ПРАКТИЧЕСКИЕ ЗАДАНИЯ ДЛЯ ЭКЗАМЕНА

лярность языка $\{1^{n^3} \mid n \in \mathbb{N}\}$ (то есть всех слов ления состояний; над $\Sigma = \{1\}$ длины n^3 , $n \in \mathbb{N}$).

Докажите с помощью леммы о накачке нерегулярность языка $\{www \mid w \in \{0,1\}^*\}$ (то есть языка всех слов, состоящих из трёх одинаковых частей).

Проведите детерминизацию автомата:

	a	b
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_3\}$
q_1	$\{q_2\}$	$\{q_1,q_2\}$
q_2	Ø	Ø
$\overline{q_3}$	Ø	$\{q_2\}$

Проведите детерминизацию автомата:

	a	b	c
$\rightarrow q_0$	$\{q_1\}$	Ø	Ø
q_1	$\{q_0\}$	$\{q_3\}$	$\{q_2\}$
q_2	Ø	Ø	$\{q_1\}$
q_3	Ø	$\{q_1\}$	Ø

Найдите язык конечного автомата методом решения системы уравнений:

	a	ь
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_3\}$
q_1	$\{q_2\}$	$\{q_1,q_2\}$
q_2	Ø	Ø
q_3	Ø	$\{q_2\}$

Найдите язык конечного автомата методом решения системы уравнений:

	a	b	c
$\rightarrow q_0$	$\{q_1\}$	Ø	Ø
q_1	$\{q_0\}$	$\{q_3\}$	$\{q_2\}$
q_2	Ø	Ø	$\{q_1\}$
q_3	Ø	$\{q_1\}$	Ø

Докажите с помощью леммы о накачке нерегу- Найдите язык конечного автомата методом уда-

	$\begin{vmatrix} a \end{vmatrix}$	b
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_3\}$
q_1	$\{q_2\}$	$\{q_1,q_2\}$
q_2	Ø	Ø
$\overline{q_3}$	Ø	$\{q_2\}$

Найдите язык конечного автомата методом удаления состояний:

	$\mid a \mid$	b	c
$\rightarrow q_0$	$\{q_1\}$	Ø	Ø
q_1	$\{q_0\}$	$\{q_3\}$	$\{q_2\}$
q_2	Ø	Ø	$\{q_1\}$
q_3	Ø	$\{q_1\}$	Ø

Постройте конечный автомат, распознающий язык $L = \{x0101y \mid x, y \in \{0, 1\}^*\}.$

Постройте конечный автомат, распознающий язык над алфавитом $\{0,1\}$, слова которого состоят не менее, чем из трёх символов, и третий символ в которых 0.

Постройте конечный автомат, распознающий язык, заданный регулярным выражением 0*1*0*.

Сохраняя язык, удалите бесполезные символы в грамматике, заданной продукциями:

$$S \to A \mid C \mid aS$$
, $A \to \varepsilon$, $B \to aa \mid Aa$, $C \to bCb$.

Сохраняя язык, удалите ε -правила в грамматике, заданной продукциями:

$$S \to aSbS \mid AB, \quad A \to C \mid aa,$$

 $B \to bS \mid \varepsilon, \quad C \to c \mid \varepsilon.$

Сохраняя язык, удалите цепные продукции в грамматике, заданной продукциями:

$$S \to AB$$
, $A \to a$, $B \to C|b$, $C \to D$, $D \to E$, $E \to a$.

Сохраняя язык, удалите цепные продукции в грамматике, заданной продукциями:

$$S \to Aa \mid B$$
, $A \to a \mid bc \mid B$, $B \to A \mid bb$.

Приведите к нормальной форме Хомского грамматику, заданную продукциями:

$$S \to abSb \mid a \mid aAb, \quad A \to bS \mid aAAb$$

Приведите к нормальной форме Хомского грамматику, заданную продукциями:

$$A \to BAB \mid B \mid \varepsilon, \quad B \to 00 \mid \varepsilon.$$

С помощью СҮК-алгоритма проверьте принадлежность строк (а) a^3b^3 и (б) ab^3 языку, заданному грамматикой:

$$S \to AC \mid AB, \quad A \to a, \quad B \to b \quad C \to SB.$$