Contents

1	Neb	bengruppenmetalle	2
	1.1	Die siebte Gruppe	2
		1.1.1 Vorkommen	2
		1.1.2 Herstellung	2
		1.1.3 Verbindungen	2
		1.1.4 Technische Verwendung	2
	1.2	Die achte, neunte und zehnte Gruppe, Eisen Cobalt und Nickel	2
		1.2.1 Vorkommen	2
		1.2.2 Herstellung	3
		1.2.3 Verbindungen	3
		1.2.4 Die 8.,9. und 10. Gruppe	3
		1.2.5 Vorkommen	4
		1.2.6 Verbindungen	4
2	Dia	Seltenerdelemente, Lanthanoide & Actinoide	/
4	2.1	Eigenschaften	4
	$\frac{2.1}{2.2}$	Vorkommen	7
	2.2	2.2.1 Die Seltenerdelemente	4
		2.2.1 Die Settenerderennente	4
	2.3	Herstellung	4
	2.3	2.3.1 Die Seltenerdelemente	ا ا
	0.4		
	2.4		5
	0.5	2.4.1 Seltenerdelemente	5
	2.5	Technische Verwendung	٤

Nebengruppenmetalle 1

1.1 Die siebte Gruppe

1.1.1 Vorkommen

Mangan: Oxide: MnO₂, Mn₂O₃, Mn₃O₄ Technetium: vom Kernbrennstab Rhenium: vergesellschaftet mit MoS_2

1.1.2 Herstellung

Mangan: Aluminothermisch aus Mn_3O_4

Technetium: $^{89}\text{Mo} + ^{1}_{0}\text{n} \longrightarrow ^{99}\text{Mo} - \beta^{-} \longrightarrow ^{99*}\text{Tc} - \gamma \longrightarrow ^{99}\text{Tc}$

Rhenium: Nebenprodukt in den Röstgasen der Molybdänherstellung aus $MoS_2 \rightarrow Re_2O_7 \rightarrow Reduktion$ mit H_2

1.1.3 Verbindungen

Halogene:

Mn - Halogenide nur in den niedrigen Oxidationsstufen des Mangans.

Tc- und Re- Halogenide auch für höhere Oxidationsstufen (TcF₆ oder TcCl₄); bei Re: Clusterbildung

Sauerstoffverbindung:

 $\begin{array}{ll} \operatorname{Mn}^{2+} \colon \operatorname{Mn}(\operatorname{OH})_2 - \operatorname{H}_2\operatorname{O} \longrightarrow \operatorname{MnO} \\ \operatorname{Mn}^{3+} \colon \operatorname{Mn}_2\operatorname{O}_3 \end{array}$

 $\mathrm{Mn^{4+}}$: $\mathrm{MnO_2}$ oder $\mathrm{MnO(OH)_2}$ $\mathrm{Mn^{5+}}$: $\mathrm{MnO_4}^{3-}$ nur im stark alkalischen, hellblau $\mathrm{Mn^{6+}}$: $\mathrm{MnO_4}^{2-}$ lakalisch, dunkelgrün

 $\mathrm{Mn^{7+}}\colon\mathrm{MnO_4}^-$ violett $\mathrm{MnO_4}^-+\mathrm{H^+}\longrightarrow\mathrm{HMnO_4}$

 $2\,HMnO_4-H_2O \longrightarrow Mn_2O_3$

Technetium und Rhenium:

hohe Ox-Stufen Tc₂O₇, Re₂O₇, ReO₃

Technische Verwendung 1.1.4

Léclanché-Element \rightarrow siehe Folie

Zinkbecher: $\operatorname{Zn}^+ 4 \operatorname{NH_4}^+ \longrightarrow [\operatorname{Zn}(\operatorname{NH_3})_4]^{2+} + 2 \operatorname{e}^- + 4 \operatorname{H}^+$ oder $\operatorname{Zn}^+ 4 \operatorname{OH}^- \longrightarrow [\operatorname{Zn}(\operatorname{OH})_4]^{2-} + 2 \operatorname{e}^- + 4 \operatorname{H}^+$

Braunsteinpulver: $MnO_2 + H_2O + e^- \longrightarrow MnO(OH) + OH^-$

Ergibt ca. 1.5 V

1.2 Die achte, neunte und zehnte Gruppe, Eisen Cobalt und Nickel

Vorkommen

Eisen: Fe₂O₃ (Hämatit); FeO(OH) (Goethit); Fe₃O₄ (Magnetit); FeS₂ (Pyrit/ Markasit)

Cobalt und Nickel: CoAsS, CoAs₃, NiAs, (Ni/Fe)₉S₈, NiS

1.2.2 Herstellung

Hochofenprozess von Eisen und Stahl von Fe_2O_3 zu Roheisen \rightarrow siehe Folie

Roheisen enthält bis zu 4 % C

Aufarbeiten mit "Schrott" \rightarrow Rost Fe₂O₃

Eisen veredler mit Cr, Mo, V, ...

Cobalt/Nickel: Rösten

Reinigung von Nickel \rightarrow Mond-Verfahren

 $Ni + 4CO \xrightarrow{353.15 \text{ K}} [Ni(CO)_4] \xrightarrow{433.15 \text{ K}} Ni + 4CO$

1.2.3 Verbindungen

Halogenide:

• Eisen: für Fe²⁺ und Fe³⁺ gibt es alle Halogenide.

 Cobalt: für $\mathrm{Co^{2+}}$ alle Halogenide bekannt für $\mathrm{Co^{3+}}$ nur das Fluorid bekannt.

• Nickel: für Ni^{2+} alle Halogenide bekannt.

Oxide:

• Eisen: Fe₂O₃ (Hämatit); FeO_{1-x}; Fe₃O₄ (Magnetit)

• Cobalt: CoO; Co₃O₄; Co₂O₃ (Alle Schwarz wegen Metal-to-Metal-Charge-Transfer)

• Nickel: NiO; Ni₂O₃/Ni₃O₄ (beide nicht rein erhältlisch); NiO₂·xH₂O

Komplexchemie:

Eisen:

 $Fe^{2+} (d^6)$ vs $Fe^{3+} (d^5)$

alle Orbitale einfach besetzt ein Orbital zweifach (ls)

alle Orbitale einfach besetzt

Aqua-Komplexe: leicht grün gelb (sollte eigentlich farblos sein)aber [Fe(H₂O)₅OH] Kationensäure Zusammen in einer Verbindung: Berliner/Turnbulls/Preußisch Blau

Maximal 4 SCN $^-$ Liganden um ein ${\rm Fe}^{3+}$

 $\rm Fe^{3+}$ ist mit $\rm F^-$ maskierbar $\rightarrow \rm [FeF_6]^{3-}$ stabil aufgrund hoher Bindungsenergie

Cobalt: Co^{2+} $(d^7) \to \text{rosa/rot}$ alle Orbitale einfach besetzt 2 Oben 3 Unten, zwei Orbitale unten doppelt. blaue Komplexe gleich aber 2 Unten 3 Oben

 Co^{2+} lowspin $\rightarrow 2$ Oben 3 unten, alle unteren Orbitae doppelt besetzt, der obere einfach.

Es entsteht hierbei ein Radikal, das durch Dimerisierung zu einer Bildung zweier Komplexe führt, welche um 45 Grad zueinander verschoben sind.

Mit dem Zusatz eines Oxidationsmittel: [Co(Cn)₆]³⁻

Nickel: Ni $^{2+}$ (d^8) 2 Orbitale oben, 3 unten, alle unteren doppelt befüllt, obere einfach.

Mit sehr starken Liganden kommt es zu einem quadratisch-planaren Feld.

1.2.4 Die 8.,9. und 10. Gruppe

Ru, Rh, Pd, Os, Ir, Pt

1.2.5 Vorkommen

"Platinmetalle"

- gediegene Elemente
 - \hookrightarrow Überführung in Oxide und Destillation.
 - → Überführung in Hexachloridometallat
 - \hookrightarrow Ionenaustausch/Komplextitration
 - → "Urban Mining"

Verbindungen 1.2.6

Oxide: Oxidationsstufen der Metalle von +4 und höher:

RuO₂; RhO₂ Maixmal: RuO_4 / OsO_4

Auch ternäre (dreikomponentige) Oxide

BaRuO₃; Na₃RuO₄

Komplexchemie: alles lowspin

bei d^8 (\dot{Pd}^{2+} ; Pt^{2+}) \rightarrow quadratisch-planaren

2 Die Seltenerdelemente, Lanthanoide & Actinoide

2.1 Eigenschaften

- gute Reduktionsmittel ($E^0 = 2, 3 2, 5 \,\mathrm{V}$)
- Lanthanoide \rightarrow alle Oxidationsstufe + 3 Ce, Tb, (Pr) +4; Eu, Yb, Sm, Tm +2
- Elektronenkonfiguration (siehe Folie)
- Lanthanoidenkontraktion

f-Orbitale sind kernnah und bieten damit schlechte Abschirmung der Kernladung.

 \hookrightarrow die Atome "schrumpfen" kontinuierlich

Konsequenzen:

- Koordinationszahl um die Lanthanoide³⁺-Kationen sind von 9-10 um die vorderen zu 6-7 um die hinteren Lanthanoiden
- $\bullet\,$ Die Härte der Lanthandoide $^{3+}$ -Kationen nimmt von La bis Lu zu
- Die Hydratationsenthalpie bimmt von La bis Lu zu
- Die Basizität der Oxide sinkt von La₂O₃ bis Lu₂O₃

2.2 Vorkommen

2.2.1 Die Seltenerdelemente

- Phosphate: Lanthanoide $^{3+}PO_4$ Monazit für große Lanthanoide $^{3+}$ Xenotin für kleine Lanthanoide $^{3+}$
- Bastnäsit: Lanthanoid³⁺F(CO₃) Fluorid-Carbonat für große Lanthanoide³⁺

2.2.2 Die Actinoide

U als UO_2 und Th als ThO_2

2.3 Herstellung

Die Seltenerdelemente

• Erze + H_2SO_4 + Druck \longrightarrow Lanthanoide₂(SO_4)₃· xH_2O

Trennung:

Früher: Fraktionierte Kristallisation/Fällung/Zersetzung oder Fraktionierte Lösungsextraktion

Das bis zu 10,000 mal hintereinander

Heute: Ionentausch und Komplexbildung.

Anlagerung an Ionentauscherharz geht nacheinanger, abhängig von Lanthanoid³⁺-Größe.

- 1. Anlagerung La³⁺ deutlich besser als Lu³⁺
- 2. Komplexbildner Lu^{3+} deutlich besser als La^{3+}
- → Überführung in Chloride/Fluoride
- \hookrightarrow Schmelzflusselektrolyse/Metallothermie mit Ca

2.3.2 Die Actinoide

1. Rösten der Uranerze zu ${\rm UO}_3$

$$UO_3 + 3H_2SO_4 + H_2O \longrightarrow 4H_3O^+ + [UO_2(SO_4)_3]^{4-}$$

2. Zugabe von NaOH oder NH₃

$$\rightarrow UO_3 \cdot_2 H_2O; (NH_4)_2 U_4 O_{13} \cdot_6 H_2O \dots$$

3. Lösen mit HNO₃; Extraktion mit Tributylphosphat

$$\rightarrow [UO_2(NO_3)_2TBP_2]$$

Zersetzung zu UO₃ 4. Reduktion von UO₃ mit H₂ zu UO₂

$$+ HF \longrightarrow UF_4$$

"grünes Salz"

5.
$$UF_4 + F_2 \longrightarrow UF_6$$

Zentrifuge (Abtrennung von $^{235}\mathrm{UF}_6) \to \mathrm{UO}_3 \to \mathrm{UO}_2$ (Brennelement)

Aber: UFe + $2 H_2 O \longrightarrow UO_2 F_2 + 4 HF$

2.4 Verbindungen

2.4.1Seltenerdelemente

Halogenide:

LanthanoideCl₃

- \rightarrow bei kleinen Lanthanoide³⁺ \rightarrow AlCl₃-Typ
- \rightarrow bei großem Lanthanoide³⁺ \rightarrow UCl₃-Typ

Oxide und Oxidoverbindungen

Lantahnoid₂O₃

- \rightarrow bei kleinen Lanthanoide³⁺ \rightarrow Koordinationszahl von 6 analog zu Al₂O₃
- \rightarrow bei großem Lanthanoide³⁺ \rightarrow Koordinationszahl von 7

 $Lanthanoid(OH)_3 \rightarrow besische Hydroxide$, lösen sich in Säuren, von Lantah zu Lutetium immer amphoterer Komplexe Anionen \rightarrow

Andere Oxidationsstufen

$$Ce_4^{[+]}, CeO_2, Pr^{4+}, Pr_6O_{11}, Tb^{4+}, Tb_4O_7$$

$$Eu^{2+}, Yb^{2+}, Sm^{2+}, Tm^{2+}$$

Andere Oxidations turn
$$Ce_4^{[+]}, CeO_2, Pr^{4+}, Pr_6O_{11}, Tb^{4+}, Tb_4O_7$$

 $Eu^{2+}, Yb^{2+}, Sm^{2+}, Tm^{2+}$
 $2 Ce^{4+} + 2 I^- \longrightarrow I_2 + 2 Ce^{3+}$ Uranverbindungen:
 $U^{6+} + O^{2-} \longrightarrow UO_2^{2+}$

$$U^{6+} + O^{2-} \longrightarrow UO_2^{2-}$$

 2σ -Bindungen

 4π -Bindungen

2.5 Technische Verwendung

$$YBa_2Cu_3O_{7-x} \rightarrow Supraleiter$$

$$\mathrm{Eu}^{2+}/\mathrm{Eu}^{3+} \to \mathrm{Leuchtstoffe}$$