Secure Wireless Smart Car Door Unlocking System

Technical Answers for Real World Problems (CSE1901)

J COMPONENT PROJECT REPORT

In

B.Tech. Computer Science and Engineering August, 2022

(Semester 7)

Ву

Team Members	Reg. No.
Varun Agarwal	19BCT0070
Adarsh Singh	19BCE2284
Shreyas Khan	19BCE2265
Abhinav Gorantla	19BCE0241

Under the guidance of

Dr. Shalini L.

DECLARATION

I hereby declare that the thesis entitled "Secure Wireless Smart Car Door

Unlocking System" submitted by me, for the award of the degree of the Bachelor

of Technology in Computer Science to VIT is a record of bonafide work carried

out by me under the supervision of Prof Shalini L. I further declare that the work

reported in this thesis has not been submitted and will not be submitted, either in

part or in full, for the award of any other degree or diploma in this institute or any

other institute or university.

Place: Vellore

Date: 25-08-2022

Signature of the Candidate

Varun Agarwal

Adarsh Singh

Shreyas Khan

Abhinav Gorantla

1

CERTIFICATE

This is to certify that the thesis entitled "Secure Wireless Smart Car Door

Unlocking System" submitted by Varun Agarwal (19BCT0070), Adarsh Singh

(19BCE2284), Shreyas Khan (19BCE2265), Abhinav Gorantla (19BCE0241),

SCOPE, VIT, for the award of the degree of Bachelor of Technology in Computer

Science, is a record of bonafide work carried out by him / her under my

supervision during the Fall 2022 - 23 semester, as per the VIT code of academic

and research ethics. The contents of this report have not been submitted and will

not be submitted either in part or in full, for the award of any other degree or

diploma in this institute or any other institute or university. The thesis fulfils the

requirements and regulations of the University and in my opinion meets the

necessary standards for submission.

Place: Vellore

Date: 25-08-2022

Signature of the Guide

2

TABLE OF CONTENTS

ABSTRACT	4
KEYWORDS	4
INTRODUCTION	4
LITERATURE REVIEW	5
PROPOSED METHOD	20
MODULE DESCRIPTION	20
Key Side	21
Car Side	23
PERFORMANCE EVALUATION	25
Type	25
Function Analysis	25
Key Side	25
Rounds	25
Time Complexity	25
Space Complexity	25
Common Attacks	26
Common Attacks	26
Usage of SHA vs MD5 in Proposed Method	26
Proposed Method vs DSA	27
RESULTS AND EVALUATION	28
REFERENCES	30

Abstract—The most crucial aspect of software and the internet ecosystem is security. The most crucial aspect of modern asset protection for both our digital and physical assets is software and hardware security. In many instances, physical objects with some IoT base support, such as smart houses, smart cars, etc., improve oversight. In this project, we propose a secure substitute for the car unlocking system that employs cutting-edge communications methods like MAC encryption and a hashing standard to ensure futuristic security while dynamically generating disposable encryption keys to meet the needs of smart cars powered by the Internet of Things in the future. To maintain security, encryption keys are employed to make it easier to lock and unlock a car through the internet.

Keywords—connected cars, internet of vehicles, pseudorandom number, hashing, rolling code

I. INTRODUCTION

The growth of smart cars in the Internet of Vehicles (IoV) is expected to increase from 40% in 2020 to 70% in 2025. The rapid development of infrastructure, systems, and artificial intelligence learning models would cause a significant shift of the consumers from the conventional type of vehicles to a more modern type. This may also bring increased security issues, one of the major concerning issues being the car door unlocking system. IoV vehicles are equipped with a secret key transmitted over the internet to the owner's car, which is also connected to the internet. There are two types of security aspects regarding a car key, i.e., software and hardware security. Software security is the area that deals with securing the data that is being transmitted over the IoT network. Hardware security deals with the inbuilt security system of hardware to prevent any intruder from entering and making the hardware vulnerable. We will be focusing on the software security of the car unlocking system. The car is locked or unlocked when the secret key matches the one stored inside the car. This method may seem very inexpensive and easy for the manufacturers to implement into the system. However, it has a drawback; if an attacker can get inside the network, he can sense any piece of information that is being sent over the internet. If he intends to commit car theft, he can easily read the key and replicate it later to unlock the car. The current methodology of the car door unlocking system compromises its security aspect. Several approaches like symmetric and asymmetric encryption and decryption have been implemented but later discovered that they can easily be cracked with hardware-induced attacks.

II. LITERATURE REVIEW

Paper/Article Name	Author	Proposed Method	Advantages	Drawbacks
[1] REMOVING RF VULNERABILITIE S FROM IOT DEVICES	Ray, P., Sultana, H. P., & Ghosh, S. (2019).	Incorporated the rolling key algorithm to overcome the flaws in its predecessor methodologies .	To prevent and overcome the relay threats caused by insecure channels, the rolling key algorithm is implemented, which enables a 2-way handshake. The rolling key algorithm provides an unused key at every instance of data transfer between the sender and receiver.	The signals that pass through these channels are essential for locking and unlocking the system, which brings about a blaring disadvantage in the security standpoint.
[2] Smart and secure	Valanarasu,	Presents a	The method	While the

				1
IoT and AI	M. R.	secure	presents a major	proposed method
integration	(2019).	architecture	upgrade from the	works in testing,
framework for		for hospital	existing methods	it's not scalable to
hospital environment.		environments	by using a	a real world
		with the help	regulation and	large-scale model.
		of an Internet	policy layer to	It also has
		of Things	overlook all the	problems with
		backend.	trust components	interoperability.
			such as safety,	
			privacy and	
			dependability.	
[3] Cyber-security	Urquhart,	Analysing the	It has been noted	It comes with
internals of a Škoda	C.,	underlying	that as the	vulnerable system
Octavia vRS: A	Bellekens,	cybersecurity	technology of	defects due to the
hands-on approach.	X.,	of a renowned	automobiles	underlying core
	Tachtatzis,	car brand.	advances, many	technology that
	C.,		instances of cars	leads to an
	Atkinson,		being connected	increase in the
	R., Hindy,		via 3G and 4G	attacking area of
	H., &		mobile networks	the vehicle.
	Seeam, A.		are reported.	
	(2019).		While these	
			services increase	
			the ease of use	
			and aid the	
			consumer.	
[4] A wireless	Jamjoom,	Focuses on	The proposed	This method relies
controlled digital car	L.,	developing a	methodology	on Bluetooth
lock for smart	Alshmarani,	wireless car	revolves around	technology, which

transportation.	A., Qaisar,	lock controller	granting requests	is prone to
	S. M., &	built on a	through a	man-in-the-middle
	Akbar, M.	mobile device.	server-based	attacks, leaving
	(2018,	The research	utility over the	the car lock easily
	February).	implements	internet. To	hackable.
		the said	accommodate the	
		system	authorization, a	
		incorporating	code is sent to	
		Internet of	the mobile	
		Things	device. The	
		concepts.	mobile device	
			must have the	
			companion	
			application	
			pre-installed to	
			complete the	
			communication	
			of the code. The	
			code is	
			transmitted via	
			Bluetooth. It is	
			then sent to a	
			front-end	
			controller which	
			employs	
			recognition	
			techniques and	
			relays a flag back	
			to the mobile	
			device.	

[5] Towards	Auer, S.,	Using the	The paper	The authors
blockchain-IoT based	Nagler, S.,	growing	presents an	identify that while
shared mobility:	Mazumdar,	popularity of	architecture for	sustainable,
Car-sharing and	S., &	in-car sharing	encapsulating	blockchain
leasing as a case	Mukkamala,	and the rising	these	technology alone
study.	R. R.	number of	technologies to	cannot expand this
	(2022).	applications of	assist car-leasing	field in the future.
		Blockchain	and car-sharing.	Future research
		technology as	The proposed	can aim to
		motivation for	method goes a	evaluate the
		devising a new	step ahead by	authenticity of the
		methodology	eliminating the	Internet of Things
		for shared	requirement for	devices and the
		mobility that	keys to gain	scalability of the
		involves key	vehicle access	proposed model.
		aspects from		At present, the
		both its		model fares well
		constituents.		for simulated data.
[6] Robust and	Cashion, J.,	Demonstrates	The cost of the	High
low-cost solution for	&	a special	protocol is the	computational
preventing	Bassiouni,	method of	same for each	complexity is
sidejacking attacks in	M. (2011,	employing	iteration.	present in the
wireless networks	October)	rolling code	Retransmits	solution. High
using a rolling code.		technology to	communications	power platforms
		authenticate	to the user to	are not well suited
		the client to	guard against	for the solution.
		the server.	man-in-the-middl	
			e attacks.	
[7] Timestamp based	Greene, K.,	Carried out a	The algorithm	The method
	L	l	<u>l</u>	I.

defence mechanism	Rodgers, D.,	series of	demonstrated	strongly depends
against replay attack	Dykhuizen,	infiltration	remarkable	on how quickly
in remote keyless	H., McNeil,	experiments	levels of security,	the signal needs to
entry systems.	K., Niyaz,	that exposed	simplicity, and	be conveyed.
	Q., & Al	the radio	power efficiency.	Difficulties might
	Shamaileh,	frequency	The authors	arise from a noisy
	K. (2020,	communicatio	incorporated a	channel or a signal
	January)	n flaws in	timestamp-based	loss.
		remote keyless	defence	
		systems used	mechanism with	
		in garages and	the rolling-code	
		cars. It was	and assessed	
		suggested to	security to	
		improve the	increase the	
		current rolling	security of RKE	
		code process	systems.	
		by using		
		timestamps.		
		_		
[8] A wireless	Jamjoom,	Develops a	The frontend	The Bluetooth
controlled digital car	L.,	wirelessly	module, the	connection is not
lock for smart	Alshmarani,	operated auto	server, and the	supported by the
transportation.	A., Qaisar,	lock based on	smartphone all	Android device
	S. M., &	a smartphone.	have wireless	emulator. This
	Akbar, M.	Allowing a	interfaces that	makes the
	(2018,	large number	are sent on	suggested
	February)	of individuals	delta-based and	technique more
		with	event driven	complicated.
		permission to	interfaces, which	
		share a lot of	increases the	
		automobiles is	system's	

		the concept.	efficiency in	
		Every time an	terms of resource	
		authorised	use and power	
		individual	consumption.	
		needs a car,		
		they must first		
		submit a		
		request online		
		to a		
		server-based		
		service.		
[9] Towards	Auer, S.,	Presents a	Traceability	The issue for the
blockchain-IoT based	Nagler, S.,	high-level	(including	relevant
shared mobility:	Mazumdar,	architecture	dependability),	stakeholders is to
Car-sharing and	S., &	for a	security	strike the right
leasing as a case	Mukkamala,	blockchain-Io	(including	balance between
study.	R. R.	T-based	privacy), and	maintaining and
	(2022).	platform for	scalability are all	reducing the need
		promoting	provided with a	for trust as well as
		shared	clear trade-off.	determining the
		mobility		proper degree
		combining		between holding
		car-sharing		on to and ceding
		and		control of data and
		car-leasing.		processes while
		The proposed		simultaneously
		platform		assuring the
		requires		system's
		secure		scalability.
		information		
L	!	L	ļ	

sharing among multiple stakeholders (such as user, lessee, and service provider), leading to the decision to choose blockchain for its facilitation.
stakeholders (such as user, lessee, and service provider), leading to the decision to choose blockchain for
(such as user, lessee, and service provider), leading to the decision to choose blockchain for
lessee, and service provider), leading to the decision to choose blockchain for
service provider), leading to the decision to choose blockchain for
provider), leading to the decision to choose blockchain for
leading to the decision to choose blockchain for
decision to choose blockchain for
choose blockchain for
blockchain for
its facilitation
[10] Pseudorandom Lagarias, J. Addresses the Applications Pseudorandom
numbers. C. (1993). issue of where several numbers'
producing random numbers fundamental flaw
pseudorandom are needed and is that computers
numbers and where it is can't rely on luck.
provides a advantageous to To execute and
comprehensiv readily repeat the finish tasks, they
e list of known same sequence need a set of
pseudorandom are suited for instructions.
bit structures. Pseudo Random
Number
Generators.
[11] An Attempt to Mukhopadh Proposes a Using GSM SMS is a very old
Develop an IOT yay, D., novel method instead of 4G technology. IR
based Vehicle Gupta, M., which uses technology sensors can be
Security System Attar, T., GSM ensures that even manipulated easily
Chavan, P., technology. in the absence of and the bluetooth

& Patel, V.	Their solution	the internet, the	networks between
	alerts the user	user remains	the different
	through an	informed on their	sensors and the
	SMS message	phone through	microcontroller
	whenever a	SMS. This	can be easily
	case of	ensures that even	scrambled which
	unauthorised	when the user	can send the user
	access, theft,	has a minimal	some false alarms.
	intrusion or	cellular network,	
	towing is	they can still	
	detected. They	remain updated.	
	have used an		
	IR sensor to		
	detect any		
	possibilities of		
	theft through		
	the windows,		
	a limit switch		
	which sends a		
	signal		
	whenever the		
	car is about to		
	be towed, a		
	bluetooth		
	module for the		
	connection		
	between		
	microcontrolle		
	r and		
	dashboard		
	l		I

		module and finally a mobile application on the users' mobile		
		through which they can		
		remain		
		updated.		
[12] Comparative	Moto A V	This name	This nanar	Doog not compare
[13] Comparative	Mota, A. V.,	This paper	This paper	Does not compare
analysis of different	Azam, S.,	compares	provides	these algorithms in the radio
techniques of	Shanmugam	some	extensive research and	
encryption for secure	, B., Yeo, K.	commonly		communication
data transmission	C., &	used hashing	comparison on	scenario.
	Kannoorpatt	algorithms	various	
	i, K.	like AES,	encryption and	
		DES, 3DES	hashing	
		with	algorithms. They	
		comparison	have used	
		parameters	numerous	
		like	comparison	
		encryption	criteria for this	
		time,	purpose. This	
		decryption	helped us choose	
		time, memory	the best hashing	
		usage, power	algorithm to use	
		consumption,	in our project.	
		latency, jitter		
		and their		

		sacurity lovel		
		security level.		
		After		
		performing		
		various tests,		
		they have		
		concluded that		
		Blowfish is		
		best in all of		
		these		
		parameters in		
		general and		
		RSA ECC is		
		better than		
		elgamal in		
		almost all		
		aspects apart		
		from signature		
		verification		
		time. It was		
		also found out		
		that SHA256		
		is more secure		
		than SHA1		
		and MD5		
		hashing		
		algorithms.		
[14] Relay Attacks	Francillon,	This paper	They have	No analysis on
on Passive Keyless	A., Danev,	demonstrates	performed an	digital PKES
Entry and Start	B., &	how passive	extensive	signals is
Systems in Modern	Capkun, S.	keyless entry	evaluation of the	available, hence

Core	gygtomg	ralay attack on	wa aannot
Cars	systems (DVES) can be	relay attack on	we cannot
	(PKES) can be	10 car models	comment on the
	easily hacked	from 8	efficacy of these
	using relay	manufacturers.	attacks on vehicles
	attacks. In this		on using a PKES
	work, the		with digital
	researchers		signals.
	designed and		
	implemented		
	relay attacks i		
	n the analog		
	domain. Their		
	attack does not		
	interpret or		
	modify the		
	signal from		
	the car key.		
	This relay		
	attack		
	methodology		
	proposed here		
	is very		
	effective		
	against PKES		
	systems		
	employing		
	string		
	cryptography		
	like AES,		
	RSA, etc.		
	NoA, etc.		

				1
[15] IoT based	Pawar, M.	In this paper,	Use of open	Uses very old
embedded system for	R., & Rizvi,	the researchers	source software	GSM technology
vehicle security and	I.	have used a	and	to send messages
driver surveillance		microprocesso	documentation	to the user.
		r board,	makes the device	
		raspberry pi, a	accessible to	
		high	everyone and for	
		resolution	a very low cost.	
		camera and		
		open source		
		software to		
		ensure vehicle		
		security and		
		also check if		
		the driver is		
		safely driving		
		the vehicle. In		
		case of any		
		violation, an		
		alert was sent		
		through an		
		email message		
		from the		
		microprocesso		
		r board.		
[16] A review of	James, F	In this paper,	Pre generated	Old generative
pseudorandom		the authors	seed which	functions are
number generators		show while	changes every	compared and
		pseudorandom	time to cause	newer functions
		number	more	are available
	!	!		

		,	1	
		generators are	randomness	
		calculated		
		using a		
		deterministic		
		function, it is		
		necessary for		
		the sequence		
		to show		
		approximate		
		characteristics		
		of a true		
		random		
		distribution.		
[17] Wireless attacks	Oswald, D.	Authors show	Protects from	Rolling code can
on automotive	F	that rolling	common keyless	be broken by
remote keyless entry		codes	attacks like	intercepting the
systems		essentially	replay attacks.	communication
		transmit a		channel.
		counter that is		
		incremented		
		by each button		
		press in a		
		cryptographica		
		lly		
		authenticated		
		way.		
[18] Lock It and Still	Garcia, F.	Authors show	Lightweight	Heavily studied
Lose It— on the	D., Oswald,	how rolling	disposable key	technique which
({In) Security} of	D., Kasper	codes have	generation	has been analysed

Automotive Remote		been	technique which	by experts
Keyless Entry		incorporated	is standardised	throughout the
Systems		into many	throughout the	world which
		keyless entry	world	makes it
		doors		extremely
		unlocking		vulnerable
		systems due to		
		its extreme		
		versatility and		
		lightweight		
		nature.		
[19] A new remote	Moradi, A.,	Authors show	Significant	Old techniques are
keyless entry system	& Kasper, T	that	Improvement can	studied which
resistant to power		introducing a	be noticed when	have been
analysis attacks.		pseudorandom	pseudorandom	outclassed already.
		number	number	
		generator into	generators are	
		the rolling	introduced.	
		code can help		
		extend the		
		protection to		
		prevent		
		template		
		attacks as well		
		as alleviate the		
		risks posed by		
		brute force		
		attacks.		
[20] A systematic	Tang, J., &	Authors show	Generating a	Decrypting a hash

raviavy on minyvice	Tion V	that it is	maggaga from a	ig impoggible
review on minwise	Tian, Y	that it is	message from a	is impossible,
hashing algorithms.		computationall	given hash is	hence making it
Annals of Data		y easy to	very unfeasible,	useless as an
Science.		calculate the	thus nearly	encryption method
		hash of any	eliminating brute	for
		given message	force attacks.	communication.
		when		
		compared to		
		asymmetric		
		and symmetric		
		key		
		algorithms.		
		Furthermore,		
		two different		
		messages		
		cannot be		
		associated		
		with the same		
		hash.		
		Subsequently,		
		messages		
		cannot be		
		altered		
		without		
		changing the		
		hash.		
		114511.		

III. PROPOSED METHOD

We present a novel approach by combining the power of the tried and tested state-of-the-art algorithms designed to work in a simplex communication environment and ultra-modern hashing technologies.

This enables us to encrypt any data irreversibly, making communication extremely secure. Our proposed method employs a rolling filter as a key generation method for a modified MAC-and-Encrypt authenticated encryption algorithm. Instead of using a bidirectional encryption algorithm in the final stage of MAC and Encrypt, we are employing another (different from key hash) hashing algorithm, which makes the encrypted message doubly hashed and impossible to crack.

We can employ a double hashing and a unidirectional approach because the message is predefined in both systems, and we only need to authorise the source of the messages.

IV. MODULE DESCRIPTION

The proposed method is divided into two modules. The first one is the client/key side, and the second one is the car side. The client will be interchangeably used as a key since the client is the key in the proposed framework. The client will try to lock or unlock the car from their remote device connected through the internet. Connected cars are always connected to the internet. The car will be listening for a hash digest over the internet. Once it receives the digest, the car will validate and verify the authenticity to decide on the car controls.

Certain assumptions made in the following 2-way handshake system include initialising a seed before the client and car are made public. This seed will be completely random, and the same seed must be set in both the car and the client. This is essential because the entire architecture of Pseudorandom number generated rolling codes is dependent on this. Furthermore, if the client-side rolling code queue goes out of sync with the car rolling code queue, a manual reset must be performed with the initialisation of a new random seed.

a. Key Side

The key will generate a rolling code queue with the initialised seed. Upon pressing the car control button, such as locking or unlocking, the client then polls the queue and hashes the polled pseudorandom number. Depending on the car control button, the corresponding code will be appended to the newly generated hash digest. After appending the code, the entire message is now hashed again to protect the car's status from being compromised in the case of a man-in-the-middle attack. The architecture followed here is an indirect implementation of the MAC-then-Encrypt scheme where a MAC is produced based on the plaintext, and the plaintext and MAC are encrypted again to produce a ciphertext based on both. While the ciphertext is sent, the resulting hash digest is sent to the car in the proposed system.

The key side has to perform hashing twice for every button click, and given the computational prowess of modern-day machines, the given model feels viable. On the off chance that the key is not connected to the car side, the counter of the rolling code will keep getting incremented until a point where the car queue will not be able to look ahead and get back in sync. When a hacker impersonates a client and sends repeated signals to the car, a Denial-of-Service prevention mechanism depends on the number of false signals being sent in a given amount of time.

Figure 1. Flowchart for client side

From Figure 1, we can see that the double-hashed message sent over the internet is secure. It is to be noted that the client side does not perform any validation or verification of the person pressing the button. This is analogous to a traditional key, where nobody can verify if it is the key owner opening the lock. Apart from the two hashes and the appending of the car control signal, the client side does not perform any other computations. The same flowchart is given in the form of words in Pseudocode 1.

- 1. Initialise queue rq.
- 2. Populate rq.
- 3. If button press is true:
 - a. $rq.top \rightarrow temp$

```
b. rq.pop
c. hash(temp) \rightarrow temp
d. temp + "LOCK" / "UNLOCK" \rightarrow temp
e. hash(temp) \rightarrow temp
f. Transmit.
```

Pseudocode 1. Client-side pseudocode

b. Car Side

The car side algorithm is relatively trivial as compared to the key side. Like the key, the car will also be fitted with the same randomly generated seed. The car generates the same pseudorandom numbers and will listen for any message sent over the internet.

Upon receiving the message, the car checks whether the queue is empty. Queue being empty is an edge case for when the car and key go out of sync. If the queue is empty, the car and key must be manually reset with a brand-new seed. Until then, the internet functionalities would be restricted in the car to prevent future attacks as the car is now vulnerable. If the queue is not empty, the car then polls the queue and subjects it to the same hashing system to generate a hash digest.

As mentioned earlier, hashes cannot be decrypted, but they can only be compared with other hash digests to check their validity. Consequently, each number from the queue would have to be hashed and then appended with each control signal/code of the car (Lock or unlock) and then hashed again.

The resulting hash digest will be compared with the message sent over the internet. If they are a match, the car will execute the corresponding control, and if they are not, the car moves ahead until the entire queue is tested. The ideal rolling code queue size is 256, which would take precisely 256 out-of-sync clicks from the key side to restrict the car's internet activity and make it available only for physical locking/unlocking.

From Figure 2 below, we can see that the car actively listens for a message, and upon receiving the message, it validates the hash digest by subjecting the rolling code queue to the same hash functions in the same order. For each number, the car will have to perform one standard hash with the addition of 2 hashes after appending the respective car control signal (lock or unlock) to the intermediate hash digest. The same can be seen with the following pseudocode.

Figure 2. Flowchart for car side

- 1. Initialise queue rq.
- 2. Populate rg.
- 3. Initialise TCP socket.
- 4. Receive 256 bits of data $\rightarrow d$
- 5. for each num in rq:
 - a. $hash(num) \rightarrow temp$
 - b. if temp == d:
 - i. Lock or Unlock the car.
- 6. if no match found:
 - a. Restrict car's activities over the internet.

Pseudocode 2. Car-side pseudocode

V. PERFORMANCE EVALUATION

A. Type

In the proposed model, the encryption function is a hash digest, and the decryption function is a hash comparison. Hence making the program extremely secure towards brute force attacks.

B. Function Analysis

We use SHA256 for hashing, rolling code for disposable key generation and finally, a MAC and encrypt architecture for network authentication.

This sequential model involves using multiple tried and tested models, which theoretically yields a non-brute enforceable encryption standard at the cost of computational power while maintaining the integrity of the data.

C. Key Side

Our proposed model uses a random number generator which yields a key of 10⁸, which can be increased depending on the computational power available. However, since the final output is hashed, the output is always a fixed size of 256 bits.

D. Rounds

The proposed model hashes in 2 rounds and ensures maximum encryption.

E. Time Complexity

The time complexity for each encryption/digest is,

$$\Sigma = T(n) = 2*(^{29}C_1 + ^{4}C_2) N_0 + 2*(^{10140}C_1 + ^{2}C_3 + ^{64}C_4 + ^{2}C_5) N_1 = \Theta(N)$$
(1)

We can clearly observe that the encryption function is linear in time and hence can provide great benefits while not compromising on quality of the hash digest. This encryption function is running a total of k times. Hence the total time complexity for the embedded system in the car is Θ (1*N). However, once the queue is generated, the time complexity reduces to Θ (N) and the time complexity to check becomes Θ (1*k*256) = Θ (1*k). Where k represents the queue length and 1 represents the number of functions. While the complexity of the sender / client is Θ (n).

F. Space Complexity

For the car side,

$$\sum = S(n) = 1*k*(256) = 1*k$$
 (2)

Here k is the cycles, and l is the number of functions. Increasing the number of cycles will increase the space complexity. However, the space complexity is linear and hence does not have a considerable effect and can easily be scaled.

On the car side, the space complexity is a mere Θ (1) and hence does not need to be bothered.

G. Common Attacks

- 1. **Brute Force:** Brute force attacks are practically impossible since the hash digest is hashed again with a disposable key.
- 2. **Replay Attacks:** Replay attacks are impossible because the rolling code produces a new key that cannot be reused every cycle.
- 3. **Rolling Code Overflow:** Rolling code overflow is a common issue in systems employing rolling code. We try to minimise it with the help of a failsafe that blocks failed IP addresses; however, this is not a full-proof method to solve this issue.
- 4. **DoS Attacks:** DoS attacks can quickly be addressed by employing a simple software firewall / IPS, but it can lead to not being able to open the door over the internet.

H. Common Attacks

- 1. Architecture: Both DSA and our architecture employ mac and encrypt architecture for their base. However, the message is visible in the Digital Signature Algorithm and it is extremely prone to replay attacks.
- **2. Key:** The key size in the rolling code is variable and the keys are disposable. Thus, they constantly change.
- **3. Rounds:** Both DSA and our algorithm employ the same number of rounds.
- **4. Time Complexity:** DSA wins in this comparison metric. DSA is Θ (k*l) times faster; however since the values of k and l are relatively small, it can be considered that DSA is constant time faster than our proposed work.
- **5. Space Complexity:** Both the algorithms are similar in terms of space complexity.

I. Usage of SHA vs MD5 in Proposed Method

SHA	MD5
-----	-----

Highly Secure as the final output is 256 / 512 bits.	Exponentially less secure as the final output is only 128 bits.
Half as fast as MD5.	Double the speed of SHA.
No known attacks.	Many reported attacks are known.
Fixed input size.	Any input size works.

Table 1: Comparison of SHA and MD5

From Table 1, it is evident that SHA outperforms the MD5 hashing technique in the department of security. While SHA is more time consuming, it is not slow enough to overlook the security benefits it provides.

J. Proposed Method vs DSA

Proposed Method	DSA
Based on Mac and Encrypt architecture.	Based on Mac and Encrypt architecture.
Slower compared to DSA.	Faster than the proposed method.

Highly secure.	Less secure.
Replay attacks don't work.	Susceptible to common replay attacks.
New disposable key every cycle.	Fixed key.

Table 2: Proposed method vs DSA

From Table 2, we can observe that the proposed method performs better than DSA in the security aspect. On the contrary, it lacks speed in comparison to DSA.

VI. RESULTS AND EVALUATION

Regardless of the key side, the server or the car side creates a socket connection with the internet, which receives the lock and unlock signals. This indicates that it is capable of receiving all signals. The IPv4 address for the car side is 192.168.137.1.

```
adarsh@NOKIA3310 ~\..\TARP J component python .\remote.py
1 for LOCK , 2 for UNLOCK: 1
adarsh@NOKIA3310 ~\..\TARP J component python .\remote.py
1 for LOCK , 2 for UNLOCK: 2
adarsh@NOKIA3310 ~\..\TARP J component [
```

Figure 3: Key side

The key side or client side of the connection is made to the same network. Thus, it transfers everything to the aforementioned IPv4 address as a result. Based on the user's signal to unlock or lock, the key transmits an encoded hash digest. The user can choose option 1 (lock) or option 2 (unlock), as indicated in Figure 4, depending on their requirements.

Figure 4: Car side

The car checks to see if the stream of bytes it has received is valid before proceeding. Following deduction, it either locks, unlocks, or stays in the same state. Figure 3 illustrates how it either unlocks or locks the automobile in response to a valid signal. However, when it gets an erroneous signal, it doesn't change its state; instead, it just flushes the signal out of the cache storage.

Figure 5: Simulation using Arduino board

VII. REFERENCES

- [1] Ray, P., Sultana, H. P., & Ghosh, S. (2019). REMOVING RF VULNERABILITIES FROM IOT DEVICES. Procedia Computer Science, 165, 421-427.
- [2] Valanarasu, M. R. (2019). Smart and secure IoT and AI integration framework for hospital environment. Journal of ISMAC, 1(03), 172-179.
- [3] Urquhart, C., Bellekens, X., Tachtatzis, C., Atkinson, R., Hindy, H., & Seeam, A. (2019). Cyber-security internals of a skoda octavia vRS: A hands on approach. IEEE Access, 7, 146057-146069.
- [4] Jamjoom, L., Alshmarani, A., Qaisar, S. M., & Akbar, M. (2018, February). A wireless controlled digital car lock for smart transportation. In 2018 15th Learning and Technology Conference (L&T) (pp. 46-51). IEEE.
- [5] Auer, S., Nagler, S., Mazumdar, S., & Mukkamala, R. R. (2022). Towards blockchain-IoT based shared mobility: Car-sharing and leasing as a case study. Journal of Network and Computer Applications, 103316.
- [6] Cashion, J., & Bassiouni, M. (2011, October). Robust and low-cost solution for preventing sidejacking attacks in wireless networks using a rolling code. In Proceedings of the 7th ACM symposium on QoS and security for wireless and mobile networks (pp. 21-26).
- [7] Greene, K., Rodgers, D., Dykhuizen, H., McNeil, K., Niyaz, Q., & Al Shamaileh, K. (2020, January). Timestamp-based defense mechanism against replay attack in remote keyless entry systems. In 2020 IEEE International Conference on Consumer Electronics (ICCE) (pp. 1-4). IEEE.
- [8] Jamjoom, L., Alshmarani, A., Qaisar, S. M., & Akbar, M. (2018, February). A wireless controlled digital car lock for smart transportation. In 2018 15th Learning and Technology Conference (L&T) (pp. 46-51). IEEE.

- [9] Auer, S., Nagler, S., Mazumdar, S., & Mukkamala, R. R. (2022). Towards blockchain-IoT based shared mobility: Car-sharing and leasing as a case study. Journal of Network and Computer Applications, 103316.
- [10] Lagarias, J. C. (1993). Pseudorandom numbers. Statistical Science, 8(1), 31-39.
- [11] Mukhopadhyay, D., Gupta, M., Attar, T., Chavan, P., & Patel, V. (2018, December). An attempt to develop an IOT based vehicle security system. In 2018 IEEE International Symposium on Smart Electronic Systems (iSES)(Formerly iNiS) (pp. 195-198). IEEE.
- [12] Liu, Z., Zhang, A., & Li, S. (2013, July). Vehicle anti-theft tracking system based on Internet of things. In Proceedings of 2013 IEEE International Conference on Vehicular Electronics and Safety (pp. 48-52). IEEE.
- [13] Mota, A. V., Azam, S., Shanmugam, B., Yeo, K. C., & Kannoorpatti, K. (2017, September). Comparative analysis of different techniques of encryption for secured data transmission. In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) (pp. 231-237). IEEE.
- [14] Francillon, A., Danev, B., & Capkun, S. (2011). Relay attacks on passive keyless entry and start systems in modern cars. In Proceedings of the Network and Distributed System Security Symposium (NDSS). Eidgenössische Technische Hochschule Zürich, Department of Computer Science.
- [15] Pawar, M. R., & Rizvi, I. (2018, April). IoT based embedded system for vehicle security and driver surveillance. In 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 466-470). IEEE.
- [16] James, F. (1990). A review of pseudorandom number generators. Computer physics communications, 60(3), 329-344.

- [17] Oswald, D. F. (2016, October). Wireless attacks on automotive remote keyless entry systems. In Proceedings of the 6th International Workshop on Trustworthy Embedded Devices (pp. 43-44).s
- [18] Garcia, F. D., Oswald, D., Kasper, T., & Pavlidès, P. (2016). Lock It and Still Lose It—on the ({In) Security} of Automotive Remote Keyless Entry Systems. In 25th USENIX Security Symposium (USENIX Security 16).
- [19] Moradi, A., & Kasper, T. (2009, December). A new remote keyless entry system resistant to power analysis attacks. In 2009 7th International Conference on Information, Communications and Signal Processing (ICICS) (pp. 1-6). IEEE.
- [20] Tang, J., & Tian, Y. (2016). A systematic review on minwise hashing algorithms. Annals of Data Science, 3(4), 445-468.