Density of The Rationals

Lance Remigio

November 27, 2022

1 The Density of the Rationals

Theorem 1.1. (Archimedean Property)

- Given any number $x \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ satisfying an $n \in \mathbb{N}$ satisfying n > x
- Given any real number y > 0, there exists an $n \in \mathbb{N}$ satisfying 1/n < y

Before we head on to the proof, it is important to notice that \mathbb{N} is not bounded above and we shall not prove this fact since we are taking this property of the set to be a given just like all the properties that are contained in \mathbb{N}, \mathbb{Z} , and \mathbb{Q} .

Proof. Assume for sake of contradiction that \mathbb{N} is bounded above. Using the Axiom of Completeness, \mathbb{N} contains a supremum, say, $\sup \mathbb{N} = \alpha$. Using lemma 1.3.8, we know that there exists $n \in \mathbb{N}$ such that

$$\alpha - 1 < n. \tag{\epsilon = 1}$$

This impplies that

$$\alpha < n+1$$

but this shows that $n+1 \in \mathbb{N}$ which is a contradiction because we assumed that $\alpha \geq n$ for all $n \in \mathbb{N}$ thereby rendering α to no longer be an upper bound for \mathbb{N} . Hence, we have that there exists an $n \in \mathbb{N}$ satisfying an $n \in \mathbb{N}$ satisfying n > x. The second part of this theorem follows immediately by setting x = 1/y.

Theorem 1.2. (Density of \mathbb{Q} in \mathbb{R}) For every two $a, b \in \mathbb{R}$ with a < b, there exists $r \in \mathbb{Q}$ such that a < r < b.

Proof. Our goal is to choose $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that

$$a < \frac{m}{n} < b \tag{1}$$

The idea is to choose a denominator large enough so that when we increment by size $\frac{1}{n}$ that it will be too big to increment over the open interval (a, b). Using the (2) of the Archimedean Property,

we choose $n \in \mathbb{N}$ such that

$$\frac{1}{n} < b - a. \tag{2}$$

We now need to choose an $m \in \mathbb{Z}$ such that na is smaller than this chosen number. A diagram for choosing such a number is helpful. Hence,

Judging from our diagram, we can see that

$$m-1 \le na < m$$
.

Focusing on the left part of the inequality, we can solve (2) for a and say that

$$m \le na + 1$$

$$< n(b - 1/n) + 1$$

$$= nb$$

This implies that m < nb and consequently na < m < nb which is equivalent to (1).

2 The Existence of Square Roots

Theorem 2.1. There exists $\alpha \in \mathbb{R}$ satisfying $\alpha^2 = 2$.

Proof. Consider the set

$$T = \{t \in \mathbb{R} : t^2 < 2\}$$

and set $\alpha = \sup T$. We need to show that $\alpha^2 = 2$. Hence, we need to show cases where $\alpha^2 < 2$ and $\alpha^2 > 2$. The idea behind these cases is to produce a contradiction that will show that having either one of these cases will violate the fact that α is an upper bound for T and α is the least upper bound respectively.

Assume the first case, $\alpha^2 < 2$. We know that α is an upper bound for T. We need to construct an element that is larger than α . Hence, we construct

$$\alpha + \frac{1}{n} \in T \tag{1}$$

Squaring (1) we have that

$$\left(\alpha + \frac{1}{n}\right)^2 = \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n^2}$$

$$< \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n}$$

$$= \alpha^2 + \frac{2\alpha + 1}{n}.$$

We can use the fact that \mathbb{Q} is dense in \mathbb{R} to choose an $n_0 \in \mathbb{N}$ such that

$$\frac{1}{n_0} < \frac{2 - \alpha^2}{2\alpha + 1}.$$

Rearranging we get that

$$\frac{2\alpha+1}{n_0} < 2 - \alpha^2$$

and consequently

$$\left(\alpha + \frac{1}{n_0}\right)^2 < \alpha^2 + (2 - \alpha^2) = 2$$

But this means that $\alpha + 1/n_0 \in T$ showing that α is not an upper bound for T contradicting our assumption.

Now we want to show the other case that $\alpha^2 < 2$ cannot happen. Now we need to produce an element in T such that it is less than α , thereby showing that α is not the least upper bound of T. Hence, we construct the following element

$$\left(\alpha - \frac{1}{n}\right) \in T.$$

Squaring this quantity will give us the following

$$\left(\alpha - \frac{1}{n}\right)^2 = \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2}$$
$$> \alpha^2 - \frac{2\alpha}{n}.$$

Like we did before, we get to choose an $n_0 \in \mathbb{N}$ such that

$$\frac{1}{n_0} > \frac{\alpha^2 - 2}{2\alpha}$$

to make

$$\left(\alpha - \frac{1}{n_0}\right)^2 < \alpha^2 - (\alpha^2 - 2) = 2.$$

But this shows that $\alpha - \frac{1}{n_0} < \alpha$ showing that α and that our constructed element contradicts that fact that α is the least upper bound.

3 Exercises

3.1 Exercise 1.4.1

Recall that \mathbb{I} stands for the set of irrational numbers.

(a) Show that if $a, b \in \mathbb{Q}$, then ab and a + b are elements of \mathbb{Q} as well.

Proof. Suppose $a,b\in\mathbb{Q}$. Then $p,q,m,n\in\mathbb{Z}$ such that $n,q\neq 0$. Hence, $a=\frac{p}{q}$ and $b=\frac{m}{n}$. Adding a+b will give us

$$a+b=\frac{p}{q}+\frac{m}{n}$$

$$=\frac{pn+mq}{qn}.$$

Since $pq + mn, qn \in \mathbb{Z}$ with $q, n \neq 0$, we have that $a + b \in \mathbb{Q}$. Now we multiply a and b together. Then we have

$$ab = \frac{p}{q} \cdot \frac{m}{n}$$
$$= \frac{pm}{qn}.$$

Since $pm, qn \in \mathbb{Z}$ and $q, n \neq 0$, we have that $ab \in \mathbb{Q}$.

(b) Show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$ and $at \in \mathbb{I}$ as long as $a \neq 0$.

Proof. Suppose for sake of contradiction that at = r where $r \in \mathbb{Q}$. Solving for t, we have that $t = \frac{r}{a}$. But this tells us that $t \in \mathbb{Q}$ since $r, a \in \mathbb{Q}$ which is a contradics our assumption that $t \in \mathbb{I}$.

(c) Part (a) can be summarised by saying that \mathbb{Q} is closed under addition and multiplication. Is \mathbb{I} closed under addition and multiplication? Given two irrational numbers s and t, what can we say about s+t and st?

Solution. We can say that s+t is an irrational number while st can either be rational or irrational depending if s=t or $s\neq t$. If s=t, then st is rational and if $s\neq t$, then st is irrational.

3.2 Exercise 1.4.2

Let $A \subseteq \mathbb{R}$ be nonempty and bounded above, and let $s \in \mathbb{R}$ have the property that for all $n \in \mathbb{N}$, $s + \frac{1}{n}$ is an upper bound for A and $s - \frac{1}{n}$ is not an upper bound for A. Show that $s = \sup A$.

Proof. Since $A \neq \emptyset$ and bounded above, we have that $\sup A$ exists. Since $s + \frac{1}{n}$ for all $n \in \mathbb{N}$ is an upper bound for A, we have that

$$\sup A \le s + \frac{1}{n} \tag{1}$$

for all $n \in \mathbb{N}$. On the other hand, $s - \frac{1}{n}$ is a lower bound for A. Hence,

$$\sup A > s - \frac{1}{n} \tag{2}$$

for all $n \in \mathbb{N}$. We have (1) and (2) imply

$$s - \frac{1}{n} < \sup A \le s + \frac{1}{n}.\tag{3}$$

This means that either $\sup A < s$, $\sup A > s$, or $\sup A = s$. If $\sup A < s$, then $s - \sup A > 0$. Using the Archimedean Property, we can find an $n \in \mathbb{N}$ such that

$$s - \sup A > \frac{1}{n}$$

but this means that $\sup A < s - \frac{1}{n}$ which contradicts (3). On the other hand, if $\sup A > s$, then $\sup A - s > 0$. Using the Archimedean property again, we can find an $n \in \mathbb{N}$ such that

$$\sup A - s > \frac{1}{n}$$

but this means that $\sup A > s + \frac{1}{n}$ which is a contradiction since $\sup A < s + \frac{1}{n}$ from (3). Hence, it must be that $\sup A = s$.

3.3 Exercise 1.4.3

Prove that $\bigcap_{n=1}^{\infty} (0, 1/n) = \emptyset$. Notice that this demonstrates that the intervals in the Nested Interval Property must be closed for the conclusion for the theorem to hold.

Proof. Suppose $x \in (0, \frac{1}{n})$, then x > 0. By the Archimedean Property, we can find an $N \in \mathbb{N}$ that is sufficiently large such that $x > \frac{1}{N}$. But this means that $x \in (0, 1/n)$ for all $n \in \mathbb{N}$. Hence, $x \notin \bigcap_{n=1}^{\infty} (0, \frac{1}{n})$ and then

$$\bigcap_{n=1}^{\infty} (0, \frac{1}{n}) = \emptyset.$$

3.4 Exercise 1.4.4

Let a < b be real numbers and consider the set $T = \mathbb{Q} \cap [a, b]$. Show that $\sup T = b$.

Proof. Let a < b where $a, b \in \mathbb{R}$. Consider the following set $T = \mathbb{Q} \cap [a, b]$. We want to show that $\sup T = b$. By definition, b is an upper bound for T since a < b. All we need to show is that b is the least upper bound. Hence, we use lemma 1.3.8 and the fact that \mathbb{Q} is dense in \mathbb{R} to state that for every $\epsilon > 0$, there exists $r \in \mathbb{Q}$ such that $b - \epsilon < r < b$. But this means that $r \in T$ and $b - \epsilon$ is not an upper bound for T. Hence, $\sup T = b$.

Another proof for this:

Proof. Let a < b where $a, b \in \mathbb{R}$. Consider the following set $T = \mathbb{Q} \cap [a, b]$. We want to show that $\sup T = b$. By definition, b is an upper bound for T since a < b. All we need to show is that b is the least upper bound. Since a < b where $a, b \in \mathbb{R}$, we can find $x \in \mathbb{Q}$ such that a < x < b. Since $x = \frac{m}{n}$ where $m, n \in \mathbb{Z}$ with $n \neq 0$, we have that na < m < nb. But note that nb is another upper bound for T for n sufficiently large and nb > b implying that b is the least upper bound of T. Hence, $\sup T = b$.

3.5 Exercise 1.4.5

Using Exercise 1.4.1, supply a proof for Corollary 1.4.4 by considering the real numbers $a - \sqrt{2}$ and $b - \sqrt{2}$.

Proof. Consider the real numbers $a - \sqrt{p}$ and $b - \sqrt{p}$ where p is any prime number. Using the fact that \mathbb{Q} is dense in \mathbb{R} , we have that

$$a - \sqrt{p} < r < b - \sqrt{p}$$

for some $r \in \mathbb{Q}$. Adding \sqrt{p} to both sides, we have that

$$a < r + \sqrt{p} < b$$
.

But know that $r + \sqrt{p} \in \mathbb{I}$ by (c) of Exercise 1.4.1. Hence, $t = r + \sqrt{p}$. We can follow the same procedure for trancendental numbers and make this conclusion.

3.6 Exercise 1.4.7

Finish the proof of Theorem 1.4.5 by showing that the assumption $\alpha^2 > 2$ leads to a contradiction of the fact that $\alpha = \sup T$.

Proof. Now we want to show the other case that $\alpha^2 < 2$ cannot happen. Now we need to produce an element in T such that it is less than α , thereby showing that α is not the least upper bound of T. Hence, we construct the following element

$$\left(\alpha - \frac{1}{n}\right) \in T.$$

Squaring this quantity will give us the following

$$\left(\alpha - \frac{1}{n}\right)^2 = \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2}$$
$$> \alpha^2 - \frac{2\alpha}{n}.$$

Like we did before, we get to choose an $n_0 \in \mathbb{N}$ such that

$$\frac{1}{n_0} > \frac{\alpha^2 - 2}{2\alpha}$$

to make

$$\left(\alpha - \frac{1}{n_0}\right)^2 < \alpha^2 - (\alpha^2 - 2) = 2.$$

But this shows that $\alpha - \frac{1}{n_0} < \alpha$ showing that α and that our constructed element contradicts that fact that α is the least upper bound.

3.7 Exercise 1.4.6

Recall that a set B is dense in \mathbb{R} if an element of B can be found between any two real numbers a < b. Which of the following sets are dense in \mathbb{R} ? Take $p \in \mathbb{Z}$ and $q \in \mathbb{N}$ in every case.

(a) The set $\{r \in \mathbb{Q} : q \leq 10\}$

Solution. Yes, since $a < \frac{p}{10} < \frac{p}{q} < b$.

(b) The set of all rationals p/q such that q is a power of 2.

Proof. Yes since
$$a < \frac{p}{2^n} < b$$
 for $n \in \mathbb{N}$.

(c) The set of all rationals p/q with $10|p| \ge q$

3.8 Extra Exercises

1. Show that $\sup A = r$ where $r \in \mathbb{R}$ and

$$A = \{ q \in \mathbb{Q} : q < r \}.$$

Proof. We know that the $\sup A$ exists since the Archimedean Property implies that $A \neq \emptyset$ and r is an upper bound of A by definition of A. Now we need to show that r is the least upper bound of A. By definition, $\sup A \leq r$. Suppose for sake of contradiction that $\sup A < r$. Since \mathbb{Q} is dense in \mathbb{R} , we can find a $q \in \mathbb{Q}$ such that

$$\sup A < q < r$$
.

But this means that $q \in A$ implying that $\sup A$ is not an upper bound for A which is a contradiction. Hence, it must be that $\sup A \leq r$. Hence, $\sup A = r$.

2. Assume that A, B are non-empty sets of reals that are bounded above and $A \subseteq B$. Show that $\sup A < \sup B$.

Proof. Suppose $A, B \neq \emptyset$ where $A, B \subseteq \mathbb{R}$ and bounded above. Furthermore, $A \subseteq B$. By Axiom of Completeness, $\sup A$ and $\sup B$ exists. Using lemma 1.3.8, we can say that for every $\epsilon > 0$

$$\sup A - \epsilon \le \alpha \tag{1}$$

for some $\alpha \in A$. Since $A \subseteq B$, $\alpha \in B$ so by definition of $\sup B$, we have that $\alpha \leq \sup B$. Hence, (1) implies that

$$\sup A - \epsilon \le \sup B.$$

Of course, it follows immediately that $\sup A \leq \sup B$.

3. Given nonempty subsets A and B of positive real numbers, define

$$A\cdot B=\{z=x\cdot y:x\in A,y\in B\}$$

Show that $\sup(A \cdot B) = \sup A \cdot \sup B$

Proof. Since $A, B \neq \emptyset$ and bounded above, we can say that $\sup A$ and $\sup B$ exists. Label these supremum by the following $\sup A = \alpha$ and $\sup B = \beta$. By definition, we have that

$$x \le \alpha$$
, for all $x \in A$
 $y \le \beta$, for all $y \in B$.

Multiplying these inequalities together, we have that

$$xy \leq \alpha\beta$$
 for all $x \in A, y \in B$.

Hence, we have that $\alpha\beta \in A \cdot B$ is an upper bound. Now we want to show that $\alpha\beta \in A \cdot B$ is the least upper bound. For every $\epsilon > 0$, we have

$$\alpha - \epsilon < a \le \alpha$$
$$\beta - \epsilon < b \le \beta$$

for some $a \in A$ and for some $b \in B$. Multiplying these two quantities together we have that

$$\alpha\beta - \epsilon(\alpha + \beta + \epsilon) \le \alpha\beta.$$

Since we can make $\epsilon' = \epsilon(\alpha + \beta + \epsilon) > 0$ abirtrarly small so that $\alpha\beta - \epsilon'$ is not an upper bound of $A \cdot B$. Hence, we have that

$$\sup(A \cdot B) = \sup A \cdot \sup B.$$

4. Let $A \subseteq \mathbb{R}$ be a nonempty set. Define the following set as

$$-A = \{x : -x \in A\}.$$

Show that

$$\sup(-A) = -\inf A$$
$$\inf(-A) = -\sup A.$$

Proof. Since $-A \neq \emptyset$ and -A is bounded above by every $a \in A$, we know that for every $\epsilon > 0$ we have that

$$\sup(-A) - \epsilon < -\alpha$$

for some $-\alpha \in -A$. Multiplying by a negative, we have that

$$\alpha \le -\sup(-A) + \epsilon$$
.

But this is just the lemma for the infimum so we have that $\inf A = -\sup(-A)$ so we have that

$$\sup(-A) = -\inf A.$$

Now we want to show (2). We can do the same process as we did above and use lemma 1.3.8 to say that for every $\epsilon > 0$, we have that

$$-\beta \le \inf(-A) + \epsilon$$

for some $-\beta \in -A$. Multiplying by a negative again, we get that

$$-\inf(-A) - \epsilon \le \beta.$$

Note that this is some $\beta \in A$. So by lemma 1.3.8, we have that $-\inf(-A) = \sup A$ and hence

$$\inf(-A) = -\sup A.$$

5. Let $A, B \subseteq \mathbb{R}$ be nonempty. Define the following sets as the following:

$$\sup(A - B) = \sup A - \inf B.$$

Proof. Since $A, B \neq \emptyset$, sup A and sup B exist by the axiom of completeness. In order to show (1), we would need to show that following:

$$\sup(A - B) \le \sup A - \inf B,$$

$$\sup A - \inf B \le \sup(A - B).$$

To show the first inequality, suppose we have $x - y \in A - B$ such that this bounds $\sup(A - B)$. Hence, we have

$$\sup(A - B) \le x - y.$$

If we add $y \in B$ to both sides, then we get the following

$$\sup(A - B) + y \le x.$$

But since $x \in A$ is bounded by $\sup A$, we have that

$$\sup(A - B) + y \le \sup A.$$

Now we want to isolate $y \in B$ to get

$$\sup(A-B) - \sup A \le -y$$

Since $-y \in -B$, we have that $-y \leq \sup(-B)$ for all $-y \in -B$. Hence,

$$\sup(A - B) - \sup A \le \sup(-B).$$

But we know from problem 1 that $\sup(-B) = -\inf B$ so we have

$$\sup(A - B) \le \sup A - \inf B.$$

Now we need to show the other inequality. By lemma 1.3.8, we have that for every $\epsilon > 0$, there exists some $\alpha \in A$ and $-\beta \in -B$ such that

$$\sup A - \epsilon/2 \le \alpha,$$

$$\sup(-B) - \epsilon/2 \le -\beta.$$

Adding these two inequalities, we have

$$\sup A + \sup(-B) - \epsilon \le \alpha - \beta.$$

But this means we can take $\epsilon > 0$ a bitrarly small to make the left-hand side not an upper bound. Hence, we have that

$$\sup A + \sup(-B) \le \sup(A - B)$$

which implies that

$$\sup A - \inf B \le \sup (A - B).$$

6. Given two sets of positive real numbers $A, B \neq \emptyset$ that are bounded, define

$$\frac{1}{A} = \left\{ z = \frac{1}{x} : x \in A \right\}.$$

Prove that

$$\sup\left(\frac{1}{A}\right) = \frac{1}{\inf A}$$

and prove that

$$\sup\left(\frac{1}{A}\right) = +\infty$$

if $\inf A > 0$.

Proof. Since $A \subseteq \mathbb{R}^+$ is bounded, we know that $x \ge \inf A$ for all $x \in A$. Since x > 0 and $\inf A > 0$, we have that

$$\frac{1}{x} \le \frac{1}{\inf A}$$
.

for all $z=\frac{1}{x}\in\frac{1}{A}$. This shows that $\frac{1}{\inf A}$ is an upper bound for $\frac{1}{A}$. Now we want to show that $\frac{1}{\inf A}$ is the least upper bound. Using lemma 1.3.8, we have for every $\epsilon>0$

$$\alpha \leq \inf A + \epsilon$$

for some $\alpha \in A$. Since $\alpha > 0$ and inf A > 0, we get that

$$\frac{1}{\inf A} - \epsilon' \le \frac{1}{\alpha}$$

which holds true for all $e' = \frac{\epsilon}{\inf A \cdot \alpha} > 0$ for some $\frac{1}{\alpha} \in \frac{1}{A}$. Using lemma 1.3.8, we have, indeed, $\frac{1}{\inf A}$ is the least upper found of $\frac{1}{A}$. Hence, we obtain

$$\sup\left(\frac{1}{A}\right) = \frac{1}{\inf A}.$$