08_Linear_Model_for_Regression

Noting Paradigm

- x Plain text: Scalar.
- x Bold-Face lowercase: Vector of scalars.

$$ullet$$
 e.g., $\mathbf{x} = egin{bmatrix} x_1 \ x_2 \ \dots \ x_D \end{bmatrix}$, where $\mathbf{x} \in \mathbb{R}^D$

- X Bold-Face uppercase: Set of vectors.
 - e.g., $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\}$, where $\mathbf{X} \subset \mathbb{R}^D$ and $|\mathbf{X}| = N$.

8.0 Regression

8.0.0 Why Regression?

Problem Setup

Given

- A set of inputs:
 - $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\}$, where, for each input:

$$oldsymbol{\mathbf{x}}_i = egin{bmatrix} x_{i1} \ x_{i2} \ \dots \ x_{iD} \end{bmatrix} \in \mathbb{R}^D$$

- A set of corresponding outputs:
 - $\mathbf{y} = \{y_1, y_2, \cdots, y_N\}$, where, for each output: $y_i \in \mathbb{R}$
- A labelling relation:

-
$$D=\{(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)\}$$

Goal

- To learn a mapping
 - $ullet f(x): \mathbf{X}
 ightarrow \mathbf{y}$, where
 - Input: An arbitrary vector $\mathbf{x} \notin \mathbf{X}$,
 - Output: A scalar $y \notin \mathbf{y}$.
- Such that we could make prediction

- about y_*
- on an unseen input x_{*} is encountered.

Different Kinds

- Parametric Regression 参数性回归
 - Assume a functional form for f(x).
- Nonparametric Regression 非参数性回归
 - Does not assume a functional form for f(x).

To sum up

- From given relations, learn a function that
 - Takes a vector as an input
 - Output a real number that
 - "Fits" the given pattern

8.0.1 Definition

- What is Regression?
- Regression aims at modelling the dependence of:
 - a response Y,
 - on a covariate X.
- That is, to predict the value of one or more continuous target variables y given the value of input vector x.
- i The regression model is described by

$$y = f(\mathbf{x}) + \epsilon$$

- ullet where the dependence of a response y on a covariate ${f x}$ is captured via:
 - $p(y|\mathbf{x})$,
 - i.e., a conditional probability distribution.

8.1 Linear Regression