Agenda

- · Max Subsequence sum
- · Unique Paths in a Grid I
- · Unique Paths in a Grid I
- · Dungeons and Princess

2. Given mat [N](M], find total no. of ways from (0,0) to (N-1,M-1). We can take I Step Down (D) or Right(R) at a time.

int apcn3 cm3 = <-17

for (i=0; i<0) for (j=0; j<m; j++) < if (i==0 20 j==0) 96612623=1 dsc if (i = = 0) 1 = [17 [17 dp [1-67 [179D else if (j==0) dp Ci2 < j] == 1 // Cisti-17 Cis ysc ap (1) (1) 46 = [(3) (1) 40 ap Ci 262-13 TC: O(N*W) Sc: 0(N*M)

mat (17(17:0)
→ wall

dse

ways (i, j) = ways (i, j-1) + ways (i-1, j)

(11:00 PM)

(1-67 E07 40 ~ Ep E07 E)-17 607 E1-17 90 ~ E07 E17 90 4,

7	• •	·	2	3
0	3	J	7	-5
l	١	S	-4	6
2	-15	-7	-5	1-2
3	2	(0	g-3	2 T OX

tre > Red Dull

- vc -> Dragon

Energy <=0 => Die

min energy to start with?

$$4 + (-5) = min(7,8)$$

$$= 7 - (-5) = 12$$

TC: 0(N*m)

else if (j = man(1)) dpCi3Cj3 = man(1), dpCi+13Cj3)else dpCi3Cj3 = man(1), dpCi+13Cj3) man(1), min(dpCi3Cj+13, dpCi+13Cj3) - man(1), man(1), dpCi3Cj+13, dpCi+13Cj3)

*cturn apcolto]

1 -3 = min (1,7)=1

$$V = -5$$
 $V = -3$