Appunti di Algebra Superiore

Github Repository: Oxke/appunti/AlgebraSuperiore

Primo semestre, 2025 - 2026, prof. Alberto Canonaco

Libri utili

- Per la parte di algebra omologica Hilton-Stammbach, Osborne e Weibel.
- Dispense sui moduli (su KIRO) utili
- Aluffi, Algebra Chapter 0

Il corso è di 60 ore, non perché sia più pesante ma perché dovrebbero esserci ore di esercitazioni (non sarà necessariamente vero ma Canonaco cercherà di andare un po' nel dettaglio, fornire esempi e controesempi per quanto possibile)

0.1 Richiami sugli Anelli

Per convenzione, parlando di anelli si parlerà sempre di anelli con unità

Definizione 0.1.1: Anello

Un **anello** $A, +, \cdot$ è un gruppo abeliano A, + (con 0 elemento neutro) e contemporaneamente un monoide A, \cdot (cn 1 elemento neutro). Inoltre le due operazioni sono legate dalle proprietà distributive

$$a(b+c) = ab + ac$$
 ; $(b+c)a = ba + ca$

Diremo che l'anello è **commutativo** se l'operazione \cdot è commutativa

Per quasi tutto ciò che si vedrà in questo corso non è necessario andare a disturbare anelli non commutativi, dunque si useranno quasi sempre anelli commutativi.

Esempio 0.1.1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{Z}/n\mathbb{Z}$

Esempio 0.1.2. Se A è un anello (commutativo), allora i polinomi a coefficienti in Λ e con variabili in Λ costituiscono l'anello $A[x_{\lambda} \mid \lambda \in \Lambda]$

Esempio 0.1.3 (Anello Banale). L'anello composto da un solo elemento $\{0 = 1\}$

Esempio 0.1.4 (Non comm.). A anello, allora l'anello $M_n(A)$ delle matrici $n \times n$ a coefficienti in A non è commutativo se n > 1 (e se non è l'anello banale ma dai l'anello banale non esiste davvero)

Esempio 0.1.5. Endomorfismi Se (G, +) è un gruppo abeliano, allora End(G) è anello con + determinato da (f + g)(a) = f(a) + g(a) e · dato dalla composizione $(f \circ g)(a) = f(g(a))$

In generale se G, G' sono gruppi con (G, +) abeliano, allora l'insieme Hom(G', G) degli omomorfismi da G' a G è un sottogruppo di $G^{G'}$ il gruppo delle funzioni da G' a G.

Infatti se X è un insieme allora G^X è un gruppo con (f+g)(a)=f(a)+g(a)

Definizione 0.1.2: Invertibile

 $a \in A$ è invertibile a sinistra (destra) se $\exists a' \in A$ tale che a'a = 1 (aa' = 1). a viene detto **invertibile** se $\exists a' \in A$ tale che a'a = aa' = 1

Osservazione (invertibile \iff invertibile a destra e sinistra). solo una implicazione non è ovvia. Se $a', a'' \in A$ sono tali che a'a = aa'' = 1 allora

$$(a'a)a'' = a'(aa'')1a'' = a''$$
 = $a' = a'1$

quindi a è invertibile e $a^{-1} = a' = a''$

Osservazione (Gruppo degli invertibili). L'insieme degli elementi invertibili forma un gruppo con l'operazione di prodotto e si indica con A^*

In generale, se $1 \neq 0$, allora $A^* \subseteq A \setminus \{0\}$

Definizione 0.1.3: Anello con Divisione

A si dice anello con divisione se $A^* = A \setminus \{0\}$. Un campo è un anello con divisione commutativo.

Definizione 0.1.4: Divisore di zero

 $a \in A$ è detto divisore di zero a sinistra (destra) se $\exists a' \in A \setminus \{0\}$ tale che aa' = 0 (a'a = 0)

Definizione 0.1.5: Dominio

A viene detto **dominio** se $A \neq 0$ e A non ha divisori di zero. Viene inoltre chiamato **dominio** di integrità se è commutativo.

Esempio 0.1.6. I campi, \mathbb{Z} , se A dominio d'integrità, allora anche $A[x_{\lambda} \mid \lambda \in \Lambda]$ è dominio d'integrità.

Osservazione. $A \neq 0$ tale che $\forall 0 \neq a \in A$ è invertibile a sinistra, allora A è un anello con divisione.

Dimostrazione. $\exists a' \in A$ tale che a'a = 1 ma anche $\exists a'' \in A : a''a' = 1$. Allora a' è invertibile a sinistra e a destra, infatti

$$a'^{-1} = a = a'' \implies a \in A^*$$

Definizione 0.1.6: Sottoanello

 $A' \subseteq A$ è sottoanello di A se $(A', +) < (A, +), ab \in A'$ per ogni $a, b \in A'$ e $1 \in A'$

Esempio 0.1.7. $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C} \subseteq \mathbb{H}$ sono tutti sottoanelli

Esempio 0.1.8. $A \subseteq A[X]$ sottoanello

Definizione 0.1.7: Ideale

 $I\subseteq A$ è un'ideale sinistro (destro) se (I,+)<(A,+) e $ab\in I$ $(ba\in I),$ $\forall a\in A$ e $\forall b\in I.$

Un ideale bilatero è un ideale sia sinistro che destro.

Esempio 0.1.9. Gli ideali in \mathbb{Z} sono tutti e soli della forma $n\mathbb{Z}$, con $n \in \mathbb{N}$

Osservazione. Se I è un ideale sinistro o destro allora

$$I = A \iff I \cap A^* \neq \emptyset$$

quindi A con divisione \implies gli unici ideali sinistri o destri sono $\{0\}$ e A

Definizione 0.1.8: Anello opposto

L'anello opposto di un anello A è A^{op} , con $(A^{op}, +) := (A, +)$ e con prodotto ab in A^{op} definito come ba in A

Osservazione. $(A^{op})^{op} = A \in A^{op} = A \iff A \text{ commutativo}$

Proposizione 0.1.1 (Anello Quoziente). Se $I \subseteq A$ ideale, allora il gruppo abeliano A/I, + è un anello con prodotto $\overline{ab} := \overline{ab}$, dove $\overline{a} := a + I \in A/I$

Definizione 0.1.9: omomorfismo di anelli

Siano A, B anelli. $f: A \to B$ è **omomorfismo** di anelli se, $\forall a, a' \in A$

- i) f(a + a') = f(a) + f(a')
- ii) f(aa') = f(a)f(a')
- iii) $f(1_A) = 1_B$

ed è isomorfismo se è un omomorfismo biunivoco

Osservazione. f omomorfismo è isomorfismo $\iff \exists f': B \to A$ omomorfismo tale che $f' \circ f = \mathrm{id}_A$ e $f \circ f' = \mathrm{id}_B$

Indicheremo $A\cong B$ se esiste un isomorfismo tra Ae B

Proposizione 0.1.2. Se $f: A \to B$ è un omomorfismo allora

- 1. $A' \subseteq A$ è sottoanello $\implies f(A') \subseteq B$ è sottoanello.
- 2. $B' \subseteq B$ sottoanello $\implies f^{-1}(B') \subseteq A$ è sottoanello
- 3. $J \subseteq B$ è ideale (sinistro / destro) $\Longrightarrow f^{-1}(J) \subseteq A$ è ideale (sinistro / destro). In particolare $\operatorname{Ker} f := f^{-1}(0_B) \subseteq A$ è ideale
- 4. f suriettivo $e I \subseteq A$ ideal $e \implies f(I) \subseteq B$ e ideale

Osservazione. $f: A \to B$ è iniettivo \iff Ker $f = \{0_A\}$ e in tal caso $A \cong \text{Im} f := f(A)$ che dunque è sottoanello di B

Teorema 0.1.3: Omomorfismo

 $f:A\to B$ è omomorfismo di anelli, $I\subseteq A$ ideale tale che $I\subseteq \mathrm{Ker} f.$ Allora

 $\exists ! \overline{f} : A/I \to B$ omomorfismo tale che $\overline{f}(\overline{a}) = f(a) \quad \forall a \in A$

$$A \xrightarrow{f} B$$

$$\downarrow \qquad \qquad \overline{f}$$

$$A/I$$

In oltre im $\overline{f}=\mathrm{im}f$ e $\mathrm{Ker}\overline{f}=\mathrm{Ker}f/I$ **Proposizione 0.1.4.** Gli ideali di A/I sono tutti e soli della forma J/I con $J \subseteq A$ ideale tale che $I \subseteq J$

Teorema 0.1.5: Primo teorema di isomorfismo

 $f:A\to B$ è omomorfismo di anelli, allora im $f\cong A/\mathrm{Ker} f$

Definizione 0.1.10

L'ideale generato da $U\subseteq A$ è il più piccolo ideale di A che contiene $U=\bigcap_{U\subseteq I\subseteq A \text{ideale}} I$ ed esplicitamente è

$$AUA := \left\{ \sum_{i=1}^{n} a_i u_i b_i : n \in \mathbb{N}, a_i, b_i \in A, u_i \in U \right\}$$

Osservazione. Se A è commutativo e $U=\{u\}$ allora $A\{u\}A=Au=\{au:a\in A\}$ (ideale principale)

Definizione 0.1.11: PID

Aè un dominio (d'integrità) a ideali principali (PID) se ogni ideale di Aè a ideali principali.

Esempio 0.1.10. Campi (non ci sono ideali propri)

Esempio 0.1.11. \mathbb{Z} (con ideali nZ = (n))

Esempio 0.1.12. K[X] con K campo

0.2 Richiami sui Moduli

Teorema 0.2.1: Secondo teorema di isomorfismo

Sia M un modulo, con $M', M'' \subseteq M$ sottomoduli. Allora

$$M'/(M' \cap M'') \cong (M' + M'')/M''$$

Dimostrazione. Si prenda $f: M' \to (M' + M'')/M''$ composizione dell'inclusione di M' in M' + M'' e della proiezione a quoziente, dunque è un omomorfismo.

Allora
$$\operatorname{Ker} f = \{x \in M' : x + M'' = M''\} = M' \cap M''$$

Teorema 0.2.2: Terzo teorema di isomorfismo

Dati $M'' \subseteq M' \subseteq M$ sottomoduli e modulo, allora

$$(M/M')/(M'/M'') \cong M/M'$$

Dimostrazione. Sia f la composizione delle due proiezioni a quoziente, dunque è suriettiva. Allora

$$x \in \operatorname{Ker} f \iff \pi(x) \in \operatorname{Ker} \pi' = M'/M''$$

dunque $\operatorname{Ker} f = M'$ da cui la tesi per il primo teorema di isomorfismo.

Definizione 0.2.1: Ideale massimale (sinistro / destro)

Un ideale J (sinistro / destro)

Proposizione 0.2.3.

- 1. Sia A un anello, allora un A-modulo M è ciclico se e solo se $\exists I \subseteq A$ ideale sinistro tale che $M \cong A/I$
- 2. M è semplice se e solo se $\exists I \subseteq A$ ideale sinistro massimale tale che $M \cong A/I$

Dimostrazione. 1.

2. Se M è semplice allora $\forall 0 \neq x \in M$, M = Ax, dunque M è ciclico e per il punto 1. esiste I ideale sinistro tale che $M \neq A/I$. La proposizione si riduce a dire che A/I è semplice se e solo se I è massimale. Sappiamo che i sottomoduli di A/I sono tutti e soli della forma J/I con $I \subseteq J \subseteq A$ ideale sinistro. Allora $A/I \neq 0 \iff I \neq A$ e gli unici sottomoduli di A/I sono I/I e A/I, ossia gli unici ideali sinistri J tali che $I \subseteq J \subseteq A$ sono I e A.

Osservazione. Con il lemma di Zorn si dimostra che $A \neq 0 \implies$ esiste un ideale sinistro massimale (e dunque esiste un sottomodulo semplice)

0.2.1 Prodotti

Definizione 0.2.2: Prodotto

Supponiamo di avere M_{λ} A-moduli, per $\lambda \in \Lambda$. Allora

$$M:=\prod_{\lambda\in\Lambda}M_\lambda$$
è un $A\text{-modulo detto }\mathbf{prodotto}$ degli M_λ

 $\begin{array}{l} {\rm con}\; (x+y)_{\lambda} := x_{\lambda} + y_{\lambda} \; {\rm e}\; (ax)_{\lambda} = ax_{\lambda} \; {\rm per \; ogni} \; \lambda \in \Lambda \; {\rm e}\; x, y \in M. \\ \forall \mu \in \Lambda \; {\rm esiste} \; p_{\mu} : M \to M_{\mu}, \; (x_{\lambda})_{\lambda \in \Lambda} \mapsto x_{\mu} \; {\rm che} \; \grave{\rm e} \; A \text{-lineare e suriettivo}. \end{array}$

Proposizione 0.2.4 (Proprietà universale del prodotto). Dati $l_{\mu}: N \to M_{\mu}$ A-lineari, $\forall \mu \in \Lambda$ esiste unico $f: N \to M$ A-lineare tale che $f_{\mu} = l_{\mu} \circ f$

$$N$$

$$l_{\mu} \downarrow \qquad \exists ! f$$

$$M_{\mu} \leftarrow f_{\mu} \qquad M$$

Dimostrazione.

Definizione 0.2.3: Somma diretta

La somma diretta (o coprodotto) degli M_{λ} è

$$M' = \{(x_{\lambda})_{{\lambda} \in {\Lambda}} \in M : x_{\lambda} > 0 \text{ per finiti } {\lambda} \subseteq M\}$$

è sottomodulo.

 $\forall \mu \in \Lambda \text{ esiste}$

$$i_{\mu}: M_{\mu} \longrightarrow M'$$

$$x \longmapsto i_{\mu}(x) = (x_{\lambda})_{\lambda \in \Lambda}, \quad x_{\lambda} := \begin{cases} x & \lambda = \mu \\ 0 & \lambda \neq \mu \end{cases}$$

che è A-lineare e iniettivo.

Proposizione 0.2.5 (Proprietà universale somma diretta).

$$N \atop l_{\mu} \uparrow \qquad \exists ! f \\ M_{\mu} \xrightarrow{} M'$$