

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO

Rua Dom Manoel de Medeiros, s/n – Dois Irmãos 52171-900 Recife-PE Fone: 81 3302 1000 www.dc.ufrpe.br

DISCIPLINA: Algoritmos e Estruturas de Dados CÓDIGO: 06214

DEPARTAMENTO: Computação ÁREA: Informática

CURSO: Licenciatura em Computação

PROFESSOR RESPONSÁVEL: Luciano Demétrio Santos Pacífico

DATA MÁXIMA DE ENTREGA: 29-08-2020 (prazo estendido e final!)

Regras da Lista de Exercícios 01

- 1. As **respostas** das questões da Lista de Exercícios 01 devem ser envidas através de **um único arquivo, no formato ".pdf"**.
- 2. As respostas da Lista de Exercícios 01 devem ser submetidas unicamente através da tarefa criada no Google Classroom para este propósito.
- 3. As questões que solicitam **escrita de código** devem ser resolvidas **apenas através dos recursos oferecidos pela pseudolingaugem definida para a disciplina**, sendo eles: variáveis, constantes e tipos primitivos, expressões, estruturas condicionais, estruturas de repetição, sub-rotinas, estruturas de dados homogêneas (Arrays) e estruturas de dados heterogêneas.
- 4. **Todos as Estruturas e Dados e Algoritmos devem ser implementados pelo aluno**. Não é permitido o uso de Estruturas de Dados, Algoritmos e estruturas otimizadas de Linguagens de Programação reais.
- 5. Todos os alunos envolvidos em cópias terão suas notas ANULADAS nas referidas questões.

Lista de Exercícios 01 – Introdução ao Estudo de Algoritmos

- Escreva um algoritmo em Linguagem Natural descrevendo, em, no mínimo, 10 passos, sua rotina diária durante a quarentena. Obs: ao menos um comando de decisão e um comando de repetição devem ser usados. (1.5 ponto)
- 2. Escreva um **algoritmo** (**procedimento**), na **pseudolinguagem** adotada na disciplina, que receba **um vetor de dados** *x n*-dimensional, e retorne o resultado da seguinte função: (2.0 pontos)

$$f(x) = \sum_{i=1}^{n} x_i^i$$

Obs: usar laços de repetição e comandos de decisão (estruturas condicionais), além de operações aritméticas fundamentais (suponha que a linguagem não possui a função para potenciação).

- 3. Implemente, na **pseudolinguagem** adotada na disciplina, um **algoritmo** que receba duas matrizes **A**_{nxm} e **B**_{sxp}, e calcule o **produto matricial** entre as mesmas. Obs.: Os usuários poderão fornecer **qualquer tipo de matrizes bidimensionais** como entrada, **cabendo ao algoritmo avaliar** se é possível calcular o produto matricial entre A e B. Caso não seja possível, uma mensagem de erro deve ser impressa indicando o problema. (3.0 pontos)
- 4. Supondo que três algoritmos (A₁, A₂ e A₃) sejam capazes de resolver o mesmo problema, e que cada um deles realize o seguinte número de operações durante sua execução: (1.5 ponto)
 - $A_1(n) = 1000n + 9000$ operações.
 - $A_2(n) = n^2 + 15n$ operações.
 - $A3(n) = 10^n + 100n$ operações.

Responda:

- a. Qual dos três algoritmos seria a melhor escolha, em termos de complexidade, para resolver nosso problema, considerando a análise assintótica?
- b. A partir de qual valor de n esse algoritmo passa a ser o menos custoso?
- 5. Demonstre o funcionamento do algoritmo *Insertion-Sort* no vetor A = {52, 3, 17, 10, 45, 13, 5, 9}, informando a cada **iteração do laço para**, o número de trocas realizadas, assim como a configuração do vetor de dados. Qual o número total de trocas? (2.0 pontos)

Iteração	Nº Trocas	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]
Inicialização	-	52	3	17	10	45	13	5	9
1									
2									
3									
4									
5									
6									
7									
8									
9									