San Jose State University

Computer Engineering Department

CMPE 287 - Software Quality Assurance and Testing Mobile Application Testing with Al Features (Envision Al)

Project Team - 9

Submitted To: Dr. Jerry Zeyu Gao

Submitted By:

Student ID	Name
012503270	Bhumika Tiwari
014544673	Mitra Gunakara Nayak
014502397	Atharva Chaitanya Munshi
014428141	Noopur Mehta

Table of Contents

1. Al Function Test Requirement Analysis	5
1.1 Artificial Intelligence Classifications - General	6
1.2 Artificial Intelligence Usage and Test Requirement - Envision Al	8
2. Al Test Modeling for your selected Al Features	9
2.1 Context Modeling for AI Features	10
2.2 Al Function Input Classifications	11
2.2.1 Object/Face Detection AI functionality	13
2.2.2 Barcode Scanning functionality	13
2.2.3 Text Detection functionality	14
2.2.4 Color Detection functionality	15
2.3 AI Function Output Classifications	16
2.3.1 Object/Face Detection AI functionality	17
2.3.2 Barcode Scanning functionality	18
2.3.3 Text Detection functionality	18
2.3.4 Color Detection functionality	19
2.4 Al Function Event/Action Classifications	21
2.4.1 Color Detection	21
2.4.2 Human Identification	22
2.4.3 Text Interpretation	23
2.4.4 Barcode Scanning	24
2.4.5 Environment Description	25
2.5 Al Function Classification Decision Table (3D Table)	26
2.5.1 Object/Face Detection AI functionality	26
2.5.2 Barcode Detection AI functionality	27
2.5.3 Text Detection AI functionality	28
2.5.4 Color Detection AI functionality	29
3. Al Function Test Cases with Inputs/Expected Outputs	31
3.1 Test data models	31
3.1.1 Al Software Testing Models:	31
3.2 Test case reports	35
3.2.1 Text Detection Functionality	35
3.2.2 Color Detection Functionality	39
3.2.3 Object/ Face Detection Functionality	43
3.2.4 Barcode Detection Functionality	47
3.3 Test case analysis (statistics)	49

3.3.1 Test Result for Text Detection functionality	49
3.3.2 Test Result for Color Detection functionality	49
3.3.3 Test Result for Object/FaceDetection functionality	50
3.3.4 Test Result for Barcode Scanning functionality	50
4. Al Function Test Results and Test Criteria	50
4.1 Al test model-based test results analysis, test complexity, and test result statistics	50
4.1.1 Test result for object/face detection AI functionality	50
4.1.2 Test result for text detection functionality	51
4.1.3 Test result for color detection functionality	52
4.1.4 Test result for barcode scanning functionality	53
4.2 Al Function bug analysis	53
4.2.1 Large size Text (English) Detection	53
4.2.2 Large size Text (Hindi) Detection	54
4.2.3 Small size Text (Hindi) Detection	55
4.2.4 Optimal size hindi text detection	55
4.2.5 Color detection Functionality	56
4.2.6 Color detection Functionality	57
4.2.7 Color detection Functionality	58
4.2.8 Object/Face detection Functionality	58
4.2.9 Object/Face detection Functionality	60
4.2.10 Object/Face detection Functionality	60
4.2.11 Object/Face detection Functionality	61
4.2.12 Barcode detection Functionality	62
4.3 Al function test quality assessment	62
4.3.1 Test Quality Assessment for Object/Face Detection feature	63
4.3.2 Test Quality Assessment for Text Detection feature	64
4.3.3 Test Quality Assessment for Color Identification feature	65
4.3.4 Test Quality Assessment for Barcode Scan feature	66

1. Al Function Test Requirement Analysis

Artificial intelligence is a branch of study of computer science which is targeted to develop smart software solutions which could solve complex problems and perform intelligent tasks. Without the lack of AI systems, these problems can be solved by skilled human experts.

Hence, testing AI applications is an activity of paramount importance. Conventional testing cannot be used to test AI systems efficiently as they will not be able to test all function points of such complex systems. AI testing needs specific techniques to test such functionalities using specialised models and tools.

1.1 Artificial Intelligence Classifications - General

Al can be classified into 7 sub branches. They are as follows:

1. **Machine Learning**: Machine Learning is a branch of Al where it enables a system to learn, understand and improve from experience without having to explicitly program the same.

Types of Machine learning are

- a. Reinforcement: Machine learns from its mistake.
- b. **Supervised**: Machine is task driven and thereby can predict the next possible value
- c. **Unsupervised**: Machine is data driven and it can identify clusters.

- **2. Planning:** This is a branch of Al which deals with the decision making logic for robots and computers.
- **3. Natural Language Processing**: Natural Language Processing is another branch which deals with Human Computer Interactions and gives the system the ability to understand spoken language.
 - a. **Content Extraction**: By content extraction, human understandable data is extracted from unstructured/semi-structured data
 - b. **Text Classification**: This is a process where the text present in a given document is classified and tagged from pre-existing classification categories.
 - c. **Machine Translation**: This includes conversion of one natural language into another without loss of meaning and content with apt grammar.
 - d. **Question Answering**: This is about the system/machine answering to questions posed by the human operator.
 - e. **Text Generation**: This involves automatic text generation by the system.
- **4. Vision:** Machine vision technologies can be used in conjunction with Al software to contribute to image recognition.
 - a. **Image Recognition:** Image recognition is softwares' capability to recognise objects, humans, places and text
 - b. **Machine Vision**: The ability of a machine/system to see and understand.
- Expert Systems: Expert systems are softwares which uses AI methods to address problems centered around a specialised domain. Without the presence of expert systems, these problems would need to be solved by a human expert.
- **6. Speech:** Al finds applications in the field of speech recognition and speech synthesis heavily. This enables processing of text to speech or vice versa possible in multiple use cases.
 - a. **Text to speech:** Text to speech technology takes text as input and converts it into voice output. In simple words, it can be understood as a form of speech synthesis.

- b. **Speech to text:** Speech to text technology takes audio content as input and transcribes it into text to be viewed on a display device. It is also known as voice recognition technology.
- 7. **Robotics:** Robotics is a branch of study which spans across multiple disciplines of science and engineering. It is applied to design and develop mechanical robots which can be efficiently used to perform specific tasks.

1.2 Artificial Intelligence Usage and Test Requirement - Envision Al

The Envision AI is making use of unsupervised Machine learning, image recognition, machine vision, text generation, text to speech AI functionalities.

Our test requirement revolves around testing each of the above features and determining the AI efficiency of the envision AI application. To achieve the same, we would be using different contexts, inputs and considering the possible outputs to arrive at the accuracy and consistency of the application.

Basically our test requirement would be testing each of the function mentioned below

- 1) Color detection
- 2) Object Identification
- 3) Text Identification
- 4) Barcode Scan
- 5) Human/Face Detection

2. Al Test Modeling for your selected Al Features

Test Modeling for AI features comprises of several kind of modeling activities which are as follows:

- a) Context Modeling
- b) Al Function Input classification
- c) Al Function Output classification
- d) Al Function Event/Action Classifications

Thus, for testing the AI features, context needs to be identified first. Then, the input data set for the AI needs to be listed. Under the context modeled and AI inputs classified, the list of output generated needs to be identified and classified as output sets. This conversion from input to output would happen as a result of events or actions. These actions can also be classified as action/event sets.

In the subsections below, we have performed test modeling for AI features for Envision application.

2.1 Context Modeling for Al Features

For testing of AI features in the Envision app, context modeling has been done to arrive at the spanning tree shown in the figure below.

Context is majorly categorised on the basis of below factors:

- Environment in which the Envision app will be tested.
 Environment can further be classified into indoor and outdoor test conditions.
- **Position of the device** when the camera is pointed on an object in focus. It can be in an acute angle or obtuse angle or in a parallel position with respect to the object.
- **Distance between device and object** when camera is pointed on an object in focus. It can be extremely close or extremely far or at optimal distance from the object.
- **Lighting conditions** in the environment in which the object under focus exists. There can be no light or dim light or optimal light or bright light environment.
- Stability of the object in focus. It can be a still object or one in motion.
- **Equipment type** on which Envision app is installed and to be used for testing. Android and iOS variants are the subcategories in this context.

2.2 Al Function Input Classifications

The input dataset to Envision app can be classified into categories as shown in the diagram below. Input to Envision app classification is necessary to identify all possible functional scenarios for testing of AI features:

- **Object:** Envision app camera can be directed at **single** or **multiple** objects when testing for objects in a scene.
- Human: Envision app camera can be directed at a human of either male or female
 gender for testing. The person in focus can be involved in any activity like reading,
 playing, walking.
- Text: Text in focus of Envision app can be either handwritten text or printed text. Text font size can be too large or too small or optimal. Text language under test is Hindi, English and numerical data. Text content can be a letter or a word or an entire paragraph.
- **Color:** The object in focus of Envision app can have a primary color or secondary color or tertiary color.
- **Barcode:** The barcode to be scanned by the Envision app can be present on a physical object or display screen of some device like a computer or tablet.

2.2.1 Object/Face Detection Al functionality

2.2.2 Barcode Scanning functionality

2.2.3 Text Detection functionality

2.2.4 Color Detection functionality

2.3 Al Function Output Classifications

The output from Envision app can be understood as a set which can further be categorised as shown in the figure below.

2.3.1 Object/Face Detection Al functionality

2.3.2 Barcode Scanning functionality

2.3.3 Text Detection functionality

2.3.4 Color Detection functionality

The output of Envision app AI features testing can be segregated into below types which can further be divided into different sets of observations:

- Color:
 - ☐ The Envision app can identify the color of an object correctly.
 - ☐ The Envision app cannot identify the color of an object correctly.
- Object:
 - Multiple objects in focus of Envision app -
 - > The Envision app can identify multiple objects in focus correctly.
 - > The Envision app cannot identify multiple objects in focus correctly.
 - ☐ Single objects in focus of Envision app -
 - The Envision app can identify single objects in focus correctly.
 - > The Envision app cannot identify a single object in focus correctly.
- Human:
 - Person in focus of Envision app of either gender -
 - > The Envision app can identify the correct gender of a person in focus.
 - > Envision apps cannot identify the correct gender of a person in focus.
 - Person in focus of Envision app performing some action -
 - ➤ The Envision app can identify the action being performed by a person in focus.
 - Envision app cannot identify the action being performed by a person in focus.

Barcode:

- > The Envision app can scan the barcode of an object correctly and determine the object to which the barcode actually belongs.
- > The Envision app is unable to scan the barcode of an object correctly.
- Text:
 - ☐ Type of text, i.e. handwritten or typed -
 - > The Envision app can read a piece of handwritten text.
 - > The Envision app can read a piece of typed text.
 - > The Envision app cannot read a piece of handwritten text.
 - > The Envision app cannot read a piece of typed text.
 - ☐ Text of different languages, Hindi, English and numeric data tested -
 - ➤ The Envision app can interpret language text of different languages correctly.
 - ➤ The Envision app cannot interpret language text of different languages correctly.

2.4 Al Function Event/Action Classifications

Envision AI application can perform several AI functions each of which is triggered by an event in time. Depending on what functionality is selected by the user, the app takes visual input from the camera and processes it to provide the expected output.

The various events or actions that Envision app can handle are discussed in the subsections below. Each event has been discussed as an activity diagram wherein every entity in scope performs an activity in time. All these activities when seen together as a whole in time sequence end up in completing an Al function of the app.

2.4.1 Color Detection

2.4.2 Human Identification

2.4.3 Text Interpretation

2.4.4 Barcode Scanning

2.4.5 Environment Description

2.5 Al Function Classification Decision Table(3D tables)

The below decision tables represent the 3D view of each of the AI functionality. The 3 faces of the 3D model are

- a) Al function context classification view
- b) Al function input classification view
- c) Al function output classification view

2.5.1 Object/Face Detection Al functionality

Ru	les	R 1	R 2	R 3	R 4	R 5	R 6	R 7	R 8	R 9	R 1 0	R 1 1	R 1 2	R 1 3	R 1 4	R 1 5	R 1 6	1	R 1 8	1	R 2 0	R 2 1	R 2 2			R 2 5	R 2 6	R 2 7	R 2 8	R 2 9			R 3 2
									CC	TNC	EX	TC	LA	SS	IFIC	CAT	10	N V	ΊΕV	٧													
Environ ment	Outdoor	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Camera Position	Optimal	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F
Distanc e betwee n the object and the device	Optimal	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F
Object Stability	Stable	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F
Lighting	Optimal	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F
									II	NP	UT	CL	ASS	SIF	ICA	TIC	N	VIE	W														
Object	Single	Х	Х	Х	Х	Х	Х	х	Х									Х	Х	Х	Х	Х	Х	Х	Х								
	Multiple									Х	Х	Х	Х	Х	Х	Х	Х									Х	Х	Х	Х	Х	Х	Х	Х
Human gender	Female	Х	Х	Х	Х					Х	Х	Х	Х					Х	Х	Х	Х					Х	Х	Х	Х				

	Male					X	Х	X	Х					X	X	X	X					X	X	X	X					X	X	X	Х
Activity	Sitting	Х		Х		Х		X		Х		Х		Х		X		X		X		X		Х		X		X		X		Х	
	Standing		Х		Х		Х		Х		Х		Х		Х		Х		Х		X		Х		Х		Х		X		Х		Х
									OI	UTF	PUT	ΓCI	_AS	SSII	FIC.	ATI	ON	I VI	EW	1													
Correct [Detection	0	0	0	0					0	0	0	0					0	0	0	0					0	0	0	0				
Incorrect	Detection					0	0	0	0					0	0	0	0					0	0	0	0					0	0	0	0

2.5.2 Barcode Detection Al functionality

Ru	les		R 2	R 3	R 4	R 5	R 6	R 7		R 9	R 1 0	R 1 1	R 1 2	R 1 3	R 1 4	R 1 5	R 1 6	1	1	R 1 9	R 2 0	R 2 1	R 2 2	R 2 3	2	R 2 5	R 2 6	R 2 7	R 2 8	2	R 3 0	R 3 1	R 3 2
									CC	NT	EX	ТС	LA	SS	IFIC	CAT	101	٧V	ΊΕV	٧													
Environ ment	Outdoor	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Camera Position	Optimal	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F
Distanc e betwee n the object and the device	Optimal	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F
Object Stability	Stable	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F
Lighting	Optimal	Т	F	Т	F	Т	F	Т	F	T	F	T CL	F ASS		F	T	F ON '	_	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F

Barcod e	Physical	X		X		X		Х		Х		X		X		Х		X		Х		Х		X		Х		X		X		Χ	
-	OnScree n		Х		X		Х		Х		Х		Х		Х		Х		Х		Х		X		Х		Х		Х		X		X
		_							OI	JTF	רטי	CI	_AS	SSIF	FIC.	ΑTI	ION	ı VI	ΕW	1													
Correc	ct scan	0	0	0	0					0	0	0	0					0	0	0	0					0	0	0	0				
Incorre	ct scan					0	0	0	0					0	0	0	0					0	0	0	0					0	0	0	0

2.5.3 Text Detection Al functionality

Ru	les		R 2	R 3	R 4	R 5	R 6		R 8	R 9	R 1 0	R 1 1	R 1 2	R 1 3	R 1 4	R 1 5	R 1 6	1	R 1 8	1	R 2 0	R 2 1	R 2 2	R 2 3	R 2 4	R 2 5	R 2 6	R 2 7	R 2 8	R 2 9	R 3 0	R 3 1	R 3 2
									CC	TNC	EX	ТС	LA	SS	IFIC	CAT	101	N V	ΊΕV	٧													
Environ ment	Outdoor	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Camera Position	Optimal	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F
Distanc e betwee n the object and the device	Optimal	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F
Object Stability	Stable	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F
Lighting	Optimal	Т	F	Т	F	Т	F	Т	F	T	F	T	F		F	T	F	T	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F

	Handwritt en	Х	Х	Х	Х	X	Х	Х	Х									Х	Х	Х	Х	Х	Х	Х	Х								
	Typed									Х	Х	Х	Х	Х	Х	Х	Х									Х	Х	Х	Х	Х	X	Х	Х
Langua ge	English	Х	Х	Х							Х	Х	Х							Х	Х	Х							Х	Х			
90	Hindi				Х	Х	Х							Х	Х	X							Х	Х	X						Х	Х	
	Numeric							Х	Х	Х							Х	Х	Х							Х	Х	Х					Х
									OI	JTF	רטי	ГС	LAS	SSII	FIC	ATI	ON	I VI	ΕW	/													
Correct I	Detection	0	0	0	0					0	0	0	0					0	0	0	0					0	0	0	0				
Incorrect	Detection					0	0	0	0					0	0	0	0					0	0	0	0					0	0	0	0

2.5.4 Color Detection Al functionality

Ru	les		R 2	R 3	R 4	R 5		7	8	9	1 0	1	R 1 2	1 3	1	1 5	1 6	1 7		1 9		R 2 1	R 2 2		2	R 2 5	2	2	R 2 8	2		3	R 3 2
									CC	TNC	ΈX	T C	LA:	SS	IFIC	CAT	IOI	N V	ΊΕV	٧													
Environ ment	Outdoor	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Camera Position	Optimal	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F	F	F
Distanc e betwee n the object and the device	Optimal	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F	Т	Т	Т	Т	F	F	F	F

Object Stability	Stable	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F	Т	Т	F	F
Lighting	Optimal	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F	Т	F
									II	NP	UT	CL	ASS	SIF	ICA	TIC	' NC	VIE	W														
	Primary Color	X	Х	Х	Х									Х	X	X	Х									Х	X	Х	X				
	Secondar y Color					X	X	X	X									Х	Х	X	X									X	X	X	X
	Tertiary Color									X	Х	X	Х									Х	X	Х	Х								
									OI	UTI	PU1	ΓС	LAS	SSII	FIC	ΑT	ON	IVI	EW	'													
Correct [Detection	0	0	0	0					0	0	0	0					0	0	0	0					0	0	0	0				
Incorrect	Detection					0	0	0	0					0	0	0	0					0	0	0	0					0	0	0	0

3. Al Function Test Cases with Inputs/Expected Outputs

There are a lot of methods used for testing AI functionalities of Software Applications and/or websites depending on their respective functionalities and Test requirements.

3.1 Test data models

3.1.1 Al Software Testing Models:

Crowdsourced Testing

Crowdsourced Testing refers to usability testing by a bunch of different Testers from different locations. It is a user centric testing method that focuses on Testing from User perspective, emphasises the most on User feedback.

In addition to an inhouse Quality Assurance/ Testing team, the application/ Software is outsourced to be tested by different users to understand the System from their point of view.

Eg. User testing website (https://www.usertesting.com/) : A lot of technology giants put their Software Product to be tested on this website and seek user feedback by paying for the video feedback.

Metamorphic(Non-Oracle) Testing

Oracle Testing: Oracle Testing is a manual testing method where we have fixed input and fixed expected output.

Disadvantages of Oracle Testing:

- Expensive to design manual test cases
- Cannot guarantee the coverage of all the Test cases.

Non-Oracle Testing: Non-oracle testing(Metamorphic Testing) is a Property Based Testing(PBT) where the inputs and expected outputs are not fixed.

This technique is used hugely especially for AI Testing since the requirements and constraints are more likely to change with time in the same.

Metamorphic Relations: It is a mathematical property that defines relations between the given input and outputs. So, instead of validating output, validate the relation between input and output.

The main benefit of using this method is that we can expect the output to change in the same way input does. If that doesn't happen, Test case is marked as Fail.

Problem:

• It is complex to generate uniform code.

Solution:

Convert the code into Context Flow Graph(CFG), Train a model and finally determine the metamorphic relation.

Data Model-based Testing

In Data model- based testing, Runtime behavior of a Software under test is checked against predictions made by any of the below described models.

- Data flow diagram
- Control flow diagram
- Dependency graphs
- Decision tables
- State Transition Machines

Classification Testing

Classification Testing is a method of Al-Testing that closely resembles one of the Black-box testing methods, Category Partition Testing. We have to create context trees for each Al- Functionality for both inputs and Possible outcomes and design the test Cases keeping in mind all the possible combinations.

Rule-based Testing

As the name suggests, Rule-based technique involves Hard-coded rules, that cannot be changed in the future with the requirements.

Al Implemented through rule-based technique has a Fixed amount of knowledge and limited scope.

Disadvantages:

- Rules cannot be changed. Hence, it is time consuming and expensive.
- In some situations, It is not possible to define rules explicitly.

Learning-based AI Testing

As the name suggests, it is general AI with the Learning Capabilities.

Artificial Intelligence in this method is implemented and tested using Machine Learning Techniques.

No hard rules, you can build rules on the fly.

Ex. Neural Network

Al-based Test Automation

For automatic Test Case generation, especially for Softwares/ Applications having Al features, there are several tools available online.

Following are the AI Test Automation Tools:

- Applitools
- SauceLabs
- Testim
- Sealights
- Test.Al
- Mabl
- ReTest

Crowdsourced Test Robots

Crowdsourced Test Robots are the third party service providers that facilitates Al Automation Testing with a few simple modifications and automatically generates Test reports as well as bug reports.

Disadvantages:

- Can be ambiguous if the algorithm is not trained properly
- Expensive

3.2 Test case reports

Our team has used three models in total for AI Functionality Testing.

- 1. **Crowdsourced Testing:** Each team member has tested all the functionalities present in the application, Screenshots attached in the Deliverable 1.
- 2. **Data model-based Testing:** For Data Model based testing, We have used Decision Tables as a Data model and designed test cases for the same(Deliverable 1).
- Classification Testing: In this method, we have designed test cases by permutation and combination of all possible inputs and outputs from the designed Classification context diagram.

3.2.1 Text Detection Functionality

Test Case#	Test Steps	Expected Results	Test Case Status	Actual Results
E_01	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on a handwritten word in English where text size is too small.	The Envision AI app should detect the text.	Pass	The Envision Al App detects the text successfully.
E_02	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on a handwritten word in English where text size is too large.	The Envision Al app should detect the text.	Fail	The Envision Al App does not detect the text successfully.
E_03	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on a handwritten word in English where text size is optimal.	The Envision Al app should detect the text.	Pass	The Envision Al App detects the text successfully.
E_04	Step1:Connecttest mobile device to working Wifi	The Envision Al app should detect the text.	Pass	The Envision Al App detects the text

	network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on a Typed word in English where text size is too large.			successfully.
E_05	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on a Typed word in English where text size is too Small.	The Envision Al app should detect the text.	Pass	The Envision Al App detects the text successfully.
E_06	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on a Typed word in English where text size is optimal.	The Envision Al app should detect the text.	Pass	The Envision Al App detects the text successfully.
E_07	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on a Handwritten word in Hindi where text	The Envision Al app should detect the text.	Fail	The Envision Al App does not detect the text successfully.

	size is too large.			
E_08	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on a handwritten word in Hindi where text size is too Small.	The Envision Al app should detect the text.	Fail	The Envision Al App does not detect the text successfully.
E_09	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on a handwritten word in Hindi where text size is optimal.	The Envision Al app should detect the text.	Fail	The Envision Al App does not detect the text successfully.
E_10	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on a Typed word in Hindi where text size is too large.	The Envision Al app should detect the text.	Pass	The Envision Al App detects the text successfully.

Context Format	
----------------	--

Parameters	Type, Size, Language, Context
Description	10!/2! = 99 Test cases 68 Pass
Test Performed By	Noopur Mehta
Test Type	Classification (Context-based) Testing

3.2.2 Color Detection Functionality

Test Case#	Test Steps	Expected Results	Test Case Status	Actual Results
E_01	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on primary color(Red).	Envision AI should detect the color successfully.	Pass	Envision AI App detects the color successfully.
E_02	Step1:Connecttest mobile device to	Envision Al should detect	Pass	Envision AI App detects

	working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on primary color(Yellow).	the color successfully.		the color successfully.
E_03	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on primary color(Blue).	Envision AI should detect the color successfully.	Pass	Envision AI App detects the color successfully.
E_04	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on secondary color(Green).	Envision AI should detect the color successfully.	Fail	Envision AI App doesn't detect the color successfully.
E_05	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on secondary color(Orange).	Envision AI should detect the color successfully.	Pass	Envision AI App detects the color successfully.

E_06	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on secondary color(Purple).	Envision AI should detect the color successfully.	Fail	Envision AI App doesn't detect the color successfully.
E_07	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on Tertiary color(yellow-oran ge).	Envision AI should detect the color successfully.	Pass	Envision AI App detects the color successfully.
E_08	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on Tertiary color(red-orange)	Envision AI should detect the color successfully.	Fail	Envision AI App doesn't detect the color successfully.
E_09	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on	Envision AI should detect the color successfully.	Fail	Envision AI App doesn't detect the color successfully.

	Tertiary color(red-purple).			
E_10	Step1:Connecttest mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus the camera on Tertiary color(yellow-green).	Envision AI should detect the color successfully.	Fail	Envision AI App doesn't detect the color successfully.

Context Format	
Parameters	Type, Size, Language, Context
Description	3*3*4 = 35 Test cases 24 Pass
Test Performed By	Noopur Mehta
Test Type	Classification (Context-based) Testing

3.2.3 Object/ Face Detection Functionality

Cannot identify gender correctly

Female

Gender

Test Case#	Test Steps	Expected Results	Test Case Status	Actual Results
E_01	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus camera on single object.	Envision AI App should be able to identify an Object.	Pass	Envision AI App identifies object successfully.
E_02	Step1:Connect test mobile device to working Wifi	Envision AI App should be able to identify an Object.	Fail	Envision AI App doesn't identify objects successfully.

	network. Step 2: Enter valid credentials for Envision app Step 3: Focus camera on Multiple objects.			
E_03	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus camera on a Male who's Standing.	Envision AI App should be able to identify an Gender and Activity of a person correctly.	Fail	Envision AI App doesn't identify Gender correctly
E_04	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus camera on a Male who's Sleeping.	Envision AI App should be able to identify an Gender and Activity of a person correctly.	Pass	Envision AI App identifies Gender & Acivitycorrectly .
E_05	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app	Envision AI App should be able to identify an Gender and Activity of a person correctly.	Fail	Envision AI App doesn't identify Activity/Gender correctly

	Step 3: Focus camera on a Male who's Walking.			
E_06	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus camera on a Male who's Playing.	Envision AI App should be able to identify an Gender and Activity of a person correctly.	Fail	Envision AI App doesn't identify Gender/Activity correctly.
E_07	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus camera on a Male who's Reading.	Envision AI App should be able to identify an Gender and Activity of a person correctly.	Pass	Envision AI App identifies Gender & Activity correctly.
E_08	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus camera on a Female who's Standing.	Envision AI App should be able to identify an Gender and Activity of a person correctly.	Pass	Envision AI App identifies Gender & Activity correctly.

E_09	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus camera on a Female who's Walking.	Envision AI App should be able to identify an Gender and Activity of a person correctly.	Pass	Envision AI App identifies Gender & Activity correctly.
E_10	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus camera on a Male who's Sleeping.	Envision AI App should be able to identify an Gender and Activity of a person correctly.	Pass	Envision AI App identifies Gender & Activity correctly.

Context Format	
Parameters	Number of objects, Activity, Gender
Description	8!/2! = 86 Test Cases 74 Passed
Test Performed By	Noopur Mehta
Test Type	Classification (Context-based) Testing

3.2.4 Barcode Detection Functionality

coggle

made for free at coggle.it Barcode Scanning Functionality

Test Case#	Test Steps	Expected Results	Test Case Status	Actual Results
E_01	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus and try to scan the clear barcode on a physical object.	Envision AI app should scan the barcode successfully.	Pass	Envision AI App scans the barcode successfully.
E_02	Step1:Connect test mobile device to working Wifi network. Step 2: Enter	Envision AI app should scan the barcode successfully.	Failed	Envision AI App doesn't scan the barcode successfully.

	valid credentials for Envision app Step 3: Focus and try to scan the blurred barcode on a physical object.			
E_03	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus and try to scan the clear barcode on a Screen.	Envision AI app should scan the barcode successfully.	Pass	Envision AI App scans the barcode successfully.
E_04	Step1:Connect test mobile device to working Wifi network. Step 2: Enter valid credentials for Envision app Step 3: Focus and try to scan the blurred barcode on Screen.	Envision AI app should scan the barcode successfully.	Fail	Envision AI App doesn't scan the barcode successfully.

		Context Format
--	--	----------------

Parameters	Number of objects, Activity, Gender	
Description	2*2 = 4 Test Cases 2 Passed	
Test Performed By	Noopur Mehta	
Test Type	Classification (Context-based) Testing	

3.3 Test case analysis (statistics)

3.3.1 Test Result for Text Detection functionality

Text Detection	Accuracy	Specificity	Consistency
On Screen text - English	100%	100%	100%
On Screen text - Hindi	100%	100%	100%
Handwritten text - English	100%	100%	100%
Handwritten text - Hindi	70%	50%	80%

3.3.2 Test Result for Color Detection functionality

Color Detection	Accuracy	Specificity	Consistency
Primary Color	80%	75%	60%

Secondary Color	40%	30%	50%

3.3.3 Test Result for Object/FaceDetection functionality

Color Detection	Accuracy	Specificity	Consistency
Object	90%	85%	90%
Face	100%	95%	90%

3.3.4 Test Result for Barcode Scanning functionality

Color Detection	Accuracy	Specificity	Consistency
Physical Barcode	80%	70%	80%
On Screen Barcode	80%	70%	80%

4. Al Function Test Results and Test Criteria

- 4.1 Al test model-based test results analysis, test complexity, and test result statistics
- 4.1.1 Test result for object/face detection Al functionality

	Accuracy	Specificity	Consistency
Object	88%	87%	92%
Face	98%	88%	93%

Complexity: The test case complexity for the object/face detection functionality is moderate. Average test case complexity will be O(n).

4.1.2 Test result for text detection functionality

	Accuracy	Specificity	Consistency
On Screen Text- English	98%	97%	100%
On Screen Text- Hindi	100%	100%	100%
Handwritten Text- English	100%	100%	95%
Handwritten Text-	60%	40%	40%

Hindi		

Complexity: The test case complexity for the text detection functionality is moderate. Average test case complexity will be O(nlogn).

4.1.3 Test result for color detection functionality

	Accuracy	Specificity	Consistency
Primary Color	68%	70%	75%
Secondary Color	48%	56%	52%

Complexity: The test case complexity for the color detection functionality is moderate. Average test case complexity will be O(n).

4.1.4 Test result for barcode scanning functionality

	Accuracy	Specificity	Consistency
Physical Barcode	85%	85%	80%
On Screen Barcode	90%	89%	95%

Complexity: The test case complexity for the barcode detection functionality is moderate. Average test case complexity will be O(n).

4.2 Al Function bug analysis

4.2.1 Large size Text (English) Detection

Problem ID: ENV_BUG_01

Current software name: Envision Al Release number and version number: 1

Test Type: Conventional Testing **Reported By**: Atharva Munshi **Reported Date**: 11 April 2020

Test_case_ID: E 02

Feature Name: Text detection Problem severity: Major

Problem summary:

The application is not able to detect large size text written in English properly.

How to reproduce?

Step1: Connect mobile to Wifi network.

Step2: Installation of Envision Al app is needed.

Step 3: Log into the application

Step 4: Place the camera on the document which has the handwritten text. The text size should be too large.

Step 5: The envision app doesn't detect the English text successfully and thus the issue is replicated.

4.2.2 Large size Text (Hindi) Detection

Problem ID: ENV_BUG_02

Current software name: Envision Al Release number and version number: 1

Test Type: Conventional Testing **Reported By**: Atharva Munshi

Reported Date: 11 April 2020

Test_case_ID: E_07

Feature Name: Text detection Problem severity: Major

Problem summary:

The application is not able to detect handwritten large size hindi text properly.

How to reproduce?

Step1: Connect mobile to Wifi network.

Step2: Installation of Envision Al app is needed.

Step 3: Log into the application

Step 4: Place the camera on the document which has the handwritten text. The text size should be too large.

Step 5: The envision app doesn't detect the large size hindi text successfully and thus the issue is replicated.

4.2.3 Small size Text (Hindi) Detection

Problem ID: ENV BUG 03

Current software name: Envision Al **Release number and version number: 1**

Test Type: Conventional Testing **Reported By**: Atharva Munshi **Reported Date**: 11 April 2020

Test case ID: E 08

Feature Name: Text detection Problem severity: Major

Problem summary:

The application is not able to detect handwritten small size hindi text properly.

How to reproduce?

Step1: Connect mobile to Wifi network.

Step2: Installation of Envision Al app is needed.

Step 3: Log into the application

Step 4: Place the camera on the document which has the handwritten text. The text size should be too large.

Step 5: The envision app doesn't detect the small size hindi text successfully and thus the issue is replicated.

4.2.4 Optimal size hindi text detection

Problem ID: ENV_BUG_04

Current software name: Envision Al **Release number and version number: 1**

Test Type: Conventional Testing **Reported By**: Atharva Munshi **Reported Date**: 11 April 2020

Test_case_ID: E_09

Feature Name: Text detection Problem severity: Major

Problem summary:

The application is not able to detect handwritten optimal size hindi text properly.

How to reproduce?

Step1: Connect mobile to Wifi network.

Step2: Installation of Envision Al app is needed.

Step 3: Log into the application

Step 4: Place the camera on the document which has the handwritten text. The text size should be too large.

Step 5: The envision app doesn't detect the optimal size hindi text successfully and thus the issue is replicated.

4.2.5 Color detection Functionality

Problem ID: ENV BUG 05

Current software name: Envision Al Release number and version number: 1

Test Type: Conventional Testing **Reported By**: Atharva Munshi **Reported Date**: 11 April 2020

Test_case_ID: E_04

Feature Name: Color Detection

Problem severity: Major

Problem summary:

The application is not able to detect secondary color (Green) properly

How to reproduce?

Step1: Connect mobile to Wifi network.

Step2: Installation of Envision Al app is needed.

Step 3: Log into the application

Step 4: Place the camera on the secondary color (Green)

Step 5: The envision app doesn't detect the secondary color and thus the issue is replicated.

4.2.6 Color detection Functionality

Problem ID: ENV_BUG_06

Current software name: Envision Al Release number and version number: 1

Test Type: Conventional Testing **Reported By**: Atharva Munshi **Reported Date**: 11 April 2020

Test case ID: E 06

Feature Name: Color Detection

Problem severity: Major

Problem summary:

The application is not able to detect secondary color (Purple) properly

How to reproduce?

Step1: Connect mobile to Wifi network.

Step2: Installation of Envision Al app is needed.

Step 3: Log into the application

Step 4: Place the camera on the secondary color (Purple)

Step 5: The envision app doesn't detect the secondary color and thus the issue is replicated.

4.2.7 Color detection Functionality

Problem ID: ENV_BUG_07

Current software name: Envision Al **Release number and version number: 1**

Test Type: Conventional Testing Reported By: Atharva Munshi Reported Date: 11 April 2020 Test_case_ID: E_08,E_09,E_10 Feature Name: Color Detection Problem severity: Major

Problem summary:

The application is not able to detect tertiary color (red-orange, red-purple, yellow green) properly

How to reproduce?

Step1: Connect mobile to Wifi network.

Step2: Installation of Envision Al app is needed.

- Step 3: Log into the application
- Step 4: Place the camera on the tertiary color
- Step 5: The envision app doesn't detect the tertiary color and thus the issue is replicated.

4.2.8 Object/Face detection Functionality

Problem ID: ENV_BUG_08

Current software name: Envision Al **Release number and version number: 1**

Test Type: Conventional Testing **Reported By**: Atharva Munshi **Reported Date**: 11 April 2020

Test_case_ID: E_02

Feature Name: Object/Face detection

Problem severity: Major

Problem summary:

The application is not able to detect Object properly

How to reproduce?

Step1: Connect mobile to Wifi network.

Step2: Installation of Envision Al app is needed.

Step 3: Log into the application

Step 4: Place the camera on multiple objects.

Step 5: The envision app doesn't detect multiple objects successfully and thus the issue is replicated.

4.2.9 Object/Face detection Functionality

Problem ID: ENV_BUG_09

Current software name: Envision Al **Release number and version number: 1**

Test Type: Conventional Testing **Reported By**: Atharva Munshi **Reported Date**: 11 April 2020

Test_case_ID: E_03

Feature Name: Object/Face detection

Problem severity: Major

Problem summary:

The application is not able to detect the gender and activity of a standing person properly.

How to reproduce?

Step1: Connect mobile to Wifi network.

Step2: Installation of Envision Al app is needed.

Step 3: Log into the application

Step 4: Place the camera on male who's standing.

Step 5: The envision app is not able to detect the gender and activity of a standing person properly and thus the issue is replicated.

4.2.10 Object/Face detection Functionality

Problem ID: ENV_BUG_10

Current software name: Envision Al **Release number and version number: 1**

Test Type: Conventional Testing **Reported By**: Atharva Munshi **Reported Date**: 11 April 2020

Test case ID: E 05

Feature Name: Object/Face detection

Problem severity: Major

Problem summary:

The application is not able to detect the gender and activity of a walking person properly.

How to reproduce?

Step1: Connect mobile to Wifi network.

Step2: Installation of Envision Al app is needed.

Step 3: Log into the application

Step 4: Place the camera on male who's walking.

Step 5: The envision app is not able to detect the gender and activity of a walking person properly and thus the issue is replicated.

4.2.11 Object/Face detection Functionality

Problem ID: ENV BUG 11

Current software name: Envision Al **Release number and version number: 1**

Test Type: Conventional Testing **Reported By**: Atharva Munshi **Reported Date**: 11 April 2020

Test_case_ID: E_06

Feature Name: Object/Face detection

Problem severity: Major

Problem summary:

The application is not able to detect the gender and activity of a Playing person properly.

How to reproduce?

Step1: Connect mobile to Wifi network.

Step2: Installation of Envision Al app is needed.

Step 3: Log into the application

Step 4: Place the camera on male who's Playing.

Step 5: The envision app is not able to detect the gender and activity of a Playing person properly and thus the issue is replicated.

4.2.12 Barcode detection Functionality

Problem ID: ENV_BUG_12

Current software name: Envision Al **Release number and version number: 1**

Test Type: Conventional Testing Reported By: Atharva Munshi Reported Date: 11 April 2020 Test_case_ID: E_02, E_05

Feature Name: Barcode detection

Problem severity: Major

Problem summary:

The application is not able to detect the Scanned barcode properly.

How to reproduce?

Step1: Connect mobile to Wifi network.

Step2: Installation of Envision Al app is needed.

Step 3: Log into the application

Step 4: Place the camera on the barcode.

Step 5: The envision app is not able to detect the blurred barcode properly and thus the issue is replicated.

4.3 Al function test quality assessment

4.3.1 Test Quality Assessment for Object/Face Detection feature

	Accuracy	Scalability	Consistency	Correctness	System Reliability	Relevancy	Performanc e	Robust ness
Object	88%	87%	92%	86%	78%	77%	90%	93%
Face	98%	88%	93%	92%	84%	83%	76%	97%

Test Quality Assessment for Object/Face Detection feature

4.3.2 Test Quality Assessment for Text Detection feature

	Accuracy	Scalabilit y	Consisten cy	Correctne ss	System Reliability	Relevanc y	Performa nce	Robustne ss
On Screen Text- English	98%	97%	100%	90%	84%	87%	97%	69%
On Screen Text- Hindi	100%	100%	100%	99%	93%	89%	97%	100%
Handwritten Text- English	100%	100%	95%	100%	100%	96%	92%	91%
Handwritten Text- Hindi	60%	40%	40%	68%	72%	77%	57%	64%

Test Quality Assessment for Text Detection feature

4.3.3 Test Quality Assessment for Color Identification feature

	Accuracy	Scalabilit y	Consisten cy	Correctne ss	System Reliability	Relevanc y	Performa nce	Robustne ss
Primary Color	68%	70%	75%	89%	76%	69%	91%	59%
Secondary Color	48%	56%	52%	56%	38%	65%	55%	78%

Test Quality Assessment for Color Identification feature

4.3.4 Test Quality Assessment for Barcode Scan feature

	Accuracy	Scalabilit y	Consisten cy	Correctne ss	System Reliability	Relevanc y	Performa nce	Robustne ss
Physical Barcode	85%	85%	80%	77%	82%	88%	94%	99%
On Screen Barcode	90%	89%	95%	89%	91%	100%	92%	97%

Test Quality Assessment for Barcode Scan feature

