Topologia

Thomas Kahl

Capítulo 1

Espaços topológicos e aplicações contínuas

1.1 Topologia de \mathbb{R}^n

A *norma euclidiana* de um elemento $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ é definida por

$$||x||=\sqrt{x_1^2+\cdots+x_n^2}.$$

Recordemos que a norma verifica as seguintes propriedades para quaisquer $x,y\in\mathbb{R}^n$ e $\alpha\in\mathbb{R}$:

- (i) se $x \neq 0$, então ||x|| > 0;
- (ii) $\|\alpha \cdot x\| = |\alpha| \cdot \|x\|$;
- (iii) $||x + y|| \le ||x|| + ||y||$.

Definição 1.1.1. Sejam $a \in \mathbb{R}^n$ e $\varepsilon > 0$. A bola aberta de raio ε e centro a é o conjunto

$$B_{\varepsilon}(a) = \{x \in \mathbb{R}^n \mid ||x - a|| < \varepsilon\}.$$

Exemplo 1.1.2. Para $a \in \mathbb{R}$, $B_{\varepsilon}(a) =]a - \varepsilon$, $a + \varepsilon[$.

Definição 1.1.3. Um subconjunto $A \subseteq \mathbb{R}^n$ diz-se *aberto* se, para cada $a \in A$, existe um número real $\varepsilon > 0$ tal que $B_{\varepsilon}(a) \subseteq A$.

Exercício 1.1.4. Sejam a < b dois números reais. Mostre que os intervalos $]a, b[,] - \infty, b[$ e $]a, +\infty[$ são subconjuntos abertos de \mathbb{R} e que o intervalo [a, b[não é um subconjunto aberto de \mathbb{R} .

Proposição 1.1.5. Qualquer bola aberta $B_{\varepsilon}(a)$ é um subconjunto aberto de \mathbb{R}^n .

Demonstração. Seja $x \in B_{\varepsilon}(a)$. Então $||x-a|| < \varepsilon$, pelo que $\delta = \varepsilon - ||x-a||$ é um número positivo. Vejamos que $B_{\delta}(x) \subseteq B_{\varepsilon}(a)$. Seja $y \in B_{\delta}(x)$. Então $||x-y|| < \delta$ e portanto

$$||y - a|| = ||y - x + x - a|| \le ||y - x|| + ||x - a|| < \delta + ||x - a|| = \varepsilon.$$

Logo
$$y \in B_{\varepsilon}(a)$$
.

Teorema 1.1.6. Seja A a coleção dos subconjuntos abertos de \mathbb{R}^n . Então

- (a) $\mathbb{R}^n \in \mathcal{A} \ e \emptyset \in \mathcal{A}$;
- (b) se $A_1, \ldots, A_k \in \mathcal{A}$ então $A_1 \cap \cdots \cap A_k \in \mathcal{A}$;
- (c) para qualquer família $(A_{\lambda})_{\lambda \in \Lambda}$ de conjuntos $A_{\lambda} \in \mathcal{A}$, $\bigcup_{\lambda \in \Lambda} A_{\lambda} \in \mathcal{A}$.

Demonstração. (a) é evidente.

- (b) Sejam $A_1, \ldots, A_k \in \mathcal{A}$ e $a \in A_1 \cap \cdots \cap A_k$. Como os conjuntos A_j são abertos, existem $\varepsilon_1 > 0, \ldots, \varepsilon_k > 0$ tais que $B_{\varepsilon_j} \subseteq A_j$. Seja $\varepsilon = \min\{\varepsilon_1, \ldots, \varepsilon_k\}$. Então $B_{\varepsilon}(a) \subseteq B_{\varepsilon_j}(a) \subseteq A_j$ para todo o $j = 1, \ldots, k$. Segue-se que $B_{\varepsilon}(a) \subseteq A_1 \cap \cdots \cap A_k$ e então que $A_1 \cap \cdots \cap A_k$ é aberto.
- (c) Sejam $(A_{\lambda})_{\lambda \in \Lambda}$ uma família de conjuntos abertos e $a \in \bigcup_{\lambda \in \Lambda} A_{\lambda}$. Então existe um índice λ_0 tal que $a \in A_{\lambda_0}$. Como A_{λ_0} é aberto, há uma bola $B_{\varepsilon}(a)$ contida em A_{λ_0} . Logo $B_{\varepsilon}(a) \subseteq \bigcup_{\lambda \in \Lambda} A_{\lambda}$. Portanto $\bigcup_{\lambda \in \Lambda} A_{\lambda} \in \mathcal{A}$.

Corolário 1.1.7. Um subconjunto $A \subseteq \mathbb{R}^n$ é aberto se e só se é uma reunião de bolas abertas.

Demonstração. Pela Proposição 1.1.5, toda a bola aberta é um subconjunto aberto de \mathbb{R}^n . Pelo Teorema 1.1.6, toda a reunião de subconjuntos abertos de \mathbb{R}^n é aberta. Segue-se que todo a reunião de bolas abertas é aberta.

Seja A um subconjunto aberto de \mathbb{R}^n . Então, para todo o $a \in A$, existe um número $\varepsilon_a > 0$ tal que $B_{\varepsilon_a}(a) \subseteq A$. Portanto $A = \bigcup_{a \in A} B_{\varepsilon_a}(a)$.

Definição 1.1.8. Sejam $X \subseteq \mathbb{R}^n$ e $Y \subseteq \mathbb{R}^m$. Uma aplicação $f: X \to Y$ diz-se *contínua no ponto* $\xi \in X$ se, para cada $\varepsilon > 0$, existe um número real $\delta > 0$ tal que, para cada $x \in X$, $\|x - \xi\| < \delta$ implica $\|f(x) - f(\xi)\| < \varepsilon$. A aplicação $f: X \to Y$ diz-se *contínua* se é continua em todos os pontos de X.

Exercício 1.1.9. (a) Mostre que todo a aplicação linear $f: \mathbb{R}^n \to \mathbb{R}^m$ é contínua.

- (b) Seja $f: X \to \mathbb{R}^m$ uma aplicação definida num subconjunto $X \subseteq \mathbb{R}^n$. Mostre que f é contínua se e só se as suas funções componentes $f_1, \ldots, f_m \colon X \to \mathbb{R}$ são contínuas.
- (c) Mostre que a multiplicação $\mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x \cdot y$ é contínua.
- (d) Mostre que a função $\mathbb{R}\setminus\{0\}\to\mathbb{R}$, $x\mapsto x^{-1}$ é contínua.

Teorema 1.1.10. Uma aplicação $f: \mathbb{R}^n \to \mathbb{R}^m$ é contínua se e só se, para todo o subconjunto aberto $A \subseteq \mathbb{R}^m$, a imagem inversa $f^{-1}(A)$ é um subconjunto aberto de \mathbb{R}^n .

Demonstração. Suponhamos primeiramente que $f:\mathbb{R}^n \to \mathbb{R}^m$ é contínua. Seja $A\subseteq \mathbb{R}^m$ um conjunto aberto. Temos de mostrar que $f^{-1}(A)$ é um subconjunto aberto de \mathbb{R}^n . Seja $\xi\in f^{-1}(A)$. Então $f(\xi)\in A$. Como A é aberto, existe $\varepsilon>0$ tal que $B_\varepsilon(f(\xi))\subseteq A$. Como f é contínua em ξ , existe $\delta>0$ tal que, para todo o $x\in\mathbb{R}^n$, $\|x-\xi\|<\delta$ implica $\|f(x)-f(\xi)\|<\varepsilon$. Portanto $f(B_\delta(\xi))\subseteq B_\varepsilon(f(\xi))\subseteq A$ e então $B_\delta(\xi)\subseteq f^{-1}(A)$. Logo $f^{-1}(A)$ é um subconjunto aberto de \mathbb{R}^n .

Reciprocamente, suponhamos que, para cada subconjunto aberto $A\subseteq\mathbb{R}^n$, $f^{-1}(A)$ é um subconjunto aberto de \mathbb{R}^n . Sejam $\xi\in\mathbb{R}^n$ e $\varepsilon>0$. Como $B_{\varepsilon}(f(\xi))$ é um subconjunto aberto de \mathbb{R}^n , $f^{-1}(B_{\varepsilon}(f(\xi)))$ é um subconjunto aberto de \mathbb{R}^n que contém ξ . Logo existe $\delta>0$ tal

que
$$B_{\delta}(\xi) \subseteq f^{-1}(B_{\varepsilon}(f(\xi)))$$
. Assim, para cada $x \in \mathbb{R}^n$, $||x - \xi|| < \delta$ implica $||f(x) - f(\xi)|| < \varepsilon$. Logo f é contínua em ξ .

Exemplo 1.1.11. A imagem f(A) de um conjunto aberto $A \subseteq \mathbb{R}^n$ por uma aplicação contínua $f: \mathbb{R}^n \to \mathbb{R}^m$ pode não ser um conjunto aberto em \mathbb{R}^m . Por exemplo, se $f: \mathbb{R} \to \mathbb{R}$ é dada por $f(x) = x^2$, então f(] - 1, 1[) = [0, 1[, que não é um subconjunto aberto de \mathbb{R} .

1.2 Espaços topológicos

Definição 1.2.1. Uma topologia num conjunto X é uma coleção $\mathcal A$ de subconjuntos de X tal que

- (a) $X \in \mathcal{A} \in \emptyset \in \mathcal{A}$:
- (b) se $A_1, \ldots, A_k \in \mathcal{A}$ então $A_1 \cap \cdots \cap A_k \in \mathcal{A}$;
- (c) para qualquer família $(A_\lambda)_{\lambda\in\Lambda}$ com $A_\lambda\in\mathcal{A}$, $\bigcup_{\lambda\in\Lambda}A_\lambda\in\mathcal{A}$.

Um espaço topológico é um par (X, A) onde X é um conjunto e A é uma topologia em X. Os elementos de A são chamados os abertos do espaço topológico (X, A). É comum fazer-se referência ao "espaço topológico X", deixando subentendida a topologia A.

- **Exemplos 1.2.2.** (i) Por 1.1.6, os subconjuntos abertos de \mathbb{R}^n formam uma topologia em \mathbb{R}^n . Esta topologia é chamada *topologia euclidiana* ou *topologia usual* de \mathbb{R}^n . A seguir, a menos de indicação contrária, \mathbb{R}^n será implicitamente considerado munido da topologia euclidiana.
- (ii) Para qualquer conjunto X o conjunto de todos os subconjuntos de X é uma topologia em X. Esta topologia é chamada topologia discreta de X. Um espaço topológico diz-se discreto se a topologia de X for a topologia discreta.
- (iii) Para qualquer conjunto X o conjunto $\{\emptyset, X\}$ é uma topologia em X. Esta topologia é chamada topologia grossa de X. Um espaço topológico diz-se grosso se a topologia de X for a topologia grossa.

(iv) Seja X um conjunto com dois elementos, $X = \{a, b\}$. O conjunto $\{\emptyset, \{a\}, X\}$ é uma topologia em X, chamada a *topologia de Sierpinsky*.

Exercício 1.2.3. Determine todas as topologias possíveis de $X = \{a, b, c\}$.

1.3 Subespaços

Proposição 1.3.1. Sejam (X, A) um espaço topológico e $Y \subseteq X$ um subconjunto. Então o conjunto $\mathcal{B} = \{A \cap Y \mid A \in A\}$ é uma topologia em Y.

Demonstração. (a) Como $X \in \mathcal{A}$, temos $Y = X \cap Y \in \mathcal{B}$. Como $\emptyset \in \mathcal{A}$, temos $\emptyset = \emptyset \cap Y \in \mathcal{B}$.

(b) Sejam $B_1, \ldots, B_k \in \mathcal{B}$. Então existem $A_1, \ldots, A_k \in \mathcal{A}$ tais que

$$B_1 = A_1 \cap Y, \ldots, B_k = A_k \cap Y.$$

Como $A_1 \cap \cdots \cap A_k \in \mathcal{A}$, temos

$$B_1 \cap \cdots \cap B_k = (A_1 \cap Y) \cap \cdots \cap (A_k \cap Y) = (A_1 \cap \cdots \cap A_k) \cap Y \in \mathcal{B}.$$

(c) Seja $(B_{\lambda})_{\lambda \in \Lambda}$ uma família de abertos de Y. Então, para cada $\lambda \in \Lambda$, existe um aberto A_{λ} de X tal que $B_{\lambda} = A_{\lambda} \cap Y$. Como $\bigcup_{\lambda \in \Lambda} A_{\lambda} \in \mathcal{A}$, temos

$$\bigcup_{\lambda\in\Lambda}B_{\lambda}=\bigcup_{\lambda\in\Lambda}(A_{\lambda}\cap Y)=(\bigcup_{\lambda\in\Lambda}A_{\lambda})\cap Y\in\mathcal{B}.$$

Definição 1.3.2. Sejam (X, A) um espaço topológico e $Y \subseteq X$ um subconjunto. Então a topologia $\mathcal{B} = \{A \cap Y \mid A \in A\}$ diz-se a *topologia induzida* em Y pela topologia de X e o espaço topológico (Y, \mathcal{B}) diz-se um *subespaço* de X.

Subespaços de \mathbb{R}^n

Munido da topologia induzida, qualquer subconjunto de \mathbb{R}^n é um espaço topológico. Os seguintes subespaços dos espaços euclidianos são particularmente importantes:

ullet o intervalo $I=[0,1]\subseteq \mathbb{R};$

- ullet a esfera $\mathbb{S}^n=\{x\in\mathbb{R}^{n+1}\,|\,\|x\|=1\}\subseteq\mathbb{R}^{n+1}\;(n\geq0);$
- o disco $\mathbb{D}^n = \{x \in \mathbb{R}^n \mid ||x|| \le 1\} \subseteq \mathbb{R}^n \ (n \ge 1).$

Note-se que a esfera \mathbb{S}^n é um subespaço do disco \mathbb{D}^{n+1} .

Exercício 1.3.3. Quais dos seguintes subconjuntos da circunferência \mathbb{S}^1 são abertos em \mathbb{S}^1 ? Justifique.

- (a) $\mathbb{S}^1 \setminus \{(0,1)\}$
- (b) $\{(x,y) \in \mathbb{S}^1 \mid y > 0\}$
- (c) $\{(x,y) \in \mathbb{S}^1 | y \ge 0\}$

Proposição 1.3.4. Seja X um subespaço do espaço euclidiano \mathbb{R}^n . Um conjunto $A \subseteq X$ é aberto em X se e só se, para cada $a \in A$, existe um número real $\varepsilon > 0$ tal que $B_{\varepsilon}(a) \cap X \subseteq A$.

Demonstração. Seja primeiramente $A\subseteq X$ aberto em X. Então existe um aberto U de \mathbb{R}^n tal que $A=U\cap X$. Seja $a\in A$. Como $A\subseteq U$, $a\in U$. Como U é aberto em \mathbb{R}^n , há uma bola $B_{\varepsilon}(a)$ contida em U. Portanto, $B_{\varepsilon}(a)\cap X\subseteq U\cap X=A$.

Suponhamos agora que, para cada $a \in A$, existe $\varepsilon_a > 0$ tal que $B_{\varepsilon_a}(a) \cap X \subseteq A$. Então $A = \bigcup_{a \in A} B_{\varepsilon_a}(a) \cap X$. Como $B_{\varepsilon_a}(a)$ é aberto em \mathbb{R}^n , $B_{\varepsilon_a}(a) \cap X$ é aberto em X. Logo A é uma reunião de abertos de X e então aberto em X.

1.4 Aplicações contínuas

Definição 1.4.1. Uma aplicação $f: X \to Y$ entre espaços topológicos diz-se *contínua* se, para todo o aberto A de Y, a imagem inversa $f^{-1}(A)$ é aberta em X.

Exercício 1.4.2. Seja X um subespaço de \mathbb{R}^n e Y um subespaço de \mathbb{R}^m . Mostre que uma aplicação $f: X \to Y$ é contínua no sentido da Definição 1.4.1 se e só se é contínua no sentido da Definição 1.1.8.

Exemplos 1.4.3. (i) A identidade $id_X: X \to X$ é contínua para qualquer espaço topológico (X, A).

- (ii) Qualquer aplicação constante $f: X \to Y$ entre dois espaços topológicos é contínua. Com efeito, seja f(x) = c para todo o $x \in X$. Se $B \subseteq Y$ contém c, tem-se $f^{-1}(B) = X$. Se $c \notin B$ então $f^{-1}(B) = \emptyset$. Logo $f^{-1}(B)$ é um aberto de X para qualquer subconjunto $B \subseteq Y$.
- (iii) Se X for um espaço discreto e Y um espaço topológico qualquer então toda a aplicação $f: X \to Y$ é contínua.
- (iv) Se Y for um espaço grosso e X um espaço topológico qualquer então toda a aplicação $f: X \to Y$ é contínua.

Proposição 1.4.4. Sejam $f: X \to Y$ uma aplicação contínua e $E \subseteq X$ e $F \subseteq Y$ subespaços tais que $f(E) \subseteq F$. Então a aplicação $f|_E: E \to F$, $x \mapsto f(x)$ é contínua.

Demonstração. Seja $B \subseteq F$ aberto. Então existe um aberto $A \subseteq Y$ tal que $B = A \cap F$. Como f é contínua, $f^{-1}(A)$ é aberto em X. Logo, $(f|_E)^{-1}(B) = f^{-1}(A) \cap E$ é aberto em E. \square

Notação 1.4.5. Para um espaço topológico X e um subespaço E de X, a inclusão $E \to X$, $x \mapsto x$ será denotada por $E \hookrightarrow X$.

Corolário 1.4.6. Sejam X um espaço topológico e $E \subseteq X$ um subespaço. Então a inclusão $E \hookrightarrow X$ é contínua.

Demonstração. Isto é o caso especial F = Y = X, $f = id_X$ da Proposição 1.4.4.

Proposição 1.4.7. Sejam $f: X \to Y$ e $g: Y \to Z$ aplicações contínuas. Então a composta $g \circ f: X \to Z$ é contínua.

Demonstração. Seja $A \subseteq Z$ aberto. Como g é contínua, $g^{-1}(A)$ é aberto em Y. Como f é contínua, $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$ é aberto em X.

Exemplo 1.4.8. Sejam X um subespaço de \mathbb{R}^n e $f,g:X\to\mathbb{R}$ duas funções contínuas. Então a função produto $f\cdot g\colon X\to\mathbb{R}$, $x\mapsto f(x)\cdot g(x)$ é contínua. Com efeito, consideremos a função $h\colon X\to\mathbb{R}^2$ definida por h(x)=(f(x),g(x)). Então h é contínua porque as funções

componentes são contínuas. Como a multiplicação $\cdot\colon \mathbb{R}^2 \to \mathbb{R}$ é contínua, a função composta $\cdot\circ h\colon X\to \mathbb{R}$ é contínua. Esta composta é precisamente a função produto $f\cdot g$.

Exercício 1.4.9. Sejam X e Y espaços topológicos e $(A_{\lambda})_{\lambda \in \Lambda}$ uma família de abertos de X tal que $X = \bigcup_{\lambda \in \Lambda} A_{\lambda}$. Mostre que uma aplicação $f: X \to Y$ é contínua se e só se a restrição $f|_{A_{\lambda}}: A_{\lambda} \to Y$ é contínua para cada $\lambda \in \Lambda$.

1.5 Homeomorfismos

Definição 1.5.1. Uma aplicação contínua $f: X \to Y$ diz-se um homeomorfismo se f é bijectiva e a aplicação inversa $f^{-1}: Y \to X$ é contínua. Dois espaços topológicos são chamados homeomorfos se existe um homeomorfismo entre eles. Para indicar que f é um homeomorfismo escreveremos $f: X \xrightarrow{\approx} Y$. Escrevemos $X \approx Y$ para indicar que X e Y são homeomorfos.

Nota 1.5.2. Do ponto de vista topológico, dois espaços homeomorfos são "iguais". Assim, chamamos *propriedades topológicas* às propriedades preservadas por homeomorfismos. Se quisermos mostrar que dois espaços X e Y não são homeomorfos, temos que encontrar uma propriedade topológica que X tem mas Y não.

- **Exemplos 1.5.3.** (i) A bola aberta $B_1(0) \subseteq \mathbb{R}^n$ e \mathbb{R}^n são homeomorfos. Um homeomorfismo $f: B_1(0) \to \mathbb{R}^n$ é dado por $f(x) = \frac{x}{1-||x||}$. A função inversa $f^{-1}: \mathbb{R}^n \to B_1(0)$ é dada por $f^{-1}(y) = \frac{y}{1+||y||}$.
- (ii) Seja $a,b\in\mathbb{R}^n$ e $\varepsilon,\delta>0$. As bolas $B_\varepsilon(a)$ e $B_\delta(b)$ são homeomorfas. Um homeomorfismo $f\colon B_\varepsilon(a)\to B_\delta(b)$ é dado por $f(x)=\frac{\delta}{\varepsilon}(x-a)+b$. A função inversa é dada por $f^{-1}(y)=\frac{\varepsilon}{\delta}(y-b)+a$.
- (iii) O subespaço $Q=\{(x,y)\in\mathbb{R}^2\,|\,|x|+|y|=1\}$ de \mathbb{R}^2 e a circunferência \mathbb{S}^1 são homeomorfos. Um homeomorfismo $f\colon Q\to\mathbb{S}^1$ é dado por $f(x,y)=\frac{(x,y)}{\|(x,y)\|}$. A função inversa $f^{-1}\colon\mathbb{S}^1\to Q$ é dada por $f^{-1}(s,t)=\frac{(s,t)}{|s|+|t|}$.
- (iv) A projeção estereográfica $p: \mathbb{S}^n \setminus \{(0, \dots, 0, 1)\} \to \mathbb{R}^n$,

$$p(x_1,\ldots,x_{n+1})=(\frac{x_1}{1-x_{n+1}},\ldots,\frac{x_n}{1-x_{n+1}})$$

é um homeomorfismo. A função inversa é dada por

$$p^{-1}(y_1,\ldots,y_n)=(\frac{2y_1}{y_1^2+\cdots+y_n^2+1},\ldots,\frac{2y_n}{y_1^2+\cdots+y_n^2+1},\frac{y_1^2+\cdots+y_n^2-1}{y_1^2+\cdots+y_n^2+1}).$$

- (v) Seja (X, A) um espaço topológico não discreto e \mathcal{D} a topologia discreta no conjunto X. Então a identidade $(X, \mathcal{D}) \to (X, A)$, $x \mapsto x$ é contínua e bijectiva, mas não é um homeomorfismo.
- (vi) Ser um espaço discreto é uma propriedade topológica. Um espaço não discreto não pode ser homeomorfo a um espaço discreto.
- (vii) Ser um espaço grosso é uma propriedade topológica. Todo o espaço homeomorfo a um espaço grosso também é um espaço grosso.
- (viii) Qualquer cardinalidade é uma propriedade topológica. Dois espaços com cardinalidades diferentes não são homeomorfos.
- **Notas 1.5.4.** (i) Uma aplicação contínua $f: X \to Y$ é um homeomorfismo se e só se existe uma aplicação contínua $g: Y \to X$ tal que $g \circ f = id_X$ e $f \circ g = id_Y$.
- (ii) A composta de homeomorfismos é um homeomorfismo.
- (iii) A aplicação inversa de um homeomorfismo é um homeomorfismo.
- (iv) Uma aplicação contínua e bijectiva $f: X \to Y$ é um homeomorfismo se e só se a imagem de cada aberto de X é aberto em Y.

Exercício 1.5.5. Mostre que todo o intervalo (não degenerado) de \mathbb{R} é homeomorfo a I, [0,1[ou]0,1[.

1.6 Conjuntos fechados

Definição 1.6.1. Seja X um espaço topológico. Um subconjunto $B \subseteq X$ diz-se *fechado* se o seu complementar $X \setminus B$ é aberto.

Exemplo 1.6.2. Um intervalo fechado [a, b] é um subconjunto fechado de \mathbb{R} . Com efeito, $\mathbb{R} \setminus [a, b] =]-\infty$, $a[\cup]b$, $+\infty[$. Como a reunião de dois abertos é um aberto e os intervalos

] $-\infty$, a[e]b, $+\infty[s\~ao abertos em <math>\mathbb{R}$, $\mathbb{R}\setminus[a,b]$ é aberto em \mathbb{R} . Portanto [a,b] é fechado em \mathbb{R} .

Proposição 1.6.3. Seja X um espaço topológico.

- (a) X e ∅ são fechados.
- (b) Se B_1, \ldots, B_k são subconjuntos fechados de X então $B_1 \cup \cdots \cup B_k$ é fechado.
- (c) Para qualquer família $(B_{\lambda})_{\lambda \in \Lambda}$ de subconjuntos fechados de X, $\bigcap_{\lambda \in \Lambda} B_{\lambda}$ é fechado.

Demonstração. (a) Como $X \setminus X = \emptyset$ e $X \setminus \emptyset = X$ são abertos, X e \emptyset são fechados.

(b) Sejam B_1, \ldots, B_k fechados. Então $X \setminus B_1, \ldots, X \setminus B_k$ são abertos. Como toda a intersecção finita de abertos é aberta,

$$(X \setminus B_1) \cap \cdots \cap (X \setminus B_k) = X \setminus (B_1 \cup \cdots \cup B_k)$$

é aberto. Portanto $B_1 \cup \cdots \cup B_k$ é fechado.

(c) Seja $(B_{\lambda})_{\lambda \in \Lambda}$ uma família de fechados. Então, para cada $\lambda \in \Lambda$, $X \setminus B_{\lambda}$ é aberto. Como toda a reunião de abertos é aberta,

$$\bigcup_{\lambda\in\Lambda}(X\setminus B_\lambda)=X\setminus(\bigcap_{\lambda\in\Lambda}B_\lambda)$$

é aberto. Portanto $\bigcap_{\lambda \in \Lambda} B_{\lambda}$ é fechado.

Proposição 1.6.4. Sejam X um espaço topológico e Y um subespaço de X. Um subconjunto $B \subseteq Y$ é fechado em Y se e só se existe um subconjunto fechado C de X tal que $B = C \cap Y$.

Demonstração. Seja $B \subseteq Y$. Suponhamos primeiramente que B é fechado em Y. Então $Y \setminus B$ e aberto em Y. Logo existe um aberto A de X tal que $Y \setminus B = A \cap Y$. Portanto $B = Y \setminus (A \cap Y) = (X \setminus A) \cap Y$. Logo B é a intersecção de Y com um fechado de X.

Suponhamos agora que e existe um subconjunto fechado C de X tal que $B = C \cap Y$. Então $Y \setminus B = Y \setminus (C \cap Y) = (X \setminus C) \cap Y$. Como $X \setminus C$ é aberto em X, obtemos que $Y \setminus B$ é aberto em Y. Logo B é fechado em Y.

Exemplo 1.6.5. O intervalo]0,1] é fechado no subespaço $]0,+\infty[$ de \mathbb{R} . Com efeito, [0,1] é fechado em \mathbb{R} e $]0,1]=[0,1]\cap]0,+\infty[$.

Exercício 1.6.6. Sejam X um espaço topológico e Y um subespaço fechado de X. Mostre que um subconjunto $B \subseteq Y$ é fechado em Y se e só se é fechado em X.

Proposição 1.6.7. Uma aplicação $f: X \to Y$ entre espaços topológicos é contínua se e só se, para cada subconjunto fechado $B \subseteq Y$, a imagem inversa $f^{-1}(B)$ é fechada em X.

Demonstração. Suponhamos primeiramente que f é contínua. Seja $B \subseteq Y$ fechado. Então $Y \setminus B$ é aberto em Y. Como f é contínua, $f^{-1}(Y \setminus B)$ é aberto em X. Ora, $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$. Segue-se que $f^{-1}(B)$ é fechado em X.

Suponhamos agora que a imagem inversa de cada fechado é fechado. Seja $A \subseteq Y$ aberto. Então $Y \setminus A$ é fechado em Y, pelo que $f^{-1}(Y \setminus A)$ é fechado em X. Como $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$, segue-se que $f^{-1}(A)$ é aberto em X. Portanto f é contínua. \Box

Exemplo 1.6.8. A esfera \mathbb{S}^n é um subconjunto fechado de \mathbb{R}^{n+1} . Com efeito, consideremos a aplicação contínua $f: \mathbb{R}^{n+1} \to \mathbb{R}$ dada por f(x) = ||x|| (porquê esta função é contínua?). Como $\{1\}$ é fechado em \mathbb{R} (porquê?), $\mathbb{S}^n = f^{-1}(\{1\})$ é fechado em \mathbb{R}^{n+1} .

Proposição 1.6.9. Sejam $f: X \to Y$ uma aplicação entre espaços topológicos e B_1, \ldots, B_k subconjuntos fechados de X tais que $X = \bigcup_{i=1}^k B_i$. Então f é contínua se e só se a restrição $f|_{B_i}: B_i \to Y$ é continua para cada $i \in \{1, \ldots, k\}$.

Demonstração. Se f é contínua então, pela Proposição 1.4.4, cada restrição $f|_{B_i}$ é contínua.

Suponhamos inversamente que cada restrição $f|_{B_i}$ é contínua. Seja $C \subseteq Y$ fechado. Então, para cada $i \in \{1, \ldots, k\}$, $(f|_{B_i})^{-1}(C)$ é fechado em B_i . Logo, para cada i, existe um fechado D_i em X tal que $f^{-1}(C) \cap B_i = (f|_{B_i})^{-1}(C) = D_i \cap B_i$. Como D_i e B_i são fechados em X, $f^{-1}(C) \cap B_i$ é fechado em X. Como

$$f^{-1}(C) = f^{-1}(C) \cap X = f^{-1}(C) \cap (\bigcup_{i=1}^k B_i) = \bigcup_{i=1}^k (f^{-1}(C) \cap B_i),$$

segue-se que $f^{-1}(C)$ é fechado em X. Portanto f é contínua.

Exercício 1.6.10. Mostre que a função $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} x^3 & \text{se } x \le 0, \\ x & \text{se } 0 \le x \le 1, \\ x^2 & \text{se } x \ge 1 \end{cases}$$

é contínua. Será um homeomorfismo?

Exercício 1.6.11. Será possível substituir a reunião finita na Proposição 1.6.9 por uma reunião qualquer?

Exercício 1.6.12. Verdadeiro ou falso? Uma aplicação contínua bijectiva $f: X \to Y$ é um homeomorfismo se e só se a imagem de um fechado de X é fechado em Y.

1.7 Interior e aderência

Definição 1.7.1. Seja C um subconjunto de um espaço topológico X. Um ponto $p \in X$ diz-se

- ponto interior de C se existe um aberto A de X tal que $p \in A$ e $A \subseteq C$;
- ponto aderente a C se, para cada aberto A de X que contém p, $A \cap C \neq \emptyset$.

O interior de C é o conjunto int(C) dos pontos interiores de C. A aderência (ou o fecho) de C é o conjunto \overline{C} dos pontos aderentes a C.

Proposição 1.7.2. Seja C um subconjunto de um espaço topológico X. Então

(i)
$$\overline{C} = X \setminus \text{int}(X \setminus C)$$
 (ou seja, $X \setminus \overline{C} = \text{int}(X \setminus C)$);

(ii)
$$\operatorname{int}(C) = X \setminus \overline{X \setminus C}$$
 (ou seja, $X \setminus \operatorname{int}(C) = \overline{X \setminus C}$).

Demonstração. (i) Seja $p \in X$. Temos $p \in \overline{C}$ se e só se $A \cap C \neq \emptyset$ para todo o aberto A que contém p. Assim, $p \in \overline{C}$ se e só se nenhum aberto A que contém p está contido em $X \setminus C$. Isto é o caso se esó se p não é um ponto interior de $X \setminus C$. Portanto $p \in \overline{C}$ se e só se $p \in X \setminus \operatorname{int}(X \setminus C)$.

(ii) Usando a alínea anterior, calculamos
$$\operatorname{int}(C) = \operatorname{int}(X \setminus (X \setminus C)) = X \setminus \overline{X \setminus C}$$
.

Proposição 1.7.3. Seja C um subconjunto de um espaço topológico X. Então

- (i) int(C) é a reunião de todos os subconjuntos abertos de X contidos em C;
- (ii) int(C) é o maior subconjunto aberto de X contido em C;
- (iii) \overline{C} é a intersecção de todos os subconjuntos fechados de X que contêm C;
- (iv) \overline{C} é o menor subconjunto fechado de X que contém C.

Demonstração. (i) Seja $A \subseteq C$ um aberto de X. Então cada ponto de A é um ponto interior de C, ou seja, $A \subseteq \operatorname{int}(C)$. Segue-se que a reunião de todos os subconjuntos abertos de X contidos em C está contida em $\operatorname{int}(C)$.

Reciprocamente, para cada ponto $p \in \operatorname{int}(C)$, existe um aberto A de X com $p \in A \subseteq C$. Portanto $\operatorname{int}(C)$ está contido na reunião de todos os subconjuntos abertos de X contidos em C.

- (ii) Por (i), int(C) é um subconjunto aberto de X que está contido em C. Por (i) também, int(C) contém todo o subconjunto aberto de X contido em C. Assim, int(C) é o maior subconjunto aberto de X contido em C.
- (iii) Por (i) e pela Proposição 1.7.2,

$$\overline{C} = X \setminus \text{int}(X \setminus C)$$

$$= X \setminus \bigcup \{A \mid A \subseteq X \setminus C, A \text{ aberto em } X\}$$

$$= \bigcap \{X \setminus A \mid A \subseteq X \setminus C, A \text{ aberto em } X\}$$

$$= \bigcap \{X \setminus A \mid C \subseteq X \setminus A, X \setminus A \text{ fechado em } X\}$$

$$= \bigcap \{B \mid C \subseteq B, B \text{ fechado em } X\}.$$

(iv) Por (iii), \overline{C} é um subconjunto fechado de X que contém C. Por (iii) também, \overline{C} está contido em cada subconjunto fechado de X que contém C. Assim, \overline{C} é o menor subconjunto fechado de X que contém C.

Exemplos 1.7.4. (i) Consideremos o subconjunto $C = \{0\} \cup [1, 2[$ de \mathbb{R} . Temos int(C) = [1, 2[e $\overline{C} = \{0\} \cup [1, 2]$.

(ii) $\operatorname{\mathsf{Em}} \, \mathbb{R}$, $\operatorname{\mathsf{int}}(\mathbb{Q}) = \emptyset$ e $\overline{\mathbb{Q}} = \mathbb{R}$. $\operatorname{\mathsf{Em}} \, \mathbb{Q}$, $\operatorname{\mathsf{int}}(\mathbb{Q}) = \mathbb{Q}$ e $\overline{\mathbb{Q}} = \mathbb{Q}$.

Proposição 1.7.5. Seja C um subconjunto de um espaço topológico X. Então

- (i) C é aberto se e só se C = int(C);
- (ii) C é fechado se e só se $C = \overline{C}$.

Demonstração. (i) Se C é aberto então o maior aberto contido em C é C, pelo que $C = \operatorname{int}(C)$. Se $C = \operatorname{int}(C)$, C é aberto porque $\operatorname{int}(C)$ é aberto.

(ii) Por (i) e pela Proposição 1.7.2,

 $C \text{ fechado } \Leftrightarrow X \setminus C \text{ aberto } \Leftrightarrow X \setminus C = \operatorname{int}(X \setminus C) \Leftrightarrow C = X \setminus \operatorname{int}(X \setminus C) \Leftrightarrow C = \overline{C}. \quad \Box$

Notas 1.7.6. Sejam X um espaço topológico e $C \subseteq D \subseteq X$. Então

- (i) $\operatorname{int}(X) = X = \overline{X} \operatorname{e} \operatorname{int}(\emptyset) = \emptyset = \overline{\emptyset}$;
- (ii) $\operatorname{int}(\operatorname{int}(C)) = \operatorname{int}(C) \subseteq C \subseteq \overline{C} = \overline{\overline{C}}$;
- (iii) $int(C) \subseteq int(D) \in \overline{C} \subseteq \overline{D}$.

Exercício 1.7.7. Sejam X um espaço topológico e $C, D \subseteq X$. Mostre que $\operatorname{int}(C \cap D) = \operatorname{int}(C) \cap \operatorname{int}(D)$ e $\overline{C \cup D} = \overline{C} \cup \overline{D}$.

Proposição 1.7.8. Uma aplicação $f: X \to Y$ entre espaços topológicos é contínua se e só se, para todo o subconjunto C de X, $f(\overline{C}) \subseteq \overline{f(C)}$.

Demonstração. Suponhamos primeiramente que f é contínua. Seja $C \subseteq X$. Como $\overline{f(C)}$ é fechado em Y, $f^{-1}(\overline{f(C)})$ é fechado em X. Como $f(C) \subseteq \overline{f(C)}$, $C \subseteq f^{-1}(\overline{f(C)})$. Portanto $f^{-1}(\overline{f(C)})$ é um subconjunto fechado de X que contém C. Pela Proposição 1.7.3, segue-se que $\overline{C} \subseteq f^{-1}(\overline{f(C)})$. Portanto $f(\overline{C}) \subseteq \overline{f(C)}$.

Suponhamos agora que $f(\overline{C}) \subseteq \overline{f(C)}$ para todo o subconjunto $C \subseteq X$. Seja $B \subseteq Y$ fechado. Pela Proposição 1.7.5, $\overline{B} = B$. Temos $f(\overline{f^{-1}(B)}) \subseteq \overline{f(f^{-1}(B))} \subseteq \overline{B} = B$ e portanto

 $\overline{f^{-1}(B)} \subseteq f^{-1}(B)$. Logo $\overline{f^{-1}(B)} = f^{-1}(B)$. Pela Proposição 1.7.5, $f^{-1}(B)$ é fechado. Segue-se que f é contínua.

Nota 1.7.9. Para uma aplicação contínua $f: X \to Y$ e um subconjunto $C \subseteq X$, não temos, em geral, $f(\operatorname{int}(C)) \subseteq \operatorname{int}(f(C))$ nem $\operatorname{int}(f(C)) \subseteq f(\operatorname{int}(C))$. Consideremos, por exemplo, a aplicação $f: \mathbb{R} \to]-\infty$, 1] definida por

$$f(x) = \begin{cases} |x| & \text{se } -1 \le x \le 1, \\ 1 & \text{se } x \le -1 \text{ ou } x \ge 1. \end{cases}$$

Pela Proposição 1.6.9, f é contínua. Para C = [-1, 1], temos int(C) =]-1, $1[e\ f(C) = [0, 1]$. Logo $f(int(C)) = [0, 1[e\ int(f(C)) =]0, 1]$.

Exercício 1.7.10. Sejam X e Y espaços topológicos e $f: X \to Y$ uma aplicação. Mostre que as seguintes afirmações são equivalentes:

- (i) f é contínua.
- (ii) Para todo o subconjunto $C \subseteq Y$, $f^{-1}(\operatorname{int}(C)) \subseteq \operatorname{int}(f^{-1}(C))$.
- (iii) Para todo o subconjunto $C \subseteq Y$, $\overline{f^{-1}(C)} \subseteq f^{-1}(\overline{C})$.

Exercício 1.7.11. Sejam X um espaço topológico, Y um subespaço de X e $C \subseteq Y$. Existe alguma relação entre o interior (a aderência) de C em X e o interior (a aderência) de C em Y?

1.8 Vizinhanças e espaços de Hausdorff

Definição 1.8.1. Sejam X um espaço topológico e $x \in X$. Um subconjunto V de X diz-se uma *vizinhança* de x se existe um aberto A tal que $x \in A \subseteq V$.

Exemplo 1.8.2. Todo o aberto que contém x é uma vizinhança de x. Tal vizinhança é chamada uma *vizinhança aberta* de x.

Proposição 1.8.3. Sejam X um espaço topológico e $x \in X$.

- (i) Um conjunto $V \subseteq X$ é uma vizinhança de x se e só se contém x como ponto interior, isto é, $x \in \text{int}(V)$.
- (ii) Toda a vizinhança de x contém uma vizinhança aberta de x.
- (iii) Um subconjunto $C \subseteq X$ é aberto se e só se é vizinhança de todos os seus pontos.
- (iv) Se um subconjunto de X contiver uma vizinhança de x então também é uma vizinhança de x.
- (v) A intersecção de duas vizinhanças de x é uma vizinhança de x.
- (vi) Para cada vizinhança V de x existe uma vizinhança W de x tal que V é vizinhança de todos os pontos de W.

Demonstração. (i) e (ii) são evidentes.

- (iii) Pela Proposição 1.7.5, C é aberto se e só se C = int(C). Por (i), isto é o caso se e só se C é vizinhança de todos os seus pontos.
- (iv) Se $V \subseteq X$ contiver uma vizinhança de x então também contém um aberto que contém x. Portanto V é uma vizinhança de x.
- (v) Sejam V e W duas vizinhanças de x. Então existem abertos A e B que contém x tais que $A \subseteq V$ e $B \subseteq W$. Então $A \cap B$ é um aberto que contém x e que está contido em $V \cap W$. Logo $V \cap W$ é uma vizinhança de x.
- (vi) Seja V uma vizinhança de x. Por (ii), V contém uma vizinhança aberta W de x. Por (iii), W é vizinhança de todos os seus pontos. Segue-se, por (iv), que V é vizinhança de todos os pontos de W.
- **Definição 1.8.4.** Sejam X e Y espaços topológicos e $x \in X$. Uma aplicação $f: X \to Y$ diz-se *contínua em* x se, para toda a vizinhança aberta W de f(x), existe uma vizinhança aberta V de x tal que $f(V) \subseteq W$.
- **Exercício 1.8.5.** Verdadeiro ou falso? Uma aplicação $f: X \to Y$ entre espaços topológicos é contínua em $x \in X$ se, para toda a vizinhança W de f(x), existe uma vizinhança V de x

tal que $f(V) \subseteq W$.

Proposição 1.8.6. Sejam X um subespaço de \mathbb{R}^n e Y um subespaço de \mathbb{R}^m . Uma aplicação $f: X \to Y$ é continua num ponto $\xi \in X$ no sentido da Definição 1.8.4 se e só se é contínua em ξ no sentido da Definição 1.1.8.

Demonstração. Seja f contínua em $\xi \in X$ no sentido da Definição 1.8.4. Seja $\varepsilon > 0$. Então $W = B_{\varepsilon}(f(\xi)) \cap Y$ é uma vizinhança aberta de $f(\xi)$. Por hipótese, existe uma vizinhança aberta V de ξ em X tal que $f(V) \subseteq W$. Pela Proposição 1.3.4, existe $\delta > 0$ tal que $B_{\delta}(\xi) \cap X \subseteq V$. Logo, para cada $x \in X$ com $||x - \xi|| < \delta$, temos $f(x) \in W$ e portanto $||f(x) - f(\xi)|| < \varepsilon$. Assim, f é contínua em ξ no sentido da Definição 1.1.8.

Suponhamos agora que f é contínua em $\xi \in X$ no sentido da Definição 1.1.8. Seja W uma vizinhança aberta de $f(\xi)$. Pela Proposição 1.3.4, existe $\varepsilon > 0$ tal que $B_{\varepsilon}(f(\xi)) \cap Y \subseteq W$. Por hipótese, existe $\delta > 0$ tal que, para cada $x \in X$, $||x - \xi|| < \delta$ implica $||f(x) - f(\xi)|| < \varepsilon$. Seja $V = B_{\delta}(\xi) \cap X$. Então V é uma vizinhança aberta de ξ em X e temos $f(V) \subseteq B_{\varepsilon}(f(\xi)) \cap Y \subseteq W$. Assim, f é contínua em ξ no sentido da Definição 1.8.4.

Exercício 1.8.7. Seja $f: X \to Y$ uma aplicação entre espaços topológicos. Mostre que f é contínua em $x \in X$ se e só se a imagem inversa de toda a vizinhança de f(x) é uma vizinhança de x.

Exercício 1.8.8. Sejam $f: X \to Y$ contínua em $x \in g: Y \to Z$ contínua em f(x). Mostre que a composta $g \circ f: X \to Z$ é contínua em x.

Proposição 1.8.9. Uma aplicação $f: X \to Y$ entre espaços topológicos é contínua se e só se é contínua em cada $x \in X$.

Demonstração. Suponhamos primeiramente que f é contínua em cada ponto $x \in X$. Seja $A \subseteq Y$ aberto e seja $x \in f^{-1}(A)$. Então A é uma vizinhança aberta de f(x). Portanto existe uma vizinhança aberta V de x tal que $f(V) \subseteq A$. Logo $V \subseteq f^{-1}(A)$. Portanto $f^{-1}(A)$ é uma vizinhança de x. Segue-se que $f^{-1}(A)$ é vizinhança de todos os seus pontos. Portanto $f^{-1}(A)$ é aberto. Logo f é contínua.

Suponhamos agora que f é contínua. Sejam $x \in X$ e $W \subseteq Y$ uma vizinhança aberta de f(x). Então $f^{-1}(W)$ é aberto em X. Como $x \in f^{-1}(W)$, $V = f^{-1}(W)$ é uma vizinhança aberta de x tal que $f(V) \subseteq W$. Logo f é contínua em x.

Definição 1.8.10. Um espaço topológico X diz-se um *espaço de Hausdorff* se cada dois elementos distintos admitem vizinhanças disjuntas.

Exemplo 1.8.11. \mathbb{R}^n é um espaço de Hausdorff. Com efeito, para $x \neq y \in \mathbb{R}^n$, as bolas abertas $B_{\varepsilon}(x)$ e $B_{\varepsilon}(y)$ com $\varepsilon = \frac{\|x-y\|}{3}$ são vizinhanças disjuntas de x e y.

Proposição 1.8.12. Qualquer subespaço de um espaço de Hausdorff é um espaço de Hausdorff.

Demonstração. Seja X um espaço de Hausdorff e $Y\subseteq X$. Sejam $a,b\in Y$ com $a\neq b$. Então existem vizinhanças abertas $U\subseteq X$ de a e $V\subseteq X$ de b tais que $U\cap V=\emptyset$. Logo $U\cap Y$ e $V\cap Y$ são vizinhanças abertas de a e b em Y e $U\cap Y\cap V\cap Y=\emptyset$.

Capítulo 2

Produtos e espaços quocientes

2.1 Produtos

Nesta secção, X, Y e Z são espaços topológicos.

Definição 2.1.1. Um subconjunto A do produto cartesiano $X \times Y$ diz-se aberto em $X \times Y$ se é reunião de conjuntos da forma $U \times V$, onde U é aberto em X e V é aberto em Y. Os abertos de $X \times Y$ formam uma topologia (exercício) e o espaço produto $X \times Y$ é o conjunto $X \times Y$ com esta topologia.

Exemplos 2.1.2. 1. O espaço produto $X \times I$ é chamado o *cilindro* sobre X.

2. O *toro* é o espaço produto $\mathbb{S}^1 \times \mathbb{S}^1$.

Notação 2.1.3. As projeções $X \times Y \to X$, $(x, y) \mapsto x$ e $X \times Y \to Y$, $(x, y) \mapsto y$ serão denotadas por pr_X e pr_Y , respetivamente.

Proposição 2.1.4. Uma aplicação $f: Z \to X \times Y$ é contínua se e só se as compostas $pr_X \circ f$ e $pr_Y \circ f$ são contínuas. Em particular, pr_X e pr_Y são contínuas.

Demonstração. Suponhamos primeiramente que $f: Z \to X \times Y$ é contínua. Seja $A \subseteq X$ aberto. Então $A \times Y$ é aberto em $X \times Y$. Temos $(pr_X \circ f)^{-1}(A) = f^{-1}(pr_X^{-1}(A)) = f^{-1}(A \times Y)$, que é aberto em Z. Logo $pr_X \circ f$ é contínua. Do mesmo modo, $pr_Y \circ f$ é contínua.

Suponhamos agora que $pr_X \circ f$ e $pr_Y \circ f$ são contínuas. Seja $W \subseteq X \times Y$ aberto. Então W é uma reunião de conjuntos da forma $U \times V$, onde U é aberto em X e V é aberto em Y. Logo $f^{-1}(W)$ é reunião de conjuntos da forma $f^{-1}(U \times V)$ com U aberto em X e V aberto em Y. Ora,

$$f^{-1}(U \times V) = f^{-1}((U \times Y) \cap (X \times V))$$

$$= f^{-1}(U \times Y) \cap f^{-1}(X \times V)$$

$$= f^{-1}(pr_X^{-1}(U)) \cap f^{-1}(pr_Y^{-1}(V))$$

$$= (pr_X \circ f)^{-1}(U) \cap (pr_Y \circ f)^{-1}(V).$$

Como $(pr_X \circ f)^{-1}(U)$ e $(pr_Y \circ f)^{-1}(V)$ são abertos em Z, $f^{-1}(U \times V)$ é aberto em Z. Logo $f^{-1}(W)$ é aberto em Z.

Exemplos 2.1.5. (i) Sejam $f: A \to X$ e $g: B \to Y$ contínuas. Então $f \times g: A \times B \to X \times Y$ é contínua. Com efeito,

$$pr_X \circ (f \times g)(a, b) = pr_X(f(a), g(b)) = f(a) = f \circ pr_A(a, b).$$

Assim, $pr_X \circ (f \times g) = f \circ pr_X$, que é contínua por ser a composta de duas aplicações contínuas. Do mesmo modo, $pr_Y \circ (f \times g)$ é contínua. Pela Proposição 2.1.4, segue-se que $f \times g$ é contínua.

(ii) Pela Proposição 2.1.4, a aplicação

$$\mathbb{R}^{n+m} \to \mathbb{R}^n \times \mathbb{R}^m$$
, $(x_1, \ldots, x_{n+m}) \mapsto ((x_1, \ldots, x_n), (x_{n+1}, \ldots, x_{n+m}))$

é contínua. De facto, esta aplicação é um homeomorfismo (exercício), que poderemos usar para identificar \mathbb{R}^{n+m} e $\mathbb{R}^n \times \mathbb{R}^m$.

Exercício 2.1.6. Mostre que $X \times (Y \times Z) \approx (X \times Y) \times Z$.

Proposição 2.1.7. Sejam A um subespaço de X e B um subespaço de Y. Então o espaço produto $A \times B$ é o subespaço $A \times B$ de $X \times Y$.

Demonstração. Seja $W \subseteq A \times B$ aberto no produto $A \times B$. Então W é uma reunião de conjuntos da forma $U \times V$, onde U é aberto em A e V é aberto em B. Ora, U é aberto em A

se e só se existe um aberto $\tilde{U}\subseteq X$ com $U=\tilde{U}\cap A$. Do mesmo modo, V é aberto em B se e só se existe um aberto $\tilde{V}\subseteq X$ com $V=\tilde{V}\cap B$. Logo W é uma reunião de conjuntos da forma $(\tilde{U}\cap A)\times (\tilde{V}\cap B)=(\tilde{U}\times \tilde{V})\cap (A\times B)$, onde \tilde{U} é aberto em X e \tilde{V} é aberto em X e X e de X e de X e de X e X e de X e de X e X e de X

Suponhamos agora que W é aberto no subespaço $A \times B$ de $X \times Y$. Então existe um aberto \tilde{W} de $X \times Y$ tal que $W = \tilde{W} \cap (A \times B)$. O aberto \tilde{W} é uma reunião de conjuntos $\tilde{U} \times \tilde{V}$, onde \tilde{U} é aberto em X e \tilde{V} é aberto em Y. Assim, W é uma reunião de conjuntos da forma $(\tilde{U} \cap A) \times (\tilde{V} \cap B)$ com $\tilde{U} \subseteq X$ e $\tilde{V} \subseteq Y$ abertos. Deste modo, W é uma reunião de conjuntos da forma $U \times V$, onde U é aberto em A e V é aberto em B. Portanto W é aberto no espaço produto $A \times B$.

Exemplo 2.1.8. O toro $\mathbb{S}^1 \times \mathbb{S}^1$ é um subespaço de $\mathbb{R}^2 \times \mathbb{R}^2 = \mathbb{R}^4$. Nota-se que o toro é homeomorfo ao subespaço

$$\{(x, y, z) \in \mathbb{R}^3 \mid z^2 + (\sqrt{x^2 + y^2} - 2)^2 = 1\}$$

de \mathbb{R}^3 .

2.2 Topologia quociente

Sejam X um espaço topológico e \sim uma relação de equivalência em X (isto é, uma relação reflexiva, simétrica e transitiva). Escrevemos X/\sim para o conjunto das classes de equivalência e $p\colon X\to X/\sim$ para projeção canónica, isto é, a aplicação $x\mapsto [x]$.

Definição 2.2.1. Um subconjunto A de $^{X}/_{\sim}$ diz-se aberto se $p^{-1}(A)$ é aberto em X. Estes abertos formam uma topologia em $^{X}/_{\sim}$, a chamada topologia quociente. O conjunto $^{X}/_{\sim}$ munido com a topologia quociente é o espaço quociente de X pela relação \sim .

- **Notas 2.2.2.** (i) Por definição dos abertos em X_{\sim} , a projeção canónica $p: X \to X_{\sim}$ é contínua.
- (ii) Um subconjunto $B \subseteq X /_{\sim}$ é fechado se e só se $p^{-1}(B)$ é fechado em X.

(iii) Qualquer relação R em X induz uma relação de equivalência \sim :

$$x \sim y \Leftrightarrow \exists x_1 \dots, x_k \in X : x_1 = x, x_k = y$$
 e
$$\forall i \in \{1, \dots, k-1\} : x_i = x_{i+1} \text{ ou } x_i R x_{i+1} \text{ ou } x_{i+1} R x_i.$$

Exemplos 2.2.3. (i) A fita de Möbius é o espaço quociente $M=I \times I / \sim$ onde \sim é a relação de equivalência dada – isto é, induzida – por

$$(0, t) \sim (1, 1 - t) \quad (t \in I).$$

(ii) O *espaço projetivo real* $\mathbb{R}P^n$ (n>0) é o espaço quociente $\mathbb{S}^n\!\!/_\sim$ onde

$$x \sim y \Leftrightarrow x = y \text{ ou } x = -y.$$

Uma elemento $[x] \in \mathbb{R}P^n$ representa a reta em \mathbb{R}^{n+1} que passa pela origem e x.

Notação 2.2.4. Se $A \subseteq X$ for um subespaço, escrevemos X/A para denotar o espaço quociente X/\sim onde

$$x \sim y \Leftrightarrow x = y \text{ ou } x, y \in A.$$

Exemplo 2.2.5. O *cone* sobre X é o espaço quociente $CX = {}^{X \times I}/{}_{X \times \{1\}}$.

Proposição 2.2.6. Seja $f: X \to Y$ uma aplicação contínua tal que

$$\forall x_1, x_2 \in X : x_1 \sim x_2 \Rightarrow f(x_1) = f(x_2).$$

Então existe uma única aplicação contínua $ar f: X/_\sim o Y$ tal que $ar f\circ p=f$.

Demonstração. Define-se $\bar{f}([x]) = f(x)$. Por hipótese, isto está bem definido. Por definição, $\bar{f} \circ p = f$. Se $g \colon X /_{\sim} \to Y$ for uma aplicação com $g \circ p = f$ então $g([x]) = g \circ p(x) = f(x) = \bar{f}([x])$. Falta mostrar que \bar{f} é contínua. Seja $A \subseteq Y$ aberto. Como f é contínua, $f^{-1}(A)$ é aberto em X. Ora, $p^{-1}(\bar{f}^{-1}(A)) = (\bar{f} \circ p)^{-1}(A) = f^{-1}(A)$. Portanto $\bar{f}^{-1}(A)$ é aberto em $X /_{\sim}$.

Exemplo 2.2.7. Consideremos a aplicação contínua $f: I \to \mathbb{S}^1$ definida por

$$f(t) = (\cos 2\pi t, \sin 2\pi t).$$

Como f(0) = f(1), f induz a aplicação contínua

$$\bar{f}: \stackrel{I}{I}_{\{0, 1\}} \to \mathbb{S}^1, \ [t] \mapsto (\cos 2\pi t, \sin 2\pi t).$$

Nota-se que esta aplicação é bijectiva. Será um homeomorfismo?

Corolário 2.2.8. Uma aplicação $g: X/_{\sim} \to Y$ é contínua se e só se a composta $g \circ p: X \to Y$ é contínua.

Demonstração. Se g é contínua, então $g \circ p$ é contínua. Se $g \circ p$ é contínua, então, pela Proposição 2.2.6, existe uma única aplicação $\bar{f}: X/_{\sim} \to Y$ tal que $\bar{f} \circ p = g \circ p$, pois, para $x \sim y$, temos [x] = [y] e portanto $g \circ p(x) = g([x]) = g([y]) = g \circ p(y)$. Como p é sobrejectiva, segue-se que $\bar{f} = g$. Assim, g é contínua.

Capítulo 3

Conexidade e compacidade

3.1 Espaços conexos por caminhos

Definição 3.1.1. Um espaço topológico X diz-se *conexo por caminhos* se, para quaisquer dois pontos $x,y\in X$, existe um *caminho* de x para y, isto é, uma aplicação contínua $\alpha\colon I\to X$ tal que $\alpha(0)=x$ e $\alpha(1)=y$.

Exemplos 3.1.2. (a) Qualquer subespaço convexo C de \mathbb{R}^n é conexo por caminhos. Com efeito, dados x, y em C, um caminho $\alpha \colon I \to C$ de x para y é dado por

$$\alpha(t) = (1-t)x + ty.$$

Em particular, qualquer intervalo é conexo por caminhos.

(b) Para n>0, a esfera \mathbb{S}^n é conexa por caminhos. Com efeito, sejam $a,b\in\mathbb{S}^n$ e seja $\theta\in[0,\pi]$ o ângulo entre a e b. Então

$$\cos \theta = \langle a, b \rangle = a_1b_1 + \cdots + a_{n+1}b_{n+1}.$$

Distinguimos três casos:

1. Se $\theta=0$ então b=a e um caminho $\alpha\colon I\to\mathbb{S}^n$ de a para b é dado por $\alpha(t)=a$.

2. Se $\theta=\pi$ então b=-a. Seja $c\in\mathbb{S}^n$ um qualquer vetor perpendicular a a. Um caminho $\alpha\colon I\to\mathbb{S}^n$ de a para b é dado por

$$\alpha(t) = \cos(\pi t)a + \sin(\pi t)c.$$

3. Se $\theta \in]0, \pi[$ então $\sin \theta \neq 0$ e um caminho $\alpha \colon I \to \mathbb{S}^n$ de a para b é dado por

$$\alpha(t) = \cos(\theta t)a + \sin(\theta t)(-\frac{\cos \theta}{\sin \theta}a + \frac{1}{\sin \theta}b).$$

Teorema 3.1.3. Seja X um espaço conexo por caminhos. Então

- (i) Toda a aplicação contínua $f: X \to \{0, 1\}$ é constante;
- (ii) X e ∅ são os únicos subconjuntos de X que são ao mesmo tempo abertos e fechados;
- (iii) se $A, B \subseteq X$ forem abertos disjuntos com $X = A \cup B$ então $A = \emptyset$ ou $B = \emptyset$.

Demonstração. (i) Seja $f\colon X\to\{0,1\}$ contínua. Suponhamos, por absurdo, que f não é constante. Então existem $a,b\in X$ tais que f(a)=0 e f(b)=1. Como X é conexo por caminhos, existe um caminho $\alpha\colon I\to X$ tal que $\alpha(0)=a$ $\alpha(1)=b$. Seja $g\colon I\to \mathbb{R}$ a composta

$$I \xrightarrow{\alpha} X \xrightarrow{f} \{0, 1\} \hookrightarrow \mathbb{R}.$$

Então g é contínua. Pelo Teorema do Valor Intermédio, existe $t \in I$ com $g(t) = \frac{1}{2}$. Temos então $f(\alpha(t)) = \frac{1}{2} \notin \{0, 1\}$, o que é impossível.

(ii) Seja $A\subseteq X$ ao mesmo tempo aberto e fechado. Então $X\setminus A$ também é ao mesmo tempo aberto e fechado. Consideremos a função característica de A, isto é, a função $\chi_A\colon X\to\{0,1\}$ dada por

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases}$$

Como $\chi^{-1}(\{1\}) = A$ e $\chi^{-1}(\{0\}) = X \setminus A$, χ_A é contínua. Por (i), χ_A é constante. Se χ_A for constante, igual a 1, temos A = X, senão temos $A = \emptyset$.

(iii) Sejam $A, B \subseteq X$ abertos disjuntos com $X = A \cup B$. Como $B = X \setminus A$, A é aberto e fechado ao mesmo tempo. Por (ii), A = X ou $A = \emptyset$. Logo $A = \emptyset$ ou $B = \emptyset$.

Exemplos 3.1.4. (i) Para qualquer $a \in \mathbb{R}$, $\mathbb{R} \setminus \{a\}$ não é conexo por caminhos. Com efeito, $\mathbb{R} \setminus \{a\} =]-\infty$, $a[\cup]a$, $+\infty[$, reunião disjunta de dois abertos não vazios de $\mathbb{R} \setminus \{a\}$.

(ii) $\mathbb{S}^0 = \{-1, 1\}$ não é conexo por caminhos, pois todos os subconjuntos de \mathbb{S}^0 são abertos e fechados ao mesmo tempo.

Exercício 3.1.5. Mostre que \mathbb{Q} não é conexo por caminhos.

Nota 3.1.6. As três condições do Teorema 3.1.3 são equivalentes (exercício). Um espaço topológico que satisfaz estas condições diz-se *conexo*. Pelo teorema, qualquer espaço conexo por caminhos é conexo.

Proposição 3.1.7. Sejam X um espaço conexo por caminhos, Y um espaço topológico e $f: X \to Y$ uma aplicação contínua sobrejectiva. Então Y é conexo por caminhos.

Demonstração. Sejam $y_0, y_1 \in Y$. Então existem $x_0, x_1 \in X$ tais que $y_1 = f(x_1)$ e $y_2 = f(x_2)$. Como X é conexo por caminhos, existe um caminho $\alpha \colon I \to X$ tal que $\alpha(0) = x_0$ e $\alpha(1) = x_1$. \square

Como corolário obtemos que a conexidade por caminhos é uma propriedade topológica:

Corolário 3.1.8. Se $X \approx Y$ então X é conexo por caminhos se e só se Y é conexo por caminhos.

Proposição 3.1.9. Sejam X e Y dois espaços topológicos não vazios. Então $X \times Y$ é conexo por caminhos se e só se X e Y são conexos por caminhos.

Demonstração. Suponhamos primeiramente que $X \times Y$ é conexo por caminhos. Como $X, Y \neq \emptyset$, as projeções $pr_X \colon X \times Y \to X$ e $pr_Y \colon X \times Y \to Y$ são sobrejectivas. Pela Proposição 2.1.4, pr_X e pr_Y são contínuas. Pela Proposição, 3.1.7, segue-se que X e Y são conexos por caminhos.

Suponhamos agora que X e Y são conexos por caminhos. Sejam $(a,b),(x,y)\in X\times Y$. Sejam $\alpha\colon I\to X$ um caminho de a para x e $\beta\colon I\to Y$ um caminho de b para y. Consideremos a

aplicação $\gamma\colon I\to X\times Y$ definida por $\gamma(t)=(\alpha(t),\beta(t))$. Como $\mathit{pr}_X\circ\gamma=\alpha$ e $\mathit{pr}_Y\circ\gamma=\beta$, a Proposição 2.1.4 garante que γ é continua. Tem-se $\gamma(0)=(a,b)$ e $\gamma(1)=(x,y)$.

Lema 3.1.10. Para n > 1, $\mathbb{R}^n \setminus \{0\}$ é conexo por caminhos.

Demonstração. Sejam a, $b \in \mathbb{R}^n \setminus \{0\}$. Então $\frac{a}{\|a\|}$, $\frac{b}{\|b\|} \in \mathbb{S}^{n-1}$. Como n-1>0, por 3.1.2 (b), \mathbb{S}^{n-1} é conexo por caminhos. Seja $\alpha \colon I \to \mathbb{S}^{n-1}$ um caminho de $\frac{a}{\|a\|}$ para $\frac{b}{\|b\|}$. Consideremos a aplicação $\beta \colon I \to \mathbb{R}^n \setminus \{0\}$ dada por

$$\beta(t) = \begin{cases} (1-3t)a + 3t \frac{a}{\|a\|}, & 0 \le t \le \frac{1}{3}, \\ \alpha(3t-1), & \frac{1}{3} \le t \le \frac{2}{3}, \\ (3-3t) \frac{b}{\|b\|} + (3t-2)b, & \frac{2}{3} \le t \le 1. \end{cases}$$

Então β é um caminho de a para b em $\mathbb{R}^n \setminus \{0\}$

Proposição 3.1.11. Para n > 1, $\mathbb{R}^n \not\approx \mathbb{R}$.

Demonstração. Suponhamos, por absurdo, que $\mathbb{R}^n \approx \mathbb{R}$. Seja $f: \mathbb{R}^n \to \mathbb{R}$ um homeomorfismos. Então a restrição

$$f|_{\mathbb{R}^n\setminus\{0\}}\colon\mathbb{R}^n\setminus\{0\}\to f(\mathbb{R}^n\setminus\{0\})=\mathbb{R}\setminus\{f(0)\}$$

é contínua e sobrejectiva. Como, pelo Lema 3.1.10, $\mathbb{R}^n \setminus \{0\}$ é conexo por caminhos, pela Proposição 3.1.7, $\mathbb{R} \setminus \{f(0)\}$ é conexo por caminhos. Ora, pelo Exemplo 3.1.4 (a), isto não é o caso.

Exercício 3.1.12. Sejam X um espaço topológico e A e B dois subespaços conexos por caminhos. Mostre que $A \cup B$ é conexo por caminhos se $A \cap B \neq \emptyset$. Pode afirmar que reciprocamente $A \cap B \neq \emptyset$ se $A \cup B$ é conexo por caminhos?

Exercício 3.1.13. Mostre que $\mathbb{S}^1 \not\approx \mathbb{R}$ e que $[0,1[\not\approx]0,1[$.

3.2 Espaços compactos

Definição 3.2.1. Uma cobertura aberta de um espaço topológico X é uma família $(A_{\lambda})_{\lambda \in \Lambda}$ de abertos tal que $X = \bigcup_{\lambda \in \Lambda} A_{\lambda}$. Um espaço X diz-se compacto se qualquer cobertura aberta

 $(A_{\lambda})_{\lambda \in \Lambda}$ admite uma subcobertura finita, isto é, existem $\lambda_1 \dots, \lambda_k \in \Lambda$ tais que $X = \bigcup_{i=1}^k A_{\lambda_i}$.

Exemplos 3.2.2. (i) Todo o espaço finito é compacto.

(ii) O intervalo I é compacto. Com efeito, seja $(A_{\lambda})_{\lambda \in \Lambda}$ uma cobertura aberta de I. Mostramos primeiramente que existe $\delta > 0$ tal que

$$\forall x \in I \; \exists \; \lambda \in \Lambda : B_{\delta}(x) \cap I \subseteq A_{\lambda}.$$

Suponhamos, por absurdo, que tal δ não existe. Então podemos escolher uma sucessão $(x_n)_{n\geq 1}$ em I tal que, para todo o $\lambda\in\Lambda$, $B_{\frac{1}{n}}(x_n)\cap I\not\subseteq A_\lambda$. Enquanto sucessão limitada, esta sucessão admite uma subsucessão convergente. Seja x_* o limite desta subsucessão. Por definição do limite, x_* pertence à aderência de I em \mathbb{R} , ou seja, $x_*\in I$. Seja $\lambda_*\in\Lambda$ tal que $x_*\in A_{\lambda_*}$. Como A_{λ_*} é aberto, existe $\varepsilon>0$ tal que $B_\varepsilon(x_*)\cap I\subseteq A_{\lambda_*}$. Seja $n\in\mathbb{N}$ tal que x_n faz parte da subsucessão, $x_n\in B_{\frac{\varepsilon}{2}}(x_*)\cap I$ e $\frac{1}{n}<\frac{\varepsilon}{2}$. Para $x\in B_{\frac{1}{n}}(x_n)\cap I$,

$$|x-x_*| \leq |x-x_n| + |x_n-x_*| < \frac{1}{n} + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

e portanto $x \in B_{\varepsilon}(x_*) \cap I \subseteq A_{\lambda_*}$. Assim, $B_{\frac{1}{n}}(x_n) \cap I \subseteq A_{\lambda_*}$, o que é impossível. Logo existe $\delta > 0$ tal que $\forall x \in I \exists \lambda \in \Lambda : B_{\delta}(x) \cap I \subseteq A_{\lambda}$.

Seja $m \in \mathbb{N}$ tal que $\frac{1}{m} < \delta$. Consideremos os pontos $\frac{i}{m}$, $i = 0, \ldots, m$. Então cada $x \in I$ pertence a um dos conjuntos $B_{\delta}(\frac{i}{m}) \cap I$ com $1 \leq i \leq m$. Com efeito, se $x \in [\frac{i-1}{m}, \frac{i}{m}]$ então $|x - \frac{i}{m}| \leq \frac{1}{m} < \delta$, pelo que $x \in B_{\delta}(\frac{i}{m}) \cap I$. Sejam $\lambda_1, \ldots, \lambda_m \in \Lambda$ tais que $B_{\delta}(\frac{i}{m}) \cap I \subseteq A_{\lambda_i}$. Temos então $I = \bigcup_{i=1}^m A_{\lambda_i}$.

Nota 3.2.3. Em alguns livros exige-se que espaços compactos sejam espaços de Hausdorff. Os nossos espaços compactos são então chamados *quase-compactos*.

Proposição 3.2.4. Sejam X um espaço compacto, Y um espaço topológico e $f: X \to Y$ uma aplicação contínua sobrejectiva. Então Y é compacto.

Demonstração. Seja $(A_{\lambda})_{\lambda \in \Lambda}$ uma cobertura aberta de Y. Então $(f^{-1}(A_{\lambda}))_{\lambda \in \Lambda}$ é uma cobertura aberta de X. Como X é compacto, existem $\lambda_1, \ldots, \lambda_k$ tais que $X = \bigcup_{i=1}^k f^{-1}(A_{\lambda_i})$. Logo

$$Y = f(X) = f(\bigcup_{i=1}^k f^{-1}(A_{\lambda_i})) = \bigcup_{i=1}^k f(f^{-1}(A_{\lambda_i})) \subseteq \bigcup_{i=1}^k A_{\lambda_i}.$$

Portanto Y é compacto.

Corolário 3.2.5. Qualquer espaço quociente de um espaço compacto é compacto.

Outro corolário é que a compacidade é uma propriedade topológica:

Corolário 3.2.6. Se $X \approx Y$ então X é compacto se e só se Y é compacto.

Exemplo 3.2.7. Como, para a < b, $[a, b] \approx I$, [a, b] é compacto.

Proposição 3.2.8. Sejam X e Y dois espaços topológicos não vazios. Então $X \times Y$ é compacto se e só se X e Y são compactos.

Demonstração. Suponhamos primeiramente que $X \times Y$ é compacto. Como $X,Y \neq \emptyset$, as projeções $pr_X: X \times Y \to X$ e $pr_Y: X \times Y \to Y$ são sobrejectivas. Pela Proposição 2.1.4, pr_X e pr_Y são contínuas. Pela Proposição, 3.2.4, segue-se que X e Y são compactos.

Suponhamos agora que X e Y são compactos. Seja $(A_{\lambda})_{\lambda \in \Lambda}$ uma cobertura aberta de $X \times Y$. Para cada $(x,y) \in X \times Y$ escolhemos $\lambda(x,y) \in \Lambda$ tal que $(x,y) \in A_{\lambda(x,y)}$. Como $A_{\lambda(x,y)}$ é aberto em $X \times Y$, existem abertos $U_{\lambda(x,y)} \subseteq X$ e $V_{\lambda(x,y)} \subseteq Y$ tais que

$$(x,y) \in U_{\lambda(x,y)} \times V_{\lambda(x,y)} \subseteq A_{\lambda(x,y)}$$
.

Para cada $x \in X$, $(V_{\lambda(x,y)})_{y \in Y}$ é uma cobertura aberta de Y. Como Y é compacto, para cada $x \in X$ existem $y_{x,1}, \ldots, y_{x,n_x} \in Y$ tais que

$$Y = V_{\lambda(x,y_{x,1})} \cup \cdots \cup V_{\lambda(x,y_{x,n_x})}.$$

Seja

$$U(x) = U_{\lambda(x,y_{x,1})} \cap \cdots \cap U_{\lambda(x,y_{x,n_x})}.$$

Então $(U(x))_{x\in X}$ é uma cobertura aberta de X. Como X é compacto, existem $x_1, \ldots, x_k \in X$ tais que $X = U(x_1) \cup \cdots \cup U(x_k)$. Temos

$$X \times Y = (U(x_1) \cup \cdots \cup U(x_k)) \times Y$$

$$= (U(x_1) \times Y) \cup \cdots \cup (U(x_k) \times Y)$$

$$= (U(x_1) \times (V_{\lambda(x_1, y_{x_1, 1})} \cup \cdots \cup V_{\lambda(x_1, y_{x_1, n_{x_1}})}))$$

$$\cup \cdots \cup$$

$$(U(x_k) \times (V_{\lambda(x_k, y_{x_k, 1})} \cup \cdots \cup V_{\lambda(x_k, y_{x_k, n_{x_k}})}))$$

$$= (U(x_1) \times V_{\lambda(x_1, y_{x_1, 1})} \cup \cdots \cup (U(x_1) \times V_{\lambda(x_1, y_{x_1, n_{x_1}})})$$

$$\cup \cdots \cup$$

$$(U(x_k) \times V_{\lambda(x_k, y_{x_k, 1})}) \cup \cdots \cup (U(x_k) \times V_{\lambda(x_k, y_{x_k, n_{x_k}})})$$

$$\subseteq (U_{\lambda(x_1, y_{x_1, 1})} \times V_{\lambda(x_1, y_{x_1, 1})}) \cup \cdots \cup (U_{\lambda(x_1, y_{x_1, n_{x_1}})} \times V_{\lambda(x_1, y_{x_1, n_{x_1}})})$$

$$\cup \cdots \cup$$

$$(U_{\lambda(x_k, y_{x_k, 1})} \times V_{\lambda(x_k, y_{x_k, 1})}) \cup \cdots \cup (U_{\lambda(x_k, y_{x_k, n_{x_k}})} \times V_{\lambda(x_k, y_{x_k, n_{x_k}})})$$

$$\subseteq A_{\lambda(x_1, y_{x_1, 1})} \cup \cdots \cup A_{\lambda(x_1, y_{x_1, n_{x_1}})} \cup \cdots \cup A_{\lambda(x_k, y_{x_k, n_{x_k}})} \cup \cdots \cup A_{\lambda(x_k, y_{x_k, n_{x_k}})}.$$

Segue-se que $X \times Y$ é compacto.

Exemplo 3.2.9. Se X é compacto, o cilindro $X \times I$ é compacto.

Nota 3.2.10. Define-se também o produto de uma família de espaços topológicos. Pelo *Teorema de Tychonoff*, o produto de uma família de espaços topológicos compactos é compacto.

Proposição 3.2.11. Sejam X compacto e $B \subseteq X$ fechado. Então B é compacto.

Demonstração. Seja $(A_{\lambda})_{\lambda \in \Lambda}$ uma cobertura aberta do subespaço B de X. Então existem abertos U_{λ} de X tais que $A_{\lambda} = U_{\lambda} \cap B$. Os abertos U_{λ} e $X \setminus B$ formam uma cobertura aberta de X. Como X é compacto, existem $\lambda_1, \ldots, \lambda_k \in \Lambda$ tais que $X = U_{\lambda_1} \cup \cdots \cup U_{\lambda_k} \cup (X \setminus B)$. Portanto $B = (U_{\lambda_1} \cup \cdots \cup U_{\lambda_k} \cup (X \setminus B)) \cap B = A_{\lambda_1} \cup \cdots \cup A_{\lambda_k}$.

Proposição 3.2.12. Sejam X um espaço de Hausdorff e K um subespaço compacto de X. Então K é fechado em X.

Demonstração. Seja $x \in X \setminus K$. Então, para cada $y \in K$, existem vizinhanças abertas disjuntas U_y de x e V_y de y. Como K é compacto, existem $y_1, \ldots, y_n \in K$ tais que $K \subseteq V_{y_1} \cup \cdots \cup V_{y_n}$. Seja $U = U_{y_1} \cap \cdots \cap U_{y_n}$. Então U é uma vizinhança aberta de x. Temos

$$U\cap K\subseteq U\cap (V_{y_1}\cup\cdots\cup V_{y_n})=(U\cap V_{y_1})\cup\cdots\cup (U\cap V_{y_n})\subseteq (U_{y_1}\cap V_{y_1})\cup\cdots\cup (U_{y_n}\cap V_{y_n})=\emptyset.$$

Segue-se que $x \in \text{int}(X \setminus K)$. Portanto $X \setminus K = \text{int}(X \setminus K)$, pelo que $X \setminus K$ é aberto. \square

Definição 3.2.13. Um subconjunto $X \subseteq \mathbb{R}^n$ diz-se *limitado* se $X \subseteq B_r(0)$ para algum r > 0.

Teorema 3.2.14. [Heine-Borel] *Um subespaço de* \mathbb{R}^n *é compacto se e só se é fechado e limitado.*

Demonstração. Consideremos primeiramente um subespaço fechado e limitado $X \subseteq \mathbb{R}^n$. Como X é limitado, existem intervalos $[a_1, b_1], \ldots, [a_n, b_n]$ tais que

$$X \subseteq [a_1, b_1] \times \cdots \times [a_n, b_n].$$

Como X é fechado em \mathbb{R}^n , X é fechado em $[a_1, b_1] \times \cdots \times [a_n, b_n]$. Enquanto produto de espaços compactos, $[a_1, b_1] \times \cdots \times [a_n, b_n]$ é compacto. Pela Proposição 3.2.11, segue-se que X é compacto.

Suponhamos agora que X é compacto. Como \mathbb{R}^n é um espaço de Hausdorff, pela Proposição 3.2.12, X é fechado em \mathbb{R}^n . Consideremos a cobertura aberta $(B_{\varepsilon}(0) \cap X)_{\varepsilon>0}$ de X. Como X é compacto, existe $\varepsilon_1, \ldots, \varepsilon_k$ tais que $X = \bigcup_{i=1}^k B_{\varepsilon_i}(0) \cap X$. Seja $\varepsilon = \max_{i \in \{1, \ldots, k\}} \varepsilon_i$. Então $X \subseteq B_{\varepsilon}(0)$, pelo que X é limitado.

Exemplos 3.2.15. (i) Discos e esferas são compactos.

- (ii) \mathbb{R}^n não é compacto, pois não é limitado.
- (iii) O intervalo]0, 1 não é compacto, pois não é um subconjunto fechado de ℝ.

Exercício 3.2.16. Verdadeiro ou falso? A aplicação contínua e bijectiva $f: [0, 2\pi[\to \mathbb{S}^1, t \mapsto (\cos t, \sin t) \text{ é um homeomorfismo.}]$

Proposição 3.2.17. Sejam X um espaço compacto, Y um espaço de Hausdorff e $f: X \to Y$ uma aplicação contínua e bijectiva. Então f é um homeomorfismo.

Demonstração. Seja $B \subseteq X$ fechado. Então B é compacto. Pela Proposição 3.2.4, seguese que f(B) é compacto. Pela Proposição 3.2.12, como Y é um espaço de Hausdorff, $(f^{-1})^{-1}(B) = f(B)$ é fechado em Y. Assim, f^{-1} é contínua e f é um homeomorfismo. \square

Exemplos 3.2.18. (i) A aplicação contínua e bijectiva

$$I/_{\{0,1\}} o \mathbb{S}^1$$
, $[t] \mapsto (\cos 2\pi t, \sin 2\pi t)$

do Exemplo 2.2.7 é um homeomorfismo, pois $I_{\{0,1\}}$ é compacto e \mathbb{S}^1 é um espaço de Hausdorff.

- (ii) Tem-se $\mathbb{R}P^1 \approx \mathbb{S}^1$. Com efeito, considerando a multiplicação dos números complexos em \mathbb{S}^1 , temos a aplicação contínua $f: \mathbb{S}^1 \to \mathbb{S}^1$, $z \mapsto z^2$. Como f(-z) = f(z), f induz a aplicação contínua $\bar{f}: \mathbb{R}P^1 \to \mathbb{S}^1$, $[z] \mapsto z^2$. Esta aplicação é bijectiva. Como $\mathbb{R}P^1$ é um espaço quociente de um espaço compacto, $\mathbb{R}P^1$ é compacto. Como \mathbb{S}^1 é um espaço de Hausdorff, segue-se que \bar{f} é um homeomorfismo.
- **Exercício 3.2.19.** (i) Seja T o espaço quociente $I \times I$ onde \sim é a relação de equivalência induzida por $(0, t) \sim (1, t)$ e $(t, 0) \sim (t, 1)$. Mostre que T é homeomorfo ao toro $\mathbb{S}^1 \times \mathbb{S}^1$.
- (ii) Mostre que $C\mathbb{S}^n \approx \mathbb{D}^{n+1}$.

Capítulo 4

Homotopia e o grupo fundamental

4.1 Homotopia

Definição 4.1.1. Duas aplicações contínuas $f,g:X\to Y$ são chamadas *homotópicas* se existe uma aplicação contínua $H\colon X\times I\to Y$ tal que, para todo o $x\in X$, H(x,0)=f(x) e H(x,1)=g(x). A aplicação H diz-se uma *homotopia* de f para g. Escrevemos $f\simeq g$ para indicar que f e g são homotópicas e $H\colon f\simeq g$ para indicar que f é uma homotopia de f para g.

- **Exemplos 4.1.2.** (i) Para todo o espaço topológico X, as aplicações i_0 , $i_1: X \to X \times I$, $i_0(x) = (x,0)$, $i_1(x) = (x,1)$ são homotópicas. Uma homotopia $H: X \times I \to X \times I$ de i_0 para i_1 é dada por H(x,t) = (x,t).
- (ii) Qualquer aplicação contínua $f: X \to \mathbb{R}^n$ é homotópica à aplicação constante $c: X \to \mathbb{R}^n$, c(x) = 0. Uma homotopia $H: f \simeq c$ é dada por $H(x, t) = (1 t) \cdot f(x)$.
- (iii) Um espaço topológico X é conexo por caminhos se e só se quaisquer duas aplicações $f,g:\{*\}\to X$ são homotópicas.

Proposição 4.1.3. A relação \simeq é uma relação de equivalência no conjunto das aplicações contínuas de X em Y.

Demonstração. Para todo a aplicação contínua $f: X \to Y$, temos $f \simeq f$ através da homotopia $H: X \times I \to Y$ dada por H(x,t) = f(x). A relação \simeq é portanto reflexiva.

Se $H: X \times I \to Y$ for uma homotopia de f para g, então uma homotopia $K: X \times I \to Y$ de g para f é dada por K(x, t) = H(x, 1 - t). Logo \simeq é simétrica.

Dadas homotopias $F: f \simeq g \in G: g \simeq h$, uma homotopia $H: f \simeq h$ é dada por

$$H(x,t) = \begin{cases} F(x,2t), & 0 \le t \le \frac{1}{2}, \\ G(x,2t-1), & \frac{1}{2} \le t \le 1. \end{cases}$$

Assim, \simeq é transitiva.

Definição 4.1.4. A classe de equivalência para a relação \simeq de uma aplicação contínua $f: X \to Y$ é chamada a *classe de homotopia* da f e é denotada por [f]. O conjunto das classes de homotopia de aplicações contínuas de X em Y é denotado por [X,Y].

Exercício 4.1.5. Mostre que $[X, \mathbb{S}^1]$ é um grupo comutativo relativamente a multiplicação dada por $[f] \cdot [g] = [f \cdot g]$.

Proposição 4.1.6. A relação \simeq é compatível com a composição, isto é, se $f \simeq f' \colon X \to Y$ e $g \simeq g' \colon Y \to Z$, então $g \circ f \simeq g' \circ f' \colon X \to Z$.

Demonstração. Consideremos homotopias $F: f \simeq f'$ e $G: g \simeq g'$. Então temos as homotopias $g \circ F: g \circ f \simeq g \circ f'$ e $G \circ (f' \times id_I): g \circ f' \simeq g' \circ f'$. Como a relação \simeq é transitiva, obtemos $g \circ f \simeq g' \circ f': X \to Z$.

Para poder construir homotopias em espaços quocientes precisamos do seguinte resultado:

Proposição 4.1.7. Sejam X um espaço topológico e \sim_X uma relação de equivalência em X. Seja $\sim_{X\times I}$ a relação de equivalência em $X\times I$ definida por

$$(x,t) \sim_{X \times I} (y,s) \Leftrightarrow x \sim_X y \quad e \quad s = t.$$

Então a aplicação canónica

$$\phi \colon X \times I_{\nearrow_{X \times I}} \to X_{\nearrow_{X} \times I}, \quad [(x,t)] \mapsto ([x],t)$$

é um homeomorfismo.

Demonstração. Sejam $p: X \to X/_{\sim_X}$ e $q: X \times I \to X \times I/_{\sim_{X \times I}}$ as projeções canónicas. Então temos os seguinte diagrama comutativo de aplicações contínuas:

$$X \times I \xrightarrow{p \times id_I} X /_{\sim_X} \times I$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Por construção, ϕ é bijectiva. Basta então mostrar que ϕ envia abertos em abertos. Seja $A \subseteq X \times I_{\nearrow_{X \times I}}$ aberto. Seja $([x_0], t_0) \in \phi(A)$. Mostramos que $\phi(A)$ é uma vizinhança de $([x_0], t_0)$. Como A é aberto em $X \times I_{\nearrow_{X \times I}}$, $(p \times id_I)^{-1}(\phi(A))$ é aberto em $X \times I$. Com efeito, temos

$$(p \times id_I)^{-1}(\phi(A)) = (\phi \circ q)^{-1}(\phi(A)) = q^{-1}(\phi^{-1}(\phi(A))) = q^{-1}(A),$$

que é aberto em $X \times I$. Logo existe $\varepsilon > 0$ tal que

$$\{x_0\} \times (I \cap [t_0 - \varepsilon, t_0 + \varepsilon]) \subseteq (p \times id_I)^{-1}(\phi(A)).$$

Sejam $K=I\cap [t_0-arepsilon$, $t_0+arepsilon]$ e

$$V = \{x \in X \mid \{x\} \times K \subseteq (p \times id_I)^{-1}(\phi(A))\}.$$

Vejamos que V é aberto em X. Seja $x \in V$. Como $(p \times id_I)^{-1}(\phi(A))$ é aberto em $X \times I$, temos que, para cada $t \in K$, existem vizinhanças abertas $U(t) \subseteq X$ de x e $W(t) \subseteq I$ de t tais que $U(t) \times W(t) \subseteq (p \times id_I)^{-1}(\phi(A))$. Como K é compacto, existem $t_1, \ldots, t_n \in K$ tais que $K \subseteq \bigcup_{i=1}^n W(t_i)$. Seja $U = \bigcap_{i=1}^n U(t_i)$. Então U é uma vizinhança aberta de x e $U \times K \subseteq (p \times id_I)^{-1}(\phi(A))$. Portanto $U \subseteq V$, pelo que V é uma vizinhança de x. Segue-se que V é vizinhança de todos os seus pontos e portanto aberto.

Temos $V=\{x\in X\,|\,\{[x]\}\times K\subseteq \phi(A)\}$ e portanto $p^{-1}(p(V))=V$. Com efeito, seja $x\in p^{-1}(p(V))$. Então $p(x)\in p(V)$, pelo que existe $y\in V$ com [x]=p(x)=p(y)=[y]. Logo $\{[x]\}\times K=\{[y]\}\times K\subseteq \phi(A)$, ou seja, $x\in V$.

Portanto p(V) é aberto em X_{\sim_X} . Como $\{x_0\} \times K \subseteq (p \times id_I)^{-1}(\phi(A))$, temos $x_0 \in V$. Logo $p(V) \times K$ é uma vizinhança de $([x_0], t_0)$ em $X_{\sim_X} \times I$. Como $p(V) \times K \subseteq \phi(A)$, $\phi(A)$ é uma vizinhança de de $([x_0], t_0)$ em $X_{\sim_X} \times I$. Deste modo, $\phi(A)$ é vizinhança de todos os seus pontos e portanto aberto em $X_{\sim_X} \times I$.

Corolário 4.1.8. Sejam X e Y espaços topológicos, \sim uma relação de equivalência em X, $p\colon X\to X/_{\sim}$ a projeção canónica e $H\colon X/_{\sim}\times I\to Y$ uma aplicação. Então H é contínua se e só se a composta $H\circ (p\times id_I)\colon X\times I\to Y$ é contínua.

Demonstração. Sejam $\sim_{X\times I}$ a relação de equivalência induzida por \sim em $X\times I$, $q\colon X\times I\to X\times I/_{\sim_{X\times I}}$ a projeção canónica e $\phi\colon X\times I/_{\sim_{X\times I}}\to X/_{\sim}\times I$ o homeomorfismo $[(x,t)]\mapsto ([x],t)$. Como ϕ é um homeomorfismo, H é contínua se e só se $H\circ \phi$ é contínua. Pela Corolário 2.2.8, isto acontece se e só se $H\circ \phi\circ q=H\circ (p\times id_I)$ é contínua. \square

Exemplo 4.1.9. Para todo o espaço topológico não vazio, a identidade $id_{CX}: CX \to CX$ é homotópica à aplicação constante $f: CX \to CX$, $[(x,s)] \mapsto [(x,1)]$. Uma homotopia $H: CX \times I \to CX$ de id_{CX} para f é dada por H([(x,s)],t) = [(x,(1-s)t+s)]. Para estabelecer que H é contínua, basta verificar a continuidade da composta $H \circ (p \times id_I)$, onde $p: X \times I \to CX$ é a projeção canónica $(x,s) \mapsto [(x,s)]$.

4.2 Equivalências de homotopia

Definição 4.2.1. Uma aplicação contínua $f: X \to Y$ diz-se uma equivalência de homotopia se existe uma aplicação contínua $g: Y \to X$ tal que $g \circ f \simeq id_X$ e $f \circ g \simeq id_Y$. Diz-se que dois espaços topológicos são homotopicamente equivalentes ou do mesmo tipo de homotopia se existe uma equivalência de homotopia entre eles. Escrevemos $f: X \xrightarrow{\simeq} Y$ para indicar que f é uma equivalência de homotopia e $X \simeq Y$ para indicar que X e Y são homotopicamente equivalentes.

Notas 4.2.2. (i) Tem-se $X \approx Y \Rightarrow X \simeq Y$.

- (ii) A relação \simeq é uma relação de equivalência na classe dos espaços topológicos (exercício).
- **Exemplos 4.2.3.** (i) Para qualquer espaço topológico X, o cilindro $X \times I$ tem o mesmo tipo de homotopia que X. A projeção $pr_X \colon X \times I \to X$ é uma equivalência de homotopia. Com efeito, a aplicação contínua $i_0 \colon X \to X \times I$ dada por $i_0(x) = (x,0)$ satisfaz $pr_X \circ i_0 = id_X$ e $i_0 \circ pr_X \simeq id_{X \times I}$. Uma homotopia $H \colon i_0 \circ pr_X \simeq id_{X \times I}$ é dada por

$$H((x,s),t)=(x,st).$$

- (ii) Tem-se $\mathbb{R}^n \simeq \{0\}$. A única aplicação $r \colon \mathbb{R}^n \to \{0\}$ é uma equivalência de homotopia. Para a inclusão $i \colon \{0\} \hookrightarrow \mathbb{R}^n$, $r \circ i = id_{\{0\}}$ e, pelo Exemplo 4.1.2 (ii), $i \circ r \simeq id_{\mathbb{R}^n}$.
- (iii) Tem-se $\mathbb{S}^n\simeq\mathbb{R}^{n+1}\setminus\{0\}$. A inclusão $i\colon\mathbb{S}^n\hookrightarrow\mathbb{R}^{n+1}\setminus\{0\}$ é uma equivalência de homotopia. Com efeito, a aplicação contínua $r\colon\mathbb{R}^{n+1}\setminus\{0\}\to\mathbb{S}^n$ dada por $r(x)=\frac{x}{\|x\|}$ satisfaz $r\circ i=id_{\mathbb{S}^n}$ e $i\circ r\simeq id_{\mathbb{R}^{n+1}\setminus\{0\}}$. Uma homotopia $H\colon i\circ r\simeq id_{\mathbb{R}^{n+1}\setminus\{0\}}$ é dada por $H(x,t)=tx+(1-t)\frac{x}{\|x\|}$.

Exercício 4.2.4. Mostre que a fita de Möbius e o cilindro $\mathbb{S}^1 \times I$ têm o mesmo tipo de homotopia.

Exercício 4.2.5. Sejam $f: X \to Y$ uma equivalência de homotopia e $g \simeq f$. Mostre que g é uma equivalência de homotopia.

Exercício 4.2.6. Mostre que se $X \simeq Y$, então X é conexo por caminhos se e só se Y é conexo por caminhos.

4.3 Aplicações homotopicamente triviais e espaços contráteis

Definição 4.3.1. Uma aplicação contínua diz-se *homotopicamente trivial* se é homotópica a uma aplicação constante.

Exemplo 4.3.2. Pelo Exemplo 4.1.2 (ii), qualquer aplicação contínua $X \to \mathbb{R}^n$ é homotopicamente trivial.

Proposição 4.3.3. Sejam X e Y dois espaços topológicos não vazios. Então uma aplicação contínua $f: X \to Y$ é homotopicamente trivial se e só se existe uma aplicação contínua $F: CX \to Y$ tal que, para todo o $x \in X$, F([(x,0)]) = f(x).

Demonstração. Seja $p: X \times I \to CX = {}^{X \times I}/{}_{X \times \{1\}}$ a projeção canónica, p(x,t) = [(x,t)].

Suponhamos primeiramente que f é homotopicamente trivial. Então existe uma aplicação constante $c\colon X\to Y$ tal que $f\simeq c$. Seja $y\in Y$ tal que c(x)=y para todo o $x\in X$ e seja $H\colon X\times I\to Y$ uma homotopia de f para c. Então H(x,1)=y para todo o $x\in X$. Logo existe uma única aplicação contínua $F\colon CX\to Y$ tal que $F\circ p=H$. Tem-se então F([(x,0)])=H(x,0)=f(x) para todo o $x\in X$.

Suponhamos agora que existe $F: CX \to Y$ tal que F([(x,0)]) = f(x) para todo o $x \in X$. Seja $c: X \to Y$ a aplicação constante definida por c(x) = F([(x,1)]) e seja $H: X \times I \to Y$ definida por $H = F \circ p$. Então H(x,0) = F([(x,0)]) = f(x) e H(x,1) = F([(x,1)]) = c(x). Assim, $f \simeq c$.

Exercício 4.3.4. Sejam $f: X \to Y$ e $g: Y \to Z$ duas aplicações contínuas. Mostre que se uma destas aplicações é homotopicamente trivial, então a composta $g \circ f$ é homotopicamente trivial.

Exercício 4.3.5. Sejam $f, g: X \to Y$ duas aplicações homotopicamente triviais com Y conexo por caminhos. Mostre que $f \simeq g$.

Definição 4.3.6. Um espaço topológico X diz-se *contrátil* se $X \simeq \{*\}$.

Proposição 4.3.7. Um espaço topológico X é contrátil se e só se id_X é homotopicamente trivial.

Demonstração. Suponhamos primeiramente que X é contrátil. Então existem aplicações contínuas $f: X \to \{*\}$ e $g: \{*\} \to X$ tais que $f \circ g \simeq id_{\{*\}}$ e $g \circ f \simeq id_X$. Como $g \circ f$ é constante, id_X é homotopicamente trivial.

Suponhamos agora que id_X é homotopicamente trivial. Então existe $* \in X$ tal que id_X é homotopica à aplicação constante $c \colon X \to X$, c(x) = *. Consideremos as aplicações contínuas $f \colon X \to \{*\}$ e $g \colon \{*\} \hookrightarrow X$. Então $c = g \circ f$, pelo que $g \circ f \simeq id_X$. Por outro lado, $f \circ g = id_{\{*\}}$. Portanto $X \simeq \{*\}$.

Exemplos 4.3.8. (i) Pelo Exemplo 4.1.9, para $X \neq \emptyset$, CX é contrátil.

- (ii) Qualquer subespaço não vazio convexo $X\subseteq\mathbb{R}^n$ é contrátil. Com efeito, seja $a\in X$. Então a aplicação $H\colon X\times I\to X$ definida por H(x,t)=(1-t)x+ta é uma homotopia de id_X para a aplicação constante $X\to X$, $x\mapsto a$.
- (iii) Se X for contrátil e $Y \simeq X$, então Y é contrátil.

Exercício 4.3.9. Seja X um espaço topológico não vazio. Mostre que uma aplicação contínua $f: X \to Y$ é homotopicamente trivial se e só se existem um espaço contrátil D e aplicações contínuas $\alpha: X \to D$ e $\beta: D \to Y$ tais que $f = \beta \circ \alpha$.

Exercício 4.3.10. Mostre que qualquer aplicação contínua não sobrejectiva $f: X \to \mathbb{S}^n$ é homotopicamente trivial.

Exercício 4.3.11. Mostre que $X \times Y$ é contrátil se e só se X e Y são contráteis.

4.4 O grupo fundamental

Definição 4.4.1. Sejam X um espaço topológico e $A \subseteq X$ um subespaço. Duas aplicações contínuas $f,g:X\to Y$ com $f|_A=g|_A$ dizem-se homotópicas relativamente a A, $f\simeq g$ rel. A, se existe uma homotopia $H\colon X\times I\to Y$ de f para g tal que, para todo o $a\in A$ e todo o $t\in I$, H(a,t)=f(a)=g(a). Escrevemos $H\colon f\simeq g$ rel. A para indicar que H é uma tal homotopia relativa a A.

Exercício 4.4.2. Mostre que \simeq rel. A é uma relação de equivalência.

Notação 4.4.3. A classe de homotopia relativamente a A de uma aplicação contínua $f: X \to Y$, isto é, a classe de equivalência de f para a relação \simeq rel. A será denotada por $[f]_{\text{rel. }A}$.

Definição 4.4.4. Sejam X um espaço topológico e $\alpha, \beta: I \to X$ dois caminhos tais que $\alpha(1) = \beta(0)$. A *concatenação* de α e β é o caminho $\alpha \cdot \beta: I \to X$ definido por

$$lpha \cdot eta(t) = \left\{egin{array}{ll} lpha(2t), & 0 \leq t \leq rac{1}{2}, \ eta(2t-1), & rac{1}{2} \leq t \leq 1. \end{array}
ight.$$

Proposição 4.4.5. Sejam $\alpha, \beta, \alpha', \beta' \colon I \to X$ caminhos tais que $\alpha(0) = \alpha'(0), \alpha(1) = \alpha'(1) = \beta(0) = \beta'(0), \beta(1) = \beta'(1), \alpha \simeq \alpha'$ rel. $\{0,1\}$ e $\beta \simeq \beta'$ rel. $\{0,1\}$. Então

 $\alpha \cdot \beta \simeq \alpha' \cdot \beta'$ rel. $\{0, 1\}$.

Demonstração. Sejam $F: \alpha \simeq \alpha'$ rel. $\{0,1\}$ e $G: \beta \simeq \beta'$ rel. $\{0,1\}$. Definimos uma aplicação contínua $H: I \times I \to X$ por

$$H(s,t) = \left\{ egin{array}{ll} F(2s,t), & s \leq rac{1}{2} \ G(2s-1,t), & s \geq rac{1}{2}. \end{array}
ight.$$

Temos

$$egin{aligned} H(s,0) &= \left\{ egin{aligned} F(2s,0) &= lpha(2s), & s \leq rac{1}{2} \ G(2s-1,0) &= eta(2s-1), & s \geq rac{1}{2} \end{aligned}
ight. = lpha \cdot eta(s), \ H(s,1) &= \left\{ egin{aligned} F(2s,1) &= lpha'(2s), & s \leq rac{1}{2} \ G(2s-1,1) &= eta'(2s-1), & s \geq rac{1}{2} \end{aligned}
ight. = lpha' \cdot eta'(s), \end{aligned}$$

 $H(0,t)=F(0,t)=\alpha(0)=\alpha\cdot\beta(0)$ e $H(1,t)=G(1,t)=\beta(1)=\alpha\cdot\beta(1)$. Portanto $H:\alpha\cdot\beta\simeq\alpha'\cdot\beta'$ rel. $\{0,1\}$.

Proposição 4.4.6. Sejam $\alpha, \beta, \gamma: I \to X$ caminhos tais que $\alpha(1) = \beta(0)$ e $\beta(1) = \gamma(0)$. Então $(\alpha \cdot \beta) \cdot \gamma \simeq \alpha \cdot (\beta \cdot \gamma)$ rel. $\{0, 1\}$.

Demonstração. Temos

$$(lpha\cdoteta)\cdot\gamma(s)=\left\{egin{array}{ll} lpha\cdoteta(2s),&0\leq s\leqrac{1}{2},\ \gamma(2s-1),&rac{1}{2}\leq s\leq 1 \end{array}
ight. = \left\{egin{array}{ll} lpha(4s),&0\leq s\leqrac{1}{4},\ eta(4s-1),&rac{1}{4}\leq s\leqrac{1}{2},\ \gamma(2s-1),&rac{1}{2}\leq s\leq 1 \end{array}
ight.$$

е

$$lpha\cdot(eta\cdot\gamma)(s)=\left\{egin{array}{ll} lpha(2s), & 0\leq s\leqrac{1}{2},\ eta\cdot\gamma(2s-1), & rac{1}{2}\leq s\leq 1 \end{array}
ight. =\left\{egin{array}{ll} lpha(2s), & 0\leq s\leqrac{1}{2},\ eta(4s-2), & rac{1}{2}\leq s\leqrac{3}{4},\ \gamma(4s-3), & rac{3}{4}\leq s\leq 1. \end{array}
ight.$$

Uma homotopia $H\colon (lpha\cdotoldsymbol{eta})\cdot \gamma\simeq lpha\cdot (oldsymbol{eta}\cdot \gamma)$ rel. $\{0,1\}$ é dada por

$$H(s,t)=\left\{egin{array}{ll} lpha(rac{4s}{t+1}), & 0\leq s\leqrac{t+1}{4},\ eta(4s-t-1), & rac{t+1}{4}\leq s\leqrac{t+2}{4},\ \gamma(rac{4s-2-t}{2-t}), & rac{t+2}{4}\leq s\leq 1. \end{array}
ight.$$

Definição 4.4.7. O *inverso* de um caminho $\alpha \colon I \to X$ é o caminho $\alpha^{-1} \colon I \to X$ definido por $\alpha^{-1}(s) = \alpha(1-s)$.

Notação 4.4.8. Dado $x \in X$, escrevemos c_x para denotar o caminho constante $I \to X$, $s \mapsto x$.

Proposição 4.4.9. *Seja* $\alpha: I \to X$ *um caminho. Então* $\alpha \cdot \alpha^{-1} \simeq c_{\alpha(0)}$ *rel.* $\{0,1\}$.

Demonstração. Para $t \in I$, seja $\alpha_t \colon I \to X$ o caminho definido por $\alpha_t(s) = \alpha(st)$. Tem-se $\alpha_t(0) = \alpha(0)$ e $\alpha_t(1) = \alpha(t)$. Consideremos a aplicação contínua $H \colon I \times I \to X$ dada por

$$H(s,t)=lpha_t\cdotlpha_t^{-1}(s)=\left\{egin{array}{ll} lpha_t(2s)=lpha(2st), & s\leqrac12,\ lpha_t^{-1}(2s-1)=lpha_t(2-2s)=lpha(t(2-2s)), & s\geqrac12. \end{array}
ight.$$

Então temos $H(s,0) = \alpha(0) = c_{\alpha(0)}(s), \ H(s,1) = \alpha \cdot \alpha^{-1}(s), \ H(0,t) = \alpha(0) = \alpha \cdot \alpha^{-1}(0)$ e $H(1,t) = \alpha(0) = \alpha \cdot \alpha^{-1}(1)$. Logo $H: c_{\alpha(0)} \simeq \alpha \cdot \alpha^{-1}$ rel. $\{0,1\}$.

Exercício 4.4.10. Mostre que, para cada caminho $\alpha\colon I\to X$, $c_{\alpha(0)}\cdot \alpha\simeq \alpha$ rel. $\{0,1\}$ e $\alpha\cdot c_{\alpha(1)}\simeq \alpha$ rel. $\{0,1\}$

Definição 4.4.11. Um espaço com *ponto de base* é um par (X, x_0) em que X é um espaço topológico e $x_0 \in X$. O *grupo fundamental* de um espaço com ponto de base (X, x_0) é o conjunto

$$\pi_1(X, x_0) = \{ [\alpha]_{\mathsf{rel}, \{0,1\}} \mid \alpha \colon I \to X \text{ caminho com } \alpha(0) = \alpha(1) = x_0 \}$$

munido da multiplicação dada por

$$[\alpha]_{\mathsf{rel.}\{0,1\}} \cdot [\beta]_{\mathsf{rel.}\{0,1\}} = [\alpha \cdot \beta]_{\mathsf{rel.}\{0,1\}}.$$

Se não houver mal-entendidos possíveis, escreveremos $[\alpha]$ em vez de $[\alpha]_{\text{rel.}\{0,1\}}$.

Nota 4.4.12. Pela Proposição 4.4.5, a multiplicação do grupo fundamental está bem definida.

Proposição 4.4.13. O grupo fundamental $\pi_1(X, x_0)$ é um grupo. O elemento neutro é $1 = [c_{x_0}] \ e \ [\alpha]^{-1} = [\alpha^{-1}].$

Demonstração. Pela Proposição 4.4.6, temos

$$[\alpha]\cdot([\beta]\cdot[\gamma])=[\alpha]\cdot[\beta\cdot\gamma]=[\alpha\cdot(\beta\cdot\gamma)]=[(\alpha\cdot\beta)\cdot\gamma]=[\alpha\cdot\beta]\cdot[\gamma]=([\alpha]\cdot[\beta])\cdot[\gamma].$$

Pelo Exercício 4.4.10, temos

$$[c_{\mathsf{x}_0}] \cdot [\alpha] = [c_{\mathsf{x}_0} \cdot \alpha] = [\alpha] = [\alpha \cdot c_{\mathsf{x}_0}] = [\alpha] \cdot [c_{\mathsf{x}_0}].$$

Pela Proposição 4.4.9, temos

$$[\alpha]\cdot[\alpha^{-1}]=[\alpha\cdot\alpha^{-1}]=[c_{\mathsf{x_0}}]=[\alpha^{-1}\cdot(\alpha^{-1})^{-1}]=[\alpha^{-1}\cdot\alpha]=[\alpha^{-1}]\cdot[\alpha].$$

4.5 Homomorfismos entre grupos fundamentais

Notação 4.5.1. Sejam $\alpha_1, \ldots \alpha_n \colon I \to X$ caminhos tais que $\alpha_i(1) = \alpha_{i+1}(0)$ para todo o $i \in \{1, \ldots, n-1\}$. Pelas Proposições 4.4.5 e 4.4.6, alterar os parênteses na concatenação $\alpha_1 \cdot (\alpha_2 \cdot (\cdots \alpha_n) \cdots)$ não altera a sua classe de homotopia (rel. $\{0,1\}$), que poderemos então denotar por $[\alpha_1 \cdot \alpha_2 \cdots \alpha_n]$.

Proposição 4.5.2. Sejam X um espaço topológico, $x_0, x_1 \in X$ e $\omega : I \to X$ um caminho de x_0 para x_1 . Então a aplicação $\omega_\sharp \colon \pi_1(X,x_0) \to \pi_1(X,x_1)$ definida por $\omega_\sharp([\alpha]) = [\omega^{-1} \cdot \alpha \cdot \omega]$ é um isomorfismo de grupos.

Demonstração. Mostramos primeiramente que ω_{\sharp} é um homomorfismo de grupos. Temos

$$egin{aligned} \omega_{\sharp}([lpha]\cdot[eta]) &= \omega_{\sharp}([lpha\cdoteta]) = [\omega^{-1}\cdotlpha\cdoteta\cdot\omega] = [\omega^{-1}\cdotlpha\cdot c_{st_0}\cdoteta\cdot\omega] \\ &= [\omega^{-1}\cdotlpha\cdot\omega\cdot\omega^{-1}\cdoteta\cdot\omega] = [\omega^{-1}\cdotlpha\cdot\omega]\cdot[\omega^{-1}\cdoteta\cdot\omega] = \omega_{\sharp}([lpha])\cdot\omega_{\sharp}([eta]). \end{aligned}$$

Do mesmo modo, $\omega_{\sharp}^{-1} \colon \pi_1(X,x_1) o \pi_1(X,x_0)$ é um homomorfismo. Temos

$$\omega_{\sharp}^{-1}\circ\omega_{\sharp}([\alpha])=\omega_{\sharp}^{-1}([\omega^{-1}\cdot\alpha\cdot\omega])=[\omega\cdot\omega^{-1}\cdot\alpha\cdot\omega\cdot\omega^{-1}]=[\alpha]$$

e, de maneira análoga, $\omega_\sharp \circ \omega_\sharp^{-1} = i d_{\pi_1(X, x_1)}.$

Exercício 4.5.3. Sejam $f: X \to Y$ uma aplicação contínua e $\alpha, \beta: I \to X$ dois caminhos homotópicos rel. $\{0,1\}$. Mostre que $f \circ \alpha \simeq f \circ \beta$ rel. $\{0,1\}$.

Definição 4.5.4. Sejam (X, x_0) e (Y, y_0) dois espaços com ponto de base e $f: X \to Y$ uma aplicação contínua tal que $f(x_0) = y_0$. Definimos a *aplicação induzida*

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

por $f_*([\alpha]) = [f \circ \alpha]$.

Proposição 4.5.5. A aplicação induzida f_* é um homomorfismo de grupos.

Demonstração. Temos

$$f_*([lpha] \cdot [eta]) = f_*([lpha \cdot eta]) = [f \circ (lpha \cdot eta)] = [(f \circ lpha) \cdot (f \circ eta)]$$

$$= [f \circ lpha] \cdot [f \circ eta] = f_*([lpha]) \cdot f_*([eta]).$$

Proposição 4.5.6. Sejam $f,g:X\to Y$ duas aplicações homotópicas e seja $H:f\simeq g$. Seja $x_0\in X$ e sejam $y_0=f(x_0)$ e $y_1=g(x_0)$. Consideremos o caminho $\omega\colon I\to Y$ de y_0 para y_1 dado por $\omega(t)=H(x_0,t)$ e o isomorfismo $\omega_\sharp\colon \pi_1(Y,y_0)\to \pi_1(Y,y_1)$ definido por $\omega_\sharp([\alpha])=[\omega^{-1}\cdot\alpha\cdot\omega]$. Então temos o seguinte diagrama comutativo:

$$\pi_1(X, x_0) \xrightarrow{f_*} \pi_1(Y, y_0)$$

$$\cong \downarrow^{\omega_{\sharp}}$$

$$\pi_1(Y, y_1).$$

Demonstração. Seja $[\alpha] \in \pi_1(X, x_0)$. Consideremos a homotopia $K: I \times I \to Y$ definida por

$$\mathcal{K}(s,t) = \left\{ egin{array}{ll} \omega(1-t4s), & s \leq rac{1}{4}, \ H(lpha(4s-1),1-t), & rac{1}{4} \leq s \leq rac{1}{2}, \ \omega(1-t+t(2s-1)), & s \geq rac{1}{2}. \end{array}
ight.$$

Esta homotopia está bem definida, pois temos $\omega(1-t)=H(x_0,1-t)=H(\alpha(0),1-t)=H(\alpha(1),1-t)$. Temos $K(0,t)=\omega(1)=y_1$, $K(1,t)=\omega(1)=y_1$,

$$\mathcal{K}(s,0) = \left\{ egin{array}{ll} \omega(1) = c_{y_1}(4s), & s \leq rac{1}{4}, \ H(lpha(4s-1),1) = g \circ lpha(4s-1), & rac{1}{4} \leq s \leq rac{1}{2}, \ \omega(1) = c_{y_1}(2s-1), & s \geq rac{1}{2} \end{array}
ight.$$

$$= (c_{v_1} \cdot (g \circ \alpha)) \cdot c_{v_1}(s)$$

е

$$egin{align} \mathcal{K}(s,1) &= egin{cases} \omega(1-4s) = \omega^{-1}(4s), & s \leq rac{1}{4}, \ &\mathcal{H}(lpha(4s-1),0) = f \circ lpha(4s-1), & rac{1}{4} \leq s \leq rac{1}{2}, \ &\omega(2s-1), & s \geq rac{1}{2} \end{cases} \ &= (\omega^{-1} \cdot (f \circ lpha)) \cdot \omega. \end{split}$$

Portanto

$$\omega_\sharp(f_*([\alpha]) = \omega_\sharp([f \circ \alpha]) = [\omega^{-1} \cdot (f \circ \alpha) \cdot \omega] = [c_{y_1} \cdot (g \circ \alpha) \cdot c_{y_1}] = [g \circ \alpha] = g_*([\alpha]). \quad \Box$$

Teorema 4.5.7. Sejam X e Y dois espaços conexos por caminhos do mesmo tipo de homotopia. Então, para todo o $x_0 \in X$ e todo o $y_0 \in Y$, $\pi_1(X, x_0) \cong \pi_1(Y, y_0)$.

Demonstração. Sejam $f: X \to Y$ e $g: Y \to X$ equivalências de homotopia tais que $g \circ f \simeq id_X$ e $f \circ g \simeq id_Y$. Sejam $y_1 = f(x_0)$, $x_1 = g(y_1)$ e $y_2 = f(x_1)$. Pela Proposição 4.5.6, existem caminhos $\omega: I \to X$ de x_1 para x_0 e $\nu: I \to Y$ de y_2 para y_1 tais que os diagramas

$$\begin{array}{lll} \pi_1(X,x_0) \xrightarrow{f_*} \pi_1(Y,y_1) & \pi_1(Y,y_1) & \pi_1(Y,y_1) \xrightarrow{g_*} \pi_1(X,x_1) \\ id_{X*} & \downarrow = & \downarrow g_* & id_{Y*} & \downarrow = & \downarrow f_* \\ \pi_1(X,x_0) & \longleftarrow_{\omega_{\sharp}} \pi_1(X,x_1) & \pi_1(Y,y_1) & \longleftarrow_{\nu_{\sharp}} \pi_1(Y,y_2), \end{array}$$

onde ω_{\sharp} e ν_{\sharp} são os isomorfismos definidos por $\omega_{\sharp}([\alpha]) = [\omega^{-1} \cdot \alpha \cdot \omega]$ e $\nu_{\sharp}([\alpha]) = [\nu^{-1} \cdot \alpha \cdot \nu]$, são comutativos. O diagrama à esquerda mostra que o homomorfismo $g_* \colon \pi_1(Y, y_1) \to \pi_1(X, x_1)$ é sobrejectivo. Pelo diagrama à direita, g_* é injectivo e portanto um isomorfismo. Como X e Y são conexos por caminhos, obtemos

$$\pi_1(X,\mathsf{x}_0)\cong\pi_1(X,\mathsf{x}_1)\cong\pi_1(Y,\mathsf{y}_1)\cong\pi_1(Y,\mathsf{y}_0).$$

Corolário 4.5.8. Se X é contrátil, então $\pi_1(X, x_0) \cong \{1\}$ para todo o $x_0 \in X$.

4.6 Espaços simplesmente conexos

Definição 4.6.1. Um espaço topológico X diz-se *simplesmente conexo* se é conexo por caminhos e $\pi_1(X, x_0) \cong \{1\}$ para algum (e então todo o) $x_0 \in X$.

Nota 4.6.2. Qualquer espaço contrátil é simplesmente conexo.

Exercício 4.6.3. Seja X um espaço não vazio conexo por caminhos. Mostre que X é simplesmente conexo se e só se cada duas aplicações contínuas $f,g:[a,b]\to X$ (a< b) com f(a)=g(a) e f(b)=g(b) são homotópicas rel. $\{a,b\}$.

Teorema 4.6.4. Para $n \geq 2$, \mathbb{S}^n é simplesmente conexo.

Demonstração. Consideremos o polo sul $x_0=(0,\ldots,0,-1)$ e o polo norte $x=(0,\ldots,0,1)$. Seja $\alpha\colon I\to\mathbb{S}^n$ um caminho com $\alpha(0)=\alpha(1)=x_0$. Consideremos o hemisfério norte $\mathbb{S}^n_+=\{(x_1,\ldots,x_{n+1})\in\mathbb{S}^n\mid x_{n+1}\geq 0\}$ e o subconjunto $A=\{(x_1,\ldots,x_{n+1})\in\mathbb{S}^n\mid x_{n+1}>0\}$. Então $\mathbb{S}^n_+\approx\mathbb{D}^n$ e $\mathbb{S}^n_+\setminus A\approx\mathbb{S}^{n-1}$. Como A é aberto em \mathbb{S}^n e $x_0\notin A$, $\alpha^{-1}(A)$ é aberto em [0,1[. Logo $\alpha^{-1}(A)$ é uma reunião de intervalos abertos disjuntos $]a_i,b_i[$. Como os intervalos $]a_i,b_i[$ são disjuntos, $\alpha(a_i),\alpha(b_i)\notin A$. Como $\alpha^{-1}(\mathbb{S}^n_+)$ é fechado em I e $]a_i,b_i[\subseteq \alpha^{-1}(\mathbb{S}^n_+)$, temos $[a_i,b_i]=\overline{]a_i,b_i[}\subseteq \alpha^{-1}(\mathbb{S}^n_+)$. Portanto $\alpha(a_i),\alpha(b_i)\in\mathbb{S}^n_+\setminus A$.

Seja f_i : $[a_i, b_i] \to \mathbb{S}^n_+ \setminus A$ uma aplicação contínua tal que $f(a_i) = \alpha(a_i)$ e $f(b_i) = \alpha(b_i)$. Tal aplicação existe porque $\mathbb{S}^n_+ \setminus A \approx \mathbb{S}^{n-1}$ é conexo por caminhos. Como $\alpha^{-1}(\{x\})$ é compacto e $\alpha^{-1}(\{x\}) \subseteq \alpha^{-1}(A)$, existem i_1, \ldots, i_k tais que $\alpha^{-1}(\{x\}) \subseteq \bigcup_{i=1}^k]a_{i_i}, b_{i_j}[$.

Consideremos o caminho $\beta\colon I o \mathbb{S}^n$ definido por

$$eta(t) = \left\{egin{array}{ll} lpha(t), & t
otin igcup_{j=1}^k]a_{i_j}, b_{i_j}[, \ & f_{i_j}(t), & t \in [a_{i_j}, b_{i_j}], j \in \{1, \dots, k\}. \end{array}
ight.$$

Segue-se do Exercício 4.6.3 que $\alpha \simeq \beta$ rel. $\{0,1\}$. Como $\beta(I) \subseteq \mathbb{S}^n \setminus \{x\} \approx \mathbb{R}^{n+1}$, temos $\beta \simeq c_{x_0}$ rel. $\{0,1\}$. Logo $[\alpha]=1$.

4.7 O grupo fundamental da circunferência

Consideremos a aplicação contínua $q: \mathbb{R} \to \mathbb{S}^1$ definida por $q(s) = (\cos 2\pi s, \sin 2\pi s)$. As demonstrações dos seguintes dois lemas podem ser encontradas, por exemplo, em [5, pp. 29–30].

Lema 4.7.1. Para todo o caminho $\nu: I \to \mathbb{S}^1$ com $\nu(0) = (1,0)$ e todo o ponto $\tilde{x}_0 \in q^{-1}((1,0))$, existe um único caminho $\tilde{\nu}: I \to \mathbb{R}$ tal que $\tilde{\nu}(0) = \tilde{x}_0$ e $q \circ \tilde{\nu} = \nu$.

Lema 4.7.2. Para toda a homotopia $H: I \times I \to \mathbb{S}^1$ rel. $\{0,1\}$ com H(0,t)=(1,0) e todo o ponto $\tilde{x}_0 \in q^{-1}((1,0))$, existe uma (única) homotopia $\tilde{H}: I \times I \to \mathbb{R}$ rel. $\{0,1\}$ tal que $\tilde{H}(0,t)=\tilde{x}_0$ e $q\circ \tilde{H}=H$.

Teorema 4.7.3. A aplicação $\Phi: \mathbb{Z} \to \pi_1(\mathbb{S}^1, (1, 0))$, $n \mapsto [\omega_n]$, onde $\omega_n: I \to \mathbb{S}^1$ é o caminho definido por $\omega_n(s) = (\cos 2\pi ns, \sin 2\pi ns)$, é um isomorfismo de grupos.

Demonstração. Para $n \in \mathbb{Z}$, seja $\tilde{\omega}_n \colon I \to \mathbb{R}$ o caminho definido por $\tilde{\omega}_n(s) = ns$. Temos $q \circ \tilde{\omega}_n = \omega_n$. Observemos que, para qualquer caminho $\tilde{\nu} \colon I \to \mathbb{R}$ com $\tilde{\nu}(0) = 0$ e $\tilde{\nu}(1) = n$, temos $\tilde{\nu} \simeq \tilde{\omega}_n$ rel. $\{0,1\}$, pelo que $q \circ \tilde{\nu} \simeq q \circ \tilde{\omega}_n = \omega_n$ rel. $\{0,1\}$ e então $\Phi(n) = [q \circ \tilde{\nu}]$.

Vejamos que Φ é um homomorfismo de grupos. Seja $\tau_m \colon \mathbb{R} \to \mathbb{R}$ a translação $\tau_m(x) = m + x$. Então $\tilde{\omega}_m \cdot (\tau_m \circ \tilde{\omega}_n)$ é um caminho de 0 a m+n e $q \circ (\tau_m \circ \tilde{\omega}_n)(s) = q(m+ns) = (\cos(2\pi m + 2\pi ns), \sin(2\pi m + 2\pi ns)) = (\cos 2\pi ns, \sin 2\pi ns) = \omega_n(s)$. Logo

$$egin{aligned} \Phi(m+n) &= [q \circ (ilde{\omega}_m \cdot (au_m \circ ilde{\omega}_n))] = [(q \circ ilde{\omega}_m) \cdot (q \circ (au_m \circ ilde{\omega}_n))] \ &= [\omega_m \cdot \omega_n] = [\omega_m] \cdot [\omega_n] = \Phi(m) \cdot \Phi(n). \end{aligned}$$

A fim de mostrar que Φ é sobrejectiva, consideremos um caminho $\nu\colon I\to\mathbb{S}^1$ tal que $\nu(0)=\nu(1)=(1,0)$. Pelo Lema 4.7.1, existe um caminho $\tilde{\nu}\colon I\to\mathbb{R}$ tal que $\tilde{\nu}(0)=0$ e $q\circ\tilde{\nu}=\nu$. Como $q\circ\tilde{\nu}(1)=\nu(1)=(1,0)$, temos $\tilde{\nu}(1)\in\mathbb{Z}$. Tem-se $\Phi(\tilde{\nu}(1))=[q\circ\tilde{\nu}]=[\nu]$.

Falta mostrar que Φ é injectiva. Suponhamos que $\Phi(m)=\Phi(n)$. Então $\omega_m\simeq\omega_n$ rel. $\{0,1\}$. Seja H uma homotopia. Pelo Lema 4.7.2, existe uma homotopia $\tilde{H}\colon I\times I\to\mathbb{R}$ rel. $\{0,1\}$ tal que $\tilde{H}(0,t)=0$ e $q\circ\tilde{H}=H$. Pelo Lema 4.7.1, como $q\circ\tilde{H}(s,0)=H(s,0)=\omega_m(s)=0$

$$q\circ \tilde{\omega}_m(s)$$
, temos $\tilde{H}(s,0)=\tilde{\omega}_m(s)$. Do mesmo modo, $\tilde{H}(s,1)=\tilde{\omega}_n(s)$. Obtemos $m=\tilde{\omega}_m(1)=\tilde{H}(1,0)=\tilde{H}(1,1)=\tilde{\omega}_n(1)=n$.

Corolário 4.7.4. Para todo o $n \neq 2$, $\mathbb{R}^n \not\approx \mathbb{R}^2$.

Demonstração. Pela Proposição 3.1.11, $\mathbb{R} \not\approx \mathbb{R}^2$. Seja n > 2. Suponhamos, por absurdo, que existe um homeomorfismo $f: \mathbb{R}^n \to \mathbb{R}^2$. Então f induz um homeomorfismo $\mathbb{R}^n \setminus \{0\} \to \mathbb{R}^2 \setminus \{f(0)\}$. Pelo Exemplo 4.2.3 (iii), obtemos $\mathbb{S}^{n-1} \simeq \mathbb{S}^1$, o que é impossível, pois \mathbb{S}^{n-1} é simplesmente conexo e \mathbb{S}^1 não. □

4.8 O grupo fundamental de um espaço produto

Teorema 4.8.1. Sejam (X, x_0) e (Y, y_0) dois espaços com ponto de base. Então a aplicação

$$\phi \colon \pi_1(X \times Y, (x_0, y_0)) \to \pi_1(X, x_0) \times \pi_1(Y, y_0), \quad [\alpha] \mapsto (pr_{X*}([\alpha]), pr_{Y*}([\alpha]))$$

é um isomorfismo de grupos.

Demonstração. É claro que ϕ é um homomorfismo. Vejamos que ϕ é sobrejectiva. Sejam $\beta\colon I\to X$ e $\gamma\colon I\to Y$ caminhos com $\beta(0)=\beta(1)=x_0$ e $\gamma(0)=\gamma(1)=y_0$. Consideremos o caminho $\alpha\colon I\to X\times Y$ definido por $\alpha(s)=(\beta(s),\gamma(s))$. Então $\alpha(0)=(x_0,y_0)=\alpha(1)$ e $\phi([\alpha])=([pr_X\circ\alpha],[pr_Y\circ\alpha])=([\beta],[\gamma])$. Logo ϕ é sobrejectiva.

Mostremos que ϕ é injectiva. Sejam $\alpha, \alpha' \colon I \to X \times Y$ caminhos com $\alpha(0) = \alpha(1) = \alpha'(0) = \alpha'(1) = (x_0, y_0)$ tais que $\phi([\alpha]) = \phi([\alpha'])$. Então $pr_X \circ \alpha \simeq pr_X \circ \alpha'$ rel. $\{0, 1\}$ e $pr_Y \circ \alpha \simeq pr_Y \circ \alpha'$ rel. $\{0, 1\}$. Sejam F e G as respetivas homotopias. Seja $H \colon I \times I \to X \times Y$ a homotopia definida por H(s, t) = (F(s, t), G(s, t)). Então

$$H(0, t) = (F(0, t), G(0, t)) = (x_0, y_0) = (F(1, t), G(1, t)) = H(1, t),$$

$$H(s, 0) = (F(s, 0), G(s, 0)) = (pr_X \circ \alpha(s), pr_Y \circ \alpha(s)) = \alpha(s)$$

е

$$H(s,1)=(F(s,1),G(s,1))=(pr_X\circ\alpha'(s),pr_Y\circ\alpha'(s))=\alpha'(s).$$

Logo $[\alpha] = [\alpha']$, pelo que ϕ é injectiva.

Exemplo 4.8.2. Para qualquer ponto de base $(x_0, y_0) \in \mathbb{S}^1 \times \mathbb{S}^1$, $\pi_1(\mathbb{S}^1 \times \mathbb{S}^1, (x_0, y_0)) \cong \mathbb{Z} \times \mathbb{Z}$.

Exercício 4.8.3. Sejam X e Y dois espaços topológicos não vazios. Mostre que $X \times Y$ é simplesmente conexo se e só se X e Y são simplesmente conexos.

Bibliografia

- [1] Armstrong, M. A., Basic topology. Undergraduate texts in mathematics. Springer-Verlag, New York 1983.
- [2] Cain, George L., Introduction to general topology. Addison-Wesley, Reading, Mas., 1994.
- [3] d'Ambrosio, Ubiratan, Métodos da topologia: introdução e aplicações. Livros Técnicos e Científicos, Rio de Janeiro, 1977.
- [4] Dugundji, James, Topology. Allyn and Bacon Series in advanced mathematics. Allyn and Bacon, Boston, 1978.
- [5] Hatcher, Allen, Algebraic Topology, Cambridge University Press, New York, 2001.
- [6] Hocking, John G., Topology. Dover Publications, New York, 1988.
- [7] Jänich, Klaus, Topology. Undergraduate texts in mathematics. Springer-Verlag, New York, 1984.
- [8] Kelley, John L., General topology. Graduate texts in mathematics. Springer-Verlag, New York, 1955.
- [9] Mendelson, Bert, Introduction to topology. 3rd ed. Dover Publications, New York, 1990.
- [10] Munkres, James R., Topology: a first course. Prentice-Hall, Englewood Cliffs, N.J., 1975.

BIBLIOGRAFIA 50

[11] Nagata, Jun-iti, Modern general topology. 2nd rev. ed., North-Holland, Amsterdam, 1985.

[12] Sims, Benjamin T., Fundamentals of topology. MacMillan, New York, 1976.