Mehrfachdifferentiale inhalte bitte

Hier sind die Inhalte zum Thema Mehrfach-Differentiale, wie in Ihrem Dokument beschrieben:

- 2.5 Mehrfach-Differentiale
- 2.5.1 Partielle Ableitungen **Definition 2.18 (Partielle Ableitung)**: Für eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$, sind die partiellen Ableitungen die Ableitungen von f nach jeweils einer der n Variablen, wobei die anderen Variablen als konstant betrachtet werden. - **Bemerkungen**: - Eine Funktion ist differenzierbar, wenn alle partiellen Ableitungen existieren und stetig sind. - Partielle Ableitungen können mit dem Newton-Differenzenquotienten definiert werden. - Die Maßeinheit der partiellen Ableitung ist $[f,\mu]=[f]/[x_{\mu}]$. -Partielle Ableitungen beschreiben die Steigung des Funktionsgraphen in Richtung der Koordinatenachsen. - Verschiedene Schreibweisen für partielle Ableitungen sind $f, \mu = \frac{\partial f}{\partial x_{\mu}}$.
- 2.5.2 Gradient **Definition 2.19 (Gradient)**: Der Gradient einer differenzierbaren Funktion f: $\mathbb{R}^n \to \mathbb{R}$ ist das Vektorfeld ∇f , bestehend aus den partiellen Ableitungen von f.
- 2.5.3 Hesse-Matrix **Definition 2.20 (Hesse-Matrix)**: Für eine zweifach differentierbare Funktion $f:\mathbb{R}^n\to\mathbb{R}$, ist die Hesse-Matrix $\nabla^2 f$ ein Vektorfeld, das aus den zweiten partiellen Ableitungen von f besteht. - **Beispiel**: Für $f(x,y)=x^2y^2$, ist der Gradient $\nabla f=\begin{bmatrix}2xy^2\\2x^2y\end{bmatrix}$ und die Hesse-Matrix
- $\nabla^2 f = \begin{bmatrix} 2y^2 & 4xy \\ 4xy & 2x^2 \end{bmatrix}.$ 2.5.4 Divergenz **Definition 2.22 (Divergenz)**: Die Divergenz eines differenzierbaren Vektorfeldes $v: \mathbb{R}^n \to \mathbb{R}^n$ ist definiert als $\operatorname{div}(v) = v_1, 1 + v_2, 2 + \ldots + v_n, n$. - **Beispiel**: Für $v(x, y) = \begin{bmatrix} xy^2 \\ x^3y^3 \end{bmatrix}$, ist die Divergenz $\operatorname{div}(v) = y^2(1+3x^3)$.
- 2.5.5 Rotation **Definition 2.23 (Rotation)**: Die Rotation eines Vektorfeldes $v: \mathbb{R}^3 \to \mathbb{R}^3$ ist ein weiteres Vektorfeld, das die Wirbelstärke von v beschreibt.
- 2.5.6 Weiteres zu Gradient, Divergenz und Rotation **Erweiterte Diskussionen** über die Eigenschaften und Anwendungen von Gradient, Divergenz und Rotation in verschiedenen physikalischen und mathematischen Kontexten.

Diese Abschnitte decken die grundlegenden und fortgeschrittenen Konzepte der Mehrfach-Differentiale ab, einschließlich der Definitionen und Anwendungen von partiellen Ableitungen, Gradienten, Hesse-Matrizen, Divergenz und Rotation.