Structures algébriques

 $\alpha 1 - MP^*$

1 Groupes

1.1 Rappels

f un morphisme de groupes ; $\ker f = f^{-1}(\{e\})$.

groupe-produit : (G, +) et (G', \times) deux groupes. $\mathcal{G} = G \times G'$ est muni d'une structure de groupe : $(g, g') \bullet (h, h') = (g + g', h \times h')$. $e_{\mathcal{G}} = (e_{G}, e_{G'})$; l'inverse de (g, g') est $(-g, g'^{-1})$.

1.2 Sous-groupe engendré par une famille

(G, +) un groupe, $\mathcal{F} = \{f_i / i \in \mathcal{I}, f_i \in G\}$ une famille dans G. On appelle sous-groupe engendré par \mathcal{F} et on note $gp(\mathcal{F})$ l'intersection de tous les sous-groupes de G contenant \mathcal{F} . $gp(\mathcal{F})$ est alors le plus petit sous-groupe de G contenant \mathcal{F} (au sens de l'inclusion).

 $Prop: \operatorname{gp}(\mathcal{F})$ est l'ensemble des expressions de la forme : $m_1f_1+\ldots+m_kf_k$ où $k\in\mathbb{N}$ (convention : si k=0, cette expression vaut 0_G), $m_1,\ldots,m_k\in\mathbb{Z}$ et $f_1,\ldots,f_k\in\mathcal{F}$. Si $\operatorname{gp}(\mathcal{F})=G$, on dit que \mathcal{F} engendre G.

1.3 Sous-groupes de \mathbb{Z}

Si $k \in \mathbb{Z}$, on pose : $k\mathbb{Z} \stackrel{def}{=} \{km/m \in \mathbb{Z}\}$. $k\mathbb{Z}$ est alors un sous-groupe de \mathbb{Z} . Inversement, tout sous-groupe de \mathbb{Z} est de cette forme.

2 Groupes $\mathbb{Z}/n\mathbb{Z}$

2.1 Définitions

Cougruences: Si $n \in \mathbb{Z}$, deux entiers p et q sont congrus modulo n si n divise p-q. Cela se note $p \equiv q \mod n$. \equiv est une relation d'équivalence (pour tout n).

Soit $n \in \mathbb{Z}$ fixé, on définit la classe de p modulo $n : \overline{p} = \{q \in \mathbb{Z} / q \equiv p \bmod n\} = \{p + kn, k \in \mathbb{Z}\}$. L'ensemble des classes d'équivalence est une partition de \mathbb{Z} ; on le note $\mathbb{Z} / n\mathbb{Z}$. On a : $\operatorname{card}(\mathbb{Z} / n\mathbb{Z}) = n$ dès que $n \geqslant 1$.

2.2 Addition dans $\mathbb{Z}/n\mathbb{Z}$

On munit $\mathbb{Z}/n\mathbb{Z}$ de la loi $+: \forall \overline{p}, \overline{q} \in \mathbb{Z}/n\mathbb{Z}, \overline{p} + \overline{q} = \overline{p+q}$. Muni de cette loi de composition interne, $\mathbb{Z}/n\mathbb{Z}$ est un groupe communtatif. $\overline{0}$ en est le neutre, l'opposé de \overline{p} est $\overline{-p}$.

On définit la surjection canonique $\sigma: \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$; c'est un morphisme surjectif de groupes. $p \longmapsto \overline{p}$

Prop: soit $p \in \mathbb{Z}$, $\{\overline{p}\}$ engendre $\mathbb{Z}/n\mathbb{Z}$ si et seulement si $p \wedge n = 1$.

2.3 Théorème de factorisation

Soit G un groupe, $f: \mathbb{Z} \longrightarrow G$ un morphisme. Soit $n \geqslant 1$. Alors : σ se factorise à droite dans f (c-à-d $\exists F: \mathbb{Z}/n\mathbb{Z} \longrightarrow G$ morphisme tel que $f = F \circ \sigma$) si et seulement si $n\mathbb{Z} \subset \ker f$ si et seulement si $f(n) = 0_G$.

 $Lemme\ chinois: Soit\ (p,q) \in \mathbb{N}^2$; si $p \land q = 1$, alors les groupes (même les anneaux) $\mathbb{Z}/pq\mathbb{Z}$ et $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ sont isomorphes.

3 Anneaux

3.1 Généralités

Sous-anneau : A' est un sous-anneau de $(A, +, \times)$ si et seulement si :

- 1. $1_A \in A'$
- 2. A' est stable pour et \times

 $Morphismes\ d'anneaux: A,A'$ deux anneaux. $f:A\longrightarrow A'$ est un morphisme d'anneaux si et seulement si :

- 1. $f(1_A) = 1_{A'}$
- 2. $\forall (a,b) \in A^2$, f(a-b) = f(a) f(b) et $f(a \times b) = f(a) \times f(b)$

ker f n'est pas seulement un sous-anneau de A : c'est un idéal de A. Idéal d'anneau : Soit A un anneau ; $I \subset A$ est un idéal si

- 1. $0_A \in I$
- 2. I est stable pour la loi –
- 3. I est absorbant, c-à-d : $\forall i \in I, \forall a \in A, (ai \in I) \land (ia \in I)$ ou encore $(IA \subset I) \land (AI \subset I)$

Propriétés :

- $f:A\longrightarrow A'$ morphisme ; si I' est un idéal de A' alors $f^{-1}(I')$ est un idéal de A
- On note $\mathrm{Id}(\mathcal{P})$ l'idéal engendré par $\mathcal{P}\subset A$; c'est l'ensemble des éléments de la forme $\sum\limits_{i=1}^k a_ix_i$ où : $k\in\mathbb{N}$, et $\forall i,a_i\in A,x_i\in\mathcal{P}$ si A est commutatif. Si A n'est pas commutatif, c'est $\sum\limits_{i=1}^k a_ix_ia_i'$ (mêmes notations). Lorsque A est commutatif, l'idéal engendré par $\{x\}$ se note $Ax=\{ax,a\in A\}$.

Intégrité: Un anneau A est dit intègre s'il vérifie: $\forall (x,y) \in A^2, [(xy=0) \Longrightarrow (x=0) \lor (y=0))]$. Si A est intègre, on dit que $x \mid y$ (dans A) s'il existe $y' \in A/y = xy'$. On a de plus: $(x \mid y) \iff (yA \subset xA)$.

Un anneau commutatif intègre A est dit principal si tout idéal I de A est principal, c'est-à-dire de la forme xA ($x \in A$). \mathbb{Z} et $\mathbb{K}[X]$ (où \mathbb{K} est un corps commutatif) sont principaux. $\mathbb{K}[X,Y]$ est non principal.

Sommes d'idéaux : Soit A commutatif, I_1, \ldots, I_k des idéaux de A. Alors $I_1 + \ldots + I_k = \{x_1 + \ldots + x_k / \forall j, x_k \in I_j\}$ est un idéal de A.

3.2 L'anneau $\mathbb{Z}/n\mathbb{Z}$

Si $\overline{p}, \overline{q} \in \mathbb{Z}/n\mathbb{Z}$, on définit $\overline{p} \times \overline{q} = \overline{p \times q}$. Muni de cette seconde loi, $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau commutatif.

- Dans $\mathbb{Z}/n\mathbb{Z}$, \overline{m} est inversible si et seulement si $m \wedge n = 1$.
- $\mathbb{Z}/n\mathbb{Z}$ est un corps ssi $\mathbb{Z}/n\mathbb{Z}$ est intègre ssi n est premier

Factorisation à travers $\mathbb{Z}/n\mathbb{Z}$: Soit $n \in \mathbb{N}, f: \mathbb{Z} \longrightarrow A$ un morphisme d'anneaux. Alors : σ se factorise à droite dans f ssi $n\mathbb{Z} \subset \ker f$ ssi f(n) = 0.

Caractéristique: Soit A un anneau, il existe un unique morphisme dit canonique de $\mathbb Z$ dans A. Soit f ce morphisme.

- Si ker $f = \mathbb{Z}$, A est l'anneau nul.
- Si ker $f = n\mathbb{Z}$, $n \ge 2$, on dit que A est de caractéristique n.
- Si $\ker f = \{0\}$, A est de caractéristique nulle.

Propriété: Soit A de caractéristique $n \neq 0$; si A est intègre, alors n est premier.

3.3 Arithmétique dans \mathbb{Z} et dans $\mathbb{K}|X|$

- Soient $(p,q) \in \mathbb{Z}^2$; si $d = p \wedge q$, alors $p\mathbb{Z} + q\mathbb{Z} = d\mathbb{Z}$.
- Identité de Bezout : $(p \land q = 1) \iff (\exists (a,b) \in \mathbb{Z}^2/ap + bq = 1).$
- Soient $(p,q) \in \mathbb{Z}^2$, $M = p \vee q$, alors $p\mathbb{Z} \cap q\mathbb{Z} = M\mathbb{Z}$.
- Soit $p, q \in \mathbb{N}^*$, on décompose p et q en produit de facteurs premiers : $p = \prod_{i=1}^r p_i^{m_i}, \ q = \prod_{i=1}^r p_i^{l_i}$, alors $p \wedge q = \prod_{i=1}^r p_i^{\min(m_i, l_i)}$ et $p \vee q = \prod_{i=1}^r p_i^{\max(m_i, l_i)}$.
- Lemme de Gauss : Soit $m \in \mathbb{Z}$, $(a,b) \in \mathbb{Z}^2$, alors $[(m \mid ab) \land (m \land a = 1)] \Longrightarrow [m \mid b]$

Toutes ces propriétés restent vraies dans $\mathbb{K}[X]$, en remplaçant opportunément les entiers par des polynômes.

4 Algèbres

Soit $\mathbb K$ un corps (commutatif), une $\mathbb K$ – algèbre est un ensemble E muni de trois lois $+, \times, \cdot$ où $+, \times$ sont internes, \cdot est externe $\mathbb K \times E \longrightarrow E$ telles que :

- 1. $(E, +, \cdot)$ est un \mathbb{K} espace vectoriel.
- 2. $(E, +, \times)$ est un anneau.
- 3. $\forall \lambda \in \mathbb{K}, \forall (x,y) \in E^2, \lambda(x \times y) = (\lambda x) \times y = x \times (\lambda y).$

4.1 Exemples

 $\mathbb{K}[X]$, $\mathfrak{M}_n(\mathbb{K})$ sont des \mathbb{K} – algèbres. Si E est un \mathbb{K} – ev, $\mathcal{L}(E)$ est une \mathbb{K} – algèbre.

4.2 Définitions

Soit $(E, +, \times, \cdot)$ une \mathbb{K} – algèbre, $F \subset E$ est une sous-algèbre de E si :

- 1. $1_E \in F$
- 2. F est stable pour + et \times
- 3. Si $\lambda \in \mathbb{K}$, $x \in F$, alors $\lambda x \in F$.

Morphisme d'algèbres : Soit E, E' deux \mathbb{K} – algèbres, $f: E \longrightarrow E'$ est un morphisme d'algèbres si

- 1. f est linéaire
- 2. $\forall (x,y) \in E, f(xy) = f(x)f(y)$
- 3. $f(1_E) = f(1_{E'})$.

f est aussi un morphisme d'anneaux.

 $\mathit{Id\'eal}\ d\mbox{'alg\`ebre}:I\subset E$ est un idéal si :

- 1. $0 \in I$
- 2. I est stable par soustraction
- 3. I est absorbant pour \times

On peut aussi établir que I est un sev absorbant.

4.3 Sous-algèbres de la forme $\mathbb{K}|a|$

Soit E une \mathbb{K} – algèbre, $a \in E$, $P \in \mathbb{K}[X]$; si $p = \sum_{i=0}^{m} \lambda_i X^i$, on pose $P(a) = \sum_{i=0}^{m} \lambda_i X^i$. Alors $\varphi : \mathbb{K}[X] \longrightarrow E$ est un morphisme d'algèbres. Im $(\varphi) = \{P(a)/P \in \mathbb{K}[X]\}$ est donc une sous-algèbre de E que nous noterons $\mathbb{K}[a]$. On l'appelle aussi

- sous-algèbre de E engendrée par a. (c'est la plus petite sous-algèbre de E qui contient a). $\mathbb{K}[a]$ est une sous-algèbre commutative. • Si $\ker(\varphi) = \{0\}$, φ est injective. Alors la famille $(a^i)_{i \in \mathbb{N}}$ est libre dans $\mathbb{K}[a]$, donc $\mathbb{K}[a]$ n'est pas de dimension finie.
 - Si $\ker(\varphi) \neq \{0\}$, soit $P \in \ker(\varphi) \setminus \{0\}$ de degré minimal $m \in \mathbb{N}$. Dans ce cas, $\mathbb{K}[a]$ est une sous-algèbre de dimension m. $\mathcal{F} = \{1, a, a^2, \dots, a^m\}$ est une base de $\mathbb{K}[a]$.

Exemples : \mathbb{C} est une \mathbb{Q} – algèbre. On dit que $a \in \mathbb{C}$ est transcendant si $\mathbb{Q}[a]$ n'est pas de dimension finie. Par exemple, e et π sont transcendants. Si en revenche $\mathbb{Q}[a]$ est de dimension finie, on dit que a est algébrique. Par exemple $\sqrt{2}$, $\overset{2000}{\sqrt{56}}$, i sont algébriques.