

SEQUENCE LISTING

<110> BARBAS, Carlos
STEGE, Justin
GUAN, Xueni
DALMIA, Bipin

<120> METHODS AND COMPOSITIONS TO MODULATE
EXPRESSION IN PLANTS

<130> 27801-20014.20

<140> 09/765,555
<141> 2001-01-19

<150> 09/620,897
<151> 2000-07-21

<150> US 60/177,468
<151> 2000-01-21

<160> 79

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 532
<212> DNA
<213> Artificial Sequence

<220>

<223> Promoter CsVMV

<400> 1

tctagaaaact agcttccaga aggttaattat ccaagatgt a gcatcaagaa tccaaatgttt	60
acggggaaaaa ctatggaagt attatgttag ctcagcaaga agcagatcaa tatgcggcac	120
atatgcaacc tatgttcaaa aatgaagaat gtacagatac aagatcctat actgccagaa	180
tacgaagaag aatacgtaga aattgaaaaa gaagaaccag gcgaagaaaa gaatcttcaa	240
gacgtaagca ctgacgacaa caatgaaaaa aagaagataa ggtcggtgat tgtgaaagag	300
acatagagga cacatgtaag gtggaaaatg taaggggcgg aagtaaacctt atcacaagg	360
aatcttatcc cccactactt atcctttat attttccgt gtcattttg cccttgagtt	420
ttccttatata aggaaccaag ttccggcattt gtgaaaacaa gaaaaaattt ggtgtaaagct	480
attttctttt aagtactgag gataacaactt cagagaaattt tgtaagttt ta	532

<210> 2

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Zinc finger protein 2C7 binding site

<400> 2

gcgtgggcgg cgtggcg

18

<210> 3

<211> 51

<212> DNA

<213> Artificial Sequence

<220>

<223> Promoter pc7rbTATA

<400> 3

cccggtata taataagctt ggcattccgg tactgttggt aaagccacca t

51

<210> 4
<211> 3121
<212> DNA
<213> Artificial Sequence

<220>
<223> pND3008 coding region

<400> 4
agcgtgaccc ggtcggtccc ctctcttagag ataatgagca ttgcatgtct aagtataaa 60
aaattaccac atatttttt tgcacactt gttgaagt cagtttatct atctttatac 120
atatatattaa acttactt acgaaaataa taatctatag tactacaata atatcgtgt 180
tttagagaat catataaaatg aacagttaga catggcttaa aggacaattg agtattttga 240
caacaggact ctacagttt atcttttag tgcacatgtg ttctcccttt ttttgc当地 300
tagcttcacc tatataatac ttcatccatt ttatttagtac atccatttag ggtttaggg 360
taatggttt tatagactaa tttttttagt acatctattt tattctattt tagcctctaa 420
attaagaaaa ctaaaactct attttagttt ttttatttaa taatttagat ataaaaataga 480
ataaaaataaa gtgactaaaa attaaacaaa tacccttaa gaaattaaaa aaactaaggaa 540
aacattttc ttgttcgag tagataatgc cagcctgtt aacgcgtcg acgagtctaa 600
cgacacccaa ccagcgaacc agcagcgtcg cgtcgggcca agcgaacgac acggcacggc 660
atctctgtcg ctgcctctgg acccctctcg agagttccgc tccaccgtt gacttgctcc 720
gctgtcggca tccagaaatt gcgtggcgga gcggcagacg tgagccggca cggcaggcg 780
cctcctcctc ctctcacggc acggcagcta cgggggattt cttccacc gctccttcgc 840
ttcccttcc tcgcccggc taataaaatg acacccctc cacaccctt ttcccccaacc 900
tcgtgttgtt cggagcgcac acacacacaa ccagatctcc cccaaatcca cccgtcggca 960
cctccgttcc aaggtacgcc gctcgccctc ccccccccccc cctctctacc ttctcttagat 1020
cgcggttccg gtccatggtt agggcccggt agttctactt ctgttcatgt ttgtgttaga 1080
tccgtgtttt tgtagatcc gtgctgtcg cggtcgtaca cggatgcgc ctgtacgtca 1140
gacacgttct gattgttaac ttgcagttgt ttctctttgg ggaatctgg gatggctcta 1200
gccgttccgc agacgggatc gatttcatga tttttttgtt ttcgttgcatt agggtttgg 1260
ttgccccttt ctttatttc aatataatgc gtgcacttgtt ttgtcggttc atctttcat 1320
gctttttttt gtctgggtt tgatgtatgtt gtctgggtgg gcggtcgttc tagatcgag 1380
tagaattctg tttcaaacta cctggtgat ttattaaattt tggatctgtt tggtgtgcc 1440
atacatattt atagttacga attgaagatg atggatggaa atatcgatct aggataggta 1500
tacatgttga tgcgggtttt actgatgcattt atacagagat gctttttgtt cgcttgggtt 1560
tgatgtatgtt gtgtgggtgg gcggtcgttc attcggttca gatcgagat gaataactgtt 1620
tcaaactacc tgggttattt attaattttt gaaactgtatg tggtgtcat acatcttcat 1680
agttacgagt ttaagatgga tggaaatatc gatctaggat aggtatacat gttgtgtgg 1740
gttttactga tgcataatac tgatggcata tgcagcatctt attcatatgc tctaaccctt 1800
agttacctatc tattataata aacaagttatg ttttataattt atttgtatct tgatataactt 1860
ggatgtatggc atatcgac gctatatgtt gatTTTTTtta gccctgcctt catacgctat 1920
ttatTTTgtt ggtactgttt ctTTTgtcgat tgctcaccctt gttgttgg gttacttctg 1980
cagggtcgact ctagaggatc tatggcccgat gcggccctcg agctccctta tgcttgcctt 2040
gtcgagtcctt gcgatcgccg ctTTTctaaatg tcggctgtatc tgaagcgcata tatccgcattc 2100
cacacaggcc agaaggccctt ccagtgtcgat atatcgatgc gtaacttcag tcgttagtgc 2160
caccttacca cccacatccg caccacaca ggcgagaagc ctTTTgcctt tgacattttgt 2220
gggaggaatg ttgcaggag tgatgaacgc aagaggcata cccaaatcca taccggtag 2280
aaggccctatg ctggccctgt cgagtccgtc gatcgccgtt tttctaagtc ggctgatctg 2340
aaggccata tccgcacatcca cacaggccag aaggcccttcc agtgcataat atgcattgcgt 2400
aacttcagtc gtagtgcacca ctttaccacc cacatccgca cccacacagg cgagaagcct 2460
tttgccctgtt acattttgtgg gaggaagttt gccaggatgtt atgaacgcata gaggcataacc 2520
aaaatccatt taagacagaa ggactctaga actagtgcc agggccggca ggctagcccg 2580
aaaaagaaaaac gcaaagttgg gcgcggccgac gcgcgtggacg atttcgatct cgacatgtcg 2640
ggttctgtatg ccctcgatgtt ctggacatgtt gatatgttgg gaagcgacgc attggatgac 2700
tttgatctgg acatgtcgtt ccgcgtatgtt ctggacatgtt tcgcgtatgtt tgcgtatgtt 2760
aactaccgtt acgacgttcc ggactacgtt tcttgataat tgcggccgc gggcccgac 2820
ctaggggagga gctcaagatc ccccgatgtt ccccgatgtt tcaaacattt ggcaataaaag 2880
tttcttaaga ttgaatccgtt ttgcgggtct tgcgtatgtt atcatctaaat ttctgttggaa 2940
ttacgtttagt catgtatataa ttaacatgtt atgcgtatgtt ttatTTTatgtt gatgggtttt 3000
tatgatttaga gtcccgcaat tatacatatgtt atacgcgtatgtt gaaaacaaaa tatacgccgc 3060
aaacttaggtt aaattatcgatc ggcgggtgtc atctatgtt atgcgtatgtt ctagatccgg gaattgggtt 3120
c

```
<210> 5
<211> 3069
<212> DNA
<213> Artificial Sequence
```

<220>
<223> pND3018 coding redion

```

<211> 156
<212> DNA
<213> Artificial Sequence

<220>
<223> 6X2C7 binding site

<400> 6
cgtgctagcg cgtgggcggc gtgggcgaac aagcgtggc ggcgtggcg aacaagcgtg      60
ggcggcgtgg gcgactagtg ctagcgcgtg ggcggcgtgg gcgaacaagc gtgggcggcg      120
tgggcgaaca agcgtggcg gcgtggcgta ctagtg                                156

<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> ZFPAp3

<400> 7
gatggagttg aagaagta                                              18

<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> ZFP from -85 to -65

<400> 8
gcctccttcc tcctctca c                                              21

<210> 9
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> ZFPm1 from -68 to -85

<400> 9
tgagaggagg aaggaggc                                              18

<210> 10
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> ZFPm2 from -65 to -82

<400> 10
gagtgagagg aggaagga                                              18

<210> 11
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> ZFP from 294 to 317

```

```

<400> 11
gccaactact acggctccct cacc 24

<210> 12
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> ZFPm3 from 311 to 294

<400> 12
ggagccgtag tagttggc 18

<210> 13
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> ZFPm4 from 317 to 300

<400> 13
ggtgagggag ccgttagta 18

<210> 14
<211> 3300
<212> DNA
<213> Artificial Sequence

<220>
<223> Partial sequence of pMal-m1 and zinc finger
protein ZFPm1

<400> 14
ccgacacccat cgaatggtgc aaaaccttc gcggttatggc atgatacgcc cccgaagaga 60
gtcaattca ggtggtgaat gtgaaaccag taacgttata cgatgtcgca gagtatgccg 120
gtgtctctta tcagaccgtt tcccgcgtgg tgaaccaggc cagccacgtt tctgcgaaaa 180
cgccggaaaa agtggaaagcg gcgatggcg agctgaatta cattccaaac cgctgtggcac 240
aacaactggc gggcaaacag tcgttgcgttgc ttggcgttgc cacctccagt ctggccctgc 300
acgcgcgcgtc gcaaattgtc gcggcgattt aatctcgccg cgatcaactg ggtgccagcg 360
tggtgtgttc gatggtagaa cgaagcgccg tcgaagcctg taaagcggcg gtgcacaatc 420
ttctcgccca acgcgtcagt gggctgtatca ttaactatcc gctggatgac caggatgcca 480
ttgctgtgga agctgcctgc actaatgttcc cgccgttatt tcttgatgtc tctgaccaga 540
caccatcaa cagtattatt ttctcccatg aagacggtac ggcactggc gtggagcattc 600
tggtcgcatt gggtcaccag caaatcgccg tggtagcggg cccattaagt tctgtctcgg 660
cgctctgcg tctggctggc tggcataaat atctcaactcg caatcaaatt cagccgatag 720
cggaacggga aggcgactgg agtgcgttgc ccgtttca acaaaccatg caaatgctga 780
atgaggccat cgttccact gcgatgtgg ttgccaacga tcagatggcg ctgggcgca 840
tgcgcgcatt taccgagtcc gggctgcgcg ttggtgcggg tatctcggtt gtggatacg 900
acgataccga agacagctca tggttatatcc cgccgttaac caccatcaaa caggatttc 960
gcctgctggg gcaaaccaggc gtggaccgt tgctgcaact ctctcaggcc caggcggtga 1020
agggcaatca gctgttgcggc gtctcaactgg tgaaaagaaaa aaccaccctg gcccata 1080
cgccaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca cgacaggtt 1140
cccgactggaa aagcgccgaa tgagcgcaac gcaattatg tgagtttagct cactcattag 1200
gcaaaattct catgtttgac agcttatacat cgactgcacg gtgcaccaat gcttctggcg 1260
tcaggcagcc atcggaaagct gtggtatggc tggcagggtc gtaaatcaact gcataattcg 1320
tggcgtcaaa ggcgcactcc cggtctggat aatgtttttt gcccgcacat cataacgggtt 1380
ctggcaaata ttctgaaatcg agctgttgac aattaatcat cggctcgtat aatgtgtgga 1440
attgtgagcg gataacaatt tcacacagga aacagccagt ccgtttaggt gtttcacga 1500
gcacttcacc aacaaggacc atagattatg aaaactgaag aaggtaaact ggtaatctgg 1560
attaacggcg ataaaggcta taacggcttc gctgaagtcg gtaagaaaatt cgagaaaat 1620
accggaaatta aagtccaccgt tgagcatccg gataaaactgg aagagaaaatt cccacaggtt 1680
cgccgcaactg gcgtatggccc tgacattatc ttctggccac acgaccgctt tggtggctac 1740

```

gctcaatctg	gcctgttggc	tgaaatcacc	ccggacaaaag	cgttccagga	caagctgtat	1800
ccgtttacct	gggatgccgt	acgttacaac	ggcaagctga	ttgtttaacc	gatcgctgtt	1860
gaagcgttat	cgctgattta	taacaaagat	ctgtgtccga	acccgccaaa	aacctggaa	1920
gagatcccgg	cgctggataa	agaactgaaa	gcgaaaggta	agagcgcgt	gatgttcaac	1980
ctgcaagaac	cgtacttcac	ctggccgtg	attgtgtctg	acgggggtt	tgcgttcaag	2040
tatgaaaacg	gcaagtacga	cattaaagac	gtggcgtgg	ataacgctgg	cgcgaaagcg	2100
ggtctgaccc	tcctgggtga	cctgattaaa	aacaaacaca	tgaatgcaga	caccgattac	2160
tccatcgca	aagctgcctt	taataaaggc	gaaacagcga	tgaccatcaa	cggcccggtg	2220
gcatggtcca	acatcgacac	cagcaaagtg	aattatggtg	taacggtaact	gccgacccctc	2280
aagggtcaac	catccaaacc	gttcgttggc	gtgctgagcg	caggtattaa	cgcgcggcagt	2340
ccgaacaaag	agctggcaaa	agagttcctc	gaaaactatc	tgctgactga	tgaaggctcg	2400
gaagcggta	ataaaagacaa	accgctgggt	gccgtagcgc	tgaagtctta	cgaggaagag	2460
ttggcgaaag	atccacgtat	tgccgcccacc	atgaaaacg	cccagaaaagg	tgaatcatg	2520
ccgaacatcc	cgcagatgtc	cgcttctgg	tatgcccgtc	gtactgcgtt	gatcaacgcc	2580
gccagcggtc	gtcagactgt	cgatgaagcc	ctgaaaagacg	cgcagactaa	ttcgagctcg	2640
aacaacaaca	acaataaaca	taacaacaac	ctcgggatcg	aggaaaggat	ttcagaattc	2700
ggatcctctt	cctctgtggc	ccaggcggcc	ctcgagcccc	gggagaagcc	ctatgcttg	2760
ccggaatgtg	gtaagtctt	ctctcagagc	tctcacctgg	tgcgccacca	gcgtacccac	2820
acgggtgaaa	aaccgtataa	atgcccagag	tgccgcaaat	cttttagcca	gtccagcaac	2880
ctggtgcc	atcaacgcac	tcataactggc	gagaagccat	acaaatgtcc	agaatgtggc	2940
aagtcttct	ctcggtctga	caatctcgtc	cggcaccaac	gtactcacac	cggggagaag	3000
ccttatgctt	gtccggaaatg	tggtaagtcc	ttcagccgca	gcpataacct	gtgcgcac	3060
cagcgtaccc	acacgggtga	aaaaccgtat	aatgcccag	agtgcggcaa	atcttttagc	3120
caggccggcc	acctggccag	ccatcaacgc	actcatactg	gcpagaagcc	atacaaatgt	3180
ccagaatgtg	gcaagtctt	ctctcggtct	gacaatctcg	tccggcacca	acgtactcac	3240
accggtaaaa	aaactagtgg	ccaggccggc	cagtagccgt	acgacgttcc	ggactacgct	3300

<210> 15
<211> 3300
<212> DNA
<213> Artificial Sequence

<220>
<223> Partial sequence of pMal-m2 and zinc finger protein ZFPm2

<400> 15						
ccgacacccat	cgaatggtgc	aaaaccttcc	gcggtatggc	atgatacgcc	ccggaagaga	60
gtcaatttc	gtgttgtaat	gtgaaaccag	taacgttata	cgatgtcgca	gagttatgcgg	120
gtgtctctt	tcagaccgtt	tcccgcgtgg	tgaaccaggc	cagccacgtt	tctgcgaaaa	180
cgcggaaaaa	agtggaaagcg	gcgtggcgg	agctgaatta	cattcccaac	cgcgtggcac	240
aacaactggc	ggccaaacag	tcgttgcgt	ttggcgttgc	cacctccagt	ctggccctgc	300
acgcggcgtc	gcaatttgc	gccccgat	aatctcgcc	cgatcaactg	gtgtccagcg	360
tgttgtgtc	gttgttagaa	cgaagcgcg	tcgaaagctg	taaagcggcg	gtgcacaatc	420
ttctcgcc	acgcgtcagt	gggctgtat	ttaactatcc	gctggatgac	caggatgcca	480
ttgttgtgg	agctgcctgc	actaatgtt	cgccgttatt	tcttgatgtc	tctgaccaga	540
caccatcaa	cagtattatt	ttctccat	aagacggta	gcpactggc	gtggagcatc	600
tgtcgccatt	gggtcaccag	caaatcgcc	tgttagcggg	cccattaaat	tctgtctcg	660
cgcgtctgc	tctggctggc	tggcataaaat	atctcactcg	caatcaaatt	cagccgatag	720
cggaaacggg	aggcgactgg	agtgccatgt	ccggtttca	acaaaccatg	caaatgtcg	780
atgagggcatt	cgttccact	gcgtatgtt	ttggccaa	tcaatggcg	ctggcgcaaa	840
tgcgcgcatt	taccgagtcc	gggctgcgc	ttggtgcgg	tatctcgta	gtgggatacg	900
acgataccga	agacagctca	tgttatatcc	cgccgttaac	caccatcaa	caggatttc	960
gcctgttgg	gcaaaaccagc	gtggaccgt	tgctgcaact	ctctcaggcc	caggcgggtg	1020
aggcgaatca	gctgttggcc	gtctcactgg	tgaaaagaaa	aaccaccctg	gcgcggcaata	1080
cgcggcc	ctctcccccgc	gcgtggcc	attcattaaat	gcagctggca	cgacagggtt	1140
cccgactgg	aaggcggcag	tgagcgcaac	gcaattaatg	tgagtttagt	cactcattag	1200
gcacaatttc	catgtttgac	agcttatacat	cgactgcacg	gtgcaccaat	gcttctggcg	1260
tcaggcagcc	atcggaaagct	gtggtatggc	tgtgcaggc	gtaaatcaact	gcataattcg	1320
tgtcgctcaa	ggcgactcc	cgttctggat	aatgtttttt	gcgcggacat	cataacgggt	1380
ctggcaaata	ttctgaaatg	agctgttgcac	aattaatcat	cggtctgtat	aatgtgtg	1440
attgtgagcg	gataacaatt	tcacacagga	aacagccgt	ccgtttaggt	gtttcacaga	1500
gcacttcacc	aacaaggacc	atagattatg	aaaactgaag	aaggtaaact	gttaatctgg	1560
attaacggcg	ataaaaggcta	taacggtctc	gctgaagtcg	gtaagaaatt	cgagaaagat	1620

accggaattt	aagtccacgt	tgagcatccg	gataaactgg	aagagaaaatt	cccacaggtt	1680
gcccgaactg	gcgatggccc	tgacattatc	ttctgggcac	acgaccgctt	tgttgttgcac	1740
gctcaatctg	gcctgttggc	tgaaatcacc	ccggacaaag	cgttccagga	caagctgttat	1800
ccgtttacct	gggatggcg	acgttacaac	ggcaagctga	ttgcttaccc	gatcgctgtt	1860
gaagcgttat	cgctgattta	taacaaagat	ctgctgccg	acccgc当地	aacctggaa	1920
gagatcccgg	cgctggataa	agaactgaaa	gcaagggta	agagcgc当地	gatgttcaac	1980
ctgcaagaac	cgtacttcac	ctggccgctg	attgtctgt	acgggggtt	tgcgttcaag	2040
tatgaaaacg	gcaagtacga	cattaaagac	gtggcgctgg	ataacgctgg	cgc当地agcg	2100
ggtctgaccc	tcctgttga	cctgattaaa	aacaaacaca	tgaatgcaga	caccgattac	2160
tccatcgca	aagctgcctt	taataaaggc	gaaacagcg	tgaccatcaa	cggcccgtgg	2220
gcatggtcca	acatcgacac	cagcaaagt	aattatggt	taacggtaact	gccgacacttc	2280
aagggtcaac	catccaaacc	gttcgttggc	gtgctgagcg	caggtattaa	cgc当地ccag	2340
ccgaacaaag	agctggcaaa	agagttccctc	gaaaactatc	tgctgactga	tgaaggctcg	2400
gaagcggtt	ataaaagacaa	accgctgggt	gccgtagcg	tgaagtctt	cgaggaagag	2460
ttggcgaaag	atccacgtat	tgccgccacc	atgaaaacg	cccagaaaagg	tgaatcatg	2520
ccgaacatcc	cgc当地atgtc	cgcttctgg	tatgcccgtc	gtactgcccgt	gatcaacgc当地	2580
gccagcggtc	gtcagactgt	cgatgaagcc	ctgaaagacg	cgc当地actaa	ttcgagctcg	2640
aacaacaaca	acaataacaa	taacaacaac	ctcgggatcg	agggaaaggat	ttcagaattc	2700
ggatcctctt	cctctgtggc	ccaggcggcc	ctcgagcccc	gggagaagcc	ctatgcttgc当地	2760
ccggaatgtg	gtaagtcctt	ctctcagagc	tctcacctgg	tgc当地ccacca	gc当地tacccac	2820
acgggtgaaa	aaccgtataa	atgcccagag	tgccgcaaat	cttttagcca	gtccagcaac	2880
ctggtgcc	atcaacgcac	tcatactggc	gagaagccat	acaaatgtcc	agaatgtggc	2940
aagtcttct	ctcggctctga	caatctcg	cgccaccaac	gtactcacac	cggggagaag	3000
ccctatgctt	gtccgaaatg	tggttaagtcc	ttcagccgca	gcpataacct	ggtgc当地ccac	3060
cagcgtaccc	acacgggtga	aaaaccgtat	aaatgcccag	agtgc当地aa	atcttttagc	3120
caggccggcc	acctggccag	ccatcaacgc	actcatactg	gcpagaagcc	atacaaatgt	3180
ccagaatgtg	gcaagtctt	ctctcggtct	gacaatctcg	tccggccacca	acgtactcactc	3240
accggtaaaa	aaactagtgg	ccaggccggc	cagtagccgt	acgacgttcc	ggactacgct	3300

<210> 16

<211> 3300

<212> DNA

<213> Artificial Sequence

<220>

<223> Partial sequence of pMal-m3 and zinc finger protein ZFPm3

<400> 16

ccgacacccat	cgaatggtgc	aaaacctttc	gcggtatggc	atgatacg	ccggaaagaga	60
gtcaatttc	gggtgtgaat	gtgaaaccag	taacgttata	cgatgtcg	gagttatgccc	120
gtgtctctt	tcagaccgtt	tcccgcgtgg	tgaaccaggc	cagccacgtt	tctgc当地aaa	180
cgccggaaaa	agtggaaagcg	gcatggccg	agctgaatta	cattccaaac	cgc当地ggcac	240
aacaactggc	gggcaaaacag	tcgttgcgt	ttggcgttgc	cacctccagg	ctggccctgc	300
acgcgc当地	gcaaaattgtc	gccccgat	aatctcg	cgatcaactg	ggtgc当地agcg	360
tgtgtgtgtc	gatggtagaa	cgaagcggcg	tcgaagcctg	taaagcggcg	gtgc当地aaatc	420
tttcgcgc	acgcgtc	gggctgatc	ttaactatcc	gtggatgac	caggatgcca	480
tttgcgtgtt	agctgcctgc	actaatgtt	cgccgttatt	tcttgc当地tgc	tctgaccaga	540
cacccatcaa	cagtattatt	ttctccatg	aagacggat	gcpactggc	gtggagcata	600
tgtgc当地t	gggtcaccag	caaatcg	tgttagcggg	cccattaatg	tctgtctcg	660
cgc当地tgc	tctggcgttgc	tggcataaaat	atctcactcg	caatcaaatt	cagccatag	720
cgaacgggaa	aggcgactgg	agtgc当地t	ccggtttca	acaaaccatg	caaatgtga	780
atgaggggcat	cgttccact	gcatgttgc	ttgccaacga	tcatggc	ctggccgca	840
tgc当地ccat	taccgagtc	gggctgc	ttgtgtgc	tatctcgta	gtgggata	900
acgataccga	agacagctc	tgttatacc	cgccgtt	caccatcaa	caggat	960
gcctgttggg	gcaaaaccagc	gtggaccgt	tgctgcaact	ctctcagg	caggccgt	1020
aggc当地atc	gctgttgc	gtctcactgg	tgaaaagaaa	aaccaccctg	gc当地ccata	1080
cgc当地accgc	ctctccccc	gcatgttgc	attcattaaat	gcagctggc	cgacagg	1140
cccgactgg	aagcggccag	tgagcgaac	gcaattatg	tgagttagct	cactcattag	1200
gcacaatttc	catgtttgac	agcttatacc	cgactgc	gtgc当地aa	gettctggc	1260
tcaggc当地	atcggaaagct	gtgtatggc	tgtgc当地tgc	gtaaatact	gcataattc	1320
tgtgc当地t	ggcgactcc	cgttctgtat	aatgtttt	gccc当地acat	cataacgg	1380
ctggcaaata	ttctgaaatg	agctgttgc	aattatcat	cggtctgtat	aatgtgtg	1440
attgtgagcg	gataacaatt	tcacacagga	aacagccagt	ccgtttaggt	gtttcacga	1500

gcacttcacc	aacaaggacc	atagattatg	aaaactgaag	aaggtaaact	gtaatctgg	1560
attaacggcg	ataaaaggcta	taacggctc	gctgaagtgc	gtaagaaatt	cgagaaagat	1620
accggaatta	aagtaccgt	tgagcatccg	gataaaactgg	aagagaaatt	cccacaggtt	1680
gcccgaactg	gcgatggccc	tgacattatc	ttctgggcac	acgaccgctt	tgtggctac	1740
gctcaatctg	gcctgttggc	tgaatcacc	ccgacaaag	cgttccagga	caagctgtat	1800
ccgttaccc	gggatgccgt	acgttacaac	ggcaagctga	ttgcttaccc	gatcgctgtt	1860
gaagcgttat	cgctgattta	taacaaagat	ctgctgccg	acccgc当地	aacctggaa	1920
gagatcccgg	cgctggataa	agaactgaaa	gcgaaaggta	agagcgc当地	gatgttcaac	1980
ctgcaagaac	cgtacttcac	ctggccgctg	attgctgctg	acgggggtt	tgcgttcaag	2040
tatgaaaacg	gcaagtacga	cattaaagac	gtggcgtgg	ataacgctgg	cgcgaaagcg	2100
ggtctgaccc	tcctgggtga	cctgattaaa	aacaaacaca	tgaatgcaga	caccgattac	2160
tccatcgca	aagctgcctt	taataaaggc	gaaacagcga	tgaccatcaa	cggcccgtgg	2220
gcatggtcca	acatcgacac	cagcaaagtg	aattatggtg	taacggtaact	gccgacccccc	2280
aagggtcaac	catccaaacc	gttcgttggc	gtgctgagcg	caggtattaa	cggccggcag	2340
ccgaacaaag	agctggcaaa	agagttccct	gaaaactatc	tgctgactga	tgaaggctcg	2400
gaagcggtt	ataaaagacaa	accgctgggt	gccgtagcgc	tgaagtctta	cgaggaagag	2460
ttggcgaaag	atccacgtat	tgccgcccacc	atgaaaacg	cccagaaagg	tgaatcatcg	2520
ccgaacatcc	cgcagatgtc	cgcttctgg	tatgccgtgc	gtactgc当地	gatcaacgccc	2580
gccagcggc	gtcagactgt	cgatgaagcc	ctgaaagacq	cgcagactaa	ttcgagctcg	2640
aacaacaaca	acaataacaa	taacaacaac	ctcggatcg	agggaaaggat	ttcagaattc	2700
ggatccttct	cctctgtggc	ccaggcggcc	ctcgagcccg	gggagaagcc	ctatgctgt	2760
ccgaaatgtg	gtaagtctt	cagcgatcc	ggcacctgg	ttcgccacca	gcgtacccac	2820
acgggtgaaa	aaccgtataa	atgcccagag	tgccgcaaat	cttttagcac	cagcggctcc	2880
ctggtgcc	atcaacgcac	tcatactggc	gagaagccat	acaaatgtcc	agaatgtggc	2940
aagtcttca	gccagagctc	cagcctggt	cgcaccaac	gtactcacac	cggggagaag	3000
ccctatgctt	gtccggaaatg	tggtaagtc	ttcagccaga	gcagctccct	gtgcgc当地	3060
cagcgtaccc	acacgggtga	aaaaccgtat	aaatgcccag	agtgc当地	atcttttagt	3120
gactgccgc	accttgctcg	ccatcaacgc	actcatactg	gcgagaagcc	atacaaatgt	3180
ccagaatgtg	gcaagtctt	ctcccaatcc	agccatctcg	tccggcacca	acgtactcac	3240
accggtaaaa	aaactagtgg	ccaggccggc	cagtagccgt	acgacgttcc	ggactacgct	3300

<210> 17
<211> 3300
<212> DNA
<213> Artificial Sequence

<220>
<223> Partial sequence of pMal-m4 and zinc finger protein ZFPm4

<400> 17						
ccgacaccat	cgaatggtgc	aaaaccttc	gcggtatggc	atgatacgcc	ccggaagaga	60
gtcaatttc	ggtggtgaat	gtgaaaccag	taacgttata	cgatgtcgca	gagttatgc当地	120
gtgtcttta	tcagaccgtt	tcccgcgtgg	tgaaccaggc	cagccacgtt	tctgc当地	180
cgcggaaaaa	agtggaaagcg	gcatggcgg	agctgaatta	cattcccaac	cgcgtggcac	240
aacaactggc	ggc当地aaacag	tcgttgc当地	ttggcgttgc	cacctccagg	ctggccctgc	300
acgcgc当地	gcaaaattgtc	gccccgat	aatctcgcc	cgatcaactg	ggtgc当地	360
tgggtgtc	gatggtagaa	cgaagcggc	tcgaagcctg	taaagcggc	gtgc当地	420
ttctcgccca	acgcgtcag	gggctgatca	ttaactatcc	gctggatgac	caggatgcca	480
ttgctgtgg	agctgc当地	actaatgtt	cgccgttatt	tcttgc当地	tctgaccaga	540
cacccatcaa	cagtattatt	ttctccat	aagacggtac	gcatggc	gtggagc当地	600
tggtc当地	gggtcaccag	caaattcgcc	tgttagc当地	cccattaaatg	tctgtctcg	660
cgcgtctgc	tctggctggc	tggcataaaat	atctcactcg	caatcaaatt	cagccgatag	720
cggaaacggg	aggcgactgg	agtgccatgt	ccggtttca	acaaaccatg	caaatgtca	780
atgagggc	cgttccact	gcatgtc当地	ttgccaacga	tcatggc	ctggc当地	840
tgcgc当地	taccgagtc	gggctgc当地	ttggc当地	tatctcgta	gtgggatacg	900
acgataccga	agacagctca	tgttatatcc	cgccgttaac	cacccatcaa	caggatttc	960
gcctgctgg	gcaaaccaggc	gtggaccgct	tgctgcaact	ctctcagg	caggcggtga	1020
aggc当地atca	gctgttgc当地	gtctcactgg	tgaaaagaaaa	aaccaccctg	gccc当地	1080
cgc当地accgc	ctctcccccgc	gcgttggccg	attcattaaat	gcagctggca	cgacagg	1140
cccgactgg	aaggcggcag	tgagc当地	gcaattaaatg	ttagttagct	cactcattag	1200
gcacaatttc	catgtttgac	agtttatcat	cgactgc当地	gtgc当地	atcttgc当地	1260
tcaggcagcc	atcggaaagct	gtgttatggc	tgtgc当地	gtaaatact	gcataattcg	1320
tgtcgctcaa	ggcgcactcc	cggttctggat	aatgttttt	gccc当地	cataacggtt	1380

ctggcaaata	ttctgaaatg	agctgttgc	aattaatcat	cggctcgat	aatgtgtgga	1440
attgtgagcg	gataacaatt	tcacacagga	aacagccagt	ccgtttaggt	gtttcacga	1500
gcacttcacc	aacaaggacc	atagattatg	aaaactgaag	aaggtaaact	gtaatctgg	1560
attaacggcg	ataaaggcta	taacggctc	gctgaagtcg	gtaagaaatt	cgagaaagat	1620
accggaatta	aagtccacgt	tgagcatccg	gataaactgg	aagagaaatt	cccacaggtt	1680
gcccccaactg	gcgatggccc	tgacattatc	ttctgggcac	acgaccgctt	tggtggtac	1740
gctcaatctg	gcctgttggc	tgaatcacc	ccggacaaag	cgttccagga	caagctgtat	1800
ccgtttacct	gggatggcg	acgttacaac	ggcaagctga	ttgcttaccc	gatcgctgtt	1860
gaagcgttat	cgctgattta	taacaaagat	ctgctgccg	acccgc当地	aacctggaa	1920
gagatcccgg	cgctggataa	agaactgaaa	gcgaaaggta	agagcgc当地	gatgttcaac	1980
ctgcaagaac	cgtacttcac	ctggccgctg	attgctgctg	acgggggtt	tgcgttcaag	2040
tatgaaaacg	gcaagtacga	cattaaagac	gtggcgttgg	ataacgctgg	cgcgaaagcg	2100
ggctgacct	tcctggttga	cctgattaaa	aacaaacaca	tgaatgcaga	caccgattac	2160
tcacatcgac	aagctgcctt	taataaaggc	gaaacagcga	tgaccatcaa	cggccgttgg	2220
gcatggtcca	acatcgacac	cagcaaagtg	aattatggtg	taacggtaact	gcccaccc	2280
aagggtcaac	catccaaacc	gttcgttggc	gtgctgagcg	caggtattaa	cggccccc当地	2340
ccgaacaaag	agctggcaaa	agagttcctc	gaaaactatc	tgctgactga	tgaaggtctg	2400
gaagcggta	ataaagacaa	accgctgggt	gccgtagcgc	tgaagtctt	cgaggaagag	2460
ttggcggaaag	atccacgtat	tgccgc当地	atgaaaacg	cccagaaagg	tgaatcatg	2520
ccgaacatcc	cgcagatgtc	cgcttctgg	tatgccgtc	gtactcggt	gatcaacgcc	2580
gccagcggtc	gtcagactgt	cgatgaagcc	ctgaaagacg	cgcagactaa	ttcgagctcg	2640
aacaacaaca	acaataacaa	taacaacaac	ctcggatcg	agggaaaggat	ttcagaattc	2700
ggatcctctt	cctctgtggc	ccaggcggcc	ctcgagcccg	gggagaagcc	ctatgcttgc	2760
ccggaatgtg	gtaagtcctt	cagccagagc	agctccctgg	tgcgccacca	gcgttacccac	2820
acgggtgaaa	aaccgtataa	atgcccagag	tgccgcaaat	cttttagcca	gagcagcagc	2880
ctgggtgcgc	atcaacgcac	tcataactggc	gagaagccat	acaatgtcc	agaatgtggc	2940
aagtcttca	gtgattgtcg	tgatcttgcg	aggcaccac	gtactcacac	cggggagaag	3000
ccctatgctt	gtccggaatg	tggttaagtcc	ttctctcaga	gctctcacct	ggtgc当地	3060
cacgctaccc	acacgggtga	aaaaccgtat	aaatgcccag	agtgc当地	atcttttagc	3120
cgcagcgata	acctggtgcg	ccatcaacgc	actcatactg	gcgagaagcc	atacaaatgt	3180
ccagaatgtg	gcaagtctt	ctcaactca	ggcatttgg	tccgtcacca	acgtactcac	3240
accggtaaaa	aaactagtgg	ccaggccggc	cagtaccgt	acgacgttcc	ggactacgct	3300

<210> 18
<211> 3300
<212> DNA
<213> Artificial Sequence

<220>
<223> Partial sequence of pMal-Ap3 and zinc finger protein ZFPAp3

<400> 18						
ccgacaccat	cgaatggtgc	aaaacccccc	gccccatggc	atgatagcgc	ccggaagaga	60
gtcaattcag	ggtggtgaat	gtgaaaccag	taacgttata	cgatgtcgca	gagttatgccc	120
gtgtctctt	tcagaccgtt	tcccgcgtgg	tgaaccaggc	cagccacgtt	tctgc当地	180
cgcggaaaaa	agtggaaagcg	gcgcgtgggg	agctgaatta	cattcccaac	cgcgtggcac	240
aacaactggc	gggcaaacag	tcgttgcga	ttggcgttgc	cacctccagg	ctggccctgc	300
acgcgc当地	gcaaaattgtc	gcggcgat	aatctcgcc	cgatcaactg	ggtgc当地	360
tgggtgggtc	gatggtagaa	cgaagcggcg	tcgaagcctg	taaagcggcg	gtgc当地	420
tttcgc当地	acgcgtcagg	gggctgatca	ttaactatcc	gctggatgac	caggatgcca	480
ttgtgttgg	agctgcctgc	actaatgtt	cgccgttatt	tcttgc当地	tctgaccaga	540
cacccatcaa	cagtattatt	ttctcccatg	aagacggta	gcaactggc	gtggagcatc	600
tggtcgcatt	gggtcaccag	caaatcgcc	tgttagcggg	cccattaaat	tctgtctcgg	660
cgcgtctgcg	tctggctggc	tggcataaaat	atctcactcg	caatcaaatt	cagccgatag	720
cggAACGGGA	aggcgactgg	agtgccatgt	ccgggttca	acaaaccatg	caaatgtga	780
atgagggcat	cgttccact	gcgcgtgtgg	ttggccaa	tcagatggcg	ctgggc当地	840
tgcgc当地	taccgactcc	gggctgc当地	ttggtgc当地	tatctcggt	gtgggatacg	900
acgataccga	agacactca	tgttatcc	cgccgttaac	caccatcaa	caggatcc	960
gcctgttggg	gcaaaaccagc	gtggaccgt	tgctgcaact	ctctcaggcc	caggcggta	1020
agggcaatc	gctgttgc当地	gtctcactgg	tgaaaagaaa	aaccaccctg	gcgc当地	1080
cgc当地	ctctccccc	gcgttggccg	attcattaaat	gcaactggc	cgacagggtt	1140
cccgactgga	aaggccccag	tgagcgaac	gcaattaaatg	tgagtttagct	cactcattag	1200
gcacaattct	catgtttgac	agtttatcat	cgactgcacg	gtgc当地	gcttctggcg	1260

tcaggcagcc	atcggaagct	gtggtatggc	tgtgcaggc	gtaaaatca	ct	gcataattcg	1320			
tgtcgctcaa	ggcgca	cactcc	cg	ttctggat	aatgtttt	gcgccc	gacat	cataac	cggtt	1380
ctggcaaata	ttctgaaatg	agctgttgc	aattaatcat	cg	gtcgat	aatgtgtg	1440			
attgtgagcg	gataacaatt	tcacacagga	aacagccagt	ccg	tttaggt	gtttcacga	1500			
gcacttcacc	aacaaggacc	atagattatg	aaaactgaag	aaggtaa	act	gtaatctgg	1560			
attaacggcg	ataaaaggcta	taacggtctc	gctgaagtgc	gtaa	gaaatt	cgagaaagat	1620			
accggaa	attttaa	tgagcatccg	gataaaactgg	aagaga	aaattt	cccacagg	1680			
gcccccaactg	gcgatggccc	tgacattatc	ttctgggcac	acgaccg	ctt	tggtggctac	1740			
gctcaatctg	gcctgttggc	tgaaatcacc	ccggacaaag	cg	ttccagga	caagctgtat	1800			
ccg	tttac	gggatggcg	acgttacaac	ggcaag	ctgta	ttgcttaccc	gatcgctgtt	1860		
gaagcg	ttat	cgctgattt	taacaaagat	ctg	ctgccc	accgc	aaaa	aacctgggaa	1920	
gagatcccgg	cgctggataa	agaactgaaa	gcgaaaggta	agagcgc	gct	gatgttcaac	1980			
ctgcaagaac	cgtactt	cac	ctggccg	ctg	attgtgt	acgggg	ttt	tgcgttcaag	2040	
tatgaaaacg	gcaag	tacga	cattaaagac	gtgg	ggcgt	at	aacgt	ggc	2100	
gg	tctgac	cttgg	ttg	ctt	tttttt	aa	ccaaacaca	tgaatgcaga	2160	
tc	ccatcg	cg	aa	gct	ttt	aa	taataaaggc	tgaccat	2220	
g	catgg	tcc	ac	atcg	ttt	ttt	aa	cgcccgt	2280	
a	agggt	caac	cat	ccaa	ttt	ttt	aa	gtt	2340	
cc	gaac	aa	ag	ctgc	ttt	ttt	aa	ccgtt	2400	
g	aa	gg	ttt	ttt	ttt	ttt	aa	tgaa	2460	
g	aa	gg	ttt	ttt	ttt	ttt	aa	gggt	2520	
t	ttt	ttt	ttt	ttt	ttt	ttt	aa	ttt	2580	
cc	gaac	at	cc	cg	ttt	ttt	aa	ttt	2640	
g	cc	at	cc	cg	ttt	ttt	aa	ttt	2700	
c	cc	at	cc	cg	ttt	ttt	aa	ttt	2760	
cc	cc	at	cc	cg	ttt	ttt	aa	ttt	2820	
g	cc	at	cc	cg	ttt	ttt	aa	ttt	2880	
cc	cc	at	cc	cg	ttt	ttt	aa	ttt	2940	
g	cc	at	cc	cg	ttt	ttt	aa	ttt	3000	
c	cc	at	cc	cg	ttt	ttt	aa	ttt	3060	
c	cc	at	cc	cg	ttt	ttt	aa	ttt	3120	
c	cc	at	cc	cg	ttt	ttt	aa	ttt	3180	
c	cc	at	cc	cg	ttt	ttt	aa	ttt	3240	
c	cc	at	cc	cg	ttt	ttt	aa	ttt	3300	

<210> 19
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligo m12

<400> 19
ggagcctcct tcctcctctc actcgggtt tcccgagtga gaggaggaag gaggctcc 58

<210> 20
<211> 64
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligo m34

<400> 20
ggagccaact actacggctc cctcaccggg ttttcccggt gaggagccg tagtagttgg 60
ctcc 64

<210> 21
<211> 52
<212> DNA
<213> Artificial Sequence

<220>

<223> Oligo Ap3
 <400> 21
 ggttacttct tcaactccat cgggtttcc cgatggagtt gaagaagtaa cc 52
 <210> 22
 <211> 50
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Oligo NRI-1
 <400> 22
 ggttctaccc ctccccaccgc ggggtttccc gcgggtgggag gggtagaacc 50
 <210> 23
 <211> 50
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Oligo NRI-2
 <400> 23
 ggtgcggcga ctgcagcagc ggggtttccc gctgctgcag tcgcccgcacc 50
 <210> 24
 <211> 50
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Oligo hHD-I
 <400> 24
 ggggccccgc ctccgccccgc ggggtttccc gccggcgag gcggggccccc 50
 <210> 25
 <211> 50
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Oligo hHD-II
 <400> 25
 ggggcagccc ccacggcgcc ggggtttccc ggccgcgtgg gggctgcccc 50
 <210> 26
 <211> 50
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Oligo c5p1-g
 <400> 26
 gggcacacccc caaccccgcc ggggtttccc ggccgggttg ggggtgtccc 50
 <210> 27
 <211> 50
 <212> DNA
 <213> Artificial Sequence

```

<220>
<223> Oligo c5p3-g

<400> 27
ggctctgctc atcccaactac gggtttccc gtagtggat gagcagagcc      50

<210> 28
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligo B3c2

<400> 28
ggaccaccccg cgtccccctcc gggtttccc ggaggggacg cgggtgggtcc      50

<210> 29
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligo e2c-g

<400> 29
ggcactgcgg ctccggcccc gggtttccc gggccggag ccgcagtgcc      50

<210> 30
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer Ap3-F

<400> 30
ggcgagagg aagatccag      19

<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer NZlib5'

<400> 31
ggcccaggcg gccctcgagc      20

<210> 32
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer Ap3f4-R

<400> 32
ctcccttaat acgactcact atagggacac tcacacctagcc tctg      44

<210> 33
<211> 21

```

```

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer m4f3

<400> 33
cctcgcaaga tcacgacaat c 21

<210> 34
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR probe for AP3

<400> 34
ccatttcattc ctcaagacga cgtagct 27

<210> 35
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer for AP3 (forward)

<400> 35
tttggacgag cttgacattc ag 22

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer for AP3 (reverse)

<400> 36
cgcgAACGAG tttgaaagtg 20

<210> 37
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 37
ctcccttaat acgactcact ataggacac tcacctagcc tctg 44

<210> 38
<211> 184
<212> PRT
<213> Artificial Sequence

<220>
<223> ZFPm1

<400> 38
Ala Gln Ala Ala Leu Glu Pro Gly Glu Lys Pro Tyr Ala Cys Pro Glu
1 5 10 15

```

Cys Gly Lys Ser Phe Ser Asp Pro Gly His Leu Val Arg His Gln Arg
 20 25 30
 Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser
 35 40 45
 Phe Ser Gln Arg Ala His Leu Glu Arg His Gln Arg Thr His Thr Gly
 50 55 60
 Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser Phe Ser Gln Ser
 65 70 75 80
 Ser Asn Leu Val Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr
 85 90 95
 Ala Cys Pro Glu Cys Gly Lys Ser Phe Ser Arg Ser Asp Asn Leu Val
 100 105 110
 Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu
 115 120 125
 Cys Gly Lys Ser Phe Ser Arg Ser Asp Asn Leu Val Arg His Gln Arg
 130 135 140
 Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser
 145 150 155 160
 Phe Ser Gln Ala Gly His Leu Ala Ser His Gln Arg Thr His Thr Gly
 165 170 175
 Lys Lys Thr Ser Gly Gln Ala Gly
 180

<210> 39
 <211> 184
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> ZFPm2

<400> 39
 Ala Gln Ala Ala Leu Glu Pro Gly Glu Lys Pro Tyr Ala Cys Pro Glu
 1 5 10 15
 Cys Gly Lys Ser Phe Ser Gln Ser Ser His Leu Val Arg His Gln Arg
 20 25 30
 Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser
 35 40 45
 Phe Ser Gln Ser Ser Asn Leu Val Arg His Gln Arg Thr His Thr Gly
 50 55 60
 Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser Phe Ser Arg Ser
 65 70 75 80
 Asp Asn Leu Val Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr
 85 90 95
 Ala Cys Pro Glu Cys Gly Lys Ser Phe Ser Arg Ser Asp Asn Leu Val
 100 105 110
 Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu
 115 120 125
 Cys Gly Lys Ser Phe Ser Gln Ala Gly His Leu Ala Ser His Gln Arg
 130 135 140
 Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser
 145 150 155 160
 Phe Ser Arg Ser Asp Asn Leu Val Arg His Gln Arg Thr His Thr Gly
 165 170 175
 Lys Lys Thr Ser Gly Gln Ala Gly
 180

<210> 40
 <211> 184
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> ZFPm3

<400> 40
Ala Gln Ala Ala Leu Glu Pro Gly Glu Lys Pro Tyr Ala Cys Pro Glu
1 5 10 15
Cys Gly Lys Ser Phe Ser Asp Pro Gly His Leu Val Arg His Gln Arg
20 25 30
Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser
35 40 45
Phe Ser Thr Ser Gly Ser Leu Val Arg His Gln Arg Thr His Thr Gly
50 55 60
Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser Phe Ser Gln Ser
65 70 75 80
Ser Ser Leu Val Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr
85 90 95
Ala Cys Pro Glu Cys Gly Lys Ser Phe Ser Gln Ser Ser Leu Val
100 105 110
Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu
115 120 125
Cys Gly Lys Ser Phe Ser Asp Ser Arg Asp Leu Ala Arg His Gln Arg
130 135 140
Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser
145 150 155 160
Phe Ser Gln Ser Ser His Leu Val Arg His Gln Arg Thr His Thr Gly
165 170 175
Lys Lys Thr Ser Gly Gln Ala Gly
180

<210> 41
<211> 184
<212> PRT
<213> Artificial Sequence

<220>
<223> ZFPm4

<400> 41
Ala Gln Ala Ala Leu Glu Pro Gly Glu Lys Pro Tyr Ala Cys Pro Glu
1 5 10 15
Cys Gly Lys Ser Phe Ser Gln Ser Ser Ser Leu Val Arg His Gln Arg
20 25 30
Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser
35 40 45
Phe Ser Gln Ser Ser Ser Leu Val Arg His Gln Arg Thr His Thr Gly
50 55 60
Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser Phe Ser Asp Cys
65 70 75 80
Arg Asp Leu Ala Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr
85 90 95
Ala Cys Pro Glu Cys Gly Lys Ser Phe Ser Gln Ser Ser Leu Val
100 105 110
Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu
115 120 125
Cys Gly Lys Ser Phe Ser Arg Ser Asp Asn Leu Val Arg His Gln Arg
130 135 140
Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser
145 150 155 160
Phe Ser Thr Ser Gly His Leu Val Arg His Gln Arg Thr His Thr Gly
165 170 175
Lys Lys Thr Ser Gly Gln Ala Gly
180

<210> 42
<211> 184
<212> PRT

<213> Artificial Sequence

<220>

<223> ZFPAp3

<400> 42

Ala Gln Ala Ala Leu Glu Pro Gly Glu Lys Pro Tyr Ala Cys Pro Glu
1 5 10 15
Cys Gly Lys Ser Phe Ser Gln Ser Ser Ser Leu Val Arg His Gln Arg
20 25 30
Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser
35 40 45
Phe Ser Gln Ser Ser Asn Leu Val Arg His Gln Arg Thr His Thr Gly
50 55 60
Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser Phe Ser Gln Ser
65 70 75 80
Ser Asn Leu Val Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr
85 90 95
Ala Cys Pro Glu Cys Gly Lys Ser Phe Ser Thr Ser Gly Ser Leu Val
100 105 110
Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu
115 120 125
Cys Gly Lys Ser Phe Ser Gln Ser Ser His Leu Val Arg His Gln Arg
130 135 140
Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser
145 150 155 160
Phe Ser Thr Ser Gly Asn Leu Val Arg His Gln Arg Thr His Thr Gly
165 170 175
Lys Lys Thr Ser Gly Gln Ala Gly
180

<210> 43

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Promoter 18bp 2C7

<400> 43

gcgtggcgg cgtggcg

18

<210> 44

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> ZFP domain

<400> 44

Ser Gln Ser Ser Asn Leu Val

1 5

<210> 45

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> ZFP domain

<400> 45

Ser Asp Pro Gly Asn Leu Val

1

5

<210> 46
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> ZFP domain

<400> 46
Ser Arg Ser Asp Asn Leu Val Arg
1 5

<210> 47
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> ZFP domain

<400> 47
Ser Thr Ser Gly Asn Leu Val
1 5

<210> 48
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> ZFP domain

<400> 48
Ser Gln Ser Gly Asp Leu Arg Arg
1 5

<210> 49
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> ZFP domain

<400> 49
Ser Asp Cys Arg Asp Leu Ala Arg
1 5

<210> 50
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> ZFP domain

<400> 50
Ser Arg Ser Asp Asp Leu Val Arg
1 5

<210> 51
<211> 7

<212> PRT
<213> Artificial Sequence

<220>
<223> ZFP domain

<400> 51
Ser Thr Ser Gly Glu Leu Val
1 5

<210> 52
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> ZFP domain

<400> 52
Ser Gln Ser Ser His Leu Val Arg
1 5

<210> 53
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> ZFP domain

<400> 53
Ser Gln Arg Ala His Leu Glu Arg
1 5

<210> 54
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> ZFP domain

<400> 54
Ser Asp Pro Gly His Leu Val Arg
1 5

<210> 55
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> ZFP domain

<400> 55
Ser Arg Ser Asp Lys Leu Val Arg
1 5

<210> 56
<211> 8
<212> PRT
<213> Artificial Sequence

<220>

<223> ZFP domain

<400> 56
Ser Thr Ser Gly His Leu Val Arg
1 5

<210> 57
<211> 8
<212> PRT
<213> Artificial Sequence

<220>

<223> ZFP domain

<400> 57
Ser Gln Ser Ser Ser Leu Val Arg
1 5

<210> 58
<211> 8
<212> PRT
<213> Artificial Sequence

<220>

<223> ZFP domain

<400> 58
Ser Asp Pro Gly Ala Leu Val Arg
1 5

<210> 59
<211> 8
<212> PRT
<213> Artificial Sequence

<220>

<223> ZFP domain

<400> 59
Ser Arg Ser Asp Val Leu Val Arg
1 5

<210> 60
<211> 8
<212> PRT
<213> Artificial Sequence

<220>

<223> ZFP domain

<400> 60
Ser Arg Lys Asp Ser Leu Val Arg
1 5

<210> 61
<211> 8
<212> PRT
<213> Artificial Sequence

<220>

<223> ZFP domain

<400> 61
Ser Thr Ser Gly Ser Leu Val Arg

1

5

<210> 62
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> ZFP domain

<400> 62
Ser Gln Ala Gly His Leu Ala Ser
1 5

<210> 63
<211> 330
<212> DNA
<213> Artificial sequence

<220>
<223> ZFPm2a

<400> 63
gaggaggagg aggtggccca ggcggccctc gagcccgggg agaagcccta tgcttgtccg 60
gaatgtggta agtccttcag ccgcagcgat aacctggtgc gccaccagcg taccacacg 120
ggtaaaaaac cgtataaaatg cccagagtgc ggcaaattttt ttagccaggc cgcccacctg 180
gcagccatc aacgcaactca tactggcgag aagccataca aatgtccaga atgtggcaag 240
tctttctctc ggtctgacaa tctcgccgg caccacgtt ctcacaccgg taaaaaaaact 300
agtggccagg ccggccagct ctcctcctc 330

<210> 64
<211> 330
<212> DNA
<213> Artificial sequence

<220>
<223> ZFP2b

<400> 64
gaggaggagg aggtggccca ggcggccctc gagcccgggg agaagcccta tgcttgtccg 60
gaatgtggta agtccttc tcaagactt caccgggtgc gccaccagcg taccacacg 120
ggtaaaaaac cgtataaaatg cccagagtgc ggcaaattttt ttagccagtc cagcaacctg 180
gtgcgccatc aacgcaactca tactggcgag aagccataca aatgtccaga atgtggcaag 240
tctttctctc ggtctgacaa tctcgccgg caccacgtt ctcacaccgg taaaaaaaact 300
agtggccagg ccggccagct ctcctcctc 330

<210> 65
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> Oligonucleotide

<400> 65
gagtgagagg aggaagga 18

<210> 66
<211> 5731
<212> DNA
<213> Artificial sequence

<220>
<223> 2C7-SID

<400> 66

gacggatcgg gagatctccc gatcccstat ggtcgactct cagtacaatc tgctctgatg	60
ccgcatatgtt aagccagtat ctgctccctg cttgtgttt ggaggtcgct gagtagtgcg	120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatt aagaatctgc	180
ttagggtag gcgtttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgcatt	240
gattattgac tagtattaa tagtaatcaa ttacgggtc attagttcat agccatata	300
tggagttccg cggtacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc	360
cccgccccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc	420
attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt	480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt	540
atgcccagta catgaccta tgggactttc ctacttggca gtacatctac gtattagtca	600
tcgctattac catggtgatg cggtttggc agtacatcaa tggcgtgga tagcggttt	660
actcacgggg atttccaagt ctccaccca ttgacgtcaa tgggagttt tttggcacc	720
aaaatcaacg ggacttcca aaatgtcgta acaactccgc cccattgacg caaatggcg	780
gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggctaact agagaaccca	840
ctgcttactg gcttatcgaa attaatacga ctcaactatag ggagacccaa gctggctagc	900
atggccgctg ccgtgcgcattt gaacatccag atgctgctcg aagccgtga ttatctggaa	960
cggcgggagc gcgaagccga gcacggctac gccagcatgc tgccatatcc gaaaaagaaa	1020
cgcaagggtgg cccaggcgcc cctcgagccc tatgcttgcctt ctgtcgagtc ctgcgatcgc	1080
cgttttcta agtcggctga tctgaagcgc catatccgc tccacacagg ccagaagccc	1140
ttccagtgtc gaatatgcat gcgttaacttc agtcgttagt accacccatc caccacatc	1200
cgcacccaca caggcgagaa gcctttgccc tggacattt gtgggaggaa gtttgcagg	1260
agtgtatgaaac gcaagaggca taccaaaatc cataccgggtt agaagcccta tgcttgcctt	1320
gtcgagtcct gcgatcgccg cttttctaag tcgctgatc tgaagccca tatccgcattc	1380
cacacaggcc agaagccctt ccagtgtcga atatgcattc gtaacttcg tcgttagtgc	1440
caccttacca cccacatccg caccacacaca ggccgagaagc cttttgcctt tgacatttgc	1500
gggaggaagt ttgccaggag tggatgaaacgc aagaggcata cccaaatccaa ttaagacag	1560
aaggactcta gaactagtgg ccaggccggc cagtaaaaaatc acgacgttcc ggactacgc	1620
tcttgaaaagc ttggtaaccga gctcgatcc actagtccag tgggtggaa ttctgcagat	1680
atccagcaca gtggccggc ctcgagttca gaggggccgtt taaaacccgc tgatcagcct	1740
cgtactgtgcc ttcttagttc cagccatcttgc ttgtttgcctt ctccccgtt ccttccttgc	1800
cccttggaaagg tgccactccc actgtccctt ccttaataaaaaa tgagaaattt gcatcgatt	1860
gtctgagtag gtgtcattctt attctgggggtt gttgggtggg gcaggacagc aagggggagg	1920
atgggaaga caatagcagg catgctgggg atgcgggtggg ctctatggct tctgaggcgg	1980
aaagaaccag ctggggctctt aggggtatc cccacgcgc cttgtcgcc gcattaaagcg	2040
cggcgggtgt ggtggttacg cgcagcgtga ccgcctacact tgccagcgc ctagcgcccc	2100
ctcccttcgc tttctccctt tcctttctcg ccacgttgcgc cggcttccc cgtcaagctc	2160
taaatcgggg catccctta gggttccat ttagtgcattt acggcacccgc gacccaaaaaa	2220
aacttgatta ggggtatggt tcacgtatgc ggcacatcgcc ctgataagacg gttttcgcc	2280
ctttgacgtt ggagttccacg ttcttaataa gtggactctt gttccaaactt ggaacaacac	2340
tcaaccctat ctgcgtctat tcttttgcatt tataaggat tttgggatt tcggcctatt	2400
ggtaaaaaaaaa tgagctgatt taacaaaaat ttaacgcgaa ttaattctgtt ggaatgtgt	2460
tcaatgggg tggaaagt ccccaggctc cccaggcagg cagaagtagt cttttcgcc	2520
atctcaatta gtcagcaacc aggtgtggaa agtccccagg ctccccagca ggcagaagta	2580
tcaaaagcat gcatctcaat tagtcagcaa ccatacgccc gcccctaact ccccccattcc	2640
cggcccttaac tccggccagg tccggccattt ctccggccca tggctgacta atttttttta	2700
tttatgcaga ggcggaggcc gcctctgcct ctgagctattt ccagaagtagt tgaggaggct	2760
tttttggagg cctaggctt tgcaaaaaggc tccggggagc ttgttatatcc attttcgat	2820
ctgatcagca cgtgttgcata attaatcattc ggcatacgat atcggcatag tataatacga	2880
caaggtgagg aactaaacca tggccaaggat gaccatgtgc gttccggcgc tcaccgcgc	2940
cgacgtcgcc ggaggcgtcg agttctgcac cgaccggctc ggttctccc gggacttcgt	3000
ggaggacgac ttccgggtg tggccggga cgacgtgacc ctgttcatca ggcggcgttca	3060
ggaccagggt gtggccggaca acaccctggc ctgggtgtgg gtcgcggcc tggacgagct	3120
gtacggcggag tggccggagg tggatgcac gaaatccgg gacgcctccg ggccggccat	3180
gaccggagatc ggccgacgcg cgtggggcg gggatgcgc ctgcgcgcacc cggccggccaa	3240
ctgcgtgcac ttccgtggccg aggacgcgaa ctgacacgtg ctacgagatt tcgatccac	3300
cggcccttc tatgaaaggat tggccatcg aatcgatcc cggacgcgc gctggatgt	3360
cctccagcgc gggatctca tgctggatcc ttcgccttccac cccaaacttgc ttattgcagc	3420
ttataatgggt tacaaaataaa gcaatagcat cacaatttc acaaataaaat catttttttcc	3480
actgcattctt agttgtgggt tggccaaactt catcaatgtt tcttacatgc tctgtatacc	3540
gtcgacctctt agctagagct tggcgtaatc atgtcgatag ctgtttctgt tggaaatttgc	3600
ttatccgctc acaattccac acaacatacg agccggaaatc ataaatgtt aagcctgggg	3660
tgcctaatga gtgagctaac tcacattaaat tgcgttgcgc tcactgccc ctttccagtc	3720

ggaaaacctg	tcgtgccagc	tgcattaatg	aatcgccaa	cgcgcgggga	gaggcggtt	3780
gcgtattgg	cgctttccg	cttcctcgct	caactgactcg	ctgcgcgtcg	tcgttcggct	3840
gccccgagcg	gtatcagctc	actcaaaggc	ggtaataacgg	ttatccacag	aatcagggga	3900
taacgcagga	aagaacatgt	gagcaaaagg	ccagcaaaag	gccaggaacc	gtaaaaaggc	3960
cgcgttgcgt	cggtttcc	ataggctccg	ccccctgac	gagcatcaca	aaaatcgacg	4020
ctcaagtca	aggtggcgaa	acccgacagg	actataaaga	taccaggcgt	ttccccctgg	4080
aagctccctc	gtgcgtctc	ctgtccgac	cctgcccgtt	accggatacc	tgtccgcctt	4140
tctcccttcg	ggaagcgtgg	cggttctca	atgctcacgc	tgttaggtatc	tcagttcggt	4200
gtaggtcggt	cgctccaagc	tgggctgtgt	gcacgaaccc	cccggtcage	cogaccgctg	4260
cgccttatcc	ggtaactatc	gtcttgagtc	caacccggta	agacacgact	tatcgccact	4320
ggcagcagcc	actggtaaca	ggatttagcag	agcgaggtat	gtaggcggtg	ctacagagtt	4380
cttgaagtgg	tggcttaact	acggctacac	tagaaggaca	gtatttggta	totgcgtct	4440
gctgaagcca	gttacctcg	gaaaaagagt	tggtagctct	tgatccggca	aacaaaccac	4500
cgtggtagc	gggtggtttt	ttgtttgca	gcagcagatt	acgcgcagaa	aaaaaggatc	4560
tcaagaagat	ccttgatct	tttctacggg	gtctgacgct	cagtggAACG	aaaactcacf	4620
ttaagggatt	ttggcatatga	gattatcaaa	aaggatctc	acctagatcc	ttttaaatta	4680
aaaatgaagt	tttaaatcaa	tctaaagatat	atatgagtaa	acttggctcg	acagttacca	4740
atgcttaatc	agtggggcac	ctatctcagc	gatctgtcta	tttcgttcat	ccatagttgc	4800
ctgactcccc	gtcgtgtaga	taactacgat	acgggagggc	ttaccatctg	gccccagtgc	4860
tgcataatgata	ccgcgagacc	cacgctcacc	ggctccagat	ttatcagcaa	taaaccagcc	4920
agccggaaagg	gcccggcgca	gaagtggtcc	tgcaacttta	tccgcctcca	tccagtctat	4980
taatttgtgc	cgggaagcta	gagtaagtag	ttcgcgcgtt	aatagttgc	gcaacgttgc	5040
tgccattgct	acaggcatcg	tgggtgtcacg	ctcgctgttt	ggtatggctt	cattcagctc	5100
cgttcccaa	cgatcaaggc	gagttacatg	atccccatg	ttgtcaaaaa	aagcggttag	5160
cctccctcggt	cctccgatcg	ttgtcagaag	taagttggcc	gcagtgttat	cactcatgg	5220
tatggcagca	ctgcataatt	ctcttactgt	catgccccatcc	gtaagatgct	tttctgtgac	5280
tgtgtgatc	tcaaccaagt	cattctgaga	atagtgtatg	cgcgaccga	gtgtcttttgc	5340
cccgccgtca	atacgggata	ataccgcgcc	acatagcaga	actttaaaag	tgctcatcat	5400
tgaaaaacgt	tcttcggggc	gaaaactctc	aagatctta	ccgctgttga	gatccagttc	5460
gatgttaaccc	actcggtcac	ccaaactgatc	ttcagcatct	tttactttca	ccagcggttc	5520
tgggtgagca	aaaacaggaa	ggcaaaatgc	cgcaaaaaag	ggaataaggg	cgacacggaa	5580
atgttgaata	ctcatactct	tccttttca	atattattga	agcatttatac	agggttatttgc	5640
tctcatgagc	ggatacatat	ttgaatgtat	ttagaaaaat	aaacaaatag	gggttccgctc	5700
cacatttccc	cgaaaagtgc	cacctgacgt	c			5731

<210> 67
<211> 81
<212> DNA
<213> Artificial sequence

<220>
<223> Primer F1-f1

<400> 67
gtaaagtccct tcagccgcag cgataaacctg gtgcgccacc agcgtacccca cacgggtgaa 60
aaaccgtata aatgcccaga g 81

<210> 68
<211> 87
<212> DNA
<213> Artificial sequence

<220>
<223> Primer F1-f2

<400> 68
gaggaggagg aggtggccca ggccgcctc gagcccgaaa agaagcccta tgcttgcgg 60
aatgtggta agtccttcag ccgcagc 87

<210> 69
<211> 74
<212> DNA

```

<213> Artificial sequence

<220>
<223> Primer F2-f

<400> 69
gccaggccgg ccacctggcc agccatcaac gcactcatac tggcgagaag ccatacaaat      60
gtccagaatg tggc                                74

<210> 70
<211> 66
<212> DNA
<213> Artificial sequence

<220>
<223> Primer F2-b

<400> 70
gctggccagg tggccggcct ggctaaaaga tttgccgcac tctggcatt tatacggtt      60
ttcacc                                66

<210> 71
<211> 58
<212> DNA
<213> Artificial sequence

<220>
<223> Primer F3-b1

<400> 71
ccggacgaga ttgtcagacc gagagaaaga cttgccacat tctggacatt tgtatggc      58
                                         58

<210> 72
<211> 81
<212> DNA
<213> Artificial sequence

<220>
<223> Primer F3-b2

<400> 72
gaggaggagg agctggccgg cctggccact agttttta ccggtgtgag tacgttggt      60
ccggacgaga ttgtcagacc g                                81
                                         81

<210> 73
<211> 315
<212> DNA
<213> Artificial sequence

<220>
<223> 3 finger protein C7

<400> 73
atggcccagg cggccctcga gccctatgct tgccctgtcg agtcctgcga tcgcccgtt      60
tctaagtctgg ctgatctgaa ggcgcataatc cgcatccaca caggccagaa gcccgtccag    120
tgtcgaaatat gcatgcgtaa cttcagtcgt agtgaccacc ttaccaccca catccgcacc    180
cacacaggcg agaagcctt tgcctgtgac atttgtgggaa ggaagtttgc caggagtgt     240
gaacgcaaga ggcataccaa aatccattta agacagaagg actctagaac tagtggccag     300
gccggccagg ctage                                315

<210> 74
<211> 105
<212> PRT
<213> Artificial sequence

```

<220>
<223> Amino acid sequence of 3 finger protein C7

<400> 74
Met Ala Gln Ala Ala Leu Glu Pro Tyr Ala Cys Pro Val Glu Ser Cys
1 5 10 15
Asp Arg Arg Phe Ser Lys Ser Ala Asp Leu Lys Arg His Ile Arg Ile
20 25 30
His Thr Gly Gln Lys Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe
35 40 45
Ser Arg Ser Asp His Leu Thr Thr His Ile Arg Thr His Thr Gly Glu
50 55 60
Lys Pro Phe Ala Cys Asp Ile Cys Gly Arg Lys Phe Ala Arg Ser Asp
65 70 75 80
Glu Arg Lys Arg His Thr Lys Ile His Leu Arg Gln Lys Asp Ser Arg
85 90 95
Thr Ser Gly Gln Ala Gly Gln Ala Ser
100 105

<210> 75
<211> 184
<212> PRT
<213> Artificial sequence

<220>
<223> Zinc finger protein ZFPm1

<400> 75
Ala Gln Ala Ala Leu Glu Pro Gly Glu Lys Pro Tyr Ala Cys Pro Glu
1 5 10 15
Cys Gly Lys Ser Phe Ser Asp Pro Gly His Leu Val Arg His Gln Arg
20 25 30
Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser
35 40 45
Phe Ser Gln Arg Ala His Leu Glu Arg His Gln Arg Thr His Thr Gly
50 55 60
Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser Phe Ser Gln Ser
65 70 75 80
Ser Asn Leu Val Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr
85 90 95
Ala Cys Pro Glu Cys Gly Lys Ser Phe Ser Arg Ser Asp Asn Leu Val
100 105 110
Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu
115 120 125
Cys Gly Lys Ser Phe Ser Arg Ser Asp Asn Leu Val Arg His Gln Arg
130 135 140
Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Glu Cys Gly Lys Ser
145 150 155 160
Phe Ser Gln Ala Gly His Leu Ala Ser His Gln Arg Thr His Thr Gly
165 170 175
Lys Lys Thr Ser Gly Gln Ala Gly
180

<210> 76
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Zinc finger protein ZFPm1 and ZFPm2 binding site m12

<400> 76
gcctccttcc tcctctcaact c

<210> 77
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Zinc finger protein ZFPm3 and ZFPm4 binding site m34

<400> 77
gccaactact acggctccct cacc 24

<210> 78
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc finger peptide linker

<400> 78
Thr Gly Glu Lys Pro
1 5

<210> 79
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> DNA binding motif

<400> 79
Gln Ala Leu Gly Gly His
1 5