Introduction to Machine Learning Problem Set: Regularization, Logistic Regression

Summer 2021

- 1. (From Ethem Alpaydin's Introduction to Machine Learning) Consider the multi-class logistic regression with two classes using the softmax function.
 - (a) Express the softmax outputs $g_0(z)$ and $g_1(z)$ in terms of $z_0 = w_0^T x$, and $z_1 = w_1^T x$.
 - (b) Show that using two softmax outputs is equivalent to using one sigmoid output. Hint: if you write out P(y=0|x) and P(y=1|x) for the softmax function in terms of z_0 and z_1 , and also write the sigmoid function output in terms of z, you can show that the two expressions are equivalent, for a particular relationship between z and z_0 , z_1 .
- 2. (By Prof. Sundeep Rangan) Selecting a regularizer. Suppose we fit a regularized least squares objective,

$$J(w) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + \alpha \phi(w),$$

where \hat{y}_i is some prediction of y_i given the model parameters w. For each case below, suggest a possible regularization function $\phi(w)$, and briefly explain.

There is no single correct answer. The answer may not necessarily be a "popular" regularization penalty you have already seen.

- (a) w should be sparse (i.e., only a few coefficients of w are nonzero).
- (b) the entries of w should be small on average.
- (c) negative coefficients are unlikely (but still possible), and very large negative coefficients are especially unlikely, but positive coefficients are not penalized.
- (d) each w_j (except for the first one) should be similar to the previous coefficient w_{j-1} . (Note: we are looking for a solution that achieves this very specifically, not just a solution that makes all the coefficients similar.)