

NATIONAL ACADEMY OF SCIENCES OF UKRAINE
INSTITUTE FOR NUCLEAR RESEARCH

Manuscript

arXiv:1112.1007v1 [nucl-ex] 5 Dec 2011

Poda Denys Valentynovych¹

UDK 539.165

Double beta decay of 64 , 70 Zn and 180 , 186 W isotopes

01.04.16 – physics of nuclei, elementary particles, and high energies

A thesis for the Ph.D. Degree (Physics and Mathematics)

Thesis Advisor:
Dr.Sci. F.A. Danevich

Kyiv – 2009

¹e-mail: poda@kinr.kiev.ua A full version of the dissertation in Ukrainian can be found in:
<http://lpd.kinr.kiev.ua/poda/D.V.Poda-PhD-thesis.pdf>

ABSTRACT

The results of the experimental investigations of double beta processes in Zinc and Tungsten isotopes with the help of middle volume (117 g, 168 g and 699 g) low-background ZnWO₄ crystal scintillators are presented. The experiment was carried out in the low-background “DAMA/R&D” set-up at the Gran Sasso National Laboratories of the INFN (Italy) at a depth of ≈ 3600 m w.e. The total measurement time exceeds ten thousand hours. New improved half-life limits on double electron capture and electron capture with positron emission in ⁶⁴Zn have been set: $T_{1/2}^{2\nu 2K}(^{64}\text{Zn}) \geq 6.2(6.3) \times 10^{18}$ yr, $T_{1/2}^{0\nu 2\varepsilon}(^{64}\text{Zn}) \geq 1.1(2.8) \times 10^{20}$ yr, $T_{1/2}^{2\nu\varepsilon\beta^+}(^{64}\text{Zn}) \geq 0.7(2.1) \times 10^{21}$ yr, and $T_{1/2}^{0\nu\varepsilon\beta^+}(^{64}\text{Zn}) \geq 4.3(5.7) \times 10^{20}$ yr, all the limits are at 90% (68%) C.L. The positive indication on the $\varepsilon\beta^+$ decay of ⁶⁴Zn with $T_{1/2}^{(2\nu+0\nu)\varepsilon\beta^+}(^{64}\text{Zn}) = (1.1 \pm 0.9) \times 10^{19}$ yr suggested in [Appl. Radiat. Isot. 46 (1995) 455–456] is fully discarded by the present experiment. To date only two nuclei (⁴⁰Ca and ⁷⁸Kr) among 34 potentially “ $2\beta^+$ active” nuclides were studied at the similar level of sensitivity. However, it is worth noting that the theoretical predictions are still higher.

The half-life limits on the 2β processes in ⁷⁰Zn, ¹⁸⁰W, and two neutrino mode of $2\beta^-$ decay in ¹⁸⁶W established in the present work on the level of $10^{17} - 10^{20}$ yr are one order of magnitude higher than those set in previous experiments.

Energy resolution, relative light output, α/β ratio, decay time, pulse-shape discrimination between α particles and γ rays (β particles), and radioactive contamination of CdWO₄, PbWO₄ (undoped, and doped by F, Eu, Mo, Gd, S), and ZnWO₄ crystal scintillators were studied. Pulse-shape discrimination ability of PbWO₄ and ZnWO₄ crystal scintillators were realized for the first time. The first result of low-background measurement with small volume ZnWO₄ (mass of 4.5 g) gave reasons for extensive research work in the Institute for Scintillation Materials (Kharkiv, Ukraine) in order to optimize the growth conditions with the aim of producing high quality large-volume ZnWO₄ crystal scintillators. Applicability of these scintillators to search for double beta decay was proved.

The time-amplitude analysis, the pulse-shape discrimination, and the Monte Carlo simulation were applied in addition to the ICP-MS measurements to estimate radioactive contamination of the ZnWO₄ detectors. We have found ZnWO₄ crystal scintillators extremely radiopure detectors with typical contamination at the level of $\mu\text{Bq}/\text{kg}$ (²²⁸Th and ²²⁶Ra), $\leq 0.06 \text{ mBq/kg}$ (²¹⁰Po), total α activity (U/Th) $0.2 - 0.4 \text{ mBq/kg}$, $\leq 0.4 \text{ mBq/kg}$ (⁴⁰K), $\leq 0.05 \text{ mBq/kg}$ (¹³⁷Cs), $\leq 0.4 \text{ mBq/kg}$ (⁹⁰Sr-⁹⁰Y), $\leq 0.01 \text{ mBq/kg}$ (¹⁴⁷Sm), and $\leq 3 \text{ mBq/kg}$ (⁸⁷Rb). Our investigations with zinc tungstate crystals have demonstrated a good potential of ZnWO₄ scintillators for the next generation double beta decay and cryogenic dark matter experiments, in particular for EURECA project, where a multi-element target with the total mass up to 1 t is planned for confirming dark matter signal. High abundance of ⁶⁴Zn (48.3%) allows to build a large scale double beta experiment without expensive isotopic enrichment. An experiment involving ≈ 10 tons of ZnWO₄ crystals (9×10^{27} nuclei of ⁶⁴Zn) could reach the half-life sensitivity up to 3×10^{28} yr (supposing zero background during ten years of measurements). Such a sensitivity could contribute to our understanding of the neutrino mass mechanism and right-handed currents in neutrinoless processes. The two neutrino double electron capture should be surely observed: in accordance with the theoretical expectations $T_{1/2}$ for $2\nu 2\varepsilon$ process is predicted on the level of $10^{25} - 10^{26}$ yr.

A new project of high sensitive $2\beta^-$ experiment was proposed. For this purpose, the new detection system with high light collection and energy resolution was developed, and PbWO₄ crystals were also discussed as high-efficiency 4π active shield and light guides in ^{116}Cd double beta decay experiment with enriched $^{116}\text{CdWO}_4$ crystal scintillators. The sensitivity of such an experiment (in terms of the half-life limit) is estimated as $\lim T_{1/2}^{0\nu 2\beta^-}(^{116}\text{Cd}) \approx 10^{26}$ yr, which corresponds to the effective Majorana neutrino mass $\langle m_\nu \rangle \approx 0.07$ eV.

Keywords: Double beta decay, ^{64}Zn , ^{70}Zn , ^{180}W , ^{186}W , low-background experiment, scintillation detector, half-life limit, radioactivity, CdWO₄, PbWO₄, ZnWO₄.

PUBLICATIONS

- [1] P. Belli, R. Bernabei, F. Cappella, R. Cerulli, C.J. Dai, F.A. Danevich, B.V. Grinyov, A. Incicchitti, V.V. Kobychev, V.M. Mokina, L.L. Nagornaya, S.S. Nagorny, S. Nisi, F. Nozzoli, D.V. Poda, D. Prosperi, V.I. Tretyak, S.S. Yurchenko, “*Searches for 2β decay of Zinc and Tungsten with the help of low-background ZnWO₄ crystal scintillators*”, Nucl. Phys. B 826 (2009) 256–273.
- [2] P. Belli, R. Bernabei, F. Cappella, R. Cerulli, C.J. Dai, F.A. Danevich, B.V. Grinyov, A. Incicchitti, V.V. Kobychev, L.L. Nagornaya, S.S. Nagorny, F. Nozzoli, D.V. Poda, D. Prosperi, V.I. Tretyak, S.S. Yurchenko, “*Search for 2β processes in ^{64}Zn with the help of ZnWO₄ crystal scintillator*”, Phys. Lett. B 658 (2008) 193–197.
- [3] L. Bardelli, M. Bini, P.G. Bizzeti, F.A. Danevich, T.F. Fazzini, N. Krutyak, V.V. Kobychev, P.R. Maurenzig, V.M. Mokina, S.S. Nagorny, M. Pashkovskii, D.V. Poda, V.I. Tretyak, S.S. Yurchenko, “*Pulse shape discrimination with PbWO₄ crystal scintillators*”, Nucl. Instr. Meth. A 584 (2008) 129–134.
- [4] L.L. Nagornaya, A.M. Dubovik, Yu.Ya. Vostretsov, B.V. Grinyov, F.A. Danevich, K.A. Katrunov, V.M. Mokina, G.M. Onishchenko, D.V. Poda, N.G. Starzhinskiy, I.A. Tupitsyna, “*Growth of ZnWO₄ crystal scintillators for high sensitivity 2β experiment*”, IEEE Trans. Nucl. Sci. 55 (2008) 1469–1472.
- [5] P. Belli, R. Bernabei, N. Lukic, F. Cappella, R. Cerulli, C.J. Dai, F.A. Danevich, J.R. de Laeter, A. Incicchitti, V.V. Kobychev, S.S. Nagorny, S. Nisi, F. Nozzoli, D.V. Poda, D. Prosperi, V.I. Tretyak, S.S. Yurchenko, “*Investigation of β decay of ^{113}Cd* ”, Phys. Rev. C 76 (2007) 064603, 10 p.
- [6] F.A. Danevich, A.Sh. Georgadze, V.V. Kobychev, B.N. Kropivnyansky, S.S. Nagorny, A.S. Nikolaiko, D.V. Poda, V.I. Tretyak, I.M. Vyshnevskyi, S.S. Yurchenko, B.V. Grinyov, L.L. Nagornaya, E.N. Pirogov, V.D. Ryzhikov, V.B. Brudanin, Ts. Vylov, A. Fedorov, M. Korzhik, A. Lobko, O. Mishevitch, “*Application of PbWO₄ crystal scintillators in experiment to search for 2β decay of ^{116}Cd* ”, Nucl. Instr. Meth. A 556 (2006) 259–265.

- [7] L. Bardelli, M. Bini, P.G. Bizzeti, L. Carraresi, F.A. Danevich, T.F. Fazzini, B.V. Grinyov, N.V. Ivannikova, V.V. Kobychev, B.N. Kropivnyansky, P.R. Maurenzig, L.L. Nagornaya, S.S. Nagorny, A.S. Nikolaiko, A.A. Pavlyuk, D.V. Poda, I.M. Solsky, M.V. Sopinsky, Yu.G. Stenin, F. Taccetti, V.I. Tretyak, Ya.V. Vasiliev, S.S. Yurchenko, “*Further study of CdWO₄ crystal scintillators as detectors for high sensitivity 2β experiments: Scintillation properties and pulse-shape discrimination*”, Nucl. Instr. Meth. A 569 (2006) 743–753.
- [8] F.A. Danevich, V.V. Kobychev, S.S. Nagorny, D.V. Poda, V.I. Tretyak, S.S. Yurchenko, Yu.G. Zdesenko, “*ZnWO₄ crystals as detector for 2β decay and dark matter experiments*”, Nucl. Instr. Meth. A 544 (2005) 553–564.
- [9] I.I. Veretyannikov, F.A. Danevich, Yu.G. Zdesenko, V.V. Kobychev, S.S. Nagorny, D.V. Poda, “*CdWO₄ scintillation detector optimization for the 2β experiment with ¹¹⁶Cd*” [in Ukrainian], Scientific Papers of KINR 13 (2004) 163–172.

CONTENTS

List of symbols	6
Introduction	10
Relevance of the topic	10
Relation with academic programs, plans, and themes	12
The purpose and objectives of the study	13
Methods	14
Reliability	15
The novelty of the results	16
The scientific and practical significance of the obtained results	17
Personal contribution	18
Approbation of the results	19
Publications	21
Section 1. Neutrino properties and double beta decay of atomic nuclei	22
1.1. Neutrino mass and oscillation	22
1.1.1. Results of neutrino oscillation experiments	23
1.1.2. The neutrino mass schemes	25
1.2. Double beta decay	27
1.2.1. Various channels of 2β decay	29
1.2.2. The half-lives of 2β processes	30
1.2.3. Calculations of the nuclear matrix elements	32
1.3. Experimental methods of 2β decay study	33
1.3.1. Requirements for detectors	33
1.3.2. Geochemical and radiochemical experiments	35
1.3.3. Counting experiments and their classification	38
1.4. The most sensitive 2β experiments	39
1.4.1. Study of $2\beta^-$ decay	39
1.4.1.1. Searches for $0\nu2\beta^-$ decay of ^{76}Ge in the IGEX and the Heidelberg-Moscow experiments with HPGe detectors	42
1.4.1.2. The NEMO-3 calorimeter	45
1.4.1.3. The Solotvina experiment with CdWO_4 scintillators	46
1.4.1.4. Detector CUORICINO with TeO_2 crystals	49
1.4.2. Searches for 2ε capture, $\varepsilon\beta^+$ and $2\beta^+$ decays	50
1.4.2.1. Search for 2ε capture in ^{40}Ca by using $\text{CaF}_2(\text{Eu})$ scintillators	52
1.4.2.2. Searches for $\varepsilon\beta^+$ decay of ^{64}Zn isotope	53
1.4.2.3. The TGV-II experiment to search for $2\nu2\varepsilon$ capture in ^{106}Cd	55
1.4.3. Study of 2β transitions to excited levels of daughter nuclei	55
1.5. Conclusions of section	59
Section 2. Development of scintillation method to search for $0\nu2\beta^-$ decay of ^{116}Cd isotope	61
2.1. Development of low background scintillation detector with high energy resolution ..	61

2.1.1. Influence of the energy resolution on sensitivity of the experiment to search for $0\nu2\beta^-$ decay of ^{116}Cd on	61
2.1.2. Analysis of the required energy resolution of CdWO ₄ scintillation detector to search for $0\nu2\beta^-$ decay of ^{116}Cd	63
2.1.3. Study of light collection and energy resolution of CdWO ₄ detector	67
2.1.3.1. Experimental technique of measurements	67
2.1.3.2. Measurements of light collection and energy resolution for different geometries of CdWO ₄ detector.....	69
2.1.3.3. Calculation of light collection for various geometries of detector	71
2.2. Analysis of PbWO ₄ scintillators' applicability in experiment to search for $0\nu2\beta^-$ decay of ^{116}Cd	73
2.2.1. Study of possibility to use PbWO ₄ crystal as a light-guide for CdWO ₄ scintillator.....	73
2.2.2. Simulation of background of CdWO ₄ detector surrounded by PbWO ₄ scintillators.....	76
2.2.3. Application of PbWO ₄ scintillators in experiment to search for $0\nu2\beta^-$ decay of ^{116}Cd	79
2.3. Conclusions of section	83

Section 3. Investigation of scintillation properties and radiopurity of the detectors based on cadmium, lead, and zinc tungstate crystal scintillators 85

3.1. Study of scintillation properties and radiopurity of CdWO ₄ scintillators	87
3.1.1. Measurements of the energy resolution with different CdWO ₄ samples.....	87
3.1.2. Scintillation response at low energies.....	89
3.1.3. Measurements of α/β ratio for CdWO ₄ scintillator	91
3.1.4. Study of scintillation decay time	93
3.1.5. Pulse shape discrimination of γ quanta and α particles.....	95
3.1.6. Dependence of pulse shape on temperature.....	98
3.1.7. Study of radioactive contamination of CdWO ₄ scintillators	100
3.1.7.1. The time-amplitude analysis.....	101
3.1.7.2. The pulse shape discrimination method	103
3.1.7.3. Simulation of background.....	104
3.2. Investigation of scintillation properties and radioactive contamination of PbWO ₄ scintillators	106
3.2.1. Doping PbWO ₄ scintillators with different activators	106
3.2.2. Dependence of light output and the energy resolution of PbWO ₄ crystals on dopants.....	107
3.2.3. Measurement α/β ratio for doped PbWO ₄ samples	110
3.2.4. Pulse shape of PbWO ₄ scintillators depending on the composition and concentration of dopants	113
3.2.5. Pulse shape discrimination with doped PbWO ₄ scintillators	116
3.2.6. Measurements of radioactive contamination of PbWO ₄ crystal scintillators ..	119
3.3. Study of scintillation properties and radiopurity of ZnWO ₄ crystal scintillators ..	121
3.3.1. Energy resolution and relative light output of ZnWO ₄ scintillators	121
3.3.2. Response of ZnWO ₄ scintillator to γ quanta and α particles.....	123

3.3.3. Decay time of ZnWO ₄ scintillator and pulse shape discrimination	125
3.3.4. Development of ZnWO ₄ crystals for low-background experiments.....	126
3.3.4.1. Influence of dopants on scintillation properties of ZnWO ₄ scintillators.	126
3.3.4.2. Investigation of radiopurity of ZnWO ₄ crystals.....	128
3.4. Conclusions of section	132
Section 4. Search for 2β decay of Zinc and Tungsten isotopes with the help of ZnWO₄ scintillators	133
4.1. Experimental studies with ZnWO ₄ crystal scintillators.....	133
4.1.1. Low-background “DAMA/R&D” set-up.....	133
4.1.2. Stages of low-background measurements with ZnWO ₄ scintillators.....	135
4.1.3. The ICP-MS analysis of contaminations of ZnWO ₄ crystals	137
4.2. Analysis of background of ZnWO ₄ scintillators	139
4.2.1. PMT noise rejection	140
4.2.2. Determination of radionuclides’ activity by the time-amplitude analysis	141
4.2.3. Pulse shape discrimination of γ quanta and α particles.....	142
4.2.4. Simulation of background of ZnWO ₄ scintillators.....	144
4.3. Investigation of 2β processes in Zn and W isotopes	147
4.3.1. Search for $\varepsilon\beta^+$ decay of ⁶⁴ Zn isotope.....	150
4.3.2. Double electron capture in ⁶⁴ Zn and ¹⁸⁰ W isotopes.....	152
4.3.3. Study of $2\beta^-$ decay of ⁷⁰ Zn and ¹⁸⁶ W isotopes	154
4.3.4. Comparison of the obtained half-life limits with the results of previous experiments and theoretical predictions	157
4.4. Conclusions of section	161
Conclusions	163
Acknowledgements	166
References	167