

Exploring disease genetics among thousands of human genomes with GEMINI

Aaron Quinlan | University of Virginia | Jun 26, 2013

SciPy 2013 | Austin, Texas

quinlanlab.org

github.com/arq5x/gemini

@arq5x

@aaronquinlan

Acknowledgements

Uma Paila*
Postdoctoral Fellow
github.com/udp3f

Brad Chapman

Oliver Hofmann

Rory Kirchner

Motivation: Sequencing genomes? Easy. Understanding them? Hard.

Pre-2008 sadness

Sequencing human genomes was once very laborious and expensive

Motivation: Sequencing genomes? Easy. Understanding them? Hard.

Pre-2008 sadness

Sequencing human genomes
was once very laborious and expensive

Now it is not.

Right, Time to solve some diseases!

Motivation: Sequencing genomes? Easy. Understanding them? Hard.

Pre-2008 sadness

Sequencing human genomes was once very laborious and expensive

Now it is not.

Right, Time to solve some diseases!

Okay, guy.

It's...complicated.

Typical genetics study designs

cancer genomics

Sequence the genome of every sample in the study

Align DNA. Remove artifacts. Find genetic variants.

Typical genetics study designs

cancer genomics

Repeat. Like, a lot.

Analytical challenges: data integration

```
...CCTCATGCATGGAAA...
...CCTCATGCATGGAAA...
...CCTCATGCATGGAAA...
...CCTCATGCATGGAAA...
...CCTCATGCATGGAAA...
...CCTCATGTATGGAAA...
...CCTCATGCATGGAAA...
```

Analytical challenges: data integration

Genetic variation

CCTCATGCATGGAAA..

..CCTCATGTATGGAAA...

...CCTCATGCATGGAAA...

...CCTCATGCATGGAAA...

..CCTCATGTATGGAAA...

.CCTCATGCATGGAAA.

CCTCATG**T**ATGGAAA

dbSNP Short Genetic Variations

Conservation
Repeat elements
Genome Gaps
Cytobands
Gene annotations
"Mappability"
DeCIPHER
ISGA

ClinVar

Online Mendelian Inheritance in Man

1000 Genomes

A Deep Catalog of Human Genetic Variation

Chromatin marks
DNA methylation
RNA expression
TF binding

cyvcf, pysam, bx-python, tabix

Parallelized loading on SGE, Torque, LFS with **IPython.parallel**

Annotation
source

From VCF

From VCF

Computed

snpEff, VEP, KEGG*, HPRD

1000G, dbSNP, ESP, HapMap

ClinVar

UCSC

UCSC

ENCODE

User

defined

19

Computed

Variants Table

Core: chrom, ref. allele, alt. allele, id, qual, filter, ...

Variant info: depth, strand bias, allele balance, ...

Statistics: type, call rate, Pi, allele freq., HWE, ...

Gene: gene, transcript, impact, LoF, SIFT, pathway, ...

Population: rsld, ESP and 1000G allele freq., recomb.

Disease: OMIM, clinical significance, disease, ID

Genome: Conservation, RptMasker, CpG, SegDup...

Mappability: gaps; Illumina, SOLiD, Ion mappability

Regulation: TF binding, DNase1, chrom. segment.

<u>Custom</u>: New columns based upon overlaps between variants and researcher-defined genome annotations.

<u>Genotypes</u>: genotype, type (e.g., HET), phase, depth, number of hets, hom_ref, hom_alt, unknown, etc. <u>Individual samples</u>: gts.sample1, gt_types.sample2

Variant Impacts Table

Variant impacts for each gene/transcript

Samples Table

Sample Id, sex, phenotype, relatives...

One entry / sample in VCF / PED file.

Resources Table

The name and version of all annotation files used by GEMINI.

Version Table

Tracks the GEMINI software version that was used to create the database.

User-defined annotations

cyvcf, pysam, bx-python, tabix

Parallelized loading on SGE, Torque, LFS with IPython.parallel

Annotation source

From VCF

From VCF

Computed

snpEff, VEP, KEGG*, HPRD' 1000G, dbSNP, ESP, HapMap

ClinVar

UCSC

UCSC

ENCODE

User

defined

Variants Table

Core: chrom, ref. allele, alt. allele, id, qual, filter, ...

Variant info: depth, strand bias, allele balance, ...

Statistics: type, call rate, Pi, allele freq., HWE, ...

Gene: gene, transcript, impact, LoF, SIFT, pathway, ...

Population: rsld, ESP and 1000G allele freq., recomb.

Disease: OMIM, clinical significance, disease, ID

Genome: Conservation, RptMasker, CpG, SegDup...

Mappability: gaps; Illumina, SOLiD, Ion mappability

Regulation: TF binding, DNase1, chrom. segment.

Custom: New columns based upon overlaps between variants and researcher-defined genome annotations.

Computed

Genotypes: genotype, type (e.g., HET), phase, depth, number of hets, hom ref, hom alt, unknown, etc. Individual samples: qts.sample1, qt_types.sample2

Variant Impacts Table

Variant impacts for each gene/transcript

Samples Table

Sample Id, sex, phenotype, relatives... One entry / sample in VCF / PED file.

Resources Table

The name and version of all annotation files used by GEMINI.

Version Table

Tracks the GEMINI software version that was used to create the database.

cyvcf, pysam, bx-python, tabix

Parallelized loading on SGE, Torque, LFS with **IPython.parallel**

User-defined annotations

Column name

gts

gt_types

gt_phases

gt_depths

Access to (and filtering upon)
individual genotypes
(compressed NUMPY arrays
stored as SQLite BLOBs in DB)

73

91

53

Annotation source

From VCF

From VCF

Computed

snpEff, VEP, KEGG*, HPRD 1000G, dbSNP,

ESP, HapMap ClinVar

UCSC

UCSC

ENCODE

User

defined

Variants Table

Core: chrom, ref. allele, alt. allele, id, qual, filter, ...

Variant info: depth, strand bias, allele balance, ...

Statistics: type, call rate, Pi, allele freq., HWE, ...

Gene: gene, transcript, impact, LoF, SIFT, pathway, ...

Population: rsld, ESP and 1000G allele freq., recomb.

Disease: OMIM, clinical significance, disease, ID

Genome: Conservation, RptMasker, CpG, SegDup...

Mappability: gaps; Illumina, SOLiD, Ion mappability

Regulation: TF binding, DNase1, chrom. segment.

<u>Custom</u>: New columns based upon overlaps between variants and researcher-defined genome annotations.

Computed

<u>Genotypes</u>: genotype, type (e.g., HET), phase, depth, number of hets, hom_ref, hom_alt, unknown, etc. <u>Individual samples</u>: gts.sample1, gt_types.sample2

Variant Impacts Table

Variant impacts for each gene/transcript

Samples Table

Sample Id, sex, phenotype, relatives...
One entry / sample in VCF / PED file.

Resources Table

The name and version of all annotation files used by GEMINI.

Version Table

Tracks the GEMINI software version that was used to create the database.

Variants ad hoc data exploration gemini query **Samples Impacts** --query "select chrom, start, end, ref, alt, gene, impact, aaf, gts.kid gemini database from variants where $in_dbsnp = 0$ and aaf < 0.01 Built-in tools and analyses and $is_lof = 1$ and my_disease_regions = 1" Tool Description --gt-filter region "gt_types.mom == HET stats and annotate gt_types.dad == HET windower

pathways

de_novo

browser

and

gt_types.proband == HOM_ALT"

extract variants spec. genomic intervals or genes compute variant statistics (SFS, Ts/Tv, counts, etc.) add new columns based on custom annotations compute variant statistics across genome "windows" comp hets identify candidate compund heterozygotes maps genes and variants to KEGG pathways lof_sieve prioritize candidate loss-of-function variants interact find protein interactions for genes/variants/samples auto_rec identify variants meeting an autosomal recessive model auto_dom identify variants meeting an autosomal dominant model identify candidate de novo mutations launch the interactive gemini web browser interface

Variants ad hoc data exploration Framework for new tools - Burden tests gemini query - Population genetics **Samples Impacts** --query "select chrom, start, end, - Pedigree studies ref, alt, gene, - Haplotype analysis impact, aaf, gts.kid gemini database from variants - Custom tools and new methods where $in_dbsnp = 0$ and aaf < 0.01Built-in tools and analyses and $is_lof = 1$ and my_disease_regions = 1" Tool Description --gt-filter extract variants spec. genomic intervals or genes region "gt_types.mom == HET stats compute variant statistics (SFS, Ts/Tv, counts, etc.) and annotate add new columns based on custom annotations gt_types.dad == HET

and

gt_types.proband == HOM_ALT"

windower compute variant statistics across genome "windows" comp hets identify candidate compund heterozygotes pathways maps genes and variants to KEGG pathways lof_sieve prioritize candidate loss-of-function variants interact find protein interactions for genes/variants/samples auto_rec identify variants meeting an autosomal recessive model auto_dom identify variants meeting an autosomal dominant model de_novo identify candidate de novo mutations browser launch the interactive gemini web browser interface

```
from gemini import GeminiQuery
query = GeminiQuery("my.db")
```

```
from gemini import GeminiQuery

query = GeminiQuery("my.db")
query.run("select * from variants")
for row in query:
    # print specific columns
    print row['chrom'], row['rsid']
```

```
from gemini import GeminiQuery

query = GeminiQuery("my.db")
query.run("select * from variants")
for row in query:
    # print specific columns
    print row['chrom'], row['rsid']

# extract sample genotypes into a NUMPY array
genotype_types = row.gt_types
```

```
from gemini import GeminiQuery
query = GeminiQuery("my.db")
query.run("select * from variants")
for row in query:
    # print specific columns
    print row['chrom'], row['rsid']
    # extract sample genotypes into a <u>NUMPY array</u>
    genotype_types = row.gt_types
    # association test
    if assoc_test(genotype types) < 1E-8:</pre>
        print row
```

```
from gemini import GeminiQuery
query = GeminiQuery("my.db")
query.run("select * from variants")
for row in query:
    # print specific columns
    print row['chrom'], row['rsid']
    # extract sample genotypes into a <u>NUMPY array</u>
    genotype_types = row.gt_types
    # association test
    if assoc_test(genotype types) < 1E-8:</pre>
        print row
    # your groundbreaking idea!
    if my whizbang test(genotype types) < 1E-8:
        print row
```

Queries scale to studies with 1000s of samples

Experiment	Illumina "platinum" Trio	1046 samples
Return all novel variants select * from variants where in_dbsnp = 0	24 sec (N=345,028)	11 sec (N=87,939)
Return all loss-of-func. variants select * from variants where is_lof = 1	2 sec (N=1,126)	177 sec (N=13,049)
Return all rare, loss-of-func. variants select * from variants where is_lof = 1 and aaf < 0.01	2 sec (N=112)	152 sec (N=12,683)
Filtering variants based on sample genotype criteria select * from variants where is_lof = 1"gt-filter "gt_types.NA12878 == HET"	2 sec (N=487)	194 sec (N=384)

Find somatic mutations in cancer in 5 minutes

```
load a VCF for a tumor / normal pair into gemini.
# - use 4 cores
# - assume VCF has been annotated with snpEff
$ gemini load -v tumor-normal.vcf -t snpEff --cores 4 tumor-normal.vcf.db
Identify novel somatic mutations in the tumor that are likely to
# impact gene function.
$ gemini query -q "select chrom, start, end, ref, alt, type, gene \
            from variants
            where impact severity !='LOW'
            and in dbsnp = 0" \
          --gt-filter "gt_types.TUMOR == HET and
                  gt types.NORMAL == HOM REF and
                  gt_alt_depths.NORMAL == 0" \
         tumor-normal.vcf.db
```

Summary

- Flexible framework for mining genetic variation.
- Integrates important genome annotations.
- Query access to individual genotypes
- Extensible for new analyses and tool dev.
- Free. Open source. github.com/arq5x/gemini
- Well documented. gemini.readthedocs.org
- Extensible, portable, & reproducible
- In press at PLoS Computational Biology