Improving Text Embeddings with Large Language Models

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei Microsoft Corporation

발표자: 송선영

2024/01/16

Introduction

- Information Retrieval (IR) 분야에서 first-stage는 텍스트 임베딩에 의존해 large-scale corpus에서 small set of candidate documents를 찾는 것
- Embedding-based retrieval은 retrieval-augmented generation(RAG)에서 중요한 요소 중 하나
 - RAG: LLM이 모델의 parameter를 수정하지 않고 동적으로 외부 지식에 접근할 수 있도록 함
 - Generated text의 source 정보는 LLM의 해석 가능성과 신뢰성을 향상시킬 수 있는 중요한 요소임
- → 잘 검색하는게 중요하다

Introduction

- 텍스트 임베딩의 performanc와 robustness를 향상시키기 위해 최근 multi-stage training paradigm 사용
 - 1. 그 다음, 먼저, 수십억 개의 weakly-supervised text pair로 사전학습
 - 2. labeled dataset으로 미세조정
 - multi-stage approach의 단점
 - 많은 양의 relevance pair를 만드는 데 많은 노력이 들고, 복잡한 구조의 multi-stage pipeline을 사용함
 - Manually하게 수집된 데이터셋에 의존함
 - 이 데이터셋은 Task의 다양성과 language의 적용 범위에 따라 제약을 받음
 - 대부분의 방법이 BERT-style encoder를 백본으로 사용
 - LLM과 context length 확장과 같은 관련 기술들을 사용하지 않음
- 이 논문에서는 LLM을 활용해 텍스트 임베딩을 위한 새로운 방법을 제안
 - Multi-stage가 아닌 single-stage training paradigm 사용
 - BERT-style encoder가 아닌 open-source LLM 파인튜닝

Synthetic Data Generation

- 다양한 synthetic data 생성하기 위해 아래 두 그룹으로 분류 후, 각 그룹에 다른 prompt template을 적용
- Asymmetric Tasks
 - Query와 document가 의미적으로는 관련이 있지 만 paraphrasing이 아닌 경우
 - 4가지의 subgroup으로 나뉨
 - short-long, long-short, short-short, short-long
- Symmetric Tasks
 - Query와 document가 의미적으로 유사하지만 표 면적인 형태는 다름
 - 2개의 scenario로 나뉨
 - monolingual STS, bitext retrieval

Brainstorm a list of potentially useful text retrieval tasks.

Here are a few examples for your reference:

- Provided a scientific claim as query, retrieve documents that help verify or refute the claim.
- Search for documents that answers a FAQ-style query on children's nutrition.

Please adhere to the following guidelines:

- Specify what the query is, and what the desired documents are.
- Each retrieval task should cover a wide range of queries, and should not be too specific.

Your output should always be a python list of strings only, with about 20 elements, and each element corresponds to a distinct retrieval task in one sentence. Do not explain yourself or output anything else. Be creative!

["Retrieve company's financial reports for a given stock ticker symbol.",

ነ "Given a book name as a query, retrieve reviews, ratings and summaries of that book.",

"Search for scientific research papers supporting a medical diagnosis for a specified disease.", ... (omitted for space)]

new sessior

You have been assigned a retrieval task: {task}

Your mission is to write one text retrieval example for this task in JSON format. The JSON object must contain the following keys:

- "user query": a string, a random user search query specified by the retrieval task.
- "positive_document": a string, a relevant document for the user query.
- "hard_negative_document": a string, a hard negative document that only appears relevant to the query. Please adhere to the following guidelines:
- The "user_query" should be {query_type}, {query_length}, {clarity}, and diverse in topic.
- All documents should be at least {num_words} words long.
- Both the query and documents should be in {language}.
- ... (omitted some for space)

Your output must always be a JSON object only, do not explain yourself or output anything else. Be creative!,

{"user_query": "How to use Microsoft Power BI for data analysis",

"positive_document": "Microsoft Power BI is a sophisticated tool that requires time and practice to master. In this tutorial, we'll show you how to navigate Power BI ... (omitted) ",

"hard_negative_document": "Excel is an incredibly powerful tool for managing and analyzing large amounts of data. Our tutorial series focuses on how you...(omitted)" }

Statistics of the Synthetic Data

- 150k instruction으로 500k의 example 생성
 - Azure OpenAl Service 사용 (GPT-4 사용가능한 service)
 - 25%는 GPT-3.5-Turbo로 생성, 나머지는 GPT-4로 생성
- 93개의 언어
 - 주요 언어는 영어
 - 하위 75개의 low-resource 언어는 언어당 평균 약 1k개의 example 존재

Fine-tuning

• 관련된 query-document pair (q^+, d^+) 가 주어질 때, 먼저 아래 instruction template을 q^+ 에 적용해 q_{inst}^+ 를 생성

$$q_{\text{inst}}^+ = \text{Instruct: } \{ \text{task_definition} \} \setminus n \text{ Query: } \{q^+\}$$

Brainstorm a list of potentially useful text retrieval tasks.

Here are a few examples for your reference:

- Provided a scientific claim as query, retrieve documents that help verify or refute the claim.
- Search for documents that answers a FAQ-style query on children's nutrition.

Please adhere to the following guidelines:

- Specify what the guery is, and what the desired documents are.
- Each retrieval task should cover a wide range of queries, and should not be too specific.

Your output should always be a python list of strings only, with about 20 elements, and each element corresponds to a distinct retrieval task in one sentence. Do not explain yourself or output anything else. Be creative!

["Retrieve company's financial reports for a given stock ticker symbol.",

"Given a book name as a query, retrieve reviews, ratings and summaries of that book.",

"Search for scientific research papers supporting a medical diagnosis for a specified disease." ... (omitted for space)]

Table 7: Instructions for each training dataset.

Instruction
Provided a user question, retrieve the highest voted answers on Reddit ELI5 forum
Given a multi-hop question, retrieve documents that can help answer the question
Given a claim, retrieve documents that support or refute the claim
Given a question, retrieve Wikipedia passages that answer the question
Retrieve Wikipedia passages that answer the question
Given a premise, retrieve a hypothesis that is entailed by the premise Retrieve semantically similar text
Given a web search query, retrieve relevant passages that answer the query Given a web search query, retrieve relevant documents that answer the query
Given a question, retrieve questions that are semantically equivalent to the given question Find questions that have the same meaning as the input question
Given a Chinese search query, retrieve web passages that answer the question

Fine-tuning

- Query와 document 마지막에 [EOS] token을 추가해, LLM의 입력으로 주어 마지막 layer의 [EOS] vector를 가지고 각 각의 embedding인 $(h_{q_{inst}^+},\ h_{d^+})$ 를 얻을 수 있음
- InfoNCE loss를 사용

You have been assigned a retrieval task: {task}

Your mission is to write one text retrieval example for this task in JSON format. The JSON object must contain the following keys:

- "user query": a string, a random user search query specified by the retrieval task.
- "positive_document": a string, a relevant document for the user query.
- "hard_negative_document": a string, a hard negative document that only appears relevant to the query. Please adhere to the following guidelines:
- The "user_query" should be {query_type}, {query_length}, {clarity}, and diverse in topic.
- All documents should be at least {num_words} words long.
- Both the query and documents should be in {language}.
- ... (omitted some for space)

Your output must always be a JSON object only, do not explain yourself or output anything else. Be creative!

 $\{ \hbox{\tt "user_query": "} \hbox{\tt "How to use Microsoft Power BI for data analysis"},$

"positive_document": "Microsoft Power BI is a sophisticated tool that requires time and practice to master. In this tutorial, we'll show you how to navigate Power BI ... (omitted) ",

"hard_negative_document": "Excel is an incredibly powerful tool for managing and analyzing large amounts of data. Our tutorial series focuses on how you...(omitted)" }

$$\begin{aligned} \min \ \ \mathbb{L} &= -\log \frac{\phi(q_{\text{inst}}^+, d^+)}{\phi(q_{\text{inst}}^+, d^+) + \sum_{n_i \in \mathbb{N}} (\phi(q_{\text{inst}}^+, n_i))} \\ \phi(q, d) &= \exp(\frac{1}{\tau} \cos(\mathbf{h}_q, \mathbf{h}_d)) \end{aligned}$$

Training & Evaluation

- 사전학습된 Mistral-7b checkpoint를 fine-tuning
 - Epoch:1, batch size: 2048, learning rate: 10^{-4} , weight decay: 0.1
 - LoRA 사용 (rank 16)
 - GPU 메모리 효율성을 위해 gradient checkpointing, mixed precision 등의 방법 적용
- 학습 데이터
 - 생성된 합성 데이터 + 13개의 public dataset을 활용해 총 180만 개의 example 생성

Evaluation

- MTEB benchmark 에서 평가
 - MTEB (Massive Text Embedding Benchmark)
 - Multiple sources, multiple languges dataset

# of datasets \rightarrow	Class.	Clust.	PairClass.	Rerank	Retr.	STS	Summ.	Avg
	12	11	3	4	15	10	1	56
Unsupervised Models								
Glove [34]	57.3	27.7	70.9	43.3	21.6	61.9	28.9	42.0
SimCSE _{bert-unsup} [12]	62.5	29.0	70.3	46.5	20.3	74.3	31.2	45.5
Supervised Models								
SimCSE _{bert-sup} [12]	67.3	33.4	73.7	47.5	21.8	79.1	23.3	48.7
Contriever [17]	66.7	41.1	82.5	53.1	41.9	76.5	30.4	56.0
GTR_{xxl} [31]	67.4	42.4	86.1	56.7	48.5	78.4	30.6	59.0
Sentence-T5 _{xxl} [30]	73.4	43.7	85.1	56.4	42.2	82.6	30.1	59.5
$E5_{large-v2}$ [44]	75.2	44.5	86.0	56.6	50.6	82.1	30.2	62.3
GTE _{large} [22]	73.3	46.8	85.0	59.1	52.2	83.4	31.7	63.1
BGE _{large-en-v1.5} [46]	76.0	46.1	87.1	60.0	54.3	83.1	31.6	64.2
Ours								
E5 _{mistral-7b} + full data	78.5	50.3	88.3	60.2	56.9	84.6	31.4	66.6
w/ synthetic data only	78.2	50.5	86.0	59.0	46.9	81.2	31.9	63.1
w/ synthetic + msmarco	78.3	49.9	87.1	59.5	52.2	81.2	32.7	64.5

Evaluation

- Multilingual Retrieval 평가
 - 평가 dataset: MIRACL dataset (Multilingual Information Retrieval Across a Continuum of Languages)

	High-resource Languages				Low-resource Languages			
	en	fr	es	ru	te	hi	bn	sw
BM25 [51]	35.1	18.3	31.9	33.4	49.4	45.8	50.8	38.3
mDPR [51]	39.4	43.5	47.8	40.7	35.6	38.3	44.3	29.9
$mE5_{base}$ [44]	51.2	49.7	51.5	61.5	75.2	58.4	70.2	71.1
$mE5_{large}$ [44]	52.9	54.5	52.9	67.4	84.6	62.0	75.9	74.9
E5 _{mistral-7b} + full data	57.3	55.2	52.2	67.7	73.9	52.1	70.3	68.4

Evaluation

• Contrastive Pre-training이 필수적인가?

Conclusion

- LLM을 활용해 다양한 synthetic data를 생성해 텍스트 임베딩의 품질을 크게 향상시킬 수 있음을 보임
- 최소한의 fine-tuning 만으로도 효과적인 임베딩을 가질 수 있음

Thank You

감사합니다.