

离散数学复习

软件73班 曹大华 QQ 940141567 软件73班 田丰瑞 QQ 747458467 2021.1.11

主要内容

- 一、集合论
- 二、关系
- 三、函数
- 四、代数系统
- 五、图论

掌握每个符号的基本定义

 $a \in S$, $a \notin S$, 2^A , A', $A \cap B$, $A \cup B$, $A \setminus B$, $A \oplus B$, $A \otimes B$

 $A \subseteq B \Leftrightarrow \forall x (x \in A \rightarrow x \in B)$

 $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$

教材出现过的定理(最好)掌握其推导过程 /

(教材p89定理3.7) 进一步思考,集合吸收率 $(A = A \cup (A \cap B)$) 能否由此证明?

集合宏运算的运算法则

(教材p90定理3.8中6、7)

 $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C) = (A \cap B) \setminus C$

这个式子将∩换成U还成立吗?

(教材p91定理3.9中10)

如果 $A \oplus B = A \oplus C$, 那么B = C

环和(对称差)有消去律

集合论的一些定理和运算法则等

教材p89定理3.6 集合的De Morgan定律

教材p89定理3.7 设A,B为两个集合,那么下面三种说法是等价的。

$$A\subseteq B \Leftrightarrow A\cup B=B \Leftrightarrow A\cap B=A$$

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

$$(6)A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$$

$$(7)A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$$

教材p91集合的环和运算, p92集合的环积运算, p93页集合的大并与大交

教材p91定理3.9(10) 如果 $A \oplus B = A \oplus C$,那么B = C

教材p97习题3 (3) Ø ⊆ {Ø}易错

例p98 11 (3) 充分条件证明 (另一种思路)

下证
$$A \cap B = A \cup B \Rightarrow A = B$$

$$A \cap B = A \cup B \Rightarrow (A \cap B) \cup B' = (A \cup B) \cup B'$$

$$\Leftrightarrow (A \cup B') \cap (B \cup B') = A \cup (B \cap B')$$

$$\Leftrightarrow (A \cup B') \cap X = A \cup X$$

$$\Leftrightarrow A \cup B' = X$$
 同理可证 $A \cap B = A \cup B \Rightarrow (A \cap B) \cup A' = (A \cup B) \cup A'$
$$\Leftrightarrow B \cup A' = X$$

那么,
$$B = B \cap X$$

 $= B \cap (A \cap B')$
 $= (B \cap A) \cup (B \cap B')$
 $= (A \cap B) \cup \emptyset$
 $= A \cap B$

同理可证

$$A = A \cap X = A \cap (B \cup A') = A \cap B$$

因此
$$A = A \cap B = B$$

关系基本概念

集合的叉积的子集

空关系,全关系, 幺关系, 前域, 后域, 关系的图形和矩阵表示法, 逆关系, 复合运算, 复合幂, 闭包

二元关系基本性质

自反, 反自反; 对称, 反对称; 传递;

等价,等价类,商集,秩,划分,相容关系;

半序关系, Hasse图; <u>最大元,最小元;极大元,极小元;上界,下界;上方有</u>

界,下方有界;有界集合,无界集合;上确界,下确界;(判断)

全序关系, 良序关系, 直接后继

注意教材上的定理和例题!

一些定义:自反关系与反自反关系

教材p120定义4.14 **自反关系**:设R是非空集合X上的二元关系。若对每个 $x \in X$,都有 $(x,x) \in R$,则称R是X上的自反关系;

教材p121定义4.15 反自反关系:设R是非空集合X上的二元关系。若对每个x ∈ X, 都有(x,x) ∉ R, 则称R是X上的反自反关系;

• 有没有一种关系可以即不是自反关系,也不是反自反关系? (辽乡台 $X = \{1,2,3,4\}, R = \{(1,1),(2,2)\}$ 不是么. 中相同对

教材p121例4.26,例4.28 在实数范围上,等于关系是自反关系;小于关系是反自反关系,那小于等于关系呢? (教材p128例4.50)

一些定义:对称关系、反对称关系与传递关系

教材p121定义4.16 对称关系: $(\forall x, y \in X)((x, y) \in R \Rightarrow (y, x) \in R)$

教材p121定义4.17 反对称关系: $(\forall x, y \in X)((x, y) \in R \land (y, x) \in R \Rightarrow x = y)$

 $(\forall x, y \in X)((x, y) \in R \land x \neq y \Rightarrow (y, x) \notin R)$

教材p122定义4. 18 传递关系: $(\forall x, y, z \in X)((x/y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R)$

如果一个关系是自反的和对称的,那么他是否是传递关系?

如果一个关系是对称的和传递的,那么他是否是自反关系? (教材p134习题21)

有没有一种关系既是对称关系又是反对称关系? (教材p122例4.38)

- 全关系是自反的,对称的,传递的;
- <u>幺关系是自反的,对称的,反对称的,传递的;</u>
- 空关系是反自反的,对称的,反对称的,传递的

一些概念和性质:关于等价关系,划分,半序关系等

教材p126定理4.15 $R_{\Pi_R} = R$

教材p126定理4.16 $\Pi_{R_{\Pi}} = \Pi$

关于划分一点个人经验: 划分一般用于具体的关系,而若想证明某个关系是等价 关系一般只能从自反、对称和传递关系上证明,想证明这个关系构成了一种划分 比较困难。(例如教材p134习题23(1)个人曾设想证明其构成划分,但最终失败)

- 整除关系,实数间小于等于关系,子集关系都是一种半序关系;
- 半序关系的逆关系仍是一种半序关系; (教材p128)

教材p128定理4.27 半序集若存在最大(小)元则最大(小)元唯一;

• <u>在一个非空的有限半序集上,必有极大元和极小元</u>,但极大元和极小元的 个数不确定。在无穷半序集中,极大元或极小元不一定存在。当极大元或 极小元存在且唯一时,此时的极大元或极小元就成为最大元或最小元。

(教材p129定义4.28后面一段话)

一些概念和性质:关于等价关系,划分,半序关系等

- 对于一个半序集 A 的子集而言,在原来半序关系的作用下,仍为一半序集。但对 A 的子集而言未必由上(下)界存在。其次,即使有上(下)界存在,上(下)界也未必唯一。子集B的上(下)界可以是B中的元素,也可以不在B中而在A中;当子集B有上界时,称B上方有界;当子集B有下界时,称B下方有界;当B有上界和下界时,称B是有界集合;否则称B是无界集合。(教材p129定义4.29后面一段话)
- 只有在B有上(下)界的前提下才能讨论B的上(下)确界的问题,但在B有上(下)界的前提下,不能保证B有上(下)确界。若将B的上(下)确界存在,则B的上下确界一定是唯一的。同时B的上(下)确界可能在B中,也可能不在B中。(教材p129定义4.30后面一段话)

一些概念和性质:关于全序关系,直接后继,良序关系等

教材p130例4.53,例4.54整数的小于等于关系,实数的小于等于关系均为全序关系,但实数的小于等于关系中实数**不存在**直接后继。

关于良序关系: 教材p130定义4.33, 例4.55与p131定理4.18, 例4.56进一步 阐释了全序集和良序集之间的关系。

数材p132 11(1) 设R是A上的二元关系,证明: R是自反的当且仅当 $I_A \subseteq R$ 。

教材p132 11(3) 设R是A上的二元关系,证明:R是对称的当且仅当 $R=\tilde{R}$ 。

• 下证充分性: $\bigvee(X,Y) \in R$ 有 $(X,Y) \in R$ 有 $(X,Y) \in R$ 对于任意的 $(x,y) \in R$,由 $R = \tilde{R}$ 可知 $(x,y) \in \tilde{R}$,则 $(y,x) \in R$,故R是对称的。

• 下证必要性: 对于任意的 $(x,y) \in R$,由R是对称的可知 $(y,x) \in R$,而 $(y,x) \in \tilde{R}$,从西 $R \subseteq \tilde{R}$; 对于任意的 $(x,y) \in \tilde{R}$,有 $(y,x) \in R$,由R是对称的知 $(x,y) \in R$,故 $\tilde{R} \subseteq R$; 综上 $\tilde{R} = R$ 。

教材p132 11(1) 设R是A上的二元关系,证明:R是反对称的当且仅当 $R \cap \tilde{R} \subseteq I_A$ 。

• 下证充分性:

对于任意的 $(x,y) \in R$ 且 $(y,x) \in R$,有 $(x,y) \in R$ 目 $(x,y) \in \tilde{R}$,即 $(x,y) \in R \cap \tilde{R}$,而 $R \cap \tilde{R} \subseteq I_A$,故 $(x,y) \in I_A$,于是x = y,故R是反对称的。

下证必要性:

及对于任意的 $(x,y) \in R \cap \tilde{R}$,有 $(x,y) \in R \perp (x,y) \in \tilde{R}$ $(x,y) \in R \perp (y,x) \in R$,而 $R \neq \mathbb{Z}$ 反对称的,因此x = y,于是 $(x,y) = (x,x) \in I_A$,故 $R \cap \tilde{R} \subseteq I_A$ 。

教材p132 11(5) 设R是A上的二元关系,证明:R是传递的当且仅当 $R \circ R \subseteq R$ 。

• 下证充分性:

• 下证必要性:

对于任意的 $(x,y) \in R \circ R$,均存在 $z \in A$ 使 $(x,z) \in R$ 且 $(z,y) \in R$,由R是传递的,则 $(x,y) \in R$,故 $R \circ R \subseteq R$

教材p132 11(2) 设R是A上的二元关系,证明: R是反自反的当且仅当 $I_A \cap R = \emptyset$ 。

• 下证充分性:

假设其不是反自反的,则存在 $x_0 \in A$,有 $(x_0, x_0) \in R$ 。由 $(x_0, x_0) \in I_A$ 知 $(x_0, x_0) \in I_A \cap R$,与 $I_A \cap R = \emptyset$ 不盾,故其必为反自反关系。

• 下证必要性:

假设 $I_A \cap R \neq \emptyset$, 则必有 $(x_0, y_0) \in I_A \cap R \Rightarrow (x_0, y_0) \in I_A \land (x_0, y_0) \in R$ $\Rightarrow (x_0 = y_0) \land (x_0, y_0) \in R$ $\Rightarrow (x_0, x_0) \in R$

这与R为反自反关系矛盾, 故假设不成立。

函数

函数

函数基本概念和性质

函数,定义域,值域,特征函数(和集合的联系),幺函数; 满射,单射,双射,逆函数,复合函数(<u>教材p140书写顺序</u>),幂等函数; 教材p141定理5.4;

教材p137例5.6 集合的特征函数

集合的基数

等势;有穷集,无穷集,可数集,基数(与教材p85页定理3.1相对比) 教材p144-146 定理5.9,定理5.12,定理5.13(证明都很有意思)

函数习题:关于证明题

教材p158习题7

代数系统

(代数结构/抽象代数/近世代数)

群代数的基本框架

环代数的基本框架

格代数的基本框架

代数系统复习建议

掌握每种代数系统的定义,典型例子要熟悉,各章节中的代数系统都可能出小题,对代数系统的判断很重要。

在群、环、域、格中,群是重中之重,而且大题大概率是群,环、域、格尤其是环、域出大题的可能性低,复习时应有侧重。

运算: 设X是一非空集合, Xⁿ是X的n重叉积集合, $n \in \mathbb{N}$,*是 从Xⁿ到X的关系。若*是从Xⁿ到X的函数,则称*是X上的n元运算。

记作*
$$(x_1, x_2, \dots, x_n) = x$$

特别地, 当n=2时, 通常记作 $x_1*x_2=x$

证明*是X上的运算:证明封闭性和唯一性(即证明*是从 X^n 到X的函数)

封闭性: $\forall x_1, x_2, \dots, x_n \in X$, $\exists y \in X$, 使得*

$$(x_1, x_2, \dots, x_n) = y$$

唯一性: $\forall x_1, x_2, \dots, x_n \in X$, 若* $(x_1, x_2, \dots, x_n) = y_1$ 且* $(x_1, x_2, \dots, x_n) = y_2$, 则 $y_1 = y_2$

代数系统:设X是一非空集合,若 $*_1,*_2,\cdots,*_n$ 分别是X上的运算,则称 $*_1,*_2,\cdots,*_n$ 组成的系统为代数系统。

通常记为n+1元组 $A=< X,*_1,*_2,\cdots,*_n>$,即一个集合与定义在该集合上的运算构成代数系统。

若X是有穷集合,则A为有限代数系统若X是无穷集合,则A为无限代数系统

子代数系统: 设 $A = \langle X, *_1, *_2, ..., *_n \rangle$ 是代数系统,其中 $*_1, *_2, ..., *_n \rangle$ 别是X上的 $p_1, p_2, ..., p_n$ 元运算。设S是X的非空子集, $\Delta_1, \Delta_2, ..., \Delta_n \rangle$ 别是 $*_1, *_2, ..., *_n$ 的子关系,若 $\Delta_1, \Delta_2, ..., \Delta_n$ 分别是X上的 $p_1, p_2, ..., p_n$ 元运算,则称 $< S, \Delta_1, \Delta_2, ..., \Delta_n >$ 是 A的子代数系统。

定理: 设<X,*>是一个代数系统,其中*是X上的运算。设 $S \subseteq X \perp L S \neq \emptyset$,那么<S,*>构成<X,*>的子代数系统的充要条件是运算*在S中满足封闭性。(可推广到< $X,*_1,*_2,...,*_n>)$

性质:结合律、交换律、消去律、分配律有继承性。幺元e和零元0若在子代数系统的集合S中,则也有继承性(即子代数系统中e也是幺元,0也是零元)。

二元运算的性质

- 1. 结合律: (x * y) * z = x * (y * z)
- 2. 交换律: x * y = y * x
- 3. 消去律: $x * y = x * z \Rightarrow y = z$ (左消去律) 且y * x = z *
- $x \Rightarrow y = z$ (右消去律)
- 4. x_0 是幺元: $x_0 * x = x$ (左幺元) 且 $x * x_0 = x$ (右幺元) (幺元常记为e)
- 5. x_0 是零元: $x_0 * x = x_0$ (左零元) 且 $x * x_0 = x_0$ (右零元)
- 6. y_0 是 x_0 的逆元: $y_0 * x_0 = e$ (左逆元) 且 $x_0 * y_0 = e$ (右逆元)
- 7. *对 Δ 满足分配律: $x * (y\Delta z) = (x * y)\Delta(x * z)$ (左分配律)

 $且(y\Delta z) * x = (y * x)\Delta(z * x) (右分配律)$

(以上x, y, z均为∀的)

【例1】设 N_+ 、I、R、 R_+ 、 Q_+ 表示正整数、整数、实数、正实数、正有理数集

- $(1) < N_+, +, \times >$ 是代数系统;
- (2) < N_+ , +, -> 不是代数系统; (1-2=-1 $\notin N_+$)
- (3) < I, +, -> 是代数系统;
- $(4) < N_{+}, \times, \div >$ 不是代数系统; $(1 \div 2 = 0.5 \notin N_{+})$
- (5) < Q_+ ,×,÷>是代数系统;
- (6) $< R_+, \times, \div>$ 是代数系统;
- $(7) < R, +, -, \times, \div >$ 不是代数系统。(不存在实数a,使得 $1 \div 0 = a$)

【例2】设S是非空集合, 2^{S} 是S的幂集, $\cap, \cup, ', \setminus, \oplus$ 分别是交、并、补、差、对称差运算,则 $< 2^{S}, \cap, \cup, ', \setminus, \oplus >$ 是代数系统。

【例3】设 M_n 是n阶实方阵组成的集合,+和 \times 分别是矩阵加法和矩阵乘法,则 $< M_n, +, \times >$ 是代数系统。

【例4】设 $N_m = \{[0]_m, [1]_m, [2]_m, ..., [m-1]_m\}$, $+_m \times_m \neq m$ 模m 加法和乘法,则 $< N_m, +_m, \times_m >$ 是代数系统。

*1	а	b	С		*2	a	b	С
a	а	b	С	大	a	b	С	d
b	b	С	a		b	С	d	е
С	С	а	b		С	d	е	f

则 $< A,*_1>$ 是代数系统, $< A,*_2>$ 不是代数系统(因为不满足封闭性)。

【例6】在代数系统 $< 2^{\{a,b,c\}}$,U, $\cap>$ 中,下列哪些子集S可以构造出子代数系统< S,U, $\cap>$?

$$S_1 = \{\emptyset, \{a\}\} \ \lor \ S_2 = \{\emptyset, \{a\}, \{b\}\} \times \ S_3 = \{\emptyset, \{a\}, \{b\}, \{a, b\}\} \ \lor \ S_4 = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}\} \ \lor \ S_5 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\} \ \lor \ S_6 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\} \ \lor \ S_7 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}\}\} \ \lor \ S_8 = \{\{a\}, \{a, b\}, \{a, c\}, \{a$$

【例7】设< $\{f_1, f_2, f_3, f_4\}$, \circ >是代数系统,其中 \circ 是函数的复合运算。(a)是运算表,判断哪些是其子代数系统。

0	f_1	f_2	f_3	f_4			
f_1	f_1	f_2	f_3	f_4			
f_2	f_2	f_2	f_2	f_2			
f_3	f_3	f_3	f_3	f_3			
f_4	f_4	f_3	f_2	f_1			
(a)							

						1.		
0	f_1	f_2	f_3	105	0	f_1	f_2	f_4
f_1	f_1	f_2	f_3		$\overline{f_1}$	f_1	f_2	f_4
f_2	f_2	f_2	f_2		f_2	f_2	f_2	f_2
f_3	f_3	f_3	f_3		f_4	f_4	f_3	f_1
	툿					不	是	
	0	$ f_2 $				0	$ f_4 $	
	f_2	f_2				f_4	f_1	
						335		

不是

0	f_1	f_2	, d	0	f_1	f_4
f_1	f_1	f_2			f_1	
f_2	f_2	f_2		f_4	f_4	f_1
	是				是	
		0	f_3	f_4		
		f_3	f_3	f_3		
		f_4	f_2	f_1		

不是

结合律

- (1)对于整数运算,加法十和乘法×满足结合律;减法-不满足结合律。
- (2)对于集合运算,交∩、并U、环和⊕都满足结合律;差\不满足结合律。
- (3)对于矩阵运算,加法十和乘法×满足结合律。
- (4) 对于同余集合 N_m , 加法 $+_m$ 和乘法 \times_m 都满足结合律。
- (5)对于运算表,结合律没有明显特征。

交換律

- (1)对于整数运算,加法十、乘法×满足交换律;而减法-不满足交换律。
- (2)对于集合运算,交∩、并U、环和⊕满足交换律,差\不满足交换律。
- (3)对于矩阵运算,加法十满足交换律,乘法×不满足交换律。
- (4) 对于同余集合 N_m , 加法 $+_m$ 和乘法 \times_m 都满足交换律。
- (5)对于运算表,若满足交换律,则该表沿主对角线对称。

*1	a	b	С
а	a	b	С
b	b	a	a
С	С	a	a

满足交换律

*2	а	b	С
а	a	b	a
b	С	С	b
С	a	b	С

不满足交换律

消去律

- (1)对于整数运算,加法+满足消去律,乘法×不满足消去律;而 在正整数运算中,乘法×满足消去律;
- (2)对于集合运算,交∩、并U都不满足消去律,环和⊕满足消去律。
- (3)对于矩阵运算,加法十满足消去律,乘法×不满足消去律。在满秩矩阵运算中,乘法×满足消去律。
- (4)对于同余集合 N_m ,加法 $+_m$ 满足消去律,乘法 \times_m 不满足消去律。
- (5)对于运算表,左消去律是同一行各个元素不同,右消去律是同一列各个元素不同,消去律是同行或同列各个元素不同。

*1	а	b	С		*2	a	b	С	S.V.V
а	а	b	С	满足左消去	а	a	b	С	*************************************
b	а	b	С	律,不满足 右消去律	b	b	С	a	满足消去律
С	а	b	С		С	С	a	b	

幺元

- (1)对于整数运算,加法十的幺元是0,乘法×的幺元是1。
- (2)对于集合运算,交∩的幺元是全集,并U的幺元是空集,环和⊕的幺元是空集。
- (3)对于矩阵运算,加法十的幺元是零矩阵,乘法×的幺元是单位 阵。
- (4)对于同余集合 N_m ,加法 $+_m$ 的幺元是 $[0]_m$,乘法 \times_m 的幺元是 $[1]_m$ 。
- (5)对于运算表, 左幺元对应行与表头相同, 右幺元对应列与表头相同, 幺元对应行和对应列与表头相同。

1	4)	_ , ,	1, 1,—	- 17	1 , 1 , 2 , 1	1110	A 1			
	*1	а	b	С		*2	а	b	С	
	a	а	b	С	a, b, c都 見ナルニ	a	a	b	С	。日ルニ
	b	а	b	С	是左幺元, 没有右幺元	b	b	С	a	a是幺元
	С	a	b	С		С	С	a	b	

零元

- (1)对于整数运算,加法十无零元,乘法×的零元是0。
- (2)对于集合运算,交∩的零元是空集,并U的零元是全集,环和⊕无零元。
- (3)对于矩阵运算,加法十无零元,乘法×的零元是零矩阵。
- (4)对于同余集合 N_m ,加法 $+_m$ 五零元,乘法 \times_m 的幺元是 $[0]_m$ 。
- (5)对于运算表,左零元与其对应行各个元素相同,右零元与其对应列各个元素相同,零元与其对应行和对应列各个元素相同。

*1	a	b	С	支	*2	a	b	С
а	a	b	С	a, b, c都 思士電子	а	a	b	С
b	a	b	С	是右零元, 没有左零元	b	b	b	С
С	a	b	С		С	С	С	С

c是零元

6.1 基本概念

逆元

- (1)对于整数运算, a关于加法十的逆元是-a, 关于乘法×只有1和-1的逆元是本身, 其余元素无逆元。
- (2)对于集合运算,全集关于交∩的逆元是全集,空集关于并U的逆元是空集, 其余元素关于交∩、并U无逆元,每个元素关于环和⊕的逆元是本身。
- (3)对于矩阵运算,关于加法十的逆元是相反数矩阵,关于乘法×只有满秩矩阵有逆元,是其逆矩阵。
- (4)对于同余集合 N_m , $[i]_m$ 关于加法 $+_m$ 的逆元是 $[m-i]_m$,关于乘法 \times_m 的逆元没有通式,需要具体分析。
- (5)对于运算表,先找幺元,元素所在行出现幺元,则幺元对应列的表头元素为右逆元;元素所在列出现幺元,则幺元对应行的表头元素为左逆元;左右逆元相同即为逆元。

*1	а	b	С		*2	a	b	С	型 洲 第一个
a	a	b	С	a是幺元。a的逆元是	а	а	b	a	c是幺元。c的逆元是c,a
b	b	a	a	a, b的逆元是b和c, c的逆元也是b和c。	b	С	С	b	和b无逆元,a和b的左逆 元是b,b的右逆元是a和b
С	С	а	а		С	а	b	С	

6.1 基本概念

分配律

- (1)对于整数运算,乘法×对于加法+满足分配律。
- (2)对于集合运算,交∩对于并U满足分配律,并U对于交∩满足分配律,交∩对于环和⊕满足分配律。
- (3)对于矩阵运算,乘法×对于加法+满足分配律。
- (4) 对于同余集合 N_m , 乘法 \times_m 对于加法 $+_m$ 满足分配律。
- (5)对于运算表,分配律无明显特征。

6.1 基本概念

【例8】设 $\langle X,*\rangle$ 是代数系统,*是X上的二元运算。证明:

- (1) 如果*有幺元,则幺元是唯一的。
- (2) 如果*有零元,则零元是唯一的。
- (3) 如果*满足结合律,元素 $a \in X$ 有逆元,则a的逆元是唯一的。

证明: (1)设 e_1 和 e_2 都是幺元。对于 $x \in X$, $e_1 * x = x$, 取 $x = e_2$ 时,有 $e_1 * e_2 = e_2$; 对于 $x \in X$, $x * e_2 = x$, 取 $x = e_1$ 时,有 $e_1 * e_2 = e_1$ 。根据运算*的唯一性知, $e_1 = e_2$ 。

- (2) 设 e_1 和 e_2 都是零元。对于 $x \in X$, $e_1 * x = e_1$, 取 $x = e_2$ 时,有 $e_1 * e_2 = e_1$; 对于 $x \in X$, $x * e_2 = e_2$, 取 $x = e_1$ 时,有 $e_1 * e_2 = e_2$ 。根据运算*的唯一性知, $e_1 = e_2$ 。
- (3) 设 b_1 和 b_2 都是a的逆元,则 $b_1 = b_1 * e = b_1 * (a * b_2) = (b_1 * a) * b_2 = e * b_2 = b_2$ 。

同态公式

定义: 设< X,*>和< Y, Δ >是两个代数系统,*和 Δ 分别是X和Y上的n元运算,若有一函数h: $X \to Y$,使得对任意(x_1, x_2, \cdots, x_n) $\in X^n$,有h(*(x_1, x_2, \cdots, x_n)) = Δ (h(x_1, x_2, \cdots, x_n)),则称函数h对*和 Δ 保持运算。红色式子称为同态公式。

同态和同构

定义: 设 $A_1 = \langle X, *_1, *_2, \cdots, *_m \rangle$ 和 $A_2 = \langle Y, \Delta_1, \Delta_2, \cdots, \Delta_m \rangle$ 是两个同类型(同类型指运算的个数相等,对应运算的阶相等)的代数系统。若存在函数 $h: X \to Y$,对 A_1 和 A_2 中每一对相应的运算满足同态公式,则称h是从 A_1 到 A_2 的同态函数,称 A_1 到 A_2 同态,称 $\langle h(X), \Delta_1, \Delta_2, \cdots, \Delta_m \rangle$ 为 A_1 的同态象。

- (1) 若h是单射的,则称h是从 A_1 到 A_2 的单同态函数,称<h(X), Δ_1 , Δ_2 , …, $\Delta_m >$ 为 A_1 的单同态象。
- (2) 若h是满射的,则称h是从 A_1 到 A_2 的满同态函数,称 A_2 为 A_1 的满同态象。

同态系统运算性质继承性

设 $\langle X,*\rangle$ 和 $\langle Y,\Delta\rangle$ 是代数系统,其中*和 Δ 分别是X上和Y上的二 元运算, $< h(x), \Delta > 是 < X, *>$ 的同态像。

- (1) 若在< X,*>中*满足结合律,则在< h(x), $\Delta >$ 中 Δ 满足结合律。
- (2) 若在 $\langle X, * \rangle$ 中*满足交换律,则在 $\langle h(x), \Delta \rangle$ 中 Δ 满足交换律。
- (3) 若在 $\langle X, * \rangle$ 中*有幺元e,则在 $\langle h(x), \Delta \rangle$ 中 Δ 有幺元h(e)。
- (4) 若在< X, *>中*有零元0,则在 $< h(x), \Delta >$ 中 Δ 有零元h(0)。
- (5) 若在 $\langle X, * \rangle$ 中x有逆元y,则在 $\langle h(x), \Delta \rangle$ 中h(x)有幺元h(y)。
- (6) 消去律在单射条件下有继承性。

本节要点

- (1)核心是找同态函数
- (2)找同态函数可通过面运算表观察以辅助寻找 (五) (3)
- (3)注意同态是单向的,同构是双向的(因此运算性质的继承性 也相应地是单向和双向的)

【例1】 $< N_+, \times >$ 到 $< \{F, T\}, \wedge >$ 同态(满同态)。

证明:取(满射)函数 $h: N_+ \to \{F, T\}$ 如下:

$$h(i) = \begin{cases} T, & i$$
是奇数 i 是偶数

对于任意的 $i,j \in N_+$, 验证 $h(i \times j) = h(i) \wedge h(j)$:

- 1) i是偶数,j是偶数时, $i \times j$ 是偶数, $h(i \times j) = F$, $h(i) \wedge h(j) = F \wedge F = F$
- 2) i 是 奇数, j 是 偶数 时, $i \times j$ 是 偶数, $h(i \times j) = F$, $h(i) \wedge h(j) = T \wedge F = F$
- 3) i 是偶数,j 是奇数时, $i \times j$ 是偶数, $h(i \times j) = F$, $h(i) \wedge h(j) = F \wedge T = F$
- 4) i 是 奇 数 , j 是 奇 数 时 , $i \times j$ 是 奇 数 , $h(i \times j) = T$, $h(i) \wedge h(j) = T \wedge T = T$ 证 毕 。

【例2】 $< 2^{\{a,b,c\}}$,U, \cap ,'>到 $< \{F,T\}$, \vee , \wedge , \neg >同态。

【分析】取函数 $h: 2^{\{a,b,c\}} \to \{F,T\}$ 如下:

$$h(S) = \begin{cases} T, & S = \emptyset, \{a\}, \{c\}, \{a, c\} \\ F, & S = \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\} \end{cases}$$

验证过程略。

(同态函数有时不易找到,判断同态时想清楚是没找到还是找不到。不过这里一般不会出太难)

【例3】设N是自然数集合(包括0), E_{+} 是非负偶数集合。则 < N, +>与 $< E_{+}, +>$ 同构。

证明:取 $h: N \to E_+$ 为,h(i) = 2i,由初等数学知识,h是双射函数,而且,h(i+j) = 2(i+j) = 2i + 2j = h(i) + h(j)满足同态公式。故< N, +>与 $< E_+, +>$ 同构。

【例4】设m是正整数,则 $< N_m, +_m >$ 到 $< N'_m, +'_m >$ 同态。其中 $N'_m = \{0,1,2,...,m-1\}$, $+'_m$ 的定义如下: $i +'_m j = (i+j) \pmod{m}$

证明:定义函数 $h: N_m \to N'_m 为: h([i]_m) = i \pmod{m}$,很显然h是双射,而且, $h([i]_m +_m [j]_m) = h([i + j]_m) = (i + j) \pmod{m} = i + i'_m j = h([i]_m) + i'_m h([j]_m)$,故h满足同态公式。

例如m=3时,运算表如下图所示,各对应位置完全一致。

+3	$[0]_3$	$[1]_3$	$[2]_{3}$	+'3	0	1	2
[0] ₃	$[0]_3$	$[1]_3$	$[2]_{3}$	0	0	1	2
[1] ₃	$[1]_3$	$[2]_{3}$	$[0]_{3}$	1	1	2	0
$[2]_{3}$	$[2]_{3}$	$[0]_3$	$[1]_{3}$	2	2	0	1

半群

定义:设X是一非空集合,< X,*>是代数系统,其中*是X上的二元运算,若*满足结合律,则称< X,*>是半群。当X是有限集时,称< X,*>是有限半群。当X是无限集时,称< X,*>是无限半群。

交换半群

定义:设< X,*>是半群,若*满足交换律,则称< X,*>是交换半群。

交换半群

定义:设<X,*>是半群,若关于*有幺元,则称<X,*>是含幺半群。

既是交换半群又是含幺半群可称交换含幺半群或含幺交换半群。

代数系统中的乘幂

乘幂的定义: 设< X,*>是代数系统, *是二元运算,则任意 $x \in X$, $x^1 = x$, $x^{m+1} = x^m * x(m = 1,2,\cdots)$

定理: 设<X,*>是半群,任取 $x \in X$,对任意 $m,n \in N_+$,有:

- (1) $x^m * x^n = x^{m+n}$
- (2) $(x^m)^n = x^{mn}$

循环半群

定义:设<X,*>是半群,若存在 $x_0 \in X$,对任意的 $x \in X$,存在 $n \in N$,使得 $x = x_0^n$,则称<X,*>为循环半群,称 x_0 为该循环半群的生成元。

定理:循环半群一定是交换半群。

【证明】设< X,*>是循环半群, a是其生成元,则对任意 $x,y \in X$,存在 $m,n \in N$,使得 $x = a^m$, $y = a^n$ 。因此 $x * y = a^m * a^n = a^{m+n} = a^{n+m} = a^n * a^m = y * x$ 。因此*满足交换律。故< X,*>是交换半群。

子半群

定义:设<X,*>是半群, $S \subseteq X$, $S \neq \emptyset$,若<S,*>是<X,*>的子代数系统且<S,*>是半群,则称<S,*>是<X,*>的子半群。

定理: 设< X,*>是半群, $S \subseteq X$, $S \neq \emptyset$,< S,*>是< X,*>的子半群的充要条件是*在S中满足封闭性。(因为: ①子代数系统的充要条件是运算的封闭性; ②结合律可以通过子代数系统的方式继承)

【例1】设N、Z、 R_+ 表示自然数、整数、正实数集合。

- < N,+>, < N,×>是交换含幺半群;
- < Z, +>, $< Z, \times>$ 是交换含幺半群,< Z, ->不是半群;
- $< R_{+},+>$, $< R_{+},\times>$ 是交换含幺半群, $< R_{+},\div>$ 不是半群。

【例2】设X是非空集合, 2^{X} 是X的幂集。

- $<2^{X},U>,<2^{X},\cap>,<2^{X},\Theta>$ 都是交换含幺半群;
- $<2^{X}$,\>不是半群。

【例3】设 $M_{n\times n}$ 是 $n\times n$ 阶实矩阵的集合。

 $< M_{n \times n}, +>$ 是交换含幺半群; $< M_{n \times n}, \times>$ 是含幺半群。

【例4】设 $N_m = \{[0]_m, [1]_m, [2]_m, ..., [m-1]_m\}$ 。 $< N_m, +_m > \pi < N_m, \times_m >$ 都是交换含幺半群。

【例5】 证明 $< 2^{A\times A}$, $\circ>$ 是含幺半群。其中A是非空集合, $2^{A\times A}$ 是由A上所有二元关系的集合, \circ 表示关系的复合。

证明:

(代数系统)任取 $R_1, R_2 \in 2^{A \times A}$,即 $R_1, R_2 \subseteq A \times A$ 。由关系的复合定义知, $R_1 \circ R_2 = \{(a_1, a_2) | a_1 \in A \land a_2 \in A \land (\exists a_3 \in A) \big((a_1, a_3) \in R_1 \land (a_2, a_3) \in R_2 \big) \} \subseteq A \times A \text{(封闭性)},且<math>R_1 \circ R_2$ 是唯一的(唯一性)。因此 $< 2^{A \times A}, \circ >$ 是代数系统。

(结合律)任取 $R_1, R_2, R_3 \in 2^{A \times A}$,根据课本P111定理4.6 (4)可知, $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$ 。即o满足结合律。

(幺元)取 I_A 是A上的幺函数: $I_A = \{(x,x)|x \in A\}$,根据复合函数的性质知,任意 $R \in 2^{A \times A}$, $I_A \circ R = R \circ I_A = R$ 。因此 I_A 是 \circ 的幺元。

【例6】在< $\{a,b,c,d\}$,*>中, $c^1=c,c^2=a,c^3=c,c^4=a,\cdots$ $b^1=b,b^2=c,b^3=d,b^4=a,\cdots$ 这说明c不是生成元,b是生成元。

*	a	b	С	d
a	a	b	С	d
b	b	С	d	a
С	С	d	a	b
d	d	а	b	С

群

定义:设<G,*>是含幺半群,若G中每个元素都有逆元,则称<G,*>为群。通常将x的逆元记作 x^{-1} 。

当G是由n个元素组成的有限集时,称< G,*>是有限群,也称n 阶群,记作n-群。

当G是无限集合时,称< G,*>是无限群。

交换群

定义:满足交换律的群称作交换群。

群的基本性质

定理1: 设< G, *>是群, $|G| \ge 2$, 则

- (1) G中每个元素的逆元是唯一的;
- (2) G 中无零元。

证明: (1)因为< G,*>是群,所以*满足结合律,所以G中每个元素的逆元是唯一的。

(2) 假设G中有零元0。一方面,0有唯一逆元 0^{-1} ,使得 $0*0^{-1}=0^{-1}*0=e$ 。 另一方面,由零元的性质知, $0*0^{-1}=0^{-1}*0=0$ 。 因此0=e。 所以对任意 $x \in G$,x = x*e = x*0=0,即G中只有一个元素0,与 $|G| \ge 2$ 矛盾。

定理2: 设<G,*>是群,则对任意 $x,y \in G$,有

- $(1)(x^{-1})^{-1} = x;$
- $(2)(x*y)^{-1} = y^{-1}*x^{-1}.$

(证明略, 用逆元的定义证即可)

群的基本性质

定理3: 设< G, *>是群,则运算*满足消去律。

定理4: 设< G,*>是有限群,|G|=n,则在*的运算表中,G中每个元素在每行(列)出现且仅出现一次。

(由消去律可知最多出现一次,又由每行(列)n个元素互不相同知每个元素必出现)

群中元素的乘幂

定义: 设< G,*>是群, G中元素x的乘幂定义如下: $x^0 = e$, $x^1 = x$, $x^{i+1} = x^i * x$, $x^{-i} = (x^{-1})^i$

性质: 设< G, *>是群,设 $x \in X$,对于整数m, n,有: $x^{-n} = (x^n)^{-1}(n > 0)$, $x^m * x^n = x^{m+n}$, $(x^m)^n = x^{mn}$

群中元素的阶

定义: 设<G,*>是群,对每个 $x \in G$,称使得 $x^k = e$ 成立的最小正整数k是x的阶。若不存在这样的k,则x的阶为无穷。

定理1: 设<G,*>是群,则G中元素x与 x^{-1} 的阶相同。

定理2: 设< G,*>是群,G中元素x的阶若为k,则 $x^1,x^2,...,x^k$

两两不同; G中元素x的阶若为无穷,则 x^1,x^2,x^3,\cdots 两两不同;

定理3: 设< G, *>是群,则G中元素的阶不超过群的阶。

定理4: 设< G, *>是群,G中元素x的阶为k,若 $x^m = e(m \in N_+)$,

则k|m。

循环群

定义: 设<G,*>是群,如果有 $a \in G$,对任意 $x \in G$,均有整数i,使得 $x = a^i$ 。则称<G,*>为循环群,称a为该循环群的生成元。

定理1: 循环群一定是交换群。

证明: 设 < G,*> 是循环群,a 是生成元。任取 $x,y \in G$,必有整数m,n,使得 $x = a^m, y = a^n$ 。所以 $x * y = a^m * a^n = a^{m+n} = a^{n+m} = a^n * a^m = y * x$ 。即运算*满足交换律。所以< G,*> 是交换群。

定理2: 设< G, *>是循环群,a是生成元。

- (1) 若a的阶为k,则< G,*>同构于 $< N_k,+_k>$;
- (2) 若a的阶为无穷,则< G,*>同构于< N,+>。 (证明略)

置换的表示

置换式:

$$p = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_1' & a_2' & a_3' & \cdots & a_n' \end{pmatrix}$$

轮换式:
$$(a_1, a_2, a_3, \cdots, a_n)$$
表示:
$$\begin{pmatrix} a_1 & a_2 & \cdots & a_{n-1} & a_n \\ a_2 & a_3 & \cdots & a_n & a_1 \end{pmatrix}$$

例如: $S = \{1,2,3,4,5,6\}$,S上的置换 $p_1 = \{(1,2),(2,3),(3,4),(4,1)\}$ 和 $p_2 = \{(1,4),(2,1),(3,3),(4,2)\}$ 可用下述形式表示:

$$p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = (1234), \qquad p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} = (142)$$

置换群

定义: 设 $S = \{a_1, a_2, \dots, a_n\}$ 是n个元素构成的有限集合, \diamond 是函数的复合。

- (1)P是m个S上的置换组成的集合。若< P, $\diamond>$ 是群,则称其为n次置换群(m阶)。
- (2) P_S 是所有由S上的置换组成的集合。称< P_S , $\diamond>$ 为n次对称群 (n!阶)。

注意:

- (1)不是任何S上置换组成的集合P都可以构成群。
- (2) 所有S上的置换组成的集合 P_S 一定可以构成群。

Cayley定理: 设< G, *>是n-群,则< G, *>同构于一个n次置换群。

子群

定义: 设<G,*>是群, $S \subseteq G \coprod S \neq \emptyset$ 。如果<S,*>是群,则称<S,*>是<G,*>的子群。

在群< G,*>中称 $< \{e\},*>$ 和< G,*>是平凡子群,其他子群统称为非平凡子群。

子群的三个充要条件

定理1: 设< G,*>是群, $S \subseteq G \coprod S \neq \emptyset$ 。那么< S,*>是< G,*>的子 群的充要条件是: (1) $\forall a,b \in S, a*b \in S$; (2) $\forall a \in S, a^{-1} \in S$

定理2: 设< G,*>是群, $S \subseteq G \coprod S \neq \emptyset$ 。那么< S,*>是< G,*>的子群的充要条件是: $\forall a,b \in S, \ a*b^{-1} \in S$

定理3: 设< G,*>是有限群, $S \subseteq G \coprod S \neq \emptyset$ 。那么< S,*>是< G,*>的子群的充要条件是: $\forall a,b \in S$, $a*b \in S$

陪集

定义: 设<G,*>是群,<H,*>是<G,*>的子群。对于 $a \in G$,构造下面的两个集合:

 $aH = \{a * h | h \in H\}, \quad Ha = \{h * a | h \in H\}$ 分别称为由a确定的H在G中的左陪集和右陪集,称a为代表元。

注意: (1)在一般条件下,一个元素的左陪集与右陪集不一定是相同集合。不过,如果< G, *>是交换群,则左陪集与右陪集一定相等。

(2) 特别提示: 当Ha = aH时,并不表明:对于 $h \in H$,满足h * a = a * h。更不意味着运算*满足交换律。(请认真理解两个集合相等的含义。)

定理1: 设< G, *>是群,< H, *>是< G, *>的子群。

- (1) 任取 $a \in G$, 均有|H| = |aH| = |Ha|。
- (2) 设 $S_l = \{aH | a \in G\}$, $S_r = \{Ha | a \in G\}$, 则 S_l , S_r 均构成G上的划分, $|S_l| = |S_r|$ 。

定理2: 设 < G, *> 是n- 群,< H, *> 是 < G, *> 的 子群。 若 < H, *> 是 k- 群,则k|n。(Lagrange 定理的一个推论)

【例1】< Z, +>是交换群,< N, +>不是群;

- < R, +>是交换群, $< R_{+}, +>$ 不是群;
- $< N, \times >$ 不是群, $< Z, \times >$ 不是群;
- $< R, \times >$ 不是群, $< R_+, \times >$ 是交换群。

【例2】 $<2^{x}$,U>不是群; $<2^{x}$, $\cap>$ 不是群; $<2^{x}$, $\oplus>$ 是交换群;

【例3】 $< M_{n \times n}, +>$ 是交换群; $< M_{n \times n}, \times>$ 不是群。

【例4】< P[x],+>是交换群; $< P[x],\times>$ 不是群。

【例5】 $< N_m, +_m >$ 是交换群。

【例6】 $< N_m, \times_m >$ 不是群。 (因为有零元 $[0]_m$)

【例7】 $< N_5 \setminus \{[0]_5\}, \times_5 >$ 是交换群, $< N_6 \setminus \{[0]_6\}, \times_6 >$ 不是群。

		[1] ₅			
$[0]_{5}$	$[0]_{5}$	[0] ₅	$[0]_{5}$	$[0]_{5}$	[0] ₅
[1] ₅	$[0]_{5}$	[1] ₅ [2] ₅ [3] ₅	[2] ₅	[3] ₅	[4] ₅
[2] ₅	$[0]_{5}$	[2] ₅	[4] ₅	[1] ₅	[3] ₅
[3] ₅	$[0]_{5}$	[3] ₅	[1] ₅	[4] ₅	[2] ₅
[4] ₅	$[0]_{5}$	[4] ₅	[3] ₅	[2] ₅	$[1]_{5}$

\times_6	[0] ₆	$[1]_{6}$	$[2]_{6}$	[3] ₆	$[4]_{6}$	[5] ₆
$[0]_{6}$	$[0]_{6}$	[0] ₆	$[0]_{6}$	[0] ₆	$[0]_{6}$	[0] ₆
$[1]_{6}$	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	[5] ₆
[1] ₆ [2] ₆	$[0]_{6}$	$[2]_{6}$	$[4]_{6}$	[0] ₆	$[2]_{6}$	$[4]_{6}$
$[3]_{6}$	$[0]_{6}$	$[3]_{6}$	$[0]_6$	$[3]_{6}$	$[0]_6$	$[3]_{6}$
$[4]_{6}$	$[0]_{6}$	$[4]_{6}$	$[2]_{6}$	$[0]_{6}$	$[4]_4$	$[2]_{6}$
[5] ₆	$[0]_{6}$	[5] ₆	$[4]_{6}$	$[3]_{6}$	$[2]_{6}$	$[1]_{6}$

【例8】设R是实数集合,定义 $R \times R$ 上的二元运算*为:对于 $(x_1, y_1), (x_2, y_2) \in R \times R$ $(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$

证明 $< R \times R, *>$ 是交换群。

证明: (1)(运算)对于任意的 (x_1,y_1) , $(x_2,y_2) \in R \times R$,即 $x_1,y_1,x_2,y_2 \in R$,由实数加法的性质知, $x_1 + x_2,y_1 + y_2 \in R$,且结果唯一,因此 $(x_1,y_1) * (x_2,y_2) \in R \times R$,且结果唯一。

- (2) (结合律) 对于任意的 $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in R \times R$,有 $(x_1, y_1) *$ $(x_2, y_2) * (x_3, y_3) = (x_1 + x_2, y_1 + y_2) * (x_3, y_3) = ((x_1 + x_2) + x_3, (y_1 + y_2) + y_3) = (x_1 + (x_2 + x_3), y_1 + (y_2 + y_3)) = (x_1, y_1) * (x_2 + x_3, y_2 + y_3) = (x_1, y_1) * ((x_2, y_2) * (x_3, y_3)) 。$
- (3) (交換律) 对于任意的 $(x_1, y_1), (x_2, y_2) \in R \times R$,有 $(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2) = (x_2 + x_1, y_2 + y_1) = (x_2, y_2) * (x_1, y_1)$ 。
- (4)(幺元)对于任意的 $(x,y) \in R \times R$, (0,0) * (x,y) = (0+x,0+y) = (x,y), 由交换律又有(x,y) * (0,0) = (x,y), 因此(0,0)是幺元。
- (5) (逆元) 对于任意的 $(x,y) \in R \times R$, (-x,-y) * (x,y) = (-x + x,-y + y) = (0,0), 由交换律又有(x,y) * (-x,-y) = (0,0), 因此(-x,-y)是(x,y)的逆元。

【例9】在<{a,b,c,d},*>中,a是幺元,阶是1; $c^1 = c,c^2 = a,c^3 = c,c^4 = a$,c的阶是2,不是生成元; $b^1 = b,b^2 = c,b^3 = d,b^4 = a$,b的阶是4,是生成元; $d^1 = d,d^2 = c,d^3 = b,d^4 = a$,d的阶是4,是生成元。 这说明该群是循环群。

*	a	b	С	d
a	a	b	С	d
b	b	С	d	a
С	С	d	a	b
d	d	a	b	С

【例10】< $\{f_1, f_2, f_3, f_4, f_5, f_6\}$, \circ >由于不是交换群,故不是循环群。

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \qquad f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \qquad f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \qquad f_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

o	f_1	f_2	f_3	f_4	f_5	f_6
					f_5	
					f_4	
					f_2	
					f_3	
					f_6	
					f_1	

【例11】取 $A = \{1,2,3,4\}, f_1, f_2, f_3, f_4$ 是A上的双射, $\{f_1, f_2, f_3, f_4\}, *>$ 是交换群,不是循环群。

$$f_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \qquad f_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \qquad f_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

0	f_1	f_2	f_3	f_4
f_1	f_1	f_2	f_3	f_4
f_2	f_2	f_1	f_4	f_3
f_3	f_3	f_4	f_1	f_2
			f_2	

 f_1 是幺元, 阶是1; $(f_2)^2 = f_1$, $(f_3)^2 = f_1$, $(f_4)^2 = f_1$, f_2 , f_3 , f_4 的阶都是2, 不是生成元。

交换群不一定是循环群!

【例12】例11的群,是4次置换群(4阶)。(Klein 4-群)

o	f_1	f_2	f_3	f_4
f_1	f_1	f_2	f_3	f_4
f_2	f_2	f_1	f_4	f_3
f_3	f_3	f_4	f_1	f_2
f_4	f_4	f_3	f_2	f_1

*	1	2	3	4
1	1	2	3	4
2	2	1	4	3
3	3	4	1	2
4	4	3	2	1

【例13】例10的群,是3次对称群(6阶)。

o	f_1	f_2	f_3	f_4	f_5	f_6
		f_2				
		f_1				
		f_5				
		f_6				
		f_3				
		f_4				

*	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	1	6	5	4	3
3	3	5	1	6	2	4
4	4	6	5	1	3	3
5	5	3	4	2	6	2
6	6	4	2	3	1	5

【例14】同构意义下,1-群、2-群、3-群只有一种,4-群有两种。

* e e e 1-群

*	е	a	
е	е	a	
a	а	е	
2-群			

0	f_1	f_2	f_3	f_4
f_1	f_1	f_2	f_3	f_4
f_2	f_2	f_1	f_4	f_3
f_3	f_3	f_4	f_1	f_2
f_4	f_4	f_3	f_2	f_1

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Klein 4-群

$$< N_4, +_4 >$$

*	e	a	b
е	е	a	b
a	a	b	е
b	b	е	a

3-群

6.4 群

【例15】下列哪些构成〈{实数},+〉的非平凡子群?

【例16】下列哪些构成 $< N_6, +_6>$ 的非平凡子群?

$$< \{0,1,3,5\}, +_6 > \times$$

 $< \{0,1,5\}, +_6 > \times$
 $< \{0,2,4\}, +_6 > \sqrt$
 $< \{0,1\}, +_6 > \times$
 $< \{0,3\}, +_6 > \sqrt$

+6	0	10	2	3	4	(5)
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

6.4 群

(D,1.L.3.U3)

【例17】在群 $< N_6, +_6 >$ 中,

(1) 在子群< {0,3}, +₆>中,所有的左陪集/右陪集有: {0,3}, {1,4}, {2,5}

(2) 在子群 < {0,2,4},+6>中,所有的左陪集/右陪集有: {0,2,4},{1,3,5}

求解过程: 以求 $H = \{0,2,4\}$ 在 $< N_6,+_6>$ 中的所有左陪集为例。

$$0H = \{0 +_{6} 0,0 +_{6} 2,0 +_{6} 4\} = \{0,2,4\}$$

$$1H = \{1 +_{6} 0,1 +_{6} 2,1 +_{6} 4\} = \{1,3,5\}$$

$$2H = \{2 +_{6} 0,2 +_{6} 2,2 +_{6} 4\} = \{2,4,0\}$$

$$3H = \{3 +_{6} 0,3 +_{6} 2,3 +_{6} 4\} = \{3,5,1\}$$

$$4H = \{4 +_{6} 0,4 +_{6} 2,4 +_{6} 4\} = \{4,0,2\}$$

$$5H = \{5 +_{6} 0,5 +_{6} 2,5 +_{6} 4\} = \{5,1,3\}$$

+6	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

定义: 设<R, Θ , \otimes >是代数系统, Θ 和 \otimes 是R上的两个二元运算。若 (1)<R, Θ >是交换群; (2)<R, \otimes >是半群; (3) \otimes 对 Θ 满足 Θ 配律。则称<R, Θ , \otimes >是环。

若⊗满足交换律,则称< R, ⊕, ⊗>是交换环。 若关于⊗有幺元,则称< R, ⊕, ⊗>是含幺环。 既是交换环又是含幺环可称交换含幺环或含幺交换环。

一些记法:

 Θ 的幺元记为0, x关于 Θ 的逆元记为-x;

⊗的幺元记为e(若有),x关于⊗的逆元记为 x^{-1} (若有)。 $x \oplus (-y)$ 简记为x - y。

性质: $(1)a \otimes 0 = 0 = 0 \otimes a$;

$$(2) a \otimes (-b) = (-a) \otimes b = -(a \otimes b);$$

 $(3)(-a)\otimes(-b)=a\otimes b;$

$$(4) a \otimes (b-c) = (a \otimes b) - (a \otimes c), \quad (b-c) \otimes a = (b \otimes a) - (c \otimes a)$$

零因子: 设 $< R, \bigoplus, \bigotimes >$ 是环,设 $a,b \in R, a \neq 0, b \neq 0, a \otimes b = 0$ 。则称a是环的左零因子,b是环的右零因子。

含零因子环: 含零因子的环。

无零因子环:不含零因子的环。

定理: 设<R, \oplus , \otimes >是环。那么<R, \oplus , \otimes >是无零因子环的充要条件是,对任意的x,y,z \in R, 当z \neq 0时,有

$$z \otimes x = z \otimes y \Rightarrow x = y$$

 $x \otimes z = y \otimes z \Rightarrow x = y$

整环: 无零因子含幺交换环。

除环: 设 $< R, \bigoplus, \otimes >$ 是环,若(1)关于 \otimes 有幺元,(2)任意 $a \in R$,当 $a \neq 0$ 时关于 \otimes 有逆元,则称 $< R, \bigoplus, \otimes >$ 是除环。

域:设 $< R, \oplus, \otimes >$ 是除环, \otimes 满足交换律,则称 $< R, \oplus, \otimes >$ 为域。

【例1】(整数环) $< Z, +, \times >$ 是整环,不是除环,不是域。

【例2】(矩阵环) $< M_{n\times n}, +, \times >$ 是含幺环,不是整环,不是除环,不是域。

【例3】(整数模环) $< N_m, +_m, \times_m >$ 是含幺交换环,不是整环,不是除环,不是域。

【例4】(子集环) < 2^{X} , ⊕, ∩>是含幺交换环,不是整环,不是除环,不是域。

【例5】(多项式环) $< P[x], +, \times >$ 是整环,不是除环,不是域。

【例6】(有理数/实数/复数环/域)< Q/R/C,+,×>是整环、除环、域。

格: 设< L,*, Θ >是代数系统,*和 Θ 是L上的两个二元运算,如果对于所有的x,y, $z \in L$,

- (1)运算*和运算⊕满足结合律 (x*y)*z = x*(y*z),
- (2)运算*和运算⊕满足交换律

$$x * y = y * x,$$

(3)运算*和运算⊕满足幂等律

$$x * x = x$$
,

(4)运算*和运算⊕满足吸收律

$$x * (x \oplus y) = x$$
,

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$

$$x \oplus y = y \oplus x$$

$$x \oplus x = x$$

$$x \oplus (x * y) = x$$

注意格中*和⊕的"对称性"

定理1: 设<L,*, Θ >是格,则对于所有的x, $y \in L$, $x * y = x \Leftrightarrow x \oplus y = y$

定理2: 设< $L,*,\oplus$ >是格,建立L上的二元关系R如下: 对于 $x,y \in L,xRy \Leftrightarrow x*y=x$ 。则

- (1) R是L上的半序关系。
- (2) L中任意两个元素x, y均有上下确界,而且 $GLB\{x,y\} = x*y$, $LUB\{x,y\} = x \oplus y$

定理3(格的第二种定义): 设< L, <> 是半序集。若L中任意两个元素x, y, 均有下确界 $GLB\{x,y\}$ 和上确界 $LUB\{x,y\}$ 存在,建立L上的两种二元运算如下:

 $x*y = GLB\{x,y\},$ $x \oplus y = LUB\{x,y\}$ 则 $< L,*, \oplus >$ 是格,也称 $< L, \leq >$ 是格,或称 $< L, \leq ,*, \oplus >$ 是格。

格的四个性质

对偶原理: 设< L, ≼,*,⊕>是格,则< L, ≥,⊕,*>也是格。(其中≥表示≼的逆关系)

保序性: 设< L, \leq ,*, \oplus >是格, a,b,c, $d \in L$, 如果 $a \leq b$ 且 $c \leq d$, 那么 $a * c \leq b * d$, $a \oplus c \leq b \oplus d$ 。

分配不等式: 设 $< L, \le, *, \oplus >$ 是格,对于 $a, b, c \in L$,有 $a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$ $(a * b) \oplus (a * c) \le a * (b \oplus c)$

模不等式: 设< L, \leq , *, \oplus > 是格,对于a, b, $c \in L$,有 $a \oplus (b*(a \oplus c)) \leq (a \oplus b)*(a \oplus c)$ $(a*b) \oplus (a*c) \leq a*(b \oplus (a*c))$

模格: 设< L, \leq ,*, \oplus >是格,如果对任意a, b, $c \in L$,模不等式取等号,则称< L, \leq ,*, \oplus >是模格。

定理: 设<L,<,*, \oplus >是格,那么<L,<,*, \oplus >是模格的充要条件是: 对任意 $a,b,c\in L$,如果 $a\leqslant c$,那么 $a\oplus(b*c)=(a\oplus b)*c$ 。

分配格: 设<L, \leq ,*, \oplus >是格,如果对任意a,b, $c \in L$,分配不等式取等号,则称<L, \leq ,*, \oplus >是分配格。

定理1:分配格一定是模格。

定理2: 设<L, \leq ,*, \oplus >是分配格,对于任意a,b, $c \in L$,若a*b=a*c且 $a \oplus b=a \oplus c$,则b=c。

定理3: 设< L,<,*, \oplus >是格,若<是L上的全序关系,则< L,<,*, \oplus >是分配格。

有界格: 设< L, <,*, \oplus >是格,如果存在a,b \in L,对任意的x \in L,满足a < x < b,则称< L, <,*, \oplus >是有界格,称a和b分别为格的最小元和最大元。

表示法: 通常用0和1分别代表最小元和最大元,并将有界格记作 $< L, \le, *, \oplus, 0, 1 >$

有限格一定是有界格, 无限格可以是有界格。

补元: 设< L, \leq ,*, \oplus , 0, 1 > 是有界格。设 $x \in L$,如果存在 $y \in L$,满足x * y = 0且 $x \oplus y = 1$,则称 $y \to x$ 的补元。

定理: 对于有界分配格,元素x如果有补元,则补元唯一。

有补格: 设< L, \leq ,*, \bigoplus , 0, 1 > 是有界格。如果每个元素都有补元,则称< L, \leq ,*, \bigoplus , 0, 1 > 是有补格。

布尔代数: 设< B, ≤,*,⊕,0,1 >是有补的分配格,则称< B, ≤,*,⊕,0,1 >是布尔代数。

说明: (1)因为在有界分配格中,一个元素至多有一个补元,所以布尔代数中,每个元素有唯一补元。

(2) 在布尔代数中,通常用x'表示x的补元。同时,布尔代数可表示为 < B, ≤,*,⊕,', 0,1 >

定理1: 设 $< B, \le, *, \oplus, ', 0, 1 >$ 是布尔代数。那么,对于 $x, y, z \in B,$ $(x')' = x, \quad (x * y)' = x' \oplus y', \quad (x \oplus y)' = x' * y',$ $x * y = x * z \land x' * y = x' * z \Rightarrow y = z,$ $x \oplus y = x \oplus z \land x' \oplus y = x' \oplus z \Rightarrow y = z$

定理2: 设 < B, <,*, \bigoplus ,', 0,1 > 是布尔代数。那么以下四个说法等价: $(1)x \le y$; $(2)y' \le x'$; (3)x * y' = 0; $(4)x' \bigoplus y = 1$ 。

【例1】 $< 2^X$, \cap , \cup >是格。

【例2】 < [0,1], min, max > 是格。

【例3】 $< N_+, GCD, LCM >$ 是格。

【例4】 < {1,2,3,6}, | > 是格, < {1,2,3,5,6}, | > 不是格。

【例5】下列Hasse图构成格。

【例6】下列Hasse图不构成格。

 $LUB\{b,c\}$, $GLB\{d,e\}$ 不存在

 $LUB\{b,c\}$ 不存在

【例7】有界格中的补元。

a的补元: e

b的补元: c,d

c的补元: b

d的补元:b

e的补元: a

(有补格)

a的补元: g

b的补元: c,f

e的补元: c,f

c的补元: b,e

f的补元: b,e

g的补元: a

d无补元

(非有补格)

参考资料

- (1) 《离散数学(第3版)》——陈建明,曾明,刘国荣
- (2) 2019-2020第二学期《图论与代数系统》课件——曾明

图论基本概念和性质

节点,边,起点,终点,端点,图,无向边,有向边,混合图、零图,平凡图,边临接,结点相邻,关联,孤立点,自环,平行边,重数,多重图,简单图,完全图,子图,真子图,生成子图,补图,节点的度,奇节点,偶节点,悬挂点,悬挂边,图的同构,途径,长度(即边条数),路,圈,简单路,简单圈,初级路,初级圈,可达,短程线,距离,连通与非连通,连通图与非连通图,连通支,强连通,单向连通,弱连通,强连通支,单项连通支,弱连通支,邻接矩阵

图论基本定理

教材p260定理8.3 无向图中奇节点的个数为偶数

教材p262 两图同构必要条件

教材p264 关于初级路:有路必有初级路;一条初级路(圈)必是一条简单路(圈);初级路长度小于等于n-1

教材p267 关于无向图连通支: 无向图每个节点和每条边恰属于一个连通支教材p268定理8.5 关于有向图连通支

图论算法与定理: Dijkstra, Euler图, Hamilton图, 二分图等

教材p280 Dijkstra算法

教材p283定理8.7 Euler定理

- 无向连通图G是Euler图的充要条件: G中无奇结点
- 无向图G是Euler图的充要条件: G联通且无奇结点

教材p284推论8.7.1 无向连通图G中具有Euler路的充要条件: G恰好有两个奇结点教材p284定义8.24 割边与Fleury弗罗莱算法(寻找Euler路)

教材p285定理8.8 关于Euler路(单向连通)与定理8.9 关于Euler圈(强连通)

教材p296 二分图,完全二分图,定理8.15,匹配,最大匹配(匈牙利方法),完美匹配,杆,饱和点,不饱和点

教材p289-293 定理8.11(必要条件,反证其不为Hamilton图),定理8.12(充分条件),定理8.13,例8.24,定义8.26(竞赛图),货郎担问题

图论算法与定理:平面图, Kuratowski定理等

教材p303定理8.16 Euler公式和两个推论8.16.1, 8.16.2

- Euler公式是Euler于1750年针对凸多面体的"点、线、面"之间提出的一个重要的量化关系
- 作为平面图的必要条件

教材p305定理8.17 Kuratowski定理

图论习题

教材p318习题14 求连通支问题中注意图中孤立点的情况;

教材p318习题16 Dijkstra算法

教材p318习题18 Euler定理应用

教材p320习题24 关于H-图: 教材定理8.11的应用

教材p320习题33 平面图Euler公式

教材p320习题34 Kuratowski定理应用

• 关于图的同构

个人备考策略

第一遍(时间较长)

看书上概念+例题+定理

重做书上所有的题 (不仅仅是作业题),对自己错的和认为重要的做好标记。

第二遍

只看标记的题;

标记的题重做或重新看;

谢谢大家

谢谢大家

