TA Session 3: GMM

Shuowen Chen¹

EC708: PhD Econometrics I (Spring 2020)

¹Some parts of my slides are borrowed from Zhongjun Qu, Hiroaki Kaido and Newey and McFadden (1994)

OUTLINE

- Large Sample Properties of GMM
- GMM Estimations
- Overidentification Tests
- Simulations: Small Sample Performance of GMM
- Detour: HAC estimator (Newey and West, 1987)
- Asset Pricing in GMM
 - Consumption CAPM (Hansen and Singleton, 1982)
 - Optimal Weighting Matrix?

METHOD OF MOMENTS

Consider the following moment restrictions

$$\mathbb{E}[m(X_t,\theta)]=0,$$

where there are k moments and q parameters to estimate

- ightharpoonup k = q: just-identified
- ightharpoonup k > q: over-identified

Just-identified: use method of moments: choose paramter estimates such that the corresponding sample moments are zero.

$$m_T(\theta) = \frac{1}{T} \sum_{t=1}^{T} m(X_t, \theta)$$

Method of moments: solve

$$m_T(\widehat{\theta}_{MM}) = 0$$

GENERALIZED METHOD OF MOMENTS

Over-identified: choose $\widehat{(\theta)}$ such that $m_T(\widehat{\theta})$ is as close to zero as possible.

Notion of closeness between two $k \times 1$ vectors A and B:

$$(A-B)'W(A-B),$$

where *W* is $k \times k$, symmetric and positive definite.

GMM estimator:

$$\widehat{\theta}_{GMM}(W_T) = \operatorname*{arg\,min}_{\theta} m_T(\theta)' W_T m_T(\theta)$$

IDENTIFICATIONS: GLOBAL AND LOCAL

► Global/Point identification

$$\mathbb{E}(m(X_t;\theta)) = 0 \text{ iff } \theta = \theta_0$$

Necessary condition: $k \ge q$ (order condition)

- ► Sufficient conditions are complicated, see Komunjer (2012)
- Local identification

 \exists a neighborhood of θ_0 , namely $\mathcal{B}(\theta_0)$, such that inside $\mathcal{B}(\theta_0)$

$$\mathbb{E}(m(X_t;\theta))=0 \text{ iff } \theta=\theta_0$$

In English: θ_0 is point identified among alternative values of θ , if we restrict attention to alternatives that are very close to θ_0 .

Sufficient condition: $\frac{\partial \mathbb{E}(m(X_t;\theta))}{\partial \theta'}$ is continuous and has full column rank q at θ_0 . (rank condition)

- ▶ A violation is called first-order lack of identification.
- ▶ Why not necessary? Because there are models that are locally identified and yet violate rank condition (Lee & Chesher, 1986)
- ▶ Necessary if assume rank is **constant** in $\mathcal{B}(\theta_0)$ (Rothenberg, 1971)

WEAK IDENTIFICATION

Some notions of identifications affect inference², let's focus on weak identification (as in weak IV)

- Weak identification in GMM: moments yield uninformative estimates of the underlying parameters
- ► For these weakly identified parameters, standard asymptotic theory poorly approximates actual distribution of estimation
- ▶ One case of weak identification: GMM criterion function lacks curvature around θ_0
- We use robust inference method
 - Linear models: invert Anderson-Rubin test
 - Nonlinear models: invert nonlinear Anderson-Rubin test

²For more definitions of identifications, refer to Lewbel (2019, JEL)

Asymptotics: Assumptions

1. LLN

$$\frac{\partial m_T(\theta)}{\partial \theta'} \stackrel{p}{\to} G(\theta) = \frac{\partial \mathbb{E}(m(X_t, \theta))}{\partial \theta'},$$

where the uniform convergence holds in a compact neighborhood of θ_0 . Assume $G(\theta)$ is continous and write $G_0 := G(\theta_0)$

2. CLT

$$\sqrt{T}m_T(\theta) \xrightarrow{d} \mathcal{N}(0, S_0),$$

where long-run variance $S_0 = \sum_{j=-\infty}^{\infty} \mathbb{E}[m(X_t, \theta_0) m'(X_{t-j}, \theta_0)]$

ASYMPTOTICS: RESULTS

Asymptotic Normality

$$\sqrt{T}(\widehat{\theta}(W_T - \theta_0)) \xrightarrow{d} \mathcal{N}(0, V(W_0)),$$

where $W_0 = plim_{T o \infty} W_T$ and

$$V(W_0) = [G_0'W_0G_0]^{-1}(G_0'W_0S_0W_0G_0)[G_0'W_0G_0]^{-1}$$

Efficient GMM: $W_0 = S_0^{-1}$ so that

$$\sqrt{T}(\widehat{\theta}(W_T - \theta_0)) \xrightarrow{d} \mathcal{N}(0, (G_0'S_0^{-1}G_0)^{-1})$$

Remarks

- Assign more weights to moments with smaller variances
- ▶ Efficient in that $V(W_0) (G_0'S_0^{-1}G_0)^{-1} \ge 0$

Two-Step Estimation Algorithm

- 1. Obtain $\widehat{\theta}_1$ using identity matrix as the weighting matrix. Compute $\widehat{S}_T(\widehat{\theta}_1)$. Will talk about how to estimate \widehat{S}_T later.
- 2. Obtain second-step estimator $\widehat{\theta}$ as

$$\widehat{\theta} = \operatorname*{arg\,min}_{\theta} m_T(\theta)' \widehat{S}_T^{-1}(\widetilde{\theta}_1) m_T(\theta)$$

ONE-STEP ALGORITHM: CONTINUOUS UPDATING

Realize that estimated long run variance \widehat{S}_T is a function of θ .

$$\widehat{\theta}_{CUGMM} = \underset{\theta}{\arg\min} \ m_T(\theta) \widehat{S}_T^{-1}(\theta) m_T(\theta)$$

- Objective function not quadratic, numerically hard to solve
- ▶ In practice two-step GMM is often used instead
- ► Can be used to conduct nonlinear Anderson–Rubin test

 ► Nonlinear AR

OVERIDENTIFICATION TESTS

- ► Sargan's overidentification test for 2sls estimators assumes homoskedasticity. Hansen's GMM overidentification test (J-test) allows for heteroskedasticity
- ► Test for moment validity in over-identified models

$$H_0: \mathbb{E}(m(X_t; \theta)) = 0, \quad H_1: \mathbb{E}(m(X_t; \theta)) \neq 0, \ \forall \theta \in \Theta$$

► Test stastistic:

$$\mathcal{J} = Tm_T(\widehat{\theta})'\widehat{S}_T^{-1}m_T(\widehat{\theta}) \xrightarrow{d} \chi_{k-q}^2$$

Some Comments on Hansen's Overidentification Test

- ▶ Rejecting the null doesn't tell you which moments are invalid
- ► Rejecting the null doesn't necessarily mean the moments are invalid, could also be model misspecification. Similar to testing efficient market hypotheses.
- J test tends to overreject in finite samples

SMALL-SAMPLE PROPERTIES OF GMM: WALD TEST

Reference: Burnside and Eichenbaum (1996, Henceforth BE). They asked the following questions:

- 1. Does the size of the tests approximate their asymptotic size?
- 2. Do joint tests of several restrictions perform as well or worse than tests of simple hypotheses, and what are responsible for size distortions?
- 3. How can modelling assumptions, or restrictions imposed by hypothesis themselves, be used to improve the performance of these tests?
- 4. What practical advice can be given to the practitioner?

BE's SIMULATION

- ▶ **DGP:** $X_{it} \sim i.i.d.N(0, \sigma_i^2), i = 1, ..., n; t = 1, ..., T.$ $n = 20, T = 100, \sigma_1^2 = ... = \sigma_n^2 = 1.$
- ▶ **Parameters:** Econometrician knows $E(X_{it}) = 0$ and is interested in estimating $\sigma_i^2 \equiv Var(X_{it})$.
- ► Moment Conditions: $E_P[X_{it}^2 \sigma_i^2] = 0, i = 1, ..., n$.
- ▶ GMM estimates: $\hat{\sigma}_i = \sqrt{T^{-1} \sum_{t=1}^{T} X_{it}^2}$
- Hypotheses of interest:

$$H_M : \sigma_1 = ... = \sigma_M = 1, M \leq n.$$

BE considered $M \in \{1, 2, 5, 10, 20\}$.

WALD TESTS

Test Statistic:

$$W_T^M = T \left(\hat{\sigma} - 1\right)' A' \left(AV_T A'\right)^{-1} A \left(\hat{\sigma} - 1\right),$$

where $A = (I_M \ 0_{M \times (n-M)}), \ \hat{\sigma} = (\hat{\sigma}_1, ..., \hat{\sigma}_n)', \ \text{and} \ V_T \ \text{denotes a generic}$ estimator of the asymptotic variance-covariance matrix of $\sqrt{T}(\hat{\sigma}-1), \ i.e.,$

$$\lim_{T\to\infty} V_T = \left(G_0' S_0^{-1} G_0\right)^{-1}$$

Note that

- ▶ the i-th diagonal element of G_0 is $\mathbb{E} \frac{\partial (X_{it}^2 \sigma_i^2)}{\partial \sigma_i} = -2\sigma_i$,
- ▶ the ij-th element of S_0 is $\mathbb{E}(X_{it}^2 \sigma_i^2)(X_{jt}^2 \sigma_j^2)$.
- $W_T^M \rightarrow^d \chi_M^2$ under H_M .

Various Estimators for Long-Run Variance S_0

- 1. HAC (Newey and West, 1987) with bandwidth $B_T = 4$;
- 2. HAC with $B_T = 2$;
- 3. HAC with B_T by Andrews (1991) spectral density window;
- 4. Use the assumption that data are serially uncorrelated. $[S_0]_{ij}$ is estimated by $T^{-1}\sum_{t=1}^T (X_{it}^2 \hat{\sigma}_i^2)(X_{jt}^2 \hat{\sigma}_j^2)$.
- 5. Use the assumption that data are serially uncorrelated and the estimators are independent. $[S_0]_{ii}$ is estimated by $T^{-1}\sum_{t=1}^T (X_{it}^2 \hat{\sigma}_i^2)^2$; the off-diagonal elements are zero.
- 6. Impose Gaussianity. $[S_0]_{ii}$ is estimated by $3\hat{\sigma}_i^4$; the off-diagonal elements are zero.
- 7. Impose the null hypotheses on S_0 . $[S_0]_{ii}$ is 3 for $i \leq M$; the off-diagonal elements are zero.
- 8. Impose the null hypotheses on S_0 and G_0 . $[S_0]_{ii}$ is 3 for $i \le M$; the off-diagonal elements are zero. $[G_0]_{ii}$ is -2 for $i \le n$.

SMALL-SAMPLE GMM WALD TEST: RESULTS

	Small sample size (%)				
Asymptotic size					
	M = 1	M = 2	M = 5	M = 10	M = 20
	(a) Estimated S _T , B _T = 4				
1%	2.59	3.41	6.99	16.98	58.68
5%	7.49	9.25	15.61	30.92	73.37
10%	12.65	14.93	23.32	40.10	80.29
	(b) Estimated S_T , $B_T = 2$				
1%	2.31	2.87	4.83	9.17	28.88
5%	6.90	8.26	12.22	19.91	45.62
10%	12.03	13.62	19.32	28.55	55.88
	(c) E	stimated S _T	, B _T by And	frews proced	ure
1%	2.27	2.91	4.71	9.06	26.64
5%	6.94	8.27	11.94	19.27	43.43
10%	11.98	13.50	19.04	27.87	53.83
	(d) Estimated S _T , no lags				
1%	2.15	2.73	4.17	6.67	17.31
5%	6.74	7.94	10.82	16.23	32.87
10%	11.79	13.22	17.43	24.10	42.51
	(e) Estimated diagonal S _T , no lags				
1%	2.15	2.67	3.33	3.88	4.71
5%	6.74	7.58	9.32	11.04	13.39
10%	11.79	13.04	15.50	17.56	21.20
	(f) Gaussianity applied to (e)				
1%	1.67	1.82	2.22	2.40	2.58
5%	5.94	6.08	7.20	7.72	8.53
10%	10.60	11.30	12.50	13.25	14.45
	(g) H_0 imposed on S_T in (f)				
1%	1.46	1.67	2.03	2.10	2.10
5%	4.61	5.33	5.97	6.58	7.26
10%	9.34	9.55	10.47	11.70	12.05
	(h) H ₀ impose	ed on S_T in	(f) and on D	-
1%	.96	.97	.99	.96	.92
5%	5.16	4.90	5.08	5.01	4.99
10%	10.14	10.13	10.20	10.11	9.99

- Small sample size exceeds the nominal size
- Worse distortion as the dimension of the joint tests increases
- ▶ Main issue is S_0 estimation
- For size improvement, impose a priori info for \widehat{S}_0 Two important sources of such information are the economic theory being investigated and the null hypothesis being tested.
- Remark: will talk about bootstrap later

SMALL-SAMPLE PROPERTIES OF GMM: BIAS

Simulations by Altonji and Segal (1996). Their findings

- 1. Efficient GMM generates downward-biased estimates
- 2. In simulations using identity weighting matrix performs better
- 3. Bias depends on the distribution of the DGP
 - worse bias if data have heavy tails
 - bias ↓ as sample size ↑
 - ▶ bias ↑ as number of moments ↑: related to high-dimensional GMM bias, will cover later

Their conclusion: using identity matrix is always preferrable when the optimal weighting matrix is unknown and unconstrained.

Analogy: OLS vs (F)GLS

For regression $y=X\beta+\varepsilon$, where $Var(\varepsilon|X)=\Omega$, recall GLS formula:

$$\hat{\beta}_{GLS} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y$$

In practice Ω is unknown, use feasible GLS (FGLS) instead:

$$\hat{\beta}_{FGLS} = (X'\widehat{\Omega}^{-1}X)^{-1}X'\widehat{\Omega}^{-1}y$$

- Under non-homoskedasticity, GLS is more efficient than OLS
- \blacktriangleright But relies on correct specification of Ω and finite–sample performance of $\widehat{\Omega}$
- OLS estimator is pretty good in practice
- Tradeoff between efficiency and robustness/stability

CONSUMPTION CAPM: MODEL

Representative agent chooses among N assets and optimizes consumptions to maximize lifelong utility.

$$egin{aligned} \max \mathbb{E}_0 \Big[\sum_{t=0}^\infty eta^t u(c_t) \Big], \quad ext{ subject to} \ c_t + \sum_{j=1}^N P_{j,t} Q_{j,t} & \leq \sum_{j=1}^N x_{j,t} Q_{j,t-M_j} + w_t, \end{aligned}$$

- ▶ $x_{j,t}$: time t payoff. For stock $x_{j,t} = P_{j,t} + D_{j,t}$ (price plus dividends)
- ► M_j : asset j's date of maturity. For stock $M_j = 1$
- \triangleright w_t : wage at time t
- $\triangleright \beta$: discount factor

CONSUMPTION CAPM: CONDITIONAL MOMENTS

Consumption Euler equation:

$$P_{j,t}u'(c_t) = \beta \mathbb{E}_t[x_{j,t+1}u'(c_{t+1})]$$

Define stochastic discount factor (SDF) $m_{t+1} := \beta \frac{u'(c_{t+1})}{u'(c_t)}$ and return $R_{j,t+1} = \frac{x_{j,t+1}}{P_{j,t}}$. Under CRRA utility

$$u(c) = \begin{cases} \frac{c^{1-\gamma}}{1-\gamma} & \gamma \neq 1 \\ \log(c) & \gamma = 1 \end{cases}$$

explicitly show conditional information set \mathcal{I}_t :

$$\mathbb{E}\left[\beta\left(\frac{c_{t+1}}{c_t}\right)^{-\gamma}R_{j,t+1}-1|\mathcal{I}_t\right]=0$$

N conditional moments and 2 parameters to estimate

CONSUMPTION CAPM: UNCONDITIONAL MOMENTS

Assume $m \times 1$ instruments $z_t \subseteq \mathcal{I}_t$: agent's information at time t (past GDP growth, past price, etc.) By law of iterated expectation (LIE):

$$\mathbb{E}\Big[\Big(\beta\Big(\frac{c_{t+1}}{c_t}\Big)^{-\gamma}R_{j,t+1}-1\Big)\otimes z_t\Big]=0,$$

where \otimes denotes Kronecker product. In total NM unconditional moments and 2 parameters. Over-identified.

PRACTICAL ISSUES

What moments to pick?

- Simple moments like mean?
- Or dynamic moments (Arellano and Bonhomme, 2017)
- Data-driven moment selections (Andrews, 1999)
- Simulation-based methods (SMM, Indirect inference)
- ▶ Identified moments (Nakamura and Steinsson, 2018)

Optimal Weighting Matrix?

- ► Long-run variance matrix (near) singular because
 - 1. Many asset returns are highly correlated
 - 2. Small T and large N: high-dimensional econometrics
- Finite-sample issues with long-run variance estimation
- ▶ Use pre-specified weighting matrix to focus on particular assets
 - 1. Identity matrix (Cochrane, 2001)
 - 2. Second-moment matrix (Hansen and Jagannathan, 1997)

Nonlinear Anderson-Rubin Test

AR test statistic:

$$\mathcal{J}^{CU}(\theta_0) = \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} m(X_t, \theta_0)\right)' \widehat{S}^{-1}(\theta_0) \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} m(X_t, \theta_0)\right)$$

- ▶ If no serial correlation: $\widehat{S}^{-1}(\theta_0) = \frac{1}{T} \sum_{t=1}^T \widetilde{m}(X_t, \theta_0) \widetilde{m}(X_t, \theta_0)'$, where $\widetilde{m}(X_t, \theta_0) = m(X_t, \theta_0) \frac{1}{T} \sum_{t=1}^T m(X_t, \theta_0)$
- If correlated, use HAC

Under H_0 :

$$\mathcal{J}^{CU}(\theta_0) \xrightarrow{d} \chi_K^2$$
,

where K is the number of moment restrictions \blacksquare Back

1/3

HAC ESTIMATORS

Estimator of long-run variance that accommodates heteroskedasticity and autocorrelation

$$\widehat{S}_T = \widehat{\Gamma}_0 + \sum_{i=1}^{B_T} \omega(i, B_T) [\widehat{\Gamma}_i + \widehat{\Gamma}'_i],$$

- $ightharpoonup \Gamma_i$: ith sample autocovariance matrix
- ▶ B_T : bandwidth, number of lags included. Reduces to Huber-White robust estimators if $B_T = 0$
- \triangleright ω : kernel that weights different lags

◆ Back

Some Commonly Used Kernels

► Bartlett (Stata default)

$$\omega(i, B_T) = egin{cases} 1 - rac{|i|}{B_T} & |i| \leq B_T \\ 0 & |i| > B_T \end{cases}$$

► Parzen (Used in statistics)

$$\omega(i, B_T) = egin{cases} 1 - 6 \Big(rac{|i|}{B_T}\Big)^2 + 6 \Big(rac{|i|}{B_T}\Big)^3 & |i| \leq rac{B_T}{2} \\ 2 \Big(1 - rac{|i|}{B_T}\Big)^2 & rac{B_T}{2} \leq |i| \leq B_T \\ 0 & |i| > B_T \end{cases}$$

► Spectral density (Andrews, 1991)

$$\omega(i, B_T) = 3 \frac{\sin(\delta)/\delta - \cos(\delta)}{\delta^2},$$

where $\delta = 6\pi \cdot \frac{i}{5B_T}$. All lags are used (negative weights in the tails), B_T acts to change the shape of the weight function.