Covers

October 21, 2020

ı

Covers

Definition

Let A be a subset of \mathbf{R} . We say \mathcal{C} is a cover of the set A provided

- \bigcirc \mathcal{C} is a set,
- $oldsymbol{2}$ every member of $\mathcal C$ is an open set,
- A cover is a bit like a quilt—each square of the quilt is too small to cover the bed, but collectively (that is their union) covers the bed.
- When a set has a cover, it is not unique.

Examples and nonexamples

Example

- lacktriangle The set f R is not a cover of f R. Why? The members of f R are real numbers, not open sets.
- 2 The set $\{R\}$ is a cover of R. Why?
 - $\mathbf{0}$ $\{\mathbf{R}\}$ is a set–sure, it's a set with one member that is a set.
 - 2 every member of $\{\mathbf{R}\}$ is an open set–sure, the only member is \mathbf{R} and we know that \mathbf{R} is open.
 - We have

$$\underset{x \in \{\mathbf{R}\}}{\cup} x = \mathbf{R}.$$

- **3** The set \varnothing is a cover of itself.
 - \bigcirc \varnothing is a set—sure, it's a set.
 - ${f Q}$ every member of ${f \varnothing}$ is an open set-sure, it's vacuously true.
 - We have

$$\bigcup_{x \in \varnothing} x = \varnothing.$$

,

More Examples, less nonexamples

Example

- ① Define $C = \{B(0,k) \mid k \in \mathbb{Z}_{>0}\}$. Then C is a cover of \mathbb{R} .
 - $oldsymbol{0}$ \mathcal{C} is a set-sure, it's a set.
 - $oldsymbol{\circ}$ every member of $\mathcal C$ is an open set-sure, every member is an open ball.
 - We have

$$\underset{x \in \mathcal{C}}{\cup} x = \mathbf{R}.$$

Claim: $\mathbf{R} \subset \bigcup_{x \in \mathcal{C}} x$.

Proof: Let $z \in \mathbf{R}$. Then $z \in \mathrm{B}(0, \lceil |z| \rceil + 1)$. But $\mathrm{B}(0, \lceil |z| \rceil + 1) \in \mathcal{C}$; therefore $z \in \cup x$.

Subcovers

Definition

Let \mathcal{C} be a cover of a set A. Any subset \mathcal{C}' of \mathcal{C} is a *subcover* of \mathcal{C} provided \mathcal{C}' is a cover of A. If \mathcal{C}' is a finite set, it's called a *finite subcover of* A.

- **①** A set is finite if either it is empty or its members can be uniquely labeled using the integers 1 to n, for some integer n.
- 2 The set $\{R\}$ is finite; the set R is not finite.
- **3** The set $\{\infty\}$ is finite.

Examples of subcovers

Example

- **①** The set $\{B(0,x) \mid x \in \mathbf{R}_{>0}\}$ is a cover of [0,1]. The set $\{B(0,2)\}$ is a finite subcover.
- ② The set $\{B(0,x) \mid x \in \mathbf{R}_{>0}\}$ is a cover of \mathbf{R} . This cover has no finite subcover.

Why Every member of t $\{B(0,x) \mid x \in \mathbf{R}_{>0}\}$ is bounded. The finite union of bounded sets is bounded. Thus regardless of what finite subset of $\{B(0,x) \mid x \in \mathbf{R}_{>0}\}$ we choose, its union will be bounded. But \mathbf{R} is unbounded, so is is not contained in any bounded set.