Data Science and Artificial Intelligence Probability and Statistics

Bivariate Random Variable

Lecture No.-02

Recap of Previous Lecture

Topic

Bivariate Random Variable Part-1

Bivaruate Random variable

P[X=xi, Y=yj] = P[X=xi / Y=yj].

Simultaneously

Topics to be Covered

Topic

Bivariate Random Variable Continued

Bivariate Random Variables:	X] Two din	vensional Variable
3 balls put 3 cells		3 cells
cell 2 No ball in any cell (
X= random variable. X= vandom variable	b1 b2 -	p3
Simultaneody X= No. of balls in all 1 works X= No. of cells Are occupied	P1 p5 p3	7919

Y=1 cell	Y= No. of cells Are occupied	X= Noof balls in cells
=2 cell $=3$ ull		1 ball
Y= 1,2,3		-2 ball -3 ball
DEV C		X=0,1,2,3
- DLX = No. of	oalls />= No of cells.	1
- 1/2/2/	Ji] = Two dimensional	O X
2 bivanate	random variable. random variable. variable [Simultanosly togethe	3
	variable simulanosly togethe	2

X = 0,1,2,3 (No. of balls in cell 1) Y = 1,2,3 (No. of cells occurred)
P[x=0,x=1] = P[x=Noball in x= 1 cell occubros	רו
P[x=0, y=z] = P[x=No ball m, y=2 cell cell occurred]
P[x=1, y=1]=P[x=one ball, y=1 cell in cell 1, occurred	7

14				W
X	1	2	3	
VO.	(0,1)	(1,2)	(0,3)	
1		(1/2)	(1,3)	
2	(2/1)	(2,2)	(2,3)	
3	(3,1)	(3,2)	(3,3)	
(n				
11	11) (0	12) (0,	3)	
(1) (1,	2) (1;	(2	
13	1) (2	2)(2)	3)	
(3	1)(3	2) (3:	(5	

Slide 5

Topic: Bivariate Random Variable

X=No. of ball in cell 1

Y=No. of cells occupied

P[X=0,Y=1] =>
$$\frac{2}{27}$$

P[X=0,Y=2] => $\frac{2}{27}$

P[X=0,Y=3] => 0

P[X=1,Y=1] => $\frac{6}{27}$

XX	1	2	3	Pw
0	(ky)	(0,2)	(0,3)	
1	(1,1)	(1,2)	(1,3)	
2	(2/1)	(2,2)	(2,3)	
3	(3,1)	(3,2)	(3,3)	
X=2, Y=	2)==	6 P[(=3, Y=2	2)=0

$$P[X=2,Y=2]=\frac{6}{27}$$

 $P[X=2,Y=3]=0$
 $P[X=3,Y=1]=\frac{1}{27}$

$$P(X=3,Y=2)=0$$
 $P(X=3,Y=3)=0$

Let X, Y be Two Random Variable Then Joint Prob omt Pscob Table: A) P[x=xi, Y=Y;] 20 B) & P[x=xi, Y=Y;] Column
Add

[The simulationsty					
XX	. 1	2	occus 3	Total	
0	2(91)	6 (0,2)	0 (0,3)	,8/27	
1	0(11)	6/27 (1,2)	6/27 (1,3)	12/27	
2	0(2,1)	1/27(2/2)	6 (33)	927	
3	名子(3,1)	0 (3,2)	0 (3,3)	1/27	
etal	37	18 27	6/27	1	

(Discrete bivariate Random Variable)

$$P[X=0] = \frac{8}{27} = \frac{2}{27} + \frac{6}{27} + 0$$

$$P[X=1] = \frac{12}{27}$$

$$P[X=2] = \frac{6}{27}$$

$$P[X=3] = \frac{17}{27}$$

$$P[Y=1] = \frac{3}{27}$$

$$P[Y=2] = \frac{18}{27}$$

$$P[Y=3] = \frac{18}{27}$$

X	1	2	3	$\binom{P_{W}}{W}$
D:	27(0,1)	6 (0,2)	0 (0,3)	18/27
1.	0 (1,1)	6/27(1,2)	1/27 (13)	12
2	0 (31)	6/27(2/2)		6/27
3.	27(31)	0 (3,2)	0 (3,3)	27
	3/27	18/27	6/27	1

Marginal Pseobability
Only Target with one value

Pw

Marginal Prob: State Synamic

[X=xi] = P[x=x: 1 >= P[x-x: 1 >= P[x

$$P[X=xi] = P[X=xi \land Y=y_j] \Rightarrow P[X=xi \land Y=y_1] + P[X=xi \land Y=y_2]$$

$$\int P[X=xi^*] = \sum_{i=1}^{n} P[X=xi^*, X=y_j^*] + P[X=xi \land Y=y_3] + - - - -$$

[P[Y=yi] = ZP[x=ai, y=yi]

Marginal Probability Distribution

for X X 0 | 1 | 2 | 3

P[X=xi] \frac{8}{27} \frac{12}{27} \frac{6}{27} \frac{1}{27}

tion / 1 2 3 | prob. Dis P[x=y] 3 | 8 6 27 | 27 | 27

Marginal Prob Distribution Marginal P[X=Xi, Y=Yj] 1/4 marginal Prob of Y: P[(= 4)] = P[X=X, (= 4)] + P[X=x2, (= 4)] +1[x=x3,y=y]+1[x=x4, Y=y]+P[x=x5,y=y]+P[x=x6,y=y]

= = P[x=xi, y=yi] -marginal Brob. of

Conditional Probability Mass function !
$$P[A] = P[AB]$$

If X and Y Are given Two Dimensional Vandom vanishles.

 $P[X] = P[X \text{ given } Y] = P[X = X] = P[X = X, Y = Y]$
 $Y = Y$ already

Happened

 $P[Y = Y] = \text{marginal}$

Prob of Y

Happeing

 $P[Y = Y] = \text{marginal}$
 $P[Y = Y] = \text{marginal}$
 $P[Y = Y] = \text{prob of } Y$
 $P[Y = Y] = P[X = X, Y = Y; Y$

$$P[X \cap Y]$$

$$P[X=xi, \cap Y=Yj]$$

$$P[X=xi] = P[Y=Y] = P[Y=Y, X=x]$$

$$P[X=xi] = P[Y=Yj, X=xi]$$

$$P[X=xi]$$

$$P[X=xi]$$

Conditional Prob

Indépendence of Random variables:

Two Distrete Random variable X, Y.

Simultanauely

P[X=xi, Y=yi] = P[X=xi] P[Y=yi]

Wesking P[X=xi NY=yi]

Marginal
Perobiof X

Imt Brob

P[x=x] +0

If A and B Are Indep. P(ANB)=P(A)P(B)

Q1. The following table represents the joint probability distribution of the discrete random variable (X, Y):

Y	1	2	X P[X=2] 0.3 0.4 0.3
1.	0.1 (1,1)	(1,2) 0.2	0.3
2	0.1 (2,1)	(2,2) 0.3	0.4 marginal Y
3	0.2 (3,1)	(3,2) 0.1	0.3 112
Find:	0.4	0.6	1 P[ky] 0.4 0.6

- (i) The marginal distributions.
- (ii) The conditional distribution of X given Y = 1.

(iii)
$$P[(X+Y)<4]=P[X=1,Y=1)+P[X=2,Y=1]+P[X=1,Y=2]=0.4$$

P[Xgiven
$$\chi=1$$
] =

Continue

Q2. Two discrete random variables X and Y have

$$P[X=0, Y=0] = \frac{2}{9}, \quad \text{Joint Prob} \quad \text{Working}$$

$$P[X=0, Y=1] = \frac{1}{9}, \quad \text{Joint Prob} \quad \text{Simultains}$$

$$P[X = 1, Y = 0] = \frac{1}{9}$$
, and

$$P[X = 1, Y = 1] = \frac{5}{9}$$

Examine whether X and Y are independent?

If X	, I Are Independent n	ragninal head
	P[X=Xi, Y=yj] = P[X=	4) P(r=yi)

7	$=\frac{3}{9}x$	3=9+1	W
			X
	(0,0) 2	(°11) 1	39
	(1,0)	(1,1) 5	6
		9	9
۲.	3	9	1
PT	X=0]= = P[x		1
" (1 4 16	= = = = = = = = = = = = = = = = = = = =	1
P	(P=0)=3 P[X=1)= 6	
4	Count Va 1	7	1

P[x=0, Y=0]=P[X=0]P[Y=0] P

Q3. The join probability distribution of a pair of random variables is given by the

following:

Y	1	2	3
х			
1	1/12	0	1/18
2 -	1/6	1/9	1/4
3	0	1/5	2/15

Conditional Dist of y goven

- (i) Evaluate marginal distribution of X.
- (ii) Evaluate conditional distribution of Y given X = 2
- (iii)

Obtain P[X + Y < 5]. $= \frac{15}{36}$ And

$$P\left(\frac{\gamma}{z}\right) = P\left(\frac{\gamma = y_j}{z = z_i}\right)$$

$$\frac{P\left(\frac{y=1}{x=2}\right)}{4} = \frac{2}{4}$$

$$\frac{6}{19} = \frac{4}{19}$$

$$\frac{9}{19} = \frac{1}{2}$$

$$\frac{7}{19} = \frac{1}{2}$$

$$\frac{P[Y=1]}{X=2} = \frac{P[Y=1 \land X=2]}{P[X=2]} = \frac{1}{6} = \frac{36=6}{19}$$

$$\frac{P[X=2]}{X=2} = \frac{P[Y=2 \land X=2]}{X=2} = \frac{1}{9} = \frac{36=4}{9}$$

$$\frac{P[X=2]}{X=2} = \frac{P[X=2 \land X=2]}{P[X=2]} = \frac{1}{9} = \frac{36=4}{9}$$

$$\frac{P[X=2]}{X=2} = \frac{1}{9} = \frac{36=4}{9}$$

Q4. For the following joint probability distribution of (X, Y)

Y X	1	2	3	
1	1/20	1/10	1/10	20+10+10
2	1/20	1/10	1/10	
3	1/10	1/10	1/20	
4	1/10	1/10	1/20	

- (i) find the probability that Y = 2 given that X = 4,
- (ii) find the probability that Y = 2 and Y = 2
- (iii) examine if the two events X = 4 and Y = 2 are independent.

Q5. The following table represents the joint probability distribution of the discrete random variable (X, Y):

	Y 1	2
X		
1	0.1	0.2
2	0.1	0.3
3	0.2	0.1

Find:

- (i) F (2, 2), F (3, 2)
- (ii) $F_x(3)$
- (iii) $F_{\gamma}(1)$

THANK - YOU