Feature engineering

WINNING A KAGGLE COMPETITION IN PYTHON

Yauhen Babakhin Kaggle Grandmaster

Solution workflow

Modeling stage

Modeling stage

Modeling stage

Feature engineering

Feature engineering

Feature types

- Numerical
- Categorical
- Datetime
- Coordinates
- Text
- Images

Creating features

```
# Concatenate the train and test data
data = pd.concat([train, test])
# Create new features for the data DataFrame...
# Get the train and test back
train = data[data.id.isin(train.id)]
test = data[data.id.isin(test.id)]
```

Arithmetical features

```
# Two sigma connect competition
two_sigma.head(1)
```

```
id bathrooms bedrooms price interest_level
0 10 1.5 3 3000 medium
```

```
# Arithmetical features
two_sigma['price_per_bedroom'] = two_sigma.price / two_sigma.bedrooms
two_sigma['rooms_number'] = two_sigma.bedrooms + two_sigma.bathrooms
```

Datetime features

```
# Demand forecasting challenge
dem.head(1)
```

```
id date store item sales
0 100000 2017-12-01 1 1 19
```

```
# Convert date to the datetime object
dem['date'] = pd.to_datetime(dem['date'])
```


Datetime features

```
# Year features
dem['year'] = dem['date'].dt.year

# Month features
dem['month'] = dem['date'].dt.month

# Week features
dem['week'] = dem['date'].dt.weekofyear
```

```
date
                    month
                            week
               year
2017-12-01
               2017
                        12
                              48
2017-12-02
              2017
                       12
                              48
2017-12-03
              2017
                        12
                              48
2017-12-04
              2017
                        12
                               49
```

```
# Day features
dem['dayofyear'] = dem['date'].dt.dayofyea
dem['dayofmonth'] = dem['date'].dt.day
dem['dayofweek'] = dem['date'].dt.dayofwee
```

```
datedayofyeardayofmonthdayofweek2017-12-01335142017-12-02336252017-12-03337362017-12-0433840
```

Let's practice!

WINNING A KAGGLE COMPETITION IN PYTHON

Categorical features

WINNING A KAGGLE COMPETITION IN PYTHON

Yauhen Babakhin Kaggle Grandmaster

Label encoding

ID	Categorical feature
1	A
2	В
3	С
4	A
5	D
6	A

ID	Label-encoded
1	0
2	1
3	2
4	0
5	3
6	0

Label encoding

```
# Import LabelEncoder
from sklearn.preprocessing import LabelEncoder

# Create a LabelEncoder object
le = LabelEncoder()

# Encode a categorical feature
df['cat_encoded'] = le.fit_transform(df['cat'])
```

One-Hot encoding

ID	Categorical feature
1	A
2	В
3	С
4	A
5	D
6	A

ID	Cat == A	Cat == B	Cat == C	Cat == D
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	1	0	0	0
5	0	0	0	1
6	1	0	0	0

One-Hot encoding

```
# Create One-Hot encoded features
ohe = pd.get_dummies(df['cat'], prefix='ohe_cat')
# Drop the initial feature
df.drop('cat', axis=1, inplace=True)
# Concatenate OHE features to the dataframe
df = pd.concat([df, ohe], axis=1)
```

Binary Features

```
# DataFrame with a binary feature
binary_feature
```

```
binary_feat
0 Yes
1 No
```

```
le = LabelEncoder()
binary_feature['binary_encoded'] = le.fit_transform(binary_feature['binary_feat'])
```

```
binary_feat binary_encoded
0 Yes 1
1 No 0
```


Other encoding approaches

- Backward Difference Coding
- BaseN
- Binary
- CatBoost Encoder
- Hashing
- Helmert Coding
- James-Stein Encoder
- Leave One Out

- M-estimate
- One Hot
- Ordinal
- Polynomial Coding
- Sum Coding
- Target Encoder
- Weight of Evidence

Other encoding approaches

- Backward Difference Coding
- BaseN
- Binary
- CatBoost Encoder
- Hashing
- Helmert Coding
- James-Stein Encoder
- Leave One Out

- M-estimate
- One Hot
- Ordinal
- Polynomial Coding
- Sum Coding
- Target Encoder
- Weight of Evidence

Let's practice!

WINNING A KAGGLE COMPETITION IN PYTHON

Target encoding

WINNING A KAGGLE COMPETITION IN PYTHON

Yauhen Babakhin Kaggle Grandmaster

High cardinality categorical features

- Label encoder provides distinct number for each category
- One-hot encoder creates new feature for each category value
- Target encoding to the rescue!

Mean target encoding

Train ID	Categorical	Target
1	A	1
2	В	0
3	В	0
4	Α	1
5	В	0
6	Α	0
7	В	1

Test ID	Categorical	Target
10	Α	?
11	Α	?
12	В	?
13	Α	?

Mean target encoding

- 1. Calculate mean on the train, apply to the test
- 2. Split train into K folds. Calculate mean on (K-1) folds, apply to the K-th fold
- 3. Add mean target encoded feature to the model

Calculate mean on the train

Train ID	Categorical	Target
1	A	1
2	В	0
3	В	0
4	A	1
5	В	0
6	A	0
7	В	1

Calculate mean on the train

Train ID	Categorical	Target
1	Α	1
2	В	0
3	В	0
4	Α	1
5	В	0
6	Α	0
7	В	1

Calculate mean on the train

Train ID	Categorical	Target
1	A	1
2	В	0
3	В	0
4	A	1
5	В	0
6	Α	0
7	В	1

Test encoding

Test ID	Categorical	Target	Mean encoded
10	Α	?	0.66
11	Α	?	0.66
12	В	?	0.25
13	Α	?	0.66

Train ID	Categorical	Target	Fold
1	Α	1	1
2	В	0	1
3	В	0	1
4	Α	1	1
5	В	0	2
6	Α	0	2
7	В	1	2

Train ID	Categorical	Target	Fold	Mean encoded
1	Α	1	1	
2	В	0	1	
3	В	0	1	
4	Α	1	1	
5	В	0	2	
6	Α	0	2	
7	В	1	2	

Train ID	Categorical	Target	Fold	Mean encoded
1	Α	1	1	0
2	В	0	1	0.5
3	В	0	1	0.5
4	Α	1	1	0
5	В	0	2	
6	Α	0	2	
7	В	1	2	

Train ID	Categorical	Target	Fold	Mean encoded
1	Α	1	1	0
2	В	0	1	0.5
3	В	0	1	0.5
4	Α	1	1	0
5	В	0	2	
6	Α	0	2	
7	В	1	2	

Train ID	Categorical	Target	Fold	Mean encoded
1	Α	1	1	0
2	В	0	1	0.5
3	В	0	1	0.5
4	Α	1	1	0
5	В	0	2	0
6	Α	0	2	1
7	В	1	2	0

Practical guides

Practical guides

Smoothing

$$mean_enc_i = rac{target_sum_i}{n_i} \ smoothed_mean_enc_i = rac{target_sum_i + lpha * global_mean}{r}$$

$$lpha \in [5;10]$$

Practical guides

Smoothing

$$mean_enc_i = rac{target_sum_i}{n_i} \ smoothed_mean_enc_i = rac{target_sum_i + lpha * global_mean}{n_i + lpha} \ lpha \in [5;10]$$

New categories

• Fill new categories in the test data with a global_mean

Practical guides

Train ID	Categorical	Target
1	Α	1
2	В	0
3	В	0
4	Α	0
5	В	1

Test ID	Categorical	Target	Mean encoded
10	Α	?	0.43
11	В	?	0.38
12	С	?	0.40

Let's practice!

WINNING A KAGGLE COMPETITION IN PYTHON

Missing data

WINNING A KAGGLE COMPETITION IN PYTHON

Yauhen Babakhin Kaggle Grandmaster

Missing data

ID	Categorical feature	Numerical feature	Binary target
1	A	5.1	1
2	В	7.2	0
3	С	3.4	0
4	A	NaN	1
5	NaN	2.6	0
6	A	5.3	0

Numerical data

Mean/median imputation

ID	Categorical feature	Numerical feature	Binary target
1	A	5.1	1
2	В	7.2	0
3	С	3.4	0
4	Α	NaN	1
5	NaN	2.6	0
6	Α	5.3	0

Numerical data

- Mean/median imputation
- Constant value imputation

ID	Categorical feature	Numerical feature	Binary target
1	A	5.1	1
2	В	7.2	0
3	С	3.4	0
4	A	4.72	1
5	NaN	2.6	0
6	A	5.3	0

Numerical data

- Mean/median imputation
- Constant value imputation

ID	Categorical feature	Numerical feature	Binary target
1	A	5.1	1
2	В	7.2	O
3	С	3.4	O
4	A	-999	1
5	NaN	2.6	0
6	A	5.3	0

Numerical data

- Mean/median imputation
- Constant value imputation

Categorical data

Most frequent category imputation

ID	Categorical feature	Numerical feature	Binary target
1	Α	5.1	1
2	В	7.2	0
3	С	3.4	0
4	A	-999	1
5	NaN	2.6	0
6	Α	5.3	0

Numerical data

- Mean/median imputation
- Constant value imputation

Categorical data

- Most frequent category imputation
- New category imputation

ID	Categorical feature	Numerical feature	Binary target
1	Α	5.1	1
2	В	7.2	0
3	С	3.4	0
4	Α	-999	1
5	Α	2.6	0
6	A	5.3	0

Numerical data

- Mean/median imputation
- Constant value imputation

Categorical data

- Most frequent category imputation
- New category imputation

ID	Categorical feature	Numerical feature	Binary target
1	A	5.1	1
2	В	7.2	0
3	С	3.4	O
4	Α	-999	1
5	MISS	2.6	O
6	Α	5.3	0

Find missing data

```
df.isnull().head(1)
```

```
ID cat num target
0 False False False
```

```
df.isnull().sum()
```

```
ID 0
cat 1
num 1
target 0
```


Numerical missing data

```
# Import SimpleImputer
from sklearn.impute import SimpleImputer

# Different types of imputers
mean_imputer = SimpleImputer(strategy='mean')
constant_imputer = SimpleImputer(strategy='constant', fill_value=-999)

# Imputation
df[['num']] = mean_imputer.fit_transform(df[['num']])
```

Categorical missing data

```
# Import SimpleImputer
from sklearn.impute import SimpleImputer

# Different types of imputers
frequent_imputer = SimpleImputer(strategy='most_frequent')
constant_imputer = SimpleImputer(strategy='constant', fill_value='MISS')

# Imputation
df[['cat']] = constant_imputer.fit_transform(df[['cat']])
```

Let's practice!

WINNING A KAGGLE COMPETITION IN PYTHON

