Lecture 7 – First-Class Functions

COSE212: Programming Languages

Jihyeok Park

2023 Fall

Recall

- F1VAE VAE with first-order functions
 - Concrete and Abstract Syntax
 - Evaluation with Function Environments
 - Interpreters and Natural Semantics
 - Static Scoping vs Dynamic Scoping

- In this lecture, we will learn **first-class functions**.
- FVAE VAE with first-class functions
 - Concrete and Abstract Syntax
 - Interpreter and Natural Semantics

Contents

1. First-Class Functions

2. FVAE - VAE with First-Class Functions

Concrete Syntax Abstract Syntax

3. Interpreter and Natural Semantics for F1VAE

Closures – Functions as Values
Addition and Multiplication
Anonymous Functions
Function Application
Function Application (Dynamic Scoping)

Contents

1. First-Class Functions

 FVAE – VAE with First-Class Functions Concrete Syntax Abstract Syntax

3. Interpreter and Natural Semantics for F1VAE $\,$

Addition and Multiplication

Anonymous Functions

Function Application

Function Application (Dynamic Scoping)

First-Class Citizen

In a programming language, an entity is said to be **first-class citizen** if it is treated as a **value**. In other words, it can be

- 1 assigned to a variable,
- 2 passed as an argument to a function, and
- 3 returned from a function.

For example, an integer is obviously a first-class citizen in Scala:

In Scala, **functions** are also **first-class citizens**, and we call them **first-class functions**.

```
def inc(n: Int): Int = n + 1
// 1. We can assign a function to a variable.
val f: Int => Int = inc
// 2. We can pass a function as an argument to a function.
def twice(f: Int => Int, n: Int): Int = f(f(n))
                                   // inc(inc(3)) = 3 + 1 + 1 = 5
twice(inc, 3)
List(1, 2, 3).map(inc)
                                 // List(2, 3, 4)
// 3. We can return a function from a function.
def addN(n: Int): Int => Int = m => n + m
def addN(n: Int)(m: Int): Int = n + m // currying
addN(3)(5)
                                   //3 + 5 = 8
val add3: Int => Int = addN(3)
add3(5)
                                   //3 + 5 = 8
```

First-Class Functions

Programming languages supporting **functional programming** paradigm treat functions as first-class citizens (i.e., **first-class functions**).

• Scala

• Python

```
list(map(lambda x: x * 2, [1, 2, 3])) # [2, 4, 6]
```

• Rust

• Haskell

• . . .

Contents

1. First-Class Functions

FVAE – VAE with First-Class Functions Concrete Syntax Abstract Syntax

3. Interpreter and Natural Semantics for F1VAE
Closures – Functions as Values
Addition and Multiplication
Anonymous Functions
Function Application
(Dynamic Scoping)

Now, we want to extend VAE into FVAE with **first-class functions** rather than **first-order functions** in F1VAE.

```
/* FVAE */
val addN = n => m => n + m;
val add3 = addN(3);
add3(5) // 3 + 5 = 8
```

```
/* FVAE */
val inc = x => x + 1;
val twice = f => n => f(f(n));
twice(inc)(5) // 5 + 1 + 1 = 7
```

For FVAE, we need to extend expressions of VAE with

- 1 anonymous (lambda) functions
- **2** function applications

Concrete Syntax

For FVAE, we need to extend expressions of VAE with

- 1 anonymous (lambda) functions
- g function applications

Let's define the **concrete syntax** of FVAE in BNF:

Why not the following function application syntax?

```
| <id> "(" <expr> ")"
```

We cannot support curried function applications with the above syntax:

addN(3)(5)

Abstract Syntax

Let's define the abstract syntax of FVAE in BNF:

```
Expressions \mathbb{E} \ni e ::= ...

\begin{vmatrix} val & x=e; & e & (Val) \\ & & & & (Id) \\ & & & \lambda x.e & (Fun) \\ & & & & (App) \end{vmatrix}
```

```
enum Expr:
...
case Val(name: String, init: Expr, body: Expr)
case Id(name: String)
// anonymous (lambda) functions
case Fun(param: String, body: Expr)
// function applications
case App(fun: Expr, arg: Expr)
```


For example, let's **parse** the following FVAE program:

```
/* FVAE */
val addN = n => m => n + m;
val add3 = addN(3);
add3(5)
```

Then, the following abstract syntax tree (AST) is produced:

```
Val("addN",
   Fun("n",
      Fun("m"),
      Add(Id("n"), Id("m"))
   )
),
Val("add3",
   App(Id("addN"), Const(3)),
   App(Id("add3"), Const(5))
)
)
```

Contents

- 1. First-Class Functions
- FVAE VAE with First-Class Functions
 Concrete Syntax
 Abstract Syntax
- 3. Interpreter and Natural Semantics for F1VAE

Closures – Functions as Values Addition and Multiplication Anonymous Functions Function Application Function Application (Dynamic Scoping)

Closures – Functions as Values

Let's evaluate the following FVAE program:

```
/* FVAE */
val addN = n => m => n + m;
val add3 = addN(3);
add3(5) // 3 + 5 = 8
```

How to evaluate the function applications addN(3) and add3(5)?

What's values of addN and add3 inside the environments?

Functions! Let's define values as either numbers or functions:

Values
$$\mathbb{V} \ni v ::= n \mid \lambda x.e$$

However, it is **NOT** what exactly we want to do. Why?

Closures – Functions as Values

$$\begin{array}{l} [\operatorname{addN} \mapsto v_0] & \vdash \operatorname{addN}(3) \Rightarrow \lambda m.(n+m) \\ [\operatorname{addN} \mapsto v_0, \operatorname{add3} \mapsto v_1] \vdash \operatorname{add3}(5) \Rightarrow v_2 \end{array}$$

where $v_0 = \lambda n \cdot \lambda m \cdot (n+m)$ and $v_1 = \lambda m \cdot (n+m)$.

We know that m represents 5, but what about n?

Let's define closures as pairs of functions and its environments:

Values
$$\mathbb{V} \ni \mathbf{v} ::= \mathbf{n} \mid \langle \lambda \mathbf{x}.\mathbf{e}, \sigma \rangle$$

$$[\operatorname{addN} \mapsto v_0] \qquad \vdash \operatorname{addN}(3) \Rightarrow \lambda m.(n+m)$$

$$[\operatorname{addN} \mapsto v_0, \operatorname{add3} \mapsto v_1] \vdash \operatorname{add3}(5) \Rightarrow 8$$

where $v_0 = \langle \lambda n. \lambda m. (n+m), \varnothing \rangle$ and $v_1 = \langle \lambda m. (n+m), [n \mapsto 3] \rangle$.

Closures – Functions as Values


```
// values
enum Value:
   case NumV(n: BigInt)
   case CloV(param: String, body: Expr, env: Env)
```

$$\begin{array}{ccc} \mathsf{Values} & \mathbb{V} \ni \mathsf{v} ::= \mathsf{n} & (\mathtt{NumV}) \\ & & | & \langle \lambda \mathsf{x}.\mathsf{e}, \sigma \rangle & (\mathtt{CloV}) \end{array}$$

For FVAE, a **value** is either 1) a **number** n or 2) a **closure** $\langle \lambda x.e, \sigma \rangle$,

```
// interpreter
def interp(expr: Expr, env: Env): Value = ???
```

$$\sigma \vdash e \Rightarrow v$$

and the interpreter takes an **expression** e with an **environment** σ and returns a **value** v (either a number or a closure):

Interpreter and Natural Semantics for FVAE

For FVAE, we need to 1) implement the **interpreter**:

```
def interp(expr: Expr, env: Env): Value = ???
```

and 2) define the **natural semantics** with environments:

where

$$\begin{array}{lll} {\sf Environments} & \sigma \in \mathbb{X} \xrightarrow{\sf fin} \mathbb{V} & ({\tt Env}) \\ {\sf Integers} & n \in \mathbb{Z} & ({\tt BigInt}) \\ {\sf Identifiers} & x \in \mathbb{X} & ({\tt String}) \end{array}$$

Addition and Multiplication


```
def interp(expr: Expr, env: Env): Value = expr match
  . . .
  case Add(1, r) => interp(1, env) + interp(r, env)
  case Mul(1, r) => interp(1, env) * interp(r, env)
```

$$\sigma \vdash e \Rightarrow v$$

$$\text{Add } \frac{\sigma \vdash e_1 \Rightarrow v_1 \qquad \sigma \vdash e_2 \Rightarrow v_2}{\sigma \vdash e_1 + e_2 \Rightarrow v_1 + v_2} \qquad \text{Mul } \frac{\sigma \vdash e_1 \Rightarrow v_1 \qquad \sigma \vdash e_2 \Rightarrow v_2}{\sigma \vdash e_1 \times e_2 \Rightarrow v_1 \times v_2}$$

Mul
$$\frac{\sigma \vdash e_1 \Rightarrow v_1 \qquad \sigma \vdash e_2 \Rightarrow v_2}{\sigma \vdash e_1 \times e_2 \Rightarrow v_1 \times v_2}$$

Is it correct?

Addition and Multiplication


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Add(1, r) => interp(1, env) + interp(r, env)
   case Mul(1, r) => interp(1, env) * interp(r, env)
```

$$\sigma \vdash e \Rightarrow v$$

$$\text{Add } \frac{\sigma \vdash e_1 \Rightarrow \textcolor{red}{v_1} \qquad \sigma \vdash e_2 \Rightarrow \textcolor{red}{v_2}}{\sigma \vdash e_1 + e_2 \Rightarrow \textcolor{red}{v_1} + \textcolor{red}{v_2}}$$

$$\text{Mul } \frac{\sigma \vdash e_1 \Rightarrow \textcolor{red}{\mathbf{v_1}} \qquad \sigma \vdash e_2 \Rightarrow \textcolor{red}{\mathbf{v_2}}}{\sigma \vdash e_1 \times e_2 \Rightarrow \textcolor{red}{\mathbf{v_1}} \times \textcolor{red}{\mathbf{v_2}}}$$

Is it correct? No!

We can only add or multiply **numbers** rather than arbitrary **values**.

Addition and Multiplication


```
def interp(expr: Expr, env: Env): Value = expr match
...

case Add(1, r) => (interp(1, env), interp(r, env)) match
    case (NumV(1), NumV(r)) => NumV(1 + r)
    case (1, r) => error(s"invalid operation: ${1.str} + ${r.str}")

case Mul(1, r) => (interp(1, env), interp(r, env)) match
    case (NumV(1), NumV(r)) => NumV(1 * r)
    case (1, r) => error(s"invalid operation: ${1.str} * ${r.str}")
```

Let's refactor the code to avoid duplication using a helper function.


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Add(1, r) => (interp(1, env), interp(r, env)) match
      case (NumV(1), NumV(r)) => NumV(1 + r)
      case (1, r) => error(s"invalid operation: ${1.str} + ${r.str}")
   case Mul(1, r) => (interp(1, env), interp(r, env)) match
      case (NumV(1), NumV(r)) => NumV(1 * r)
      case (1, r) => error(s"invalid operation: ${1.str} * ${r.str}")
```

Let's define the following helper function:

```
type BOp = (BigInt, BigInt) => BigInt
// Type: (String, BOp) => ((Value, Value) => Value)
def numBOp(x: String, op: BOp): (Value, Value) => Value = ???
```

Let's curry the helper function:

```
// Type: String => BOp => (Value, Value) => Value
def numBOp(x: String)(op: BOp)(1: Value, r: Value): Value = ???
```



```
type BOp = (BigInt, BigInt) => BigInt
def numBOp(x: String)(op: BOp)(1: Value, r: Value): Value = (1, r) match
  case (NumV(1), NumV(r)) \Rightarrow NumV(op(1, r))
  case (1, r) => error(s"invalid operation: ${1.str} $x ${r.str}")
val numAdd: (Value, Value) => Value = numBOp("+")(_ + _)
val numMul: (Value, Value) => Value = numBOp("*")(_ * _)
def interp(expr: Expr, env: Env): Value = expr match
  . . .
  case Add(1, r) => numAdd(interp(1, env), interp(r, env))
 case Mul(1, r) => numMul(interp(1, env), interp(r, env))
```

$$\sigma \vdash e \Rightarrow v$$

$$\text{Add } \frac{\sigma \vdash e_1 \Rightarrow \textit{\textbf{n}}_1 \qquad \sigma \vdash e_2 \Rightarrow \textit{\textbf{n}}_2}{\sigma \vdash e_1 + e_2 \Rightarrow \textit{\textbf{n}}_1 + \textit{\textbf{n}}_2} \qquad \text{Mul } \frac{\sigma \vdash e_1 \Rightarrow \textit{\textbf{n}}_1 \qquad \sigma \vdash e_2 \Rightarrow \textit{\textbf{n}}_2}{\sigma \vdash e_1 \times e_2 \Rightarrow \textit{\textbf{n}}_1 \times \textit{\textbf{n}}_2}$$

Mul
$$\frac{\sigma \vdash e_1 \Rightarrow n_1}{\sigma \vdash e_1 \times e_2 \Rightarrow n_1 \times n_2}$$

Anonymous Functions


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Fun(p, b) => ???
```

$$\sigma \vdash e \Rightarrow v$$

Fun
$$\frac{!!!}{\sigma \vdash \lambda x.e \Rightarrow ???}$$

Anonymous Functions


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Fun(p, b) => CloV(p, b, env)
```

$$\sigma \vdash e \Rightarrow v$$

Fun
$$\sigma \vdash \lambda x.e \Rightarrow \langle \lambda x.e, \sigma \rangle$$

Construct a **closure** $\langle \lambda x.e, \sigma \rangle$ from the function $\lambda x.e$ with the current environment σ for **static scoping**.


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case App(f, e) => ???
```

$$\sigma \vdash e \Rightarrow v$$

$$\mathsf{App}\ \frac{???}{\sigma \vdash e_0(e_1) \Rightarrow ???}$$


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case App(f, e) => interp(f, env) match
      case CloV(p, b, fenv) => ...
   case v => error(s"not a function: ${v.str}")
```

$$\sigma \vdash e \Rightarrow v$$

App
$$\frac{\sigma \vdash e_0 \Rightarrow \langle \lambda x. e_2, \sigma' \rangle \qquad \dots}{\sigma \vdash e_0(e_1) \Rightarrow ???}$$

First, evaluate the **function expression** e_0 , check that it is a **closure**, and let $\langle \lambda x. e_2, \sigma' \rangle$ be the closure.


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case App(f, e) => interp(f, env) match
      case CloV(p, b, fenv) => ... interp(e, env) ...
   case v => error(s"not a function: ${v.str}")
```

$$\sigma \vdash e \Rightarrow v$$

$$\operatorname{App} \frac{\sigma \vdash e_0 \Rightarrow \langle \lambda x. e_2, \sigma' \rangle \quad \sigma \vdash e_1 \Rightarrow v_1 \quad \dots}{\sigma \vdash e_0(e_1) \Rightarrow ???}$$

Then, evaluate the **argument expression** e_1 and let v_1 be the resulting **value**.


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case App(f, e) => interp(f, env) match
      case CloV(p, b, fenv) => interp(b, fenv + (p -> interp(e, env)))
      case v => error(s"not a function: ${v.str}")
```

$$\sigma \vdash e \Rightarrow v$$

$$\operatorname{App} \frac{\sigma \vdash e_0 \Rightarrow \langle \lambda x. e_2, \overline{\sigma'} \rangle \qquad \sigma \vdash e_1 \Rightarrow v_1 \qquad \overline{\sigma'}[x \mapsto v_1] \vdash e_2 \Rightarrow v_2}{\sigma \vdash e_0(e_1) \Rightarrow v_2}$$

Finally, evaluate the **body expression** e_2 in the environment $\sigma'[x \mapsto v_1]$, where σ' denotes the **environment** captured at the **definition site** of the function for **static scoping**.

Function Application (Dynamic Scoping)


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case App(f, e) => interp(f, env) match
      case CloV(p, b, fenv) => interp(b, env + (p -> interp(e, env)))
      case v => error(s"not a function: ${v.str}")
```

$$\sigma \vdash e \Rightarrow v$$

$$\operatorname{App} \frac{\sigma \vdash e_0 \Rightarrow \langle \lambda x. e_2, \sigma' \rangle \qquad \sigma \vdash e_1 \Rightarrow v_1 \qquad \sigma[x \mapsto v_1] \vdash e_2 \Rightarrow v_2}{\sigma \vdash e_0(e_1) \Rightarrow v_2}$$

We can define **dynamic scoping** by using the current **environment** σ at the **call site** of the function instead of the environment σ' captured at the definition site of the function.

Function Application (Dynamic Scoping)


```
/* FVAE (static scoping) */
val x = 3;
val f = y => x * y;
val x = 4;
f(5) // 3 * 5 = 15
```

where

$$\begin{array}{rcl}
\sigma_0 & = & [x \mapsto 3] \\
\sigma_1 & = & [x \mapsto 4, f \mapsto \langle \lambda y.(x \times y), \sigma_0 \rangle]
\end{array}$$

Summary

1. First-Class Functions

2. FVAE - VAE with First-Class Functions

Concrete Syntax Abstract Syntax

3. Interpreter and Natural Semantics for F1VAE

Closures – Functions as Values
Addition and Multiplication
Anonymous Functions
Function Application
Function Application (Dynamic Scoping)

Exercise #4

- Please see this document¹ on GitHub.
 - Implement interp function.
 - Implement interpDS function.
- It is just an exercise, and you don't need to submit anything.
- However, some exam questions might be related to this exercise.

¹https://github.com/ku-plrg-classroom/docs/tree/main/cose212/fvae.

Next Lecture

Lambda Calculus

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr