1 Geometria de Distâncias Euclidianas

Apresenta-se nesta seção uma introdução a Geometria de Distâncias Euclidianas. O nome "Geometria de Distâncias" diz respeito ao conceito desta geometria basear-se em distâncias ao invés de pontos. A palavra "Euclidiana" é importante para caracterizar as arestas — elementos fundamentais associados as distâncias — como segmentos, sem restringir seus ângulos de incidência [?].

1.1 Como tudo Começou

Por volta de 300 AC, Euclides de Alexandria organizou o conhecimento de sua época acerca da Geometria em uma obra composta por treze volumes, onde construiu, a partir de um pequeno conjunto de axiomas fortemente baseado nos conceitos de pontos e linhas, a chamada Geometria Euclidiana [?]. Em contraponto a visão original de Euclides, os primeiros conceitos geométricos usando apenas distâncias costumam estar associados aos trabalhos de Heron de Alexandria (10 a 80 DC) [?], com o desenvolvimento de um teorema que leva seu nome, como segue:

Teorema de Heron: Sejam s o semiperímetro de um triângulo (se p é o perímetro, $s = \frac{p}{2}$) e a, b e c os comprimentos dos três lados deste triangulo. Então, a área A do triângulo é

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$
. (Fórmula de Heron)

Pode-se dizer que esse foi o nascimento da Geometria de Distâncias (Distance Geometry, ou DG).

Algumas centenas de anos depois, em 1841, Arthur Cayley (1821 a 1895) generalizou a Fórmula de Heron através da construção de um determinante que calcula o conteúdo (volume n-dimensional) de um simplex¹ em qualquer dimensão [?]. Um século depois, em 1928, o matemático austríaco Karl Menger (1902 a 1985) re-organizou as ideias de Cayley e trabalhou em uma construção axiomática da geometria através de distâncias [?] — donde a alteração no nome do determinante de Cayley para como é conhecido hoje: "Determinante de Cayley-Menger".

Definição: Sejam A_0, A_1, \ldots, A_n n+1 pontos que definem os vértices de um n-simplex em um espaço euclidiano K-dimensional, onde $n \leq K$, e seja d_{ij} a distância entre os vértices A_i e A_j , onde $0 \leq i < j \leq n$. Então, o conteúdo v_n desse n-simplex é

$$v_n^2 = \frac{(-1)^{n+1}}{(n!)^2 2^n} \begin{vmatrix} 0 & d_{01}^2 & d_{02}^2 & \dots & d_{0n}^2 & 1 \\ d_{01}^2 & 0 & d_{12}^2 & \dots & d_{1n}^2 & 1 \\ d_{02}^2 & d_{12}^2 & 0 & \dots & d_{2n}^2 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ d_{0n}^2 & d_{1n}^2 & d_{2n}^2 & \dots & 0 & 1 \\ 1 & 1 & 1 & \dots & 1 & 0 \end{vmatrix}.$$
 (Determinante de Cayley-Menger)

Mas foi só com Leonard Blumenthal (1901 a 1984) que, em 1953, o termo Geometria de Distâncias foi cunhado — com a publicação de seu livro "Theory and

¹Um simplex é uma generalização do conceito de triangulo a outras dimensões, i.e.: O θ -simples é um ponto, 1-simplex é um segmento de reta, 2-simplex é um triangulo e o 3-simplex é um tetraedro.

Applications of Distance Geometry" [?]. Blumenthal dedicou sua vida de trabalho para clarificar, organizar e traduzir as obras originais em alemão [?]. Ele acreditava que o problema mais importante nesta área era o "Problema de Subconjunto" (ou Subset Problem, originalmente), que consistia em encontrar condições necessárias e suficientes a fim de decidir quando uma matriz simétrica era, de fato, uma matriz de distâncias² [?]. Uma restrição desse problema à métrica euclidiana chama-se Problema de Matrizes de Distâncias Euclidianas (ou EDMP, do inglês Euclidean Distance Matrix Problem), como segue definida:

Problema de Matrizes de Distâncias Euclidianas: Determinar se, para uma dada matriz quadrada $D_{n\times n} = (d_{ij})$, existe um inteiro K e um conjunto $\{p_1, \ldots, p_n\}$ de pontos em \mathbb{R}^K tal que $d_{ij} = ||p_i - p_j||$ para todo $i, j \leq n$.

Condições necessárias e suficientes para que uma matriz seja, de fato, uma matriz de distância euclidiana são dados em [?]. Para isso, apresenta-se um teorema onde se utiliza o Determinante de Cayley-Menger na criação de duas condições afirmando que, afim de $D_{n\times n}$ ser uma matriz de distâncias euclidianas, deve haver um K-simplex S de referência com conteúdo $v_K \neq 0$ em \mathbb{R}^K e que todos os (K+1)-simplex e (K+2)-simplex contendo S como uma das faces devem estar contidos em \mathbb{R}^K [?].

Blumenthal percebeu a importância em se respeitar as restrições métricas estabelecidas pelas matrizes de distâncias.

Quando temos como dado um conjunto de distâncias entre pares de pontos, a geometria das distâncias pode dar uma dica para encontrar um conjunto de coordenadas correto para pontos no espaço Euclideano tridimensional, satisfazendo as restrições de distâncias dadas.

(Blumenthal, 1953, [?])

Pode-se dizer que resolver o Problema de Matrizes de Distâncias Euclidianas está intimamente relacionado com descobrir as coordenadas dos pontos que definem suas distâncias. Perceba que este é um problema inverso, onde o "problema direto" correspondente é calcular distâncias associadas a pares de pontos dados. Note que este estudo tem enorme aplicabilidade [?].

Adiante, em 1979, Yemini (atualmente professor emérito de Ciência da Computação na Universidade de Columbia) foi o primeiro a flexibilizar a definição do EDMP ao considerar um conjunto de distâncias esparso [?, ?] — i.e., que não se tem todas as distâncias dadas a priori. Com isso, introduziu-se o que se chamou de *Problema Posição - Localização*, onde deseja-se calcular a localização de todos os objetos imersos em um espaço geográfico [?].

Assim, foi possível re-formular o problema fundamental de Geometria de Distâncias, o qual pode ser caracterizado de forma mais moderna pela utilização da Teoria de Grafos [?].

Seja o par (\mathcal{X}, d) um *espaço métrico* (vide Apêndice A), onde $\mathcal{X} = \{x_1, \dots, x_n\}$. Uma *matriz de distância sobre* \mathcal{X} é uma matriz quadrada $D_{n \times n} = (d_{uv})$ onde, para todo $u, v \leq n$, temos $d_{uv} = d(x_u, x_v)$ [?].

1.2 O Problema Fundamental

Uma realização é uma função que mapeia um conjunto de vértices de um grafo G para um espaço euclidiano de alguma dimensão dada [?].

Problema de Geometria de Distâncias (DGP): Dados um grafo simples, ponderado e conectado G = (V, E, d) e um inteiro K > 0, encontre uma realização $x: V \longrightarrow \mathbb{R}^K$ tal que:

$$\forall \{u, v\} \in E, \quad \|x(u) - x(v)\| = d(u, v). \tag{1}$$

Desde que uma realização seja encontrada, também dá-se a ela o nome de solução do DGP. Por simplicidade — claramente um abuso de notação —, pode-se escrever x_u e d_{uv} no lugar de x(u) e d(u,v), respectivamente.

A principal diferença desta definição para o EDMP está acerca de que uma matriz de distância essencialmente representa um grafo ponderado completo. Em contraponto, o DGP não empoe qualquer estrutura em G^3 , seguindo o conceito de matriz esparsa estabelecido por Yemini.

Por fim, na equação 1, utiliza-se a norma euclidiana $\|\cdot\|$ como métrica (ver Apêndice A), donde pode-se reescrever esta equação como

$$\forall \{u, v\} \in E, \quad \sqrt{\sum_{i=1}^{K} (x_{ui} - x_{vi})^2} = d_{uv}.$$

Como a definição de métrica garante a positividade das distâncias, pode-se esconder a raiz quadrada na equação acima, i.e.

$$\forall \{u, v\} \in E, \quad \sum_{i=1}^{K} (x_{ui} - x_{vi})^2 = d_{uv}^2. \tag{2}$$

1.3 Os Diferentes Problemas em DG

Em 2014, Leo Liberti et al. publicaram um ótimo compendio sobre a Geometria de Distâncias Euclidianas e suas Aplicações [?] e, em particular, desenvolveram um estudo taxonômico muito interessante sobre os problemas clássicos da área. No que se segue, devido a grande quantidade de siglas e variações dentro de DG, apresentase parte desse estudo, visando organizar os conceitos.

As principais aplicações em DG são no calculo de estruturas moleculares [?], na localização de sensores em rede sem fio (Wireless Sensor Network Localization, ou WSNL) [?], em cinemática inversa (Inverse Kinematic, ou IK) [?] e em escalonamento multidimensional (Multidimensional Scaling, ou MDS) [?].

1.3.1 Conformações Moleculares

Existe uma relação muito forte com a forma geométrica das moléculas e suas funções em organismos vivos [?]. Projetar drogas para curar uma doença específica

 $^{^3}$ A menos, é claro, no que diz respeito a seus vértices estarem conectados. Porém, caso G não seja conectado, então ele consiste de um conjunto de diferentes subgrafos conectados, donde, a fim de solucionar o DGP, pode-se realizar cada subgrafo separadamente [?].

se trata basicamente de conhecer o que uma certa proteína pode fazer em um organismo [?]. Proteínas se ligam em outras moléculas através do equilíbrio de forças agindo entre elas⁴, por tanto, suas ligações dependem do seu formato.

Proteínas são constituídas por um grande conjunto de átomos e, alguns pares destes, trocam ligações químicas — sabe-se quais são esses átomos através de experimentos de cristalografia [?]. Então, se os átomos de uma molécula forem rotulados da forma $1, 3, 4, \ldots, n$, então é possível inferir:

- O conjunto de ligações $\{u, v\}$, onde u, v são átomos em $\{1, \ldots, n\}$;
- A distância entre u e v (para cara par ligado);
- O ângulo interno θ_v definido por duas ligações $\{u, v\}$ e $\{v, w\}$, com um átomo v em comum. (veja o Apêndice B)

Além desses dados, também é possível obter informações a partir de experimentos mais sofisticados, como a Ressonância Magnética Nuclear (RMN). Neste experimento é escolhida uma faixa de radiofrequência para bombardear uma amostra que está imersa em um campo magnético bastante intenso. Dependendo da radiofrequência utilizada (costuma-se usar a do hidrogênio), alguns núcleos atômicos irão absorver energia e outros não. Caso atinja-se uma frequência exata de ressonância dentro destes núcleos atômicos, é possível medir essa ressonância como um sinal de radiofrequência enviado dos núcleos atômicos — para calcular distâncias entre átomos próximos, com distâncias menores que 5Å.

De posse dessas informações, deseja-se realizar (localizar) todos os átomos da molécula. Esse problema, com todas as informações moleculares disponíveis, denominase Estrutura Proteica a partir de Dados Brutos (Protein Structure from Raw Data, ou PSRD)

Em particular, como as coordenadas atômicas pertencem ao \mathbb{R}^3 , há uma particularização do DGP para o caso molecular, chamado *Problema de Geometria de Distâncias Moleculares* (*Molecular DGP*, ou MDGP). Trata-se do DGP com K=3 fixo.

1.3.2 Localização de Sensores

O Problema de Localização de Sensores em Rede sem Fio (ou WSNL Problem) surge quando é necessário localizar um conjunto de objetos equipados com sensores eletrônicos capazes de medir distâncias entre si, geograficamente distribuídos, usando apenas medidas de distâncias entre pares destes objetos [?].

Por exemplo, smartphones com WIFI ativo podem criar uma rede conhecida por Rede Ad-Hoc, i.e., eles conseguem criar uma rede para comunicar-se entre si, de forma peer-to-peer, sem a necessidade de uma torre central — cada aparelho funciona como uma pequena torre, de forma que a distância entre os aparelhos não pode ser excessiva. Dessa forma, os smartphones podem estimar a distância r de emparelhamento das suas conexões ao medir, por exemplo, qual a potência de

⁴Ou seja, o equilíbrio da energia potencial das moléculas, proporcional, principalmente, as variações nos comprimentos das ligações covalentes, as variações nos ângulos entre duas ligações covalentes consecutivas, as rotações sobre as ligações covalentes e as interações de van der Waals e interações eletrostáticas entre átomos [?].

transmissão do sinal, uma vez que sabe-se que a potência P de uma transmissão eletromagnética cai da forma

$$P = \frac{X}{r^n},\tag{3}$$

onde X e n são constantes e dependem muito das condições do experimento, sendo obtidas experimentalmente [?].

Em essência, um problema do tipo WSNL segue a mesma definição do DGP, porém, com um subconjunto $A \subset V$ de vértices (chamados $\hat{a}ncoras$), onde os elementos de A tem uma posição em \mathbb{R}^k dada a priori — isso é feito pois, normalmente, interessa saber a posição relativa de um objeto a outro, como é o caso do Sistema de Posicionamento Global, onde temos os satélites como âncoras e desejamos saber a posição dos aparelhos GPS em relação aos satélites.

Por motivos práticos — semelhantes ao caso molecular — as variações de interesse desse problema tem o K fixo em K=2 ou K=3. É comum, também, que se defina um WSNL como solucionável somente se seu grafo possua uma única realização válida [?] — noção conhecida como globalmente rígido: Diz-se que um grafo é globalmente rígido quando ele possui uma realização genérica x e, para todas as outras realizações x', x é congruente a x'.

1.3.3 Dinâmicas em Cinemática Inversa

Muito utilizada em robótica e animação computadorizada, a cinemática inversa cerne sobre mecanismos e seus movimentos rígidos, onde restringe-se os movimentos de forma a preservar a geometria do sistema. Sem o auxilio computacional e matemático a manipulação de mecanismos com muitos graus de liberdade pode ser inviável: Imagine a manipulação manual de cem vértices em uma haste simulando o comportamento de um braço articulado em uma animação. Com o auxílio da DG, um animador pode apenas configurar a posição final de um pequeno grupo de vértices (como os da extremidade da aresta, por exemplo) e um algorítimo de cinemática inversa é capaz de verificar se aquela posição é ou não viável e, se viável, qual a realização de todo o conjunto de vértices em razão da posição configurada [?].

Visando tal restrição mecânica, define-se o *Problema de Cinemática Inversa* (*Inverse Kinematic Problem*, ou IKP) como uma variação do WSNL — logo, tem o objetivo de descobrir posições em relação a certos pontos previamente realizados — com uma restrição no grafo que define o problema: deve ser um caminho simples com seus vértices finais sempre sendo âncoras [?].

1.3.4 Escalonamento Multidimensional

O problema de Escalonamento Multidimensional (Multidimensional Scaling, ou MDS) é definido como [?]: Dado um conjunto X de vetores, encontre um conjunto Y de vetores com menor dimensão (com |X| = |Y|) tal que a distância entre cada i-ésimo e j-ésimo vetores de Y tenham, aproximadamente, a mesma distância que seus pares de vetores correspondentes em X.

Esse problema é muito aplicado na analise de dados em Big Data [?]. É um meio de facilitar a visualização do nível de similaridade entre casos individuais — que não necessariamente precisam ter uma conexão aparente — em um conjunto de dados. Pode-se usá-lo, por exemplo, para visualizar em uma escala bidimensional

 (\mathbb{R}^2) a evolução da locomoção de animais no espaço tridimensional utilizando dados de séries temporais (espaço em diferentes tempos, logo, dados em \mathbb{R}^4).

1.4 A Busca de uma Solução

A abordagem mais simples, pode-se pensar, para encontrar um conjunto de soluções que satisfação a equação 2 é resolver o sistema de equações diretamente [?]. Infelizmente, para $K \ge 2$, há evidencias de que uma solução de forma fechada onde todo componente de x é expresso por raízes, não é possível [?].

No entanto, pode-se re-formular o problema como um problema de otimização global [?], onde o objetivo é minimizar a soma dos erros⁵ entre as distâncias dadas a priori e as calculadas. Para isso, pode-se considerar uma única expressão que englobe todos os n erros, da forma

$$f(x_1, \dots, x_n) = \sum_{(i,j) \in E} (\|x_i - x_j\| - d_{ij})^2.$$
 (4)

Fica claro que encontrar uma solução para o DGP é equivalente a encontrar realizações $x_i \in \mathbb{R}^3$, i = 1, ..., n, se e somente se $f(x_1, ..., x_n) = 0$ [?]. Pela definição de métrica (vide Apêndice A), 0 é o menor valor possível para f, donde diz-se que deseja-se minimizar a função $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ [?]. Ou seja,

$$\min_{x_i \in \mathbb{R}^n} f(x_1, \dots, x_n). \tag{5}$$

E, no caso da métrica euclidiana [?], temos

$$\min_{x_j \in \mathbb{R}^n} \sum_{(u,v) \in E} \left(\sum_{i=1}^K (x_{ui} - x_{vi})^2 - d_{uv}^2 \right)^2.$$
 (6)

Por tanto, a equação 6 tem como objetivo a minimização de um polinômio de múltiplas variáveis de grau quatro.

Um dos desafios da Otimização Global é que muitos dos métodos existentes — em especial, os mais eficientes — não garantem que uma otimização *global* será encontrada [?]. Isso se dá pois, dependendo do comportamento da função, existem muitos ótimos locais e os métodos não conseguem diferenciá-los de um global.

Infelizmente, essa abordagem via otimização é custosa do ponto de vista computacional [?]. Saxe demonstrou em 1979 [?] que resolver um DGP para qualquer dimensão — i.e., para qualquer valor de K — tem a complexidade computacional da classe **NP**-Hard. Em outras palavras, isso significa que a quantidade de mínimos locais de um DGP cresce exponencialmente proporcional a |V| [?].

1.4.1 A Quantidade de Soluções do Problema

Pode-se verificar que, dada uma solução de um DGP, obtêm-se facilmente uma quantidade infinita (não enumerável!) de outras realizações válidas, distintas, através de rotações e translações desta solução inicial [?] — infelizmente, essas costumam não serem soluções de interesse.

⁵Em otimização, vê-se a equação 1 de forma não exata: $||x_u - x_v|| = d_{uv} + \varepsilon$, onde ε é chamado erro. Ou seja, para minimizar o erro, precisa-se minimizar a expressão $f(x_u, x_v) = ||x_u - x_v|| - d_{uv}$.

Contudo, se for desconsiderado essas soluções advindas de translações e rotações, a quantidade de soluções do DGP depende da estrutura geométrica do grafo que a define: podem não haver nenhuma realização; uma única realização; uma quantidade finita (não única) de realizações; ou, um número incontável de realizações [?]. Perceba que o conjunto solução de um DGP, curiosamente, somente não pode ser um número infinito enumerável — resultado obtido através da Geometria Algébrica Real [?].

Por tanto, supondo que o conjunto solução de um DGP seja não vazio, sabese que ele é não enumerável ou finito. Se for finito, além de aplicar os métodos de Otimização Global — já definidos como custosos coputacionalmente —, pode-se explorar outras abordagens, como a Otimização Combinatória [?].

1.5 Combinatória do DGP

Nesta seção, analisando o espaço de busca por uma solução, faz-se um estudo sobre as condições que garantem a finitude do conjunto solução do problema.

Em particular, para um DGP definido em um espaço de dimensão K, a classe de problemas mais simples de resolver são dos grafos (K+1)-cliques, isto é, dos grafos completos com K+1 vértices [?].

1.5.1 Realização de Grafos Completos

Em um espaço unidimensional, i.e., uma reta, tem-se K+1=2. O grafo completo em dois vértices é $K_2 = (\{v_1, v_2\}, \{\{v_1, v_2\}\})$, ou seja, o grafo é dois vértices com uma ares entre eles — uma linha (veja a Figura 1). No espaço bidimensional, o grafo completo é um triangulo e, no tridimensional, um tetraedro.

Figura 1: Em ordem: 2-clique; 3-clique; 4-clique.

No geral, se um (K+1)-clique tem uma realização em \mathbb{R}^{K-1} , ela é única a menos de rotações e translações [?]. É trivial, por tanto, que um (K+2)-clique tem, no máximo, uma realização no espaço \mathbb{R}^K — caracterizado como solução do DGP. Por tanto, dependendo da geometria do grafo que define um DGP — isto é, se ele possuir cliques suficientes —, pode-se utilizar estas estruturas como "blocos básicos de construção" para planejar uma realização interativa do grafo como um todo [?].

1.5.2 Trilateração

Considere um 3-clique com $V=\{1,2,3\}$, onde $d_{12}=d_{23}=1$ e $d_{13}=2$. Então, uma possível realização sobre a linha real $\mathbb R$ que satisfaça todas as distâncias é $x_1=0,\ x_2=1$ e $x_3=2$. Uma forma de obter o valor de x_3 dado os valores de x_1

e x_2 e as distâncias d_{13} e d_{23} é a trilateração: sabendo que $d_{13}=\|x_3-x_1\|=2$ e $d_{23}=\|x_3-x_2\|=1$, tem-se

$$x_3^2 - 2x_1x_3 + x_1^2 = 4 \quad e \tag{7}$$

$$x_3^2 - 2x_2x_3 + x_2^2 = 1. (8)$$

Subtraindo a equação 8 da 7, obtêm-se

$$2(x_1 - x_2)x_3 = x_1^2 - x_2^2 - 3 \implies 2x_3 = 4 \implies x_3 = 2.$$

E pode-se generalizar esse exemplo facilmente para (K+1)-cliques em \mathbb{R}^{K-1} [?]: Precisa-se conhecer a posição de K vértices e as distâncias destes ao (K+1)-ésimo vértice, assim, pode-se realizar o (K+1)-ésimo vértice, em tempo linear, resolvendo um sistema de K equações como acima.

Isto é, sejam $x_1,\ldots,x_k\in\mathbb{R}^{K-1}$ as posições para K vértices de um (K+1)-clique e, para todo $j\leq K$, seja $d_{j,K+1}$ a distância associada com a aresta $\{j,K+1\}$. Seja $y\in\mathbb{R}^{K-1}$ a posição do (K+1)-ésimo vértice; então, y deve respeitar as K equações quadráticas $\forall j\leq K, \ \|y-x_j\|^2=d_{j,K+1}^2$, com K-1 incógnitas y_1,\ldots,y_{k-1} :

$$\begin{cases}
||y||^2 - 2x_1y + ||x_1||^2 = d_{1,K+1}^2 \\
\vdots \\
||y||^2 - 2x_ky + ||x_k||^2 = d_{K,K+1}^2
\end{cases}$$
(9)

Para qualquer $h \leq K$. seja e_h a h-ésima equação no sistema de equações 9: podese tomas as diferenças e formar um novo sistema $\forall h < K \ (e_h - e_K)$ contendo K - 1 equações com K - 1 incógnitas:

$$\begin{cases}
2(x_1 - x_K) & \cdot y = ||x_1||^2 - ||x_K||^2 - d_{1,K+1}^2 + d_{K,K+1}^2 \\
& \vdots \\
2(x_{K-1} - x_K) \cdot y = ||x_{K-1}||^2 - ||x_K||^2 - d_{K-1,K+1}^2 + d_{K,K+1}^2
\end{cases}$$
(10)

Note que o sistema de equações 10 é um sistema linear da forma

$$Ay = b, (11)$$

onde $A = (2a_{ij})$ é uma matriz quadrada $(K-1) \times (K-1)$ com $a_{ij} = x_{ij} - x_{Kj}$ para todo i, j < K, e $b = (b_1, \dots, b_{K-1})^T$ com $b_i = ||x_i||^2 - ||x_K||^2 - d_{K,K+1}^2$ para todo i < K.

Diferentes métodos para solução de sistemas lineares como esse são encontrados na bibliografia [?, ?] — no geral, a escolha do melhor depende de propriedades da matriz A, como, por exemplo, quão esparsa ela é.

Em especial, se A não é uma matriz singular, então ela possui uma inversa A^{-1} . Logo, podemos obter a posição do (K+1)-ésimo vértice da forma

$$Ay = b \implies A^{-1}Ay = A^{-1}b \implies x_{K+1} = y = A^{-1}b.$$
 (12)

Porém, se A é singular, isso quer dizer que as linhas $a_i = x_i - x_K$ (para i < K) não são todas linearmente independentes [?]. Essa situação mostra algumas propriedades geométricas interessantes [?]. Por exemplo, se K = 2, significa que $x_1 - x_2 = 0 \implies$

 $x_1 = x_K$, ou seja, que o segmento entre x_1 e x_2 é um simples ponto. Se estamos imersos no $\mathbb{R}^{K-1} = \mathbb{R}$ (i.e., a reta real), geometricamente, a situação é que x_3 está posicionado ou a direita ou a esquerda de $x_1 = x_2$, mas não se pode escolher.

Também, se K = 3, a singularidade de A implica que o triangulo definido por x_1 , x_2 e x_3 é um apenas um segmento no plano (caso o rank de A é 1) ou um simples ponto (caso o rank for 0). Nesse primeiro caso, x_4 pode estar posicionado em ambos os lados da linha que contém o segmento e, no segundo caso, x_4 pode estar em qualquer um dos pontos formados pela circunferência com centro $x_1 = x_2 = x_3$ e raio $d_{14} = d_{24} = d_{34}$. Essa característica geométrica vale para valores maiores de K [?]: a singularidade de A implica que há sempre múltiplas soluções para x_{K+1} .

Deve-se mencionar que, a partir da equação 9, podemos chegar no sistema linear 11, mas a volta não é verdadeira [?]. Em particular, se o sistema 9 tem uma solução, então o sistema 11 tem a mesma solução. Porém, mesmo que o sistema 9 não tenha solução, o sistema 11 sempre terá uma solução única — desde que A não seja singular. Por tanto, para verificar a factibilidade de uma solução x_{K+1} advinda do sistema linear 11, deve ser verificar se as distâncias aos K vértices foram respeitadas — ou seja, se $||x_{K+1} - x_i|| = d_{i,(K+1)}$, para todo $i \leq K$.

1.5.3 Realização Iterativa de Grafos Completos

Uma característica interessante nos grafos completos é que, se (V, E) é um grafo completo, dado qualquer grafo induzido $\langle V' \rangle$ com $V' \subset V$, o subgrafo $\langle V' \rangle$ também é completo. Unindo esse princípio com a trilateração, nessa seção apresenta-se um algorítimo adaptado de [?] para a realização de grafos completos.

Primeiro, assume-se que exista um (K+1)-clique K(G) em G, chamada clique inicial, que conhecemos a realização — em WSNL, por exemplo, comumente se utiliza nós ancoras como clique inicial [?]. Sem perda de generalidade, seja $\{1, \ldots, K+1\}$ o conjunto dos vértices os que formam a clique inicial, com realização $\{x_1, \ldots, x_{K+1}\}$. Seja, também, N(i) o conjunto de vértices adjacentes ao i-ésimo vértice.

Algoritmo 1: x = RealizacaoIterativa(G, d, K, x) [?]

```
// Realize os próximos vértices iterativamente
 1 for i \in \{K + 2, ..., n\} do
      /* Utilize a (K+1)-clique dos (K+1) antecessores imediatos
         de i para calcular a realização x_i. Trilateracao() deve
          retornar Ø caso o sistema não tenha solução
                                                                           */
      x_i = \text{Trilateracao}(x_{i-K-1}, \dots, x_{i-1});
 \mathbf{2}
      // verifique se x_i é factível com relação as outras
         distâncias
      for \{j \in N(i) ; j < i\} do
 3
         if ||x_i - x_j|| \neq d_{ij} then
             // Se não, marcar como não factível e sair do loop
 5
             break;
 6
         end
 7
      end
 8
      if x_i = \emptyset then
         // Retornar que não foi possível concluir a realização
         return Ø;
10
      end
11
      // Retornar a realização factível
12
      return x;
13 end
```

Uma informação muito importante sobre o Algorítimo 1 é que a complexidade de seu pior caso é $O(K^3n)$ — para cada n vértices, deve-se resolver um sistema linear $K \times K$. Se não existir realização factível para G em \mathbb{R}^K , Algorítimo 1 retorna \emptyset .

Esse processo de trilateração em \mathbb{R}^K é chamado K-lateração [?, ?].

A Métricas

Como esse texto utiliza fortemente o conceito de distância, é necessário e bem vindo que se gaste algum espaço para uma construção formal dessa ideia. A noção de distância está relacionada com o conceito de *métrica*, como segue.

Seja \mathcal{X} um espaço vetorial K-dimensional sobre \mathbb{R} . $M\acute{e}trica$ é uma função de dois argumentos que mapeia pares ordenados de elementos em \mathcal{X} para um número real não negativo. Precisamente, para todo x, y e $z \in \mathcal{X}$, uma função $d(\cdot, \cdot) : \mathcal{X} \times \mathcal{X} \longrightarrow \mathbf{R}$ é uma métrica se satisfaz os seguintes axiomas:

- 1. d(x,y) = 0 se, e somente se, x = y;
- 2. d(x,y) = d(y,x);
- 3. $d(x,z) \le d(x,y) + d(y,z)$;
- 4. $d(x,y) \ge 0$

Nesse trabalho, quando não é especificado qual métrica se está usando, fica implícita a utilização da *Métrica Euclidiana*, definida em função da *Norma Euclidiana*:

$$\forall x, y \in \mathcal{X}, d(x, y) = \|x - y\|_2 = \sqrt{\langle x, y \rangle} = \sqrt{\sum_{i=1}^{K} (x_i - y_i)^2}.$$
 (Norma Euclidiana)

O par (\mathcal{X}, d) é chamado *espaço métrico*. A noção de métrica não depende de espaços vetoriais, donde pode ser facilmente generalizada fazendo \mathcal{X} um conjunto qualquer.

B Lei dos Cos e Ângulos Entre dois Vetores no \mathbb{R}^3

A lei dos cossenos é uma propriedade trigonométrica válida para qualquer triângulo, permitindo encontrar o valor de um dos seus lados conhecendo apenas os outros lados e um ângulo. Porém, aqui utilizaremos a ideia reversa, onde, nesse caso, saberemos os lados e queremos descobrir os ângulos.

Figura 2: Triângulo para ilustrar a lei dos cossenos.

• Demonstração Leis dos Cossenos:

Dado um triângulo qualquer, traça-se uma altura relativa ao lado a. Aplicando o Teorema de Pitágoras no $\triangle ABD$:

$$c^2 = m^2 + h^2 \to h^2 = c^2 - m^2 \tag{13}$$

Aplicando novamente *Pitágoras*, porém, em ΔADC , obtemos:

$$b^2 = h^2 + (a - m)^2 (14)$$

Substituindo na equação 14 o valor de h^2 obtido em 13:

$$b^{2} = c^{2} - m^{2} + a^{2} - 2am + m^{2}$$
$$b^{2} = c^{2} + a^{2} - 2am$$

Analisando a Figura 2, pode-se perceber que $\frac{m}{c} = \cos \beta$, então:

$$b^2 = c^2 + a^2 - 2ac\cos\beta$$

Analogamente, obtém-se:

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

Note também que se o argumento dos cossenos for $\frac{\pi}{2}$ recaímos no Teorema de Pitágoras.

• Ângulos Entre 2 Vetores:

Sejam dois vetores \overrightarrow{u} e \overrightarrow{v} $\in \mathbb{R}^2$, representados na Figura 3

Figura 3: Diferença entre vetores u e v

Para encontrarmos o angulo θ utilizaremos a lei dos cossenos aplicada a ΔABC :

$$\|\overrightarrow{u} - \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - 2\|\overrightarrow{u}\| \|\overrightarrow{v}\| \cos \theta \tag{15}$$

Utilizando a definição do produto escalar [?]

$$\|\overrightarrow{u} - \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - 2\overrightarrow{u}\overrightarrow{v} \tag{16}$$

Comparando a equação 15 com a 16, obtemos trivialmente

$$\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - 2\|\overrightarrow{u}\| \|\overrightarrow{v}\| \cos \theta = \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - 2\overrightarrow{u}\overrightarrow{v}$$

$$\overrightarrow{u}\overrightarrow{v} = \|\overrightarrow{u}\| \|\overrightarrow{v}\| \cos \theta$$

Logo,

$$\cos\theta = \frac{\overrightarrow{u}\overrightarrow{v}}{\|\overrightarrow{u}\|\|\overrightarrow{v}\|}$$