Presentación del curso, Teoría de Números

Prof. Jhon Fredy Tavera Bucurú

2025

2025

Problemas Abiertos en Teoría de Números

Aplicaciones de la Teoría de Números

Comentarios sobre la formalidad

Cuadrado perfecto:

$$2025 = 45^2$$

Suma de dos cuadrados:

$$2025 = 27^2 + 36^2$$

Suma de tres cuadrados:

$$2025 = 5^2 + 20^2 + 40^2$$

Suma de cubos consecutivos:

$$1^3 + 2^3 + \cdots + 9^3 = 2025$$

▶ Partición curiosa: Al separar 2025 en "20" y "25", se obtiene que

$$20 + 25 = 45 \quad (\sqrt{2025})$$

➤ **Suma de números impares:** Dado que cualquier cuadrado perfecto es la suma de los primeros números impares,

$$2025 = 1 + 3 + \cdots + 89$$
 (45 términos)

► Factorización:

$$2025 = 3^4 \cdot 5^2$$

Número Harshad: La suma de sus dígitos es 2 + 0 + 2 + 5 = 9 y 2025 es divisible por 9.

Problemas Abiertos en Teoría de Números

Conjetura de Collatz

- ▶ También conocida como el problema 3x + 1. Formulada en 1937 por Lothar Collatz.
- ▶ Propone que tomando cualquier número natural, si es par se divide por 2, y si es impar se multiplica por 3 y se le suma 1, eventualmente se llega al número 1.

Conjetura de Collatz

- ▶ También conocida como el problema 3x + 1. Formulada en 1937 por Lothar Collatz.
- ▶ Propone que tomando cualquier número natural, si es par se divide por 2, y si es impar se multiplica por 3 y se le suma 1, eventualmente se llega al número 1.
- ▶ 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1
- ► Ha sido probada para todos los números enteros hasta 2.95×10^{20} , pero no hay prueba general.

Conjetura de Goldbach

- Propuesta por Christian Goldbach en 1742.
- Afirma que todo número par mayor que 2 puede ser expresado como la suma de dos números primos.

Conjetura de Goldbach

- Propuesta por Christian Goldbach en 1742.
- Afirma que todo número par mayor que 2 puede ser expresado como la suma de dos números primos.
- ▶ Ejemplo: 28 = 11 + 17
- ▶ T. Oliveira e Silva realizó una búsqueda computacional distribuida que ha verificado la conjetura para $n \le 4 \times 10^{18}$ (y se ha verificado dos veces hasta 4×10^{17} a partir de 2013). pero aún no se ha demostrado para todos los números.

Conjetura de los Primos Gemelos

Propone que hay infinitos pares de números primos que tienen una diferencia de 2.

Conjetura de los Primos Gemelos

- Propone que hay infinitos pares de números primos que tienen una diferencia de 2.
- ► Ejemplo: (3, 5), (11, 13)
- Formulada por Alphonse de Polignac en 1846.
- ► En 2013, Yitang Zhang demostró que hay infinitos pares de primos que difieren por menos de 70 millones.
- Desde entonces, este límite ha sido reducido significativamente, pero la conjetura original aún no está probada.

Conjetura de Beal

- Propuesta por Andrew Beal en 1993.
- Afirmaba que para $A^x + B^y = C^z$, donde A, B, C son enteros positivos y x, y, z son enteros mayores que 2, A, B, C deben tener un factor primo en común.

¹Más información sobre el premio:

Conjetura de Beal

- Propuesta por Andrew Beal en 1993.
- Afirmaba que para $A^x + B^y = C^z$, donde A, B, C son enteros positivos y x, y, z son enteros mayores que 2, A, B, C deben tener un factor primo en común.
- Por ejemplo $3^3+6^3=3^5$ tiene sus bases con un factor común 3, y la solución $7^6+7^7=98^3$ tiene las bases con un factor común 7

¹Más información sobre el premio:

Conjetura de Beal

- Propuesta por Andrew Beal en 1993.
- Afirmaba que para $A^x + B^y = C^z$, donde A, B, C son enteros positivos y x, y, z son enteros mayores que 2, A, B, C deben tener un factor primo en común.
- Por ejemplo $3^3+6^3=3^5$ tiene sus bases con un factor común 3, y la solución $7^6+7^7=98^3$ tiene las bases con un factor común 7
- ► Hay un premio de un millón de dólares ofrecido por Beal para una prueba o contraejemplo de esta conjetura. ¹.

¹Más información sobre el premio:

Conjetura de los Números Perfectos Impares

- Un número perfecto es un número entero positivo que es igual a la suma de sus divisores propios positivos.
- ► Ejemplo: 6 = 1 + 2 + 3.

Conjetura de los Números Perfectos Impares

- Un número perfecto es un número entero positivo que es igual a la suma de sus divisores propios positivos.
- ► Ejemplo: 6 = 1 + 2 + 3.
- Todos los números perfectos conocidos son pares.
- ► La conjetura propone que no existen números perfectos impares.
- Ha sido verificada para números muy grandes, pero aún no hay prueba general.

Aplicaciones de la Teoría de Números

Criptografia: Sistema RSA

- ► El sistema RSA es uno de los algoritmos de criptografía más utilizados.
- Es empleado por muchos sitios web conocidos para asegurar la comunicación.

Criptografia: Sistema RSA

- ► El sistema RSA es uno de los algoritmos de criptografía más utilizados.
- Es empleado por muchos sitios web conocidos para asegurar la comunicación.
- Ejemplos de sitios web que utilizan RSA:
 - ► **Google:** Utiliza RSA para la seguridad en Gmail y otros servicios.
 - ► Amazon: Emplea RSA para proteger las transacciones en su plataforma de comercio electrónico.
 - ► Facebook: Utiliza RSA para asegurar la transmisión de datos entre usuarios y servidores.
 - ▶ Bancos en línea: La mayoría de las plataformas de banca en línea utilizan RSA para asegurar las transacciones financieras.

Criptografia: Sistema RSA

- ► El sistema RSA es uno de los algoritmos de criptografía más utilizados.
- Es empleado por muchos sitios web conocidos para asegurar la comunicación.
- Ejemplos de sitios web que utilizan RSA:
 - ► **Google:** Utiliza RSA para la seguridad en Gmail y otros servicios.
 - ► Amazon: Emplea RSA para proteger las transacciones en su plataforma de comercio electrónico.
 - ► Facebook: Utiliza RSA para asegurar la transmisión de datos entre usuarios y servidores.
 - ▶ Bancos en línea: La mayoría de las plataformas de banca en línea utilizan RSA para asegurar las transacciones financieras.
- ► La seguridad del RSA depende de la dificultad de factorizar el número *n* en sus factores primos.

Generación de Números Pseudoaleatorios: BBS

Los números pseudoaleatorios son cruciales para simulaciones, criptografía y algoritmos.

Generación de Números Pseudoaleatorios: BBS

- Los números pseudoaleatorios son cruciales para simulaciones, criptografía y algoritmos.
- ► Ejemplo: El generador de números pseudoaleatorios basado en la teoría de números conocido como "BBS" (Blum-Blum-Shub).
- Blum-Blum-Shub:
 - Genera números pseudoaleatorios seguros.
 - Fórmula: $x_{n+1} = (x_n^2) \mod M$, donde $M = p \times q$ y p y q son números primos.

Generación de Números Pseudoaleatorios: BBS

- Los números pseudoaleatorios son cruciales para simulaciones, criptografía y algoritmos.
- Ejemplo: El generador de números pseudoaleatorios basado en la teoría de números conocido como "BBS" (Blum-Blum-Shub).
- ► Blum-Blum-Shub:
 - Genera números pseudoaleatorios seguros.
 - Fórmula: $x_{n+1} = (x_n^2) \mod M$, donde $M = p \times q$ y p y q son números primos.
- Propiedades deseadas:
 - Uniformidad
 - Independencia
 - Periodo largo

Codificación y Corrección de Errores: Red-Solomon

► La teoría de números también se utiliza en la codificación y corrección de errores.

Codificación y Corrección de Errores: Red-Solomon

- La teoría de números también se utiliza en la codificación y corrección de errores.
- ► Códigos de Reed-Solomon:
 - Utilizados en CDs, DVDs y códigos QR.
 - Basados en polinomios sobre cuerpos finitos (números primos).
 - Permiten la detección y corrección de múltiples errores en datos.

Codificación y Corrección de Errores: Red-Solomon

- La teoría de números también se utiliza en la codificación y corrección de errores.
- Códigos de Reed-Solomon:
 - Utilizados en CDs, DVDs y códigos QR.
 - Basados en polinomios sobre cuerpos finitos (números primos).
 - Permiten la detección y corrección de múltiples errores en datos.

Código de Hamming:

- Utilizado en comunicaciones digitales y almacenamiento de datos.
- Permite la corrección de errores de un solo bit y la detección de errores de dos bits.

Comentarios sobre la formalidad

Conjetura Números de Fermat primos

- Los números de Fermat se definen como $F_n = 2^{2^n} + 1$.
- Fermat conjeturó que todos estos números son primos.

Conjetura Números de Fermat primos

- Los números de Fermat se definen como $F_n = 2^{2^n} + 1$.
- Fermat conjeturó que todos estos números son primos.
- Los primeros cuatro números de Fermat son primos:
 - $F_0 = 3$
 - $F_1 = 5$
 - $F_2 = 17$
 - $F_3 = 257$
 - $F_4 = 65537$

Conjetura Números de Fermat primos

- Los números de Fermat se definen como $F_n = 2^{2^n} + 1$.
- Fermat conjeturó que todos estos números son primos.
- Los primeros cuatro números de Fermat son primos:
 - $F_0 = 3$
 - $F_1 = 5$
 - $F_2 = 17$
 - $F_3 = 257$
 - $F_4 = 65537$
- Sin embargo, el quinto número de Fermat:

$$F_5 = 2^{2^5} + 1 = 4294967297$$

No es primo, ya que:

$$4294967297 = 641 \times 6700417$$

Números de Fermat: Problemas Abiertos y Últimos Descubrimientos

Es un problema abierto si hay infinitos primos de Fermat.

Números de Fermat: Problemas Abiertos y Últimos Descubrimientos

- Es un problema abierto si hay infinitos primos de Fermat.
- ► El último número de Fermat parcialmente factorizado es F₂₂₃₃₈₀:
 - ► El 4 de julio de 2024, Ryan Propper y Serge Batalov descubrieron que

$$56073 \cdot 2^{223382} + 1$$

divide a F_{223380} .

Números de Fermat: Problemas Abiertos y Últimos Descubrimientos

- Es un problema abierto si hay infinitos primos de Fermat.
- ► El último número de Fermat parcialmente factorizado es F₂₂₃₃₈₀:
 - ► El 4 de julio de 2024, Ryan Propper y Serge Batalov descubrieron que

$$56073 \cdot 2^{223382} + 1$$

divide a F_{223380} .

- Otro descubrimiento reciente:
 - El 24 de mayo de 2024, Gary Gostin encontró que

$$322072887044529 \cdot 2^{253} + 1$$

divide a F_{251} , haciendo que F_{251} sea el quinto número de Fermat más grande con múltiples factores conocidos.

Aplicaciones de los Números de Fermat

Los números de Fermat tienen aplicaciones importantes en varios campos de las matemáticas y la informática.

Aplicaciones de los Números de Fermat

► Los números de Fermat tienen aplicaciones importantes en varios campos de las matemáticas y la informática.

Construcción de Polígonos:

- Pierre Wantzel demostro en 1837, el teorema conocido como Gauss-Wantzel.
- Un polígono regular de n lados se puede construir con regla y compás si y solo si n es una potencia de 2 o 2 multiplicada por un producto de distintos números de Fermat primos.
- ▶ Ejemplo: un polígono de 17 lados se puede construir porque 17 es un número de Fermat primo (F_2) .

Aplicaciones de los Números de Fermat

- ► Los números de Fermat tienen aplicaciones importantes en varios campos de las matemáticas y la informática.
- Construcción de Polígonos:
 - Pierre Wantzel demostro en 1837, el teorema conocido como Gauss-Wantzel.
 - Un polígono regular de n lados se puede construir con regla y compás si y solo si n es una potencia de 2 o 2 multiplicada por un producto de distintos números de Fermat primos.
 - ► Ejemplo: un polígono de 17 lados se puede construir porque 17 es un número de Fermat primo (F₂).
- Generación de Números Pseudoaleatorios:

Conjetura del Polinomio generador de primos $n^2 + n + 41$

Euler descubrió que el polinomio $n^2 + n + 41$ genera números primos.

Conjetura del Polinomio generador de primos $n^2 + n + 41$

- Euler descubrió que el polinomio $n^2 + n + 41$ genera números primos.
- ► Ejemplos:
 - $ightharpoonup n = 0 \rightarrow 41$
 - $n=1 \rightarrow 43$
 - $n=2 \rightarrow 47$
 - $n = 3 \rightarrow 53$

Figure: Gráfica de la función $n^2 + n + 41$

▶ Sin embargo, para n = 40:

$$40^2 + 40 + 41 = 1681$$

▶ $1681 = 41^2$, que no es primo.

Consideremos las expresiones $n^{17} + 9$ y $(n+1)^{17} + 9$.

- Consideremos las expresiones $n^{17} + 9$ y $(n+1)^{17} + 9$.
- Ejemplos:
 - n = 1: 10 y 131081.
 - n = 2: 131081 y 129140172.
 - ► *n* = 3: 129140172 y 17179869193.
 - n = 4: 17179869193 y 762939453134.

- Consideremos las expresiones $n^{17} + 9$ y $(n+1)^{17} + 9$.
- Ejemplos:
 - n = 1: 10 y 131081.
 - n = 2: 131081 y 129140172.
 - n = 3: 129140172 y 17179869193.
 - n = 4: 17179869193 y 762939453134.
- ▶ Para los primeros valores de n, el Máximo Común Divisor parece ser 1.

```
1 import math
2 n=3
3 print(math.gcd(n**17+9, (n+1)**17+9))
```

- Consideremos las expresiones $n^{17} + 9$ y $(n+1)^{17} + 9$.
- Ejemplos:
 - n = 1: 10 y 131081.
 - n = 2: 131081 y 129140172.
 - ► *n* = 3: 129140172 y 17179869193.
 - n = 4: 17179869193 y 762939453134.
- ▶ Para los primeros valores de n, el Máximo Común Divisor parece ser 1.

```
1 import math
2 n=3
3 print(math.gcd(n**17+9, (n+1)**17+9))
```

pero no es verdad!

conjetura, dados primos p,q existe $n\in\mathbb{N}$, talque q divide a n^p-p

- Se puede probar que dado cualquier primo p, existe siempre un primo q talque q no divide ninguno de los números $n^p p$ donde n es cualquier número natural.
- La demostración no explicita cual es el primo q.