

TEST REPORT

For

Mobile phone incorporated with Bluetooth

In conformity with

FCC CFR 47 Part15 (October 1, 2008)

Model: CDMA CA003

FCC ID: TYKNX6520

Test Item: Mobile phone incorporated with Bluetooth

Report No: RY0907J08R1

Issue Date: 08 July, 2009

Prepared for

Casio Hitachi Mobile Communications Co., Ltd. 2-229-1, Sakuragaoka, Higashiyamato-shi, Tokyo, 207-8501 Japan

Prepared by

RF Technologies Ltd.

472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan

Telephone: +81+(0)45- 534-0645 FAX: +81+(0)45- 534-0646

This report shall not be reproduced, except in full, without the written permission of RF Technologies Ltd. The test results in this report apply only to the sample tested. RF Technologies Ltd. is managed to ISO17025 and has the necessary knowledge and test facilities for testing according to the referenced standards.

RF Technologies Ltd. Page 1 of 47

Table of contents

l General information	
1.1 Product description	3
1.2 Test(s) performed/ Summary of test result	3
1.3 Test facility	4
1.4 Measurement uncertainty	4
1.5 Summary of test results	5
1.5.1 Table of test summary	5
1.6 Setup of equipment under test (EUT)	5
1.6.1 Test configuration of EUT	5
1.6.2 Operating condition:	
1.6.3 Setup diagram of tested system:	
1.7 Equipment modifications	
1.8 Deviation from the standard	6
2 Test procedure and test data	
2.1 Occupied Bandwidth (20 dB / 99%)	
2.2 Hopping Carrier Frequency Separation	
2.3 Number of Hopping Channel	
2.4 Average Time of Occupancy	
2.5 Peak Output Power	
2.6 Conducted Spurious Emissions (Antenna Port)	
2.7 Transmitter Radiated spurious emissions	
2.7.1 Below 30 MHz	
2.7.2 Between 30 – 1000 MHz	
2.7.3 Above 1000 MHz	
2.8 Transmitter AC power line conducted emissions	
2.9 Receiver Radiated spurious emissions	
2.9.1 Between 30 – 1000 MHz	
2.9.2 Above 1000 MHz	
2.10 Receiver AC power line conducted emissions	
Test setup photographs	
3.1 Definition of the EUT axis	
3.2 Antenna Port Measurements	
3.3 Radiated spurious emissions	
3.4 AC power line conducted emissions	
List of utilized test equipment/ calibration	47

History

Report No.	Date	Revisions	Revised By
RY0907J08R1	08 July, 2009	Initial Issue	R.Kojima

1 General information

1.1 Product description

Test item : Mobile phone incorporated with Bluetooth

Manufacturer : Casio Hitachi Mobile Communications Co., Ltd.

Address : 2-229-1, Sakuragaoka, Higashiyamato-shi, Tokyo, 207-8501 Japan

Model : CDMA CA003 FCC ID : TYKNX6520

Serial numbers : RF Radiated (SCADU000125), RF Conducted (SCADU000126)

Fundamental Operated Frequency : Tx/Rx Freq. (2402 - 2480 MHz)

Oscillator frequencies : 19.2 MHz

Type of Modulation : FHSS (GFSK, π /4DQPSK, 8DPSK) RF Output Power : 5.23dBm (measured at the antenna terminal) Antenna Gain : -3.1 dBi (Integral, 1/4 λ Signal Type)

Receipt date of EUT : 30 June 2009 Nominal power source voltages : DC 3.7V (Battery)

1.2 Test(s) performed/ Summary of test result

Test specification(s) : FCC CFR 47. Part 15 (October 1, 2008)

Test method(s) : ANSI C63.4: 2003 Test(s) started : 01 July 2009 Test(s) completed : 07 July 2009

Purpose of test(s) : Grant for Certification of FCC

Summary of test result : Complied

Note: The above judgment is only based on the measurement data and it does not include the measurement uncertainty. Accordingly, the statement below is applied to the test result.

The EUT complies with the limit required in the standard in case that the margin is not less than the measurement uncertainty in the Laboratory.

Compliance of the EUT is more probable than non-compliance is case that the margin is less than the measurement uncertainty in the Laboratory.

Test engineer

R.Kojima Engineer

EMC testing Department

Reviewer

K.Ohnishi Manager

EMC testing Department

Telephone: +81+(0)45- 534-0645, FAX: +81+(0)45- 534-0646, Web: http://www.rft.jp

1.3 Test facility

The Federal Communications Commission has reviewed the technical characteristics of the test facilities at **RF Technologies Ltd.**, located in 472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948, per October 1, 2007. The description of the test facilities has been filed under registration number 319924 at the Office of the Federal Communications Commission. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The list of all public test facilities is available on the Internet at http://www.fcc.gov.

Registered by Voluntary Control Council for Interference by Information Technology Equipment (VCCI) Each registered facility number is as follows;

Test site (Semi Anechoic chamber 3m) R-2393

Test site (Shielded room) C-2617

Registered by Industry Canada (IC) Each registered facility number is as follows; Test site No.1 (Semi Anechoic chamber 3m): 6974A

Accredited by **National Voluntary Laboratory Accreditation Program** (NVLAP) for the emission tests stated in the scope of the certificate under Certificate Number 200780-0

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB CODE 200780-0

1.4 Measurement uncertainty

The treatment of uncertainty is based on the general matters on the definition of uncertainty in "Guide to the expression of uncertainty in measurement (GUM)" published by ISO. The Lab's uncertainty is determined by referring UKAS Publication LAB34: 2002 "The Expression of Uncertainty in EMC Testing" and CISPR16-4-2: 2003 "Uncertainty in EMC Measurements".

The uncertainty of the measurement result in the level of confidence of approximately 95% (k=2) is as follows;

Conducted emission: \pm 1.9 dB (10 kHz – 30 MHz) Radiated emission (9 kHz - 30MHz): \pm 2.8 dB Radiated emission (30MHz - 1000MHz): \pm 5.7 dB Radiated emission (1.0GHz – 18.0GHz): \pm 5.8 dB Radiated emission (18.0GHz – 26.0GHz): \pm 5.9 dB

RF Technologies Ltd. Page 4 of 47

1.5 Summary of test results

1.5.1 Table of test summary

Requirement of;	Section in FCC15	Result	Sample	Section in this report
1.5.1 Occupied Bandwidth (20 dB/99%)	15.247(a)(1)	-	A2	2.1
1.5.2 Hopping Carrier Frequency Separation	15.247(a)(1)	Complied	A2	2.2
1.5.3 Number of Hopping Channel	15.247(a)(1)(iii)	Complied	A2	2.3
1.5.4 Average Time of Occupancy	15.247(a)(1)(iii)	Complied	A2	2.4
1.5.5 Peak Output Power	15.247(a)(1)/(b)(1)	Complied	A2	2.5
1.5.6 Conducted Spurious Emissions	15.247(d)	Complied	A2	2.6
1.5.7 Transmitter Radiated Spurious Emissions	15.205(b)/15.209	Complied	A1	2.7
1.5.8 Transmitter AC Power Line Conducted Emissions	15.207	Complied	A 1	2.8
1.5.9 Receiver Radiated Spurious Emissions	15.109	Complied	A1	2.9
1.5.10 Receiver AC Power Line Conducted Emissions	15.107	Complied	A1	2.10

1.6 Setup of equipment under test (EUT)

1.6.1 Test configuration of EUT

Equipment(s) under test:

	Item	Manufacturer	Model No.	Serial No.	Remarks
A1	Mobile phone incorporated	Casio Hitachi	CDMA	SCADU000125	For radiated test
	with Bluetooth	Mobile	CA003		
		Communication			
A2	Mobile phone incorporated	Casio Hitachi	CDMA	SCADU000126	For conducted test
	with Bluetooth	Mobile	CA003		
		Communication			
В	Li-ion Battery Pack	Casio Hitachi	CA003UAA	-	3.7V
	-	Mobile			
		Communication			

Support Equipment(s):

	Item	Manufacturer	Model No.	Serial No.
C	AC Adapter	MITSUMI ELECTRIC	0203PQA	-

Connected cable(s):

No.	Item	Identification (Manu.e.t.c)	Shielded	Ferrite Core	Connector Type Shielded	Length (m)
			YES / NO	YES / NO	YES / NO	
1	DC power cable	MITSUMI ELECTRIC	No	No	No	1.5

1.6.2 Operating condition:

Operating mode:

The EUT was tested under the following test mode prepared by the applicant:

- (1-1) GFSK modulation, Continuous transmission with DH5 PACKET at hopping off (2402MHz)
- (1-2) GFSK modulation, Continuous transmission with DH5 PACKET at hopping off (2441MHz)
- (1-3) GFSK modulation, Continuous transmission with DH5 PACKET at hopping off (2480MHz)
- (1-4) π /4DQPSK modulation, Continuous transmission with DH5 PACKET at hopping off (2402MHz)
- (1-5) $\pi/4$ DQPSK modulation, Continuous transmission with DH5 PACKET at hopping off (2441MHz)
- (1-6) $\pi/4$ DQPSK modulation, Continuous transmission with DH5 PACKET at hopping off (2480MHz)
- (1-7) 8DQPSK modulation, Continuous transmission with DH5 PACKET at hopping off (2402MHz)
- (1-8) 8DQPSK modulation, Continuous transmission with DH5 PACKET at hopping off (2441MHz)
- (1-9) 8DQPSK modulation, Continuous transmission with DH5 PACKET at hopping off (2480MHz)
- (1-10) Continuous transmission with DH5 PACKET at hopping on
- (2-1) Continuous receiving (2402MHz)
- (2-2) Continuous receiving (2441MHz)
- (2-3) Continuous receiving (2480MHz)

1.6.3 Setup diagram of tested system:

1.7 Equipment modifications

No modifications have been made to the equipment in order to achieve compliance with the applicable standards described in clause 1.2.

1.8 Deviation from the standard

No deviations from the standards described in clause 1.2.

RF Technologies Ltd. Page 6 of 47

2 Test procedure and test data

2.1 Occupied Bandwidth (20 dB / 99%)

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

Measurement procedures were implemented according to the method of ANSI C63.4: 2003 clauses 13.1.7. The EUT antenna port connected to the spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth bandwidth. The VBW is set to 3 times of the RBW. The sweep time is coupled appropriate.

Limitation

There are no limitations. The measurement value is used to calculation of the limitation of the channel separation and the emission designator.

Test equipment used (refer to List of utilized test equipment)

SA06 CL27	
-----------	--

Test results

Operating	Transmission Channel	Transmission	Bandwid	th [MHz]
Mode		Frequency	20dB	99%
GFSK	Low (0ch)	2402	1.14	1.06
(1Mbps)	Middle (39ch)	2441	1.14	0.99
(Tiviops)	High (78ch)	2480	1.12	0.97
π/4DQPSK	Low (0ch)	2402	1.41	1.26
(2Mbps)	Middle (39ch)	2441	1.40	1.22
(Ziviops)	High (78ch)	2480	1.38	1.21
8DPSK	Low (0ch)	2402	1.41	1.27
	Middle (39ch)	2441	1.39	1.23
(3Mbps)	High (78ch)	2480	1.39	1.22

RF Technologies Ltd. Page 7 of 47

Test Data

Tested Date: 07 July, 2009

Temperature: 24 °C

Humidity: 65 %

Atmos. Press: 1014 hPa

20dB Bandwidth

RF Technologies Ltd. Page 8 of 47

20dB Bandwidth

Page 9 of 47

99% Occupied Bandwidth

Page 10 of 47

99% Occupied Bandwidth

Page 11 of 47

2.2 Hopping Carrier Frequency Separation

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to more than 1% of its span. The VBW is set to more than RBW. The sweep time is coupled appropriate.

Limitation

15.247(a)(1) frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test equipment used (refer to List of utilized test equipment)

SA06	CL27		

Test results – comply with the limitation

Operating Mode	Measured Channel	Measured Frequency (MHz)	Two-third of the 20dB bandwidth (MHz)	Frequency Separation (MHz)
GFSK	Middle (39ch)	2441	0.760	1.0
π/4DQPSK	Middle (39ch)	2441	0.940	1.0
8DPSK	Middle (39ch)	2441	0.940	1.0

Test Data

Tested Date: 07 July, 2009

Temperature: 24 °C

Humidity: 65 %

Atmos. Press: 1014 hPa

Operating mode: GFSK

RF Technologies Ltd. Page 12 of 47

Operating mode: $\pi/4DQPSK$

Operating mode: 8DPSK

RF Technologies Ltd. Page 13 of 47

2.3 Number of Hopping Channel

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to more than 1% of its span. The VBW is set to more than RBW. The sweep time is coupled appropriate. The span is set to cover the authorized band. The analyzer is set to MAX HOLD. The EUT is hopping operation.

Limitation

15.247(a) (1) (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test equipment used (refer to List of utilized test equipment)

SA06	CL27		

Test results - Comply with the limitation

Hopping channel: 79 channels

Test Data

Tested Date: 07 July, 2009

Temperature: 24 °C

Humidity: 65 % Atmos. Press: 1014 hPa

Operating mode: GFSK

RF Technologies Ltd. Page 14 of 47

Operating mode: $\pi/4DQPSK$

Operating mode: 8DPSK

RF Technologies Ltd.

Page 15 of 47

2.4 Average Time of Occupancy

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to 1 MHz. The VBW is set to more than RBW. The sweep time is coupled appropriate. The span is set to 0 MHz and single sweep with video triggered. The EUT is hopping operation.

The average time of occupancy within the 31.6 seconds (79 channels * 0.4) is calculated as follows in accordance with Bluetooth formula;

In case of DH5: (average time of occupancy) = (pulse width) * (1600 / 6) / 79 * 31.6

Limitation

15.247(a)(1)(iii) The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test equipment used (refer to List of utilized test equipment)

SA06 CL27		
-----------	--	--

Test results – comply with the limitation.

		Transmission Packet Type	Pulse width (msec)	Time of occupancy (msec)
	2402	DH5	2.97	316.80
GFSK	2441	DH5	2.97	316.80
	2480	DH5	2.97	316.80
	2402	DH5	2.97	316.80
/4DQPSK 8DQPSK	2441	DH5	2.97	316.80
	2480	DH5	2.97	316.80
	2402	DH5	2.96	315.73
	2441	DH5	2.97	316.80
	2480	DH5	2.97	316.80

RF Technologies Ltd. Page 16 of 47

Test Data

Tested Date: 07 July, 2009

Temperature: 24 °C

Humidity: 65 %

Atmos. Press: 1014 hPaAverage

Time of Occupancy

/4DQPSK, 2402MHz

GFSK, 2441MHz

/4DQPSK, 2441MHz

GFSK, 2480MHz

/4DQPSK, 2480MHz

RF Technologies Ltd. Page 17 of 47

Time of Occupancy

8DQPSK, 2402MHz

8DQPSK, 2441MHz

8DQPSK, 2480MHz

Page 18 of 47

2.5 Peak Output Power

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to the greater than 20dB bandwidth. The VBW is set to three times of RBW. The sweep time is coupled appropriate. The span is set to cover the carrier output spectrum. The analyzer is set to MAX HOLD. The EUT is set measured transmission channel under hopping off mode.

Limitation

15.247(a) (1) Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW(21dBm).

Test equipment used (refer to List of utilized test equipment)

SA06	CL27		

Test results – comply with the limitation.

Operating Mode	Transmission Channel (Frequency: MHz)	Output power (dBm) [Result]	Output power (mW) [Result]
	Low (2402)	4.06	2.55
GFSK	Middle (2441)	4.89	3.08
	High (2480)	5.23	3.33
	Low (2402)	4.49	2.81
$\pi/4DQPSK$	Middle (2441)	4.40	2.75
	High (2480)	4.05	2.54
	Low (2402)	4.54	2.84
8DPSK	Middle (2441)	4.60	2.88
	High (2480)	4.25	2.66

RF Technologies Ltd. Page 19 of 47

Test Data

Tested Date: 07 July, 2009

Temperature: 24 °C

Humidity: 65 %

Atmos. Press: 1014 hPa

Peak Output Power

RF Technologies Ltd. Page 20 of 47

Peak Output Power

Page 21 of 47

2.6 Conducted Spurious Emissions (Antenna Port)

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to 100 kHz. The VBW is set to 300 kHz. The sweep time is set to the coupled. The spectrum is cheated from 30 MHz to 26 GHz. The EUT is set measured transmission channel under hopping off mode.

Limitation

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test equipment used (refer to List of utilized test equipment)

SA06	CL27		

Test results – comply with the limitation.

There were no conducted spurious emissions with levels of more than 20 dB below the applicable limit.

RF Technologies Ltd. Page 22 of 47

Test Data

Tested Date: 07 July, 2009

Temperature: 24 °C

Humidity: 65 %

Atmos. Press: 1014 hPa

Restricted Band Edge

RF Technologies Ltd. Page 23 of 47

Worst Configuration (2441MHz, GFSK)

2.7 Transmitter Radiated spurious emissions

Test setup

Test setup was implemented according to the method of ANSI C63.4: 2003 clause 6 "General requirements for EUT equipment arrangements and operation", clause 8.2 and Annex H.3 "Radiated emission measurements setup".

Telephone: +81+(0)45-534-0645, FAX: +81+(0)45-534-0646, Web: http://www.rft.jp

Test procedure

Measurement procedures were implemented according to the method of ANSI C63.4: 2003 clauses 8.2.

The EUT is place on a non-conducted table which is 0.8m height from a ground plane and the measurement antenna to EUT distance is 3 meters. The turn table is rotated for 360 degrees to determine the maximum emission level. In the frequency range of 9 kHz to 30 MHz, a calibrated loop antenna was positioned with its plane vertical at the distance 3m from the EUT with an extrapolation of corrected distance factor and rotated about its vertical axis for maximum response at each azimuth about the EUT. For certain applications, the loop antenna also needs to be positioned horizontally. The center of the loop shall be 1 m above the ground.

In the frequency above 30 MHz, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

EUT is placed at three different orientations (X, Y and Z axis) in order to find the worst orientation.

The spectrum analyzer and receiver is set to the followings;

Below 30 MHz: RBW=10 kHz, VBW= 30 kHz

Final measurement is carried out with a receiver RBW of 9 kHz (QP)

Between 30 - 1000 MHz: RBW=100 kHz, VBW= 300 kHz

Final measurement is carried out with a receiver RBW of 120 kHz (QP)

Above 1000 MHz: Peak measurement- RBW=1 MHz, VBW= 1 MHz

Average measurement – RBW=1 MHz, VBW=10 Hz

Applicable rule and limitation

§15.205 restricted bands of operation

Except as shown in paragraph 15.205 (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

squeries surius listeu selovi.			
MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.490 - 0.510	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(1)

15.205(b) except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

RF Technologies Ltd. Page 26 of 47

15.209(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

	<u> </u>	
Frequency	Field Strength	Measurement Distance
(MHz)	(uV/m)	(m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 –216	150	3
216 – 960	200	3
Above 960	500	3

In the emission table above, the tighter limit applies at the band edges.

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission.

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz.

Radiated emission limits in the above bands are based on measurements employing an average detector.

Test results - Complied with requirement.

Test Data

2.7.1 Below 30 MHz

Test equipment used (refer to List of utilized test equipment)

AC01	LP01	CL11	TR04
ACUI	LIUI	CLII	1104

Tested Date: 06 July, 2009

Temperature: 18 °C

Humidity: 60 %

Atmos. Press: 1018 hPa

Result

There is no spurious emission with levels of more than 20 dB below the applicable limit

2.7.2 Between 30 – 1000 MHz

Test equipment used (refer to List of utilized test equipment)

|--|

Tested Date: 06 July, 2009

Temperature: 18 °C

Humidity: 60 %

Atmos. Press: 1018 hPa

Operating mode: Continuous Communication (8DQPSK, 2441MHz: Worst configuration)

EUT position: Z-plane (Maximum position)

Measurement distance: 3 m

No.	Frequency [MHz]	Reading [dBuV]	Factor [dB/m]	Loss [dB]	Gain [dB]	Result [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Antenna Polarization
1	44.393	38.5	10.8	7.5	29.7	27.1	40.0	12.9	Vert.
2	66.249	26.9	6.4	7.9	29.6	11.6	40.0	28.4	Vert.
3	98.855	25.2	10.4	8.3	29.6	14.3	43.5	29.2	Vert.
4	195.806	26.8	9.2	9.4	29.5	15.9	43.5	27.6	Vert.
5	500.000	18.0	17.6	14.9	29.7	20.8	46.0	25.2	Vert.
6	542.875	18.9	18.1	14.1	29.7	21.4	46.0	24.6	Vert.

Calculation method

The Correction Factors and RESULT are calculated as followings.

Correction Factor [dB/m] = FACTOR [dB/m] + LOSS [dB] – GAIN [dB]

RESULT [dBuV/m] = READING [dBuV] + Correction Factor [dB/m]

Sample calculation at 44.393 MHz vertical result as follow:

Result [dBuV/m] = Reading + C.F = 38.5 + 10.8 + 7.5 - 29.7 = 27.1

Margin [dB] = Limit – Result = 40.0 - 27.1 = 12.9

RF Technologies Ltd. Page 28 of 47

Graphical express of test result (30MHz-1000MHz)

Antenna polarization: Horizontal

Antenna polarization: Vertical

2.7.3 Above 1000 MHz

Test equipment used (refer to List of utilized test equipment)

-					1)			
	AC01	SH01	TR06	CL23	CL24	HPF1	DH02	PR12

Tested Date: 01 July, 2009

Temperature: 18 °C

Humidity: 62 %

Atmos. Press: 1005 hPa

Restricted Band Edge (GFSK, 2402MHz: Worst configuration)

Restricted Band Edge (GFSK, 2480MHz: Worst configuration)

RF Technologies Ltd. Page 30 of 47

Restricted Band Edge (π/4DQPSK, 2402MHz: Worst configuration)

Restricted Band Edge (π/4DQPSK, 2480MHz: Worst configuration)

Restricted Band Edge (8DQPSK, 2402MHz: Worst configuration)

Restricted Band Edge (8DQPSK, 2480MHz: Worst configuration)

Date: 2.JUL.2009 19:10:05

Date: 2.JUL.2009 19:11:40

RF Technologies Ltd. Page 32 of 47

Harmonics and Spurious Emission above 1000 MHz

Tested Date: 01 July, 2009

Temperature: 18 °C

Humidity: 62 %

Atmos. Press: 1005 hPa

Tested Date: 02 July, 2009 Temperature: 18 °C

Humidity: 55 %

Atmos. Press: 1003 hPa

Tested Date: 06 July, 2009 Temperature: 18 °C

Humidity: 60 %

Atmos. Press: 1018 hPa

Result

There is no spurious emission with levels of more than 20 dB below the applicable limit or floor noise.

RF Technologies Ltd. Page 33 of 47

2.8 Transmitter AC power line conducted emissions

Test setup

Test setup was implemented according to the method of ANSI C63.4: 2003 clause 6 "General requirements for EUT equipment arrangements and operation" and Annex H.1 "AC power line conducted emission measurements setup".

Test procedure

Measurement procedures were implemented according to the method of ANSI C63.4: 2003 clauses 7, clause 13.1.3 and Annex H.2 "AC power line conducted emission measurements".

Exploratory measurements were used the spectrum analyzer to identify the frequency of the emission that has the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable positions, and with a typical system equipment configuration and arrangement.

Final ac power line conducted emission measurements were performed based on the exploratory tests.

The EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit are selected for the final measurement.

When the measurement value is grater than average limitation the average detection measurements were performed.

Applicable rule and limitation

§15.207 (a) AC power line conducted limits

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
rrequency of Emission (Wiriz)	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

Test equipment used (refer to List of utilized test equipment)

AC01	TR04	PL06	LN06	CL11
------	------	------	------	------

Test results - Complied with requirement.

RF Technologies Ltd. Page 34 of 47

The lower limit applies at the band edges.

1Test Data

Tested Date: 06 July, 2009

Temperature: 18 °C

Humidity: 60 %

Atmos. Press: 1018 hPa

Operating mode: 8DQPSK, 2402MHz: Worst configuration

	Frequency	Reading		C.F. Result		Limit		Margin			
No.	[MHz]	QP	AV	[dB]	QP	AV	QP	AV	QP	AV	PHASE
	[WILIZ]	[dBuV]	[dBuV]	լա	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]	
1	0.2201	41.0	24.9	0.2	41.2	25.1	62.8	52.8	21.6	27.7	N
2	0.2205	43.4	27.7	0.2	43.6	27.9	62.8	52.8	19.2	24.9	L
3	1.8055	31.9	12.9	0.5	32.4	13.4	56.0	46.0	23.6	32.6	L
4	1.8056	36.2	18.1	0.5	36.7	18.6	56.0	46.0	19.3	27.4	N
5	1.9060	33.1	11.6	0.5	33.6	12.1	56.0	46.0	22.4	33.9	L
6	1.9117	36.8	16.7	0.5	37.3	17.2	56.0	46.0	18.7	28.8	N
7	2.0158	31.2	12.5	0.5	31.7	13.0	56.0	46.0	24.3	33.0	L

The power line conducted emission voltage is calculated by adding the LISN factor and Cable loss attenuation from the measured reading. The calculation is as follows:

Result = Reading + C. F
where
$$C.F = LISN Factor + Cable Loss$$
 [dB]

Sample calculation at 1.9117 MHz QP result as follow:

Result [dBuV] = Reading + C.F =
$$36.8 + 0.5 = 37.3$$

Margin [dB] = Limit - Result = $56.0 - 37.3 = 18.7$

RF Technologies Ltd. Page 35 of 47

Graphical express of test result (0.15 MHz-30MHz)

AC Power line conducted emission. (Phase N)

AC Power line conducted emission. (Phase L)

2.9 Receiver Radiated spurious emissions

Test setup - Same as clause 2.7

Test procedure - Same as clause 2.7

Applicable rule and limitation at 3m

§15.109 radiated emission limitation

υ				
	Frequency	Measurement Distance	Field Strength	Field Strength
	(MHz)	(m)	(uV/m)	(dBuV/m)
	30 - 88	3	100	40.0
	88 –216	3	150	43.5
	216 – 960	3	200	46.0
	Above 960	3	500	53.9

In the emission table above, the tighter limit applies at the band edges.

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector.

Test results - Complied with requirement.

2.9.1 Between 30 – 1000 MHz

Test equipment used (refer to List of utilized test equipment)

-	** * * * * * * * * * * * * * * * * * * *	(
	AC01	BA04	CL11	PR03	TR04

Test Data

Tested Date: 07 July, 2009

Temperature: 18 °C

Humidity: 65 %

Atmos. Press: 1014 hPa

Operating mode: Continuous Receiving (2480MHz: Worst configuration)

EUT position: Z-plane (Maximum position)

Measurement distance: 3 m

No.	Frequency [MHz]	Reading [dBuV]	Factor [dB/m]	Loss [dB]	Gain [dB]	Result [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Antenna Polarization
1	30.000	22.0	18.3	7.3	29.7	17.9	40.0	22.1	Hori.
2	30.000	22.1	18.3	7.3	29.7	18.0	40.0	22.0	Vert.
3	47.038	21.8	9.5	7.6	29.7	9.2	40.0	30.8	Hori.
4	47.449	28.9	9.3	7.6	29.7	16.1	40.0	23.9	Vert.
5	1000.000	18.1	21.5	14.6	28.1	26.1	53.9	27.8	Hori.
6	1000.000	18.1	21.5	14.6	28.1	26.1	53.9	27.8	Vert.

Calculation method

The Correction Factors and RESULT are calculated as followings.

Correction Factor [dB/m] = FACTOR [dB/m] + LOSS [dB] – GAIN [dB]

RESULT [dBuV/m] = READING [dBuV] + Correction Factor [dB/m]

Sample calculation at 30.000 MHz Vertical result as follow:

Result [dBuV/m] = Reading + C.F = 22.1 + 18.3 + 7.3 - 29.7 = 18.0Margin [dB] = Limit - Result = 40.0 - 18.0 = 22.0

RF Technologies Ltd. Page 37 of 47

Graphical express of test result (30MHz-1000MHz)

Antenna polarization: Horizontal

Antenna polarization: Vertical

2.9.2 Above 1000 MHz

Test equipment used (refer to List of utilized test equipment)

AC01	TR06	CL23	CL24	DH02	PR12

Tested Date: 07 July, 2009

Temperature: 18 °C

Humidity: 65 %

Atmos. Press: 1014 hPa

Operating mode: Receiving (2441MHz: Worst configuration)

EUT position: Y-plane (Maximum position)

Measurement distance: 3 m

There are no spurious emissions other than listed below;

No	Frequency	Reading [Pk]	Reading [Av]	C.Fac	Result [Pk]	Result [Av]	Limit [Pk]	Limit [Av]	Margin [Pk]	Margin [Av]	PHASE
	MHz	dBuV	dBuV	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	
1	2439.5	52.6	48.1	-5.1	47.5	43.0	73.9	53.9	26.4	10.9	Vert.

Calculation method

The Correction Factors and RESULT are calculated as followings.

Correction Factor [dB/m] = FACTOR [dB/m] + LOSS [dB] – GAIN [dB]

RESULT [dBuV/m] = READING [dBuV] + Correction Factor [dB/m]

Sample calculation at 2439.5 MHz Vertical, AV result as follow:

Result [dBuV/m] = Reading + C.F = 48.1 + [-5.1] = 43.0Margin [dB] = Limit - Result = 53.9 - 43.0 = 10.9

RF Technologies Ltd. Page 39 of 47

2.10 Receiver AC power line conducted emissions

Test setup - Same as clause 2.8

Test procedure - Same as clause 2.8

Applicable rule and limitation

§15.107 (a) AC power line conducted limits

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
Frequency of Emission (MITZ)	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

Test equipment used (refer to List of utilized test equipment)

	AC01	TR04	PL06	LN06	CL11
--	------	------	------	------	------

Test results - Complied with requirement.

The lower limit applies at the band edges.

Test Data

Tested Date: 06 July, 2009

Temperature: 18 °C

Humidity: 60 %

Atmos. Press: 1018 hPa

Operating mode: Continuous Receiving (2402MHz: Worst configuration)

	Eraguanay	Rea	ding	C.F.	Res	Result		Limit		Margin	
No.	Frequency [MHz]	QP	AV	[dB]	QP	AV	QP	AV	QP	AV	PHASE
	[WILIZ]	[dBuV]	[dBuV]	լա	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB	[dB]	
1	0.22073	42.9	26.9	0.2	43.1	27.1	62.8	52.8	19.7	25.7	L
2	0.23281	37.3	22.1	0.2	37.5	22.3	62.3	52.3	24.8	30.0	N
3	1.81020	32.4	11.5	0.5	32.9	12.0	56.0	46.0	23.1	34.0	L
4	1.82940	30.8	10.6	0.5	31.3	11.1	56.0	46.0	24.7	34.9	N
5	1.91430	33.3	10.9	0.5	33.8	11.4	56.0	46.0	22.2	34.6	L
6	1.99240	32.7	11.5	0.5	33.2	12.0	56.0	46.0	22.8	34.0	N
7	2.03660	28.1	9.7	0.5	28.6	10.2	56.0	46.0	27.4	35.8	L

The power line conducted emission voltage is calculated by adding the LISN factor and Cable loss attenuation from the measured reading. The calculation is as follows:

Result = Reading + C. F
where
$$C.F = LISN Factor + Cable Loss$$
 [dB]

Sample calculation at 0.22073 MHz QP result as follow:

Result [dBuV] = Reading + C.F =
$$42.9 + 0.2 = 43.1$$

Margin [dB] = Limit - Result = $62.8 - 43.1 = 19.7$

RF Technologies Ltd. Page 41 of 47

Graphical express of test result (0.15 MHz-30MHz)

AC Power line conducted emission. (Phase N)

AC Power line conducted emission. (Phase L)

RF Technologies Ltd. Page 42 of 47

4 List of utilized test equipment/ calibration

RFT ID No.	Kind of Equipment and Precision	Manufacturer	Model No.	Serial Number	Calibration Date	Calibrated until
AC01	Anechoic Chamber (1st test room)	JSE	203397C	-	2008/7/4	2009/7/31
BA04	Bilogical Antenna	SCHAFFNER	CA2855	2903	2009/1/6	2010/1/31
CL11	Antenna Cable for RE	RFT	-	-	2009/4/13	2010/4/30
CL23	RF Cable 0.5m	SUCOFLEX	SF104PE	48773/4PE	2009/6/25	2010/6/30
CL24	RF Cable 5.0m	SUCOFLEX	SF104PE	48775/4PE	2009/6/25	2010/6/30
CL27	RF Cable 0.5m	SUCOFLEX	SF104	230286/4	2009/6/29	2010/6/30
LN06	LISN	Kyoritsu	KNW-407	8-1773-3	2009/5/26	2010/5/31
PL06	Pulse Limiter	PMM	PL-01	0000J10109	2009/01/05	2010/01/31
PR03	Pre. Amplifier	Anritsu	MH648A	M41984	2009/5/26	2010/5/31
PR12	Pre. Amplifier (1-26G)	Agilent Technologies	8449B	3008A02513	2009/01/13	2010/01/31
HPF1	High Pass Filter (3500MHz)	TOKIMEC	TF323DCA	603	2009/6/25	2010/6/30
TR04	Test Receiver (F/W: 3.82 SP1)	Rohde & Schwarz	ESCI	100447	2008/9/16	2009/9/30
TR06	Test Receiver (F/W: 3.93 SP2)	Rohde & Schwarz	ESU26	100002	2008/9/2	2009/9/30
SH01	Standard Horn Antenna (18-26G)	A.H. Systems	SAS-572	208	2008/07/23	2011/07/22
SA06	Spectrum Analyzer (F/W: 3.60 SP1)	Rohde & Schwarz	FSP40	100071	2008/10/31	2009/10/31
DH02	DRG Horn Antenna	A.H. Systems	SAS-200/571	239	2009/4/13	2011/4/30

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.