ULTRASONICS 2021 Proceedings Book

5th International Caparica Conference on Ultrasonic-based Applications: from analysis to synthesis 2021

Caparica - Portugal 31^{th} - 03^{rd} June 2021

5th International Caparica Conference on Ultrasonic-based Applications: from analysis to synthesis 2020

Co-author(s): Adrián Fernández Lodeiro, Carlos Lodeiro, Hugo M. Santos, Eisabete Oliveira, Javier Fernández Lodeiro Cristian

Cuerva

Printed by: Proteomass Scientific Society (Portugal)

Printage: 25 Copies

Electronic support: 200 PDF/ PDF/A

Design: José L. Capelo & Adrián Fernández-Lodeiro

Webpage designer: Tomás Miranda

Caparica - Portugal, 2021

©2021 BIOSCOPE Research Group | PROTEOMASS Scientific Society

Committees

Conference Chairs

Carlos Lodeiro Espiño, MSc. PhD. FRSC

Head of the Chemistry & Nano-synthesis Laboratory BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal) CEO of the PROTEOMASS Scientific Society e-mail: cle@fct.unl.pt

José Luis Capelo Martínez, MSc. PhD. FRSC

Head of the Bio-analytics & Proteomics Laboratory BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal) Chairman of the PROTEOMASS Scientific Society e-mail: ilcm@fct.unl.pt

Hugo Santos, MSc.PhD. PhD. MRSC

Head of the Laboratory for Biological Mass Spectrometry & Functional Associations of Post-Translational Modifications Head of the Laboratory for Biological Mass Spectrometry – Isabel Moura BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal) Chief Proteomics Technology Officer PROTEOMASS Scientific Society e-mail: hms14862@fct.unl.pt

Adrián Fernández-Lodeiro, PhD. MRSC

BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, NOVA University Lisbon (Caparica, Portugal) e-mail: a.lodeiro@fct.unl.pt

Scientific Committee

Carlos Lodeiro Espiño, MSc. PhD. FRSC

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

José Luis Capelo Martínez, MSc. PhD. FRSC

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Hugo Santos, MSc.PhD. PhD. MRSC

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Elisabete Oliveira, MSc.PhD. PhD.

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Javier Fernández-Lodeiro, MSc. PhD

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Adrián Fernández-Lodeiro, PhD. MRSC

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Cristian Cuerva, MSc.PhD.

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Gilberto Igrejas, PhD

Univ. de Trás-os-Montes e Alto Douro, LAQV-REQUIMTE, Portugal.

Brijesh Tiwari, PhD

Teagasc Food Research Centre, Ashtown, Dublin (Ireland)

Andreas Mandelis, PhD

Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), University of Toronto, Toronto (Canada)

Kullervo Hynynen, PhD

University of Toronto, Institute of Biomaterials and Biomedical Engineering, Toronto (Canada)

Aharon Gedanken, PhD

Department of Chemistry Bar-Ilan University, Ramat-Gan (Israel)

Gail Ter Haar, PhD

Royal Marsden Hospital: Institute of Cancer Research, Sutton (UK)

Parag R. Gogate, PhD

Institute of Chemical Technology, Mumbai (India)

Jurgen Götz, PhD

Queensland Brain Institute, The University of Queensland (Australia)

Local Organizing Committee

José Luis Capelo Martínez, MSc. PhD. FRSC

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Carlos Lodeiro Espiño, MSc. PhD. FRSC

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Hugo Santos, MSc. PhD. PhD.

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Adrián Fernández-Lodeiro, PhD. MRSC

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Elisabete Oliveira, MSc. PhD. PhD.

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Javier Fernández-Lodeiro, MSc. PhD.

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Cristián Cuerva de Alaiz PhD.

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Gilberto Igrejas | PhD

University of Trás-os-Montes and Alto Douro, LAQV-REQUIMTE (Portugal)

Susana Jorge, MSc.

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Gonçalo Martins, MSc.

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Luis Carvalho, MSc.

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Silvia Nuti, MSc.

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Tomás Rogeiro Brochado de Miranda, MSc.

PROTEOMASS Scientific Society, Portugal.

Petro Andriyko

PROTEOMASS Scientific Society, Portugal.

Conference Secretariat

José Luis Capelo Martínez, MSc. PhD. FRSC

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Adrián Fernández-Lodeiro, PhD. MRSC

BIOSCOPE group, LAQV-REQUIMTE, Chemistry Department, NOVA University Lisbon, Portugal.

Faculdade de Ciências e Tecnologia - Universidade NOVA de Lisboa NOVA School of Sciences and Technology, NOVA University Lisbon

BIOSCOPE Group - LAQV-REQUIMTE, Department of Chemistry NOVA School for Science and Technology, NOVA University Lisbon.

Campus de Caparica, 2829-516 Caparica, Portugal PROTEOMASS Scientific Society - Portugal

E-mail: jlcm@fct.unl.pt / cle@fct.unl.pt / hmsantos@fct.unl.pt

Phone: +351 919 404 933 / +351 916 949 133

Web: http://www.ultrasonics2020.com/

Web page designer: Tomás Miranda

©2020 BIOSCOPE Research Group

Sponsors

Bruker

(www.bruker.com)

LaborSpirit

(www.laborspirit.com)

Meinhardt Ultrasonics

(https://www.meinhardtultrasonics.com)

SONOSYS Ultraschallsysteme GmbH

www.sonosys.de/en/home.html

Paralab

(www.paralab.pt)

Sociedade Portuguesa de Química

(www.spq.pt)

Castelbel

(https://www.castelbel.com/en/)

Nan@rts

(www.nanoarts.org)

High Frequency Power Ultrasound since 1950

Partners

Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa

(www.fct.unl.pt)

LAQV@REQUIMTE

(www.requimte.pt)

Câmara Municipal de Almada

(www.m-almada.pt)

Journal of Integrated OMICS

(www.jiomics.com/index.php/jio)

BIOSCOPE Group

(www.bioscopegroup.org/)

Proteomass Scientific Society

(http://www.proteomass.org)

Caparica Científica

(http://www.bioscopegroup.org)

Transtejo

(www.transtejo.pt)

TAP – Air Portugal

(http://flytap.com)

Turismo de Lisboa

(https://www.visitlisboa.com)

Turismo de Portugal

(https://www.turismodeportugal.pt)

Programme by day

MIND: THE TIME IS LISBON-BASED (UTC +1)

Monday | May 31th (Live Presentations)

Mind: The time is Lisbon-based. (UTC +1)

ZOOM:		
Chairperson:		José L. Capelo
14:00 - 14:15		Oppening Sesion
14:15 - 15:00	Plen	ary 1. Aharon Gedanken (Israel)
15:00 - 15:15	O.01	Pacios Santander (Spain)
15:15 - 15:30	O.02	Mohammed Es Souni (Germany)
15:30 - 15:45		Break
Chairperson:		José L. Capelo
15:45 - 16:00	O.03	Viktor Chikan (USA)
16:00 - 16:15	O.04	Ivan Mikheev (Russia)
16:15 - 16:30	O.05	Gerard Verbiest (Netherlands)
16:30 - 16:45	O.06	Erik Persson (Sweden)
16:45 - 17:00		Break
Chairperson:		Hugo M. Santos
17:00 - 17:15	O.07	Damiano Palmieri (Italy)
17:15 - 17:20	SG.01	Christophe Cheuleu (France)
17:20 - 17:25	SG.02	Vincent Jacquemain (France)
17:25 - 17:30	SG.03	Aarón Terán More (Spain)
17:30 - 17:35	SG.04	Elisabetta Tortorella (Italy)
17:35 - 17:40	SG.05	Luis Carvalho (Portugal)
17:35 - 17:40 17:40 - 17:45	SG.05 P.01	Luis Carvalho (Portugal) Palacios Santander (Sapain)

Tuesday | June 01st

ZOOM:		
Chairperson:		José L. Capelo
10:00 - 10:15		Keynote 1. Glen Harris (Australia)
10:15 - 10:25	O.08	Norio Tagawa (Japan)
10:30 - 10:40	O.09	Maxim Solovchuk (Taiwan)
10:40 - 10:50	0.10	Ioan Calinescu (Romania)
10:50 - 11:00	0.11	Christian David (France)

ZOOM:		
Chairperson:		José L. Capelo
13:00 - 13:15	0.12	Grzegorz Musielak (Poland)
13:15 - 13:25	O.13	P.L.M.J. van Neer (Netherlands)
13:25 - 13:35	0.14	Richard J Colchester (UK)
13:35 - 13:45	O.15	Lars Grüter (Germany)
13:45 - 14:10		Break
Chairperson:	J	osé L. Capelo & Hugo M. Santos
14:10 - 14:30		Poster session I
14:30 - 15:30		Break
14:30 - 15:30 Chairperson:		Break José L. Capelo
	Pler	
Chairperson:		José L. Capelo
Chairperson: 15:30 - 15:45	KPF	José L. Capelo nary 2. Kullervo Hynynen (Canada)
Chairperson: 15:30 - 15:45 15:45 - 16:00	KPF	José L. Capelo nary 2. Kullervo Hynynen (Canada) RK Talk 1 Aaron Fenster (Canada)
Chairperson: 15:30 - 15:45 15:45 - 16:00 16:00 - 16:15	KPF	José L. Capelo nary 2. Kullervo Hynynen (Canada) RK Talk 1 Aaron Fenster (Canada) Geynote 2. Xueding Wang (USA)
Chairperson: 15:30 - 15:45 15:45 - 16:00 16:00 - 16:15 16:15 - 16:25	KPF K O.16	José L. Capelo nary 2. Kullervo Hynynen (Canada) RK Talk 1 Aaron Fenster (Canada) (eynote 2. Xueding Wang (USA) Reine-Marie Guillermic (Canada)

Wednesday | June 02nd ZOOM: Chairperson: José L. Capelo 10:00 - 10:15 Plenary 3. Jürgen Götz (Australia) 10:15 - 10:30 Keynote 3. Jan D'hooge Keynote 4. Mikhail Skliar 10:30 - 10:45 10:45 - 10:55 0.20 Maja Rosič (Slovenia) 10:55 - 11:00 Miaomiao Zhang (Belgium) 0.21 11:05 - 11:15 Dmitry A. Ivlev (Russia) 0.22 ZOOM: José L. Capelo Chairperson: 13:00 - 13:15 Plenary 4. Parag Gogate (India) Dominik Mierzwa (Poland) 13:15 - 13:25 0.23 13:25 - 13:35 0.24 Sacha Noimark (UK) 13:35 - 13:45 0.25 A.V. Morozova (Russia) 13:45 - 14:10 **Break** Chairperson: Hugo M. Santos 14:00 - 14:15 Plenary 5. Brijesh Tiwari (Ireland) 14:15 - 14:25 0.26 Małgorzata Nowacka (Poland) 14:25 - 14:35 Break José L. Capelo & Hugo M. Santos Chairperson: 15:00 - 15:10 0.27 Aleem M. Siddiqui (USA) 15:10 - 15:20 0.28 Jahan Azizi (USA) 15:20 - 15:30 0.29 Paolo Guida (Saudi Arabia)

POSTER SESSION I

Tuesday, June 02nd 14:10 - 14:30

SHOTGUN PRESENTATION

Thrusday, June 04th 13:00 - 13:30

P.04 Adina Ionuta Gavrila (Romania) SG.06 Raissa Likhonina (Czı

P.05 Gordana Zauhar (Croatia)

P.06 Oleg Olikh (Ukraine)

SG.07 Katarzyna Rybak (Pol SG.08 N.S. Shaitura (Russia SG.09 Watbled Bastien (Frar

XVI

Thursday | June 03rd

7	\cap	\cap	M	٠

Chairperson:		José L. Capelo
10:00 - 10:15		Plenary 6 Gail Ter Haar (UK)
10:15 - 10:25	O.30	Gabriel M. Gurman (Israel)
10:30 - 10:40	O.31	Federica Foglietta (Italy)
10:40 - 10:50	O.32	Ivan Suarez-Castellanos (France)
10:50 - 11:00	O.33	Astrit M. Gashi (Albania)

ZOOM:

13:30 - 14:00

Chairperson: José L. Capelo

13:00 - 13:30 SHOTGUN PRESENTATIONS & POSTERS

Break

Chairperson: José L. Capelo & Hugo M. Santos

14:00 - 14:15 **Keynote 5. Hubert Lim**

14:15 - 14:30 Plenary 7. Andreas Mandelis (Canada)

14:30 - 15:00 Closing Session & Awards Ceremony

General Information

Conference Language

English is the ULTRASONICS 2021 official language. No simultaneous translation is provided.

Certificate of Attendance

The Certificate of Attendance will be sent to the delegates by e-mail.

Liability and Insurance

Registration fees do not include participants insurance against personal accidents, sickness and cancellations by any part, theft, loss or damage to personal possessions. ULTRASONICS 2021 and the Organization Secretariat accept no liability. Any dispute about payment and participation shall be governed and interpreted according to the laws of that in Portugal: The parties irrevocably submit to the jurisdiction of the courts of Portugal (Lisbon metropolitan area) with respect to all disputes or matters arising out of or pertaining to the participation in this conference (ULTRASONICS 2021).

Program Changes

Due to circumstances beyond the control of the Organization and ULTRASONICS 2021, last minute changes to the programme may be unavoidable. All the information in this program is accurate as at the day of printing (May 15th, 2021).

Disclosure of Information

Proceedings Book is avalibate for downloade at the conference website www.ultrasonics2021.com

Password for the book of abtracts: @Caparica2021Ultrasonics

Privacy Policy

The right to image is protected by the Constitution of the Republic of Portugal, and Law protects it. Please, do not take pictures or film any presentation, person or activity during ULTRASONICS 2021.

Follow Us:

Proteomass Scientific Society

#Proteomasssociety

Zoom Links

Monday, June 01st

Tuesday, June 02nd

Wednesday, June 03rd

Thursday, June 04th

Awards

Best Poster Prizes

PROTEOMASS Scientific Society

Will award the three-best poster communications with a certificate from the PROTEOMASS Scientific Society. The Criteria for eligibility will be based on the excellence and originality of the research presented. Selection will be done by an online voting. To receive the prize is mandatory attend the Closing Session & Awards Ceremony, Thursday, June 04th 14:00.

PROTEOMASS Scientific Society | www.proteomass.org

Best Shotgun and Shotgun Poster Prizes

PROTEOMASS Scientific Society and the Start up Nanoarts

Will award the 2 best shotgun communications and the 2 best shotgun poster communications with a certificate from the PROTEOMASS Scientific Society. The Criteria for eligibility will be based on the excellence and originality of the research presented. Selection will be done by an online attendee voting. To receive the prize is mandatory attend the Closing Session & Awards Ceremony, Thursday, June 04th 14:00.

VOTE FOR BEST POSTERS & SHOTGUNS

Best Poster Prizes - Session I P01 - P06

Tuesday, June 02nd | 14:10 – 15:00 pm VOTE FOR YOUR FAVOURITE POSTERS!

These prizes will be given to the three best posters presented at the conference. It rewards a combination of excellent research, innovation, and presentation. Poster presentation winners will be recognized publicly in the Closing Session & Awards Ceremony, Thursday, July 23th 14:40.

The winners will receive a certificate by PROTEOMASS Scientific Society.

FOR VOTING USE, THE LINK OR THE QR-CODE

Best Shotgun Presentation Prizes

Thrusday, June 04th | 13:00 – 13:30 pm

VOTE FOR YOUR FAVOURITE SHOTGUN PRESENTATION!

These prizes will be given to the two best Shotgun communications presented at the conference. It rewards a combinati on of excellent research, innovation, and presentation. Shotgun presentati on winners will be recognized publicly in the Closing Session & Awards Ceremony, Thrusday, June 04th 13:30.

The winners will receive a certificate by PROTEOMASS Scientific Society.

FOR VOTING USE, THE LINK OR THE QR-CODE

Best Shotgun Poster Prizes

Thrusday, June 04th | 13:00 – 13:30 pm

VOTE FOR YOUR FAVOURITE SHOTGUN POSTER!

These prizes will be given to the two best Shotgun posters presented at the conference. It rewards a combination of excellent research, innovation, and presentation. Shotgun presentation winners will be recognized publicly in the Closing Session & Awards Ceremony, Thrusday, June 04th 13:30.

The winners will receive a certificate by PROTEOMASS Scientific Society.

FOR VOTING USE, THE LINK OR THE QR-CODE

Welcome

PREFACE to the 5th International Caparica Conference on Ultrasonic-based Applications: from analysis to synthesis 2021, Ultrasonics 2021

José-Luis Capelo-Martínez, Carlos Lodeiro, Hugo M. Santos

BIOSCOPE Research Group, LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnología, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal. PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal.

The piezoelectric effect was first described by Jacques and Pierre Curie in 1880 [1]. Since then, the technology related to ultrasound has growth to applications the own Curie brothers would have never envisioned. For instance, the business for ultrasonic sensors makes part of a market that is growing at a ratio of 19% every year [2], with an estimated global value of about \$60 billion by 2022. Ultrasonic sensors are currently used (i) in wind sensors to calculate wind speed and help in mapping the weather; (ii) in monitoring metal corrosion in a non-invasive manner; (iii) in helping fire extinguisher robots to detect hotspots; (iv) in searching and rescue operations and (v) in remediating water contaminated with toxic algae, just to mention five applications. Indeed, food industry, design of new materials, environmental applications, chemical analysis and chemical synthesis are some of the areas where ultrasound is gaining momentum. Personally, I consider the applications in medicine the most amazing ones, especially the ones related to the brain. In 2016 the American FDA approved the focused ultrasound thalamotomy as a treatment for people having a movement disorder called essential tremor [3]. And the applications can go beyond, as it is expected to be applied in intractable neuropsychiatric disorders, such as depression and anxiety. Also, in Parkinson's disease. Ultrasound energy can be targeted with high precision in deep regions of the brain, where no other techniques can be used. Some colleagues think ultrasound can be used to tune the brain by stimulating the cells and more interestingly, ultrasound waves can be used to expand nanoparticle drug carriers make them deliver the cargo in precise brain areas. Taking together, we are going to enjoy all the 2021 presentations, from engineering to medicine, from food processing to environmental applications.

I cannot finish this welcome without a reference to the exceptional circumstances of 2021. For the first time, and I do hope the last one, we are not going to be face-to-face. It was necessary to delay the conference one year. However, we considered that just delaying one year the conference was not fair. It was needed to maintain a spirit of resilience. Such spirit is represented by this online conference and by each one of us. I am deeply grateful to all of you, for participating and for your support in this severe moment.

I speak on behalf of the bioscope team when I say we are waiting to make a double toast face to face during the gala dinner of ultrasonics 2021, one for 2020 and another one for 2021 ultrasonic editions.

Take care and stay safe.

J. L. Capelo, C. Lodeiro, H. M. Santos

On behalf of the bioscope group.

- [1] <u>Curie, Jacques; Curie, Pierre</u> (1880). "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées" [Development, via compression, of electric polarization in hemihedral crystals with inclined faces]. *Bulletin de la Société Minérologique de France*. **3** (4): 90–93. <u>doi:10.3406/bulmi.1880.1564</u>.
- [2] https://www.porttechnology.org/news/ultrasonic_sensors_mapping_the_future/, last time accessed July, the 5th, 2020
- [3] https://www.nature.com/articles/d41586-017-05479-7, last time accessed July, the 9th, 2020.

Figure 1 - Participants at the Ultrasonics 2021

Largest delegations: Ireland (12), United States of America (7), Poland (5), Australia (4), Canada (4), Japan (4), Romania (4), United Kingdom (4).

Total Attendees (with presentation): 67

ULTRASONICS 2018 CONFERENCE PICTURE

Table of Contents

CommitteesIl
Sponsors
PartnersX
Programme by dayXII
General InformationXX
Zoom LinksXX
AwardsXXV
WelcomeXXI
PREFACE to the 5 th International Caparica Conference on Ultrasonic-based Applications: from analysis to synthesis 2021, Ultrasonics 2021
Table of ContentsXXXI
Plenary Lectures 3
PL 1 - Aharon Gedanken
reactors: design, scale up and applications
PL 5 - Brijesh Tiwari44 PL 6 - Gail Ter Haar45
PL 7 - Andreas Mandelis
PL 8 - Timothy Grant Leighton (only presential)47
Keynote Lectures4
KN 1 - Glen Harris
KPRK1 - Aaron Fenster57
Oral Presentations
O 01 - One-minute and green synthesis of magnetic iron oxide nanoparticles assisted by design of experiments and high energy ultrasound: Application to biosensing and immunoprecipitation

0 06 - Verification of permanent bolt elongation during assembly using ultrasonics	68
0 07 - Double shelled perfluorocarbon microdroplets as a versatile ultrasound	phase-
change platform	69
0 08 - Plane Wave Beamforming Based on Adaptive Weighted Frequency Compour	
0 09 - High Performance calculation of nonlinear wave propagation on multiple GF	
0 10 - Ultrasound and microwave – the advantages and limitation of combined use	
<u> </u>	
0 11 - Ultrasonic monitoring of fluid substitution processes in porous rocks	
O 12 - Ultrasonic Enhancement of Convective Heat Transport	
0 13 - The role of acoustic coupling in scattering contrast based GHz atomic	c force
microscopy	76
O 14 - All-Optical Ultrasound Imaging for Minimally Invasive Surgery	77
0 15 - Ultrasound Imaging with a Multimode Waveguide using a Time Reversal	
Array	
0 16 - Ultrasonic properties and texture of plant-based meat analogues	
O 17 - Platelet-rich plasma versus Tenex in the treatment of medial and	
epicondylitis	
0 18 - Sonosensitized ROS generation using peroxide compound: Kinetic aspec	
its possible applications for SDT treatments	81
O 19 - Parametric Speakers: Between Art and Scientific Research	82
0 20 - Use of 2D transvaginal ultrasonography and hysterosalpingo-foam sonography	phy for
assessment of the efficacy of Essure hysteroscopic sterilization	
0 21 - Compressed Ultrasound Signal Reconstruction Using a Low-Rank and Joint-	
Representation Model	
O 22 - Ultrasonic monitoring provide the novel possibility to control the thrombolyt	
injection	
0 23 - The influence of ultrasound on the efficiency of the vacuum impregnation	
selected characteristics of the plant material	
O 24 - Nanocomposite Materials for All-Optical Ultrasound Imaging	
O 25 - The influence of ultrasound on the properties of oil-dispersed systems	
O 26 - The impact of ultrasound pre-treatment on selected properties of	
mushrooms	89
0 27 - Anisotropic Focusing Transducers in Thin Piezoelectric Films	90
O 28 - Ensuring Cavitation in a Medical Ultrasonic Cleaner	92
O 29 - A numerical model of ultrasonically induced cavitation	
0 30 - The impact of ultrasound (US) on the development of anesthesia techniques	
0 31 - Ovarian cancer cells under ultrasound exposure of doxorubicin show an enl	
immunogenic cell death	
O 32 - Ultrasound Stimulation of Insulin Release from Pancreatic Beta Cells as a Po	
Novel Treatment for Type 2 Diabetes	
0 33 - Meningioma in pregnancy and perinatal outcomes	
O – <mark>No sé por que mandó dos abstracts Dominik.</mark> Ultrasound in convective drying o	
mushroom	
0 36	100
Shotgun Presentations	101
•	
SG 01 - Time resolved X ray diffraction applied to ultrasonic fatigue loading	
SG 02 - A methodology to conduct ultrasonic fatigue tests at 20kHz (on n	
specimens)	
SG 03 - Sonochemical activation as a novel strategy for the synthesis of water-s	soluble
monosubstituted Ru(II,III) compounds	105
SG 04 - Pro-Inflammatory effects of 1-MHz Pulsed Ultrasound in Human Keratin	
	-
SG 05 - Luis Carvalho	108

SG 06 - RLS QRD Lattice Algorithm for Hand Detection in Ultrasound-Based Applica	
SG 07 - The impact of ultrasound pre-treatment on strawberry microstructure	
SG 08 - The use of ultrasound to activate the aluminium oxidation by water	
SG 09 - Design and characterization of a new multi-frequency semi-pilot ultrasonic	
SG 10	113
SG 11	114
SG 12	115
Poster Presentations	116
P 01 - High-energy ultrasound synthesis of Sonogel-Carbon material modified with	bulk
polyaniline. Application in the electrochemical sensing of model chlorophenols	118
P 02 - Novel ceramic carbon black-polyaniline material synthesized by high-en	nergy
ultrasound with anti-fouling properties in electrochemical sensing	
P 03 - Ultrasound responsive microdroplets as a synergistic gene-drug delivery age	
human Melanoma cells	
P 04 - Ultrasonic pretreatment of vegetal material to increase the extraction yie	
bioactive compounds	
P 05 - Influence of ultrasound on the release of levonorgestrel from a horn	
intrauterine device Mirena	
P 06 - Acoustically Induced Acceleration of Iron Migration in Silicon Solar Cells	
P 06	
P 08	
P 09 P 10	
P 10	
P 12	
Author Index	
ist of a-mails	136

Plenary Lectures

PL 1 - Aharon Gedanken

Presencial del 31 al 02, según dijo

PL 2 - Kullervo Hynynen

PL 3 - Jürgen Götz

PL 4 - Process intensification of chemical processing applications using cavitational reactors: design, scale up and applications Parag R. Gogate

Chemical Engineering Department, Institute of Chemical Technology, Mumbai – 400 019, India

* email: pr.gogate@ictmumbai.edu.in

Abstract:

Cavitational reactors are a novel and promising form of multiphase reactors, based on the principle of release of large magnitude of energy due to the violent collapse of the cavities. Use of cavitational reactors for process intensification of several chemical and physical processing applications has been exploited worldwide in recent years. The present talk aims at presenting an overview of design and operation of cavitational reactors also focusing on the different areas of applications in the area of chemical processing illustrating some typical case studies.

The initial part of the talk will be devoted to basic concepts of cavitation phenomena and mechanism of observed intensification in different chemical systems. It will be demonstrated that depending on the application in question, it is most important to identify the controlling mechanism and then adjust the design and operating parameters [1] so as to maximize the intensification benefits. Guidelines for the optimum design and operating parameters will also be presented. Different designs of cavitational reactors including sonochemical and hydrodynamic cavitation reactors will be discussed and comparison will be presented using two criteria of energy efficiency and cavitational yield estimations for different applications based on the work done by the research group. Some discussion on the commercial applications harnessed successfully will also be presented highlighting the obtained benefits and recommendations for large scale reactors. A successful commercial installation applied for treatment and recycle of frac water in oil and gas explorations will be discussed. The reactor is based on the combined usage of hydrodynamic cavitation, ultrasound and ozone giving synergistic results and has been successfully used for processing of the recycled fluids at commercial sites on over 1200 oil and natural gas wells during hydraulic operations [2].

The talk will also present some experimental case studies using industrially important operations such as crystallization and wastewater treatment highlighting the degree of intensification achieved as compared to the conventional approaches. Possible benefits for the use of ultrasound in crystallization will be highlighted. One specific study related to industrial wastewater treatment based on real effluent from specialty chemical manufacturing unit will be discussed in details. In the work, the effluent treatment was based on the application of hydrodynamic cavitation alone and in combined operation with other oxidation processes focusing on the main objective of a COD reduction. The pretreatment of HC+Fenton process followed by conventional biological oxidation resulted in COD reduction of about 98% (final COD \leq 250 mg/L), which meets the discharge water compliance. Overall it appears that considerable economic savings is possible by means of harnessing the spectacular effects of cavitation in chemical and physical processing.

Keywords

Reactor Designs; Operating parameters; Chemical processing; Process intensification; Scale up

References

- [1] P.R. Gogate, V.S. Sutkar, A.B. Pandit, Chemical Engineering Journal, 166 (2011) 1066-1082
- [2] P. R. Gogate, D. McGuire, S. Mededovic Thagard, R. Cathey, J. Blackmon, G. Chapas, Ultrasonics Sonochemistry, 21 (2014) 590-98
- [3] P.D. Thanekar, P.R. Gogate, Separation & Purification Technology, 239 (2020) Article 116563

Acknowledgements

Authors would like to acknowledge the funding of Department of Science and Technology, India, University Grants Commission India and Mangalam Organics Limited, India for some of the research work demonstrated in this talk.

PL 5 - Brijesh Tiwari

PL 6 - Gail Ter Haar

PL 7 - Andreas Mandelis

PL 8 - Timothy Grant Leighton (only presential)

Keynote Lectures

KN 1 - Glen Harris

KN 2 - Targeted treatment of micro-vascularization by imaging-guided photo-mediated ultrasound therapy

Xueding Wang^{1*}, Yu Qin¹, Wei Zhang¹, Yixin Yu², Yannis Paulus^{2*}, and Xinmai Yang^{3*}

¹Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA

²Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, USA

³Institute for Bioengineering Research and Department of Mechanical Engineering, University of Kansas, Lawrence, KS, USA

email: xdwang@umich.edu; ypaulus@umich.edu; xmyang@ku.edu.

Abstract

<u>Purpose</u>: Neovascularization occurs in eye diseases such as diabetic retinopathy and macular degeneration. To achieve improvement management of these eye diseases, we developed an image-guided photo-mediated ultrasound therapy (PUT) technique which concurrently applies nanosecond laser pulses and millisecond ultrasound bursts to precisely and safely remove microvessels in the eye.

Method: Via the studies on the chicken embryo and rabbit eye models, the efficacy and the safety of PUT, as a novel anti-vascular technique, were validated. In parallel, we developed an integrated multi-modality imaging system combining photoacoustic microscopy (PAM), optical coherence tomography (OCT), and fluorescence microscopy (FM) for evaluating the neoangiogenesis in the eye. In this work, by combining the multi-modality imaging and the PUT, image-guided treatment of neoangiogenic vessels in the eye including choroidal, retinal, and corneal vasculatures were explored using the clinically relevant rabbit eye models.

Results: The image-guided PUT can precisely and efficiently remove choroidal vasculature by using safe ultrasound pressure and safe laser fluence. After a single treatment, the elimination of choroidal vasculature can sustain up to 4 weeks. The excellent safety was confirmed by histopathological analyses. The elimination of vessels in the treatment region was confirmed by fundus camera and fluorescence angiogram. PAM, by presenting much more vascular details with extremely high image quality, facilitates treatment monitoring and assessment in real time. In addition, during PUT, cavitation signals were observed by OCT, suggesting that OCT, with good sensitivity in detection microbubbles, can be another imaging modality for online monitoring and guidance of PUT.

<u>Conclusion:</u> Image-guided PUT holds promise as a novel, non-invasive method for treating eye neovascularization. With the guidance from the advanced multi-modality imaging, targeted treatment of microvessels in retina, choroidal, or corneal can be achieved with further enhanced safety and further improved efficacy, which is crucial for realizing personalized treatment with optimal outcome.

Figure 1. Fundus photographs following a single PUT treatment on a rabbit choroid up to 4 weeks after the treatment. Blue circles indicate the treated area. (a) The fundus photo taken before the PUT treatment. (b) The fundus photo taken immediately after the PUT treatment. The blood vessel margins in the treated area appeared blurry. (c) The fundus photo taken at 1 week after the PUT treatment. Pallor occurred in the region of treatment with largely diminished choroidal vessels. (d), (e), and (f) The photos taken at 2, 3, and 4 weeks, respectively, after the PUT treatment.

KN 3 - Jan D'hooge

KN 4 - Mikhail Skliar

KN 5 - Hubert H Lim

KPRK Talks

KPRK1 - Aaron Fenster

Oral Presentations

O 01 - One-minute and green synthesis of magnetic iron oxide nanoparticles assisted by design of experiments and high energy ultrasound: Application to biosensing and immunoprecipitation

José María Palacios-Santander^{1*}, Christian Hazael Pérez-Beltrán^{1,2}, Juan José García-Guzmán¹, Bibiana Ferreira^{3,4,5}, Osvaldo Estévez Hernández⁶, David López-Iglesias¹, Laura Cubillana-Aguilera¹, Wolfgang Link⁷, Nicolau Staniça⁸, Ana María Rosa da Costa^{2,9}

Institute of Research on Electron Microscopy and Materials (IMEYMAT), Dept. Analytical Chemistry, Faculty of Sciences, CEIMAR, University of Cadiz, Puerto Real, Cádiz, Spain.
 ²Faculty of Science and Technology, Universidade do Algarve, Faro, Portugal. ³Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal. ⁴Algarve
 Biomedical Center (ABC), University of Algarve, Faro, Portugal. ⁵Regenerative Medicine Program, Dept. Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal. ⁶Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, La Habana, Cuba. ⁷Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM). Madrid, Spain. ⁸Institute of Physical Chemistry 'Ilie Murgulescu' of the Romanian Academy, Bucharest, Romania. ⁹Algarve Chemistry Research Centre (CIQA), Universidade do Algarve, Faro, Portugal.

*Email: josem.palacios@uca.es

Abstract

In this work, a one-minute and green synthesis of magnetic (iron oxide) nanoparticles (MNPs) based on the co-precipitation method assisted by high energy ultrasound and design of experiments (DOE) is reported. This ultrafast process is based on the optimization of two main factors: energy (amplitude) of the ultrasound probe and the time of sonication. This DOE-based sonochemical strategy promotes important advantages with respect to typical and some new methods: reduction of reagents employed, use of water as solvent, low energy requirements and drastic saving of time, from hours to just one minute [1].

The final obtained product under the optimized operating conditions established according to DOE results produced MNPs with an average particle size of 11 ± 2 nm. The MNPs were completely characterized for their composition, size, structure, morphology and magnetization properties by means of different instrumental techniques: X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), transmission (Fig.1) and scanning electron microscopy (TEM/SEM), and vibrating sample magnetometry (VSM). The so-synthesized MNPs, showing probably a magnetite phase, were functionalized with different coatings agents like polydopamine and sodium citrate, among others.

These functionalized MNPs were successfully employed in two different applications, environmental and biomedical, respectively: i) biosensing detection of Hg²⁺ in water exploiting the

inhibition caused by this ion on the horseradish peroxidase enzyme attached onto the polymer-coated MNPs surface; and ii) immunoprecipitation study in which polyclonal antibodies were anchored on the functionalized MNPs to react with an osteosarcoma cell line that expressed the target protein (TRIB2-GFP).

Figure 1. Transmission electron microscopy (TEM) analysis of polydopamine (PDA) @MNPs. A) TEM micrograph of PDA @MNPs taken at HREM mode, B) Digital Diffraction Pattern (DDP) built from A.

Keywords: Magnetic nanoparticles, 1 min-synthesis, design of experiments, high-energy ultrasound, biosensing, immunoprecipitation.

References

[1] C. H. Pérez-Beltrán, J. J. García-Guzmán, B. Ferreira, O. Estévez-Hernández, D. López-Iglesias, L. Cubillana-Aguilera, W. Link, N. Stănică, A. M. dos Santos Rosa da Costa, J. M. Palacios-Santander. One-minute and green synthesis of magnetic iron oxide nanoparticles

assisted by design of experiments and high energy ultrasound: Application to biosensing and immunoprecipitation. Materials Science and Engineering: C - Materials for Biological Applications In Press, Journal Pre-Proof (2021) 112023. https://doi.org/10.1016/j.msec.2021.112023.

Acknowledgements

Authors greatly acknowledge EMQAL consortium, Junta de Andalucía, IMEYMAT, UCA project PR2020-13, AUIP, FCT, CBMR, CIQA, Spanish Ministry of Science and Innovation, Marie Curie Individual Fellowships ('Tribbles') and Terry Fox grants for the financial support.

O 02 - Sonochemistry in Aqueous Solutions allows the Formation of Noble Metal NPs on a Nanocarbon and TiN Surfaces

Mohammed Es-Souni,

Institute for Materials & Surface Technology, Kiel, Germany

The sonochemical processing of nanomaterials in a solution is well established and has been advantageously used for a variety of nanomaterials and morphologies thereof. In general, high energy and high frequency ultrasound is applied to a solution containing the ionic species of the elements to be reduced as well as a certain amount of reducing chemicals. For further applications such as catalysis washing, filtering, dispersion and mounting on or mixing in a substrate are necessary. A sonochemical processing of nanomaterials directly on a substrate could make all these steps obsolete. Herein we show that noble metal and nanoalloy nanoparticles (NPs) can directly be processed on nanocarbon and titanium nitride surfaces using a simple ultrasonic laboratory cleaner in aqueous solutions that are free from any reducing chemicals. The process is demonstrated on Au-NPs and nanoalloys of AuPd and PdPt which form a dense distribution on the substrate surface. To illustrate the catalytic activity of the NPs, the electrocatalytic performance of one AuPd-nanoalloy is demonstrated. The results are discussed in terms of reduction phenomena occurring at the interface between the ultrasonic cavitation and the substrate. We think that these reduction phenomena are mediated by the formation of reducing radicals at the substrate surface that are in turn driven by OH radicals from water sonolysis.

O 03 - Driving Molecular Transport across Biological Membranes from Magnetic Nanoparticle/Pulsed Magnetic Field Induced Ultrasound

Viktor Chikan

Department of Chemistry, Kansas State University, Manhattan, KS 66506

There is tremendous interest in developing methodologies to control biological processes at the cellular level remotely. A particularly intriguing concept is to regulate material transport across biologically important membranes by various external magnetic field stimuli converting it to localized sound waves such as ultrasound with the help of magnetic nanoparticles. Since 2007, the Chikan group has been active in magnetic hyperthermia research. 1 Magnetic hyperthermia treatment to eliminate cancer is based on heating cancer cells by applying few milli tesla amplitude alternating magnetic fields in the presence of magnetic nanoparticles inside the cancer tissue. A major concern of the effective use of magnetic hyperthermia is that the amount of heat necessary to eliminate cancer cells and tissues places tight requirements on the effective concentrations of the nanoparticles. Results from our collaborative effort and from others show that magnetic hyperthermia treatment is effective against cancer. As it has been shown the mechanical aspect of moving magnetic particles also contributes significantly to the effectiveness of magnetic hyperthermia treatments. ² This observation provides a strong rationale for pursuing research on the mechanical aspect of the magnetic nanoparticles and its biological impact in the presence of various magnetic fields types. The Chikan lab has realized early on that to decease the potentially toxic side effects from large quantities of magnetic nanoparticles (few mg of NP/ml of cancer tissue) is to explore the effects of increased magnetic field strengths; therefore, our investigations focused on high magnetic field strengths(Few Tesla) and magnetic field gradients(Few Hundred Tesla/m) for mechanically manipulating magnetic nanoparticles resulting ultrasonic waves.3

Discovery of drug Release from magnetic field induced ultrasound from magnetic nanoparticles: In order to understand the behaviors of cell membranes when exposed to short intense magnetic fields in the presence of magnetic nanoparticles, our research has focused on a liposomal model system consisting of phospholipids. The permeability changes in these liposomal drug delivery vehicles modified to incorporate the magnetic NP triggers, 4 which enabled us to make some important discoveries such as: 1) We have successfully demonstrated the ability to prepare liposomes loaded with model drug and triggerable magnetic particles to deliver drugs very rapidly (sub milliseconds), which is great gain over the traditional speed of liposomal drug delivery systems (minutes an hours). 2) The magneto liposomes when triggered with inhomogeneous pulsed magnetic fields release drug molecules. 3) We have discovered that the mechanism of drug release is the result of the <u>ultrasound generation</u> from small magnetic nanoparticles as shown in the Figure 1.54) The ultrasound is generated from the oscillation of particles (not heat) in the pulsed oscillating inhomogeneous magnetic fields as opposed to the much weaker magnetostriction effect due to

Figure 1 Ultrasound from colloidal iron oxide nanoparticles

Figure 2 LEFT: COMSOL calculation of Inhomogeneous magnetic field inside anti Helmholtz coil used in cancer therapy. MIDDLE: Portable electromagnet and the integrated power delivery system for cell work. RIGHT: Rotating Pulsed Magnet from Chikan lab

homogeneous magnetic fields. Our group utilizing very low duty cycle intense magnetic pulses has achieved comparable drug delivery efficiencies to the results carrier out with magneto liposomes exposed to low amplitude continuous alternating magnetic field studies with 100% duty cycle electro magnets 6) In addition these scientific discoveries, we have developed several

¹ BMC Cancer **2010**, 10 (1), 119; Int J Nanomedicine **2012**, 7, 297-306.; Ther Deliv **2015**, 6 (10), 1195-210.

² Naud, C.; Thébault, C.; Carrière, M.; Hou, Y.; Morel, R.; Berger, F.; Diény, B.; Joisten, H., Cancer treatment by magneto-mechanical effect of particles, a review. Nanoscale Advances 2020.

³ Podaru, G.; Chikan, V., Magnetic Nanomaterials: Applications in Catalysis and Life Sciences. In *Chapter 1 Magnetism in Nanomaterials: Heat and Force from Colloidal Magnetic Particles* Bossmann, S. H., Ed. The Royal Society of Chemistry: 2017; pp P007-P008.

⁴ J Phys Chem B **2014**, 118 (40), 11715-22.

⁵ The Journal of Physical Chemistry C **2016,** 120 (4), 2386-2391.

electromagnets ⁶ and power delivery system to produce not only homogeneous magnetic

Figure 3 A Percentage of U-937 (human cancer cell line) cell death in combinational treatments in the presence or absence of dextrin-coated nanoparticles, doxorubicin, and or 0, 20, or 50 magnetic pulses applied Quantification via HPLC of doxorubicin uptake within U-937 human cancer cells in the presence of 0.0025 mg/mL of dextrin-coated IONPs, 20 magnetic pulses

fields(~15-20 Tesla), but transient spatially homogeneous rotating magnetic fields (~few hundred milli Tesla) that will be used in the next phase of the proposal. Our newest pulsed magnet and the power delivery system has been integrated on a mobile cart to pursue collaborative studies in cell laboratories. The portable magnet will be replicated to extend collaborations with multiple laboratories simultaneously to increase the impact and applicability of this research and assist other groups to address their specific challenges in relation to induced molecular transport. Application to Cancer therapy: As previously stated, microporation induced by inhomogeneous magnetic pulses used in this work have been demonstrated within liposomes. In the

next phase of our research, we wanted to explore if the reverse direction of molecular transport (relative to our earlier liposomal work) can be assisted with our approach combining pulsed magnetic fields and magnetic nanoparticles. This microporation technique is applied to facilitate the transport of a model therapeutic agent (doxorubicin) into the U937 cancer cell line. We have shown that the commercially available glucose-coated magnetic nanoparticles accumulated in U937 cell lines prior to application of magnetic pulses and shown no adverse effects on cell viability. Our investigations explored the possibility of increase cell death while concurrently increasing accumulation of doxorubicin via MAFIA (Magnetic (MA) field (F), induced (I), action (A), herein referred to as MAFIA, in which inhomogeneous magnetic fields assisted by magnetic particles with targeting ligands increase drug uptake resulting in selective cell death). We have also demonstrated that other cell lines and drug types also show similar effects.

⁵ The Journal of Physical Chemistry C **2016**, 120 (4), 2386-2391.

⁶ Rev Sci Instrum **2015**, 86 (3), 034701.

⁷ACS Applied Nano Materials **2020,** 3 (3), 2414-2420.

⁶ Rev Sci Instrum 2015, 86 (3), 034701.

⁷ ACS Applied Nano Materials 2020, 3 (3), 2414-2420.

O 04 - Using ultrasound for preparation of aqueous fullerene dispersions as reference materials and their characterizations

<u>Ivan V. Mikheev</u> 1*, Ekaterina A. Savinova ², Svetlana V. Kostyuk ², Elena V. Proskurnina ², Mikhail A. Proskurnin ¹

¹ Lomonosov Moscow State University, Chemistry department, Analytical chemistry division, Moscow, Russia

² Research Centre for Medical Genetics, Scientific department, Laboratory of Molecular Biology, Moscow, Russia

* email: mikheev.ivan@gmail.com

Abstract The solubility of fullerenes generally is low in any polar or non-polar solvent. In non-polar solvents, fullerenes make a true solution; colloidal solutions are obtained in aqueous media. Nevertheless, direct solubilization of a fullerene in water is a challenging chemical process. Ultrasonic-assisted treatment is the most successful method of dissolving fullerenes. For the first time, aqueous fullerene dispersions (AFD) were obtained by ultrasound-assisted solventexchange procedures from toluene to water. It is a reliable way to get concentrated, sedimentically stable, non-contaminated samples. The stabilization mechanism is still unknown and is being discussed. The primary organic solvent (e.g., toluene) and ultrasound may play a vital role in the stabilization mechanism. In aqueous media, fullerenes exist in a nanoparticle form with a wide size distribution. As well, the total yield in the ultrasound-assisted solvent-exchange procedure is generally low. Moreover, the concentration and characteristics of the colloidal solution of AFDs depend on the process used for obtaining the dispersion. To date, a reliable reference material of AFD has yet to be developed. Using the most investigated fullerenes, C₆₀ and C₇₀, it is possible to render standard platforms of high antioxidant-activity nanozyme. An endohedral Gd@C82 reference material would be applied for MRI and MRT. Thus, this study aims to (i) find out the optimum procedure for preparing a reference material (RM) of AFDs with the minimum precursor loss; (ii) determine a selection of methods for their comprehensive physicochemical characterization, and (iii) estimate the toxicity of the fullerene RM.

In our work, we used commercial off-the-shelf ultrasonic baths and probes made in Russia. We optimized the procedure for dispersion preparation by varying the following parameters: the electrical power of the ultrasonic equipment, the mass of the raw materials, the ratio of aqueous to organic phase, processing time, and processing temperature. All the details will be discussed in the presentation. We achieved the total fullerene concentrations for AFD C_{60} ca. 150 ppm with 60% total yield and Y@ C_{82} of ca. 10 ppm with 99% total yield. Some samples (AFD C_{60} and C_{70} with $c\sim25$ ppm) demonstrate long-term sedimentation stability, since December 2011.

We proposed a collection of methods for the complete chemical and general characterization of AFD samples. They include the assessment of (i) total fullerene content by TOC analysis, UV/vis, MALDI, and ICP-OES analysis (in the case of endohedral fullerenes with Gd, Y atoms); (ii) the residual quantity of organic solvents and their derivatives produced by sonication in an oxidative air atmosphere by FTIR, GC-MS, HPLC-UV; (iii) anion composition, in the case of a high-energy ultrasound probe; (iv) colloidal parameters akin to zeta-potential, particles size distribution; and (v) general characteristics akin to the pH and the boiling and the freezing points for evaluation storage parameters.

We proposed a collection of methods to be used for the complete purification of AFDs. We used solid-phase extraction for eliminating volatile organic content by GC-MS and the filtration on a syringe filter to remove TiO₂ nanoparticles resulting from the decomposition of the ultrasound probe by ICP-OES and FTIR. The pros and contras of using ultrasound bath versus immersible probe for AFD preparation will be presented.

Thus, a complete evaluation of the composition allows these products to be validated for biomedical applications. We used the MTT assay application for cytotoxicity to obtain a quantitative measurement of cell death for all produced AFD. Incubation of human fibroblasts with AFD of various concentrations was carried out. All the systems studied have shown a rather low cytotoxicity (cell survival rate of 90% and higher).

Keywords reference material; fullerenes; ultrasound probe; ultrasound bath; analytical chemistry

Acknowledgements The Russian Science Foundation has supported this work under Contract No. 19-73-00143.

O 05 - Gerard Verbiest

Pedir abstract nuevamente, no abre.

O 06 - Verification of permanent bolt elongation during assembly using ultrasonics

Erik Persson 1,2

¹Atlas Copco Industrial Technique AB

SE-105 23 Stockholm, Sweden

²KTH Royal Institute of Technology, Dept. of Machine Design, System and Component Design

SE-100 44 Stockholm, Sweden

email: erik.persson@atlascopco.com

Abstract

The permanent elongation of M14 fasteners tightened into the plastic range of the material using a yield control method are audited in production using ultrasonics and two mechanical measurement methods with dials. The ultrasonic method is based on measuring the time of flight (TOF) and correlating it with measurements using a load cell. The □TOF in the tightening system is shown as clamp force [kN]. In initial laboratory experiments, tightening is carried out to assure the permanent elongation of the fastener, load is measured by the tightening tool system and with a load cell in the joint. The fasteners are removed from the joint and the permanent elongation is measured mechanically. In this fashion a graph is generated with permanent elongation as a function of the ultrasonic clamp force. A PowerMACS 4000 system with a QST62-350CT nutrunner is used in the experimental setup and production. An ultrasonic signal processing unit using a piezoelectric sensor fitted to the socket is used for signal generation and processing when evaluating clamp force. The ultrasonic clamp force control is based on a novel method for assuring correct echo and high repeatability measurements in the tightening system [1]. Torque, angle and gradient are extracted from the tool control system.

The results (Table 1) show that the ultrasonic measurements (US audit) are within 13 \square m difference from the mechanical measurements. The method allows every tightened bolt to be evaluated at the end of the tightening process.

[mm]	Scania audit	ACIT audit	US audit
Mean elongation	0.195	0.177	0.182
Max	0.272	0.257	0.276
Min	0.144	0.105	0.133
3s	0.113	0.117	0.124

Table 1. Permanent elongation measured using mechanical measurement according to Scania method, Atlas Copco method and US audit method.

References

[1] C.G. Carlin, E. V. Persson, J.O. Huldén, A Method of Measuring Elongation of a Fastener with Ultrasound, Performed by a Power Tool, International Patent Publication Number, WO 2014/198680 A1.

Acknowledgements

The author would like to thank Mr. Lars Oxelmark and Scania trucks for the collaboration.

O 07 - Double shelled perfluorocarbon microdroplets as a versatile ultrasound phase-change platform

Damiano Palmieri 1*, Francesco Brasili², Elisabetta Tortorella 1,3, Martina Piermarini¹, Angelico Bedini⁴, Gaio Paradossi¹, Fabio Domenici¹

¹Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy. ²Department of Physics, Sapienza University of Rome, Rome, Italy. ³Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.

4INAIL, worker's Compensation Authority, Italy.

* email: damiano.palmieri@uniroma2.it

Microdroplets (MDs) with a liquid perfluorocarbon (PFC) core can transform into microbubbles (MBs) when exposed to a proper ultrasound field through the processes known as Acoustic Droplet Vaporisation (ADV) [1]. The properties of the socalled "phase-change" ultrasound contrast agents rely on this process (Figure 1A, C). Thanks to the resonant acoustic response of the MBs formed after vaporisation, MDs can be considered suitable for enhancing the imaging contrast of pathological regions or even for tracking at high frame rate the dynamics in blood flows [2]. Furthermore, MDs may become promising theranostic agents due to their ability to conjugate the dramatically increased ultrasound echogenicity after vaporisation with the drug cargo capability [3]. Significant improvement in this respect mainly passes through the engineering of a shell conferring to the MDs a proper colloidal stability (even upon ADV), chemical versatility and size control [4]. Herein, we present micrometric decafluoropentane (DFP) MDs stabilized by a hybrid shell made up of a double biocompatible layer: the inner one made of dimethyldioctadecylammonium bromide (DDAB) cationic surfactant and an elastomeric external one of crosslinked dextran methacrylate (DexMa) (figure 1B). The high positive charge given by DDAB provides a stability, even to MDs encapsulated by the surfactant monolayer (DDAB MDs) only. It also enables the electrostatic decoration of the MDs with anionic gold nanoparticles (AuNPs), thus unlocking the possibility of optically improving the vaporisation efficiency. The long and saturated hydrocarbon chains of the DDAB shell stabilize the droplet and the drug cargo therein while the DexMa shell allows to obtain stable cavitating MBs upon ADV. Summing up, we obtain a stable and versatile multimodal "phase-change" contrast agent (DDAB+DexMa MDs) which can also act as a drug and/or nanoparticles carrier with several in vitro applications.

Figure 1. A) Sketch of the ADV process (A), and of versatile DDAB+DexMa MDs (B); dynamic light scattering diameter-intensity distributions and corresponding Gaussian best fits of DDAB+DexMA shelled MDs before (light grey) and after (green) acoustic irradiation and representative confocal laser scanning microscopy micrograph. The ADV process was induced by irradiating MDs for 5 minutes with an acoustic field of 0.5 W/cm 2 intensity at 37 °C. Scale bar is 10 μ m.

Keywords

Ultrasound; Microdroplets; Acoustic Droplet Vaporisation; Phase change contrast agents.

References

- G. Calderó and G, Paradossi. COCIS 49, (2020) 118-132.
- K. Loskutova, D. Grishenkov, M. Ghorbani. Hindawi J Biomed Biotechnol, 2019 (2019).
- E. Tortorella, D. Palmieri, M. Piermarini, D. Gigante, L. Oddo, Y. Toumia, G. Paradossi, F. Domenici, JoVE 169 (2021).

Acknowledgements

This research was realized with the financial support of INAIL under the agreement BRIC2019.

O 08 - Plane Wave Beamforming Based on Adaptive Weighted Frequency Compound

Norio Tagawa^{1*}, Jie Zheng¹

¹Graduate School of System Design, Tokyo Metropolitan University

email: tagawa@tmu.ac.jp

Abstract

We have studied a method for simultaneous optimization of frequency compound and spatial compound using plane wave transmission and reception [1]. The method that we call FPWC-MVDR (Frequency and Plane Wave Compounding-Minimum Variance Distortionless Response) is an extension of DCR-MVDR (Data Compounded on Receive-MVDR) proposed in [2] as an optimization of plane wave beamforming. In this method, the plane wave transmission direction is set to multiple angles, and transmission with different frequencies is performed several times in each direction. This method enables high resolution imaging in both the range direction and the lateral direction, but the temporal resolution, that is, the frame rate, decreases.

Therefore, in this study, FPWC-MVDR was improved by performing one transmission using the effective band of the probe and extracting multiple frequency subbands from the received echo. In order to confirm that the performance of FPWC-MVDR does not deteriorate even if the multifrequency transmission is changed to wideband simultaneous transmission and subband extraction, the plane wave transmission is limited to the forward direction. That is, no spatial compound is performed. We evaluate the proposed method by simulation under ideal conditions using the FEM simulator OnScale.

Figure 1 shows that in this simulation a plane wave was transmitted and the entire array composed of 64 elements received the echo. Place the target 18 mm from the transducer in the water-filled area. A chirp with a minimum frequency of 5 MHz and a maximum frequency of 11 MHz was used as the transmission pulse. A wideband chirp is transmitted only once, the received echo is compressed, and then 6 subbands are extracted with a 2 MHz bandwidth whose center frequency is randomly determined. Then, we use such the six chirp signals for beamforming. Figure 2 illustrates the B-mode images of various methods in dB. Figure 2(d) shows the result of using the optimum frequency weighting based on the single transmission proposed this time. On the other hand, the result of FPWC-MVDR which transmitted and received each of the same 6 narrow bands is shown in Fig. 2(c). By comparing the two, even if the narrowband transmission/reception of 6 times was replaced with the wideband transmission/reception of 1 time, no significant difference was seen in the B-mode image.

Fig. 1 Experimental setup.

Fig. 2 B-mode images: (a) naive DAS using entire frequencies; (b) integration of 6 narrow bands with constant weight; (c) FPWC-MVDR with 6 transmissions; (d) integration of six narrow bands with optimal weight (proposed method).

References.

- [1] R. Kozai, K. N. Tagawa, M. Yoshizawa, T. Irie, in Proc. IEEE IUS (2020).
- [2] N.Q. Nguyen, R.W. Prager, IEEE Trans. UFFC 65 (2018) 522-534.

O 09 - High Performance calculation of nonlinear wave propagation on multiple GPUs

Maxim Solovchuk 1,2*, Manuel Diaz1, T.W.H. Sheu2

¹National Health Research Institute, Institute of Biomedical Engineering and Nanomedicine, Taiwan. ²National Taiwan University, Engineering Science and Ocean Engineering Department, Taiwan.

* email: solovchuk@gmail.com

Simulation of nonlinear wave propagation in three dimensional geometry is very time consuming process^[1]. In the current work we are going to present three dimensional parallel solver on multiple GPUs. The present solver is based on a conservative hyperbolic formulation derived from a variational analysis of the compressible Navier–Stokes equations and is implemented using an explicit high-order finite difference strategy ^[2,3]. In this work, a WENO–Z reconstruction scheme along with a high-order finite-difference stencil are used to approximate the contributions of convective and diffusive spatial operators, respectively. Moreover, when compared to an OpenMP implementation running with an i7 processor of 4.2 GHz, this is outperformed by our MPI-GPU implementation by a factor of 99. In this work, the present multi-GPU solver is illustrated with a three-dimensional simulation of a highly-intense focused ultrasound propagation in the presence of shocks. Some examples for the simulation in a patient specific geometry will be also presented^[1]. The presented results can be used for the optimization of the treatment.

Keywords

Nonlinear wave propagation, multiple GPUs, Westervelt equation,

References

- [1] M. Solovchuk, T.W.H. Sheu, M. Thiriet, Communications in Computational Physics 18 (2015)1050-1071.
- [2] M.A. Diaz, M.A. Solovchuk, T.W.H. Sheu, Computers & Fluids 173 (2018) 195-205
- [3] M.A. Diaz, M.A. Solovchuk, T.W.H. Sheu, Journal of Computational Physics 363 (2018) 200-230
- [4] M. Solovchuk, T.W.H. Sheu, M. Thiriet, Applied Thermal Engineering 124 (2017) 1112-1122
- [5] EM Zilonova, M Solovchuk, TWH Sheu, Ultrasonics sonochemistry 53 (2019) 11-24

O 10 - Ultrasound and microwave – the advantages and limitation of combined use

Ioan Calinescu, Mircea Vinatoru

¹University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Gh. Polizu Str., 011061, Bucharest, Romania

* email: ioan.calinescu@upb.ro

Abstract

Microwave and ultrasound are considered effective methods of process intensification.

The specific effects of microwaves are [1, 2]:

- High speed volumetric heating, because heat exchange with a surface is no longer involved and microwave energy can be transferred directly into the reaction volume this aspect is very useful in the processing of homogeneous samples;
- Selective heating of the components of a heterogeneous system, when they have different dielectric properties;

The effects of ultrasound are related to the phenomenon of cavitation: the formation, growth and collapse of the cavitation bubbles generated by the passage of ultrasound through a liquid. The cavitational collapse generates radical active species influencing the chemical reactions that take place in the homogeneous environment and which involve an electron transfer [3]. When the environment is heterogeneous, ultrasound effects increase the mass and thermal transfer to the contact surface by asymmetrical collapse of cavitation bubbles [4].

The combined effect of microwave and ultrasound is very visible in heterogeneous environments. In these environments, although microwaves provide rapid heating of the reaction mixture, mass transfer limits the overall speed of the process. On the other hand ultrasound, although capable of greatly increasing mass transfer at the interface, does not ensure sufficient temperature rise to increase the speed of chemical reactions as well [5]. For this reason, the idea of combining the two techniques of process intensification appeared in the literature [6].

The paper presents the main types of equipment that allow the simultaneous use of microwaves and ultrasounds to intensify the processes. There are also presented the types of processes that can be intensified with each of these techniques as well as the restrictions on the combined use of ultrasound and microwave. Also a new combined (hybrid) ultrasonic and microwave installation was described.

Keywords

Ultrasound; Microwave; Combined reactor

References

- [1] R. Meredith, Engineers' Handbook of Industrial Microwave heating, The Institution of Electrical Engineers, London, UK, United Kingdom, 1998.
- [2] A. Loupy, Microwaves in Organic Synthesis, Wiley-VCH Verlag GmbH&Co, Weinheim, 2002.
- [3] T.J. Mason, Advances in sonochemistry, JAI Press Inc., Stanford, Connecticut, USA, 1999.
- [4] K. Suslick, Sonochemistry, Science, 247 (1990) 1439-1445, 10.1126/science.247.4949.1439
- [5] V.G. Gude, Synergism of microwaves and ultrasound for advanced biorefineries, Resource-Efficient Technologies, 1 (2015) 116-125, 10.1016/j.reffit.2015.10.001
- [6] A. Lagha, S. Chemat, P.V. Bartels, F. Chemat, Microwave Ultrasound combined reactor suitable for atmospheric sample preparation procedure of biological and chemical products, Analusis, 27 (1999) 452-457, https://doi.org/10.1051/analusis:1999124

Acknowledgements

The authors acknowledge the financial support received from the PN III, P4: Fundamental and frontier research, Project: " A new hybrid technology for biorefining: microwaves and ultrasound in one device", financed by contract: PCE 12/2021

O 11 - Ultrasonic monitoring of fluid substitution processes in porous rocks

Christian David 1*, Davide Geremia1, Joël Sarout2, Christophe Barnes1, Jérémie Dautriat2, and Lucas Pimienta3

1Dept. Geosciences & Environment, CY Cergy Paris Université, France. 2CSIRO Energy, Perth, Australia. 3LFCR, Université de Pau et des Pays de l'Adour, France.

*email: christian.david@cyu.fr

Abstract

During the production of hydrocarbon reservoirs, water flooding or Enhanced Oil Recovery operations, sequestration of CO2 underground or geothermal fluid exchanges at depth, it is well-known that fluid substitution processes can lead to significant changes in rock properties which can be captured by the recording of variations in seismic waves attributes like P- or S-wave velocity, spectral content or attenuation. In the laboratory, such fluid substitution processes can be reproduced on centimeter size rock samples instrumented with piezo-electrical sensors with resonant frequency around 1 MHz, using ultrasonic monitoring techniques.

The motivation of this study was to detect changes in seismic attributes during fluid substitution experiments in reservoir rocks through a direct comparison between the variation in wave amplitude, velocity, spectral content, energy, and the actual fluid distribution in the rocks. Different arrays of ultrasonic P-wave sensors were used to record at constant time steps the waveforms during fluid substitution experiments. Two different experiments are presented:

- (i) water injection experiments in oil-saturated sandstone samples under stress mimicking water flooding operations: we found that water weakening triggered mechanical instabilities leading to rock failure. The onset of such instabilities can be followed with ultrasonic monitoring either in the passive mode (acoustic emissions recording) or in the active mode (P wave velocity survey).
- (ii) water injection experiments in dry chalk samples showing a relaxation transition during increasing saturation which can be modelled through viscoelastic models. It is also shown that the amplitude of the first P-wave arrival is impacted by the upward moving fluid front before the P-wave velocity is.

Figure 1. Water injection experiment into an oil-saturated sandstone sample with active and passive ultrasonic monitoring using an array of 16 ultrasonic P-wave sensors

Keywords: porous media; ultrasonic sensors; elastic waves; acoustic emissions; fluid substitution

References

DAVID et al. (2015), Detection of moving capillary front in porous rocks using X-ray and ultrasonic methods, *Frontiers in Physics*, vol. 3, article 53.

DAVID et al. (2017a), Ultrasonic monitoring of spontaneous imbibition experiments: Acoustic signature of fluid migration, *Journal of Geophysical Research*, 122, 4931-4947.

DAVID et al. (2017b), Ultrasonic monitoring of spontaneous imbibition experiments: Precursory moisture diffusion effects ahead of water front, *Journal of Geophysical Research*, 122, 4948-4962.

O 12 - Ultrasonic Enhancement of Convective Heat Transport

Grzegorz Musielak

Faculty of Chemical Technology, Poznań University of Technology Berdychowo St. 4, 60-965 Poznań, Poland email: Grzegorz.Musielak@put.poznan.pl

Abstract

Almost every food product is dried during its processing. Drying extends storage life, facilitates handling and transportation. Drying influences also quality of final product. It causes change of colour, flavour and nutritional values of food. Due to the quality of the product the low temperature drying is recommended. Unfortunately the low temperature convective drying is energetically inefficient. Therefore, there are sought new methods to improve the process without raising the temperature. One of these methods is the use of high-intensity ultrasound (US) [1].

According to literature [1] ultrasound enhances moisture transport inside of the material to be dried as well as heat and moisture transfer between the material surface and the surrounding drying medium. It is also obvious that ultrasounds transmit their energy to the dried material. But the heating effect was usually weak or even not observed. An increase in the heat and mass transfer coefficients due to ultrasonic application is widely reported, but only Bantle and Hanssler [2] experimentally studied the influence of ultrasounds on the heat transfer coefficient. They obtained that the ultrasounds caused an increase of this coefficient in the case of heating and a small decrease during cooling.

The aim of the present work is to study an influence of ultrasound on both the heat transfer as well as the heating effect. Mass transfer is not studied. That's why all tested samples are made of steel. Four samples were used: small cylinder, cylinder, cube and cuboid. The samples were heated convectively inside of hybrid dryer (air temperature 41 and 62°C). The heat transfer was enhanced by ultrasound (US power 0, 100, 200 W). Experiments conditions ensured small Biot number regime of heat transfer (the conduction resistance is negligible). The results confirmed both the acceleration of heat transfer and US energy absorption.

Solution of the convective heat transfer together with heat source describing US absorption (small Biot number regime) was used to determine the heat transfer coefficients as well as the power of absorbed energy. The results show that for all the samples an enhancement of heat transfer was obtained. The thermal effect was also observed. The temperature increase was in the range of 5-8 degrees. However, in agreement to the literature, only a small percentage of energy was absorbed (0.37-1.24).

References

[1] G.Musielak, D. Mierzwa, J. Kroehnke, Food Drying Enhancement by Ultrasound. Trends in Food Science & Technology 56 (2016) 126-141.

[2] M. Bantle, J. Hanssler, Ultrasonic convective drying kinetics of clipfish during the initial drying period, Drying Technology 31(11) (2013) 1307-1316.

Acknowledgements

This research was funded by the Ministry of Education and Science.

I would like to thank my students M. Wielgus and M. Steike for their help in carrying out the research.

O 13 - The role of acoustic coupling in scattering contrast based GHz atomic force microscopy

P.L.M.J. van Neer ^{1,2*}, B.A.J. Quesson¹, M.H. van Es³, D. Piras³, K. Hatakeyama³, A. Mohtashami³, V. Navarro³, T. Duivenvoorde³, H. Sadeghian³, M.C.J.M. van Riel³

¹Dept. of Acoustics and Sonar, TNO, the Netherlands. ²Laboratory of Medical Imaging, Dept. of Imaging Physics, Delft University of Technology, the Netherlands. ³Dept. Of Optomechatronics, TNO, the Netherlands

* email: paul.vanneer@tno.nl

Abstract

A number of methods to detect subsurface cracks or defects are being researched. One of these techniques is scattering contrast based GHz atomic force microscopy. In this method modulated elastic waves at GHz frequencies are transmitted through the bottom of a sample. The waves are scattered by subsurface features and travel upwards towards the sample surface. At the sample surface they are detected by an atomic force microscope (AFM) cantilever. The non-linear cantilever tip-sample interaction downmixes some of the energy at the GHz frequency to the modulation frequency (O(100) kHz). The latter is typically chosen to be close to the fundamental cantilever resonance frequency. It is paramount for this technique to ensure a stable and efficient acoustical coupling between the sample and transducer, such that sufficient acoustical energy reaches the surface of the sample. The narrowband nature of the modulated GHz excitation implies a complex wavefield characterized by standing waves. This, combined with the high attenuation at GHz frequencies of liquid coupling layers leads to a requirement on the coupling layer stability and thickness in the order of nano- and micrometer order, respectively. In this work, the modeling and design of a clamp and the associated acoustical measurement method required to monitor and control the coupling layer thickness with nanometer accuracy is presented. Transducers with frequencies between 1 and 3.5 GHz transmitted modulated elastic waves through a sample (typical size 10x10x1 mm³). An AFM was used to read-out the out-of-plane sample surface displacement. Water was used as a coupling medium. The capillary effect combined with a specially designed basin was used to counteract evaporation. The Krimholtz, Leedom, Matthae (KLM) model was used to model the acoustical behavior the piezo transducer, delay line, coupling layer and sample. Its thickness was controlled with a custom designed clamp using real-time pulse-echo measurements combined with custom signal processing based on detecting the acoustic resonances of the transducer - coupling layer - sample stack. Figure 1 details the out-of-plane sample surface displacement versus the carrier frequency as a function of the coupling layer thickness. The peak derivative was 3 dB/nm, thus a 2 nm coupling layer thickness stability was needed to obtain the sufficiently stable standing wave pattern for good quality AFM measurements. The measurements indicated that the clamp allowed for stable coupling layers (<1 µm in thickness with variations <2 nm / 10 mn) and successful scattering based GHz AFM measurements over periods of hours.

Figure 1. simulated out-of-plane top sample surface displacement/excitation Voltage vs coupling layer thickness and carrier frequency.

Keywords: atomic force microscopy, metrology, viscoelasticity, ultrasound, scattering

References

[1] B.A.J. Quesson et al., Proc. IEEE Ultrasonics Symp, Kobe, Japan, 2018, https://doi.org/10.1109/ULTSYM.2018.8579802.

[2] P.L.M.J. van Neer et al., Rev. Sci. Instrum., 90, 073705, 2019, https://doi.org/10.1063/1.5097387.

Acknowledgements

This research was supported by the Early Research Program 3D Nanomanufacturing Instruments at TNO.

O 14 - All-Optical Ultrasound Imaging for Minimally Invasive Surgery

Richard J Colchester^{1,2*}, Sacha Noimark^{1,2}, Adrien E Desjardins^{1,2}

¹Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom

²Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom

email: richard.colchester@ucl.ac.uk

Abstract

All-optical ultrasound imaging has made rapid progress as a technique for medical imaging, moving from the benchtop to *in vivo* studies. With this technique, ultrasound is generated and received using light, enabling wide bandwidths, high sensitivity, and device miniaturization. These properties make it well suited to minimally invasive procedures. Using two optical fibres, one for ultrasound transmission and a second for ultrasound reception, a series of devices can be fabricated. Here we discuss a series of devices we have pioneered with this technology, including real-time M-mode imaging, side-viewing intravascular imaging, and imaging in combination with robotic control.

In these devices, ultrasound generation occurs via the photoacoustic effect, with pulsed excitation light delivered to an optically absorbing coating on the end of an optical fibre. By applying this coating to the cleaved end surface of an optical fibre, ultrasound can be generated co-linear with the fibre axis. Using such a device we have demonstrated forward-viewing real-time M-mode imaging *in vivo* [1] and of a dynamic heart phantom (Figure 1.a). Alternatively, by redirecting light from the optical fibre to a side surface, ultrasound can be transmitted perpendicular to the fibre axis. Rotating the ultrasound beam then facilitates the acquisition of a 2D image. Using this method, we acquired rotational images with a depth resolution < 40 µm and an angular resolution ca. 14° (Figure 1.b) [2]. We will present these innovations and more, including a combination of forward-viewing all-optical ultrasound imaging and robotics, enabling wide area 3D image scans (Figure 1.c) [3], and the potential for freehand 3D imaging.

Figure 1. All-optical ultrasound images. a) Real-time M-mode image of a heart valve phantom. b) Rotational image of a tungsten wire resolution phantom. c) Large area robot assisted 3D image of a tissue mimicking placenta phantom.

References

- [1] M. C. Finlay, et al., Light: Science and Applications 6 (2017) e17103.
- [2] R. J. Colchester, et al., Scientific Reports 9 (2019) 5576.
- [3] R. J. Colchester, et al., Proceedings SPIE 11077 (2019) 110771G.

Acknowledgements

This work was supported by the Royal Academy of Engineering under the Research Fellowship scheme, the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) (203145Z/16/Z), the Engineering and Physical Sciences Research Council (EPSRC) (Grant Nos EP/N509577/1, and EP/N021177/1), and the European Research Council (ERC) (ERC-2012-StG, Proposal No. 310970 MOPHIM).

O 15 - Ultrasound Imaging with a Multimode Waveguide using a Time Reversal Virtual Array

Lars Grüter^{1*}, Richard Nauber¹, Jürgen Czarske¹

¹ TU Dresden, Laboratory for Measurement and Sensor System Techniques, Germany

* email: lars.grueter@tu-dresden.de

Abstract

The resource efficiency of many relevant industrial processes, such as aluminium electrolysis, strongly depends on the interaction of melts and liquid-solid interfaces. In order to control and optimize those processes, in situ imaging of interfaces in hot, opaque liquids is required. However, ultrasound-based imaging methods are severely limited by the temperature resistance of the transducers. We propose a novel method for imaging in hot liquids using an ultrasound phased-array probe attached to a multi-mode waveguide (MMWG) for thermal decoupling. The complex sound propagation through the MMWG, which leads to a strongly distorted image, is compensated with a time reversal virtual array (TRVA) [1]. The TRVA method exploits the time invariance of the wave equation in linear media to focus on a set of calibrated points. These are combined to form a virtual array on the distal end of a waveguide and allow focusing into the measurement volume. In this contribution, we validate the TRVA principle numerically and experimentally using a generic ultrasound research platform, the phased array Doppler velocimeter (PAUDV) [2]. We characterize the imaging properties in liquid tin at 300 °C and demonstrate planar imaging of inside the region of interest (Figure 1). The proposed method paves the way for in-process imaging of industrial processes involving hot liquids.

Figure 1. a) Experimental setup for in situ imaging of an interface in liquid tin at 300 °C through a multimode waveguide. b) Point spread function in liquid thin at 300 °C obtained from a single

scatterer at (-9 mm, 15 mm) after correction with the TRVA. The ultrasound frequency is 3 MHz.

Keywords

time reversal, multi-mode waveguide, adaptive imaging, ultrasound

References

- [1] M. Kalibatas, R. Nauber, C. Kupsch, and J. Czarske, "Flow Field Imaging with Ultrasonic Guided Waves for Exploring Metallic Melts," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 1, pp. 112–119, 2018.
- [2] K. Mäder; R. Nauber, V. Galindo; H. Beyer; L. Büttner, S. Eckert, J. Czarske, "Phased Array Ultrasound System for Planar Flow Mapping in Liquid Metals," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 64, no. 9, pp. 1327–1335, 2017.

Acknowledgements

The authors like to thank Arne Klaß for his help conducting the experiment. This research was funded by Deutsche Forschungsgemeinschaft, grant number Cz 55/43-1.

O 16 - Ultrasonic properties and texture of plant-based meat analogues

Reine-Marie Guillermic^{1*}, Siwen Luo¹, Sébastien Kerhervé², Anatoliy Strybulevych², Mehmet C. Tulbek³, James D. House¹, John H. Page², Filiz Koksel¹

¹Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada

²Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada ³AGT Foods and Ingredients R&D Centre, Saskatoon, Canada

email: reine-marie.guillermic@umanitoba.ca

Abstract

Plant-based meat analogues are progressively gaining a lot of interest in the food industry as healthy and sustainable alternatives to meat consumption. However, obtaining the most appealing meat structure and texture from plant proteins is challenging. The most common way of producing texturized plant-based products is by extrusion. The characteristic textural features of meat analogues depend on the alignment of proteins in the extruding die, on the extrusion conditions such as barrel temperature and screw speed, and ingredient properties. Accordingly, development of desired textures in plant-based meat analogues is a complex process that needs to be fully understood and monitored [1,2]. To tackle this challenge, extrudates from a blend of soy protein isolate, soy protein concentrate and wheat gluten have been produced, using a twin-screw extruder and different extrusion conditions [3]. The ultrasonic properties (phase velocity and attenuation) of the extrudates have been assessed using an ultrasonic air-coupled system (200kHz - 600kHz) placed at the output of the die during production, or later in the lab after production [4]. Texture measurements were also performed on the same products with a texture profile analyzer to acquire information on the level of texturization [2], which is a good signature of the formation of meatmuscle-like fibers in an extrudate. The correlation between extrudate texture and ultrasonic properties was then determined in order to assess the feasibility of using ultrasound to quantify the textural quality of the product during production.

References

- [1] Alam, M.S., Kaur J., Khaira, H., Gupta, K., Crit. Rev. Food Sci. Nutr. 56 (2016) 445-473.
- [2] Osen, R., Toelstede, S., Wild, F., Eisner, P., Schweiggert-Weisz, U., J. Food Eng. 127 (2014) 67-74.
- [3] Kim, T. Texturization of pulse proteins: Peas, lentils, and faba beans. Ph.D. dissertation. Published online at http://hdl.handle.net/1969.1/173522. Texas A&M University, College Station, TX,

2018

[4] Kerhervé, S., Guillermic, R.-M., Strybulevych, A., Hatcher, D.W., Scanlon, M.G., Page, J.H., Food Control 104 (2019) 349-357.

Acknowledgements

We would like to acknowledge the Good Food Institute for financing the project, and to thank Andrew Pankewycz for fabricating the holder system for the ultrasonic transducers.

O 17 - Platelet-rich plasma versus Tenex in the treatment of medial and lateral epicondylitis

R. Amadeus Mason 1*, Allison Boden², Michael T Scott² Poonam P Dalwadi², Kenneth Mautner², Michael B Gottschalk²

¹Emory University School of Medicine, Atlanta, GA, USA. ²Emory University School of Medicine, Atlanta, GA, USA

* email: rmaso01@emory.edu

Abstract: Background: Medial epicondylitis and lateral epicondylitis are among the most common elbow pathologies affecting people aged between 40 and 50 years. Although epicondylitis is often a self-limiting condition that improves with conservative treatment, the condition can be difficult to eradicate. The purpose of this study was to compare the effectiveness of platelet-rich plasma (PRP) injections and ultrasound-guided percutaneous tenotomy (Tenex) for the treatment of medial or lateral epicondylitis. Our hypothesis was that the Tenex procedure would not be inferior to PRP injections in the treatment of medial or lateral epicondylitis. Methods: In this retrospective review, 62 of 75 patients were available for contact via phone and e-mail to complete postprocedure patient-reported outcome surveys. Subjective assessment of pain and function included a visual analog scale for pain; the Quick Disabilities of the Arm, Shoulder and Hand guestionnaire; and the EuroQoI-5D questionnaire. The inclusion criteria included age of 18 years or older and previous failure of nonoperative treatment. Results: The average ages in the PRP and Tenex groups were 47 years and 51 years, respectively. The PRP cohort (n = 32) included 10 female and 22 male patients, whereas the Tenex cohort (n = 30) included 12 female and 18 male patients. The PRP and Tenex groups both demonstrated clinical and statistical improvement in visual analog scale pain scores; Quick Disabilities of the Arm. Shoulder and Hand scores; and EuroQol-5D scores. No statistically significant difference was found between the 2 treatment modalities. Conclusion: The PRP and Tenex procedures were both successful in producing clinically and statistically significant improvements in pain, function, and quality of life.

Keywords: Elbow pain; Tenex; epicondylitis; golfer's elbow; platelet-rich plasma; tennis elbow.

References

- [1] Abrams GD, Luria A, Carr RA, Rhodes C, Robinson WH, Sokolove JSES 2016;25:989-97.
- [2] Ahmad Z, Siddiqui N, Malik SS, Abdus-Samee M, Tytherleigh-Strong G, Rushton N. BJJ 2013;95-B:1158-64.
- [3] Arirachakaran A, Sukthuayat A, Sisayanarane T, Laoratanavoraphong S, Kanchanatawan W, Kongtharvonskul J.
- J Orthop Traumatol 2016;17:101-12.
- [4] Assendelft WJ, Hay EM, Adshead R, Bouter LM.Br J Gen Pract 1996;46:209-16.
- [5] Barr S, Cerisola FL, Blanchard V. Physiotherapy 2009;95:251-65.
- [6] Behera P, Dhillon M, Aggarwal S, Marwaha N, Prakash M. J Orthop Surg 2015;23:6-10.
- [7] Bisset L, Beller E, Jull G, Brooks P, Darnell R, Vicenzino B. Mobilisation BMJ 2006;333:939.
- [8] Dakin SG, Newton J, Martinez FO, Hedley R, Gwilym S, Jones N, Br J Sports Med 2018;52:359-67.

Acknowledgements

The authors thank Kirk Easley, MS, MApStat, and Neeta Shenvi, MS, from the Emory University Department of

Biostatistics and Bioinformatics for their help with drafting and implementing the repeatedmeasures analysis plan for the study outcomes

O 18 - Sonosensitized ROS generation using peroxide compound: Kinetic aspects and its possible applications for SDT treatments.

Arnaldo T. Soltermann^{1*}, Viviana N. Grosso¹, Walter Duco², Alejandro Senz¹, Daniel Zaccari³.

¹Chemistry Department, Universidad Nacional de Rio Cuarto, Argentina.

² Natural Sciences I., Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina.

³ Physics Department, Universidad Nacional de Rio Cuarto, Argentina.

email: arnaldo.soltermann@gmail.com

Abstract

The thermal decomposition of 9,10 diphenylanthracene peroxide (DPAO2) generates DPA and a mix of triplet and singlet molecular oxygen. The thermal efficiency to produce singlet molecular oxygen is 0.35 [1]. On the other hand, ultrasound irradiation (US) can create hydrodynamic stress (sonomechanical process), inertial cavitation (pyrolitic process) and long range effects mediated by radicals or ROS [2]. Even when sonolysis of pure water can yield hydrogen or hydroxyl radicals and hydrogen peroxide (ROS) we are more interested on the sonosensitization processes. In spite of large amount of reported results in literature, the term sonosensitizer and the sonosensitization process are not well defined. We define sonosensitized reaction as one in which a chemical species decompose as consequence of cavitations phenomena producing ROS or other radicals and some other target species does undergo a chemical reaction.

When DPAO2 (Sonosensitizer) in 1,4 dioxane solution is irradiated with 20 or 24 kHz, the production of singlet molecular oxygen is observed. Specific scavengers like tetracyclone (TC) are used to demonstrate it. The efficiency now is 0,85 showing that the sonochemical process is much more efficient that the thermal one [3]. Considering that the sonoreaction is directly related to the collapse of the cavitation bubbles within the solvent, we studied the effect of the variation of the acoustic power on the specific rate constants of the DPAO2 decomposition.

Thus we have transformed the classic expression of Arrehnius to:

In $k = In A - \{Ea Pv / R To (K-1)\} 1 / Pa$

Even when the terms have their classic meanings, T is interpreted as relative to the maximum temperature reached in the bubble at the time of its collapse, now being expressed in terms of the acoustic pressure (Pa) applied. The series of experiences that were carried out by varying the processor power between 4 Watts and 18 Watts, observing a direct dependence of the natural logarithm of the specific speed counter with the inverse of the acoustic power as predicted by equation. Collapse temperature as high as 4000 K is estimated which corresponds perfectly with the process studied. The activation energies found by this methodology are consistent with literature data for the phenomenon of thermal decomposition.

The effect of US on peroxide compounds was not adequately studied, and then we have explored the behavior of some natural and synthetic compounds like peroxy ketones and artemisinin between others. We present a general method to establish the relative efficiency of different sonosensitizers which produce the same ROS for SDT (sonodinamyc treatment of cancer). To demonstrate it, we use peroxides as sonosensitizers which produces singlet molecular oxygen. The method is easily generalized by all types of ROS.

Keywords: SDT; Singlet Oxygen; Peroxides

References.

- [1] F. Wilkinson et al., J. Phys. Chem. Ref. Data, 10, (1981), 809.
- [2] T. J. Mason et al.; Sonochemistry (theory, applications and uses of ultrasound in chemistry), Ellis Horwood series (1988).
- [3] J. W. Duco, V. Grosso, D. Zaccari, A. T. Soltermann, Methods, 109, (2016), 141-148.

Acknowledgements. We want to thank to UNRC Secyt for financial support.

O 19 - Parametric Speakers: Between Art and Scientific Research

Marco Alunno 1*, Andrés Yarce Botero²

¹Universidad EAFIT, Colombia. ²Universidad EAFIT, Colombia.

* email: malunno@eafit.edu.co

Abstract

In this presentation, I will go through three recently published articles that stemmed from a 2-year research with parametric loudspeakers. Although the main goal was creating artistic works with this technology, the project also included a scientific study to characterize said speakers. After presenting two sound installations that use directional ultrasonic sound in different ways, I will ultimately focus on the disassembling of a parametric speaker in order to explore what steps in the DSP, at the conditioning stage of an input signal, have the greatest effect on self-demodulation. By means of statistical Design of Experiments, empirical mathematical models that account for response variables such as the total harmonic distortion and the perceived intensity of the fundamental tone were finally elaborated. [3].

Keywords

Parametric speakers; Sound installations; Design of Experiment; Digital Signal Processing; Soundlazer

References

- [1] Yarce B., Andrés & Alunno, Marco, "Signal modeling of the conditioning stage of a parametricarray loudspeaker by statistical design of experiments." Applied Acoustics, 174 (2020): 1-9
- [2] Alunno, Marco, "Sound Straight Ahead: Parametric Speakers in Two Soundscape Installations." Leonardo Music Journal, 28: 60-64.
- [3] Alunno, Marco & Yarce B., Andrés, "Directional Landscapes: Using Parametric Loudspeakers forSound Reproduction in Art." Journal of New Music Research, 46-2 (2016): 201-211.

O 20 - Use of 2D transvaginal ultrasonography and hysterosalpingo-foam sonography for assessment of the efficacy of Essure hysteroscopic sterilization

Maja Rosič^{1*}, Branka Žegura Andrić², Sabina Vadnjal Đonlagić³

¹Gynecologic Health Institution Rosič, Ptuj, Slovenia

²University Medical Centre Maribor, Department of Gynecology and Obstetrics, Maribor, Slovenia

³University Medical Centre Maribor, Department of Radiology, Maribor, Slovenia *email: maja.rosic@gmail.com

Abstract

After Essure (Bayer AG, Leverkusen, Germany) hysteroscopic sterilization procedure, a confirmation test is performed to evaluate the micro-insert position or tubal occlusion and assess the success of sterilization [1]. The imaging techniques used for ascertaining the correct microinsert position or tubal occlusion may vary among countries and include hysterosalpingography (HSG), sonography, plain pelvic radiography, and hysterosonography [2, 3]. However, HSG remains reference standard [4]. Non-HSG techniques are preferred because HSG is an invasive procedure that exposes the patient to ionizing radiation, is uncomfortable for the patient, and can be associated with adverse effects. Recently, hysterosalpingo-foam sonography (HyFoSy) was introduced and was suggested to be a possible less invasive alternative to HSG [5]. Our prospective study included patients, who underwent Essure hysteroscopic sterilization, followed by 2D transvaginal ultrasonography, HyFoSy and HSG 12 weeks after sterilization. The purpose of our study was to evaluate the accuracy of 2D tranvaginal ultrasonography and HyFoSy compared to HSG for assessment of the efficacy of Essure hysteroscopic sterilization.

Keywords

transvaginal ultrasonography; hysterosalpingo-foam sonography; hysterosalpingography; hysteroscopic sterilization

References

- [1] La Chapelle CF, Veersema S, Br€olmann HA, Jansen FW. Effective- ness and feasibility of hysteroscopic sterilization techniques: a system- atic review and meta-analysis. Fertil Steril 2015; 103:1516–1525.e1– e3.
- [2] Veersema S, Vleugels M, Koks C, Thurkow A, van der Vaart H, Br€olmann H. Confirmation of Essure placement using transvaginal ultrasound. J Minim Invasive Gynecol 2011; 18:164–168.
- [3] Veersema S. Hysteroscopy and contraception. Best Pract Res Clin Obstet Gynaecol 2015; 29:940–950
- [4] Shah V, Panay N, Williamson R, Hemingway A. Hysterosalpingo- gram: an essential examination following Essure hysteroscopic sterili- sation. Br J Radiol 2011; 84:805–812.
- [5] K. Dreyer, R. Out, P.G.A. Hompes, V. Mijatovic. Hysterosalpingo-foam sonography, a less painful procedure for tubal patency testing during fertility workup compared with (serial) hysterosalpingography: a randomized controlled trial. Fertil Steril 2014; 102(3): 821–825.

Acknowledgements

We would like to thank the University Medical Center Maribor for help and support.

O 21 - Compressed Ultrasound Signal Reconstruction Using a Low-Rank and Joint-Sparse Representation Model

Miaomiao Zhang 1, Ivan Markvosky3, Colas Schretter4, Jan D'hooge2*

¹ College of Information Engineering, Capital Normal University, Beijing, China. ² Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium. ³ Affiliation, Country. ⁴ Department ELEC, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium. ⁴ Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.

* email: jan.dhooge@uzleuven.be

With the introduction of very dense sensor arrays in ultrasound imaging, data transfer rate and data storage can become a bottleneck in ultrasound system design. To reduce the amount of sampled channel data, we propose a new approach based on the low-rank and joint-sparse model that allows us to exploit the correlations between different ultrasound channels and transmissions. With this method, the minimum number of measurements at each channel can be lower than the sparsity in compressive sensing theory. The accuracy of the reconstruction is less dependent on the sparse basis. An optimization algorithm, based on the simultaneous direction method of multipliers, is proposed to efficiently solve the resulting optimization problem. Results on different datasets with different experimental settings show that the proposed method is better adapted to the ultrasound signals and can recover the image with fewer samples (e.g. 10% of the samples) than the existing CS-based methods, while maintaining reasonable image quality.

Figure 1.Original in vivo cardiac image and the images reconstructed by the proposed method with different sampling rates. The red and blue block in the reference image represent the regions used to compute CNR.

Keywords

Compressive sensing; Matrix completion; Low-rank and Joint-sparse model; Ultrasound Imagin

O 22 - Ultrasonic monitoring provide the novel possibility to control the thrombolytic drug injection

Shakhla N. Shirinli ^{1, 2}, **Dmitry A. Ivlev** ^{1*}, Konstantin G. Guria ², Svetlana G. Uzlova ¹, Georgy Th. Guria ^{1,2}

¹National Research Center for Hematology, Moscow, Russia;

²Mosocow Institute of Physics and Technology, Moscow, Russia;

* email: ivlev.d@blood.ru

Abstract

The problem: several thrombotic situations, such as ischemic stroke and myocardial infarction, are extremely deadly but may occur suddenly [1]. The traditional thrombolytic treatment assumes, that thrombi have already formed and blocked the blood flow, and this therapy itself has a rather sufficient bleeding risk [2]. The way of a solution: for the last two decades, ultrasound methods have rapidly advanced - sensors have become miniaturized, technologies for continuous long-term monitoring of the flowing blood state directly in human vessels are raised [3]. It is essential that ultrasonic methods can detect blood coagulation under intensive flow conditions even in major arteries of the human body [4]. In the present study, we used real-time ultrasound Doppler monitoring to control the thrombolytic drug injection in vitro [5]. Methods: The original experimental set-up was designed. A closed system of flexible transparent silicone tubes was filled with blood or blood plasma. A peristaltic pump generated the flow of liquid. Digital camcorder performed optical registration of clots formation and dissolution. Acoustic registration was performed via an ultrasonic scanner working in a Doppler mode at a frequency of 5 MHz. Computer recorded and processed signals from both channels. A special automated drug-injector was designed to infuse the thrombolytic drugs into the experimental system. The injector delivered a fibrinolytic agent into the system in a precisely controlled and reproducible manner based on an ultrasonic signal. Results: ultrasonic Doppler monitoring provides the novel possibility to inject thrombolytic drugs even at the earliest stages of blood clotting. This approach allows in some cases to avoid large clots formation and, thus, to prevent thrombosis. We believe that this study would be the basis for further developments in the field of thrombosis fighting and this approach will be useful for intensive care units or reanimation wards.

Keywords

Ultrasonic monitoring; Doppler sonography; Blood flow; Blood plasma; Real-time; Blood coagulation;

References

- [1] Jackson SP. Arterial thrombosis—insidious, unpredictable and deadly. Nature medicine. 2011 Nov;17(11):1423-36.
- [2] Meretoja A, Tatlisumak T. Thrombolytic therapy in acute ischemic stroke-basic concepts. Current vascular pharmacology. 2006 Jan 1; 4(1):31-44.
- [3] Huang CC, Wang SH. Assessment of blood coagulation under various flow conditions with ultrasound backscattering. IEEE Transactions on Biomedical Engineering. 2007 Nov 19;54(12):2223-30.
- [4] Abramova M, Stepanova I, Shayunova S. Possibilities of transcranial color-coded sonography in pathology of deep brain veins in children. Perspectives in Medicine. 2012 Sep 1;1(1-12):353-6.
- [5] Ivlev DA, Shirinli SN, Guria KG, Uzlova SG, Guria GT. Control of fibrinolytic drug injection via real-time ultrasonic monitoring of blood coagulation. PloS one. 2019 Feb 27; 14(2):e0211646.

Acknowledgements

This presentation was supported by the Russian Science Foundation grant №19-11-00260.

O 23 - The influence of ultrasound on the efficiency of the vacuum impregnation and selected characteristics of the plant material

<u>Dominik Mierzwa</u> 1*, Justyna Szadzińska¹, Elżbieta Radziejewska-Kubzdela², Róża Biegańska-Marecik²

¹Poznań University of Technology, Department of Process Engineering, Poland. ²Poznań University of Life Sciences, Department of Food Technology of Plant Origin, Poland.

* email: dominik.mierzwa@put.poznan.pl

Abstract

Vacuum impregnation is a two-stage process. In the first, the so-called vacuum stage, the raw material is placed in a solution of the desired compound, then the pressure is reduced and native fluids located in porous space are removed. In the second, the so-called relaxation stage, the pressure is restored to atmospheric conditions and the open pores/capillaries of the material are filled – impregnated, with the solution [1]. The effectiveness of the VI may be affected both by the internal (material structure and porosity) and external resistances (e.g. laminar boundary layer). The use of ultrasound during VI is aimed at reducing both types of resistance, e.g. by loosening the internal structure, increasing porosity or reducing the thickness of the laminar boundary layer.

The aim of this work was to analyse the influence of ultrasound on the effectiveness of the vacuum impregnation process of plant materials such as potatoes and carrots. Vacuum impregnation process was performed with a pressure of 50 mbar or 300 mbar in vacuum stage. The isotonic impregnation solution consisted of ascorbic acid, citric acid (both 0.5%) and sucrose. Ultrasounds were applied during the different stage of VI processes (UVI1 - vacuum stage, UVI2 - relaxation stage, UVI3 - whole process, UVI4 - atmospheric pressure restoration stage). Additionally, the selected quality parameters of the material were analysed (colour, water activity, ion leakage). It was found that ultrasound positively influenced the effectiveness of VI. Samples processed with the ultrasound enhancement (UVI1-UVI4) were characterized by a higher ascorbic acid content, compared to unsupported VI processes (Fig. 1). However, the qualitative effect depended on the stage in which the ultrasound was applied. The best effects were observed for the processes with continuous support (UVI-3) regardless of the pressure applied. There were also no negative effects of ultrasound on the analysed quality parameters.

Figure 1. The ascorbic acid content of potatoes after impregnation at different pressure conditions: 50 and 300 mbar.

Keywords

functional food; acoustic cavitation; intensification of mass transfer; colour; food

References

[1] A. Derossi, T. De, C. Severini, In Scientific, Health and Social Aspects of the Food Industry, 1st ed.; Valdez, B., Ed.; IntechOpen Limited: London, UK, 2012.

Acknowledgements

The research was supported by National Science Centre (Poland) in the framework of SONATA project no. 2018/31/D/ST8/00627.

O 24 - Nanocomposite Materials for All-Optical Ultrasound Imaging

Sacha Noimark^{1,2,3*}, Richard J. Colchester^{1,2}, Semyon Bodian^{1,2,3}, Ivan P. Parkin^{1,2,3}, Adrien E. Desjardins^{1,2}

¹Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom

²Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom

³Materials Chemistry Research Centre, Department of Chemistry, University College London, London, United Kingdom

email: s.noimark@ucl.ac.uk

Abstract

Polydimethylsiloxane (PDMS) nanocomposites have broad applications in biomedical science. In particular, the development of highly optically absorbing PDMS nanocomposites have shown great promise in the emerging field of optical ultrasound generation. Here, the use of PDMS is advantageous due to its high thermal expansion coefficient, biocompatibility and compatibility with a wide range of fabrication methods. Using simple, scalable deposition methods, PDMS nanocomposites with micron-scale thicknesses can be created on the distal end of optical fibres. Ultrasound is generated optically *via* the photoacoustic (PA) effect; pulsed laser excitation is delivered to the optically absorbing nanocomposite at the fibre tip, resulting in a pressure rise that propagates as an acoustic wave. Due to their small lateral dimensions, these fibre-based devices are well-suited to applications in minimally-invasive interventions, transforming image-guidance from within the body.

Here we discuss a series of nanocomposite coatings that we have optimised for optical ultrasound generation. One particularly promising class of nanocomposites comprising multi-walled carbon nanotubes (MWCNT) and PDMS, demonstrates broadband optical absorption [1], When applied onto optical fibres, these MWCNT-PDMS nanocomposites transform them into highly miniature ultrasound transmitters that achieve high ultrasound pressures (up to 1.85 MPa peak-to-peak, 3 mm distance) and broad frequency bandwidths (up to 30MHz at -6 dB), resulting in high-resolution imaging showing clinically-relevant features in benchtop and in-vivo studies [2]. However, the broadband optical absorption of the MWCNTs limits these devices to one imaging modality. By tuning the optical properties of the PDMS nanocomposites using gold nanoparticle or quantum dot optical absorbers, we demonstrate nanocomposites that exhibit high optical absorption within a narrow wavelength region for ultrasound generation, and high optical transmission in clinicallyrelevant regions for other sensing modalities such as photoacoustics, or for therapeutic applications. We explored this in the context of PA imaging; using 532 nm and 1210 nm or 1064 nm laser excitation sources for ultrasound and PA imaging, respectively, we acquired coregistered images of ex vivo human tissue that enabled us to obtain information on tissue microstructure with molecular contrast for lipids [3]. Fibre-based ultrasound transmitters coated with these nanocomposites will open up new avenues for multimodality imaging or combined imaging and therapies, with important potential clinical diagnostic and therapeutic applications such as the identification of atherosclerotic plagues in coronary arteries.

References

- [1] S. Noimark et al., Advanced Functional Materials 26 (2016) 8390.
- [2] M. C. Finlay, et al., Light: Science and Applications 6 (2017) e17103.
- [3] S. Noimark et al., Advanced Functional Materials 28 (2018) 1704919.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC)

UK Research and Innovation under the EPSRC UKRI Innovation Fellowship scheme (EP/S001506/1), Ramsay Memorial Fellowships Trust, the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) (203145Z/16/Z) and an Innovative Engineering for Health award from the Wellcome Trust (No. WT101957) and the EPSRC (No. NS/A000027/1).

O 25 - The influence of ultrasound on the properties of oil-dispersed systems

A.V. Morozova*, G.I. Volkova

Institute of Petroleum Chemistry SB RAS, 4, Akademichesky Avenue, 634055, Tomsk, Russia

e-mail: anastassiya petukhova@mail.ru

Abstract

At the present time, the effect of the ultrasonic field on the properties of oil-dispersed systems (ODS) is being actively investigated. Successful theoretical and experimental studies in the field of ultrasonic cavitation and acoustic currents made it possible to develop new technological processes. Ultrasonic treatment (UST) is one of the most environmentally friendly methods of treatment of ODS, but the pattern of changes in rheological and energy characteristics after UST depends on the component composition of the system and parameters of treatment. It is clearly seen that the effect of ultrasound on highly paraffinic dispersed systems leads to an increase in such macrocharacteristics as shear stress, viscosity, and energy parameters. On the other hand, in the presence of polymer depressants, the negative effect of acoustic impact on highly paraffinic systems is neutralized and their viscosity-temperature characteristics are improved [1]. Evaluating the effectiveness of the integrated method to reduce the viscosity of highly paraffinic crude oils can be simplified by using model systems, in particular petroleum wax (PW) solution.

Therefore, this study is focused on the effects of silica-gel resins (SR) on the structural and mechanical properties of a 6 % wt PW solution in n-decane (PW-d) treated with ultrasound. Besides the effect of exposure to ultrasound alone and sonication with subsequent introduction of crude oil with high resin content (crude oil-2) on the properties of highly paraffinic crude oil (crude oil-1) is considered.

We treated the samples in ultrasonic field (frequency 22 kHz, radiation intensity 18 W/cm², exposure time 10 min). In the followed case we added petroleum resins (0.3 % wt) or crude oil-2 to the treated sample (PW-d or crude oil-1) to prove that our resins are natural viscosity depressants and sedimentation inhibitors.

Our results clearly indicate that Ultrasonic treatment of ODS stimulates the crystallization of paraffin. This leads to an increase in viscosity, pour point and the amount of paraffin deposited. The introduction of SR or crude oil-2 into the sonicated ODS improves the viscosity-temperature characteristics, reduces the specific energy of degradation of the supramolecular structure, and positively affects the mass and the structure of sediments (Figure 1). Significant inhibition of the process of sedimentation and improvement of the viscosity-temperature properties is observed when even 10 % wt of resinous crude oil is added to sonicated paraffinic crude oil.

Figure 1. The crystal structures micrographs of the sediments: a - crude oil-1; b - 10 min; c - 10 min + 3 % wt crude oil-2; d - 10 min + 10 wt % crude oil-2.

The results of our work indicate that mixing oils with various compositions in combination with ultrasonic treatment could be used for the transportation of highly paraffinic feedstocks through pipelines at low temperatures.

References

[1] R.V. Anufriev, G.I. Volkova, A.A. Vasilyeva, A.V. Petukhova, N.V. Usheva. Procedia Chem. 15 (2015) 2–7.

Acknowledgements

This research was supported by the Ministry of Science and Higher Education of the Russian Federation (Registration Number 121031500049-8).

O 26 - The impact of ultrasound pre-treatment on selected properties of dried mushrooms

Małgorzata Nowacka 1*, Katarzyna Rybak¹, Magdalena Dadan¹, Dorota Witrowa-Rajchert¹, Artur Wiktor¹

¹ Warsaw University of Life Sciences (WULS-SGGW), Poland.

* email: malgorzata_nowacka@sggw.edu.pl

Abstract

Drying is one of the most popular food processing methods. It depends on the evaporation of water and thus decreases both water content and water activity. The progress of drying food tissue systems such as fruits and vegetables is mainly limited by the cellular structure of the food. Therefore, the degradation of the cellular structure of food may result in an intensification of drying and modification of dried product quality. Because of its mechanism of action, ultrasound applied prior to drying may enhance drying and improve the quality of dried material [1].

The aim of this work was to analyze the impact of immersive sonication applied prior to drying as carried out by different techniques: convection, microwave and infrared method on kinetics and selected properties of mushrooms. The response surface methodology (RSM) was applied to design the experiment in which sonication time (10-30 min) was one of the variables while the second one depended on the drying method: air temperature (55-85°C) – in the case of convection drying; microwave power (100-300 W) – in the case of microwave drying, the distance from the source of infrared emitter (10-30 cm) – in the case of infrared drying. After drying following properties of mushrooms were analyzed: dry matter content, water activity, colour, hygroscopicity, rehydration, phenolic content and antioxidant activity.

Ultrasound treatment modified the kinetics of drying but the effect depended both on the drying method and processing parameters. For instance, sonication reduced microwave drying time by 10% in comparison to untreated material only for the processes that was carried out at 100 W whereas no effect of sonication was observed for protocols performed at 200 and 300 W. The dry matter content of dried mushrooms varied between 73.9 and 96.4%. However, lower values were usually stated for mushrooms dried by microwave method which together with a higher water activity (0.271-0.701) values reported for products dried by this method limits utilization of this technique as a single treatment, especially when lower power were applied. Mushrooms dried by convection and infrared method exhibited lower values of water activity which did not exceed 0.7. The reconstitution properties of mushrooms depended also on drying method, drying conditions and sonication time. For example, the rehydration ratio of convective dried mushrooms subjected before drying to 10 minutes of sonication was lower than untreated ones for all investigated temperatures. When the sonication lasted 30 minutes the change of rehydration properties was associated with the temperature of drying. Phenolic content of dried mushrooms varied from 6.9 to 16.8 mg CAE/g s.s., 9.4-15.7 mg CAE/g s.s. and 7.6-19.5 mg CAE/g s.s., for convective, microwave and infrared dried material, respectively. The most visible effect of sonication on phenolic content was observed when mushrooms were subjected to microwave drying - all samples dried at 200 and 300 W and subjected to sonication exhibited higher values of phenolic content.

Keywords

ultrasound; drying; pre-treatment; sonication; mushrooms

References

[1] D. Witrowa-Rajchert, A. Wiktor, M.Sledz, M. Nowacka, Drying Technology 32 (2014) 1386–1396.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817683.

O 27 - Anisotropic Focusing Transducers in Thin Piezoelectric Films

Aleem M. Siddiqui 1*, Darren Branch¹, Chris Nordquist¹

¹Sandia National Labs, Albuquerque, New Mexico, USA

* email: asiddia@sandia.aov

Abstract

This article describes a theoretical framework and experimental investigation of focused beams in piezoelectric thin films in anisotropic material. Previously focusing transducers have been explored to couple to wavelength scale structures for the case of in-plane isotropic piezoelectric materials and to avoid anchor losses in "Gaussian Focused-Cavity Resonators" designed to increase quality factor by concentrating the mode energy toward the resonator center while also maintaining coupling coefficient 1-3. However, recently the availability of lithium niobate on insulator material has catalysed exploring LN for high frequency applications4. These attractive materials have a high degree of anisotropic and therefor the isotropic framework doesn't apply. In this work we develop a methodology to achieve focusing in anisotropic materials. A mathematical formalism describing focused acoustical beams in anisotropic material is presented and related to their optical counterparts. A novel Fourier domain transducer design methodology is presented and utilized to produce near diffraction limited focused beams using thin lithium niobate on silicon. The properties of the acoustic beam formed by the transducer were studied by means of Doppler vibrometry implemented with a scanning confocal balanced homodyne interferometer. Fourier domain modal analysis confirmed coupling efficiency to the targeted mode. Comparison of isotropic and anisotropic transducer design demonstrates the advantage of anisotropic design to achieve tighter focusing and more efficient coupling to wavelength scale structures in anisotropic films.

Figure 1. (a) Transducer synthesis from dispersion (b) Simulated beam generated from focused transducer design (upper) and anisotropic transducer design (lower) which has a tighter focus (c) Measured beams from isotropic transducer design (upper) and anisotropic transducer design (lower) illustrating tighter focus with anisotropic design. (d) Fourier domain representation of measure data in (c). The isotropic design loses coupling in the wings compared to the anisotropic design which is responsible for the loose focus.

References

- [1] A. Siddiqui, R. H. Olsson, and M. Eichenfield, "Lamb Wave Focusing Transducer for Efficient Coupling to Wavelength-Scale Structures in Thin Piezoelectric Films," Journal of Microelectromechanical Systems, vol. 27, no. 6, pp. 1054–1070, Dec. 2018.
- [2] A. Siddiqui, et. Al, "Gaussian Focused-Cavity Resonators", MEMS 2021.
- [3] M. Eichenfield and R. H. Olsson, "Design, fabrication, and measurement of RF IDTs for efficient coupling to wavelength-scale structures in thin piezoelectric films," in 2013 IEEE International Ultrasonics Symposium (IUS), Jul. 2013, pp. 753–756,
- [4] C.-Y. Chen, et. Al, "Q-enhanced Lithium Niobate SH0 Resonators with Optimized Acoustic Boundaries, EFTF/IFC, 2019.

Acknowledgements

Supported by the Laboratory Directed Research and Development Program at Sandia National Laboratories, a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-003525

O 28 - Ensuring Cavitation in a Medical Ultrasonic Cleaner

Jahan Azizi

Providing a clean and functional medical device is critical to the prevention of nosocomial infection transmission. The use of a medical ultrasonic cleaner (i.e. sonic cleaner) is a major step in the cleaning process to obtain that goal. The cavitation process dislodges debris and remove soil from joints, crevices, lumens, and other areas that are difficult to clean using other methods. It is important to ensure cavitation is occurring in a medical sonic cleaner because if it is not functioning properly, then the unit essentially becomes an expensive soaking tank.

The United States Food and Drug Administration (FDA) classify the ultrasonic cleaner as a Class 1 medical device "intended for cleaning medical instruments by the emission of high frequency soundwaves." ANSI/AAMI ST79:2017 indicates Ultrasonic cleaning equipment is not designed for disinfection or sterilization. Ultrasonic cleaning equipment should be used for fine cleaning, to remove soil from joints, crevices, lumens, and other areas that are difficult to clean using other methods. AAMI recommends cavitation testing be performed daily.

AAMI recommends that medical facility personnel ensure their ultrasonic cleaners are producing cavitation and have the ability to remove a test soil from external and internal surfaces of items cleaned ultrasonically, it is essential to ensure that the verification products used to test ultrasonic cleaners are actually testing for the correct parameters and that the statements made in the testing product IFUs are accurate. Health care facility personnel should understand exactly what these products are testing for, the significance of the ultrasonic cleaner passing the test, and what it means when the cleaner fails the test.

Ensuring that ultrasonic cleaners are working correctly has been a concern for quite some time because there have not been many options for objectively testing ultrasonic cleaners to ensure they are functioning as they should be. Sterile processing team members have had only subjective tests such as the foil test (ie, a piece of aluminum foil is placed into the ultrasonic bath and observed for perforation or destruction caused by cavitation), glass slide test (ie, the frosted portion of a glass slide is marked, placed into the ultrasonic bath, and observed for removal of the mark), and ceramic disc test (ie, an unglazed ceramic disc with a flat finish is marked with pencil, placed into the ultrasonic bath, and observed for removal of the marks). The test results may not always be clear because each of these tests require subjective interpretation. The glass slide and ceramic disc tests demonstrate the removal of soil from a surface, but do not specifically detect cavitation. The foil test detects cavitation; however, the findings of pings and dimples in the foil must be subjectively interpreted by personnel and compared to the original test.

METHODS

A simple test of 4 products side by side using a mason jar containing cleaning solution with no cavitation energy generated. Four Mason jars were filled with 500 mL of utility water mixed with a hospital approved cleaning solution at a dilution of 1/2 oz per gallon of utility water as per the manufacturer's IFU and a temperature of 77° F (25° C). The test was repeated with four Mason jars filled with 500 mL of utility water mixed with the cleaning solution at a dilution of 1/2 oz per gallon of utility water and a temperature of 100° F (38° C). Both tests were repeated three times. The temperature of the solution in each jar was verified by inserting a temperature probe into the cleaning solution immediately before the test products were placed into the jars. The jars were agitated by vigorous manual shaking for 5 seconds once each minute for 15 minutes. The results of the testing products were interpreted according to their manufacturer's IFU and recorded after the 15-minute simulated cavitation process. The 15-minute time frame was chosen because it is the standard time used at the researchers' facility for ultrasonic cleaning of instruments. Two temperatures were chosen to keep the test design simple. Only one cleaning solution was used. The cleaning solution was diluted in accordance with the manufacturer's IFU.

DISCUSSION

Since ultrasonic cleaning is the combination of mechanical (cavitation) and chemical (cleaning solution) cleaning, being able to distinguish between these different processes and to demonstrate which are occurring and which are not occurring is vital to solving cleaning issues and ensuring effective ultrasonic cleaning of medical devices. Sterile processing and biomedical personnel should understand these different parameters and should know how to test for the components essential to effective ultrasonic cleaning (eg, temperature, cleaning solution, cavitation, cleaning ability). These tests should be part of the facility's quality management program (QMP) where the testing that is performed by facility personnel is known as a performance qualification step. Incorporating a QMP into the facility's ongoing processes for verifying effective ultrasonic cleaning will reduce the risk of patient infection and improve patient outcomes.

The results of this study showed that three of the four products failed to accurately assess cavitation because the dye/soil was removed when there was no cavitation present. These

products appear to be sensitive to temperature and the presence of a detergent. It is likely that the longer the product remains in the solution, the more opportunity there is for the dye/soil to be removed from the coupon. Product A, which is enclosed in a sealed, fluid-tight system is not affected by its surroundings unless there is cavitation present. Product A was the only product shown to demonstrate the absence of cavitation and was the product in use at the researcher's facility. This study corroborated that the correct product was being used.

CONCLUSION

Cavitation is an important and necessary function of all ultrasonic cleaners and is the reason these units are so important for effective cleaning of medical instruments. This study was conducted to identify a method to verify cavitation testing of several products designed for this purpose and currently available on the market. The Mason jar method described in this study provides a simple method for simulating an ultrasonic bath where no cavitation is present. The results of the study clearly demonstrate that even when no cavitation is being produced, some of these tests will provide passing results. Therefore, those tests do not distinguish between cavitation production and the other parameters in an ultrasonic cleaner.

O 29 - A numerical model of ultrasonically induced cavitation

<u>Paolo Guida</u>*, Gianmaria Viciconte*, Alberto Ceschin*, Hong G. Im * and William L. Roberts *

*Clean Combustion Research Center, KAUST, Thuwal 23955, SA.

Ultrasonically Induced Cavitation (UIC) consists of the formation of vapour-filled cavities in a liquid medium as a consequence of an applied acoustic field. A vibrating probe, called sonotrode, generates pressure waves by high-frequency oscillations (20 kHz). Those pressure waves control formation, dynamics and eventual collapse of several small vapour bubbles. As a consequence of the bubbles collapse, peculiar thermophysical conditions are induced in the fluid domain like high temperature hot-spots and radicals formation. In the industrial fuel upgrading context, the development of advanced computational fluid dynamics (CFD) models is crucial to optimize geometry and operation parameters of the UIC process. We developed and implemented a new algorithm within the OpenFOAM framework. The approach we adopted uses the Volume of Fluid (VoF) method which was originally proposed by Hirt et al.1. The VoF consists of resolving a single transport equation for the volume fraction of either gas or liquid as well as for pressure and velocity. We adopted a diffuse interface approach for the volume fraction transport equation. The bubble dynamics is solved with sub-grid models and the coupling between flow field and micro-scale is performed by introducing appropriate source term in the transport equations. The source terms are decoupled from convective and diffusive components by using the common operator splitting technique. The evolution of the bubble can be decomposed in three steps: nucleation, oscillations and collapse. The oscillations of the bubbles are modelled with the Rayleigh-Plesset equation. In Fig.1 (a) we show the formation of vapour bubbles predicted by the CFD code in a UIC reactor. We also validated the code against experimental results found in the literature 2.3. Some comparison results are visible in Fig.1 (b, c).

Figure 1: Figure (a) shows the Bubbles distribution in the cavitation zone. Figure (b) reports a comparison of the time-dependent, punctual pressure profile in a UIC reactor. (Znidarcic⁴). Figure (c) reports a space-dependent pressure profile in a UIC reactor (Campos-Pozuelo⁵).

¹Hirt et al. Journal of computational physics 39. 201{225, 1 (1981).

²Znidarcic et al. Physics of uids 26. 023304, 2 (2014).

3Campos-Pozuelo et al. Ultrasonics sonochemistry 12. 79{84, 1-2 (2005).

O 30 - The impact of ultrasound (US) on the development of anesthesia techniques

Gabriel M. Gurman, MD

Ben Gurion University of the Negev

Israel

gurman@bgu.ac.il

Anesthesiology as a medical specialty is a combination of science and art. On one side we possess scientific evidence for almost any drug and technique, our knowledge is based on applied anatomy and physiology, we are clinicians, taking care of our patients in the operating room and outside it, and we also develop various fields of interest, which are beyond the traditional domains of the specialty (pain, preanesthetic clinics, etc).

But in the same time we do not know how exactly our drugs act on the central nervous system, we do not have the exact formula for calculating the drug dosage, and above everything a good part of our techniques are blind, a fact which obliges the anesthesiologist to use anatomical landmarks, sometimes with a lot of difficulties.

Most of the technical problems refer to the performance of logoregional anesthesia. The paradox consists in the fact that this kind of anesthesia has clear advantages over general anesthesia (fewer side effects, quick recovery, postop analgesia), but because of using blind methods its success is sometimes inconsistent, and complications produced by the needle injury or intravascular injection are not rare, the locoregional anesthesia has evident drawbacks.

Here comes the ultrasound (US) technology.

Its main advantage (Perlas A and Chan V, 2007) is "ability to provide anatomic examination of the area of interest in real time".

US provides a complete image of the peripheral nerves.

It affords easy identification of the nerves from the adjacent structures. It can follow the oblique course of the nerve and needle and if offers a clear image of the surrounding vascular structures.

But , of course, the use of US is not limited to locoregional anesthesia.

The lecture would deal with the main domains of US use in anesthesia, among them surgical anesthesia of peripheral nerves, management of chronic pain, spinal and epidural anesthesia in obstetrics, diagnosis of lung pathology (such as occult pneumothorax), quantification of the gastric content (in order to prevent aspiration during general anesthesia) and also assessment of airways in case of predicted difficult tracheal intubation.

O 31 - Ovarian cancer cells under ultrasound exposure of doxorubicin show an enhanced immunogenic cell death

Federica Foglietta 1*, Roberto Canaparo¹, Giampiero Muccioli¹, Enzo Terreno², Loredana Serpe¹

¹Department of Drug Science and Technology, University of Torino (Italy). ²Department of Molecular Biotechnology and Health Sciences, University of Torino (Italy).

* email: federica.foglietta@unito.it

Abstract

Background. Ultrasound (US) is a mechanical wave that can be employed in many different fields. In recent years, the safety and very good tissue penetrating ability of US has prompted to the possibility of employing US-based strategies, not just as diagnostic tool, but also for therapeutic purposes. Therefore, US has been used for various therapeutic approaches such as promoting tissue healing, decreasing chronic pain, tumor ablation and drug release from drug delivery systems but, one of the most attractive approach, remains the sonodynamic therapy (SDT) [1]. SDT is an anticancer and antibacterial approach based on the use of US to activate a chemical compound, called sonosensitizer, through acoustic cavitation enhancing the sonosensitizer cytotoxicity. A chemical compound that can act as sonosensitizer, is doxorubicin, a potent anticancer agent used for the treatment of a huge variety of cancers. In particular it has a key role in the second line treatment of ovarian cancer. However, the overall survival rates of ovarian cancer remain considerably worse than those for other gynecological malignancies mainly because the cancer comes back, or recurs, after treatment in more than 70% of women with the disease. For this reason, many efforts in pharmacological research have been made in order to increase doxorubicin efficacy against ovarian cancer such as inducing immunogenic cell death (ICD) for a long lasting protective antitumor activity [2]. On this point, US-based strategies, as SDT, seems to be highly encouraging. Methods. In this work, we addressed the relapsing issue, proper of ovarian cancer, investigating the increase of doxorubicin-induced ICD through US. In this regard, experiments have been carried out on the human ovarian cancer cell line A2780 to test if the activation of low doxorubicin concentrations by US is effective in maximizing the doxorubicin-induced ICD. Moreover, hypericin, a natural well-known ICD inducer, has been used as yardstick, in comparison to doxorubicin. Results. The activity of doxorubicin and hypericin under US exposure was first investigated on A2780 cell proliferation, observing a statically significant decrease of cell proliferation over time. Along with this, specific biomarkers associated with ICD have been taken into consideration such as the expression of calreticulin (CRT) at the cell surface and the ATP production. US exposure of doxorubicin or hypericin was able to induce a statistically significant increase of ATP production and CRT expression. Finally, the expression of genes involved in the ICD pathway (such as CRT, LC3II and HMGB1) have been analyzed by real time RT-PCR after US exposure of doxorubicin or hypericin. Conclusions. The data obtained showed, for the first time, that the use of US is an efficient strategy to significantly boost doxorubicin-induced ICD, opening new encouraging developments in the treatment of ovarian cancer.

Keywords

Ultrasound (US), immunogenic cell death (ICD), Sonodynamic Therapy (SDT), Doxorubicin

References

- [1] Anthony P McHale, John F Callan, Nikolitsa Nomikou Colin Fowley, Bridgeen Callan. Adv Exp Med Biol. 2016;880:429-50.
- [2] Zahra Asadzadeh, Elham Safarzadeh, Sahar Safaei, Ali Baradaran, Ali Mohammadi, Khalil Hajiasgharzadeh, Afshin Derakhshani , Antonella Argentiero, Nicola Silvestris, and Behzad Baradaran. Cancers 2020, 12, 1047.

O 32 - Ultrasound Stimulation of Insulin Release from Pancreatic Beta Cells as a Potential Novel Treatment for Type 2 Diabetes

Ivan Suarez-Castellanos 1,2*, Tania Singh2, Aleksandar Jeremic3, Vesna Zderic2

¹LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France

²The George Washington University, Department of Biomedical Engineering, Washington DC, United States ³The George Washington University, Department of Biological Sciences, Washington DC, United States

* email: ivan.suarez@inserm.fr

Type 2 diabetes mellitus (T2DM) is a complex metabolic disease that has reached epidemic proportions. Pharmacological management routinely requires complex therapy with multiple medications and loses its effectiveness over time. The aim of this study is to explore a potential new, non-pharmacological strategy that utilizes the non-invasive application of ultrasound to address secretory deficiencies in T2DM patients. Our experiments consisted in assessing the safety, effectiveness and controllability of ultrasound-induced insulin secretion from pancreatic beta cells in models of increasing anatomical and physiological complexity.

The capability of ultrasound to stimulate insulin release from pancreatic beta cells was assessed *in vitro* on INS-1 beta cell line; *ex vivo* on rabbit pancreases; and *in vivo* on a mouse model. Planar ultrasound transducers with center frequencies of 800 kHz – 1 MHz were used to treat these different models for a duration of 5 min and acoustic intensities no higher than 1 W/cm². Insulin release produced by ultrasound stimulation was quantified, via ELISA assays, from extracellular substrates at t = 0 min (before treatment), t = 5 min (immediately after treatment) and t = 35 min (30 min after treatment) and compared to levels measured from sham groups. The temporal dynamics and Ca²+-dependency of ultrasound-induced secretions were evaluated *in vitro* through carbon fiber amperometry and experiments on Ca²+-depleted mediums, respectively. The secretory selectivity of the treatment was evaluated *ex vivo* and *in vivo* by measuring levels of released insulin compared to released levels of other pancreatic hormones and enzymes, such as glucagon or alpha amylase, that could be stimulated in parallel as a result of ultrasound treatment. Finally, the immediate tolerance of the treatment was evaluated via cell viability techniques *in vitro* and histological analysis of pancreatic tissue *ex vivo* and *in vivo*.

Our results showed that cell viability and tissue integrity were not significantly affected during and for up to 30 min after treatment when exposed to 800 kHz ultrasound. Cell exposure to 800 kHz ultrasound resulted in significant increase in insulin release *in vitro* (p < 0.005), *ex vivo* (p < 0.05), and *in vivo* (p < 0.005). Ultrasound-triggered insulin secretions *in vitro* were shown to be Ca^{2+} -dependent and to occur so long as the cells are exposed to ultrasound treatment. Ex vivo studies exhibited no significant release of pancreatic enzyme alpha amylase, while both ex vivo and in vivo experimentation confirmed no significant release of glucagon, a peptide hormone with opposite effect to that of insulin in glucose metabolism. These results show that our therapeutic approach may lead to novel strategies in the treatment of diabetes and other secretory diseases.

Figure 1. Results of Ultrasound-Stimulation of Insulin Release from In Vitro, Ex Vivo and In Vivo Pancreatic Models

Keywords: Therapeutic Ultrasound, Type 2 Diabetes, Insulin Secretion, Beta Cell Stimulation

O 33 - Meningioma in pregnancy and perinatal outcomes

Astrit M. Gashi, Jakup Ismajli, Curr Gjocaj, Atdhe Keqa, Visare Batalli, Qefsere Mulaj Department of Obstetrics and Gynecology, University Clinical Centre of Kosovo, Pristine

Abstract

A pregnancy is categorized as with high-risk when the mother is diagnosed with any tumor in the brain. Meningiomas are tumors that take origin from the arachnoid villi and produce a globoid or discoid mass Meningiomas account for approximately 38 percent of all intracranial tumors in females and 20 percent in males. They are usually localized in parasagittal areas, convexities of the cerebral hemispheres, the olfactory groove, and the lateral wing of the sphenoid. Most meningiomas are diagnosed in women between 30 and 50 years old For meningiomas diagnosis are used; MRI, CT. and very rarely angiography. Tumors in the brain can be. typical or benign, atypical, anaplastic or malignant 88-94% of meningiomas are benign tumors During pregnancy, MRI is most recommended for the diagnosis and evaluation of brain meningiomas. We report the management of a 2S-year-old woman patient diagnosed with olfactory groove meningioma, who has been subjected to one bifrontal craniotomy and gross total resection (GTR) (Simpson grades I/II), on week 33 of gestation, without any complications as during surgery that lasted 6 hours, as well as during pregnancy and childbirth

Keywords: pregnancy; meningioma; management; perinatal outcomes

O -Ultrasound in convective drying of white mushroom

Justyna Szadzińska 1*, Dominik Mierzwa 1

¹Poznan University of Technology, Institute of Technology and Chemical Engineering, Department of Process Engineering, Berdychowo 4, 60-965 Poznan, Poland.

* email: justyna.szadzinska@put.poznan.pl

¹Poznan University of Technology, Institute of Technology and Chemical Engineering, Department of Process Engineering, Berdychowo 4, 60-965 Poznan, Poland.

Abstract

Among all mushroom species, white mushroom is produced on the largest scale. It is popular not only because of its taste and aroma, but also due to the nutritional value. It is a valuable source of B and D group vitamins as well as minerals such as potassium, magnesium, phosphorus, zinc, copper or selenium. White mushrooms are also rich in antioxidant compounds, e.g. phenolic compounds with high antioxidant, anti-inflammatory, antiviral and antibacterial properties [1]. Due to short shelf-life after harvesting the raw mushrooms have to be preserved. One of the most popular method of food preservation is drying. During drying the properties of food products usually change depending on the conditions at which they are processed. In order to improve the drying effectiveness and product quality, and to reduce the energy consumption, modern drying methods are sought [2,3].

In this study, the influence of high power ultrasound on the convective drying (CV) kinetics (drying rate and time), quality of products (colour, water activity, total polyphenol content), and energy consumption was analysed. The experimental data were fitted to a few thin-layer drying models and the effective diffusion coefficient was calculated. White mushrooms were dried by a laboratory-scale hybrid dryer equipped with an air-heating system and high power ultrasound (US). The effects of the ultrasound power (100 and 200 W) were studied at two different air temperatures of air 50°C and 70°C, respectively. The obtained results clearly show that the use of ultrasound had a positive effect on the kinetics and energy consumption of convection drying, regardless of the air temperature. The average drying rates presented in Figure 1 are higher for ultrasound-assisted processes. In the case of drying at 70°C, the increase in drying rate was slightly higher compared to drying at 50°C. Furthermore, the quality assessment showed that the use of hybrid drying (CVUS) is a good alternative to hot-air drying technique.

Figure 1. Average drying rate for each of the drying processes of white mushroom.

Keywords

Hybrid drying; Air-borne ultrasound; Effective diffusion coefficient; Colour; Polyphenols References

[1] C. Lagnika, M. Zhang, K.J. Mothibe, Postharvest Biology and Technology 82 (2013) 87–94. [2] M.J.W. Povey, T.J. Mason, Ultrasound in Food Processing, Springer Science & Business Media (1998). [3] G. Musielak, D. Mierzwa, J. Kroehnke, Trends in Food Science & Technology 56 (2016) 126–141.

Acknowledgements

This research was funded by the Ministry of Education and Science.

^{*} email: justyna.szadzinska@put.poznan.pl

O 36

Shotgun Presentations

SG 01 - Time resolved X ray diffraction applied to ultrasonic fatigue loading

Christophe CHEULEU^{1*}, Vincent JACQUEMAIN¹, Nicolas RANC¹, Marc REBILLAT¹, Vincent MICHEL¹, Olivier CASTELNAU¹, Véronique FAVIER¹, Cristian MOCUTA², Dominique THIAUDIERE²

¹Laboratoire PIMM, Arts et Métiers ParisTech, 151 Bd de l'Hôpital, 75013 Paris, France ²Synchrotron Soleil, L'Orme des Merisiers, 91190 Saint-Aubin, France courriel: christophe.cheleu@ensam.eu

Today, the design of structures subjected to cyclic loading with number of cycles beyond one billion (field of the very high cycle fatigue domain, VHCF) requires particular attention. For this type of loading, conventional testing machines, operating at a few tens of Hz, are not suitable because they lead to prohibitive testing times (several months or more). More recently, ultrasonic fatigue machines operating at 20 kHz have been developed to characterize quickly the fatigue behavior of metals in the VHCF domain. For instance, with this type of machine one test until one billion cycle last less than one day. This ultrasonic fatigue machine is composed by a high voltage ultrasonic generator and a converter composed by a series of piezoelectric stacks which transforms the electric signal into a displacement. A horn placed on the edge of the converter allows to amplify the vibration applied to the fatigue specimen.

The aim of this communication is to present a new methodology and experimental technique to characterize quickly the fatigue behavior in the VHCF domain. This method requires additional measurements such as the self-heating of the specimen using infrared thermography and the evolution of the longitudinal stress during a cycle (50µs) by X-ray diffraction. For this last measurement, taken into account of the extremely short time resolution for about 0.1 ns, it is necessary to use intense X-ray sources such as synchrotron radiation and to use a stroboscopic method to cumulate integration times in order to obtain diffraction patterns with a sufficient signal to noise ratio . To reach this extremely short time resolution, the synchrotron is used in a pulsed mode and the vibration of the piezo electric fatigue machine is synchronized with the revolution period of electrons in the storage ring of the synchrotron.

To ensure the synchronization between the ultrasonic fatigue machine and the synchrotron, we have developed a power voltage generator which is controlled by a phase locked loop which synchronizes with the target frequency of 20 158 Hz, which corresponds to a multiple of the revolution period of electrons (~1.1820µs). The methodology and the results will be presented and discussed.

Acknowledgements

This study was conducted in the framework of the european research project H2020 FastMat (fast determination of fatigue properties of materials beyond one billion cycles) financed by the European Research Council (ERC) (grant agreement No 725142)

SG 02 - A methodology to conduct ultrasonic fatigue tests at 20kHz (on metallic specimens)

Vincent JACQUEMAIN^{1*}, Christophe CHEULEU¹, Doriana Vinci¹, Nicolas RANC¹, Vincent MICHEL¹, Olivier CASTELNAU¹, Véronique FAVIER¹, Cristian MOCUTA², Dominique THIAUDIERE²

¹Laboratoire PIMM, Arts et Métiers ParisTech, 151 Bd de l'Hôpital, 75013 Paris, France ²Synchrotron Soleil, L'Orme des Merisiers, 91190 Saint-Aubin, France courriel : vincent.jacquemain@ensam.eu

Today, the design of structures subjected to cyclic loading with a number of cycles beyond one billion (field of the very high cycle fatigue domain, VHCF) requires particular attention. For this type of loading, conventional testing machines, operating at a few tens of Hz, are not suitable because they lead to prohibitive testing times (several months or more). More recently, ultrasonic fatigue machines operating at 20 kHz have been developed to quickly characterize the fatigue behavior of metals in the VHCF domain. For instance, with this type of machine one test until one billion cycles lasts less than one day. This ultrasonic fatigue machine is composed of a high voltage ultrasonic generator and a converter which consists of a series of piezoelectric stacks which transforms the electric signal into a displacement. A horn placed on the edge of the converter which amplifies the vibration applied to the fatigue specimen.

This communication aims to present the metrological aspects of the ultrasonic setup and how it is used to carry out fatigue tests. As an initial overview, a metallic specimen (in the scope of this study) is screwed to the amplifying horn on the edge of the full setup. This specimen is then made to vibrate in its 1st longitudinal mode of vibration which corresponds to a tension/compression loading. According to the power supplied to the machine, the amplitude of this loading can be controlled. To master the loading amplitudes, two methods are used:

- Strain gauges placed on the specimen measure its total strain during the loading,
- A laser vibrometer put in front of the free end of the specimen which measures its displacement amplitude.

This ultrasonic machine thus allows to quickly characterize the fatigue behavior of (metallic) materials in the VHCF domain.

The presentation will focus on the description of the machine with a mechanical point of view and will then depict the setup with an electronic approach considering the resonance frequencies and the different configurations of the system. The author's understanding of the machine operation will be exposed and the way the authors consider it to design the fatigue specimens will be presented.

Acknowledgements

This study was conducted in the framework of the European research project H2020 FastMat (fast determination of fatigue properties of materials beyond one billion cycles) financed by the European Research Council (ERC) (grant agreement No 725142)

SG 03 - Sonochemical activation as a novel strategy for the synthesis of water-soluble monosubstituted Ru(II,III) compounds

Aarón Terán*, Santiago Herrero, Ana E. Sánchez Peláez, Reyes Jiménez-Aparicio

Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain

*email: aaronter@ucm.es

Abstract

The use of alternative activation methods such as ultrasound-assisted synthesis has been gaining interest in recent years in order to contribute to a greener synthesis [1]. The cavitational physical phenomenon for preparation of organic or inorganic material, degradation of pollutants or extraction of bioactive compounds from biomass feedstock has become a well-established chemical process [2]. The use of amidinate ligands in paddlewheel diruthenium chemistry to obtain partially substituted compounds has made possible to obtain derivatives with outstanding properties and high applicability in biotechnology and biomedicine fields [3]. For the first time, we have used sonication-assisted synthesis as a new approach to obtain partially substituted complexes with metal-metal bond. Here, we report the full characterization, properties study and discussion of synthesis method for six monosubstituted Ru(II,III) compounds of type [Ru₂Cl(OAc)₄-n(L)_n] (n = 1) using *N,N'*-donor bridging ligands such as formamidinato (HDAryIF).

Figure 1. Sonochemical activation of a diruthenium compound with metal-metal bond to obtain six partially substituted derivatives in greener conditions using symmetrical N,N'-donor bridging ligands.

Keywords

diruthenium; metal-metal bond; green chemistry; water-soluble compounds

References

- [1] G. Chatel and R. S. Varma, *Green Chem.* 21 (2019) 6043–6050
- [2] Y. Yao, Y. Pan, and S. Liu, *Ultrason. Sonochem.* 62 (2020) 104722
- [3] M. Cortijo, R. González-Prieto, S. Herrero, J. L. Priego, and R. Jiménez-Aparicio, *Coord. Chem. Rev.* 400 (2019) 213040

Acknowledgements

The authors gratefully acknowledge to Comunidad de Madrid for Project S2017/BMD-3770-CM. Aarón Terán acknowledge to Universidad Complutense for a Predoctoral Grant (CT63/19-CT64/19) and to the Spanish Ministry of Science and Innovation for a Posgraduate Fellow at Residencia de Estudiantes (2020-2021).

SG 04 - Pro-Inflammatory effects of 1-MHz Pulsed Ultrasound in Human Keratinocytes

Elisabetta Tortorella^{1,2*}, Sabrina Giantulli², Francesco Brasili³, Damiano Palmieri¹, Martina Piermarini¹, Susanna Scarpa⁴, Angelico Bedini⁵, Gaio Paradossi¹, Ida Silvestri², Fabio Domenici¹

 Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy. ²Department of Molecular Medicine, Sapienza University of Rome, Italy.
 Department of Physics, Sapienza University of Rome, Italy. ⁴Department of Experimental Medicine, Sapienza University of Rome, Italy. ⁵INAIL, Italian Worker's Compensation Authority, Italy.

* email: elisabetta.tortorella@uniroma1.it

Abstract

Low intensity pulsed ultrasound (LIPUS) of ~1-MHz frequency has been widely applied since the 1950s for both therapeutic and diagnostic tool [1]. The extensive clinical application of LIPUS suggests the need to better understand the related biological effects which are mostly linked to mechanical stress [2]. In this framework, we investigated whether mechanical energy transported by 1 MHz LIPUS could generate a mechanical stress able to modulate and induce the release of inflammatory cytokines such IL-6 in a human keratinocyte cell line (HaCaT). Human keratinocytes are often used to study epidermis homeostasis and its pathophysiology. In particular, these cells respond to both chemicals and physical agents, reporting a different production of cytokines, such as IL-1 and IL-6, in relation to the stimulus and the dose of the stimulus [3].

At first, we analysed the gene expression and protein secretion of the pro-inflammatory cytokine IL-6 by Real Time-qPCR and ELISA, respectively, at varying exposure parameters. Then, we focused on the activation of Nuclear Factor-kB (NF-kB), a pleiotropic regulator of many cellular pathways involved in cytokine production, cell-cycle regulation and apoptosis. Related effects on the cell cycle distribution and apoptosis have been also evaluated through flow cytometry analysis and by following the gene expression of Bax/Bcl-2.

Our results pointed out that 1 hour exposure of 1 MHz LIPUS at spatial-peak temporal-average Intensity (I_{spta}) of 65 mW/cm² (Figure 1a) promotes both significant IL-6 gene overexpression and protein secretion (Figure 1b), associated with the activation of Nuclear Factor-κB (Figure 1c). Furthermore, we observed a reduced cell viability dependent on exposure parameters together with alterations in membrane permeability and cell proliferation, paving the way for further investigating the molecular mechanisms related to ultrasound exposure.

Figure 1. In vitro analysis of pro-inflammatory effects induced on keratinocytes exposed for 1 h to 1-MHz LIPUS (10% duty cycle and pulses of 300 μs) at Ispta = 65 mW/cm2. (a) Sketch of the exposure setup (SSD = 7 cm); (b) IL-6 secretion analysed by ELISA assay in cultured media of HaCaT cells untreated (black histograms) and exposed to LIPUS, followed by different times of recovery; (c) Immunofluorescence analysis of HaCaT cells untreated (A-C) and exposed to LIPUS (D-F), HaCaT cells were stained with anti-p65 NF-κB (red) and Hoechst (blue). Scale bars measure 15 μm (A-B, D-E) and 5 μm (C, F).

Keywords

Keratinocytes; LIPUS; Interleukin-6; Nuclear Factor-κΒ

References

[1] ter Haar, G. Translational neurosonology 36 (2015): 23-30.

- [2] Domenici F., Brasili F., Giantulli S., Bedini A., Giliberti C., Palomba I., Silvestri I., Morrone S., Paradossi G., Mattei M., Bordi F. *Scientific reports* 7.1 (2017): 1-10.
- [3] Hänel K.H., Cornellissen C., Lüscher B., Baron J.M. *International journal of molecular sciences* 14.4 (2013): 6720-6745.

Acknowledgements

This research was realized with the financial support of INAIL under the agreement BRIC2019 ID 43.

SG 05 - Luis Carvalho

SG 06 - RLS QRD Lattice Algorithm for Hand Detection in Ultrasound-Based Applications

Raissa Likhonina 1*

1Czech Academy of Sciences, Institute of Information Theory and Automation, Signal Processing Department

* email: likhonina@utia.cas.cz

Abstract

In this work RLS QRD Lattice Algorithm is used as a new approach of a pre-processing stage for hand detection purposed for ultrasound-based applications. The principle of hand detection in this work is based on noise cancellation technique described in details in [1]. The RLS QRD Lattice algorithm was supplemented with hypothesis testing [2, 3] to improve robustness and accuracy of decision-making while removing undesired responses from the source signal. During experiments, two identification models were constructed. The first regression model has an order higher enough to cover all data coming from the sensor. The second regression model is of a smaller order and with time delay. The settings of the second model are chosen under assumption that it covers the space where there is no hand appearance possible. During estimation process of newly incoming data the algorithm has to choose, which of two models suit best for the given situation. The results of experiments are shown in Fig.1.

Figure 1. RLS QRD Lattice algorithm - single precision floating point

Due to the algorithm structure, pipelining and parallel processing techniques can be applied. As far as the algorithm is purposed to be mapped on embedded Zynq Ultrascale+ device, it was modified to accelerate computation process [4].

Keywords

RLS QRD Lattice algorithm; hand detection; noise cancellation; parallel processing; pipeling

References

- [1] M. Moonen, Introduction to adaptive signal processing. K. U. Leuven, Leuven, Belgium (1999)
- [2] V. Peterka, Bayesian approach to system identification. In: Trends and Progress in System Identification, IFAC Series for Graduates, Research Workers, Pergamon Press (1981)
- [3] J. Kadlec, Pravděpodobnostní identifikace regresního modelu v pevné řádové čárce. Praha (1986)
- [4] J. Kadlec, Z. Pohl, L. Kohout, Two serial connected evaluation versions of FP03x8 accelerators for TE0820-03-4EV-1E module on TE0701-06 carrier board. Application note: ÚTIA AV ČR, v.v.i. (2019)

Acknowledgements

This work has been supported from project SILENSE, project number ECSEL 737487 and MSMT 8A17006.

SG 07 - The impact of ultrasound pre-treatment on strawberry microstructure

Katarzyna Rybak^{1*}, Małgorzata Nowacka¹, Magdalena Dadan¹, Dorota Witrowa-Rajchert¹, Artur Wiktor¹

¹ Warsaw University of Life Sciences (WULS-SGGW), Poland.

* email: katarzyna rybak@sągw.edu.pl

Abstract

The use of ultrasound treatment as a pre-treatment causes modifications in food quality. Microstructure and its changes in food can be used to assess the influence of the process on the material. In plant tissue treated with ultrasound, numerous alterations in the structure occur. The cellular structure becomes disordered and the degree of its degradation increases with increasing duration of treatment [1].

The aim of the study was to analyze the microstructure of strawberries treated with ultrasound with different parameters (power and time of treatment). The whole strawberries were subjected to the pre-treatment, which was carried out with the use of ultrasonic bath working with a frequency of 21 kHz and a power of 180 or 300 W for a time from 0 to 60 minutes. For the microstructure study, the raw material and ultrasound treated tissue was cut into 5 mm slices and frozen at -40 °C and freeze-dried in a freeze drier at a pressure of 63 Pa and temperature of 30 °C for 24 h. In order to produce SEM images, small pieces were taken from the samples and put into the vacuum chamber. Image analysis was conducted using MultiScan v. 13.11 software. Measurements of the cross-section area were carried out for each cell. The histograms of the measured values were calculated using Microsoft Excel 2013.

The ultrasound pre-treatment modified the microstructure of the strawberries tissue. The pictures made with scanning electron microscope show an increase in the intercellular spaces, folding of the walls, and the formation of microchannels, which increased in size with the increase in the time of treatment and with the higher power of ultrasonic waves. This was confirmed by the quantitative analysis of the cross-section areas, which was calculated on the basis of SEM photos. The histogram of cross-section areas of the sonicated strawberries tissue was shifted toward larger field areas in comparison to the untreated sample. Moreover, the higher power and longer treatment time caused a shifting towards larger fields. It means that longer treatment results in more significant changes in strawberry tissue. Additionally, the creations of microchannels in freeze-dried strawberry tissue were observed (Fig. 1).

Figure 1. Structures of the untreated and ultrasound treated freeze-dried strawberries made using the scanning electronic microscope after 30 min of ultrasound treatment at frequency 21 kHz and power of 180 or 300 W (magnification 50). The microscopic channels were marked with arrow.

Keywords

ultrasound; pre-treatment; sonication; microstructure, strawberry

References

[1] Nowacka M., Wedzik M. Applied Acoustics, 103 (2016) 163-171.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817683.

٠

SG 08 - The use of ultrasound to activate the aluminium oxidation by water

N.S. Shaitura 1*, M.N. Larichev2

1,2 N.N. Semenov Federal research centre for chemical physics Russian academy of sciences, Russia.

* email: tesh-s@yandex.ru

Abstract

This work is devoted to the study of the environmentally friendly low-temperature (up to 100°C) process of aluminum powders oxidation by water to obtain gaseous hydrogen. The use of ultrasonic activation ensures almost complete oxidation of micron-sized aluminum powder by water without contaminating the oxidation products with the used activators. In addition, the use of ultrasonic activation in conjunction with chemical (calcium oxide additives) allows controlling the process: not only the rate of hydrogen release, but also the structure of the formed aluminum hydroxide. The possibility to synthesize solid oxidation products having a given composition, purity, and particle size makes it possible to significantly increase the economic attractiveness of the technology for the simultaneous production of hydrogen, heat, and aluminum hydroxide. This possibility becomes more important when using high power plants.

The work analyzes various aspects of the implementation of aluminium oxidation: the power and configuration of the ultrasonic field, various thermal modes of the oxidation process, the ratio of Al:H₂O reagents, the amount of chemical activator used and the method of its introduction with simultaneous use of ultrasonic activation. It is shown that ultrasound promotes the nucleation of aluminum hydroxide and the mass transfer of hydroxide from the surface of oxidizing particles to growing crystals. Ultrasonic activation is most effective at close to room temperatures. In this case a synergistic effect of simultaneous use of ultrasonic and chemical (CaO) activation is observed (Fig.1). The effectiveness of ultrasound with its short-term exposure at the beginning stage of intensive oxidation is shown. High rates of aluminum oxidation with the combined use of activation methods (line 3 and 4 at Fig.1) are due to the more intense nucleation of aluminum hydroxide crystals in comparison with the case of using only ultrasonic (line 2) or only chemical activation (line 1). The use of ultrasound makes it possible to obtain various types of oxidation products depending on the conditions of the process. Ultrasound accelerates the process of forming a structure known as a "nanowalls" and provides the formation of aluminum hydroxide crystals of various sizes including nanoparticles.

Figure 1. Micron-sized aluminium powder oxidation rate as function of time at the isothermal conditions. 1 - the use of chemical activation, 2 - the use of ultrasonic activation, 3 - the use of chemical and ultrasonic activation (continuous ultrasound), 4 - the use of chemical and ultrasonic activation (short-termultrasonic mode). "On" on the figure is time when ultrasound was turned on, "off" is time when ultrasound was turned off.

Keywords

aluminium oxidation; ultrasound activation; sonochemistry; hydrogen generation; aluminium hydroxide

SG 09 - Design and characterization of a new multi-frequency semi-pilot ultrasonic tank

Watbled Bastien 1, Musa Corentin 1, Delattre Francois 1*

¹UCEIV, U.R.4492, ULCO, 145 Avenue Maurice Schumann, 59140 Dunkerque, France SFR Condorcet FR CNRS 3417.

* email: françois.delattre@univ-littoral.fr

Nowadays, the requirement for process intensification in the chemical industry no longer only meets the economic considerations but also at the necessity to anchoring the industrial production in a sustainable approach, cleaner and more energy efficient technology. The phenomenon of cavitation, whether of hydrodynamic or ultrasonic origin, is likely to generate beneficial effects recognized as conducive for scale-up operations. Technically, the extrapolation of laboratory experiments on an industrial scale consists in taking into account the numerous constraints related to the production of large quantities of materials (impurities of the raw materials, duration of process, reliability, etc.) in large reactors. Thus, the development of a production line requires the realization of a pilot unit that will solve the problems encountered during the climb to scale-up. Therefore, many laboratories have been engaged in this way for a few years and the number of publications on pilot units [1], whether dedicated to ultrasonic or hydrodynamic processes, has considerably increased these last years. In this sense, he is interested in the basic considerations of cavitation phenomena on the industrial scale through some reminders and representative examples. A new model of sonochemical reactor emerged following the ULTRAFLAX project at UCEIV laboratory. This reactor is a multi-frequency ultrasonic tank with a maximum capacity of 30 litres (figure1) that allows the control of operating conditions including time, temperature, power and frequency. The interest of this multi-frequency tool is to be able to work with a varied range of powers and thus to offer a versatility in the number of experiments implemented according to the frequencies used. In order to determine the optimum sonochemical synthesis, the study of transient cavitation is carried out using the Weissler method [2], the sonochemical effects are measured by quantifying the production of triiodide ions during the implosion of cavitation bubbles. The dissipated ultrasonic power is evaluated by calorimetry [3]. The purpose of these characterizations is ultimately to optimize the sonochemical treatments, the results obtained at 20/40 and 100KHz for different powers suggest that the phenomenon of cavitation is greater at 1000W and at high frequency but is no longer detected at 250W unlike the low frequencies. Since the determination of triiodide ions does not reflect the mechanical effects of ultrasound, oxidation experiments such as TEMPO oxidation [4] of flax fibres are carried out in parallel in order to corroborate the results of the previous characterizations.

Figure 1. Design of a semi-pilot US bench for the study of cavitation

Keywords ultrasonic; multifrequency; sonochemistry; Oxidation

References

P. Cintas, G. Cravotto, F. Delattre, J. M. Léveque, Springer International Publishing, 2018.

A. Weissler, H. W. Cooper, S. Snyder, J. Am. Chem. Soc., vol. 72, no. 11, pp. 1769-1775, 1950.

R. F. Contamine, A. M. Wilhelm, J. Berlan, H. Delmas, Ultrason. Sonochem., vol. 2, no. 1, pp. S43-S47, 1995.

M. Paquin, É. Loranger, V. Hannaux, B. Chabot, C. Daneault, Ultrason. Sonochem., vol. 20, no. 1, pp. 103-108, 2013.

Acknowledgements

We thank the Haut-de-France Region for its contribution to the ULTRAFLAX project.

SG 10 -

SG 11 -

SG 12 -

Poster Presentations

P 01 - High-energy ultrasound synthesis of Sonogel-Carbon material modified with bulk polyaniline. Application in the electrochemical sensing of model chlorophenols

<u>José María Palacios-Santander</u>*, Paloma Calatayud-Macías, Alfonso Sierra-Padilla, David López-Iglesias, Juan José García Guzmán, Laura Cubillana-Aguilera

Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono de Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain.

*Email: josem.palacios@uca.es

This work carries through the development of a Sonogel-Carbon material modified with polyaniline powder, included into the silicon oxide network, by high energy-ultrasound, reaching the ultrasonic cavitation and increasing the surface contact between alkoxide and water [1]. This work aims to obtain a conducting material with better electrochemical performance than the Sonogel-Carbon material, as reported in bibliography with other massive modifiers [2,3]. The resulting material was electrochemically evaluated by differential pulse voltammetry using 4-chloro-3-methylphenol as analyte, obtaining a sharp analytical signal with higher current peak in comparison with the unmodified sensor (see Figure 1).

The modified electrode material was electrochemically, texturally and structurally characterized using spectroscopic, microscopic and voltammetric techniques. It was also applied in several electrochemical studies in buffer and spiked water samples. Furthermore, the electrochemical detection of other chlorophenols of interest was achieved with the sensor, demonstrating its analytical usefulness. Therefore, a well-known synthesis process assisted by high-energy ultrasound can be easily modified, providing materials with better electrochemical features in comparison with the unmodified ones.

Figure 2. Differential pulse voltammograms recorded with the Sonogel-Carbon sensor modified with PANI and the unmodified one in the same 4-chloro-3-methylphenol solution. Electrolytic medium: 0.1 M acetic/acetate buffer solution at pH 4 with 0.5 M KCI.

Keywords: Sonogel-Carbon; Polyaniline; Differential pulse voltammetry; Chlorophenol; Spiked water

References

- [1] M.M. Cordero-Rando, J.L. Hidalgo-Hidalgo de Cisneros, E. Blanco, I. Naranjo-Rodriguez, The sonogel-carbon electrode as a sol-gel graphite-based electrode, Anal. Chem. 74 (2002) 2423–2427.
- [2] L.M. Cubillana-Aguilera, J.M. Palacios-Santander, O.L. Estévez-Hernández, I. Naranjo-Rodríguez, J.L. Hidalgo-Hidalgo De Cisneros Talanta. 82 (2010) 129–136.
- [3] N. Izaoumen, L.M. Cubillana-Aguilera, I. Naranjo-Rodríguez, J.L. Hidalgo-Hidalgo de Cisneros, D. Bouchta, K.R. Temsamani, J.M. Palacios-Santander Talanta. 78 (2009) 370–376.

Acknowledgements: Authors greatly acknowledge Junta de Andalucía, IMEYMAT and 'Proyecto Puente 2020/21 (PR2020-13)' from UCA for the financial support.

P 02 - Novel ceramic carbon black-polyaniline material synthesized by high-energy ultrasound with anti-fouling properties in electrochemical sensing

<u>Laura M. Cubillana-Aguilera</u>*, Alfonso Sierra-Padilla, Paloma Calatayud-Macías, David López-Iglesias, Juan José García Guzmán, José María Palacios-Santander

Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Poligono del Rio San Pedro S/N, 11510 Puerto Real, Cadiz, Spain.

*Email: laura.cubillana@uca.es

In the past few decades, a large number of ceramic materials synthesized through sol-gel route and assisted by high-energy ultrasound have been developed [1]. One common problem of these materials in electrochemical sensing applications is the surface fouling, more usual in the determination of analytes which involves polymerization processes followed by radical coupling, like chlorophenols. The solution to this drawback arises in the inclusion of several redox mediators into the silicon oxide network [2]. Based on this, high-energy ultrasound assisted synthesis of a bulk material based on Sonogel-Carbon and polyaniline, in its conducting form, modified with carbon black was performed. Carbon black, employed in this work as massive modifier, is a nanoallotrope of carbon with a high specific surface and electric conductivity, which contribute to its performance as an electrocatalyst [3]. Its proportion in the material was optimized, showing the modified sensor a better response towards a probe analyte than the one provided by bare Sonogel-Carbon-polyaniline sensor. The most interesting feature of this novel sensor was the prevention of fouling problems during the detection of 4-chloro-3-methylphenol (PCMC) in acid buffer solution, in contrast with the drawback observed with the bare sensor (see Figure 1). Hence, the modification of the material with carbon black led to remarkable electroanalytical features towards PCMC. Furthermore, the developed sensor was used in several electrochemical assays, including the analysis of spiked water samples with great recovery values.

Figure 1. Electrochemical response of a Sonogel-Carbon Black-PANI electrode towards PCMC during successive measurements in different buffer solutions (a) and response of a Sonogel-Carbon Black-PANI electrode and Sonogel-Carbon-PANI electrode towards PCMC during successive measurements in pH 4 buffer solution (b), recorded with Differential Pulse Voltammmetry.

Keywords: Ultrasound; Electroanalysis; Conducting polymer; Nanomaterial; Anti-fouling properties

References

[1] D. Bellido-Milla, L.M. Cubillana-Aguilera, M. El Kaoutit, M.P. Hernández-Artiga, J.L. Hidalgo-Hidalgo De Cisneros, I. Naranjo-Rodríguez, J.M. Palacios-Santander, Anal. Bioanal. Chem. 405 (2013) 3525–3539. [2] D. López-Iglesias, J.J. García-Guzmán, C. Zanardi, J.M. Palacios-Santander, L. Cubillana-Aguilera, L. Pigani, J. Electroanal. Chem. 878 (2020) 114591. [3] K.Y. Hwa, T.S.K. Sharma, P. Karuppaiah, New J. Chem. 43 (2019) 12078–12086.

Acknowledgements

Authors greatly acknowledge Junta de Andalucía, IMEYMAT and 'Proyecto Puente 2020/21 (PR2020-13)' from UCA for the financial support.

P 03 - Ultrasound responsive microdroplets as a synergistic gene-drug delivery agent on human Melanoma cells

<u>Angela Ditri</u>^{1*}, Martina Piermarini¹, Damiano Palmieri¹, Elisabetta Tortorella^{1,2}, Alessandro Porchetta¹, Fabio Domenici^{1*}, Gaio Paradossi¹

¹Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy. ²Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.

* email: angeladitri262@gmail.com; fabio.domenici@uniroma2.it

Cellular drug resistance and targeted drug delivery are critical issues of modern cancer nanomedicine research. Micrometric and sub-micron droplets (MD) represent a valid platform for delivering drugs (e.g. Anthracyclines) in the vascular system until they reach the tumor site, limiting the side effects of treatments and facilitating the transport of organic molecules, enclosed in MDs core, in polar environments, such as biological fluids. [1] At the same time, the high affinity for cell membranes of the dimethyldioctadecylammonium bromide (DDAB) MDs shell is exploited to transfect nucleic acids in cells. In so doing, specific tumor pathways can be modulated by means of siRNAs and specific consensus sequences transfection. From then on, we have developed MDs made of DDAB shell and a liquid perfluorocarbon (PFC) core able to effectively load a drug into the core [2] and bind DNA on the DDAB shell, at the aqueous interface. This high density and low polydispersion PFC-MDs system is obtained by ultrasound homogenization and it has already shown envaluable potential as a drug delivery carrier. [2] Herein, we present promising results about stability and cytotoxicity of MDs coupled with DNA. This system it is not only able to release Doxorubicin but it is also an efficient DNA non-viral vector transfection into a human melanoma cell line (Sk-Mel 28). By synergistically combining the MDs ability to release and transfect organic chemical entities, a simple but effective system is obtained in treating tumor. This type of approach is proposed as a valid treatment of tumors in the context of non-viral gene therapy compared to the widespread but invasive radio- and chemotherapies. [1] Moreover, by employing acoustic droplet vaporization (ADV) and medical ultrasound it is known that is possible to transform MDs into envaluable, theranostic-relevant echogenic microbubbles, helping extravasations, boosting drug release and its cellular uptake via cavitation.

Figure 1. Section A shows the legend of the illustrated figures. Section B illustrates the treatment of Sk-Mel 28 culture with DNA-MDs. In the first step, the transfection of dsDNA takes place while subsequently the transfection of i.s.DNA highlights the strand displacement reaction that took place in the cytosol. In section C the Sk-Mel 28 culture was treated with MDs containing Doxorubicin (DOX). From the images we can see the adhesion of DOX-MDs to the cell membrane, the release of the drug and the consequent cell death.

Keywords

Nanotechnology; ultrasound; MDs; melanoma; ADV; drug delivery; transfection.

References

[1] V. P.-Castro, C.G. Pereira, et al. Emerging landscape for non-viral vectors used for gene therapy. *Nat Biotechnol*, 151–157 (2020). [2] E. Tortorella, D. Palmieri, M. Piermarini, D. Gigante, L. Oddo, Y. Toumia, G. Paradossi, F. Domenici, JoVE 169 (2021).

P 04 - Ultrasonic pretreatment of vegetal material to increase the extraction yield of bioactive compounds

Adina Ionuta Gavrila1*, Ioan Calinescu¹, Ioana Popa¹, Christina Marie Zalaru²

¹University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Gh. Polizu Str., 011061, Bucharest, Romania.

²University of Bucharest, Faculty of Chemistry, 90-92 Panduri Str., 050663 Bucharest, Romania

* email: adinagav@yahoo.com

Abstract

Nowadays natural products isolated from plant seem to be effective as medicinal agent against various disorders[1]. Thyme (Thymus officinalis L) is an aromatic plant which contains essential oils, that are the most valued component of this herb. The main constituents of thyme essential oil (EO) are thymol and its isomer carvacol that have shown immunomodulatory, antioxidant, antiinflamatory, antibacterial and antifungal properties^{[2][3]}. The aim of this study was to establish the effect of ultrasonic pretreatment of thyme leaves on the EO extraction content and on the amount of main constituents from thyme EO. The extraction of EOs from thyme was carried out using hydrodistillation technique. Prior to the ultrasonic pretreatment, the influence of different parameters (heating type and plant to solvent ratio) on the extraction efficiency was studied. The best results were achieved for the microwave hydrodistillation method and a plant/solvent ratio = 1/12 (w/v). The ultrasonic pretreatment has been performed using two ultrasoound equipmwent (an ultrasonic bath and an ultrasound probe Vibracell VCX750). A significant increase in EO content (from 1.7 to 2.1 g/100g dry matter (DM)) was obtained for ultrasonic pretreatment with ultrasound probe Vibracell VCX750. The results are shown in figure 1. Regarding the chemical composition, the thymol content of ultrasound pretreated thyme leaves was higher than the unpretreated ones.

Figure 1. The effect of the ultrasonic pretreatment of thyme leaves on the EO extraction by microwave assisted hidrodistillation

Keywords: Essential oil extraction, Thyme; Ultrasound pretreatment, Thymol, Microwave hidrodistillation

References

- [1] P.C. Braga, M. Dal Sasso, M. Culici, T. Bianchi, L. Bordoni, L. Marabini, Pharmacology 77 (2006) 130-136.
- [2] I. Calinescu, I. Asofiei, A. I. Gavrila, A. Trifan, D. Ighigeanu, D. Martin, C. Matei, M. Buleandra, Chemical Engineering Communications, 204:8 (2017) 965-973.
- [3] M.T. Islam, A.B.R. Khalipha, R. Bagchi, M. Mondal, S.Z. Smrity, S.J. Uddin, J.A. Shilpi, R. Rouf, IUBMB Life, 71:1 (2019) 9-19.

Acknowledgements

The authors acknowledge the financial support received from the Unit Executive for Funding Higher Education, Research, Development and Innovation, Action Joint Demonstration experimental project, PN-III-P2-PED-2019-2118, project: "Technologies for obtaining of natural products with immunostimulatory properties – IMUNOSTIM," financed by contract: PED, no. 381PED/2020.

P 05 - Influence of ultrasound on the release of levonorgestrel from a hormonal intrauterine device Mirena

Gordana Žauhar 1,2*, Branko Breyer3

¹University of Rijeka, Faculty of Medicine, Rijeka, Croatia. ²University of Rijeka, Department of Physics, Rijeka, Croatia.

³Poliklinika Breyer, Zagreb, Croatia.

* email: gordana.zauhar@uniri.hr

Abstract

Mirena is a hormonal intrauterine device, or IUD, that can be used for long-term birth control and to treat heavy periods. Mirena birth control works by releasing levonorgestrel. Levonorgestrel is a progestogen used in a variety of contraceptive products. Low doses of levonorgestrel can be administered into the uterine cavity with the Mirena intrauterine delivery system. Initially, levonorgestrel is released at a rate of approximately 20 μ g/day. This rate decreases progressively to half that value after 5 years. Ultrasonography plays an essential role in evaluating IUD position and assessing for complications [1,2].

The aim of this study was to investigate whether the frequent use of ultrasound to control Mirena's position could influence on the increased release of levonorgestrel from a hormonal intrauterine device Mirena.

In order to check whether ultrasound had an effect on increased hormone release from IUD Mirena the following experiment was performed. To simulate the real situation of placing Mirena into the uterine cavity in woman's body, we placed a new Mirena in a 50 mL plastic container and added 0.9% saline solution. Each container had an acoustic window made of thin plastic film, onto which we placed an ultrasonic transducer over the gel. As ultrasound source, we used NPL's continuous-wave checksource which operates at a fixed frequency of 3.5 MHz [3]. The device has three switchable settings, allowing nominal powers of 10 mW, 100 mW and 1 W to be applied. The NPL Checksource essentially covers the diagnostic and low therapy power range. We exposure to ultrasound waves 11 samples (containers with Mirena and saline solutions). We varied the exposure time from 1 min to 30 min and we varied applied ultrasound power. After exposure to ultrasound, Mirene were removed from the containers and saline samples were analysed by Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to quantify levonorgestrel.

The results of our measurements showed that ultrasound did not have a statistically significant effect on the increased release of levonorgestrel from a hormonal intrauterine device Mirena.

Ultrasound; hormonal intrauterine device; Levonorgestrel; ultrasound effect;

References

- [1] K.M. Nowitzki, M.L. Hoimes, B. Chen, L.Z. Zheng, Y.H. Kim, Ultrasonography 34 (2015) 183–194.
- [2] N. Peri, D. Graham, D. Levine, J Ultrasound Med 26 (2007) 1389-1401.
- [3] B. Zegiri, Prog Biophys Mol Biol. 93 (2007) 138-152.

P 06 - Acoustically Induced Acceleration of Iron Migration in Silicon Solar Cells

Oleg Olikh^{1*}, Vitaliy Kostylyov², Victor Vlasiuk², Roman Korkishko²

¹Physics Faculty, Taras Shevchenko National University of Kyiv, Ukraine.

²V. Lashkaryov Institute of Semiconductor Physic of NAS of Ukraine, Kyiv, Ukraine.

* olegolikh@knu.ua

Abstract

It is well known that ultrasound (US) can effectively interact with defects in semiconductors. It was experimentally observed that US can cause atomic diffusion[1], transformation of native and impurity defects^[2], and annealing of radiation defects^[3]. Most acoustically induced (AI) changes in crystal defect subsystem are residual, but reversible AI phenomena are occur as well. The aim of our work is to investigate experimentally the FeB pair association in silicon solar cells under US loading conditions. The n^+ -p- p^+ -Si structure was fabricated from a 2 in. (380 µm thick) p-type boron doped Czochralski silicon wafer with a resistivity of 10 Ω·cm. The FeB pair dissociation was made by flash illumination. The short circuit current (Isc) under monochromatic light was used to characterize recombination process in the solar cell base. The iron atom migration energy (E_m) was extracted from Isc kinetic after FeB pair dissociation. In the case of US loading, the longitudinal acoustic waves with the frequency of 4.1 MHz, which were excited by using a piezoelectric transducer, were applied to the samples at the base side. The investigation has revealed an acoustically driven reversible decrease in the iron migration energy. The E_m alteration value nonlinearly depends on US intensity (see Fig.1) and diminishes with temperature decrease. In our opinion, the observed effect is induced by the displacement of impurity atoms with respect to their surroundings. Thus the ultrasound can be effective defect engineering tool in silicon.

Figure 1. Dependences of iron migration energy change on US intensity. Temperature of US loading is 340 K.

Keywords

Ultrasound loading; Silicon; Fe-B pair dissociation; Acousto-defect interaction; Reversible effect References

- [1] M. Jivanescu, A. Romanyuk, A. Stesmans, J. Appl. Phys. 107 (2010) 114307.
- [2] O. Y. Olikh, Semiconductors 43 (2009) 745.
- [3] I. Ostrovskii, N. Ostrovskaya, O. Korotchenkov, J. Reidy, IEEE Trans. Nucl. Sci. 52 (2005) 3068–3073.

Acknowledgements

The work was supported by National Research Foundation of Ukraine by the state budget finance (project 2020.02/0036 "Development of physical base of both acoustically controlledmodification and machine learning—oriented characterization for silicon solar cells").

P 07 -

P 08 -

P 09 -

P 10 -

P 11 -

P 12 -

Author Index

	Ferreira, B	6
A	Foglietta, F	
Α	Francois, D	
A 1 1/ P 7	1 1 ancois, D	11
Andrić, B. Z83		
Azizi, J92	G	
В	García Guzmán, J. J	
_	García-Guzmán, J. J	
Barnes, C74	Gashi, A. M	
Bastien, W112	Gavrila, A. I	
Batalli, V98	Geremia, D	
Bedini, A69, 106	Giantulli, S	
Biegańska-Marecik, R86	Gjocaj, C	
Boden, A80	Gogate, P. R	
Bodian, S87	Gottschalk, M. B	8
Branch, D90	Grosso, V. N	8
Brasili, F69, 106	Grüter, L	7
Breyer, B	Guida, P	9
y,	Guillermic, R. M	
C	Guria, G. T	8
C	Guria, K. G	8
Calatayud-Macías, P118, 119	Gurman, G. M	
	·	
Calinescu, I	п	
Canaparo, R96	Н	
Capelo, J. LIII	Hatakeyama, K	7
Capelo-Martinez, J. LXXIX	Herrero, S	
CASTELNAU, O103, 104		
Ceschin, A	House, J. D	
CHEULEU, C103, 104	Hynynen, K	4
Chikan, V64		
Colchester, R. J	I	
Corentin, M112		
Cubillana-Aguilera, L61, 118, 119	Im, H. G	
Czarske, J78	Ismajli, J	9
	Ivlev, D. A	8
D		
2	J	
D'hooge, J84	,	
Dadan, M89, 110	JACQUEMAIN, V	103, 10
Dalwadi, P. P80	Jeremic, A	9
Dautriat, J74	Jiménez-Aparicio, R	10
David, C74		
Desjardins, A. E	K	
Diaz, M72	K	
Ditri, A	Keqa, A	9
Domenici, F	Kerhervé, S	
Donlagić, S. V83	Koksel, F.	
Duco, W81	Korkishko, R	
Duivenvoorde, T76	Kostylyov, V	
Durvenvoorde, 1	Kostyuk, S. V	
T.	Mostyuk, S. V	0
E	-	
Es-Souni, M63	L	
Estévez Hernández, O61	Larichev, M. N.	11
LICENCE HEI Halluce, O		
_	Likhonina, R.	
F	Link, W.	
FAMIED II	Lodeiro, C	XXI.

Luo, S79	S	
М	Sadeghian, H76	
1.1	Sánchez Peláez, A. E105	
Markvosky, I84	Santos, H. MXXIX	
Mason, R. A80	Sarout, J74	
Mautner, K80	Savinova, E. A66	
MICHEL, V103, 104	Scarpa, S 106	
Mierzwa, D	Schretter, C84	
Mikheev, I. V66	Scott, M. T80	
MOCUTA, C103, 104	Senz, A81	
Mohtashami, A76	Serpe, L96	
Morozova, A. V88	Shaitura, N. S 111	
Muccioli, G96	Sheu, T. W. H72	
Mulaj, Q98	Shirinli, S. N85	
Musielak, G	Siddiqui, A. M90	
7.74.07.07.07.07.07.07.07.07.07.07.07.07.07.	Sierra-Padilla, A118, 119	
**	Silvestri, I	
N	Singh, T	
N 1 D 70	Solovchuk, M72	
Nauber, R	Soltermann, A. T81	
Navarro, V	Staniça, N	
Noimark, S77		
Noimark. S87	Strybulevych, A	
Nordquist, C90	Suarez-Castellanos, I97	
Nowacka, M89, 110	Szadzińska, J86, 99	
0	T	
Olikh, O124	Tagawa, N71	
Ulikii, U124	Terán, A 105	
	Terreno, E96	
P	THIAUDIERE, D103, 104	
	Tortorella, E	
Page, J. H79	Tulbek, M. C	
Palacios-Santander, J. M	Tulbek, M. C / S	
Palmieri, D69, 106, 120		
Paradossi, G69, 106, 120	U	
Parkin, I. P87		
Paulus, Y51	Uzlova, S. G85	
Pérez-Beltrán, C. H		
Persson, E68	V	
Piermarini, M	V	
Pimienta, L	van Es, M. H76	
	van Neer, P. L. M. J76	
Piras, D	van Riel, M. C. J. M76	
Popa, I	Viciconte,94	
Porchetta, A		
Proskurnin, M. A	Vinatoru, M	
Proskurnina, E. V66	Vinci, D	
	Vlasiuk, V 124	
Q	Volkova, G. I88	
¥		
Qin, Y51	W	
Quesson, B. A. J	••	
, ,	Wang, X51	
D.	Wiktor, A89, 110	
R	Witrowa-Rajchert, D89, 110	
Dadziojoweka Kubadala E		
Radziejewska-Kubzdela, E	₹7	
RANC, N	Y	
REBILLAT, M	Vone V	
Roberts, W. L	Yang, X51	
Rosa da Costa, A. M61	Yu, Y51	
Rosič, M83		
Rybak, K89, 110	Z	
	Zaccari, D81	
	Zalaru, C. M121	

ULTRASONICS 2021 Proceedings Book

Žauhar. G	123	Zhang, W	51
Zderic, V	97	7hong I	71
7hana M	0.4	σ, ,	

List of e-mails