601.475 - Machine Learning

Kaushik Srinivasan

$March\ 13,\ 2019$

Topic 1: Introduction to ML \dots	0	Topic 4: Gradient Descent	4
Topic 2: Linear Regression	1	Topic 5: Logistic Regression	5
Topic 3: Regularization	3		

Topic 1 — Introduction to ML

Machine Learning - Using *Experience* to gain *expertise*. Design of algorithms of

- improve their performance
- at some task
- with experience

Supervised Learning

- Classification Discrete Labels
- Regression Continuous Labels

Task: Given $X \in \mathcal{X}$, predict $Y \in \mathcal{Y}$ Construct **prediction rule** $f : \mathcal{X} \to \mathcal{Y}$

Performance: Risk $R(f) \equiv \mathbb{E}_{XY}[\log(Y, f(X))],$ $(X, Y) \sim P_{XY}$

Experience: Training data $\{(X_i, Y_i)\}_{i=1}^n \sim P_{XY}$ (unknown)

 $\{(X_i,Y_i)\}_{i=1}^n \longrightarrow \mathbf{Learning} \ \mathbf{Algorithm} \longrightarrow \hat{f}_n$

Unsupervised Learning

Task: Given $X \in \mathcal{X}$, learn f(X)

- Density Estimation
- Clustering
- Embedding

Performance Measure in Supervised L.

0/1 Loss: $loss(X, f(X)) = 1_{\{f(X) \neq Y\}}$ **Square Loss**: $loss(Y, f(X)) = (f(X) - Y)^2$

loss(Y, f(X)) - Measure of closeness between true label Y and prediction f(X)

$$(X,Y) \sim P_{XY}$$
 Risk $R(f) \equiv \mathbb{E}_{XY}[\log(Y,f(X))]$

	loss(Y, f(X))	Risk $R(f)$
	$1_{f(X)\neq Y} $ 0/1 Loss	$P(f(X) \neq Y)$ Probability of Error
•	$(f(X) - Y)^2$ Square Loss	$\mathbb{E}[(f(X)-Y)^2]$ Mean Square Error

Bayes Optimal Rule

Ideal Goal: Construct **prediction rule** $f^*: \mathcal{X} \to \mathcal{Y}$

$$f^* = \arg\min_{f} \mathbb{E}_{XY}[\log(Y, f(X))]$$

Best possible performance:

Bayes Risk
$$R(f^*) \leq R(f)$$
 for all f

Issues in ML

A good Machine Learning Algorithm:

- Does not overfit training data
- Generalizes well to test data.

Performance Revisited

Expected Risk (Generalization Error)

$$\mathbb{E}_{D_n}\left[R(\hat{f}_n)\right] \equiv \mathbb{E}_{D_n}\left[\mathbb{E}_{XY}[\operatorname{loss}(Y, \hat{f}_n(X))]\right]$$

Ideal Goal: Construct **prediction rule** $f^*: \mathcal{X} \to \mathcal{Y}$

$$f^* = \arg\min_{f} \mathbb{E}_{XY}[\operatorname{loss}(Y, f(X))]$$

<u>Practical Goal</u>: Given $\{X_i, Y_i\}_{i=1}^n$, $\hat{f}_n : \mathcal{X} \to \mathcal{Y}$, learn prediction rule

$$\hat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n [loss(Y_i, f(X_i))]$$

By Law of Large Numbers: $(n \longrightarrow \infty)$

$$\frac{1}{n} \sum_{i=1}^{n} [loss(Y_i, f(X_i))] \longrightarrow \mathbb{E}_{XY} [loss(Y, f(X))]$$

Consistency and Rates of Convergence

Excess Risk:

$$\mathbb{E}_{D_n}\left[R(\hat{f}_n)\right] - R(f^*)$$

is consistent if Excess Risk $\rightarrow 0$ as $n \rightarrow \infty$

How to Approach a ML Algorithm

- 1. Consider your Goal \rightarrow definition of task T.
- 2. Consider nature of experience E.
- 3. Choose type of output O to Learn
- 4. Choose performance measure P.
- 5. Choose representation for input X.
- 6. Choose set of possible solutions H.
- 7. Choose or design learning algorithm.

Topic 2 — Linear Regression

Formal setup

- Input data space \mathcal{X}
- Output (label, target) space \mathcal{Y}
- Unknown probability distribution $p(\cdot, \cdot)$ over $\mathcal{X} \times \mathcal{Y}$
- We are given labelled examples $(\mathbf{x}_i, y_i), i = 1, ..., N$ sampled i.i.d. from $p; \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y}$
- Goal: for any future \mathbf{x} , accurately preduct y (drawn according to p) in other words: learn a mapping $f: \mathcal{X} \to \mathcal{Y}$

Types of Supervised Problems

Goal: learn $f: \mathcal{X} \to \mathcal{Y}$

- Regression: $\mathcal{Y} = \mathbb{R}$, learn (continuous) function f
- Classification: $\mathcal{Y} = \{1, \dots, C\}$, learn a separator between classes.

Linear Functions

General Form: $f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$ Where $x_0 \equiv 1$.

- 1D case $(\mathcal{X} = \mathbb{R})$: a line
- $\mathcal{X} = \mathbb{R}^2$: a plane
- \bullet Hyperplane in general: d-D case

Loss Function

A loss function: $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ maps prediction to cost, given true value. Standard choice of regression is squared loss: it's symmetric, non-negative, gives 0 loss for correct prediction.

$$\ell(\hat{y}, y) = (\hat{y} - y)^2$$

Empirical loss: LSQ minimizes empirical loss when ℓ is squared loss.

$$L(\mathbf{w}, \mathbf{X}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \ell(f(\mathbf{x}_i; \mathbf{w}), y_i)$$

Goal: Minimize the expected loss (Risk)

$$R(\mathbf{w}) = \mathbb{E}_{(\mathbf{x}_0, y_0) \sim p(\mathbf{x}, y)} [\ell(f(\mathbf{x}_0; \mathbf{w}), y_0)]$$

Emperical Risk Minimization (ERM) approach: to the extent that the training set is a representation of the underlying distribution $p(\mathbf{x},y)$ the empirical loss serves as a proxy for the risk (expected loss). To minimize square loss -

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w} \cdot \mathbf{x}$$
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

How to we find $\mathbf{w}^* = [w_0^*, w_1^*, \dots, w_d^*]$

Least Squares

We need to minimize L w.r.t. \mathbf{w}

$$L(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x})^2$$

$$\frac{\partial}{\partial w_j} L(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial w_j} (y_i - \mathbf{w} \cdot \mathbf{x})^2 = 0$$

$$= -\frac{2}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}) x_{ij} = 0$$

$$\sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i) = 0$$

Necessary Conditions:

- 1. Errors have zero mean
- 2. Errors are uncorrelated with the data..

Least Squares in Matrix Form

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ \vdots & & \vdots & \\ 1 & x_{N1} & \cdots & x_{Nd} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_0 \\ \vdots \\ w_d \end{bmatrix}$$

Prediction: $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, errors: $\mathbf{y} - \mathbf{X}\mathbf{w}$

$$L(\mathbf{w}, \mathbf{X}, \mathbf{y}) = \frac{1}{N} (\mathbf{y} - \mathbf{X} \mathbf{w}) \cdot (\mathbf{y} - \mathbf{X} \mathbf{w}) = \frac{1}{N} (\mathbf{y} - \mathbf{X} \mathbf{w})^T (\mathbf{y} - \mathbf{X} \mathbf{w})$$

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{N} \frac{\partial}{\partial \mathbf{w}} [\mathbf{y}^T \mathbf{y} - \mathbf{w}^T \mathbf{X}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{x}^T \mathbf{X}^T \mathbf{X} \mathbf{w}] = 0$$

$$= \frac{1}{N} [\mathbf{0} - (\mathbf{y}^T \mathbf{X})^T + 2\mathbf{X}^T \mathbf{X} \mathbf{w}] = 0$$

$$= -\frac{2}{N} (\mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{X} \mathbf{w}) = 0$$

$$\Rightarrow \mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

ML Paradox: The more training data we have, the "worse" the fit, but our prediction ability improves.

Best Unrestricted Predictor

$$f^* = \operatorname*{arg\,min}_{f:\mathcal{X} \to \mathbb{R}} \mathbb{E}_{(\mathbf{x}_0, y_0) \sim p(\mathbf{x}, y)} \big[(f(\mathbf{x}_0) - y)^2 \big]$$

Chain rule of Probability: $p(\mathbf{x}, y) = p(y|\mathbf{x})p(\mathbf{x})$

By Def:
$$\mathbb{E}_{p(y,\mathbf{x})}[g(y,\mathbf{x})] = \int_{\mathbf{x}} \int_{y} g(y,\mathbf{x}) p(y|\mathbf{x}) p(\mathbf{x}) \ dy d\mathbf{x}$$

$$\mathbb{E}_{(\mathbf{x}_{0},y_{0}) \sim p(\mathbf{x},y)} \left[(f(\mathbf{x}_{0}) - y_{0})^{2} \right]$$

$$= \mathbb{E}_{\mathbf{x}_{0} \sim p(\mathbf{x})} \left[\mathbb{E}_{y_{0} \sim p(y|\mathbf{x})} \left[(f(\mathbf{x}_{0}) - y)^{2} | \mathbf{x}_{0}) \right] \right]$$

$$= \int_{\mathbf{x}_{0}} \left\{ \mathbb{E}_{y_{0} \sim p(y|\mathbf{x})} \left[(f(\mathbf{x}_{0}) - y_{0} | \mathbf{x}_{0})^{2} \right] \right\} p(\mathbf{x}_{0}) d\mathbf{x}_{0}$$

minimizing the inner conditional expectation for each \mathbf{x}_0

$$\frac{\partial}{\partial f(\mathbf{x})} \mathbb{E}_{p(y|\mathbf{x})} \left[(f(\mathbf{x}_0) - y_0 | \mathbf{x}_0)^2 \right] = 2 \mathbb{E}_{p(y|\mathbf{x})} \left[f(\mathbf{x}_0) - y_0 | \mathbf{x}_0 \right]$$
$$0 = 2 \left(f(\mathbf{x}_0) - \mathbb{E}_{p(y|\mathbf{x})} [y_0 | \mathbf{x}_0] \right]$$
$$\hat{g}(\mathbf{x}_0) = f^*(\mathbf{x}_0) = \mathbb{E}_{p(y|\mathbf{x})} [y_0 | \mathbf{x}_0]$$

Generative vs. Discriminative Approach

Generative	Discriminative	
 Estimate Joint Probability Density p(x, y) Normalize to find conditional p(y x) 	• Estimate the density $p(y \mathbf{x})$ from data • no need $p(\mathbf{x}, y)$	

Decomposition of Error

We can understand the expected loss in this manner. $\hat{\mathbf{w}}$ are LSQ estimates from training data. \mathbf{w}^* are optimal linear regression parameters.

$$y - \hat{\mathbf{w}} \cdot \mathbf{x} = (y - \mathbf{w}^* \cdot \mathbf{x}) + (\mathbf{w}^* \cdot \mathbf{x} - \hat{\mathbf{w}} \cdot \mathbf{x})$$

$$\mathbb{E}_{p(\mathbf{x},y)} \left[(y - \hat{\mathbf{w}} \cdot \mathbf{x})^2 \right] = \mathbb{E}_{p(\mathbf{x},y)} \left[(y - \mathbf{w}^* \cdot \mathbf{x})^2 \right]$$

$$+ \mathbb{E}_{p(\mathbf{x},y)} \left[(y - \mathbf{w}^* \cdot \mathbf{x}) \right]$$

$$+ \mathbb{E}_{p(\mathbf{x},y)} \left[(\mathbf{w}^* \cdot \mathbf{x} - \hat{\mathbf{w}} \cdot \mathbf{x})^2 \right]$$

$$+ \mathbb{E}_{p(\mathbf{x},y)} \left[(y - \mathbf{w}^* \cdot \mathbf{x})^2 \right]$$

$$+ \mathbb{E}_{p(\mathbf{x},y)} \left[(\mathbf{w}^* \cdot \mathbf{x} - \hat{\mathbf{w}} \cdot \mathbf{x})^2 \right]$$

Approximation Error

$$\mathbb{E}[(y - \mathbf{w}^* \cdot \mathbf{x})^2]$$

$$\mathbb{E}_{p(\mathbf{x},y)} \left[(\mathbf{w}^* \cdot \mathbf{x} - \hat{\mathbf{w}} \cdot \mathbf{x})^2 \right]$$

Staistical view of Regression

$$y = f(\mathbf{x}; \mathbf{w}) + \nu, \qquad \nu \sim \mathcal{N}(\nu; 0, \sigma^2)$$

Where noise ν accounts everything not captured by f. Given input data \mathbf{x} , the label y is a random variable.

$$p(y|\mathbf{x}; \mathbf{w}, \sigma) = \mathcal{N}(y; f(\mathbf{x}; \mathbf{w}), \sigma^2)$$
$$= \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y - f(\mathbf{x}; \mathbf{w}))^2}{2\sigma^2}\right)$$

To sample y for a given \mathbf{x}

Maximum Likelihood Estimation

$$\hat{\mathbf{w}}_{ML} = \underset{\mathbf{w}}{\arg \max} p(Y|X; \mathbf{w}, \sigma)$$

$$= \underset{\mathbf{w}}{\arg \max} \prod_{i=1}^{N} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y_i - f(\mathbf{x}_i; \mathbf{w}))^2}{2\sigma^2}\right)$$

We take the log likelihood because it is also monotonically increasing, and easier to use.

$$0 = 2(f(\mathbf{x}_0) - \mathbb{E}_{p(y|\mathbf{x})}[y_0|\mathbf{x}_0])\log p(Y|X;\mathbf{w},\sigma) = \sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i;\mathbf{w},\sigma)$$

$$= \mathbb{E}_{p(y|\mathbf{x})}[y_0|\mathbf{x}_0]$$

$$= \mathbb{E}_{p(y|\mathbf{x})}[y_0|\mathbf{x}_0]$$

$$= \sum_{i=1}^{N} \left[-\frac{(y_i - f(\mathbf{x}_i;\mathbf{w}))^2}{2\sigma^2} - \log \sigma \sqrt{2\pi} \right]$$
• Estimate the density $p(y|\mathbf{x})$ from data

• Lestimate the density $p(y|\mathbf{x})$ from data

• Lestimate the density $p(y|\mathbf{x})$ from data

Red terms are independent of \mathbf{w} . Now we define log-loss as the negative conditional density of training data.

$$L(f(\mathbf{x}; \mathbf{w}), y) = -\log p(y_i | \mathbf{x}; \mathbf{w}, \sigma)$$

Maximizing log likelihood is always equivalent to minimizinq log loss.

$$\arg\max_{\mathbf{w}} \sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i; \mathbf{w}, \sigma) = \arg\max_{\mathbf{w}} - \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2$$
$$= \arg\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2$$

Maximum a Posteriori Estimation

Now given a prior $p(\theta)$ about our parameters, the maximum posterior is

$$\hat{\theta}_{MAP} = \operatorname*{arg\,max}_{\Theta} p(\theta|X) = \operatorname*{arg\,max}_{\Theta} \frac{p(X|\theta)p(\theta)}{p(X)}$$

The choice of prior matters! Bayesian approach, Utilitarian approach & <u>regularization</u>. If uniform $p(\theta)$, then MAP = MLE

Polynomial Regression

Consider the 1-D case where $f: x \to y$

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_m x^m$$

No longer linear in x but linear in \mathbf{w} ! We define $\phi(x) = [1, x, x^2, \dots, x^m]^T$, then $f(x; \mathbf{w}) = \mathbf{w} \cdot \phi(x)$. So least squares solution:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{T}}\mathbf{y} \text{ where } \mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \\ 1 & x_2 & x_2^2 & \dots & x_2^m \\ \dots & \dots & \dots & \dots \\ 1 & x_N & x_N^2 & \dots & x_N^m \end{bmatrix}$$

$$f(\mathbf{x}; \mathbf{w}) = w_0 \phi_0(\mathbf{x}) + w_1 \phi_1(\mathbf{x}) + \dots + w_m \phi_m(\mathbf{x}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})$$

where $\phi_j(\mathbf{x}) : \mathcal{X} \to \mathbb{R}, j = 1 \dots, m$ are basis functions.

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})$$

Is still linear in \mathbf{w} even when $\boldsymbol{\phi}$ is non-linear in inputs \mathbf{x} , $\phi_0(\mathbf{x}) \equiv 0$

$$\mathbf{X} = \begin{pmatrix} \mathbf{\hat{w}} = (\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{T}}\mathbf{y} \\ \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_m(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \dots & \phi_m(\mathbf{x}_2) \\ \dots & \dots & \dots & \dots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \phi_2(\mathbf{x}_N) & \dots & \phi_m(\mathbf{x}_N) \end{pmatrix}$$

How to avoid overfitting

- if a model overfits (it is *too* sensitive to data) it will be unstable removing part of the data will change the fit significantly.
- We can *hold out* part of the data this is *validation* set
- Fit the model to the rest and test on heldout data.
- Problem if heldout set too small, we are susceptible to chance
- Problem if heldout set too large, we get pessimistic (training on too little data compared to what we do).

Topic 3 — Regularization

Controlling for overfitting

- 1. More complex model (10th degree) overfits more than simple model (linear)
- 2. Pure ERM would always prefer complex model
- 3. Validation is a way to control for this in *model selection*

Intuitively, complexity of model measured by the number of "degrees of freedom" \rightarrow more complex model more likely to overfit. Caused by finite training data.

Controlling for overfitting

1. **Idea 1**: Restrict model complexity based on amount of data $\rightarrow \approx 10$ examples per parameter

2. **Idea 2**: Directly peanalize by number of parameters. Akaike information criterion (AIC).

$$\max \left[\log p(X \mid \hat{\mathbf{w}}) - \# \text{params} \right]$$

But: definition of model complexity as number of parameters is too simplistic.

3. **Idea 3**: consider the behavior of values of \mathbf{w}^*

Intuition. Should penalize not the parameters, but the number of bits required to encode the parameters \rightarrow with finite parameter values, these are the same.

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \left\{ \frac{1}{2} \sum_{i=1}^{N} \log p(\text{data}_i; \mathbf{w}) - \text{penalty}(\mathbf{w}) \right\}$$

Ridge Regression (L_2)

$$\mathbf{w}^* = \operatorname*{arg\,min}_{\mathbf{w}} \left\{ \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 + \lambda \sum_{j=1}^{m} w_j^2 \right\}$$

where $\mathbf{w} = [w_0, w_1, w_2, \dots, w_m]$. Careful! Solution is not invariant to scaling, we should normalize input before solving.

$$\mathbf{w}_{\mathrm{ridge}}^* = (\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

We can write the following as an optimization problem

$$\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

subject to
$$\sum_{j=1}^{m} w_j^2 \le t$$

Lasso Regression (L_1)

$$\mathbf{w}_{\text{lasso}}^* = \arg\max_{\mathbf{w}} \left\{ -\sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 - \lambda \sum_{j=1}^{m} |w_j| \right\}$$

- Still concave(has a unique maximum), but not smooth (differentiable)
- Can solve using convex programming methods
- "lasso" \rightarrow least absolute shrinkage and selection operator.

We can write the following as an optimization problem

$$\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

subject to
$$\sum_{j=1}^{m} |w_j| \le t$$

Geometry of surfaces

We can compare the shape of penalty as a function of w_i

An equivalently formulation of L_p regularization is constrained maximixation.

$$\hat{\mathbf{w}} = \underset{\mathbf{w}: \sum_{j=1}^{m} |w_j|^p \le \beta}{\operatorname{arg max}} - \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

- sufficiently large λ (small β) lasso leads to sparsity
- must explicitly solve optimization problem using Lagrange multipliers

Choice of λ

Most often λ is chosen by cross-validation.

Topic 4 — Gradient Descent

Often times, we cannot always solve the closed form solution $\mathbf{w}^* = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$ e.g. matrix is too large/difficult to calculate the pseudoinverse. **Gradient ascent/descent**

- Gradient ascent "hill climbing" on function surface.
- start at a random spot and make steps in direction of maximal altitude.

Gradient descent algorithm

- Iteration counter t = 0
- Initialize $\mathbf{w}^{(t)}$ (to zero or a small random vector)
- for $t = 1, \ldots$ compute gradient

$$\mathbf{g}^{(t)} = \nabla f(\mathbf{X}, \mathbf{y}; \mathbf{w}^{(t-1)})$$

update model

$$\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} - \eta \mathbf{g}^{(t)}$$

• learning rate η controls step size

The size of η is important for the rate of convergence

Gradient descent convergence

- Minimum number of iterations (time budget) \rightarrow may not have converged
- Minimum required change in objective value (loss)
- Minimum required change in model parameters (w)

Estimation Theory

- Estimator $\hat{\theta}$ of parameter θ estimates it given input
- The bias of an estimator $\hat{\theta}$ is

$$\operatorname{bias}(\hat{\theta}) \triangleq \mathbb{E}_X [\hat{\theta} - \theta]$$

• An unbiased estimator $\mathbb{E}_X[\hat{\theta}] = \theta$

Consistency of Estimator

- With enough data, bias may not be a problem.
- Estimator $\hat{\theta}$ is consistent if

$$\lim_{N\to\infty}\hat{\theta}_N\xrightarrow{p}\theta$$

Estimation and Regression

- True model $y = F(\mathbf{x}) + \nu$, 0 mean additive noise ν
- Approximate F by $f(\mathbf{x}; \hat{\mathbf{w}}) \in \mathcal{F}$ with $\hat{\mathbf{w}}$ estimated from data X.
- $\hat{f}(\mathbf{x}) = f(\mathbf{x}; \hat{w})$ estimate based on particular X
- $\bar{f}(\mathbf{x}) = \mathbb{E}_{X}[f(\mathbf{x}; \hat{\mathbf{w}})]$ average estimate over training sets X..

• $f^*(\mathbf{x}) = f(\mathbf{x}; \arg\min_{w} \mathbb{E}_{p(\mathbf{x},y)}[(y - f(\mathbf{x}; \mathbf{w}))^2])$ the $\hat{y} = \operatorname{sign}(w_0 + \hat{\mathbf{w}} \cdot \mathbf{x})$ is also a valid linear classifier which best estimate by function in \mathcal{F}

Bias-Variance decomposition

Denote $\bar{\theta} = \mathbb{E}[\hat{\theta}]$

$$\begin{split} E\big[(\hat{\theta}-\theta)^2\big] &= \mathbb{E}\big[(\hat{\theta}-\bar{\theta}+\bar{\theta}-\theta)^2\big] \\ &= \mathbb{E}\big[(\hat{\theta}-\bar{\theta})^2\big] + 2(\bar{\theta}-\theta)\underbrace{\mathbb{E}\big[\hat{\theta}-\bar{\theta}\big]}_{=0} + \mathbb{E}\big[(\bar{\theta}-\theta)^2\big] \\ &= \mathbb{E}\big[(\hat{\theta}-\bar{\theta})^2\big] - (\bar{\theta}+\theta)^2 \\ &= \mathrm{var}(\hat{\theta}) + \mathrm{bias}^2(\hat{\theta}) \end{split}$$

- $bias^2$ term \Leftrightarrow approximation error
- variance \Leftrightarrow estimation error due to finite data.

Bias-Variance in Regression

For a single \mathbf{x}_0

$$\mathbb{E}_{X}\left[(y_{0}-\hat{f}(\mathbf{x}_{0}))^{2}\right] = (y_{0}-\bar{f}(\mathbf{x}_{0}))^{2} + \underbrace{\mathbb{E}_{X}\left[(\hat{f}(\mathbf{x}_{0})-\bar{f}(\mathbf{x}_{0}))^{2}\right]}_{\text{variance}}$$

The first term can be further decomposed

$$(y_0 - \bar{f}(\mathbf{x}_0))^2 = \underbrace{(y_0 - F(\mathbf{x}_0))^2}_{\text{noise}} + \underbrace{(F(\mathbf{x}_0) - \hat{f}(\mathbf{x}_0))^2}_{\text{bias}^2}$$

- noise term is *irreducible*
- bias² is due to difference between f and F

$$\mathbb{E}[\text{squared loss}] = \text{bias}^2 + \text{var} + \text{noise}$$

Bias-Variance Tradeoff: Theory

Cramer-Rao inequality: for an unbiased estimator $\hat{\theta}_N$

$$\operatorname{var}(\hat{\theta}_N) \ge \frac{1}{\mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log p(\mathbf{X}; \theta)\right)^2\right]} = \frac{1}{\mathcal{I}(\theta)}$$

where $\mathcal{I}(\theta)$ is the Fischer Information. Intuitively, it measures the amount of data X provides about parameter θ

Topic 5 — Logistic Regression

Classification as Regression

$$f(\mathbf{x}; \hat{\mathbf{w}}) = w_0 + \hat{\mathbf{w}} \cdot \mathbf{x}$$

Can't just take $\hat{y} = f(\mathbf{x}; \hat{\mathbf{w}})$ as it won't be valid label. Hence we use a decision rule for $y \in \{-1, 1\}$

$$y = \begin{cases} 1 & f(\mathbf{x}; \hat{\mathbf{w}}) \ge 0 \\ -1 & f(\mathbf{x}; \hat{\mathbf{w}}) < 0 \end{cases}$$

transforms $\mathbb{R} \to \{1, -1\}$. Linear equation $w_0 + \hat{\mathbf{w}} \cdot \mathbf{x} = 0$ separates the space into two "half-spaces"

Classification as Regression

- $\mathbf{w} \cdot \mathbf{x} = 0$: a line passing through the origin and orthogonal to w
- $\mathbf{w} \cdot \mathbf{x} + w_0 = 0$ shifts the line along \mathbf{w} .
- \mathbf{x}' is the projection of \mathbf{x} on \mathbf{w}
- Set up new coordinate system $\mathbf{x} \to (w_0 + \mathbf{w} \cdot \mathbf{x})/||\mathbf{w}||$

Linear Classifiers

$$\hat{y} = h(\mathbf{x}) = \text{sign}(w_0 + \mathbf{w} \cdot \mathbf{x})$$

- Classifying using linear decision boundary effectively reduces data dimension to 1.
- Want to minimize the expected 0/1 loss for classifier $h: \mathcal{X} \to \mathcal{Y}$, which for (\mathbf{x}, y) is

$$L(h(\mathbf{x}), y) \begin{cases} 0 & \text{if } h(\mathbf{x}) = y \\ 1 & \text{if } h(\mathbf{x}) \neq y \end{cases}$$

Risk of a classifier

• The risk (expected loss) of a C-way classifier $h(\mathbf{x})$

$$\begin{split} R(h) &= \mathbb{E}_{\mathbf{x},y}[L(h(\mathbf{x}),y)] \\ &= \int_{\mathbf{x}} \sum_{c=1}^{C} L(h(\mathbf{x}),y) p(\mathbf{x},y=c) \ d\mathbf{x} \\ &= \int_{\mathbf{x}} \bigg[\sum_{c=1}^{C} L(h(\mathbf{x}),y) p(y=c|\mathbf{x}) \bigg] p(\mathbf{x}) d\mathbf{x} \end{split}$$

• It is enough to minimize the *conditional risk* for any

 \mathbf{x}

$$R(h|\mathbf{x}) = \sum_{c=1}^{C} L(h(\mathbf{x}), c) p(y = c|\mathbf{x})$$
$$= 0 \cdot p(y = h(\mathbf{x})|\mathbf{x}) + 1 \cdot \sum_{c \neq h(\mathbf{x})} p(y = c|\mathbf{x})$$
$$= \sum_{c \neq h(\mathbf{x})} p(y = c|\mathbf{x}) = 1 - p(y = h(\mathbf{x})|\mathbf{x})$$

 \bullet To minimize conditional risk given $\mathbf{x},$ the classifier must decide

$$h(\mathbf{x}) = \arg\max_{c} p(y = c|\mathbf{x})$$

• This is the *best possible classifier* in terms of generalization i.e. expected misclassification rate on new examples.

Logistic Model

Define the decision boundary directly

$$\log \frac{p(y=1|\mathbf{x})}{p(y=0|\mathbf{x})} = w_0 + \mathbf{w} \cdot \mathbf{x} = 0$$

We define the logistic function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- $\sigma(0) = 1/2$. Shift the crossing to z: $\sigma(x-z)$
- change the "slope": $\sigma(ax)$

Logistic Function in \mathbb{R}^d

- direction of w determines orientation
- w_0 determines location
- \bullet || \mathbf{w} || determines slope

Logistic Function in \mathbb{R}^d

- Regression: observe values, measure residuals under the model
- Logistic Regression: observe values, measure their probability under the model

$$p(y_i|\mathbf{x}_i;\mathbf{w}) = \begin{cases} \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i) & \text{if } y_i = 1\\ 1 - \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i) & \text{if } y_i = 0 \end{cases}$$
$$= \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i)^{y_i} (1 - \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i))^{1-y_i}$$

 \bullet the log likelihood of \mathbf{w}

$$\log p(Y|X; \mathbf{w}) = \sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i; \mathbf{w})$$

• set derivatives to 0

$$\frac{\partial}{\partial w_0} \log p(Y|X; \mathbf{w}) = \sum_{i=1}^{N} (y_i - \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i)) = 0$$
$$\frac{\partial}{\partial w_i} \log p(Y|X; \mathbf{w}) = \sum_{i=1}^{N} (y_i - \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i)) x_{ij} = 0$$

• Treat $y_i - p(y_i|\mathbf{x}_i) = y_i - \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i)$ as prediction error of the model on \mathbf{x}_i, y_i