Claims

 An antiepileptic agent comprising a xanthine derivative represented by the formula (I):

$$R^{1}$$
 N
 N
 R^{2}
 N
 R^{4}
 N
 N
 N

5 [wherein R¹, R² and R³ are the same or different and each represents a hydrogen atom, lower alkyl, lower alkenyl or lower alkynyl;

 R^4 represents cycloalkyl, $-(CH_2)_n-R^5$ (wherein R^5 represents substituted or unsubstituted aryl or substituted or unsubstituted heterocyclic group and n represents an integer of 0 to 4) or the formula (II):

10

15

$$X^1$$
 (II)

(wherein Y^1 and Y^2 are the same or different and each represents a hydrogen atom, halogen or lower alkyl and Z represents substituted or unsubstituted aryl or substituted or unsubstituted heterocyclic group); and

 X^1 and X^2 are the same or different and each represents an oxygen atom or a sulfur atom] or a pharmaceutically acceptable salt thereof as an active ingredient.

20 2. The antiepileptic agent according to claim 1, wherein

 X^1 and X^2 are oxygen atoms.

15

3. The antiepileptic agent according to claim 1 or 2, wherein R^4 is the formula (II):

- (wherein Y^1 , Y^2 and Z have the same meanings as defined above, respectively).
 - 4. The antiepileptic agent according to claim 3, wherein Y^1 and Y^2 are hydrogen atoms.
- 5. The antiepileptic agent according to claim 3 or 4,

 wherein Z is substituted or unsubstituted aryl or the formula

 (III):

(wherein R^6 represents a hydrogen atom, hydroxy, lower alkyl, lower alkoxy, halogen, nitro or amino; and m represents an integer of 1 to 3).

6. A method for treating epilepsy, which comprises administering an effective amount of a xanthine derivative represented by the formula (I):

[wherein R^1 , R^2 and R^3 are the same or different and each represents a hydrogen atom, lower alkyl, lower alkenyl or lower alkynyl;

 R^4 represents cycloalkyl, $-(CH_2)_n-R^5$ (wherein R^5 is substituted or unsubstituted aryl or substituted or unsubstituted and n represents an integer of 0 to 4) or the formula (II):

10 (wherein Y^1 and Y^2 are the same or different and each represents a hydrogen atom, halogen or lower alkyl and Z represents substituted or unsubstituted aryl or substituted or unsubstituted heterocyclic group); and

 X^1 and X^2 are the same or different and each represents 15 an oxygen atom or a sulfur atom] or a pharmaceutically acceptable salt thereof.

7. Use of a xanthine derivative represented by the formula (I):

[wherein R^1 , R^2 and R^3 are the same or different and each represents a hydrogen atom, lower alkyl, lower alkenyl or lower alkynyl;

 R^4 represents cycloalkyl, $-(CH_2)_n-R^5$ (wherein R^5 represents substituted or unsubstituted aryl or substituted or unsubstituted heterocyclic group and n represents an integer of 0 to 4) or the formula (II):

(wherein Y^1 and Y^2 are the same or different and each represents hydrogen atom, halogen or lower alkyl and Z represents substituted or unsubstituted aryl or substituted or unsubstituted heterocyclic group); and

 X^1 and X^2 are the same or different and each represents an oxygen atom or a sulfur atom) or a pharmaceutically acceptable salt thereof, for the manufacture of an antiepileptic agent.