Digital Modulation Techniques: A Review

Digital Modulation?

- Why digital transmission?
 - Can combine multiple information types (voice, data and video) in a single transmission channel
 - Improved security (e.g., encryption)
 - Error coding is used to detect/correct transmission errors
- Digital Modulation:
 - Mapping information bits into an analog signal for transmission over channel
- Demodulation/Detection:
 - Determining original bit sequence based on signal received over channel

How to Choose a Digital Modulation Technique?

- Performance factors to consider
 - High data rate
 - High spectral efficiency (max data rate in a minimum channel bandwidth)
 - High power efficiency (minimum bit error probability for minimum transmitted power)
 - Robustness to channel impairments (minimum bit error probability)
 - Low power/cost implementation
- No existing modulation scheme simultaneously satisfies all of these requirements well
- Each one can be better in some aspects (e.g., spectral efficiency) but worse in others (e.g., power efficiency)

Main Categories of Digital Modulation

Main Categories of Digital Modulation

- Amplitude Shift Keying (ASK)
 - Change amplitude with each symbol
 - Spectrum-efficient
- Phase Shift Keying (PSK)
 - Change phase with each symbol
 - Spectrum-efficient
- Frequency Shift Keying (FSK)
 - Change frequency with each symbol
 - Power-efficient
 - Resistance to channel impairments

Transmitter/Modulator

- Every K bits grouped to form 1 symbol $m_i=(b_{i1},\ldots,b_{iK})$: there are 2K possible symbols, $m_i\in \pmb{M}=\{m_1,\ldots,m_M\}$.
- Modulation: one-to-one mapping of each symbol m_i to a distinct Tx signaling element $s_i(t)$: $m_i \rightarrow s_i(t) \in S = \{s_1(t), ..., s_M(t)\}$
- Time-limited signaling: $s_i(t) = 0$ for $t \notin [0, T]$, i.e., only defined in one symbol interval of T, with energy $E_i = \int_0^T |s(t)|^2 dt$
- Transmitting one randomly generated symbol in one symbol interval of T seconds:
 - Transmitted signal: $s(t) = \sum_{n=-\infty}^{+\infty} s_i(t-nT)$
 - Data rate R = K/T bits per second (b/s)
- Example of a binary Tx:

Receiver Design

- Receiver
 - observes the Rx signal: r(t) = s(t) + n(t), $s(t) \in S$, n(t) is WGN, and
 - $_{\circ}$ decodes/detects the Tx symbol $\widehat{m} \in \emph{\textbf{M}}$ transmitted in each symbol interval
- Optimum receiver: minimizes the average probability of detection error:
 - o Optimum criterion: $\min P_e = \sum_{i=1}^M Pr\{\widehat{m} \neq m_i | m_i \text{ sent}\} Pr\{m_i \text{ sent}\}$
 - $_{\circ}$ For equally probable Tx, i.e., $Pr\{m_{i} \; sent\} = rac{1}{M}$

$$\to \min P_e = \sum_{i=1}^M Pr\{\widehat{m} \neq m_i | m_i \text{ sent}\}\$$

Vector representation of signals

Orthonormal basis functions

$$\{\phi_1(t), \dots, \phi_N(t)\}, N \leq M, \int_0^T \phi_i(t)\phi_j^*(t) dt = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

• Orthonormal basis representation of each $s_i(t) \in S$

$$s_i(t) = \sum_{j=1}^{N} s_{ij} \phi_j(t), \ 0 \le t < T, s_{ij} = \int_0^T s_i(t) \phi_j^*(t) dt$$

- Signal constellation point $\mathbf{s}_i = (s_{i1}, \dots, s_{iN}) \in \Re^N$
- Signal constellation $\{\mathbf{s}_1, \dots, \mathbf{s}_M\}$

Vector Representation of Signals

Length (power) of a signal

$$\|\mathbf{s}_i\| = \sqrt{\sum_{j=1}^{N} s_{ij}^2}$$

The distance between two signals

$$\|\mathbf{s}_{i} - \mathbf{s}_{k}\| = \sqrt{\sum_{j=1}^{N} (s_{ij} - s_{kj})^{2}}$$
$$= \sqrt{\int_{0}^{T} (s_{i}(t) - s_{k}(t))^{2} dt}$$

Inner product

$$\langle \mathbf{s}_i, \mathbf{s}_k \rangle = \mathbf{s}_i . \mathbf{s}_k^H = \int_0^T s_i(t) s_k^*(t) dt$$

Orthonormal basis functions: an example

• Find a complete set of orthonormal basis functions to represent the following signalling elements:

By using the Gram-Schmidt orthogonalization procedure,

Orthonormal basis functions: an example

 another set of orthonormal basis functions:

 Vector representation of 4 signalling elements:

Receiver Structure and Sufficient Statistics

In each symbol interval $r(t) = s_i(t) + n(t)$, $0 \le t < T$

- Signal $s_i(t) = \sum_{j=1}^N s_{ij} \phi_j(t)$
- Noise: $n(t) = \sum_{j=1}^{N} n_j \phi_j(t) + n_r(t)$ where $n_j = \langle n(t), \phi_j(t) \rangle$
- $n_r(t)$ is shown to be *irrelevant* in the detection and hence *ignored*
- A Receiver structure with N correlators: $r_j = \langle r(t), \phi_j(t) \rangle$ are sufficient statistics

Receiver Structure and Sufficient Statistics

Sufficient statistics in the optimal detection

$$\mathbf{r} = (r_1, \dots, r_N), r_j \sim N(s_{ij}, N_0/2) \text{ if } \mathbf{s}_i \text{ sent}$$

Optimum receiver design criterion

min
$$P_e = P(\hat{\mathbf{s}} \neq \mathbf{s}_i | \mathbf{s}_i \text{ sent}) = P(\hat{\mathbf{s}} \neq \mathbf{s}_i | \mathbf{r} = \mathbf{s}_i + \mathbf{n})$$

Maximum a posteriori probability (MAP) receiver

$$\max P(\hat{\mathbf{s}} = \mathbf{s}_i | \mathbf{r} = \mathbf{s}_i + \mathbf{n})$$

Decision regions

$$Z_i = (\mathbf{r} : P(\mathbf{s}_i | \mathbf{r}) > P(\mathbf{s}_j | \mathbf{r}), \forall j \neq i)$$

Maximum Likelihood Decision Criterion

Notes:

P(.): cumulative distribution function (CDF): $P_X(x)=Pr\{X \le x\}$

p(.): probability density function (pdf): $p_X(x) = dP_X(x)/dx$

$$P(\mathbf{s}_{i} | \mathbf{r}) = \frac{p(\mathbf{r} | \mathbf{s}_{i})P(\mathbf{s}_{i})}{p(\mathbf{r})}$$

$$\operatorname{argmax}_{\mathbf{s}_{i}} \frac{p(\mathbf{r} | \mathbf{s}_{i})P(\mathbf{s}_{i})}{p(\mathbf{r}) \triangleright} \equiv \operatorname{argmax}_{\mathbf{s}_{i}} p(\mathbf{r} | \mathbf{s}_{i})P(\mathbf{s}_{i})$$

• ML receiver: $\underset{\mathbf{s}_i}{\operatorname{argmax}} p(\mathbf{r} | \mathbf{s}_i)$, if $P(\mathbf{s}_i) = 1/M$

Maximum Likelihood Decision Criterion

$$p(\mathbf{r} \mid \mathbf{s}_i) = \prod_{j=1}^{N} p(r_j \mid s_{ij})$$

Since

$$= \frac{1}{(\pi N_0)^{N/2}} \exp \left[-\frac{1}{N_0} \sum_{j=1}^{N} (r_j - s_{ij})^2 \right]$$

ML receiver:
$$\underset{\mathbf{s}_{i}}{\operatorname{argmin}} \|\mathbf{r} - \mathbf{s}_{i}\|^{2}$$

Decision regions

$$Z_i = (\mathbf{r} : ||\mathbf{r} - \mathbf{s}_i|| < ||\mathbf{r} - \mathbf{s}_j||, \forall j \neq i)$$

Maximum Likelihood Decision Criterion

$$\|\mathbf{r} - \mathbf{s}_i\|^2 = \sum_{j=1}^{N} r_j^2 + \sum_{j=1}^{N} s_{ij}^2 - 2\sum_{j=1}^{N} r_j s_{ij}$$

$$= E_r + E_i - 2\mathbf{r}.\mathbf{s}_i$$

• ML receiver:

$$\underset{\mathbf{s}_{i}}{\operatorname{argmax}} \quad \mathbf{r.s}_{i} - \frac{E_{i}}{2}$$

Correlator

$$r(t) \longrightarrow \int_{0}^{+T} dt \longrightarrow r$$

Matched filter

r(t) MATCHED FILTER
$$h_i(t) = \Phi_i \quad (T_s-t) \qquad r(t) \star h_i(t) \qquad t=7$$

Maximum Likelihood Receiver

ML receiver structure with matched filters

Error Probability

Error probability for ML receiver

$$P_{e} = \sum_{i=1}^{M} P\left(\mathbf{r} \notin Z_{i} \mid \mathbf{s}_{i}\right) P\left(\mathbf{s}_{i}\right) = \frac{1}{M} \sum_{i=1}^{M} P\left(\mathbf{r} \notin Z_{i} \mid \mathbf{s}_{i}\right)$$

$$= 1 - \frac{1}{M} \sum_{i=1}^{M} P\left(\mathbf{r} \in Z_{i} \mid \mathbf{s}_{i}\right) = 1 - \frac{1}{M} \sum_{i=1}^{M} \int_{Z_{i}} P\left(\mathbf{r} = \mathbf{s}_{i} + \mathbf{n}\right) d\mathbf{n}$$

- Binary transmission
 - o Distance between two signals: $d_{\min} = \|\mathbf{s}_1 \mathbf{s}_2\|$
 - Average energy per bit: $E_b = \frac{\|\mathbf{s}_1\|^2 + \|\mathbf{s}_2\|^2}{2}$
 - Correlation coefficient between two signals:

$$\gamma = \frac{\mathbf{s}_1.\mathbf{s}_2}{E_b}, -1 \le \gamma \le 1$$

Error Probability of Binary Transmission

AWGN channel, ML receiver

$$P_{b} = P_{e} = \frac{1}{2} \left(P\left(e \mid \mathbf{s}_{1}\right) + P\left(e \mid \mathbf{s}_{2}\right) \right) = P\left(e \mid \mathbf{s}_{1}\right)$$

$$= P\left(\mathbf{r} \in Z_{2} \mid \mathbf{s}_{1}\right) = P\left(s_{1} + n < 0\right) = P\left(n < -\frac{d_{\min}}{2}\right)$$

$$P_{b} = Q\left(\frac{d_{\min}}{\sqrt{2N_{0}}}\right) \qquad P_{b} = Q\left(\sqrt{\frac{E_{b}\left(1 - \gamma\right)}{N_{0}}}\right)$$

- Orthogonal signaling
- Antipodal signaling

$$P_b = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

$$P_b = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) \quad \square$$

Optimum Receiver for Antipodal Signaling

• ML receiver, $s_1 = -s_2$

$$\underset{\mathbf{s}_{i}}{\operatorname{argmax}} \quad r.s_{i} \longrightarrow r.s_{1} \underset{s_{2}}{\overset{s_{1}}{\triangleright}} r.s_{2} \quad \Longrightarrow \quad r \overset{s_{1}}{\underset{s_{2}}{\triangleright}} 0$$

Union Bound on Error Probability

- M-ary signaling scheme
- Event that r is closer to s_k than s_i

$$A_{ik}: \|\mathbf{r} - \mathbf{s}_k\| < \|\mathbf{r} - \mathbf{s}_i\|$$

Error probability

$$P(e \mid \mathbf{s}_i) = P\left(\bigcup_{\substack{k=1\\k\neq i}}^{M} A_{ik}\right) \leq \sum_{\substack{k=1\\k\neq i}}^{M} P(A_{ik})$$

Based on error probability for binary transmission

$$P(A_{ik}) = Q\left(\frac{d_{ik}}{\sqrt{2N_0}}\right)$$

Union Bound on Error Probability

Union bound

$$P_{e} = \frac{1}{M} \sum_{i=1}^{M} P\left(e \mid \mathbf{s}_{i}\right) \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{k \neq i}^{M} Q\left(\frac{d_{ik}}{\sqrt{2N_{0}}}\right)$$

Minimum distance

$$d_{\min} = \min_{i,k} d_{ik}$$

Looser bound

$$P_e \leq (M - 1)Q\left(\frac{d_{\min}}{\sqrt{2N_0}}\right)$$

Pass-Band Modulation

Modulated signal

$$s(t) = \alpha(t) \cos(2\pi f_c t + \phi(t))$$

In-phase and quadrature components

$$s(t) = \alpha(t) \cos(\phi(t)) \cos(2\pi f_c t) - \alpha(t) \sin(\phi(t)) \sin(2\pi f_c t)$$

$$= s_I(t) \cos(2\pi f_c t) - s_Q(t) \sin(2\pi f_c t)$$

Complex baseband representation

$$u(t) = s_I(t) + js_Q(t), \quad s(t) = \Re \left\{ u(t)e^{j(2\pi f_c t)} \right\}$$

Amplitude and Phase Modulation

Transmitted signal

$$s_{i}(t) = s_{I}(t) \cos(2\pi f_{c}t) - s_{Q}(t) \sin(2\pi f_{c}t)$$
 $s_{I}(t) = s_{i1}g(t) \text{ and } s_{Q}(t) = s_{i2}g(t)$
 $\phi_{1}(t) = g(t) \cos(2\pi f_{c}t) \text{ and } \phi_{2}(t) = g(t) \sin(2\pi f_{c}t)$

Data rate

$$R = \frac{K}{T_s} = \frac{\log_2 M}{T_s}$$

Amplitude and Phase Modulation

- Main categories
 - Pulse Amplitude Modulation
 - Phase Shift Keying
 - Quadrature Amplitude Modulation
- Digital modulation design
 - Number of bits per symbol
 - Signal constellation
 - Choice of shaping pulse
- Amplitude/phase modulator

Amplitude/phase demodulator

- Linear modulation, one-dimensional, no quadrature component
- Information is encoded into the signal amplitude
- Transmitted signal

$$s_i(t) = A_i g(t) \cos(2\pi f_c t)$$

$$\phi(t) = g(t) \cos(2\pi f_c t)$$

Time-limited signaling

$$g(t) = \begin{cases} \sqrt{\frac{2}{T_s}} & 0 \le t < T_s \\ 0 & \text{elsewhere} \end{cases}$$

Signal constellation

$$S_{i1} = A_i, S_{i2} = 0, A_i = (2i - 1 - M)d, i = 1, 2, \dots, M$$

- Constellation mapping by Gray encoding
 - Messages associated with adjacent signals differ by one bit value
 - Mistaking a symbol for an adjacent one causes only a single bit error.

Signal energy

$$E_{s_i} = \int_0^{T_s} s_i^2(t) dt = \int_0^{T_s} A_i^2 g^2(t) \cos^2(2\pi f_c t) dt = A_i^2$$

Average energy per symbol

$$E_{s} = \frac{1}{M} \sum_{i=1}^{M} E_{s_{i}} = \frac{1}{M} \sum_{i=1}^{M} A_{i}^{2}$$

$$= \frac{1}{M} \sum_{i=1}^{M} (2i - 1 - M)^{2} d^{2} = \frac{1}{3} (M^{2} - 1) d^{2}$$

Minimum distance

$$d_{\min} = \min_{i,j} |A_i - A_j| = 2 d$$

Decision regions

Symbol error probability

$$P(e \mid \mathbf{s}_{i}) = P(|n| > d) = 2Q\left(\sqrt{\frac{2d^{2}}{N_{0}}}\right), \quad i = 2, \dots, M - 1$$

$$P(e \mid \mathbf{s}_{i}) = P(n > d) = Q\left(\sqrt{\frac{2d^{2}}{N_{0}}}\right), \quad i = 1, M$$

$$P_{s} = \frac{1}{M} \sum_{i=1}^{M} P(e \mid \mathbf{s}_{i}) = \frac{2(M - 1)}{M} Q\left(\sqrt{\frac{2d^{2}}{N_{0}}}\right)$$

$$= \frac{2(M - 1)}{M} Q\left(\sqrt{\frac{6}{M^{2} - 1}} \frac{E_{s}}{N_{0}}\right)$$

Phase Shift Keying (M-PSK)

- Linear modulation, two-dimensional
- Information is encoded into the signal phase
- Transmitted signal (with a = 0 or 1)

$$s_i(t) = Ag(t)\cos\left[\frac{2\pi(i-a)}{M}\right]\cos(2\pi f_c t) - Ag(t)\sin\left[\frac{2\pi(i-a)}{M}\right]\sin(2\pi f_c t)$$

$$\phi_1(t) = g(t)\cos(2\pi f_c t), \quad \phi_2(t) = -g(t)\sin(2\pi f_c t)$$

$$s_{i1} = A \cos \left[\frac{2\pi (i-a)}{M} \right], \quad s_{i2} = A \sin \left[\frac{2\pi (i-a)}{M} \right]$$

Phase Shift Keying (M-PSK)

- Equal energy $E_{s_i} = E_s = \int_0^{T_s} s_i^2(t) dt = A^2$
- Minimum distance $d_{\min} = 2 A \sin (\pi / M)$
- Constellation mapping by Gray encoding

Phase Shift Keying (M-PSK): Decision regions

$$Z_i = \left\{ re^{j\theta} : 2\pi (i - 0.5) / M \le \theta < 2\pi (i + 0.5) / M \right\}$$

(with
$$a = 0$$
)

Demodulator for BPSK

Bit error probability

$$P_b = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

Quadrature Phase Shift Keying (QPSK)

• Signal constellation(with a = 0)

θ_{i}	a _i	b _i
π/4	$A/\sqrt{2}$	$A/\sqrt{2}$
3π/4	$-A/\sqrt{2}$	$A/\sqrt{2}$
5π/4	$A/\sqrt{2}$	$-A/\sqrt{2}$
7 π/4	$-A/\sqrt{2}$	$-A/\sqrt{2}$

QPSK: Error probability

Bit error probability on each branch is the same as for BPSK

$$P_b = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$
 $P_s = 1 - (1 - P_b)^2, E_s = 2E_b$

$$P_{s} = 1 - \left(1 - Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)\right)^{2} \approx 2Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)$$

Error probability for MPSK

- Exact value
 - Error probability is the same for each signal by symmetry

$$P_{s} = 1 - \int_{-\pi/M}^{\pi/M} P(\theta)$$

$$= 1 - \int_{-\pi/M}^{\pi/M} \frac{1}{\pi} e^{-2\frac{E_{s}}{N_{0}}\sin^{2}(\theta)} \int_{0}^{\infty} z \exp\left[-\left(z - \sqrt{2\frac{E_{s}}{N_{0}}}\cos(\theta)\right)^{2}\right] dz$$

Nearest neighbor approximation

$$P_s \approx M_{d_{\text{min}}} Q \left(\frac{d_{\text{min}}}{\sqrt{2N_0}} \right) \approx 2Q \left(\sqrt{\frac{2E_s}{N_0}} \sin(\pi/M) \right)$$

Quadrature Amplitude Modulation (M-QAM)

- Linear modulation, two-dimensional
- Information is encoded into both the amplitude and phase
 - Two degrees of freedom
 - More spectrally-efficient than MPAM and MPSK
 - Encode most number of bits per symbol for a given average energy
- Transmitted signal

$$s_i(t) = A_i \cos(\theta_i) g(t) \cos(2\pi f_c t) - A_i \sin(\theta_i) g(t) \sin(2\pi f_c t)$$

$$\phi_1(t) = g(t) \cos(2\pi f_c t), \quad \phi_2(t) = -g(t) \sin(2\pi f_c t)$$

$$s_{i1} = A_i \cos(\theta_i), \quad s_{i2} = A_i \sin(\theta_i)$$

Quadrature Amplitude Modulation (M-QAM)

Square constellation

Quadrature Amplitude Modulation (M-QAM)

Square constellation

$$M = L^2 = 2^{2l}, s_{i1}, s_{i2} \in \{(2i-1-M)d, i=1,2,\cdots,M\}$$

- Minimum distance $d_{min} = 2 d$
- Equivalent to PAM with size L on each of the in-phase and quadrature signal components
- Error probability

$$P_{s-QAM} (M) = 1 - \left(1 - P_{s-PAM} (L)\right)^{2}$$

$$\approx 2 P_{s-PAM} (L) \approx 4 \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3}{M-1}} \frac{E_{s}}{N_{0}}\right)$$

16-QAM: Decision regions

Error Probability Approximation (Coherent demodulation)

$$P_s(\gamma_s) \approx \alpha_M Q(\sqrt{\beta_M \gamma_s}), \gamma_s = \frac{E_s}{N_0}$$

Modulation	$P_s(\gamma_s)$	$P_b(\gamma_b)$
BFSK:		$P_b = Q\left(\sqrt{\gamma_b}\right)$
BPSK:		$P_b = Q\left(\sqrt{2\gamma_b}\right)$
QPSK,4QAM:	$P_s \approx 2 Q \left(\sqrt{\gamma_s}\right)$	$P_b \approx Q\left(\sqrt{2\gamma_b}\right)$
MPAM:	$P_s \approx \frac{2(M-1)}{M} Q\left(\sqrt{\frac{6\overline{\gamma}_s}{M^2-1}}\right)$	$P_b \approx \frac{2(M-1)}{M \log_2 M} Q\left(\sqrt{\frac{6\overline{\gamma}_b \log_2 M}{(M^2-1)}}\right)$
MPSK:	$P_s \approx 2Q\left(\sqrt{2\gamma_s}\sin(\pi/M)\right)$	$P_b \approx \frac{2}{\log_2 M} Q\left(\sqrt{2\gamma_b \log_2 M} \sin(\pi/M)\right)$
Rectangular MQAM:	$P_s \approx \frac{4(\sqrt{M}-1)}{\sqrt{M}} Q\left(\sqrt{\frac{3\overline{\gamma}_s}{M-1}}\right)$	$P_b \approx \frac{4(\sqrt{M}-1)}{\sqrt{M}\log_2 M} Q\left(\sqrt{\frac{3\overline{\gamma}_b \log_2 M}{(M-1)}}\right)$
Nonrectangular MQAM:	$P_s \approx 4Q\left(\sqrt{\frac{3\overline{\gamma}_s}{M-1}}\right)$	$P_b \approx \frac{4}{\log_2 M} Q\left(\sqrt{\frac{3\overline{\gamma}_b \log_2 M}{(M-1)}}\right)$

Performance of M-ary Digital Modulation in an AWGN Channel

binary, antipodal signaling: M = 2,
$$P_b = P_e = \frac{1}{2} erfc \left[\sqrt{\frac{E_b}{N_0}} \right]$$

$$E_S = (\log_2 M) E_b$$

Union bound:
$$P_e \le \frac{1}{2}(M-1)erfc\left[\frac{d}{2\sqrt{N_0}}\right]$$

M-ary ASK:
$$P_e \approx erfc \sqrt{\frac{3}{M^2 - 1} \frac{E_S}{N_0}}, d = \sqrt{\frac{12}{(M^2 - 1)} E_S}$$

M-ary PSK:
$$P_e \approx erfc \left[\sin \frac{\pi}{M} \sqrt{\frac{E_S}{N_0}} \right], d_{min} = \sqrt{E_S} \cdot \sin \frac{\pi}{M}$$

squared M-ary QAM:
$$P_{e,M-aryQAM} \approx 2P_{eASK} \approx 2\left(1 - \frac{1}{\sqrt{M}}\right) erfc\left(\sqrt{\frac{3}{2(M-1)}} \frac{E_S}{N_0}\right)$$

Orthogonal FSK:
$$P_e \le \frac{1}{2}(M-1)erfc\sqrt{\frac{E_S}{2N_0}}$$

M-ary orthogonal FSK signaling schemes are power-efficient but not bandwidth-efficient.

Performance in AWGN: PROBABILITY OF SYMBOL ERROR

error probability decays exponentially in SNR in the AWGN channel

M-QAM, M-PSK: BW-efficient but not power-efficient For M>8, M-QAM outperforms M-PSK

Time-limited Signaling

Time-limited signaling

infinite bandwidth

$$g(t) = \begin{cases} A & 0 \le t < T \\ 0 & \text{elsewhere} \end{cases}$$

Band-limited transmission | limited bandwidth

g(t) is **no longer** time-limited

$$g(t) = \frac{aB \sin(\pi Bt)}{\pi Bt}$$
$$= aB \operatorname{sinc}(\pi Bt)$$

- Passband signal $s(t) = \Re \left\{ u(t)e^{j(2\pi f_c t)} \right\}$
- Complex transmitted signal for linear modulation

$$u(t) = \sum_{n=-\infty}^{+\infty} I_n g(t - nT)$$

- I_n : Random variable that represents transmitted symbol at n^{th} period
- I_n is real for M-PAM and complex for M-PAM, M-PSK, M-QAM

• Mean of I_n

$$E\{I_n\} = \mu_i$$

• Autocorrelation function of I_n $\Phi_{II}(m) = \frac{1}{2} E\{I_n^* I_{n+m}\}$

$$\Phi_{II}(m) = \frac{1}{2} E \left\{ I_n^* I_{n+m} \right\}$$

• Autocorrelation function of u(t)

$$\Phi_{uu}(t+\tau,t) = \frac{1}{2} E \left\{ u^{*}(t) u(t+\tau) \right\}$$

$$= \frac{1}{2} \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} E \left\{ I_{n}^{*} I_{m+n} \right\} g^{*}(t-nT) g(t+\tau-mT-nT)$$

$$= \sum_{m=-\infty}^{+\infty} \Phi_{II}(m) \cdot \left[\sum_{n=-\infty}^{+\infty} g^{*}(t-nT) g(t+\tau-mT-nT) \right]$$

- Autocorrelation function $\Phi_{uu}(t+\tau,t)$ is periodic in t with period T
- Mean of u(t) is also periodic in t with period T

$$\mathrm{E}\left\{u\left(t\right)\right\} = \sum_{n=-\infty}^{+\infty} \mathrm{E}\left\{I_{n}\right\} g\left(t-nT\right) = \mu_{i} \sum_{n=-\infty}^{+\infty} g\left(t-nT\right)$$

• u(t) is **cyclostationary** (periodically stationary in wide sense)

Averaging over a single period to remove t

$$\overline{\Phi}_{uu}(\tau\tau = \frac{1}{T} \int_{0}^{T} \Phi_{uu}(t + \tau, t) dt$$

$$= \sum_{m = -\infty}^{+\infty} \Phi_{II}(m). \frac{1}{T} \sum_{n = -\infty}^{+\infty} \int_{-nT}^{-(n-1)T} g^{*}(u)g(u + \tau - mT) du$$

$$= \frac{1}{T} \sum_{m = -\infty}^{+\infty} \Phi_{II}(m) \int_{-\infty}^{+\infty} g^{*}(u)g(u + \tau - mT) du$$

• Time autocorrelation function of g(t)

$$\Phi_{gg}(\tau) = g(\tau) * g^*(-\tau) = \int_{-\infty}^{+\infty} g^*(t)g(t + \tau)d\tau$$

$$\Phi_{gg}(f) = |G(f)|^2$$

$$\overline{\Phi}_{uu}(\tau) = \frac{1}{T} \sum_{m=-\infty}^{+\infty} \Phi_{II}(m) \Phi_{gg}(\tau - mT)$$

$$S_{uu}(f) = \frac{1}{T} |G(f)|^2 \sum_{m=-\infty}^{+\infty} \Phi_{II}(m) e^{-j2\pi fmT}$$

• For i.i.d.
$$\{I_n\}$$
, $\Phi_{II}(m) = \begin{cases} \mu_i^2 & m \neq 0 \\ \mu_i^2 + \sigma_i^2 & m = 0 \end{cases}$

$$S_{uu}(f) = \frac{\sigma_i^2}{T} |G(f)|^2 + \frac{\mu_i^2}{T^2} \sum_{m=-\infty}^{+\infty} |G(\frac{m}{T})|^2 \delta\left(f - \frac{m}{T}\right)$$

Signal Design for Band-limited Transmission

- Tx average signal power $P_{avg} = E\left\{\left|u\left(t\right)\right|^{2}\right\} = \frac{\sigma_{i}^{2}}{T} \int_{-\infty}^{+\infty} \left|G\left(f\right)\right|^{2} df$
- Tx average symbol energy $E_s = T P_{avg} = \sigma_i^2 \int_{-\infty}^{+\infty} |G(f)|^2 df$
- Transmitted signal is convolved with channel impulse response and matched filter $h(t) = g(t) * c(t) * g_R(t)$
 - AWGN channel $h(t) = g(t) * g_R(t)$

Inter Symbol Interference (ISI)

Rx filter output

$$y(t) = \left[u(t) + n(t)\right] * g_{R}(t) = \sum_{n=-\infty}^{+\infty} I_{n}h(t-nT) + n(t) * g_{R}(t)$$

$$y(kT) = \sum_{n=-\infty}^{+\infty} I_{n}h\left[(k-n)T\right] + n_{k}$$

$$= \underbrace{I_{k}h(0)}_{\text{main component}} + \underbrace{\sum_{m=-\infty}^{+\infty} I_{k-m}h(mT)}_{\text{ISI}} + \underbrace{n_{k}}_{N(0,\sigma_{n}^{2})}$$

Time-limited signaling no ISI

$$g_R(t) = g^*(-t) \implies h(t) = 0 \text{ for } t \notin (-T, T)$$

Band-limited Signaling with No ISI

To have zero ISI,

$$h(mT) = \begin{cases} h_0 & m = 0 \\ 0 & m \neq 0 \end{cases} \implies \sum_{k=-\infty}^{+\infty} H\left(f + \frac{k}{T}\right) = Th_0$$

Ideal, strictly band-limited filter

Minimum BW for zero ISI

Band-limited Signaling with No ISI

- Ideal "brick-wall" filter with rectangular frequency response is not physically realizable
- For a physically realizable H(f) with single-sided bandwidth

W, minimum required bandwidth $\Rightarrow B = 2W > \frac{1}{T}$

$$B = 2W > \frac{1}{T}$$

Band-limited Signaling with No ISI

Raised-cosine (RC) filter (widely used in practice)

$$R(f,\beta) = \begin{cases} T & 0 \le |f| \le \frac{1-\beta}{2T} \\ \frac{T}{2} \left\{ 1 + \cos \left[\frac{\pi T}{\beta} \left(|f| - \frac{1-\beta}{2T} \right) \right] \right\} & \frac{1-\beta}{2T} \le |f| \le \frac{1+\beta}{2T} \\ 0 & |f| > \frac{1+\beta}{2T} \end{cases}$$

- β is the roll-off factor, which determines rate of spectral roll-off
- In time domain, $r(t, \beta) = \frac{\cos (\pi \beta t/T)}{1 (2\beta t/T)^2} \operatorname{sinc} (\pi t/T)$

Raised-cosine (RC) filter

Design of Tx and Rx Filters: RRC

• For zero ISI, $h(t) = g(t) * g_R(t) \Rightarrow H(f) = G(f)G_R(f) = R(f, \beta)$

$$G(f) = \sqrt{R(f,\beta)}$$
 and $G_R(f) = \sqrt{R(f,\beta)}$

Tx average signal power

$$P_{avg} = \frac{\sigma_i^2}{T} \int_{-\infty}^{+\infty} \left| G(f) \right|^2 df = \frac{\sigma_i^2}{T} \int_{-\infty}^{+\infty} R(f, \beta) df = \frac{\sigma_i^2}{T}$$

Noise power

$$\sigma_{n}^{2} = \frac{N_{0}}{2} \int_{-\infty}^{+\infty} |G_{R}(f)|^{2} df = \frac{N_{0}}{2} \int_{-\infty}^{+\infty} R(f, \beta) df = \frac{N_{0}}{2}$$

PSD & eye diagrams with RRC filters

Eye diagrams with RC:

(from T. Noguchi, Y. Daido, J.A. Nossek, "Modulation Techniques for Microwave Digital Radio", *IEEE Communications Magazine*, October 1986, pp. 21-30)

Performance in a Frequency-Flat Fading Channel

- Received signal power randomly varies in a (frequency-flat) fading environment
- Instantaneous received SNR, γ_s , is a random variable with pdf $p_{\gamma_s}(\gamma) \rightarrow$ Error probability, $P_s(\gamma_s)$, is also random
- For fast fading with relatively short coherence time, $T_c \approx T_s$, each symbol is assumed to experience *iid* fading, average error probability can be averaged over γ_s .
- Interleaving can be used to achieve the iid fading assumption at the cost of long delay. Forward error coding can be applied to improve the average error probability performance.
- However, for slow fading with $T_c \gg T_s$, low γ_s can last for a long period \rightarrow outage probability, the probability that γ_s falls below a threshold γ_0

Performance in Fading Channels

Outage probability: $P_{out} = P(\gamma_s < \gamma_0) = \int_0^{\gamma_0} p_{\gamma_s}(\gamma) d\gamma$

where γ_0 : required minimum SNR to achieve a target *highest* allowable error probability

• In Rayleigh fading, $P_{out} = \int_0^{\gamma_0} \frac{1}{\overline{\gamma_s}} e^{-\frac{\gamma_s}{\overline{\gamma_s}}} d\gamma_s = 1 - e^{-\frac{\gamma_0}{\overline{\gamma_s}}}$

Average error probability: $\overline{P_s} = \int_0^\infty P_s(\gamma) p_{\gamma_s}(\gamma) d\gamma$

- In Rayleigh fading,
 - o BPSK: bit=symbol $\rightarrow \gamma_b = \gamma_s \rightarrow P_b = Q(2\gamma_b) \Rightarrow \overline{P}_b = \frac{1}{2} \left| 1 \sqrt{\frac{\overline{\gamma}_b}{1 + \overline{\gamma}_b}} \right| \approx \frac{1}{4\overline{\gamma}_b}$
 - Generally, if the instantaneous symbol error is:

$$P_s \approx \alpha_M Q(\beta_M \gamma) \Rightarrow \overline{P_s} = \frac{\alpha_M}{2} \left[1 - \sqrt{\frac{.5 \beta_M \overline{\gamma_s}}{1 + .5 \beta_M \overline{\gamma_s}}} \right] \approx \frac{\alpha_M}{2 \beta_M \overline{\gamma_b}}$$

EXAMPLE OF BPSK PERFORMANCE

AWGN CHANNEL:

r[k] = x[k] + w[k] where $x[m] = \pm a$ with prob. of 1/2, $E_b = a^2 T_b$ and w[m]: Gaussian $(0, N_o/2)$

$$P_{e} = Q\left(\sqrt{2E_{b}/N_{o}}\right) \approx 0.5e^{-E_{b}/N_{o}}$$

Error probability decays exponentially with SNR

RAYLEIGH FLAT-FADING CHANNEL:

$$r[k] = |h[k]| x[k] + w[k]$$

|h[k]|: Rayleigh with $\sigma^2 = 1$,

$$P_{s|h[k]} = Q(|h[k]| \sqrt{2E_b/N_o})$$

Fading channel can be in deep fade: high probability |h[k]| is small

$$\overline{P}_{s} = \frac{1}{2} \left(1 - \sqrt{\frac{\left[E_{b} / N_{o} \right]}{1 + \left[E_{b} / N_{o} \right]}} \right) \approx \frac{1}{4 \left[E_{b} / N_{o} \right]}$$

average error probability decays only inversely with SNR

Average bit error probability for MQAM in Rayleigh fading

Average bit error probability for BPSK in Nakagami fading

poor performance over fading channels: why?

- poor performance over fading channels mainly due to the randomness of channel gain lhl²:
 - When the *instantaneous* received SNR lhl^2 SNR » 1, P_e is very small (good), since the tail of Q-function decays rapidly (exponential).
 - However, when $lhl^2SNR \ll 1$ (i.e., channel in deep fades), separation between signal points is of the same order as the standard deviation of noise, P_e becomes significantly large (i.e., bad and dominant)
- The probability of this deep fade (i.e., $|h|^2 < 1/SNR$) event:

$$Pr\{|h|^2 < 1/SNR\} = \int_0^{1/SNR} e^{-x} dx = \frac{1}{SNR} + O(\frac{1}{SNR^2}) \approx \frac{1}{SNR}$$

- At high (average) SNR, error events occur most often because the channel is in deep fade, and not because of large noise.
 - → increasing (average) SNR is *not* effective
 - → reducing *deep fade* by using *diversity* is more effective.

References

- A. Goldsmith, Wireless Communications, Cambridge University Press, 2005, Chapters 5 and 6
- J.G. Proakis, Digital Communications, 4th Ed, McGraw-Hill, 2001
- Materials from various sources