Microcontrollers and Industrial Applications 1 KOM3722 Week 3

Asst. Prof. Bahadır Çatalbaş

TRISx Register

REGISTER 10-8: TRISx: PORTx TRI-STATE REGISTER(1)

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISx7 | TRISx6 | TRISx5 | TRISx4 | TRISx3 | TRISx2 | TRISx1 | TRISx0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-0 TRISx<7:0>: PORTx Tri-State Control bit

1 = PORTx pin configured as an input (tri-stated)

0 = PORTx pin configured as an output

Note 1: Register description for TRISA, TRISB, TRISC and TRISD.

ANSELB Register

REGISTER 10-4: ANSELB – PORTB ANALOG SELECT REGISTER

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 ANSB<5:0>: RB<5:0> Analog Select bit

1 = Digital input buffer disabled0 = Digital input buffer enabled

Blinking Led Program

```
#include <stdio.h>
#include <stdlib.h>
#include <pic18f45k22.h>
#include <htc.h>

#define _XTAL_FREQ 8000000

#pragma config FOSC = HSHP
#pragma config WDTEN = OFF

void main(void) {
   ANSELB = 0x00;
   TRISB = 0xFE;
   PORTB = 0;
   while(1){
      PORTBbits.RB0 = !PORTBbits.RB0;
      __delay_ms(500);
   }
   return;
}
```

```
#include <stdlib.h>
#include <picl8f45k22.h>
#include <htc.h>

#define _XTAL_FREQ 8000000

#pragma config FOSC = HSHP
#pragma config WDTEN = OFF

void main(void) {
    ANSELB = 0x00; //0000 0000 ANSELB =
    TRISB = 0xFE; //1111 1110 RB0 is ou
    PORTB = 0;
    while(1) {
        PORTBbits.RB0 = !PORTBbits.RB0;
        __delay_ms(500); // requires free
    }
    return;
}
```

I/O Ports

• TRISx -> 0: Output

1: Input

• ANSELx -> 0: Digital

1: Analog

Output pin configuration

Problematic for TRISx: 0 and ANSELx: 1

Microcontrollers and Industrial Applications

FIGURE 10-1: GENERIC I/O PORT OPERATION

Port Registers

Operators

- ~: bytewise reverse
 - PORTB = 0b11110011
 - PORTB = $^{\circ}$ 0x0C
- !: bitwise reverse
 - RB0 = !RB0;
- Operator
 - Btyewise
 - &, |
 - Bitwise
 - &&, ||

• ^: bitwise XOR:

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

• >>: shift to right

•
$$A = A \gg 2 \rightarrow A = A/4$$

• <<: shift to left

•
$$A = A << 1 \rightarrow A = A*2$$

They are same

Programing With Operators

PORT B

10.3 Additional PORTB Pin Functions

PORTB pins RB<7:4> have an interrupt-on-change option. All PORTB pins have a weak pull-up option.

10.3.1 WEAK PULL-UPS

Each of the PORTB pins has an individually controlled weak internal pull-up. When set, each bit of the WPUB register enables the corresponding pin pull-up. When cleared, the RBPU bit of the INTCON2 register enables pull-ups on all pins which also have their corresponding WPUB bit set. When set, the RBPU bit disables all weak pull-ups. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

TABLE 10-6: REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	150
ECCP2AS	CCP2ASE		CCP2AS<2:0>	>	PSS2AC<1:0>		PSS2B	PSS2BD<1:0>	
CCP2CON	P2M	<1:0>	DC2B	<1:0>	CCP2M<3:0>				198
ECCP3AS	CCP3ASE	CCP3AS<2:0>			PSS3AC<	PSS3BD<1:0>		202	
CCP3CON	P3M·	<1:0>	DC3B<1:0>			CCP3M<3:0>			198
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	110
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	111
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	_	_	_	_	153
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	152
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	148
SLRCON	_	_	_	SLRE ⁽¹⁾	SLRD ⁽¹⁾	SLRC	SLRB	SLRA	153
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS<1:0>		167
T3CON	TMR3C	CS<1:0> T3CKPS<1:0>		S<1:0>	T3SOSCEN T3SYNC T3F		T3RD16	TMR3ON	166
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS<1:0>		167
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	152

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTB.

Note 1: Available on PIC18(L)F4XK22 devices.

REGISTER 9-2: INTCON2: INTERRUPT CONTROL 2 REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 RBPU: PORTB Pull-up Enable bit

- 1 = All PORTB pull-ups are disabled
- 0 = PORTB pull-ups are enabled provided that the pin is an input and the corresponding WPUB bit is set.

Use of Weak Pull-Up

https://www.hobidevre.com/10pin-dip-switch

Microcontrollers and Industrial Applications 1 KOM3722

Dip Switch Application

```
#include <stdio.h>
#include <stdlib.h>
#include <pic18f45k22.h>
#include <htc.h>
#define _XTAL_FREQ 8000000
#pragma config FOSC = HSHP
#pragma config WDTEN = OFF
#define RB0 PORTBbits.RB0
#define RB1 PORTBbits.RB1
#define RB2 PORTBbits.RB2
#define RB3 PORTBbits.RB3
#define RB4 PORTBbits.RB4
#define RB5 PORTBbits.RB5
#define RB6 PORTBbits.RB6
#define RB7 PORTBbits.RB7
void main(void) {
   ANSELB = 0x00; //all is digital
   TRISB = 0xF0; //4 high pit is input
  PORTB = 0;
  RBPU = 0;
  while(1){'
RB0 = !RB4;
     RB1 = !RB5;
     RB2 = !RB6:
     RB3 = !RB7;
     //PORTB = (~PORTB & 0xF0)>>4;
  return;
```