- Brain
- Tumor Detector

Table of contents

Ol Model
Architecture

Q2 Results & Evaluation

Challenges & Lessons

04 Grad- Cam

Project overview

This project develops an AI model to detect brain tumors from MRI scans using deep learning. We leverage a dataset of labeled MRI images to train a CNN classifier that distinguishes between HEALTHY and TUMOR cases. The goal is to assist radiologists by providing fast, accurate automated screening to improve early diagnosis and treatment planning.

• 01 Model Architecure

(Brain Tumor MRI Classification)

- 1. Custom CNN
 - Layers: 4 Conv Blocks → Flatten → FC (512) → Output (4)
 - Regularization: Dropout (25-50%) + BatchNorm
 - Grad-CAM: Layer 3 (128-ch) for attention maps
- 2. ResNet18 (Transfer Learning)
 - Fine-tuning: Unfrozen Layer4 + Custom FC head
 - Augmentations: Rotation, Flip, ColorJitter
 - Optimizer: AdamW + Cosine LR scheduler

02 Results and Evaluation

Metric	CNN	ResNet
Accuracy	91%	96%
F-1 Score	0.90	0.96
Speed	Faster	Slower

Insight: ResNets pretrained features boost accuracy by 5 percent.

• O3 CHALLENGES & LESSONS

Challenges

- Hit GPU limits → Used mixed-precision training
- Class imbalance → Weighted loss + augmentation
- Overfitting → Added dropout (60%)

Key Learnings

- CNNs: Depth ≠ accuracy (4-layer worked well)
- ResNet: Pretrained features boosted performance
- Grad-CAM: Revealed model focused on non-tumor areas

GRAD-CAM SAMPLES

RESNET MODEL

THANK YOU!