Star Wars (4-6) Text Analysis of Movie Scripts

Contents

library(tidyverse)
library(tidytext)

1	Dependencies	1
2	Reading in clean data	1
3	Tokenize and remove stop words	1
4	Check which sentiment lexicon categorizes most words	1
1	Dependencies	

2 Reading in clean data

```
sw_scripts <- read_csv("clean_data/original_sw_trilogy.csv")</pre>
```

3 Tokenize and remove stop words

```
sw_tokens <- sw_scripts %>%
unnest_tokens(
  word,
  dialogue
) %>%
anti_join(stop_words)

sw_tokens
```

4 Check which sentiment lexicon categorizes most words

```
unique_words <- sw_tokens %>% distinct(word)

# vector of available lexicons in tidytext::get_sentiments()
lexicons <- c("bing", "afinn", "loughran", "nrc")

# create list of joined datasets with available lexicons
nested_df <- lexicons %>%
    map(~left_join(unique_words, get_sentiments(.), by = "word"))

# attach lexicon names to list
names(nested_df) <- lexicons

for (lexicon in lexicons){

# 3rd element is sentiment category or rating
sentiments <- nested_df[[lexicon]][[2]]

# count all values without attached sentiment
missing <- sum(is.na(sentiments))

print(str_glue("{lexicon}: {missing} uncategorised words"))
}</pre>
```

bing: 1930 uncategorised words
afinn: 2018 uncategorised words
loughran: 2170 uncategorised words
nrc: 1690 uncategorised words