Practice 02: Intro to ML

MADMO, 2021

Outline

- 1. ML thesaurus and notation
- 2. Naïve Bayes classifier

girafe ai

Denote the **dataset**.

/								
1			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
X	student	23	3	3	NA	Esperanto	2	FALSE

Observation (or datum, or data point) is one piece of information.

,	<u>,</u>							
\langle			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
J	student	23	3	3	NA	Esperanto	2	FALSE

In many cases the observations are supposed to be *i.i.d.*

- independent
- identically distributed

Feature (or predictor) represents some special property.

\langle			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
X	student	23	3	3	NA	Esperanto	2	FALSE

,	,							
/			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

,								
\langle			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
Y	student	23	3	3	NA	Esperanto	2	FALSE

,								
\langle			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
X	student	23	3	3	NA	Esperanto	2	FALSE

,	,							
$\sqrt{}$			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

And even the name is a **feature**

1			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

The **design matrix** contains all the features and observations.

\langle			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
X	student	23	3	3	NA	Esperanto	2	FALSE

Features can even be multidimensional, we will discuss it later in this course.

Target represents the information we are interested in.

		Statistics	Python		Native	Target	Target
Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							
student	23	3	3	NA	Esperanto	2	FALSE
	John Aahna Emily Michael Some	Name Age John 22 Aahna 17 Emily 25 Michael 27 Some	Name Age (mark) John 22 5 Aahna 17 4 Emily 25 5 Michael 27 3	Name Age (mark) (mark) John 22 5 4 Aahna 17 4 5 Emily 25 5 5 Michael 27 3 4 Some	Name Age (mark) (mark) Eye color John 22 5 4 Brown Aahna 17 4 5 Brown Emily 25 5 Blue Michael 27 3 4 Green Some	Name Age (mark) (mark) Eye color language John 22 5 4 Brown English Aahna 17 4 5 Brown Hindi Emily 25 5 Blue Chinese Michael 27 3 4 Green French Some	Name Age (mark) (mark) Eye color language (mark) John 22 5 4 Brown English 5 Aahna 17 4 5 Brown Hindi 4 Emily 25 5 Blue Chinese 5 Michael 27 3 4 Green French 5 Some

Target can be either a **number** (real, integer, etc.) – for **regression** problem

Target represents the information we are interested in.

/								
			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

Or a **label** – for **classification** problem

Target represents the information we are interested in.

/								
/			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
Y	student	23	3	3	NA	Esperanto	2	FALSE

Mark can be treated as a label too (due to finite number of labels: 1 to 5). We will discuss it later.

Further we will work with the numerical target (mark)

Name	Age	Statistics (mark)	Python (mark)	Eye color	Native language	Target (mark)
John	22	5	4	Brown	English	5
Aahna	17	4	5	Brown	Hindi	4
Emily	25	5	5	Blue	Chinese	5
Michael	27	3	4	Green	French	5
Some student	23	3	3	NA	Esperanto	2

The **prediction** contains values we predicted using some **model**.

\langle			Statistics	Python		Native	Target	Predicted
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	4.5
1	Aahna	17	4	5	Brown	Hindi	4	4.5
	Emily	25	5	5	Blue	Chinese	5	5
	Michael	27	3	4	Green	French	5	3.5
	Some							
7	student	23	3	3	NA	Esperanto	2	3

One could notice that prediction just averages of Statistics and Python marks. So our **model** can be represented as follows:

The **prediction** contains values we predicted using some **model**.

\langle			Statistics	Python		Native	Target	Predicted
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	4.5
1	Aahna	17	4	5	Brown	Hindi	4	4.5
	Emily	25	5	5	Blue	Chinese	5	5
	Michael	27	3	4	Green	French	5	3.5
	Some							
	student	23	3	3	NA	Esperanto	2	3

Different models can provide different predictions:

The **prediction** contains values we predicted using some **model**.

				Python			Target	Predicted
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	1
	Aahna	17	4	5	Brown	Hindi	4	5
	Emily	25	5	5	Blue	Chinese	5	2
	Michael	27	3	4	Green	French	5	4
	Some							
1	student	23	3	3	NA	Esperanto	2	3

Different models can provide different predictions:

$$\operatorname{mark}_{ML} = \operatorname{random}(\operatorname{integer from} [1; 5])$$

The **prediction** contains values we predicted using some **model**.

	Name	Age	Statistics (mark)	Python (mark)	Eye color	Native language	Target (mark)	Predicted (mark)
	John	22	5	4	Brown	English	5	1
	Aahna	17	4	5	Brown	Hindi	4	5
	Emily	25	5	5	Blue	Chinese	5	2
_	Michael	27	3	4	Green	French	5	4
	Some							
	student	23	3	3	NA	Esperanto	2	3

Different models can provide different predictions.

Usually some **hypothesis** lies beneath the model choice.

girafe ai

Let's denote:

- ullet Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - $oldsymbol{arphi}_i \in \mathbb{R}^{p}$, $y_i \in \{C_1, \dots, C_k\}$ for k-class classification

Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

or, in our case

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{C_1, \dots, C_K\}$ for K-class classification

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Naïve assumption: features are **independent**

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Naïve assumption: features are independent:

$$P(\mathbf{x}_i|y_i = C_k) = \prod_{l=1}^{r} P(x_i^l|y_i = C_k)$$

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Optimal class label:

$$C^* = \arg\max_k P(y_i = C_k | \mathbf{x_i})$$

To find maximum we even do not need the denominator

But we need it to get probabilities

Let's Practice

Thanks for attention!

Model validation and evaluation

Supervised learning problem statement

Let's denote:

- ullet Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ ($\mathbf{x} \in \mathbb{R}^p$, $y \in \mathbb{R}$) for regression
 - $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification

Model $f(\mathbf{x})$ predicts some value for every object

Loss function $Q(\mathbf{x},y,f)$ that should be minimized

Overfitting vs. underfitting

Under-fitting

(too simple to explain the variance)

Appropriate-fitting

(forcefitting – too good to be true)

Over-fitting

Overfitting vs. underfitting

Overfitting vs. underfitting

- We can control overfitting / underfitting by altering model's capacity (ability to fit a wide variety of functions):
- select appropriate hypothesis space
- learning algorithm's effective capacity may be less than the representational capacity of the model family

Dataset

Training

Testing

Holdout Method

Is it good enough?

Cross-validation

