CURS 9 CRIPTOGRAFIA ASIMETRICĂ/CU CHEIE PUBLICĂ

Estimarea timpului de executare în funcție de complexitatea computațională

Orice operație elementară durează maxim 5 cicli de procesor! Dacă frecvența unui procesor este f_P = 3GHz => procesorul execută 3GHz = 3×10^9 de cicli pe secundă => 1 ciclu de procesor durează aproximativ $\frac{1}{3 \, \mathrm{GHz}} = \frac{1}{3 \times 10^9} = 0.3 \times 10^{-9} \, \mathrm{secunde} = 3 \times 10^{-10} \, \mathrm{secunde} = > 1 \, \mathrm{operație} \, \mathrm{elementară} \, \mathrm{durează} \, \mathrm{aproximativ} \, 5 \times 3 \times 10^{-10} \, \mathrm{secunde} = 15 \times 10^{-10} \, \mathrm{secunde}$

1. Considerăm un algoritm cu complexitatea $\mathcal{O}(n^2)$ pe care vrem să-l rulăm pentru $n=20000=2\times10^4$. Cât este, aproximativ, timpul de executare t?

$$t = \underbrace{(2 \times 10^4)^2}_{\text{numărul total de operații elementare}} \times \underbrace{15 \times 10^{-10}}_{\text{durata unei operații elementare}} \text{ secunde = }$$

=
$$4 \times 10^8 \times 15 \times 10^{-10}$$
 secunde = 6×10^{-1} secunde = 0.6 secunde

2. Considerăm un algoritm cu complexitatea $\mathcal{O}(2^n)$. Care este timpul său de executare pentru n=100?

Vom folosi aproximarea $2^{10} \approx 10^3 \Longrightarrow 2^{100} \approx 10^{30}$

$$t = \underbrace{2^{100}}_{\text{numărul total de operații elementare}} \times \underbrace{15 \times 10^{-10}}_{\text{durata unei operații elementare}} \text{secunde} = \\ 10^{30} \times 15 \times 10^{-10} \text{ secunde} = 15 \times 10^{20} \text{ secunde} = \\ \frac{15 \times 10^{20}}{3600} \text{ ore} = \\ \frac{15 \times 10^{16} \times 10^{4}}{3600} \text{ ore} = \\ \frac{15 \times 10^{16} \times 10^{4}}{3600} \text{ ore} = \\ \frac{45 \times 10^{14} \times 10^{2}}{24} \text{ zile} = \\ 45 \times 10^{14} \times 4 \text{ zile} = \\ 180 \times 10^{14} \text{ zile} = \\ \frac{180 \times 10^{14}}{365} \text{ ani} = \\ \frac{180 \times 10^{11} \times 10^{2}}{365} \text{ ani} = \\ 180 \times 10^{11} \times 3 \text{ ani} = \\ 54000 \text{ de miliarde} = \\ 180 \times 10^{11} \times 3 \text{ ani} =$$

Presupunem că se inventează un procesor astfel încât pentru n=100 să obținem t=1 secundă.

$$2^{n+1} = 2 \cdot 2^n => t_{n+1} = 2 \cdot t_n$$

1

```
n=100 \implies t_{100}=1 \text{ secundă} n=101 \implies t_{101}=2 \cdot t_{100}=2 \text{ secunde} n=102 \implies t_{102}=2 \cdot t_{101}=2^2 \text{ secunde}=4 \text{ secunde} n=200 \implies t_{200}=2^{100} \text{ secunde} \approx \frac{54000 \times 10^9}{15 \times 10^{-10}} \text{ ani } \approx 3.5 \times 10^{19} \text{ ani}
```

Complexitatea unui algoritm TREBUIE să fie exprimată în funcție de dimensiunea datelor de intrare (reprezentate binar), ci nu în funcție de valorile datelor de intrare!!!

Exemplu:

Testarea primalității unui număr natural n:

```
int n;
printf("n = ");
scanf("%d", &n);

int prim = 1;
for(d = 2; d <= n/2; d++)
        if(n % d == 0)
        {
            prim = 0;
            break;
        }

if(prim == 1)
            printf("Numar prim");
else
        printf("Numar compus");</pre>
```

Complexitate: $\mathcal{O}(n/2) \approx \mathcal{O}(n) \rightarrow$ estimarea NU este corectă, deoarece n este o valoare de intrare, ci nu dimensiune datelor de intrare reprezentate binar!!!

Complexitate: $\mathcal{O}(2^{1+\lceil \log_2 n \rceil}) \approx \mathcal{O}(2^{\lceil \log_2 n \rceil}) =>$ complexitatea exponențială în raport de lungimea reprezentării binare a lui n!!!

În criptografia cu cheie publică se utilizează numere prime pe 512 sau 1024 de biți!!!

Observație: Orice număr natural n se reprezintă binar folosind $1 + \lceil \log_2 n \rceil$ biți!

Demonstrație: Presupunem că numărul n are x cifre în reprezentarea binară => $\underbrace{10...0}_{x \text{ cifre}} \le n < \underbrace{10...0}_{x+1 \text{ cifre}} => 2^{x-1} \le n < 2^x => x-1 \le \log_2 n < x => [\log_2 n] = x-1 => x = [\log_2 n] + 1.$

Observație: Dacă un număr natural n se reprezintă binar folosind cel puțin x biți atunci $2^{x-1} \le n < 2^x$.

Problema logaritmului discret

Fie p un număr prim și $a,b\in\mathbb{Z}_p$ $(a\neq 0)$. Să se determine $x\in\mathbb{Z}_{p-1}$ astfel încât $b^x\equiv a(\bmod\,p)$. Dacă există numărul x, atunci el este unic și se numește $logaritmul\ discret\ al\ numărului\ a\ în\ baza\ b\ în\ grupul\ \mathbb{Z}_p$. De obicei, logaritmul discret se notează cu $d\log_b a$ sau $\log_b a$.

Exemplul 1: \mathbb{Z}_{11} și b = 6

k	0	1	2	3	4	5	6	7	8	9
$6^k \pmod{11}$	1	6	3	7	9	10	5	8	4	2
а	1	2	3	4	5	6	7	8	9	10
dlog ₆ a	0	9	2	8	6	1	3	7	4	5

Exemplul 2: \mathbb{Z}_{11} și b = 3

k	0	1	2	3	4	5	6	7	8	9
$3^k \pmod{11}$	1	3	9	5	4	1	3	9	5	4

Se observă faptul că nu există d $\log_3 a$ pentru $a \in \{2, 6, 7, 8, 10\}$!

Complexitatea celor mai buni algoritmi pentru calculul logaritmului discret întrun grup \mathbb{Z}_p (Baby-step giant-step, Pohlig-Hellman, Pollard's rho, Index calculus algorithm) este $\mathcal{O}(\sqrt{p}) \approx \mathcal{O}(2^{\lceil \log_2 p \rceil/2})$, deci este o complexitate exponențială!!!