作业 九

- 1. 设 $f(x) = (a + b \cos x) \sin x x$ 在 $x \to 0$ 时是 x 的五阶无穷小,求常数 a 和 b.
- 2. 设函数 f(x) 满足 f(0) = 0,且 f'(0) 存在,证明: $\lim_{x \to 0^+} x^{f(x)} = 1$.
- 3. 求极限:

a)
$$\lim_{x \to +\infty} \left[\ln(1+2^x) \ln\left(1+\frac{3}{x}\right) \right];$$
 b) $\lim_{x \to 0} \left(\frac{3^{x+1}-2^{x+1}}{x+1}\right)^{\frac{1}{x}}$

- 4. 设函数 f(x) 在区间 $[0, +\infty)$ 上二阶可导,且 f''(x) < 0. 若 f(0) > 0, f'(0) < 0, 证明: f(x) = 0 在区间 $[0, +\infty)$ 上有解.
- 5. 设函数 f(x) 在闭区间 [0,1] 上二阶可导,且满足 f(0) = f(1) = 0, $\max_{0 \le x \le 1} f(x) = 2$,证明:存在 $\xi \in (0,1)$,使得 $f''(\xi) \le -16$.
- 6. 设 f(x) 在 [a,b] 上三阶可导,证明:存在 $\xi \in (a,b)$,使得

$$f(b) = f(a) + f'\left(\frac{a+b}{2}\right)(b-a) + \frac{1}{24}(b-a)^3 f'''(\xi)$$

7. 求下列函数在指定区间上的最大值和最小值:

a)
$$y = |4x^3 - 18x + 27|$$
 在 $[0, 2]$ 上; b) $y = |4x^3 - 18x + 27|$ 在 $[0, 2]$ 上.

- 8. 从圆上截下中心角为 α 的扇形卷成一圆锥,问当 α 为何值时,所得圆锥的体积最大?
- 9. 一商家销售某种商品的价格满足关系 p = 7 0.2x (万元/吨), x 为销售量(单位: 吨),商品的成本函数是 C = 3x + 1 (万元).
 - (a) 若每销售一顿商品,政府要征税 t (万元),求该商家获最大利润的销售量;
 - (b) 当 t 为何值时, 政府税收总额最大.

10. 求下列函数图形的凹(下凸)凸区间及拐点:

a)
$$y = x^4 - 12x^3 + 48x^2 - 50;$$
 b) $y = a^2 - \sqrt[3]{x - b}$

- 11. 证明: 曲线 $y = \frac{x+1}{x^2+1}$ 有三个拐点且位于同一条直线上.
- 12. 证明下列不等式:
 - (a) 设常数 p > 1, 则当 $x \in [0,1]$ 时,有 $x^p + (1-x)^p \ge \frac{1}{2p-1}$.
 - (b) $\frac{e^x + e^y}{2} > e^{\frac{x+y}{2}} (x \neq y)$
- 13. 求下列函数图形的渐近线:

a)
$$y = \frac{x^2 + x}{(x - 2)(x + 3)};$$
 b) $y = x \ln\left(e + \frac{1}{x}\right)$

14. 全面讨论下列函数的性态,并描绘出它们的图像:

a)
$$y = \frac{2x^2}{(1-x)^2}$$
; b) $y = x \ln\left(e + \frac{1}{x}\right)$

- 15. 证明方程 $x^5 + 5x + 1 = 0$ 在区间 (-1,0) 内有唯一的实根,并用切线法求这个根的近似值,使误差不超过 0.01.
- 16. 求方程 $\sin 2x x = 0$ 的正实根(精准到两位小数).
- 17. 求下列曲线在指定点处的曲率及曲率半径:
 - (a) $y = \cosh x$ 在点 (0,1) 处;
 - (b) 曲线 $x = a\cos^3 t$, $y = a\sin^3 t \, (a > 0)$ 在 t 处.
- 18. 设 y = f(x) 为过原点的一条已知曲线,已知 f'(0) = 2, f''(0) = 1. 又 g(x) 是二次函数,它的图像与曲线 f(x) 在原点相切且有相同的曲率,并 在原点的领域内有相同的凹向,求 g(x).
- 19. 应选用直径多大的圆铣刀,才能使加工后的工件近似于长半轴为 50 单位长,短半轴为 40 单位长的椭圆上短轴一端附近的一段弧.