ON THE POWER OF COLOR REFINEMENT

V. ARVIND, JOHANNES KÖBLER, GAURAV RATTAN UND OLEG VERBITSKY

Florian Lüdiger

05.02.2018

Seminar Algorithm Engineering - Lehrstuhl 11 - TU Dortmund

GRAPH-ISOMORPHIE

Definition

Zwei Graphen G und H sind **isomorph**, wenn es eine bijektive Abbildung ϕ gibt, sodass gilt:

$$(u,v) \in E_G \Leftrightarrow (\phi(u),\phi(v)) \in E_H$$
 für alle $u,v \in V_G$.

COLOR-REFINEMENT

Definition

Mit der Color-Refinement-Heuristik kann in polynomieller Zeit festgestellt werden, dass zwei Graphen nicht isomorph sind.

Anders gesagt gilt für beliebige Graphen G,H:

(1) CR unterscheidet G und $H \Rightarrow G \not\simeq H$

LIMITIERUNG DER HEURISTIK

Es gibt nicht-isomorphe Graphenpaare, welche das Color-Refinement nicht unterscheiden kann.

DIE KLASSE DER CR-GRAPHEN

Definition

Graph *G* ist **CR-Graph**, wenn das Color-Refinement diesen von jedem nicht zu *G* isomorphen Graphen *H* unterscheiden kann.

Für beliebige CR-Graphen *G,H* gilt also:

ERGEBNIS UND BEOBACHTUNG

- $ig(\ 1 \ ig)$ CR unterscheidet G und $H \Rightarrow G
 ot\simeq H$
- $\left(\begin{array}{c} 2\end{array}
 ight)$ $G
 eq H\Rightarrow$ CR unterscheidet G und H

Korollar

Für zwei CR-Graphen G und H gilt:

CR erkennt G und H als isomorph \Leftrightarrow G \simeq H

ERGEBNIS UND BEOBACHTUNG

- $ig(\ 1 \, ig)$ CR unterscheidet G und $H \Rightarrow G
 ot \simeq H$
- $\left(\begin{array}{c} 2 \end{array}\right)G
 ot\simeq H \Rightarrow \mathsf{CR}$ unterscheidet G und H

Korollar

Für zwei CR-Graphen G und H gilt:

CR erkennt G und H als isomorph \Leftrightarrow G \simeq H

Wie identifiziere ich also die Klasse der CR-Graphen?

ANWENDUNGSBEISPIEL

STABILE PARTITIONIERUNG

Definition

Die Partitionierung $\mathcal P$ teilt den Graphen $\mathcal G$ in die Farbklassen eines Verfeinerungsschritts ein.

STABILE PARTITIONIERUNG

Definition

Die Partitionierung $\mathcal P$ teilt den Graphen $\mathcal G$ in die Farbklassen eines Verfeinerungsschritts ein.

Definition

Wenn sich die Partitionierung bei weiteren Verfeinerungsschritten nicht mehr ändert, wird diese **stabile Partitionierung** \mathcal{P}^s genannt.

STABILE PARTITIONIERUNG

Definition

Die Partitionierung $\mathcal P$ teilt den Graphen $\mathcal G$ in die Farbklassen eines Verfeinerungsschritts ein.

Definition

Wenn sich die Partitionierung bei weiteren Verfeinerungsschritten nicht mehr ändert, wird diese **stabile Partitionierung** \mathcal{P}^s genannt.

Definition

Die einzelnen Partitionen innerhalb der Partitionierung werden Zellen genannt.

ANWENDUNG AUF DAS BEISPIEL

LOKALE STRUKTUR VON CR-GRAPHEN

Lemma

Die Zellen der stabilen Partition \mathcal{P}_G eines CR-Graphen erfüllen folgende Eigenschaften:

(A) Für beliebige Zellen $X \in \mathcal{P}_G$ ist G[X] ein leerer Graph, vollständiger Graph, Matching-Graph mK_2 , das Komplement eines Matching Graphen oder der 5-Kreis.

AM BEISPIEL

AM BEISPIEL - LEERER GRAPH

AM BEISPIEL - MATCHING-GRAPH

LOKALE STRUKTUR VON CR-GRAPHEN

Lemma

Die Zellen der stabilen Partition \mathcal{P}_G eines CR-Graphen erfüllen folgende Eigenschaften:

(A) Für beliebige Zellen $X \in \mathcal{P}_G$ ist G[X] ein leerer Graph, vollständiger Graph, Matching-Graph mK_2 , das Komplement eines Matching Graphen oder der 5-Kreis.

LOKALE STRUKTUR VON CR-GRAPHEN

Lemma

Die Zellen der stabilen Partition \mathcal{P}_G eines CR-Graphen erfüllen folgende Eigenschaften:

- (A) Für beliebige Zellen $X \in \mathcal{P}_G$ ist G[X] ein leerer Graph, vollständiger Graph, Matching-Graph mK_2 , das Komplement eines Matching Graphen oder der 5-Kreis.
- (B) Für beliebige Zellen $X,Y \in \mathcal{P}_G$ ist G[X,Y] ein leerer Graph, vollständiger bipartiter Graph, eine disjunkte Vereinigung von Sternen $sK_{1,t}$, bei der X die Menge der s inneren Knoten und Y die Menge der st Blätter ist, oder das bipartite Komplement des zuletzt genannten Graphen.

AM BEISPIEL

AM BEISPIEL - LEERER GRAPH

AM BEISPIEL - DISJUNKTE VEREINIGUNG VON STERNEN $SK_{1,t}$

AM BEISPIEL - MATCHING GRAPH*

LOKALE STRUKTUR VON CR-GRAPHEN

Lemma

Die Zellen der stabilen Partition \mathcal{P}_G eines CR-Graphen erfüllen folgende Eigenschaften:

- (A) Für beliebige Zellen $X \in \mathcal{P}_G$ ist G[X] ein leerer Graph, vollständiger Graph, Matching-Graph mK_2 , das Komplement eines Matching Graphen oder der 5-Kreis.
- (B) Für beliebige Zellen $X,Y \in \mathcal{P}_G$ ist G[X,Y] ein leerer Graph, vollständiger bipartiter Graph, eine disjunkte Vereinigung von Sternen $sK_{1,t}$, bei der X die Menge der s inneren Knoten und Y die Menge der st Blätter ist, oder das bipartite Komplement des zuletzt genannten Graphen.

ZELLGRAPH

Definition

Der Zellgraph C(G) eines Graphen G wird aus dessen stabilen Partition \mathcal{P}_G gebildet. Es handelt sich dabei um einen vollständigen Graphen, bei dem die Knoten die Zellen von \mathcal{P}_G darstellen.

ZELLGRAPH - BEISPIEL

EIGENSCHAFTEN VON ZELLGRAPHEN

Definition

Eine Zelle $X \in C(G)$ wird **homogen** genannt, wenn der Graph G[X] vollständig oder leer ist. Anderenfalls wird diese **heterogen** genannt.

EIGENSCHAFTEN VON ZELLGRAPHEN

Definition

Eine Zelle $X \in C(G)$ wird homogen genannt, wenn der Graph G[X] vollständig oder leer ist. Anderenfalls wird diese heterogen genannt.

Definition

Eine Kante $\{X,Y\}$ mit $X,Y\in C(G)$ wird **isotrop** genannt, wenn der bipartite Graph G[X,Y] vollständig oder leer ist. Anderenfalls wird diese **anisotrop** genannt.

EIGENSCHAFTEN VON ZELLGRAPHEN

Definition

Eine Zelle $X \in C(G)$ wird homogen genannt, wenn der Graph G[X] vollständig oder leer ist. Anderenfalls wird diese heterogen genannt.

Definition

Eine Kante $\{X,Y\}$ mit $X,Y \in C(G)$ wird **isotrop** genannt, wenn der bipartite Graph G[X,Y] vollständig oder leer ist. Anderenfalls wird diese **anisotrop** genannt.

Definition

Ein Pfad $X_1X_2...X_l$ in C(G), bei der jede Kante anisotrop ist, wird anisotroper Pfad genannt. Wenn dieser Pfad einen Kreis schließt wird er als anisotroper Zyklus bezeichnet. Gilt für einen anisotropen Pfad $|X_1| = |X_2| = ... = |X_l|$, dann wird er gleichmäßig genannt.

EIGENSCHAFTEN VON ZELLGRAPHEN - BEISPIEL

Lemma

Der Zellgraph C(G) eines CR-Graphen G erfüllt folgende Eigenschaften:

(C) C(G) enthält keinen gleichmäßigen, anisotropen Pfad, der zwei heterogene Zellen verbindet.

C(G) enthält keinen gleichmäßigen, anisotropen Pfad, der zwei heterogene Zellen verbindet.

Lemma

Der Zellgraph C(G) eines CR-Graphen G erfüllt folgende Eigenschaften:

- (C) C(G) enthält keinen gleichmäßigen, anisotropen Pfad, der zwei heterogene Zellen verbindet.
- (D) C(G) enthält keinen gleichmäßigen, anisotropen Zyklus.

C(G) enthält keinen gleichmäßigen, anisotropen Zyklus.

Lemma

Der Zellgraph C(G) eines CR-Graphen G erfüllt folgende Eigenschaften:

- (C) C(G) enthält keinen gleichmäßigen, anisotropen Pfad, der zwei heterogene Zellen verbindet.
- (D) C(G) enthält keinen gleichmäßigen, anisotropen Zyklus.
- (E) C(G) enthält weder einen anisotropen Pfad $XY_1Y_2...Y_lZ$, sodass $|X| < |Y_1| = |Y_2| = ... = |Y_l| > |Z|$, noch einen anisotropen Zyklus $XY_1Y_2...Y_l$, sodass $|X| < |Y_1| = |Y_2| = ... = |Y_l|$ und die Zelle Y_l heterogen ist.

C(G) enthält weder einen anisotropen Pfad $XY_1Y_2...Y_lZ$, sodass $|X| < |Y_1| = |Y_2| = ... = |Y_l| > |Z|$, noch einen anisotropen Zyklus $XY_1Y_2...Y_l$, sodass $|X| < |Y_1| = |Y_2| = ... = |Y_l|$ und die Zelle Y_l heterogen ist.

homogene Zelle

heterogene Zelle

--- anisotrope Kante

Kardinalität x

Lemma

Der Zellgraph C(G) eines CR-Graphen G erfüllt folgende Eigenschaften:

- (C) C(G) enthält keinen gleichmäßigen, anisotropen Pfad, der zwei heterogene Zellen verbindet.
- (D) C(G) enthält keinen gleichmäßigen, anisotropen Zyklus.
- (E) C(G) enthält weder einen anisotropen Pfad $XY_1Y_2...Y_lZ$, sodass $|X| < |Y_1| = |Y_2| = ... = |Y_l| > |Z|$, noch einen anisotropen Zyklus $XY_1Y_2...Y_l$, sodass $|X| < |Y_1| = |Y_2| = ... = |Y_l|$ und die Zelle Y_l heterogen ist.
- (F) C(G) enthält keinen anisotropen Pfad $XY_1Y_2...Y_l$, sodass $|X| < |Y_1| = |Y_2| = ... = |Y_l|$ und die Zelle Y_l heterogen ist.

C(G) enthält keinen anisotropen Pfad $XY_1Y_2...Y_l$, sodass $|X| < |Y_1| = |Y_2| = ... = |Y_l|$ und die Zelle Y_l heterogen ist.

homogene Zelle

heterogene Zelle

anisotrope Kante

- isotrope Kante

Kardinalität x

C(G) enthält keinen anisotropen Pfad $XY_1Y_2...Y_l$, sodass $|X| < |Y_1| = |Y_2| = ... = |Y_l|$ und die Zelle Y_l heterogen ist.

Definition

In einem Zellgraphen C(G) bezeichnet eine anisotrope

Komponente einen Subgraphen, dessen Kanten alle anisotrop sind.

Definition

In einem Zellgraphen $\mathcal{C}(G)$ bezeichnet eine **anisotrope** Komponente einen Subgraphen, dessen Kanten alle anisotrop sind.

Definition

In einem Zellgraphen C(G) bezeichnet eine **anisotrope**Komponente einen Subgraphen, dessen Kanten alle anisotrop sind.

Definition

In einem Zellgraphen $\mathcal{C}(G)$ bezeichnet eine **anisotrope** Komponente einen Subgraphen, dessen Kanten alle anisotrop sind.

Definition

In einem Zellgraphen $\mathcal{C}(G)$ bezeichnet eine anisotrope Komponente einen Subgraphen, dessen Kanten alle anisotrop sind.

Definition

In einem Zellgraphen C(G) bezeichnet eine **anisotrope**Komponente einen Subgraphen, dessen Kanten alle anisotrop sind.

Definition

In einem Zellgraphen C(G) bezeichnet eine **anisotrope** Komponente einen Subgraphen, dessen Kanten alle anisotrop sind.

Lemma

Angenommen ein CR-Graph G erfüllt die Bedingungen A-F. Für jede anisotrope Komponente A von C(G) gelten folgende Eigenschaften:

(G) A ist ein Baum, der folgende Monotonieeigenschaft erfüllt: Sei R eine Zelle aus A mit minimaler Kardinalität, so ist A_R der gerichtete Baum mit Wurzel R; Für jede gerichtete Kante (X,Y) aus A_R gilt dann $|X| \leq |Y|$.

A ist ein Baum, der folgende Monotonieeigenschaft erfüllt: Sei R eine Zelle aus A mit minimaler Kardinalität, so ist A_R der gerichtete Baum mit Wurzel R; Für jede gerichtete Kante (X,Y) aus A_R gilt dann

Lemma

Angenommen ein CR-Graph G erfüllt die Bedingungen A-F. Für jede anisotrope Komponente A von C(G) gelten folgende Eigenschaften:

- (G) A ist ein Baum, der folgende Monotonieeigenschaft erfüllt: Sei R eine Zelle aus A mit minimaler Kardinalität, so ist A_R der gerichtete Baum mit Wurzel R; Für jede gerichtete Kante (X,Y) aus A_R gilt dann $|X| \leq |Y|$.
- (H) A enthält maximal eine heterogene Zelle; Wenn eine solche Zelle existiert, hat diese minimale Kardinalität in A.

A enthält maximal eine heterogene Zelle; Wenn eine solche Zelle existiert, hat diese minimale Kardinalität in A.

A enthält maximal eine heterogene Zelle; Wenn eine solche Zelle existiert, hat diese minimale Kardinalität in A.

Anwendung der vorgestellten Bedingungen Anwendungsbeispiel

Beweis lokale Struktur

Ein Beweis für globale Struktur beispielhaft