GATE-2011-AE

AI24BTECH11024-Pappuri Prahladha

1) The possible set of eigenvalues of a 4 × 4 skew-symmetric orthogonal real matrix is

2) The coefficient of $(z - \pi)^2$ in the Taylor series expansion of $f(z) = \begin{cases} \frac{\sin z}{z - \pi} & ifz \neq \pi \\ -1 & ifz = \pi \end{cases}$

c) $\{\pm 1\}$

d) $\{0, \pm i\}$

b) $\{\pm i, \pm 1\}$

a) $\{\pm i\}$

around π is				
a) $\frac{1}{2}$	b) $-\frac{1}{2}$	c) $\frac{1}{6}$	d) $-\frac{1}{6}$	
3) Consider \mathbb{R}^2 v for all $A, B \subseteq$ P: $A \cup B = \overline{A} \cup$ Q: $A \cap B = \overline{A} \cap$ R: $(A \cup B)^o = A$ S: $(A \cap B)^o = A$	$\cup \overline{B}.$ $\cap \overline{B}.$ $A^o \cup B^o.$	Which of the fol	llowing statements are	TRUE
a) P and R on	ly b) P and S only	c) Q and R	only d) Q and S of	only
4) Let $f : \mathbb{R} - g(x) = \int_{1}^{3} f(x) dx$	$\Rightarrow \mathbb{R}$ be a continuous $(t+t)$ dt then $g'(0)$ is eq	function with $f($ ual to	$f(3) = 5 \text{ and } f(3) = \frac{1}{2}$	11. If
5) Let P be a 2 $trace(P^4 - P^3)$	× 2 complex matrix such	ch that trace (P)	$= 1 \text{ and } \det(P) = -6.$	Then,
irreducible ele a) The ideal ⟨1 b) The ideal ⟨2 c) The ideal ⟨2 d) The ideal ⟨2 7) Let X be a condition Let f: X → Y a) f is a close b) f is an oper c) f is both ar	R is a unique factorized ments. Which of the fold $ +a\rangle$ is a prime ideal. $ a+b\rangle$ is a prime ideal. $ a+b\rangle$ is a prime ideal. $ a+ab\rangle$ is a prime ideal. $ a+ab\rangle$ is not necessarily a map of the abijective continuous distribution map but not necessarily a map but not necessarily a primary open map and a closed be an open map or a closed	naximal ideal. ogical space and us mapping. Which ily an open map. ly a closed map. d map.	ts is TRUE ?	space.

8) Consider the linear programming problem:

$$Maximizex + \frac{3}{2}y$$

$$subject \ to \ 2x + 3y \le 16,$$

$$x + 4y \le 18,$$

$$x > 0, \ y > 0.$$

If S denotes the set of all solutions of the above problem, then

a) S is empty.

c) S is a line segment.

b) S is a singleton.

- d) S has positive area.
- 9) Which of the following groups has a proper subgroup that is NOT cyclic?
 - a) $\mathbb{Z}_{15} \times \mathbb{Z}_{77}$
 - b) S_3
 - c) $(\mathbb{Z}, +)$
 - d) $(\mathbb{Q}, +)$
- 10) The value of the integral

$$\int_0^\infty \int_x^\infty \left(\frac{1}{y}\right) e^{-y/2} \, dy \, dx$$

is _____.

11) Suppose the random variable U has uniform distribution on [0,1] and $X=-2\log U$. The density of X is

a)
$$f(x) = \begin{cases} e^{-x} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

b) $f(x) = \begin{cases} 2e^{-2x} & \text{if } /, x > 0 \\ 0 & \text{otherwise} \end{cases}$
c) $f(x) = \begin{cases} \frac{1}{2}e^{-x/2} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$
d) $f(x) = \begin{cases} \frac{1}{2} & \text{if } x \in [0, 2] \\ 0 & \text{otherwise} \end{cases}$

- 12) Let f be an entire function on \mathbb{C} such that $|f(z)| \le 100 \log |z|$ for each z with $|z| \ge 2$. If f(i) = 2i, then f(1)
 - a) must be 2
 - b) must be 2i
 - c) must be i
 - d) cannot be determined from the given data
- 13) The number of group homomorphisms from \mathbb{Z}_3 to \mathbb{Z}_9 is ______.