

## **STRAIGHT LINES**

# **MATHS**

1.

2.

12x-5y+6=0 are 1) 9x-7y+3=0; 7x-9y-41=0

3) 7x-9y-41=0; 9x+7y+3=0

between the lines 2x+y=3 and 2x+y=5 are

Equation of a straight line passes through the point (2,3) and equally inclined to lines 3x-4y-7=0 and

Equation of straight lines passes through point (2,3) and having an intercept of length 2 units

2) 9x-7y+3=0; 7x+9y-41=0

4) 7x-9y+41=0; 9x+7y+3=0

| 3.  |                                                                                                                          | 2) $3x+4y=18$ ; $x-2=0$ are lie on lines $x+y=1$ and                               |                                                                                | 4) 4x-3y+18=0; y-2=0                                                                |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|
|     | 1) $\frac{7}{2}$                                                                                                         | 2) $\frac{11}{2}$                                                                  | 3) $\frac{9}{2}$                                                               | 4) 6                                                                                |  |  |  |  |  |  |
| 4.  | Find the distances of a point (2,5) from the line $3x+y+4=0$ measured parallel to line having slope $\frac{3}{4}$        |                                                                                    |                                                                                |                                                                                     |  |  |  |  |  |  |
|     | 1) 5                                                                                                                     | 2) 4                                                                               | 3) 2                                                                           | 4) 10                                                                               |  |  |  |  |  |  |
| 5.  | Perpendicular from the                                                                                                   | origin to a line meets at t                                                        | - · · · · -                                                                    |                                                                                     |  |  |  |  |  |  |
|     | 1) $3x-2y+51=0$                                                                                                          | · ·                                                                                | 3) $2x+9y-85=0$                                                                |                                                                                     |  |  |  |  |  |  |
| 6.  | Two opposite vertices of a square are (3,4) and (1,-1) then co-ordinates of other vertices                               |                                                                                    |                                                                                |                                                                                     |  |  |  |  |  |  |
|     | $1)\left(\frac{9}{2},\frac{1}{2}\right),\left(\frac{-1}{2},\frac{5}{2}\right)$                                           | 2) $\left(\frac{9}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, \frac{-5}{2}\right)$ | $3)\left(\frac{-9}{2},\frac{1}{2}\right),\left(\frac{1}{2},\frac{5}{2}\right)$ | 4) $\left(\frac{9}{2}, \frac{1}{2}\right), \left(\frac{-1}{2}, \frac{-5}{2}\right)$ |  |  |  |  |  |  |
| 7.  | A straight line through                                                                                                  | the point (2,2) interests t                                                        | he lines $\sqrt{3}x + y = 0$ and                                               | $\sqrt{3}x - y = 0$ at the points A                                                 |  |  |  |  |  |  |
|     |                                                                                                                          | the line AB so that $\triangle OA$                                                 |                                                                                | , ,                                                                                 |  |  |  |  |  |  |
|     | 1) y+2=0                                                                                                                 | 2) y-2=0                                                                           | 3) x-2=0                                                                       | 4) $x+2=0$                                                                          |  |  |  |  |  |  |
| 8.  | The equation of a line                                                                                                   | through the point of inter                                                         | section of lines x-3y+1=                                                       | 0 and $2x+5y-9=0$ and whose                                                         |  |  |  |  |  |  |
|     | distance from the origin                                                                                                 | n is $\sqrt{5}$ is                                                                 |                                                                                |                                                                                     |  |  |  |  |  |  |
|     | 1) $2x+y-5=0$                                                                                                            | 2) $2x-y+5=0$                                                                      | 3) $2x+y-10=0$                                                                 | 4) 2x-y-10=0                                                                        |  |  |  |  |  |  |
| 9.  | A line passes through print of intersection of lines 100x+50y=1 and 75x+25y+3=0 and makes equal                          |                                                                                    |                                                                                |                                                                                     |  |  |  |  |  |  |
|     | intercepts on axes then                                                                                                  | equation                                                                           |                                                                                |                                                                                     |  |  |  |  |  |  |
|     |                                                                                                                          | 2) $5x-5y+3=0$                                                                     |                                                                                |                                                                                     |  |  |  |  |  |  |
| 10. |                                                                                                                          |                                                                                    | on the line $4x+3y+9=0$ .                                                      | The co-ordinates of P such                                                          |  |  |  |  |  |  |
|     | that $ PA-PB $ is minimum are                                                                                            |                                                                                    |                                                                                |                                                                                     |  |  |  |  |  |  |
|     | $1)\left(\frac{-12}{5},\frac{17}{5}\right)$                                                                              | $2)\left(\frac{-84}{5},\frac{13}{5}\right)$                                        | $3)\left(\frac{-6}{5},\frac{17}{5}\right)$                                     | $4)\left(\frac{-24}{5},\frac{17}{5}\right)$                                         |  |  |  |  |  |  |
| 11. | The straight line $7x-2y+10=0$ and $7x+2y-10=0$ form an Isosceles triangle with the line $y=2$ of triangle is (sq.units) |                                                                                    |                                                                                |                                                                                     |  |  |  |  |  |  |
|     | 1) $\frac{15}{7}$                                                                                                        | 2) $\frac{10}{7}$                                                                  | $\frac{18}{1}$                                                                 | 4) None of these                                                                    |  |  |  |  |  |  |
|     | 1) $\frac{15}{7}$                                                                                                        | $\frac{2}{7}$                                                                      | $\frac{3}{7}$                                                                  | Thome of these                                                                      |  |  |  |  |  |  |
| 12. | The number of possible straight lines passes through (2,3) and form a triangle with axes whose area is 12 sq.units       |                                                                                    |                                                                                |                                                                                     |  |  |  |  |  |  |
|     | 1) one                                                                                                                   | 2) two                                                                             | 3) three                                                                       | 4) four                                                                             |  |  |  |  |  |  |
| 13. |                                                                                                                          |                                                                                    |                                                                                | cuts the positive co-ordinate                                                       |  |  |  |  |  |  |
|     | axes at points (8,2) and cuts the positive co-ordinate axes at points P and Q. As L varies the absolute                  |                                                                                    |                                                                                |                                                                                     |  |  |  |  |  |  |
|     | minimum value of OP                                                                                                      | - , - ,                                                                            | 2) 16                                                                          | 4) 12                                                                               |  |  |  |  |  |  |
|     | 1) 10                                                                                                                    | 2) 18                                                                              | 3) 16                                                                          | 4) 12                                                                               |  |  |  |  |  |  |
|     |                                                                                                                          |                                                                                    |                                                                                |                                                                                     |  |  |  |  |  |  |
|     |                                                                                                                          |                                                                                    |                                                                                |                                                                                     |  |  |  |  |  |  |



- 30. If two adjacent sides of a cyclic quadrilateral are 2 and 5 and angle between them is 60°. If the third side is 3 then remain in fourth side is
  - 1) 2

2) 3

3)4

4) 5

|       | MATHS |   |   |   |   |   |   |   |   |   |  |
|-------|-------|---|---|---|---|---|---|---|---|---|--|
| 61-70 | 2     | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 3 | 4 |  |
| 71-80 | 3     | 3 | 2 | 3 | 3 | 4 | 3 | 4 | 2 | 1 |  |
| 81-90 | 2     | 1 | 1 | 1 | 2 | 3 | 1 | 3 | 1 | 1 |  |

### **HINTS & SOLUTIONS**

#### **STRAIGHT LINES**

#### **MATHS**

1. Let 'm' be slope and point p (2,3)

$$y-3=m(x-2) \longrightarrow 1$$

(1) is equally indined to lines 3x-4y-7=0 and 12x-5y+6=0

$$\frac{\frac{3}{4} - m}{1 + \frac{3}{4}m} = -\left(\frac{\frac{12}{5} - m}{1 + \frac{12}{5}m}\right)$$

$$m=9/7 \text{ (or) } -7/9$$

- $\therefore$  (1)  $\Rightarrow$  9x 7y + 3 = 0 and 7x + 9y 41 = 0
- 2. P(2,3) lines  $2x+y=3 \rightarrow (1)$

$$2x+y=5 \rightarrow (2)$$

Equation of a line y-3=m (x-2)  $\rightarrow$  (3)

Solve (1), (3) 
$$A = \left(\frac{2m}{m+2}, \frac{6-m}{m+2}\right)$$

Solve (2), (3) 
$$B = \left(\frac{2m+2}{m+2}, \frac{m+6}{m+2}\right)$$

$$AB = 2 \Rightarrow AB^2 = 4$$

$$1 + m^2 = m^2 + 4m + 4 \rightarrow (4)$$

From(4), m=
$$\propto$$
 (or) m= $\frac{-3}{4}$ 

$$\therefore (3) \Rightarrow 3x + 4y = 18 \text{ and } x - 2 = 0$$

3. Distance between parallel lines =  $\frac{3}{\sqrt{2}} = d$ 











$$\frac{x-2}{4/5} = \frac{y-5}{3/5} = r \Rightarrow Q\left(2 + \frac{4r}{5}, 5 + \frac{3r}{5}\right)$$

$$\therefore$$
 *Qline on*  $3x + y + 4 = 0 \Rightarrow 3r = -5 \Rightarrow |r| = 5$ 



5. Slope, 
$$\overline{OA}$$
; m =  $\frac{-9}{2}$ 

Slope of 
$$\overline{AB} = \frac{2}{9}$$

$$\therefore$$
 Euation of line  $AB$  is  $2x - 9y + 85 = 0$ 



450>

C(1,-1)

B(x,y)

 $D(x_1,y_1)$ 

A(3,4)

6. Slope of AC = 
$$\frac{5}{2}$$

$$Tan \, 45^0 = \left| \frac{m - 5 / 2}{1 + 5m / 2} \right|$$

$$m = -7/3$$
 (or)  $3/7$ 

equation of AD is 
$$7x+3y-33=0$$



7. 
$$\sqrt{3}x + y = 0$$
 makes an angle of  $120^0$  with OX

$$\sqrt{3}x - y = 0$$
 makes an angle  $60^{\circ}$  with XO

$$\therefore$$
 Equation of line is y=2

**8.** P.O.T of x-3y+1=0; 
$$2x+5y-9=0$$
 is A(2,1)

Slope of 
$$\overline{OA}$$
 is  $\frac{1}{2} \Rightarrow$  Slope of line; m = -2

∴Equation of line A (2,1) and 
$$m = -2$$

$$2x+y-5=0$$

9. P.O.I of line 
$$100x+50y-1=0$$
 and  $75x+25y+3=0$  is  $P\left(\frac{-7}{50},\frac{15}{50}\right)$ 

Equation of a line 
$$x+y=a \rightarrow 1$$

(1) passes 
$$p \Rightarrow a = \frac{8}{50}$$

$$\therefore (1) \Rightarrow 25x + 25y - 4 = 0$$

**10.** Equation of line 
$$\overline{AB}$$
 is x+2y-2=0

$$|PA - PB| \le AB$$

$$|PA-PB|$$
 is maximum if the points A,B,P collinear

The 
$$p\left(\frac{-24}{5}, \frac{17}{5}\right)$$



$$7x - 2y + 10 = 0 \rightarrow (2)$$

B(6/7,2), 
$$C\left(\frac{-6}{7},2\right)$$

$$BC = \frac{12}{7}$$
;  $AD = 3$ 

$$\therefore Area; \Delta = \frac{1}{2} \left( \frac{12}{7} \right) 3 = \frac{18}{7}$$

12. Equation of a line y-3=
$$m(x-2)$$
  
 $mx-y=2m-3$ 







area; 
$$\Delta = \frac{1}{2} \left| \frac{2m-3}{m} \right| = 12 \Rightarrow \Delta \pm 12$$

$$\therefore m = \frac{-3}{2}(or)4m^2 - 36m + 9 = 0(D > 0)$$



- ∴ 3 straight lines are possible
- $\therefore$  no of lines =3
- **13.** Equation of line y-2= m(x-8); m<0

Co-ordinates of P and Q are 
$$p\left(8-\frac{2}{m},0\right)$$

$$OP + OQ = \left(8 - \frac{2}{m}\right) + \left(2 - 8m\right)$$

$$=10 + \frac{2}{-m} + 8(-m)$$

$$\geq 10 + 2\sqrt{\frac{-2}{m} \cdot 8(-m)} (Am \geq Gm)$$

**14.** Midpoints (2,1)

Slope of line y=3x parallel to y=3x+k
$$\rightarrow$$
(1)

Then m=3

 $\therefore$  Equation of line through (2,1) is

$$y-1=3(x-2)$$

$$y=3x-5$$

$$\therefore$$
 y-intercept =  $(0,-5)$ 

**15.** Let S be image of P w.r.to x-axis

then PR=SR and R(
$$\propto$$
,0)

SQ meets X-axis at R

S(-3,-4) (Image of P with X-axis)

P(-3,4), A(03,0) from  $\triangle APR$ ,  $\triangle BQR$  are similar

$$\frac{AR}{BR} = \frac{PA}{QB} \Rightarrow \frac{AR}{BR} = \frac{PA}{QB} \Rightarrow \frac{-3 - \alpha}{\alpha - 0} = \frac{4}{1}$$

$$\alpha = \frac{-3}{5}$$

$$\therefore R(\alpha, 0) = \left(\frac{-3}{5}, 0\right)$$



**16.** Image formula

R= midpoint of PQ lies on x-3y+4=0

17. 
$$\frac{h-x_1}{a} = \frac{k-y_1}{b} = \frac{-(ax_1+by_1+c)}{a^2+b^2}$$



**18.** 
$$L_1 + \lambda L_2 = 0$$

$$m_1 = \frac{-(1+3\lambda)}{2+7\lambda}$$
 and Slope of  $3x+4y=10$  is



$$m_2 = \frac{-3}{4}$$
;  $m_1 m_2 = -1$ 

Find  $\lambda$  and put in  $L_1 + \lambda L_2 = 0$ 

**19.** 
$$m_1 = Slope \ of \ BA = \frac{1}{2}$$

$$m_2 = Slope of BC = \frac{7}{4}$$

$$Tan^{-1}\left(\frac{a}{3}\right) = Tan^{-1}\left(\frac{m_2 - m_1}{1 + m_1 m_2}\right)$$

**20.** area; 
$$A = \frac{1}{2} \begin{vmatrix} x_1 - x_2 & x_1 - x_3 \\ y_1 - y_2 & y_1 - y_3 \end{vmatrix}$$

$$A = \frac{25}{2}$$

**21.** Given lines 
$$3x + 2y - \frac{7}{3} = 0 \rightarrow (1)$$

$$3x + 2y + 6 = 0 \rightarrow (2)$$

Let midway line  $3x + 2y + \lambda = 0 \rightarrow (3)$ 

Distance between (1),(3) = Distance between (2),(3)

$$\left(\frac{\lambda + \frac{7}{3}}{\sqrt{9+4}}\right) = \frac{\left|\lambda - 6\right|}{\sqrt{9+4}} \Rightarrow \lambda = \frac{11}{6}$$

$$\therefore (3) \Rightarrow 3x + 2y + \frac{11}{6} = 0$$

**22.** Let the equation of line y-0= $m(x-1) \longrightarrow (1)$ 

$$\perp$$
 r distance from (0,0) to (1) =  $\frac{\sqrt{3}}{2}$ 

$$\frac{\left|-m\right|}{\sqrt{m^2+1}} = \frac{\sqrt{3}}{2} \Rightarrow m = \pm\sqrt{3}$$

$$\therefore (1) \Rightarrow \sqrt{3}x \pm y + \sqrt{3} = 0$$

23. Let 
$$S(3,2)$$
,  $P(x,y)$  line is  $5x-12y=13$ 

SP=PM (
$$\perp r$$
 distance)

$$\sqrt{(x-3)^2 + (y+2)^2} = \frac{|5x-12y-13|}{\sqrt{25+144}}$$

$$13(x^2 + y^2) - 83x + 64y + 182 = 0$$

(or) 
$$13(x^2 + y^2) - 73x + 40y + 156 = 0$$

**25.** Find P.O.I of 
$$4x+3y-7=0$$

$$8x+5y-1=0 P(-8,13)$$

And 
$$m = -3/2$$

$$\therefore$$
 equation of a line 3x+2y-2=0

**26.** Use 
$$\perp r$$
 distance from P and Q,R (1),(2),(3) lines



Let 
$$a = \left| \frac{(m\cos\theta + \sin\theta)^2}{\cos\theta} \right|$$

$$b = \left| \frac{(m\cos\theta + \sin\theta)(n\cos\theta + \sin\theta)}{\cos\theta} \right|$$

$$c = \left| \frac{(m\cos\theta + \sin\theta)^2}{\cos\theta} \right|$$

Verify b<sup>2</sup>=ac

**27.** 
$$3x+5y=2007$$

$$x + \frac{5y}{3} = 669$$

3must divide 5y then

Y=3k; KEN

$$5k \le 668(:: x = 1)$$

$$k \le \frac{668}{5} \Rightarrow k \le 133$$

**28.** Area of

$$\Delta ABC = \frac{1}{2}h\sqrt{p^2 + q^2}$$

But 
$$\Delta \frac{1}{2} pq$$

$$\therefore \frac{1}{2} pq = \frac{h}{2} \sqrt{p^2 + q^2}$$

$$h = \frac{pq}{\sqrt{p^2 + q^2}}$$

**29.** Put 
$$\sqrt{\frac{x}{y}} = t$$

$$t + \frac{1}{t} = 4$$

$$t^2 - 4t + 1 = 0$$

If 
$$t = 2 \pm \sqrt{3}$$

$$\sqrt{\frac{y}{x}} = 2 + \sqrt{3}$$

$$\frac{y}{x} = \left(2 + \sqrt{3}\right)^2$$

$$y = \left(7 + 4\sqrt{3}\right)x$$

If 
$$t = 2 - \sqrt{3}$$

$$\sqrt{\frac{y}{x}} = 2 - \sqrt{3}$$

$$\frac{y}{x} = 7 - 4\sqrt{3}$$

$$y = (7 - 4\sqrt{3})x$$

$$\therefore Area = \frac{1}{2}(1)AB = \frac{1}{2}(8\sqrt{3})$$



$$=4\sqrt{3}$$

**30.** In  $\triangle ABD$ ,

$$\cos 60^{0} = \frac{2^{2} + 5^{2} - BD^{2}}{2(2)(5)}$$

$$BD^{2} = 19$$

$$\ln \Delta BCD, \cos 120 = \frac{x^{2} + 9 - 19}{2(3)x}$$

$$x^2 + 3x - 10 = 0$$

$$x = 2(or) x \neq -5$$

:. Length of fourth side=2

