STELLAR CONSENSUS PROTOCOL

HIDENORI SHINOHARA

ABSTRACT. This is my personal notes on the Stellar consensus protocol. This roughly follows the structure of the white paper on https://www.stellar.org/.

Contents

1.	Basic Properties of Quorums	1
2.	Dispensable Sets	3
3.	Voting, Accepting, and Ratifying	4
4.	Confirmation	6
5.	Nomination	7

1. Basic Properties of Quorums

Definition 1.1. Let V be a set and $Q: V \to 2^{2^V} \setminus \{\emptyset\}$ be a function such that $\forall v \in V, \forall q \in Q(v), v \in q$. Then we call the pair $\langle V, Q \rangle$ a federated Byzantine agreement system, or FBAS for short.

Definition 1.2. Let $\langle V, Q \rangle$ be an FBAS. $U \subset V$ is called a quorum if and only if $\forall v \in U, \exists q \in Q(v), q \subset U$.

Theorem 1.3. In an FBAS $\langle V, Q \rangle$, the union of two quorums is a quorum.

Proof. Let U_1, U_2 be two quorums. Let $v \in U_1 \cup U_2$. Then $v \in U_i$ for i = 1 or i = 2. Then $q \subset U_i$ for some $q \in Q(v)$. Therefore, $q \subset U_1 \cup U_2$, so $U_1 \cup U_2$ is indeed a quorum.

Theorem 1.4. In an FBAS (V,Q), V is a quorum.

Proof. For any $v \in V$, for any $q \in Q(v)$, $q \subset V$. Therefore, V is indeed a quorum.

Example 1.5. One might wonder if the intersection of quorums is always a quorum. However, this is not true in general.

Let $V = \{v_1, ..., v_4\}$ and

- $Q(v_1) = \{\{v_1, v_2, v_3\}, \{v_1, v_2, v_4\}, \{v_1, v_3, v_4\}\},\$
- :
- $Q(v_4) = \{\{v_1, v_2, v_4\}, \{v_1, v_3, v_4\}, \{v_2, v_3, v_4\}\}.$

In other words, $Q(v_i) = \{U \mid U \in 2^V, v_i \in U\}.$

Then $U_1 = \{v_1, v_2, v_3\}$ is a quorum, and $U_2 = \{v_2, v_3, v_4\}$ is a quorum. However, $U_1 \cap U_2 = \{v_2, v_3\}$ is not a quorum because the size of any quorum slice is 3.

Definition 1.6. Let $\langle V, Q \rangle$ be an FBAS. We say $\langle V, Q \rangle$ enjoys quorum intersection if and only if for any pair of quorums $U_1, U_2, U_1 \cap U_2 \neq \emptyset$.

Definition 1.7. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$. Then the FBAS $\langle V, Q \rangle^B$ is defined to be $\langle V \setminus B, Q^B \rangle$ where $\forall v \in V, Q^B(v) = \{q \setminus B \mid q \in Q(v)\}.$

Theorem 1.8. Definition 1.7 is well-defined. In other words, if $\langle V, Q \rangle$ is an FBAS and $B \subset V$, then $\langle V, Q \rangle^B$ is an FBAS.

Proof. Let $v \in V \setminus B, q' \in Q^B(v)$ be given. Then $q' = q \setminus B$ for some $q \in Q(v)$. By the definition of an FBAS, $v \in q$. Since $v \notin B$, $v \in q \setminus B = q'$. Therefore, $\langle V, Q \rangle^B$ is an FBAS.

Theorem 1.9. Let U be a quorum in FBAS $\langle V, Q \rangle$, let $B \subset V$ be a set of nodes, and let $U' = U \setminus B$. If $U' \neq \emptyset$, then U' is a quorum in $\langle V, Q \rangle^B$.

Proof. Since $U' \neq \emptyset$, it suffices to show that $\forall v \in U', \exists q \in Q^B(v), q \subset U'$. Let $v \in U'$. Then $v \in U$. Since U is a quorum in $\langle V, Q \rangle$, we can find $q \in Q(v)$ such that $q \subset U$. Then $q' = q \setminus B \in Q^B(v)$, and $q' = q \setminus B \subset U \setminus B = U'$. Therefore, U' is a quorum in $\langle V, Q \rangle^B$. \square

Definition 1.10. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$ be a set of nodes. We say $\langle V, Q \rangle$ enjoys quorum intersection despite B if and only if $\langle V, Q \rangle^B$ enjoys quorum intersection.

Definition 1.11. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$ be a set of nodes. We say $\langle V, Q \rangle$ enjoys quorum availability despite B if and only if $V \setminus B$ is a quorum in $\langle V, Q \rangle$ or B = V.

Definition 1.12. Let $\langle V, Q \rangle$ be an FBAS. Let $v \in V$. A subset $B \subset V$ is called v-blocking if and only if $\forall q \in Q(v), q \cap B \neq \emptyset$.

Theorem 1.13. Let $\langle V, Q \rangle$ be an FBAS. Let $v \in V$. Then

- The union of two v-blocking sets is v-blocking.
- Any superset of a v-blocking set is v-blocking.

Proof. If B, B' are v-blocking, then $q \cap (B \cup B') = (q \cap B) \cup (q \cap B') \neq \emptyset$ for any $q \in Q(v)$ because the union of two nonempty sets is nonempty. If $B \subset B'$ and B is v-blocking, $q \cap B' \supset q \cap B \neq \emptyset$ for any $q \in Q(v)$.

Theorem 1.14. Let $\langle V, Q \rangle$ be an FBAS. Let $A \subsetneq V$ and U_1, U_2 be a partition of $V \setminus A$. Let $v \in U_1$. If U_2 is not v-blocking in $\langle V, Q \rangle$, then U_2 is not v-blocking in $\langle V, Q \rangle^A$.

Proof. Since U_2 is not v-blocking in $\langle V, Q \rangle$, there exists $q_v \in Q(v)$ such that $q_v \cap U_2 \neq \emptyset$.

$$(q_v \setminus A) \cap U_2 = (q_v \cap U_2) \setminus (A \cap U_2)$$
$$= q_v \cap U_2 \neq \emptyset.$$

Thus U_2 is not v-blocking in $\langle V, Q \rangle^A$.

Theorem 1.15. Let $\langle V, Q \rangle$ be an FBAS. Let $B \subset V$. $\langle V, Q \rangle$ enjoys quorum availability despite B if and only if B is not v-blocking for any $v \in V \setminus B$.

Proof.

$$\forall v \in V \setminus B, \neg (B \text{ is } v\text{-blocking}) \iff \forall v \in V \setminus B, \neg (\forall q \in Q(v), q \cap B \neq \emptyset)$$

$$\iff \forall v \in V \setminus B, \exists q \in Q(v), q \cap B = \emptyset$$

$$\iff \forall v \in V \setminus B, \exists q \in Q(v), q \subset V \setminus B$$

$$\iff V = B \text{ or } V \setminus B \text{ is a quorum in } \langle V, Q \rangle$$

$$\iff \langle V, Q \rangle \text{ enjoys quorum availability despite } B$$

2. Dispensable Sets

Definition 2.1. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$ be a set of nodes. B is called a dispensable set, or DSet, if and only if $\langle V, Q \rangle$ enjoys quorum intersection and availability despite B.

Definition 2.2. Let $\langle V, Q \rangle$ be an FBAS and $v \in V$. v is said to be intact if and only if there exists a DSet B containing all ill-behaved nodes and $v \notin B$. v is said to be befouled if and only if v is not intact.

Theorem 2.3. If B_1 and B_2 are DSets in an FBAS $\langle V, Q \rangle$ enjoying quorum intersection, then $B = B_1 \cap B_2$ is a DSet, too.

Proof. If $B_1 = V$ or $B_2 = V$, then we are done. Suppose otherwise. For any $v \in V$,

$$v \in V \setminus B \iff v \in V \land v \notin B$$

$$\iff v \in V \land (v \notin B_1 \lor v \notin B_2)$$

$$\iff (v \in V \land v \notin B_1) \lor (v \in V \land v \notin B_2)$$

$$\iff (v \in (V \setminus B_1)) \lor (v \in (V \setminus B_2))$$

$$\iff v \in ((V \setminus B_1) \cup (V \setminus B_2)).$$

Thus, $V \setminus B = (V \setminus B_1) \cup (V \setminus B_2)$. By the definition of a DSet, $V \setminus B_1$ and $V \setminus B_2$ are both quorums in $\langle V, Q \rangle$. By Theorem 1.3, $V \setminus B$ is a quorum in $\langle V, Q \rangle$.

We must now show quorum intersection despite B. Let U_a, U_b be quorums in $\langle V, Q \rangle^B$.

- $U_a \setminus B_1$ is a quorum in $(\langle V, Q \rangle^B)^{B_1} = \langle V, Q \rangle^{B_1}$ by Theorem 1.7. Similarly, $U_b \setminus B_1$ is a quorum in $\langle V, Q \rangle^{B_1}$, and $U_a \setminus B_2$ and $U_b \setminus B_2$ are both quorums in $\langle V, Q \rangle^{B_2}$.

$$(U_a \setminus B_1) \cup (U_a \setminus B_2) = U_a \setminus (B_1 \cap B_2)$$
$$= U_a \setminus B$$
$$= U_a$$

because U_a is a quorum in $\langle V, Q \rangle^B$. In other words, $(U_a \setminus B_1) \cup (U_a \setminus B_2) \neq \emptyset$. Similarly, $(U_b \setminus B_1) \cup (U_b \setminus B_2) \neq \emptyset.$

Without loss of generality, assume that $U_a \setminus B_1 \neq \emptyset$.

- $V \setminus B_1$ is a quorum in $\langle V, Q \rangle$ because B_1 is a DSet. Similarly, $V \setminus B_2$ is a quorum in $\langle V, Q \rangle$. Because $\langle V, Q \rangle$ enjoys quorum intersection, $(V \setminus B_1) \cap (V \setminus B_2) \neq \emptyset$. In other words, $(V \setminus B_2) \setminus B_1$ is a quorum. By Theorem 1.7, $(V \setminus B_2) \setminus B_1$ is a quorum in $\langle V, Q \rangle^{B_1}$.
- $U_a \setminus B_1$ is a quorum in $(\langle V, Q \rangle^B)^{B_1} = \langle V, Q \rangle^{B_1}$ for the same reason.

Because B_1 is a DSet in $\langle V, Q \rangle$, $\langle V, Q \rangle^{B_1}$ enjoys quorum intersection. Therefore, $(U_a \setminus B_1) \cap ((V \setminus B_2) \setminus B_1) \neq \emptyset$.

$$(U_a \setminus B_1) \cap ((V \setminus B_2) \setminus B_1) = (U_a \cap (V \setminus B_2)) \setminus B_1$$

$$\subset U_a \cap (V \setminus B_2)$$

$$= (U_a \cap V) \setminus B_2$$

$$= U_a \setminus B_2.$$

Thus, $U_a \setminus B_2 \neq \emptyset$. Using the same argument, we can show that $U_b \setminus B_1 \neq \emptyset$ and $U_b \setminus B_2 \neq \emptyset$. Since $U_a \setminus B_1$ and $U_b \setminus B_1$ are quorums in $\langle V, Q \rangle^{B_1}$ and B_1 is a DSet, $(U_a \setminus B_1) \cap (U_b \setminus B_1) \neq \emptyset$ by the definition of a DSet. This implies $(U_a \cap U_b) \setminus B_1 \neq \emptyset$. Therefore, $U_a \cap U_b \neq \emptyset$.

Theorem 2.4. In an FBAS with quorum intersection, the set of befouled nodes is a DSet.

Proof. Let $\langle V, Q \rangle$ be an FBAS with quorum intersection. Let B be the intersection of all DSets that contain all ill-behaved nodes. By Theorem 2.3, B is a DSet.

- Case 1: $v \in B$. Then there exists no DSet B_v such that B_v contains all ill-behaved nodes and $v \notin B_v$. Therefore, v is not an intact node. In other words, v is a befouled node.
- Case 2: $v \notin B$. Then there exists a DSet B_v that contains all ill-behaved nodes and $v \notin B_v$. In other words, v is intact and thus v is not a befouled node.

Therefore, B is precisely the set of befouled nodes and it is a DSet.

Theorem 2.5. Let $\langle V, Q \rangle$ be an FBAS and let $B \subset V$ be the set of befouled nodes. If B is a DSet, B is not v-blocking for any intact v.

Proof. By Definition 2.2, a node $v \in V$ is intact if and only if $v \notin B$. By Theorem 1.15, $\langle V, Q \rangle$ enjoys quorum availability despite B if and only if B is not v-blocking for any $v \in V \setminus B$. Since B is a DSet, $\langle V, Q \rangle$ enjoys quorum availability despite B. Thus B is not v-blocking for any intact v.

3. Voting, Accepting, and Ratifying

Definition 3.1. A node v votes for a statement a if and only if v asserts

- a is valid,
- a is consistent with all statements v has accepted,
- v has never voted against a,
- \bullet v promises never to vote against a in the future.

Definition 3.2. Let $\langle V, Q \rangle$ be an FBAS, and let $v \in V$. v accepts a statement a if and only if

- It has never accepted a statement contradicting a.
- It determines that either

- There exists a quorum such that $v \in U$ and each member of U either voted for a or broadcast that it has accepted a, or
- There exists a v-blocking set B such that every member of B broadcast that it has accepted a.

Note that it is possible for a node to accept a statement it did not vote for. Furthermore, it is possible for a node to accept a statement after voting for a contradictory statement.

Definition 3.3. A quorum U_a ratifies a statement a if and only if every member of U_a votes for a. A node v ratifies a if and only if v is a member of a quorum U_a that ratifies a.

Theorem 3.4. Let $\langle V, Q \rangle$ be an FBAS. If a node $v \in V$ ratifies a statement a, then it must accept a.

Proof. If a node v ratifies a, then it is a member of a quorum $U \subset V$ that ratifies a. Thus every member of U votes for a. This implies that v also votes for a. By Definition 3.1, v has never accepted a statement contradicting a. By Definition 3.2, v accepts a.

Theorem 3.5. If an FBAS enjoys quorum intersection and contains no ill-behaved node, then two contradictory statements cannot be both ratified.

Proof. Suppose the statement is false and let a, \bar{a} denote two contradictory statements ratified in such an FBAS. Let $U_a, U_{\bar{a}}$ denote quorums ratifying such statements, respectively. By the definition of quorum intersection, $U_a \cap U_{\bar{a}} \neq \emptyset$. Let $v \in U_a \cap U_{\bar{a}}$. This implies that v voted for both a and \bar{a} . However, this goes against the definition of voting. In other words, v must be ill-behaved, which is a contradiction to our assumption.

Theorem 3.6. Let $\langle V, Q \rangle$ be an FBAS. Let $B \subsetneq V$ be a subset containing all the ill-behaved nodes and suppose that $\langle V, Q \rangle^B$ enjoys quorum intersection. Let $v_1 \neq v_2 \in V \setminus B$. If v_1 ratifies a statement a, then v_2 cannot ratify any statement that contradicts a.

Proof. Suppose that the theorem is false and let U_1, U_2 be quorums of v_1, v_2 that ratify a, \bar{a} , respectively where a and \bar{a} are contradictory. Since $v_1 \in U_1 \setminus B$, $U_1 \setminus B \neq \emptyset$. By Theorem 1.9, $U'_1 = U_1 \setminus B$ is a quorum in $\langle V, Q \rangle^B$. Similarly, $U'_2 = U_2 \setminus B$ is a quorum in $\langle V, Q \rangle^B$. Since $\langle V, Q \rangle^B$ enjoys quorum intersection, $U'_1 \cap U'_2 \neq \emptyset$. Let $v \in U'_1 \cap U'_2$. Then $v \in U_1 \cap U_2$. In order for U_1, U_2 to ratify a, \bar{a} , respectively, v must vote for both a and \bar{a} . However, this is against the definition of voting. v must be an ill-behaved node, so $v \in B$, which is a contradiction because $v \in U_1 \setminus B$.

Theorem 3.7. Let $\langle V, Q \rangle$ be an FBAS with quorum intersection. Then two intact nodes in V cannot ratify contradictory statements.

Proof. Let $v \neq v'$ be two intact nodes in V. Let $B \subset V$ be the set of befouled nodes. Then $v \notin B$ and $v' \notin B$. Since $\langle V, Q \rangle$ is an FBAS with quorum intersection, B is a DSet by Theorem 2.4. By the definition of a DSet (Definition 2.1), $\langle V, Q \rangle^B$ enjoys quorum intersection. By Theorem 3.6, v, v' cannot ratify contradictory statements.

Lemma 3.8. Let $\langle V, Q \rangle$ be an FBAS enjoying quorum intersection and B be the set of befouled nodes. If a is accepted by an intact node in V, then a is ratified by some intact node in $\langle V, Q \rangle^B$.

Proof. Since V is finite, there has to be an intact node v such that no intact nodes in V accepted a before v.

Since $\langle V,Q\rangle$ enjoys quorum intersection, B is a DSet by Theorem 2.4. By Theorem 2.5, B is not v-blocking. Therefore, by Definition 3.2, there must exist a quorum U of v such that, before v accepted a, every member of U either voted for a or broadcast that it has accepted a. Because of the way we picked v, every intact node in U must have voted for a before v accepted a. In other words, every node in $U \setminus B$ voted for a. By Theorem 1.9, v ratified a in $\langle V,Q\rangle^B$. Finally, v is indeed an intact node in $\langle V,Q\rangle^B$ because $\langle V,Q\rangle^B$ contains no ill-behaved nodes.

Theorem 3.9. Two intact nodes in an FBAS $\langle V, Q \rangle$ enjoying quorum intersection cannot accept contradictory statements.

Note that Theorem 3.9 is a stronger version of Theorem 3.7 by Theorem 3.4.

Proof. Suppose otherwise. Let a, \bar{a} be contradictory statements accepted by two intact nodes in $\langle V, Q \rangle$. By Lemma 3.8, a, \bar{a} are ratified by some intact nodes in $\langle V, Q \rangle^B$. By Definition 2.1, $\langle V, Q \rangle$ enjoys quorum intersection despite B. In other words, $\langle V, Q \rangle^B$ enjoys quorum intersection. By Theorem 3.7, a, \bar{a} cannot be ratified by v, v' in $\langle V, Q \rangle^B$, which is a contradiction. \square

4. Confirmation

Definition 4.1. A statement a is irrefutable in an FBAS if no intact node can ever vote against it.

Definition 4.2. A quorum U_a in an FBAS confirms a statement a if and only if every element in U_a broadcasts that it has accepted a. A node confirms a if and only if it is in such a quorum.

Lemma 4.3. Let $\langle V, Q \rangle$ be an FBAS with quorum intersection. Let B denote the set of befouled nodes. Let U be a quorum containing an intact node. Let S be a set such that $U \subset S \subset V$. Let $S^+ = S \setminus B$ be the set of intact nodes in S, and let $S^- = (V \setminus S) \setminus B$ be the set of intact nodes not in S. Either $S^- = \emptyset$, or $\exists v \in S^-$ such that S^+ is v-blocking.

Proof. If $\exists v \in S^-$ such that S^+ is v-blocking, then we are done. Suppose that $\forall v \in S^-$, S^+ is not v-blocking in $\langle V, Q \rangle$. By Theorem 1.14, S^+ is not v-blocking in $\langle V, Q \rangle^B$ for any $v \in S^- = (V \setminus B) \setminus S^+$. By Theorem 1.15, $\langle V, Q \rangle^B$ enjoys quorum availability despite S^+ . By Definition 1.11, $(V \setminus B) \setminus S^+$ is a quorum in $\langle V, Q \rangle^B$, or $V \setminus B = S^+$. If $V \setminus B = S^+$, then $S^- = \emptyset$, and we are done. Suppose $(V \setminus B) \setminus S^+$ is a quorum in $\langle V, Q \rangle^B$.

- $U \setminus B$ is a quorum in $\langle V, Q \rangle^B$ by Theorem 1.9.
- Since B is a DSet by Theorem 2.4, $\langle V, Q \rangle^B$ enjoys quorum intersection by Definition 2.1.
- However,

$$(U \setminus B) \cap ((V \setminus B) \setminus S^{+}) = (U \setminus B) \cap S^{-}$$
$$\subset S \cap S^{-}$$
$$= \emptyset.$$

This is a contradiction.

Theorem 4.4. If an intact node in an FBAS $\langle V, Q \rangle$ with quorum intersection confirms a statement a, then every intact node will accept and confirm a once sufficient messages are delivered.

Proof. Let B denote the set of befouled nodes. Then there exists a quorum $U \not\subset B$ such that every node in U broadcast that it accepted a. After every node in U broadcast it accepted a, there may be a node v that accept a since U is v-blocking. After all such nodes broadcast that they accepted a, there may be other nodes that accept a as well. Since V is a finite set, there is a point in time where the number of nodes that accept a does not increase. Let a be the set of all nodes that accepted a and broadcast it.

- \bullet *U* is a quorum containing an intact node.
- $U \subset S \subset V$.
- Let $S^+ = S \setminus B$ be the set of intact nodes in S, and let $S^- = (V \setminus S) \setminus B$ be the set of intact nodes not in S.

By Lemma 4.3, S^- is empty, or S^+ is v-blocking for some $v \in S^-$. However, the latter is impossible because it would imply that v would accept a. Therefore, S^- is empty, and thus every intact node accepted a.

5. Nomination

Nomination is done through voting, accepting, and confirming a special type of statement in the form of nominate x.

Definition 5.1. A node v is said to nominate a value x if and only if it votes for the statement nominate x.

Definition 5.2. A node v considers a value x to be a candidate if and only if v has confirmed the statement *nominate* x. Alternatively, we say that a node v has a candidate value x.