And (010) \$0 and det R=0... Rank of R=3. Honce
Rouk A=3

Then,
$$\det A = 0$$

i.e. $\begin{vmatrix} 1 \times x \\ \times 1 \times \end{vmatrix} = 0$

or,
$$\begin{vmatrix} 1+2x & x & x \\ 1+2x & 1 & x \end{vmatrix} = 0$$
 $c'_1 = c_1 + c_2 + c_3$
 $1+2x & x & 1$

or,
$$(1+2x)$$
 $\begin{vmatrix} 1 & x & x \\ 1 & 1 & x \end{vmatrix} = 0$

or,
$$(1+2x)$$
 | 1 x x | = 0 $R_2^1 = R_2 - R_1$ | 0 0 1-x 0 | $R_3^1 = R_3 - R_1$

$$(1+2x)(1-x)^2=0$$

$$x = -\frac{1}{2}, 1, 1$$

=
$$(x+\beta+\gamma)$$
 | 1 β = 0. Therefore, α = α rank of $A \angle 3$.

Now,
$$\begin{vmatrix} x & \beta \\ \beta & \gamma \end{vmatrix} = xy - \beta^2$$
 | Since, x, β, y are in A.P.

$$= xy - \left(\frac{y+x}{2}\right)^2$$

$$= \frac{1}{4} \left[\frac{1}{4}xy - \left(\frac{y+x}{2}\right)^2 \right] + 0. \left[\frac{1}{4} + x \right] + 0. \left[\frac{1}{4} + x \right] + 0.$$

$$= -\frac{1}{4} \left[\frac{1}{4} + x \right] + 0. \left[\frac{1}{4} + x \right] + 0. \left[\frac{1}{4} + x \right] + 0.$$

(3) (ii)
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{pmatrix} \xrightarrow{R_2 - R_1} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{pmatrix} \xrightarrow{R_2 + R_2} \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{pmatrix} \xrightarrow{R_2 + R_2} \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = R.$$

Now det $R = 0$ and $\begin{cases} 1 & 0 \\ 0 & 1 \end{cases} = 1 \neq 0$
Therefore Rank of $R = 2$ and hence Rank of $A = 2$.

(iii)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 2 \\ 2 & 6 & 5 \end{pmatrix} R_2 - R_1 \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & -1 \end{pmatrix} \xrightarrow{\frac{1}{2}R_2}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 6 & 5 \end{pmatrix} R_3 - 2R_1 \begin{pmatrix} 0 & 2 & -1 \\ 0 & 2 & -1 \end{pmatrix} = R$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -1/2 \\ 0 & 2 & -1 \end{pmatrix} \xrightarrow{R_3 - 2R_2} \begin{pmatrix} 0 & 1 & -1/2 \\ 0 & 0 & 0 \end{pmatrix} = R$$

R is row-earlier matrix. Now, let R=0, $|10|=1\pm0$, Therefore rank of R=2 and hence Rank of A=2.

6 (a)
$$x+y-z=0$$

 $2x-3y+z=0$
 $x-4y+2z=0$

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 1 \\ 1 & -4 & 2 \end{pmatrix} R_2 - 2R_1 \begin{pmatrix} 1 & 1 & -1 \\ 0 & -5 & 3 \\ 0 & -5 & 3 \end{pmatrix} \xrightarrow{R_2 + R_3} \begin{pmatrix} 1 & 1 & -1 \\ 0 & -5 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

The reduced system of equations is

$$x+y-2=0$$
 } No of equⁿ=2 | So. No of equⁿ/
 $-5y+32=0$ } No of Var=3 | So. No of equⁿ/
 $-5y+32=0$ } No. of Var=3 | and, Difference=1,
The system has infinitely so put,
 $-5y+32=0$ | The system has infinitely -1 var=0
 -1 | Then $y=\frac{3}{5}e$, -1 | -1

let z = c, then $y = \frac{3}{5}c$, $x + \frac{3}{5}c - c = 0$

The given system of equations, where c is on arbitrary constant.

(b)
$$x+y-2=0$$

$$2x+4y-2=0$$

$$3x+2y+22=0$$

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 4 & -1 \\ 3 & 2 & 2 \end{pmatrix} R_3-3R_1 \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & -1 & 5 \end{pmatrix} \frac{R_3+\frac{1}{2}R_2}{R_3-3R_1}$$

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 54/2 \end{pmatrix}$$

The reduced system of equations is 2y+z=0

The system of equits has many solutions. let z=c, then y=-9/2, x=9/2+c=3/2c System of equations where e is an arbitrary constant

(c)
$$\alpha_1 - 3\alpha_2 + 2\alpha_3 - \alpha_4 + 2\alpha_5 = 2$$

 $3\alpha_1 - 9\alpha_2 + 7\alpha_3 - \alpha_4 + 3\alpha_5 = 7$
 $2\alpha_1 - 6\alpha_2 + 7\alpha_3 + 4\alpha_4 - 5\alpha_5 = 7$

The so The augmented matrix,

$$\vec{A} = \begin{pmatrix} 1 & -3 & 2 & -1 & 2 & 2 \\ 3 & -9 & 7 & -1 & 3 & 7 \\ 2 & -6 & 7 & 4 & -5 & 7 \end{pmatrix} \xrightarrow{R_2 - 3R_1} \xrightarrow{R_3 - 2R_1}$$

$$\begin{pmatrix} 1 & -3 & 2 & -1 & 2 & 2 \\ 0 & 0 & 1 & 2 & -3 & 1 \\ 0 & 0 & 3 & 6 & -9 & 3 \end{pmatrix} \xrightarrow{R_3 - 3R_2} \begin{pmatrix} 1 & -3 & 2 & -1 & 2 & 2 \\ 0 & 0 & 1 & 2 & -3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

The system of equips reduced & to $x_1 - 3x_2 + 2x_3 - x_4 + 2x_5 = 2$

23+224-25=1

let $\chi_2 = a$, $\chi_4 = b$, $\chi_5 = c$. Where a, b, c are arbitrary $f \in G$ constants, then x3=1-26+3C, x1=3a+56-8C. The general solution is $x_1 = 3a + 5b - 8c$ $x_2 = a$, $x_3 = 1 - 2b + 3c$, $x_4 = b$, $x_5 = e$.

(a)
$$x-y+z=1$$

 $x+2y+4z=a$
 $x+4y+6z=a^{2}$

The augmented matrin is

The augmented
$$R_{2}$$
 R_{2} R_{1} R_{2} R_{3} R_{1} R_{2} R_{3} R_{1} R_{2} R_{3} R_{2} R_{3} R_{3}

$$\begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & 1 & \frac{a-1}{3} \\ 0 & 1 & 1 & \frac{a-1}{3} \\ 0 & 1 & 1 & \frac{a-1}{5} \end{pmatrix} \xrightarrow{R_3 - R_2} \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & 1 & \frac{a-1}{3} \\ 0 & 0 & 0 & \frac{a^{2}}{5} - \frac{a-1}{3} \end{pmatrix}$$

The reduced system of equations is

$$x-y+z=1$$

$$y+z=\frac{a+1}{3}$$

$$0=\frac{a^2}{5}-\frac{a+1}{3}$$

$$1=\frac{a+1}{5}$$

for consistency of the above system of $\frac{a^{2}}{5} - \frac{a^{4}}{3} = 0$ equetions,

or,
$$3a^{2}-5a+2=0$$

or,
$$(a-1)(3a-2)=0$$

or, $a=1$, $2/3$

when $a=1$ system of equations takes the form $x-y+2=1$
 $y+2=0$

Let $z=c$, then $y=-c$, $x=1-2c$

The general solution is $(1-2,-e,e)$

or $e=c$, $c(-2,-1,1)+(1,0,0)$,

when $a=2/3$
 $2-y+2=1$
 $y+2=-\frac{1}{4}$

Let $z=c$, then $y=-\frac{1}{4}-c$, $z=\frac{9}{4}-2c$

The general solution is $(\frac{8}{3}-2c,-\frac{1}{4}-c,e)$

or, ie. $c(-2,-1,1)+(\frac{8}{4},-\frac{1}{4},0)$,

 $c\in\mathbb{R}$.

$$2x + 3y - 2 = a + 1$$

$$2x + 3y - 2 = a + 1$$

$$2x + y + 52 = a^{2} + 1$$
The augmented matrix is,
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & -1 & a + 1 \\ 2 & 1 & 5 & a + 1 \end{pmatrix} \xrightarrow{R_{3} - 2R_{1}} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -3 & a - 1 \\ 0 & -1 & 3 & a - 1 \end{pmatrix}$$

CER.

R3+R2 (1 1 1 1 1 1 0 1 -3 a-1 0 0 0 0 a^{2}+a-2)

Therefore, the reduced system of equations is

$$x+y+2=1$$
 $0x+y+0=a^{2}+a-2$

for the consistency of the above \$\frac{1}{2}\$ system of

equations, $a^{2}+a-2=0$
 $a^{2}+a-2=0$
 $a^{2}+a-2=0$
 $a^{2}+a-2=0$
 $a^{2}+a-2=0$
 $a^{2}+a-2=0$
 $a^{2}+a-2=0$
Take, $a^{2}=c$, $a^{2}=c$, $a^{2}=c$, $a^{2}=c$, $a^{2}=c$, $a^{2}=c$

Take, $a^{2}=c$, $a^{2}=c$, $a^{2}=c$

Take, $a^{2}=c$, $a^{2}=c$

Take, $a^{2}=c$, $a^{2}=c$

Take, $a^{2}=c$, $a^{2}=c$

Take, $a^{2}=c$

Take, $a^{2}=c$

Take, $a^{2}=c$

The general solution is $a^{2}+a^{2}=c$
 $a^{2}+a^{2}=c$

Take, $a^{2}=c$

The general solution is $a^{2}+a^{2}=c$
 $a^{2}+a^{2}=c$

Take, $a^{2}=c$

The general solution is $a^{2}+a^{2}=c$
 $a^{2}+a^{2}=c$

The general solution is $a^{2}+a^{2}=c$
 $a^{2}+a^{2}=c$

(8) (a)
$$x+y+z=1$$

 $x+2y-z=b$
 $5x+7y+ax=b^{2}$

The system has a unique solution of the coefficient

determinant be non-zero. The coefficient determinant=

If a-1+0, ie. Fa+1, the system has only one solution.

Et a=1, the system has either no solution or

When a=1, the coefficient matrix of the system

 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 5 & 7 & 1 \end{pmatrix}$ and the augmented matrix

St the system is $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & b \\ 5 & 7 & 1 & b^2 \end{pmatrix}$

 $\frac{R^{2}-R_{1}}{R_{3}-5R_{1}}$ $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & 6-1 \\ 0 & 2 & -4 & 6-5 \end{pmatrix}$

If $b^2-2b-3=0$, then rank of $\overline{A}=mank$ of \overline{A} therefore the system is consistent.

If 6"-26-3 = 0, then rank of A = 3, rank of A=2 and since rank of A frank of A, the systemis inconsistent.

Therefore, if a=1, b\$1,-3 the system has no solution; and if a=1, b=-1, or if a=1, b=3 the system has many solutions.

(6)
$$2x+3y+5z=9$$

 $7x+3y-2z=8$
 $2x+3y+az=6$

The system has a unique solution if the coefficient

If a +5, the system has only one solution.

If a= 5, the conferent matrix of system has either no solution on many solutions.

when a=5, the coefficient matrix of the system is

then
$$a=5$$
, the coefficient matrix of the augmented $A=\begin{pmatrix} 2 & 3 & 5 \\ 7 & 3 & -2 \\ 2 & 3 & a \end{pmatrix}$ and the augmented $A=\begin{pmatrix} 2 & 3 & 5 & 9 \\ 2 & 3 & a \end{pmatrix}$ matrix of the system is $A=\begin{pmatrix} 2 & 3 & 5 & 9 \\ 7 & 3 & -2 & 8 \\ 2 & 3 & a & b \end{pmatrix}$

$$\vec{A} = \begin{pmatrix} 2 & 3 & 5 & 9 \\ 7 & 3 & -2 & 8 \\ 2 & 3 & 5 & 6 \end{pmatrix} \xrightarrow{R_2 - \frac{7}{2}R_1} \begin{pmatrix} 2 & 3 & 5 & 9 \\ 0 & -\frac{15}{2} & -\frac{27}{2} & -\frac{47}{2} \\ 0 & 0 & 0 & 6 & -9 \end{pmatrix}$$

If b-9=0 i.e. b=9, then rank of $\overrightarrow{A}=rank$ of A and we refore the system is consistent.

If 6-9 = 0, then mank of A = 3, and rank of A = 2.

and since rank A = rank A, the system is inconsistent.

Therefore, If a=5,6 \$ 9, the system of equations has no solutions and if a=5,5=9 the system of equations has infinitely many solutions.

$$(9.) (3x-8)x + 3y + 3z = 0$$

$$3x + (3x-8)y + 3z = 0$$

$$3x + 3y + (3x-8)z = 0$$

For the given system of equations to have a nontrivial solutions, the disterninant of the coefficient matrix should be Zero.

matrin should be zero

i.e.
$$\begin{vmatrix} 3K-8 & 3 & 3 \\ 3 & 3K-8 & 3 \\ 3 & 3 & 3K-8 \end{vmatrix} = 0$$

o, $\begin{vmatrix} 3K-2 & 3 & 3 \\ 3K-2 & 3K-8 & 3 \\ 3K-2 & 3K-8 & 3 \end{vmatrix} = 0$

$$\begin{bmatrix} c'_1 = C_1 + C_2 + C_3 \\ 3K-2 & 3K-8 & 3 \\ 3K-2 & 3K-8 & 3 \end{bmatrix}$$

or,
$$(3k-2)$$
 | 1 3 3 = 0
1 3 3 x-8 = 0

or,
$$(3K-2)(3K-1)^2 = 0$$

or, $K = 2, \frac{11}{3}, \frac{11}{3}$

(10)
$$ax+by+c2=0$$

 $bx+cy+ax=0$
 $cx+ay+b2=0$

for the given system of equations to have non-trival solution, the determinant of the coefficient matrix

ie.
$$\begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix} = 0$$

or,
$$\begin{vmatrix} a+b+c & a+b+c & a+b+c \end{vmatrix} = 0$$
 $\begin{bmatrix} R'_1 = R_1 + R_2 \\ +R_3 \end{bmatrix}$

or,
$$(a+b+c)$$
 $\begin{vmatrix} 1 & 1 & 1 \\ b & c & a \end{vmatrix} = 0$

or, $(a+b+c)$ $\begin{vmatrix} 1 & 0 & 0 \\ b & c-b & a-b \end{vmatrix} = 0$

$$\begin{vmatrix} 1 & c_2' = c_2-c_1, \\ c_3' = c_3-c_1 \end{vmatrix}$$

$$\begin{vmatrix} 2 & c_3' = c_3-c_1 \\ c_3' = c_3-c_1 \end{vmatrix}$$

or,
$$(a+b+c)$$
 $\begin{cases} (e-b)(b-e)-(a-b)(a-c) \\ = 0 \end{cases}$

or, $(a+b+c)(-a^2-b^2-c^2+ab+bc+(a)=0$

or, $(a+b+c)(-a^2-b^2-c^2+ab+bc+(a)=0$

or, $a^2+b^2+c^2=ab+bc+(a)=0$

or, $a^2+b^2+c^2=ab+bc+(a$

Hence the given system has a

(a)
$$b = ca = 0$$

(a) $b = ca = 0$

(a) $a(bc-a)^2 - b(b+ac) + c(ab-c) = 0$

(a) $abc - a^3 - b^3 + abc + abc - c^3 = 0$

(a) $abc - a^3 + b^3 + a^3 = 0$

(a) $abc - a^3 + b^3 + a^3 = 0$

(a) $abc - a^3 + b^3 + a^3 = 0$

(a) $abc - a^3 + b^3 + a^3 = 0$

(a) $abc - a^3 + b^3 + a^3 = 0$

(a) $abc - a^3 + b^3 + a^3 = 0$

(a) $abc - a^3 + b^3 + a^3 = 0$

(a) $abc - a^3 + b^3 + a^3 = 0$

(a) $abc - a^3 + abc + abc - a^3 = 0$

(a) $abc - a^3 + abc + abc - a$

$$\bar{A} = \begin{pmatrix} 2-i & 3 & -1-3i \\ -5 & -i & 4+2i \end{pmatrix}$$

$$A^{+} = A^{T} = \begin{pmatrix} 2-i & -5 \\ 3 & -i \\ -1-3i & 4+2i \end{pmatrix}$$

$$AA^{2} = \begin{pmatrix} 2+i & 3 & -1+3i \\ -6 & i & 4-2i \end{pmatrix} \begin{pmatrix} 2-i & -5 \\ 3 & -i \\ -1-3i & 4+2i \end{pmatrix} 3X2$$

$$= \frac{15+9+10}{-6(2-i)+3i-(1+3i)(4-2i)} + \frac{15+1}{+20}$$

$$=$$
 $\begin{pmatrix} 24 & -20 + 2i \\ -20 - 2i & 46 \end{pmatrix}$.

$$\sqrt{AR} = \begin{pmatrix} 24 - 20 + 2i \\ -20 - 2i \end{pmatrix}$$

Dence AAF is Hermitian marking

Express any matrix A as the Burn of Her-mittan matrix and 3 Kew-Hermitian matrix A = \(\frac{1}{2} \left[A - A^* \right] + \(\frac{1}{2} \left[A - A^* \right] \) - [A+A] is stermition part = [A-A*] (6 SKew-Hermitian part. 13. Let A is a real and gon symmetric matrix of order 3. Then let A = (a1 a2 a3) (ax a8 a6) (a7 a8 a9). Now A-AT = (a1 a2 a3.) - (a1 a4 a4 a4 a4 a5 a6 a6 a6 a3 a4 a9 $\begin{bmatrix}
0 & a_{2} - a_{4} & a_{3} - a_{7} \\
a_{4} - a_{2} & 0 & 96 - a_{8} \\
a_{7} - a_{3} & a_{8} - a_{6} & 0
\end{bmatrix} = \begin{bmatrix}
0 & b_{1} & b_{2} \\
-b_{1} & 0 & b_{3} \\
-b_{2} - b_{3} & 0
\end{bmatrix}$ There b_1 = a_2-a_4, b_2 = a_3-a_7, b_3 = a_6-a_8 Now, (A-AT) is skew symmetric marrie of odd order dence is beterminant is 0. Hence Yand (A-AT) <3. Now Consider the migor $\begin{vmatrix} 0 & b_1 \\ -b_1 & 0 \end{vmatrix} = b_1^2, \begin{vmatrix} 0 & b_3 \\ -b_3 & 0 \end{vmatrix} = b_3^2, \begin{vmatrix} 0 & b_2 \\ -b_2 & 0 \end{vmatrix} = b_2^2$

Now if fank (A-AT) = 1 them.

bi = 0, bi = 0, bi = 0 2) 10/ = 62=103=0 Huce A become a symmetric matrix which is a contradiction to the fact A is non-symmetric Hence Your (A-AT) - 2 Best . Consider me stoduct At (A+B) Bt = (AtA + AtB) Bt [: AtA=I] = (I+AtB)3t = Bt +AtBet [: BBt=[] e (A+B)t Now failing lot both side the get, det of At (A+B) & 3 = let (A+B) = let (A+B) or, det At. let (A+B) let 1st - let (A+B) ur. Det A. det (A+B). det B = let (A+B) a. let A. Let (A+B) (-letA) = let (A+B) [.: let A + det 3 = 0 | w, let [A+B) \$ 1+(letA) = 0

since Aix overlagued mathy 2 det (A+B)=0 0) st (A+B) =0 ef. 1 same as (1).

B' Since A is skew-Hermitians Marky A = -A".

Now it is given that (IHA) is non-snewner stence (IHA) exist.

26w, (I+A) (I-A) { (I+A) (I-A) } = (FA) (FA) (FA) (FA) (FA) = (FA) (FA) (FAT) (S+AT) = ([+A] { [+AA] - A-A] { [+ AT] = (I+A) { I+AAT? { I+AT3" = {(I+A) + (I+A) AAT ? { I+AT3 = (I+AT) (T+AT) + (I+AT) AAT. (I+AT) = \(\(\text{I} + \approx \approx \approx \) + \(\(\text{I} + \approx \approx \) + \(\(\text{I} + \approx \) \(\text{I} + \approx \) = (I-A)-13 + (I+A) (-A) (I-A) = {(I-A)(I+A)} -1+(I+A) (-A) (J-A) = (I+A) (5-A) + (I+A) (-A) (5-A) = (J-A) { (J-A) } ~ (S+A) (S-A) (S-A) - (I+A) (I+A) (I-A) (I+A) - I B

$$\begin{array}{ll}
\textcircled{I} & (I+A)^{T}(I-A) & (I+A)^{T}(I-A) & I = I \\
\alpha, & (I+A)^{T}(I-A) & (I-A)^{T}(I+A)^{T} & I = I \\
\alpha, & (I+A)^{T}(I-A) & (I-A^{T}) & (I+A^{T})^{T} & = I \\
\alpha, & (I+A)^{T}(I-A) & (I-A^{T}) & = (I+A^{T}) & = I \\
\alpha, & (I-A) & (I-A^{T}) & = (I+A) & (I+A^{T}) \\
\alpha, & (I-A) & (I-A^{T}) & = (I+A) & (I+A^{T}) \\
\alpha, & I-A-A^{T}+AA^{T} & = I+A+A^{T}+AA^{T} \\
\alpha, & I-A-A^{T}+AA^{T} & = I+A+A^{T} \\
\alpha, & I-A-A^{T} & = I+A+A^{T} \\
\alpha,$$

Since A is renitary meanix

i, AAT = ATA= I.

Let $B = (I+A)^{T}(I-A)^{T}$ $= (I+A)^{T}(I-A)^{T}$ $= (I+A)^{T}(I+A)^{T}$ $= (I-A^{T})(I+A^{T})^{T}$ $= (AA^{T}-A^{T})(AA^{T}+A^{T})^{T}$ $= (A-I)A^{T}(A^{T})^{T}(A+I)^{T}$ $= (A-I)(A+I)^{T} = -(I-A)(I+A^{T})^{T}$

Now
$$A^{2}I = (A+I)(A-I) = (A-I)(A+I)$$

$$A+I)(A-I) = (A+I)(A+I)$$

$$A+I) = (A+I)^{1}(A-I)(A+I)$$

$$A+I) = (A+I)^{1}(A-I)(A+I)$$

$$A+I) = (A+I)^{1}(A-I)(A-I)$$
Thence

$$\bar{g}^{T} = (A+I)^{T}(A-I)$$

$$= -(I+A)^{T}(I-A)$$

$$= -B$$

Hermitian marxix.

Hence 27+27+8=1 of [3mle Ais unitary]

20:
$$M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & av & a \\ 1 & a & av \end{bmatrix}$$
, where $a = \frac{2in}{3}$.

There $a = 2i$.

About: $MM = 3I$ we have to show.

 $M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & av & a \\ 1 & a & av \end{bmatrix}$.

Mond.
$$MM = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a^2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \end{bmatrix}$$

Now $a = -\frac{2i\hat{x}}{3}$, $a^2 - \frac{4i\hat{x}}{3}$.

$$a^3=1$$
, Hence: a is the cube foot of $a^3=1$ Hence: $a = 1$ if $a + a^2 = 0$.

