Weekly Homework 9

Math Gecs

March 23, 2024

Exercise 1

For what real values of x is

$$\sqrt{x + \sqrt{2x - 1}} + \sqrt{x - \sqrt{2x - 1}} = A,$$

given (a) $A = \sqrt{2}$, (b) A = 1, (c) A = 2, where only non-negative real numbers are admitted for square roots?

Source: 1959 IMO Problem 2

Answer. $x = \frac{3}{2}$

Solution. The square roots imply that $x \ge \frac{1}{2}$. Square both sides of the given equation:

$$A^{2} = \left(x + \sqrt{2x - 1}\right) + 2\sqrt{x + \sqrt{2x - 1}}\sqrt{x - \sqrt{2x - 1}} + \left(x - \sqrt{2x - 1}\right)$$

Add the first and the last terms to get:

$$A^{2} = 2x + 2\sqrt{x + \sqrt{2x - 1}}\sqrt{x - \sqrt{2x - 1}}$$

Multiply the middle terms, and use $(a + b)(a - b) = a^2 - b^2$ to get:

$$A^2 = 2x + 2\sqrt{x^2 - 2x + 1}$$

Since the term inside the square root is a perfect square, and by factoring 2 out, we get

$$A^2 = 2(x + \sqrt{(x-1)^2})$$

Use the property that $\sqrt{x^2} = |x|$ to get

$$A^2 = 2(x + |x - 1|)$$

Case I: If $x \le 1$, then |x-1| = 1-x, and the equation reduces to $A^2 = 2$. This is precisely part (a) of the question, for which the valid interval is now $x \in \left[\frac{1}{2}, 1\right]$

Case II: If x > 1, then |x - 1| = x - 1 and we have

$$x = \frac{A^2 + 2}{4} > 1$$

which simplifies to

$$A^2 > 2$$

This tells there that there is no solution for (b), since we must have $A^2 \ge 2$ For (c), we have A = 2, which means that $A^2 = 4$, so the only solution is $x = \frac{3}{2}$.

Solution. Note that the equation can be rewritten to

$$\sqrt{(\sqrt{2x-1}+1)^2} + \sqrt{(\sqrt{2x-1}-1)^2} = A\sqrt{2}$$

i.e., $\sqrt{2x-1} + 1 + |\sqrt{2x-1} - 1| = A\sqrt{2}$.

Case I: when $2x - 1 \ge 1$ (i.e., $x \ge 1$), the equation becomes $2\sqrt{2x - 1} = \sqrt{2}A$. For (a), we have x = 1; for (b) we have $x = \frac{3}{4}$; for (c) we have $x = \frac{3}{2}$. Since $x \ge 1$, (b) $x = \frac{3}{4}$ is not what we want.

Case II: when $0 \le 2x - 1 < 1$ (i.e., $1/2 \le x < 1$), the equation becomes $2 = \sqrt{2}A$, which only works for (a) $A = \sqrt{2}$.

In summary, any $x \in \left[\frac{1}{2}, 1\right]$ is a solution for (a); there is no solution for (b); there is one solution for (c), which is $x = \frac{3}{2}$.

Exercise 2

Let $\{a_n\}_{n\geq 0}$ be a non-decreasing, unbounded sequence of non-negative integers with $a_0=0$. Let the number of members of the sequence not exceeding n be b_n . Prove that for all positive integers m and n, we have

$$a_0 + a_1 + \dots + a_m + b_0 + b_1 + \dots + b_n \ge (m+1)(n+1).$$

Source: 1999 BMO Problem 4

Proof. Note that for arbitrary nonnegative integers i, j, the relation $j \leq a_i$ is equivalent to the relation $i \geq b_{j-1}$. It then follows that

$$\sum_{i=0}^{m} a_i = \sum_{i=0}^{m} \sum_{j=1}^{a_i} 1 = \sum_{j=1}^{a_m} \sum_{i=b_{j-1}}^{m} 1 = \sum_{j=1}^{a_m} (m+1-b_{j-1}) = \sum_{j=0}^{a_m-1} (m+1-b_j).$$

Note that if $j \leq a_m - 1$, then there are at most m terms of $\{a_k\}_{k\geq 0}$ which do not exceed j, i.e., $b_j \leq m$; it follows that every term of the last summation is positive. Now, if $a_m \geq n+1$, then we have

$$\sum_{i=0}^{m} a_i + \sum_{j=0}^{n} b_j = \sum_{j=n+1}^{a_m-1} (m+1-b_j) + \sum_{j=0}^{n} (m+1-b_j+b_j)$$
$$= \sum_{j=n+1}^{a_m-1} (m+1-b_j) + (n+1)(m+1) \ge (n+1)(m+1),$$

as desired. On the other hand, if $a_m < n+1$, then for all $j \ge a_m$, $b_j \ge m+1$. It then follows that

$$\sum_{i=0}^{m} a_j + \sum_{j=0}^{n} b_j = \sum_{j=0}^{a_m - 1} (m + 1 - b_j + b_j) + \sum_{j=a_m}^{n} b_j$$

$$= (a_m)(m+1) + \sum_{j=a_m}^{n} b_j$$

$$\geq (a_m)(m+1) + (n+1 - a_m)(m+1) = (n+1)(m+1),$$

as desired. Therefore the problem statement is true in all cases.