Laboratórny protokol

Meranie hustoty objektov

Adam Jenča

Príma A Fyzika

Obsah

1	Teoretický Úvod 1.1 Jednotky hustoty	2 2
2	Popis experimentu 2.1 Pomôcky	2 2 3
3	Výpočty 3.1 Tabuľka	3
	3.2 Valček 1	3 4
	3.4 Valček 3	4
4	Porovnanie	4
5	Záver	5

1 Teoretický Úvod

Hustota ϱ_x popisuje pomer hmotnosti a objemu kocky vyrobenej z materiálu x. Vzorec pre hustotu pri hmotnosti m a objeme V je $\varrho = \frac{m}{V}$.

1.1 Jednotky hustoty

Jednotky hustoty sa píšu vo formáte $\frac{J_m}{J_V}$ kde J_m je jednotka hmotnosti a J_V je jednotka objemu. Základná jednotka hustoty je $\frac{g}{cm^3}$ ($\varrho_x = n \frac{g}{cm^3}$ znamená, že kocka z materiálu x s objemom 1 cm^3 váži n gramov) .

2 Popis experimentu

Obr. 1: Valček z neznámeho materiálu(hliníka)

Potrebujeme zistiť hustotu neznámeho materiálu a porovnať ju s jeho tabuľkovou hustotou. Máme k dispozícii 4 valčeky z tohto materiálu (pozri **Obrázok 1**), každý inej veľkosti.

2.1 Pomôcky

Na experiment potrebujeme:

- odmerný valec
- váhy
- valčeky z neznámeho materiálu
- vodu

2.2 Postup

- 1. Pre každý valček:
 - (a) Pomocou váh odmeriame hmotnosť valčeka m_n
 - (b) Odmeriame objem valčeka V_n nasledovne:
 - i. Do odmerného valca napustíme dostatočné množstvo vody
 - ii. Odmeriame objem vody vo valci V_n^1
 - iii. Vložíme valček do vody tak, aby bol úplne ponorený
 - iv. Odmeriame objem vody vo valci po vložení valčeka ${\cal V}_n^2$
 - v. Vypočítame objem valčeka pomocou vzorca $V_n = V_n^2 V_n^1$
 - (c) Vypočítame hustotu valčeka $\varrho_n = \frac{m_n}{V_n}$
- 2. Vypočítame priemernú hustotu $\overline{\varrho}$ pomocou vzorca

$$\overline{\varrho} = \frac{\sum_{n=1}^{4} \varrho_n}{4} = \frac{\varrho_1 + \varrho_2 + \dots + \varrho_4}{4}.$$

3. Porovnáme $\overline{\varrho}$ s tabuľkovou hustotou ϱ_{TAB}

3 Výpočty

3.1 Tabuľka

Valček	V_n^1	V_n^2	V_n	m_n	ϱ_n
1	$41.1cm^3$	$45.3cm^{3}$	$4.2cm^{3}$	13.3g	$3.1\overline{6} \frac{g}{cm^3}$
2	$41.7cm^{3}$	$48.3cm^{3}$	$6.6cm^{3}$	18.8 <i>g</i>	$2.\overline{84}\frac{g}{cm^3}$
3	$30.2cm^{3}$	$43.3cm^{3}$	$13.1cm^{3}$	27.2g	$2.07633 \frac{g}{cm^3}$
4	$80.1cm^{3}$	$99.3cm^{3}$	$19.2cm^{3}$	38.2g	$1.99 \frac{g}{cm^3}$

3.2 Valček 1

1. Vypočítame V_1 :

$$V_1 = 45.3cm^3 - 41.1cm^3 = 4.2cm^3$$

2. Vypočítame ϱ_1 :

$$\varrho_1 = \frac{m_1}{V_1} = \frac{13.3}{4.2} = 3.1\overline{6} \frac{g}{cm^3}$$

3.3 Valček 2

1. Vypočítame
$$V_2$$
:

$$V_2 = 48.3cm^3 - 41.7cm^3 = 6.6cm^3$$

2. Vypočítame
$$\varrho_2$$
:

$$\varrho_2 = \frac{m_2}{V_2} = \frac{18.8}{6.6} = 2.\overline{84} \frac{g}{cm^3}$$

3.4 Valček 3

1. Vypočítame
$$V_3$$
:

$$V_3 = 43.3cm^3 - 30.2cm^3 = 13.1cm^3$$

2. Vypočítame
$$\varrho_3$$
:

$$\varrho_3 = \frac{m_3}{V_3} = \frac{27.2}{13.1} = 2.07633 \frac{g}{cm^3}$$

3.5 Valček 4

1. Vypočítame
$$V_4$$
:

$$V_4 = 99.3cm^3 - 80.1cm^3 = 19.2cm^3$$

2. Vypočítame
$$\varrho_4$$
:

$$\varrho_4 = \frac{m_4}{V_4} = \frac{38.2}{19.2} = 1.99 \frac{g}{cm^3}$$

3.6 Priemer

$$\overline{\varrho} = \frac{\varrho_1 + \varrho_2 + \varrho_3 + \varrho_4}{4} = \frac{3.1\overline{6} + 2.\overline{84} + 2.07633 + 1.99}{4} = 2.52037037 \frac{g}{cm^3}$$

Porovnanie

Tabuľková hustota $\varrho_{TAB}=2.70\frac{g}{cm^3}.$ Priemerná hustota $\overline{\varrho}=2.52037037\frac{g}{cm^3}.$ Rozdiel hustôt $\varrho_d=abs(\varrho_{TAB}-\overline{\varrho})=0.17962963\frac{g}{cm^3}$

5 Záver

Výsledok vyšiel dosť presne, s rozdielom menším ako $0.2 \frac{g}{cm^3}$. Rozdiel $0.2 \frac{g}{cm^3}$ vznikol pravdepodobne pri štvrtom meraní, keďže tam vyšla výrazne nižšia hustota ako ϱ_{TAB} (1.99 $\frac{g}{cm^3}$)
Pravdepodobne som sa pomýlil pri meraní objemu V_4 , lebo je pri ňom väčšia chyba merania ako

pri hmotnosti m_4 .

Táto chyba mohla vzniknúť tým. že som sa do odmerného valca nepozeral kolmo, ale šikmo zvrchu. Oveľa presnejšie výsledky ako pri meraní objemu ponáraním do kvapaliny v odmernom valci sa dajú dosiahnuť vypočítaním objemu valca:

$$V_c = (\pi \times r_c^2) \times v_c,$$

kde r_c je polomer a v_c je výška valca c.