Capitolo 2 - Algebra Relazionale

Appunti di Giuseppe Pitruzzella - Corso di Database @ DMI, UniCt

1. Notazione

	TABELLA O RELAZIONE	
Attributo 1	Attributo 2	Attributo 3
Tipo di Dato - Valore	Tipo di Dato - Valore	Tipo di Dato - Valore

Una riga di valori di una relazione è detta *tupla*. L'insieme delle righe di valori di una relazione è detto *corpo*.

2. Operatori

Notazione

	Tabella o relazione	
Attributo o campo dato (dominio)	Attributo o campo dato (dominio)	Attributo o campo dato (dominio)
(Tipo di dato) Valore	(Tipo di dato) Valore	(Tipo di dato) Valore
(Tipo di dato) Valore	(Tipo di dato) Valore	(Tipo di dato) Valore

Testata o schema Tupla Corpo

Unione (U)

Impiegati		
Numero	Cognome	Età
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Direttori		
Numero	Cognome	Età
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Impiegati ∪ Direttori		
Numero	Cognome	Età
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38
9297	O'Malley	56

Intersezione (\cap)

Impiegati		
Numero	Cognome	Età
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Direttori		
Numero	Cognome	Età
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Impiegati ∩ Direttori		
Numero	Cognome	Età
7432	O'Malley	39
9824	Darkes	38

Differenza (-)

Impiegati		
Numero	Cognome	Età
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Direttori		
Numero	Cognome	Età
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Impiegati — Direttori		
Numero	Cognome	Età
7274	Robinson	37

Divisione (/)

Voli	
Codice	Data
001	01/07/2011
001	07/09/2011
001	10/10/2011
002	01/07/2011
002	10/10/2011
002	25/12/2011

Linee	Voli/Linee
Codice	Data
001	01/07/2011
002	10/10/2011
002	10/10/2011

Data una tabella t1 con attributi a1 e a2, e una tabella t2 con attributi a1, la divisione t1/t2 restituisce gli attributi a2 in comune con le tuple di a1.

Ridenominazio ne (δ) [delta]

Paternità	
Padre	Figlio
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

Maternità				
Madre Figlio				
Eve	Cain			
Eve	Seth			
Sarah	Isaac			
Hagar	Ishmael			

$\delta_{{\scriptscriptstyle Padre} o {\scriptscriptstyle Genitore}}$ (Paternità) U	$\delta_{Madre o Genitore}(Maternità)$
Genitore	Figlio
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael
Eve	Cain
Eve	Seth
Sarah	Isaac
Hagar	Ishmael

Prodotto cartesiano (×)

Impiegati	
	D
Impiegato	Progetto
Smith	Α
Black	Α
Black	В

Progetti	
Codice	Nome
Α	Venus
В	Mars

	Impiegati imes Progetti						
Impiegato Progetto Codice No							
	Smith	Α	Α	Venus			
	Black	Α	Α	Venus			
	Black	В	Α	Venus			
	Smith	Α	В	Mars			
	Black	Α	В	Mars			
	Black	В	В	Mars			

Selezione (σ_{λ}) $[sigma_{lambda}]$

Impiegati			
Cognome	Nome	Età	Salario
Smith	Mary	25	5000
Black	Lucy	40	30000
Verdi	Nico	22	4500

$\sigma_{Et \grave{a} < 30 \land Salary > 4000}(Impiegati)$				
Cognome Nome Età Salario				
Smith	Mary	25	5000	
Verdi	Nico	22	4500	

Proiezione (π)

Impiegati			
Cognome	Nome	Dipartimento	Capo
Smith	Mary	Vendite	De Rossi

$\pi_{Cognome,Nome}(In$	npiegati)
Cognome	Nome
Smith	Mary

Black	Lucy	Vendite	De Rossi	Black	Lucy	
Verdi	Nico	Personale	Fox	Verdi	Nico	

Natural-JOIN (⋈)

Le n-uple del risultato sono ottenute combinando le n-uple di Paternità e Maternità che hanno gli stessi valori negli attributi con lo stesso nome

Paternità	
Padre	Figlio
Adam	Cain
Adam	Abel
Abraha	Isaac
m	
Abraha	Ishmae
m	1

Maternità		
Madr	Figlio	
е		
Eve	Cain	
Eve	Seth	
Sarah	Isaac	
Hagar	Ishmae I	

Paternità ⋈ Maternità			
Padre	Figlio	Madre	
Adam	Cain	Eve	
Abhra	Isaac	Sarah	
m			
Abhra	Ishmae	Hagar	
m	1		

Theta-JOIN $(\bowtie_{x(f)y})$

Viene specificato un predicato per la selezione delle n-uple. Se f è una congiunzione di uguaglianze si parla di equi-JOIN.

Theta-Join

Imp	Imp		
Id	Progett		
	0		
2	Α		
2 2 3			
3	Α		
1			
5	С		
8			

Con	npleanni	Imp	$Impiegati \bowtie_{Imp.Id < Compleanni.Id} Progetti$		
Id	Giorno	Id	Progetto		Giorno
2	10/10/7	22	A	58	11/12/80
5	11/12/8 0	31	А	58	11/12/80

Equi-Join

Impiegati	
Impiegat	Progett
О	0
Smith	А
Black	Α
Black	В

Progetti	getti $Impiegati \bowtie_{Progetti=Codice} Progetti$		getti		
Codic	Nome	Impiegato	Progetto	Codice	Nome
е					
Α	Venu	Smith	Α	Α	Venus
	s				
В	Mars	Black	Α	Α	Venus
		Black	В	В	Venus

Casi di JOIN

JOIN incompleto

JOIN vuoto

Nel caso in cui alcuni valori tra gli attributi comuni non coincidono; alcune n-uple non partecipano al JOIN.

Quando nessuna nupla trova il corrispettivo

Natural Outer Join Mantiene nel risultato le n-uple che non partecipano al JOIN. Gli attributi delle dangling n-uple (attributi penzolanti) vengono riempiti con NULL. Tre varianti: – Left: solo dangling n-uple del primo operando – Right: solo dangling n-uple del secondo operando – Full: n-uple da entrambi gli operandi.

r_1	
Impiegat	Dipartiment
О	О
Smith	Vendite
Black	Produzione
White	Produzione

r_2	
Dipartiment	Capo
0	
Produzione	Mori
Acquisizione	Brow
	n

$r_1 \bowtie_{LEFT} r_2$			
lmp.	Dip.	Capo	
Smith	Vendite	NUL	
		L	
Black	Produzion	Mori	
	l e		

$r_1 \bowtie_{RIG}$		
Imp.	Dip.	Capo
Black	Produzione	Mori
Whit	Produzione	Mori

$r_1 \bowtie_{FULL} r_2$			
Imp.	Dip.	Capo	
Smith	Vendite	NULL	
Black	Produzione	Mori	

Whit	Produzion	Mori	NULL	Acquisizion	Brow	Whit	Produzione	Mori	
e	e			e	n	e			
						NULL	Acquisizion	Brow	l
							е	n	l

Join multipli

Il JOIN è commutativo e associativo, quindi possiamo avere sequenze di JOIN senza rischio di ambiguità.

r_1	
Impiegat	Dipartiment
О	О
Smith	Vendite
Black	Produzione
Brown	Marketing
White	Produzione

r_2	
Dipartiment	Division
О	e
Produzione	Α
Marketing	В
Acquisizione	В

Capo
Mori
Brow
n

$r_1 \bowtie r_2 \bowtie r$	3		
Impiegato	Dipartimento	Divisione	Capo
Black	Produzione	Α	Mori
Brown	Marketing	В	Brown
White	Produzione	A	Mori

Prodotto cartesiano generato dal join Il JOIN è definito anche se non ci sono attributi comuni fra le relazioni. In questo caso, non essendoci vincoli sulle tuple da selezionare, vengono selezionate tutte le tuple dalle relazioni del JOIN e quindi otteniamo un prodotto cartesiano.

Semi-Giunzione Relazione di attributi costituita da tutte le n-uple di Studenti che partecipano a Studenti ⋉ Esami.

Studenti			
Nome	Matricol	Indirizzo	Telefon
	а		0
Mario Rossi	12345	Via Etnea 1	22222
Ugo	12346	Via Roma 2	33333
Bianchi			
Teo Verdi	12347	Via Torino	44444
		3	

Esami		
Corso	Matricol	Vot
	a	0
Architetture	12345	30
Programmazion	12346	18
e Architetture	12346	27

Studenti ⋉ Esami						
Nome	Matricola	Indirizzo	Telefono			
Mario Rossi	12345	Via Etnea 1	22222			
Ugo Bianchi	12346	Via Roma 2	33333			

Unione esterna

Estensione delle due tabelle con le colonne dell'altro con valori nulli e si fa l'unione

R				S			
Α	В	С	D	В	С	D	Е
Χ	Υ	Z	Χ	Υ	Z	Х	Υ
Χ	Υ	Z	Χ	Υ	Z	X	M
Χ	Υ	W	Χ	Υ	W	X	Υ
Χ	Υ	W	Χ	Υ	W	X	M

$R \cup^{\hookrightarrow} S$				
Α	В	С	D	E
Χ	Υ	Z	Х	NULL
Χ	Υ	Z	X	NULL
Χ	Υ	W	X	NULL
X	Υ	W	Х	NULL
NULL	Υ	Z	X	Υ
NULL	Υ	Z	X	Υ
NULL	Υ	W	Х	Y
NULL	Υ	W	Χ	М

Selezione con valori nulli Impiegati

 Matricola
 Cognome
 Filiale
 Età

 7309
 Rossi
 Roma
 32

 5998
 Neri
 Milano
 45

 9553
 Bruni
 Milano
 NULL

 $SEL_{Et\grave{a}>40}(Impiegati)$ La condizione atomica è vera solo per valori non nulli.

 $SEL_{Et\grave{a}>30}(Impiegati) \cup SEL_{Et\grave{a}\leq30}(Impiegati)$

Darà come risultato:

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5008	Nori	Milano	45

Perché le condizioni atomiche vengono valutate separatamente

Chiavi

Chiave: insieme di uno o più attributi di una relazione che identificano univocamente le tuple della relazione stessa.

Una chiave è una superchiave minimale, ovvero una superchiave che abbia le dimensione minime possibili.

Superchiave: un sottoinsieme di attributi K di una relazione r che non contiene due tuple che hanno valori uguali su K, garantendo quindi l'univocità della tupla

Chiave primaria: chiave costituita da un attributo aggiunto appositamente per l'identificazione univoca delle tuple. Non ammette valori nulli per i suoi attributi.

Chiave esterna: uno o un insieme di attributi che riferisce una chiave primaria di un altro schema

Query Optimization

1. Raggruppamento di restrizioni

$$\sigma_{C(X)}\left(\sigma_{C(Y)}(E)\right) = \sigma_{C(X)\&C(Y)}(E)$$

2. Commutatività di σ e π

$$\sigma_{C(X)}(\pi_Y(E)) = \pi_Y(\sigma_{C(X)}(E)), \text{ se } X \subseteq Y;$$

$$\pi_Y(\sigma_{C(X)}(\pi_{XY}(E)) = \pi_Y(\sigma_{C(X)}(E)) \text{ se } X \nsubseteq Y$$

3. Anticipazione di σ rispetto a x

$$\begin{split} &\sigma_{\mathcal{C}(X)}(E\times F) = \sigma_{\mathcal{C}(X)}(E) \times F, \text{se } X \subseteq attr(E) \\ &\sigma_{\mathcal{C}(X)\&\mathcal{C}(Y)}(E\times F) = \sigma_{\mathcal{C}(X)}(E) \times \sigma_{\mathcal{C}(Y)}(F), \text{se } X \subseteq attr(E), Y \subseteq attr(F) \end{split}$$

$$\sigma_{C(X)\&C(Y)\&C(Z)}(E \times F) = \sigma_{C(Z)} \left(\sigma_{C(X)}(E) \times \sigma_{C(Y)}(F) \right)$$

se
$$X \subseteq attr(E), Y \subseteq attr(F), Z \cap attr(E) \neq \emptyset, Z \cap attr(F) \neq \emptyset$$

- {Matricola} è una chiave primaria poiché ha la funzione di identificare univocamente le tuple;
- {Cognome, Nome, Nascita} è una chiave poiché l'insieme identifica univocamente una tupla;
- {Matricola,Corso} è una superchiave poiché non hanno valori uguali su K;
- {Nome,Corso} non è una superchiave poiché può contenere valori uguali.
- {Matricola} per la Tabella1 è chiave esterna che si riferisce a Matricola della tabella Studenti, per la quale è chiave primaria.

4. Raggruppamento di proiezioni

$$\pi_{\chi}(\pi_{Y}(E)) = \pi_{\chi}(E)$$
, se $X \subseteq Y$

5. Eliminazione di proiezioni superflue $\pi_X(E) = E$, se X = attr(E)

6. Anticipazione della
$$\pi$$
 rispetto a x

$$\pi_{XY}(E \times F) = \pi_X(E) \times \pi_Y(F)$$
, se $X \subseteq attr(E)$, $Y \subseteq attr(F)$.

Algoritmo per anticipare la selezione

Si anticipa σ rispetto a π usando la 3 \square $\pi_Y \left(\sigma_{C(X)}(E) \right) = \sigma_{C(X)} \left(\pi_Y(E) \right)$;

Si raggruppano le restrizioni usando la 1 $\square \sigma_{C(X)} \left(\sigma_{C(Y)}(E) \right) = \sigma_{C(X)\&C(Y)}(E)$

Si anticipa l'esecuzione di σ su \times usando la 4

Algoritmo per anticipare le proiezioni

Si eliminano le proiezioni superflue usando la 6 $\Pi \pi_x(E) = E$, se X = attr(E)

Si raggruppano le proiezioni mediante la regola 5 $\Pi \pi_x(\pi_Y(E)) = \pi_x(E)$, se $X \subseteq Y$

Si anticipa l'esecuzione delle proiezioni rispetto al prodotto usando ripetutamente la 3 🛘

$$\left[\pi_{\mathcal{Y}}\left(\sigma_{\mathcal{C}(X)}(\pi_{XY}(E))\right) = \pi_{\mathcal{Y}}\left(\sigma_{\mathcal{C}(X)}(E)\right) \text{ se } X \not\subseteq Y$$

quando E è un prodotto, applicata da destra verso sinistra] e la 6 [Anticipazione della π rispetto a \times].

Distributività

- $\sigma_c(R_1 \cup R_2) = \sigma_c(R_1) \cup \sigma_c(R_2)$ $\sigma_c(R_1 R_2) = \sigma_c(R_1) \sigma_c(R_2)$
- $\pi_X(R_1 \cup R_2) = \pi_X(R_1) \cup \pi_X(R_2)$
- NON VALE $\pi_X(R_1 R_2) = \pi_X(R_1) \pi_X(R_2)$
- $\sigma_{c \vee D}(R) = \sigma_{c}(R) \cup \sigma_{D}(R)$
- $\sigma_{c \wedge D}(R) = \sigma_c(R) \cap \sigma_D(R)$
- $\sigma_{c \wedge D}(R) = \sigma_{C}(R) \sigma_{D}(R)$

3. Algoritmi utili allo	svolgimento d	lelle Query

Algebra relazionale

Ricerca del valore R1: $\pi_{id,valori}(Schema)$ massimo R2: $\delta_{valori \rightarrow valoriTmp}(R1)$

R3: $R1 \bowtie_{valori < valoriTmp} (R2)$ //prendo i valori minori

R4: R1-R3 //sottraggo i valori minori allo schema iniziale trovando il maggiore

R5: $\pi_{id}(R4)$

Ricerca del valore minimo R1: $\pi_{id,valori}(Schema)$

R2: $\delta_{valori \rightarrow valoriTmp}(R1)$ R3: $R1 \bowtie_{valori > valoriTmp}(R2)$

R4: R1 - R3R5: $\pi_{id}(R4)$

Ricerca del valore R1: $\pi_{id,tempoInizio,tempoFine}(Schema)$

massimo con tempo da R2: $\delta_{tempoInizio,tempoFine \rightarrow tempoInizio1,tempoFine1}(R1)$

calcolare R3: $\pi_{id,tempoInizio,tempoFine}(R1 \bowtie_{(tempoFine-tempoInizio)<(tempoFine1-tempoInizio1)} R2)$

R4: R2 - R3R5: $\pi_{id}(R4)$

Ricerca di un valore R1: $\pi_{id,valori}(Schema)$

ripetuto R2: $\delta_{valori \rightarrow valoriTmp}(R1)$

R3: $R2 \bowtie R1$

Ricerca di un valore R1: $\delta_{Data \rightarrow Data1}(Schema)$ accaduto lo stesso giorno R2: $\delta_{Data \rightarrow Data2}(Schema)$

R3: $\sigma_{Data1=Data2}(R1 \bowtie R2)$

Ricerca degli id in R1: $\pi_{valore}(Schema2)$ relazione con tutti i valori R2: $\pi_{id,valore}(Schema1)$

R3: R2/R1 //prendo gli id in comune con i valori

R4: $\pi_{id}(R3 \bowtie Schema1)$

Ricerca di una coppia di id R1: $\pi_{id,valore}(Schema)$ in relazione con tutti i R2: $\delta_{id \rightarrow id1}(R1)$

valori R3: R2 ⋈ R1 //trova la coppia id in relazione con valore

R4: $\sigma_{id < id1}(R3)$ //eliminazione dublicati