JESENSKI ISPITNI ROK: *MATEMATIKA 2* 7.9.2015.

1) [4 boda]

- a) [1 bod] Definiraj skalarnu projekciju vektora \vec{b} na vektor \vec{a} .
- **b)** [3 boda] Nađite skalarnu projekciju vektora $\vec{b} = 3\vec{m} 2\vec{n}$ na vektor $\vec{a} = \vec{m} + 2\vec{n}$ ako je $|\vec{m}| = 3$, $|\vec{n}| = 2$, $\Delta(\vec{m}, \vec{n}) = \frac{\pi}{2}$.

2) [5 bodova]

- a) [3 boda] Zadan je pravac p u vektorskom obliku $\vec{r} = \vec{r_0} + \lambda \vec{c}$, $\lambda \in \mathbb{R}$ i točka T_1 svojim radijvektorom $\vec{r_1}$. Izvedite formulu za udaljenost točke T_1 od pravca p, te skicirajte sliku.
- **b)** [2 boda] Zadan je trokut $\triangle ABC$; A(3,0,1), B(5,2,3), C(3,5,2). Odredite duljinu visine v_c iz vrha C.
- 3) [5 bodova] Zadana je ploha $z = k(x^2 + y^2)$ gdje je k neki realan broj.
 - a) [3 boda] Odredite k_0 takav da je presjek plohe $z=k_0(x^2+y^2)\,$ s ravninom $z=2\,$ kružnica radijusa 1. Imenujte i skicirajte tu plohu.
 - b) [2 boda] Skicirajte nivo krivulje plohe pod a) za c = 0, 2 i 4, te odredite nivo krivulju koja prolazi stacionarnom točkom te plohe.
- **4) [4 boda]** Visina pravilnog valjka se smanjuje brzinom od 3 mm/s dok se radijus povećava brzinom 2 mm/s. Kolika je brzina $\frac{dV}{dt}$ promjene volumena V u trenutku kada je radijus r=50~mm, a visina v=100~mm? **Uputa:** Izrazite volumen V kao funkciju radijusa i visine.

5) [7 bodova]

a) [5 bodova] Nadite i ispitajte točke lokalnih ekstrema funkcije

$$z = arctg(x + y)$$

uz uvjet $x^2 + y^2 = 8$.

b) [2 boda] Neka je $f: \mathbb{R}^2 \to \mathbb{R}$ diferencijabilna funkcija i neka je $\varphi(x,y) = 0$ zadana ploha. Dokažite da za Langrangeovu funkciju $L(x,y,\lambda) = f(x,y) + \lambda \varphi(x,y)$ vrijedi:

$$\frac{\partial^2 L}{\partial x \partial \lambda}(T_0) dx + \frac{\partial^2 L}{\partial y \partial \lambda}(T_0) dy = 0$$

pri čemu je ${\it T_0}$ proizvoljna točka na plohi $\varphi(x,y)=0.$

6) [5 bodova]

a) [1 bod] Definirajte apsolutnu konvergenciju reda brojeva

$$\sum_{n=1}^{\infty} a_n$$

- b) [2 boda] Koje su od slijedećih tvrdnji istinite, a koje nisu:
 - (T1) Ako je red konvergentan, onda je i apsolutno konvergentan.
 - **(T2)** Ako je red apsolutno konvergentan, onda je i konvergentan. Za neistinite tvrdnje navedite protuprimjer.
- c) [2 boda] Ispitajte konvergenciju i apsolutnu konvergenciju reda

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3n + \sqrt{n}}$$

7) [5 bodova]

a) [4 boda] Funkciju

$$f(x) = (3 + 2e^{-x})^2$$

razvijte u Taylorov red oko a = 0 te odredite pripadni radijus konvergencije.

- **b)** [1 bod] Izračunajte koeficijent koji u Taylorovom razvoju funkcije f stoji uz potenciju x^3 .
- 8) [5 bodova] Nađite krivulju koja prolazi točkom (2, 1) i u svakoj točki (x_0, y_0) te krivulje njena normala ima koeficijent smjera jednak $\frac{2x_0y_0}{y_0^2-{x_0}^2}$.
- 9) [5 bodova] Nađite opće rješenje diferencijalne jednadžbe

$$2y'' + 4y' + 2y = e^x$$

10) [5 bodova]

- a) [1 bod] Definirajte Wronskijan $W(y_1, y_2)(x)$ funkcija $y_1(x)$ i $y_2(x)$.
- **b)** [1 bod] Dokažite da $W(y_1, y_2)(x) \not\equiv 0$ povlači da su y_1 i y_2 linearno nezavisne funkcije.
- c) [3 boda] Neka su $y_1(x)$ i $y_2(x)$ linearno nezavisna rješenja diferencijalne jednadžbe

$$y'' + qy = 0$$
, $q \in \mathbb{R}$

Odredite rješenja $y_1(x)$ i $y_2(x)$ za slučajeve q < 0, q = 0 i q > 0 te pokažite da Wronskijan $W(y_1, y_2)(x)$ u sva tri slučaja ne ovisi o x.