UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 2018/2Prova da área I

1-6	7	8	Total

Nome:	Cartão:	

 ${\bf Regras\ Gerais:}$

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$ec{ abla} imes\left(ec{F}+ec{G} ight)=ec{ abla} imesec{F}+ec{ abla} imesec{G}$
4.	$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{ abla} imes \left(f \vec{F} ight) = \vec{ abla} f imes \vec{F} + f \vec{ abla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$ec{ abla}\cdot\left(ec{ abla} imesec{F} ight)=0$
10.	$\vec{\nabla} \times \left(\vec{\nabla} \times \vec{F} \right) = \vec{\nabla} \left(\vec{\nabla} \cdot \vec{F} \right) - \vec{\nabla}^2 \vec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$ \vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right) $
14.	$\vec{\nabla} f(r) = f'(r)\hat{r}, \vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$

Curvatura, torção e aceleração:

	o e aceleração.
Nome	Definição
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}''(t)\ ^3}$
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$
Módulo da torção	$ au = \left\ \frac{d\vec{B}}{ds} \right\ = \left\ \frac{d\vec{B}}{\frac{ds}{dt}} \right\ $
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa \vec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+\tau\vec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

$$x(t) = t\cos(t), \quad y(t) = t\sin(t), \quad z(t) = 0, \quad -t \ge 0$$

Pode-se afirmar que o vetor tangente unitário e a curvatura em $t=\frac{\pi}{2}$ são respectivamente:

Vetor \vec{T} :

Curvatura $\kappa :$

$$(\)\ \frac{\pi\vec{i}+2\vec{j}}{\sqrt{4+\pi^2}}$$

$$(\)\ \frac{16+2\pi^2}{(4+\pi^2)^{3/2}}$$

$$(\quad)\quad \frac{-\pi\vec{i}+2\vec{j}}{\sqrt{4+\pi^2}}$$

()
$$\frac{8+\pi^2}{(4+\pi^2)^{3/2}}$$

$$(\)\ \frac{\pi\vec{i}-2\vec{j}}{\sqrt{4+\pi^2}}$$

$$(\)\ \frac{8+2\pi^2}{(4+\pi^2)^{3/2}}$$

$$(\)\ \frac{-\pi \vec{i} - 2\vec{j}}{\sqrt{4 + \pi^2}}$$

$$(\)\ \frac{4+\pi^2}{(4+\pi^2)^{3/2}}$$

$$() \frac{2\vec{i} + \pi \vec{j}}{\sqrt{4 + \pi^2}}$$

$$(\)\ \frac{4+2\pi^2}{(4+\pi^2)^{3/2}}$$

$$\begin{array}{c} () \ \frac{-2\vec{i}+\pi\vec{j}}{\sqrt{4+\pi^2}} \\ \text{Primeiro calculamos:} \end{array}$$

$$(\)\ \frac{2+\pi^2}{(4+\pi^2)^{3/2}}$$

$$\vec{r}(t) = t\cos(t)\vec{i} + t\sin(t)\vec{j}$$

$$\vec{r}'(t) = (\cos(t) - t \sin(t)) \vec{i} + (\sin(t) + t \cos(t)) \vec{j}$$

$$\vec{r}''(t) = (-2\operatorname{sen}(t) - t\cos(t))\vec{i} + (2\cos(t) - t\operatorname{sen}(t))\vec{j}$$

Assim, em $t = \frac{\pi}{2}$:

$$\vec{r}' = -\frac{\pi}{2}\vec{i} + \vec{j}$$

$$\vec{r}'' = -2\vec{i} - \frac{\pi}{2}\vec{j}$$

$$\vec{r}^{\prime\prime} = -2\vec{i} - \frac{\pi}{2}\vec{j}$$

Portanto:

$$\|\vec{r}'\| = \frac{1}{2}\sqrt{\pi^2 + 4}$$

$$\vec{r}' imes \vec{r}'' = \left(\frac{\pi^2}{4} + 2\right) \vec{k}$$

$$\|\vec{r}' \times \vec{r}''\| = \frac{\pi^2}{4} + 2$$

E, finalmente:

$$\vec{T} = \frac{\vec{r}''(t)}{\|\vec{r}''(t)\|} = \frac{-\pi \vec{i} + 2\vec{j}}{\pi^2 + 4}$$

$$\kappa = \frac{\|\vec{r}' \times \vec{r}\|}{\|\vec{r}''(t)\|^3} = \frac{\frac{\pi^2}{4} + 2}{\left(\frac{\pi^2}{4} + 2\right)^{3/2}} = \frac{2\pi^2 + 16}{\left(\pi^2 + 8\right)^{3/2}}$$

• Questão 2 (1.0 ponto) Em um determinado instante, a posição, velocidade e aceleração de uma partícula são dadas por:

$$\vec{r}(t) = \vec{i} - 2\vec{j} + \vec{k}, \quad \vec{v}(t) = 3\vec{i} + 4\vec{k}, \quad \vec{a}(t) = 5\vec{i} + 2\vec{j}$$

Pode-se afirmar que a aceleração tangencial e o vetor normal unitário no dado instante são, respectivamente:

Aceleração tangencial:

() $\frac{\sqrt{5}}{25} \left[8\vec{i} + 5\vec{j} + 6\vec{k} \right]$ () 0 () 1 () $\frac{\sqrt{5}}{25} \left[8\vec{i} + 5\vec{j} - 6\vec{k} \right]$ () 2 () 3 () $\frac{\sqrt{5}}{25} \left[-5\vec{i} + 8\vec{j} + 6\vec{k} \right]$ () 4

() 5 () $\frac{\sqrt{5}}{25} \left[5\vec{i} + 8\vec{j} - 6\vec{k} \right]$

() $\frac{\sqrt{5}}{25} \left[-6\vec{i} + 5\vec{j} + 8\vec{k} \right]$

 $(\)\ \frac{\sqrt{5}}{25}\left[6\vec{i}+5\vec{j}-8\vec{k}\right]$ Primeiramente, usamos a fórmula para obter a aceleração tangencial:

$$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{15}{\sqrt{3^2 + 4^2}} = 3$$

Agora basta isolar \vec{N} na expressão:

$$\vec{a} = a_T \vec{T} + a_N \vec{N}$$

onde

$$\vec{T} = \frac{\vec{v}}{v} = \frac{3\vec{i} + 4\vec{k}}{5}$$

Assim

$$\begin{array}{lcl} a_N \vec{N} & = & \vec{a} - a_T \vec{T} = 5\vec{i} + 2\vec{j} - 3\left(\frac{3\vec{i} + 4\vec{k}}{5}\right) \\ & = & \frac{16}{5}\vec{i} + 2\vec{j} - \frac{12}{5}\vec{i} \\ & = & \frac{2}{5}\left(8\vec{i} + 5\vec{j} - 6\vec{i}\right) \end{array}$$

Finalmente:

$$\vec{N} = \frac{8\vec{i} + 5\vec{j} - 6\vec{i}}{\sqrt{8^2 + 5^2 + 6^2}} = \frac{\sqrt{5}}{25} \left[8\vec{i} + 5\vec{j} - 6\vec{k} \right]$$

• Questão 3 (1.0 ponto) Considere o campo radial $\vec{F} = r^n \hat{r}$, $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$, $n \ge 0$. Seja C a circunferência de raio a no plano xy centrada na origem e orientada no sentido horário e S a esfera centrada na origem de raio a > 0 orientada para fora. Assinale a alternativa que indica $W := \oint_C \vec{F} \cdot d\vec{r}$ e $\Phi := \oiint_C \vec{F} \cdot d\vec{S}$.

Circulação W:

Fluxo Φ :

- $(\)\ -2\pi a^{n+2}$
- () $4\pi a^{n+1}$
- $(\)\ -2\pi a^{n+1}$
- () $4\pi a^{n+2}$
- () $2\pi a^{n+2}$
- () $4\pi a^{n+3}$
- () $2\pi a^{n+1}$
- () $4\pi a^{n+1}/3$
- () $4\pi a^{n+2}/3$

() 0

() $4\pi a^{n+3}/3$ Como todo campo radial é conservativo e C é fechado, W=0. Calculemos Φ :

$$\Phi = \iint_C \vec{F} \cdot d\vec{S}$$

$$\Phi = \oint_C r^n dS$$

$$\Phi = \iint_{\mathbb{R}} a^n dS$$

$$\Phi = a^n \oiint dS$$

$$\Phi = \iint_C a^n dS$$

$$\Phi = a^n \iint_C dS$$

$$\Phi = a^n (4\pi a^2) = 4\pi a^{n+2}$$

• Questão 4 (1.0 ponto) Considere a superfície dada por

$$z = f(x, y) = \cos(x^2 + 2y^2), \quad \sqrt{x^2 + 2y^2} \le \sqrt{\frac{\pi}{2}}$$

Assinale a alternativa que indica as curvas de nível da função f(x,y) e o vetor normal unitário à <u>superfície</u> no ponto $x=\frac{\sqrt{\pi}}{2}$ e y=0 orientado para fora da concavidade.

As curvas de nível são:

() Elipses de semieixos distintos

() Parábolas

() Hipérboles

() Nenhuma das anteriores

Vetor normal:

()
$$\frac{\sqrt{2\pi}\,\vec{i} + 2\vec{k}}{\sqrt{4 + 2\pi}}$$
()
$$\frac{\sqrt{2\pi}\,\vec{j} + 2\vec{k}}{\sqrt{4 + 2\pi}}$$

$$() \frac{\sqrt{2\pi}\,\vec{j} + 2\vec{k}}{\sqrt{4 + 2\pi}}$$

()
$$\frac{-\sqrt{2\pi}\,\vec{i} + 2\vec{k}}{\sqrt{4 + 2\pi}}$$

$$(\)\ \frac{-\sqrt{2\pi}\,\vec{j} + 2\vec{k}}{\sqrt{4 + 2\pi}}$$

As curvas de nível são elipses. Defina a função auxiliar

$$G(x, y, z) = z - \cos(x^2 + 2y^2)$$

Assim

$$\vec{\nabla}G = 2x \operatorname{sen}(x^2 + 2y^2)\vec{i} + 4y \operatorname{sen}(x^2 + 2y^2)\vec{j} + \vec{k}$$

No ponto $x = \frac{\sqrt{\pi}}{2}$ e y = 0, temos:

$$\vec{\nabla}G=2\frac{\sqrt{\pi}}{2}\frac{\sqrt{2}}{2}\vec{i}+\vec{k}$$

Como o vetor normal tem componente z positiva, ele é dado por:

$$\vec{n} = \frac{\vec{\nabla}G}{\|\vec{\nabla}G\|} = \frac{\sqrt{2\pi}\,\vec{i} + 2\vec{k}}{\sqrt{4 + 2\pi}}$$

• Questão 5 (1.0 ponto) Considere o campo $\vec{F} = \vec{\nabla} (x^2 + y + yz^3 + xy(1-z) + 5)$ e os caminhos C_1 e C_2 parametrizados

$$C_1: \vec{r}(t) = t^2 \vec{i} + (1+t) \vec{j} + t^5 \vec{k}, \quad 0 \le t \le 1.$$

 $C_2: \vec{r}(t) = \cos(t) \vec{j} + \sin(t) \vec{k}, \quad 0 \le t \le 2\pi.$

Assinale a alternativa que indica o valor das integrais de linha de $W_1 = \int_{C_1} \vec{F} \cdot d\vec{r}$ e $W_2 = \int_{C_2} \vec{F} \cdot d\vec{r}$.

W_1 :	W_2 :
() 2	() 0
$(\)\ \frac{3}{2}$	$(\)\ -\pi$
() 1	$(\)\ -\frac{3\pi}{2}$
$(\) \frac{1}{2}$	$(\)\ -2\pi$
2	$(\)\ -\frac{5\pi}{2}$

$$W_1 = 10 - 6 = 4$$

O caminho C_2 é fechado, então a circulação é nula.

• Questão 6 (1.0 ponto) Considere o campo $\vec{F}(x,y,z) = f(x,y)\vec{i}$ esboçado na figura ao lado e os caminhos C_1 , C_2 e C_3 . C_1 é a reta que começa no ponto (-3, -3, 0) e terminam no ponto (3, 3, 0). O círculo C_2 está no no plano xy centrado na origem e é orientado no sentido anti-horário. C_3 é uma elipse no plano xy orientada no sentido

anti-horário. Defina $W_1 = \int_{C_1} \vec{F} \cdot d\vec{r}, W_2 = \oint_{C_2} \vec{F} \cdot d\vec{r} \text{ e } W_3 = \oint_{C_3} \vec{F} \cdot d\vec{r}.$ Assinale as alternativas corretas: $(\mathbf{x}) \ W_3 < 0 = W_2 < W_1 \qquad () \ \vec{\nabla} \cdot \vec{F} < 0 \text{ em } (2,2).$

$$(x) W_3 < 0 = W_2 < W_1$$

()
$$W_1 < 0 = W_2 < W_3$$

$$() 0 = W_1 < W_2 = W_3$$

$$() W_1 < W_2 = W_3 = 0$$

()
$$W_1 < W_2 < W_3 < 0$$

- (x) $\vec{\nabla} \cdot \vec{F} \ge 0$ em todos os pontos.
- () $\vec{\nabla} \times \vec{F} \neq \vec{0}$ em alguns pontos, mas $\oint_C \vec{F} \cdot$ $d\vec{r} = 0$ para todo caminho fechado.
- () $\vec{k} \cdot \vec{\nabla} \times \vec{F} = 0$ em todos pontos.
- $(\quad) \ \, \vec{j}\cdot\vec{\nabla}\times\vec{F}>0 \ \, {\rm em} \ \, (2,2).$

• Questão 7 (2.0 ponto) Considere o campo $\vec{F} = -z\vec{i} + x\vec{j} + x\vec{k}$ e a superfície circular S no plano xy orientada no sentido z positivo e limitada pelo caminho circuferência C de raio uniferio centrada na origem e orientada no sentido anti-horário.

Calcule o valor da integral de linha de $W=\int_C \vec{F}\cdot d\vec{r}$ e de superfície $\Phi=\iint_S \vec{F}\cdot d\vec{S}$. Primeiro, calculamos W. Primeira opção - via parametriazação direta:

Parametrizamos o caminho como:

$$\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j}, \quad 0 \le t \le 2\pi,$$

$$\vec{r}'(t) = -\sin(t)\vec{i} + \cos(t)\vec{j}$$

Assim

$$W = \oint \vec{F} \cdot d\vec{r} = \int_0^{2\pi} \vec{F} \cdot \vec{r}'(t)dt$$
$$= \int_0^{2\pi} (z \sin(t) + x \cos(t)) dt$$
$$= \int_0^{2\pi} \cos^2(t) dt = \int_0^{2\pi} \left(\frac{1 + \cos(2t)}{2}\right) = \pi$$

Segunda opção - via teorema de Stokes:

$$W \quad = \quad \oint \vec{F} \cdot d\vec{r} = \iint_S \vec{\nabla} \times \vec{F} \cdot \vec{k} dS$$

$$\iint_S dS = \pi$$

Agora calculamos Φ :

$$\begin{split} \Phi &=& \iint_S \vec{F} \cdot \vec{k} dS \\ &=& \iint_S x dS = \int_0^1 \int_0^{2\pi} \rho^2 \cos(\theta) d\theta d\rho = 0 \end{split}$$

• Questão 8 (2.0 pontos) Considere a superfície fechada orientada para fora composta por

$$x^2 + y^2 + z^2 = 1, x \ge 0$$

е

$$y^2 + z^2 \le 1, x = 0.$$

Seja o campo vetorial dado por $\vec{F} = \vec{\nabla} \left(x^3 + z + yz + 1 \right)$. Calcule o valor do fluxo

$$\iint \vec{F} \cdot d\vec{S}$$

$$\begin{split} \Phi &= \iint_S \vec{\nabla} \cdot \vec{F} dV \\ &= \iint_S 6x dV \\ &= 6 \int_{-\pi/2}^{\pi/2} \int_0^{\pi} \int_0^1 x r^2 \sin \varphi dr d\varphi d\theta \\ &= 6 \int_{-\pi/2}^{\pi/2} \int_0^{\pi} \int_0^1 r^3 \sin^2 \varphi \cos(\theta) dr d\varphi d\theta \\ &= 6 \left(\int_{-\pi/2}^{\pi/2} \cos(\theta) d\theta \right) \left(\int_0^{\pi} \sin^2 \varphi d\varphi \right) \left(\int_0^1 r^3 d\varphi \right) \\ &= 6 \cdot 2 \cdot \frac{\pi}{2} \cdot \frac{1}{4} = \frac{3\pi}{2} \end{split}$$

onde usamos:

$$\vec{\nabla} \cdot \vec{F} = \nabla^2 \left(x^3 + z + yz + 1 \right) = 6x$$