

DM-Quiz-2020-Q3

61.54% (8/13)

- Logistic Regression Model is used to describe
 - A Relationship between one categorical dependent variable and one or more (any) explanatory variables
 - B Relationship between one numeric dependent variable and one or more (any) explanatory variables
 - C Relationship between one categorical dependent variable and one explanatory variable
 - D Relationship between one categorical dependent variable and one or more numeric explanatory variables
 - **E** I do not know
- ✓ 2. Why Linear Regression cannot be used to predict the binary response variable?
 - A Some of the estimates might be outside the [0,1] interval
 - **B** Coefficients of linear regression models do not exist
 - c There will be the multicollinearity
 - D All of the variants
 - E I do not know
- **3.** The most common approach to estimate coefficients of logistic regression is
 - A The Maximum Likelihood
 - **B** Ordinary Least Squares
 - c Generalized Method of Moments
 - I do not know
- X 4. The model of Logistic Regression is
 - A $\ln(\lambda) = e^{(xb)}/(1+e^{(xb)})$
 - **B** $\ln(y)=e^{(xb)}/(1+e^{(xb)})$
 - C $Pr(y=1)=e^{(xb)}/(1+e^{(xb)})$
 - I do not know

	В	glm()				
	C	flm()				
	D	logit()				
	E	I do not know				
X	6.	Which one of these is the correct interpretation of the coefficient of Logistic Regression?				
	Α	For a 1-unit increase in X, we expect a b1 unit increase in Y.				
	В	For a 1-unit increase in X, we expect b1 percentage increase in Y.				
	C	For a 1-percentage increase in X, we expect b1 percentage increase in Y.				
	D	Increasing X by one unit changes the log odds by b1				
	E	I do not know				
/	7.	Logistic Regression cannot be used to model the response variable which				
	Α	has two categories				
	В	has more than two categories				
	C	is ordinal				
	D	is numeric				
	E	I do not know				
/	8.	Accuracy =				
	A	(TP+TN)/Total Negative (0) Positive				
	В	TP/(TP+FN) Actual Positive (1) FN T	P			

✓ **5.** We can estimate Logistic Regression in R using the function

A lm()

c TN/(TN+FP)

D I do not know

(TP+TN)/Total

B TP/(TP+FN)

c TN/(TN+FP)

D I do not know

9. Sensitivity =

		Predicted	
		Negative (0)	Positive (1)
	Negative (0)	TN	FP
Actual	Positive (1)	FN	TP

/	10.	Your lecturer decided that you are cheating while you are not. It is
	A	Type 1 error (false positive)
	В	Type 2 error (false negative)
	C	I do not know
×	11.	1Suppose the data with the number of observations equals to 142, where 89 observations belong to class 1, and another part to 0. Let the level 1 is the positive case. We performed the logit model and obtained the accuracy = 60%. Does the model have a high predictive power?
	A	Yes, because it is more than the non-information rate
	В	No, because it is less than the non-information rate
	C	Yes, because it is less than the non-information rate
	D	No, as a result of other reasons.
	E	The non-information rate? What is it?
~	12.	Is Logistic regression a supervised machine learning algorithm?
	A	Yes
	В	No
	C	I do not know
~	13.	By using MLE for estimating the coefficient in the Logistic Regression model
	Α	we can obtain the unique formula for coefficients
	В	we can obtain the unique formula for coefficients only for 1-D case
	C	we cannot obtain the unique formula for coefficients
	D	I do not know