MF796 Assignment 6

Shi Bo U56082126

March 10, 2021

1: Simulation in the Heston Model

(Q1)

I used the parameters from my previous homework which are 3.52, 0.052, 1.18, -0.77 and 0.034 for kappa, theta, sigma, rho and v0 respectively. It is reasonable because I use least square error to calibrate the parameters and it is suitable for market dynamics.

(Q2)

The dt is 1/252 for 252 trading days per year and N that I chose are from 100 to 100000 since I want the accuracy becomes powerful.

(Q3)

The European option price via FFT is 17.49672963. Then, the option price and difference between FFT and simulation becomes smaller and smaller as the number of simulation goes up.

	Ns	Euro price	Error
0	100	18.98223	1.485495
1	500	17.40755	0.089178
2	1000	17.60372	0.106994
3	5000	17.6882	0.19147
4	10000	17.51111	0.014384
5	15000	17.50251	0.005779
6	20000	17.58563	0.088904
7	30000	17.64307	0.146337
8	40000	17.57332	0.076586
9	50000	17.54766	0.05093
10	60000	17.60409	0.107364
11	80000	17.47895	0.017777
12	100000	17.55584	0.059106

The price becomes accurate as N goes up gradually. For example, when the number of simulations is above 3000, the up and out call option price becomes stable.

	Ns	Up and out Price	
0	100	2.891315	
1	500	2.962532	
2	1000	3.377155	
3	2000	2.932053	
4	3000	3.097927	
5	4000	2.981482	
6	5000	3.023981	
7	10000	2.876285	
8	15000	2.872053	
9	20000	2.863039	
10	30000	2.913489	
11	40000	2.960904	
12	50000	2.947719	
13	60000	2.924092	
14	80000	2.932519	
15	100000	2.932618	

Similarly, the price is getting stable after the number of simulations being greater than approximately 3000. Additionally, from the figure below, we can see that the convergence rate between control variate and non-control variate is not very clear but the price with control variate method converged a little bit faster than non-control variate scenario.

	Ns	Exotic price with control variate
0	100	1.996276
1	500	3.774243
2	1000	2.905674
3	2000	3.014806
4	3000	2.892033
5	4000	3.037048

5000	3.048131
10000	2.980279
15000	2.929029
20000	2.937936
30000	2.904216
40000	2.93636
50000	2.950003
60000	2.895251
80000	2.958543
100000	2.907559
	10000 15000 20000 30000 40000 50000 60000 80000