Formula di Taylor Problema: Data una funzione f derivabile in un $I(x_0)$, qual e il polinomio di I° grado che meglio approssima f? In altre perole, ho una funzione che non so trattare, e quindi al posto di questa, considero una funzione ad essa vicina, che la approssima.

ES: log 2 =? Boh! Posso approssimore questa f con un polinomio di I°grado?

Sappione che fe deriv in xo=>

$$= D \exists finito \lim_{x \to x_0} \frac{f(x) - f(x - x_0)}{x - x_0} = f'(x_0) \qquad \text{Portions } f' = \text{prime membro}$$

f(x)

$$= \lim_{x\to\infty} \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) = 0 ; \lim_{x\to\infty} \frac{f(x) - [f(x_0) + f'(x_0)(x - x_0)]}{(x - x_0)} = 0$$

La (a) e un polinomio di Iº grado, che Chiemiamo P1(x).

=0 lim
$$\frac{f(x) - P_1(x)}{x - x_0} = 0$$
 =0 La distanza tra $f(x)$ ed il polinomio, $f(x)$ extra $x - x_0$, e^- zero.

Se pero' il rapporto Tenda a zero, significa che il Numeratore Tenda a zero, quindi esso, ovvero $f(x)-P_1(x)$, e^- un $o(x-x_0)$ (o piccolo del denominatore), ovvero e^- un Infinitesimo di ordine <u>superiore</u> a $(x-x_0)$.

Inoltre, $f(x) - P_1(x)$ viene detto ERRORE, o resto primo di f. Quindi l'errore che commetto nell'approssimare f con P_1 , e^- dato proprio da $f(x) - P_2$.

Osservazione Se f e derivabile in xo, il miglior polinomio di I^o grado che la approssima $e^ y = f(x_0) + f'(x_0)(x-x_0)$ e il resto $R_1(x) = f(x) - Lf(x_0) + f'(x_0)(x-x_0)$] e un infinitesimo di ordine sup. a $(x-x_0)$, avvero e^- una buona approssimazione.

1:47

Problema: Se f e derivabile n volte in $I(x_0)$ quale il polinomio di grado n che approssima "meglio" f in $I(x_0)$?

Teorema sulla formula di Taylor.

Sia f derivabile n volte in x_0 , allora dave R_n si dice resto n-esimo e si ha:

$$\lim_{X\to X_0} \frac{R_n(x)}{(x-x_0)^n} = \emptyset$$

$$f(x) = \sum_{n=0}^{n} f^{(\kappa)}(x_0) (x - x_0) + R_n$$

Polinomio di Taylor

Cosa vuol dire?

Se ho unon f deriv in volte (nel teor. prec solo f) posso esprimere f(x) come questa quantità. Osservionno che: $P_n(x) = [...] = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)(x - x_0)^2 + ... + f''(x_0)(x - x_0)(x - x_0)^2 + ... + f''(x_0)(x - x_0)(x - x_$

Il polinomio $f(x_0) + f'(x_0)(x-x_0)$ e un polinomio di grado n, detto polinomio di taylor di punto iniziale x_0 .

Questa formula ha resto Rn nella forma di <u>Peano</u>, ovvero $R_n = o((x-x_0)^n)$, cio e Rn tende a θ piu velo cemente di $(x-x_0)^n$.

Di consequenza se $x=10^{-1}$, ovviamente esso e maggiore di $x=10^{-5}=\frac{1}{100000}<\frac{1}{10}$. Se ho quindi una quantità che Tende a zero, se la elevo ad n, questa Tendera a zero aucora più velo cemente.

= Piv' l'ordine e groude, piv' l'errore sara' piccolo.

Se ho xo=0, la formula di Taylor diventa:

$$f(x) = \sum_{n=0}^{n} \frac{f(n)}{n!} \times^{n} + R_{n}(x)$$
 che prende il nome di Mac-Laurin. (punto iniziale 0)

Es: $f(x) = e^x$ in $x_0 = 0$

1) Derivate
$$f^{(n)} = e^x - f^{(n)}(x) = e^x + f^{(n)}(0) = 1 + f^{(n)}(0) = 1$$

$$e^{x} = \frac{1}{1!} + x + \frac{1}{2!} x^{2} + \frac{1}{3!} x^{3} + \dots + o(x^{n}) = \sum_{n=0}^{n} \frac{x^{n}}{k!} + o(x^{n})$$

Es:
$$f(x) = \sin x$$
 in $x_0 = 0$ of $f = \cos x$ $f = -\sin x$ $f = -\cos x$ $f = -\cos x$ $f = -\cos x$ $f = -\cos x$

$$= 0 + x - \frac{x^3}{31} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots$$

Sin x =
$$\sum_{n=0}^{n} (-1)^n \cdot \frac{\chi^{2n+1}}{(2+1)!} + o(\chi^n)$$

$$\cos x = \sum_{n=0}^{n} (-1)^{n} = \frac{x^{2n}}{(2n)!} + o(x^{n})$$

$$\log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{x}$$