HW 11 Math 125a, Fall 2014

- 1. Show that there is a structure \mathcal{M} interpreting the language with 0, 1, +, × and <. satisfying the following conditions.
 - ullet \mathcal{M} is elementarily equivalent to the real numbers with the natural interpretations of the operations.
 - \mathcal{M} has an "infinitesimal" element a such that 0 < a and for each $n, a < 1/(\underbrace{1 + \cdots + 1}_{n \text{ times}})$.
- 2. For \mathcal{M} as in the previous problem, show that the sum of two infinitesimal elements of \mathcal{M} is infinitesimal.
- 3. Use the Compactness Theorem for first order logic to give another solution to this problem from HW 4: Let T be an infinite set of finite binary sequences such that for every sequence s, if s is in T then every initial segment of s is in t. Show that there is an infinite binary sequence t such that every finite initial segment of t is an element of t.
- 4. Suppose that \prec is a partial ordering of \mathbb{N} . Use the Compactness Theorem for first order logic to show that there is a total ordering \prec^* of \mathbb{N} such that for all n and m in \mathbb{N} , if $n \prec m$ then $n \prec^* m$.