Six types of size-bias

Matthew Aldridge

School of Mathematics, University of Leeds

Thursday 16 October 2024

Section 1

Size-bias

Houses in Leeds

I want to find out how many people live in different houses in Leeds.

3/59

Houses in Leeds

I want to find out how many people live in different houses in Leeds.

I want to estimate:

- p(0), the proportion of houses that are uninhabited
- p(1), the proportion of houses with 1 person living in them
- p(2), the proportion of houses with 2 people living in them
- p(3), the proportion of houses with 3 people living in them
- etc.

Asking people about houses

I want to find out how many people live in different houses in Leeds.

I want to estimate:

• p(x), the proportion of houses with x people living in them

I will go out into the city centre and ask people:

"How many people live in your house?"

Asking people about houses

I want to find out how many people live in different houses in Leeds.

I want to estimate:

• p(x), the proportion of houses with x people living in them

I will go out into the city centre and ask people:

"How many people live in your house?"

Question:

What mistake have I made?

My mistake

I will go out into the city centre and ask people:

"How many people live in your house?"

Question:

What mistake have I made?

• I can never find out about the uninhabited houses: there's no one living there to ask!

5 / 59

My mistake

I will go out into the city centre and ask people:

"How many people live in your house?"

Question:

What mistake have I made?

- I can never find out about the uninhabited houses: there's no one living there to ask!
- Houses with lots of people living in them will be overrepresented:
 - A townhouse in Hyde Park with 8 students packed in gives me 8 opportunities to bump into one of them.
 - A flat by the station with 1 young professional living alone gives me only 1 chance to survey him.

What am I actually counting?

I'm actually finding not

$$p(x)$$
 = proportion of houses with x people

but rather

 $p^*(x)$ = proportion of people living in a house with x people.

What am I actually counting?

I'm actually finding not

$$p(x)$$
 = proportion of houses with x people

but rather

 $p^*(x)$ = proportion of people living in a house with x people.

$$p^*(x) \propto x p(x)$$

What am I actually counting?

I'm actually finding not

$$p(x)$$
 = proportion of houses with x people

but rather

 $p^*(x)$ = proportion of people living in a house with x people.

$$p^*(x) \propto x p(x)$$

$$p^*(x) = \frac{1}{\sum_{y} y \, p(y)} x \, p(x) = \frac{1}{\mu} x \, p(x),$$

where $\mu = \sum_{y} y p(y) = \mathbb{E} X$.

I am the module manager for a class of 30 students.

For tutorials, they are split into three unequal groups of size 6, 11, and 13.

Question:

What is the distribution of tutorial group sizes?

7 / 59

I am the module manager for a class of 30 students.

For tutorials, they are split into three unequal groups of size 6, 11, and 13.

Question:

What is the distribution of tutorial group sizes?

From my point of view:

$$p(6) = \frac{1}{3}$$
 $p(11) = \frac{1}{3}$ $p(13) = \frac{1}{3}$

I am the module manager for a class of 30 students.

For tutorials, they are split into three unequal groups of size 6, 11, and 13.

Question:

What is the distribution of tutorial group sizes?

From my point of view:

$$p(6) = \frac{1}{3}$$
 $p(11) = \frac{1}{3}$ $p(13) = \frac{1}{3}$

From the students' point of view:

$$p^*(6) = \frac{6}{30}$$
 $p^*(11) = \frac{11}{30}$ $p^*(13) = \frac{13}{30}$

I am the module manager for a class of 30 students.

For tutorials, they are split into three unequal groups of size 6, 11, and 13.

Question:

What is the distribution of tutorial group sizes?

From my point of view:

$$p(6) = \frac{1}{3}$$
 $p(11) = \frac{1}{3}$ $p(13) = \frac{1}{3}$

From the students' point of view:

$$p^*(6) = \frac{6}{30}$$
 $p^*(11) = \frac{11}{30}$ $p^*(13) = \frac{13}{30}$

Again,
$$p^*(x) = \frac{1}{\mu} x p(x)$$
.

Size-bias: first definition

Definition (first attempt)

Let X be a random variable on the non-negative integers \mathbb{N} with PMF p and expectation $\mu = \mathbb{E}X$.

Then the random variable X^* with PMF p^* , where

$$p^*(x) = \frac{1}{\mu} x p(x),$$

is called the size-biased version of X, or just the size-bias of X.

M Aldridge (Leeds) Six types of size-bias 16 October 2024

8 / 59

Size-bias: first definition

Definition (first attempt)

Let X be a random variable on the non-negative integers \mathbb{N} with PMF p and expectation $\mu = \mathbb{E}X$.

Then the random variable X^* with PMF p^* , where

vnere

$$p^*(x) = \frac{1}{\mu} x p(x),$$

is called the size-biased version of X, or just the size-bias of X.

But we'd like a definition that works equally well for continuous random variables with PDF f

$$f^*(x) = \frac{1}{\mu} x f(x),$$

and for random variables that are neither discrete nor purely continuous, etc. . .

Size-bias: better definition

A better definition is this:

Definition

Let X be a random variable with expectation $\mu = \mathbb{E}X$.

The size-biased version of X, or just the size-bias of X, is the random variable X^* such that

$$\mathbb{E} X f(X) = \mu \mathbb{E} f(X^*)$$

for all "nice" functions f.

Taking f to be an appropriate indicator function recovers the previous definitions.

Size-bias: existence

Definition

Let X be a random variable with expectation $\mu = \mathbb{E}X$. The size-biased version of X, or just the size-bias of X, is the random variable X^* such that

$$\mathbb{E} X f(X) = \mu \mathbb{E} f(X^*)$$

for all "nice" functions f.

The size-bias X^* exists and is unique provided:

- X is almost surely non-negative (or non-positive)
- X has finite expectation
- X is not a point mass at 0

M Aldridge (Leeds)

Examples of size-bias

Examples

Distribution	Size-bias on j
$\Gamma(u,\lambda)$	$\Gamma(u+1,\lambda)$
$Beta(\alpha,\beta)$	$Beta(\alpha+1,\beta)$
point mass at x	point mass at x
, , ,	

The point mass is the only case where X and X^* have the same distribution.

Properties of size-bias

Theorem

Let X be a non-negative random variable with finite expectation $\mathbb{E}X = \mu$ and let X^* be its size-bias.

- Expectation: $\mathbb{E}X^* = \mu + \frac{\text{Var}(X)}{\mu}$
- **3** *MGF*: $M_{X^*}(t) = \frac{1}{u} \frac{d}{dt} M_X(t)$
- Size-bias commutes with scaling: $(aX)^* \equiv a(X^*)$

Properties of size-bias: proof

Theorem

- Expectation: $\mathbb{E}X^* = \mu + \frac{\text{Var}(X)}{\mu}$
- ② Moments: $\mathbb{E}(X^*)^k = \frac{1}{\mu} \mathbb{E} X^{k+1}$ ③ MGF: $M_{X^*}(t) = \frac{1}{\mu} \frac{d}{dt} M_X(t)$
- Size-bias commutes with scaling: $(aX)^* \equiv a(X^*)$

Proof.

In the definition $\mathbb{E} X f(X) = \mu \mathbb{E} f(X^*)$,

- \bullet take f(x) = x
- 2 take $f(x) = x^k$
- 3 take $f(x) = e^{tx}$

Point 4 follows from point 3, since $M_{aX}(t) = M_X(at)$.

Section 2

Reduced size-bias

14 / 59

My alternative definition

Definition

Let X be a random variable with expectation $\mu = \mathbb{E}X$. The *size-biased version of* X, or just the *size-bias* of X, is the random variable X^* such that

$$\mathbb{E} X f(X) = \mu \mathbb{E} f(X^*).$$

For discrete random variables on the non-negative integers, I propose . . .

My alternative definition

Definition

Let X be a random variable with expectation $\mu = \mathbb{E}X$.

The size-biased version of X, or just the size-bias of X, is the random variable X^* such that

$$\mathbb{E} X f(X) = \mu \mathbb{E} f(X^*).$$

For discrete random variables on the non-negative integers, I propose . . .

Definition

Let X be a discrete random variable with expectation $\mu = \mathbb{E}X$.

The reduced size-biased version of X, or just the reduced size-bias of X, is the discrete random variable $X^!$ such that

$$\mathbb{E} X f(X-1) = \mu \mathbb{E} f(X^!).$$

. . . is a better definition.

Two views of reduced size bias

Definition

Let X be a discrete random variable with expectation $\mu = \mathbb{E}X$. The reduced size-biased version of X, or just the reduced size-bias of X, is the discrete random variable $X^!$ such that

$$\mathbb{E} X f(X-1) = \mu \mathbb{E} f(X^!)$$

for all "nice" functions f.

I want to explain why I think reduced size-bias...

1 ... is just a minor notational change of convention compared to the usual size-bias,

Two views of reduced size bias

Definition

Let X be a discrete random variable with expectation $\mu = \mathbb{E}X$. The reduced size-biased version of X, or just the reduced size-bias of X, is the discrete random variable $X^!$ such that

$$\mathbb{E} X f(X-1) = \mu \mathbb{E} f(X^!)$$

for all "nice" functions f.

I want to explain why I think reduced size-bias...

- ... is just a minor notational change of convention compared to the usual size-bias,
- ② ... has surprising and beneficial properties that are not obvious from the minor change of convention.

M Aldridge (Leeds)

Reduced size bias: PMF

Definition

$$\mathbb{E} X f(X-1) = \mu \mathbb{E} f(X^!)$$

Setting f to be the indicator function at x, we get

$$p^!(x) = \frac{1}{\mu}(x+1) p(x+1)$$

M Aldridge (Leeds) Six types of size-bias 17 / 59

Reduced size bias: PMF

Definition

$$\mathbb{E} X f(X-1) = \mu \, \mathbb{E} \, f(X^!)$$

Setting f to be the indicator function at x, we get

$$p^!(x) = \frac{1}{\mu}(x+1) p(x+1)$$

... compared to

$$p^*(x) = \frac{1}{\mu} x p(x).$$

Reduced size bias: PMF

Definition

$$\mathbb{E} X f(X-1) = \mu \, \mathbb{E} f(X^!)$$

Setting f to be the indicator function at x, we get

$$p!(x) = \frac{1}{\mu}(x+1) p(x+1)$$

... compared to

$$p^*(x) = \frac{1}{\mu} x p(x).$$

So $p^!(x) = p^*(x+1)$, and $X^! = X^* - 1$.

The reduced size-bias is just the usual size-bias minus 1.

M Aldridge (Leeds)

Examples of reduced size-bias

Examples

Distribution	Size-bias	Reduced size-bias
Bin(n, p)	$Bin(\mathit{n}-1,\mathit{p})+1$	Bin(n-1,p)
NegBin(n,p)	$NegBin(\mathit{n}+1,\mathit{p})+1$	NegBin(n+1,p)
$Po(\lambda)$	$Po(\lambda) + 1$	$Po(\lambda)$
$Herm(\mu,\sigma^2)$	$Herm(\mu,\sigma^2) + Bern(rac{\sigma^2}{\mu}) + 1$	$Herm(\mu,\sigma^2) + Bern(rac{\sigma^2}{\mu})$

The Hermite distribution $X \sim \text{Herm}(\mu, \sigma^2)$ is X = Y + 2Z where $Y \sim \text{Po}(\mu - \sigma^2)$ and $Z \sim \text{Po}(\sigma^2/2)$.

Properties of reduced size-bias

Theorem

Let X be a discrete random variable with finite expectation $\mathbb{E}X = \mu$ and let $X^!$ be its reduced size-bias.

- Expectation: $\mathbb{E}X^! = \mu + \frac{\mathsf{Disp}(X)}{\mu}$
- **2** Factorial moments: $\mathbb{E}(X^!)^{\underline{k}} = \frac{1}{\mu} \mathbb{E} X^{\underline{k+1}}$
- **3** PGF: $G_{X!}(t) = \frac{1}{u} \frac{d}{dt} G_X(t)$
- **9** Reduced size-bias commutes with thinning: $(a \circ X)^! \equiv a \circ (X^!)$
- Dispersion: $\mathsf{Disp}(X) = \mathsf{Var}(X) \mathbb{E}X$
- Factorial moments: $\mathbb{E} X^{\underline{k}} = \mathbb{E} X(X-1) \cdots (X-k+1)$
- Thinning: $a \circ X \sim \text{Bin}(X, a)$, for $a \in [0, 1]$.

Poisson as fixed point

Theorem

A discrete random variable X and its reduced size-bias $X^!$ have the same distribution if and only if X is a Poisson distribution

20 / 59

Poisson as fixed point

Theorem

A discrete random variable X and its reduced size-bias $X^!$ have the same distribution if and only if X is a Poisson distribution

Proof.

Solve the differential equation $\frac{\mathrm{d}}{\mathrm{d}t}\,G_X(t)=\frac{1}{\mu}\,G_X(t),$ making sure the solution is a valid PGF.

Poisson as fixed point

Theorem

A discrete random variable X and its reduced size-bias $X^!$ have the same distribution if and only if X is a Poisson distribution

Proof.

Solve the differential equation $\frac{d}{dt} G_X(t) = \frac{1}{\mu} G_X(t)$, making sure the solution is a valid PGF.

This is used in "Stein-Chen approximation":

A random variable is approximately Poisson if X and $X^!$ (or $X^* - 1$) have similar distributions.

An interesting connection

Let X be a positive real-valued random variable. The **mixed Poisson** distribution $Y \sim \mathsf{MPo}(X)$ means the conditional distribution. $Y \mid X \sim \mathsf{Po}(X)$.

An interesting connection

Let X be a positive real-valued random variable. The **mixed Poisson** distribution $Y \sim \mathsf{MPo}(X)$ means the conditional distribution. $Y \mid X \sim \mathsf{Po}(X)$.

Theorem,

Let $Y \sim \mathsf{MPo}(X)$. Then $Y^! \sim \mathsf{MPo}(X^*)$.

"The reduced size-bias is the usual size-bias factored through the mixed Poisson operation."

Proof.

Follows from $\mathbb{E}Y = \mathbb{E}X$ and $G_Y(t) = M_X(t-1)$.

Conclusions

Reasons to prefer the reduced size-bias for discrete random variables:

- Pleasant examples without "+1"s
- Poisson as fixed point
- Combines well with factorial moments
- Combines well with PGF
- Ommutes with thinning

Section 3

Multivariate size-bias

23 / 59

Definition of multivariate size-bias

Definition

Let **X** be a random variable whose *j*th coordinate X_j has expectation $\mu_j = \mathbb{E}X_j$.

The size-biased version of X, biased on coordinate j, or just the size-bias on j of X, is the random vector \mathbf{X}^{*j} such that

$$\mathbb{E} X_j f(\mathbf{X}) = \mu_j \mathbb{E} f(\mathbf{X}^{*j})$$

for all "nice" functions $f: \mathbb{R}^d_+ \to \mathbb{R}$.

Taking f to be an appropriate indicator function, we get

$$p^{*j}(\mathbf{x}) = \frac{1}{\mu_i} x_j \, p(\mathbf{x}).$$

Examples of multivariate size-bias

Examples

Distribution	Size-bias on j
$\Gamma(u,oldsymbol{\lambda})$	$\Gamma(u+1,oldsymbol{\lambda})$
Dir(lpha)	$Dir(\alpha + \mathbf{e}_j)$
point mass at x	point mass at x
point mass at x	point mass at

- $\mathbf{X} \sim \Gamma(\nu, \lambda)$ means $X_i = Y/\lambda_i$ where $Y \sim \Gamma(\nu, 1)$.
- Dirichlet distribution is a multivariate generalisation of the Beta with PDF $f(\mathbf{x}) \propto \prod_{i=1}^d x_i^{\alpha_i-1}$, where $\sum_{i=1}^d x_i = 1$.

Properties of multivariate size-bias

Theorem

Let **X** be a non-negative random vector with finite $\mathbb{E}X_j = \mu_j$ and let \mathbf{X}^{*j} be its size-bias on j.

- Expectation: $\mathbb{E}X_i^{*j} = \mu_i + \frac{\mathsf{Cov}(X_i, X_j)}{\mu_j}$
- **2** Moments: $\mathbb{E}(\mathbf{X}^{*j})^{\mathbf{k}} = \frac{1}{\mu_j} \mathbb{E} \mathbf{X}^{\mathbf{k} + \mathbf{e}_j}$
- $MGF: M_{\mathbf{X}^{*j}}(\mathbf{t}) = \frac{1}{\mu_i} \frac{d}{dt_i} M_{\mathbf{X}}(\mathbf{t})$
- Size-bias commutes with scaling: $(aX)^{*j} \equiv a(X^{*j})$
- **5** Size-bias can be done in any order: $(\mathbf{X}^{*i})^{*j} \equiv (\mathbf{X}^{*j})^{*i}$

Multivariate moments: $\mathbb{E} \mathbf{X}^{\mathbf{k}} = \mathbb{E} \prod_{i=1}^{d} X_i^{k_i}$

Coordinate independence

For the multivariate Gamma and point-mass distributions, the size-bias is the same whichever coordinate you pick.

Coordinate independence

For the multivariate Gamma and point-mass distributions, the size-bias is the same whichever coordinate you pick.

Theorem

The size-bias of $\mathbf{X} = (X_i)$ is "coordinate-independent" if and only if $X_i = a_i Y$ for deterministic $\mathbf{a} = (a_i)$ and univariate Y.

M Aldridge (Leeds)

Section 4

Reduced multivariate size-bias

28 / 59

Definition of reduced multivariate size-bias

Definition

Let ${\bf X}$ be a discrete random variable whose jth coordinate X_j has expectation $\mu_j=\mathbb{E} X_j$.

The reduced size-biased version of X, biased on coordinate j, or just the reduced size-bias on j of X, is the random vector $\mathbf{X}^{!j}$ such that

$$\mathbb{E} X_j f(\mathbf{X} - \mathbf{e}_j) = \mu_j \mathbb{E} f(\mathbf{X}^{!j})$$

for all "nice" functions $f: \mathbb{N}^d \to \mathbb{R}$.

Definition of reduced multivariate size-bias

Definition

Let **X** be a discrete random variable whose jth coordinate X_j has expectation $\mu_j = \mathbb{E} X_j$.

The reduced size-biased version of X, biased on coordinate j, or just the reduced size-bias on j of X, is the random vector $\mathbf{X}^{!j}$ such that

$$\mathbb{E} X_j f(\mathbf{X} - \mathbf{e}_j) = \mu_j \mathbb{E} f(\mathbf{X}^{!j})$$

for all "nice" functions $f: \mathbb{N}^d \to \mathbb{R}$.

Taking f to be an appropriate indicator function, we get

$$p^{!j}(\mathbf{x}) = \frac{1}{\mu_i} (x_j + 1) p(\mathbf{x} + \mathbf{e}_j).$$

So
$$X^{!j} \equiv X^{*j} - \mathbf{e}_i$$
.

Examples of reduced multivariate size-bias

Examples

Distribution	Reduced size-bias on j
$Multi(n,\mathbf{p})$	$Multi(\mathit{n}-1, \mathbf{p})$
$NegMulti(n,\mathbf{q})$	$NegMulti(n+1,\mathbf{q})$
$Po(\pmb{\lambda})$	$Po(\pmb{\lambda})$
$Herm(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	$Herm(oldsymbol{\mu}, \Sigma) + Bern\left(rac{oldsymbol{\sigma}_j}{\mu_j} ight)$

• $\mathbf{X} \sim Po(\lambda)$ means $X_i \sim Po(\lambda_i)$ all independent.

M Aldridge (Leeds)

Properties of multivariate size-bias

Theorem

Let **X** be a discrete random vector with finite $\mathbb{E}X_j = \mu_j$ and let **X**^{!j} be its reduced size-bias on k.

- **1** Expectation: $\mathbb{E}X_i^{!j} = \mu_i + \frac{\mathsf{Cov}(X_i, X_j)}{\mu_j}$ for $i \neq j$
- **2** Moments: $\mathbb{E}(\mathbf{X}^{!j})^{\underline{\mathbf{k}}} = \frac{1}{\mu_j} \mathbb{E} \mathbf{X}^{\underline{\mathbf{k}} + \mathbf{e}_j}$
- **3** Size-bias can be done in any order: $(\mathbf{X}^{*i})^{!j} \equiv (\mathbf{X}^{!j})^{*i}$

Properties of multivariate size-bias

Theorem

Let **X** be a discrete random vector with finite $\mathbb{E}X_j = \mu_j$ and let **X**^{!j} be its reduced size-bias on k.

- **1** Expectation: $\mathbb{E}X_i^{!j} = \mu_i + \frac{\mathsf{Cov}(X_i, X_j)}{\mu_j}$ for $i \neq j$
- **2** Moments: $\mathbb{E}(\mathbf{X}^{!j})^{\underline{\mathbf{k}}} = \frac{1}{\mu_j} \mathbb{E} \mathbf{X}^{\underline{\mathbf{k}} + \underline{\mathbf{e}}_j}$
- Size-bias can be done in any order: $(\mathbf{X}^{*i})^{!j} \equiv (\mathbf{X}^{!j})^{*i}$

Research question

What the appropriate generalisation of the scaling/thinning result?

Coordinate independence again

For the binomial, negative binomial, and Poisson distributions, the reduced size-bias is the same whichever coordinate you pick.

32 / 59

Coordinate independence again

For the binomial, negative binomial, and Poisson distributions, the reduced size-bias is the same whichever coordinate you pick.

Theorem

The reduced size-bias of $\mathbf{X} = (X_i)$ is "coordinate-independent" if and only if \mathbf{X} is a "mixed multinomial" distribution; that is, if there is some univariate Y and deterministic $\mathbf{a} = (a_i)$ such that

 $X \mid Y \sim Multi(Y, a)$.

Section 5

Size-bias for random measures

33 / 59

Random measures

A random measure ξ is a random variable that takes values in the collection $\mathcal{M}(\mathcal{X})$ of measures on a space \mathcal{X} .

We assume $\xi(A)$ is finite for bounded sets A.

Random measures

A random measure ξ is a random variable that takes values in the collection $\mathcal{M}(\mathcal{X})$ of measures on a space \mathcal{X} .

We assume $\xi(A)$ is finite for bounded sets A.

If $\xi(A)$ is a non-negative integer for all bounded sets A, we call ξ a **point process**, and think of $\xi(A)$ as "the number of points in A".

Intensity

The equivalent of the expectation of a random variable is the **intensity**.

Here, $\mu(A)$ is the expected measure (or expected number of points in) A.

Definition

Let ξ be a random measure.

The associated *intensity measure* of ξ is the measure μ defined by

$$\mu(A) = \mathbb{E}\,\xi(A).$$

Definition of size-bias for random measures

Definition

Let ξ be a random measure with intensity measure μ , and let B be a bounded set.

The size-biased version of ξ , biased on B, or just the size-bias on B of ξ , is the random measure ξ^{*B} such that

$$\mathbb{E}\,\xi(B)\,f(\xi)=\mu(B)\,\mathbb{E}\,f(\xi^{*B})$$

for all "nice" functions $f: \mathcal{M}(\mathcal{X}) \to \mathbb{R}$.

Compare with the definition of multivariate size-bias

$$\mathbb{E} X_j f(\mathbf{X}) = \mu_j \mathbb{E} f(\mathbf{X}^{*j}).$$

Definition of size-bias for random measures

Definition

Let ξ be a random measure with intensity measure μ , and let B be a bounded set.

The size-biased version of ξ , biased on B, or just the size-bias on B of ξ , is the random measure ξ^{*A} such that

$$\mathbb{E}\,\xi(B)\,f(\xi)=\mu(B)\,\mathbb{E}\,f(\xi^{*B})$$

for all "nice" functions $f: \mathcal{M}(\mathcal{X}) \to \mathbb{R}$.

Small question

Should I disallow sets B with $\mu(B) = 0$, or should I say $\xi^{*B} \equiv \xi$ if $\mu(B) = 0$?

Examples of size-bias for random measures

Examples

Size-bias on B
$\Gamma(\nu+1,\Theta)$
$Dir(lpha_{B})$
deterministic ξ

- $\xi \sim \Gamma(\nu, \Theta)$ for a deterministic measure Θ means $\xi(A) = Y \Theta(A)$ where $Y \sim \Gamma(\nu, 1)$.
- Dirichlet process is the random probability measure version of the Dirichlet distribution, α is a deterministic measure, and

$$\alpha_B(A) = \alpha(A) + \frac{\alpha(A \cap B)}{\alpha(B)}.$$

Properties of size-bias for random measures

Theorem

Let ξ be a random measure with intensity μ and ξ^{*B} be its size-bias on B.

- Intensity: $\mu^{*B}(A) = \mu(A) + \frac{V_{\xi}(A, B)}{\mu(B)}$
- **2** Moment measures: $m_k^{*B}(E) = \frac{1}{\mu(B)} m_{k+1}(E \times B)$ for $E \subset \mathcal{X}^k$
- **3** Laplace functional: $L_{\xi^{*B}}(u) = \frac{1}{\mu(B)} \frac{\delta}{\delta \mathbf{1}_B} L_{\xi}(u)$
- Size-bias commutes with scaling: $(a\xi)^{*B} \equiv a(\xi^{*B})$
 - $V_{\xi}(A,B) = Cov(\xi(A),\xi(B))$
 - m_k are the moment measures on \mathcal{X}^k , the equivalent of the moments.
 - The Laplace functional is the equivalent of the MGF, and $\frac{\delta}{\delta \mathbf{1}_B}$ is a functional derivative.

Fixed point: deterministic measures

Conjecture

The size-bias ξ^{*B} has the same distribution as ξ for all B if and only if ξ is a deterministic measure.

M Aldridge (Leeds) Six types of size-bias 16 October 2024

40 / 59

Fixed point: deterministic measures

Conjecture

The size-bias ξ^{*B} has the same distribution as ξ for all B if and only if ξ is a deterministic measure.

Research questions

- What are the correct restrictions on B? (Just "bounded and measurable"?)
- Do I need to put " ξ -almost everywhere" statements in some places to make this true?
- What's the best way to prove this?

Section 6

Reduced size-bias for point processes

41 / 59

Definition of reduced size-bias for point process

Again, a "reduced" definition works better for discrete random measures – i.e. point processes.

16 October 2024

Definition of reduced size-bias for point process

Again, a "reduced" definition works better for discrete random measures – i.e. point processes.

Definition

Let ξ be a point process with intensity measure μ , and let B be a bounded set.

The reduced size-biased version of ξ , biased on B, or just the reduced size-bias on B of ξ is the point process $\xi^{!B}$ such that

$$\mathbb{E} \int_{B} f(\xi - \delta_{x}) \, \xi(\mathsf{d}x) = \mu(B) \, \mathbb{E} \, f(\xi^{!B})$$

for all "nice" functions $f: \mathcal{M}^{\#}(\mathcal{X}) \to \mathbb{R}$.

Explaining the definition

Definition

$$\mathbb{E} \int_{B} f(\xi - \delta_{x}) \, \xi(\mathsf{d}x) = \mu(B) \, \mathbb{E} \, f(\xi^{!B})$$

Informally,

$$\mathbb{E}\int_{B} f(\xi - \delta_{x}) \, \xi(\mathsf{d}x) = \mathbb{E}\sum_{X \in \xi \cap B} f(\xi - \delta_{X}),$$

where the sum is over the points X of ξ within B.

Explaining the definition

Definition

$$\mathbb{E}\int_{B} f(\xi - \delta_{x}) \, \xi(\mathsf{d}x) = \mu(B) \, \mathbb{E} \, f(\xi^{!B})$$

Informally,

$$\mathbb{E}\int_{B} f(\xi - \delta_{x}) \, \xi(\mathsf{d}x) = \mathbb{E}\sum_{X \in \xi \cap B} f(\xi - \delta_{X}),$$

where the sum is over the points X of ξ within B.

Compare to the left-hand side of the standard size-bias definition

$$\mathbb{E}\,\xi(B)\,f(\xi)=\mathbb{E}\sum_{X\in\mathcal{E}\cap B}f(\xi).$$

Examples of reduced size-bias for point processes

Examples

Distribution	Reduced size-bias on j
$BP(n,\Theta)$	$BP(n-1,\Theta)$
$NBP(n,\Theta)$	$NBP(n+1,\Theta)$
$PP(\Lambda)$	ΡΡ(Λ)
$GPP(\mu, \Sigma)$	$GPP(\mu, \Sigma) + BP\left(1, rac{\Sigma(\mathcal{B} imes \cdot)}{\mu(\mathcal{B})} ight)$

• GPP is the "Gauss-Poisson process", a clustered Poisson process that has similar properties to the Hermite distribution.

M Aldridge (Leeds)

Properties of reduced size-bias for point processes

Theorem

Let ξ be a point process with intensity μ and $\xi^{!B}$ be its reduced size-bias.

- **1** Intensity: $\mu^{!B}(A) = \mu(A) + \frac{\mathsf{D}_{\xi}(A,B)}{\mu(B)}$
- **2** Factorial moment measures: $m_{\underline{k}}^{!B}(E) = \frac{1}{\mu(B)} m_{\underline{k+1}}(E \times B)$
- **3** Size-bias commutes with thinning: $(a \circ \xi)^{!B} \equiv a \circ (\xi^{!B})$
 - $D_{\xi}(A,B) = Cov(\xi(A),\xi(B)) \mathbb{E}\xi(A\cap B)$ is like the dispersion
 - m_k is to m_k as $\mathbb{E} X^{\underline{k}}$ is to $\mathbb{E} X^k$.
 - G_{ξ} is the probability generating functional
 - ullet Thinning means delete each point with probability 1-a

M Aldridge (Leeds)

Fixed point for point processes

Conjecture

The reduced size-bias ξ^{*B} has the same distribution as ξ for all B if and only if ξ is a Poisson process.

Research questions

Again, what is the most accurate and general way to state and prove this?

Set independence for point processes

Conjecture

The reduced size-bias ξ^{*B} is the same for all sets B if and only if ξ is a mixed Poisson process; that is, if $\xi \mid Y \sim \mathsf{PP}(Y\Lambda)$ for univariate random Y and deterministic measure Λ .

Research questions

Is this true? what is the most accurate and general way to state this?

M Aldridge (Leeds) Six types of size-bias 16 October 2024

Connection with Cox processes

We have a result similar to the one about mixed Poisson distributions earlier.

If ξ is a random measure, the **Cox process** $\eta \sim \text{Cox}(\xi)$ is, conditional on ξ , a Poisson process with intensity ξ .

Connection with Cox processes

We have a result similar to the one about mixed Poisson distributions earlier.

If ξ is a random measure, the **Cox process** $\eta \sim \text{Cox}(\xi)$ is, conditional on ξ , a Poisson process with intensity ξ .

Theorem

Let $\eta \sim \text{Cox}(\xi)$. Then $\eta^{!B} \sim \text{Cox}(\xi^{*B})$.

Section 7

Connections with Palm theory

49 / 59

What is the Palm distribution?

Let ξ be a point process. Informally, the **Palm process** ξ^{Px} at $x \in \mathcal{X}$ is what you get by conditioning on there being a point at location x.

50 / 59

What is the Palm distribution?

Let ξ be a point process. Informally, the **Palm process** ξ^{Px} at $x \in \mathcal{X}$ is what you get by conditioning on there being a point at location x.

The formal definition is...

Definition

Let ξ be a random measure. Then the collection $(\xi^{Px} : x \in \mathcal{X})$ of Palm measures at locations x (collectively the "Palm kernel") is defined by

$$\mathbb{E} \int_{\mathcal{X}} g(x,\xi) \, \xi(\mathrm{d}x) = \int_{\mathcal{X}} \mathbb{E} \, g\big(x,\xi^{\mathsf{P}x}\big) \, \mu(\mathrm{d}x).$$

for all "nice" functions $g: \mathcal{X} \times \mathcal{M}(\mathcal{X}) \to \mathbb{R}$.

... although it's not clear why this matches the informal explanation.

Conditioning and size-bias

If the point process ξ and the set B are such that we know that $\xi(B) \in \{0,1\}.$.

...then the size-bias ξ^{*B} is equivalent to conditioning that $\xi(B)=1$.

"If there is at are either zero or one points in B then size-bias is like conditioning there is one."

Conditioning and size-bias

If the point process ξ and the set B are such that we know that $\xi(B) \in \{0,1\}.$. .

...then the size-bias ξ^{*B} is equivalent to conditioning that $\xi(B)=1$.

"If there is at are either zero or one points in *B* then size-bias is like conditioning there is one."

This feels a lot like the Palm process with $B = \{x\} \dots$

Conditioning and size-bias

```
If the point process \xi and the set B are such that we know that \xi(B) \in \{0,1\}...
```

... then the size-bias ξ^{*B} is equivalent to conditioning that $\xi(B)=1$.

"If there is at are either zero or one points in B then size-bias is like conditioning there is one."

This feels a lot like the Palm process with $B = \{x\} \dots$

... but this is not allowed, since $\mu(B)$ must be non-zero.

From size-bias to Palm process

If you take a sequence of non-null sets $B_n \to \{x\}$, then, at least informally, we have $\xi^{*B_n} \to \xi^{\mathsf{P} x}$, in that the formulas in the definitions converge.

From size-bias to Palm process

If you take a sequence of non-null sets $B_n \to \{x\}$, then, at least informally, we have $\xi^{*B_n} \to \xi^{\mathsf{P} \mathsf{X}}$, in that the formulas in the definitions converge.

Research question

Can this be made rigorous?

From Palm distribution to size-bias

An appropriate average of the Palm measures gives the size-bias, in the following sense:

Theorem

Let ξ be a random measure, (ξ^{Px}) its Palm kernel, and ξ^{*B} its size-bias on B. Then

$$\mathbb{E} f(\xi^{*B}) = \frac{1}{\mu(B)} \int_{B} \mathbb{E} f(\xi^{Px}) \mu(dx).$$

Reduced Palm process and size-bias

There is also a **reduced Palm process** $\xi^{P!x}$: condition on there being a point at location x, then remove that point.

 $\xi^{\rm Plx}$ corresponds to $\xi^{!B}$ in the same way that $\xi^{\rm Px}$ corresponds to $\xi^{*B}.$

I would like to know...

Research question

To what extent are the results I have discussed for size-bias already known in the context of Palm theory?

Palm-first or size-bias-first?

Advantages of the "size-bias first" approach over the "Palm-first approach":

- More obvious how the informal explanation leads to the formal definition.
- ② Definition tells us about the specific ξ^{*B} we are interested in rather than the kernel of all the $\xi^{Px'}$'s simultaneously.
- **3** As with conditional probability, we should define the $\mu(B) > 0$ version first.

Section 8

A final research question

Section 9

In conclusion...

58 / 59

Conclusions

- For discrete random variables, the reduced size-bias $X^! = X^* 1$ has surprisingly pleasant and underexplored properties.
- There is a multivariate generalisation that seems to have got no attention.
- We can also define size-bias and reduced size-bias for random measures and point processes. They are a bit like Palm measures/processes.