DESIGN AND IMPLEMENTATION OF CUBESAT ELECTRICAL POWER SYSTEM

Presented by : Naveen A.B. | TRV19EE038

GEC Barton Hill, Thiruvananthapuram

November 5, 2022

Guided by: Prof. Simi Raj

Contents

- 1. Introduction
- 2. Objective
- 3. Dynamic/Rheostatic Braking
- 4. Commonly used Energy Storage Mechanisms
- 5. HESS Architecture
- 6. Power Flow
- 7. Modes of Operation
- 8. Advantages and Disadvantages
- 9. Conclusion

Introduction

- Form factor of of 10 cm cube
- Cost-effective, timely and relatively easy to accomplish
- The Electrical Power System (EPS) is an electronic circuit board that is designed supply and manage energy to the Cubesat subsystems.

Objective

To design and implement a fully autonomous power generation, storage and distribution system for a CubeSat

Dynamic/Rheostatic Braking

- Works on the principle of reversibility of electrical machines
- Traction motors are switched into generator mode
- Power from braking is dissipated as heat in brake grid choppers or resistors
- Thus, the kinetic energy of the rolling stock is converted to heat energy

Dynamic/Rheostatic Braking (Contd.)

Pros:

- Reduction of wear and tear of brake shoes and wheels
- Lesser chance of brake fade
- Speed control on downgrades
- Very short response time

Cons:

- Wasted power is about 10–30% of the total locomotive energy usage [4]
- Large cooling fans necessary for thermal protection
- Excessive heat may damage or disable the resistors
- Ineffective at very low speeds

Commonly used Energy Storage Mechanisms

- Electric: Regenerated energy is stored in electrical storage devices such as batteries and super capacitors
- 2 Hydraulic/Pneumatic: Energy is converted into internal energy of a liquid or compressed gas or a vacuum
- Mechanical: Energy is stored in the form of mechanical energy of rotation or translational motion

HESS Architecture

Figure 1: HESS Architecture (Source: Ref. [1])

HESS Architecture: Power Generation System

- Main (MG) and Auxiliary generator (AG) coupled to diesel engine shaft
- MG output is rectified for powering DC Traction motors
- AG produces a 3-phase AC output
- AG output powers compressors, blowers, sanding systems, etc. (20% FL)

HESS Architecture: Traction and Braking System

- DC motor is used for traction
- ullet R_{DB} Dynamic Brake grid resistance
- ullet S_T Traction Motor switch
- ullet S_{DB} Dynamic Brake switch
- S_{RB} Regenerative Brake switch

Figure 2: Traction and Braking diagram

HESS Architecture: Energy Processing

- Li-ion batteries and super capacitors act as energy storage
- SCs take away all peak loads from the battery

Figure 3: Energy Storage and Conversion¹

¹IEEE Transactions on Industrial Electronics, VOL, 68, NO, 10, OCTOBER 2021; pp. 9083 [1]

HESS Architecture: Energy Processing (Contd.)

- Two DAB converters connected in input series output parallel fashion
- The DABs feeds regenerated energy into a common DC bus

 $\begin{array}{c|c} C_{\text{inl}} & \text{converter 1} & C_{o1} & R \geqslant V_{o} \\ \hline \\ C_{\text{inl}} & \text{converter 2} & C_{o2} \\ \hline \\ C_{\text{inn}} & \text{converter n} & C_{on} \\ \hline \\ \\ Module \ r, \end{array}$

Figure 4: Dual Active Bridge (Source: Ref. [5])

Figure 5: ISOP configuration (Source: Ref. [5])

HESS Architecture: Energy Processing Contd.)

- Bidirectional non-isolated dc–dc converters are used to charge and discharge the batteries
- ullet Decoupling between batteries, SCs, and the dc bus allows both storage devices to operate at a wider range of SoC²
- Volumetric efficiency of HESS is thus improved
- 3- Φ 2-level VSI with passively damped LCL filter is used to transfer power from DC bus to AC aux loads.

Power Flow

 Generated power must always be equal to the demanded power to ensure the system stability

Power Flow Equation

On neglecting system losses,

$$P_{reg} + P_{gen} - P_L \pm P_{HESS} = 0 \tag{1}$$

- ullet P_{rea} Power regenerated from dynamic braking
- ullet P_{gen} Power supplied by the diesel generator
- ullet P_L Power demanded by the locomotive auxiliary loads
- P_{HESS} Power available in the HESS

Power Flow (Contd.)

- The regenerated power is used primarily by the loads during braking, while the surplus is stored
- If the HESS 3 is fully charged, the control strategy must reduce P_{reg} until it matches the load demand
- If the HESS reaches its minimum SoC, the load is to be fed by the regenerated power or the diesel generator

Modes of Operation

Figure 6: HESS Architecture (Source: Ref. [1])

1, 2, 3, 4, 5

Modes of Operation: Mode 1 - Under-voltage Protection

- When the auxiliary load demand exceeds the discharge capacity of the batteries
- DAB ISOP converter does not regenerate power to the dc bus (not braking)

$$\therefore P_{gen} + P_{HESS} = P_L \tag{2}$$

Modes of Operation: Mode 2 - Discharging

- Entire auxiliary load is supplied only by the HESS or with the aid of regenerated power
- Auxiliary generator provides the reactive power required by the load

$$\therefore P_{reg} + P_{HESS} = P_L \tag{3}$$

$$Or, P_{HESS} \ge P_L$$
 (4)

Modes of Operation: Mode 3 - Inverter

- Auxiliary loads absorb all the regenerated power
- HESS does not operate/charge
- The dc bus voltage is regulated by the discharging storage system
- A portion of this power is used to recharge only the SCs

$$\therefore P_{reg} = P_L + P_{SC} \tag{5}$$

$$Or, P_{reg} = P_L \tag{6}$$

Modes of Operation: Mode 4 - HESS Charging

- The inverter supplies the entire load demand
- Batteries and SCs are recharged with excess regenerated power
- HESS regulates the dc bus voltage

$$\therefore P_{reg} = P_L + P_{HESS} \tag{7}$$

Modes of Operation: Mode 5 - Over-voltage Protection

- Acts whenever the regenerated power exceeds all system demand
- The energy storage system is fully charged and auxiliary loads are off
- Regeneration is turned off

$$When, P_{reg} > P_L + P_{HESS} \tag{8}$$

Advantages and Disadvantages

Advantages:

- Improved electric braking range and effectiveness
- Lesser load on auxiliary generator
- Non intrusive system
- HESS can be modified to expand it's capability

Disadvantages:

- Lower lifespan of the batteries
- Maintenance cost

Conclusion

- Focus on using the recovery energy to supply only auxiliary loads has reduced the cost and size of the system
- As the system presented is non-intrusive, it can be used to retrofit the existing systems
- There is potential for full hybridization of heavy haul locomotives.

References I

[1] Moraes, Caio Guilherme da Silva and Brockveld, Sergio Luis and Heldwein, Marcelo Lobo and Franca, André Stanzani and Vaccari, Anderson Silva and Waltrich, Gierri (2021)

Power Conversion Technologies for a Hybrid Energy Storage System in Diesel-Electric Locomotives

**IEEE Transactions on Industrial Electronics vol. 68, no. 10, pp. 9081-9091

IEEE Transactions on Industrial Electronics vol. 68, no. 10, pp. 9081-9091.

- [2] Spiryagin, Maksym (2014)
 Ground Vehicle Engineering: Design and Simulation of Rail Vehicles
 CRC Press.
- [3] T. Letrouve, W. Lhomme, J. Pouget, and A. Bouscayrol (2014) Different hybridization rate of a diesel-electric locomotive *IEEE Vehicle Power Propulsion Conference* pp. 1-6.

References II

- [4] Y. Sun, C. Cole, M. Spiryagin, T. Godber, S. Hames, and M. Rasul (2015) Conceptual designs of hybrid locomotives for application as heavy haul trains on typical track lines,
 - Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, vol. 227, no. 5, pp. 439–452.
- [5] F. Deng, X. Zhang, X. Li, T. Lei, and T. Wang (2018)
 - Decoupling control strategy for input-series output-parallel systems based on dual active bridge dc-dc converters
 - 9th IEEE International Symposium on Power Electronics Distribution Generation System, pp. 1–8.

References III

[6] Government Of India, Ministry of Railways (2021)

Technical specification for traction alternators with auxiliary machines and their sub-assemblies used in broad gauge diesel electric ALCO locomotives

*Research, Design & Standards Organization; Manak Nagar, Lucknow.