Dissolution et chute d'une particule d'alumine dans un bain électolytique

J. Rappaz, janvier 2018

Dans ce document on considère la chute et la dissolution d'une particule d'alumine sphérique de rayon r_0 et de densité ϱ_{al} dans un bain électrolytique de densité $\varrho_e < \varrho_{al}$ et de viscosité μ , placés dans le champ gravifique g. En supposant que le mouvement produit par la chute de cette particule n'a pas d'influence sur sa dissolution, son rayon r va dépendre du temps t selon l'équation suivante:

$$\frac{d}{dt}r(t) = -Kr^{-1}(t), (1)$$

$$r(0) = r_0, (2)$$

$$r(0) = r_0, (2)$$

où ici K est une constante positive qui donne la vitesse de dissolution de la particule.

L'unique solution des équations (1) et (2) est donnée par

$$r(t) = (r_0^2 - 2Kt)^{1/2}. (3)$$

Clairement pour

$$T = \frac{r_0^2}{2K} \tag{4}$$

on obtient r(T) = 0 et donc la particule est complètement dissoute au temps T.

Si, pour $t \in [0,T]$, x(t) est la trajectoire verticale de cette particule dans le bain électrolytique, alors l'équation du mouvement est donnée par

$$\frac{d}{dt}(\varrho_{al}V(t)x'(t)) = g(\varrho_{al} - \varrho_e)V(t) - 6\pi\mu r(t)x'(t), \tag{5}$$

où $V(t) = \frac{4}{3}\pi r^3(t)$ est le volume de la particule, et $x'(t) = \frac{d}{dt}x(t)$ est sa vitesse. Remarquons que le terme $g(\varrho_{al}-\varrho_e)V(t)$ dans (5) représente la force de gravité diminuée de la force d'Archimède agissant sur la particule. Le terme $6\pi\mu r(t)x'(t)$ est la force de traînée (drag force) de Stokes.

Les conditions initiales seront

$$x(0) = 0 \text{ et } x'(0) = 0.$$
 (6)

En utilisant la relation (3), nous aurons

$$\frac{d}{dt}V(t) = -4\pi K r(t). \tag{7}$$

En remplaçant (7) dans l'égalité (5), en tenant compte de $V(t) = \frac{4}{3}\pi r^3(t)$ et en divisant par $\pi r(t)$ nous obtenons:

$$\varrho_{al} \frac{4}{3} r^2(t) \frac{d^2}{dx^2} x(t) = g(\varrho_{al} - \varrho_e) \frac{4}{3} r^2(t) - (6\mu - 4\varrho_{al} K) x'(t). \tag{8}$$

En utilisant successivement (3), (4) et (6), et en intégrant l'équation (8) lorsque $t \in [0, T]$, on obtient:

$$(6\mu - 4\varrho_{al}K)x(T) = g(\varrho_{al} - \varrho_e)\frac{r_0^4}{3K} - \varrho_{al}\frac{4}{3}\int_0^T (r_0^2 - 2Kt)\frac{d^2}{dx^2}x(t)dt.$$
 (9)

Si nous intégrons le dernier terme de l'équation (9) par partie, alors nous aurons en utilisant (4) et (6):

$$\int_0^T \left(r_0^2 - 2Kt\right) \frac{d^2}{dx^2} x(t) dt = \left(r_0^2 - 2KT\right) x'(T) + 2Kx(T) = 2Kx(T). \tag{10}$$

Ainsi (9) et (10) impliquent:

$$x(T) = \frac{g(\varrho_{al} - \varrho_e)}{K(18\mu - 4\varrho_{al}K)} r_0^4. \tag{11}$$

RESULTAT: Une particule de rayon initial r_0 , de densité ϱ_{al} , de constante de dissolution K, placée dans un bain électrolytique de densité ϱ_e et de viscosité μ , chutera d'une hauteur égale à $\frac{g(\varrho_{al}-\varrho_e)}{K(18\mu-4\varrho_{al}K)}r_0^4$ avant de se dissoudre complétement.

Exemple RTA:

- $r_0 = 10^{-4} \ m$
- $\varrho_e = 2130 \ kgm^{-3}$
- $\bullet \ \varrho_{al} = 3960 \ kgm^{-3}$
- $K = 0.5 \ 10^{-9} \ m^2 s^{-1}$
- $\mu = 1 \ kgm^{-1}s^{-1}$
- $q = 9.81 \ ms^{-2}$

On obtient ainsi $T = 10 \ s. \ x(T) \simeq 2 \ 10^{-4} m = 2r_0!!!$

Remark 1 Dans cet exemple on peut constater que $4\varrho_{al}K$ peut être négligé devant le terme 18μ dans la formule (11). Ainsi on peut approcher sans problème la formule (11) par

$$x(T) = \frac{g(\varrho_{al} - \varrho_e)}{18\mu K} r_0^4. \tag{12}$$

La distance parcourue par la particule devient ainsi inversément proportionnelle à μ mais proportionnelle à r_0^4 . Si $\mu=2.10^{-3}kgm^{-1}s^{-1}$ alors $x(T)\simeq 10$ cm. Mais si, pour une viscosité de $\mu=2.10^{-3}$ $kgm^{-1}s^{-1}$, la particule a pour rayon $r_0=2.10^{-4}$ m, alors $x(T)\simeq 1.6$ m.

Remark 2 On peut se demander s'il est convenable d'utiliser la loi de Stokes comme force de traînée? Dans le cas de figure ci-dessus ça se justifie entièrement. En effet le nombre de Reynolds est donné par

$$Re(t) = \frac{\varrho_e 2r(t)x'(t)}{\mu}.$$
 (13)

Dans un cas de non-dissolution $(r(t) = r_0 \text{ pour tout } t)$, et lorsque la vitesse de la particule devient stationnaire $(\frac{d}{dt}(\varrho_{al}V(t)x'(t)) = \varrho_{al}\frac{4}{3}\pi r_0^2x''(t) = 0 \text{ dans } (5))$, on obtient $x'(t) = \frac{2}{9}g\frac{\varrho_{al}-\varrho_e}{\mu}r_0^2$. Ainsi le nombre de Reynolds devient

$$Re = \frac{4}{9} \frac{g(\varrho_{al} - \varrho_e)\varrho_e}{\mu^2} r_0^3.$$
 (14)

En reprenant l'exemple ci-dessus, on obtient Re $\simeq 2.10^{-5}$. Si $\mu=2.10^{-3}kgm^{-1}s^{-1}$ et $r_0=2.10^{-4}~m$ on obtient Re $\simeq 40$. Ces résultats justifient la loi de traînée de Stokes!