

IRF table:

- a) The effective area of the array: Aeff
- b) The background rate: N
- c) The point spread function (PSF)
- d) The energy migration matrix

Table 3a: Energy-dependent error functions for CTA North									
Modification type	Function, B	Graphics	Applicability						
Constant	1	10 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. $A_{\rm eff}$, N: flux normalization . $\sigma_{\rm g}$: small extension . $E_{\rm scale}$: spectral cut-off . $\sigma_{\rm E}$: search for lines						
Gradient	$[ln(E/E_{min})+ln(E/E_{max})]/ln(E_{max}/E_{min})$	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. A_{eff} , N : spectral index, spectral cut-off . E_{scale} : spectral curvature						
Step	tanh[ln(E/E,)/(1.31 σ(E,)/E,)]	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	. A_{eff} , N : spectral index, spectral cut-off . E_{scale} : spectral curvature						

https://docs.google.com/document/d/ 1oBOwOOgMcL8Shww6oLjiQoQVbOwl0HGuBTV1YGHTc_k/edit

Bracketing IRFs can be modified in a straightforward manner using the script:

https://github.com/ctaobservatory/cta-irf-scaling

Function	Constant	Gradient	Step
Scale (E)	1	0	0
Scale (θ)	1	0	0

http://www.cta-observatory.org/wp-content/uploads/2017/12/CTA-Performance-prod3b-v1-FITS1.tar.gz

 $Scale_E = 6 \%$ $Scale_\theta = 12 \%$

Fig 6. (a) CTA sensitivity to the detection of a LIV signature.

Function	Constant	Gradient	Step
Scale (E)	0	0	0.06
Scale (θ)	0	0	0.12

Finding LIV signal

n=1

		Markarian 501	ian 501 (Ec = 40 TeV) Markarian 501 (Ec = 40 TeV)					
[eV]	Standard	EBL_upp	EBL_low	B_IRF	Standard	EBL_upp	EBL_low	B_IRF
E _{LIV} :	9.49E+27	9.01E+27	9.49E+27	9.49E+27	8.55E+27	9.01E+27	9.01E+27	9.49E+27
σ (CL)	51.8	51.3	54.5	52.3	35.1	34.7	36.2	34.2

		1ES 0229+200 (Ec =40 TeV) 1ES 0229+200 (Ec =20 TeV)						
[eV]	Standard	EBL_upp	EBL_low	B_IRF	Standard	EBL_upp	EBL_low	B_IRF
E _{LIV} :	1.05E+28	1E+28	1E+28	1.05E+28	9.01E+27	1.11E+28	1E+28	9.01E+27
σ (CL)	25.5	19.5	35.0	26.5	9.6	6.6	18.5	9.3

Agreement between best-fit parameters and the simulated true values.

humbertomh@ifsc.usp.br

Finding LIV signal

n=1

		Markarian 501	(Ec = 40 TeV)		Markarian 501 (Ec = 40 TeV)			
[eV]	Standard	EBL_upp	EBL_low	B_IRF	Standard	EBL_upp	EBL_low	B_IRF
E _{LIV} :	9.49E+27	9.01E+27	9.49E+27	9.49E+27	8.55E+27	9.01E+27	9.01E+27	9.49E+27
σ (CL)	51.8	51.3	54.5	52.3	35.1	34.7	36.2	34.2

		1ES 0229+200 (Ec =40 TeV) 1ES 0229+200 (Ec =20 TeV)						
[eV]	Standard	EBL_upp	EBL_low	B_IRF	Standard	EBL_upp	EBL_low	B_IRF
E _{LIV} :	1.05E+28	1E+28	1E+28	1.05E+28	9.01E+27	1.11E+28	1E+28	9.01E+27
σ (CL)	25.5	19.5	35.0	26.5	9.6	6.6	18.5	9.3

humbertomh@ifsc.usp.br

Excluding LIV signal

n=1

		Mark	arian 501 (Ec = 40 l	ГeV)	
CL	E _{LIV} limit [eV]	Δ (EBL) [eV]	Δ (Soft) [eV]	Δ (B_IRF) [eV]	Δ [eV]
2σ	1.23E+29	1.40E+28			1.40E+28
		-6.06E+28	-3.20E+28	-2.81E+28	-7.41E+28
3σ	1E+29	3.00E+28			3.00E+28
		-4.38E+28	-1.80E+28	-1.45E+28	-4.95E+28
5σ	7.7E+28	2.80E+28			2.80E+28
		-2.89E+28	-1.46E+28	-7.70E+27	-3.33E+28
		Mark	arian 501 (Ec = 20 1	ГeV)	
CL	E _{LIV} limit [eV]	Δ (EBL) [eV]	Δ (Soft) [eV]	Δ (B_IRF) [eV]	Δ [eV]
2σ	7.31E+28	2.69E+28	2.25E+28	2.18E+28	4.13E+28
		-1.97E+28			-1.97E+28
3σ	6.58E+28	2.43E+28	1.46E+28	1.12E+28	3.05E+28
		-2.02E+28			-2.02E+28
5σ	5.06E+28	1.87E+28	1.00E+28	8.70E+27	2.29E+28
		-1.55E+28			-1.55E+28

Source:	Markarian 501 1ES 0229+200		29+200	Mkr501		1 ES 0229 + 200			
E_{cut} :	40 TeV	20 TeV	40 TeV	20 TeV	40 TeV	20 TeV	40 TeV	20 TeV	
Limits	$E_{\rm LIV}^{(1)} \times 10^{28} {\rm eV}$				$E_{\rm LIV}^{(2)} \times 10^{21} {\rm eV}$				
2σ	$12.3^{+1.4}_{-7.41}$	$7.31_{-1.97}^{+4.13}$	$1.37^{+4.88}_{-5.59}$	$1.23^{+2.51}_{-4.23}$	$2.33^{+2.51}_{-0.73}$	$1.64^{+0.36}_{-0.56}$	$0.58^{+1.83}_{-0.18}$	$0.54^{+1.18}_{-0.17}$	
3σ	$10^{+3.00}_{-4.95}$	$6.58^{+3.05}_{-2.02}$	$1.11_{-0.05}^{+0.26}$	$0.95^{+1.34}_{-0.36}$	$2.1^{+1.79}_{-0.61}$	$1.53^{+0.31}_{-0.52}$	$0.54^{+1.17}_{-0.2}$	$\left \begin{array}{c} 0.48^{+0.74}_{-0.17} \end{array}\right $	
5σ	$7.7^{+2.8}_{-3.3}$	$5.06^{+2.29}_{-1.55}$	$0.77^{+0.92}_{-0.36}$	$0.59^{+0.67}_{-0.22}$	$1.7^{+1.15}_{-0.33}$	$1.33^{+0.27}_{-0.70}$	$0.44^{+0.46}_{-0.17}$	$0.37^{+0.29}_{-0.12}$	

Table. CTA upper limits for LIV scenarios with n=1 and 2. Systematic errors due to the EBL model, software selection and energy dispersion, are shown in all cases.

Excluding LIV signal

n=1

		Markarian 501 (Ec = 40 TeV)								
CL	E _{LIV} limit [eV]	Δ (EBL) [eV]	Δ (Soft) [eV]	Δ (B_IRF) [eV]	Δ [eV]					
2σ	1.23E+29	1.40E+28			1.40E+28					
		-6.06E+28	-3.20E+28	-2.81E+28	-7.41E+28					
3σ	1E+29	3.00E+28			3.00E+28					
		-4.38E+28	-1.80E+28	-1.45E+28	-4.95E+28					
5σ	7.7E+28	2.80E+28			2.80E+28					
		-2.89E+28	-1.46E+28	-7.70E+27	-3.33E+28					
		Mari	karian 501 (Ec = 20 1	TeV)						
CL	E _{LIV} limit [eV]	Δ (EBL) [eV]	Δ (Soft) [eV]	Δ (B_IRF) [eV]	Δ [eV]					
2σ	7.31E+28	2.69E+28	2.25E+28	2.18E+28	4.13E+28					
		-1.97E+28			-1.97E+28					
3σ	6.58E+28	2.43E+28	1.46E+28	1.12E+28	3.05E+28					
		-2.02E+28			-2.02E+28					
5σ	5.06E+28	1.87E+28	1.00E+28	8.70E+27	2.29E+28					
		-1.55E+28			-1.55E+28					

Excluded LIV energy scales by subluminal searches in the photon sector using a similar analysis technique than the used this work. Better confidence levels are marked with darker colors. Limits from Biteau&Williams'15 are translated to the photon sector and to the quadratic term. CTA potential limits are presented for comparison (in blue) with the systematic errors in black for the 2σ limit.

humbertomh@ifsc.usp.br

To do list

- ☑ Done
- Next
 - 1. GammaPy: Fit and Simulation
 - LI: 4 Cases
 - LIV: 4 Cases
 - Ctools cross-check: 8 Cases

- 2. Work cases
 - Signal reconstruction case
 - Mrk501 40/20 TeVECPL
 - ☑ 1ES 0229+200 40/20 TeVECPL
 - ✓ LIV-rejection case (n=1)
 - Mrk501 40/20 TeVECPL
 - ☑ 1ES 0229+200 40/20 TeVECPL

- Common plot macro
- ☑ Prod3-IRF
- ☑ Update: ebltable V 1.14
- Update: New Src's-Input
- Update: Analysis at source
- ✓ LIV case n=2

- 3. Systematics
 - **☑** EBL-model
 - **Software:** γ-Py/CTools
- 4. Writing

Thanks!