Un ingeniero desea determinar si existe o no diferencia entre los efectos de dos algoritmos de reconocimiento de objetivos, A y B. Antes de la aplicación de A o B, la imagen debe filtrarse para reducir el ruido. El ingeniero puede elegir entre el filtro F o G. La tabla siguiente da las clasificaciones del sistema de reconocimiento para cada combinación algoritmo-filtro (α = 0,01).

Determina si existe o no diferencia entre los efectos de los dos algoritmos.

- Modelo I Efectos fijos
- X = clasificaciones del sistema.
- Factor A = Algoritmos.
- Factor B = Filtros.
- I = 2, J = 2, K = 3, N = 12

Comparar > Análisis de Varianza > ANOVA Multifactorial Opciones ANOVA: introducir un 2 (se supone interacción entre A y B) Tablas y Gráficos:

- Todas las tablas
- Gráfico de Medias
- Gráfico de Interacción

Una vez hecho eso, cambiar el valor de confianza o el nivel de significación de las ventanas acorde al α indicado, usando:

- a. Click derecho > Opciones de Ventana.
- b. Click derecho > Opciones Tabulares.

En la tabla *Análisis de Varianza* se puede observar que:

- Para A se rechaza H_0 , porque P-Valor $< \alpha$. Es decir, α es significativo.
- Para B no se rechaza H_0 , porque P-Valor > α . Es decir, β_i es significativo.
- Para AB se rechaza H_0 , porque P-Valor $< \alpha$. Es decir, $(\alpha \beta)_{i,j}$ es significativo.

Hay que hacer el contraste de las que se rechazan (rojo), ya que existen diferencias significativas entre ellas. Para ello, se realizarán cálculos a mano con los datos de la *Tabla de Medias* con el fin de realizar estimaciones.

$\mu_{i,j}$	$(\alpha\beta)_{i,j} = \mu_{i,j} - \mu - \alpha_i$
μ ₁ = 65,5	α ₁ = 65,5 - 59,5833 = 5,9167
μ ₂ = 53,6657	α ₂ = 53,6657 - 59,5833 = -5,9166
μ _{1.1} = 71,3333	(αβ) _{1.1} = 71,3333 - 59,5833 - 5,9167 = 5,8333
μ _{1.2} = 59,6667	(αβ) _{1.2} = 59,6667 - 59,5833 - 5,9167 = -5,8333
$\mu_{2.1} = 52,3333$	(αβ) _{2.1} = 52,3333 - 59,5833 - (-5,9166) = -1,3334
$\mu_{2.2} = 55$	(αβ) _{2.2} = 55 - 59,5833 - (-5,9166) = 1,3267

Un gerente desea determinar si tres empleados realizan tareas de procesado de texto a esencialmente igual velocidad. Al mismo tiempo, desea saber si el tiempo de finalización se ve afectado por la elección del paquete de software, A o B.

18 tareas de igual dificultad se asignan a los empleados y software. Los datos obtenidos aparecen en las variables: *Tiempopro* (para el tiempo en minutos de procesado), *Empleado* (para cada empleado) y *Software* (para cada paquete).

- Construye la tabla de ANOVA de dos factores con interacción y determina si la interacción y los factores son significativos a nivel 0,01.
 - Modelo I Efectos fijos.
 - X = Tiempo procesado.
 - Factor A = Empleados.
 - Factor B = Software.
 - I = 3, J = 2, K = 3, N = 18.

Comparar > Análisis de Varianza > ANOVA Multifactorial Opciones ANOVA: introducir un 2 (se supone interacción entre A y B) Tablas y Gráficos:

- Todas las tablas
- Gráfico de Medias
- Gráfico de Interacción

Una vez hecho eso, cambiar el valor de confianza o el nivel de significación de las ventanas acorde al α indicado, usando:

- c. Click derecho > Opciones de Ventana.
- d. Click derecho > Opciones Tabulares.

Análisis de Varianza para Tiempopro - Suma de Cuadrados Tipo III

Fuente	Suma de Cuadrados	GI	Cuadrado Medio	Razón-F	Valor-P
EFECTOS PRINCIPALES					
A:Empleado	141,021	2	70,5106	0,26	0,7725
B:Software	145,067	1	145,067	0,54	0,4755
INTERACCIONES				**	
AB	263,268	2	131,634	0,49	0,6229
RESIDUOS	3207,44	12	267,287		
TOTAL (CORREGIDO)	3756,8	17			

Todas las razones-F se basan en el cuadrado medio del error residual

• Construye el gráfico de interacción.

• Calcula los intervalos de confianza para las medias en los distintos paquetes de software.

Intervalos de Confianza para MEDIAS Intervalos de confianza del 99,0 % para la media: 44,8722 +/- 4,50987 [40,3623; 49,3821].

Se desea comparar la eficiencia de 3 algoritmos escritos en un lenguaje de alto nivel, como Pascal. Cada uno se ejecuta en 4 máquinas distintas. Los datos en segundos son los de la tabla siguiente (nivel de significación = 0,05).

- Modelo I Efectos fijos.
- X = Eficiencia de los algoritmos.
- Factor A = Algoritmos.
- Factor B = Máquinas.
- I = 3, J = 4, K = 1, N = 12.

Comparar > Análisis de Varianza > ANOVA Multifactorial Opciones ANOVA: introducir un 1 (no existen interacciones porque K = 1) Tablas y Gráficos:

- Todas las tablas
- Gráfico de Medias
- Gráfico de Interacción

Una vez hecho eso, cambiar el valor de confianza o el nivel de significación de las ventanas acorde al α indicado, usando:

- a. Click derecho > Opciones de Ventana.
- b. Click derecho > Opciones Tabulares.

En la tabla *Análisis de Varianza* se puede observar que:

- Para A se rechaza H_0 , porque P-Valor $< \alpha$. Es decir, α_i es significativo.
- Para B se rechaza H_0 , porque P-Valor $< \alpha$. Es decir, β_j es significativo.
- No existe AB puesto que no hay interacción. Es decir, $(\alpha\beta)_{i,j}$ no existe.

Hay que hacer el contraste de las que se rechazan (rojo), ya que existen diferencias significativas entre ellas. Para ello, se realizarán cálculos a mano con los datos de la *Tabla de Medias* con el fin de realizar estimaciones.

μ _e = 6,83083	$\alpha_i = \mu_{1.i} - \mu_e$	μ _e = 6,83083	$\beta_j = \mu_{2,j} - \mu_e$
μ _{1.1} = 6,7825	$\alpha_1 = 0.4015$	μ _{2.1} = 6,29	β ₁ = - 0,54
μ _{1.2} = 7,535	$\alpha_2 = 0.704$	μ _{2.2} = 10,4867	$\beta_2 = 3,6557$
μ _{1.3} = 6,175	$\alpha_3 = -0,656$	μ _{2.3} = 4,35333	β ₃ = - 2,4777
		μ _{2.4} = 6,19333	β ₄ = - 0,6377

Se puede observar que el algoritmo 3 es el mejor (efecto más pequeño) y que la máquina 3 también es la mejor (por la misma razón), por lo que sería óptimo ejecutar el algoritmo 3 en la máquina 3 (el peor rendimiento lo obtenemos ejecutando el algoritmo 2 en la máquina 2).

Se pidió a 30 sujetos cuál combinación de color preferían calificando cada una de las 7 combinaciones de color en una escala de 0 (no preferida) a 10. Con base a las calificaciones de preferencia medias para cada color proporcionadas por los investigadores, hemos simulado las calificaciones de preferencia individuales indicadas por 10 sujetos que se presentan en las variable *Calif.* Las variables *Colores* y *Sujeto*, recopilan respectivamente los distintos niveles considerados: colores para las pantallas y los individuos. Los datos se sometieron a un ANOVA para diseño de bloques aleatorizados.

Está basado en *Maximize your computing comfort and effiency, Computers & Electrnics, 1983*. Las combinaciones eran: Verde / Negro, Blanco / Negro, Amarillo / Blanco, Anaranjado / Blanco, Amarillo / Ámbar, Amarillo / Anaranjado.

- Modelo I Efectos fijos.
- X = Calificaciones de preferencias individuales.
- Factor A = Combinación de colores.
- Factor B = Individuos (sujetos).
- I = 7, J = 10, K = 1, N = 70.

1. ¿Qué factor actúa como bloque?

Calificaciones de preferencias individuales.

2. Especifica el modelo considerado.

Modelo I - Efectos fijos.

3. ¿Hay alguna diferencia en el color de pantalla preferido (usa α = 0,05)?

Comparar > Análisis de Varianza > ANOVA Multifactorial Opciones ANOVA: introducir un 1 (no existen interacciones porque K = 1) Tablas y Gráficos:

- Todas las tablas
- Gráfico de Medias
- Gráfico de Interacción

Una vez hecho eso, cambiar el valor de confianza o el nivel de significación de las ventanas acorde al α indicado, usando:

- a. Click derecho > Opciones de Ventana.
- b. Click derecho > Opciones Tabulares.

En la tabla *Análisis de Varianza* se puede observar que:

- Para A se rechaza H₀, porque P-Valor < α. Es decir, α_i es significativo.
 Para B se rechaza H₀, porque P-Valor < α. Es decir, β_i es significativo.
- No existe AB puesto que no hay interacción. Es decir, $(\alpha\beta)_{ij}$ no existe.

Hay que hacer el contraste de las que se rechazan (rojo), ya que existen diferencias significativas entre ellas. Para ello, se realizarán cálculos a mano con los datos de la *Tabla de Medias* con el fin de realizar estimaciones.

μ _e = 5,67143	$\alpha_j = \mu_{1.j} - \mu_e$	μ _e = 5,67143	$\beta_i = \mu_{2.i} - \mu_e$
μ _{1.1} = 6,0	$\alpha_1 = 0.3286$	$\mu_{2.1} = 6.9$	$\beta_1 = 1,22857$
μ _{1.2} = 6,42857	$\alpha_2 = 0,7572$	μ _{2.2} = 6,3	β ₂ = 0,6286
μ _{1.3} = 4,85714	$\alpha_3 = -0.8143$	μ _{2.3} = 7,1	β ₃ = 1,4286
μ _{1.4} = 2,42857	α ₄ = - 3,2428	μ _{2.4} = 2,2	β ₄ = - 3,4174
μ _{1.5} = 6,85714	$\alpha_{5} = 1,1857$	$\mu_{2.5} = 7.3$	β ₅ = 1,6286
$\mu_{1.6}$ = 5,0	$\alpha_6 = -0,6714$	$\mu_{2.6} = 8.3$	β ₆ = 2,6286
μ _{1.7} = 6,42857	$\alpha_7 = 0,7572$	μ _{2.7} = 1,6	β ₇ = - 4,0714
μ _{1.8} = 5,42857	α ₈ = - 0,7572		
μ _{1.9} = 6,42857	$\alpha_9 = 0.7572$		
$\mu_{1.10}$ = 6,85714	$\alpha_{10} = 1,1857$		

4. Analiza los residuos del experimento.

Marcar la casilla RESIDUOS y la página B (o cualquier otra que esté libre).

Una vez obtenidos los residuos, realizar un análisis de una variable, obteniendo:

5. Utiliza el método de la LSD de Fisher para comparar las medias para los colores.

Pruebas de Múltiple Rangos para Calif por Colores

Método: 95,0 porcentaje LSD

Colores	Casos	Media LS	Sigma LS	Grupos Homogéneos
7	10	1,6	0,364641	X
4	10	2,2	0,364641	Х
2	10	6,3	0,364641	X
1	10	6,9	0,364641	Х
3	10	7,1	0,364641	X
5	10	7,3	0,364641	XX
6	10	8,3	0,364641	X

Contraste	Sig.	Diferencia	+/- Limites
1-2	0	0,6	1,03388
1-3	100	-0,2	1,03388
1 - 4	*	4,7	1,03388
1-5		-0,4	1,03388
1-6	*	-1,4	1,03388
1-7	*	5,3	1,03388
2-3		-0,8	1,03388
2 - 4	*	4,1	1,03388
2-5	0	-1,0	1,03388
2-6	*	-2,0	1,03388
2-7	*	4,7	1,03388
3 - 4	*	4,9	1,03388
3-5	10	-0,2	1,03388
3-6	*	-1,2	1,03388
3-7	*	5,5	1,03388
4-5	*	-5,1	1,03388
4-6	*	-6,1	1,03388
4-7	100	0,6	1,03388
5 - 6	- 10	-1,0	1,03388
5-7	*	5,7	1,03388
6-7	*	6,7	1,03388

^{*} indica una diferencia significativa.

Se están estudiando tres marcas de pilas o baterías. Se sospecha que la duración (en semanas) de las tres marcas es diferente. Se prueban 5 baterías de cada marca y los resultados que se obtienen vienen recogidos en las variables *Pilas* y *Marcapilas*, ésta última variable indica la marca de cada batería (de 1 a 3).

1. Especifica el modelo considerado.

ANOVA de un factor: modelo de efectos fijos de diseño equilibrado.

2. ¿Hay alguna diferencia en cuanto a la duración debida a la marca de batería? Usa α = 0,05.

Aplicando una verificación de varianza de Levenne se obtiene un P-Valor = 0,9124 > α = 0,05, por lo que no se rechaza H_0 .

Por tanto, no hay evidencias suficientes para afirmar que haya alguna diferencia en cuanto a la duración debido a la marca de la batería.

3. Realiza un diagrama de cajas y coméntalo.

Puede observarse que en la marca de pilas 3, la media se encuentra fuera de la caja y tampoco se tiene que la línea de mediana no aparece, ya que coincide con el cuartil superior. Por otra parte, a la marca de pilas 1 le pasa lo mismo con la mediana que a la marca anterior, pero con el cuartil inferior.

4. Analiza los residuos de este experimento.

Los residuos se ajustan bastante a la normal.

5. Usa el método de la LSD de Fisher para analizar los duraciones medias de las 3 pilas. Usa α = 0,05.