Linear Algebra

Notes by Markus Renoldner Based on the lecture Lineare Algebra für Technische Physik at the TU Wien

$March\ 28,\ 2023$

Contents

1	Alg	ebraic foundations	2
	1.1	Groups	2
	1.2	Rings and fields	3

1 Algebraic foundations

1.1 Groups

Definition 1 (Group). A group is a set G together with an element $e \in G$, the neutral element, as well as an operation ("Verknüpfung") $G \cdot G \to G$ that satisfies

- 1. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$... Associativity
- 2. $e \cdot g = g$... neutral element
- 3. $g' \cdot g = e$... inverse element

Its notated by the triple: (G, e, \cdot)

Th notation of the operation means, that \cdot takes two elements and ouputs a third element, all from G. An example of a group is $(\mathbb{R}, 0, +)$. The triple $(\mathbb{N}, 0, +)$ is not a group, as its members dont have inverse elements.

Lemma 2 (Group properties). 1. the neutral elemenet of a group is unique

- 2. the inverse element of g is unique, which allows to write g^{-1}
- 3. for all $a, b \in G$ we have $(a^{-1})^{-1} = a$ and $(ab)^{-1} = a^{-1}b^{-1}$
- 4. for all $a, b, c \in G$ we have ab = ac if and only if b = c. Same for ba = ca

Proof. TODO

Definition 3 (Abelian group). A group is called abelian ("abelsch") if it is commutative: $a \cdot b = b \cdot a$

Definition 4 (Subgroup). A subset of G is a subgroup of G if it is a group.

Definition 5 (Homomorphism). Let (G,\cdot) and (H,*) be groups. A mapping $\phi: G \to H$ is a homomorphism if

$$\phi(a \cdot b) = \phi(a) * \phi(b)$$

for all $a, b \in H$

Definition 6 (Isomorphism). A bijective homomorphism is an isomorphism.

Lemma 7 (Properties of homomorphisms). Let ϕ be a homomorphism and e_i be the neutral element of group i.

1.
$$\phi(e_G) = e_H$$

2.
$$\phi(a^{-1}) = \phi(a)^{-1}$$

Proof.

1. by above definitions:

$$\phi(e_G) = \phi(e_G \cdot e_G) = \phi(e_G) * \phi(e_G)$$

Now apply $\phi(e_G)^{-1}$ from left

$$e_H = \phi(e_G)^{-1} * \phi(e_G) * \phi(e_G) = e_H * \phi(e_G) = \phi(e_G)$$

2. Let $a \in G$. We just showed that

$$\phi(a) * \phi(a^{-1}) = \phi(a \cdot a^{-1}) = \phi(e_G) = e_H$$

But we also know that

$$\phi(a^{-1}) * \phi(a) = \phi(a^{-1} \cdot a) = \phi(e_G) = e_H$$

As the inverse element is unique (see lemma 2), the statement follows.

1.2 Rings and fields

(German: "Ringe" und "Körper")

Definition 8 (Ring). A ring is a set R with the two operations addition and multiplication:

$$+: R \times R \to R$$
 (1)

$$\cdot: R \times R \to R \tag{2}$$

and the following properties:

- R is an ablian Group
- \bullet · is associative
- it holds that $a \cdot (b+c) = a \cdot b + a \cdot c$

A ring is called unitary ring or ring with unity if $\exists 1 \in R$ st. $1 \cdot a = a \cdot 1 = a \forall a \in R$ this element is called unity- or one-element.

Apparently now one can already proof fun statements like this:

Lemma 9 (Good to know lemma). Seemingly

$$a \cdot 0 = 0$$

Proof. Take 0 + 0 = 0 and distributivity:

$$0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$$

add the inverse of (fancy way of saying subtract) $0 \cdot a$ and use associativity

$$0 = 0 \cdot a - 0 \cdot a(0 \cdot a + 0 \cdot a) - 0 \cdot a = 0 \cdot a + (0 \cdot a - 0 \cdot a) = 0 \cdot a + 0 = 0 \cdot a$$

Beautiful.

Definition 10 (Definition of fields based on groups). ("Körper") A field is a unitary ring where each nonzero element has a multiplicative invers. More explicit: A tuple $(K, +, \cdot, 0, 1)$ where

$$+: K \times K \to K$$
 (3)

$$\cdot: K \times K \to K \tag{4}$$

and where K is a set, is called field if

- K together with addition is an abelian group with neutral element 0
- $K\setminus\{0\}$ together with multiplication is an abelian group with neutral element 1
- distributivity: $a \cdot (b+c) = a \cdot b + a \cdot c$

Definition 11 (Axiomatic definition of fields). A tuple $(K, +, \cdot, 0, 1)$ where

$$+: K \times K \to K$$
 (5)

$$\cdot: K \times K \to K$$
 (6)

and where K is a set, is called field if the following axioms hold

- associativity, commutativity, existence of neutral element, and existence of inverse element of addition
- associativity, commutativity, existence of neutral element, and existence of inverse element of multiplication
- distributivity of addition and multiplication
- $1 \neq 0$

Lemma 12 (Properties of fields). We have that:

- Every field has at least two elements
- $\bullet \ 0 \cdot a = 0$
- Fields don't have zero divisors, in other words: $a \cdot b = 0 \implies a = 0 \lor b = 0$
- $a \cdot (-b) = -(a \cdot b)$ and $(-a) \cdot (-b) = a \cdot b$
- $x \cdot a = y \cdot a \text{ with } a \neq 0 \implies x = y$

Proof. TODO \Box