* No se permite el uso de ningún tipo de material *

EJERCICIO 1) (4 puntos) Sea $\mathcal{M}(\mathbb{R})$ la colección de medidas (σ-aditivas y finitas) de Borel en \mathbb{R} (es decir, definida en la familia $\mathcal{B}(\mathbb{R})$ de los conjuntos borelianos de \mathbb{R}). Para cada conjunto boreliano $B \subseteq \mathbb{R}$ definimos

$$B_2 := \{(x, y) \in \mathbb{R}^2 : x + y \in B\}.$$

Para $\mu, \nu \in \mathcal{M}(\mathbb{R})$ se define la convolución $\mu * \nu$ como la función que a cada boreliano $B \subseteq \mathbb{R}$ le asocia

$$(\mu * \nu)(B) := (\mu \times \nu)(B_2),$$

donde $\mu \times \nu$ es la medida producto de μ y ν .

- (1) Sea $\xi : \mathcal{B}(\mathbb{R}) \to [0, \infty[$ la función $\xi(B) := \lambda(B \cap [-1, 1])$ para cada $B \in \mathcal{B}(\mathbb{R})$, y donde λ es la medida de Lebesgue en \mathbb{R} . Demostrar que $\xi \in \mathcal{M}(\mathbb{R})$ y calcular $(\xi * \xi)(\mathbb{R})$ y $(\xi * \xi)([0, 1])$.
- (2) Demostrar que $\mu * \nu \in \mathcal{M}(\mathbb{R})$ y que $(\mu * \nu)(\mathbb{R}) \leq \mu(\mathbb{R}) \cdot \nu(\mathbb{R})$.
- (3) Demostrar la fórmula

$$(\mu*
u)(B)=\int \mu(B-t)d
u(t),$$

para toda $\mu, \nu \in \mathcal{M}(\mathbb{R})$ y todo $B \subseteq \mathbb{R}$ Borel, donde $B - t := \{b - t : b \in B\}$.

EJERCICIO 2) (2 puntos)

- (1) Enunciar el teorema de Radon-Nikodym.
- (2) Sea $X := \{1, 2, 3\}$, y sea $\mu : \mathcal{P}(X) \to \mathbb{R}$, la medida $\mu := 1/3\delta_1 + 5\delta_3$, donde δ_p es la medida de Dirac sobre el punto p, definida para $A \subseteq X$ por $\delta_p(A) = 1$ si $p \in A$ y $\delta_p(A) = 0$ si no. Sea $\nu : \mathcal{P}(X) \to \mathbb{R}$ la medida $\nu(A) := \operatorname{Card}(A) = \operatorname{card}(A) = \operatorname{card}(A)$ de Radon-Nikodym de μ con respecto a ν .

EJERCICIO 3) (4 puntos)

- (1) Dar las definiciones de medida signada y de conjunto positivo de una medida signada.
- (2) Enunciar el Teorema de descomposición de Jordan.
- (3) Sea λ la medida de Lebesgue en \mathbb{R} , \mathcal{A} la σ -álgebra de conjuntos λ -medibles, y sea $f \in L_1(\lambda)$. Definimos $\mu : \mathcal{A} \to \mathbb{R}$ por

$$\mu(A) := \int_A f d\lambda \text{ para todo } A \in \mathcal{A}.$$

Demostrar que μ es una medida signada y encontrar su descomposición de Jordan.