# **Post Quantum Cryptography**

https://youtu.be/AMAsAxN19rA

한성대학교 IT응용시스템공학과 장경배

# Post Quantum Cryptography (PQC) ??

양자 컴퓨터의 계산능력에 내성을 가진 암호 시스템

# 양자 컴퓨터



기존 컴퓨터

0과 1 둘중 하나로 정보를 표현



0 1 0,1을 동시에

## Qubit

2bit → 00

2bit → 01

2bit → 10

2bit → 11

2 Qubit 01 10 11

한번에 한가지 정보만 처리

이러한 병렬 처리 형태로 큐비트 개수당 2의 N제곱으로 증가 2큐비트는 동시에 4가지 정보 표시 가능

# 양자컴퓨터 시대



현재의 과제는 연산과정에서의 오류율을 낮추는 문제

IBM 50 Qubit 양자컴퓨터

1125조8999억가지 정보를 동시에 표현 가능

## PQC의 필요성

Shor는 소인수분해 문제를 빠르게 처리할 수 있는 양자 알고리즘을 제안

이러한 알고리즘이 적용가능한 양자 컴퓨터가 개발되면 기존 암호화 시스템을 깨트릴 수 있으며

현재 세계적으로 널리 쓰이고 있는 공개키 암호화 시스템인 RSA 또한 그 대상이다.

그러므로 양자컴퓨터의 계산능력에 내성을 가진 암호화 시스템이 필요하다.

# 주요 PQC 후보

- Lattice-Based : 격자 기반
- Code-Based : 부호 기반
- Hash-Based : 해쉬 기반
- Isogeny-Based : 아이소제니 기반
- Multivariate : 다변수 다항식 기반

### 격자기반 암호, Lattic-based Cryptography

상대적으로 효율적인 구현과 엄청난 간결성 뿐만 아닌 매우 강력한 안전성을 보증하며 양자 컴퓨터에 대항한 안전성까지 신뢰된다.

### 격자란?



주기적 구조 (주기적인 서브그룹으로 그 구조를 이루는것 ex 철도레일) 와 n차원 공간의 점들의 집합

## NRTU public key cryptosystem

인수분해나 이산로그 문제에 기반하지 않은 최초의 공개키 암호화 시스템

암호화, 복호화 속도가 빠르다

RSA나 ECC를 대체할 수 있음

격자 안에서 가장 짧은 벡터를 찾는 문제에 기반하며 -> Shortest Vector Problem (SVP)

다항식 환 상에서 연산이 이루어진다..

알고리즘(Key generation, Encryption)

파라미터 (N,p,q) 설정

#### 개인키

- 1. Bob은 다항Ring R상에서 작은 계수들을 가지는 N-1차의  $\mathbf{f}$  그리고  $\mathbf{g}$ 를 private로 가지게 된다.
- 2. f에대하여 f modulo q 에 대한 역과 f modulo p 에 대한 역을 계산하여 개인키 생성  $\mathbf{f^*f_q} = \mathbf{1} \pmod{q}$   $\mathbf{f^*f_p} = \mathbf{1} \pmod{p}$

#### 공개키

$$\mathbf{h} = \mathbf{pf_q}^*\mathbf{g} \text{ (modulo } q).$$

#### 암호화

Alice는 자신이 보낼 메시지 m을 랜덤하게 선택된 다항식 r과 공개키 h를 사용하여 암호화 한다.

$$e = r*h + m \pmod{q}$$

## 복호화

개인키 **f** 를 사용

 $f^*e$  (modulo q).  $\implies$  a

 $\mathbf{a} \pmod{p}$ 

**fp\*b** (modulo *p*). ➡ 원본메세지 m을 획득

## 복호화 증명

```
a = fxe (mod q)
= f* (r*h+m) (mod q) : e= r*h+m (mod q)
=f* (r* pfq*9+m) (modq) : h = pfq*9 (mod q)
 = pr*g +f*m (modq)
  mod pz अध्याननिव
  → f*m(modp) 当与
  마지막으로 두 를 괜한 급하더 원본에에지 깨복구 완료
```

## 암호화, 복호화 예제

파라미터

N=11 q=32 p=3

f에대하여 f modulo q 에 대한 역과 f modulo p 에 대한 역을 계산하여 개인키 생성  $\mathbf{f^*f_q} = \mathbf{1} \pmod{q}$   $\mathbf{f^*f_p} = \mathbf{1} \pmod{p}$ 

개인키

$$\begin{aligned} & \mathbf{f} = -1 + X + X^2 - X^4 + X^6 + X^9 - X^{10} \\ & \mathbf{g} = -1 + X^2 + X^3 + X^5 - X^8 - X^{10} \end{aligned} \qquad \qquad \mathcal{X} = 1 \\ & f_p = 1 + 2X + 2X^3 + 2X^4 + X^5 + 2X^7 + X^8 + 2X^9 \\ & f_q = 5 + 9X + 6X^2 + 16X^3 + 4X^4 + 15X^5 + 16X^6 + 22X^7 + 20X^8 + 18X^9 + 30X^{10} \end{aligned}$$

$$-2x^{19} + x^{18} - x^{17} + 2x^{16} + x^{15} + x^{12} - x^{11} + 6x^{10} + 3x^9 - x^8 - x^7 + 4x^6 + x^5 - x^4 + 3x^2 - x - 1$$

공개키

 $\mathbf{h} = \mathbf{pf_q}^*\mathbf{g} = 8 + 25\mathbf{X} + 22\mathbf{X}^2 + 20\mathbf{X}^3 + 12\mathbf{X}^4 + 24\mathbf{X}^5 + 15\mathbf{X}^6 + 19\mathbf{X}^7 + 12\mathbf{X}^8 + 19\mathbf{X}^9 + 16\mathbf{X}^{10}$  (modulo 32).

#### **Encryption**

$$\mathbf{m} = -1 + X^3 - X^4 - X^8 + X^9 + X^{10}$$

$$r = -1 + X^2 + X^3 + X^4 - X^5 - X^7$$

$$e = r*h + m = 14 + 11X + 26X^2 + 24X^3 + 14X^4 + 16X^5 + 30X^6 + 7X^7 + 25X^8 + 6X^9 + 19X^{10}$$
 (modulo 32).

## **Decryption**

$$\mathbf{a} = \mathbf{f}^* \mathbf{e} = 3 - 7X - 10X^2 - 11X^3 + 10X^4 + 7X^5 + 6X^6 + 7X^7 + 5X^8 - 3X^9 - 7X^{10}$$
 (modulo 32)

**b** = **a** = - 
$$X - X^2 + X^3 + X^4 + X^5 + X^7 - X^8 - X^{10}$$
 (modulo 3)

$$c = fp*b = -1 + X^3 - X^4 - X^8 + X^9 + X^{10}$$
 (modulo 3)