(9) BUNDESREPUBLIK

⑤

11) 21)

TSCHLAND

Offenlegungsschrift 24 48 257

Aktenzeichen:

P 24 48 257.3

22 Anmeldetag: 10.10.74

43) Offenlegungstag: 22. 4.76

39 Unionspriorität:

32 33 31

(54) Bezeichnung: Cumarinabkömmlinge, Verfahren zu ihrer Herstellung sowie ihre

Verwendung als Arzneimittel

1 Anmelder: Troponwerke Dinklage & Co, 5000 Köln

1 Erfinder: Boltze, Karl-Heinz, Dipl.-Chem. Dr., 5060 Bensberg;

Seidel, Peter-Rudolf, Dipl.-Chem. Dr., 5050 Porz; Jacobi, Haireddin, Dr.,

5672 Leichlingen; Dell, Hans-Dieter, Dipl.-Chem. Dr.,

5070 Bergisch-Gladbach

TROPONWERKE Dinklag & Co. Köln-Mülheim

Cumarinabkömmlinge, Verfahren zu ihrer Herstellung sowi

ihre Verwendung als Arzneimittel.

Die vorliegende Erfindung betrifft neue Cumarinderivate, mehrere Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel, insbesondere als Koronardilatatoren.

Es ist bereits bekannt geworden, daß gewisse Cumarinabkömmlinge eine starke koronardilatierende Wirksamkeit aufweisen.
Insbesondere sei hier der &-[3-(2-Diäthylaminoäthyl)-4methyl-2-oxo-2H-1-benzopyran-7-yl]oxyessigsäureäthylester
(INN = Carbocromen; im weiteren Text als CBC bezeichnet)
genannt, welcher seit Jahren therapeutisch als Koronardilatator
in der Humanmedizin eingesetzt wird.

Diese bei i.v.-Applikation koronardilatatorisch sehr wirksame Verbindung wird jedoch durch enzymatische Spaltung mittels Esterasen, wie bereits H. Klarwein und R.E. Nitz (Arznei-mittelforschung 15 (1965), S.555) beschrieben haben, schnell abgebaut und ist deshalb enteral verabreicht nur wenig wirksam.

Es wurde gefunden, daß die neuen Cumarinabkömmlinge der allgemeinen Formel

TROPONW KE Dinklage & Co. Köln-h iz

2

in der bedeuten

R₁ und R₂ Wasserstoffatome, gerad- oder verzweigtkettige gesättigte oder einfach ungesättigte Alkylgruppen mit bis zu 8 Kohlenstoffatomen, in denen ein Wasserstoffatom durch eine Hydroxylgruppe substituiert sein kann,

gerad- oder verzweigtkettige Aralkylgruppen mit insgesamt bis zu 10 Kohlenstoffatomen, in welchen bis zu 3 Wasserstoffatome durch Hydroxylgruppen, Halogenatome oder eine Methylendioxygruppe ausgetauscht sein können, Arylgruppen, in denen bis zu 2 Wasserstoffatome durch niedere Alkylgruppen mit bis zu 3 Kohlenstoffatomen, niedere Alkoxygruppen mit bis zu 3 Kohlenstoffatomen, Halogenatome oder Trifluormethylgruppen ausgetauscht sein können, Cyclohexylgruppen, in denen ein Wasserstoffatom durch eine Methylgruppe ausgetauscht sein kann, die 2-Tetrahydrofuranmethylgruppe und schließlich R₁ und R₂ zusammen mit den von ihnen substituierten Stickstoffatomen Heterocyclen mit 5 bis 7 Finggliedern, in denen neben dem Stickstoffatom eine weiteres Stickstoff- oder Sauerstoffatom enthalten sein kann und in welchen bis zu

2 Wasserstoffatome durch Methyl- oder Hydroxygruppen ausgetauscht sein können und, sofern der Heterocyclus Piperazin
bedeutet, das zweite Stickstoffatom durch den Phenylrest, Benzhydrylrest oder eine niedere Alkylgruppe mit bis zu 3 Kohlenstoffatomen substituiert sein kann, wobei in letzterer ein Wasserstoffatom durch eine Hydroxylgruppe ausgetauscht sein kann,

 $\frac{R_3}{2}$ Wasserstoff oder eine niedere Alkylgruppe mit bis zu drei Kohlenstoffatomen,

15

 R_{μ} Wasserstoff oder Methylgruppen in 6- oder 8-Stellung,

R₅ und R₆ niedere gerad- oder verzwigtkettige gesättigte oder ungesättigte Alkylgruppen mit bis zu 4 Kohlenstoffatomen, Aralkylgruppen mit bis zu 10 Kohlenstoffatomen, in denen 1 bis 3 Wasserstoffatome durch Hydroxylgruppen, Halogenatome oder eine Methylendioxygruppe ausgetauscht sein können, und schließlich R_5 und R_6 zusammen mit dem Stickstoff einen Heterocyclus mit 5 bis 7 Ringgliedern, in welchem ein Ringglied ein Sauerstoffatom oder ein zweites Stickstoffatom bedeuten kann, wobei im Falle eines Stickstoffatoms dieses durch niedere Alkyl- oder Arylgruppen substituiert sein kann, nicht wie CBC enzymatisch im Organismus leicht gespalten werden. Beispielhaft wurden Resorptions- und Blutspiegelwerte der erfindungsgemäßen Verbindung N-/3-(2-Morpholinoäthyl)-4methyl-2-oxo-1-benzopyran-7-yl/morpholinocarbothioamid (I, NR_1R_2 bzw. NR_5R_6 = Morpholino, R_3 und R_4 = H; im weiteren Text als MMO bezeichnet) nach oraler Verabreichung am Hund untersucht. Nach Applikation von 5 mg/kg wurden maximale Blutspiegelwerte von 8,6 bis 12,4 > MMO/5 ml Blut während der ersten bis fünften Stunde ermittelt. Nach 8 Stunden war unverändertes MMO im Blut noch nachweisbar.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I besitzen eine starke koronardilatierende Wirksamkeit, wie Versuche an pharmakologischen Testmodellen zeigen. Bei intravenöser Applikation von 2 mg/kg Körpergewicht am narkotisierten Hund bei geschlossenem Thorax wurde eine wesentliche Steige-

14

rung des Koronardurchflusses festgestellt, wobei der Eff kt
mehr als ine Stunde anhielt. Zugleich verminderte sich di
"arteriocoronarvenöse Sauerstoffdifferenz" (ADV) als Zeichen
eines Sauerstoffmehrangebots an den Herzmuskel.

In der Tabelle 2 ist die Wirksamkeit einiger beispielhaft

herausgegriffener Verbindungen verzeichnet. Folgende Angaben wurden zusammengefaßt:

Spalte 1: Struktur der Verbindung;

Spalte 2: die Veränderung des arteriellen Blutdrucks im linken Ventrikel (sind zwei Zeichen vorhanden, so bedeutet das erste die Veränderung des systolischen, das zweite die Veränderung des diastolischen Blutdrucks);

Spalte 3: die Veränderung des Blutflusses aus dem Koronarsinus;

Spalte 4: die Veränderung der Sauerstoffsättigung des Koronarsinusblutes;

Spalte 5: die Veränderung der Herzfrequenz.

Die Bedeutung der in Tabelle 2 verwendeten Zeichen ist in der Tabelle 1 erläutert:

Tabelle 1

Anstieg	/ Abfall	Spalte 2	Spalte 3	Spalte 4	Spalte 5
		Blutdruck in Torr	Blutfluß Koronar- sinus in%	gung	Herzfrequenz Schläge/Min.
Ø	Ø	0 - 10	0 - 10	0 - 10	0 - 10
(+)	(-)	10 - 20	10 - 20	10 - 20	10 - 20
+	-	20 - 50	20 - 50	20 - 30	20 - 50
++		50 -100	50 - 100	30 - 50	50 - 80
+++		üb r 100	über 100	über 50	über 80
=======	=======	=======:	====================	-========	=======================================

Tabelle 2

(verabreicht wurden 2 mg/kg intravenös am narkotisierten Hund)

•)	{ · ·	 1	1
	R ₁	7-1 _{R2}	R ₃	2	3	4	5
OMM	√J-	Н	-NO	(-)	+++	, +++	Ø
	MMO 1 mg/kg	·		(-)/(+)	+++	+++	Ø
	M	6-сн ₃ .	-N_O	(+)/Ø	+++	++	Ø
	N-	н	-N_O	Ø	+++	++	Ø ·
(C)	H ₂ =CH-CH ₂)2N-	Н	- M	Ø	+	++ !	Ø
	о	H	-N	Ø	++	+++	(-)·
	Q	Н	-NN-CH ₃	Ø .	í í í	+++	_
	N-	н	-м(с ₄ н ₉) ₂	. Ø	+++	+++	-
	О_N-	H	N-Ch3	Ø	++	+++	Ø
	MMO 20 mg/kg	i.d.		Ø _.	+++	+++	Ø

6

Wie am Beispiel von MMO erkennbar ist (letztes Beispiel in Tabelle 2), sind zumindest einige der erfindungsgemäßen Verbindungen auch i.d. wirksam. Darüberhinaus konnte im Fall von MMO nachgewiesen werden, daß die Wirkung nach i.d. Verabreichung langanhaltend ist. Eine Stunde nach Applikation war die Zunahme des Koronardurchflusses noch nicht wieder auf 50 % der maximalen Zunahme abgefallen.

Neben den obengenannten Wirkqualitäten zeigte eine Anzahl der erfindungsgemäßen Verbindungen sedierende und analgetische Effekte. Die in Tabelle 3 angeführten DE_{50} -Werte wurden nach oraler Applikation an der Maus im Falle der Analgesie am bekannten hot-plate-Modell, im Falle der Sedierung am Modell der Balance-Stange ermittelt. Das Zeichen Ø bedeutet eine $\mathrm{DE}_{50} = 200~\mathrm{mg/kg}$ Körpergewicht.

(Tabelle 3 auf der folgenden Seite)

/ 11

BAD ORIGINAL

TROP

Tabelle 3

^R 1	R ₂	R ₃	Analgesie in mg/kg	Sedation in mg/kg
[сн ₃ -сн(сн ₃)сн ₂ 7 ₂ =n-	Н	-1/D	Ø	66 [%])
N-	H (MMO)	-n_>	109	Ø
(C ₂ H ₅) ₂ =N-	Н	N_O	90	94
(CH ₂ =CH-CH ₂) ₂ =N-	Н	- N	80	86
CH ₃	Н	- N	. 34	12
(C ₂ H ₅)=N-	6-CH ₃	- i⁄ jo	79	76
	6-сн ₃	-N_O	92	78
(CH ₂ =CH-CH ₂) ₂ =N-	н	-N	41	64
Zum Vergleich: Amitri	46			
Dextro	21,3			
Nortri	iptylin		100	36
Phenot	arbita!			16

^{*)} Diese Verbindung zeigte auch am Modell des Elektroschocks einen antikonvulsiven Effekt mit einer DE50 von 55 mg/kg.

TROPONWERKE Dirklage & Co. Köln-Mülheim

Darüber hinaus zeigten eine Anzahl der erfindungsgemäßen Verbindungen eine antiphlogistische Wirksamkeit, welche gleich stark oder auch stärker war als die des üblicherweise zum Vergleich herangezogenen Phenylbutazons. Die Ergebnisse der Prüfung, gemessen an der Beeinflussung des Pfotenödems nach Kaolinapplikation bei der Ratte sind in den Tabellen 4 und 5 zusammengefaßt. Die Testsubstanzen wurden den Versuchstieren eine Stunde vor Auslösung eines durch Kaolin verursachten Pfotenödems in Traganthsuspension per Schlundsonde verabreicht. In Tabelle 4 entsprechen die Angaben den Dosen, die zu einer Hemmung der Pfotenödementwicklung führten, die halb so groß war wie nach oraler Anwendung von 50 mg Phenylbutazon pro kg Körpergewicht.

(Tabelle 4 auf folgender Seite)

/ 13

ORIGINAL INSPECTED

TROPONWERKE Dinklage & Co. Köle-Müheim

Tabelle 4

$$R_1 - C_{-NH}$$
 $R_2 - C_{-CH_2} - C_{-CH_2} - C_{-CH_2}$

R ₁	R ₂	R ₃	Dosis mg/kg
(C ₂ H ₅) ₂ =N-	Н	-N_0	50
(CH ₂ =CH-CH ₂) ₂ =N-	Н	-N_0	100
[\(\)] ₂ =N-	Н	-N	50
сн ₃ н ₃ с-с-Nн- сн ₃	6-сн ₃	-1 <u>/</u>	100
(CH ₂ =CH-CH ₂) ₂ =N-	Н	-N	100
√√-	н	-N	50
///n	Н	-N=(C ₄ H ₉ -n)	100
C1 CH ₂ -C-NH-CH ₃	Н	- N	100

TROPONWERKE Dinklage & Co. Köln-Mülheim

In Tabelle 5 sind die Dosen angeführt, welche zu einer gleichstarken Hemmung der Pfotenödementwicklung führten wie nach Applikation von 50 mg Phenylbutazon/kg Körpergewicht

Tabelle 5

R	Dosis in mg/kg
N-	100
н ₃ с-ин-	12,5
CH ₃	25
(n-C ₆ H ₁₃) ₂ =N-	25
H ₃ CO-NH-	25
CH ₃	50
<i>√µ</i> −	100

1 245

Die Toxizität der erfindungsgemäßen Verbindungen ist verhältnismäßig gering. Für MMO wurde an der Maus bei intravenöser Applikation eine DL_{50} von 203,3 mg/kg, bei oraler Verabreichung eine solche von 1887 mg/kg gefunden.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I, in welcher R_{1-6} die obenangegebene Bedeutung haben, können hergestellt werden durch Umsetzung von Verbindungen der allgemeinen Formel

in welcher $R_{\mu-6}$ die angegebene Bedeutung haben, mit Thiophosgen zu Verbindungen der allgemeinen Formel

in welcher R_{4-6} die angegebene Bedeutung haben, und anschließende Addition von Aminen der allgemeinen Formel

/ 16

BAD ORIGINAL

TROPONWERKE Dinklage & Co. Köln-Mülheim

1.18

R₁ HN-R₂ IV,

in welcher R₁ und R₂ die angeführte Bedeutung haben. Weiterhin können die erfindungsgemäßen Verbindungen der allegemeinen Formel I durch Reaktion von Verbindungen der allgemeinen Formel II mit Chlorthioameisensäurephenylester zu Verbindungen der allgemeinen Formel

in welcher R_{4-6} die angeführte Bedeutung haben, und anschließende Umsetzung mit Aminen der allgemeinen Formel IV erhalten werden.

Schließlich können die Verbindungen der allgemeinen Formel I auch durch Reaktion von Verbindungen der allgemeinen Formel

in welcher R₃₋₆ die obenangeführte Bedeutung haben, mit Thiophosgen zu Verbindungen der allgemeinen Formel

und anschließende Kondensation mit Verbindungen der allgemeinen Formel IV erhalten werden.

TROPONWERKE Dinklage & Co. Köln-Mülheim

Die als Ausgangsverbindungen verwendeten Stoffe der allgemeinen Formel II und VI sind überwiegend unbekannt. Sie können hergestellt werden durch Kondensation von Verbindungen der allgemeinen Formel

in der R₃ und R₄ die angeführte Bedeutung haben und Hal für ein Halogenatom steht, mit Aminen der allgemeinen Formel

in welcher R₅ und R₆ die angegebene Bedeutung haben. Die Kondensation wird in der Hitze in Gegenwart eines vorzugsweise höhersiedenden inerten Lösungsmittels durchgeführt.

Die Ausgangsverbindungen der allgemeinen Formel II und VI können aber auch aus einer entsprechend substituierten 7-Ureidoverbindung durch Hydrolyse hergestellt werden.

Die Hydrolyse kann in alkalischem, aber bevorzugt auch saurem Medium erfolgen. Als besonders geeignet erwiesen sich verdünnte Mineralsäuren, Eisessig/Schwefelsäure bzw. Eisessig/Salzsäure.

Die Reaktion von Verbindungen der allgemeinen Formel II mit Thiophosgen zu Verbindungen der allgemeinen Formel III wird zweckmäßig in Gegenwart von Verdünnungsmitteln durchgeführt. Als Verdünnungsmittel können solche Verwendung finden, in denen das Amin löslich ist und die nicht mit Thiophosgen reagieren. Ein bevorzugtes Lösungsmittel ist Chloroform. Daneben ist auch die Verwendung verdünnter Säuren wie Salzsäure

/18

ORIGINAL INSPECTED

und Schwefelsäure als Lösungsmittel möglich. Die Reaktionstemperaturen liegen bei Raumtemperatur oder darunter. Erhöhte Temperaturen führen zu geringeren Ausbeuten. Zweckmäßigerweise wird mit einem Überschuß an Thiophosgen gearbeitet. Die Verbindungen der allgemeinen Formel III sind zum Teil instabil. In diesen Fällen werden sie ohne Isolierung mit Verbindungen der allgemeinen Formel IV zur Reaktion gebracht. Soweit die Verbindungen der allgemeinen Formel III stabil sind, hat sich ihre Isolierung und Reinigung als zweekmäßig erwiesen, da reinere Endprodukte entstehen. Die Umsetzung der Verbindungen der Formel II mit Verbindungen der Formel IV verläuft bei Raumtemperaturen zumeist exotherm, sodaß die Verwendung von Verdünnungsmitteln und eventuell auch Außenkühlung geboten sind. Als Verdünnungsmittel können organische inerte Lösungsmittel verwendet werden. Als besonders begünstigt haben sich Chloroform und Dimethylformamid erwiesen. Bei der Durchführung der Reaktion hat sich die Verwendung eines Überschusses von IV gegenüber III als besonders günstig erwiesen. Zweckmäßigerweise werden wenigstens 2 Mol IV pro Mol III verwendet.

Sollen die Endprodukte der allgemeinen Formel I über die Zwischenstufe der allgemeinen Formel V hergestellt werden, so werden Verbindungen der allgemeinen Formel II mit Chlorthioameisensäurephenylester zur Reaktion gebracht. Dieser Arylester ist insofern anderen möglichen Alkylestern vorzuziehen, als er sich später bei der Umsetzung mit Aminen besonders leicht abspalten läßt. Die Reaktion erfolgt zweckmäßigerweise in Gegenwart von inerten organischen Verdünnungs-

TROP WERKE Dinklage & Co. Col

cln-Mülaeim

mitteln und in Gegenwart von Säurefängern zur Neutralisation des freiwerdenden Chlorwasserstoffes. Als Säurefänger können anorganische und organische Basen, insbesondere tertiäre Amine Verwendung finden. Besonders bevorzugt ist in diesem Fall Pyridin. Die Reaktion wird zweckmäßig bei erhöhter Temperatur idurchgeführt.

Bei Einsatz von Ausgangsverbindungen der allgemeinen Formel VI, in welcher R₃ nicht Wasserstoff ist, entstehen bei der Thiophosgenisierung zunächst die Verbindungen der allgemeinen Formel VII, welche wegen ihrer schwierigen Handhabung zweckmäßigerweise sofort ohne Isolierung mit Amiren der allgemeinen Formel IV umgesetzt werden. Diese Umsetzung erfolgt vorzugsweise in Gegenwart von inerten Lösungsmitteln und wegen des Freiwerdens von Chlorwasserstoff in Gegenwart von Säurefängern. Bevorzugt wird der Einsatz des zu reagierenden Amins der allgemeinen Formel IV als Säurefänger, wodurch ein Überschuß von wenigstens 1 Mol IV pro Mol VII erforderlich ist. Selbstverständlich ist auch hier der Einsatz anderer Säurefänger möglich, z.B. wenn das einzusetzende Amin der allgemeinen Formel IV sehr wertvoll ist.

Die neuen Wirkstoffe können in bekannter Weise in die üblichen Formulierungen übergeführt werden wie Tabletten, Kapseln, Dragées, Granulate, Suppositorien, Lösungen, Sirupe oder Suspensionen. Sie können mit galenischen Hilfsstoffen verarbeitet werden wie feste, halbfeste oder flüssige Trägerstoffe, Emulgiermitteln, Dispergierungsmitteln, Sprengmitteln, Kl bmitteln, Gleitmitteln und Geschmacksstoffen.

zwischen 50 und 150 mg empfohlen.

Attheim

Besonders bevorzugt sind hier Formulierungen für orale und intravenöse Darreichung. Der Wirkstoffgehalt einer oralen Darreichungsform liegt hier zwischen 100 und 300 mg pro Einheit. Für Injektionen wird ein Wirkstoffgehalt beispielsweise

(Beschreibung der Versuche auf den folgenden Seiten)

TROPONWERKE Dinklage & Co. Köln-Mülheim

Beschreibung der Versuche:

Beispiel 1 (Methode A)

N-/3-(2-Di-n-butylaminoäthyl)-4-methyl-2-oxo-1-benzopyran-

7-y17morpholinocarbothioamid

$$^{\text{H}_{2}\text{N}}$$
 $^{\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}}$ + $^{\text{C1-\ddot{C}-C1}}$ $^{\text{S}}$

3,3 g (= 0,01 Mol) 7-Amino-3-(2-dibutylaminoäthyl)-4-methyl-2-oxo-1-benzopyran werden in 120 ml 0,1 normaler Salzsäure gelöst und unter Rühren bei Raumtemperatur mit 1,5 g (= 0,013 Mol) Thiophosgen versetzt. Das Reaktionsgemisch wird 12 Stunden gerührt, der entstandene Niederschlag abgesaugt, in Chloroform aufgenommen und die erhaltene Lösung je zweimal mit 2 normaler Natriumcarbonatlösung und dann mit Wasser ausgewaschen. Nach dem Trocknen der Chloroformphase und Einengen auf ca. 100 ml werden unter Kühlung und Rühren 2,6 g (= 0,03 Mol) Morpholin, gelöst in 10 ml Chloroform, zugetropft. Anschließend wird eine Stunde gerührt, sodann das Chloroform abgedampft und der

Rückstand aus einem Gemisch aus Chloroform-Isopropanol rekristallisiert. Es werden 3,3 g (= 71,7 % der Theorie) N-/3-(2-Di-nbutylaminoäthyl)-4-methyl-2-oxo-1-benzopyran-7-yl/morpholino= carbothioamid vom Schmelzpunkt 163,5-164,5° C erhalten.

Für $C_{25}^{H}_{37}^{N}_{30}^{0}_{3}^{S}$

berechnet: C 66,31 %, H 8,12 %, N 9,15 %, S 6,98 %;

gefunden: C 65,81 %, H 8,12 %, N 9,07 %, S 6,90 %.

Beispiel 2 (Methode B)

 $N-\sqrt{4}-Methyl-3-(2-morpholinoathyl)-2-oxo-1-benzopyran-7-yl$

piperidinocarbothioamid

a) [4-Methyl-3-(2-morpholinoäthyl)-2-oxo-1-benzopyran-7-yl]iso=thiocyanat

25 g (= 0,087 Mol) 7-Amino-4-methyl-3-(2-morpholinoäthyl)-2-oxo-1-benzopyran werden in 400 ml Wasser und 10 ml konzentrierter Salzsäure gelöst, filtriert und unter kräftigem Rühren mit 12,5 g (= 0,109 Mol) Thiophosgen versetzt. Nach Zusatz von 200 ml Chloroform wird das Gemisch mit 35 g Natriumhydrogen=carbonat auf pH 5 eingestellt und 12 Stunden gerührt. Anschließend wird das Gemisch mit weiteren 10 g Natriumhydrogencarbonat auf pH 8 eingestellt und mit 1,5 l Chloroform extrahiert. Nach zweimaliger Wäsche mit Wasser wird das Chloroform im Vakuum bei 3 mm Hg eingedampft, der Rückstand in wenig Chloroform über eine Kieselgel-Säule mit absolutem Aceton als Laufmittel gereinigt und das Eluat abgedampft. Man erhält 21,25 g (= 74,3 % der Theorie) /4-Methyl-3-(2-morpholinoäthyl)-2-oxo-1-benzo=pyran-7-yl/isothiocyanat vom Schmelzpunkt 133-134,5° C.

BAD ORIGINAL

b) 6,6 g (= 0,02 Mol) der vorstehend beschricbenen Verbindung werden in 50 ml absolutem Chloroform gelöst und langsam unter Kühlung mit 17 g (= 0,2 Mol) Piperidin versetzt. Nach zweistündigem Rühren wird das Reaktionsgemisch in 500 ml Petroläther eingetragen, der entstehende Niederschlag abfiltriert, in siedendem Dichlormethan aufgenommen und die Verbindung durch Zusatz von Petroläther wieder gefällt. Man erhält 7,1 g (= 85,6 % der Theorie) an $N-\sqrt{4}$ -Methyl-3-(2-morpholinoathyl)-2-oxo-1-benzopyran-7-yl/piperidinocarbothioamid mit einem Schmelzpunkt von 213-215° C.

 $Fur \ C_{22}H_{29}N_{3}O_{3}S$

berechnet: C 63,59 %, H 7,04 %, N 10,11 %, S 7,72 %; gefunden: C 63,30 %, H 7,02 %, N 9,96 %, S 7,54 %.

Beispiel 3 (Methode C)

 $N-\sqrt{4-Methyl-3-(2-morpholinoathyl)-2-oxo-1-benzopyran-7-yl}=$

morpholinocarbothioamid

$$H_2N$$
 CH_2-CH_2-N
 O
 CH_3
 CH_2-CH_2-N
 O
 CH_3

K" - Mülheim.

- a) N-[4-Methyl-3-(2-morpholinoäthyl)-2-oxo-1-benzopyran-7-yl]-bis(phenoxythiocarb)imid
- 2,9 g (= 0,01 Mol) 7-Amino-4-methyl-3-(2-morpholinoäthyl)-2-oxo-1-benzopyran werden in 250 ml absolutem Chloroform weitgehendst gelöst und mit 3,15 g (= 0,04 Mol) Pyridin versetzt. Anschließend werden bei Raumtemperatur unter Rühren 5,5 ml (= 0,04 Mol) Chlorthioameisensäurephenylester innerhalb von 5 Minuten eingetropft. Nach zweistündigem Kochen wird die Lösung zweimal mit Wasser gewaschen, dann abgedampft, der Rückstand in ein Gemisch aus Eisessig-Chloroform aufgenommen und mit Petroläther bis zur bleibenden Trübung versetzt. Nach Aufbewahren in der Kälte erhält man 3,8 g (= 67,8 % der Theorie) N-\(\int\delta\)-Methyl-3-(2-morpholinoäthyl)-2-oxo-1-benzopyran-7-yl\(\int\delta\)bis= (phenoxythiocarb)imid vom Schmelzpunkt 192,5-193\(\int\cap{0}\)C.
- b) 5,6 g (= 0,01 Mol) vorstehender Verbindung werden in der Wärme in 100 ml absolutem Dimethylformamid gelöst, mit 3,5 g (= 0,04 Mol) Morpholin versetzt und 24 Stunden bei Raumtemperatur gerührt. Anschließend wird vom Lösungsmittel abgedampft, der Rückstand in wenig Chloroform aufgenommen und die Lösung an Kieselgel mit dem Laufmittel Chloroform/Methanol (9:1) gereinigt. Man erhält 4 g (= 96 % der Theorie) an N-[4-Methyl-3-(2-morpholinoäthyl)-2-oxo-1-benzopyran-7-yl/morpholinocarboethioamid vom Schmelzpunkt 225-226°C (unter leichter Zersetzung). Für C21H27N3O4S

berechnet: C 60,41 %, H 6,52 %, N 10,06 %, S 7,68 %;

gefunden: C 60,26 %, H 6,52 %, N 9,86 %, S 7,59 %.

/_25__.

n-Mülheim

Beispiel 4

 $N-\sqrt{4}-Methyl-3-(2-morpholinoathyl)-2-oxo-1-benzopyran-7-yl/=$

(Methode D)

pyrrolidinocarbothioamid

$$H_3^{C-NH}$$
 CH_2^{C}
 CH_2^{C

$$\begin{bmatrix} s & cH_3 \\ c1 - \ddot{c} - \ddot{N} & CH_2 - cH_2 - N \\ cH_3 & CH_2 - CH_2 - N \end{bmatrix} + \begin{bmatrix} cH_3 & cH_2 - cH_2 - N \\ cH_3 & CH_3 & CH_2 - CH_2 - N \\ cH_3 & CH_3 & CH_3 & CH_2 - CH_2 - N \\ cH_3 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\ cH_3 & cH_3 \\ cH_3 & cH_3 &$$

$$\begin{array}{c|c}
 & \text{S} & \text{CH}_3 \\
 & \text{N-C-N} & \text{O} \\
 & \text{CH}_3
\end{array}$$

6 g (= 0,02 Mol) 4-Methyl-7-methylamino-3-(2-morpholinoäthyl)-2-oxo-1-benzopyran werden in 250 ml absolutem Chloroform gelöst und mit einer Lösung aus 4,6 g (= 0,04 Mol) Thiophosgen in 20 ml Chloroform versetzt. Nach zwölfstündigem Stehen wird das Lösungsmittel abgedampft, der Rückstand, bestehend aus rohem N-Methyl-N-/4-methyl-3-(2-morpholinäthyl)-2-oxo-1-benzopyran-7-yl/chlorameisensäurethioamid, wird in 100 ml Chloroform aufgenommen, mit 14,2 g (; 0,2 Mol) Pyrrolidin versetzt und zwölf Stunden gerührt. Nach dem Auswaschen mit 2 normaler Natrium-carbonatlösung und anschließend mit Wasser wird die Lösung eingeengt und an Kieselgel (Laufmittel Benzol-Äthanol 9:1) gereinigt. Man erhält 6,9 g (= 83,3 % der Theorie) an N-/4-Methyl-

3-(2-morpholinoathyl)-2-oxo-1-benzopyran-7-yl]pyrrolidinocarbothioamid vom Schmelzpunkt 174° C.

Für $C_{22}H_{29}N_3\Omega_3S$

berechnet: C 63,57 %, H 7,05 %, N 10,11 %, S 7,72 %; gefunden: C 63,80 %, H 7,09 %, N 9,74 %, S 7,64 %.

Analog den vorstehenden Beispielen wurden die auf den folgenden Seiten beschriebenen Verbindungen hergestellt.

			Summenforme	C23H31N505S	C22H29N3O4S	C22H3	2448 24.62H920	257 S CO S N 62 4 12 2	-
pun o			. ກ (ອ) ເຮ	7,5	7,43	7,68	6,54	7,95	
ਸ਼ੂ ਸ਼ ਜ਼	•	•	in % u.gefunden(g) N	9,6	9,74	10,06	8,87	10,41	
Nethoden			alyse (b) u H	7,3	6,77	7,48	8,30	7,24 7.4P	
beschriebenen N			berechneț(b) u C ' H	b: 64,2° g: 63,9	b: 61,23 g: 61,09	b: 63,28 g: 63,66	b: 65,93	b: 62,50 gs: 62.74	
			Fp.	195	116-118	103-105	138-148	179-180	
vorsteh: wurden		∂ p	метро	Д	D.	Ìα	Q ·	. щ	
, die nach den vorstehend hergestellt wurden.	O CH2-CH2-Ru	CH ₃	Rų.	N-	0 N-	0 N-	0	° .	
ıdungen		ጂ	R3	6-сн ₃	Ħ	н	Ħ	н	
Verbir	R - C - N - S - N - N		R2	щ	СН3	сн3	сн3	Н	
Erfindungsgemäße Verbindungen,		. 747	R ₁	_N_	-N 0	C2H2-N-	сн ₂ Н ₂ С-сн-сн ₂ Н ₃ С-сн-сн ₂ -n- . сн ₃	H ₅ C ₂ -N-	
8257A1_I_>	·.	TeT	Beisp	6 (9817	, /1165	∞ BAD ORIG	6 IINAL	/ 2

BNSDOCID: <DE___2448257A1_I_>

H

					24	24	48257	-
5	Summenformel	C25H37N3O3S	C24H33N3O3S	C23H31N303S	C22H30N403S	C27H32N403S	C24H33N3O3S	C21H29N3O3S
3	(8) (8)	6,98	7,22	7,46	7,45	6,51	7,23	
in 86 67 87	N S N S N S N	9,148,82	9,48	9,78	13,01	11,37	9,47	
llyse i	H H	8,11	7,50	7,27	7,02	6,55	7,50,7	
Analyse i	D Tag	b: 65,33 g: 65,08	b: 64,78	b: 64,311 g: 64,46	b: 61,36 g: 61,20	b: 65,87] g: 66,07	b: 64,98	(Zers.)
٠	in C	169-171	102-105	191–194	220-221	219-222	213-214	175-176,5
epoq _e	₽W	Ф	Q.	В	Ш	ω	˙ω.	Ф
æ.	h	-N	° N-		° N-	O _N	٥	0
π ,	`	н	æ	#	Ή	ж	ж	H
R	2	ж	Сн3	ж	Ħ	ж	ж	H
κ <u>.</u>	4	сн ₃ с-сн-сн ₂ Н ₃ с-сн-сн ₂ -й- сн ₃	CH ₃	, z	H ₃ C-N N-		н ₃ с ← н У-ин-	но-сн ₂ -сн ₂ но-сн ₂ -сн ₂ -й-
Loigsio	B	. 10	111	2T 609817/	1165	14	15	71

	дн.	-			25	24	48257	
Summenformel	C17H21N3O3S·H2	C21 ^H 29 ^N	C23 ^H 29 ^N 3 ^O 3 ^S	C23H25N303S	C18H23N3O3S	C ₁₉ H ₂₅ N ₃ 3 ₃ S	624H33N3038	C21H27N3O3S
(a) (b)	8,80		7,5	7,57	8,87	8,54	7,23	7,99
in % u.gefunden(g)	11,50		9,8	9,92	11,63	11,19	8,48 8,99	10,47
alyse j	6,34 6,45		6,8	5,95	6,46	6,71	7,50,7	6,78
Analyse berechnet(b) u	(Zers.) b:55,87 g: 55,77		b: 64,6 8: 64,3	b: 65,22 g: 65,00	b: 59,82 g: 59,2	b: 60,78 g: 60,80	b: 64,98, g: 64,92	b: 62,82, g: 62,70
P. O. u.	205 (Zers.	198-199	124-125	194-195	206-207	204	205-207	229-229,5
ethode		m	. ф	В	α .	В	щ	В
R 4	O _N	C _Z	O _N	0	0	0	0	0
R Z	H	æ	н	н	н	н	н	Е
R ₂	Н	н	н	н	ж	Н	Æ	Ħ
er er	H ₂ N-	CH ₃ H ₃ C-C-NH- CH ₃	н ₂ с=сн-сн ₂ -й-сн-сн-сн ₂ -и-	- NH-	н ₃ с-ин-	H ₃ C-N-	(H)-N- CH ₃	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Beispiel Nr.	17	18	6 0 9	ର 817/1	165	55	23	ከ ሪ

				૧	6 4	440421	1.
Summenformel	C24H27N3O3S	C H N O S	C29 ^H 45 ^{N3} 03	C24H27N3O4S	C29H41N3O3S	C22H29N3543	C22 ^H 29 ^N 3 ^O 4 ^S
en(g)	7,33	17,20	6,21		6,27	7,43	7,40
e in % u.gefunden(g) N S	9,58	9,43	8,147,80	9,26	8,21	9,74	9,70,7,40
Analyse i neţ(b) u.	6,22	7,92 7	8,79	6,00	8,08	6,90	6,80
Analyse berechneț(b) C ' H	b: 65,88 g: 65,40 g	b: 64,68 g	b: 67,53 g: 67,30	b: 63,55 g: 63,80	b: 68,07 g: 67,20	b: 61,22 B: 60,70	b: 61,10 g: 61,30
Fp.	199 bb	~ 146 · B	103,5 - b	213-215 t	133-134 t	206-207 b	221 t
Methode	В	ф	æ	Ф	. α	ф	В
Rų	-N_0		0	O_N	O _N	O _{N:}	C N
. R3	Н	Н	н	Н	н	· 声	8-CH ₃
R2	н	н	н	н	. ж	ж	щ
æ	H ₃ C-\NH-	сн ₂ сн-(сн ₂)-сн-ин- сн ₃	H ₃ C-(CH ₂) ₅ N- H ₃ C-(CH ₂) ₅	H ₂ C-0-	-N-H	O N- CH ₃	-N
Beispiel An	. 25	56	27.	_ੴ 817/11	. 65 6 5	30	31

4	ì
- 1	١
-	

	1			37		24482	257	1
Summenformel	C22H29N3O4S	C24H33N3O3S	C24H33N3O3S	C22H31N3038	C24H33N3G33	C24H34N4CA4S	C23H31N5035	C22H31N3038
n(g)	17,70			7,70	7,20	6,80	·	7,60
se in %) u.gefunden(g) H	9,70			9,80	9,50	11,70		10,05. 10,30
llyse i (b) u.	6,80			7,60	7,30	7,20		7,50,7
Analyse berechneț(b) u C ' H	b: 61,10 g: 61,10			b: 63,20 g: 63,00	b: 65,00 g: 64,70	b: 60,80 g: 60,90		b: 62,90, g: 62,70
Fp.	235	216	186	186	198	207	178	154
Methode	В	Ф	Ф	В	щ	Ф	м.	æ
Rд	°)	0	O Z	0	Ç	0	0	
R 3	6-сн ₃	6-сн3	8-сн ₃	6-сн ₃	6-нс3	6-CH ₃	8-CH ₃	6-сн3
R 2	耳	田	H	田	Ħ	н !	. н	田
T	ر خ	, i	2	H ₅ C ₂ -N- C ₂ H ₅	H ₃ C N-	HO-(CH ₂) ₂ -N	-N	H ₃ C-(CH ₂) ₃ -NH-
intquios an	32	33	± 6 0 9 8	17/116	. ½ 3.5	37	38	39

				28	244	8257
Summenforme1	C22H31N3038.	C22H311 58	C26H39N3O4S	C35H40N403S	C26H39N3O4S	25 25 s ₂₀ -1,1 ₂ ,0 ₂ s
n (g)	7,70	7,10	6,50	5,30	6,50	6,98
in % gefunde N	10,10 7,70	9,30	8,50	9,301	8,50' 8,20'	9,14
lyse j (b) u	7,50	6,70	8,10	6,80	8,0d 8,1d	8,11
Analyse in % borechnet(b) u.gefunden(g)	b: 62,90 g: 62,60	b: 58,40 g: 58,10	b: 63,50 g: 63,70	b: 70,10	b: 63,4d g: 63,1d	b: 65,34 g: 65,30
Fp.	172	158	191	122	95-97	170-172
Methode	æ:	B	В	Ω.	. B	в
R _t	°	O N-	° N-	ON-	° N	CH2-CH-CH ₃ -N-CH ₂ -CH-CH ₃ -N-CH ₂ -CH-CH ₃
R ₃	6-сн ₃	6,сн ₃	8-CH ₃	8-си3	€-сн³	н
R ₂	н	Ħ	н	н	æ	ж
R	CH ₃ H ₃ C-C-NH-	HO-CH ₂ -CH ₂ -N- CH ₂ HO-CH ₂	он Н ₃ с-с-(сн ₂) ₃ -сн-ин- сн ₃ сн ₃	CH-N N-H	он н ₃ с-с-(сн ₂) ₃ -сн-ин- сн ₃	
Lointel . ur.	ήO	41	42	43	# # #	े म

609817/1165

COPY BAD ORIGINAL

	Summenformel	C27H41N3O2S	C31H42N4	C22H31N3O5S	C26H39N303S	C23H31H3	25 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2	C23H33N3O2S
	len(g) ! S	6,79	15,70	7.98	6,60	7,46	7,01	7,22
in %	u gerunden(g) N 'S	8,98	10,47	10,47		9,78	1	10,11.
nalyse .t(h)	H	18,75	7,90	7,78	1	7,27 1	7,71	8,00,1
Analyse berechnet(h)	0	b: 68,74	69,65	b: 65,80 g: 65,90	b: 65,93 g	b: 64,31 g	b: 65,61 g: 65,40	b: 66,47; g: 66,50;
٠ د د د د د د		151-152	245-247	204	119	211-212	187-189 E	195-197 g
eborite	- [p	т.	æ	æ	B	В 7	B 1
Вф	CH ₃	CH2-CH-CH3 -N-CH2-CH-CH3 CH3	CH2-CH-CH3 -N-CH2-CH-CH3 CH3-CH-CH3		CH2-CH-CH3 -N-CH2-CH-CH3 -N-CH2-CH-CH3			
R 3		II.	н	н	æ	H	н	·
R 2	-	エ	н	н	Ή	H	н	ж
 		, ż	-N N-	н ₃ с-(сн ₂) ₃ -ин-	HO N-		CH ₃	н ₃ с-сн ₂ -сн-ин-
Beispi		94	47	84	49	20	51	52

	9			30	2448	8257	· /
Summenformel	C241131N302S	C35 ^{II} 40 ^N 4 ^O 2 ^S	C20H28N402S	C26H39N3O3S	C26H39N502S	C28 ^{II} 41 ^{N3O} 2 ^S	
(g) ue	7,53	5,52	6,20	6,80	6,90	6,60	
in % u.gefunden(g)	9,87	9,64	10,70	8,80	9,20	8,70	
alyse ;	7,34	6,94	7,50	8,30	8,65	8,50	
Analyse berechnet(b) u	b: 67,75 g: 67,80'	b: 72,38 g: 71,50	b: 69,80 g: 69,90	b: 65,70 g: 65,40	b: 68,40 g: 68,50	b: 69,60 g: 69,70	
Fp. in °C	.21-123	219-221	188	192-194	196-197	128	
ethode:	B	В	æ	Д	В	æ .	
R 4	-N-	N-		CH2 CH2-CH-CH3 -N-CH2-CH-CH3 CH3	CH2-CH-CH3 -N-CH2-CH-CH3 cH3	CH2 CH2-CH-C	
R	Н	ш	6-ан3	6-сн ₃	6-сн ₃	6-сн ₃	
R ₂	н	н	н	н	Н	Н	
1	H2C=CH-CH2 H2C=CII-CH2-N-	CH-N-M-N-	, in the second	-Z	\(\frac{\frac{1}{2}}{2}\)	н ₂ с=сн-сн ₂ -N- н ₂ с=сн-сн ₂	
Seispiel An	53	574	60981	% 7/1165		58	/ /

	•			34 2448257			
Summenformel	C24H33N3O3S.	C24H35N3O2S	C22H30N403S	C22H29N3O3S	C31H31N503S	C ₂₅ H ₄₅ N ₂ O ₂ S	
n (g)	7,20	7,40 7,30	7,45	7,72 7,44	6,08 5,61	5, 47 5, 33	
e in % u.gefunden(g)	9,50	9,70	12,01	10,11 10,24	7,96	7,17	
lyse i	7,50	8,20 8	7,02	7,03	6,30	7,06	
Analyse berechnet(b) u	b: 64,70 g: 64,40	b: 66,60 g: 66,50	b: 61,36 g: 61,61	b: 63,57 g: 63,86	b: 70,55 g: 70,92	b: 71,75 g: 71,48	
Fp.	-229	178-179	224-226	213-216	177;5-178	~ 76-81	
ethode	i	Д	A	£ .	æ	æ	
ф	Z-		-N-CH ₃	N ₁	CH ₂	CH ₂	
R ₃	6-сн ₃	6-сн3	Ħ	Ħ	Н	#	
R.	-1	江	н	Ħ	斑	Œ	
	- N	н ₃ с-сн ₂ N-	-N (O)	٥	ځ	он н ₃ с-с-(сн ₂) ₃ -сн-Nн- сн ₃	
tobjato .au	4 g	09	61	62	BAD O	RIGINAL	

609817/1165

BNSDOCID: <DE___2448257A1_I_>

Ä

		1						32	244	8257	1 36
	Summenformel		57 ^H 34 ^N 4 ^U 4 ^S	S H N	2741	C28 ^H 43 ^N 403 ^S	C24H35N3O2S	C24H33N3O3S	C32H35N303S	C25H35N3D3S	
	en(g)	6,28	5,93	6,80	6,57	6,33	7,46	7,23	5,93	7,00	
	u.gefunden(g)	10,98	11,20	8,91	6,07	6,76,11,06 6,47,10,87	9,78	9,47 8,97	7,76	9,20	
	alyse ; t(b) u.	6,71	6,40	8,76	8,64	6,76	8,21	7,50	6,51	09.7	
ć	berechnet(b) u	b: 63,50	g: 63,06	b: 68,74	g: 58,84	b: 66,37 g: 66,26	b: 67,09 g: 67,04	b: 64,98 g: 64,96	b: 70,95 g: 71,11	b:65,80 g: 65,60	
Ė	in oc	00 7	(Zers.)	123-124		198-199	185,0-186	207-207,5	171-172	171-173	
oge	Meth	· •	¢	A		A	A	А	д :	Ф	
_	$R_{f l}$	TN N-		(CH ₂) ₃ -CH ₂	``(сн ₂) ₃ -сн ₃	N-N-N-	$\left\langle \bigcap_{i=1}^{N-1} \left\langle \bigcap$	-N-	-N-CH ₂	N.	
_	R3	Ħ	:	×	:	н	н	н	æ	6-сн ₃	
	R2	=======================================	:	;:		Н	Н	н	. ж	H	
	R	HO-CH2-CH2/N-	HO-CH ₂ -CH ₂			-N OH	н ₃ с-(сн ₂) ₃ -ин-		0 сн2-ин-	COCH2-NH-	
ŭH ⊖ţ₫:	o ted	-	65	99) }	67	8 9817/	69	70	71	
						9.0	30111	1 100			

					33	2	448257	
_	Summenformel	C26H39N3O3S	C23H24CIN3O3S	C33H37N3O2S	C27H32N4O3S	C25H37N3O3S	C25H37H3043	
	en (g)	6,77	7,10	5,94	6,50	6,98	6,74	
₽ 8	u.gefunden(g)	8,87	9,18	7,79	11,37	9,14 8,86	8,83	·
lyse i	n (q)	8,30	5,28	6,91	6,56 ¹ 6,78 ¹	8,11 ¹ 8,28 ¹	7,84,	
Ana	berechnet(b) u C H	65,93	60,32 60,10	73,441 72,90	65,81 ¹ 65,60 ¹	65,33 65,14	63,17 62,48	
	ре	o w	ර ස	 	b: 8:	ည် သ	 	
ц.	in'o c	153-154	199-201	149	220-221	152-153	154-155	
epoq	ijθ₩	Ф	E A .	æ	В	Ф	ф	
	$R_{f L}$	cH ₂ -cH-CH ₃ cH ₂ -cH-CH ₃ cH ₂ -cH-CH ₃	o⊂iù-		N-N-N-	O N	O _{N-}	
	П3	н	н	·Н	Н	Н	н	
	$^{\mathrm{R}_2}$	Щ	Н	H	Н	Н	. н	
	. R ₁	O CH2-NH-	C1	$\left\langle \begin{array}{c} CH_2 \\ \\ CH_2 \end{array} \right\rangle$	-N 0	сн ₃ сн-(сн ₂) ₃ -сн-ин- сн ₃	сн ₃ но-с-(сн ₂) ₃ -сн-ин- сн ₃	
oigs.	i əa	72	73	7.4	75	92	7.7	

			30		34	2448257					
	[ommo]	c ₃₆ II ₄₃ I ₃ 0 ₅ s	N CO	c ₂₅ H ₂₉ N ₃ 0 ₅ S	9N3058	3 N 20 I S	C26H31H3O5S	/			
	Summenformel	C36 ^{II} 4	C27 H32 CIN	C25H2	C25 ^H 29 ^N 3 ^O	C27H33N2U	C26H3	•			
•	n(ខ) ន	5,09	6,24	6,63	6,63	6,47	6,44 6,54				
ک <i>19</i>	u.gefunden(g)	6,67	8,17	9,69	8,69	8,48	8,45	,			
] V 56 1	(b) u.	6,88,	6,27 5,92	6,04	6,04	6,711 6,63	6,28° 6,33°				
Ana	berechnet(b) u	68,66	63,08 ¹ 63,02 ¹	62,10 62,27	62,10 61,67	65,43	62,76 62,83				
	ber	က် : :	b:	ъ С 80 :	ပ် <u>ဧ</u> ::	ъ Б	ъ С С				
F.	in o c	114-115	180,5-181	198 zers.	207-208	165-167	214-215				
~ Joge	Meti	۳	с	Щ	B	æj.	щ				
	Ry		O Ni		0	° N	0				
_	R3	ж	н	æ	щ	Ħ	· : #				
•	R2	田 .	H	ж	н	ж	: н				
. Til	R ₁	$\left\langle \begin{array}{c} cH_2 \\ \\ \end{array} \right\rangle - cH_2 - cH_2 - cH \\ \dot{N} - \dot{N} -$	C1 CH2-C-NH-	HO CH CH2-NH-	HO CH2-CH2-NH-	OH CH ₂ CH-CH-N- CH ₃	он но — сн-сн ₂ -и-				
teigs	Bei	. 78	62	80	. 81	82	83	/			
	į	609817/1165									

. !				35_	2448	3257	, ,
Summenformel	C29H37N3O58	C26H31N3O5S.	C27H33N304S	C26H31N3O5S	C33H37N'3C2S	C28H35 ^{N5} O2S	/ · ·
n(g) S	15,94 15,92	6,40	16,47	,6,40 ,6,20	5,94	6,71	
se funde N	7,79	8,40	8,48	8,40 8,40	7,79	8,80	
lyse ir (b) u.g	6,91	6,30	6,71	6,40	6,411	7,39.	
Analyse in % berechnet(b) u.gefunden(g)	b: 64,54 g: 64,72	b: 62,80 g: 62,50	b: 65,43	b: 62,40 g: 62,50	b: 73,44 g: 72,90	b: 70,41, g: 70,10	
Fp.	144,5-145	185	181 zers.	228	149	177-178	
əpoqıəw	Ω	Ф	В	Д	В	B	
Вц		0	· N	(N)	N.	N-	
. R. 3	æ	8-сн ₃	æ	6-сн ₃	н	: н	
R. S	д	'n	Ħ	æ	Ħ	<u>;</u> . #	
1	OH CH CH ₂ -N- CH ₂ -CH ₂ -CH ₂	он СНО-СН-СН ₂ -NH-	OH CH-CH ₂ -NH-	OH CH-CH2-NH-	CH2 N- N- CH2	CH2-C-NH-CH2	
toigning	: ×	85	86	87	88	89	/

609817/1165

BAD ORIGINAL

	1						36 ° 1 2448257					/1		
	oumment ormer	C31H43N3O2S			C28H35N3O3S	.C. 22	28353~3~		C23H24C1N2O3S	3 2 2	~2743234°33	257	^C 25 ^H 35 ^N 3 ^O 3 ^S	
()	(%)	6,15	5,80	8,30	00,91	6,50	6,40	7.00	7,10	16,50	6,31	7,00	06,9	
8% C	N S N S	8,05	8,20	8,40	8,30	8,50	8,40	9.18		11,37	11,14	9,20	00,6	
lyse in	H H	8,31	8,40	7,30	7,60	7,10,	7,10	. 5	5,00	6,56,3	6,78,1	, 7,6d	7,90	
Analyse	D D D D D D D D D D D D D D D D D D D	b: 71,36	g: 71,10	b: 67,60	g: 67,301	b: 68,30	g: 68,30	b: 60,32	g: 60,1d	b: 65,81	g: 65,6d	b: 65,8d	g: 65,6d	
Fp.		171		143		B 126		. 0	199-201		218-221		171-173	
tpoqe	epoula _W		Ф		В			n a	В					
œ.	h	CH2-CH-CH3	-N. CH2-CH-CH3 CH3	(C		(;			-N N-			·
<u></u>	ж н		110 7	0-cu3	8-сн-	~	Þ	G		H	6-сн2	C		
	7	H		1	₽	E		þ	4		H :	н		
. E		CH2	CH ₃	CH ₃	ch ₃	CH ₃ CH ₃ CH ₃	ch ²	C) - CO		(,	-N	CH ₂ -NH-	, 0/	
eigpie [atgrie	Ba	90		91		0 1 2		0		-	y 4	95		_/
	609817/1165													

•	ļ.		2448257				
in % u.gefunden(g) Summenformel	C32H35N3038	C26H39N3O3S	C25H37N3O4S	C25H37N	2448 ₂ 5 ₂ 5 _N 56 _H 25 ₂	C25H29W3O3S	
(ã)ue	5,93	6,80	6,74	6,98	6,57	7,10	
in % i.gefund	7,76	8,87	8,83	9,14	8,76	9,31	
llyse i (b) u.	6,511	8,30	7,84,	8,11	6,93	6,47;	
Analyse berechnet(b) u	b: 70,95	b: 65,93	b: 63,13 g: 62,48	b: 65,33 g: 65,14	b: 67,61	b: 66,49; g: 66,36;	
Fp.	170-172	153-154	154-155	152-153	187	211-212	
etpoqe	E	В .	ជ	B	В	В	
Ru	CH ₂	CH2-CH-CH3 -N -N -H2-CH-CH3 -CH2-CH-CH3	0	0	°)	° C	
R 2	н	н	Н	Н	. н .	Н	
- R	д	н	Н	ж	щ	н	
R 1	CH ₂ -NH-	CH ₂ -NH-	сн ₃ но-с-(сн ₂) ₃ -сн-ин- сн ₃ сн ₃	cH ₂ cH ₂) ₃ -cH-NH- cH ₃ cH ₃	$\left\langle \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{2} - \overset{\text{CH}_{3}}{\overset{\text{CH}_{3}}}{\overset{\text{CH}_{3}}{\overset{\text{CH}_{3}}{\overset{\text{CH}_{3}}{\overset{\text{CH}_{3}}{\overset{\text{CH}_{3}}}{\overset{\text{CH}_{3}}}{\overset{\text{CH}_{3}}{\overset{\text{CH}_{3}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}}}}}}$	СН2-СН2-ИН-	
eigsied TH	96	97	8 17/11	66	BAD ORK	EINAL	

BNSDOCID: <DE___2448257A1_I_

609817/1165

BAD ORIGINAL

,	٧ د	1 0	Ι ω	1 38 v	24,48257				
	C31H43N3O2S	C ₃₀ H ₃₉ M ₃ O ₂ S	C28H35N3O2S	C ₃₅ H ₃₉ N ₃ O ₈ S	245°0°11°2°17°2°2°2°2°2°2°2°2°2°2°2°2°2°2°2°2	°25 ^H 29 ^{N,5} 04 ^S			
(t)	6,16 5,80	16,34	6,70	4,85	5,67	6,86			
e in %	8,05 7,95	8,31	8,80	6,35	8,21	8,99			
1138e	8,30 8,39	7,77	7,40	5,94	6,50	6,25			
Analyse herechnot(h)	b: 71,35 E: 71,48	b: 71,25 g: 70,88	b: 69,90 g: 69,60	b: 65,53 g: 62,72	b: 63,38 g: 63,35	b: 64,21 g: 64,72			
٠ ت. و	98-105	169-170,5	160	161-2 zers	144-145	219 zers.			
	<u> </u>	я	В	В	. B	В			
R	(CH ₂) ₃ -CH ₃ -N (CH ₂) ₃ -CH ₃	-N- CH ₃	N-	O _N -	, O	O N-			
. H	<u> </u>	Ж	6-сн3	н	ж	æ			
. R	H	Ħ	Ħ	н	н	ж			
E.		CH ₂ -C-NH- CH ₂ -C-NH-		HO CH CH2 NO CH CH2 NO CH CH3	он сн ₃ сн-сн-й-	но-()-сн ₂ -сн ₂			
eispie w	ਜ਼ 102	103	104	. 105	106	107			
	609817/1165 BAD ORIGINAL								

	23					
Summenfory C28H34N4035 C28H34N408 C28H34N408	27"33"3"4"					
6,63 6,00 6,00 6,03 6,03 6,03	6,37					
(b) u.gefunden(g) II N S 6,04 8,69 6,63 6,50 8,72 6,44 6,50 8,21 6,25 6,77 7,94 6,00 6,47 10,87 6,03	8,61 6,37					
6,04 (6,74 (6,81					
Fp. bercchnet(b) u.gcfunden(g) zers.b:62,10 6,04 8,69 6,63 3:62,36 6,00 8,72 6,44 b: 63,38 6,50 8,21 6,25 b: 62,39 6,67 7,94 6,00 g: 66,37 6,76 11,06 6,37 zers. b: 65,43 6,71 8,48 6,47	g: 65,42					
Fp. in ° C 212 zers. 120-122 196-199						
m m m Hethode						
н н н						
го н н н н						
$ \begin{array}{c} R_1 \\ H_0 \\ CH - CH - CH_2 - NH - CH_2 - CH_3 - CH_3 - CH_3 - CH_4 $	ch ₃					
11 108 Beispiel 111 111 1110 111 111 111 111 111 111 1						

Darstellung der Ausgangsverbindungen

A. 7-Amino-4-methyl-3-(2-morpholinoäthyl)-2-oxo-1-benzofuran

8,03 g (= 0,02 Mol) N-/4-Methyl-3-(2-morpholinoathyl)-2oxo-1-benzopyran-7-yl/-4-morpholinocarboxamid werden in
100 ml 6-normaler Salzsaure fünf Stunden lang gekocht. Die
Reaktionslösung wird anschließend abgekühlt, mit 20 %iger
Natronlauge alkalisch gemacht und mit Chloroform extrahiert.
Sodann wird die Chloroformphase mit Wasser gewaschen, getrocknet, eingedampft und der Rückstand aus Isopropanol rekristallisiert.

Das in etwa 60 %iger Ausbeute gebildete 7-Amino-4-methyl-3-(2-morpholinoäthyl)-2-oxo-1-benzofuran schmilzt bei 227-229° C.

Analog wurden hergestellt:

7-Amino-3-(2-dibutylaminoathyl)-4,6-dimethyl-2-oxo-1-benzopyran, Fp. 191-192°C; Ausbeute 62 % der Theorie.

7-Amino-4-methyl-3-(2-piperidinoäthyl)-2-oxo-1-benzopyran, Fp. 210-211°C; Ausbeute 60 % der Theorie.

7-Amino-4,6-dimethyl-3-(2-morpholinoäthyl)-2-oxo-1-benzopyran, Fp. 244-245° C; Ausbeute 72 % der Theorie.

7-Amino-3-(2-dibutylaminoäthyl)-4-methyl-2-oxo-1-benzopyran, Fp. 156-157°C; Ausheute 30 % der Theorie.

/ 45

B. 7-Amino-4,6-dimethyl-3-/2-(4-phenyl-1-piperazinyl)athyl/-

2-oxo-1-benzopyran

35 g (= 0.139 Mol) 7-Amino-3-(2-chlorathyl)-4,6-dimethyl-2-oxo-1-benzopyran und 216 g (= 1,33 Mol) 1-Phenylpiperazin werden in 140 ml Chlorbenzol auf 130-140° C erhitzt. Nach dem Erkalten wird der Niederschlag abgesaugt, mit Petroläther gewaschen und aus Chlorbenzol rekristallisiert. Man erhält 48 g (= 92 % der Theorie) 7-Amino-4,6-dimethyl-3-[2-(4-phenyl-1-piperazinyl)athyl/-2-oxo-1-benzopyran mit dem Schmelzpunkt 248-251° C.

Analog wurden hergestellt:

7-Amino-4-methyl-3- $\sqrt{2}$ -(4-methyl-1-piperazinyl)äthyl $\sqrt{2}$ -2-oxobenzopyran; Fp. 209-210° C; Ausbeute 78 % der Theorie.

7-Amino-4-methyl-3- $\sqrt{2}$ -(4-phenyl-1-piperazinyl)äthyl $\sqrt{2}$ -2-oxo-1-benzopyran; Fp. 248-249° C; Ausbeute 47 % der Theorie.

7-Amino-3-(2-dibenzylaminoäthyl)-4-methyl-2-oxo-1-benzopyran; Fp. 178-179° C; Ausbeute 53 % der Theorie.

7-Amino-4-methyl-3-(2-perhydroazepinoäthyl)-2-oxo-1-benzopyran; Fp. 241° C; Ausbeute 98 % der Theorie.

7-Amino-4-methyl-3-(2-perhydroazepinoäthyl)-2-oxo-1-benzopyran; Fp. 186-188° C; Ausbeute 30 % Der Theorie.

/ ⁻46

BAD ORIGINAL

7-Amino-4,8-dimethyl-3-(2-morpholinoathyl)-2-oxo-1-benzopyran; Fp. 181°C; Ausbeute 64 % der Theorie.

7-Amino-3-(2-diisobutylaminoäthyl)-4-methyl-2-oxo-1-benzofuran; Fp. 135°C; Ausbeute 43,5 % der Theorie.

4-Methyl-3-(2-morpholinoäthyl)-7-methylamino-2-oxo-1-benzopyran entsteht in 82 %iger Ausbeute aus dem entsprechenden p-Tosyl= amid in Eisessig-Salzsäure: Fp. 181-181,5° C.

F

TROPONWERKE Dinklag & Co. Köln-Mülheim

Patentansprüche

1. Verbindungen der allgemeinen Formel

in der bedeuten

R₁ und R₂ Wasserstoffatome, gerad- oder verzweigtkettige gesättigte oder einfach ungesättigte Alkylgruppen mit bis zu 8 Kohlenstoffatomen, in denen ein Wasserstoffatom durch eine Hydroxylgruppe substituiert sein kann.

gerad- oder verzweigtkettige Aralkylgruppen mit insgesamt bis zu 10 Kohlenstoffatomen, in welchen bis zu 3 Wasserstoff- atome durch Hydroxylgruppen, Halogenatome oder eine Methylen-dioxygruppe ausgetauscht sein können, Arylgruppen, in denen bis zu 2 Wasserstoffatome durch niedere Alkylgruppen mit bis zu 3 Kohlenstoffatomen, niedere Alkoxygruppen mit bis zu 3 Kohlenstoffatomen, niedere Alkoxygruppen mit bis zu 3 Kohlenstoffatomen, Halogenatome oder Trifluormethylgruppen ausge - tauscht sein können, Cyclohexylgruppen, in denen ein Wasserstoffatom durch eine Methylgruppe ausgetauscht sein kann, die 2-Tetrahydrofuranmethylgruppe und schließlich R₁ und R₂ zusammen mit den von ihnen substituierten Stickstoffatomen Heterocyclen mit 5 bis 7 Ringgliedern, in denen neben dem Stickstoffatom ein weiteres Stickstoff- oder Sauerstoffatom enthalten sein kann und in welchem bis zu

P 2

TROPONWERKE

2 Wasserstoffatome durch Methyl- oder Hydroxygruppen ausgetauscht sein können und, sofern der Heterocyclus Pip razin
bedeutet, das zweite Stickstoffatom durch den Phenylrest, Benzhydrylrest oder eine niedere Alkylgruppe mit bis zu 3 Kohlenstoffatomen substituiert sein kann, wobei in letzterer ein Wasserstoffatom durch eine Hydroxylgruppe ausgetauscht sein kann,

 $\frac{R_3}{2}$ Wasserstoff oder eine niedere Alkylgruppe mit bis zu drei Kohlenstoffatomen.

R₄ Wasserstoff oder Methylgruppen in 6- oder 8-Stellung,

R₅ und R₆ niedere gerad- oder verzweigtkettige gesättigte oder ungesättigte Alkylgruppen mit bis zu 4 Kohlenstoffatomen, Aralkylgruppen mit bis zu 10 Kohlenstoffatomen, in denen 1 bis 3 Wasserstoffatome durch Hydroxylgruppen, Halogenatome oder eine Methylendioxygruppe ausgetauscht sein können, und schließlich R₅ und R₆ zusammen mit dem Stickstoff einen Heterocyclus mit 5 bis 7 Ringgliedern, in welchem ein Ringglied ein Sauerstoffatom oder ein zweites Stickstoffatom bedeuten kann, wobei im Falle eines Stickstoffatoms dieses durch niedere Alkyl- oder Arylgruppen substituiert sein kann.

- 2. Verfahren zur Herstellung von Verbindungen gemäß Anspruch 1, in denen R₁₋₆ die angeführte Bedeutung haben, dadurch gekennzeichnet, daß nach an sich bekannten Methoden
 - a) Verbindungen der allgemeinen Formel

609817/1165

TROPONWERKE Dinklage & C. Köln-Mülheim

in welcher R_{4-6} die obenangeführte Bedeutung haben, mit Thiophosgen zu Verbindungen der allgemeinen Formel

in welcher R_{4-6} die obenangeführte Bedeutung haben, umgesetzt werden und anschließend Amine der allgemeinen Formel

$$H-N$$
 R_2
IV,

in welchen R_1 und R_2 die obenangeführte Bedeutung haben, addiert werden oder

b) Verbindungen der allgemeinen Formel II mit Chlorthioameisensäure_phenylester zu Verbindungen der allgemeinen Formel

in welcher $R_{\mu-6}$ die obenangeführte Bedeutung haben, umgesetzt und anschließend mit Aminen der allgemeinen Formel IV zur Reaktion gebracht werden oder

c) Verbindungen der allgemeinen Formel

in welcher R3-6 die obenangeführte Bedeutung hab n, mit

67

TROPONWERKE Dinklage & Co. Köln-Mülheim

Э / Ы

Thiophosgen zu Verbindungen der allgemeinen Formel

in welcher R₃₋₆ die obenerwähnte Bedeutung haben, umgesetzt und anschließend mit Aminen der allgemeinen Formel IV kondensiert werden.

3. Koronardilatatorisch wirksame pharmakologische Zubereitungen, gekennzeichnet durch einen Gehalt an Verbindungen der allgemeinen Formel I, auch in Form ihrer Salze mit physiologisch verträglichen Säuren, zusammen mit flüssigen oder festen Hilfs- und Trägerstoffen.

609817/1165

	4	j		392 31, 1
•				
•				
			ę	
	*			,