Universidad Nacional Autónoma de México Facultad de Ciencias Estructuras Discretas Tarea 3

Rubí Rojas Tania Michelle taniarubi@ciencias.unam.mx # cuenta: 315121719

3 de noviembre de 2017

1. Demuestre que cada una de las siguientes fórmulas se cumple para cada $n \in \mathbb{N}$.

a)
$$\sum_{i=1}^{n} (2i-1)^3 = n^2(2n^2-1)$$

Demostración. Inducción sobre n.

• Base de inducción.

n = 1. Este caso se cumple ya que
$$\sum_{i=1}^1 (2i-1)^3 = (2(1)-1)^3 = (1)^3 = 1 = 1(2(1)-1) = (1)^2(2(1)^2-1)$$

• Hipótesis de inducción.

Supongamos que el resultado es cierto para $n \ge 1$, es decir, supongamos que se cumple $\sum_{i=1}^{n} (2i-1)^3 = n^2(2n^2-1)$.

• Paso inductivo.

Tenemos que demostrar que la fórmula es válida para n+1, es decir, que se cumple $\sum_{i=1}^{n+1} (2i-1)^3 = (n+1)^2 (2(n+1)^2-1) = (n+1)^2 (2n^2+4n+1).$ Entonces

$$\sum_{i=1}^{n+1} = \left(\sum_{i=1}^{n} (2i-1)^3\right) + (2(n+1)-1)^3$$

$$= (n^2(2n^2-1)) + (2(n+1)-1)^3 \qquad \text{por H.I.}$$

$$= (2^4-n^2) + (8n^3+12n^2+6n+1) \qquad \text{desarrolando términos}$$

$$= 2^4+8n^3+11n^2+6n+1 \qquad \text{agrupando términos semejantes}$$

$$= (n+1)^2(2n^2+4n+1) \qquad \text{factorizando}$$

b)
$$\sum_{i=0}^{n} \frac{i}{2^i} = 2 - \frac{n+2}{2^n}$$

Demostración. Inducción sobre n.

• Base de inducción.

$$n=0$$
Este caso se cumple ya que
$$\textstyle\sum_{i=0}^0\frac{0}{2^0}=\frac{0}{1}=0=2-2=2-\frac{2}{1}=2-\frac{0+2}{2^0}$$

- Hipótesis de inducción. Supongamos que el resultado es válido para $n \ge 0$, es decir, supongamos que se cumple $\sum_{i=0}^{n} \frac{i}{2^i} = 2 \frac{n+2}{2^n}$.
- Paso inductivo.

Tenemos que demostrar que la fórmula es válida para n+1, es decir, que se cumple $\sum_{i=0}^{n+1} \frac{i}{2^i} = 2 - \frac{(n+1)+2}{2^{n+1}} = 2 - \frac{n+3}{2^{n+1}}$

$$\sum_{i=0}^{n+1} \frac{i}{2^i} = \left(\sum_{i=0}^n \frac{i}{2^i}\right) + \left(\frac{n+1}{2^{n+1}}\right)$$

$$= \left(2 - \frac{n+2}{2^n}\right) + \left(\frac{n+1}{2^{n+1}}\right) \qquad \text{por H.I.}$$

$$= 2 - \left(\frac{n+2}{2^n} + \frac{n+1}{2^{n+1}}\right) \qquad \text{asociatividad}$$

$$= 2 - \left(\frac{2(n+2) - (n+1)}{2^{n+1}}\right) \qquad \text{resolviendo suma}$$

$$= 2 - \left(\frac{2n+4-n+1}{2^{n+1}}\right) \qquad \text{simplificando}$$

$$= 2 - \left(\frac{n-3}{2^{n+1}}\right) \qquad \text{simplificando}$$

- 2. Demuestre cada una de las siguientes desigualdades para los valores de $n \in \mathbb{N}$ especificados.
 - a) $(1+\frac{1}{n})^n < n$ para cada $n \in \mathbb{N}$ tal que $n \geq 3$

Demostración. Inducción sobre n.

- Base de inducción. n=3. Este caso se cumple ya que $(1+\frac{1}{3})^3=(\frac{4}{3})^3=\frac{64}{27}<3$.
- Hipótesis de inducción. Supongamos que el resultado es válido para $n \ge 3$, es decir, supongamos que se cumple $(1 + \frac{1}{n})^n < n$.
- Paso inductivo.

Tenemos que demostrar que la fórmula se cumple para n+1, es decir, que se cumple $(1+\frac{1}{n+1})^{n+1} < n+1$.

Sabemos que, por propiedades en los números reales, se cumple $n < n+1 \Rightarrow \frac{1}{n+1} < \frac{1}{n}$, y por lo tanto, $1 + \frac{1}{n+1} < 1 + \frac{1}{n}$. Además, si a y b son reales, se tiene que $a < b \Rightarrow a^n < b^n$, $n \in \mathbb{N}$. Podemos utilizar este resultado con la desigualdad $1 + \frac{1}{n+1} < 1 + \frac{1}{n}$, y desarrollar para utilizar nuestra hipótesis.

Entonces

$$\left(1+\frac{1}{n+1}\right)^{n+1}<\left(1+\frac{1}{n}\right)^{n+1} \qquad \text{por la observación anterior}$$

$$=\left(1+\frac{1}{n}\right)^n\left(1+\frac{1}{n}\right) \qquad \text{descomponiendo la expresión anterior}$$

$$< n(1+\frac{1}{n}) \qquad \text{por H.I.}$$

$$= n+1 \qquad \text{simplificando}$$

b) $7n < 2^n$ para cada $n \in \mathbb{N}$ tal que $n \ge 6$

Demostración. Inducción sobre n.

- Base de inducción. n = 6. Este caso se cumple ya que $7(6) = 42 < 64 = 2^6$.
- Hipótesis de inducción. Supongamos que el resultado es válido para $n \ge 6$, es decir, supongamos que se cumple $7n < 2^n$.
- Paso inductivo.

Tenemos que demostrar que la fórmula es válida para n+1, es decir, que se cumple $7(n+1) < 2^{n+1}$.

Entonces

$$7(n+1) = 7n + 7$$
 simplificando
 $< 2^n + 7$ por H.I.
 $< 2^n + 2^n$ ya que $7 < 2^n$ con $n \ge 6$
 $= 2 \cdot 2^n$ simplificando
 $= 2^{n+1}$ simplificando

3. Demuestre que

$$\prod_{i=2}^{n} (1 - \frac{1}{i^2}) = (1 - \frac{1}{2^2}) \times \dots \times (1 - \frac{1}{n^2}) = \frac{n+1}{2n}$$

Para cada $n \in \mathbb{N}$ tal que $n \geq 2$.

Demostración. Inducción sobre n.

- Base de inducción. n=2. Este caso se cumple ya que $\prod_{i=2}^{2} (1-\frac{1}{i^2}) = 1-\frac{1}{2^2} = (1-\frac{1}{4}) = \frac{3}{4} = \frac{2+1}{2(2)}$
- Hipótesis de inducción. Supongamos que el resultado es válido para $n \ge 2$, es decir, supongamos que se cumple $\prod_{i=2}^{n} (1 \frac{1}{i^2}) = \frac{n+1}{2n}$
- Paso inductivo. Tenemos que demostrar que la fórmula es válida para n+1, es decir, que se cumple $\prod_{i=2}^{n+1} = \frac{(n+1)+1}{2(n+1)} = \frac{n+2}{2n+2}$.

Entonces

$$\begin{split} \prod_{i=2}^{n+1} &= \left(\prod_{i=2}^n \left(1 - \frac{1}{i^2}\right)\right) \cdot \left(1 - \frac{1}{(n+1)^2}\right) \\ &= \left(\frac{n+1}{2n}\right) \cdot \left(1 - \frac{1}{(n+1)^2}\right) \qquad \text{por H.I.} \\ &= \left(\frac{n+1}{2n}\right) \cdot \left(\frac{n^2 + 2n}{(n+1)^2}\right) \qquad \text{resolviendo resta} \\ &= \frac{(n+1)(n^2 + 2n)}{2n(n+1)^2} \qquad \text{resolviendo multiplicación} \\ &= \frac{n^2 + 2n}{2n(n+1)} \qquad \text{eliminando el término } (n+1) \\ &= \frac{n(n+2)}{2n(n+1)} \qquad \text{factorizando} \\ &= \frac{n+2}{2n+2} \qquad \text{eliminando el término } n \text{ y simplificando} \end{split}$$

4. Sean $\{r_i\}_{i\in\mathbb{N}^\times}$ la sucesión definida por $r_1=1$, y $r_{n+1}=4r_n+7$ para cada $n\in\mathbb{N}$. Demuestre que $r_n=\frac{1}{3}(10\cdot 4^{n-1}-7)$ para cada $n\in\mathbb{N}^\times$.

Demostración. Inducción sobre n.

- Base de inducción. n=1. Este caso se cumple ya que $r_i=1=\frac{1}{3}(3)=\frac{1}{3}(10\cdot 1-7)=\frac{1}{3}(10\cdot 4^0-7)=\frac{1}{3}(10\cdot 4^{1-1}-7)$
- Hipótesis de inducción. Supongamos que el resultado es válido para n+1, es decir, supongamos que se cumple $r_n = \frac{1}{3}(10 \cdot 4^{n-1} 7)$.
- Paso inductivo.

 Tenemos que demostrar que la fórmula es válida para n+1, es decir, que se cumple $r_{r+1} = \frac{1}{3}(10 \cdot 4^n 7)$.

 Entonces

$$r_{n+1} = 4r_n + 7$$
 definición recursiva de r_{n+1}
$$= 4(\frac{1}{3}(10 \cdot 4^{n-1} - 7)) + 7$$
 definición recursiva de r_n
$$= \frac{1}{3}(10 \cdot 4^{n-1} \cdot 4 - 7 \cdot 4) + 7$$
 conmutatividad y simplificando
$$= \frac{1}{3}(10 \cdot 4^n - 7(1+3)) + 7$$
 simplificando y aplicando $4 = 3 + 1$
$$= \frac{1}{3}(10 \cdot 4^n - 7 + 21) + 7$$
 simplificando
$$= \frac{1}{3}(10 \cdot 4^n - 7) - \frac{1}{3} \cdot 21 + 7$$
 sacando al 21
$$= \frac{1}{3}(10 \cdot 4^n - 7) - 7 + 7$$
 resolviendo multiplicación
$$= \frac{1}{3}(10 \cdot 4^n - 7)$$
 simplificando

5. Sean $\{b_i\}_{i\in\mathbb{N}}$ la sucesión definida por $d_0=2, d_1=3, \text{ y } d_n=d_{n-1}\cdot d_{n-2}$ para cada $n\in\mathbb{N}$ tal que $n\geq 3$. Encuentre una fórmula explícita para d_n , y demuestre por inducción que su fórmula funciona.

Demostración. La fórmula explícita propuesta es $d_n = 2^{F_{n-1}} \cdot 3^{F_n}$, con $n \ge 1$ y donde F_n es el n-ésimo número de Fibonacci.

Demostraremos que la fórmula es válida utilizando inducción fuerte sobre n.

- Base de inducción. n=1. Este caso se cumple ya que $d_1=3=1\cdot 3=2^0\cdot 3^1=2^{F_0}\cdot 3^{F_1}=2^{F_{1-1}}\cdot 3^{F_1}$
- Hipótesis de inducción. Supongamos que el resultado es válido para n, es decir, supongamos que se cumple para $d_n = 2^{F_{n-1}} \cdot 3^{F_n}$.
- Paso inductivo.

Tenemos que demostrar que la fórmula es válida para n+1, es decir, que se cumple $d_{n+1}=2^{F_n}\cdot 3^{F_{n+1}}$.

Entonces

$$\begin{split} d_{n+1} &= d_{(n+1)-1} \cdot d_{(n+1)-2} & \text{definición recursiva de } d_n \\ &= d_n \cdot d_{n-1} & \text{simplificando} \\ &= 2^{F_{n-1}} \cdot 3^{F_n} \cdot 2^{F_{(n-1)-1}} \cdot 3^{F_{n-1}} & \text{por H.I.} \\ &= 2^{F_{n-1}} \cdot 2^{F_{n-2}} \cdot 3^{F_n} \cdot 3^{F_{n-1}} & \text{simplificando y aplicando conmutatividad} \\ &= 2^{F_{n-1}+F_{n-2}} \cdot 3^{F_n+F_{n-1}} & \text{simplificando} \\ &= 2^{F_n} \cdot 3^{F_{n+1}} & \text{definición de } F_n \text{ y } F_{n+1} \end{split}$$

6. Sea spar(n) la función definida como $span(n) = 2 + 4 + 6 + \cdots + 2n$. Defina una implementación recursiva llamada f(n) para la función spar(n). Demuestre que f(n) = n(n+1).

Demostración. Definimos la función como f(0) = 0, f(n+1) = f(n) + 2(n+1). Demostraremos, por inducción sobre n, que f(n) = n(n+1).

- Base de inducción. n = 0. Este caso se cumple ya que f(0) = 0 = 0(1) = 0(0+1).
- Hipótesis de inducción. Supongamos que el resultado es válido para n, es decir, supongamos que se cumple f(n) = n(n+1).
- Paso inductivo.

Tenemos que demostrar que la fórmula es válida para n+1, es decir, que se cumple f(n+1) = (n+1)(n+2).

Entonces

$$f(n+1) = f(n) + 2(n+1)$$
 definición recursiva de $f(n+1)$
 $= n(n+1) + 2(n+1)$ por H.I.
 $= n^2 + n + 2n + 2$ simplificando
 $= n^2 + 3n + 2$ agrupando términos semejantes
 $= (n+1)(n+2)$ factorizando

7. Una cadena de caracteres es palíndroma si es de la forma ww^R donde w^R es w escrita de atrás hacia adelante, por ejemplo, 0110, abbbba, holaaloh. Defina al conjunto de las cadenas palíndromas recursivamente, y demuestre mediante inducción estructural, que todas las cadenas palíndromas definidas tienen un número par de símbolos.

Demostración. Sea \sum el alfabeto sobre el cual construiremos a los palíndromos. Definimos al conjunto P de las cadenas palíndromas de la siguiente forma

- i) Para cada $a \in \sum$, $aa^R \in P$.
- ii) Si v y w son cadenas tales que vv^R y ww^R son elementos de P, entonces también wvv^Rw^R lo es
- iii) Sólo las cadenas obtenidas con las reglas i) y ii) son elementos de P.

Ahoram demostraremos que todos los elementos del conjunto P tienen un número par de símbolos, utilizando inducción estructural.

- Base de inducción. Cualquier cadena en P construida con la regla i) es de la forma aa^R para algún símbolo en \sum , por lo que tiene exactamente dos elementos.
- Hipótesis de inducción. Supongamos que uu^R y vv^R son cadenas en P, y que ambas tienen un número par de símbolos.
- Paso inductivo.
 Demostraremos que la cadena uvv^Ru^R se puede obtener con la regla ii) a partir de las cadenas u y v, que tiene un número par de símbolos. Como el número de símbolos uvv^Ru^R es la suma del número de símbolos en uu^R y vv^R, por la hipótesis tenemos que éstas cadenas tienen longitud par; y como la suma de un par con otro par es un par, podemos concluir que el resultado deseado.

8. La función *snoc* en listas se define como sigue:

$$snoc\ c[x_1,\cdots,x_n]=[x_1,\cdots,x_n,c]$$

- a) De una implementación recursiva para snoc.
- b) Demuestre, usando la definición recursiva, que:

$$snoc \ c \ (xs \ ys) = xs \ (snoc \ c \ ys)$$

9. Considere la siguiente función misteriosa mist

$$mist [] \ ys = ys$$

$$mist \ (x:xs) \ ys = mist \ xs \ (x:ys)$$

- a) ¿Qué hace la función mist?
- b) Muestre que $rev \ xs = mist \ xs$ [], con rev la operación reversa sobre cadenas definidas cómo sigue:

$$rev [] = []$$
 $rev (a : ls) = rev ls [a]$

- 10. Sea A una fórmula de la lógica proposicional cuyos únicos conectivos son $\land, \lor \neg$. Definimos la fórmula dual de A, denotada como A_D , intercambiando \land por \lor, \lor por \land y reemplazando a cada variable p por su negación $\neg p$. Por ejemplo, $A = (r \lor q) \land \neg p$, $A_D = (\neg r \land \neg q) \lor \neg \neg p$.
 - Defina recursivamente una función dual tal que $dual(A) = A_D$.
 - \bullet Muestre que $\neg A \equiv A_D$ mediante inducción sobre fórmulas.
- 11. Resuelva los siguientes incisos para árboles binarios.
 - Defina recursivamente una función hmi(T) que devuelve la hoja más a la izquierda en un árbol binario.
 - La distancia entre la raíz r de un árbol binario T hacía algún otro nodo p es el número de aristas (líneas) que hay entre ambos nodos y la altura o profundidad de un árbol se define como la máxima distancia entre la raíz y alguna hoja más 1. Demuestre que el número máximo de hojas en un árbol de altura n es 2^{n-1} .
 - De una definición recursiva que devuelva en una lista el recorrido post-orden de los árboles binarios. Si se tiene el siguiente árbol T, el resultado del recorrido es el siguiente:

post-order(T) = [A, C, E, D, B, H, I, G, F]