

Predicting Traffic Accident Severity

Coursera IBM Data Science Capstone Project By: Mohamad Bouzi

Traffic Accident

- Cause of 1.35 million deaths globally in 2016.
- Main cause of death among those aged 15–29 years.
- Predicted to become the 7th leading cause of death by 2030.
- Predicting the accident severity in advance could be used to send the exact required staff and equipment to the place of the accident, thus saving a significant amount of lives each year.
- Road safety should be a prior interest for governments, local authorities and private companies investing in technologies that can help reduce accidents and improve overall driver safety.

Data Understanding

Recorded Accident in France from 2005 to 2016

Kaggle.com

is the Data Source for this Project

The Dataset was including **49 Feature** and **839,985 rows**

Redundant and not relevant features were dropped and 29
Features pre-selected

In **Data Cleaning** Phase missing values and outliers were replaced.

Target Classes

The **Target** feature is a binary classifier, describing the **accident severity** as following;

- Value 0 mean Low severity
- Value 1 mean High severity, and it varied from hospitalized wounded injuries to death cases.

And To avoid Bias I balanced labeled dataset with more cases of **lower severity**.

Exploratory Data Analysis EDA

The number of traffic accidents decreased over the years 2005 to 2013 after which the trend became stable

EDA

Accidents Per Month Shows that:

Accidents increase from March to June and in September it Suddenly decreasing at the end of the year.

Accident Per Week shows Steady trend during the week where we find More accidents accrues on Friday and less accident on Sunday

Accident per Day Hours

For Accidents per Hours we found a pattern with Two **Spikes**:

- At the Morning 08:00 when people usually go to work.
- Evening between

17:00 - 18:00

When the comeback

Classification Models

10 Decision Trees

Maximum Depth of **12**Features

Logistic Regression Model

C = 0.001

K-Nearst Veighbor

K = 16

Supervised Vector Machine

Due to computation inefficiency, training size was reduced to **75,000** samples.

Modeling Results

Algorithm	Jaccard	f1-score	Precision	Recall	Time(s)
Random Forest	0.722	0.72	0.724	0.591	6.588
Logistic Regression	0.661	0.65	0.667	0.456	6.530
KNN	0.664	0.66	0.652	0.506	200.58
SVM	0.659	0.65	0.630	0.528	403.92

Random Forest is the best choice model according to the table

The Second Choice could be **Logistic Regression**

Conclusion and Possible improvements

Now we have useful models to predict the severity of a traffic accident. But, Still the accuracy of the models has room for improvement.

The improvement could be:

- Additional features such as vehicle speed and time of uninterrupted traveling.
- Prediction of potential accident, critical spots and time (Hard data to collect).

Predicting Traffic Accident Severity

Coursera IBM Data Science Capstone
 Project By: Mohamad Bouzi