Statistical and Mathematical Methods for Data Science Midterm 2 Solutions Fall 2018

QUESTION 1

Given $\mathbf{x} \in \mathbb{R}^3$ and $f(\mathbf{x}) = 2x_1^2 + 5x_2^3 + 10x_3x_1$. Write the gradient and Hessian of f. (Marks 3+4)

$\nabla_{\mathbf{x}} f(\mathbf{x}) =$	$\left(\begin{array}{c} 4x_1+10x_3 \end{array}\right)$	$\nabla^2_{\mathbf{x}} f(\mathbf{x}) =$	$\begin{pmatrix} 4 \end{pmatrix}$	0	10	
	$ \begin{pmatrix} 4x_1+10x_3 \\ 15x_2^2 \\ 10x_1 \end{pmatrix} $		0	$0 \\ 30x_2$	0	
	$10x_1$		10	0	0	
					J	

QUESTION 2

(Marks: 6)

Use Gram Schmidt procedure to give an **orthonormal** set for the given set of vectors (the order of vectors should not be changed when applying the method).

$$\mathbf{v}_1 = [1 \ 0 \ 0]^T$$
, $\mathbf{v}_2 = [2 \ 1 \ 1]^T$, $\mathbf{v}_3 = [1 \ 2 \ 3]^T$

SOLUTION

 $a_1 = v_1$

$$\mathbf{a}_2 = \begin{bmatrix} 2\\1\\1 \end{bmatrix} - (2/1) \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$

$$\mathbf{a}_{3} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - (1/1) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - (5/2) \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1/2 \\ -1/2 \end{bmatrix}$$

Normalizing all basis vectors

$$\mathbf{u}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{u}_{2} = \frac{1}{(\operatorname{sqrt}(2))} * \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{u}_{3} = \frac{1}{(\operatorname{sqrt}(2))} * \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

QUESTION 3

Given [4 -2 6]T

(Marks: 3)

L₁ norm is: **12** L₂ norm is: **sqrt(56)** L $_{\infty}$ norm is: **6**

(Marks: 4)

Write the complete expression for updating a when $f(a) = (1-a)^2$ is to be minimized using gradient descent. The expression should only contain the variable a. You can assume momentum $\alpha = 0$ and learning rate $\eta = 1/4$.

SOLUTION

$$a^{(t)} \leftarrow a^{(t-1)} + 1/2 * (1 - a^{(t-1)})$$

QUESTION 5

(Marks: 5)

Given the following values of the standard Normal variable:

$$z_{0.10} = 1.282$$
, $z_{0.05} = 1.645$, $z_{0.025} = 1.960$, $z_{0.01} = 2.326$, $z_{0.005} = 2.576$.

Find the 90% confidence interval for the population mean when the sample measurements are: $\{0,0,0,1,2,2,3,5,5\}$. It is known that the population standard deviation is 2

SOLUTION

$$[18/9 - 1.645*2/3 \quad 18/9 + 1.645*2/3] = [0.903 \quad 3.097]$$

QUESTION 6

(Marks: 4)

When given the following predictions and corresponding labels, fill in the confusion matrix. +1 is the positive class

prediction	1	- 1	1	-1	1	-1	1
label	+1	+1	+1	-1	-1	-1	-1

TP = 2	FP = 2
FN = 1	TN = 2

QUESTION 7

(Marks: 6)

Find the regression coefficients via the method of least squares for the following data:

1 110 110 100 100 101 00 0111010110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110					
x ->	2	0	-2		
target	0	-1	1		

SOLUTION (do the working yourself)

The coefficients are: $\beta_0 = 0$, $\beta_1 = -1/4$