Визуализация осуществлённых рефакторингов в IDE на основе IntelliJ Platform

Соловьев Александр

группа 16.Б10-мм руководитель: к.т.н., доц., Т.А. Брыксин рецензент: Зам. начальника отдела разработки ПО СОРМ ООО "НТЦ Протей", Зимин А.С.

Санкт-Петербургский государственный университет

Введение

- Для улучшения исходного кода проводятся рефакторинги
- Знание о рефакторингов может быть полезно как для самих разработчиков, так и для каких-либо инструментов
- Есть разные подходы к поиску рефакторингов
- Нет ни одного из них интегрированного с IntelliJ Platform

Постановка задачи

Целью данной работы является разработка плагина для IDE на основе IntelliJ Platform, позволяющего находить рефакторинги в истории проекта

- Выбрать наиболее подходящий подход к поиску рефакторингов
- Спроектировать модульную архитектуру решения для поддержки работы с разными языками
- Реализовать интегрированную с IntelliJ Platform библиотеку, способную работать с разными языками
- Провести апробацию полученного решения

IntelliJ Platform

Основа для IDE от компании JetBrains и других разработчиков, предоставляющая одинаковый API для работы с ними

- Поддерживает плагины
- Использует PSI для представления синтаксических деревьев различных языков программирования
- Для работы с git использует git4idea

Сравнение методов

Метод	Точность ¹	Полнота ¹	Нужен целый проект	
RefDiff	1.000	0.877	Нет	
RMiner	0.956	0.728	Нет	
RefactoringCrawler	0.419	0.356	Да	
Ref-Finder	0.264	0.624	Да	

¹ – Silva D., Valente M. T. RefDiff: Detecting Refactorings in Version Histories // 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).—2017.—P. 269–279.

Сравнение времени работы в миллисекундах

Репозиторий	Среднее		Максимальное	
	RefDiff 2.0	RMiner	RefDiff 2.0	RMiner
helidon	174	418	21 983	112 807
hutool	81	34	1 833	782
igniter	15.6	14.8	75	343
nacos	65	234	2 076	133 827
resilience4j	79	146	11756	30 207
RxJava	262	490	$26 \ 139$	448 664
spring-boot	136	88	$150 \ 289$	92 117
spring-cloud-alibaba	102	35	14 191	2 972
vhr	26.5	14.2	1 079	591

Диаграмма основных компонент

Архитектура основной компоненты *"core"*

Архитектура расширения для проектов на Java

Архитектура модуля визуализации

Визуализация извлечения метода в проекте на Kotlin

```
Extracted ClassA produceResult() from ClassA f()
                                                                                                          C:/Tst/KotlinTest/src/main/kotlin/ClassA.kt
                                                            C:/Tst/KotlinTest/src/main/kotlin/ClassA.kt
class ClassA {
                                                                   class ClassA {
     fun f(x : Int) : Int {
                                                                       fun f(x : Int) : Int {
         var result = x * x
                                                                            var result = x * x
         result += 24
                                                                           return produceResult(result)
         result -= 53
         helper(result)
                                                            6
         result -= 35
                                                                       private fun produceResult(result: Int):
         return helper(result)
                                                                            var result1 = result
                                                                            result1 += 24
                                                                           result1 -= 53
                                                                           helper(result1)
                                                                            result1 -= 35
                                                                            return helper(result1)
```

Апробация

- Java
- 5 разработчиков
- Полезность насколько качественно находит рефакторинги
- Удобство насколько хорошо представлена информация

Результаты

- Выбран наиболее подходящий инструмент для поиска рефакторингов в истории проектов
- Спроектирована модульная архитектура решения, поддерживающая работу с разными языками
- Спроектированная архитектура реализована в качестве библиотеке, интегрированной с IntelliJ Platform
- Разработаны расширения для проектов на языках Java и Kotlin на основе реализованной архитектуры
- Проведена апробация решения