

CVEN30008 ENGINEERING RISK ANALYSIS

Quantitative Risk Analysis Using Correlation and Simple Linear Regression

COORDINATOR:
Dr Lihai Zhang
Infrastructure Engineering
Department (Room B307)
Iihzhang@unimelb.edu.au

Quantitative Analysis – Environmental Risks

An environmental engineer is studying the rate of absorption of a certain chemical into skin. She obtains a series of experimental results as follows

Volume (mL)	Time (h)	Percent Absorbed
0.05	2	48.3
0.05	2	51.0
0.05	2	54.7
2.00	10	63.2
2.00	10	67.8
2.00	10	66.2
5.00	24	83.6
5.00	24	85.1
5.00	24	87.8

Is any correlation between time and absorption?

Is any correlation between volume and absorption?

CVEN30008 Engineering Risk Analysis

Scatter Plots

Scatter Plots are used to show the relationship between two variables.

Correlation

X

X

Correlation analysis is used to measure strength of the association (linear relationship) between two variables

Correlation

Correlation coefficient – A numerical measure of the strength of the linear relationship between two variables.

- Range between -1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker the linear relationship

Correlation Coefficient

Sample correlation coefficient:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \bar{y})^2\right]}}$$

where: r =Sample correlation coefficient

n = Sample size

 x_i = Value of the independent variable

 y_i = Value of the dependent variable

Quantitative Analysis – Environmental Risks

An environmental engineer is studying the rate of absorption of a certain chemical into skin. She obtains a series of experimental results as follows

Volume (mL)	Time (h)	Percent Absorbed
0.05	2	48.3
0.05	2	51.0
0.05	2	54.7
2.00	10	63.2
2.00	10	67.8
2.00	10	66.2
5.00	24	83.6
5.00	24	85.1
5.00	24	87.8

- (a) Is any correlation between time and absorption?
- (b) Is any correlation between volume and absorption?

Quantitative Analysis – Environmental Risks

Solution:

Correlation Coefficient

Example (Earthquakes)

In a study of ground motion caused by earthquakes, the peak velocity (in m/s) were recorded for five earthquakes. The results are presented in the following table.

Velocity	1.54	1.60	0.95	1.30	2.92
Acceleration	7.64	8.04	8.04	6.37	5.00

Compute the correlation coefficient between peak velocity and peak

acceleration. Is any correlation between them?

Correlation Coefficient

Solution:

Significance Test for Correlation

Hypotheses

$$H_0$$
: $\rho = 0$ (no correlation)
 H_1 : $\rho \neq 0$ (correlation exists)

Test statistic

$$- t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$$

(with n-2 degrees of freedom)

With consideration of sample size and standard deviation

Is any correlation between temperature and number of bushfires?

Temperature	Number of bushfires
У	X
35°C	8
49°C	9
27°C	7
33°C	6
60°C	13
21°C	7
45°C	11
51°C	12
Σ =321 °C	Σ=73

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^2\right] \left[\sum (y - \overline{y})^2\right]}} = 0.886$$

Is there evidence of a linear relationship between temperature and number of bushfires at the 0.05 level of significance?

 H_0 : $\rho = 0$ (No correlation) H_1 : $\rho \neq 0$ (correlation exists)

$$\alpha = .05$$
, df = 8 - 2 = 6

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{.886}{\sqrt{\frac{1 - .886^2}{8 - 2}}} = 4.68$$

Decision: Reject H₀

Conclusion:

There is evidence of a linear relationship at the 5% level of significance

 When two variables have a linear relationship, the scatterplot tends to be clustered around a line known as the least-squares line

Example:

An accelerated test, steel structures are operated under extreme conditions

until failure

Temperature (°C)	Lifetime (hours)
40	851
45	635
50	764
55	708
60	469
65	661
70	586
75	371
80	337
85	245
90	129
95	158

Two variables:
Lifetime vs Temperature

420

Dependent variable: the variable we wish to explain Independent variable: the variable used to explain the dependent variable

$$y = \beta_0 + \beta_1 x$$

$$\beta_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} \qquad \beta_0 = \overline{y} - \beta_1 \overline{x}$$

Example:

An accelerated test, steel structures are operated under extreme conditions until failure

- (a) Compute the least-squares line for predicting life-time from temperature.
- (b) Predict the lifetime for a temperature of 73°C.

50	764
55	708
60	469
65	661
70	586
75	371
80	337
85	245
90	129
95	158

Temperature (°C)

40

45

Lifetime (hours)

851

635

Solution:

Example (Fuel economy)

Inertial weight (in tons) and fuel economy (in mi/gal) were measured for a sample of seven diesel trucks. The results are presented in the following table

(a) Compute the least-squares line for predicting mileage from weight.

(b) Predict the mileage for trucks with a weight of 15 tons.

Weight	Mileage
8.00	7.69
24.50	4.97
27.00	4.56
14.50	6.49
28.50	4.34
12.75	6.24
21.25	4.45

Solution: