Young Tableau, Symmetric Functions, Schubert Polynomials, and Degeneracy Loci

With 0 Figures

Anakin Dey

Last Edited on 1/5/25 at 14:47

Contents

1 [Ful97] Geometry 1

Preface

These are notes for a reading course under Professor Dave Anderson. The primary focus is Manivel's *Symmetric Functions, Schubert Polynomials, and Degeneracy Loci* [Man01] which one could see as a quasi-sequel to Fulton's *Young Tableaux*¹ [Ful97]. Primarily, the solutions will be to exercises from [Man01]. However, as needed there will be solutions to material from [Ful97], or perhaps even other texts such as [Mac98].

¹which throughout these notes will be spelled as "tableaux" or "tableau" with no real consistency.

Chapter 1

[Ful97] Geometry

Solution: [Ful97] §9.1 Ex. 1: Choose a basis $\{e_1, \ldots, e_m\}$ so that E can be identified with \mathbb{C}^m . Let $i_1 < \cdots < i_{d-1}$ and $j_1 < \cdots j_{d+1}$ be sequences in [m]. Apply §9.1 Equation (1) with k=1 to the sequences $j_2 < \cdots < j_{d+1}$ and $i_1 < \cdots < i_{d-1}, j_1$ by fixing j_1 to be the vector swapped successively with the $j_2 < \cdots < j_{d+1}$. Reordering the indices and applying the appropriate sign change yields the desired alternating summation. \square

Solution: [Ful97] §9.1 Ex. 2: We have that $V \subseteq E = \mathbb{C}^4$ is given as the kernel of multiplication of a matrix $A = (a_{i,j})_{\substack{1 \le i \le 4 \\ 1 \le j \le 2}}$. To find this matrix, the given conditions of the $x_{i,j}$ describe the following determinantal conditions on the entries of A:

$$x_{1,2} = 1 \iff \Delta_{1,2}(A) = 1,$$

 $x_{1,3} = 2 \iff \Delta_{1,3}(A) = 2,$
 $x_{1,4} = 1 \iff \Delta_{1,4}(A) = 1,$
 $x_{2,3} = 1 \iff \Delta_{2,3}(A) = 1,$
 $x_{2,4} = 2 \iff \Delta_{2,4}(A) = 2,$
 $x_{3,4} = 3 \iff \Delta_{3,4}(A) = 3.$

From here, we must make an assumption based on which affine portion of \mathbb{P}^5 our matrix lives in. This amounts to picking some i_1, i_2 so that the minor given by those columns is the identity matrix. For the given conditions, we could pick $(i_1, i_2) = (1, 2), (1, 4), \text{ or } (2, 3)$. We give *A* for each of these choices respectively:

$$A = \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 2 & 1 & 0 & -3 \\ -1 & 0 & 1 & 2 \end{pmatrix}.$$

It is clear that these are the same matrix up to row operations.

Solution: [Ful97] §9.1 Ex. 4: Following [Ful97, Corollary of Theorem 1, §8.1], we have that $S^{\bullet}(m; d_1, ..., d_s)$ is canonically isomorphic to the subalgebra of $\mathbb{C}[Z]$ generated by all D_T , where T varies over all tableaux on Young diagrams whose columns have lengths in $\{d_1, ..., d_s\}$ and entries in [m] where

$$D_T = \prod_{j=1}^{\ell} D_{T(1,j),T(2,j),\dots,T_{\mu_j,j}}$$

where μ_i is the length of the j^{th} column of λ the shape of T and $\ell = \lambda_1$.

(a) We mimic the proof of [Ful97, Proposition 2, §9.1]. ((I think this proof needs to be rewritten, perhaps with a highest weight argument?)) Let $G = G(d_1, \ldots, d_s) \leq \operatorname{GL}(V)$. The dimension of the vector space of polynomials of homogeneous polynomials of degree a in the span of all the D_{i_1,\ldots,i_p} for $p \in \{d_1,\ldots,d_s\}$ is $\sum d_{\lambda}(m)$ where the sum ranges over all partitions of a of shape λ with columns whose lengths lie in $\{d_1,\ldots,d_s\}$. Viewing $V^{\oplus m}$ by identifying $Z_{i,j}$ with the i^{th} basis vector of the j^{th} copy of V, we have by [Ful97, Corollary 3(a), §8.3] that $\mathbb{C}[Z]_a = \operatorname{Sym}^a(V^{\oplus m}) \simeq \bigoplus_{\lambda \vdash a} (V^{\lambda})^{d_{\lambda}(m)}$ where $\lambda \vdash a$ has at most n rows. Thus, we would like to show that $(V^{\lambda})^G$ has dimension 1 when the lengths of the columns of λ lie in $\{d_1,\ldots,d_s\}$ and 0 otherwise.

We recall the construction of V^{λ} in §8.1 of [Ful97]. Elements of $V^{\times \lambda}$ are specified by specifying an element of V for each box in λ . Fillings by basis vectors $\{e_1, \ldots, e_n\}$ corresponding to semistandard Young Tableaux T of shape λ with entries in [n]. The images of such elements in $V^{\times \lambda}$ in V^{λ} form a basis $\{e_T\}$ of V^{λ} . Consider the basis element corresponding to the tableaux $U(\lambda)$ given by filling every box on row i with the number i. For maps in G, the first d_i basis vectors must map to linear combinations of the first i basis vectors and the restrictions of such maps to the V_i have determinant 1. As such, we can only consider λ whose columns have lengths lying in $\{d_1, \ldots, d_s\}$. To see that $e_{U(\lambda)}$ is the only such fixed basis vector,

(b)

Bibliography

- [Ful97] William Fulton. *Young Tableaux: With Applications to Representation Theory and Geometry*. Cambridge University Press, 1997. ISBN: 0521567246. DOI: 10.1017/cbo9780511626241.
- [Mac98] Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford university press, 1998.
- [Man01] L. Manivel. *Symmetric Functions, Schubert Polynomials and Degeneracy Loci*. Collection SMF. American Mathematical Society, 2001. ISBN: 9780821821541. URL: https://books.google.com/books?id=yz7gyKYgIuwC.