An Autonomous Institution | Affiliated to Anna University & Approved by AICTE, New Delhi Accredited by NBA and NAAC "A+" | An ISO 9001:2015 Certified and MHRD NIRF ranked institution Sai Leo Nagar, West Tambaram, Chennai - 600 044. www.sairamit.edu.in

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

B.E./ B. TECH DEGREE EXAMINATION CONTINUOUS ASSESSMENT TEST- I

(Common to CSE & IT)

Subject : Data Structures Duration : 1.30 Hrs
Subject code : CS8391 Date : 19.08.2020
Year/ Sem : II/III Max. Marks : 50

PART A — $(5 \times 2 = 10 \text{ Marks})$

Answer all questions

1. Discuss the advantages and disadvantages of linked lists and arrays. [U][CO1]

2. Analyze and write the array representation of a polynomial:

p(x) = 4x3+6x2+7x+9 [A][CO1]

3. Evaluate the following postfix expression 523+8*+ [E][CO2]

4. Define ADT. Give any two examples. [R][CO1]

5. Develop an algorithm for displaying the elements in a Stack [C][CO2]

PART B — $(2 \times 13 = 26 \text{ Marks})$

Answer the questions

1. a) Write a procedure to add and subtract two polynomials using linked lists [C][CO1]

OR

- b) What are the ways to insert a node in a linked list? Write an algorithm for inserting a node before a given node in a circular doubly linked list. [C][C01]
- 2. a) i. Show the procedure to convert the infix expression to postfix expression and steps involved in evaluating the postfix expression.
 - ii. Convert the expression A-(B/C+(D%E*F)/G)*H to postfix form and evaluate the given postfix expression 8 2 3 * 7 + 3 /. [AE][CO2]

OR

b) Write and explain the ADT operations for linked list implementation of as stack.[R][CO2]

PART C — (1 x 14= 14 Marks)

Compulsory Question

- 1. Write an ADT to perform the following in a doubly linked list. [A][CO1]
 - i) to insert an element in the beginning, middle, end of the list
 - ii) to delete an element from anywhere in the list

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE OUTCOMES (CO) At the end of the course the students will be able to

R2017	CS8391-DATA STRUCTURES	L	T	P	C
		3	0	0	3
C203.1	Implement abstract data types for Linear Data Structures - List				
C203.2	Implement abstract data types for Linear Data Structures - Stacks and Queues				
C203.3	Implement abstract data types for Non Linear Data Structures - Trees				
C203.4	Implement abstract data types for Non Linear Data Structures - Graphs				
C203.5	Critically analyze the various sorting algorithms and understand appropriate hash functions that result in a collision free scenario for data storage and retrieval				