ASSISTIVE EXOSKELETON FOR ELDERLY

A DESIGN PROJECT REPORT (MEB 441)

Submitted by

P.V.N.S. SATHWIK (15127001) D.JASWANTH (15127032) D.MAHESH (15127064) D.VISHNU VARDHAN (15127066)

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

In

MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING SCHOOL OF MECHANICAL SCIENCES HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE PADUR, CHENNAI - 603 103

APRIL 2019

HINDUSTAN INSTITUTE OF TECHNOLOGY AND SCIENCE PADUR, CHENNAI - 603 103

BONAFIDE CERTIFICATE

Certified that this project report titled "ASSISTIVE EXOSKELETON FOR ELDERLY" is the bonafide work of "P.V.N.S. SATHWIK (15127001), D. JASWANTH (15127032), D. MAHESH (15127064), D. VISHNU VARDHAN (15127066)" who carried out the design project work under my supervision. Certified further that to the best of my knowledge the work reported here does not form part of any other project / research work on the basis of which a degree or award was conferred on an earlier occasion on this or any other candidate.

HEAD OF THE DEPARTMENT Dr. RAVI KUMAR SOLOMON,

Professor and Head

Department of Mechanical Engineering

Hindustan Institute of Technology

and Science, Padur.

SUPERVISOR Dr. M.M. RAMYA,

Professor

Center for Automation and Robotics Hindustan Institute of Technology and Science, Padur.

The	Design	Project	Viva-Voce	Examination	is held on	

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

First and foremost, we would like to thank the Lord Almighty for His presence and immense blessings throughout the project work.

We would like to thank our internal guide **Dr. M.M. Ramya**, Center for Automation and Robotics for continually guiding and actively participating in our project, giving valuable suggestions to complete the project work.

We wish to express our heartfelt gratitude to **Dr. G. Ravikumar Solomon**, Head, Department of Mechanical Engineering for much of his valuable support encouragement in carrying out this work.

It's a matter of pride and privilege for us to express our deep gratitude to the management of HITS for providing us the necessary facilities and support.

We are highly elated in expressing our sincere and abundant respect to the Vice Chancellor Prof. (**Dr.**) **Kuncheria P. Issac** for giving me this opportunity to bring out and implement our ideas in this project.

We would like to thank all the technical and teaching staff of the Mechanical Engineering Department, who extended directly or indirectly all support.

Last, but not the least, we are deeply indebted to our parents who have been the greatest support while we worked day and night for the project to make it a success.

ABSTRACT

Exoskeletons are wearable robots that are created to assist the human body or increase the muscular power of the wearer. Depending on the situation they may be used to protect soldiers and construction workers, aid the survival of people in dangerous environments, or assist patients in rehabilitation. According to a study on gait in older adults, at age of 60, 85% of seniors have normal gait and this proportion drops to 18% by age 85. Usually gait problems in adults is due to two major reasons, one is the depletion of calcium in bones due to ageing and other is due to sudden increase in weight of the adult which is termed as obesity. A study shows that the percentage of older people with obesity in India will increase from 7.5% to 21 % by 2050. This project centres to the design of an assistive exoskeleton for elderly people. The exoskeleton is designed and tested for its structural strength by carrying static structural analysis in Ansys workbench. Modal analysis is done to find the mode frequency of the exoskeleton in Ansys workbench.

Regardless of the application there are strict requirements for designing and producing exoskeleton suites. They must be durable but light weight and flexible, have reliable power control. The exoskeleton needs to be designed with natural and intuitive interface to be a true extension of human body. The exoskeleton should be designed to be self-sufficient between energy system recharge. Last but not the least, the exoskeleton should be comfortable and safe to wear. In this project we are trying to develop an exoskeleton which assists old people those who find it difficult to sit-stand and walk.

TABLE OF CONTENTS

CHAPTER	NO.	TITLE	PAGE NO.
	ABS	TRACT	iv
	LIST	Γ OF TABLES	viii
	LIST	Γ OF FIGURES	ix
1	INT	RODUCTION	1
	1.1	PROBLEM DEFINITION	2
	1.2	WEARABLE ROBOTS AND	
		EXOSKELETONS	
	1.3	IMPORTANCE OF GAIT	3
	1.4	POWERED EXOSKELETON	
		1.4.1 Gait velocity	4
		1.4.2 Cadence	5
		1.4.3 Double stance time	5
		1.4.4 Walking posture	5
		1.4.5 Joint motion	5
2	LITI	ERATURE SURVEY	6
	2.1	Exoskeleton Design requirements	7
		2.1.1 Age group and Anthropometric da	ata 8
	2.2	SELECTION OF MATERIAL	9
	2.3	Actuators	10
	2.4	Adjustable Mechanism for Height	13
3	GAI	T ANALYSIS	15
	3.1	Introduction to Gait Analysis	16
	3.2	Process and Equipment	16
	3 3	Onensim Software	17

	3.4 Opensim Workflow	18			
	3.4.1 Importing Experimental Data	19			
	3.4.2 The Inverse Problem	19			
	3.4.3 Scaling	20			
	3.4.4 Inverse Kinematics	20			
	3.4.5 Inverse Dynamics	21			
	3.5 Gait Dataset Collection and Analysis	22			
4	DESIGN OF EXOSKELETON	24			
	4.1 Design Considerations	25			
	4.2 Material	26			
	4.3 Components	26			
	4.3.1 Motors	26			
	4.3.2 Harmonic Gear Drive	27			
	4.4 Cad Model	29			
	4.5 Cost Estimation	30			
5	ANALYSIS OF EXOSKELETON	31			
	5.1 Finite Element Analysis	32			
	5.1.1 Structural analysis				
	5.1.2 Static structural analysis				
	5.1.3 Modal analysis				
	5.2 Static Structural Analysis On Designed Exosl	xeleton 34			
	5.2.1 Maximum load capacity of the Exoske	leton 38			
	5.3 Modal Analysis On Exoskeleton	38			
	5.3.1 Analysis Methodology	39			
	5.3.2 Modal Analysis results	39			
6	FABRICATION OF EXOSKELETON	41			
	6.1 Fabricated design of Exoskeleton	42			
	6.1.1 Height and waist adjustment	47			

		6.1.2 Flange Coupling	48
	6.2	Components for Exoskeleton	48
		6.2.1 Microcontroller holder	48
		6.2.2 Motors	49
		6.2.3 Microcontroller	50
		6.2.4 Motor Shield	50
		6.2.5 DC Power supply	51
7	CON	NCLUSION AND DISCUSSION	52
	7.1	Conclusion	53
	REF	FERENCES	57

LIST OF TABLES

TABLE NO	TITLE	PAGE NO
2.1	Walking speed comparison in elderly	8
2.2	Anthropometric data of elderly subjects	9
2.3	Comparison of aluminium alloys	10
2.4	Comparison of major actuation technologies	13
4.1	Anthropometric data	25
4.2	Maxon Motor specifications	27
4.3	Cost estimation of Exoskeleton	30
5.1	Material properties	35
5.2	Ansys Workbench Result	38
5.3	Deformation with respect to loading	38
5.4	Modal analysis frequency and vibration comparison	40
6.1	Specifications of motor	51
6.2	Cost estimation of fabrication	53

LIST OF FIGURES

FIGURE NO	TITLE	PAGE NO
1.1	Lower limb Exoskeleton	3
1.2	Gait cycle	4
2.1	Electric actuator used in BLEEX	11
2.2	Actuators used in Mina exoskeleton	11
2.3	Elastic Actuator (version SEA23-23)	12
2.4	BLEEX thigh design	14
2.5	Coupling between the	14
	actuator components	
3.1	Human Gait Motion capture	17
3.2	OpenSim software User Interface	18
3.3	Solving flow of Inverse problem	19
3.4	Experimental values and model values matching	20
3.5	Inverse dynamic Tool function	21
3.6	Hip Joints Moments	22
3.7	Knee Joints Moments	22
3.8	Ankle Joint Moments	23
4.1	Maxon EC60 Flat Brushless motor	27
4.2	Harmonic Gear drive	28

4.3	Full exoskeleton designed in solidworks	29
4.4	Height adjustment	29
4.5	Velcro straps	30
5.1	FEA analysis in Ansys	33
5.2	Exoskeleton Analysis boundary conditions	35
5.3	Total deformation	36
5.4	Equivalent stress	36
5.5	Max Stress acting Area	36
5.6	Hip Analysis Boundary Conditions	37
5.7	Total deformation	38
5.8	Equivalent stress	38
5.9	Modal analysis	40
6.1	CAD Model of Exoskeleton for Fabrication	47
6.2	Exoskeleton height adjustment	48
6.3	Exoskeleton waist adjustment	48
6.4	Flange Coupling	49
6.5	Through hole	49
6.6	Microcontroller holder	50
6.7	DC Servo Motor	50
6.8	Arduino UNO	51
6.9	Motor driver shield	52
6.10	DC power supply	53