Chapter 4, Section 1. Exercises 1, 2, 3 and 5

MTH 594, Prof. Mikael Vejdemo-Johansson Differential Geometry Independent Study

Matthew Connelly

October 10, 2018

Exercise 4.1.5

Show that every open subset of a surface is a surface.

Let $S \in \mathbb{R}^3$ be a surface.

Let $U \in \mathbb{R}^2$ and $W \in \mathbb{R}^3$ be open sets in their respective spaces.

Then, $S \cap W$ will be a surface patch (and an open subset of surface S) if U can be mapped to $S \cap W$ smoothly and bijectively.

 σ will be this mapping function:

$$\sigma: U \to S \cap W$$

Then, let there be a group of subsets, defined as

$$S_2 \subseteq (S \cap W)$$

$$W_2 \subset W$$

$$U_2 \subset U$$

and, a smooth, bijective mapping function analogous to σ :

$$\sigma_2:U_2\to S_2$$

The following comparison can now be made:

$$S_2 \cap W_2 = (S \cap W) \cap W_2$$

Which means that the open subset of surface S is a surface because it can be mapped to a surface patch homeomorphically. This general definition can then be applied to all surface subsets.