Introduction to Motion Planning

Lesson 9.1

Central Question

How to plan paths/trajectories/motion in an known environment with obstacles?

The motion planning problem

Path planning – geometry

Trajectory planning – time parameterized

Motion planning – forces, actuators, constraints

D. Mellinger and V. Kumar, "Minimum Snap Trajectory Generation and Control for Quadrotors," *Proc. IEEE International Conference on Robotics and Automation*. Shanghai, China, May, 2011.

The Basic Problem

- Euclidean world, R^N , N=2 or 3
- Obstacles $O_1, O_2, \dots O_p$, all closet subsets of \mathbb{R}^N
- Rigid Body (robot) A

Reference

- Planning algorithms, Lavalle (Section 4.3), http://lavalle.pl/planning/

Rigid Body A

Body

$$A \subset \mathbb{R}^3$$

Rigid Body Displacement

Map

$$g:A \to R^3$$

Continuous family of maps

$$g(t): A \rightarrow R^3$$

Each displacement is a new pose (position + orientation)

The Basic Problem

- ullet Euclidean world, R^N
- Obstacles $O_1, O_2, \dots O_p$, all closet subsets of \mathbb{R}^N
- Robot (Rigid Body) A or collection of rigid bodies
- Given initial and final position/orientation (pose) of A, find a continuous (and legal) sequence of poses

Given $g(t_I): A \to R^3$ $g(t_F): A \to R^3$

Find a safe, continuous family of maps

$$g(t): A \rightarrow R^3$$

Configuration Space (C-space)

The motion planning problem is best formulated in configuration space (denote by C)

- \bullet $C \neq R^N$
- C is the set of all position/orientations
 - all possible maps $g: A \rightarrow R^3$

Examples of configuration space

- Point robot in N-dimensional space R^N Ans: R^N
- Rectangular robot in R^2 Ans: SE(2)
- Fixed robot arm with 2 revolute joints

Configuration Space (C-space)

The motion planning problem is best formulated in configuration space (denote by C)

- \bullet $C \neq R^N$
- C is the set of all position/orientations
 - all possible maps $g: A \rightarrow R^3$

Examples of configuration space

- Point robot in N-dimensional space R^N Ans: R^N
- Rectangular robot in R^2 Ans: SE(2)
- Fixed robot arm with 2 revolute joints Ans: $S^1 \times S^1$
- Fixed robot arm with 2 revolute joints each with
 limits

C-space for a 2-R arm with two rigid bodies

(2 rigid bodies)

C-space: $subset \ of \ R^2$

The configuration space *locally* looks like R^2 , and hence is a 2-D manifold

Fixed robot arm with 2 revolute joints but with obstacles

Is there a solution to the motion planning problem for any pair of initial and goal configurations?

Obstacles in C-space

Obstacle, O, possibly the union of many disjoint subsets of \mathbb{R}^N

The obstacle region, $C_{obs} \subseteq C$, is defined as

$$\mathcal{C}_{obs} = \{ q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O} \neq \emptyset \}$$

Obstacles in C-space

Obstacle, O, possibly the union of many disjoint subsets of R^N

The obstacle region, $C_{obs} \subseteq C$, is defined as

$$C_{obs} = \{ q \in C \mid A(q) \cap \mathcal{O} \neq \emptyset \}$$

Robot with m rigid bodies A_i

$$C_{obs} = \left(\bigcup_{i=1}^{m} \{q \in \mathcal{C} \mid \mathcal{A}_{i}(q) \cap \mathcal{O} \neq \emptyset\}\right) \bigcup \left(\bigcup_{[i,j] \in P} \{q \in \mathcal{C} \mid \mathcal{A}_{i}(q) \cap \mathcal{A}_{j}(q) \neq \emptyset\}\right)$$
pairs of colliding rigid bodies

e.g.,

upper arm intersecting with forearm robot 1 colliding with robot 2

Obstacles in C-space

Obstacle, O, possibly the union of many disjoint subsets of R^N

The obstacle region, $C_{obs} \subseteq C$, is defined as

$$C_{obs} = \{ q \in C \mid A(q) \cap \mathcal{O} \neq \emptyset \}$$

Robot with m rigid bodies A_i

$$C_{obs} = \left(\bigcup_{i=1}^{m} \{q \in \mathcal{C} \mid \mathcal{A}_{i}(q) \cap \mathcal{O} \neq \emptyset\}\right) \bigcup \left(\bigcup_{[i,j] \in P} \{q \in \mathcal{C} \mid \mathcal{A}_{i}(q) \cap \mathcal{A}_{j}(q) \neq \emptyset\}\right)$$
pairs of colliding rigid bodies

The free space, C_{free} , is an open set in \mathbb{R}^N

$$C_{free} = C \setminus C_{obs}$$

Example: Point Robot in the Plane

Obstacle Region and Free Space

The Basic Motion Planning Problem

There exists a motion plan from q_I to q_G $iff q_I$ and q_G belong to the same connected component of C_{free}

Lavalle, 4.3.1

Modeling Obstacle Regions and Free Space for a Robot with Finite Extent

Example: A single-rigid-body robot that can only translate in R^2 (configuration space is R^2)

The obstacle region, $C_{obs} \subseteq C$, is defined as

$$C_{obs} = \{ q \in C \mid \mathcal{A}(q) \cap \mathcal{O} \neq \emptyset \}$$

Modeling Obstacle Regions and Free Space for a Robot with Finite Extent

Example: A single-rigid-body robot that can only translate in R^2

Key Idea: Minkowski Sum

The *Minkowski* sum of two sets *A* and *B*

$$A \oplus B = \{a+b \mid a \in A, b \in B\}$$

Penn Engineering

$A \oplus B = \{a+b \mid a \in A, b \in B\}$

Lozano-Perez and Wesley, 1979

$$C_{obs} = O \oplus -A$$

Example

Example

Complexity

O-2D convex polygon, m vertices

A-2D convex polygon, n vertices Minkowski sum is a convex polygon of m+n vertices Run time $\sim O(n+m)$

Nonconvex case is much harder

- decompose into convex polygons
- compute Minkowski sums
- take unions Run time $\sim O(n^2m^2)$

Run time $\sim O(n^3m^3)$ in 3D

END OF SEGMENT 2

Obstacle Regions for Translation

What if the robot is rigid body that can translate and rotate in the plane?

Robot

Obstacle

Slices of C_{obs}

Each slice is a convex polygon of $\leq 4+5$ vertices

Details on computation with polygonal objects/robots available in Lavalle (3.1.1, 4.3)

 C_{obs} is modeled as a union of semi-algebraic sets (Lavalle 3.1.2)

