OPTICAL LENS

Publication number: JP2000231002 (A)

Publication date: 2000-08-22

Inventor(s): TSUJI TOSHIO; HOSOE HIDE * KONISHIROKU PHOTO IND * Applicant(s):

Classification:

C08L83/05; C08L83/06; C08L83/07; C08L83/08; G02B1/04; G02C7/02; C08L83/00; G02B1/04; G02C7/02; (IPC1-7): C08L83/05; C08L83/06; C08L83/07; C08L83/08; G02B1/04; G02C7/02 - international:

- European:

Application number: JP19990032644 19990210 Priority number(s): JP19990032644 19990210

Abstract of JP 2000231002 (A)

PROBLEM TO BE SOLVED: To provide a miniature optical lens excellent in optical basic characteristics such as refractive index, double refraction and light transmittance, having high heat stability, low water absorbing property and high hardness and capable of reducing production cost because many lenses are formed at a time. SOLUTION: The optical lens has a silicone resin which satisfies the conditional expressions (the number of silicon atoms in the form of R1SiO3/2)/(the total number of silicon atoms)>0, (the number of silicon atoms in the form of SiO4/2)/(the total number of silicon atoms)>=0 and (the number of silicon atoms in the form of R1SiO3/2)+(the number of silicon atoms in the form of SiO4/2))× 100/(the total number of silicon atoms)>=5% (where R1 is H, hydroxyl, amino group, halogen atom or an organic group). The minimum effective radius of each optical face of the optical lens is 0.03-3.00 mm.

Data supplied from the espacenet database — Worldwide

Searching PAJ Page 1 of 1

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2000-231002 (43)Date of publication of application : 22.08.2000

(51)Int.Cl. G02B 1/04 C08L 83/05 C08L 83/06

C08L 83/07 C08L 83/08 G02C 7/02

(21)Application number: 11-032644 (71)Applicant: KONICA CORP (22)Date of filing: 10.02.1999 (72)Inventor: TSUJI TOSHIO

HOSOE HIDE

(54) OPTICAL LENS

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a miniature optical lens excellent in optical basic characteristics such as refractive index, double refraction and light transmittance, having high heat stability, low water absorbing property and high hardness and capable of reducing production cost because many lenses are formed at a time.

SOLUTION: The optical lens has a silicone resin which satisfies the conditional expressions (the number of silicon atoms in the form of R1SiO3/2)/(the total number of silicon atoms)>0, (the number of silicon atoms in the form of SiO4/2)/(the total number of silicon atoms) ≥ 0 and {(the number of silicon atoms in the form of R1SiO3/2)+(the number of silicon atoms in the form of SiO4/2)} $\times 100$ /(the total number of silicon atoms) ≥ 5 % (where R1 is H, hydroxyl, amino group, halogen atom or an organic group). The minimum effective radius of each optical face of the optical lens is 0.03-3.00 mm.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to an optical lens.

[0002]

Description of the Prior Art Various cameras, such as a camera, a film combination camera (disposable camera), and a video camera, CD, CD-ROM, CD-R, CD-RW, CD-Video, MO, To the optical lens used for various equipment etc. which are called OA equipment, such as optical pickup devices, such as DVD, a copying machine, and a printer. Polymethylmethacrylate, polycyclohexyl methacrylate, polystyrene, Using the plastic lens etc. by which injection moulding was carried out using resin, such as polycarbonate, a Polly 4-methylpentene, norbornene system polymer, and polyurethane resin, for a part or all of the optical system is known. [0003]The actual condition is coming to the limit by such a plastic lens being lightweight compared with a glass lens, and a manufacturing cost being low to fabricate reducing a manufacturing cost more than now, and a small lens, although it is advantageous considerably. [0004] Namely, just before pouring resin into a metallic mold in the present molding equipment, in order to carry out melting of the resin material and to press fit in a metallic mold by a predetermined pressure, needing heat plasticization equipment called a melting cylinder with a screw -- the temperature distribution of resin in a metallic mold -- accuracy -- it is high, for example, the highly precise temperature control equipment for carrying out temperature control to less than 1 ** is needed. With the performance of a lens, it is necessary to give a required pressure but so that it may become uniform over the whole lens, and, fabricating many with one piece of heat plasticization equipment at once to the metallic mold of a predetermined size for the necessity for the uniform pressure -- hard -- if the lens number fabricated at once increases, big power is needed for tearing off a shaping lens from a metallic mold indeed. [0005] It is in a severe situation to reduce a manufacturing cost further rather than the actual condition under the above restrictions. According to the necessity for an above-mentioned uniform pressure, the more a lens becomes small size, i.e., a byway, the more it will be necessary to also make small the cross-section area of the gate which pours in resin but, and. For example, even if it will be necessary to make it the small gate of 0.3 or less mm squares, it is in the situation where there is also a physical limit also in making it difficultly and small, and bywayizing of a lens is also close to a limit to obtain a conversely uniform pressure for the small gate. [0006]While the high-density-recording system using lights, such as CD-R, DVD, and MO, is studied briskly and put in practical use in recent years, improvement in the further storage density has been measured by shortening wavelength of a record light source. The wavelength of 400 nm or less is going to be used by the next-generation optical recording system. An abovementioned polyolefin system, polycarbonate system, and acrylic plastic resin material have many what has very low spectral transmittance and the things which are not penetrated at all of 400 nm or less of an ultraviolet region. There is a problem that combination of the polymer chain which constitutes a plastic is cut and not only it but ultraviolet rays promote degradation. That is, in future high-density optical recording, the spectral transmittance of an ultraviolet region is high and an optical lens in which the moldability was moreover excellent is desired strongly.

[0007]

[Problem to be solved by the invention] This invention is made based on the above SUBJECT, and one of the purposes of this invention is obtaining the small optical lens which used silicon system resin. Another purpose is to obtain the optical lens which can reduce the manufacturing cost which can fabricate many at once. Another purpose is to obtain an optical lens with high spectral transmittance of an ultraviolet region.

[0008]

[Means for solving problem] The following composition was able to attain this invention. [0009]1. Optical lens which has silicon system resin with which it is satisfied of the following conditional expressions, and is characterized by minimum effective radius of optical surface being 0.03 mm or more 3.00 mm or less.

[0010](The form of R1SiO $_{3/2}$.) Number [of the silicon atoms carried out]/. (Total of a silicon atom) >0(number of silicon atoms which carried out form of SiO $_{4/2}$)/(total of silicon atom) >=0 {(number of silicon atoms which carried out form of R1SiO $_{3/2}$)+(number of silicon atoms which carried out form of SiO $_{4/2}$)} x100/(total of silicon atom) >=5% — here — R1 — a hydrogen atom.

They are a hydroxyl group, an amino group, a halogen atom, or an organic group.

[0011]2. Optical lens of said one description, wherein volume of said optical lens is below 100 mm³.

[0012]3. Optical lens given in said 1, wherein said silicon system resin satisfies 5%=(number x100 of silicon atom which carried out form of R1SiO_{3/2})/(total of silicon atom) <=90%, or 2.

[0013]4. Optical lens given in said 1, wherein said silicon system resin satisfies 5%=(number x100 of silicon atom which carried out form of R2R3₂SiO_{2/2})/(total of silicon atom) <=60%, or 2.

[0014]Here, R2 and R3 are a hydrogen atom, a hydroxyl group, an amino group, a halogen atom, or an organic group respectively.

[0015]5. Optical lens given in said any 1 clause of 1 thru/or 4, wherein 15-100-mol% is aromatic group among substituents combined with silicon atom contained in said silicon system resin.

[0016]6. Optical lens given in said any 1 clause of 1 thru/or 4, wherein more than 20mol% is alkyl group among substituents combined with silicon atom contained in said silicon system resin.

[0017]7. Optical lens of said six descriptions, wherein said alkyl group is methyl group.

[0018]8. Optical lens given in said any 1 clause of 1 thru/or 4, wherein more than 20 mol % is hydrogen atom among substituents combined with silicon atom contained in said silicon system resin.

[0019]9. As for said silicon system resin, average composition formulas are R4 $_a$ (C $_n$ H $_{2n+1}$) $_b$ SiO $_{(4-a-b)/2}$ (here). R4 is organic groups other than a hydrogen atom, a hydroxyl group, an amino group, a halogen atom, or an alkyl group, It is a> 0 and b> 0, and it is 0<a+b<2 and n expresses a positive integer. Optical lens given in any 1 clause of said 1 thru/or 4, or 6 thru/or 8 forming from the constituent containing the organopolysiloxane expressed.

[0020]10. The optical lens of said nine descriptions characterized by being n= 1 among said average composition formula R4 $_a$ (C $_n$ H $_{2n+1}$) $_b$ SiO $_{(4-a-b)/2}$.

[0021]11. An optical lens given in said 9, wherein said organopolysiloxane has an ANIKENIRU group, or 10.

[0022]12. As for said silicon system resin, average composition formulas are R5 $_{\rm c}$ (H) $_{\rm d}$ SiO $_{\rm (4-c-d)/2}$ (here). R5 is a hydroxyl group, an amino group, a halogen atom, or an organic group, and is c> 0 and d> 0 -- 0<c+d<2 -- it is -- an optical lens given in any 1 clause of said 1 thru/or 4, or 8 forming from the constituent containing the organopolysiloxane expressed.

[0023]An optical lens given in any 1 clause of said 1 thru/or 4, or 6 thru/or 12 having the spectral transmittance of not less than 80% to a wavelength zone (13.250 nm - 900 nm). [0024]14. An optical lens given in said any 1 clause of 1 thru/or 13 which said silicon system resin is silicone resin, and is characterized by said optical lens consisting of this silicone resin. [0025]15. The optical lens of said 14 descriptions which said silicone resin is a heat-hardened

type, and are characterized by having used the addition reaction for the heat-curing reaction, and being formed.

[0026]16. The optical lens of said 15 descriptions using a platinum compound for the catalyst of said heat-curing reaction.

[0027]An optical lens given in said any 1 clause of 1 thru/or 16 having the transmissivity of not less than 85% in a wavelength zone (17.400 nm - 850 nm).

[0028]18. An optical lens given in said any 1 clause of 1 thru/or 17, wherein JIS-A hardness is 85 or more.

[0029]19. An optical lens given in said any 1 clause of 1 thru/or 18, wherein at least one optical surface has aspherical surface shape.

[0030]20. The optical lens of said 19 descriptions, wherein both sides of an optical surface have aspherical surface shape.

[0031] Hereafter, the silicon system resin used for this invention is explained.

[0032] The inside of the ingredient which constitutes an optical lens as having silicon system resin in this invention, It is a range in which it is preferred 70 weight % or more and also that silicon system resin contains 80 weight % or more, and they do not spoil [in / preferably / mean setting silicon system resin to one of them at least, and / optical lens mold goods] the effect of this invention, That in which other resin and various additives were mixed is also contained in this invention. Various coated layers may be provided in the surface of the lens for the various purpose.

[0033]In silicon system resin, it is the (number of the silicon atoms which carried out the form of R1SiO $_{3/2}$) / (total of a silicon atom) >0, It is the (number of the silicon atoms which carried out the form of SiO $_{4/2}$) / (total of a silicon atom) >=0, that it is {(number of silicon atoms which carried out form of R1SiO $_{3/2}$) +(number of silicon atoms which carried out form of SiO $_{4/2}$)} x100/(total of silicon atom) >=5%, The silicon atom which made the form of R1SiO $_{3/2}$ which is 3 organic-functions siloxane units at least the silicon atom which constitutes silicon system resin certainly exists, Even if the silicon atom which carried out the form of SiO $_{4/2}$ which is 4 organic-functions siloxane units exists, it is not necessary to carry out it but, and the number of the silicon atoms which totaled the both means being not less than 5% to the number of all the silicon atoms. Silicon system resin means the resin which has a silicon atom. [0034]A moldability excellent in this invention, outstanding heat resistance, a low remains double reflex low water absorption. An optical lens which fitted dramatically industrial production which

[0034]A moldability excellent in this invention, outstanding heat resistance, a low remains double reflex, low water absorption, An optical lens which fitted dramatically industrial production which can obtain a small optical lens whose minimum effective radii having the characteristics, such as good light transmittance, of an optical surface are 0.03 mm – 3.00 mm, and can fabricate a majority of the optical lenses at once, and which can reduce a manufacturing cost is found out. [0035]The center of gravity of an outermost periphery of an effective optical surface and projection to a field vertical to an optic axis of an optical surface says distance used as the shortest as the minimum effective radius of an optical surface said here. For example, a circular optical surface says an optical surface outermost periphery and distance based on [which are the center of gravity] circles, i.e., a radius of an effective optical surface, as the minimum effective radius seen from an optical axis direction. A rectangular optical surface says the shortest distance of an optical surface outermost periphery on a rectangular long side, and a centroid position, i.e., a half of shorter side length, as the minimum effective radius seen from an optical axis direction. Other optical surfaces are considered the same way.

[0036]It was desirable for volume to apply to an optical lens below 100 mm³ especially, and the effect was greatest.

[0037]R1SiO $_{3/2}$ (R1 shows hydrogen, hydroxyl group, amino group, halogen atom, or organic group.) unit in silicon system resin used for this invention, That is, it is preferred that a silicon atom which makes 3 organic–functions siloxane units which carried out a form of R1SiO $_{3/2}$ among all the silicon atoms which constitute silicon system resin is 5 to 90%. In order to obtain hardness high as an optical lens, it is preferred that a silicon atom which makes 3 organic–

functions siloxane units does or more 5% existence of, and it is preferred to make into 90% or less a silicon atom which makes 3 organic–functions siloxane units from a viewpoint of shock resistance or brittleness. Since problems, such as gelling, are produced in a synthetic distance, it is dramatically difficult to manufacture stably organopolysiloxane for shaping which a silicon atom which makes 3 organic–functions siloxane units contains not less than 90%. Content of R1SiO $_{3/2}$ is 30 to 70% preferably.

[0038]As R2 and R3 which are combined with a silicon atom which makes R1 and 2 organic—functions siloxane units which are combined with a silicon atom which makes 3 organic—functions siloxane units, a hydrogen atom, a hydroxyl group, an amino group, a halogen atom, or an organic group is expressed respectively.

[0039]A thing of a different kind may be sufficient also as a thing of the same kind as an organic group, and it can mention respectively an alkyl group which is not replaced [substitution or], an alkenyl group, an alkylene group, an aryl group, a cycloalkyl group, etc.

[0040]As an alkyl group, a methyl group, an ethyl group, a propyl group, a butyl group, benzyl, a phenethyl group, a trifluoromethyl group, benzyl, etc. are mentioned.

[0041]As an alkenyl group, an allyl group, a vinyl group, an isopropenyl group, a butenyl group, etc. are mentioned. Preferably, it is a vinyl group.

[0042]As an alkylene group, a methylene group, ethylene, a propylene group, a butylene group, etc. are mentioned.

[0043]As an aryl group, bases, such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a chlorophenyl group, a tribromo phenyl group, a pentafluorophenyl group, a furil group, a thienyl group, and a pyridyl group, are mentioned.

[0044]As a cycloalkyl group, bases, such as a cyclopentylic group, a cyclohexyl group, an adamanthyl group, and a norbornyl group, are mentioned.

[0045]An optical lens which has silicon system resin of this invention, By using more than 20mol% as an alkyl group or a hydrogen atom among substituents possible high light transmittance in a large wavelength zone and combined with a silicon atom, It is possible to attain spectral transmittance of not less than 80% to a large wavelength zone (250 nm - 900 nm), and especially light transmittance of a short wavelength region can be raised.

[0046]In this invention, by using 15–100-mol% as an aromatic group among substituents combined with a silicon atom, a refractive index can be improved further and aryl groups are a phenyl group, a tolyl group, and a mono- KURORU phenyl group desirable still more preferably as an aromatic group.

[0047]Although an example of 3 organic-functions siloxane (R1SiO $_{3/2}$) is shown below, this invention is not limited to these.

[0048]S3-1 SiO(CH $_3$) $_{3/2}$ S3-2. (CH $_2$ =CH) SiO $_{3/2}$ S3-3. (C $_6$ H $_5$) SiO $_{3/2}$ S3-4. (C $_6$ H $_{11}$) SiO $_{3/2}$ S3-5. (C $_{10}$ H $_7$) CH $_2$ CH $_2$ SiO $_{3/2}$ S3-6 SiO(C $_6$ H $_2$ Br $_3$ CH $_2$ CH $_2$) $_{3/2}$ S3-7 SiO(C $_6$ H $_5$ CH $_2$) $_{3/2}$ S3-8 -. (CH $_2$ CH $_2$) In addition to SiO $_{3/2}$ 3 organic functions and 4 organic–functions siloxane units, structural units other than 1 organic–functions siloxane units, 2 organic–functions siloxane units, and a siloxane structural unit can be included.

[0049]1 organic-functions siloxane units are siloxane units which have three substituents, and the following is mentioned as an example.

$$\begin{split} & [0050](\text{CH}_3) \ _3 \text{SiO}_{1/2}, \ _{(\text{CH}_3)} \ _2 (\text{CH}_2 = \text{CH-}) \ \text{SiO}_{1/2}, \ (\text{C}_6 \text{H}_5) \ _2 \text{SiO}_{1/2}, \ _{(\text{C}_6 \text{H}_5)} \ _3 \text{SiO}_{1/2} \ (\text{CH}_3), \ (\text{C}_6 \text{H}_{11}) \\ & _2 \text{SiO}_{1/2}, \ _{(\text{CH}(\text{C}_6 \text{H}_5 \text{CH}_2)} \ _3) \ _2 \text{SiO}_{1/2}, \ \text{and} \ _{(\text{CH}_2 \text{CH}_2)} \ (\text{CH}_3) \ _2 \text{SiO}_{1/2} \ \text{can be mentioned} \ (\text{CH}_3). \end{split}$$

[0051]2 organic-functions siloxane units are siloxane units which have two substituents, and the following is mentioned as an example.

[0053]In order that the content of 2 organic-functions siloxane units may not reduce hardness required for an optical lens, it is preferred to consider it as 60% or less, and it is preferred to contain not less than 5% in that a mechanical strength is given.

[0054]Structural units other than the siloxane structural unit as used in the field of this invention mean the structural unit containing silicon atoms other than siloxane units. Specifically, the structural unit which has the combination of those other than siloxane bonds, such as a silazane, polysilane, sill phenylene, and a sill alkylene, is said.

[0055]It can ask for the content of each siloxane units with sufficient accuracy by measuring the solid high-resolution ²⁹Si-NMR spectrum (²⁹Si-MAS) of the optical element after fabricating. [0056]The example of a chemical shift value in which the peak corresponding to each structural unit in a solid high-resolution ²⁹Si-NMR spectrum is detected is shown below.

[0057]

 $(CH_3)_3SiO_{1/2}6-8$ ppm. $(CH_3)_2SiO_{2/2}-17.8-23.0$ ppm $SiO(CH_3)_{3/2}-65-66$ ppm $SiO(C_6H_5)_{3/2}-78$ ppm $SiO_{4/2}-105$ – solid high-resolution $^{29}Si-$ of -106 ppm optical element. The fixed-quantity value (mol%) of each structural unit with sufficient accuracy can be obtained by measuring the area percentage of each peak in an NMR spectrum ($^{29}Si-MAS$).

[0058] The method of the optical lens which has silicon system resin of this invention putting one sort or two or more organopolysiloxane, a hardening agent, and a catalyst into a metallic mold, and stiffening is used preferably.

[0059]As a hardening reaction, a room-temperature-curing reaction, an ultraviolet curing reaction, an electron beam hardening reaction, and a heat-curing reaction can be mentioned. A heat-curing reaction is preferred in respect of productivity.

[0060]As a heat-curing reaction, dehydration condensation, dealcoholization condensation, dehydration condensation, peroxide bridge construction, and an addition condensation reaction are mentioned. An addition condensation reaction is preferred at the point of not spoiling light transmittance of an optical element. As a catalyst of an addition condensation reaction, a platinum compound is used preferably.

[0061] The synthesizing method of organopolysiloxane is known conventionally well to a person skilled in the art, and is publicly known. For example, it is obtained by carrying out the cohydrolysis of hydrolytic Silang, such as chlorosilicane corresponding to each siloxane units, and alkoxysilane.

[0062]When fabricating by the addition condensation reaction using a platinum catalyst, the weight average molecular weight 300–100000 and an end — or, One sort which has alkenyl groups, such as a vinyl group and an allyl group, in a side chain, or one sort of two or more organopolysiloxane ingredients and the weight average molecular weight 300–100000, Or it is preferred to carry out heat cure for about 3 hours, and to fabricate at the temperature of 100 ** – 200 ** from 10 minutes, using two or more ORGANO hydrogen polysiloxane components as a hardening agent. As for the quantity of a platinum catalyst, 0.1 to 1000 ppm is preferred. [0063]As a hardening agent, the organosilicon compound shown by the following general formula in addition to the ORGANO hydrogen polysiloxane can also be used.

[0064](CH₃) $_{\rm a}$ -Si(R6) $_{\rm 3-R6}$ expresses an organic group among an $_{\rm a}$ -Q-Si(R6) $_{\rm 3-a}$ -(OSiH(CH₃) $_{\rm 2}$) $_{\rm a}$ type, Q is an aromatic hydrocarbon group of bivalence, and a is an integer of 1–3 ($_{\rm 2}$ HSiO). An example is shown below.

[0065]

[Chemical formula 1]

$$(H_3^{CH_3})_2-Si-(O_5^{CH_3})_2$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$(\overset{\text{CH}_3}{\underset{\text{CH}_3}{\text{CH}_3}}\overset{\text{CH}_3}{\underset{\text{CH}_3}{\text{CH}_3}}\overset{\text{CH}_3}{\underset{\text{CH}_3}{\text{CH}_3}}$$

$$(H_{\overset{\overset{\bullet}{\text{S}}\text{iO}}{\text{CH}_3}}^{\overset{\bullet}{\text{CH}_3}} \overset{\overset{\bullet}{\text{CH}_3}}{=} O \overset{\overset{\bullet}{\text{CH}_3}}{=} Si \overset{\overset{\bullet}{\text{CH}_3}}{=} (OSiH)_2$$

$$(H_{SiO}^{CH_3})_2 - Si \xrightarrow{CH_3} CH_3 \\ CH_3 \\ CH_3 \\ CH_3$$

[0066]

[Chemical formula 2]

CH₃

(HSiO)₃—Si—(OSiH)₃

CH₃

CH₃

$$(H_3^{\text{CH}_3} \circ)_3 - \text{Si} - (O_3^{\text{CH}_3} \circ)_3 - \text{Si} - (O_3^{\text{SiH}})_3 \circ)_3 \circ)_3 - (O_3^{\text{SiH}})_3 \circ)_3 \circ (O_3^{\text{SiH}})_3 \circ)_3 \circ (O_3^{\text{SiH}})_3 \circ)_3 \circ (O_3^{\text{SiH}})_3 \circ (O_3^{\text{SiH}})_3 \circ)_3 \circ (O_3^{\text{SiH}})_3 \circ (O_3^{\text{SiH}})_3 \circ (O_3^{\text{SiH}})_3 \circ (O_3^{\text{SiH}})_3 \circ)_3 \circ (O_3^{\text{SiH}})_3 \circ (O_3^$$

$$(H_3 \atop (H_3 iO)_3 - Si \longrightarrow Si \longrightarrow Si \longrightarrow (OSiH)_2 \atop CH_3$$

[0067] The organosilicon compound shown with a following general formula can also be used.

[0068]

R8 is univalent hydrocarbon, respectively among [R7] the R7(R8)(H) Si-Q-Si(H) (R8) R7 abovementioned type, and Q is a divalent organic group containing aromatic hydrocarbon. An example is shown below.

[0069]

[Chemical formula 3]

[0070]

[Chemical formula 4]

$$\begin{picture}(20,10) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){10$$

$$\begin{array}{c|c} CH_3 & CH_3 & CH_3 \\ HSI & SI & SIH \\ CH_3 & CH_3 & CH_3 \end{array}$$

[0071]The organopolysiloxane which has alkenyl groups, such as a vinyl group and an allyl group, in the end used for this invention, or a side chain Chlorosilicane, Methyltrichlorosilane, dimethyldichlorosilane, phenyltrichlorosilane, A chlorosilicane compound with publicly known diphenyl dichlorosilane etc. and the publicly known chlorosilicane compound which has a vinyl group and an allyl group in intramolecular can be blended in various kinds of combination, and it can compound a cohydrolysis or by alkoxylating and making it condense further.

[0072]It is possible to control branching and the network structure of organopolysiloxane, the kind of reactant group, quantity, a molecular weight, viscosity, etc. by the kind, compounding ratio, and reaction condition of the chlorosilicane compound to blend, and it is possible to adjust various organopolysiloxane.

[0073] Various kinds of chlorosilicane compounds are marketed from the Dow Corning corporation (U.S.) and Shin–Etsu Chemical Co., Ltd. For example, the following chlorosilicane compounds are written in the silicon compound reagent catalog of Shin–Etsu Chemical Co., Ltd. [0074] tetrachlorosilicane (a trade name, LS-10) and trichlorosilane (a trade name.) LS-20, methyltrichlorosilane (a trade name, LS-40), and vinyl trichlorosilane (a trade name.) LS-70, dimethyldichlorosilane (a trade name, LS-130), methylvinyl dichlorosilane (a trade name, LS-190) and trimethylchlorosilane (a trade name.) LS-260, divinyl dichlorosilane (a trade name, LS-335), dimethylvinylchlorosilicane (a trade name, LS-380) and allyldimethylchlorosilicane (a trade name.) LS-650, 4-chlorophenyl trichlorosilane (a trade name, LS-915), phenyltrichlorosilane (trade name LS-920) and cyclohexyltrichlorosilane (a trade name.) LS-970, benzyltrichlorosilane (a trade name LS-1465), p-toluyl trichlorosilane (a trade name, LS-1480) and methylphenyl dichlorosilane (a trade name, LS-1480, phenylvinyl dichlorosilane (a trade name, LS-1980), dimethylphenyl chlorosilicane (a trade name, LS-2000), octyltrichlorosilane (a trade name, LS-2190), Methylphenyl vinylchlorosilicane (a trade name, LS-2520), triphenylchlorosilicane (a trade name, LS-6800).

[0075]As organopolysiloxane which has a vinyl group and an allyl group in an end or a side chain, what is shown with the following average composition formula is illustrated. [0076]An example is shown below.

[0077]in the following descriptions — Vi — a vinyl group and Me — a phenyl group and Benzy show benzyl, Toly shows a tolyl group, and, as for a methyl group and Ch, CIPh shows a mono-KURORU phenyl group, as for a cyclohexyl group and Ph.

 $\begin{array}{l} [0078] (\text{ViMe}_2 \text{SiO}_{1/2}) \text{ a. } (\text{PhSiO}_{3/2}) \text{ b. } (\text{Ph}_2 \text{SiO}_{2/2}) \text{ c. } (\text{Me}_3 \text{SiO}_{1/2}) \text{ a. } (\text{PhSiO}_{3/2}) \text{ b. } (\text{PhViSiO}_{2/2}) \text{ c. } \\ (\text{SiO}_{4/2}) \text{ d. } (\text{ViMe}_2 \text{SiO}_{1/2}) \text{ a. } (\text{MePhSiO}_{2/2}) \text{ b. } (\text{PhSiO}_{3/2}) \text{ c. } (\text{Me}_3 \text{SiO}_{1/2}) \text{ d. } (\text{ViMe}_2 \text{SiO}_{1/2}) \text{ a. } \\ (\text{MePhSiO}_{2/2}) \text{ b. } (\text{PhSiO}_{3/2}) \text{ c. } (\text{Ph}_3 \text{SiO}_{1/2}) \text{ d. } (\text{ViMe}_2 \text{SiO}_{1/2}) \text{ a. } (\text{ViPhSiO}_{2/2}) \text{ b. } (\text{TolySiO}_{3/2}) \text{ c. } \\ (\text{Me}_3 \text{SiO}_{1/2}) \text{ d. } (\text{PhMe}_2 \text{SiO}_{1/2}) \text{ a. } (\text{MePhSiO}_{2/2}) \text{ b. } (\text{ViMeSiO}_{2/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ d} (\text{Me}_3 \text{SiO}_{1/2}) \text{ a. } \\ (\text{MeBenzySiO}_{2/2}) \text{ b. } (\text{MeSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}_{3/2}) \text{ c. } (\text{PhSiO}_{3/2}) \text{ c. } \\ (\text{PhSiO}$

 $(\mathrm{SiO_{3/2}})_{\mathrm{d}}(\mathrm{Me_3SiO_{1/2}})_{\mathrm{a}}(\mathrm{ChPhSiO_{2/2}})_{\mathrm{b}}(\mathrm{PhSiO_{3/2}})_{\mathrm{c}}(\mathrm{ViPh_2SiO_{1/2}})_{\mathrm{d}}$ (however) a-d is less than one positive number, and the sum total of a-d is 1.0 in each formula.

These organopolysiloxane can be obtained by a publicly known method of carrying out the cohydrolysis of the ORUGANO halo silane corresponding to each constitutional unit in the above-mentioned formula.

[0079]The ORGANO hydrogen polysiloxane is also compoundable using various kinds of chlorosilicane compounds which have the hydrogen atom which combined a vinyl group and an allyl group with a silicon atom like organopolysiloxane which it has in an end or a side chain. [0080]For example, both-ends trimethylsiloxy group blockade methil hydrogen polysiloxane, A both-ends trimethylsiloxy group blockade dimethylsiloxane methil-hydrogen-polysiloxane copolymer, Both-ends dimethyl hydrogen siloxy group blockade dimethylsiloxane, A both-ends trimethylsiloxy group blockade methil-hydrogen-polysiloxane diphenyl siloxane copolymer, (CH $_3$) A copolymer which consists of $_2{\rm HSiO}_{1/a}$ unit, and SiO $_3$ unit, (CH $_3$) A copolymer which

consists of ${}_{3}\text{SiO}_{1/2}$ unit, ${}_{(\text{CH}_3)2}\text{HSiO}_{1/2}$ unit, and ${}_{\text{SiO}_{3/2}}$ unit, ${}_{(\text{CH}_3)}$ A copolymer which consist of ${}_{3}\text{SiO}_{1/2}$ unit, ${}_{(\text{CH}_3)2}\text{HSiO}_{1/2}$ unit, and ${}_{\text{SiO}_{3/2}}$ unit, ${}_{(\text{CH}_3)}$ A copolymer etc. which consist of ${}_{2}\text{SiHO}_{1/2}$ unit, ${}_{(\text{C}_6\text{H}_5)3}\text{SiO}_{1/2}$ unit, and ${}_{\text{SiO}_{3/2}}$ unit are mentioned.

[0081]As for the ORGANO hydrogen polysiloxane component used when producing an optical lens, and the organopolysiloxane ingredient which has a vinyl group and an allyl group in an end or a side chain, fully dissolving is preferred in order to make light transmittance of the obtained optical lens high.

[0082]as opposed to organopolysiloxane ingredient 100 weight section to which the loadings of the ORGANO hydrogen polysiloxane have a vinyl group and an allyl group in an end or a side chain — **** for 5 – 300 weight sections — things are preferred. In order to make hardness of the obtained optical lens high enough, it is preferred that the loadings of the ORGANO hydrogen polysiloxane are five or more weight sections, and it is preferred to increase the loadings of the ORGANO hydrogen polysiloxane at the point which improves light transmittance.

[0083]Although a platinum catalyst is preferably used as a reaction catalyst at the time of using an addition condensation reaction for a hardening reaction, the complex of denaturing alcohol things, such as platinum black, a platinic chloride, chloroplatinic acid, and chloroplatinic acid, and olefins, etc. are mentioned, for example. 0.1–1000 ppm of the amount of the catalyst used is 5–200 ppm still more preferably preferably to the total quantity of an ingredient.

[0084]As organopolysiloxane which forms the silicon system resin used for this invention, Average composition formulas are R4 $_a$ (C $_n$ H $_{2n+1}$) $_b$ SiO $_{(4-a-b)/2}$ (here). R4 is organic groups other than a hydrogen atom, a hydroxyl group, an amino group, a halogen atom, or an alkyl group, It is a> 0 and b> 0, and it is 0<a+b<2 and n expresses a positive integer. What was formed from the constituent containing the organopolysiloxane expressed is preferred, and n= 1, i.e., a methyl group, is especially preferred. This is because it can deal in high light transmittance in the wavelength zone where the obtained optical lens is large. It is preferred that it is the range of 0<a<1 and 0.5
 b<2 respectively as a and b.

[0085]As organopolysiloxane which forms the silicon system resin used for this invention, Average composition formulas are R5 $_c$ (H) $_d$ SiO $_{(4-c-d)/2}$ (here). R5 is a hydroxyl group, an amino group, a halogen atom, or an organic group, and is c> 0 and d> 0, 0<c+d<2 -- it is -- it is because being formed from the constituent containing the organopolysiloxane expressed is preferred and this can deal in high light transmittance in the wavelength zone where the obtained optical lens is large. It is preferred that it is the range of 0< c<1 and 0.5< d<2 respectively as c and d

[0086] It is the most desirable mode that silicon system resin used for this invention is the silicone resin formed from said organopolysiloxane, and said optical lens is an optical lens which consists of this silicone resin.

[0087] The ORGANO hydrogen polysiloxane component, an organopolysiloxane ingredient which has a vinyl group and an allyl group in an end or a side chain, Reinforcement nature bulking

agents, such as fumed silica, may be used in the range in which light transmittance of an optical lens is not reduced in order to raise a mechanical strength of an optical lens other than a catalyst. Chain organopolysiloxane of the average molecular weights 3000–100000 may be used as the 3rd polymer component in order to adjust hardness and viscoelasticity of mold goods. [0088]It is possible to fabricate with molding methods, such as injection moulding, extrusion molding, and cast molding, as a forming method at the time of fabricating an optical lens which consists of thermosetting silicone resin preferably used for this invention.

[0089]When an optical surface applies an optical lens which has silicon system resin of this invention to a lens of aspherical surface shape, it has the various characteristics of this invention and an optical lens also with the transfer nature of a metallic mold good moreover and a good wavefront aberration of a lens of aspherical surface shape is obtained. That in which at least one optical surface is aspherical surface shape is desirable still more preferred, and both sides of a lens of aspherical surface shape are the things of aspherical surface shape.

[0090]In the optical lens which has silicon system resin of this invention, JIS-A hardness can obtain the high optical lens of the mechanical strength which has hardness of 85 or more.

[0091]The optical lens which has silicon system resin of this invention can provide an antireflection layer, in order to raise light transmittance. A hard court layer may be provided for a base material and surface crack prevention.

[0092]Like the above-mentioned, in order to make light transmittance raise further, an antireflection film can be given on the surface of an optical lens. As an antireflection film, even if it is a monolayer, it may be a multilayer film produced by laminating the thin film in which refractive indicees differ, and if reflectance is reduced, an inorganic substance or an organic matter is also possible.

[0093]However, in order to think surface hardness and prevention of an interference fringe as important, it is most preferred to provide the monolayer which comprises an inorganic substance, or a multilayer antireflection film. As an inorganic substance which can be used, an oxide or fluorides, such as a silicon oxide, an aluminum oxide, zirconium oxide, oxidation titanium, cerium oxide, oxidation hafnium, and magnesium fluoride, are mentioned.

[0094]It can give by what is called PVD, such as ion plating, vacuum deposition, and sputtering. [0095]Since a base material is silicon system resin, when the optical lens of this invention uses a silicone hard court agent, it has the strong point in which there may not be any primer layer regularly used in order to improve the adhesive property of a hard court layer and a base material.

[0096]a hard court layer — good — better — what carried out spreading hardening of the coating composition which uses the following (b) and (**) as the main ingredients as an example is mentioned.

[0097](b) More than a kind of a silane compound which has a reactant group more than a kind at least

[0098](**) A silicon oxide, antimony oxide, zirconium oxide, tungstic oxide, Metal oxide particles, such as tantalum oxide and an aluminum oxide, titanium oxide, More than a kind chosen from composite metal particles which covered tin-oxide particles with composite metal particles of composite metal oxide particle tin oxide and tungstic oxide or more using two of cerium oxide, oxidation zirconia, a silicon oxide, and iron oxide

[0099]Ingredient (**) is an effective ingredient, in order to adjust a refractive index of a hard court layer and to raise hardness. As for thickness of a hard court layer, 0.2 micron – about 10 microns are usually good. They are 1 micron – about 3 microns more preferably.

[0100]

[Working example] An embodiment and a comparative example are given to below, and this invention is explained to it still more concretely.

[0101]in the following descriptions — Vi — a vinyl group and Me — a phenyl group and Benzy show benzyl, Toly shows a tolyl group, and, as for a methyl group and Ch, CIPh shows a mono–KURORU phenyl group, as for a cyclohexyl group and Ph.

[0102] The organopolysiloxane ingredients 1-8 which have the vinyl group used for the experiment below and an allyl group in an end or a side chain, and the ORGANO hydrogen

polysiloxane components 1-3 are shown.

[0103] These organopolysiloxane was compounded by carrying out the cohydrolysis of a publicly known synthesizing method, i.e., two or more hydrolytic silane compounds. A concrete synthesizing method is shown below.

[0104] After mixing organopolysiloxane 1Vi(Me) 2SiCl and (Ph) SiCl3 and (Me) 3SiCl and (Ph)

(Toly) SiCl₂, the cohydrolysis of the water was added and carried out. With water, vacuum concentration was carried out and the organopolysiloxane 1 was fully obtained after washing a resultant.

[0105]Combination was changed using other chlorosilicane compounds and the organopolysiloxane 2–6 was compounded. Average composition was searched for after composition by the fixed quantity of Si by ²⁹Si–NMR method, ¹H–NMR method, and the ICP method, and an ultimate analysis method.

[0106] Average composition was shown using average composition formula $R_x SiO_{(4-x)/2}$.

 $[0107] Organopolysiloxane \ 1 Vi_{0.05} Ph_{1.10} Toly_{0.20} Me_{0.25} SiO_{1.20} \ organopolysiloxane$

 $2 \text{Vi}_{0.10} \text{Ph}_{1.32} \text{Me}_{0.06} \text{Ch}_{0.10} \text{SiO}_{1.21} \text{ organopolysiloxane } 3 \text{Vi}_{0...10}. \text{ (CIPh)}_{0.15} \text{Ph}_{0.95} \text{Me}_{0.50} \text{SiO}_{1.15} \text{ organopolysiloxane } 4 \text{Vi}_{0.08} \text{(Benzy)}_{0.50} \text{Ph}_{0.60} \text{Me}_{0.48} \text{SiO}_{1.17} \text{ organopolysiloxane } 5 \text{Vi}_{0.01} \text{Me}_{1.97}. \text{SiO}_{1.01} \text{ organopolysiloxane } 6 \text{Ph}_{1.93} \text{Vi}_{0.01} \text{SiO}_{1.03} \text{ organopolysiloxane } 7 \text{Vi}_{0.04} \text{Me}_{0.10} \text{Ph}_{1.38} \text{SiO}_{1.24} \text{ organopolysiloxane } 8 \text{Vi}_{0.10} \text{Me}_{1.50} \text{SiO}_{1...} \text{ The copolymer which consists of a 20} \text{ ORGANO hydrogen polysiloxane } 0 \text{RGANO hydrogen polysiloxane } 2 \text{(CH}_3)_2 \text{HSiO}_{1/2} \text{ unit, and SiO}_{4/2} \text{ unit. (Copolymerization ratio } 8 \text{/.) 2} \text{ 2} \text{ organopolysiloxane } 2 \text{(CH}_3)_2 \text{HSiO}_{1/2} \text{ unit, and SiO}_{4/2} \text{ unit. (Copolymerization ratio } 8 \text{/.) 2} \text{ 2} \text{ 2} \text{ organopolysiloxane } 2 \text{(CH}_3)_2 \text{HSiO}_{1/2} \text{ unit, and SiO}_{4/2} \text{ unit. (Copolymerization ratio } 8 \text{/.) 2} \text{ 2} \text{ 2} \text{ 3} \text{ 3}$

ORGANO hydrogen polysiloxane $3H_{1.00}Me_{0.38}SiO_{1.31}$ organosilicon compound-1H(CH $_3$) $_2SiOSi$

(OSi (CH $_3$) ($_2$ H)) (C $_6$ H $_5$) C $_6$ H $_4$ Si. (C $_6$ H $_5$) The OSi(OSi (CH $_3$) ($_2$ H)) (CH $_3$) $_2$ H embodiment 1 organopolysiloxane 1 100 weight sections, Ten weight sections and isopropanol solution (0.2 weight % of platinum content) 1 weight section of chloroplatinic acid were mixed for five weight sections and the ORGANO hydrogen polysiloxane 1, the organopolysiloxane 6 was defoamed by vacuum churning, and a silicone resin composition was prepared. This silicone resin composition was poured into a lens molding die of 3 mm in diameter, and 20-piece picking at 40 atmospheres, and was heated for 10 minutes at 145 **, and lens mold goods of one side aspherical surface shape by cast molding were obtained. A mold-release characteristic from a metallic mold was also good, and a lens of an excellent article was obtained altogether. Monotonous mold goods (8 cm in diameter and 1.8 mm in thickness) were also produced to physical-properties evaluation. As a result of measuring light transmittance of a field (400 nm - 850 nm) about monotonous

[0108]100 weight sections and the organopolysiloxane 6 for the embodiment 2 organopolysiloxane 1 Five weight sections, The lens mold goods of one side aspherical surface shape were obtained for the ORGANO hydrogen polysiloxane 1 like Embodiment 1 using ten weight sections and isopropanol solution (0.2 weight % of platinum content) 1 weight section of chloroplatinic acid. The mold-release characteristic from a metallic mold was also good, and the lens of the excellent article was obtained altogether. Monotonous mold goods (8 cm in diameter and 1.8 mm in thickness) were also produced to physical-properties evaluation. As a result of measuring the light transmittance of a field (400 nm - 850 nm) about monotonous mold goods, light transmittance was not less than 85%.

mold goods, light transmittance was not less than 85%.

[0109]100 weight sections and the organopolysiloxane 2 for the embodiment 3 organopolysiloxane 3 80 weight sections, 20 weight sections and isopropanol solution (0.2 weight % of platinum content) 1.1 weight section of chloroplatinic acid were mixed, the ORGANO hydrogen polysiloxane 1 was defoamed by vacuum churning, and the silicone resin composition was prepared. This silicone resin composition was poured into the lens molding die of 3 mm in diameter, and 20-piece picking, and was heated for 15 minutes at 150 **, and the lens mold goods of the one side aspherical surface shape by cast molding were obtained. The mold-release characteristic from a metallic mold was also good, and the lens of the excellent article was

obtained altogether. Monotonous mold goods (8 cm in diameter and 1.8 mm in thickness) were also produced to physical-properties evaluation. As a result of measuring the light transmittance of a field (400 nm - 850 nm) about monotonous mold goods, light transmittance was not less than 85%.

[0110]100 weight sections and the organopolysiloxane 2 for the embodiment 4 organopolysiloxane 4 80 weight sections, Five weight sections and isopropanol solution (0.2 weight % of platinum content) 1.1 weight section of chloroplatinic acid were mixed for 15 weight section and organosilicon compound–1, the ORGANO hydrogen polysiloxane 1 was defoamed by vacuum churning, and the silicone resin composition was prepared. This silicone resin composition was poured into the lens molding die of 1 mm in diameter, and 16-piece picking at 40 atmospheres, it heated for 15 minutes at 150 **, and the lens mold goods of the double-sided aspherical surface shape by cast molding were obtained. ****** from a metallic mold was also good and the lens of the excellent article was obtained altogether. Monotonous mold goods (8 cm in diameter and 1.8 mm in thickness) were also produced to physical-properties evaluation. As a result of measuring the light transmittance of a field (400 nm - 850 nm) about monotonous mold goods, light transmittance was not less than 85%.

[0111]100 weight sections and the organopolysiloxane 6 for the embodiment 5 organopolysiloxane 1 Five weight sections, Ten weight sections and isopropanol solution (0.2 weight % of platinum content) 1 weight section of chloroplatinic acid were mixed, the ORGANO hydrogen polysiloxane 2 was defoamed by vacuum churning, and the silicone resin composition was prepared. The lens mold goods of double-sided aspherical surface shape were obtained like Embodiment 4 below. ****** from a metallic mold was also good and the lens of the excellent article was obtained altogether. Monotonous mold goods (8 cm in diameter and 1.8 mm in thickness) were also produced to physical-properties evaluation. As a result of measuring the light transmittance of a field (400 nm - 850 nm) about monotonous mold goods, light transmittance was not less than 85%.

[0112]30 weight sections and the organopolysiloxane 5 for the embodiment 6 organopolysiloxane 1 100 weight sections, The lens mold goods of one side aspherical surface shape were obtained for the ORGANO hydrogen polysiloxane 1 like Embodiment 1 using 20 weight sections and isopropanol solution (0.2 weight % of platinum content) 1.1 weight section of chloroplatinic acid. The mold-release characteristic from a metallic mold was also good, and the lens of the excellent article was obtained altogether. Monotonous mold goods (8 cm in diameter and 1.8 mm in thickness) were also produced to physical-properties evaluation. About monotonous mold goods, the light transmittance of the field (400 nm - 850 nm) was measured, and a result and light transmittance were not less than 85%.

[0113]100 weight sections and the organopolysiloxane 5 for the embodiment 7 organopolysiloxane 7 Ten weight sections, 20 weight sections and isopropanol solution (0.2 weight % of platinum content) 1 weight section of chloroplatinic acid were mixed, the ORGANO hydrogen polysiloxane 1 was defoamed by vacuum churning, and the silicone resin composition was prepared. This silicone resin composition was poured into the lens molding die of 5 mm in diameter, and 20-piece picking at 40 atmospheres, it heated for 10 minutes at 145 **, and the lens mold goods of the double-sided aspherical surface shape by cast molding were obtained. Monotonous mold goods (8 cm in diameter and 1.8 mm in thickness) were also produced to physical-properties evaluation. As a result of measuring the light transmittance of a field (400 nm - 850 nm) about monotonous mold goods, light transmittance was not less than 85%. [0114]20 weight sections and isopropanol solution (0.2 weight % of platinum content) 1 weight section of chloroplatinic acid were mixed for 100 weight sections and the ORGANO hydrogen polysiloxane 1, the embodiment 8 organopolysiloxane 8 was defoamed by vacuum churning, and the silicone resin composition was prepared. This silicone resin composition was poured into the lens molding die of 3 mm in diameter, and 20-piece picking at 40 atmospheres, it heated for 10 minutes at 145 **, and the lens mold goods of the double-sided aspherical surface shape by cast molding were obtained. The mold-release characteristic from a metallic mold was also good, and the lens of the excellent article was obtained altogether. Monotonous mold goods (8 cm in diameter and 1.8 mm in thickness) were also produced to physical-properties evaluation. As a

result of measuring the light transmittance of a field (400 nm - 850 nm) about monotonous mold goods, light transmittance was not less than 85%. As a result of measuring the light transmittance of a field (250 nm - 900 nm), light transmittance was not less than 80%. [0115]100 weight sections were mixed for the embodiment 9 hydrogen polysiloxane 3, 20 weight sections and isopropanol solution (0.2 weight % of platinum content) 1 weight section of chloroplatinic acid were mixed for the organopolysiloxane 8, it defoamed by vacuum churning, and the silicone resin composition was prepared. This silicone resin composition was poured into the lens molding die of 0.3 mm in diameter, and ten-piece picking at 40 atmospheres, it heated for 10 minutes at 145 **, and the lens mold goods of the double-sided aspherical surface shape by cast molding were obtained. The mold-release characteristic from a metallic mold was also good, and the lens of the excellent article was obtained altogether. Monotonous mold goods (8 cm in diameter and 1.8 mm in thickness) were also produced to physical-properties evaluation. As a result of measuring the light transmittance of a field (400 nm - 850 nm) about monotonous mold goods, light transmittance was not less than 85%. As a result of measuring the light transmittance of a field (250 nm - 900 nm), light transmittance was not less than 80%. [0116]100 weight sections and the organopolysiloxane 1 for the comparative example 1 organopolysiloxane 6 Ten weight sections, Lens mold goods of one side aspherical surface shape were obtained like Embodiment 1 except having used 15 weight sections and isopropanol solution (0.2 weight % of platinum content) 1.1 weight section of chloroplatinic acid for the ORGANO hydrogen polysiloxane 1. Although a mold-release characteristic was good, hardness was slightly insufficient as an optical lens a little low. Monotonous mold goods (8 cm in diameter and 1.8 mm in thickness) were also produced to physical-properties evaluation. As a result of measuring light transmittance at 250 nm about monotonous mold goods, light transmittance was 5% or less. [0117] Lens mold goods of double-sided aspherical surface shape were obtained by injection molding process using a lens molding die of 3 mm in diameter, and 16-piece picking using the AKURI pet VH (made by Mitsubishi Rayon) which is the polymethyl methacrylate resin for plastic lenses marketed comparative example 2. A mold-release characteristic from a metallic mold was insufficient, and three defective moldings occurred among 16 pieces. Monotonous mold goods (8 cm in diameter and 1.8 mm in thickness) were also produced to physical-properties evaluation. As a result of measuring light transmittance at 250 nm about monotonous mold goods, light transmittance was 5% or less.

[0118]the you pyrone S2000 (the Mitsubishi Gas Chemical make.) which is the bisphenol A type polycarbonate resin for plastic lenses marketed comparative example 3 The lens mold goods of double-sided aspherical surface shape were obtained by injection molding process using the lens molding die of 1 mm in diameter, and ten-piece picking using the number average molecular weight 24,000. The mold-release characteristic from a metallic mold was insufficient, and ten defective moldings occurred among ten pieces. Monotonous mold goods (8 cm in diameter and 1.8 mm in thickness) were also produced to physical-properties evaluation. As a result of measuring the light transmittance at 250 nm about monotonous mold goods, light transmittance was 5% or less.

[0119] The content (%) of two organic functions which constitute lens mold goods, three organic functions, and 4 organic-functions siloxane units, and various physical properties were measured by the method shown below, and were evaluated.

[0120]Measurement of the content (%) of two organic functions of lens mold goods, three organic functions, and 4 organic-functions units: It ground, after freezing mold goods with liquid nitrogen, and the ²⁹Si-NMR spectrum of mold goods was measured using solid high-resolution FT-NMR equipment. In order to measure mol% of a basic constitution unit with sufficient accuracy, a fixed quantity of high-precision ²⁹SiMAS(s) were used for the measuring method. A measuring condition is shown below.

[0121]

Equipment JEOL 270EXWB (made by JEOL Co., Ltd.)

Measurement core ²⁹Si [The data point 8192 and the sample takeoff point 2048 Measuring method ²⁹Si-MAS pulse width 4.2microsec (90 ²⁹Si pulse)] Observation frequency 53.54 MHz A

range of observations 10000 Hz A data point

Addition repetition pd = 20 sec The number of addition 6400 times Sample number of rotations 5 kHz Measurement temperature A tetramethylsilane was used for a standard of a room temperature chemical shift.

[0122]A refractive index: A refractive index of mold goods was measured using the Abbe refractive-index meter (trade name 2T made from ATAGO).

[0123] Birefringence: Phase contrast (nm) was measured with automatic double reflex measuring apparatus.

[0124]Light transmittance: Light transmittance of a field (400 nm - 850 nm) was measured with a visible ultraviolet spectroscopy photometer (Hitachi recording spectrophotometer). Light transmittance of a field (250 nm - 900 nm) was measured with an ultraviolet visible near-infrared spectrophotometer (Jasco V570).

[0125]Heat resistance: After neglecting mold goods in a 150 ** dryer for 2 hours, mold goods were observed with viewing and a "film orientation viewer" (trade name of the Unitika research–laboratory company).

[0126] And what O and either were accepted to in what change of modification, a crack, surface degradation, coloring, etc. is not accepted to at all was made into x.

[0127]Hardness: According to JIS7215, JIS-A hardness was measured using the durometer. Since hardness was [things / 85 or more] insufficient as a plastic lens about ** and less than 80 thing about O and less than [-] 85 and 80 or more things, it was considered as x. [0128]Saturation water absorption: Based on JIS7209 (measuring method of the water absorption of a plastic), it measured using the specimen (8 cm in diameter, and 1.8 mm in

[0129]About Embodiments 1–9 and the comparative examples 1–3, (%) and content of three organic functions of plastic lens mold goods and 4 organic–functions units, a refractive index, a double reflex, hardness, heat resistance, and saturation water absorption were measured, and the result was shown in Table 1.

[0130]

[Table 1]

thickness).

試料 No.	2官能珪素 原子の含有率 (%)	3官能珪素 原子の含有率 (%)	4官能珪素 原子の含有率 (%)	屈折率	複屈折 (nm)	硬さ	耐熱性	飽和吸水率 (%)
実施例1	30	49	0	1 .51	8	0	0	< 0.1
実施例2	26	54	0	1.50	9	0	0	<0.1
実施例3	50	31	0	1.52	11	0	0	<0.1
実施例4	29	45	0	1.53	9	0	0	<0.1
実施例5	28	49	3	1.53	9	0	0	<0.1
実施例6	60	10	0	1.42	11	Δ	0	<0.1
実施例7	29	46	0	1.53	9	0	0	<0.1
実施例8	50	39	0	1.41	8	0	0	<0.1
実施例 9	28	51	0	1.36	9	0	0	<0.1
比較例 1	94	4	0	1.53	13	×	0	<0.1
比較例2	_	_	_	1.49	18	0	×	2.0
比較例3	_	_		1.59	65	0	×	0.3

[0131]When the radiation proofing test (a room temperature, 30 days) by a xenon long life weather meter (Suga Test Instruments Co., Ltd. make WEL-6 X-HC-EC) was done about the lens mold goods of Embodiments 1-9, neither generating of a detailed crack nor coloring was accepted.

[0132]

[Effect of the Invention]It excels in an optical property with a low double reflex and light transmittance high [a refractive index is high, and] in a short wavelength region by this invention, The optical lens which can reduce the manufacturing cost which can fabricate at once

the small optical lens which has heat resistance, low absorptivity, and high hardness, and
moreover has the outstanding moldability, and also many was able to be provided.
[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]An optical lens which has silicon system resin with which it is satisfied of the following conditional expressions, and is characterized by the minimum effective radius of an optical surface being 0.03 mm or more 3.00 mm or less.

(A form of R1SiO $_{3/2}$.) Number [of silicon atoms carried out]/. (Total of a silicon atom) >0 (number of silicon atoms which carried out form of SiO $_{4/2}$)/(total of silicon atom) >=0{(number of silicon atoms which carried out form of R1SiO $_{3/2}$)+(number of silicon atoms which carried out form of SiO $_{4/2}$)} x100/(total of silicon atom) >=5% -- here -- R1 -- a hydrogen atom. They are a hydroxyl group, an amino group, a halogen atom, or an organic group.

[Claim 2]The optical lens according to claim 1, wherein volume of said optical lens is below 100 mm³.

[Claim 3]The optical lens according to claim 1 or 2, wherein said silicon system resin satisfies 5% \leq (number x100 of silicon atom which carried out form of R1SiO_{3/2})/(total of silicon atom) \leq 90%.

[Claim 4]The optical lens according to claim 1 or 2, wherein said silicon system resin satisfies 5% \leq (number x100 of silicon atom which carried out form of R2R3SiO_{2/2})/(total of silicon atom)

<=60%. Here, R2 and R3 are a hydrogen atom, a hydroxyl group, an amino group, a halogen atom, or an organic group respectively.

[Claim 5]An optical lens given in any 1 clause of Claims 1–4, wherein 15–100-mol% is an aromatic group among substituents combined with a silicon atom contained in said silicon system resin. [Claim 6]An optical lens given in any 1 clause of Claims 1–4, wherein more than 20mol% is an alkyl group among substituents combined with a silicon atom contained in said silicon system resin

[Claim 7]The optical lens according to claim 6, wherein said alkyl group is a methyl group. [Claim 8]An optical lens given in any 1 clause of Claims 1–4, wherein more than 20 mol % is a hydrogen atom among substituents combined with a silicon atom contained in said silicon system resin.

[Claim 9]As for said silicon system resin, average composition formulas are $R4_a(C_nH_{2n+1})_bSiO_{(4-a-b)/2}$ (here). R4 is organic groups other than a hydrogen atom, a hydroxyl group, an amino group, a halogen atom, or an alkyl group, It is a> 0 and b> 0, and it is $0\le a+b\le 2$ and n expresses a positive integer. Claims 1–4 forming from a constituent containing organopolysiloxane expressed, or an optical lens given in any 1 clause of 6 thru/or 8.

[Claim 10]The optical lens according to claim 9 characterized by being n= 1 among said average composition formula R4 $_a$ (C $_n$ H $_{2n+1}$) $_b$ SiO $_{(4-a-b)/2}$.

[Claim 11] The optical lens according to claim 9 or 10, wherein said organopolysiloxane has an ANIKENIRU group.

[Claim 12]As for said silicon system resin, average composition formulas are R5 $_c$ (H) $_d$ SiO $_{(4-c-d)/2}$ (here). R5 is a hydroxyl group, an amino group, a halogen atom, or an organic group, and is

c> 0 and d> 0 -- 0<c+d<2 -- it is -- an optical lens given in Claims 1-4 forming from a constituent containing organopolysiloxane expressed, or any 1 clause of 8.

[Claim 13] Claims 1-4 having the spectral transmittance of not less than 80% to a wavelength zone (250 nm - 900 nm), or an optical lens given in any 1 clause of 6 thru/or 12.

[Claim 14]An optical lens given in any 1 clause of Claims 1–13 which said silicon system resin is silicone resin, and are characterized by said optical lens consisting of this silicone resin.

[Claim 15] The optical lens according to claim 14 which said silicone resin is a heat-hardened type, and is characterized by having used an addition reaction for a heat-curing reaction, and being formed.

[Claim 16] The optical lens according to claim 15 using a platinum compound for a catalyst of said heat—curing reaction.

[Claim 17]An optical lens given in any 1 clause of Claims 1–16 having the transmissivity of not less than 85% in a wavelength zone (400 nm – 850 nm).

[Claim 18] An optical lens given in any 1 clause of Claims 1-17, wherein JIS-A hardness is 85 or more.

[Claim 19] An optical lens given in any 1 clause of Claims 1-18, wherein at least one optical surface has aspherical surface shape.

[Claim 20] The optical lens according to claim 19, wherein both sides of an optical surface have aspherical surface shape.

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-231002 (P2000-231002A)

(43)公開日 平成12年8月22日(2000.8.22)

(51) Int.Cl. ⁷		識別記号	FΙ				Ť'	-7]-ド(参考)		
G 0 2 B	1/04		C 0 2	В	1/04			$4\ J\ 0\ 0\ 2$		
C 0 8 L	83/05		C 0 8	L 8	3/05					
	83/06			8	3/06					
	83/07			8	3/07					
	83/08			8	3/08					
		審査請求	未請求	青水马	頁の数20	OL	(全 13 頁)	最終頁に続く		
(21)出顧番号	寻	特願平11-32644	(71) 出	願人	0000012	270				
					コニカ	株式会	社			
(22)出願日		平成11年2月10日(1999.%10)	2.10) 東京都新宿区西					新宿1丁目26番2号		
			(72)発	明者	让 稔	夫				
					東京都	打野市	さくら町1番畑	地コニカ株式会		
					社内					
			(72)発	明者	細江	秀				
					東京都。	八王子	市石川町2970和	番地コニカ株式		
					会社内					
			Fター	ム(参	考) 4J(002 CP	031 CP042 CP0	051 CP081		
						CP	091 CP141 DA1	116 DD076		
						GP	01 HA05			

(54) 【発明の名称】 光学用レンズ

(57)【要約】

【課題】 屈折率、複屈折、光透過率等の光学的基本特性に優れ、尚かつ、高い熱安定性、低い吸水性、高い硬度を有し多数個を一度に成形し製造コストの低減が可能な小型光学用レンズを提供する。

【解決手段】 以下の条件式を満足する珪素系樹脂を有し、且つ、光学面の最小有効半径が0.03mm以上3.00mm以下であることを特徴とする光学用レンズ。

 $(R1SiO_{3/2}$ の形をした珪素原子の数) / (珪素原子の全数) > 0

 $(SiO_{4/2}$ の形をした珪素原子の数) / (珪素原子の全数) ≥ 0

 $\{(R1SiO_{3/2}の形をした珪素原子の数) + (SiO_{4/2}の形をした珪素原子の数) \} × 100/(珪素原子の全数) <math>\geq$ 5%

ここで、R1は水素原子、水酸基、アミノ基、ハロゲン原子又は有機基である。

【特許請求の範囲】

【請求項1】 以下の条件式を満足する珪素系樹脂を有し、且つ、光学面の最小有効半径が0.03mm以上3.00mm以下であることを特徴とする光学用レンズ

 $(R1SiO_{3/2}$ の形をした珪素原子の数) / (珪素原子の全数) > 0

(SiO_{4/2}の形をした珪素原子の数)/(珪素原子の 全数) \geq 0

 $\{(R1SiO_{3/2}の形をした珪素原子の数) + (SiO_{4/2}の形をした珪素原子の数)\} × 100/(珪素原子の全数) <math>\geq$ 5%

ここで、R1は水素原子、水酸基、アミノ基、ハロゲン原子又は有機基である。

【請求項2】 前記光学用レンズの体積が100mm³ 以下であることを特徴とする請求項1記載の光学用レン ズ。

【請求項3】 前記珪素系樹脂は、5% \leq (R1SiO $_{3/2}$ の形をした珪素原子の数×100)/(珪素原子の全数) \leq 90%を満足することを特徴とする請求項1又は2記載の光学用レンズ。

【請求項4】 前記珪素系樹脂は、5% \leq $(R2R3S i O_{2/2}$ の形をした珪素原子の数×100) / (珪素原子の全数) \leq 60%を満足することを特徴とする請求項1又は2記載の光学用レンズ。ここで、R2、R3は各々水素原子、水酸基、アミノ基、ハロゲン原子又は有機基である。

【請求項5】 前記珪素系樹脂に含まれる珪素原子に結合された置換基の内、 $15\sim100\,\mathrm{mo}\,1\%$ が芳香族基であることを特徴とする請求項1乃至4の何れか1項に記載の光学用レンズ。

【請求項6】 前記珪素系樹脂に含まれる珪素原子に結合された置換基の内、20mo1%以上がアルキル基であることを特徴とする請求項1乃至4の何れか1項に記載の光学用レンズ。

【請求項7】 前記アルキル基がメチル基であることを 特徴とする請求項6記載の光学用レンズ。

【請求項8】 前記珪素系樹脂に含まれる珪素原子に結合された置換基の内、20モル%以上が水素原子であることを特徴とする請求項1乃至4の何れか1項に記載の光学用レンズ。

【請求項9】 前記珪素系樹脂は、平均組成式がR 4。 $(C_nH_{2n+1})_b$ S i O (4-a-b)/2 (ここで、R 4 は水素原子、水酸基、アミノ基、ハロゲン原子又はアルキル基以外の有機基であり、a>0、b>0であり、0<a+b<2であり、n は正の整数をあらわす。)で表されるオルガノポリシロキサンを含有する組成物から形成されたことを特徴とする請求項1乃至4又は6乃至8の何れか1項に記載の光学用レンズ。

【請求項10】 前記平均組成式 $R4_a(C_nH_{2n+1})_b$

 $SiO_{(4-a-b)/2}$ 中、n=1であることを特徴とする請求項9記載の光学用レンズ。

【請求項11】 前記オルガノポリシロキサンがアニケニル基を有することを特徴とする請求項9又は10記載の光学用レンズ。

【請求項12】 前記珪素系樹脂は、平均組成式がR5。 $(H)_dSiO_{(4-c-d)/2}$ (ここで、R5は水酸基、アミノ基、ハロゲン原子又は有機基であり、c>0、d>0であり、0<c+d<2である)で表されるオルガノボリシロキサンを含有する組成物から形成されたことを特徴とする請求項1乃至4又は8の何れか1項に記載の光学用レンズ。

【請求項13】 250nm~900nmの波長領域に対して80%以上の分光透過率を有することを特徴とする請求項1乃至4又は6乃至12の何れか1項に記載の光学用レンズ。

【請求項14】 前記珪素系樹脂がシリコーン樹脂であり、前記光学用レンズが該シリコーン樹脂からなることを特徴とする請求項1乃至13の何れか1項に記載の光学用レンズ。

【請求項15】 前記シリコーン樹脂が熱硬化型であり、熱硬化反応に付加反応を用いて形成されたことを特徴とする請求項14記載の光学用レンズ。

【請求項16】 前記熱硬化反応の触媒に白金化合物を 用いたことを特徴とする請求項15記載の光学用レン ズ

【請求項17】 400nm~850nmの波長領域において85%以上の透過率を有することを特徴とする請求項1乃至16の何れか1項に記載の光学用レンズ。

【請求項18】 JIS-A硬度が85以上であることを特徴とする請求項1乃至17の何れか1項に記載の光学用レンズ。

【請求項19】 少なくとも一方の光学面が非球面形状を有することを特徴とする請求項1乃至18の何れか1項に記載の光学用レンズ。

【請求項20】 光学面の両面が非球面形状を有することを特徴とする請求項19記載の光学用レンズ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光学用レンズに関する。

[0002]

【従来の技術】カメラ、フィルム一体型カメラ(レンズ付きフィルム)、ビデオカメラ等の各種カメラ、CD、CD-ROM、CD-R、CD-RW、CD-Video、MO、DVD等の光ピックアップ装置、複写機及びプリンター等のOA機器といった各種機器等に使用される光学用レンズに、ポリメチルメタクリレート、ポリシクロヘキシルメタクリレート、ポリスチレン、ポリカーボネート、ポリー4-メチルペンテン、ノルボルネン系

ポリマー、ポリウレタン樹脂等の樹脂を用いて射出成形 されたプラスチックレンズ等をその光学系の一部又は全 部に使用することが知られている。

【0003】このようなプラスチックレンズは、ガラスレンズに較べて軽量で製造コストが低いことで有利であるが、今以上に製造コストを低下させることや小型なレンズを成形するにはかなり限界にきているのが実情である。

【0004】即ち、現行の成形装置においては、樹脂を金型に注ぎ込む直前に、その樹脂材料を溶融し所定の圧力で金型に圧入するために、スクリュー付き溶融シリンダといった熱可塑化装置を必要とし、金型内の樹脂の温度分布を精度高く、例えば1℃未満に温調するための高精度の温調設備を必要とする。また、レンズの性能によって必要な圧力を、レンズ全体にわたって均一となるように与える必要があるが、その均一圧力の必要性のために、所定の大きさの金型に対して一つの熱可塑化装置で多数個を一度に成形することが難く、又一度に成形するレンズ個数が多くなればなるほど、成形レンズを金型から引き剥がすのに大きな力が必要となる。

【0005】以上のような制約のもとで現状よりも更に製造コストを低下させるのは厳しい状況にある。また、上述の均一圧力の必要性によって、レンズが小型即ち小径になればなるほど樹脂を注ぎ込むゲートの断面積も小さくする必要が生じるが、例えば0.3 mm角以下といった小さなゲートにする必要が生じても、その小さなゲートのために、逆に均一な圧力を得ることは難しく、また小さくするにも物理的な限界もあり、レンズの小径化も限界に近いという状況である。

【0006】また近年、CD-R、DVDやMOなどの光を使った高密度記録方式が盛んに研究され、実用化されている中で、記録光源の波長を短くすることで更なる記録密度の向上が計られてきた。次世代の光記録方式では400nm以下の波長が使われようとしている。上記のポリオレフィン系、ポリカーボネート系やアクリル系プラスチック樹脂材料は400nm以下の紫外領域の分光透過率が非常に低いものや全く透過しないものが多く、そればかりか、紫外線によってプラスチックを構成するポリマー鎖の結合が切断されて劣化を促進されるといった問題がある。つまり、今後の高密度光記録においては、紫外領域の分光透過率が高く、しかも成形性が優れた光学用レンズが強く望まれている。

[0007]

【発明が解決しようとする課題】本発明は、以上の課題に基づいてなされたものであり、本発明の目的の一つは、珪素系樹脂を用いた小型の光学用レンズを得ることである。また、別の目的は、多数個を一度に成形し得るような製造コストを低減可能な光学用レンズを得ることである。また、別の目的は紫外領域の分光透過率が高い光学用レンズを得ることである。

[0008]

【課題を解決するための手段】本発明は以下の構成により達成することができた。

【0009】1.以下の条件式を満足する珪素系樹脂を有し、且つ、光学面の最小有効半径が0.03mm以上3.00mm以下であることを特徴とする光学用レンズ

【 0 0 1 0 】 (R 1 S i O_{3/2}の形をした珪素原子の数) / (珪素原子の全数) > 0

(SiO_{4/2}の形をした珪素原子の数)/(珪素原子の 全数) \geq 0

 $\{(R1SiO_{3/2}の形をした珪素原子の数) + (SiO_{4/2}の形をした珪素原子の数)\} × 100/(珪素原子の全数) <math>\geq$ 5%

ここで、R1は水素原子、水酸基、アミノ基、ハロゲン原子又は有機基である。

【0011】2. 前記光学用レンズの体積が100mm ³以下であることを特徴とする前記1記載の光学用レン ズ。

【0012】3. 前記珪素系樹脂は、5% (R1Si $O_{3/2}$ の形をした珪素原子の数×100)/(珪素原子の全数) \leq 90%を満足することを特徴とする前記1又は2記載の光学用レンズ。

【0013】4. 前記珪素系樹脂は、5% \leq (R2R3 $_2$ SiO $_2/_2$ の形をした珪素原子の数 \times 100)/(珪素原子の全数) \leq 60%を満足することを特徴とする前記1又は2記載の光学用レンズ。

【0014】ここで、R2、R3は各々水素原子、水酸基、アミノ基、ハロゲン原子又は有機基である。

【0015】5. 前記珪素系樹脂に含まれる珪素原子に結合された置換基の内、15~100mol%が芳香族基であることを特徴とする前記1乃至4の何れか1項に記載の光学用レンズ。

【0016】6. 前記珪素系樹脂に含まれる珪素原子に結合された置換基の内、20mo1%以上がアルキル基であることを特徴とする前記1乃至4の何れか1項に記載の光学用レンズ。

【0017】7. 前記アルキル基がメチル基であることを特徴とする前記6記載の光学用レンズ。

【0018】8. 前記珪素系樹脂に含まれる珪素原子に結合された置換基の内、20モル%以上が水素原子であることを特徴とする前記1乃至4の何れか1項に記載の光学用レンズ。

【 0019 】 9 . 前記珪素系樹脂は、平均組成式がR 4 。 $(C_nH_{2n+1})_b$ S i $O_{(4-a-b)/2}$ (ここで、R 4 は水素原子、水酸基、アミノ基、ハロゲン原子又はアルキル基以外の有機基であり、a>0、b>0であり、0<a+b<2であり、n は正の整数をあらわす。)で表されるオルガノポリシロキサンを含有する組成物から形成されたことを特徴とする前記 1 乃至 4 又は 6 乃至 8 の何れか

1項に記載の光学用レンズ。

【0020】10. 前記平均組成式R 4_a (C_nH_{2n+1}) $_b$ Si $O_{(4-a-b)/2}$ 中、n=1であることを特徴とする前記 9記載の光学用レンズ。

【0021】11. 前記オルガノポリシロキサンがアニケニル基を有することを特徴とする前記9又は10記載の光学用レンズ。

【0022】 12. 前記珪素系樹脂は、平均組成式がR 5_c (H) $_d$ S i O $_{(4-c-d)/2}$ (ここで、R 5 は水酸基、アミノ基、ハロゲン原子又は有機基であり、c>0、d>0であり、0<c+d<2である)で表されるオルガノポリシロキサンを含有する組成物から形成されたことを特徴とする前記 1 乃至 4 又は 8 の何れか 1 項に記載の光学用レンズ。

【0023】13.250nm~900nmの波長領域に対して80%以上の分光透過率を有することを特徴とする前記1乃至4又は6乃至12の何れか1項に記載の光学用レンズ。

【0024】14. 前記珪素系樹脂がシリコーン樹脂であり、前記光学用レンズが該シリコーン樹脂からなることを特徴とする前記1乃至13の何れか1項に記載の光学用レンズ。

【0025】15. 前記シリコーン樹脂が熱硬化型であり、熱硬化反応に付加反応を用いて形成されたことを特徴とする前記14記載の光学用レンズ。

【0026】16. 前記熱硬化反応の触媒に白金化合物を用いたことを特徴とする前記15記載の光学用レンズ。

【0027】17.400nm~850nmの波長領域において85%以上の透過率を有することを特徴とする前記1乃至16の何れか1項に記載の光学用レンズ。

【0028】18. JIS-A硬度が85以上であることを特徴とする前記1乃至17の何れか1項に記載の光学用レンズ.

【0029】19.少なくとも一方の光学面が非球面形状を有することを特徴とする前記1乃至18の何れか1項に記載の光学用レンズ。

【0030】20. 光学面の両面が非球面形状を有することを特徴とする前記19記載の光学用レンズ。

【0031】以下、本発明に用いられる珪素系樹脂について説明する。

【0032】本発明において、珪素系樹脂を有するとは、光学用レンズを構成する成分のうち、少なくとも珪素系樹脂をその一成分とするという意味であり、好ましくは光学用レンズ成形品において珪素系樹脂が70重量%以上、更には80重量%以上含有することが好ましく、本発明の効果を損なわない範囲で、他の樹脂や各種添加物が混入されたものも本発明に含まれるものである。又、レンズの表面に種々の目的で各種コート層が設けられていてもよい。

【0033】珪素系樹脂において、(R1SiO $_{3/2}$ の形をした珪素原子の数)/(珪素原子の全数)>0であり、(SiO $_{4/2}$ の形をした珪素原子の数)/(珪素原子の全数) \ge 0であり、(R1SiO $_{3/2}$ の形をした珪素原子の数)+(SiO $_{4/2}$ の形をした珪素原子の数)+(SiO $_{4/2}$ の形をした珪素原子の数) \ge 5%であるとは、珪素系樹脂を構成する珪素原子に少なくとも3官能シロキサン単位であるR1SiO $_{3/2}$ の形をした珪素原子が必ず存在し、4官能シロキサン単位であるSiO $_{4/2}$ の形をした珪素原子は存在してもしなくても良いが、その両者を合計した珪素原子の数は全珪素原子の数に対して5%以上であるという意味である。なお、珪素系樹脂とは、珪素原子を有する樹脂を意味する。

【0034】本発明は、優れた成形性、優れた耐熱性、低残留複屈折、低吸水率、良好な光透過率等の特性を併せ持つ、光学面の最小有効半径が0.03mm~3.00mmの小型の光学用レンズを得ることができ、又その光学用レンズを一度に多数個成形し得る、製造コストの低減可能な工業的生産に非常に適した光学用レンズを見いだしたものである。

【0035】ここで言う光学面の最小有効半径とは、有効光学面の最外周と光学面の光軸に垂直な面への射影の重心が最短となる距離を言う。例えば、光軸方向からみて円形の光学面は光学面最外周とその重心である円中心との距離、即ち有効光学面の半径を最小有効半径と言う。又、光軸方向からみて長方形の光学面は、長方形の長辺上の光学面最外周と重心位置との最短距離、即ち短辺長の半分を最小有効半径と言う。他の光学面についても同様に考える。

【0036】特に、体積が100mm³以下の光学用レンズに適用することが望ましく、その効果は絶大であった。

【0037】本発明に用いられる珪素系樹脂中のR1S $iO_{3/2}$ (R1は水素、水酸基、アミノ基、ハロゲン原 子又は有機基を示す。)単位は、即ち珪素系樹脂を構成 する全珪素原子の内、R1S $iO_{3/2}$ の形をした3官能 シロキサン単位をなす珪素原子が5~90%であること が好ましい。光学用レンズとして高い硬度を得るために は3官能シロキサン単位をなす珪素原子が5以上%存在 することが好ましく、また耐衝撃性や脆さという観点からは3官能シロキサン単位をなす珪素原子を90%以下とすることが好ましい。又、3官能シロキサン単位をなす珪素原子が90%以上含有する成形用のオルガノポリシロキサンを安定に製造することは合成行程においてゲル化等の問題を生じるため、非常に困難である。R1S $iO_{3/2}$ の含有量は好ましくは30~70%である。

【0038】3官能シロキサン単位をなす珪素原子に結合するR1及び2官能シロキサン単位をなす珪素原子に結合するR2、R3としては、各々水素原子、水酸基、アミノ基、ハロゲン原子又は有機基を表す。

【0039】有機基としては同種のものでも異種のものでもよく、各々置換または未置換のアルキル基、アルケニル基、アルキレン基、アリール基、シクロアルキル基等を挙げることができる。

【0040】アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ベンジル基、フェネチル基、トリフロロメチル基、ベンジル基等が挙げられる。 【0041】アルケニル基としてはアリル基、ビニル基、イソプロペニル基、ブテニル基、等が挙げられる。 好ましくは、ビニル基である。

【0042】アルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基等が挙げられる。

【0043】アリール基としては、フェニル基、トリル基、キシリル基、ナフチル基、クロロフェニル基、トリブロモフェニル基、ペンタフルオロフェニル基、フリル基、チエニル基、ピリジル基等の基が挙げられる。

【0044】シクロアルキル基としてはシクロペンチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基、等の基が挙げられる。

【0045】本発明の珪素系樹脂を有する光学用レンズは、広い波長領域において高い光透過率を得ることが可能であり、珪素原子に結合された置換基の内、20mo1%以上をアルキル基又は水素原子とすることによって、250nm~900nmの広い波長領域に対して80%以上の分光透過率を達成することが可能であり、特に短波長領域の光透過率を向上させることができる。

【0046】本発明において、珪素原子に結合した置換基の内、15~100mo1%を芳香族基とすることにより、更に屈折率を向上することができ、芳香族基としてはアリール基が好ましく、更に好ましくはフェニル基、トリル基、モノクロルフェニル基である。

【0047】3官能シロキサン ($R1SiO_{3/2}$)の具体例を以下に示すが、本発明はこれらに限定されるものではない。

[0048]S3-1 (CH₃) SiO_{3/2}

S3-6 ($C_{10}H_{7}$) $CH_{2}CH_{2}$ CH_{2} CH_{3}) CH_{2} CH_{2}

S3-7 ($C_6H_5CH_2$) $SiO_{3/2}$

 $(CH_3)_3SiO_{1/2}$ $(CH_3)_2SiO_{2/2}$ $(CH_3)_SiO_{3/2}$ $(C_6H_5)_SiO_{3/2}$ $SiO_{4/2}$

光学素子の固体高分解能 29 Si-NMRスペクトル(29 Si-MAS)においてそれぞれのピークの面積百分率を測定することにより精度良く個々の構造単位の定量値(mo1%)を得ることができる。

 $S3-8 - (CH_2CH_2) SiO_{3/2}$

3官能及び4官能シロキサン単位以外に、1官能シロキサン単位、2官能シロキサン単位及びシロキサン構造単位以外の構造単位を含むことができる。

【0049】1官能シロキサン単位とは置換基を3つ有するシロキサン単位であり、具体例としては次のようなものが挙げられる。

【0050】 $(CH_3)_3 SiO_{1/2}$ 、 $(CH_3)_2 (CH_2)_2 = CH-) SiO_{1/2}$ 、 $(C_6H_5) (CH_3)_2 SiO_{1/2}$ 、 $(C_6H_5)_3 SiO_{1/2}$ 、 $(C_6H_{11}) (CH_3)_2 SiO_{1/2}$ 、 $(C_6H_5CH_2) (CH_3)_2 SiO_{1/2}$ 、 $(CH_2CH_2) (CH_3)_2 SiO_{1/2}$ 等を挙げることができる。

【0051】2官能シロキサン単位とは置換基を二つ有するシロキサン単位であり、具体例としては次のようなものが挙げられる。

【0052】(CH_3) $_2$ SiO $_{2/2}$ 、(CH_3)(CH_2 =CH)SiO $_{2/2}$ 、(C_6H_5)(CH_3)SiO $_{2/2}$ 、(C_6H_5) $_2$ SiO $_{2/2}$ 、(C_6H_{11})(CH_3)SiO $_{2/2}$ 、($C_{10}H_7CH_2CH_2$)(CH_3)SiO $_{2/2}$ 、($C_{6}H_2Br_3CH_2$)(CH_2)(CH_3)SiO $_{2/2}$ 、($C_6H_2Br_3CH_2$)(CH_2)(CH_3)SiO $_{2/2}$ 、($C_6H_2CH_2$)(CH_3)SiO $_{2/2}$ 、-(CH_2CH_2)(CH_3)SiO $_{2/2}$ 、-(CH_2CH_2) $_2$ SiO $_{2/2}$ 等を挙げることができる。

【0053】2官能シロキサン単位の含有率は、光学用レンズに必要な硬度を低下させないために、60%以下とすることが好ましく、機械的強度を与える点では5%以上含有することが好ましい。

【0054】本発明でいうシロキサン構造単位以外の構造単位とはシロキサン単位以外の珪素原子を含有する構造単位をいう。具体的には、シラザン、ポリシラン、シルフェニレン、シルアルキレン等のシロキサン結合以外の結合を有する構造単位をいう。

【0055】各シロキサン単位の含有率は成形した後の 光学素子の固体高分解能 29 Si-NMRスペクトル(29 Si-MAS)を測定することにより精度良く求めることができる。

【0056】固体高分解能²⁹Si-NMRスペクトルにおける各構造単位に対応するピークの検出される化学シフト値の具体例を以下に示す。

【0057】

6~8ppm -17.8~-23.0ppm -65~-66ppm -78ppm -105~-106ppm

【0058】本発明の珪素系樹脂を有する光学用レンズは、1種または複数のオルガノポリシロキサン、硬化剤、触媒を金型に入れ硬化させる方法が好ましく用いられる。

【0059】硬化反応としては室温硬化反応、紫外線硬化反応、電子線硬化反応、熱硬化反応を挙げることができる。熱硬化反応が生産性の点で好ましい。

【0060】熱硬化反応としては脱水縮合、脱アルコール縮合、脱水素縮合、パーオキサイド架橋、付加重合反応が挙げられる。光学素子の光透過率を損なわないという点で付加重合反応が好ましい。付加重合反応の触媒としては白金化合物が好ましく用いられる。

【0061】オルガノポリシロキサンの合成方法は従来 当業者によく知られているものであって公知である。例 えば、それぞれのシロキサン単位に対応したクロロシラ ン、アルコキシシラン等の加水分解性シランを共加水分 解することにより得られる。

【0062】白金触媒を用いる付加重合反応により成形する場合は、重量平均分子量300~100000、末端もしくは、側鎖にビニル基やアリル基等のアルケニル基を有する1種または複数のオルガノボリシロキサン成

分と重量平均分子量300~100000の1種、または複数のオルガノハイドロジェンポリシロキサン成分を硬化剤として用いて100℃~200℃の温度で10分から3時間程度加熱硬化させ、成形するのが好ましい。白金触媒の量は0.1ppmから1000ppmが好ましい。

【0063】硬化剤としてはオルガノハイドロジェンポリシロキサン以外に下記の一般式で示される、有機珪素化合物を用いることもできる。

【0064】((CH_3) $_2$ HSiO) $_a$ -Si(R6) $_{3-a}$ -Q-Si(R6) $_{3-a}$ -(OSiH(CH_3) $_2$) $_a$ 式中、R6は有機基を表し、Qは二価の芳香族炭化水素基であり、aは1 \sim 3の整数である。以下に具体例を示す。

【0065】 【化1】

$$(H_3^{\text{CH}_3})_2-\text{Si}-(O_5^{\text{SiH}})_2\\ C_{\text{H}_3}$$

$$(\begin{matrix} \text{CH}_3 & \text{CH}_3 \\ (\text{HSiO})_2 - \text{Si} \end{matrix} - \begin{matrix} \text{CH}_3 & \text{CH}_3 \\ \text{Si} - (\text{OSiH})_2 \\ \text{CH}_3 \end{matrix}$$

$$(H_{\overset{\circ}{S}}^{\overset{\circ}{C}}H_{\overset{\circ}{3}} - Si - (O\overset{\circ}{S}iH)_{2}$$

$$(H_3 \cap G)_2 - Si \longrightarrow GH_3 \longrightarrow GH_3 \cap GSi \longrightarrow G$$

【0066】 【化2】

$$(\overset{CH_3}{\underset{I}{\text{HSiO}}_3} - \text{Si} \overset{CH_3}{\longleftarrow} \text{Si} \overset{CH_3}{\longleftarrow} (\overset{CH_3}{\underset{CH_3}{\text{CH}_3}}$$

$$(H_3^{\text{CH}_3} - \text{Si} - (O_{\text{SiH}}^{\text{CH}_3})_3 - \text{Si} - (O_{\text{SiH}_3}^{\text{CH}_3})_3 - (O_{\text{Si$$

$$(H_3 \atop (H_5 iO)_3 - Si - (O \atop) \atop CH_3 \atop CH_3$$

【0067】更に、下記一般式で示される有機珪素化合物も用いることができる。

[0068]

R7(R8)(H)Si-Q-Si(H)(R8)R7上記式中R7、R8はそれぞれ1価の炭化水素であり、 Qは芳香族炭化水素を含有する2価の有機基である。以 下に具体例を示す。

[0069]

【化3】

$$\begin{tabular}{lll} CH_3 & & & \operatorname{CH}_3\\ HSi_1 & & & & \operatorname{SiH}_1\\ CH_3 & & & & \operatorname{CH}_3\\ \end{tabular}$$

$$\begin{array}{c|c} & \text{CH}_3 \\ \text{H$SI} & & \\ \text{CH}_3 & & \\ \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \end{array}$$

[0070]

【化4】

$$\begin{array}{c} \overset{\text{C}}{\text{H}_3} & \overset{\text{C}}{\text{H}_3} & \overset{\text{C}}{\text{H}_3} \\ \overset{\text{C}}{\text{C}} & \overset{\text{C}}{\text{H}_3} & \overset{\text{C}}{\text{H}_3} \\ \overset{\text{C}}{\text{C}} & \overset{\text{C}}{\text{H}_3} & \overset{\text{C}}{\text{C}} & \overset{\text{C}}{\text{H}_3} \\ \end{array}$$

$$\begin{array}{c|c} CH_3 & CH_3 & CH_3 \\ \downarrow SI & SI - O - SI & SIH \\ CH_3 & CH_3 & CH_3 & CH_3 \end{array}$$

【0071】本発明に用いられる末端や側鎖にビニル基やアリル基等のアルケニル基を有するオルガノポリシロキサンはクロロシラン、メチルトリクロロシラン、ジメ

チルジクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン等の公知のクロロシラン化合物と分子内にビニル基やアリル基を有する公知のクロロシラン化合物を各種の組み合わせで配合し、共加水分解、或いは、アルコキシ化し、更に、縮合させることにより合成することが出来る。

【 0 0 7 2】配合するクロロシラン化合物の種類、配合 比及び反応条件によりオルガノポリシロキサンの分岐及 び網目構造、反応性基の種類、量、分子量、粘度等を制 御することが可能であり、多様なオルガノポリシロキサ ンを調整することが可能である。

【0073】各種のクロロシラン化合物はダウ・コーニング・コーボレーション(米国)、信越化学工業(株)等から市販されている。例えば、信越化学工業(株)の珪素化合物試薬カタログには以下のクロロシラン化合物が記載されている。

【0074】テトラクロロシラン(商品名、LS-1 0)、トリクロロシラン(商品名、LS-20)、メチ ルトリクロロシラン(商品名、LS-40)、ビニルト リクロロシラン(商品名、LS-70)、ジメチルジク ロロシラン(商品名、LS-130)、メチルビニルジ クロロシラン(商品名、LS-190)、トリメチルク ロロシラン(商品名、LS-260)、ジビニルジクロ ロシラン(商品名、LS-335)、ジメチルビニルク ロロシラン(商品名、LS-380)、アリルジメチル クロロシラン(商品名、LS-650)、4-クロロフ ェニルトリクロロシラン(商品名、LS-915)、フ ェニルトリクロロシラン(商品名LS-920)、シク ロヘキシルトリクロロシラン(商品名、LS-97 0)、ベンジルトリクロロシラン(商品名、LS-14 65)、p-トルイルトリクロロシラン(商品名、LS -1480)、メチルフェニルジクロロシラン(商品 名、LS-1480)、フェニルビニルジクロロシラン (商品名、LS-1980)、ジメチルフェニルクロロ シラン(商品名、LS-2000)、オクチルトリクロ ロシラン(商品名、LS-2190)、メチルフェニル ビニルクロロシラン(商品名、LS-2520)、トリ フェニルクロロシラン(商品名、LS-6370)、ト リベンジルクロロシラン(商品名、LS-6800)。

【0075】ビニル基やアリル基を末端や側鎖に有する オルガノポリシロキサンとしては、下記平均組成式で示 されるものが例示される。

【0076】以下に具体例を示す。

【0077】以下の記載においてViはビニル基、Me はメチル基、Chはシクロヘキシル基、Phはフェニル 基、Benzyはベンジル基、Tolyはトリル基、C 1Phはモノクロルフェニル基を示す。

[0078] (ViMe₂SiO_{1/2})_a (PhSiO_{3/2})_b (Ph₂SiO_{2/2})_c

 $(Me_3SiO_{1/2})_a$ $(PhSiO_{3/2})_b$ (PhViS

i $O_{2/2}$) c (Si $O_{4/2}$) d $(ViMe_2SiO_{1/2})_a (MePhSiO_{2/2})_b (P$ $h S i O_{3/2})_c (Me_3 S i O_{1/2})_d$ $(ViMe_2SiO_{1/2})_a (MePhSiO_{2/2})_b (P$ $h S i O_{3/2})_{c} (P h_{3} S i O_{1/2})_{d}$ ($ViMe_2SiO_{1/2}$) a ($ViPhSiO_{2/2}$) b (TolySi $O_{3/2}$)_c (Me₃Si $O_{1/2}$)_d $(PhMe_2SiO_{1/2})_a(MePhSiO_{2/2})_b(V$ $i Me Si O_{2/2}$)_c (Ph Si O_{3/2})_d $(Me_3SiO_{1/2})_a$ $(MeBenzySiO_{2/2})$ $_{\rm b}$ (MeSiO $_{\rm 3/2}$) $_{\rm c}$ (Ph $_{\rm 2}$ ViSiO $_{\rm 1/2}$) $_{\rm d}$ $(Me_3SiO_{1/2})_a (MeViSiO_{2/2})_b (PhS$ $iO_{3/2}$) c ((C1Ph) S $iO_{3/2}$)_d $(Me_3SiO_{1/2})_a$ $(ChPhSiO_{2/2})_b$ (PhS $i O_{3/2})_{c} (V i P h_{2} S i O_{1/2})_{d}$ (但し、a~dは1未満の正の数であり、各式において a~dの合計は1.0である)

これらのオルガノポリシロキサンは上記の式におけるそれぞれの構成単位に対応するオルガノハロシランを共加水分解する公知の方法で得ることができる。

【0079】オルガノハイドロジェンポリシロキサンも ビニル基やアリル基を末端や側鎖に有するオルガノポリ シロキサンと同様に珪素原子に結合した水素原子を有す る各種のクロロシラン化合物を用いて合成する事が出来 る。

【0081】光学用レンズを作製する際に用いるオルガノハイドロジェンポリシロキサン成分とビニル基やアリル基を末端や側鎖に有するオルガノポリシロキサン成分は、得られた光学用レンズの光透過率を高くするためには十分に相溶していることが好ましい。

【0082】オルガノハイドロジェンポリシロキサンの配合量はビニル基やアリル基を末端または側鎖に有するオルガノポリシロキサン成分100重量部に対して5~300重量部用いることが好ましい。得られた光学用レンズの硬度を充分高くするためには、オルガノハイドロジェンポリシロキサンの配合量が5重量部以上であることが好ましく、光透過率を向上する点でオルガノハイドロジェンポリシロキサンの配合量を増加することが好ま

LVI

【0083】硬化反応に付加重合反応を用いる際の反応 触媒として白金触媒が好ましく用いられるが、例えば白 金ブラック、塩化第二白金、塩化白金酸、塩化白金酸等 のアルコール変性物、塩化白金酸とオレフィン類との錯 体等が挙げられる。触媒の使用量は成分の合計量に対し て好ましくは0.1~1000ppm、更に好ましくは 5~200ppmである。

【0084】本発明に用いられる珪素系樹脂を形成するオルガノポリシロキサンとしては、平均組成式がR4a(C_nH_{2n+1}) $_b$ SiO $_{(4-a-b)/2}$ (ここで、R4は水素原子、水酸基、アミノ基、ハロゲン原子又はアルキル基以外の有機基であり、a>0、b>0であり、0<a+b<2であり、nは正の整数をあらわす。)で表されるオルガノポリシロキサンを含有する組成物から形成されたものが好ましく、特にn=1、即ちメチル基が好ましい。これは得られた光学用レンズが広い波長領域において高い光透過率をうることができるからである。又、a、bとしては各々0<a<1、0. 5<b<2の範囲であることが好ましい。

【0085】又、本発明に用いられる珪素系樹脂を形成するオルガノポリシロキサンとしては、平均組成式がR5。 $(H)_d$ SiO $_{(4-c-d)/2}$ (ここで、R5は水酸基、アミノ基、ハロゲン原子又は有機基であり、c>0、d>0であり、0<c+d<2である)で表されるオルガノポリシロキサンを含有する組成物から形成されたものであることが好ましく、これは得られた光学用レンズが広い波長領域において高い光透過率をうることができるからである。又、c、dとしては各々0<c<1、0.5<d<2の範囲であることが好ましい。

【0086】本発明に用いられる珪素系樹脂が、前記オルガノポリシロキサンから形成されたシリコーン樹脂であり、前記光学用レンズが該シリコーン樹脂からなる光学用レンズであることが最も好ましい態様である。

【0087】オルガノハイドロジェンボリシロキサン成分、ビニル基やアリル基を末端または側鎖に有するオルガノポリシロキサン成分、触媒の他に光学用レンズの機械的強度を向上させる目的で光学用レンズの光透過率を低下させない範囲でヒュームドシリカ等の補強性充填剤を用いても良い。また、成形品の硬度や粘弾性を調整する目的で平均分子量3000~10000の鎖状のオルガノボリシロキサンを第3のボリマー成分として用いてもよい。

【0088】本発明に好ましく用いられる熱硬化性シリコーン樹脂よりなる光学用レンズを成形する際の成形方法としては射出成形、押し出し成形、注型成形等の成形法により成形することが可能である。

【0089】本発明の珪素系樹脂を有する光学用レンズを、光学面が非球面形状のレンズに適用することにより、本発明の種々の特性を持ち、なお且つ金型の転写性

も良好で、非球面形状のレンズの波面収差も良好な光学 用レンズが得られる。非球面形状のレンズは、少なくと も一方の光学面が非球面形状であるものが好ましく、更 に好ましくは両面が非球面形状のものである。

【0090】本発明の珪素系樹脂を有する光学用レンズにおいては、JIS-A硬度が85以上の硬度を有する機械強度の高い光学用レンズを得ることができる。

【0091】更に、本発明の珪素系樹脂を有する光学用レンズは、光透過率を高める為に反射防止層を設けることができる。更に、基材また、表面の傷防止の為にハードコート層を設けてもよい。

【0092】前述のごとく、光透過率を更にアップさせるために光学用レンズの表面に反射防止膜を施すことができる。反射防止膜としては、単層であっても、屈折率の異なる薄膜を積層して得られる多層膜であってもよく、反射率の低減されるものであれば、無機物でも有機物でも可能である。

【0093】しかし、表面の硬度や干渉縞の防止を重視するためには、無機物から成る単層、または多層の反射防止膜を設けることが最も好ましい。使用できる無機物としては酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化チタニウム、酸化セリウム、酸化ハフニウム、フッ化マグネシウム等の酸化物或いはフッ化物が挙げられる。

【0094】イオンプレーティング、真空蒸着、スパッタリング等のいわゆるPVD法によって施すことができ

【0095】本発明の光学用レンズは基材が珪素系樹脂である為、シリコーンハードコート剤を用いる際に、ハードコート層と基材の接着性を高めるために常用されるプライマー層がなくてもよいという長所がある。

【0096】ハードコート層の好まし例として下記 (イ)、(ロ)を主成分とするコーティング組成物を塗 布硬化させたものが挙げられる。

【0097】(イ)少なくとも一種以上の反応性基を有するシラン化合物の一種以上。

【0098】(ロ)酸化珪素、酸化アンチモン、酸化ジルコニウム、酸化タングステン、酸化タンタル、酸化アルミニウム等の金属酸化物微粒子、酸化チタン、酸化セリウム、酸化ジルコニア、酸化珪素、酸化鉄のうち二つ以上を用いた複合金属酸化物微粒子酸化スズと酸化タングステンの複合金属微粒子で酸化スズ微粒子を被覆した複合金属微粒子から選ばれる一種以上。

【0099】成分(ロ)はハードコート層の屈折率を調整し、かつ、硬度を高めるために有効な成分である。ハードコート層の厚みは通常0.2ミクロン~10ミクロン程度がよい。より好ましくは1ミクロン~3ミクロン程度である。

[0100]

【実施例】以下に、実施例及び比較例を挙げてこの発明

を更に具体的に説明する。

【0101】以下の記載においてViはビニル基、Me はメチル基、Chはシクロヘキシル基、Phはフェニル 基、Benzyはベンジル基、Tolyはトリル基、C 1Phはモノクロルフェニル基を示す。

【0102】以下に実験に用いたビニル基やアリル基を 末端または側鎖に有するオルガノポリシロキサン成分1 ~8、及びオルガノハイドロジェンポリシロキサン成分 1~3を示す。

【0103】これらのオルガノポリシロキサンは公知の合成方法、すなわち、複数の加水分解性シラン化合物を共加水分解することにより合成した。以下に具体的な合成方法について示す。

【0104】オルガノポリシロキサン1

 $Vi(Me)_2SiC1_*(Ph)SiC1_3_*(Me)_3SiC1_*(Ph)(To1y)SiC1_2$ を混合した後、水を加えて共加水分解した。水で十分に反応生成物を洗浄後、減圧濃縮してオルガノポリシロキサン1を得た。

【0105】更に、他のクロロシラン化合物を用いて組み合わせを変えて、オルガノポリシロキサン $2\sim6$ を合成した。合成後、 29 Si $-NMR法、<math>^{1}H-NMR法$ 、ICP法によるSiの定量、及び有機元素分析法により平均組成を求めた。

【0106】平均組成式 $R_x SiO_{(4-x)/2}$ を用いて平均組成を示した。

【0107】オルガノポリシロキサン1

 $Vi_{0.05}$ $Ph_{1.10}$ $Toly_{0.20}$ $Me_{0.25}$ $SiO_{1.20}$ オルガノポリシロキサン2

 $V\,i_{\,0.\,10}\,P\,h_{1.\,32}M\,e_{\,0.\,06}C\,h_{\,0.\,10}\,S\,i\,O_{1.\,21}$ オルガノポリシロキサン3

 $Vi_{\,0.\,10}$ (C1Ph) $_{\,0.\,15}$ Ph $_{\,0.\,95}$ Me $_{\,0.\,50}$ SiO $_{\,1.\,15}$ オルガノポリシロキサン4

Vi_{0.08} (Benzy)_{0.50}Ph_{0.60}Me_{0.48}SiO
1.17

オルガノポリシロキサン5

Vi_{0.01}Me_{1.97}SiO_{1.01}オルガノポリシロキサン6

 $P\,h_{1.93}\,V\,i_{\,0.01}\,S\,i\,O_{1.03}$

オルガノポリシロキサン7

 $V~i_{\,0.04}\,M\,e_{\,0.10}\,P\,h_{\,1.38}\,S~i~O_{\,1.24}$

オルガノポリシロキサン8

 $Vi_{0.10}Me_{1.50}SiO_{1.20}$

オルガノハイドロジェンポリシロキサン1

両末端トリメチルシロキシ基封鎖メチルハイドロジェン ボリシロキサン

オルガノハイドロジェンポリシロキサン2

 $(\,\mathrm{C\,H_{\,3}}\,\,)_{\,2}\mathrm{H\,S\,i\,O_{1/2}}$ 単位と $\mathrm{S\,i\,O_{4/2}}$ 単位とからなる共重合体(共重合比8/2)

オルガノハイドロジェンポリシロキサン3

 $H_{1.00}$ M $e_{0.38}$ S i $O_{1.31}$

有機珪素化合物-1

 $H (CH_3)_2 SiOSi (OSi ((CH_3)_2 H))$ (C_6H_5) $C_6H_4 Si (C_6H_5) OSi (OSi ((CH_3)_2 H))$) (CH_3) $_2H$

実施例1

オルガノポリシロキサン1を100重量部、オルガノポリシロキサン6を5重量部、オルガノハイドロジェンポリシロキサン1を10重量部及び塩化白金酸のイソプロパノール溶液(白金含有量0.2重量%)1重量部を混合し、真空撹拌により脱泡して、シリコーン樹脂組成物を調製した。このシリコーン樹脂組成物を、直径3mm、20個取りのレンズ成形用金型に40気圧で注入し、145℃で10分間加熱し、注型成形による片面非球面形状のレンズ成形品を得た。金型からの離型性も良好で、全て良品のレンズが得られた。また、物性評価用に平板成形品(直径8cm、厚さ1.8mm)も作製した。平板成形品について、400nm~850nmの領域の光透過率を測定した結果、光透過率は85%以上であった。

【0108】実施例2

オルガノポリシロキサン1を100重量部、オルガノポリシロキサン6を5重量部、オルガノハイドロジェンポリシロキサン1を10重量部、塩化白金酸のイソプロパノール溶液(白金含有量0.2重量%)1重量部を用いて実施例1と同様にして片面非球面形状のレンズ成形品を得た。金型からの離型性も良好で、全て良品のレンズが得られた。また、物性評価用に平板成形品(直径8cm、厚さ1.8mm)も作製した。平板成形品について、400nm~850nmの領域の光透過率を測定した結果、光透過率は85%以上であった。

【0109】実施例3

オルガノポリシロキサン3を100重量部、オルガノポリシロキサン2を80重量部、オルガノハイドロジェンポリシロキサン1を20重量部及び塩化白金酸のイソプロパノール溶液(白金含有量0.2重量%)1.1重量部を混合し、真空撹拌により脱泡して、シリコーン樹脂組成物を調製した。このシリコーン樹脂組成物を、直径3mm、20個取りのレンズ成形用金型に注入し、150℃で15分間加熱し、注型成形による片面非球面形状のレンズ成形品を得た。金型からの離型性も良好で、全て良品のレンズが得られた。また、物性評価用に平板成形品(直径8cm、厚さ1.8mm)も作製した。平板成形品について、400nm~850nmの領域の光透過率を測定した結果、光透過率は85%以上であった。

【0110】実施例4

オルガノポリシロキサン4を100重量部、オルガノポリシロキサン2を80重量部、オルガノハイドロジェンポリシロキサン1を15重量部、有機珪素化合物-1を5重量部及び塩化白金酸のイソプロパノール溶液(白金

含有量 0.2重量%) 1.1重量部を混合し、真空撹拌により脱泡して、シリコーン樹脂組成物を調製した。このシリコーン樹脂組成物を直径 1 mm、16個取りのレンズ成形用金型に40気圧で注入し、150℃で15分間加熱し、注型成形による両面非球面形状のレンズ成形品を得た。金型からの離型成も良好で、全て良品のレンズが得られた。また、物性評価用に平板成形品(直径8cm、厚さ1.8 mm)も作製した。平板成形品について、400 nm~850 nmの領域の光透過率を測定した結果、光透過率は85%以上であった。

【0111】実施例5

オルガノポリシロキサン1を100重量部、オルガノポリシロキサン6を5重量部、オルガノハイドロジェンポリシロキサン2を10重量部及び塩化白金酸のイソプロパノール溶液(白金含有量0.2重量%)1重量部を混合し、真空撹拌により脱泡して、シリコーン樹脂組成物を調製した。以下実施例4と同様にして両面非球面形状のレンズ成形品を得た。金型からの離型成も良好で、全て良品のレンズが得られた。また、物性評価用に平板成形品(直径8cm、厚さ1.8mm)も作製した。平板成形品について、400nm~850nmの領域の光透過率を測定した結果、光透過率は85%以上であった。

【0112】実施例6

オルガノポリシロキサン1を30重量部、オルガノポリシロキサン5を100重量部、オルガノハイドロジェンポリシロキサン1を20重量部、塩化白金酸のイソプロパノール溶液(白金含有量0.2重量%)1.1重量部を用いて実施例1と同様にして片面非球面形状のレンズ成形品を得た。金型からの離型性も良好で、全て良品のレンズが得られた。また、物性評価用に平板成形品(直径8cm、厚さ1.8mm)も作製した。平板成形品について、400nm~850nmの領域の光透過率を測定し結果、光透過率は85%以上であった。

【0113】実施例7

オルガノポリシロキサン7を100重量部、オルガノポリシロキサン5を10重量部、オルガノハイドロジェンポリシロキサン1を20重量部、及び塩化白金酸のイソプロパノール溶液(白金含有量0.2重量%)1重量部を混合し、真空撹拌により脱泡して、シリコーン樹脂組成物を調製した。このシリコーン樹脂組成物を直径5mm、20個取りのレンズ成形用金型に40気圧で注入し、145℃で10分間加熱し、注型成形による両面非球面形状のレンズ成形品を得た。また、物性評価用に平板成形品(直径8cm、厚さ1.8mm)も作製した。平板成形品について、400nm~850nmの領域の光透過率を測定した結果、光透過率は85%以上であった。

【0114】実施例8

オルガノポリシロキサン8を100重量部、オルガノハイドロジェンポリシロキサン1を20重量部、及び塩化

白金酸のイソプロパノール溶液(白金含有量 0.2 重量%)1 重量部を混合し、真空撹拌により脱泡して、シリコーン樹脂組成物を調製した。このシリコーン樹脂組成物を直径 3 mm、20個取りのレンズ成形用金型に40気圧で注入し、145℃で10分間加熱し、注型成形による両面非球面形状のレンズ成形品を得た。金型からの離型性も良好で、全て良品のレンズが得られた。また、物性評価用に平板成形品(直径 8 cm、厚さ1.8 m)も作製した。平板成形品について、400 nm~850 nmの領域の光透過率を測定した結果、光透過率は85%以上であった。又、250 nm~900 nmの領域の光透過率を測定した結果、光透過率は85%以上であった。又、250 nm~900 nmの領域の光透過率を測定した結果、光透過率は80%以上であった。

【0115】実施例9

ハイドロジェンボリシロキサン3を100重量部、オルガノポリシロキサン8を20重量部、及び塩化白金酸のイソプロパノール溶液(白金含有量0.2重量%)1重量部を混合し、真空撹拌により脱泡して、シリコーン樹脂組成物を直径0.3mm、10個取りのレンズ成形用金型に40気圧で注入し、145℃で10分間加熱し、注型成形による両面非球面形状のレンズ成形品を得た。金型からの離型性も良好で、全て良品のレンズが得られた。また、物性評価用に平板成形品(直径8cm、厚さ1.8mm)も作製した。平板成形品について、400nm~850nmの領域の光透過率を測定した結果、光透過率は85%以上であった。又、250nm~900nmの領域の光透過率を測定した結果、光透過率は80%以上であった。

【0116】比較例1

オルガノポリシロキサン6を100重量部、オルガノポリシロキサン1を10重量部、オルガノハイドロジェンポリシロキサン1を15重量部及び塩化白金酸のイソプロパノール溶液(白金含有量0.2重量%)1.1重量部を用いた以外は実施例1と同様にして片面非球面形状のレンズ成形品を得た。離型性は良好であったが、硬さがやや低く光学用レンズとしてはやや不十分であった。また、物性評価用に平板成形品(直径8cm、厚さ1.8mm)も作製した。平板成形品について、250nmにおける光透過率を測定した結果、光透過率は5%以下であった。

【0117】比較例2

市販されているプラスチックレンズ用ポリメチルメタクリレート樹脂であるアクリペットVH(三菱レイヨン製)を用いて、直径3mm、16個取りのレンズ成形用金型を用いて射出成形法により両面非球面形状のレンズ成形品を得た。金型からの離型性が不十分で成形不良品が16個中3個発生した。また、物性評価用に平板成形品(直径8cm、厚さ1.8mm)も作製した。平板成形品について、250nmにおける光透過率を測定した

結果、光透過率は5%以下であった。

【0118】比較例3

市販されているプラスチックレンズ用ビスフェノールAタイプポリカーボネート樹脂であるユーピロンS2000(三菱ガス化学製、数平均分子量24,000)を用いて、直径1mm、10個取りのレンズ成形用金型を用いて射出成形法により両面非球面形状のレンズ成形品を得た。金型からの離型性が不十分で成形不良品が10個中10個発生した。また、物性評価用に平板成形品(直径8cm、厚さ1.8mm)も作製した。平板成形品について、250nmにおける光透過率を測定した結果、光透過率は5%以下であった。

【0119】尚、レンズ成形品を構成する2官能、3官能及び4官能シロキサン単位の含有率(%)、及び諸物性を以下に示す方法により測定し、評価した。

【0120】レンズ成形品の2官能、3官能及び4官能 単位の含有率(%)の測定:成形品を液体窒素で凍結し た後粉砕し固体高分解能FT-NMR装置を用いて、成 形品の29 Si-NMRスペクトルを測定した。基本構成 単位のmo1%を精度良く測定する為、測定法には定量 精度の高い29 SiMASを用いた。以下に測定条件を示 す。

[0121]

装置 JEOL 270EXWB(日本電子社製)

測定核 29 S i

観測周波数 53.54MHz観測範囲 10000Hz

データポイント データポイント8192、サンプリングポイント2048

測定法 ²⁹Si-MAS

パルス幅 4.2μsec (²⁹Si90度パルス)

 積算繰り返し
 pd=20sec

 積算数
 6400回

 試料回転数
 5kHz

 測定温度
 室温

化学シフトの基準にはテトラメチルシランを用いた。

【0122】屈折率:アッベ屈折率計(アタゴ社製の商品名2T)を用いて、成形品の屈折率を測定した。

【 0 1 2 3 】 複屈折性:自動複屈折測定機で位相差(nm)を測定した。

【0124】光透過率:400nm~850nmの領域の光透過率を可視紫外分光光度計(日立自記分光光度計)で測定した。又、250nm~900nmの領域の光透過率を紫外可視近赤外分光光度計(日本分光V570)で測定した。

【0125】耐熱性:成形品を150℃の乾燥機中に2時間放置した後、目視及び「フィルム配向ビュアー」 (ユニチカリサーチラボ社の商品名)にて成形品を観察 した。

【0126】そして、変形、割れ、表面劣化、着色などの変化が全く認められないものを○、いずれかが認めら

れたものを×とした。

【0127】硬さ: JIS7215に準じて、デュロメーターを用いてJIS-A硬度を測定した。85以上のものについては○、85未満~80以上のものについては△、80未満のものについてはプラスチックレンズとしては硬さが不足しているので×とした。

【0128】飽和吸水率: JIS7209 (プラスチックの吸水率の測定法) に準拠し、直径8cm、厚さ1.8mmの試験片を用いて測定した。

【0129】実施例1から9及び比較例1から3について、プラスチックレンズ成形品の3官能及び4官能単位の含有率(%)、屈折率、複屈折、硬さ、耐熱性、飽和吸水率を測定し、その結果を表1に示した。

[0130]

【表1】

試料 No.	2官能珪素 原子の含有率 (%)	3官能珪素 原子の含有率 (%)	4 官能珪素 原子の含有率 (%)	屈折率	複屈折 (n m)	硬さ	耐熱性	飽和吸水率 (%)
実施例1	30	49	0	1.51	8	O	0	<0.1
実施例2	26	54	0	1.50	9	0	0	< 0.1
実施例3	50	31	0	1.52	11	0	0	<0.1
実施例 4	29	45	0	1.53	9	0	0	<0.1
実施例5	28	49	3	1.53	9	0	0	< 0.1
実施例6	60	10	0	1.42	11	Δ	0	<0.1
実施例7	29	46	0	1.53	9	0	0	<0.1
実施例8	50	39	0	1.41	8	0	0	<0.1
実施例9	28	51	0	1.36	9	0	0	<0.1
比較例1	94	4	0	1.53	13	×	0	<0.1
比較例2	_	_	_	1.49	18	0	×	2.0
比較例3	_	_	_	1.59	65	0	×	0.3

【0131】また、実施例1~9のレンズ成形品について、キセノンロングライフウェザーメータ(スガ試験機社製WEL-6X-HC-EC)による耐光性試験(室温、30日)を行ったところ、微細なクラックの発生も着色も認められなかった。

[0132]

【発明の効果】本発明により屈折率が高く、複屈折が低く、短波長領域での光透過率の高い光学特性に優れ、尚かつ、耐熱性、低い吸水性、高い硬度を有し、優れた成形性を有する小型の光学用レンズ、更には多数個を一度に成形し得る、製造コストを低減可能な光学用レンズを提供することができた。

フロントページの続き

(51) Int. Cl. ⁷

識別記号

FΙ

(参考)

G O 2 C 7/02

G02C 7/02