

# Deep Learning Clinic (DLC)

Lecture 3 - A Brief Introduction to Machine Learning

Jin Sun

10/12/2018

## Today

- Overview
- Formulation of Learning
- Learning Models
- Loss Function
- Optimization
- Data and Evaluation

#### Overview

"Any plausible approach to artificial intelligence must involve learning, at some level, if for no other reason than it's hard to call a system intelligent if it cannot learn."

— CIML Book

What is Machine Learning (ML)?

"ML is about predicting the future based on the past." (CIML)

Two core questions:

How to learn? How good is the learning?

# Machine Learning Paradigm



|    | goal                      | revenue                          |
|----|---------------------------|----------------------------------|
| 2  | real world<br>mechanism   | better ad<br>display             |
| 3  | learning<br>problem       | classify<br>click-through        |
| 4  | data collection           | interaction w/<br>current system |
| 5  | collected data            | query, ad, click                 |
| 6  | data<br>representation    | bow <sup>2</sup> , $\pm$ click   |
| 7  | select model<br>family    | decision trees,<br>depth 20      |
| 8  | select training<br>data   | subset from<br>april'16          |
| 9  | train model & hyperparams | final decision<br>tree           |
| 10 | predict on test<br>data   | subset from<br>may'16            |
| 11 | evaluate error            | zero/one loss for $\pm$ click    |
| 12 | deploy!                   | (hope we<br>achieve our<br>goal) |

increase

real world

\* CIML Fig 2.4.

## Types of Learning Problems

#### Classification

Predict Yes/No (Binary), or from a set of labels (Multi-class).

#### Regression

Predict a real value: e.g., tomorrow's stock price.

#### **Structure Learning**

Predict a graph, a ranking, etc.

# Today

- Overview
- Formulation of Learning
- Learning Models
- Loss Function
- Optimization
- Data and Evaluation

# Formal Definition of Learning

#### Notations and their meaning:

x: our input features (e.g., 2D vectors of ad size and ad brightness)

y: our ground truth labels (e.g., whether the ad is clicked or not)

 $f(\cdot)$ : the function we are learning to predict y from x

 $L(\cdot,\cdot)$  : "loss function" -- how good a given function is on the training data

# Formal Definition of Learning



## A Concrete Example - Binary Classification

$$e \doteq \underset{(x,y) \sim D}{\mathbb{E}}[L(y,f(x))]$$
 
$$\doteq \frac{1}{N} \sum_{n=1}^{N} L(y_n,f(x_n))$$
 Positive Samples

Negative Samples

http://playground.tensorflow.org/

# Today

- Overview
- Formulation of Learning
- Learning Models
- Loss Function
- Optimization
- Data and Evaluation

## A Concrete Example - Binary Classification



#### Choose Your Model

$$e \doteq \underset{(x,y)}{\mathbb{E}} [L(y,f(x))]$$
 
$$\doteq \frac{1}{N} \sum_{n=1}^{N} L(y_n,f(x_n))$$
 Positive Samples Linear Function

## Choose Your Model

$$e \doteq \underset{(x,y)}{\mathbb{E}} [L(y, f(x))]$$
$$\doteq \frac{1}{N} \sum_{n=1}^{N} L(y_n, f(x_n))$$

Negative Samples \_\_\_\_



Positive Samples

Non-linear Function

## Pick a Model That Fits the Data Complexity



Linear Function Not Suitable

#### Generalization

So why not always pick the most complex model?

We care about our model's performance on unseen test data: the *generalization* ability.

If our model is over-complex, it can be overfitted to training and perform poorly on testing data.



## Models

**Decision Trees** 





## Models

Linear Function

$$f(x) = Wx - b$$

Support Vector Machine (SVM)



## Models

Neural Networks



## Non-Parametric Models

Nearest Neighbor



## Today

- Overview
- Formulation of Learning
- Learning Models
- Loss Function
- Optimization
- Data and Evaluation

#### Loss Function

How good a model is on the training data.

$$e \doteq \underset{(x,y) \sim D}{\mathbb{E}} [L(y, f(x))]$$
$$\doteq \frac{1}{N} \sum_{n=1}^{N} L(y_n, f(x_n))$$
Loss function

Loss/Cost/Objective Function

## Choose a Loss Function

#### Classification:

| Hinge Loss | $\max(0, 1 - f(x) \cdot y)$ |
|------------|-----------------------------|
|------------|-----------------------------|

Cross Entropy 
$$-(y\ln(f(x)) + (1-y)\ln(1-f(x)))$$

Regression:

MSE Loss 
$$(f(x) - y)^2$$

L1 Loss 
$$|f(x) - y|$$

KL Divergence 
$$\sum f(x) \ln \frac{f(x)}{y}$$

# Today

- Overview
- Formulation of Learning
- Learning Models
- Loss Function
- Optimization
- Data and Evaluation

## Get Training Started - Optimization

minimize<sub>$$\theta$$</sub>  $e \doteq \mathbb{E}_{(x,y)\sim D}[L(y,f(x;\theta))]$ 

Find the best  $\theta$  that minimizing the expected loss.

## Gradient Descent



1D Loss Function

## Gradient Descent



2D Loss Surface

## Gradient Descent



Non-Convex Loss Surface

# **Optimization Solvers**

| Dlib                                                       | Optimization library in C++ |  |
|------------------------------------------------------------|-----------------------------|--|
| SciPy                                                      | Numeric package for Python  |  |
| MATLAB                                                     | [Commercial]                |  |
| Gurobi                                                     | [Commercial]                |  |
| Deep Learning Frameworks<br>(PyTorch, Tensorflow, and etc) | Built-in GD solvers         |  |

## Regularization

minimize<sub>\theta</sub> 
$$e \doteq \mathbb{E}_{(x,y)\sim D}[L(y,f(x;\theta))] + \lambda R(\theta)$$



E.g., L1, L2 norm

# Today

- Overview
- Formulation of Learning
- Learning Models
- Loss Function
- Optimization
- Data and Evaluation

## Data





#### Data Bias



Torralba, Antonio, and Alexei A. Efros. "Unbiased look at dataset bias." CVPR, 2011.

# Different Types of Supervision

**Fully Supervised** 



# Different Types of Supervision

Semi-Supervised



## Different Types of Supervision

Unsupervised / Clustering E.g., K-means

## Evaluation of A Model

#### Cross-Validation:

Keep a hold-out set from the collected data to simulate the model's performance on unseen data.

| Experiment 1 | — Total Number of Dataset — |                      |
|--------------|-----------------------------|----------------------|
| Experiment 2 |                             | Troining             |
| Experiment 3 |                             | Training  Validation |
| Experiment 4 |                             |                      |
| Experiment 5 |                             |                      |

#### Performance Metrics - Classification

Precision = TP / (TP+FP)

Recall = TP / (TP+FN)



## Performance Metrics - Classification

#### Confusion Matrix



#### **ROC Curve**



## Summary

- Overview
- Formulation of Learning
- Learning Models
- Loss Function
- Optimization
- Data and Evaluation

#### Further Readings:

A Course in Machine Learning by Hal Daume III link
Introduction to Machine Learning by Alex Smola et al link
Pattern Classification by Richard O. Duda et al link
Pattern Recognition and Machine Learning by Christopher Bishop link