Chapter 16: Correlation between numerical variables

1

Correlation

When two numerical variables are associated then they are correlated

- The correlation coefficient measures the strength and direction of the association between two numerical variables
 - AKA linear correlation coefficient or Pearson's correlation coefficient
- Correlation coefficient (statistic), r
- Population correlation coefficient (parameter), ρ

3

Correlation coefficient

Measures how deviations in X and Y vary together

Fig 16.1-1

$$r = \frac{\sum_{i} (X_{i} - \overline{X}) (Y_{i} - \overline{Y})}{\sqrt{\sum_{i} (X_{i} - \overline{X})^{2}} \sqrt{\sum_{i} (Y_{i} - \overline{Y})^{2}}}$$

Square root of sum of squares (part of standard deviation calculation)

5

Correlation coefficient

• Ranges from -1 to 1

Fig 16.1-2

- Ranges from -1 to 1
- Possible that two variables can be strongly associated but have no correlation (r=0)
 - Non-linear association

Ex 16.1: Flipping the bird

- Mistreated children often become adults that mistreat their young
- Does this happen in other species?
- Nazca boobies in Galapagos
- When adults visit nests of non-related chicks they typically act aggressively toward them
- Is there an association between number of non-relative nest visits and future aggression?

$$r = \frac{\sum_{i} (X_{i} - \overline{X}) (Y_{i} - \overline{Y})}{\sqrt{\sum_{i} (X_{i} - \overline{X})^{2}} \sqrt{\sum_{i} (Y_{i} - \overline{Y})^{2}}}$$

$$\sum_{i} (X_i - \overline{X}) (Y_i - \overline{Y}) = 33.086$$

$$\sum_{i} (X_i - \overline{X})^2 = 1194.625$$

$$\sum_{i} \left(Y_i - \overline{Y} \right)^2 = 3.217$$

$$r = \frac{33.086}{\sqrt{1194.625}\sqrt{3.217}} = 0.534$$

11

Standard error of correlation coefficient

$$SE_r = \sqrt{\frac{1 - r^2}{n - 2}} = \sqrt{\frac{1 - (0.534)^2}{24 - 2}} = 0.180$$

• But the sampling distribution of r is not normally distributed, so SE_r is not used in calculating the 95% CI

Approx. confidence interval of correlation coefficient

- Bit complicated...
- Involves conversion of r that includes natural log, and then back conversion

 $0.166 < \rho < 0.771$

Fairly broad range, but does not include zero

Consistent with positive linear correlation between antagonistic events during development and future aggression

Hypothesis testing for correlation

- H_0 : $\rho = 0$
- H_A : $\rho \neq 0$

15

Ex 16.2: What big inbreeding coefficients you have

- Wolves wiped out from Norway and Sweden by 1970, but then area colonized by two individuals in 1980
- ~100 wolves by 2002
- With small number of founders, expect high inbreeding
- Do pairs with high inbreeding coefficients have fewer surviving pups?

TABLE 16.2-1 Inbreeding coefficients of litters of mated wolf pairs and the number of pups surviving their first winter. n=24 litters.

Inbreeding coefficient	Number of pups	Inbreeding coefficient	Number of pups
0.00	6	0.25	3
0.00	6	0.25	2
0.13	7	0.25	2
0.13	5	0.25	6
0.13	4	0.27	3
0.19	8	0.30	5
0.19	7	0.30	3
0.19	4	0.30	2
0.22	4	0.30	1
0.25	3	0.36	3
0.25	3	0.37	2
0.25	3	0.40	3

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company

Fig 16.2-1

17

Correlation coefficient

$$r = \frac{\sum_{i} (X_{i} - \overline{X}) (Y_{i} - \overline{Y})}{\sqrt{\sum_{i} (X_{i} - \overline{X})^{2}} \sqrt{\sum_{i} (Y_{i} - \overline{Y})^{2}}}$$

$$\sum_{i} (X_i - \overline{X}) (Y_i - \overline{Y}) = -2.690$$

$$\sum_{i} \left(X_i - \overline{X} \right)^2 = 0.230$$

$$\sum_{i} \left(Y_i - \overline{Y} \right)^2 = 80.958$$

$$r = \frac{-2.690}{\sqrt{0.230}\sqrt{80.958}} = -0.623$$

Hypothesis testing for correlation

- H_0 : no relationship between inbreeding coefficient and number of pups ($\rho = 0$)
- H_A: Inbreeding coefficients and the number of pups are correlated (ρ ≠ 0)

19

Test statistic

Based on Student's t-distribution

$$t = \frac{r}{SE_r} = \frac{-0.623}{0.167} = -3.74$$
 $df = n - 2$
= 24 - 2 = 22

$$SE_r = \sqrt{\frac{1 - r^2}{n - 2}} = \sqrt{\frac{1 - (-0.623)^2}{24 - 2}} = 0.167$$

P-value

- $t_{22} = -3.60$

Reject the null hypothesis: there is a significant, negative correlation between inbreeding coefficient and number of surviving pups

21

Assumptions

- Random sample from the population
- · Bivariate normal distribution
 - Bell-shaped in two dimensions rather than one

Fig 16.3-1

23

Deviations from bivariate normality Funnel Outlier Nonlinear X Fig 16.3-2

- · Options?
 - Transform data (both variables same way)
 - Nonparametric test (Spearman's rank correlation); skipping

Correlation coefficient depends on range

Notes

• Skipping sections 16.5 and 16.6