AIN SHAMS UNIVERSITY **FACULTY OF ENGINEERING**

SPECIALIZED ENGINEERING PROGRAMS JUNIOR COMMUNICATION ENGINEERING PROGRAM

SPRING 2022 Total: 5 marks Assignment #5

PHM212s: Special Functions, Complex Analysis & Numerical Analysis

Instructor Name: Dr. Makram Roshdy, Dr. Betty Nagy

1/8

Deadline: Week 14 Name: ID:

Please, Solve each problem in its assigned place ONLY (the empty space below it)

Numericl solution of Ordinary Differential Equations

Use at least 4 decimal places in your calculations

- 1) y' = x + y, y(0) = 0. Find y(0.4) using the following:
 - a) Exact Method > $\frac{dy}{dz} = x + y$
- $\frac{dz}{dz} 1 = z$

$$\int \frac{d2}{2+1} = \int dx$$

$$\mathcal{D}_{n}[\mathcal{Z}_{+1}] = x + c$$

$$y = Ae^{x} - x - 1$$

$$\Rightarrow y = Ae^{x} - x - 1$$
 $(y_{6}) = 0$ $A = 1$

$$\% y = e^{x} - x - 1$$

b) Euler Method with h = 0.1

$$* n = \frac{x_n - x_o}{h} = \frac{o.4 - o}{o.1} = 4$$

n	X ₀	y,	f(x,,y,)	by = hf	y _{n+1}
0	0	0	0	0	0
1	0.1	0	0.1	0.01	0.01
2	o. 2	0.01	0.21	0.021	0.031
3	0.3	0.031	o.3310	0.0331	0.0641
A	0.4	0.0641			

Name: ID: 2/8

c) Euler Method with 10 steps

$$\star h = \frac{x_n - x_o}{n} = \frac{o.4 - o}{10} = o.04$$

n	\propto_{h}	y,	J(x,,y,)	by = hf	y n+1
0	0	0	0	0	9
١	0.04	0	0.04	0.0016	0-0016
2	0.08	0.0016	0.0816	0.0033	0.0049
3	0.12	0.0049	0.1249	0.005	0.0099
4	0.16	0.0099	0.1693	0.0068	F310-0
5	0.20	0.0167	0.2167	F8 00 .0	0.0253
6	0.24	0.0253	o. 2653	0.0106	0.0359
7	0.28	0.0359	0.3159	0.0126	0.0486
8	o-32	0.0486	0.3686	0.0147	0.0633
9	0.36	0.0633	o · 4233	0.0169	0.0802
10	0.4	0.0802	<u> </u>	.4) × 0·080	2

Name: ID: 3/8

d) Runge-Kutta Method with h = 0.4

n	\propto_{h}	y <u>,</u>	ω_i	ΔΥ
	0	0	ω ₁ = 0	0
0	0.2	0	W2 = 0.08	0.16
	0.2	0.04	w3=0.096	6.1920
	0.4	0.096	W4=0.1984	0.1984
				0.5504

e) Runge-Kutta method with 2 steps.

$$*h = \frac{x_n - x_n}{n} = \frac{6.4}{2} = 0.2$$

n	\propto_{n}	y _n	ω_i	۵۷
	0	0	w₁ = 0	0
0	0.1	0	w ₂ = 0.02	0.04
	0.1	0.01	ω ₃ = 0.022	0.044
	0.2	0.022	ω ₄ = 0.0444	o. 0444
				0.1284

$$\rightarrow J_1 = J_0 + \frac{1}{6} \Delta J$$

$$= 0.0214$$

n
$$x_n$$
 y_n w_i a_i $a_$

0.3825

$$\rightarrow \mathcal{I}_2 = \mathcal{I}_1 + \frac{1}{6} \Delta \mathcal{I}$$

$$= 0.0852$$

Name: ID: 4/8

2) y' = x - y, y(1) = 2. Find y(0.5) using Runge-Kutta method with 2 steps.

$$*h = \frac{x_n - x_n}{n} = \frac{0.5.1}{2} = -0.25$$

n	\propto_{h}	ي د	ω_i	۵
	1	2	$w_i = 6.25$	0.25
	0.8750	2.125	w ₂ = 0.3125	o.625
	0.8750	2.1563	w3 = 0.3203	0.6406
	0.75	2.3203	~ ₄ = 0.3926	0.3926
		. ,		1.9082

n	X _n	y,	ω_i	۵۷
	0.75	2.3180	0.3920	6.3920
1	0.625	2.5140	0.4723	0-9445
1	0.625	2.5541	- 1.9292	-3.8583
	0.5	0.3888	- 0. 0 278	-0.0278
	•			- 2. 5496

$$\rightarrow y_2 = y_1 + \frac{1}{6} \Delta y$$
$$= 1.8931$$

PHM212s: Special Functions, Complex Analysis & Numerical Analysis

Name: 1D: 5/8

3)
$$x' = x - y - t$$
, $y' = 4x - 2y$, $x(0) = 1 & y(0) = 0$
Find $x(0.2) & y(0.2)$ using Runge-Kutta method with h=0.1

n	tn	x_n	y,	Wί	V _i	ΔΧ	ΔΥ
	0	•	0	0.1	0.4	٥.١	0.4
	0.05	1.05	0.2	0.08	0.38	0.16	0.7600
0	0,05	1.04	0.19	80.0	0.3780	0.16	0.7560
	0.1	1.08	0.189	196.0	6.3942	0.0791	0.3942
	•	•				o. 4991	2.3102

$$\Rightarrow \chi(0.1) = \chi(0) + \frac{1}{6}\Delta\chi \qquad \Rightarrow \chi(0.1) = \chi(0) + \frac{1}{6}\Delta\chi$$

$$= 1.0932 \qquad = 0.3850$$

n	tn	χ_{h}	y,	ωί	V _i	ΔΧ	۵۶
	0.1	1.0832	0.3850	0.0598	0.3563	0.0598	0.3563
1	0.15	1/1131	0-5631	0.04	0.3326	6.08	0.6652
1	0.15	1.1032	0.5513	0.0402	0.3310	0.0864	0,6620
	0.2	(.1234	0.5502	0.0373	o. 3393	0.0373	6.3393
						0.2575	2.0228

$$\Rightarrow \chi(\circ.2) = \chi(\circ.1) + \frac{1}{6}\Delta\chi \qquad \Rightarrow \Upsilon(\circ.2) = \Upsilon(\circ.1) + \frac{1}{6}\Delta\Upsilon$$

$$= 1.1261 \qquad = 0.7221$$

PHM212s: Special Functions, Complex Analysis & Numerical Analysis

Name: ID: 6/8

4)
$$x'' + t^2x' + 3x = t$$
, $x(0) = 1 \& x'(0) = 2$
Find $x(0.2)$ using Runge-Kutta method with h=0.1

n	tn	\propto_{n}	y,	Wί	V _i	ΔΧ	۵۷
	0	1	2	0.2	-0.3	0.2	-0.3
	0.65	1.1	1.85	o-1850	- 0.3255	0.37	-0.6509
0	0.05	1.0925	1.8373	0.1837	-0.3232	0-3675	-0.6464
	0-1	1.1837	1.8384	o-1838	-0.3470	6-1838	-0.3470
						1.1213	-1.9443

n	tn	χ_{h}	<u></u> ٢,	Wį	V _i	ΔΧ	۵۷
	0.1	1.1869	1.6759	0.1676	- 6.3477	0.1676	-0.3477
1	0.15	1.2707	1.5020	0.1502	-0.3696	0.3004	-0.7392
1	0.15	1.2620	1.4911	o-1491	-0.3670	0.2982	-6.7339
	0.2	1.3360	1.4924	0-1492	-0.3868	o. 1492	-0.3868
	•					o.9155	-2.2076

$$\Rightarrow \chi(\circ.2) = \chi(\circ.1) + \frac{1}{6}\Delta\chi \qquad \Rightarrow \chi(\circ.2) = \chi(\circ.1) + \frac{1}{6}\Delta\chi$$

$$= 1.3395 \qquad = 1.3080$$

Name: 1D: 7/8

Numericl solution of Partial Differential Equations

5) Find U (x, y) such that $\nabla^2 U(x,y) = 0$ over a rectangle 20 x 15 cm using a grid with step size h = 5, and the boundary conditions: U (x, 0) = 0, U (x, 15) = 0, U (0, y) = 0, U (20, y) = 100. Use Gauss-Seidel method to solve the resulting linear system. Accurate to 2D

n	u,	U12	U ₁₃	W ₂₁	U ₂₂	U23
0	0	0	100	0	0	(00
١	0	25	56.25	o	31.25	46.875
2	6.25	23.4375	42.5781	9.375	19.9219	40.625
3	8.2031	17.6758	39.5752	7.0313	16.333	38.9771
4	6.1768	15.5212	38.6246	5.6274	15.0314	38.4140
5	S.2872	14.7358	38.2874	5.0797	14.5574	38.2112
6	4.9539	14.4497	38.1652	4.8778	14.3847	38.1375
7	4.8319	(4.3454	38.1207	4.8041	14.3218	38.1106
8	4.7874	(4.3 o 75	38.1645	4.7773	14.2988	38.1008
9	4.7712	14.2936	38.09%	4.7676	14.2905	38.0973
10	4.7653	14. <mark>28</mark> 26	38 . <mark>09</mark> 65	4.7639	14-2875	38. <mark>09</mark> 60
11	4.7631	14.2868	38-6957	4.7626	14.2863	38.695\$

Name: 8/8

6) Solve (using **h = 1/3**) the Dirichlet problem

$$\nabla^2 u(x, y) = 3(x^2 + y^2) \quad in \quad R$$
and $u(x, y) = y - x \quad on \quad \partial R$

Here ∂R is the boundary of R and R is the region in the unit square $0 \le x \le 1$ and $0 \le y \le 1$. Perform 5 steps of Gauss-Seidel method with the initial approximation $u_{11}^{(0)} = u_{12}^{(0)} = u_{21}^{(0)} = u_{22}^{(0)} = 0$.

* At
$$U_{12} : \frac{-2}{3} - \frac{2}{3} + U_{11} + U_{22} - 4U_{12} = \frac{1}{3} \left(\frac{4}{3} + \frac{1}{9} \right)$$

* $U_{12} : \frac{-2}{3} - \frac{2}{3} + U_{21} + U_{22} - \frac{4U_{12}}{27}$

* At $U_{21} : \frac{2}{3} + \frac{2}{3} + U_{22} + U_{11} - 4U_{21} = \frac{1}{3} \left(\frac{4}{5} + \frac{1}{9} \right)$
* $U_{21} : \frac{1}{4} \left(U_{11} + U_{22} + \frac{31}{27} \right)$

* At $U_{22} : \frac{1}{3} - \frac{1}{3} + U_{21} + U_{12} - 4U_{22} = \frac{1}{3} \left(\frac{4}{3} + \frac{4}{9} \right)$
* $U_{22} : \frac{1}{4} \left(U_{12} + U_{21} - \frac{8}{27} \right)$

n	U _{II}	U12	U21	u ₂₂
0	0	0	0	٥
١	-0.0185	-0.3843	0.2824	-0.0995
2	-0.0440	-0.4155	0.2512	-0.1152
3	- 0.0 596	-0.4233	0. 2433	-0.119 1
4	-0.0635	-0.4253	0.2414	12.0 –
5	-0.0645	-0.4258	0.2409	-0.1203

Best wishes,