

ADRIAN RAMLAL

ANIRUDDHA REDKAR

KANAV SINGLA

SIDDHARTH VIJAY

THE PROBLEM

We Are Limited By Grayscale Images

We Are Limited By Grayscale Images

Current Solutions are Unsatisfactory

Goal

Train

Neural Network

Nuances That Increase Difficulty

Orange and Light Green have the Same Grayscale and Same Shape

DATA PROCESSING

Data

Imagenet

Data Splits

- Training
- Validation
- Testing

Practical Testing Images

Medical Astronomical Historical

Data Cleaning

Data Pipeline Ground Truth Labels UV channels 224 x 224 x 2 LUV Image 224 x 224 x 3 L(greyscale) Generated channel UV channels Neural 224 x 224 x 2 224 x 224 x 1 Network Generated LUV Image RGB Image 224 x 224 x 3 224 x 224 x 3

Practical Images May Not Be Real Color

Medical

Manually Colorized Astronomical

BASELINE MODEL

REGRESSION BASED MODEL

Starter Baseline Model

A regression-based CNN Model altered to only take in greyscale inputs.

Results

• Decent results! A good starter But definitely lots of scope for improvement.

• Avg Loss for training: 0.0017

• Avg Loss for validation: 0.0035

INITIAL MODEL

CLASSIFICATION BASED MODEL

Scoping & Defining our Problem

- We will scope the task of image colourization into a pixel-wise classification task
 - We label each pixel with one of 24 colours
- •The 24 colours are selected using <u>k-means clustering</u> over colours, and selecting cluster centers
 - Given a grayscale image, predict each pixel as a color amongst the 24 colors

Dataset & Constraints

• CIFAR-10, which has images of small dimensions 32*32 pixels

We just focus on the "horse" category of the dataset

• Furthermore, the **error** is calculated by defining distances over RGB space.

Model Architecture

- •The architecture we use is U-NET
- This architecture has following additions over a more basic CNN architecture:
 - Strided & Transposed Convolutions instead of upsampling functions
 - Skip connections

Results & Discussion

Epoch [100/100], Val Loss: 0.9769, Val Acc: 59.8%, Time(s): 98.27

FINAL MODEL

GENERATIVE ADVERSARIAL NETWORK

GAN Architecture Overview

Generator tries to "trick" the Discriminator as they compete and train in parallel

GAN Architecture - Overview

Convolutional Layers/Deconvolutional layers connected via skip net connections

GAN Architecture - Generator

- 5 Convolutional Blocks
 - Conv2d
 - BatchNorm2d
 - ReLU
- 5 Deconvolutional Blocks
 - ConvTranspose2D
 - BatchNorm2D
 - ReLU
- Tanh activation Function

GAN Architecture - Discriminator

- 6 Convolutional Blocks
 - Conv2d
 - BatchNorm2d
 - ReLU
- 1 Fully Connected Layer

Sigmoid Activation

GAN Results

GAN Discussion

- GAN has abnormal loss graphs
 - Competition between models induces settling at value instead of typical trends
- Qualitative results are best for determining success rate of model
 - Difficult to quantify
- Colors not as vibrant and some incorrect coloring found
 - Could be due to shorter training period/training size

Using AI to do this!

Generator

DEMONSTRATION

