

AD-A177 877 ON THE INTENSITY OF CROSSINGS BY A SHOT NOISE PROCESS 1/1
(U) NORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR
STOCHASTIC PROCESSES T HSING JUL 86 TR-141

UNCLASSIFIED AFOSR-TR-87-0122 F49620-82-C-0009 F/G 12/1 NL

AD-A177 077

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

(2)

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS										
2a. SECURITY CLASSIFICATION AUTHORITY NA		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for Public Release; Distribution Unlimited										
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE NA		5. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR-TR- 87-0122										
4. PERFORMING ORGANIZATION REPORT NUMBER(S) Technical Report No. 141		6a. NAME OF PERFORMING ORGANIZATION University of North Carolina										
		6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION AFOSR/NM									
6c. ADDRESS (City, State and ZIP Code) Center for Stochastic Processes, Statistics Department, Phillips Hall 039-A, Chapel Hill, NC 27514		7b. ADDRESS (City, State and ZIP Code) Bldg. 410 Bolling AFB, DC 20332-6448										
8a. NAME OF FUNDING/SPONSORING ORGANIZATION AFOSR		9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER X00002(X)96XX)XXXXX F49620 82 C 0009										
8b. ADDRESS (City, State and ZIP Code) Bldg. 410 Bolling AFB, DC		10. SOURCE OF FUNDING NOS. <table border="1"> <tr> <td>PROGRAM ELEMENT NO. 6.1102F</td> <td>PROJECT NO. 2304</td> <td>TASK NO. <i>AS</i></td> <td>WORK UP NO.</td> </tr> </table>		PROGRAM ELEMENT NO. 6.1102F	PROJECT NO. 2304	TASK NO. <i>AS</i>	WORK UP NO.					
PROGRAM ELEMENT NO. 6.1102F	PROJECT NO. 2304	TASK NO. <i>AS</i>	WORK UP NO.									
11. TITLE (Include Security Classification) "On the intensity of crossings by a shot noise process"		12. PERSONAL AUTHORITY Hsing, T/										
13a. TYPE OF REPORT technical	13b. TIME COVERED FROM <u>9/84</u> TO <u>8/85</u>	14. DATE OF REPORT (Yr., Mo., Day) July 1986	15. PAGE COUNT 6									
16. SUPPLEMENTARY NOTATION												
17. COSATI CODES <table border="1"> <tr> <th>FIELD</th> <th>GROUP</th> <th>SUB. GR.</th> </tr> <tr> <td>XXXXXXXXXXXXXXX</td> <td>XXXX</td> <td></td> </tr> <tr> <td></td> <td></td> <td></td> </tr> </table>	FIELD	GROUP	SUB. GR.	XXXXXXXXXXXXXXX	XXXX					18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Keywords: Level crossing; shot noise.		
FIELD	GROUP	SUB. GR.										
XXXXXXXXXXXXXXX	XXXX											
19. ABSTRACT (Continue on reverse if necessary and identify by block number) The crossing intensity of a level by a shot noise process with a monotone impulse response is studied. It is shown that the intensity can be naturally expressed in terms of a marginal probability. Also some examples are given to illustrate how the marginal probability can be obtained.				DTIC ELECTED FEB 25 1987 <i>[Signature]</i> S D								
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS <input type="checkbox"/>		21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED										
22a. NAME OF RESPONSIBLE INDIVIDUAL <i>Peggy Rovitch</i>		22b. TELEPHONE NUMBER (Include Area Code) <i>910-062-2202</i>	22c. OFFICE SYMBOL <i>203 767 5033</i>	UNCLASSIFIED								

CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

AFOSR-TR- 87-0122

ON THE INTENSITY OF CROSSINGS BY A
SHOT NOISE PROCESS

by

T. Hsing

Technical Report No. 141

July 1986

Approved for public release;
distribution unlimited.

87 2 20 185

ON THE INTENSITY OF CROSSINGS BY A
SHOT NOISE PROCESS

Tailen Hsing
The University of Texas at Arlington

Summary. The crossing intensity of a level by a shot noise process with a monotone impulse response is studied. It is shown that the intensity can be naturally expressed in terms of a marginal probability. Also some examples are given to illustrate how the marginal probability can be obtained.

AMS 1980 Subject Classification: 60K99.

Key Words and Phrases: Level crossing, shot noise.

Research partially supported by the Air Force Office of Scientific Research
Grant No. AFOSR F49620 82 C 0009.

Accession For	
NTIS	CRA&I <input checked="" type="checkbox"/>
DTIC	TAB <input type="checkbox"/>
U:announced	<input type="checkbox"/>
Justification	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

1. Introduction.

Consider the shot noise process

$$X(t) = \sum_{\tau < t} h(t - \tau), \quad t \in R,$$

where the τ 's are the points of a stationary Poisson process on R with mean rate $\lambda > 0$, and h , the impulse response, is a non-negative function on $[0, \infty)$ such that

- i) h is non-increasing,
- ii) h is finite except possibly at zero, and
- iii) $\int_u^\infty h(x)dx < \infty$ for some large u .

By Daley (1971), Theorem 1, the conditions (ii) and (iii) ensure that

$X(t) < \infty$ a.s. for each t .

Observe that the sample function of X increases only at the points of η . Thus it is unambiguous to define that X upcrosses the level u at t , where $u \geq 0$, if $X(t-) \leq u$ and $X(t) > u$. For $u \geq 0$, write N_u for the point process (cf. Kallenberg (1976)) that consists of the points at which upcrossings of level u by X occur. Thus for each Borel set B , $N_u(B)$ denotes the number of upcrossings of u by X in B . N_u is a stationary point process, which may be viewed as a thinned process of η . The purpose of this paper is to derive the following result.

Theorem 1. For each $u \geq 1$, $E N_u[0,1] = \lambda P[u - h(0) < X(0) \leq u]$.

Note that the "downcrossing" intensity of a level by X is also given by Theorem 1.

It is worth mentioning that similar problems were treated by Rice (1944), and Bar-David and Nemirovsky (1972) in other settings. A result in the latter paper can be reduced to one which is similar to Theorem 1. However, our assumptions on h are considerably simpler.

We prove Theorem 1 in Section 2 using an approach which appears to be most natural for the present purpose. In Section 3, we illustrate the manner in which Theorem 1 can be made useful for a number of situations.

2. Derivation.

It is convenient to enumerate the points of η in $(-\infty, 0)$ by letting ρ_i be the i th largest point of η to the left of zero for $i = 1, 2, \dots$. The ρ_i are well-defined with probability one (w.p.1), and $-\rho_1, \rho_1 - \rho_2, \rho_2 - \rho_3, \dots$ are independent and identically distributed (i.i.d.) exponential random variables. The following result is useful.

Lemma 2. For each $i = 1, 2, \dots$, $P[X(\rho_i-) = \sum_{j \geq i+1} h(\rho_i - \rho_j)] = 1$ where $X(\rho_i-)$ denotes the left-hand limit of X at ρ_i . From this, it follows immediately that $X(\rho_i-)$ is independent of ρ_i , and $X(\rho_i-)$ has the same distribution as $X(0)$.

Proof. Let $i \geq 1$ be fixed. Since h is monotone, it is almost everywhere continuous. Using the continuity of $\rho_i - \rho_j$, $j \geq i + 1$, we obtain

$$\lim_{\epsilon \downarrow 0} h(\rho_i - \rho_j - \epsilon) = h(\rho_i - \rho_j) \text{ w.p.1 for } j \geq i + 1.$$

Also by the monotonicity of h , $h(\rho_i - \rho_j - \epsilon) \leq h(\rho_{i+1} - \rho_j)$ for

$0 < \varepsilon < \rho_i - \rho_{i+1}$, $j \geq i + 2$, where $\sum_{j \geq i+2} h(\rho_{i+1} - \rho_j)$ is equal in distribution to $X(0)$ which is finite w.p.l. Thus it follows from dominated convergence that w.p.l,

$$\lim_{\varepsilon \rightarrow 0} X(\rho_i - \varepsilon) = \lim_{\varepsilon \rightarrow 0} \sum_{j \geq i+1} h(\rho_i - \rho_j - \varepsilon) = \sum_{j \geq i+1} h(\rho_i - \rho_j). \quad \square$$

Proof of Theorem 1. By stationarity, it apparently suffices to show that $EN_u(B)$ equals $\lambda m(B)P[u - h(0) < X(0) \leq u]$ for each Borel set B in $(-\infty, 0)$, where $m(B)$ denotes the Lebesgue measure of B . Since $X(\rho_i^-) = h(0) + \sum_{j \geq i+1} h(\rho_i - \rho_j)$, it follows from Lemma 2 that w.p.l,

$$N_u(B) = \sum_{i \geq 1} \mathbb{1}(u - h(0) < X(\rho_i^-) \leq u, \rho_i \in B),$$

where $\mathbb{1}(\cdot)$ is the indicator function. Applying the facts that $X(\rho_i^-)$ is independent of ρ_i and $X(\rho_i^-)$ is equal in distribution to $X(0)$, we get

$$\begin{aligned} EN_u(B) &= \sum_{i \geq 1} \mathbb{E} \mathbb{1}(u - h(0) < X(\rho_i^-) \leq u) \mathbb{E} \mathbb{1}(\rho_i \in B) \\ &= P[u - h(0) < X(0) \leq u] \lambda m(B). \quad \square \end{aligned}$$

3. Marginal Distribution.

The usefulness of Theorem 1 obviously depends on the availability of the marginal probability $P[u - h(0) < X(0) \leq u]$. The Laplace transform of $X(0)$ is (cf. Gilbert and Pollak (1960))

$$(3.1) \quad L(s) = \mathbb{E} e^{-sX(0)} = \exp\{-\lambda \int_0^\infty (1 - e^{-sh(x)}) dx\}, \quad s \geq 0.$$

For some impulse responses h , the distribution of $X(0)$ can be expressed analytically, while for a class of others, a recursive method due to Gilbert and Pollak (1960) is applicable. If it is of interest to study the asymptotic crossing intensity for increasingly high levels, certain Tauberian theorems (cf. Embrechts et. al. (1985)) are useful. We consider three examples.

$$(a) \text{ Suppose } h(x) = \begin{cases} \infty, & x = 0 \\ -\log x, & 0 < x < 1 \\ 0, & x \geq 1 \end{cases} \quad \text{Then}$$

$$L(s) = \exp\{-\lambda \int_0^\infty (1 - e^{-sx}) e^{-x} dx\}, \quad s \geq 0,$$

which is the Laplace transform of the Bessel density (cf. Feller (1971)):

$$f(x) = e^{-(x+\lambda)} \sqrt{\frac{\lambda}{x}} I_1(2\sqrt{\lambda x}), \quad x > 0.$$

(b) For $h(x) = e^{-x}$, $x \geq 0$, Gilbert and Pollak (1960) showed that the density f of $X(0)$ can be obtained recursively as follows:

$$f(x) = \begin{cases} \frac{e^{-\lambda\gamma}}{\Gamma(\lambda)} x^{\lambda-1}, & 0 < x < 1, \\ x^{\lambda-1} \left[\frac{e^{-\lambda\gamma}}{\Gamma(\lambda)} - \lambda \int_1^x f(y-1) y^{-\lambda} dy \right], & x \geq 1, \end{cases}$$

where γ is Euler's constant.

(c) Assume that h is boundedly supported, say, on $[0,1]$. Then by a change-of-variable, (3.1) becomes

$$L(s) = \exp\{-\lambda + \lambda \int_{[0,\infty)} e^{-sy} \mu(dy)\}$$

where μ is a probability measure on $[0,\infty)$ such that

$$\mu(B) = \text{Lebesgue measure of } \{0 \leq x \leq 1 : h(x) \in B\}$$

for each Borel set B in $[0,\infty)$. Thus $X(0)$ has a compound Poisson distribution. For h satisfying certain regularity conditions, Embrechts et. al. (1985) showed that

$$P[X(0) > x] \sim \frac{\exp\{-\lambda[1 - \psi(t)] - e^{-\lambda} - t(x - 1)\}}{t\sqrt{2\pi\lambda\psi''(t)}} \text{ as } x \rightarrow \infty$$

where $\psi(s) = \int e^{-su} \mu(du)$, and t satisfies $\lambda\psi'(t) = x$.

REFERENCES

Bar-David, I. and Nemirovsky, A. (1972). Level crossings of nondifferentiable shot process. IEEE Trans. Inform. Theory, Vol. IT-18, No. 1, 27-34.

Daley, D.J. (1971). The definition of a multi-dimensional generalization of shot noise. J. Appl. Prob. 8, 128-135.

Embrechts, P., Jensen, J. L., Maejima, M., and Teugels, J. L. (1985). Approximation for compound Poisson and Polya process. Adv. Appl. Prob. 17, 623-637.

Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 2, Second Ed. New York: Wiley.

Gilbert, E. N. and Pollak, H. O. (1960). Amplitude distribution of shot noise. Bell System Tech. J. 30, 333-350.

Kallenberg, O. (1976). Random Measures. Berlin: Akademie-Verlag, London-New York: Academic Press.

Rice, S. O. (1944). Mathematical analysis of random noise. Bell System Tech. J. 24, 46-156.

E N D

3 - 87

D T C