
- B) La matriz
- 1 -6, tiene tamaño 3 x 2
- 5 1
- 9 4

7

- C) La matriz
- , tiene orden 1 x 1
- D) La matriz porque
- 1 3 7 -2 4
- , tiene orden 3 x 5 y 15 entradas
- 9 11 5 6 8 6 -2 -1 1 1
 - 8
- 3(5) = 15

4.1.4 Igualdad de matrices

- 1 + 1
- 2/2
- 2 1

- 2x3
- 0
- 6 0

EJERCICIO 4.1

1. Sean

- a) Establecer el orden de cada matriz.
- b) ¿Cuáles matrices son cuadradas?
- c) ¿Cuáles matrices son triangulares superiores?
- d) ¿Cuáles matrices son triangulares inferiores?
- e) ¿Cuáles matrices son vector renglón?
- f) ¿Cuáles matrices son vector columna?

EJERCICIO 4.2 CONSTRUCCIÓN DE MATRICES

Construir una matriz columna de tres entradas, tal que:

$$a_{21} = 6$$

$$a_{11} = a_{31} = 0$$

EJERCICIO 4.3

Sea:

¿Cuál es el orden de A?

Determine las entradas siguientes:

 $A_{43} =$

 $A_{12} =$

 $A_{32} =$

 $A_{34} =$

 $A_{14} =$

 $A_{55} =$

¿Cuáles son las entradas de la diagonal principal?

EJERCICIO 4.4

Una ecuación matricial puede definir un sistema de ecuaciones. Por ejemplo, suponga que:

$$X \quad Y + 1 \qquad 2 \quad 7$$
=
2Z 5W 4 2

Igualando las entradas correspondientes, encuentra en valor de "w", "x", "y", "z"

EJERCICIO 4.5

Construya una matriz $A = [a_{ij}]$ si A es de 3 x 4 y $a_{ij} = 2i + 3j$

EXPLICACIÓN: Vamos a construir una matriz de 3 renglones por 4 columnas, según el orden que se indica. Aij significa que vamos a ir trabajando con el renglón, que va a determinarse por "i" y "j" que va a ser la columna; y vamos a desarrollar la ecuación aij = 2i + 3j según el orden de renglón, columna en la que se encuentren posicionados. Por ejemplo: cuando aij está en la posición i=1 y j=1, voy a sustituir los valores en la ecuación dada aij = 2(1) + 3(1) = 2 + 3 = 5

aij=
$$2(1) + 3(1) = 2 + 3 = 5$$

aij= $2(2) + 3(1) = 4 + 3 = 7$

Escribe la matriz cero de orden

- a) 4 x 4
- b) 6 x 6

En los problemas siguientes, encuentre \mathbf{A}^T

$$A = 6 -3$$
 $2 4$

EJERCICIO 4.6

Sean:

$$A = 7 \quad 0, \qquad B = 1 \quad 0 \quad 0 \quad , \qquad C = 0 \quad 0 \quad 0$$

$$0 \quad 6 \quad 0 \quad 2 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 \quad 10 \quad -3 \quad 0 \quad 0 \quad 0$$

$$D = 2 & 0 & -1 \\ 0 & 4 & 0 \\ 0 & 0 & 6$$

Matriz diagonal: Si todas las entradas que se encuentran fuera de la diagonal principal son cero.

- a) ¿Cuáles son matrices diagonales?
- b) ¿Cuáles son matrices triangulares?

Matriz Triangular Superior

Matriz triangular

Matriz Triangular Inferior

En los siguientes problemas, resuelve la ecuación matricial y encuentra los valores de "X", "Y", "Z".

EJERCICIO 4.7

La compañía Widget tiene sus reportes de ventas mensuales dados por medio de matrices cuyos renglones, en orden, representan el número de modelos regular, de lujo y de extra lujo vendidos, mientras que las columnas dan el número de unidades rojas, blancas, azules y púrpura vendidas. Las matrices para enero (E) y febrero (F) son:

- a) En enero, ¿cuántas unidades de los modelos de extra lujo blancas se vendieron?
- b) En febrero, ¿Cuántos modelos de lujo azules se vendieron?
- c) ¿En qué mes se vendieron más modelos regulares purpuras?
- d) ¿De qué modelo y color se vendió el mismo número de unidades en ambos meses?
- e) ¿En qué mes se vendieron más modelos de lujo?
- f) ¿En qué mes se vendieron más artículos rojos?
- g) ¿Cuántos artículos se vendieron en enero?

4.1.5 Operaciones con matrices

a) Suma y resta de matrices

Para realizar la suma y resta de matrices, se requiere que estas tengan el mismo tamaño.

b) Multiplicación de una matriz por una constante

También llamada, multiplicación por un escalar. Se multiplica cada elemento de la matriz por la constante.

Ejemplo:

CONSTANTE

c) Multiplicación de matrices

Sea A=(aij) una matriz de m x n, y sea B=(bij) una matriz de n x p, entonces el producto de AB es una matriz m x p, C=(cij), en donde Cij= (renglón i de A) (columna j de B), es decir, el elemento ij de AB es el producto punto a punto del renglón i de A y la columna j de B.

Ejemplo:

A =
$$\begin{vmatrix} 1 & 3 \\ -2 & 4 \end{vmatrix}$$
B = $\begin{vmatrix} 3 & -2 \\ 5 & 6 \end{vmatrix}$
RESULTADO:

C

AB = $\begin{vmatrix} 1 & 3 \\ -2 & 4 \end{vmatrix}$
 $\begin{vmatrix} 3 & -2 \\ 5 & 6 \end{vmatrix}$
 $\begin{vmatrix} 1 & 2 \\ 2 & 14 \end{vmatrix}$

$$C_{11}$$
= (1)(3) +(3)(5) = 3+15=**18**
 C_{12} = (1) (-2) +(3)(6) = -2+18=**16**
 C_{21} = (-2) (3) +(4)(5) = -6+20=**14**
 C_{22} = (-2) (-2) +(4)(6) =4+24=**28**

4.2 DETERMINANTES

Los determinantes son útiles en aplicaciones para ingeniería, economía o matemáticas, en la geometría se usan en fórmulas que calculan áreas y volúmenes, fueron introducidos por Leibniz en 1693. Las entradas serán matrices cuadradas, pero las salidas, serán números reales.

El determinante de una matriz cuadrada A, está definido de la siguiente manera. Con una entrada dada de A asociamos la matriz cuadrada de orden n-1 obtenida al eliminar las entradas en el renglón y columna a las que la entrada pertenece. Por ejemplo, para la matriz,

$$A = \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix}$$

Para la entrada A21, eliminamos las entradas del renglón 2 y de la columna 1

$$\begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix}, \text{ dejando la matriz de orden 2} \begin{vmatrix} a_{1,2} & a_{1,3} \\ a_{3,2} & a_{3,3} \end{vmatrix}$$

El determinante de esa matriz de orden 2, es llamado el menor de a21.

Menor de
$$a_{22}$$
 $\begin{vmatrix} a_{1,1} & a_{1,3} \\ a_{3,1} & a_{3,3} \end{vmatrix}$
Menor de a^{23} $\begin{vmatrix} a_{1,1} & a_{1,2} \\ a_{3,1} & a_{3,2} \end{vmatrix}$

Con cada entrada a_{ij}, asociamos también un número determinado por los subíndices de la entrada: (-1)^{i+j}, donde i+j es la suma del número de renglón "i" y del número de columna "j", en la que se encuentra la entrada.

Con la entrada a_{21} , asociamos $(-1)^{2+1} = -1$

Con la entrada a_{22} , asociamos $(-1)^{2+2}=1$

Con la entrada a_{23} , asociamos $(-1)^{2+3}=-1$

Para obtener el valor final, se multiplica el número real que intersecta al renglón y columna de la entrada, por el cofactor y el resultado del cálculo del menor, el cual se obtiene con la multiplicación cruzada de sus elementos. Y se realiza la suma de los valores obtenidos en las entradas.

Ejemplo:

Evaluación de un determinante de orden 3, utilizando cofactores, desarrollo a lo largo del primer renglón.

A₁₁ obtenemos (2)
$$(-1)^{1+1} \begin{vmatrix} 0 & -5 \\ 1 & 1 \end{vmatrix} = (2)(1)(5) = 10$$

A₁₂ obtenemos (-1)
$$(-1)^{1+2} \begin{vmatrix} 3 & -5 \\ 2 & 1 \end{vmatrix} = (-1)(-1)(13) = 13$$

A₁₃ obtenemos (3)
$$(-1)^{1+3}$$
 3 0 = (3)(1)(3) =9

4.2.1 Regla o esquema de SARRUS

Se aplica en la solución de determinantes de una matriz de orden 3 x 3. Su procedimiento de solución es agregar las dos primeras columnas a la derecha de la matriz y se lleva a cabo la suma de productos de la diagonal principal y sus paralelas, menos la suma de productos de la diagonal secundaria y sus paralelas.

 $a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - (a_{12}a_{21}a_{33} + a_{11}a_{23}a_{32} + a_{13}a_{22}a_{31})$

Ejemplo:

Evaluación de un determinante de orden 3, utilizando regla o esquema de Sarrus

$$\begin{vmatrix} 2 & -1 & 3 & 2 & -1 \\ 3 & 0 & -5 & 3 & 0 & = (2)(0)(1) + (-1)(-5)(2) + (3)(3)(1) - [(-1)(3)(1) + (2)(-5)(1) + (3)(0)(2)] \\ 2 & 1 & 1 & 2 & 1 & = 0 + 10 + 9 - (-3 - 10 + 0) \\ & = 19 - (-13) \\ & = 32 \end{vmatrix}$$

4.3 SISTEMAS DE ECUACIONES LINEALES CON MATRICES

4.3.1 Regla de Cramer

Los determinantes pueden ser aplicados para resolver ciertos tipos de sistemas de "n" ecuaciones lineales. De hecho, es a partir del análisis de dichos sistemas que surgió el estudio de los determinantes. Primero consideraremos un sistema de dos ecuaciones lineales con dos ecuaciones lineales con dos incógnitas. Después los resultados se extenderán para incluir situaciones más generales.

El determinante de la matriz de coeficientes (\triangle) es la multiplicación cruzada, si el resultado es diferente de cero (0), significa que hay una solución única y podemos continuar el método.

EJEMPLO:

$$3X + 5Y = 7$$

$$2X - Y = -4$$

$$X = \begin{array}{|c|c|c|} \hline 7 & 5 \\ \hline -4 & -1 \\ \hline \triangle & \\ \hline \end{array}$$

$$X = 7(-1) - ((5)(-4)) = -7 - (-20) = -7 + 20 = 13 = -1$$
 -13
 -13
 -13

$$Y = \begin{array}{|c|c|} 3 & 7 & 7 \\ 2 & -4 & 4 \\ \hline & \triangle & & \end{array}$$

$$Y= 3(-4) - ((7)(2)) = -12 - 14 = -26 = 2$$
-13 -13

4.3.2 Operaciones con matrices y regla de Cramer

EJERCICIOS

 Resuelve las siguientes operaciones con matrices (suma, resta, multiplicación por un escalar y multiplicación de matrices)

$$\begin{vmatrix} 2 & -6 & 7 & 1 \\ 7 & 1 & 6 & -2 \end{vmatrix} =$$

$$\begin{vmatrix} 2 & 0 & 3 \\ -1 & 4 & 5 \end{vmatrix} \begin{vmatrix} 1 \\ 4 \\ 7 \end{vmatrix} =$$

II. Resuelve el siguiente sistema de ecuaciones por Regla de Cramer

$$(1) 3x - 2y = 13$$

(2)
$$x - 3y = -5$$

4.3.3 EJERCICIO: Solución de sistema de matriz 3 x 3 por Cramer y Sarrus

$$2x - 3y + z = -2$$

$$1x - 6y + 3z = -2$$

$$3x + 3y - 2z = 2$$

$$\begin{vmatrix} 2 & -3 & 1 & 2 & -3 \\ 1 & 6 & 3 & 1 & -6 & = (2)(-6)(-2) + (-3)(3)(3) + (1)(1)(3) - [(-3)(1)(-2) + (2)(3)(3) + (1)(-6)(3)] \\ 3 & 3 - 2 & 3 & 3 & = 24 - 27 + 3 - (6 + 18 - 18) \\ & = 0 - 6 & = -6$$

$$\begin{vmatrix}
-2 & -3 & 1 & -2 & -3 \\
-2 & -6 & 3 & -2 & -6 \\
2 & 3 & -2 & 2 & 3 & =
\end{vmatrix}$$

