# Συστήματα Αναμονής, 1η εργαστηριακή άσκηση

Νιχόλαος Παγώνας, el18175

Απρίλιος 2021

# Κατανομή Poisson

## Α.

Με τη βοήθεια του πακέτου statistics της Octave και της συνάρτησης stem, απεικονίζουμε τη συνάρτηση μάζας πιθανότητας της κατανομής Poisson, για  $\lambda = \{3, 10, 50\}$ .



Figure 1: Probability Mass Function of Poisson processes

Παρατηρούμε ότι όσο μεγαλώνει η τιμή της παραμέτρου  $\lambda$ :

- η κατανομή "απλώνεται", δηλαδή οι τιμές των θέσεων αριστερά και δεξιά από την μέση τιμή της κατανομής αυξάνονται. Αυτό είναι λογικό, αφού η διακύμανσή της, που είναι ίση με λ, αυξάνεται.
- 2. η θέση όπου η κατανομή είναι μέγιστη, πηγαίνει προς τα δεξιά. Αυτό συμβαίνει γιατί η μέση τιμή της (επίσης ίση με λ) αυξάνεται.
- 3. η μέγιστη τιμή της κατανομής μειώνεται. Αυτό συμβαίνει γιατί πρέπει να ικανοποιείται η ιδιότητα:

$$\sum_{x} P(X = x) = 1,$$

η οποία ισχύει για κάθε διακριτή τυχαία μεταβλητή. Έτσι, αφού οι τιμές αριστερά και δεξιά της μέσης τιμής αυξάνονται, το μέγιστο οφείλει να μειωθεί και η κατανομή "χαμηλώνει" συνολικά.

#### В.

Με βάση τους ορισμούς της μέσης τιμής και της διακύμανσης:

$$E[X] = \sum_{x} x P(X = x)$$

και

$$Var[X] = E[X^2] - E^2[X]$$

Έτσι, για  $\lambda = 30$  έχουμε:

- mean value of Poisson with lambda 30 is 30
- 2 Variance of Poisson with lambda 30 is 30

Οπότε επαληθεύουμε και μέσω της προσομοίωσης αυτό που ξέρουμε ότι ισχύει από τη θεωρία για την κατανομή Poisson:

$$E[X] = Var[X] = \lambda = 30$$

#### Γ.

Επιλέγουμε τις κατανομές Poisson με παραμέτρους  $\lambda=10$  και  $\lambda=50$ . Γνωρίζουμε από τη Θεωρία Πιθανοτήτων ότι η κατανομή της τυχαίας μεταβλητής Z=X+Y προκύπτει από την συνέλιξη των κατανομών των X και Y (εδώ κάνουμε την υπόθεση ότι οι X και Y είναι ανεξάρτητες).

Απειχονίζουμε τις κατανομές των  $X \sim Pois(10), Y \sim Pois(50)$  και Z = X + Y:



Figure 2: Convolution of two Poisson processes

Παρατηρούμε ότι προχύπτει κατανομή **Poisson** με μέση τιμή 60. Αυτό είναι λογικό, αφού γνωρίζουμε πως το άθροισμα δύο τυχαίων μεταβλητών Poisson με παραμέτρους  $\lambda_1, \lambda_2$  ακολουθεί κατανομή Poisson με παράμετρο  $\lambda_1 + \lambda_2$ . Απαραίτητη προϋπόθεση για να ισχύει αυτό είναι οι τυχαίες μεταβλητές να είναι ανεξάρτητες.

#### $\Delta$ .

Αποδεικνύουμε τον παραπάνω ισχυρισμό:

Έστω ένα διάστημα χρόνου t.

- Διαιρούμε το διάστημα t σε n υποδιαστήματα,  $t=n\Delta t$
- Πραγματοποιούμε n ανεξάρτητες δοκιμές Bernoulli, μία σε κάθε υποδιάστημα, με πιθανότητα επιτυχίας  $p=\lambda \Delta t$
- $\bullet$  Έτσι, η πιθανότητα k επιτυχιών σε n ανεξάρτητες δοχιμές δίνεται από την

Διωνυμική Κατανομή:

$$P[N(t) = k] = \binom{n}{k} p^k (1-p)^{n-k}, \ k = 0, 1, ..., n$$
$$= \binom{n}{k} (\lambda \Delta t)^k (1 - \lambda \Delta t)^{n-k}$$
$$= \binom{n}{k} \left(\frac{\lambda t}{n}\right)^k \left(1 - \frac{\lambda t}{n}\right)^{n-k}$$

• Και για  $\Delta t \rightarrow 0, n \rightarrow \infty$ , έχουμε

$$\frac{n!}{(n-k)!} \to n^k, \ \left(1 - \frac{\lambda t}{n}\right)^{n-k} \to e^{-\lambda t},$$

οπότε

$$P[N(t) = k] = \frac{n!}{k!(n-k)!} \left(\frac{\lambda t}{n}\right)^k \left(1 - \frac{\lambda t}{n}\right)^{n-k} \to \frac{(\lambda t)^k}{k!} e^{-\lambda t}. \quad \blacksquare$$

Με αυτόν τον τρόπο ( $\lambda=np$ , όπου n μεγάλο και p μικρό), μπορούμε να κατασκευάσουμε μία κατανομή Poisson παραμέτρου  $\lambda=30\,\frac{\text{σημεία}}{\text{sec}}$ . Επιλέγουμε n=30,60,90,120,150.



Figure 3: Poisson process as the limit of the binomial process

Παρατηρούμε ότι όσο το <br/> n αυξάνει, τόσο η διωνυμική κατανομή προσεγγίζει καλύτερα την Poisson.

## Εκθετική Κατανομή

## Α.

Απειχονίζουμε στο Octave την συνάρτηση πυχνότητας πιθανότητας της εχθετιχής κατανομής, με μέσο όρο  $\frac{1}{\lambda}=\{0.5,1,3\}$ . Χρησιμοποιώντας πολύ μιχρό βήμα (k=0.0.00001:8) μπορούμε να προσεγγίσουμε με μεγάλη αχρίβεια την συνεχή εχθετιχή κατανομή:



Figure 4: Probability Density Function of Exponential Distribution

#### В.

Αντίστοιχα, με τον ίδιο τρόπο απεικονίζουμε την αθροιστική συνάρτηση κατανομής, πάλι για  $\frac{1}{\lambda}=\{0.5,1,3\}$ :



Figure 5: Cumulative Distribution Function of Exponential Distribution

## $\Gamma$ .

Χρησιμοποιώντας την συνάρτηση expdf() και τον ορισμό της δεσμευμένης πιθανότητας, υπολογίζουμε τις ζητούμενες τιμές:

```
P(X > 50000 | X > 20000) with lambda 0.4 = 0.88692
P(X > 30000) with lambda 0.4 = 0.88692
```

Παρατηρούμε ότι οι δύο πιθανότητες είναι ίσες. Για να δούμε γιατί ισχύει αυτή η ισότητα, υπολογίζουμε λίγο πιο αναλυτικά τις πιθανότητες και έχουμε:

$$\begin{split} P(X>k[50000]|X>k[20000]) &= \frac{P(X>k[50000]\cap X>k[20000])}{P(X>k[20000])} \\ &= \frac{P(X>k[50000])}{P(X>k[20000])} \\ &= \frac{e^{\lambda\cdot k[50000]}}{e^{\lambda\cdot k[20000]}} \\ &= e^{\lambda\cdot k[30000]} \\ &= P(X>k[30000]) \end{split}$$

Στην ουσία αποδείξαμε μία ειδική περίπτωση της ιδιότητας απώλειας μνήμης, χαρακτηριστικής ιδιότητας της εκθετικής κατανομής. H ιδιότητα αυτή υπαγορεύει ότι:

$$P[X > t + s | X > s] = P[X > t]$$

Μία πιο πραχτιχή ερμηνεία αυτής της ιδιότητας είναι ότι, αν ο χρόνος αναμονής κάποιας διαδικασίας μοντελοποιηθεί ως εκθετιχή τυχαία μεταβλητή, τότε ο υπολειπόμενος χρόνος θα έχει συνεχώς την ίδια εκθετιχή κατανομή, χωρίς να έχει σημασία το πόσος χρόνος έχει περάσει ήδη.

## Διαδικασία Καταμέτρησης Poisson

#### Α.

Γνωρίζουμε ότι οι χρόνοι που μεσολαβούν ανάμεσα στην εμφάνιση δύο διαδοχικών γεγονότων της διαδικασίας Poisson με παράμετρο  $\lambda$  ακολουθούν εκθετική κατανομή με μέση τιμή  $\frac{1}{\lambda}$ .

Έτσι, με την εντολή  $\mathbf{exprnd}()$  ( $\lambda=5$ ) δημιουργούμε 100 τέτοιους χρόνους, δηλαδή 100 διαδοχικά τυχαία γεγονότα, και μέσω της συνάρτησης  $\mathrm{stairs}()$  απεικονίζουμε μία διαδικασία καταμέτρησης  $\mathrm{Poisson}$ :



Figure 6: Poisson Counting Process

#### В.

Γνωρίζουμε ότι ο αριθμός γεγονότων σε ένα χρονικό παράθυρο  $\Delta T=t_1-t_2$  ακολουθεί κατανομή Poisson με παράμετρο  $\lambda \Delta T$  (όπου  $\lambda$  η παράμετρος της διαδικασίας καταμέτρησης Poisson), δηλαδή ο μέσος αριθμός εμφανίσεων είναι ανάλογος του διαστήματος  $\Delta T$ .

Βρίσκουμε τον μέσο αριθμό γεγονότων στην μονάδα του χρόνου  $\left(\frac{\alpha \rho ιθμός γεγονότων}{\sigma υνολικός χρόνος}\right)$ , για  $\{200, 300, 500, 1000, 10000, 100000, 1000000\}$  διαδοχικά γεγονότα. Προκύπτει:

```
1 Average for 100 events: 5.15191
2 Average for 200 events: 4.66471
3 Average for 300 events: 4.71886
4 Average for 500 events: 4.61717
5 Average for 1000 events: 4.98296
6 Average for 10000 events: 4.99382
7 Average for 100000 events: 5.01452
8 Average for 1000000 events: 5.00161
```

Παρατηρούμε ότι όσο ο αριθμός γεγονότων μεγαλώνει, τόσο ο μέσος αριθμός γεγονότων πλησιάζει την παράμετρο  $\lambda=5~\frac{\gamma {\rm e} \gamma {\rm o} \gamma {\rm o} \tau {\rm a}}{{\rm sec}},$  ως οφείλει, αφού πρόχειται για διαδικασία καταμέτρησης Poisson.

## Παράρτημα Κώδικα

#### Κατανομή Poisson

```
1 pkg load statistics
4 clear all;
5 close all;
7 \text{ nfig=0};
8 # Poisson Distribution A
9 # TASK: In a common diagram, design the Probability Mass Function
      of Poisson
_{10} # processes with lambda parameters 3,10,50. In the horizontal axes,
      choose
# k parameters between 0 and 70.
12
13 k = 0:1:70;
14 \text{ lambda} = [3,10,30,50];
index = find(lambda == 30);
17 for i=1:columns(lambda)
poisson(i,:) = poisspdf(k,lambda(i));
19 endfor
20
21 colors = "rbkm";
23 nfig=nfig+1; figure(nfig);
24 hold on;
for i=1:columns(lambda)
```

```
26 if (i == index)
     continue
    endif
28
   stem(k,poisson(i,:),colors(i),"linewidth",1.2);
29
30 endfor
31 hold off;
title("Probability Mass Function of Poisson processes");
34 xlabel("k values");
35 ylabel("probability");
36 legend("lambda=3","lambda=10","lambda=50");
37 grid on;
38
#name = "../images/Poisson_Distribution_A.png";
40 #saveas(nfig,name);
41
42
44 # Poisson Distribution B
_{
m 45} # TASK: regarding the poisson process with parameter lambda 30,
      compute its mean
46 # value and variance
47
48 #fd = fopen("../images/Poisson_Distribution_B.txt","w");
49
chosen = poisson(index,:);
51 mean_value = 0;
for i=0:(columns(poisson(index,:))-1)
   mean_value = mean_value + i.*poisson(index,i+1);
53
54 endfor
55
56 fprintf("mean value of Poisson with lambda 30 is %d\n", mean_value)
57
58
second_moment = 0;
for i=0:(columns(poisson(index,:))-1)
second_moment = second_moment + i.*i.*poisson(index,i+1);
62 endfor
63
64 variance = second_moment - mean_value.^2;
66 fprintf("Variance of Poisson with lambda 30 is %d\n", variance);
67 # fclose(fd);
68 # Poisson Distribution C
69 # TASK: consider the convolution of the Poisson distribution with
      lambda 20 with
# the Poisson distribution with lambda 30.
71
72 first = find(lambda==10);
73 second = find(lambda==50);
74 poisson_first = poisson(first,:);
poisson_second = poisson(second,:);
76
77 composed = conv(poisson_first,poisson_second);
78 \text{ new_k} = 0:1:(2*70);
79
80 nfig=nfig+1; figure(nfig);
81 hold on;
stem(k,poisson_first(:),colors(1),"linewidth",1.2);
stem(k,poisson_second(:),colors(2),"linewidth",1.2);
stem(new_k,composed,"mo","linewidth",2);
```

```
85 hold off;
87 title("Convolution of two Poisson processes");
88 xlabel("k values");
89 ylabel("Probability");
90 legend("lambda=10","lambda=50","new process");
91 grid on;
92
93 #name = "../images/Poisson_Distribution_C.png";
94 #saveas(nfig, name);
96 # Poisson Distribution D
97 # TASK: show that Poisson process is the limit of the binomial
      distribution.
98 k = 0:1:200;
99 # Define the desired Poisson Process
100 lambda = 30;
n = [30, 60, 90, 120, 150];
p = lambda./n;
103
nfig=nfig+1; figure(nfig);
105
106 hold on;
107 for i=1:3
   binomial = binopdf(k,n(i),p(i));
108
    stem(k, binomial, colors(i), 'linewidth', 1.2);
110 endfor
111 hold off;
title("Poisson process as the limit of the binomial process");
114 xlabel("k values");
ylabel("Probability");
grid on;
#name = "../images/Poisson_Distribution_D.png";
#saveas(nfig, name);
```

## Εκθετική Κατανομή

```
pkg load statistics
з clc;
4 clear all;
5 close all;
7 nfig=0;
8 # Exponential Distribution A
10 k = 0:0.00001:8;
means = [0.5,1,3];
13 for i = 1:3
exp_pdf(i,:) = exppdf(k, means(i));
15 endfor
16
nfig=nfig+1; figure(nfig);
18 hold on;
19 for i = 1:3
plot(k,exp_pdf(i,:),"linewidth",1.2);
21 endfor
22 hold off;
```

```
24 title("Probability Density Function of Exponential Distribution");
25 xlabel("k values");
ylabel("Probability");
legend("1/lambda = 0.5","1/lambda = 1","1/lambda = 3");
28 grid on;
#name = "../images/Exponential_Distribution_A.png";
#saveas(nfig,name);
33 # Exponential Distribution B
_{35} for i = 1:3
exp_cdf(i,:) = expcdf(k, means(i));
38
nfig=nfig+1; figure(nfig);
40 hold on;
41 for i = 1:3
   plot(k,exp_cdf(i,:),"linewidth",1.2);
42
43 endfor
44 hold off:
46 title("Cumulative Distribution Function of Exponential Distribution
      ");
47 xlabel("k values");
48 ylabel("Probability");
49 legend("1/lambda = 0.5","1/lambda = 1", "1/lambda = 3");
51
#name = "../images/Exponential_Distribution_B.png";
#saveas(nfig,name);
55 # Exponential Distribution C
mean = 2.5; # mean=1/lambda
P_{30000} = 1 - expcdf(k(30000), mean);
P_50000_20000 = (1 - expcdf(k(50000), mean))/(1 - expcdf(k(20000), mean))
      mean));
#fd = fopen("../images/Exponential_Distribution_C.txt","w");
63 fprintf("P(X > 50000 | X > 20000) with lambda 0.4 = \%.5d\n",
      P_50000_20000);
64 fprintf("P(X > 30000) with lambda 0.4 = \%.5d\n", P_30000);
65 #fclose(fd);
```

### Διαδικασία Καταμέτρησης Poisson

```
pkg load statistics

clc;
clear all;
close all;

nfig = 0;
# Poisson Counting A
sample_sizes = [100,200,300,500,1000,10000,100000,1000000];

#fd = fopen("../images/Poisson_Counting_B.txt","w");
```

```
for j = 1:length(sample_sizes)
14 lambda = 5;
   mean = 1/lambda;
sample_size = sample_sizes(j);
15
16
17
   rnd_events = exprnd(mean,1,sample_size);
18
    t = zeros(1, sample_size+1);
20
    for i = 1:sample_size
21
     t(i+1) = t(i) + rnd_{events}(i);
22
    endfor
23
24
25
    N = 0:1:sample_size;
26
    if sample_size == 100
  nfig=nfig+1; figure(nfig);
28
29
      stairs(t,N,"linewidth",1.2);
      title("Poisson Counting Process");
xlabel("t (s)");
31
32
      ylabel("N (t)");
33
      grid on;
34
35
# saveas(nfig,"../images/Poisson_Counting_A.png");
    endif
37
   # Poisson Counting B
39
40
41
    average = sample_size/t(end);
42
   fprintf("Average for %d events: %d\n", sample_size, average);
43
44
45 endfor
47 # fclose(fd);
```