2. Эквивалентность принципов непрерывности

Этот конспект показывает, что разные интуитивные представления о полноте вещественной прямой — это одно и то же свойство, выраженное в разных формах.

1. Теорема Кантора о вложенных отрезках

Теорема (Кантора):

Для любой системы вложенных отрезков $[a_n,b_n]$ (т.е. $[a_1,b_1]\supset [a_2,b_2]\supset\ldots$), у которых длины $b_n-a_n\to 0$ при $n\to\infty$, существует единственная точка $c\in R$, принадлежащая всем отрезкам системы.

Доказательство:

1. Логическая схема доказательства:

2. Доказательство:

• Существование:

Рассмотрим множества $A=\{a_n\}$ (левые концы) и $B=\{b_n\}$ (правые концы). Из вложенности отрезков следует, что для любых $n,m\in N$ выполняется $a_n\leq b_m$ (любой левый конец лежит левее любого правого). Значит, A располагается левее B.

По аксиоме непрерывности существует число $c \in R$ такое, что $a_n \le c \le b_m$ для всех n, m.

В частности, при m=n получаем $a_n \leq c \leq b_n$ для всех n, то есть c принадлежит каждому отрезку $[a_n,b_n]$.

• Единственность:

Предположим, есть другая точка c', также принадлежащая всем отрезкам. Тогда для любого n верно: $|c-c'| \le b_n - a_n$. Поскольку $b_n - a_n \to 0$, единственное неотрицательное число, которое меньше любой сколь угодно малой положительной величины — это ноль. Значит, |c-c'| = 0, откуда c = c'.

2. Эквивалентность трёх формулировок непрерывности

Докажем, что следующие три утверждения эквивалентны:

- 1. (I) Аксиома непрерывности: $\forall A,B\subset R,A\neq\emptyset,B\neq\emptyset:(A\ \text{левее}\ B)\Rightarrow\exists c\in R:a\leq c\leq b, \forall a\in A,b\in B.$
- 2. (II) Принцип супремума: Всякое непустое ограниченное сверху множество имеет точную верхнюю грань.
- 3. (III) Принцип Кантора: Для любой системы вложенных отрезков с длинами, стремящимися к нулю, существует единственная общая точка.

Доказательство эквивалентности:

Мы уже знаем:

- $(I) \Rightarrow (II)$ (доказано в Конспекте 1 как теорема о существовании \sup).
- $(I) \Rightarrow (III)$ (только что доказанная теорема Кантора).

Осталось доказать $(II) \Rightarrow (I)$ и $(III) \Rightarrow (II)$, чтобы цепочка замкнулась.

Доказательство $(II) \Rightarrow (I)$:

1. Логическая схема доказательства:

2. Доказательство:

Пусть верен принцип супремума (II). Возьмём множества A и B, где A левее B. Тогда любой элемент $b \in B$ является верхней гранью для A. Значит, A ограничено сверху. По принципу (II) существует $c = \sup A$.

По определению точной верхней грани:

- c верхняя грань $A\Rightarrow a\leq c$ для всех $a\in A$.
- c наименьшая верхняя грань $\Rightarrow c \leq b$ для всех $b \in B$ (так как каждый b верхняя грань).

Получаем $a \leq c \leq b$ для всех $a \in A, b \in B$, что и есть утверждение (I).

Доказательство $(III) \Rightarrow (II)$:

1. Логическая схема доказательства:

2. Доказательство:

Пусть верен принцип Кантора (III). Возьмём непустое ограниченное сверху множество X. Пусть Y — множество всех верхних граней X (оно непусто). Выберем $x_0 \in X$ и $y_0 \in Y$. Положим $a_1 = x_0$, $b_1 = y_0$. Будем строить систему вложенных отрезков методом деления пополам:

- На шаге n имеем отрезок $[a_n, b_n]$, где a_n не является верхней гранью X (есть элемент $X \ge a_n$), а $b_n \in Y$.
- Пусть $m = (a_n + b_n)/2$.
 - Если m верхняя грань X, то положим $a_{n+1} = a_n,\, b_{n+1} = m.$
 - Если m не является верхней гранью, то найдётся $x \in X$ такой, что x > m. Положим $a_{n+1} = m$, $b_{n+1} = b_n$.
- В любом случае длина отрезка уменьшается в 2 раза: $b_{n+1}-a_{n+1} \leq (b_n-a_n)/2$. Значит, $b_n-a_n \to 0$.

По принципу Кантора (III) существует единственная точка c, принадлежащая всем отрезкам $[a_n,b_n]$. Докажем, что $c=\sup X$.

- c верхняя грань X: Предположим, что существует $x \in X$ такой, что x > c. Так как b_n верхние грани, то $x \le b_n$. Тогда $0 < x c \le b_n a_n \to 0 \to$ противоречие. Значит, $x \le c$ для всех $x \in X$.
- c наименьшая верхняя грань: Предположим, что существует верхняя грань $y \in Y$ такая, что y < c. Так как $a_n \to c$ и c > y , то начиная с некоторого n будет $a_n > y$. Но по построению для a_n существует элемент $x \in X$ такой, что $x \ge a_n > y$. Значит, y не является верхней гранью противоречие. \blacksquare

Теперь цепочка эквивалентности замкнута: $(I) \Leftrightarrow (II)$ и $(I) \Leftrightarrow (III)$.

3. Пример применения: Существование квадратного корня

Теорема: Для любого $a \ge 0$ существует единственное число $x \ge 0$ такое, что $x^2 = a$.

Доказательство (с использованием принципа супремума):

1. Логическая схема доказательства:

2. Доказательство:

Пусть $a \geq 0$. Рассмотрим множество $E = \{x \in R : x \geq 0, x^2 \leq a\}.$

- E непусто ($0 \in E$) и ограничено сверху (например, числом max(1,a)).
- По принципу супремума существует $c = \sup E$.
- Докажем, что $c^2=a$ от противного.

- Если $c^2 < a$, то можно подобрать $\delta > 0$ так, что $(c+\delta)^2 < a$ (например, $\delta = (a-c^2)/(2c+1)$). Тогда $c+\delta \in E$, но $c+\delta > c$ противоречие с тем, что c верхняя грань.
- Если $c^2 > a$, то можно подобрать $\varepsilon > 0$ так, что $(c \varepsilon)^2 > a$. Тогда для всех $x \in E$ будет $x^2 \le a < (c \varepsilon)^2 \Rightarrow x < c \varepsilon$. Значит, $c \varepsilon$ верхняя грань E, но $c \varepsilon < c$ противоречие с тем, что c точная верхняя грань.
- Следовательно, $c^2 = a$. ■

Вопросы для самопроверки (Конспект 2)

- 1. Сформулируйте три эквивалентных принципа непрерывности вещественных чисел.
- 2. Докажите, что из принципа Кантора следует принцип супремума (кратко воспроизведите ключевые шаги построения системы отрезков).
- 3. Приведите пример системы вложенных отрезков с рациональными концами, пересечение которой пусто. Что это говорит о множестве рациональных чисел?
- 4. **На понимание доказательства:** В доказательстве существования корня, почему мы рассматриваем множество $E = \{x \geq 0 : x^2 \leq a\}$, а не $x \geq 0 : x^2 \geq a$?
- 5. Докажите, что уравнение $x^3=3$ имеет решение на отрезке [1,2], используя метод деления отрезка пополам и принцип Кантора.