9. Pokazac, ze jesli \overline{A} jest zbiorem liczb porzadkowych, to $\bigcup A$ jest najmniejsza liczba porzadkowa, ktora jest wieksza lub rowna od wszystkich elementow zbioru A.

Niech A bedzie zbiorem liczb porzadkowych. Po pierwsze, musimy pokazac, ze $ON(\bigcup A)$.

1. Tran(| | A)

Ustalamy dowolne $x \in \bigcup A$, to wtedy istnieje $\alpha \in A$ takie, ze $x \in \alpha$. Z $Tran(\alpha)$ mamy, ze $x \subseteq \alpha \subseteq \bigcup A$, czyli $Tran(\bigcup A)$.

2. Lin([]A)

Bierzemy dwa elementy $x,y\in\bigcup A$ i z definicji istnieja $\alpha,\beta\in A$ takie, ze $x\in\alpha$ oraz $y\in\beta$ z twierdzenia z wykldu zachodzi On(x) i On(y) (czyli el liczb porz sa licz porz). Z twierdznia 3 mamy $x\in y$ lub $y\in x$ i to jest dokladnie to, co chcelismy, czyli $Lin(\bigcup A)$.

Stad $On(\bigcup A)$.

Teraz pokazujemy, ez $\bigcup A$ jest ograniczeniem gornym.

Ustalmy $\alpha \in A$, wtedy $\alpha = \bigcup A$ lub $\alpha \neq \bigcup A$. Z twierdzenia 2 z wykladu mamy $\alpha \in \bigcup A$ i smiga.

Teraz pokazujemy, ze jest to najmniejsze ograniczenie gorne.

Ustalamy dowolna liczbe prozadkowa σ taka, ze

$$\forall \alpha \in A \quad \alpha \in \sigma \lor \alpha = \sigma$$

Z tw 2 mamy $\bigcup A \in \sigma$ i smiga, luub $\bigcup A = \sigma$, co tez smiga, a trzeca opcja to $\sigma \in \bigcup A$, czyli stad $\alpha \in A$ takiee, ze $\sigma \in \alpha$, stad $\sigma \neq \alpha$. Z tego, ze σ to ograniczenie gorne mamy to, ze $\alpha \in \sigma$, czyli $\sigma \in \alpha \in \sigma$ i mamy w trzeciej opcji sprzecznosc.

12. Pokazac, ze $On(\omega)$

Z poprzedniego mamy, ze $\operatorname{Tran}(\omega)$.

Niech $A = \{ \alpha \in \omega : On(\alpha) \}.$

- 1. $\emptyset \in A$, bo $On(\alpha)$ i $\emptyset \in \omega$
- 2. $x \in A \implies x \cup \{x\} \in A$. Ustalmy dowolne $\alpha \in A$ Z induktywnosci ω mamy, ze $\alpha \cup \{\alpha\} \in \omega$ i z zadanka 8 mamy $On(\alpha \cup \{\alpha\})$, a to jest $\alpha \cup \{\alpha\} \in A$. Stad A jest induktywny, zatem z minimalnosci ω zachodzi $\omega \subseteq \alpha$, wiec $\omega = A$. Z zadanka 11 mamy $On(\omega)$.

Witold Wilkosz - zbior liczb naturalnych jest to niepusty zbior dobrze uporzadkowany spelniajacy warunki:

- 1. W kazdym niepustym ograniczonym podzbiorze $\mathbb N$ istnieje element najwiekszy
- 2. W N nie istnieje element najwiekszy

.....