Mathematics 327

Gram-Schmidt orthogonalization

1. Suppose that V is a three-dimensional subspace of \mathbb{R}^4 with basis:

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 1\\3\\2\\2 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} 1\\-3\\-3\\-3 \end{bmatrix}.$$

We would like to create an orthogonal basis \mathbf{w}_1 , \mathbf{w}_2 , and \mathbf{w}_3 for V.

Notice that the basis v_1 , v_2 , v_3 is not an orthogonal basis by computing $v_1 \cdot v_2$.

To begin forming a new basis, simply define $w_1 = v_1$. Now find the vector z_2 that is the orthogonal projection of v_2 onto the line defined by w_1 .

Form the vector $\mathbf{w}_2 = \mathbf{v}_2 - \mathbf{z}_2$ and verify that it is orthogonal to \mathbf{w}_1 .

Explain why any linear combination of \mathbf{v}_1 and \mathbf{v}_2 is also a linear combination of \mathbf{w}_1 and \mathbf{w}_2 . Use this fact to explain why Span $\{\mathbf{w}_1, \mathbf{w}_2\} = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.

The vectors \mathbf{w}_1 and \mathbf{w}_2 are an orthogonal basis for a two-dimensional subspace W_2 of \mathbb{R}^4 . Find the vector \mathbf{z}_3 that is the orthogonal projection of \mathbf{v}_3 onto W_2 .

Verify that $\mathbf{w}_3 = \mathbf{v}_3 - \mathbf{z}_3$ is orthogonal to both \mathbf{w}_1 and \mathbf{w}_2 .

Explain why w_1 , w_2 , and w_3 form an orthogonal basis for V.

Use this orthogonal basis to find the orthogonal projection of $\mathbf{b} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 3 \end{bmatrix}$ onto V.

Find an orthonormal basis for *V*.

2. The vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 5 \end{bmatrix}$$

form a basis for a plane P in \mathbb{R}^3 .

Find an orthonormal basis for P.

Find the matrix $A = QQ^T$ that projects vectors orthogonally onto P.

Find the orthogonal projection of $\begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$ onto P.

Give a description of the orthogonal complement P^{\perp} .