

Микросхемы 249КП8У, 249КП8ВУ

Россия, 302040, г. Орел, ул. Лескова, д. 19

ОКП 63 3320

ЭТИКЕТКА КЕНС.431156.065ЭТ

Микросхемы интегральные 249КП8У, 249КП8ВУ, гибридные, (далее микросхемы), предназначены для использования в качестве элементов гальванической развязки в радиоэлектронной аппаратуре.

Категория качества "ВП"

№ CBC.04.431.0338.12

№ BP 22.1.4798-2012

Действительно до 24 января 2015 г. Центральный орган системы «Военэлектронсерт»

ГОСТ 30668-2000 Изделия электронной техники. Маркировка

Схема расположения выводов

Ключ

Таблица функционального назначения выводов микросхемы

	Вывод	Назначение		
	1	Анод излучающего диода		
	3 Катод излучающего диода			
	5	Эмиттер фотоприемника		
6 Колл		Коллектор фотоприемника		
	7	База фотоприемника		

Нумерация выводов показана условно

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры

Наименование параметра,		Норма				Темпе-	
единица измерения	Обозна- чение	249КП8У		249КП8ВУ		ратура,	Примеча-
(режим измерения)		не	не	не	не	°C	ние
фенини померении)		менее	более	менее	более		
1 Входное напряжение,							
B,	Uex	1,1	1,5	1,1	1,5	25	
$(npu\ I_{ex} = 10\ \text{MA})$							
2 Выходное остаточное						25,	
напряжение, В,	<i>Ивых.ост</i>		0,4		0,4	минус 60.	
$(npu\ Iex=10\ MA,$	С вых.ост		0,1		0,1	125	
$I_{KOM} = 2 MA$							
3 Ток утечки на выходе,			0,1		0,1	25	
MKA , $(npu\ Iex = 0\ MA$, $U\kappa om = 60B)$	Іут.вых		10		10	125	
4 Сопротивление изоля-							
ции, Ом	Ruз	10°		10°		25	
(npu Uu3=500 B)							1
5 Напряжение изоляции,							1
B,	Uиз	500		500		25	
$(npu\ Iym. \le 10\ мкA,\ t=5\ c)$							
6 Коэффициент передачи		0,25	1,2	0,25		минус60	
по току, $(npu\ Iex = 10\ MA,$	Ki	0,5	1,2	0,5		25	
$U\kappa o M = 10B$		0,5	1,7	0,5		125	
7 Droves province and			4		4	25	Rн=100 Ом
7 Время включения, мкс (при Iex=10 мA,	tвкл					25,	
$U\kappa o M = 5 B$	<i>івкл</i> і		10		10	минус60,	Rн=1 кОм
CKOM-3 B)						125	
8 Время выключения,			4		4	25	Rн=100 Ом
мкс	tвыкл					25,	
(при Івх=10 мА,			30		30		Rн=1 кОм
Uком $=5~B$						125	

Примечание 1. Электрическая прочность изоляции при эксплуатации микросхем в составе аппаратуры обеспечивается при покрытии корпуса тремя слоями лака ЭП-730 по ГОСТ 20824-81 или УР-231 по ТУ 6-21-14-90.

1.2 Содержание драгоценных металлов в 1000 шт. микросхем. 3олото ______ г Серебро _____ г. 1.3 Содержание цветных металлов Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

- 2.1 Наработка до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ, при температуре окружающей среды не более $(65\pm5)^{\circ}$ С не менее 100~000 ч, и не менее 150~000 ч в следующем облегченном режиме: коммутируемое напряжени Uком $\leq 20~$ B, входной ток Iвх $\leq 5~$ MA, коммутируемый ток Iком $\leq 5~$ MA в нормальных климатических условиях.
- 2.2 Гамма-процентный срок сохраняемости (Тс γ) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте $3\Pi\Pi$ 25 лет.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431160.458 ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Гарантийный срок -25 лет с даты приемки, а в случае перепроверки изделия - с даты перепроверки.

Гарантийная наработка:

- 100 000 ч − в режимах и условиях, допускаемых ТУ;
- 150 000 ч в облегченном режиме.

Гарантийная наработка исчисляется в пределах гарантийного срока.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 249КП8У, 249КП8ВУ соответствуют техническим условиям АЕЯР.431160.458ТУ и признаны годными для эксплуатации.

Приняты по извещению №	ОТ	
		дата
Штамп ОТК		Штамп представителя заказчика
Штамп "Перепроверка произведена		
	дата	
Приняты по извещению №	от	
-		дата
Штамп ОТК		Штамп представителя заказчика

5 УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

- 5.1 Указания по применению и эксплуатации по ОСТ В 11 1009-2001 с уточнениями, изложенными в настоящем разделе.
 - 5.2 Допустимое значение статического потенциала 2000 В.
 - 5.3 Монтаж микросхем проводить только в обесточенном состоянии.
- 5.4 Микросхемы пригодны для монтажа в аппаратуре методом групповой пайки при температуре не выше 260°С продолжительностью не более 4 с.
- 5.5 Очистку микросхем допускается производить в спирто-бензиновой смеси (1:1) при виброотмывке с частотой (50 ± 5) Γ ц и амплитудой колебаний до 1,0 мм в течение 4 минут.
- 5.6 Конструкция микросхем обеспечивает отсутствие резонансных частот в диапазоне ниже $20\ 000\ \Gamma$ ц.
- $5.7~{
 m Mикросхемы}$ не должны иметь собственных резонансных частот ниже $100~{
 m Fm}$
- 5.8 В схеме применения микросхем допускается включение резистора 1МОм между выводами база (7) и эмиттер (5) фотоприемника.
 - 5.9 Маркировка типа микросхем кодом:

249КП8У – 8 249КП8ВУ – 8В

Дата изготовления – календарный год и месяц кодом: буквенное и цифровое обозначение по ГОСТ РВ 20.39.412-97.