Application No.: To Be Assigned Docket No.: 22129-00003-US2

AMENDMENTS TO THE CLAIMS

- 1. (Original) A brazing sheet comprising an aluminum 3xxx series core alloy wherein at least one side thereof is provided with an aluminum clad material comprising from 0.7-2.0% Mn and 0.7-3.0% Zn, wherein said clad is capable of being used as the inner-liner of a heat exchanger tube product.
- 2. (Original) A brazing sheet of claim 1, wherein one side of said core is provided a material that comprises from 0.7-2.0% Mn and 0.7-3.0% Zn and the other side of said core is provided with an aluminum alloy comprising at least 5.5 % Si.
- 3. (Currently amended) A brazing sheet <u>according to claim 1</u> comprising a clad brazing alloy, a 3xxx series core alloy and a clad inner-liner alloy, wherein said brazing sheet has the following composition, wherein the percentages expressed in said composition are by weight based on the weight of said brazing sheet:

Clad Alloy (4xxx series aluminum) Core(3xxx series Al alloy) Clad Alloy (Inner-liner)

Si	6.0 – 13%	0.6 max	0.40 max
Fe	0.30 max	0.7 max	0.7 max
Cu	0.10 max	0.1 - 0.7	0.05 - 0.4
Mn	0.10 max	0.8 – 1.7	0.7 – 1.5
Mg	1.8% max	0.15 max	0.05 max
Zn	0.10 max	0.10 max	1.3 – 1.5
Ti	0.05 max	0.10 max	0.05 max
Al	balance	balance	balance

4. (Currently amended) A brazing sheet <u>according to claim 1</u> comprising a clad fin stock alloy, a core alloy and a clad inner-liner alloy, wherein said brazing sheet has the following

Application No.: To Be Assigned Docket No.: 22129-00003-US2

composition, wherein the percentages expressed in said composition are by weight based on the weight of said brazing sheet:

Clad Alloy (4xxx series aluminum) Core(3xxx series Al alloy) Clad Alloy (Inner-liner)

Si	6.0 – 13%	0.6 max	0.40 max
Fe	0.30 max	0.7 max	0.7 max
Cu	0.10 max	0.1 - 0.7	0.05 - 0.4
Mn	0.10 max	0.8 – 1.7	0.7 – 1.5
Mg	1.8% max	0.15 -0.60	0.05 max
Zn	0.10 max	0.10 max	1.3 – 1.5
Ti	0.05 max	0.10 max	0.05 max
Al	balance	balance	balance

- 5. (Original) A heat exchanger tube prepared from a brazing sheet according to claim 1.
 - 6. (Original) Tube stock prepared from a sheet according to claim 1.
- 7. (Original) A method for reducing corrosion and /or erosion associated with fluid velocity in the interior of heat exchange tubes comprising: obtaining a brazing sheet material that includes an inner clad layer including from 0.7 3.0% Zn and from 0.7 2.0% Mn and forming a heat exchanger tube wherein said inner clad is present on the interior of said heat exchanger tube.
- 8. (Original) A method according to claim 7, wherein said method imparts a reduction from between 10% to 60% of the erosion/corrosion compared to AA7072 as measured by maximum pit depth in microns for fluid velocity rates from 3.0 9.0 ft./sec.

Application No.: To Be Assigned Docket No.: 22129-00003-US2

9. (Original) A method according to claim 7, wherein said method imparts a reduction from between 10% to 60% of the erosion/corrosion compared to AA7072 as measured by average pit depth in microns for fluid velocity rates up to 10.0 m/sec (32 ft./sec.).

- 10. (Original) A method according to claim 7, wherein said method imparts a reduction from between 10% to 60% of the erosion/corrosion compared to AA7072 as measured by maximum pit depth in microns for fluid velocity rates up to 10 m/sec (32 ft./sec.).
- 11. (Original) A method according to claim 7, wherein said brazing sheet material includes an outer clad layer comprising at least 5.5% Si.
 - 12. (Original) A heat exchanger prepared according to the method of claim 7.
 - 13. (Original) A heat exchanger prepared using a brazing sheet according to claim 1.
- 14. (Original) A brazing sheet according to claim 1 that has a thickness of 0.007" 0.015".
- 15. (Original) A heat exchanger according to claim 12, that has been formed from a brazing sheet having a size of 0.007" 0.015".
- 16. (Original) A brazing sheet comprising an aluminum 3xxx series core alloy wherein at least one side thereof is provided with an aluminum clad material comprising from greater than 1.0% Mn and wherein said clad is capable of being used as the inner-liner of a heat exchanger tube product.
- 17. (Original) A heat exchanger as claimed in claim 13, that shows substantially no difference in maximum and/or average pit depth after being exposed to fluid velocities from 3.0 9.0 ft./sec. for 250 hours.
- 18. (Original) Tube stock according to claim 6, wherein said tube stock will have a maximum pit depth of up to 40 microns when exposed to a fluid at a velocity of 7.75 ft./sec. for 250 hours.