1. The distribution of (X, Y) is given by

	Y = 1	Y = 2	Y = 3
X = 0	0.2	0.2	0.1
X = 1	0.5	0	0

- (a) Find the entropies (X), (Y) and the joint entropy (X,Y).
- (b) Find conditional entropy $(Y \mid X)$.
- (c) What is a maximal value of conditional entropy $(Y \mid X)$, if X has two possible values and Y three possible values?
- 2. Consider a toy dataset y = (10, 10, 30, 30, 30, 40) and x = (1, 2, 3, 4, 5, NA).

Build the regression true based on the following rules:

- The tree has two splitting nodes.
- Each node is split to minimize sum of squared residuals.
- If there are many possible nodes to split choose the node with maximal sum of squared residuals drop.
- For missing observations (NA) consider both split directions.
- In case of many splits with the same sum of squared residuals drop choose the split with minimal threshold on x.
- 3. Consider the simple logit model for binary $y_i \in \{0,1\}$. We assume that $(y_i \mid x)$ are independent and

$$\mathbb{P}(y_i = 1 \mid x) = \frac{\exp(\beta_1 + \beta_x x_i)}{1 + \exp(\beta_1 + \beta_x x_i)}.$$

You don't know the true values of β_1 and β_x and you would like to estimate them using maximum likelihood.

- (a) Write the likelihood function in the general form.
- (b) Write the first order conditions $\partial \ln L/\partial \hat{\beta}_1 = 0$ and $\partial \ln L/\partial \hat{\beta}_x = 0$.
- (c) You have 200 observations and 150 of them are $y_i = 1$. What will be the value of a sum $\sum_{i=1}^{200} \hat{\mathbb{P}}(y_i = 1 \mid x)$?

Hint: the formula for $\hat{\mathbb{P}}(\dots)$ is similar to $\mathbb{P}(\dots)$, just β -s are replaced by $\hat{\beta}$ -s. You can answer (c) without solving the system of first order conditions.

- 4. Random variables $y_1, y_2, ..., y_n$ is a random sample from a continuous distribution. Let $y_1^*, y_2^*, ..., y_n^*$ be the first bootstrap sample.
 - (a) Find $\mathbb{P}(y_1 = y_2^*)$, $\mathbb{P}(y_1 = y_2)$, $\mathbb{P}(y_1^* = y_2^*)$.
 - (b) Find $\mathbb{P}(\text{ all } y_i^* \text{ are equal}).$
 - (c) Find $\mathbb{P}(\max\{y_1, y_2, \dots, y_n\}) = \max\{y_1^*, y_2^*, \dots, y_n^*\}$.
 - (d) What is the probability that all original observations are present in the bootstrap sample?