

### USB 3.2 Gen1 to 2.5G Ethernet Controller

#### **Features**

 Single chip USB 3.2 Gen 1 to 2.5G
 Ethernet Controller with Integrated 100M/1G/2.5G Ethernet PHY

#### USB Device Controller

- Integrates on-chip USB Type-C 3.2 Gen1 PHY and controller compliant to USB Spec 3.2 Gen 1, 2.0 and 1.1
- Supports all USB 3.2 Gen 1 power saving modes (U0, U1, U2, and U3)
- Supports USB Super/High/Full Speed modes with Bus-power or Self-power device

#### 2.5G Ethernet Controller

- Integrates 100M/1G/2.5G Ethernet MAC/PHY, compliant to IEEE 802.3, 802.3u, 802.3ab and 802.3bz
- Supports CDC-NCM, CDC-ECM
- Supports IEEE 802.3az (Energy Efficient Ethernet, EEE)
- Supports AUTO-MDIX, flow control (IEEE 802.3 Annex.31B)
- Supports IPv4/IPv6 Packet Checksum Offload Engine (COE)
- Supports TCP Large Send Offload V1/V2
- Supports up to 9K Jumbo Frame
- Supports IEEE 802.1Q VLAN tagging and 4096 VLAN ID filtering; received VLAN tag (4 bytes) can be stripped off or preserved
- Supports IEEE 802.1P Layer 2 Priority Encoding and Decoding
- Supports manageability L2 filter
- Supports TCO filter, L3/L4 IP/Port filter
- Supports Second DA RX filter with bit mask

#### Precision Time Protocol (PTP)

- Supports IEEE 1588v2 and 802.1AS
- Supports Ordinary and Boundary clock
- Supports 1-step and 2-step Clock Synchronization
- Supports IEEE802.3, UDP/IPv4, and UDP/IPv6 Protocol Encapsulations

### Wake-on-LAN Functions

 Supports suspend mode and remote wakeup via link-change, Magic Packet, Microsoft wakeup frame and external wakeup pin

Document No: AX88279/V1.00/08/15/23

- Supports Bonjour Wake-on-Demand
- Supports Wakeup Packet Indication
- Supports Microsoft Modern Standby

### Advanced Power Management Features

- Supports power management offload (ARP & NS)
- Supports ECMA-393 ProxZzzy® for sleeping hosts
- Supports Windows 11/10/8.x, Linux/Android /Chrome OS, Nintendo Switch in-box drivers, and macOS/Linux native CDC-NCM driver for driverless, Plug & Play
- Supports embedded eFuse for die identifier and customized USB ID and Ethernet MAC address
- Supports SPI Flash for firmware customization
- Single 25 MHz crystal clock source
- Integrates on-chip power-on reset circuit
- 60-pin QFN, 7x7 mm package
- Operating Temperature Range: 0 to +70°C

1



### **Target Applications**

- Notebook/Laptop Onboard LAN
- USB Ethernet Dongle for Ultrabook /Table/Smart Phone/etc.
- Docking Station, POS/PDA Cradle
- IP STB, Smart Camera, Smart TV Box
- Game Console
- 5G/LTE Router/Gateway

### **Typical Applications Diagram**



Figure 0-1: AX88279 Typical Applications Diagram



### USB 3.2 Gen1 to 2.5G Ethernet Controller

Copyright © 2023 ASIX Electronics Corporation. All rights reserved.

#### DISCLAIMER

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of ASIX. ASIX may make changes to the product specifications and descriptions in this document at any time, without notice.

ASIX provides this document "as is" without warranty of any kind, either expressed or implied, including without limitation warranties of merchantability, fitness for a particular purpose, and non-infringement.

Designers must not rely on the absence or characteristics of any features or registers marked "reserved", "undefined" or "NC". ASIX reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Always contact ASIX to get the latest document before starting a design of ASIX products.

#### **TRADEMARKS**

ASIX, the ASIX logo are registered trademarks of ASIX Electronics Corporation. All other trademarks are the property of their respective owners.



### **Table of Contents**

| 1 | INT  | FRODUCTION                      | 6  |
|---|------|---------------------------------|----|
|   | 1.1  | GENERAL DESCRIPTION             | 6  |
|   | 1.2  | BLOCK DIAGRAM                   | 6  |
|   | 1.3  | PINOUT DIAGRAM                  | 7  |
|   | 1.4  | SIGNAL DESCRIPTION              | 8  |
|   | 1.4. | .1 USB Interface                | 8  |
|   | 1.4. | .2 <i>Clock</i>                 | 8  |
|   | 1.4. | .3 GPHY MDI                     | 8  |
|   | 1.4. |                                 |    |
|   | 1.4. | .5 Power and Ground Pin         | 9  |
| 2 | FU.  | NCTION DESCRIPTION              | 10 |
|   | 2.1  | CLOCKS/RESETS                   | 10 |
|   | 2.2  | USB Core and Interfaces.        |    |
|   | 2.3  | 100M/1G/2.5Gigabit Ethernet PHY |    |
|   | 2.4  | ENERGY EFFICIENT ETHERNET (EEE) |    |
|   | 2.5  | CHECKSUM OFFLOAD ENGINE (COE)   |    |
|   | 2.6  | USB TO ETHERNET BRIDGE          |    |
|   | 2.7  | PTP                             |    |
|   | 2.8  | EFUSE                           |    |
|   | 2.9  | GENERAL PURPOSE I/O AND LED.    | 11 |
| 3 | SPI  | I/EFUSE MEMORY                  | 12 |
|   | 3.1  | SPI/EFUSE MEMORY                | 12 |
| 4 | US   | B CONFIGURATION STRUCTURE       | 12 |
| • | 4.1  | USB Configuration               |    |
|   | 4.1  | USB INTERFACE                   |    |
|   | 4.2  | USB ENDPOINTS                   |    |
|   |      |                                 |    |
| 5 | EL   | ECTRICAL SPECIFICATIONS         | 13 |
|   | 5.1  | DC CHARACTERISTICS              | 13 |
|   | 5.1. | <b>G</b>                        |    |
|   | 5.1. | 1 0                             |    |
|   | 5.1. |                                 |    |
|   | 5.1. | J .                             |    |
|   | 5.2  | POWER CONSUMPTION               |    |
|   | 5.3  | POWER-UP SEQUENCE               |    |
|   |      | AC TIMING CHARACTERISTICS       |    |
|   | 5.4. | O                               |    |
|   | 5.4. | 3                               |    |
|   | 5.4. |                                 |    |
| 6 | PA   | CKAGE INFORMATION               | 20 |
| 7 | OR   | RDERING INFORMATION             | 22 |
| 0 | DE   | WIGION THETODY                  | 22 |





## **List of Figures**

| FIGURE 0-1: AX88279 TYPICAL APPLICATIONS DIAGRAM | 2  |
|--------------------------------------------------|----|
| FIGURE 1-1: AX88279 BLOCK DIAGRAM                | 6  |
| FIGURE 1-2: AX88279 PINOUT DIAGRAM               | 7  |
| FIGURE 5-1: POWER-UP SEQUENCE TIMING DIAGRAM     |    |
| FIGURE 5-2: SPI TIMING                           |    |
| FIGURE 5-3: CLOCK TIMING DIAGRAM                 |    |
| List of Tables                                   |    |
| TABLE 1-1: USB INTERFACE PIN DESCRIPTION         |    |
| TABLE 1-2: CLOCK PIN DESCRIPTION                 |    |
| TABLE 1-3: 2.5G PHY MDI PIN DESCRIPTION          |    |
| TABLE 1-4: MISC. PIN DESCRIPTION                 |    |
| TABLE 1-5: POWER AND GROUND PIN DESCRIPTION      | 9  |
| TABLE 5-1: AX88279 POWER CONSUMPTION             |    |
| TABLE 5-2: THERMAL CHARACTERISTICS               |    |
| TABLE 5-3: POWER-UP SEQUENCE TIMING TABLE        |    |
| TABLE 5-4: SPI TIMING TABLE                      |    |
|                                                  |    |
| TABLE 5-5: CLOCK TIMING TABLE                    | 19 |



### 1 Introduction

### 1.1 General Description

The AX88279 USB 3.2 Gen1 to 100M/1G/2.5Gigabit Ethernet controller is a high performance and highly integrated ASIC which enables low cost, small form factor, and simple plug-and-play 2.5Gigabit Ethernet network connection capability for desktops, notebook PC's, Ultrabook's, docking stations, game consoles, digital-home appliances, and any embedded system using a standard USB port.

The AX88279 features a USB interface to communicate with a USB Host Controller and is compliant with USB specification V3.2 Gen1, V2.0, and V1.1. It implements a 100M/1G/2.5Gigabit Ethernet LAN function based on IEEE802.3, IEEE802.3u, IEEE802.3ab and IEEE802.3bz standards with embedded SRAMs for packet buffering. And, it also integrates an on-chip 100M/1G/2.5Gigabit EEE-compliant Ethernet PHY to simplify system design.

### 1.2 Block Diagram



Figure 1-1: AX88279 Block Diagram



### 1.3 Pinout Diagram

AX88279 is housed in a 60-pin E-PAD QFN package.



Figure 1-2: AX88279 Pinout Diagram

### 1.4 Signal Description

Following abbreviations are used in "Type" column of below pin description tables. Note that some I/O pins with multiple signal definitions on the same pin may have different attributes in "Type" column for different signal definition.

| AB         | Analog Bi-directional I/O | PU | Internal Pull-Up (75K)   |
|------------|---------------------------|----|--------------------------|
| ΑI         | Analog Input              | PD | Internal Pull-Down (75K) |
| AO         | Analog Output             | P  | Power/Ground pin         |
| <b>I18</b> | Input, 1.85V              | S  | Schmitt Trigger          |
| <b>O18</b> | Output, 1.85V             | T  | Tri-state                |
| <b>B3</b>  | Bi-directional I/O, 3.3V  | 4m | 4mA driving strength     |
| <b>I3</b>  | Input, 3.3V               | 8m | 8mA driving strength     |

**O3** Output, 3.3V

### 1.4.1 USB Interface

| Pin Name  | Type | Pin No | Pin Description                              |
|-----------|------|--------|----------------------------------------------|
| USB_DP    | AB   | 39     | USB 2.0 data differential pair positive pin. |
| USB_DM    | AB   | 38     | USB 2.0 data differential pair negative pin. |
| SSUSB_TXN | AO   | 41     | USB 3.2 Gen 1 TX- differential pair.         |
| SSUSB_TXP | AO   | 42     | USB 3.2 Gen 1 TX+ differential pair.         |
| SSUSB_RXN | AI   | 44     | USB 3.2 Gen 1 RX- differential pair.         |
| SSUSB_RXP | AI   | 45     | USB 3.2 Gen 1 RX+ differential pair.         |

Table 1-1: USB Interface Pin Description

#### **1.4.2** Clock

| Pin Name | Type | Pin No | Pin Description                          |
|----------|------|--------|------------------------------------------|
| XTAL_IN  | I18  | 17     | 25Mhz crystal or oscillator clock input. |
| XTAL_OUT | O18  | 16     | 25Mhz crystal clock output.              |

Table 1-2: Clock Pin Description

### **1.4.3 GPHY MDI**

| Pin Name | Type | Pin No | Pin Description         |
|----------|------|--------|-------------------------|
| MDIP0    | AB   | 3      | MDI pair 0 positive pin |
| MDIN0    | AB   | 4      | MDI pair 0 negative pin |
| MDIP1    | AB   | 6      | MDI pair 1 positive pin |
| MDIN1    | AB   | 7      | MDI pair 1 negative pin |
| MDIP2    | AB   | 10     | MDI pair 2 positive pin |
| MDIN2    | AB   | 11     | MDI pair 2 negative pin |
| MDIP3    | AB   | 13     | MDI pair 3 positive pin |
| MDIN3    | AB   | 14     | MDI pair 3 negative pin |

Table 1-3: 2.5G PHY MDI Pin Description

### **1.4.4** Misc. Pin

| Pin Name | Type    | Pin No | Pin Description                                                         |
|----------|---------|--------|-------------------------------------------------------------------------|
| MPXP     | AB      | 9      | External Reference Resistor (24 KΩ, 1%) Connect resistor to Analog GND. |
| VBUS     | I3/S    | 34     | VBUS signal of USB. (GPIO9)                                             |
| RST_N    | I3/S/PU | 23     | Reset signal. Active low                                                |
| SPI_CS   | B3/S    | 50     | SPI Chip Select pin for external SPI flash                              |
| SPI_CLK  | B3/S    | 51     | SPI Clock pin for external SPI flash                                    |
| SPI_DIO  | B3/S    | 52     | SPI Digital I/O pin for external SPI flash                              |
| PME*     | B3/S/PU | 33     | PME pin for power management, always pull up this pin. (GPIO8)          |
| GPIO0    | B3/S    | 48     | General Purpose I/O 0                                                   |
| GPIO1    | B3/S    | 49     | General Purpose I/O 1                                                   |
| GPIO2    | B3/S    | 22     | General Purpose I/O 2                                                   |
| GPIO3**  | B3/S    | 29     | General Purpose I/O 3                                                   |
|          |         |        | This pin needs to be pulled up with an external resister to DVDD33      |
| GPIO6    | B3/S    | 20     | General Purpose I/O 6                                                   |
| GPIO7    | B3/S    | 21     | General Purpose I/O 7                                                   |
| GPIO10   | B3/S    | 19     | General Purpose I/O 10.                                                 |
|          |         |        | This pin needs to be pulled up with an external resister to DVDD33.     |
| GPIO14   | B3/S    | 46     | General Purpose I/O 14                                                  |
| GPIO15   | B3/S    | 47     | General Purpose I/O 15                                                  |
| LED0     | В3      | 27     | Programmable LED0 indication (GPIO5)                                    |
| LED1     | В3      | 28     | Programmable LED1 indication (GPIO4)                                    |
| NC       | В3      | 18, 60 | No Connection Pin (Keep floating on the PCB)                            |

<sup>\*:</sup> The default is an external wakeup pin. Active low. PME or USB3.0 LED pin needs to set by tool.

Table 1-4: Misc. Pin Description

### 1.4.5 Power and Ground Pin

| Pin Name     | Type | Pin No  | Pin Description                          |
|--------------|------|---------|------------------------------------------|
| AVDD33_USB   | P    | 37      | 3.3V Analog Power Input of USB.          |
| AVDD18_SSUSB | P    | 40      | 1.85V Analog Power Input of SS USB.      |
| AVDD10_SSUSB | P    | 43      | 1.0V Analog Power Input of SS USB.       |
| DVDD33       | P    | 25, 36  | 3.3V I/O Power.                          |
| DVDD18       | P    | 26, 35, | 1.85V I/O Power.                         |
|              |      | 53      |                                          |
| VCCK         | P    | 24, 30, | 1.0V Digital Core Power.                 |
|              |      | 31, 32, |                                          |
|              |      | 57, 58  |                                          |
| AVDD33       | P    | 59      | 3.3V Analog Power.                       |
| GND          | P    | 1, 2    | Ground for all Analog and Digital Power. |
| AVDD33_LDO   | P    | 54      | 3.3V Analog Power for LDO.               |
| LDO18        | P    | 56      | 1.85V Power Output from LDO.             |
| VCORE_LDO    | P    | 55      | 1.0V Power Output from LDO.              |
| AVDD18_XTAL  | P    | 15      | 1.85V Analog Power for crystal pad.      |
| AVDD33_LD    | P    | 5, 12   | 3.3V Analog Power for Ethernet PHY.      |
| AVDD18_COM   | P    | 8       | 1.85V Analog Power for Ethernet PHY.     |
| EPAD         | P    |         | Ground for all Analog and Digital Power. |

Table 1-5: Power and Ground Pin Description

<sup>\*\*:</sup> It can be set LED2 indication by tool.

### **2 Function Description**

#### Clocks/Resets 2.1

The AX88279 integrates internal oscillator circuits for 25 MHz (25MHz ± 50PPM at room temperature), respectively, which allow the chip to operate cost effectively with just one single external 25 MHz crystal.

The external 25 MHz crystal or oscillator, via pins XTAL IN / XTAL OUT, provides the reference clock to internal oscillation circuit to generate clock source for the embedded Ethernet PHY, embedded USB PHY, and base clock for ASIC use.

The AX88279 integrates an internal power-on-reset circuit, which can simplify the external reset circuitry on PCB design. The power-on-reset circuit generates a reset pulse to reset chip logic when power ramping up. The external hardware reset input pin, RST N, is fed directly to the input of the power-on-reset circuit and can also be used as additional hardware reset source to reset the system logic. For more details on RST\_N timing, please refer to the Reset timing section.

### 2.2 USB Core and Interfaces

The USB core and interfaces contains USB 3.2 Gen1/USB 2.0 transceiver interfaces (PIPE/UTMI) and USB 3.2 Gen1/USB 2.0 Device Controller.

The USB 3.2 Gen1/USB 2.0 transceiver (or PHY) processes USB 3.2 Gen1/2.0/1.1 Physical layer signals. And, The USB 3.2 Gen1/USB 2.0 Device Controller is interfacing with USB 3.2 Gen1/USB 2.0 transceiver by PIPE/UTMI buses and it processes packets of Link layer and protocol layer. Also, The USB 3.2 Gen1/USB 2.0 Device Controller contains Bulk IN and Bulk OUT buffers for handling Bulk transfer traffic and a FIFO for Interrupt IN transfers.

The USB core and interfaces are used to communicate with a USB host controller and is compliant with USB specification V3.2 Gen1, V2.0, and V1.1

### 100M/1G/2.5Gigabit Ethernet PHY

The 100M/1G/2.5Gigabit Ethernet PHY is compliant with 100Base-TX, 1000Base-T, and 2.5GBase-T IEEE 802.3 standards. It provides all the necessary physical layer functions to transmit and receive Ethernet packets over CAT 5e UTP cable or CAT 6 UTP cable. It uses DSP technology and an Analog Front End (AFE) to enable high-speed data transmission and reception over UTP cable. Functions such as Crossover Detection & Auto-Correction (Auto-MDIX), polarity correction, adaptive equalization, cross-talk cancellation, echo cancellation, timing recovery, and error correction are implemented.

### 2.4 Energy Efficient Ethernet (EEE)

It supports IEEE 802.3az also known as Energy Efficient Ethernet (EEE). And also supports EEE specified a negotiation method to enable link partner to determine whether EEE is supported and to select the best set of parameters common to both devices. It provides a protocol to coordinate transitions to/from a lower power consumption level (Low Power Idle mode) based on link utilization. When no packets are being transmitted, the system goes to Low Power Idle mode to save power. Once packets need to be transmitted, the system returns to normal mode, and does this without changing the link status and without dropping/corrupting frames.

To save power, when the system is in Low Power Idle mode, most of the circuits are disabled; however, the transition time to/from Low Power Idle mode is kept small enough to be transparent to upper layer protocols and applications.

### 2.5 Checksum Offload Engine (COE)

The Checksum Offload Engine (COE) supports IPv4, IPv6, layer 4 (TCP, UDP, ICMP, ICMPv6 and IGMP) header processing functions and real time checksum calculation in hardware

The COE supports the following features in layer 3:

IP header parsing, including IPv4 and IPv6

IPv6 extension header and routing header type 0 supported

IPv4 header checksum check and generation (There is no checksum field in IPv6 header)

Detecting on RX direction for IP packets with error header checksum

The COE supports the following features in layer 4:

TCP and UDP checksum check and generation for non-fragmented packet

TCP Large Send Offload V2

ICMP, ICMPv6 and IGMP message checksum check and generation for non-fragmented packet.

### 2.6 USB to Ethernet Bridge

The USB to Ethernet bridge block is responsible for converting Ethernet MAC frame into USB packets or vice-versa. This block supports proprietary burst transfer mechanism (US Patent Approval) to offload software burden and to offer very high packet transfer throughput over USB bus.

This USB to Ethernet bridge block not only co-work with "eFuse and Control", "SPI Loader I/F", and General Purpose I/Os and LEDs, but also handle USB Control transfers of Endpoint 0.

#### 2.7 PTP

IEEE 1588(PTP) is used for a precision clock synchronization protocol to synchronize the clocks among network. The standard also defines a Precision Time Protocol (PTP) and generalized precision time protocol (gPTP) designed to synchronize real-time clocks in a distributed system, which can achieve synchronization accuracy. Such high accuracy is especially beneficial for control applications that need synchronized clocks for operation. This is only used for saving PTP information, modify timestamp field and modify correction field. The PTP need the software and driver (ptp4l in Linux system) which to run algorithm.

#### 2.8 eFuse

The AX88279 integrated an eFuse which is allowed user to program USB descriptions (PID, VID, Serial numbers... ect) and some device information (MAC address). And ASIX advance data structures allow user to program this information for multiple times.

### General Purpose I/O and LED

There are 3 general-purpose I/O pins for SPI flash and 2 LED pins for LED indication.

### 3 SPI/eFuse Memory

### 3.1 SPI/eFuse Memory

AX88279 supports integrated eFuse for MAC address, USB descriptor and several user specified information. It also supports external SPI flash for firmware image. These non-violated memory supports advance data architecture for multiple times programming.

### **USB Configuration Structure**

### 4.1 USB Configuration

The AX88279 supports 2 USB Configuration, 1 for AX88279 proprietary driver, 1 for CDC-ECM/NCM.

### **4.2** USB Interface

The AX88279 supports 1 interface.

### 4.3 USB Endpoints

The AX88279 supports following 4 endpoints:

Endpoint 0: Control endpoint. It is used for configuring the device. Please refer to the USB Standard Commands and USB Vendor Commands sections.

Endpoint 1: Interrupt endpoint. It is used for reporting network Link status. Please refer to the Interrupt Endpoint section.

Endpoint 2: Bulk IN endpoint. It is used for receiving Ethernet Packet.

Endpoint 3: Bulk OUT endpoint. It is used for transmitting Ethernet Packet.

## **5 Electrical Specifications**

### 5.1 DC Characteristics

### **5.1.1** Absolute Maximum Ratings

| Symbol           | Parameter                                               | Min  | Max  | Units |
|------------------|---------------------------------------------------------|------|------|-------|
| DVDD33           | 3.3V Supply Voltage                                     |      |      |       |
| AVDD33_USB       |                                                         | -0.3 | 3.63 | V     |
| AVDD33_BUCK      |                                                         | -0.3 | 3.03 | V     |
| AVDD33_LD        |                                                         |      |      |       |
| DVDD18           | 1.85V Supply Voltage                                    |      |      |       |
| AVDD18_SSUSB     |                                                         | -0.3 | 1.98 | V     |
| AVDD18_XTAL      |                                                         | -0.3 | 1.90 | V     |
| AVDD18_COM       |                                                         |      |      |       |
| VCCK             | 1.0V Supply Voltage                                     | -0.3 | 1.1  | V     |
| AVDD10_SSUSB     |                                                         | -0.3 | 1.1  | V     |
| $ \Delta xVDDx $ | Variations between different the power pins of the same |      | 0.3  | V     |
|                  | domain                                                  |      | 0.5  | V     |
| Vin              | Input Voltage of 3.3V IO Pins                           | -0.3 | 3.6  | V     |

#### Note:

- 1. Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the optional sections of this datasheet. Exposure to absolute maximum rating condition for extended periods may affect device reliability.
- 2. The input and output negative voltage ratings may be exceeded if the input and output currents under ratings are observed.

#### **Recommended Operating Condition** 5.1.2

| Symbol       | Parameter                      | Min  | Тур  | Max  | Units |
|--------------|--------------------------------|------|------|------|-------|
| DVDD33       | 3.3V Supply Voltage.           |      |      |      |       |
| AVDD33_USB   |                                | 3.14 | 3.3  | 3.46 | V     |
| AVDD33_BUCK  |                                | 3.14 | 3.3  | 3.40 | •     |
| AVDD33_LD    |                                |      |      |      |       |
| DVDD18       | 1.85V Supply Voltage.          |      |      |      |       |
| AVDD18_SSUSB |                                | 1.76 | 1.85 | 1.89 | V     |
| AVDD18_XTAL  |                                | 1.70 | 1.05 | 1.07 | •     |
| AVDD18_COM   |                                |      |      |      |       |
| VCCK         | 1.0V Supply Voltage.           | 0.95 | 1.0  | 1.05 | V     |
| AVDD10_SSUSB |                                | 0.93 | 1.0  | 1.03 | ·     |
| Tj           | Operating junction temperature | 0    | 25   | 125  | °C    |
| Ta           | Operating ambient temperature  | 0    | ı    | 70   | °C    |
| $T_{STG}$    | Storage temperature            | -65  | -    | 150  | °C    |

### **5.1.3** Electrostatic Discharge and Latchup Performance

| Symbol                | Parameter                                          | Conditions                                                                                          | Max  | Units |
|-----------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|------|-------|
| $V_{\text{ESD(HBM)}}$ | Electrostatic discharge voltage (human body model) | TA = +25 °C conforming to<br>JEDEC JS-001-2017                                                      | 2000 | V     |
| V ECD/CDM             |                                                    | TA = +25 °C conforming to JEDEC<br>JESD22-C101                                                      | 500  | V     |
| LU                    | Static latchup class                               | TA = +25 °C conforming to JEDEC<br>EIA/JESD78<br>Trigger Current: 200mA<br>Over Voltage: 1.5Vcc max | Pass |       |

### 5.1.4 DC Characteristics of 3.3V I/O Pins

| Symbol   | Parameter                                         | Conditions                     | Min             | Тур | Max  | Units |
|----------|---------------------------------------------------|--------------------------------|-----------------|-----|------|-------|
| DVDD33   | Power supply of 3.3V I/O.                         | 3.3V I/O                       | 3.14            | 3.3 | 3.46 | V     |
| Vil      | Input low voltage.                                | LVTTL                          | -               | I   | 0.8  | V     |
| Vih      | Input high voltage.                               | LVIIL                          | 2.0             | I   | ı    | V     |
| Vt-      | Schmitt trigger negative going threshold voltage. | LVTTL                          | 0.8             | 1.1 | ı    | V     |
| Vt+      | Schmitt trigger positive going threshold voltage  | LVIIL                          | -               | 1.6 | 2.0  | V     |
| Vol      | Output low voltage.                               | $Iol = 4 \sim 8mA$             | -               | ı   | 0.4  | V     |
| Voh      | Output high voltage.                              | $Ioh = 4 \sim 8mA$             | DVDD33<br>-0.4  | -   | 1    | V     |
| Vopu (1) | Output pull-up voltage for 5V tolerant IO         | With internal pull-up resistor | DVDD33<br>- 0.9 | -   | -    | V     |
| Rpu      | Input pull-up resistance.                         |                                | 40              | 75  | 190  | ΚΩ    |
| Rpd      | Input pull-down resistance.                       |                                | 40              | 75  | 190  | ΚΩ    |
|          | Input leakage current.                            | Vin = 3.3  or  0V              | -               | ±6  | ı    | μΑ    |
|          | Input leakage current with pull-up resistance.    | Vin = 0 V                      | -               | -45 | ı    | μΑ    |
| Iin      | Input leakage current with pull-down resistance.  | Vin = DVDD33                   | -               | 45  | -    | μΑ    |

Note: This parameter indicates that the pull-up resistor for the I/O pins cannot reach DVDD33 DC level even without DC loading current.

### **5.2 Power Consumption**

| Symbol                        | Description                            | Conditions                                                                                | Тур    | Unit |
|-------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------|--------|------|
| I <sub>VDD10</sub>            | Current Consumption of 1.0V            |                                                                                           | 710    | mA   |
| I <sub>VDD18</sub>            | Current Consumption of 1.85V           | Operating at Ethernet 2.5Gbps full duplex mode and USB                                    | 96.5   | mA   |
| I <sub>VDD33</sub>            | Current Consumption of 3.3V            | Super Speed mode                                                                          | 201.6  | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            |                                                                                           | 66     | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | Operating at Ethernet 1Gbps full duplex mode and USB                                      | 86.75  | mA   |
| I <sub>VDD33</sub>            | Current Consumption of 3.3V            | Super Speed mode                                                                          | 198.3  | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            |                                                                                           | 40.5   | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | Operating at Ethernet 100Mbps full duplex mode and USB                                    | 86.7   | mA   |
| I <sub>VDD33</sub>            | Current Consumption of 3.3V            | Super Speed mode                                                                          | 181.5  | mA   |
| I <sub>VDD10</sub>            | Current Consumption of 1.0V            | 0 1 71 1007 1101 1 1 1707                                                                 | 40.3   | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | Operating at Ethernet 100Mbps half duplex mode and USB                                    | 86.7   | mA   |
| $I_{VDD33}$                   | Current Consumption of 3.3V            | Super Speed mode                                                                          | 181.4  | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            | 0                                                                                         | 697.5  | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | Operating at Ethernet 2.5Gbps full duplex mode and USB                                    | 90.5   | mA   |
| I <sub>VDD33</sub>            | Current Consumption of 3.3V            | High Speed mode                                                                           | 166.5  | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            | O C THE LICE CHILL I LIVER IT I                                                           | 58.5   | mA   |
| I <sub>VDD18</sub>            | Current Consumption of 1.85V           | Operating at Ethernet 1Gbps full duplex mode and USB High                                 | 86.3   | mA   |
| $I_{VDD33}$                   | Current Consumption of 3.3V            | Speed mode                                                                                | 150.35 | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            | On and in a st Educated 100Mbs. C 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                    | 39.98  | mA   |
| $I_{\mathrm{VDD18}}$          | Current Consumption of 1.85V           | Operating at Ethernet 100Mbps full duplex mode and USB                                    | 73.7   | mA   |
| $I_{VDD33}$                   | Current Consumption of 3.3V            | High Speed mode                                                                           | 133.8  | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            | 0                                                                                         | 39.83  | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | Operating at Ethernet 100Mbps half duplex mode and USB                                    | 73.7   | mA   |
| $I_{VDD33}$                   | Current Consumption of 3.3V            | High Speed mode                                                                           | 133.7  | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            | 0 4 101 1050 6111 1 1 11100                                                               |        | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | Operating at Ethernet 2.5Gbps full duplex mode and USB Full Speed mode                    | 78.5   | mA   |
| $I_{VDD33}$                   | Current Consumption of 3.3V            | run speed mode                                                                            | 155.1  | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            | On anting at Ethanist 1Charles fall dealers and LICD Esti                                 | 57.9   | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | Operating at Ethernet 1Gbps full duplex mode and USB Full<br>Speed mode                   | 69.43  | mA   |
| $I_{VDD33}$                   | Current Consumption of 3.3V            | Speed mode                                                                                | 146.6  | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            | Operating at Ethomat 100Mhms full dumlay made and USD                                     | 39.05  | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | Operating at Ethernet 100Mbps full duplex mode and USB Full Speed mode                    | 69     | mA   |
| $I_{VDD33}$                   | Current Consumption of 3.3V            | Tun Speed mode                                                                            | 130.3  | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            | Operating at Ethernet 100Mbps half duplex mode and USB                                    |        | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | Full Speed mode                                                                           | 69     | mA   |
| $I_{VDD33}$                   | Current Consumption of 3.3V            | i un specu mode                                                                           | 129.5  | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            |                                                                                           | 315    | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | Ethernet Unlink and USB Super Speed mode                                                  | 90     | mA   |
| $I_{VDD33}$                   | Current Consumption of 3.3V            |                                                                                           | 156    | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            | USB Suspend and Ethernet is 2.5Gbps: enable Remote                                        | 700    | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | WakeUp and disable WOLLP (WOL Low Power)                                                  | 73.8   | mA   |
| $I_{VDD33}$                   | Current Consumption of 3.3V            | wakeop and disable woller (woll low rower)                                                | 142.5  | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            | USB Suspend and Ethernet is 1Gbps: enable Remote                                          | 58.1   | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | WakeUp and disable WOLLP (WOL Low Power)                                                  | 64.9   | mA   |
| $I_{VDD33}$                   | Current Consumption of 3.3V            | mancer and disable model (mode bow fower)                                                 | 131.5  | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            | USB Suspend and enable Remote WakeUp and enable                                           | 39.5   | mA   |
| $I_{VDD18}$                   | Current Consumption of 1.85V           | WOLLP to 100Mbps                                                                          | 65.1   | mA   |
| I <sub>VDD33</sub>            | Current Consumption of 3.3V            | O.E.E. to Toomops                                                                         | 120    | mA   |
| $I_{VDD10}$                   | Current Consumption of 1.0V            |                                                                                           | 0      | mA   |
| I <sub>VDD18</sub>            | Current Consumption of 1.85V           | Suspend and disable Remote WakeUp                                                         | 0.68   | mA   |
| I <sub>VDD33</sub>            | Current Consumption of 3.3V            |                                                                                           | 1.9    | mA   |
| System                        |                                        | 1                                                                                         |        |      |
|                               |                                        | Operating at Ethernet 2.5Gbps full duplex mode and USB                                    | 397    |      |
|                               |                                        | Super Speed mode with full loading                                                        | 271    |      |
| I <sub>SYSTEM</sub>           | VBUS of 5.0V (Includes all regulators) | Operating at Ethernet 1Gbps full duplex mode and USB                                      | 174.5  | mA   |
|                               |                                        | Super Speed mode with full loading Operating at Ethernet 100Mbps full duplex mode and USB |        |      |
|                               |                                        |                                                                                           |        |      |
|                               |                                        | Super Speed mode with full loading                                                        | 141    |      |
| I <sub>SYSTEM (Suspend)</sub> | VBUS of 5.0V (Includes all regulators) | Power consumption of AX88279 Suspend and disabled                                         | 1.93   | mA   |
| (                             | ,                                      | Remote WakeUp.                                                                            |        |      |

Note: Above current value are typical values measured on AX88279 EVB.

Table 5-1: AX88279 Power Consumption



| Symbol         | Description                                     | Condition | Min | Тур   | Max | Unit |
|----------------|-------------------------------------------------|-----------|-----|-------|-----|------|
| Өзс            | Thermal resistance of junction to case          |           | -   | 12.42 | -   | °C/W |
| <b>Ө</b>       | Thermal resistance of junction to ambient       | Still Air | -   | 20.47 | -   | °C/W |
| ⊖ ЈВ           | Thermal resistance of junction to board         |           | -   | 3.79  | -   | °C/W |
| $\Psi_{ m JT}$ | Junction to Top of the Package Characterization |           |     | 1.51  |     | °C/W |
| T JT           | Parameter                                       |           | _   | 1.51  | _   | C/ W |

Note: Above parameters based on JEDEC51-7 system with 4 layers FR4 PCB size: 76x114.3mm.

Table 5-2: Thermal Characteristics

### 5.3 Power-up Sequence



Figure 5-1: Power-up Sequence Timing Diagram

| Symbol    | Parameter                              | Conditions                                                              |   | Тур | Max | Units |
|-----------|----------------------------------------|-------------------------------------------------------------------------|---|-----|-----|-------|
| Trise3    | 3.3V power supply rise time.           | From 0V to 3.3V.                                                        | - | 800 | -   | us    |
| Trise2    | VCCK (1.0V) power supply rise time.    | From 0V to 1.0V.                                                        |   | 5   | -   | ms    |
| $T_{23}$  | Interval between VDD33 and VCCK stable |                                                                         |   | 4.2 |     | ms    |
| $T_{rst}$ | IRST Naccerted low level interval      | From VCCK rising to 1.0V to RST_N going high.                           | - | 4   | -   | ms    |
| Telk      | time                                   | From DVDD33 rising to 3.3V to clock stable of 25MHz crystal oscillator. | - | -   | 5   | ms    |

Note: The above typical timing data is measured from AX88279 EVB.

Table 5-3: Power-up Sequence Timing Table

### **5.4** AC Timing Characteristics

### **SPI Timing**



Figure 5-2: SPI Timing

| Symbol | Parameter                                       | Min  | Тур                  | Max   | Units |
|--------|-------------------------------------------------|------|----------------------|-------|-------|
| 1      | SCLK clock frequency                            | _    | Fsys_clk             |       | MHz   |
| 1      |                                                 |      | (SPIBRR + 1) * 2     |       |       |
| 2      | Setup time of SS to the first SCLK edge         | -    | 0.5 * Tsclk          | -     | ns    |
| 3      | Hold time of SS after the last SCLK edge        | -    | 0.5 * Tsclk          | -     | ns    |
|        | Minimum idle time between transfers (minimum    | -    | ((32 * SPIDT + 6) *  | -     | ns    |
| 4      | SS high time)                                   |      | Tsys_clk) + $(0.5 *$ |       |       |
|        |                                                 |      | Tsclk)               |       |       |
| 5      | MOSI data valid time, after SCLK edge           | -    |                      | 1.53  | ns    |
| 6      | MISO data setup time before SCLK edge           | 5.98 |                      | -     | ns    |
| 7      | MISO data hold time after SCLK edge             | 0    |                      | -     | ns    |
| 9 0    | Bus drive time before SS assertion and after SS | _    |                      | 0.5 * | ns    |
| 8, 9   | de-assertion                                    |      |                      | Tsclk |       |

Note 1: Fclk = 1/Tclk, where  $Tclk = ((SCL_HP + SCL_LP) * Tsys_clk)$ .

Tsys\_clk is 20MHz or 80MHz.

Table 5-4: SPI Timing Table

### 5.4.2 Clock Timing



Figure 5-3: Clock Timing Diagram

| Symbol                | Parameter             | Condition | Min | Тур  | Max | Unit |
|-----------------------|-----------------------|-----------|-----|------|-----|------|
| $T_{P\_XTL25P}$       | XTAL clock cycle time |           | -   | 40.0 | -   | ns   |
| T <sub>H_XTL25P</sub> | XTAL clock high time  |           | -   | 20.0 | -   | ns   |
| T <sub>L XTL25P</sub> | XTAL clock low time   |           | -   | 20.0 | -   | ns   |

Table 5-5: Clock Timing Table

### 5.4.3 Reset Timing



| Symbol | Description                                | Min | Тур | Max | Unit                |
|--------|--------------------------------------------|-----|-----|-----|---------------------|
| Trst   | Reset pulse width after XTAL_IN is running | 200 | -   | -   | XTAL_IN clock cycle |

Table 5-6: Reset Timing Table

# **6 Package Information**







| Item                      |      | Symbol | MIN.     | NOM.      | MAX. |
|---------------------------|------|--------|----------|-----------|------|
| total height              |      | Α      | 0.80     | 0.85      | 0.90 |
| stand off                 |      | A1     | 0.00     | 0.02      | 0.05 |
| mold thickness            |      | A2     | 0.60     | 0.65      | 0.70 |
| leadframe thickness       |      | A3     |          | 0.20 REF. |      |
| lead width                |      | ь      | 0.15     | 0.20      | 0.25 |
|                           | х    | D      | 6.90     | 7.00      | 7.10 |
| package size              | Υ    | Ε      | 6.90     | 7.00      | 7.10 |
| E-PAD size                | х    | D2     | 5.60     | 5.70      | 5.80 |
| E-PAD size                | Υ    | E2     | 4.40     | 4.50      | 4.60 |
| lead length               |      | L      | 0.30     | 0.40      | 0.50 |
| lead pitch                |      | e      | 0.40 bsc |           |      |
| lead arc                  |      | R      | 0.075    |           |      |
| Lead to E-PAD tolerance   | 9    | ĸ      | 0.20     |           |      |
| Package profile of a sur  | face | aaa    | 0.10     |           |      |
| Lead position             |      | bbb    | 0.07     |           |      |
| Paralleliam               |      | ccc    | 0.10     |           |      |
| Lead position             | ddd  | 0.05   |          |           |      |
| Lead profile of a surface | eee  | 0.08   |          |           |      |
| Epad position             |      | fff    |          | 0.10      |      |

## Recommended PCB Footprint for 60-pin QFN 7x7 package



| Symbol | Description | Typical Dimension |
|--------|-------------|-------------------|
| e      | Lead pitch  | 0.40 mm           |
| b      | Pad width   | 0.20 mm           |
| L      | Pad length  | 1.10 mm           |
| X      | -           | 5.80 mm           |
| Y      | -           | 4.60 mm           |
| V      | -           | 5.80 mm           |
| W      | -           | 6.00 mm           |

# 7 Ordering Information

| Part Number | Description                                                            |
|-------------|------------------------------------------------------------------------|
| AX88279QF   | 60-pin QFN lead Free package, Commercial temperature range: 0 to 70°C. |

# **8 Revision History**

| Revision | Date       | Comments                                                                   |  |
|----------|------------|----------------------------------------------------------------------------|--|
| V0.10    | 2023/02/23 | Preliminary release.                                                       |  |
| V0.20    | 2023/07/13 | 1.Updated power consumptions in section 5.2.                               |  |
|          |            | 2. Added Recommended PCB Footprint for 60-pin QFN 7x7 package in Section 6 |  |
| V1.00    | 2023/08/15 | Updated some description in Table 1-4                                      |  |



4F, No.8, Hsin Ann RD., Hsinchu Science Park, Hsinchu, Taiwan, R.O.C.

> TEL: +886-3-5799500 FAX: +886-3-5799558

Email: <a href="mailto:support@asix.com.tw">support@asix.com.tw</a> Web: <a href="https://www.asix.com.tw">https://www.asix.com.tw</a>