Практические и расчетные задания по курсу

«Теория вероятностей и Математическая статистика»

Автор – Никитин Кирилл Вячеславович

Практическая работа

Отработка навыков решения практических задач

Исходные данные.

- В качестве источника задач используется учебник «Сборник задач по теории вероятностей, математической статистике» издательства Лань, 3 или 4 издание (доступен в электронной djvu-форме).
- Каждому студенту необходимо решить 27 задач из основных разделов. Задачи пронумерованы в форме х.у, где х номер раздела, у номер задачи. Аналогичная нумерация используется в учебнике. В файле «Задачи варианты.xlsx» приведены номера задач для каждого студента.

Представление результатов

- Представление результатов возможно электронное (печатное) или рукописное. Титульный лист делается в печатном виде на нем указывается группа, ФИО студента и список задач.
- Перед началом каждой задачи должен быть обязательно проставлен ее номер х.у.
- Желательно соблюдать порядок решения задач.
- Недопустимым является приведение ответа без решения. В то же время сверка полученных в результате решения ответов с правильными является желательной.

Защита работы

- Следует учитывать, что при защите данной работы по выбору преподавателя студенту может быть предложено объяснить решение любой из задач.
- Рекомендуется сдавать эту работу в 2 этапа задачи с 1 по 14 к середине марта, задачи с 15 по 27 к концу апреля. Необходимо учитывать фактор времени при проверке решения задач сдача этих работ на зачетной неделе и после сильно увеличивает риск неполучения зачета (допуска к экзамену) вовремя.

Прочее

• При возникновении вопросов по решению задач обращайтесь к учебникам, в случае же непреодолимых затруднений спрашивайте у преподавателя на упражнениях (понедельник 14-16).

Расчетное задание

Приобретение основных навыков программирования в среде Matlab

Указания

- Данная работа предназначена для первого ознакомления со средой Matlab.
- Классический отчет по этой работе не требуется достаточно предоставить тексты программ и скриптов для каждого из пунктов.
- Задания 3.1, 3.2 и 3.3 выполняются полностью.
- Для заданий, у которых есть таблица с вариантами, используется свой вариант.
- Вариант указан в файле с названием Вашей группы в папке «Расчетное задание 0».
- В случае, если номер k вашего варианта для какого-то задания отсутствует, выполняйте вариант, вычислив его по простой формуле knew=mod(k,n)+1, где knew ваш новый вариант задания, mod функция вычисления остатка, n количество вариантов в задании.
- В случае, если в задании нет варианта, выполняйте его с произвольными данными.

1. Операции с числами

Задание 1.1.

Вычислите указанное арифметическое выражение. Укажите последовательность нажатия клавиша. Сравните полученный результат с приведенным ответом.

1.
$$\frac{\left(12\frac{1}{6} - 6\frac{1}{27} - 5,25\right)13,5 + 0,111}{0,02}.$$
 599,3
2.
$$\frac{\left(1\frac{1}{12} + 2\frac{5}{32} + \frac{1}{24}\right):9,6 + 2,13}{0,0004}.$$
 6179,5

3.
$$\frac{\left(6,6-3\frac{3}{14}\right)5\frac{5}{6}}{(21-1,25):2,5}$$

4.
$$\frac{2,625 - \frac{2}{3} \cdot 2\frac{5}{14}}{\left(3\frac{1}{12} + 4,375\right) : 19\frac{8}{9}}.$$
 2,8095

5.
$$\frac{0,134 + 0,05}{18\frac{1}{6} - 1\frac{11}{14} - \frac{2}{15} \cdot 2\frac{6}{7}}$$
 0,0115

6.
$$\frac{\left(58\frac{4}{15} - 56\frac{7}{24}\right) : 0,8 + 2\frac{1}{9} \cdot 0,225}{8,75 \cdot 0,6}$$

7.
$$\frac{\left(\frac{0,216}{0,15} + 0,56\right) : 0,5}{\left(7,7 : 24,75 + \frac{2}{15}\right)4,5}.$$

8.
$$\frac{1\frac{4}{11} \cdot 0,22 : 0,3 - 0,96}{\left(0,2 - \frac{3}{40}\right)1,6}$$

9.
$$\frac{\left(\frac{3}{5} + 0,425 - 0,005\right) : 0,12}{30,5 + \frac{1}{6} + 3\frac{1}{3}}.$$

10.
$$\frac{3\frac{1}{3} + 2,5}{2,5 - 1\frac{1}{3}} \cdot \frac{4,6 - 2\frac{1}{3}}{4,6 + 2\frac{1}{3}} : \left(\frac{0,05}{\frac{1}{7} - 0,125} + 5,7\right).$$

11.
$$\frac{0,725+0,42(6)}{0,128-6,25-(0,0345:0,12)} \cdot 0,25$$
.

12.
$$\frac{\left(4,5 \cdot 1\frac{2}{3} - 6,75\right) \cdot 0,(6)}{\left(3,333 \cdot 0,3 + 0,222 \cdot \frac{4}{9}\right) 2\frac{2}{3}}.$$
0,17068

13.
$$\frac{\left(5\frac{4}{45} - 4\frac{1}{6}\right) \cdot 5\frac{8}{15}}{\left(4\frac{2}{3} + 0,75\right) 3\frac{9}{13}}.$$
0,28571

14.
$$\frac{1\frac{4}{11} \cdot 0,22 \cdot 0,3 - 0,96}{\left(0.2 - \frac{3}{30}\right) \cdot 168}.$$
0,19048

15.
$$\frac{\left(40\frac{7}{30} - 38\frac{5}{12}\right) \cdot 10.9 + \left(0.875 - \frac{7}{30}\right) \cdot \frac{20}{11}}{0.0008}.$$
16.
$$\frac{\left(68,023 - 66,028\right) \cdot 6\frac{1}{9} + \frac{7}{40} \cdot 4.5}{0.042 + 0,086}.$$
17.
$$\frac{\left(2.1 - 1,965\right) \cdot \left(1.2 \cdot 0,045\right)}{0.00325 \cdot 0,013} - \frac{4}{0,2 \cdot 073}.$$
18.
$$\frac{\left(1.88 + 2,127\right) \cdot 0,01875}{0.625 - \frac{13}{13} \cdot 3,13} + 8,29.$$
19.
$$\frac{3 \cdot 0,4 - 0,009 \cdot \left(0,15 \cdot 2,5\right)}{0,32 \cdot 6 + 0,033 - \left(5,3 - 3,88\right)}.$$
20.
$$\frac{\left(34,06 - 33,81\right) \cdot 4}{6,84 \cdot \left(28,57 - 25,15\right)} + 1,33 \cdot \frac{4}{21}.$$
21.
$$\frac{8,8077}{20 - \left(28,2 \cdot \left(13,333 \cdot 0,3 + 0,0125\right)\right)2,004}.$$
1,4889
22.
$$\frac{\left(1,75 \cdot \frac{2}{3} - 1,75 \cdot 1,125\right) \cdot \frac{7}{12}}{\left(0,2012 - 0,0325\right) \cdot 400}.$$
23.
$$\frac{\left(26\frac{1}{3} - 18,02 \cdot 0,75\right) \cdot 2,4 \cdot 0,88}{1,37 - 23\frac{2}{3} \cdot 1,82}.$$
24. 26:
$$\frac{3 \cdot \left(0.48 - 0.27\right)}{2.52\left(1.38 + 2.45\right)} + 1,27.$$
18,836

25. $\left(16,5-13\frac{7}{9}\right)\frac{6}{11} + 2,2 : \left(0,241-0,91\right)$.

Задание 1.2.

Проведите вычисления по заданной формуле при заданных значениях параметров. Укажите необходимую последовательность действий.

Сравните полученный результат с приведенным ответом.

Указание. В системе MatLAB несколько последних команд запоминаются. Повторный вызов этих команд в командное окно осуществляется нажатием клавиш < и <\$\. Используйте эту возможность для повторного обращения к набранной функции.

1.
$$3m^2 + \sqrt[3]{2n^2}$$
: m ; a) $m = -\frac{14}{5}$, $n = tg\frac{\pi}{8}$; 6) $m = 2, 2 \cdot 10^{-2}$, $n = \frac{1}{3.1}$.

OTBET: a) 23,27; 6) 26,938.

2.
$$\frac{4}{3}l^3\sin^2\frac{\alpha}{2}\sqrt{\cos\alpha}$$
; a) $l = 1,7 \cdot 10^3$, $\alpha = 18^\circ$; 6) $l = \frac{16}{21}$, $\alpha = \frac{\pi}{5}$.

ОТВЕТ: a) 1. 5633e+008; б) 5. 0651e-002.

3.
$$\sqrt{\frac{a\sqrt{b}}{\sqrt[3]{tg\alpha}}}$$
; a) $a = 1.5$, $b = 0.8$, $\alpha = 61^{\circ}$; 6) $a = 3 \cdot 10^{-2}$, $b = 0.71$, $\alpha = \frac{3}{7}\pi$.

a) 1. 0498e+000; 6) 1. 2429e-001.

$$\frac{3a^2\sqrt{6.8\cdot(a-b)}}{4(a+b)^3} \; ; \; a) \; a = 4.13\cdot10^{-1}, \; b = \frac{1}{261};$$

6)
$$a = \sin \frac{5\pi}{8}, \ b = -tg12^{\circ}$$

OTBET: a) 2. 9464e+000; b) 4. 9445e+000.

5.
$$\frac{c^3}{6}\cos\frac{\alpha}{2}\sqrt{\sin\alpha}$$
; a) $c = \lg 2.38$, $\alpha = \frac{\pi}{5}$; 6) $c = e^{-0.3}$, $\alpha = 65^\circ$.

OTBET: a) 3. 4657e-004; b) 2. 2120e-002.
6.
$$\sqrt{\frac{n^3}{16,3\sin\alpha\sin2\alpha}}$$
; a) $n = 3,1516 \cdot 10^{-2}$, $\alpha = 5^\circ$; b) $n = e^{3,5}$, $\alpha = \frac{2\pi}{13}$.

OTBET: a) 1. 1265e-002; б) 7. 6324e+001.

7.
$$5\sin 35^{\circ} \sqrt{\frac{S^3 \cos 36^{\circ}}{\pi^3 tg \alpha}}$$
; a) $S = \ln 3$, $\alpha = 44^{\circ}$; 6) $S = \frac{18}{25}$, $\alpha = \frac{7}{12}\pi$.

OTBET: a) 5. 4283e-001; б) 8. 9703e-018+ 1. 4650e-001i.

8.
$$\left| \lg(1 + \sin \alpha) + \ln(1 - \sin \beta) \right|$$
; a) $\alpha = \frac{3\pi}{7}$, $\beta = 83^{\circ}$; 6) $\alpha = \frac{2}{3}\pi$, $\beta = 16^{\circ}$.

OTBET: a) 4. 6035e+000; б) 5. 1546e-002. 9. $\sqrt[3]{\sin^2(\alpha+\beta)-\sin^2(\alpha-\beta)}$; a) $\alpha=\frac{5}{7}\pi$, $\beta=0.3\pi$; 6) $\alpha=12^\circ$, $\beta=220^\circ$ OTBET: a) 4. 8756e-001+ 8. 4448e-001i; b) 7. 3715e-001. 10. $(\log_a(b+1.4))^{-\frac{3}{4}}$; a) a=3.56, $b=e^{0.316}$; b) a=2, $b=2.1649\cdot 10^{-2}$. OTBET: a) 1. 1790e+000; 6) 1. 6630e+000. 11. $3\left(p^{-\frac{2}{3}} + q^{-\frac{1}{2}}\right) \sqrt[3]{pq}$; a) $p = \ln 3$, $q = \lg 3$; 6) p = 0.013, $q = 1.4 \cdot 10^2$. OTBET: a) 5. 7737e+000; б) 6. 6559e+001. 12. $\frac{2}{3}m\sqrt{m\sqrt[3]{m\sqrt[4]{m}}}$; a) $m = 3,6485 \cdot 10^2$; б) $m = \frac{24}{37}$. OTBET: a) 1. 5880e+004; б) 5. 4516e-001 13. $\frac{8}{3}S\sqrt{\frac{S}{\pi}}\sin^6\frac{\alpha}{2}$; a) $S = e^{1,11}$, $\alpha = \frac{7}{11}\pi$; 6) S = 5,403, $\alpha = 28^\circ$. 14. $2\sqrt{\frac{F}{\pi}}tg\alpha\sin^2\frac{\alpha}{2}$; a) $F = \frac{1}{0.03}$, $\alpha = \frac{5}{7}\pi$; 6) $F = \ln 7$, $\alpha = 1.34^\circ$. OTBET: a) -6. 6313e+000; б) 5. 0346e-006. 15. $\frac{1}{12} \cdot \frac{m^3 \cos \alpha}{\left(\sin \alpha + \cos \alpha\right)^3}$; a) m = -20,1, $\alpha = 20^\circ$; б) m = 1g13,6, $\alpha = 1,48$. OTBET: a) -3. 0201e+002; 6) 8. 5792e-003. 16. $\frac{\sqrt{3h^3}}{\cos^2\alpha}\sin(\alpha+30^\circ)\sin(\alpha-30^\circ);$ a) h = 0.28, $\alpha = 41^{\circ}$; 6) $h = e^{0.415}$, $\alpha = 237.^{\circ}$ OTBET: a) 8. 1284e-002; 6) 4. 9334e+000. $\frac{\alpha}{3} \left(\lg(d+2) - \lg \alpha \right)^2;$ a) d = 6,178, $\alpha = 20^{\circ}$; 6) $d = -2,2461 \cdot 10^{-2}$, $\alpha = 1.146$. OTBET: a) 3. 5028e-002; б) 1. 4003e+000. 18. $d^3 ctg \alpha \sqrt{\sin^4 \alpha - \cos^4 \alpha}$; a) d = 10.6, $\alpha = 50^\circ$; 6) $d = e^{2.3}$, $\alpha = 1$. OTBET: a) 4. 1645e+002; 6) 4. 1101e+002. $\frac{a^2\sqrt{3}}{4}(\sec\alpha+\csc\alpha)^4;$ 19. a) a = 5.08, $\alpha = 25^{\circ}$; 6) $a = \ln 1.37$, $\alpha = \frac{12}{25}\pi$ OTBET: a) 1. 6193e+003; b) 3. 5238e+003.

Задание 1.3.

Выполните такие действия (см. таблицу 1.1):

- а) число z1, заданное в алгебраической (экспоненциальной) форме, переведите в экспоненциальную (алгебраическую), проверьте и запишите результат;
 - б) число z2, заданное в экспоненциальной (алгебраической) форме, переведите в алгебраическую (экспоненциальную), проверьте и запишите езультат;
 - в) вычислите заданное выражение; запишите результат экспоненциальной форме, причем аргумент результата обеспечьте в границах между $(-\pi)$ и $+\pi$.

Bapi		Комплек	сное число		Выражение
ант	z_1	z_2	z_3	z_4	
1	4 + 3 <i>i</i>	$2,71e^{i\frac{\pi}{12}}$	$1,82e^{-1,2i}$	$\sqrt{3}-2i$	$z_1^2 \cdot z_2 : z_3 + z_4$
2	0,8 - 2i	$3,08e^{i^{7}\pi/12}$	8,01e ²ⁱ	$-5+\sqrt{2}i$	$z_1^2:z_2+z_3-z_4$
3	-0.7 + 4i	$1,74e^{i0,3\pi}$	3 + 4 <i>i</i>	$2,1e^{-2,3i}$	$\sqrt{z_1 : z_2} \cdot z_3 + z_4$
4	-3-2i	3,21e ^{15° i}	1,2 + 3i	$2,71e^{-78^{\circ}i}$	$\sqrt{z_1 \cdot z_2} : z_3 + z_4$
5	$2,71e^{i\frac{\pi}{2}}$	-0.7 + 4i	$1,31e^{-i^{5}\pi/12}$	-8 - 3i	$\sqrt{z_1}: z_2 \cdot z_3 - z_4$
6	$3,08e^{i^{7}\pi/12}$	-3-2i	$2,03e^{i^{1}\frac{4}{13}}$	$\sqrt{3} + \sqrt{2}i$	$(z_1 + z_2)^4 \cdot z_3 : z_4$
7	$1,74e^{0,3\pi i}$	0,8 – 2 <i>i</i>	$3,28e^{-1,2i}$	$\sqrt{3}-\sqrt{2}i$	$\left(\sqrt{z_1} + z_2\right) \cdot z_3 : z_4$
8	3,21e ¹⁵ⁱ	4+3i	$\sqrt{3}-4i$	1,23e ^{111° i}	$(z_1-z_2)^3 \cdot z_3 + z_4$
9	$1+i\frac{\pi}{2}$	$1,2e^{107^{\circ}i}$	0.8 - 2i	$2,5e^{14^{\circ}i}$	$(z_1:z_2+z_3)^3\cdot z_4$
10	$\sqrt{5}-i$	$0.7e^{1.7i}$	$1,2e^{0,9i}$	-3-2i	$(z_1:z_2+z_3)^2-z_4$
11	0,187 – 3,94i	$0,3e^{-107^{\circ}i}$	-0.7 + 4i	1,5e ^{23°i}	$\sqrt[3]{z_1 + z_2 - z_3} \cdot z_4$
12	$-1+\sqrt{5}i$	2,1e ^{211°i}	0,4e ^{32°i}	4+3i	$\sqrt[3]{z_1} \cdot z_2 : z_3 + z_4$
13	$-\sqrt{3}-4i$	$1,25e^{-0,8i}$	-3-2i	$0,75e^{0,7i}$	$(\sqrt[3]{z_1 \cdot z_2} + z_3): z_4$
14	$1,2e^{1,7i}$	0,18 – 3,9i	$0,71e^{4i}$	0.8 - 2i	$(\sqrt[3]{z_1:z_2} + z_3) \cdot z_4$
15	$0.3e^{-97^{\circ}i}$	$-1+\sqrt{5}i$	-0,7+4i	5,2 e ^{71° i}	$\left(\sqrt{z_1\cdot z_2}-z_3\right):z_4$
16	1,25e ^{0,6i}	$-\sqrt{3}-4i$	4+3 <i>i</i>	$2,5e^{3,8i}$	$\left(\sqrt{z_1:z_2}-z_3\right)\cdot z_4$
17	$1,05e^{-0,4i}$	$\sqrt{5}-i$	$2,7e^{0,8i}$	-0.7 + 4i	$\sqrt{\left(z_1:z_2+z_3\right)\cdot z_4}$
18	2,1e ^{73°i}	$1+i\frac{\pi}{2}$	$\sqrt{2} + \sqrt{3}i$	1,93e ^{192°i}	$\sqrt{(z_1 \cdot z_2 - z_3) \cdot z_4}$
19	2,7+0,8i	$2e^{-\sqrt{3}i}$	$0.81e^{i\frac{\pi}{7}}$	$-\sqrt{2}-\sqrt{3}i$	$\sqrt{(z_1+z_2):z_3\cdot z_4}$
20	-0.8 + 2.7i	$-2e^{\sqrt{3}i}$	$0.9e^{i^{5}\pi/7}$	3,1-2,1i	$\sqrt{(z_1+z_2)\cdot z_3:z_4}$
21	-1,1-3,2i	$0,33e^{-1,9i}$	$2e^{\sqrt{2}i}$	2,08 + i	$\sqrt{z_1-z_2}\cdot z_3:z_4$
22	2,1-3,2i	0,68e ^{148° i}	$\sqrt{5} + \sqrt{2}i$	$2,73e^{23^{\circ}i}$	$\sqrt{z_1 - z_2} : z_3 \cdot z_4$
23	$1,1e^{-0,8i}$	$\sqrt{5}-2i$	-1,7+i	$0,97e^{\sqrt{2}i}$	$((z_1+z_2)^2-z_3):z_4$
24	2,1e ^{0,8i}	$-\sqrt{5}+2i$	$1,7e^{\sqrt{3}i}$	$0.8e^{2.5i}$	$((z_1-z_2)^2+z_3):z_4$
25	$1,1e^{-2,1i}$	$\frac{\pi}{8} - 2.1i$	2,71+0,4 <i>i</i>	$1,71e^{-\sqrt{3}i}$	$(z_1-z_2)^3:z_3+z_4$

Задание 1.4.

Найдите корни квадратного уравнения $ax^2 + bx + c$ при заданных значениях

коэффициентов a, b и c.

Вариант	а	b	С
1	0.56	1.2e-4	4.08
2	1	0.1	100
3	4. 2e-3	8. 03e-4	1.06
4	7. 1e3	9. 4e4	8. 3e10
5	5.09	4.32	256
6	8.3	5.34	693
7	27	27	1276
8	3.08	0.2	30
9	5.3	10.6	876
10	0.45	0. 034	121
11	4.3	10.7	3. 4e3
12	13	0.8	287
13	6. 035	5.2	875
14	2.3	7.9	324
15	1	0.02	16.57
16	1.3	0.56	18.8
17	0.13	0. 056	18.8
18	17	12	956
19	0. 085	1	1. 3e3
20	1.2	0.32	15
21	7.1	6.4	256
22	0.2	0. 002	2.9
23	1. 4e-3	3.9	2. 6e2
24	0.86	3.2	5. 4e2
25	7. 3e3	8. 2e2	3. 5e8

2. Простейшие операции с векторами и матрицами

Задание 2.1.

Вычислите значения функции f(x) на отрезке [a; b] с шагом h.

Вариант	f(x)	а	b	h
1	x^2	1,1	3,1	0,2
	$1+0.25\sqrt{x}$			
2	$x^3 - 0.3x$	2,05	3,05	0,1
	$\sqrt{1+2x}$			
3	$2e^{-x}$	0	1,6	0,16
	$\sqrt{2\pi+x^3}$			
4	$\frac{2\pi + x^3}{2\pi + x^3}$ $\frac{\cos \pi x^2}{\sqrt{1 - 3x}}$	-1	0	0,1
	$\sqrt{1-3x}$			
5	$\sqrt{1+4x}\sin\pi x$	0,1	0,8	0,07
6	$e^{x/3}$	1,4	2,4	0,1
	$\frac{1}{1+x^2}$			
7	$e^{-2x} + x^2 - 1$	0,25	2,25	0,2
8	$(e+x)\sin(\pi\sqrt{x-1})$	1,8	2,8	0,1
9	$\sqrt{3+2x} \cdot tg \frac{\pi x^3}{2}$	0,1	0,9	0,08

10	$\sqrt{2+3x} \cdot \ln(1+3x^2)$	-0,1	0,9	0,1
11	$\sqrt[3]{x^2+3}\cdot\cos\frac{\pi x}{2}$	1	2,5	0,15
12	$(4+7x)\sin(\pi\sqrt[3]{1+x})$	0	7	0,7
13	$e^{-x^2}(1+3x-x^2)$	0	2	0,2
14	$x^3 - 3x + \frac{8}{\sqrt{1+x^2}}$	0	1,7	0,17
15	$\sqrt{sh\sqrt{2\pi x}} , \left(sh \ x = \frac{e^x - e^{-x}}{2} \right)$	0	1,2	0,12
16	$\sqrt{ch\frac{x}{\sqrt{2\pi}}} , \left(ch \ x = \frac{e^x + e^{-x}}{2} \right)$	0,5	1,5	0,1
17	$\frac{x^3 + 2x}{\sqrt{1 + e^x}}$	-0,2	0,8	0,1
18	$\sqrt{1+2x^2} \cdot \sin \frac{3x}{2}$	2	4	0,2
19	$\sqrt{3x^2 + 5} \cdot \cos \frac{\pi x}{2}$	0,5	1,5	0,1
20	$\arccos e^{-\frac{3}{\sqrt{3}x}}$	0,2	0,5	0,03
21	$\arcsin e^{-x^2/5}$	8	13	0,5
22	$x + \ln\left(x + \sqrt{1 + x^2}\right)$	-0,5	0,5	0,1
23	$\frac{1+e^{-x/2}}{\sqrt{3x^2+1}}$	3	5	0,2
24	$ \frac{\sqrt{3x^2 + 1}}{3x^3 + \frac{1}{x} + e^{-2x^2}} $	1,2	2,2	0,1
25	x $x^{2x+1} + x^3 - 2x$	1	5	0,4

3. Функции прикладной численной математики

Задание 3.1.

- 1. Введите произвольную матрицу размером (4*6). Найдите сумму наибольших элементов ее строк.
- 2. Введите квадратную матрицу (5*5) с одним наименьшим элементом. Найдите сумму элементов строки, в которой размещен элемент с наименьшим значением.
- 3. Введите матрицу (6*9), в которой есть единственные наибольший и наименьшие элементы и они расположены в разных строках. Поменяйте местами строку с наибольшим элементом и строку с наименьшим элементом.

- 4. Введите матрицу (5*6) с разными значениями элементов. В каждой строке выберите элемент с наименьшим значением, из полученных чисел выберите наибольшее. Найдите индексы полученных элементов.
- 5. Введите матрицу (5*6). Найдите вектор, элементами которого являются наибольшие элементы соответствующей строки матрицы.
- 6. Введите матрицу (5*6). Постройте вектор, элементами которого являются суммы наибольшего и наименьшего элементов соответствующей строки матрицы.
- 7. Введите матрицу (5*6). Постройте вектор, элементами которого являются средние значения элементов соответствующей строки матрицы.
- 8. Введите матрицу (5*6). Постройте вектор, элементами которого являются среднеквадратичные отклонения элементов соответствующей строки матрицы от их среднего значения.
- 9. Введите матрицу (5*6). Постройте вектор, элементами которого являются средние арифметические наибольшего и наименьшего элементов соответствующей строки матрицы.
- 10. Введите матрицу (6*5). Постройте вектор, элементами которого являются суммы квадратов элементов соответствующего столбца матрицы.
- 11. Введите матрицу (5*5). Постройте векторы, элементами которых являются суммы элементов столбцов матрицы, произведения элементов столбцов и наименьшие значения элементов столбцов.
- 12. Введите матрицу (5*6). Найдите среднее арифметическое наибольших и наименьших ее элементов.
- 13. Введите матрицу (5*5). Постройте вектор, элементами которого являются элементы главной диагонали матрицы. Найдите след матрицы.
- 14. Введите две матрицы (4*4). Постройте новую матрицу размером (4*8), включая в первые 4 столбца строки первой матрицы, а в другие столбцы второй матрицы.
 - 15. Найдите сумму всех элементов матрицы размером (4*3).

Задание 3.2.

Вычислите векторы:

- а) модуля частотной передаточной функции (ЧПФ);
- б) аргумента ЧПФ;
- в) действительной части ЧПФ;
- г) мнимой части ЧП Φ по заданным числителю и знаменателю передаточной функции (табл).

Предварительно найдите корни знаменателя передаточной функции, определите наибольшую собственную частоту ω_{max} системы. Обеспечьте вычисление ЧПФ при 100 значениях частоты ω в диапазоне от 0 до $5\omega_{max}$.

Ba-	Числитель	Знаменатель
ри-		
ант		
1	1. 82p+67.56	$p^4+2.65p^3+3.09p^2+7.04p+34.05$
2	4. 61p ² +1. 82p+67.56	p ⁴ +3. 65p ³ +45p ² +7. 04p+125 p ⁴ +2p ³ +39p ² +2p+45
3	p ² +4p+23	$p^4+2p^3+39p^2+2p+45$
4	3p ² +1. 82p+67.56	p ² +7. 04p+34.05
5	p+6	$p^2+0.7p+48$
6	p ³ +4. 61p ² +1. 82p	2. 65p ³ +3p ² +4p+87
7	p ³ +4. 61p ² +1. 82p+67.56	$p^4+2.65p^3+68p^2+5p+34$
8	4. 61p ² +68	$p^4+2.65p^3+3.09p^2+7.04p+34.05$
9	7.56	$p^4+2.65p^3+3.09p^2+7.04p+34.05$
10	p ³ +1.8p+7	$p^4+6.5p^3+39p^2+7p+45$
11	p ³ +4. 61p ² +1. 82p+67.56	$p^3+3.09p^2+70p+34$
12	p ² +1. 8p+78	$2.65p^3+3.09p^2+7.04p+34.05$
13	p ³ +1. 82p+67.56	$p^4+2.6p^3+3p^2+4p+34$
14	p ³ +4. 61p ² +1. 82p+67.56	$7p^2 + 7p + 34$
15	4. $61p^2+1$. $82p+67.56$	p ² +7. 04p+560
16	1. 82p+67.56	3. 09p ² +7. 04p+34.05
17	1. 82p+67.56 p ³	3. 09p ² +7. 8p+125
18	1. 82p	p ³ +3. 09p ² +7. 04p+34.05
19	1. 82p 4. 61p ²	p ² +7. 04p+34.05
20	p ³ +67.56	$p^4+2.65p^3+3.09p^2+7.04p+34.05$
21	4. 61p ² p ³ +67.56 p ³	$p^4+2p^3+3p^2+12p+100$
22	p ³ +4. 61p ²⁺ 1. 82p+67.56	$p^4+5p^3+30p^2+7p+305$ $p^4+2p^3+9p^2+4p+35$
23	$p^2+1.82p+67.56$	$p^4+2p^3+9p^2+4p+35$
24	p ³⁺ 61p ² +182p+67	$p^4+3p^3+9p^2+0.04p+39$
25	p ² +1. 82p+67.56	$p^4+5p^3+20p^2+7p+34$

Указание. Частотной передаточной функцией называют передаточную функцию системы при мнимых значениях аргумента ($p=j\cdot\omega$).

Собственные частоты системы - это значения модулей мнимых частей корней характеристического уравнения системы (которое получается приравниванием нулю знаменателя передаточной функции).

Задание 3.3.

Введите произвольную матрицу размером (5*5). Найдите:

- 1) определитель матрицы; в случае, если определитель окажется равным нулю, или слишком малым, измените некоторые элементы матрицы и повторите вычисления;
 - 2) обратную матрицу; проверьте правильность путем обращения обратной матрицы;
 - 3) характеристический полином матрицы;
- 4) корни характеристического полинома матрицы; рассортируйте корни по комплексно-спряженным парам и в порядке возрастания величин;
- 5) собственные значения матрицы; сравните с ранее найденными корнями характеристического полинома;
 - 6) LU-разложение матрицы; проверьте его правильность;
 - 7) QR-разложение матрицы; проверьте его правильность;

- 8) сингулярные числа матрицы; сравните их с получаемыми при *svd*-разложении;
- 9) след матрицы;
- 10) число обусловленности матрицы;
- 11) экспоненту от матрицы;
- 12) логарифм от экспоненты матрицы; сравните с исходной матрицей.

4. Построение простейших графиков

Задание 4.1.

Постройте в графическом окне MatLAB график функции из задания 1.5.

Задание 4.2.

Постройте в графическом окне MatLAB графики амплитудно-частотной (модуля ЧПФ) и фазочастотной (аргумента ЧПФ) характеристик функции из *задания* 1.7.

5. Операторы управления вычислительным процессом

Задание 5.1.

- 1. В соответствии с таблицей 1.5 выполнить:
- вычисление точных (используя стандартные функции MatLAB) значений соответствующей функции в диапазоне изменения аргумента от x1 до x2 в m равноотстоящих точках этого диапазона, включая его границы;
- вычисление по указанным степенным рядам приближенных значений функции в тех же точках, ограничиваясь r первыми членами ряда;
- расчет погрешности приближенного определения функции в каждой точке, сравнивая приближенное значение с точным, и построение графика зависимости погрешности от аргумента;
- вычисление приближенных значений функции в тех же точках с относительной погрешностью не более $\mathbf{\epsilon}$ =0.001; построение графика полученных относительных погрешностей.

Вар.	x1	x2	m	r	f(x)	Приближенная формула
1	0.2	5	20	4	sin(x)	$\sum (-1)^k \frac{x^{2k-1}}{(2k-1)!}$
2	1	10	30	5	cos(x)	$1 - \sum (-1)^k \frac{x^{2k}}{(2k)!}$ $1 + \sum \frac{x^k}{k!}$
3	0.3	3	40	5	exp(x)	$1+\sum \frac{x^k}{k!}$
4	0.4	4	50	4	ln(1+x)	$\sum (-1)^{k-1} \frac{x^k}{k}$
5	0.5	5	30	3	ln(x)	$\sum \frac{a^k}{k} , \text{где } a = \frac{x-1}{x}$ $\sum (-1)^k \frac{a^k}{k} , \text{где } a = x-1$ $2\sum \frac{a^{2k-1}}{2k-1} , \text{где } a = \frac{x-1}{x+1}$
6	0.6	6	40	4	ln(x)	$\sum (-1)^k \frac{a^k}{k} \ , \text{где } a = x - 1$
7	0.7	7	50	5	ln(x)	$2\sum \frac{a^{2k-1}}{2k-1}$, где $a = \frac{x-1}{x+1}$
8	0.8	8	45	6	ln(x+a)	$\ln(a) + 2\sum \frac{b^{2k-1}}{2k-1} , \text{ где } b = \frac{x}{2a+x}$
9	1.1	11	40	3	ctg(x)	$\frac{1}{x} + 2x \sum \frac{1}{x^2 - k^2 \pi^2}$
10	1.2	12	50	4	cosec(x)	$\sum \frac{1}{(x-k\pi)^2}$
11	1.3	13	50	5	cosec(x)	$\frac{1}{x} + 2x \sum \frac{(-1)^k}{x^2 + k^2 \pi^2}$
12	1.4	14	60	6	arctg(x)	$\sum (-1)^{k-1} \frac{x^{2k-1}}{2k-1}$ $\frac{\pi}{2} + \sum (-1)^k \frac{1}{(2k-1)x^{2k-1}}$ $\sum (-1)^{k-1} \frac{a^k}{r}, \text{ где } a = x-1$
13	1.5	15	45	5	arctg(x)	$\frac{\pi}{2} + \sum (-1)^k \frac{1}{(2k-1)x^{2k-1}}$
14	1.6	16	40	4	ln(x)	$\sum (-1)^{k-1} \frac{a^k}{r}$, где $a = x - 1$
15	0.9	9	50	6	sin(x)	$x \prod (1 - \frac{x^2}{(k\pi)^2})$ $\prod (1 - \frac{x^2}{(2k-1)^2 \pi^2})$ $\sum \frac{a^k}{k}, \text{ где } a = (x-1)/x$
16	1	10	50	4	cos(x)	$\Pi(1-\frac{x^2}{(2k-1)^2\pi^2})$
17	0.6	5	50	3	ln(x)	$\sum \frac{a^k}{k}$, где $a = (x-1)/x$

18	-0.9	0.9	45	4	arcctg(x)	$\frac{\pi}{2} - \sum (-1)^k \frac{x^{2k-1}}{(2k-1)}$
19	1	20	50	5	sh(x)	$\sum \frac{x^{2k-1}}{(2k-1)!}$
20	1	20	50	5	ch(x)	$1 + \sum \frac{x^{2k}}{(2k)!}$
21	-0.9	0.9	50	5	arcth(x)	$\sum \frac{x^{2k-1}}{2k-1}$
22	1	20	50	5	arcth(x)	$\sum \frac{1}{(2k-1)x^{2k-1}}$
23	-0.8	0.8	50	4	arcsin(x0	$x + \sum \frac{1 \cdot 3 \cdot 5 \dots (2k-1) \cdot x^{2k+1}}{2 \cdot 4 \cdot 6 \dots (2k) \cdot (2k-1)}$
24	-0. 8	0.8	50	4	arccos(x	$\frac{\pi}{2} - \left\{ x + \sum \frac{1 \cdot 3 \cdot 5 \dots (2k-1) \cdot x^{2k+1}}{2 \cdot 4 \cdot 6 \dots (2k) \cdot (2k-1)} \right\}$
25	-5	5	50	6	exp(x)	$1+\sum \frac{x^k}{k!}$

Задание 5.2.

Вычислить значения функции из *задачи* 1.5 при значениях аргумента в диапазоне от 0.1 до 100, образующих *геометрическую прогрессию* со знаменателем, равным квадратному корню из 10, и выведите в командное окно таблицу результатов вычислений.

Задание 5.3.

Вычислить значения модуля ЧПФ и ее аргумента (в градусах) из задачи 1.7 при значениях аргумента в диапазоне от 0.1 до 100, образующих геометрическую прогрессию со знаменателем, равным квадратному корню из 10, и выведите в командное окно таблицу результатов вычислений.

6. Создание простейших файл-функций (процедур)

Задание 6.1.

Создайте М-файл, вычисляющий значение функции из *задания* 1.5. Постройте график этой функции с помощью процедуры *fplot* в границах, заданных в задании 1.5. Вычислите интеграл от функции в тех же пределах, используя процедуры *quad* и *quad* и *quad* 8. Найдите точку локального минимума и локальный минимум функции и ближайший корень (нуль).

Задание 6.2.

Найдите точку локального минимума и локальный минимум функции двух переменных, приняв за начальную точку с заданными координатами (таблица 2.1). Предварительно создайте соответствующую файл-функцию.

Вариант	x_o	y _o	f(x,y)
1	0	1	$e^{x+y} + (x-y)^2 - 2x - 2y$
2	0.7	-1.2	$(x-y)^2 - \cos(x-y-1)$
3	1.5	-0. 5	$e^{x+y} - 2x - 2y - \cos(x-y-1)$
4	0.5	1.5	$e^{x+y} + 4x^2 - 3x - 3y$
5	0	1	$4x^2 + \ln(x+y) + \frac{1}{x+y}$
6	1.2	0.7	$2^{x+y} - 2x - 2y + 2(x-y)^2$
7	0	-0. 9	$e^{x-y} + 2x + 2y + (x+y)^2$
8	0.8	1.3	$(x-y)^2 - \cos(x+y-1)$
9	1.5	0.5	$e^{x-y} - 2x + 2y - \cos(x+y-1)$
10	0.5	-1.5	$e^{x-y} - 3x + 3y + 4x^2$
11	0	-1	$4x^2 + \ln(x - y) + \frac{1}{$
			x-y
12	1.2	-0.8	$2^{x-y} - 2x + 2y + 2(x+y)^2$

7. Создание функций от функций

Задание 7.1.

Создайте функцию (func1), которая принимает в качестве аргумента название другой функции (func2) и значения аргументов, передаваемые в функцию func2. Проделайте несколько вызовов функции func1. Реализуйте механизм передачи параметров в функцию func2 через глобальные переменные. Варианты функций func2, аргументов и параметров приведены в таблице.

Вариант	Функции func2	Аргументы	Параметры
1	y=a+x1*x2*x3	x1,x2,x3	a
2	y=a*x1+exp(-t*20)	x1,t	a
3	$y=a^x1+2^x2$	x1,x2	a
4	$y=(t-t0)^2+3$	t	t0
5	$y=10*x^2+z^3+b$	x,y	b
6	$y=\ln(1-x1*x2)*b$	x1,x2	b
7	$y=(x-z)^2+(x-z)+d$	X,Z	d
8	errordlg	Текст сообщения	Текст заголовка
9	$\sin(a^*x), \qquad \cos(b^*x),$	X	a
	tan(a*x)		
10	$\exp(x1*x2), \sin(x1*x2),$	x1,x2	a
	a * ln(x1)		
11	$y=c*a^t$, $y=c*a*sin(t)$	t	a,c
12	y=20*ln(sin(t))+d; y=1-	t	d
	exp(-d*t)		
13	ode45,ode23	Промежуток интегрирования,	Точность
		начальные условия	интегрирования
14	msgbox	Текст сообщения	Текст заголовка
15	questdlg	Текст сообщения	Текст заголовка

16	warndlg	Текст сообщения	Текст заголовка
17	uigetfile	Папка по умолчанию	Текст заголовка
18	uiputfile	Папка по умолчанию	Текст заголовка
19	uisetcolor	Цвет по умолчанию	Текст заголовка
20	uisetfont	Шрифт по умолчанию	Текст заголовка
21	menu	Набор пунктов меню	Заголовок меню
22	listdlg		
23	ode45,ode23	Промежуток интегрирования,	Точность
		начальные условия	интегрирования
24	$\sin(a^*x), \qquad \cos(b^*x),$	X	a
	tan(a*x)		
25	$\exp(x1*x2), \sin(x1*x2),$	x1,x2	a
	a * ln(x1)		
27	uigetfile, uiputfile	Папка по умолчанию	Текст заголовка
28	errordlg, warndlg	Текст сообщения	Текст заголовка

Литература

- 1. Потемкин Система Инженерных И Научных Расчетов Matlab
- 2. Мэтьюс Финк Численные методы Использование Matlab
- 3. Hunt Brian Rozenberg Matlab R2007 с нуля!
- 4. Чен, Джиблин, Ирвинг Matlab в математических исследованиях.djvu есть упражнения с комментариями
- 5. Лазарев Начала программирования в среде Matlab