Metody numeryczne Sprawozdanie z ćwiczeń laboratoryjnych nr 4

Diagonalizacja macierzy operatora energii w 2D

Jan Zajda Informatyka Stosowana WFiIS Akademia Górniczo-Hutnicza w Krakowie 31 marca 2020

1.Wstęp teoretyczny

Jednym z często spotykanych w fizyce zagadnień jest problem własny. Zachodzi wtedy potrzeba rozwiązania tzw. równania własnego które przedstawia się następująco:

$$\mathbf{A}\vec{x} = \lambda \vec{x},$$
(1)

gdzie:

A - macierz kwadratowa,

 \vec{x} - szukany wektor własny,

 λ - szukana wartość własna,

przy czym zachodzi znana zależność:

$$(\mathbf{A} - \lambda \mathbf{I})\vec{x} = 0.$$

Rozważmy sytuację, gdy macierz \mathbf{A} jest symetryczna. Aby znaleźć wektory i wartości własne w pierwszej kolejności przekształcamy macierz \mathbf{A} do postaci trójdiagonalnej macierzy \mathbf{B} , przy pomocy macierzy podobieństwa \mathbf{P} :

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{B}.$$
(2)

Następnie przeprowadzamy diagonalizację macierzy ${\bf B}$ - znajdujemy jej wektory i wartości własne, co w przypadku macierzy trójdiagonalnej jest dużo łatwiejsze:

$$\mathbf{B}\vec{y} = \lambda \vec{y}$$
.

Wektory własne \vec{x} obliczamy korzystając z równań (1) i (2):

$$\mathbf{B}\vec{y} = \lambda \vec{y}$$

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\vec{y} = \lambda \vec{y}$$

$$\mathbf{P}\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\vec{y} = \lambda \mathbf{P}\vec{y}$$

$$\mathbf{A}(\mathbf{P}\vec{y}) = \lambda(\mathbf{P}\vec{y}) \wedge \mathbf{A}\vec{x} = \lambda \vec{x} \Longleftrightarrow \vec{x} = \mathbf{P}\vec{y}.$$
(3)

W ten sposób otrzymujemy wektory własne i wartości własne pierwotnego równania (1).

2. Zadanie do wykonania

2.1. Opis problemu

Naszym zadaniem jest rozwiązanie równania Schrödingera, który stanowi klasyczny przykład równania własnego. Przedstawia się ono następująco:

$$H\psi = E\psi$$
,

gdzie operator energii H dany jest jako:

$$H = -\frac{\hbar^2}{2m^*} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right).$$

Następnie dyskretyzujemy równanie wprowadzając siatkę punktów, drugie pochodne zastępujemy trójpunktowym ilorazem różnicowym, wprowadzamy stałą $t=-\frac{\hbar^2}{2m^*\Delta^2}$, gdzie Δ stanowi odległość między poszczególnymi punktami i przeprowadzamy reindeksację.

Ostatecznie otrzymujemy równanie:

$$H\psi = t(\psi_{l-n_n} + \psi_{l-1} - 4\psi_l + \psi_{l+1} + \psi_{l+n_n}),$$

gdzie indeks $l = 1, 2..., n = n_x n_y$.

Operator energii H zapisujemy w symetrycznej, pięcioprzekątniowej macierzy $n \times n$, którą w całości wypełaniamy zerami, poza elementami wypełnianymi wg wzoru:

$$H_{l,l\pm n_y} = H_{l,l\pm 1} = t, \qquad H_{l,l} = -4t.$$

Przyjmujemy dane:

$$t = -0.021,$$
 $n_x = n_y = 20,$ $n = n_x \cdot n_y = 400,$ $m = 10.$

Aby sprowadzić macierz ${\bf H}$ do postaci macierzy trójdiagonalnej wykorzystujemy funkcję $tred2({\bf H},n,\vec{d},\vec{e})$, która zapisuje diagonalę i pierwszą poddiagonalę uzyskanej macierzy w wektorach odpowiednio \vec{d} i \vec{e} , oraz nadpisuje macierz ${\bf H}$, macierzą podobieństwa ${\bf P}$ (pokazaną we wzorze (2)).

Następnie używamy funkcji $tqli(\vec{d}, \vec{e}, n, \mathbf{H}), \ \mathbf{H} = \mathbf{P}$, aby znaleźć wektory własne macierzy trójdiagonalnej. Przy takim użyciu funkcji tqli zwraca ona jednak w macierzy \mathbf{H} wektory własne pierwotnego problemu, oszczędzając nam pracy związanej z ich odtwarzaniem (wzór (3)). Ponadto funkcja ta nadpisuje wektor \vec{d} wartościami własnymi. Na koniec przeprowadzamy sortowanie wartości własnych, korzystając z pomocniczej tablicy indx, aby nie "zgubić" odpowiadającym wartościom własnym wektorów własnych.

2.2. Wyniki

Jako wynik działania programu wypisujemy m=10 pierwszych (najmniejszych) wartości własnych wraz z odpowiadającymi im wektorami własnymi (funkcjami falowymi), przedstawionymi na poniższych wykresach.

Rys. 1: $\psi_1(x,y)$ $E_1 = 0.000938213$

Rys. 2: $\psi_2(x,y)$ $E_2 = 0.00233504$

Rys. 3: $\psi_3(x,y)$ $E_3 = 0.00233512$

Rys. 4: $\psi_4(x,y)$ $E_4 = 0.00373193$

Rys. 5: $\psi_5(x,y)$ $E_5 = 0.00462838$

Rys. 6: $\psi_6(x,y)$ $E_6 = 0.00462851$

Rys. 7: $\psi_7(x,y)$ $E_7 = 0.00602518$

Rys. 8: $\psi_8(x,y)$ $E_8 = 0.00602525$

Rys. 9: $\psi_9(x, y) E_9 = 0.00776708$

Rys. 10: $\psi_{10}(x,y)$ $E_{10} = 0.00776711$

3. Wnioski

Jak widać po powyższych wynikach, wykorzystując bezpośrednie metody numeryczne możemy rozwiązywać problemy własne, występujące w fizyce. Bardzo pomocne w przeprowadzaniu diagonalizacji macierzy są funkcje tred2 i tqli, które wykonują za nas większość skomplikowanych i długotrwałych obliczeń, pozostawiając nam jedynie podstawowe zadania jak utworzenie i wypełnienie początkowej macierzy oraz sortowanie wyników.

Przy obserwacji wyników możemy zwrócić uwagę, że niektóre wartości własne są do siebie bardzo zbliżone np. pary (E_2, E_3) , (E_5, E_6) , (E_7, E_8) , (E_9, E_{10}) . Podobieństwa możemy też zaobserwować w wykresach wektrów własnych – są w tych parach prawie identyczne, przy czym zostały obrócone. Jedynie w parze (E_5, E_6) możemy przy wektorach własnych zaobserwować znaczące różnice.