

Tartalom

- ➤ Másolással összeépítés
- Kiválogatás + összegzés
- ➤ Kiválogatás + maximum-kiválasztás
- ➤ Maximum-kiválasztás + kiválogatás
- ► Eldöntés + megszámolás
- Keresés + megszámolás
- ➤ Keresés + másolás
- ► Eldöntés + eldöntés
- Sorozatszámítás mátrixra
- ► Eldöntés mátrixra

Másolással összeépítés

Specifikáció:

▶ Bemenet: N∈N

 $X_{1..N} \in H_1^N$

 $f:H_1 \rightarrow H_2$

≽ Kimenet: Y_{1..N}∈H₂^N

> Előfeltétel: -

> Utófeltétel: $\forall i(1 \le i \le N)$: Y;=f(X;)

A **másolás** programozási tétellel összeépítés minden programozási tételre működik.

Csupán annyi a teendő, hogy a bemenetben szereplő $X_{1..N} \in H^N$ sorozat X_i elemei helyett i-edik feldolgozandó elemként az $f(X_i)$ -t kell írni, pl.

$$\sum_{i=1}^{N} X_{i} \rightarrow \sum_{i=1}^{N} f(X_{i}) \text{ vagy } \max_{i=1}^{N} X_{i} \rightarrow \max_{i=1}^{N} f(X_{i})$$

... a kimenetben:

$$\begin{array}{ccc} \underset{t=1}{\overset{N}{\text{Kiv\'alogat}}} X_i & \rightarrow & \underset{t(X_i)}{\overset{N}{\text{Kiv\'alogat}}} f(X_i) \\ \underset{T(X_i)}{\overset{i=1}{\text{Kiv\'alogat}}} & \underset{T(X_i)}{\overset{i=1}{\text{Kiv\'alogat}}} \end{array}$$

Másolással összeépítés

A másolás programozási tételnek volt azonban egy változata, ami új lehetőségeket teremt:

Utófeltétel: $\forall i (1 \le i \le N): Y_{p(i)} = X_i$,

ahol p(i) lehet pl. N-i+1, ami éppen a sorozat elemei sorrendje megfordítását jelenti.

Specifikáció:

➤ Bemenet: N∈N

 $X_{1..N} \in H_1^N$

 $f:H_1 \rightarrow H_2$ ➤ Kimenet: $Y_{1:N} \in H_2^N$

Előfeltétel: –

➤ Utófeltétel: $\forall i(1 \le i \le N)$: $Y_{p(i)} = f(X_i)$

Több programozási tétel megoldása kihasználta az elemek sorrendjét, pl. a lehetséges megoldások közül az elsőt adta meg, vagy az összes várt elemet a bemenet sorrendjében adta meg.

Ez az összeépítés lehetőséget teremt a hátulról feldolgozásra.

Másolás + keresés

Feladat:

Adott tulajdonságú utolsó elem keresése.

Specifikáció:

- ► Bemenet: $N \in \mathbb{N}$, $X_{1.N} \in \mathbb{H}^N$, $T: \mathbb{H} \to \mathbb{L}$
- \triangleright Kimenet: Van \in L, Ind \in N
- ➤ Előfeltétel: –
- ➤ Utófeltétel: $Van=\exists i(1 \le i \le N)$: $T(X_i)$ és $Van \rightarrow 1 \le Ind \le N$ és $T(X_{Ind})$ és $\forall i(Ind < i \le N)$: nem $T(X_i)$

Specifikáció:

- > Bemenet: N∈N, $X_{1..N}$ ∈H^N, T:H→L
- ≻ Kimenet: Van∈L, Ind∈N, Ért∈H
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

Van→1≤Ind≤N és T(X_{Ind}) és Ért=X_{Ind}

Másolás + keresés

Változó

Feladat:

Adott tulajdonságú utolsó elem keresése.

Másolás + keresés

Vezessük be a j=N-i+1 jelölést! Így i=1 esetén j=N, i növelése esetén j csökken, $i\leq N$ helyett $N-j+1\leq N$, azaz $1\leq j$ lesz. Ezzel iről j-re áttérve a megoldás a hátulról keresésre:

Feladat:

Adott tulajdonságú elemek összege – feltételes összegzés.

Specifikáció:

► Bemenet: $N \in \mathbb{N}, X_{1..N} \in \mathbb{Z}^N, T: \mathbb{Z} \to \mathbb{L}$

 \triangleright Kimenet: $S \in \mathbb{Z}$

➤ Előfeltétel: –

> Utófeltétel: $S = \sum_{i=1}^{N} X_i$

Specifikáció (összegzés):

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$

➤ Kimenet: S∈H

Előfeltétel: –

➤ Utófeltétel: S=∑_{i=1}^N X_i

Specifikáció_a:

$$\begin{array}{c} T = T \\ T(X_i) \end{array}$$

Specifikáció:

Bemenet: N∈N, X∈Z^N, T:Z→L

≻ Kimenet: S∈Z

> Előfeltétel: -

> Utófeltétel:S=∑X;

$$\leftrightarrow$$
 S= $\sum_{i=1}^{n} X_{p(i)}$, ahol p(i):= Y_i

Specifikáció_k:

$$\triangleright$$
 Utófeltétel_b: (Db,Y)= Kiválogat X_i

$$S = \sum_{i=1}^{DB} Y_i$$

p megfelelő, hiszen

Változó

1. megoldási ötlet_a:

Válogassuk ki az adott tulajdonságúakat, majd utána adjuk

össze őket!

	Db:=0	i,Db:Egész Y:Tömb[]
Db:=0 i=1 N T(X[i]) Db:=Db+1 Y[Db]:=i —	i=1N $T(X[i])$ $Db:=Db+1$ $Y[Db]:=i$	
S:=0 i=1N S:=S+X[i]	S:=0 $i=1Db$	
	S:=S+X[Y[i]]	

1. megoldási ötlet_h:

Válogassuk ki az adott tulajdonságúakat, majd utána adjuk

össze őket! Változó

2. megoldási ötlet:

Kiválogatás helyett azonnal adjuk össze a megfelelő elemeket!

→ nincs érték-/index-feljegyzés (Y-ban) + nincs számlálás (Db-ben)

Feladat:

Adott tulajdonságú elemek maximuma – **feltételes**

maximumkeresés.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X_{1...N} \in \mathbb{H}^{\mathbb{N}},$

 $T:H\rightarrow L$

 \gt Kimenet: $Van \in L$, $MaxI \in \mathbb{N}$

➤ Előfeltétel: –

> Utófeltétel: Van=∃i (1≤i≤N): T(X;) és

 $Van \rightarrow (1 \le MaxI \le N \text{ és } T(X_{MaxI}) \text{ és}$

 $\forall i(1 \le i \le N): T(X_i) \longrightarrow X_{MaxI} \ge X_i)$

Specifikáció:

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$

> Kimenet: Max∈N, MaxÉrt∈H

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i \text{ \'es}$

Maxért=X_{Max}

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1...N} \in H^{\mathbb{N}}, T:H \rightarrow L$

> Kimenet: Van∈L, Ind∈N, Ért∈H

≻ Előfeltétel: –

> Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

Van→1≤Ind≤N és T(X_{Ind}) és Ért=X_{Ind}

Specifikáció₂:

► Utófeltétel₂: (Van,MaxI)= $\underset{T(X_i)}{\text{MaxInd }} X_i$

Specifikáció:

▶ Bemenet: N∈N, X_{1.N}∈H^N,

T:H→L

➤ Kimenet: MaxI∈N, Van∈L

Előfeltétel: –

> Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

Van→(1≤MaxI≤N és T(X_{MaxI}) és

 $\forall i (1 \le i \le N): T(X_i) \rightarrow X_{MaxI} \ge X_i)$

Specifikáció₃:

> Kimenet₃: $Van \in L$, $MaxI \in \mathbb{N}$, $Max\acute{E}rt \in H$

► Utófeltétel₃: (Van, MaxI, MaxÉrt) = $\underset{T(X_i)}{\text{Max}} X_i$

A megoldás felé:

Specifikáció':

N

> Utófeltétel': (Db,Y)=Kiválogat i és

$$T(X_i)$$

Van=Db>0 és

 $Van \rightarrow (1 \le MaxI \le N \text{ és } T(X_{MaxI}) \text{ és}$

 $MaxI=MaxInd X_{Y_i})$

Kiolvasható az algoritmikus ötlet:

Válogassuk ki az adott tulajdonságúakat, majd válasszuk ki a maximumot, ha van értelme!

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1..N} \in H^{\mathbb{N}},$

T:H→L

 \triangleright Kimenet: $Db \in N, Y_{1,N} \in N^N$

Előfeltétel: –

> Utófeltétel: Db= ∑1 és

 $\overline{i=1}$ $T(X_i)$

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$

Y⊆(1,2,...,N)

Specifikáció:

> Bemenet: N∈N,

 $X_{1..N}{\in}H^N$

> Kimenet: Max∈N, MaxÉrt∈H

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

∀i (1≤i≤N): X_{Max}≥X_i és

Maxért=X_{Max}

1. megoldás algoritmusa:

Válogassuk ki az adott tulajdonságúakat, majd ...!

1. megoldása algoritmusa:

..., majd válasszuk ki a maximumot, ha van értelme!

2. megoldási ötlet (és algoritmusa):
Induljunk ki a specifikációban észrevett tételekből: a kiválogatás helyett keressük meg az első T-tulajdonságút, ...

2. megoldási ötlet (és algoritmusa):

... majd válasszuk ki az ilyenek maximumát!

2. megoldási ötlet (és algoritmusa):

... majd válasszuk ki az ilyenek maximumát!

• • •		
Van	N	
MaxI:=i		
i=i+1N		
T(X[i]) és X[i]>X[MaxI]/N		
MaxI:=i —		

20/49

3. megoldási ötlet (és algoritmusa):

Kiválogatás, ill. keresés helyett azonnal válasszuk ki a maximumot!

Kell egy fiktív **0. elem** a maximum-kiválasztáshoz, amely **kisebb minden** "normál" elemnél.

Változó i:Egész

Feladat:

Összes maximális elem kiválogatása.

Specifikáció:

► Bemenet: $N \in \mathbb{N}, X_{1 N} \in \mathbb{H}^{N}$

 \triangleright Kimenet: $Db \in \mathbb{N}$, $MaxI_{1,N} \in \mathbb{N}^{\mathbb{N}}$

➤ Előfeltétel: N>0

> Utófeltétel₁:Db = $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): \forall j (1 \le j \le N): X_{MaxI_i} \ge X_j$ és $MaxI_{\subseteq}(1,2,...,N)$

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1..N} \in H^{\mathbb{N}},$

T:H→L

> Kimenet: Db∈N, $Y_{1,N}$ ∈N^N

Előfeltétel: –

ightarrow Utófeltétel: Db= $\sum_{i=1 \ T(X_i)}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$

Y⊆(1,2,...,N)

Specifikáció:

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$

> Kimenet: Max∈N, MaxÉrt∈H

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

∀i (1≤i≤N): X_{Max}≥X_i és

Maxért=X_{Max}

Feladat:

Összes maximális elem kiválogatása.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N$

 \triangleright Kimenet: $Db \in \mathbb{N}$, $MaxI_{1} \in \mathbb{N}^{\mathbb{N}}$

➤ Előfeltétel: N>0

➤ Utófeltétel₂:MaxÉ=MaxÉrt X_i és

(Db,MaxI)=Kiválogat i i=1 X_i=MaxÉ

Specifikáció:

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$

➤ Kimenet: Max∈N, MaxÉrt∈H

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i \text{ \'es}$

Maxért=X_{Max}

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1..N} \in H^{\mathbb{N}},$

T:H→L

► Kimenet: $Db \in \mathbb{N}, Y_{1,N} \in \mathbb{N}^{\mathbb{N}}$

> Előfeltétel: –

> Utófeltétel: $Db = \sum_{i=1 \atop T(X_i)}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$

 $Y\subseteq(1,2,...,N)$

1. megoldási ötlet:

Határozzuk meg a maximumértéket, majd válogassuk ki a vele

egyenlőeket!

Specifikáció: > Bemenet: $N \in \mathbb{N}, X_{1.N} \in \mathbb{H}^{\mathbb{N}}$ > Kimenet: $Db \in \mathbb{N}, MaxI_{1.N} \in \mathbb{N}^{\mathbb{N}}$ > Előfeltétel: N > 0 N > Utófeltétel: $Max \acute{E} = Max \acute{E} tt X_i$ és i=1 (Db,MaxI) = Kiválogat i (Db,MaxI) = Kiválogat i (Db,MaxI) = Kiválogat i

Specifikáció: > Bemenet: N∈N,

 $X_{1..N} \in H^N$

➤ Kimenet: Max∈N, MaxÉrt∈H

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i \text{ \'es}$

Maxért=X_{Max}

1. megoldási ötlet:

Határozzuk meg a maximumértéket, majd válogassuk ki a vele

egyenlőeket!


```
> Előfeltétel: -
> Utófeltétel: Db = \sum_{i=1 \atop T(X_i)}^{N} 1 és
\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}
Y \subseteq (1,2,\ldots,N)
```


2. megoldási ötlet:

A pillanatnyi maximálissal egyenlőeket azonnal válogassuk ki! Ha "feleslegeset" válogattunk ki, azt a következő maximumnál felülírjuk.

$\label{eq:specifikació:} \begin{aligned} & \text{Specifikació:} \\ & \text{Semenet:} \quad N \in \mathbb{N}, X_{1.N} \in H^{\mathbb{N}} \\ & \text{Skimenet:} \quad Db \in \mathbb{N}, \\ & \quad MaxI_{1.N} \in \mathbb{N}^{\mathbb{N}} \\ & \text{Skimenet:} \quad N > 0 \\ & \text{Skimenet:} \quad N > 0 \\ & \text{Skimenet:} \quad N > 0 \\ & \text{MaxI} = Max \text{ fert } X_i \quad \text{ és } \\ & \text{ i=1} \\ & \text{ (Db,MaxI)} = \text{ Kiválogat i } \\ & \text{ i=1 } \\ & \text{ Xi = Max \acute{E}} \end{aligned}$

Db:=1; MaxI[1]:=1; MaxÉ:=X[1]		
i=2N		
X[i]>MaxÉ	X[i]=MaxÉ	
Db:=1	Db:=Db+1	
MaxI[1]:=i	MaxI[Db]:=i	
MaxÉ:=X[i]		

Változó MaxÉ:TH i:**Egész**

Eldöntés + megszámolás

Feladat:

Van-e egy sorozatban legalább K darab adott tulajdonságú

elem?

Specifikáció:

► Bemenet: $N,K \in \mathbb{N}, X_{1..N} \in \mathbb{H}^N$,

 $T:H \rightarrow L$

➤ Kimenet: Van∈L

➤ Előfeltétel: K>0

> Utófeltétel: db= $\sum_{i=1}^{N} 1$ és Van=db≥K

Specifikáció:

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$, $T:H \rightarrow L$

T:H→L

> Kimenet: Van∈L

> Előfeltétel: -

> Utófeltétel: Van=∃i(1≤i≤N): T(X;)

Specifikáció:

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$,

T:H→L

≻ Kimenet: Db∈N

Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{N} 1$

 $T(X_i)$

Eldöntés + megszámolás

Változó

1. megoldási ötlet:

Számoljuk meg, hogy hány adott tulajdonságú van, majd nézzük meg, hogy ez legalább K-e! (Azaz valójában nincs: eldöntés tétel!)

Specifikáció: > Bemenet: $N,K \in N, X_{1..N} \in H^N, T:H \rightarrow L$ > Kimenet: $Van \in L$ > Előfeltétel: K > 0

> Utófeltétel:db=∑^N_{i=1}1 és Van=db≥K

Specifikáció:

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$ T:H \rightarrow L

➤ Kimenet: Db∈N

> Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{N} 1$

Db:=0

i=1..N

T(X[i])

Db:=Db+1 —

 $\begin{array}{c} \text{db:=0} \\ \text{i:Eg\'esz} \\ \text{i=1..N} \\ \text{T}(X[i]) \\ \end{array}$

Van:=db≥K

db = db + 1

Eldöntés + megszámolás

Változó

db,

i:Egész

2. megoldási ötlet:

Ha már találtunk K darab adott tulajdonságút, akkor ne nézzük tovább!

2021.04.03, 10:44

Keresés + megszámolás

Feladat:

Egy sorozatban melyik a K. adott tulajdonságú elem (ha van

egyáltalán)?

Specifikáció:

► Bemenet: $N,K \in \mathbb{N}, X_{1..N} \in \mathbb{H}^N, T:H \to \mathbb{L}$

 \triangleright Kimenet: Van \in L, KI \in N

➤ Előfeltétel: K>0

➤ Utófeltétel: Van= $\exists i(1 \le i \le N): \sum_{j=1}^{1} 1 = K$ és

$$Van \rightarrow 1 \le KI \le N$$
 és $\sum_{j=1 \atop T(X_i)}^{KI} 1 = K$ és $T(X_{KI})$

Specifikáció:

- ➤ Bemenet: $N \in \mathbb{N}$, $X_{1..N} \in H^{\mathbb{N}}$, $T:H \rightarrow L$
- > Kimenet: Van∈L, Ind∈N, Ért∈H
- Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

 $Van \rightarrow 1 \le Ind \le N$ és $T(X_{Ind})$ és $Ert = X_{Ind}$

Specifikáció:

- ▶ Bemenet: N∈N,
 - $X_{1..N} \in H^N$
 - T:H→L
- ➤ Kimenet: Db∈N
- Előfeltétel: –
- > Utófeltétel: Db= $\sum_{i=1}^{N}$ 1

Keresés + megszámolás

1. megoldási ötlet(ek):

Az előbbi ötlet: "számoljuk meg, hogy hány adott tulajdonságú van, majd nézzük meg, hogy ez legalább K-e..." kevés, még hátra van a K. újbóli megkeresése...

A működőnek látszó ötlet: a megszámolás helyett kiválogatás

kell... és a keresésre nincs szükség...

... de helypazarló és túl hosszadalmas!

Specifikáció:

- > Bemenet: N,K∈N, X∈ H^N
- > Kimenet: Van∈L, KI∈N
- > Előfeltétel: K>0
- ▶ Utófeltétel: Van=∃i(1≤i≤N): $\sum_{j=1}^{1} 1 = K$ és Van→1≤KI≤N és $\sum_{j=1}^{KI} 1 = K$ és T(X_{KI})

2021.04.03. 10:44

Specifikáció: > Bemenet: N,K∈N, $X_{1.N}$ ∈ H^N , T:H→L≻ Kimenet: Van∈L, KI∈N > Előfeltétel: K>0 > Utófeltétel:Van=∃i(1≤i≤N):∑1 =K és

Specifikáció: ▶ Bemenet: N∈N,

➤ Kimenet: Db∈N Előfeltétel: –

> Utófeltétel: Db=∑1

i=1..N

Db:=Db+1

T(X[i])

i≤N és nem T(X[i])

Van

Db:=0

i = i + 1

2021.04.03. 10:44

Van:=i≤N

Ind:=i

i:=1

Van→1≤KI≤N és $\sum_{i=1}^{\infty} 1=K$ és $T(X_{KI})$

 $X_{1..N} \in H^N$

T:H→L

Keresés + megszámolás

db,

2. megoldási ötlet:

Specifikáció: Ha már találtunk K darab adott tulajdonsá-> Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^{\mathbb{N}}, T: \mathbb{H} \to \mathbb{L}$ ≻ Kimenet: Van∈L, Ind∈N, Ért∈H Előfeltétel: – gút, akkor ne nézzük tovább: keresés a K.-ig. > Utófeltétel: Van=∃i (1≤i≤N): T(X;) és Van→1≤Ind≤N és T(X_{Ind}) és Ért=X_{Inc}

Keresés + megszámolás

2. megoldási ötlet:

Ha megtaláltuk a K.-at, akkor jegyezzük föl az indexét!

Keresés + másolás

Feladat:

Egy sorozat első T tulajdonságú eleme előtti elemei kiválogatása (az összes, ha nincs T tulajdonságú).

Specifikáció:

- > Bemenet: $N \in \mathbb{N}, X_1 \in \mathbb{H}^N, T: \mathbb{H} \to \mathbb{L}$
- \triangleright Kimenet: $Db \in \mathbb{N}, Y_1 \in \mathbb{N}$
- ➤ Előfeltétel: –
- ➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$ és $Van \rightarrow (0 \le Db < N$ és $T(X_{Db+1})$) és $nem\ Van \rightarrow Db = N$ és $\forall i(1 \le i \le Db)$: ($nem\ T(X_i)$ és $Y_i = X_i$)

Specifikáció:

- > Bemenet: $N \in \mathbb{N}, X_{1..N} \in H^{\mathbb{N}}, T: H \rightarrow L$
- ≻ Kimenet: Van∈L, Ind∈N, Ért∈H
- Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

Van→1≤Ind≤N és $T(X_{Ind})$ és Ért= X_{Ind}

Specifikáció: > Bemenet: N,l

> Bemenet: N,K∈N, $X_{1..N}$ ∈H^N, T:H→L

≻ Kimenet: Db∈N, Y_{1..N}∈H^N
 ≻ Előfeltétel: –

P Eloreitetei.

> Utófeltétel: Van=∃i(1≤i≤N): T(X_i) és Van→(0≤Db<N és T(X_{Db+1})) és

nem Van→Db=N és

 $\forall i (1 \le i \le Db)$: (nem $T(X_i)$ és $Y_i = X_i$)

Keresés + másolás

1. megoldási ötlet:

Az első ötlet: "keressük meg az első adott tulajdonságú elemet, majd az előtte levőket másoljuk le…"

... hosszadalmas!

Specifikáció: > Bemenet: $N,K \in N, X_{1:N} \in H^N, T:H \rightarrow L$

> Bemenet: $N, K \in \mathbb{N}, X_{1..N} \in \mathbb{H}^N, 1: \mathbb{H} \rightarrow \mathbb{N}$ > Kimenet: $Db \in \mathbb{N}, Y_{1..N} \in \mathbb{H}^N$

Előfeltétel: –

> Utófeltétel: Van=∃i(1≤i≤N): $T(X_i)$ és Van→(0≤Db<N és $T(X_{Db+1})$) és

nem Van→Db=N és

 $\forall i (1 \le i \le Db)$: (nem $T(X_i)$ és $Y_i = X_i$)

2. megoldási ötlet:

Keresés közben másoljuk le a szükséges elemeket:


```
i:=1
i \leq N \text{ és nem } T(X[i])
Y[i]:=X[i]
i:=i+1
Db:=i-1
```


Eldöntés + eldöntés

Feladat:

Van-e két sorozatnak közös eleme?

Specifikáció:

> Bemenet: $N,M \in \mathbb{N}, X_{1..N} \in \mathbb{H}^N, Y_{1..M} \in \mathbb{H}^M$

➤ Kimenet: Van ∈ L

➤ Előfeltétel: –

 \gt Utófeltétel: Van= $\exists i(1 \le i \le N)$: ($\exists j(1 \le j \le M)$: $X_i = Y_j$)

➤ Utófeltétel': $Van = \exists X_i = Y_j$ $= \exists X_i = Y_j$

Specifikáció:

➤ Bemenet: $N \in \mathbb{N}$,

 $X_{1..N} \in H^N$, $T: H \rightarrow I$.

1:⊓→L

➤ Kimenet: Van∈L

Előfeltétel: –

> Utófeltétel: Van=∃i(1≤i≤N): T(X_i)

Eldöntés + eldöntés

1. megoldási ötlet:

Határozzuk meg a két sorozat közös elemeit (metszet), s ha ennek elemszáma legalább 1, akkor van közös elem!

Specifikáció:

- > Az utófeltétel "igazítása":
 - ❖ a metszet részeredménye volt: Db∈N
 - * a módosított utófeltétel: metszet utófeltétele és Van=Db>0.

Megjegyzés:

A metszet = kiválogatás + eldöntés.

Nem hatékony: nem érdekesek a közös elemek.

Specifikáció:

- > Bemenet: $N,M \in \mathbb{N}, X_{1.N} \in \mathbb{H}^N, Y_{1.M} \in \mathbb{H}^M$
- ➤ Kimenet: Van∈L
- Előfeltétel: –
- ➤ Utófeltétel: $Van=\exists i(1 \le i \le N)$: $(\exists j(1 \le j \le M) : X_i=Y_i)$

Specifikáció:

- > Bemenet: N,M∈N, X_{1.N}∈H^N, Y_{1.M}∈H^M
- ➤ Kimenet: Db∈N, Z_{1.min(N,M)}∈H^{min(N,M)}
- > Előfeltétel: HalmazE(X) és HalmazE(Y)
- ➤ Utófeltétel:Db= \$\tilde{\Sigma}\$1 és

 $\forall i(1 \le i \le Db)$: $(Z_i \in X \text{ és } Z_i \in Y) \text{ és}$

HalmazE(Z)

38/49

Eldöntés + eldöntés

2. megoldási ötlet:

Ha már találtunk 1 darab közös elemet, akkor ne nézzük

tovább!

```
> Utófeltétel': Van = \prod_{i=1}^{N} \left( \prod_{j=1}^{M} X_i = Y_j \right)
```

Specifikáció:

> Bemenet: N∈N,

 $X_{1..N} \in H^N$,

T:H→L

- ➤ Kimenet: Van ∈ L
- Előfeltétel: –
- > Utófeltétel: Van=∃i(1≤i≤N): T(X_i)


```
i:=0; Van:=Hamis
i<N \text{ és nem Van}
i:=i+1; j:=1
j\leq M \text{ és } X[i]\neq Y[j]
j:=j+1
Van:=j\leq M
```


Összegzés mátrixra

Feladat:

Egy mátrix elemeinek összege.

Specifikáció:

► Bemenet: N,M∈N, $X_{1..N,1..M}$ ∈ $\mathbb{Z}^{N\times M}$

 \triangleright Kimenet: $S \in \mathbb{Z}$

➤ Előfeltétel: –

 $ightharpoonup Utófeltétel: S = \sum_{i=1}^{N} \left(\sum_{j=1}^{M} X_{i,j} \right)$

Specifikáció (az általános):

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$

➤ Kimenet: S∈H

Előfeltétel: –

Utófeltétel: S=F(X_{1..N})

Definíció:

$$\begin{aligned} F: & H^* \rightarrow H \\ F(X_{1..N}) := \begin{cases} F_0 & , N = 0 \\ f(F(X_{1..N-1}), X_N) & , N > 0 \end{cases} \\ f: & H \times H \rightarrow H, F_0 \in H \end{aligned}$$

$$\sum_{i=1}^{N} X_{i} := \begin{cases} 0 & , N = 0 \\ \sum_{i=1}^{N-1} X_{i} + X_{N} & , N > 0 \end{cases}$$

Összegzés mátrixra

Algoritmus:

Ez két – egymásba ágyazott – összegzés tétel alkalmazását kívánja meg.

Specifikáció:

- ➤ Bemenet: $N,M \in N, X_{1..N.1..M} \in \mathbb{Z}^{N \times M}$
- ➤ Kimenet: S∈Z
- Előfeltétel: –
- \rightarrow Utófeltétel: $S = \sum_{i=1}^{N} \left(\sum_{i=1}^{M} X_{i,j} \right)$

	Változó
S:=0	i,j,S0:E
i=1N	
S0:=0	
j=1M	
S0:=S0+X[i,j]	
S:=S+S0	

i,j,S0:Egész

Összegzés mátrixra

Algoritmus:

A megoldás lényegében csak abban különbözik az alapváltozattól, hogy a mátrix miatt két – egymásba ágyazott – ciklusra van szükség.

Specifikáció: > Bemenet: $N,M \in \mathbb{N}, X_{1..N,1..M} \in \mathbb{Z}^{\mathbb{N} \times \mathbb{M}}$ > Kimenet: $S \in \mathbb{Z}$ > Előfeltétel: -> Utófeltétel: $S = \sum_{i=1}^{\mathbb{N}} \left(\sum_{j=1}^{M} X_{i,j} \right)$

Megjegyzés: a másolás, a megszámolás és a maximum-kiválasztás tétel hasonló elven valósítható meg mátrixokkal.

Feladat:

Van-e egy mátrixban adott tulajdonságú elem?

Specifikáció:

> Bemenet: $N,M \in \mathbb{N}, X_{1..N.1..M} \in \mathbb{H}^{N \times M}$

➤ Kimenet: Van∈L

➤ Előfeltétel: –

 \gt Utófeltétel: Van= $\exists i(1 \le i \le N)$: ($\exists j(1 \le j \le M)$: $T(X_{i,j})$)

```
> Utófeltétel': Van= \exists \left( \begin{matrix} M \\ \exists \\ j=1 \end{matrix} T(X_{i,j}) \right)
```

Specifikáció:

> Bemenet: N∈N,

 $X_{1..N} \in H^N$,

T:H→L

➤ Kimenet: Van∈L

> Előfeltétel: -

> Utófeltétel: Van=∃i(1≤i≤N): T(X;)

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való – nem feltétlenül – végighaladást, soronként, balról jobbra!

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való – nem feltétlenül – végighaladást, soronként, balról jobbra!

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való – nem feltétlenül – végighaladást, soronként, balról jobbra!

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való – nem feltétlenül – végighaladást, soronként, balról jobbra!

Megjegyzés: a keresés és a kiválasztás tétel is hasonlóan fogalmazható meg mátrixokra.

Áttekintés

- ➤ Másolással összeépítés
- Kiválogatás + összegzés
- ➤ Kiválogatás + maximum-kiválasztás
- ➤ Maximum-kiválasztás + kiválogatás
- ► Eldöntés + megszámolás
- Keresés + megszámolás
- ► Keresés + másolás
- ► Eldöntés + eldöntés
- Sorozatszámítás mátrixra
- ► Eldöntés mátrixra

2021.04.03, 10:44