: 21 of 52 Page **Issued date** : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

APPENDIX 2: Data of EMI test

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna A(Full)

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03(Antenna A) 20080624-01 Report No. Power Temp. / Humi. Operator : 281E0193-H0-02 : DC 3. OV : 26 deg.C. / 62 % : Takahiro Hatakeda Company Kind of EUT Model No. Serial No.

Mode / Remarks : Continuous Transmitting 133.33kHz(Full), ANT:X-axis, ECU:X-axis

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
0. 13333	94. 7	AV	20. 3	0.1	32. 3	82. 8	105. 1	22. 3	0deg	177	
0. 13333	95. 6	PEAK	20. 3	0.1	32. 3		125. 0	41.3	0deg	177	
0. 13333	93.0	PEAK	20. 3	0.1	32. 3	81. 1	125. 0	43. 9	45deg	143	
0. 13333	90.4	PEAK	20. 3	0.1	32. 3	78. 5	125. 0	46. 5	90deg	91	
0. 26670	58.0	AV	20. 2	0. 2	32. 2	46. 2	99. 1	52. 9	0deg	165	
0. 26670	72.1	PEAK	20. 2	0. 2	32. 2	60.3	119.1	58.8	0deg	165	
0.40000	61.6	AV	20. 2	0. 2	32. 2	49.8	95. 6	45. 8	0deg	182	
0.40000	75. 1	PEAK	20. 2	0. 2	32. 2	63. 3	115.6	52. 3	0deg	182	
0.53332	54. 3	QP	20. 2	0. 2	32. 2		73. 1	30.6	0deg	359	
0.66666	63.4	QP	20. 1	0. 2	32. 2	51.5	71. 1	19.6	0deg	178	
0.79993	48.8	QP	20. 1	0. 2	32. 2		69. 5	32. 6	0deg	359	
0. 93333	56.0	QP	20. 1	0. 2	32. 2	44. 1	68. 2	24. 1	0deg	186	
1.06667	44. 4	QP	20. 1	0. 2	32. 2	32. 5	67. 0	34. 5	0deg	359	
1. 19997	50.9	QP	20. 1	0.3	32. 2	39. 1	66. 0	26. 9	0deg	183	
1. 33333	40.8	QP	20. 1	0.3	32. 2	29. 0	65. 0	36. 0	0deg	359	
27. 33260	46. 2	QP	21.0	1.0	32. 2			33. 5	90deg	160	
27. 33260	41.6	QP	21.0	1.0	32. 2	31. 4	69. 5	38. 1	45deg	246	
27. 33260	35.3	QP	21.0	1.0	32. 2	25. 0	69. 5	44. 5	0deg	119	

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 22 of 52 Page **Issued date** : July 22, 2008 : August 20, 2008 **Revised date**

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna A(Half)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date : 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03 (Antenna A) 20080624-01 281E0193-H0-02 DC 3.0V 26 deg.C. / 62 % Takahiro Hatakeda Company Kind of EUT Model No. Serial No. Report No. Power Temp. / Humi. Operator

Mode / Remarks : Continuous Transmitting 133.33kHz(Half), ANT:X-axis, ECU:X-axis

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
0. 13333	89. 8	PEAK	20. 3	0. 1	32.3	77. 9	125. 0		0deg	189	
0. 13333	87. 9	PEAK	20. 3	0. 1	32.3	76. 0	125. 0		45deg	154	
0. 13333	84. 1	PEAK	20. 3	0. 1	32.3	72. 2	125. 0		90deg	100	
0. 13333	88. 8	AV	20. 3	0. 1	32.3	76. 9	105. 1			189	
0. 26670	63. 4	PEAK	20. 2	0. 2	32. 2	51.6	119. 1			359	
0. 26670	49. 5	AV	20. 2	0. 2	32. 2	37. 7	99. 1	61.4		359	
0.40000	55. 0	AV	20. 2	0. 2	32. 2	43. 2	95. 6	52. 4	0deg	179	
0.40000	68. 9	PEAK	20. 2	0. 2	32. 2	57. 1	115. 6		0deg	179	
0. 53332	49. 3	QP	20. 2	0. 2	32. 2	37. 4	73. 1		0deg	359	
0.66666	56. 8	QP	20. 1	0. 2	32. 2	44. 9	71. 1	26. 2	0deg	184	
0. 79993	44. 9	QP	20. 1	0. 2	32. 2	33.0	69. 5		0deg	359	
0. 93333	48. 1	QP	20. 1	0. 2	32. 2	36. 2	68. 2		0deg	182	
1.06667	41.8	QP	20. 1	0. 2	32. 2	29. 9	67. 0	37. 1	0deg	359	
1. 19997	41. 1	QP	20. 1	0.3	32. 2	29. 3	66. 0	36. 7	0deg	166	
1. 33333	39. 4	QP	20. 1	0.3	32. 2	27. 6	65. 0	37. 4	0deg	359	

CHART: WITH FACTOR, ANT TYPE: LOOP, Except for the data below: adequate margin data below the limits. CALCULATION: RESULT[dBuV] = READING[dBuV] + ANT FACTOR[dB] + LOSS[dB] (CABLE + ATTEN. - AMP.)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 23 of 52
Issued date : July 22, 2008
Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna B (Full)

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No.3 Semi Anechoic Chamber Date: 2008/07/09

 Company
 : Mitsubishi Electric Corporation
 Report No.
 : 281E0193-H0-02

 Kind of EUT
 : SMART KEYLESS SYSTEM
 Power
 : DC 3. OV

 Model No.
 : SKE11A-00(Antenna B)
 Temp. / Humi.
 : 26 deg.C. / 62 %

 Serial No.
 : 20080624-01
 Operator
 : Takahiro Hatakeda

 ${\bf Mode\ /\ Remarks\ :\ Continuous\ Transmitting\ 133.33kHz\,(Full),\ ANT: Z-axis,\ ECU: X-axis}$

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
0. 13333	91.0	PEAK	20. 3	0.1	32. 3		125. 0	45. 9	90deg	88	
0. 13333	93.1	PEAK	20. 3	0.1	32. 3	81. 2	125. 0	43.8	45deg	359	
0. 13333	95.3	PEAK	20. 3	0.1	32. 3	83. 4	125. 0	41.6	0deg	5	worst
0. 13333	94.3	AV	20. 3	0.1	32. 3	82. 4	105. 1	22.7	0deg	5	
0. 26670	71.2	PEAK	20. 2	0.2	32. 2		119.1	59. 7	0deg	359	
0. 26670	57. 2	AV	20. 2	0.2	32. 2		99. 1	53. 7	0deg	359	
0.40000	69.9	PEAK	20. 2	0.2	32. 2		115.6	57. 5	0deg	359	
0.40000	56.1	AV	20. 2	0.2	32. 2	44. 3	95. 6	51.3	0deg	359	
0.53332	45. 2	QP	20. 2	0.2	32. 2	33. 4	73. 1	39. 7	0deg	359	
0.66666	55. 5	QP	20. 1	0.2	32. 2		71. 1	27. 5		359	
0.79993	40.3	QP	20. 1	0.2	32. 2			41.1		179	
0. 93333	45.1	QP	20. 1	0.2	32. 2	33. 2	68. 2	35. 0	0deg	359	
1.06667	39.1	QP	20. 1	0.2	32. 2	27. 2	67. 0	39.8	0deg	182	
1. 19997	38.8	QP	20. 1	0.3	32. 2		66. 0	39.0	0deg	359	
1.33333	37.3	QP	20. 1	0.3	32. 2	25. 5	65. 0	39. 5	0deg	174	
27. 33360	48.8	QP	21.0	1.0	32. 2		69. 5	30. 9		359	
27. 33360	45.9	QP	21.0	1.0	32. 2		69. 5	33. 8		359	
27. 33360	34. 7	QP	21.0	1.0	32. 2	24. 5	69. 5	45.0	0deg	359	

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 24 of 52 **Issued date** : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna B(Half)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date : 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03 (Antenna B) 20080624-01 281E0193-H0-02 DC 3.0V 26 deg.C. / 62 % Takahiro Hatakeda Company Kind of EUT Model No. Serial No. Report No. Power Temp. / Humi. Operator

Remarks : Continuous Transmitting 133.33kHz(Half), ANT:Z-axis, ECU:X-axis

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
0. 13333	86. 4	PEAK	20. 3	0. 1	32.3	74. 5		50. 5	45deg	145	
0. 13333		PEAK	20. 3	0. 1	32.3	77. 2			0deg		worst
0. 13333		PEAK	20. 3	0. 1	32.3	72. 6	125. 0	52. 4	90deg	270	
0. 13333		AV	20. 3	0. 1	32.3	76. 3			0deg	359	
0. 26670			20. 2	0. 2	32. 2	49.0			0deg	359	
0. 26670		AV	20. 2	0. 2	32. 2					359	
0.40000		PEAK	20. 2	0. 2	32. 2	54. 1	115. 6	61.5	0deg	359	
0. 40000		AV	20. 2	0. 2	32. 2					359	
0. 53332		QP	20. 2	0. 2	32. 2	30. 1	73. 1			359	
0. 66666		QP	20. 1	0. 2	32.2	39. 1	71. 1		0deg	359	
0. 79993		QP	20. 1	0. 2	32. 2	26. 3	69. 5		0deg	175	
0. 93333		QP	20. 1	0. 2	32. 2				0deg	359	
1.06666		QP	20. 1	0. 2	32. 2	25. 3		41.7	0deg	188	
1. 19997		QP	20. 1	0. 3	32. 2	26. 0	66. 0	40.0	0deg	359	
1. 33333	36. 9	QP	20. 1	0. 3	32. 2	25. 1	65. 0	39. 9	0deg	359	

CHART: WITH FACTOR, ANT TYPE: LOOP. Except for the data below: adequate margin data below the limits. CALCULATION: RESULT[dBuV] = READING[dBuV] + ANT FACTOR[dB] + LOSS[dB] (CABLE + ATTEN. - AMP.)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 25 of 52 Page **Issued date** : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna C(Full)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date : 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03 (Antenna C) 20080624-01 281E0193-H0-02 DC 3.0V 26 deg.C. / 62 % Takahiro Hatakeda Company Kind of EUT Model No. Serial No. Report No. Power Temp. / Humi. Operator

Remarks : Continuous Transmitting 133.33kHz(Full), ANT:X-axis, ECU:X-axis

[MHz] 0. 13333 0. 13333 0. 13333 0. 13333 0. 26670	[dBuV] 99. 9 98. 5 94. 5 99. 0	PEAK PEAK PEAK	[dB/m] 20. 3 20. 3	[dB] 0.1	[dB]	[dBuV/m]	[dBuV/m]	[ID]		E 1 3	
0. 13333 0. 13333 0. 13333	98. 5 94. 5	PEAK		0. 1				[dB]		[deg]	
0. 13333 0. 13333	94. 5		20.3		32.3	88. 0	125. 0	37. 0	0deg		worst
0. 13333		PΕΔΚ		0. 1	32.3	86. 6	125. 0	38. 4	45deg	332	
	99.0	I LAIN	20. 3	0. 1	32.3	82. 6	125. 0	42. 4	90deg	85	
0. 26670		AV	20. 3	0. 1	32.3	87. 0	105. 1	18. 1	0deg	359	
	81.3	PEAK	20. 2	0. 2	32. 2	69.5	119. 1	49. 6	0deg	359	
0. 26670	67. 1	AV	20. 2	0. 2	32. 2	55.3	99. 1	43. 8	0deg	359	
0. 40000	69. 5	AV	20. 2	0. 2	32. 2	57. 7	95. 6	37. 9	0deg	359	
0.40000	83. 5	PEAK	20. 2	0. 2	32. 2	71.7	115. 6	43. 9	0deg	359	
0. 53332	67. 2	QP	20. 2	0. 2	32. 2	55.4	73. 1	17. 7	0deg	359	
0.66666	72. 2	QP	20. 1	0. 2	32. 2	60.3	71.1	10.8	0deg	359	
0. 79993	61.3	QP	20. 1	0. 2	32. 2	49.4	69. 5	20. 1	0deg	359	
0. 93333	66.0	QP	20. 1	0. 2	32. 2	54. 1	68. 2	14. 1	0deg	359	
1.06667	55. 9	QP	20. 1	0. 2	32. 2	44. 0	67. 0	23. 0	0deg	359	
1. 19997	62. 7	QP	20. 1	0.3	32. 2	50.9	66. 0	15. 1	0deg	359	
1. 33333	51.0	QP	20. 1	0.3	32. 2	39. 2	65. 0	25. 8	0deg	359	
27. 06710	36. 6	QP	21.0	1. 0	32. 2	26. 4	69. 5	43. 1	0deg	100	
27. 06710	48. 2	QP	21.0	1. 0	32. 2	38.0	69. 5	31.5	90deg	143	
27. 06710	45. 6	QP	21.0	1. 0	32. 2	35.4	69. 5	34. 1	45deg	225	
	[
	[
	l										
	į										
	ľ										

CHART: WITH FACTOR, ANT TYPE: LOOP. Except for the data below: adequate margin data below the limits. CALCULATION: RESULT[dBuV] = READING[dBuV] + ANT FACTOR[dB] + LOSS[dB] (CABLE + ATTEN. - AMP.)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 26 of 52 Page **Issued date** : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna C(Half)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date : 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03 (Antenna C) 20080624-01 281E0193-H0-02 DC 3.0V 26 deg.C. / 62 % Takahiro Hatakeda Company Kind of EUT Model No. Serial No. Report No. Power Temp. / Humi. Operator

Remarks : Continuous Transmitting 133.33kHz(Half), ANT:X-axis, ECU:X-axis

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
0.13333	93. 9	PEAK	20. 3	0. 1	32.3	82. 0	125. 0		0deg	359	worst
0. 13333	89. 2	PEAK	20. 3	0. 1	32.3	77. 3	125. 0		90deg	298	
0. 13333	92. 5	PEAK	20. 3	0. 1	32.3	80. 5	125. 0		45deg	331	
0. 13333	92. 9	AV	20. 3	0. 1	32.3	81.0	105. 1	24. 1	0deg	359	
0. 26670	72. 3	PEAK	20. 2	0. 2	32. 2	60.5	119.1	58. 6	0deg	359	
0. 26670	58. 3	AV	20. 2	0. 2	32. 2	46. 5	99. 1	52. 6	0deg	359	
0.40000	77. 3	PEAK	20. 2	0. 2	32. 2	65. 5	115. 6	50. 1	0deg	359	
0.40000	63. 3	AV	20. 2	0. 2	32. 2	51.5	95. 6	44. 1	0deg	359	
0. 53332	61.8	QP	20. 2	0. 2	32. 2	50.0	73. 1	23. 1	0deg	359	
0.66666	64. 8	QP	20. 1	0. 2	32. 2	52.9	71.1	18. 2	0deg	359	
0.79993	56.8	QP	20. 1	0. 2	32. 2	44. 9	69. 5	24. 6	0deg	359	
0. 93333	55. 3	QP	20. 1	0. 2	32. 2	43.4	68. 2	24. 8	0deg	359	
1.06667	52. 9	QP	20. 1	0. 2	32. 2	41.0	67. 0	26.0	0deg	359	
1. 19997	49. 3	QP	20. 1	0.3	32. 2	37. 5	66. 0	28. 5	0deg	359	
1. 33333	49. 2	QP	20. 1	0.3	32. 2	37. 4	65. 0	27. 6	0deg	359	

CHART: WITH FACTOR, ANT TYPE: LOOP. Except for the data below: adequate margin data below the limits. CALCULATION: RESULT[dBuV] = READING[dBuV] + ANT FACTOR[dB] + LOSS[dB] (CABLE + ATTEN. - AMP.)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 27 of 52
Issued date : July 22, 2008
Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna D (Full)

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date : 2008/07/10

 Company
 : Mitsubishi Electric Corporation
 Report No.
 : 281E0193-H0-02

 Kind of EUT
 : SMART KEYLESS SYSTEM
 Power
 : DC 3. OV

 Model No.
 : SKE114-03 (Antenna D)
 Temp. / Humi
 : 26 deg. C. / 62 %

 Serial No.
 : 20080624-01
 Operator
 : Takahiro Hatakeda

 ${\bf Mode \ / \ Remarks \ : \ Continuous \ Transmitting \ 133.33kHz (Full), \ ANT: Z-axis, \ ECU: X-axis}$

	Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
	[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
Г	0. 13333	97. 7	PEAK	20. 3	0.1	32. 3	85. 8	125. 0	39. 2	0deg	272	worst
	0. 13333	92.6	PEAK	20. 3	0.1	32. 3	80. 7	125. 0	44. 3	90deg	196	
	0. 13333	96. 1	PEAK	20. 3	0.1	32. 3	84. 2	125. 0	40.8	45deg	250	
	0. 13333	96. 7	AV	20. 3	0.1	32. 3	84. 8	105. 1	20. 3	0deg	272	
	0. 26670	75. 6	PEAK	20. 2		32. 2		119.1	55. 3	0deg	271	
	0. 26670	61.4	AV	20. 2	0.2	32. 2		99. 1	49. 5	0deg	271	
	0.40000	73. 6	PEAK	20. 2	0.2	32. 2		115. 6	53. 8	0deg	263	
	0.40000	59.6	AV	20. 2	0.2	32. 2	47. 8	95. 6	47. 8	0deg	263	
	0. 53332	57. 5	QP	20. 2	0.2	32. 2	45. 7	73. 1	27. 4	0deg	265	
	0.66666	61.3	QP	20. 1	0.2	32. 2	49. 4	71. 1	21. 7	0deg	259	
	0.79993	51.0	QP	20. 1	0.2	32. 2		69. 5	30. 4	0deg	276	
	0. 93333	54. 1	QP	20. 1	0.2	32. 2	42. 2	68. 2	26. 0	0deg	250	
	1.06667	46.1	QP	20. 1	0.2	32. 2	34. 2	67.0	32. 8	0deg	276	
	1. 19997	51.6	QP	20. 1	0.3	32. 2		66. 0	26. 2	0deg	275	
	1. 33333	40.8	QP	20. 1	0.3	32. 2	29. 0	65. 0	36. 0	0deg	283	
		·										
				1 1								
				i i								
		'										İ
												İ

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 28 of 52 Page **Issued date** : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna D (Half)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/10

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03 (Antenna D) 20080624-01 281E0193-H0-02 DC 3.0V 26 deg.C. / 62 % Takahiro Hatakeda Company Kind of EUT Model No. Serial No. Report No. Power Temp. / Humi. Operator

Remarks : Continuous Transmitting 133.33kHz(Half), ANT:Z-axis, ECU:X-axis

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
0. 13333		PEAK	20. 3	0. 1	32. 3	79. 5			0deg	271	worst
0. 13333		PEAK	20. 3	0. 1	32.3	77. 5	125. 0	47.5	45deg	255	
0. 13333		AV	20. 3		32.3	78. 6	105. 1	26. 5	0deg	271	
0. 13333		PEAK	20. 3	0. 1	32.3	74. 4	125. 0		90deg	175	
0. 26670	65. 2	PEAK	20. 2	0. 2		53.4	119. 1	65. 7	0deg	271	
0. 26670		AV	20. 2	0. 2		39.6	99. 1	59. 5	0deg	271	
0. 40000	67. 3	PEAK	20. 2	0. 2		55. 5	115. 6		0deg	260	
0.40000		AV	20. 2			41.7	95. 6		0deg	260	
0. 53332	51.5	QP	20. 2	0. 2	32.2	39. 7	73. 1	33. 4	0deg	269	
0.66666	53. 8	QP	20. 1	0. 2		41.9		29. 2	0deg	267	
0. 79993	46. 3	QP	20. 1	0. 2		34. 4	69. 5	35. 1	0deg	263	
0. 93333		QP	20. 1	0. 2		30.0		38. 2		260	
1.06667	42. 5	QP	20. 1	0. 2		30.6	67. 0		0deg	257	
1. 19997	38. 2	QP	20. 1	0. 3		26. 4	66. 0		0deg	247	
1. 33333	39. 1	QP	20. 1	0. 3	32.2	27. 3	65. 0	37. 7	0deg	284	
	l l										
	l l										

CHART: WITH FACTOR, ANT TYPE: LOOP. Except for the data below: adequate margin data below the limits. CALCULATION: RESULT[dBuV] = READING[dBuV] + ANT FACTOR[dB] + LOSS[dB] (CABLE + ATTEN. - AMP.)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 29 of 52 Page Issued date : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna E(Full)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab.

No. 3 Semi Anechoic Chamber Date : 2008/07/10

: 28|E0193-H0-02 : DC 3.0V : 26 deg.C. / 56 % : Takahiro Hatakeda Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03(Antenna E) 20080624-01 Report No. Power Temp./ Humi. Operator Company Kind of EUT Model No. Serial No.

 ${\tt Mode / Remarks : Continuous Transmitting 133.33kHz(Full), ANT:Z-axis, ECU:X-axis}$

LIMIT : FCC15.209(a) 3m, 9-90kHz:PK, 110-490kHz:PK, other:QP FCC15.209(a) 3m, 9-90kHz:AV, 110-490kHz:AV, other:QP [dBuV/m] << QP/AV/PEAK DATA >>

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
0. 13333	95. 1	PEAK	20. 3	0. 1	32. 3	83. 2	125. 0	41.8	0deg	270	worst
0. 13333		PEAK	20. 3	0. 1	32.3		125. 0	46. 9	90deg	180	
0. 13333	94. 1	AV	20. 3	0. 1	32.3		105. 1	22. 9	0deg	270	
0. 13333		PEAK	20. 3	0. 1	32.3			43. 5	45deg	231	
0. 26670	57. 1	AV	20. 2	0. 2	32. 2		99. 1	53. 8	0deg	269	
0. 26670		PEAK	20. 2	0. 2				59. 7	0deg	269	
0.40000	73. 3	PEAK	20. 2	0. 2				54. 1	0deg	268	
0.40000		AV	20. 2	0. 2			95. 6	48. 0	0deg	268	
0. 53332		QP	20. 2	0. 2			73. 1	29. 2	0deg	269	
0. 66666	60. 1	QP	20. 1	0. 2			71. 1	22. 9	0deg	264	
0. 79993		QP	20. 1	0. 2		37. 7	69. 5	31.8	0deg	271	
0. 93333		QP	20. 1	0. 2		39. 4	68. 2	28. 8	0deg	269	
1.06667	45. 0	QP	20. 1	0. 2			67. 0	33. 9	0deg	272	
1. 19997		QP	20. 1	0.3	32. 2	34. 9	66. 0	31. 1	0deg	275	
1. 33333	40. 6	QP	20. 1	0.3	32. 2	28. 8	65. 0	36. 2	0deg	269	

CHART: WITH FACTOR, ANT TYPE: LOOP, Except for the data below: adequate margin data below the limits. CALCULATION: RESULT[dBuV] = READING[dBuV] + ANT FACTOR[dB] + LOSS[dB] (CABLE + ATTEN. - AMP.)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 30 of 52
Issued date : July 22, 2008
Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna E(Half)

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No.3 Semi Anechoic Chamber Date: 2008/07/10

 Company
 : Mitsubishi Electric Corporation
 Report No.
 : 281E0193-H0-02

 Kind of EUT
 : SMART KEYLESS SYSTEM
 Power
 : DC 3. OV

 lodel No.
 : SKE11A-03 (Antenna E)
 Temp. / Humi
 : 26 deg.C. / 56 %

 berial No.
 : 20080624-01
 Operator
 : Takahiro Hatakeda

Mode / Remarks : Continuous Transmitting 133.33kHz(Half), ANT:Z-axis, ECU:X-axis

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
0. 13333	83. 8	PEAK	20. 3	0.1	32. 3		125. 0	53. 1	90deg	359	
0. 13333	87.0	PEAK	20. 3	0.1	32. 3	75. 1	125. 0	49. 9	45deg	243	
0. 13333	88. 7	PEAK	20. 3	0.1	32. 3		125. 0	48. 2	0deg		worst
0. 13333	87. 7	AV	20. 3	0.1	32. 3	75. 8	105. 1	29. 3	0deg	273	
0. 26670	61.6	PEAK	20. 2	0.2			119.1	69. 3	0deg	267	
0. 26670		AV	20. 2	0.2			99. 1	63.0	0deg	267	
0.40000	67.7	PEAK	20. 2	0.2			115. 6	59. 7	0deg	273	
0.40000	53.9	AV	20. 2	0.2		42. 1	95. 6	53. 5	0deg	273	
0.53332	48.4	QP	20. 2	0.2		36. 6	73. 1	36. 5		271	
0.66666	55. 1	QP	20. 1	0.2			71. 1	27. 9	0deg	268	
0. 79993	44.4	QP	20. 1	0.2			69. 5	37. 0	0deg	271	
0. 93333	45. 2		20. 1	0.2				34. 9	0deg	270	
1.06667	41.6	QP	20. 1	0.2		29. 7	67. 0	37. 3	0deg	272	
1. 19997	37.4	QP	20. 1	0.3			66. 0	40. 4	0deg	270	
1. 33333	38.9	QP	20. 1	0.3	32. 2	27. 1	65. 0	37. 9	0deg	269	

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 31 of 52 Page **Issued date** : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna F (Full)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/10

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03 (Antenna F) 20080624-01 281E0193-H0-02 DC 3.0V 26 deg.C. / 56 % Takahiro Hatakeda Company Kind of EUT Model No. Serial No. Report No. Power Temp. / Humi. Operator

Remarks : Continuous Transmitting 133.33kHz(Full), ANT:Z-axis, ECU:X-axis

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
0.13333	96. 3	PEAK	20. 3	0. 1	32.3	84. 4	125. 0		0deg	223	worst
0. 13333	95. 2	PEAK	20. 3	0. 1	32.3	83. 3	125. 0		45deg	297	
0. 13333	94. 5	PEAK	20. 3	0. 1	32.3	82.6	125. 0	42. 4	90deg	275	
0. 13333	95. 3	AV	20. 3	0. 1	32.3	83. 4	105. 1		0deg	223	
0. 26670	75. 9	PEAK	20. 2	0. 2	32. 2	64. 1	119. 1		0deg	272	
0. 26670	61.8	AV	20. 2	0. 2	32. 2	50.0	99. 1		0deg	272	
0.40000	73. 7	PEAK	20. 2	0. 2	32. 2	61.9	115. 6		0deg	271	
0.40000	59.8	AV	20. 2	0. 2	32. 2	48.0	95. 6		0deg	271	
0. 53332	57. 3	QP	20. 2	0. 2	32. 2	45. 5	73. 1		0deg	272	
0.66666	62. 1	QP	20. 1	0. 2	32. 2		71. 1	20. 9	0deg	270	
0. 79993	51. 2	QP	20. 1	0. 2	32. 2	39.3	69. 5		0deg	273	
0. 93333	55. 0	QP	20. 1	0. 2	32. 2	43. 1	68. 2		0deg	268	
1.06667	46. 6	QP	20. 1	0. 2	32. 2	34. 7	67. 0	32. 3	0deg	274	
1. 19997	51.4	QP	20. 1	0.3	32. 2	39.6	66. 0	26. 4	0deg	270	
1. 33333	41.8	QP	20. 1	0.3	32. 2	30.0	65. 0	35.0	0deg	271	

CHART: WITH FACTOR, ANT TYPE: LOOP. Except for the data below: adequate margin data below the limits. CALCULATION: RESULT[dBuV] = READING[dBuV] + ANT FACTOR[dB] + LOSS[dB] (CABLE + ATTEN. - AMP.)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 32 of 52 Issued date : July 22, 2008 Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna F (Half)

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No.3 Semi Anechoic Chamber Date: 2008/07/10

 Company
 : Mitsubishi Electric Corporation
 Report No.
 : 281E0193-H0-02

 Kind of EUT
 : SMART KEYLESS SYSTEM
 Power
 : DC 3. OV

 lodel No.
 : SKE11A-03 (Antenna F)
 Temp. / Humi
 : 26 deg.C. / 56 %

 berial No.
 : 20080624-01
 Operator
 : Takahiro Hatakeda

 ${\bf Mode \ / \ Remarks \ : \ Continuous \ Transmitting \ 133.33kHz \, (Half), \ ANT: Z-axis, \ ECU: X-axis}$

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
0. 13333	89.8	PEAK	20. 3	0.1	32. 3	77. 9	125. 0	47. 1	45deg	233	
0.13333	86.6	PEAK	20. 3	0.1	32. 3	74. 7	125.0	50.3	90deg	359	
0.13333	91.5	PEAK	20. 3	0.1	32. 3	79. 6	125.0	45. 4	0deg		worst
0.13333	90.6	AV	20. 3	0.1	32. 3		105. 1	26. 4	0deg	271	
0.26670	65.8	PEAK	20. 2	0. 2	32. 2	54.0	119.1	65. 1	0deg	270	
0.26670	51.7	AV	20. 2	0. 2			99. 1	59. 2	0deg	270	
0.40000	67.5	PEAK	20. 2	0. 2		55. 7	115. 6	59. 9	0deg	271	
0.40000	53.7	AV	20. 2	0. 2	32. 2	41.9	95. 6	53. 7	0deg	271	
0.53332	50.6	QP	20. 2	0. 2	32. 2	38. 8	73. 1	34. 3	0deg	270	
0.66666	54. 5	QP	20. 1	0. 2	32. 2	42. 6	71. 1	28. 5	0deg	269	
0.79993	46. 2	QP	20. 1	0. 2			69. 5	35. 2	0deg	272	
0.93333	44.0	QP	20. 1	0. 2	32. 2	32. 1	68. 2	36. 1	0deg	265	
1.06667	43.0	QP	20. 1	0. 2	32. 2	31.1	67. 0	35. 9	0deg	272	
1. 19997	37.6	QP	20. 1	0.3	32. 2	25. 8	66. 0	40. 2	0deg	270	
1.33333	40.0	QP	20. 1	0.3	32. 2	28. 2	65. 0	36. 8	0deg	271	
	1										

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 33 of 52 Issued date : July 22, 2008 Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna G (Full)

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No.3 Semi Anechoic Chamber Date: 2008/07/10

 Company
 : Mitsubishi Electric Corporation
 Report No.
 : 281E0193-H0-02

 Kind of EUT
 : SMART KEYLESS SYSTEM
 Power
 : DC 3. OV

 lodel No.
 : SKE11A-03 (Antenna G)
 Temp. / Humi
 : 26 deg.C. / 56 %

 berial No.
 : 20080624-01
 Operator
 : Takahiro Hatakeda

 ${\bf Mode \ / \ Remarks \ : \ Continuous \ Transmitting \ 133.33kHz (Full), \ ANT: Z-axis, \ ECU: X-axis}$

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
0. 13333	92. 7	PEAK	20. 3	0.1	32. 3		125. 0	44. 2		359	
0. 13333	96. 2	PEAK	20. 3		32. 3	84. 3	125. 0	40. 7	45deg	236	
0. 13333	97.7	PEAK	20. 3	0.1	32. 3		125. 0	39. 2	0deg		worst
0. 13333	96. 7	AV	20. 3	0.1	32. 3	84. 8	105. 1	20. 3	0deg	268	
0. 26670	76.5	PEAK	20. 2				119.1	54. 4	0deg	270	
0. 26670	62.3		20. 2	0.2			99. 1	48. 6	0deg	270	
0.40000	73.7	PEAK	20. 2	0.2			115. 6	53. 7	0deg	271	
0.40000	59.8	AV	20. 2	0.2	32. 2	48. 0	95. 6	47. 6	0deg	271	
0. 53332	55. 5	QP	20. 2	0.2		43. 7	73. 1	29. 4	0deg	265	
0. 66666	62.3	QP	20. 1	0.2			71. 1	20. 7	0deg	268	
0. 79993	51.3	QP	20. 1	0.2			69. 5	30. 1	0deg	272	
0. 93333	55. 2	QP	20. 1	0.2			68. 2	24. 9	0deg	270	
1.06667	46. 7	QP	20. 1	0.2		34. 8	67. 0	32. 2	0deg	272	
1. 19997	51.5	QP	20. 1	0.3			66. 0	26. 3		271	
1. 33333	41.9	QP	20. 1	0.3	32. 2	30. 1	65. 0	34. 9	0deg	273	

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 34 of 52 Issued date : July 22, 2008 Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

Radiated Emission below 30MHz (Fundamental and Spurious Emission) Antenna G (Half)

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No.3 Semi Anechoic Chamber Date: 2008/07/10

 Company
 : Mitsubishi Electric Corporation
 Report No.
 : 281E0193-H0-02

 Kind of EUT
 : SMART KEYLESS SYSTEM
 Power
 : DC 3. OV

 lodel No.
 : SKE11A-03 (Antenna G)
 Temp. / Humi
 : 26 deg.C. / 56 %

 berial No.
 : 20080624-01
 Operator
 : Takahiro Hatakeda

 ${\tt Mode / Remarks : Continuous Transmitting \ 133.33kHz (Half), \ ANT: Z-axis, \ ECU: X-axis}$

Freq.		Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna	Table	Comment
[MHz]		[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		[deg]	
0.13	333	91.5	PEAK	20. 3	0.1	32. 3	79. 6	125.0	45. 4	0deg	271	worst
0.13		89.8	PEAK	20. 3	0.1	32. 3	77. 9	125. 0	47. 1	45deg	238	
0.13		90.5	AV	20. 3	0.1	32. 3	78. 6	105. 1	26. 5	0deg	271	
0.13		86. 5	PEAK	20. 3	0.1	32. 3		125. 0	50.4	90deg	359	
0.26		51.6	AV	20. 2	0.2	32. 2			59. 3	0deg	270	
0.26		65.6	PEAK	20. 2	0.2	32. 2			65. 3	0deg	270	
0.40		53.7	AV	20. 2	0.2	32. 2		95. 6	53. 7	0deg	271	
0.40		67.7	PEAK	20. 2	0.2	32. 2	55. 9		59. 7	0deg	271	
0.53		50.9	QP	20. 2	0.2	32. 2	39. 1	73. 1	34. 0	0deg	272	
0.66		54. 5	QP	20. 1	0.2	32. 2		71. 1	28. 5	0deg	270	
0.79		46.3	QP	20. 1	0.2	32. 2			35. 1	0deg	269	
0.93		44.0	QP	20. 1	0.2	32. 2			36. 1	0deg	271	
1.06		43.1	QP	20. 1	0.2	32. 2	31. 2	67. 0	35. 8	0deg	270	
1.19		37.9	QP	20. 1	0.3	32. 2		66. 0	39. 9	0deg	272	
1.33	333	39.9	QP	20. 1	0.3	32. 2	28. 1	65. 0	36. 9	0deg	268	
	l											
	- 1											
	- 1											
	[

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 35 of 52
Issued date : July 22, 2008
Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna A (Full)

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date : 2008/07/09

F	D di		Antenna	Loss&	Local	Annala	H. C. Lak		1.1	M	
Frequency	Reading	DET	Factor	Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
49. 736		QP	10. 2	-24. 7	22. 3	95	100		40.0		
49. 738			10. 2	-24. 7	16.0		400		40.0		
105. 992	25. 5	QP	10.8	-23. 9	12. 4	137			43.5	31.1	
106. 008		QP	10.8	-23.9	20. 5		100		43.5		
115. 581	33. 6	QP	12.0	-23. 7	21. 9				43.5		
116. 661	36. 7	QP	12. 2	-23. 7	25. 2	0	100		43.5		
157. 340			15. 2	-23. 3	23. 8	71	100		43.5		
157. 880		QP	15.3	-23.3	24. 1	0	202		43.5	19.4	
235. 514			16.4	-22.7	21. 2		100		46.0		
237. 894			16.4	-22.6	18. 7		287		46.0		
361. 702			16.4	-21.7	16. 9		100		46.0		
361. 921	23. 2	QP	16.4	-21.7	17. 9	307	100	Hori.	46.0	28. 1	
										i	
										l i	
										l [

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS(CABLE+ATTEN.) - GAIN(AMP)

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 36 of 52 Issued date : July 22, 2008 Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna A (Half)

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date : 2008/07/09

Frequency	D di		Antenna	Loss&	Local	Annat .	H. C. Lake		1.1-14	Manager 1	
Frequency	Reading	DET	Factor	Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
49. 732		QP	10. 2	-24. 7	14. 1	0	400	Hori.	40.0	25. 9	
49. 738		QP	10. 2	-24.7	19. 8	107	100	Vert.	40.0	20. 2	
105. 998	33. 9	QP	10.8	-23. 9	20. 8	88	100	Vert.	43.5	22.7	
107. 049		QP	10.9	-23.8	13. 6			Hori.	43.5	29.9	
116. 141	31.6	QP	12. 1	-23.7	20. 0	213	319	Hori.	43.5	23. 5	
116. 934	35. 2	QP	12. 2	-23.7	23. 7	0	100	Vert.	43.5	19.8	
157. 381	32. 8	QP	15. 2	-23.3	24. 7	94	100	Vert.	43.5	18.8	
157. 592	32. 5	QP	15. 2	-23.3	24. 4		220	Hori.	43.5	19.1	
235. 599		QP	16.4	-22.7	21.4	69	100	Vert.	46.0	24. 6	
236. 821	24. 7	QP	16.4	-22.6	18. 5	0	265	Hori.	46.0	27. 5	
363. 082	22. 1	QP	16.4	-21.7	16.8		100	Vert.	46.0	29. 2	
363. 482	23. 6	QP	16.4	-21.7	18. 3	286	100	Hori.	46.0	27.7	
										1	
										ı	
										1	
										1	
										ľ	
										1	
]	

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS(CABLE+ATTEN.) - GAIN(AMP)

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 37 of 52 Page Issued date : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna B (Full)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03(Antenna B) 20080624-01 : 28|E0193-H0-02 : DC 3.0V : 24 deg.C. / 65 % : Hisayoshi Sato Report No. Power Temp./Humi. Engineer

Mode / Remarks : Continuous Transmitting 133.33kHz(Full), ANT Worst axis: Z, ECU Worst axis:X

Frequency	Reading	DET	Antenna	Loss&	Level	Angle	Height	B. I	Limit	Margin
[MHz]	[dBuV]	DET	Factor [dB/m]	Gain [dB]	[dBuV/m]	[Deg]	[cm]	Polar.	[dBuV/m]	[dB]
48, 523		QP	10.5	-24.7	25. 3	229	300	Hori.	40.0	14. 7
48, 660	40.8	QP	10.5	-24. 7	26.6	135	313		40.0	13. 4
116. 919		QP	12. 2	-23. 7	23. 8	128		Hori.	43.5	19. 7
118. 838		QP	12. 4	-23. 7	23. 8	137	137	Vert.	43.5	19. 7
152, 927			15. 0	-23. 4	20. 9	91	169	Hori.	43.5	
152. 927		QP	15. 0	-23. 4	24. 5	116	104	Vert.	43.5	19.0
185, 290		QP	16. 4	-23. 2	24. 2	132		Vert.	43.5	19. 3
186. 913		QP	16. 4	-23. 1	19.3	4	300	Hori.	43.5	
221, 222			16.3	-22. 8	20.8	143		Hori.	46.0	
221. 742	29.6	QP	16.3	-22. 8	23. 1	163		Vert.	46.0	22. 9
314, 028		QP	15. 0	-22. 0	17. 9	0	100	Vert.	46.0	28. 1
316. 834		QP	15. 1	-22. 0	21.1	182		Hori.	46.0	24. 9
310.034	20.0	ur	10.1	-22.0	21. 1	102	100	HOLL.	40.0	24. 3
			l							
			i I							
			i I							
			i I							
							1			
			i				1			

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 38 of 52 Page **Issued date** : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna B (Half)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03(Antenna B) 20080624-01 Report No. Power Temp./Humi. Engineer : 28|E0193-H0-02 : DC 3.0V : 24 deg.C. / 65 % : Hisayoshi Sato

Mode / Remarks : Continuous Transmitting 133.33kHz(Half), ANT Worst axis: Z, ECU Worst axis:X

Frequency	Reading		Antenna	Loss&	Level	Angle	Height		Limit	Margin
	_	DET	Factor	Gain				Polar.		
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]
51.086		QP	9.8	-24. 6	20.9	265	301	Hori.	40.0	19.1
51. 336		QP	9.8	-24. 6	18.3	148	100	Vert.	40.0	21.7
103. 046	29.4	QP	10.4	-23. 9	15.9	59	300	Hori.	43. 5	27. 6
103. 046		QP	10.4	-23. 9	20.9	84	100	Vert.	43. 5	22. 6
125. 071	34.0	QP	13. 1	-23. 6	23.5	158	100	Vert.	43. 5	20.0
125. 352	32.5	QP	13. 1	-23.6	22.0	220	328	Hori.	43. 5	21.5
152. 635	32.0	QP	15.0	-23.4	23.6	121	100	Vert.	43. 5	19.9
155. 509	31.7		15. 2	-23. 3	23.6	110	100	Hori.	43. 5	19.9
184. 749	31.1	QP	16. 4	-23. 2	24. 3	121	100	Vert.	43. 5	19. 2
185. 831	26.6	QP	16. 4	-23. 2	19.8	160	300	Hori.	43. 5	23.7
319. 639	29.1	QP	15. 2	-22.0	22. 3	182	100	Hori.	46.0	23.7
334. 042	25.0	QP	15. 6	-21.9	18.7	239	100	Vert.	46.0	27. 3
							1			

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 39 of 52
Issued date : July 22, 2008
Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna C (Full)

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date : 2008/07/09

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]	DE.	[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]	rorur.	[dBuV/m]	[dB]	OGIIIIIOTTE
57. 744	47. 1	QP	8.3	-24. 5	30. 9	0	400	Hori.	40.0	9.1	
57. 746	42. 5	QP	8.3	-24.5	26. 3	93	100	Vert.	40.0	13.7	
107. 896	34. 2	QP	11.0	-23.8	21.4	107	100	Vert.	43.5	22.1	
108. 161	27. 0	QP	11.1	-23.8	14. 3	137	400	Hori.	43.5	29. 2	
118. 256	31.0	QP	12.4	-23. 7	19. 7	203	288	Hori.	43.5	23.8	
118. 788	36. 2	QP	12. 4	-23.7	24. 9		100	Vert.	43.5	18.6	
155. 782	34. 9	QP	15. 2	-23.3	26. 8	106	100	Vert.	43.5	16.7	
156. 552		QP	15. 2	-23.3	25. 6		288	Hori.	43.5	17. 9	
236. 556	23. 3		16.4	-22.6	17. 1		100	Hori.	46.0	28. 9	
236. 616	26. 2	QP	16.4	-22.6	20. 0	72	100	Vert.	46.0	26.0	
308. 242	26. 2		14.8	-22.0	19. 0		100	Hori.	46.0	27.0	
309. 042	25. 4	QP	14.8	-22.0	18. 2	299	100	Vert.	46.0	27.8	
										,	
										ļ.	
										ı	
										ı	
			ŀ							1	
										l	
			i i							1	
										1	
							1			ľ	
										1	

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 40 of 52
Issued date : July 22, 2008
Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna C (Half)

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date : 2008/07/09

F	Deadles		Antenna	Loss&	Local	Annala	11.1.4.4		1.114	M	
Frequency	Reading	DET	Factor	Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
57. 728		QP	8.3	-24. 5	22. 4	0	400		40.0		
57. 736		QP	8.3	-24. 5	19. 1	91	100		40.0		
108. 364	32. 7	QP	11.1	-23.8	20. 0	96	100		43.5	23.5	
108. 768		QP	11.1	-23.8	13. 9				43.5		
118. 786		QP	12.4		18. 8		295		43.5		
119. 336		QP	12.5	-23.7	23. 2		100		43.5		
155. 756		QP	15. 2	-23.3	23. 4		246		43.5		
156. 279		QP	15. 2	-23. 3	25. 5				43.5	18.0	
234. 524		QP	16.4	-22.7	20. 0		100		46.0		
236. 324		QP	16.4	-22.6	17. 7		148		46.0		
310. 722	24. 9	QP	14.9	-22.0	17. 8				46.0		
311.651	27. 0	QP	14.9	-22.0	19. 9	316	100	Hori.	46.0	26.1	
										l ,	

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS(CABLE+ATTEN.) - GAIN(AMP)

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 41 of 52 Page Issued date : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna D (Full)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03(Antenna D) 20080624-01 Report No. Power Temp./Humi. Engineer : 28|E0193-H0-02 : DC 3.0V : 24 deg.C. / 65 % : Hisayoshi Sato

Mode / Remarks : Continuous Transmitting 133.33kHz(Full), ANT Worst axis: Z, ECU Worst axis:X

Frequency	Reading	DET	Antenna	Loss&	Level	Angle	Height	B. I	Limit	Margin
	_	DET	Factor	Gain			-	Polar.		,
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]
63. 202	36.0	QP	7. 4	-24. 4	19.0	130	100	Vert.	40.0	21.0
65. 482		QP	7. 1	-24. 4	22.0	184	187	Hori.	40.0	18.0
106. 293			10.8	-23. 8	17. 4	150		Hori.	43. 5	26. 1
106. 293		QP	10.8	-23. 8	25. 4	103	100	Vert.	43. 5	18.1
120. 663		QP	12. 6	-23. 7	27.8	178		Vert.	43. 5	15.7
120. 670		QP	12. 6	-23. 7	26. 2	223	154	Hori.	43. 5	17. 3
153. 749		QP	15. 1	-23.4	34.7	110	104	Vert.	43. 5	8.8
153. 750	39.0	QP	15. 1	-23.4	30.7	111	119	Hori.	43. 5	12.8
223. 707	28.5	QP	16.3	-22. 7	22. 1	143	300	Hori.	46.0	23.9
223. 707	33.5	QP	16.3	-22.7	27. 1	158	100	Vert.	46.0	18.9
368. 737	26.4	QP	16.5	-21.6	21.3	272	100	Hori.	46.0	24.7
371. 543	25.4	QP	16. 6	-21.6	20.4	150	100	Vert.	46.0	25. 6
							l			

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 42 of 52 Page Issued date : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna D (Half)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03(Antenna D) 20080624-01 Report No. Power Temp./Humi. Engineer : 28|E0193-H0-02 : DC 3.0V : 24 deg.C. / 65 % : Hisayoshi Sato

Mode / Remarks : Continuous Transmitting 133.33kHz(Half), ANT Worst axis: Z, ECU Worst axis:X

Frequency	Reading	DET	Antenna	Loss&	Level	Angle	Height	Polar.	Limit	Margin
[MHz]	[dBuV]	DET	Factor [dB/m]	Gain [dB]	[dBuV/m]	[Deg]	[cm]	Polar.	[dBuV/m]	[dB]
63, 547	30.6	QP	7.3	-24, 4	13.5	114	100	Vert.	40.0	26.5
64. 629	31.0	QP QP	7. 2	-24. 4	13.8	173	300	Hori.	40.0	26. 2
104. 128	28.6		10.5	-23. 9	15. 2		300	Hori.	43.5	28.
104. 669	34. 2	QP	10.6	-23. 9	20.9	99	100	Vert.	43.5	22.
120. 707	31.8	QP	12. 6	-23. 7	20. 7	96	235	Hori.	43.5	22.
120. 919	32.7	QP	12. 7	-23.7	21.7	0	100	Vert.	43. 5	21.
154. 396		QP	15. 1	-23. 3	29.4	116		Vert.	43. 5	14.
155. 731	33.8	QP	15. 2	-23. 3	25. 7	115		Hori.	43. 5	17.
222. 117		QP	16. 3	-22. 8	25. 1	150		Hori.	46.0	20.
225. 141	32.5	QP	16. 3	-22. 7	26. 1	0	103	Vert.	46.0	19.
375. 751	25. 2	QP	16. 7	-21.6	20.3	282	100	Hori.	46.0	25.
377. 154	23.5	QP	16.8	-21.6	18.7	163	100	Vert.	46.0	27.
							1			

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 43 of 52 Page Issued date : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna E (Full)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03(Antenna E) 20080624-01 : 28|E0193-H0-02 : DC 3.0V : 24 deg.C. / 65 % : Hisayoshi Sato Report No. Power Temp./Humi. Engineer

Mode / Remarks : Continuous Transmitting 133.33kHz(Full), ANT Worst axis: Z, ECU Worst axis:X

Frequency	Reading	DET	Antenna	Loss&	Level	Angle	Height	Polar.	Limit	Margin
[MHz]	[dBuV]	DET	Factor [dB/m]	Gain [dB]	[dBuV/m]	[Deg]	[cm]	Polar.	[dBuV/m]	[dB]
52. 725		QP	9.4	-24. 5	18.0	166		Hori.	40.0	22.0
							300			
52. 725		QP QP	9.4	-24. 5	15.0	82	100		40.0	25.0
63. 716			7. 3	-24. 4	23. 5	122	100		40.0	16. 5
66. 786		QP	7.0	-24. 3	25. 3	184	300	Hori.	40.0	14. 7
121. 724		QP	12. 7	-23. 7	27. 3	109	142		43.5	16. 2
122. 265		QP	12. 8	-23. 7	29.6	151	100		43.5	13.9
153. 167		QP	15.0	-23. 4	30. 2		112		43. 5	13.0
153. 188		QP	15. 0	-23. 4	34. 2	129	100		43. 5	9. 3
183. 667		QP	16. 4	-23. 2	27. 3	152			43. 5	16.
184. 749		QP	16. 4	-23. 2	30.9	133	100	Vert.	43. 5	12.
660. 021	30.5	QP	19. 6	-20.0	30.1	163	122	Hori.	46.0	16.
665. 162	28.4	QP	19. 7	-19.9	28. 2	177	127	Vert.	46.0	17.8

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 44 of 52 Page Issued date : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna E (Half)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03(Antenna E) 20080624-01 Report No. Power Temp./Humi. Engineer : 28|E0193-H0-02 : DC 3.0V : 24 deg.C. / 65 % : Hisayoshi Sato

Mode / Remarks : Continuous Transmitting 133.33kHz(Half), ANT Worst axis: Z, ECU Worst axis:X

Frequency	Reading	DET	Antenna	Loss&	Level	Angle	Height	B. I	Limit	Margin
[MHz]	[dBuV]	DET	Factor [dB/m]	Gain [dB]	[dBuV/m]	[Deg]	[cm]	Polar.	[dBuV/m]	[dB]
66, 010		QP	7.1	-24. 3	23.5	93	100	Vert.	40.0	16.5
66. 551	42.7	QP	7.0	-24. 3	25. 4	198	328	Hori.	40.0	14.
123. 066	33.9	QP	12. 9	-23. 7	23. 1	85	300	Hori.	43.5	20. 4
123. 066		QP	12. 9	-23. 7	26.0	167	100		43.5	17.
152. 251	32.3	QP	15. 0	-23. 4	23. 9	272		Hori.	43.5	19.
153. 368	39.7	QP	15. 1	-23. 4	31.4	117	104	Vert.	43. 5	12.
230. 605		QP	16. 4	-22.7	28. 2	296			46.0	17.
233. 725		QP	16. 4	-22.7	25. 8	175	156		46.0	20.
351. 904	27.4	QP	16. 1	-21.7	21.8	150		Vert.	46.0	24.
351. 904	28.5	QP	16. 1	-21.7	22.9	202	100	Hori.	46.0	23.
663. 233	29. 2	QP	19. 6	-20.0	28.8	161	118	Hori.	46.0	17.
666. 955	27.2	QP	19. 7	-19.9	27.0	162	120	Vert.	46.0	19.

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 45 of 52 Page **Issued date** : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna F (Full)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03(Antenna F) 20080624-01 Report No. Power Temp./Humi. Engineer : 28|E0193-H0-02 : DC 3.0V : 24 deg.C. / 65 % : Hisayoshi Sato

Mode / Remarks : Continuous Transmitting 133.33kHz(Full), ANT Worst axis: Z, ECU Worst axis:X

Frequency	Reading		Antenna	Loss&	Level	Angle	Height		Limit	Margin
	_	DET	Factor	Gain				Polar.		-
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]
47. 315		QP	10. 9	-24. 7	18.4	148	300	Hori.	40.0	21.6
47. 315		QP	10. 9	-24. 7	14. 2	185	100	Vert.	40.0	25. 8
59. 596	40.1	QP	7.9	-24. 4	23.6	30	300	Hori.	40.0	16.4
59. 606		QP	7.9	-24. 4	19.3	52	100	Vert.	40.0	20. 7
120. 382	36.8	QP	12. 6	-23. 7	25. 7	136	295	Hori.	43. 5	17.8
120. 650	38.3	QP	12. 6	-23. 7	27. 2	167	100	Vert.	43. 5	16.3
153. 831	35.3	QP	15. 1	-23.4	27.0	285	104	Vert.	43. 5	16.5
161. 211	33.4	QP	15. 4	-23. 3	25.5	156	100	Hori.	43. 5	18.0
179. 879	28. 2	QP	16. 4	-23. 2	21.4	215	300	Hori.	43. 5	22. 1
181. 503	30.1	QP	16. 4	-23. 2	23.3	124	100	Vert.	43. 5	20. 2
221. 542	28.0	QP	16. 3	-22.8	21.5	53	300	Hori.	46.0	24. 5
222. 083	32.2	QP	16.3	-22.8	25.7	170	100	Vert.	46.0	20.3
										1
				İ						
							1			

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 46 of 52 Page Issued date : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna F (Half)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03(Antenna F) 20080624-01 Report No. Power Temp./Humi. Engineer : 28|E0193-H0-02 : DC 3.0V : 24 deg.C. / 65 % : Hisayoshi Sato

Mode / Remarks : Continuous Transmitting 133.33kHz(Half), ANT Worst axis: Z, ECU Worst axis:X

Frequency	Reading	DET	Antenna	Loss&	Level	Angle	Height	B. I	Limit	Margin
[MHz]	[dBuV]	DET	Factor [dB/m]	Gain [dB]	[dBuV/m]	[Deg]	[cm]	Polar.	[dBuV/m]	[dB]
66. 536	38.4	QP	7.0	-24. 3	21.1	117	100	Vert.	40.0	18.9
66, 803	38. 4 43. 1	QP	7.0			161	323	Hori.	40.0	
		QP		-24. 3	25. 8					14. 2
120. 931	38.0		12. 7	-23. 7	27. 0	215		Hori.	43.5	16.5
121. 748	39.8	QP	12. 7	-23. 7	28.8	171	110		43.5	14. 7
153. 886	37.2	QP	15. 1	-23. 3	29.0	254		Vert.	43.5	14.5
162. 526	34.1	QP	15. 5	-23. 3	26. 3	169	300	Hori.	43. 5	17. 2
215. 214	31.2		16. 3	-22. 8	24. 7	159		Hori.	43. 5	18.8
218. 296	31.2		16. 3	-22. 8	24. 7	71	100	Vert.	46.0	
292. 423	24.0	QP	19.5	-22. 1	21.4	172		Hori.	46.0	24. 6
294. 555	28.4	QP	19. 7	-22. 1	26.0	206	100	Vert.	46.0	20.0
367. 335	24. 2	QP	16. 5	-21.6	19.1	191	100	Vert.	46.0	26. 9
370. 140	25.0	QP	16. 6	-21.6	20.0	293	100	Hori.	46.0	26.0

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 47 of 52 Page Issued date : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna G (Full)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03(Antenna G) 20080624-01 : 28|E0193-H0-02 : DC 3.0V : 24 deg.C. / 65 % : Hisayoshi Sato Report No. Power Temp./Humi. Engineer

Mode / Remarks : Continuous Transmitting 133.33kHz(Full), ANT Worst axis: Z, ECU Worst axis:X

Frequency	Reading		Antenna	Loss&	Level	Angle	Height		Limit	Margin
	_	DET	Factor	Gain				Polar.		
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]
30. 000	25.3	QP	18. 9	-25.0	19. 2	89	300	Hori.	40.0	20.
31. 082	29.9	QP	18. 3	-25.0	23. 2	180	100	Vert.	40.0	16.
61. 881	48.7	QP	7. 5	-24. 4	31.8	162		Hori.	40.0	
61. 881	45.8	QP	7. 5	-24. 4	28. 9	317	100		40.0	11.
117. 737	39.9	QP	12. 3	-23. 7	28. 5	200		Hori.	43. 5	15.
118. 258	38.4	QP	12. 4	-23. 7	27. 1	58	100	Vert.	43. 5	16.
215. 115	32.2	QP	16. 3	-22. 8	25.7	123		Vert.	43. 5	17.
223. 754	27.4	QP	16. 3	-22. 7	21.0	210		Hori.	46.0	25.
333. 464	28.4	QP	15. 6	-21.9	22. 1	122		Hori.	46.0	23.
333. 654	23.7	QP	15. 6	-21.9	17.4	241	100	Vert.	46.0	28.
890. 588	24.4	QP	21.3	-17. 9	27.8	335	100		46.0	18.
891. 991	23.1	QP	21. 3	-17.8	26.6	331	100	Hori.	46.0	19.

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 48 of 52 Page Issued date : July 22, 2008 : August 20, 2008 Revised date

FCC ID : WAZX1T805SKE11A03

Radiated Emission above 30MHz (Spurious Emission) Antenna G (Half)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 3 Semi Anechoic Chamber Date: 2008/07/09

Mitsubishi Electric Corporation SMART KEYLESS SYSTEM SKE11A-03(Antenna G) 20080624-01 Report No. Power Temp./Humi. Engineer : 28|E0193-H0-02 : DC 3.0V : 24 deg.C. / 65 % : Hisayoshi Sato

Mode / Remarks : Continuous Transmitting 133.33kHz(Half), ANT Worst axis: Z, ECU Worst axis:X

200M

300M

500M

700M 1G Frequency[Hz]

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margir
[MHz]	[dBuV]	DLI	[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]	TOTAL.	[dBuV/m]	[dB]
60. 604	41.3	QP	7.7	-24. 4	24.6	157	300	Hori.	40.0	15.
61. 604	38.9	QP	7. 6	-24. 4	22. 1	300	100	Vert.	40.0	17.
118. 018	37.0	QP	12. 3	-23. 7	25.6	200	300	Hori.	43. 5	17.
118.818	36.0	QP	12. 4	-23. 7	24.7	69	100	Vert.	43. 5	18.
143. 086	31.3	QP	14. 5	-23. 5	22. 3	141	300	Hori.	43. 5	21.
143. 086	27.5	QP	14. 5	-23.5	18.5	124	100	Vert.	43. 5	25.
219. 378	32.3	QP	16. 3	-22.8	25.8	110	100	Vert.	46. 0	20.
224. 399	26.8	QP	16. 3	-22.7	20.4	254	300	Hori.	46. 0	25.
333. 040	23.9	QP	15. 6	-21.9	17.6	259	100	Vert.	46. 0	28.
333. 591	28.5	QP	15. 6	-21.9	22. 2	132	100	Hori.	46. 0	23.
859. 725	24. 2	QP	21.5	-18. 2	27.5	38	100	Hori.	46. 0	18
861. 128	23.5	QP	21.5	-18. 2	26.8	103	100	Vert.	46.0	19.

50M

70M

100M

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP)

UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Page : 49 of 52
Issued date : July 22, 2008
Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

-26dB Bandwidth

UL Japan, Inc.

Head Office EMC Lab. No.3 Semi Anechoic Chamber

COMPANY : Mitsubishi Electric Corporation REPORT NO : 28IE0193-HO-02 EQUIPMENT : SMART KEYLESS SYSTEM REGULATION : Reference data

 MODEL
 : SKE11A-03
 TEST DISTANCE : 3m

 S/ N
 : 20080624-01
 DATE : 07/09/2008

 POWER
 : DC 3.0V
 TEMPERATURE : 23 deg.C.

 MODE
 : Continuous Transmitting 133.33kHz
 HUMIDITY : 64 %

Engineer : Takahiro Hatakeda

FREQ	-26dB Bandwidth
[kHz]	[kHz]
133.33	10.156

Transmit Freq Error -232.610 Hz x dB Bandwidth 10.156 kHz

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 50 of 52
Issued date : July 22, 2008
Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

99% Occupied Bandwidth

UL Japan, Inc.

Head Office EMC Lab. No.3 Semi Anechoic Chamber

COMPANY : Mitsubishi Electric Corporation REPORT NO : 28IE0193-HO-02 EQUIPMENT : SMART KEYLESS SYSTEM REGULATION : Reference data

 MODEL
 : SKE11A-03
 TEST DISTANCE : 3m

 S/ N
 : 20080624-01
 DATE : 07/09/2008

 POWER
 : DC 3.0V
 TEMPERATURE : 23 deg.C.

 MODE
 : Continuous Transmitting 133.33kHz
 HUMIDITY : 64 %

Engineer : Takahiro Hatakeda

FREQ	99% Occupied Bandwidth
[kHz]	[kHz]
133.33	10.005

Transmit Freq Error -232.610 Hz x dB Bandwidth 10.156 kHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 51 of 52 Issued date : July 22, 2008

Revised date

: August 20, 2008 FCC ID : WAZX1T805SKE11A03

APPENDIX 3: Test instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Test Item	Calibration Date *
					Interval(month)
MAEC-03	Anechoic Chamber	TDK	Semi Anechoic Chamber 3m	RE	2008/03/25 * 12
MOS-13	Thermo- Hygrometer	Custom	CTH-180	RE	2008/01/10 * 12
MJM-06	Measure	PROMART	SEN1955	RE	-
MSTW-14	EMI measurement program	TSJ	TEPTO-DV	RE	-
MSA-09	Spectrum Analyzer	Advantest	R3273	RE	2007/12/21 * 12
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	RE	2008/06/12 * 12
MLPA-02	Loop Antenna	Rohde & Schwarz	HFH2-Z2	RE	2007/12/12 * 12
MCC-51	Coaxial cable	UL Japan	-	RE	2007/07/26 * 12
MCC-31	Coaxial cable	UL Japan	-	RE	2008/06/20 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	RE	2008/03/06 * 12
MLPA-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	RE	2007/11/06 * 12
MCC-112	Coaxial cable	Fujikura/Suhner/TS J	-	RE	2008/07/03 * 12
MCC-30	Coaxial cable	UL Japan	-	RE	2008/06/20 * 12
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	RE	2008/01/12 * 12
MLA-03	Logperiodic Antenna	Schwarzbeck	USLP9143	RE	2008/01/12 * 12
MAT-30	Attenuator(6dB)	TME	UFA-01	RE	2008/03/10 * 12
MSA-10	Spectrum Analyzer	Agilent	E4448A	RE	2008/02/27 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Spurious emission, -26dB Bandwidth, 99% Occupied Bandwidth

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 52 of 52 Issued date : July 22, 2008 Revised date : August 20, 2008

FCC ID : WAZX1T805SKE11A03

APPENDIX 4: Data for Pulse line

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN