ITYM 2021 - Problem 2: Sequences of Coprime Integers.

Team France

Composed by:

De Ridder Achille, Harter Louis-Max, Fourcin Emile, Quille Maxime Varnet Philémon, Leroux Hubert

Supervised by:

Lenoir Théo et Béreau Antoine

June 2021

June 2021

Contents

Introduction				
Notatio	Notations			
Questic	ns	2		
0.1	For $k = 2$	2		
	0.1.1 <i>n</i> -prime sequences for infinitely many $n \in \mathbb{N} \dots \dots \dots$	2		
	0.1.2 n -prime sequences for all $n \in \mathbb{N}$	2		
0.2	For $k = 3$	3		
	0.2.1 <i>n</i> -prime sequences for infinitely many $n \in \mathbb{N} \dots \dots \dots \dots$	3		
	0.2.2 n -prime sequences for all $n \in \mathbb{N}$	3		
0.3	For $k \geqslant 4$	3		
	0.3.1 n -prime sequences for all $n \in \mathbb{N}$	3		
	0.3.2 non <i>n</i> -prime sequences for all $n \in \mathbb{N}$	3		
0.4	General case for finite sequences	4		
	0.4.1 n -prime sequences for all $n \in \mathbb{N}$	4		
	0.4.2 non <i>n</i> -prime sequences for all $n \in \mathbb{N}$	4		
	0.4.3 n-prime sequences for infinitely many $n \in \mathbb{N} \dots \dots \dots \dots$	4		
0.5	General case for infinite sequences	5		
	0.5.1 sequences n -prime for all $n \in \mathbb{N} \dots \dots \dots \dots \dots \dots$	5		
	0.5.2 n -prime sequences for infinitely many $n \in \mathbb{N} \dots \dots \dots \dots$			

	0.5.3	non <i>n</i> -prime sequence for all $n \in \mathbb{N}$	7
0.6	the fin	nite case	7
	0.6.1	$P(n)$ -prime sequence for infinitely many $n \in \mathbb{N}$	8

Introduction

Notations

We use the following notations:

- P the set of prime numbers;
- (a,b) the PGCD of $a,b \in \mathbb{Z}$, when the context is clear;
- the CRT for Chinese Reminder Theorem
- $\mathcal{P}(E) := \{ p \in \mathbb{P} \mid \exists a \in E, p \mid a \}$ the set of the prime divisors of a set E.
- we define, for an increasing sequence (a_i) of positive integers, $\mathbf{DP}(a_i) := \mathcal{P}(a_i a_i \mid i > j)$

Lemma 1. Let $(a_i)_{i\in I}$ be a finite or infinite increasing sequence of positive integers. Then $\mathbf{DP}(a_i)$ is finite if and only if $(a_i)_{i\in I}$ is.

Proof. If $(a_i)_{i\in I}$ is finite, then it is clear that $\mathbf{DP}(a_i)$ is. Now if $(a_i)_{i\in I}$ is infinite $(I = \mathbb{N})$, suppose for the sake of contradiction $\mathbf{DP}(a_i)$ finite. Then, for fixed $\ell_1 \neq \ell_2 \in \mathbb{N}$, $\mathcal{P}(a_i - a_{\ell_1} \mid i > \ell_1)$, $\mathcal{P}(a_i - a_{\ell_2} \mid i > \ell_2) \subseteq \mathbf{DP}(a_i)$ are also finite, but this contradicts Kobayashi's theorem over sets of prime divisors.

Questions

0.1 For k = 2

0.1.1 *n*-prime sequences for infinitely many $n \in \mathbb{N}$

Proposition 1. Let $a_1 < a_2$ be a sequence of two positive integers. There are infinitely many $n \in \mathbb{N}$ for which the sequence is n-prime.

Proof. Let there be positive integers $a_1 < a_2$. It is enough to consider the $n = \ell(a_2 - a_1) - a_1 + 1$ for $n = \ell \in \mathbb{N}$ large enough, so that $n \ge 1$. Indeed, we have then

$$(a_1 + n, a_2 + n) = (a_2 - a_1, a_1 + n) = (a_2 - a_1, \ell(a_2 - a_1) + 1) = 1$$

The set of such ℓ being infinite, it is the same for the n one (to which, for each of them, corresponds a unique ℓ), as desired.

0.1.2 *n*-prime sequences for all $n \in \mathbb{N}$

Proposition 2. Let $a_1 < a_2$ be a sequence of two positive integers. Such sequence is n-prime for all $n \in \mathbb{N}$ if and only if $a_2 = a_1 + 1$.

Proof. Suppose that $a_2 > a_1 + 1$, that is $a_2 - a_1 > 1$. Then there exists $p \in \mathbb{P}$ such that $p \mid a_2 - a_1$. There exists infinitely many $n \in \mathbb{N}$ such that $n \equiv -a_1 \pmod{p}$, so that $p \mid (a_2 - a_1, n + a_1) = (a_2 + n, a_1 + n)$. So $a_1 < a_2$ can't be n-prime for all $n \in \mathbb{N}$. Reciprocally, if $a_2 = a_1 + 1$, then for all $n \in \mathbb{N}$,

$$(a_2 + n, a_1 + n) = (a_2 - a_1, a_1 + n) = (1, a_1 + n) = 1$$

2

0.2 For k = 3

0.2.1 *n*-prime sequences for infinitely many $n \in \mathbb{N}$

Proposition 3. Let $a_1 < a_2 < a_3$ be a sequence of three positive integers. There are infinitely many $n \in \mathbb{N}$ for which the sequence is n-prime.

Proof. Let $a_1 < a_2 < a_3$ be a sequence of three positive integers. Let $d = (a_2 - a_1, a_3 - a_1)$. We can see that

$$d = (a_2 - a_1, a_3 - a_1) = (a_2 - a_1, a_3 - a_2) = (a_3 - a_1, a_3 - a_2)$$

It is then enough to consider the $n \in \mathbb{N}$ such that

$$\begin{cases} n \equiv 1 - a_1 \pmod{a_2 - a_1} \\ n \equiv 1 - a_1 \pmod{a_3 - a_1} \\ n \equiv 1 - a_2 \pmod{a_3 - a_2} \end{cases}$$

which admits an infinite number of solutions in \mathbb{N} according to the CRT, since this system is consistent: $a_2 \equiv a_1 \pmod{d}$ hence $1 - a_1 \equiv 1 - a_2 \pmod{d}$. We then have

$$(a_1 + n, a_2 + n) = (k(a_2 - a_1) + 1, a_2 - a_1) = 1$$
$$(a_1 + n, a_3 + n) = (\ell(a_3 - a_1) + 1, a_3 - a_1) = 1$$
$$(a_2 + n, a_3 + n) = (m(a_3 - a_2) + 1, a_3 - a_2) = 1$$

as desired.

0.2.2 *n*-prime sequences for all $n \in \mathbb{N}$

Proposition 4. There are no sequence of positive integers $a_1 < a_2 < a_3$ n-prime for all $n \in \mathbb{N}$.

Proof. Suppose for the sake of contradiction that the sequence of positive integers $a_1 < a_2 < a_3$ is *n*-prime for all $n \in \mathbb{N}$. By Proposition 2, since $a_1 < a_2$ and $a_1 < a_3$ must be *n*-prime for all $n \in \mathbb{N}$ too, we have $a_3 = a_1 + 1$ and $a_2 = a_1 + 1$, so $a_3 = a_2$ which is a contradiction.

0.3 For $k \ge 4$

0.3.1 *n*-prime sequences for all $n \in \mathbb{N}$

Proposition 5. For $k \geqslant 4$, there are no sequence of positive integers $(a_i)_{1 \leqslant i \leqslant k}$ n-prime for all $n \in \mathbb{N}$.

Proof. It's a direct corollary of Proposition 4, since if $(a_i)_{1 \le i \le k}$ were n-prime for all $n \in \mathbb{N}$, it would be also the case for the sequence $a_1 < a_2 < a_3$.

0.3.2 non *n*-prime sequences for all $n \in \mathbb{N}$

Proposition 6. For $k \ge 4$, there exists sequences of positive integers $(a_i)_{1 \le i \le k}$ which aren't n-prime for all $n \in \mathbb{N}$.

Proof. Let's consider a sequence of positive integers $b_1 < b_2 < b_3 < b_4$ which isn't *n*-prime for all $n \in \mathbb{N}$, for example the sequence of general term $b_i = i$ for all $1 \le i \le 4$. Indeed, if $m \in \mathbb{N}$ is even, then $(b_2 + m, b_4 + m) = (m + 2, m + 4) = (m + 2, 2) = (m, 2) = 2$, so it isn't *m*-prime

; if m is odd, $(b_1 + m, b_3 + m) = (m + 1, m + 3) = (m + 1, 2) = (m - 1, 2) = 2$ so it isn't m-prime.

It is then sufficient to consider a sequence of positive integers $a_1 < ... < a_k$ such that $a_i = b_i$ for all $1 \le i \le 4$ for such a sequence $(b_i)_{1 \le i \le 4}$. Indeed, if it were *n*-prime for some $n \in \mathbb{N}$, the sequence $(b_i)_{i \le i \le 4}$ would be too, an absurdity.

0.4 General case for finite sequences

0.4.1 *n*-prime sequences for all $n \in \mathbb{N}$

Proposition 7. According to Proposition 2, Proposition 4 and Proposition 5, a positive and increasing sequence of integers $(a_i)_{1 \leq i \leq k}$ for $k \geq 2$ is n-prime for all $n \in \mathbb{N}$ if and only if k = 2 and $a_2 = a_1 + 1$.

0.4.2 non *n*-prime sequences for all $n \in \mathbb{N}$

Definition 1 (invasive sequence). It is said that a sequence $(a_i)_{1 \leq i \leq k}$ with values in \mathbb{N} is *invasive* if there exists $p \in \mathbf{DP}(a_i)$ such that each element of \mathbb{Z}_p has at least 2 antecedents by (the canonical projection of) $(a_i)_{1 \leq i \leq k}$.

Proposition 8. A increasing sequence of positive integers $(a_i)_{1 \leq i \leq k}$ isn't n-prime for all $n \in \mathbb{N}$ if and only if it's invasive.

Proof. Let $(a_i)_{1 \leq i \leq k}$ be a increasing sequence with values in \mathbb{N} .

- Suppose $(a_i)_{1 \leq i \leq k}$ is invasive. Let $n \in \mathbb{N}$. Then there exists i > j in [1, k] and $p \in \mathbb{P}$ such that $a_i \equiv a_j \equiv -n \pmod{p}$, hence $p \mid a_i + n$ and $p \mid a_i + n$ so $p \mid (a_i + n, a_j + n)$ which implies that $(a_i)_{1 \leq i \leq k}$ is not n-prime.
- Conversely, if it is not invasive, then, by setting p_1, \ldots, p_ℓ the elements of $\mathbf{DP}(a_i)$, for all $i \in [1, \ell]$, there exists $r_i \in \mathbb{Z}_{p_i}$ having at most 1 antecedent by $(a_i)_{1 \leq i \leq k}$. Let's then take $m \in \mathbb{N}$ solution of

$$\begin{cases} x \equiv -r_1 \pmod{p_1} \\ x \equiv -r_2 \pmod{p_2} \\ & \vdots \\ x \equiv -r_\ell \pmod{p_\ell} \end{cases}$$

which exists by the CRT. Now let i > j in [1, k]; we can see that for any prime divisor p of $a_i - a_j$, $p = p_s$ for some $s \in [1, \ell]$, so that $m + a_t \equiv 0 \pmod{p_s} \Leftrightarrow a_t \equiv r_s \pmod{p_s}$ is true for at most one $t \in \{i, j\}$, hence p cannot simultaneously divide $a_i + m$, $a_j + m$, so it does not divide $(a_i + m, a_j + m) = (a_i - a_j, a_j + m)$. Since $\mathcal{P}((a_i - a_j, a_j + m)) \subseteq \mathbf{DP}(a_i)$, this gcd must be 1. $(a_i)_{1 \le i \le k}$ is therefore m-prime and is therefore not m-prime for all $n \in \mathbb{N}$.

0.4.3 *n*-prime sequences for infinitely many $n \in \mathbb{N}$

Lemma 2. Let be an integer $k \ge 2$ and $(a_i)_{i \le k}$ increasing finite sequence of positive integers m-prime for some $m \in \mathbb{N}$. Then it is n-prime for infinitely many $n \in \mathbb{N}$.

Proof. Let be an integer $k \ge 2$ and $(a_i)_{1 \le i \le k}$ such a sequence, m-prime for some $m \in \mathbb{N}$. We will construct an integer m' > m (and even infinitely many) such that $(a_i)_{1 \le i \le k}$ is m'-prime

which will be enough to conclude. Let $m' = m + r \cdot \lim_{i>j} (a_i - a_j)$ where $r \in \mathbb{N}$, which are clearly infinite. Then for all $\ell > \ell' \in [1, k]$:

$$(a_{\ell}+m', a_{\ell'}+m') = \left(a_{\ell} - a_{\ell'}, a_{\ell'} + m + r \cdot \lim_{i>j} (a_i - a_j)\right) = (a_{\ell} - a_{\ell'}, a_{\ell'} + m) = (a_{\ell} + m, a_{\ell'} + m) = 1$$

which concludes the lemma.

This result warrant that a increasing sequence of positive integers is n-prime for infinitely many $n \in \mathbb{N}$ if it is for some $m \in \mathbb{N}$, the reciprocal of the lemma being obvious. From the previous point (Proposition 8), we obtain the following proposition:

Proposition 9. a finite sequence is n-prime for infinitely many $n \in \mathbb{N}$ if it isn't invasive.

In particular, for k=2, for any prime divisor p of a_2-a_1 , we cannot have $\bar{a_1}, \bar{a_2}=\mathbb{Z}_p$ and $\bar{a_2}=\bar{a_1}$ so the sequence is n-prime for infinitely many $n\in\mathbb{N}$, as seen in Proposition 1. When k=3, for any prime divisor p of $(a_2-a_1)(a_3-a_1)(a_3-a_2)$, we cannot have $\{\bar{a_1},\bar{a_2},\bar{a_3}\}=\mathbb{Z}_p$ and $\bar{a_1}=\bar{a_i}$ for $i\in\{2,3\}$ and, for $\ell\in\{2,3\}\setminus\{i\}$, $\bar{a_\ell}=\bar{a_j}$ for $j\in\{1,i\}$ which implies $\bar{a_1}=\bar{a_2}=\bar{a_3}$. We then find the result in Proposition 2.

0.5 General case for infinite sequences

0.5.1 sequences *n*-prime for all $n \in \mathbb{N}$

Proposition 10. There isn't any infinite, increasing sequence of positive integers that is n-prime for all $n \in \mathbb{N}$.

Proof. Let $(a_i)_{i\in\mathbb{N}}$ be a increasing sequence of positive integers, n-prime for all $n\in\mathbb{N}$. Then any finite sub-sequence of length greater than 4 of $(a_i)_{i\in\mathbb{N}}$ is n-prime for all $n\in\mathbb{N}$, which is absurd according to Proposition 5. Therefore there is no infinite n-prime sequence for all $n\in\mathbb{N}$

0.5.2 *n*-prime sequences for infinitely many $n \in \mathbb{N}$

We have a partial answer to this question, by showing that there are infinitely many infinite sequences that are n-prime for infinitely many n.

Definition 2 (A-prime sequence). A finite or infinite sequence of increasing integers is said to be A-prime for a subset A of \mathbb{N} when it is n-prime for all $n \in A$.

Definition 3 (A-covering sequence). We say that a sequence $(a_i)_{1 \leq i \leq k}$ is A-covering if there exists $p \in \mathbb{P}$ such that for any $j \in \mathbb{N}$, there exists $n \in A$ such that $p \mid n + a_j$. It is thus said to be not A-covering if, for any $p \in \mathbb{P}$, there exists $j \in \mathbb{N}$ such that for any $n \in A$, $p \nmid a_j + n$.

Lemma 3 (1 bis). Let $(a_i)_{1 \leqslant i \leqslant k}$ be a increasing sequence of integers with $k \geqslant 2$, A-prime for some finite $A \subseteq \mathbb{N}$ and not A-covering. Then there exists $h \in \mathbb{N} \setminus A$ such that $(a_i)_{1 \leqslant i \leqslant k}$ is $A \cup \{h\}$ -prime and not $A \cup \{h\}$ -covering.

Proof. we take any element n of A, and set $M := a_k + \max A$ then h := n + M!. In the same way as in Lemma 2, since for all $i > j \in [1, k]$, $a_i - a_j < a_i + 1 \le M$ hence $\lim_{i > j} (a_i - a_j) \mid M!$ so $(a_i)_{1 \le i \le k}$ is $A \cup \{h\}$ -prime.

For its not $A \cup \{h\}$ -covering character, let's take $p \in \mathbb{P}$.

- If $p \leq M$, then $p \mid M!$ and by hypothesis there exists $j \in [1, k]$ such that for any $s \in A$, $p \nmid a_j + s$. In particular $p \nmid a_j + n$ so $p \nmid a_j + n + M! = a_j + h$, and so $p \nmid a_j + s$ for all $s \in A \cup \{h\}$.
- If p > M, then, since $k \ge 2$ and $a_1 < a_2 < \ldots < a_k < M < p$, by the pigeonhole principle there exists $j \in [\![1,k]\!]$ such that $a_j + h \not\equiv 0 \pmod p$ i.e. $p \nmid a_j + h$. Now, for all $s \in A$, $a_j + s \leqslant M < p$ so $p \nmid a_j + s$ for all $s \in A \cup \{h\}$.

Therefore, there exists $j \in [1, k]$ such that $p \mid a_j + n$ for any $n \in A \cup \{h\}$ for any prime p, i.e. $(a_i)_{1 \le i \le k}$ is not $A \cup \{h\}$ -covering.

Lemma 4. Let $(a_i)_{1 \leq i \leq k}$ be a increasing sequence of integers, A-prime for some finite $A \subseteq \mathbb{N}$ and not A-covering. Then there exists an integer $a_{k+1} > a_k$ such that $(a_i)_{1 \leq i \leq k+1}$ is A-prime and not A-covering.

Proof. Let us pose again $M:=a_k+\max A$. Let p_1,\ldots,p_ℓ be the prime numbers less than M where $\ell\geqslant 1$. For any $j\in [\![1,\ell]\!]$, there exists $i_j\in [\![1,k]\!]$ such that $p\nmid a_{i_j}+s$ for any $s\in A$. Let's take $a_{k+1}>a_k$ solution of the system:

$$\begin{cases} x \equiv a_{i_1} \pmod{p_1} \\ x \equiv a_{i_2} \pmod{p_2} \\ & \vdots \\ x \equiv a_{i_\ell} \pmod{p_\ell} \end{cases}$$

that exists by the CRT. Then for all $i \in [\![1,k]\!]$ and $n \in A$, any prime divisor p of $a_i + n$ verifies $p \leqslant a_i + n \leqslant M$ so $p = p_j$ for some $j \in [\![1,\ell]\!]$ hence $a_{k+1} + n \equiv a_{i_j} + n \not\equiv 0 \pmod{p_j}$ i.e. $p \nmid a_{k+1} + n$. By A-primality of $(a_i)_{1\leqslant i\leqslant k}$, we know that, for all $n \in A$, for all $i \neq j \in [\![1,k]\!]$, $(a_i+n,a_j+n)=1$. Now for any $i \in [\![1,k]\!]$, if a prime p divides a_i+n , it doesn't divide $a_{k+1}+n$ so $(a_i+n,a_{k+1}+n)=1$. Thus, $(a_i)_{1\leqslant i\leqslant k+1}$ is A-prime. It's as well clearly A-covering, since we can take the same $j \in [\![1,k]\!]$ as for the non A-covering character of $(a_i)_{1\leqslant i\leqslant k}$.

Lemma 5. There exist infinitely many triples $(a_1, a_2, n) \in \mathbb{N}^3$ with $a_1 < a_2$ such that $(a_i)_{i=1,2}$ is n-prime and non $\{n\}$ -covering.

Proof. In the case k = 2, $\{n\}$ -covering is equivalent to $\{n\}$ -primality. Lemma 2 gives us that for any given positive integers $a_1 < a_2$, there exists an infinite number of n such that $(a_i)_{i=1,2}$ is n-prime, hence $\{n\}$ -prime and $\{n\}$ -covering.

Proof of Proposition 10. We recursively construct the sequences $(a_n)_{n\in\mathbb{N}}$ and $(A_n)_{n\in\mathbb{N}}$ such that, for all $n\in\mathbb{N}$, $(a_i)_{1\leqslant i\leqslant n}$ is strictly increasing, A_n -prime and non A_n -covering, and $|A_n|=n$.

- By Lemma 4, we take any $(a_1, a_2, m) \in \mathbb{N}^3$ such that $(a_i)_{i=1,2}$ is increasing, A_1 -prime and non A_1 -covering with $A_1 := \{m\}$.
- For all $n \ge 1$, with **Lemma 2** and **Lemma 3**, we can find $a_{n+1} > a_n$ and $A_{n+1} = A_n \cup \{h_n\}$ where $h_n \in \mathbb{N}$ such that $(a_i)_{1 \le i \le n+1}$ is increasing, A_{n+1} -prime and non A_{n+1} -covering. We also have $|A_{n+1}| = n+1$.

We can now take $(a_n)_{n\in\mathbb{N}}$, increasing and A-prime for $A:=\bigcup_{n\in\mathbb{N}}A_n$.

0.5.3 non *n*-prime sequence for all $n \in \mathbb{N}$

We did not find a necessary and sufficient condition on such sequences that makes the problem "really simpler", we think that the question is too large to have a short answer.

Of course, if there an infinite sequence of positive integers contains a finite sub-sequence that is non n-prime for all n, it's the case for the infinite sequence. Unfortunately, this is not a necessary condition.

Proposition 11. There exist infinitely many increasing sequence of positive integers $(a_i)_{i\in\mathbb{N}}$ non n-prime for all $n\in\mathbb{N}$ such that any finite subsequence $(b_i)_{i\in I}$ (with finite $I\subseteq\mathbb{N}$) of $(a_i)_{i\in\mathbb{N}}$ is n-prime for some $n\in\mathbb{N}$.

Proof. Let $a \in \mathbb{N}$. We show that the sequence $(a_i)_{i \in \mathbb{N}} = (p_i + a)_{i \in \mathbb{N}}$ fits, where $(p_i)_{i \in \mathbb{N}}$ is the enumeration of \mathbb{P} in increasing order.

- it's a non n-prime sequence for all $n \in \mathbb{N}$: let $n \in \mathbb{N}$. Because a+n > 0, there exists $j \in \mathbb{N}$ s.t. $p_j \nmid a+n$, so $(p_j, a+n+p_j) = 1$. By Dirichlet's Theorem on arithmetic progressions, there exists $i \neq j$ s.t $p_i \equiv p_j \pmod{a+n+p_j}$. So $(a_i a_j, a+n+p_j) = a+n+p_j > 1$ for j sufficiently big.
- let $(b_i)_{i\in I}$ a finite sub-sequence of (a_i) . Then, by taking $n \equiv -a \pmod{\prod_{i>j}(b_i-b_j)}$ sufficiently big, we have, for all $u>v\in\mathbb{N}: (b_u+n,b_v+n)=(b_u-b_v,p_v+a+n)=(b_u-b_v,p_v)=(p_u-p_v,p_v)=(p_u,p_v)=1$ so $(b_i)_{i\in I}$ is n-prime.

P(n)-prime sequences

It is assumed that P is arbitrary and fixed beforehand in all that follows.

0.6 the finite case

Definition 4 (*P*-invasive sequence). It is said that a sequence $(a_i)_{1 \leq i \leq k}$ with values in \mathbb{N} is *P*-invasive if there exists $p \in \mathbf{DP}(a_i)$ such that each element of $P(\mathbb{Z}_p)$ has at least 2 antecedents by (the canonical projection of) $(a_i)_{1 \leq i \leq k}$.

Proposition 12. A increasing sequence of positive integers $(a_i)_{1 \leqslant i \leqslant k}$ isn't n-prime for all $n \in \mathbb{N}$ if and only if it's P-invasive.

Proof. This is essentially an adaptation of the case of Proposition 8 (where P = X) which does not bring any difficulty.

Lemma 6. If a finite and infinite sequence of positive integers is P(n)-prime for a certain $n \in \mathbb{N}$, then it is n'-prime for a certain $n \in \mathbb{N}$.

Proof. Let $(a_i)_{i \leq k}$ a such sequence with $k \geq 2$. Then by Proposition 12, for all $p_i \in \{p_1, \ldots, p_N\} := \mathbf{DP}(a_i)$, there exists $n_i \in P(\mathbb{Z}_{p_i})$ such that $P(n_i)$ has at most 1 antecedent by (a_i) . Let $n' \in \mathbb{N}$ a solution of the system:

$$\begin{cases} x \equiv P(n_1) \pmod{p_1} \\ x \equiv P(n_2) \pmod{p_2} \\ & \vdots \\ x \equiv P(n_N) \pmod{p_N} \end{cases}$$

7

which exists by CRT again. If there exists $i \neq j \leqslant k$ such that $(a_i + n', a_j + n') = (a_i - a_j, a_i + n') > 1$, then there exists p_ℓ where $\ell < N$ s.t. $a_i \equiv a_j \pmod{p_\ell}$ and $a_i \equiv -n' \equiv -P(n_\ell) \pmod{p_\ell}$, so $p_\ell \mid (a_i - a_j, a_i + P(n_\ell))$, a contradiction. So $(a_i)_{i \leqslant k}$ is n'-prime.

0.6.1 P(n)-prime sequence for infinitely many $n \in \mathbb{N}$

Lemma 7. Let be an integer $k \ge 2$ and $(a_i)_{i \le k}$ increasing finite sequence of positive integers P(m)-prime for some $m \in \mathbb{N}$. Then it is P(n)-prime for infinitely many $n \in \mathbb{N}$.

Proof. We use the same arguments as in Lemma 2, by noting that if $m \equiv m' \pmod{p}$, then $P(m) \equiv P(m') \pmod{p}$.

The case $P = X^k$ for a certain $k \geqslant 1$

Let $p \in \mathbb{P}$. A known result is that $\mathbb{Z}_p \to \mathbb{Z}_p : x \mapsto x^k$ is bijective (*i.e.* surjective since \mathbb{Z}_p is finite) if and only if (p-1,k)=1. This leads to the following:

Proposition 13. If $P(X) = X^k$ and for all $p \in \mathbf{DP}(a_i)$, (p-1,k) = 1, then $(a_i)_{i \leq k}$ is n^k -prime for a certain $n \in \mathbb{N}$ if and only if it is n'-prime for a certain $n' \in \mathbb{N}$.

General Case for P

Definition 5 (Permutation Polynomial). Let p a prime number. We say that a polynomial with integers coefficients is a *Permutation Polynomial* (**PP**) of \mathbb{Z}_p if $x \mapsto P(x)$ is a bijection of \mathbb{Z}_p .

Last proposition leads us to the following:

Proposition 14. Let $(a_i)_{i \leq k}$ a finite increasing sequence of positive integers. If P is a **PP** of \mathbb{Z}_p for all $p \in \mathbf{DP}(a_i)$, is P(n)-prime for a certain $n \in \mathbb{N}$ if and only if it is n'-prime for a certain $n' \in \mathbb{N}$.

Proof. A sense is directly given by Lemma 6. The other one is true by using CRT on antecedents of n by $\mathbb{Z}_p \to \mathbb{Z}_p : x \mapsto P(x)$, that exists since P is a **PP** of \mathbb{Z}_p , for all $p \in \mathbf{DP}(a_i)$.

Proposition 15 (Hermite's Criterion). A polynomial with integers coefficients P is a **PP** of \mathbb{Z}_p for a certain $p \in \mathbb{P}$ if and only if:

- P has exactly one root in \mathbb{Z}_p
- For each $t \in \mathbb{N}$ such that $t \leqslant q-2$ and $p \nmid t$, the reduction of $P(X)^t \mod X^p X$ has $degree \leqslant p-2$.

A proof of this statement is given by Theorem 1.6 in *Permutation Polynomials of Finite Fields* by Christopher J. Shallue.

This could be useful to check if a polynomial P is a **PP** of \mathbb{Z}_p for all $p \in \mathbf{DP}(a_i)$ for special P, when $(a_i)_{i \in I}$ is finite. But what can we say if it's infinite? Lemma 1 avoid us to use this technique.