Incorporation of Rate ½ Convolutional Encoder-Decoder into the GNU Radio Benchmark Script

Anjan N. Rayamajhi

Advisor: Dr. Harlan B. Russell

Clemson University

Introduction

- Original benchmark script uses stream based architecture of GNU Radio and maintains continuous flow of packets from Transmitter to Receiver without using error correction codes
- Our goal is to exchange packets between two nodes adding encoding and decoding techniques and using stream tags for defining packet boundaries
- Long term goal is to develop a testbed for Ad-hoc Networks

GNU Radio Scheduler

- GNU Radio Scheduler uses Thread per Block processes
- Each block executed once certain number of input items available as the output from preceding blocks

Original Benchmark Script

- Benchmark script : example script available in gnuradio_source_dir/gr-digital/examples/narrowband
- Packet based data communication but packet boundaries defined using python string

Preamble	Access Code	Header	Payload	32-bit CRC	End
(2 Bytes)	(8 Bytes)	(2 Bytes)		(4 Bytes)	(1 Byte)
			(CRC evaluated for)		

Packet format used in original Benchmark Script

Modified System

- Need for Error Correction Coding of data unavoidable in wireless communication
- rate ½ Consultative Committee for Space Data Systems
 (CCSDS) [171,133] convolution encoder and Viterbi Decoder

Packet format in the modified system

From Original to Modified Benchmark Script

Benchmark Script Block Diagram

From Original to Modified Benchmark Script

Modified System Block Diagram

Encoded System Design

- Python strings and python's convolve module for encoding appeared relatively slow for our need
- C++ based encoding technique was necessary
- Stream tags used for determining packet boundaries
- Stream tags are polymorphic data types that can be attached to specific item in a stream of data

Stream Tags

Tags added to Block 1 can be read from any downstream blocks (depends on Tag Propagation Policy though)

Results

- Simulated with an AWGN Channel for uncoded and coded system
- Performance Measures:
 - Bit Error Rate conditioned on successful packet acquisition
 - Packet Failure Rate conditioned on successful packet acquisition
 - Packet Acquisition Rate

SNR Estimator

M2 M4 based Signal to Noise Ratio Estimator from "A Comparison of SNR Estimation Techniques for the AWGN Channel" -- David R. Pauluzzi and Norman C. Beaulieu

Hardware test

M2 M4 based Signal to Noise Ratio Estimator from "A Comparison of SNR Estimation Techniques for the AWGN Channel" -- David R. Pauluzzi and Norman C. Beaulieu

PER

Conclusion

- Good exposure towards programming using GNU Radio
- Understanding some of the physical layer blocks and implementing them using C++
- Improvement in the performance of benchmark script
- A step towards developing a testbed for MAC layer testing using GNU Radio

Thank you!!