Regression

Victor Kitov

v.v.kitov@yandex.ru

Linear regression

- Linear model $f(x,\beta) = \langle x,\beta \rangle = \sum_{i=1}^{D} \beta_i x^i$
- Define $X \in \mathbb{R}^{NxD}$, $\{X\}_{ij}$ defines the *j*-th feature of *i*-th object, $Y \in \mathbb{R}^n$, $\{Y\}_i$ target value for *i*-th object.
- Ordinary least squares (OLS) method:

$$\sum_{n=1}^{N} (f(x,\beta) - y_n)^2 = \sum_{n=1}^{N} \left(\sum_{d=1}^{D} \beta_d x_n^d - y_n \right)^2 \to \min_{\beta}$$

Solution

Stationarity condition:

$$2\sum_{n=1}^{N}\left(\sum_{d=1}^{D}\beta_{d}x_{n}^{d}-y_{n}\right)x_{n}^{d}=0, \quad d=1,2,...D.$$

In vector form:

$$2X^T(X\beta-Y)=0$$

so

$$\widehat{\beta} = (X^T X)^{-1} X^T Y$$

This is the global minimum, because the optimized criteria is convex.

 Geometric interpretation of linear regression, estimated with OLS.

Restriction of the solution

- Restriction: matrix X^TX should be non-degenerate
 - occurs when one of the features is a linear combination of the other
 - ullet interpretation: non-identifiability of \widehat{eta}
 - solved using feature selection, extraction (e.g. PCA) or regularization.
 - example: constant feature $c = [1, 1, ... 1]^T$ and one-hot-encoding $e_1, e_2, ... e_K$, because $\sum_k e_k \equiv c$

Analysis of linear regression

Advantages:

- single optimum, which is global (for the non-singular matrix)
- analytical solution
- interpretability algorithm and solution

Drawbacks:

- too simple model assumptions (may not be satisfied)
- X^TX should be non-degenerate (and well-conditioned)

Generalization by nonlinear transformations

Nonlinearity by x in linear regression may be achieved by applying non-linear transformations to the features:

$$x \to [\phi_0(x), \phi_1(x), \phi_2(x), \dots \phi_M(x)]$$

$$f(x) = \langle \phi(x), \beta \rangle = \sum_{m=0}^{M} \beta_m \phi_m(x)$$

The model remains to be linear in w, so all advantages of linear regression remain.

Typical transformations

$\phi_k(x)$	comments
$\left[\exp\left\{ -\frac{\left\ x-\mu\right\ ^{2}}{s^{2}}\right\} \right]$	closeness to point μ in feature space
$x^i x^j$	interaction of features
$\ln x_k$	the alignment of the distribution
	with heavy tails
$F^{-1}(x_k)$	conversion of atypical distribution
(<i>x</i> _K)	to uniform

Regularization

• Variants of target criteria $Q(\beta)$ with regularization:

$$\begin{split} ||X\beta-Y||^2+\lambda||\beta||_1 & \text{Lasso} \\ ||X\beta-Y||^2+\lambda||\beta||_2 & \text{Ridge} \\ ||X\beta-Y||^2+\lambda_1||\beta||_1+\lambda_2||\beta||_2 & \text{Elastic net} \end{split}$$

• Dependency of β from $\frac{1}{\lambda}$:

Different account for different features

Optimization task with regularization:

$$\sum_{n=1}^{N} \mathcal{L}(\widehat{y}_n, y_n | w) + \lambda R(w) \to \min_{w}$$

ullet Here λ controls complexity of the model:

Different account for different features

Optimization task with regularization:

$$\sum_{n=1}^{N} \mathcal{L}(\widehat{y}_n, y_n | w) + \lambda R(w) \to \min_{w}$$

- Here λ controls complexity of the model: $\uparrow \lambda \Leftrightarrow$ complexity \downarrow .
- Suppose we have K groups of features with indices:

$$I_1, I_2, ... I_K$$

• We may control the impact of each group on the model:

$$\sum_{n=1}^{N} \mathcal{L}(\widehat{y}_n, y_n | w) + \lambda_1 R(\{w_i | i \in I_1\}) + ... + \lambda_K R(\{w_i | i \in I_K\}) \rightarrow \min_{w}$$

• $\lambda_1, \lambda_2, ... \lambda_K$ can be set using cross-validation

Weighted account for observations

Weighted account for observations

$$\sum_{n=1}^N w_n (x_n^T \beta - y_n)^2$$

- Weights may be:
 - · increased for incorrectly predicted objects
 - algorithm becomes more oriented on error correction
 - · decreased for incorrectly predicted objects
 - they may be considered outliers that break our model
- In probabilistic models different weights represent different variances.

Solution for weighted regression

$$\sum_{n=1}^{N} w_n \left(x_n^{\mathsf{T}} \beta - y_n \right)^2 \to \min_{\beta \in \mathbb{R}}$$

Stationarity condition:

$$\sum_{n=1}^{N} w_n x_n^d \left(x_n^T \beta - y_n \right) = 0$$

Define $\{X\}_{n,d}=x_n^d$, $W=diag\{w_1,...w_N\}$. Then

$$X^{T}W(X\beta - Y) = 0$$

 $\beta = (X^{T}WX)^{-1}X^{T}WY$

Robust regression

- Robust means it is not affected much by outliers.
- Initialize $w_1 = ... = w_N = 1$
 - repeat until convergence of ε_i :
 - estimate regression $\hat{y}(x)$ using observations (x_i, y_i) with weights w_i .
 - re-estimate $\varepsilon_i = \widehat{y}(x_i) y_i$, i = 1, 2, ...N.
 - recalculate $w_i = w(|\varepsilon_i|)$ with $\varepsilon_1, ... \varepsilon_N$ where $w(\cdot)$ is some decreasing function.
 - normalize weights $w_i = \frac{w_i}{\sum_{n=1}^N w_n}$

Non-quadratic loss functions

