

Intégration Numérique

Département Informatique - INM3201 IUT de Vélizy

Projet de Programmation

Auteur: Fabrice Hoguin

2020

Table des matières

1 Quelques méthodes pour l'intégration numérique							
	1.1	Introd	luction	5			
	1.2		ode des rectangles				
		1.2.1	Rectangles "gauches"	6			
		1.2.2	Rectangles "droits"	7			
		1.2.3	Rectangles "médians"	7			
		1.2.4	Méthode des trapèzes				
		1.2.5	Méthode de Simpson	9			
2	Exe		11				
	2.1	Cahier	r des charges	11			
			Le rapport				
		2.1.2	Le code	11			
	2.2	Exerci	ices	12			

Chapitre]

Quelques méthodes pour l'intégration numérique

1.1 Introduction

On souhaite approcher par des méthodes numériques le calcul de l'intégrale suivante :

- (i) Soit $(a, b) \in \mathbb{R}^2$, avec a < b,
- (ii) f une fonction réelle continue sur [a;b] et $n \in \mathbb{N}^*$
- (iii) $a_0 < a_1 < \dots < a_n$ avec $a = a(0) = a_0$ et $b = a(n) = a_n$ et $\forall k \in [0; n-1]$ on a :

$$a_{k+1} - a_k = h = \frac{b-a}{n}$$

(iv)
$$\int_a^b f(t)dt = \sum_{k=0}^{k=n-1} \int_{a_k}^{a_{k+1}} f(t)dt$$

On cherche alors à approcher $\int_{a_k}^{a_{k+1}} f(t)dt$ par une intégrale simple à calculer. On propose alors plusieurs méthodes

- 1. Méthode des rectangles
- 2. Méthode des trapèzes
- 3. Méthode de Simpson

1.2 Méthode des rectangles

1.2.1 Rectangles "gauches"

$$\int_{a}^{b} f(t)dt \approx \frac{b-a}{n} \sum_{k=0}^{k=n-1} f(a_k)$$

1.2.2 Rectangles "droits"

$$\int_{a}^{b} f(t)dt \approx \frac{b-a}{n} \sum_{k=1}^{k=n} f(a_k)$$

1.2.3 Rectangles "médians"

$$\int_{a}^{b} f(t)dt \approx \frac{b-a}{n} \sum_{k=0}^{k=n-1} f\left(\frac{a_k + a_{k+1}}{2}\right)$$

c=0,5(a(0)+a(1))

1.2.4 Méthode des trapèzes

$$\int_{a}^{b} f(t)dt \approx \frac{b-a}{2n} \left(f(a) + f(b) + 2 \sum_{k=1}^{k=n-1} f(a_{k}) \right)$$

1.2.5 Méthode de Simpson

$$\int_{a}^{b} f(t)dt \approx \frac{b-a}{6n} \left(f(a) + f(b) + 2 \sum_{k=1}^{k=n-1} f\left(a + \frac{(k)(b-a)}{n}\right) + 4 \sum_{k=0}^{k=n-1} f\left(a + \frac{(2k+1)(b-a)}{2n}\right) \right)$$

	′)			
Chanitra	//			
Chapitre				

Exercices

2.1 Cahier des charges

Ce projet de programmation fera l'objet d'un rapport et d'un programme informatique.

2.1.1 Le rapport

- Le rapport rendra compte des résultats obtenus avec les exercices proposés.
- Vous présenterez également les différentes méthodes de calcul que vous avez implémentées.
- Vous devrez également préciser quelles sont les conditions requises pour exécuter votre code. Par exemple :

Microsoft Windows python 2.7

. . .

• Ce rapport sera écrit avec la syntaxe **markdown** ce qui vous permettra d'insérer proprement les éléments de code dans votre rapport.

2.1.2 Le code

Le programme informatique sera livré en même temps que le rapport. Le langage utilisé est libre. Néanmoins, ne perdez pas de vue que cette programmation est orientée calcul numérique/mathématiques. Une boite de dépôts sera ouverte afin d'y déposer un zip contenant votre rapport au format pdfet votre ou vos fichiers sources du code.

2.2 Exercices

Exercice 1

1. Programmez la méthode des rectangles "médians" et faire tourner votre programme pour donner une valeur approchée de l'intégrale suivante :

$$\int_0^1 x^2 dx$$

Vous prendrez une subdivision de l'intervalle [0;1] avec n=10 pour tester votre programme. Comparer le résultat au résultat réel que vous connaissez.

- 2. Quelle est la mesure de l'erreur commise entre la valeur réelle de l'intégrale et la valeur approchée que votre programme a retournée. fournissez votre réponse en valeur absolue et en pourcentage.
- 3. En faisant varier la valeur de n, votre erreur va évoluer, Etablir un graphe de l'évolution de cette erreur.

......

Exercice 2

Utiliser votre programme pour donner une valeur approchée par la méthode de Simpson pour l'intégrale suivante : $\int_0^1 x^3 dx$ avec n=10. Que pensez-vous du résultat obtenu? Justifiez votre réponse.

.....

Exercice 3

Soit l'intégrale suivante : $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(x) dx$ Utiliser votre programme pour estimer cette intégrale avec la méthode des trapèzes en prenant n=11. Analyser et comparer les résultats lorsque vous changez la méthode d'intégration (rectangle médian) avec n=11,12,13,14

.....

Exercice 4

Donner une valeur approchée par la méthode des trapèzes pour l'intégrale suivante : $\int_0^1 (2x+1) dx$ avec $n = 10\,000$. Que pensez-vous de l'intérêt de la valeur de n choisie avec cette méthode?

Exercice 5

Soit l'intégrale $\int_0^{50} e^{-x} dx$ à intégrer en utilisant la méthode des trapèzes avec n = 10. Que dire du résultat obtenu?