МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Построение и анализ алгоритмов»

Тема: Потоки в сети

Студентка гр. 7304	 Нгуен Т.Т. Зуен
Преподаватель	 Филатов А.Ю.

Санкт-Петербург 2019

Цель работы:

Исследование алгоритма Форда-Фалкерсона и его реализация на языке C++.

Задание:

Найти максимальный поток в сети, а также фактическую величину потока, протекающего через каждое ребро, используя алгоритм Форда-Фалкерсона.

Сеть (ориентированный взвешенный граф) представляется в виде триплета из имён вершин и целого неотрицательного числа - пропускной способности (веса).

Входные данные:

N - количество ориентированных рёбер графа

 v_0 - исток

 v_n - сток

 v_i v_j w_{ij} - ребро графа

 v_i v_j w_{ij} - ребро графа

...

Выходные данные:

 P_{max} - величина максимального потока

 $v_i \ v_j \ w_{ij}$ - ребро графа с фактической величиной протекающего потока

 $v_i \ v_j \ w_{ij}$ - ребро графа с фактической величиной протекающего потока

•••

В ответе выходные рёбра отсортируйте в лексикографическом порядке по первой вершине, потом по второй (в ответе должны присутствовать все указанные входные рёбра, даже если поток в них равен 0).

Описание алгоритма

Алгоритм Форда — Фалкерсона решает задачу нахождения максимального потока в транспортной сети. Идея алгоритма заключается в следующем. Изначально величине потока присваивается значение 0: f(u,v)=0 для всех $u, v \in V$. Затем величина потока итеративно увеличивается посредством поиска увеличивающего пути (путь от источника s к стоку t, вдоль которого можно послать больший поток). Процесс повторяется, пока можно найти увеличивающий путь.

Неформальное описание

- 1. Обнуляем все потоки. Остаточная сеть изначально совпадает с исходной сетью.
- 2. В остаточной сети находим любой путь из источника в сток. Если такого пути нет, останавливаемся.
- 3. Пускаем через найденный путь (он называется *увеличивающим путём* или *увеличивающей цепью*) максимально возможный поток:
 - 1. На найденном пути в остаточной сети ищем ребро с минимальной пропускной способностью path_flow.
 - 2. Для каждого ребра на найденном пути увеличиваем поток на path_flow, а в противоположном ему уменьшаем на path flow.
 - 3. Модифицируем остаточную сеть. Для всех рёбер на найденном пути, а также для противоположных им рёбер, вычисляем новую пропускную способность. Если она стала ненулевой, добавляем ребро к остаточной сети, а если обнулилась, стираем его.
- 4. Возвращаемся на шаг 2.

Описание функций:

void DFS(int cur) — поиска в глубину для поиска пути с истока до стока.

bool buildPath(char start, char end) — ПОИСКА ПУТИ.

int FordFulkerson(char start, char end) — алгоритм Φ орда — Φ алкерсона найти нахождения максимального потока в сети.

Результаты:

```
■ C:\Users\duyenNH\source\repos\PiAA_sem2\Debug\lab3.exe

7
a  
a  
f  
a  
b    7
a  
c    6
b    d    6
c    f    9
d    e    2
12
a  
a  
b    6
a    c    6
b    d    6
c    f    9
d    f    4
e    c    2
12
a  
b    6
a    c    6
b    d    6
c    f    8
d    e    2
d    f    4
e    c    2
d    f    4
e    c    2
d    f    4
e    c    2
Press any key to continue . . .
```

Выводы:

В результате работы программы был реализован алгоритм Форда — Фалкерсона для поиска нахождения максимального потока в транспортной сети. Также реализована DFS поиска в глубину для поиска пути с истока до стока и получены результаты.