MAP 433 : Introduction aux méthodes statistiques. Cours 5

25 Septembre 2015

Aujourd'hui

- 1 Méthode d'estimation dans le modèle de régression
 - Modèle de régression
 - Régression à design déterministe
 - La droite des moindres carrés
 - Régression linéaire multiple
 - Propriétés de l'estimateur des Moindres Carrés
 - Modèle linéaire gaussien
- 2 Prévision
- 3 Régression non-linéaire

Influence d'une variable sur une autre

■ Principe : on part de l'observation d'un *n*-échantillon

$$Y_1,\ldots,Y_n \ (Y_i \in \mathbb{R})$$

- A chaque observation Y_i est associée une observation auxiliaire $X_i \in \mathbb{R}^k$.
- On suspecte l'échantillon

$$X_1,\ldots,X_n \quad (X_i \in \mathbb{R}^k)$$

de contenir la « majeure partie de la variabilité des Y_i ».

Modélisation de l'influence

Si X_i contient toute la variabilité de Y_i , alors Y_i est mesurable par rapport à X_i : il existe $r: \mathbb{R}^k \to \mathbb{R}$ telle que

$$Y_i = r(\boldsymbol{X}_i),$$

mais peu réaliste (ou alors problème d'interpolation numérique).

Alternative : représentation précédente avec erreur additive : on postule

$$Y_i = r(\boldsymbol{X}_i) + \xi_i,$$

 ξ_i erreur aléatoire centrée (pour des raisons d'identifiabilité).

Motivation : meilleure approximation L^2

■ Meilleure approximation L^2 . Si $\mathbb{E}\left[Y^2\right] < +\infty$, la meilleure approximation de Y par une variable aléatoire X-mesurable est donnée par l'espérance conditionnelle $\mathbb{E}\left[Y|X\right]$:

$$\mathbb{E}\left[\left(Y - r(\boldsymbol{X})\right)^{2}\right] = \min_{h} \mathbb{E}\left[\left(Y - h(\boldsymbol{X})\right)^{2}\right]$$

où

$$r(\mathbf{x}) = \mathbb{E}\left[Y|\mathbf{X} = \mathbf{x}\right], \ \mathbf{x} \in \mathbb{R}^k.$$

• On appelle $r(\cdot)$ fonction de régression de Y sur X.

Régression

On définit :

$$\xi = Y - \mathbb{E}[Y|X] \implies \mathbb{E}[\xi] = 0.$$

On a alors naturellement la représentation désirée

$$Y = r(\boldsymbol{X}) + \xi, \quad \mathbb{E}\left[\xi\right] = 0$$

si l'on pose

$$r(x) = \mathbb{E}[Y|X = x], x \in \mathbb{R}^k$$

On observe alors un n-échantillon

$$(\boldsymbol{X}_1, Y_1), \ldots, (\boldsymbol{X}_n, Y_n)$$

οù

$$Y_i = r(\boldsymbol{X}_i) + \xi_i, \ \mathbb{E}\left[\xi_i\right] = 0$$

avec comme paramètre la fonction $r(\cdot)$ + un jeu d'hypothèses

régresseurs aléatoires

Definition

Modèle de régression à design aléatoire = donnée de l'observation

$$(\boldsymbol{X}_1, Y_1), \ldots, (\boldsymbol{X}_n, Y_n)$$

avec $(Y_i, \boldsymbol{X}_i) \in \mathbb{R} \times \mathbb{R}^k$ i.i.d., et

$$Y_i = r(\boldsymbol{\beta}, \boldsymbol{X}_i) + \sigma \xi_i, \ \mathbb{E}\left[\xi_i | \boldsymbol{X}_i\right] = 0, \ \boldsymbol{\theta} \in \Theta \subset \mathbb{R}^d.$$

- **x** \rightsquigarrow $r(\beta, x)$ fonction de régression, connue au paramètre β près.
- **X**_i = variables explicatives, co-variables, prédicteurs; $(X_1, ..., X_n) = \frac{\text{design}}{n}$.

Régression à design déterministe

Modèle de régression à design déterministe

Definition

Modèle de régression à design déterministe = donnée de l'observation

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec $Y_i \in \mathbb{R}, \mathbf{x}_i \in \mathbb{R}^k$, et

$$Y_i = r(\boldsymbol{\beta}, \mathbf{x}_i) + \sigma \xi_i, \ \mathbb{E}_{\theta} \left[\xi_i \right] = 0, \ \theta \in \Theta \subset \mathbb{R}^d \times \mathbb{R}_+.$$

- x; déterministes, donnés (ou choisis) : plan d'expérience, points du « design ».
- Hypothèses sur les ξ_i : à débattre. Pour simplifier, les variables ξ_i sont centrées, $\mathbb{E}_{\theta}[\xi_i] = 0$, décorrélées, $\mathbb{E}_{\theta}[\xi_i \xi_j] = 0$ si $i \neq j$ et de variance unité $\mathbb{E}[\xi_i^2] = 1$ (homoscédasticité).
- Attention! Les Y_i ne sont pas identiquement distribuées.

Régression à design déterministe

Régression gaussienne

■ Modèle de régression à design déterministe :

$$Y_i = r(\beta, \mathbf{x}_i) + \sigma x i_i, \ \theta \in \Theta \subset \mathbb{R}^d \times \mathbb{R}_+.$$

- Supposons : $\xi_i \sim \mathcal{N}(0,1)$, i.i.d.
- On a alors le modèle de régression gaussienne. Comment estimer θ ? On sait expliciter la loi de l'observation $Z = (Y_1, \ldots, Y_n) \Longrightarrow$ appliquer le principe du maximum de vraisemblance.
- La loi de Y_i :

$$\mathbb{P}^{Y_i}(dy) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y - r(\beta, \mathbf{x}_i))^2\right) dy$$

$$\ll dy.$$

Régression à design déterministe

EMV pour régression gaussienne

- Le modèle $\{\mathbb{P}_{\theta}^n = \text{loi de } (Y_1, \dots, Y_n), \theta \in \mathbb{R}^k\}$ est dominé par $\mu^n(dy_1 \dots dy_n) = dy_1 \dots dy_n$.
- D'où

$$\frac{d \mathbb{P}_{\theta}^{n}}{d\mu^{n}}(y_{1},\ldots,y_{n}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}}(y_{i} - r(\boldsymbol{\beta}, \boldsymbol{x}_{i}))^{2}\right)$$

$$= \frac{1}{(\sqrt{2\pi\sigma^{2}})^{n}} \exp\left(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n} (y_{i} - r(\boldsymbol{\beta}, \boldsymbol{x}_{i}))^{2}\right).$$

La fonction de vraisemblance

$$\mathcal{L}_n(\theta, Y_1, \dots, Y_n) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - r(\beta, x_i))^2\right)$$

Régression à design déterministe

Estimateur des moindres carrés

Maximiser la vraisemblance en régression gaussienne = minimiser la somme des carrés :

$$\sum_{i=1}^n e(Y_i - r(\beta, \mathbf{x}_i))^2 \to \min_{\theta \in \Theta}.$$

Definition

Estimateur des moindres carrés : tout estimateur $\widehat{\beta}_n$ t.q. $\widehat{\beta}_n \in \arg\min_{\beta \in \Theta} \sum_{i=1}^n (Y_i - r(\beta, \mathbf{x}_i))^2$.

L'EMC est un M-estimateur. Pour le modèle de régression gaussienne :
$$\overline{\mathrm{EMV}} = \overline{\mathrm{EMC}}$$
.

■ Existence, unicité.

Droite de régression

■ Modèle le plus simple $r(\beta, x) = \beta_0 + \beta_1 x$

$$Y_i = \beta_0 + \beta_1 x_i + \xi_i, \quad i = 1, \dots, n$$

avec $\boldsymbol{\beta} = (\beta_0, \beta_1)^T \in \mathbb{R}^2$ et les (x_1, \dots, x_n) données.

L'estimateur des moindres carrés :

$$\hat{\beta}_{\mathsf{n}} = (\hat{\beta}_0, \hat{\beta}_1) = \arg\min_{(b_0, b_1) \in \mathbb{R}^2} \sum_{i=1}^n (Y_i - b_0 - b_1 x_i)^2.$$

Solution explicite

La droite des moindres carrés

Droite de régression

Le minimum est caractérisé par les équations

$$\begin{cases} b_0 + b_1 n^{-1} \sum_{i=1}^n x_i &= n^{-1} \sum_{i=1}^n Y_i \\ b_0 n^{-1} \sum_{i=1}^n x_i + b_1 n^{-1} \sum_{i=1}^n x_i^2 &= n^{-1} \sum_{i=1}^n x_i Y_i . \end{cases}$$

Notons $\bar{x}_n = n^{-1} \sum_{i=1}^n x_i$. Si le déterminant $\Delta_n \neq 0$ où

$$\Delta_n = \left| \begin{array}{cc} 1 & n^{-1} \sum_{i=1}^n x_i \\ n^{-1} \sum_{i=1}^n x_i & n^{-1} \sum_{i=1}^n x_i^2 \end{array} \right| = S_{xx} = n^{-1} \sum_{i=1}^n (x_i^2 - \bar{x}_n)^2, \quad ,$$

alors ce système d'équations a une solution unique :

$$\begin{cases} \widehat{\boldsymbol{\beta}}_{n0} &= \bar{Y}_n - \widehat{\boldsymbol{\beta}}_{n1} \bar{x}_n \\ \widehat{\boldsymbol{\beta}}_{n1} &= \frac{S_{xY}}{S_{xx}} \,, \quad S_{xY} = n^{-1} \sum_{i=1}^n (x_i - \bar{X}_n) (Y_i - \bar{x}_n) \,. \end{cases}$$

La droite des moindres carrés

Régression linéaire simple

La droite des moindres carrés

Régression linéaire simple

Régression linéaire multiple

Régression linéaire multiple (=Modèle linéaire)

■ La fonction de régression est $r(\beta, x_i) = x_i^T \beta$. On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec

$$Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \sigma \xi_i, \quad i = 1, \dots, n$$

où
$$\theta \in \Theta = \mathbb{R}^k$$
, $\mathbf{x}_i \in \mathbb{R}^k$.

Matriciellement

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma\boldsymbol{\xi}$$

avec

$$\mathbf{Y} = (Y_1 \cdots Y_n)^T$$

$$\boldsymbol{\xi} = (\xi_1 \cdots \xi_n)^T$$

■ \mathbb{X} la matrice $(n \times k)$ dont la *i*-ème ligne est $\mathbb{X}_{i,\cdot} = \mathbf{x}_i^T$.

Régression linéaire multiple

Régression linéaire multiple (=Modèle linéaire)

■ La fonction de régression est $r(\beta, \mathbf{x}_i) = \mathbf{x}_i^T \beta$. On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec

$$Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \sigma \xi_i, \quad i = 1, \dots, n$$

où
$$\theta \in \Theta = \mathbb{R}^k$$
, $\mathbf{x}_i \in \mathbb{R}^k$.

Matriciellement

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma\boldsymbol{\xi}$$

avec

$$\mathbf{Y} = (Y_1 \cdots Y_n)^T$$

$$\boldsymbol{\xi} = (\xi_1 \cdots \xi_n)^T$$

■ \mathbb{X} la matrice $(n \times k)$ dont la *i*-ème ligne est $\mathbb{X}_{i,\cdot} = \mathbf{x}_i^T$.

Régression linéaire multiple

Régression linéaire multiple (=Modèle linéaire)

■ La fonction de régression est $r(\beta, \mathbf{x}_i) = \mathbf{x}_i^T \beta$. On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec

$$Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \sigma \xi_i, \quad i = 1, \dots, n$$

où
$$\theta \in \Theta = \mathbb{R}^k$$
, $\mathbf{x}_i \in \mathbb{R}^k$.

Matriciellement

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma\boldsymbol{\xi}$$

avec

$$\mathbf{Y} = (Y_1 \cdots Y_n)^T$$

$$\boldsymbol{\xi} = (\xi_1 \cdots \xi_n)^T$$

■ \mathbb{X} la matrice $(n \times k)$ dont la *i*-ème ligne est $\mathbb{X}_{i,\cdot} = \mathbf{x}_i^T$.

Régression linéaire multiple

EMC en régression linéaire multiple

■ Estimateur des moindres carrés en régression linéaire multiple : tout estimateur $\widehat{\beta}_n$ satisfaisant

$$\sum_{i=1}^{n} (Y_i - \mathbf{x}_i^T \widehat{\boldsymbol{\beta}}_n)^2 = \min_{\mathbf{b} \in \mathbb{R}^k} \sum_{i=1}^{n} (Y_i - \mathbf{x}_i^T \mathbf{b})^2.$$

En notation matricielle :

$$\|\mathbf{Y} - \mathbb{X}\widehat{\boldsymbol{\beta}}_{n}\|^{2} = \min_{\mathbf{b} \in \mathbb{R}^{k}} \|\mathbf{Y} - \mathbb{X}\boldsymbol{\beta}\|^{2}$$
$$= \min_{\mathbf{v} \in \mathbf{V}} \|\mathbf{Y} - \mathbf{v}\|^{2}$$

où
$$V = \operatorname{Im}(\mathbb{X}) = \{ v \in \mathbb{R}^n : v = \mathbb{X}\mathbf{b}, \ \mathbf{b} \in \mathbb{R}^k \}$$
. Projection orthogonale sur V .

Régression linéaire multiple

Géométrie de l'EMC

L'EMC vérifie

$$\widehat{\boldsymbol{\mathbb{X}}}\widehat{\boldsymbol{\beta}}_{\mathsf{n}} = P_{V}\boldsymbol{\mathsf{Y}}$$

où P_V est le projecteur orthogonal sur V.

■ Comme $\mathbf{Y} - P_V \mathbf{Y} \perp V$, on en déduit les équations normales des moindres carrés :

$$\mathbb{X}^T \mathbb{X} \widehat{\boldsymbol{\beta}}_n = \mathbb{X}^T \boldsymbol{Y}.$$

- Remarques.
 - L'EMC est un Z-estimateur.
 - unicité de $\widehat{\beta}_n$ si la matrice de Gram $\mathbb{X}^T \mathbb{X}$ est inversible (la matrice \mathbb{X} est de rang complet).

Régression linéaire multiple

Géométrie de l'EMC

Proposition

Si $\mathbb{X}^T\mathbb{X}$ (matrice $k \times k$) inversible, alors $\widehat{\boldsymbol{\beta}}_n$ est unique et

$$\left|\widehat{\boldsymbol{\beta}}_{\mathsf{n}} = \left(\mathbb{X}^{\mathsf{T}}\mathbb{X}\right)^{-1}\mathbb{X}^{\mathsf{T}}\,\mathbf{Y}\right| = \mathbb{X}^{\#}\,\mathbf{Y}$$

Contient le cas précédent de la droite de régression simple.

Régression linéaire multiple

Géométrie de l'EMC

Proposition

Si $\mathbb{X}^T\mathbb{X}$ (matrice $k \times k$) inversible, alors $\widehat{\beta}_n$ est unique et

$$\left[\widehat{oldsymbol{eta}}_{\mathsf{n}} = \left(\mathbb{X}^{\mathcal{T}}\mathbb{X}
ight)^{-1}\mathbb{X}^{\mathcal{T}}oldsymbol{Y}
ight] = \mathbb{X}^{\#}oldsymbol{Y}$$

Résultat géometrique, non stochastique. $\mathbb{X}^T \mathbb{X} \geq 0$; $\mathbb{X}^T \mathbb{X}$ inversible $\iff \mathbb{X}^T \mathbb{X} > 0$;

$$\mathbb{X}^T \mathbb{X} > 0 \iff \operatorname{rang}(\mathbb{X}) = k \iff \dim(V) = k.$$

 $\mathbb{X}^T \mathbb{X} > 0 \implies n \ge k.$

Régression linéaire multiple

Géométrie de l'EMC

Supposons $\mathbb{X}^T \mathbb{X} > 0$. Alors, la matrice $n \times n$

$$A = \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T = \mathbb{X} \mathbb{X}^\#$$

est dite matrice chapeau (hat matrix).

Proposition

 $Si \mathbb{X}^T \mathbb{X} > 0$, alors A est le projecteur sur $V : A = P_V$ et $\operatorname{rang}(A) = k$.

$$A = A^T$$
, $A = A^2$, donc A est un projecteur. $Im(A) = V$, donc $A = P_V$; $rang(P_V) = dim(V) = k$.

Régression linéaire multiple

Géométrie de l'EMC

Supposons $\mathbb{X}^T \mathbb{X} > 0$. Alors, la matrice $n \times n$

$$A = \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T = \mathbb{X} \mathbb{X}^\#$$

est dite matrice chapeau (hat matrix).

Proposition

 $Si \mathbb{X}^T \mathbb{X} > 0$, alors A est le projecteur sur $V : A = P_V$ et $\operatorname{rang}(A) = k$.

Chapeau, car A génère la prévision de $\mathbb{X}\theta$ notée $\hat{\mathbf{Y}}$:

$$\widehat{\mathbf{Y}} = \mathbb{X} \, \widehat{\boldsymbol{\beta}}_{\mathsf{n}} = A \, \mathbf{Y}.$$

Pseudo-inverse de Moore-Penrose

Soit \mathbb{X} une matrice $n \times p$ avec $p \leq n$. On suppose que \mathbb{X} est de rang p.

- $X^{\#} = (X^T X)^{-1} X^T$ est la pseudo-inverse de Moore-Penrose.
- $\mathbb{X}^{\#}\mathbb{X} = Id_{p \times p} : \mathbb{X}$ est un inverse à gauche de la matrice \mathbb{X} .
- $\mathbb{X}\mathbb{X}^{\#} = \mathbb{X}(\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T}$ est le projecteur sur l'espace image (l'espace vectoriel engendré par les colonnes de \mathbb{X}).
- Méthode de calcul : décomposition QR ou décomposition en valeurs singulières.

Méthode d'estimation dans le modèle de régression

Régression linéaire multiple

Propriétés de l'estimateur des Moindres Carrés

Hypothèses

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma \boldsymbol{\xi}$$

- $\mathbf{1}$ \mathbb{X} est de rang complet.
- **2** $\mathbb{E}_{\theta}[\xi] = 0$ pour tout $\theta \in \Theta$ (les erreurs sont centrées)
- **3** La variance des erreurs est constante et les erreurs sont décorrélées $\mathbb{E}_{\theta}[\xi \xi^T] = I$ (homoscédasticité)

Propriétés de l'estimateur des Moindres Carrés

Hypothèses

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma \boldsymbol{\xi}$$

- $\mathbf{1}$ \mathbb{X} est de rang complet.
- **2** $\mathbb{E}_{\theta}[\xi] = 0$ pour tout $\theta \in \Theta$ (les erreurs sont centrées)
- **3** La variance des erreurs est constante et les erreurs sont décorrélées $\mathbb{E}_{\theta}[\boldsymbol{\xi}\boldsymbol{\xi}^T] = I$ (homoscédasticité)

Hypothèses

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma \boldsymbol{\xi}$$

- $\mathbf{1}$ \mathbb{X} est de rang complet.
- **2** $\mathbb{E}_{\theta}[\xi] = 0$ pour tout $\theta \in \Theta$ (les erreurs sont centrées)
- **3** La variance des erreurs est constante et les erreurs sont décorrélées $\mathbb{E}_{\theta}[\boldsymbol{\xi}\boldsymbol{\xi}^T] = I$ (homoscédasticité)

Estimateur sans biais

Théorème

L'estimateur $\widehat{\boldsymbol{\beta}}_n$ est sans biais, i.e. pour tout $\theta \in \Theta$,

- $\blacksquare \mathbb{E}_{\theta}[\widehat{\boldsymbol{\beta}}_{\mathsf{n}}] = \theta$

$$\widehat{\boldsymbol{\beta}}_{\mathsf{n}} = \mathbb{X}^{\#} \mathbf{Y} = \boldsymbol{\beta} + \mathbb{X}^{\#} \boldsymbol{\xi}.$$

$$egin{aligned} \mathbb{E}_{ heta}[\widehat{oldsymbol{eta}}_{\mathsf{n}}] &= oldsymbol{eta} + \mathbb{X}^{\#} \, \mathbb{E}_{ heta}[oldsymbol{\xi}] \ &= oldsymbol{eta} \end{aligned}$$

Estimateur sans biais

Théorème

L'estimateur $\widehat{\boldsymbol{\beta}}_n$ est sans biais, i.e. pour tout $\theta \in \Theta$,

$$\mathbb{E}_{\theta}[\widehat{\boldsymbol{\beta}}_{\mathsf{n}}] = \theta$$

$$\widehat{{\boldsymbol{\beta}}}_{\mathbf{n}} = \mathbb{X}^{\#} \ {\mathbf{Y}} = {\boldsymbol{\beta}} + \mathbb{X}^{\#} {\boldsymbol{\xi}}. \ \ \widehat{{\boldsymbol{\beta}}}_{\mathbf{n}} - {\boldsymbol{\beta}} = \mathbb{X}^{\#} {\boldsymbol{\xi}} \ \ \text{ce qui implique}$$

$$\begin{aligned} \operatorname{Cov}_{\theta}(\widehat{\boldsymbol{\beta}}_{\mathsf{n}}) &= \mathbb{E}_{\theta} \left[\{ \mathbb{X}^{\#} \boldsymbol{\xi} \} \{ \mathbb{X}^{\#} \boldsymbol{\xi} \}^{T} \right] \\ &= \sigma^{2} \{ \mathbb{X}^{\#} \} \{ \mathbb{X}^{\#} \}^{T} = \sigma^{2} (\mathbb{X}^{T} \mathbb{X})^{-1}. \end{aligned}$$

Erreur de prédiction

■ Erreur de prédiction :

$$\hat{\boldsymbol{\xi}} = \boldsymbol{Y} - \mathbb{X} \widehat{\boldsymbol{\beta}}_{n} = \boldsymbol{Y} - \mathbb{X} (\mathbb{X}^{T} \mathbb{X})^{-1} \mathbb{X} \boldsymbol{Y}
= (I - A) \boldsymbol{Y}$$

• Sous \mathbb{P}_{θ} , $\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma \boldsymbol{\xi}$. Donc,

$$\hat{\boldsymbol{\xi}} = (I - A) \mathbb{X} \boldsymbol{\beta} + \sigma (I - A) \boldsymbol{\xi}$$
$$= \sigma (I - A) \boldsymbol{\xi}$$

car AX = X (A is the orthogonal projector on the image of X).

Résidus et variance résiduelle

Theorem

Pour tout $\theta \in \Theta$

- $\mathbb{1} \mathbb{E}_{\theta}[\hat{\boldsymbol{\xi}}] = 0.$
- $\mathbb{E}_{\theta}[\hat{\mathbf{Y}}] = \mathbb{X}\boldsymbol{\beta}.$
- $Cov_{\theta}(\hat{\boldsymbol{\xi}}, \hat{\mathbf{Y}}) = 0.$

$$\mathbb{E}_{\theta}[\hat{\boldsymbol{\xi}}] = \sigma \, \mathbb{E}_{\theta}[(I - A)\boldsymbol{\xi}]$$
$$= \sigma(I - A) \, \mathbb{E}_{\theta}[\boldsymbol{\xi}] \, .$$

Résidus et variance résiduelle

Theorem

Pour tout $\theta \in \Theta$

- $\mathbb{E}_{\theta}[\hat{\boldsymbol{\xi}}] = 0.$
- $2 \operatorname{Cov}_{\theta}(\hat{\xi}) = \sigma^2(I A).$
- $\mathbb{E}_{\theta}[\hat{\mathbf{Y}}] = \mathbb{X}\boldsymbol{\beta}.$
- $Cov_{\theta}(\hat{\boldsymbol{\xi}}, \hat{\mathbf{Y}}) = 0.$

$$\operatorname{Cov}_{\theta}(\hat{\boldsymbol{\xi}}) = \sigma^{2}(I - A) \mathbb{E}_{\theta}[\boldsymbol{\xi}\boldsymbol{\xi}'](I - A)$$
$$= \sigma^{2}(I - A).$$

Résidus et variance résiduelle

Theorem

Pour tout $\theta \in \Theta$

- $\mathbb{E}_{\theta}[\hat{\boldsymbol{\xi}}] = 0.$
- $2 \operatorname{Cov}_{\theta}(\hat{\boldsymbol{\xi}}) = \sigma^2(I A).$
- $\mathbb{E}_{\theta}[\hat{\mathbf{Y}}] = \mathbb{X}\boldsymbol{\beta}.$
- $Cov_{\theta}(\hat{\boldsymbol{\xi}}, \hat{\mathbf{Y}}) = 0.$

$$\mathbb{E}_{\theta}[\hat{\mathbf{Y}}] = \mathbb{E}_{\theta}[A(\mathbb{X}\boldsymbol{\beta} + \sigma\boldsymbol{\xi})]$$
$$= A\mathbb{X}\boldsymbol{\beta} + \sigma\,\mathbb{E}_{\theta}[\boldsymbol{\xi}]$$
$$= \mathbb{X}\boldsymbol{\beta}.$$

Résidus et variance résiduelle

Theorem

Pour tout $\theta \in \Theta$

- $\mathbb{1} \mathbb{E}_{\theta}[\boldsymbol{\hat{\xi}}] = 0.$
- $2 \operatorname{Cov}_{\theta}(\hat{\boldsymbol{\xi}}) = \sigma^2(I A).$
- $\mathbb{E}_{\theta}[\hat{\mathbf{Y}}] = \mathbb{X}\boldsymbol{\beta}.$
- $Cov_{\theta}(\hat{\boldsymbol{\xi}}, \hat{\mathbf{Y}}) = 0.$

Démonstration.

On a $\hat{\mathbf{Y}} - \mathbb{E}_{\theta}[\hat{\mathbf{Y}}] = \sigma A \boldsymbol{\xi}$ et donc

$$\operatorname{Cov}_{\theta}(\hat{\boldsymbol{\xi}}, \hat{\mathbf{Y}}) = \sigma^{2} \mathbb{E}_{\theta}[(I - A)\boldsymbol{\xi}\boldsymbol{\xi}'A]$$
$$= \sigma^{2}(I - A)A = 0.$$

Propriétés de l'estimateur des Moindres Carrés

Estimateur sans biais de la variance de l'erreur de prédiction

Théorème

 $\hat{\sigma}_n^2 = (n-p)^{-1} \|\hat{\xi}\|^2$ est un estimateur sans biais de la variance de l'erreur.

Comme
$$(I - A)^2 = (I - A)$$
, nous avons

$$\mathbb{E}_{\theta}[\hat{\sigma}_{n}^{2}] = (n-p)^{-1} \mathbb{E}_{\theta}[\boldsymbol{\xi}^{T}(I-A)\boldsymbol{\xi}]$$
$$= (n-p)^{-1} \mathbb{E}_{\theta}[\text{Tr}((I-A)\boldsymbol{\xi}\boldsymbol{\xi})]$$
$$= \sigma^{2}(n-p)^{-1}\text{Tr}(I-A) = \sigma^{2}.$$

Propriétés de l'estimateur des Moindres Carrés

Coefficient de détermination

Pythagore

$$\| \mathbf{Y} \|^2 = \| A \mathbf{Y} \|^2 + \| (I - A) \mathbf{Y} \|^2$$

= $\| \hat{\mathbf{Y}} \|^2 + \| \hat{\boldsymbol{\xi}} \|^2$

Coefficient de détermination

$$R^2 = \frac{\parallel \mathbf{Y} \parallel^2}{\parallel \mathbf{Y} \parallel^2}$$
 $= 1 - \frac{\|\hat{\boldsymbol{\xi}}\|^2}{\parallel \mathbf{Y} \parallel^2} = 1 - \frac{\text{SCR}}{\text{SCT}}$

où SCR est la somme des carrés résiduels (RSS : residual sum of squares) et SCT est la somme des carrés totaux.

```
MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression
```

Propriétés de l'estimateur des Moindres Carrés

Diagnostic de régression

FIGURE - Régression à un facteur : endurance / âge

```
MAP 433 : Introduction aux méthodes statistiques. Cours 5
```

Méthode d'estimation dans le modèle de régression

Propriétés de l'estimateur des Moindres Carrés

Diagnostic de régression

```
> summary(model2)
call:
lm(formula = endur$endurance ~ endur$activevears)
Residuals:
    Min
              10 Median
-23,7296 -7,0671 0,5579 5,7454 31,0829
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 18.3921 1.5998 11.496 < 2e-16 ***
                             0.1369 5.571 6.7e-08 ***
endur$activeyears 0.7625
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.21 on 243 degrees of freedom
Multiple R-squared: 0.1133, Adjusted R-squared: 0.1096
F-statistic: 31.04 on 1 and 243 DF. p-value: 6.697e-08
```

 $\ensuremath{\mathrm{FIGURE}}$ – Régression à un facteur : endurance / nombre d'années de pratique

```
MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression
```

Propriétés de l'estimateur des Moindres Carrés

Diagnostic de régression

```
> summary(model3)
call:
lm(formula = endur\u00e4endurance ~ endur\u00e4age + endur\u00e4activeyears)
Residuals:
     Min
              1Q Median
-21.7994 -6.9040 0.5701 5.6326 27.2279
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                              3.2054 9.171 < 2e-16 ***
                 29.3952
endur $age
                              0.0655 -3.925 0.000113 ***
                  -0.2571
endur Sactive vears 0.9163
                           0.1386 6.610 2.44e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.919 on 242 degrees of freedom
Multiple R-squared: 0.1663, Adjusted R-squared: 0.1594
F-statistic: 24.14 on 2 and 242 DF, p-value: 2.754e-10
```

FIGURE - Régression à un deux facteurs : endurance / âge + nombre d'années de pratique

-Méthode d'estimation dans le modèle de régression

Modèle linéaire gaussien

Régression gaussienne

Régression gaussienne : on suppose $\xi \sim \mathcal{N}(0, \mathrm{Id}_n)$. Alors on a plusieurs proriétés remarquables :

- On sait expliciter la loi exacte (non-asymptotique!) de $(\widehat{\beta}_n, \widehat{\sigma}^2)$.
- Ingrédient :
 - loi des vecteurs gaussiens sont caractérisés par leur moyenne et matrice de variance-covariance.
 - pour des vecteurs gaussiens, la décorrélation implique l'indépendance.

- Méthode d'estimation dans le modèle de régression

Modèle linéaire gaussien

Cadre gaussien : loi des estimateurs

Proposition

- $\widehat{\boldsymbol{\beta}}_{\mathsf{n}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2(\mathbb{X}^T\mathbb{X})^{-1})$
- 2 $\|(I-A)Y\|^2 \sim \sigma^2 \chi^2(n-k)$ loi du Chi 2 à n-k degrés de liberté
- $\widehat{\boldsymbol{\beta}}_{\mathsf{n}}$ et (I-A) **Y** sont indépendants.

Modèle linéaire gaussien

Théorème de Cochran

<u>Th</u>éorème

Soit $\mathbf{Y} \sim N(\mu, \sigma^2 I_n)$, \mathcal{M} un sous espace de \mathbb{R}^n de dimension k, Π la matrice de projection orthogonale sur \mathcal{M} et $\Pi_{\perp} = I_n - \Pi$ la matrice de projection orthogonale sur \mathcal{M}^{\perp} . Nous avons

- **1** $\Pi \mathbf{Y} \sim \mathcal{N}(\Pi \mu, \sigma^2 \Pi), \Pi_{\perp} \mathbf{Y} \sim \mathcal{N}(\Pi_{\perp} \mu, \sigma^2 \Pi_{\perp})$
- 2 les vecteurs Π **Y** et Π_{\perp} **Y** sont indépendants
- **3** $\|\Pi(\mathbf{Y} \mu)\|^2/\sigma^2 \sim \chi_k^2$ et $\Pi_{\perp}(\mathbf{Y} \mu)\|^2/\sigma^2 \sim \chi_{n-k}^2$.

Modèle linéaire gaussien

Théorème de Cochran

<u>Théorème</u>

Soit $\mathbf{Y} \sim N(\mu, \sigma^2 I_n)$, \mathcal{M} un sous espace de \mathbb{R}^n de dimension k, Π la matrice de projection orthogonale sur \mathcal{M} et $\Pi_{\perp} = I_n - \Pi$ la matrice de projection orthogonale sur \mathcal{M}^{\perp} . Nous avons

- **1** $\Pi \mathbf{Y} \sim \mathcal{N}(\Pi \mu, \sigma^2 \Pi), \Pi_{\perp} \mathbf{Y} \sim \mathcal{N}(\Pi_{\perp} \mu, \sigma^2 \Pi_{\perp})$
- 2 les vecteurs Π \mathbf{Y} et Π_{\perp} \mathbf{Y} sont indépendants
- **3** $\|\Pi(\mathbf{Y} \mu)\|^2/\sigma^2 \sim \chi_k^2$ et $\Pi_{\perp}(\mathbf{Y} \mu)\|^2/\sigma^2 \sim \chi_{n-k}^2$.

└ Modèle linéaire gaussien

Théorème de Cochran

<u>Th</u>éorème

Soit $\mathbf{Y} \sim N(\mu, \sigma^2 I_n)$, \mathcal{M} un sous espace de \mathbb{R}^n de dimension k, Π la matrice de projection orthogonale sur \mathcal{M} et $\Pi_{\perp} = I_n - \Pi$ la matrice de projection orthogonale sur \mathcal{M}^{\perp} . Nous avons

- $\mathbf{I} \mathbf{I} \mathbf{Y} \sim \mathcal{N}(\Pi \mu, \sigma^2 \Pi), \Pi_{\perp} \mathbf{Y} \sim \mathcal{N}(\Pi_{\perp} \mu, \sigma^2 \Pi_{\perp})$
- 2 les vecteurs Π \mathbf{Y} et Π_{\perp} \mathbf{Y} sont indépendants
- **3** $\|\Pi(\mathbf{Y} \mu)\|^2/\sigma^2 \sim \chi_k^2$ et $\Pi_{\perp}(\mathbf{Y} \mu)\|^2/\sigma^2 \sim \chi_{n-k}^2$.

Modèle linéaire gaussien

Cadre gaussien : loi des estimateurs

Proposition

- $\widehat{\boldsymbol{\beta}}_{\mathsf{n}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2(\mathbb{X}^T\mathbb{X})^{-1})$
- 2 $\|(I-A)\mathbf{Y}\|^2 \sim \sigma^2 \chi^2 (n-k)$ loi du Chi 2 à n-k degrés de liberté
- $\widehat{\boldsymbol{\beta}}_{\mathsf{n}}$ et (I A) **Y** sont indépendants.
 - Définition : $\widehat{\boldsymbol{\beta}}_n = \mathbb{X}^\# \mathbf{Y}$ et $\mathbf{Y} \sim N(\mathbb{X}\boldsymbol{\beta}, \sigma^2 I_n)$.
 - $\widehat{\boldsymbol{\beta}}_{\mathsf{n}} \sim \mathcal{N}(\mathbb{X}^{\#}\mathbb{X}\boldsymbol{\beta}, \sigma^{2}\{\mathbb{X}^{\#}\}\{\mathbb{X}^{\#}\}^{T})$
 - On conclut en remarquant $\mathbb{X}^{\#}\mathbb{X} = I_k$ et $\{\mathbb{X}^{\#}\}\{\mathbb{X}^{\#}\}^T = (\mathbb{X}^T\mathbb{X})^{-1}$

Méthode d'estimation dans le modèle de régression

Modèle linéaire gaussien

Cadre gaussien : loi des estimateurs

Proposition

- $\mathbf{1} \ \widehat{\boldsymbol{\beta}}_{\mathsf{n}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^{2}(\mathbb{X}^{T}\mathbb{X})^{-1})$
- 2 $\|(I-A)\mathbf{Y}\|^2 \sim \sigma^2 \chi^2(n-k)$ loi du Chi 2 à n-k degrés de liberté
- $\widehat{\boldsymbol{\beta}}_{n}$ et (I-A) **Y** sont indépendants.

Application directe de Cochran en remarquant que

$$(I-A)\mathbb{E}_{\theta}[\mathbf{Y}] = (I-A)\mathbf{X}\boldsymbol{\beta} = 0.$$

Modèle linéaire gaussien

Cadre gaussien : loi des estimateurs

Proposition

- $\mathbf{1} \widehat{\boldsymbol{\beta}}_{\mathsf{n}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^{2}(\mathbb{X}^{T}\mathbb{X})^{-1})$
- 2 $\|(I-A) \mathbf{Y}\|^2 \sim \sigma^2 \chi^2 (n-k)$ loi du Chi 2 à n-k degrés de liberté
- $\widehat{\boldsymbol{\beta}}_{\mathsf{n}}$ et (I A) **Y** sont indépendants.
 - Le théorème de Cochran montre que A Y et (I A) Y sont indépendants.
 - On conclut en remarquant que $\widehat{\boldsymbol{\beta}}_n = \mathbb{X}^\# \, \boldsymbol{Y} = \mathbb{X}^\# A \, \boldsymbol{Y}$.

Modèle linéaire gaussien

Estimateur de la variance σ^2 : cadre gaussien

$$\widehat{\sigma}_n^2 = \frac{\|(I-A)\mathbf{Y}\|^2}{n-k} = \frac{1}{n-k} \sum_{i=1}^n (Y_i - \mathbf{x}_i^T \widehat{\boldsymbol{\beta}}_n)^2$$

D'après la dernière Proposition :

- $\widehat{\sigma}_n^2/\sigma^2 \sim \chi^2(n-k)$ loi du Chi 2 à n-k degrés de liberté
- C'est un estimateur sans biais :

$$\mathbb{E}_{\theta}\left[\widehat{\sigma}_{n}^{2}\right] = \sigma^{2}.$$

• $\hat{\sigma}_n^2$ est indépendant de $\hat{\beta}_n$.

- Méthode d'estimation dans le modèle de régression

Modèle linéaire gaussien

Lois des coordonnées de $\widehat{\boldsymbol{\beta}}_n$: cadre gaussien

$$\widehat{oldsymbol{eta}}_{\mathsf{n}j}$$
 $-oldsymbol{eta}_{j}\sim\mathcal{N}ig(0,\sigma^{2}b_{j})$

où b_j est le jème élément diagonal de $(X^TX)^{-1}$.

$$rac{\widehat{oldsymbol{eta}}_{\mathsf{n}j} - oldsymbol{eta}_j}{\widehat{\sigma}_n \sqrt{b_j}} \sim t_{n-k}$$

loi de Student à n-k degrés de liberté.

$$t_q = \frac{\xi}{\sqrt{\eta/q}}$$

où $q \geq 1$ un entier, $\xi \sim \mathcal{N}(0,1)$, $\eta \sim \chi^2(q)$ et ξ indépendant de η .

MAP 433 : Introduction aux méthodes statistiques. Cours 5

-Méthode d'estimation dans le modèle de régression

Modèle linéaire gaussien

Exemple de données de régression

Résultats de traitement statistique initial

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.576	59.061	< 2e - 16 * **
age	-10.012	59.749	-0.168	0.867000
sex	-239.819	61.222	-3.917	0.000104 * **
bmi	519.840	66.534	7.813	4.30 <i>e</i> - 14 * **
map	324.390	65.422	4.958	1.02e - 06 * **
tc	-792.184	416.684	-1.901	0.057947
ldl	476.746	339.035	1.406	0.160389
hdl	101.045	212.533	0.475	0.634721
tch	177.064	161.476	1.097	0.273456
ltg	751.279	171.902	4.370	1.56e - 05 * **
glu	67.625	65.984	1.025	0.305998

⁻ Méthode d'estimation dans le modèle de régression

Modèle linéaire gaussien

Modèle linéaire gaussien

Questions statistiques

Sélection de variables. Lesquelles parmi les 10 variables :

- sont significatives? Formalisation mathématique : trouver (estimer) l'ensemble $N = \{j : \theta_i \neq 0\}$.
- Prévison. Un nouveau patient arrive avec son vecteur des 10 variables $x_0 \in \mathbb{R}^{10}$. Donner la prévison de la réponse Y =état du patient dans 1 an.

Prévision

Modèle de régression

$$Y_i = r(\boldsymbol{\beta}, \mathbf{x}_i) + \sigma \xi_i, \quad i = 1, \dots, n.$$

Régression linéaire : $r(\beta, \mathbf{x}_i) = \beta^T \mathbf{x}_i$. Exemple : \mathbf{x}_i vecteur de 10 variables explicatives (age, sex, bmi,...) pour patient i.

- Problème de prévision : Un nouveau patient arrive avec son vecteur des 10 variables $x \in \mathbb{R}^k$. Donner la prévison de la valeur de fonction de régression $r(\beta, x) = \beta^T x$
- Soit $\widehat{\beta}_n$ un estimateur de β . Prévision par substitution :

$$\widehat{Y}(\mathbf{x}) = r(\widehat{\boldsymbol{\beta}}_{\mathsf{n}}, \mathbf{x}).$$

• Question statistique : quelle est la qualité de la prévision ? Intervalle de confiance pour $r(\widehat{\beta}_n, \mathbf{x})$?

Moyenne et variance de la prévision

Theorem

- $\blacksquare \mathbb{E}_{\theta}[\hat{Y}_n(x)] = x^T \beta$
- $\operatorname{Var}_{\theta}(\hat{Y}_{n}(\mathbf{x})) = \sigma^{2} \mathbf{x}^{T} (\mathbb{X}^{T} \mathbb{X})^{-1} \mathbf{x}$
- $\blacksquare \mathbb{E}_{\theta}[(Y(\mathbf{x}) \hat{Y}_n(\mathbf{x}))^2] = \sigma^2(1 + \mathbf{x}'(\mathbb{X}^T\mathbb{X})^{-1}\mathbf{x})$

$$\hat{Y}_n(\mathbf{x}) = \mathbf{x}^T \widehat{\boldsymbol{\beta}}_n$$
 et $\mathbb{E}_{\theta}[\widehat{\boldsymbol{\beta}}_n] = \boldsymbol{\beta}$

Moyenne et variance de la prévision

Theorem

$$\blacksquare \mathbb{E}_{\theta}[\hat{Y}_{n}(\mathbf{x})] = \mathbf{x}^{T} \boldsymbol{\beta}$$

$$\blacksquare \mathbb{E}_{\theta}[(Y(\mathbf{x}) - \hat{Y}_n(\mathbf{x}))^2] = \sigma^2(1 + \mathbf{x}'(\mathbb{X}^T\mathbb{X})^{-1}\mathbf{x})$$

$$\hat{Y}_{n}(x) - x^{T} \beta = x^{T} \mathbb{X}^{\#} Y - x^{T} \beta$$

$$= x^{T} \mathbb{X}^{\#} (\mathbb{X}\beta + \sigma \xi) - x^{T} \beta = \sigma x^{T} \mathbb{X}^{\#} \xi$$

car
$$\mathbb{X}^{\#}\mathbb{X} = I$$
. Par conséquent, comme $\mathbf{X}^{\#}\{\mathbf{X}^{\#}\}^{T} = (\mathbf{X}^{T}\mathbf{X})^{-1}$, $\operatorname{Var}_{\theta}(\hat{\mathbf{Y}}_{n}(\mathbf{x})) = \sigma^{2}\mathbf{x}^{T}\mathbb{X}^{\#}\mathbb{E}_{\theta}[\mathbf{\mathcal{E}}\mathbf{\mathcal{E}}^{T}]\{\mathbb{X}^{\#}\}^{T}\mathbf{x}$

Moyenne et variance de la prévision

Theorem

- $\blacksquare \mathbb{E}_{\theta}[\hat{Y}_n(\mathbf{x})] = \mathbf{x}^T \boldsymbol{\beta}$
- $Var_{\theta}(\hat{Y}_{n}(\mathbf{x})) = \sigma^{2} \mathbf{x}^{T} (\mathbb{X}^{T} \mathbb{X})^{-1} \mathbf{x}$
- $\blacksquare \mathbb{E}_{\theta}[(Y(\mathbf{x}) \hat{Y}_n(\mathbf{x}))^2] = \sigma^2(1 + \mathbf{x}'(\mathbb{X}^T\mathbb{X})^{-1}\mathbf{x})$

$$\mathbb{E}_{\theta}[(Y(\mathbf{x}) - \hat{Y}_n(\mathbf{x}))^2] = \mathbb{E}_{\theta}[(Y(\mathbf{x}) - \mathbb{E}_{\theta}[\hat{Y}_n(\mathbf{x})])^2] + \operatorname{Var}_{\theta}(\hat{Y}_n(\mathbf{x}))$$
$$= \mathbb{E}_{\theta}[(Y(\mathbf{x}) - \mathbf{x}^T \boldsymbol{\beta})^2] + \sigma^2 \mathbf{x}^T (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{x}$$

Prévision : modèle linéaire gaussienne

Proposition

Supposons que $\boldsymbol{\xi} \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$.

$$\mathbf{1} \ \widehat{Y}(\mathbf{x}) \sim \mathcal{N}(\mathbf{x}^T \boldsymbol{\beta}, \sigma^2 \mathbf{x}^T (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{x})$$

$$\widehat{Y}(x)$$
 et $(I - A) Y$ sont indépendants.

Prévision : modèle linéaire gaussienne

■ D'après la Proposition,

$$\eta := rac{\widehat{Y}(oldsymbol{x}) - oldsymbol{x}^Toldsymbol{eta}}{\sqrt{\sigma^2oldsymbol{x}^T\left(\mathbb{X}^T\mathbb{X}
ight)^{-1}oldsymbol{x}}} \sim \mathcal{N}(0,1).$$

- On replace σ^2 inconnu par $\widehat{\sigma}_n^2 = \|(I A) \mathbf{Y}\|^2 / (n k)$.
- t-statistique :

$$t := \frac{\widehat{Y}(\mathbf{x}) - \mathbf{x}^T \boldsymbol{\beta}}{\sqrt{\widehat{\sigma}_n^2 \mathbf{x}^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}}} = \frac{\eta}{\sqrt{\chi/(n-k)}} \sim t_{n-k},$$

loi de Student à
$$n-k$$
 degrés de liberté, car $\eta \sim \mathcal{N}(0,1)$, $\chi := \|\mathbf{Y} - \mathbb{X}\widehat{\boldsymbol{\beta}}_n\|^2/\sigma^2 \sim \chi^2(n-k)$ et $\eta \perp \chi$.

Prévision : intervalle de confiance

$$\mathbb{P}\left(-q_{1-\frac{\alpha}{2}}(t_{n-k}) \leq \frac{\widehat{Y} - \mathbf{x}^{T} \boldsymbol{\beta}}{\sqrt{\widehat{\sigma}_{n}^{2} \mathbf{x}^{T} \left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbf{x}}} \leq q_{1-\frac{\alpha}{2}}(t_{n-k})\right) \\
= \mathbb{P}\left(-q_{1-\frac{\alpha}{2}}(t_{n-k}) \leq t \leq q_{1-\frac{\alpha}{2}}(t_{n-k})\right) = 1 - \alpha.$$

 \implies intervalle de confiance de niveau $1 - \alpha$ pour $r(\beta, \mathbf{x}) = \mathbf{x}^T \beta$ est $[r_L, r_U]$, où :

$$\begin{split} & \textit{r}_{\textit{L}} = \widehat{Y} - q_{1-\frac{\alpha}{2}}(t_{n-k}) \sqrt{\widehat{\sigma}_{\textit{n}}^2 \, \textit{x}^{\, \textit{T}} \, \big(\mathbb{X}^{\, \textit{T}} \mathbb{X}\big)^{-1} \, \textit{x}}, \\ & \textit{r}_{\textit{U}} = \widehat{Y} + q_{1-\frac{\alpha}{2}}(t_{n-k}) \sqrt{\widehat{\sigma}_{\textit{n}}^2 \, \textit{x}^{\, \textit{T}} \, \big(\mathbb{X}^{\, \textit{T}} \mathbb{X}\big)^{-1} \, \textit{x}}. \end{split}$$

Limites des moindres carrés et du cadre gaussien

- Calcul explicite (et efficace) de l'EMC limité à une fonction de régression linéaire.
- Modèle linéaire donne un cadre assez général :
 - Modèle polynomial,
 - Modèles avec interactions...
- Hypothèse de gaussianité = cadre asymptotique implicite.
- Besoin d'outils pour les modèles à réponse Y discrète.

Régression linéaire non-gaussienne

Modèle de régression linéaire

$$Y_i = \theta^T \mathbf{x}_i + \xi_i, \quad i = 1, \dots, n.$$

- Hyp. 1': ξ_i i.i.d., $\mathbb{E}[\xi_i] = 0$, $\mathbb{E}[\xi_i^2] = \sigma^2 > 0$.
- Hyp. $2': \mathbb{X}^T \mathbb{X} > 0$, $\lim_n \max_{1 \le i \le n} x_i^T (\mathbb{X}^T \mathbb{X})^{-1} x_i = 0$.

Proposition (Normalité asymptotique de l'EMC)

$$\sigma^{-1}(\mathbb{X}^T\mathbb{X})^{1/2}(\widehat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}) \stackrel{d}{\longrightarrow} \mathcal{N}(\mathbf{0}, \mathrm{Id}_k), \quad n \to \infty.$$

A comparer avec le cadre gaussien :

$$\sigma^{-1}(\mathbb{X}^T\mathbb{X})^{1/2}(\widehat{\boldsymbol{\beta}}_n - \theta) \sim \mathcal{N}(0, \mathrm{Id}_k)$$
 pour tout n .

Régression non-linéaire

On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n),$$

οù

$$Y_i = r(\boldsymbol{\beta}, \boldsymbol{x}_i) + \sigma \xi_i, \quad i = 1, \ldots, n$$

avec $\mathbf{x}_i \in \mathbb{R}^k$, et $\mathbf{\beta} \in \Theta \subset \mathbb{R}^d$, $\sigma \in \mathbb{R}^+$.

Si $\xi_i \sim_{\text{i.i.d.}} \mathcal{N}(0,1)$, la fonction de vraisemblance est donnée par

$$\mathcal{L}_n(\theta, Y_1, \dots, Y_n) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - r(\beta, \mathbf{x}_i))^2\right)$$

Régression non-linéaire

On observe

$$(x_1, Y_1), \ldots, (x_n, Y_n),$$

οù

$$Y_i = r(\boldsymbol{\beta}, \boldsymbol{x}_i) + \sigma \xi_i, \quad i = 1, \dots, n$$

avec $\mathbf{x}_i \in \mathbb{R}^k$, et $\mathbf{\beta} \in \Theta \subset \mathbb{R}^d$, $\sigma \in \mathbb{R}^+$.

L'estimateur du maximum de vraisemblance $\widehat{\beta}_n$ de β est obtenu en minimisant la fonction

$$b \rightsquigarrow \sum_{i=1}^{n} (Y_i - r(b, \mathbf{x}_i))^2.$$

L'estimateur du maximum de vraisemblance de σ^2 est donné par

$$\hat{\sigma}_n^2 = n^{-1} \sum_{i=1}^n \left(Y_i - r(\widehat{\beta}_n, \mathbf{x}_i) \right)^2.$$

Moindre carrés non-linéaires

Definition

■ M-estimateur associé à la fonction de contraste $\psi: \Theta \times \mathbb{R}^k \times \mathbb{R} \to \mathbb{R}$: tout estimateur $\widehat{\beta}_n$ satisfaisant

$$\sum_{i=1}^{n} \psi(\widehat{\boldsymbol{\beta}}_{n}, \boldsymbol{x}_{i}, Y_{i}) = \max_{b \in \Theta} \sum_{i=1}^{n} \psi(b, \boldsymbol{x}_{i}, Y_{i}).$$

- Estimateur des moindres carrés non-linéaires : associé au contraste $\psi(b, \mathbf{x}, \mathbf{y}) = (y r(b, \mathbf{x}))^2$.
- Extension des résultats en densité → théorèmes limites pour des sommes de v.a. indépendantes non-équidistribuées.

Modèle à réponse binaire

On observe

$$(x_1, Y_1), \ldots, (x_n, Y_n), Y_i \in \{0, 1\}, x_i \in \mathbb{R}^k$$
.

Modélisation via la fonction de régression

$$\mathbf{x} \leadsto p_{\mathbf{x}}(\theta) = \mathbb{E}_{\theta} [Y | \mathbf{X} = \mathbf{x}] = \mathbb{P}_{\theta} [Y = 1 | \mathbf{X} = \mathbf{x}]$$

Représentation

$$Y_i = p_{\mathbf{x}_i}(\theta) + (Y_i - p_{\mathbf{x}_i}(\theta))$$

= $r(\theta, \mathbf{x}_i) + \xi_i$

avec
$$r(\theta, \mathbf{x}_i) = p_{\mathbf{x}_i}(\theta)$$
 et $\xi_i = Y_i - p_{\mathbf{x}_i}(\theta)$.

■ $\mathbb{E}_{\theta}\left[\xi_{i}\right]=0$ mais structure des ξ_{i} compliquée (dépendance en θ).

Modèle à réponse discrète

• Y_i v.a. de Bernoulli de paramètre $p_{x_i}(\theta)$. Vraisemblance

$$\mathcal{L}_n(\theta, Y_1, \ldots, Y_n) = \prod_{i=1}^n p_{\mathbf{x}_i}(\theta)^{Y_i} (1 - p_{\mathbf{x}_i}(\theta))^{1 - Y_i}$$

- → méthodes de résolution numérique.
- Régression logistique (très utile dans les applications)

$$p_{\mathbf{x}}(\theta) = \psi(\mathbf{x}^{\mathsf{T}}\,\theta),$$

$$\psi(t) = \frac{e^t}{1 + e^t}, \ t \in \mathbb{R}$$
 fonction logistique.

Régression logistique et modèles latents

Représentation équivalente de la régression logistique : on observe

$$Y_i = 1_{\left\{Y_i^* > 0\right\}}, \quad i = 1, \dots, n$$

(les x_i sont donnés), et Y_i^* est une variable latente ou cachée,

$$Y_i^* = \theta^T x_i + U_i, \quad i = 1, \dots, n$$

avec $U_i \sim_{\text{i.i.d.}} F$, où

$$F(t)=rac{1}{1+e^{-t}},\,\,t\in\mathbb{R}\,.$$

$$\mathbb{P}_{\theta} \left[Y_{i}^{\star} > 0 \right] = \mathbb{P}_{\theta} \left[\mathbf{x}_{i}^{T} \theta + U_{i} > 0 \right]$$
$$= 1 - \mathbb{P}_{\theta} \left[U_{i} \leq -\mathbf{x}_{i}^{T} \theta \right]$$