円形マルチピンホールと矩形マルチピンホールの比較

法政大学理工学部 応用情報工学科 4 年 16x3128 馬場俊弥

2019年10月18日

1 はじめに

SPECT (Single Photon Emission Computed Tomography) とは放射性同位元素 (RI: Radio Isotope) を用いた放射性医薬品を体内に投与することによって,放射性医薬品から出る微量な放射線 (γ 線) をさまざなま方向から測定し,断層画像にする方法である.

2 研究概要

SPECT による測定において、γ線を収集する 方向を一定にするために、コリメータと呼ばれる 装置を用いる. コリメータのピンホールは本来円 形をしているが、ピンホールの形を矩形にした, マルチ矩形ピンホール SPECT システムの開発を 研究テーマとして研究を行なっている. 通常ピン ホールは円形をしているが、有効視野の範囲外に なってしまう部分, すなわち, 検出器の中に, 検 出に使用しない領域が発生してしまう. 検出に使 用しない領域を小さくするために、ピンホールを 矩形した, 矩形マルチピンホール SPECT システ ムを提案する. ピンホールの配置や傾きを変える ことによって、検出に使用しない領域を、最小限 にすることにより、検出効率をあげることが研究 の目的である. その際に, 矩形の方が, 検出器の 角の周辺を有効視野にすることが容易であり,有 効視野同士の重なりを少なくすることができる.

3 シミュレーション

3.1 シミュレーション条件

シミュレーション条件を表1に示す.

表 1 シミュレーション条件

ファントム	Shepp ファントム
初期エネルギー	140~KeV
最大散乱回数	5 回
検出器の数	90
回転半径	25~cm
画像サイズ	$128 \times 128 \times 128 \ voxels$
画像のボクセルサイズ	$0.16 \times 0.16 \times 0.16 \ cm^3$
コリメータから検出器までの距離	7.6~cm
検出のサイズ	$512 \times 256 \ pixels$
検出のピクセルサイズ	$0.08 \times 0.08 \ cm^2$
補正	感度補正, 吸収補正
再構成	ML-EM 法 100 回

円形ピンホールのジオメトリを図1に示す.

図1 円形ピンホールのジオメトリ

矩形ピンホールのジオメトリを図2に示す.

図2 矩形ピンホールのジオメトリ

また,このときの有効視野を図3に示す.

図3 (左)円形ピンホールの有効視野,(右)矩 形ピンホールの有効視野

使用した原画像とそのプロファイルを図 4 に示す.

図4 (左)原画像、(右)プロファイル

3.2 結果

3.2.1 データ取得

モンテカルロ法を用いた光子輸送を用いて取得 した投影画像のプロファイルを図5に示す.

図5 投影画像のプロファイル (真ん中のピンホール)

3.2.2 再構成

■1ray 擬似投影線が1本の場合の再構成画像. 円形ピンホールの再構成画像と矩形ピンホール の再構成画像を図6に示す.

図 6 (左)円形の場合の再構成画像,(右)矩形の場合のプロファイル

このときのプロファイルを図7

図7 再構成画像のプロファイル

■7ray 擬似投影線が7本の場合の再構成画像. 円形ピンホールの再構成画像と矩形ピンホール の再構成画像を図8に示す.

図8 (左)円形の場合の再構成画像,(右)矩形の場合のプロファイル

このときのプロファイルを図9

図 9 再構成画像のプロファイル

■円形: 12ray, 矩形: 16ray 円形の場合, 擬似投 影線が12本, 矩形の場合, 16本の再構成画像.

円形ピンホールの再構成画像と矩形ピンホール の再構成画像を図 10 に示す.

図 10 (左)円形の場合の再構成画像,(右)矩 形の場合のプロファイル

このときのプロファイルを図11に示す.

図 11 再構成画像のプロファイル

4 まとめと今後の展望

円形ピンホールと矩形ピンホールを同条件で比較することによって、再構成結果を比較することができた.これからは、矩形ピンホールで再構成結果を綺麗にすること、そして、ピンホールの配置を決めることによって、より多くのデータを取得できるようにする.