*Kec 11	Molecular	. Spectra		
In corse of	molecules,	The V	ibration	
In corse of		Gives	rise to	
2 Vibrational, e	energy alhic	h is als	o granti	zed
(Quiston M	rechamics)		A	
	TO DE =			
2) the rot rotational en		070	der 1	LAND
(2) the rot	ation giv	size	to ~	\sim $^{\mu}$
rotational er	nergy armi	ch is c	osla	
quantized	Cauantur	n Mechan	nies)	**************************************
		The sepo		n 1
			the overspond	thing
		to mich		9

~100pm < 2, < ~1 cm

Molecular spectroscopy
MICROWAVE SPECTROSCOPY 100 mm / 2 / 1 cm
Deals with rotation of molecules
Rotation of three-dimensional body is
quite complex. > Described by three
principal axes of rotation
Ahree principal moments of inextia
In Is, Ic Different cases
1. Linear molecules:
Atoms are arranged in a straight line
H_ Cl Hydrogen chloride
0 — C — S corrbon oxysulphide
Fig 1
IN A. TB

(a) about the bond axis [x-axis in Ag 1] (b) end-over-end votation in dy plane @ end-over-end rodation in 2-2 plane. Moment of intertion for (b) 2 (c) are some (See the symmentry) => IB = Ic For linear molecule IA = 0 2. Symmetric tops methyl fluoride i prolote A. tetrahedral H Company The centre of proving hier along C-F Bond, we take this as mont aris (A) In \$0 becomes of massives Henever hydrogens votates being away from centur & mass. ID = Ic + IA JA \$ 0

Three directions of rotations may be

(22) Oblate (planar) boron frichloride. JA = 2 JB = 2 Jc · Spherical toks Methane IA = ID= Te No dipolement due to their symmetry > notation alone com/t produce dipole change . No rodational Asymmetric tops + F3 + Ic water

Rotational spectra for diatomic moleules rigide rois fixeel. ~ Y1 ~ X2 ~ ... C. denote center of mass. $\gamma_0 = \gamma_1 + \gamma_2$ $m_1 r_1 = m_2 r_2$ In The moment of inertia about C, $I = m_1 r_1^2 + m_2 r_2^2$ = (m, r,)r, + (m, r) r2 = (merz) 7, + (miri) 1/2" $4m_1 r_1 = m_2 r_2 = m_2 (r_6 - r_1)$

LOVI MILAYDINI CESCENTIA

I = 8, 12 (mi+mz) = mitme mitre (mitre) $=\frac{m_1m_2}{m_1+m_2} v_0^2 = \mu v_0^2$ is alled reduced mass. W = m1 m2 Quantum nechanics alulation can show that rotational energy terrets for rigid diatomic $E_{J} = \frac{h^{2}}{8\pi^{2}} J(J+1) \qquad J=0, 13^{2}$ I votational quentum number Grave number = Energy in unit of E. = 3727 J = 1 Ez = 878 I 6 2 9=1 E3 = 87 12. J = ">

0 -> 1 tromordin by absorbing radiation. the come number of the Radiation should be FirEo = 8172 = 2B B = 872 Ic Called rotational comfort. $\overline{V_{1-2}} = \frac{F_2 - F_1}{hc} = B \left[\frac{2(2+1)}{1} - \frac{1}{1} (1+1) \right]$ = 4B VJ-1 J+1 = B [(J+1)(J+1+1)- J(J+1)] $=B[f^2+35+2-f^2-5]$ =2B(J+1)Selection rule DJ = II Another important fact the moteule must be heteronuclear. For homonuclear there will be no dipole component change during rotation > no interactionalistic H.W. The 1st line in votation.

Spectra of CO is 3:84225 cm-1

Find out the mement of industria. $v_{o\rightarrow i} = 2B = 2 \times \frac{1}{8\pi^2 T_c}$ 10= 1.456 X 10-46 kg m² Knowing the relative atomic areigns C= 12.0000. 0 = 15.9994 M= 12415-9994 X 1.6734 X10-27 kg £ 1.1 ×10-26 kg $\gamma_0^2 = \frac{I_{co}}{\mu}$ $\gamma_0 = \gamma_{co} = 0.1131 \text{ nm}$ (bondlength)