AGRÉGATION DES SCIENCES MATHÉMATIQUES

Composition de mathématiques générales. 1980

INTRODUCTION.

6276. Dans tout le problème, n désigne un entier supérieur ou égal à 2, K un corps commutatif et 1 l'unité de K; M_n(K) est la Kalgèbre des matrices carrées d'ordre n à coefficients dans K, que l'on note aussi M_n, de même que l'on sous-entend K dans les définitions suivantes :

i) GL_n, ensemble des éléments inversibles de M_n;

ii) L_n, ensemble des éléments de GL_n dont chaque colonne contient un et un seul terme non nul;

iii) S_n (resp. Δ_n) formé des éléments de L_n dont tous les coefficients non nuls valent 1 (resp. sont situés sur la diagonale principale).

I_n désigne l'unité de M_n et, pour tout $A \in M_n$, on note 'A (resp. tr(A)) la transposée de A (resp. sa trace). Si E est un K-espace vectoriel de dimension finie, L(E) est la K-algèbre de ses endomorphismes et id_E l'unité de L(E); pour tout $f \in L(E)$, on note $\mu(f)$ [resp. $\chi(f)$] le polynôme minimal de f (resp. son polynôme caractéristique). Par ailleurs, si σ est un élément du groupe Σ_n des permutations de $\{1, \ldots, n\}$, $\varepsilon(\sigma)$ désigne la signature de σ et A_{σ} la matrice carrée d'ordre n dont, pour $i, j = 1, \ldots, n$, l'élément (i, j) vaut 1 si $i = \sigma(i)$ et 0 sinon.

On rappelle enfin que tout R-espace vectoriel est canoniquement muni d'une structure d'espace affine réel et, si il est de dimension finie, d'une topologie naturelle, celle définie par l'une quelconque de ses normes.

Les cinq parties sont dépendantes, mais on peut traiter chacune en admettant les résultats de celles qui précèdent.

PREMIÈRE PARTIE.

1° a) Vérisser que l'application $\sigma \to A_{\sigma}$ est un homomorphisme de Σ_n dans GL_n et une bijection de Σ_n sur S_n .

b) Établir que tout élément A de L_n s'écrit, de manière unique, sous la forme $A = DA_{\sigma}$, $\sigma \in \Sigma_n$ et $D \in \Delta_n$, puis que L_n est un sous-groupe de GL_n . Δ_n (resp. S_n) est-il un sous-groupe distingué de L_n ?

- c) Déduire de ce qui précède, à l'aide d'une méthodé de dénombrement que l'on détaillera, que pour tout nombre premier $q \ge 2$ et tout entier naturel m, $m!(q-1)^m$ divise $(q^m-1)(q^m-q)\dots(q^m-q^{m-1})$.
- 2° On suppose, dans cette question seulement, que K est algébriquement clos et on désigne par p la caractéristique de K. Soit E un K-espace vectoriel de dimension n et $B = (e_1, \ldots, e_n)$ une base de E; pour tout $\sigma \in \Sigma_n$, on note f_{σ} l'endomorphisme de E dont la matrice dans B est A_{σ} .
 - a) Combien vaut le déterminant de f_{α} ?
- b) Dans le cas particulier où σ est un cycle d'ordre n, établir que $\mu(f_{\sigma})(T) = T^n 1$; combien vaut alors $\chi(f_{\sigma})(T)$? Trouver une condition nécessaire et suffisante, portant sur n et p, pour que f_{σ} soit diagonalisable; lorsque cette condition est vérifiée, expliciter $P \in GL_n$ et $D \in \Delta_n$ tels que $A_{\sigma} = PDP^{-1}$.
 - c) σ est maintenant un élément quelconque de Σ_n , déterminer $\mu(f_{\sigma})$ et $\chi(f_{\sigma})$ en fonction de σ .
- 3° On conserve les notations de 2°, mais K désigne un corps quelconque de caractéristique nulle; Λ est la droite vectorielle de E engendrée par $e_1 + \cdots + e_n$ et H l'hyperplan d'équation $x_1 + \cdots + x_n = 0$. Un sous-espace E' de E est dit Σ -stable lorsque $f_{\sigma}(E') \subset E'$ pour tout $\sigma \in \Sigma_n$.
- a) Vérifier que Λ et H sont tous deux Σ -stables et supplémentaires dans E, montrer que le projecteur sur Λ parallèlement à H est

$$p_{\Lambda} = \frac{1}{n!} \sum_{\sigma \in \Sigma_{-}} f_{\sigma}.$$

- **b)** Soit v un élément non nul de H, démontrer que $\{f_{\sigma}(v)/\sigma \in \Sigma_n\}$ est une partie génératrice de H (on pourra utiliser le fait que deux au moins des coordonnées de v sont distinctes).
 - c) Déterminer tous les sous-espaces Σ -stables de E.
- 4° Soit $\Gamma = \{ f \in L(E) / \forall \sigma \in \Sigma_n f \circ f_\sigma = f_\sigma \circ f \}$, démontrer que Γ est la K-sous-algèbre de L(E) engendrée par p_Λ , c'est-à-dire la plus petite sous-algèbre de L(E) contenant id_E et p_Λ .

DEUXIÈME PARTIE.

Les notations sont celles de la première partie, mais K est ici le corps des nombres réels. On note $\tilde{\Omega}_n$ l'ensemble de toutes les matrices $A = (a_{i,j})$ appartenant à M_m telles que les 2n sommes

$$\sum_{k=1}^{n} a_{i,k}, \sum_{k=1}^{n} a_{k,j}, \quad i, j = 1, \dots, n$$

soient toutes égales entre elles, et on désigne alors par s(A) leur valeur commune. On dit que A est équilibrée (d'ordre n) lorsque A appartient à $\tilde{\Omega}_n$, a tous ses coefficients ≥ 0 et vérifie s(A) = 1, et on note Ω_n l'ensemble des matrices équilibrées d'ordre n.

- 1° a) Soit $f \in L(E)$ et A la matrice de f dans B, vérisier que $A \in \tilde{\Omega}_n$ si, et seulement si, chacun des deux sous-espaces Λ et H est stable par f; en déduire que $\tilde{\Omega}_n$ est une \mathbb{R} -sous-algèbre de M_n et déterminer sa dimension. L'application $A \mapsto s(A)$ est-elle un morphisme d'algèbres?
- b) Montrer que Ω_n est convexe, compact et stable par multiplication; trouver toutes les matrices d'ordre n qui sont à la fois équilibrées et orthogonales.
 - 2° Expliciter tous les idéaux bilatères de $\tilde{\Omega}_n$ et déterminer son centre.
- 3° Démontrer que $\tilde{\Omega}_n$ est le sous-espace vectoriel de M_n engendré par S_n (on pourra raisonner par récurrence et utiliser la première partie).

TROISIÈME PARTIE.

On se propose de montrer que Ω_n est l'enveloppe convexe de S_n . Pour tout $X=(x_1,\ldots,x_n)\in\mathbb{R}^n$, on note $\bar{X}=(\bar{x}_1,\ldots,\bar{x}_n)$ l'unique élément de \mathbb{R}^n vérifiant les propriétés suivantes :

- i) $\bar{x}_1 \geqslant \cdots \geqslant \bar{x}_n$;
- ii) il existe un $\tau \in \Sigma_n$ tel que $\bar{X} = XA_{\tau}$

De plus, si $Y = (y_1, \dots, y_n)$ est un autre élément de \mathbb{R}^n , la notation $Y \triangleleft X$ signifie que

$$\bar{y}_1 + \cdots + \bar{y}_k \leq \bar{x}_1 + \cdots + \bar{x}_k$$
 pour $k = 1, \ldots, n$

et on note Y < X lorsqu'on a simultanément :

i)
$$Y \triangleleft X$$
;

ii)
$$\overline{y}_1 + \cdots + \overline{y}_n = \overline{x}_1 + \cdots + \overline{x}_n$$
.

Enfin, [X] désigne l'enveloppe convexe de l'ensemble des XA_{σ} , $\sigma \in \Sigma_n$

1° a) La relation Y < X définit-elle un ordre sur \mathbb{R}^n ?

b) Soit X_1, \ldots, X_r Y des éléments de \mathbb{R}^n , montrer que Y appartient à l'enveloppe convexe de $\{X_1, \ldots, X_r\}$ si, et seulement si, pour toute forme linéaire Φ sur \mathbb{R}^n , on a

$$\Phi(Y) \leqslant \max(\Phi(X_1), \ldots, \Phi(X_r)).$$

c) En déduire que [X] est exactement formé de tous les $Y \in \mathbb{R}^n$ qui vérifient Y < X.

2° Soit $A = (a_{i,j})$ un élément de Ω_n , distinct de I_n ; démontrer qu'il existe un $\sigma \in \Sigma_n$, $\sigma \neq id$, tel que

$$\forall k \in \{1, \ldots, n\} (\sigma(k) \neq k \Rightarrow a_{\sigma(k), k} \neq 0)$$

(on pourra raisonner par l'absurde et utiliser le polynôme caractéristique de A).

3° Soit M un élément de M.

a) On suppose que, pour tout $\sigma \in \Sigma_m$, $\sigma \neq id$, on a tr(MA_{\sigma}) < tr(M); établir qu'alors

$$\forall A \in \Omega_n \quad tr(MA) \leqslant tr(M).$$

b) Prouver que (1) demeure si l'on suppose seulement que $tr(MA_{\sigma}) \leq tr(M)$ pour tout $\sigma \in \Sigma_{\pi}$.

c) Démontrer que Ω_n est l'enveloppe convexe de S_n et, plus précisément, que tout élément A de Ω_n peut s'écrire sous la forme

$$A = \sum_{\sigma \in I} \lambda_{\sigma} A_{\sigma},$$

les λ_{σ} étant tous > 0, de somme 1 et I étant une partie de Σ_n de cardinal $\leq n^2 - 2n + 2$.

4° a) Soit $X = (x_1, ..., x_n)$ et $Y = (y_1, ..., y_n)$ deux éléments de \mathbb{R}^n , montrer que les conditions suivantes sont équivalentes :

i) Y < X,

ii) il existe un $A \in \Omega_n$ tel que Y = XA,

iii) pour toute fonction u, convexe de \mathbb{R} dans \mathbb{R} , $\sum_{i=1}^{n} \mu(y_i) \leqslant \sum_{i=1}^{n} u(x_i)$.

b) Soit $M \in M_m$, démontrer que M est équilibrée si, et seulement si, XM < X pour tout $X \in \mathbb{R}^m$.

QUATRIÈME PARTIE.

Si $A = (a_{i,j})$ est une matrice carrée d'ordre n à coefficients dans le corps K, on appelle permanent de A la quantité

per (A) =
$$\sum_{\sigma \in \Sigma_s} a_{\sigma(1), 1} a_{\sigma(2), 2} \dots a_{\sigma(n), n}$$

1° a) Expliquer pourquoi per(A) est une fonction n-linéaire symétrique des colonnes de A, énoncer et démontrer une formule permettant le développement d'un permanent par rapport à une colonne. Combien vaut per(A) si A est triangulaire, si A est de la forme $\binom{A'B}{OA''}$, avec $A' \in M_p$, $A'' \in M_q$, p + q = n?

b) Dans le cas particulier où A est semi-triangulaire, c'est-à-dire telle que $a_{i,j} = 0$ dès que j > i + 1, on note B la matrice d'ordre n dont l'élément (i,j) vaut $a_{i,j}$ si $i \ge j$ et $-a_{i,j}$ sinon. Montrer que $\det(A) = \operatorname{per}(B)$.

c) Démontrer par contre que, si $n \ge 3$, il n'est pas possible de trouver une suite $(\varepsilon_{i,j})$ d'éléments de $\{-1,1\}$ telle que pour tout $A = (a_{i,j}) \in M_m$ en notant A_{ε} la matrice $(a_{i,j},\varepsilon_{i,j})$, on ait

$$det(A) = per(A_{\epsilon}).$$

 2° a) Soit $A \in \Omega_m$, établir que

$$0 < per(A) \le 1$$

et que per(A) = 1 si, et seulement si, A appartient à S_n .

- b) En déduire le résultat suivant : si G est un groupe fini et H un sous-groupe de G d'indice r (c'est-à-dire tel que card (G) = r card (H)), alors il existe des éléments x_1, \ldots, x_r de G qui représentent à la fois toutes les classes à gauche et toutes les classes à droite modulo H.
- 3° a) Soit M une matrice carrée d'ordre n à coefficients réels ≥ 0 ; démontrer que per(M) = 0 si, et seulement si, on peut extraire de M une matrice nulle à s lignes et t colonnes, avec s + t = n + 1.
- b) Déduire de ceci le « lemme des mariages » : si F et G sont deux ensembles finis et γ une application de G dans l'ensemble des parties de F, les conditions suivantes sont équivalentes :
 - i) il existe une injection Γ de G dans F telle que $\Gamma(x) \in \gamma(x)$ pour tout $x \in G$;
 - ii) pour toute partie $G' \subset G$, card $\left(\bigcup_{x \in G'} \gamma(x)\right) \geqslant \text{card } (G')$

(on pourra se ramener au cas où card (F) = card (G)).

CINQUIÈME PARTIE.

E désigne maintenant un espace hermitien de dimension n, dont on note (|) le produit scalaire; pour tout $m = 1, \ldots, n$, F_m désigne le C-espace vectoriel des formes m-linéaires sur E, et T_m le dual de F_m .

Si v_1, \ldots, v_m appartiennent à E, on note $t(v_1, \ldots, v_m)$ l'élément de T_m défini par

$$t(v_1, \ldots, v_m)(\Phi) = \Phi(v_1, \ldots, v_m)$$
 pour tout $\Phi \in F_m$

1° a) Montrer que $t: E_m \to T_m$ est m-linéaire et qu'il existe sur T_m une structure d'espace hermitien dont le produit scalaire, encore noté (|), vérifie pour tous v_1, \ldots, v_m et w_1, \ldots, w_m appartenant à E

$$(t(v_1, \ldots, v_m)|t(w_1, \ldots, w_m)) = (v_1|w_1) \ldots (v_m|w_m)$$

(on pourra d'abord établir que, si $B = (e_1, \ldots, e_n)$ est une base de E, alors les $t(e_i, \ldots, e_{i_m})$, pour $(i_1, \ldots, i_m) \in \{1, \ldots, n\}^m$, forment une base de T_m). Peut-il exister sur T_m plusieurs produits scalaires vérifiant (r)?

b) Si $\sigma \in \Sigma_m$ et $\Phi \in F_m$, on définit Φ^{σ} par

$$\Phi^{\sigma}(v_1, \ldots, v_m) = \Phi(v_{\sigma^{-1}(1)}, \ldots, v_{\sigma^{-1}(m)});$$

l'application $\Phi \mapsto \Phi^{\sigma}$ est un endomorphisme de F_m dont on note $P(\sigma)$ le transposé. Montrer que $P(\sigma)$ est un endormorphisme unitaire de T_m et que son adjoint est $P(\sigma^{-1})$.

c) On définit:

$$A_{m} = \{ \xi \in T_{m} / \forall \sigma \in \Sigma_{m} P(\sigma)(\xi) = \varepsilon(\sigma)\xi \},$$

$$S_{m} = \{ \xi \in T_{m} / \forall \sigma \in \Sigma_{m} P(\sigma)(\xi) = \xi \}.$$

Établir que $\pi_a = \frac{1}{m!} \sum_{\sigma \in \Sigma_m} \varepsilon(\sigma) P(\sigma)$ est le projecteur orthogonal sur A_m et expliciter celui sur S_m , qu'on notera π_s . En déduire la dimension de A_m .

2° a) Soit $f \in L(E)$ et $m \in \{1, ..., n\}$, montrer qu'il existe un unique $f_m \in L(T_m)$ tel que, pour tous $v_1, ..., v_m$ appartenant à E, on ait

$$f_m(t(v_1, \ldots, v_m)) = t(f(v_1), \ldots, f(v_m)).$$

Si g est un autre élément de L(E), $(g \circ f)_m$ vaut-il $g_m \circ f_m$ ou $f_m \circ g_m$? Soit f^* l'adjoint de f, a-t-on $(f^*)_m = (f_m)^*$? Vérisier que A_m et S_m sont stables par f_m .

- b) Démontrer que, si v_1, \ldots, v_m sont des vecteurs propres linéairement indépendants associés aux valeurs propres de f (non nécessairement distinctes) $\lambda_1, \ldots, \lambda_m$, alors $\pi_a(t(v_1, \ldots, v_m))$ est un vecteur propre non nul pour la restriction, notée f_m , a de f_m à A_m . A quelle valeur propre de f_m , a est-il associé?
- c) Déduire de ce qui précède l'expression de $\chi(f_{m,a})(T)$ en fonction des valeurs propres $(\lambda_1, \ldots, \lambda_n)$ de f (on pourra commencer par le cas où les λ_i , sont deux à deux distinctes).

 3° Soit f un automorphisme de E et f^* son adjoint.

a) Montrer que toutes les valeurs propres de $f^* \circ f$ sont des réels > 0; on note k_1, \ldots, k_n leurs racines carrées positives et $\lambda_1, \ldots, \lambda_n$ les valeurs propres de f.

b) Démontrer qu'avec les notations de la troisième partie

$$(\text{Log } |\lambda_1|, \ldots, \text{Log } |\lambda_n|) < (\text{Log } k_1, \ldots, \text{Log } k_n).$$

c) Établir l'inégalité de Weyl

$$(|\lambda_1|^s, \ldots, |\lambda_n|^s) < (k_1^s, \ldots, k_n^s)$$
 pour tout réel $s > 0$,

(on pourra utiliser une fonction auxiliaire convexe sur R").

- 4° f est toujours un automorphisme de E, mais on suppose de plus que (f(v)|v) est un réel > 0 pour tout $v \neq 0$.
- a) Que peut-on dire de fet de ses valeurs propres ? Établir que, si (e_1, \ldots, e_n) est une base orthonormale quelconque de E, alors

$$(\text{Log }\lambda_1, \ldots, \text{Log }\lambda_n) \lhd (\text{Log }(f(e_1)|e_1), \ldots, \text{Log }(f(e_n)|e_n))$$

(on pourra observer que, si (u_1, \ldots, u_n) est une base orthonormale de vecteurs propres pour f, la matrice d'élément $(i, j) |(u_i|e_j)|^2$ est équilibrée).

b) En déduire l'inégalité suivante : si A et B sont deux matrices hermitiennes définies positives d'ordre n, alors

$$(\det (A + B))^{1/n} \ge (\det (A))^{1/n} + (\det (B))^{1/n}.$$

5° a) Soit $\dot{v}_1, \ldots, v_m, w_1, \ldots, w_m$ appartenant à E, on note S(v, w) la matrice carrée d'ordre m dont l'élément (i, j) est $(v_i|w_j)$. Montrer que

$$(\pi_s(t(v_1, \ldots, v_m))|\pi_s(t(w_1, \ldots, w_m))) = \frac{1}{m!} \text{ per } (S(v, w)).$$

b) En déduire que, si M et N sont des matrices carrées quelconques d'ordre n à coefficients complexes, on a

$$|per(MN)|^2 \le per(MM^*) per(N^*N)$$

et que, si A est hermitienne définie positive, alors per (A) ≥ det (A).

c) Soit $A \in \Omega_m$, on suppose de plus que A est hermitienne définie positive, démontrer l'inégalité de Van der Wærden

$$per(A) \geqslant \frac{n!}{n^n}$$