

නැණ සයුර අධාාපනික වැඩසටහන උතුරු මැද පළාත් අධාාපන දෙපාතර්මේන්තුව සරසවි පිවිසුම් අත්වැල

13 ලේණිය

සංයුක්ත ගණිතය - l පතුය

කාලය - පැය 03 මිනිත්තු 10

උපදෙස් :

- * මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;
- * $m{A}$ කොටස (පුශ්න 1-10) සහ $m{B}$ කොටස (පුශ්න 11-17)
- * *A* කොටස :

සියලු ම පුශ්න වලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු , සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා චේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

st $oldsymbol{B}$ කොටස :

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) జంద్ర	ක්ත ගණිතය	- I
කොටස	පුශ්ත	ලකුණු
	අංකය	
A	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
В	11	
	12	
	13	
	14	
	15	
	16	
	17	
	එකතුව	
	පුතිශතය	

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරින්	

$\sum_{r=1}^{n} 2$								
••••••								
••••••								
••••••	••••••	•••••	••••••	•••••	•••••		•••••	
•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
	 + 1 සහ) rl + 1 >							
	 + 1 සහ ງ x + 1 >							
එමගින්		2 <i>x</i> – 1	අසමාන	තාව සපුං	රාලන <i>x</i> ි	3 සියලු තා	ත්වික අග	යන් මසාය
එමගින්	x + 1 >	2 x - 1	අසමාන	තාව සපුර	රාලන <i>x</i> සි	3 සියලු තා	ත්වික අග	යන් මසාය
එමගින්	x + 1 >	2 x - 1	අසමාන	තාව සපුර	රාලන <i>x</i> සි	3 සියලු තා	ත්වික අග	යන් මසාය
එමගින්	x + 1 >	2 x - 1	අසමාන	තාව සපුර	රාලන <i>x</i> සි	3 සියලු තා	ත්වික අග	යන් මසාය
එමගින්	x + 1 >	2 x - 1	අසමාන	තාව සපුර	රාලන <i>x</i> සි	3 සියලු තා	ත්වික අග	යන් මසාය
එමගින්	x + 1 >	2 x - 1	අසමාන	තාව සපුර	රාලන <i>x</i> හි	3 සියලු තා	ත්වික අග	යන් මසාය
එමගින්	x + 1 >	2 x - 1	අසමාන	තාව සපුර	රාලන <i>x</i> හි	3 සියලු තා	ත්වික අග	යන් මසාය
එමගින්	x + 1 >	2 x - 1	අසමාන	තාව සපුර	රාලන <i>x</i> හි	3 සියලු තා	ත්වික අග	යන් මසාය
එමගින්	x + 1 >	2 x - 1	අසමාන	තාව සපුර	රාලන <i>x</i> හි	3 සියලු තා	ත්වික අග	යන් මසාය
එමගින්	x + 1 >	2 x - 1	අසමාන	තාව සපුර	රාලන <i>x</i> හි	3 සියලු තා	ත්වික අග	යන් මසාය
එමගින්	x + 1 >	2 x - 1	අසමාන	තාව සපුර	රාලන <i>x</i> හි	3 සියලු තා	ත්වික අග	යන් මසාය
එමගින්	x + 1 >	2 x - 1	අසමාන	තාව සපුර	රාලන <i>x</i> හි	3 සියලු තා	ත්වික අග	යන් මසාය

		•••••••••	•••••	•••••	
		•••••			
	••••••	•••••••••	••••••	•••••	•••••
	•••••	•••••	•••••	•••••	•••••
		x^{r+1} , r^{r+2} అ	දවල සංගුණක	සමාන්තර ශුේ	ණීයක පිහිටයි නම්
	පුසාරණයේ x^r , ගයන් සොයන්න.	x^{r+1} , r^{r+2} అ	දවල සංගුණක	සමාන්තර ශේ්	ණීයක පිහිටයි නම්
		x^{r+1} , r^{r+2} అ	දවල සංගුණක	සමාන්තර ශුේ	ණියක පිහිටයි නම්
තිබිය හැකි අ	ගයත් සොයන්න.				
තිබිය හැකි අ	ගයත් සොයන්න.				ණීයක පිහිටයි නම්
තිබිය හැකි අ	ගයත් සොයන්න.				
තිබිය හැකි අ	ගයත් සොයන්න.				
තිබිය හැකි අ	ගයත් සොයන්න.				
තිබිය හැකි අ	ගයත් සොයන්න.				
තිබිය හැකි අ	ගයත් සොයන්න.				
තිබිය හැකි අ	ගයත් සොයන්න.				
තිබිය හැකි අ	ගයත් සොයන්න.				
තිබිය හැකි අ	ගයන් සොයන්න.				
තිබිය හැකි අ	ගයන් සොයන්න.				
තිබිය හැකි අ	ගයන් සොයන්න.				
තිබිය හැකි අ	ගයන් සොයන්න.				
තිබිය හැකි අ	ගයන් සොයන්න.				

5.	$lim_{x o \pi/4}$	$\frac{\cos(x+\frac{\tau}{2})}{\cos(x+\frac{\tau}{2})}$	<u>t</u>) හ අ	නය මසාය	ත්ත.				
		•••••							
•					•••••		••••••		
•									•••••
•			••••••	•••••••			••••••	••••••	•••••
ó.								heta $ heta$ යනු පරා $ heta$	
б.		$\theta=\pi/3$ 0	අනුරූප	ලක්ෂාගෙ	s් වූ අභිල ්	ණිසට S ව	කුය නැවත		
·	S වකුයට $ heta$	$\theta=\pi/3$ 0	අනුරූප	ලක්ෂාගෙ	s් වූ අභිල ්	ණිසට S ව	කුය නැවත		
ó.	S වකුයට $ heta$	$\theta=\pi/3$ 0	අනුරූප	ලක්ෂාගෙ	s් වූ අභිල ්	ණිසට S ව	කුය නැවත		
	S වකුයට $ heta$	$\theta=\pi/3$ 0	අනුරූප	ලක්ෂාගෙ	s් වූ අභිල ්	ණිසට S ව	කුය නැවත		
	S වකුයට $ heta$	ව = π/3ට හමු වේ. 1	අනුරූප 44 sec (ලක්ෂාගෙ $lpha = \sqrt{3}$ $lpha$	් වූ අභිල ් cosecα + 2	ම්භයට S ව	කුය නැවත ාන්වන්න.	$\theta = \alpha \circ \epsilon$	අනුශ
	S වකුයට <i>6</i> ලක්ෂායේ දී	ව = π/3ට හමු වේ. 1	අනුරූප 44 sec (ලක්ෂාගෙ $lpha = \sqrt{3}$ $lpha$	් වූ අභිල ් cosecα + 2	ම්භයට S ව	කුය නැවත ාන්වන්න.	$\theta = \alpha \circ \epsilon$	අනු(
	S වකුයට <i>6</i> ලක්ෂායේ දී	ව = π/3ට හමු වේ. 1	අනුරූප 44 sec (ලක්ෂාගෙ $lpha = \sqrt{3}$ $lpha$	් වූ අභිල ් cosecα + 2	ම්භයට S ව	කුය නැවත ාන්වන්න.	$\theta = \alpha \circ \epsilon$	අනුශ
	S වකුයට <i>6</i> ලක්ෂායේ දී	ව = π/3ට හමු වේ. 1	අනුරූප 44 sec (ලක්ෂාගෙ $lpha = \sqrt{3}$ $lpha$	් වූ අභිල ් cosecα + 2	ම්භයට S ව	කුය නැවත ාන්වන්න.	$\theta = \alpha \circ \epsilon$	අනුශ
	S වකුයට <i>6</i> ලක්ෂායේ දී	ව = π/3ට හමු වේ. 1	අනුරූප 44 sec (ලක්ෂාගෙ $lpha = \sqrt{3}$ $lpha$	් වූ අභිල ් cosecα + 2	ම්භයට S ව	කුය නැවත ාන්වන්න.	$\theta = \alpha \circ \epsilon$	අනුශ
	S වකුයට <i>6</i> ලක්ෂායේ දී	ව = π/3ට හමු වේ. 1	අනුරූප 44 sec (ලක්ෂාගෙ $lpha = \sqrt{3}$ $lpha$	් වූ අභිල ් cosecα + 2	ම්භයට S ව	කුය නැවත ාන්වන්න.	$\theta = \alpha \circ \epsilon$	අනුශ
	S වකුයට <i>6</i> ලක්ෂායේ දී	ව = π/3ට හමු වේ. 1	අනුරූප 44 sec (ලක්ෂාගෙ $lpha = \sqrt{3}$ $lpha$	් වූ අභිල ් cosecα + 2	ම්භයට S ව	කුය නැවත ාන්වන්න.	$\theta = \alpha \circ \epsilon$	අනුශ
	S වකුයට <i>6</i> ලක්ෂායේ දී	ව = π/3ට හමු වේ. 1	අනුරූප 44 sec (ලක්ෂාගෙ $lpha = \sqrt{3}$ $lpha$	් වූ අභිල ් cosecα + 2	ම්භයට S ව	කුය නැවත ාන්වන්න.	$\theta = \alpha \circ \epsilon$	අනුශ
	S වකුයට <i>6</i> ලක්ෂායේ දී	ව = π/3ට හමු වේ. 1	අනුරූප 44 sec (ලක්ෂාගෙ $lpha = \sqrt{3}$ $lpha$	් වූ අභිල ් cosecα + 2	ම්භයට S ව	කුය නැවත ාන්වන්න.	$\theta = \alpha \circ \epsilon$	අනුශ

අඳින්න. මෙහි	a>0 වේ. රේඛා දෙක හ	වකු දෙක මගින් පර්	යන්ත වර්ගඵලය සොය	න්න.
				•••••
	0 සරල රේඛාව තුළින් A :			
සරල රේඛාව	0 සරල රේඛාව තුළින් A \equiv තුලින් $B\equiv (-2,2)$ ලක්៖			
සරල රේඛාව				
සරල රේඛාව පෙන්වන්න.		ෳ නයේ පුතිබිම්භය ස©	වපාත වේ. $d=3$ ස	සහ μ
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්ෂ	ෳ නයේ පුතිබිම්භය ස©	වපාත වේ. $d=3$ ස	සහ μ :
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්ෂ	හෙ ගේ පුතිබිම්භය ස©	වපාත වේ. $d=3$ ි	සහ µ
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්ෂ	හෙ ගේ පුතිබිම්භය ස©	වපාත වේ. $d=3$ ි	සහ µ
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්ෂ	හෙ ගේ පුතිබිම්භය ස©	වපාත වේ. $d=3$ ද	සහ μ
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්ෂ	හෙ ගේ පුතිබිම්භය ස©	වපාත වේ. $d=3$ ද	සහ µ :
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්ෂ	හෙ ගේ පුතිබිම්භය ස©	වපාත වේ. $d=3$ ද	සහ µ
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්ෂ	හෙ ගේ පුතිබිම්භය ස©	වපාත වේ. $d=3$ ද	සහ μ
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්ෂ	හෙ ගේ පුතිබිම්භය ස©	වපාත වේ. $d=3$ ද	සහ μ
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්ෂ	හෙ ගේ පුතිබිම්භය ස©	වපාත වේ. $d=3$ ද	සහ μ
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්ෂ	හෙ ගේ පුතිබිම්භය ස©	වපාත වේ. $d=3$ ද	සහ µ
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්ෂ	හෙ ගේ පුතිබිම්භය ස©	වපාත වේ. $d=3$ ද	සහ µ
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්ෂ	හෙරේ පුතිබිම්භය ස ි	වපාත වේ. $d=3$ අ	æα μ
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්	හෙරේ පුතිබිම්භය ස ි	වපාත වේ. $d=3$ අ	නහ μ :
සරල රේඛාව පෙන්වන්න.	තුලින් <i>B</i> ≡ (−2,2) ලක්	හෙරේ පුතිබිම්භය ස ි	වපාත වේ. $d=3$ අ	æα μ

				-	. wo q y	— на т	12 000	රේඛාව S
වන පරිදි	වූ m හි අග	ාය මසායන	ත්න.					
5 <i>cos</i> θ +	 + 3cos (θ	$+\frac{\pi}{3}\Big)+3$	යන පුක	 ාශනය -4 ෑ	10 අත	ර පවතින	බව ලපප	 ත්වන්න.
5cos θ +	+ 3cos (θ	$+\frac{\pi}{3}$) + 3	යන පුක	ාශනය -4 ෑ	 සහ 10 අත	ර පවතින	බව ලපප	ත්වන්න.
5cos θ -	+ 3cos (θ	$+\frac{\pi}{3}$) + 3	යන පුක	ාශනය -4 ෑ	10 අත 	ර පවතින	බව මෙප	ත්වන්න.
5cos θ -	+ 3cos (θ	$+\frac{\pi}{3}$) + 3	යන පුක	ාශනය -4 ෑ	සහ 10 අත	ර පවතින	බව මපප	ත්වන්න.
5cos θ -	+ 3cos (θ	$+\frac{\pi}{3}$) + 3	යන පුක	ාශනය -4 ෑ	සහ 10 අත	ර පවතින	බව මෙප	ත්වන්න.
	+ 3cos (θ							

B කොටස

- 💠 පුශ්න පහකට පමණක් පිලිතුරු සපයන්න.
- 11. a) a සහ b තාත්වික හා නියත සංඛාහ වේ. $(x-a)^2+(x-b)^2=2$ වර්ගජ සමීකරණයේ මූල lpha හා eta ලෙස ගනිමු.
 - i) $(a\alpha + b\beta) + (b\beta + a\beta) = (a+b)^2$ බව පෙන්වන්න.
 - ii) a=1 සහ b=2 ලෙස ගෙන $(a\alpha+b\beta)$ හා $(b\alpha+a\beta)$ මූල වන වර්ගජ සමීකරණය $(x-p)^2+(x-q)^2=2$ ආකාරයෙන් පුකාශ කරන්න. මෙහි p සහ q නිර්ණය කළයුතු නියත වේ.
 - b) i) f(x) බහු පදය x-1 න් බෙදූ විට ශේෂය 2 වන අතර (x-2) න් බෙදු විට ශේෂය 3 වේ. f(x) යන්න (x-1) (x-2) න් බෙදූ විට ශේෂය සොයන්න.
 - ii) x^2-x+2 න් බෙදූ විට 5x-7 ක ශේෂයක් ද x^2+x-1 න් බෙදූ විට 12x-1 ක ශේෂයක් ද ලැබෙන පරිදි වූ x හි තුන්වන මාතුයේ බහු පදය සොයන්න.
- 12. a) ශී ලාංකිකයින් 7 දෙනෙකු ද චීන ජාතිකයින් 3 දෙනෙකු ද ඉන්දියානු ජාතිකයෙකු හා බුරුම ජාතිකයෙකු යන මොවුන් අතුරින් 6 දෙනෙකුගෙන් යුතු කාරක සභාවක් තෝරා ගත යුතුය.
 - i) ඉන්දියානු ජාතිකයා සෑම විටම ඇතුල්වන පරිදි
 - ii) පිටරට එක් ජාතීන්ගෙන් එක් අයෙකු පමණක් ඇතුල්වන පරිදි
 - iii) එක් පිට ජාතිකයෙකු පමණක් ඇතුල්වන පරිදි
 - iv) යටත් පිරිසෙයින් එක් පිට ජාතිකයෙකු ඇතුල්වන පරිදි, තෝරාගෙන පුභින්න ආකාර කොපමණ ද?
 - b) $r\in\mathbb{Z}^+$ සඳහා $Ur=rac{2^r}{2^{2r+1}-3.2^r+1}$ යැයි ගනිමු. $r\in\mathbb{Z}^+$ සඳහා Ur=f(r)-f(r+1) වන පරිදි f(r) සොයන්න. එමඟින් $\sum_{r=1}^n Ur=1-rac{1}{2^{n-2}-1}$ බව පෙන්වන්න. මෙම ශේණිය අභිසාරී වේ ද?

- 13. a) i) $A = \left(\frac{4}{2}, \frac{3}{5}\right)$ නම් $A^2 9A + 14I = 0$ බව පෙන්වා එමඟින් A^{-1} ලබා ගන්න.
 - ii) x + y 2 = 0 2x + y 3 = 0 සමගාමී සමීකරණ නාහය භාවිතයෙන් විසඳන්න.
 - b) i) $(1+4i)x+(1+2i)^2y+12=0$ සමීකරණය තෘප්ත කරන x හා y අගයන් සොයන්න. එනයින් x+iy සංකීර්ණ සංඛාහාවේ මාපාංකය සහ විස්තාරය සොයන්න.
 - අ) z=1+i ලෙස ගනිමු. z^3 හි මාපාංකය සහ විස්තාරය සොයන්න.
 - අා) ආගන්ඩ් සටහනේ 0 යනු මූල ලක්ෂායි. A ලක්ෂායෙන් z සංකීර්ණ සංඛාාවද B ලක්ෂායෙන් z^3 සංකීර්ණ සංඛාාවද පෙන්වයි. OABC සමාන්තරාසුයක් වන පරිදිC ලක්ෂායෙන් නිරූපනය වන සංකීර්ණ සංඛාාවේ මාපාංකය සහ විස්තාරය සොයන්න.
- 14. a) $x \neq 1,3$ සඳහා $f(x) = \frac{x^2}{(x-1)(x-3)}$ යැයි ගනිමු. ලක්ෂ නතිවර්ථන ලක්ෂ සහ ස්පර්ශෝන්මුඛ දක්වමින් y = f(x) හි දල සටහනක් අඳින්න. y = f(x) පුස්තාරය සැලකීමෙන් $x^2 = e^x(x-1)(x-3)$ සමීකරණයේ තාත්වික විසඳුම් ගණන සොයන්න.
 - b) අරය a වන වෘත්තයක් තුල 2θ සිරස් කෝණය ඇති සමද්විපාද තුිකෝණයක් අන්තර්ගත කර ඇත. තුිකෝණයේ පරිමිතිය $2a(\sin 2\theta + 2\cos \theta)$ බව පෙන්වන්න. එනයින් පරිමිතිය උපරිම වන θ හි අගය සොයා උපරිම පරිමිතිය $3\sqrt{3}a$ වන බව පෙන්වන්න.
- 15. a) $rac{1}{(x-2)(x+1)^2}$ භින්න භාග වලට වෙන් කර දක්වන්න. එනයින් හෝ අන් කුමයකින් $\int_0^1 rac{dx}{(e^{2x}-2e^x)(1+2e^{-x}+e^{-2x})}$ සොයන්න.
 - b) කොටස් වශයෙන් අනුකලනය භාවිතයෙන් $\int x.\cos x.\sin 2x.dx$ අගය සොයන්න.
 - c) $\int_0^a f(x)dx = \int_0^a f(a-x)\,dx$ බව පෙන්වන්න. එනයින් $\int_0^\pi x.\sin^n x\,dx = \frac{\pi}{2}\int_0^\pi \sin^n x\,dx$ බව පෙන්වන්න. n යනු ධන නිඛලයකි. තව ද $n\geq 2$ විට $\int_0^\pi x.\sin^n x\,dx = \frac{n-1}{n}\int_0^\pi \sin^{n-2}x\,dx$ බව පෙන්වන්න. එනයින් $\int_0^\pi x\sin^4 x\,dx$ අගයන්න.

- 16. a) ABC තිකෝණයේ AB, AC පාදවල ලම්බ සමච්ඡේදක පිලිවෙලින් 2x-y=0, x-3y=0 වේ. A ලක්ෂාය x+y=0 රේඛාව මත පිහිටා ඇත. BC පාදය (-2,11) ලක්ෂාය හරහා යන්නේ නම්, තිකෝණයේ පාදවල සමීකරණ සොයන්න.
 - b) λ යනු පරාමිතික නියතයක් විට $S_1=x^2+y^2+2g_1x+2f_1y+c_1=0$ $S_2=x^2+y^2+2g_2x+2f_2y+c_2=0$ වෘත්ත වල ඡේදන ලක්ෂ හරහා යන වෘත්තය $S_2+\lambda S_2=0$ බව පෙන්වන්න.

$$S_1 = 3x^2 + 3y^2 - 6x - 1 = 0$$
 so $S_2 = x^2 + y^2 + 2x - 4y + 1 = 0$

වෘත්ත දෙකේ ඡේදන ලක්ෂ හරහා යන වෘත්තය $S_1=0$ මුල් වෘත්තයේ කේන්දුය හරහා ද යයි නම් එම වෘත්තයේ සමීකරණය සොයා එය $S_2=0$ ලෙස වූ දෙවන වෘත්තය පුලම්භව ඡේදනය කරන බව පෙන්වන්න.

17. a) sin(A+B)=sin A cos B+cos A sin B යන්න භාවිතයෙන් $sin 3\theta$ සඳහා පුකාශනයක් $sin \theta$ ඇසුරෙන් ලබා ගන්න.

$$\sin\theta.\sin\left(\frac{\pi}{3}-\theta\right)$$
 . $\sin\left(\frac{\pi}{3}+\theta\right)=\frac{1}{4}\sin3\theta$ බව පෙන්වන්න. $\sin\frac{\pi}{9}$, $\sin\left(\frac{2\pi}{9}\right)$. $\sin\left(\frac{4\pi}{9}\right)=\frac{3}{16}$ බව පෙන්වන්න.

- b) $f(x)=\sqrt{3}(\sin x+\cos x)+(\cos x-\sin x)-2$ යැයි ගනිමු. f(x) යන්න $A\cos \cos \cos (x+\alpha)+B$ ආකාරයට පුකාශ කරන්න. A,B,α නිර්ණය කළ යුතු නියත වේ. එහෙයින් f(x)=0 සමීකරණය විසඳන්න. තවද $0\leq x\leq 2\pi$ සඳහා $y=\frac{1}{2}f(x)$ හි පුස්තාරයේ දල සටහනක් අඳින්න.
- c) sin නීතිය ලියා දක්වන්න.

ABC තිකෝණයේ A හරහා ඇදී මධාස්ථයේ දිග m වන අතර AB හා AC පාද සමඟ පිළිවෙලින් lpha හා eta කෝණ සාදයි. පහත දැක්වෙන දේ සාධනය කරන්න.

i)
$$2m(\sin \alpha - \sin \beta) = a(\sin B - \sin C)$$

ii)
$$2m \sin\left(\frac{\alpha-\beta}{2}\right) = (b-c) \sin\frac{A}{2}$$

1

නැණ සයුර අධාාපනික වැඩසටහන උතුරු මැද පළාත් අධාාපන දෙපාර්තමේන්තුව සරසවි පිවිසුම් අත්වැල

13 ඉශ්ණිය

සංයුක්ත ගණිතය - II පතුය

කාලය - පැය 03 මිනිත්තු 10

A කොටස

*	පුශ්ණ සියල්ලටම පිළිතුරු සපයන්න.
1)	Aසහ B නම් ගෝල දෙකක ස්කන්ධ පිළිවෙලින් m සහ $4m$ වන අතර සුමට තිරස් තලයක නිසලව
	ඇත. B සමඟ සෘජුව ගැටෙන සේ A ගෝලයට U පුවේගයක් දෙනු ලැබේ. ගැටුමෙන් පසු ku
	පුවේගයන් B චලනය වන අතර K යනු නියතයකි.
	a) ගැටුමෙන් පසු A හී පුවේගය $U(1-4k)$ බවත්
	b) පුතාාගතික සංගුණකය පිළිබඳ නිවුටන් නියමය ආධාරයෙන් $rac{1}{5} \leq k \leq rac{2}{5}$ බව පෙන්වන්න.
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	

2) පුක්ෂේපන ලක්ෂයෙ සිට a දුරින් පිහිටි සිරස් බිත්තියක් වෙත	$oldsymbol{U}$ පුවේගයෙන් අංශුවක් පුක්ෂේපනය
කරනු ලැබේ. අංශුවට h උසකින් ඇති බිත්තියක් උඩින් යන්තමි	න් යා හැකිනම් h ට ගත හැකි වැඩිතම
අගය $\dfrac{u^4-9^2a^2}{2gu^2}$ බව පෙන්වන්න.	
අංශු දෙකක් සුමට තිරස් මේසයක් මත නිසලව තිබේ. m අංශු හෙලු විට තන්තුව තද වීමට පෙර එම අංශුව $rac{l}{2}$ දුරක් ගමන් ක	
චලනය වීමේදී සිදුවන චාලක ශක්ති හානිය $rac{mgl}{3}$ බව පෙන්ව	
වන විට පද්ධතියේ පොදු පුවේගය $rac{2}{3}\sqrt{gl}$ බව පෙන්වන්න.	
3 '	

4)	$1 imes 10^5 kg$ ස්කන්ධයෙන් යුත් දුම්රිය එන්ජිමක් $4 imes 10^5 kg$ ස්කන්ධය ඇති මැදිරි පෙළක් ඇදගෙන
	යයී. දුම්රිය එත්ජිම $400kw$ ක්ෂමතාවයෙන් කාර්යය කරයි. දුම්රිය $10ms^{-1}$ පුවේගයෙන් හා
	$rac{3}{50} \; ms^{-2} \;$ ත්වරණයෙන් චලිත වේ. චලිතයට එරෙහි මුළු පුතිරෝධය සොයන්න. පුතිරෝධය බරට
	සමානුපාතික නම් මැදිරිය හා එන්පීම අතර ඇදුම් කඩයේ ආතතිය සොයන්න.
• • • • •	
5)	දෘඩ ලෙස සවිකොට ඇති අරය γ වන සුමට ගෝලයක ඉහලම ලක්ෂයේ සිට නිශ්චලව සිට අංශුවක් ν
5)	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්
5)	
5)	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්
5)	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්
	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්
	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්
	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්
5)	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්
5)	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්
5)	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්
	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්
	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්
5)	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්
5)	පහලට සර්පනය වේ. මෙම අංශුව වෘත්තාකාර මාර්ගයක් හැර යන විට ඉහලම ලක්ෂයේ සිට $\frac{\gamma}{3}$ දුරක්

6) සුපුරුදු අංකනයෙන් 0 මූලයක් අනුබද්ධයෙන් A සහ B නම් ලක්ෂ දෙකක පිහිටුම් දෛශික $\lambda \underline{i} + 3 \underline{j}$
සහ $3\underline{i}+4\underline{j}$ වේ. AB රේඛාව මත $A\mathcal{C}:\mathcal{C}B=3:2$ වන පරිදි \mathcal{C} ලක්ෂයේ පිහිටුම් දෛශිකය
සොයන්න . AB සහ OC ලම්භක නම් λ හී අගය සොයන්න. $(\lambda>0$) වේ.
7) දිග $4a$ වු ඒකාකාර AB දණ්ඩක බර w වේ. A කෙළවර සුමට සිරස් බිත්තියක ගැටෙමින් දණ්ඩ
සමතුලිකව ඇත්තේ බිත්තියේ සිට $l(<2a)$ දුරින් වූ අවල කුඩා සුමට නාදැත්තක් මතින් යමිනි.
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල නිරූපණය කරමින් බල තිුකෝණයක්
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල නිරූපණය කරමින් බල තිුකෝණයක්
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල නිරූපණය කරමින් බල තිුකෝණයක් අඳින්න. නාදැත්තෙන් ඇතිවන පුතිකිුයාව සොයන්න. $sin heta=(rac{l}{2a})^{1/3}$ බව නේවන්න.
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල නිරූපණය කරමින් බල තිුකෝණයක් අඳින්න. නාදැත්තෙන් ඇතිවන පුතිකිුයාව සොයන්න. $sin heta=(rac{l}{2a})^{1/3}$ බව නේවන්න.
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල නිරූපණය කරමින් බල තිුකෝණයක් අඳින්න. නාදැත්තෙන් ඇතිවන පුතිකිුයාව සොයන්න. $sin heta=(rac{l}{2a})^{1/3}$ බව නේවන්න.
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල නිරූපණය කරමින් බල තිුකෝණයක් අඳින්න. නාදැත්තෙන් ඇතිවන පුතිකිුයාව සොයන්න. $sin heta=(rac{l}{2a})^{1/3}$ බව නේවන්න.
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල නිරූපණය කරමින් බල තිුකෝණයක් අඳින්න. නාදැත්තෙන් ඇතිවන පුතිකිුයාව සොයන්න. $sin heta=(rac{l}{2a})^{1/3}$ බව නේවන්න.
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල නිරූපණය කරමින් බල තිුකෝණයක් අඳින්න. නාදැත්තෙන් ඇතිවන පුතිකිුයාව සොයන්න. $sin heta=(rac{l}{2a})^{1/3}$ බව නේවන්න.
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල නිරූපණය කරමින් බල තිුකෝණයක් අඳින්න. නාදැත්තෙන් ඇතිවන පුතිකිුයාව සොයන්න. $sin heta=(rac{l}{2a})^{1/3}$ බව නේවන්න.
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල නිරුපණය කරමින් බල තිුකෝණයක් අදින්න. නාදැත්තෙන් ඇතිවන පුතිකිුයාව සොයන්න. $sin heta=(rac{l}{2a})^{1/3}$ බව නේවන්න.
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල නිරුපණය කරමින් බල තිුකෝණයක් අදින්න. නාදැත්තෙන් ඇතිවන පුතිකිුයාව සොයන්න. $sin heta=(rac{l}{2a})^{1/3}$ බව නේවන්න.
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල නිරුපණය කරමින් බල ති්කෝණයක් අදින්න. නාදැත්තෙන් ඇතිවන පුතිකියාව සොයන්න. $sin heta=(rac{l}{2a})^{1/3}$ බව නේවන්න.
දණ්ඩ බිත්තිය සමඟ $ heta$ කෝණයක් සාදයි. දණ්ඩ මත බල තිරුපණය කරමින් බල ති්කෝණයක් අඳින්න. නාදැත්තෙන් ඇතිවන පුතිකියාව සොයන්න. $sin heta=(rac{l}{2a})^{1/3}$ බව නේවන්න.

8)	රළු කුහර ගෝලයක් තුල ඒකාකාර දණ්ඩක් සීමාකාරී සමතුලිතතාවයේ නිසලව තිබේ. ගෝලයේ
	කේන්දුයේහි 2 $ imes$ කෝණයක් දණ්ඩෙන් ආපාතනය කෙරේ. ඝර්ෂන කෝණය λ නම් ද දණ්ඩේ තිරසට
	ආනත කෝණය $ heta$ නම් ද $2tan heta= an(lpha+\lambda)-Tan(lpha-\lambda)$ බව පෙන්වන්න.
9)	A හා B යනු සසම්භාවී පරීක්ෂණයක ස්වායත්ත සිද්ධී දෙකක් වන අතර $p\left(A\cap B ight)=rac{1}{3}$ සහ
	$P(A \cup B) = rac{5}{6}$ වේ. $P(A) > P(B)$ වන විට $P(A)$ සහ $P(B)$ සොයන්න.
10)	සංඛාහ පහක මධානනාය 4.4 වන අතර විචලතාවය 8.24 වේ. මෙම සංඛාහ පහෙන් තුනක් 1,2 සහ 6
	වේ. ඉතිරි සංඛාහ දෙක සොයන්න.
• • • • •	
• • • • •	

B කොටස

- 💠 පුශ්න පහකට පමනක් පිළිතුරු සහයන්න.
- (a) නිශ්චලතාවයෙන් ගමන් අරඹන අංශුවක් සරල රේඛාවක් ඔස්සේ ගමන් කරන්නේ a දුරක් ඒකාකාර ත්වරණයෙන්ද ඉන්පසු ඒකාකාර පුවේගයෙන්ද අවසාන කොටස ඒකාකාර මන්දනයෙන්ද ගමන් කොට නිසලතාවයට පත්වන සේය. මන්දනයේ විශාලත්වය ත්වරණයේ විශාලත්වය මෙන් දෙගුණයකි. අංශුව ගමන්කල මුළු දුර b වේ. ගත වු මුළු කාලය T වේ. අංශුවේ චලිතයට පුවේග-කාල පුස්තාරයක් අඳින්න. එනයින් අංශුවේ උපරිම පුවේගය $\left(\frac{3a+2b}{T}\right)$ බවත්, ඒකාකාර පුවේගයෙන් ගමන් කල දුර $\left(\frac{2b-3a}{2}\right)$ බවත් පෙන්වන්න.
 - (b) A,B,C,D ගුවන් තොටුපල හතරක් සමචතුරසුයක ශිර්ෂවල පිහිටා ඇත. සුළගක් නැති විටෙක ගුවන් යානය V පුවේගයෙන් පියාසර කරයි. AC දිශාවට u වේගයෙන් සුළගක් හමන විට ABCDA පථය ඔස්සේ නොනැවතී යාමට ගුවන් යානයට ගතවන කාලය සොයන්න. (සමචතුරසුයේ පාදයක දිග a ලෙස ගන්න). සුළග නැති දිනකදී A,B,C,D පථය ඔස්සේ V වේගයෙන් ගමන් කිරීමට ඉන්ධන ලීටර් n පුමාණයක් අවශා වේ නම් ඉහත කී සුළග ඇති දිනෙක A,B,C,D පථය සම්පුර්ණ කිරීමට අවශාවන ඉන්ධන පුමාණය සොයන්න.
- 12) (a) M ස්කන්ධයෙන් යුත් කුඤ්ඤයක කේන්දික හරස්කඩ ABC තිකෝණයකි. මෙහි $A\hat{C}B = \pi/2$ $C\widehat{A}B = \alpha$ ද වේ. මෙම කුඤ්ඤය සුමට තිරස් මේසයක් මත AB ස්පර්ශ වෙමින් නිසලව පවති. එක එකක ස්කන්ධ m වු P සහා Q අංශු දෙකක් පිළිවෙළින් CA සහ CB දිගේ නිදැල්ලේ සර්පනය වන සේ තබා ඇත. කුඤ්ඤයේ ත්වරණය සොයන්න. C හිදී සවිකරන ලද සැහැල්ලු කප්පියක් උඩින් වැටුණු අවිතනා තන්තුවක් මගින් P සහා Q සම්බන්ධ කරනු ලැබේ. එවිට කුඤ්ඤයේ ත්වරණය $\frac{mgcos2\alpha}{2M+3m-msin2\alpha}$ බව පෙන්වන්න.
 - (b) කේන්දුය O සහ අරය a වු අවල සුමට කුහර ගෝලයක ඇතුලත පහත්ම ලක්ෂායේ ඇති p අංශුවක් u පුවේගයෙන් තිරස්ව පුක්ෂේපනය කරනු ලැබේ. op රේඛාව උඩු සිරස සමග θ කොණයක් සාදන විට අංශුව තවම ගෝලයේ පෘෂ්ඨය සමඟ ස්පර්ශ වී ඇත්නම් එහි පුවේගය හා ගෝලය මගින් ඇති කරනු ලබන පුතිකිුිිිිියාව සොයන්න. $2ga < u^2 < 5ga$ වන්නේ නම් යම් ලක්ෂාකදී අංශුව ගෝලයෙන් ඉවත්ව යන බව පෙන්වන්න. එවිට අංශුව උඩු සිරස සමඟ $\cos^{-1}\left(\frac{u^2-2ga}{3ga}\right)$ සුළු කෝණයක් සාදන දිශාවකට උඩු අතට චලනය වන බවත්, අංශුවේ පුවේගය $\sqrt{\frac{u^2-2ga}{3}}$ වන බවත් පෙන්වන්න.
- 13) ස්වාභාවික දිග l වූ සැහැල්ලු පුතාස්ථ තන්තුවක එක් කෙළවරකට ස්කන්ධය m වූ p අංශුවක් ඇඳා තන්තුවේ අනෙක් කෙළවර O ලක්ෂායකට සවි කර ඇත. ආරම්භයේ දී p අංශුව O හි තබා යටි අතට

 $\sqrt{2gl}$ පුවේගයෙන් සිරස්ව පහලට පුක්ෂේප කරනු ලැබේ. ${f p}$ අංශුව l දුරක් වැටුන විට එහි පුවේගය සොයන්න.

තන්තුවේ දිග l+x වන විට p අංශුව සරල අනුවර්තී චලිතයක යෙදෙන බවත් එහි කේන්දුය O සිට 2l දුරකින් පිහිටන බවත් පෙන්වන්න.

ඉන්පසු ඇතිවන චලිතයේ දී අංශුව O සිට පහලට චලනය විය හැකි උපරිම දුර $(2+\sqrt{5})l$ බව සාධනය කරන්න.

O සිට ගැඹුරුම ලක්ෂායට ළඟා වීමට p අංශුව ගන්නා කාලය $(2-\sqrt{2}+\pi-\cos^{-1}\frac{1}{\sqrt{5}})\sqrt{\frac{l}{g}}$ බව පෙන්වන්න.

- 14) (a) A, B, P, Q ලක්ෂා හතරක පිහිටුම් දෙශික \underline{a} , \underline{b} , $\frac{1}{3}$ \underline{b} , $\frac{1}{4}$ \underline{a} වේ. O යනු මූලය වේ. \underline{a} , සහ \underline{b} අසමාන්තර සහ අභිශූනා නොවන දෙශික දෙකකි. OAB තිකෝණයේ OB, OA, AB පාදවල මධා ලක්ෂා පිළිවෙලින් D, E, F වේ. ED සහ AB සමාන්තර බව පෙන්වන්න. AP සහ EF රේඛා L හිදී ද BQ සහ DF රේඛා M හිදී ද හමුවේ. L ලක්ෂායේ පිහිටුම් දෙශිකය සොයන්න. PQ සහ AB පාද R හි දී හමු වේ. R ලක්ෂායේ පිහිටුම් දෙශිකය සොයන්න.
 - (b) ABCD සෘජුකෝණාසුයක් වන අතර AB = 8m, BC = 6m ද වේ. P, Q, R, S යනු පිළිවෙලින් AB, BC, CD, DA පාදවල මධා ලක්ෂා වේ. 5N, 10N, 15N, 20N, λ , μ විශාලත්ව ඇති බල අකුරු පටිපාටියෙන් දැක්වෙන දිශා ඔස්සේ පිළිවෙලින් PQ, QR, RS, SP, AC, BD දිගේ කියා කරයි.
 - i) මෙම පද්ධතිය සමතුලිතව පැවැතිය නොහැකි බවත්,
 - m ii) මෙම පද්ධතිය යුග්මයකට ඌනනය වෙයි නම් $\lambda = \mu = 10N$ බවත්,
 - iii) පද්ධතිය C හරහා කි්යාකරන තනි බලයකට ඌනනය වේ නම් $\mu=35N$ බව ද තනි බලයේ අඩුම අගය 24N බව ද පෙන්වන්න.
- 15) (a) එක එකක බර ω වූ ද දිග α බැගින් වූ ද AB, AC දඬු දෙක A හි දී සුමටව සන්ධි කර A වලින් නිදහසේ එල්ලා ඇත. $B\hat{A}C=2\alpha$ වන පරිදී සමමිතිකව තබා ඇත්තේ B හා AC මත පිහිටි D සබැදෙන දිග b වූ ලුහු දණ්ඩක් මගිනි. BD සහ AC ලම්භක නම්, $\tan\alpha=\frac{b}{a+\sqrt{a^2-b^2}}$ බව පෙන්වා ලුහු දණ්ඩේ ඇතිවන තෙරපුම $\frac{\omega a \sin\alpha}{2\sqrt{a^2-b^2}}$ බව පෙන්වන්න.
 - (b) සුමට ලෙස සන්ධි කල සැහැල්ලු දඩු 7 කින් යුත් රාමු සැකිල්ලේ තිරස් සහ සිරස් දඩු දිගින් සමාන වේ. B සහ C හි දී 100~kg සහ 200~kg භාර එල්ලා A හි දී සුමට ලෙස අසව්කොට AE සිරස් වන සේ E හි දී P තිරස් බලයක් යොදා තිබේ. බෝ අංකනය පිළිබඳ මූලධර්මය භාවිතයෙන් දඩු මත ගොඩනැගෙන පුතාාබලයන් සොයන්න.

200 kg

16) අරය a වූ ඒකාකාර ඝන අර්ධ ගෝලයක ගුරුත්ව කේන්දුය අනුකලනය භාවිතයෙන් සොයන්න. අරය a සහ කේන්දුය O වූ ඒකාකාර ඝන අර්ධ ගෝලයෙන් ආධාරකයේ අරය na වන (0 < n < 1) කුඩා අර්ධ ගෝලයක් ඉවත් කරනු ලැබේ. දැන් ලැබෙන බාහිර අරය a හා අභාාන්තර අරය na වන අර්ධගෝලාකාර කවචය A ලෙස ගනිමු. A හි ගුරුත්ව කේන්දුයට O සිට දුර $\frac{3(n+1)\ (n^2+1)a}{8(n^2+n+1)}$ බව පෙන්වන්න.

ඉන්පසු ඉවත් කල අරය na වන අර්ධ ගෝලයෙන් අරය na ද උස na ද වූ ඝන ඒකාකාර කේතුවක් ඉවත් කරනු ලැබේ. කේතුව ඉවත් කිරීමෙන් ලැබෙන නව ඝන වස්තුව B නම් B හි ගුරුත්ව කේන්දුයට ආධාරකයේ සිට දුර සොයන්න.

දැන් රූපයේ පරිදි A සහ B වස්තු සම්බන්ධ කිරීමෙන් සංයුක්ත වස්තුවක් සාදන ලදී. මෙම නව සංයුක්ත වස්තුවේ ගුරුත්ව කේන්දුයට O සිට දුර සොයන්න. දැන් මෙම සංයුක්ත ඝන වස්තුව සමතල පොළවක A හි වකු පෘෂ්ඨයේ ඕනෑම ලක්ෂායක් සමතල පොළොවේ ස්පර්ශව සමතුලිතව පැවැතිය හැකි නම්, n හි අගය සොයන්න.

- 17) (a) i) A සහ B යනු ස්වායත්ත සිද්ධි දෙකක් වන අතර A' සහ B' ද ස්වායත්ත සිද්ධි බව සාධනය කරන්න.
 - ii) කාර්යාලයක යතුරු ලියන කාර්යයන් A, B, C නම් වූ තිදෙනෙක් විසින් කරනු ලබන අතර ඔවුන් විසින් යතුරු ලියනය කරන ලද සියළුම ලිපි වල කාබන් පිටපතක් ලිපි ගොනු වල තැන්පත් කරනු ලැබේ. කාර්යාලයේ මුළු යතුරු ලියන කාර්යන්ගෙන් $\frac{1}{7}, \frac{2}{7}, \frac{4}{7}$ පුමාණයන් පිළිවෙලින් A, B, C විසින් කරනු ලබන අතර ඔවුන් විසින් පිළියෙල කරන ලද ලියනයක දෝෂ සහිත තැනක් තිබීමේ සම්භාවිතා පිළිවෙලින් 0.04, 0.03, 0.01 වේ. ලිපිගොනුවලින් ලිපියක් සසම්භාවී ව තෝරාගත් විට එහි දෝෂ සහිත තැනක් තිබේ නම් එය B නැමැති පුද්ගලයා විසින් පිළියෙල කරන ලද ලිපියක් වීමේ සම්භාවිතාව සොයන්න.
 - (b) i) නිරීක්ෂණ 25 ක මධනාය සහ සම්මත අපගමනය කරන ශිෂායෙකුට මධානාය 50 සහ සම්මත අපගමනය 2 ලෙස ලැබුණි. නැවත පරීක්ෂා කිරීමේ දී එක් නිරීක්ෂණයක් 64 ලෙස වැරදියට සටහන් කර තිබූ බව පෙනුනි. නමුත් මෙහි නිවැරදි අගය 59 වේ. නිවැරදි කරන ලද දත්ත කුලකයේ මධානාය සහ සම්මත අපගමනය සොයන්න.
 - ii) එක්තරා රූපවාහිනී වැඩසටහන් නරඹන 100 දෙනෙකු සසම්භාවීව තෝරාගෙන ඇත. වයස අනුව පහත පරිදි කණ්ඩ වලට වෙන්කර ඇත.

වයස් කණ්ඩය	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90
පුද්ගලයන් ගණන	9	25	21	17	12	8	5	2	1

- a) වැඩසටහන් නරඹන අයගේ මාතය සහ මධාාස්ථය සොයන්න.
- b) මධානාය සහ විචලතාව ලබාගන්න.
- c) කුටිකතාවය සොයා වාාප්තියේ හැඩය පැහැදිලි කරන්න.