Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

\sim			, • 1	
Cognome,	nome	ρ	matricol	ล:
Cognonic,	1101110	\mathbf{c}	manico	ıu.

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) La relazione R su $\mathbb{N} \setminus \{0\}$ definita da w R x se e solo se $w \mid x$

2 punti

- □ è simmetrica.
- □ è transitiva.
- □ è riflessiva.
- è un ordine lineare.
- (b) Quali dei seguenti insiemi sono infiniti e numerabili?

2 punti

- $\square \{(w,x) \in \mathbb{R}^2 \mid w \in \mathbb{Q} \lor x \notin \mathbb{N}\}$

- (c) La funzione $k\colon \mathbb{Q} \to \mathbb{R}$ definita da $k(t) = 5t^2 1$ è

2 punti

- né iniettiva, né suriettiva.
- □ iniettiva ma non suriettiva.
- □ biettiva.
- □ suriettiva ma non iniettiva.

(d) Sia φ la formula $\forall x S(w, x) \leftrightarrow \exists w \exists x S(x, w)$, dove S è un simbolo di predicato binario.

2 punti

- \Box φ è un enunciato.
- La variabile w occorre libera e vincolata in φ .
- \Box La variabile x occorre libera e vincolata in φ .
- \Box φ è un enunciato e la variabile w occorre sia libera che vincolata in φ .
- (e) Consideriamo il linguaggio L con due simboli di funzione unaria k, f. Quali delle 2 punti seguenti espressioni sono L-enunciati che formalizzano correttamente relativamente alla L-struttura $\langle D, k, f \rangle$ l'affermazione "la funzione k è l'inversa della funzione f"

 - $\begin{tabular}{ll} \hline & \forall x (k(f(x)) = x \land f(k(x)) = x) \\ \hline \end{tabular}$

 - \square $k = f^{-1}$
- (f) Siano φ, ψ delle *L*-formule.

2 punti

- Se φ è una tautologia allora $\neg \varphi \rightarrow \psi$ è una tautologia.
 - \square Se φ è soddisfacibile allora $\neg \varphi \rightarrow \psi$ è soddisfacibile.
 - \Box Se $\neg \phi$ è soddisfacibile allora ϕ è soddisfacibile.
- \Box ϕ è soddisfacibile se e solo se ψ è soddisfacibile.
- (g) Siano D, A, B lettere proposizionali e S una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

D	Α	В	S
\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{V}
\mathbf{V}	\mathbf{F}	\mathbf{V}	\mathbf{F}
\mathbf{V}	${f F}$	${f F}$	\mathbf{V}
${f F}$	\mathbf{V}	\mathbf{V}	\mathbf{V}
${f F}$	\mathbf{V}	${f F}$	\mathbf{V}
${f F}$	\mathbf{F}	\mathbf{V}	\mathbf{F}
${f F}$	${f F}$	${f F}$	\mathbf{V}

- $\hfill\Box$ S \vee B è una tautologia.
- \square S non è valida.
- \square $S \equiv B \rightarrow A$
- \square S $\models \neg A$.

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L=\{k\}$ con k simbolo di funzione binario. Sia ψ la L-formula

$$\exists x \, (k(x, x) = w).$$

1. Stabilire se

$$\langle \mathbb{Z}, + \rangle \models \psi[y/2, \underline{x/1}].$$

2. Stabilire se

$$\langle \mathbb{Z}, + \rangle \models \psi[y/2, x/2].$$

3. Stabilire se

$$\langle \mathbb{Z}, + \rangle \models \forall w \psi[y/2, x/2].$$

4. Stabilire se

$$\langle \mathbb{Z}, + \rangle \models \exists w \psi [y/2, x/1].$$

5. Stabilire se

$$\langle \mathbb{R}, \cdot \rangle \models \psi[y/1, x/3].$$

6. Stabilire se

$$\langle \mathbb{R}, \cdot \rangle \models \psi[y/\sqrt{2}, x/-2].$$

- 7. È vero che $\langle \mathbb{R}, \cdot \rangle \models \forall w \, \psi[y/1, x/3]$?
- 8. Sia $\mathcal{C} = \langle \mathbb{R}^+, \cdot \rangle$, dove $\mathbb{R}^+ = \{ r \in \mathbb{R} \mid r > 0 \}$. È vero che $\mathcal{C} \models \forall w \, \psi[y/1, x/3]$?

Giustificare le proprie risposte.

Esercizio 3 9 punti

Sia $\langle D, < \rangle$ un ordine lineare stretto e siano A, B sottoinsiemi di D. Formalizzare relativamente alla struttura $\langle D, <, A, B \rangle$ mediante il linguaggio $L = \{<, A, B\}$ con un simbolo di relazione binaria e due simboli di predicato unari le seguenti affermazioni:

- 1. Tra due elementi di A non c'è alcun elemento di B.
- 2. Dati due elementi di B, c'è necessariamente un elemento di A che è minore di entrambi.
- 3. Ogni elemento di A è minore di qualche elemento di B.
- 4. Il più piccolo elemento di B coincide con il più grande elemento di A.