

معسكر علم البيانات و تعلم الآلة

16 -11 - 2022

نبذة عن المدرب

محتوى المعسكر

الأسبوع السادس Final Project	الأسبوع الخامس Modeling Interpretation in Action	الأسبوع الرابع EDA & FE in Action	الأسبوع الثالث Machine Learning	الأسبوع الثاني Data Analysis and Visualization	الأسبوع الأول Getting Started	اليوم
Final Project	Models Families: Distance & Time Series	DS Knowledge Catalog	Intro to ML	NumPy	Intro to DS	الأدد
Final Project	Models Evaluation: Regression & Classification	EDA1: Univariate & Multivariate Analysis	Supervised ML	Pandas	Git & Github	الإثنين
Final Project	Optimization Techniques	EDA2: Association Analysis & Hypothesis Construction	Supervised ML	Matplotlib	Python Review	الثلاثاء
Final Project	NLP and Text Mining Basics	Features Engineering: Scaling, Merging & Discretization	Unsupervised ML	Seaborn	Python Review	الأربعاء
Presentation	Neural Networks Basics	Models Families: Continuous & Categorical	Unsupervised ML	Plotly	Python Review	الخميس

**ملاحظة: قد تتغير المواضيع أو أوقات طرحها بناء على تقدم الطلاب.

عاللات النماذج

عوائل النماذج

الانحدار Continuous

تعتبر أنه توجد أنماط بين الخواص

- * Logistic Regression
- * Linear Regression
- * Neural Networks

المسافة Distance

تعتبر وجود مسافة بين الخواص

- * K-Means Clustering
- * SVM
- * DBScan

مصنِّفة Categorical

خواص تحتوي تصنيفات غير قابلة للترتيب (if statements)

- * Naïve Bayes
- * Decision Trees
- * Random Forest

المتسلسلات الزمنية Time Series

تعتمد البيانات اللاحقة على البيانات السابقة

- * ARIMA
- * Prophet
- * Markov

الماذي الانحدار Continuous Models

Linear Regression

$$y = a_1x_1 + a_2x_2 + \cdots + b$$

- a و b تمثل معاملات الخوارزمية b و a -
- $x_{n} \dots x_{l}$ مجال القيم التي يتخذها y تعتمد على مجال الخواص
 - حساسة جدًّا للقيم الشاذة

Linear Regression

$$y = a_1x_1 + a_2x_2 + \cdots + b$$

- الافتراضات عند لاختيار الخوارزمية:
 - Linearity -
 - Homoscedasticity -
 - Independence -
 - Normality -

Linear Regression

سلبياتها:

- بطيئة في التكيف مع التغيرات
- تضمن جميع البيانات في نمط واحد
 - تعاني من كثرة أبعاد الخواص

مميزاتها:

- قابلة للتعميم
- مستقرة نتائجها غالبًا
 - سهلة التفسير

مثال دارج لتطبيقاتها: توقع الأسعار

Logistic Regression

$$y = 1 + e^{-(a1x1 + a2x2 + \dots + b)}$$

- a و d تمثل معاملات الخوارزمية b و a -
 - متضمنة للانحدار الخطى
- $x_{n} \dots x_{l}$ مجال القيم التي يتخذها y تعتمد على مجال الخواص –

Logistic Regression

$$y = a_1x_1 + a_2x_2 + \cdots + b$$

- الافتراضات عند لاختيار الخوارزمية:
 - Linearity -
 - Homoscedasticity -
 - Independence -
 - Normality -

Logistic Regression

سلبياتها:

- بطيئة في التكيف مع التغيرات
- تضمن جميع البيانات في نمط واحد
 - تعانى من كثرة أبعاد الخواص
 - قد تعطی توقعات غیر طبیعیة

مميزاتها:

- قابلة للتعميم
- مستقرة نتائجها غالبًا
 - سهلة التفسير

مثال دارج لتطبيقاتها: مخاطر ائتمان القروض

Neural Networks

المعادلة:

$$Z_1 = \sigma(A_1X + B_1)$$

$$Z_2 = \sigma(A_2Z_2 + B_2)$$
...
$$Z_n = \sigma(A_nZ_{n-1} + B_n)$$

$$y = f(Z_n)$$

Iterative application of linear regression followed by an "activation function" $\boldsymbol{\sigma}$

Model parameters : Ai , Bi , and many hyperparameters

Neural Networks

$$Z_1 = \sigma(A_1X + B_1)$$

$$Z_2 = \sigma(A_2Z_2 + B_2)$$
...
$$Z_n = \sigma(A_nZ_{n-1} + B_n)$$

$$y = f(Z_n)$$

- Universal approximator: can approximate any function F (given the same input)
- Multiple applications by combining different f and loss functions
- Regression? f = x, L = L2
- Classifications? f = softmax, L = crossentropy

Neural Networks

سلبياتها:

- نتائج غير قابلة للتفسير
 - نتائج غیر مستقرة
- من الصعب ضبط معاملات الخوارزمية
 للوصول للنتيجة الأمثل
- تتطلب عدد ضخم من البيانات للتدريب

مميزاتها:

- تستطيع استنباط نماط معقدة غير
 - خطىة
 - تغطي معظم أنواع المشاكل
 - قليلة التأثر بالحالات الشاذة

مثال دارج لتطبيقاتها: نماذج تحليل المشاعر

تفينت التصنيف Classification Models

Naïve Bayes

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)}$$

$$P(C|X) = \frac{P(x_1|C)P(x_2|C) ... P(x_n|C)P(C)}{P(X)}$$

- Naïve means the features are conditionally independent P(X|C) = P(x1|C) P(x|2C) ... P(x|nC)
- P(X|C) is defined by user
- Suitable to use for unbalanced classes

Naïve Bayes

$$y = a_1x_1 + a_2x_2 + \cdots + b$$

- الافتراضات عند لاختيار الخوارزمية:
 - Features are independent -
 - Likelihood distribution -

Naïve Bayes

سلبياتها:

- يتأثر أداؤها عن التعديل في التوزيع
- تأخذ جميع البيانات لتضمنها بالنموذج

مميزاتها:

- تستطيع استنباط أكثر من نمط
- تغطى معظم أنواع المشاكل
 - سهلة التفسير

مثال دارج لتطبيقاتها: تصنيف الديميلات المزعجة

Decision Trees

المعادلة:

IF statements splitting the data into different dimensions based on class entropy

- Can split one feature multiple times
- No model parameters
- Hyperparameters are searchable

Random Forests combines multiple decision trees in order to bypass some of the disadvantages of decision trees

Decision Trees

- الافتراضات عند لاختيار الخوارزمية:

- Features are independent -
- Assumes independence of features -

Decision Trees

سلبياتها:

- تتطلب عدد قليل من الخواص كمدخلات
 - عرضة للـOverfitting
 - لا تعمم بطريقة ممتاز

مميزاتها:

- تستطيع استنباط أكثر من نمط
 - يرتب الخواص حسب الأهمية
 - سهلة التفسير

مثال دارج لتطبيقاتها: تنبؤات الجو

للتسليم

من مشاریعکم، استعرضوا النماذج بعد التدریب واستخرجوا المعادلة النهائیة بعد التعرف علی معاملاتها _coef

المتوقع: شكل المعادلة لنموذجهم بعد التدريب (نموذج واحد فقط)

Spadily Lucius

DS Projects

- 1. Great Firewall of China, gigantic censorship system of the Chinese government is a good example of what can be achieved with data science. It monitors millions of tweets, posts, links, pages, automatically block requests containing certain keywords, etc. Plus it does that at the scale of the whole Chinese Internet which is hundreds of millions of users and billions of strings of texts to process each minute.
- 2. Youtube recommender:
- https://blog.hootsuite.com/how-the-youtube-algorithm-works/amp/ https://www.technologyreview.com/2022/09/20/1059709/youtube-algorithm-recommendations/amp/

- 4. http://www.cognitivetoday.com/2017/03/data-science-success-stories.html
 5. مثلة أخرى مع الدكتور حمود: https://twitter.com/dr_hmood/status/929463611961106432?s=46&t=ZZLOVGVoVr9llpLjCKSsjQ