Aufgabe 2:

Diskutiere die Funktion mit Gleichung $y = f(x) = \frac{4x^3 + x^2 - x - 4}{x^2 - 4}$

$$y' = \frac{4x^4 - 47x^2 + 4}{(x^2 - 4)^2}$$
 $y'' = \frac{30x(x^2 + 12)}{(x^2 - 4)^3}$

- a) $D_f = \mathbb{R} \setminus \{-2, 2\}$
- b) Keine einfache Symmetrie ersichtlich, aber siehe c)
- c) Asymptoten: $x_1 = -2$ und $x_2 = 2$ sind Polstellen (\rightarrow vertikalen Asymptoten)

Verhalten: $f(x) \rightarrow \infty$ $(x \rightarrow -2 \text{ und } x > -2)$ $f(x) \rightarrow -\infty$ $(x \rightarrow -2 \text{ und } x < -2)$

$$f(x) \rightarrow \infty \quad (x \rightarrow 2 \text{ und } x>2)$$

 $f(x) \rightarrow -\infty \quad (x \rightarrow 2 \text{ und } x<2)$

Polynomdivision für schiefe Asymptote:

$$(4x^3 + x^2 - x - 4)$$
: $(x^2 - 4) = 4x + 1 + \frac{15x}{x^2 - 4}$

g: y = 4x + 1 ist Gleichung der schiefen Asymptote

Zusätzlich folgt: G_f ist symmetrisch zum Punkt (0/1), denn G_h mit Gleichung $y = h(x) = 4x + \frac{15x}{x^2 - 4}$ wäre wegen h(-x) = -h(x) punktsymmetrisch zu (0/0).

d) Nullstellen: $4x^3 + x^2 - x - 4 = 0$

Erraten: $x_2 = 1$

Polynomdivision: $(4x^3 + x^2 - x - 4)$: $(x - 1) = 4x^2 + 5x + 4$

 $4x^2 + 5x + 4 = 0 \rightarrow$ Wegen negativer Diskriminante keine weitere Nullstelle.

e) Horizontaltangenten: y' := 0

biquadratische Gleichung $4x^4 - 47x^2 + 4 = 0$, Substitution $z = x^2$ $z_{1,2} = \dots$

$$x_3 \approx 3.4$$
 $x_4 \approx -3.4$ $x_5 \approx 0.29$ $x_6 \approx -0.29$ $y_3 \approx 21.4$ $y_4 \approx -19.4$ $y_5 \approx 1.05$ $y_6 \approx 0.95$

(vergleiche Eigenschaft Punktsymmetrie von G_{f} !)

f) Extremal- und Wendestellen

 $\begin{array}{lll} y''(x_3) > 0 & \to & \text{Tiefpunkt $T_1(3.4 \ / \ 21.4)$} \\ y''(x_4) < 0 & \to & \text{Hochpunkt $H_1(-3.4 \ / \ -19.4)$} \\ y''(x_5) < 0 & \to & \text{Hochpunkt $H_2(0.29 \ / \ 1.05)$} \\ y''(x_6) > 0 & \to & \text{Tiefpunkt $T_2(-0.29 \ / \ 0.95)$} \end{array}$

$$y'' := 0$$
: $30x(x^2 + 12) = 0$ $x_7 = 0$, $y_7 = 1$

W(0/1) muss Wendepunkt sein, da y" $(-\varepsilon) > 0$ und y" $(\varepsilon) < 0$

Nebenbei: Steigung der Wendetangente: y'(0) = 0.25

g) Graph

