

University School of Automation and Robotics GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY East Delhi Campus, Surajmal Vihar

Delhi - 110092

Paper Code: ARI 202			
Subject: Internet of Things	L	T/P	Credits
Marking Scheme	4	-	4

1. Teachers Continuous Evaluation: 25 Marks

2. End Term Theory Examination: 75 Marks

INSTRUCTIONS TO PAPER SETTERS:

1. There should be 9 questions in the end term examination question paper Maximum Marks: 75

2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks.

3. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be 15 marks.

4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.

5. T	he requir	ement o	f (scienti	fic) calc	ulators/	log-table	evel of the	ne presci	ribed tex	tbooks.		
Course	Outcor	nes:		are y cure	diators/	log-tabl	es/ data-	tables m	ay be sp	ecified in	f require	d
CO1:	Ability	y of stud	ents to ir	unlemen	it the has	io lenov	1.45	CY				
CO2:	can be	applied	ents to ir lents to i and lear	about t	he midd	leuge of	101 in	some of	the app	lication	areas wh	nere IoT
CO3:	Ability	of stud	ents to u	tilize the	concep	ts of Io7	archite	ecture, Io	T refere	nce mod	el and o	verview
CO4:	Ability	of stude Design	ents to u	tilize and	d implen	nent sol	id theore	etical for	ındation	of the Id	T Platfo	orm and
Course	Outcom	es (CO)	to Prog	ramme	Outcom	es (PO)						
CO/PO	PO01	PO02	PO03	PO04	PO05			hing (2)	cale 1: L	ow, 2: M		3: High
CO1	3	3	3	3	2	2	FO0/	PO08	- 02	PO10	PO11	PO12
CO2	3	3	3	3	2	2	1	ı	3	2	2	3
CO3	3	2	2			2	1	1	3	2	2	3

CO/PO	O/PO PO01 PO02 F		PO03	PO04	PO05	DOM	DOOT	DOGG	ping (Scale 1: Low, 2: Medium, 3: Hig PO08 PO09 PO10 PO11 PO				
CO1	3	3	2	2	1003	1 000	POU/	PO08	PO09	PO10	PO11	PO1	
CO ₂	2	2	3	3	2	2	1	1	3	2	2	2	
	<u> </u>	3	3	3	2	2.	1	1	2	2	4	3	
CO3	3	3	3	3	2	2	1			2	2	3	
CO4	3	2	2	3		2	1	1	3	2	2	3	
		3	3	3	2	2	1	1	3	2	2	2	

Unit I Introduction to IoT: Meaning of IoT, Importance of IoT, Elements of an IoT ecosystem, Technology drivers, Business drivers, Trends and implications, Overview of Governance,

Privacy and Security Issues. Technologies involved in IoT development, Internet web and Networking technologies, Infrastructure, Overview of IoT supported Hardware platforms

Unit II

IoT protocols: Protocol Standardization for IoT, Efforts, M2M and WSN Protocols, Role of M2M in IoT, M2M Value Chains, IoT Value Chains, An emerging industrial structure for IoT, SCADA and RFID Protocols, Issues with IoT Standardization, Unified Data Standards Protocols, IEEE802.15.4-BACNet Protocol, Modbus, KNX, Zigbee, Network layer, APS layer

Unit III

A narroy of her Doc officab. 1/00/22

[10]

Prof. Ajay S. Singholi Professor In-charge, USAR ^ Guru Gobind Singh Indraprasthat University 0/22 (East Dethi Campus) Suraimal Vihar, Delhi-110092

University School of Automation and Robotics GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY East Delhi Campus, Surajmal Vihar Delhi - 110092

IoT Architecture: IoT Open-source architecture (OIC), OIC Architecture & Design principles IoT reference Model and Architecture: Functional View, Information View, Deployment and Operational View, IoT Devices and deployment models, IoTivity: An Open source IoT

Overview: IoTivity stack architecture, Resource model and Abstraction

Unit IV

Web of things: Web of Things versus Internet of Things, Two Pillars of the Web, Architecture Standardization for WoT, Platform Middleware for WoT, Unified Multitier

WoT Architecture: WoT Portals and Business Intelligence

IoT applications Applications for industry: Future Factory Concepts, Brownfield IoT, Smart Objects, Smart Applications. Study of existing IoT platforms /middleware, IoT- A, Hydra etc.

Textbooks:

1. Zhou, H. (2012). The internet of things in the cloud. Boca Raton, FL: CRC press.

2. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds) (2011) Architecting the Internet of Things, Springer.

3. Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge university press.

4. Hersent, O., Boswarthick, D., & Elloumi, O. (2011). The internet of things: Key applications and protocols. John Wiley & Sons.

References Books:

1. Bahga, A., & Madisetti, V. (2014). Internet of Things: A hands-on approach. Vpt.Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013

2. Pfister, C. (2011). Getting started with the Internet of things: connecting sensors and microcontrollers to the cloud." O'Reilly Media, Inc.".

Guru Gobind Singh Indraprastha University

(East Dethi Campus) Suraimal Vihar, Delhi-110092

round by Doc offica D. 1/00/22