

Depth-Centric Dehazing and Depth-Estimation from Real-World Hazy Driving Video

Junkai Fan¹, Kun, Wang¹, Zhiqiang Yan¹, Xiang Chen¹, Shangbing Gao², Jun Li^{1*}, and Jian Yang^{1*}

¹PCA Lab, Nanjing University of Science and Technology, China

²Huaiyin Institute of Technology, China

(j) Ours (depth)

(c) Ours (depth)

Motivation

- Obtaining clear RGB and accurate dense depth ground truth is challenging in real hazy scenes.
- Self-supervised depth estimation and physicsbased dehazing are inherently complementary in real-world hazy scenes.

$$\begin{cases}
I_t(x) = J_t(x)e^{-\beta \mathbf{d}(x)} + A_{\infty}(1 - e^{-\beta \mathbf{d}(x)}) \\
J_t(x) = \mathcal{S}(J_s, y), y \sim KP_{x \to y}\mathbf{d}(x)K^{-1}x
\end{cases} (1)$$

(d) Simultaneously dehaze and estimate depth (L: dehazed, \mathbf{R} : depth) (Ours)

Depth-Centric Learning (DCL)

Main idea:

- ➤ Based on Eq. (1), we propose a novel Depth-Centric Learning (DCL) framework to simultaneously remove haze and estimate depth from real-world hazy videos.
- We present two misaligned regularization discriminator networks, D_{MFIR} and D_{MDR} , for enhancing constraints on high-frequency details and weak texture regions.
- In real hazy scenes, scattering does not always conform to an ideal model, as β depends not only on wavelength but also on the size and distribution of scattering particles (e.g., patchy haze). Therefore, we assume β to be a non-uniform variable.

Train loss: ASM Loss $Loss = \frac{1}{\eta \mathcal{L}_{rec}} + \frac{1}{\eta \mathcal{L}_{mr}} + \frac{1}{m_a \mathcal{L}_{pe} + \xi \mathcal{L}_s} + \frac{1}{\omega_1 (\mathcal{L}_D^I + \mathcal{L}_G^I)} + \frac{1}{\omega_2 (\mathcal{L}_D^d + \mathcal{L}_G^d)}$

Note: Based on the brightness consistency assumption, D_{MDR} regularizes the depth while also constraining the dehazing network to maintain brightness consistency across consecutive frames, thereby preventing flickering.

Overall Framework

Our DCL framework integrates the atmospheric scattering model (ASM) and brightness consistency constraint (BCC) via shared depth prediction. D_{MFIR} enhances high-frequency details in dehazed frames, while D_{MDR} reduces black holes in depth maps from weakly textured regions.

Experimental Results and Ablation Study

Quantitative dehazing results on three real hazy video datasets

Data Methods		Data			DrivingHazy		InternetHazy		Params	FLOPs	Inf. time	Ref.	
Settings	Settings		FADE ↓	NIQE ↓	FADE ↓	NIQE↓	FADE ↓	NIQE↓	(M)	(G)	(S)	Kei.	
	DCP	Image	1.0415	7.4165	1.1260	7.4455	0.9229	7.4899	-	-	1.39	CVPR'09	
Unpaired	RefineNet	Image	1.1454	6.1837	1.0223	6.5959	0.8535	6.7142	11.38	75.41	0.105	TIP'21	
	CDD-GAN	Image	0.7797	6.0691	1.0072	6.1968	0.8166	6.1969	29.27	56.89	0.082	ECCV'22	
	D^4	Image	1.5618	6.9302	0.9556	7.0448	0.6913	7.0754	10.70	2.25	0.078	CVPR'22	
	PSD	Image	0.9081	6.7996	0.9479	6.3381	0.8100	6.1401	33.11	182.5	0.084	CVPR'21	
Paired	RIDCP	Image	0.7250	5.2559	0.9187	5.3063	0.6564	5.4299	28.72	182.69	0.720	CVPR'23	
	PM-Net	Video	0.7559	4.6274	1.0509	4.8447	0.7696	5.0182	151.20	5.22	0.277	ACMM'22	
	MAP-Net	Video	0.7805	4.8189	1.0992	4.7564	1.0595	5.5213	28.80	8.21	0.668	CVPR'23	
	NSDNet	Image	0.7197	6.1026	0.8670	6.3558	0.6595	4.3144	11.38	56.86	0.075	arXiv'23	
Non-aligned	DVD	Video	0.7061	4.4473	0.7739	4.4820	0.6235	4.5758	15.37	73.12	0.488	CVPR'24	
	DCL (Ours)	Video	0.6914	3.4412	0.7380	3.5329	0.6203	3.5545	11.38	56.86	0.075	-	
1	(i)												
(a) Inpu	(a) Input (haze)		(b) D ⁴			PM-Net		(d) 1	RIDCP		(e) NSDNet		
											Prisone 1		
(f) MAP-Net		(g) DVD		(h) Ours (dehaze)		(i) Reference			(j) Ours (depth)			
				-									
(a) Input (haze)		(b) D ⁴			(c) PSD		(d) P	(d) PM-Net			(e) RIDCP		
The same	4,377			300		1		Mark.	A				

Quantitative depth estimation results on DENSE-Fog dataset

Method	DENSE-Fog (light)				DENSE-Fog (dense)					Params	FLOPs	Inf. time	D-f	
	abs Rel↓	RMSE log↓	$\delta_1 \uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$	abs Rel↓	RMSE log↓	$\delta_1 \uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$	(M)	(G)	(S)	Ref.
MonoDepth2	0.418	0.475	0.499	0.735	0.847	1.045	0.632	0.530	0.771	0.864	14.3	8.0	0.009	ICCV'19
MonoViT	0.393	0.454	0.464	0.728	0.858	0.992	0.611	0.512	0.779	0.876	78.0	15.0	0.045	3DV'22
Lite-Mono	0.417	0.473	0.402	0.687	0.853	0.954	0.604	0.469	0.756	0.886	3.1	5.1	0.013	CVPR'23
RobustDepth	0.316	0.370	0.611	0.828	0.913	0.605	0.515	0.563	0.798	0.881	14.3	8.0	0.009	ICCV'23
Mono-ViFI	0.369	0.459	0.408	0.704	0.864	0.609	0.528	0.489	0.771	0.883	14.3	8.0	0.009	ECCV'24
DCL (Ours)	0.311	0.364	0.623	0.839	0.920	1.182	0.596	0.612	0.829	0.900	14.3	8.0	0.009	-

Ablation visualization of core module on DENSE-Fog (light)

Method	BCC	D_{MFIR}	D_{MDR}	Abs Real↓	RMSE log↓	$\delta_1 \uparrow$		
DCL w/o BCC		✓	✓	0.636	0.569	0.439		
DCL w/o $D_{ m MFIR}$	✓		✓	0.320	0.366	0.621		
DCL w/o $D_{ m MDR}$	✓	✓		0.340	0.392	0.562		
DCL (Ours)	_ <u>~</u> _		- - -	0.311	0.364	0.623		
			1	0				
(a) Input (haze)	(b) w/o BC	CC	(c) w/o D _{MFIR}	(d) w/o D _{MI}	DR (e) DCL	(e) DCL (Ours)		

> Quantitative comparison different β types on DENSE-Fog (light)

Shape of β	Type	Abs Rel↓	RMSE log↓	$\delta_1 \uparrow$
(1, 1, 1)	Constant	0.325	0.371	0.621
(1, 192, 640) (Ours)	Non-uniform	0.311	0.364	0.623

(b) Constant β (depth)

(a) Input (haze)