

FIG. 1 (PG 1 OF 2)

BOVINE RAG2 SEQUENCE

```
>
   773 ATGTCACT ACAGATGGTA ACAGTCGGAA
   801 ATAGCATAGC CTTAATTCAA CCAGGCTTCT CGTTAATGAA
 TTTTGATGGG
   851 CAAGTTTTCT TCTTTGGCCA AAAAGGCTGG CCCAAGAGGT
 CTTGCCCCAC
   901 TGGAGTTTTC CATTTTGAGG TAAAGCATAA TCATCTTAAA
CTGAAGCCTG
   951 CAGTTTTCTC TAAGGATTCC TGCTACCTTC CTCCTCTTCG ATACCGGGC
> 1001 CACTTGCACA TTCAGCGGCC AACTTGGAGT CTGAAAAGCA
TCAGTACATC
> 1051 ATCCATGGAG GAAAAACACC AAACAATGAG CTTTCAGATA
AGATTTATGT
> 1101 GATGTCTGTT GTTTCCAAGA ACAACAAAAA AGTTACCTTT
CGCTGCACAG
> 1151 AGAAGGACTT GGTAGGAGAC ATTCCTGAAG GCAGATATGG
> 1201 GATGTGGTGT ATAGTCGGGG GAAAAGTATG GGTGTTCTCT
TTGGAGGACG
> 1251 GTCATACATA CCTTCTGCCC AAAGAACCAC AGAGAAATGG
AACAGTGTAG
> 1301 CTGACTGCCT GCCCCATGTC TTCTTGGTGG ATTTTGAATT
TGGGTGCTCT
> 1351 ACGTCATACA TTCTTCCAGA ACTTCAAGAT GGACTATCTT
TTCATGTCTC
> 1401 CATTGCCAGA AATGATACCG TTTATATTTT AGGAGGCCAT
TCACTTGCCA
> 1451 ATAACATCCG CCCTGCCAAT CTGTACAGAA TAAGGGTTGA
TCTCCCCCTG
```


FIG. 1 (PG 2 OF 2)

BOVINE RAG2 SEQUENCE

 1501 GGTAGCCCAG CTGTGGAGTG CACAGTCTTG CCAGGAGGA. TCTCTGTCTC
> > 1551 CAGTGCAATC CTGACTCAAA TAAGCAATGA TGAATTTGTT ATTGTTGGTG
> > 1601 GCTATCAGCT TGAAAATCAA AAAAGAATGG TCTGTAACAT CATCTCTTTC
> > 1651 AAGTATAACA AGATAGACAT TCTTGAGATG GAAACCCCA(ATTGGACCCC
> > 1701 AGATATTAAG CACAGCAAGA TATGGTTTGG AAGCAACAT(GGAAATGGAA
> > 1751 CTGTTTTCCT CGGCATACCA GGAGACAATA AACAGGCTGT ITCAGAAGCA
> 1801 TTTTACTTCT ATACATTGAA ATGTGCTGAA GACGATGTGA ACGAAGATCA
> > 1851 GATAACTTTG ACAAGTAGTC AGACATCAAC AGAAGACCCA GGGGACTCCA
> - 1901 CTCCCTTTGA AGACTCAGAA GAATTTTGCT TCAGCGCAGA AGCAAACAGT
· · 1951 TTCGATGGTG ATGATGAATT TGACACCTAC AATGAAGATG ATGAGGAAGA
2001 TGAGTCTGAG ACAGGCTATT GGATTACATG CTGCCCTACT GTGATGTGG (1800 244 4)
2051 ATATCAATAC GTGGGTACCA TTTTATTCAA CTGAGCTCAA
2101 ATGATCTATT GCTCTCATGG AGATGGACAT TGGGTCCATG
2151 GGATCTGGCA GAACGCACCA CCTCATCCAT CTATCAGAAG
2201 ATATTAYTGT AACGAGCATG TGGAGATAG

Bovine 5' and 3' flanking (FL) sequences are blue; RAG-2 coding region is green & the interrupting neomycin gene is red. Note that the transcriptional orientation of the NEO gene is opposite to that of the RAG-2 gene.

2002 8 1 930 A THE TOTAL OF THE

transmembrane domain exons, were deleted and replaced with the loxP-flanked neomycir The 4.5 Kb region containing the exons encoding the Mu constant region and associated resistance cassette (Not I fragment)

