## Démontrer

| Paul | а | commencé | à tracer | à main | levée | ci-dessous | quatre | droites | (d <sub>1</sub> ), | (d <sub>2</sub> ), | (d <sub>3</sub> ) | et | (d <sub>4</sub> ) | de ' | façon |
|------|---|----------|----------|--------|-------|------------|--------|---------|--------------------|--------------------|-------------------|----|-------------------|------|-------|
| aue  | : |          |          |        |       |            |        |         |                    |                    |                   |    |                   |      |       |

- (d<sub>1</sub>) et (d<sub>3</sub>) sont parallèles ;
- (d<sub>2</sub>) est perpendiculaire à (d<sub>3</sub>);
- $(d_4)$  est perpendiculaire à  $(d_1)$ .
- a. Rajoute les noms des droites manquantes et code la figure de Paul :



b. Réalise ci-dessous une figure à la règle et à l'équerre.

c. Coche la bonne réponse :

Sur ma figure, les droites  $(d_2)$  et  $(d_4)$  semblent :

- perpendiculaires
- sécantes
- parallèles
- concourantes
- d. Complète la démonstration suivante, avec les mots « perpendiculaire(s) » et « parallèle(s) » :

est ..... à (d<sub>1</sub>).

» .

e. Démontre que (d<sub>3</sub>) est perpendiculaire à (d<sub>4</sub>) :