

Graph Algorithms

A Brief Introduction

高晓沨(Xiaofeng Gao)

Department of Computer Science Shanghai Jiao Tong Univ.

目录

1 Graph and Its Applications
2 Introduction to Graph Algorithms
3 References

GRAPH AND ITS APPLICATIONS

Definitions and Applications

Konigsberg

Once upon a time there was a city called Konigsberg in Prussia

The capital of East Prussia until 1945

Centre of learning for centuries, being home to Goldbach, Hilbert, Kant ...

Position of Konigsberg

Seven Bridges

Pregel river is passing through Konigsberg

It separated the city into two mainland area and two islands.

There are seven bridges connecting each area.

Seven Bridge Problem

***A Tour Question:**

Can we wander around the city, crossing each bridge once and only once?

Is there a solution?

Euler's Solution

Leonhard Euler Solved this problem in 1736

Published the paper "The Seven Bridges of Konigsbery"

The first negative solution The beginning of Graph Theory

The Seven Bridges of Königsberg

he branch of geometry that deals with magnitudes has been zealously studied throughout the past, but there is another branch that has been almost unknown up to now; Leibniz spoke of it first, calling it the "geometry of position" (geometria situs). This branch of geometry deals with relations dependent on position alone, and investigates the properties of position; it does not take magnitudes into consideration, nor does it involve calculation with quantities. But as yet no satisfactory definition has been given of the problems that belong to this geometry of position or of the method to be used in solving them. Recently there was announced a problem that, while it certainly seemed to belong to geometry, was nevertheless so designed that it did not call for the determination of a magnitude, nor could it be solved by quantitative calculation; consequently I did not hesitate to assign it to the geometry of position, especially since the solution required only the consideration of position, calculation being of no use. In this paper I shall give an account of the method that I discovered for solving this type of problem, which may serve as an example of the geometry of position.

The problem, which I understand is quite well known, is stated as follows: In the town of Königsberg in Prussia there is an island A, called

Representing a Graph

Undirected Graph:

G=(V, E)

V: vertex

E: edges

Directed Graph:

G=(V, A)

V: vertex

A: arcs

More Examples

More Examples (2)

More Examples (3)

More Examples (4)

More Examples (5)

More Examples (6)

Basketball Pass

Icosian Game

- In 1859, Sir William Rowan Hamilton developed the Icosian Game.
- Traverse the edges of an dodecahedron, i.e., a path such that every vertex is visited a single time, no edge is visited twice, and the ending point is the same as the starting point.
- Also refer as Hamiltonian Game.

Icosian Game

Examples

❖ 3D-Demo

• http://mathworld.wolfram.com/IcosianGame.html

Four Color Theorem

❖ The four color theorem was stated, but not proved, in 1853 by Francis Guthrie.

Four Color Theorem

The theorem asserts that four colors are enough to color any geographical map in such a way that no neighboring two countries are of the same color.

2019/11/18 Algorithm--Xiaofeng Gao

Snark Graph

- Each point has degree 3
- Strong connectivity (breaking any three edges will not violating the connectivity of the graph)

(Petersen Graph)

Double Star Snark

Petersen Family

Snark Family

http://en.wikipedia.org/wiki/Snark_(graph_theory)

Well-Known Results

- Complete Graph K_n
- **⇔ Bipartite Graph K**_{m,n}
- ♦ Star K_{1,n}
- ❖ r-Partite Graph K_{r(m)}
- **Subgraph H⊆G**
 - Spanning/Induced Subgraph
- Handshaking Theorem

$$\sum_{v \in V} d(v) = 2|E|$$

INTRODUCTION TO GRAPH ALGORITHMS

Three Categories

Algorithms on Graphs

Graph Exploration

- Breadth-First Search
- Depth-First Search

Minimum Spanning Tree

- Prim Algorithm
- Kruskal Algorithm
- Circle Deletion Algorithm

Shortest Path Problem

- Single-Source Shortest Path
- All-Pairs Shortest Path

Breadth-First Search

Basic Strategy

- visit and inspect a node of a graph
- gain access to visit the nodes that neighbor the currently visited node

Applications and Theories

- Find nodes within one connected component
- Find shortest path between two nodes u and v
- Ford-Fulkerson method for computing the maximum flow in a flow network

Depth-First Search

Basic Strategy

- Starts at arbitrary root
- Explores as far as possible along each branch before backtracking

Applications and Theories

- Finding (strong) connected components
- Topological sorting
- Solving mazes puzzles with only one solution
- parenthesis theorem

Minimum Spanning Tree

Classical Algorithms

- Prim: maintain an optimal subtree
- Kruskal: maintain min-weight acyclic edge set
- Reverse-Delete: circle-deletion
- Borüvka Algorithm

Fundamental Results

- All greedy Approach with exchange property
- Correctness proof: cycle/cut property
- Efficiency: time complexity → heap

Single-Source Shortest Path

Dijkstra's Algorithm

- Greedy Approach
- Graph with positive weights

Bellman-Ford Algorithm

- Dynamic Programming
- Graph with negative weights (without negative-cycle)

All-Pair Shortest Path

Basic Dynamic Programming

- Matrix multiplication
- Time Complexity: Θ(n³ lg n).

Floyd-Warshall algorithm

- Also dynamic programming, but faster
- Time Complexity: Θ(n³)

Johnson's algorithm

- For sparse graph
- Time Complexity: O(VE + V² lg V).

REFERENCES

Berkeley, Princeton, Cornell, MIT

Textbook – CLRS Book

Title: Introduction to Algorithms

Author: T. Cormen, C. Leiserson, R. Rivest, C. Stein

Publisher: The MIT Press, 2018 (First Edition in 1990)

ISBN-10/13: 0262033844 / 978-0262033848

Edition: Second/Third Edition/Forth Edition

The Authors – CLRS Book

Thomas H. Cormen Dartmouth College

Charles E. Leiserson MIT

Ronald L. Rivest

MIT

(Turing Award - RSA)

Clifford Stein
Columbia University
(Ph.D. from MIT)

❖ 1st Edition: 1990 - CLR Book (The Big White Book)

❖ 2nd Edition: 2001 - CLRS Book (The Big Book)

❖ 3rd Edition: 2009 (Has Chinese Version)

❖ 4th Edition: 2018 (The Latest)

Universities using CLRS Book

*24 / Top 40 Univ. use CLRS book (33 courses)

Textbook - Cornell Book

Title: Algorithm Design

Author: J. Kleinberg, E. Tardos

Publisher: Addison Wesley, 2006.

ISBN-10/13: 0321295358 / 978-0321295354

The Authors – Cornell Book

Jon Kleinberg Cornell (Ph.D. from MIT)

Éva Tardos
Cornell University
(Hungarian mathematician,
Gödel Prize)

- 1st Edition: 2006 Coauthored with Éva Tardos
- ❖ 2nd Edition: 2013 Sole Author

Jon Kleinberg's older brother → Robert Kleinberg@Cornell

Universities using Cornell Book

*16 / Top 40 Univ. use Cornell book (20 courses)

Textbook – Berkeley Book

Title: Algorithms

Author: S. Dasgupta, C. Papadimitriou, U. Vazirani

Publisher: McGraw-Hill, 2007.

ISBN-10/13: 0073523402 / 978-0073523408

The Authors – Berkeley Book

Sanjoy Dasgupta
UCSD
(Ph.D. from Berkeley)

Christos
Papadimitriou
Columbia
(Greek, Gödel Prize)

Umesh V. Vazirani UC-Berkeley (Indian)

- Dasgupta: Algorithmic Statistics
- Papadimitriou: Complexity, Combinatorial Optimization
- ❖ Umesh Vazirani: Quantum Computing His younger brother → Vijay Vazirani@Gatech

Universities using Berkeley Book

*9 / Top 40 Univ. use Berkeley book (9 courses)

The End !

Xiaofeng Gao