Concours commun Centrale

MATHÉMATIQUES 1. FILIERE MP

Partie I - Préliminaires géométriques

I.A -

I.A.1) Vérifions que $\tau_1 \subset \tau$. Soit $z \in \tau_1$. Il existe trois réels positifs α , β et γ tels que $\alpha + \beta + \gamma = 1$ et $z = \text{bar}\{0(\alpha), 1(\beta), i(\gamma)\}$. Mais alors par associativité de la barycentration,

$$z = bar\{-1(\alpha/2), 1(\alpha/2), 1(\beta), i(\gamma)\} = bar\{-1(\alpha/2), 1(\alpha/2 + \beta), i(\gamma)\} \in \tau$$

car les trois réels $\alpha' = \frac{\alpha}{2}$, $\beta' = \frac{\alpha}{2} + \beta$ et $\gamma' = \gamma$ sont trois réels positifs vérifiant $\alpha' + \beta' + \gamma' = \alpha + \beta + \gamma = 1$. Donc $\tau_1 \subset \tau$. De même, si $z = \text{bar}\{-1(\alpha), 0(\beta), i(\gamma)\} \in \tau_0$

$$z = bar\{-1(\alpha), -1(\beta/2), 1(\beta/2), i(\gamma)\} = bar\{-1(\alpha + \beta/2), 1(\beta/2), i(\gamma)\} \in \tau$$

et donc $\tau_0 \subset \tau.$ On a montré que $\tau_0 \cup \tau_1 \subset \tau.$

Inversement, soit $z \in \tau$. Il existe trois réels positifs α , β et γ tels que $\alpha + \beta + \gamma = 1$ et $z = \text{bar}\{-1(\alpha), 1(\beta), i(\gamma)\}$.

• Si $\alpha < \beta$, on peut écrire

$$z = bar\{1(-\alpha), 1(\beta), i(\gamma)\} = bar\{1(\beta - \alpha), i(\gamma)\} = bar\{0(2\alpha), 1(\beta - \alpha), i(\gamma)\} \in \tau_1.$$

• Si $\alpha \geqslant \beta$, on peut écrire

$$z = bar\{-1(\alpha), -1(-\beta), i(\gamma)\} = bar\{-1(\alpha - \beta), i(\gamma)\} = bar\{-1(\alpha - \beta), 0(2\beta), i(\gamma)\} \in \tau_0.$$

On a ainsi montré que $\tau \subset \tau_0 \cup \tau_1$ et finalement que

$$\tau = \tau_0 \cup \tau_1.$$

I.A.2)

I.A.3) a) Soient s la réflexion d'axe la droite passant par a et dirigée par $e^{i\theta}$, s' la réflexion d'axe la droite passant par a et dirigée par 1 et r la rotation de centre a et d'angle 2θ . On sait que $s \circ s' = r$ et donc $s = r \circ s'$. Si on note z_1 l'image de z par s' et z' l'image de z_1 par r, on a

$$z'-\alpha=e^{2\mathrm{i}\theta}(z_1-\alpha)=e^{2\mathrm{i}\theta}\overline{(z-\alpha)}.$$

$$z'-\alpha=e^{2i\theta}\overline{(z-\alpha)}.$$

b) Il est connu que

$$z'-\alpha=\rho(z-\alpha).$$

c) D'après les questions a) et b), l'image z' de z par la composée de la réflexion d'axe la droite passant par $\mathfrak a$ et dirigée par $e^{i\theta}$ et de lhomothétie de centre a et de rapport ρ est

$$z' - a = \rho e^{2i\theta} \overline{(z - a)}$$

On doit noter que puisque le centre de l'homothétie appartient à l'axe de la réflexion, l'homothétie et la réflexion commutent.

• Déterminons les points invariants par ϕ_0 . Soient $(x,y) \in \mathbb{R}^2$ puis z = x + iy.

$$\begin{split} \varphi_0(z) &= z \Leftrightarrow \frac{1+\mathrm{i}}{2}\overline{z} + \frac{-1+\mathrm{i}}{2} = z \Leftrightarrow (1+\mathrm{i})(x-\mathrm{i}y) + (-1+\mathrm{i}) = 2(x+\mathrm{i}y) \\ &\Leftrightarrow (-x+y-1) + \mathrm{i}(x-3y+1) = 0 \Leftrightarrow \left\{ \begin{array}{c} -x+y=1 \\ x-3y=-1 \end{array} \right. \\ &\Leftrightarrow x = \frac{\left| \begin{array}{cc} 1 & 1 \\ -1 & -3 \end{array} \right|}{\left| \begin{array}{c} -1 & 1 \\ 1 & -1 \end{array} \right|} \Leftrightarrow x = -1 \ \mathrm{et} \ y = 0 \Leftrightarrow z = -1. \end{split}$$

Posons alors $a_0 = -1$.

$$z' = \frac{1+i}{2}\overline{z} + \frac{-1+i}{2} \Leftrightarrow z' - a_0 = \left(\frac{1+i}{2}\overline{z} + \frac{-1+i}{2}\right) - \left(\frac{1+i}{2}\overline{a_0} + \frac{-1+i}{2}\right)$$
$$\Leftrightarrow z' - a_0 = \frac{1}{\sqrt{2}}e^{i\pi/4}\overline{(z-a_0)}.$$

 ϕ_0 est donc la composée de l'homothétie de centre $\alpha_0=-1$ et de rapport $\frac{1}{\sqrt{2}}$ et de la réflexion d'axe la droite passant par a_0 et dirigée par $e^{i\pi/8}$.

• Déterminons les points invariants par ϕ_1 . Soient $(x,y) \in \mathbb{R}^2$ puis z = x + iy.

$$\begin{split} \varphi_1(z) &= z \Leftrightarrow \frac{1-i}{2}\overline{z} + \frac{1+i}{2} = z \Leftrightarrow (1-i)(x-iy) + (1+i) = 2(x+iy) \\ &\Leftrightarrow (-x-y+1) + i(-x-3y+1) = 0 \Leftrightarrow \left\{ \begin{array}{c} x+y=1 \\ x+3y=1 \end{array} \right. \\ &\Leftrightarrow x = \frac{\left| \begin{array}{c} 1 & 1 \\ 1 & 3 \end{array} \right|}{\left| \begin{array}{c} 1 & 1 \\ 1 & 3 \end{array} \right|} \text{ et } y = \frac{\left| \begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \right|}{\left| \begin{array}{c} 1 & 1 \\ 1 & 3 \end{array} \right|} \Leftrightarrow x = 1 \text{ et } y = 0 \Leftrightarrow z = 1. \end{split}$$

Posons alors $a_1 = 1$.

$$z' = \frac{1-i}{2}\overline{z} + \frac{1+i}{2} \Leftrightarrow z' - a_0 = \left(\frac{1-i}{2}\overline{z} + \frac{1+i}{2}\right) - \left(\frac{1-i}{2}\overline{a_1} + \frac{-1+i}{2}\right)$$
$$\Leftrightarrow z' - a_1 = \frac{1}{\sqrt{2}}e^{-i\pi/4}\overline{(z-a_1)}.$$

 ϕ_1 est donc la composée de l'homothétie de centre $\alpha_1 = 1$ et de rapport $\frac{1}{\sqrt{2}}$ et de la réflexion d'axe la droite passant par α_1 et dirigée par $e^{-i\pi/8}.$

• Soit $k \in \{0,1\}$. Supposons que $\phi_k = h_k \circ s_k$ où h_k est une homothétie de centre $a \in \mathbb{C}$ et de rapport $\rho > 0$ et s_k est une réflexion d'axe passant par a. L'image z' de z par ϕ_k vérifie donc $z' - a = \rho e^{2i\theta} \overline{(z-a)}$.

Puisque $\phi_i(a) = h_i \circ s_i(a) = a$, a est nécessairement a_i . Ensuite, puisque $\rho > 0$, pour $z \neq a$, on a nécessairement

$$\rho = \left| \frac{z' - a}{\overline{(z - a)}} \right| = \begin{cases} \left| \frac{1 + i}{2} \right| & \text{si } k = 0 \\ \frac{1 - i}{2} & \text{si } k = 1 \end{cases} = \frac{1}{\sqrt{2}}. \text{ Par suite, } h_k \text{ est nécessairement l'homothétie de centre } a_k \text{ et de rapport } \frac{1}{\sqrt{2}}.$$

puis s_k est nécessairement $h_k^{-1} \circ \varphi_k$. Les décompositions de φ_0 et φ_1 sont donc uniques. http://www.maths-france.fr 2 © Jean-Louis F

I.A.4) ϕ_0 et ϕ_1 sont des applications affines. On sait alors que, pour $k \in \{0, 1\}$,

$$\begin{split} \varphi_k(\tau) = & \left\{ \varphi_k \left(\mathrm{bar} \{ \alpha(\alpha), b(\beta), c(\gamma) \} \right), \ (\alpha, \beta, \gamma) \in K \right\} = & \left\{ \mathrm{bar} \{ \varphi_k(\alpha)(\alpha), \varphi_k(b)(\beta), \varphi_k(c)(\gamma) \}, \ (\alpha, \beta, \gamma) \in K \right\} \\ = & \left. \varphi_k(\alpha) \widehat{\varphi_k(b)} \varphi_k(c). \end{split}$$

- $$\begin{split} \bullet \ \varphi_0(-1) &= -1, \ \varphi_0(1) = i \ \mathrm{et} \ \varphi_0(i) = \frac{1+i}{2}(-i) + \frac{-1+i}{2} = 0. \ \mathrm{Donc} \ \varphi_0(\tau) = \widehat{-10i} = \tau_0. \\ \bullet \ \varphi_1(-1) &= i, \ \varphi_1(1) = 1 \ \mathrm{et} \ \varphi_1(i) = \frac{1-i}{2}(-i) + \frac{1+i}{2} = 0. \ \mathrm{Donc} \ \varphi_0(\tau) = \widehat{01i} = \tau_1. \end{split}$$

$$\varphi_0(\tau) = \tau_0 \ \mathrm{et} \ \varphi_1(\tau) = \tau_1.$$

I.B - (Diamètre d'un triangle plein)

I.B.1) a) Puisque \mathbb{R}^3 est de dimension finie sur \mathbb{R} , on sait que toutes les normes sur \mathbb{R}^3 sont équivalentes. On munit alors \mathbb{R}^3 de la norme $\| \cdot \|_1$.

Les applications e_1^* : $(\alpha, \beta, \gamma) \mapsto \alpha$, e_2^* : $(\alpha, \beta, \gamma) \mapsto \beta$, e_3^* : $(\alpha, \beta, \gamma) \mapsto \alpha$ et $e = e_1^* + e_2^* + e_3^*$ sont quatre formes linéaires et donc sont continues sur \mathbb{R}^3 puisque \mathbb{R}^3 est de dimension finie sur \mathbb{R} . Donc les quatre ensembles E₁ = $\{(\alpha, \beta, \gamma) / \alpha \geqslant 0\}$ = $(e_1^*)^{-1}([0, +\infty[), E_2 = \{(\alpha, \beta, \gamma) / \beta \geqslant 0\} = (e_2^*)^{-1}([0, +\infty[), E_3 = \{(\alpha, \beta, \gamma) / \gamma \geqslant 0\} = (e_3^*)^{-1}([0, +\infty[))$ et E = $\{(\alpha, \beta, \gamma) / \alpha + \beta + \gamma = 1\} = e^{-1}(\{1\})$ sont quatre fermés de \mathbb{R}^3 en tant qu'images réciproques de fermés de \mathbb{R} par des applications continues sur \mathbb{R}^3 . Mais alors $K = E_1 \cap E_2 \cap E_3 \cap E$ est un fermé de \mathbb{R}^3 en tant qu'intersection de fermés de \mathbb{R}^3 .

D'autre part, $\forall (\alpha, \beta, \gamma) \in \mathbb{R}^3$,

$$\|(\alpha, \beta, \gamma)\|_1 = |\alpha| + |\beta| + |\gamma| = \alpha + \beta + \gamma = 1 \le 1.$$

Donc K est une partie bornée de \mathbb{R}^3 .

En résumé, K est une partie fermée et bornée de \mathbb{R}^3 et donc un compact de \mathbb{R}^3 d'après le théorème de BOREL-LEBESGUE.

K est un compact de \mathbb{R}^3 .

 $\textbf{b)} \ \ \text{Soient} \ \ u = (\alpha, \beta, \gamma) \in K \ \text{et} \ \ v = (\alpha', \beta', \gamma') \in K \ \text{puis} \ \ t \in [0, 1]. \ \ \text{Alors} \ \ tu + (1-t)v = (t\alpha + (1-t)\alpha', t\beta + (1-t)\beta', t\gamma + (1-t)\gamma'). \ \ \text{Les trois réels} \ \ \alpha'' = t\alpha + (1-t)\alpha', \ \beta'' = t\beta + (1-t)\beta' \ \ \text{et} \ \ \gamma'' = t\gamma + (1-t)\gamma' \ \ \text{sont trois réels positifs tels que}$

$$\alpha'' + \beta'' + \gamma'' = t(\alpha + \beta + \gamma) + (1 - t)(\alpha' + \beta' + \gamma') = t + 1 - t = 1,$$

et donc $tu + (1-t)v \in K$. On a montré que

K est un convexe de \mathbb{R}^3 .

- . ψ est une application $\mathbb{R}\text{-lin\'eaire}$ et $\psi(K)=\widehat{\mathfrak{abc}}.$
- \bullet ψ est affine et K est convexe. Donc $\psi(K)$ est convexe.
- ψ est continue sur \mathbb{R}^3 car linéaire et K est compact. Donc $\psi(K)$ est compact.

En résumé, $\widehat{abc} = \psi(K)$ est un compact convexe de \mathbb{C} .

abc est un compact convexe de \mathbb{C} .

ightarrow \mathbb{R} . Δ est continue sur \mathbb{C}^2 car composée de l'application $(z,z')\mapsto z'-z$ continue sur \mathbb{C}^2 d) Soit Δ : \mathbb{C}^2

(car \mathbb{R} -linéaire) et de l'application $\mathfrak{u}\mapsto |\mathfrak{u}|$ continue sur \mathbb{C} . Puisque Δ est continue sur \mathbb{C}^2 à valeurs dans \mathbb{R} , on sait que sur le compact \widehat{abc}^2 , Δ admet un maximum. On en déduit l'existence de δ (\widehat{abc}) .

I.B.2) a) Soit $z \in \mathbb{C}$. Soit $z' \in \widehat{abc}$. Il existe $(\alpha, \beta, \gamma) \in K$ tel que $z' = \alpha a + \beta b + \gamma c$. Posons $\mathfrak{m}(z) = \max\{|z-a|, |z-b|, |z-c|\}$. Supposons par exemple $\mathfrak{m}(z) = |z - \mathfrak{a}|$ sans perte de généralité.

$$\begin{aligned} |z-z'| &= |(\alpha+\beta+\gamma)z - (\alpha\alpha+\beta b + \gamma c)| = |\alpha(z-\alpha)+\beta(z-b) + \gamma(z-c)| \\ &\leqslant \alpha|z-\alpha| + \beta|z-b| + \gamma|z-c| \leqslant (\alpha+\beta+\gamma)m(z) = m(z), \end{aligned}$$

avec égalité effectivement obtenue quand z' = a. Donc

$$\forall z \in \mathbb{C}, \, \max \left\{ |z'-z|, \, \, z' \in \widehat{\mathfrak{abc}} \right\} = \max\{|z-\mathfrak{a}|, |z-\mathfrak{b}|, |z-\mathfrak{c}|\}.$$

b) Posons $M = \max\{|b-c|, |c-a|, |a-b|\}$. Pour $z = \alpha a + \beta b + \gamma c$, $(\alpha, \beta, \gamma) \in K$, on a

$$|z-a| = |\alpha(a-a) + \beta(b-a) + \gamma(c-a)| \leqslant \alpha|a-a| + \beta|b-a| + \gamma|c-a| \leqslant (\alpha+\beta+\gamma)M = M,$$

et de même $|z-b| \le M$ et $|z-c| \le M$. On en déduit, avec les notations de la question précédente, que

$$\forall z \in \widehat{abc}, \ m(z) \leqslant M.$$

Mais alors, pour $(z,z') \in \widehat{abc}^2$, $|z'-z| \le m(z) \le M$ avec égalité effectivement obtenue quand z et z' sont deux des trois points a ou b ou c tels que $|z'-z| = \max\{|b-c|, |c-a|, |a-b|\}$ (les points a, b et c sont bien dans \widehat{abc} car par exemple a = 1a + 0b + 0c). Finalement

$$\delta\left(\widehat{abc}\right) = \max\{|b-c|, |c-a|, |a-b|\}.$$

I.B.3) Pour $n \in \mathbb{N}^*$, posons $a_n = \phi_{r_1} \circ \phi_{r_2} \circ \ldots \circ \phi_{r_n}(a)$, $b_n = \phi_{r_1} \circ \phi_{r_2} \circ \ldots \circ \phi_{r_n}(b)$ et $c_n = \phi_{r_1} \circ \phi_{r_2} \circ \ldots \circ \phi_{r_n}(c)$. D'après la question I.A.4), $\widetilde{\tau}_n = \widehat{a_n b_n c_n}$.

Unicité. Soient z et z' deux nombres complexes appartenant à $\bigcap_{n\geqslant 1} \widetilde{\tau}_n$. Alors, pour tout $n\geqslant 1$, z et z' sont dans $\widetilde{\tau}_n$ et

puisque ϕ_0 et ϕ_1 sont des similitudes de rapport $\frac{1}{\sqrt{2}}$, pour tout $n \ge 1$ on a

$$|z'-z|\leqslant \delta\left(\widetilde{\tau}_n\right)=\max\{|b_n-c_n|,|c_n-a_n|,|a_n-b_n|\}=\left(\frac{1}{\sqrt{2}}\right)^n\max\{|b-c|,|c-a|,|a-b|\}=\left(\frac{1}{\sqrt{2}}\right)^n\delta(\tau).$$

Quand n tend vers $+\infty$, on obtient |z'-z|=0 et donc z=z'. Ceci montre l'unicité d'un point commun à tous les $\tilde{\tau}_n$.

Existence. D'après la question I.4.A), $\phi_0(\tau) \subset \tau$ et $\phi_1(\tau) \subset \tau$. Mais alors pour $n \in \mathbb{N}^*$,

$$\widetilde{\tau}_{n+1} = \varphi_{r_1} \circ \varphi_{r_2} \circ \ldots \circ \varphi_{r_n} (\varphi_{r_{n+1}} (\tau)) \subset \varphi_{r_1} \circ \varphi_{r_2} \circ \ldots \circ \varphi_{r_n} (\tau).$$

Ainsi, la suite $(\widetilde{\tau}_n)_{n\in\mathbb{N}}$ de compacts d'après la question I.B.1)c), décroissante pour l'inclusion. Pour chaque $n\in\mathbb{N}$, on choisit alors un élément z_n dans $\widetilde{\tau}_n$. La suite $(z_n)_{n\in\mathbb{N}}$ est une suite d'éléments du compact τ . On peut donc en extraire une sous-suite convergente $(z_{\varphi(n)})_{n\in\mathbb{N}}$ dont la limite z est un élément de τ .

Soit $n \in \mathbb{N}^*$. Pour $\mathfrak{p} \geqslant 0$, on a $\varphi(\mathfrak{n}+\mathfrak{p}) \geqslant \varphi(\mathfrak{n}) \geqslant \mathfrak{n}$ et donc $z_{\varphi(\mathfrak{n}+\mathfrak{p})} \in \widetilde{\tau}_{\mathfrak{n}}$. La suite $\left(z_{\varphi(\mathfrak{n}+\mathfrak{p})}\right)_{\mathfrak{p} \in \mathbb{N}}$ est donc une suite d'éléments du compact $\widetilde{\tau}_{\mathfrak{n}}$ et converge vers z. Un compact étant fermé, on en déduit que $z \in \widetilde{\tau}_{\mathfrak{n}}$. Ainsi, z est élément de chaque $\widetilde{\tau}_{\mathfrak{n}}$ et donc élément de $\bigcap_{i=1}^{n} \widetilde{\tau}_{\mathfrak{n}}$.

Partie II - Construction de l'application f

II.1) Soit f une application affine de [0,1] dans \mathbb{C} . Il existe deux complexes α et β tels que $\forall x \in [0,1]$, $f(x) = \alpha x + \beta$. Les égalités f(0) = -1 et f(1) = 1 sont équivalentes à $\beta = -1$ puis $\alpha = 2$. Donc

$$\forall x \in [0, 1], f_0(x) = 2x - 1.$$

 $\begin{tabular}{ll} \textbf{II.2)} Soit $g \in \mathcal{E}$. L'application $x \mapsto g(2x)$ est continue sur $\left[0,\frac{1}{2}\right]$ à valeurs dans \mathbb{C} et l'application φ_0 est continue sur \mathbb{C} en tant qu'application affine. Donc l'application $x \mapsto \varphi_0(g(2x))$ est continue sur $\left[0,\frac{1}{2}\right]$ ou encore Tg est continue sur $\left[0,\frac{1}{2}\right]$. De même, Tg est continue sur $\left]\frac{1}{2},1\right]$. Enfin,$

$$\lim_{x \to \frac{1}{2}^+} Tg(x) = \varphi_1(g(0)) = \varphi_1(-1) = \mathfrak{i} = \varphi_0(1) = \varphi_0(g(0)) = Tg\left(\frac{1}{2}\right).$$

Donc Tg est continue en $\frac{1}{2}$ et par suite sur [0,1]. D'autre part, $Tg(0)=\varphi_0(g(0))=\varphi_0(-1)=-1$ et $Tg(1)=\varphi_1(1)=1$. Donc $Tg\in\mathcal{E}$.

$\forall g \in \mathcal{E}, Tg \in \mathcal{E}.$

 $\begin{aligned} \textbf{II.3)} & \text{ Soit } (g_1,g_2) \in \mathcal{E}^2. \ \varphi_0 \text{ est } \varphi_1 \text{ sont des similitudes de rapport } \frac{1}{\sqrt{2}}. \text{ Donc } \forall (z,z') \in \mathbb{C}^2, \ |\varphi_0(z') - \varphi_0(z)| = \frac{1}{\sqrt{2}}|z'-z| \\ & \text{et } |\varphi_1(z') - \varphi_0(z)| = \frac{1}{\sqrt{2}}|z'-z|. \text{ On en déduit que } \forall x \in \left[0,\frac{1}{2}\right], \end{aligned}$

$$|Tg_2(x)-Tg_1(x)|=|\varphi_0(g_2(2x))-\varphi_0(g_1(2x))|=\frac{1}{\sqrt{2}}|g_2(2x)-g_1(2x)|\leqslant \frac{1}{\sqrt{2}}\|g_2-g_1\|_{\infty}.$$

 $\begin{array}{l} \mathrm{De\ m\^{e}me,\ } \forall x \in \left] \frac{1}{2},1 \right], \ |Tg_2(x) - Tg_1(x)| \leqslant \frac{1}{\sqrt{2}} \|g_2 - g_1\|_{\infty} \ \mathrm{et\ finalement}, \ \forall x \in [0,1], \ |Tg_2(x) - Tg_1(x)| \leqslant \frac{1}{\sqrt{2}} \|g_2 - g_1\|_{\infty}. \\ \mathrm{D'autre\ part,\ l'application\ } |g_2 - g_1| \ \mathrm{est\ continue\ sur\ le\ segment\ } [0,1] \ \mathrm{est\ donc\ il\ existe\ } t \in [0,1] \ \mathrm{tel\ que\ } |g_2(t) - g_1(t)| = \\ \|g_2 - g_1\|_{\infty}. \ \mathrm{Pour\ } x = \frac{t}{2} \in \left[0,\frac{1}{2}\right], \ \mathrm{on\ a\ } |Tg_2(x) - Tg_1(x)| = \frac{1}{\sqrt{2}} |g_2(2x) - g_1(2x)| = \frac{1}{\sqrt{2}} |g_2(t) - g_1(t)| = \frac{1}{\sqrt{2}} \|g_2 - g_1\|_{\infty}. \end{array}$

 $\text{En r\'esum\'e}, \ \forall x \in [0,1], \ |Tg_2(x) - Tg_1(x)| \leqslant \frac{1}{\sqrt{2}} \|g_2 - g_1\|_{\infty} \ \text{et} \ \exists x_0 \in [0,1]/ \ |Tg_2(x_0) - Tg_1(x_0)| = \frac{1}{\sqrt{2}} \|g_2 - g_1\|_{\infty}. \ \text{Cecimontre que} \ \|Tg_2 - Tg_1\|_{\infty} = \frac{1}{\sqrt{2}} \|g_2 - g_1\|_{\infty}.$

$$\forall (g_1, g_2) \in \mathcal{E}^2, \|Tg_2 - Tg_1\|_{\infty} = \frac{1}{\sqrt{2}} \|g_2 - g_1\|_{\infty}.$$

II.4) a) Pour tout entier n, on a $f_n = T^n f_0$. D'après les questions II.1) et II.2), on montre par récurrence que chaque fonction f_n est dans $\mathcal E$. D'autre part, f_0 est à valeurs dans τ et si pour $n \geqslant 0$, f_n est à valeurs dans τ , alors $f_{n+1} = Tf_n$ est à valeurs dans τ car $\varphi_0(\tau) \subset \tau$ et $\varphi_1(\tau) \subset \tau$. On en déduit que $\forall n \in \mathbb{N}, \ \forall x \in [0,1], \ |f_n(x)| \leqslant \delta(\tau) = 2$ et donc que $\forall n \in \mathbb{N}, \ |f_n|_{\infty} \leqslant 2$.

 $\operatorname{Pourx} \in [0,1] \text{ et } n \in \mathbb{N}^*, \operatorname{d'après} \text{ la question II.3})$

$$|f_{n+1}(x) - f_n(x)| = |\mathsf{T}f_n(x)| - \mathsf{T}f_{n-1}(x)| \leqslant \|\mathsf{T}f_n - \mathsf{T}f_{n-1}\|_{\infty} = \frac{1}{\sqrt{2}} \|f_n - f_{n-1}\|_{\infty},$$

et donc $\forall n \in \mathbb{N}^*, \|f_{n+1} - f_n\|_{\infty} \leq \frac{1}{\sqrt{2}} \|f_n - f_{n-1}\|_{\infty}.$

On en déduit que $\forall n \in \mathbb{N}, \|f_{n+1} - f_n\|_{\infty} \leqslant \left(\frac{1}{\sqrt{2}}\right)^n \|f_1 - f_0\|_{\infty} \leqslant 2\left(\frac{1}{\sqrt{2}}\right)^n.$

Soient alors $(n, p) \in \mathbb{N} \times \mathbb{N}^*$ et $x \in [0, 1]$.

$$\begin{split} |f_{n+p}(x)-f_n(x)| &\leqslant \|f_{n+p}-f_n\|_{\infty} = \left\|\sum_{k=n}^{n+p-1} (f_{k+1}-f_k)\right\|_{\infty} \\ &\leqslant \sum_{k=n}^{n+p-1} \|f_{k+1}-f_k\|_{\infty} \leqslant 2 \sum_{k=n}^{n+p-1} \left(\frac{1}{\sqrt{2}}\right)^k \\ &\leqslant 2 \sum_{k=n}^{+\infty} \left(\frac{1}{\sqrt{2}}\right)^k = 2 \left(\frac{1}{\sqrt{2}}\right)^n \frac{1}{1-\frac{1}{\sqrt{2}}} = \frac{2\sqrt{2}}{\sqrt{2}-1} \left(\frac{1}{\sqrt{2}}\right)^n. \end{split}$$

Soit $\epsilon > 0$. Soit $x \in [0,1]$. Puisque $\lim_{n \to +\infty} \frac{2\sqrt{2}}{\sqrt{2}-1} \left(\frac{1}{\sqrt{2}}\right)^n = 0$, il existe $n_0 \in \mathbb{N}$ tel que pour $n \geqslant n_0$, $\frac{2\sqrt{2}}{\sqrt{2}-1} \left(\frac{1}{\sqrt{2}}\right)^n < \epsilon$. Mais alors, pour $n \geqslant n_0$ et $p \in \mathbb{N}^*$, $|f_{n+p}(x) - f_n(x)| < \epsilon$. Ainsi, pour chaque $x \in [0,1]$, la suite numérique $(f_n(x))_{n \in \mathbb{N}}$ est de Cauchy et donc converge vers un complexe noté f(x) car \mathbb{C} est complet. On a montré que la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ converge simplement sur [0,1] vers une certaine fonction f.

Montrons que la la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur [0,1]. Pour $x\in[0,1]$ et $(n,p)\in\mathbb{N}^*$, on a $|f_{n+p}(x)-f_n(x)|\leqslant \frac{2\sqrt{2}}{\sqrt{2}-1}\left(\frac{1}{\sqrt{2}}\right)^n$. Quand p tend vers $+\infty$ à x et n fixés, on obtient $\forall x\in[0,1]$, $\forall n\in\mathbb{N}$, $|f(x)-f_n(x)|\leqslant \frac{2\sqrt{2}}{\sqrt{2}-1}\left(\frac{1}{\sqrt{2}}\right)^n$ et donc $\forall n\in\mathbb{N}$, $\|f-f_n\|_\infty\leqslant \frac{2\sqrt{2}}{\sqrt{2}-1}\left(\frac{1}{\sqrt{2}}\right)^n$. Par suite, $\lim_{n\to+\infty}\|f-f_n\|_\infty=0$ et donc la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction f sur [0,1].

Puisque chaque fonction f_n est continue sur [0,1] et que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction f sur [0,1], la fonction f est continue sur [0,1]. De plus, $f(0)=\lim_{n\to+\infty}f_n(0)=\lim_{n\to+\infty}-1=-1$ et $f(1)=\lim_{n\to+\infty}f_n(0)=\lim_{n\to+\infty$ $\lim_{n\to +\infty} f_n(1) = \lim_{n\to +\infty} 1 = 1. \ \mathrm{Finalement}, \ f\in \mathcal{E}.$

$$\mathbf{b)} \; \mathrm{Soit} \; x \in [0,1]. \; \mathrm{Pour} \; \mathrm{tout} \; \mathrm{entier} \; n, \; \mathrm{on} \; \mathrm{a} \; f_{n+1}(x) = T(f_n(x)) = \left\{ \begin{array}{l} \varphi_0(f_n(2x)) \; \mathrm{si} \; x \in \left[0,\frac{1}{2}\right] \\ \varphi_1(f_n(2x-1)) \; \mathrm{si} \; x \in \left[\frac{1}{2},1\right] \end{array} \right. \; . \; \mathrm{Par} \; \mathrm{continuit\acute{e}} \; \mathrm{de} \; \varphi_0 \; \mathrm{et} \;$$

$$\mathbf{b)} \; \mathrm{Soit} \; x \in [0,1]. \; \mathrm{Pour} \; \mathrm{tout} \; \mathrm{entier} \; n, \, \mathrm{on} \; \mathrm{a} \; f_{n+1}(x) = T(f_n(x)) = \left\{ \begin{array}{l} \varphi_0(f_n(2x)) \; \mathrm{si} \; x \in \left[0,\frac{1}{2}\right] \\ \varphi_1(f_n(2x-1)) \; \mathrm{si} \; x \in \left]\frac{1}{2},1 \end{array} \right] \; . \; \mathrm{Par} \; \mathrm{continuit\acute{e}} \; \mathrm{de} \; \varphi_0 \; \mathrm{et} \\ \varphi_1(f_n(2x-1)) \; \mathrm{si} \; x \in \left[0,\frac{1}{2}\right] \\ \varphi_1(f(2x)) \; \mathrm{si} \; x \in \left[0,\frac{1}{2}\right] \\ \varphi_1(f(2x-1)) \; \mathrm{si} \; x \in \left[\frac{1}{2},1\right] \end{array} = Tf(x). \; \mathrm{Donc} \; \forall x \in [0,1], \; Tf(x) = f(x).$$

$$\mathsf{Tf} = \mathsf{f}$$
.

- $\begin{array}{l} \textbf{c)} \ \ \text{Montrons par r\'ecurrence que} \ \forall x \in [0,\underline{1}], \ \forall n \in \mathbb{N}, \ -\overline{f_n(1-x)} = f_n(x). \\ \bullet \ \ \text{C'est vrai pour} \ n = 0 \ \text{car} \ \forall x \in [0,1], \ -\overline{f_0(1-x)} = -(2(1-x)-1) = 2x-1 = f_0(x). \\ \bullet \ \ \text{Soit} \ n \geqslant 0. \ \ \text{Supposons que} \ \forall x \in [0,1], \ -\overline{f_n(1-x)} = f_n(x). \\ \text{Si} \ x \in \left[0,\frac{1}{2}\right], \ \text{alors} \ 1-x \in \left[\frac{1}{2},1\right] \ \text{et} \\ \end{array}$

Si
$$x \in \left[0, \frac{1}{2}\right]$$
, alors $1 - x \in \left[\frac{1}{2}, 1\right]$ et

$$\begin{split} -\overline{f_{n+1}(1-x)} &= -\overline{T}f_n(1-x) = -\overline{\varphi_1(f_n(2(1-x)-1))} = -\frac{1+i}{2}\overline{f_n(1-2x)} + \frac{-1+i}{2}\\ &= \frac{1+i}{2}f_n(2x) + \frac{-1+i}{2} \text{ (par hypothèse de récurrence)}\\ &= \varphi_0(f_n(2x)) = Tf_n(x) = f_{n+1}(x) \end{split}$$

et si
$$x \in \left[\frac{1}{2}, 1\right]$$
,

$$\begin{split} -\overline{f_{n+1}(1-x)} &= -\overline{Tf_n(1-x)} = -\overline{\varphi_0(f_n(2(1-x))} = -\frac{1-i}{2}\overline{f_n(2-2x)} + \frac{1+i}{2} \\ &= \frac{1-i}{2}f_n(1-(2-2x)) + \frac{1+i}{2} = \varphi_1(f_n(2x-1)) = Tf_n(x) = f_{n+1}(x). \end{split}$$

On a montré par récurrence que $\forall x \in [0,1], -\overline{f_n(1-x)} = f_n(x)$. Quand n tend vers $+\infty$, on obtient

$$\forall x \in [0, 1], f(x) = -\overline{f(1-x)}.$$

Ainsi, l'image par f de deux réels de [0,1] symétriques par rapport à $\frac{1}{2}$ sont des complexes symétriques par rapport à l'axe des ordonnées et en particulier, pour obtenir le support de l'arc paramétré $x \mapsto f(x)$, on construit la portion de courbe obtenue quand x décrit $\left[0,\frac{1}{2}\right]$ puis on obtient la courbe complète par réflexion d'axe (Oy).

Partie III - Propriétés de f

III.A - Image de f

III.A.1) a) Pour tout entier naturel non nul n, on a $0 \le \frac{r_n}{2^n} \le \frac{1}{2^n}$. Comme $\frac{1}{2^n}$ est le terme général d'une série géométrique convergente, on en déduit que la série de terme général $\frac{r_n}{2^n}$, $n \in \mathbb{N}$, converge vers un certain réel noté x. De plus,

$$0\leqslant x=\sum_{n=1}^{+\infty}\frac{r_n}{2^n}\leqslant \sum_{n=1}^{+\infty}\frac{1}{2^n}=\frac{1}{2}\times\frac{1}{1-\frac{1}{2}}=1.$$

- $\textbf{b)} \text{ Montrons par récurrence que } \forall p \in \mathbb{N}^*, \ f(x) = \varphi_{r_1} \circ \varphi_{r_2} \circ \ldots \circ \varphi_{r_p}(f(x_p)).$
- Vérifions tout d'abord la proposition quand p = 1.

$$x_1 = \sum_{n=1}^{+\infty} \frac{r_{n+1}}{2^n} = 2\sum_{n=1}^{+\infty} \frac{r_{n+1}}{2^{n+1}} = 2\sum_{n=2}^{+\infty} \frac{r_n}{2^n} = 2\left(x - \frac{r_1}{2}\right) = 2x - r_1.$$

$$\begin{split} & \text{Maintenant, si } r_1 = 1, \text{ alors } x = \frac{x_1 + 1}{2} \in \left[\frac{1}{2}, 1\right]. \\ & - \text{ si } r_1 = 0, \text{ alors } x = \frac{x_1}{2} \in \left[0, \frac{1}{2}\right] \text{ (car } x_1 \in [0, 1]) \text{ et } \varphi_{r_1}(f(x_1)) = \varphi_0(f(x_1)) = \varphi_0(f(2x)) = Tf(x) = f(x). \\ & - \text{ si } r_1 = 1, \text{ alors } x = \frac{x_1 + 1}{2} \in \left[\frac{1}{2}, 1\right] \text{ et de plus } x = \frac{1}{2} \Leftrightarrow x_1 = 0. \\ & \text{Si } x \in \left[\frac{1}{2}, 1\right], \ \varphi_{r_1}(f(x_1)) = \varphi_1(f(x_1)) = \varphi_1(f(2x - 1)) = Tf(x) = f(x). \\ & \text{Si } x = \frac{1}{2}, \ x_1 = 0 \text{ et } \varphi_{r_1}(f(x_1)) = \varphi_1(f(0)) = \lim_{t \to \frac{1}{2}^+} \varphi_1(f(2t - 1)) = \lim_{t \to \frac{1}{2}^+} Tf(2t - 1) = Tf\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right). \\ & \text{Ainsi, dans tous les cas, } f(x) = \varphi_{r_1}(f(x_1)). \end{split}$$

• Soit $p \geqslant 1$. Supposons que $f(x) = \varphi_{r_1} \circ \varphi_{r_2} \circ \ldots \circ \varphi_{r_p}(f(x_p))$. En appliquant le travail précédent au réel x_p , on obtient $\varphi_{r_{p+1}}(f(x_{p+1})) = \varphi_{r_{p+1}}(f(2x_p - r_p)) = f(x_p)$ et donc $f(x) = \varphi_{r_1} \circ \varphi_{r_2} \circ \ldots \circ \varphi_{r_p} \circ \varphi_{r_{p+1}}(f(x_{p+1}))$.

On a montré par récurrence que

$$\forall \mathfrak{p} \in \mathbb{N}^*, \, \mathsf{f}(x) = \varphi_{\mathfrak{r}_1} \circ \varphi_{\mathfrak{r}_2} \circ \ldots \circ \varphi_{\mathfrak{r}_{\mathfrak{p}}}(\mathsf{f}(x_{\mathfrak{p}})).$$

 $\begin{aligned} \textbf{III.A.2) a) \ \mathrm{Soient} \ x \in [0,1[\ \mathrm{et} \ n \in \mathbb{N}^*. \ \mathrm{Soit} \ k = [2^{n-1}x]. \ \mathrm{On} \ \mathrm{a} \ k \leqslant 2^{n-1}x < k+1 \ \mathrm{et} \ \mathrm{donc} \ 2k \leqslant 2^nx < 2k+2 \ \mathrm{puis} \\ [2^nx] = 2k = 2[2^{n-1}x] \ \mathrm{ou} \ [2^nx] = 2k+1 = 2[2^{n-1}x]+1. \ \mathrm{Par} \ \mathrm{suite}, \ r_n(x) = [2^nx] - 2[2^{n-1}x] \in \{0,1\}. \end{aligned}$

$$\forall x \in [0,1[,\,\forall n \in \mathbb{N}^*,\,r_n(x) \in \{0,1\}.$$

b) Soient $x \in [0, 1[$ et $N \in \mathbb{N}^*$.

$$\begin{split} \sum_{n=1}^{N} \frac{r_n(x)}{2^n} &= \sum_{n=1}^{N} \left(\frac{[2^n x]}{2^n} - \frac{[2^{n-1} x]}{2^{n-1}} \right) \\ &= \frac{[2^N x]}{2^N} - \frac{[2^0 x]}{2^0} \text{ (somme t\'elescopique)} \\ &= \frac{[2^N x]}{2^N} - [x] = \frac{[2^N x]}{2^N} \text{ (car } x \in [0,1[). \end{split}$$

Maintenant, $x - \frac{1}{2^N} = \frac{2^N x - 1}{2^N} < \frac{[2^N x]}{2^N} \le \frac{2^N x}{2^N} = x$ et quand N tend vers $+\infty$, le théorème des gendarmes permet d'affirmer que $\sum_{n=1}^N \frac{r_n(x)}{2^n} = \frac{[2^N x]}{2^N}$ tend vers x.

$$\forall x \in [0, 1[, x = \sum_{n=1}^{+\infty} \frac{r_n(x)}{2^n}.$$

 $\mathbf{c}) \text{ Soit } x \in \mathbb{Z}\left[\frac{1}{2}\right] \cap [0,1[. \text{ Il existe } (k,p) \in \mathbb{N}^2 \text{ tel que } x = \frac{k}{2^p}. \text{ Mais alors pour } n > p = N,$

$$r_n(x) = [2^n x] - 2[2^{n-1} x] = [k2^{n-p}] - 2[k2^{n-p-1}] = k2^{n-p} - 2k2^{n-p-1} = 0.$$

$$\forall x \in \mathbb{Z}\left[\frac{1}{2}\right], \, \exists N \in \mathbb{N}^* / \, \forall n > N, \, r_n(x) = 0.$$

$$\mathbf{d}) \ f\left(\frac{1}{2}\right) = Tf\left(\frac{1}{2}\right) = \varphi_0(f(1)) = \varphi_0(1) = \mathfrak{i} \ \mathrm{et} \ f\left(\frac{1}{4}\right) = Tf\left(\frac{1}{4}\right) = \varphi_0\left(f\left(\frac{1}{2}\right)\right) = \varphi_0(\mathfrak{i}) = 0.$$

$$f\left(\frac{1}{2}\right) = \mathfrak{i} \ \mathrm{et} \ f\left(\frac{1}{4}\right) = 0.$$

On a vu que $\phi_0 = s \circ h = h \circ s$ où h est l'homothétie de centre -1 et de rapport $\frac{1}{\sqrt{2}}$ et s est la réflexion d'axe passant par -1 et dirigé par $e^{i\pi/8}$. Puisque h et s commutent, on a $\phi_0^2 = h^2 s^2 = h^2$ et $\phi_0 \circ \phi_0$ est l'homothétie de centre -1 et de rapport $\frac{1}{2}$. On note H cette homothétie.

 $\mathrm{Soit}\ k\in\mathbb{N}.\ \mathrm{Si}\ k=0,\ f\left(\frac{1}{2^k}\right)=f(1)=0\ \mathrm{et\ si}\ k=1,\ f\left(\frac{1}{2}\right)=i.$

Supposons dorénavant $k \ge 2$. Posons $x = \frac{1}{2^k}$ de sorte que $r_k(x) = 1$ et $r_n(x) = 0$ pour $n \ne k$. Alors, $x_{k-1} = \frac{r_{1+(k-1)}}{2} = \frac{1}{2}$ puis d'après la question II.A.1)b),

$$f\left(\frac{1}{2^k}\right) = f(x) = \varphi_{r_1} \circ \ldots \circ \varphi_{r_{k-1}} \left(f(x_{k-1}) \right) = \underbrace{\varphi_0 \circ \ldots \circ \varphi_0}_{k-1} \left(f\left(\frac{1}{2}\right) \right) = \varphi_0^{k-1}(\mathfrak{i})$$

Donc, pour $p \in \mathbb{N}^*$,

$$f\left(\frac{1}{2^{2p+1}}\right) = \varphi_0^{2p}(i) = H^p(i) = -1 + \frac{1}{2^p}(i+1),$$

ce qui reste vrai quand p=0. Puis pour $p\geqslant 1$,

$$f\left(\frac{1}{2^{2\mathfrak{p}}}\right) = \varphi_0^{2\mathfrak{p}-1}(\mathfrak{i}) = H^{\mathfrak{p}-1} \circ \varphi_0(\mathfrak{i}) = H^{\mathfrak{p}-1}(0) = -1 + \frac{1}{2^{\mathfrak{p}-1}}(0+1) = -1 + \frac{1}{2^{\mathfrak{p}-1}},$$

ce qui reste vrai quand p = 0.

$$\forall p \in \mathbb{N}, \ f\left(\frac{1}{2^{2p}}\right) = -1 + \frac{1}{2^{p-1}} \ \mathrm{et} \ f\left(\frac{1}{2^{2p+1}}\right) = -1 + \frac{1}{2^p}(\mathfrak{i}+1).$$

III.A.3) a) Soit $x \in [0,1] \cap \mathbb{Z}\left[\frac{1}{2}\right]$.

Si x = 1, alors $f(x) = 1 \in \tau$.

Sinon, $x \in [0, 1[$ et d'après les questions III.A.2)b) et III.A.2)c), il existe un entier naturel non nul N tel que $x = \sum_{n=1}^{N} \frac{r_n(x)}{2^n}$. D'après la question II.A.1)b)

$$\begin{split} f(x) &= \varphi_{r_1} \circ \ldots \circ \varphi_{r_N}(f(x_N)) = \varphi_{r_1} \circ \ldots \circ \varphi_{r_N}(f(0)) \\ &= \varphi_{r_1} \circ \ldots \circ \varphi_{r_N}(-\overline{f(1)}) \; (\text{d'après la question II.4.c})) \\ &= \varphi_{r_1} \circ \ldots \circ \varphi_{r_N}(-1) \in \widetilde{\tau}_N \subset \tau. \end{split}$$

Dans tous les cas, $f(x) \in \tau$ et on a montré que

$$f\left([0,1]\cap\mathbb{Z}\left[\frac{1}{2}\right]\right)\subset\tau.$$

b) On rappelle que $f(1) \in \tau$. Soit $x \in [0,1[$. La suite $(y_N)_{N \in \mathbb{N}^*} = \left(\sum_{n=1}^N \frac{r_n(x)}{2^n}\right)_{N \in \mathbb{N}^*}$ est une suite d'éléments de $[0,1] \cap \mathbb{Z}\left[\frac{1}{2}\right]$ convergeant vers x et telle que $\forall N \in \mathbb{N}^*$, $f(y_N) \in \tau$. Puisque f est continue sur [0,1] d'après la question II.4.a),

$$f(x) = f\left(\lim_{N \to +\infty} y_N\right) = \lim_{N \to +\infty} f(y_N) \in \overline{\tau}.$$

Mais τ est un compact d'après la question I.B.1.c) et en particulier τ est fermé. On en déduit que $\overline{\tau} = \tau$ et donc que $f(x) \in \tau$. On a montré que $\forall x \in [0,1], f(x) \in \tau$ et donc que

$$f\left(\left[0,1\right] \right) \subset\tau.$$

III.A.4) Soit $z \in \tau$.

- a) ϕ_0 et ϕ_1 sont des similitudes de rapport non nul et en particulier des permutations de \mathbb{C} . D'après la question I.4.A), $\phi_0^{-1}(\tau_0) = \tau$ et $\phi_1^{-1}(\tau_1) = \tau$.
 - $z_0 = z$ existe et appartient à τ .
 - Soit $n \ge 1$. Supposons que z_{n-1} existe et appartienne à τ . Alors si $z_{n-1} \in \tau_0$, $z_n = \varphi_0^{-1}(z_{n-1})$ existe et appartient à τ et si $z_{n-1} \in \tau_1$, $z_n = \varphi_1^{-1}(z_{n-1})$ et appartient à τ .

On a montré par récurrence que pour tout entier naturel n, z_n existe et appartient à τ .

$$\forall n \in \mathbb{N}, z_n \in \tau.$$

 $\textbf{b)} \text{ Pour chaque entier naturel non nul N, on a $z_{N-1} = \varphi_{r_N}(z_N)$ et donc $z = \varphi_{r_1} \circ \varphi_{r_2} \circ \ldots \circ \varphi_{r_N}(z_N) \in \widetilde{\tau}_N$. D'autre part, si pour $N \in \mathbb{N}^*$, on pose $y_N = \sum_{n=1}^N \frac{r_n}{2^n}$, la question III.A.1.b) permet d'écrire$

$$f(y_N) = \varphi_{r_1} \circ \ldots \circ \varphi_{r_N}(f(0)) = \varphi_{r_1} \circ \ldots \circ \varphi_{r_N}(-1) \in \widetilde{\tau}_N.$$

En résumé, pour tout entier naturel non nul N, $f(y_N)$ et z sont dans $\tilde{\tau}_N$. Maintenant, d'après la question I.B.3), le diamètre de $\tilde{\tau}_N$ tend vers 0 quand N tend vers $+\infty$ et donc $f(y_N)$ tend vers z quand N tend vers $+\infty$. D'autre part, y_N tend vers $x = \sum_{n=1}^{+\infty} \frac{r_n}{2^n}$ quand N tend vers $+\infty$ et puisque f est continue en x, on en déduit que $f(y_N)$ tend vers f(x) quand N tend vers $+\infty$. Par unicité de la limite d'une suite, on en déduit que f(x) = z.

$$f\left(\sum_{n=1}^{+\infty}\frac{r_n}{2^n}\right)=z.$$

L'application f est donc une application de [0,1] dans τ , continue sur [0,1] et surjective.

c) Tout d'abord, pour $N \in \mathbb{N}^*$,

$$\left|\sum_{n=1}^{+\infty}\frac{r_n}{2^n}-\sum_{n=1}^{N}\frac{r_n}{2^n}\right|=\sum_{n=N+1}^{+\infty}\frac{r_n}{2^n}\leqslant \sum_{n=N+1}^{+\infty}\frac{1}{2^n}=\frac{1}{2^{N+1}}\times\frac{1}{1-\frac{1}{2^{N+1}}}=\frac{1}{2^N},$$

et donc pour $\epsilon > 0$ donné,

$$\left|\sum_{n=1}^{+\infty} \frac{r_n}{2^n} - \sum_{n=1}^{N} \frac{r_n}{2^n}\right| < \varepsilon \Leftarrow \frac{1}{2^N} < \varepsilon \Leftarrow N > \log_2\left(\frac{1}{\varepsilon}\right).$$

Déterminons maintenant explicitement ϕ_0^{-1} et ϕ_1^{-1} .

$$\varphi_0(z)=z'\Leftrightarrow \frac{1+i}{2}\overline{z}+\frac{-1+i}{2}=z'\Leftrightarrow \frac{1-i}{2}z=\overline{z'}+\frac{1+i}{2}\Leftrightarrow z=\frac{2}{1-i}\left(\overline{z'}+\frac{1+i}{2}\right)=(1+i)\overline{z'}+i$$

et

$$\phi_1(z) = z' \Leftrightarrow \frac{1-i}{2}\overline{z} + \frac{1+i}{2} = z' \Leftrightarrow \frac{1+i}{2}z = \overline{z'} + \frac{-1+i}{2} \Leftrightarrow z = \frac{2}{1+i}\left(\overline{z'} - \frac{1-i}{2}\right) = (1-i)\overline{z'} + i$$

Donc, pour tout complexe z, $\phi_0(z)^{-1} = (1+i)\overline{z} + i$ et $\phi_1(z)^{-1} = (1-i)\overline{z} + i$. On note enfin que pour tester si un nombre complexe $z \in \tau$ est dans τ_0 ou pas, il suffit de regarder le signe de la partie réelle de z.

Voici une fonction écrite en MAPLE qui prend en argument z et ε et qui fournit une valeur approchée à ε près d'un antécédent de z.

fonction := proc(epsilon : :real,Z : :complex)

$$\begin{split} & \log l \ N, n, x \, ; \\ & x := 0 \, ; \\ & \text{if epsilon} > = 2 \, \text{then } N := 1 \\ & \text{else } N := \text{trunc}(\log 2(1/\text{epsilon})) + 1 \, ; \, \text{fi} \, ; \\ & \text{For n from 1 to N do} \\ & \text{if } Re(Z) < = 0 \, \text{then } Z := (1+I)^* \text{conjugate}(Z) + I \\ & \text{else } Z := (1-I)^* \text{conjugate}(Z) + I \, \text{et } x := x + 1/2^{\wedge} n \, ; \, \text{fi} \, ; \\ & \text{od} \, ; \\ & \text{return}(x) \, ; \\ & \text{end} \, ; \\ \end{split}$$

Remarque. L'algorithme précédent suppose que la machine renvoie la valeur exacte de $\sum_{n=1}^{N} \frac{r_n}{2^n}$. Il peut être amélioré en

supposant que la machine renvoie une valeur approchée de $\sum_{n=1}^{N} \frac{r_n}{2^n}$ à $\frac{\varepsilon}{2}$ près et donc en choisissant N tel que $\frac{1}{2^N} < \frac{\varepsilon}{2}$.

III.A.5) a) D'après la question III.A.2.d), $f\left(\frac{1}{4}\right) = 0$ et d'après la question II.4.c), $f\left(\frac{3}{4}\right) = -\overline{f\left(\frac{1}{4}\right)} = 0 = f\left(\frac{1}{4}\right)$. Donc

la fonction f n'est pas injective.

- b) Soit g une éventuelle bijection de [0, 1] sur τ , continue sur [0, 1].
- On vérifie d'abord que si a et b sont deux points de τ , l'ensemble des antécédents par g des nombres complexes éléments du segment [a, b] est un segment de [0, 1].

Soient donc a et b deux éléments de τ . Pour $\lambda \in [0,1]$, on pose $\mathfrak{u}(\lambda) = \mathfrak{g}^{-1}((1-\lambda)a+\lambda b)$ puis on pose $I=\mathfrak{u}([0,1])=\mathfrak{g}^{-1}([a,b])$. Il s'agit de vérifier que I est un segment de [0,1]. I est déjà un fermé de [0,1] en tant qu'image réciproque d'un fermé de \mathbb{C} par une application continue et puisque I est borné, I est un compact de \mathbb{R} contenu dans [0,1]. Il reste à vérifier que I est un intervalle. Pour cela, montrons que l'application \mathfrak{u} est continue sur [0,1].

Soit $\lambda \in [0,1]$. Supposons que u ne soit pas continue en λ . Il existe alors $\epsilon > 0$ et $(\lambda_n)_{n \in \mathbb{N}}$ suite d'éléments de [0,1] convergeant vers λ telle que $\forall n \in \mathbb{N}, \, |u(\lambda) - u(\lambda_n)| \geqslant \epsilon$.

La suite $(\mathfrak{u}(\lambda_n))_{n\in\mathbb{N}}$ est une suite d'éléments du compact [0,1] et on peut donc en extraire une sous-suite $(\mathfrak{u}(\lambda_{\phi(n)}))_{n\in\mathbb{N}}$ convergeant vers un certain $\lambda'\in[0,1]$. Par continuité de g, la suite $g(\mathfrak{u}(\lambda_{\phi(n)}))_{n\in\mathbb{N}}$ converge vers $g(\lambda')$.

Mais $g(u(\lambda_{\varphi(n)})) = (1 - \lambda_{\varphi(n)})a + \lambda_{\varphi(n)}b$ tend aussi vers $(1 - \lambda)a + \lambda b$. Donc $g(\lambda') = (1 - \lambda)a + \lambda b$ puis $\lambda' = g^{-1}((1 - \lambda)a + \lambda b) = u(\lambda)$. En résumé, la suite $(u(\lambda_{\varphi(n)}))_{n \in \mathbb{N}}$ converge vers $u(\lambda)$ ce qui contredit $\forall n \in \mathbb{N}$, $|u(\lambda) - u(\lambda_{\varphi(n)})| \geqslant \epsilon$. Donc u est continue en λ . Finalement u est continue sur [0, 1].

On en déduit que l'image par l'application continue $\mathfrak u$ de l'intervalle [0,1] est un intervalle de [0,1] et finalement $\mathfrak g^{-1}([\mathfrak a,\mathfrak b])$ est un segment de [0,1].

$$\forall (\mathfrak{a},\mathfrak{b}) \in \tau^2, \, \mathfrak{g}^{-1}([\mathfrak{a},\mathfrak{b}]) \text{ est un segment de } [\mathfrak{0},1].$$

• On choisit alors $\mathfrak a$ et $\mathfrak b$ sur la frontière de τ , distincts et non situés sur un même côté de τ . $g^{-1}([\mathfrak a,\mathfrak b])$ est un segment $[\alpha,\beta]=I$ contenu dans [0,1]. Si $\alpha=0$, puisque $\mathfrak g$ est bijective, $\tau\setminus [\mathfrak a,\mathfrak b]=\mathfrak g([0,1]\setminus [0,\beta])=\mathfrak g([\beta,1])$ et donc τ est un connexe par arcs en tant qu'image d'un connexe par arcs par une application continue (théorème des valeurs intermédiaires). Ceci n'est pas car $\mathfrak a$ et $\mathfrak b$ ne sont pas situés sur un même côté de τ . Donc $\alpha>0$ et de même $\beta<1$. Ceci signifie que $\mathfrak g(0)$ et $\mathfrak g(1)$ sont situés à l'intérieur de τ . Mais cette dernière situation est également à exclure car en prolongeant le segment $[\mathfrak g(0),\mathfrak g(1)]$ jusqu'au bord de τ , on obtient un segment $[\mathfrak a,\mathfrak b]$ dont l'ensemble des antécédents est un segment de $[\mathfrak g,\mathfrak h]$ contenant $\mathfrak g$ et donc $\mathfrak g^{-1}([\mathfrak a,\mathfrak h])=[\mathfrak g,\mathfrak h]$ ce qui est impossible. Finalement

Il n'existe pas de bijection continue de [0, 1] sur τ .

III.A.6) a) On sait déjà que ϕ_0^2 est l'homothétie de centre -1 et de rapport $\frac{1}{2}$. De même, ϕ_1^2 est l'homothétie de centre 1 et de rapport $\frac{1}{2}$. D'autre part, pour $z \in \mathbb{C}$,

$$\begin{split} \varphi_0(\varphi_1(z)) &= \frac{1+i}{2} \overline{\left(\frac{1-i}{2}\overline{z} + \frac{1+i}{2}\right)} + \frac{-1+i}{2} = \left(\frac{1+i}{2}\right)^2 z + \frac{1+i}{2} \frac{1-i}{2} + \frac{-1+i}{2} \\ &= \frac{i}{2}z + \frac{i}{2}. \end{split}$$

 $\phi_0 \circ \phi_1$ est une similitude plane directe de rapport $\left|\frac{\mathfrak{i}}{2}\right| = \frac{1}{2}$ et d'angle $\arg\left(\frac{\mathfrak{i}}{2}\right) = \frac{\pi}{2}$ [2 π]. Son centre ω est l'unique point invariant de $\phi_0 \circ \phi_1$. Or, pour $z \in \mathbb{C}$,

$$\phi_0 \circ \phi_1(z) = z \Leftrightarrow \frac{i}{2}z + \frac{i}{2} = z \Leftrightarrow z = \frac{i}{2-i} \Leftrightarrow z = \frac{-1+2i}{5}$$

 $\phi_0 \circ \phi_1$ est la similitude plane directe de rapport $\frac{1}{2}$, d'angle $\frac{\pi}{2}$ et de centre $\omega = \frac{-1+2i}{5}$. Pour $z \in \mathbb{C}$,

$$\begin{split} \varphi_1(\varphi_0(z)) &= \frac{1-i}{2} \overline{\left(\frac{1+i}{2}\overline{z} + \frac{-1+i}{2}\right)} + \frac{1+i}{2} = \left(\frac{1-i}{2}\right)^2 z - \frac{1+i}{2} \frac{1-i}{2} + \frac{1+i}{2} \\ &= -\frac{i}{2}z + \frac{i}{2}. \end{split}$$

et

$$\phi_1 \circ \phi_0(z) = z \Leftrightarrow -\frac{i}{2}z + \frac{i}{2} = z \Leftrightarrow z = \frac{i}{2+i} \Leftrightarrow z = \frac{1+2i}{5}.$$

 $\varphi_1\circ\varphi_0 \text{ est la similitude plane directe de rapport } \frac{1}{2}, \text{ d'angle } -\frac{\pi}{2} \text{ et de centre } \omega' = \frac{1+2i}{5}.$

On donne ensuite l'image de τ par chacune de ces quatre transformations

b) Existence. Pour tout réel x de [0,1], $f(x) \in \tau$ et $\varphi_{r_1} \circ \varphi_{r_2} \circ \ldots \circ \varphi_{r_p}(f(x_p))$. On cherche donc à construire un réel $x \in [0,1]$ tel que $x_p = x$ et dont le « développement diadique » commence par $\frac{r_1}{2} + \frac{r_2}{2^2} + \ldots + \frac{r_p}{2^p}$. Le réel

$$x = \left(\frac{r_1}{2} + \frac{r_2}{2^2} + \ldots + \frac{r_p}{2^p}\right) + \left(\frac{r_1}{2^{p+1}} + \frac{r_2}{2^{p+2}} + \ldots + \frac{r_p}{2^{2p}}\right) + \ldots = \sum_{k=0}^{+\infty} \left(\sum_{l=1}^{p} \frac{r_l}{2^{kp+j}}\right)$$

convient et le complexe $z=f(x)\in \tau$ vérifie

$$\varphi(z) = \varphi(f(x)) = \varphi_{r_1} \circ \dots \varphi_{r_p}(f(x_p)) = f(x) = z.$$

Unicité. Soiz' $\in \mathbb{C}$ tel que $\phi(z') = z'$. Alors

$$|z'-z|=|\varphi(z')-\varphi(z)|=\left(rac{1}{\sqrt{2}}
ight)^{\mathfrak{p}}|z'-z|,$$

et donc $\left(1-\left(\frac{1}{\sqrt{2}}\right)^{\mathfrak{p}}\right)|z'-z|=0$ puis |z'-z|=0 car $\mathfrak{p}\geqslant 1$. Donc z'=z.

La similitude $\phi_{r_1} \circ \ldots \circ \phi_{r_p}$ admet un point fixe unique élément de τ .

- c) Le point fixe de φ est $z=f\left(\sum_{k=0}^{+\infty}\left(\sum_{l=1}^{p}\frac{r_{j}}{2^{kp+j}}\right)\right)$.
- d) Soient $z \in \tau$ puis $x \in [0,1]$ tel que f(x) = z. Il existe une suite $(r_n)_{n \in \mathbb{N}^*} \in \{0,1\}^{\mathbb{N}^*}$ telle que $x = \sum_{n=1}^{+\infty} \frac{r_k}{2^k}$ (par exemple la suite $(r_n)_{n \in \mathbb{N}}$ fournie par l'algorithme de la question III.A.4)). Pour $p \in \mathbb{N}^*$, posons $y_p = \sum_{k=0}^{+\infty} \left(\sum_{l=1}^p \frac{r_j}{2^{kp+j}}\right)$ puis $z_p = f(y_p)$. D'après la question précédente, pour $p \in \mathbb{N}^*$ donné, le complexe z_p est point fixe de $\phi_{r_1} \circ \dots \phi_{r_p}$. De plus, pour $p \in \mathbb{N}^*$,

$$|x - y_p| = \sum_{k=1}^{+\infty} \left(\sum_{l=1}^p \frac{r_j}{2^{kp+j}} \right) \leqslant \sum_{k=p+1}^{+\infty} \frac{1}{2^k} = \frac{1}{2^p}.$$

Donc $\lim_{\mathfrak{p}\to +\infty}y_{\mathfrak{p}}=x.$ Puisque f est continue sur [0,1] et donc en x

$$z=f(x)=f\left(\lim_{p\to+\infty}y_p\right)=\lim_{p\to+\infty}f(y_p)=\lim_{p\to+\infty}z_p.$$

Ainsi, tout complexe élément de τ est limite d'une suite de complexes qui sont point fixe de la composée d'un nombre fini d'applications ϕ_0 et ϕ_1 et donc l'ensemble des nombres complexes qui sont point fixe de la composée d'un nombre fini d'applications ϕ_0 et ϕ_1 est dense dans τ .

III.B - Dérivabilité de f

III.B.1) Puisque f est dérivable en x, $f(t) = f(x) + (t-x)f'(x) + (t-x)\varepsilon(t-x)$ avec $\lim_{t\to x} \varepsilon(t-x) = 0$. Puisque les suites $(\alpha_n)_{n\in\mathbb{N}}$ et $(\beta_n)_{n\in\mathbb{N}}$ convergent vers x, on a donc

$$\frac{f(\beta_n)-f(\alpha_n)}{\beta_n-\alpha_n} \underset{n\to+\infty}{=} \frac{(f(x)+f'(x)(\beta_n-x)+(\beta_n-x)\epsilon(\beta_n-x))-(f(x)+(\alpha_n-x)+(\alpha_n-x)\epsilon(\alpha_n-x))}{\beta_n-\alpha_n}$$

$$\underset{n\to+\infty}{=} f'(x)+\frac{(\beta_n-x)\epsilon(\beta_n-x)-(\alpha_n-x)\epsilon(\alpha_n-x)}{(\beta_n-x)+(x-\alpha_n)},$$

avec

$$\begin{split} \left| \frac{(\beta_n - x)\epsilon(\beta_n - x) - (\alpha_n - x)\epsilon(\alpha_n - x)}{(\beta_n - x) + (x - \alpha_n)} \right| \leqslant \frac{((\beta_n - x) + (x - \alpha_n)) \max\{|\epsilon(\alpha_n - x)|, |\epsilon(\beta_n - x)|\}}{\beta_n - \alpha_n} \\ &= \max\{|\epsilon(\alpha_n - x)|, |\epsilon(\beta_n - x)|\} \underset{n \to +\infty}{\to} 0 \end{split}$$

(car si u et v sont deux suites réelles convergeant vers 0, alors $\max\{u,v\} = \frac{1}{2}(u+v+|u-v|)$ est une suite réelle convergeant vers 0).

 $\mathbf{III.B.2)} \ \mathbf{a)} \ \mathrm{Pour} \ \mathrm{tout} \ \mathrm{entier} \ \mathrm{naturel} \ \mathrm{non} \ \mathrm{nul} \ \mathfrak{n}, \ \mathrm{on} \ \mathrm{a} \ \mathrm{bien} \ \alpha_n = \sum_{k=1}^n \frac{r_k(x)}{2^k} \leqslant \sum_{k=1}^{+\infty} \frac{r_k(x)}{2^k} = x \leqslant \sum_{k=1}^n \frac{r_k(x)}{2^k} + \sum_{k=n+1}^{+\infty} \frac{1}{2^k} = \beta_n$

et $\beta_n - \alpha_n = \sum_{k=n+1}^{+\infty} \frac{1}{2^k} = \frac{1}{2^n} > 0$. De plus, les deux suites (α_n) et (β_n) sont convergentes de limite x. D'après la question précédente, si f est dérivable en x, $\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}$ tend vers f'(x) quand n tend vers $+\infty$.

D'après la question II.A.1.b), pour $n \in \mathbb{N}^*$,

$$\begin{split} |f(\beta_n)-f(\alpha_n)| &= \left| \varphi_{r_1} \circ \ldots \circ \varphi_{r_n} \left(f\left(\sum_{k=1}^{+\infty} \frac{1}{2^k}\right) \right) - \varphi_{r_1} \circ \ldots \circ \varphi_{r_n}(f(0)) \right| \\ &= \left(\frac{1}{\sqrt{2}}\right)^n |f(1)-f(0)| = \frac{2}{\left(\sqrt{2}\right)^n}, \end{split}$$

puis
$$\left| \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} \right| = \frac{2/\left(\sqrt{2}\right)^n}{1/2^n} = 2\left(\sqrt{2}\right)^n \xrightarrow[n \to +\infty]{} +\infty$$
. Donc la suite $\left(\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}\right)$ ne peut converger et f n'est pas dérivable en x.

f n'est dérivable en aucun réel x de [0,1[.

b) Si x=1, on adapte ce qui précède en posant $\alpha_n=\sum_{k=1}^n\frac{1}{2^k}$ et $\beta_n=1=\sum_{k=1}^{+\infty}\frac{1}{2^k}$ pour tout entier naturel non nul n. On a toujours

$$\left|\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}\right| = \frac{2/(\sqrt{2})^n}{1/2^n} = 2(\sqrt{2})^n \underset{n \to +\infty}{\to} +\infty,$$

et de nouveau la suite $\left(\frac{f(\beta_n)-f(\alpha_n)}{\beta_n-\alpha_n}\right)$ ne peut converger et f n'est pas dérivable en 1.

f continue sur [0,1] mais n'est dérivable en aucun réel x de [0,1].