

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика, искусственный интеллект и системы управления КАФЕДРА Теоретическая информатика и компьютерные технологии

Домашняя работа

по курсу «Моделирование»

«Построение марковской модели и модели СМО»

Студент группы ИУ9-82Б Виленский С. Д.

Преподаватель Домрачева А. Б.

ЦЕЛЬ

Изучение процесса построения и свойств имитационных моделей систем массового обслуживания. Получение навыков реализации описанных имитационных моделей в среде GPSS. Формирование представлений о построении марковских моделей и их анализе.

ПОСТАНОВКА ЗАДАЧИ

Оценить количество дней, требующихся на успешную сдачу домашнего задания с момента выдачи. Построить имитационную модель систем массового обслуживания и реализовать в среде GPSS. Сравнить полученный результат с оценкой количества дней, требующихся на успешную сдачу домашнего задания, полученной по марковской модели.

ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ

В программе университета имеется некоторый предмет X, с первого раза который сдают далеко не все студенты курса, на котором он читается, в следствии чего уходят в академический отпуск.

Предположим, что после статистического анализа информации по успеваемости студентов по предмету X за все года существования данного предмета в учебном плане кафедра предоставила некоторые вероятностные характеристики модели сдачи предмета X студентами. Студент, не закрывший долги с прошлого семестра из-за чего не приступивший к сдаче предмета X, уходит в академ с вероятностью p1 = 0.1. Студент, сдающий предмет X впервые, уходит в академ с вероятностью p2 = 0.3. Студент, вышедший из академического отпуска после неудачной попытки сдачи предмета X уходит в очередной академический отпуск с вероятностью p3 = 0.3.

Требуется оценить количество академических лет, необходимых для успешной сдачи предмета X.

ФОРМАЛИЗАЦИЯ МАРКОВСКОЙ МОДЕЛИ

Обозначим S_0 за состояние ситуации, когда студент не приступал к сдаче предмета X, S_1 — состояние, характеризующее ситуацию, в которой студент совершил хотя бы одну попытку сдачи предмета X, но не закрыл его, и S_2 — состояние, при котором предмет X успешно сдан студентом.

Таким образом можно построить таблицу переходов между состояниями с указанием вероятностей соответствующих событий (таблица 1) и представить марковскую цепь в виде графа (рисунок 1).

Таблица 1 – Сравнение выбранных моделей

$p_i\square$	S_0	S ₁	S_2
So	0.1	0.3	0.6
S_1	0	0.3	0.7
S_2	0	0	1

Рисунок 1 – Представление марковской цепи в форме графа

Для оценки количества переходов, требуемых для достижения состояния S_2 , введем данное обозначение для состояния S_i :

 $E_i = \sum\limits_{j=0}^2 (p_{ij}(1+E_j)), \ i=0,1; \ E_2=0.$ Описанная формула следует из того, что в состоянии S_i можно перейти в состояние S_j с вероятностью p_{ij} и инкрементацией счетчика количества переходов, требуемых для достижения S_2 из вершины S_j .

Таким образом мы можем построить три линейных уравнения, описывающих аналитическую модель:

$$\begin{split} E_0 &= p_{00}(1 \, + E_0) \, + p_{01}(1 \, + E_1) \, + p_{02}(1 \, + E_2); \\ E_1 &= p_{10}(1 \, + E_0) \, + p_{11}(1 \, + E_1) \, + p_{12}(1 \, + E_2); \\ E_2 &= 0. \end{split}$$

При подстановке значений вероятностей переходов получаем следующую систему линейных алгебраических уравнений:

$$\begin{split} E_0 &= 0.1(1+E_0) + 0.3(1+E_1) + 0.6(1+E_2); \\ E_1 &= 0.3(1+E_1) + 0.7(1+E_2); \\ E_2 &= 0. \end{split}$$

После решения данной системы были получены следующие значения: $E_0=100/63=1.587;\ E_1=10/7=1.429;\ E_2=0.$ Следовательно количество академических лет, необходимое для сдачи предмета X, можно оценить числом 2.

построение имитационной модели смо

Для построения описанной имитационной модели системы массового обслуживания и реализации ее в среде GPSS (листинг 1) было сделано допущение о том, что при генерации случайных величин из диапазона [0, 1] использовался генератор равномерно распределенных в этом диапазоне случайных величин. В результате запуска полученной реализации имитационной модели системы массового обслуживания были получены данные, описанные в листинге 2.

СРАВНЕНИЕ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ

Таблица 1 — Сравнение моделей

Модель	Средняя оценка количество академических лет для сдачи предмета Х	Верхняя оценка количества академических лет для сдачи предмета X		
Марковская модель	1.587	2		
Стохастическая модель (GPSS)	1.586	2		

ФРАГМЕНТЫ ИСХОДНОГО КОДА

луживания

	Листинг 1 -	- Реализация имитационной модели системы массового обсл
10		SIMULATE
20	SAVEVALUE	CNT_STEPS, 0
30	SAVEVALUE	CNT_RUNS, 0
40	GENERATE	0
50	TRANSFER	,STATEO
60	STATE0	TRANSFER .6,STATEO_,GOTO2
70	STATEO_	TRANSFER .25,GOTO1,GOTO0
80	STATE1	TRANSFER .7, GOTO1, GOTO2
90	GOTO0	SAVEVALUE CNT_STEPS+,1
		TRANSFER ,STATE0
100	GOTO1	SAVEVALUE CNT_STEPS+,1
		TRANSFER ,STATE1
110	GOTO2	SAVEVALUE CNT_STEPS+,1
		SAVEVALUE CNT_RUNS+,1

120 START 1000000

Листинг 2 – Отчет по результату моделирования имитационной модели

LABEL	-	LOC :	BLOCK	TYPE	I	ENTRY	COUNT	CURRENT	COUNT
RETRY									
	1	SAVE	EVALUE			0		0	0
	2	SAVEVALUE			0		0	0	
	3	GENERATE		1000000		0	0		
	4	TRAN	ISFER		1000000		0	0	
STATE0	5	TRAN	ISFER		1110648		0	0	
STATEO_ 6		TRANSFER		443352		0	0		
STATE1	7	TRANSFER		475643		0	0		
GOTO0	8	SAVE	EVALUE		1106	48		0	0
	9	TRAN	ISFER		1106	48		0	0
GOTO1	10	SAVE	EVALUE		4756	43		0	0
	11	TRANSFER		4756	43		0	0	
GOTO2	12	SAVEVALUE		1000000		0	0		
	13	SAVE	EVALUE		10000	00		0	0
	14	TERM	MINATE		10000	00		0	0
SAVEVALUE		RETRY	Z	VALU	JE				
CNT_STEPS 0 1586291.000									
CNT_RUNS 0 1000000.000									
CEC XN PRI	M	11	ASSEM	I CUF	RRENT	NEXT	PARAI	METER	VALUE
1000001 0		0.000	1000	0001	0		3		

ВЫВОДЫ

В результате выполнения домашнего задания для поставленной задачи были построены марковская модель и имитационная модель системы массового обслуживания и получены оценки интересующей величины, совпавшие с допустимой погрешностью. В следствии чего можно говорить об адекватности построенных моделей.