Cálculo em Várias Variáveis Campos vetoriais.

ICT-Unifesp

2 Exercícios

Mais detalhes na Seção 16.1 do livro do Stewart.

Definição

Seja $D \subset \mathbb{R}^2$. Um campo vetorial em \mathbb{R}^2 é uma função \vec{F} que associa a cada ponto $(x, y) \in D$ um vetor

$$\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j},$$

onde $P, Q: D \to \mathbb{R}^2$ são funções de duas variáveis, também chamadas de campos escalares.

Definição

Seja $E \subset \mathbb{R}^3$. Um campo vetorial em \mathbb{R}^3 é uma função \vec{F} que associa a cada ponto $(x, y, z) \in E$ um vetor

$$\vec{F}(x,y,z) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k},$$

onde $P, Q, R : E \to \mathbb{R}^3$ são funções de três variáveis, também chamadas de campos escalares.

Campos vetoriais estão presentes no dia-a-dia:

Força: campos gravitacionais

Velocidade/aceleração: escoamento de fluidos, ventos...

Eletricidade/magnetismo: campos elétricos, campos magnéticos...

Definição

Dizemos que o campo vetorial em \mathbb{R}^2

$$\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$$

é contínuo se P(x,y) e Q(x,y) são funções contínuas.

7 / 11

Definição

Dizemos que o campo vetorial em \mathbb{R}^2

$$\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$$

é contínuo se P(x,y) e Q(x,y) são funções contínuas.

Definição

Dizemos que o campo vetorial em \mathbb{R}^3

$$\vec{F}(x, y, z) = P(x, y, z) \vec{i} + Q(x, y, z) \vec{j} + R(x, y, z) \vec{k}$$

é contínuo se P(x, y, z), Q(x, y, z) e R(x, y, z) são funções contínuas.

Campo gradiente: Se f é uma função de duas variáveis cujas derivadas parciais de primeira ordem existem, então seu gradiente ∇f , definido por

$$\nabla f(x,y) = \frac{\partial f}{\partial x}(x,y)\vec{i} + \frac{\partial f}{\partial y}(x,y)\vec{j},$$

é um campo vetorial em \mathbb{R}^2 denominado campo vetorial gradiente.

Campo gradiente: Se f é uma função de duas variáveis cujas derivadas parciais de primeira ordem existem, então seu gradiente ∇f , definido por

$$\nabla f(x,y) = \frac{\partial f}{\partial x}(x,y)\vec{i} + \frac{\partial f}{\partial y}(x,y)\vec{j},$$

é um campo vetorial em \mathbb{R}^2 denominado campo vetorial gradiente.

Analogamente, um campo gradiente em \mathbb{R}^3 é da forma

$$\nabla f(x,y,z) = \frac{\partial f}{\partial x}(x,y,z)\vec{i} + \frac{\partial f}{\partial y}(x,y,z)\vec{j} + \frac{\partial f}{\partial z}(x,y,z)\vec{k}.$$

8/11

Definição

Um campo vetorial \vec{F} é chamado de campo vetorial conservativo se ele for o gradiente de algum campo escalar f, ou seja, se existir uma função f tal que $\vec{F} = \nabla f$. Neste caso, f é denominada função potencial do campo vetorial \vec{F} .

Exemplo

O campo (vetorial) gradiente da função $f(x,y) = x^2y - y^3$ é

$$\nabla f(x,y) = (2xy)\vec{i} + (x^2 - 3y^2)\vec{j}$$
.

Logo, o campo vetorial

$$\vec{F}(x,y) = (2xy)\vec{i} + (x^2 - 3y^2)\vec{j}$$

é conservativo, pois ele é o gradiente da função escalar $f(x, y) = x^2y - y^3$.

Exercícios

Seção 16.1 do Stewart: 1–22, 25–34.