

Option "Structures et Matériaux"

Fatigue TD Amorçage / Durée de Vie

La durée de vie en fatigue est séparée en deux stades: un stade d'amorçage correspondant à un nombre de cycles $N_a(\Delta\sigma)$ et un stade de propagation correspondant à $N_p(\Delta\sigma)$ où $\Delta\sigma$ désigne le niveau d'amplitude de contrainte imposée.

1°) On suppose que, pour chacun de ces deux stades d'endommagement, la règle de cumul de dommages de Miner peut s'appliquer. Selon cette règle, chaque cycle introduit un dommage élémentaire. On a donc amorçage ou rupture dès que le dommage cumulé est égal à 1. On considère un chargement de fatigue à deux niveaux présenté sur la figure1. Un niveau i est caractérisée par l'amplitude de contrainte appliquée $\Delta \sigma_i$ et le nombre de cycles réalisés à ce niveau de sollicitation N_i avec i=1, 2. On suppose également connus, pour chaque niveau de chargement $\Delta \sigma_i$, les durées de vie à l'amorçage N_a ($\Delta \sigma_i$) et en propagation $N_p(\Delta \sigma_i)$.

Déterminer l'expression du nombre de cycles possibles N_2 au niveau d'amplitude $\Delta \sigma_2$ en fonction du nombre de cycles N_1 préalablement effectués au niveau $\Delta \sigma_1$ en considérant les différents cas de figure.

2°) Application numérique :

 $N_a(\Delta \sigma_l) = 3~000$ cycles; $N_a(\Delta \sigma_2) = 180~000$ cycles;

 $N_p(\Delta \sigma_1) = 12~000$ cycles; $N_p(\Delta \sigma_2) = 60~000$ cycles;

Tracer l'évolution de N₂ en fonction de N₁.

On a effectué 12 000 cycles au niveau de contrainte $\Delta \sigma_1$. On souhaite ensuite continuer à utiliser la pièce avec une amplitude de contrainte $\Delta \sigma_2$ pendant 100 000 cycles. Est-ce possible? Même question pour N_1 =2 000 cycles et N_2 = 50 000 cycles.