Absolute Generality

PARADOX AND INFINITY

Benjamin Brast-McKie

March 20, 2024

Absolutism

Gloss: It is possible to quantify over absolutely everything.

• By 'possible' we mean 'there is an interpretation I, \hat{a} of the language'.

Minimal Language: Consider a language \mathcal{L} with just ' \forall ', 'x', and 'F' as primitive symbols.

- The extension $I(F) \subseteq D_I$ interprets the predicate 'F'.
- \hat{a} is a variable assignment for \mathcal{L} *iff* $\hat{a}(x) \in D_I$.
- 'Fx' is true in I, \hat{a} iff $\hat{a}(x) \in I(F)$.
- ' $\forall x F x'$ is true in I, \hat{a} iff 'F x' is true in I, \hat{b} for every x-variant \hat{b} of \hat{a} .

Restatement: For anything y there is an interpretation I of \mathcal{L} where $y \in D_I$.

- Everything belongs to the domain of quantification D_I .
- $\forall y \exists D (y \in D)$.
- But this is just the claim that there is a universal set.

Direct Method: We must learn to understand absolute quantification directly.

- Model theory does not provide an adequate account.
- At most we can say: $\forall x \exists y (x = y)$.
- But this is trivial, failing to communicate the substance of absolutism.

No Domain Theory

Absolute Plurality: There is a plurality of everything, i.e., $\exists xx \forall y (y < xx)$.

- "They lifted the piano," "They won the championship," etc.
- We read 'y < xx' as 'y is one of the xxs'.

Quinian Doubts: Some have thought that $\exists xx\varphi$ is just shorthand for $\exists x(S(x) \land \varphi)$.

- Similarly, 'y < xx' is just shorthand for ' $y \in x'$.
- But this flattens the absolutists current attempt to state their thesis.
- Instead the absolutist must take plural quantifiers to be primitive.
- We do seem to have plural quantifiers in English.

Plural Separation: For anythings, there is a set of those that are such that φ .

- Formally: $\forall xx \exists y \forall x (x \in y \leftrightarrow x < xx \land \varphi)$ where 'y' doesn't occur in φ .
- Naive comprehension follows: $\exists y \forall x (x \in y \leftrightarrow \varphi)$.

Plural Comprehension: $\exists yy \forall x (x < yy \leftrightarrow \varphi)$ where 'yy' does not occur in φ .

Indefinitely Extensible?

Extensions: Predicates are interpreted by assigning them to sets.

- But how are we to interpret 'set'?
- Suppose $I(set) \subseteq D$.
- But since $I(set) \notin I(set)$, there is a set not in the extension of 'set'.

Relativism: Claims that we can always extend any extension of the predicate 'set'.

- $I \subseteq J$ *iff* $I(\kappa) \subseteq J(\kappa)$ for any predicate κ .
- $I \subset J$ iff $I \subseteq J$ and $J \nsubseteq I$.
- For any I of \mathcal{L} , there is some J of \mathcal{L} where $I \subset J$.
- Every extension of 'set' has a broader extension.

Absolutism: Instead of sets, suppose extensions are taken to be pluralities.

- The intended extension of 'set' is the plurality of all sets.
- $\exists yy \forall x (x < yy \leftrightarrow set(x)).$
- The relativist may claim that this fails to capture indefinite extensibility.
- The absolutist is happy to avoid indefinite extensibility.