Introduction à la modélisation statistique bayésienne

Ladislas Nalborczyk
LPC, LNC, CNRS, Aix-Marseille Univ.

Planning

Cours n°01: Introduction à l'inférence bayésienne

Cours n°02: Modèle Beta-Binomial

Cours n°03: Introduction à brms, modèle de régression linéaire

Cours n°04: Modèle de régression linéaire (suite)

Cours n°05: Markov Chain Monte Carlo

Cours n°06: Modèle linéaire généralisé

Cours n°07: Comparaison de modèles

Cours n°08: Modèles multi-niveaux

Cours n°09 : Modèles multi-niveaux généralisés

Cours n°10: Data Hackathon

```
y_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(60, 10)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{HalfCauchy}(0, 1)
```

```
y_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(60, 10)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{HalfCauchy}(0, 1)
```

Objectif de la séance : comprendre ce type de modèle.

```
y_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(60, 10)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{HalfCauchy}(0, 1)
```

Objectif de la séance : comprendre ce type de modèle.

Les constituants de nos modèles seront toujours les mêmes et nous suivrons les trois mêmes étapes :

```
y_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(60, 10)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{HalfCauchy}(0, 1)
```

Objectif de la séance : comprendre ce type de modèle.

Les constituants de nos modèles seront toujours les mêmes et nous suivrons les trois mêmes étapes :

• Construire le modèle (likelihood + priors).

```
y_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(60, 10)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{HalfCauchy}(0, 1)
```

Objectif de la séance : comprendre ce type de modèle.

Les constituants de nos modèles seront toujours les mêmes et nous suivrons les trois mêmes étapes :

- Construire le modèle (likelihood + priors).
- Mettre à jour grâce aux données (updating), afin de calculer la distribution postérieure.

```
y_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(60, 10)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{HalfCauchy}(0, 1)
```

Objectif de la séance : comprendre ce type de modèle.

Les constituants de nos modèles seront toujours les mêmes et nous suivrons les trois mêmes étapes :

- Construire le modèle (likelihood + priors).
- Mettre à jour grâce aux données (updating), afin de calculer la distribution postérieure.
- Interpréter les estimations du modèle, évaluer ses prédictions, éventuellement modifier le modèle.


```
library(rethinking)
library(tidyverse)

data(Howell1)
d <- Howell1
str(d)</pre>
```

```
library(rethinking)
library(tidyverse)

data(Howell1)
d <- Howell1
str(d)

'data.frame': 544 obs. of 4 variables:
$ height: num 152 140 137 157 145 ...
$ weight: num 47.8 36.5 31.9 53 41.3 ...
$ age : num 63 63 65 41 51 35 32 27 19 54 ...
$ male : int 1 0 0 1 0 1 0 1 0 1 ...</pre>
```

```
library(rethinking)
library(tidyverse)

data(Howell1)
d <- Howell1
str(d)

'data.frame': 544 obs. of 4 variables:
$ height: num    152 140 137 157 145 ...
$ weight: num    47.8 36.5 31.9 53 41.3 ...
$ age    : num    63 63 65 41 51 35 32 27 19 54 ...
$ male    : int    1 0 0 1 0 1 0 1 0 1 ...

d2 <- d %>% filter(age >= 18)
head(d2)
```

```
library (rethinking)
library (tidyverse)
data(Howell1)
d <- Howell1
str(d)
'data.frame': 544 obs. of 4 variables:
 $ height: num 152 140 137 157 145 ...
 $ weight: num 47.8 36.5 31.9 53 41.3 ...
 $ age : num 63 63 65 41 51 35 32 27 19 54 ...
 $ male : int 1 0 0 1 0 1 0 1 0 1 ...
d2 <- d %>% filter(age >= 18)
head (d2)
  height weight age male
1 151.765 47.82561 63
2 139.700 36.48581 63
3 136.525 31.86484 65 0
4 156.845 53.04191 41
5 145.415 41.27687 51 0
6 163.830 62.99259 35 1
```

$h_i \sim \text{Normal}(\mu, \sigma)$

```
d2 %>%
   ggplot(aes(x = height) ) +
   geom_histogram(bins = 10, col = "white")
```


Loi normale

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

Certaines valeurs sont fortement probables (autour de la moyenne μ). Plus on s'éloigne, moins les valeurs sont probables (en suivant une décroissance exponentielle).

$$y = \exp\left[-x^2\right]$$

On étend notre fonction aux valeurs négatives.

$$y = \exp\left[-x^2\right]$$

Les points d'inflection nous donnent une bonne indication de là où la plupart des valeurs se trouvent (i.e., entre les points d'inflection). Les pics de la dérivée nous montrent les points d'inflection.

$$y = \exp\left[-\frac{1}{2}x^2\right]$$

Ensuite on standardise la distribution de manière à ce que les deux points d'inflection se trouvent à x=-1 et x=1.

$$y = \exp\left[-\frac{1}{2\sigma^2}x^2\right]$$

On insère un paramètre σ^2 pour contrôler la distance entre les points d'inflection.

$$y = \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

On insère ensuite un paramètre μ afin de pouvoir contrôler la position (la tendance centrale) de la distribution.

$$y = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

Mais... cette distribution n'intègre pas à 1. On divise donc par une constante de normalisation (la partie gauche), afin d'obtenir une distribution de probabilité.

Nous allons construire un modèle de régression, mais avant d'ajouter un prédicteur, essayons de modéliser la distribution des tailles.

Nous allons construire un modèle de régression, mais avant d'ajouter un prédicteur, essayons de modéliser la distribution des tailles.

On cherche à savoir quel est le modèle (la distribution) qui décrit le mieux la répartition des tailles. On va donc explorer toutes les combinaisons possibles de μ et σ et les classer par leurs probabilités respectives.

Nous allons construire un modèle de régression, mais avant d'ajouter un prédicteur, essayons de modéliser la distribution des tailles.

On cherche à savoir quel est le modèle (la distribution) qui décrit le mieux la répartition des tailles. On va donc explorer toutes les combinaisons possibles de μ et σ et les classer par leurs probabilités respectives.

Notre but, une fois encore, est de décrire la distribution postérieure, qui sera donc d'une certaine manière une distribution de distributions.

On définit $p(\mu, \sigma)$, la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que $p(\mu, \sigma) = p(\mu)p(\sigma)$.

On définit $p(\mu, \sigma)$, la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que $p(\mu, \sigma) = p(\mu)p(\sigma)$.

 $\mu \sim \text{Normal}(178, 20)$

On définit $p(\mu, \sigma)$, la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que $p(\mu, \sigma) = p(\mu)p(\sigma)$.

$\mu \sim \text{Normal}(178, 20)$

On définit $p(\mu, \sigma)$, la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que $p(\mu, \sigma) = p(\mu)p(\sigma)$.

On définit $p(\mu, \sigma)$, la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que $p(\mu, \sigma) = p(\mu)p(\sigma)$.

 $\sigma \sim \text{Uniform}(0, 50)$

On définit $p(\mu, \sigma)$, la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que $p(\mu, \sigma) = p(\mu)p(\sigma)$.

$\sigma \sim \text{Uniform}(0, 50)$

Visualiser le prior

```
library(ks)
sample_mu <- rnorm(1e4, 178, 20) # prior on mu
sample_sigma <- runif(1e4, 0, 50) # prior on sigma
prior <- data.frame(cbind(sample_mu, sample_sigma)) # multivariate prior
H.scv <- Hscv(x = prior, verbose = TRUE)
fhat_prior <- kde(x = prior, H = H.scv, compute.cont = TRUE)
plot(
    fhat_prior, display = "persp", col = "steelblue", border = NA,
    xlab = "\nmu", ylab = "\nsigma", zlab = "\n\np(mu, sigma)",
    shade = 0.8, phi = 30, ticktype = "detailed",
    cex.lab = 1.2, family = "Helvetica")</pre>
```


Prior predictive checking

```
sample_mu <- rnorm(1000, 178, 20)
sample_sigma <- runif(1000, 0, 50)

data.frame(x = rnorm(1000, sample_mu, sample_sigma)) %>%
    ggplot(aes(x)) +
    geom_histogram() +
    labs(x = "Taille (en cm)", y = "Nombre d'échantillons")
```


Fonction de vraisemblance

```
mu_exemple <- 151.23
sigma_exemple <- 23.42

d2$height[34] # une observation de taille (pour exemple)</pre>
```

[1] 162.8648

Fonction de vraisemblance

On veut calculer la probabilité d'observer une certaine valeur de taille, sachant certaines valeurs de μ et σ , c'est à dire :

Fonction de vraisemblance

On veut calculer la probabilité d'observer une certaine valeur de taille, sachant certaines valeurs de μ et σ , c'est à dire :

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

On veut calculer la probabilité d'observer une certaine valeur de taille, sachant certaines valeurs de μ et σ , c'est à dire :

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

On peut calculer cette densité de probabilité à l'aide des fonctions dnorm, dbeta, dt, dexp, dgamma, etc.

On veut calculer la probabilité d'observer une certaine valeur de taille, sachant certaines valeurs de μ et σ , c'est à dire :

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

On peut calculer cette densité de probabilité à l'aide des fonctions dnorm, dbeta, dt, dexp, dgamma, etc.

dnorm(d2\$height[34], mu exemple, sigma exemple)

On veut calculer la probabilité d'observer une certaine valeur de taille, sachant certaines valeurs de μ et σ , c'est à dire :

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

On peut calculer cette densité de probabilité à l'aide des fonctions dnorm, dbeta, dt, dexp, dgamma, etc.

```
dnorm(d2$height[34], mu_exemple, sigma_exemple)
```

[1] 0.01505675

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

Ou à la main...

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

Ou à la main...

```
normal_likelihood <- function (x, mu, sigma) {
  bell <- exp( (- 1 / (2 * sigma^2) ) * (mu - x)^2 )
  norm <- sqrt(2 * pi * sigma^2)
  return(bell / norm)
}</pre>
```

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

Ou à la main...

```
normal_likelihood <- function (x, mu, sigma) {
  bell <- exp( (- 1 / (2 * sigma^2) ) * (mu - x)^2 )
  norm <- sqrt(2 * pi * sigma^2)
  return(bell / norm)
}</pre>
```

normal likelihood(d2\$height[34], mu exemple, sigma exemple)

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

Ou à la main...

```
normal_likelihood <- function (x, mu, sigma) {
  bell <- exp( (- 1 / (2 * sigma^2) ) * (mu - x)^2 )
  norm <- sqrt(2 * pi * sigma^2)
  return(bell / norm)
}
normal_likelihood(d2$height[34], mu_exemple, sigma_exemple)

[1] 0.01505675</pre>
```

$$p(\mu, \sigma \mid h) = \frac{\prod_{i} \text{Normal}(h_i \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)}{\int \int \prod_{i} \text{Normal}(h_i \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50) d\mu d\sigma}$$

$$p(\mu, \sigma \mid h) = \frac{\prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)}{\int \int \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50) d\mu d\sigma}$$
$$p(\mu, \sigma \mid h) \propto \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)$$

$$p(\mu, \sigma \mid h) = \frac{\prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)}{\int \int \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50) d\mu d\sigma}$$
$$p(\mu, \sigma \mid h) \propto \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)$$

Il s'agit de la même formule vue lors des cours 1 et 2, mais cette fois en considérant qu'il existe plusieurs observations de taille (h_i) , et deux paramètres à estimer μ et σ .

$$p(\mu, \sigma \mid h) = \frac{\prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)}{\int \int \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50) d\mu d\sigma}$$
$$p(\mu, \sigma \mid h) \propto \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)$$

Il s'agit de la même formule vue lors des cours 1 et 2, mais cette fois en considérant qu'il existe plusieurs observations de taille (h_i), et deux paramètres à estimer μ et σ .

Pour calculer la vraisemblance marginale (en vert), il faut donc intégrer sur deux paramètres : μ et σ .

$$p(\mu, \sigma \mid h) = \frac{\prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)}{\int \int \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50) d\mu d\sigma}$$
$$p(\mu, \sigma \mid h) \propto \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)$$

Il s'agit de la même formule vue lors des cours 1 et 2, mais cette fois en considérant qu'il existe plusieurs observations de taille (h_i), et deux paramètres à estimer μ et σ .

Pour calculer la vraisemblance marginale (en vert), il faut donc intégrer sur deux paramètres : μ et σ .

On réalise ici encore que la probabilité a posteriori est proportionnelle au produit de la vraisemblance et du prior.

Distribution postérieure - Grid approximation

```
# définit une grille de valeurs possibles pour mu et sigma
mu.list < - seq(from = 140, to = 160, length.out = 200)
sigma.list \leftarrow seg(from = 4, to = 9, length.out = 200)
# étend la grille en deux dimensions (chaque combinaison de mu et sigma)
post <- expand.grid(mu = mu.list, sigma = sigma.list)</pre>
# calcul de la log-vraisemblance (pour chaque couple de mu et sigma)
post$LL <-
  sapply(
    1:nrow(post),
    function(i) sum(dnorm(
      d2$height,
      mean = post$mu[i],
      sd = post$sigma[i],
      log = TRUE)
# calcul de la probabilité a posteriori (non normalisée)
post$prod <-</pre>
  post$LL +
  dnorm(post$mu, 178, 20, log = TRUE) +
  dunif(post\$sigma, 0, 50, log = TRUE)
# on "annule" le log en avec exp() et on standardise par la valeur maximale
                                                                                             22
post$prob <- exp(post$prod - max(post$prod) )</pre>
```


Distribution postérieure - Grid approximation

```
# select random 20 rows of the dataframe
post %>% slice_sample(n = 20, replace = FALSE)
```

```
sigma
                           LL
                                   prod
                                                 prob
 157.3869 6.713568 -1257.520 -1265.878
2 153.0653 4.452261 -1400.692 -1409.296 1.696364e-79
3 141.6080 7.316583 -1775.207 -1784.689 1.579913e-242
 140.9045 7.266332 -1845.777 -1855.324 3.327535e-273
  156.7839 4.201005 -1472.485 -1480.874 1.392174e-110
  146.9347 8.145729 -1376.067 -1385.100
                                         5.469654e-69
  143.1156 5.582915 -2010.694 -2020.042
                                         0.000000e+00
 154.3719 4.452261 -1380.310 -1388.835
                                        1.305211e-70
9 158.3920 5.432161 -1361.576 -1369.883 2.220653e-62
10 156.8844 7.944724 -1234.250 -1242.634 4.073824e-07
11 151.0553 6.738693 -1275.325 -1284.059
                                         4.162371e-25
12 147.9397 6.788945 -1395.149 -1404.105
                                        3.048800e-77
13 150.6533 5.030151 -1416.070 -1424.831 3.038659e-86
14 140.9045 4.000000 -3531.301 -3540.848
                                        0.000000e+00
15 142.8141 5.105528 -2238.372 -2247.747 0.000000e+00
16 148.4422 6.663317 -1378.182 -1387.101 7.391499e-70
17 153.4673 7.668342 -1223.249 -1231.828 2.009124e-02
18 155.4774 6.814070 -1228.461 -1236.921 1.232804e-04
19 149.3467 4.226131 -1691.473 -1700.326 6.870178e-206
20 146.6332 7.668342 -1409.259 -1418.315 2.054325e-83
```

Distribution postérieure - Grid approximation

```
sample.rows <- sample(x = 1:nrow(post), size = 1e4, replace = TRUE, prob = post$prob)
```


Distribution postérieure - Distributions marginales

```
BEST::plotPost(
  sample.mu, breaks = 40, xlab =
expression(mu)
)
```

```
BEST::plotPost(
   sample.sigma, breaks = 40, xlab =
expression(sigma)
)
```


Introduction à brms

Under the hood: Stan est un langage de programmation probabiliste écrit en C++, et qui implémente plusieurs algorithmes de MCMC: HMC, NUTS, L-BFGS...

```
data {
  int<lower=0> J; // number of schools
 real y[J]; // estimated treatment effects
 real<lower=0> sigma[J]; // s.e. of effect estimates
parameters {
  real mu;
 real<lower=0> tau;
 real eta[J];
transformed parameters {
  real theta[J];
  for (j in 1:J)
    theta[j] = mu + tau * eta[j];
model -
  target += normal lpdf(eta | 0, 1);
  target += normal lpdf(y | theta, sigma);
                                                                                          26
```

Le package brms (Bürkner, 2017) permet de fitter des modèles multi-niveaux (ou pas) linéaires (ou pas) bayésiens en Stan mais en utilisant la syntaxe de lme4.

Le package brms (Bürkner, 2017) permet de fitter des modèles multi-niveaux (ou pas) linéaires (ou pas) bayésiens en Stan mais en utilisant la syntaxe de lme4.

Par exemple, le modèle suivant :

Le package brms (Bürkner, 2017) permet de fitter des modèles multi-niveaux (ou pas) linéaires (ou pas) bayésiens en Stan mais en utilisant la syntaxe de lme4.

Par exemple, le modèle suivant :

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \alpha_{subject[i]} + \alpha_{item[i]} + \beta x_i$

Le package brms (Bürkner, 2017) permet de fitter des modèles multi-niveaux (ou pas) linéaires (ou pas) bayésiens en Stan mais en utilisant la syntaxe de lme4.

Par exemple, le modèle suivant :

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \alpha_{subject[i]} + \alpha_{item[i]} + \beta x_i$

se spécifie avec brms (comme avec lme4) de la manière suivante:

Le package brms (Bürkner, 2017) permet de fitter des modèles multi-niveaux (ou pas) linéaires (ou pas) bayésiens en Stan mais en utilisant la syntaxe de lme4.

Par exemple, le modèle suivant :

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \alpha_{subject[i]} + \alpha_{item[i]} + \beta x_i$

se spécifie avec brms (comme avec lme4) de la manière suivante:

```
model \leftarrow brm(y \sim x + (1 \mid subject) + (1 \mid item), data = d, family = gaussian())
```

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme4.

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme4.

```
Reaction ~ Days + (1 + Days | Subject)
```

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme 4.

```
Reaction ~ Days + (1 + Days | Subject)
```

La partie gauche représente notre variable dépendante (ou *outcome*, i.e., ce qu'on essaye de prédire). Le package brms permet également de fitter des modèles multivariés (plusieurs outcomes) en les combinant avec mybind ().

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme 4.

```
Reaction ~ Days + (1 + Days | Subject)
```

La partie gauche représente notre variable dépendante (ou *outcome*, i.e., ce qu'on essaye de prédire). Le package brms permet également de fitter des modèles multivariés (plusieurs outcomes) en les combinant avec mybind ().

```
mvbind(Reaction, Memory) ~ Days + (1 + Days | Subject)
```

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme 4.

```
Reaction ~ Days + (1 + Days | Subject)
```

La partie gauche représente notre variable dépendante (ou *outcome*, i.e., ce qu'on essaye de prédire). Le package brms permet également de fitter des modèles multivariés (plusieurs outcomes) en les combinant avec mybind ().

```
mvbind(Reaction, Memory) ~ Days + (1 + Days | Subject)
```

La partie droite permet de définir les prédicteurs. L'intercept est généralement implicite, de sorte que les deux écritures cidessous sont équivalentes.

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme 4.

```
Reaction ~ Days + (1 + Days | Subject)
```

La partie gauche représente notre variable dépendante (ou *outcome*, i.e., ce qu'on essaye de prédire). Le package brms permet également de fitter des modèles multivariés (plusieurs outcomes) en les combinant avec mybind ().

```
mvbind(Reaction, Memory) ~ Days + (1 + Days | Subject)
```

La partie droite permet de définir les prédicteurs. L'intercept est généralement implicite, de sorte que les deux écritures cidessous sont équivalentes.

```
mvbind(Reaction, Memory) ~ Days + (1 + Days | Subject)
mvbind(Reaction, Memory) ~ 1 + Days + (1 + Days | Subject)
```

Si l'on veut fitter un modèle sans intercept (why not), il faut le spécifier explicitement comme ci-dessous.

Si l'on veut fitter un modèle sans intercept (why not), il faut le spécifier explicitement comme ci-dessous.

```
mvbind(Reaction, Memory) ~ 0 + Days + (1 + Days | Subject)
```

Si l'on veut fitter un modèle sans intercept (why not), il faut le spécifier explicitement comme ci-dessous.

```
mvbind(Reaction, Memory) ~ 0 + Days + (1 + Days | Subject)
```

Par défaut brms postule une vraisemblance gaussienne. Ce postulat peut être changé facilement en spécifiant la vraisemblance souhaitée via l'argument family.

Si l'on veut fitter un modèle sans intercept (why not), il faut le spécifier explicitement comme ci-dessous.

```
mvbind(Reaction, Memory) ~ 0 + Days + (1 + Days | Subject)
```

Par défaut brms postule une vraisemblance gaussienne. Ce postulat peut être changé facilement en spécifiant la vraisemblance souhaitée via l'argument family.

```
brm(Reaction ~ 1 + Days + (1 + Days | Subject), family = lognormal() )
```

Si l'on veut fitter un modèle sans intercept (why not), il faut le spécifier explicitement comme ci-dessous.

```
mvbind(Reaction, Memory) ~ 0 + Days + (1 + Days | Subject)
```

Par défaut brms postule une vraisemblance gaussienne. Ce postulat peut être changé facilement en spécifiant la vraisemblance souhaitée via l'argument family.

```
brm(Reaction ~ 1 + Days + (1 + Days | Subject), family = lognormal() )
```

Lisez la documentation (c'est très enthousiasmant à lire) accessible via ?brm.

Quelques fonctions utiles

Quelques fonctions utiles

```
# générer le code du modèle en Stan
make stancode(formula, ...)
stancode(fit)
# définir les priors
get prior(formula, ...)
set prior(prior, ...)
# récupérer les prédiction du modèle
fitted(fit, ...)
predict(fit, ...)
conditional effects(fit, ...)
# posterior predictive checking
pp check(fit, ...)
# comparaison de modèles
loo(fit1, fit2, ...)
bayes factor(fit1, fit2, ...)
model weights(fit1, fit2, ...)
# test d'hypothèse
hypothesis(fit, hypothesis, ...)
```

Un premier exemple

Ces données représentent les distributions marginales de chaque paramètre. En d'autres termes, la *probabilité* de chaque valeur de μ , après avoir *moyenné* sur toutes les valeurs possible de σ , est décrite par une distribution gaussienne avec une moyenne de 154.59 et un écart type de 0.41. L'intervalle de crédibilité (\neq intervalle de confiance) nous indique les 95% valeurs de μ ou σ les plus probables (sachant les données et les priors).

Par défaut brms utilise un prior très peu informatif centré sur la valeur moyenne de la variable mesurée. On peut donc affiner l'estimation réalisée par ce modèle en utilisant nos connaissances sur la distribution habituelle des tailles chez les humains.

Par défaut brms utilise un prior très peu informatif centré sur la valeur moyenne de la variable mesurée. On peut donc affiner l'estimation réalisée par ce modèle en utilisant nos connaissances sur la distribution habituelle des tailles chez les humains.

La fonction get_prior () permet de visualiser une liste des priors par défaut ainsi que de tous les priors qu'on peut spécifier, sachant une certaine formule (i.e., une manière d'écrire notre modèle) et un jeu de données.

Par défaut brms utilise un prior très peu informatif centré sur la valeur moyenne de la variable mesurée. On peut donc affiner l'estimation réalisée par ce modèle en utilisant nos connaissances sur la distribution habituelle des tailles chez les humains.

La fonction get_prior () permet de visualiser une liste des priors par défaut ainsi que de tous les priors qu'on peut spécifier, sachant une certaine formule (i.e., une manière d'écrire notre modèle) et un jeu de données.

```
get prior(height ~ 1, data = d2)
```

Par défaut brms utilise un prior très peu informatif centré sur la valeur moyenne de la variable mesurée. On peut donc affiner l'estimation réalisée par ce modèle en utilisant nos connaissances sur la distribution habituelle des tailles chez les humains.

La fonction get_prior () permet de visualiser une liste des priors par défaut ainsi que de tous les priors qu'on peut spécifier, sachant une certaine formule (i.e., une manière d'écrire notre modèle) et un jeu de données.

```
priors <- c(
  prior(normal(178, 20), class = Intercept),
  prior(exponential(0.01), class = sigma)
)

mod2 <- brm(
  height ~ 1,
  prior = priors,
  family = gaussian(),
  data = d2
)</pre>
```



```
summary (mod2)
 Family: gaussian
 Links: mu = identity; sigma = identity
Formula: height ~ 1
  Data: d2 (Number of observations: 352)
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000
Population-Level Effects:
         Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
Intercept 154.60
                       0.42 153.77 155.43 1.00
                                                        3124
                                                                 2383
Family Specific Parameters:
      Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                                                    \frac{1}{3}519 \frac{1}{2}613
                            7.25 8.37 1.00
         7.78
                   0.29
sigma
Draws were sampled using sampling (NUTS). For each parameter, Bulk ESS
and Tail ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

En utilisant un prior plus informatif

```
priors <- c(
  prior(normal(178, 0.1), class = Intercept),
  prior(exponential(0.01), class = sigma)
)

mod3 <- brm(
  height ~ 1,
  prior = priors,
  family = gaussian(),
  data = d2
)</pre>
```


En utilisant un prior plus informatif

```
summary (mod3)
 Family: gaussian
 Links: mu = identity; sigma = identity
Formula: height ~ 1
  Data: d2 (Number of observations: 352)
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
        total post-warmup draws = 4000
Population-Level Effects:
         Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
Intercept 177.86
                       0.10 177.67 178.05 1.00
                                                       3521
Family Specific Parameters:
      Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                           22.84 26.48 1.00
                                                   4164
                                                            3035
        24.59
                   0.94
siama
Draws were sampled using sampling (NUTS). For each parameter, Bulk ESS
and Tail ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

On remarque que la valeur estimée pour μ n'a presque pas "bougée" du prior...mais on remarque également que la valeur estimée pour σ a largement augmentée. Nous avons dit au modèle que nous étions assez certain de notre valeur de μ , le modèle s'est ensuite "adapté", ce qui explique la valeur de σ ... 36

Le prior peut généralement être considéré comme un posterior obtenu sur des données antérieures.

Le prior peut généralement être considéré comme un posterior obtenu sur des données antérieures.

On sait que le σ d'un posterior gaussien nous est donné par la formule :

Le prior peut généralement être considéré comme un posterior obtenu sur des données antérieures.

On sait que le σ d'un posterior gaussien nous est donné par la formule :

$$\sigma_{post} = 1/\sqrt{n}$$

Le prior peut généralement être considéré comme un posterior obtenu sur des données antérieures.

On sait que le σ d'un posterior gaussien nous est donné par la formule :

$$\sigma_{post} = 1/\sqrt{n}$$

Qui implique une quantité de données $n=1/\sigma_{post}^2$. Notre prior avait un $\sigma=0.1$, ce qui donne $n=1/0.1^2=100$.

Le prior peut généralement être considéré comme un posterior obtenu sur des données antérieures.

On sait que le σ d'un posterior gaussien nous est donné par la formule :

$$\sigma_{post} = 1/\sqrt{n}$$

Qui implique une quantité de données $n=1/\sigma_{post}^2$. Notre prior avait un $\sigma=0.1$, ce qui donne $n=1/0.1^2=100$.

Donc, on peut considérer que le prior $\mu \sim \text{Normal}(178, 0.1)$ est équivalent au cas dans lequel nous aurions observé 100 tailles de moyenne 178.

Récupérer et visualiser les échantillons de la distribution postérieure

```
post <- posterior_samples(mod2) %>%
    mutate(density = get_density(b_Intercept, sigma, n = 1e2) )

ggplot(post, aes(x = b_Intercept, y = sigma, color = density) ) +
    geom_point(size = 2, alpha = 0.5, show.legend = FALSE) +
    labs(x = expression(mu), y = expression(sigma)) +
    viridis::scale_color_viridis()
```


gets the first 6 samples
head(post)

```
# gets the first 6 samples
head(post)
```

```
# gets the first 6 samples
head(post)

b_Intercept sigma lp_ density
1 153.8300 7.530977 -1228.784 0.1737273
2 155.3849 8.195800 -1229.321 0.1099155
3 155.2592 8.230882 -1229.009 0.1648804
4 155.1455 8.211893 -1228.569 0.2236953
5 154.6705 7.674547 -1226.679 1.3277269
6 154.6709 7.664548 -1226.688 1.3043082

# gets the median and the 95% credible interval
t(sapply(post[, 1:2], quantile, probs = c(0.025, 0.5, 0.975) ))
```

```
# gets the first 6 samples
head (post)
  b Intercept
                 sigma
                                   density
                            lp
  153.8300 7.530977 -1228.784 0.1737273
    155.3849 8.195800 -1229.321 0.1099155
    155.2592 8.230882 -1229.009 0.1648804
   155.1455 8.211893 -1228.569 0.2236953
   154.6705 7.674547 -1226.679 1.3277269
  154.6709 7.664548 -1226.688 1.3043082
# gets the median and the 95% credible interval
t(\text{sapply}(\text{post}[, 1:2], \text{ quantile, probs} = c(0.025, 0.5, 0.975)))
                  2.5%
                             50%
                                      97.5%
b Intercept 153.772950 154.60629 155.429238
              7.245842
sigma
                         7.76739
                                 8.372069
```

Visualiser la distribution postérieure

```
H.scv <- Hscv(post[, 1:2])
fhat_post <- kde(x = post[, 1:2], H = H.scv, compute.cont = TRUE)

plot(fhat_post, display = "persp", col = "purple", border = NA,
    xlab = "\nmu", ylab = "\nsigma", zlab = "\np(mu, sigma)",
    shade = 0.8, phi = 30, ticktype = "detailed",
    cex.lab = 1.2, family = "Helvetica")</pre>
```


Visualiser la distribution postérieure

Ajouter un prédicteur

Comment est-ce que la taille co-varie avec le poids?

```
d2 %>%
  ggplot(aes(x = weight, y = height) ) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8)
```


$$h_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta x_i$

$$h_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta x_i$

```
linear_model <- lm(height ~ weight, data = d2)
precis(linear_model, prob = 0.95)</pre>
```

$$h_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta x_i$

```
linear_model <- lm(height ~ weight, data = d2)
precis(linear_model, prob = 0.95)

mean sd 2.5% 97.5%
(Intercept) 113.88 1.91 110.13 117.63
weight 0.91 0.04 0.82 0.99</pre>
```

$$h_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta x_i$

```
linear_model <- lm(height ~ weight, data = d2)
precis(linear_model, prob = 0.95)</pre>
```

```
mean sd 2.5% 97.5% (Intercept) 113.88 1.91 110.13 117.63 weight 0.91 0.04 0.82 0.99
```


On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

$$h_i = \alpha + \beta x_i + \epsilon_i$$
 avec $\epsilon_i \sim \text{Normal}(0, \sigma)$

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

$$h_i = \alpha + \beta x_i + \epsilon_i$$
 avec $\epsilon_i \sim \text{Normal}(0, \sigma)$

est équivalente à:

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

$$h_i = \alpha + \beta x_i + \epsilon_i$$
 avec $\epsilon_i \sim \text{Normal}(0, \sigma)$

est équivalente à:

$$h_i - (\alpha + \beta x_i) \sim \text{Normal}(0, \sigma)$$

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

$$h_i = \alpha + \beta x_i + \epsilon_i$$
 avec $\epsilon_i \sim \text{Normal}(0, \sigma)$

est équivalente à:

$$h_i - (\alpha + \beta x_i) \sim \text{Normal}(0, \sigma)$$

et si on réduit encore un peu:

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

$$h_i = \alpha + \beta x_i + \epsilon_i$$
 avec $\epsilon_i \sim \text{Normal}(0, \sigma)$

est équivalente à :

$$h_i - (\alpha + \beta x_i) \sim \text{Normal}(0, \sigma)$$

et si on réduit encore un peu:

$$h_i \sim \text{Normal}(\alpha + \beta x_i, \sigma).$$

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

$$h_i = \alpha + \beta x_i + \epsilon_i$$
 avec $\epsilon_i \sim \text{Normal}(0, \sigma)$

est équivalente à :

$$h_i - (\alpha + \beta x_i) \sim \text{Normal}(0, \sigma)$$

et si on réduit encore un peu:

$$h_i \sim \text{Normal}(\alpha + \beta x_i, \sigma).$$

Les notations ci-dessus sont équivalentes, mais la dernière est plus flexible, et nous permettra par la suite de l'étendre plus simplement aux modèles multi-niveaux.

```
h_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(178, 20)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{Exponential}(0.01)
```

```
h_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(178, 20)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{Exponential}(0.01)
```

Dans ce modèle μ n'est plus un paramètre à estimer (car μ est déterminé par α et β). À la place, nous allons estimer α et β .

```
h_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(178, 20)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{Exponential}(0.01)
```

Dans ce modèle μ n'est plus un paramètre à estimer (car μ est déterminé par α et β). À la place, nous allons estimer α et β .

Rappels : α est l'intercept, c'est à dire la taille attendue, lorsque le poids est égal à $0.\beta$ est la pente, c'est à dire le changement de taille attendu quand le poids augmente d'une unité.

```
priors <- c(
  prior(normal(178, 20), class = Intercept),
  prior(normal(0, 10), class = b),
  prior(exponential(0.01), class = sigma)
)

mod4 <- brm(
  height ~ 1 + weight,
  prior = priors,
  family = gaussian(),
  data = d2
)</pre>
```

```
posterior_summary(mod4)

Estimate Est.Error Q2.5 Q97.5
b_Intercept 113.8691224 1.9101041 110.1773362 117.6849700
b_weight 0.9053111 0.0421729 0.8214331 0.9854805
sigma 5.1073937 0.1956593 4.7391734 5.5150977
lp -1083.3922606 1.2804405 -1086.8299632 -1081.9813013
```

- $\alpha = 113.87, 95\%$ CrI [110.18, 117.68] représente la taille moyenne quand le poids est égal à Okg...
- $\beta = 0.91, 95\%$ CrI [0.82, 0.99] nous indique qu'une augmentation de 1kg entraı̂ne une augmentation de 0.90cm.

Après avoir centré la réponse, l'intercept représente désormais la valeur attendue de *taille* lorsque le poids est à sa valeur moyenne.

```
d2 %>%
   ggplot(aes(x = weight, y = height)) +
   geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
   geom_abline(intercept = fixef(mod4)[1], slope = fixef(mod4)[2], lwd = 1)
```


Représenter l'incertitude sur μ via fitted()

9 143.7444 0.5694496 142.6190 144.8633

10 144.6497 0.5329255 143.5997 145.7018

```
# on crée un vecteur de valeurs possibles pour "weight"
weight.seg <- data.frame(weight = seg(from = 25, to = 70, by = 1) )</pre>
# on récupère les prédictions du modèle pour ces valeurs de poids
mu <- data.frame(fitted(mod4, newdata = weight.seq) ) %>% bind cols(weight.seq)
# on affiche les 10 premières lignes de mu
head (mu, 10)
   Estimate Est.Error Q2.5
                                 Q97.5 weight
1 136.5019 0.8800198 134.7740 138.2039
2 137.4072 0.8400683 135.7518 139.0363
                                           26
3 138.3125 0.8003448 136.7422 139.8680
4 139.2178 0.7608849 137.7266 140.6895
5 140.1231 0.7217319 138.7219 141.5187
6 141.0285 0.6829387 139.7092 142.3436
7 141.9338 0.6445702 140.6770 143.1818
                                           31
8 142.8391 0.6067069 141.6502 144.0146
```

33

34

Représenter l'incertitude sur μ via fitted()

```
d2 %>%
  ggplot(aes(x = weight, y = height) ) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
  geom_smooth(
    data = mu, aes(y = Estimate, ymin = Q2.5, ymax = Q97.5),
    stat = "identity",
    color = "black", alpha = 0.8, size = 1
    )
```


Pour rappel, voici notre modèle: $h_i \sim \text{Normal}(\alpha + \beta x_i, \sigma)$. Pour l'instant, on a seulement représenté les prédictions pour μ . Comment incorporer σ dans nos prédictions?

Pour rappel, voici notre modèle: $h_i \sim \text{Normal}(\alpha + \beta x_i, \sigma)$. Pour l'instant, on a seulement représenté les prédictions pour μ . Comment incorporer σ dans nos prédictions?

```
# on crée un vecteur de valeurs possibles pour "weight"
weight.seq <- data.frame(weight = seq(from = 25, to = 70, by = 1) )
# on récupère les prédictions du modèle pour ces valeurs de poids
pred_height <- data.frame(predict(mod4, newdata = weight.seq) ) %>% bind_cols(weight.seq)
# on affiche les 10 premières lignes de pred_height
head(pred_height, 10)
```

Pour rappel, voici notre modèle : $h_i \sim \text{Normal}(\alpha + \beta x_i, \sigma)$. Pour l'instant, on a seulement représenté les prédictions pour μ . Comment incorporer σ dans nos prédictions ?

```
# on crée un vecteur de valeurs possibles pour "weight"
weight.seq <- data.frame(weight = seq(from = 25, to = 70, by = 1) )

# on récupère les prédictions du modèle pour ces valeurs de poids
pred_height <- data.frame(predict(mod4, newdata = weight.seq) ) %>% bind_cols(weight.seq)

# on affiche les 10 premières lignes de pred_height
head(pred_height, 10)
```

```
Estimate Est.Error
                        02.5
                                Q97.5 weight
1 136.4695 5.248905 126.1536 146.8657
2 137.3757 5.239130 126.8338 147.5680
                                          26
3 138.3122 5.194219 127.9703 148.3992
                                          27
4 139.3006 5.173988 129.0124 149.4677
5 140.1013 5.211367 130.0674 150.0982
 141.1060 5.206877 131.1675 151.6373
7 141.9390 5.195607 131.8138 152.6651
8 142.7406 5.068944 132.9189 152.6539
9 143.8971 5.191560 133.7217 153.9880
                                          33
10 144.6535 5.133855 134.5595 154.9149
                                          34
```

```
d2 %>%
  ggplot(aes(x = weight, y = height)) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
  geom_ribbon(
    data = pred_height, aes(x = weight, ymin = Q2.5, ymax = Q97.5),
    alpha = 0.2, inherit.aes = FALSE
    ) +
  geom_smooth(
    data = mu, aes(y = Estimate, ymin = Q2.5, ymax = Q97.5),
    stat = "identity", color = "black", alpha = 0.8, size = 1
    )
```


Deux sources d'incertitude dans le modèle : incertitude concernant l'estimation de la valeur des paramètres mais également concernant le processus d'échantillonnage.

Deux sources d'incertitude dans le modèle : incertitude concernant l'estimation de la valeur des paramètres mais également concernant le processus d'échantillonnage.

Incertitude épistémique: La distribution a posteriori ordonne toutes les combinaisons possibles des valeurs des paramètres selon leurs plausibilités relatives.

Deux sources d'incertitude dans le modèle : incertitude concernant l'estimation de la valeur des paramètres mais également concernant le processus d'échantillonnage.

Incertitude épistémique: La distribution a posteriori ordonne toutes les combinaisons possibles des valeurs des paramètres selon leurs plausibilités relatives.

Incertitude aléatoire: La distribution des données simulées est elle, une distribution qui contient de l'incertitude liée à un processus d'échantillonnage (i.e., générer des données à partir d'une gaussienne).

Deux sources d'incertitude dans le modèle : incertitude concernant l'estimation de la valeur des paramètres mais également concernant le processus d'échantillonnage.

Incertitude épistémique: La distribution a posteriori ordonne toutes les combinaisons possibles des valeurs des paramètres selon leurs plausibilités relatives.

Incertitude aléatoire: La distribution des données simulées est elle, une distribution qui contient de l'incertitude liée à un processus d'échantillonnage (i.e., générer des données à partir d'une gaussienne).

Voir aussi ce court article par O'Hagan (2012).

Régression polynomiale

```
d %>% # on utilise d au lieu de d2
ggplot(aes(x = weight, y = height) ) +
geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8)
```


Si on considère tout l'échantillon (pas seulement les adultes), la relation entre taille et poids semble incurvée...

Scores standardisés

```
d <- d %>% mutate(weight.s = (weight - mean(weight) ) / sd(weight) )

d %>%
    ggplot(aes(x = weight.s, y = height) ) +
    geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8)
```



```
c(mean(d$weight.s), sd(d$weight.s))
```

[1] -2.712698e-18 1.000000e+00

Scores standardisés

Pourquoi standardiser les prédicteurs?

- Interprétation. Permet de comparer les coefficients de plusieurs prédicteurs. Un changement d'un écart-type du prédicteur correspond à un changement d'un écart-type sur la réponse (si la réponse est aussi standardisée).
- Fitting. Quand les prédicteurs contiennent de grandes valeurs, cela peut poser des problèmes de convergence (cf. Cours n°05)...

Modèle de régression polynomiale - exercice

```
h_i \sim \text{Normal}(\mu_i, \sigma)
\mu_i = \alpha + \beta_1 x_i + \beta_2 x_i^2
\alpha \sim \text{Normal}(156, 100)
\beta_1, \beta_2 \sim \text{Normal}(0, 10)
\sigma \sim \text{Exponential}(0.01)
```

À vous de construire et fitter ce modèle en utilisant brms::brm().

Modèle de régression polynomiale

```
priors <- c(
    prior(normal(156, 100), class = Intercept),
    prior(normal(0, 10), class = b),
    prior(exponential(0.01), class = sigma)
    )

mod6 <- brm(
    # NB: polynomials should be written with the I() function...
    height ~ 1 + weight.s + I(weight.s^2),
    prior = priors,
    family = gaussian(),
    data = d
    )</pre>
```

Modèle de régression polynomiale

```
summary (mod6)
 Family: gaussian
 Links: mu = identity; sigma = identity
Formula: height ~ 1 + weight.s + I(weight.s^2)
  Data: d (Number of observations: 544)
 Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
        total post-warmup draws = 4000
Population-Level Effects:
           Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
            146.66
                       0.37 145.95 147.38 1.00
                                                       3729
                                                                3002
Intercept
weight.s
            21.40 0.29 20.84 21.99 1.00
                                                       3642
                                                                2876
                    0.28 -8.95 -7.87 1.00
Iweight.sE2 -8.41
                                                       3184
                                                                2856
Family Specific Parameters:
     Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                                                 3358 2879
         5.78
                   0.17
                           5.46
                                    6.13 1.00
sigma
Draws were sampled using sampling (NUTS). For each parameter, Bulk ESS
and Tail ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

```
# on crée un vecteur de valeurs possibles pour "weight"
weight.seg \leftarrow data.frame(weight.s = seg(from = -2.5, to = 2.5, length.out = 50))
# on récupère les prédictions du modèle pour ces valeurs de poids
mu <- data.frame(fitted(mod6, newdata = weight.seg) ) %>% bind cols(weight.seg)
pred height <- data.frame(predict(mod6, newdata = weight.seq) ) %>% bind cols(weight.seq)
# on affiche les 10 premières lignes de pred height
head (pred height, 10)
   Estimate Est.Error Q2.5 Q97.5 weight.s
1 40.56051 5.935990 29.02612 51.73614 -2.500000
2 47.03215 5.929627 35.42704 58.67678 -2.397959
3 53.24911 5.807543 41.71367 64.82054 -2.295918
4 59.21773 5.773481 47.91146 70.57949 -2.193878
5 65.17064 5.785060 53.61187 76.60969 -2.091837
6 71.02563 5.826925 59.61307 82.38593 -1.989796
7 76.38210 5.833239 64.84921 87.33277 -1.887755
8 81.75520 5.890726 69.83837 93.04002 -1.785714
9 86.67901 5.703355 75.74684 98.00381 -1.683673
10 91.84259 5.846767 80.55267 103.54333 -1.581633
```

```
d %>%
ggplot(aes(x = weight.s, y = height)) +
geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
geom_ribbon(
   data = pred_height, aes(x = weight.s, ymin = Q2.5, ymax = Q97.5),
   alpha = 0.2, inherit.aes = FALSE
   ) +
geom_smooth(
   data = mu, aes(y = Estimate, ymin = Q2.5, ymax = Q97.5),
   stat = "identity", color = "black", alpha = 0.8, size = 1
   )
```


Plusieurs méthodes pour calculer les tailles d'effet dans les modèles bayésiens. Gelman & Pardoe (2006) proposent une méthode pour calculer un \mathbb{R}^2 basé sur l'échantillon.

Plusieurs méthodes pour calculer les tailles d'effet dans les modèles bayésiens. Gelman & Pardoe (2006) proposent une méthode pour calculer un \mathbb{R}^2 basé sur l'échantillon.

Marsman et al. (2017), Marsman et al. (2019) généralisent des méthodes existantes pour calculer un ρ^2 pour les designs de type ANOVA (i.e., avec prédicteurs catégoriels), qui représente une estimation de la taille d'effet *dans la population*, et non basé sur l'échantillon.

Plusieurs méthodes pour calculer les tailles d'effet dans les modèles bayésiens. Gelman & Pardoe (2006) proposent une méthode pour calculer un \mathbb{R}^2 basé sur l'échantillon.

Marsman et al. (2017), Marsman et al. (2019) généralisent des méthodes existantes pour calculer un ρ^2 pour les designs de type ANOVA (i.e., avec prédicteurs catégoriels), qui représente une estimation de la taille d'effet *dans la population*, et non basé sur l'échantillon.

"Similar to most of the ES measures that have been proposed for the ANOVA model, the squared multiple correlation coefficient ρ^2 [...] is a so-called proportional reduction in error measure (PRE; Reynolds, 1977). In general, a PRE measure expresses the proportion of the variance in an outcome y that is attributed to the independent variables x" (Marsman et al., 2019).

$$\rho^{2} = \frac{\sum_{i=1}^{n} \pi_{i} (\beta_{i} - \beta)^{2}}{\sigma^{2} + \sum_{i=1}^{n} \pi_{i} (\beta_{i} - \beta)^{2}}$$

$$\rho^{2} = \frac{\frac{1}{n} \sum_{i=1}^{n} \beta_{i}^{2}}{\sigma^{2} + \frac{1}{n} \sum_{i=1}^{n} \beta_{i}^{2}}$$

$$\rho^{2} = \frac{\beta^{2} \tau^{2}}{\sigma^{2} + \beta^{2} \tau^{2}}$$

```
post <- posterior_samples(mod4)
beta <- post$b_weight
sigma <- post$sigma

f1 <- beta^2 * var(d2$weight)
rho <- f1 / (f1 + sigma^2)</pre>
```

Attention, si plusieurs prédicteurs, dépend de la structure de covariance...

```
BEST::plotPost(rho, showMode = TRUE, xlab = expression(rho) )
```


summary(lm(height ~ weight, data = d2))\$r.squared

[1] 0.5696444

```
bayes_R2 (mod4)

Estimate Est.Error Q2.5 Q97.5
R2 0.5684192 0.02304004 0.5188254 0.6083351

BEST::plotPost(bayes_R2 (mod4, summary = FALSE), showMode = TRUE, xlab = expression(rho))
```


On a présenté un nouveau modèle à deux puis trois paramètres : le modèle gaussien, puis la régression linéaire gaussienne, permettant de mettre en relation deux variables continues.

On a présenté un nouveau modèle à deux puis trois paramètres : le modèle gaussien, puis la régression linéaire gaussienne, permettant de mettre en relation deux variables continues.

Comme précédemment, le théorème de Bayes est utilisé pour mettre à jour nos connaissances a priori quant à la valeur des paramètres en une connaissance a posteriori, synthèse entre nos priors et l'information contenue dans les données.

On a présenté un nouveau modèle à deux puis trois paramètres : le modèle gaussien, puis la régression linéaire gaussienne, permettant de mettre en relation deux variables continues.

Comme précédemment, le théorème de Bayes est utilisé pour mettre à jour nos connaissances a priori quant à la valeur des paramètres en une connaissance a posteriori, synthèse entre nos priors et l'information contenue dans les données.

La package brms permet de fitter toutes sortes de modèles avec une syntaxe similaire à celle utilisée par lm ().

On a présenté un nouveau modèle à deux puis trois paramètres : le modèle gaussien, puis la régression linéaire gaussienne, permettant de mettre en relation deux variables continues.

Comme précédemment, le théorème de Bayes est utilisé pour mettre à jour nos connaissances a priori quant à la valeur des paramètres en une connaissance a posteriori, synthèse entre nos priors et l'information contenue dans les données.

La package brms permet de fitter toutes sortes de modèles avec une syntaxe similaire à celle utilisée par lm ().

La fonction fitted () permet de récupérer les prédictions d'un modèle fitté avec brms (i.e., un modèle de classe brmsfit).

On a présenté un nouveau modèle à deux puis trois paramètres : le modèle gaussien, puis la régression linéaire gaussienne, permettant de mettre en relation deux variables continues.

Comme précédemment, le théorème de Bayes est utilisé pour mettre à jour nos connaissances a priori quant à la valeur des paramètres en une connaissance a posteriori, synthèse entre nos priors et l'information contenue dans les données.

La package brms permet de fitter toutes sortes de modèles avec une syntaxe similaire à celle utilisée par lm ().

La fonction fitted () permet de récupérer les prédictions d'un modèle fitté avec brms (i.e., un modèle de classe brmsfit).

La fonction predict () permet de simuler des données à partir d'un modèle fitté avec brms.

Travaux pratiques - 1/2

Sélectionner toutes les lignes du jeu de données Howelll correspondant à des individus mineurs (age < 18). Cela devrait résulter en une dataframe de 192 lignes.

Fitter un modèle de régression linéaire en utilisant la fonction <code>brms::brm()</code>. Reporter et interpréter les estimations de ce modèle. Pour une augmentation de 10 unités de <code>weight</code>, quelle augmentation de taille (<code>height</code>) le modèle prédit-il?

Faire un plot des données brutes avec le poids sur l'axe des abscisses et la taille sur l'axe des ordonnées. Surimposer la droite de régression du modèle et un intervalle de crédibilité à 89% pour la moyenne. Ajouter un intervalle de crédibilité à 89% pour les tailles prédites.

Que pensez-vous du fit du modèle ? Quelles conditions d'application du modèle seriez-vous prêt.e.s à changer, afin d'améliorer le modèle ?

Travaux pratiques - 2/2

Imaginons que vous ayez consulté une collègue experte en allométrie (i.e., les phénomènes de croissance différentielle d'organes) et que cette dernière vous explique que ça ne fait aucun sens de modéliser la relation entre le poids et la taille... alors qu'on sait que c'est le *logarithme* du poids qui est relié à la taille!

Modéliser alors la relation entre la taille (cm) et le log du poids (log-kg). Utiliser la dataframe Howelll en entier (les 544 lignes). Fitter le modèle suivant en utilisant brms::brm().

```
h_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta \cdot \log(w_i)

\alpha \sim \text{Normal}(178, 100)

\beta \sim \text{Normal}(0, 100)

\sigma \sim \text{Exponential}(0.01)
```

Où h_i est la taille de l'individu i et w_i le poids de l'individu i. La fonction pour calculer le log en $\mathbb R$ est simplement \log (). Est-ce que vous savez interpréter les résultats? Indice: faire un plot des données brutes et surimposer les prédictions du modèle...

Proposition de solution

```
data(Howell1)
# on garde seulement les individus ayant moins de 18 ans
d <- Howell1 %>% filter(age < 18)

priors <- c(
   prior(normal(150, 100), class = Intercept),
   prior(normal(0, 10), class = b),
   prior(exponential(0.01), class = sigma)
)

mod7 <- brm(
   height ~ 1 + weight,
   prior = priors,
   family = gaussian(),
   data = d
)</pre>
```


Proposition de solution

```
summary (mod7, prob = 0.89)
 Family: gaussian
 Links: mu = identity; sigma = identity
Formula: height ~ 1 + weight
  Data: d (Number of observations: 192)
 Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
        total post-warmup draws = 4000
Population-Level Effects:
         Estimate Est.Error 1-89% CI u-89% CI Rhat Bulk ESS Tail ESS
            58.24
                   1.42
                              55.96 60.48 1.00
                                                      4035
                                                               2529
Intercept
weight
             2.72
                      0.07 2.61 2.83 1.00
                                                   3976
                                                               2953
Family Specific Parameters:
     Estimate Est.Error 1-89% CI u-89% CI Rhat Bulk ESS Tail ESS
         8.53
                   0.45
                           7.84
                                    9.27 1.00
                                                  3563 <u>2</u>647
sigma
Draws were sampled using sampling (NUTS). For each parameter, Bulk ESS
and Tail ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

71

```
# on crée un vecteur de valeurs possibles pour "weight"
weight.seq <- data.frame(weight = seq(from = 5, to = 45, length.out = 1e2))

# on récupère les prédictions du modèle pour ces valeurs de poids
mu <- data.frame(
    fitted(mod7, newdata = weight.seq, probs = c(0.055, 0.945))
    ) %>%
    bind_cols(weight.seq)

pred_height <- data.frame(
    predict(mod7, newdata = weight.seq, probs = c(0.055, 0.945))
    ) %>%
    bind_cols(weight.seq)

# on affiche les 6 premières lignes de pred_height
head(pred_height)
```

```
Estimate Est.Error Q5.5 Q94.5 weight
1 71.78587 8.699512 58.27737 85.92992 5.000000
2 72.91538 8.633055 59.36715 87.02888 5.404040
3 74.03239 8.512542 60.54960 87.69401 5.808081
4 75.04581 8.561011 61.12070 88.50054 6.212121
5 76.28063 8.562840 62.81625 89.68184 6.616162
6 77.01467 8.764254 62.86699 90.79444 7.020202
```

```
d %>%
ggplot(aes(x = weight, y = height)) +
geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
geom_ribbon(
   data = pred_height, aes(x = weight, ymin = Q5.5, ymax = Q94.5),
   alpha = 0.2, inherit.aes = FALSE
   ) +
geom_smooth(
   data = mu, aes(y = Estimate, ymin = Q5.5, ymax = Q94.5),
   stat = "identity", color = "black", alpha = 0.8, size = 1
   )
```


Proposition de solution

```
# on considère maintenant tous les individus
d <- Howell1

mod8 <- brm(
    # on prédit la taille par le logarithme du poids
    height ~ 1 + log(weight),
    prior = priors,
    family = gaussian(),
    data = d
    )</pre>
```

Proposition de solution

```
summary (mod8, prob = 0.89)
 Family: gaussian
 Links: mu = identity; sigma = identity
Formula: height ~ 1 + log(weight)
  Data: d (Number of observations: 544)
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
        total post-warmup draws = 4000
Population-Level Effects:
         Estimate Est.Error 1-89% CI u-89% CI Rhat Bulk ESS Tail ESS
Intercept -23.58 1.33 -25.68 -21.46 1.00
                                                     3969
                                                              2828
logweight 47.01 0.38
                            46.40 47.62 1.00
                                                  4013
                                                              3039
Family Specific Parameters:
     Estimate Est.Error 1-89% CI u-89% CI Rhat Bulk ESS Tail ESS
         5.15
                   0.15
                           4.91
                                    5.40 1.00
                                                 4685 3041
sigma
Draws were sampled using sampling (NUTS). For each parameter, Bulk ESS
and Tail ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

```
Estimate Est.Error Q5.5 Q94.5 weight
1 51.97258 5.173717 43.94201 60.32367 5.000000
2 57.41988 5.139568 49.18856 65.65924 5.606061
3 62.36721 5.122092 54.48203 70.83693 6.212121
4 66.66993 5.181096 58.28027 74.77304 6.818182
5 70.60074 5.216455 62.25285 79.03749 7.424242
6 74.36192 5.127477 65.92468 82.32891 8.030303
```

```
d %>%
ggplot(aes(x = weight, y = height)) +
geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
geom_ribbon(
   data = pred_height, aes(x = weight, ymin = Q5.5, ymax = Q94.5),
   alpha = 0.2, inherit.aes = FALSE
   ) +
geom_smooth(
   data = mu, aes(y = Estimate, ymin = Q5.5, ymax = Q94.5),
   stat = "identity", color = "black", alpha = 0.8, size = 1
   )
```


77

```
d %>%
ggplot(aes(x = weight, y = height)) +
geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
geom_ribbon(
   data = pred_height, aes(x = weight, ymin = Q5.5, ymax = Q94.5),
   alpha = 0.2, inherit.aes = FALSE
   ) +
geom_smooth(
   data = mu, aes(y = Estimate, ymin = Q5.5, ymax = Q94.5),
   stat = "identity", color = "black", alpha = 0.8, size = 1
   )
```


77