

Table of Content

- 1 Introduction to Malware
 - Highlight on Malware
 - Prevalence of Malware and
 Cyber Attacks
 - > Current Antivirus Techniques
 - Thwarting Anti-Virus

3 Supervised

- 2 Data
 - Dataset Description
 - Dataset Cleaning

- 4 Unsupervised
- 5 Conclusion

Highlight on Malware

Malware is a broad term used to refer to malicious software designed to damage, disrupt, or gain unauthorized access to computer systems, networks, or individual devices. The term "malware" is a combination of "malicious" and "software," highlighting its harmful intent. Malware is typically created by cybercriminals with malicious intent, including stealing sensitive information, disrupting computer systems, extorting money through ransomware, or using infected devices to carry out further cyberattacks.

- In a dynamic approach, data is processed and analyzed in real-time or on-the-fly as it becomes available. This means that the model adapts and updates itself based on new incoming data, allowing it to continuously learn and improve over time. Dynamic approaches are well-suited for scenarios where the data distribution changes frequently, or where there is a need to respond quickly to evolving patterns and trends
- In a static approach, data is analyzed and processed in batches, and the model is trained on a fixed dataset, which is not continuously updated with new data. This means that the model remains unchanged until it is explicitly retrained with an updated dataset. Static approaches are suitable for scenarios where the data distribution is relatively stable over time, and frequent retraining is not necessary.

Prevalence of Malware and Cyber Attacks

New Linux malware mines cryptocurrency and steals your password

Amazon hit with major data breach days before Black Friday

Customers' names and email addresses posted on website, tech giant confirms

Nasty New Linux Crypto Malware Compromise Root, Launches DDoS Attacks

With the value of Bitcoin once again experiencing a big drop this past week, you may begin to think that malware developers would begin shifting focus elsewhere. Unfortunately, that's far from being the

Ukraine detects new Pterodo backdoor malware, warns of Russian cyberattack

Revived Gamaredon threat group just part of wave of new attacks tied to Russia's FSB.

Cybersecurity Firm Detects
Cryptojacking Malware on Make-A-Wish
Foundation Website

Emotet malware runs on a dual infrastructure to avoid downtime and takedowns

Researchers spot unique design in the server infrastructure propping up the Emotet malware.

Google removes 13 malware apps from its Play Store

The 13 malware apps have been downloaded over 5,60,000 times from the Play Store

Current Antivirus Techniques

To protect against malware, users and organizations should adopt good cybersecurity practices, such as using up-to-date antivirus software, keeping operating systems and applications patched, being cautious with email attachments and links, and avoiding downloading software from untrusted sources. Regular backups of important data can also help mitigate the impact of ransomware attacks.

Signature Matching

- * Easiest to defeat
- Trivially modify with non-used
- * Code

Heuristics-based Detection

- ❖ Look for generic characteristics
 - > Specific, rare, operations
 - > Specific registry modifications

Behavioral Detection

- * Run the executable in a sandbox
- ❖ Observe behavior

Each is vulnerable to minor changes in the code

❖ Not able to adapt to new changes

. Hoe, H. Kim and O. Sukwong, "Commercial Antivirus Software Effectiveness: An mpirical Study," in Computer, vol. 44, no. , pp. 63-70, 2010. doi:10.1109/MC.2010.187

Thwarting Anti-Virus

- Code packing and encryption
- ❖ Code mutation
- ❖ Polymorphic code
- Stealth techniques
 - Process injection
 - Process hiding
- Turning off anti-virus
- Adding noop

Solution: Use machine learning to monitor system calls

- > ML can generalize away from static signatures
- System calls are the base level for interacting with the operating system

Dataset Description

Description

The initial data set provided for malware detection was in the form of a sparse text file, using the LIBSVM format, to enhance its usability, the data underwent a transformation and was consolidated into a more user-friendly CSV file.

Key details about the
dataset:

Observation: 107,850

Number of Features: 480

Dataset Cleaning

In [9]:	df1																					
Out[9]:		FT1	FT2	FT3	FT4	FT5	FT6	FT7	FT8	FT9	FT10	FT	471	FT472	FT473	FT474	FT475	FT476	FT477	FT478	FT479	target
	0	3	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0.074074
	1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0.684211
	2	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0.814815
	3	0	0	0	0	0	1	0	0	0	0		0	0	1	0	0	0	0	0	0	0.814815
	4	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0.421053
	107851	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0.438596
	107852	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0.666667
	107853	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0.719298
	107854	0	0	0	0	0	4	0	0	0	0		0	0	0	0	0	0	0	0	0	0.403509
	107855	1	0	0	0	0	4	0	0	0	0		0	0	0	0	0	0	0	0	0	0.403509

_		FT1	FT3	FT4	FT5	FT6	FT7	FT9	FT10	FT12	FT13	 FT463	FT468	FT469	FT470	FT471	FT473	FT476	FT478	FT479	target
		3	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0.074074
) .	0	0	0	0	0	0	0	0	0	0	 0	0	0	1	0	0	0	0	0	0.684211
\	/	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0.814815
		0	0	0	0	1	0	0	0	0	0	 0	0	0	0	0	1	0	0	0	0.814815
		1 0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0.421053
	10785	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0.438596
	10785	2 0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0.666667
	10785	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0.719298
	10785	0	0	0	0	4	0	0	0	0	1	 0	0	0	0	0	0	0	0	0	0.403509
	10785	5 1	0	0	0	4	0	0	0	0	1	 0	0	0	0	0	0	0	0	0	0.403509

Upon analyzing Table 1, we found that the raw dataset consists of 480 features, out of which 214 features contain only zeros.

As a result of eliminating these entirely zero features, we obtained the modified dataset represented in Table 2.

107856 rows × 266 columns

Dataset Cleaning

```
selected_df['target'] = np.where(selected_df['target'] > 0.5, 1, 0)
# 0 - Benign 1 - Malware
# Print the updated DataFrame
selected_df
```

	FT152	FT402	FT473	FT394	FT210	FT81	FT96	FT392	FT233	FT356	target
0	45	0	0	0	1	33	0	0	2	96	0
1	9	0	0	0	4	5085	0	0	3	54	1
2	1691	0	0	0	5	0	0	1	5	11	1
3	3	0	1	0	1	55	0	1	2	63	1
4	7	0	0	0	0	0	0	0	0	0	0
107851	1	0	0	0	3	2	0	1	2	56	0
107852	12	0	0	0	12	24	0	1	3	54	1
107853	0	0	0	0	6	2	0	1	6	5	1
107854	218	0	0	0	110	4	0	1	2	60	0
107855	217	0	0	0	108	5	0	1	2	78	0

Modifying the dataset to select the best 10 features

Given that correlation does not imply causation, we proceeded by implementing an additional regressor to identify the top 10 features based on their significance in predicting the target variable. Moreover, we converted the target variable into binary values, where "0" indicates Benign (No malware) and "1" indicates Malware.

Consequently, the refined dataset we are currently working with contains the following key information:

Total Data Points: 107,850

Number of Features: 11

Boxplot

A well spread dataset

- All options are used
- ❖ Well distributed

Correlation matrix

Imbalanced Data

The imbalance data helps to know the method to correct biasness of the data

Class Counts:

1 78013

0 29843

Name: target, dtype: int64

Supervised Learning

Confusion Matrix

	Metric	Score
0	Train accuracy	0.852025
1	Test accuracy	0.835955
2	F1 score	0.889144
3	Precision	0.871489
4	Recall	0.907529
5	Balanced accuracy	0.777436

XGBOOST

Metric Score 0 Train accuracy 0.918833 1 Test accuracy 0.835059 2 F1 score 0.888040 3 Precision 0.871854 4 Recall 0.904839 5 Balanced accuracy 0.778912

RANDOM FOREST

	Metric	Score
0	Train accuracy	0.717122
1	Test accuracy	0.717804
2	F1 score	0.831609
3	Precision	0.732426
4	Recall	0.961862
5	Balanced accuracy	0.519008

LOGISTIC REGRESSION

	Metric	Score
0	Train accuracy	0.769017
1	Test accuracy	0.768644
2	F1 score	0.850793
3	Precision	0.797660
4	Recall	0.911510
5	Balanced accuracy	0.653026

ADABOOST CLASSIFIER

Unsupervised Learning

Scree plot and Silhouette Analysis for K-means clustering

Conclusion

• In this work, we carried out Supervised and Unsupervised learning to predict the presence of Malware and uncover insight respectively

Thank you