

Page 1 of 51

Testing Laboratory

EMC TEST REPORT

Report No.: TS13070033-EME

Model No.: T416

Issued Date: Sep. 04, 2013

Applicant: Kobo Inc

135 Liberty Street, Suite 101, Toronto, Ontario, M6K1A7

Canada

Test Method/ Standard: FCC Part 15 Subpart C Section §15.205, §15.207, §15.209,

§15.247, DA 00-705 and ANSI C63.4/2003

93 Registration Registration 93910

No.:

Test By: Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The

test result(s) in this report only applies to the tested sample(s).

The test report was prepared by:

Jill Chen / Assistant

These measurements were taken by:

Arthur Tsai / Senior Engineer

w Tsa'i

The test report was reviewed by:

Name Jimmy Yang Title Engineer

Table of Contents

Summary of Tests	4
1. General Information	5
1.1 Identification of the EUT	5
1.2 Additional Information about the EUT	5
1.3 Antenna Description	6
1.4 Adapter Information	6
2 Test Specifications	7
2. Test Specifications	
2.1 Test Standard	
2.3 Measurement Uncertainty	
2.4 Test Equipment	
2.4 Test Equipment	0
3. 20dB Bandwidth Test	
3.1 Operating Environment	
3.2 Test Setup & Procedure	
3.3 Measured Data of Modulated Bandwidth Test Results	9
4. Carrier Frequency Separation Test	15
4.1 Operating Environment	
4.2 Test Setup & Procedure	
4.3 Measured Data of Carrier Frequency Separation Test Results	
- · · · · ·	
5. Number of Hopping Frequencies Test	
5.1 Operating Environment	
5.2 Test Setup & Procedure	
5.3 Measured Data of Number of Hopping Frequencies Test Results	19
6. Time of Occupancy (Dwell Time)	21
6.1 Operating Environment	
6.2 Test Setup & Procedure	21
6.3 Measured Data of Maximum Output Power Test Results	21
7 Mayimyan Outmut Dayyan Test	20
7. Maximum Output Power Test	
7.1 Operating Environment	
7.2 Test Setup & Procedure	
7.5 Measured Data of Maximum Output Fower Test Results	29
8. RF Antenna Conducted Spurious Test.	
8.1 Operating Environment	30
8.2 Test Setup & Procedure	30
8.3 Measured Data of the Highest RF Antenna Conducted Spurious Test Results	30
9. Radiated Emission Test	39
9.1 Operating Environment	
9.2 Test Setup & Procedure	
9.3 Emission Limits.	
9.4 Radiated Spurious Emission Test Data	

9.4.1 Measurement Results: Frequencies Equal to or Less than 1 GHz	
10. Emission on the Band Edge §FCC 15.247(d)	47
10.1 Operating Environment	
10.2 Test Setup & Procedure	
10.3 Test Results.	47
11. Power Line Conducted Emission Test §FCC 15.207	49
11.1 Operating Environment	
11.2 Test Setup & Procedure	49
11.3 Emission Limit	
11 4 Power Line Conducted Emission Test Data	50

Summary of Tests

Test Item	Reference	Results
20dB Bandwidth Test	15.247(a)(1)	Pass
Carrier Frequency Separation Test	15.247(a)(1)	Pass
Number of Hopping Frequencies Test	15.247(a)(1)	Pass
Time of Occupancy (Dwell Time) Test	15.247(a)(1)(iii)	Pass
Maximum Output Power Test	15.247(b)	Pass
RF Antenna Conducted Spurious Test	15.247(d)	Pass
Radiated Spurious Emission Test	15.205, 15.209	Pass
Emission on the Band Edge Test	15.247(d)	Pass
AC Power Line Conducted Emission Test	15.207	Pass

Page 5 of 51

1. General Information

1.1 Identification of the EUT

Product: Tablet Model No.: T416

FCC ID.: ZJLKOBOT416

Frequency Range: 2402MHz~2480MHz

Total Hopping Channel No: 79 channels

Frequency of Each Channel: 2402+1k MHz, k=0~78

Type of Modulation: GFSK, $\pi/4$ -DPSK, 8-DPSK Rated Power: 1. DC 5.35 V from adapter

2. DC 3.7 V from battery

Power Cord: N/A

Data Cable: USB shielded cable 1 meter × 1

Sample Received: Jul. 19, 2013

Test Date(s): Jul. 19, 2013~Sep. 04, 2013

Note 1: This report is for the exclusive use of Intertek's Client and is

provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever

been under an Intertek certification program.

Note 2: When determining the test conclusion, the Measurement

Uncertainty of test has been considered.

1.2 Additional Information about the EUT

The EUT is Tablet, and was defined as information technology equipment.

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

Page 6 of 51

1.3 Antenna Description

The antenna is affixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.

Antenna Gain : 0.36dBi

Antenna Type : PIFA Antenna

Connector Type : I-PEX

1.4 Adapter Information

The EUT will be supplied with a power supply from below list:

No.	Brand	Model no.	Specification
Adapter	kobo	PSAI10R-050Q	I/P: 100-240V~, 0.3A, 50-60Hz O/P: 5.35V, 2.0A

Page 7 of 51

2. Test Specifications

2.1 Test Standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Section §15.205, §15.207, §15.209, §15.247, DA 00-705 and ANSI C63.4/2003.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band was all meet limit requirement, thus we evaluate the EUT pass the specified test.

2.2 Operation Mode

The EUT is supplied with DC 3.7 V from battery for all test items except for conducted emission test.

The EUT is supplied with DC 5.35 V from adapter (Test voltage: 120VAC, 60Hz) for conducted emission test.

The EUT executes test by "MS-DOS" and enters the relevant commands provided by Wistron.

The signal is maximized through rotation and placement in the three orthogonal axes (The EUT configuration refers to the "Spurious set-up photo.pdf").

After verifying three axes, we found the maximum electromagnetic field was occurred at X axis. The final test data was executed under this configuration.

2.3 Measurement Uncertainty

Measurement uncertainty was calculated in accordance with TR 100 028-1

Parameter	Uncertainty				
Radiated Emission	Below 1 GHz	Vertical	3.90 dB		
		Horizontal	3.86 dB		
	Above 1 GHz	Vertical	5.74 dB		
		Horizontal	5.55 dB		
Conducted Emission	2.08 dB				

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

Page 8 of 51

2.4 Test Equipment

Equipment	Brand	Model No. Serial No.		Calibration Date	Next Calibration Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100018	2012/11/30	2013/11/29
Spectrum Analyzer	Rohde&schwarz	FSP30	100137	2013/06/21	2014/06/20
Spectrum Analyzer	Rohde&schwarz	FSEK30	100186	2013/01/23	2014/01/22
Horn Antenna (1-18G)	Schwarzbeck	BBHA 9120 D	9120D-456	2012/09/03	2013/09/02
Horn Antenna (14-42G)	SHWARZBECK	BBHA 9170	BBHA9170159	2012/09/05	2013/09/04
Broadband Antenna	SCHWARZBECK	VULB 9168	9168-172	2013/08/08	2014/08/07
Loop Antenna	RolfHeine	LA-285	02/10033	2013/03/20	2014/03/19
Pre-Amplifier	MITEQ	AFS44-001026 5042-10P-44	1495287	2012/10/27	2013/10/26
Pre-Amplifier	MITEQ	JS4-26004000 27-8A	828825	2012/09/18	2013/09/17
Power Meter	Anritsu	ML2495A	0844001	2012/10/09	2013/10/08
Power Senor	Anritsu	MA2411B	0738452	2012/10/09	2013/10/08
Temperature& Humidity Test Chamber	TERCHY	MHU-225LRU (SA)	950838	2013/06/14	2014/06/13
Two-Line V-Network	Rohde&schwarz	ESH3-Z5	838979/014	2012/10/29	2013/10/28

Note: The above equipments are within the valid calibration period.

Page 9 of 51

3. 20dB Bandwidth Test

3.1 Operating Environment

 $^{\circ}$ C Temperature: 23 Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa Test Date: Aug. 19, 2013

3.2 Test Setup & Procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The 20dB bandwidth per FCC §15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set $\ge 1\%$ of the Span, the video bandwidth $\ge RBW$, and the SPAN may equal to approximately 2 to 3 times the 20dB bandwidth. The test was performed at 3 channels (lowest, middle and highest channel). The maximum 20dB modulation bandwidth is in the following Table.

3.3 Measured Data of Modulated Bandwidth Test Results

Mode	Channel	Frequency (MHz)	20dB Bandwidth (MHz)
	0	2402	0.631
GFSK	39	2441	0.631
	78	2480	0.626
	0	2402	1.268
π/4-DPSK	39	2441	1.263
	78	2480	1.278
	0	2402	1.232
8-DPSK	39	2441	1.227
	78	2480	1.232

Please see the plot below.

Intertek

20 dB Bandwidth @ GFSK mode Channel 0

20 dB Bandwidth @ GFSK mode Channel 78

20 dB Bandwidth @ $\pi/4$ -DPSK mode Channel 39

Intertek

20 dB Bandwidth @ 8-DPSK mode Channel 0

20 dB Bandwidth @ 8-DPSK mode Channel 39

20 dB Bandwidth @ 8-DPSK mode Channel 78

Page 15 of 51

4. Carrier Frequency Separation Test

4.1 Operating Environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa Test Date: Aug. 22, 2013

4.2 Test Setup & Procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The carrier frequency separation per FCC $\S15.247(a)(1)$ was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at $\ge 1\%$ of the span, the video bandwidth \ge RBW, and the SPAN was wide enough to capture the peaks of two adjacent channels. The carrier frequency separation result is in the following Table.

4.3 Measured Data of Carrier Frequency Separation Test Results

Mode	Channel	Frequency (MHz)	Carrier freq. Separation (MHz)	Limit 20dB BW × 2/3(kHz)
	0	2402	1.001	0.42
GFSK	39	2441	1.012	0.42
	78	2480	1.007	0.42
	0	2402	1.016	0.82
8-DPSK	39	2441	1.022	0.82
	78	2480	1.007	0.82

Please see the spectrum plots of worst value below.

Intertek

Carrier Frequency Separation @ GFSK mode Channel 0

Carrier Frequency Separation @ GFSK mode Channel 78

Page 18 of 51

Intertek

5. Number of Hopping Frequencies Test

5.1 Operating Environment

Temperature: 25 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa Test Date: Aug. 22, 2013

5.2 Test Setup & Procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The number of hopping frequencies per FCC $\S15.247(a)(1)$ was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at $\ge 1\%$ of the span, the video bandwidth \ge RBW, and the SPAN was the frequency band of operation. The carrier frequency separation result is in the following Table.

5.3 Measured Data of Number of Hopping Frequencies Test Results

Frequency Range (MHz)	Hopping Channels
2402~2480	79

Number of Hopping Frequencies @ $\pi/4$ -DPSK mode

Number of Hopping Frequencies @ 8-DPSK mode

6. Time of Occupancy (Dwell Time)

6.1 Operating Environment

Temperature: 24 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

Test Date: Aug. 22, 2013~Sep. 02, 2013

6.2 Test Setup & Procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The time of occupancy (dwell time) per FCC $\S15.247(a)(1)$ was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 1MHz, the video bandwidth \ge RBW, and the zero span function of spectrum analyzer was enable. The EUT has its hopping function enable

6.3 Measured Data of Maximum Output Power Test Results

The total sweep time is 0.4×79 Channels = 31.6 seconds

Due to the number of hops in the 31.6s sweep, we determined to reduce the sweep time to 5s, count the number of hops and multiply by 6.32. The total number of hops will be multiplied by the measured time of one pulse.

GFSK Mode:

Time of occupancy (dwell time) for DH1 Number of Hops in 5s=43, Total Number of Hops in $31.6s=43\times6.32=271.76$ Single Pulse Width = 0.382 ms Dwell time = Pulse Width \times 271.76= 103.81 ms

Time of occupancy (dwell time) for DH3 Number of Hops in 5s=22, Total Number of Hops in $31.6s = 22 \times 6.32 = 139.04$ Single Pulse Width = 1.621ms Dwell time = Pulse Width × 139.04 = 225.38 ms

Time of occupancy (dwell time) for DH5 Number of Hops in 5s=15, Total Number of Hops in $31.6s=15\times6.32=94.8$ Single Pulse Width = 2.863ms Dwell time = Pulse Width \times 94.8=271.4124 ms

Page 22 of 51

8-DPSK Mode:

Time of occupancy (dwell time) for DH1 Number of Hops in 5s=47, Total Number of Hops in $31.6s = 47 \times 6.32 = 297.04$ Single Pulse Width = 0.386 msDwell time = Pulse Width \times 297.04= 114.657 ms

Time of occupancy (dwell time) for DH3 Number of Hops in 5s=18, Total Number of Hops in $31.6s = 18 \times 6.32 = 113.76$ Single Pulse Width = 1.623ms Dwell time = Pulse Width \times 113.76= 184.632 ms

Time of occupancy (dwell time) for DH5 Number of Hops in 5s=14, Total Number of Hops in $31.6s = 14 \times 6.32 = 88.48$ Single Pulse Width = 2.857ms Dwell time = Pulse Width \times 88.48= 252.787 ms

Mode	Packet Type	Frequency (MHz)	Pulse Duration (ms)	Number of Pulse	Measure Time (s)	Dwell Time (ms)	Limit (ms)
	DH1		0.382	43	5	103.8123	400
GFSK	DH3	2402	1.621	22	5	225.3838	400
	DH5		2.863	15	5	271.4124	400
	DH1		0.386	47	5	114.6574	400
8-DPSK	DH3	2480	1.623	18	5	184.6325	400
	DH5		2.857	14	5	252.7874	400

Please see the plots below.

Intertek

Dwell Time (Pulse Time) @ GFSK mode Channel 39 (DH1)

Dwell Time (Number of Pulse) @ GFSK mode Channel 39 (DH1)

Dwell Time (Number of Pulse) @ GFSK mode Channel 39 (DH3)

Dwell Time (Pulse Time) @ GFSK mode Channel 39 (DH5)

Dwell Time (Number of Pulse) @ GFSK mode Channel 39 (DH5)

Dwell Time (Number of Pulse) @ 8-DPSK mode Channel 39 (DH1)

Dwell Time (Pulse Time) @ 8-DPSK mode Channel 39 (DH3)

Dwell Time (Number of Pulse) @ 8-DPSK mode Channel 39 (DH3)

Dwell Time (Pulse Time) @ 8-DPSK mode Channel 39 (DH5)

Dwell Time (Number of Pulse) @ 8-DPSK mode Channel 39 (DH5)

Page 29 of 51

7. Maximum Output Power Test

7.1 Operating Environment

23 $^{\circ}$ C Temperature: Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa Test Date: Aug. 15, 2013

7.2 Test Setup & Procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The power output per FCC §15.247(b) was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Power was read directly and cable loss correction (2 dB) was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel).

7.3 Measured Data of Maximum Output Power Test Results

Mode	Channel	Frequency	Output Power (dBm)	Total Power (mW)	Limit	Margin
		(MHz)	PK	PK	(dBm)	(dB)
	0	2402	2.95	1.97	30	-27.05
GFSK	39	2441	3.03	2.01	30	-26.97
	78	2480	0.66	1.16	30	-29.34
	0	2402	2.08	1.61	30	-27.92
π/4-DPSK	39	2441	2.1	1.62	30	-27.90
	78	2480	2.56	1.80	30	-27.44
	0	2402	1.86	1.53	30	-28.14
8-DPSK	39	2441	2.58	1.81	30	-27.42
	78	2480	2.65	1.84	30	-27.35

8. RF Antenna Conducted Spurious Test

8.1 Operating Environment

Temperature: 23 °C
Relative Humidity: 55 %
Atmospheric Pressure: 1008 hPa
Test Date: Sep. 04, 2013

8.2 Test Setup & Procedure

The test procedure was according to FCC measurement guidelines DA 00-705.

The measurements were performed from 30MHz to 25GHz RF antenna conducted per FCC 15.247 (c) was measured from the EUT antenna port using a 50ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 100 kHz.

Harmonics and spurious noise must be at least 20dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.

8.3 Measured Data of the Highest RF Antenna Conducted Spurious Test Results

Hopping Disabled @ GFSK mode Channel 0

Hopping Disabled @ GFSK mode Channel 0 (30MHz~26.5GHz)

Hopping Disabled @ GFSK mode Channel 78

Intertek

Hopping Disabled @ GFSK mode Channel 78 (30MHz~26.5GHz)

Hopping Disabled @ 8-DPSK mode Channel 0

Hopping Disabled @ 8-DPSK mode Channel 0 (30MHz~26.5GHz)

Hopping Disabled @ 8-DPSK mode Channel 78

Hopping Disabled @ 8-DPSK mode Channel 78 (30MHz~26.5GHz)

Hopping Enabled @ GFSK mode Channel 0

Hopping Enabled @ GFSK mode Channel 0 (30MHz~26.5GHz)

Hopping Enabled @ GFSK mode Channel 78

Hopping Enabled @ GFSK mode Channel 78 (30MHz~26.5GHz)

Hopping Enabled @ 8-DPSK mode Channel 0

Intertek

Hopping Enabled @ 8-DPSK mode Channel 0 (30MHz~26.5GHz)

Hopping Enabled @ 8-DPSK mode Channel 78

Intertek Report No.

Hopping Enabled @ 8-DPSK mode Channel 78 (30MHz~26.5GHz)

FCC ID.: ZJLKOBOT416 Report No.: TS13070145-EME

Page 39 of 51

9. Radiated Emission Test

9.1 Operating Environment

Temperature: $^{\circ}$ C 20 Relative Humidity: 50 % Atmospheric Pressure: 1008 hPa

Test Date: Aug. 16, 2013~Aug. 19, 2013

9.2 Test Setup & Procedure

The test procedure was according to FCC measurement guidelines DA 00-705 and ANSI C63.4/2003.

The Diagram below shows the test setup, which is utilized to make these measurements.

Radiated emission from 9kHz to 30MHz uses Loop Antenna:

FCC ID.: ZJLKOBOT416

Intertek Report No.: TS13070145-EME Page 40 of 51

Radiated emission from 30MHz to 1GHz uses Bilog Antenna:

Radiated emission above 1GHz uses Horn Antenna:

The signal is maximized through rotation and placement in the three orthogonal axes. According to §15.33(a), the spectrum shall be investigated from the lowest radio frequency signal generated in the device, to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. Spectrum Analyzer Resolution Bandwidth is 100kHz or greater for frequencies 30MHz to 1GHz, 1MHz – for frequencies above 1GHz.

The EUT for testing is arranged on a fiberglass turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent 3 meter reading using inverse scaling with distance.

The EUT configuration refers to the "Spurious set-up photo.pdf".

9.3 Emission Limits

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency (MHz)	Field Strength (microvolts/meter)
0.009~0.490	2400/F(kHz)
0.490~1.705	2400/F(kHz)
1.705~30	30
30-88	100
88-216	150
216-960	200
Above 960	500

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Page 42 of 51

9.4 Radiated Spurious Emission Test Data

9.4.1 Measurement Results: Frequencies Equal to or Less than 1 GHz

The test was performed on EUT under GFSK, $\pi/4$ -DPSK and 8-DPSK mode. The worst case occurred at GFSK mode (DH5) Channel 0.

EUT : T416

Worst Case : GFSK mode (DH5) at Channel 0

Antenna	Freq.	Receiver	Corr.	Reading	Corrected	Limit	Margin
Polariz.			Factor		Level	@ 3 m	
(V/H)	(MHz)	Detector	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
V	90.14	QP	7.38	14.31	21.68	43.50	-21.82
V	324.88	QP	14.10	7.96	22.06	46.00	-23.94
V	489.78	QP	18.43	13.92	32.34	46.00	-13.66
V	619.76	QP	20.75	9.84	30.59	46.00	-15.41
V	747.80	QP	22.74	8.30	31.04	46.00	-14.96
V	871.96	QP	23.70	8.33	32.03	46.00	-13.97
Н	90.14	QP	7.93	23.92	31.84	43.50	-11.66
Н	179.38	QP	13.48	12.66	26.13	43.50	-17.37
Н	474.26	QP	18.16	9.58	27.74	46.00	-18.26
Н	732.28	QP	22.95	8.48	31.43	46.00	-14.57
Н	879.72	QP	24.62	7.65	32.26	46.00	-13.74
Н	951.50	QP	25.54	9.70	35.24	46.00	-10.76

Remark: 1. Corr. Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Corr. Factor

Note: The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

FCC ID.: ZJLKOBOT416 Report No.: TS13070145-EME

Page 43 of 51

9.4.2 Measurement Results: Frequency above 1GHz

EUT : T416

Test Condition : GFSK mode (DH5) at Channel 0

Frequency	Spectrum	Antenna	Preamp	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4804	PK	V	35.1	38.54	37.27	40.71	54	-13.29
4804	PK	Н	35.1	38.54	36.43	39.87	54	-14.13

Remark:

1. Correction Factor = Antenna Factor + Cable Loss

- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

EUT : T416

Test Condition : GFSK mode (DH5) at Channel 39

Frequency	Spectrum	Antenna	Preamp	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3240	PK	V	33.8	36.24	41.83	44.27	54	-9.73
4882	PK	V	35.1	38.54	36.27	39.71	54	-14.29
3240	PK	Н	33.8	36.24	38.46	40.90	54	-13.10
4882	PK	Н	35.1	38.54	35.66	39.10	54	-14.90

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Page 44 of 51

Test Condition : GFSK mode (DH5) at Channel 78

Frequency	Spectrum	Antenna	Preamp	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4960	PK	V	35.1	38.54	35.8	39.24	54	-14.76
4960	PK	Н	35.1	38.54	35.37	38.81	54	-15.19

Remark:

1. Correction Factor = Antenna Factor + Cable Loss

- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

EUT : T416

Test Condition : $\pi/4$ -DPSK mode (DH5) at Channel 0

Frequency	Spectrum	Antenna	Preamp	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4804	PK	V	35.1	38.54	36.06	39.50	54	-14.50
4804	PK	Н	35.1	38.54	36.11	39.55	54	-14.45

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

EUT : T416

Test Condition : $\pi/4$ -DPSK mode (DH5) at Channel 39

Frequency	Spectrum	Antenna	Preamp	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3240	PK	V	33.8	36.24	39.11	41.55	54	-12.45
4882	PK	V	35.1	38.54	36.39	39.83	54	-14.17
3240	PK	Н	33.8	36.24	39.09	41.53	54	-12.47
4882	PK	Н	35.1	38.54	35.62	39.06	54	-14.94

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

FCC ID.: ZJLKOBOT416 Report No.: TS13070145-EME

Page 45 of 51

EUT : T416

Test Condition : $\pi/4$ -DPSK mode (DH5) at Channel 78

Frequency	Spectrum	Antenna	Preamp	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3300	PK	V	33.8	36.24	37.89	40.33	54	-13.67
4960	PK	V	35.1	38.54	35.47	38.91	54	-15.09
4960	PK	Н	35.1	38.54	35.09	38.53	54	-15.47

Remark:

1. Correction Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Correction Factor – Preamp. Gain

3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

EUT : T416

Test Condition : 8-DPSK mode (DH5) at Channel 0

Frequency	Spectrum	Antenna	Preamp	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3180	PK	V	33.8	36.24	38.22	40.66	54	-13.34
4804	PK	V	35.1	38.54	36.66	40.10	54	-13.90
4804	PK	Н	35.1	38.54	36.04	39.48	54	-14.52

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

EUT : T416

Test Condition : 8-DPSK mode (DH5) at Channel 39

Frequency	Spectrum	Antenna	Preamp	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3240	PK	V	33.8	36.24	39.93	42.37	54	-11.63
4882	PK	V	35.1	38.54	36.48	39.92	54	-14.08
3240	PK	Н	33.8	36.24	40.45	42.89	54	-11.11
4882	PK	Н	35.1	38.54	36.14	39.58	54	-14.42

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

EUT : T416

Test Condition : 8-DPSK mode (DH5) at Channel 78

Frequency	Spectrum	Antenna	Preamp	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3300	PK	V	33.8	36.24	37.04	39.48	54	-14.52
4960	PK	V	35.1	38.54	35.21	38.65	54	-15.35
4960	PK	Н	35.1	38.54	35.5	38.94	54	-15.06

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

FCC ID.: ZJLKOBOT416 Report No.: TS13070145-EME Page 47 of 51

10. Emission on the Band Edge §FCC 15.247(d)

Radiated emissions were invested cover the frequency range from 30 MHz to 1000 MHz using a receiver RBW of 120 kHz record QP reading, and the frequency over 1 GHz using a spectrum analyzer RBW of 1 MHz and 10 Hz VBW record Average reading. (15.209 paragraph), the Peak reading (1MHz / 3MHz; RBW / VBW) recorded also on the report.

10.1 Operating Environment

Temperature: 23 °C
Relative Humidity: 55 %
Atmospheric Pressure: 1008 hPa
Test Date: Aug. 15, 2013

10.2 Test Setup & Procedure

Please refer to the section 9.2 of this report.

10.3 Test Results

	Restricted	Freq.	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
Mode	Band		Analyzer	Pol.	Gain	Factor		Level	@ 3 m	
	(MHz)	(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
	2310~	2345.80	PK	V	38.010	31.640	64.200	57.83	74	-16.17
	2390	2345.80	AV	V	38.010	31.640	51.530	45.16	54	-8.84
		2402.00	PK	V	38.025	31.907	109.377	103.26	-	103.26
GFSK	ı	2402.00	AV	V	38.025	31.907	96.037	89.92	-	89.92
GFSK		2480.00	PK	V	38.045	32.278	100.897	95.13	-	95.13
	-	2480.00	AV	V	38.045	32.278	89.497	83.73	-	83.73
	2483.5~	2483.50	PK	V	38.046	32.294	64.811	59.06	74	-14.94
	2500	2483.50	AV	V	38.046	32.294	57.571	51.82	54	-2.18
	2310~	2338.91	PK	V	38.008	31.607	64.411	58.01	74	-15.99
	2390	2338.91	AV	V	38.008	31.607	51.301	44.90	54	-9.10
		2402.00	PK	V	38.025	31.907	108.127	102.01	-	102.01
π/4-DPSK	ı	2402.00	AV	V	38.025	31.907	93.997	87.88	-	87.88
10/4-DI 3K		2480.00	PK	V	38.045	32.278	103.677	97.91	-	97.91
	-	2480.00	AV	V	38.045	32.278	90.787	85.02	-	85.02
	2483.5~	2483.50	PK	V	38.046	32.294	65.341	59.59	74	-14.41
	2500	2483.50	AV	V	38.046	32.294	56.301	50.55	54	-3.45

Page 48 of 51

Mode	Restricted	Freq.	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Band		Analyzer	Pol.	Gain	Factor		Level	@ 3 m	
	(MHz)	(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
8-DPSK	2310~ 2390	2388.40	PK	V	38.021	31.842	63.669	57.49	74	-16.51
		2388.40	AV	V	38.021	31.842	52.639	46.46	54	-7.54
	-	2402.00	PK	V	38.025	31.907	108.667	102.55	-	102.55
		2402.00	AV	V	38.025	31.907	94.287	88.17	-	88.17
	-	2480.00	PK	V	38.045	32.278	103.717	97.95	-	97.95
		2480.00	AV	V	38.045	32.278	90.497	84.73	-	84.73
	2483.5~ 2500	2483.50	PK	V	38.046	32.294	65.291	59.54	74	-14.46
		2483.50	AV	V	38.046	32.294	56.211	50.46	54	-3.54

Intertek

FCC ID.: ZJLKOBOT416 Report No.: TS13070145-EME Page 49 of 51

11. Power Line Conducted Emission Test §FCC 15.207

11.1 Operating Environment

Temperature: 23 °C
Relative Humidity: 52 %
Atmospheric Pressure 1008 hPa
Test Date: Jul. 19, 2013

11.2 Test Setup & Procedure

The test procedure was according to ANSI C63.4/2003.

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm/50uH coupling impedance with 50 ohm termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement. The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9 kHz.

The EUT configuration refers to the "Conducted set-up photo.pdf".

11.3 Emission Limit

Freq.	Conducted Limit (dBuV)					
(MHz)	Q.P.	Ave.				
0.15~0.50	66 – 56*	56 – 46*				
0.50~5.00	56	46				
5.00~30.0	60	50				

^{*}Decreases with the logarithm of the frequency.

11.4 Power Line Conducted Emission Test Data

Phase: Line Model No.: T416

Test Condition: Adapter mode

Frequency	Corr. Level		Limit	Level	Limit	Margin	
	Factor Qp		Qp	Av	Av	(dB)	
(MHz)	(dB)	(dBu∀)	(dBuV)	(dBuV)	(dBu∀)	$Q_{\mathbf{P}}$	Av
0.162	0.13	53.43	65.34	44.63	55.34	-11.91	-10.71
0.984	0.20	42.22	56.00	29.23	46.00	-13.78	-16.77
1.094	0.21	43.11	56.00	31.15	46.00	-12.89	-14.85
1.160	0.21	44.08	56.00	32.38	46.00	-11.92	-13.62
1.229	0.22	43.66	56.00	33.15	46.00	-12.34	-12.85
1.331	0.23	42.21	56.00	31.23	46.00	-13.79	-14.77
1.411	0.23	41.11	56.00	30.74	46.00	-14.89	-15.26
1.472 1.544	0.24 0.24 0.24	43.07 43.59	56.00 56.00	32.80 33.26	46.00 46.00 46.00	-14.09 -12.93 -12.41	-13.20 -12.74

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

Phase: Neutral Model No.: T416

Test Condition: Adapter mode

Frequency	Corr. Level		Limit	Level	Limit	Margin	
	Factor Qp		Qp	Av	Av	(dB)	
(MHz)	(dB)	(dBu∀)	(dBuV)	(dBuV)	(dBu∀)	$Q_{\mathbf{P}}$	Av
0.159 0.229 0.312 1.065 1.303 1.396 1.472	0.10 0.11 0.12 0.17 0.19 0.19	54.81 40.79 40.87 41.72 44.60 43.96 43.54	65.52 62.48 59.93 56.00 56.00 56.00 56.00	46.39 31.01 32.66 30.06 34.89 32.96 33.63	55.52 52.48 49.93 46.00 46.00 46.00	-10.71 -21.69 -19.06 -14.28 -11.40 -12.04 -12.46	-9.12 -21.47 -17.26 -15.94 -11.11 -13.04 -12.37
1.560	0.21	42.81	56.00	32.81	46.00	-13.19	-13.19
1.878	0.22	41.92	56.00	32.30	46.00	-14.08	-13.70

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

