

Fig. P3.50

- **3.50** Find the step response $v_o(t)$ for the op-amp circuit shown in Fig. P3.50.
- **3.51** For the series *RC* circuit given in Fig. P3.7*a*, suppose that $v_s(t) = 12e^{-t/2}u(t)$ V. Find the responses v(t) and i(t).
- **3.52** For the series *RC* circuit given in Fig. P3.7a, suppose that $v_s(t) = 12e^{-t/4}u(t)$ V. Find the responses v(t) and i(t).
- **3.53** For the series *RL* circuit given in Fig. P3.1a, suppose that $v_s(t) = 12e^{-2t}u(t)$ V. Find the responses i(t) and v(t).
- **3.54** For the series *RL* circuit given in Fig. P3.1a, suppose that $v_s(t) = 12e^{-t}u(t)$ V. Find the responses i(t) and v(t).
- **3.55** For the circuit shown in Fig. P3.30, when $i_s(t) = 10u(t)$ A, then $i(t) = 4(1 e^{-t})u(t)$ A and $v(t) = 20e^{-t}u(t)$ V. Find i(t) and v(t) when $i_s(t) = 5u(t) 5u(t 1)$ A.
- **3.56** For the circuit shown in Fig. P3.34, when $v_s(t) = 12u(t) \text{ V}$, then $v(t) = 18(1 e^{-4t})u(t) \text{ V}$ and $i(t) = 3e^{-4t}u(t) \text{ A}$. Find v(t) and i(t) when $v_s(t) = 4u(t) 4u(t-2) \text{ V}$.

- **3.57** For the circuit shown in Fig. P3.57, the switch opens at time t = 0 s. Find v(t) and i(t) for all time.
- **3.58** For the circuit shown in Fig. P3.57, change the value of the capacitor to $\frac{3}{5}$ F. For the resulting circuit, the switch opens at time t = 0 s. Find v(t) and i(t) for all time.
- **3.59** For the circuit shown in Fig. P3.57, change the value of the capacitor to 3 F. For the resulting circuit, the switch opens at time t = 0 s. Find v(t) and i(t) for all time.
- **3.60** For the circuit shown in Fig. P3.60, the switch opens at time t = 0 s. Find i(t) and v(t) for all time. (See p. 184.)
- **3.61** For the circuit shown in Fig. P3.60, change the value of the resistor to $\frac{1}{2} \Omega$. For the resulting circuit, the switch opens at time t = 0 s. Find i(t) and v(t) for all time. (See p. 184.)
- **3.62** For the circuit shown in Fig. P3.60, change the value of the inductor to $\frac{2}{9}$ H. For the resulting circuit, the switch opens at time t = 0 s. Find v(t) and i(t) for all time. (See p. 184.)

Fig. P3.57

Fig. P3.60

3.63 For the series *RLC* circuit shown in Fig. P3.63, suppose that $R = 7 \Omega$, L = 1 H, C = 0.1 F, $v_s(t) = 12 \text{ V}$ for t < 0 s and $v_s(t) = 0 \text{ V}$ for $t \ge 0 \text{ s}$. Find v(t) and i(t) for all time.

Fig. P3.63

- **3.64** For the series *RLC* circuit shown in Fig. P3.63, suppose that $R = 2 \Omega$, L = 0.25 H, C = 0.2 F, $v_s(t) = 10 \text{ V}$ for t < 0 s and $v_s(t) = 0 \text{ V}$ for $t \ge 0 \text{ s}$. Find v(t) and i(t) for all time.
- **3.65** For the series *RLC* circuit shown in Fig. P3.63, suppose that $R = 2 \Omega$, L = 1 H, C = 1 F, $v_s(t) = 6$ V for t < 0 s and $v_s(t) = 0$ V for $t \ge 0$ s. Find v(t) and i(t) for all time.
- **3.66** For the circuit shown in Fig. P3.66, suppose that $v_s(t) = 6$ V for t < 0 s and $v_s(t) = 0$ V for $t \ge 0$ s. Find $v_2(t)$ and $v_1(t)$ for all time.

Fig. P3.66

3.67 For the circuit shown in Fig. P3.67, suppose that $v_s(t) = 6$ V for t < 0 s and $v_s(t) = 0$ V for $t \ge 0$ s. Find i(t) and v(t) for all time.

Fig. P3.67

- **3.68** For the circuit shown in Fig. P3.67, interchange the inductor and the capacitor. Suppose that $v_s(t) = 6$ V for t < 0 s and $v_s(t) = 0$ V for $t \ge 0$ s. Find the capacitor voltage v(t) and the inductor current i(t) for all time.
- **3.69** For the parallel RLC circuit shown in Fig. P3.69, suppose that $R = 0.5 \Omega$, L = 0.2 H, C = 0.25 F, and $i_s(t) = 2u(t) \text{ A}$. Find the step responses i(t) and v(t).

Fig. P3.69

- **3.70** For the parallel *RLC* circuit shown in Fig. P3.69, suppose that $R = 3 \Omega$, L = 3 H, $C = \frac{1}{12} F$, and $i_s(t) = 4u(t) A$. Find the step responses i(t) and v(t).
- **3.71** For the series *RLC* circuit shown in Fig. P3.63, suppose that $R = 7 \Omega$, L = 1 -H, C = 0.1 -E, and $v_s(t) = 12u(t)$ V. Find the step responses v(t) and i(t).
- **3.72** For the series *RLC* circuit shown in Fig. P3.63, suppose that $R = 2 \Omega$, L = 1 H, C = 1 F,

and $v_s(t) = 12u(t)$ V. Find the step responses v(t) and i(t).

3.73 For the RLC circuit shown in Fig. 3.43 on p. 172, suppose that $R = \frac{1}{2} \Omega$, $L = \frac{1}{3} H$, $C = \frac{1}{4} F$, and V = 1 V. Find the unit step responses i(t) and v(t).

3.74 For the *RLC* circuit shown in Fig. 3.43 on p. 172, suppose that $R = \frac{1}{2} \Omega$, $L = \frac{1}{4} H$, $C = \frac{1}{2} F$, and V = 1 V. Find the unit step responses i(t) and v(t).

3.75 For the circuit shown in Fig. P3.66, suppose that $v_s(t) = 9u(t)$ V. Find the step response $v_2(t)$.

3.76 For the circuit shown in Fig. P3.67, suppose that $v_s(t) = 6u(t)$ V. Find the step responses i(t) and v(t).

3.77 Find the step response $v_o(t)$ for the op-amp circuit shown in Fig. P3.77 when $C = \frac{1}{2}$ F and $v_s(t) = 4u(t) \text{ V}.$

3.78 Find the step response $v_o(t)$ for the op-amp circuit shown in Fig. P3.77 when $C = \frac{1}{8}$ F and $v_s(t) = 8u(t) \text{ V}.$

3.79 Find the step response $v_o(t)$ for the op-amp circuit shown in Fig. P3.77 when $C = \frac{1}{2}$ F and $v_s(t) = 6u(t) \text{ V}.$

3.80 Find the step response $v_o(t)$ for the op-amp circuit shown in Fig. P3.80 when $C = \frac{4}{3}$ F and $v_s(t) = 4u(t) \text{ V}.$

3.81 Find the step response $v_o(t)$ for the op-amp circuit shown in Fig. P3.80 when C = 1 F and $v_s(t) = 3u(t) \text{ V}.$

3.82 Find the step response $v_o(t)$ for the op-amp circuit shown in Fig. P3.80 when $C = \frac{1}{5}$ F and $v_s(t) = 2u(t) V$.

Fig. P3.77

Fig. P3.80

- 5. Important circuit concepts such as the principle of superposition and Thévenin's theorem are also applicable in the frequency domain.
- 6. The instantaneous power absorbed by an element is equal to the product of the voltage across it and the current through it.
- 7. The average power absorbed by a resistance R having a sinusoidal current of amplitude I and voltage of amplitude V is

$$P_R = \frac{1}{2}VI = \frac{1}{2}RI^2 = \frac{1}{2}\frac{V^2}{R}$$

- 8. The average power absorbed by a capacitance or an inductance is zero.
- 9. A circuit whose Thévenin-equivalent (output) impedance is \mathbf{Z}_o transfers maximum power to a load \mathbf{Z}_L when \mathbf{Z}_L is equal to the complex conjugate of \mathbf{Z}_o .
- 10. For the case in which \mathbf{Z}_L is restricted to be purely resistive, maximum power is transferred when \mathbf{Z}_L equals the magnitude of \mathbf{Z}_o .
- 11. The effective or rms value of a sinusoid of amplitude A is $A/\sqrt{2}$.

12. The average power absorbed by a resistance R having a current whose effective value is I_e and a voltage whose effective value is V_e is

$$P_R = V_e I_e = R I_e^2 = \frac{V_e^2}{R}$$

- 13. The power factor (pf) is the ratio of average power to apparent power.
- 14. If current lags voltage, the pf is lagging. If current leads voltage, the pf is leading.
- 15. Average or real power can be generalized with the notion of complex power.
- 16. The ordinary household uses a single-phase, three-wire electrical system.
- 17. The most common polyphase electrical system is the balanced three-phase system.
- 18. Three-phase sources are generally Y connected, and three-phase loads are generally Δ connected.
- 19. The device commonly used to measure power is the wattmeter.
- 20. Three-phase load power measurements can be taken with the two-wattmeter method.

Problems

- **4.1** Find the exponential form of the following complex numbers given in rectangular form: (a) 4 + j7, (b) 3 j5, (c) -2 + j3, (d) -1 j6, (e) 4, (f) -5, (g) j7, (h) -j2.
- **4.2** Find the rectangular form of the following complex numbers given in exponential form:

 (a) 2^{-170° (b) 2^{-1120° (c) 2^{-160° (c) 2^{-1120°
- (a) $3e^{j70^\circ}$, (b) $2e^{j120^\circ}$, (c) $5e^{-j60^\circ}$, (d) $4e^{-j150^\circ}$, (e) $6e^{j90^\circ}$, (f) e^{-j90° , (g) $2e^{j180^\circ}$, (h) $2e^{-j180^\circ}$.
- **4.3** Find the rectangular form of the product A_1A_2 given that: (a) $A_1 = 3e^{j30^\circ}$, $A_2 = 4e^{j60^\circ}$; (b) $A_1 = 3e^{j30^\circ}$, $A_2 = 4e^{-j30^\circ}$; (c) $A_1 = 5e^{-j60^\circ}$, $A_2 = 2e^{j120^\circ}$; (d) $A_1 = 4e^{j45^\circ}$, $A_2 = 2e^{-j90^\circ}$.
- **4.4** Find the rectangular form of the quotient A_1/A_2 for A_1 and A_2 given in Problem 4.3.

- **4.5** Find the rectangular form of the sum $A_1 + A_2$ for A_1 and A_2 given in Problem 4.3.
- **4.6** For the ac circuit shown in Fig. P4.6, suppose that $v_s(t) = 13 \cos(2t 22.6^\circ)$ V. Find $v_o(t)$ by using voltage division. Draw a phasor diagram. Is this circuit a lag network or a lead network?

Fig. P4.6