Definition 3.0.1. A (combinatorial) design consists a set V and a collection \mathcal{B} of subsets of V. The elements of V are the points of the design, and the subsets in \mathcal{B} are called blocks. An automorphism of a design is a permutation of V that preserves the blocks. More precisely, a permutation π of V is an automorphism of a design (V,\mathcal{B}) if $\mathcal{B}\pi = \mathcal{B}$, where $\mathcal{B}\pi = \{B\pi : B \in \mathcal{B}\}$ and $B\pi = \{x\pi : x \in B\}$. A design with v points is cyclic if it has an automorphism that permutes its points in a single cycle of length v.

$$V = \{0, 1, 2, 3, 4, 5\}$$

$$\mathcal{B} = \{\{0, 2, 4\}, \{1, 3, 5\}, \{0, 2\}, \{1, 3\}, \{2, 4\}, \{3, 5\}, \{4, 0\}, \{5, 1\}\}\}$$

$$(V, \mathcal{B}) \quad \text{cyclic.} \quad (0 \ 1 \ 2 \ 3 \ 4 \ 5) \quad \text{is an automorphism.}$$

$$3.1 \quad (v, k, \lambda) - \text{designs.}$$

Definition 3.1.1. Let v, k and λ be positive integers with k < v. A (v, k, λ) -design is a design with v points where every block has k elements, and where every pair of points occurs in exactly λ blocks.

$$(v,k,1)-design = S(2,k,v)$$
 Steiner system.

Number of blocks $b = \frac{\lambda v(v-1)}{k(k-1)}$ blocks $\frac{\lambda(v-1)=v(k-1)}{k-1}$ replication number.

Four special families of (v,k,λ) -designs:

• Projective planes

• Affine planes

Hadamard designs

Biplanes

(n2, h, 1) - designs

$$(4n-1, 2n-1, n-1)$$
-designs
 $N \ge 2$

The parameters for a Hadamard design of order n for $n = 2, 3, \ldots, 25$ are shown below.

(15,7,3)-design

points and hyperplanes
of PG(3,2)

$$\binom{1}{4}^{2} = \frac{3-1}{3_{4}-1} = 15.$$

$$\binom{n-1}{d-1}_2 = \binom{2}{1}_2 = \frac{2^3-1}{2-1} = 3.$$

Theorem 2.6.8. Let $n \ge 2$ and let q be a prime power. Each pair of distinct points of PG(n,q) occurs together in exactly $\binom{n-1}{d-1}_q d$ -dimensional subspaces of PG(n,q).

Theorem: If $q \equiv 3 \pmod{4}$ is a prime power, then the orbit of the quadratic residues of Fq under (Fq, +) forms a Hadamard design of order $n = \frac{q+1}{4}$ (q points). $\Rightarrow (11,5,2), (19,9,4), (23,11,5), (27,13,6), (31,15,7), etc$

From 1985 until 2005 the smallest unresolved case was the existence of a Hadamard design of order 107, or (427, 213, 106)-design. Such a design was constructed by Kharaghani and Tayfeh-Rezaie in 2005, see [38]. The smallest unresolved case is now the existence of a Hadamard design of order 167, or (667, 333, 166)-design. Various other cases have been resolved in the last few years. For example, a Hadamard design of order 191, or (763, 381, 190)-design, was constructed by Doković in 2008 [21].

Biplanes:
$$\binom{n+2}{2}+1$$
, $n+2$, 2) - designs.

biplane of order n

Any two distinct points are incident with exactly two lines. Any two distinct lines intersect in exactly two points.

$$n=2 \implies (7,4,2)$$
-design
 3567 124
 4671 235
 5712 .
 6123 .
 7234 .
 1345 .
 2456 .
 713 .
(complement of Fano plane)

$$h=3 \implies (11,5,2)$$
 - design
Hadamard design of order 3
1 3 4 5 9
2 4 5 6 10
:
 $0 2 3 4 8$

n=4	\Rightarrow	(16,6,2)-	design.

1	2	3	4
5	6	\neg	8
9	10	11	12
13	14	15	16

The only known biplanes are of order 2, 3, 4, 7, 9 and 11. There is no biplane of order 5, 6, 8, 10. It is unknown whether there are any biplanes of order n > 11.

Other than projective planes, affine planes, Hadamard designs, biplanes, there are many other (v, k, 1) - designs and families of

· (6,3,2)-design

134
245
351
412
253

- · Steiner triple systems, (v. 3,1)-designs Exist iff v= 1,3 (mod 6) (Kirkman, 1847).
- (v, 4, 1) designs exist iff v = 1,4 (mod 12)
- . Two-fold triple systems, (v, 3, 2)-designs, exist : FF v= 0,1 (mod 3)

A (v,3,1)-design is called a Steiner triple system, and these were shown to exist if and only if $v \equiv 1, 3 \pmod{6}$ by Kirkman in 1847 [39]. By 1975, the existence problem for (v, k, λ) -designs was completely settled for $k \in \{3, 4, 5\}$, and also for k = 6 with $\lambda \geq 2$ [33]. For $k \in \{3, 4, 5\}$ and for each $\lambda \geq 1$, it is known that there exists a (v, k, λ) -design whenever the obvious necessary conditions are satisfied; except that there is no (15,5,2)-design. For k=6 and for each $\lambda \geq 2$ the situation is similar: it is known that there exists a (v, k, λ) -design whenever the obvious necessary conditions are satisfied; except that there is no (21, 6, 2)-design.

For k=6 and $\lambda=1$, the existence problem is not yet completely settled. The most recent new results were obtained in 2007 [1]. There remain 29 unresolved values of v (ranging from v=51 to v = 801) and four cases where the obvious necessary conditions are satisfied but no design exists (v = 16, 21, 36, 46). For values of k > 6 less in known, especially for $k \geq 10$. A comprehensive summary of results is given in [2]. For $k \leq \frac{v}{2}$ (see Theorem 3.1.11), the smallest, in terms of number of points, three designs whose existence is unknown are a (39, 13, 6)-design, a (40, 14, 7)-design and a (40, 10, 3)-design.

Symmetric (v,k,1)-designs: v=b r=k (vr=bk)

- · Projective planes = Symmetric (2, k, 1) designs
- · Biplanes = Symmetric (v,k,2)-design
- · Hadamand designs are also symmetric.
- · Affine planes are not symmetric.

Theorem 3.1.8. In a symmetric (v, k, λ) -design, we have $\lambda(v - 1) = k(k - 1)$, each point occurs in exactly k blocks, and any two blocks intersect in exactly λ points.

v points each block is incident with k points v blocks each point is incident with k blocks

each pair of points occurs together in I blocks. each pair of blocks have I points in common.

The dual of a design is obtained by taking the blocks as points, and each point x of the original design defines a block Bx in the dual design, where the points in Bx are the blocks that contain x.

- The dual of a symmetric (v, k, λ) design is another symmetric (v, k, λ) design.
- The dual of a non-symmetric (v,k,λ) -design is not a (v,k,λ) -design. (For example, if a design has a pair of disjoint blocks, then its dual has a pair of points that occur together in no blocks.)

Theorem 3.1.9. (Wilson's Theorem, [60]) For all $k \geq 2$ and $\lambda \geq 1$ there exists a constant $C(k,\lambda)$ such that for all $v \geq C(k,\lambda)$, there exists a (v,k,λ) -design if and only if k(k-1) divides $\lambda v(v-1)$ and k-1 divides $\lambda (v-1)$.

Definition 3.1.10. The complement of a design (V, \mathcal{B}) is the design (V, \mathcal{B}^c) where $\mathcal{B}^c = \{V \setminus B : B \in \mathcal{B}\}$.

Theorem 3.1.11. If $k \le v - 2$, then the complement of a (v, k, λ) -design is a $(v, v - k, b - 2r + \lambda)$ -design.

