Úloha A

Máme dané vektory y, x_1, x_2, \ldots, x_k . Chceme nájsť parametre $\beta_0, \beta_1, \ldots, \beta_k$ také, aby pre vektor $\hat{y} = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$, boli normy $||y - \hat{y}||_1$ a $||y - \hat{y}||_{\infty}$ minimálne. Vyjadrime vektor \hat{y} ako súčin matice a vektora $\beta = (\beta_0, \beta_1, \ldots, \beta_k)^T$.

$$\hat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k = \begin{pmatrix} | & | & | & | \\ \mathbf{1}_n & x_1 & x_2 & \dots & x_k \\ | & | & | & | \end{pmatrix} \beta =: \mathbf{A}\beta$$

Minimalizovanie L^1 normy

Prevedieme problém zo zadania do tvaru:

$$\min c^T x$$
$$Ax > b$$

Zaveď me si nový vektor premenných $t \in \mathbb{R}^n$, ktorým ohraničíme normu $||y - \mathbf{A}\beta||_1$.

$$-t \le y - \mathbf{A}\beta \le t$$

Pre obe ohraničenia, odseparujme premenné od konštánt a preveďme do maticového tvaru.

$$\left(\begin{array}{c} \mathbf{A} \mid \mathbb{I}_n \end{array} \right) \left(\frac{\beta}{t} \right) \ge y$$

$$\left(\begin{array}{c} -\mathbf{A} \mid \mathbb{I}_n \end{array} \right) \left(\frac{\beta}{t} \right) \ge -y$$

Minimalizovanie ${\cal L}^1$ normy ako úloha lineárneho programovania vyzerá teda nasledovne.

$$\min \left(\begin{array}{c|c} \mathbf{0}_{k+1}^{T} & \mathbf{1}_{n}^{T} \end{array} \right) \left(\frac{\beta}{t} \right) \\ \left(\frac{\mathbf{A}}{-\mathbf{A}} & \mathbb{I}_{n} \end{array} \right) \left(\frac{\beta}{t} \right) \geq \left(\frac{y}{-y} \right) \\ \beta \in \mathbb{R}^{k+1}, \ t \geq \mathbf{0}_{n}$$
 (1)

Prípustnosť a optimalita

Dokážme, že (1) je úloha, ktorá nadobúda optimálne riešenie pre ľubovoľné vektory y, x_1, x_2, \ldots, x_k . Nech $|y| := (|y_1|, |y_2|, \ldots, |y_n|)^T$ pre $y = (y_1, y_2, \ldots, y_n)^T$. Ukážme prípustnosť zvolením $\beta = \mathbf{0}_{k+1}$ a t = |y|:

$$\left(\begin{array}{c|c} \mathbf{A} & \mathbb{I}_n \\ \hline -\mathbf{A} & \mathbb{I}_n \end{array}\right) \left(\begin{array}{c} \mathbf{0}_{k+1} \\ \hline & |y| \end{array}\right) = \left(\begin{array}{c} |y| \\ \hline & |y| \end{array}\right) \ge \left(\begin{array}{c} y \\ \hline -y \end{array}\right)$$
$$|y| \ge \mathbf{0}_n$$

Vidíme, že obe ohraničenia platia, čiže $\left(\mathbf{0}_{k+1}^T,|y|^T\right)^T$ je prípustné riešenie. Optimalitu ukážeme zo silnej duality. Sformulujme duálnu úlohu pre duálne premenné $\alpha_1,\alpha_2\in\mathbb{R}^n$:

$$\begin{aligned} & \max \; \left(\; y^T \; \middle| \; -y^T \; \right) \left(\frac{\alpha_1}{\alpha_2} \right) \\ & \left(\; \mathbf{A}^T \; \middle| \; -\mathbf{A}^T \; \right) \left(\frac{\alpha_1}{\alpha_2} \right) = \mathbf{0}_{k+1} \\ & \left(\; \mathbb{I}_n \; \middle| \; \mathbb{I}_n \; \right) \left(\frac{\alpha_1}{\alpha_2} \right) \leq \mathbf{1}_n \\ & \alpha_1, \alpha_2 \geq \mathbf{0}_n \end{aligned}$$

Vidíme, že táto úloha je prípustná pre $\alpha_1=\alpha_2=\mathbf{0}_n$. Z prípustnosti primárnej a duálnej úlohy teda vyplýva, že úloha (1) nadobúda optimálne riešenie pre ľubovoľnú voľbu počiatočných vektorov.

Minimalizovanie L^{∞} normy

Budeme používať podobné značenie ako pri formulácii L^1 normy. Zaveďme si skalár $\gamma \in \mathbb{R}$, ktorým ohraničíme normu $||y-\mathbf{A}\beta||_{\infty}$.

$$-\gamma \mathbf{1}_n \le y - \mathbf{A}\beta \le \gamma \mathbf{1}_n$$

Pre jednotlivé ohraničenia odseparujeme premenné od konštánt a zapíšeme v maticovom tvare.

$$\left(\begin{array}{c} \mathbf{A} \mid \mathbf{1}_n \end{array} \right) \left(\frac{\beta}{\gamma} \right) \ge y$$

$$\left(\begin{array}{c} -\mathbf{A} \mid \mathbf{1}_n \end{array} \right) \left(\frac{\beta}{\gamma} \right) \ge -y$$

Minimalizovanie L^{∞} normy ako úloha lineárneho programovania vyzerá teda nasledovne.

$$\min \left(\begin{array}{c|c} \mathbf{0}_{k+1}^{T} & 1 \end{array} \right) \left(\frac{\beta}{\gamma} \right) \\ \left(\frac{\mathbf{A} & \mathbf{1}_{n}}{-\mathbf{A} & \mathbf{1}_{n}} \right) \left(\frac{\beta}{\gamma} \right) \geq \left(\frac{y}{-y} \right) \\ \beta \in \mathbb{R}^{k+1}, \ \gamma \geq 0 \end{array}$$
 (2)

Prípustnosť a optimalita

Podobný spôsobom ako vyššie ukážeme optimalitu (2). Nech $\beta = \mathbf{0}_{k+1}$ a $\gamma = |\tilde{y}|$, kde $|\tilde{y}| := |\max(y_1, y_2, \dots, y_n)|$ pre $y = (y_1, y_2, \dots, y_n)^T$:

$$\left(\begin{array}{c|c} \mathbf{A} & \mathbf{1}_n \\ \hline -\mathbf{A} & \mathbf{1}_n \end{array}\right) \left(\begin{array}{c} \mathbf{0}_{k+1} \\ \hline |\tilde{y}| \end{array}\right) = \left(\begin{array}{c} |\tilde{y}|\mathbf{1}_n \\ \hline |\tilde{y}|\mathbf{1}_n \end{array}\right) \ge \left(\begin{array}{c} y \\ \hline -y \end{array}\right) \\
|\tilde{y}| \ge 0$$

Obe ohraničenia platia, čiže $(\mathbf{0}_{k+1}^T,|\tilde{y}|)^T$ je prípustné riešenie. Sformulujme duálnu úlohu s duálnymi premennými $\alpha_1,\alpha_2\in\mathbb{R}^n$:

$$\begin{aligned} & \max \ \left(\ y^T \ \middle| \ -y^T \ \right) \left(\frac{\alpha_1}{\alpha_2} \right) \\ & \left(\ \mathbf{A}^T \ \middle| \ -\mathbf{A}^T \ \right) \left(\frac{\alpha_1}{\alpha_2} \right) = \mathbf{0}_{k+1} \\ & \left(\ \mathbf{1}_n^T \ \middle| \ \mathbf{1}_n^T \ \right) \left(\frac{\alpha_1}{\alpha_2} \right) \leq 1 \\ & \alpha_1, \alpha_2 \geq \mathbf{0}_n \end{aligned}$$

Rovnako vidíme, že táto úloha je prípustná pre $\alpha_1 = \alpha_2 = \mathbf{0}_n$. Teda, zo silnej duality, úloha (2) nadobúda optimálne riešenie pre ľubovoľnú voľbu počiatočných vektorov.