- Formally, a **Hamiltonian cycle of an** undirected graph G = (V,E) is a simple cycle that contains each vertex in V.
- A graph that contains a Hamiltonian cycle is said to be Hamiltonian; otherwise, it is nonhamiltonian.
- A **simple cycle** may be defined either as a closed walk with no repetitions of vertices and edges allowed, other than the repetition of the starting and ending vertex.

- Formally, a **Hamiltonian cycle of an** undirected graph G = (V,E) is a simple cycle that contains each vertex in V.
- A graph that contains a Hamiltonian cycle is said to be Hamiltonian; otherwise, it is nonhamiltonian.

- Formally, a Hamiltonian cycle of an undirected graph G = (V,E) is a simple cycle that contains each vertex in V.
- A graph that contains a Hamiltonian cycle is said to be Hamiltonian; otherwise, it is nonhamiltonian.

- Formally, a **Hamiltonian cycle of an undirected graph** G = (V,E) is a simple cycle that contains each vertex in V.
- A graph that contains a Hamiltonian cycle is said to be Hamiltonian; otherwise, it is nonhamiltonian.

- In the traveling-salesman problem, which is closely related to the Hamiltonian cycle problem, a salesman must visit *n* cities.
- Modeling the problem as a complete graph with *n* vertices, we can say that the salesman wishes to make a *tour*, *or* **Hamiltonian cycle**, visiting each city exactly once and finishing at the city he starts from.

• The salesman incurs a nonnegative integer **cost c(i, j)** to travel from **city i to city j**, and the salesman wishes to make the tour whose **total cost is minimum**, where the total cost is the sum of the individual costs along the edges of the tour.

• The salesman incurs a nonnegative integer **cost c(i, j)** to travel from **city i to city j**, and the salesman wishes to make the tour whose **total cost is minimum**, where the total cost is the sum of the individual costs along the edges of the tour.

Naive Solution

- 1) Consider city 1 as the starting and ending point.
- 2) Generate all (n-1)! Permutations of cities.
- 3) Calculate cost of every permutation and keep track of minimum cost permutation.
- 4) Return the permutation with minimum cost.

Time Complexity: $\Theta(n!)$

$$g(1, \{2,3,4\}) = \min \left\{ c_{1k} + g(k, \{2,3,4\}-k) \right\}$$

$$g(i,s) = \min_{k \in S} \left\{ c_{ik} + g(k, s-\{k\}) \right\}$$

$$g(2,\{3\}) = \min_{k \in \{3\}} \left\{ c_{2s} + g(\{3\}, \{4\}) \right\}$$

$$g(2,\{3,4\}) = \min_{k \in \{3,4\}} \left\{ c_{2s} + g(\{3,4\}) \right\}$$

$$g(2,\{3,4\}) = \min_{k \in \{3,4\}} \left\{ c_{24} + g(\{4,3\}) \right\}$$

- If size of S is 2, then S must be {1, i},
 C(S, i) = dist(1, i)
- 2. Else if size of S is greater than 2.

$$C(S, i) = min \{ C(S-\{i\}, j) + dis(j, i) \}$$

where j belongs to S, j \neq i and j \neq 1.

There are \mathbf{n} possible start vertices and 2^n possible sub-graphs.

So this function will be called on at most $n2^n$ distinct arguments (the target never changes).

Each call performs at most O(n) work (there are at most n neighbors). Hence the total work you're doing is $O(n^2 2^n)$

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

$$S = \Phi$$

 $Cost(2,\Phi,1)=d(2,1)=5$
 $Cost(3,\Phi,1)=d(3,1)=6$
 $Cost(4,\Phi,1)=d(4,1)=8$

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

```
S = 1
Cost(i,s) = min\{Cost(j,s-(j)) + d[i,j]\}Cost(i,s) = min\{Cost(j,s-(j)) + d[i,j]\}
Cost(2,\{3\},1) = d[2,3] + Cost(3,\Phi,1) = 9 + 6 = 15
Cost(2,\{4\},1) = d[2,4] + Cost(4,\Phi,1) = 10 + 8 = 18
Cost(3,\{2\},1) = d[3,2] + Cost(2,\Phi,1) = 13 + 5 = 18
Cost(3,\{4\},1) = d[3,4] + Cost(4,\Phi,1) = 12 + 8 = 20
Cost(4,\{3\},1) = d[4,3] + Cost(3,\Phi,1) = 9 + 6 = 15
Cost(4,\{2\},1) = d[4,2] + Cost(2,\Phi,1) = 8 + 5 = 13
```


S = 3

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

$$S = 2$$

$$Cost(2,\{3,4\},1) = min \{d[2,3] + Cost(3,\{4\},1) = 9 + 20 = 29, d[2,4] + Cost(4,\{3\},1) = 10 + 15 = 25\} = 25$$

$$Cost(3,\{2,4\},1) = min \{d[3,2] + Cost(2,\{4\},1) = 13 + 18 = 31, d[3,4] + Cost(4,\{2\},1) = 12 + 13 = 25\} = 25$$

$$Cost(4,\{2,3\},1) = min \{d[4,2] + Cost(2,\{3\},1) = 8 + 15 = 23, d[4,3] + Cost(3,\{2\},1) = 9 + 18 = 27\} = 23$$

$$Cost(1,\{2,3,4\},1) = min\{d[1,2] + Cost(2,\{3,4\},1) = 10 + 25 = 35, \\ d[1,3] + Cost(3,\{2,4\},1) = 15 + 25 = 40, \\ d[1,4] + Cost(4,\{2,3\},1) = 20 + 23 = 43\} = 35$$

The minimum cost path is 35.

Thank you