Computational calculation and visualization of the Biological Value Index

Ricardo Dominguez-Reza[†] Juan Carlos Villaseñor-Derbez* Los que falten

Abstract

Abstract goes here

Contents

1	Materials and Methods	1
2	Results	2
3	Discussion and Conclusions	5
4	References	5
5	Figures and Tables	5
#]	Introduction	

Todo esto es mierda, tengo que modificarlo

• Indices in ecology

Usually people describe a site by the species that inhabit it, but do not pay much attention to how some species are incharged of the simmilarities.

- History of the index When it was proposed How it worked Modifications by Loya Salinas How it works now
- Usage of the index Works that have used it
- Stating the problem
 - Lack of comparison
 - computability

1 Materials and Methods

- How the index works, step by step (possibly citing Loya-Salinas)
- Flow diagram depfun(ivb)
- Adding the %BVI

$$\%BVI_{i} = \frac{(100 \times BVI_{i})}{\sum_{i=1}^{n} BVI_{i}}$$
 (1)

^{*}Bren School, john@example.org

[†]CICESE, jane@example.org

- Compare N and Ni vs rBVI to test its usefulness
- Propose ways to visualize rBVI
- Recreating Loya-Salinas

Spp	S1	S2	S3	S4	S5	S6
Synchelidium spp.	2398	1626	811	1275	1343	7079
$Tridentella\ spp.$	2048	1125	528	1990	1098	1274
$Nerine\ cirratulus$	37	165	1141	1540	118	53
$Nephtys\ californiens is$	544	875	404	170	58	90
Glycera tenuis	265	566	106	646	133	118
$Donax\ gouldii$	914	75	42	5	5	15
$Orchesto idea\ benedicti$	11	251	133	79	162	245
$Archaeomysis\ spp.$	958	90	160	37	522	111
$Arm a dillium\ spp.$	59	155	91	16	208	283
$Megalopus\ spp.$	149	266	48	30	0	0
$Emerita\ analoga$	101	16	96	27	0	10
$Pontharpinia\ spp.$	69	96	11	16	0	0
$Euzonus\ mucronata$	0	0	37	341	0	0
$Lepidopa\ californica$	5	69	16	0	16	0
$Magelona\ californica$	0	5	5	0	42	10
$Hanstorina\ spp.$	0	16	5	0	0	0
$Glycera\ dibranchiata$	0	0	0	0	5	0
$Archaeomysis\ maculata$	0	0	0	5	0	0

- Mention using SIMPER as a comparative
- Propose a graph to visualize data

2 Results

- Results from Loya-Salinas
- Graph
- $\bullet~$ Comparing %BVI with SIMPER
- Table with abundances, BVI, %BVI and SIMPER

	Species	S1	S2	S3	S4	S5	S6	BVI	%BVI
Synchelidium spp.	Synchelidium spp.	10	10	9	8	10	10	57	17.22
$Tridentella\ spp.$	Tridentella spp.	9	9	8	10	9	9	54	16.31
$Glycera\ tenuis$	Glycera tenuis	5	7	4	7	5	6	34	10.27
$Nephtys\ californiens is$	Nephtys californiensis	6	8	7	5	3	4	33	9.97
$Archaeomysis\ spp.$	Archaeomysis spp.	8	1	6	3	8	5	31	9.37
Nerine cirratulus	Nerine cirratulus	0	4	10	9	4	3	30	9.06
$Orchesto idea\ benedicti$	Orchestoidea benedicti	0	5	5	4	6	7	27	8.16
$Arm a dillium\ spp.$	Armadillium spp.	1	3	2	0	7	8	21	6.34
$Megalopus\ spp.$	Megalopus spp.	4	6	1	2	0	0	13	3.93
$Donax\ gouldii$	Donax gouldii	7	0	0	0	0	2	9	2.72
11	Others	5	2	3	7	3	2	22	0.07
1	Total								100.00

Table 1:

	Dependent variable:			
	(1)	(2)		
rBVI	0.016*** (0.002)	0.118*** (0.010)		
Constant	-0.040**(0.016)	1.189*** (0.090)		
Observations	81	81		
\mathbb{R}^2	0.489	0.636		
Residual Std. Error $(df = 79)$	0.088	0.482		
F Statistic ($df = 1; 79$)	75.486***	138.264***		

Note:

*p<0.1; **p<0.05; ***p<0.01

`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'

- 3 Discussion and Conclusions
- 4 References
- 5 Figures and Tables