A Project Report on "PICK AND PLACE ROBOTIC ARM"

Submitted In Partial Fulfillment of the Requirements

For the Degree of

BACHELOR OF TECHNOLOGY

in

MECHANICAL ENGINEERING

By

INDRAJEET SINGH YADAV

(1505440069)

Under the Supervision of Ms. PRIYANKA ARORA (Asst. Prof.)

Department of Mechanical Engineering

Babu Banarasi Das National Institute of Technology and Management, Lucknow

Affiliated to
Dr. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY
LUCKNOW

June, 2019

CERTIFICATE

This is to certify that INDRAJEET SINGH YADAV (1505440069) of Department of Mechanical Engineering, Babu Banarasi Das National Institute of Technology and Management, Lucknow have carried out the project work presented in this report entitled "PICK AND PLACE ROBOTIC ARM" for the award of Bachelor of Technology from Dr. A.P.J. Abdul Kalam Technical University, Lucknow under our supervision is a record of work and sincere efforts carried out by them.

Ms. Priyanka Arora

Prof. S. P. Asthana

Asst. Professor

Head Of Department

Dept. of Mechanical Engineering

Dept. of Mechanical Engineering

BBDNITM, Lucknow

BBDNITM, Lucknow

ACKNOWLEDGEMENT

We deeply wish to express our heartfelt gratefulness and gratitude to the following people who guided and supported us in every step of my work.

It is our pleasure to offer my sincerest gratitude to my guide **Ms. Priyanka Arora** Assistant Professor, Dept. of Mechanical Engineering, BBDNITM, Lucknow, who has guided and supported us throughout the project with his patience and knowledge. His guidance, serenity, commitment, strictness and support helped us to complete this work.

We would like to express our heartiest gratitude to **Prof. S.P. Asthana**, Head of Mechanical Engineering Department, BBDNITM, Lucknow, for his unconditional support and permission to use the departmental labs.

We are thankful to the faculty members who have been the part of our seminar and presentations, for their valuable observations and guidance. We take this opportunity to extend our regards to the lab instructors who helped us with their skills and hard work during our project.

We are also grateful to respected **Prof. (Dr.) Bhavesh Kumar Chauhan**, Director, Babu Banarasi Das National Institute of Technology, Lucknow, for providing us a great academic environment where we can transform our self as asset of the nation.

Finally, we would like to thank my parents for their blessing and care.

INDRAJEET SINGH YADAV (1505440069)

ABSTRACT

Mankind has always strived to give life like qualities to its artifacts in an attempt to find substitutes for himself to carry out his orders and also to work in a hostile environment. The popular concept of a mechanical arm is of a machine that looks and works like a human arm.

The industry is moving from current state of automation to Robotization, to increase productivity and to deliver uniform quality. The industrial robots of today may not look the least bit like a human being although all the research is directed to provide more and more anthropomorphic and humanlike features and super-human capabilities in these.

One type of robot commonly used in industry is a robotic manipulator or simply a mechanical arm. It is an open or closed kinematic chain of rigid links interconnected by movable joints. In some configurations, links can be considered to correspond to human anatomy as waist, upper arm and forearm with joint at shoulder and elbow. At end of arm a wrist joint connects an end effector which may be a tool and its fixture or a gripper or any other device to work.

Here how a pick and place mechanical arm can be designed for a workstation where loading and packing of lead batteries is been presented. All the various problems and obstructions for the loading process has been deeply analyzed and been taken into consideration while designing the pick and place mechanical arm.

TABLE OF CONTENT

CERTIFICATEii
ACKNOWLEDGEMENT iii
ABSTRACTiv
TABLE OF CONTENTSv
LIST OF FIGURESvii
CHAPTER 1 INTRODUCTION
1.1 History of mechanical arm
1.2 Law Of Robotics
1.3 Components of mechanical arm
CHAPTER 2 CLASSIFICATION OF MECHANICAL ARM11
2.1 Types of mechanical arm as per Application
2.2 Types of mechanical arm by Locomotion & Kinematics14
CHAPTER 3 SELECTIONOF TASK16
3.1 Tasks
3.2 Selection of Tasks
3.3 Why Pick & Place mechanical arm
3.4 Defining work station
CHAPTER 4 DESIGN PROCEDURE20
4.1 Factors to be considered while designing
CHAPTER 5 STEPS OF DESIGN23
5.1 Selection of Product
5.2 Designing of Work space

5.3 Degree of Freedom	24
5.4 ATMEGA16 MICROCONTROLLERS	25
CHAPTER 6 WORKS TO BE DONE	
6.1 Selection of Parts	
6.2 Completion of Model	26
6.3 Interfacing with the human	27
CHAPTER 7 HARDWARE REQUIREMENT	28
7.1 Vehicle parts	28
7.2 Arm parts	28
7.3 Bluetooth control	28
CHAPTER 8 MAIN PARTS OF PROJECT	29
8.1 Mechanical arm vehicle	29
8.2 Mechanical Arm	30
8.3 End effector	31
8.4 Controls	32
CHAPTER 9 ADVANTAGES, DISADVANTAGES, APPLICATIONS	S
AND FUTURE SCOPE	.34
9.1 Advantages	.34
9.2 Disadvantages	.35
9.3 Applications	35
9.4 Future scope	37
REFERENCES	38

LIST OF FIGURES

FIGURES

Fig 1.1 Structure of mobile mechanical arm	6
Fig 1.2 Circuit diagram of power source	
Fig 1.3 D C Motor	
Fig 1.4 Track wheel	8
Fig 1.5 Worm and spur gear set	
Fig 1.6 Mechanical grippers	
Fig 1.7 Vacuum gripper	
Fig 2.1 Industrial mechanical arm	12
Fig 2.2 Mobile mechanical arm	12
Fig 2.3 Agriculture mechanical arm	13
Fig 5.1 Degree of freedom	24
Fig 5.2 Microcontroller	25
Fig 6.1 Components of model	26
Fig 8.1 Mechanical arm vehicle	29
Fig 8.2 Mechanical arm	30
Fig 8.3 End effector	31
Fig 8.4 Control screen	32
Fig 8.5 Calculations	33
Fig 9.1 Wiring system of project	36

The picts and poses developed and is a course violential bound agreem as design the organ, picks and object flow violent transmissed places of devices because for detection of object, busing design setting of objects and more necessary position.