1 Significance Test for RQ1

Table 1: Code summarization performance of GPT-40 on codes with different readability.

Group	Readability	\mathbf{BLEU}	BERTScore
low-readability	3.44	6.32	18.25
high-readability	4.28	8.12	19.78
p-value*	< 0.0001	< 0.01	< 0.04(0.0383)

^{*}p-value is calculated with pairwise 2-sample Wilcoxon Signed rank test between the two groups.

The results in Table 1 show that the discrepancy between the two groups are significant, with all p-values <0.04.

2 Significance Test for RQ3

Table 2: BLEU scores on the cross-obfuscated datasets. The semantic perturbation chooses the one with the greatest impact on the model in each programming language. The values in italic indicate nonsignificant decrease (p>0.05)

Datasat	Cod	leBER	T	C	odeT5		Coc	leLlan	<u></u> 1a
Dataset	Python	\mathbf{Go}	Java	Python	\mathbf{Go}	Java	Python	\mathbf{Go}	Java
Semantic Pertur	b. IHR	IOE	IHR	IOE	FNE	IOE	IOE	IHR	IHR
primary	12.54	11.02	12.84	15.23	16.19	14.18	11.15	11.85	12.63
Cross Perturb.									_
Semantic \times OOS	12.52	10.93	12.87	14.21	16.25	14.34	11.07	11.64	12.50
Semantic \times HVI	11.57	10.81	12.16	13.75	15.75	13.58	8.85	11.82	12.51
Semantic \times DBI	11.49	10.74	12.13	12.70	14.58	13.31	8.15	11.41	12.07
average	11.83	10.83	12.39	13.55	15.53	13.74	9.36	11.62	12.36

According to the results in Table 2, most cross-perturbations exhibit a significant descrease of BLEU score (p<0.0001). We particularly notice that Semantic×OOS exhibits nonsignificant decrease (p>0.05). The results also align with our current conclusion: oprand swap does not affect the readability significantly whereas Semantic×DBI is the most significant way for structural obfuscation.

3 Implementation algorithms of perturbation methods

Algorithm 1 IOE perturbation algorithm

```
Output: AST parsed by tools Code_{AST}

Input: The new code string after perturbation Code_{new}

Identifier\ List \leftarrow Code_{AST}.Walk()

rate \leftarrow 0.8

Identifier\ List \leftarrow List_{Identifier}.Sample(rate)

for i, ident \in List_{Identifier} do

ident.Name \leftarrow' v'_i

end for

Code_{new} \leftarrow Code_{AST}.ReGetString

return Code_{new}
```

Algorithm 2 IS perturbation algorithm

```
Output: AST parsed by tools Code_{AST}

Input: The new code string after perturbation Code_{new}

Identifier\ List \leftarrow Code_{AST}.Walk()

Copy\ List \leftarrow List_{Identifier}[1:] + List_{Identifier}[0]

for i, ident \in List_{Identifier} do

ident.Name \leftarrow List_{Copy}[i].Name

end for

Code_{new} \leftarrow Code_{AST}.ReGetString

return Code_{new}
```

Algorithm 3 IHR perturbation algorithm

```
Output: AST parsed by tools Code_{AST}

Input: The new code string after perturbation Code_{new}

Identifier\ List \leftarrow Code_{AST}.Walk()

Identifier\ List \leftarrow List_{Identifier}.Shuffle()

for i, ident \in List_{Identifier} do

ident.Name \leftarrow List_{high}\ frequence\ words.Pop()

end for

Code_{new} \leftarrow Code_{AST}.ReGetString

return Code_{new}
```

Algorithm 4 FNE perturbation algorithm

```
Output: AST parsed by tools Code_{AST}

Input: The new code string after perturbation Code_{new}

FunctionDefinition \leftarrow Code_{AST}.Walk()

FunctionDefinition.Name \leftarrow' v'_0

Code_{new} \leftarrow Code_{AST}.ReGetString()

return Code_{new}
```

Algorithm 5 OOS perturbation algorithm

```
Output: AST parsed by tools Code_{AST}

Input: The new code string after perturbation Code_{new}

BinaryOperationsList \leftarrow Code_{AST}.Walk()

for oper\ node \in List_{Binary\ Operations} do

oper\ node \leftarrow Swap\ Binary\ Operations(oper\ node)

end for

Code_{new} \leftarrow Code_{AST}.ReGetString()

return Code_{new}
```

Algorithm 6 HVI perturbation algorithm

```
Output: AST parsed by tools Code_{AST}
Input: The new code string after perturbation Code_{new}
BodyBlockNode \leftarrow Code_{AST}.Walk()
Insert\ Position(pos) \leftarrow Randomly\ Select\ From\ Node_{Body\ Block}
Sample\ Number\ \leftarrow 3
for all i < Sample\ Number\ do
statement\ \leftarrow Randomly\ Generated\ Definition\ Statement\ for\ High\ -
frequency\ Variable
Code_{new}\ \leftarrow Code_{new}.InsertStatement(pos, statement)
i \leftarrow i+1
end for
return\ Code_{new}
```

Algorithm 7 DBI perturbation algorithm

```
Output: AST parsed by tools Code_{AST}

Input: The new code string after perturbation Code_{new}

BodyBlockNode(Node_{body}) \leftarrow Code_{AST}.Walk()

Dead\ Branch\ Node \leftarrow Randomly\ Select\ From\ List_{Branches}

Insert\ Node_{body}\ Into\ Live\ Branch\ of\ Dead\ Branch\ Node

Code_{AST}.SetNewBodyBlock(Block_{new})

Code_{new} \leftarrow Code_{AST}.ReGetString()

return Code_{new}
```

4 P-value of single Pertub

Table 3: Evaluation results on the obfuscated datasets (BL=BLEU, BS=BERTScore).

			$\operatorname{Code} \operatorname{E}$	BERT		
Dataset	Pytl	hon	\mathbf{G}	0	Ja	ava
	BL	BS	BL	BS	BL	BS
Primary						
	17.95	29.64	17.78	40.11	18.62	31.92
Semanti	c Perturb.					
IOE	13.89(0.0000)	19.52(0.0000)	11.02 (0.0000)	16.26(0.0000)	13.85(0.0000)	$21.53 \ (0.0000)$
IS	14.70(0.0000)	22.82(0.0000)	13.07(0.0000)	23.28(0.0000)	15.42(0.0000)	$25.50 \ (0.0000)$
IHR	$12.54 \ (0.0000)$	17.53(0.0000)	12.10(0.0000)	22.38(0.0000)	12.84(0.0000)	19.61 (0.0000)
FNE	14.74(0.0000)	22.63(0.0000)	12.95(0.0000)	21.48(0.0000)	15.40(0.0000)	$25.17 \ (0.0000)$
Syntacti	c Perturb.					
oos	17.94(0.9632)	29.63(0.9511)	17.79(0.9685)	40.14(0.9259)	18.61(0.9782)	$31.90 \ (0.9531)$
HVI	17.53(0.0133)	$28.69 \ (0.0001)$	17.75(0.9023)	40.08(0.9393)	18.15(0.0436)	$30.99 \ (0.0021)$
DBI	17.34(0.0003)	28.27(0.0000)	17.87(0.7555)	40.40 (0.3955)	18.26(0.1269)	$31.41 \ (0.0874)$

4.1 Conclusion

4.1.1 Semantic Pertub

In semantic perturb, there are (model)*3(language)*4(perturb)*2(score)=72 sets of data, 5 of which do not meet the range of pvalue < 0.04 (marked in red), and these 5 sets all appear in CodeLlma's Go language tasks.

4.1.2 Synatic Pertub

In synatic perturb, there are 3 (model)*3(language)*3(perturb)*2(score)=54 sets of data, 11 of which do not meet the range of pvalue > 0.04(marked in pink), 9 of which have $pvalue \in [0.04, 0.5]$ (marked in blue). So overall, 20 out of 54 groups did not meet the pvalue > 0.5.

5 P-value of cross Perturb

Table 4: Evaluation results on the obfuscated datasets (BL=BLEU, BS=BERTScore).

			Co	m deT5		
Dataset	Pyt	thon	\mathbf{G}	lo	Jε	ava
	BL	$_{ m BS}$	BL	BS	BL	BS
Primary						
	20.38	34.41	19.67	43.18	20.66	35.35
Semantie	c Perturb.					
IOE	15.23(0.0000)	22.05(0.0000)	16.90(0.0000)	37.09(0.0000)	14.18 (0.0000)	20.90 (0.0000)
$_{\rm IS}$	16.50(0.0000)	26.97(0.0000)	17.87(0.0000)	37.64(0.0000)	15.88(0.0000)	26.51(0.0000)
IHR	15.84(0.0000)	25.03(0.0000)	16.96(0.0000)	36.26(0.0000)	14.82(0.0000)	24.65 (0.0000)
FNE	17.05(0.0000)	26.99(0.0000)	16.19(0.0000)	35.37(0.0000)	15.72(0.0000)	$22.60 \ (0.0000)$
Syntacti	c Perturb.					
OOS	19.34(0.0000)	33.43(0.0000)	19.71(0.8869)	43.27(0.7846)	20.68(0.9417)	$35.45 \ (0.7514)$
HVI	19.32(0.0000)	33.19(0.0000)	19.62(0.8724)	43.00(0.5885)	20.65(0.9793)	$35.25 \ (0.7369)$
DBI	18.77(0.0000)	31.61(0.0000)	19.15(0.0717)	42.51(0.0461)	20.25(0.1267)	34.87 (0.1257)

Table 5: Evaluation results on the obfuscated datasets (BL=BLEU, BS=BERTScore).

DD-DLIG	150010).					
			Code	Llama		
Dataset	Pyt	hon	G	ło	Ja	ava
	BL	$_{ m BS}$	BL	$_{ m BS}$	BL	BS
Primary						
	22.03	38.91	12.78	26.30	15.11	33.68
Semanti	c Perturb.					
IOE	11.15(0.0000)	13.27(0.0000)	12.75(0.9115)	26.26(0.9274)	13.34(0.0000)	$29.40 \ (0.0000)$
IS	17.30(0.0000)	30.03 (0.0000)	12.40(0.1642)	25.54(0.0561)	13.95(0.0000)	31.43(0.0000)
IHR	11.86(0.0000)	20.02(0.0000)	11.85(0.0004)	24.01(0.0000)	12.63(0.0000)	27.85 (0.0000)
FNE	18.54(0.0000)	31.78(0.0000)	12.42 (0.1873)	25.18(0.0055)	14.17(0.0000)	31.28 (0.0000)
Syntacti	c Perturb.					
OOS	22.08(0.9401)	38.86(0.9466)	12.77(0.9682)	26.29 (0.9858)	15.08(0.9196)	33.70 (0.9541)
HVI	21.69(0.5722)	38.53 (0.5994)	12.88(0.7320)	26.46 (0.6856)	15.22(0.7134)	33.67 (0.9909)
DBI	21.69(0.5650)	38.49(0.5690)	12.95(0.5496)	26.28(0.9671)	14.95(0.5721)	33.06 (0.2001)

Table 6: BLEU scores on the cross-obfuscated datasets. The semantic perturbation chooses the one with the greatest impact on the model in each programming language. The value in brackets is P-Value(compare with primary)

Dataset	Python	CodeBERT Go	Java	Python	$egin{array}{c} \operatorname{CodeT5} \ & \operatorname{Go} \end{array}$
Semantic Perturb	12.54	IOE 11.02	IHR 12.84	IOE 15.23	FNE 16.19
$\frac{\textbf{Cross Perturb.}}{\text{Semantic} \times \text{OOS}}$	12.52(0.8480)	10.93(0.5834)	12.87(0.8665)	14.21(0.0000)	16.25(0.822
$\begin{array}{c} \text{Semantic} \times \text{HVI} \\ \text{Semantic} \times \text{DBI} \\ average \end{array}$	11.57(0.0000) 11.49(0.0000) 11.83(0.0000)	10.81(0.2122) 10.74(0.0796) 10.83(0.2238)	12.16(0.0000) 12.13(0.0000) 12.39(0.0029)	13.75(0.0000) 12.70(0.0000) 13.55(0.0000)	15.75(0.069 14.58(0.00 15.53(0.004

Tabla	7.
rabie	١.

	100	<u>ж </u>		
Dataset		$\operatorname{CodeLlama}$		
Dataset	Python Go		Java	
Semantic Perturb	. IOE	IHR	IHR	
primary	11.15	11.85	12.63	
Cross Perturb.				
Semantic \times OOS	11.07(0.8733))	11.64(0.3911)	12.50(0.5637)	
Semantic \times HVI	8.85(0.0000)	11.82(0.9266)	12.51(0.5861)	
Semantic \times DBI	8.15(0.0000)	11.41(0.0782)	12.07(0.0101)	
average	9.36(0.0001)	11.62(0.3539)	12.36(0.2058)	