Lecture 6: Point Level Models - Variograms & EDA

Class Intro

Intro Questions

- What is a variogram?
- How is a variogram useful?
- For Today:
 - How is EDA used for point referenced data?

Variogram Creation

Variogram Creation: How?

X	у	copper
181072	333611	85
181025	333558	81
181165	333537	68
181298	333484	81
181307	333330	48
181390	333260	61
181165	333370	31
181027	333363	29
181060	333231	37
181232	333168	24
181191	333115	25
181032	333031	25
180874	333339	93

X	y	copper
180969	333252	31
181011	333161	27

Variogram Creation: Steps

- 1. Calculate distances between sampling locations
- 2. Choose grid for distance calculations
- 3. Calculate empirical semivariogram

$$\hat{\gamma}(d_k) = \frac{1}{2N(d_k)} \sum_{\mathbf{s}_i, \mathbf{s}_i, \in N(d_k)} \left[\mathbf{Y}(\mathbf{s}_i) - \mathbf{Y}(\mathbf{s}_j) \right]^2,$$

where

$$N(d_k) = \{(s_i, s_j) : ||s_i - s_j|| \in I_k\}$$

and I_k is the k^{th} interval.

4. Plot the semivariogram

Variogram Creation: R function

Calculate Distances between sampling locations

```
dist(meuse.small)
```

```
5
                                                                           6
##
                             2
                                        3
                 1
## 2
         70.95069
## 3
        120.05832
                    142.16188
## 4
        259.27013
                    282.85155
                                143.76022
## 5
        368.17795
                    364.13871
                                251.81938
                                           157.75297
## 6
        474.23728
                                356.93557
                    471.62379
                                           242.98148
                                                       109.35264
## 7
        263.90529
                    239.67478
                               171.04970
                                           182.16751
                                                       148.50253
                                                                   252.23997
## 8
        258.19566
                    201.82418
                                225.47949
                                           301.30715
                                                       282.57742
                                                                   378.68457
## 9
                                                                   332.14003
        383.20752
                    331.79813
                                324.99538
                                           350.12712
                                                       266.32874
## 10
        474.94210
                    445.19434
                                377.60561
                                           327.81245
                                                       180.12496
                                                                  186.53954
## 11
        513.59225
                    476.38325
                                424.98118
                                           388.26022
                                                       245.37726
                                                                   248.84131
                                                                   426.49853
## 12
        584.46557
                    530.01321
                               524.95143
                                           528.30010
                                                       406.88450
## 13
        336.52934
                    266.28181
                                352.85975
                                           448.26889
                                                       435.42508
                                                                   522.99235
## 14
        377.36720
                    315.07459
                                347.86492
                                           405.66612
                                                       347.29958
                                                                   422.14334
## 15
        457.80454
                    400.90024
                                408.37850
                                                       341.49378
                                           435.44690
                                                                   393.18952
## 16
        437.93835
                    367.95924
                                444.10584
                                                       485.82816
                                           525.06476
                                                                   560.73256
## 17
        593.84426
                    524.22228
                                590.87139
                                           656.25757
                                                       589.65074
                                                                   646.24608
## 18
        742.60420
                    673.12777
                                735.57257
                                           791.89898
                                                       710.19293
                                                                   753.27551
## 19
        885.30277
                               876.18548
                                           926.73729
                                                       835.97488
                    815.88296
                                                                   869.40094
## 20
       1041.44371
                    972.26385 1030.40235 1075.16231
                                                       977.67172 1002.09281
## 21
       1000.66628
                    932.72343
                                980.30352 1016.51168
                                                       910.56795
                                                                   929.66230
## 22
        968.07025
                    901.35343
                                941.28104
                                           971.20595
                                                       859.96919
                                                                   875.28338
## 23
       1017.21827
                    950.99579
                               987.79502 1013.58374
                                                       898.51767
                                                                   909.11385
## 24
        693.45368
                    648.32245
                                613.69699
                                           580.30595
                                                       433.95507
                                                                   412.02306
## 25
        793.75689
                    747.08366
                               715.46069
                                           680.25510
                                                       532.10243
                                                                   501.24146
```

dist.mat <- dist(meuse.small %>% select(x,y))

Choose grid for distance calculations

```
cutoff <- max(dist.mat) / 3 # default maximum distance
num.bins <- 15
bin.width <- cutoff / 15</pre>
```

Calculate empirical semivariogram

```
## # A tibble: 15 x 2
##
        bin emp.sv
##
      <dbl>
              <dbl>
##
   1
           1
               236.
               347.
               348.
               488.
               499.
               577.
               553.
               623.
               600.
           9
               665.
         10
         11
               603.
## 12
               673.
               557.
## 13
         13
## 14
               643.
## 15
               574.
         15
```

Plot empirical semivariogram

Variogram Fitting

Now given this empirical semivariogram, how to we choose a semivariogram (and associated covariance structure) and estimate the parameters in that function??

Variogram Fitting, cont...

- Empirical semivariograms can be computed and plotted, but they are subject to researcher choice: such as bin width and the number of points to display.
- The "data points" here is really a function of the observed random variable, but do not have an associated likelihood.
- Variogram fitting is very much an art and not a science.
- Eventually maximum likelihood or Bayesian methods will be used to estimate parameters in the covariance model directly.

Exploratory Data Analysis

EDA Overview

- Exploratory Data Analysis (EDA) is commonly used to explore and visualize data sets.
- EDA is not a formal analysis, but can inform modeling decisions.
- What are we interested in learning about with spatial data?

Data Decomposition: Time Series

• In time series analysis, the first step in the EDA process was to decompose the observed data into a trend, seasonal cycles, and a random component.

Data Decomposition: Spatial Data

- Similarly spatial data will be decomposed into the mean surface and the error surface.
- For example, elevation and distance from major bodies of water would be part of the mean surface for temperature.
- The mean surface is focused on the global, or first-order, behavior.
- The error surface captures local fluctuations, or second-order, behavior.

Response Surface vs. Spatial Surface

- Spatial structure in the response surface and spatial structure in the error surface are not one-and-the-same.
- $E[(Y(s) \mu)(Y(s') \mu)]$ vs. $E[(Y(s) \mu(s))(Y(s') \mu(s))]$
- There are stationarity implications for considering the residual surface.
- Data sets contain two general types of useful information: spatial coordinates and covariates.
- Regression models will be used to build the mean surface.

Spatial EDA Overview

- 1. Map of locations
- 2. Histrogram or other distributional figure
- 3. 3D scatterplot
- 4. General Regression EDA
- 5. Variograms and variogram clouds
- 6. Anistopic diagnostics

Scallops Data Example

1. Map of Locations

Leaflet

27/55

1. Map of Locations - Takeaways

Goal: Understand the sampling approach

- Is this a grid?
- Are there directions that have larger distances?
- How large is the spatial extent?

2. Histogram

2. Histogram

2. Histogram - Takeaways

Goal: Identify a sampling distribution for the data

- Continuous or discrete data
- A linear model approach will be used for the response
- Spatial structure can also be included in generalized linear models
- Outliers are worth investigating, but a data point that does not fit the assumed model should not automatically be eliminated

3. 3D scatterplot

3. 3D scatterplot

3. 3D scatterplot - Takeaways

Goal: Examine the spatial pattern of the response

- Again, this is the response not the residual
- Can also think about a contour plot (using some interpolation method)

4. General Regression EDA

- Assessing relationship between variable of interest and covariate information
- No covariates are present in the scallops data

5. Variograms and variogram clouds: Exercise

Explore the code below: what are the differences in the three variograms?

```
coordinates(scallop) = ~longitude+latitude
class(scallop)
scallop.sp <- scallop
proj4string(scallop.sp) <- CRS("+proj=longlat +datum=WGS84") ## for example
scallop.utm <- spTransform(scallop.sp, CRS("+proj=utm +zone=18 ellps=WGS84"))

plot(variogram(log.catch~1, scallop))
plot(variogram(log.catch~1, scallop.sp))
plot(variogram(log.catch~1, scallop.utm))</pre>
```

5. Variograms

5. Variogram Cloud

5. Variograms and variogram clouds: Takeaways

Goal: Visually diagnose spatial structure

6. Anisotropy

Goal: Determine if direction influencs spatial structure

Anisotropy

Directional Variogram

• All of the variograms we have looked at are isotropic

Separable Correlations Functions

- If the differences in spatial structure are directly related to two coordinate sets, we can create a stationary, anistropic covariance function
- Let $cor(Y(s + h), Y(s)) = \rho_1(h_y)\rho_2(h_x)$, where $\rho_1()$ and $\rho_2()$ are proper correlation functions.
- A scaling factor, σ^2 , can be used to create covariance.

Geometric Anistropy

• Another solution is the class of geometric anisotropic covariance functions with

$$C(s - s') = \sigma^2 \rho((s - s')^T B(s - s')),$$

where B is positive definite matrix and ρ is a valid correlation function

• *B* is often referred to as a transformation matrix which rotates and scales the coordinates, such that the resulting transformation can be simplified to a distance.

51/55

Sill, Nugget, and Range Anisotropy

- Recall the sill is defined as $\lim_{d\to\infty} \gamma(d)$
- Let h be an arbitrary separation vector, that can be normalized as $\frac{h}{||h||}$
- If $\lim_{a\to\infty} \gamma(a \times \frac{h}{||h||})$ depends on h, this is referred to as sill anisotropy.
- Similarly the nugget and range can depend on *h* and give nugget anisotropy and range anisotropy

Model Fitting

Simulating Spatial Process

- Soon we will look at fitting models for spatial point data
- Simulating data gives a deeper understanding of the model fitting process
- Simulate a mean-zero, isotropic spatial process with a spherical covariance function

Additional Resources

- Meuse Data Tutorial
- Textbook Data Sets