PA - Mid-semester answer sheet

		Predicted condition	
	Total population = P + N	Positive (PP)	Negative (PN)
ondition	Positive (P)	True positive (TP)	False negative (FN)
Actual condition	Negative (N)	False positive (FP)	True negative (TN)

1	Prevalence $\frac{P}{P+N}$		
2	$ ext{MCC} = \sqrt{PPV imes TPR imes TNR imes NPV} - \sqrt{FDR imes FNR imes FPR imes FOR}$		
3	2TP 2TP + FP + FN		
4	Positive likelihood ratio (LR+) = TPR FPR		
	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$		
	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$		
5	False discovery rate (FDR)		
	$= \frac{FP}{PP} = 1 - PPV$		
6	2x2		
7	False		
8	-1 -0.8728716		
	0 -0.2182179		
	1 1.0910895		

9	True		
10	1.0000000 0.9819805		
	0.9819805 1.0000000		
11	Both are same after scaling.		
	X1 shows more variance before scaling as compared to X2		
12	Eigen values = 1.98198051 0.01801949		
	Eigen vectors		
	0.7071068 -0.7071068		
	0.7071068 0.7071068		
13	0.990990253 0.009009747		
14	False		
15	False		
16	from sklearn.preprocessing import StandardScaler		
17	1. PCA methods		
	i. Eigen-value criteria		
	ii. Scree plot		
	iii. Explained variance/covariance		
	2. PCA applications		
	i. Dimensionality reduction		
	ii. Model building		
18	1. Manhattan distance		
	2. Euclidean distance		
19	Merit: It scales the distribution to visualize the proportions		
	Demerit: Scaling transforms the data and changes the original		
	values		
20	False - To remove a nearly unary variable is not a mistake		
21	True - It is a mistake to not remove (omit)		
22	True		
	<pre>sns.jointplot(data=data, x='Total eve minutes', y='Total night</pre>		
	minutes', kind='hist')		
	plt.show()		

