

nuclear data validation

Advanced interrogation capabilities with FISPACT-II

Mark Gilbert, United Kingdom Atomic Energy Authority

FISPACT-II workshop

Introduction

- Validation & Verification (V&V) is an important part of the development and release of FISPACT-II
- A suite of automated validation benchmarks have been created to test new releases of both the FISPACT-II code and the nuclear data libraries
 - against international experimental databases
- Results are compiled into open access pdf reports (see fispact.ukaea.uk)
 - thousands of pages in total providing a near-complete coverage of the physics landscape for neutron interactions

FISPACT-II validation

 V&V exercises recently repeated for new FISPACT-II-4.0

UK Atomic Eneray Authority

LK Atomic Energy Authority

- but also benchmarking ENDF/B-VIII.0, JEFF-3.3 (and others)
- decay heat validation against (Japan-FNS) fusion experiments
- integral & differential xs validation against EXFOR
- fission decay heat and criticality benchmarks
- astrophysics testing (KADoNiS)

In conjunction with J.-Ch. Sublet (IAEA) & M. Fleming (NEA)

Other validation efforts (1)

UK Atomic Energy

Authority

- Fission decay heat
- Comparison of simulated fission pulse decay heat to carefully interpreted experimental data
- e.g. ²³⁵U thermal (0.0253 eV) pulse comparison

- total and β -generated decay heat
- simulated with latest ENDF/B, JEFF, and JENDL libraries
- Also included in exercise: ²³³U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu, ²³²Th, and ²³⁷Np

Decay heat (MeV/fission)

Other validation efforts (2)

- e.g. ⁵⁶Fe results:
- TENDL-2017 xs & comparison to KADoNiS of average xs at various temperatures for different libraries

- Maxwellian-averaged neutron xs comparison
- using KADoNiS astrophysics experimental database, which includes data for 357 nuclides at temperatures ranging from 5 keV (58 million K) to 100 keV (1.2 billion K)

Other validations (3)

UK Atomic Energy Authority

- Integro-differential V&V
- Comparison of cross section data against integral and differential data in the EXFOR database

more than 400 reactions currently assessed this way (more could be added)

- e.g. 115 In(n, γ) differential data compared to TENDL-2017
- obvious complexity associated with three metastable states of ¹¹⁶In and potential for mis-attribution

Fusion decay heat benchmark

- Experiments performed at the Fusion Neutron Source (FNS) at JAEA in 1996-2000
- aimed at providing fusion-relevant decay-power data for important structural materials
- accurate experimental measurements with detailed records are ideal for simulation benchmarking
- F. Maekawa M. Wada, Y. Ikeda et al.
- Tech. Rep. JAERI-Data/Code 98-024, JAERI-Data/Code 98-021,
- & JAERI 99-055. http://www.jaea.go.jp/jaeri/
- Maekawa et al., Fus. Eng. Des. 47 (2000) 377-388 &
- J. Nucl. Sci. Tech. 39 (2002) 990-993

The experiment

- UK Atomic Energy Authority
- 2 mA deuteron beam onto a tritium target producing a fusion neutron spectrum with fluxes of $\sim 10^{10}$ n cm $^{-2}$ s $^{-1}$ at the sample location
- samples irradiated for 5 minutes or 7 hours (4 different experimental set-ups)
- for the short irradiations, a rapid rabbit extraction system was used to make the samples available for immediate measurement

The experiment

- time-dependent decay heat of each sample was measured using a WEAS system
 - providing almost 100% detector efficiency
 - around 1 hour of recording for the 5-minute irradiations (starting from less than 1 minute after irradiation)
 - ▶ & up to a year of measurements from the 7-hour-irradiated samples

Metallic Powder

45

Rhodium

Simulations

- UK Atomic Energy Authority
- Detailed experimental information (irradiation times, measurement times, material compositions, etc.) have been translated into a set of FISPACT-II input files
 - these can be rapidly repeated for different nuclear data libraries
- Latest version of exercise compares results from TENDL-2017, ENDF/B-VIII.0, JEFF-3.3, and EAF2010 neutron cross section libraries
 - in some cases it is also possible to produce a meaningful comparison with the IRDFF-1.05 dosimetry file
- where available, the decay data file associated with each xs library is used (i.e. for JEFF and ENDF/B)
- otherwise the "dec_2012" decay database distributed with FISPACT-II is used – applies to TENDL-2017
 - ▶ 3875 nuclides
 - a combination of data from JEFF-3.1.1, JEF-2.2 to produce the EAF2010 decay file, UK evaluations in UKPADD6.1-6.9, and supplemented from ENDF/B-VII

Typical results and presentation

5 minute irradiation of pure iron

Pathway analysis for identified radionuclides

Path % Product $T_{1/2}$ **Pathways** Mn58 1 09m Fe58(n,p)Mn58 98.4 Mn57 1.42m Fe57(n,p)Mn57 100.0 Fe53 8.51m Fe54(n,2n)Fe53 100.0 Mn56 2 58h Fe56(n,p)Mn56 99 5

decay heat curves from simulations with different libraries vs. experiment

- nuclide contribution breakdown for TENDL-2017 vs. experiment
- showing ⁵⁶Mn dominance

Typical results and presentation

- tabulated comparison against each experimental measurement
- and tabulated characteristic E/C values for important radionuclides

Times	FNS EXP.	5 mins	TE	NDL-2017		ENDF/B-VIII.0	JEFF-3.3	EAF2010	IRDFF-1.05
Min.	$\mu W/g$		$\mu W/g$		E/C	E/C	E/C	E/C	E/C
0.58	1.17E-01	+/-5%	1.24E-01	+/-16%	0.94	1.00	0.91	0.94	1.15
0.83	1.14E-01	+/-5%	1.22E - 01	+/-17%	0.94	0.99	0.90	0.93	1.13
1.08	1.12E-01	+/-5%	1.19E - 01	+/-17%	0.94	0.99	0.90	0.93	1.11
1.35	1.08E-01	+/-5%	1.17E - 01	+/-17%	0.93	0.97	0.89	0.92	1.08
1.60	1.07E-01	+/-5%	1.15E - 01	+/-17%	0.93	0.98	0.90	0.92	1.07
2.03	1.04E-01	+/-5%	1.12E - 01	+/-18%	0.93	0.97	0.89	0.92	1.04
2.63	1.02E-01	+/-5%	1.08E - 01	+/-18%	0.94	0.97	0.90	0.92	1.02
3.23	9.87E-02	+/-5%	1.05E - 01	+/-19%	0.94	0.96	0.90	0.92	1.00
4.10	9.58 <i>E</i> - 02	+/-5%	1.02E - 01	+/-19%	0.93	0.95	0.90	0.91	0.98
5.20	9.30E-02	+/-5%	9.98E - 02	+/-20%	0.93	0.94	0.90	0.91	0.96
6.32	9.13E-02	+/-5%	9.79E - 02	+/-20%	0.93	0.94	0.90	0.91	0.95
7.93	8.96E-02	+/-5%	9.58E - 02	+/-20%	0.93	0.94	0.90	0.91	0.95
9.98	8.73E-02	+/-5%	9.39E - 02	+/-20%	0.93	0.94	0.90	0.91	0.94
12.03	8.58 <i>E</i> - 02	+/-5%	9.24E - 02	+/-20%	0.93	0.93	0.91	0.91	0.93
15.10	8.41 <i>E</i> - 02	+/-5%	9.05E - 02	+/-21%	0.93	0.93	0.91	0.92	0.93
19.20	8.13E-02	+/-5%	8.82E - 02	+/-21%	0.92	0.93	0.91	0.91	0.93
23.32	7.94E-02	+/-5%	8.61E - 02	+/-21%	0.92	0.93	0.92	0.91	0.93
27.42	7.75E-02	+/-5%	8.42E - 02	+/-21%	0.92	0.92	0.92	0.91	0.92
34.53	7.47E-02	+/-5%	8.11E - 02	+/-21%	0.92	0.92	0.92	0.92	0.92
44.65	7.10E-02	+/-5%	7.73E - 02	+/-21%	0.92	0.92	0.92	0.91	0.92
54.75	6.77E-02	+/-5%	7.37E - 02	+/-21%	0.92	0.92	0.92	0.91	0.92
mean %	diff. from E				8	5	10	9	7

Product	$T_{1/2}$	E/C	%ΔΕ	ΔC^{nuc}
Mn56	2.58h	0.94	5%	21%

Interpretation

UK Atomic Energy Authority

- interpretation of iron 5-minute experiments:
- year-2000 experimental batch is overpredicted by the simulations
- but identical simulations underpredict the 1996 batch.
 - suggests an experimental problem
- otherwise the libraries nicely capture the time-evolution profile

(IRDFF-1.05 contains the 56 Fe(n,p) 56 Mn channel and can thus simulate the behaviour beyond 5-minutes of cooling)

A complex case

7 hour irradiation of 316 stainless steel

- a good fit with the major libraries despite the relative complexity
 - ▶ the IRDFF dosimetry file misses ⁵⁷Co production from ⁵⁸Ni(n,np)
 - all library predictions are within a few % of the experiment at all decay times

	TENDL-2017	ENDF/B-VIII.0	JEFF-3.3	EAF2010	IRDFF-1.05	
mean % diff. from E	6	9	7	4	19	
					<u> </u>	•

SS316 nuclide contributions

- the complexity can sometimes prevent understanding
- analyzing the % contributions to the decay heat as a function of time can identify the important nuclides

- despite numerous (minor) contributions, there are clear regions of single nuclide dominance
 - ▶ ⁵⁶Mn less than one day after irradiation
 - ⁵⁷Ni from 1 day to a few days
 - ▶ ⁵⁸Co from 1 week to almost a 10 months
 - after 1 year there is a split contribution from several nuclides

A case where TENDL-2017 is best

• 5 minute irradiation of pure palladium

UK Atomic Energy Authority

- a complex case with many contributing nuclides
 - ▶ particularly metastables: ^{108m}Rh, ^{109m}Pd, and ^{106m}Rh
 - ▶ a mixture of (n,2n) and (n,p) reactions dominate
 - ► TENDL-2017 outperforms all others

	TENDL-2017	ENDF/B-VIII.0	JEFF-3.3	EAF2010
mean % diff. from E	8	64	32	24

Time after irradiation [years]

A case where TENDL-2017 is best

• 5 minute irradiation of pure palladium

- a complex case with many contributing nuclides
 - ▶ particularly metastables: ^{108m}Rh, ^{109m}Pd, and ^{106m}Rh
 - ▶ a mixture of (n,2n) and (n,p) reactions dominate
 - ► TENDL-2017 outperforms all others

	TENDL-2017	ENDF/B-VIII.0	JEFF-3.3	EAF2010
mean % diff. from E	8	64	32	24

A case where JEFF-3.3 is best

7 hour irradiation of sodium

UK Atomic

- only JEFF-3.3 matches closely the experimental measurements
 - other libraries either under or over predict the production of ²²Na
 - this could be a coincidence due to an experimental artefact especially since the IRDFF dosimetry file underpredicts

	TENDL-2017	ENDF/B-VIII.0	JEFF-3.3	EAF2010	IRDFF-1.05	
mean % diff. from E	16	18	4	24	15	
				CEE D(19	,,,,,,,, ॐ C	CFI

Sodium nuclide comparisons

total

Na₂₂

Na24

Exp

²³Na(n,2n)²²Na

CCFE-R(18)002 CCFE

A case where all are wrong (1)

• 5 minute irradiation of pure Indium

- the TENDL-2017 nuclide profiles suggest an overestimate of ^{116m}In production
 - ▶ ^{116*m*}In decay profile matches the experimental measurements beyond 5 minutes of cooling
 - incorrect distribution of 115 ln(n, γ) to 116 ln, 116m ln, 116n ln? ($\mathsf{T}_{1/2}{=}14.2\mathsf{s}, 54.6\mathsf{m}, \text{ and } 2.2\mathsf{s}, \text{ respectively})$

Indium nuclide comparisons

- JEFF-3.3, ENDF/B-VIII.0 miss ^{116m}In completely
- EAF2010 predicts many other contributing nuclides, but agrees with TENDL-2017 on ^{116m}In dominance

- JEFF-3.3, ENDF/B-VIII.0 miss ^{116m}In completely
- EAF2010 predicts many other contributing nuclides, but agrees with TENDL-2017 on ^{116m}In dominance

A case where all are wrong (2)

• 5 minute irradiation of pure Osmium

- no library predicts the correct decay-profile or heat magnitudes
 - JEFF-3.3 and TENDL-2017 are identical and under and overpredict at different times
 - ► EAF2010 always overpredicts, while ENDF/B-VIII.0 underpredicts

	TENDL-2017	ENDF/B-VIII.0	JEFF-3.3	EAF2010
mean % diff. from E	78	62	78	152

statistical summary

- \bullet Summary tables compare the average % deviation from experiment across all samples
- e.g. lighter elements/alloys from 5 minute experiments:

material	TENDL-2017	ENDF/B-VIII.0	JEFF-3.3	EAF2010
Fluorine	2	3	2	8
Sodium	22	41	23	26
Magnesium	7	6	7	5
Aluminium	7	8	14	8
Silicon	10	15	7	7
Phosphorus	5	12	6	11
Sulphur	27	72	41	76
Chlorine	12	45	46	32
Potassium	7	12	3	22
Calcium	12	13	17	14
Scandium	8	64	8	9
Titanium	5	7	2	3
Vanadium	15	14	13	11
Chromium	18	15	14	12
Manganese	12	16	25	13
Iron	8	5	10	9
SS304	3	2	3	3
SS316	6	5	6	2
Cobalt	10	4	6	10
Inconel-600	6	16	10	14
Nickel	10	40	7	7
Nickel-chrome	5	14	4	9
Copper	4	3	5	6

- green indicates a better than 10% agreement on average
- orange: better than 50%
- red: worse than 50%

statistical summary (2)

• heavier elements/alloys from 5 minute experiments:

ſ	1
	UK Atomic Energy Authority
	Energy
ı,	Authority
ς.	

material	TENDL-2017	ENDF/B-VIII.0	JEFF-3.3	EAF2010
Caesium	49	61	58	63
Barium	27	80	77	16
Lanthanum	292	310	307	330
Cerium	51	95	60	41
Praseodymium	44	36	33	38
Neodymium	63	71	59	68
Samarium	8	13	17	16
Europium	113	91	91	71
Gadolinium	36	44	66	36
Terbium	87	78	78	76
Dysprosium	241	229	232	244
Holmium	20	17	31	11
Erbium	105	131	101	102
Thulium	77	83	77	72
Ytterbium	39	88	109	56
Lutetium	85	96	85	70
Hafnium	27	22	31	47
Tantalum	9	46	53	9
Tungsten	86	81	77	87
Rhenium	18	15	19	7
Osmium	78	62	78	152
Iridium	38	423	429	15
Platinum	19	17	20	23
Gold	29	37	37	34
Mercury	14	95	12	14
Thallium	52	42	43	19
Lead	31	25	32	22
Bismuth	795	199	200	287

 % deviation suggests a worse agreement at higher Z

statistical summary (3)

- % deviation across all 5 minute experiments
- deviation increases at higher Z

- χ^2 variation for 5 minute experiments
- less clear trend ⇒ higher experimental errors at high Z

Summary

- The FNS experimental results from Japan offer a unique validation benchmark for inventory simulations in fusion-relevant conditions
 - they test the cross section data for a significant fraction of stable nuclides
- Automation of benchmarking against these experiments with FISPACT-II allows rapid testing of libraries
 - quickly provides a global impression of data quality
 - but each individual experiment and associated simulations can have unexpected subtleties
 - overall libraries perform well, particularly at low Z
 - no library succeeds for every case
 - new libraries still have something to learn from older ones ...

A case where the "legacy" is best

• 5 minute irradiation of pure Iridium

- Only EAF2010 correctly matches the experimental profile (and scale)
 - ▶ the observed decay heat originates from ¹⁹²mIr in the first 5 minutes of cooling
 - at longer times ^{190m}Os dominates

	TENDL-2017	ENDF/B-VIII.0	JEFF-3.3	EAF2010
mean % diff. from E	38	423	429	15

- TENDL-2017 underpredicts 191 Ir $(n,2n)^{190n}$ Ir $(\beta^+)^{190m}$ Os
- ENDF/B-VIII.0 and JEFF-3.3 overestimate this path and predict a different dominant nuclide (193 Ir(n, α) 190 Re) at short cooling times

total
r192
r1190m
Re190
r1194
r1190
r1192m
r1190n
Os190m
r1191n

00 Exp

FISPACT-II inputs & outputs

.gra files

e.g. irradiation of pure iron

- separate FISPACT-II simulation for each different nuclear data library (and for each different material)
- curves extracted directly from .gra files

GRAPH 1 2 1 3 UNCERTAINTY 2

- UNCERTAINTY keyword included to provide uncertainty estimates
- GRAPH <<n>> <<show>> <<uncert>> <ist>>
 - instructs FISPACT-II to output <<n>> blocks of summary data in an additional output file with a .gra stub
 - <<show>> equal to 2 makes the output suitable for GNUPLOT plotting (+ a template .plt file is written)

.gra files

e.g. irradiation of pure iron

- separate FISPACT-II simulation for each different nuclear data library (and for each different material)
- curves extracted directly from .gra files

GRAPH 1 2 1 3 UNCERTAINTY 2

- UNCERTAINTY keyword included to provide uncertainty estimates
- GRAPH <<n>> <<show>> <<uncert>> <list>>
 - <<uncert>> equal to 1 includes the uncertainties in the .gra file (and plot)
 - <<!ist of <<n>> graphs required1=activity;2=dose;3=decay-heat...

Nuclide graphs

e.g. irradiation of palladium

- recently developed capability to extract nuclide contribution breakdown to radiological quantities
- curves extracted directly from .grn files

NUCGRAPH 1 1.0 1 2

- NUCGRAPH <<n>> <<floor>> <<uncert>> <ist>>
- instructs FISPACT-II to output <<n>> blocks of data in .grn file 1=activity;2=decay-heat;3=dose...
- for each radiological quantity (block) as a function of time:
 - total with uncertainty (if <<uncert>> equals 1)
 - contribution to quantity from any nuclide that contributes <<floor>> % or more at any time

Additional Examples

A good agreement case

• 5 minute irradiation of pure copper

- a straightforward case entirely dominated by ⁶²Cu
 - ▶ ⁶³Cu(n,2n)⁶²Cu
 - all library predictions are within a few % of the experiment at all decay times

	TENDL-2017	ENDF/B-VIII.0	JEFF-3.3	EAF2010	IRDFF-1.05	
mean % diff. from E	4	3	5	6	3	
					<u> </u>	

Copper at longer times

7 hour irradiation of pure copper

- 63 Cu(n, α) 60 Co (including isomeric transition via 60m Co)
- ► ⁶⁵Cu(n,2n)⁶⁴Cu

	TENDL-2017	ENDF/B-VIII.0	JEFF-3.3	EAF2010	IRDFF-1.05	I
mean % diff. from E	9	9	9	5	12	
					<u> </u>	~

A problem for JEFF-3.3?

• 5 minute irradiation of pure zirconium

- JEFF-3.3 underpredicts during the first 30 minutes of cooling
 - other libraries produce a good match to the experiment (IRDFF-1.05 only captures the low-level production of ⁸⁹Zr via ⁹⁰Zr(n,2n))

UK Atomic

Energy Authority

Zr nuclide contributions

- JEFF-3.3 does not include the ⁹⁰Zr(n,2n)^{89m}Zr channel
 - this is unexpected because it was included in JEFF-3.2

Multiple metastable importance

7 hour irradiation of pure tin

- TEND-2017 and EAF2010 produce a good match to the measured profile
 - although the absolute decay heat values are not very close to the experiment
- However, JEFF-3.3 and ENDF/B-VIII.0 clearly get the profile wrong

	TENDL-2017	ENDF/B-VIII.0	JEFF-3.3	EAF2010
mean % diff. from E	22	50	60	23

Tin nuclide comparisons

UK Atomic Energy Authority

- TENDL result shows importance of two metastable nuclides
 - ▶ ^{119m}Sn and ^{117m}Sn produced via (n,2n) reactions
- JEFF & ENDF/B include the (n,2n)s but only to ground-states

In113m Sn119m Sn123 Sn121 In111 Sn117m

Exp

A problem for JEFF-3.3?

• 5 minute irradiation of pure aluminium

- beyond 20 minutes of cooling JEFF-3.3 underpredicts the experimentally measured decay heat
 - all other libraries produce a good match to the experiment

Aluminium nuclide contributions

- JEFF-3.3 does not predict any ²⁴Na via ²⁷Al(n, α)
 - analysis of the raw ENDF-6 JEFF-3.3 reveals that the MF 9 entries for this reaction are incorrect (MF 9 is necessary to split between ²⁴Na and ^{24m}Na)
 - causes incorrect processing to group-wise format
 - ► TENDL-2017 doesn't include the ^{24m}Na channel (the MF 3 entry is correct in both JEFF-3.3 and TENDL-2017)

