#### VE281

#### Data Structures and Algorithms

#### **Shortest Path**

#### **Learning Objectives:**

- Know the shortest path problem
- Know Dijkstra's algorithm and its runtime complexity
- Know the similarity between Prim's algorithm and Dijkastra's algorithm

## Outline

- Shortest Path Problem
  - Unweighted Graph
  - Dijkstra's Algorithm

#### **Shortest Path Problem**

#### Introduction

- Given a weighted graph G = (V, E), path length is defined as the sum of weights of edges on the path.
  - E.g., length of the path B, C, D, F is 12.
- Shortest path problem: given a weighted graph G = (V, E) and two nodes  $S, d \in V$ , find the shortest path from S to d.
  - Assume G is a directed graph without parallel edges of the same direction
  - For an undirected graph, we can replace each edge by two edges of the same weight but of different directions.



What is the shortest path from B to F?

#### Shortest Path Problem

- The starting node on the path is the **source** node and the ending node is the **destination** node.
- The previous problem is a single source single destination problem.
- What we will solve is a single source all destinations problem: Given G = (V, E) and a node  $S \in V$ , find the shortest path from S to every other node in G.
  - Single source single destination problem can be solved by solving the single source all destinations problem.
  - However, single source single destination problem is not much easier than the single source all destinations problem.

#### **Shortest Path Problem**

A Simple Version: Unweighted Graphs

- For an unweighted graph, path length is defined as the number of edges on the path.
- How do you obtain the shortest path between a pair of nodes?



What is the shortest path from B to F?

Using breadth-first search!

## Shortest Path for Unweighted Graphs

- Recall breadth-first search (BFS): Given a start node, visit all directly connected neighbors first, then nodes 2 hops away, 3 hops away, and so on.
  - This is exactly what we want!
  - When the node visited is the destination node, we stop.
  - When the queue becomes empty, there is no path between the two nodes.



## Shortest Path for Unweighted Graphs

- Additional bookkeeping
  - Store the distance.
  - Store the **predecessor** on the shortest path, i.e., the previous node on the path.



### Shortest Path for Unweighted Graphs

- We can obtain the shortest path by backtracking.
  - E.g., shortest path from B to F

$$B \rightarrow A \rightarrow D \rightarrow F$$



start node



nodes 2 hops away

direct neighbor



nodes 3 hops away

|      | A | В | С | D | Е | F |
|------|---|---|---|---|---|---|
| dist | 1 | 0 | 1 | 2 | 2 | 3 |
| prev | В | - | В | A | С | D |



## Outline

- Shortest Path Problem
  - Unweighted Graph
  - Dijkstra's Algorithm

# Shortest Path for Weighted Graphs

- The problem becomes more difficult when edges have different weights.
  - Breadth-first search won't work!
  - What is the shortest path from B to F?
- If the weights are **non-negative**, then we can apply **Dijkstra's Algorithm** (more details & examples from Ve203)
  - Works only when all weights are non-negative
  - A greedy algorithm for solving single source all destinations shortest path problem

# Dijkstra's Algorithm

- Keep distance estimate D(v) and predecessor P(v) for each node v.
  - Predecessor: the previous node on the shortest path.
- 1. Initially, D(s) = 0; D(v) for other nodes is  $+\infty$ ; P(v) is unknown.
- 2. Store all the nodes in a set R.
- 3. While R is not empty
  - 1. Choose node v in R such that D(v) is the **smallest**. Remove v from the set R.
  - 2. Declare that v's shortest distance is known, which is D(v).
  - 3. For each of v's **neighbors** u that is **still in** R, update distance estimate D(u) and predecessor P(u).

# Updating

#### 距离一定选最小的

- For each of v's neighbors u that is still in R, if D(v) + w(v, u) < D(u), then update D(u) = D(v) + w(v, u) and the predecessor P(u) = v.
  - I.e., update D(u) if the path going through v is shorter than the best path so far to u.

#### Dijkstra's Algorithm v.s. Prim's Algorithm

- Dijkstra's algorithm is similar to Prim's algorithm
  - Prim's algorithm: grow the set of nodes we add to the MST.
  - Dijkstra's algorithm: grow the set of nodes to which we know the shortest path.



### Dijkstra's Algorithm

#### **Time Complexity**

- Number of times to find the smallest D(v): |V|.
  - Each cost? Linear scan: O(|V|); Binary heap:  $O(\log |V|)$ ; Fibonacci heap:  $O(\log |V|)$
- Total number of times to update the neighbors: |E|.
  - Since each neighbor of each node could be potentially updated.
  - Each cost? Linear scan: O(1); Binary heap:  $O(\log |V|)$ ; Fibonacci heap: O(1)
- Total time complexity
  - Linear scan:  $O(|E| + |V|^2) = O(|V|^2)$
  - Binary heap:  $O(|V| \log |V| + |E| \log |V|)$
  - Fibonacci heap:  $O(|V| \log |V| + |E|)$