

## Recommendation System

## Contents

| Goals and Requirements                            | 3  |
|---------------------------------------------------|----|
| Dataset for Recommendation-Restaurant             | 4  |
| Dataset for Restaurant customer data              | 5  |
| Clean Missing Data                                | 6  |
| Dataset for Restaurant Feature data               | 8  |
| Dataset for Split Data                            | 9  |
| Train Matchbox Recommender Dataset                | 10 |
| Score Matchbox Recommender Dataset                | 15 |
| UNDERSTANDING THE MATCHBOX RECOMMENDATION RESULTS | 20 |

# Goals and Requirements

#### Estimated time to complete lab is 40-45 minutes

#### Goals

- 1. Implement and design a model for Recommending Restaurant based on Ratings and User Reviews.
- 2. Approach of using Match Box Recommendations

#### Requirements:

1. Access to an Azure Machine Learning Studio

## Recommendation System

#### Dataset for Recommendation-Restaurant

Pick the sample data set provided by microsoft and drop in work space



#### Dataset for Restaurant customer data

Visualize the dataset to know the features



Add Restaurant customer data to the canvas and visualize



#### **Clean Missing Data**

Check the result for missing values and string features



#### Add clean missing data and connect as required



Launch column selector and select the missing value columns and click ok



#### Parameters as follows



#### **Dataset for Restaurant Feature data**

Insert Restaurant feature data and visualize the same



View the column with missing value that impacts on rating provided



#### **Dataset for Split Data**

Now split the dataset restaurant ratings using split data



#### Add split data and connect with restaurant ratings and change parameter as required



#### Train Matchbox Recommender Dataset



#### Add train matchbox recommender



#### Connect the same from split data node 1



Insert select columns in dataset connected with clean missing data node and launch column selector



#### Add the columns as required and click ok



#### Repeat the step with Retaurant feature data



#### Connect with appropriate nodes and launch column selector



#### Select the required columns and click ok



#### Connect select columns in data set to train matchbox recommender





#### Score Matchbox Recommender Dataset

Run the module now



#### Insert and connect score matchbox recommender



Connect the score input nodes as shown below



#### Check the required parameters and run the module now





We have obtained the result . However, we have to evaluate the same





#### Run the result



#### UNDERSTANDING THE MATCHBOX RECOMMENDATION RESULTS



#### Results



## Understanding the Recommender Result

- For Item Recommendations
- Normalized Discounted Cumulative Gain (NDCG)



## Ranking Quality



The highest ranked item should result in highest gain.

## Ranking Quality



What is machine learning? - Definition from WhatIs.com

whatis.techtarget.com > Topics > AppDev > Programming ▼
Jun 24, 2017 - Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed.

#### The 10 Algorithms Machine Learning Engineers Need to Know

www.kdnuggets.com/2016/08/10-algorithms-machine-learning-engineers.html ▼
Aug 8, 2016 - It is no doubt that the sub-field of machine learning / artificial intelligence has increasingly gained more popularity in the past couple of years.

#### Machine Learning | SAP - SAP.com

https://www.sap.com/india/trends/machine-learning.html 

Discover how Al, machine learning, and deep learning are powering a new breed of software that uses Big Data to drive radical changes to business.

#### Machine Learning | edX

https://www.edx.org/course/machine-learning-columbiax-csmm-102x-0 
Master the essentials of machine learning and algorithms to help improve learning from data without

human intervention.





The highest ranked item should result in highest gain.

## Ranking Quality



### Discounted Cumulative Gain

Ranked items by the algorithms 11, 12, 13, 14, 15, 16

CG = 4 + 3 + 4 + 0 + 1 + 2= 14

Gain perceived by the user

4, 3, 4, 0, 1, 2

|     | reli | log <sub>2</sub> (i+1) | reli                   |  |
|-----|------|------------------------|------------------------|--|
| i   |      |                        | log <sub>2</sub> (i+1) |  |
| 1   | 4    | 1                      | 4.00                   |  |
| 2   | 3    | 1.585                  | 1.89                   |  |
| 3   | 4    | 2                      | 2                      |  |
| 4   | 0    | 2.322                  | 0                      |  |
| 5   | 1    | 2.585                  | 0.39                   |  |
| 6   | 2    | 2.81                   | 0.71                   |  |
| DCG |      |                        | 8.99                   |  |

## Ideal Discounted Cumulative Gain

Ideal Ranking by algorithm

11, 13, 12, 16, 15, 14

4, 4, 3, 2, 1, 0 Ideal Gain perceived by the user

CG = 4 + 4 + 3 + 2 + 1 + 0= 14

|   |         |                        | reli                   |
|---|---------|------------------------|------------------------|
| i | $rel_i$ | log <sub>2</sub> (i+1) | log <sub>2</sub> (i+1) |
| 1 | 4       | 1                      | 4.00                   |
| 2 | 4       | 1.585                  | 2.52                   |
| 3 | 3       | 2                      | 1.5                    |
| 4 | 2       | 2.322                  | 0.86                   |
| 5 | 1       | 2.585                  | 0.38                   |
| 6 | 0       | 2.81                   | 0                      |
|   |         | IDCG                   | 9.27                   |

### Normalised DCG

$$NDCG = \frac{DCG}{IDCG} = \frac{8.99}{9.27} = 0.9697$$

Highly relevant documents are more useful than marginally relevant documents, which are in turn more useful than non-relevant documents

## Understanding the Result

• Normalized Discounted Cumulative Gain (NDCG)

NDCG

view as

1
0.903488