Recitation #17: The Ratio, Root, Comparison, and Limit Comparison Tests

Group work:

Warm up:

For each of the following, answer **True** or **False**, and explain why.

- (a) If $a_n \ge 0$ and $\sum_{n=0}^{\infty} a_n$ converges, then $\sum_{n=0}^{\infty} a_n^2$ converges.
- (b) If $a_n, b_n \ge 0$ and both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converge, then $\sum_{n=0}^{\infty} a_n b_n$ converges.

Solution: (a) True

Since $\sum_{n=0}^{\infty} a_n$ converges, $\lim_{n\to\infty} a_n = 0$. So, in particular, there exists an integer N such that $a_k < 1$ for all $k \ge N$. Then for all $k \ge N$, $a_k^2 < a_k$, and therefore we have that

$$\sum_{n=N}^{\infty} a_n^2 < \sum_{n=N}^{\infty} a_n.$$

Thus, by the Comparison Test, $\sum_{n=0}^{\infty} a_n^2$ is convergent.

(b) True

Just as in part (a) there exists an integer N such that $a_k < 1$ for all $k \ge N$. Then

$$\sum_{n=N}^{\infty} a_n b_n < \sum_{n=N}^{\infty} b_n$$

and thus, by the Comparison Test, $\sum_{n=0}^{\infty} a_n b_n$ is convergent.

Group work:

Problem 1 (a) Why can we not use the Comparison test with $\sum_{k=1}^{\infty} \frac{1}{k^2}$ to show that $\sum_{k=1}^{\infty} \frac{1}{k^2 - 5}$ converges?

Learning outcomes:

- (b) Adjust $\sum_{k=1}^{\infty} \frac{1}{k^2}$ to show that $\sum_{k=1}^{\infty} \frac{1}{k^2 5}$ converges via the Comparison Test.
- (c) Give a convergent series we can use in the Limit Comparison Test to show that $\sum_{k=1}^{\infty} \frac{1}{k^2 5}$ converges.

Solution: (a) We cannot use the Comparison Test here because

$$\frac{1}{k^2} < \frac{1}{k^2 - 5}$$

for all $k \ge 1$. So we would just be showing the the series in question is greater than a series which converges, which does not give us any information.

(b) Notice that

$$\frac{2}{k^2} > \frac{1}{k^2 - 5}$$

for all $k \ge 4$. Since $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, $\sum_{k=1}^{\infty} \frac{2}{k^2} = 2 \sum_{k=1}^{\infty} \frac{1}{k^2}$. Thus, $\sum_{k=1}^{\infty} \frac{2}{k^2}$ converges.

Therefore, the Comparison Test with $\sum_{k=1}^{\infty} \frac{2}{k^2}$ shows that $\sum_{k=0}^{\infty} \frac{1}{k^2 - 5}$ converges.

(c) For the Limit Comparison Test, we can use $\sum_{k=1}^{\infty} \frac{1}{k^2}$.

$$\lim_{k \to \infty} \frac{\frac{1}{k^2 - 5}}{\frac{1}{k^2}} = \lim_{k \to \infty} \frac{k^2}{k^2 - 5}$$

Thus, since $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, by the Limit Comparison Test we know that $\sum_{k=0}^{\infty} \frac{1}{k^2 - 5}$ converges.

2

Problem 2 Determine if the following series converge or diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{(7n+1)^2 \cdot 2^n}{5^n}$$

(b)
$$\sum_{k=1}^{\infty} \frac{(k!)^3}{(3k)!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^3 + 1}$$

$$(d) \sum_{n=0}^{\infty} \frac{\cos^2 n}{n^3 + 1}$$

Solution: (a) Ratio Test

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left[\frac{(7(n+1)+1)^2 \cdot 2^{n+1}}{5^{n+1}} \cdot \frac{5^n}{(7n+1)^2 \cdot 2^n} \right]$$

$$= \lim_{n \to \infty} \frac{(7n+8)^2 \cdot 2}{5 \cdot (7n+1)^2}$$

$$= \frac{49 \cdot 2}{49 \cdot 5} = \frac{2}{5}.$$

Thus, since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$, this series [converges].

(b) Ratio Test

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \left[\frac{((k+1)!)^3}{(3(k+1))!} \cdot \frac{(3k)!}{(k!)^3} \right]$$

$$= \lim_{k \to \infty} \frac{(k+1)^3 (k!)^3}{(3k+3)(3k+2)(3k+1) \cdot (3k)!} \cdot \frac{(3k)!}{(k!)^3}$$

$$= \lim_{k \to \infty} \frac{(k+1)^3}{(3k+3)(3k+2)(3k+1)}$$

$$= \frac{1}{3 \cdot 3 \cdot 3} = \frac{1}{27}.$$

Thus, since $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} < 1$, this series converges

(c) Use the **Limit Comparison Test** with $\sum_{n=1}^{\infty} \frac{1}{n}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{3n^3 + 1} \cdot \frac{n}{1}$$
$$= \frac{1}{3}.$$

Therefore, since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, by the Limit Comparison Test we know that $\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^3 + 1}$ diverges.

(d) Use the **Comparison Test** with $\sum_{n=1}^{\infty} \frac{1}{n^3}$.

Since we always have that $0 < \cos^2(n) < 1$, we know that

$$\frac{\cos^2(n)}{n^3+1} \le \frac{1}{n^3+1} < \frac{1}{n^3}.$$

3

Therefore, by the Comparison Test, we have that $\sum_{n=0}^{\infty} \frac{\cos^2 n}{n^3 + 1}$ converges.