Over the last 50 years, robotic and automation systems have transformed our world and greatly enhanced the quality of our daily life. With the development of science and technology, many intelligent systems which integrate machines, electronics, automatic control and information technologies have emerged. Such systems can accomplish numerous tasks originally performed by humans and often prove superior in terms of precision, speed and cost. They can replace humans in the tasks that require repetitive and monotonous operations. For example, in the automotive industry, robotic and automation systems have been widely used for manufacturing, assembling and painting. From the point of engineering, they have optimized the process of productivity and improved the productive efficiency, thus greatly increasing the speed of industrialization.

Robotic and automation systems also contribute to scientific research, especially in some situation that requires to conduct experiments in dangerous environments (e.g, nuclear factory) which are hazardous to human beings or some operating environments that may be beyond humans' capabilities of reach (e.g., other planets). In 2003, two famous robots—Spirit and Opportunity were sent to Mars by NASA to explore the surface and geology of this planet [1]. With the help of intelligent/robotic systems, researchers can collect data much faster than ever before. For instance, the high-throughput screening (HTS) systems [2], which are widely used in the drug discovery and chemistry, allow the researchers to conduct millions of experiments and collect data in a very short time. Such systems consist of several components, including data analysis software, robotics, liquid handling device, etc. Besides data collection, these systems can also analyze the data automatically using intelligent software, which provides an ideal tool for data analysis in scientific research and frees researchers from the tedious and monotonous process of data analysis if done manually. This accelerates the development of scientific research to a great extent.

Intelligent systems also play an important role in *ethology*, which is the scientific study of animal behavior [3]. Ethology is pursued not only because it is a subject of interest

in itself, but also because the knowledge gained from it has several practical applications. For instance, models of animal decision-making processes can be used to predict their behavior in novel environments, which can help in making ecological conservation policy [4]. Knowledge about animal behaviors has also been applied for solving computational problems [5], and for constructing biologically-inspired robotic agents [6]. There are four types of questions to be investigated in ethology: questions concerning causes, functions, development and evolution [3]. Causes refer to the mechanisms of animals that are innate as well as the external/internal stimuli that affect such behavior. Functions concern what is the purpose of this behavior, for example, foraging or matting. The development of animal behavior deals with how animals learn such behavior during their whole life as well as how such behavior is affected by experience, while evolution relates to how the behavior changes over generations in the course of natural evolution. Over centuries, these four questions have been investigated by ethologists either in a well-controlled laboratory or an outdoor environment. Before the emergence of computers, to investigate the animal behaviors, the ethologists need to observe the animals, analyze data by hand. They also need to learn how to control the environmental conditions in a meaningful way to extract most of the information from the animals under investigation. However, such process of analysis sometimes is very time-consuming and tedious. With the help of intelligent and robotic systems, nowadays researchers can conduct experiments much more efficient.

1.1 Motivation

Although intelligent and automation systems have played an significant role in scientific research, they are often secondary. In most of the cases, these systems are just doing mechanical and repetitive work. The question is whether we can build a machine/system that can dominate the whole process of scientific investigation and automatically analyze experimental data, search for correlation between different elements, and generate new hypotheses. In other words, can we build a system which is able to automatically conduct scientific research without (or with minimal) human intervention? Recently, the emergence of "robot scientists" shows that such systems are within reach [7, 8, 9]. Following this motivation, this thesis aims to pave the way for further development in science automation [8], especially in the area of ethology. In particular, we present a new system identification method—Turing Learning, that can automatically learn/model

agent behavior¹ with minimal human intervention. The ultimate goal of this thesis is to contribute to the study of animal behavior through developing an automatic system identification system.

System identification is a process of modeling natural or artificial systems through observed input and output data. It has drawn a large interest among researchers for decades [10, 11]. One application of system identification is the reverse engineering of agent behavior (biological organisms or artificial agents). Many studies have investigated how to deduce rules of agent behavior using system identification techniques based on macro models [12]. When investigating the interaction within a group of agents and between the agents and environments, agent-based models [13] can provide a good representation of such behaviors. An agent-based model is a type of micro model, in which the individual rules are modeled, and the global behavior emerging from interaction is used for refining the models. Evolutionary computation which draws inspiration from biological evolution (will be introduced in Section 2.2) has proven to be a powerful method to automate the generation of models, especially for behaviors that are hard to formulate [14, 15, 16]. Evolutionary computation provides a potential realization for automation science, as models evolve in an autonomous manner. It is the main technique that is investigated in this thesis for performing system identification.

A limitation of current system identification methods is that they rely on predefined metrics, such as the square error, to measure the difference between the output of the models and that of the system under investigation. Model optimization then proceeds by minimizing the measured differences. However, for complex systems, defining a metric can be non-trivial and case-dependent. It may require significant prior information about the systems. Moreover, an unsuitable metric may not distinguish well between good and bad models, or even bias the identification process. This thesis overcomes these problems by introducing a system identification method that does not rely on predefined metrics.

1.2 Problem Statement

In this thesis, we applied our method to infer agent behaviors, ranging from swarm behaviors to deterministic/stochastic behaviors of a single agent, using three case studies. The agent to be studied is put in an environment. Its behavior depends on interaction

¹Since the behaviors under investigation in this thesis are simulated using computer simulation or physical robots, throughout the thesis, unless otherwise stated, we used the term agent behavior.

with the environment and with other agents in a group (if any). The system identification task is to learn the observed behavior, in other words, the agent's behavioral rules through observation. In general, one could monitor a range of the agent's states including body temperature, blood sugar level, morphology, etc. In this project, the machine will observe the animal's motion which is the simplest case, and assumes that the intelligent system is possible to track the position and orientation of the agent at discrete steps in time.

The first case study we investigated here is inferring/modeling swarm behaviors, which are emergent behaviors that arise from the interactions of numerous simple individuals [17]. Learning about behaviors that are exhibited in a collective manner is particularly challenging, as the individuals not only interact with the environment but also with each other. Typically their motion appears stochastic and is hard to predict [18]. For instance, given a swarm of simulated fish, one would have to evaluate how close its behavior is to that of a real fish swarm, or how close the individual behavior of a simulated fish is to that of a real fish. Characterizing the behavior at the level of the swarm (that is, an emergent behavior) is challenging [19]. It may require domain-specific knowledge and not discriminate among alternative individual rules that exhibit similar collective dynamics [20]. Characterizing behavior at the level of individuals is also difficult, as even the same individual fish in the swarm is likely to exhibit a fundamentally different trajectory every time it is being looked at. Therefore, in this case study, we investigate how Turing Learning can be used to automatically infer the individual rules of a group of homogeneous agents only through observation.

The second case study is about inferring the deterministic behaviors of a single agent. In particular, we investigate how the agent responds to its environmental stimulus. The behavior of the agent under investigation is deterministic and depends solely on the environmental stimulus. However, in order to automatically extract all the agent's behavioral repertoire and infer their behavioral rules, the machine needs to construct complex patterns of stimulus that help reinforce the learning process. In our method, the machine has full control over the environmental stimulus that the agent responds to, and at the same time observes the agent's actions. Typically we investigate how *Turing Learning* can be used for learning such deterministic behaviors which has low observability.

In the third case study, the method is applied to learn stochastic behaviors of a single agent. In this case, the agent still responds to the environmental stimulus; however, its behavior is not only determined by the environmental stimulus. In other words,

constructing a fixed sequence of stimulus may not trigger all the agent's behavioral repertoire as in the case of investigating deterministic behaviors. The machine needs to interact with the agent during the experimental process and makes decision (e.g., how to change/control the environmental stimulus) based on the agent's current states to trigger its hidden behavior. This intelligent behavior is widely observed in the experiments involving human beings. Here, whether a machine could exhibit such intelligent behavior and infer the agent's behavioral rules is challenging. It is hence investigated in this thesis as a case study.

1.3 Contributions

- A novel system identification approach—Turing Learning which allows a machine to infer agent behaviors in an autonomous manner. Turing Learning uses a coevolutionary algorithm (which will be introduced in Section 2.2) comprised of two populations. A population of candidate models competitively coevolves with a population of classifiers. The classifiers observe the models and agents. The fitness of the classifiers depends solely on their ability to discriminate between them. Conversely, the fitness of the models depends solely on their ability to 'trick' the classifiers into categorizing them as agents. Unlike other system identification methods, Turing Learning does not rely on predefined metrics to gauge the difference between the behaviors of agents and models.
- Applying *Turing Learning* to successfully infer the behavioral rules of a group of homogeneous agents. Both the model parameters, which were automatically inferred, and emergent global behaviors closely matched those of the original swarm system.
- A systematic investigation of the evolved classifiers in *Turing Learning*. We constructed a robust classifier system that, given an individual's motion data, can tell whether the individual is an original agent or not. Such classifier system could be effective in detecting abnormal behavior, for example, when faults occur in some members of the swarm.
- A realization of *Turing Learning* to automatically perform system identification directly through observation of swarms of physical robots. The results in physical experiments showed good correspondence to those obtained in simulation.

- Extending *Turing Learning* to automatically infer deterministic behavior of a single agent in simulation by interacting with it, rather than simply observing its behavior in a passive manner. This interactive approach proves superior to learning through passive observation.
- Extending *Turing Learning* to automatically infer the stochastic behaviors of a single agent in simulation through controlled interaction. The model parameters are successfully identified. The evolved classifiers show clear interaction with the agent through changing the environmental conditions (stimuli) based on the behavioral dynamics of the agent during the experimental process. The results are shown to be better than those obtained using metric-based system identification methods.

1.4 Publications

This thesis presents the author's own work. Some parts of the thesis have been published as original contributions to the scientific area. A preliminary work of Chapter 3 was orally presented in a conference by the author:

• W. Li, M. Gauci and R. Groß, "Coevolutionary learning of swarm behaviors without metrics," *Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO 2014)*. ACM Press, Vancouver, Canada, 2014, pp. 201–208.

A preliminary work of Chapter 5 was orally presented in a conference by the author of this thesis:

• W. Li, M. Gauci and R. Groß, "A coevolutionary approach to learn animal behavior through controlled interaction," *Proceedings of 2013 Genetic and Evolutionary Computation Conference (GECCO 2013)*. ACM Press, Amsterdam, Netherlands, 2013, pp. 223–230.

A part of Chapters 3 and 4 has been written as a paper and submitted to the following journal:

• W. Li, M. Gauci, J.Chen and R. Groß, "Reverse Engineering Swarm Behaviors Through Turing Learning," *IEEE Transactions on Evolutionary Computation*, under review.

Apart from the work presented in this thesis, the author has also contributed to some other projects. This led to the following publications:

- M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß, "Self-organized aggregation without computation," The International Journal of Robotics Research, vol. 33, no. 8, pp. 1145–1161, 2014.
- J. Chen, M. Gauci, W. Li, A. Kolling and R. Groß, "Occlusion-based cooperative transport with a swarm of miniature mobile robots." *IEEE Transactions on Robotics*, vol.31, no.2, pp. 307–321, 2015.
- M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß, "Clustering objects with robots that do not compute," in *Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014)*. IFAAMAS Press, Paris, France, 2014, pp. 421–428.

During his PhD studies, the author has also been a Marie Curie Research Fellow with the Department of Mechanical Engineering, University of Western Ontario, Canada, where he contributed to the project of Mechanical Cognitivization. This led to the following publications:

• G. Avigad, W. Li, A. Weiss, "Mechanical Cognitivization: A Kinematic System Proof of Concept" *Adaptive Behavior*, vol.23, no.3, pp. 155–170, 2015.

1.5 Thesis Outline

This thesis is structured as follows:

- Chapter 2 describes the background of the thesis as well as the related work presented in the literature.
- Chapter 3 introduces the metric-free system identification method—*Turing Learning*. It is applied to learn two swarm behaviors (self-organized aggregation [23] and self-organized object clustering [24]) through observation. Section 3.6.1 systematically analyzes the evolution of models, through objectively measuring the evolved models in terms of their local and global behaviors. Section 3.6.2 investigates the

Bibliography

- [1] J. P. Grotzinger, "Habitability, taphonomy, and the search for organic carbon on mars," *Science*, vol. 343, no. 6169, pp. 386–387, 2014. [Online]. Available: http://www.sciencemag.org/content/343/6169/386.short
- [2] R. P. Hertzberg and A. J. Pope, "High-throughput screening: new technology for the 21st century," Current Opinion in Chemical Biology, vol. 4, no. 4, pp. 445 – 451, 2000. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S1367593100001101
- [3] J. Bolhuis and L. Giraldeau, *The behavior of animals: mechanisms, function, and evolution.* USA: Wiley-Blackwell, 2004.
- [4] W. J. Sutherland, "The importance of behavioural studies in conservation biology," *Animal Behaviour*, vol. 56, no. 4, pp. 801–809, 1998.
- [5] D. Floreano and C. Mattiussi, Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. Cambridge, MA: MIT Press, 2008.
- [6] J.-A. Meyer and A. Guillot, "Biologically inspired robots," in *Springer Handbook of Robot.*, ser. Springer Handbooks, B. Siciliano and O. Khatib, Eds. Berlin, Heidelberg, Germany: Springer, 2008, pp. 1395–1422.
- [7] R. King, J. Rowland, S. G. Oliver, and M. Young, "The automation of science," *Science*, vol. 324, no. 5923, pp. 85–89, 2009. [Online]. Available: http://www.sciencemag.org/content/324/5923/85.abstract
- [8] J. Evans and A. Rzhetsky, "Machine science," Science, vol. 329, no. 5990, pp. 399–400, 2010. [Online]. Available: http://www.sciencemag.org/content/329/5990/399.short

- [9] D. Waltz and B. G. Buchanan, "Automating science," *Sci.*, vol. 324, no. 5923, pp. 43–44, 2009.
- [10] L. Ljung, "Perspectives on system identification," Annu. Reviews in Control, vol. 34, no. 1, pp. 1–12, 2010.
- [11] S. A. Billings, Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. Hoboken, NJ, USA: Wiley, 2013.
- [12] S. M. Henson and J. L. Hayward, "The mathematics of animal behavior: An interdisciplinary dialogue," *Notices of the AMS*, vol. 57, no. 10, pp. 1248–1258, 2010.
- [13] E. Bonabeau, "Agent-based modeling: Methods and techniques for simulating human systems," *PNAS*, vol. 99, no. 10, pp. 7280–7287, 2002.
- [14] J. Bongard and H. Lipson, "Nonlinear system identification using coevolution of models and tests," *IEEE Trans. Evol. Computation*, vol. 9, no. 4, pp. 361–384, 2005.
- [15] —, "Automated reverse engineering of nonlinear dynamical systems," *PNAS*, vol. 104, no. 24, pp. 9943–9948, 2007.
- [16] G. D. Ruxton and G. Beauchamp, "The application of genetic algorithms in behavioural ecology, illustrated with a model of anti-predator vigilance," *Journal of Theoretical Biology*, vol. 250, no. 3, pp. 435–448, 2008.
- [17] S. Camazine, J.-L. Deneubourg, N. R. Franks, et al., Self-Organization in Biological Systems. Princeton, NJ: Princeton University Press, 2001.
- [18] D. Helbing and A. Johansson, "Pedestrian, crowd and evacuation dynamics," in *Extreme Environmental Events*, R. A. Meyers, Ed. Springer, 2011, pp. 697–716.
- [19] J. Harvey, K. Merrick, and H. A. Abbass, "Application of chaos measures to a simplified boids flocking model," *Swarm Intell.*, vol. 9, no. 1, pp. 23–41, 2015.
- [20] W. S, B. S, F. R, et al., "Modeling collective animal behavior with a cognitive perspective: a methodological framework," PLoS ONE, vol. 7, no. 6, 2012, e38588.
- [21] A. Turing, "Computing machinery and intelligence," *Mind*, vol. 59, no. 236, pp. 433–460, 1950.

- [22] S. Harnad, "Minds, machines and turing: The indistinguishability of indistinguishables," J. Logic, Language and Inform., vol. 9, no. 4, pp. 425–445, 2000.
- [23] M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß, "Self-organized aggregation without computation," The Int. J. of Robot. Research, vol. 33, no. 8, pp. 1145– 1161, 2014.
- [24] —, "Clustering objects with robots that do not compute," in *Proc. 2014 Int. Conf. Autonomous Agents and Multi-Agent Syst.*, IFAAMAS Press, Paris, France, 2014, pp. 421–428.
- [25] H. Schildt, Artificial intelligence using C. New York, NY, USA: McGraw-Hill, 1987.
- [26] E. Charniak, Introduction to artificial intelligence. Reading, MA, USA: Addison-Wesley, 1985.
- [27] D. B. Fogel, Evolutionary computation: toward a new philosophy of machine intelligence. Street Hoboken, NJ, USA: Wiley-IEEE Press, 1995.
- [28] M. L. Minsky, "Logical versus analogical or symbolic versus connectionist or neat versus scruffy," AI magazine, vol. 12, no. 2, pp. 34–51, 1991.
- [29] P. Jackson, Introduction to expert system. Boston, MA, USA: Addison-Wesley, 1998.
- [30] M. Newborn, Kasparov versus Deep Blue: Computer Chess Comes of Age. New York, NY, USA: Springer-Verlag, 1997.
- [31] L. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338–353, 1965.
- [32] N. J. Nilsson, "Shakey the robot," SRI International Technical Note, Tech. Rep., 1984.
- [33] R. Brooks, "A robust layered control system for a mobile robot," *Robotics and Automation*, *IEEE Journal of*, vol. 2, no. 1, pp. 14–23, Mar 1986.
- [34] M. Sasaki, T. Kageoka, K. Ogura, H. Kataoka, T. Ueta, and S. Sugihara, "Total laboratory automation in japan: Past, present and the future," *Clinica Chimica Acta*, vol. 278, no. 2, pp. 217 227, 1998. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S000989819800148X

- [35] A. Persidis, "High-throughput screening," *Nature biotechnology*, vol. 16, no. 5, pp. 488–493, 1998.
- [36] K. E. Whelan and R. D. King, "Intelligent software for laboratory automation," Trends in Biotechnology, vol. 22, no. 9, pp. 440–445, 2004.
- [37] N. Gauld and Gaston., "Driving miss daisy: The performance of an automated insect idenfitication system," *Hymenoptera: evolution, biodiversity and biological-control*, pp. 303–311, 2000.
- [38] N. MacLeod, M. Benfield, and P. Culverhouse, "Time to automate identification," *Nature*, vol. 467, no. 7312, pp. 154–55, 2010. [Online]. Available: http://www.nature.com/nature/journal/v467/n7312/full/467154a.html?type=access_denied
- [39] C. Darwin, On the Origin of Species. England: Dover Publications, 1859.
- [40] J. H. Holland, Adaptation in Natural and Artificial Systems. Boston, Massachusetts: MIT Press, 1992.
- [41] M. J. W. Lawrence J. Fogel, Alvin J. Owens, Artificial Intelligence through Simulated Evolution. Chichester, UK: Wiley, 1966.
- [42] I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Stuttgart: Fromman-Hozlboog Verlag, 1994.
- [43] J. Koza, Genetic Programming. Cambridge MA: MIT Press, 1992.
- [44] C. Rosin and R. Belew, "New methods for competitive coevolution," *Evolutionary Computation*, vol. 5, no. 10, pp. 1–29, 1997.
- [45] R. Dawkins and J. R. Krebs, "Arms races between and within species," Proceedings of the Royal Society of London. Series B. Biological Sciences, vol. 205, no. 1161, pp. 489–511, 1979. [Online]. Available: http://rspb.royalsocietypublishing.org/content/205/1161/489.abstract
- [46] J. Cartlidge and S. Bullock, "Combating coevolutionary disengagement by reducing parasite virulence," *Evolutionary Computation*, vol. 12, no. 2, pp. 193–222, 2004.

- [47] P. J. Angeline and J. B. Pollack, "Competitive environments evolve better solutions for complex tasks," *Bibliometrics*, vol. 155, no. 18, pp. 1–5, 1993.
- [48] L. Panait and S. Luke, "A comparative study of two competitive fitness functions," in *Proceedings of the Genetic and Evolutionary Computation Conference*. Boston, Massachusetts: MIT Press, 2002, pp. 567–573.
- [49] T. Tan and J. Teo, "Competitive coevolution with k-random opponents for pareto multiobjective optimization," in *Natural Computation*, Third International Conference on, 2007, pp. 63 67. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.38.3029
- [50] O. E. David, H. J. van den Herik, M. Koppel, and N. S. Netanyahu, "Genetic algorithms for evolving computer chess programs," *IEEE Transactions on Evolu*tionary Computation, vol. 18, no. 5, pp. 779–789, 2014.
- [51] G. Gutin, A. Yeo, and A. Zverovich, "Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the {TSP}," *Discrete Applied Mathematics*, vol. 117, no. 13, pp. 81 86, 2002. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0166218X01001950
- [52] C. Wang, S. Yu, W. Chen, and C. Sun, "Highly efficient light-trapping structure design inspired by natural evolution," *Sci. Rep.*, vol. 3, no. 1, pp. 1–7, 2013.
- [53] H. GS, L. JD, and L. DS, "Computer-automated evolution of an x-band antenna for nasa's space technology 5 mission," *Evolutionary Computation*, vol. 19, no. 1, pp. 1–23, 2011.
- [54] R. Bellman, Dynamic Programming and Lagrange Multipliers. Princeton, NJ, USA: Princeton University Press, 1957.
- [55] J. J. E. Dennis and J. J. Mor, "Quasi-newton methods, motivation and theory," SIAM Review, vol. 19, no. 1, pp. 46–89, 1977.
- [56] J. R. Shewchuk, "An introduction to the conjugate gradient method without the agonizing pain," Pittsburgh, PA, USA, Tech. Rep., 1994.
- [57] N. Hansen, S. Muller, and P. Koumoutsakos, "Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es)," *Evolutionary Computation*, vol. 11, no. 1, pp. 1–18, March 2003.

- [58] C. M. Fonseca and P. J. Fleming, "An overview of evolutionary algorithms in multiobjective optimization," *Evolutionary Computation*, vol. 3, no. 1, pp. 1–16, 1995.
- [59] K. J. R. and J. P. Rice, "Automatic programming of robots using genetic programming," in AAAI. MIT Press, 1992, pp. 1–6.
- [60] R. A. Brooks, "Artificial life and real robots," in *Proceedings of the First European Conference on Artificial Life*. MIT Press, 1992, pp. 3–10.
- [61] D. Floreano and S. Nolfi, "Adaptive behavior in competing co-evolving species," in The 4th European Conference on Artificial Life. MIT Press, 1997, pp. 378–387.
- [62] D. Floreano, P. Drr, and C. Mattiussi, "Neuroevolution: from architectures to learning," *Evolutionary Intelligence*, vol. 1, no. 1, pp. 47–62, 2008. [Online]. Available: http://dx.doi.org/10.1007/s12065-007-0002-4
- [63] K. O. Stanley and R. Miikkulainen, "Evolving neural networks through augmenting topologies," *Evolutionary Computation*, vol. 10, no. 2, pp. 99–127, 2002. [Online]. Available: http://nn.cs.utexas.edu/?stanley:ec02
- [64] B. D.M. and O. C., "Understanding evolutionary potential in virtual cpu instruction set architectures," *PLoS ONE*, vol. 8, no. 12, p. e83242, 2013. [Online]. Available: http://nn.cs.utexas.edu/?stanley:ec02
- [65] B. Batut, D. P. Parsons, S. Fischer, G. Beslon, and C. Knibbe, "In silico experimental evolution: a tool to test evolutionary scenarios," in *Proceedings of the Eleventh Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Comparative Genomics*. BioMed Central Ltd, 2013, pp. 1–6.
- [66] J.-M. Montanier and N. Bredeche, "Surviving the Tragedy of Commons: Emergence of Altruism in a Population of Evolving Autonomous Agents," in European Conference on Artificial Life, Paris, France, Aug. 2011. [Online]. Available: https://hal.inria.fr/inria-00601776
- [67] W. M, F. D, and K. L, "A quantitative test of hamilton's rule for the evolution of altruism," *PLoS Biology*, vol. 9, no. 5, p. e1000615, 2011.
- [68] D. Floreano, S. Mitri, S. Magnenat, and L. Keller, "Evolutionary conditions for the emergence of communication in robots," *Current Biology*, vol. 17, no. 6,

- pp. 514 519, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960982207009281
- [69] A. JE and B. JC, "Environmental influence on the evolution of morphological complexity in machines," *PLoS Computational Biology*, vol. 10, no. 1, p. e1003399, 2014.
- [70] D. Cliff and G. F. Miller, "Co-evolution of pursuit and evasion ii: Simulation methods and results," *Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior*, vol. 92, no. 2, pp. 101–106, 1995.
- [71] D. Floreano, "Evolutionary robotics in behavior engineering and artificial life," in Evolutionary Robotics: From Intelligent Robots to Artificial Life. Applied AI Systems, 1998. Evolutionary Robotics Symposium. AAI Books, 1998.
- [72] S. Koos, J.-B. Mouret, and S. Doncieux, "The transferability approach: Crossing the reality gap in evolutionary robotics," *Evolutionary Computation*, *IEEE Transactions on*, vol. 17, no. 1, pp. 122–145, Feb 2013.
- [73] S. Koos, A. Cully, and J. Mouret, "Fast damage recovery in robotics with the t-resilience algorithm," *CoRR*, vol. abs/1302.0386, 2013. [Online]. Available: http://arxiv.org/abs/1302.0386
- [74] D. Floreano and F. Mondada, "Evolution of homing navigation in a real mobile robot," *IEEE Trans. Syst.*, Man, and Cybernetics, Part B: Cybernetics, vol. 26, no. 3, pp. 396–407, 1996.
- [75] R. Watson, S. Ficiei, and J. Pollack, "Embodied evolution: embodying an evolutionary algorithm in a population of robots," in *Evolutionary Computation*, 1999. CEC 99. Proceedings of the 1999 Congress on, vol. 1, 1999, pp. –342 Vol. 1.
- [76] A. Eiben, E. Haasdijk, and N. Bredeche, "Embodied, On-line, On-board Evolution for Autonomous Robotics," in Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution., ser. Series: Cognitive Systems Monographs, S. K. E. P. Levi, Ed. Springer, 2010, vol. 7, pp. 361–382. [Online]. Available: https://hal.inria.fr/inria-00531455
- [77] A. Eiben, S. Kernbach, and E. Haasdijk, "Embodied artificial evolution," *Evolutionary Intelligence*, vol. 5, no. 4, pp. 261–272, 2012. [Online]. Available: http://dx.doi.org/10.1007/s12065-012-0071-x

- [78] A. E. Eiben and J. Smith, "From evolutionary computation to the evolution of things," *Nature*, vol. 521, no. 7553, pp. 467–482, 2015.
- [79] J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, "Continuous liquid interface production of 3d objects," *Science*, vol. 347, no. 6228, pp. 1349–1352, 2015. [Online]. Available: http://www.sciencemag.org/content/347/6228/1349.abstract
- [80] L. Ljung, "System identification: Theory for the user," Englewood Cliffs, NJ: Prentice-Hall, 1999.
- [81] D. B. Fogel, System identification through simulated evolution: a machine learning approach to modeling. Needham, MA, USA: Ginn Press, 1991.
- [82] E. J. Vladislavleva, G. F. Smits, and D. Den Hertog, "Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming," *Trans. Evol. Comp.*, vol. 13, no. 2, pp. 333–349, Apr. 2009. [Online]. Available: http://dx.doi.org/10.1109/TEVC.2008.926486
- [83] J. Bongard and H. Lipson, "Nonlinear system identification using coevolution of models and tests," *IEEE Trans. Evol. Comput.*, vol. 9, no. 4, pp. 361–384, 2005.
- [84] —, "Automated damage diagnosis and recovery for remote robotics," in *Proc.* 2004 IEEE Int. Conf. Robot. and Autom. IEEE Computer Society Press, New Orleans, LA, 2004, pp. 3545–3550.
- [85] —, "Automated robot function recovery after unanticipated failure or environmental change using a minimum of hardware trials," in *Proc. 2004 NASA/DoD Conf. Evolvable Hardware*. IEEE Computer Society Press, Los Alamitos, CA, 2004, pp. 169–176.
- [86] S. Koos, J. Mouret, and S. Doncieux, "Automatic system identification based on coevolution of models and tests," in *Proc. 2009 IEEE Congr. Evol. Computation*. IEEE Press, Trondheim, Norway, 2009, pp. 560–567.
- [87] M. Mirmomeni and W. Punch, "Co-evolving data driven models and test data sets with the application to forecast chaotic time series," in *Proc. 2011 IEEE Congr. Evol. Comput.* IEEE Press, New Orleans, LA, USA, 2011, pp. 14–20.

- [88] D. Le Ly and H. Lipson, "Optimal experiment design for coevolutionary active learning," *IEEE Trans. Evol. Computation*, vol. 18, no. 3, pp. 394–404, 2014.
- [89] B. Kouchmeshky, W. Aquino, J. C. Bongard, and H. Lipson, "Co-evolutionary algorithm for structural damage identification using minimal physical testing," International Journal for Numerical Methods in Engineering, vol. 69, no. 5, pp. 1085–1107, 2007. [Online]. Available: http://dx.doi.org/10.1002/nme.1803
- [90] M. Mirmomeni and W. Punch, "Co-evolving data driven models and test data sets with the application to forecast chaotic time series," in 2011 IEEE Congress on Evolutionary Computation. Auburn University, New Orleans, LA, 2011, pp. 14–20.
- [91] J. Bongard, V. Zykov, and H. Lipson, "Resilient machines through continuous self-modeling," *Sci.*, vol. 314, no. 5802, pp. 1118–1121, 2006.
- [92] S. Koos, J. B. Mouret, and S. Doncieux, "The transferability approach: Crossing the reality gap in evolutionary robotics," *IEEE Trans. Evol. Computation*, vol. 17, no. 1, pp. 122–145, Feb 2013.
- [93] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, "Robots that can adapt like animals," *Nature*, vol. 521, no. 7553, pp. 503–507, 2015.
- [94] P. J. O'Dowd, M. Studley, and A. F. T. Winfield, "The distributed co-evolution of an on-board simulator and controller for swarm robot behaviours," *Evol. Intell.*, vol. 7, no. 2, pp. 95–106, 2014.
- [95] N. Jakobi, P. Husbands, and I. Harvey, "Noise and the reality gap: the use of simulation in evolutionary robotics," in *Advances in Artificial Life: Proc. 3rd European Conf. Artificial Life.* Springer-Verlag, 1995, pp. 704–720.
- [96] B. Hedwig and J. F. A. Poulet, "Complex auditory behaviour emerges from simple reactive steering," *Nature*, vol. 430, no. 7001, pp. 781–785, 2004.
- [97] E. Baird, M. J. Byrne, J. Smolka, E. J. Warrant, and M. Dacke, "The dung beetle dance: An orientation behaviour?" *PLoS ONE*, vol. 7, no. 1, p. e30211, 01 2012. [Online]. Available: http://dx.doi.org/10.1371%2Fjournal.pone.0030211
- [98] M. D. M. Byrne, "Visual cues used by ball-rolling dung beetles for orientation," Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, vol. 189, no. 6, pp. 411–418, 2003.

- [99] E. G. Matthews, "Observations on the ball-rolling behavior of canthon pilularius," *Psyche*, pp. 75–93, 1963.
- [100] S. Garnier, J. Gautrais, and G. Theraulaz, "The biological principles of swarm intelligence," *Swarm Intelligence*, vol. 1, no. 1, pp. 3–31, 2007. [Online]. Available: http://dx.doi.org/10.1007/s11721-007-0004-y
- [101] C. W. Reynolds, "Flocks, herds, and schools: A distributed behavioral model," *Computer Graphics*, vol. 21, no. 4, pp. 25–34, 1987.
- [102] R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost, and G. Theraulaz, "Self-organized aggregation in cockroaches," *Animal Behaviour*, vol. 69, no. 1, pp. 169 180, 2005. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0003347204002428
- [103] C. R. Carroll and D. H. Janzen, "Ecology of foraging by ants," *Annu. Review of Ecology and Systematics*, vol. 4, pp. 231–257, 1973.
- [104] J. E. Lloyd, "Bioluminescent communication in insects," Annual Review of Ento-mology, vol. 16, pp. 97–122, 1971.
- [105] O. H. Bruinsma, "An analysis of building behaviour of the termite macrotermes subhyalinus (rambur)," Ph.D. dissertation, Wageningen University, Wageningen, The Netherlands, 1979.
- [106] M. Dorigo and L. Gambardella, "Ant colony system: a cooperative learning approach to the traveling salesman problem," *Evolutionary Computation*, *IEEE Transactions on*, vol. 1, no. 1, pp. 53–66, 1997.
- [107] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Neural Networks, 1995. Proceedings., IEEE International Conference on, vol. 4, Nov 1995, pp. 1942– 1948 vol.4.
- [108] O. Holland and C. Melhuish, "Stigmergy, self-organization, and sorting in collective robotics," *Artificial Life*, vol. 5, no. 2, pp. 173–202, 1999.
- [109] G. Di Caro and M. Dorigo, "Antnet: Distributed stigmergetic control for communications networks," J. Artif. Int. Res., vol. 9, no. 1, pp. 317–365, Dec. 1998. [Online]. Available: http://dl.acm.org/citation.cfm?id=1622797.1622806

- [110] K. Socha, "Aco for continuous and mixed-variable optimization," in Ant Colony Optimization and Swarm Intelligence, ser. Lecture Notes in Computer Science, M. Dorigo, M. Birattari, C. Blum, L. Gambardella, F. Mondada, and T. Sttzle, Eds. Springer Berlin Heidelberg, 2004, vol. 3172, pp. 25–36. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-28646-2_3
- [111] J. Bjerknes and A. T. Winfield, "On fault tolerance and scalability of swarm robotic systems," in *Distributed Autonomous Robotic Systems*, ser. Springer Tracts in Advanced Robotics. Springer, Berlin, Heidelberg, 2013, vol. 83, pp. 431–444.
- [112] J. Chen, M. Gauci, W. Li, A. Kolling, and R. Gros, "Occlusion-based cooperative transport with a swarm of miniature mobile robots," *Robotics, IEEE Transactions on*, vol. 31, no. 2, pp. 307–321, April 2015.
- [113] M. Gauci, J. Chen, T. Dodd, and R. Groß, "Evolving aggregation behaviors in multi-robot systems with binary sensors," in *Distributed Autonomous Robotic Sys*tems, ser. Springer Tracts in Advanced Robotics. Springer, Berlin, Heidelberg, 2014, vol. 104, pp. 355–367.
- [114] E. ahin, "Swarm robotics: From sources of inspiration to domains of application," in *Swarm Robotics*, ser. Lecture Notes in Computer Science, E. ahin and W. Spears, Eds. Springer Berlin Heidelberg, 2005, vol. 3342, pp. 10–20. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-30552-1_2
- [115] B. Gerkey and M. Mataric, "Sold!: auction methods for multirobot coordination," *Robotics and Automation, IEEE Transactions on*, vol. 18, no. 5, pp. 758–768, Oct 2002.
- [116] A. F. T. Winfield, "Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots," in *Distributed Autonomous Robotic Systems 4*, L. Parker, G. Bekey, and J. Barhen, Eds. Springer Japan, 2000, pp. 273–282. [Online]. Available: http://dx.doi.org/10.1007/978-4-431-67919-6_26
- [117] V. Trianni, R. Gro, T. Labella, E. ahin, and M. Dorigo, "Evolving aggregation behaviors in a swarm of robots," in Advances in Artificial Life, ser. Lecture Notes in Computer Science, W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich, and J. Kim, Eds. Springer Berlin Heidelberg, 2003, vol. 2801, pp. 865–874. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-39432-7_93

- [118] S. Garnier, C. Jost, J. Gautrais, M. Asadpour, G. Caprari, R. Jeanson, A. Grimal, and G. Theraulaz, "The embodiment of cockroach aggregation behavior in a group of micro-robots," *Artificial Life*, vol. 14, no. 4, pp. 387–408, Oct. 2008. [Online]. Available: http://dx.doi.org/10.1162/artl.2008.14.4.14400
- [119] A. Howard, M. J. Matarić, and G. S. Sukhatme, "Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem," in *Distributed Autonomous Robotic Systems 5*. Springer, 2002, pp. 299–308.
- [120] J. McLurkin and J. Smith, "Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots," in *in 7th International Symposium on Distributed Autonomous Robotic Systems (DARS.* Citeseer, 2004.
- [121] K. Fujibayashi, S. Murata, K. Sugawara, and M. Yamamura, "Self-organizing formation algorithm for active elements," in *Reliable Distributed Systems*, 2002. Proceedings. 21st IEEE Symposium on, 2002, pp. 416–421.
- [122] J. Chen, M. Gauci, M. J. Price, and R. Groß, "Segregation in swarms of e-puck robots based on the brazil nut effect," in *Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems - Volume 1*, ser. AAMAS '12. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems, 2012, pp. 163–170. [Online]. Available: http://dl.acm.org/citation.cfm?id=2343576.2343599
- [123] A. Turgut, H. elikkanat, F. Gke, and E. ahin, "Self-organized flocking in mobile robot swarms," *Swarm Intelligence*, vol. 2, no. 2-4, pp. 97–120, 2008. [Online]. Available: http://dx.doi.org/10.1007/s11721-008-0016-2
- [124] E. B. C.R. Kube, "Collective robotics: from social insects to robots," *Adaptive Behavior*, vol. 2, no. 2, pp. 189–218, 1993.
- [125] C. Kube and E. Bonabeau, "Cooperative transport by ants and robots," *Robotics and Autonomous Systems*, vol. 30, no. 12, pp. 85 101, 2000. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0921889099000664
- [126] R. Gross and M. Dorigo, "Towards group transport by swarms of robots," *Int. J. Bio-Inspired Comput.*, vol. 1, no. 1/2, pp. 1–13, Jan. 2009. [Online]. Available: http://dx.doi.org/10.1504/IJBIC.2009.022770

- [127] J. Werfel, K. Petersen, and R. Nagpal, "Designing collective behavior in a termite-inspired robot construction team," *Science*, vol. 343, no. 6172, pp. 754–758, 2014.
- [128] G. S. Fraenkel and D. L. Gunn, The Orientation of Animals: Kineses, Taxes, and Compass Reactions. New York: Dover Publications, 1961.
- [129] S. D. Sulkin, "Larval orientation mechanisms: The power of controlled experiments," *Ophelia*, vol. 32, no. 1-2, pp. 49–62, 1990.
- [130] I. Rano, "A steering taxis model and the qualitative analysis of its trajectories," *Adaptive Behaviour*, vol. 17, no. 3, pp. 197–211, 2009.
- [131] S. Camazine, Self-organization in biological systems. Princeton University Press, 2003.
- [132] B. Webb, "What does robotics offer animal behaviour?" *Animal Behaviour*, vol. 60, no. 5, pp. 545 558, 2000. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0003347200915148
- [133] —, "Using robots to model animals: a cricket test," *Robotics and Autonomous Systems*, vol. 16, no. 2134, pp. 117 134, 1995. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0921889095000445
- [134] A. Popov and V. Shuvalov, "Phonotactic behavior of crickets," *J. of Comparative Physiology*, vol. 119, no. 1, pp. 111–126, 1977.
- [135] A. M. Farah and T. Duckett, "Reactive localisation of an odour source by a learning mobile robot," in *In Proceedings of the Second Swedish Workshop on Autonomous Robotics*. SWAR Stockholm, Sweden, 2002, pp. 29–38.
- [136] A. Lilienthal and T. Duckett, "Experimental analysis of smelling braitenberg vehicles," in In Proceedings of the ieee international conference on advanced robotics. Coimbra, Portugal, 2003, pp. 58–63.
- [137] T. Balch, F. Dellaert, A. Feldman, A. Guillory, C. Isbell, Z. Khan, S. Pratt, A. Stein, and H. Wilde, "How multirobot systems research will accelerate our understanding of social animal behavior," *Proceedings of the IEEE*, vol. 94, no. 7, pp. 1445 –1463, 2006.

- [138] J. Chappell and S. Thorpe, "Ai-inspired biology: Does ai have something to contribute to biology?" Proceedings of the International Symposium on AI Inspired Biology: A Symposium at the AISB 2010 Convention, Leicester, UK, 2010.
- [139] J. Faria, J. Dyer, R. Clément, et al., "A novel method for investigating the collective behaviour of fish: Introducing 'robofish'," Behavioral Ecology and Sociobiology, vol. 64, no. 8, pp. 1211–1218, 2010.
- [140] J. Halloy, F. Mondada, S. Kernbach, et al., "Towards bio-hybrid systems made of social animals and robots," in *Biomimetic and Biohybrid Systems*, ser. Lecture Notes in Comput. Sci. Springer, Berlin, Heidelberg, Germany, 2013, vol. 8064, pp. 384–386.
- [141] J. Halloy, G. Sempo1, G. Caprari, et al., "Social integration of robots into groups of cockroaches to control self-organized choices," Sci., vol. 318, no. 5853, pp. 1155– 1158, 2007.
- [142] T. Schmickl, S. Bogdan, L. Correia, et al., "Assisi: Mixing animals with robots in a hybrid society," in *Biomimetic and Biohybrid Systems*, ser. Lecture Notes in Comput. Sci. Springer, Berlin, Heidelberg, Germany, 2013, vol. 8064, pp. 441–443.
- [143] R. Vaughan, N. Sumpter, J. Henderson, et al., "Experiments in automatic flock control," Robot. and Autonomous Syst., vol. 31, no. 1, pp. 109–117, 2000.
- [144] J. Krause, A. F. Winfield, and J.-L. Deneubourg, "Interactive robots in experimental biology," *Trends in Ecology and Evolution*, vol. 26, no. 7, pp. 369 –375, 2011.
- [145] S. G. Halloy J., "Social integration of robots into groups of cockroaches to control self-organized choices," *Science*, vol. 318, no. 5853, pp. 1155–1158, 2007. [Online]. Available: http://www.sciencemag.org/cgi/content/abstract/sci;318/5853/1155
- [146] J. Krause, A. F. Winfield, and J.-L. Deneubourg, "Interactive robots in experimental biology," *Trends in Ecology and Evolution*, vol. 26, no. 7, pp. 369 – 375, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0169534711000851
- [147] R. Vaughan, N. Sumpter, A. Frost, and S. Cameron, "Robot sheepdog project achieves automatic flock control," *The fourth international conference*

- on Autonomous agents, pp. 489–493, 1998. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.38.3029
- [148] A. Gribovskiy, J. Halloy, J.-L. Deneubourg, H. Bleuler, and F. Mondada, "Towards mixed societies of chickens and robots," in *Intelligent Robots and Systems (IROS)*, 2010 IEEE/RSJ International Conference on. Boston, Massachusetts: MIT press, 2010, pp. 4722 –4728.
- [149] V. Kopman, J. Laut, G. Polverino, et al., "Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test," J. of The Roy. Soc. Interface, vol. 10, no. 78, pp. 1–8, 2013.
- [150] A. M. Turing, "Computing machinery and intelligence," Mind, vol. 59, no. 236, pp. 433–460, 1950.
- [151] L. Grossman, "Computer literacy tests: Are you human?" June 2008. [Online]. Available: http://www.time.com/time/magazine/article/0,9171,1812084,00.html