LA E χ 02

isagila

Собрано 09.06.2023 в 08:55

Содержание

 Евклидово простравитело: определение, веравенство Коши-Буняковского. Поращрованное евклидово простравитель. Ортопорачированный базае, ортогопализация базиеа. Матрина Грама. Задача о перпецируляре. Задача о перпецируляре. Линейный оператор: Взаимпо-одиозначный оператор. Ягро и образ оператора. Теорема о размерностях. Матрина линейного оператора. Преобразование матрина при переходе к новому базису. Матрина линейного оператора. Преобразование матрина при переходе к новому базису. Сображенный и самосопряженный операторы в вещественном чема, основные свойства. Сограженный и самосопряженный операторы в вещественном накладовом пространеного оператора. Сограженный и самосопряженного операторы. Отруктура образа самосопряженного операторы. Отруктура образа самосопряженного операторы. Проктор. Спектральное разложение оператора. Отруктура образа самосопряженного операторы. Проктор. Покладывое разложение оператора. Отруктура образа самосопряженного операторы. Проктор. Спектральное разложение оператора. Отруктура образа самосопряженного оператора. Проктор плескости и пространства как ортогональное преобразование. Выплиейные формы: определенных, разведение к каноническому виду. Выплиейные формы: определенных, разведение к каноническому виду. Выплиейные формы: определенных, разведение к каноническому виду. Дифереренциальные уравнения Дифереренциальные уравнение (ДУ): задача о радноктивном распаде и задача о паденни тела. Определение ТК), решения ДУ и их гомостраческий сываса. Задача Копи. Аранение в полных диференциальные уравнения (ДУ): задача копи. Уравнение в полных диференциальные уравнения (ДУ): задача Копи. Уравнение распаченные польза, допускающе пременным пределеннострация. Уравнение ПОДМу с постоянным коэффици	1.	Лин	ейная алгебра
1.3. Ортоговальность вектора подпространству. Ортоговальное дополнение. Теорема Пифагора. 1.4. Задача о перпеддикулире. 1.5. Линейный оператор: определение, основные свойства. 1.6. Обратный оператор. Взаимно-сдиозначный оператора. Задоча о браз оператора. Теорема о размерностях. 1.7. Матрипа линейного оператора. Преобразование матрипы при переходе к новому безису. 1.8. Собственные числа и собственные бекторы оператора. Задоча о ператора. Теоремы о диногивльной матрипе оператора. 1.9. Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения, основные свойства. Свойства собственных чисел и собственных места и собственных чисел и собственных пределения, основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора. 1.10. Структура образа, самосопряженный операторы. Воскогор. Спектральное разложение оператора. 1.11. Ортогопальная матрица и оргогопальный оператор. Пороктор. Спектральное разложение оператора. 1.12. Билинейные формы: определения, свойства. Матрица билинейной формы. 1.13. Квадратичная формы: определения, приведение к канопическому виду. 1.14. Зтакоопределенность квадратичной формы: необходимые и достаточные, условия. Критерий Сильвестра. 2. Дифференциальные уравнения 2.1. Обыкловенное дифференциальное уравнение (ДУ): задача о радноактивном распаде и задача о падении тега. Определения ДУ, епенны ДУ и як теометрический сымкс. Задача Коппи. 2.2. Уравнение с раздельнощимися переменными. 2.3. Однородное уравнение. 2.4. Уравнение по тора дида. Метод Лагравжа. 2.5. Линейные однородные дифференциальные уравнения (ДОУ): определения, решения. 2.6. Теорева существовам дифференциальные уравнения (ДОУ): определения, решения. 2.7. Уравнение в польях дифференциальные уравнения (ДОУ): определения, решения ДОДУ с постоящными коэффициентами для случая величенных корпей характеристического уравнения. 2.8. Линейные однородные дифференциальные уравнения (ДОУ): определенных корпей характеристического уравнения. 2.9. Решение ЛОДУ с по		1.1.	Евклидово пространство: определение, неравенство Коши-Буняковского. Нормированное евклидово
 Ортогопальность вектора подпространетну. Ортогональное дополнение. Теорема Пифагора. Задама о периеприкуляре. Линейный оператор: определение, основные свойства. Обратный оператор: определение, основные свойства. Матрина линейного операторы. Преобразование матрины при переходе к новому базкеу. Кобственные числа и собственные векторы операторы. Теорема о диагональной матрине оператора. Соряженный и самосопряженный ператоры в вещественном евклидоми пространет оператора. Сотряженный и самосопряженный ператоры в вещественном евклидоми пространет оператора. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора. Структура образа определения; свойства. Матрица билипейной формы. Бильшейные формы: определения; свойства. Матрица билипейной формы. Вымопределенность квадратичной формы: необходимые и достаточные, условия. Критерий Сильвестра. Дифференциальные уравнения Авакоопределению ДУ, решения ДУ и их геометрический смысл. Задача Копи. Орнодное уравнение с разложими. Однородное уравнение превого порядка. Метод Лагранжа. Панейное уравнение первого порядка. Метод Лагранжа. Панейные отнородные дифференциальные уравнения задачи Копи. Особые решения. Уравнения п-ото порядка, допускающие поизжение порядка. Правления пото порядка, допускающие поизжение порядка. Винейные отнородные дифференциальные уравнения (ДОДУ): определения, решения ДОДУ с постоянными коффициентами для случая вашисимость решения. Решение ЛОДУ2 с постоянными коффициентами для случая вещественных корней характеристического уравнения. Решение ЛОДУ2: линейная независимость решений, линейная зависимость решений. Поределитель Вронско			пространство.
 Задача о перпепцикуляре. Линейный оператор: определение, основные свойства. Обратный оператор: Взаимоно-однознатный оператор. Ядро и образ оператора. Теорема о размерностях. Матрица линейного оператора. Преобразование матрицы при переходе к повому базису. Собразеные числа и собственные векторы оператора. Пеоремы о диагональной матрице оператора. Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения, основные спойства. Спойства обственных числе и собственных некторов самосопряженного оператора. Отруктура образа самосопряженного оператора. Проектор. Спектральное разложение оператора. Отруктура образа амосопряженного оператора. Проектор. Спектральное разложение оператора. Отруктура образа самосопряженного оператора. Проерот плоскости и пространства как ортогональное преобразование. Н. Отруктура образа самосопряженного оператора. Проерот плоскости и пространства как ортогональное преобразование. Вилинейные формы: пределения, свойства. Матрица билинейной формы. Вилинейные формы: пределения, свойства. Матрица билинейной формы. Вилинейные формы: пределения, свойства. Матрица билинейной формы. Вилинейные формы: пределения. Дифференциальные уравнения. Обакновенное дифференциальное уравнение (ДУ): задача о радноактивном распаде и задача о вадении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Ковии. Уравнение д. Орадся опридуата пределенными. Оравное уравнение. Уравнение разделяющими с переменнами. Оравное уравнение. Уравнения п-ото порадка, допускающие понижение порадка. Тинейное уравнение. Уравнения п-ото порадка, допускающие понижение порадка. Туравнения п-ото порадка, допускающие понижение порадка. Восрова с учественными доля с лучая разде		1.2.	Ортонормированный базис, ортогонализация базиса. Матрица Грама
 Липейный оператор: определение, основные свойства. Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях. Матрица липейного оператора. Преобразование матрицы при переходе к новому базису. Собственные числа и собственные векторы операторы. Теоремы о диагональной матрице оператора. Соряженный и самосопряженный и самосопряженный поераторы в вешественном експлуавом пространстве: определення, основные свойственных чисел и собственных векторов самосопряженного оператора. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора. Отруктура образа самосопряженного оператора. Поворот плоскости и пространства как ортоговальное преобразование. Выпиейные формы: определения, свойства. Матрица былиейной формы. Квадратичная форма: определения, приведение к кановическому виду. Выпиейные формы: определения, приведение к кановическому виду. Мафференциальные уравнения. Дифференциальные уравнения. Дифференциальные уравнения. Обакновенное дифференциальное уравнеными. Уравнение с разделяющимися переменными. Уравнение с разделяющимися переменными. Одворолное уравнение. Уравнение п полных дифференциалька. Тивейные одвородные дифференциалька. Тивейные одвородные дифференциалькые уравнения (ДОДУ): определения, решения. Уравнения п пого порядка, допускающие поижение порядка. Тивейные одвородные дифференциальные уравнения (ДОДУ): определенных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для сдучая вещественных корней характеристического уравнения. Совбства решений ЛОДУ₂: линейная независимость решений, линейная зависимость решений. Определенны Вроиского. Теорема о структуре общего решения ЛОДУ»; определенныя решений, линейн		1.3.	Ортогональность вектора подпространству. Ортогональное дополнение. Теорема Пифагора
 Обратный оператор. Вазимио-однозначный оператор. Дро и образ оператора. Теорема о размерностях. Матрица линейного оператора. Преобразование матрицы при переходе к новому базису. Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора. Сопряженный и самосопряженный операторы в вещественном веклидовом пространстве: операсления, соговые сообстве. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора. Ортогональная матрица и ортогональный оператор. Проектор. Спектральное разложение оператора. Ортогональная матрица и ортогональный оператор. Новорот влоскости и пространства как ортогональное преобразование. Вилинейные формы: определения, свойства. Матрица балинейной формы. Видаратичная форма: определения, приведение к капошическому виду. Видаратичная форма: определения, свойства. Матрица балинейной формы. Видаратичная форма: определения, свойства. Матрица балинейной формы. Видаратичная форма: определения, свойства. Матрица балинейной формы. Видаратичная форма: определения. Видфференциальные уравнение к капошическому виду. Вифференциальные уравнение уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДЖ, решения ДУ и их геометрический смысл. Задача Коши. Уравнение с разделяющимися переменными. Оражновенное доражнае пераго порядка. Метод Лаграцка. Тирородное уравнение первого порядка. Метод Лаграцка. Торородное уравнение первого порядка метод Лаграцка. Торороднае уравнения уравнения (ДОДУ): опеределения, решения ЛОДУ2 с постоянными коэффициентами для случая комплексных корней характеристического уравнения. Решение ЛОДУ2 с постоянными коэффициентами для случая комплексных корней характеристического уравнения. Свойства решений ЛОДУ2: лин		1.4.	Задача о перпендикуляре
 Обратный оператор. Вашкию-одиозначный оператор. Ядро и образ оператора. Теорема о размерностях. Матрица линейного оператора. Преобразование матрицы при переходе к новому базику. Собственные числа и собственных векторы оператора. Теоремы о диагопальной матрице оператора. Сопряженный и самосопряженный операторы в вещественном веклидовом пространстве: опеределения, сновывые совойства. Собственных числя и собстоям пространстве: опеределения, сновывые совойства. Собственных числя и собстоям пространстве: опеределения, сновывые совойства. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора. Ортогопальная матрица и оргогональный оператор. Поворот плоскости и пространства как ортогональное преобразование. Выливейные формы: определения, свойства. Матрица биливейной формы. Выдаратичная форма: определения, приведение к кавопическому виду. Выдаратичная форма: определения, приведение к кавопическому виду. Замоопределенность квадратичной формы: псобходимые и достаточные. условия. Критерий Сильвестра. Дифференциальные уравнения Обыкновенное дифференциальное уравнение (ДУ): задача о радноактивном распаде и задача о падении тель. Определение ДХ, решения ДУ и их геометрический смысл. Задача Копш. Уравнение с разделяющимися переменными. Оравнение с разделяющимися переменными. Оравнение в полизх дифференциальна. Тифференциальные перагока, допускающие понижение порядка. Тифейные оправление перагока, допускающие понижение порядка. Туравнения п-ого порядка, допускающие понижение порядка. Туравнения п-ого порядка, допускающие понижение порядка. Туравнения п-ого порядка, допускающие понижение порядка. Торова с учествования и сауча раздичных корпей характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициент		1.5.	Линейный оператор: определение, основные свойства.
 Собственные числа и собственные векторы операторы. Теоремы о диагональной матрице оператора. Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения, основные свойства. Свойства собственных чисся и собственных векторов самосопряженного оператора. Отруктура образа самосопряженного оператора. Проектор. Спектральное разложение оператора. Отруктура образа самосопряженного оператора. Проектор. Спектральное разложение оператора. Отруктура образа самосопряженного оператора. Проектор. Спектральное разложение оператора. Вилипейные формы: определения, свойства. Матрица билипейной формы. Виакоопределенность квадратичной формы: необходимые и достаточные, условия. Критерий Сильвестра. Дифференциальные уравнения Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши. Уравнение с разделяющимися переменными. Оравнение с разделяющимися переменными. Оравнение потимых дифференциалах. Уравнение потимых дифференциалах. Уравнения по-ого порядка. Метод Лагранжа. Теорема существования и единственности решения задачи Коши. Особые решения. Уравнения по-ого порядка, допускающие понижение порядка. Уравнения по-ого порядка, допускающие понижение порядка. Винейные однородные дифференциальные уравнения (ЛОДУ): определения, решения ЛОДУ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. Свойства решений ЛОДУ₂: линейная пезависимость решений, определитель Вропского. Теоремы 1,2. Свойства решений ЛОДУ₂: линейная пезависимость решений, пиределитель Вропского. Теоремы у стумой прав		1.6.	Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях.
 Сопряженный и самосопряженный операторы в вещественном евидидовом пространстве: определения, основные свойства. Свойства собственных чиссл и собственных векторов самосопряженного оператора. П.О. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора. Ортогопальная матрица и ортогопальный оператор. Поворот плоскости и пространства как ортогональное преобразование. Вилипейные формы: определения, свойства. Матрица билипейной формы. Вилипейные формы: определения, свойства. Матрица билипейной формы. Вилипейные формы: определения, свойства. Матрица билипейной формы. На Знакоопределенность квадратичной формы: необходимые и достаточные, условия. Критерий Сильвестра. Дифференциальные уравнения Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Копи. Уравнение с разделяющимися перемещными. Уравнение в полных дифференциальна. Однородное уравнение. Уравнение в полных дифференциальна. Теорема существования и единственности решения задачи Копи. Особые решения. Уравнения п-ого порядка, допускающие понижение порядка. Линейные опрорудиме дифференциальных руавнения (ЛОДУ): определения, решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных кратных кратных кранствического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения. Системы решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы о дронскиме. Собства решений ЛОДУ₂: линейная козбинация решений, определитель Вронского. Теоремы о структуре общего решений прещение (ПОДУ): пределение. Субойства решений ЛОДУ₂: линейная независимость решений, пирешении Кусимой правых частей.<		1.7.	Матрица линейного оператора. Преобразование матрицы при переходе к новому базису
основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора. 1.10. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора. 1.11. Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное преобразование. 1.12. Билинейные формы: определения, свойства. Матрица билинейной формы. 1.13. Квадратичная форма: определения, приведение к канопическому виду. 1.14. Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра. 2. Дифференциальные уравнения 2.1. Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их теометрический смысл. Задача Коппи. 2.2. Уравнение с разделяющимиея переменными. 2.3. Одпородное уравнение. 2.4. Уравнение в полных дифференциалах. 2.5. Линейное уравнение первого порадка. Метод Лагранжа. 2.6. Теорема существования и единственности решения задачи Коппи. Особые решения. 2.7. Уравнения п-ого порядка, допускающие понижение порядка. 2.8. Линейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ2 с постоянными коэффициентами для случая вещественных корней характеристического уравнения. 2.9. Решение ЛОДУ2 с постоянными коэффициентами для случая вещественных корней характеристического уравнения. 2.10. Решение ЛОДУ2 с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.11. Свойства решений ЛОДУ2: линейная независимость решений, линейная зависимость решений. Определитель Вронского. Теоремы о структуре общего решений линейная зависимость решений пораделение. 2.13. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Отределенны о структуре общего решения доциму. 2 иниейная независимость решений, пинейная зависимость решений. Теорема о структуре общего решения доциму. 2 иниейная комбинация решений, линейная зависимость решений. Торема о структуре общего решения докомость решений.		1.8.	Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора
 1.10. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора. 1.11. Ортогопальная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное преобразование. 1.12. Билинейные формы: определения, спойства. Матрина билинейной формы. 1.13. Квадратичная форма: определения, приведение к каноническому виду. 1.14. Знакоопределенность квадратичной формы: необходимые и достаточные, условия. Критерий Сильвестра. 2. Дифференциальные уравнения 2.1. Обыкновенное дифференциальное уравнение (ДУ): задача о радноактивном распаде и задача о падении тела. Определение ДХ, решения ДУ и их геометрический смысл. Задача Коппи. 2.2. Уравнение с разделяющимимися переменными. 2.3. Однородное уравнение. 2.4. Уравнение в полных дифференциалах. 2.5. Линейное уравнение перого порядка. Метод Лагранжа. 2.6. Теорема существования и единственности решения задачи Коппи. Особые решения. 2.7. Уравнения п-ото порядка, допускающие пошжение порядка. 2.8. Линейные одпородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ2 с постоянными коэффициентами для случая вещественных корней характеристического уравнения. 2.9. Решение ЛОДУ2 с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.10. Решение ЛОДУ2 с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.11. Свойства решений ЛОДУ2: линейная независимость решений, линейная зависимость решений. Определитель Вропского. Теоремы 10 дря с для пределение. 2.12. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решений ЛОДУ2: поремение общего решений пределение. 2.13. Свойства решений ЛОДУ2: за темейна независимость решений, линейная зависимость решений (поределе		1.9.	Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения,
1.11. Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное преобразование. 1.12. Билинейные формы: определения, приведение к каноническому виду. 1.13. Квадратичная формы: определения, приведение к каноническому виду. 1.14. Знакоопределенность квадратичной формы: необходимые и достаточные, условия. Критерий Сильвестра. 2. Дифференциальные уравнения 2.1. Обыкновенное дифференциальное уравнение (ДУ): задача о радноактивном распаде и задача о падении тела. Определение ДХ, решения ДУ и их геометрический сыысл. Задача Коши. 2.2. Уравнение с разделяющимися переменными. 2.3. Однородное уравнение. 2.4. Уравнение в полных дифференциалах. 2.5. Линейное уравнение первого порядка. Метод Лагранжа. 2.6. Теорема существования и единственности решения задачи Коши. Особые решения. 2.7. Уравнения л-ого порядка, допускающие понижение порядка. 2.8. Линейное уравнения для случая различных вещественных корней характеристического уравнения. 2.9. Решение ЛОДУ2 с постоянными коэффициентами для случая вещественных корней характеристического уравнения. 2.10. Решение ЛОДУ2 с постоянными коэффициентами для случая вещественных корней характеристического уравнения. 2.11. Свойства решений ЛОДУ2: линейная независимость решений, определитель Вронского. Теоремы 1,2. 2.12. Свойства решений ЛОДУ2: линейная комбинация решений, определитель Вронского. Теоремы 1,2. 2.13. Свойства решений ЛОДУ2: линейная комбинация решений, пинейная зависимость решений. Определитель Вронского. Теоремы о структуре общего решений динейная зависимость решений пределение. 2.14. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения линейная зависимость решений пределение). 2.15. Структура решения ЛОДУ2: линейная независимость решений, линейная зависимость решений. Определение). 2.16. Решение ЛИУ2: метод вариации произвольных постоянных (Лагранжа). 2.17. Решение ЛИУ2: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциал			основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора.
преобразование. 1.12. Билинейные формы: определения, свойства. Матрица билинейной формы. 1.13. Квадратичная форма: определения, приведение к канопическому виду. 1.14. Знакоопределенность квадратичной формы: необходимые и достаточные, условия. Критерий Сильвестра. 2. Дифференциальные уравнения 2.1. Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши. 2.2. Уравнение с разделяющимися переменными. 2.3. Однородное уравнение. 2.4. Уравнение в полных дифференциалах. 2.5. Линейное уравнение первого порядка. Метод Лагранжа. 2.6. Теорема существования и единственности решения задачи Копи. Особые решения. 2.7. Уравнения л-ого порядка, допускающие понижение порядка. 2.8. Линейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ2 с постоящными коэффициентами для случая вещественных корней характеристического уравнения. 2.9. Решение ЛОДУ3 с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.10. Решение ЛОДУ3 с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.11. Свойства решений ЛОДУ2: линейная независимость решений, определитель Вронского. Теоремы о вронскиане. 2.12. Свойства решений ЛОДУ2: линейная независимость решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. 2.13. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ2 о дундаментальная система решений (пределение). 2.14. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ2 общено решений пакажение. 2.15. Структура решения ЛОДУ9: линейная независимость решений, пакождение фундаментальной системы решений по корнам характеристического уравнения. 2.16. Решение ЛИУ2 с постояннымы коэффицентами: специальная правая часть, поиск частного решения методом неопределенных ко		1.10.	Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора
1.12. Билипейные формы: определения, свойства. Матрица билипейной формы. 1.13. Квадратичная формы: определения, приведение к каноническому виду. 1.14. Знакоопределенность квадратичной формы: необходимые и достаточные, условия. Критерий Сильвестра. 2. Дифференциальные уравнения 2.1. Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши. 2.2. Уравнение с разделяющимиея переменными. 2.3. Однородное уравнение. 2.4. Уравнение в полных дифференциалах. 2.5. Линейное уравнение первого порядка. Метод Лагранжа. 2.6. Теорема существования и единственности решения задачи Коши. Особые решения. 2.7. Уравнения п-ого порядка, допускающие понижение порядка. 2.8. Линейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ2 с постоянными коэффициентами для случая вещественных корней характеристического уравнения. 2.9. Решение ЛОДУ2 с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.10. Решение ЛОДУ2 с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.11. Свойства решений ЛОДУ2: линейная пезависимость решений, определитель Вропского. Теоремы 1,2. свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель Вропского. Теоремы 1,2. особаства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель Вропского. Теоремы о труктуре общего решения ДОДУ2: от структуре общего решения ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определение. 2.14. Свойства решений ЛИДУ2: тоеремы о структуре общего решения и решении ДУ с суммой правых частей. 2.15. Структура решения ЛОДУ2: пинейная независимость решений, нахождение фундаментальной системы решений пихам дейстра решения должная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.16. Решение ЛИУ2: метод вариации произвольных постоянных (Лагранжа). 2.17. Ре		1.11.	Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное
 Квадратичная форма: определения, приведение к каноническому виду. Закоопределенность квадратичной формы: необходимые и достаточные, условия. Критерий Сильвестра. Дифференциальные уравнения Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Копш. Уравнение с разделяющимися переменными. Однородное уравнение. Уравнение в полных дифференциалах. Линейное уравнение первого порядка. Метод Лагранжа. Творема существования и едииственности решения задачи Копш. Особые решения. Уравнения п-ого порядка, допускающие понижение порядка. Иннейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ₂ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корпей характеристического уравнения. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы 1,2. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определение. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛУДУ₂. Фундаментальная система решений (определение). Свойства решений ЛНДУ₂: теоремы о структуре общего решений, пинейная зависимость решений. Теорема о структуре общего решения и решении ДУ с суммой правых частей. Свойства решений ЛНДУ₂: теоремы о структуре общего решения и решений покрыми характеристического уравнения. Свойства решений ЛНДУ₂: тинейная независимость решений, нахождение фундаментальной системы решений покрым характеристического уравнение			
 Дифференциальные уравнения Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический сымсл. Задача Копп. Уравнение с разделяющимися переменными. Однородное уравнение. Уравнение с разделяющимися переменными. Однородное уравнение. Уравнение в полных дифференциалах. Пивейное уравнение перемог порядка. Метод Лагранжа. Теорема существования и единственности решения задачи Копш. Особые решения. Уравнения п-ого порядка, допускающие понижение порядка. Ливейные уравнение переменциальные уравнения (ЛОДУ): определения, решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных корней характеристического уравнения. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы 1,2. Свойства решений ЛОДУ₂: линейная комбинация решений, иниейная зависимость решений. Определитель Вропского. Теоремы о вронскиане. Свойства решений ЛОДУ₂: тинейная комбинация решений, линейная зависимость решений. Теорема о структуре обпего решения ЛОДУ₂: теоремы о структуре общего решений пределение). Свойства решений ЛИДУ₂: теоремы о структуре общего решений пределение). Сройства решений ЛИДУ₂: теоремы о структуре общего решений правых частей. Сройства решений ЛИДУ₂: теоремы о структуре общего решений правам частем решений. Теоремы о структуре общего решений праваж частем решений произм характеристического уравнения. Сройства решений ЛИДУ₂: теоремы о структуре общего решений правам часть, поиск частного решения методом неопределеных коэффициентов. Решение ЛНУ₂: метод выращии произвольных постоянных (Лагранжа). Системы дифференциальных уравнений: опред		1.12.	Билинейные формы: определения, свойства. Матрица билинейной формы.
 Дифференциальные уравнения Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши. Однородное уравнение. Однородное уравнение. Уравнение в полных дифференциалах. Линейное уравнение первого порядка. Метод Лагранжа. Тинейное уравнение первого порядка. Метод Лагранжа. Тинейное уравнение первого порядка. Метод Лагранжа. Ту Уравнения п-ого порядка, допускающие попижение порядка. Ту Уравнения п-ого порядка, допускающие попижение порядка. Линейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ₂ с постоянными коэффициентами для случая различных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы о вронскиане. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решений ЛИДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решений ЛИДУ₂: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. Свойства решений ЛИДУ₂: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. Решение ЛИДу₂: с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. Решение ЛИДу₂: м		1.13.	Квадратичная форма: определения, приведение к каноническому виду
 Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Копи. Уравнение с разделяющимися переменными. Однородное уравнение. Уравнение в полных дифференциалах. Линейное уравнение первого порядка. Метод Лагранжа. Теорема существования и единственности решения задачи Копи. Особые решения. Уравнения п-ого порядка, допускающие понижение порядка. Линейные одпородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ2 с постоянными коэффициентами для случая рещественных корней характеристического уравнения. Решение ЛОДУ2 с постоянными коэффициентами для случая вещественных корней характеристического уравнения. Решение ЛОДУ2: пинейная независимость решений, определитель Вронского. Теоремы 1,2. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ2. Фундаментальная система решений (определение). Свойства решений ЛНДУ2: теоремы о структуре общего решения и решении ДУ с суммой правых частей. Структура решения ЛОДУ3: линейная независимость решений, нахождение фундаментальной системы решений по кориям характеристического уравнения. Решение ЛНУ2: постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределеных коэффициентом. Решение ЛНУ2: постоянными коэффициентоми: специальная правая часть, поиск частного решения методом неопределенных коэффициентом. Решение ЛНУ2: постоянными коэффициентоми: специальных правая правая пасть, поиск частного решения методом неопределенных коэффициентом. Системы дифференциальных уравнений: определения, решение матричным м		1.14.	Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра.
 Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Копи. Уравнение с разделяющимися переменными. Однородное уравнение. Уравнение в полных дифференциалах. Линейное уравнение первого порядка. Метод Лагранжа. Теорема существования и единственности решения задачи Копи. Особые решения. Уравнения п-ого порядка, допускающие понижение порядка. Линейные одпородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ2 с постоянными коэффициентами для случая рещественных корней характеристического уравнения. Решение ЛОДУ2 с постоянными коэффициентами для случая вещественных корней характеристического уравнения. Решение ЛОДУ2: пинейная независимость решений, определитель Вронского. Теоремы 1,2. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ2. Фундаментальная система решений (определение). Свойства решений ЛНДУ2: теоремы о структуре общего решения и решении ДУ с суммой правых частей. Структура решения ЛОДУ3: линейная независимость решений, нахождение фундаментальной системы решений по кориям характеристического уравнения. Решение ЛНУ2: постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределеных коэффициентом. Решение ЛНУ2: постоянными коэффициентоми: специальная правая часть, поиск частного решения методом неопределенных коэффициентом. Решение ЛНУ2: постоянными коэффициентоми: специальных правая правая пасть, поиск частного решения методом неопределенных коэффициентом. Системы дифференциальных уравнений: определения, решение матричным м			
тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши. 2.2. Уравнение с разделяющимися переменными. 2.3. Однородное уравнение. 2.4. Уравнение в полных дифференциалах. 2.5. Линейное уравнение первого порядка. Метод Лагранжа. 2.6. Теорема существования и единственности решения задачи Коши. Особые решения. 2.7. Уравнение догородные дифференциальные уравнения (ЛОДУ) : определения, решения ЛОДУ2 с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения. 2.9. Решение ЛОДУ2 с постоянными коэффициентами для случая вещественных корней характеристического уравнения. 2.10. Решение ЛОДУ2 с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.11. Свойства решений ЛОДУ2: линейная независимость решений, определитель Вронского. Теоремы 1,2. Сройства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы 1,2. Сройства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы 1,2. Сройства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы 1,2. Сройства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы 1,2. Сройства решений ЛОДУ2: тинейная комбинация решений, линейная зависимость решений пределение. 2.13. Свойства решения ЛОДУ2: тинейная независимость решений (пределение). 2.14. Свойства решения ЛОДУ2: тинейная независимость решений (пределении). 2.15. Структура решения ЛОДУ1: линейная независимость решений нахождение фундаментальной системы решений по кориям характеристического уравнения. 2.16. Решение ЛНУ2: с тостоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентами: специальная прав	2.		
 Уравнение с разделяющимися переменными. Однородное уравнение. Уравнение в полных дифференциалах. Линейное уравнение первого порядка. Метод Лагранжа. Теорема существования и едииственности решения задачи Коши. Особые решения. Уравнения п-ого порядка, допускающие понижение порядка. Линейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ₂ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. Свойства решений ЛОДУ₂: линейная пезависимость решений, определитель Вронского. Теоремы 1,2. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ₂: линейная независимость решений (пределение). Свойства решений ЛИДУ₂: тинейная независимость решений пределении. Свойства решений ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корнам характеристического уравнения. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). Системы дифференциальных уравнений: определения, решение методом исключения. Системы дифференциальных уравнений: определения, решение методом исключения. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чосл. Теория устойчивости: определение устой		2.1.	
 Однородное уравнение. Уравнение в полных дифференциалах. Линейное уравнение первого порядка. Метод Лагранжа. Сеорема существования и единственности решения задачи Копи. Особые решения. Уравнения п-ого порядка, допускающие понижение порядка. Линейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ₂ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы 1,2. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы 0 вронскиане. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема 0 структуре общего решения ЛОДУ₂: мундаментальная система решений (определение). Свойства решений ЛИДУ₂: теоремы 0 структуре общего решения и решении ДУ с суммой правых частей. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. Решение ЛНУ₂: постоянными коэффициентов. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). Системы дифференциальных уравнений: определения, решение методом исключения. Системы дифференциальных уравнений: определения, решение методом исключения. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чосл. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 			
 Уравнение в полных дифференциалах. Линейное уравнение первого порядка. Метод Лагранжа. Теорема существования и единственности решения задачи Копи. Особые решения. Уравнения л-ого порядка, допускающие понижение порядка. Уравнения л-ого порядка, допускающие понижение порядка. Линейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ₂ с постоянными коэффициентами для случая различных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы 1,2. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ₂. Фундаментальная система решений (определение). Структура общего решения ЛОДУ₂: теоремы о структуре общего решения и решении ДУ с суммой правых частей. Структура решений ЛОДУ₂: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. Решение ЛНУ₂: постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). Системы дифференциальных уравнений: определения, решение методом исключения. Системы дифференциальных уравнений: определения, решение матодом неопределеных чисел. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 			
 Динейное уравнение первого порядка. Метод Лагранжа. Теорема существования и единственности решения задачи Копш. Особые решения. Уравнения л-ого порядка, допускающие понижение порядка. Линейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ₂ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы 1,2. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ₂. Свойства решений ЛОДУ₂: теоремы о структуре общего решения и решении ДУ с суммой правых частей. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). Системы дифференциальных уравнений: определения, решение методом исключения. Тория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 			
 2.6. Теорема существования и единственности решения задачи Коши. Особые решения. 2.7. Уравнения п-ого порядка, допускающие понижение порядка. 2.8. Линейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ₂ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения. 2.9. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения. 2.10. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.11. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы 1,2. 2.12. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. 2.13. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ₂: Фундаментальная система решений (определение). 2.14. Свойства решений ЛНДУ₂: теоремы о структуре общего решения и решений ДУ с суммой правых частей. 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. 2.16. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 			
 Уравнения п-ого порядка, допускающие понижение порядка. Линейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ₂ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы 1,2. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ₂: точения до структуре общего решений (определение). Свойства решений ЛНДУ₂: теоремы о структуре общего решения и решении ДУ с суммой правых частей. Структура решения ЛОДУ№: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). Системы дифференциальных уравнений: определения, решение методом исключения. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 			
 Линейные однородные дифференциальные уравнения (ЛОДУ): определения, решение ЛОДУ₂ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы 1,2. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ₂. Фундаментальная система решений (определение). Свойства решений ЛНДУ₂: теоремы о структуре общего решения и решении ДУ с суммой правых частей. Структура решения ЛОДУ₂: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). Системы дифференциальных уравнений: определения, решение методом исключения. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 			
 янными коэффициентами для случая различных вещественных корней характеристического уравнения. 2.9. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения. 2.10. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.11. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы 1,2. 2.12. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. 2.13. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ₂: линейная комбинация решений (определение). 2.14. Свойства решений ЛНДУ₂: теоремы о структуре общего решения и решении ДУ с суммой правых частей. 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. 2.16. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 			
 2.9. Решение ЛОДУ₂ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения. 2.10. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.11. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы 1,2. 2.12. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. 2.13. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ₂. Фундаментальная система решений (определение). 2.14. Свойства решений ЛНДУ₂: теоремы о структуре общего решения и решении ДУ с суммой правых частей. 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. 2.16. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 		2.8.	
 2.10. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.11. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы 1,2. 2.12. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. 2.13. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ₂. Фундаментальная система решений (определение). 2.14. Свойства решений ЛНДУ₂: теоремы о структуре общего решения и решении ДУ с суммой правых частей. 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений покорням характеристического уравнения. 2.16. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 		0.0	
 2.10. Решение ЛОДУ₂ с постоянными коэффициентами для случая комплексных корней характеристического уравнения. 2.11. Свойства решений ЛОДУ₂: линейная независимость решений, определитель Вронского. Теоремы 1,2. 2.12. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. 2.13. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ₂. Фундаментальная система решений (определение). 2.14. Свойства решений ЛНДУ₂: теоремы о структуре общего решения и решении ДУ с суммой правых частей. 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. 2.16. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 		2.9.	
уравнения. 2.11. Свойства решений ЛОДУ2: линейная независимость решений, определитель Вронского. Теоремы 1,2. 2.12. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. 2.13. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ2. Фундаментальная система решений (определение). 2.14. Свойства решений ЛНДУ2: теоремы о структуре общего решения и решении ДУ с суммой правых частей. 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. 2.16. Решение ЛНУ2 с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ2: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ.		0.40	v -
 2.11. Свойства решений ЛОДУ2: линейная независимость решений, определитель Вронского. Теоремы 1,2. 2.12. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. 2.13. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ2. Фундаментальная система решений (определение). 2.14. Свойства решений ЛНДУ2: теоремы о структуре общего решения и решении ДУ с суммой правых частей. 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. 2.16. Решение ЛНУ2 с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ2: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 		2.10.	
 2.12. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане. 2.13. Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ2. Фундаментальная система решений (определение). 2.14. Свойства решений ЛНДУ2: теоремы о структуре общего решения и решении ДУ с суммой правых частей. 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. 2.16. Решение ЛНУ2 с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ2: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 		0.44	
Вронского. Теоремы о вронскиане. 2.13. Свойства решений ЛОДУ ₂ : линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ ₂ . Фундаментальная система решений (определение). 2.14. Свойства решений ЛНДУ ₂ : теоремы о структуре общего решения и решении ДУ с суммой правых частей. 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. 2.16. Решение ЛНУ ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ ₂ : метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ.			
 2.13. Свойства решений ЛОДУ₂: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения ЛОДУ₂. Фундаментальная система решений (определение). 2.14. Свойства решений ЛНДУ₂: теоремы о структуре общего решения и решении ДУ с суммой правых частей. 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. 2.16. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 		2.12.	1 1 1 1 1
структуре общего решения ЛОДУ ₂ . Фундаментальная система решений (определение)		0.10	
 2.14. Свойства решений ЛНДУ₂: теоремы о структуре общего решения и решении ДУ с суммой правых частей. 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. 2.16. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 		2.13.	
 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения. 2.16. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 		0.14	
решений по корням характеристического уравнения. 2.16. Решение ЛНУ2 с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ2: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ.			
 2.16. Решение ЛНУ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов. 2.17. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 		2.15.	
методом неопределенных коэффициентов. 2.17. Решение ЛНУ ₂ : метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ.		0.16	
 2.17. Решение ЛНУ₂: метод вариации произвольных постоянных (Лагранжа). 2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 		2.10.	
2.18. Системы дифференциальных уравнений: определения, решение методом исключения. 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ.		0.17	
 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел. 2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. 			
вещественных собственных чисел			
2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ.		2.19.	
		2 20	
Πριμιορίτ μοποδιμμρορό με μονοποδιμμρορό ρομμομμα		4.20.	

1. Линейная алгебра

- 1.1. Евклидово пространство: определение, неравенство Коши-Буняковского. Нормированное евклидово пространство.
- 1.2. Ортонормированный базис, ортогонализация базиса. Матрица Грама.
- 1.3. Ортогональность вектора подпространству. Ортогональное дополнение. Теорема Пифагора.
- 1.4. Задача о перпендикуляре.
- 1.5. Линейный оператор: определение, основные свойства.
- 1.6. Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях.
- 1.7. Матрица линейного оператора. Преобразование матрицы при переходе к новому базису.
- 1.8. Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора.
- 1.9. Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения, основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора.
- 1.10. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора.
- 1.11. Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное преобразование.
- 1.12. Билинейные формы: определения, свойства. Матрица билинейной формы.
- 1.13. Квадратичная форма: определения, приведение к каноническому виду.
- 1.14. Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра.

2. Дифференциальные уравнения

- 2.1. Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши.
- 2.2. Уравнение с разделяющимися переменными.

Def 2.2.1. Уравнение вида

$$m(x)N(y)dx + M(x)n(y)dy = 0$$

называется уравнением с разделяющимися переменными.

Для решения таких уравнений необходимо разделить обе части на M(x)N(y), перенести одно из слагаемых в правую часть, после чего проинтегрировать обе части.

$$m(x)N(y)dx + M(x)n(y)dy = 0$$
$$\frac{m(x)}{M(x)}dx + \frac{n(y)}{N(y)}dy = 0$$
$$\int \frac{m(x)}{M(x)}dx = -\int \frac{n(y)}{N(y)}dy$$

Замечание 2.2.2. В случае, если M(x) = 0 или N(y) = 0, то уравнение решается непосредственным интегрированием.

Замечание 2.2.3. Решения вида x = const, y = const не всегда получаемы из общего решения.

2.3. Однородное уравнение.

Def 2.3.4. Функция f(x,y) называется однородной m-ого измерения $(m \ge 0)$, если $f(\lambda x, \lambda y) = \lambda^m f(x,y)$.

Def 2.3.5. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется *однородным*, если P(x,y) и Q(x,y) однородные функции одного измерения m.

Однородные уравнения решаются заменой $t = \frac{y}{x}$. Покажем, откуда появляется подобная замена. Преобразуем функции P(x,y) и Q(x,y):

$$\begin{split} P(x,y) &= P\left(x \cdot 1, x \cdot \frac{y}{x}\right) = x^m P\left(1, \frac{y}{x}\right) \\ Q(x,y) &= Q\left(x \cdot 1, x \cdot \frac{y}{x}\right) = x^m Q\left(1, \frac{y}{x}\right) \end{split}$$

Вернемся к исходному уравнению:

$$P(x,y)dx + Q(x,y)dy = 0 \mid : dx$$

$$y' = -\frac{P(1, \frac{y}{x})}{Q(1, \frac{y}{x})} = f\left(1, \frac{y}{x}\right)$$

$$\frac{y}{x} = t \implies \begin{cases} f(1, \frac{y}{x}) = \tilde{f}(t) \\ y = xt, \ y'_x = t + xt' \end{cases}$$

$$t + xt' = \tilde{f}(t)$$

$$x \cdot \frac{dt}{dx} = \tilde{f}(t) - t$$

$$\frac{dt}{\tilde{f}(t) - t} = \frac{dx}{x}$$

Таким образом исходное однородное уравнение сводится к уравнению с разделяющими переменными. Замечание 2.3.6. Случай $\tilde{f}(t) - t = 0$ нужно рассмотреть отдельно.

2.4. Уравнение в полных дифференциалах.

Def 2.4.7. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется уравнением в полных дифференциалах, если

$$\exists z(x,y) : dz = P(x,y)dx + Q(x,y)dy$$

Критерием того, что данное уравнение является уравнением в полных дифференциалах может служить равенство

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$

Решение уравнений в полных дифференциалах сводится к поиску функции z(x,y), удовлетворяющей условиям. Про то, как найти такую функцию можно прочитать в конспекте по матанализу в разделе про интегралы, независящие от пути. После того, как такая функция будет найдена, решить ДУ не составит проблем:

$$P(x,y)dx + Q(x,y)dy = 0$$
$$dz = 0$$
$$z = C$$

TODO: Интегрирующий множитель

2.5. Линейное уравнение первого порядка. Метод Лагранжа.

Def 2.5.8. Линейным однородным уравнением первого порядка ($\Pi O \Pi Y_1$) называется уравнение вида

$$y' + p(x)y = 0$$

ЛОДУ₁ является уравнением с разделяющими переменными, поэтому оно решается следующим образом:

$$y' + p(x)y = 0$$
$$\frac{dy}{dx} = -p(x)y$$
$$\frac{dy}{y} = -p(x)dx$$
$$\overline{y} = C \cdot \underbrace{e^{-\int p(x)dx}}_{y_1}$$

Замечание 2.5.9. При решении данного уравнения мы поделили на $y \neq 0$. Заметим, что y = 0 также является решением ЛОДУ₁, однако оно получаемо из общего решения при C = 0.

Def 2.5.10. Линейным неоднородным уравнением первого порядка (ЛНДУ₁) называется уравнение вида

$$y' + p(x)y = q(x), \quad q(x) \neq 0$$

Метод Лагранжа (метод вариации произвольной постоянной) для решения ЛНДУ₁:

- 1. Найдем частное решение y_1 соответствующего однородного уравнения.
- 2. Будем искать решение ЛНДУ $_1$ в виде $y(x) = y_1(x) \cdot C(x)$. Преобразуем ДУ в соответствии с этой заменой

$$y' + p(x)y = q(x)$$

$$y'_{1}(x)C(x) + y_{1}(x)C'(x) + p(x)y_{1}(x)C(x) = q(x)$$

$$y_{1}(x)C'(x) + C(x)\underbrace{\left(y'_{1}(x) + p(x)y_{1}(x)\right)}_{=0} = q(x)$$

$$y_{1}(x)C'(x) = q(x)$$

$$C(x) = \int \frac{q(x)}{y_{1}(x)} dx + C$$

3. Подставим найденную функцию C(x) в $y(x) = y_1(x) \cdot C(x)$.

TODO: Уравнение Бернулли, Клеро, Риккати и пр.

- 2.6. Теорема существования и единственности решения задачи Коши. Особые решения.
- **2.7.** Уравнения n-ого порядка, допускающие понижение порядка.

К уравнениям, допускающим понижение порядка относятся:

1. Непосредственно интегрируемые уравнения вида $y^{(n)}(x) = f(x)$. Они решаются интегрированием обоих частей n раз.

- 2. Уравнения не содержащие y(x) в явном виде. Они решаются заменой z(x) = y'(x), z'(x) = y''(x). Замечание 2.7.11. В общем случае производится замена самой младшей из присутствующих производных.
- 3. Уравнения не содержащие x в явном виде. Они решаются заменой z(y) = y'(x), тогда $y''(x) = z'_y y'_x = z'(y) \cdot z(y)$
- **2.8.** Линейные однородные дифференциальные уравнения (ЛОДУ) : определения, решение ЛОДУ $_2$ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения.
- **2.9.** Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения.
- **2.10.** Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая комплексных корней характеристического уравнения.
- **2.11.** Свойства решений $\Pi O \Pi Y_2$: линейная независимость решений, определитель Вронского. Теоремы 1.2.
- **2.12.** Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане.
- 2.13. Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения $\Pi O \Pi V_2$. Фундаментальная система решений (определение).
- **2.14.** Свойства решений $\Pi H \Pi V_2$: теоремы о структуре общего решения и решении ΠV_2 с суммой правых частей.
- 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения.
- **2.16.** Решение ЛНУ $_2$ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов.
- **2.17.** Решение $\Pi H Y_2$: метод вариации произвольных постоянных (Лагранжа).
- 2.18. Системы дифференциальных уравнений: определения, решение методом исключения.
- 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел.
- **2.20.** Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. Примеры устойчивого и неустойчивого решения