Exercise

2019.10.30

Financial Application (Bubble modeling)

資料來源:國泰君安證券研究所

log-periodic power laws (LPPL) for bubble modeling

$$\ln[p(t)] \approx A + B(t_c - t)^{\beta} \{1 + C\cos[\omega \ln(t_c - t) + \phi]\},$$
 (12)

where A > 0 is the value of $[\ln p(t_c)]$ at the critical time, B < 0 is the increase in $[\ln p(t)]$ over the time unit before the crash if C were to be close to zero, $C \neq 0$ is the proportional magnitude of the oscillations around the exponential growth, $0 < \beta < 1$ should be positive to ensure a finite price at the critical time t_c of the bubble and quantifies the power law acceleration of prices, and ω is the frequency of the oscillations during the bubble, while $0 < \phi < 2\pi$ is a phase parameter. Expression (12), which is known as the LPPL, is the fundamental equation that describes the temporal growth of prices before a crash and it has been proposed in different forms in various papers (e.g. Sornette 2003a, Lin, Ren, and Sornette 2009 and references therein). We remark that A, B, C and ϕ are just units distributions of betas and omegas, as described in Sornette and Johansen (2001) and Johansen (2003), and do not carry any structural information.

- ▶ Two step algorithm
 - \triangleright Each gene includes 4 non-linear variables t_c, β, ω, Φ
 - Use linear regression to estimate best A, B, C
- For each parameter setting, we can measure the fitness between synthetic signals and real financial time-series data.
- Apply genetic algorithm to approximate the optimal solution by minimizing the average fitness error between time 0 and t_c .
- Homework:
 - ► LPPL
 - ► Find the optimal LPPL parameters, suppose t_c in [1151,1166]
 - ▶ Plot the synthetic signals and real time-series data with different colors in a figure