Degenerate case in 2D

Yimin Zhong

April 12th, 2013

1 Existence of weak solution

Consider the equation:

$$\nabla \cdot (\sigma \nabla \phi) = f \tag{1}$$

when $\sigma \in L^{1/(1-p)}(\Omega) \cap L^1(\Omega)$, for some $1 and <math>\frac{f}{\sigma} \in L^{p'}_{\sigma}(\Omega)$, then there is a weak solution in $W^{1,p}_{0,\sigma}(\Omega)$. [1]

2 Detailed

Here we have our $\sigma \sim (x^2+y^2)=r^2$ around zeros, thus $\sigma \in L^m$ where m>-1, which means $\frac{1}{1-p}>-1, \ p>2$. Assume $p=2+\varepsilon, \ \varepsilon>0$. Then if we choose f to satisfy $\frac{f}{\sigma} \in L^{p'}$, then we can use the theorem to get the existence of weak solution.

3 Weak solution to Classical solution

We know if we want the weak solution to be classical, we have to use Sobolev embedding theorem somehow. Let's look at Hölder inequality,

$$\int fg \le \left(\int f^{\alpha}\right)^{\frac{1}{\alpha}} \left(\int g^{\beta}\right)^{\frac{1}{\beta}} \tag{2}$$

consider $fg = |\phi|^p$, we choose

$$f^\alpha = r^{-2+\varepsilon}$$

to be integrable, then

$$g^{\beta} = r^{\frac{2-\varepsilon}{\alpha}\beta} |\phi|^{p\beta}$$

by some computation according to $\alpha^{-1} + \beta^{-1} = 1$, we have $\alpha = 2 - \frac{\varepsilon}{2} < 2$, $\beta = \frac{4-\varepsilon}{2-\varepsilon} > 2$. We got

$$f^{\alpha} = r^{-2+\varepsilon} \tag{3}$$

$$g^{\beta} = r^2 |\phi|^{p\beta} \tag{4}$$

Recall the first theorem, if we plug in the $p\beta$ into the p in theorem of first part, we have a weak solution in $W_{0,\sigma}^{1,p\beta}$.

Result 4

by the inequality, we have $|\phi| \in L^p(\Omega)$. The same way we can get $|\nabla \phi| \in L^p$. Thus $|\phi| \in W^{1,p}$, by Sobolev embedding theorem, we have $\phi \in C^{s,q}(\Omega)$ as Hölder space, where $s+q=1-\frac{2}{p}$, thus $C^{s,q}=C^{0,1-\frac{2}{p}}$. If we take $p<\infty$, then the solution exists in $C^{\alpha}(\Omega)$ as a classical solution, where $\alpha = 1 - \frac{2}{n}$, the requirement is $\frac{f}{\sigma} \in L^{p'}_{\sigma}(\Omega)$, which is easy to satisfy.

Induction for 3D 5

We already know that in 3D case, we still have to deal with the equation

$$\sigma \Delta \phi + \nabla \sigma \cdot \nabla \phi = 0 \tag{5}$$

where σ is almost positive every where and only vanishes at finite points. Moreover, we may assume $|\sigma(x,y) - \sigma(x_j,y_j)| \sim O(|x-x_j|^2 + |y-y_j|^2)$

For the same reason, we can conclude that there is a weak solution for the problem:

$$\nabla \cdot (\sigma \nabla \phi) = f$$

$$\gamma \phi = 0$$
(6)

$$\gamma \phi = 0 \tag{7}$$

Where $\frac{f}{\sigma} \in L^{p'}_{\sigma}(\Omega)$. It is easy to show that σ belongs to A_p for p > 2 with the same reason shown in the second part. Thus we can find solution in $C^{0,\alpha}$, for $\alpha < 1$, it is obviously that the solution is bounded on Ω .

References

[1] Albo Carlos Cavalheiro, Existence of solutions for Dirichlet problem of some degenerate quasilinear elliptic equations. Complex Variables and Elliptic Equations Vol. 53, No. 2, February 2008, 185-194