

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования.

Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет).

(МГТУ им. Н. Э. Баумана)

Конструирование и визуализация загородного посёлка

Студент: ИУ7-53Б Звягин Даниил Олегович

Руководитель: Вишневская Татьяна Ивановна

Цель и задачи

Цель - разработка программного обеспечения с пользовательским интерфейсом для генерации и визуализации загородного посёлка.

Для достижения цели были поставлены следующие задачи:

- 1) сравнение существующих алгоритмов процедурной генерации сцены и алгоритмов использующихся для визуализации трёхмерной модели (сцены);
- 2) выбор подходящих алгоритмов для решения поставленных задач;
- 3) проектирование архитектуры и графического интерфейса ПО;
- 4) выбор средств реализации ПО;
- 5) разработка спроектированного ПО;
- 6) замер временных характеристик разработанного ПО.

Описание объектов сцены

- Камера
- Источник света
- Модель загородного посёлка, состоящая из:
 - Домов;
 - Дорог;
 - Деревьев.

Для представления объектов сцены была выбрана поверхностная модель, задающаяся полигональной сеткой при помощи списка граней.

Алгоритм квантового коллапса волновой функции

Для процедуной генерации сцены был выбран алгоритм алгоритм квантового коллапса волновой функции.

Алгоритм заполняет матрицу ячеек, с учётом заданных правил. Пример применения правил для соединения ячеек дорог изображён на рисунке ниже

Множество возможных ячеек

Невозможные соединения

Алгоритмы удаления невидимых линий и поверхностей

N – количество граней

W – ширина экрана в пикселях

Н – высота экрана в пикселях

·	Алгоритм Варнока	Алгоритм обратной трассировки лучей	Алгоритм, использующий Z-буфер
Необходимость в сортировке	Нет, но сортировка значительно увеличивает производительность	Нет	Нет
Временная сложность	O(WHN)	O(WHN)	O(WHN)
Возможность реализации оптических эффектов	Нет	Да	Нет

Метод построения теней

Метод теневых карт

Метод теневых карт основывается на построении карты теней методом заполнения Z-буфера с точки зрения источника света и сравнения этого буфера с точки зрения камеры для правильного затенения пикселей.

Метод теневых карт в сочетании с алгоритмом Z-буфера имеет свои преимущества и недостатки. К преимуществам можно отнести:

- высокую производительность для динамических сцен;
- возможность создания реалистичных теней для сложных объектов.

Формулы

Формулы вычисления цветов затенённого пикселя

$$r_1 = r * p$$

$$g_1 = g * p$$

$$b_1 = b * p$$

, где r1, g1, b1 — значения интенсивности красного, зелёного и синего каналов цвета пикселя после затенения соответственно; р — коэффициент затенения; r, g, b — значения интенсивности красного, зелёного и синего каналов цвета исходного пикселя соответственно. В данной работе был выбран коэффициент затенения p = 0.4.

Формула итерационного вычисления координаты z на сканирующей строке

$$z_1 = z - \frac{a}{c}$$

Где а и с — коэффициенты уравнения плоскости при x и z из уравнения плоскости.

Общий алгоритм построения кадра

Алгоритм, растеризации многоугольника, использующий Zбуфер

Алгоритм генерации сцены методом коллапса волновой функции

Алгоритм растеризации многоугольника для заполнения карты теней

Средства реализации

- Язык: С++
- Среда разработки: Visual Studio Code
- Библиотека Qt6
- Библиотека Опеарі ТВВ

Пример интерфейса

График зависимости времени генерации сцены от количества строк и столбцов квадратной матрицы сцены

- операционная система EndeavourOS 64бит;
- версия ядра Linux 6.12.3-arch1-1;
- 13th Gen Intel(R) Core(TM) i5-13500Н4.70 ГГц 12 ядер
- оперативная память 16ГБ с частотой
 5200МГц.

График зависимости времени создания карты теней сцены от количества строк и столбцов квадратной матрицы глубин карты теней

- операционная система EndeavourOS 64бит;
- версия ядра Linux 6.12.3-arch1-1;
- 13th Gen Intel(R) Core(TM) i5-13500Н4.70 ГГц 12 ядер
- оперативная память 16ГБ с частотой 5200МГц.

График зависимости времени генерации кадра от количества видимых граней на сцене

- операционная система EndeavourOS 64бит;
- версия ядра Linux 6.12.3-arch1-1;
- 13th Gen Intel(R) Core(TM) i5-13500Н4.70 ГГц 12 ядер
- оперативная память 16ГБ с частотой 5200МГц.

Заключение

Поставленная цель была достигнута, и были выполнены все поставленные задачи:

- были сравнены существующие алгоритмы процедурной генерации сцены и алгоритмы компьютерной графики, использующихся для визуализации трёхмерной модели (сцены);
- были выбраны подходящие алгоритмы для решения поставленных задач;
- были спроектированы архитектура и графический интерфейс ПО
- были выбраны средства реализации ПО;
- было разработано спроектированное ПО;
- были проведены замеры временных характеристик разработанного ПО.