Introduction to Probability and Statistics

Jerome Dumortier

29 September 2021

Uncertainty, Probability, and Statistics in Everyday Life

Grades:

- Uncertainty surrounding class grade during a semester
- ► Association of probabilities with each grade

Fire station calls:

- Number and location of calls
- Number of fire trucks and other vehicles required

Two outcomes does not mean a 50% chance for each to happen:

- Success of a free throw by Stephen Curry
- Flight delay due to fog

Netflix:

- ▶ Recording of all activities, e.g., browsing, pausing, rewinding
- ▶ 75% of viewings are based on recommendations by Netflix
- ▶ Do You Know When You Were Hooked? Netflix Does

Some Examples of Statistics in the News I

Election outcomes

- ▶ 2016 U.S. Presidential Election
 - FiveThirtyEight 2016 Election Forecast (chance of winning): Donald J. Trump 28.6%
 - One explanation for the surprising result
- 2002 French Presidential Election
 - ► Two-stage election
 - Final round: Jacques Chirac (82.2%) and Jean-Marie Le Pen (17.8%)

Some Examples of Statistics in the News II

Evolution of the stock market

▶ Importance of correlation among stocks and mutual funds

Path of a hurricane:

- Sandy (National Weather Service NWS)
- Sandy (National Oceanic and Atmospheric Administration NOAA)

Probability, Statistics, and Regression Analysis

Probability:

- Providing means for modeling populations, experiments, and any other random phenomena
- Probability distributions: How do we model random outcomes?
- Foundation for statistics

Statistics:

- Learning something about the population based on a sample
- Confidence intervals and hypothesis testing

Regression analysis with R:

- Mathematical relationship among variables
- Example: Price of a used car as a function of mileage and cylinders

Difference between probability and statistics: Bucket example

Difference between Population and Statistic

Population:

▶ A population is the collection of all possible individuals, entities, objects, or measurements of interest for a particular investigation. A sample is any portion or subset of the population. A parameter characterizes the population and is usually unknown (forever).

Sample:

A statistic is any measurable characteristic of a sample. Statistical analysis utilizes statistics from representative samples to infer the parameters of an entire population.

Using a sample rather than the population:

- Cost considerations
- ▶ Possible destruction of observation units (e.g., mileage of tires)
- Unfeasible to study all units of observations

Variables

Qualitative variables:

- Non-numeric, e.g., gender, political affiliation, state of residence
- ► Can be transformed into numerical value, i.e., "dummy variables" in regression analysis

Quantitative variables:

Numeric, e.g, age, income, GPA, number of kids

Quantitative variables can be either:

- ▶ Discrete: Take two close values and there is no value in between, e.g., number of people in a class
- ► Continuous: Take two close values and there is always (!) a value in between, e.g., weight of a people

Levels of Variable Measurements

Nominal:

- Categories, e.g., eye color, gender, religious affiliation, mode of transportation to O'Neill IUPUI
- No natural ordering

Ordinal:

- Categories, e.g., level of happiness, Homeland Security Advisory System
- Natural ordering, i.e., data can be ordered

Interval:

- Intervals between levels are equally spaces and differences between variables have a meaning
- Examples: Income, GPA, etc.
- Most commonly used in this class.