(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

(43)公開日 平成9年(1997)2月18日

(51) Int.Cl.		識別記号	庁内整理番号	FΙ			技術表示箇所
G 0 5 B	13/02		0360-3H	G 0 5 B	13/02	L	
G11B	7/09		9646-5D	G11B	7/09	Α	

審査請求 未請求 請求項の数6 OL (全 13 頁)

(21)出願番号	特願平7-199635	(71)出願人	000006013		
	·		三菱電機株式会社		
(22)出顧日	平成7年(1995)8月4日		東京都千代田区丸の内二丁目2番3号		
		(72)発明者	片山 剛		
			東京都千代田区大手町二丁目6番2号 三		
			菱電機エンジニアリング株式会社内		
		(72)発明者	長沢 雅人		
			東京都千代田区丸の内二丁目2番3号 三		
			菱電機株式会社内		
		(72)発明者	小川 雅晴		
			東京都千代田区丸の内二丁目2番3号 三		
		1	菱電機株式会社内		
		(74)代理人	弁理士 高田 守 (外4名)		
		ļ.			

(54) 【発明の名称】 繰り返し補債器およびこの繰り返し補債器を備えたディスク装置

(57)【要約】

【課題】 繰り返し補償器を備えた制御装置において、 繰り返し補償器の入力に外乱信号が混入する制御装置の 目標値への追従性能を向上すること。特に、光ディスク 装置などのディスク装置において、ディスクの傷や装置 の振動外乱が存在する場合でも、目標値の追従性能を損 なわない繰り返し補償器を得る。

【解決手段】 従来の繰り返し補償器の構成要素である 入力信号の1周期分を記憶する学習メモリ4と、ローパ スフィルタ3と、ゲイン要素2と、信号加算要素1に、 ゲインk (0≤k≤1) を有するゲイン要素5と、ゲイ ン1-k (0≤k≤1)を有するゲイン要素6と、信号 加算要素7を追加し、kの値を調節することで学習メモ リ4に入力信号の誤差成分を長期間保持できるようにし た。

4 学習メモリ

【特許請求の範囲】

【請求項1】 制御系の誤差信号などの被補償信号が入力される第1の加算手段と、

1

この第1の加算手段の出力信号を1周期分づづ順次フィードバックして上記第1の加算手段に入力するフィードバック信号系とを備え、

上記フィードバック信号系が、

上記第1の加算手段の出力信号に0以上1以下のゲインkを乗ずる第1のゲイン要素と、

この第1のゲインkが乗ぜられた信号が入力される第2 10 の加算手段と.

この第2の加算手段の1周期前の出力信号にゲイン1-kを乗じて上記第2の加算手段に入力する第2のゲイン要素と、

上記第2の加算手段の出力信号を1周期分づつ順次更新 記憶するメモリと、

このメモリに記憶されている1周期分の信号に1以下の ゲインβを乗じて上記第1の加算手段に入力する第3の ゲイン要素とで構成された繰り返し補償器。

【請求項2】 入力された被補償信号の周期的成分の強 20 弱を検出する相関検出手段と、

周期性が弱い成分が検出された時は上記第1および第2のゲイン要素のkの値をほぼ0とし、周期性が強い成分が検出された時は上記kの値をほぼ1に調節するゲイン調節手段を備えたことを特徴とする請求項1記載の繰り返し補償器。

【請求項3】 入力された制御系の誤差信号などの被補 償信号の周期的成分の強弱を検出する相関検出手段と、 上記被補償信号が入力される第1の加算手段、およびこ の第1の加算手段の出力信号を1周期分づづ順次フィー30 ドバックして上記第1の加算手段に入力するフィードバ ック信号系とで構成された短期型の補償系と長期型の補 償系とを有する繰り返し補償器と、

上記相関検出手段によって周期性の弱い成分が検出された時は上記繰り返し補償器の短期型の補償系の出力成分が長期型の補償系の出力成分よりも多く、また、周期性の強い成分が検出された時は長期型の補償系の出力成分が短期型の補償系の出力成分よりも多くなるように上記繰り返し補償器の補償特性を調節する手段とを備えたディスク装置。

【請求項4】 光または磁気によりディスクに情報を記録し再生するディスク装置において、上記光または磁気を発生させるヘッドを上記ディスクの所定の位置に位置決めするためのアクチュエータまたはモータの制御システムに、請求項1ないし請求項3のいずれか1項に記載の繰り返し補償器を備えたことを特徴とするディスク装置。

【請求項5】 kの値を切り換える制御モード切換指令 発生手段を備えたことを特徴とする請求項1または請求 項2に記載の繰り返し補償器。 2

【請求項6】 情報を記録または再生するディスク装置 において、

請求項1または請求項2に記載の繰り返し補償器と、 情報を記録または再生するヘッドを所定の位置に位置決 めするトラッキング制御手段と、

トラッキング制御モードオンオフ指令発生手段とを有し...

上記トラッキング制御モードオンオフ指令発生手段の出力に基づきトラッキング制御手段の動作中は上記繰り返し補償器のkの値をほぼ1とし、また、トラッキング制御手段が動作していないときはkの値をほぼ0に調整するように構成されたディスク装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、制御系に用いる繰り返し補償器に関するもので、例えば、ディスク装置のトラッキング・フォーカス制御系に用いられるものである。

[0002]

【従来の技術】図10~15は、1992年電子情報通信学会春季大会講演論文集(4)のC-364 片山剛 著:「DSPを用いた光ディスクの学習トラッキング制御」の理論説明図、図10は繰り返し型学習制御系の位相余裕量に対する学習限界を示す図、図11は繰り返し型学習制御系の安定性を示すナイキスト線図である。

【0003】図11において、各記号は下記の意味を表す。

Im:虚軸

Re: 実軸

H (s):動特性補償器(進み補償)

G (s): アクチュエータ

|| K (s) ||:安定化補償器のゲイン量

【0004】図12は繰り返し補償器の周波数特性を示す制御系のボード線図、図13はDSPを用いた繰り返し型学習制御系のブロック図である。図13において、各記号は下記の意味を表す。

A/D:アナログ・ディジタル変換器

K(s):安定化補償器

e-Ls :記憶部(学習メモリ)

H (s):動特性補償器(進み補償)

D/A: ディジタル・アナログ変換器

DR: ドライバ

G (s): アクチュエータ

【0005】図14は繰り返し補償器の入出力信号の実 測図、図15はトラックエラーの実測図である。

【0006】光ディスク装置のトラッキング制御は、記録密度の向上に伴い、安定性、速応性を損なわず追従能力を上げることが要求されている。そこで、トラッキング制御およびフォーカス制御に、繰り返し型学習制御理

論を応用することで飛躍的に追従能力を向上できる。また、DSP(ディジタルシグナルプロセッサ)を用いたソフトウェアサーボによっても実現できる。

【0007】次に、学習能力と安定性の関係について説明する。図10はシステムの安定性に対する学習限界を示したものである。図より位相余裕量が増えると学習能力が向上し、特に制御帯域付近の周波数特性が重要であることがわかる。これは図11に示す学習安定円に対するシステムのベクトル軌跡からも明かで、学習ループの高周波成分を減衰させるフィルタ(学習制御の安定化フ10ィルタ)を挿入することにより、基本周波数の学習能力および安定性がより向上できることを示している。

【0008】図12に従来のシステムにおける繰り返し補償器の周波数特性を示す。図中、学習によるピークは、学習ループのゲインが1に近づくほど大きくなるもので、学習能力に比例している。図12で示した繰り返し補償器では、約20dBの学習能力を有している。

【0009】図13に、従来のDSPを用いた繰り返し型学習制御系のブロック図を示す。このシステムは、多段のIIR型ディジタルフィルタよりなる安定化補償器 20と、学習メモリ(記憶部)とで構成された光ディスクの制御系の繰り返し補償器(学習補償器)と、動特性補償器からなる。

【0010】ここで従来においては、図10の安定性を満足させるため、多段のディジタルフィルタで構成した K(s)で示される安定化補償器が必要となる。また、 H(s)で示される動特性補償器を進みフィルタ構成することにより、繰り返し補償器がない場合の位相余裕量を確保し、学習システムの動特性を定めることができる。

【0011】従って、安定化補償器H(s)による動特性の設定と、繰り返し補償器による追従性の設定が別々に行えるようになる。また、以上のシステムは、一つのソフトウェア上で構成することができる。

【0012】一例として、実際の動作例を図において説明する。ここで、DSPのサンプリング周期は、50kHz、制御帯域は3kHz、位相余裕量は、約60degである。

【0013】図14は繰り返し補償器の入出力信号の波形を示した図で、学習動作後、制御偏差がほぼなくなっ40でいるのがわかる。このとき繰り返し補償器は、ディスク偏心の学習結果を出力し続けている。

【0014】図15はディスクを2mm偏心させたときのトラックエラーを示したもので、繰り返し型学習制御がない場合は約 0.7μ mの偏差が残っているが、同じ制御帯域での学習制御後、偏差は殆どなくなっている。このように実際の有効性が確認できる。

【0015】従来のシステムは、フォーカス制御の場合 もまったく同様に実現できることは言うまでもない。

【0016】従来の光ディスク装置のトラッキング・フ50 ング制御偏差が大きくなるという問題点があった。

4

オーカス制御は、以上のように構成され、記録密度の向上に伴い、安定性、速応性を損なわず追従能力を上げることが要求されている。

【0017】従来の直結フィードバック制御からなるトラッキング・フォーカス制御は、アクチュエータの高次機械共振や、ディスクのピット列による光の変調成分が制御系へ外乱として混入し、制御帯域の高帯域化が妨げられ、無理に制御帯域を広げようとすると位相余裕が減少し、制御系が発振するなどの問題が生じた。

【0018】これに対し、上述した繰り返し型学習制御方式は、従来の制御帯域を広げずに周期的な追従目標に対する追従能力を向上させることができるため、より狭トラックなシステムや偏芯の大きなシステム、ディスク回転数の高いシステム(転送レートの高いシステム)に対応することができる。

[0019]

【発明が解決しようとする課題】しかし、上述した繰り返し型学習制御は、図11に示したナイキスト線図からもわかるように、従来の直結フィードバック制御では、(-1,0)の点を左に見ながら(0,0)に集束すれば安定であった(ナイキストの安定原理)のに対し、(-1,0)の点を中心とする円の外側をまわるように

(-1, 0) の点を中心とする円の外側をまわるように しなければならず、安定余裕が劣化している。

【0020】また、繰り返し型学習制御は、一周期前の 偏差信号を記憶し、記憶した結果をもとの制御システム にフィードフォワード加算する方式であるため、ディス クの傷や装置に加わる振動などの外乱によって周期的で ない追従目標が与えられた場合、これを学習することは かえって制御システムに不要なノイズを混入することと 等しくなってしまう。

【0021】そのため、振動が加わったりディスクの傷などが混入した際の制御システムの安定性の向上や、メモリに学習されてしまう不要な無周期成分の影響を無くすことが要求されていた。

【0022】また、制御系は、一般に複数の制御モードを有する場合が多く、従来の繰り返し補償器を適用した制御系においては、制御モードを切り換える度に繰り返し補償器のメモリの内容が失われるため、再度元の制御モードに戻ったときに新たに繰り返し補償器が集束するまでの間、繰り返し補償器の効果が現れないと言う問題点があった。

【0023】具体的には、例えば、光ディスク装置、または磁気ディスク装置のトラッキング制御系に繰り返し補償器を適用した場合、シーク動作の直後にトラッキング制御モードに切り換える度に繰り返し補償器の内部のメモリにディスク1回転に相当する制御誤差信号が蓄積されるまで繰り返し補償器の効果は現れない。したがって、シーク直後に情報を書き込みまたは読み出しする場合は、繰り返し補償器を適用した効果が無く、トラッキング制御偏差が大きくなるという問題点があった。

5

[0024]

【課題を解決するための手段】この発明に係る繰り返し補償器は、制御系の誤差信号などの被補償信号が入力される第1の加算手段と、この第1の加算手段の出力信号を1周期分づづ順次フィードバックして上記第1の加算手段に入力するフィードバック信号系とを備え、上記フィードバック信号系が、上記第1の加算手段の出力信号に0以上1以下のゲインkを乗ずる第1のゲイン要素と、この第1のゲインkが乗ぜられた信号が入力される第2の加算手段と、この第2の加算手段の1周期前の出力信号にゲイン1ーkを乗じて上記第2の加算手段に入力する第2のゲイン要素と、上記第2の加算手段の出力信号を1周期分づつ順次更新記憶するメモリと、このメモリに記憶されている1周期分の信号に1以下のゲインを乗じて上記第1の加算手段に入力する第3のゲイン要素とで構成したものである。

【0025】また、入力された被補償信号の周期的成分の強弱を検出する相関検出手段と、周期性が弱い成分が検出された時は上記第1および第2のゲイン要素のkの値をほぼ0とし、周期性が強い成分が検出された時は上20記kの値をほぼ1に調節するゲイン調節手段を備えたものである。

【0026】また、この発明に係るディスク装置は、入力された制御系の誤差信号などの被補償信号の周期的成分の強弱を検出する相関検出手段と、上記被補償信号が入力される第1の加算手段、およびこの第1の加算手段の出力信号を1周期分づづ順次フィードバックして上記第1の加算手段に入力するフィードバック信号系とで構成された短期型の補償系と長期型の補償系とを有する繰り返し補償器と、上記相関検出手段によって周期性の弱30い成分が検出された時は上記繰り返し補償器の短期型の補償系の出力成分が長期型の補償系の出力成分よりも多く、また、周期性の強い成分が検出された時は長期型の補償系の出力成分が短期型の補償系の出力成分よりも多くなるように上記繰り返し補償器の補償特性を調節する手段とで構成されたディスク装置である。

【0027】また、光または磁気によりディスクに情報を記録し再生するディスク装置において、上記光または磁気を発生させるヘッドを上記ディスクの所定の位置に位置決めするためのアクチュエータまたはモータの制御40システムに、請求項1ないし請求項3のいずれか1項に記載の繰り返し補償器を備えたことを特徴とするディスク装置である。

【0028】また、請求項1または請求項2に記載の繰り返し補償器において、kの値を切り換える制御モード切換指令発生手段を備えたものである。

【0029】また、請求項1または請求項2に記載の繰り返し補償器と、情報を記録または再生するヘッドを所定の位置に位置決めするトラッキング制御手段と、トラッキング制御モードオンオフ指令発生手段とを有し、上50

6

記トラッキング制御モードオンオフ指令発生手段の出力 に基づきトラッキング制御手段の動作中は上記繰り返し 補償器のkの値をほぼ1とし、また、トラッキング制御 手段が動作していないときはkの値をほぼ0に調整する ように構成されたディスク装置である。

[0030]

【発明の実施の形態】この発明の実施の形態である繰り返し補償器においては、1周期分の入力信号を繰り返し記憶するために設けられた正帰還ループを含む学習メモリの入力信号が、現在の信号にkを乗じた信号とさらに1周期前の学習メモリの出力に1-kを乗じた信号とで構成され、kの値によって学習メモリの内部の情報が、1周期前の情報だけでなく、多周期にわたる情報に重み付けをした情報となるよう作用し、重みがkの値によって変化するように作用する。

【0031】また、繰り返し補償器の入力の周期的成分の強弱に応じて、繰り返し補償器内部のゲインkの値を変化させ、周期的成分が弱い場合には学習メモリへの入力信号がさらに1周期前の入力信号にほぼ一致し、周期的成分が強い場合には現在の入力信号にほぼ一致するように作用する。

【0032】また、この発明の実施の形態であるディスク装置においては、繰り返し補償器が、短期記憶型の繰り返し補償系の両方の構り返し補償系と長期記憶型の繰り返し補償系の両方の構成を有し、周期的な相関の強い追従目標や外乱に対しては、ほぼ短期記憶型の補償器として作用し、相関が弱い場合は、長期記憶型の補償器として作用する。

【0033】また、記憶装置の位置決め制御系においてトラック相関や外乱の周期性が強い場合には、短期記憶型の補償器の出力が重視されて、ほぼ1周期前の制御誤差信号に基づいて制御系が作用し、突発的なキズや外乱がある場合には長期記憶型の補償器の出力が重視されて過去の多周期にわたる制御誤差信号を小さくするよう制御系が作用する。

【0034】また、この発明の実施の形態である繰り返し補償器においては、制御モード切換指令発生手段の出力に応じて、繰り返し補償器内部のゲインkが切り替わり、制御系が動作中は繰り返し補償器が学習を続け、制御系が不動作の時はkがほぼ0となって不要な入力信号を学習しないように作用する。

【0035】また、この発明の実施の形態であるディスク装置においては、光ディスク装置や磁気ディスク装置 のトラッキング制御系において、トラッキング制御手段の動作中は、kがほぼ1となって繰り返し制御系が学習を続け、制御系が不動作の時はkがほぼ0となって、学習しないように作用する。さらにシーク動作が完了してトラッキング動作を再び開始した直後は繰り返し補償器はシーク動作開始前のトラッキング制御中に学習した値を初期値として学習を続ける。

【0036】以下、この発明をその実施の形態を示す図

面に基づいて具体的に説明する。

実施の形態 1. 光ディスクの分野においては、高密度化 の要求に伴い、安定性・速応性を損なわずに追従能力を 上げることが望まれている。従来は、図13に示すよう に、1周期分のメモリを一つの正帰還ループに持つ繰り 返し補償器が用いられていた。この繰り返し補償器は、 一般的な形として、様々な分野で実用化されてきたもの である。しかし、この繰り返し補償器は1周期分の記憶 部しかもたないため、キズ等の外乱が混入すると、この 外乱が正帰還ループを何巡もし、外乱に対する影響が後 10 々残ってしまう問題点があった。

【0037】そのため、1周期前のさらに古い記憶が行 える繰り返し補償器が求められていた。これを構成する ための最も簡単な方法は、メモリの容量を増やして必要 な周期の分だけメモリを直結する方法がある。しかし、 この方法を用いると、メモリの容量や数量が増大し、ま た、メモリの容量の範囲内でしか、過去の情報に遡って 記憶することができなかった。図13に示した適応型繰 り返し制御は、無周期性成分混入時における不必要な学 習を防ぐ利点があったが、その時の追従能力の向上は不 20 可能であった。

【0038】そこで、さらに長期記憶・短期記憶の概念 を導入することによって、無周期性成分の混入時におい ても、良好な追従能力を実現する方法について検討し た。

【0039】図1は、長期にわたって入力の周期的成分 を記憶できる繰り返し補償器のブロック図である。この 繰り返し補償器は、加算点1、ゲイン要素2、ローパス フィルタ3、学習メモリ4、ゲイン要素5,6、および 加算点7で構成されるフィードバックループより成って30 いる。

【0040】図1に示すように、まず、加算点1におい て左側からの入力信号と、ゲイン要素2の出力信号との 和が繰り返し補償器の出力となる。この、繰り返し補償 器の出力信号は、ゲイン要素5にてk倍され、学習メモ リ4の出力をゲイン要素6にて1-k倍した値とを加算 点7にて加算した信号を学習メモリ4に入力する。学習 メモリ4の出力は、ローパスフィルタ3に入力され、ゲ イン要素2にて1以下のゲインを乗じて加算点1ヘフィ ードバックされる。加算点1で1周期分のトラッキング 40 エラー信号とフィードバックループの出力が加算され出 力されると同時に、フィードバックループ内のゲイン要 素5に入力される。

【0041】ゲイン要素5に入力された信号はk倍さ れ、その信号が学習メモリ4に入力される。さらに1kのゲイン要素6で構成された正帰還されるブロックを 挿入することで、1回の記憶がゲイン要素6を介して長 期間にわたり持続される。この学習メモリ4の出力がロ ーパスフィルタ3を通ってゲイン要素2によってβ倍さ れ、この $oldsymbol{eta}$ 倍された出力信号が加算点 $oldsymbol{1}$ に加算されるこ $oldsymbol{50}$ で、 $oldsymbol{k}$ の値を $oldsymbol{1}$ に近づけるとともに、学習メモリ $oldsymbol{4}$ にお

とによって、長期にわたる周期的成分を記憶できる繰り 返し補償器が実現できる。

【0042】図1の動作を以下に説明する。kは0から 1の値を取りうるので、例えば、k=1とすると、ゲイ ン要素6のゲインが0になるため、学習メモリ4自身の 出力は加算点7に伝達されず、学習メモリ4にフィード バックされることはない。したがって、学習メモリ4の 出力信号は、1周期(時間L)前の繰り返し補償器の出 力と一致する。

【0043】また、k=0とすると、学習メモリ4に は、繰り返し補償器自身の出力が入力されず、1周期前 の学習メモリ4自身の出力が入力される。すなわち、k =0の間は、以前に学習した繰り返し補償器入力の周期 的成分が永遠に繰り返し出力されると同時に、繰り返し 補償器が新たな入力に対して学習することはない。

【0044】また、kをほぼ0に近い値の一例としてk =0.02に設定すると、学習メモリ4の入力信号の 内、2%が現在の繰り返し補償器の出力となり、98% が1周期前の学習メモリ4の出力となる。このことは、 時間を1周期(L)だけさかのぼって考えても全く同じ ことが言える。すなわち、繰り返し補償器に入力される 信号の過去の成分は、1周期毎に0.98の係数を乗じ て徐々に薄れていき、1周期前までの、時刻に応じた重 みを付けた周期的成分と、現在時間の繰り返し補償器の 出力の2%が加算され、制御系が抑圧すべき信号として 学習メモリ4の出力となる。1-kはいわゆる忘却係数

【0045】このように、1-kの値を1以下に設定す ることによって、学習メモリ4内に記憶された情報は徐 々に減衰するため、これが記憶課程における忘却係数と して任意に設定することが可能となった。

【0046】ここで、一例として、1周期前の繰り返し 補償器の入力信号と、現在の繰り返し補償器の入力信号 との差の絶対値を比較し、この差が小さい場合は互いに 波形が似ており、相関性が強い。逆に、前記絶対値が大 きい場合は、互いに波形が似ておらず、相関性が弱いと

【0047】一般的な制御システムにおいては、追従目 標や外乱の相関性が強い場合は、繰り返し補償器内の学 習メモリに1周期分以上の記憶をさせる必要がない。-方、相関性が弱い場合は、なるべく過去の記憶を用いる 必要があり、かつ、学習メモリに相関性の少ない情報を 入力させないようにすることが重要である。これは、例 えば、光ディスクにおけるディスク面のキズや装置の振 動等による相関のない誤差信号を繰り返し補償器の学習 メモリに記憶させないことに相当する。

【0048】そこで、図1に示すように、学習メモリ4 の手前にゲイン k のゲイン要素 5 を直列に設け、相関性 が強い場合は突発的な外乱の混入がないと考えられるの

ける正帰還ループを構成しているゲイン1-kのゲイン 要素6を0に近づけて長期間の記憶を行わないようにす ス

【0049】逆に、相関性が弱い信号が入力された場合は、突発的な外乱が混入したと考えられるので、kの値を0に近づけて学習メモリ4への無周期性成分の入力を防ぐと共に、ゲイン要素6の1-kの値を1に近づけて1周期以上前の入力信号が再び学習メモリ4に入力されるので、ローパスフィルタ3以後に外乱信号は伝達されない。また、ゲイン要素5のゲインがほぼ0になるので、学習メモリ4にも不要な外乱信号は混入されず、誤った信号を避けることができる。

【0050】繰り返し補償器を用いるためには、制御の安定条件を満足する必要がある。この安定条件は、繰り返し補償器全体の正帰還ループを開いたときのオープンループゲイン(例えば、図中の第3のゲイン要素2と加算点1との間を切ったときのオープンループゲイン)が1以下である必要がある。これは、従来のオープンループゲインの安定条件から、1以上になるとゲインが無限大になり、回路が発振するからである。図1のように、201ーkとkのブロックでシステムを構成すると、kからF(s)までのゲインが1となり、 β を1以下にすることにより安定条件が満足されることがわかる。このように構成することによって任意の忘却係数を持ち、学習メモリへの制限が可能な繰り返し補償器が実現可能となった。

【0051】実施の形態2.図2は、この発明の実施の形態2のブロック図である。図中、図1と同じ符号の要素は同じ構成要素を意味する。11はAD変換器、15はDA変換器、16はローパスフィルタ、20は周期メ30モリである。図1は連続時間系の表現であり、いわゆるアナログ回路で実現できる。図2は離散時間系の表現で、いわゆるディジタル回路で実現した場合の例である。図2の周期メモリ20は信号遅延素子で、いわゆるFIFO(first in first out)メモリである。図2において、Z-n=e-sr (τはサンプリング周期)であり、周期メモリ20における遅延時間n τは、抑圧したい入力信号の1周期に一致するよう選ばれる。

【0052】図2に示すように、まず、加算点1においてAD変換器11によってディジタルに変換された繰り 40 返し補償器の入力信号と、フィードバックループの出力が加算され、DA変換器15に出力されると同時に、ゲイン要素5によってk倍され、その信号が周期メモリ20に入力される。さらに1-kのゲイン要素6の正帰還されるブロックを挿入することで、1回の記憶が1-kのゲイン要素6を介して長期間にわたり持続される。この周期メモリ20の出力がローパスフィルタ16を通ってゲイン要素2によって β 倍される。この β 倍された出力信号が加算点1に加算されることで、長期にわたる周期的成分を記憶できる繰り返し補償器が実現できる。 50

10

【0053】実施の形態3. 図3は、この発明の実施の形態3のブロック図である。図中、図1または図2と同じ符号の要素は同じ構成要素を意味する。201はクロック発生手段である。前記実施の形態1および実施の形態2においては、ディスクの回転が一定でない場合、ディスクの内周と外周でディスク1回転分の周期が異なるため、繰り返し補償器が有効に動作しない場合がある。図2ではサンプリング周期では一定であるが、クロック発生手段201をモータの回転速度を検知するFGとすれば、モータの回転速度が一定でない場合においても繰り返し補償器が有効に動作する。

【0054】図3に示すように、まず、加算点1においてAD変換器11によってディジタルに変換された繰り返し補償器の入力信号と、フィードバックループの出力が加算され、DA変換器15に出力されると同時に、ゲイン要素5によってk倍された信号が周期メモリ20に入力される。また、周期メモリ20にはモータの回転大力される。また、周期メモリ20にはモータの回転入力される。さらに1-kのゲイン要素6で正帰還されるブロックを挿入したことで1回の記憶がゲイン要素6を介して長期間にわたり持続される。この周期メモリ20の出力がローパスフィルタ16を通ってゲイン要素2によってβ倍される。このβ倍された出力信号が加算点1で入力信号に加算されることで、長期にわたる周期的成分を記憶できる繰り返し補償器が実現できる。

【0055】実施の形態4. 図4は、この発明の実施の 形態4のブロック図である。図中、図2または図3と同 じ符号の要素は同じ構成要素を意味する。301は相関 検出器、31はローパスフィルタ、13は絶対値検出 器、14はコンパレータを示す。

【0056】以下、相関検出器301の動作を説明す る。AD変換器11において、ディジタルに変換された 繰り返し補償器の入力信号は、ローパスフィルタ31に 入力され、ローパスフィルタ31の出力信号との差が絶 対値回路13に入力される。すなわち、絶対値回路13 の入力は、繰り返し補償器の入力信号の高周波成分を抜 き出したものである。さらに、絶対値回路13の出力 は、コンパレータ14によって所定のレベルと比較さ れ、所定のレベルを超えたかどうか判断される。その結 果、例えば、所定のレベルを超えたものは本来制御系が 追従すべき誤差信号ではなく、高周波のノイズであると し、繰り返し補償器のゲイン要素5,6のkの値をk= 0とし、所定のレベル以下であれば k=1とする。この ように構成することで、周期メモリ20の入力には学習 不要なノイズが混入することが無く、繰り返し補償器は 正常な信号を出すことができる。

【0057】なお、図4では、相関検出器301を絶対値回路13とコンパレータ14で構成したが、ウインドウコンパレータだけで構成してもよい。また、絶対値回路13の入力部の要素は、ハイパスフィルタで構成して

もよい。すなわち、本来学習すべきでない外乱信号を検 出できる手段であればよい。

【0058】実施の形態5. 図5は、この発明の実施の形態5のブロック図である。図中、図4と同じ符号の要素は同じ構成要素を意味する。この実施の形態5は、短期記憶型の繰り返し補償系と長期記憶型繰り返し補償系を組み合わせた繰り返し補償器を有しており、21は周期メモリ、17,18,401,402はゲイン要素、403は短期型の周期メモリブロック、404は長期型の周期メモリブロックを示す。

【0059】図5において、相関検出器301にて、繰り返し補償器の入力信号にノイズ成分が検知されない通常の場合は、例えば、ゲイン要素5と401において k = k1=1とすれば、周期メモリ20には、現在の繰り返し補償器の出力のみが入力され、周期メモリ20からは1周期前の繰り返し補償器の出力が出力される。

【0060】また、相関検出器301にて、繰り返し補 (質器の入力信号にノイズ成分が検知された場合は、例え ば、ゲイン要素5と401においてk=k1=0とすれ ば、周期メモリ20には、1周期前の周期メモリ20の20 出力のみが入力され、周期メモリ20は不要な学習を避 けられる。

【0061】一方、ゲイン要素17,18において、例えば α =0.98とすれば、周期メモリ21にはゲイン要素17の出力と18の出力の和が入力されるので、周期メモリ21自身の出力98%と、周期メモリ20の入力の2%の和が周期メモリ21の入力となる。すなわち、周期メモリ21は長期型の周期メモリとして動作する

【0062】ここで、周期メモリ21はゲインkの値に 30 かかわらず学習を続けるが、前述の通り、周期メモリ20の入力、すなわち、ゲイン要素17の入力は、kを0または1に切り換えることで、不要なノイズが除かれているので、長期型の周期メモリブロック404は不要なノイズを学習することはない。この場合、αは忘却係数と呼ばれる。

【0063】さらに、ゲイン要素401,402のk1をゲインkと連動させて0、または1に切り換えることで、短期型の周期メモリブロック403と長期型の周期メモリブロック404の出力が交互にローパスフィルタ4016に入力され、図5に示した繰り返し補償器全体が、ノイズの検出、不検出に応じて長期または短期型の繰り返し補償器として動作する。

【0064】なお、本実施の形態5においては、kまたはk1を0と1とに切り換えたが、かならずしも0と1ではなく、それぞれ0と1に近い値に設定しても同様の効果を得られる。さらに、 α の値として0.98も一例であり、0と1の間の値であればよく、制御システム全体で必要とされる学習期間に相当するよう α の値を設定すればよい。なお、本システムの安定条件は、実施の形 50

12

態1と同様に、βの値を1以下にすることである。

【0065】実施の形態6.以下に、この発明の実施の 形態6を説明する。実施の形態5に示した繰り返し補償 器を、光ディスクのトラッキング・フォーカシングシス テムに導入することによって極めて高い追従能力を確保 することが可能となる。通常のトラッキング・フォーカ シング制御時においては、図2または図3に示した短期 記憶型の繰り返し補償器を動作させることによって追従 目標の相関性を利用し、従来の直結フィードバック制御 系に比べて20dB以上の能力向上が可能となる。

【0066】一方、キズや振動等の外乱が混入した場合においては、図5に示した繰り返し補償器の動作を長期記憶型繰り返し補償器の加算比を増やすことによって過去のキズや振動の混入する前の相関性の強い情報を利用し、高い追従能力を確保した状態のままで、キズ等の突発的な外乱が繰り返し補償器の内部の正帰還ループを巡回することを防ぐようにしたものである。このように構成することによって、いかなる突発的な状態においても安定に繰り返し補償器を動作させることが可能となった。

【0067】実際に、図5に示した長期と短期の両方の 周期成分学習機能を持つ繰り返し補償器を光ディスク装 置のトラッキング制御系に適用して動作させると、図9 の様になる。図9(c)に見られるように、誤差信号に ディスクの傷の影響があってもトラック偏差が小さく維 持されているのがわかる。

【0068】実施の形態7.図6は、この発明の実施の形態7のブロック図である。図中、図2と同じ符号の要素は同じ構成要素を意味する。図において、501は制御モード切換指令発生手段である。繰り返し補償器を適用した制御系が動作中の場合は、例えばゲインkを1とし、制御系が不動作の場合は0とする。k=0の間は、繰り返し補償器はk=1の期間に学習した周期成分をDAコンバータ15から出力し続ける。さらに、その後再び制御系が動作するときには、k=1とすることで、制御系が不動作になる以前の情報を初期値として、再び周期メモリ20が学習を開始する。

【0069】実施の形態8.図7は、この発明の実施の形態8のブロック図である。図中、図2と同じ符号の要素は同じ構成要素を意味する。図において、601は制御系全体の安定化補償器、602は制御ループオンオフスイッチ、603は駆動回路をも含む制御対象、604はトラッキング制御モードオンオフ指令発生手段、605は信号加算手段である。

【0070】以下、動作について説明する。図6に示した構成と同じ構成の繰り返し補償器の出力信号が、安定化補償器601に入力され、その出力は制御ループオンオフスイッチ602を介して、駆動回路をも含む制御対象603に伝達される。制御対象603の出力は、信号加算手段605にて目標位置信号から減算され、繰り返

し補償器の入力であるADコンバータ11に入力され る。

【0071】例えば、制御対象603が光ディスク装置 のトラッキングアクチュエータであるとすると、トラッ キング動作中は、スイッチ602がオンとなり、ゲイン 要素5,6のkの値がk=1となって、繰り返し補償器 が動作する。さらにトラッキング動作開始前や、シーク 動作時にはスイッチ602がオフとなるので、同時にゲ イン要素5,6のkの値をk=0とすることで、周期メ モリ20は不要な学習を行わない。

【0072】その後、シーク動作完了直後には再びスイ ッチ602がオンとなり、ゲイン要素5,60kの値が k=1となって繰り返し補償器が動作する。このとき、 周期メモリ20はシーク動作開始前の入力トラッキング 制御エラー信号の周期成分をメモリしているので、DA コンバータ15からは直ちにトラッキング制御エラー信 号の周期成分を補償する信号が出力され、結果的に信号 の加算点1の出力であるトラッキングエラー信号のレベ ルが小さくなり、光スポットの目的トラックへの追従性 能がトラッキング動作開始直後から向上する。

【0073】なお、この実施の形態8は、光ディスク装 置だけでなく、磁気ディスク装置のトラッキング制御系 にも全く同様に適用できる。

【0074】実施の形態9. 図8は、この発明の実施の 形態9のブロック図である。図中、図7と同じ符号の要 素は同じ構成要素を意味する。図8に示すように、安定 化補償器601を離散時間系において実現してもよく、 制御ループオンオフスイッチ602は繰り返し補償器の 入力側に設置してもよい。このとき、図7との動作の違 いは、シーク中にも制御対象であるトラッキングアクチ 30 ュエータ603に繰り返し補償器の出力が伝達され、ト ラッキングアクチュエータがシーク中にもディスクのト ラック振れ成分に追従する。

【0075】このように構成することで、シーク中に光 スポットがディスクの偏芯の影響を受けることが無く、 シーク中の横断トラック数を正確にカウントできる。さ らに、安定化補償器601を制御ループオンオフスイッ チ602の直前、または直後に配置してもよく、安定化 補償器601と制御ループオンオフスイッチ602の配 置は特に問わない。また、DAコンバータ15は必ずし40 も必要ではなく、PWM出力でもよい。

[0076]

【発明の効果】この発明は、以上説明したように構成さ れているので、以下に示すような効果を奏する。

【0077】請求項1の発明においては、ゲインkの値 を0から1の間の値に設定することで、繰り返し補償器 の学習時間を自由に設定できる。したがって、繰り返し 補償器を入力信号の1周期から無限時間まで学習時間を 変更できる。

14

器の入力信号の周期成分の強弱を検出する手段の出力に 応じてゲインkを切り換えるようにしたので、繰り返し 補償器が不規則外乱などの影響を受けることなく動作す るため、信頼性の高い学習が可能となる。

【0079】請求項3の発明においては、長期型の周期 メモリと短期型の周期メモリを組み合わせる構成とし、 不規則外乱検出結果に応じて短期型と長期型の繰り返し 制御器として動作する。通常は短期型の繰り返し制御器・ として動作し、集束が速くなる効果がある。また、不規 則外乱検出時には長期型の繰り返し制御器として動作 し、よりいっそうノイズ外乱に強い繰り返し補償器を実 現できる。

【0080】請求項4の発明においては、光ディスク装 置または磁気ディスク装置において、ディスクの1周期 分を記憶するメモリとフィードフォワード加算する短期 の繰り返し補償器と長期記憶型の繰り返し補償器を用 い、制御系の誤差信号に含まれる周期性の強弱に応じ て、短期記憶と長期記憶の出力加算比を変化させること で振動やディスクのキズ等の突発的な外乱に影響される ことのないトラッキング、またはフォーカシング制御シ ステムを実現できる。

【0081】請求項5の発明においては、制御モード切 換指令発生手段の出力に基づいてゲインkの値を切り換 える構成としたので、制御系の動作が中止されても繰り 返し補償器の内部の周期メモリの内容がリセットされる ことが無く、その後再び制御系が動作した直後に繰り返 し補償器が正常に動作し、従来のように繰り返し補償器 が集束するまでの待ち時間が無くなる。

【0082】請求項6の発明においては、光ディスク装 置または磁気ディスク装置などディスク装置のトラッキ ング制御系に繰り返し補償器を適用した場合、シーク動 作中も繰り返し補償器の内容がリセットされることが無 く、シーク動作完了直後にトラッキング動作を再会する 瞬間から繰り返し補償器が正常に動作し、トラッキング エラーが抑圧されるという効果があり、さらに、光ディ スク装置においては、シーク中にも繰り返し補償器の出 力をトラッキングアクチュエータに加える構成とするこ とで、シーク中にも光スポットが、ディスクの偏芯に追 従するため、シーク中の横断トラック数を正確にカウン トでき、精度の良いシーク動作を実現できるという効果 がある。

【図面の簡単な説明】

この発明の実施の形態1による繰り返し補償 器のブロック図である。

【図2】 この発明の実施の形態2による繰り返し補償 器のブロック図である。

【図3】 この発明の実施の形態3によるクロック発生 手段を有する繰り返し補償器のブロック図である。

【図4】 この発明の実施の形態4による相関検出器を 【0078】請求項2の発明においては、繰り返し補償 50 有する短期記憶型の繰り返し補償器と長期記憶型の繰り

返し補償器のブロック図である。

【図5】 この発明の実施の形態5による短期記憶型の繰り返し補償器と長期記憶型の繰り返し補償器を組み合わせた繰り返し補償器のブロック図である。

【図6】 この発明の実施の形態7による短期記憶型の繰り返し補償器と長期記憶型の繰り返し補償器を組み合わせた繰り返し補償器のブロック図である。

【図7】 この発明の実施の形態8による短期記憶型の繰り返し補償器と長期記憶型の繰り返し補償器を組み合わせたブロック図である。

【図8】 この発明の実施の形態9による短期記憶型の繰り返し補償器と長期記憶型の繰り返し補償器を組み合わせたブロック図である。

【図9】 この発明の各実施の形態による動作結果を示す波形図である。

【図10】 従来の繰り返し型学習制御系の位相余裕量 に対する学習限界を示す図である。

【図11】 従来の繰り返し型学習制御系の安定性を示す図である。

【図12】 従来の繰り返し補償器の周波数特性を示す 20 図である。 * 16

*【図13】 従来のDSPを用いた繰り返し型学習制御系のブロック図である。

【図14】 従来の繰り返し補償器の入出力信号の実測 図である。

【図15】 従来のトラックエラー信号の実測図である。

【符号の説明】

1 加算点、2 ゲイン要素、3 ローパスフィルタ、4 学習メモリ、5,6 ゲイン要素、7 加算点、1 1 AD変換器、13 絶対値検出器、14 相関検出器、15 DA変換器、16 ローパスフィルタ、17,18ゲイン要素、20,21周期メモリ、31 ローパスフィルタ、201 クロック発生手段、301相関検出器、401,402ゲイン要素、403 短期の周期メモリブロック、404 長期のメモリブロック、501 制御モード切り換え指令発生手段、601制御系全体の安定化補償器、602 制御ループオンオフスイッチ、603 駆動回路を含む制御対象、604 トラッキング制御モードオンオフ指令発生手段、605 信号加算手段。

【図3】

【図4】

【図5】

【図6】

【図11】

【図7】

【図8】

【図12】

【図13】

【図14】

【図15】

