

Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio Departamento Acadêmico de Matemática

Lista 04

Dados de Identificação	
Professor:	Matheus Pimenta
Disciplina:	Cálculo Diferencial e Integral I - MA31G
Aluno:	

1. Determine o coeficiente angular da reta tangente ao gráfico da função $f(x) = -3x^2 + 2x$ no ponto P(2, f(2)).

R: -10

2. Determine o coeficiente angular da reta tangente ao gráfico da função $f(x) = \sqrt{x}$, no ponto P(1,1).

 \mathbf{R} : $\frac{1}{2}$

3. Determine a equação da reta tangente ao gráfico da função $f(x)=3x^2-5x+1$ no ponto P(2,3).

R: y = 7x - 11

4. Um ponto em movimento obedece à equação horária $S = t^2 + 3t$ (onde S está em metros e t em segundos). Determinar a velocidade do móvel no instante t = 4s.

R: $v(t_0) = S'(t_0) = 11m/s$

- 5. Um móvel se desloca segundo a função horária $S=t^3+t^2+t$ (onde S está em metros e t em segundos). Determinar a aceleração do móvel no instante t=1s \mathbf{R} : $a(t_0)=8m/s^2$
- 6. Calcule as derivadas das funções abaixo:

(a)
$$f(x) = 5x^3 - 2x^2 + x - 4$$

R: $f'(x) = 15x^2 - 4x + 1$

(b)
$$f(x) = x^4 - \frac{2}{x^3} - \frac{8}{x} + 2$$

R: $f'(x) = 4x^3 + \frac{6}{x^4} + \frac{8}{x^2}$

- (c) $f(x) = (5x 2)^6 (3x 1)^3$ **R:** $f'(x) = (5x - 2)^5 (3x - 1)^2 (135x - 48)$
- (d) $f(x) = \sqrt[3]{(3x^2 + 6x 2)^2}$ **R**: $f'(x) = \frac{4(x+1)}{\sqrt[3]{3x^2 + 6x - 2}}$
- (e) $f(x) = \frac{a+\sqrt{x}}{a-\sqrt{x}}$ $\mathbf{R} : f'(x) = \frac{a}{\sqrt{x}(a-\sqrt{x})^2}$

(f)
$$f(r) = \sqrt{\frac{1+r}{1-r}}$$

R: $f'(r) = \frac{1}{(1-r)^2\sqrt{\frac{1+r}{1-r}}}$

7. Calcule as derivadas das funções abaixo:

(a)
$$f(x) = \sqrt[4]{x^3}$$

R: $f'(x) = \frac{15}{4}x^2\sqrt[4]{x^3}$

(b)
$$f(x) = \frac{1+\cos(x)}{1-\cos(x)}$$

 $\mathbf{R} : f'(x) = \frac{-2\sin(x)}{(1-\cos(x))^2}$

(c)
$$f(x) = \frac{2-\sin(x)}{2+\cos(x)}$$

R: $f'(x) = \frac{2\sin(x)-2\cos(x)-1}{(2+\cos(x))^2}$

(d)
$$f(x) = \frac{\sin(x) + \cos(x)}{\sin(x) - \cos(x)}$$
$$\mathbf{R} \colon f'(x) = \frac{-2}{(\sin(x) - \cos(x))^2}$$

(e)
$$f(x) = \frac{e^x}{\ln(x)}$$
$$\mathbf{R}: f'(x) = \frac{xe^x \ln(x) - e^x}{x(\ln(x))^2}$$

(f)
$$f(x) = \log_e(\frac{a+x}{a-x})$$

 $\mathbf{R}: f'(x) = \frac{2a}{a^2-x^2}$

8. Calcule as derivadas das funções abaixo:

(a)
$$f(x) = (x^3 - 2x)^{\ln(x)}$$

 $\mathbf{R}: f'(x) = x^{\ln(x^3 - 2x)} \left(\frac{\ln(x^3 - 2x)}{x} + \frac{\ln(x)(3x^2 - 2)}{x^3 - 2x} \right)$

(b)
$$f(x) = (\ln(x))^{\tan(x)}$$

 $\mathbf{R}: f'(x) = (\ln(x))^{\tan(x)} \left[\frac{\tan(x)}{x \ln(x)} + (\sec^2(x)) \ln(\ln(x)) \right]$

(c)
$$f(x) = (\sin(x))^{\cos(x)}$$

R: $f'(x) = (\sin(x))^{\cos(x)} \cdot \left[-\sin(x) \ln(\sin(x)) + \frac{\cos^2(x)}{\sin(x)} \right]$

(d)
$$f(x) = x^{(e^x)}$$

R: $f'(x) = x^{(e^x)} e^x \left[\ln(x) + \frac{1}{x} \right]$

(e)
$$f(x) = (e^x)^{\tan(3x)}$$

R: $f'(x) = (e^x)^{\tan(3x)}[3x\sec^2(3x) + \tan(3x)]$

(f)
$$f(x) = e^{\sin^3(x^2)}$$

R: $f'(x) = 6xe^{\sin^3(x^2)}\sin^2(x^2)\cos(x^2)$

9. Calcule as derivadas das funções abaixo:

(a)
$$f(x) = e^{3x^2} \tan(\sqrt{x})$$

R: $f'(x) = e^{3x^2} \left[\frac{\sec^2(\sqrt{x})}{2\sqrt{x}} + 6\tan(\sqrt{x}) \right]$

(b)
$$f(x) = \sqrt{4 + cossec^2(3x)}$$
$$\mathbf{R}: f'(x) = \frac{-3cossec^2(3x)\cot(3x)}{\sqrt{4 + cossec^2(3x)}}$$

(c)
$$f(\theta) = \tan^4(\sqrt[4]{\theta})$$

 $\mathbf{R} : f'(\theta) = \frac{\tan^3(\sqrt[4]{\theta})}{(\sqrt[4]{\theta^3})}$

(d)
$$f(x) = \sqrt{\cos(x)} a^{\sqrt{\cos(x)}}$$

 $\mathbf{R}: f'(x) = -\frac{y}{2} \tan(x) (1 + \sqrt{x} \ln(a))$

(e)
$$f(\theta) = \sec(\sqrt{\theta}) \tan(\frac{1}{\theta})$$

 $\mathbf{R} : f'(\theta) = \sec(\sqrt{\theta}) \left[\frac{\tan(\sqrt{\theta}) \tan(\frac{1}{\theta})}{2\sqrt{\theta}} - \frac{\sec^2(\frac{1}{\theta})}{\theta^2} \right]$

(f)
$$f(x) = \ln\left(\sqrt{\frac{1+\sin(x)}{1-\sin(x)}}\right)$$

R: $f'(x) = \sec(x)$

10. Calcule as derivadas das funções abaixo:

(a)
$$f(x) = \ln(\frac{\cos(\sqrt{(x)})}{1+\sin(\sqrt{x})})$$

 $\mathbf{R} : f'(x) = -\frac{1}{2\sqrt{x}\cos(\sqrt{x})}$

(b)
$$f(x) = \frac{1}{2}\cot^2(5x) + \ln(\sin(5x))$$

R: $f'(x) = -5\cot^3(5x)$

(c)
$$f(x) = (\arcsin(x))^2$$

R: $f'(x) = \frac{2\arcsin(x)}{\sqrt{1-x^2}}$

(d)
$$f(x) = \frac{\ln(\sinh(x))}{x}$$

 $\mathbf{R}: f'(x) = \frac{x \coth(x) - \ln(\sinh(x))}{x^2}$

(e)
$$f(x) = \operatorname{sech}(\ln(x))$$

$$\mathbf{R} \colon f'(x) = \frac{-\operatorname{sech}(\ln(x)) \tanh(\ln(x))}{x}$$
(f)
$$f(x) = \operatorname{arctgh}(\frac{1}{2}x^2)$$

$$\mathbf{R} \colon f'(x) = \frac{4x}{4-x^4}$$

(f)
$$f(x) = arctgh(\frac{1}{2}x^2)$$

R: $f'(x) = \frac{4x}{4-x^4}$

• Trace um esboço do gráfico das funções; 11.

$$\bullet \,$$
 Determine se f é contínua em $a;$

• Calcule
$$f'_{-}(a)$$
 e $f'_{+}(a)$;

$$\bullet\,$$
 Determine se f é diferenciável em $a.$

(a)
$$f(x) = \begin{cases} x + 2 \text{ se } x \le -4 \\ -x - 6 \text{ se } x > -4 \end{cases}$$
 $a = -4$

(b)
$$f(x) = |x - 3| \ a = 3$$

R: Sim:-1:1.Não

(c)
$$f(x) = \begin{cases} -1 \text{ se } x < 0 \\ x - 1 \text{ se } x \ge 0 \end{cases}$$
 $a = 0$

(d)
$$f(x) = \begin{cases} x \text{ se } x \le 0 \\ -x^2 \text{ se } x > 0 \end{cases}$$
 $a = 0$

(e)
$$f(x) = \begin{cases} \sqrt{1-x} & \text{se } x < 1 \\ (1-x)^2 & \text{se } x \ge 1 \end{cases}$$
 $a = 1$

(f)
$$f(x) = \begin{cases} 2x^2 - 3 \text{ se } x \le 2\\ 8x - 11 \text{ se } x > 2 \end{cases}$$
 $a = 2$

12. Determinar as derivadas de segunda ordem das seguintes funções:

(a)
$$y = \ln(x + \sqrt{a^2 + x^2})$$

R: $y'' = \frac{-x}{\sqrt{(a^2 + x^2)^3}}$

(b)
$$y = \ln(\sqrt[3]{1+x^2})$$

R: $y'' = \frac{2(1-x^2)}{(1+x^2)^2}$

(c)
$$y = e^{x^2}$$

R: $y'' = e^{x^2}(4x^2 + 2)$

(d)
$$y = (\arcsin(x))^2$$

 $\mathbf{R}: y'' = \frac{2}{1-x^2} + \frac{2x \arcsin(x)}{(1-x^2)^{\frac{3}{2}}}$

(e)
$$y = (1 + x^2) \arctan(x)$$

 $\mathbf{R} : y'' = 2 \arctan(x) + \frac{2x}{1+x^2}$

13. Expresse $\frac{\partial y}{\partial x}$ em termos de x e y, onde y=y(x), é uma função derivável, dada implicitamente pela equação:

(a)
$$e^{y} + \ln(y) = x$$

 $\mathbf{R}: \frac{\partial y}{\partial x} = \frac{1}{e^{y} + \frac{1}{x}}$

(b)
$$xy + x - 2y = 1$$

 $\mathbf{R} : \frac{\partial y}{\partial x} = -\frac{(y+1)}{x-2}$

(c)
$$2y + \sin(y) = x$$

R: $\frac{\partial y}{\partial x} = \frac{1}{(2 + \cos(y))}$

(d)
$$5y + \cos(y) = xy$$

$$\mathbf{R}: \frac{\partial y}{\partial x} = \frac{y}{5 - \sin(y) - x}$$

14. Determinar a derivada de ordem 123 da função $y = \sin(x)$ $\mathbf{R}: y^{(123)} = -\cos(x)$

15. Demonstrar que a função $y=\frac{1}{2}x^2e^x$, satisfaz a equação diferencial $y''-2y'+y=e^x$

16. Um retângulo de dimensões x e y tem perímetro 2a (a é constante dada). Determinar x e y para que sua área seja máxima.

R:
$$x = y = \frac{a}{2}$$

17. A prefeitura de um município pretende construir um parque retangular, com uma área de 3600m² e pretende protegê-lo com uma cerca. Que dimensões devem ter o parque para que o comprimento da cerca seja mínimo?

R:60m

18. Estima-se que daqui a t anos, a circulação de um jornal será $C(t) = 100t^2 + 400t + 5000$.

(a) Encontre uma expressão para a taxa de variação da circulação com o tempo daqui a t anos.

R:
$$C'(t) = 200t + 400$$

(b) Qual será a taxa de variação da circulação com o tempo daqui a 5 anos? Nessa ocasião a circulação esta aumentando ou diminuindo?

R: 1400, aumentando

(c) Qual será a variação da circulação durante o sexto ano?

R: 1500

19. Quando um determinado modelo de liquidificador é vendido a p reais a unidade, são vendidos $D(p) = \frac{8000}{p}$ liquidificadores por mês. Calcula-se que daqui a t meses o preço dos liquidificadores será $p(t) = 0,04^{\frac{3}{2}} + 15$ reais. Calcule a taxa de variação da demanda mensal de liquidificadores com o tempo daqui a 25 meses. A demanda estará aumentando ou diminuindo nessa ocasião?

R: 6 por mês.

20. A concentração de um remédio t horas após ter sido injetado no braço de um paciente é dada por $C(t) = \frac{0,15t}{t^2+0.81}$. Trace a função concentração. Para que valor de t a concentração é máxima?

$$\mathbf{R}$$
: $t = 0, 9$

- 21. Usando a regra de L'Hôpital calcule os limites abaixo:
 - (a) $\lim_{x \to 1} \frac{\ln(x)}{x-1}$ **R:** 1
 - (b) $\lim_{x \to +\infty} e^x \ln(x)$ **R:** 0
 - (c) $\lim_{x \to +\infty} \frac{e^x}{x^2}$ $\mathbf{R}:+\infty$
 - (d) $\lim_{x\to 0} \frac{2x}{e^x-1}$ **R:**2
 - (e) $\lim_{x \to 0} \frac{\tan(x) x}{x^3}$ $\mathbf{R}: \frac{1}{3}$
 - (f) $\lim_{x \to 0} \frac{\sin(x) x}{\tan(x) x}$ $\mathbf{R} := \frac{1}{2}$
 - (g) $\lim_{x \to \pi^{-}} \frac{\sin(x)}{1 \cos(x)}$ **R:**0
 - (h) $\lim_{x\to 0^+} \frac{\ln(\sin(x))}{\ln(\sin(2x))}$ **R:** 1
 - $\begin{array}{cc} \text{(i)} & \lim_{x \to 0^+} \frac{\ln(x)}{cossec(x)} \\ \textbf{R:0} \end{array}$
 - (j) $\lim_{x \to +\infty} \frac{e^x 1}{x^3 + 4x}$ $\mathbf{R} : +\infty$