一个陀螺动力学问题的解析**解**◎

陶志伟

(云南民族学院物理系, 昆明, 650031)

罗耀煌

(云南大学物理系, 昆明 650091) (云南教育学院, 昆明, 650031)

研究一个陀螺问题动力学方程的积分. 求助于椭圆积分, 给出问题的椭圆函数解 析解,并给出这一解的数值例子.

关键词 刚体动力学: 椭圆积分; 椭圆函数; 数值计算

1 问题

一陀螺由半径为 2a 的薄圆盘及一垂直通过盘的中心 C,长为 a 的杆轴所组成。杆轴 质量可忽略不计,将杆轴的另一端 () 放在水平面上,使陀螺 作无滑动转动,起始时,杆 轴 OC 与竖直线的夹角为 α ,而总角动量值为 ω ,方向沿着 α 的平分线. 研究经过多长时 间, 杆轴将直立起来,

本问题属于拉格朗日——泊松情况. 根据刚体动力学方程可得到.

$$\theta^2 = \omega^2 \left[1 - \cos^2 \frac{\alpha}{2} \sec^2 \frac{\theta}{2} + k \left(\cos \alpha - \cos \theta \right) \right] \tag{1}$$

式中 $k = \frac{g}{a\alpha^2}$, θ 为任一瞬时杆轴与竖直线间夹角. 将(1) 式开平方, 注意到当杆轴 与竖直轴线的夹角由 α 变化到 0 时, $d\theta$ 恒小干 0,因而开平方应取负号, 得:

$$\theta = \frac{d\theta}{dt} = -\omega \sqrt{1 - \cos^2 \frac{\alpha}{2} \sec^2 \frac{\theta}{2} + k (\cos\alpha - \cos\theta)}$$

$$t = -\int_{\alpha}^{0} \frac{d\theta}{\omega \sqrt{1 - \cos^2 \frac{\alpha}{2} \sec^2 \frac{\theta}{2} + k (\cos\alpha - \cos\theta)}}$$
(2)

求解方程(2)式

由三角关系 $\sec^2 \frac{\theta}{2} = \frac{2}{1 + \cos \theta}$, (2) 式可书为:

$$t = \int_{\alpha}^{0} \frac{d\theta}{\omega \sqrt{1 - \cos^{2}\frac{\alpha}{2} \cdot \frac{2}{1 + \cos\theta} + k(\cos\alpha - \cos\theta)}}$$
 (3)

1996-- 11-- 11 收稿

$$\Rightarrow x = 1 + \cos\theta, \quad \exists \theta = \alpha \text{ 时}, \quad x = 1 + \cos\theta = 2\cos^2\frac{\alpha}{2} \exists \theta = 0 \text{ 时}, \quad x = 2$$

$$dx = -\sin\theta d\theta \quad \text{III} \quad d\theta = -\frac{dx}{\sin\theta} = -\frac{dx}{\sqrt{(1-\cos^2\theta)}}$$
$$= -\frac{dx}{\sqrt{1-(1-x)^2}} = -\frac{dx}{\sqrt{x(2-x)}}$$

于是,(3)式变为:

$$t = \frac{1}{\omega} \int_{2\cos^{2}\frac{\alpha}{2}}^{2} \frac{dx}{\sqrt{x(2-x)} \sqrt{1-\cos^{2}\frac{\alpha}{2}\frac{2}{x} + k[\cos\alpha - (x-1)]}}$$

$$= \frac{1}{\omega} \int_{2\cos^{2}\frac{\alpha}{2}}^{2} \frac{dx}{\sqrt{(2-x)} \sqrt{1-\cos^{2}\frac{\alpha}{2}\frac{2}{x} + kx[\cos\alpha - (x+1)]}}$$
(4)

现求(4)式被积函数分母中第二个根号里的多项式的根.

$$x-2\cos^{2}\frac{\alpha}{2}+kx \quad (-x+2\cos^{2}\frac{\alpha}{2})$$

$$=-kx^{2}+ \quad (1+2k\cos^{2}\frac{\alpha}{2}) \quad x-2\cos^{2}\frac{\alpha}{2}=0$$

$$\begin{cases}
x_{1,2} = \frac{1+2k\cos^{2}\frac{\alpha}{2}}{2k} \pm \frac{\sqrt{(1+2k\cos^{2}\frac{\alpha}{2})^{2}-4(-k)(-2\omega s^{2}\frac{\alpha}{2})}}{-2k} \\
= \frac{1+2k\cos^{2}\frac{\alpha}{2}}{2k} \pm \frac{\sqrt{(1-2k\omega s^{2}\frac{\alpha}{2})^{2}}}{-2k} = \begin{cases}
2\cos^{2}\frac{\alpha}{2} \\
1
\end{cases}$$

于是有

$$x - 2c\sigma^2 \frac{\alpha}{2} + kx \leftarrow x + 2\sigma s^2 \frac{\alpha}{2})$$

$$= -k\left(x - \frac{1}{k}\right)\left(x - 2\sigma s^2 \frac{\alpha}{2}\right)$$
(5)

代(5)入(4)式,得:

$$t = \frac{1}{\omega \sqrt{k}} \int_{2\omega s^{2} \frac{\alpha}{2}}^{2} \frac{dx}{\sqrt{(\frac{1}{k} - x)(2 - x)(x - 2\omega s^{2} \frac{\alpha}{2})}}$$
 (6)

(6) 式是一个椭圆积分,积分结果依赖于 k 值. 我们讨论 $\frac{1}{k}$ > 2 的情 况,于是对(6)式的积分有:

$$\frac{1}{k} > 2 > 2\cos^2 \frac{\alpha}{2}$$
.

根据椭圆积分理论^[2]得:

$$t = \frac{1}{\omega \sqrt{k}} \frac{2}{\sqrt{\frac{1}{k} - 2\cos^2\frac{\alpha}{2}}} F\left(\frac{\pi}{2}, \frac{\frac{1}{2}(1 - \cos^2\frac{\alpha}{2})}{\frac{1}{k} - 2\cos^2\frac{\alpha}{2}}\right)$$
(7)

(7) 式就是杆直立起来所需时间. F₁ 是全椭圆积分.

3 实例

下面给出一个数值例子. 令 $\omega=10/s$, $\frac{1}{k}=3$, $\alpha=60$ °C, 则全椭圆积分 $F(\frac{\pi}{2},k)$ 的模

$$k' = \sqrt{\frac{2 \times (1 - \cos^2 30^\circ)}{3 - 2\cos^2 30^\circ}} = \sqrt{\frac{2 \times (1 - 0.75)}{3 - 2 \times 0.75}} = 0.5774$$

 $\sin^{-1}k' = 35.26^{\circ}$

查椭圆函数表得

$$F(\frac{\pi}{2}, 0.5774) = 1.7312$$

代入(7)式得陀螺直立起来的时间为

$$t = \frac{1}{10 \sqrt{\frac{1}{3}}} \times \frac{2}{\sqrt{3 - 2 \times 0.75}} \times 1.7312 = 0.49s$$

参考文献

- 1 周衍柏. 理论力学. 北京: 高等教育出版社.
- 2 Byrd P. F. et, Handbook of Elliptic Integrals for Engineers and physicists Springer Verlag, 73

An Analytio Solution of a Top's Dynamical Problem

Tao Zhiwei

(Yunnan Institute of the Nationalitions, Kunming, 650031)

Luo Yaohuang

Zhao Yong da

(Yunnan University, Kunming, 650091) (Yunnan Education College, Kunming, 650031)

Abstract This artiale stucties the integration of a top's dynamical equation. By using an elliptical integration, the article prouides an analytic solution of elliptical function and an example of numerical value calculation.

Key wrods rigid body dynanics, elliptical integration, eliptical function, numerical value calaulation