Wednesday Fine-grained justifications

Schedule for today

- Superfluousness
- Laconic and precise justifications
- Discussion
- Tool session: Explanation Workbench

The story so far ...

- Justifications are great: they contain no superfluous axioms
- But they can still contain superfluous parts of axioms!

- Some justifications contain large axioms
- Not all parts thereof are relevant
- Problems:
 - Justification is hard to understand
 - If repair = removing the whole axiom, then we might lose other entailments

Example I: $A \sqsubseteq B \sqcap C$ $C \sqsubseteq D \sqcap \neg D$

A is unsatisfiable,

but if we delete the first axiom, we'll lose the entailment $A \sqsubseteq B$. (Over-repair)

Example 2: Explanation in SWOOP (TAMBIS ontology)

```
Axioms causing the inference
alpha-helix = owl:Nothing:

 (alpha-helix ⊆ protein-secondary-structure)

    |_(protein-secondary-structure ⊆ protein-structure)
3)
       |_(protein-structure = (biological-structure ∩ (∀structure-of , macromolecular-compound) ∩ (∃structure-of ,
macromolecular-compound)))
         |\underline{\text{(macromolecular-compound}}| = (\exists \text{has-length . residue-number}) \cap (\forall \text{polymer-of . small-organic-molecular-})
4)
<u>compound</u>) \cap (= 1 <u>has-molecular-weight</u>) \cap (<u>molecule</u> \cap <u>compound</u>) \cap (= 1 <u>has-length</u>) \cap (<u>3polymer-of</u> <u>. small-organic-</u>
molecular-compound) ∩ (∃has-molecular-weight . xsd:integer)))
           |\_(small-organic-molecular-compound \subseteq (organic-molecular-compound \cap small-molecular-compound))
5)
              (organic-molecular-compound ⊆ (∃contains . carbon))
6)
              |\_(carbon = ((= 1 atomic-number) \cap (\exists atomic-number . xsd:integer) \cap chemical))|
7)
8) (nonmetal ⊆ ¬ metal)
    \lfloor (metal = ((= 1 atomic-number) \cap (\exists atomic-number . xsd:integer) \cap chemical))
10) (\underline{nonmetal} = ((\underline{=} 1 \underline{atomic-number}) \cap (\underline{\exists atomic-number} \underline{.} \underline{xsd:integer}) \cap \underline{chemical}))
```

Early solution: Strike-out feature in SWOOP

```
Axioms causing the inference
alpha-helix = owl:Nothing:

 (alpha-helix ⊆ protein-secondary-structure)

               |_(protein-secondary-structure ⊆ protein-structure)
                       | <u>(protein-structure</u> = (<del>biological structure</del> ∩ (<del>Vstructure of r macromolecular compound)</del> ∩ (∃structure-of r
3)
macromolecular-compound)))
                                  (macromolecular-compound = ((2hac length
4)
            \frac{1}{1} \frac{1}
                                                                                                                                                                                                                                                                            1 has length ∩ (∃polymer-of , small-organic-
molecular-compound) ∩ (3has molecular weight : xsdrinteger)))
                                      (small-organic-molecular-compound ⊆ (organic-molecular-compound ∩ small-molecular comp
5)
                                           (organic-molecular-compound ⊆ (∃contains . carbon))
6)
7)
                                         \lfloor (carbon = ((= 1 atomic-number) \cap (\exists atomic-number . xsd:integer) \cap chemical)) \rfloor
8) (nonmetal ⊆ ¬ metal)
               |\underline{\text{(metal = ((= 1 atomic-number) } \cap (\exists atomic-number . xsd:integer)}} \cap \underline{\text{chemical}}))
10) (nonmetal = ((= 1 \text{ atomic-number}) \cap (\exists \text{atomic-number } \cdot \text{xsd:integer}) \cap \text{chemical}))
```


- (1) $A \sqsubseteq B \sqcap \exists R.C \sqcap D$
- (2) $D \sqsubseteq \forall R. \neg C$

- (1) $A \sqsubseteq B \sqcap \exists R.C \sqcap D$
- (2) $D \sqsubseteq \forall R. \neg C$

- (1) $A \sqsubseteq B \sqcap \exists R.C \sqcap D$
- (2) $D \sqsubseteq \forall R. \neg C$

- (1) $A \sqsubseteq B \sqcap \exists R.C \sqcap D$
- (2) $D \sqsubseteq \forall R. \neg C$

- (1) $A \sqsubseteq B \sqcap \exists R.C \sqcap D$
- (2) $D \sqsubseteq \forall R. \neg C$

B is irrelevant, distracting, and might lead to over-repair!

Internal Masking

$$\mathcal{O} = \{ A \sqsubseteq B \sqcap \exists R.C \sqcap \forall R.C \\ F \equiv \exists R.C \} \models A \sqsubseteq F$$

Two reasons for the entailment, in the same justification:

Internal Masking

$$\mathcal{O} = \{ A \sqsubseteq B \sqcap \exists R.C \sqcap \forall R.C \\ F \equiv \exists R.C \} \models A \sqsubseteq F$$

Two reasons for the entailment, in the same justification:

(1)
$$A \sqsubseteq B \sqcap \exists R.C \sqcap \forall R.C$$

 $F \equiv \exists R.C$

Internal Masking

$$\mathcal{O} = \{ A \sqsubseteq B \sqcap \exists R.C \sqcap \forall R.C \\ F \equiv \exists R.C \} \models A \sqsubseteq F$$

Two reasons for the entailment, in the same justification:

(1)
$$A \sqsubseteq B \sqcap \exists R.C \sqcap \forall R.C$$

 $F \equiv \exists R.C$

(2)
$$A \sqsubseteq B \sqcap \exists R.C \sqcap \forall R.C$$

 $F \equiv \exists R.C$

$$\mathcal{O} = \{ A \sqsubseteq B \sqcap C \sqcap \neg C \\ A \sqsubseteq \neg B \} \vdash A \sqsubseteq \bot$$

Two reasons, but only one regular justification:

$$\mathcal{O} = \{ A \sqsubseteq B \sqcap C \sqcap \neg C \\ A \sqsubseteq \neg B \} \vdash A \sqsubseteq \bot$$

Two reasons, but only one regular justification:

(1)
$$A \sqsubseteq B \sqcap C \sqcap \neg C$$

$$\mathcal{O} = \{ A \sqsubseteq B \sqcap C \sqcap \neg C \\ A \sqsubseteq \neg B \} \vdash A \sqsubseteq \bot$$

Two reasons, but only one regular justification:

(1)
$$A \sqsubseteq B \sqcap C \sqcap \neg C$$

(2)
$$A \sqsubseteq B \sqcap C \sqcap \neg C$$

 $A \sqsubseteq \neg B$

$$\mathcal{O} = \{ A \sqcup B \sqsubseteq C \sqcap D \\ A \sqcup E \sqsubseteq C \sqcap F \\ C \sqsubseteq G \sqcap \neg G \} \models A \sqsubseteq \bot$$

$$\mathcal{O} = \{ A \sqcup B \sqsubseteq C \sqcap D \\ A \sqcup E \sqsubseteq C \sqcap F \\ C \sqsubseteq G \sqcap \neg G \} \models A \sqsubseteq \bot$$

$$(1) \quad A \sqcup B \sqsubseteq C \sqcap D$$

$$C \sqsubseteq G \sqcap \neg G$$

$$\mathcal{O} = \{ A \sqcup B \sqsubseteq C \sqcap D \\ A \sqcup E \sqsubseteq C \sqcap F \\ C \sqsubseteq G \sqcap \neg G \} \models A \sqsubseteq \bot$$

$$(1) \quad A \sqcup B \sqsubseteq C \sqcap D$$

$$C \sqsubseteq G \sqcap \neg G$$

(2)
$$A \sqcup E \sqsubseteq C \sqcap F$$

 $C \sqsubseteq G \sqcap \neg G$

$$\mathcal{O} = \{ A \sqcup B \sqsubseteq C \sqcap D \\ A \sqcup E \sqsubseteq C \sqcap F \\ C \sqsubseteq G \sqcap \neg G \} \models A \sqsubseteq \bot$$

$$(1) \quad A \sqcup B \sqsubseteq C \sqcap D$$

$$C \sqsubseteq G \sqcap \neg G$$

(2)
$$A \sqcup E \sqsubseteq C \sqcap F$$

 $C \sqsubseteq G \sqcap \neg G$

The University of Mancheste

Problems

	Understanding	Repair
Superfluous parts	Wasted effort	Possibility of over-repair
Internal masking	Not obvious that there is >1 explanation	Lack of understanding ~> over-repair possible
External masking	Further explanations can be overlooked	Not all info for repair available; over-repair poss.
Shared	Looks like there are more reasons than there are	Repair design is time consuming; over-repair poss.

The University of Manchester

Fine-grained Justifications

Intuitions:

- Show me only parts of axioms! But what is a part? How far to split?
- Do a minimal repair!

The University of Manchester

Fine-grained Justifications

The University of Manchester

Fine-grained Justifications

Fine-grained Justifications

No superfluous parts

All parts as weak as possible

Fine-grained Justifications

No superfluous parts

All parts as weak as possible

Fine-grained Justifications

No superfluous parts

All parts as weak as possible

Primarily geared towards repair

Each axiom is a minimal repair

Laconic and precise justifications

Intuitions:

- Instead of whole axioms, use parts thereof
- Get parts from deductive closure 0* of ont. 0:
 O* = 0 "plus" all its entailments
- Use axioms from 0* to construct explanations
 Get rid of superfluous parts

```
\mathcal{O} = \{ A \sqsubseteq D \sqcap = 1R.C \sqcap B \\ D \sqsubseteq \forall R.C \sqcap F \\ E \equiv \exists R.C \sqcap \forall R.C \} \models A \sqsubseteq E
```

```
\mathcal{O} = \{ A \sqsubseteq D \sqcap = 1R.C \sqcap B \\ D \sqsubseteq \forall R.C \sqcap F \\ E \equiv \exists R.C \sqcap \forall R.C \} \models A \sqsubseteq E
```

```
\mathcal{O} = \{ A \sqsubseteq D \sqcap = 1R.C \sqcap B \\ D \sqsubseteq \forall R.C \sqcap F \\ E \equiv \exists R.C \sqcap \forall R.C \} \models A \sqsubseteq E
```

```
 \{ A \sqsubseteq D \sqcap \geqslant 1R. \top 
D \sqsubseteq \forall R. C
\exists R. C \sqcap \forall R. C \sqsubseteq E \} \qquad \models A \sqsubseteq E
```



```
\mathcal{O} = \{ A \sqsubseteq D \sqcap = 1R.C \sqcap B \\ D \sqsubseteq \forall R.C \sqcap F \\ E \equiv \exists R.C \sqcap \forall R.C \} \models A \sqsubseteq E \}
```

How to weaken axioms?

- In previous example, we
 - → Left out conjuncts
 - weakened exact-cardinality restriction
 - weakened equivalence
- How to do this systematically?
- We need to flatten nested class descriptions using a Structural Transformation

- Motivation: flatten nested class expressions
- ST preserves structure
- ST helps identify parts of class expressions and to work with them
- We'll use an ST that has been widely used

- Motivation: flatten nested class expressions
- ST preserves structure
- ST helps identify parts of class expressions and to work with them
- We'll use an ST that has been widely used

$$C \sqcup D \sqsubseteq A \sqcap \exists R. (F \sqcap \exists R.F)$$

- Motivation: flatten nested class expressions
- ST preserves structure
- ST helps identify parts of class expressions and to work with them
- We'll use an ST that has been widely used

- Motivation: flatten nested class expressions
- ST preserves structure
- ST helps identify parts of class expressions and to work with them
- We'll use an ST that has been widely used

Structural Transformation

Example: see blackboard

Definition: see paper [1]

[1] M. Horridge, B. Parsia, U. Sattler: Laconic and Precise Justifications in OWL. ISWC '08.

http://owl.cs.manchester.ac.uk/2009/esslli-explanation/HoPaSa08.pdf

Given
$$\mathcal{O} \models \eta$$
,

 ${\mathcal J}$ is a laconic justification for η over ${\mathcal O}$:

I. $\mathcal J$ is a justification for η in $\mathcal O^*$

Given
$$\mathcal{O} \models \eta$$
,

 ${\mathcal J}$ is a laconic justification for η over ${\mathcal O}$:

- I. $\mathcal J$ is a justification for η in $\mathcal O^*$
- 2. $\delta(\mathcal{J})$ is a justification for η in $\delta(\mathcal{O}^*)$

Given
$$\mathcal{O} \models \eta$$
,

 $\mathcal J$ is a laconic justification for η over $\mathcal O$:

- I. $\mathcal J$ is a justification for η in $\mathcal O^*$
- 2. $\delta(\mathcal{J})$ is a justification for η in $\delta(\mathcal{O}^*)$
- 3. For each $\alpha \in \delta(\mathcal{J})$ there is no α' such that
 - (a) α' is weaker than α : $\alpha \models \alpha'$ and $\alpha' \not\models \alpha$
 - (b) α' is no longer than α : $|\alpha'| \leq |\alpha|$
 - (c) $(\delta(\mathcal{J})\setminus\{\alpha\})\cup\delta(\alpha')$ is a justification for η in $\delta(\mathcal{O}^*)$

Laconic Justifications

Example: see blackboard

Precise Justifications

Given a justification \mathcal{J} for $\mathcal{O} \models \eta$

Let
$$\mathcal{J}' = \delta(\mathcal{J})$$

Then \mathcal{J}' is a precise justification with respect to \mathcal{J} if \mathcal{J} is a laconic justification for $\mathcal{O} \models \eta$

```
\mathcal{O} = \{ A \sqsubseteq D \sqcap = 1R.C \sqcap B \\ D \sqsubseteq \forall R.C \sqcap F \\ E \equiv \exists R.C \sqcap \forall R.C \}\models A \sqsubseteq E
```

```
\mathcal{O} = \{ A \sqsubseteq D \sqcap = 1R.C \sqcap B \\ D \sqsubseteq \forall R.C \sqcap F \\ E \equiv \exists R.C \sqcap \forall R.C \}\models A \sqsubseteq E
```

```
\top \sqsubseteq X_0 \sqcup X_1
 X_0 \sqsubseteq \neg D
 X_1 \subseteq = 1R.X_2
 X_2 \sqsubseteq C
 X_1 \sqsubseteq B
  \top \sqsubseteq X_3 \sqcup X_4
 X_3 \sqsubseteq \neg D
 X_4 \subseteq \forall R.X_5
 X_5 \sqsubseteq C
 X_4 \sqsubseteq F
  \top \sqsubseteq X_6 \sqcup X_7
 X_6 \sqsubseteq \neg E
 X_7 \subseteq \exists R.X_8
 X_8 \sqsubseteq C
 X_7 \subseteq \forall R.X_9
 X_9 \sqsubseteq C
  \top \sqsubseteq X_{10} \sqcup X_{11}
X_{10} \sqsubseteq E
X_{11} \sqsubseteq X_{12} \sqcup X_{13}
X_{12} \sqsubseteq \forall R.X_{14}
X_{14} \sqsubseteq \neg C
X_{13} \subseteq \exists R.X_{15}
```

 $X_{15} \sqsubseteq \neg C$

Problems

- Contains many more axioms
- Contains new vocabulary
- Is in negation normal form

Problems

- Contains many more axioms
- Contains new vocabulary
- Is in negation normal form

- → Looks horrible
- Difficult to understand
 and to relate back to the original ontology

Preferred Laconic Justifications

- Precise justifications don't work as expected
- In the context of an ontology, not all remaining laconic justifications will be easy to understand
- Some weakenings can be confusing:
 - \geq | instead of = |
 - ▶ GCI instead of domain axiom
- We need to filter laconic justifications!
- Use those LJ whose axioms have a syntactic resemblance to the asserted axioms in the ontology.

Preferred Laconic Justifications

Preferred Laconic Justifications

- LJs defined with respect to the deductive closure
- There could be many LJs for an entailment
- Need to filter the LJs we are interested in
- ~> <u>0</u>+
- O+ ensures that LJs have a syntactic resemblance to the original ontology O
- Essentially, 0+ contains systematically weakened axioms from 0

Filter: O

Filter: O⁺

 $A \sqsubseteq B \sqcap \exists R.C$

$$A \sqsubseteq B \sqcap \exists R.C \qquad A \sqsubseteq \exists R.C \\ A \sqsubseteq B \sqcap \exists R.T$$

$$A \sqsubseteq B \sqcap \exists R.C$$

$$A \sqsubseteq B \sqcap \exists R.C$$

$$A \sqsubseteq B \sqcap \exists R.T$$

$$A \sqsubseteq B \sqcap \exists R.C$$

$$A \sqsubseteq B \sqcap \exists R.T$$

$$A \sqsubseteq B \sqcap \exists R.\top$$

$$A \sqsubseteq B \sqcap \exists R.\top$$

$$A \sqsubseteq B \sqcap \exists R.\top$$

- O+ is not uniquely determined
- Details depend on how LJs are used:

$$\mathcal{O} = \{ C \sqsubseteq D \sqcap \neg D \sqcap E \} \qquad \models C \sqsubseteq \bot$$

$$\mathcal{J}_1 = \{ C \sqsubseteq D \sqcap \neg D \}$$

$$\mathcal{J}_2 = \{ C \sqsubseteq D, C \sqsubseteq \neg D \}$$

For presentation: prefer \mathcal{J}_1

For repair: prefer \mathcal{J}_2

Filter:

- Has been devised for DL SHOIQ, see paper [1]
- $\bullet \ \mathcal{O} \subseteq \mathcal{O}^+ \subseteq \mathcal{O}^*$
- \mathcal{O}^+ is usually finite, but exponentially large, i.e., $|\mathcal{O}^+| \approx 2^{|\mathcal{O}|}$
- Don't need to compute whole \mathcal{O}^+ !

[1] M. Horridge, B. Parsia, U. Sattler: Laconic and Precise Justifications in OWL. ISWC '08.

http://owl.cs.manchester.ac.uk/2009/esslli-explanation/HoPaSa08.pdf