

HOP06 SENSOR MATRIX

Instructors: Pieter Bauwens, Herbert De Pauw

Group member: Xiaoke Wang, Haowei Bi

PROJECT BACKGROUND

PROBLEMS:

- Reading speed: slow
- Parasitic capacitance

PROJECT GOAL

Fast Fourier Transform(FFT)

faster

more accurate

PROJECT IDEA

5

GENERAL PROGRESS

Hardware design

- Simulation of an optimized solution (finished before interim presentation)
- PCB schematic design (main structure before interim, finished after)
- PCB layout (finished after interim presentation)

Software design

Generator control, FFT(finished after interim presentation)

SCHEMATIC AT INTERIM PRESENTATION

SECOND HALF PERIOD

Progress:

- Finished the schematic design
- Finished the PCB layout design
- Started testing and programming software uC

FINAL SCHEMATIC

EXTRA CIRCUIT FOR OPAMP

Reason: the input signal of ADCs and output of opamps do not match

Solution: add 3.3/2 V DC voltage

Output voltage of the opamp

an issue: input voltage lower than 3.3V

Extra circuit for adjusting the voltage

UPDATE ON COMMUNICATION BUS

SPI compatible interface:

- The output pins should connect with the digitalRead() available pin in Microcontroller separately
- \overline{SS} signal: same as daisy-chained SPI bus

PCB LAYOUT DESIGN

Microcontroller and bootloader

3.3V ±5V and 1.8V

Power circuits:

two I2C multiplexers

10 Generators

External connectors

20 pin connector

Same standard with

sensor matrix we have

10 **external ADCs** (14 bits and 1Msps)

10 **Opamps**

10 2x10 pin **sockets**Ceramic pin capacitors
as sensor matrix

Footprint of the PCB design (12.2x13.9cm)

PCB LAYOUT DESIGN

Final PCB board (12.2x13.9cm)

MICROCONTROLLER PROGRAMMING

Generator programming <AD9833.h>

FFT programming <ArduinoFFT.h>

ADCs controlling

Assemble

GENERATOR PROGRAMMING

Program the generator circuit on a test board

Generator circuit

Some Issues Here:

- Frequency accuracy
- High-frequency harmonics → extra LPF
- Low amplitude: 276 mV < 3.3V

The wave output with the setting at 150kHz

FAST-FOURIER TRANSFORM (FFT)

Samples for FFT(power of 2):

N = 1024

N = 2048

Settings: $F_S = 350 \text{kHz}$, F = 15 kHz, $N_S = 1024$

- Frequency peak we get
- The resolution $\delta f = 341.79 \text{ Hz}$

Memory stack overflowed: (SRAM size of ATSAMD21: 32KB – 4Kbytes)

/../arm-none-eabi/bin/ld.exe: region RAM overflowed with stack /../arm-none-eabi/bin/ld.exe: region `RAM' overflowed by 2452 bytes

SOME ISSUES

Enable signal connection of AD9833 chip

Extra low frequency pass filter

- Signal amplification
 - low SNR and low accuracy

FFT computation memory usage

FSYNC active low control input

12C AND SPI INTERFACE

SPI compatible interface

Pros

Ready-to-use code <AD9833.h>

Cons

GHENT

UNIVERSITY

Not enough pins on microcontroller for the control signal

Solution: try to change the AD9833.cpp code to achieve single FSYNC pin control 10 chips

CAP/2.5V

SD0

AD9833x1

I2C compatible interface

Pros

Save connection port on uC

Cons

More codes in controlling the I2C bus with two multiplexer

ANALYSIS FOR FFT

– Spectrum resolution:

$$\delta f = \frac{F_S}{N_S} = \frac{1}{T_{capture}} \le 1KHz$$

$$N_{\rm s} \le 1024$$

Solution:

use uC/FPGA with large RAM size

e.g. R5F5651EDDBP CPU Micocontroller, 2MB mem

- Settings: $F_s = 1000$ Hz, F = 500Hz, $N_s = 1024$

The frequency spans limited up to 250 Hz.

CONCLUSIONS

- FFT idea for matrix read out
 - Some issues challenged the feasibility

- What we learned?
 - How to solve practical problems.
 - Skills for a whole hardware design flow

DISTRIBUTION OF TASKS

Xiaoke Wang: Simulation, PCB Design(schematic and layout),

Microcontroller programming

Haowei Bi: Simulation, PCB Design(layout)

MKR ZERO Arduino Board

Xiaoke Wang, Haowei Bi

Email: <first name>.<surname>@ugent.be

www.ugent.be

f Universiteit Gent

@ugent

@ugent

in Ghent University

