PA-1 Handwritten Digits Classification

CSE 574 – INTRODUCTION TO MACHINE LEARNING

1. Experiment 1 - Finding optimal value of lambda (Regularization Parameter)

• Number of hidden units (constant): 50

• Range of lambda: 0 - 1

• Step Size: 0.1

• Data

Regularization	Training Accuracy	Validation	Test Accuracy	Time Taken
Parameter		Accuracy		(Seconds)
0	94.696%	93.71%	93.99%	141.157
0.1	94.126%	93.29%	93.81%	133.987
0.2	94.066%	93.27%	93.68%	140.661
0.3	93.864%	93.12%	93.80%	140.219
0.4	94.666%	93.92%	94.30%	146.911
0.5	94.464%	93.69%	93.99%	147.381
0.6	94.432%	93.20%	94.30%	145.024
0.7	94.050%	93.67%	94.13%	132.056
0.8	94.318%	93.57%	93.83%	143.444
0.9	94.340%	93.83%	94.19%	136.387
1.0	94.266%	93.04%	94.51%	150.200

• Inference –The prediction accuracies get lower with increasing values of the regularization parameter due to the under-fitting problem because higher lambda values give more importance to the weights at the expense of the error function while the opposite follows for lesser vales of regularization parameter.

- 2. Experiment 2 Finding optimal number of hidden units
 - Regularization Parameter (constant): 0.1
 - Range of hidden units: 4 50
 - Data

Hidden Units	Training Accuracy	Validation Accuracy	Test Accuracy	Time Taken (Seconds)
4	64.90%	63.91%	64.75%	64.513
8	89.688%	88.72%	89.04%	70.121
12	91.450%	91.11%	90.66%	80.967
16	92.500%	91.21%	92.10%	87.508
20	93.956%	93.41%	93.40%	87.952
30	93.962%	93.32%	93.71%	111.675
40	94.178%	93.20%	93.96%	128.358
50	94.126%	93.29%	93.81%	133.987

- Inference We can infer that the time taken to train increases as the hidden units are increased while also increasing the training accuracy.
- **3.** Conclusion We can infer that the hidden units and regularization parameters are chosen such that a balance is reached between the time taken (resources) and the training accuracy (results) reached.