## Лекция 13 **Нерегулярности**

### Машинное обучение **Андрей Фильченков** / Сергей Муравьёв

27.11.2020

### План лекции

- Нерегулярность в данных
- Сэмплирование данных
- Частичное обучение
- Активное обучение
- Обучение на одном примере
- Самообучение
- Поиск аномалий
- Обработка выбросов
- Слайды подготовлены с использованием материалов курсов
  - К.В. Воронцов «Машинное обучение»
  - В. Гулин «Data Mining»
  - A.
  - A. Ng's "Deep Learning"
- Слайды доступны: shorturl.at/ltVZ3
- Видео доступны: shorturl.at/hjyAX

### План лекции

- Нерегулярность в данных
- Сэмплирование данных
- Частичное обучение
- Активное обучение
- Обучение на одном примере
- Самообучение
- Поиск аномалий
- Обработка выбросов

#### Вспомним утиный тест

Как выглядели обучающие данные:

Много уток, много не уток (неуток).

Как строился классификатор:

- 1. Для уток выделили ключевые признаки.
- 2. Понятие похожести используется для оценки близости признаков.
- 3. Логический сепаратор используется для классификации.

#### Что может пойти не так?

Мы предполагаем, что есть одинаковые по значимости классы с примерно одинаковым числом объектов, но это бывает не так:

- 1. Классы несбалансированы
- 2. Не все объекты размечены
- 3. В классе мало объектов
- 4. Классы могут добавляться
- 5. Классы не одинаковы по значимости
- 6. Метки расставлены неправильно

### План лекции

- Нерегулярность в данных
- Сэмплирование данных
- Частичное обучение
- Активное обучение
- Обучение на одном примере
- Самообучение
- Поиск аномалий
- Обработка выбросов

#### Сценарий

В классах несбалансированное число объектов

При этом возможности дособрать и разметить дополнительные объекты исчерпаны

### Две стратегии сэмплирования

Делать подвыборку большего класса (subsampling), или увеличить размер меньшего класса (upsampling)

Subsampling делается в основном для исследования данных и валидации результатов

### Стратегии сэмплирования

#### Простое случайное



#### Систематическое



#### Стратифицированное (stratified)



#### Кластерное



#### **SMOTE**

# Synthetic Minority Over-sampling Technique (SMOTE)

- 1) Случайно выбрать точку а
- 2) Выбрать k ближайших точек из ее класса
- 3) Случайно выбрать из них одну, b
- 4) Случайно выбрать точку на отрезке (a, b)
- 5) Добавить ее с той же меткой класса, что и у a

#### Что бывает еще?

- Аугментация данных
- Синтетические данные, полученные при помощи генеративных моделей
- Использование данных с «грязными» (noisy/dirty) метками
- Дистилляция данных

#### Очень важное замечание

Все искусственные объекты можно использоваться только в тестовом множестве.

#### Что можно делать еще?

- Задавать веса объектам (потерям на объекте)
- Использовать правильные меры:
  - F-меру
  - Каппу Коэна:

$$\kappa = \frac{Acc - Acc_{chance}}{1 - Acc_{chance}},$$

где  $Acc_{chance} = \sum_{y \in Y} Recall_y \cdot Precision_y$ 

### План лекции

- Нерегулярность в данных
- Сэмплирование данных
- Частичное обучение
- Активное обучение
- Обучение на одном примере
- Самообучение
- Поиск аномалий
- Обработка выбросов

#### Сценарий

Есть доступ к большому числу объектов, но не у всех есть метки.

Объекты обычно собирать значительно дешевле, чем размечать, потому что разметка зачастую требует привлечения человеческих ресурсов.

#### Постановка задачи

Задано обучающие множество

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_l, y_l), x_{l+1}, \dots, x_{l+u}\} = \mathcal{D}_l \cup \mathcal{D}_u,$$

где  $l \ll u$ . Требуется восстановить  $f: X \to Y$ .

#### Простые, но неудачные подходы:

- решать как задачу обучения с учителем (на  $\mathcal{D}_l$ , отбросив  $\mathcal{D}_u$ )
- решать как задачу обучения без учителя (на  $\mathcal{D}_l \cup \mathcal{D}_u$ , отбросив метки).

#### Предположения

Предположение плавности (smoothness assumption): две точки в области высокой плотности, лежащие близко друг от друга, с большей вероятностью имеют одинаковые метки.

Предположение кластеризованности (cluster assumption): две точки из одного кластера с большей вероятностью имеют одинаковые метки.

Предположение многообразия (manifold assumption): многомерные данные из реального мира лежат в низкоразмерном многообразии внутри соответствующего многомерного пространства.

#### Алгоритм самообучения

#### Алгоритм самообучения (self-training):

Обучить некую a на  $\mathcal{D}_l = (X_l, Y_l)$ 

Предсказать a(x) для всех  $x \in X_u$ 

Добавить (x, a(x)) к  $\mathcal{D}_l$  и начать заново

#### Варианты:

- Добавлять наиболее достоверные (x, a(x))
- Добавлять все (x, a(x))
- Добавлять все (x, a(x)), взвешенные с учетом достоверности

#### Анализ самообучения

#### Достоинства:

- Простота
- Может быть обёрткой для более сложных алгоритмов классификации

#### Недостатки:

- Негативное влияние ошибочных прогнозов усиливается с обучением.
- Трудность в достижении сходимости алгоритма

#### Сообучение

**Идея:** использовать несколько независимых моделей, обучаемых на разных группах признаков (разделение признаков, feature split).

В сценарии **сообучения (co-training)** два классификатора используют метки, поставленные друг другом.

В сценарии **многовидового обучения (multi-view learning)** обучается несколько классификаторов.

#### Анализ сообучения

#### Достоинства:

- Подходит почти ко всем известным классификаторам
- Менее чувствительно к ошибочным прогнозам

#### Недостатки:

- Естественное разделение признаков не всегда существует
- Разделение признаков ограничивает качество обучаемых моделей

#### Частичный метод опорных векторов

Частичный метод опорных векторов (semisupervised support vector machine, S3VM, также Transductive SVM, T-SVM)

максимизирует отступ и до неразмеченных

данных



#### Функция потерь S3VM

Функция потерь содержит расстояние и до неразмеченных вершин (hat loss):

$$\sum_{i=1}^{l} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 +$$

$$+ \sum_{j=1}^{u} (1 - |M_j(w, w_0)|)_+ \to \min_{w, w_0}.$$

#### Hat loss



#### Проблемы Hat loss

Ее использование приводит к невыпуклой оптимизации

#### Подходы к решению:

- Использовать алгоритмы невыпуклой оптимизации
- Использовать сглаживание и градиентный спуск
- Использовать верхнюю оценку и разбить на несколько задач выпуклой оптимизации

### План лекции

- Нерегулярность в данных
- Сэмплирование данных
- Частичное обучение
- Активное обучение
- Обучение на одном примере
- Самообучение
- Поиск аномалий
- Обработка выбросов

#### Сценарий

Есть доступ к большому числу объектов, но не у всех есть метки

Данные собираются быстро, а размечаются медленно и порционно, скорость обучения моделей происходит быстрее, чем разметка

### Активное обучение

В активном обучении условия такие же, как в частичном обучении, но можно задавать Оракулу вопросы о значении меток.

Для  $\mathcal{D} = \{(x_1, y_1), ..., (x_l, y_l), x_{l+1}, ..., x_{l+u}\} = \mathcal{D}_l \cup \mathcal{D}_u$ , где  $l \ll u$ , восстановить  $f: X \to Y$  за наименьшее число обращений к Оракулу (найти стратегию обращений к Оракулу, оптимизирующую качество аппроксимации f).

### Выбор по степени неуверенности

Выбор по степени неуверенности (uncertainty sampling)

**Идея**: спрашивать про объекты, про которые меньше всего уверенности.

Пусть  $\hat{y} = \arg\max_{y} P_{\theta}(y|x)$  — это наиболее вероятный класс для текущей модели с параметрами  $\theta$ .

#### Варианты

Минимальная уверенность (last confident):  $x_{LC}^* = \arg\max_{x} 1 - P_{\theta}(\hat{y}|x)$ ,

Πο οτετуπу (margin sampling):  

$$x_{MS}^* = \arg\max_{x} P_{\theta}(\hat{y}_1|x) - P_{\theta}(\hat{y}_2|x),$$

Максимальная энтропия (maximum entropy):

$$x_{ME}^* = \arg\max_{x} - \sum_{i} P_{\theta}(y_i|x) \log P_{\theta}(y_i|x).$$

#### Отбор по несогласию в комитете

# Отбор по несогласию в комитете (query-by-committee)

Пусть есть комитет натренированных моделей  $\mathcal{C} = \{\theta_{(1)}, ..., \theta_{(|\mathcal{C}|)}\}$ . Каждая голосует за объекты из  $\mathcal{H}$ .

**Идея**: спрашивать про объекты, на которых наименьшее согласие.

Энтропия голосования:

$$x_{VE}^* = \arg\max_{x \in H} - \sum_{i} \frac{V(y_i)}{|C|} \log \frac{V(y_i)}{|C|},$$

где  $V(y_i)$  число голосов на метку  $y_i$  для объекта x.

#### Ожидаемое изменение модели

Ожидаемое изменение модели (expected model change)

**Идея**: спрашивать про объекты, которые приведут к наибольшему изменению ошибки:

$$x_{EGL}^* = \arg\max_{x} - \sum_{i} P_{\theta}(y_i|x) \|\nabla \mathcal{L}(x, y_i)\|.$$

### Ожидаемое сокращение ошибки

Ожидаемое сокращение ошибки (expected error reduction)

**Идея**: спрашивать про объекты, которые позволят уменьшить ошибку.

Минимизация ожидания точности:

$$x_{0/1}^* = \arg\max_{x} \sum_{i} P_{\theta}(y_i|x) \sum_{x' \in H} 1 - P_{\theta^{+(x',y_i)}}(\hat{y}|x'),$$

Минимизация ожидания перекрестной энтропии:

$$x_{0/1}^*=rg\max_x\sum_i P_{\theta}(y_i|x)\Biggl(-\sum_j\sum_{x'\in H}P_+(j)\log P_+(j)\Biggr),$$
 где  $P_+(j)=P_{\Theta^+(x',y_j)}\bigl(y_j\big|x'\bigr)$ 

### План лекции

- Нерегулярность в данных
- Сэмплирование данных
- Частичное обучение
- Активное обучение
- Обучение на одном примере
- Самообучение
- Поиск аномалий
- Обработка выбросов

#### Сценарий

- Число классов может увеличиться
- В некоторых классах сравнительно мало объектов

### Обучение на одном примере

Обучение на одном примере (one short learning) это постановка, в которой алгоритм должен дообучиться классификации на новый класс, содержащий всего один объект.

Обучение на нескольких примерах (few short learning) предполагает все то же, но с несколькими объектами.

### Добавление центроидов

Обучение на одном примере основано на метрической классификации.

Добавление центроида не заставляет изменять другие центроиды. Однако необходимо, чтобы выученная метрика позволяла хорошо по ним классифицировать.

#### Сиамская сеть

Сиамская сеть (Siamese network) состоит из двух идентичных сетей, возвращающих векторные представления **ВХОДОВ** 



### Triplet loss

Для обучения используется **triplet loss**:  $\mathcal{L}(a,p,n) = \max(\mathrm{dist}(a,p) - \mathrm{dist}(a,n) + \varepsilon,0)$ 



Anchor



Positive



Anchor



Negative

### Обучение и вывод

Обучение. Сеть обучается по батчам троек градиентным спуском

**Вывод.** Для каждого класса хранится объект (центроид), с которыми сравнивается вход по косинусному расстоянию.

Чтобы добавить класс, добавляется новый объект в качестве центроида.

# План лекции

- Нерегулярность в данных
- Сэмплирование данных
- Частичное обучение
- Активное обучение
- Обучение на одном примере
- Самообучение
- Поиск аномалий
- Обработка выбросов

### Сценарий

Много объектов, но мало меток, и мы хотели бы эффективно предобучиться на объектах без меток

### Самообучение

**Самообучение (self-supervised learning)** — подход, в котором для обучения представлений используются задачи, в которых разметку можно получить автоматически

**Предварительная задача (pretext task)** — задача с искусственно созданными метками (псевдо-метками), на которой обучается модель, чтобы выучить хорошие представления (representations) объектов.

**Последующая задача (downstream task)** — целевая задача, для которой используются полученные представления с простым дискриминатором.

### Определение поворота

### Нужно предсказать, как повернут кадр



### Предсказание контекста

Нужно предсказать, как расположен патч относительно центрального



$$X = ( ); Y = 3$$

#### Решение головоломки

Нужно определить перестановку патчей, чтобы восстановить правильный порядок





### Что еще?

Восстанавливать часть изображения Восстанавливать цвет изображения Восстанавливать детали изображения

Предсказывать слово по контексту Предсказывать контекст по слову

. . .

## Сравнительное обучение

**Cpaвнительное обучение (contrastive learning)** — обучение за счет объединения аугментированных или иным образом полученных трансформаций в один класс с исходным объектом в парадигме метрической классификации.

### Пример: использование кропов

Мы должны выучить векторное представление объектов, удовлетворяющее тому, что части объектов более похожи на объект, чем любой другой объект



Машинное обучение. Лекция 13. Нерегулярности. 27.11.2020.

# План лекции

- Нерегулярность в данных
- Сэмплирование данных
- Частичное обучение
- Активное обучение
- Обучение на одном примере
- Самообучение
- Поиск аномалий
- Обработка выбросов

### Одноклассовая классификация

На самом деле утиный тест про всего лишь один класс. Второй класс определяется через непринадлежность к первому. Это — задача одноклассовой классификации (one-class classification).

Поиск аномалий (anomaly / exception / surprise detection) — это задача одноклассовой классификации.

### Новизна и выбросы

Детектирование выбросов (outlier detection) — определение того, что объекты в выборке аномальны

**Детектирование новизны (novelty detection)** — определение того, что новые поступающие объекты аномальны

### Типы аномалий

• Точечная аномалия



• Контекстуальная аномалия



• Коллективная аномалия

## Подходы к поиску аномалий

- методы на основе плотности: аномалии находятся в регионах низкой плотности
- методы на основе расстояний: аномалии удалены от других точек
- специфические алгоритмы

### Одноклассовый SVM

Будем отделять выборку от начала координат

Работает с ядром радиально-базисных функций

Заточен именно под поиск аномалий, потому что воспринимает весь набор данных

# План лекции

- Нерегулярность в данных
- Сэмплирование данных
- Частичное обучение
- Активное обучение
- Обучение на одном примере
- Самообучение
- Поиск аномалий
- Обработка выбросов

### Что делать с выбросами?

Простой вариант — выкинуть из выборки и обучить модель на чистых данных.

Более сложный вариант — обучать модель с учетом того, что выбросы всетаки есть.

### Ошибка как индикатор выброса

Идея: чем больше ошибка на объекте

$$\varepsilon_i = LOO(x_i) = \mathcal{L}(a(x_i; \mathcal{D} \setminus \{(x_i, y_i)\})),$$

тем с большей вероятностью он является выбросом и тем меньше мы хотим его учитывать.

Это можно добавить в качестве веса к непараметрической регрессии:

$$\mathcal{L}(a,\mathcal{D}) = \sum_{i=1}^{|\mathcal{D}|} K(\varepsilon_i) (f(x_i,\theta) - y_i)^2 \to \min_{\theta}.$$

#### Локально взвешенное сглаживание

Локально взвешенное сглаживание (LOcally WEighted Scatter plot Smoothing, LOWESS) для непараметрической регрессии:

$$\varepsilon_i = |a - y_i|$$
 будет функцией потерь;

возьмем квартичное ядро 
$$K(\varepsilon_i) = K_Q\left(\frac{\varepsilon_i}{6 \mathrm{med}\{\varepsilon_i\}}\right)$$
.

Будем итеративно повторять обучение модели и обновление є, пока они не стабилизируются.

### Робастная регрессия

**Идея:** поменяем асимптотику функции потерь, чтобы ограничить влияние выбросов

#### Функция Мешалкина:

$$\mathcal{L}(a,x) = 1 - \exp\left(-\frac{1}{2\sigma}(a(x) - y(x))^2\right).$$

