Lecture 10: Shannon-Fano-Elias Code, Arithmetic Code

- Shannon-Fano-Elias coding
- Arithmetic code
- Competitive optimality of Shannon code
- Generation of random variables

CDF of a random variable

Cumulative distribution function (CDF)

$$F(x) = \sum_{p_i < x} p_i, \quad F(x) = p(X \le x) = \int^x f(u) du$$

- 1) F(x) is monotonic, right-continuous, 2) $F(x) \to 1$ when $x \to \infty$ and
 - 3) $F(X) \to 0$ when $x \to -\infty$

Transform of random viable by CDF

• Random variable F(X) (for X continuous) is uniformly distributed Proof:

$$p\{F(X) \le t\} = p\{F^{-1}[F(X)] \le F^{-1}(t)\}$$
$$= p(X \le F^{-1}(t))$$
$$= F(F^{-1}(t)) = t.$$

- ullet This means $F^{-1}(U)$ when U is uniform[0, 1] has distribution p(x)
- Example: How to generate Bernoulli random variable

Shannon-Fano-Elias Coding

- Pick a number from the disjoint interval: $\bar{F}(x) = \sum_{a < x} p(a) + \frac{1}{2}p(x)$
- Truncate the real number to enough bits such that the codewords are unique
- We can show that $l(x) = \lceil \log \frac{1}{p(x)} \rceil + 1$ is enough cold length such that the codewords are unique

 \bullet Using $\lfloor \bar{F}(x) \rfloor_{l(x)}$ as the codeword F(X)

x	p(x)	F(x)	$\overline{F}(x)$	$\overline{F}(x)$ in Binary	$l(x) = \left\lceil \log \frac{1}{p(x)} \right\rceil + 1$	Codeword
		0.25		0.001	3	001
2	0.25	0.5	0.375	0.011	3	011
3	0.2	0.7	0.6	$0.1\overline{0011}$	4	1001
4	0.15	0.85	0.775	$0.110\overline{0011}$	4	1100
5	0.15	1.0	0.925	$0.111\overline{0110}$	4	1110

Codewords are unique

$$F(x) - \lfloor \bar{F}(x) \rfloor_{l(x)} < \frac{1}{2^{l(x)}}$$

For $l(x) = \lceil \log \frac{1}{p(x)} \rceil + 1$

$$\frac{1}{2^{l(x)}} = \frac{1}{2^{\lceil \log \frac{1}{p(x)} \rceil + 1}} \tag{1}$$

$$<\frac{1}{2}2^{\log\frac{1}{p(x)}} = \frac{1}{2}p(x)$$
 (2)

$$=\bar{F}(x) - F(x-1) \tag{3}$$

Codes are prefix codes

- If the $[\bar{F}(x)]_{l(x)} = 0.z_1 z_2 \dots z_l$
- If it is a prefix of another code, the code has the form

$$z^* = 0.z_1 z_2 \dots z_l z_{l+1}$$

• this z^* lies somewhere between

$$[0.z_1z_2...z_l, 0.z_1z_2...z_l + \frac{1}{2^l})$$

• by construction, there is no such codeword

Summary of Shannon-Fano-Elias codes

• Code word for $x \in \mathcal{X}$ is

$$C(x) = \lfloor \bar{F}(x) \rfloor_{l(x)}$$

- $l(x) = \lceil \log \frac{1}{p(x)} \rceil + 1$
- expected code length

$$\sum p(x)l(x) = \sum p(x)\lceil\log\frac{1}{p(x)}\rceil + 1 \le H(X) + 2 \text{ bits}$$

x	p(x)	F(x)	$\overline{F}(x)$	$\overline{F}(x)$ in Binary	$l(x) = \left\lceil \log \frac{1}{p(x)} \right\rceil + 1$	Codeword
1	0.25	0.25	0.125	0.001	3	001
2	0.5	0.75	0.5	0.10	2	10
3	0.125	0.875	0.8125	0.1101	4	1101
4	0.125	1.0	0.9375	0.1111	4	1111

•
$$L = 2.75$$

- entropy = 1.75 bits
- Huffman code = 1.75 bits

Apply Shannon-Fano-Elias coding to a sequence of random variables?

$$C(X_1X_2\cdots X_n)=?$$

- We need joint CDF of $X_1X_2\cdots X_n$
- Arithmetic codes

Arithmetic codes

- Huffman coding is optimal for encode a a random variable with known distribution
- Arithmetic code: use an subinterval of unit interval to code
- Basis for many practical compression schemes: JPEG, FAX

Encode and decode by a variable-scale ruler

Properties of arithmetic code

- Code a sequence of random variables on-the-fly
- Decode on-the-fly
- Code(extension to a sequence) can be calculated simply from Code(original sequence)
- Shannon-Fano-Elias for a sequence of random variables

- A message is represented by an interval of real numbers between 0 and 1
- As messages becomes longer, the interval needed to represent it becomes smaller
- The number of bits needed to specify the interval grows

Example

$$\mathcal{X} = \{a, e, i, o, u, !\}$$

Message = $\{eaii!\}$

TABLE I. Example Fixed Model for Alphabet $\{a, e, i, o, u, !\}$

Symbol	Probability	Range
а	.2	[0, 0.2)
e	.3	[0.2, 0.5)
i	.1	[0.5, 0.6)
0	.2	[0.6, 0.8)
и	.1	[0.8, 0.9)
!	.1	[0.9, 1.0)

Reference: Arithmetic coding for data compression, by I. Witten, R. M. Neal and G. Cleary, Communications of the ACM, 1987.

Encoding

```
Initially [0, 1)
After seeing e [0.2, 0.5)

a [0.2, 0.26)

i [0.23, 0.236)

i [0.233, 0.2336)

! [0.23354, 0.2336)
```


The final code is a number in $\left[0.23354, 0.2336\right)$, say 0.23354

Decoding

• By repeating the same procedure: decode of 0.23354

• Given any length n and $p(x_1x_2\cdots x_n)$, code of length $\log\frac{1}{p(x_1\cdots x_n)}+2$ bits

Competitive optimality of the Shannon code

- ullet Huffman code is optimal "on average": achieves minimum L
- Individual sequences of Huffman code may be longer
- Another optimality criterion: competitive optimality
- No other code can do much better than the Shannon code most of the time

$$p(l^*(X) < l(X)) \ge p(l^*(X) > l(X))$$

 Huffman codes are not easy to analyze this way because lack of expression for code length

Generation of random viable from coin toss

- Representing a random variable by a sequence of bits such that the expected length of representation is minimized
- ullet Dual problem: how many fair coin tosses are needed to generate a random variable X
- Example 1: X=a w.p. 1/2, X=b w.p. 1/4, X=c w.p. 1/4.
- $h \rightarrow a$, $th \rightarrow b$, $tt \rightarrow c$, average toss: 1.5 = H(X)
- Dyadic distribution: E(toss) = H(X)

- Example 2: X = a w.p. 2/3, X = b w.p. 1/3
- 2/3 = 0.10101010101, 1/3 = 0.01010101010
- $h \rightarrow a$, $th \rightarrow b$, $tth \rightarrow a \cdots$
- General distribution: $H(X) \leq E(toss) < H(X) + 2$

Summary

- Coding by "interval":
 Shannon-Fano-Elias code
 Arithmetic code
- Shannon code has competitive optimality
- Generate random variable by coin tosses