Software engineering is defined as a process of analyzing user requirements and then designing, building, and testing software application which will satisfy those requirements.

It is a systematic, disciplined, cost effective technique for software development.

Software = documentation + program+ instructions
Operating procedures /Instructions = user level, administrative level

Software myths-> (myth busters)

- Company with latest tech should not worry about quality
- Software specialist bring things back on track (it delays the procedure)
- Software is easy to change (its not)
- Missing components can be ignored and just develop a prototype once(it's a disaster)
- More features , better the software (lol)
- One software is made job is done (this is jut the beginning lol)
- We cant do testing and cant know its quality
- Only tested codes are deliverable .(is one of the things)
- Develop a working software (develop that is easy to maintain)

Product: that is deliverd to customer.

Process: way it is produced

Measure: quantitative indication (size, dimensions, efffeciency)

Measurement: act of evaluating measure

Metric: degree -> planning, organinsng, controlling, improving

Productivity: rate of output / time taken

Software certification: though its important, but cant guarantee u skills, as tech changes rapidly

(3 types/area) people, process, product

Software development life cycle (SDLC) :

Planning/requirements-> defining/analysis[srs]-> designing->coding/implementation->testing -> deploy/Maintenance -> [planning]

Design->Dfd :data flow diagram, cohesion and coupling , modules **Build and fix model:** -

Waterfall model:

Feasibility study (availability)
Requirement analysis
Design

Coding and unit testing

Testing integration

Maintenance

Software requirement specif.

Advantages	disadvantage
Base model	No feedback / no change
Simple and easy	We cant know all req in starting
	No experiment
Small projects	No parallelism (can't go back to prev.
	level)
	High risk
	High maintenance

Iterative model: (same as waterfall ,but stages can be repeated <u>major</u> <u>improvement in feedback</u>)

Base momdel	
Simple and easy	No pallelism
Small project	Rigid (no changes in feasibility study)
feedback	No intermediate delivery (less testing)

Rapid application development: user participation is essential, evaluation, feedback. less planning, more development and come up with a prototype

- Reusable components
- Skilled developers Parellelism resource sharing

Prototype modeling (dummy model)

Evolutionary momdel: same as above, but user can make changes in his req **Incremental modeling**: (module by module development)

Early relaease, large prjectss into subprojects Example: ims -> teachers, students, alumni Mobile apps upgrade etc

Spiral model (risk handling in every phase) meta model

1-planning 2-risk analysis 3-development 4-assessment **Disadv**: constraints changes, expertise

All in one:

Classical waterfall	Itemative Waterfall	Parototype Model	In chemental Model	Evolutionary	RAD	Spignal Model	Agile Model
Basic, Rigid, Inflexible Not for Real Pojed		User Requirements Not clearly, Costly, No Early locks on Requirements > High User Involvement > Reusability	Modele Delivery,	Lange Projects	User at all levels Rousability	Rista, Not for grade projects, No Early lada On Requirements TLESS Experiments Can would	Flexitle, Advanced, Poorallel, Process divided into & Prints
		1. Kensamility 1					

Certification is process of formal confirmation of various characterstics