Classifying Climate Change Tweets

Michael Wirtz

Overview

Business Problem

Applying the Classifier

Conclusion and Next Steps

Business Problem

- Environmental Defense Fund
- Addressing advertising and promotions expense growth
- Where and when to deploy for most donations

Building the Classifier

The Data

- Kaggle
- 43943 Tweets
- Apr 2015 Feb 2018
- Four classes
 - Anti Man Made
 - Neutral
 - Man-Made
 - News

Class Imbalance

Metric: F1 Score

Focus on optimizing 'Anti' class f1 score

Modeling Process

- 1. Baseline
- 2. Choosing Best Model
- 3. Tuning Best Model

Best Model

Unigram TF-IDF Logistic Regression (Without Added Features)

F1-Scores

- Man: 0.79

- Anti: 0.57

Applying the Classifier

Time Series Analysis

The Assumption

The Data

Analysis

Time Series Findings

- 1. Donation growth rate of 3.8% year over year
- 2. Monthly Breakdown:
 - a. Sentiment average vs season
 - b. Best month (March)
 - c. Worst month (August)

Geographic Analysis

The Assumption

The Data

Analysis

Geographic Findings

Top 5 most likely states for climate change donations:

- 1. Minnesota
- 2. Maryland
- 3. Oregon
- 4. North Dakota
- 5. Washington

Recommendations

- EDF
 - Cold months (notably March)
 - Top 5 states
- Environmentally-focused NGO with low budget

Next Steps

- Custom scoring metric
- > Pipeline for auto updating results
- Location data by county to pinpoint best areas

QUESTIONS?

For More Information

Github: mwirtz946

Email: michealwirtz88@gmail.com