Undirected & Directed Graphs

Kuan-Yu Chen (陳冠宇)

Review

- Sorting means arranging the elements of an array so that they are placed in some relevant order which may be either ascending or descending
- A sorting algorithm is defined as an algorithm that puts the elements of a list in a certain order, which can be either numerical order, lexicographical order, or any userdefined order
 - Bubble, Insertion, Tree
 - Selection, Merge, Shell
 - Quick, Radix, Heap

Introduction

- A graph is basically a collection of vertices (also called nodes)
 and edges that connect these vertices
 - It is often viewed as a generalization of the tree structure
 - Instead of having a purely parent-to-child relationship between tree nodes, any kind of complex relationship can exist
- Graphs are widely used to model any situation where entities or things are related to each other in pairs
 - *Family trees* in which the member nodes have an edge from parent to each of their children
 - Transportation networks in which nodes are airports, intersections, or ports

Undirected Graphs

- A graph G is defined as a set (V, E), where V(G) represents the set of vertices and E(G) represents the edges
 - For a given undirected graph with $V(G) = \{A, B, C, D, E\}$ and $E(G) = \{(A, B), (B, C), (A, D), (B, D), (D, E), (C, E)\}$
 - Five vertices or nodes and six edges in the graph

Terminologies for Undirected Graph.

Adjacent nodes or neighbors

- For every edge, e = (u, v) that connects nodes u and v, the nodes u and v are the end-points and called the **adjacent** nodes or neighbors

Degree of a node

- Degree of a node u, deg(u), is the total number of edges containing the node u
 - If deg(u) = 0, the node is known as an **isolated node**

Terminologies for Undirected Graph..

Regular graph

- It is a graph where each vertex has the same number of neighbors
 - Every node has the same degree
- A regular graph with vertices of degree k is called a k-regular graph or a regular graph of degree k

Terminologies for Undirected Graph...

Path

- A path P written as $P = \{p_0, p_1, p_2, ..., p_n\}$, of length n from a node u to v is defined as a sequence of (n+1) nodes
 - $p_0 = u$ and $p_n = v$
 - If u = v, the path is named **closed path**

Simple path

- If all the nodes in the path are distinct
 - An exception is that v_0 can be equal to v_n , which is named **closed simple path**

Cycle

- A path in which the first and the last vertices are same
 - A **simple cycle** has no repeated edges or vertices (except the first and last vertices)
 - Cycle = closed path, simple cycle = closed simple path=closed path

Terminologies for Undirected Graph....

Connected graph

- A graph is said to be connected if for any two vertices (u, v) in V there is a path from u to v
 - There are no isolated nodes in a connected graph
 - A connected graph that does not have any simple cycle is called a tree

Complete graph

- If all its nodes are fully connected
- A complete graph has $\frac{n(n-1)}{2}$ edges

Terminologies for Undirected Graph.....

Clique

- In an undirected graph G = (V, E), clique is a subset of the vertex set $C \subseteq V$, such that for every two vertices in C, there is an edge that connects two vertices

Loop

- An edge that has identical end-points is called a loop

$$\bullet$$
 $e = (u, u)$

Multiple edges

- Distinct edges which connect the same end-points are called multiple edges
 - A graph contains e = (u, v) and e' = (u, v)

Terminologies for Undirected Graph.....

Multi-graph

 A graph with multiple edges and/or loops is called a multigraph

Size of a graph

- The size of a graph is the **total number of edges** in it

Articulation Point

• A vertex v of G is called an articulation point, if removing v along with the edges incident on v, results in a graph that has at least two connected graphs (components)

Bi-connected Graph

- A **bi-connected graph** is defined as a connected graph that has no articulation vertices
 - In other words, a bi-connected graph is connected and non-separable in the sense that even if we remove any vertex from the graph, the resultant graph is still connected

Bridge

• An edge in a graph is called a **bridge** if removing that edge results in a disconnected graph

Directed Graphs

- A graph G is defined as an ordered set (V, E), where V(G) represents the set of vertices and E(G) represents the edges
 - For a given directed graph with $V(G) = \{A, B, C, D, E\}$ and $E(G) = \{(A, B), (C, B), (A, D), (B, D), (D, E), (E, C)\}$
 - Five vertices or nodes and six edges in the graph
 - For a given directed graph, the edge (*A*, *B*) is said to initiate from node *A* (also known as **initial node**) and terminate at node *B* (**terminal node**)
 - Directed graph is also called **digraph**

Terminologies for Directed Graph.

Out-degree of a node

- The out-degree of a node u, written as outdeg(u), is the number of edges that originate at u

In-degree of a node

- The in-degree of a node u, written as indeg(u), is the number of edges that terminate at u

Degree of a node

- The degree of a node, written as deg(u), is equal to the sum of in-degree and out-degree of that node
- $\deg(u) = indeg(u) + outdeg(u)$

Terminologies for Directed Graph..

Source

 A node u is known as a source if it has a positive out-degree but a zero in-degree

Sink

 A node *u* is known as a sink if it has a positive in-degree but a zero out-degree

Pendant vertex

- A vertex with degree one

Terminologies for Directed Graph...

Reachability

 A node v is said to be reachable from node u, if and only if there exists a (directed) path from node u to node v

Parallel/Multiple edges

 Distinct edges which connect the same end-points are called multiple edges

Terminologies for Directed Graph....

Strongly connected directed graph

- A digraph is said to be strongly connected if and only if there exists a path between every pair of nodes in *G*
 - In other words, if there is a path from node u to v, then there must be a path from node v to u

Weakly connected digraph

- A directed graph is said to be weakly connected if it is connected by ignoring the direction of edges
 - The nodes in a weakly connected directed graph must have either out-degree or in-degree of at least 1

Terminologies for Directed Graph.....

Transitive closure

- For a directed graph G = (V, E), the transitive closure of G is a graph $G^* = (V, E^*)$
 - In G^* , for every vertex pair (v, w) in V there is an edge (v, w) in E^* if and only if there is a valid path from v to w in G

Questions?

kychen@mail.ntust.edu.tw