

Symbol	Definition
L	Number of layers in the network
l	Layer index
j	Node index for layer \boldsymbol{l}
k	Node index for layer $l-1$
y_{j}	The value of node j in the output layer L for a single training sample
C_0	Loss function of the network for a single training sample
$w_j^{(l)}$	The vector of weights connecting all nodes in layer $l-1$ to node j in layer l
$w_{jk}^{(l)}$	The weight that connects node k in layer $l-1$ to node j in layer l
$z_j^{(l)}$	The input for node j in layer l
$g^{(l)}$	The activation function used for layer \emph{l}
$a_j^{(l)}$	The activation output of node j in layer l

ALGORITHM

STEP 1: Initialize all the weights and biases in the network

STEP 2: While termination condition is not satisfied

STEP 3: For each training instance X

STEP 4: FORWARD PROPAGATE

FORWARD PROPAGATION

 $s = W^{(3)}a^{(3)}$

$$z^{(2)} = W^{(1)}x + b^{(1)}$$
 neuron value at Hidden₁ layer $a^{(2)} = f(z^{(2)})$ activation value at Hidden₁ layer $z^{(3)} = W^{(2)}a^{(2)} + b^{(2)}$ neuron value at Hidden₂ layer $a^{(3)} = f(z^{(3)})$ activation value at Hidden₂ layer

Output layer

STEP 5: Calculate Cost (Error) Function

Loss C_0

Observe that the expression

$$\left(a_j^{(L)}-y_j\right)^2$$

is the squared difference of the activation output and the desired output for node j in the output layer L. This can be interpreted as the loss for node j in layer L.

Therefore, to calculate the total loss, we should sum this squared difference for each node j in the output layer L.

This is expressed as

$$C_0 = \sum_{j=0}^{n-1} \left(a_j^{(L)} - y_j \right)^2.$$

Input $\boldsymbol{z}_{j}^{(l)}$

We know that the input for node j in layer l is the weighted sum of the activation outputs from the previous layer l-1.

An individual term from the sum looks like this:

$$w_{jk}^{(l)}a_k^{(l-1)}$$

So, the input for a given node $m{j}$ in layer $m{l}$ is expressed as

$$z_{j}^{(l)} = \sum_{k=0}^{n-1} w_{jk}^{(l)} a_{k}^{(l-1)}.$$

Activation Output $a_j^{(l)}$

We know that the activation output of a given node j in layer l is the result of passing the input, $z_j^{(l)}$, to whatever activation function we choose to use $g^{(l)}$.

Therefore, the activation output of node j in layer l is expressed as

$$a_j^{(l)} = g^{(l)} \left(z_j^{(l)} \right).$$

COMPOSITION OF FUNCTIONS

$$C_{0_j}=\Big(a_j^{(L)}-y_j\Big)^2.$$

We see that C_{0_j} is a function of the activation output of node j in layer L, and so we can express C_{0_j} as a function of $a_j^{(L)}$ as

$$C_{0_{j}}\left(a_{j}^{(L)}
ight)$$

$$z_j^{(L)} \left(w_j^{(L)} \right)$$

COMPOSITION OF FUNCTIONS

$$C_{0_j} = C_{0_j} \left(a_j^{(L)} \left(z_j^{(L)} \left(w_j^{(L)} \right) \right) \right).$$

STEP 5: DERIVATE OF THE LOSS FUNCTION

$$rac{\partial C_0}{\partial w_{12}^{(L)}}.$$

Since C_0 depends on $a_1^{(L)}$, and $a_1^{(L)}$ depends on $z_1^{(L)}$, and $z_1^{(L)}$ depends on $w_{12}^{(L)}$, the chain rule tells us that to differentiate C_0 with respect to $w_{12}^{(L)}$, we take the product of the derivatives of the composed function.

This is expressed as

$$\frac{\partial C_0}{\partial w_{12}^{(L)}} = \left(\frac{\partial C_0}{\partial a_1^{(L)}}\right) \left(\frac{\partial a_1^{(L)}}{\partial z_1^{(L)}}\right) \left(\frac{\partial z_1^{(L)}}{\partial w_{12}^{(L)}}\right).$$

STEP X: Update weights and bias

while (termination condition not met)

$$w := w - \epsilon \frac{\partial C}{\partial w}$$

$$b := b - \epsilon \frac{\partial C}{\partial b}$$

end

STEP 6: SIMILARLY FIND LOSS AND DERIVATE FOR HIDDEN LAYERS

STEP 7: Update weights and bias

while (termination condition not met)

$$w := w - \epsilon \frac{\partial C}{\partial w}$$

$$b := b - \epsilon \frac{\partial C}{\partial b}$$

end