Eric Hwang's Portfolio

# 데이터사이언스

# 목록

01

자기소개

# 02 프로젝트정리

- (1) 프로젝트1
- (2) 프로젝트2
- (3) 프로젝트3

• Name: 황승현

• Email: hshun123@naver.com

• Github: https://github.com/hshun123

#### Technical Skills

- Java/Spring Framework
- Restful API Design
- Python
- C++/C
- Ocaml
- MySQL
- MongoDB
- Kotlin

# Project1 해외축구팀 분석 데이터소개 및분석동기

| 컬럼 명                  | 컬럼 의미       |
|-----------------------|-------------|
| ID                    | 고유의 번호      |
| Name                  | 이름          |
| Age                   | 나이          |
| Overall               | 현재 능력치      |
| Potential             | 잠재 능력치      |
| Club                  | 소속 팀        |
| Value                 | 예상 이적료 (유로) |
| Wage                  | 주급 (유로)     |
| Preferred Foot        | 잘 사용하는 발    |
| Weak Foot             | 잘 사용하지 않는 발 |
| Skill Moves           | 개인기         |
| Position              | 포지션         |
| Jersey Number         | 등번호         |
| Joined                | 소속 팀 입단 날짜  |
| Contract Valid Until  | 계약 기간       |
| Height                | 키(피트)       |
| Weight                | 몸무게 (파운드)   |
| LS ∼ RB               | 포지션 별 능력치   |
| Crossing ~ GKReflexes | 세부 능력치      |
| Release Clause        | 바이아웃        |

#### 데이터 소개

축구 선수 기본 정보 데이터

- (1) 선수 기본 정보
- (2) 클럽 팀 / 포지션 / 포지션 별 능력치 / 계약 정보 포함

#### 분석 설계

목표 : 해외 축구 선수 팀 맨체스터 유나이티드 선수 영입 제안

- (1) 맨체스터 유나이티드 팀 부족한 포지션 분석
- (2) 팀의 영입방침을 살펴보고 현재 이적 시장에 있는 인원 들의 능력치 비교 후 우수한 인원 영입 제안

프로젝트개발환경

언어: Python

데이터출처:

FIFA2018

활용도메인지식: 유럽축구데이터

분석동기:

4차산업시대에 맞게 축구 선수 영입시에도 데이터 분 석이 필요함을 증명하기 위 하여

# Project1 해외축구팀 분석 데이터특징 및제안









# Countplot

맨유의 기본 정보를 확인 나이 및 포지션의 분포정도를 알 수 있음.

# **Boxplot**

맨시티와 비교하여 각 포지션 능력치 및 몸 값을 비교 특징

라이벌구단과비교시 이적 료는비슷하지만능력치부 분에서 많은 차이가보임

제안

라이벌팀과비교해서특히 부족한MF/CB를 영입

Data Science

# Project1 해외축구팀 분석 분석결과

|     | Name        | Overall | Potential | Age | Joined       | Point     |
|-----|-------------|---------|-----------|-----|--------------|-----------|
| 327 | E. Bailly   | 81.0    | 87.0      | 24  | Jul 1, 2016  | 10.375000 |
| 377 | C. Smalling | 81.0    | 82.0      | 28  | Jul 1, 2010  | 8.714286  |
| 454 | L. Shaw     | 80.0    | 85.0      | 22  | Jun 27, 2014 | 11.136364 |
| 584 | V. Lindelöf | 79.0    | 85.0      | 23  | Jul 1, 2017  | 10.565217 |

|     | Name       | Overall | Potential | Age | Joined       | Point    |
|-----|------------|---------|-----------|-----|--------------|----------|
| 132 | N. Matić   | 84.0    | 84.0      | 29  | Jul 31, 2017 | 8.689655 |
| 211 | Juan Mata  | 83.0    | 83.0      | 30  | Jan 25, 2014 | 8.300000 |
| 250 | Fred       | 82.0    | 84.0      | 25  | Jun 21, 2018 | 9.920000 |
| 254 | J. Lingard | 82.0    | 83.0      | 25  | Jul 1, 2010  | 9.880000 |

# **결론 : 영입 방침**만유의 영입 방침을 고려하여 잔류 Point라는 점수를 생성 잔류 Point가 낮은 선수 2명을 방출

이적시장 선수 중 잔류 Point가 높은 선수를 영입 제안 영입방침에 따른 잔류 Poitnt: (Overall \* 2 + Potential) / Age

잔류 Point 낮은 C.Smalling/Juan Mata 방출

이적시장상위 13명의 Age, Overall, Potential, Weak Foot 비교하여 영입 우선순위 판가름 후 영입



Data Science

# Project2 상점 매출 분석 데이터소개 및 분석동기



#### 데이터 소개

Rosmann 상점의 매출 데이터

- (1) 상점별 상세정보(상점 위치, 기후, 경쟁 상점과의 거리 등)
- (2) 날짜

#### 분석 설계

- (1) 베이스라인 모델링
- (2) 피처 엔지니어링을 통해 여러 변수들 생성하기
- (3) 궁극적인 매출 증대 방안 고려

#### 프로젝트개발환경

언어:Python

데이터출처: Kaggle/Rossmann Sales 데이터

활용도메인지식: 커머스

분석동기: 매출을 결정짓는 요인을 분 석하고 그에 따른 매출 증대 계획 제안

# Project2 상점 매출 분석 모델링결과



# 기본 모델링+feature engineering + 변수선택

#### Q: 매출 예측 모델 제작 과정과 그 결과

#### A:

- 1. 보조데이터의 feature engineering과 변수 중요도개념을 활용한 변수선택으로 예측 mse는 1800까지 떨어짐
- 2. 매출에 가장 중요한 요소는 프로모션 여부임
- 3. 경쟁업체와의거리는생각보다덜중요한요소로판명남

# Project3 대출 상환 분석 데이터소개 및 분석동기

| 설명                    | col_name                   |
|-----------------------|----------------------------|
| 유니크한 아이디              | SK_ID_CURR                 |
| 연체 혹은 문제가 생긴 경우       | TARGET                     |
| 성별(0: 여성, 1: 남성)      | CODE_GENDER                |
| 다보유 여부(0: 없음, 1: 있음)  | FLAG_OWN_CAR               |
| E 보유 여부(0: 없음, 1: 있음) | FLAG_OWN_REALTY            |
| 자녀 수                  | CNT_CHILDREN               |
| 수입                    | AMT_INCOME_TOTAL           |
| 대출금액                  | AMT_CREDIT                 |
| 1달마다 갚아야 하는 금액        | AMT_ANNUITY                |
| · 청을 할 때 누가 동행했는지     | NAME_TYPE_SUITE            |
| 직업 종류                 | NAME_INCOME_TYPE           |
| 학위                    | NAME_EDUCATION_TYPE        |
| 주거 상횜                 | NAME_HOUSING_TYPE          |
| 지역의 인구                | REGION_POPULATION_RELATIVE |
| 나이                    | DAYS_BIRTH                 |
| 업했는지(365243는 결측치      | DAYS_EMPLOYED              |
|                       | DAYS_ID_PUBLISH            |
| 보유한 차의 나이             | OWN_CAR_AGE                |
| 가족 수                  | CNT_FAM_MEMBERS            |
| 건제 대출신청을 했는지 시간       | HOUR_APPR_PROCESS_START    |
| 일하는 조직의 종류            | ORGANIZATION_TYPE          |
| 기부 데이터1로부터 신용점수       | EXT_SOURCE_1               |
| 기부 데이터2로부터 신용점수       | EXT_SOURCE_2               |
| 1부 데이터3로부터 신용점수       | EXT_SOURCE_3               |
| 마지막 핸드폰을 바꾼 시기        | DAYS_LAST_PHONE_CHANGE     |
| 내한 신용정보를 조회한 개수       | AMT_REQ_CREDIT_BUREAU_YEAR |
|                       |                            |

#### 데이터 소개

Home Credit 기업 내부 데이터

- (1) 채무자의 인적 정보(나이, 성별, 사는 지역 등)
- (2) 대출에 대한 상세 정보 (대출금액, 대출종류, 기간 등)
- (3) 채무자가 성공적으로 대출 했는지에 대한 여부 **분석 설계**
- (1) 모델링
- (2) 모델링에 따른 피처들의 영향력 알아보기
- (3) 영향을 많이 주는 5개의 변수와 대출금 상환 여부와의 관계 보기

#### 프로젝트개발환경

언어: Python

데이터출처:

Kaggle/Home Credit Default Risk 데이터

활용도메인지식: 금융데이터

분석동기:

대출상환여부를 결정짓는 요인을 분석하고 그에 따른 대출 플랜 제안

# Project3 대출 상환 분석 모델링









#### AMT\_CREDIT\_TO\_ANNUITY\_RATIO

총 대출 금액이 한달마다 갚아야 하는 금액의 12배~20배까지는 때는 비교 적 상환을 못함

반면, 35배 이상부터는 상환을 잘 함.

#### DAYS\_EMPLOYED

취업한지 오래될 수록 대출을 상환할 확률 상승.

특이점 : 대출일 기준 9000일보다 이전에 취업을 했을 때 대출상환 능력이 급격히 상승

#### DAYS\_CREDIT

DAYS\_CREDIT 변수는 이전에 대출을 진행했을 시에 이전과 현재 대출일간의 차이의 평균DAYS\_CREDIT은 -3000일부터 -2000일까지는 대출을 상환할 확률이 상승하며, 이후부턴 하락하는 비선형성을 보임.

#### DAYS\_LAST\_PHONE\_CHANGE

핸드폰을 오래 전에 바꾸었을 수록 대출을 상환할 가능성 상승

# Project3 대출 상환 분석 분석결과



# Shap Value를 통한 상환 여부 중요도 표시

#### Q:대출상환여부영향요소

#### A:상환여부영향상위요소5

- 1. AMT\_CREDIT\_TO\_ANNUITY\_RATIO: 대출 금액 대비 월별 상환금액의 비율
- 2. DAYS\_EMPLOYED: 취업한 시기
- 3. DAYS\_CREDIT: 다른 대출을 받은 시기
- 4. DAYS\_LAST\_PHONE\_CHANGE: 핸드폰을 바꾼 시기
- 5. DAYS\_BIRTH: 태어난 시기

프로젝트기술스택

사용모델링:

Xgboost

#### 모델링사용이유:

1. Treeshap 밸류를 활 용하기 위해 tree형 모델 선택

2. tree형모델중속도가 빠르고, 평균높은성능 율유지하는xgboost선택