

2014 15 appello3

Università degli Studi di Padova – Ingegneria Biomedica

Appello n.3 di **FAMP**

14 luglio 2015 Scrivere sul foglio intestato le proprie generalità! COSA CONSEGNARE: questo foglio e il foglio protocollo intestato con TUTTI gli SVOLGIMENTI degli esercizi affrontati. NON INSERIRE FOGLI DI BRUTTA COPIA

TEMPO Esercizi (Analisi + Probabilità): 2 ore e 45 minuti

- 1. (a) Siano $f: \mathbb{R}^2 \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ due funzioni di classi \mathcal{C}^1 . Si supponga che f(0,0)=1 e che $\nabla f(0,0)=(2,3)$, g'(1)=8. Calcolare $\nabla (g\circ f)(0,0)$.
- 2. Risolvere il problema di Cauchy

$$\begin{cases} y' = \frac{2y + y^2}{x}, \\ y(-1) = 2 \end{cases}$$

e precisare il più ampio intervallo sul quale tale soluzione è definita.

3. Calcolare l'integrale doppio

$$\int_D y \log \sqrt{x^2 + y^2} \, dx \, dy, \qquad D = \{(x,y) \in \mathbb{R}^2 : \, 1 \le x^2 + y^2 \le 2, \, y \ge 0\}.$$

- 4. Sia $\vec{F}(x, y, z) = (1, ze^{yz}, ye^{yz}).$
 - (a) (teoria) Dire cosa significa che \vec{F} è conservativo (dare cioè la definizione di campo conservativo);
 - (b) dire se \vec{F} è conservativo. In caso affermativo determinarne un potenziale (o equivalentemente una primitiva);
 - (c) calcolare il flusso di \vec{F} attraverso il quadrato $\{z=0,x\in[0,2],y\in[0,2]\}$ con la normale orientata verso l'alto.

Probabilità

Fare i conti fino alla fine, usare quando necessario la tabella della normale

- 1. Nei paesi F, S, N ed I l'indice di corruttibilità dei manager è pari rispettivamente al 12%, 12%, 17% e 60%. Se un manager che sappiamo provenire da uno a caso di questi quattro paesi è corrotto, determinare la probabilità che esso provenga dal paese N.
- 2. Il solaio di una soffitta è in grado di reggere un peso massimo di 1000 kg. Organizziamo nella soffitta una festa di laurea alla quale invitiamo 16 amici. Il peso degli amici è una variabile aleatoria di media 70 kg e varianza 225 kg. Determinare la probabilità che la soffitta regga.
- 3. In un vecchio libro di probabilità è descritta la densità di una variabile aleatoria continua X. La pagina è molto rovinata e non si capisce se

$$f_X(x) = \begin{cases} C(x-3) & \text{se } x \in [0,4], \\ 0 & \text{altrimenti} \end{cases}$$
 oppure $f_X(x) = \begin{cases} C(x-3) & \text{se } x \in [0,3], \\ 0 & \text{altrimenti}, \end{cases}$

 $f_X(x) = \begin{cases} C(x-3) & \text{se } x \in [0,4], \\ 0 & \text{altrimenti} \end{cases} \quad \text{oppure} \quad f_X(x) = \begin{cases} C(x-3) & \text{se } x \in [0,3], \\ 0 & \text{altrimenti}, \end{cases}$ per una qualche costante C. Determinare la densità corretta ed il relativo valore della costante C. Se Y è una variabile aleatoria uniforme sull'intervallo [2,4] indipendente da X, determinare la probabilità dell'evento X < Y.

Tabella Distribuzione Normale Standard

tabelle enate,

aggingre 0.5

z	0.00	10.0	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.417
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.444
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.497
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.498
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.498
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.499

Probabilita-

1)
$$P(N|C) = \frac{P(C|N)P(N)}{P(C)} = \frac{0.17 \cdot \frac{1}{4}}{P(c)} = \frac{0.17 \cdot \frac{1}{4}}{P(c|F)P(F) + ... + P(c|J)P(Z)}$$

$$= \frac{0.17 \cdot \frac{1}{4}}{(0,12 + 0.17 + 0.4) \times \frac{1}{4}} = \frac{0.17}{1.01} = \frac{17}{101}$$

$$P(||20+602<1000)$$
= $P(||20+602<1000)$
= $P(||20-\frac{120}{60}) = \phi(-2) = (-\phi/2)$
= $1-0.9772 = \frac{1}{60}$

3) Per from $F(||20+602<1000)$
= $1-0.9772 = \frac{1}{60}$

So altimeth:

$$P(||20+602<1000)$$
= $1-0.9772 = \frac{1}{60}$

Per from $F(||20+602<1000)$

$$P(||20+602<1000)$$
= $1-0.9772 = \frac{1}{60}$

Per from $F(||20+602<1000)$

Per from $F(|$

Analin

1)
$$\nabla (g_0 f) (o, o) = g'(f(o, o)) \nabla f(o, o) = g'(1) (1, 3) = 8(7,3) = (16,24)$$

$$\frac{y'}{2y+y^2} = \frac{1}{x} = \int \frac{y'(x)}{2y(x)+y^2(x)} dx = |y|x| + C$$

$$=) \int \frac{1}{2u+u^2} au = \frac{1}{2|n|+c}, \quad u=y(n)$$

$$\frac{1}{2u+u^2} - \frac{1}{u(2+u)} = \frac{1}{2} \left[\frac{1}{u} - \frac{1}{u+2} \right]$$

=)
$$\frac{y(n)}{y(x)+2} = Cn^2$$
, $CEIR = y(n) = Cn^2(y(x)+2)$
=) $y(n) (1-(n^2) = 2Cn^2$
 $y(x) = \frac{2Cx^2}{1-(x^2)}$

$$f(x) = \frac{2C}{1-C} = 2C = 2C = 2-2C = 2C = \frac{1}{2}$$
 de un'
$$f(x) = \frac{\pi^2}{1-\pi^2} = \frac{2\pi^2}{2-\pi^2} : \text{ definite and maxima}$$

intervalle contenente -1 ove n° + 2 => m J- v2, v2 t.

3)
$$\int y \int \sqrt{x^2 + y^2} dx dy$$
 D:
= $\int \frac{2}{\rho} \int \frac{1}{\rho} d\rho dt$

66[0,17] P6[1,V2]

Te[0,17]
$$e^{e[1,\sqrt{3}]}$$
=\(\begin{align*} \frac{\frac{1}{2}}{2} \rightarrow \frac{1}{3} \rightarrow