MATH 142: Elementary Algebraic Topology

Jad Damaj

Fall 2022

Contents

1	Top	\mathbf{ology}		3
	1.1	August	; 24	3
		1.1.1	What is Algebraic Topology	9
		1.1.2	Continuity	4
	1.2	August	: 26	4
		1.2.1	Continuity	4
		1.2.2	Topology	5
	1.3	August	:29	5
		1.3.1	Bases and Subbases	5

Chapter 1

Topology

1.1 August 24

1.1.1 What is Algebraic Topology

Recall Metric Spaces: (X, d), X is a set, d is a metric on X (ie. $d: X \times X \to \mathbb{R}$)

- 1. d(x,y) = 0 exactly if x = y
- 2. d(x,y) = d(y,x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$

Let V be a vector space, let $||\cdot||$ be a norm on V, let d(v,w) = ||v-w||

• \mathbb{R}^n : $||(r_j)||_2=(\Sigma|r_j|^2)^{\frac{1}{2}}$ - Euclidean Norm, $||(r_j)||_1=\Sigma|r_j|$, $||(r_j)|=\max|r_j|$

If (X,d) is a metric space and if $Y \subseteq X$, let d^Y be the restriction of d to $Y \times Y$. Then (Y,d^Y) is a metric space.

Metric spaces \leftrightarrow geometry: length, area, size of angles.

Let X be a balloon on \mathbb{R}^3

- Two natural metrics: inherited metric from \mathbb{R}^3 , path-length metric (eg. length of shortest path on surface between two points)
- Consider a deformation:

the shapes have different Euclidean distances but still have an underlying commonality

• We also observe that the balloon cannot be continuously deformed into the shape below:

We want to be able to prove such things without embedding into a metric space. This is done by attaching algebraic objects to topological spaces such that their isomorphism classes dont change under continuous deformation.

1.1.2 Continuity

Let (X, d^X) and (Y, d^Y) be two metric spaces. Let $f: X \to Y$ be a function. Let $x_0 \in X$. We say f is continuous at x_0 if for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $d^X(x, x_0) < \delta$ then $d^Y(f(x), f(x_0)) < \varepsilon$.

- Let (X,d) be a metric space. By the open ball of radius r about x_0 , we mean $B(x_0,r)=\{x\in X:d(x,x_0)< r\}$ (closed ball is $\{x\in X:d(x,x_0)\leq r\}$)
- the above definition can be rephrased as: for any B(f(x₀), ε) there is an open ball B(x₀, δ) such that if x ∈ B(x₀, δ) then f(x) ∈ B(f(x₀), ε).
 eg. For every open ball B₁ about f(x₀) there is an open ball B₂ about x₀ such that if x ∈ B₂ then f(x) ∈ B₁

Definition 1.1.1. For (X, d) a metric space, by a neighborhood of a point $x \in X$, we mean any subset of X that contains an open ball about x.

• rephrasing the definition again we get: For any neighborhood $N_{f(x_0)}$ of $f(x_0)$ there is a neighborhood N_{x_0} of x_0 such that if $x \in N_{x_0}$ then $f(x) \in N_{f(x_0)}$

Definition 1.1.2. $f: X \to Y$ is continuous if it is continuous at each points of X.

1.2 August 26

1.2.1 Continuity

Recall: Given (X, d^X) , (Y, d^Y) and $f: X \to Y$, f is continuous at x_0 if for any open ball B_1 about $f(x_0)$ there is an open ball B_2 about x_0 such that if $x \in B_2$ then $f(x) \in B_1$, ie. $B_2 \subseteq f^{-1}(B_1)$

Definition 1.2.1. Let (X,d) be a metric space. Let $U \subseteq X$. We say that U is open if for every $x \in U$ ther is an open ball B about x such that $B \subseteq U$, ie. U is a neighborhood of each point it contains.

We say $f: X \to Y$ is continuous if it is continuous at each point of X.

Let U be an open set in Y, $x \in X$ with $f(x) \in U$. For each ball B_1 in U about f(x), there is an open ball about $x B_2 \subseteq X$ such that if $x' \in B_2$ then $f(x') \in B_1$, ie. $B_2 \subseteq f^{-1}(B_1) \subseteq f^{-1}(U)$ ie. if $x \in f^{-1}(U)$ then there is an open ball B_2 about x with $B_2 \subseteq f^{-1}(U)$

ie. $f^{-1}(U)$ is open

Conversely, if the preimage $f^{-1}(U)$ of every open set U in Y is open, then f is continuous. This is because if $x_0 \in X$, B_1 an open ball about $f(x_0)$, then $f^{-1}(B_1)$ is open in X. $f(x_0) \in B_1$ so we have an open ball $B_2 \subseteq X$ about x_0 such that $B_2 \subseteq f^{-1}(B_1)$ so f is continuous at x_0 .

Thus, $f: X \to Y$ is continuous exactly if for any open U in Y, $f^{-1}(U)$ is open in X.

1.2.2 Topology

Let (X,d) be a metric space. Let J be the collection of open subsets in X of d. J has the following properties:

- 1. $X \in J, \varnothing \in J$
- 2. an arbitrary, maybe infinite, union of open sets is open
- 3. a finite intersection of open sets is open.

Proof of (3). If U_1, \ldots, U_n are open sets and $x \in U_1 \cap \cdots, \cap U_n$ then there are $r_1, \ldots, r_n \in \mathbb{R}$ such that $B(x, r_j) \subseteq U_j$ for $j = 1, \ldots, j_n$. Let $r = \min\{r_1, \ldots, r_n\}$, then $B(x, r) \subseteq U_j$ for each j so $B(x, r) \subseteq U_1 \cap \cdots \cap U_n$. Thus, $U_1 \cap \cdots \cap U_n$ is open.

Note: This does not hold for infinite intersections, consider $\bigcap_{i\in\mathbb{N}} B(x,\frac{1}{n}) = \{x\}$ in the plane.

This motivates the following definition:

Definition 1.2.2. Let X be a set. By a topology on X we mean a collection, \mathcal{T} , of subsets of X (called the open sets of the topology) satisfying $\mathbf{1}$, $\mathbf{2}$, and $\mathbf{3}$ above.

Definition 1.2.3. If (X, \mathcal{T}^X) , (Y, \mathcal{T}^Y) are topological spaces, $f: X \to Y$ is continuous if for every $U \in \mathcal{T}^Y$, $f^{-1}(U) \in \mathcal{T}^X$

Example 1.2.4. Given X, let \mathcal{T}_X be all subsets of X. This is called the discrete topology on X.

• This topology can also be given by the metric d(x,y)=1 if $x\neq 1$

Definition 1.2.5. If $\mathcal{T}_1, \mathcal{T}_2$ are topologies on X, we say \mathcal{T}_1 is bigger, or finer, than \mathcal{T}_2 if $\mathcal{T}_1 \supseteq \mathcal{T}_2$.

• the disrecte topology is the biggest topology on X.

Example 1.2.6. $\mathcal{T} = \{X, \emptyset\}$, called the indiscrete topology on X.

Note: this topology can not be given by a metric if X has 2 or more points.

1.3 August 29

1.3.1 Bases and Subbases

Let (X, \mathcal{T}) be a topological space.

Definition 1.3.1. A subset A of X is said to be closed if A'(X-A) is open.

Let \mathcal{C} be the collection of closed subsets

- 1. $X, \emptyset \in \mathcal{C}$
- 2. any (maybe infinite) intersection of closed sets is closed
- 3. A finite union of closed sets is closed

Let X be a set, any (maybe infinite) intersection of topologies on X is a topology on X.

Thus, for any \mathcal{S} , a subset of X, there is a smallest topology that conatins \mathcal{S} , namely the intersection of all topologies that contain \mathcal{S} . We sat that \mathcal{S} generates this topology.

Definition 1.3.2. If S has the property that $\bigcup (U \in S) = X$, then S is called a subbasis of the topology it generates.

Let $\mathcal{I}^{\mathcal{S}}$ be the collection of all finite intersection of elements of \mathcal{S} , then the intersection of a finite number of elements of $\mathcal{I}^{\mathcal{S}}$ is in $\mathcal{I}^{\mathcal{S}}$.

Let \mathcal{I} be a collection of subsets of X (union of elements of \mathcal{I} is X) with the property that the intersection of a finite number of elements of \mathcal{I} is in \mathcal{I} . Then the collection, \mathcal{T} , of arbitrary unions of elements of \mathcal{I} is a topology (the smallest topology containing \mathcal{I})

Why is a finite intersection of elements of \mathcal{T} in \mathcal{T} ?

Suppose $\mathcal{O}_1 = \bigcup_{\alpha} U_{\alpha}^1$, $\mathcal{O}_2 = \bigcup_{\beta} U_{\beta}^2$ with $U_{\alpha}^1, U_{\beta}^2 \in \mathcal{I}$, then $\mathcal{O}_1 \cap \mathcal{O}_2 = (\bigcup U_{\alpha}^1) \cap (\bigcup U_{\beta}^2) = \bigcup_{\alpha,\beta} (U_{\alpha}^1 \cap U_{\beta}^2)$.

Definition 1.3.3. Given a topological space (X, \mathcal{T}) , a base for it is a set of subsets, \mathcal{B} , of \mathcal{T} , with the property that every element of \mathcal{T} is a (maybe infinite) union of elements of \mathcal{B} .

If S is a subbase for T, then I^S is a base for T.

Note: definition does not require \mathcal{B} to be closed under finite intersection

(X, d) is a metric space, let \mathcal{B} be the set of open balls. Then \mathcal{B} is a base for the metric topology but usually the intersection of two open balls is not an open ball.

The intersection of finitely many elements of \mathcal{B} is the union of elements of \mathcal{B} .

Let (X, \mathcal{T}^X) , (Y, \mathcal{T}^Y) be topological spaces, and \mathcal{S} a subbase of \mathcal{T}^Y . Let $f: X \to Y$, then f is continuous if for every $U \in \mathcal{S}$, $f^{-1}(U) \in \mathcal{T}^X$.

Example 1.3.4. For $X = \mathbb{R}$, $S = \{(-\infty, a), (b, +\infty) : a, b \in \mathbb{Q}\}$ generates the usual topology.