Elements of Statistics and Probability

STA 201

S M Rajib Hossain

MNS, BRAC University

Lecture-10

Random Variable:

A random variable is a function that assigns a numerical value to each outcome of a random experiment.

Example: X = Number of heads out of two tossed of a fair coin.

So,
$$X = (0, 1, 2)$$

Types of Random Variable

There are two types of random variables:

- (a) Discrete random variable.
- (b) Continuous random variable.
- (a) Discrete random variable: If a random variable X assumes only a finite number values, then it is called a discrete random variable.

Example: Number of throws of a fair coin before the first head occurs.

(b) Continuous random variable: If a random variable is such that it assumes any value with in a given interval, then it is called as a continuous random variable.

Example: The heights of the persons collected from a crowd.

Probability mass function (Pmf): A function p(x) that gives probability for different values of a discrete random variable X.

Properties of p(x)

i.
$$p(x) \ge 0$$

ii.
$$\sum_{x} p(x) = 1$$

Example: Two fair coins tossed once.

X = number of heads out of 2 tossed

So,
$$X = (0, 1, 2)$$

Here,
$$S = \{HH, HT, TH, TT\}$$

$$P(0) = 1/4$$

$$P(1) = P(HT) + P(TH)$$

$$= 1/4 + 1/4$$

$$= 1/2$$

$$P(2) = 1/4$$

x	0	1	2
p(x)	1/4	1/2	1/4

Probability density function (Pdf): Let X be a random variable. A function f(x) is called pdf of X if it satisfied

i.
$$f(x) \ge 0$$

ii.
$$\int_{x} f(x) dx = 1$$

Example:
$$f(x) = k(1 - x^2)$$
 $-1 < x < 1$

Determine,

ii.
$$P(-.5 < x < .5)$$

iii.
$$P(x < 0)$$

iv.
$$P(x > .5)$$

v.
$$P(x = .7)$$

Solution:

i.
$$\int_{-1}^{1} k(1-x^2) \, dx = 1$$

$$\Rightarrow k\left(x - \frac{x^3}{3}\right) \frac{1}{-1} = 1$$

:

:

$$\therefore k = \frac{3}{4}$$

$$\therefore f(x) = \frac{3}{4}(1 - x^2)$$

$$-1 < x < 1$$

ii.
$$\int_{-.5}^{.5} \frac{3}{4} (1 - x^2) \ dx$$

$$=\frac{3}{4}\left(x-\frac{x^3}{3}\right)_{-.5}^{.5}$$

:

:

=

iii.
$$\int_{-1}^{0} \frac{3}{4} (1 - x^2) \ dx$$

$$= \frac{3}{4} \left(x - \frac{x^3}{3} \right) \frac{0}{-1}$$

:

:

iv.
$$\int_{5}^{1} \frac{3}{4} (1 - x^2) dx$$

=

$$=\frac{3}{4}\left(x-\frac{x^3}{3}\right).5$$

:

:

=

v.
$$P(x = .7) = 0$$

As, in this case length = .7 but width = 0.

So, $area = length \times width = 0$ [Integration gives area]

Mathematical Expectation:

Let us consider a discrete random variable X which assumes the values x_1 , $x_2,...,x_n$ with respective probabilities $p_1,p_2,...,p_n$, such that $\sum_{i=1}^{n}p_i=1$, then the mathematical expectation of the random variable X is given by the sum of the products of the different values of X with their

corresponding probabilities. The expectation of a random variable is generally denoted by E(X).

$$E(X) = \sum_{i}^{n} x_{i} p_{i}$$

If X is a continuous random variable with probability density function $f(x) - \infty < x < \infty$

Then the mathematical expectation of the random variable X is given by

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx$$

Some properties of Mathematical Expectations:

- i. If C is a constant then E(C) = C
- ii. If C is a constant then E(CX) = C E(X)
- iii. If a and c are two constants then E(aX + c) = a E(X) + c
- iv. The expectation of the sum of two random variables are equal to the sum of their expectations i.e. E(X + Y) = E(X) + E(Y)
- v. The expectation of the difference of two random variables are equal to the difference of their expectations i.e. E(X Y) = E(X) E(Y)
- vi. If X and Y are two independent random variables then, E(XY) = E(X) E(Y)

Variance of a Random Variable:

Variance is an important characteristic of a random variable. It is a measure of dispersion of therandom variable. Variance of X, is denoted by Var(X) or by σ_x^2 . It is defined as the expected value of the square of the deviation of the random variable from its mean value.

$$Var(X) = E[X - E(X)]^2$$

The positive square-root of the variance is called the standard deviation and is denoted by σ_x .

A simplified expression for the variance can be derived as:

$$Var(X) = E(X^2) - \{E(X)\}^2$$

Some properties of variance of a Random Variable:

- i. If C is a constant then Var(C) = 0
- ii. If C is a constant then we have $Var(CX) = C^2 Var(X)$
- iii. If A and C are two constants then $Var(AX + C) = A^2 Var(X)$
- iv. If X and Y are two independent random variables then, Var(X + Y) = Var(X) + Var(Y)

$$Var(X - Y) = Var(X) + Var(Y)$$

v. If X and Y are dependent random variables then,

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y)$$

Example-1

Let X be a random variable with probability distribution

x	0	1	2	3
p(x)	1/3	1/2	0	1/6

Determine,

- i. E(X)
- ii. $E(X^2)$
- iii. $E[(X-1)^2]$
- iv. P(X > 1)
- v. $P(X \le 2)$
- vi. Var(X)

Solution:

i.
$$E(X) = \sum_{i=1}^{n} x_i p_i$$

$$= 0 \times \frac{1}{3} + 1 \times \frac{1}{2} + 2 \times 0 + 3 \times \frac{1}{6}$$

= 1

ii.
$$E(X^{2}) = \sum_{i=1}^{n} x_{i}^{2} p_{i}$$
$$= 0^{2} \times \frac{1}{3} + 1^{2} \times \frac{1}{2} + 2^{2} \times 0 + 3^{2} \times \frac{1}{6}$$
$$= 2$$

iii.
$$E[(X-1)^2] = \sum_{i=1}^{n} (x_i - 1)^2 p_i$$
$$= (0-1)^2 \times \frac{1}{3} + (1-1)^2 \times \frac{1}{2} + (2-1)^2 \times 0 + (3-1)^2 \times \frac{1}{6}$$
$$= 1$$

iv.
$$P(X > 1) = P(X = 2) + P(X = 3)$$

= $0 + \frac{1}{6}$
= $\frac{1}{6}$

v.
$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$

= $\frac{1}{3} + \frac{1}{2} + 0$
= $\frac{5}{6}$

vi.
$$Var(X) = E(X^2) - \{E(X)\}^2$$

= 2 - 1²
= 1

Example-2

$$f(x) = 2x, 0 \le x \le 1$$

$$E(X) = ?$$

$$V(X) = ?$$

Solution:

$$E(X) = \int_0^1 x \ f(x) dx$$

$$= \int_0^1 x. \, 2x \, dx$$

$$=2\int_0^1 x^2\,dx$$

$$=2\left[\frac{x^3}{3}\right]_0^1$$

$$=2\left[\frac{1}{3}-0\right]$$

$$=\frac{2}{3}$$

$$E(X^2) = \int_0^1 x^2 \ f(x) dx$$

Then,

$$Var(X) = E(X^2) - \{E(X)\}^2$$

Example-3

$$f(x) = \begin{cases} x, & 0 \le x < 1 \\ 2 - x, & 1 \le x < 2 \\ 0 & otherwise \end{cases}$$

$$E(X) = ?$$

$$V(X) = ?$$

Solution:

$$E(X) = \int_0^2 x \ f(x) dx$$

$$= \int_0^1 x \cdot x \ dx + \int_1^2 x \cdot (2 - x) \ dx$$

$$= \int_0^1 x^2 \ dx + \int_1^2 (2x - x^2) \ dx$$

$$\vdots$$

$$\vdots$$

$$= \frac{1}{3} + \frac{2}{3}$$

$$= 1$$

$$E(X^{2}) = \int_{0}^{2} x^{2} f(x) dx$$
$$= \int_{0}^{1} x^{2} . x dx + \int_{1}^{2} x^{2} . (2 - x) dx$$

$$= \int_0^1 x^3 \, dx + \int_1^2 (2x^2 - x^3) \, dx$$

Then,

$$Var(X) = E(X^2) - \{E(X)\}^2$$