DATA SCIENCE pokemon analysis

Team Member:林冠宇、黃子瑋、蔡政融

Feature Engineering

Input

- → Data source : kaggle dataset
- → Input format : csv file
- → The data set contains 12

variables

Variable	Definition	Key
Number	Code name of Pokemon	1 to 800
Name	Name of Pokemon	
Туре 1	1st attack type	
Type 2	2nd attack type	
HP	Hitpoints	
Attack	Attack force	
Defense	Defense points	
Sp.Atk	Special attack force	
SP.Def	Special defense points	
Speed	Speed of pokemon	
Generation	Development stage	1 to 6
Legendary	Legendary status	1=legendary, 0=ordinary

Feature Engineering

pokemon.csv

- 24	A	В	C	D	E	F	G	Н	1	J	K	L
1	#	Name	Type 1	Type 2	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
2	1	Bulbasaur	Grass	Poison	45	49	49	65	65	45	1	FALSE
3	2	lvysaur	Grass	Poison	60	62	63	80	80	60	1	FALSE
4	3	Venusaur	Grass	Poison	80	82	83	100	100	80	1	FALSE
5	4	Mega Venus	Grass	Poison	80	100	123	122	120	80	1	FALSE
6	5	Charmande	Fire		39	52	43	60	50	65	1	FALSE
7	6	Charmeleor	Fire		58	64	58	80	65	80	1	FALSE
8	7	Charizard	Fire	Flying	78	84	78	109	85	100	1	FALSE
9	8	Mega Chariz	Fire	Dragon	78	130	111	130	85	100	1	FALSE
10	9	Mega Chariz	Fire	Flying	78	104	78	159	115	100	1	FALSE
11	10	Squirtle	Water		44	48	65	50	64	43	1	FALSE
12	11	Wartortle	Water		59	63	80	65	80	58	1	FALSE
13	12	Blastoise	Water		79	83	100	85	105	78	1	FALSE
14	13	Mega Blasto	Water		79	103	120	135	115	78	1	FALSE
15	14	Caterpie	Bug		45	30	35	20	20	45	1	FALSE
16	15	Metapod	Bug		50	20	55	25	25	30	1	FALSE

Feature Engineering

combats.csv

- 4	Α	В	С	D
1			Winner	D
2	266	298	298	
3	702	701	701	
4	191	668	668	
5	237	683	683	
6	151	231	151	
7	657	752	657	
8	192	134	134	
9	73	545	545	
10	220	763	763	
11	302	21	31	

Feature Processing

→ target

- Calculate "Win rate": We record the number of games and divide the individual wins by the total number of games played to calculate the win rate.
- "Mega" variable creation: We have specially selected whether it is Mega Pokemon for EDA to see if it will have an impact on victory.

Feature engineering

→ Missing value

- In our dataset, three pokemon's name are missing.
- There is a Pokemon that is divided into male and female and has a gender symbol next to the name label, which causes an error when reading the dataset. We also fixed this problem manually.

Model 02 Selection

- → Data transition
- \rightarrow 3 models
- → Evaluation

→ Merge two input files

```
merge1 <- join(firstpokemon,pokemon,by="number")
merge2 <- join(secondpokemon,pokemon,by="number")
newdata <- cbind(merge1,merge2,combat$Winner)</pre>
```

→ From character to numeric

```
#data transition
newdata2$type1_a <- as.numeric(factor(newdata2$type1_a))
newdata2$type2_a <- as.numeric(factor(newdata2$type2_a))
newdata2$legendary_a <- as.numeric(factor(newdata2$legendary_a))</pre>
```

→ Delete unnecessary columns and create a column called "binarywinner" as label

```
#new columns
binarywinner = rep(1, 50000)
binarywinner[newdata2$Winner == newdata2$number_b] = 0
newdata2$binary_winner <- binarywinner
newdata3 <- newdata2[,-c(1,2,13,14,25)]</pre>
```

→ From character to numeric

```
#data transition
newdata2$type1_a <- as.numeric(factor(newdata2$type1_a))
newdata2$type2_a <- as.numeric(factor(newdata2$type2_a))
newdata2$legendary_a <- as.numeric(factor(newdata2$legendary_a))</pre>
```

Models

- → Logistic regression
- → Random Forest
- → XGboost

Evaluation

- → Random Forest as example
 - Csv & confusion matrix

set	training	validation	testing
fold1	0.989	0.996	0.995
fold2	0.989	0.996	0.996
fold3	0.996	0.975	0.975
fold4	0.989	0.996	0.996
fold5	0.989	0.995	0.996
ave.	0.99	0.992	0.992

https://ziweihuang.shinyapps.io/FinalProject/

Bonus

Mega Rayquaza

Total battle numbers: 134 games(10 with same opponents)

Win rate: 94.78% (win 127 games, loss 7 games)

Question:

According to the conclusion of our EDA, "Mega Rayquaza" is a Pokémon that ranks in the top ten in total ability, but why the win rate does not even ranks in the top ten?

Lose to Mewtwo 超夢 (Normal & Mega-X & Mega-Y)

Lose to Florges 花傑夫人

Lose to Floette 花葉蒂

- Among them, Mewtwo is "Legendary" Pokémon, and the total ability is similar to "Mega Rayquaza ".
- The other three Pokémon are general Pokémon (non-legendary), and their win rate is not high.
- Win rate:
 - Cleffa 皮寶寶: 6.25%
 - Florges 花傑夫人: 62.81%
 - Floette 花葉蒂: 39.67%
 - They are all "Fairy" Pokémon!
 - They are only the 3 Fairy Pokémon that Mega Rayquaza Battle
 - ** Note: Florges花傑夫人 is the evolutionary pattern of Floette花葉蒂

- Facing the legendary Pokémon (this refers to Mewtwo):
 - A little lower total ability may be a reason to loss
 - Mewtwo is a "Psychic" Pokemon, the Mega Rayquaza is a "Dragon + Flying" Pokemon, and there is no advantage or disadvantage in the type.
- Facing other general Pokémon:
 - \circ "Fairy" restrains "Dragon" (Fairy moves attack Dragon and damage multiplied by 2)
 - In addition, after detailed exploration of skill moves, we found that all three Pokémon have moves that reduce the ability of opponents.
 - E.g : Cleffa 's "Angel Kiss" 天使之吻 effect is "Make opponents confused"
 - o The "Mist Field" 薄霧場地 of Florges and Floette effect is "Make Dragon-type moves reduced by 50% damage"

Conclusion:

- In addition to total ability, type restraint is also an important factor to consider.
- Besides, there are also moves to be consider. If we can collect data or obtain relevant data from other data sets, we think that from the previous example, the prediction results may be improved.

THANK you for listening