LABORATORIO DE ONDAS Y FLUIDOS 2016-20

DINÁMICA DEL FLUJO DE AGUA EN UN SIFÓN

José Restom y Paula Ordóñez Universidad de los Andes, Bogotá, Colombia

11 de septiembre de 2016 Resumen

1. Objetivos

2. Marco Teórico

Se tiene en cuenta un tubo no uniforme durante un tiempo Δt .

Figura 1: Tubo a tener en cuenta[1]

El trabajo que se realiza por el fluido colocado detrás de un anillo de fluido para desplazarlo $\triangle x_1$ es:

$$W_1 = F_1 \triangle x_1 = P_1 A_1 \triangle x_1 = P_1 V$$

de la misma manera se toma para $\triangle x_2$, con la diferencia que en este caso la fuerza apunta en dirección contraria

$$W_2 = -F_2 \triangle x_2 = -P_2 A_2 \triangle x_2 = -P_2 V$$

Se calcula el trabajo neto y se obtiene que:

$$W = P_1 V - P_2 V$$

Se tiene en cuenta la masa m en la que se tiene que parte del trabajo neto realizado ha cambiado la

energía cinética del fluido por energía potencial en el intervalo $\triangle t$, entonces el cambio de energía cinética es:

$$\Delta E_c = E_{cf} - E_{ci} = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

Se realiza lo mismo para la energía potencial:

$$\triangle E_p = E_{pf} - E_{pi} = mgz_2 - mgz_1$$

donde z es la altura que en la imagen se representa como y.

Se aplica el teorema trabajo-energía:

$$W = \triangle E_c + \triangle E_p$$

y se obtiene que:

$$P_1V - P_2V = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2 + mgz_2 - mgz_1$$

Se despejan los términos

$$P_1V + \frac{1}{2}mv_1^2 + mgz_1 = P_2V + \frac{1}{2}mv_2^2 + mgz_2$$

Se dividen ambos lados de la ecuación V

$$P_1 + \frac{1}{2} \frac{m}{V} v_1^2 + \frac{m}{V} g z_1 = P_2 + \frac{1}{2} \frac{m}{V} v_2^2 + \frac{m}{V} g z_2$$

se sabe que la densidad es $\rho = \frac{m}{V}$; por lo tanto

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g z_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g z_2$$

Como se indica en la guía hay disipación causada por la fricción y se puede interpretar como variación de presión; este se suma y se obtiene que:

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g z_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g z_2 + \triangle P_{friccion}$$
(1)

Referencias

[1] Anónimo. *Ecuación de Bernoulli*. Obtenido de: http://www.sabelotodo.org/fisica/ecuacionbernoulli.html