CO2017 — Deadlock Surgery, 2017-18

2018-02-11; R1133

Questions

These examples taken more-or-less verbatim from various exam papers and class tests.

Α

Consider a system with resources R_1 , R_2 , R_3 and R_4 available in total in the following quantities:

$$\begin{array}{ccccc} R_1 & R_2 & R_3 & R_4 \\ \text{total} & 3 & 5 & 2 & 3 \end{array}$$

There are three processes (P_1, P_2, P_3, P_4) running, and the **currently held** resources are

The current **requests** are

Use *Dijkstra's Banker's algorithm* to determine if this situation will deadlock, and if not, what order the processes can be scheduled to guarantee completion.

В

Consider a system with resources R_1 , R_2 , R_3 and R_4 available in total in the following quantities:

There are three processes $(P_1, P_2 \text{ and } P_3)$ running, and the **current allocation** of resources is

The current requests are

Use Dijkstra's Banker's algorithm to determine if this situation will deadlock, and if not, what order the processes can be scheduled to guarantee completion.

C

Consider a system with resources R_1 , R_2 , R_3 and R_4 available **in total** in the following quantities:

There are three processes $(P_1, P_2 \text{ and } P_3)$ running, and the **current allocation** of resources is

The current requests are

Use Dijkstra's Banker's algorithm to determine if this situation will deadlock, and if not, what order the processes can be scheduled to guarantee completion.