### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-285352 (P2001-285352A)

テーマコード(参考)

5 K 0 3 0

5K034

(43)公開日 平成13年10月12日(2001.10.12)

| (51) Int.Cl. <sup>7</sup> |       | 識別記号 | FΙ   |       | Ť      |
|---------------------------|-------|------|------|-------|--------|
| H04L                      | 12/56 |      | H04L | 11/20 | 1.02 Å |
|                           | 29/06 |      |      | 13/00 | 305D   |

# 審査請求 未請求 請求項の数16 〇L (全 18 頁)

| (21)出原番号 | 特願2000-94896( P2000-94896) | (71)出願人 000005223   |
|----------|----------------------------|---------------------|
|          |                            | 富土通株式会社             |
| (22) 出顧日 | 平成12年3月30日(2000.3.30)      | 神奈川県川崎市中原区上小田中4丁目1番 |
|          |                            | 1号                  |
|          |                            | (72)発明者 天羽 健策       |
|          |                            | 神奈川県川崎市中原区上小田中4丁自1番 |
|          |                            | 1号 富士通株式会社内         |
|          |                            | (72) 発明者 許 炎        |
|          |                            | 神奈川県川崎市中原区上小田中4丁目1番 |
|          |                            | 1号 富士通株式会社内         |
|          |                            | (74)代理人 10007/517   |
|          |                            | 弁理士 石田 敬 (外4名)      |
|          |                            |                     |
|          |                            | 最終頁に続く              |

# (54) 【発明の名称】 パケットスケジューリング方法および装置

#### (57)【要約】

【課題】 各帯域保証キューに対しては、それぞれの予 約帯域を保証しつつ、かつ、優先制御対象の優先キュー に対しては、予め定めた優先順序が常に保てるようにす る。

【解決手段】 入力された複数の所定のパラメータに基 づき、各帯域保証キューと、高い優先順序を有する優先 キューとについて、それぞれのサービス時刻を計算する サービス時刻計算部2と、計算された各サービス時刻相 互の大小比較をして、最先に出力すべきパケットを選定 するサービス時刻比較部3と、帯域保証と、優先制御と を両立させるように計算されたパラメータを生成するパ ラメータ生成部1と、から構成するパケットスケジュー リング装置である。

#### 図2

本発明に基づくパケットスケジューリング装置の 基本構成を示す図



### 【特許請求の範囲】

【請求項1】 それぞれ予約した帯域が保証されている 複数の帯域保証キューと、それぞれ予め優先順序が設定 されていて優先制御の対象となる複数の優先キューを有 する優先キュークラスの各キューにそれぞれ格納されて いるパケットのうち最先に出力すべきパケットを選定す るパケットスケジューリング方法であって、

各前記帯域保証キューに付与された重みと、前記優先キュークラス全体に付与された重みとを記憶し、

記憶した前記重みを参照し、前記帯域保証キューについてはバックログ状態のキューがあるときはそのキューの重みを、前記優先キュークラスについてはバックログ状態の前記優先キューがあるときは該優先キュークラスの重みを合計して合計値を計算し、

少なくとも、前記重みと、前記合計値と、前記優先順序 の高いパケットであって前記優先キュークラスに最初に 到着したパケットの最小到着時刻と、をパラメータとし て、バックログ状態の各前記キューについてサービス時 刻を計算し、

各前記サービス時刻相互間の大小比較により最小のサービス時刻を有する1のパケットを、前記の最先に出力すべきパケットとして、選定する、ことを特徴とするパケットスケジューリング方法。

【請求項2】 前記サービス時刻の計算を、実時刻に代えて、仮想時刻を用いて行う請求項1に記載の方法。

【請求項3】 前記優先順序に従い選択されなかった前 記優先キューについては、前記サービス時刻の計算の対 象から除外する請求項1に記載の方法。

【請求項4】 それぞれ予約した帯域が保証されている 複数の帯域保証キューと、それぞれ予め優先順序が設定 されていて優先制御の対象となる優先キュークラスをな す複数の優先キューと、にそれぞれ格納されているパケ ットのうち最先に出力すべきパケットを選定するパケッ トスケジューリング装置であって、

入力された複数の所定のパラメータに基づき、バックログ状態の各前記帯域保証キューと、バックログ状態にあり、かつ、最も高い前記優先順序を有する前記優先キューとについて、それぞれのサービス時刻を計算するサービス時刻計算部と、

計算された各前記サービス時刻相互の大小比較をして、 最小のサービス時刻を有するパケットを、前記の最先に 出力すべきパケットとして、選定するサービス時刻比較 部と、

前記帯域保証と、前記優先制御とを両立させるように計算された前記パラメータを生成するパラメータ生成部と、からなることを特徴とするパケットスケジューリング装置。

【請求項5】 前記パラメータ生成部は、

各前記帯域保証キューに付与された重みと、前記優先キュークラス全体に付与された重みとを、前記所定のパラ

メータとして、記憶する重み記憶手段を有する請求項4 に記載の装置。

【請求項6】 前記パラメータ生成部は、

バックログ状態にある前記帯域保証キューおよび前記優先年ューと、前記優先順序と、に関する各情報をもとに、1の優先キューを選択する優先キュー選択手段を有する請求項5に記載の装置。

【請求項7】 前記パラメータ生成部は、

前記優先キュー選択手段により選択された前記1の優先キューおよびバックログ状態にある前記帯域保証キューと、前記重み記憶手段から提供される当該バックログ状態にある前記キューについての各前記重みと、に関する各情報を入力として、各該キューの重みを合計してその合計値を計算する重み合計値計算手段を有する請求項6に記載の装置。

【請求項8】 前記パラメータ生成部は、

前記優先キュークラスに最初に到着したパケットの最小 到着時刻を記憶する最小到着時刻記憶手段を有する請求 項7に記載の装置。

【請求項9】 前記パラメータ生成部は、

前記サービス時刻計算部にて計算された前記サービス時刻に関連する計算時刻を、各前記パケット毎のサービス状況に応じて記憶し、かつ、該計算時刻を、次のパケットに対する計算のために該サービス時刻計算部にフィードバックするサービス時刻記憶手段を有する請求項8に記載の装置。

【請求項10】 前記重み合計値計算手段は、

前記帯域保証キューについては、バックログ状態にある前記キューの前記重みを加算し、

前記複数の優先キューについては、いずれか1つがバックログ状態にあれば、前記優先キュークラスの前記重みを加算して前記合計値を計算する請求項7に記載の装置。

【請求項11】 サービス時刻記憶手段は、

同一の前記キューから直前に出力されたパケットのサービス終了時刻を記憶し、

前記優先キュークラスの中で、最後に出力したパケット のサービス終了時刻を記憶する請求項9に記載の装置。

【請求項12】 前記サービス時刻計算部は、

前記優先キュー選択手段により選択された前記優先キューについては、前記最小到着時刻と、サービス終了時刻と、前記優先キュークラスの重みによって、前記サービス時刻を計算する請求項8に記載の装置。

【請求項13】 前記サービス時刻比較部は、前記優先キュー選択手段によって選択されなかった前記優先キューについては、前記の大小比較の対象から除外するために、前記サービス時刻として、該サービス時刻が通常取りうる最大値よりも大きい値を設定する請求項6に記載の装置。

【請求項14】 前記優先キュー選択手段は、

各前記キューに前記パケットが格納されているか否かの 情報を記憶するキュー状態記憶手段と、

各前記キューが前記優先キューか否かの情報を記憶する 優先制御対象キュー記憶手段と、

前記優先順序に関する情報を記憶する優先順序記憶手段 と、

前記の各情報をもとに、バックログ状態にある高優先のパケットを選択し、その選択情報を出力する請求項6に記載の装置。

【請求項15】 各前記帯域保証キューに付与される前記重みの合計と、前記の最先に出力すべきパケットを送出する出力リンクの速度との差分により、前記優先キュークラス全体に付与される前記重みを設定する請求項5に記載の装置。

【請求項16】 前記重み合計値計算手段からの出力を もとに仮想時刻を計算する仮想時刻計算手段をさらに設 け、

前記最小到着時刻記憶手段は、計算された前記仮想時刻をもとに、前記優先キュークラスに最初に到着したパケットの到着時刻における該仮想時刻を記憶し、

前記サービス時刻計算部は、記憶した前記仮想時刻に基づいて、各前記帯域保証キューに対しおよび前記優先キュー選択手段により選択された前記優先キューに対し、それぞれ、前記サービス時刻を計算する請求項8に記載の装置。

#### 【発明の詳細な説明】

### [0001]

【発明の属する技術分野】本発明は、ネットワーク内の中継装置に格納された複数のパケットを読み出す際の読出し順序を決定するためのパケットスケジューリング方法および装置に関する。近年、ネットワークを利用するマルチメディアやリアルタイム・アプリケーション等の普及に伴い、そのネットワークが提供する通信品質(QoS)の保証が求められている。このネットワーク内の、例えばルーターやスイッチ等の中継装置においては、トラヒックの種別に応じて、各パケットを複数のキューに分類し、それぞれのキューに要求された通信品質(QoS)を保証しながら該パケットの転送制御を行うための手段が必要となる。この手段がパケットスケジューリング装置である。

#### [0002]

【従来の技術】上記のパケットスケジューリング、すなわち通信品質を保証した、パケット読出し順序、を決定するための要因にはいくつか考えられるが、特に効果的な決定要因として、〈1〉帯域保証と、〈2〉優先制御とが知られている。ここに帯域保証とは、ユーザからの予約に基づき、当該トラヒックに対して許容すべき帯域、例えば100Mbps、を保証することを意味する。

【0003】一方優先制御とは、帯域が予約されていないときに、いわゆるBest-effortの転送ではなく、ユー

ザからの指定に基づいて複数のトラヒックに対して、高優先のトラヒックから低優先のトラヒックまで各々に優先順序を付与しておき、転送すべきパケットが発生したときは、そのパケットが属するトラヒックの優先順序がより高いものから、パケットの読出しを行う、ことを意味する。

【0004】したがって、パケットスケジューリング装置においては、予約された帯域を保証しつつ、かつ、優先順序の高いトラヒックを優先順序の低いトラヒックに優先させて、パケットの読出しを行うことが必要である。従来より、パケットスケジューリング方法として、パケットフェアキューイング(Packet Fair Queueing)が用いられてきた。このパケットフェアキューイングは、前述した各キュー毎に予約された帯域に基づいて、重み(weight)を設定する。そして、パケット転送に使われていない余剰帯域があればその余剰帯域を、各キュー毎の重みに従って公平に再配分して有効利用する。以下、このパケットフェアキューイングをもとにして詳しく説明する。

【0005】パケットフェアキューイングを実現する公知の方法は、文献1(A.K.Parekh and R.G.Gallager、"A Generalized Processor Sharing Approach to Flow Control in Integrated Service Networks: The Single=Node Case", IEEE/ACM Trans. on Networking, vol.1, pp.344-357, June 1993)に記載されているGPS規則(Generalized Processor Sharing Discipline)と呼ばれる方法に準拠している。

【0006】このGPS規則は、パケットフェアキュー イングの理想的な流体モデルとして知られている。この 流体モデルでは、サービス対象を無限に分割することが でき、したがってすべてのフロー(例えばファイル転送 等のアプリケーションレベルでのフロー)を並行してサ ービスできることを仮定している。ところがパケットは 分割することができないので、複数のパケットを同時に サービスすることができない。このため、実際のパケッ トスケジューリングにおいては、上記GPS規則を近似 する方法を用いている。なお、本発明においては、該G PS規則を近似するパケットスケジューリング方法の総 称として、パケットフェアキューイングの語を用いる。 【0007】パケットフェアキューイングの1つとし て、WFQ (Weighted Fair Queueing) と呼ばれるパケ ットスケジューリング方法がよく知られている。これ は、GPS規則で規定する「サービス終了時刻」を計算 して用いるものである。このWFQについては、上記の 文献1に詳しく記載されているが、ここで、これについ て簡単に説明しておく。

【0008】各フローをなすパケットは、それぞれに対応するキューに格納される。これらのキューの1つ1つをキューi(i=1, 2, 3…)と表すと、キューiには、キューiについて予約した帯域に比例した重み $\phi$ i

が設定されているものとする。また、バックログ状態の キューの重みの合計をもりとする。ここでは、送信すべ きパケットがキューに格納されているとき、そのキュー は「バックログ状態」であると呼ぶ。もしくは「アクテ ィブ」であると呼ぶ。

> $r i = \phi i \times R / \phi b$ ... (1)  $Fi = max(t_i, F'_i) + Li/r_i \cdots (2)$

なお上記式(1)および(2)において、Rは出力リン クの速度、t iはキューiの先頭パケットの到着時 刻、Liはキューiの先頭パケットのパケット長、F´ iはこれから出力すべきパケットの直前のパケットのサ ービス終了時刻であり、また、max(t i,F´ i)はt iとF'iのうち大きい方を表す。

【0010】WFQにおいては、上記式(2)によって 計算されたFiのうち、最小のFiを持つキューiに格 納されている先頭パケットを、次に出力すべきパケット として選択する。上述のようにして、複数のキューiの 中から次に出力すべきパケットを選択する、従来のパケ ットフェアキューイングによるパケットスケジューリン グ方法では、パケットフェアキューイングの重みゅiを 次のように設定する。

【0011】まず、帯域保証を要求するトラヒックに対 しては、各トラック毎に予約した帯域の相互の比に基づ いて、各々の重みφiを設定する。一方、優先制御を要 求するトラヒックに対しては、低優先トラヒックの重み  $\phi$ i を、高優先トラヒックの重み $\phi$ i より小さく設定す る。このように重みを設定することにより、帯域保証を 要求するトラヒックに対しては予約帯域を保証すること ができる。一方、高優先トラヒックは、低優先トラヒッ クよりも大きい帯域 (φi)が割当てられて、優先的に 出力される。

【0012】なお、その他従来のパケットフェアキュー イングとして、仮想時刻 (virtual clock ) を用いるこ とによって上記のWFQを変形し計算量を抑えることの できる、SCFQ (Self Clocked Fair Queueing) と呼 ばれるパケットスケジューリング方法が、文献2:S.Go lestani, "A Self-Clocked Fair Queueing Scheme for Broadband Applications", In Proc. of INFOCOM '94, pp.636-646, 1994. で提案されており、また、バーチャ ルクロック (Virtual Clock ) と呼ばれる同様の方法 が、文献3:L.Zhang, "Virtual Clock: A New Traffic Control Algorithm for Packet Switcing Networkin g", In Proc. of SIGCOMM '90, pp.19-29, 1990.で提案 されている。この仮想時刻を用いたアルゴリズムも本発 明において適用可能であるが、これについては、第2実 施例として、後述する。

# [0013]

【発明が解決しようとする課題】上述した従来のパケッ トフェアキューイングによるパケットスケジューリング 方法では、トラヒックのパケットは、このトラヒックに

【0009】これらゆ i とめbを用いると、各キューの 変数Fiは、次式(1)のr\_i(Qiのパケットの再 配分後の出力速度)によって、次式(2)のように計算 される。Fi(finish i)は、上記のサービス 終了時刻である。

対して予め設定した帯域 (φi) のみに従って出力され る。したがって、低優先トラヒックのパケットは、その 予約帯域に従い、高優先トラヒックのパケットがキュー に格納されているかどうかに拘わらず、その低優先トラ ヒックのパケットが出力される。このため、本来、先に 出力されるべき高優先トラヒックのパケットが、低優先 トラヒックのパケットの後に出力されてしまう場合があ る。この結果、高優先パケットと低優先パゲットの出力 順序が逆転してしまい、パケット単位で見た場合、高優 先トラヒックが低優先トラヒックに対して優先的にサー ビスを受けられない場合がある、という問題があった。 【0014】したがって本発明は、上述の問題点に鑑 み、上記〈1〉帯域保証のもとでは予約された帯域を保 証しつつ、かつ上記〈2〉優先制御のもとでは、高優先 トラヒックのパケットが必ず低優先トラヒックのパケッ トに対して優先することを保証する、パケットスケジュ ーリング方法および装置を提供することを目的とするも のである。

【0015】すなわち本発明は、上記〈1〉帯域保証 と、上記〈2〉優先制御とを、常に、両立させることを 目的とするものである。

### [0016]

【課題を解決するための手段】図1は本発明に基づくパ ケットスケジューリング方法の基本ステップを示すプロ ーチャートである。図2は本発明に基づくパケットスケ ジューリング装置の基本構成を示す図である。

【0017】本発明に係る方法は、それぞれ予約した帯 域が保証されている複数の帯域保証キュー(13)と、 それぞれ予め優先順序が設定されていて優先制御の対象 となる複数の優先キューを有する優先キュークラス(1 4)の各キューにそれぞれ格納されているパケットのう ち最先に出力すべきパケットを選定するパケットスケジ ューリング方法であって、図1に示すステップS1~S 4を有する。これらのステップは次のとおりである。 【0018】ステップS1:各帯域保証キューに付与さ

れた重みと、優先キュークラス全体に付与された重み (φi、φp)とを記憶する。

ステップS2:記憶した重みを参照し、帯域保証キュー についてはバックログ状態のキューがあるときはそのキ ューの重みを、優先キュークラスについてはバックログ 状態の優先キューがあるときはこの優先キュークラスの 重みを合計して合計値(øb)を計算する。

【0019】ステップS3:少なくとも、重みと、合計

値と、優先順序の高いパケットであって優先キュークラスに最初に到着したパケットの最小到着時刻(t min)と、をパラメータとして、バックログ状態の各キューについてサービス時刻を計算する。

ステップS4:各サービス時刻相互間の大小比較により 最小のサービス時刻を有する1のパケットを、最先に出 力すべきパケットとして、選定する。

【0020】なお前記サービス時刻の計算は、実時刻に 代えて、仮想時刻v(T)を用いて行うこともできる。 本発明に係る装置は、上述したパケットスケジューリン グ方法を実施可能な装置であって、図2に示す基本構成 を有する。図2を参照すると、本発明のパケットスケジューリング装置11は、基本的に、本図に示すブロック 1~3からなる。

【0021】サービス時刻計算部2は、入力された複数の所定のパラメータに基づき、バックログ状態の各帯域保証キュー(13)と、バックログ状態にあり、かつ、最も高い優先順序を有する前記優先キュー(14)とについて、それぞれのサービス時刻を計算する。サービス時刻比較部3は、計算された各サービス時刻相互の大小比較をして、最小のサービス時刻を有するパケットを、最先に出力すべきパケットとして、選定する。

【0022】パラメータ生成部1は、帯域保証と、優先制御とを両立させるように計算されたパラメータを生成する。

#### [0023]

【発明の実施の形態】図3は本発明に基づくパケットスケジューリング装置を適用したパケット転送システムの一例を示す図である。なお全図を通じて、同様の構成要素には同一の参照番号または記号を付して示す。本図において、参照番号10はパケット転送システムであり、既述した例えばルーターやスイッチ等の中継装置内に形

$$wp = R - w$$
 all

【0027】このように帯域の割振りをすると、帯域保

$$\phi i = w i / R$$

$$\phi p = (R - w all) / R$$

と表すことができる。

【0028】上記式(4)および(5)のように、帯域保証キュー13の各々の重みφiと、優先キュークラス14全体の重みφpを設定しておくことにより、本発明の目的である、〈1〉帯域保証と〈2〉優先制御との両立が実現しやすくなる。図4は本発明の第1実施例に基づく構成を表す図である。図2のサービス時刻計算部2は図4においてサービス時刻計算手段25として示され、図2のサービス時刻比較部3は図4においてサービス時刻比較手段27として示される。そして図2のパラメータ生成部1は、図4において、優先キュー選択手段21、重み記憶手段22、重み合計値計算手段23、最

成される。

【0024】このパケット転送システム10の中で、本発明の主たる構成要素となるのがパケットスケジューリング装置11である。いわゆるスケジューラである。パケットスケジューリング装置11は、その入力側に複数のキューからなるキューセット12を備え、またその出力側は出力リンク15に接続する。キューセット12は、図示するように、帯域保証キュー13と、優先キュークラス14とに分類される。帯域保証キュー13に属するキューは一例としてQ1、Q2…Q(n-5)のように示され、優先キュークラス14に属するキューは一例として優先キュー(優先制御対象キュー)Q(n-4)、Q(n-2)…Qnのように示されている。なお、キューの割当ての仕方は、この例に限らず、任意でよい。

【0025】キューセット12内のパケット群のうちの1つが、パケット転送装置11において、パケットフェアキューイングに基づき選択される。選択されたその1つのパケットは出力リンク15に送出され、相手方装置(図示せず)に送信される。上記出力リンク15の速度、すなわち出力リンク速度は図中、Rとして示されている。出力リンク速度Rは、実際には、回線速度、回線容量あるいは出力帯域等である。

【0026】この出力リンク速度Rを占有する帯域の比率、すなわち重み(w)を、図示するように割り振る。これは本発明の特徴の1つでもある。すなわちRを、w1~w(n-5)と、wpと、に割り振る。ここに、wi(i=1,2…(n-5))を、帯域保証キュー13の各キュー(Q1,Q2…Q(n-5))の予約帯域とすると、優先キュークラス14(Q(n-4)~Qn)の予約帯域wpを、

#### ... (3)

証キュー13の各キューの重み $\phi$  i (i = 1, 2…(n - 5))と、優先キュークラス14全体の重み $\phi$ pは、

... (4)

... (5)

小到着時刻記憶手段24、サービス時刻計算手段25 およびサービス時刻記憶手段26 として示される。

【0029】本図において、各ブロック21~27の機能は次のとおりである。優先キュー選択手段21は、キューセット12の中で、優先キュークラス14に属する優先キュー(優先制御対象キュー)が該クラスの中のどのキューであるか、キューセット12の各キューにパケットが格納されているか否か(キュー状態)、優先キュークラス14内の各優先キューの優先順序がどのように設定されているか、の各情報を記憶しておいて、該情報と所定のアルゴリズムに基づき、パケットを出力すべき1つの優先キューを選択する。

【0030】重み記憶手段22は、帯域保証キュー13の各々の重みφi(上記の式(4))と、優先キュークラス14の重みφi(上記の式(5))とを記憶する。重み合計値計算手段23は、キューセット12内の各キューのバックログ状態に基づいて、パケットを格納している各キュー(13.14)が有する重みの合計値を計算する。優先キュー選択手段21により優先キュー14が選択されており、かつ、いずれかの帯域保証キュー13がバックログ状態であれば、重み記憶手段22を参照して、各φiとφpとを合計する。その合計値はφbである。

【0031】最小到着時刻記憶手段24は、優先キュークラス14内の優先キューに格納されている各パケットのうち、優先キュークラス14に最初に到着したパケットの到着時刻を記憶する。サービス時刻計算手段25は、パケットのサービス時刻を計算する。サービス時刻とは、直前に出力されたパケットのサービス終了時刻か、今サービス中であれば、そのサービス終了予定時刻である。

【0032】サービス時刻記憶手段26は、サービス時 刻をパケットと関連づけて記憶する。そのパケットが帯 域保証キュー13のパケットであれば、直前に同じキュ ーから出力されたパケットについてのサービス時刻であ り、あるいは、そのパケットが優先キュークラス14の パケットであれば、優先順序に従って直前に選択された キューから出力されたパケットのサービス時刻である。 【0033】サービス時刻比較手段27は、最小到着時 刻記憶手段24と、サービス時刻記憶手段26と協働し てサービス時刻計算手段25において計算された各キュ ー(13,14)についてのサービス時刻を相互に大小 比較し、そのうち最小となるサービス時刻を判定して、 当該最小サービス時刻に相当する1つのキューを選択す る。これにより、図3のパケットスケジューリング装置 11から、1つの選択されたパケットが、出力リンク1 5に送出される。

【0034】図5は図4に表す優先キュー選択手段21の具体的構成例を示す図である。本図において、優先キュー選択手段21は、4つの手段31、32、33および34からなる。キュー状態記憶手段31は、キューセット12内にパケットが格納されているか否かを記憶する。

【0035】優先制御対象キュー記憶手段32は、キューセット12の中で優先キュークラス14に属する優先制御対象キュー(優先キュー)を記憶する。優先順序記憶手段33は、優先キュークラス14に属する各優先キューの優先順序を記憶する。選択手段34は、上記手段31、32および33からの、"キュー状態"情報と、"優先順序"情報と、"優先キュー"情報とに基づいて、次に重み合計値計算手段23等に与えるべきパケット情報を出力する。

【0036】以下、図4および図5を参照して、パケットスケジューリング装置11の動作を詳しく説明する。 1)優先キュー選択手段21は、パケットを格納している優先キューのうち、最も高優先(優先順序の高い)なキューを選択する。この選択されたキューの情報を、重み合計値計算手段23、サービス時刻計算手段25およびサービス時刻比較手段27に通知する(図4の〔1〕)。

【0037】図5に示すとおり、優先キュー選択手段2 1は次のようにして、優先キューを選択する。

- a)キュー状態記憶手段31、優先制御対象キュー記憶 手段32および優先順序記憶手段33は、それぞれ、着 目した1つのキューが、バックログ状態であるか否か、 優先制御対象か否か、優先キューであればその優先順序 を、選択手段34に通知する。
- b) 選択手段34では、バックログ状態でかつ、優先制 御対象キューの中で、最も優先順序の高いキューを選択 する。
- 2) 図4の重み記憶手段22は、帯域保証キュー13の各キューの重みφiと、優先キュークラス14の重みφpとを記憶している。記憶しているこれらの重みφi、φpは、重み合計値計算手段23と、サービス時刻計算手段25とにそれぞれ通知される(図4の〔2〕と〔2〕、)。

【0038】なお、各帯域保証キューiの重み $\phi$ iと、優先キュークラスの重み $\phi$ pは、既述の式(4)および(5)に従い、 $\phi$ p=(R-w\_all)/Rおよび $\phi$ i=w i/R

によってそれぞれ求まる。前述のとおり、Rは出力リンク速度、W i は各帯域保証キューiの予約帯域、W allは帯域保証するトラヒックの予約帯域の合計である。

- 3) 図4の重み合計値計算手段23では、パケットを格納するキューすなわちアクティブなキューの全ての重みの合計値φbを、下記a) およびb) のように計算し、サービス時刻計算手段25に通知する(図2の〔3〕)。
- a) 優先キュークラス14の中の少なくとも1つの優先 キューがバックログ状態の場合

 $\phi$ b = (バックログ状態の帯域保証キュー $\phi$ i の重みの合計値 $\Sigma \phi$ i ) +  $\phi$ p

b) 優先キュークラス 14の優先キューの全てが空の場合

 $\phi$ b =  $(バックログ状態の帯域保証キュー<math>\phi$ i の重みの合計値 $\Sigma\phi$ i)

なお、上記 φ b の計算手順の具体例については、後に図 6 を参照して説明する。

4)図4の最小到着時刻記憶手段24は、優先キュークラス14の優先キューに格納されているパケットの中で、その到着時刻が最小のパケットの時刻、すなわち最

先に到着した最小到着時刻をt minとして、サービス時刻計算手段25に通知する(図2の〔4〕)。

5)図4のサービス時刻記憶手段26は、サービス時刻計算手段25で計算されたサービス時刻を、パケットと関連付けて記憶する。ここに記憶したサービス時刻は、サービス時刻計算手段25に通知される(図4の〔5〕)。

6) 図4のサービス時刻計算手段25はキューiのサービス時刻Fiを計算し、この計算後のFiを再び記憶手段26に格納すると共に(図4の[6])、サービス時刻比較手段27に通知する(図4の[6])。

【0039】上記のサービス時刻を計算する方法および対象となるパケットは、適用するパケットフェアキューイングにより異なる。例えば、パケットフェアキューイングとして既述のパケットスケジューリング方法WFQを用いる場合には、各キューの先頭パケットの、GPS規則におけるサービス終了時刻を、上記のサービス時刻として計算する。またパケットフェアキューイングとしてSFQ(Start-timeFair Queueing)と呼ばれるパケットスケジューリング方法を用いる場合には、該GPS規則におけるサービス開始時刻を、上記サービス時刻として計算する。

【0040】なお、上記のWFQを用いる場合も、SFQを用いる場合も、従来の考え方によれば、キューiのパケットのサービス時刻Fiを計算するときに用いるパラメータとして、次の3つのパラメータ、すなわちもi:パケットの到着時間、F´i:キューiで直前に格納されていたパケットのサービス時刻、φ\_i:キューiの重みを用いることになる。

【0041】ところが本発明の考え方によると、上記の考え方に加えて、さらに、特に優先キューに関して、変形したも、iと、F´iと、φ iとを用いる。すなわち選択された優先キューρに格納されているパケットのサービス時刻の計算については、以下のように変形したも min, F´p, φ pを、上記のパラメータとして用いる。

[0042]

 $t i \rightarrow t min$  $F' i \rightarrow F' p$ 

 $\phi$  i  $\rightarrow$   $\phi$  p

ここで、

t<sub>min</sub>:最小到着時刻記憶手段24に記憶している値、

F´p:a)もしサービス時刻Fiがキューの先頭パケットのサービス時刻であれば、優先キュークラス14のパケットで、サービス中のパケットのサービス時刻、または、直前にサービスされたパケットのサービス時刻、b)もしキューの先頭のパケットでなければ、そのキューで直前に格納されていたパケットのサービス時刻、
φ p:優先キュークラス14に対して設定された重

み、である。

【0043】なお、選択された優先キューの先頭パケットのサービス時刻F´pは、その優先キューが選択され続けている間に再計算されるものとする。また、従来のパケットフェアキューイングのもとでは、サービス時刻の計算に、そのキューに格納されているパケット長の和を用いており、従来法のもとでは、選択された優先キューについてはそのパケット長の和を用いることになる。ところが本発明によれば、そのような、選択された優先キューのパケット長の和に代えて、優先キュークラス14のパケットのパケット長の和を用いる。

【0044】この場合、選択されていない優先キューのサービス時刻F′pとしては、サービス時刻として取り得る値の最大値より大きい値を設定する。これにより、下記の7)において、全てのキューのサービス時刻の大小を比較したときに、当該非選択の優先キューが選出されることはなく、当該非選択の優先キューを比較対象から容易に除外することができる。

7)図4のサービス時刻比較手段27は、上記非選択の優先キューを除く全てのアクティブなキュー(13.14)の各先頭パケットについて、これら相互間のサービス時刻の大小比較を行う。この比較の結果、最小のサービス時刻を有するいずれか1つのキューの先頭パケットを選出し、出力リンク15に送出する。

【0045】前述の説明の中で、 øbの計算手順については後述する、としていたので、これをここで説明しておく。図6は重み合計値計算手段23による øbの計算手順の具体例を示すフローチャートである。

ステップS11:全てのキューの重みの合計値である $\phi$ bの初期値として0を設定する。

【0046】ステップS12:各キューiについてそれぞれ本フローチャートのステップを繰り返し実行する。ステップS13:今着目しているキューiが、優先制御対象キュー(優先キュー)か否か判定する。例えば図3の左端に示す例では、 $Q(n-4)\sim Qn$ のいずれか1つに該当すれば、その判定はYesであり、 $Q1\sim Q(n-5)$ のいずれか1つに該当すれば、その判定はNoである。

【0047】ステップS14:今着目している優先キューiが、優先順序に鑑み、選択されているか(Yes)、否か(No)を判定する。

ステップS15:今着目しているキューiが、選択優先 キューであるので、合計値かりに、φi=φpを加算す る。φpは優先キュークラス14の重みである。

【0048】ステップS16:今着目しているキューiが、非選択優先キューであるので、上述のように、サービス時刻比較手段27(図4)による比較対象から除外されており、合計値øbには何も加算されない。

ステップS17:上記ステップS13での判定がNoのとき、すなわち今着目しているキューiが優先制御対象

キュー(14)でないとき(帯域保証キュー13のとき)、そのキュー i がアクティブか否か、すなわちパケットを格納しているか否か判定する。

【0049】ステップS18:今着目しているキューi がアクティブであるから、当該キューiの重みφiを合 計値φbに加算する。

ステップS19:今着目しているキューiがアクティブでないので、その重みφiを合計値φbに加算する必要はなく、φbはそのままである。なお、上述したステップS13、S14およびS17の判定には、既述した図5の優先キュー選択手段21からの情報が用いられる。【0050】図3~図6を用いて説明した本発明のパケットスケジューリング装置11の概要をさらに分かりやすく図解して説明する。図7は本発明に係るパケットフ

ットスケジューリング装置11の概要をさらに分かりやすく図解して説明する。図7は本発明に係るパケットスケジューリング装置11の動作概要を図解的に表す図である。なお、本図は同装置11内の主として優先キュー選択手段21とサービス時刻比較手段27に着目した図である。

【0051】本図の左端のキューセット12は、図3の左端に示したとおりである。本図の上欄に示すtypeiは、優先制御対象フラグであり、上述した図6のステップS13での判断により定まる。siは、キュー状態フラグであり、図6のステップS17(およびS14)での判断により定まる。

【0053】フラグselect iについて見ると、図7の例では、優先キュークラス14の中で、かつ、アクティブなキューQ(n-2)~Qnの中で、最も優先順序が高いキューはQ(n-2)であるから、キューQ(n-2)について、select iは1となり、他は0である。サービス時刻比較手段27は、図4に示すサービス時刻計算手段25からのサービス時刻(Fi)情報に基づき、 $F1\sim F(n-5)$ , F(n-2)のうち、最小のもの(本図の例では、F(n-2)を選択し、当該パケットを出力リンク15へ送出する。なお、既に述べたように、非選択の優先キューに対しては、サービス時刻として取り得る最大値より大きい値(all 1)が設定され、これらのサービス時刻は比較対象から容易に除外されている。このサービス時刻の比較については後にさらに詳しく説明する。

【0054】図8は図4に示す第1実施例に係る装置1 1のさらに具体的な構成例を示す図であり、図9は図5 に示す第1実施例に係る選択手段21のさらに具体的な 構成例を示す図である。主として図8および図9を参照しながら、パケットフェアキューイングとしてWFQを適用した場合の動作例について以下説明する。

【0055】まず、パケット転送システム10に到着するパケットは、フロー毎に各キュー(Q1 $\sim$ Qn)に格納されているとする(図3参照)。図3の例では、Q1 $\sim$ Q(n-5)が帯域保証キューでありQ(n-4) $\sim$ Qnが優先キューである。なお、既述のとおり、帯域保証キューと優先キューの各キューへの割当ては、ユーザからの指定により自由に変更でき、この例の組み合わせに限定されるものではない。

1) 重み記憶手段22は、その中に記憶している各帯域保証キューの重み $\phi$ iと、優先キュークラス14の重み $\phi$ pとを、重み合計値計算手段23とサービス時刻計算手段25とにそれぞれ通知する〔1〕,〔1〕、。

【0056】ここで、帯域保証キューiの重み $\phi i$ は、  $\phi i = w i / R$ 、

優先キュークラスの重みφρは、

 $\phi p = (R - w \quad all) / R$ 

がそれぞれ設定されているものとする。前述したように w i は帯域保証キューiの予約帯域、Rは出力リンク 速度、w allは帯域保証するトラヒックの予約帯域 の合計、をそれぞれ表す。

2) キュー状態記憶手段31は、キュー状態フラグ(図 7のs i) として1 ビットの変数s 1 $\sim s$  n e も b、キューiから出力すべきパケットが格納されていればs i=1、格納されていなければs i=0を設定する。キュー状態フラグs iは、選択手段34(図 9)と、サービス時刻計算手段25と、重み合計値計算手段23とにそれぞれ通知される〔2〕。

3)優先制御対象キュー記憶手段32(図9)は、優先制御対象フラグ(図7の $type_i$ )として1ビットの変数 $type_i$ 1~ $type_i$ nをもち、優先制御を行うフローが、キューiに割当てられる場合は $type_i$ i=1、帯域保証を行うフローが、キューiに割当てられる場合は $type_i$ i=0を、それぞれ設定する。図3の例では、 $type_i$ 1から $type_i$ (n-5)は0、 $type_i$ (n-4)から $type_i$ nは1が設定される。

【0057】この優先制御対象フラグ type iは、選択手段34と、サービス時刻計算手段25と、重み合計値計算手段23とに、それぞれ通知される〔3〕。4)優先順序記憶手段33(図9)は、優先順序テーブルとして、変数 $pri1\sim pri$  nをもち、キューiの優先順序をpri iとして設定する。なお優先順序は、高優先なものから $1\sim n$ の値で表す。図3の例では、pri (n-4)からpri nに、1から5の値が、それぞれ設定される。上記優先順序テーブルの内容は、選択手段34と、サービス時刻計算手段23とに、それぞれ通知される〔4〕。

5)選択手段34は、所定の手順に従って、パケットP Tが格納されている最も高優先なキューを選択し、その キュー番号をselect iとして出力する〔5〕。 この所定の手順は、後に図10および図11に示す。

6) 重み合計値計算手段23では、 $\phi$  i,  $\phi$  p, s i, type iおよびselect iから、所定の手順に従って、アクティブなキューの重みの合計値  $\phi$  bを計算し、サービス時刻計算手段25に通知する [6]。この所定の手順は、後に図12に示す。

7)最小到着時刻記憶手段 24 は、優先キュー (14) に格納されているパケット P Tの到着時刻で最小の値を、 $t_min$ として、サービス時刻計算手段 25 に通知する〔7〕。

8) サービス時刻記憶手段26は、キューiから直前に出力されたパケットPTのサービス終了時刻F´iを記憶する。また、優先キュークラス14についてはその中で最後に出力したパケットPTのサービス終了時刻をF´pとして記憶する。このように記憶したサービス終了時刻は、サービス時刻計算手段25に通知する [8]。

9)サービス時刻計算手段25は、キューiのサービス終了時刻を、以下に示すように計算する。計算したFiの値は、サービス時刻比較手段27と、サービス時刻記憶手段26とに、それぞれ通知する〔9〕,〔9〕。 【0058】a)キューiが帯域保証キュー13の場合:

 $r i = \phi i \times R/\phi b$ 

 $Fi = max \{t i, F'i\} + L_i/r_i$ b) キューiが、選択された優先キューの場合( $select_i=1$ ):

 $r_i = \phi_i p \times R / \phi_i b$ 

 $Fi=max\{t_min, F'p\}+L_i/r_i$ c) キューiが、選択されていない優先キュー( $select_i=0$ )、またはアクティブでない帯域保証キュー130場合:

Fi = (all 1)

(all 1)は、図7の右端参照。

【0059】ここで上記の記号の意味を再確認しておくと、以下のとおりである。

R:出力リンク15の速度

t i:先頭パケットの到着時間

t min:優先キュークラス14に最初に到着したパケットPTの到着時間

F' i: キューi から直前に出力したパケットPTのサービス時刻

L i:キーiの先頭パケットPTのパケット長

φ p:優先キュークラス14の重み

F´p: 優先キュークラス14から直前に出力したパケットPTのサービス時刻

all 1:2進数表記で全てのビットが1の数であ

り、最大値を示す。

10)サービス時刻比較手段27は、サービス終了時刻 F1~Fn(図7の右端参照)の大小比較を行う。この 場合、帯域保証キュー13のサービス時刻と選択されて いる優先キューのサービス時刻は共に(all 1)、 より小さい値をとるので、選択されていない優先キュー が大小比較で選ばれることはない。

【0060】もし、この(all 1)の設定がなければ、優先キュー選択手段21から各優先キューが選択されているか否かが、select iとして通知され、select i=0となるキューiのサービス時刻Fiを大小比較から除外する処理が行われる。かくして最小のFiの値を示すキューiを、出力手段35に通知する〔10〕。

11)出力手段35は、サービス時刻比較手段27から 通知されたキューiの先頭パケットを読み出し、出力リンク15に送出する〔11〕。

【0061】前述の説明の中で、所定の手順については、図10、11および図12において後述するとしていたので、これをここで説明する。図10は最も高優先なキューを選択し、そのキュー番号をselect iとして出力する手順の一例を示すフローチャート(その1)、図11は同フローチャート(その2)である。【0062】図10および図11を参照して各ステップを説明する。

ステップS21:select, priority(pri) およびi(+2-i) について、初期値を設定する。なお、priorityとしては、選択不能な値を設定する。

ステップS22: キューiを1つずつインクリメントする。

【0063】ステップS23: この判定でYesのときは、未処理のキューiが残っている。

ステップS 24: 今着目しているキューのキュー状態が アクティブ (パケットあり) で、かつ、優先キュークラ ス14のキューであるか判定し、Noならば、再び元に 戻る。

【0064】ステップS25:今着目しているキューの 優先順序(priority)が現在選択されているキューのpri iよりも大ならば、元に戻る。pri iは小さいほど高優先である。

ステップS26:今着目しているキューのpri i が、現在既に選択されているキューのpri iよりも小ならば、優先キュー選択手段21でのselectiとpri iとが一旦記憶される。

【0065】ステップS27:再びキューiをi=0に戻す。

ステップS28 : 再びキュー i を 1 ずつインクリメント する。

ステップS29:全てのキューiが処理されたか判定

し、未処理のキューiがあれば(Yes)、ステップS 30へ移る。

ステップS30: 今着目しているキューiが選択(select) されているものと同じか否か判定する。

【0066】ステップS31:同じならば、このキューiが選択されて、select=1を選択手段34より出力する。

ステップS32:同じでなければ、このキューiについては非選択とし、select=0を選択手段34より出力する。図12は重みの合計値 $\phi$ bを求める手順の一例を示すフローチャートである。

【0067】本図のフローチャートは、図6のフローチャートを具体的にプログラミングしたときのステップに相当する。したがって本図のステップS41~S49の殆んどは、図6のステップS11~S19と対応している。例えば、本図のステップと図6のステップとが、S44=S13、S45=S14、S46=S15、S47=S17、S48=S18のように対応している。

【0068】以上本発明に係る第1実施例について説明したので、次に本発明に係る第2実施例について説明する。図13は本発明の第2実施例に基づく構成を表す図である。本図(第2実施例)と図4(第1実施例)とを対比すると、仮想時刻計算手段28を追加した点が相違する。なお、本図の構成は、パケットフェアキューイングとして、前述したSCFQ(Self Clocked Fair Queueing)を適用した場合の構成を示す。

【0069】上記第2実施例に固有の仮想時刻計算手段28は、重み合計値計算手段23で計算された重み合計値をもとに、仮想時刻を計算する機能を有するものである。この重み合計値計算手段23は、パケットを格納するキューすなわちアクティブなキューの重みの合計値ゆりを、第1実施例で詳述したように計算し、仮想時刻計算手段28とサービス時刻計算手段25とに通知する(図13の〔3〕、および〔3〕)。

【0070】第1実施例では、実時刻を用いて計算したのに対し、第2実施例では、仮想時刻計算手段28を導入して、該手段28により、実時刻をパラメータとする仮想時刻v(T)を用いて計算する。ここで仮想時刻v(T)は、実時刻に対する変化率が、重み合計値 $\phi$ bの変化率にほぼ反比例するように計算される。 $\phi$ bを1つのパイプに例えれば、 $\phi$ bが大きいときはパイプが太くそこを流れるパケットは時間的に早く進み、 $\phi$ bが小さければパイプは細いのでそこを流れるパケットは時間的に遅く進む。このような時間の変化を考慮したのが仮想時刻v(T)であり、このv(T)を用いると計算の高速化が図れる。かくして計算した仮想時刻v(T)は、サービス時刻計算手段25に通知される〔3〕、。

【0071】このように仮想時刻v(T)を用いる場合、選択された優先キューの先頭パケットのサービス時刻は、既述した諸パラメータに加え、t minにおけ

る仮想時刻 v (t min)によって計算されることになる。かくして第2実施例は、重み合計値計算手段23からの出力をもとに、仮想時刻を計算する仮想時刻計算手段28を有し、最小到着時刻記憶手段24はその仮想時刻をもとに優先キュークラスに最初に到着したパケットの到着時刻における仮想時刻を記憶し、サービス時刻を計算手段25はその仮想時刻をもとにサービス時刻を計算し、優先キュー選択手段21により選択された優先キューのサービス時刻の計算には、最小到着時刻記憶手段24に記憶された仮想時刻を用いるように構成されている。

【0072】図14は図13に示す第2実施例に係る装置11のさらに具体的な構成例を示す図である。本図に示す構成における動作は、図8を用いて説明した第1実施例の構成のもとでの動作1)~11)と大半は同様であるので、以下に、相違する部分を詳しく説明する。

【0073】なお前記のパケットフェアキューイングとして、仮想時刻を用いたSCFQを適用した場合の動作例である。

- 1)図8を参照して既に説明した第1実施例(以下、実施例1と呼ぶ)の動作1)と同様である。すなわち、 $\phi$  iと $\phi$  pを、重み合計値計算手段23に通知する(図14の〔1〕と〔1〕、)。
- 2) 実施例1の2) と同様 (キュー状態フラグs i を 手段23に通知) [2]。
- 3) 実施例1の3) と同様(優先制御対象フラグtype i を手段23に通知) [3]。
- 4) 実施例1の4) と同様 (優先順序フラグpri i i を手段23に通知) [4]。
- 5)実施例1の5)と同様(優先キュー選択フラグselect iを手段23に通知) [5]。
- 6) 実施例1の6)と同様(合計値 $\phi$ bを転送するが、第2実施例では、仮想時刻計算手段28に $\phi$ bを転送する(図14の[6]))。
- 7) 仮想時刻計算手段 28では、実時刻Tでの仮想時刻 v(T)を、次のように計算する。

[0074]v(0)=0

 $v(T-2)-v(T-1)=\phi$  all/ $\phi$ b ここで、T-2>T-1であり、 $\phi$  all=(帯域保証キュー13の重み $\phi$ iの合計)+(優先キュークラス14の重み $\phi$  p)である。このように計算された仮想 時初 v(T) は、サービス時刻は第手配 2.5 に適切され

時刻v(T)は、サービス時刻計算手段25に通知される(2014の〔7〕)。

8)最小到着時刻記憶手段24は、優先キュー14に格納されているパケットPTの到着時刻で最小の値t minおよび仮想時刻v(t min)を記憶し、サービス時刻計算手段25に通知する(図14の[8])。

9) サービス時刻記憶手段26は、キューiに格納されているパケットおよび、サービス中またはサービス直後のパケットのサービス終了時刻Fiをパケットと関連付

けて記憶している。また、優先キュークラス14から最後に出力したパケットのサービス終了時刻を、F´pとして、記憶する。記憶したサービス終了時刻は、サービス時刻計算手段25に通知する(図14の〔9〕)。

10) サービス時刻計算手段25は、キューiに到着したパケットPTに対して、サービス終了時刻を次のように計算する。

【0075】a)キューiが帯域保証キュー13の場 合:

 $Fi=max{F'i, v(t)}+L_i/r_i$ b) キューiが、選択された優先キューの場合(select i=1):

 $Fi = max \{F'p, v(t_min)\} + L_i$ r\_i

c) キューi が選択されていない優先キュー(s e l e c t i = 0 )、またはアクティブでない帯域保証キュー13の場合:

Fi = (all 1)

ここで上記の記号の意味を再確認しておくと、以下のと おりである。

【0076】v(T):時刻Tでの仮想時刻

t:パケットが到着したときの時刻

t min: 優先キュークラス14に最初に到着したパケットPTの到着時刻

L i:キューiの先頭パケットPTのパケット長

φ p:優先キュークラス14の重み

F'p:優先キュークラス14から直前に出力したパケットPTのサービス時刻

all 1:2進数表記で全てのビットが1の数であり、最大値を示す。ただし、選択された優先キューの先頭パケットは、パケットがキューの先頭になるか、または出力すべき優先キューとして選択された時点で、サー

ビス時刻を再計算するものとする。 【0077】計算したFiの値は、サービス時刻比較手段27とサービス時刻記憶手段26に通知される(図14の〔10〕と〔10〕)。

11) 実施例1の10) と同様 (Fiを出力段35に通知) [11]。

12) 実施例1の11) と同様 (パケットPTを出力リンク15へ送出) 〔12〕。

#### [0078]

【発明の効果】以上説明したように、本発明のパケットスケジューリング方法によれば、パケットフェアキューイングと同様の帯域保証と公平な帯域割当てを可能としつつ、なおかつ、高優先のパケットは、常に、より低優先なパケットより先に出力リンクへ送出することができる。したがって、帯域が予約されたトラヒックに対しては、帯域保証と公平な余剰帯域の割当てとを行い、帯域が予約されていないトラヒック間においては、パケット単位での確実な優先制御を行って、高い通信品質を保証

することができる。

【0079】また本発明は、仮想時刻を使って計算の手間を削減するパケットフェアキューイングも容易に適用することができ、この場合は、処理のより一層の高速化を可能とするパケットスケジューリング装置が実現できる。さらにまた本発明は、パケットスケジューリング装置内のキューに対し、帯域保証キューと優先キューの割当てを自由に変更することができ、したがって帯域保証を要求するトラヒックが多い場合にはその帯域保証キューの割合を自由に増やすことができる。このため装置内のキューを有効に利用することが可能となる。

【0080】また本発明は、サービス時刻の大小比較において、選択されていない優先キューについては、これらのサービス時刻として単にall 1を与えるだけで、その比較対象から排除することができる。したがってそのような排除のための処理が不要となるため、高速にサービス時刻の比較を行い、出力すべきパケットを決定することができる。

【0081】さらにまた本発明においては、既述した式(3)により、優先キュークラスの予約帯域のりを定めているので、優先度の高いトラヒックは、予約されていない、出力リンクの帯域があれば、これを優先して利用することが可能となり、優先制御がより円滑に実行される。

# 【図面の簡単な説明】

【図1】本発明に基づくパケットスケジューリング方式 の基本ステップを示すフローチャートである。

【図2】本発明に基づくパケットスケジューリング装置 の基本構成を示す図である。

【図3】本発明に基づくパケットスケジューリング装置 を適用したパケット転送システムの一例を示す図であ る。

【図4】本発明の第1実施例に基づく構成を表す図であ る。

【図5】図4に表す優先キュー選択手段21の具体的構成例を示す図である。

【図6】重み合計値計算手段23によるφbの計算手順の具体例を示すフローチャートである。

【図7】本発明に係るパケットスケジューリング装置1 1の動作を図解的に表す図である。

【図8】図4に示す第1実施例に係る装置11のさらに 具体的な構成例を示す図である。

【図9】図5に示す第1実施例に係る選択手段21のさ らに具体的な構成例を示す図である。

【図10】最も高優先なキューを選択し、そのキュー番号をselect iとして出力する手順の一例を示すフローチャート(その1)である。

【図11】最も高優先なキューを選択し、そのキュー番号をselect iとして出力する手順の一例を示すフローチャート(その2)である。

【図12】重みの合計値 φ b を求める手順の一例を示すフローチャートである。

【図13】本発明の第2実施例に基づく構成を表す図である。

【図14】図13に示す第2実施例に係る装置11のさらに具体的な構成例を示す図である。

#### 【符号の説明】

- 1…パラメータ生成部
- 2…サービス時刻計算部
- 3…サービス時刻比較部
- 10…パケット転送システム
- 11…パケットスケジューリング装置
- 12…キューセット
- 13…帯域保証キュー
- 14…優先キュークラス

### 【図1】

#### |図 1

本発明に基づくパケットスケジューリング方法の基本ステップ を示すフローチャート



- 15…出力リンク
- 21…優先キュー選択手段
- 22…重み記憶手段
- 23…重み合計値計算手段
- 24…最小到着時刻記憶手段
- 25…サービス時刻計算手段
- 26…サービス時刻記憶手段
- 27…サービス時刻比較手段
- 28…仮想時刻計算手段
- 31…キュー状態記憶手段
- 32…優先制御対象キュー記憶手段
- 33…優先順序記憶手段
- 34…選択手段
- 35…出力手段

#### 【図2】

#### **13** 2

本発明に基づくパケットスケジューリング装置の 基本構成を示す図



【図3】



【図4】



### 【図5】



【図6】



【図9】



【図7】



【図8】



# 【図10】

#### 図 10

最も高優先なキューを選択し、そのキュー番号をselect\_iとして出力する手類の一例を示すフローチャート(その1)



# 【図11】

最も高優先なキューを選択し、そのキュー番号をselect\_4として 出力する手順の一例を示すフローチャート(その2)



【図12】



【図13】



# 【図14】



# フロントページの続き

Fターム(参考) 5K030 GA01 GA11 HA08 HB28 JA11 KA03 LA03 LC01 LC08 LD18 MB11 5K034 AA01 AA05 EE11 FF11 MM11 MM22 QQ08