Circuitos Digitais

Engenharia Elétrica/Engenharia de Automação/ Engenharia de Computação/Sistemas de Informação/ Ciência da Computação/Tecnologia de Redes

Prof. VICTOR MARQUES MIRANDA

CONTEÚDOS

- Conceitos Básicos de Sistemas Digitais
- II. Sistemas de Numeração
 - II.1. Conversões entre Bases
 - II.2. Operações Aritméticas
- III. Portas Lógicas e Formas de Representação de uma Função Lógica
- IV. Álgebra Booleana e Simplificação de Circuitos
- V. Redes Combinacionais e Minimização Lógica
- VI. Projeto Lógico Combinacional
- VII. Módulos-Padrão Combinacionais e Aritméticos
- VIII. Sistemas Sequenciais Parte 1: Máquinas de Estados, Elementos de Memória e Análise e Projeto de Redes Sequenciais Canônicas
- IX. Sistemas Sequenciais Parte 2: Módulos-Padrão Contadores
- X. Revisão dos Conteúdos e Aplicação da N2

Unidade 2 Sistemas de Numeração

Objetivos

- ✓ Sistemas de Numeração
 - ✓ Bases Numéricas
 - ✓ Conversões entre Bases
 - ✓ Número Binário: Bits, Bytes e Palavras
 - ✓ Operações Aritméticas com Números Binários

- Como surgiram os números?
- Registros nos mostram que a primeira atividade de contagem está relacionado a atividade de pastoreio.
- Ao soltar os animais o pastor separava uma pedra para cada animal e com isso fazia um monte de pedras. Quando os animais voltavam o pastor retirava uma pedra para cada animal. Assim, sabia se estava faltando algum animal.
- Uma evidência prática da origem da palavra Cálculo do latim *Calculus*, que significa pedra.

- Depois dessa primeira noção de quantidade, surgiu a numeração escrita, do desejo de manter os registros que antes eram simbolizados pelas pedras.
- Essa numeração escrita era feita com marcas em madeiras ou qualquer outro objeto que possibilitasse a marcação. Vale destacar, que essas marcações são tão ou mais antigas que a própria escrita.
- Os primeiros sistemas de escrita numérica que se conhece são os dos egípcios e os dos sumérios, surgidos por volta de 3.500 a.C.

- Os sistemas são semelhantes: ambos atribuem símbolos aos números 1, 10, 100, 1000 etc. e fazem a representação dos outros como sendo a soma desses "principais". Então o número 354 era a soma de três cens, cinco dezenas e quatro uns.
- Depois dos símbolos, veio a ideia de representar os números com letras. Usado pelos povos hebraico e grego, tal sistema deu origem ao sistema romano onde os números 1, 5, 10, 50, 100, 500, 1000 são representados pelas letras I, V, X, L, C, D, M, respectivamente.

- Observe que a base tanto dos gregos como dos hebraicos era 10 devido aos dez dedos humanos. Nossa primeira máquina de fazer cálculo.
- Os romanos acrescentaram a 5 também (apenas uma mão!).
- Mas o cálculo ficou complexo e precisou-se evoluir.
- Assim surgiu a primeira máquina de calcular: Ábaco.

- Um ábaco adaptado, inventado por Helen Keller e chamado de Cranmer, é ainda utilizado por deficientes visuais.
- Foi mostrado que alunos chineses conseguem fazer contas complexas com um ábaco, mais rapidamente do que um ocidental equipado com uma moderna calculadora electrónica. Embora a calculadora apresente a resposta quase instantaneamente, os alunos conseguem terminar o cálculo antes mesmo de seu competidor acabar de digitar os algarismos no teclado da calculadora.

Numeração Posicional

- Por volta do século V d.C., surge, na Índia, a numeração posicional de base 10, que usamos atualmente. Este sistema foi divulgado na Europa em torno de 825 d.C. pelo matemático árabe Mohamed Ben Mussa Al Khawarismi, por isso que o sistema ficou conhecido como sistema indoarábico, pois surgiu na Índia.
- Na **numeração posicional**, cada dígito (algarismo) possui um peso de acordo com sua posição relativa ao LSD. Assim, o valor de um dado número corresponde a uma soma ponderada de seus dígitos. Os pesos desta ponderação são potências da base de numeração que se utiliza.

Exemplo: **Sistema decimal:** O símbolo 5 expressa cinco objetos em 15 ou 1235, mas expressa cinquenta objetos em 458.

 Já a numeração não-posicional, o valor de um símbolo é sempre o mesmo e independe da posição em que ocupa no número.

Exemplo: Numeração Romana: O símbolo V expressa sempre cinco objetos, seja em IV, XV ou LXVII.

Numeração Posicional

• Decimal: dez símbolos diferentes (0 até 9).

Milhar	Centena	Dezena	Unidade
2	3	4	5
2 x 10 ³	3 x 10 ²	4 x 10 ¹	5 x 10 ⁰
2.000	300	40	5

Numeração Posicional

- A numeração posicional significou uma grande evolução no processo de cálculo, pois era a representação do mecanismo do ábaco.
- Observe a comparação da operação de somas dos mesmos números no sistema posicional de base dez e no sistema romano:

1432	MCDXXXII	
<u>2468</u>	<u>MMCDLXVIII</u>	
3900	MMMCM	

Pense em multiplicação no sistema romano!?!?!

Bases Numéricas

Bases Numéricas

- A base de um sistema de numeração posicional define o número de algarismos distintos utilizados para representar números.
- ✓ Um sistema numérico de base B utiliza B símbolos distintos para representar qualquer grandeza.
- ✓ O menor valor representável com um único símbolo em um sistema numérico de base B é zero.
- ✓ O maior valor representável com um único símbolo em um sistema numérico de base B é B 1.

Bases Numéricas

Principais Bases Numéricas para Computação:

• Decimal: dez símbolos diferentes (0 até 9).

- Binário: dois símbolos diferentes (0 e 1).
- Hexadecimal: dezesseis símbolos diferentes (0 até 9 e A até F).

Obs: Analisaremos também a base Octal: oito símbolos diferentes (0 até 7).

Resumo de Conversões de Bases

- Conversão Binário → Decimal
- Conversão Decimal → Binário
- Conversão Hexadecimal → Decimal
- Conversão Decimal → Hexadecimal
- Conversão Hexadecimal → Binário
- Conversão Binário → Hexadecimal
- Conversão Octal → Binário
- Conversão Binário → Octal
- Conversão Octal → Decimal
- Conversão Decimal → Octal
- Conversão Octal → Hexadecimal
- Conversão Hexadecimal → Octal

Base Decimal

• A base numérica mais usada atualmente no nosso dia-a-dia é a base decimal, ou seja, a base 10.

Portanto, quando escrevemos 123, por exemplo, estamos nos referindo ao número que contém três unidades, duas dezenas e uma centena, ou seja, de acordo com a numeração posicional, o número 123 nada mais é que uma abreviação da expressão "123 = 1x10² + 2x10¹ + 3x10⁰ = 100 + 20 + 3"

 Genericamente, podemos dizer que um número da forma "a_n a_{n-1} a_{n-2}...a₂ a₁ a₀", no sistema de numeração decimal, pode ser escrito na forma:

$$D = a_n 10^n + a_{n-1} 10^{n-1} + a_{n-2} 10^{n-2} + ... + a_2 10^2 + a_1 10 + a_1 10 + a_2 10^2 + a_2 10^2 + a_3 10^2 + a_4 10^2 + a_5 10^2$$

- Mas será que o número precisa necessariamente estar na base 10?
- Tomamos um número inteiro positivo "x" qualquer. "x" pode ser escrito numa base numérica "r" qualquer, e seu correspondente valor na base decimal pode ser escrito na forma:

$$(x)_{10} = x_n r^n + x_{n-1} r^{n-1} + x_{n-2} r^{n-2} + ... + x_2 r^2 + x_1 r + x_0$$

Representação de Números por meio de vetor de dígitos em uma base qualquer r:

As bases mais frequentemente usadas são as da forma: $r = 2^k$

$$x=(1,0,0,1,0,1)_2$$

$$x = \sum_{i=0}^{n-1} x_i r^i$$

$$x = 1x2^5 + 0x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 1x2^0$$

$$X=(37)_{10}$$

$$x=(1,2,1,0)_4$$

$$x = \sum_{i=0}^{n-1} x_i r^i$$

$$X=(?)_{10}$$

$$x=(1,2,1,0)_4$$

$$x = \sum_{i=0}^{n-1} x_i r^i$$

$$x = 1x4^3 + 2x4^2 + 1x4^1 + 0x4^0$$

 $x = (100)_{10}$

Contagem em Decimal

Base Binária

- Infelizmente, o sistema decimal não é adequado aos sistemas digitais, porque é muito difícil implementar circuitos eletrônicos que trabalhem com 10 níveis diferentes de tensão (cada nível representando um dígito decimal, de 0 a 9).
- Por outro lado, é muito fácil implementar circuitos eletrônicos que operem com dois níveis de tensão. Por isso, quase todos os sistemas digitais usam o sistema de numeração binário (base 2) como sistema básico para suas operações, embora outros sistemas também possam ser utilizados.
- No sistema binário existem somente dois símbolos ou dígitos, o "0" e o "1", chamados bit (binary digit).
- Número Binário é uma sequência de bits.

MSB (Most Significant bit)
Bit mais significativo

LSB (Least Significant bit)
Bit menos significativo

Base Binária

- Embora os computadores tenham instruções (ou comandos) que possam testar e manipular bits, geralmente são idealizados para armazenar instruções em múltiplos de bits, chamados bytes.
- Existem também termos para referir-se a múltiplos de bits usando padrões prefixados, como quilobit (kb), megabit (Mb), gigabit (Gb) e Terabit (Tb).
- A notação para bit utiliza um "b" minúsculo, em oposição à notação para byte que utiliza um "B" maiúsculo (kB, MB, GB, TB).

Base Binária

- 1 Bit = Binary Digit
- 8 Bits = 1 Byte
- 16 bits = 2 Bytes

Múltiplos do byte					
Prefixo binário (IEC)		Prefixo do SI			
Nome	Símbolo	Múltiplo	Nome	Símbolo	Múltiplo
byte	В	2 ⁰	byte	В	10 ⁰
kibibyte	KiB	2 ¹⁰	Kilobyte	kB	10 ³
mebibyte	MiB	2 ²⁰	megabyte	MB	10 ⁶
gibibyte	GiB	2 ³⁰	gigabyte	GB	10 ⁹
tebibyte	TiB	2 ⁴⁰	terabyte	TB	10 ¹²
pebibyte	PiB	2 ⁵⁰	petabyte	PB	10 ¹⁵
exbibyte	EiB	2 ⁶⁰	exabyte	EB	10 ¹⁸
zebibyte	ZiB	2 ⁷⁰	zettabyte	ZB	10 ²¹
yobibyte	YiB	2 ⁸⁰	yottabyte	YB	10 ²⁴

http://forums.cisco.com/CertCom/game/binary_game_page.htm

Conversão Binário ↔ Decimal

• Ex: 4 bits

Decimal	Binário	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	

Conversão Binário Decimal

• Conversão Inteira:

Soma dos produtos de cada bit por seu peso relativo.

Exemplo: 1011₂

1	0	1	1	
1 x 2 ³	0 x 2 ²	1 x 2 ¹	1 x 2 ⁰	
8	0	2	1	
8 + 0 + 2 + 1 = 11				

Conversão Binário Decimal

- Conversão de Binário para Decimal
 - Soma dos produtos de cada bit por seu peso relativo.
 - Exemplo 1:

```
Binário: (1 	 1 	 0 	 1 	 1)_2
```

Decimal: $(1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0)_{10}$

Decimal: $(16 + 8 + 0 + 2 + 1)_{10}$

Decimal: $(27)_{10}$

Exemplo 2: Binário: (010110101)₂

Decimal: ?

Conversão Binário Decimal

– Conversão Fracionária:

$$(1011,101)_2 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3})$$

= 8 + 0 + 2 + 1 + 0.5 + 0 0.125
= 11,625₁₀

$$(0,0110000010)_2 = (?)_{10}$$

Ex: Converter (47)₁₀ para Binário.

O último quociente será algarismo mais significativo e ficará colocado à esquerda. Os outros algarismos seguem-se na ordem até o 1º resto:

Ex: Converter (25)₁₀ para Binário.

- Ex: Decimal: $(37)_{10}$

Binário: ?

• Conversão Fracionária:

- Exemplo: Converter $(0,828125)_{10} = (?)_2$ 0,828125 x 2 **(1)**65625 $0,65625 \times 2 + 1,3125$ $0,3125 \times 2 + 0,625$ $0,625 \times 2 \neq 1,25$ $(0.828125)_{10} = (0.110101)_2$ $0,25 \times 2 \neq 0,5$

- Conversão Fracionária:
 - Exemplo: Converter $(8,375)_{10} = (?)_2$

• Conversão Fracionária:

- Exemplo: Converter $(8,375)_{10} = (?)_2$
- -8,375 = 8 + 0,375
- Parte Inteira

• Conversão Fracionária:

- Exemplo: Converter $(8,375)_{10} = (?)_2$

$$-8,375 = 8 + 0,375$$

Parte

Fracionária:

• Conversão Fracionária:

$$(8,375)_{10} = (1000,011)_{2}$$

Conversão Fracionária:

$$(57,3)_{10} = (?)_2$$

Conversão da parte inteira:

$$\therefore 57_{10} = 111001_2$$

$$\therefore$$
 57,3₁₀ = (111001,0100110011001...)₂

Conversão Fracionária:

- Uma fração decimal com número finito de dígitos pode corresponder a uma fração binária com um número infinito de dígitos!!!
- Nesses casos, o algoritmo de conversão é suspenso após um número pré-estabelecido de passos, dependendo da precisão desejada.
- Portanto, a precisão da mudança de base de decimal para binário depende do número de bits disponíveis para representar a parte fracionária.

Representação Binária-Decimal

- Com N bits podemos contar 2^N diferentes números em decimal (de 0 a 2^N-1).
- Por exemplo: Qual é a faixa total de valores que podemos representar com 4 bits? Qual o maior valor decimal representado com 4 bits?
 - Para N = 4, podemos contar de 0000₂ até 1111₂ ou seja de 0 até 15.
 - Nesse caso, existem $2^4 = 16$ números decimais diferentes e o maior deles é o $2^4 1 = 15$.

Representação Binária-Decimal

- Para representarmos um **intervalo de** M **valores**, necessitamos de $\lceil \log_2 M \rceil$ bits.
- Para representarmos o número X, necessitamos no mínimo de:
- \checkmark (log₂X + 1) bits, quando X é múltiplo de potências de 2;
- \checkmark $\lceil \log_2 X \rceil$ bits, para os demais casos.

$$\mathbf{OBS}: \log_2 X = \frac{\log_{10} X}{\log_{10} 2}$$

Por exemplo:

- 1. Quantos bits, no mínimo, são necessários para representar valores decimais na faixa de 0 até 12500? E de 0 até 873 ?
- 2. Quantos bits, no mínimo, são necessários para representar o número 66 ? E o número 20 ? E o número 75?

Tabela de Conversão

- ✓ Conversão Binário → Decimal
- ✓ Conversão Decimal → Binário
- Conversão Hexadecimal → Decimal
- Conversão Decimal → Hexadecimal
- Conversão Hexadecimal → Binário
- Conversão Binário → Hexadecimal
- Conversão Octal → Binário
- Conversão Binário → Octal
- Conversão Octal → Decimal
- Conversão Decimal → Octal

base numérica	decimal	binária	hexadecimal	octal
decimal				
binária				
hexadecimal				
octal				

- Conversão Octal → Hexadecimal
- Conversão Hexadecimal → Octal

Sistema Hexadecimal

- O sistema hexadecimal é um sistema de numeração posicional que representa os números em base 16, portanto empregando 16 símbolos.
- Símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Está vinculado à informática, pois os computadores costumam utilizar o byte como unidade básica da memória.
- Ele é muito utilizado para representar números binários de uma forma mais compacta, pois é muito fácil converter binários pra hexadecimal e vice-versa.
- Quando manipulamos números com uma extensa quantidade de bits, é mais conveniente, e menos propenso a erros, escrevê-los em hexadecimal.
- Dessa forma, esse sistema é bastante utilizado em aplicações de computadores e microprocessadores.

Conversão Hexadecimal ↔ Decimal

Decimal	Hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	А
11	В
12	С
13	D
14	E
15	F

Conversão Hexadecimal -> Decimal

Conversão Inteira:

Soma dos produtos de cada bit por seu peso relativo.

Exemplo: 10B2_H

1	0	В	2	
1 x 16 ³	0 x 16 ²	11 x 16 ¹	2 x 16 ⁰	
4.096 0 176 2				
4.096 + 0 + 176 + 2 = 4.274				

Conversão Decimal -> Hexadecimal

- Fizemos a conversão de decimal em binário usando divisões sucessivas por 2. Da mesma maneira, a conversão de decimal em hexa pode ser feita usando divisões sucessivas por 16.
- Cuidado: Se uma calculadora for usada para calcular as divisões no processo de conversão, o resultado incluirá uma fração decimal em vez de um resto.
- O resto pode ser obtido multiplicando-se a parte fracionária por 16.

Conversão Decimal -> Hexadecimal

Converter 423₁₀ em hexa:

Converter 214₁₀ em hexa:

Conversão Decimal -> Hexadecimal

Conversão Fracionária:

- Exemplo: Converter $(0,06640625)_{10} = (?)_{16}$

$$(0,06640625)_{10} = (0,11)_{16}$$

Tabela de Conversão

- ✓ Conversão Binário → Decimal
- ✓ Conversão Decimal → Binário
- ✓ Conversão Hexadecimal → Decimal
- ✓ Conversão Decimal → Hexadecimal
- Conversão Hexadecimal → Binário
- Conversão Binário → Hexadecimal
- Conversão Octal → Binário
- Conversão Binário → Octal
- Conversão Octal → Decimal
- Conversão Decimal → Octal

base numérica	decimal	binária	hexadecimal	octal
decimal				
binária				
hexadecimal				
octal				

- Conversão Octal → Hexadecimal
- Conversão Hexadecimal → Octal

Conversão Hexadecimal -> Binário

 Cada algarismo hexa é convertido em seu equivalente binário representado em 4 bits.

Para um número de N dígitos em hexadecimal, o seu

equivalente em binário terá (4*N) bits.

 $7A2F_{H} \rightarrow 0111101000101111_{2}$

Hexadecimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Conversão Hexadecimal -> Binário

• Converta para Binário os números em Hexadecimal:

```
1AD3 =
```

F0D5 =

ABCDEF =

123456 =

789ABCDEF =

 Divisão dos bits em grupo de 4 e conversão do LSB para o MSB (direita para esquerda) de cada grupo no equivalente algarismo hexa.

Binário	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Е
1111	F

•
$$(100101100)_2 = (?)_{16}$$

- Conversão Fracionária:
- Agrupa-se o número binário de 4 em 4 dígitos, da direita para a esquerda na parte inteira e da esquerda para a direita na parte fracionária, e o substitui por seu equivalente hexadecimal

$$(100101001000,1011011)_2 = (?)_{16}$$

- Conversão Fracionária:
- Agrupa-se o número binário de 4 em 4 dígitos, da direita para a esquerda na parte inteira e da esquerda para a direita na parte fracionária, e o substitui por seu equivalente hexadecimal

- Conversão Fracionária:
- Agrupa-se o número binário de 4 em 4 dígitos, da direita para a esquerda na parte inteira e da esquerda para a direita na parte fracionária, e o substitui por seu equivalente hexadecimal

- Conversão Fracionária:
- Agrupa-se o número binário de 4 em 4 dígitos, da direita para a esquerda na parte inteira e da esquerda para a direita na parte fracionária, e o substitui por seu equivalente hexadecimal

 $(100101001000, 10110110)_2 = (948, B6)_{16}$

– Conversão Fracionária:

$$-(1011,101)_2=(?)_{16}$$

Tabela de Conversão

- ✓ Conversão Binário → Decimal
- ✓ Conversão Decimal → Binário
- ✓ Conversão Hexadecimal → Decimal
- ✓ Conversão Decimal → Hexadecimal
- ✓ Conversão Hexadecimal → Binário
- ✓ Conversão Binário → Hexadecimal
- Conversão Octal → Binário
- Conversão Binário → Octal
- Conversão Octal → Decimal
- Conversão Decimal → Octal

base numérica	decimal	binária	hexadecimal	octal
decimal				
binária				
hexadecimal				
octal				

- Conversão Octal → Hexadecimal
- Conversão Hexadecimal → Octal

Contagem em Hexadecimal

- Quando contamos em hexa, cada dígito pode ser incrementado (acrescido de 1) de 0 a F.
- Quando o dígito de uma posição chega ao valor F, este volta a 0, e o dígito da próxima posição é incrementado. Isto é ilustrado nas seguintes sequências de contagem hexa com o respectivo equivalente decimal abaixo.

```
• HEX: 38 39 3A 3B 68F 69F
```

• DEC: 56 57 58 59 1679 1695

Contagem em Hexadecimal

Contagem em Hexadecimal

• Com três dígitos hexa podemos contar de 000_{16} a FFF₁₆, que corresponde à faixa de 0_{10} a 4095_{10} valores diferentes.

Vantagens da Base Hexadecimal

- Forma "compacta" de representar sequência de bits;
- Sequências binárias nem sempre representam valores numéricos: podem ser algum tipo de código;
- Conveniente, ao manipular extensas cadeias de bits.

Conversão Indireta

 Converta o número decimal 378 em um número binário de 16 bits:

$$378 = 23 + \text{resto } 10 = A$$
 16
 $23 = 1 + \text{resto } 7 = 7$
 16
 $1 = 0 + \text{resto } 1 = 1$
 16
 $378_{10} = 17A_{H} = 000101111010 - 12 \text{ bits}$

Conversão Indireta

 Converta o número decimal 378 em um número binário de 16 bits:

$$378 = 23 + \text{resto } 10 = A$$
 16
 $23 = 1 + \text{resto } 7 = 7$
 16
 $1 = 0 + \text{resto } 1 = 1$
 16
 $378_{10} = 17A_{H} = 0000000101111010 - 16 \text{ bits}$

Base Octal

 O sistema octal é um sistema de numeração posicional que representa os números em base 16, portanto empregando 16 símbolos.

- Símbolos: 0, 1, 2, 3, 4, 5, 6, 7

Decimal	Octal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	10
9	11
10	12
11	13
12	14
13	15
14	16
15	17

Conversão Octal -> Decimal

$$(144)_{8} = (?)_{10}$$

$$\frac{8^{2} | 8^{1} | 8^{0}}{1 | 4 | 4}$$

$$1 \times 8^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{0} =$$

$$1 \times 4^{2} + 4 \times 8^{1} + 4 \times 8^{$$

Conversão Decimal -> Octal

$$(92)_{10} = (?)_{8}$$

Conversão Octal → Binário

$$(44675)_8 = (?)_2$$

Conversão Binário -> Octal

$$(1000110011)_2 = (?)_8$$

Binário	Octal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	10
1001	11
1010	12
1011	13
1100	14
1101	15
1110	16
1111	17

Conversão Octal -> Hexadecimal

Neste caso é necessário um passo intermediário:

Hexadecimal → Binário → Octal

Exemplo: $(1F4)_{16} = (?)_{8}$

De Hexa para Binário: (1F4)₁₆

$$1 = 0001, F = 1111, 4 = 0100$$

logo: $(1F4)_{16} = (1 1111 0100)_2$

De Binário para Octal: (111 110 100)₂

Da direita para a esquerda: 100 = 4, 110 = 6, 111 = 7

 $logo: (111110100)_2 = (764)_8$

Assim: (1F4)₁₆ = (764)₈

Hexadecimal	Octal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	10
9	11
Α	12
В	13
С	14
D	15
E	16
F	17

Conversão Hexadecimal -> Octal

O mesmo acontece neste caso:

Exemplo: $(144)_8 = (?)_{16}$

De Octal para Binário: (144)₈

$$1 = 001, 4 = 100, 4 = 100$$

 $logo: (144)_8 = (001 \ 100 \ 100)_2$

De Binário para Octal: (0 0110 0100)₂

Da direita para a esquerda: 0100 = 4, 0110 = 6, 0000 = 0

 $logo: (001100100)_2 = (64)_{16}$

Assim: $(144)_8 = (64)_{16}$

Hexadecimal	Octal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	10
9	11
А	12
В	13
С	14
D	15
E	16
F	17

Tabela de Conversão

- ✓ Conversão Binário → Decimal
- ✓ Conversão Decimal → Binário
- ✓ Conversão Hexadecimal → Decimal
- ✓ Conversão Decimal → Hexadecimal
- ✓ Conversão Hexadecimal → Binário
- ✓ Conversão Binário → Hexadecimal
- ✓ Conversão Octal → Binário
- ✓ Conversão Binário → Octal
- ✓ Conversão Octal → Decimal
- ✓ Conversão Decimal → Octal

base numérica	decimal	binária	hexadecimal	octal
decimal				
binária				
hexadecimal				
octal				

- ✓ Conversão Octal → Hexadecimal
- 🗸 Conversão Hexadecimal 🔿 Octal

Resumo das Conversão de Bases Numéricas

Decimal	Binário	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Resumo Conversões de Bases Numéricas

http://coolconversion.com/math/binary-octal-hexa-decimal/_binary__11010111__decimal_

Exercícios

Exercícios

- 1) Converta 24CE₁₆ para decimal.
- Converta 3117₁₀ para hexa e depois para binário.
- 3) Converta 10010111101101012 para hexa.
- 4) Encontre os quatro números seguintes da seqüência hexa: E9A, E9B, E9C, E9D.
- 5) Converta 35278 para hexa.

Mais exercícios

- 1) Converta os seguintes números binários em decimal:
 - a) 10110

d) 1111010111

b) 10001101

e) 10111111

- c) 100100001001
- 2) Converta os seguintes valores decimais em binário:
 - a) 37 b) 14

d) 205 e) 2313

c)189

- f) 511
- 3) Qual o maior número decimal que pode ser representado por um número binário de oito bits ? E de 16 bits ?
- 4) Converta cada número octal em seu equivalente decimal:
 - a) 743

d) 257

b) 36 c) 3777

- e) 1204
- 5) Converta cada número decimal em binário:
 - a) 59 b) 372

c) 65535 d) 255

- 6) Converta cada número octal do item 4 em binário:
- 7) Converta cada número binário do item 1 em octal:
- 8) Liste todos os números octais entre 1658 e 2008.
- 9) Converta os seguintes números hexa em decimal:
 - a) 92

d) 2C0 e) 7FF

- b) 1A6 c) 37FD
- 10) Converta os seguintes números decimais em hexa:
 - a) 75 b) 314

d) 25619 e) 4095

- c) 2048
- 11) Converta os números binários do item 1 em hexa.
- 12) Converta os números hexa do item 10 em binário.
- 13) Na maioria dos microcomputadores o endereço das células de memória é hexadecimal. tais endereços são números seqüenciais que identificam cada posição de memória.
- a) Um determinado microcomputador pode armazenar números de oito bits em cada célula de memória. Sabendo-se que a faixa de endereçamento vai de 0000₁₆ até FFFF₁₆, quantas células existem nesta memória ?
- b) Outro microcomputador tem 4096 células. Qual a faixa de endereçamento em hexadecimal desta memória ?
- Liste sequencialmente, em hexadecimal, os números de 280₁₆ até 2A0₁₆.
- 15) execute as conversões abaixo:

a) 141710 =	2	
b) 25510 =	2	
c) 110100012=	10	
d) 111010100012 =		10
e) 249710 =	8	
f) 51110 =	8	

g) 2358 =	10
h) 43168 =	10
i) 7A916 =	10
j) 3E1C16 =	10
k) 160010 =	16
I) 3818710 =	16

- ADIÇÃO: Regras Básicas para Adição em Binário:

•
$$0 + 0 = 0$$

•
$$0 + 1 = 1$$

•
$$1 + 0 = 1$$

• 1 + 1 = 0 (Transporta 1 = Carry Out = Vai Um)

- ADIÇÃO: Regras Básicas para Adição em Binário:

•
$$0 + 0 = 0$$

•
$$0 + 1 = 1$$

•
$$1 + 0 = 1$$

• 1 + 1 = 0 (Transporta 1 = Carry Out = Vai Um)

Adição: Exemplo

$$11001_2 + 1011_2$$
:

DIFERENÇA: Regras Básicas
 para Diferença em Binário:

$$\bullet$$
 0 - 0 = 0

•
$$1 - 1 = 0$$

•
$$1 - 0 = 1$$

• 0 - 1 = 1 (Empresta 1)

Ex: 1000 - 111 = ?

Diferença: Exemplo

11010 - 10011 11010 - 10011 00111

- MULTIPLICAÇÃO: Regras Básicas para Multiplicação em Binário:

•
$$0 * 0 = 0$$

•
$$0 * 1 = 0$$

- MULTIPLICAÇÃO: Regras Básicas para Multiplicação em Binário:

•
$$0 * 0 = 0$$

Generalizando aMULTIPLICAÇÃO ...

Multiplier implementation:

- ullet m arrays of n AND gates
- m-1 n-bit adders

Utiliza o mesmo método que a operação "divisão" no sistema decimal: deslocamentos e subtrações.

Representações de Números Negativos

Números Inteiros

Sinal de Magnitude ou Sinal de Módulo

- Na base 10 (podendo utilizar em outras bases) a representação de um número positivo é feita apresentando somente o número, ou o número com um sinal(+), à esquerda, já os negativos possuem um sinal(-) à esquerda.
- Como adicionar um símbolo a um número binário se um computador "entende" somente 1 e 0 ?
- Assim, para a forma de representação de sinal e magnitude em um número binário de 8 dígitos, o MSB (primeiro dígito da esquerda para a direita) deve ser considerado o sinal - Bit de Sinal.

O sinal positivo. Exemplo: 0000 0011 = 3

1 o sinal é negativo. Exemplo: 1000 0011 = -3

 Em um sistema de sinal-magnitude de 8 bits, temos 7 bits para representar o valor e 1 bit (MSB) para representar o sinal.

Sinal de Magnitude ou Sinal de Módulo

Ex 1)
$$35_{10} = 10\ 0011_2$$
 (7 bits)
+ $10\ 0011_2 = 010\ 0011_2$
Bit de sinal (0 \rightarrow indica número positivo)

Ex 2)
$$73_{10} = 100 \ 1001_2 \ (8 \ bits)$$

$$- 100 \ 1001_2 = 1100 \ 1001_2$$
Bit de sinal (1 \rightarrow indica número negativo)

OBS: O Problema que o Zero acaba tendo duas representações:

$$0000\ 0000 = +0$$

 $1000\ 0000 = -0$

A faixa (range) de valores vai de $-(2^{n-1}-1)$ até $+(2^{n-1}-1)$, e 2 possibilidades de zero.

Complemento a (Base-1)

• **Complemento** é a diferença entre o maior algarismo possível na base e cada algarismo do número.

- A representação dos números inteiros negativos é obtida efetuando-se: (base - 1) menos cada algarismo do número. Fica mais fácil entender através de exemplos...
- Veremos mais detalhes sobre o Complemento de 1 na sequência.

Complemento a (Base-1)

Ex 1: Calcular o complemento a (base - 1) do número 297₁₀

Se a base é 10, então 10 - 1 = 9 e o complemento a (base -1) será complemento a 9.

Ex 2: Calcular o complemento a (base - 1) do número 3A7E₁₆

Se a base é 16, então 16 - 1 = 15 = F e o complemento a (base -1) será complemento a F.

Complemento a Base

- A representação dos números inteiros negativos em complemento a base é obtida calculando-se o complemento a (base -1) e depois somando 1 ao resultado.
- Veremos mais detalhes sobre o **Complemento de 2** na sequência.

Ex 1: calcular o complemento a base do número 297₁₀ Queremos então calcular o complemento a 10 (C10) desse número.

Ex.1	Ex.1 (alternativa)
1000	999
- <u>297</u>	- <u>297</u>
703	702
	+ <u>001</u>
	703

Note que o método alternativo é mais eficiente.

Ex 2: calcular o complemento a base do número 3A7E₁₆ Queremos então calcular o complemento a 16 (C16) desse número.

	Ex.2
	FFFF
-	3A7E
	C581
+	0001
	C582

Complemento de 1: C₁(X)

- ➤ Outra maneira de representar **números binários negativos** consiste em inverter todos os bits, ou seja, substituindo os 0's por 1's e os 1's por 0's.
- ➤ Os números positivos permanecem inalterados, sendo o primeiro dígito o 0. Nos números negativos o primeiro dígito é o 1. Podendo representar o zero, 00000000 e 11111111.
- ▶ Para se obter o complemento a 1 de um número binário, devemos subtrair cada algarismo de 1. Uma particularidade dos números binários é que, para efetuar esta operação, basta inverter todos os bits.

EX: 0010 1011 (43)

(-43) = 11111111 - 00101011

= <u>1</u>101 0100 (-43)

$$C_1(X) = \overline{X} = (1)_{n_{bits}} - X_{n_{bits}}$$

Decimal (positivo)	Binário (se o número é positivo, não há alteração)	Decimal (negativo)	Binário (em C1)
0	0000	0	1111
1	0001	-1	1110
2	0010	-2	1101
3	0011	-3	1100
4	0100	-4	1011
5	0101	-5	1010
6	0110	-6	1001
7	0111	-7	1000

> Atenção na operação de Complemento de 1 quando tiver o vai um na última coluna.

```
binário decimal
11111110 -1
+ 00000010 +2
.....
1 00000000 0 <-- não é a resposta correta
1 +1 <-- adiciono "vai-um"
....
00000001 1 <-- resposta correta
```


- ➤ Os problemas de múltiplas representações do 0 e a necessidade de tratamento com "vai-um" (exemplo anterior) são contornadas por um sistema chamado de complemento de 2.
- > O bit mais significativo (MSB) indica o sinal do número.
 - > 0 Positivo
 - > 1 Negativo
- > Os **números positivos** são representados **normalmente em binário** em complemento 2.
 - \triangleright Exemplo: $(90)_{10} = (0101\ 1010)_2$
- > Já os <u>números negativos</u> são representados da seguinte forma:
 - Converta para binário, de maneira normal, o número como se não tivesse sinal.
 - ➤ <u>Inverta todos os bits</u>, trocando 1 por 0 e 0 por 1 para obter o complemento 1.
 - > Some 1 ao número obtido no passo 2 para obter o complemento 2.

$$\boldsymbol{C_2(X)} = \boldsymbol{C_1(X)} + \mathbf{1}$$

> Exemplo: Converta o número -39 para a forma complemento a 2.

1º passo: Converta somente o número 39 (esqueça o sinal) para binário (8 bits) e obtém-se 0010 0111.

2º passo: Inverta todos os bits e obtém-se 1101 1000 que é o complemento 1.

3º passo: **Somando 1** a 1101 1000 obtém-se **1101 1001** que é -39 em complemento 2.

- > Converter de **COMPLEMENTO DE 2 PARA DECIMAL**.
 - Se o número for **positivo** utiliza a forma normal!
 - Se o número for negativo utilize a seguinte regra:
 - Some os pesos dos bits 1.
 - Considerando o peso do MSB como negativo.
 - Exemplo:

Converter de <u>COMPLEMENTO DE 2 PARA BINÁRIO/DECIMAL.</u>

OU...

- Aplica-se novamente o C2 → binário.
- Binário → decimal
- Exemplo anterior:

$$(1101\ 1001)_{C2} \rightarrow 0010\ 0110 + 1 = (-0010\ 0111)_2 \rightarrow (-39)_{10}$$

Complemento de 2 vs Binário vs Decimal

<u>OBS!</u>! Um mesmo símbolo hexadecimal (ou binário) pode corresponder a valores decimais diferentes (por exemplo: A = -6 = 10). Por isso, **é necessário** explicitar qual das duas representações está sendo usada. Ou seja, A = -6 se for complemento de dois (ou seja, número inteiro) e A = 10 se não for complemento de dois (ou seja, número natural).

Binário	Natural	Inteiro	Hexadecimal
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	-8	8
1001	9	-7	9
1010	10	-6	A
1011	11	-5	В
1100	12	-4	С
1101	13	-3	D
1110	14	-2	Е
1111	15	-1	F

Casos Especiais (Complemento de 2)

Complemento de 2 em Operações **Aritméticas**

 $C_2(B)$

> SUBTRAÇÃO:

•
$$A - B = A + (-B) = A + (\overline{B} + 1)$$

 $= (1011 \ 0010)_2$

11010111, - 100101: Complemento de 1 de 00100101: 11011010 Complemento de 2: 11011010 11011011 Operação: 11010111 +11011011 X10110010 estouro do número de bits desconsiderado

 $\therefore 11010111_2 + 100101_2 = 10110010_2$

OVERFLOW ou ESTOURO: número de bits extrapola o máximo usado (ou seja, o resultado excede o limite de representação). Neste caso é desconsiderado.

Exemplo

10011₂ - 100101₂

Trata-se de um número menor subtraindo um outro maior. Agindo da mesma forma, temos:

Complemento de 1 de 100101: 011010

Complemento de 2: 011011

Operação: 010011

+011011 101110

Se o número é **positivo**, mantenha-o;

Se o número é **negativo**, complemente-o;

E aí, é só somar.

Pelo fato de o minuendo (10011₂) ser menor que o subtraendo (100101₂) a resposta é negativa, estando na notação do complemento de 2. Para obtê-la na notação binária normal, basta determinar novamente o complemento de 2 e acrescentar o sinal negativo:

 $101110 \Rightarrow 010001 \Rightarrow 010001 + 1 = 010010$

 $\therefore 10011_2 - 100101_2 = -10010_2$ (ou 101110 em complemento de 2)

- Via de regra, a adição de dois números com sinais diferentes nunca produz um overflow.
- O overflow aparecerá sempre que o sinal do resultado da soma é diferente do sinal dos operandos, quando iguais
 - Some os dois números e observe se ocorre o carry (vai 1) sobre o bit de sinal e se ocorre o carry após o bit de sinal.
 - Se ocorrer um e somente um dos dois carry, então houve estouro; caso contrário o resultado da soma está dentro do campo de definição.

- Some os dois números e observe se ocorre o carry (vai 1) sobre o bit de sinal e se ocorre o carry após o bit de sinal.
- Se ocorrer um e somente um dos dois carry, então houve estouro; caso contrário o resultado da soma está dentro do campo de definição.

Adição de operandos com sinais opostos (8 bits)

 Não ocorre overflow, o resultado é negativo e está em complemento a 2

- Some os dois números e observe se ocorre o carry (vai 1) sobre o bit de sinal e se ocorre o carry após o bit de sinal.
- Se ocorrer um e somente um dos dois carry, então houve estouro; caso contrário o resultado da soma está dentro do campo de definição.

Adição de operandos com sinais opostos (8 bits)

 Não ocorre overflow, o carry é ignorado e o resultado é positivo

- Some os dois números e observe se ocorre o *carry* (vai 1) **sobre** o bit de sinal e se ocorre o *carry* **após** o bit de sinal.
- Se ocorrer um e somente um dos dois carry, então houve estouro; caso contrário o resultado da soma está dentro do campo de definição.

Adição de 2 operandos positivos (8 bits)

 Isto significa que o resultado está correto se o bit de sinal for ignorado

- Some os dois números e observe se ocorre o carry (vai 1) sobre o bit de sinal e se ocorre o carry após o bit de sinal.
- Se ocorrer um e somente um dos dois carry, então houve estouro; caso contrário o resultado da soma está dentro do campo de definição.

Adição de 2 operandos negativos (8 bits)

 Isto significa que o resultado é negativo e está em complemento a 2

EX: Considere as operações em 4 bits pré-definidos (MSB = bit de sinal:

 $0 \rightarrow positivo / 1 \rightarrow negativo)$:

- Some os dois números e observe se ocorre o carry (vai 1) sobre o bit de sinal e se ocorre o carry após o bit de sinal.
- Se ocorrer **um e somente um** dos dois *carry*, então **houve estouro**; caso contrário o resultado da soma está dentro do campo de definição.

Ex:
$$5_{10} + 3_{10} = 8_{10}$$
 (utilização de 4 bits)

Com o acréscimo de um bit seria possível

 $0 \ 1 \ 0 \ 1 \ 1_2$
 $0 \ 1 \ 0 \ 0 \ 0_2$

Utilizando-se 4 bits, o número 1000 em C2 é o -8_{10} , e não o 8_{10}

Notar: quando o bit mais significativo for 1, trata-se de um número negativo. No caso desse exemplo seria necessário mais um bit para representar 8 usando a representação binária em complemento de dois.

Além disso...

quando usamos complemento de dois com padrões de quatro bits (um para o sinal), ao valor 9 não está associado padrão algum; por isso não conseguimos obter uma resposta certa para a soma 5 + 4, o resultado apareceria como -7.

Mais Exemplos...

Outras Operações

Adição em BCD

A adição de códigos BCD é semelhante a adição binária sem sinal. A correção é realizada com 6 (em binário).

$$\begin{array}{c|cccc}
 & 4 & 0100 \\
 & + 5 & + 0101 \\
\hline
 & 9 & 1001
\end{array}$$

Some os seguintes números BCD:

- a) 0011₂ e 0100₂
- b) 00100011₂ e 00010101₂
- c) 010001010111₂ e 010100010111₂

Adição em Octal

Semelhante ao sistema decimal, considerando que deve-se realizar o empréstimo na base correspondente, 8 para octal e 16 para hexadecimal.

Adição em Hexa

Semelhante ao sistema decimal, considerando que deve-se realizar o empréstimo na base correspondente, 8 para octal e 16 para hexadecimal.

Subtração em Octal / Hexa

Semelhante ao sistema decimal, considerando que deve-se realizar o empréstimo na base correspondente, 8 para octal e 16 para hexadecimal.

Subtração em Hexa via Binário

$$CA_{16} - 7D_{16} = ??$$
 (8 bits)

```
CA_{16} = 11001010_2 \text{ e } 7D_{16} = 01111101_2
Logo após, aplicamos o mesmo processo já visto:
Complemento de 2 de 01111101:
10000010 \Rightarrow 10000010 + 1 \Rightarrow 10000011
Operação:
                             11001010
                           +10000011
                           ※01001101
Após obtido o resultado, o transformamos em hexadecimal:
01001101_2 = 4D_{16}
  CA_{16} - 7D_{16} = 4D_{16}
```


Exercícios (Conversão de Base)

1 - Converta para o sistema decimal:

a) 100110₂

e) 11000101₂

b) 011110₂

f) 11010110₂

c) 111011₂

g) 011001100110101₂

d) 1010000₂

2 - Converta para o sistema binário:

a) 78₁₀

e) 808₁₀

b) 102₁₀

f) 5429₁₀

c) 215₁₀

g) 16383₁₀

d) 404₁₀

Exercícios (Conversão de Base)

1 - Converta para o sistema decimal:

a) 100110 ₂	38	e) 11000101 ₂	197
b) 011110 ₂	30	f) 11010110 ₂	214
c) 111011 ₂	59	g) 011001100110101 ₂	13.109
d) 1010000 ₂	80		

2 - Converta para o sistema binário:

```
a) 78_{10} 100 1110 e) 808_{10} 11 0010 1000 b) 102_{10} 110 0110 f) 5429_{10} 1 0101 0011 0101 c) 215_{10} 1101 0111 g) 16383_{10} 11 1111 1111 1111 d) 404_{10} 1 1001 0100
```


Exercícios (Conversão de Base)

3 - Quantos bits necessitaríamos para representar cada um dos números decimais abaixo?

c) 2₁₀

d) 17₁₀

g) 7₁₀

4 - Converta para o sistema decimal os seguintes números hexadecimais:

a) 479₁₆

d) F0CA₁₆

b) 4AB₁₆

e) 2D3F₁₆

c) BDE₁₆

Exercícios (Conversão de Base)

3 - Quantos bits necessitaríamos para representar cada um dos números decimais abaixo?

4 - Converta para o sistema decimal os seguintes números hexadecimais:

- a) 479₁₆ 1.145

d) F0CA₁₆

61.642

b) 4AB₁₆ 1.195

e) 2D3F₁₆

11.583

c) BDE₁₆ 3.038

Exercícios (Conversão de Base)

5 - Converta os seguintes números decimais em hexadecimais:

a) 486₁₀

d) 5555₁₀

b) 2000₁₀

e) 35479₁₀

c) 4096₁₀

6 - Converta para o sistema binário:

a) 84₁₆

d) 47FD₁₆

b) 7F₁₆

e) F1CD₁₆

c) 3B8C₁₆

7 - Converta para o sistema hexadecimal os seguintes números binários:

a) 10011₂

d) 11111011110010₂

b) 1110011100₂

e) 100000000100010₂

c) 100110010011₂

Exercícios (Conversão de Base)

5 - Converta os seguintes números decimais em hexadecimais:

a) 486₁₀ 1E6 b) 2000₁₀ 7D0 c) 4096₁₀ 1000

- d) 5555₁₀ 15B3 e) 35479₁₀ 8A97
- 6 Converta para o sistema binário:
- a) 84_{16} 1000 0100 d) $47FD_{16}$ 100 0111 1111 1101 e) $7F_{16}$ 111 1111 = e) $F1CD_{16}$ 1111 0001 1100 1101 c) $3B8C_{16}$ 11 1011 1000 1100
- 7 Converta para o sistema hexadecimal os seguintes números binários:
- a) 10011_2 13 d) 11111011110010_2 3EF2 b) 1110011100_2 39C e) 100000000100010_2 8022
- c) 100110010011₂ 993

Exercícios (Operações com Binários)

1 - Efetue as operações:

- a) $1000_2 + 1001_2$
- b) 10001₂ + 11110₂
- c) $101_2 + 100101_2$
- d) $1110_2 + 1001011_2 + 11101_2$
- e) $110101_2 + 1011001_2 + 1111110_2$

2 - Resolva as subtrações, no sistema binário:

- a) 1100₂ 1010₂
- b) 10101₂ 1110₂
- c) 11110₂ 1111₂
- d) $1011001_2 11011_2$
- e) 100000₂ 11100₂

Exercícios (Operações com Binários)

1 - Efetue as operações:

- a) $1000_2 + 1001_2$ 1 0001
- b) 10001₂ + 11110₂ 10 1111
- c) $101_2 + 100101_2$ 10 1010
- d) $1110_2 + 1001011_2 + 11101_2$ 111 0110
- e) $110101_2 + 1011001_2 + 11111110_2 + 10000 + 1100$

2 - Resolva as subtrações, no sistema binário:

- a) 1100₂ 1010₂ 10
- b) 10101₂ 1110₂ 111
- c) 11110₂ 1111₂ 1111
- d) 1011001₂ 11011₂ 11 1110
- e) $100000_2 11100_2$ 100

Exercícios (Operações com Binários)

- 3 Multiplique:
- a) 10101₂ x 11₂
- b) 11001₂ x 101₂
- c) 110110₂ x 111₂

- d) 11110₂ x 110₂
- e) 100110₂ x 1010₂
- 4 Represente os números +97₁₀ e -121₁₀, utilizando a notação sinal-módulo.
- 5 Estando o número 10110010 em sinal-módulo, o que ele representa no sistema decimal?
- 6 Determine o complemento de 1 de cada número binário:
- a) 01110100₂
- b) 11000010₂

Exercícios (Operações com Binários)

- 3 Multiplique:
- a) 10101₂ x 11₂ 11 1111 d) 11110₂ x 110₂ 1011 0100
- b) 11001₂ x 101₂ 111 1101
- e) 100110₂ x 1010₂ 1 0111 1100
- c) 110110₂ x 111₂ 1 0111 1010
- 4 Represente os números +97₁₀ e -121₁₀, utilizando a notação sinal-módulo.
- 5 Estando o número 10110010 em sinal-módulo, o que ele representa no sistema decimal?
- 6 Determine o complemento de 1 de cada número binário:
- a) 01110100₂
- b) 11000010₂

Exercícios (Operações com Binários)

- 7 Represente os seguintes números na notação do complemento de 2:
- a) 1011₂

d) 11010100₂

b) 100001₂

e) 01010011₂

- c) 10111101₂
- 8 Qual o equivalente em decimal do número 10110111₂, aqui representado em complemento de 2?
- 9 Efetue as operações utilizando o complemento de 2:
- a) 101101₂ 100111₂

d) $-10010011_2 + 11011010_2$

b) 10000110₂ - 110011₂

e) -10011101₂ - 1000101₂

- c) 111100₂ 11101011₂
- 10 Efetue em binário as operações, utilizando a aritmética do complemento de 2:
- a) 44₁₆ 3E₁₆

c) $-BC_{16} + FC_{16}$

b) A9₁₆ - E0₁₆

d) -22₁₆ - 1D₁₆

2.10 Add the following pairs of hexadecimal numbers:

2.7 Add the following pairs of binary numbers, showing all carries:

Dúvidas??

OBRIGADO PELA ATENÇÃO

Prof. Victor M. Miranda