Respuestas Binarias (cont.)

MCP

22 de febrero de 2018

Intervalo de confianza de Clopper-Pearson

Este intervalo usa la relaci'on entre distribuci'on binomial y la distribuci'on beta.

El intervalo de confianza de $(1-\alpha)100\%$ est'a dado por

$$beta(\alpha/2; w, n - w + 1) < \pi < beta(1 - \alpha/2; w + 1, n - w)$$

donde

$$\alpha = \int_0^{v_\alpha} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} v^{a-1} (1-v)^{b-1} \ dv; \quad a > 0 \ \land b > 0$$

```
# Para w=4, n=10, 95% confianza.
w<-4
n<-10
alpha<-0.05
pi.hat<-w/n
library(binom)
round(qbeta(p = c(alpha/2, 1-alpha/2), shape1 = c(w, w+1), shape2 = c(n-w+1, n-w)),4)
## [1] 0.1216 0.7376
binom.confint(x = w, n = n, conf.level = 1-alpha, methods = "exact")
## method x n mean lower upper
## 1 exact 4 10 0.4 0.1215523 0.7376219</pre>
```

Pruebas

Si sólo un parámetro es de nuestro interés, por lo general se prefiere usar intervalos por sobre prueba de hipótesis. Sin embargo puede haber situaciones donde un valor fijo de π , digamos π_0 es de interés, lo que lleva a la prueba de hipótesis $H_0: \pi = \pi_0$ contra $H_a: \pi \neq \pi_0$.

Con respecto al intervalo de Wilson, cuando la hipótesis nula es verdadera, Z_0 debería tener una distribución aproximadamente normal. La hipótesis nula es rechazada cuando un valor inusual de Z_0 es observado con relación a su distribución, a saber, algo menor a $-Z_{1-\alpha/2}$ o mayor que $Z_{1-\alpha/2}$.

El valor p es una medida de cuan extremo es el valor del estadístico de prueba con respecto a lo que se espera cuando H_0 es verdadera. Este valor se calcula como $2P(Z > |Z_0|)$.

Existen procedimientos alternativos, como la prueba de razón de verosimilitud (LRT). De manera informal, el estadístico LRT es

$$\Lambda = \frac{\text{Valor máximo de la función de verosimilitud bajo H_0}{\text{Valor máximo de la función de verosimilitud bajo H_0 o H_a}$$

Parala prueba $H_0: \pi = \pi_0$ contra $H_a: \pi \neq \pi_0$, el valor del denominador es $\hat{\pi}^w (1 - \hat{\pi})^{n-w}$ y el numerador es $\pi_0^w (1 - \pi_0)^{n-w}$. El estadístico transformado $-2\log(\Lambda)$ resulta ser aproximadamente χ_1^2 en muestras grandes si la hipótesis nula es verdadera. Se rechaza la hipótesis si $-2\log(\Lambda) > \chi_{1,1-\alpha/2}^2$, donde $\chi_{1,1-\alpha/2}^2$ es el $1-\alpha/2$ -ésimo cuantil de una distribución ji-cuadrada con 1 grado de libertad.

```
# intervalo LRT
LRT.int<-binom.confint(x = w, n = n, conf.level = 1-alpha, methods = "lrt")</pre>
##
     method x n mean
                          lower
        lrt 4 10 0.4 0.1456425 0.7000216
## 1
# -2log(Lambda)
LRT<-function(pi.0, w, n) {
pi.hat<-w/n
-2*(w*log(pi.0/pi.hat) + (n-w)*log((1-pi.0)/(1-pi.hat)))
                                                              }
# Gráfica de -2log(Lambda) - Los valores de pi por debajo de la recta horizontal ji~2_1,1-alpha corresp
curve(expr = LRT(pi.0 = x, w = w, n = n), from = 0, to = 1, col = "red", xlab =expression(pi),
            ylab = expression(-2*log(Lambda)))
abline(h = qchisq(p = 1-alpha, df = 1), lty = "dotted")
      4
      30
-2\log(\Lambda)
      20
      0
      0
                          0.2
            0.0
                                        0.4
                                                      0.6
                                                                    8.0
                                                                                  1.0
                                                π
# Puntos de intersección de -2log(Lambda) y chi~2_1,1-alpha
LRT(pi.0 = LRT.int$lower, w = w, n = n)
## [1] 3.841437
LRT(pi.0 = LRT.int$upper, w = w, n = n)
## [1] 3.841458
# hacemos -2log(Lambda) - chi^2_1,1-alpha = 0 y resolvemos para encontrar los límites superior # e infe
LRT2<-function(pi.0, w, n, alpha) {</pre>
pi.hat<-w/n
-2*(w*log(pi.0/pi.hat) + (n-w)*log((1-pi.0)/(1-pi.hat))) - qchisq(p = 1-alpha, df = 1)}
# Intervalo de confianza
uniroot(f = LRT2, lower = 0, upper = w/n, w = w, n = n, alpha = alpha) # Limite inferior
```

```
## $root
## [1] 0.1456271
## $f.root
## [1] 0.0006063786
##
## $iter
## [1] 6
##
## $init.it
## [1] NA
## $estim.prec
## [1] 6.103516e-05
uniroot(f = LRT2, lower = w/n, upper = 1, w = w, n = n, alpha = alpha) # Limite superior
## $root
## [1] 0.6999695
##
## $f.root
## [1] -0.001490819
## $iter
## [1] 3
##
## $init.it
## [1] NA
##
## $estim.prec
## [1] 0.000116483
# Intervalo logit
binom.confint(x = w, n = n, conf.level = 1-alpha, methods = "logit")
    method x n mean
                        lower
## 1 logit 4 10 0.4 0.158342 0.7025951
# Intervalo de Blaker
library(BlakerCI)
binom.blaker.limits(x = w, n = n, level = 1-alpha)
## [1] 0.1500282 0.7170653
# Mid-p
library(package = PropCIs)
midPci(x = w, n = n, conf.level = 1 - alpha)
##
##
##
## data:
## 95 percent confidence interval:
## 0.1426 0.7086
```

Niveles de confianza verdaderos para intervalos de confianza

Las inferencias para π del intervalo de confianza de Wald se basan en la aproximación a la distribución normal para el estimador de máxima verosimilitud. Para que esta aproximación sea buena, se necesita una muestra grande. Más aún, en ocasiones $\hat{\pi}$ puede, a veces, tomar un número finito de valores, pero la distribución normal es una función continua. Estos problemas llevan al intervalo de Wald a ser aproximado en el sentido de que la probabilidad de que el intervalo cubra el parámetro (covertura o nivel de confianza verdadero) no sea necesariamente el nivel $1-\alpha$.

Consideremos un ejemplo donde n = 40 con un nivel de confianza de 0.95 ($\alpha = 0.05$):

Loading required package: lattice

binom.plot(n = 40, method = binom.agresti.coull, np = 500, conf.level = 0.95)

binom.plot(n = 40, method = binom.wilson, np = 500, conf.level = 0.95)

Nivel de confianza verdadero para el intervalo de Wald

0.125 0.1591 0.0225 0.2275

6

Calcularemos el nivel de confianza verdadero para el intervalo de Wald con n = 40, $\pi = 0.157$ y $\alpha = 0.05$ en 3 pasos. 1. Encontrar la probabilidad de obtener cada posible valor de w usando la función "dbinom()" con n = 40 y $\pi = 0.157$. 2. Calcular el intervalo de confianza de 95% de Wald. 3. Sumar las probabilidades correspondientes a aquellos intervalos que contienen a $\pi = 0.157$; éste es el nivel de confianza verdadero.

```
alpha < -0.05
pi<-0.157
# pi<-0.156
n<-40
w<-0:n
pi.hat<-w/n
pmf<-dbinom(x = w, size = n, prob = pi)</pre>
var.wald<-pi.hat*(1-pi.hat)/n</pre>
lower<-pi.hat - qnorm(p = 1-alpha/2) * sqrt(var.wald)</pre>
upper<-pi.hat + qnorm(p = 1-alpha/2) * sqrt(var.wald)</pre>
save<-ifelse(test = pi>lower, yes = ifelse(test = pi<upper, yes = 1, no = 0), no = 0)</pre>
data.frame(w, pi.hat, round(data.frame(pmf, lower, upper),4), save)[1:13,]
##
                           lower upper save
       w pi.hat
                    pmf
## 1
          0.000 0.0011
                         0.0000 0.0000
## 2
          0.025 0.0080 -0.0234 0.0734
                                            0
## 3
          0.050 0.0292 -0.0175 0.1175
                                            0
          0.075 0.0689 -0.0066 0.1566
##
       3
                                            0
## 5
          0.100 0.1187
                         0.0070 0.1930
                                            1
```

```
6 0.150 0.1729 0.0393 0.2607
## 8
      7 0.175 0.1564 0.0572 0.2928
                                        1
      8 0.200 0.1201 0.0760 0.3240
## 10 9 0.225 0.0795 0.0956 0.3544
                                        1
## 11 10 0.250 0.0459
                       0.1158 0.3842
## 12 11 0.275 0.0233 0.1366 0.4134
                                        1
## 13 12 0.300 0.0105 0.1580 0.4420
sum(save*pmf)
## [1] 0.875905
sum(dbinom(x = 4:11, size = n, prob = pi)) # Nivel de confianza real
## [1] 0.875905
```

Estimación del verdadero nivel de confianza para el intervalo de Wald

Supongamos de nuevo que $n = 40, \pi = 0.157, \alpha = 0.05$. El proceso para estimar el nivel de confianza verdadero se pueden seguir los siguientes pasos:

- 1. Simular 1000 muestras usando rbinom().
- 2. Calcular el intervalo de Wald de 95% para cada muesta.
- 3. Calcular la proporción de intervalos que contienen $\pi=0.157$; éste es el valor del estimado del nivel de confianza verdadero.

```
numb.bin.samples<-1000 # Número de muestras binomiales de tamaño n
# Para calcular el número de veces que cada "w" ocurre:
set.seed(4516)
w<-rbinom(n = numb.bin.samples, size = n, prob = pi)
counts < -table(x = w)
counts
## x
##
                         6
     1
             3
                     5
                             7
                                  8
                                      9
                                         10
                                             11
                                                12
                                                    13
       35 64 123 147 165 172 123
                                     76
                                        46
                                             26
sum(counts[4:11])/numb.bin.samples
## [1] 0.878
# Para calcular el estimado del nivel de confianza verdadero:
pi.hat<-w/n
pi.hat[1:10]
## [1] 0.150 0.150 0.175 0.200 0.200 0.150 0.200 0.075 0.125 0.100
var.wald<-pi.hat*(1-pi.hat)/n</pre>
lower<-pi.hat - qnorm(p = 1-alpha/2) * sqrt(var.wald)</pre>
upper<-pi.hat + qnorm(p = 1-alpha/2) * sqrt(var.wald)</pre>
data.frame(w, pi.hat, lower, upper)[1:10,]
##
      w pi.hat
                      lower
                                 upper
## 1 6 0.150 0.039344453 0.2606555
## 2 6 0.150 0.039344453 0.2606555
## 3 7 0.175 0.057249138 0.2927509
```

```
## 4 8 0.200 0.076040994 0.3239590
## 5 8 0.200 0.076040994 0.3239590
## 6 6 0.150 0.039344453 0.2606555
## 7 8 0.200 0.076040994 0.3239590
## 8 3 0.075 -0.006624323 0.1566243
## 9 5 0.125 0.022511030 0.2274890
## 10 4 0.100 0.007030745 0.1929693
save<-ifelse(test = pi>lower, yes = ifelse(test = pi<upper, yes = 1, no = 0), no = 0)
save[1:10]
## [1] 1 1 1 1 1 1 1 0 1 1
mean(save)
## [1] 0.878
true.conf<-mean(save)
cat("Un estimado del verdadero nivel de confianza es:", round(true.conf,4), "\n")</pre>
```

Un estimado del verdadero nivel de confianza es: 0.878