# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-092680

(43)Date of publication of application: 07.04.1995

(51)Int.CI.

G03F 7/039 G03F 7/004 G03F G03F G03F 7/033 H01L 21/027

(21)Application number: 05-312671

(22)Date of filing:

18.11.1993

(71)Applicant: NIPPON ZEON CO LTD

(72)Inventor: OIE MASAYUKI

TANAKA HIDEYUKI ABE NOBUNORI MISAWA MARI

(30)Priority

Priority number: 05185471

Priority date: 29.06.1993

Priority country: JP

## (54) RESIST COMPOSITION

(57) Abstract:

PURPOSE: To provide a resist material excellent in resist characteristics such as sensitivity, resolution,

etching resistance, shelf stability and process margin.

CONSTITUTION: This resist compsn. contains a compd. (A) capable of forming an acid by irradiation with active light, a polymer (B) having structural units each having a group unstable to acid and convertible into an alkali-soluble polymer when the group is cleaved in the presence of the acid derived from the compd. A and a sulfonic acid amido compd. (C).

#### LEGAL STATUS

[Date of request for examination]

14.03.2000 24.09.2002

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

## (19)日本国特許庁 (JP)

# (12)公開特許公報 (A)

(11)特許出願公開番号

# 特開平 7-92680

(43)公開日 平成7年 (1995) 4月7日

| (51) Int. Cl. 6 | 識別記号               | F I                          |    |  |
|-----------------|--------------------|------------------------------|----|--|
| G03F 7/039      | 501                | ·                            |    |  |
| 7/004           | 503                |                              |    |  |
| 7/023           | 511                |                              |    |  |
| 7/028           |                    |                              |    |  |
|                 | 7352-4M            | H01L 21/30 502 R             |    |  |
|                 | 審査請                | : 未請求 請求項の数3 FD (全23頁) 最終頁に約 | 売く |  |
| (21)出願番号        | 特願平 5-312671       | (71)出願人 000229117            |    |  |
|                 |                    | 日本ゼオン株式会社                    |    |  |
| (22)出願日         | 平成5年(1993)11月18日   | 東京都千代田区丸の内 2 丁目 6 番 1 号      |    |  |
|                 |                    | (72) 発明者 尾家 正行               |    |  |
| (31)優先権主張番号     | 特願平 5-185471       | 神奈川県川崎市川崎区夜光一丁目2番1号          |    |  |
| (32) 優先 日       | 平 5 (1993) 6 月 29日 | 日本ゼオン株式会社内                   |    |  |
| (33)優先権主張国      | 日本 (JP)            | (72) 発明者 田中 秀行               |    |  |
|                 |                    | 神奈川県川崎市川崎区夜光一丁目2番1号          |    |  |
|                 |                    | 日本ゼオン株式会社内                   |    |  |
|                 |                    | (72)発明者 阿部 信紀                |    |  |
|                 |                    | 神奈川県川崎市川崎区夜光一丁目2番1号          |    |  |
|                 |                    | 日本ゼオン株式会社内                   |    |  |
|                 |                    | (74)代理人 弁理士 西川 繁明            |    |  |
|                 |                    | 最終頁に続                        | ŧζ |  |

#### (54) 【発明の名称】レジスト組成物

#### (57)【要約】

【目的】感度、解像度、耐エッチング性、保存安定性、 及びプロセス余裕度などのレジスト特性に優れたレジス ト材料を提供すること。

【構成】 (A) 活性光線の照射により酸を生成可能な化合物、(B) 酸に対して不安定な基を持つ構造単位を有し、かつ、化合物 (A) に由来する酸の存在下に該基が開裂してアルカリ可溶性となる重合体、及び (C) スルホン酸アミド化合物を含有することを特徴とするレジスト組成物。

#### 【特許請求の範囲】

【請求項1】(A) 活性光線の照射により酸を生成可能な化合物、(B) 酸に対して不安定な基を持つ構造単位を有し、かつ、化合物(A) に由来する酸の存在下に該基が開裂してアルカリ可溶性となる重合体、及び(C)スルホン酸アミド化合物を含有することを特徴とするレジスト組成物。

【請求項2】さらに、(D) アルカリ可溶性フェノール 樹脂を含有する請求項1記載のレジスト組成物。

【請求項3】 重合体(B)が、酸に対して不安定な基を持つ構造単位として、下記一般式(I)、(II)及び(III)で示される構造単位から選ばれる少なくとも1種の構造単位を含有するものである請求項1または2記載のレジスト組成物。

【化11

$$\begin{array}{ccc}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

【式中、R<sup>1</sup>及びR<sup>2</sup>は、互いに同一または異なり、水素原子、ハロゲン原子、シアノ基、炭素数1~5のアルキル基、または炭素数1~5の置換アルキル基であり、R<sup>3</sup>は、線状アセタール基、環状アセタール基、カーボネート基、または一〇R<sup>9</sup>である。ただし、R<sup>9</sup>は、【化2】

または

[化3]

である。 (ただし、これらの式中、R '0、R'1、R'2、 4(

$$\begin{array}{c}
R^{6} \\
+ CH_{2} - C \\
R^{7} \quad C - O - R^{6} \\
0
\end{array}$$

(式中、R '及びR'は、互いに同一または異なり、水素 原子、ハロゲン原子、シアノ基、炭素数1~5のアルキ R<sup>13</sup>、R<sup>14</sup>及びR<sup>13</sup>は、それぞれ独立に、鎖状アルキル基、置換鎖状アルキル基、分岐状アルキル基、置換分岐状アルキル基、環状アルキル基、置換環状アルキル基、アルケニル基、置換アルケニル基、置換アルケニル基、置換アルケニル基、アラルキル基、または置換アラルキル基を表し、これらのうち、R<sup>13</sup>及びR<sup>14</sup>は、水素原子であってもよい。)]

【化4】

$$\begin{array}{ccc}
 & R^{4} \\
 & C \\
 &$$

(式中、R 'は、水素原子、ハロゲン原子、シアノ基、 炭素数1~5のアルキル基、または炭素数1~5の置換 アルキル基であり、R 'は、

【化5】

$$R^{10}$$
 $-C-R^{11}$ 
 $R^{12}$ 

または

[化6]

【化7】

(III)

ル基、または炭素数 1 ~ 5 の置換アルキル基であり、 R 50 <sup>\*</sup>は、 [化8]

$$R^{10}$$
 $-C-R^{11}$ 
 $R^{12}$ 

または 【化 9】

$$R^{13}$$
 $-C - OR^{15}$ 
 $R^{14}$ 

#### 【発明の詳細な説明】

#### [0001]

【産業上の利用分野】本発明は、レジスト組成物に関し、さらに詳しくは、紫外線、KrFエキシマレーザー 光などの照射によるパターン形成が可能なレジスト材料 に関する。本発明のレジスト組成物は、特に、半導体素 子の微細加工用ポジ型レジストとして好適である。

#### 100021

【従来の技術】レジストを用いて機細パターンを形成するには、一般に、基板上にレジストを含有する溶液を塗布し、乾燥させて感光膜を形成した後、活性光線を照射して潜像を形成する。次いで、それを現像してネガまたはポジの画像を形成する。レジストは、ポジ型とネガ型に大別され、ポジ型では、被照射部分が未照射部分に比べて現像液中での溶解性が増してポジ型像を与え、ネガ型では、逆に被照射部分の溶解性が減少してネガ型像を与える。

【0003】レジストを用いる微細加工により半導体を製造する場合、基板としてシリコンウエハを用い、その表面に、上記リソグラフィー技術によって画像(パターン)を形成し、次いで、基板上に残ったレジストをトといる。近年、IC、LSI、さらにVLSIへと半導体素子の高集積化、高密度化、小型化に伴って、1μm以下の微細パターンを形成する技術が要求されている。しかしながら、近紫外線または可視光線を用いる従来のフォトリソグラフィー技術では、1μm以下の微細パターンを精度良く形成することは、極めて困難であり、歩留りの低下も著しい。

【0004】このため、光(波長350~450nmの 紫外線)を利用する従来のフォトリソグラフィーにかえ て、解像度を高めるために、波長の短い遠紫外線、Kr ドエキシマレーザー光(波長248nmの光を出すクリ プトンフルオライドレーザー)などを用いるリソグラフィー技術が研究されている。このリソグラフィー技術の 中心となるレジスト材料には、多数の高度な特性が要求 されているが、その中でも重要なものとして、感度、解 像度、耐エッチング性、及び保存安定性が挙げられる。 しかし、従来開発されたレジスト材料は、これらの全て の性能を充分に満足するものではなく、性能の向上が強 く望まれている。

【0005】例えば、ポリメタクリル酸グリシジルのようなネガ型レジストは、高感度ではあるが、解像度や耐ドライエッチング性が劣る。ポリメタクリル酸メチルのようなポジ型レジストは、解像度は良好であるが、感度や耐ドライエッチング性が劣る。また、波長350~450 nmの紫外線露光で用いられてきたノボラック系ポジ型フォトレジストを遠紫外線で露光すると、レジスト20自体の光源に対する光吸収が大きすぎるために、良好な微細パターンの形成ができない。

【0006】近年、酸触媒と化学増幅効果を利用したレ ジストの高感度化が注目され、例えば、(1)基材高分 子、(2)光酸発生剤(活性光線の照射により酸を生成 可能な化合物)、及び(3)感酸物質(光によって生成 した酸を触媒として反応し、基材高分子の溶解性などを 変化させる物質) の3成分系からなる微細加工用レジス トが開発されている。これは、光によって発生した酸を 触媒として、感酸物質が反応し、基材高分子の溶解性が 30 変化してポジ型またはネガ型レジストとなるものであ る。例えば、ノボラック樹脂、光酸発生剤及び溶解抑止 剤からなるポジ型レジストが知られている(特開平3-107160号)。溶解抑止剤は、ノボラック樹脂に対 して溶解抑止効果を持ち、かつ、酸によって反応し、溶 解促進作用を示すものである。また、基材高分子の溶解 性を支配している官能基をプロックして不溶性にしてお き、光によって生成する酸を触媒として、プロックをは ずして高分子基材の現像液に対する溶解性を復元するタ イプのポジ型レジストも知られている。

40 【0007】ところで、最近、カルボン酸の t ープチル・エステルまたはフェノールの t ープチル・カルボナートよりなる酸に対して不安定な反復的に存在する核分かれした基を有する重合体と、放射にさらされたときに酸を生じる光重合開始剤とを含むレジスト組成物が提案されている(特公平2-27660号)。このレジスト組成物により形成された被膜に、紫外線、電子ビームまたはX線を照射すると、被照射部分の重合体の酸に対して不安定な反復的に存在する枝分かれした基が開裂して、極性を有する反復的に存在する基が形成される。それに50よって、重合体被膜の露光領域及び未露光領域の溶解度

特性に大きな変化が生じる。そして、露光領域がアルカリ現像剤または極性溶媒で処理されることにより選択的に除去され、一方、未露光領域は、無極性であるため、無極性溶媒で処理されることにより選択的に除去される。したがって、 該レジスト組成物は、現像剤を選択することにより、ポジ型またはネガ型として働く。

【0008】しかしながら、特公平2-27660号で提案されているレジスト組成物を用いて、通常のレジストプロセスにより、レジストの塗布、露光、露光後ペーク、及び現像を行ってレジストパターンを形成すると、レジストパターンの表面部分に難溶化層の生成が観察され、いわゆるT型のパターンとなる問題点がある。さらに、露光と露光後ペークとの間の放置時間を長くすると感度の変化がみられ、難溶化層が厚くなる。そこで、さらにレジスト性能が向上した新規なレジストの開発が強く望まれていた。

#### [0009]

【発明が解決しようとする課題】本発明の目的は、感度、解像度、耐エッチング性、保存安定性、及びプロセス余裕度などのレジスト特性に優れたレジスト材料を提供することにある。また、本発明の目的は、波長の短い 遠紫外線やKェFエキシマレーザー光を用いるリングラフィーに適したレジスト材料を提供することにある。本発明の他の目的は、特に、半導体素子の微細加工用ポジ型レジストとして好適なレジスト組成物を提供することにある。

【0010】本発明者らは、前記従来技術の有する問題点を克服するために鋭意研究した結果、光酸発生剤と、酸に対して不安定な基(酸不安定性基)を持つ構造単位を有する重合体と、スルホン酸アミド化合物とを組み合わせることにより、レジストバターン表面部分における難溶化層の生成が抑制され、しかも、レジスト特性に優れたレジスト組成物の得られることを見出した。このレジスト組成物は、さらにアルカリ可溶性フェノール樹脂を含有させてもよい。本発明は、これらの知見に基づいて完成するに至ったものである。

#### [0011]

【課題を解決するための手段】かくして、本発明によれば、(A)活性光線の照射により酸を生成可能な化合物、(B)酸に対して不安定な基を持つ構造単位を有し、かつ、化合物(A)に由来する酸の存在下に該基が開裂してアルカリ可溶性となる重合体、及び(C)スルホン酸アミド化合物を含有することを特徴とするレジスト組成物が提供される。また、本発明によれば、前記レジスト組成物に、さらにアルカリ可溶性フェノール樹脂を含有せしめたレジスト組成物が提供される。以下、本発明について詳述する。

# 【0012】 (A) <u>光酸発生剤</u>

本発明で使用する活性光線の照射により酸を生成可能な 化合物 (光酸発生剤) は、活性光線の照射によりブレー

ンステッド酸またはルイス酸を形成する物質であれば特 に制限はなく、各種の公知化合物及び混合物が使用可能 であって、例えば、オニウム塩、ハロゲン化有機化合 物、キノンジアジド化合物、α, αビス (スルホニル) ジアゾメタン系化合物、αーカルポニルーαースルホニ ルージアゾメタン系化合物、スルホン化合物、有機酸エ ステル化合物、有機酸イミド化合物などが挙げられる。 【0013】オニウム塩の具体例としては、未置換、対 称的にまたは非対称的に置換されたアルキル基、アルケ 10 ニル基、アラルキル基、芳香族基、またはヘテロ環状基 を有するジアゾニウム塩、アンモニウム塩、ヨードニウ ム塩、スルホニウム塩、ホスホニウム塩、アルソニウム 塩、オキソニウム塩などが挙げられる。これらオニウム 塩の対アニオンとしては、対アニオンを形成できる化合 物であれば特に限定されるものではないが、例えば、ホ ウ素酸、砒素酸、燐酸、アンチモン酸、スルホン酸、カ ルボン酸、あるいはこれらのハロゲン化物などが挙げら れる。

【0014】ハロゲン化有機化合物は、有機化合物のハロゲン化物であれば特に制限はなく、各種の公知化合物が可能であって、具体例としては、ハロゲン含有オキサジアゾール系化合物、ハロゲン含有トリアジン系化合物、ハロゲン含有アセトフェノン系化合物、ハロゲン含有スルホキサイド系化合物、ハロゲン含有スルホン系化合物、ハロゲン含有オーサゾール系化合物、ハロゲン含有トリアゾール系化合物、ハロゲン含有オーサゾール系化合物、ハロゲン含有トリアゾール系化合物、ハロゲン含有トリアゾール系化合物、ハロゲン含有別に対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対し、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対して、アンペークを対しているのでは、アンペークを対しているが、アンペークを対しているがでは、アンペークを対しているがでは、アンペークを対しているがでは、アンペークを対しているでは、アンペークを対しているがでは、アンペークを対しているがでは、アンペークを対しているがでは、アンペークを対しているがでは、アンペークを対しているのでは、アンペークを対しているがでは、アンペークを対しているがでは、アンペークを対しているがでは、アンペークを対しているがでは、アンペークを対しているがでは、アンペークを対しているがではないるがではないるがではないるのではないるがではないるがではないるがではないるがではないるがではないるがではないるがではないるがではないるがではないるがではないるがではないるがではないるがではないるがではないるがではないるのではないるがではないるがではないるがではないるがではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないないるのではないるのではないるのではないるのではないるのではないるのではないるのではないるのではないないるのではないないのではないないるのではないるのではないないのではないるのではないるのではないのではないるのではないるのではないるのではないないるのではないないのではないるのではないるのではないるので

【0015】さらに、ハロゲン化有機化合物として、ト

リス(2,3-ジプロモプロビル)ホスフェート、トリ ス (2, 3 - ジプロモ - 3 - クロロプロビル) ホスフェ ート、クロロテトラブロモブタン、ヘキサクロロベンゼ ン、ヘキサプロモベンゼン、ヘキサプロモシクロドデカ ン、ヘキサプロモビフェニル、トリプロモフェニルアリ ルエーテル、テトラクロロピスフェノールA、テトラブ ロモビスフェノールA、ビス (プロモエチルエーテル) 40 テトラブロモビスフェノールA、ビス (クロロエチルエ ーテル) テトラブロモビスフェノールA、トリス (2, 3-ジプロモプロビル) イソシアヌレート、2, 2-ビ ス (4-ヒドロキシー3, 5-ジプロモフェニル) プロ パン、2, 2-ビス (4-ヒドロキシエトキシー3, 5 ージプロモフェニル) プロパンなどの含ハロゲン系塑燃 剤;ジクロロジフェニルトリクロロエタン、ベンゼンへ キサクロライド、ペンタクロロフェノール、2. 4. 6 ートリクロロフェニルー4ーニトロフェニルエーテル、 2, 4-ジクロロフェニルー3′ーメトキシー4′ーニ 50 トロフェニルエーテル、2,4-ジクロロフェノキシ酢

酸、4、5、6、7ーテトラクロロフサライド、1、1ーピス(4ークロロフェニール)エタノール、1、1ーピス(4ークロロフェニール)-2、2、2ートリクロロエタノール、エチルー4、4ージクロロベンジレート、2、4、5、4´ーテトラクロロジフェニルスルファイド、2、4、5、4´ーテトラクロロジフェニルスルスルホンなどの有機クロロ系農薬なども挙げられる。

【0016】キノンジアジド化合物の具体例としては、 1、2-ベンゾキノンジアジド-4-スルホン酸エステ ル、1,2ーナフトキノンジアジド-4-スルホン酸エ ステル、1, 2-ナフトキノンジアジド-5-スルホン 酸エステル、1, 2-ナフトキノンジアジド-6-スル ホン酸エステル、2、1-ナフトキノンジアジド-4-スルホン酸エステル、2,1-ナフトキノンジアジドー 5-スルホン酸エステル、2,1-ナフトキノンジアジ ドー6-スルホン酸エステル、及びその他のナフトキノ ンジアジド誘導体のスルホン酸エステル; 1, 2-ベン ゾキノンジアジド-4-スルホン酸クロライド、1,2 ーナフトキノンジアジドー4ースルホン酸クロライド、 1, 2-ナフトキノンジアジド-5-スルホン酸クロラ イド、1, 2-ナフトキノンジアジド-6-スルホン酸 クロライド、2, 1ーナフトキノンジアジドー4ースル ホン酸クロライド、2. 1-ナフトキノンジアジド-5 ースルホン酸クロライド、2, 1ーナフトキノンジアジ ドー6-スルホン酸クロライド、及びその他のナフトキ ノンジアジド誘導体のスルホン酸クロライドなどが挙げ ちれる。

【0017】 a、 a ビス (スルホニル)・ジアゾメタン系化合物の具体例としては、未置換、対称的にまたは非対称的に置換されたアルキル基、アルケニル基、アラルキル基、芳香族基、またはヘテロ環状基を有する a 、 a ーカルボニルー a ースルホニルージアゾメタンなどが挙げられる。 a ーカルボニルー a ースルホニルージアゾメタン系化合的に置換されたアルキル基、アラルルボニルージアゾメタンなどが挙げられる。 またはヘテロ環状基を有する a ーカルボニルージアゾメタンなどが挙げられる。 スルホニルージアゾメタンなどが挙げられる。 または、対称的に置換されたアルキル基、アルケニル基、アルケニル基、アルケニル基、アルケニル基、アルカン化合物の具体例としては、未置換、対称的に置換されたアルキル基、アルケニル基、アルケニル表、オン化合物などが挙げられる。

【0018】有機酸エステルの具体例としては、未置換、あるいは置換されたアルキル基、アルケニル基、ア ラルキル基、芳香族基、またはヘテロ環状基を有するカルボン酸エステル、スルホン酸エステルなどが挙げられる。有機酸イミドの具体例としては、未置換、あるいは置換されたアルキル基、アルケニル基、アラルキル基、芳香族基、またはヘテロ環状基を有するカルボン酸イミド、スルホン酸イミドなどが挙げられる。これらの活性光線の照射により酸を生成可能な化合物は、単独でも2 種以上を混合して用いてもよい、活性光線の照射により酸生成可能な化合物 (A) の配合割合は、酸不安定性基を持つ構造単位を有する重合体 (B) 100重量部に対して、通常、0.01~50重量部、好ましくは0.2~20重量部である。この配合割合が0.01重量部未満では、パターンの形成が事実上不可能となり、逆に、

演では、パターンの形成が事実上小り能となり、泄に、50 重量部を越えると現像残が発生し易くなって、レジストの性能上不都合である。

(B) <u>酸不安定性基を持つ構造単位を有する重合体</u> 10 本発明で使用する重合体(B)としては、酸に対して不 安定な基を持つ構造単位を有し、かつ、酸の存在下に酸 不安定性基が開裂してアルカリ可溶性となる重合体であ れば特に限定されない。

【0019】このような重合体としては、下記一般式(I)、(II) または(III)で示される構造単位を有する重合体を例示することができる。重合体(B)は、これらの構造単位の1種または2種以上を含有しており、また、これらの構造単位と他の構造単位とを有する共重合体であってもよい。

20 [0020]

【化10】

$$\begin{array}{c} R^1 \\ \leftarrow CH_2 - C \\ \hline \\ R^2 \\ R^3 \end{array}$$

式中、R <sup>1</sup>及びR <sup>2</sup>は、互いに同一または異なり、水素原子、ハロゲン原子、シアノ基、炭素数1~5のアルキル 30 基、または炭素数1~5の置換アルキル基であり、R は、線状アセタール基、環状アセタール基、カーボネート基、または-OR <sup>1</sup>である。ただし、R <sup>9</sup>は、

[0021]

【化11】

$$R^{10}$$
 $-C-R^{11}$ 
 $R^{12}$ 

40 または

[0022]

【化12】

である。

[0023] ただし、これらの式中、R ''、R''、 50 R''、R''、R''なびR''は、それぞれ独立に、鎖状ア

ルキル基、置換鎖状アルキル基、分岐状アルキル基、置 換分岐状アルキル基、環状アルキル基、置換環状アルキ ル基、アルケニル基、置換アルケニル基、アリール基、 置換アリール基、アラルキル基、または置換アラルキル 基を表し、これらのうち、R ¹¹及びR¹¹は、水素原子で あってもよい。

[0024]

【化13】

[ft 1 3]
$$\begin{array}{c}
R^4 \\
-\leftarrow CH_2 - C \\
C \\
C \\
C \\
O \\
R^5
\end{array}$$
(II)

式中、R 'は、水素原子、ハロゲン原子、シアノ基、炭 素数1~5のアルキル基、または炭素数1~5の置換ア ルキル基であり、R <sup>5</sup>は、

[0025]

【化14】

$$\begin{array}{c}
R^{6} \\
+ CH_{2} - C \\
R^{7} \quad C - O - R^{8} \\
O
\end{array}$$

式中、R<sup>4</sup>及びR<sup>1</sup>は、互いに同一または異なり、水素原 子、ハロゲン原子、シアノ基、炭素数1~5のアルキル 基、または炭素数1~5の置換アルキル基であり、R

[0029]

【化17】

または

[0030]

【化18】

10

または

[0026]

【化15】

である。

10 【0027】ただし、これらの式中、R 10、R11、 R<sup>1</sup>, R<sup>1</sup>, R<sup>1</sup>, B<sup>1</sup>, B<sup>1</sup>, は、それぞれ独立に、鎖状ア ルキル基、置換鎖状アルキル基、分岐状アルキル基、置 換分岐状アルキル基、環状アルキル基、置換環状アルキ ル基、アルケニル基、置換アルケニル基、アリール基、 置換アリール基、アラルキル基、または置換アラルキル 基を表し、これらのうち、R 13及びR 14は、水素原子で あってもよい。

[0028]

【化16】

(III)

$$R^{13}$$
 $-C - OR^{16}$ 

である。

【0031】ただし、これらの式中、R '°、R''、 40 R''、R''、R'' 及びR''は、それぞれ独立に、鎖状ア ルキル基、置換鎖状アルキル基、分岐状アルキル基、置 換分岐状アルキル基、環状アルキル基、置換環状アルキ ル基、アルケニル基、置換アルケニル基、アリール基、 置換アリール基、アラルキル基、または置換アラルキル 基を表し、これらのうち、R 13及びR14は、水素原子で あってもよい。

【0032】これらの一般式中、炭素数1~5の置換ア ルキル基としては、置換基として、例えば、ハロゲン原 子を有するアルキル基を挙げることができる。また、線 50 状アセタール基としては、炭素数2~16の線状アセタ

ール基、環状アセタール基としては、炭素数3~17の環状アセタール基、カーボネート基としては、炭素数2~15のカーボネート基を挙げることができる。

【0033】また、R 1°、R 1′、R 1′、R 1′、R 1′及びR 1°において、(1) 鎖状アルキル基としては、炭素数1~5の鎖状アルキル基としては、炭素数1~5で、置換基として、例えば、ハロゲン原子を有する置換鎖状アルキル基、(3) 分岐状アルキル基としては、炭素数3~8の分岐状アルキル基、

(4) 置換分岐状アルキル基としては、炭素数3~8 で、置換基として、例えば、ハロゲン原子を有する置換分岐状アルキル基、(5) 環状アルキル基としては、炭素数5~16の環状アルキル基、(ただし、環状アルキル・アルキル基を含む。)

(6) 置換環状アルキル基としては、炭素数 5~16で、置換基として、例えば、ハロゲン原子を有する置換環状アルキル基、(7)アルケニル基としては、炭素数 2~7のアルケニル基、(8) 置換アルケニル基として、例えば、ハロゲン原子を有する置換アルケニル基、(9)アリール基として、原子を有する置換アルケニル基、(10) 置換基として、反素数 6~16で、置換基としてルル基としては、炭素数 6~16で、置換基としてルル基、(11)アラルキル基としては、炭素数 7~16のアラルキル基としては、炭素数 7~16のアラルキル基としては、炭素数 7~16で、置換アラルキル基としては、炭素数 7~16で、置換基として、例えば、ハロゲン原子、ニトロ基を有する置換アラルキル基であることが好ましい。

【0034】これらの構造単位を有する重合体(B)を得る方法としては、一般式(I)、(II)または(II)の構造単位を与える各単量体を(共)重合させるか、あるいは高分子反応により、これらの構造単位を有する(共)重合体を生成させる方法などが挙げられる。一般式(I)の構造単位を与える単量体の具体例としては、例えば、下記の化合物を挙げることができる。

[0035]

[化19]

$$CH_{2} = CH$$

$$O$$

$$CH_{2}$$

$$O$$

$$CH_{2}$$

[0036] [120]

$$CH_{2} = CH$$

$$O$$

$$CH_{2}$$

$$O$$

$$CH_{2}$$

$$O$$

$$C_{3}H_{7}$$

$$(2)$$

12

10 [0037]

[4
$$t 21$$
]

$$CH_{2} = CH$$

$$O$$

$$CH_{2}$$

$$CH_{2}$$

$$O$$

$$CH_{3}$$

$$CH_{8}$$

$$CH_{8}$$

$$CH_{8}$$

$$CH_{8}$$

$$CH_{8}$$

$$\begin{array}{cccc}
 & \text{[0 0 4 0]} \\
 & \text{[1t 2 4]} \\
 & \text{CH}_2 = \text{CH} \\
 & & \text{O} \\
 & \text{C} = \text{O} \\
 & & \text{O} \\
 & & \text{C}_{\text{sH}_7}
\end{array}$$
(6)

30

(8)

(9)

14

CH<sub>2</sub> = CH
$$CH_2 = CH$$

$$C = 0$$

$$C = 0$$

$$CH_3 - C - CH_3$$

$$CH_3$$

$$CH_{2} = CH$$

$$O$$

$$CH_{3} - C - CH_{3}$$

$$H$$

$$10 \quad [0 \ 0 \ 4 \ 6]$$
(11)

$$(12)$$

$$CH_{2} = CH$$

$$O$$

$$CH_{3} - C - CH_{8}$$

$$CH_{2}$$

[0 0 4 7]

[1/2 3 1]

$$CH_2 = C - CH_8$$

0

 $CH_2$ 

0

 $CH_2$ 

0

 $CH_2$ 

[0048]
[At 32]
$$CH_2 = C - CH_3$$
O
CH<sub>2</sub>
O
CH<sub>2</sub>
O
C<sub>3</sub>H<sub>7</sub>
[0049]

[0049] [1233]

$$CH_2 = C - CH_3$$

15

$$CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3}$$

$$CH_{2} = C - CH_{8}$$

$$CH_{2} = C - CH_{8}$$

$$C = 0$$

$$CH_{3} - C - CH_{8}$$

$$CH_{3} - CH_{5}$$

$$CH_{5}$$

$$CH_{6}$$

$$CH_{7} - CH_{8}$$

$$[0 \ 0 \ 5 \ 4]$$

$$[At 3 \ 8]$$

$$CH_{2} = C - CH_{8}$$

$$O$$

$$CH_{3} - C - CH_{8}$$

$$CH_{3}$$

$$(20)$$

[0055]
[ft39]
$$CH_2 = C - CH_3$$

$$O$$

$$CH_3 - C - CH_3$$
[0056]

[0 0 5 2]
[1t 3 6]
$$CH_2 = C - CH_8$$

$$CH_2 = C - CH_8$$

$$C = 0$$

$$C = 0$$

$$C_3H_7$$

If 4 0 1
$$CH_{2} = C - CH_{3}$$

$$0$$

$$C_{2}H_{5} - C - CH_{8}$$
(22)

[0053] [化37]

[0057] 【化41】

(23)

(24)

(26)

50

(28)

17

$$CH_2 = C - CH_3$$

$$O$$

$$CH_3 - C - CH_3$$

[0 0 5 9]

[At 4 3]

$$CH_2 = C - CF_3$$

$$O$$

$$CH_3 - C - CH_3$$

$$CH_3$$

$$\begin{array}{c}
\text{CH}_{3} \\
\text{CO 6 6 0} \\
\text{CH}_{2} = \text{C} - \text{Cl} \\
\text{O} \\
\text{CH}_{3} - \text{C} - \text{CH}_{3} \\
\text{CH}_{2}
\end{array}$$

 $CH_{2} = C - CN$  O  $CH_{3} - C - CH_{3}$   $CH_{3}$   $CH_{3}$   $CH_{3}$   $CH_{3}$   $CH_{4}$   $CH_{5}$ 

10 0 6 2 }

10 
$$[4t \ 4 \ 6]$$
 $CH_2 = C - CF_3$ 
 $CH_3 = C - CH_3$ 
 $CH_3 - C - CH_3$ 
 $CH_3 = CH_3$ 

[0063]

(25) 
$$CH_{2} = C - CI$$

$$CH_{2} = C - CI$$

$$CH_{3} - C - CH_{3}$$

$$CH_{3} - C - CH_{3}$$

[10 0 6 4]

[1t 4 8]

$$CH_2 = C - CN$$
 $C = 0$ 
 $C = 0$ 
 $CH_3 - C - CH_3$ 
 $CH_4$ 
 $CH_5$ 

一般式(II)の構造単位を与える単量体の具体例としては、例えば、下記の化合物を挙げることができる。 【0065】

20

[1t 4 9]
$$CH_{2} = CH$$

$$C = O$$

$$O$$

$$CH_{3} - C - CH_{8}$$

$$CH_{5}$$

19

$$CH_{s} - C - CH_{s}$$

$$CH_{s} - C - CH_{s}$$

$$[0 \ 0 \ 6 \ 7]$$

$$CH_{2} = CH$$

$$C = O$$

$$O$$

$$CH_{3} - C - CH_{3}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

(32) 
$$\begin{array}{c} [0 \ 0 \ 7 \ 0] \\ [4t \ 5 \ 4] \\ CH_2 = CH \\ \hline C = O \\ \hline O \\ CH_s - C - CH_s \\ \hline H \\ \end{array}$$

(33) 
$$\begin{array}{c} [0 & 0 & 7 & 1] \\ [4t & 5 & 5] \\ CH_2 = CH \\ \hline C = O \\ O \\ CH_3 - C - CH_3 \\ \hline CH_2 \\ \end{array}$$

[0 0 7 2]

[4k 5 6]

$$CH_2 = CH$$
 $C = O$ 
 $O$ 
 $C_2H_5 - C - CH_5$ 

(38)

(34)

[0078] [化62]  $CH_2 = CH$ 

(44)

21

22

$$CH_{2} = CH$$

$$C = O$$

$$O$$

$$C_{2}H_{5} - C - CH_{5}$$

$$CH_{2}$$

$$\begin{array}{c}
C = 0 \\
0 \\
C \\
CH_s
\end{array}$$

(40)

$$\begin{array}{c}
C = O \\
O \\
CH_{5} - C - CH_{5}
\end{array}$$

$$\begin{array}{c}
CH_{2} \\
CH_{2}
\end{array}$$

$$\begin{array}{c}
CH_{2}
\end{array}$$

$$\begin{array}{c}
CH_{2}
\end{array}$$

$$\begin{array}{c}
CH_{2}
\end{array}$$

(42) 
$$\begin{array}{c} \text{[At 6 4]} \\ \text{CH}_2 = \text{C} - \text{CH}_8 \\ \text{C} = \text{O} \\ \text{O} \\ \text{CH}_3 - \text{C} - \text{CH}_8 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_2 = \text{C} - \text{CH}_8 \\ \text{CH}_2 = \text{C} - \text{CH}_8 \\ \text{CH}_2 = \text{C} - \text{CH}_8 \\ \text{C} \\ \text{$$

[0080]

$$\begin{array}{c} \text{ft } 6 & 4 \text{ } \\ \text{CH}_2 = \text{C} - \text{CH}_8 \\ \text{C} = \text{O} \\ \text{O} \\ \text{CH}_3 - \text{C} - \text{CH}_8 \\ \text{CH}_9 \\ \text{O 0 8 1 } \text{I} \\ \text{ft } 6 & 5 \text{ } \text{I} \\ \text{CH}_2 = \text{C} - \text{CH}_8 \\ \text{C} = \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \end{array}$$

$$(46)$$

(54)

$$CH_2 = C - CH_s$$

$$C = O$$

$$O$$

$$CH_3 - C - CH_s$$

$$CH$$

$$CH_2$$

23

[0083]

[0084]

[
$$\text{th 6 8 1}$$
]  
 $\text{CH}_2 = \text{C} - \text{CH}_8$   
 $\text{C} = \text{O}$   
 $\text{O}$   
 $\text{CH}_8 - \text{C} - \text{CH}_8$   
 $\text{CH}_2$   
 $\text{CH}_2$ 

[0085]

[0086] 【化70】

(48)

$$CH_{2} = C - CH_{8}$$

$$C = 0$$

$$CH_{3} - C - CH_{8}$$

$$CH_{2}$$

$$CH_{2}$$

$$(52)$$

[0088] 【化72】  $CH_2 = C - CH_3$  C = O O(50)

(51)
$$\begin{bmatrix}
 \{ 0 & 0 & 8 & 9 & 1 \\
 | 1 & 1 & 7 & 3 & 1 \\
 | CH_2 & = C - CH_3 \\
 | C & = O \\
 | O & CH_3$$

$$| C & = C \\
 | C & =$$

【化74】  $CH_2 = \underset{\stackrel{\mid}{C} = O}{C - CH_3}$ (56) (58)

(59)

26

[1t 7 5]  

$$CH_2 = C - CH_3$$
  
 $C = O$   
 $O$   
 $CH_3 - C - CH_3$   
 $O$   
 $O$   
 $O$   
 $O$ 

$$CH_{2} = C - CF_{3}$$

$$C = O$$

$$O$$

$$CH_{3} - C - CH_{8}$$

$$CH_{3} = C - CH_{8}$$

$$CH_{2} = C - CI$$

$$CH_{2} = C - CI$$

$$C = O$$

$$O$$

$$CH_{3} - C - CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

[0097]

[At 81]

$$CH_2 = C - CN$$
 $C = O$ 
 $O$ 
 $CH_3 - C - CH_3$ 
 $CH_8$ 

(63)

一般式(III)の構造単位を与える単量体の具体例と

(60) 
$$\begin{array}{c} [0 \ 0 \ 9 \ 9] \\ [4t \ 8 \ 3] \\ CH_2 = CH \\ \hline \\ C = O \\ \hline \\ CH_3 - C - CH_3 \end{array}$$
 (65)

(66)

(67)

(69)

(70)

(71)

27

[0100]

[1684]

$$CH_2 = CH$$

$$CH_2 = CH$$

$$C = O$$

$$CH_3 - C - CH_8$$

[0101]

[化85]

$$CH_2 = CH$$

$$C = 0$$

$$CH_3 - C - CH_5$$

$$CH_2$$

$$CH_2$$

[0102]

[化86]

$$CH_2 = CH$$

$$C = O$$

$$C_2H_5 - C - CH_3$$

[0103] 【化87】

$$CH_2 = CH$$

$$C = C$$

$$C_2H_5 - \overset{1}{C} - CH_3$$

[0104]

[化88]

$$CH_2 = CH$$

$$C = O$$

$$O$$

$$H_3 - C - CH_3$$

[0105]

$$CH_3 - C - CH_3$$

CH₃

(68)

30

[0106]

40 【化90】 28

 $CH_2 = CH$ 

$$CH_{2} = CH$$

$$C = O$$

$$CH_{3} - C - CH_{3}$$

$$O$$

$$C_{2}H_{5}$$

【化95】

【作96】

40

$$CH_{2} = C - CH_{3}$$

$$C = O$$

$$CH_{3} - C - CH_{3}$$

(77)

[作93]

$$CH_{2} = C - CH_{3}$$

$$C = O$$

$$O$$

$$CH_{3} - C - CH_{3}$$

$$CH_{3} - C - CH_{3}$$

(81)

(82)

(83)

(79)

(80)

32

$$CH_2 = C - CH$$

31

$$C = O$$

$$CH_3 - \overset{\circ}{C} - CH_3$$

$$CH_2 = CH$$

$$CH_3 - C - CH_8$$

## [0114]

$$CH_2 = CH$$

$$CH_2 = C - CH_3$$

$$CH_2 = C - CH_8$$

$$C = O$$

$$CH_3 - C - CH_3$$

$$O$$

$$CH_3 - C - CH_3$$

[0 1 1 8]  
[
$$\{t \mid 0 \mid 2\}$$
]  
 $CH_2 = C - CH_3$ 

$$\begin{array}{c}
C = O \\
C = O \\
O \\
CH_3 - C - CH_5 \\
O \\
C_2H_5
\end{array}$$
(84)

$$CH_2 = C - CH_3$$

$$C = O$$

$$H_3 - C - CH_8$$

(85)

[0119]

$$CH_2 = C - CH_3$$

$$C = O$$

[0120]

$$CH_2 = C - CH_3$$

[0121]

$$CH_2 = C - CH_3$$

$$C = O$$

[0122]

【化106】

$$CH_{2} = C - CF_{3}$$

$$C = O$$

$$CH_{3} - C - CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{5}$$

10 [0123]

$$CH_2 = C - CI$$

[0124] (86)

$$CH_2 = C - CN$$

$$CH_{3} - C - CH_{8}$$

$$CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3}$$

(87)

【0125】本発明において用いられる重合体は、上記 の単量体と共重合可能な他の単量体を共重合成分として 含む共重合体であってもよい。他の単量体としては、共 重合可能な単量体であれば、特に限定されるものではな いが、具体例としては、スチレン、4-ヒドロキシスチ レン、2-ヒドロキシスチレン、4-クロロスチレン、 2-クロロスチレン、2, 3-ジクロロスチレン、4-プロモスチレン、2-プロモスチレン、4-ヨードスチ 4-メチルスチレン、 $\alpha-$ メチルスチレン、 $\alpha-$ メチル

- 40 レン、2-ヨードスチレン、4-カルボキシスチレン、 -4-ヒドロキシスチレン、α-メチル-2-ヒドロキ シスチレン、α-メチル-4-カルボキシスチレン、<math>αーメチルー4ーメチルスチレン、αーメチルスー4ーク ロロスチレン、αートリフロロメチルスチレン、αート リクロロメチルスチレン、 α - クロロスチレン、 α - ブ ロモスチレン、 $\alpha$  - シアノスチレンなどのスチレン系化 合物;アクリル酸、アクリル酸メチル、アクリル酸エチ ル、アクリル酸プロピル、アクリル酸グリシジル、アク
- 50 リル酸シクロヘキシル、アクリル酸フェニル、アクリル

酸ペンジル、アクリル酸t-ブチルフェニル、アクリル 酸シクロペンテニル、アクリル酸シクロペンタニル、ア クリル酸ジシクロペンテニル、アクリル酸イソボルニ ル、アクリル酸アダマンチル、アクリル酸ジメチルアダ マンチルなどのアクリル酸系化合物;メタクリル酸、メ タクリル酸メチル、メタクリル酸エチル、メタクリル酸 プロピル、メタクリル酸グリシジル、メタアクリル酸シ クロヘキシル、メタアクリル酸フェニル、メタアクリル 酸ペンジル、メタアクリル酸t-ブチルフェニル、メタ アクリル酸シクロペンテニル、メタアクリル酸シクロペ ンタニル、メタアクリル酸ジシクロペンテニル、メタア クリル酸イソボルニル、メタアクリル酸アダマンチル、 メタアクリル酸ジメチルアダマンチルなどのメタクリル 酸系化合物;アクリル酸アミド及びその誘導体などのア クリル酸アミド系化合物、メタクリル酸アミド及びその 誘導体などのメタクリル酸アミド系化合物、マレイン酸 及びその誘導体などのマレイン酸系化合物、無水マレイ ン酸及びその誘導体などの無水マレイン酸系化合物、酢 酸ビニル、ビニルビリジン、アクリロニトリル、フマロ ニトリル、ビニルピロリドン、ビニルカルバゾールなど が挙げられる。

【0126】上記他の共重合可能な単量体は、アルカリ現像性を損なわない範囲(通常は0~50モル%)で共重合することが可能である。本発明の共重合体は、ラジカル重合、イオン重合などの通常の重合方法によって得ることが可能であって、共重合体の重量平均分子量は1,000~1,000,000の範囲のものが好適である。

【0127】 (C) スルホン酸アミド化合物 本発明で使用するスルホン酸アミド化合物は、スルホン 酸アミド基を有する化合物であれば特に限定されるもの ではない。スルホン酸アミド化合物の具体例としては、 ベンゼンスルホン酸アミド、2-メチルベンゼンスルホ ン酸アミド、4-メチルペンゼンスルホン酸アミド、2 ークロロペンゼンスルホン酸アミド、4 ークロロペンゼ ンスルホン酸アミド、2,5-ジクロロベンゼンスルホ ン酸アミド、3, 5-ジクロロペンゼンスルホン酸アミ ド、2-プロモベンゼンスルホン酸アミド、4-プロモ ベンゼンスルホン酸アミド、2-二トロベンゼンスルホ ン酸アミド、3-ニトロペンゼンスルホン酸アミド、4 ーニトロペンゼンスルホン酸アミド、4-ヒドロキシペ ンゼンスルホン酸アミド、ナフタレンスルホン酸アミ ド、5-ヒドロキシナフタレンスルホン酸アミド、ベン ゼンスルホン酸メチルアミド、ペンゼンスルホン酸エチ ルアミド、ベンゼンスルホン酸アニリド、ベンゼンスル ホン酸4-クロロアニリド、4-メチルベンゼンスルホ ン酸メチルアミド、4-メチルペンゼンスルホン酸エチ ルアミド、4-メチルベンゼンスルホン酸アニリド、4 ーメチルペンゼンスルホン酸4-クロロアニリド、2-ニトロペンゼンスルホン酸メチルアミド、2-ニトロペ ンゼンスルホン酸エチルアミド、2-ニトロベンゼンスルホン酸アニリド、2-ニトロベンゼンスルホン酸4-クロロアニリド、メタンスルホン酸アニリド、エタンスルホン酸アニリド、トリクロロメタンスルホン酸アニリド、トリクロロメタンスルホン酸4-クロアニリド、エタンスルホン酸4-クロロアニリド、トリフロロメタンスルホン酸4-クロロアニリド、トリフロロメタンスルホン酸4-クロアニリド、メタンスルホン酸ナフタレンアミド、トリフロロメタンスルホン酸ナフタレンアミド、トリフロロメタンスルホン酸ナフタレンアミド、などを挙げることができる。

【0128】これらのスルホン酸アミド化合物は、それぞれ単独でも、あるいは2種以上を組み合わせて用いてもよい。本発明において用いられるスルホン酸アミド化合物(C)の配合割合は、前記重合体(B)100重量部に対して、通常0.01~100重量部、好ましくは0.1~20重量部である。この配合割合が0.01重量部未満では添加による改善効果が不元分となり、100重量部を超えると残膜率の低下が見られたり、レジストバターンの形成が困難となる。

【0129】(D) アルカリ可溶性フェノール樹脂本発明において用いられるアルカリ可溶性フェノール樹脂としては、例えば、フェノール類とアルデヒド類との縮合反応生成物、フェノール類とケトン類との縮合反応生成物、ピニルフェノール系重合体、インプロペニルフェノール系重合体、これらフェノール樹脂の水素添加反応生成物などが挙げられる。

【0130】フェノール類の具体例としては、フェノー30 ル、クレゾール、キシレノール、エチルフェノール、プロピルフェノール、ブチルフェノール、フェニルフェノール等の一価のフェノール類;レゾルシノール、ピロカテコール、ハイドロキノン、ピスフェノールA、ピロカロール等の多価のフェノール類;などが挙げられる。アルデヒド類の具体例としては、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、テレフタルアルデヒドが挙げられる。ケトン類の具体例としては、アセトン、メチルエチルケトン、ジエチルケトン、ジフェニルケトン等が挙げられる。これらの縮合反応は、常法にしたがって行なうことができる。

【0131】ビニルフェノール系重合体は、ビニルフェノールの単独重合体、及びビニルフェノールと共重合可能な成分との共重合体から選択される。共重合可能な成分の具体例としては、アクリル酸、メタクリル酸、スチレン、無水マレイン酸、マレイン酸イミド、及びこれらの誘導体、酢酸ビニル、アクリロニトリルなどが挙げられる。イソプロペニルフェノール系重合体は、イソプロペニルフェノールと共重合可能な成分との共重合体から選択される。共重合可能な成分の具体例としては、アクリル酸、

メタクリル酸、スチレン、無水マレイン酸、マレイン酸イミド、及びこれらの誘導体、酢酸ビニル、アクリロニトリルなどが挙げられる。

【0132】これらのフェノール樹脂の水素添加反応は、任意の公知の方法によって実施することが可能であって、フェノール樹脂を有機溶剤に溶解し、均一系または不均一系の水素添加触媒の存在下、水素を導入することによって達成できる。これらのアルカリ可溶性フェノール樹脂は、それぞれ単独でも用いられるが、2種類以上を混合して用いてもよい。アルカリ可溶性フェノール樹脂(D)の配合割合は、重合体(B)100重量部に対して、通常0~300重量部、好ましくは0~100重量部である。

【0133】本発明のレジスト組成物には、必要に応じて、現像性、保存安定性、耐熱性などを改善するために、例えば、スチレンとアクリル酸、メタクリル酸または無水マレイン酸との共重合体、アルケンと無水マレイン酸との共重合体、ビニルアルコール重合体、ビニルピロリドン重合体、ロジン、シェラックなどを添加することができる。これらの任意成分の添加量は、重合体

(B) 100重量部に対して、通常0~50重量部、好ましくは0~20重量部である。

【0134】 (レジスト組成物) 本発明のレジスト組成 物は、基板に塗布してレジスト膜を形成するために、通 常、前記各成分を溶剤に溶解して用いる。溶剤として は、例えば、アセトン、メチルエチルケトン、シクロへ キサノン、シクロペンタノン、シクロヘブタノン、ブチ ロラクトン、2-ヘプタノンなどのケトン類; n-プロ ピルアルコール、iso-プロピルアルコール、n-ブ チルアルコール、t-プチルアルコールなどのアルコー ル類;エチレングリコールジメチルエーテル、エチレン グリコールジエチルエーテル、ジオキサンなどのエーテ ル類;エチレングリコールモノメチルエーテル、エチレ ングリコールモノエチルエーテル、プロピレングリコー ルモノメチルエーテル、プロピレングリコールモノエチ ルエーテルなどのアルコールエーテル類;ギ酸プロピ ル、ギ酸プチル、酢酸プロピル、酢酸ブチル、プロピオ ン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エ チルなどのエステル類:2-オキシプロピオン酸メチ ル、2-オキシプロピオン酸エチル、2-メトキシプロ ピオン酸メチル、2ーメトキシプロピオン酸エチル、2 -エトキシプロピオン酸エチルなどのモノオキシカルボ ン酸エステル類;セロソルブアセテート、メチルセロソ ルブアセテート、エチルセロソルブアセテート、プロビ ルセロソルプアセテート、ブチルセロソルプアセテート などのセロソルプエステル類:プロピレングリコール、 プロピレングリコールモノメチルエーテル、プロピレン グリコールモノメチルエーテルアセテート、プロピレン グルコールモノエチルエーテルアセテート、プロピレン グリコールモノブチルエーテルなどのプロピレングリコ

ール類:ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテルなどのジエチレングリコール類:トリクロロエチレンなどのハロゲン化炭化水素類:トルエン、キシレンなどの方香族炭化水素類;ジメチルアセトアミド、Nーメチルポルムアミド、Nーメチルアセトアミド、Nーメチルピロリドンなどの極性溶媒;などが挙げられる。これらい。本発明のレジスト組成物には、必要に応じて、界面活性剤、保存安定剤、増感剤、ストリエーション防止剤、可塑剤、ハレーション防止剤などの相溶性のある添加剤を含有させることができる。

【0135】本発明のレジスト組成物の現像液として は、通常、アルカリの水溶液を用いるが、具体的には、 水酸化ナトリウム、水酸化カリウム、ケイ酸ナトリウ ム、アンモニアなどの無機アルカリ類;エチルアミン、 プロビルアミンなどの第一アミン類;ジエチルアミン、 20 ジプロピルアミンなどの第二アミン類;トリメチルアミ ン、トリエチルアミンなどの第三アミン類;ジエチルエ タノールアミン、トリエタノールアミンなどのアルコー ルアミン類;テトラメチルアンモニウムヒドロキシド、 テトラエチルアンモニウムヒドロキシド、トリメチルヒ ドロキシメチルアンモニウムヒドロキシド、トリエチル ヒドロキシメチルアンモニウムヒドロキシド、トリメチ ルヒドロキシエチルアンモニウムヒドロキシドなどの第 四級アンモニウム塩;などが挙げられる。さらに、必要 に応じて上記アルカリ水溶液に、例えば、メタノール、 30 エタノール、プロパノール、エチレングリコールなどの 水溶性有機溶剤、界面活性剤、保存安定剤、樹脂の溶解 抑制剤などを適量添加することができる。

【0136】本発明のレジスト組成物は、その溶剤溶液を用いてシリコンウエハなどの基板表面に常法により途布した後、溶剤を乾燥除去することによりレジスト膜を形成することができる。途布方法としては、特にスピンコーティングが貸用される。また、露光は、遠紫外線、KrFエキシマレーザー光、i線(365 nm)などを光源として用いることにより、微細なパターンを形成することができる。露光後、熱処理(露光後ベーク)を行うと、反応が促進され、感度の向上と安定化が図れるため、好ましい。

【0137】本発明のレジスト組成物において、重合体(B)は、活性光線の照射により酸を生成可能な化合物(A)に由来する酸の作用を受けて、被照射部分の溶解度が変化する。本発明のレジスト組成物は、アルカリ現像液を用いることにより、ポジ型レジストとして作用する。本発明のレジスト組成物は、スルホン酸アミド化合物(C)を含有しているため、レジストパターン表面部分における難溶化層の生成が抑制され、プロセス余裕度

も向上する。また、アルカリ可溶性フェノール樹脂を併 用すると、プロセス余裕度が向上する。

に説明する。なお、各例中の部及び%は、特に断りのな い限り重量基準である。

【0139】 [実施例1]

[0138]

【実施例】以下に実施例を挙げて本発明をさらに具体的

①化合物 (8) と4-ヒドロキシスチレンの共重合体

100部

(Mw=6500、共重合モル比=48/52)

②トリフェニルスルホニウムトリフレート

5 部

(3)表1に示す添加剤

④フッ素系界面活性剤

3部

0.01部

⑤プロビレングリコールモノメチルエーテルアセテート

380部

これらを混合して溶解し、孔径0. 1μmのテトラフル オロエチレンフィルター(ミリポア社製テフロンフィル ター)で濾過し、レジスト溶液を調製した。上記レジス ト溶液をシリコンウエハ上にスピナーで塗布した後、1 10℃で90秒間ベークし、厚さ1.0µmのレジスト 膜を形成した。

【0140】このレジスト膜を形成したシリコンウエハ をKrFエキシマレーザーステッパNSR1755EX 8 A (NA=0.45、ニコン社製) とテスト用レチク ルを用いて露光し、20分間放置後、90℃で60秒間 露光後ペークを実施した。次いで、テトラメチルアンモ ニウムヒドロキシド水溶液 (濃度2.38%) で23 ℃、1分間、浸漬法により現像してポジ型パターンを得 た。パターンの形成されたシリコンウエハを取り出して 電子顕微鏡で観察し、その結果を表1に示した。添加剤 としてスルホン酸アミド化合物を添加した本発明例のレ ジスト (実験番号1~6) では、表面難溶化層の形成は 軽微であり、かつ、解像性は添加剤を配合していないレ ジスト (実験番号7) に比べて良好であった。

[0141]

20 【表 1】

| 実験<br>番号 | 添加剤                | 解像性<br>(μm) | 表面難溶化層<br>の形成 |
|----------|--------------------|-------------|---------------|
| 1        | ベンゼンスルホン酸アミド       | 0.35        | 微             |
| 2        | 4-クロロベンゼンスルホン酸アミド  | 0.35        | 無し            |
| 3        | 4-クロロベンゼンスルホン酸アニリド | 0.35        | 無し            |
| 4        | トリフロロメタンスルホン酸アニリド  | 0.35        | 徴             |
| 5        | メタンスルホン酸-4-クロロアニリド | 0.30        | 無し            |
| 6        | メタンスルホン酸ナフタレンアミド   | 0.35        | 無し            |
| 7        | 無し                 | 0.45        | 有り            |

### 【0142】 [実施例2]

①化合物 (47) とスチレンの共重合体

②トリフェニルスルホニウムトリフレート

100部

(Mw=12400、共重合モル比=57/43)

5 部

(3)表2に示す添加剤

5部

④フッ素系界面活性剤

0.01部

⑤シクロヘキサノン

4 3 0 部

これらを混合して溶解し、孔径 0. 1μmのテトラフル オロエチレンフィルター(ミリポア社製テフロンフィル ター) で遭過し、レジスト溶液を調製した。上記レジス ト溶液をシリコンウエハ上にスピナーで塗布した後、1 10℃で90秒間ペークし、厚さ0.70μmのレジス

ト膜を形成した。

【0143】このレジスト膜を形成したシリコンウエハ をKrFエキシマレーザーステッパNSR1755EX 8 A (NA=0. 45、ニコン社製) とテスト用レチク ルを用いて露光し、直ちに、90℃で60秒間露光後べ ークを実施した。次いで、テトラメチルアンモニウムヒ

40 ドロキシド水溶液で23℃、1分間、浸漬法により現像 して、感度を評価した。また、同様の方法でレジストを 塗布した別のシリコンウエハを露光し、20分間放置 後、露光後ベークを実施したこと以外は、前記と同様に 操作を行い、感度を評価した。

【0144】露光後、直ちに露光後ペークを実施した時 の感度 (E \* ,,) に対する20分間放置後に露光後ベー クを実施した時の感度 (E ' Lb) の比 (E ' Lb/ E\* ,,) を算出し、表2に示した。表2の結果から明ら かなように、スルホン酸アミド化合物を添加した本発明

50 例 (実験番号 8~12) の方が、添加剤を添加してない

場合 (実験番号13) に比べて、感度の変化が小さいこ とが分かる。

[0145]

【表 2】

| 実験<br>番号 | 添加剤                   | 感度比<br>E'a /E°a |
|----------|-----------------------|-----------------|
| 8        | 4-メチルベンゼンスルホン酸アミド     | 1.05            |
| 9        | 2-ニトロベンゼンスルホン酸アミド     | 1.10            |
| 10       | 4-メチルベンゼンスルホニルアニリド    | 1.00            |
| 11       | エタンスルホン酸-4-クロロアニリド    | 1.05            |
| 12       | トリフロロメタンスルホン酸ナフタレンアミド | 0.95            |
| 13       | 無し                    | 1.85            |

(脚注)

E° 」。: 露光後、直ちに露光後ペークを実施した時の感

E¹、b:露光後、20分間放置後に露光後ベークを実施

した時の感度

【0146】 [実施例3]

①化合物 (7) とスチレンの共重合体

(Mw=48000、共重合モル比=48/52)

②ビス (t-プチルフェニルスルホニル) ジアゾメタン

5 部

③4 -クロロベンゼンスルホン酸アミド

3 部

100部

④フッ素系界面活性剤

0.01部 350部

**⑤**プロビレングリコールモノメチルエーテルアセテート

これらを混合して溶解し、孔径0. 1μmのテトラフル オロエチレンフィルター (ミリポア社製テフロンフィル ター)で濾過し、レジスト溶液を調製した。上記レジス ト溶液をシリコンウエハ上にスピナーで塗布した後、1 10℃で90秒間ペークし、厚さ1.0μmのレジスト 膜を形成した。

【0147】このレジスト膜を形成したシリコンウエハ をKrFエキシマレーザーステッパNSR1755EX 8 A (NA=0. 45、ニコン社製) とテスト用レチク ルを用いて露光し、90℃で60秒間露光後ペークを実

施した。次いで、テトラメチルアンモニウムヒドロキシ ド水溶液で23℃、1分間、浸漬法により現像してポジ 型パターンを得た。感度を評価すると28mJ/cm であり、パターンの膜厚を膜厚計アルファステップ20 O (テンコー社製) で測定すると O. 9 2 μ m であっ た。パターンの形成されたシリコンウエハを取り出して 電子顕微鏡で観察したところ、0.35μmのパターン が解像しており、表面難溶化層は観察されなかった。

30 【0148】 [実施例4]

①化合物 (46) とメチルメタクリレートの共重合体

100部

(Mw=18000、共重合モル比=50/50) ②トリフェニルスルホニウムトリフレート

5部

③2-二トロペンゼンスルホン酸アミド

3部

④フッ素系界面活性剤

0.01部

⑤プロピレングリコールモノメチルエーテルアセテート

450部

これらを混合して溶解し、孔径0. 1μmのテトラフル オロエチレンフィルター(ミリポア社製テフロンフィル ター)で濾過し、レジスト溶液を調製した。上記レジス ト溶液をシリコンウエハ上にスピナーで塗布した後、9 0℃で90秒間ベークし、厚さ0. 70μmのレジスト 膜を形成した。

【0149】このレジスト膜を形成したシリコンウエハ  $\begin{smallmatrix} E&K&r&F&X&+&\downarrow v&v&-&\#-X&+&v&N&S&R&1&7&5&5&E&X \end{smallmatrix}$ 8 A (NA=0. 45、ニコン社製) とテスト用レチク ルを用いて露光し、90℃で60秒間露光後ペークを実 施した。次いで、テトラメチルアンモニウムヒドロキシ ド水溶液で23℃、1分間、浸漬法により現像してポジ 型パターンを得た。感度を評価すると22mJノcm

であり、パターンの膜厚を膜厚計アルファステップ20 O (テンコー社製) で測定すると O. 63 μ m であっ

40 た。パターンの形成されたシリコンウエハを取り出して 電子顕微鏡で観察したところ、0.35μmのパターン が解像しており、表面難溶化層は観察されなかった。

[0150]

【発明の効果】本発明によれば、感度、解像度、耐エッ チング性、保存安定性、プロセス余裕度などに優れ、し かも表面部分における難溶化層の生成が抑制されたレジ スト組成物が提供される。本発明のレジスト組成物は、 特に半導体素子の微細加工用ポジ型レジストとして好適 である。

50

フロントページの続き

(51) Int. Cl. 4

識別記号 庁内整理番号

FΙ

技術表示箇所

G 0 3 F 7/033

H O 1 L 21/027

(72)発明者 三沢 真理

神奈川県川崎市川崎区夜光一丁目2番1号

日本ゼオン株式会社内