Задача обучения линейного классификатора

Дано:

Обучающая выборка $X^\ell=(x_i,y_i)_{i=1}^\ell$, x_i — объекты, векторы из множества $X=\mathbb{R}^n$, y_i — метки классов, элементы множества $Y=\{-1,+1\}$.

Найти:

Параметры $w\in\mathbb{R}^n$, $w_0\in\mathbb{R}$ линейной модели классификации

$$a(x; w, w_0) = \operatorname{sign}(\langle x, w \rangle - w_0).$$

Критерий — минимизация эмпирического риска:

$$\sum_{i=1}^{\ell} [a(x_i; w, w_0) \neq y_i] = \sum_{i=1}^{\ell} [M_i(w, w_0) < 0] \rightarrow \min_{w, w_0}.$$

где $M_i(w, w_0) = (\langle x_i, w \rangle - w_0) y_i$ — отступ (margin) объекта x_i , $b(x) = \langle x, w \rangle - w_0$ — дискриминантная функция.

Аппроксимация и регуляризация эмпирического риска

Эмпирический риск — это кусочно-постоянная функция. Заменим его оценкой сверху, непрерывной по параметрам:

$$Q(w, w_0) = \sum_{i=1}^{\ell} [M_i(w, w_0) < 0] \leqslant$$

$$\leqslant \sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 \rightarrow \min_{w, w_0}.$$

- Аппроксимация штрафует объекты за приближение к границе классов, увеличивая зазор между классами
- Регуляризация штрафует неустойчивые решения в случае мультиколлинеарности

Оптимальная разделяющая гиперплоскость

Линейный классификатор:

$$a(x, w) = sign(\langle w, x \rangle - w_0), \quad w, x \in \mathbb{R}^n, \ w_0 \in \mathbb{R}.$$

Пусть выборка $X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$ линейно разделима:

$$\exists w, w_0 : M_i(w, w_0) = y_i(\langle w, x_i \rangle - w_0) > 0, \quad i = 1, \dots, \ell$$

Нормировка: $\min_{i=1,\ldots,\ell} M_i(w,w_0) = 1$.

Разделяющая полоса:

$$\{x: -1 \leqslant \langle w, x \rangle - w_0 \leqslant 1\}.$$

Ширина полосы:

$$\frac{\langle x_+ - x_-, w \rangle}{\|w\|} = \frac{2}{\|w\|} \to \max.$$

Переход к линейно неразделимой выборке

Постановка задачи в случае линейно разделимой выборки:

$$\begin{cases} \frac{1}{2} \|w\|^2 \to \min_{w,w_0}; \\ M_i(w,w_0) \geqslant 1, \quad i = 1,\ldots,\ell. \end{cases}$$

Общий случай — линейно неразделимая выборка:

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi}; \\ M_i(w, w_0) \geqslant 1 - \xi_i, & i = 1, \dots, \ell; \\ \xi_i \geqslant 0, & i = 1, \dots, \ell. \end{cases}$$

Исключая ξ_i , получаем задачу безусловной минимизации:

$$C\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2} ||w||^2 \rightarrow \min_{w, w_0}.$$

Условия Каруша-Куна-Таккера

Задача математического программирования:

$$\begin{cases} f(x) \to \min_{x}; \\ g_{i}(x) \leqslant 0, \quad i = 1, \dots, m; \\ h_{j}(x) = 0, \quad j = 1, \dots, k. \end{cases}$$

Необходимые условия. Если x — точка локального минимума, то существуют множители μ_i , $i=1,\ldots,m,\ \lambda_i$, $j=1,\ldots,k$:

$$\begin{cases} \frac{\partial \mathscr{L}}{\partial x} = 0, & \mathscr{L}(x; \mu, \lambda) = f(x) + \sum_{i=1}^m \mu_i g_i(x) + \sum_{j=1}^k \lambda_j h_j(x); \\ g_i(x) \leqslant 0; & h_j(x) = 0; \text{ (исходные ограничения)} \\ \mu_i \geqslant 0; & \text{(двойственные ограничения)} \\ \mu_i g_i(x) = 0; & \text{(условие дополняющей нежёсткости)} \end{cases}$$

Применение условий ККТ к задаче SVM

Функция Лагранжа:

$$\begin{split} \mathscr{L}(w, w_0, \xi; \lambda, \eta) &= \\ &= \frac{1}{2} \|w\|^2 - \sum_{i=1}^{\ell} \lambda_i (M_i(w, w_0) - 1) - \sum_{i=1}^{\ell} \xi_i (\lambda_i + \eta_i - C), \end{split}$$

 λ_i — переменные, двойственные к ограничениям $M_i\geqslant 1-\xi_i$; η_i — переменные, двойственные к ограничениям $\xi_i\geqslant 0$.

$$\begin{cases} \frac{\partial \mathscr{L}}{\partial w} = 0, & \frac{\partial \mathscr{L}}{\partial w_0} = 0, & \frac{\partial \mathscr{L}}{\partial \xi} = 0; \\ \xi_i \geqslant 0, & \lambda_i \geqslant 0, & \eta_i \geqslant 0, & i = 1, \dots, \ell; \\ \lambda_i = 0 & \text{либо} & M_i(w, w_0) = 1 - \xi_i, & i = 1, \dots, \ell; \\ \eta_i = 0 & \text{либо} & \xi_i = 0, & i = 1, \dots, \ell; \end{cases}$$

Двойственная задача

$$\begin{cases} -\sum_{i=1}^{\ell} \lambda_i + \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \lambda_i \lambda_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle & \to & \min_{\lambda}; \\ 0 \leqslant \lambda_i \leqslant C, & i = 1, \dots, \ell; \\ \sum_{i=1}^{\ell} \lambda_i y_i = 0. \end{cases}$$

Решив эту задачу численно относительно λ_i , получаем линейный классификатор:

$$a(x)= ext{sign}\Big(\sum\limits_{i=1}^\ell \lambda_i y_i \langle \mathbf{x}_i, \mathbf{x}
angle - w_0\Big),$$
 где $w_0=\sum\limits_{i=1}^\ell \lambda_i y_i \langle \mathbf{x}_i, \mathbf{x}_j
angle - y_j$ для такого j , что $\lambda_j>0$, $M_j=1$

Определение

Объект x_i называется *опорным*, если $\lambda_i \neq 0$.

Преимущества и недостатки SVM

Преимущества:

- Задача выпуклого квадратичного программирования имеет единственное решение.
- Выделяется множество опорных объектов.
- Имеются эффективные численные методы для SVM.
- Изящное обобщение на нелинейные классификаторы.

Недостатки:

- Опорными объектами могут становиться выбросы.
- ullet Нет отбора признаков в исходном пространстве X.
- Приходится подбирать константу С.