Introducción Nivel de Red

CDD2

Nivel de Red

Servicios provistos y funciones principales

Servicio provisto

- Transporte de paquetes (datagrams) entre procesos de nivel transporte
- Independiente de la topología
- Independiente de la tecnología
- Direccionamiento uniforme

Funciones

- Reenvío de paquetes: determinación del próximo equipo a quien entregar un paquete
- Ruteo de paquetes: determinación del camino que deben seguir los paquetes para llegar a destino
- Control de congestión: evitar que la red colapse por tráfico excesivo
- Calidad de servicio: proveer características de envio (ancho de banda throughput, errores, etc. de acuerdo a lo que solicitan las aplicaciones
- Seguridad: autenticación de interlocutores, cifrado de la información
- Cómo cobrar a los equipos por el uso que hacen de la red
- Adaptación del tamaño del paquete soportado al MTU de las redes
- Establecer, controlar y terminar conexiones a nivel de red (ofrecidas a N4). Solo en el caso de prestar servicio orientado a conexión.

Organización interna del nivel de red

Organización basada en circuitos virtuales

- Crea una relación (circuito virtual) entre emisor y receptor
- Los paquetes son tratados por la red de la misma manera
- Generalmente ofrece un servicio confiable, orientado a conexión

Organización basada en datagramas

- No crea ninguna relación entre el emisor y el receptor
- Cada paquete es enviado independientemente de los demás
- Generalmente ofrece un servicio no orientado a conexión, no confiable

Circuit Switching

Packet switching

CS vs PS

Asunto	Red de circuitos virtuales	Red de datagramas
Configuración del circuito	Requerida	No Requerida
Direccionamiento	Cada paquete contiene un número de CV corto	Cada paquete contiene la dirección de origen y de destino completas
Información de estado	Cada CV requiere espacio de tabla del enrutador por cada conexión	Los enrutadores no contienen información de estado sobre las conexiones
Enrutamiento	La ruta se elije cuando se establece el CV; todos los paquetes siguen esa ruta	Cada paquete se enruta de manera independiente
Efecto de fallas del enrutador	Terminan todos los CVs que pasaron por el enrutador defectuoso	Ninguno, excepto para paquetes perdidos durante una caída
Calidad del servicio	Fácil si se pueden asignar suficientes recursos por adelantado para cada CV	Difícil
Control de congestión	Fácil si se pueden asignar suficientes recursos por adelantado para cada CV	Difícil

Reenvío y Ruteo

Reenvío

- Proceso local en un router
- Cada paquete, se debe enviar lo más rápidamente al siguiente router camino al destino
- El reenvío se realiza en base a información provista por el componente de ruteo

Ruteo

- Envío de un paquete a su destino de la manera más eficiente posible
- Requiere un conocimiento global de la topología de la red
- Se adquiere a través de un protocolo de ruteo

Reenvío

Función correspondiente al nivel IP

Para un datagram (originado en el equipo o entrante) debe decidirse, en base a su dirección de destino, hacia qué equipo enviarlo

La decisión se toma en base a tablas de ruteo

Las tablas pueden ser estáticas o dinámicas (si se utiliza un protocolo de ruteo)

Un equipo que sólo funcione como host no reenvía datagrams

Ruteo

Consiste en determinar, desde un nodo dado, cómo llegar al destino

Origen y destino pueden estar en distintas subredes

Realizado manualmente o a través de aplicaciones (protocolos de ruteo)

Granularidad:

- Datagram
- Circuito virtual

Tipos:

- Source routing
- Hop by hop routing

Componentes de la función de ruteo

Protocolos de ruteo

Difunden la información necesaria para ruteo

Base de datos de información de ruteo (RIB)

Información en cada router acerca de las rutas a los distintos destinos, con cierta(s) métrica(s)

Algoritmos de ruteo

 Usan la información de la base de datos para determinar (cálculo en background) las rutas a seguir para cada destino. El reenvío de los paquetes (en tiempo real) se hará en base a estas tablas (FIB)

Clasificación de los algoritmos de ruteo

Según dónde se toma la decisión

- Centralizados
- Descentralizados

Según cómo se actualizan las tablas de ruteo

- Estáticos
- Dinámicos

Según la sensibilidad a la carga

- Adaptativos
- No Adaptativos