

Federated Averaging

Outline

- Motivation
- Main Works
 - 1. FederatedAveraging
 - 2. FedAvg with shared data
 - 3. LoAdaBoost FedAvg
 - 4. Asynchronous Federated Optimization
- Conclusion

Motivation

key properties different from a typical distributed optimization problem:

- Non-IID
- Unbalanced
- Massively Distributed
- Limited Communication

Training process

Step 1: participants locally compute training gradients, mask a selection of gradients with encryption, differential privacy or secret sharing techniques, and send masked results to server

Step 2: Server performs secure aggregation without learning information about any participant

Step 3: Server send back the aggregated results to participants

Step 4: Participants update their respective model with the decrypted gradients

The FederatedAveraging Algorithm

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

```
initialize w_0

for each round t = 1, 2, ... do

m \leftarrow \max(C \cdot K, 1)

S_t \leftarrow (random set of m clients)

for each client k \in S_t in parallel do

w_{t+1}^k \leftarrow ClientUpdate(k, w_t)

w_{t+1} \leftarrow \sum_{k=1}^K \frac{n_k}{n} w_{t+1}^k
```

ClientUpdate(k, w): // Run on client k $\mathcal{B} \leftarrow (\operatorname{split} \mathcal{P}_k \text{ into batches of size } B)$ for each local epoch i from 1 to E do
for batch $b \in \mathcal{B}$ do $w \leftarrow w - \eta \nabla \ell(w; b)$ return w to server

Update (central server)

$$w_{t+1} \leftarrow w_t - \eta \sum_{k=1}^K \frac{n_k}{n} g_k,$$

Update (client)

$$\forall k, \ w_{t+1}^k \leftarrow w_t - \eta g_k$$

- Three key parameters
 - **C** (the fraction of clients that perform computation on each round)
 - E (the number of training passes each client makes over its local dataset on each round)
 - B (the local minibatch size used for the client updates)

FedAvg with shared data

Figure 6: Illustration of the datasharing strategy.

- A globally shared dataset G
- The warm-up model trained on G
- A random α portion of G are distributed to each client
- Each client is trained on the shared data together with the private data

FedAvg with shared data

$$\beta = \frac{||G||}{||D||} \times 100\%$$

Figure 7: (a) Test accuracy and EMD vs. β (b) Test accuracy vs. the distributed fraction α

- The test accuracy increases as β increases. Even with a lower β = 10%, we can still achieve a test accuracy.
- Only a random portion of G needs to be distributed to each client.

LoAdaBoost FedAvg

- Loss-based Adaptive Boosting FederatedAveraging
- Focus on medical data
- Three issues in federation learning:
 - 1. the local client-side computation complexity
 - 2. the communication cost
 - 3. the test accuracy

LoAdaBoost FedAvg

 Different from FedAvg, the learning process average was performed for E/2 instead of E epochs.

$$riangle riangle L_k^{t,0} = L_k^{t,0} - L_{median}^{t-1} \leq 0$$
 finish

- Otherwise, retrain for E/2-1 more epochs, (repeated for E/2-r+1 epochs), stop until
- $\triangle L_k^r = L_k^{t,r} L_{median}^{t-1} \le 0$ or total epochs reached 3E/2

Asynchronous Federated Optimization

- Previous: Synchronous
 - 1. Too many devices checking in at the same time
 - 2. Difficult to synchronize the selected devices at the end of each epoch
- Asynchronous federated optimization
 The key idea: use a weighted average to update the global model.

$$x_t = (1 - \alpha)x_{t-1} + \alpha x_{new},$$

Asynchronous Federated Optimization

Algorithm 1 Asynchronous Federated Optimization (FedAsync)

Server Process

Input: $\alpha \in (0,1)$

Initialize $x_0, \alpha_t \leftarrow \alpha, \forall t \in [T]$

Scheduler Thread

Scheduler periodically triggers some training tasks on some workers, and sends them the latest global model with time stamp

Updater Thread

for all epoch $t \in [T]$ do

Receive the pair (x_{new}, τ) from any worker Optional: $\alpha_t \leftarrow \alpha \times s(t - \tau)$, $s(\cdot)$ is a function of

the staleness

$$x_t = (1 - \alpha_t)x_{t-1} + \alpha_t x_{new}$$

ena Ior

Worker Processes

for all $i \in [n]$ in parallel do

If triggered by the scheduler:

Receive the pair of the global model and its time stamp (x_t, t) from the server

$$\tau \leftarrow t, x_{\tau,0}^i \leftarrow x_t$$

For μ -weakly convex F:

Define
$$g_{x_t}(x;z) = f(x;z) + \frac{\rho}{2} ||x - x_t||^2$$
, where $> \mu$

for all local iteration $h \in [H^i_\tau]$ do Randomly sample $z^i_{\tau,h} \sim \mathcal{D}^i$

$$x_{\tau,h}^i \leftarrow \left\{ \begin{array}{l} \text{Option I, for strongly convex } F \colon \\ x_{\tau,h-1}^i - \gamma \nabla f(x_{\tau,h-1}^i; z_{\tau,h}^i) \\ \text{Option II, for weakly convex } F \colon \\ x_{\tau,h-1}^i - \gamma \nabla g_{x_t}(x_{\tau,h-1}^i; z_{\tau,h}^i) \end{array} \right.$$

end for

Push $(x_{\tau,H_{\tau}^{i}}^{i},\tau)$ to the server

end for