Abstract Harmonic Analysis

Ikhan Choi

August 5, 2022

Contents

Ι	Fourier analysis on groups	2
1	Locally compact groups 1.1 Topological groups 1.2 Haar measures 1.3 Group algebra 1.4 Structure theorems	3 3 3 3
2	Pontryagin duality 2.1 Dual group	4 4 4
3	Spectral synthesis 3.1 Closed ideals of the colvolution algebra	5 5
II	Representation theory	6
4	Unitary representations 4.1	7 7 7 7
5	Compact groups5.1 Peter-Weyl theorem5.2 Tannaka-Krein duality5.3 Example of compact Lie groups	8 8 8
6	Mackey machine 6.1 Example of non-compact Lie groups	9 9
II	I Kac algebras	10
IV	Topological quantum groups	11
7	Compact quantum groups	12
8	Locally compact quantum groups 8.1. Multiplicative unitaries	13 13

Part I Fourier analysis on groups

Locally compact groups

1.1 Topological groups

1.2 Haar measures

- **1.1** (Non- σ -finite measures). Four technical issues
 - (a) The Riesz-Markov-Kakutani representation theorem
 - (b) The Fubini theorem
 - (c) The Radon-Nikodym theorem
 - (d) The dual space of L^1 space
- **1.2** (Radon measures). Let Ω be a locally compact Hausdorff space. The Riesz-Markov-Kakutani representation theorem states that positive bounded linear functionals on $C_0(\Omega)$ are corresponded to finite regular Borel measures on Ω . A Radon measure is a generalization of a regular Borel measure, introduced in order to extend this theorem for *unbounded* but positive linear functionals.
- **1.3** (Riesz-Markov-Kakutani representation theorem for C_c). Let Ω be a locally compact Hausdorff space. We are concerned with positive linear functionals on $C_c(\Omega)$.
- 1.4 (Existence of the Haar measure).

1.3 Group algebra

- 1.5 (Modular functions).
- 1.6 (Convolution).

1.4 Structure theorems

Pontryagin duality

- 2.1 Dual group
- 2.2
- 2.3 Fourier inversion
- 2.1 (Positive definite functions).
- 2.2 (Bochner's theorem).
- **2.3** (Fourier inversion theorem).
- **2.4** (Plancherel's theorem).

Spectral synthesis

3.1 Closed ideals of the colvolution algebra

Part II Representation theory

Unitary representations

4.1

4.1 (Schur's lemma).

4.2 Group C*-algerbas

4.2 (Operator-value Fourier transform).

4.3 Functions of positive type

- **4.3** (Functions of positive type).
- 4.4 (Fourier-Stieltjes algebra).
- **4.5** (GNS construction for locally compact groups). Let G be a locally compact group. By a state of $C^*(G)$, we could construct the GNS representation of G. An analog of GNS construction for $L^1(G)$ without completion is doable, when given a function of positive type on G, instead of a state.

Compact groups

- 5.1 Peter-Weyl theorem
- 5.2 Tannaka-Krein duality
- 5.3 Example of compact Lie groups

Mackey machine

6.1 Example of non-compact Lie groups

Wigner classification

Part III Kac algebras

Part IV Topological quantum groups

Compact quantum groups

Locally compact quantum groups

8.1 Multiplicative unitaries