Corte Mínimo de Grafos Pesados

Relatório do 2º Projecto - Análise e Síntese de Algoritmos

Baltasar Dinis, 89416 e Afonso Ribeiro, 86752

Resumo—Redes de distribuição devem ser desenhadas de forma a suportar o tráfego a que são submetidas. No entanto, a elevada densidade de interconexões entre os produtores, centros de distribuição e o destino final torna a avaliação das mesmas não óbvia. Neste relatório apresentamos uma solução para este problema, permitindo avaliar a capacidade da rede e que estações de abastecimento e ligações devem ser aumentadas para aumentar essa mesma capacidade. Este trabalho foi realizado no contexto da Unidade Curricular de Análise e Síntese de Algoritmos, no ano lectivo de 2018-2019.

I. INTRODUÇÃO

Consideramos que há 3 categorias de vértices: 1) Os produtores, que têm um valor de produção p_i associado; 2) As estações de abastecimento, com capacidade para tratar uma determinada quantidade de bens; 3) uma estação de destino. Adicionalmente, cada ligação entre vértices têm um valor máximo que conseguem suportar.

O objetivo é calcular a capacidade da rede, e obter o fluxo máximo F de mercadorias, dos produtores para a estação de destino. Se $F < \sum_i p_i$, então a rede não é adequada, sendo necessário aumentar a capacidade das estações de abastecimento, bem como a capacidade das ligações.

O relatório está estruturado da seguinte forma: em II é apresentada a modelação do problema, o algoritmo e possíveis optimizações; em ?? é feita uma análise da complexidade da solução; em avalia-se experimentalmente a solução.

II. DESCRIÇÃO DA SOLUÇÃO

A. Modelação do Problema

Representamos o problema com um grafo dirigido pesado, no qual calculamos

o corte mínimo. Consideramos os produtores como vértices, existindo um nó fantasma, que funciona como fonte, que se liga aos mesmos. A aresta da fonte s para o produtor i tem peso p_i . Assim conseguimos simular o produtor. Cada estação de abastecimento expande-se em dois vértices, ligados com uma aresta cuja capacidade é a da estação. O sentido da aresta é dos produtores para o destino.

TODO: explicar porque é que o aumento se encontra no corte.

Como procuramos as estações e caminhos a aumentar mais próximas do sumidouro, calculamos o corte mínimo no grafo transposto (os pesos mantêm-se).

B. Cálculo do Corte Mínimo

Calculamos o corte mínimos de acordo com o método *Push-Relabel*[2], escolhendo os vértices com uma *FIFO*. Saturamos as arestas que partem da fonte e, enquanto os vértices estiverem ativos, é aplicada a operação de *discharge*.

Um vértice está ativo se tem excesso, sendo que quando lhe é inserido excesso (através de uma operação de *push*), é adicionado a uma fila. A operação de *discharge*, feita a partir do vértice no topo da fila. Envia todo o fluxo que consegue para os nós que têm a altura uma unidade mais baixa da sua. Se, depois de fazer isto, continua com excesso, é feita uma operação de *relabel*, que aumenta a sua altura.

C. Optimizações

Há diversas optimizações que podem ser aplicadas, apresentamos aqui algumas.

Na inicialização pode ser feita uma procura em lar no início, uma procura em lar

III. AVALIAÇÃO EXPERIMENTAL IV. CONCLUSÃO

REFERÊNCIAS

- [1] T. Cormen, C. Leiserson e L. R. Rivest, *Introduction to Algorithms* 1^a edição. Cambridge, Massachussets: The MIT Press, 1990.
- [2] A V Goldberg and R E Tarjan. 1986. "A new approach to the maximum flow problem." In Proceedings of the eighteenth annual ACM symposium on Theory of computing (STOC '86). ACM