Total No. of Questions: 8]		SEAT No:	
P2581	[5152] 557	[Total	No. of Pages :2

[5153]-557 T.E. (E & TC)

ANTENNA & WAVE PROPAGATION (2012 Pattern) (End-Semester) (Semester-II)

Tin	ne:	2½ Hours		Max. Marks :70
Inst	ruct	ions to candid	ates:	
	<i>1)</i>	All questions	are compulsory	
	<i>2)</i>	Neat diagram	s must be drawn wherever necessa	rry.
	<i>3)</i>	Figures to the	e right side indicate full marks.	6
	<i>4)</i>	Assume suital	ble data if necessary.	2
	<i>5)</i>	Use of calculo	ator is allowed.	
		, m'		
Q 1)	a)	Auniform	plane wave of frequency 5MI	Hz has average poynting vector
Q1)	a)			relative permeability $\mu r=2$ and
				city of propagation, wavelength,
		-		
		mumsic m	npedance of a medium and r.m	.s. value of electric field. [8]
	1 _)	Exmloin the	e following characteristics of w	vivologa abannal [6]
	b)			vireless channel [6]
			rence band width.	
		*	rence time and.	
	,	iii) Fadin		
	c)	Derive vec	ctor potential A for an magnetic	c current source J.
00)		***	OR	
Q2)	a)	-	larization of wave? Explain lin	near and circular polarization of
		wave.		[6]
	b)		ort note on	(6)
		,	al height.	
		ii) Multi	hope Propagation.	
				00
	c)	-	· ·	nna is 10 watts. The radiation
		intensity of	f this antenna is $U = Bocos^3\theta$ (V	$V/Sr) \ 0 \le \theta \le \pi / 2 \ 0 \le \Phi \le 2\pi.$
		Find.		[8]
		i) The m	naximum power density in (W	m ²) at a distance of 1000 meter
		(oggui	ma for field distance) specify t	the angle where this occurs

ii)

iii)

Directivity

Gain of the antenna.

<i>Q3</i>)	a)		ve the equation for input impendance and directivity of half wave					
		dipol		_				
	b)		w the current distribution on small dipole and derive the equation for					
		its in	iput impedance. [8]					
			OR					
<i>Q4)</i>	a)		the radiation efficiency of a single turn and eight -turn small circular					
		loop at f=100MHz, the radius of the loop is $\lambda/25$, the radius of the wir						
		is $10^{-4}\lambda$ and the turns are spaced $4\times10^{-4}\lambda$ apart. Assume the wire is copper						
		with a conductivity of 5.7×10^7 (S/m) and antenna is radiating into free						
		-	e. (Where ohmic resistance per unit length/ohmic skin effect resistance					
	1.)	-	init length=0.38). [10]	•				
	b)	Give	the comparison of far fields of small loop and short dipole. [6]	l				
Q5)	a)	Fort	wo element array consisting identical radiators carrying equal curents	3				
		in ph	nase, obtain positions of maxima and minima of the radiation pattern	1				
		if the	e distance of separation $d=\lambda$ [8]					
		Y	9) 2.					
	b)		ve antenna array factor for N-element linear array taking the centre	•				
		elem	ent as reference for N is odd and even.					
			[8]					
00	,	D	OR v and explain the radiation pattern of an endfire array. [8]					
<i>Q6</i>)								
	b)	Explain in brief Dolph - Tchbyscheff distribution. What is the need for						
		Tchbyscheff distribution?. [8]						
Q7)	Evn	lain th	ne following antennas with its structural details dimensions, radiation	,				
21)	-	attern, diagram, specifications, features and applications. [18]						
	patt		Micro strip antenna	ı				
			Lens antenna.					
		/	Biconical antenna					
		•)	OR					
Q8)	a)	Expl	ain the working of Rhombic antenna in detail. [8]	ı				
~	b)		the help of suitable diagram explain the operating principle of [10]					
	,	i)	Super turnstile Super turnstile	•				
		ii)	Slot antenna.					
			♦ ♦ ♦ ☼					
[214	21 <i>E</i>	5 7						
[213	53]-5	31	2					