Формулировка задачи по курсовой работе

Необходимо было написать программу, которая должна рисовать графики решений дифференциальных уравнений, введенных пользователем, вычисленных с помощью метода Рунге-Кутта четвертого порядка.

Входные данные:

Заданное КС-грамматикой дифференциальное уравнение вида: $\mathring{x}=f(x,t),$ где $t\in\mathbb{R},$ $x(t)\in\mathbb{R}$

Начальные условия: $x_0 \in \mathbb{R}, t_0 \in \mathbb{R}$ Величина шага сетки по $x: h \in \mathbb{R}$ Количество точек отрисовки: $n \in \mathbb{N}$

Выходные данные:

График решения дифференциального уравнения, полученный после применения численного метода:

Пример графика, который должна выводить программа

Примеры графиков решений дифференциальных уравнений, построенных программой

$$\begin{split} \mathring{x} &= \frac{x}{t} - e^{\frac{x}{t}} \\ \text{Решение:} \\ \frac{1}{e^{\frac{x}{t}}} &= \ln |Ct|, \text{ где } C = const \\ \text{тогда } x &= -t \ln \ln |Ct| \\ \text{Пусть } t_0 &= 5 \text{ и } x_0 = x(t_0) = x(5) = 7 \\ \text{тогда } C &= \frac{e^{e^{-\frac{7}{5}}}}{5} \text{ и } x = -t \ln \ln \frac{e^{e^{-\frac{7}{5}}}}{5} |t| \end{split}$$

$$\begin{split} \mathring{x} &= \frac{x}{t} + \operatorname{tg} \frac{x}{t} \\ \text{Решение:} \\ &\frac{1}{t} \sin \frac{x}{t} = C, \text{ где } C = const \\ \text{тогда } x &= t \arcsin Ct \\ \text{Пусть } t_0 &= \frac{1}{2} \text{ и } x_0 = x(t_0) = x \left(\frac{1}{2}\right) = \frac{\pi}{12} \\ \text{тогда } C &= 1 \text{ и } x = t \arcsin t \end{split}$$

$$\mathring{x} = -\frac{x}{x+t}$$

Решение:

$$x^2 + 2xt = C$$
, где $C = const$

Решая квадратное уравнение вида: $x^2 + 2xt + C = 0$ относительно x, получаем два явных решения дифференциального уравнения:

$$x=-t+\sqrt{t^2-C}$$
 Пусть $t_0=8$ и $x_0=x(t_0)=x(8)=15$ тогда $C=-465$ и $x=-t+\sqrt{t^2+465}$ и $x=-t-\sqrt{t^2-C}$ Пусть $t_0=8$ и $x_0=x(t_0)=x(8)=-15$ тогда $C=15$ и $x=-t-\sqrt{t^2-15}$

$$\mathring{x} = \frac{-x^2}{t^2 - tx}$$

Первое решение:

x = 0

 $\forall t \in \mathbb{R}$

тогда
$$\frac{x}{t} - \ln|x| = C$$
, где $C = const$

Пусть
$$t_0 = 5$$
 и $x_0 = x(t_0) = x(5) = -1$

$$orall t\in \mathbb{R}$$
 Второе решение: тогда $\frac{x}{t}-\ln|x|=C$, где $C=const$ Пусть $t_0=5$ и $x_0=x(t_0)=x(5)=-1$ тогда $C=-rac{1}{5}$ и $t=rac{x}{-rac{1}{5}+\ln|x|}$ Так как явно выразить x из решения

Так как явно выразить x из решения этого диффура сложновато, я выразил t и при проверке корректности работы программы при отрисовке графика решения, заданного явно буду по x находить t, а при отрисовке поменяю наборы значений местами.

$$\begin{split} \mathring{x} &= \frac{5t^2 - tx + x^2}{t^2} \\ \text{Решение:} \\ &\frac{1}{2} \arctan\left(\frac{x - t}{2t}\right) - \ln|t| = C, \text{ где } C = const \\ \text{тогда } x &= 2t \operatorname{tg}\left(2C + 2\ln|t|\right) + t \\ \Pi \text{усть } t_0 &= 1 \text{ и } x_0 = x(t_0) = x(1) = 3 \\ \text{тогда } C &= \frac{\pi}{8} \text{ и } x = 2t \operatorname{tg}\left(\frac{\pi}{4} + 2\ln|t|\right) + t \end{split}$$

$$\mathring{x} = \frac{2}{t}\sqrt{3t^2 + x^2} + \frac{x}{t}$$
 Первое решение:

 $x = 0 \ \forall t \in \mathbb{R}$

Второе решение:

 $x = t \ \forall t \in \mathbb{R}$

$$x=t \ \forall t \in \mathbb{R}$$
 Третье решение: $\frac{x+\sqrt{3t^2+x^2}}{t^3}=C,$ где $C=const$ тогда $x=\frac{3-C^2t^4}{-2Ct}$ Пусть $t_0=1$ и $x_0=x(t_0)=x(1)=1$ тогда $C=3$ и $x=\frac{1-3t^4}{-2t}$

тогда
$$x = \frac{3 - C^2 t^4}{-2Ct}$$

Пусть
$$t_0 = 1$$
 и $x_0 = x(t_0) = x(1) = 1$

тогда
$$C = 3$$
 и $x = \frac{1 - 3t^4}{-2t}$

$$\mathring{x} = \frac{x - 2\sqrt{tx}}{t}$$

Первое решение:

 $x = 0 \ \forall t \in \mathbb{R}$

Второе решение:

 $t=0 \; \forall x \in \mathbb{R}$

$$sgn(t)\sqrt{rac{x}{t}}+\ln|t|=C,$$
 где $C=const$

тогда
$$x = \left(\frac{C - \ln|t|}{sgn(t)}\right)^2 t$$

Пусть
$$t_0 = -1$$
 и $x_0 = x(t_0) = x(-1) = -4$

$$t=0\ \forall x\in\mathbb{R}$$
 Третье решение:
$$sgn(t)\sqrt{\frac{x}{t}}+\ln|t|=C, \text{ где }C=const$$
 тогда $x=\left(\frac{C-\ln|t|}{sgn(t)}\right)^2t$ Пусть $t_0=-1$ и $x_0=x(t_0)=x(-1)=-4$ тогда $C=-2$ и $x=\left(\frac{-2-\ln|t|}{sgn(t)}\right)^2t$

