Detecting Local Insights from Global Labels: Supervised & Zero-Shot Sequence Labeling via a Convolutional Decomposition

Allen Schmaltz

Harvard University

Presented at EMNLP, November 2021

Computational Linguistics (2021)

Sequence Labeling via a Convolutional Decomposition

Sequence Labeling via a Convolutional Decomposition

- Task: Zero-shot sequence labeling
 - Running example: Grammatical errer detection

Sequence Labeling via a Convolutional Decomposition

- Task: Zero-shot sequence labeling
 - Running example: Grammatical error detection
- Decomposition across the input
- Decomposition across the support set
- Unique properties (added to the standard deep networks):
 - Analyze data at lower resolutions than available labels
 - Out-of-domain (OOD) detection / prediction reliability heuristics
 - Updatability

Task: Zero-Shot Binary Sequence Labeling

• Training: $\mathbb{D} = \{(\mathbf{x}_d, Y_d) | 1 \le d \le |\mathbb{D}| \}$

Corresponds to "feature detection" for document-level classification models

- Document of N tokens/words: $\mathbf{x} = x_1, ..., x_n, ..., x_N$
- Document-level label: $Y \in \{-1,1\}$
- Inference:
 - Predict token-level labels:

$$\hat{\mathbf{y}} = \hat{y}_1, ..., \hat{y}_n, ..., \hat{y}_N$$
, where $\hat{y}_n \in \{-1, 1\}$

Task: Zero-Shot Binary Supervised Sequence Labeling

- Training: $\mathbb{D} = \{ (\mathbf{x}_d, Y_d) | 1 \le d \le |\mathbb{D}| \}$
 - Document of N tokens/words: $\mathbf{x} = x_1, ..., x_n, ..., x_N$
 - Document-level label: $Y \subset \{-1,1\}$ Token-level labels: $\mathbf{y} = y_1, ..., y_n, ..., y_N$, where $y_n \in \{-1,1\}$
- Inference:
 - Predict token-level labels: $\hat{\mathbf{y}} = \hat{y}_1, ..., \hat{y}_n, ..., \hat{y}_N$, where $\hat{y}_n \in \{-1, 1\}$

Inference task is unchanged. Training signal is different.

Task: Zero-Shot Binary Sequence Labeling

• Zero-Shot Grammatical Error Detection:

$$y_1 = -1$$
 $y_2 = 1$ $y_3 = -1$...

Sentence 1: The runing example will be grammatical error detection, predicting whether or not each word has a grammatical error.

$$Y = 1$$

Sentence 2: See the paper for additional datasets and tasks.

$$Y = -1$$

Intrinsic Challenges for Zero-Shot Labeling

- Multiple annotation schemes could be consistent with the document-level label
 - Need to think carefully about the inductive bias
 - Need some facility for adaptability to available priors
- Parameters of the network are not identifiable
 - Will instead aim for *instrospectable* and updatable constraints against the observed data

Mirrors the challenges with neural network interpretability, more generally

• Cross-entropy against document-level label, $Y' \in \{0,1\}$

- Cross-entropy against document-level label, $Y' \in \{0,1\}$
- Min-max constraint to encourage sparsity

•
$$\mathcal{L}_{min} = -\log(1 - \sigma(s_{min}^{+-}))$$

•
$$s_{min}^{+-} = \min(s_1^{+-}, ..., s_n^{+-}, ..., s_N^{+-})$$

•
$$\mathcal{L}_{max} = -Y' \cdot \log \sigma(s_{max}^{+-}) - (1 - Y') \cdot \log(1 - \sigma(s_{max}^{+-}))$$

•
$$s_{max}^{+-} = \max(s_1^{+-}, ..., s_n^{+-}, ..., s_N^{+-})$$

- Cross-entropy against document-level label, $Y' \in \{0,1\}$
- Min-max constraint to encourage sparsity

•
$$\mathcal{L}_{min} = -\log(1 - \sigma(s_{min}^{+-}))$$

•
$$s_{min}^{+-} = \min(s_1^{+-}, ..., s_n^{+-}, ..., s_N^{+-})$$

•
$$\mathcal{L}_{max} = -Y' \cdot \log \sigma(s_{max}^{+-}) - (1 - Y') \cdot \log(1 - \sigma(s_{max}^{+-}))$$

•
$$s_{max}^{+-} = \max(s_1^{+-}, ..., s_n^{+-}, ..., s_N^{+-})$$

Difference practically useful ... but also concerning $(\hat{Y} \text{ similar})$

- Cross-entropy against document-level label, $Y' \in \{0,1\}$
- Min-max constraint to encourage sparsity

•
$$\mathcal{L}_{min} = -\log(1 - \sigma(s_{min}^{+-}))$$

•
$$s_{min}^{+-} = \min(s_1^{+-}, ..., s_n^{+-}, ..., s_N^{+-})$$

•
$$\mathcal{L}_{max} = -Y' \cdot \log \sigma(s_{max}^{+-}) - (1 - Y') \cdot \log(1 - \sigma(s_{max}^{+-}))$$

•
$$s_{max}^{+-} = \max(s_1^{+-}, ..., s_n^{+-}, ..., s_N^{+-})$$

Difference practically useful ... but also concerning $(\hat{Y}_{similar})$

• Fully-supervised (token-level)

•
$$\mathcal{L}_n = -y_n' \cdot \log \sigma(s_n^{+-}) - (1 - y_n') \cdot \log(1 - \sigma(s_n^{+-}))$$

	Sentence- level	Token-level			
Model	F_1	P	R	F_1	${F}_{0.5}$
RANDOM	58.30	15.30	50.07	23.44	17.79
MajorityClass	80.88	15.20	100	26.39	18.31
LIME (ROBERTA _{BASE} + TRANSFORMER)	84.51	19.06	34.70	24.60	20.95

FCE zero-shot sequence labeling test set results (Appendix: Table E.1)
†Results from previous works

	Sentence- level	Token-level			
Model	F_1	P	R	F_1	$F_{0.5}$
RANDOM	58.30	15.30	50.07	23.44	17.79
MajorityClass	80.88	15.20	100	26.39	18.31
LIME (ROBERTA _{BASE}	84.51	19.06	34.70	24.60	20.95
LSTM+SOFTATTENTION	85.14	28.04	29.91	28.27	28.40
TRANSFORMER (ROBERTA _{BASE}) + WEIGHTEDSOFTATTENTION	85.62	20.76	85.36	33.31	24.46

FCE zero-shot sequence labeling test set results (Appendix: Table E.1) †Results from previous works

	Sentence- level	Token-level			
Model	F_1	P	R	F_1	$F_{0.5}$
RANDOM	58.30	15.30	50.07	23.44	17.79
MAJORITYCLASS	80.88	15.20	100	26.39	18.31
LIME (ROBERTA _{BASE} TRANSFORMER)	84.51	19.06	34.70	24.60	20.95
LSTM+SOFTATTENTION	85.14	28.04	29.91	28.27	28.40
TRANSFORMER (ROBERTABASE) + WEIGHTEDSOFTATTENTION	85.62	20.76	85.36	33.31	24.46
TRANSFORMER (BERT _{BASE}) + CNNDECOMPOSITION (M=2)	86.22	57.91	19.33	28.99	41.39

FCE zero-shot sequence labeling test set results (Appendix: Table E.1) †Results from previous works

	Sentence- level	Token-level			
Model	F_1	P	R	F_1	$F_{0.5}$
RANDOM	58.30	15.30	50.07	23.44	17.79
MajorityClass	80.88	15.20	100	26.39	18.31
LIME (ROBERTA _{BASE} TRANSFORMER)	84.51	19.06	34.70	24.60	20.95
LSTM+SOFTATTENTION	85.14	28.04	29.91	28.27	28.40
TRANSFORMER (ROBERTABASE) + WEIGHTEDSOFTATTENTION	85.62	20.76	85.36	33.31	24.46
TRANSFORMER (BERT _{BASE}) + CNNDECOMPOSITION (M=2)	86.22	57.91	19.33	28.99	41.39
TRANSFORMER (BERT _{BASE}) + CNNDECOMPOSITION	86.29	53.17	35.37	42.48	48.31

FCE zero-shot sequence labeling test set results (Appendix: Table E.1) †Results from previous works

Can only label max 2 tokens

$$s_{n}^{+-} \approx \beta + w_{1} \cdot \left(\tanh(s_{1}^{+-}) + \gamma \cdot \frac{\gamma^{(1)}}{\gamma^{(2)}} \right) + w_{2} \cdot \left(\tanh(s_{2}^{+-}) + \gamma \cdot \frac{\gamma^{(2)}}{\gamma^{(3)}} \right)$$

$$+ w_{3} \cdot \left(\tanh(s_{3}^{+-}) + \gamma \cdot \frac{\gamma^{(3)}}{\gamma^{(3)}} \right)$$

$$w_{k} = \frac{\exp(-d_{k}/\tau)}{\sum_{k'=1}^{3} \exp(-d_{k'}/\tau)}$$

Model Approximation

Original model output (from decomposition)

$$\hat{y}_n = \operatorname{sgn}\left(f(\mathbf{x}_n)\right) = \operatorname{sgn}\left(s_n^{+-}\right) \approx$$

 $y_k \in \{-1,1\}$ if token-level labels are available; otherwise, document-level $Y^{(k)} \in \{-1,1\}$

$$\hat{y}_{n}^{KNN} = \operatorname{sgn}\left(f(\mathbf{x}_{n})^{KNN}\right) = \operatorname{sgn}\left[\beta + \sum_{k \in \operatorname{arg} \underset{\tilde{n}}{K} \min ||\mathbf{r}_{n} - \mathbf{r}_{\tilde{n}}||_{2}} \mathbf{w}_{k} \cdot \left(\tanh(\mathbf{s}_{k}^{+-}) + \gamma \cdot \mathbf{Y}^{(k)}\right)\right]$$

K-NN Approximation

$$w_{k} = \frac{\exp\left(-\left|\left|\mathbf{r}_{n} - \mathbf{r}_{k}\right|\right|_{2}/\tau\right)}{\sum_{\substack{k' \in \arg K \min \mid \left|\mathbf{r}_{n} - \mathbf{r}_{\tilde{n}}\right|\right|_{2}}} \exp\left(-\left|\left|\mathbf{r}_{n} - \mathbf{r}_{k'}\right|\right|_{2}/\tau\right)}$$

Hyper-parameter: *K*

Learn
$$\beta$$
, γ , τ : Loss: $\mathcal{L}_n^{KNN} = -\sigma(s_n^{+-}) \cdot \log \sigma\left(f(\mathbf{x}_n)^{KNN}\right) - (1 - \sigma(s_n^{+-})) \cdot \log\left(1 - \sigma\left(f(\mathbf{x}_n)^{KNN}\right)\right)$

Choose epoch that minimizes:
$$\delta^{KNN} = \sum_{n \in \text{dev}} [sgn(s_n^{+-}) \neq sgn(f(\mathbf{x}_n)^{KNN})]$$

Empirical Results — Closeness of Approximation

Model Approximation = Original Model

Model Approximation	Accuracy	$F_{0.5}$
K-NN APPROX. OF TRANSFORMER (BERT _{LARGE}) + CNNDECOMPOSITION+MINMAXLOSS	96.5	76.9
K-NN APPROX. OF TRANSFORMER (BERT _{LARGE}) + CNNDECOMPOSITION (SUPERVISED)	97.0	75.9

Original Model

TRANSFORMER (BERT_{LARGE}) + CNNDECOMPOSITION+MINMAXLOSS

TRANSFORMER (BERT_{LARGE}) + CNNDECOMPOSITION (SUPERVISED)

Token-level FCE K-NN held-out dev set results (Main text: Table 4)

Empirical Results—Closeness of Approximation

	Model Approximation = Ground-truth	Model Approximation = Original Model	
Model Approximation	$F_{0.5}$	Accuracy	${F}_{0.5}$
K-NN APPROX. OF TRANSFORMER (BERT _{LARGE}) + CNNDECOMPOSITION+MINMAXLOSS	52.9	96.5	76.9
K-NN APPROX. OF TRANSFORMER (BERT _{LARGE}) + CNNDECOMPOSITION (SUPERVISED)	59.4	97.0	75.9

	Original Model = Ground-truth
Original Model	$F_{0.5}$
TRANSFORMER (BERT _{LARGE}) + CNNDECOMPOSITION+MINMAXLOSS	49.6
TRANSFORMER (BERT _{LARGE}) + CNNDECOMPOSITION (SUPERVISED)	59.5

Token-level FCE K-NN held-out dev set results (Main text: Table 4)

Model Approximation: Error Term

$$\hat{y}_{n}^{KNN} = sgn\left(f(\mathbf{x}_{n})^{KNN}\right) = sgn\left(\beta + \sum_{\substack{k \in arg \underset{\tilde{n}}{K} \min||\mathbf{r}_{n} - \mathbf{r}_{\tilde{n}}||_{2}}} \mathbf{w}_{k} \cdot \left(tanh(s_{k}^{+-}) + \gamma \cdot \mathbf{Y}^{(k)}\right)\right) + \epsilon$$

Model Approximation: Error Term

$$\hat{y}_{n}^{KNN} = sgn\left(f(\mathbf{x}_{n})^{KNN}\right) = sgn\left(\beta + \sum_{\substack{k \in arg \underset{\tilde{n}}{K} \min ||\mathbf{r}_{n} - \mathbf{r}_{\tilde{n}}||_{2}}} \mathbf{w}_{k} \cdot \left(tanh(\mathbf{s}_{k}^{+-}) + \gamma \cdot \mathbf{Y}^{(k)}\right)\right) + \epsilon$$

Luckily, we can say *a lot* about the errors in practice

Difficult instances to predict also tend to be difficult instances over which to approximate the model.

Leveraging Model Approximations for Prediction Reliability Heuristics & Screening Input Dissimilar to the Support Set

Allen Schmaltz

Magnitude of the K-NN Output

OOD/Domain-shifted Task Variant

- Add already correct data (NEWS text) to student essay data
 - Distribution of non-errors & language different than training
 - False positive problem
- Analyze ability to detect OOD data & update model (via support set)

Empirical Results—OOD/Domain-Shifted

Model:

K-NN APPROX. OF TRANSFORMER (BERT_{LARGE}) +CNNDECOMPOSITION+MINMAXLOSS

	L^2 distance max constraint	K-NN Output min threshold	Admitted	
${F}_{0.5}$	(Class -1, Class 1)	(Class -1, Class 1)	n	n/N
27.0			92597	1.0

<u>Token-level</u> FCE+News2k (domain-shifted) test set results (Main text: Table 6)

Empirical Results—OOD/Domain-Shifted

Model:

K-NN APPROX. OF TRANSFORMER (BERT_{LARGE}) +CNNDECOMPOSITION+MINMAXLOSS

	L^2 distance max constraint	K-NN Output min threshold	Admitted	
${F}_{0.5}$	(Class -1, Class 1)	(Class -1, Class 1)	n	n/N
27.0			92597	1.0
45.9		(-1.2, 0.8)	38110	0.41
53.5	(34.2, 53.3)		7879	0.09
75.8	(34.2, 53.3)	(-1.2, 0.8)	4180	0.05

<u>Token-level</u> FCE+News2k (domain-shifted) test set results (Main text: Table 6)

Model Approximation: Updatability

$$\hat{y}_n^{KNN} = \operatorname{sgn}\left(f(\mathbf{x}_n)^{KNN}\right) = \operatorname{sgn}\left(\beta + \sum_{k \in \operatorname{arg} \underset{\tilde{\mathbf{n}}}{\mathsf{K}} \min ||\mathbf{r}_n - \mathbf{r}_{\tilde{\mathbf{n}}}||_2} \mathbf{w}_k \cdot \left(\tanh(\mathbf{s}_k^{+-}) + \gamma \cdot \mathbf{Y}^{(k)}\right)\right)$$

Update Support set (representations, labels, meta data)

Model Approximation: Updatability

$$\hat{y}_{n}^{KNN} = \operatorname{sgn}\left(f(\mathbf{x}_{n})^{KNN}\right) = \operatorname{sgn}\left(\boldsymbol{\beta} + \sum_{k \in \operatorname{arg} \mathbf{K} \min ||\mathbf{r}_{n} - \mathbf{r}_{\tilde{n}}||_{2}} \mathbf{w}_{k} \cdot \left(\tanh(\mathbf{s}_{k}^{+-}) + \gamma \cdot \mathbf{Y}^{(k)}\right)\right)$$
Update Support set (representations, labels, meta data)

Support set can be viewed as an updatable database

$$\mathbb{S} = \left\{ \left(\begin{array}{c} \mathbf{r}_{\tilde{n}} \\ \end{array}, \mathbf{x}^{(\tilde{n})}, \begin{array}{c} \mathbf{s}_{\tilde{n}}^{+-} \\ \end{array}, \begin{array}{c} \mathbf{y}^{(\tilde{n})} \\ \end{array} \right) \mid 1 \leq \tilde{n} \leq \left| \mathbb{S} \right| \right\}$$

Empirical Results—OOD/Domain-Shift Updatability

Model:

K-NN APPROX. OF TRANSFORMER (BERTLARGE) +CNNDECOMPOSITION+MINMAXLOSS

Model	Training set	Support set	$F_{0.5}$
K-NN Approx.	FCE	FCE	27.0
K-NN Approx.	FCE	FCE+OOD	46.3
	Original training set	+50k New data	VS .

<u>Token-level</u> FCE+News2k (domain-shifted) test set results (Main text: Table 5)

Empirical Results—OOD/Domain-Shift Updatability

Model:

K-NN APPROX. OF TRANSFORMER (BERTLARGE) +CNNDECOMPOSITION+MINMAXLOSS

Model	Training set	Support set	$F_{0.5}$
K-NN Approx.	FCE	FCE	27.0
K-NN Approx.	FCE	FCE+OOD	46.3
Original Model	FCE	_	25.8
Original Model	FCE+OOD		33.3

<u>Token-level</u> FCE+News2k (domain-shifted) test set results (Main text: Table 5)

Summary

K-NN Approximation

$$s_n^{+-} \approx \beta + w_1 \cdot \left(\tanh(s_1^{+-}) + \gamma \cdot \mathbf{y}^{(1)} \right)$$

$$+ w_2 \cdot \left(\tanh(s_2^{+-}) + \gamma \cdot \mathbf{y}^{(2)} \right) \qquad w_k = \frac{\exp(-d_k/\tau)}{\sum_{k'=1}^3 \exp(-d_{k'}/\tau)}$$

$$+ w_3 \cdot \left(\tanh(s_3^{+-}) + \gamma \cdot \mathbf{y}^{(3)} \right)$$

Appendix

Presentation Appendix: Parting Thoughts

- Predictions from deep networks become more reliable as the following increase (potentially at expense of lower admitted *N*):
 - Closer distances to the support set
 - Greater agreement between predictions and labels (i.e., stronger models, greater K-NN output magnitude)
 - More labeled data at the desired resolution of analysis

The decompositions described today provide a new means of analyzing and constraining the predictions against the data, yielding new levers for deploying and interpreting networks

Presentation Appendix: Not Covered Today

• Aggregate, comparative feature extraction/importance

E.g.,
$$\operatorname{ngram}_{n:n+(z-1)}^{-} = \sum_{i=n}^{n+(z-1)} (s_i^{-} - b_1)$$

• Decision rules

E.g., only admit true positive matches:

$$\hat{y}_{N+1} = f(x_{N+1}) \cdot \left[f(x_{N+1}) = f(x_n) \land f(x_n) = y_n \right] + NULL \cdot \left[f(x_{N+1}) \neq f(x_n) \lor f(x_n) \neq y_n \right], \text{ where } n = \underset{n \in \{1, \dots, N\}}{\text{arg min}} \left| \left| r_n - r_{N+1} \right| \right|_2$$

- Additional tasks and datasets, further illustrating:
 - Implications/juxtaposition of OOD robustness vs. detection and updatability
 - Ability to detect features for text analysis of large document sets

Presentation Appendix: Additional Considerations

• Alignment ("diagonally within sequence")

E.g., NLI & fact verification

- Use bi-encoder, or masked cross-encoder, instead
- "Non-sparse" fully-supervised labeling for long sequences
 - Larger M makes dense search more expensive
 - If sparse feature detection not needed, can dispense with max-pool (& thus, the *horizontal* decomposition)

Can then proceed to use the K-NN model approximation as described today