[실시간 영상 분석을 통한 인원 밀집도 공유 시스템]

1차 빌드 개발 계획서

2022년 10월 07일

문서번호 : 2022-1차_빌드_개발_계획서_01

소 속 : 충북대학교 소프트웨어학과

팀 명:시나브로

팀 원: 임수연, 김윤희, 성열암

교 수 : Aziz Nasridinov 교수님

제/개정 이력

버전	날짜	작성자 성명	제/개정사항	비고
ver1.0	22.10.07	구성원 전원	초안 작성	
ver2.0	22.10.13	구성원 전원	주제 변경으로 인한 문서 전반 수정	

목 차

1.	시스템 개요	1
	1.1 시스템 명	1
	1.2 시스템 설명	1
2.	기능 요약표	1
3.	선정된 1차 개발 대상	. 2
	3.1 개발 번호	2
	3.2 태스크 목록	2
4.	개발 계획	2
	4.1 종료일	2
	4.2 중간 점검일	2
5.	개발 환경 셋업	3
6.	기타사항	3

1. 시스템 개요

1.1 시스템 명

실시간 영상 분석을 통한 인원 밀집도 공유 시스템

1.2 시스템 설명

본 시스템은 영상 분석 딥러닝 모델을 이용하여 카메라에 의해 촬영되는 영상을 기반으로 사람들을 검출해내고 그 인원수를 계산하여 정형화된 정보를 사용자들에게 공유하는 어플리케이션 시스템입니다.

2. 기능 요약표

번호	기능명	중요도	우선순위	크기	매핑된 NF 식별자
FR1	영상 내 사람 객체 검출 (Object detection)	1	1	대	NFR-046
FR2	카메라 스캔을 통한 실시간 객체 검출 (real-time object detection)	1	2	대	NFR-043 NFR-048 NFR-050 NFR-051 NFR-047 NFR-061 NFR-062
FR3	검출된 인원수 데이터 처리	2	3	중	NFR-048

[표 2.1 - 기능 요약표]

3. 선정된 1차 개발 대상

3.1 개발 번호

■ FR1-영상_내_사람_객체_검출

3.2 태스크 목록

번호	태스크명	구현기술	담당자	소요기간	비고
FR1.01	데이터셋 수집	_	임수연, 김윤희,	2D	Roboflow 내 딥러닝
11(1.01		-	성열암	20	학습용 이미지 사용
FR1.02	딥러닝 학습 환경 구축	Python, PyTorch	임수연, 김윤희,	3D	YOLOv5 설치
11(1.02		torchvision, Anaconda	성열암	30	102013 E 1
FR1.03	딥러닝 모델 학습	Python, opency-python,	임수연, 김윤희,	1D	YOLOv5 활용
FK1.03	ㅂ니ㅇ ㅗㄹ ㅋㅂ	matplotlib, numpy	성열암	טו	101003 28
ED1.04	에츠요 데이티세 스지		임수연, 김윤희,	30	주간, 야간 시간대
FR1.04	예측용 데이터셋 수집	-	성열암	2D	별 동영상 수집
ED4.05	하스 미덴 겨고 편기	Pandas, seaborn	임수연, 김윤희,	10	
FR1.05	학습 모델 결과 평가	i ailuas, seaboili	성열암	1D	

[표 3.1 - 태스크 목록]

4. 개발계획

4.1 종료일

시작일	실제 종료일	예상 종료일	소요 일수	비고
2022. 10. 10(월)	2022. 10. 19(수)	2022. 10. 24(월)	9일	

[표 4.1 - 개발 종료일]

4.2 중간 점검일

중간 점검일	비고
2022. 10. 17(월)	

[표 4.2 - 개발 종료일]

5. 개발 환경 셋업

번호	도구/환경/STUDY 명칭	담당자	완료일	비고
1	Android Studio	임수연	22.10.10	
2	IntelliJ IDEA	임수연	22.10.10	
3	Python	성열암	22.10.11	
4	Anaconda	김윤희	22.10.12	
5	opencv_python	임수연	22.10.13	
6	seaborn	김윤희	22.10.13	
7	tensorboard	김윤희	22.10.13	
8	torch – torch vision	성열암	22.10.14	
9	pandas	임수연	22.10.14	
10	matplotlib	임수연	22.10.15	
11	numpy	김윤희	22.10.15	

[표 5.1 - 기능 요약표]

6. 기타 사항

해당 사항 없음.

[실시간 영상 분석을 통한 인원 밀집도 공유 시스템]

2차 빌드 개발 계획서

2022년 11월 15일

문서번호 : 2022-2차_빌드_개발_계획서_001

소 속 : 충북대학교 소프트웨어학과

팀 명:시나브로

팀 원: 임수연, 김윤희, 성열암

교 수 : Aziz Nasridinov 교수님

제/개정 이력

버전	날짜	작성자 성명	제/개정사항	비고
1.0	22.11.14	정 : 임수연	초안 작성	
		부 : 김윤희, 성열암		
1.1	22.11.18	구성원 전원	태스크 목록 추가	

목 차

1. 시스템 개요	
44 비사다 머	
1.1 시스템 명	
1.2 시스템 설명	·································
2. 기능 요약표	
2. 70 五寸五	
3. 선정된 2차 개발 대상	3
3.1 개발 번호	
3.2 태스크 목록	
5.2 ·· — — ¬ ¬	_
4. 개발 계획	Z
4.1 종료일	2
4.2 중간 점검일	2
T.L OC 002	
5. 개발 환경 셋업	
6. 이전 빌드와 통합	5
7. 기타사항	5

1. 시스템 개요

1.1 시스템 명

실시간 영상 분석을 통한 인원 밀집도 공유 시스템

1.2 시스템 설명

본 시스템은 영상 분석 딥러닝 모델을 이용하여 카메라에 의해 촬영되는 영상을 기반으로 사람들을 검출해내고 그 인원수를 계산하여 정형화된 정보를 사용자들에게 공유하는 애플리케이션 시스템입니다.

2. 기능 요약표

번호	기능명	중요도	우선순위	크기	매핑된 NF 식별자	변경 여부
FR1	영상 내 사람 객체 검출 (Object detection)	1	1	대	NFR-046	х
FR2	카메라 스캔을 통한 실시간 객체 검출 (real-time object detection)	1	2	대	NFR-043 NFR-048 NFR-050 NFR-051 NFR-047 NFR-061 NFR-062	Х
FR3	검출된 인원수 데이터 처리	2	3	중	NFR-048	х
FR4	모바일 애플리케이션 인터페이스(지도/ 프로필/ 즐겨찾기/ 세팅)	3	4	중	NFR-060 IR-063 IR-064 IR-065 iR-067 IR-068 IR-069	0

FR5	DB 설계 및 구성	2	3	중	NFR-045	0
					NFR-052	
					NFR-053	
					NFR-056	
					IR-070	

[표 2.1 - 기능 요약표]

3. 선정된 2차 개발 대상

3.1 개발 번호

■ FR2_카메라 스캔(이미지 촬영 방식)을 통한 실시간 객체 검출(앱과 모델 연동)
FR3_검출된 인원수 데이터 처리
FR4_모바일 애플리케이션 인터페이스
FR5_DB 설계 및 구성

3.2 태스크 목록

번호	태스크명	구현기술	담당자	소요기간	비고
FR2.1	앱과 모델 연결	Tensorflow	임수연	1W	
FR2.2	카메라 연동 및 권한 허용	Tensorflow, Camerax	임수연	2D	
FR2.3	스캔 완료 버튼	JAVA,Kotlin	임수연	1D	
FR3	카메라 스캔으로 검출된 데이터 처리	Tensorflow, Camerax	임수연	5D	
FR4.001	카카오 API를 통한 지도 띄우기	Java, XML	성열암	2D	kakao developers 내 프로젝트 애플리케이션 등록
FR4.002	현재 위치 갱신 기능 및 권한 허용	Java, XML	성열암	2D	Kakao Maps API Documents 참고
FR4.003	지도 축소/확대 기능	Java, XML	성열암	1D	Kakao Maps API Documents 참고
FR4.004	지도 클릭 시 해당 위치에 신규 마커 생성	JAVA	성열암	2D	Kakao Maps API Documents 참고
FR4.005	메뉴바 UI	Java, XML	성열암	3D	

FR4.006	하단 슬라이드바 (장소 상세정보, 장소 등록, 스캔 등)	Java, XML	성열암	3D	
FR4.007	검색창 UI	Java, XML	김윤희, 성열암	1D	
FR4.008	setting UI	Java, XML	김윤희	1D	
FR4.009	프로필 UI	Java, XML	김윤희	1D	
FR4.010	즐겨찿기 UI	Java, XML	김윤희	1D	
FR5	DB 설계 및 구성	MySQL	김윤희, 임수연	3D	

[표 3.1 - 태스크 목록]

4. 개발계획

4.1 종료일

시작일	실제 종료일	예상 종료일	소요 일수	비고
2022. 11.18(금)	-	2022. 12. 02(금)	14	-

[표 4.1 - 개발 종료일]

4.2 중간 점검일

중간 점검일	비고
2022. 11. 25(월)	-

[표 4.2 - 개발 종료일]

5. 개발 환경 셋업

번호	도구/환경/STUDY 명칭	담당자	완료일	비고
1	Android Studio	임수연	22.10.10	
2	IntelliJ IDEA	임수연	22.10.10	
3	Python	성열암	22.10.11	
4	Anaconda	김윤희	22.10.12	
5	opencv_python	임수연	22.10.13	
6	seaborn	김윤희	22.10.13	
7	tensorboard	김윤희	22.10.13	
8	torch – torch vision	성열암	22.10.14	
9	pandas	임수연	22.10.14	
10	matplotlib	임수연	22.10.15	
11	numpy	김윤희	22.10.15	

[표 5.1 - 기능 요약표]

-> 특이사항 없음.

6. 이전 빌드와 통합

영역	통합 여부(0/x)	개략적 통합 내용	비고
사용자 인터페이스	0	2차에 빌드 대상인 사용자 인터페이스를	
		1차 빌드 대상이었던 모델과 합쳐서	
		통합하여 앱을 구성하고자 함.	
처리 로직	X		1차 빌드 개발 대상 x
데이터 베이스	Х		1차 빌드 개발 대상 x
기타:	해당사항		
()	없음.		

[표 6.1 - 빌드 통합]

7. 기타 사항

해당 사항 없음.

[실시간 영상 분석을 통한 인원 밀집도 공유 시스템]

1차 빌드 개발 명세서

2022년 11월 10일

문서번호: 2022-빌드_개발_명세서_001

소 속 : 충북대학교 소프트웨어학과

팀 명:시나브로

팀 원: 김윤희, 성열암, 임수연

교 수: Aziz Nasridinov 교수님

목 차

1.	개발 개요	· 1
2.	분석 명세2.1 Use Case Diagram & Use Case Description	2
3.	설계 명세3.1 Window Navigation Diagram	6 7
4.	테스트 데이터 및 결과 목록1	5
5.	기타 구현 참고사항	16

제/개정 이력

버전	날짜	작성자 성명	제/개정사항	비고
1.0	11/08	구성원 전원	빌드 분석 개발 명세서 초안	
1.1	11/09	구성원 전원	분석명세 중 UseCase Diagram 수정	
1.2	11/10	구성원 전원	분석 명세 중 Class Diagram 수정	
1.3	11/13	정 : 임수연 부 : 김윤희, 성열암	표 번호, 첨부 이미지 수정	

1. 개발 개요

Task No.	Task Name	담당자	시작일	종료일	비고
FR1.01	데이터셋 수집	임수연	22/10/10	22/10/11	Roboflow 내 딥러닝 학습용 이미지 사용
FR1.02	딥러닝 학습 환경 구축	전 구성원	22/10/12	22/10/14	YOLOv5 설치
FR1.03	딥러닝 모델 학습	전 구성원	22/10/15	22/10/16	YOLOv5 활용
FR1.04	예측용 데이터셋 수집	김윤희	22/10/16	22/10/17	주간, 야간 시간대 별 동영상 수집
FR1.05	학습 모델 결과 평가	성열암	22/10/18	22/10/19	

[표 1.1 - 개발 개요]

2. 분석 명세

2.1 Use Case Diagram

[그림 2.1 - UseCase Diagram]

2.2 Use Case Description

Use Case Name	영상 분석 공유	ID	UC-001	Importance Level	High
Primary Actor	사용자(회원, 비회원)	회원) Use Case Type Detail, Essential			
Stakeholders	사용자: 사용자가 인원 밀집 상태 정보를 스캔, 수집, 공유하고자 한다.				
Brief Description	사용자가 인원 밀집 상태 정보를 공유하는 것을 묘사한다.				
Trigger	사용자가 카메라 버튼을 클릭한다.				
Relationships	Association: 사용자				

Normal Flow of Event (Normal Scenario)

- 1. 사용자가 카메라 버튼을 클릭한다.
- 2. 시스템은 사용자 위치와 공유 장소가 일치하는지 확인한다.
- 3. 일치하면, 시스템이 카메라를 켠다.
- 4. 시스템은 사용자가 취할 액션 방향을 카메라 화면 위에 출력한다.
- 5. 사용자는 카메라로 주변환경을 스캔한다.
- 6. 시스템은 사람 객체를 탐지한다.
- 7. 시스템은 사람 객체를 인식한다.
- 8. 시스템은 사람 객체를 카운트한다.
- 9. 시스템은 공유 대상 장소를 저장한다.
- 10. 시스템은 결과값(인원수)을 저장한다.
- 9. 사용자가 기타 공유내용을 추가한다.
- 10. 사용자가 자동 완성 공유내용을 수정한다.
- 11. 사용자가 총 공유내용을 확인한다.
- 12. 시스템은 공유내용을 저장한다.
- 13. 시스템은 공유내용을 지도에 공유한다.
- 14. 시스템은 공유내용 알림 사용사례를 호출한다.
- 15. 시스템은 포인트 리워드 사용사례를 호출한다.

Sub_Flow

Alternative / Exception Flow
3a, 일치하지 않으면, 시스템은 공유를 종료한다.

[표 2.1 - 영상분석공유]

2.3 Class Diagram

[그림 2.2 - Class Diagram(for the function)]

3. 설계 명세

3.1 Window Navigation Diagram

[그림 3.1 - Window Navigation Diagram]

3.2 User Interface design

-시간 화면 / 튜토리얼

- 지도

- 영상 공유 분석 화면

-즐겨찾기

- 로그인 화면

- 회원가입 화면

- 회원 정보 입력/수정/탈퇴

- 장소 등록

- 장소 등록 수정

- 장소 등록 삭제

3.3 Database / File Design

[그림 3.1 - E-R Diagram]

4. 테스트 데이터 및 결과 목록

No.	입력 데이터	예측 결과	실제 결과	비고
1	주간 중 실내에서 사람들을 촬영한 mp4 파일	traning 용도 이미지 및 레이블 파일을 통해 학습된 영상 처리 모델이 입력으로 들어온 데이터를 처리하고, 각각의 사람 객체를 탐지, 영상에 담긴 사람의 수가 많지 않고 detection 시 방해 요인이 많지 않기 때문에 높은 정확도를 가질 것으로 예측	예측했던 결과와 같이 영상 내 움직이는 사람들도 높은 정확도로 각각의 객체들을 탐지하여 레이블링 처리	
2	주간 중 실외에서 사람들을 촬영한 mp4 파일	학습된 모델을 통하여 입력 데이터를 처리하며, 실외라는 환경 요인으로 인하여 실내에서 사람들을 담았던 mp4의 데이터보다는 낮은 정확도로 detection이 이뤄질 것으로 예측	실제로도 건물 내부에서 촬영된 데이터보다는 낮은 정확도로 detection이 이뤄졌고, 특정 배경을 둔 상황에서는 오히려 높은 정확도를 가지는 경우 발생	
3	야간 중 실외에서 사람들을 촬영한 mp4 파일	최적의 가중치를 담고 있는 학습 모델 파일로 입력으로 들어온 데이터를 처리하며, 야간이라는 환경에 의하여 사람의 색이나 생김새를 식별하는 것에 어려움이 있을 것이라 판단하였고, 주간보다 월등히 낮은 정확도를 가질 것으로 예측	주간 입력 데이터와 비슷한 정확도로 입력 데이터 내 사람 객체들을 detection 함	
4	많은 사람들이 서 있는 장면을 촬영한 mp4 파일	사전에 학습된 딥러닝 모델을 이용하여 입력 데이터를 처리하며, 많은 사람들이 밀집하여 있는 입력 데이터의 경우 셀 단위로 하나의 객체를 예측하기 때문에 객체 감지 과정에서 정확도를 낮추는 요인으로 작용하여 가장 낮은 정확도로 detection이 이뤄질 것으로 예측	예측한 바와 같이 개별 객체의 간격이 너무 좋은 경우에는 정확하게 감지해내기가 어려워 가장 낮은 정확도로 사람 객체를 판별	

[표 4.1 - 테스트]

5. 기타 구현 참고사항

5.1 오픈소스 및 재사용

이름	비고
roboflow	https://roboflow.com/
YOLOv5	https://github.com/ultralytics/yolov5
TensorFlow	https://www.tensorflow.org/

[丑 5.1 - OOS&Reuse]

5.2 차기 구현시 반드시 고려할 사항

- 현재 딥러닝 모델을 이용하여 카메라 기능으로 각각의 사람 객체를 판별하고 있지만, 같은 사람이 카메라 영역 내에서 밖으로 벗어난 후 다시 들어왔을 때 같은 사람으로 인식하여 사람 수를 계산하는 과정에서 카운팅이 발생하지 않도록 각 객체별로 고유한 id값을 부여하여 처리하는 기술을 적용해야 함

[실시간 영상 분석을 통한 인원 밀집도 공유 시스템]

2차 빌드 개발 명세서

2022년 11월 25일

문서번호 : 2022-2차_빌드_개발_명세서_001

소 속 : 충북대학교 소프트웨어학과

팀 명:시나브로

팀 원: 김윤희, 성열암, 임수연

교 수: Aziz Nasridinov 교수님

목 차

1.	개발 개요	1
2.	분석 명세	2
	2.1 Use Case Diagram	2
	2.2 Use Case Description	3
	2.3 Class Diagram	9
3.	설계 명세	- 10
	3.1 Window Navigation Diagram	·· 10
	3.2 User Interface Design	- 11
	3.3 Database / File Design	18
4.	테스트 데이터 및 결과 목록	- 19
5.	기타 구현 참고사항	21
	5.1 OSS 및 Reuse	21
	5.2 차기 구현 시 반드시 고려할 사항	- 21

제/개정 이력

버전	날짜	작성자 성명	제/개정사항	비고
1.0	.0 11/25	정 : 임수연	초안작성	
		부 : 김윤희, 성열암		

1. 개발 개요

Task NO.	Task Name	담당자	시작일	종료일	비고
FR2.1	앱과 모델 연결	임수연	22.11.18	22.11.30	
FR2.2	카메라 연동 및 권한 허용	임수연	22.11.20	22.11.30	
FR2.3	스캔 완료 버튼	임수연	22.12.1	22.12.2	
FR3	카메라 스캔으로 검출된 데이터 처리	임수연	22.12.1	22.12.2	
FR4.001	카카오 API를 통한 지도 띄우기	성열암	22.11.18	22.11.19	
FR4.002	현재 위치 갱신 기능 및 권한 허용	성열암	22.11.19	22.11.20	
FR4.003	지도 축소/확대 기능	성열암	22.11.20	22.11.21	
FR4.004	지도 클릭 시 해당 위치에 신규 마커 생성	성열암	22.11.21	22.11.22	
FR4.005	메뉴바 UI 구성	성열암	22.11.22	22.11.24	
FR4.006	하단 슬라이드 바 (장소 상세정보, 장소 등록, 스캔 등)	성열암	22.11.24	22.11.26	
FR4.007	검색 란 UI 구성	김윤희, 성열암	22.11.18	22.11.19	
FR4.008	설정 메뉴 UI 구성	김윤희	22.11.19	22.11.20	
FR4.009	프로필 메뉴 UI 구성	김윤희	22.11.20	22.11.21	
FR4.010	즐겨찾기 메뉴 UI 구성	김윤희	22.11.21	22.11.22	
FR5	DB 설계 및 구성	김윤희, 임수연	22.11.27	22.11.30	

[표 1.1 - 개발 개요]

2. 분석 명세

2.1 Use Case Diagram

[그림 2.1 - UseCase Diagram]

*1차 빌드 : 💳

*2차 빌드 : 💳

2. Use Case Description

Use Case Name	영상 분석 공유	ID	UC-001	Importance Level	High
Primary Actor	사용자(회원, 비회원)	Use Case Type Detail, Essential			
Stakeholders	사용자: 사용자가 인원 밀집 상태 정보를 스캔, 수집, 공유하고자 한다.				
Brief Description	사용자가 인원 밀집 상태 정보를 공유하는 것을 묘사한다.				
Trigger	사용자가 카메라 버튼을 클릭한다.				
Relationships	Association: 사용자				

Normal Flow of Event (Normal Scenario)

- 1. 사용자가 카메라 버튼을 클릭한다.
- 2. 시스템은 사용자 위치와 공유 장소가 일치하는지 확인한다.
- 3. 일치하면, 시스템이 카메라를 켠다.
- 4. 시스템은 사용자가 취할 액션 방향을 카메라 화면 위에 출력한다.
- 5. 사용자는 카메라로 주변 환경을 스캔한다.
- 6. 시스템은 사람 객체를 탐지한다.
- 7. 시스템은 사람 객체를 인식한다.
- 8. 시스템은 사람 객체를 카운트한다.
- 9. 시스템은 공유 대상 장소를 저장한다.
- 10. 시스템은 결괏값(인원수)을 저장한다.
- 9. 사용자가 기타 공유내용을 추가한다.
- 10. 사용자가 자동 완성 공유내용을 수정한다.
- 11. 사용자가 총 공유내용을 확인한다.
- 12. 시스템은 공유내용을 저장한다.
- 13. 시스템은 공유내용을 지도에 공유한다.
- 14. 시스템은 공유내용 알림 사용사례를 호출한다.
- 15. 시스템은 포인트 리워드 사용사례를 호출한다.

Sub_Flow

Alternative / Exception Flow	
3a, 일치하지 않으면, 시스템은 공유를 종료한다.	

[표 2.1 - 영상분석공유]

Use Case Name	장소 정보 관리	ID	UC-004	Importance Level	middle
Primary Actor	사용자	Use Case Type Detail, Essential			
Stakeholders	사용자 : 사용자가 장소를 등록하거나 수정하거나 삭제하고자 한다.				
Brief Description	사용자가 장소를 등록이나 수정이나 삭제하는 것을 묘사한다.				
Trigger	사용자가 장소 정보를 등록하거나 수정하거나 삭제하고자 한다.				
Relationships	Association: 사용자				

Normal Flow of Event (Normal Scenario)

- 1. 사용자가 장소 정보를 등록하고자 하면, S-1: 장소 정보 등록 SubFlow를 수행한다.
- 2. 사용자가 장소 정보를 수정하고자 하면, S-2: 장소 정보 수정 SubFlow를 수행한다.
- 3. 사용자가 장소 정보를 삭제하고자 하면, S-2: 장소 정보 삭제 SubFlow를 수행한다.

Sub_Flow

S-1: 장소 정보 등록

- (1) 시스템은 장소 상세 정보를 입력받는다.
- (2) 시스템은 장소를 등록한다.
- (3) 시스템은 새 장소 등록 알림 사용사례를 호출한다.
- S-2: 장소 정보 수정
- (1) 사용자가 수정하고자 하는 장소 정보를 수정한다.
- S-3: 장소 정보 삭제
- (1) 사용자가 삭제하고자 하는 장소를 삭제한다.

Alternative / Exception Flow

[표 2.2 - 장소 정보 관리]

Use Case Name	지도	ID	UC-006	Importance Level	high
Primary Actor	사용자	Use Case Type Detail, Essential			
Stakeholders	카카오 지도 API : 카카오 지도 API가 지도를 출력한다.				
Brief Description	시스템이 지도를 시각화하여 제공하는 것을 묘사한다.				
Trigger	사용자가 시스템에 방문하거나 공유를 완료하거나 현재 위치 시점 이동을 하고자한다.				
Relationships	Association: 카카오 지도 API				

Normal Flow of Event (Normal Scenario)

- 1. 시스템은 카카오 지도 API를 이용해 지도를 출력한다.
- 2. 시스템은 지도에 마커로 공유 가능 장소를 표시한다.
- 3. 사용자가 영상 분석 공유를 완료하면, 시스템은 지도에 공유내용을 출력한다.
- 4. 시스템은 지도에 밀집 상태정보 등을 시각화하여 표현한다.
- 5. 사용자가 현재 위치 시점 이동을 원하면, 지도는 사용자의 현재 위치로 시점을 이동한다.
- 6. 사용자가 지도를 확대하면 지도가 커진다.
- 7. 사용자가 지도를 축소하면 지도가 작아진다.

Sub_Flow

Alternative / Exception Flow

[표 2.3 - 지도]

Use Case Name	즐겨찾기	ID	UC-013	Importance Level	middle	
Primary Actor	회원	Use (Case Type	Detail, Essential		
Stakeholders	회원 : 회원은 즐겨찾기를 등록한다	회원 : 회원은 즐겨찾기를 등록한다.				
Brief Description	회원이 원하는 장소를 즐겨찾기에 추	가 등록	록하는 것을 .	묘사한다.		
Trigger	회원이 즐겨찿기에 장소를 추가 등록	하고자	한다.			
Relationships	Association: 회원					
Normal Flow of I	Event (Normal Scenario)					
 회원이 특정 장소를 즐겨찾기에 추가 등록하고자 한다. 회원이 즐겨찾기 버튼을 누른다. 시스템은 회원의 즐겨찾기에 해당 장소를 추가한다. 시스템은 즐겨찾기 등록 알림을 호출한다. 						
Sub_Flow						
Alternative / Exception Flow						

[표 2.4 - 즐겨찿기]

Use Case Name	검색	ID	UC-015	Importance Level	low
Primary Actor	사용자	자 Use Case Type Detail, Essential			
Stakeholders	사용자: 사용자가 검색을 진행한다.				
Brief Description	사용자가 검색하는 것을 묘사한다.				
Trigger	사용자가 처음으로 시스템에 접근하고자 한다.				
Relationships	Association: 사용자				

Normal Flow of Event (Normal Scenario)

- 1. 사용자가 장소를 검색하고자 한다.
- 2. 사용자가 장소와 관련된 키워드나 장소 이름을 검색창에 입력한다.
- 3. 시스템은 검색 란에 입력된 내용을 기반으로 장소를 검색한다.
- 4. 시스템은 검색 결과를 출력한다.
- 5. 사용자는 검색 결과를 확인한다.
- 6. 사용자는 장소 검색 결과 목록에서 한 장소를 선택한다.
- 7. 사용자는 상세 장소 내용을 확인한다.

Sub_Flow

Alternative / Exception Flow

[표 2.5 - 검색]

2.3 Class Diagram

[그림 2.2 - Class Diagram(for the function)]

*1차 빌드 : ___

*2차 빌드 :

3. 설계 명세

[그림 3.1 - Window Navigation Diagram]

*2차 빌드 :

3.2 User Interface design

-시간 화면 / 튜토리얼

- 지도

- 영상 공유 분석 화면

-즐겨찾기

- 로그인 화면

- 회원가입 화면

- 회원 정보 입력/수정/탈퇴

- 장소 등록

- 장소 등록 수정

- 장소 등록 삭제

3.3 Database / File Design

[그림 3.1 - E-R Diagram]

4. 테스트 데이터 및 결과 목록

For Software/System Test

빌드명	메인페이지 내 UI 요소의 기능 추가				
T_ID	Input	Output	Test Result	Remark	
T-01	앱 실행 시	IntroActivity 표시 직후 MainActivity(지도 화면 표시) 표시	Pass		
T-02	메인페이지(MainActivity) 내 현재 위치 버튼 터치	현재 위치 정보 권한 확인 요청	Pass		
T-03	메인페이지(MainActivity)내 + 버튼 터치	지도 화면 확대	Pass		
T-04	메인페이지(MainActivity)내 - 버튼 터치	지도 화면 축소	Pass		
T-05	메인페이지 내 지도 화면 터치	Showing Bottom Sheet layout, 터치 지점 위치에 marker 표시	Pass		
T-06	검색 창 좌측의 햄버거 버튼 터치	Showing Side Navigation drawer	Pass		
T-07	Side Navigation drawer 내 마이페이지 메뉴 터치	마이페이지 Fragment	Pass		
T-08	Side Navigation drawer 내 즐겨찾기 메뉴 터치	즐겨찾기 Fragment	Pass		
T-09	Side Navigation drawer 내 설정 메뉴 터치	설정 Fragment	Pass		
T-10	Side Navigation drawer 내 문의 메뉴 터치	문의 Fragment	Pass		
T-11	Side Navigation drawer 내 개발 정보 메뉴 터치	개발 정보 Fragment	Pass		
T-12	검색 데이터 입력 창 구현	지도에 검색 할 수 있는 UI 표시	Pass	FR4.007	

T-13	세팅 UI 버튼 클릭 -> Setting UI	앱 내 특정 기능을 설정할 수 있는 UI 출력	Pass	FR4.008
T-14	마이페이지 버튼 클릭-> 프로필 UI	마이페이지를 수정할 수 있는 UI 출력	Pass	FR4.009
T-15	즐겨찾기 버튼 클릭 -> 즐겨찾기 UI	즐겨찾기 버튼을 클릭하면 즐겨찾기를 수정할 수 있는 UI 출력	Pass	FR4.010
T-16	애플리케이션에 사용할 ER 다이어그램 및 데이터베이스 구현	애플리케이션에서 사용할 수 있는 전반적인 데이터베이스를 설계한다.	Pass	FR5

빌드명	앱 UI와 모델 연결 기능(영상 분석 공유 기능) 추가				
T_ID	Input	Output	Test Result	Remark	
T-01	UI 하단 바의 카메라 버튼 클릭	카메라 화면 출력	Pass		
T-02	카메라를 통한 사람 이미지	모델을 통해 사람 객체 탐지하여 바운딩 박스, 라벨 이름, 스코어 출력	Pass		
T-03	카메라 화면의 완료 버튼 클릭	검출한 사람 객체 바운딩 박스의 수 출력	Pass		
T-04	객체 검출 수 알림창의 확인 버튼 클릭 시	카메라 버튼 눌렀던 화면으로 이동	Pass		

[표 4.1 - 테스트]

5. 기타 구현 참고사항

5.1 오픈소스 및 재사용

이름	비고
roboflow	https://roboflow.com/
Y0L0v5	https://github.com/ultralytics/yolov5
TensorFlow	https://www.tensorflow.org/

[丑 5.1 - OOS&Reuse]

5.2 차기 구현시 반드시 고려할 사항

- 현재 YOLOv5 모델을 Custom data를 통해 재학습한 뒤, 그 모델을 경량화 하여 앱에 연결해놓은 상황입니다. 하지만 경량화 과정에서 정확도, 반응 속도 등이 낮아지고 느려졌음을 확인할 수 있습니다. 더불어실시간 카메라 화면을 통해 객체 검출을 하면서 프레임 별로 같은 객체를 인식하고 제거하지 못하여 객체를 중복 인식하여 카운트하고 있습니다. 이 문제점을 해결하기 위해 모델을 서버에 두고 결과 값을 받아와 경량화를 거치지 않고 받아와 정확도 및 속도 측면의 문제를 해결하고자 합니다. 중복성 문제의 경우도, 객체 트래킹 모델을 추가로 넣어 프레임이 계속 환기되더라도 같은 대상을 같은 객체로 인식하도록 하고자 합니다.