Лекция 4 по курсу «Дискретные преобразования сигналов» 25 февраля 2025 г.

3. Дискретизация аналоговых сигналов.

Спектр дискретизованного сигнала.

Эффект наложения.

Теорема Котельникова во временной области.

Выбор частоты дискретизации.

Субдискретизация.

Спектр дискретизованного сигнала.

Спектр дискретизованного сигнала $X_{\pi}(f)$

Континуальная форма записи дискретизованного сигнала

$$x_{\mathrm{II}}(t) = T \sum_{k=-\infty}^{\infty} x_{\mathrm{a}}(k\Delta t) \delta(t - k\Delta t) = D(t) x_{\mathrm{a}}(t)$$

Идеальная функция дискретизации

$$D(t) = T \sum_{n=-\infty}^{\infty} \delta(t - n\Delta t).$$

D(t) — периодическая последовательность дельта-функций с периодом Δt и весами T.

Ряд Фурье для D(t)

$$D(t) = C_m \sum_{m=-\infty}^{\infty} \exp(jm \frac{2\pi}{\Delta t} t),$$

коэффициенты Фурье

$$C_m = \frac{\mathrm{T}}{\Delta t} \int_{-\Delta t/2}^{\Delta t/2} \delta(t) dt = \frac{\mathrm{T}}{\Delta t}$$
.

В итоге

$$x_{_{\rm II}}(t) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} x_{_{\rm a}}(t) \exp(jm \frac{2\pi}{\Delta t} t).$$

По теореме смещения для преобразования Фурье если

$$x_{\mathrm{a}}(t) \overset{FT}{\longleftrightarrow} X_{\mathrm{a}}(f)$$
, to $x_{\mathrm{a}}(t) \exp(jm\frac{2\pi}{\Delta t}t) \overset{FT}{\longleftrightarrow} X_{\mathrm{a}}(f-mf_{\mathrm{fl}})$.

Тогда

$$X_{\mathrm{I}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X_{\mathrm{a}}(f - mf_{\mathrm{I}}).$$

Эффект наложения.

$$X_{_{\mathrm{I}}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X_{\mathrm{a}}(f - mf_{_{\mathrm{I}}}).$$

T=1	спектр перед периодическим повторением
$x[k] = x(k\Delta t)$	масштабируется
$T = \Delta t$	$X_{_{\mathrm{II}}}(f) = \sum_{}^{\infty} X_{\mathrm{a}}(f - mf_{_{\mathrm{II}}})$
$x[k] = \Delta t \ x(k\Delta t)$	то до

Эффект наложения

Если спектр аналогового сигнала до дискретизации не был ограничен интервалом $\left[-f_{_{\rm I\! I}}/2,f_{_{\rm I\! I\! I}}/2\right]$, то возникает эффект наложения (англ. aliasing): спектр аналогового и дискретизованного на этом интервале не совпадают.

Частично устранить этот эффект можно применением фильтра нижних частот с частотой среза $f_c = f_{\rm д} / 2$, при этом информация о высокочастотных спектральных компонентах $\mid f \mid > f_c$ не сохраняется.

Теорема Котельникова во временной области.

Теорема Котельникова во временной области.

Теорема отсчетов для сигнала с финитным спектром (Котельников 1933 г., Шеннон 1949 г.). Если сигнал x(t) имеет спектр, ограниченный интервалом $[-f_{\rm B},f_{\rm B}]$, и не содержит гармонических компонент на частотах $\pm f_{\rm B}^{-1}$, то он представим с помощью своих дискретных отсчетов $x(k\Delta t)$, взятых с шагом $\Delta t = \frac{1}{2\,f}$:

$$x(t) = \sum_{k=-\infty}^{\infty} x(k\Delta t) \frac{\sin(2\pi f_{\rm B}(t - k\Delta t))}{2\pi f_{\rm B}(t - k\Delta t)}.$$

Интерпретация. Если сигнал x(t) дискретизован с частотой $f_{_{\rm I\! I}}$, а его спектр ограничен интервалом $\left[-f_{_{\rm I\! I}}/2,\,f_{_{\rm I\! I}}/2\right]$, его можно представить с помощью дискретных отсчетов $x(k\Delta t)$. Частота $f_{_{\rm I\! I\! I}}/2$, равная половине частоты дискретизации, называется частотой Найквиста.

В пространстве сигналов из $L_2(-\infty,\infty)$ с спектром, ограниченным интервалом $\left[-f_{_{\rm I\! I}}/2,\,f_{_{\rm I\! I\! I}}/2\right]$, система функций отсчетов $\{\phi_k(t)\}_{k\in Z}$, таких, что

$$\varphi_k(t) = \frac{\sin(2\pi f_{\rm B}(t - k\Delta t))}{2\pi f_{\rm B}(t - k\Delta t)}, \Delta t = \frac{1}{2f_{\rm B}},$$

полна и ортогональна.

 $^{^1}$ Без этой оговорки теорема Котельникова не выполняется, например, для случая дискретизации сигнала $x(t)=\sin(2\pi f_{_{
m B}}t)$ с шагом $\Delta t=rac{1}{2f_{_{
m B}}}.$

Теорема Котельникова во временной области.

Алгоритм передачи непрерывного сигнала с помощью его отсчетов.

- Взять отсчеты $x(k\Delta t)$, $k = 0, \pm 1, \pm 2,...$
- Передать величины этих отсчетов.
- На приемном конце сформировать короткие импульсы с площадями $\Delta t x(k \Delta t)$.
- Восстановить сообщение с помощью фильтра нижних частот с полосой пропускания $[-f_e,f_e]$, подавая на вход сформированные короткие импульсы

Недостатки подхода.

- Спектры реальных сигналов ограничены по частоте приближено.
- Невозможно измерить отсчеты сигнала за бесконечно малый промежуток времени.
- Реальные фильтры восстановления отличаются от идеального фильтра нижних частот.
- Короткие импульсы отличны от дельта-функций.

Теорема отсчетов в частотной области

Теорема отсчетов в частотной области

Реально все сигналы наблюдаются в течение конечного интервала времени, например, $[-T,\,T]$. Поэтому можно считать, что x(t) является финитной функцией. Спектр такого сигнала имеет бесконечную протяжённость и записывается в виде

$$X(f) = \int_{-T}^{T} x(t)e^{-j2\pi f t} dt.$$

Для периодического продолжения x(t) с периодом 2T (без наложения) справедливо представление рядом Фурье:

$$x_{\Pi}(t) = \sum_{n} c_{n} \exp(j2\pi n\Delta f t),$$

где $\Delta f = 1/2T$ и коэффициенты Фурье

$$c_n = (1/2T) \int_{-T}^{T} x(t) \exp(-j2\pi n\Delta f t) dt = \Delta f X(n\Delta f).$$

Для спектральной функции можем записать

$$X(f) = \int_{-T}^{T} \left[\sum_{n} \Delta f X(n\Delta f) \exp(j2\pi n\Delta f t) \right] \exp(-j2\pi f t) dt =$$

$$= \Delta f \sum_{n} X(n\Delta f) \int_{-T}^{T} \exp(j2\pi (n\Delta f - f)t) dt.$$

$$\int_{-T}^{T} \exp(j2\pi(n\Delta f - f)t)dt = \frac{1}{j2\pi(n\Delta f - f)} \exp(j2\pi(n\Delta f - f)t)\Big|_{-T}^{T} = \frac{2\sin 2\pi T(n\Delta f - f)}{2\pi(n\Delta f - f)}.$$

Для X(f)окончательно получаем

$$X(f) = \sum_{n=-\infty}^{\infty} X(n\Delta f) \frac{\sin 2\pi T (f - n\Delta f)}{2\pi T (f - n\Delta f)}; \ \Delta f = 1/2T.$$

Это интерполяционная формула Котельникова (теорема отсчётов) в частотной области. Функция X(f) на любой частоте f однозначно представляется последовательностью своих отсчётов, взятых через равные интервалы $\Delta f = 1/2T$.

Дискретизация спектральной функции с шагом $\Delta f = 1/2T$ приводит к периодическому повторению сигнала по оси времени с периодом 2T. При этом эффекта наложения отдельных периодов друг на друга не будет, поскольку шаг дискретизации по частоте выбран в соответствии с теоремой отсчётов в спектральной области.

Особенности дискретизации синусоидальных сигналов.

Особенности дискретизации синусоидальных сигналов.

Пусть сигнал $x(t)=\sin\left(2\pi f_0 t\right)$ дискретизуется с частотой дискретизации $f_\pi=1/\Delta t$.

Тогда

$$x[k] = \sin\left(2\pi f_0 k \Delta t\right) = \sin\left(2\pi \left(f_0 + \frac{n}{\Delta t}\right) k \Delta t\right) =$$
$$= \sin\left(2\pi \left(f_0 + n f_{\Pi}\right) k \Delta t\right).$$

Следовательно, гармонические сигналы с частотами f_0 $f_0 + n f_{\scriptscriptstyle
m II}$ дают одинаковый результат.

Последовательность цифровых отсчетов x[k], представляющая синусоиду с частотой f_0 , точно так же представляет синусоиды с другими частотами $f_0 + nf_\pi$.

Причина заключается в эффекте наложения спектров.

Пример. Дискретизованные косинусоиды с частотами $f_1=2,25\,$ Гц и $f_2=1,75\,$ Гц не различимы при частоте дискретизации $f_{\pi}=4\,$ Гц.

Субдискретизация

Понятие субдискретизации.

Рассмотрим *действительный* полосовой сигнал со спектром, изображенным на рисунке.

- Характерна чётная симметрия амплитудного спектра относительно оси ординат
- Компонента $X_{+}(f)$ носит название прямого спектра, а компонента $X_{-}(f)$ инверсного.

- Для узкополосных радиосигналов ($f_0 \gg f_e$) существуют методы дискретизации с частотой $f_{\pi} < 2(f_0 + f_e)$, позволяющие сохранить информацию, необходимую для восстановления исходного сигнала.
- Одним из таких методов является субдискретизация. Субдискретизация заключается в том, что частота дискретизации $f_{_{\rm I\!\! I}}$ выбирается такой, что эффект наложения проявляется без перекрытия копий прямого и инверсного спектра исходного сигнала.

Пример.

Рассмотрим для субдискретизации ограничения на выбор частоты f_π .

Случай целочисленных полос

Если граничные частоты спектра f_0-f_{ℓ} и f_0+f_{ℓ} кратны его ширине $2f_{\ell}$, т. е. если

$$f_0 - f_{\beta} = m(2f_{\beta}), \quad m = 0, 1, 2, ...,$$
 (1)

то минимальную частоту дискретизации можно взять равной $f_{\mathrm{min}} = 4 f_{e}.$

Число m показывает, сколько переносов прямого спектра нужно совершить, чтобы точка f_0-f_e попала в начало координат.

Такая плотная упаковка отображений спектров $X_+(f)$ и $X_-(f)$ практически может быть использована при условии, что компоненты $X_+(f)$ и $X_-(f)$ строго финитные функции. В этом случае эффект наложения частичных спектров друг на друга будет отсутствовать. Этот метод дискретизации называется ещё полосовой дискретизацией с недостаточной выборкой для целочисленных полос.

Пример. На рисунке a) показано устройство предварительной обработки данных приёмника многоканальной системы связи. $2f_e = f_{\pi}/2 = 50 \ \mathrm{к}\Gamma\mathrm{ц}$.

Спектр принимаемого сигнала показан на рисунке *б*) с указанием номеров каналов. Для выделения сигнала в нужном канале перед дискретизацией с наименьшей возможной частотой служит полосовой фильтр, АЧХ идеального фильтра представлена на рисунке ниже.

Случай нецелочисленных полос

- Плотная упаковка отображений спектров $X_+(f)$ и $X_-(f)$, если компоненты $X_+(f)$ и $X_-(f)$ строго финитные функции и выполняется условие (1) для целочисленных полос.
- В общем случае компоненты $X_+(f)$ и $X_-(f)$ имеют «хвосты» и нецелочисленные полосы.

Для нахождения частоты дискретизации $f_{\mathbb{A}}$ необходимо использовать условие, что m и m+1 переносов $X_{-}(f)$ не дают пересечений с $X_{+}(f)$:

$$-f_{0} + f_{e} + mf_{\pi} < f_{0} - f_{e},$$

$$-f_{0} - f_{e} + (m+1)f_{\pi} > f_{0} + f_{e}.$$
(2)

Из (2) получаем

$$mf_{\pi} < 2(f_0 - f_e), \qquad (m+1)f_{\pi} > 2(f_0 + f_e)$$
 (3)

или

$$\frac{2(f_0 + f_e)}{m+1} < f_{\pi} < \frac{2(f_0 - f_e)}{m}. \tag{4}$$

Из (4) Субдискретизация возможна, если

$$\frac{\left(f_0+f_e\right)}{m+1} < \frac{f_0-f_e}{m},$$

т. е.

$$m < \frac{f_0 - f_\theta}{2f_\theta}.$$
(5)

Число m называется порядком субдискретизации. Поскольку общая протяженность спектра $X_-(f)$ и $X_+(f)$ равна $4f_{\it e}$, то при отсутствии перекрытий должно быть выполнено неравенство

$$f_{\pi} > 4f_{\epsilon}. \tag{6}$$

Пример. Спектр X(f) некоторого полосового сигнала x(t) изображен на рисунке ниже, f_0 — несущая частота, $f_0\gg 2f_{\rm g}$, $2f_{\rm g}=9.5~{\rm k}\Gamma{\rm H}$.

Изобразить спектр сигнала после субдискретизации с наименьшей возможной частотой $f_{\rm д}$, обеспечивающей центрирование субдискретизуемого сигнала в полосе Найквиста для случаев: а) $f_0 = 45~{\rm k\Gamma L}$, б) $f_0 = 35~{\rm k\Gamma L}$.

Решение для случая a) $f_0=45~\mathrm{k}\Gamma\mathrm{ц}$.

Границы выбора частоты дискретизации определяются неравенством

$$\frac{2(f_0 + f_e)}{m+1} < f_{\pi} < \frac{2(f_0 - f_e)}{m}.$$

где m – порядок субдискретизации.

 $f_{\scriptscriptstyle
m I\!\!I}$ может быть выбрана в соответствии с этим неравенством при условии

$$m < \frac{f_0 - f_{\theta}}{2f_{\theta}},$$

откуда m < 4,24.

Порядок субдискретизации является натуральным числом, а значит максимально возможный порядок субдискретизации равен m=4.

Для этого порядка субдискретизации условия выбора $f_{\rm д}$ 19,9 к Γ ц < $f_{\rm \pi}$ < 20,125 к Γ ц.

Отметим, что при дискретизации в соответствии с теоремой отсчетов потребовалось бы выбрать

$$f_{_{\rm I\!I}} \ge 2 \big(f_0 + f_{_{\it G}} \big) = 99,5 \ {\rm K} \Gamma {\rm I}{\rm I}$$

Область допустимых значений $f_{\scriptscriptstyle
m I}$

$$\frac{2(f_0 + f_g)}{m+1} < f_{\pi} < \frac{2(f_0 - f_g)}{m}.$$

для каждого порядка m может быть описана диаграммой, где случай центрирования субдискретизуемого сигнала в полосе Найквиста отвечает попаданием на биссектрису зоны выбора f_π :

$$f_{\text{д}} = \frac{4f_0}{2m+1} = 20 \text{ к}\Gamma$$
ц.

Цвета на диаграмме соответствуют разным значениям m.

Построим график спектра сигнала после его дискретизации с частотой $f_\pi = 20~\mathrm{k}\Gamma$ ц.

Правильный выбор частоты субдискретизации позволяет избежать (для реального сигнала — минимизировать) перекрытия отдельных копий спектра.

Порядок субдискретизации m=4 означает, что прямой спектр сигнала и его несущая частота находятся в пятой зоне Найквиста (на рисунке обозначен как канал 4).

На частотах от 0 до $f_{\scriptscriptstyle \rm I\!\! I}$ / 2 находится копия прямого спектра $X_+(f)$.

При $f_{\rm д}=20~{\rm к}\Gamma{\rm ц}$ копии прямого и инверсного спектра оказываются центрованным в полосе Найквиста (между копиями одинаковые зазоры), что позволяет для реального сигнала минимизировать перекрытие неизбежно возникающих хвостов спектра вблизи границы полосы.

Решение для случая б) $f_0 = 35 \ \mathrm{k}\Gamma\mathrm{ц}$.

В соответствии с условием

$$m < \frac{f_0 - f_{\theta}}{2f_{\theta}},$$

находим, что m < 3,19.

Наибольший возможный порядок субдискретизации m=3.

Наименьшая частота дискретизации, обеспечивающая центрирование субдискретизуемого сигнала в полосе Найквиста, равна

$$f_{_{\mathrm{I\!I}}} = \frac{4f_0}{2m+1} = 20$$
 к Γ ц.

То, что порядок субдискретизации m=3является нечетным, означает, что частотах от 0 до $f_{_{\rm I\! I}}/2$ находится копия инверсного спектра $X_{_{\rm I\! I}}(f)$, а на частотах от $-f_{_{\rm I\! I}}/2$ до 0 — копия прямого спектра $X_{_{\rm I\! I}}(f)$.

Отметим, что при дискретизации в соответствии с теоремой отсчетов потребовалось бы выбрать

$$f_{_{\rm I\!I}} \ge 2 \big(f_0 + f_{_{\it G}}\big) = 79$$
,5 к Γ ц

Задачи с лекции

Задачи для самостоятельного решения

Субдискретизация

- **№1.** Для полосового сигнала FM-радио с шириной полосы $2f_e = 20~\mathrm{M}\Gamma$ ц и несущей частотой $f_0 = 98~\mathrm{M}\Gamma$ ц, определить:
- а) минимальную частоту дискретизации в соответствии с теоремой отсчетов,
- б) максимально возможный порядок субдискретизации mи границы для выбора частоты дискретизации для него.
- **№2.** На рисунке изображён модуль спектральной плотности узкополосного сигнала. Пусть полоса $B = f_2 f_1 = 10$ кГц и сигнал дискретизуется с частотой $f_\pi = 2B$. $f_3 = (f_1 + f_2)/2$.

Изобразить, когда это возможно, модуль спектральной плотности дискретизованного сигнала в диапазоне $[-f_2;\,f_2]$ для случая: a) f_2 / B = 3, б) f_2 / B = 4, в) f_2 / B = 4,5. Обосновать результаты.

Nº3. На рисунке изображен модуль спектральной плотности непрерывного полосового сигнала, $2f_e = 5~{
m M}\Gamma{
m L}$, $f_0 = 20~{
m M}\Gamma{
m L}$.

Изобразить, когда это возможно, модуль спектральной плотности дискретизованного сигнала для значений частоты дискретизации $f_{\scriptscriptstyle
m I}$:

$$f_{\rm д1}$$
=22,5 МГц; $f_{\rm д2}$ =17,5 МГц; $f_{\rm д3}$ =15 МГц; $f_{\rm д4}$ =11,25 МГц; $f_{\rm д5}$ =7,5 МГц .

Задачи с лекции

Обосновать выбор минимальной частоты дискретизации, при которой нет перекрытия отдельных копий прямого и инверсного спектра.

№4. Спектр X(f) некоторого полосового радиосигнала x(t) изображен на рисунке ниже, f_0 — несущая частота, $f_0\gg 2f_{\rm g}$, $2f_{\rm g}=4.5~{\rm k\Gamma II}$, $f_0=32.5~{\rm k\Gamma II}$.

Изобразить по модулю спектр сигнала после субдискретизации с наименьшей возможной частотой f_{π} , обеспечивающей центрирование спектра субдискретизуемого сигнала в полосе Найквиста.

Дискретизация взятием отсчетов

№ 5. Определить, будут ли различимы синусоиды с частотами $f_1 = 20$ кГц и $f_2 = 80$ кГц при их дискретизации с частотой $f_{\pi} = 60$ кГц. Будет ли наблюдаться эффект наложения?

№ 6. Предположим, что проводится дискретизация с частотой $f_{\pi} = 1$ МГц гармонических сигналов

$$x_1(t)=\cos\left(2\pi f_1 t\right),\ f_1=150\ \mathrm{к}\Gamma\mathrm{_{II}},\ x_2(t)=\cos\left(2\pi f_2 t\right),\ f_2=650\ \mathrm{к}\Gamma\mathrm{_{II}},\ x_3(t)=\cos\left(2\pi f_3 t\right),\ f_3=1050\ \mathrm{k}\Gamma\mathrm{_{II}}.$$
 Установить для каждого из этих сигналов, будет ли наблюдаться эффект наложения.

№ 7. Записать спектры следующих сигналов

a)
$$x(t) = 10\cos(2\pi \cdot 10^3 t + \pi/3) + 20\cos(4\pi \cdot 10^3 t + \pi/6) + 125$$
,

6)
$$x(t) = \frac{\sin(2\pi \cdot 10^3 t)}{2\pi \cdot 10^3 t}$$

Для каждого из сигналов определить частоту дискретизации, необходимую для возможности его последующего точного восстановления. Время t в данной задаче измеряется в секундах.

Задачи с лекции

№8. Пусть спектр действительного видеосигнала x(t) равен нулю вне полосы частот шириной 1 МГц, а спектр видеосигнала y(t) равен нулю вне полосы частот шириной 4 МГц. В соответствии с теоремой отсчетов определить максимальный шаг дискретизации следующих сигналов а) x(t), б) y(t), в) y(5t), г) x(t) + y(t), д) x(t)y(t), е) $x(t) \otimes y(t)$

№9. Основываясь на теореме отсчетов, рассчитать полосу частот, необходимую для передачи черно-белого изображения, если принять, что разрешающая способность телевизионного изображения 500 строк с числом элементов в строке 650, скорость передачи 25 кадров в секунду и яркость каждой точки передается амплитудой видеосигнала.

№10. Рассмотреть вопрос о дискретизации колокольного (гауссова) импульса $x(t) = \exp(-(\beta t)^2)$.

В качестве верхней граничной частоты спектра f_{e} принять значение частоты, при котором спектральная плотность в 10 раз меньше максимального значения. Определить шаг дискретизации Δt .