# DISCRETE SCAN STATISTICS WITH WINDOWS OF ARBITRARY SHAPE

#### Alexandru Amărioarei

National Institute of Research and Development for Biological Sciences
Bucharest, Romania

MODAL TEAM - INRIA Lille Nord Europe Lille, France

The 8<sup>th</sup> International Workshop on Applied Probability 20-23 June, 2016, Toronto, Canada



#### OUTLINE

- INTRODUCTION
  - Framework
  - Problem
- METHODOLOGY
  - Approximation
  - Simulation methods: Normal data
- SIMULATION STUDY
  - Numerical examples
  - Power
- SCANNING THE SURFACE OF A CYLINDER
  - Problem
  - Approximation
  - Numerical Results
- REFERENCES





#### OUTLINE

- Introduction
  - Framework
  - Problem
- 2 METHODOLOGY
  - Approximation
  - Simulation methods: Normal data
- SIMULATION STUDY
  - Numerical examples
  - Power
- 4 SCANNING THE SURFACE OF A CYLINDER
  - Problem
  - Approximation
  - Numerical Results
- 6 REFERENCES





# Definitions and notations





#### Preliminary notations

Let  $T_1$ ,  $T_2$  be positive integers



- Rectangular region  $\mathcal{R}_2 = [0, T_1] \times [0, T_2]$
- $(X_{s_1,s_2})_{1 \le s_1 \le T_1}$  i.i.d. r.v.'s  $1 \le s_2 \le T_2$ 
  - Bernoulli( $\mathcal{B}(1,p)$ )
  - Binomial( $\mathcal{B}(n,p)$ )
  - Poisson( $\mathcal{P}(\lambda)$ )
  - Normal( $\mathcal{N}(\mu, \sigma^2)$ )
- $X_{s_1,s_2}$  number of observed events in the elementary subregion  $r_{s_1,s_2} = [s_1 - 1, s_1] \times [s_2 - 1, s_2]$





#### Two dimensional scan statistic

Let  $2 \le m_s \le T_s$ ,  $s \in \{1,2\}$  be positive integers

• Define for  $1 \le i_s \le T_s - m_s + 1$  and  $1 \le j_s \le m_s$  the 2-way tensor  $\mathfrak{X}_{j_1,j_2} \in \mathbb{R}^{m_1 \times m_2}$ ,

$$\mathfrak{X}_{i_1,i_2}(j_1,j_2) = X_{i_1+j_1-1,i_2+j_2-1}$$

• Take  $S: \mathbb{R}^{m_1 \times m_2} \to \mathbb{R}$  to be a measurable real valued function (*score function*) and define

$$Y_{i_1,i_2}(\mathcal{S}) = \mathcal{S}\left(\mathfrak{X}_{i_1,i_2}\right)$$

#### DEFINITION

The two dimensional scan statistic with score function  ${\mathcal S}$  is defined by

$$S_{m_1,m_2}(T_1,T_2;\mathcal{S}) = \max_{\substack{1 \leq i_1 \leq T_1 - m_1 + 1 \\ 1 \leq i_2 \leq T_2 - m_2 + 1}} Y_{i_1,i_2}(\mathcal{S})$$



#### SHAPE OF THE SCANNING WINDOW

Let G be the geometrical shape of the scanning window (rectangle, quadrilateral, ellipse, etc.) and  $\tilde{G}$  be its corresponding discrete form.

- ullet Rasterization algorithms (omputer vision): continuous shape odiscrete shape
  - Line Bresenham line algorithm ([Bresenham, 1965])
  - Circle Bresenham circle algorithm ([Bresenham, 1977])
  - Bezier curves [Foley, 1995]





#### SHAPE OF THE SCANNING WINDOW

To each discrete shape  $\tilde{G}$  it corresponds an unique matrix (2-way tensor)  $A(G) = A(\tilde{G})$  (of smallest size) with 0 and 1 entries (1 if there is a point and 0 otherwise):

 $\tilde{G}$ : Circle



 $A(\tilde{G})$ : Circle





#### SHAPE OF THE SCANNING WINDOW

To each discrete shape  $\tilde{G}$  it corresponds an unique matrix (2-way tensor)  $A\left(G
ight)=A\left( ilde{G}
ight)$  (of smallest size) with 0 and 1 entries (1 if there is a point and 0 otherwise):

 $\tilde{G}$ : Annulus



 $A(\tilde{G})$ : **Annulus** 



#### Arbitrary window scan statistic

Let G be a geometric shape and A=A(G) its corresponding  $\{0,1\}$  matrix of size  $m_1\times m_2$ .

ullet Define the score function  ${\mathcal S}$  associated to the shape G by

$$S(X_{i_1,i_2}) = A \circ X_{i_1,i_2} = \sum_{s_1=i_1}^{i_1+m_1-1} \sum_{s_2=i_2}^{i_2+m_2-1} A(s_1-i_1+1,s_2-i_2+1) X_{s_1,s_2}$$

#### Remark

If, in particular, the shape G is a rectangle of size  $m_1 \times m_2$  than its corresponding  $\{0,1\}$  matrix of the same size has all the entries equal to 1 so the score function

$$S\left(\mathfrak{X}_{i_{1},i_{2}}\right) = \sum_{s_{1}=i_{1}}^{i_{1}+m_{1}-1} \sum_{s_{2}=i_{2}}^{i_{2}+m_{2}-1} X_{s_{1},s_{2}}$$

is the classical rectangular window of the two dimensional scan statistics.

#### OUTLINE

- Introduction
  - Framework
  - Problem
- 2 METHODOLOGY
  - Approximation
  - Simulation methods: Normal data
- SIMULATION STUDY
  - Numerical examples
  - Power
- 4 SCANNING THE SURFACE OF A CYLINDER
  - Problem
  - Approximation
  - Numerical Results
- 6 References





# Problem and related work





#### **OBJECTIVE**

Find a good estimate for the distribution of the two dimensional discrete scan statistic with score function  ${\cal S}$ 

$$Q_{\mathbf{m}}(\mathsf{T};\mathcal{S}) = \mathbb{P}\left(S_{\mathbf{m}}(\mathsf{T};\mathcal{S}) \leq \tau\right)$$

with  $\mathbf{m}=(m_1,m_2)$  and  $\mathbf{T}=(T_1,T_2)$ 

#### Previous work:

- Continuous scan statistics
  - Rectangles: [Loader, 1991], [Glaz et al., 2001], [Glaz et al., 2009]
  - Circles: [Anderson and Titterington, 1997]
  - Triangles, ellipses and other convex shapes: [Alm, 1983, Alm, 1997, Alm, 1998], [Tango and Takahashi, 2005], [Assunção et al., 2006]
- Discrete scan statistics
  - No results!



#### OUTLINE

- 1 INTRODUCTIO
  - Framework
  - Problem
- METHODOLOGY
  - Approximation
  - Simulation methods: Normal data
- SIMULATION STUDY
  - Numerical examples
  - Power
- 4 SCANNING THE SURFACE OF A CYLINDER
  - Problem
  - Approximation
  - Numerical Results
- 6 References





# Approximation methodology for the general scan statistic





#### APPROXIMATION AND ERROR BOUNDS

# Theorem (Generalization of [Amărioarei, 2014])

Let 
$$t_1, t_2 \in \{2, 3\}$$
,  $Q_{t_1, t_2} = \mathbb{P}\left(S_{\mathsf{m}}\left(t_1(m_1 - 1), t_2(m_2 - 1); \mathcal{S}\right) \leq \tau\right)$  and  $L_s = \left\lfloor \frac{T_s}{m_s - 1} \right\rfloor$ ,  $s \in \{1, 2\}$ . If  $\hat{Q}_{t_1, t_2}$  is an estimate of  $Q_{t_1, t_2}$ ,  $\left|\hat{Q}_{t_1, t_2} - Q_{t_1, t_2}\right| \leq \beta_{t_1, t_2}$  and  $\tau$  is such that  $1 - \hat{Q}_{2, 2}(\tau) \leq 0.1$  then

$$\left| \mathbb{P}(S_{\mathsf{m}}(\mathsf{T}; \mathcal{S}) \leq \tau) - \left( 2\hat{Q}_2 - \hat{Q}_3 \right) \left[ 1 + \hat{Q}_2 - \hat{Q}_3 + 2(\hat{Q}_2 - \hat{Q}_3)^2 \right]^{1 - L_1} \right| \leq E_{sf} + E_{sapp},$$

where, for 
$$t \in \{2, 3\}$$

$$\begin{split} \hat{Q}_t &= \left(2\hat{Q}_{t,2} - \hat{Q}_{t,3}\right) \left[1 + \hat{Q}_{t,2} - \hat{Q}_{t,3} + 2(\hat{Q}_{t,2} - \hat{Q}_{t,3})^2\right]^{1-L_2} \\ E_{sf} &= (L_1 - 1)(L_2 - 1)\left(\beta_{2,2} + \beta_{2,3} + \beta_{3,2} + \beta_{3,3}\right) \\ E_{sapp} &= (L_1 - 1)\left[F_1\left(1 - \hat{Q}_2 + A_2 + C_2\right)^2 + (L_2 - 1)(F_2C_2 + F_3C_3)\right] \\ A_2 &= (L_2 - 1)\left(\beta_{2,2} + \beta_{2,3}\right) \\ C_t &= (L_2 - 1)F_t\left(1 - \hat{Q}_{t,2} + \beta_{t,2}\right)^2. \end{split}$$

## ILLUSTRATION OF THE APPROXIMATION PROCESS



 $\begin{array}{c} \text{Find} \\ \text{Approximation} \end{array}$ 



### ILLUSTRATION OF THE APPROXIMATION PROCESS





## ILLUSTRATION OF THE APPROXIMATION PROCESS



METHODOLOGY SIMULATION METHODS: NORMAL DATA

#### OUTLINE

- INTRODUCTION
  - Framework
  - Problem
- METHODOLOGY
  - Approximation
  - Simulation methods: Normal data
- SIMULATION STUDY
  - Numerical examples
  - Power
- 4 SCANNING THE SURFACE OF A CYLINDER
  - Problem
  - Approximation
  - Numerical Results
- 6 References





IWAP 2016

# Simulation methods for Normal data





#### IMPORTANCE SAMPLING ALGORITHM

Test the null hypothesis of randomness against an alternative of clustering

 $H_0$ : The r.v.'s  $X_{s_1,s_2}$  are i.i.d.  $\mathcal{N}(\mu,\sigma^2)$ 

 $H_1$ : There exists  $\mathcal{R}(i_1, i_2) = [i_1 - 1, i_1 + m_1 - 1] \times [i_2 - 1, i_2 + m_2 - 1] \subset \mathcal{R}_2$ where the r.v.'s  $X_{s_1,s_2} \sim \mathcal{N}(\mu_1,\sigma^2)$ ,  $\mu_1 > \mu$  and  $X_{s_1,s_2} \sim \mathcal{N}(\mu,\sigma^2)$  outside  $\mathcal{R}(i_1,i_2)$ 

#### OBJECTIVE

Find a good estimate for  $\mathbb{P}_{H_0}(S_m(T;\mathcal{S}) \geq \tau)$ .

We are interested in evaluating the probability

$$\mathbb{P}_{\textit{H}_{0}}\left(\textit{S}_{m}(\textbf{T};\mathcal{S}) \geq \tau\right) = \mathbb{P}\left(\bigcup_{\textit{i}_{1}=1}^{\textit{T}_{1}-\textit{m}_{1}+1}\bigcup_{\textit{i}_{2}=1}^{\textit{T}_{2}-\textit{m}_{2}+1}\textit{E}_{\textit{i}_{1},\textit{i}_{2}}(\mathcal{S})\right)$$

where  $E_{i_1,i_2}(S) = \{Y_{i_1,i_2}(S) > \tau\}$ .



#### IMPORTANCE SAMPLING ALGORITHM

#### Algorithm 1 Importance Sampling Algorithm for Scan Statistics

#### Begin

Repeat for each k from 1 to ITER (iterations number)

- 1: Generate uniformly the couple  $(i_1^{(k)}, i_2^{(k)})$  from the set  $\{1, \ldots, T_1 m_1 + 1\} \times \{1, \ldots, T_2 m_1 + 1\}$  $m_2 + 1$ .
- 2: Given the couple  $(i_1^{(k)}, i_2^{(k)})$ , generate a sample of the random field  $\tilde{\mathbf{X}}^{(k)} = \{\tilde{X}_{s_1, s_2}^{(k)}\}$ , with  $s_j \in$  $\{1,\ldots,T_j\}$  and  $j\in\{1,2\}$ , from the conditional distribution of **X** given  $\left\{Y_{i(k),j(k)}(\mathcal{S})\geq \tau\right\}$ .
- 3: Take  $c_k = C(\widetilde{\mathbf{X}}^{(k)})$  the number of all couples  $(i_1,i_2)$  for which  $\widetilde{Y}_{i_1,i_2}(\mathcal{S}) \geq au$  and put  $\widehat{\rho}_k(2) = \frac{1}{c_k}$

End Repeat Return

$$\widehat{\rho}(2) = \frac{1}{\mathit{ITER}} \sum_{k=1}^{\mathit{ITER}} \widehat{\rho}_k(2), \quad \mathit{Var}\left[\widehat{\rho}(2)\right] \approx \frac{1}{\mathit{ITER} - 1} \sum_{k=1}^{\mathit{ITER}} \left(\widehat{\rho}_k(2) - \frac{1}{\mathit{ITER}} \sum_{k=1}^{\mathit{ITER}} \widehat{\rho}_k(2)\right)^2$$

End



# IMPORTANCE SAMPLING ALGORITHM: $\mathcal{N}(\mu, \sigma^2)$

Step 2 requires to sample:

- $Y_{i_i^{(k)},i_j^{(k)}}(\mathcal{S})$  from the tail distribution  $\mathbb{P}\left(Y_{i_i^{(k)},i_j^{(k)}}(\mathcal{S}) \geq \tau\right)$  ([Devroye, 1986])
- ullet for the other indices, from the conditional distribution given  $\left\{Y_{:(k)::(k)}(\mathcal{S})\geq au
  ight\}$

### Lemma (Generalization of [Amarioarei, 2014, Lemma 3.4.4])

Let N be a positive integer,  $\mathbf{X} = (X_1, X_2, \dots, X_N)$  be a vector of i.i.d.  $\mathcal{N}(\mu, \sigma^2)$ and  $\mathbf{a} = (a_1, \dots, a_N) \in \mathbb{R}^N$  a non zero constant vector (  $a_i \neq 0$  for some particular j). Then conditionally given  $\langle \mathbf{a}, \mathbf{X} \rangle = t$ , the r.v.'s  $X_s$  with  $s \neq j$  are jointly distributed as

$$\tilde{X}_{s} = \frac{a_{s}}{\|a\|} \left[ \frac{t - \mu a_{j}}{\|a\|} - \frac{1}{\|a\| - |a_{j}|} \sum_{i \neq j} a_{i} \left( Z_{i} - \frac{\mu |a_{j}|}{\|a\|} \right) \right] + Z_{s}$$

where  $Z_s$  are i.i.d.  $\mathcal{N}(\mu, \sigma^2)$  r.v.s.

#### OUTLINE

- INTRODUCTION
  - Framework
  - Problem
- 2 METHODOLOGY
  - Approximation
  - Simulation methods: Normal data
- SIMULATION STUDY
  - Numerical examples
  - Power
- 4 SCANNING THE SURFACE OF A CYLINDER
  - Problem
  - Approximation
  - Numerical Results
- 6 References





# Numerical examples



IWAP 2016

12(1 0 01)

Table 1 : Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Triangle

Window's shape

Triangle  $(m_1 = 14, m_2 = 18, Nt = 133, IS = 1e5, IA = 1e6)$ 



|        | × <sub>s1</sub> , <sub>s2</sub> | $\sim B(1, 0.01)$ |          | $X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$ |          |          |          |  |
|--------|---------------------------------|-------------------|----------|----------------------------------------|----------|----------|----------|--|
| $\tau$ | Sim                             | АррН              | ETotal   | $\tau$                                 | Sim      | АррН     | E Total  |  |
| 3      | 0.916397                        | 0.918667          | 0.004333 | 59                                     | 0.863336 | 0.897101 | 0.004902 |  |
| 4      | 0.997488                        | 0.997483          | 0.000082 | 60                                     | 0.936684 | 0.948160 | 0.002010 |  |
| 5      | 0.999947                        | 0.999947          | 0.000002 | 61                                     | 0.971529 | 0.974938 | 0.000894 |  |
| 6      | 0.999999                        | 0.999999          | 0        | 62                                     | 0.987094 | 0.988279 | 0.000412 |  |
| 7      | 0.999999                        | 0.999999          | 0        | 63                                     | 0.994372 | 0.994664 | 0.000192 |  |
| 8      | 1.000000                        | 1.000000          | 0        | 64                                     | 0.997563 | 0.997643 | 0.000089 |  |
| 9      | 1.000000                        | 1.000000          | 0        | 65                                     | 0.998946 | 0.998971 | 0.000041 |  |
| 10     | 1.000000                        | 1.000000          | 0        | 66                                     | 0.999564 | 0.999567 | 0.000018 |  |
| 11     | 1.000000                        | 1.000000          | 0        | 67                                     | 0.999817 | 0.999820 | 0.000008 |  |

|        | X <sub>s1</sub> ,s | $_{2} \sim \mathcal{P}(0.25)$ |          | $m{X_{s_1,s_2}} \sim \mathcal{N}(0,1)$ |          |                 |          |
|--------|--------------------|-------------------------------|----------|----------------------------------------|----------|-----------------|----------|
| $\tau$ | Sim                | АррН                          | ETotal   | $\tau$                                 | Sim      | АррН            | E Total  |
| 59     | 0.739866           | 0.820277                      | 0.011813 | 50                                     | 0.911170 | 0.934999        | 0.002737 |
| 60     | 0.871829           | 0.902957                      | 0.004483 | 51                                     | 0.945219 | 0.957777        | 0.001655 |
| 61     | 0.939577           | 0.950977                      | 0 001911 | 52                                     | 0.966494 | 0.972997        | 0.001026 |
| 62     | 0.971673           | 0.975649                      | 0.000890 | 53                                     | 0.979944 | 0.982929        | 0.000644 |
| 63     | 0.987075           | 0.988206                      | 0.000425 | 54                                     | 0.987840 | 0.989469        | 0.000406 |
| 64     | 0.994104           | 0.994492                      | 0.000204 | 55                                     | 0.992768 | 0.993477        | 0.000257 |
| 65     | 0.997384           | 0.997452                      | 0.000098 | 56                                     | 0.995667 | 0.996022        | 0.000162 |
| 66     | 0.998821           | 0.998855                      | 0.000046 | 57                                     | 0.997412 | 0.997574        | 0.000102 |
| 67     | 0.999489           | 0.999490                      | 0.000022 | 58                                     | 0.998509 | 0.998563        | 0.000063 |
|        |                    |                               |          |                                        |          | and the same of |          |



12(1 0 01)

Table 1 : Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Triangle

Window's shape

Triangle  $(m_1 = 14, m_2 = 18, Nt = 133, IS = 1e5, IA = 1e6)$ 



|        | ^s <sub>1</sub> ,s <sub>2</sub> | $\sim B(1, 0.01)$ |          | $X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$ |          |          |          |  |
|--------|---------------------------------|-------------------|----------|----------------------------------------|----------|----------|----------|--|
| $\tau$ | Sim                             | АррН              | ETotal   | $\tau$                                 | Sim      | АррН     | E Total  |  |
| 3      | 0.916397                        | 0.918667          | 0.004333 | 59                                     | 0.863336 | 0.897101 | 0.004902 |  |
| 4      | 0.997488                        | 0.997483          | 0.000082 | 60                                     | 0.936684 | 0.948160 | 0.002010 |  |
| 5      | 0.999947                        | 0.999947          | 0.000002 | 61                                     | 0.971529 | 0.974938 | 0.000894 |  |
| 6      | 0.999999                        | 0.999999          | 0        | 62                                     | 0.987094 | 0.988279 | 0.000412 |  |
| 7      | 0.999999                        | 0.999999          | 0        | 63                                     | 0.994372 | 0.994664 | 0.000192 |  |
| 8      | 1.000000                        | 1.000000          | 0        | 64                                     | 0.997563 | 0.997643 | 0.000089 |  |
| 9      | 1.000000                        | 1.000000          | 0        | 65                                     | 0.998946 | 0.998971 | 0.000041 |  |
| 10     | 1.000000                        | 1.000000          | 0        | 66                                     | 0.999564 | 0.999567 | 0.000018 |  |
| 11     | 1.000000                        | 1.000000          | 0        | 67                                     | 0.999817 | 0.999820 | 0.000008 |  |

|   |        | $X_{s_1,s_2} \sim \mathcal{P}(0.25)$ |          |          |        | $X_{s_1,s_2} \sim \mathcal{N}(0,1)$ |          |          |  |  |
|---|--------|--------------------------------------|----------|----------|--------|-------------------------------------|----------|----------|--|--|
|   | $\tau$ | Sim                                  | АррН     | ETotal   | $\tau$ | Sim                                 | АррН     | E Total  |  |  |
| _ | 59     | 0.739866                             | 0.820277 | 0.011813 | 50     | 0.911170                            | 0.934999 | 0.002737 |  |  |
|   | 60     | 0.871829                             | 0.902957 | 0.004483 | 51     | 0.945219                            | 0.957777 | 0.001655 |  |  |
|   | 61     | 0.939577                             | 0.950977 | 0.001911 | 52     | 0.966494                            | 0.972997 | 0.001026 |  |  |
|   | 62     | 0.971673                             | 0.975649 | 0.000890 | 53     | 0.979944                            | 0.982929 | 0.000644 |  |  |
|   | 63     | 0.987075                             | 0.988206 | 0.000425 | 54     | 0.987840                            | 0.989469 | 0.000406 |  |  |
|   | 64     | 0.994104                             | 0.994492 | 0.000204 | 55     | 0.992768                            | 0.993477 | 0.000257 |  |  |
|   | 65     | 0.997384                             | 0.997452 | 0.000098 | 56     | 0.995667                            | 0.996022 | 0.000162 |  |  |
|   | 66     | 0.998821                             | 0.998855 | 0.000046 | 57     | 0.997412                            | 0.997574 | 0.000102 |  |  |
|   | 67     | 0.999489                             | 0.999490 | 0.000022 | 58     | 0.998509                            | 0.998563 | 0.000063 |  |  |
|   |        |                                      |          |          |        |                                     | destr.   |          |  |  |



# SCANNING A REGION OF SIZE $T_1 \times T_2 = 250 \times 250$

Table 2: Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Rectangle

Window's shape

Rectangle  $(m_1 = 11, m_2 = 12, Nt = 132, IS = 1e5, IA = 1e6)$ 



|        | X <sub>s1</sub> , <sub>s2</sub> | $\sim B(1, 0.01)$ |          | $X_{s_1,s_2} \sim B(5,0.05)$ |          |          |          |  |
|--------|---------------------------------|-------------------|----------|------------------------------|----------|----------|----------|--|
| $\tau$ | Sim                             | АррН              | ETotal   | $\tau$                       | Sim      | АррН     | E Total  |  |
| 3      | 0.947896                        | 0.948226          | 0.002110 | 59                           | 0.856993 | 0.857094 | 0.005485 |  |
| 4      | 0.997983                        | 0.997986          | 0.000058 | 60                           | 0.919416 | 0.919589 | 0.002300 |  |
| 5      | 0.999943                        | 0.999943          | 0.000001 | 61                           | 0.956420 | 0.956569 | 0.001024 |  |
| 6      | 0.999999                        | 0.999999          | 0        | 62                           | 0.977142 | 0.977065 | 0.000471 |  |
| 7      | 0.999999                        | 0.999999          | 0        | 63                           | 0.988228 | 0.988208 | 0.000220 |  |
| 8      | 1.000000                        | 1.000000          | 0        | 64                           | 0.994130 | 0.994095 | 0.000103 |  |
| 9      | 1.000000                        | 1.000000          | 0        | 65                           | 0.997121 | 0.997107 | 0.000048 |  |
| 10     | 1.000000                        | 1.000000          | 0        | 66                           | 0.998610 | 0.998607 | 0.000022 |  |
| 11     | 1.000000                        | 1.000000          | 0        | 67                           | 0.999342 | 0.999342 | 0.000010 |  |
|        |                                 |                   |          |                              |          |          |          |  |

|        | X s1 , s | $\sim \mathcal{P}(0.25)$ |          | $X_{s_1,s_2} \sim \mathcal{N}(0,1)$ |          |          |          |
|--------|----------|--------------------------|----------|-------------------------------------|----------|----------|----------|
| $\tau$ | Sim      | АррН                     | ETotal   | $\tau$                              | Sim      | АррН     | E Total  |
| 59     | 0.764372 | 0.764495                 | 0.013285 | 50                                  | 0.865858 | 0.865484 | 0.004572 |
| 60     | 0.857872 | 0.859289                 | 0.005320 | 51                                  | 0.904555 | 0.904805 | 0.002691 |
| 61     | 0 918972 | 0.918732                 | 0.002307 | 52                                  | 0.933323 | 0.933206 | 0.001620 |
| 62     | 0.954682 | 0.954579                 | 0.001059 | 53                                  | 0.953950 | 0.953807 | 0.000993 |
| 63     | 0.975271 | 0.975391                 | 0.000502 | 54                                  | 0.968340 | 0.968483 | 0.000617 |
| 64     | 0.986996 | 0.986966                 | 0.000242 | 55                                  | 0.978632 | 0.978687 | 0.000386 |
| 65     | 0.993240 | 0.993261                 | 0.000117 | 56                                  | 0.985791 | 0.985752 | 0.000242 |
| 66     | 0.996557 | 0.996551                 | 0.000056 | 57                                  | 0.990621 | 0.990585 | 0.000152 |
| 67     | 0.998290 | 0.998283                 | 0.000027 | 58                                  | 0.993837 | 0.993815 | 0.000096 |



Table 2: Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Rectangle

Window's shape

Rectangle  $(m_1 = 11, m_2 = 12, Nt = 132, IS = 1e5, IA = 1e6)$ 



|   |        |          | $\sim B(1, 0.01)$ |          | $X_{s_1,s_2} \sim B(5,0.05)$ |          |          |          |
|---|--------|----------|-------------------|----------|------------------------------|----------|----------|----------|
|   | $\tau$ | Sim      | АррН              | ETotal   | $\tau$                       | Sim      | АррН     | E Total  |
|   | 3      | 0.947896 | 0.948226          | 0.002110 | 59                           | 0.856993 | 0.857094 | 0.005485 |
|   | 4      | 0.997983 | 0.997986          | 0.000058 | 60                           | 0.919416 | 0.919589 | 0.002300 |
|   | 5      | 0.999943 | 0.999943          | 0.000001 | 61                           | 0.956420 | 0.956569 | 0.001024 |
|   | 6      | 0.999999 | 0.999999          | 0        | 62                           | 0.977142 | 0.977065 | 0.000471 |
|   | 7      | 0.999999 | 0.999999          | 0        | 63                           | 0.988228 | 0.988208 | 0.000220 |
|   | 8      | 1.000000 | 1.000000          | 0        | 64                           | 0.994130 | 0.994095 | 0.000103 |
|   | 9      | 1.000000 | 1.000000          | 0        | 65                           | 0.997121 | 0.997107 | 0.000048 |
|   | 10     | 1.000000 | 1.000000          | 0        | 66                           | 0.998610 | 0.998607 | 0.000022 |
|   | 11     | 1.000000 | 1.000000          | 0        | 67                           | 0.999342 | 0.999342 | 0.000010 |
| - |        |          |                   |          |                              |          |          |          |

|        | X <sub>s1</sub> , <sub>s2</sub> | $\sim \mathcal{P}(0.25)$ |          | $X_{\mathbf{s_1},\mathbf{s_2}} \sim \mathcal{N}(0,1)$ |          |          |          |  |
|--------|---------------------------------|--------------------------|----------|-------------------------------------------------------|----------|----------|----------|--|
| $\tau$ | Sim                             | АррН                     | ETotal   | $\tau$                                                | Sim      | АррН     | E Total  |  |
| 59     | 0.764372                        | 0.764495                 | 0.013285 | 50                                                    | 0.865858 | 0.865484 | 0.004572 |  |
| 60     | 0.857872                        | 0.859289                 | 0.005320 | 51                                                    | 0.904555 | 0.904805 | 0.002691 |  |
| 61     | 0.918972                        | 0.918732                 | 0.002307 | 52                                                    | 0.933323 | 0.933206 | 0.001620 |  |
| 62     | 0.954682                        | 0.954579                 | 0 001059 | 53                                                    | 0.953950 | 0.953807 | 0.000993 |  |
| 63     | 0.975271                        | 0.975391                 | 0.000502 | 54                                                    | 0.968340 | 0.968483 | 0.000617 |  |
| 64     | 0.986996                        | 0.986966                 | 0.000242 | 55                                                    | 0.978632 | 0.978687 | 0.000386 |  |
| 65     | 0.993240                        | 0.993261                 | 0.000117 | 56                                                    | 0.985791 | 0.985752 | 0.000242 |  |
| 66     | 0.996557                        | 0.996551                 | 0.000056 | 57                                                    | 0.990621 | 0.990585 | 0.000152 |  |
| 67     | 0.998290                        | 0.998283                 | 0.000027 | 58                                                    | 0.993837 | 0.993815 | 0.000096 |  |
|        |                                 |                          |          |                                                       |          |          |          |  |



12(1 0 01)

Table 3: Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Quadrilateral

Window's shape

Quadrilateral ( $m_1 = 14, m_2 = 18, Nt = 131, IS = 1e5, IA = 1e6$ )



|        | × <sub>s1</sub> , <sub>s2</sub> | $\sim B(1, 0.01)$ |          | $X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$ |          |          |          |  |
|--------|---------------------------------|-------------------|----------|----------------------------------------|----------|----------|----------|--|
| $\tau$ | Sim                             | АррН              | ETotal   | $\tau$                                 | Sim      | АррН     | E Total  |  |
| 3      | 0.926068                        | 0.927398          | 0.003806 | 59                                     | 0.914546 | 0.927613 | 0.002942 |  |
| 4      | 0.997622                        | 0.997627          | 0.000075 | 60                                     | 0.959599 | 0.963873 | 0.001255 |  |
| 5      | 0.999946                        | 0.999946          | 0.000002 | 61                                     | 0.981235 | 0.982506 | 0.000571 |  |
| 6      | 0.999999                        | 0.999999          | 0        | 62                                     | 0 991423 | 0 991796 | 0.000266 |  |
| 7      | 0.999999                        | 0.999999          | 0        | 63                                     | 0.996113 | 0.996233 | 0.000124 |  |
| 8      | 1.000000                        | 1.000000          | 0        | 64                                     | 0.998283 | 0.998337 | 0.000057 |  |
| 9      | 1.000000                        | 1.000000          | 0        | 65                                     | 0.999266 | 0.999266 | 0.000026 |  |
| 10     | 1.000000                        | 1.000000          | 0        | 66                                     | 0.999684 | 0.999684 | 0.000012 |  |
| 11     | 1.000000                        | 1.000000          | 0        | 67                                     | 0.999868 | 0.999869 | 0.000005 |  |

|   |        | X <sub>s1</sub> ,s | $\sim \mathcal{P}(0.25)$ |          | $X_{s_1,s_2} \sim \mathcal{N}(0,1)$ |          |            |          |
|---|--------|--------------------|--------------------------|----------|-------------------------------------|----------|------------|----------|
|   | $\tau$ | Sim                | АррН                     | ETotal   | $\tau$                              | Sim      | АррН       | E Total  |
| • | 59     | 0.835054           | 0.870351                 | 0.006852 | 50                                  | 0.920004 | 0.935266   | 0.002571 |
|   | 60     | 0.917972           | 0 931040                 | 0.002768 | 51                                  | 0.950232 | 0 957711   | 0.001556 |
|   | 61     | 0.960397           | 0.964711                 | 0.001237 | 52                                  | 0.968755 | 0.972594   | 0.000964 |
|   | 62     | 0 981228           | 0 982451                 | 0.000585 | 53                                  | 0.980695 | 0.982566   | 0.000606 |
|   | 63     | 0.991142           | 0.991510                 | 0.000281 | 54                                  | 0.988110 | 0.989060   | 0.000383 |
|   | 64     | 0.995855           | 0.995971                 | 0.000136 | 55                                  | 0.992626 | 0.993110   | 0.000242 |
|   | 65     | 0.998108           | 0.998124                 | 0.000065 | 56                                  | 0.995569 | 0.995771   | 0.000153 |
|   | 66     | 0.999135           | 0.999153                 | 0.000031 | 57                                  | 0.997361 | 0.997394   | 0.000096 |
|   | 67     | 0.999620           | 0.999622                 | 0.000014 | 58                                  | 0.998379 | 0.998435   | 0.000060 |
|   |        |                    |                          |          |                                     |          | a death or |          |



~ 13(1 0 01)

# Scanning a region of size $T_1 \times T_2 = 250 \times 250$

Table 3: Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Quadrilateral

Window's shape

Quadrilateral ( $m_1 = 14, m_2 = 18, Nt = 131, IS = 1e5, IA = 1e6$ )



|   | $\lambda_{s_1,s_2} \sim D(1,0.01)$ |          |          |          | $\lambda_{s_1,s_2} \sim D(s,0.05)$ |          |          |          |  |
|---|------------------------------------|----------|----------|----------|------------------------------------|----------|----------|----------|--|
| _ | $\tau$                             | Sim      | АррН     | ETotal . | τ                                  | Sim      | АррН     | E Total  |  |
| _ | 3                                  | 0.926068 | 0.927398 | 0.003806 | 59                                 | 0.914546 | 0.927613 | 0.002942 |  |
|   | 4                                  | 0.997622 | 0.997627 | 0.000075 | 60                                 | 0.959599 | 0.963873 | 0.001255 |  |
|   | 5                                  | 0.999946 | 0.999946 | 0.000002 | 61                                 | 0.981235 | 0.982506 | 0.000571 |  |
|   | 6                                  | 0.999999 | 0.999999 | 0        | 62                                 | 0.991423 | 0.991796 | 0.000266 |  |
|   | 7                                  | 0.999999 | 0.999999 | 0        | 63                                 | 0.996113 | 0.996233 | 0.000124 |  |
|   | 8                                  | 1.000000 | 1.000000 | 0        | 64                                 | 0.998283 | 0.998337 | 0.000057 |  |
|   | 9                                  | 1.000000 | 1.000000 | 0        | 65                                 | 0.999266 | 0.999266 | 0.000026 |  |
|   | 10                                 | 1.000000 | 1.000000 | 0        | 66                                 | 0.999684 | 0.999684 | 0.000012 |  |
|   | 11                                 | 1.000000 | 1.000000 | 0        | 67                                 | 0.999868 | 0.999869 | 0.000005 |  |

|   |        | $X_{\mathbf{s_1},\mathbf{s_2}} \sim \mathcal{P}(0.25)$ |          |          |        | $egin{aligned} X_{oldsymbol{s_1},oldsymbol{s_2}} &\sim \mathcal{N}(0,1) \end{aligned}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |
|---|--------|--------------------------------------------------------|----------|----------|--------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
|   | $\tau$ | Sim                                                    | АррН     | ETotal   | $\tau$ | Sim                                                                                    | АррН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E Total  |  |  |
| - | 59     | 0.835054                                               | 0.870351 | 0.006852 | 50     | 0.920004                                                                               | 0.935266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002571 |  |  |
|   | 60     | 0.917972                                               | 0.931040 | 0.002768 | 51     | 0.950232                                                                               | 0.957711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001556 |  |  |
|   | 61     | 0.960397                                               | 0.964711 | 0.001237 | 52     | 0.968755                                                                               | 0.972594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000964 |  |  |
|   | 62     | 0.981228                                               | 0.982451 | 0.000585 | 53     | 0.980695                                                                               | 0.982566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000606 |  |  |
|   | 63     | 0.991142                                               | 0.991510 | 0.000281 | 54     | 0.988110                                                                               | 0.989060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000383 |  |  |
|   | 64     | 0.995855                                               | 0.995971 | 0.000136 | 55     | 0.992626                                                                               | 0 993110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000242 |  |  |
|   | 65     | 0.998108                                               | 0.998124 | 0.000065 | 56     | 0.995569                                                                               | 0.995771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000153 |  |  |
|   | 66     | 0.999135                                               | 0.999153 | 0.000031 | 57     | 0.997361                                                                               | 0.997394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000096 |  |  |
|   | 67     | 0.999620                                               | 0.999622 | 0.000014 | 58     | 0.998379                                                                               | 0.998435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000060 |  |  |
|   |        |                                                        |          |          |        |                                                                                        | Contract Con |          |  |  |



IWAP 2016

~ 13(5 0 05)

12(1 0 01)

#### Table 4: Numerical results for $\mathbb{P}(S \leqslant \tau)$ : Circle

Window's shape

Circle  $(m_1 = 13, m_2 = 13, Nt = 129, IS = 1e54, IA = 1e6)$ 



| $X_{s_1,s_2} \sim B(1,0.01)$ |          |          |          |        | $X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$ |          |          |  |  |  |
|------------------------------|----------|----------|----------|--------|----------------------------------------|----------|----------|--|--|--|
| $\tau$                       | Sim      | АррН     | ETotal   | $\tau$ | Sim                                    | АррН     | E Total  |  |  |  |
| 3                            | 0.950311 | 0.950461 | 0.002195 | 59     | 0.920229                               | 0.920388 | 0.002318 |  |  |  |
| 4                            | 0.998118 | 0.998114 | 0.000059 | 60     | 0.956814                               | 0.957143 | 0.001016 |  |  |  |
| 5                            | 0.999947 | 0.999947 | 0.000001 | 61     | 0.977460                               | 0.977614 | 0.000462 |  |  |  |
| 6                            | 0.999999 | 0.999999 | 0        | 62     | 0.988568                               | 0.988567 | 0.000214 |  |  |  |
| 7                            | 0.999999 | 0.999999 | 0        | 63     | 0.994312                               | 0.994309 | 0.000099 |  |  |  |
| 8                            | 1.000000 | 1.000000 | 0        | 64     | 0.997229                               | 0.997228 | 0.000046 |  |  |  |
| 9                            | 1.000000 | 1.000000 | 0        | 65     | 0.998678                               | 0.998679 | 0.000021 |  |  |  |
| 10                           | 1.000000 | 1.000000 | 0        | 66     | 0.999380                               | 0.999381 | 0.000009 |  |  |  |
| 11                           | 1.000000 | 1.000000 | 0        | 67     | 0.999715                               | 0.999715 | 0.000004 |  |  |  |

|   |        | $X_{s_1,s_2}$ | $_{2} \sim \mathcal{P}(0.25)$ |          | $X_{s_1,s_2} \sim \mathcal{N}(0,1)$ |          |          |          |  |
|---|--------|---------------|-------------------------------|----------|-------------------------------------|----------|----------|----------|--|
|   | $\tau$ | Sim           | АррН                          | ETotal   | $\tau$                              | Sim      | АррН     | E Total  |  |
| - | 59     | 0.858454      | 0.859178                      | 0.005391 | 50                                  | 0.888137 | 0.887891 | 0.003485 |  |
|   | 60     | 0.919182      | 0.919586                      | 0.002310 | 51                                  | 0.921173 | 0.921549 | 0.002058 |  |
|   | 61     | 0.955229      | 0.955388                      | 0.001047 | 52                                  | 0.945761 | 0.945644 | 0.001243 |  |
|   | 62     | 0.976023      | 0.975987                      | 0.000491 | 53                                  | 0.962790 | 0.962825 | 0.000760 |  |
|   | 63     | 0.987414      | 0.987344                      | 0.000234 | 54                                  | 0.974848 | 0.974878 | 0.000470 |  |
|   | 64     | 0.993477      | 0.993502                      | 0.000112 | 55                                  | 0.983235 | 0.983263 | 0.000293 |  |
|   | 65     | 0.996706      | 0.996703                      | 0.000054 | 56                                  | 0.988885 | 0.988907 | 0.000182 |  |
|   | 66     | 0.998372      | 0.998365                      | 0.000025 | 57                                  | 0.992730 | 0.992734 | 0.000114 |  |
|   | 67     | 0.999207      | 0.999203                      | 0.000012 | 58                                  | 0.995269 | 0.995287 | 0.000071 |  |
|   |        |               |                               |          |                                     |          |          |          |  |



Table 4: Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Circle

Window's shape

Circle  $(m_1 = 13, m_2 = 13, Nt = 129, IS = 1e54, IA = 1e6)$ 



| $X_{s_1,s_2} \sim \mathcal{B}(1,0.01)$ |          |          |          | $X_{s_1, s_2} \sim \mathcal{B}(5, 0.05)$ |          |          |          |  |  |
|----------------------------------------|----------|----------|----------|------------------------------------------|----------|----------|----------|--|--|
| $\tau$                                 | Sim      | AppH     | E Total  | $\tau$                                   | Sim      | АррН     | ETotal   |  |  |
| 3                                      | 0.950311 | 0.950461 | 0.002195 | 59                                       | 0.920229 | 0.920388 | 0.002318 |  |  |
| 4                                      | 0.998118 | 0.998114 | 0.000059 | 60                                       | 0.956814 | 0.957143 | 0.001016 |  |  |
| 5                                      | 0.999947 | 0.999947 | 0.000001 | 61                                       | 0.977460 | 0.977614 | 0.000462 |  |  |
| 6                                      | 0.999999 | 0.999999 | 0        | 62                                       | 0.988568 | 0.988567 | 0.000214 |  |  |
| 7                                      | 0.999999 | 0.999999 | 0        | 63                                       | 0.994312 | 0.994309 | 0.000099 |  |  |
| 8                                      | 1.000000 | 1.000000 | 0        | 64                                       | 0.997229 | 0.997228 | 0.000046 |  |  |
| 9                                      | 1.000000 | 1.000000 | 0        | 65                                       | 0.998678 | 0.998679 | 0.000021 |  |  |
| 10                                     | 1 000000 | 1.000000 | 0        | 66                                       | 0.999380 | 0.999381 | 0.000009 |  |  |
| 11                                     | 1.000000 | 1.000000 | 0        | 67                                       | 0.999715 | 0.999715 | 0.000004 |  |  |

|   | X <sub>s1</sub> , | $_{5_{2}} \sim \mathcal{P}(0.25)$ |          | $X_{s_1,s_2} \sim \mathcal{N}(0,1)$ |          |          |          |  |
|---|-------------------|-----------------------------------|----------|-------------------------------------|----------|----------|----------|--|
| 7 |                   | АррН                              | E Tot al | $\tau$                              | Sim      | АррН     | ETotal   |  |
| 5 | 9 0.858454        | 0.859178                          | 0.005391 | 50                                  | 0.888137 | 0.887891 | 0.003485 |  |
| 6 | 0 0.919182        | 0.919586                          | 0.002310 | 51                                  | 0.921173 | 0.921549 | 0.002058 |  |
| 6 | 1 0.955229        | 0.955388                          | 0.001047 | 52                                  | 0.945761 | 0.945644 | 0.001243 |  |
| 6 | 2 0.976023        | 0.975987                          | 0.000491 | 53                                  | 0.962790 | 0.962825 | 0.000760 |  |
| 6 | 3 0.987414        | 0.987344                          | 0.000234 | 54                                  | 0.974848 | 0.974878 | 0.000470 |  |
| 6 | 4 0.993477        | 0.993502                          | 0.000112 | 55                                  | 0.983235 | 0.983263 | 0.000293 |  |
| 6 | 5 0.996706        | 0.996703                          | 0.000054 | 56                                  | 0.988885 | 0.988907 | 0.000182 |  |
| 6 | 6 0.998372        | 0.998365                          | 0.000025 | 57                                  | 0.992730 | 0.992734 | 0.000114 |  |
| 6 | 7 0.999207        | 0.9992032                         | 0.000012 | 58                                  | 0.995269 | 0.995287 | 0.000071 |  |
|   |                   |                                   |          |                                     |          |          |          |  |



#### Table 5: Numerical results for $\mathbb{P}(S \leqslant \tau)$ : Ellipse

Window's shape

Ellipse ( $m_1 = 19, m_2 = 9, Nt = 135, IS = 1e5, IA = 1e6$ )



| $X_{s_1,s_2} \sim \mathcal{B}(1,0.01)$ |          |          |          |        | $X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$ |          |          |  |  |
|----------------------------------------|----------|----------|----------|--------|----------------------------------------|----------|----------|--|--|
| $\tau$                                 | Sim      | АррН     | ETotal   | $\tau$ | Sim                                    | АррН     | E Total  |  |  |
| 3                                      | 0.944001 | 0.944211 | 0.002297 | 59     | 0.764871                               | 0.763482 | 0.009128 |  |  |
| 4                                      | 0.997757 | 0.997758 | 0.000069 | 60     | 0.860903                               | 0.860548 | 0.004127 |  |  |
| 5                                      | 0.999935 | 0.999935 | 0.000002 | 61     | 0.921089                               | 0.920882 | 0.001941 |  |  |
| 6                                      | 0.999998 | 0.999998 | 0        | 62     | 0.956735                               | 0.956866 | 0.000934 |  |  |
| 7                                      | 1.000000 | 1.000000 | 0        | 63     | 0.977118                               | 0.977094 | 0.000452 |  |  |
| 8                                      | 1.000000 | 1.000000 | 0        | 64     | 0.988182                               | 0.988152 | 0.000218 |  |  |
| 9                                      | 1.000000 | 1.000000 | 0        | 65     | 0.994044                               | 0.994012 | 0.000104 |  |  |
| 10                                     | 1.000000 | 1.000000 | 0        | 66     | 0.997037                               | 0.997037 | 0.000049 |  |  |
| 11                                     | 1.000000 | 1.000000 | 0        | 67     | 0.998554                               | 0.998558 | 0.000023 |  |  |

|        | X <sub>s1</sub> ,s | $_{2} \sim \mathcal{P}(0.25)$ |          | $X_{s_1,s_2} \sim \mathcal{N}(0,1)$ |          |          |          |  |  |
|--------|--------------------|-------------------------------|----------|-------------------------------------|----------|----------|----------|--|--|
| $\tau$ | Sim                | АррН                          | ETotal   | $\tau$                              | Sim      | АррН     | E Total  |  |  |
| 59     | 0.638962           | 0.639102                      | 0.019442 | 50                                  | 0.843156 | 0.844113 | 0.004369 |  |  |
| 60     | 0.768283           | 0.769666                      | 0.008610 | 51                                  | 0.887477 | 0.887692 | 0.002755 |  |  |
| 61     | 0 861614           | 0.860885                      | 0.004012 | 52                                  | 0.920601 | 0.920385 | 0.001757 |  |  |
| 62     | 0.919144           | 0.919301                      | 0.001948 | 53                                  | 0.944398 | 0.944328 | 0.001127 |  |  |
| 63     | 0.954941           | 0.954864                      | 0.000965 | 54                                  | 0.961682 | 0.961667 | 0.000725 |  |  |
| 64     | 0.975255           | 0.975369                      | 0.000481 | 55                                  | 0.973797 | 0.973864 | 0.000468 |  |  |
| 65     | 0.986869           | 0.986900                      | 0.000240 | 56                                  | 0.982232 | 0.982330 | 0.000301 |  |  |
| 66     | 0.993115           | 0.993127                      | 0.000119 | 57                                  | 0.988183 | 0.988132 | 0.000193 |  |  |
| 67     | 0.996485           | 0.996472                      | 0.000058 | 58                                  | 0.992138 | 0.992134 | 0.000123 |  |  |
|        |                    |                               |          |                                     |          |          |          |  |  |



#### Table 5: Numerical results for $\mathbb{P}(S \leqslant \tau)$ : Ellipse

Window's shape

Ellipse  $(m_1 = 19, m_2 = 9, Nt = 135, IS = 1e5, IA = 1e6)$ 



| $X_{s_1,s_2} \sim \mathcal{B}(1,0.01)$ |          |          |          | $X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$ |          |          |          |  |
|----------------------------------------|----------|----------|----------|----------------------------------------|----------|----------|----------|--|
| $\tau$                                 | Sim      | АррН     | ETotal   | $\tau$                                 | Sim      | АррН     | E Total  |  |
| 3                                      | 0.944001 | 0.944211 | 0.002297 | 59                                     | 0.764871 | 0.763482 | 0.009128 |  |
| 4                                      | 0.997757 | 0.997758 | 0.000069 | 60                                     | 0.860903 | 0.860548 | 0.004127 |  |
| 5                                      | 0.999935 | 0.999935 | 0.000002 | 61                                     | 0.921089 | 0.920882 | 0.001941 |  |
| 6                                      | 0.999998 | 0.999998 | 0        | 62                                     | 0.956735 | 0.956866 | 0.000934 |  |
| 7                                      | 1.000000 | 1.000000 | 0        | 63                                     | 0.977118 | 0.977094 | 0.000452 |  |
| 8                                      | 1 000000 | 1.000000 | 0        | 64                                     | 0.988182 | 0.988152 | 0.000218 |  |
| 9                                      | 1.000000 | 1.000000 | 0        | 65                                     | 0.994044 | 0.994012 | 0.000104 |  |
| 10                                     | 1.000000 | 1.000000 | 0        | 66                                     | 0.997037 | 0.997037 | 0.000049 |  |
| 11                                     | 1.000000 | 1.000000 | 0        | 67                                     | 0.998554 | 0.998558 | 0.000023 |  |

| $X_{s_1,s_2} \sim \mathcal{P}(0.25)$ |          |          |          |        | $X_{s_1,s_2} \sim \mathcal{N}(0,1)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |
|--------------------------------------|----------|----------|----------|--------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| $\tau$                               | Sim      | АррН     | ETotal   | $\tau$ | Sim                                 | АррН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ETotal   |  |  |
| 59                                   | 0.638962 | 0.639102 | 0.019442 | 50     | 0.843156                            | 0.844113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.004369 |  |  |
| 60                                   | 0.768283 | 0.769666 | 0.008610 | 51     | 0.887477                            | 0.887692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002755 |  |  |
| 61                                   | 0.861614 | 0.860885 | 0.004012 | 52     | 0.920601                            | 0.920385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001757 |  |  |
| 62                                   | 0 919144 | 0.919301 | 0.001948 | 53     | 0.944398                            | 0.944328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001127 |  |  |
| 63                                   | 0 954941 | 0.954864 | 0.000965 | 54     | 0 961682                            | 0.961667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000725 |  |  |
| 64                                   | 0.975255 | 0.975369 | 0.000481 | 55     | 0.973797                            | 0.973864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000468 |  |  |
| 65                                   | 0.986869 | 0.986900 | 0.000240 | 56     | 0.982232                            | 0.982330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000301 |  |  |
| 66                                   | 0.993115 | 0.993127 | 0.000119 | 57     | 0.988183                            | 0.988132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000193 |  |  |
| 67                                   | 0.996485 | 0.996472 | 0.000058 | 58     | 0.992138                            | 0.992134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000123 |  |  |
|                                      |          |          |          |        |                                     | Contract Con |          |  |  |



12(1 0 01)

Table 6: Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Ellipse2

Window's shape

Ellipse2 ( $m_1 = 9, m_2 = 19, Nt = 135, IS = 1e5, IA = 1e6$ )



|        | ^s <sub>1</sub> ,s <sub>2</sub> | $\sim B(1, 0.01)$ |          |        | ^s <sub>1</sub> ,s <sub>2</sub> | $\sim B(5, 0.05)$ |          |
|--------|---------------------------------|-------------------|----------|--------|---------------------------------|-------------------|----------|
| $\tau$ | Sim                             | АррН              | ETotal   | $\tau$ | Sim                             | АррН              | E Total  |
| 3      | 0.944180                        | 0.943779          | 0.003420 | 59     | 0.764090                        | 0.763753          | 0.036701 |
| 4      | 0.997761                        | 0.997767          | 0.000071 | 60     | 0.859511                        | 0.860602          | 0.011219 |
| 5      | 0.999934                        | 0.999935          | 0.000002 | 61     | 0.921173                        | 0.920669          | 0.003816 |
| 6      | 0.999998                        | 0.999998          | 0        | 62     | 0.956920                        | 0.956693          | 0.001440 |
| 7      | 0.999999                        | 0.999999          | 0        | 63     | 0.977198                        | 0.977129          | 0.000586 |
| 8      | 1.000000                        | 1.000000          | 0        | 64     | 0.988162                        | 0.988177          | 0.000253 |
| 9      | 1.000000                        | 1.000000          | 0        | 65     | 0.993979                        | 0.994008          | 0.000113 |
| 10     | 1.000000                        | 1.000000          | 0        | 66     | 0.997032                        | 0.997036          | 0.000051 |
| 11     | 1.000000                        | 1.000000          | 0        | 67     | 0.998558                        | 0.998562          | 0.000023 |

|        | X <sub>s1</sub> ,s | $_{2} \sim \mathcal{P}(0.25)$ |          |        | X <sub>s1</sub> ,s | $_{2} \sim \mathcal{N}(0,1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|--------|--------------------|-------------------------------|----------|--------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| $\tau$ | Sim                | АррН                          | ETotal   | $\tau$ | Sim                | АррН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E Total  |
| 59     | 0.638389           | 0.640805                      | 0.117483 | 50     | 0.843792           | 0.844342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.013346 |
| 60     | 0.770899           | 0.769795                      | 0.034030 | 51     | 0.888070           | 0.887823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.006857 |
| 61     | 0.860847           | 0.861092                      | 0.010890 | 52     | 0.920460           | 0.920691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.003626 |
| 62     | 0.919522           | 0.919537                      | 0.003909 | 53     | 0.944514           | 0.944368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001974 |
| 63     | 0.954873           | 0.954742                      | 0.001516 | 54     | 0 961591           | 0.961748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001109 |
| 64     | 0.975326           | 0.975379                      | 0.000635 | 55     | 0.973861           | 0.973830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000640 |
| 65     | 0.986856           | 0.986843                      | 0.000282 | 56     | 0.982294           | 0.982269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000377 |
| 66     | 0.993154           | 0.993119                      | 0.000130 | 57     | 0.988180           | 0.988143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000226 |
| 67     | 0.996482           | 0.996478                      | 0.000061 | 58     | 0.992154           | 0.992123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000138 |
|        |                    |                               |          |        |                    | the state of the s |          |



~ 13(1 0 01)

#### Scanning a region of size $T_1 \times T_2 = 250 \times 250$

Table 6: Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Ellipse2

Window's shape

Ellipse2 ( $m_1 = 9, m_2 = 19, Nt = 135, IS = 1e5, IA = 1e6$ )



|        | ^s <sub>1</sub> ,s <sub>2</sub> | $\sim B(1,0.0)$ |          |        | ^ s <sub>1</sub> , s <sub>2</sub> | $\sim B(5, 0.05)$ |          |
|--------|---------------------------------|-----------------|----------|--------|-----------------------------------|-------------------|----------|
| $\tau$ | Sim                             | АррН            | ETotal   | $\tau$ | Sim                               | АррН              | E Total  |
| 3      | 0.944180                        | 0.943779        | 0.003420 | 59     | 0.764090                          | 0.763753          | 0.036701 |
| 4      | 0.997761                        | 0.997767        | 0.000071 | 60     | 0.859511                          | 0.860602          | 0.011219 |
| 5      | 0.999934                        | 0.999935        | 0.000002 | 61     | 0.921173                          | 0.920669          | 0.003816 |
| 6      | 0.999998                        | 0.999998        | 0        | 62     | 0.956920                          | 0.956693          | 0 001440 |
| 7      | 0.999999                        | 0.999999        | 0        | 63     | 0.977198                          | 0.977129          | 0.000586 |
| 8      | 1.000000                        | 1.000000        | 0        | 64     | 0.988162                          | 0 988177          | 0.000253 |
| 9      | 1.000000                        | 1.000000        | 0        | 65     | 0.993979                          | 0.994008          | 0.000113 |
| 10     | 1.000000                        | 1.000000        | 0        | 66     | 0.997032                          | 0.997036          | 0.000051 |
| 11     | 1.000000                        | 1.000000        | 0        | 67     | 0.998558                          | 0.998562          | 0.000023 |
|        |                                 |                 |          |        |                                   |                   |          |

|        | $X_{s_1, s_2}$ | $\sim \mathcal{P}(0.25)$ |          |        | X <sub>51</sub> ,5 | $_{2} \sim \mathcal{N}(0, 1)$ |          |
|--------|----------------|--------------------------|----------|--------|--------------------|-------------------------------|----------|
| $\tau$ | Sim            | АррН                     | ETotal   | $\tau$ | Sim                | АррН                          | ETotal   |
| 59     | 0.638389       | 0.640805                 | 0.117483 | 50     | 0.843792           | 0.844342                      | 0.013346 |
| 60     | 0.770899       | 0.769795                 | 0.034030 | 51     | 0.888070           | 0.887823                      | 0.006857 |
| 61     | 0.860847       | 0.861092                 | 0.010890 | 52     | 0.920460           | 0.920691                      | 0.003626 |
| 62     | 0 919522       | 0.919537                 | 0.003909 | 53     | 0.944514           | 0.944368                      | 0.001974 |
| 63     | 0.954873       | 0.954742                 | 0.001516 | 54     | 0 961591           | 0 961748                      | 0.001109 |
| 64     | 0.975326       | 0.975379                 | 0.000635 | 55     | 0.973861           | 0.973830                      | 0.000640 |
| 65     | 0.986856       | 0.986843                 | 0.000282 | 56     | 0.982294           | 0.982269                      | 0.000377 |
| 66     | 0.993154       | 0.993119                 | 0.000130 | 57     | 0.988180           | 0.988143                      | 0.000226 |
| 67     | 0.996482       | 0.996478                 | 0.000061 | 58     | 0.992154           | 0.992123                      | 0.000138 |
|        |                |                          |          |        |                    | and the same                  |          |



~ 13(5 0 05)

Table 7: Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Annulus

Window's shape

Annulus ( $m_1 = 17, m_2 = 17, Nt = 124, IS = 1e5, IA = 1e6$ )



|        | X <sub>s1</sub> , <sub>s2</sub> | $\sim B(1, 0.01)$ |          |        | X s <sub>1</sub> , s <sub>2</sub> | $\sim \mathcal{B}(5, 0.05)$ |          |
|--------|---------------------------------|-------------------|----------|--------|-----------------------------------|-----------------------------|----------|
| $\tau$ | Sim                             | АррН              | ETotal   | $\tau$ | Sim                               | АррН                        | E Total  |
| 3      | 0.881798                        | 0.882489          | 0.004812 | 59     | 0.951170                          | 0.951245                    | 0.000699 |
| 4      | 0.995434                        | 0.995465          | 0.000069 | 60     | 0.975772                          | 0.975727                    | 0.000255 |
| 5      | 0.999883                        | 0.999883          | 0.000001 | 61     | 0 988275                          | 0.988270                    | 0.000099 |
| 6      | 0.999998                        | 0.999998          | 0        | 62     | 0.994460                          | 0.994466                    | 0.000041 |
| 7      | 0.999999                        | 0.999999          | 0        | 63     | 0.997439                          | 0.997440                    | 0.000017 |
| 8      | 1.000000                        | 1.000000          | 0        | 64     | 0.998839                          | 0.998840                    | 0.000007 |
| 9      | 1.000000                        | 1.000000          | 0        | 65     | 0.999484                          | 0.999484                    | 0.000003 |
| 10     | 1.000000                        | 1.000000          | 0        | 66     | 0.999775                          | 0.999775                    | 0.000001 |
| 11     | 1.000000                        | 1.000000          | 0        | 67     | 0.999903                          | 0.999903                    | 0.000000 |

|        | X <sub>s1</sub> ,s | $\sim \mathcal{P}(0.25)$ |          |        | X <sub>s1</sub> ,s | $_{2} \sim \mathcal{N}(0,1)$ |          |
|--------|--------------------|--------------------------|----------|--------|--------------------|------------------------------|----------|
| $\tau$ | Sim                | АррН                     | ETotal   | $\tau$ | Sim                | АррН                         | E Total  |
| 59     | 0.903956           | 0.903852                 | 0.002128 | 50     | 0.860708           | 0.860416                     | 0.004097 |
| 60     | 0.949083           | 0.949059                 | 0.000735 | 51     | 0 904651           | 0.904644                     | 0.001977 |
| 61     | 0.973814           | 0.973844                 | 0.000277 | 52     | 0.936077           | 0.935938                     | 0.000987 |
| 62     | 0.986909           | 0.986876                 | 0.000111 | 53     | 0.957564           | 0.957650                     | 0.000508 |
| 63     | 0.993576           | 0.993570                 | 0.000047 | 54     | 0.972378           | 0.972311                     | 0.000270 |
| 64     | 0.996910           | 0.996907                 | 0.000020 | 55     | 0.982139           | 0.982136                     | 0.000148 |
| 65     | 0.998539           | 0.998539                 | 0.000009 | 56     | 0.988564           | 0.988587                     | 0.000082 |
| 66     | 0.999320           | 0.999320                 | 0.000004 | 57     | 0.992769           | 0.992769                     | 0.000047 |
| 67     | 0.999689           | 0.999689                 | 0.000002 | 58     | 0.995471           | 0.995466                     | 0.000027 |
|        |                    |                          |          |        |                    | - 47000 p.                   |          |



Table 7: Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Annulus

Window's shape

Annulus ( $m_1 = 17, m_2 = 17, Nt = 124, IS = 1e5, IA = 1e6$ )



|        | ^s <sub>1</sub> ,s <sub>2</sub> | $\sim B(1, 0.01)$ |          |        | ^s <sub>1</sub> ,s <sub>2</sub> | $\sim B(5, 0.05)$ |          |
|--------|---------------------------------|-------------------|----------|--------|---------------------------------|-------------------|----------|
| $\tau$ | Sim                             | АррН              | ETotal   | $\tau$ | Sim                             | АррН              | E Total  |
| 3      | 0.881798                        | 0.882489          | 0.004812 | 59     | 0.951170                        | 0 951245          | 0.000699 |
| 4      | 0.995434                        | 0.995465          | 0.000069 | 60     | 0.975772                        | 0.975727          | 0.000255 |
| 5      | 0.999883                        | 0.999883          | 0.000001 | 61     | 0.988275                        | 0.988270          | 0.000099 |
| 6      | 0.999998                        | 0.999998          | 0        | 62     | 0.994460                        | 0.994466          | 0.000041 |
| 7      | 0.999999                        | 0.999999          | 0        | 63     | 0.997439                        | 0.997440          | 0.000017 |
| 8      | 1.000000                        | 1.000000          | 0        | 64     | 0.998839                        | 0.998840          | 0.000007 |
| 9      | 1.000000                        | 1.000000          | 0        | 65     | 0.999484                        | 0.999484          | 0.000003 |
| 10     | 1.000000                        | 1.000000          | 0        | 66     | 0.999775                        | 0.999775          | 0.000001 |
| 11     | 1.000000                        | 1.000000          | 0        | 67     | 0.999903                        | 0.999903          | 0.000000 |

|        | $X_{s_1, s_2}$ | $\sim \mathcal{P}(0.25)$ |          |        | X <sub>51</sub> ,5 | $_{2} \sim \mathcal{N}(0,1)$ |          |
|--------|----------------|--------------------------|----------|--------|--------------------|------------------------------|----------|
| $\tau$ | Sim            | АррН                     | ETotal   | $\tau$ | Sim                | АррН                         | ETotal   |
| 59     | 0.903956       | 0.903852                 | 0.002128 | 50     | 0.860708           | 0.860416                     | 0.004097 |
| 60     | 0.949083       | 0.949059                 | 0.000735 | 51     | 0.904651           | 0.904644                     | 0.001977 |
| 61     | 0.973814       | 0.973844                 | 0.000277 | 52     | 0.936077           | 0.935938                     | 0.000987 |
| 62     | 0.986909       | 0.986876                 | 0.000111 | 53     | 0.957564           | 0.957650                     | 0.000508 |
| 63     | 0.993576       | 0.993570                 | 0.000047 | 54     | 0.972378           | 0.972311                     | 0.000270 |
| 64     | 0.996910       | 0.996907                 | 0.000020 | 55     | 0.982139           | 0 982136                     | 0.000148 |
| 65     | 0.998539       | 0.998539                 | 0.000009 | 56     | 0.988564           | 0.988587                     | 0.000082 |
| 66     | 0.999320       | 0.999320                 | 0.000004 | 57     | 0.992769           | 0.992769                     | 0.000047 |
| 67     | 0.999689       | 0.999689                 | 0.000002 | 58     | 0.995471           | 0.995466                     | 0.000027 |
|        |                |                          |          |        |                    |                              |          |



#### OUTLINE

- INTRODUCTION
  - Framework
  - Problem
- 2 METHODOLOGY
  - Approximation
  - Simulation methods: Normal data
- SIMULATION STUDY
  - Numerical examples
  - Power
- 4 SCANNING THE SURFACE OF A CYLINDER
  - Problem
  - Approximation
  - Numerical Results
- 6 References





## Power of the scan statistic test



#### Power evaluation for $\mathcal{B}(1,0.001)$ model

#### Triangular simulated cluster



#### Rectangular simulated cluster







#### Power evaluation for $\mathcal{B}(1,0.001)$ model

#### Quadrilateral simulated cluster



#### Circular simulated cluster







#### Power evaluation for $\mathcal{B}(1,0.001)$ model

#### Ellipsoidal simulated cluster



#### Annular simulated cluster







#### Power evaluation for $\mathcal{B}(5,0.05)$ model

#### Triangular simulated cluster



#### Rectangular simulated cluster







#### Power evaluation for $\mathcal{B}(5,0.05)$ model

#### Quadrilateral simulated cluster



#### Circular simulated cluster







#### Power evaluation for $\mathcal{B}(5,0.05)$ model

#### Ellipsoidal simulated cluster



#### Annular simulated cluster







#### OUTLINE

- - Framework
  - Problem
- - Approximation
  - Simulation methods: Normal data
- - Numerical examples
  - Power
- 4 Scanning the surface of a cylinder
  - Problem
  - Approximation
  - Numerical Results





# Scanning the surface of a cylinder





IWAP 2016

#### SCANNING THE SURFACE OF A CYLINDER



# Unfolded cylinder of size $T_1 \times T_2$

#### OUTLINE

- Introduction
  - Framework
  - Problem
- 2 METHODOLOGY
  - Approximation
  - Simulation methods: Normal data
- SIMULATION STUDY
  - Numerical examples
  - Power
- 4 Scanning the surface of a cylinder
  - Problem
  - Approximation
  - Numerical Results
- REFERENCES





# Transformation into a one dimensional problem























|  | <br> |  |
|--|------|------|------|------|------|------|------|------|--|
|  |      |      |      |      |      |      |      |      |  |
|  |      |      |      |      |      |      |      |      |  |
|  |      |      |      |      |      |      |      |      |  |
|  |      |      |      |      |      |      |      |      |  |
|  |      |      |      |      |      |      |      |      |  |
|  |      |      |      |      |      |      |      |      |  |
|  |      |      |      |      |      |      |      |      |  |
|  |      |      |      |      |      |      |      |      |  |
|  |      |      |      |      |      |      |      |      |  |
|  |      |      |      |      |      |      |      |      |  |
|  |      |      |      |      |      |      |      |      |  |



IWAP 2016







|      | <br> | <br> |               | <br> | <br> |  |
|------|------|------|---------------|------|------|--|
|      |      |      |               |      |      |  |
|      |      |      |               |      |      |  |
|      |      |      |               |      |      |  |
|      |      |      |               |      |      |  |
|      |      |      | $X_{T_1,m_2}$ |      |      |  |
| A1.1 |      |      |               |      |      |  |
|      |      |      |               |      |      |  |
|      |      |      |               |      |      |  |
|      |      |      |               |      |      |  |
|      |      |      |               |      |      |  |
|      |      |      |               |      |      |  |





|           |           |           |    |           |                |           |                |           |                 |           | <br>              | <br>              |
|-----------|-----------|-----------|----|-----------|----------------|-----------|----------------|-----------|-----------------|-----------|-------------------|-------------------|
|           |           |           |    |           |                |           |                |           |                 |           |                   |                   |
|           |           |           |    |           |                |           |                |           |                 |           |                   |                   |
|           |           |           |    |           |                |           |                |           |                 |           |                   |                   |
|           |           |           |    |           |                |           |                |           |                 |           |                   |                   |
| $X_{1,1}$ | $X_{m_1}$ | $X_{T_1}$ | ,1 | $X_{1,i}$ | n <sub>2</sub> | $x_{m_1}$ | m <sub>2</sub> | $X_{T_1}$ | ,m <sub>2</sub> | $X_{1,T}$ | <br>$X_{m_1,T_2}$ | $X_{T_{1},T_{2}}$ |
|           |           |           |    |           |                |           |                |           |                 |           |                   |                   |
|           |           |           |    |           |                |           |                |           |                 |           |                   |                   |
|           |           |           |    |           |                |           |                |           |                 |           |                   |                   |





- The size of the scanning window is  $\tilde{m}_1 = T_1 m_2 (T_1 m_1)$
- The score function is defined by

$$\mathcal{S}\left(\mathfrak{X}_{i_{1}}\right)=A\circ\mathfrak{X}_{i_{1}}$$

where A is the corresponding  $\{0,1\}$  vector



IWAP 2016



- The size of the scanning window is  $\tilde{m}_1 = T_1 m_2 (T_1 m_1)$
- The score function is defined by

$$\mathcal{S}\left(\mathfrak{X}_{i_{1}}\right)=A\circ\mathfrak{X}_{i_{1}}$$





- The size of the scanning window is  $\tilde{m}_1 = T_1 m_2 - (T_1 - m_1)$
- The score function is defined by

$$\mathcal{S}\left(\mathfrak{X}_{i_{1}}\right)=A\circ\mathfrak{X}_{i_{1}}$$







- The size of the scanning window is  $\tilde{m}_1 = T_1 m_2 (T_1 m_1)$
- The score function is defined by

$$\mathcal{S}\left(\mathfrak{X}_{i_{1}}\right)=A\circ\mathfrak{X}_{i_{1}}$$







- The size of the scanning window is  $\tilde{m}_1 = T_1 m_2 (T_1 m_1)$
- The score function is defined by

$$S\left(\mathfrak{X}_{i_1}\right) = A \circ \mathfrak{X}_{i_1}$$







- The size of the scanning window is  $\tilde{m}_1 = T_1 m_2 (T_1 m_1)$
- The score function is defined by

$$\mathcal{S}\left(\mathfrak{X}_{i_{1}}\right)=A\circ\mathfrak{X}_{i_{1}}$$





#### APPROXIMATION AND ERROR BOUNDS

#### Theorem [Amărioarei, 2014]

Let  $t_1 \in \{2,3\}$  and  $Q_{t_1} = Q_{t_1}(\tau) = \mathbb{P}(S_{\tilde{m}_1}(t_1(\tilde{m}_1 - 1); S) \leq \tau)$  and  $L_1 = \left| \frac{T_1}{\tilde{m}_1 - 1} \right|$ If  $\hat{Q}_{t_1}$  is an estimate of  $Q_{t_1}$  with  $\left|\hat{Q}_{t_1}-Q_{t_1}\right|\leq eta_{t_1}$  and au is such that  $1-\hat{Q}_2( au)\leq 0.1$  then

$$\left| \mathbb{P}\left( S_{\tilde{m}_{1}}(\tilde{T}_{1}, \mathcal{S}) \leq \tau \right) - \left( 2\hat{Q}_{2} - \hat{Q}_{3} \right) \left[ 1 + \hat{Q}_{2} - \hat{Q}_{3} + 2(\hat{Q}_{2} - \hat{Q}_{3})^{2} \right]^{1 - L_{1}} \right| \leq E_{total}(1),$$

$$E_{total}(1) = (L_{1} - 1) \left[ \beta_{2} + \beta_{3} + F\left( \hat{Q}_{2}, L_{1} - 1 \right) \left( 1 - \hat{Q}_{2} + \beta_{2} \right)^{2} \right].$$





#### OUTLINE

- Introduction
  - Framework
  - Problem
- 2 METHODOLOGY
  - Approximation
  - Simulation methods: Normal data
- SIMULATION STUDY
  - Numerical examples
  - Power
- 4 Scanning the surface of a cylinder
  - Problem
  - Approximation
  - Numerical Results
- 5 References





# Numerical examples



Table 8: Numerical results for  $\mathbb{P}(S\leqslant au)$ : Cylinder

|                   | $X_{s_1,s_2} \sim \mathcal{B}(1,0.1)$ |          |          | $X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$ |          |          |          |
|-------------------|---------------------------------------|----------|----------|----------------------------------------|----------|----------|----------|
| $\overline{\tau}$ | Sim                                   | AppH     | E Tot al | au                                     | Sim      | AppH     | E Tot a  |
| 33                | 0.871559                              | 0.870200 | 0.003674 | 68                                     | 0.955593 | 0.955671 | 0.000938 |
| 34                | 0.946216                              | 0.946527 | 0.001177 | 69                                     | 0.976348 | 0.976285 | 0.000461 |
| 35                | 0.979458                              | 0.979381 | 0.000393 | 70                                     | 0.987406 | 0.987574 | 0.000227 |
| 36                | 0.992379                              | 0.992465 | 0.000131 | 71                                     | 0.993526 | 0.993593 | 0.000111 |
| 37                | 0.997384                              | 0.997367 | 0.000043 | 72                                     | 0.996772 | 0.996751 | 0.000054 |
| 38                | 0.999116                              | 0.999111 | 0.000014 | 73                                     | 0.998401 | 0.998391 | 0.000026 |
| 39                | 0.999713                              | 0.999714 | 0.000004 | 74                                     | 0.999214 | 0.999212 | 0.000012 |
| 40                | 0.999911                              | 0.999911 | 0.000001 | 75                                     | 0.999623 | 0.999626 | 0.000006 |



Table 8: Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Cylinder

|                   | $X_{\mathbf{s_1},\mathbf{s_2}} \sim \mathcal{B}(1,0.1)$ |          |          | $X_{s_1,s_2} \sim \mathcal{B}(5,0.05)$ |          |          |          |
|-------------------|---------------------------------------------------------|----------|----------|----------------------------------------|----------|----------|----------|
| $\overline{\tau}$ | Sim                                                     | AppH     | ETot al  | au                                     | Sim      | AppH     | E Tot al |
| 33                | 0.871559                                                | 0.870200 | 0.003674 | 68                                     | 0.955593 | 0.955671 | 0.000938 |
| 34                | 0.946216                                                | 0.946527 | 0.001177 | 69                                     | 0.976348 | 0.976285 | 0.000461 |
| 35                | 0.979458                                                | 0.979381 | 0.000393 | 70                                     | 0.987406 | 0.987574 | 0.000227 |
| 36                | 0.992379                                                | 0.992465 | 0.000131 | 71                                     | 0.993526 | 0.993593 | 0.000111 |
| 37                | 0.997384                                                | 0.997367 | 0.000043 | 72                                     | 0.996772 | 0.996751 | 0.000054 |
| 38                | 0.999116                                                | 0.999111 | 0.000014 | 73                                     | 0.998401 | 0.998391 | 0.000026 |
| 39                | 0.999713                                                | 0.999714 | 0.000004 | 74                                     | 0.999214 | 0.999212 | 0.000012 |
| 40                | 0.999911                                                | 0.999911 | 0.000001 | 75                                     | 0.999623 | 0.999626 | 0.000006 |



Table 9: Numerical results for  $\mathbb{P}(S\leqslant au)$ : Cylinder

| $X_{s_1,s_2} \sim \mathcal{P}(0.25)$ |          |          |          |  |  |  |
|--------------------------------------|----------|----------|----------|--|--|--|
| $\overline{\tau}$                    | Sim      | AppH     | ETot al  |  |  |  |
| 68                                   | 0.915283 | 0.915691 | 0.002055 |  |  |  |
| 69                                   | 0.951447 | 0.951723 | 0.001023 |  |  |  |
| 70                                   | 0.973445 | 0.973488 | 0.000515 |  |  |  |
| 71                                   | 0.985486 | 0.985509 | 0.000263 |  |  |  |
| 72                                   | 0.992349 | 0.992285 | 0.000133 |  |  |  |
| 73                                   | 0.995950 | 0.995979 | 0.000066 |  |  |  |
| 74                                   | 0.997916 | 0.997920 | 0.000033 |  |  |  |
| 75                                   | 0.998951 | 0.998945 | 0.000016 |  |  |  |



Table 9: Numerical results for  $\mathbb{P}(S \leqslant \tau)$ : Cylinder

| $X_{s_1,s_2} \sim \mathcal{P}(0.25)$ |          |          |          |  |  |  |
|--------------------------------------|----------|----------|----------|--|--|--|
| au                                   | Sim      | AppH     | ETot al  |  |  |  |
| 68                                   | 0.915283 | 0.915691 | 0.002055 |  |  |  |
| 69                                   | 0.951447 | 0.951723 | 0.001023 |  |  |  |
| 70                                   | 0.973445 | 0.973488 | 0.000515 |  |  |  |
| 71                                   | 0.985486 | 0.985509 | 0.000263 |  |  |  |
| 72                                   | 0.992349 | 0.992285 | 0.000133 |  |  |  |
| 73                                   | 0.995950 | 0.995979 | 0.000066 |  |  |  |
| 74                                   | 0.997916 | 0.997920 | 0.000033 |  |  |  |
| 75                                   | 0.998951 | 0.998945 | 0.000016 |  |  |  |



thank you!





Alm, S. E. (1983).

On the distribution of scan statistic of poisson process.

In Gut, A. and Helst, L., editors, *Probability and Mathematical Statistics*, pages 1–10. Upsalla University Press.



Alm, S. E. (1997).

On the distributions of scan statistics of a two-dimensional poisson process. *Advances in Applied Probability*, pages 1–18.



Alm, S. E. (1998).

Approximation and simulation of the distributions of scan statistics for poisson processes in higher dimensions.

Extremes, 1(1):111-126.



Amărioarei, A. (2014).

Approximations for the multidimensional discrete scan statistics.

PhD thesis, University of Lille 1.



Anderson, N. H. and Titterington, D. M. (1997).

Some methods for investigating spatial clustering, with epidemiological applications.

Journal of the Royal Statistical Society: Series A (Statistics in Society)



Assunção, R., Costa, M., Tavares, A., and Ferreira, S. (2006).

Fast detection of arbitrarily shaped disease clusters.

Statistics in Medicine, 25(5):723-742.



Bresenham, J. (1965).

Algorithm for computer control of a digital printer.

IBM Systems Journal, 4(1).



Bresenham, J. (1977).

A linear algorithm for incremental digital display of circular arcs.

Communications of the ACM, 20(2):100-106.



Devroye, L. (1986).

Non uniform random variate generation.

Springer-Verlag, New York.



Foley, J. (1995).

Computer Graphics, Principles and Practice in C.

Addison-Wesley Professional.



Glaz, J., Naus, J., and Wallenstein, S. (2001). *Scan Statistics*.



Springer.



Glaz, J., Pozdnyakov, V., and Wallenstein, S. (2009).

Scan Statistics: Methods and Applications.

Birkhaüser Boston.



Loader, C. R. (1991).

Large-deviation approximations to the distribution of scan statistics.

Advances in Applied Probability, pages 751-771.



Tango, T. and Takahashi, K. (2005).

A flexibly shaped spatial scan statistic for detecting clusters.

Int J Health Geogr, 4:11.

Tango, Toshiro Takahashi, Kunihiko England Int J Health Geogr. 2005 May 18;4:11.

