Задача А. Менеджер памяти

Имя входного файла: memory.in
Имя выходного файла: memory.out
Ограничение по времени: 8 секунды
Ограничение по памяти: 512 мегабайт

Одно из главных нововведений новейшей операционной системы Indows 7— новый менеджер памяти. Он работает с массивом длины N и позволяет выполнять три самые современные операции:

- \bullet сору(a, b, 1) скопировать отрезок длины [a, a+l-1] в [b, b+l-1]
- ullet sum(1, ${f r}$) посчитать сумму элементов массива на отрезке [l,r]
- ullet print(1, r) напечатать элементы с l по r, включительно

Вы являетесь разработчиком своей операционной системы, и Вы, безусловно, не можете обойтись без инновационных технологий. Вам необходимо реализовать точно такой же менеджер памяти.

Формат входных данных

Первая строка входного файла содержит целое число N ($1 \le N \le 1\,000\,000$) — размер массива, с которым будет работать Ваш менеджер памяти.

Во второй строке содержатся четыре числа $1 \leqslant X_1, A, B, M \leqslant 10^9 + 10$. С помощью них можно сгенерировать исходный массив чисел X_1, X_2, \cdots, X_N . $X_{i+1} = (A * X_i + B) \mod M$

Следующая строка входного файла содержит целое число K ($1 \le K \le 200\,000$) — количество запросов, которые необходимо выполнить Вашему менеджеру памяти.

Далее в K строках содержится описание запросов. Запросы заданы в формате:

- \bullet сру $a \ b \ l$ для операции сору
- ullet sum l r для операции $\operatorname{sum}\ (l\leqslant r)$
- out l r для операции print $(l \leqslant r)$

Гарантируется, что суммарная длина запросов **print** не превышает 3 000. Также гарантируется, что все запросы корректны.

Формат выходных данных

Для каждого запроса sum или print выведите в выходной файл на отдельной строке результат запроса.

memory.in	memory.out
6	1 2 6 1 2 6
1 4 5 7	1 2 1 2 2 6
7	6
out 1 6	1 1 2 1 2 6
cpy 1 3 2	13
out 1 6	
sum 1 4	
cpy 1 2 4	
out 1 6	
sum 1 6	

Задача В. K-я порядковая статистика на отрезке

Имя входного файла: kth.in
Имя выходного файла: kth.out
Ограничение по времени: 4 секунды
Ограничение по памяти: 256 мегабайт

Дан массив из N неотрицательных чисел, строго меньших 10^9 . Вам необходимо ответить на несколько запросов о величине k-й порядковой статистики на отрезке [l,r].

Формат входных данных

Первая строка содержит число N ($1 \le N \le 450\,000$) — размер массива.

Вторая строка может быть использована для генерации a_i — начальных значений элементов массива. Она содержит три числа a_1 , l и m ($0 \le a_1$, l, $m < 10^9$); для i от 2 до N

$$a_i = (a_{i-1} \cdot l + m) \mod 10^9$$
.

В частности, $0 \le a_i < 10^9$.

Третья строка содержит одно целое число B ($1 \le B \le 1000$) — количество групп запросов.

Следующие B строк описывают одну группу запросов. Каждая группа запросов описывается 10 числами. Первое число G обозначает количество запросов в группе. Далее следуют числа $x_1,\ l_x$ и m_x , затем $y_1,\ l_y$ и m_y , затем, $k_1,\ l_k$ и m_k ($1\leqslant x_1\leqslant y_1\leqslant N,\ 1\leqslant k_1\leqslant y_1-x_1+1,\ 0\leqslant l_x,m_x,l_y,m_y,l_k,m_k<10^9$). Эти числа используются для генерации вспомогательных последовательностей x_g и y_g , а также параметров запросов $i_g,\ j_g$ и k_g ($1\leqslant g\leqslant G$)

$$\begin{array}{rcl} x_g & = & ((i_{g-1}-1)\cdot l_x + m_x) \bmod N) + 1, & 2 \leqslant g \leqslant G \\ y_g & = & ((j_{g-1}-1)\cdot l_y + m_y) \bmod N) + 1, & 2 \leqslant g \leqslant G \\ i_g & = & \min(x_g,y_g), & 1 \leqslant g \leqslant G \\ j_g & = & \max(x_g,y_g), & 1 \leqslant g \leqslant G \\ k_g & = & (((k_{g-1}-1)\cdot l_k + m_k) \bmod (j_g - i_g + 1)) + 1, & 2 \leqslant g \leqslant G \end{array}$$

Сгенерированные последовательности описывают запросы, g-й запрос состоит в поиске k_g -го по величине числа среди элементов отрезка $[i_g, j_g]$.

Суммарное количество запросов не превосходит 600 000.

Формат выходных данных

Выведите единственное число — сумму ответов на запросы.

kth.in	kth.out
5	15
1 1 1	
5	
1	
1 0 0 3 0 0 2 0 0	
1	
2 0 0 5 0 0 3 0 0	
1	
1 0 0 5 0 0 5 0 0	
1	
3 0 0 3 0 0 1 0 0	
1	
1 0 0 4 0 0 1 0 0	

Задача С. Снеговики

Имя входного файла: snowmen.in Имя выходного файла: snowmen.out Ограничение по времени: 4 секунды Ограничение по памяти: 64 мегабайта

Зима. 2012 год. На фоне грядущего Апокалипсиса и конца света незамеченной прошла новость об очередном прорыве в областях клонирования и снеговиков: клонирования снеговиков. Вы конечно знаете, но мы вам напомним, что снеговик состоит из нуля или более вертикально поставленных друг на друга шаров, а клонирование — это процесс создания идентичной копии (клона).

В местечке Местячково учитель Андрей Сергеевич Учитель купил через интернет-магазин «Интернет-магазин аппаратов клонирования» аппарат для клонирования снеговиков. Теперь дети могут играть и даже играют во дворе в следующую игру. Время от времени один из них выбирает понравившегося снеговика, клонирует его и:

- либо добавляет ему сверху один шар;
- либо удаляет из него верхний шар (если снеговик не пустой).

Учитель Андрей Сергеевич Учитель записал последовательность действий и теперь хочет узнать суммарную массу всех построенных снеговиков.

Формат входных данных

Первая строка содержит количество действий n ($1 \le n \le 200\,000$). В строке номер i+1 содержится описание действия i:

- t m клонировать снеговика номер $t~(0 \leqslant t < i)$ и добавить сверху шар массой $m~(0 < m \leqslant 1000);$
- t 0 клонировать снеговика номер t (0 \leq t < i) и удалить верхний шар. Гарантируется, что снеговик t не пустой.

В результате действия i, описанного в строке i+1 создается снеговик номер i. Изначально имеется пустой снеговик с номером ноль.

Все числа во входном файле целые.

Формат выходных данных

Выведите суммарную массу построенных снеговиков.

snowmen.in	snowmen.out
8	74
0 1	
1 5	
2 4	
3 2	
4 3	
5 0	
6 6	
1 0	

Задача D. Перестановки strike back

Имя входного файла: permutation2.in Имя выходного файла: permutation2.out

Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

Вася выписал на доске в каком-то порядке все числа от 1 по N, каждое число ровно по одному разу. Иногда он стирает какое-то число и записывает на его место другое. Количество чисел, выписанных Васей, оказалось довольно болшим, поэтому Вася не может окинуть взглядом все числа. Однако ему надо всё-таки представлять эту последовательность, поэтому он написал программу, которая в любой момент отвечает на вопрос — сколько среди чисел, стоящих на позициях с x по y, по величине лежат в интервале от k до l. Сделайте то же самое.

Формат входных данных

В первой строке лежит два натуральных числа — $1 \leqslant N \leqslant 100\,000$ — количество чисел, которые выписал Вася и $1 \leqslant M \leqslant 100\,000$ — суммарное количество вопросов и изменений сделанных Васей. Во второй строке дано N чисел — последовательность чисел, выписанных Васей. Далее в M строках находятся описания вопросов. Каждый запрос на изменение числа в некоторой позиции начинается со слова SET и имеет вид SET а b $(1 \leqslant a \leqslant N, 1 \leqslant b \leqslant N)$. Это означает, что Вася изменил число, записанное в позиции a на число b. Каждый Васин вопрос начинается со слова GET и имеет вид GET х у k 1 $(1 \leqslant x \leqslant y \leqslant N, 1 \leqslant k \leqslant l \leqslant N)$.

Формат выходных данных

Для каждого Васиного вопроса выведите единственное число — ответ на Васин вопрос.

permutation2.in	permutation2.out
4 4	1
1 2 3 4	3
GET 1 2 2 3	2
GET 1 3 1 3	
SET 1 4	
GET 1 3 1 3	