

Estrutura de Dados 2

Introdução

- Definição
 - Seja d um número natural. Uma Árvore B de ordem d é uma árvores ordenada que é vazia ou que satisfaz as seguintes condições:
 - A raiz é uma folha o tem no mínimo dois filhos
 - Cada nó diferente da raiz e das folhas possui, no mínimo, d+1 filhos
 - Cada nó tem, no máximo, 2d+1 filhos
 - Todas as folhas estão no mesmo nível

- Um nó de uma Árvore B é chamado de página
 - Se uma página P não-folha possui m chaves, então P possui m+1 filhos
 - A raiz possui entre 1 e 2d chaves
 - Cada página diferente da raiz possui entre d e 2d chaves
 - Em cada página P, as chaves estão ordenadas
 - P contém m+1 ponteiros p0, p1, ..., p(m+1) apontando para seus filhos
 - Nas folhas, estes ponteiros indicam NULL

• Exemplo: d = 2

- Estrutura de uma página
 - Para qualquer chave y, pertencente à página apontada por p₀, y < S₁
 - Para qualquer chave y, pertencente à página apontada por p_k, 1 ≤ k ≤ m-1, S_k < y < S_{k+1}
 - Para qualquer chave y, pertencente à página apontada por p_m , $y > S_m$

Busca

- Seja s a chave procurada
- A busca inicia-se na primeira chave da raiz s_1 :
 - Compara-se s com o valor de s_i
 - Se $s = s_i$, a busca termina
 - Se s < s_i, iniciar o procedimento de busca na página apontada por p_{i-1}
 - Se p_{i-1} = NULL "ELEMENTO NÃO ENCONTRADO"
 - Se $s > s_i$ e $s_{i+1} \neq NULL$, realizar a busca em s_{i+1}
 - Se $s > s_i$ e $s_{i+1} = NULL$, iniciar o procedimento de busca na página apontada por p_i
 - Se $p_i = NULL$ "ELEMENTO NÃO ENCONTRADO"

Busca

• Exemplo: buscar o elemento 451

Elemento encontrado.

Busca

Exemplo: buscar o elemento 234

A chave 297 é maior que a chave buscada. O ponteiro entre 206 e 297 é NULL.

ELEMENTO NÃO ENCONTRADO

Inserção

- Seja s a chave a ser inserida
- Utilizando o processo de busca, verifica-se:
 - 1. Se a chave já existe
 - 2. O local onde a chave deverá ser inserida, caso ainda não exista
 - Insere-se a chave no ponto retornado no passo anterior
 - Se o número de chaves da página onde s foi inserida for maior que 2d, realizar cisão (split) da página

Cisão

- Seja p a página que sofrerá cisão e m o número de elementos em p (m = 2d+1)
 - Cria-se uma nova página vazia p'
 - Move-se os elementos p[d+1] a p[2d+1] para p'
 - Move-se o elemento p[d] para a página-pai de p
 - Após a inserção no pai, acertar os ponteiros para as páginas p e p'
 - A cisão pode se propagar no pai de p até a raiz, quando uma nova raiz será criada.

Inserção

• Exemplo (d = 1)

Página possui 2d+1 elementos. Realizar cisão

Exclusão

- Seja s a chave a ser removida
 - Busca-se s na árvore. Caso não seja encontrada, nada a fazer
 - Se s for encontrada numa página-folha, remova-a
 - Se s for encontrada numa página não-folha, remova-a e coloque no seu lugar a chave x imediatamente superior a s (x estará numa folha)

A exclusão sempre ocorrerá em uma folha

Exclusão (2)

 Caso a folha onde tenha ocorrido a exclusão tenha ficado desbalanceada (m < d), utilizar ou o procedimento de <u>redistribuição</u> ou de <u>concatenação</u>

Redistribuição

- Se a folha f possui uma irmã f' com k elementos, tal que k+m > 2d
 - Troca-se o primeiro (menor) elemento de f' pelo elemento do pai que aponta para f
 - Este elemento do pai é inserido em f, tornando-o novamente balanceado
 - Não é propagável, por isso é o método preferível

Concatenação

- Se não for possível aplicar a redistribuição e f possuir uma irmã f' com k chaves tal que m+k≤2d
 - Mover todas as chaves de f' para f
 - Acertar os ponteiros no pai de f, que pode ficar desbalanceado
 - A concatenação é propagável
 - Se chegar até a raiz, a árvore terá diminuído sua altura

Exclusão

• Exemplo (d=2)

Página desbalanceada. Utilizar redistribuição. Página desbalanceada. Utilizar concatenação.

Discussão

 Qual a complexidade, no pior caso, do algoritmo de busca em uma Árvore B?

$$O(2d \times h)$$

Resultado de uma busca linear

- É possível melhorá-la?
- E se utilizássemos uma busca binária? Como ficaria a complexidade?

O(log 2d x h)

Exercícios

- Qual o número máximo de <u>páginas</u> que uma Árvore B de altura h e ordem d pode ter?
- E qual o número máximo de <u>elementos</u> ?

Fórmula para os termos de uma PG:

$$S_n = a_1 (q^n-1)/(q-1)$$

- Determinar a expressão da altura máxima de uma Árvore B de ordem d.
- Implementar em Java uma Árvore B de ordem 4 completa, com as operações de inclusão, exclusão e busca.