Time Series

윤재경 정재원 전혜민 윤빈나 권지혜 최성웅

INDEX

1. PROJECT

- DATA
- VISUALIZATION

2. MODEL INTRODUCTION

- ARIMA
- RNN BASED MODELS

3. FUTURE SCHEDULE

- MODEL STUDY
- DATA PREPROCESSING

Project - Great Energy Predictor |||

https://www.kaggle.com/c/ashrae-energy-prediction/overview

Project - Data

building_meta.csv

- · site_id Foreign key for the weather files.
- · building_id Foreign key for training.csv
- primary_use Indicator of the primary category of activities for the building based on EnergyStar property type definitions
- · square_feet Gross floor area of the building
- · year_built Year building was opened
- · floor_count Number of floors of the building

weather_[train/test].csv

Weather data from a meteorological station as close as possible to the site.

- site_id
- air_temperature Degrees Celsius
- · cloud_coverage Portion of the sky covered in clouds, in oktas
- dew_temperature Degrees Celsius
- precip_depth_1_hr Millimeters
- sea_level_pressure Millibar/hectopascals
- · wind_direction Compass direction (0-360)
- · wind_speed Meters per second

Project - Visualization (Per site)

Project - Visualization (Per sector)

KU-BIG

Project - Visualization

Project - Visualization (Temperature in Jan 1st, 2016)

Project - Visualization

기온 데이터의 **PCA** 결과를 기반으로 한 시각화 결과

=> <mark>미국</mark>과 유사한 형태를 띄고 있다는 내용 발견

이외에도 다양한 시각화 및 EDA를 통해 각 변수의 특성 및 관계를 분석해나가는 것이 관건

Model 1 – ARIMA (Auto-Regressive Integrated Moving-Average)

Stationary Series

Non-Stationary Series

Model 1 – ARIMA (Auto-Regressive Integrated Moving-Average)

AR (Auto-Regression) : 이전 관측값이 이후 관측값에 영향을 주는 모형 $AR(1): X_t = \phi X_{t-1} + \epsilon_t$ I (Integrated) : 무적을 의미 $\mathbf{MA} \text{ (Moving-Average)} :$ 가축값이 이적의 연속적인 오차항의 영향을 받는 모형

 $MA(1): X_t = \epsilon_t - \beta_1 \epsilon_{t-1}$

ARIMA(p, d, q)

$$\hat{y}_t = \mu + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} - \beta_1 \epsilon_{t-1} - \dots - \beta_q \epsilon_{t-q}$$

- $\mu = constant$
- $\phi_1 y_{t-1} + ... + \phi_p y_{t-p}$: ARterms(laggedvalues of y)
- $-\beta_1 \epsilon_{t-1} \dots \beta_q \epsilon_{t-q} : MAterms(laggedvaluesofy)$
- $\hat{y}_t = Y_t$, if d = 0
- $\hat{y}_t = Y_t Y_{t-1}$, if d = 1
- $\hat{y}_t = (Y_t Y_{t-1}) (Y_{t-1} Y_{t-2}), if d = 2$

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

출처: http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture10.pdf

RNN

X

출처 : https://aikorea.org/blog/rnn-tutorial-1/

1. Model study

2. Processing & EDA

Sequences and Prediction

Hi Learners and welcome to this course on sequences and prediction! In this course we'll take a look a series data -- where values change over time, like the temperature on a particular day, or the number

모두 표시

10개 동영상 (총 33분), 3 readings, 3 quizzes 모두보기

Project Plan

