Санкт-Петербургский государственный политехнический университет Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии Лабораторная работа №2 Ряд Фурье. Преобразование Фурье. Корреляция

Выполнил: студент гр.33501/4 Курякин Д. А. Проверила: Богач Н.В.

1 Цель работы

Получить представление о спектрах телекоммуникационных сигналов.

2 Постановка задачи

- Для сигналов, построенных в лабораторной работе №1, вы-полните расчет преобразования Фурье. Перечислите свойства преобразования Фурье.
- С помощью функции корреляции найдите позицию синхро-посылки [101] в сигнале [0001010111000010]. Получите пакет данных, если известно, что его длина составляет 8 бит без учета синхропосылки. Вычислите корреляцию прямым мето-дом, воспользуйтесь алгоритмом быстрой корреляции, сравни-те время работы обоих алгоритмов.
- Быстрая корреляция

3 Теоретический раздел

3.1 Свойства преобразования Фурье

Основные свойства преобразования Фурье ($\Pi\Phi$):

- 1. Линейность
 - Преобразование Фурье относится к числу линейных интегральных операций, т.е. спектр суммы сигналов равен сумме спектров этих сигналов.
- 2. Запаздывание
 - Если происходит запаздывание (сдвиг, смещение) сигнала на τ , то его спектральная функция умножается на $e^{-j\omega\tau}$. Это приводит к изменению фазочастотной функции спектра (фазового угла всех гармоник) на величину $-\omega\tau$ без изменения модуля (амплитудной функции) спектра.
- 3. Изменения масштаба аргумента функции Изменение длительности сигнала в a раз, где a постоянный коэффициент, то $\Pi\Phi$ с Y(f) изменится на $\frac{1}{|a|}Y(\frac{f}{a})$.
- 4. Дифференцирование функции Для получения спектра производной надо умножить исходный спектр на $j\omega$.

- 5. Интегрирование функции При интегрировании от $-\infty$ до t функции, имеющей равную нулю постоянную составляющую, ее $\Pi\Phi$ делится на $j2\pi f$.
- 6. Спектр произведения сигналов Спектр произведения сигналов представляет собой свертку их спектров, деленную на 2π . $F[x(t)y(t)] = \frac{1}{2\pi}[X(f)*Y(f)]$
- 7. Спектр свертки сигналов. ПФ свертки двух функций равно произведению ПФ свертываемых функции: F[x(t)*y(t)] = X(f)Y(f)

3.2 Корреляция

Корреляция дает возможность установить в сигналах (или в рядах цифровых данных сигналов) наличие определенной связи изменения значений сигналов по независимой переменной, то есть, когда большие значения одного сигнала (относительно средних значений сигнала) связаны с большими значениями другого сигнала (положительная корреляция), или, наоборот, малые значения одного сигнала связаны с большими значениями другого (отрицательная корреляция), или данные двух сигналов никак не связаны (нулевая корреляция). Дискретная кросс-корреляция функций f(t) и g(t):

$$corr(f,g)[n] = \sum_{m=-\infty}^{\infty} f(m)g(n+m)$$
 , где m – величина задержки.

Чаще всего применяется кросс-корреляция в обработке сигналов, при этом f считается образцом, а g сигналом, содержащим образец.

Результат – это вектор чисел, показывающих, насколько сильно образец выражен в сигнале.

Чтобы ускорить расчёт используется теорема о корреляции, которая формулируется следующим образом:

$$r_{12}(j) = \frac{1}{N} F_D^{-1}[X(k)Y(k)]$$
 , где F_D^{-1} это обратное дискретное преобразование Фурье.

Данный подход требует выполнения двух дискретных преобразований Фурье и одного обратного, что легче всего сделать, используя алгоритм БПФ. Если число членов в последовательностях достаточно велико, данный метод БПФ дает результат быстрее, чем непосредственный расчет взаимной корреляции.

4 Ход работы

1. Имеется синхропосылка [1 0 1] и сигнал [0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0]

2. Для нахождения позиции синхропосылки в сигнале воспользуемся алгоритмами кросс-корреляции и быстрой корреляции.

Рис.2 Результаты вычисления кросс-корреляции

Рис.3 Результаты вычисления быстрой кросс-корреляции

3. Сравим время работы двух алгоритмов для случайных сигналов.

Таблица 1

N	t_{xcorr} ,c	t_{fast} ,c
20	0.00049	0.00014
50	0.00049	0.00014
100	0.00051	0.00013
200	0.00096	0.00018
500	0.0010	0.00022
1000	0.0012	0.00026
2000	0.0013	0.00034
5000	0.0023	0.00064
10000	0.0042	0.0012
20000	0.0096	0.0023
50000	0.0669	0.0243
100000	0.0888	0.0308

5 Вывод

Преобразование Фурье является математической основой спектрального анализа сигналов, который, в свою очередь, находит широкое применение в телекоммуникационных технологиях. Корреляционный анализ дает возможность установить в сигналах наличие связи. Например, для поиска известной последовательности во входном сигнале или неслучайных параметров в случайном сигнале.

В ходе работы мы сравнили работу двух алгоритмов для случайных сигналов. В итоге во всех тестовых примерах быстрая корреляция оказалась быстрее кросс-корреляции.