PCT/EP200 4 / 0 1 4 2 2 6

BUNDESREPUBLIK DEUTSCHLAND

EP04/14226

PRIORITY COMPLIANCE WITH RULE 17.1(a) OR (b)

1 4 12, 2004

RECEIVED

24 JAN 2005

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 59 341.1

Anmeldetag:

16. Dezember 2003

Anmelder/Inhaber:

Basell Polyolefine GmbH, 50389 Wesseling/DE; Universität Heidelberg, 69117 Heidelberg/DE

Erstanmelder: Basell Polyolefine GmbH,

50389 Wesseling/DE

Bezeichnung:

Monocyclopentadienylkomplexe

IPC:

C 07 F, C 08 F, C 07 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 17. August 2004 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

Monocyclopentadienylkomplexe

Beschreibung

40

- Die vorliegende Erfindung betrifft Monocyclopentadienylkomplexe, in welchen das Cyclopentadienyl-System mindestens einen verbrückten Donor und mindestens eine Arylgruppe trägt und ein Katalysatorsystem enthaltend mindestens einen der Monocyclopentadienylkomplexe, sowie Verfahren zu deren Herstellung.
- Außerdem betrifft die Erfindung die Verwendung des Katalysatorsystems zur Polymerisation oder Copolymerisation von Olefinen und ein Verfahren zur Herstellung von Polyolefinen durch Polymerisation oder Copolymerisation von Olefinen in Gegenwart des Katalysatorsystems und damit erhältliche Polymere.
- Viele der Katalysatoren, die zur Polymerisation von α-Olefinen eingesetzt werden, basieren auf immobilisierten Chromoxiden (siehe z. B. Kirk-Othmer, "Encyclopedia of Chemical Technology", 1981, Vol.16, S. 402). Diese ergeben i. a. Ethylenhomo- und Copolymere mit hohen Molekulargewichten, sind jedoch relativ unempfindlich gegenüber Wasserstoff und erlauben somit keine einfache Kontrolle des Molekulargewichts. Demgegenüber läßt sich durch Verwendung von Bis(cyclopentadienyl)- (US 3,709,853), Bis(indenyl)- oder Bis(fluorenyl)chrom (US 4,015,059), das auf einem anorganischen, oxidischen Träger aufgebracht ist, das Molekulargewicht von Polyethylen durch Zugabe von Wasserstoff einfach steuern.
- Wie bei den Ziegler-Natta-Systemen, ist man auch bei den Chromverbindungen seit kurzem auf der Suche nach Katalysatorsystemen mit einem einheitlich definierten, aktiven Zentrum, sogenannten Single-Site-Katalysatoren. Durch gezielte Variation des Ligandgerüstes sollen Aktivität, Copolymerisationsverhalten des Katalysators und die Eigenschaften der so erhaltenen Polymeren einfach verändert werden können.
- Die DE 197 10615 beschreibt Donorligand-substituierten Monocyclopentadienylchrom-Verbindungen mit denen Ethen und auch Propen polymerisiert werden kann. Der Donor ist hierin aus der 15. Gruppe und neutral. Der Donor ist über ein (ZR₂)n-Fragment an den Cyclopentadienylring gebunden, wobei R ein Wasserstoff, Alkyl oder Aryl, Z ein Atom der 14. Gruppe und n≧1 ist. In DE 196 30 580 werden spezifisch Z=Kohlenstoff in Kombination mit einem Amindonor beansprucht.
 - In WO 96/13529 werden reduzierte Übergangsmetallkomplexe der Gruppen 4 bis 6 des Periodensystems mit mehrzähnigen monoanionischen Liganden beschrieben. Hierzu gehören auch Cyclopentadienylliganden, die eine Donorfunktion enthalten. Die Beispiele beschränken sich auf Titanverbindungen.

In der WO01/12641 sind Monocyclopentadienylkomplexe von Chrom, Molybdän und Wolfram beschrieben, welche insbesondere Chinolyl- oder Pyridyl-Donoren tragen, welche entweder direkt oder über eine C₁- oder Si-Brücke an das Cyclopentadienylsystem gebunden sind.

- In der WO 01/92346 sind Cyclopentadienylkomplexe der Gruppen 4-6 des Periodensystems der Elemente offenbart, worin an das Cyclopentadienylsystem eine Dihydrocarbyl-Y-Gruppe gebunden ist, worin Y ein Element der Gruppe 14 des Periodensystems der Elemente ist, welche bestimmte Lewisbasen trägt.
- Die oben genannten Katalysatorsysteme sind bezüglich ihrer Aktivitäten noch nicht optimiert. Darüber hinaus sind die entstehenden Polymere und Copolymere meist sehr hochmolekular.
 - Der Erfindung lag die Aufgabe zugrunde weitere Übergangsmetallkomplexe auf der Basis von Cyclopentadienylliganden mit einem verbrückten Donor zu finden, die für die Polymerisation von Olefinen geeignet sind und sehr hohe Aktivitäten zeigen. Des weiteren war die Aufgabe der Erfindung ein günstiges Verfahren zur Herstellung von derartigen Komplexen zu finden.

Demgemäß wurden Monocyclopentadienylkomplexe gefunden, die folgendes Strukturmerkmal der allgemeinen Formel Cp-Y_mM^A (I) enthalten, worin die Variablen folgende Bedeutung haben:

- Cp ein Cyclopentadienyl-System mit einem Arylsubstituenten,
- Y ein an Cp gebundener Substituent, enthaltend mindestens einen neutralen Donor, welcher mindestens ein Atom der Gruppen 15 oder 16 des Periodensystems enthält,
- M^A Titan, Zirkon, Hafnium, Vanadium, Niob, Tantaì, Chrom, Molybdän oder Wolfram, sowie Elemente der 3. Gruppe des Periodensystems und der Lanthaniden und
- m 1, 2 oder 3.

20

25

30

35

Weiterhin wurde ein Katalysatorsystem enthaltend die erfindungsgemässen Monocyclopentadienylkomplexe, die Verwendung der Monocyclopentadienylkomplexe oder des Katalysatorsystems zur Polymerisation oder Copolymerisation von Olefinen und ein Verfahren zur Herstellung von Polyolefinen durch Polymerisation oder Copolymerisation von Olefinen in Gegenwart des Monocyclopentadienylkomplexes oder des Katalysatorsystems und daraus erhältliche Polymere gefunden. Des weiteren wurde ein Verfahren und Zwischenprodukte in diesem Verfahren gefunden.

Die erfindungsgemässen Monocyclopentadienylkomplexe enthalten das Strukturelement der allgemeinen Formel Cp-Y_mM^A (I), wobei die Variablen die obige Bedeutung besitzen. An das Metal-

25

30

35

40

latom M^A können daher durchaus noch weitere Liganden gebunden sein. Die Anzahl weiterer Liganden hängt beispielsweise von der Oxidationsstufe des Metallatoms ab. Als Liganden kommen nicht weitere Cyclopentadienyl-Systeme in Frage. Geeignet sind mono- und dianionische Liganden wie sie beispielsweise für X beschrieben sind. Zusätzlich können auch noch Lewisbasen wie beispielsweise Amine, Ether, Ketone, Aldehyde, Ester, Sulfide oder Phosphine an das Metallzentrum M gebunden sein. Die Monocyclopentadienylkomplexe können monomer, dimer oder oligomer sein. Bevorzugte liegen die Monocyclopentadienylkomplexe in monomerer Form vor.

M^A ist ein Metall ausgewählt aus der Gruppe Titan, Zirkon, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän oder Wolfram. Die Oxidationsstufe der Übergangsmetalle M^A in katalytisch aktiven Komplexen, sind dem Fachmann zumeist bekannt. Chrom, Molybdän und Wolfram liegen sehr wahrscheinlich in der Oxidationsstufe +3 vor, Titan, Zirkon, Hafnium und Vanadium in der Oxidationsstufe 4, wobei Titan und Vanadium auch in der Oxidationsstufe 3 vorliegen können. Es können jedoch auch Komplexe eingesetzt werden, deren Oxidationsstufe nicht der des aktiven Katalysators entspricht. Solche Komplexe können dann durch geeignete Aktivatoren entsprechend reduziert oder oxidiert werden. Bevorzugt ist M^A Titan, Vanadium, Chrom, Molybdän und Wolfram. Besonders bevorzugt ist Chrom in den Oxidationsstufen 2, 3 und 4, insbesondere 3.

20 m kann 1, 2 oder 3 sein, d.h. 1, 2 oder 3 Donorgruppen Y können an Cp gebunden sein, wobei bei Anwesenheit von 2 oder 3 Y-Gruppen, diese gleich oder verschieden sein können. Bevorzugt ist nur eine Donorgruppe Y an Cp gebunden (m = 1).

Der neutrale Donor Y ist eine ein Element der 15. oder 16. Gruppe des Periodensystems enthaltende neutrale funktionelle Gruppe oder ein Carben, z.B. Amin, Imin, Carboxamid, Carbonsäureester, Keton (Oxo), Ether, Thioketon, Phosphin, Phsphit, Phinoxid, Sulfonyl, Sulfonamid, Carbene wie N-substituierte Imidazol-2-yliden oder unsubstituierte, substituierte oder kondensierte, partiell ungesättigte heterocyclische oder heteroaromatische Ringsysteme. Der Donor Y kann an das Übergangsmetall M^A inter- oder intramolekular gebunden oder nicht gebunden sein. Bevorzugt ist der Donor Y intramolekular an das Metallzentrum M^A gebunden. Insbesondere sind Die Monocyclopentadienylkomplexe enthalten das Strukturelement der allgemeinen Formel Cp-Y-M^A bevorzugt.

Cp ist ein Cyclopentadienyl-System, welches beliebig substituiert und/oder mit ein oder mehreren aromatischen, aliphatischen, heterocyclischen oder auch heteroaromatischen Ringen kondensiert sein kann, wobei 1, 2 oder 3 Substituenten, bevorzugt 1 Substituent von der Gruppe Y gebildet wird und/oder 1, 2 oder 3 Substituenten, bevorzugt 1 Substituent von der Gruppe Y substituiert wird und/oder der aromatische, aliphatische, heterocyclische oder heteroaromatische kondensierte Ring 1, 2 oder 3 Substituenten, bevorzugt 1 Substituenten Y trägt. Des weiteren trägt das Cyclopentadienyl-System ein oder mehrere aromatische Substituenten, die nicht an Cp konden-

10

20

25

siert sind und besonders bevorzugt einen aromatischen Substituenten und/oder der aromatische, aliphatische, heterocyclische oder heteroaromatische kondensierte Ring trägt 1, 2 oder 3 aromatische Substituenten, bevorzugt einen aromatischen Substituenten. Bevorzugt ist der aromatische Substistutent an das Cyclopentadienyl-Grundgerüst gebunden. Das Cyclopentadienyl-Grundgerüst selbst ist ein C_5 -Ringsystem mit 6 π -Elektronen, wobei eines der Kohlenstoffatome auch durch Stickstoff oder Phosphor, bevorzugt Phosphor ersetzt sein kann. Bevorzugt werden C_5 -Ringsysteme ohne Ersatz durch ein Heteroatom verwendet. An dieses Cyclopentadienyl-Grundgerüst kann beispielsweise ein Heteroaromat, welcher mindestens ein Atom der Gruppe N, P, O oder S enthält oder ein Aromat ankondesiert sein. Ankondensiert bedeutet hierin, dass der Heterocyclus und das Cyclopentadienyl-Grundgerüst zwei Atome, bevorzugt Kohlenstoffatome gemeinsam haben. Das Cyclopentadienylsystem ist an M^A gebunden.

Der aromatische Substituent ist bevorzugt ein C_6 - C_{22} -Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, wobei der aromatische Substituent auch durch N-, P-, O- oder S-haltige Substitenten, C_1 - C_{22} -Alkyl, C_2 - C_{22} -Alkenyl, Halogene oder Halogenalkyle oder Halogenaryle mit 1 –10 C-Atomen substituiert sein kann.

Besonders gut geeignet sind Monocyclopentadienylkomplexe, worin Y durch die Gruppe $-Z_k$ -Agebildet wird und mit dem Cyclopentadienylsystem Cp und M^A einen Monocyclopentadienylkomplex enthalten das Strukturelement der allgemeinen Formel Cp $-Z_k$ -A- M^A (II) bildet, worin die Variablen folgende Bedeutung haben:

$$R^{1A} \qquad R^{2A} \qquad R$$

30 worin die Variablen folgende Bedeutung besitzen:

E^{1A}-E^{5A} Kohlenstoff oder maximal ein E^{1A} bis E^{5A} Phosphor,

unabhängig voneinander Wasserstoff, C₁-C₂₂-Alkyl, C₂-C₂₂-Alkenyl, C₆-C₂₂-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR^{5A}₂, N(SiR^{5A}₃)₂, OR^{5A}, OSiR^{5A}₃, SiR^{5A}₃, BR^{5A}₂, wobei die organischen Reste R^{1A}-R^{4A} auch durch Halogene substituiert sein können und je zwei vicinale Reste R^{1A}-R^{4A} auch zu einem fünf-, sechs- oder siebengliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R^{1A}-R^{4A} zu einem fünf-, sechs- oder siebengliedrigen Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P,O oder S enthält

15

20

25

30

35

40

und wobei mindestens ein R^{1A} - R^{4A} ein C_6 - C_{22} -Aryl ist, worin das Aryl auch durch N-, P-, O- oder S-haltige Substitenten, C_1 - C_{22} -Alkyl, C_2 - C_{22} -Alkenyl, Halogene oder Halogenal-kyle oder Halogenaryle mit 1 –10 C-Atomen substituiert sein kann,

unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R^{5A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,

Z eine divalente Brücke zwischen A und Cp ist, ausgewählt aus der folgenden Gruppe

$$R^{6A}$$
 $C = C$
 R^{7A}
 R^{6A}
 R^{6A}

 $-BR^{6A}$ _, $-BNR^{6A}R^{7A}$ _, $-AIR^{6A}$ _, -Sn_, -O_, -S_, -SO_, $-SO_2$ _, $-NR^{6A}$ _, -CO_, $-PR^{6A}$ _ oder $-P(O)R^{6A}$ _ ist, wobei

L^{1A}-L^{3A} unahängig voneinander Silizium oder Germanium bedeutet,

 R^{6A} - R^{11A} unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{12A}_3 bedeutet, wobei die organischen Reste R^{6A} - R^{11A} auch durch Halogene substituiert sein können und je zwei geminale oder vicinale Reste R^{6A} - R^{11A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und

unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest C₁--C₁₀-Al-

koxy oder C_6 – C_{10} –Aryloxy bedeutet und je zwei Reste R^{12A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und

A eine neutrale Donorgruppe enthaltend ein oder mehrere Atome der Gruppe 15 und/oder
16 des Periodensystems der Elemente oder ein Carben, bevorzugt ein unsubstituiertes,
substituiertes oder kondensiertes, heteroaromatisches Ringsystem,

M^A ein Metall ausgewählt aus der Gruppe Titan in der Oxidationsstufe 3, Vanadium, Chrom,
 Molybdän und Wolfram und

k 0 oder 1 ist.

10

15

20

25

30

35

40

In bevorzugten Cyclopentadienylsystemen Cp sind alle E^{1A} bis E^{5A} Kohlenstoff.

Durch die Variation der Substituenten R^{1A}-R^{4A}, kann Einfluss auf das Polymerisationsverhalten der Metallkomplexe genommen werden. Durch die Zahl und Art der Substituenten kann die Zugänglichkeit des Metallatoms M^A für die zu polymerisierenden Olefine beeinflußt werden. So ist es möglich die Aktivität und Selektivität des Katalysators hinsichtlich verschiedener Monomerer, insbesondere sterisch anspruchsvoller Monomerer, zu modifizieren. Da die Substituenten auch auf die Geschwindigkeit von Abbruchreaktionen der wachsenden Polymerkette Einfluß nehmen können, läßt sich hierdurch auch das Molekulargewicht der entstehenden Polymere verändern. Einer der Substituent R^{1A} - R^{4A} ist dabei immer ein C_6 - C_{22} -Aryl oder ein Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, um die gewünschten Ergebnisse zu erzielen. Die übrigen Substituenten sind breit variierbar, wie C-organische Substituenten R^{1A}-R^{4A} kommen beispielsweise folgende in Betracht: Wasserstoff, C_1 - C_{22} -Alkyl, wobei das Alkyl linear oder verzweigt sein kann, wie z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl oder n-Dodecyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits eine C_1 - C_{10} -Alkylgruppe und/oder C_6 - C_{10} -Arylgruppe als Substituent tragen kann, wie z.B. Cyclopropan, Cyclobutan, Cyclopentan, Cyclohexan, Cycloheptan, Cyclooctan, Cyclononan oder Cyclododekan, C2-C22-Alkenyl, wobei das Alkenyl linear, cyclisch oder verzweigt sein kann und die Doppelbindung intern oder endständig sein kann, wie z.B. Vinyl, 1-Allyl, 2-Allyl, 3-Allyl, Butenyl, Pentenyl, Hexenyl, Cyclopentenyl, Cyclohexenyl, Cyclooctenyl oder Cyclooktadienyl, C₆-C₂₂-Aryl, wobei der Arylrest durch weitere Alkylgruppen substituiert sein kann, wie z.B. Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, oder Arylalkyl, wobei das Arylalkyl durch weitere Alkylgruppen substituiert sein kann, wie z.B. Benzyl, o-, m-, p-Methylbenzyl, 1- oder 2-Ethylphenyl, wobei gegebenenfalls auch zwei der R^{1A} bis R^{4A} zu einem 5-, 6- oder 7-gliedrigen Ring verbunden sein können und/oder zwei der vicinale Reste R^{1A}-R^{4A} zu einem fünf-, sechsoder siebengliedrigen Heterocyclus verbunden sein können, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält und/oder die organischen Reste R^{1A}-R^{4A} auch durch Halogene,

15

20

25

30

35

wie z.B. Fluor, Chlor oder Brom substituiert sein können. Des weiteren kann R^{1A}-R^{4A} Amio NR^{5A}₂, bzw. N(SiR^{5A}₃)₂, Alkoxy oder Aryloxy OR^{5A} sein, wie beispielsweise Dimethylamio, N-Pyrolidinyl, Picolinyl, Methoxy, Ethoxy oder Isopropoxy. Als Si-organische Substituenten SiR^{5A}₃ kommen für R^{5A} die gleichen C-organischen Reste, wie oben für R^{1A}-R^{4A} näher ausgeführt, wobei gegebenenfalls auch zwei R^{5A} zu einem 5- oder 6-gliedrigen Ring verbunden sein können, in Betracht, wie z.B. Trimethylsilyl, Triethylsilyl, Butyldimethylsilyl, Tributylsilyl, Tritert.butylsilyl, Triallylsilyl, Triphenylsilyl oder Dimethylphenylsilyl. Diese SiR^{5A}₃ Reste können auch über einen Sauerstoff oder Stickstoff an das Cyclopentadienyl-Grundgerüst gebunden sein, wie beispielsweise Trimethylsilyloxy, Triethylsilyloxy, Butyldimethylsilyloxy, Tributylsilyloxy oder Tritert.butylsilyloxy. Bevorzugt Reste R^{1A}-R^{4A} sind Wasserstoff, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, Vinyl, Allyl, Benzyl, Phenyl, ortho Dialkyl- oder Dichlorosubstituierte Phenyle, Trialkyl- oder Trichlorosubstituierte Phenyle, Naphthyl, Biphenyl und Anthranyl. Als Si-organische Substituenten kommen besonders Trialkylsilyl-Gruppen mit 1 bis 10 C-Atomen im Alkylrest in Betracht, insbesondere Trimethylsilyl-Gruppen.

Zwei vicinale Reste R^{1A}-R^{4A} können jeweils mit den sie tragenden E^{1A} -E^{5A}, einen Heterocyclus, bevorzugt Heteroaromaten bilden, welcher mindestens ein Atom aus der Gruppe Stickstoff, Phosphor, Sauerstoff und/oder Schwefel, besonders bevorzugt Stickstoff und/oder Schwefel enthält, wobei die im Heterocyclus, bzw. Heteroaromaten enthaltenen E^{1A}-E^{5A} bevorzugt Kohlenstoffe sind. Bevorzugt sind Heterocyclen und Heteraromaten mit einer Ringgrösse von 5 oder 6 Ringatomen. Beispiele für 5-Ring Heterocyclen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, sind 1,2-Dihydrofuran, Furan, Thiophen, Pyrrol, Isoxazol, 3-Isothiazol, Pyrazol, Oxazol, Thiazol, Imidazol, 1,2,4-Oxadiazol, 1,2,5-Oxadiazol, 1,3,4-Oxadiazol, 1,2,3-Triazol oder 1,2,4-Triazol. Beispiele für 6-gliedrige Heteroarylgruppen, welche ein bis vier Stickstoffatome und/oder ein Phosphoratom enthalten können, sind Pyridin, Phosphabenzol, Pyridazin, Pyrimidin, Pyrazin, 1,3,5-Triazin, 1,2,4-Triazin oder 1,2,3-Triazin. Die 5-Ring und 6-Ring Heterocyclen können hierbei auch durch C_1 - C_{10} -Alkyl, C_6 - C_{10} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-10 C-Atomen im Arylrest, Trialkylsilyl oder Halogenen, wie Fluor, Chlor oder Brom, Dialkylamid, Alkylarylamid, Diarylamid, Alkoxy oder Aryloxy substituiert oder mit ein oder mehreren Aromaten oder Heteroaromaten kondensiert sein. Beispiele für benzokondensierte 5-gliedrige Heteroarylgruppen sind Indol, Indazol, Benzofuran, Benzothiophen, Benzothiazol, Benzoxazol oder Benzimidazol. Beispiele für benzokondensierte 6-gliedrige Heteroarylgruppen sind Chroman, Benzopyran, Chinolin, Isochinolin, Cinnolin, Phthalazin, Chinazolin, Chinoxalin, 1,10- Phenanthrolin oder Chinolizin. Bezeichnung und Nummerierung der Heterocyclen wurde aus Lettau, Chemie der Heterocyclen, 1. Auflage, VEB, Weinheim 1979 entnommen. Die Heterocyclen/Heteroaromaten sind mit dem Cyclopentadienyl-Grundgerüst bevorzugt über eine C-C-Doppelbindung des Heterocyclus/Heteroaromaten kondensiert. Heterocyclen/Heteroaromaten mit einem Heteroatom sind bevorzugt 2,3oder b- anneliert.

10

20

25

30

35

40

Cyclopentadienylsysteme Cp mit einem kondensierten Heterocyclus sind beispielsweise Thiapentalen, Methylthiapentalen, Ethylthiapentalen, Isopropylthiapentalen, n-Butylthiapentalen, tert.-Butylthiapentalen, Trimethylsilylthiapentalen, Phenylthiapentalen, Naphthylthiapentalen, Methylthiapentalen, Methylazapentalen, Ethylazapentalen, Isopropylazapentalen, n-Butylazapentalen, Trimethylsilylazapentalen, Phenylazapentalen, Naphthylazapentalen, Oxapentalen oder Phosphapentalen.

Die Synthese derartiger Cyclopentadienylsysteme mit ankondensiertem Heterocyclus ist beispielsweise in der Eingangs erwähnten WO 98/22486 beschrieben. In "metalorganic catalysts for synthesis and polymerisation", Springer Verlag 1999, sind von Ewen et al., S.150 ff weitere Synthesen dieser Cyclopentadienylsysteme beschrieben.

Besonders bevorzugte Substituenten R^{1A}-R^{4A} sind die weiter oben beschriebenen C-organischen Substituenten und die C-organischen Substituenten, welche ein cyclisches kondensiertes Ringsystem bilden, also zusammen mit dem E^{1A}-E^{5A}-, bevorzugt zusammen mit einem C₅-Cyclopentadienyl-Grundgerüst z.B. ein unsubstituiertes oder substituiertes Indenyl-, Benzindenyl-, Phenantrenyl- oder Tetrahydroindenylsystem bilden. sowie insbesondere deren bevorzugte Ausführungsformen.

Beispiele für derartige Cyclopentadienylsysteme (ohne die Gruppe –Z-A-, diese sitzt hierbei bevorzugt in der 1-Position und ohne den Arylsubstituenten) sind Monoalkyl- wie z.B. 3-Methylcyclopentadienyl, 3-Ethylcyclopentadienyl, 3-Isopropylcyclopentadienyl, 3-tert.Butylcyclopentadienyl, Dialkyl-, wie z.B. Tetrahydroindenyl, 2,4-Dimethylcyclopentadienyl oder 3-Methyl-5-tert.Butylcyclopentadienyl oder Trialkylcyclopentadienylsysteme, wie z.B. 2,3,5-Trimethylcyclopentadienyl, sowie Indenyl oder Benzindenyl. Das kondensierte Ringsystem kann dabei weitere C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR^{5A}₂, N(SiR^{5A}₃)₂, OR^{5A}, OSiR^{5A}₃ oder SiR^{5A}₃ tragen, wie z.B. 4-Methylindenyl, 4-Ethylindenyl, 4-Isopropylindenyl, 5-Methylindenyl, 5-Methylindenyl, 5-Methylindenyl oder 4-Naphthylindenyl.

Einer der Substituenten R^{1A}-R^{4A}, bevorzugt R^{2A}, ist ein C₆-C₂₂-Aryl oder ein Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, bevorzugt C₆-C₂₂-Aryl wie beispielsweise Phenyl, Naphthyl, Biphenyl, Anthracenyl oder Phenantrenyl, worin das Aryl auch durch N-, P-, O- oder S-haltige Substitenten, C₁-C₂₂-Alkyl, C₂-C₂₂-Alkenyl, Halogene oder Halogenalkyle oder Halogenaryle mit 1 –10 C-Atomen substituiert sein kann, wie beispielsweise o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5- oder 2,6-Dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, o-, m-, p-Dimethylaminophenyl, o-, m-, p-Methoxyphenyl, o-, m-, p-Fluorphenyl, o-, m-, p-Chlorphenyl, o-, m-, p-Trifluormethylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Difluorphenyl, 2,3-, 2,4-, 2,5- oder 2,6-Dichlorphenyl oder 2,3-, 2,4-, 2,5-, oder 2,6-Di(trifluormethyl)phenyl. Die N-, P-, O- oder S-haltigen Substitenten, C₁-C₂₂-Alkyl, C₂-C₂₂-Alkenyl, Halogene oder Halogenalkyle oder Halo-

10

20

25

30

35

40

genaryle mit 1 –10 C-Atomen als Substituenten des Arylrestes sitzen bevorzugt in para-Position, relativ zur Bindung zum Cyclopentadienylring. Der Arylsubstituent kann in vicinaler Position zum Substituenten –Z-A gebunden sein oder die beiden Substituenten sitzen relativ zueinander in 1,3-Position am Cyclopentadienylring. Bevorzugt sitzen –Z-A und der Arylsubstituent in 1,3-Position relativ zueinander am Cyclopentadienylring.

Wie auch bei den Metallocenen können die erfindungsgemässen Monocyclopentadienylkomplexe chiral sein. So kann einerseits einer der Substituenten R^{1A}-R^{4A} des Cyclopentadienyl-Grundgerüstes ein oder mehrere chirale Zentren besitzen, oder aber das Cyclopentadienylsystem Cp selbst kann enantiotop sein, so daß erst durch dessen Bindung an das Übergangsmetall M die Chiralität induziert wird (zum Formalismus der Chiralität bei Cyclopentadienylverbindungen siehe R. Halterman, Chem. Rev. 92, (1992), 965-994).

Die Verbrückung Z zwischen dem Cyclopentadienylsystem Cp und dem neutralen Donor A ist eine organische divalente Verbrückung (k=1), bevorzugt bestehend aus Kohlenstoff- und/oder Silizium und/oder Bor-enthaltenden Brückengliedern. Durch eine Änderung der Verknüpfungslänge zwischen dem Cyclopentadienylsystem und A kann die Aktivität des Katalysators beeinflußt werden.

Als C-organische Substituenten R^{6A}-R^{11A} der Verknüpfung Z kommen beispielsweise folgende in Betracht: Wasserstoff, C₁-C₂₀-Alkyl, wobei das Alkyl linear oder verzweigt sein kann, wie z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl oder n-Dodecyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits eine C6-C₁₀-Arylgruppe als Substituent tragen kann, wie z.B. Cyclopropan, Cyclobutan, Cyclopentan, Cyclohexan, Cycloheptan, Cyclooctan, Cyclononan oder Cyclododekan, C2-C20-Alkenyl, wobei das Alkenyl linear, cyclisch oder verzweigt sein kann und die Doppelbindung intern oder endständig sein kann, wie z.B. Vinyl, 1-Allyl, 2-Allyl, 3-Allyl, Butenyl, Pentenyl, Hexenyl, Cyclopentenyl, Cyclohexenyl, Cyclooctenyl oder Cyclooktadienyl, Ce-C20-Aryl, wobei der Arylrest durch weitere Alkylgruppen substituiert sein kann, wie z.B. Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphen-1-yl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphen-1-yl, oder Arylalkyl, wobei das Arylalkyl durch weitere Alkylgruppen substituiert sein kann, wie z.B. Benzyl, o-, m-, p-Methylbenzyl, 1- oder 2-Ethylphenyl, wobei gegebenenfalls auch zwei R^{6A} bis R^{11A} zu einem 5- oder 6-gliedrigen Ring verbunden sein können, wie beispielsweise Cyclohexan, und die organischen Reste R^{6A}-R^{11A} auch durch Halogene, wie z.B. Fluor, Chlor oder Brom, wie beispielsweise Pentafluorophenyl oder Bis-3,5-Trifluormethylphen-1-yl und Alkyl oder Aryl substituiert sein können.

Als Si-organische Substituenten SiR^{12A}₃ kommen für R^{12A} die gleichen Reste, wie oben für R^{6A}-R^{11A} näher ausgeführt, wobei gegebenenfalls auch zwei R^{12A} zu einem 5- oder 6-gliedrigen Ring verbunden sein können, in Betracht, wie z.B. Trimethylsilyl, Triethylsilyl, Butyldimethylsilyl, Tribu-

tylsilyl, Tritert.butylsilyl, Triallylsilyl, Triphenylsilyl oder Dimethylphenylsilyl. Bevorzugt Reste R^{12A} sind Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, Benzyl, Phenyl, ortho Dialkyl- oder Dichlorosubstituierte Phenyle, Trialkyl- oder Trichlorosubstituierte Phenyle, Naphthyl, Biphenyl und Anthranyl.

5

Besonders bevorzugt Substituenten R^{6A} bis R^{11A} sind Wasserstoff, C₁-C₂₀-Alkyl, wobei das Alkyl linear oder verzweigt sein kann, wie z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl oder n-Dodecyl C₆-C₂₀-Aryl, wobei der Arylrest durch weitere Alkylgruppen substituiert sein kann, wie z.B. Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphen-1-yl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphen-1-yl, oder Arylalkyl, wobei das Arylalkyl durch weitere Alkylgruppen substituiert sein kann, wie z.B. Benzyl, o-, m-, p-Methylbenzyl, 1- oder 2-Ethylphenyl, wobei gegebenenfalls auch zwei R^{6A} bis R^{11A} zu einem 5- oder 6-gliedrigen Ring verbunden sein können, wie beispielsweise Cyclohexan, und die organischen Reste R^{6A}-R^{11A} auch durch Halogene, wie z.B. Fluor, Chlor oder Brom, insbesondere Fluor wie beispielsweise Pentafluorophenyl oder Bis-3,5-Trifluormethylphen-1-yl und Alkyl oder Aryl substituiert sein können. Besonders bevorzugt sind Methyl, Ethyl, 1-Propyl, 2-iso-Propyl, 1-Butyl, 2-tert.-Butyl, Phenyl und Pentafluorophenyl.

15

Bevorzugt ist Z eine Gruppe -CR^{6A}R^{7A}-, -SiR^{6A}R^{7A}-, insbesondere -Si(CH₃)₂-, -CR^{6A}R^{7A}CR^{8A}R^{9A}-, -SiR^{6A}R^{7A}CR^{8A}R^{9A}- oder substituiertes oder unsubstituiertes 1,2-Phenylen und insbesondere -CR^{6A}R^{7A}-. Dabei sind die weiter oben beschriebenen bevorzugten Ausführungsformen der Substituenten R^{6A} bis R^{11A} hierin ebenfalls bevorzugte Ausführungsformen. Bevorzugt ist -CR^{6A}R^{7A}- eine Gruppe -CHR^{6A}-, -CH₂- oder -C(CH₃)₂-. Die Gruppe -SiR^{6A}R^{7A}- in -L^{1A}R^{6A}R^{7A}CR^{8A}R^{9A}- kann an das Cyclopentadienylsystem oder an A gebunden sein. Bevorzugt ist diese Gruppe -SiR^{6A}R^{7A}- oder deren bevorzugte Ausführungsformen an Cp gebunden.

k ist 0 oder 1, insbesondere ist k gleich 1 oder wenn A ein unsubstituiertes, substituiertes oder kondensiertes, heterocyclisches Ringsystem auch 0.

30

35

40

A ist ein neutraler Donor, welcher ein Atom der Gruppen 15 oder 16 des Periodensystems oder ein Carben enthält, bevorzugt ein oder mehrere Atome ausgewählt aus der Gruppe Sauerstoff, Schwefel, Stickstoff oder Phosphor, bevorzugt Stickstoff oder Phosphor. Die Donorfunktion in A kann dabei inter- oder intramolekular an das Metall M^A binden. Bevorzugt ist der Donor in A intramolekular an M gebunden. Als Donor kommen neutrale funktionelle Gruppen, welche ein Element der 15. oder 16. Gruppe des Periodensystems enthalten, z.B. Amin, Imin, Carboxamid, Carbonsäureester, Keton (Oxo), Ether, Thioketon, Phosphin, Phosphit, Phosphinoxid, Sulfonyl, Sulfonamid, Carbene wie N-substituierte Imidazol-2-yliden oder unsubstituierte, substituierte oder kondensierte, heterocyclische Ringsysteme in Betracht. Die synthetische Anbindung von A an den Cyclopentadienylrest und Z kann z.B. in Analogie zur WO 00/35928 durchgeführt werden.

Bevorzugt ist A eine Gruppe ausgewählt aus -OR^{13A}-, -SR^{13A}-, -NR^{13A}R^{14A}-, -PR^{13A}R^{14A}-, -C=NR^{13A}- und unsubstituierte, substituierte oder kondensierte heteroaromatische Ringsysteme, insbesondere -NR^{13A}R^{14A}-, -C=NR^{13A}- und unsubstituierte, substituierte oder kondensierte heteroaromatische Ringsysteme.

5

15

20

25

30

35

40

R^{13A} und R^{14A} stehen unabhängig voneinander für Wasserstoff, C₁-C₂₀-Alkyl, wobei das Alkyl linear oder verzweigt sein kann, wie z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl oder n-Dodecyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits eine C₆-C₁₀-Arylgruppe als Substituent tragen kann, wie z.B. Cyclopropan, Cyclobutan, Cyclopentan, Cyclohexan, Cycloheptan, Cyclooctan, Cyclononan oder Cyclododekan, C2-C20-Alkenyl, wobei das Alkenyl linear, cyclisch oder verzweigt sein kann und die Doppelbindung intern oder endständig sein kann, wie z.B. Vinyl, 1-Allyl, 2-Allyl, 3-Allyl, Butenyl, Pentenyl, Hexenyl, Cyclopentenyl, Cyclohexenyl, Cyclooctenyl oder Cyclooktadienyl, C₆-C₂₀-Aryl, wobei der Arylrest durch weitere Alkylgruppen substituiert sein kann, wie z.B. Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphen-1-yl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphen-1-yl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest wobei das Arylalkyl durch weitere Alkylgruppen substituiert sein kann, wie z.B. Benzyl, o-, m-, p-Methylbenzyl, 1- oder 2-Ethylphenyl oder SiR^{15A}₃ bedeutet, wobei die organischen Reste R^{13A}-R^{14A} auch durch Halogene, z.B. Fluor, Chlor oder Brom oder Stickstoff-enthaltende Gruppen und weitere C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{15A}₃ substituiert sein können und je zwei vicinale Reste R^{13A}-R^{14A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und R^{15A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R^{15A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können.

NR^{13A}R^{14A} steht für einen Amid-Substituenten. Dies sind bevorzugt sekundäre Amide wie Dimethylamid, N-Ethyl-Methylamid, Diethylamid, N-Methyl-Propylamid, N-Methyl-Isopropylamid, N-Ethylisopropylamid, Dipropylamid, Diisopropylamid, N-Methyl-Butylamid, N-Ethyl-Butylamid, N-Methyl-tert.Butylamid, N-tert.Butyl-Isopropylamid, Dibutylamid, Disec.butylamid, Diisobutylamid, Tert.Amyl-tert.butylamid, Dipentylamid, N-Methyl-Hexylamid, Dihexylamid, Tert.amyl-tert.Octylamid, Dioctylamid, Bis(2-Ethylhexyl)amid, Didecylamid, N-Methyl-Octadecylamid, N-Methyl-Cyclohexylamid, N-Isopropylcyclohexylamid, N-tert.Butyl-Cyclohexylamid, Dicyclohexylamid, Pyrrolidin, Piperidin, Hexamethylenimin, Decahydrochinolin, Diphenylamin, N-Methylanilid oder N-Ethylanilid.

In der Imino-Gruppe -C=NR^{13A} ist R^{13A} bevorzugt ein C₆-C₂₀-Aryl, wobei der Arylrest durch weitere Alkylgruppen substituiert sein kann, wie z.B. Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphen-1-yl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphen-1-yl.

10

15

20

25

30

35

Bevorzugt ist A ein unsubstituiertes, substituiertes oder kondensiertes heteroaromatisches Ringsystem, welches neben Kohlenstoffringgliedern Heteroatome aus der Gruppe Sauerstoff, Schwefel, Stickstoff und Phosphor enthalten kann. Beispiele für 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, sind 2-Furyl, 2-Thienyl, 2-Pyrrolyl, 3-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 5-isothiazolyl, 1-Pyrazolyl, 3-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 5-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,3,4-Oxadiazol-2-yl oder 1,2,4-Triazol-3-yl. Beispiele für 6-gliedrige Heteroarylgruppen, welche ein bis vier Stickstoffatome und/oder ein Phosphoratom enthalten können, sind 2-Pyridinyl, 2-Phosphabenzolyl 3-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl oder 1,2,4-Triazin-6-yl. Die 5-Ring und 6-Ring Heteroarylgruppen können hierbei auch durch C_{1} - C_{10} -Alkyl, C_{6} - C_{10} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-10 C-Atomen im Arylrest, Trialkylsilyl oder Halogenen, wie Fluor, Chlor oder Brom substituiert oder mit ein oder mehreren Aromaten oder Heteroaromaten kondensiert sein. Beispiele für benzokondensierte 5-gliedrige Heteroarylgruppen sind 2-Indolyl, 7-Indolyl, 2-Cumaronyl, 7-Cumaronyl, 2-Thionaphthenyl, 7-Thionaphthenyl, 3-Indazolyl, 7-Indazolyl, 2-Benzimidazolyl oder 7-Benzimidazolyl. Beispiele für benzokondensierte 6-gliedrige Heteroarylgruppen sind 2-Chinolyl, 8-Chinolyl, 3-Cinnolyl, 8-Cinnolyl, 1-Phthalazyl, 2-Chinazolyl, 4-Chinazolyl, 8-Chinazolyl, 5-Chinoxalyl, 4-Acridyl, 1-Phenanthridyl oder 1-Phenazyl. Bezeichnung und Nummerierung der Heterocyclen wurde aus L.Fieser und M. Fieser, Lehrbuch der organischen Chemie, 3. neubearbeitete Auflage, Verlag Chemie, Weinheim 1957 entnommen.

Von diesen heteroaromatischen Systemen A sind besonders unsubstituierte, substituierte und/oder kondensierte sechsgliedrige Heteroaromaten mit 1, 2, 3, 4 oder 5 Stickstoffatomen im Heteroaromatenteil, insbesondere substituiertes und unsubstituiertes 2-Pyridyl, 2-Chinolyl oder 8-Chinolyl bevorzugt.

Bevorzugt ist A daher eine Gruppe der Formel (IVa) oder (IVb)

, wobei

·E^{6A}-E^{11A} unabhängig voneinander Kohlenstoff oder Stickstoff,

40 R^{16A}-R^{21A} unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkyla-

10

15

20

25

30

35

ryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder ${\rm SiR}^{22A}_3$ bedeutet, wobei die organischen Reste R^{16A}-R^{21A} auch durch Halogene oder Stickstoff und weitere C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder ${\rm SiR}^{22A}_3$ substituiert sein können und je zwei vicinale Reste R^{16A}-R^{21A} oder R^{16A} und Z auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und

R^{22A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R^{22A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und

unabhangig voneinander 0 für E^{6A} - E^{11A} gleich Stickstoff und 1 für E^{6A} - E^{11A} gleich Kohlenstoff ist.

Insbesondere sind 0 oder 1 E^{6A}-E^{11A} gleich Stickstoff und die übrigen Kohlenstoff. Besonders bevorzugt ist A ein 2-Pyridyl, 6-Methyl-2-Pyridyl, 4-Methyl-2-Pyridyl, 5-Methyl-2-Pyridyl, 5-Ethyl-2-Pyridyl, 4,6-Dimethyl-2-Pyridyl, 3-Pyridazyl, 4-Pyrimidyl, 6-Methyl-4-Pyrimidyl, 2-Pyrazinyl, 6-Methyl-2-Pyrazinyl, 5-Methyl-2-Pyrazinyl, 3-Methyl-2-Pyrazinyl, 3-Ethylpyrazinyl, 3,5,6-Trimethyl-2-pyrazinyl, 2-Chinolyl, 4-Methyl-2-chinolyl, 6-Methyl-2-chinolyl, 7-Methyl-2-chinolyl, 2-Chinoxalyl oder 3-Methyl-2-Chinoxalyl.

Eine bevorzugte Kombination von Z und A ist wegen der einfachen Darstellbarkeit Z gleich unsubstituiertes oder substituiertes 1,2-Phenylen mit A gleich NR^{16A}R^{17A}, als auch die Kombination Z gleich -CHR^{6A}-, -CH₂-, -C(CH₃)₂ oder -Si(CH₃)₂- und A gleich unsubstituiertes oder substituiertes 2-Chinolyl oder unsubstituiertes oder substituiertes 2-Pyridyl. Ganz besonders einfach zugänglich sind auch Systeme ohne Brücke Z, bei denen k gleich 0 ist. Bevorzugtes A ist in diesem Falle ein Substituent der Fromel (IVb) und insbesondere unsubstituiertes oder substituiertes 8-Chinolyl. Die weiter oben beschriebenen bevorzugten Ausführungen der Variablen sind auch in diesen bevorzugten Kombinationen bevorzugt.

M^A ist ein Metall ausgewählt aus der Gruppe Titan in der Oxidationsstufe 3, Vanadium, Chrom, Molybdän und Wolfram, bevorzugt Titan in der Oxidationsstufe 3 und Chrom. Besonders bevorzugt ist Chrom in den Oxidationsstufen 2, 3 und 4, insbesondere 3. Die Metallkomplexe, insbesondere die Chromkomplexe, lassen sich auf einfache Weise erhalten, wenn man die entsprechenden Metallsalze wie z.B. Metallchloride mit dem Ligandanion umsetzt (z.B. analog zu den Beispielen in DE 197 10615).

Von den geeigneten Monocyclopentadienylkomplexen sind solche der allgemeinen Formel Cp- $Y_m M^A X^A_n$ (V) bevorzugt, worin die Variablen Cp, Y, A, m und M^A die obige Bedeutung besitzen

und auch deren bevorzugte Ausführungsformen hierin bevorzugt sind und:

X^A unabhängig voneinander Fluor, Chlor, Brom, Jod, Wasserstoff, C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1-10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR^{23A}R^{24A}, OR^{23A}, SR^{23A}, SO₃R^{23A}, OC(O)R^{23A}, CN, SCN, β-Diketonat, CO, BF₄, PF₆, oder sperrige nichtkoordinierende Anionen oder zwei Reste X^A für einen substituierten oder unsubstituierten Dienliganden, insbesondere einen 1,3-Dienliganden, stehen, und die Reste X^A gegebenenfalls miteinander verbunden sind,

10 R^{23A}-R^{24A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, SiR^{25A}₃, wobei die organischen Reste R^{23A}-R^{24A} auch durch Halogene oder Stickstoff- und Sauerstoffhaltige Gruppen substituiert sein können und je zwei Reste R^{23A}-R^{24A} auch zu einem fünfoder sechsgliedrigen Ring verbunden sein können.

 R^{25A} unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei Reste R^{25A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und

20 n 1, 2, oder 3 ist.

Die weiter oben aufgeführten Ausführungsformen und bevorzugten Ausführungsformen für Cp, Y, Z, A, m und M^A gelten auch einzeln und in Kombination für diese bevorzugten Monocyclopentadienylkomplexe.

25

30

Die Liganden X^A ergeben sich z.B. durch die Auswahl der entsprechenden Metallausgangsverbindungen, die zur Synthese der Monocyclopentadienylkomplexe verwendet werden, können aber auch nachträglich noch variiert werden. Als Liganden X^A kommen insbesondere die Halogene wie Fluor, Chlor, Brom oder Jod und darunter insbesondere Chlor in Betracht. Auch Alkylreste, wie Methyl, Ethyl, Propyl, Butyl, Vinyl, Allyl, Phenyl oder Benzyl stellen vorteilhafte Liganden X^A dar. Als weitere Liganden X^A sollen nur exemplarisch und keineswegs abschließend Trifluoracetat, BF_4 , PF_6 sowie schwach bzw. nicht koordinierende Anionen (siehe z.B. S. Strauss in Chem. Rev. 1993, 93, 927-942) wie $B(C_6F_5)_4$ genannt werden.

Auch Amide, Alkoholate, Sulfonate, Carboxylate und β-Diketonate sind besonders geeignete Liganden X^A. Durch Variation der Reste R^{23A} und R^{24A} können z.B. physikalische Eigenschaften wie Löslichkeit fein eingestellt werden. Als C-organische Substituenten R^{23A}-R^{24A} kommen beispielsweise folgende in Betracht: C₁-C₂₀-Alkyl, wobei das Alkyl linear oder verzweigt sein kann, wie z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl oder n-Dodecyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits eine C₆-

30

C₁₀-Arylgruppe als Substituent tragen kann, wie z.B. Cyclopropan, Cyclobutan, Cyclopentan, Cyclohexan, Cycloheptan, Cyclooctan, Cyclononan oder Cyclododekan, C2-C20-Alkenyl, wobei das Alkenyl linear, cyclisch oder verzweigt sein kann und die Doppelbindung intern oder endständig sein kann, wie z.B. Vinyl, 1-Allyl, 2-Allyl, 3-Allyl, Butenyl, Pentenyl, Hexenyl, Cyclopentenyl, Cyclohexenyl, Cyclooctenyl oder Cyclooktadienyl, C₆-C₂₀-Aryl, wobei der Arylrest durch weitere Alkylgruppen und/oder N- oderO-haltige Reste substituiert sein kann, wie z.B. Phenyl, Naphthyl, Biphenyl, Anthranyl, o., m., p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, 2-Methoxyphenyl, 2-N,N-Dimethylaminophenyl oder Arylalkyl, wobei das Arylalkyl durch weitere Alkylgruppen substituiert sein kann, wie z.B. Benzyl, o-, m-, p-Methylbenzyl, 1- oder 2-Ethylphenyl, wobei gegebenenfalls auch R^{23A} mit R^{24A} zu einem 5- oder 6-gliedrigen Ring verbunden sein kann und die organischen Reste R^{23A}-R^{24A} auch durch Halogene, wie z.B. Fluor, Chlor oder Brom substituiert sein können. Als Siorganische Substituenten SiR^{25A} kommen für R^{25A} die gleichen Reste, wie oben für R^{23A}-R^{24A} näher ausgeführt, wobei gegebenenfalls auch zwei R^{25A} zu einem 5- oder 6-gliedrigen Ring verbunden sein können, in Betracht, wie z.B. Trimethylsilyl, Triethylsilyl, Butyldimethylsilyl, Tributylsilyl, Triallylsilyl, Triphenylsilyl oder Dimethylphenylsilyl. Bevorzugt werden C1-C10-Alkyl wie Methyl, Ethyl, n-Propyl, n-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl,n- Octyl, sowie Vinyl, Allyl, Benzyl und Phenyl als Reste R^{23A} und R^{24A} verwendet. Manche dieser substituierten Liganden X werden besonders bevorzugt verwendet, da sie aus billigen und einfach zugänglichen Ausgangsstoffen erhältlich sind. So ist eine besonders bevorzugte Ausführungsform, wenn XA für Dimethylamid, Methanolat, Ethanolat, Isopropanolat, Phenolat, Naphtholat, Triflat, p-Toluolsulfonat, Acetat oder Acetylacetonat steht.

Die Anzahl n der Liganden X^A hängt von der Oxidationsstufe des Übergangsmetalles M^A ab. Die Zahl n kann somit nicht allgemein angegeben werden. Die Oxidationsstufe der Übergangsmetalle M^A in katalytisch aktiven Komplexen, sind dem Fachmann zumeist bekannt. Chrom, Molybdän und Wolfram liegen sehr wahrscheinlich in der Oxidationsstufe +3 vor, Vanadium in der Oxidationsstufe +3 oder +4. Es können jedoch auch Komplexe eingesetzt werden, deren Oxidationsstufe nicht der des aktiven Katalysators entspricht. Solche Komplexe können dann durch geeignete Aktivatoren entsprechend reduziert oder oxidiert werden. Bevorzugt werden Chromkomplexe in der Oxidationsstufe 3 verwendet.

Bevorzugt verwendete Monocyclopentadienylkomplexe A) dieser Art sind 1-(8-Chinolyl)-3-phenyl-cyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-3-(1-naphthyl)-cyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-3-(4-trifluormethylphenyl-cyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-2-methyl-3-phenylcyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-2-methyl)-cyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-2-methyl)-2-methyl-3-(4-trifluormethylphenyl-cyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-2-methyl-3-(4-Chlorphenyl)-cyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-2-phenyl-indenylchrom(III)dichlorid, 1-(8-Chi

chinolyl))-2-methyl-3-phenylcyclopentadienylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-2-phenylindenylchrom(III)dichlorid, 1-(2-Pyridylmethyl)-3-phenyl-cyclopentadienylchrom(III)dichlorid, 1-(2-Pyridylmethyll)-3-phenyl-cyclopentadienylchrom(III)dichlorid, 1-(2-Pyridylmethyll)-3-phenyl-cyclopentadienylchrom(III)dichlorid, 1-(2-Pyridylmethyll)-3-phenyl-cyclopentadienylchrom(III)dichlorid, 1-(2-Pyridylmethyll)-3-phenylchrom(III)dichlorid, 1-(2-Pyridylmethyll)-3-phenylchrom(III)dichlorid, 1 Pyridylmethyl)-2-methyl-3-phenyl-cyclopentadienylchrom(III)dichlorid, 1-(2-Chinolylmethyl)-3phenylcyclopentadienylchromdichlorid, 1-(2-Pyridylethyl))-3-phenyl-cyclopentadienylchromdichlorid, 1-(2-Pyridyl-1-methylethyl)-3-phenyl-cyclopentadienylchromdichlorid oder 1-(2-Pyridyl-1phenylmethyl)-3-phenyl-cyclopentadienylchromdichlorid.

Die Synthese derartiger Komplexverbindungen kann nach an sich bekannten Methoden erfolgen, wobei die Umsetzung der entsprechend substituierten Cyclopentadien ylanionen mit Halogeniden von Titan, Vanadium oder Chrom, bevorzugt ist. Beispiele für entsprechende Herstellungsverfahren sind u.a. im Journal of Organometallic Chemistry, 369 (1989), 359-370 und in der Ep-A-1212333 beschrieben.

15

5

10

Des weiteren wurde eine Verfahren zur Herstellung von Cyclopentadiensystemen der Formel (VIa) gefunden,

worin die Variablen folgende Bedeutung haben:

E12A-E16A 25

Kohlenstoff, wobei jeweils vier benachbarte E^{12A}-E^{16A} ein konjugiertes Diensystem bilden und das verbleibende der E^{12A}-E^{16A} zusätzlich einen Wasserstoff trägt,

unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR^{32A}₂, $N(SiR^{32A}_{3})_{2}$, OR^{32A}_{3} , $OSiR^{32A}_{3}$, BR^{32A}_{2} , SiR^{32A}_{3} , wobei die organischen Reste R^{26A} - R^{29A}_{3} auch durch Halogene substituiert sein können und je zwei vicinale Reste R^{26A} - R^{29A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R^{26A}-R^{29A} zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält,

R^{30A}-R^{31A}

unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{32A}₃ bedeutet, wobei die organischen Reste R^{30A}-R^{31A} auch durch Halogene substituiert sein können und R^{30A} oder R^{31A} und A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,

35

30

40

R^{32A}

unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R^{32A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,

5

gleich 0, 1 oder 2 ist,

Α

m

eine neutrale Donorgruppe enthaltend ein oder mehrere Atome der Gruppe 15 und/oder 16 des Periodensystems der Elemente oder ein Carben, bevorzugt ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem,

10

dadurch gekennzeichnet, dass es folgenden Schritt enthält:

a) die Umsetzung eines (A-(CR^{29A}R^{30A})_m)⁻-Anions mit einem Cyclopentandion oder einem Silylether eines enolisierten Cyclopentandions.

15

20

25

30

35

40

Als C-organische Substituenten R^{26A}-R^{31A} kommen beispielsweise folgende in Betracht: C₁-C₂₀-Alkyl, wobei das Alkyl linear oder verzweigt sein kann, wie z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl oder n-Dodecyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits eine C₆-C₁₀-Arylgruppe als Substituent tragen kann, wie z.B. Cyclopropan, Cyclobutan, Cyclopentan, Cyclohexan, Cyclohexan, Cyclobetan, Cyclopetan, C Cyclononan oder Cyclododekan, C2-C20-Alkenyl, wobei das Alkenyl linear, cyclisch oder verzweigt sein kann und die Doppelbindung intern oder endständig sein kann, wie z.B. Vinyl, 1-Allyl, 2-Allyl, 3-Allyl, Butenyl, Pentenyl, Hexenyl, Cyclopentenyl, Cyclohexenyl, Cyclooctenyl oder Cyclooktadienyl, C6-C20-Aryl, wobei der Arylrest durch weitere Alkylgruppen und/oder N- oderO-haltige Reste substituiert sein kann, wie z.B. Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, 2-Methoxyphenyl, 2-N,N-Dimethylaminophenyl oder Arylalkyl, wobei das Arylalkyl durch weitere Alkylgruppen substituiert sein kann, wie z.B. Benzyl, o-, m-, p-Methylbenzyl, 1- oder 2-Ethylphenyl, wobei gegebenenfalls auch zwei vicinale Reste R^{26A}-R^{29A} und/oder R^{30A} mit R^{31A} zu einem 5- oder 6-gliedrigen Ring verbunden sein können und die organischen Reste R^{26A}-R^{31A} auch durch Halogene, wie z.B. Fluor, Chlor oder Brom substituiert sein können. Als Si-organische Substituenten SiR^{32A}₃ kommen für R^{32A} die gleichen Reste, wie oben für R^{26A}-R^{31A} näher ausgeführt, wobei gegebenenfalls auch zwei R^{32A} zu einem 5- oder 6-gliedrigen Ring verbunden sein können, in Betracht, wie z.B. Trimethylsilyl, Triethylsilyl, Butyldimethylsilyl, Tributylsilyl, Triallylsilyl, Triphenylsilyl oder Dimethylphenylsilyl. Des weiteren kann R^{26A}-R^{29A} Amio NR^{32A}₂, bzw. N(SiR^{32A}₃)₂, Alkoxy oder Aryloxy OR^{32A} sein, wie beispielsweise Dimethylamio, N-Pyrolidinyl, Picolinyl, Methoxy, Ethoxy oder Isopropoxy. Bevorzugt werden Wasserstoff, sowie C1-C10-Alkyl wie Methyl, Ethyl, n-Propyl, n-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl,n-Octyl, Phenyl oder Benzyl als Reste R^{26A} bis R^{29A} verwendet. Als Reste R^{30A} bis R^{31A} sind Wasserstoff, sowie C₁-C₁₀-Alkyl wie Methyl, Ethyl, n-Propyl, n-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl,n- Octyl und insbesondere Wasserstoff besonders geeignet.

Die Variable A und deren bevorzugte Ausführungsformen sind gleich wie weiter oben beschrieben.

5

Substituierte und unsubstituierte 1,2-Cyclopentadione und 1,3-Cyclopentadione sind seit langem bekannt und sind kommerziell erhältlich. Die entsprechenden Silylether der enolisierten 1,2-oder 1,3-Cyclopentadione können beispielsweise durch Silylierung mit Trialkylsilylhalogeniden oder – triflaten von 1,2- oder 1,3-Cyclopentadionen in Anwesenheit katalytischer Mengen von Base hergestellt werden (z.B. S. Torckleson et al., Synthesis 1976, 11, 722-724).

10

Das (A-(CR^{30A}R^{31A})_m)—Anion ist ein A-Anion für m gleich 0, wobei die negative Ladung an A sitzt, und ist für m gleich 1 ein (A-CR^{30A}R^{31A})—Anion, wobei die negative Ladung am C-Atome, welche R^{30A} und R^{31A} trägt, sitzt. Für m gleich 2, ist das (A-(CR^{30A}R^{31A})_m)—Anion ein (A-CR^{30A}R^{31A} — CR^{30A}R^{31A})—Anion, wobei die negative Ladung am C-Atome, welche R^{30A} und R^{31A} trägt und nicht direkt mit A verknüpft ist, sitzt. Die Variablen und deren bevorzugten Ausführungsformen für A, R^{30A}, R^{31A} und m in diesen Anionen, sind gleich wie weiter oben für das Cyclopentadiensystem (VI) beschrieben. Das Kation des (A-(CR^{30A}R^{31A})_m)—Anions ist in der Regel ein Metall der Gruppe 1 oder 2 des Periodensystems der Elemente, welches weitere Liganden tragen kann. Besonders bevorzugt sind Lithium, Natrium oder Kalium-Kationen, welche auch neutrale Liganden wie Amine oder Ether tragen können und Magnesiumchlorid- oder Magnesiumbromid-Kation, welche ebenfalls weitere neutrale Liganden tragen können.

25

30

20

Die negative Ladung am Anion A sitzt bevorzugt an einem Kohlenstoff von A benachbart zu einem Heteroatom von A, insbesondere von einem Stickstoffatom, falls A ein solches enthält.

Das A⁻-Anion wird dabei üblicherweise durch Metall-Halogenaustausch von A-Halogen mit einer Alkylmetall-Verbindung mit C_1 - C_{10} -Alkylen, insbesondere C_4 -Alkylen, wie n-Butyl und tert.-Butyl, welche ein Metall der Gruppen 1 oder 2 enthält, insbesondere Lithium-, Magnesiumchlorid- oder Magnesiumbromid-Kationen erhalten. Geeignet sind beispielsweise Lithiumalkyle, Magnesiumalkyle, Magnesium(alkyl)halogenide, oder Gemische davon, insbesondere n-Butyllithium und tert.-Butyllithium. Das molare Verhältnis von Alkylmetall-Verbindung zu A-Halogen ist dabei üblicherweise im Bereich von 0,4:1 bis 100:1, bevorzugt im Bereich 0,9:1 bis 10:1 und besonders bevorzugt 0,95:1 bis 1,1:1. Beispiele für derartige Reaktionen sind unter anderem von Furukawa et al. in Tet. Lett. 28 (1987), 5845 beschrieben.

35

40

Das (A-CR^{30A}R^{31A})[—]-Anion wird üblicherweise durch Deprotonierung von A-CR^{30A}R^{31A}H erhalten. Dazu können starke Basen, wie beispielsweise Lithiumalkyle, Nahydrid, Natriumamide, Natriumalkoxide, Natriumalkyle, Kaliumalkyle, Kaliumalkoxide, Kaliumalkyle, Magnesiumalkyle, Magnesium(alkyl)halogenide, oder Gemische davon eingesetzt werden. Das molare

Verhältnis von Base zu A-CR^{30A}R^{31A}H ist dabei üblicherweise im Bereich von 0,4:1 bis 100:1, bevorzugt im Bereich 0,9:1 bis 10:1 und besonders bevorzugt 0,95:1 bis 1,1:1. Beispiele für derartige Deprotonierungen sind in L. Brandsma, Preparative polar organometallic chemistry 2, S.133-142 beschrieben.

5

Das (A-CR^{30A}R^{31A} –CR^{30A}R^{31A})[—]-Anion kann beispielsweise durch eine Reaktion des entsprechenden Halogenides A-CR^{30A}R^{31A} –(CR^{30A}R^{31A})-Halogen mit metallischem Magnesium hergestellt werden. Beispiele für analoge Reaktionen, die auch als Grignard Reaktionen bezeichnet werden, sind beispielsweise im Organikum, 18. Aufl., 1990, S.499 beschrieben.

10

20

Die Reaktionsbedingungen für diese Reaktionen sind weiter unten beschrieben.

15

Bei Reaktion in Schritt a) enteht als Reaktionsprodukt mit dem Cyclopentadion eine Cyclopentenon-oxy-Verbindung, die wässrige zum entsprechenden Alkohol aufgearbeitet werden kann oder beispielsweise unter sauern Bedingungen zum entsprechenden (A-(CR^{30A}R^{31A})_m)—substituierten Cyclopentenon umgesetzt werden. Als Reaktionsprodukt in Schritt a) mit den Silylethern der enolisierten Cyclopentadione entsteht ein Cyclopentenolat-silylether. Wässrige Aufarbeitung und Entwässerung führt ebenfalls zum entsprechenden (A-(CR^{30A}R^{31A})_m)—substituierten Cyclopentenon. Die weitere Reaktion zum Cyclopentadiensystem (VI) erfolgt wie üblich durch Alkylierung, Arylierung oder Hydridaddition an das Cycopentenon, das dann nach wässriger Aufarbeitung und Entwässerung entsteht.

Bevorzugt ist ein Verfahren zur Herstellung von Cyclopentadiensystemen der Formel (VIb) gefunden,

25

30

worin die Variablen folgende Bedeutung haben:

35 E^{12A}-E¹⁶

Kohlenstoff, wobei jeweils vier benachbarte E^{12A} - E^{16A} ein konjugiertes Diensystem bilden und das verbleibende der E^{12A} - E^{16A} zusätzlich einen Wasserstoff trägt,

R26A_R28A

unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, SiR^{32A}_{3} , wobei die organischen Reste R^{26A} - R^{28A} auch durch Halogene substituiert sein kön-

40

nen und je zwei vicinale Reste R^{27A}-R^{28A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R^{27A}-R^{28A} zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält,

5

unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{32A}₃ bedeutet, wobei die organischen Reste R^{30A}-R^{31A} auch durch Halogene substituiert sein können und R30A oder R31A und A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,

10

R^{32A}

unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R^{32A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,

15

Aryl^A

m

Α

C₆-C₂₂-Aryl, wie beispielsweise Phenyl, Naphthyl, Biphenyl, Anthracenyl oder Phenantrenyl, worin das Aryl auch durch N-, P-, O- oder S-haltige Substitenten, C1-C22-Alkyl, C2-C22-Alkenyl, Halogene oder Halogenalkyle oder Halogenaryle mit 1-10 C-Atomen substituiert sein kann und

20

gleich 0 oder 1 ist,

ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsy-

25

stem,

dadurch gekennzeichnet, dass es folgenden Schritt enthält:

30

a) die Umsetzung eines (A-(CR^{30A}R^{31A})_m) -Anions mit einem Cyclopentenon-System der Formel (VII)

$$R^{26A}$$
 O (VII)

35

, worin die Variablen die obige Bedeutung haben, zu einem Cyclopentenon der Formel (VIII)

15

20

25

30

35

40

$$\begin{array}{c|c}
R^{26A} & R^{30A} \\
 & C \\
 & R^{31A} \\
 & R^{27A}
\end{array}$$
(VIII)

worin die Variablen die obige Bedeutung haben. Des weiteren wurden Zwischenprodukte der Formel (VIII) und Cyclopentadienylsysteme der Formel (VI) gefunden.

Als C-organische Substituenten R^{26A}-R^{31A} kommen beispielsweise folgende in Betracht: C₁-C₂₀-

Alkyl, wobei das Alkyl linear oder verzweigt sein kann, wie z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl oder n-Dodecyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits eine C₆-C₁₀-Arylgruppe als Substituent tragen kann, wie z.B. Cyclopropan, Cyclobutan, Cyclopentan, Cyclohexan, Cycloheptan, Cyclooctan, Cyclononan oder Cyclododekan, C₂-C₂₀-Alkenyl, wobei das Alkenyl linear, cyclisch oder verzweigt sein kann und die Doppelbindung intern oder endständig sein kann, wie z.B. Vinyl, 1-Allyl, 2-Allyl, 3-Allyl, Butenyl, Pentenyl, Hexenyl, Cyclopentenyl, Cyclohexenyl, Cyclooctenyl oder Cyclooktadienyl, C₆-C₂₀-Aryl, wobei der Arylrest durch weitere Alkylgruppen und/oder N- oderO-haltige Reste substituiert sein kann, wie z.B. Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, 2-Methoxyphenyl, 2-N,N-Dimethylaminophenyl oder Arylalkyl, wobei das Arylalkyl durch weitere Alkylgruppen substituiert sein kann, wie z.B. Benzyl, o-, m-, p-Methylbenzyl, 1- oder 2-Ethylphenyl, wobei gegebenenfalls auch R^{27A} mit R^{28A} und/oder R^{30A} mit R^{31A} zu einem 5- oder 6-gliedrigen Ring verbunden sein kann und die organischen Reste R^{26A}-R^{31A} auch durch Halogene, wie z.B. Fluor, Chlor oder Brom substituiert sein können. Als Si-organische Substituenten SiR^{32A}₃

kommen für R^{32A} die gleichen Reste, wie oben für R^{26A}-R^{30A} näher ausgeführt, wobei gegebenenfalls auch zwei R^{32A} zu einem 5- oder 6-gliedrigen Ring verbunden sein können, in Betracht, wie z.B. Trimethylsilyl, Triethylsilyl, Butyldimethylsilyl, Tributylsilyl, Triallylsilyl, Triphenylsilyl oder Dimethylphenylsilyl. Bevorzugt werden Wasserstoff, sowie C₁-C₁₀-Alkyl wie Methyl, Ethyl, n-Propyl, n-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl,n- Octyl als Reste R^{26A} bis R^{28A} verwendet. Als Reste R^{30A} bis R^{31A} sind Wasserstoff, sowie C₁-C₁₀-Alkyl wie Methyl, Ethyl, n-Propyl, n-Butyl, tert.-Butyl, n-Hexyl, n-Heptyl,n- Octyl und insbesondere Wasserstoff besonders geeignet.

Aryl $^{\rm A}$ ist ein C $_{\rm 6}$ -C $_{\rm 22}$ -Aryl, wie beispielsweise Phenyl, Naphthyl, Biphenyl, Anthracenyl oder Phenantrenyl, worin das Aryl auch durch N-, P-, O- oder S-haltige Substitenten, C $_{\rm 1}$ -C $_{\rm 22}$ -Alkyl, C $_{\rm 2}$ -C $_{\rm 22}$ -Alkenyl, Halogene oder Halogenalkyle oder Halogenaryle mit 1 –10 C-Atomen substituiert sein kann, wie beispielsweise o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, o-, m-, p-Dimethylaminophenyl, o-, m-, p-, m-,

10

15

20

25

30

35

Methoxyphenyl, o-, m-, p-Fluorphenyl, o-, m-, p-Chlorphenyl, o-, m-, p-Trifluormethylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dichlorphenyl oder 2,3-, 2,4-, 2,5-, oder 2,6-Dichlorphenyl oder 2,3-, 2,4-, 2,5-, oder 2,6-Di(trifluormethyl)phenyl.

A ist ein unsubstituiertes, substituiertes oder kondensiertes heteroaromatisches Ringsystem, welches neben Kohlenstoffringgliedern Heteroatome aus der Gruppe Sauerstoff, Schwefel, Stickstoff und Phosphor enthalten kann. Beispiele für 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, sind 2-Furyl, 2-Thienyl, 2-Pyrrolyl, 3-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 5-Isothiazolyl, 1-Pyrazolyl, 3-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 5-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,3,4-Oxadiazol-2-yl oder 1,2,4-Triazol-3-yl. Beispiele für 6-gliedrige Heteroarylgruppen, welche ein bis vier Stickstoffatome und/oder ein Phosphoratom enthalten können, sind 2-Pyridinyl, 2-Phosphabenzolyl 3-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl oder 1,2,4-Triazin-6-yl. Die 5-Ring und 6-Ring Heteroarylgruppen können hierbei auch durch C₁-C₁₀-Alkyl, C₅-C₁₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-10 C-Atomen im Arylrest, Trialkylsilyl oder Halogenen, wie Fluor, Chlor oder Brom substituiert oder mit ein oder mehreren Aromaten oder Heteroaromaten kondensiert sein. Beispiele für benzokondensierte 5-gliedrige Heteroarylgruppen sind 2-Indolyl, 7-Indolyl, 2-Cumaronyl, 7-Cumaronyl, 2-Thionaphthenyl, 7-Thionaphthenyl, 3-Indazolyl, 7-Indazolyl, 2-Benzimidazolyl oder 7-Benzimidazolyl. Beispiele für benzokondensierte 6-gliedrige Heteroarylgruppen sind 2-Chinolyl, 8-Chinolyl, 3-Cinnolyl, 8-Cinnolyl, 1-Phthalazyl, 2-Chinazolyl, 4-Chinazolyl, 8-Chinazolyl, 5-Chinoxalyl, 4-Acridyl, 1-Phenanthridyl oder 1-Phenazyl. Bezeichnung und Nummerierung der Heterocyclen wurde aus L.Fieser und M. Fieser, Lehrbuch der organischen Chemie, 3. neubearbeitete Auflage, Verlag Chemie, Weinheim 1957 entnommen.

Von diesen heteroaromatischen Systemen A sind besonders unsubstituierte, substituierte und/oder kondensierte sechsgliedrige Heteroaromaten mit 1, 2, 3, 4 oder 5 Stickstoffatomen im Heteroaromatenteil, insbesondere substituiertes und unsubstituiertes 2-Pyridyl, 2-Chinolyl oder 8-Chinolyl bevorzugt. Bevorzugt ist A daher eine Gruppe der Formel (IV)

, wobei

40 E^{6A}-E^{11A} unabhängig voneinander Kohlenstoff oder Stickstoff,

20

25

30

35

R^{16A}-R^{21A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{22A}₃ bedeutet, wobei die organischen Reste R^{16A}-R^{21A} auch durch Halogene oder Stickstoff und weitere C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{22A}₃ substituiert sein können und je zwei vicinale Reste R^{16A}-R^{21A} oder R^{16A} und Z auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und

unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl oder
Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet
und je zwei Reste R^{22A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein
können und

p unabhangig voneinander 0 für E^{6A}-E^{11A} gleich Stickstoff und 1 für E^{6A}-E^{11A} gleich Kohlenstoff ist.

Insbesondere sind 0 oder 1 E^{6A}-E^{11A} gleich Stickstoff und die übrigen Kohlenstoff. Besonders bevorzugt ist A ein 2-Pyridyl, 6-Methyl-2-Pyridyl, 4-Methyl-2-Pyridyl, 5-Methyl-2-Pyridyl, 5-Ethyl-2-Pyridyl, 4,6-Dimethyl-2-Pyridyl, 3-Pyridazyl, 4-Pyrimidyl, 6-Methyl-4-Pyrimidyl, 2-Pyrazinyl, 6-Methyl-2-Pyrazinyl, 5-Methyl-2-Pyrazinyl, 3-Methyl-2-Pyrazinyl, 3-Sethylpyrazinyl, 3,5,6-Trimethyl-2-pyrazinyl, 2-Chinolyl, 4-Methyl-2-chinolyl, 6-Methyl-2-chinolyl, 7-Methyl-2-chinolyl, 2-Chinoxalyl, 3-Methyl-2-Chinoxalyl oder 8-Chinolyl.

m ist 0 oder 1. Insbesondere ist m gleich 0, wenn A ein Donor der Formel (IVb) ist und 1, wenn A ein Donor der Formel (IVa) ist.

Cyclopentenone der Formel (VII) sind seit langem bekannt und können beispielsweise durch Silylierung mit Trialkylsilylhalogeniden oder –triflaten von 1,3-Cyclopentadionen in Anwesenheit katalytischer Mengen von Base hergestellt werden (z.B. S. Torckleson et al., Synthesis 1976, 11, 722-724).

Das (A-(CR^{30A}R^{31A})_m)⁻-Anion ist ein A⁻-Anion für m gleich 0 und ist für m gleich 1 ein (A-CR^{29A}R^{30A})⁻-Anion. Die Variablen und deren bevorzugten Ausführungsformen für A, R^{29A}, R^{30A} und m in diesen Anionen, sind gleich wie weiter oben für das Cyclopentadiensystem (VI) beschrieben. Das Kation des (A-(CR^{29A}R^{30A})_m)⁻-Anions ist in der Regel ein Metall der Gruppe 1 oder 2 des Periodensystems der Elemente, welches weitere Liganden tragen kann. Besonders bevorzugt sind Lithium, Natrium oder Kalium-Kationen, welche auch neutrale Liganden wie Amine oder Ether tragen können und Magnesiumchlorid- oder Magnesiumbromid-Kation, welche ebenfalls weitere neutrale Liganden tragen können.

40

Die negative Ladung am Anion A sitzt bevorzugt an einem Kohlenstoff von A benachbart zu einem Heteroatom von A, insbesondere von einem Stickstoffatom, falls A ein solches enthält. Bevorzugt ist A 2-Furyl, 2-Thienyl, 2-Pyrrolyl, 3-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 5-Isothiazolyl, 1-Pyrazolyl, 3-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 5-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,3,4-Oxadiazol-2-yl oder 1,2,4-Triazol-3-yl, 2-Pyridinyl, 2-Phosphabenzolyl, 3-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl, 1,2,4-Triazin-6-yl, 2-Indolyl, 7-Indolyl, 2-Cumaronyl, 7-Cumaronyl, 2-Thionaphthenyl, 7-Thionaphthenyl, 3-Indazolyl, 7-Indazolyl, 2-Benzimidazolyl oder 7-Benzimidazolyl, 2-Chinolyl, 8-Chinolyl, 3-Cinnolyl, 8-Cinnolyl, 1-Phthalazyl, 2-Chinazolyl, 4-Chinazolyl, 8-Chinazolyl, 5-Chinoxalyl, 4-Acridyl, 1-Phenanthridyl oder 1-Phenazyl.

15

Im (A-CR^{29A}R^{30A})⁻-Anion trägt die -CR^{29A}R^{30A}-Gruppe die negative Ladung. Diese Gruppe sitzt bevorzugt in ortho-Position zu einem Heteroatom von A, insbesondere von einem Stickstoffatom, falls A ein solche enthält.

Bevorzugt ist das (A-(CR^{29A}R^{30A})_m)⁻-Anion eine Gruppe der Formel (IXa) (m=1) oder der Formel (IXb) (m=0):

(11.11.7)

25

20

, wobei

unabhängig voneinander Kohlenstoff oder Stickstoff,

30

unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{22A}_3 bedeutet, wobei die organischen Reste R^{16A} - R^{21A} auch durch Halogene oder Stickstoff und weitere C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{22A}_3 substituiert sein können und je zwei vicinale Reste R^{16A} - R^{21A} oder R^{16A} und Z auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und

35

R^{22A}

unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R^{22A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,

40

10

15

20

25

30

35

40

R^{29A}-R^{30A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{31A}₃ bedeutet, wobei die organischen Reste R^{29A}-R^{30A} auch durch Halogene substituiert sein können und R^{29A} oder R^{30A} und A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können.

R^{31A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R^{31A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und

p unabhangig voneinander 0 für E^{6A} - E^{11A} gleich Stickstoff und 1 für E^{6A} - E^{11A} gleich Kohlenstoff ist.

Insbesondere sind 0 oder 1 E^{6A}-E^{11A} gleich Stickstoff und die übrigen Kohlenstoff. Besonders bevorzugte A⁻-Systeme (IXb) sind substituierte und unsubstituiertes 8-Chinolyl.

Das A⁻-Anion wird dabei üblicherweise durch Metall-Halogenaustausch von A-Halogen mit einer Alkylmetall-Verbindung mit C₁-C₁₀-Alkylen, insbesondere C₄-Alkylen, wie n-Butyl und tert.-Butyl, welche ein Metall der Gruppen 1 oder 2 enthält, insbesondere Lithium-, Magnesiumchlorid- oder Magnesiumbromid-Kationen erhalten. Geeignet sind beispielsweise Lithiumalkyle, Magnesiumalkyle, Magnesium(alkyl)halogenide, oder Gemische davon, insbesondere n-Butyllithium und tert.-Butyllithium. Das molare Verhältnis von Alkylmetall-Verbindung zu A-Halogen ist dabei üblicherweise im Bereich von 0,4:1 bis 100:1, bevorzugt im Bereich 0,9:1 bis 10:1 und besonders bevorzugt 0,95:1 bis 1,1:1. Beispiele für derartige Reaktionen sind unter anderem von Furukawa et al. in Tet. Lett. 28 (1987), 5845 beschrieben.

Das (A-CR^{30A}R^{31A})—Anion wird üblicherweise durch Deprotonierung von A-CR^{30A}R^{31A}H erhalten. Dazu können starke Basen, wie beispielsweise Lithiumalkyle, Nahydrid, Natriumamide, Natriumalkoxide, Natriumalkyle, Kaliumhydrid, Kaliumamide, Kaliumalkoxide, Kaliumalkyle, Magnesiumalkyle, Magnesiumalkyle, Magnesium(alkyl)halogenide, oder Gemische davon eingesetzt werden. Das molare Verhältnis von Base zu A-CR^{30A}R^{31A}H ist dabei üblicherweise im Bereich von 0,4:1 bis 100:1, bevorzugt im Bereich 0,9:1 bis 10:1 und besonders bevorzugt 0,95:1 bis 1,1:1. Beispiele für derartige Deprotonierungen sind in L. Brandsma, Preparative polar organometallic chemistry 2, S.133-142 beschrieben.

Bevorzugt ist A-CR^{30A}R^{31A}H 2-Methylfuran, 2,5-Dimethylfuran, 2-Ethylfuran, 1,2-Dimethylpyrrol, 1,2,3-Trimethylpyrrol, 1,3-Dimethylpyrazol, 1,2-Dimethylimidazol, 1-Decyl-2-Methylimidazol, 1-Methyl-2-Undecylimidazol, 2-Picolin, 2-Ethylpyridin, 2-Propylpyridin, 2-Benzylpyridin, 2,6-Lutidin, 2,4-Lutidin, 2,5-Lutidin, 2,3-Cycloheptenopyridin, 5-Ethyl-2-Methylpyridin, 2,4,6-Collidin, 3-Methyl-

pyridazin, 4-Methylpyrimidin, 4,6-Dimethylpyrimidin, 2-Methylpyrazin, 2-Ethylpyrazin, 2,6-Dimethylpyrazin, 2,5-Dimethylpyrazin, 2,3-Dimethylpyrazin, 2,3-Diethylpyrazin, Tetrahydrochinoxalin, Tetramethylpyrazin, Chinaldin, 2,4-Dimethylchinolin, 2,6-Dimethylchinolin, 2,7-Dimethylchinolin, 2-Methylchinoxalin, 2,3-Dimethylchinoxalin oder Neocuproin.

5

10

15

20

Als Lösungsmittel im Metall-Halogen-Austauschschritt und im Deprotonierungsschritt können alle aprotischen Lösungsmittel verwendet werden, insbesondere aliphatische und aromatische Kohlenwasserstoffe wie beispielsweise n-Pentan, n-Hexan, iso-Hexan, n-Heptan, iso-Heptan, Decalin, Bezol, Toluol, Ethylbenzol oder Xylol oder Ether wie Diethylether, Dibutylether, Tetrahydrofuran, Dimethoxyethan oder Diethylenglykoldimethylether und Gemische davon. Die Reaktionen können bei Temperaturen von -100 bis +160°C, insbesondere von -80 bis 100°C ausgeführt werden. Bei Temperaturen über 40°C werden bevorzugt aromatische oder aliphatische Lösungsmittel verwendet, die keinen oder nur geringe Anteile an Ether als Lösungsmittel haben.

Das nach Metall-Halogen-Austausch oder Deprotonierung entstandene (A-(CR^{30A}R^{31A})_m)⁻-Anion kann isoliert oder bevorzugt ohne weitere Isolierung mit dem Cyclopentenon (VII) umgesetzt werden. Als Lösungsmittel zur weiteren Reaktion können alle aprotischen Lösungsmittel verwendet werden, insbesondere aliphatische und aromatische Kohlenwasserstoffe wie beispielsweise n-Pentan, n-Hexan, iso-Hexan, n-Heptan, iso-Heptan, Decalin, Bezol, Toluol, Ethylbenzol oder Xylol oder Ether wie Diethylether, Dibutylether, Tetrahydrofuran, Dimethoxyethan oder Diethylenglykoldimethylether und Gemische davon. Die Reaktion kann bei Temperaturen von -100 bis +160°C, bevorzugt von -80 bis 100°C und besonders bevorzugt von 0 bis 60°C ausgeführt werden. Bei Temperaturen über 40°C werden bevorzugt aromatische oder aliphatische Lösungsmittel verwendet, die keinen oder nur geringe Anteile an Ether als Lösungsmittel haben.

25

30

Das in Schritt a) gebildete Cyclopentenon der Formel (VIII) wird in einem darauf folgenden Schritt b) dann weiter mit einem Arylanion (Aryl^A) umgesetzt. Das Aryl-Anion hat als Gegenkation ein Metallkation. Dies ist in der Regel ein Metall der Gruppe 1 oder 2 des Periodensystems der Elemente, welches weitere Liganden tragen kann. Besonders bevorzugt sind Lithium, Natrium oder Kalium-Kationen, welche auch neutrale Liganden wie Amine oder Ether tragen können und Magnesiumchlorid- oder Magnesiumbromid-Kation, welche ebenfalls weitere neutrale Liganden tragen können, insbesondere Lithium-, Magnesiumchlorid- oder Magnesiumbromid-Kationen.

35

40

(Aryl^A) ist formal ein am aromatischen Ring deprotoniertes C₆-C₂₂-Aryl, wie beispielsweise Phenyl, Naphthyl, Biphenyl, Anthracenyl oder Phenantrenyl, worin das Aryl auch durch N-, P-, O- oder S-haltige Substitenten, C₁-C₂₂-Alkyl, C₂-C₂₂-Alkenyl, Halogene oder Halogenalkyle oder Halogenaryle mit 1 -10 C-Atomen substituiert sein kann, wie beispielsweise am aromatischen Ring deprotoniertes o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, o-, m-, p-Dimethylaminophenyl, o-, m-, p-Dimethylphosphinophenyl, o-, m-, p-Diphenylphosphinophenyl o-, m-, p-Methoxyphenyl, o-, m-, p-Fluorphenyl,

15

20

25

40

o-, m-, p-Chlorphenyl, o-, m-, p-Trifluormethylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Difluorphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dichlorphenyl oder 2,3-, 2,4-, 2,5-, oder 2,6-Di(trifluormethyl)phenyl.

Das (Aryl^A) -Anion wird dabei üblicherweise durch Metall-Halogenaustausch von Aryl^A-Halogen mit einer Alkylmetall-Verbindung mit C₁-C₁₀-Alkylen, insbesondere C₄-Alkylen, wie n-Butyl und tert.-Butyl, welche ein Metall der Gruppen 1 oder 2 enthält, insbesondere Lithium-, Magnesiumchlorid- oder Magnesiumbromid-Kationen erhalten. Geeignet sind beispielsweise Lithiumalkyle, Magnesiumalkyle, Magnesium(alkyl)halogenide, oder Gemische davon, insbesondere n-Butyllithium und tert.-Butyllithium. Das molare Verhältnis von Alkylmetall-Verbindung zu Aryl^A-Halogen ist dabei üblicherweise im Bereich von 0,4:1 bis 100:1, bevorzugt im Bereich 0,9:1 bis 10:1 und besonders bevorzugt 0,95:1 bis 1,1:1. Beispiele für derartige Reaktionen sind unter anderem von Furukawa et al. in Tet. Lett. 28 (1987), 5845 beschrieben. Das Arylanion trägt als Kation das Metallkation aus diesem Schritt.

Als Lösungsmittel und Reaktionstemperaturen in diesem Metall-Halogen-Austauschschritt sind die gleiche geeignet, wie sie weiter oben für den Metall-Halogen-Austausch von A-Halogen beschrieben sind. Viele Arylanionen sind auch kommerziell erhältlich.

Das nach Metall-Halogen-Austausch entstandene Aryl-Anion kann isoliert oder bevorzugt ohne weitere Isolierung mit dem Cyclopentenon (VIII) umgesetzt werden. Als Lösungsmittel zur weiteren Reaktion können alle aprotischen Lösungsmittel verwendet werden, insbesondere aliphatische und aromatische Kohlenwasserstoffe wie beispielsweise n-Pentan, n-Hexan, iso-Hexan, n-Heptan, iso-Heptan, Decalin, Bezol, Toluol, Ethylbenzol oder Xylol oder Ether wie Diethylether, Dibutylether, Tetrahydrofuran, Dimethoxyethan oder Diethylenglykoldimethylether und Gemische davon. Die Reaktion kann bei Temperaturen von -100 bis +160°C, bevorzugt von -80 bis 100°C und besonders bevorzugt von 0 bis 60°C ausgeführt werden. Bei Temperaturen über 40°C werden bevorzugt aromatische oder aliphatische Lösungsmittel verwendet, die keinen oder nur geringe Anteile an Ether als Lösungsmittel haben.

30 Das durch die Reaktion des Aryl-Anion mit dem Cyclopentenon (VIII) in Schritt b) entstandene Cyclopentenolat wird üblicherweise vor der Entwässerung protoniert. Das kann beispielsweise durch geringe Mengen an Säure, wie beispielsweise HCl, oder durch wässrige Aufarbeitung erfolgen. Anschliessend wird das so erhaltene Zwischenprodukt, ein Cyclopentenol, dehydratisiert und es entsteht das Cyclopentadiensystem (VIb). Dies wird oft unter Zugabe katalytischer Mengen an Säure, wie HCl oder p-Toluolsulfonsäure oder Jod durchgeführt. Die Entwässerung kann bei 35 Temperaturen von -10 bis +160°C, bevorzugt von 0 bis 100°C und besonders bevorzugt von 20 bis 80°C ausgeführt werden. Als Lösungsmittel können beispielsweise aprotischen Lösungsmittel verwendet werden, insbesondere aliphatische und aromatische Kohlenwasserstoffe wie beispielsweise n-Pentan, n-Hexan, iso-Hexan, n-Heptan, iso-Heptan, Decalin, Bezol, Toluol, Ethylbenzol oder Xylol oder Ether wie Diethylether, Dibutylether, Tetrahydrofuran, Dimethoxyethan

oder Diethylenglykoldimethylether und Gemische davon. Besonders gut geeignet sind Toluol oder Heptan. Oftmals werden für die Entwässerung auch Wasserabscheider benutzt.

Das Cyclopentenon (VIII) kann auch mit einem Alkylanion mit 1 bis 20 C-Atomen im Alkylrest umgesetzt werden. Dies führt nach Entwässerung jedoch zu einem Cyclopentadienprodukt (VI) worin Aryl durch Alkyl ersetzt ist.

Das so erhaltene Cyclopentadiensystem (VIa) oder (VIb) kann dann nach den üblichen Methoden deprotoniert werden, beispielsweise mit Kaliumhydrid oder n-Butyllithium, und weiter mit der entsprechenden Übergangsmetallverbindung, z.B. Chromtrichlorid-Tris(Tetrahydrofuran), zum entsprechenden Monocyclopentadienylkomplex (A) umgesetzt werden. Des weiter kann das Cyclopentadiensystem (VIa) oder (VIb) auch direkt beispielsweise mit Chromamiden zum Monocyclopentadienylkomplex (A) umgesetzt werden in Analogie zum Verfahren in EP-A-742 046.

Diese Methode zur Darstellung der Cyclopentadiensysteme (VI) ist besonders günstig, da sie mit einfachen Ausgangsstoffen erfolgt und gute Ausbeuten ergibt. Das (A-(CR^{30A}R^{31A})_m)—Anion ist ein sehr sperriges Nucleophil. Es lässt sich daher besser auf dem Weg der Michael-Addition einführen. Würde zuerst das Aryl oder Alkyl eingeführt und dann das sperrige (A-(CR^{30A}R^{31A})_m)—Anion so ergibt dies häufig als Nebenreaktionen Enolisierungen.

Die erfindungsgemässen Monocyclopentadienylkomplexe können allein oder mit weiteren Komponenten als Katalysatorsystem zur Olefinpolymerisation verwendet werden. Es wurden weiterhin Katalysatorsysteme zur Olefinpolymerisation gefunden, enthaltend

- 25 A) mindestens einen erfindungsgemässen Monocyclopentadienylkomplex
 - B) optional einen organischen oder anorganischen Träger,
 - C) optional eine oder mehrere aktivierende Verbindungen,
 - D) optional ein oder mehrere zur Olefinpolymerisation geeignete Katalysatoren und
 - E) optional eine oder mehrere Metallverbindungen mit einem Metall der Gruppe 1, 2 oder 13 des Periodensystems.

So kann mehr als einer der erfindungsgemässen Monocyclopentadienylkomplexe gleichzeitig mit dem oder den zu polymerisierenden Olefinen in Kontakt gebracht werden. Dies hat den Vorteil, daß so ein weiter Bereich an Polymeren erzeugt werden kann. Auf diese Weise können z.B. bimodale Produkte hergestellt werden.

20

10

15

35

30

20

25

30

Damit die erfindungsgemässen Monocyclopentadienylkomplexe bei Polymerisationsverfahren in der Gasphase oder in Suspension eingesetzt werden können, ist es oftmals von Vorteil, daß sie in Form eines Feststoffs eingesetzt werden, d.h. daß sie auf einen festen Träger B) aufgebracht werden. Weiterhin weisen die geträgerten Monocyclopentadienylkomplexe eine hohe Produktivität auf. Die erfindungsgemässen Monocyclopentadienylkomplexe können daher optional auch auf einem organischen oder anorganischen Träger B) immobilisiert und in geträgerter Form in der Polymerisation verwendet werden. Dadurch können beispielsweise Reaktorablagerungen vermieden werden und die Polymermorphologie gesteuert werden. Als Trägermaterialien werden bevorzugt Kieselgel, Magnesiumchlorid, Aluminiumoxid, mesoporöse Materialien, Aluminosilikate, Hydrotalcite und organische Polymere wie Polyethylen, Polypropylen, Polystyrol, Polytetrafluorethylen oder polar funktionalisierte Polymere, wie beispielsweise Copolymere von Ethen und Acrylester, Acrolein oder Vinylacetat verwendet.

Besonders bevorzugt ist ein Katalysatorsystem enthaltend einen erfindungsgemäßen Monocyclopentadienylkomplex und mindestens einen aktivierende Verbindung C), welches zusätzlich eine Trägerkomponente B) enthält.

Um ein solches geträgertes Katalysatorsystem zu erhalten, kann das trägerlose Katalysatorsystem mit einer Trägerkomponente B) umgesetzt werden. Prinzipiell ist die Reihenfolge der Zusammengabe von Trägerkomponente B), erfindungsgemäßem Monocyclopentadienylkomplex A) und der aktivierenden Verbindung C) beliebig. Der erfindungsgemäße Monocyclopentadienylkomplex A) und die aktivierende Verbindung C) können unabhängig voneinander oder gleichzeitig fixiert werden. Nach den einzelnen Verfahrensschritten kann der Feststoff mit geeigneten inerten Lösungsmitteln wie z. B. aliphatischen oder aromatischen Kohlenwasserstoffen gewaschen werden.

In einer bevorzugten Form der Darstellung des geträgerten Katalysatorsystems wird mindestens einer der erfindungsgemäßen Monocyclopentadienylkomplexe in einem geeigneten Lösungsmittel mit mindestens einer aktivierenden Verbindung C) in Kontakt gebracht, wobei bevorzugt ein lösliches Reaktionsprodukt, ein Addukt oder ein Gemisch erhalten wird. Die so erhaltene Zubereitung wird dann mit dem dehydratisierten oder inertisierten Trägermaterial vermischt, das Lösungsmittel entfernt und das resultierende geträgerte Monocyclopentadienylkomplex-Katalysatorsystem getrocknet, um sicherzustellen, daß das Lösungsmittel vollständig oder zum größten Teil aus den Poren des Trägermaterials entfernt wird. Der geträgerte Katalysator wird als frei fließendes Pulver erhalten. Beispiele für die technische Realisierung des obigen Verfahrens sind in WO 96/00243, WO 98/40419 oder WO 00/05277 beschrieben. Eine weitere bevorzugte Ausführungsform ist, zunächst die aktivierende Verbindung C) auf der Trägerkomponente B) zu erzeugen und anschliessend diese geträgerte Verbindung mit dem erfindungsgemäßen Monocyclopentadienylkomplex A) in Kontakt zu bringen.

Als Trägerkomponente B) werden vorzugsweise feinteilige Träger eingesetzt, die ein beliebiger organischer oder anorganischer Feststoff sein können. Insbesondere kann die Trägerkomponente B) ein poröser Träger wie Talk, ein Schichtsilikat, wie Montmorillonit, Mica oder Glimmer, ein anorganisches Oxid oder ein feinteiliges Polymerpulver (z.B. Polyolefin oder polar funktionalisiertes Polymer) sein.

Die verwendeten Trägermaterialien weisen vorzugsweise eine spezifische Oberfläche im Bereich von 10 bis $1000~\text{m}^2/\text{g}$, ein Porenvolumen im Bereich von 0,1 bis 5 ml/g und eine mittlere Partikelgröße von 1 bis $500~\mu\text{m}$ auf. Bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von $50~\text{bis}~700~\text{m}^2/\text{g}$, einem Porenvolumen im Bereich zwischen 0,4 und 3,5 ml/g und einer mittleren Partikelgröße im Bereich von $50~\text{bis}~350~\mu\text{m}$. Besonders bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von $200~\text{bis}~550~\text{m}^2/\text{g}$, einem Porenvolumen im Bereich zwischen 0,5 bis 3,0 ml/g und einer mittleren Partikelgröße von $10~\text{bis}~150~\mu\text{m}$.

Der anorganische Träger kann einer thermischen Behandlung z.B. zur Entfernung von adsorbiertem Wasser unterzogen werden. Eine solche Trocknungsbehandlung wird in der Regel bei Temperaturen im Bereich von 80 bis 800°C, vorzugsweise von 100 bis 300°C durchgeführt, wobei die Trocknung bei 100 bis 200°C, bevorzugt unter Vakuum und/oder Inertgasüberlagerung (z.B. Stickstoff) erfolgt, oder der anorganische Träger kann bei Temperaturen von 200 bis 1000°C calciniert werden, um gegebenenfalls die gewünschte Struktur des Festkörpers und/oder die gewünschte OH-Konzentration auf der Oberfläche einzustellen. Der Träger kann auch chemisch behandelt werden, wobei übliche Trocknungsmittel wie Metallalkyle, bevorzugt Aluminiumalkyle, Chlorsilane oder SiCl₄, aber auch Methylalumoxan zum Einsatz kommen können. Entsprechende Behandlungsmethoden werden zum Beispiel in WO 00/31090 beschrieben.

25

5

15

20

Das anorganische Trägermaterial kann auch chemisch modifiziert werden. Beispielsweise führt die Behandlung von Kieselgel mit NH₄SiF₆ oder anderen Fluorierungsmitteln zur Fluorierung der Kieselgeloberfläche oder die Behandlung von Kieselgelen mit Silanen, die Stickstoff-, Fluor- oder Schwefelhaltige Gruppen enthalten, führen zu entsprechend modifizierten Kieselgeloberflächen.

30

35

40

Organische Trägermaterialien wie feinteilige Polyolefinpulver (z.B. Polyethylen, Polypropylen oder Polystyrol) können auch verwendet werden und sollten vorzugsweise ebenfalls vor dem Einsatz von anhaftender Feuchtigkeit, Lösungsmittelresten oder anderen Verunreinigungen durch entsprechende Reinigungs- und Trocknungsoperationen befreit werden. Es können auch funktionaliserte Polymerträger, z. B. auf Basis von Polystyrol, Polyethylen oder Polypropylen, eingesetzt werden, über deren funktionelle Gruppen, zum Beispiel Ammonium- oder Hydroxygruppen, mindestens eine der Katalysatorkomponenten fixiert werden kann.

Geeignete anorganische Oxide als Trägerkomponente B) finden sich in den Gruppen 2, 3, 4, 5, 13, 14, 15 und 16 des Periodensystems der Elemente. Beispiele für als Träger bevorzugte Oxide

umfassen Siliziumdioxid, Aluminiumoxid, sowie Mischoxide der Elemente Calcium, Aluminium, Silizium, Magnesium oder Titan sowie entsprechende Oxid-Mischungen. Andere anorganische Oxide, die allein oder in Kombination mit den zuletzt genannten bevorzugten oxidischen Trägern eingesetzt werden können, sind z.B. MgO, CaO, AIPO₄, ZrO₂, TiO₂, B₂O₃ oder Mischungen davon.

Als feste Trägermaterialien B) für Katalysatoren für die Olefinpolymerisation werden bevorzugt Kieselgele verwendet, da sich aus diesem Material Partikel herstellen lassen, die in ihrer Größe und Struktur als Träger für die Olefinpolymerisation geeignet sind. Besonders bewährt haben sich dabei sprühgetrocknete Kieselgele, bei denen es sich um sphärische Agglomerate aus kleineren granulären Partikel, den sogenannten Primärpartikeln, handelt. Die Kieselgele können dabei vor ihrer Verwendung getrocknet und/oder calciniert werden.

15

5

10

Ebenfalls bevorzugte Träger B) sind Hydrotalcite und calcinierte Hydrotalcite. In der Mineralogie wird als Hydrotalcit ein natürliches Mineral mit der Idealformel

bezeichnet, dessen Struktur sich von derjenigen des Brucits Mg(OH)₂ ableitet. Brucit kristallisiert in einer Schichtstruktur mit den Metallionen in Oktaederlücken zwischen zwei Schichten aus dichtgepackten Hydroxylionen, wobei nur jede zweite Schicht der Oktaederlücken besetzt ist. Im Hydrotalcit sind einige Magnesiumionen durch Aluminiumionen ersetzt, wodurch das Schichtpaket eine positive Ladung erhält. Diese wird durch die Anionen ausgeglichen, die sich zusammen mit Kristallwasser in den Zwischenschichten befinden.

25

20

Entsprechende Schichtstrukturen finden sich nicht nur bei Magnesium-Aluminium-Hydroxiden, sondern allgemein bei schichtförmig aufgebauten, gemischten Metallhydroxiden der allgemeinen Formel

$$M(II)_{2x}^{2+}M(III)_{2}^{3+}(OH)_{4x+4} \cdot A_{2/n}^{n-} \cdot z H_{2}O$$

30

35

in der M(II) ein zweiwertiges Metall wie Mg, Zn, Cu, Ni, Co, Mn, Ca und/oder Fe und M(III) ein dreiwertiges Metall wie Al, Fe, Co, Mn, La, Ce und/oder Cr ist, x für Zahlen von 0.5 bis 10 in 0.5 Schritten, A für ein interstitielles Anion und n für die Ladung des interstitiellen Anions steht, die von 1 bis 8, üblicherweise von 1 bis 4 betragen kann und z eine ganze Zahl von 1 bis 6, insbesondere von 2 bis 4 bedeutet. Als interstitielle Anionen kommen organische Anionen wie Alkoholatanionen, Alkylethersulfate, Arylethersulfate oder Glykolethersulfate, anorganische Anionen wie insbesondere Carbonat, Hydrogencarbonat, Nitrat, Chlorid, Sulfat oder $8(OH)_4$ oder Polyoxometallanionen wie 80.70_{24} oder 8.70_{24} in Betracht. Es kann sich jedoch auch um eine Mischung mehrerer solcher Anionen handeln.

Dementsprechend sollen alle derartigen schichtförmig aufgebauten, gemischten Metallhydroxide als Hydrotalcite im Sinne der vorliegenden Erfindung verstanden werden.

Aus Hydrotalciten lassen sich durch Calcinieren, d.h. Erwärmen, die sogenannten calcinierten Hydrotalcite herstellen, wodurch u.a. der gewünschte Gehalt an Hydroxylgruppen eingestellt werden kann. Weiterhin verändert sich auch die Struktur des Kristallaufbaus. Die Herstellung der erfindungsgemäß eingesetzten calcinierten Hydrotalcite erfolgt üblicherweise bei Temperaturen oberhalb von 180°C. Bevorzugt ist eine Calcinierung für eine Zeitdauer von 3 bis 24 Stunden bei Temperaturen von 250°C bis 1000°C und insbesondere von 400°C bis 700°C. Gleichzeitiges Überleiten von Luft oder Inertgas oder Anlegen von Vakuum ist möglich.

15

5

10

Beim Erhitzen geben die natürlichen oder synthetischen Hydrotalcite zunächst Wasser ab, d.h. es erfolgt eine Trocknung. Beim weiteren Erhitzen, dem eigentlichen Calcinieren, wandeln sich die Metallhydroxide unter Abspaltung von Hydroxylgruppen und interstitiellen Anionen in die Metalloxide um, wobei auch in den calcinierten Hydrotalciten noch OH–Gruppen oder interstitielle Anionen wie Carbonat enthalten sein können. Ein Maß hierfür ist der Glühverlust. Dieser ist der Gewichtsverlust, den eine Probe erleidet, die in zwei Schritten zunächst für 30 min bei 200°C in einem Trockenschrank und dann für 1 Stunde bei 950°C in einem Muffelofen erhitzt wird.

Bei den als Komponente B) eingesetzten calcinierten Hydrotalciten handelt es sich somit um Mischoxide der zwei– und dreiwertigen Metalle M(II) und M(III), wobei das molare Verhältnis von M(II) zu M(III) in der Regel im Bereich von 0,5 bis 10, bevorzugt von 0,75 bis 8 und insbesondere von 1 bis 4 liegt. Weiterhin können noch übliche Mengen an Verunreinigungen, beispielsweise an Si, Fe, Na, Ca oder Ti und auch Chloride und Sulfate enthalten sein.

25

Bevorzugte calcinierte Hydrotalcite B) sind Mischoxide, bei denen M(II) Magnesium und M(III) Aluminium ist. Entsprechende Aluminium–Magnesium–Mischoxide sind von der Fa. Condea Chemie GmbH (jetzt Sasol Chemie), Hamburg unter dem Handelsnamen Puralox Mg erhältlich.

Bevorzugt sind weiterhin calcinierte Hydrotalcite, in denen die strukturelle Umwandlung nahezu oder vollständig abgeschlossen ist. Eine Calcinierung, d.h. eine Umwandlung der Struktur läßt sich beispielsweise anhand von Röntgendiffraktogrammen feststellen.

Die eingesetzten Hydrotalcite, calcinierten Hydrotalcite oder Kieselgele werden in der Regel als feinteilige Pulver mit einem mittleren Teilchendurchmesser D50 von 5 bis 200 μm, vorzugsweise von 10 bis 150 μm, besonders bevorzugt von 15 bis 100 μm und insbesondere von 20 bis 70 μm eingesetzt und weisen üblicherweise Porenvolumina von 0,1 bis 10 cm³/g, bevorzugt von 0,2 bis 5 cm³/g, und spezifische Oberflächen von 30 bis 1000 m²/g, bevorzugt von 50 bis 800 m²/g und insbesondere von 100 bis 600 m²/g auf. Die erfindungsgemässen Monocyclopenta-dienylkomplexe werden dabei bevorzugt in einer Menge aufgebracht, dass die Konzentration des

Übergangsmetallkomplex im fertigen Katalysatorsystem 5 bis 200 μmol, bevorzugt 20 bis 100 μmol und besonders bevorzugt 25 bis 70 μmol pro g Träger B) beträgt.

Die erfindungsgemäßen Monocyclopentadienylkomplexe sind für sich teilweise nur wenig polymerisationsaktiv und werden dann mit einem Aktivator, der Komponente C), in Kontakt gebracht um gute Polymerisationsaktivität entfalten zu können. Weiterhin enthält das Katalysatorsystem daher optional als Komponente C) eine oder mehrere aktivierende Verbindungen, bevorzugt mindestens eine kationenbildende Verbindung C).

Geeignete Verbindungen C), die in der Lage sind, durch Reaktion mit dem Monocyclopentadienylkomplex A) diesen in eine katalytisch aktive, bzw. aktivere Verbindung zu überführen, sind z.B. Verbindungen vom Typ eines Aluminoxans, einer starken neutralen Lewis-Säure, einer ionischen Verbindung mit lewissaurem Kation oder einer ionischen Verbindung mit Brönsted-Säure als Kation.

Als Aluminoxane können beispielsweise die in der WO 00/31090, beschriebenen Verbindungen eingesetzt werden. Besonders geeignet sind offenkettige oder cyclische Aluminoxanverbindungen der allgemeinen Formeln (X) oder (XI)

$$\begin{bmatrix} -AIJ_i & -AIJ_i \\ R^{1c} & R^{1c} \end{bmatrix}$$
 (XI)

wobei R1C-R4C

unabhängig voneinander eine C₁-C₆-Alkylgruppe bedeutet, bevorzugt eine Methyl-, Ethyl-, Butyl- oder Isobutylgruppe und I für eine ganze Zahl von 1 bis 30, bevorzugt 5 bis 25 steht.

Eine insbesondere geeignete Aluminoxanverbindung ist Methylaluminoxan.

Die Herstellung dieser oligomeren Aluminoxanverbindungen erfolgt üblicherweise durch kontrollierte Umsetzung einer Lösung von Trialkylaluminium mit Wasser. In der Regel liegen die dabei erhaltenen oligomeren Aluminoxanverbindungen als Gemische unterschiedlich langer, sowohl
linearer als auch cyclischer Kettenmoleküle vor, so daß I als Mittelwert anzusehen ist. Die Aluminoxanverbindungen können auch im Gemisch mit anderen Metallalkylen, üblicherweise mit
Aluminiumalkylen vorliegen. Als Komponente C) geeignete Aluminoxan-Zubereitungen sind
kommerziell erhältlich.

20

30

5

Weiterhin können als Komponente C) anstelle der Aluminoxanverbindungen der allgemeinen Formeln (X) oder (XI) auch modifizierte Aluminoxane eingesetzt werden, bei denen teilweise die Kohlenwasserstoffreste oder durch Wasserstoffatome, Alkoxy-, Aryloxy-, Siloxy-, oder Amidreste ersetzt sind.

5

10

15

20

Es hat sich als vorteilhaft erwiesen, die Monocyclopentadienylkomplexe A) und die Aluminoxanverbindungen in solchen Mengen zu verwenden, daß das atomare Verhältnis zwischen Aluminium aus den Aluminoxanverbindungen einschliesslich noch enthaltenem Aluminiumalkyl, und dem Übergangsmetall aus dem Monocyclopentadienylkomplex A) im Bereich von 1:1 bis 1000:1, bevorzugt von 10:1 bis 500:1 und insbesondere im Bereich von 20:1 bis 400:1, liegt.

Eine weitere Art von geeigneter aktivierender Komponente C) sind die sogenannten Hydroxyaluminoxane. Diese können beispielsweise durch Zugabe von 0,5 bis 1,2 Äquivalenten Wasser, bevorzugt 0,8 bis 1,2 Äquivalenten Wasser pro Äquivalent Aluminium einer Alkylaluminiumverbindung, insbesondere Triisobutylaluminium, bei niedrigen Temperaturen, üblicherweise unter 0°C hergestellt werden. Derartige Verbindungen und ihre Verwendung in der Olefinpolymerisation sind beispielsweise in der WO 00/24787 beschrieben. Das atomare Verhältnis zwischen Aluminium aus der Hydroxyaluminoxan-Verbindung und dem Übergangsmetall aus dem Monocyclopentadienylkomplex A) liegt üblicherweise im Bereich von 1:1 bis 100:1, bevorzugt von 10:1 bis 50:1 und insbesondere im Bereich von 20:1 bis 40:1. Bevorzugt wird in diesem Fall eine Monocyclopentadienyl-Dialkylverbindung A) eingesetzt.

Als starke, neutrale Lewissäuren sind Verbindungen der allgemeinen Formel (XII)

25

 $M^{1C}X^{1C}X^{2C}X^{3C}$

(XII)

bevorzugt, in der

M^{1C}

ein Element der 13. Gruppe des Periodensystems der Elemente bedeu-

30

tet, insbesondere B, Al oder Ga, vorzugsweise B,

 X^{1C} . X^{2C} und X^{3C}

für Wasserstoff, C_1 – C_{10} –Alkyl, C_6 – C_{15} -Aryl, Alkylaryl, Arylalkyl, Halogenalkyl oder Halogenaryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atome im Arylrest oder Fluor, Chlor, Brom oder Jod stehen, insbesondere für Halogenaryle, vorzugsweise für Pentafluorphenyl.

35

40

Weitere Beispiele für starke, neutrale Lewissäuren sind in der WO 00/31090 genannt.

Insbesondere sind als Komponente C) Borane und Boroxine geeignet, wie z. B. Trialkylboran, Triarylboran oder Trimethylboroxin. Besonders bevorzugt werden Borane eingesetzt, welche mindestens zwei perfluorierte Arylreste tragen. Besonders bevorzugt sind Verbindungen der allge-

10

15

meinen Formel (XII), in der X^{1C} , X^{2C} und X^{3C} gleich sind, vorzugsweise Tris(pentafluorphenyl)-boran.

Geeignete Verbindungen C) werden bevorzugt aus der Reaktion von Aluminium oder Borverbindungen der Formel (XII) mit Wasser, Alkoholen, Phenolderivaten, Thiophenolderivaten oder Anilinderivaten dargestellt, wobei besonders die halogenierten und insbesondere die perfluorierten Alkohole und Phenole von Bedeutung sind. Beispiele für besonders geeignete Verbindungen sind Pentafluorphenol, 1,1-Bis-(pentafluorphenyl)-methanol oder 4-Hydroxy-2,2',3,3',4,4',5,5',6,6'-nonafluorbiphenyl. Beispiele für die Kombination von Verbindungen der Formel (XII) mit Broenstedtsäuren sind insbesondereTrimethylaluminium/Pentafluorphenol, Trimethylaluminium/1-Bis-(pentafluorphenyl)-methanol, Trimethylaluminium/4-Hydroxy-2,2',3,3',4,4',5,5',6,6'-nonafluorbiphenyl, Triethylaluminium/Pentafluorphenol oder Triisobutylaluminium/Pentafluorphenol oder Triethylaluminium/4,4'-Dihydroxy-2,2',3,3',5,5',6,6'-octafluorbiphenyl Hydrat.

In weiteren geeigneten Aluminium und Bor-Verbindungen der Formel (XII) ist X^{1C} eine OH Gruppe, wie beispielsweise in Boronsäuren und Borinsäuren, wobei insbesondere Borinsäuren mit perfluorierten Arylresten, wie beispielsweise (C_6F_5)₂BOH, zu nennen sind.

Starke neutrale Lewissäuren, die sich als aktivierende Verbindungen C) eignen, sind auch die Reaktionsprodukte aus der Umsetzung einer Boronsäure mt zwei Äquivalenten eines Aluminiumtrialkyls oder die Reaktionsprodukte aus der Umsetzung eines Aluminiumtrialkyls mit zwei Äquivalenten einer aciden fluorierten, insbesondere perfluorierten Kohlenstoffverbindung wie Pentafluorphenol oder Bis-(pentafluorphenyl)-borinsäure.

25 Als ionische Verbindungen mit lewissauren Kationen sind salzartige Verbindungen des Kations der allgemeinen Formel (XIII)

 $[((M^{2C})^{a+})Q_1Q_2...Q_z]^{d+}$ (XIII)

30 geeignet, in denen

M^{2C} ein Element der 1. bis 16. Gruppe des Periodensystems der Elemente bedeutet,

 $\begin{array}{c} Q_1 \text{ bis } Q_z \\ 35 \end{array} \qquad \begin{array}{c} \text{f\"{u}r einfach negativ geladene Reste wie } C_1-C_{28}-\text{Alkyl}, \ C_6-C_{15}-\text{Aryl}, \ \text{Alkyl-aryl}, \ \text{Alkyl-aryl}, \ \text{Alkyl-aryl}, \ \text{Halogenaryl mit jeweils 6 bis 20 C-Atomen} \\ \text{im Aryl- und 1 bis 28 C-Atome im Alkylrest, } C_3-C_{10}-\text{Cycloalkyl}, \ \text{welches} \\ \text{gegebenenfalls mit } C_1-C_{10}-\text{Alkylgruppen substituiert sein kann, Halogen,} \\ C_1-C_{28}-\text{Alkoxy}, \ C_6-C_{15}-\text{Aryloxy}, \ \text{Silyl-oder Mercaptylgruppen} \end{array}$

20

25

30

35

40

a für ganze Zahlen von 1 bis 6 und

z für ganze Zahlen von 0 bis 5 steht,

5 d der Differenz a – z entspricht, wobei d jedoch größer oder gleich 1 ist.

Besonders geeignet sind Carboniumkationen, Oxoniumkationen und Sulfoniumkationen sowie kationische Übergangsmetallkomplexe. Insbesondere sind das Triphenylmethylkation, das Silberkation und das 1,1'–Dimethylferrocenylkation zu nennen. Bevorzugt besitzen sie nicht-koordinierende Gegenionen, insbesondere Borverbindungen wie sie auch in der WO 91/09882 genannt werden, bevorzugt Tetrakis(pentafluorophenyl)borat.

Salze mit nicht koordinierenden Anionen können auch durch Zusammengabe einer Bor- oder Aluminiumverbindung, z.B. einem Aluminiumalkyl, mit einer zweiten Verbindung, die durch Reaktion zwei oder mehrere Bor- oder Aluminiumatome verknüpfen kann, z.B. Wasser, und einer dritten Verbindung, die mit der Bor- oder Aluminiumverbindung eine ionisierende ionische Verbindung bildet, z.B. Triphenylchlormethan, oder optional einer Base, bevorzugt einer organischen stickstoffhaltigen Base, wie zum Beispiel einem Amin, einem Anilinderivat oder einem Stickstoffheterocyclus hergestellt werden. Zusätzlich kann eine vierte Verbindung, die ebenfalls mit der Bor- oder Aluminiumverbindung reagiert, z.B. Pentafluorphenol, hinzugefügt werden.

Ionische Verbindungen mit Brönsted-Säuren als Kationen haben vorzugsweise ebenfalls nichtkoordinierende Gegenionen. Als Brönstedsäure werden insbesondere protonierte Amin- oder Anilinderivate bevorzugt. Bevorzugte Kationen sind N,N-Dimethylanilinium, N,N-Dimethylcylohexylammonium und N,N-Dimethylbenzylammonium sowie Derivate der beiden letztgenannten.

Auch Verbindungen mit anionischen Borheterocyclen, wie sie in der WO 9736937 beschrieben sind eignen sich als Komponente C), insbesondere Dimethylaniliniumboratabenzole oder Tritylboratabenzole.

Bevorzugte ionische Verbindungen C) enthalten Borate, welche mindestens zwei perfluorierte Arylreste tragen. Besonders bevorzugt sind N,N-Dimethylaniliniumtetrakis-(pentafluorophenyl)-borat und insbesondere N,N-Dimethyl-cyclohexylammoniumtetrakis(pentafluorophenyl)borat, N,N-Dimethylbenzylammoniumtetrakis(pentafluorophenyl)borat oder Trityltetrakispentafluorophenylborat.

Es können auch zwei oder mehrere Boratanionen und oder Borane miteinander oder ein Boratanion mit einem Boran miteinander verbunden sein, wie in dem Dianion $[(C_6F_5)_3B-C_6F_4-B(C_6F_5)_3]^2$, dem Anion $[(C_6F_5)_3B-CN-B(C_6F_5)_3]^2$ oder das Boratanion kann über eine Brücke mit einer geeigneten funktionellen Gruppe auf der Trägeroberfläche gebunden sein.

Weitere geeignete aktivierende Verbindungen C) sind in der WO 00/31090 aufgelistet.

Die Menge an starken, neutralen Lewissäuren, ionischen Verbindungen mit lewissauren Kationen oder ionischen Verbindungen mit Brönsted–Säuren als Kationen beträgt bevorzugt 0,1 bis 20 Äquivalente, bevorzugt 1 bis 10 Äquivalente, bezogen auf den Monocyclopentadienylkomplex A).

Geeignete aktivierende Verbindungen C) sind auch Bor–Aluminium–Verbindungen wie Di–[bis-(pentafluorphenylboroxy)]methylalan. Entsprechende Bor–Aluminium–Verbindungen sind beispielsweise die in der WO 99/06414 offenbart.

Es können auch Gemische aller zuvor genannten aktivierenden Verbindungen C) eingesetzt werden. Bevorzugte Mischungen enthalten Aluminoxane, insbesondere Methylaluminoxan, und eine ionische Verbindung, insbesondere eine, die das Tetrakis(pentafluorphenyl)borat-Änion enthält, und/oder eine starke neutrale Lewissäure, insbesondere Tris(pentafluorphenyl)boran.

Vorzugsweise werden sowohl die Monocyclopentadienylkomplexe A) als auch die aktivierende Verbindungen C) in einem Lösungsmittel eingesetzt, wobei aromatische Kohlenwasserstoffe mit 6 bis 20 C-Atomen, insbesondere Xylole, Toluol, Pentan, Hexan, Heptan oder Mischungen von diesen bevorzugt sind.

Des weiteren besteht die Möglichkeit eine aktivierende Verbindung C) einzusetzen, welche gleichzeitig als Träger B) verwendet werden kann. Derartige Systeme werden beispielsweise aus einem mit Zirkoniumalkoxid behandelten anorganischem Oxid und anschliessender Chlorierung z.B. mit Tetrachlorkohlenstoff erhalten. Die Darstellung derartiger Systeme ist beispielsweise in der WO 01/41920 beschrieben.

Ein ebenfalls breites Produktspektrum kann durch Verwendung der erfindungsgemäßen Monocyclopentadienylkomplexe A) in Kombination mit mindestens einem weiteren für die Polymerisation von Olefinen geeigneten Katalysator D) erreicht werden. Daher können als optionale Komponente D) ein oder mehrere zur Olefinpolymerisation geeignete Katalysatoren im Katalysatorsystem verwendet werden. Als Katalysatoren D) kommen hierbei besonders klassische Ziegler Natta Katalysatoren auf der Basis von Titan und klassische Phillips Katalysatoren auf der Basis von Chromoxiden in Betracht.

Als Komponente D) kommen prinzipiell alle organische Gruppen enthaltenden Verbindungen der Übergangsmetalle der 3. bis 12. Gruppe des Periodensystems oder der Lanthaniden in Betracht, die bevorzugt nach Reaktion mit den Komponenten C), in Anwesenheit von A) und optional B) und/oder E) für die Olefinpolymerisation aktive Katalysatoren bilden. Üblicherweise handelt es sich hierbei um Verbindungen, bei denen mindestens ein ein- oder mehrzähniger Ligand über

.

5

10

15

20

25

35

40

Sigma- oder Pi-Bindung an das Zentralatom gebunden ist. Als Liganden kommen sowohl solche in Betracht, die Cyclopentadienylreste enthalten, als auch solche, die frei von Cyclopentadienylresten sind. In Chem. Rev. 2000, Vol. 100, Nr. 4 wird eine Vielzahl solcher für die Olefinpolymerisation geeigneter Verbindungen B) beschrieben. Weiterhin sind auch mehrkernige Cyclopentadienylkomplexe für die Olefinpolymerisation geeignet.

Besonders gut geeignete Komponenten D) sind auch solche mit mindestens einem Cyclopentadienyl-Liganden, die gemeinhin als Metallocenkomplexe bezeichnet werden. Hierbei eignen sich besonders Metallocenkomplexe der allgemeinen Formel (XIV)

10

15

5

$$R^{1D}$$
 E^{1D}
 E^{2D}
 E^{3D}
 E

in der die Substituenten und Indizes folgende Bedeutung haben: 20

 M^{1D}

Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän oder Wolfram, sowie Elemente der 3. Gruppe des Periodensystems und der Lanthaniden,

 X^{D} 25

Fluor, Chlor, Brom, Jod, Wasserstoff, C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₆-C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, -OR^{6D} oder -NR^{6D}R^{7D}, oder zwei Reste X^D für einen substituierten oder unsubstituierten Dienliganden, insbesondere einen 1,3-Dienliganden, stehen, und die Reste X^D gleich oder verschieden sind und gegebenenfalls miteinander verbunden sind,

30 . E^{1D}-E^{5D}

Kohlenstoff oder maximal ein E^{1D} bis E^{5D} Phosphor oder Stickstoff, bevorzugt Kohlenstoff

35

40

1, 2 oder 3 ist, wobei t entsprechend der Wertigkeit von M^{1D} den Wert aufweist, bei dem der Metallocenkomplex der allgemeinen Formel (XIV) ungeladen vorliegt,

wobei

R^{6D} und R^{7D}

C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest bedeuten und

R^{1D} bis R^{5D}

unabhängig voneinander Wasserstoff, C_1 – C_{22} –Alkyl, 5– bis 7–gliedriges Cycloalkyl oder Cycloalkenyl, die ihrererseits durch C_1 – C_{10} –Alkyl substituiert sein können, C_2 – C_{22} –Alkenyl, C_6 – C_{22} –Aryl, Arylalkyl mit 1 bis 16 C-Atomen im Alkylrest und 6 bis 21 C-Atomen im Arylrest, NR^{8D}_{21} , $N(SiR^{8D}_{3})_2$, OR^{8D} , $OSiR^{8D}_{31}$, SiR^{8D}_{31} , wobei die organischen Reste R^{1D} – R^{5D} auch durch Halogene substituiert sein können und/oder je zwei Reste R^{1D} – R^{5D} , insbesondere vicinale Reste, auch zu einem fünf-, sechsoder siebengliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R^{1D} – R^{5D} zu einem fünf-, sechsoder siebengliedrigen Heterocyclus verbunden sein können, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält, mit

10

5

R^{8D}

gleich oder verschieden C_1 – C_{10} –Alkyl, C_3 – C_{10} –Cycloalkyl, C_6 – C_{15} –Aryl, C_1 – C_4 –Alkoxy oder C_6 – C_{10} –Aryloxy sein kann und

15 7^{1D}

für X^D oder

steht,

$$R^{13D} - E^{10D} - E^{8D} - E^{8D} - E^{11D}$$

20

25

30

wobei die Reste

R^{9D} bis R^{13D}

unabhängig voneinander Wasserstoff, C₁–C₂₂–Alkyl, 5– bis 7–gliedriges Cycloalkyl oder Cycloalkenyl, die ihrererseits durch C₁–C₁₀–Alkyl substituiert sein können, C₂–

C₂₂–Alkenyl, C₆–C₂₂–Aryl, Arylalkyl mit 1 bis 16 C-Atomen im Alkylrest und 6-21 C-Atomen im Arylrest, NR^{14D}₂, N(SiR^{14D}₃)₂, OR^{14D}, OSiR^{14D}₃, SiR^{14D}₃, wobei die organischen Reste R^{9D}-R^{13D} auch durch Halogene substituiert sein können und/oder je zwei Reste R^{9D}-R^{13D}, insbesondere vicinale Reste, auch zu einem fünf-, sechsoder siebengliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R^{9D}-R^{13D} zu einem fünf-, sechsoder siebengliedrigen Heterocyclus verbunden sein können, welcher mindestens ein Atom aus der Gruppe N, P, O oder S

enthält, mit

R^{14D}

gleich oder verschieden C₁-C₁₀-Alkyl, C₃-C₁₀-Cycloalkyl, C₆-C₁₅-Aryl, C₁-C₄-Al-

koxy oder C₆-C₁₀-Aryloxy bedeuten,

35

Kohlenstoff oder maximal ein E^{6D} bis E^{10D} Phosphor oder Stickstoff, bevorzugt Kohlenstoff

oder wobei die Reste R^{4D} und Z^{1D} gemeinsam eine Gruppierung $-R^{15D}v-A^{1D}-$ bilden, in der

= BR^{16D} ,= $BNR^{16D}R^{17D}$,= AIR^{16D} ,-Ge-,-Sn-,-O-,-S-,= SO,= SO_2 ,= NR^{16D} ,= CO,= PR^{16D} oder= $P(O)R^{16D}$ ist,

20 wobei

R16D-R21D

gleich oder verschieden sind und jeweils ein Wasserstoffatom, ein Halogenatom, eine Trimethylsilylgruppe, eine C_1 — C_{10} —Alkylgruppe, eine C_1 — C_{10} —Fluoralkylgruppe, eine C_6 — C_{10} —Fluorarylgruppe, eine C_6 — C_{10} —Arylgruppe, eine C_1 — C_{10} —Alkoxygruppe, eine C_7 — C_{15} -Alkylaryloxygruppe, eine C_2 — C_{10} —Alkenylgruppe, eine C_7 — C_{40} —Arylalkylgruppe, eine C_8 — C_{40} —Arylalkenylgruppe oder eine C_7 — C_{40} —Alkylarylgruppe bedeuten oder wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen 4 bis 15 C—Atome aufweisenden gesättigten oder ungesättigten Ring bilden, und

 $M^{2D}-M^{4D}$

Silicium, Germanium oder Zinn ist, bevorzugt Silicium

 A^{1D}

$$-0$$
, $-S$, NR^{22D} , PR^{22D} , $=0$, $=S$, $=NR^{22D}$, $-O-R^{22D}$,

35

25

— NR^{22D}_2 , — PR^{22D}_2 oder ein unsubstituiertes, substituiertes oder kondensiertes, heterocyclisches Ringsystem bedeuten, mit

R^{22D}

unabhängig voneinander C_1 – C_{10} –Alkyl, C_6 – C_{15} –Aryl, C_3 – C_{10} –Cycloalkyl, C_7 – C_{18} –Alkylaryl oder Si(\mathbb{R}^{23D})3,

R^{23D}

Wasserstoff, C_1 – C_{10} –Alkyl, C_6 – C_{15} –Aryl, das seinerseits mit C_1 – C_4 –Alkylgruppen substituiert sein kann oder C_3 – C_{10} –Cycloalkyl,

٧

5

1 oder im Fall von A^{1D} gleich ein unsubstituiertes, substituiertes oder kondensiertes, heterocyclisches Ringsystem auch 0

oder wobei die Reste R^{4D} und R^{12D} gemeinsam eine Gruppierung –R^{15D}– bilden.

20

25

30

A^{1D} kann z.B. zusammen mit der Brücke R^{15D} ein Amin, Ether, Thioether oder Phosphin bilden. A^{1D} kann aber auch ein unsubstituiertes, substituiertes oder kondensiertes, heterocyclisches aromatisches Ringsystem darstellen, welches neben Kohlenstoffringgliedern Heteroatome aus der Gruppe Sauerstoff, Schwefel, Stickstoff und Phosphor enthalten kann. Beispiele für 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, sind 2-Furyl, 2-Thienyl, 2-Pyrrolyl, 3-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 5-Isothiazolyl, 1-Pyrazolyl, 3-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 5-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,3,4-Oxadiazol-2-yl oder 1,2,4-Triazol-3-yl. Beispiele für 6-gliedrige Heteroarylgruppen, welche ein bis vier Stickstoffatome und/oder ein Phosphoratom enthalten können, sind 2-Pyridinyl, 2-Phosphabenzolyl 3-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl oder 1,2,4-Triazin-6-yl. Die 5-Ring und 6-Ring Heteroarylgruppen können hierbei auch durch C₁-C₁₀-Alkyl, C₆-C₁₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-10 C-Atomen im Arylrest, Trialkylsilyl oder Halogenen, wie Fluor, Chlor oder Brom substituiert oder mit ein oder mehreren Aromaten oder Heteroaromaten kondensiert sein. Beispiele für benzokondensierte 5-gliedrige Heteroarylgruppen sind 2-Indolyl, 7-Indolyl, 2-Cumaronyl, 7-Cumaronyl, 2-Thionaphthenyl, 7-Thionaphthenyl, 3-Indazolyl, 7-Indazolyl, 2-Benzimidazolyl oder 7-Benzimidazolyl. Beispiele für benzokondensierte 6-gliedrige Heteroarylgruppen sind 2-Chinolyl, 8-Chinolyl, 3-Cinnolyl, 8-Cinnolyl, 1-Phthalazyl, 2-Chinazolyl, 4-Chinazolyl, 8-Chinazolyl, 5-Chinoxalyl, 4-Acridyl, 1-Phenanthridyl oder 1-Phenazyl. Bezeichnung und Nummerierung der Heterocyclen wurde aus L.Fieser und M. Fieser, Lehrbuch der organischen Chemie, 3. neubearbeitete Auflage, Verlag Chemie, Weinheim 1957 entnommen.

Bevorzugt sind die Reste X^D in der allgemeinen Formel (XIV) gleich, bevorzugt Fluor, Chlor, Brom, C_1 bis C_7 -Alkyl, oder Aralkyl, insbesondere Chlor, Methyl oder Benzyl.

35

Die Synthese derartiger Komplexverbindungen kann nach an sich bekannten Methoden erfolgen, wobei die Umsetzung der entsprechend substituierten, cyclischen Kohlenwasserstoffanionen mit Halogeniden von Titan, Zirkonium, Hafnium oder Chrom, bevorzugt ist.

Von den Metallocenkomplexen der allgemeinen Formel (XIV) sind

5 (XIV a), R^{13D} R^{5D} R^{1D} 10 R^{3D} (XIVb), R^{12D} 15 `R^{10D} R^{11D} R^{1D} R^{5D} 20 R^{3D} R^{13D} R^{15D} (XIVc), R^{9D} 25 R^{11D} R^{5D}∖ R^{1D} 30 R^{15D} R^{3D} (XIVd),

Von den Verbindungen der Formel (XIVa) sind insbesondere diejenigen bevorzugt, in denen

M^{1D} Titan, Vanadium oder Chrom

X^D Chlor, C₄—C₄—Alkyl, Phenyl, A

Chlor, C₁--C₄--Alkyl, Phenyl, Alkoxy oder Aryloxy

40 t die Zahl 1 oder 2 und

35

bevorzugt.

R^{1D} bis R^{5D}

Wasserstoff, C_1 - C_6 -Alkyl oder zwei benachbarte R^{1D} bis R^{5D} eine substituierte oder unsubstituierte Benzogruppe bedeuten.

Von den Verbindungen der Formel (XIVb) sind als bevorzugt diejenigen zu nennen, bei denen

M^{1D} für Titan, Zirkon, Vanadium, Hafnium oder Chrom steht,

X^D Fluor, Chlor, C₁−C₄−Alkyl oder Benzyl bedeuten, oder zwei Reste X^D für einen

substituierten oder unsubstituierten Butadienliganden stehen,

t 0 für Chrom, ansonsten 1 oder 2, bevorzugt 2

R^{1D} bis R^{5D} Wasserstoff, C₁-C₈-Alkyl, C₆-C₈-Aryl, NR^{8D}₂, OSiR^{8D}₃ oder Si(R^{8D})₃ und

R^{9D} bis R^{13D} Wasserstoff, C₁-C₈-Alkyl oder C₆-C₈-Aryl , NR^{14D}₂, OSiR^{14D}₃ oder Si(R^{14D})₃

oder jeweils zwei Reste R^{1D} bis R^{5D} und/oder R^{9D} bis R^{13D} zusammen mit dem C_5 -Ring ein Indenyl, Fluorenyl -oder substituiertes Indenyl- oder Fluorenyl-System bedeuten.

15

20

25

30

5

Insbesondere sind die Verbindungen der Formel (XIVb) geeignet, in denen die Cyclopentadienylreste gleich sind.

Beispiele für besonders geeignete Verbindungen D) der Fomel (XIVb) sind u.a.:

Bis(cyclopentadienyl)chrom, Bis(indenyl)titandichlorid, Bis(fluorenyl)titandichlorid, Bis(tetrahydroindenyl)titandichlorid, Bis(pentamethylcyclopentadienyl)titandichlorid, Bis(trimethylsilylcyclopentadienyl)titandichlorid, Bis(trimethoxysilylcyclopentadienyl)titandichlorid, Bis(isobutylcyclopentadienyl)titandichlorid, Bis(3-butenylcyclopentadienyl)titandichlorid, Bis(methylcyclopentadienyl)titandichlorid, Bis(1-,3-di-tert.butylcyclopentadienyl)titandichlorid, Bis(trifluoromethylcyclopentadienyl)titandichlorid, Bis(tert.butylcyclopentadienyl)titandichlorid, Bis(n-butylcyclopentadienyl)titandichlorid, Bis(phenylcyclopentadienyl)titandichlorid, Bis(N,N-dimethylaminomethyl-cyclopentadienyl)titandichlorid, Bis(1,3-dimethylcyclopentadienyl)titandichlorid, Bis(1-methyl-3-n-butylcyclopentadienyl)titandichlorid, (Cyclopentadienyl)(methylcyclopentadienyl)titandichlorid, (Cyclopentadienyl)-(n-butylcyclopentadienyl)titandichlorid, (Methylcyclopentadienyl)(n-butylcyclopentadienyl)titandichlorid, (Cyclopentadienyl)(1-methyl-3-n-butylcyclopentadienyl)titandichlorid, Bis(cyclopentadienyl)zirkoniumdichlorid, Bis(pentamethylcyclopentadienyl)zirkoniumdichlorid, Bis(methylcyclopentadienyl)zirkoniumdichlorid, Bis(ethylcyclopentadienyl)zirkoniumdichlorid, Bis(n-butylcyclopentadienyl)zirkoniumdichlorid, Bis(tert.butylcyclopentadienyl)zirkoniumdichlorid, Bis(isobutylcyclopentadienyl)zirkoniumdichlorid, Bis(3-butenylcyclopentadienyl)zirkoniumdichlorid, Bis(trifluoromethylcyclopentadienyl)zirkoniumdichlorid, Bis(phenylcyclopentadienyl)zirkoniumdichlorid, Bis-(1,3-dimethylcyclopentadienyl)zirkoniumdichlorid, Bis(1-n-butyl-3-methylcyclopentadienyl)zirkoniumdichlorid, Bis(1,3-ditert.butylcyclopentadienyl)zirkoniumdichlorid, Bis(tetramethylcyclopentadienyl)zirkoniumdichlorid, Bis(indenyl)zirkoniumdichlorid, Bis(tetrahydroindenyl)zirkoniumdichlorid,

Bis(fluorenyl)zirkoniumdichlorid, (Cyclopentadienyl)(methylcyclopentadienyl)zirkoniumdichlorid, (Cyclopentadienyl)zirkoniumdichlorid, (Methylcyclopentadienyl)(n-butylcyclopentadienyl)zirkoniumdichlorid, (Cyclopentadienyl)(1-methyl-3-n-butylcyclopentadienyl)-

zirkoniumdichlorid, Bis(trimethoxysilylcyclopentadienyl)zirkoniumdichlorid und Bis(trimethylsilylcyclopentadienyl)zirkoniumdichlorid, sowie die entsprechenden Dimethylzirkoniumverbindungen.

Von den Verbindungen der Formel (XIVc) sind diejenigen besonders geeignet, in denen

steht

5

10

15

20

25

30

35

40

in der

oder = BR^{16D} oder = BNR^{16D}R^{17D} bedeuten,

M^{1D} für Titan, Zirkon oder Hafnium, insbesondere Zirkon und
X^D gleich oder verschieden für Chlor, C₁–C₄–Alkyl, Benzyl, Phenyl oder C₇–C₁₅–Alkylaryloxy stehen.

Insbesondere geeignete Verbindungen der Formel (XVIc) sind solche der Formel (XVIc')

 R^{1D} R^{1D} R

die Reste R' gleich oder verschieden sind und Wasserstoff, C_1 – C_{10} –Alkyl oder C_3 - C_{10} -Cycloalkyl, bevorzugt Methyl, Ethyl, Isopropyl oder Cyclohexyl, C_6 – C_{20} –Aryl, bevorzugt Phenyl, Naphthyl oder Mesityl, C_7 – C_{40} –Arylalkyl, C_7 – C_{40} –Alkylaryl, bevorzugt 4-tert.-Butylphenyl oder 3,5-Di-tert.-butylphenyl, oder C_8 – C_{40} –Arylalkenyl bedeuten,

 R^{5D} und R^{13D} gleich oder verschieden sind und für Wasserstoff, C_1 - C_6 -Alkyl, bevorzugt Methyl, Ethyl, Isopropyl, n-Propyl, n-Butyl, n-Hexyl oder tert.-Butyl, stehen, und die Ringe S und T gleich oder verschieden, gesättigt, ungesättigt oder teilweise gesättigt sind.

Die Indenyl- bzw. Tetrahydroindenylliganden der Metallocene der Formel (XIVc') sind bevorzugt in 2-, 2,4-, 4,7-, 2,4,7-, 2,6-, 2,4,6-, 2,5,6-, 2,4,5,6- oder 2,4,5,6,7-Stellung, insbesondere in 2,4-Stellung substituiert, wobei für den Substitutionsort die folgende Nomenklatur gilt:

5

10

15

Als Komponente D) werden ausserdem bevorzugt verbrückte Bis-Indenyl-Komplexe in der Racoder Pseudo-Rac-Form eingesetzt, wobei es sich bei der pseudo-Rac-Form um solche Komplexe handelt, bei denen die beiden Indenyl-Liganden ohne Berücksichtigung aller anderen Substituenten des Komplexes relativ zueinander in der Rac-Anordnung stehen.

Weitere Beispiele für besonders geeignete Katalysatoren D) (XIVc) und (XIVc') sind u.a.

20

Methylenbis(cyclopentadienyl)zirkoniumdichlorid, Methylenbis(3-methylcyclopentadienyl)zirkoniumdichlorid, Methylenbis(3-n-butylcyclopentadienyl)zirkoniumdichlorid, Methylenbis(indenyl)zirkoniumdichlorid, Methylenbis(tetrahydroindenyl)zirkoniumdichlorid, Isopropylidenbis(cyclopentadienyl)zirkoniumdichlorid, Isopropylidenbis(3-trimethylsilylcyclopentadienyl)zirkoniumdichlorid, Isopropylidenbis(3-methylcyclopentadienyl)zirkoniumdichlorid, Isopropylidenbis(3-n-butylcyclopentadienyl)zirkoniumdichlorid, Isopropylidenbis(3-phenylcyclopentadienyl)zirkoniumdichlorid, Isopropylidenbis(indenyl)zirkoniumdichlorid, Isopropylidenbis(tetrahydroindenyl)zirkoniumdichlorid, Dimethylsilandiylbis(cyclopentadienyl)zirkoniumdichlorid, Dimethylsilandiylbis(indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(tetrahydroindenyl)zirkoniumdichlorid, Ethylenbis(cyclopentadienyl)zirkoniumdichlorid, Ethylenbis(indenyl)zirkoniumdichlorid, Ethylenbis(tetrahydroindenyl)zirkoniumdichlorid, Tetramethylethylen-9-fluorenylcyclopentadienylzirkoniumdichlorid, Dimethylsilandiylbis-(tetramethylcyclopentadienyl)zirkoniumdichlorid, Dimethylsilandiylbis(3-trimethylsilylcyclopentadienyl)zirkoniumdichlorid, Dimethylsilandiylbis(3-methylcyclopentadienyl)zirkoniumdichlorid, Dimethyl silandiylb is (3-n-butyl cyclopenta dienyl) zirkonium dichlorid Dimethyl silandiylb is (3-tert. butyl-5-tert. butyl-5-tmethylcyclopentadienyl)zirkoniumdichlorid, Dimethylsilandiylbis(3-tert.butyl-5-ethylcyclopentadienyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-methylindenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-isopropylindenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-tert.butylindenyl)zirkonium-

30

25

dichlorid, Diethylsilandiylbis(2-methylindenyl)zirkoniumdibromid, Dimethylsilandiylbis(3-methyl-5-35 methylcyclopentadienyl)zirkoniumdichlorid, Dimethylsilandiylbis(3-ethyl-5-isopropylcyclopentadi-

enyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-ethylindenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4,5-benzindenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-ethyl-4,5-benzindenyl)zirkoniumdichlorid, Methylphenylsilandiylbis(2-methyl-4,5-benzindenyl)zirkoniumdichlorid, Me-

thylphenylsilandiylbis(2-ethyl-4,5-benzindenyl)zirkoniumdichlorid, Diphenylsilandiylbis(2-methyl-40

10

15

20

25

4,5-benzindenyl)zirkoniumdichlorid, Diphenylsilandiylbis(2-ethyl-4,5-benzindenyl)zirkoniumdichlorid, Diphenylsilandiylbis(2-methylindenyl)hafniumdichlorid, Dimethylsilandiylbis(2-methyl-4phenyl-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-ethyl-4-(1-naphthyl)-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2--propyl-4-(1naphthyl)-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-i-butyl-4-(1-naphthyl)-indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-propyl-4-(9-phenanthryl)-indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4-isopropylindenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2,7dimethyl-4-isopropylindenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4,6-diisopropylindenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4[p-trifluormethylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4-[3',5'-dimethylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4-[4'-tert.butylphenyl]indenyl)-zirkoniumdichlorid, Diethylsilandiylbis(2-methyl-4-[4'-tert butylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-ethyl-4-[4'-tert.butylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-propyl-4-[4'-tert.butylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-isopropyl-4-[4'-tert.butylphenyl]indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-n-butyl-4-[4'-tert.butylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-hexyl-4-[4'-tert.butylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiyl(2-isopropyl-4-phenyl-indenyl)-(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid, Dimethylsilandiyl(2-isopropyl-4-(1-naphthyl)-indenyl)-(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdichlorid, Dimethylsilandiyl(2-isopropyl-4-[4'-tert.butylphenyl]indenyl)-(2-methyl-4-[4'-tert.butylphenyl]indenyl)zirkoniumdichlorid, Dimethylsilandiyl(2-isopropyl-4-[4'-tert.butylphenyl]indenyl)-(2-ethyl-4-[4'-tert.butylphenyl]indenyl)zirkoniumdichlorid, Dimethylsilandiyl(2-isopropyl-4-[4'-tert.butylphenyl]indenyl)-(2-methyl-4-[3',5'-bis-tert.butylphenyl]indenyl)zirkoniumdichlorid, Dimethylsilandiyl(2-isopropyl-4-[4'-tert.butylphenyl]indenyl)-(2-methyl-4-[1'-naphthyl]indenyl)zirkoniumdichlorid und Ethylen(2-isopropyl-4-[4'-tert.butylphenyl]indenyl)-(2-methyl-4-[4'-tert.butylphenyl]indenyl)zirkoniumdichlorid, sowie die entsprechenden Dimethyl-, Monochloromono(alkylaryloxy)und Di-(alkylaryloxy)-zirkoniumverbindungen. Die Komplexe werden bevorzugt in der rac-Form eingesetzt.

Die Synthese derartiger Komplexverbindungen kann nach an sich bekannten Methoden erfolgen, wobei die Umsetzung der entsprechend substituierten, cyclischen Kohlenwasserstoffanionen mit Halogeniden von Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal oder Chrom, bevorzugt ist. Beispiele für entsprechende Herstellungsverfahren sind u.a. im Journal of Organometallic Chemistry, 369 (1989), 359-370 beschrieben.

Bei den Verbindungen der allgemeinen Formel (XIVd) sind als besonders geeignet diejenigen zu nennen, in denen

 M^{1D}

Titan oder Zirkonium, insbesondere Titan, ist und

 X_D

für Chlor, C_1 – C_4 –Alkyl oder Phenyl stehen oder zwei Reste X^D für einen substituierten oder unsubstituierten Butadienliganden stehen,

40

.

R^{15D}

5

oder = BR^{16D} oder = BNR^{16D}R^{17D} bedeuten,

A^{1D}

für —O—, —S— oder NR^{22D}steht,

10

für 1 oder 2, bevorzugt 2 steht,

R^{1D} bis R^{3D} und R^{5D}

für Wasserstoff, C_1 - C_{10} -Alkyl, bevorzugt Methyl, C_3 - C_{10} -Cycloalkyl, C_6 - C_{15} -Aryl NR^{8D}_2 oder $Si(R^{8D})_3$ stehen, oder wobei zwei benachbarte Reste für 4 bis 12 C-Atome aufweisende cyclische Gruppen stehen, wobei besonders bevorzugt alle R^{1D} bis R^{3D} und R^{5D} Methyl sind.

15

Besonders geeignete Komplexe D) der Formel (XIVd) sind hierbei Dimethylsilandiyl(tetramethyl-cyclopentadienyl)(phenylamino)titandichlorid, Dimethylsilandiyl(tetramethylcyclopentadienyl)-(benzylamino)titandichlorid, Dimethylsilandiyl(tetramethylcyclopentadienyl)(tert.butyl-amino)-titandichlorid, Dimethylsilandiyl(tetramethylcyclopentadienyl)(adamantyl)titandichlorid oder Dimethylsilandiyl(indenyl)(tert.butylamino)titandichlorid.

Eine andere Gruppe von Verbindungen der Formel (XIVd), die besonders geeignet sind, die diejenigen in den

25 M^{1D}

20

für Titan, Vanadium oder Chrom, bevorzugt in der Oxidationsstufe III und

 X_D

für Chlor, C_1 – C_4 –Alkyl oder Phenyl stehen oder zwei Reste X^D für einen substituierten oder unsubstituierten Butadienliganden stehen,

30 R^{15D}

35

bedeuten,

25

30

40

dichlorid.

A^{1D} für — O — R^{22D}, — NR^{22D}₂, — PR^{22D}₂ oder ein unsubstituiertes, substituiertes oder kondensiertes, heterocyclisches, insbesondere heteroaro-

matisches Ringsystem steht,

5 v 1 oder im Fall von A^{1D} gleich ein unsubstituiertes, substituiertes oder kon-

densiertes, heterocyclisches Ringsystem 0 oder 1 und

R^{1D} bis R^{3D} und R^{5D} für Wasserstoff, C₁-C₁₀-Alkyl, C₃-C₁₀-Cycloalkyl, C₆-C₁₅-Aryl oder Si(R^{8D})₃

stehen, oder wobei zwei benachbarte Reste für 4 bis 12 C-Atome aufwei-

sende cyclische Gruppen stehen.

In einer bevorzugten Ausführungsform ist A^{1D} hierin ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem und M^{1D} Chrom. Ganz besonders bevorzugt ist A^{1D} ein unsubstituiertes oder substituiertes, z.B. alkylsubstituiertes, insbesondere in Position 8 oder 2 verknüpftes substituiertes oder unsubstituiertes Chinolyl oder Pyridyl und v gleich 0, z.B. 8-Chinolyl, 8-(2-Methylchinolyl), 8-(2,3,4-Trimethylchinolyl), 8-(2,3,4,5,6,7-Hexamethylchinolyl, v gleich 0 und M^{1D} gleich Chrom. Bevorzugte Katalysatoren D) dieser Art sind 1-(8-Chinolyl)-2methyl-4-methylcyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-3-isopropyl-5-methylcyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-3-tert.butyl-5-methylcyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-2,3,4,5-tetramethylcyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)tetrahydroindenylchrom(III)dichlorid, 1-(8-Chinolyl)indenylchrom(III)dichlorid, 1-(8-Chinolyl)-2-methylindenylchrom(III)dichlorid, 1-(8-ChinolyI)-2-isopropylindenylchrom(III)dichlorid, 1-(8-ChinolyI)-2-ethylindenylchrom(III)dichlorid, 1-(8-Chinolyl)-2-tert.butylindenylchrom(III)dichlorid, 1-(8-Chinolyl)benzindenylchrom(III)dichlorid, 1-(8-Chinolyl)-2-methylbenzindenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-2-methyl-4-methylcyclopentadienylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-2,3,4,5-tetramethylcyclopentadienylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))tetrahydroindenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))indenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-2methylindenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-2-isopropylindenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-2-ethylindenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-2-tert.butylindenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-benzindenylchrom(III)dichlorid, 1-(2-Pyridylmethyl)indenylchrom(III)dichlorid oder 1-(8-(2-Methylchinolyl))-2-methylbenzindenylchrom(III)-

Weiterhin bevorzugt wegen der einfachen Darstellbarkeit ist die Kombination von R^{15D} gleich CH=CH oder 1,2-Phenylen mit A^{1D} gleich NR^{22D}₂, als auch R^{15D} gleich CH₂, C(CH₃)₂ oder Si(CH₃)₂ und A^{1D} gleich unsubstituiertes oder substituiertes 2- oder 8-Chinolyl oder unsubstituiertes oder substituiertes 2-Pyridyl.

Die Herstellung derartiger funktioneller Cyclopentadienyl-Liganden ist seit langer Zeit bekannt. Verschiedene Synthesewege für diese Komplexliganden werden z.B. von M. Enders et. al. In

10

15

20

Chem. Ber. (1996), 129, 459-463 oder P. Jutzi und U. Siemeling in J. Orgmet. Chem. (1995), 500, 175-185 beschrieben.

Die Metallkomplexe, insbesondere die Chromkomplexe, lassen sich auf einfache Weise erhalten, wenn man die entsprechenden Metallsalze wie z.B. Metallchloride mit dem Ligandanion umsetzt (z.B. analog zu den Beispielen in DE-A-19710615).

Weitere geignete Katalysatoren D) sind Metallocene, mit mindestens einem Liganden, der aus einem Cyclopentadienyl oder Heterocyclopentadienyl mit einem ankondensierten Heterocyclus gebildet wird, wobei die Heterocyclen bevorzugt aromatisch sind und Stickstoff und/oder Schwefel enthalten. Derartige Verbindungen sind beispielsweise in der WO 98/22486 beschrieben. Dies sind insbesondere Dimethylsilandiyl-(2-methyl-4-phenyl-indenyl)-(2,5-dimethyl-N-phenyl-4-aza-pentalen)zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4-phenyl-4-phenyl-4-hydroazulenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-ethyl-4-phenyl-4-hydroazulenyl)zirkonium-dichlorid, Bis(2,5-dimethyl-N-phenyl-4-aza-pentalen)zirkoniumdichlorid.

Des weiteren sind Systeme als Katalysatoren D) geeignet, worin eine Metallocenverbindung beispielsweise mit einem anorganischem Oxid, welches mit Zirkoniumalkoxid behandelt wurde und anschliessend chloriert, beispielsweise mit Tetrachlorkohlenstoff, kombiniert wird. Die Darstellung derartiger Systeme ist beispielsweise in der WO 01/41920 beschrieben.

Geignete Katalysatoren D) sind außerdem Imidochromverbindungen, worin Chrom als strukturelles Merkmal mindestens eine Imidogruppe trägt. Diese Verbindungen und deren Herstellung sind z.B. in der WO 01/09148 beschrieben.

Weitere geeignete Komponenten D) sind Übergangsmetallkomplexe mit einem dreizähnigen macrocyclischen Liganden, insbesondere substituierten und unsubstituierten 1,3,5-Triazacyclohexanen und 1,4,7-Triazacyclononanen. Bei dieser Art von Katalysatoren sind ebenfalls die Chromkomplexe bevorzugt. Bevorzugte Katalysatoren dieser Art sind [1,3,5-Tri(methyl)-1,3,5-Triazacyclohexan]chromtrichlorid, [1,3,5-Tri(ethyl)-1,3,5-Triazacyclohexan]chromtrichlorid, [1,3,5-Tri(dodecyl)-1,3,5-Triazacyclohexan]chromtrichlorid und [1,3,5-Tri(benzyl)-1,3,5-Triazacyclohexan]chromtrichlorid.

35 Geeignete Katalysatoren D) sind weiterhin zum Beispiel Übergangsmetallkomplexe mit mindestens einem Liganden der allgemeinen Formeln XV bis XIX,

wobei das Übergangsmetall ausgewählt ist aus den Elementen Ti, Zr, Hf, Sc, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Pd, Pt oder ein Element der Seltenerd-Metalle. Bevorzugt sind hierbei Verbindungen mit Nickel, Eisen, Kobalt und Palladium als Zentralmetall.

25 E^F ist ein Element der 15. Gruppe des Periodensystems der Elemente bevorzugt N oder P, wobei N besonders bevorzugt ist. Die zwei oder drei Atome E^F in einem Molekül können dabei gleich oder verschieden sein.

Die Reste R^{1F} bis R^{25F}, die innerhalb eines Ligandsystems XV bis XIX gleich oder verschieden sein können, stehen dabei für folgende Gruppen:

R ^{1F} und R ^{4F}	unabhängig voneinander für Kohlenwasserstoff- oder substituierte
	Kohlenwasserstoffreste, bevorzugt sind dabei Kohlenwasserstoffreste
	bei denen das dem Element E ^F benachbarte Kohlenstoffatom minde-
	stens mit zwei Kohlenstoffatomen verbunden ist,

unabhängig voneinander für Wasserstoff, Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste, wobei R^{2F} und R^{3F} auch zusammen ein Ringsystem bilden können, in dem auch ein oder mehrere Heteroatome vorhanden sein können,

40

35

R^{2F} und R^{3F}

	R ^{6F} und R ^{8F}	unabhängig voneinander für Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste,		
5	R ^{5F} und R ^{9F}	unabhängig voneinander für Wasserstoff, Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste,		
	wobei R ^{eF} und R ^{5F} bzw	. R ^{8F} und R ^{9F} auch zusammen ein Ringsystem bilden können,		
10	R ^{7F} unabhängig voneinander für Wasserstoff, Kohlenwasserstoff- oder stituierte Kohlenwasserstoffreste, wobei zwei R ^{7F} auch zusammen Ringsystem bilden können,			
15	R ^{10F} und R ^{14F}	unabhängig voneinander für Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste,		
20	R ^{11F} , R ^{12F} , R ^{12F} und R ¹³	unabhängig voneinander für Wasserstoff, Kohlenwasserstoff oder substituierte Kohlenwasserstoffreste, wobei auch zwei oder mehr geminale oder vicinale Reste R ^{11A} , R ^{12A} , R ^{12A'} und R ^{13A} zusammen ein Ringsystem bilden können,		
20	R ^{15F} und R ^{18F}	unabhängig voneinander für Wasserstoff, Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste,		
25	R ^{16F} und R ^{17F}	unabhängig voneinander für Wasserstoff, Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste,		
30	R ^{19F} und R ^{25F}	unabhängig voneinander C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest , wobei die organischen Reste R^{19F} und R^{25F} auch durch Halogene substituiert sein können,		
35		unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{26F}_3 bedeutet, wobei die organischen Reste R^{20F} - R^{24F} auch durch Halogene substituiert sein können und je zwei vicinale Reste R^{20F} - R^{24F} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und		
40	R ^{26F}	unabhängig voneinander Wasserstoff, C ₁ -C ₂₀ -Alkyl, C ₂ -C ₂₀ -Alkenyl, C ₆ - C ₂₀ -Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-		

Atomen im Arylrest bedeutet und je zwei Reste R^{26F} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können.

X

für 0 oder 1, wobei der komplex der Formel (XVI) für x gleich 0 negativ

geladen ist und

У

5

10

20

25

30

35

40

für eine ganze Zahl zwischen 1 und 4 bevorzugt 2 oder 3.

Besonders geeignete sind Übergangsmetallkomplexe mit Fe, Co, Ni, Pd oder Pt als Zentralmetall und Liganden der Formel (XV). Besonders bevorzugt sind Diiminkomplexe des Ni oder Pd, z.B.:

Di(2,6-di-i-propyl-phenyl)-2,3-dimethyl-diazabutadien-palladiumdichlorid, Di(di-i-propyl-phenyl)-2,3-dimethyl-diazabutadien-nickel-dichlorid, Di(2,6-di-i-propyl-phenyl)-dimethyldiazabutadien-palladium-dimethyl, Di(2,6-di-i-propyl-phenyl)-2,3-dimethyl-diazabutadien-nickeldimethyl, Di(2,6-dimethyl-phenyl)-2,3-dimethyl-diazabutadien-palladiumdichlorid, Di(2,6-dimethyl-phenyl-p thyl-phenyl)-2,3-dimethyl-diazabutadien-nickel-dichlorid, Di(2,6-dimethyl-phenyl)-2,3-dimethyldiazabutadien-palladium-dimethyl, Di(2,6-dimethyl-phenyl)-2,3-dimethyl-diazabutadien-nickeldimethyl, Di(2-methyl-phenyl)-2,3-dimethyl-diazabutadien-palladium-dichlorid, Di(2-methylphenyl)-2,3-dimethyl-diazabutadien-nickel-dichlorid, Di(2-methyl-phenyl)-2,3-dimethyldiazabutadien-palladium-dimethyl, Di(2-methyl-phenyl)-2,3--dimethyl-diazabutadien-nickel-dimethyl, Diphenyl-2,3-dimethyl-diazabutadien-palladium-dichlorid, Diphenyl-2,3-dimethyldiazabutadien-nickel-dichlorid, Diphenyl-2,3-dimethyl-diazabutadien-palladium-dimethyl, Diphenyl-2,3-dimethyl-diazabutadien-nickel-dimethyl, Di(2,6-dimethyl-phenyl)-azanaphtenpalladium-dichlorid, Di(2,6-dimethyl-phenyl)-azanaphten-nickel-dichlorid, Di(2,6-dimethylphenyl)-azanaphten-palladium-dimethyl, Di(2,6-dimethyl-phenyl)-azanaphten-nickel-dimethyl, 1,1'-Dipyridyl-palladium-dichlorid, 1,1'-Dipyridyl-nickel-dichlorid, 1,1'-Dipyridyl-palladiumdimethyl, 1,1'-Dipyridyl-nickel-dimethyl.

Besonders geeignete Verbindungen (XIX) sind auch solche, die in J. Am. Chem. Soc. 120, S. 4049 ff. (1998), J. Chem. Soc., Chem. Commun. 1998, 849 und WO 98/27124 beschrieben sind. E^F ist bevorzugt Stickstoff und R^{19F} und R^{25F} sind in (XIX) bevorzugt Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphenyl, -Dichlorphenyl, oder -Dibromphenyl, 2-Chlor-6-methylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, insbesondere 2,3-oder 2,6-Dimethylphenyl, -Diisopropylphenyl, -Dichlorphenyl, oder -Dibromphenyl und 2,4,6-Trimethylphenyl. Gleichzeitig sind R^{20F} und R^{24F} bevorzugt Wasserstoff, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, Benzyl oder Phenyl, insbesondere Wasserstoff oder Methyl. R^{21F} und R^{23F} sind bevorzugt Wasserstoff und R^{22F} bevorzugt Wasserstoff, Methyl, Ethyl oder Phenyl, insbesondere Wasserstoff. Bevorzugt sind Komplexe der Liganden F-XIX mit Übergangsmetallen Fe, Co oder Ni, insbesondere Fe. Besonders bevorzugt sind 2,6-Diacetylpyridinbis(2,4-dimethylphenylimin)eisendichlorid, 2,6-

20

25

Diacetylpyridinbis(2,4,6-trimethylphenylimin)eisendichlorid, 2,6-Diacetylpyridinbis(2-chlor-6-methylphenyl)eisendichlorid, 2,6-Diacetylpyridinbis(2,6-diisopropylphenylimin)eisendichlorid, 2,6-Diacetylpyridinbis(2,6-diisopropylphenylimin)eisendichlorid, 2,6-Diacetylpyridinbis(2,4-dimethylphenylimin)cobaltdichlorid, 2,6-Diacetylpyridinbis(2,4-dimethylphenylimin)cobaltdichlorid, 2,6-Diacetylpyridinbis(2,4,6-trimethylphenylimin)cobaltdichlorid, 2,6-Diacetylpyridinbis(2,6-diisopropylphenylimin)cobaltdichlorid, 2,6-Diacetylpyridinbis(2,6-diisopropylphenylimin)cobaltdichlorid, 2,6-Diacetylpyridinbis(2,6-di-isopropylphenylimin)cobaltdichlorid.

Als Katalysatoren D) können auch Iminophenolat-Komplexe verwendet werden, wobei die Liganden beispielsweise ausgehend von substituierten oder unsubstituierten Salicylaldehyden und primären Aminen, insbesondere substituierten oder unsubstituierten Arylaminen, hergestellt werden. Auch Übergangsmetallkomplexe mit Pi-Liganden, die im Pi-System ein oder mehrere Heteroatome enthalten, wie beispielsweise der Boratabenzolligand, das Pyrrolylanion oder das Phospholylanion, lassen sich als Katalysatoren D) einsetzten.

Des weiteren sind als Katalysatoren D) Komplexe geeignet die zwei oder dreizähnige chelatisierende Liganden besitzen. Bei derartigen Liganden ist beispielsweise eine Ether- mit einer Aminoder Amid-Funktionalität oder ein Amid mit einem Heteroaromaten wie Pyridin verknüpft.

Durch derartige Kombinationen von Komponenten A) und D) können z.B. bimodale Produkte hergestellt oder in situ Comonomer erzeugt werden. Bevorzugt wird hierbei mindestens Monocyclopentadienylkomplex A) in Gegenwart von mindestens einem weiteren, für die Polymerisation von Olefinen üblichen Katalysator D) und gewünschtenfalls ein oder mehreren aktivierende Verbindungen C) verwendet. Hierbei sind je nach Katalysatorenkombinationen A) und D) ein oder mehrere aktivierende Verbindungen C) vorteilhaft. Die Polymerisationskatalysatoren D) können ebenfalls geträgert sein und gleichzeitig oder in einer beliebigen Reihenfolge mit dem erfindungsgemäßen Komplex A) verwendet werden. Dabei können der Monocyclopentadienylkomplex A) und die Polymerisationskatalysatoren D) beispielsweise zusammen auf einem Träger B) oder verschiedenen Trägern B) aufgebracht sein. Als Komponente D) können auch Mischungen verschiedener Katalysatoren eingesetzt werden. Das molare Verhältnis von Übergangsmetallkomplex A) zu Polymerisationskatalysator D) liegt üblicherweise im Bereich von 1:100 bis 100:1, bevorzugt von 1:10 bis 20:1 und besonders bevorzugt von 1:1 bis 10:1.

Das Katalysatorsystem kann als weitere Komponente E) zusätzlich noch eine Metallverbindung der allgemeinen Formel (XX),

$$M^{G}(R^{1G})_{r}G(R^{2G})_{sG}(R^{3G})_{tG}$$
 (XX)

in der

 M^{G}

5

Li, Na, K, Be, Mg, Ca, Sr, Ba, Bor, Aluminium, Gallium, Indium, Thallium, Zink

insbesondere Li, Na, K, Mg, Bor, Aluminium oder Zn bedeutet,

 R^{1G}

Wasserstoff, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, Alkylaryl oder Arylalkyl mit jeweils 1 bis

10 C-Atom im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

10 R^{2G} und R^{3G}

Wasserstoff, Halogen, C₁–C₁₀–Alkyl, C₆–C₁₅–Aryl, Alkylaryl, Arylalkyl oder Alkoxy

mit jeweils 1 bis 20 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

oder Alkoxy mit C₁-C₁₀-Alkyl oder C₆-C₁₅-Aryl,

15

 r^{G}

eine ganze Zahl von 1 bis 3

und

s^G und t^G

ganze Zahlen von 0 bis 2 bedeuten, wobei die Summe r^G+s^G+t^G der Wertigkeit

von M^G entspricht,

20

25

30

35

enthalten, wobei die Komponente E) nicht identisch mit der Komponente C) ist. Es können auch Mischungen verschiedener Metallverbindungen der Formel (XX) eingesetzt werden.

Von den Metallverbindungen der allgemeinen Formel (XX) sind diejenigen bevorzugt, in denen M^G Lithium, Magnesium, Bor oder Aluminium bedeutet und

 R^{1G}

für C₁-C₂₀-Alkyl stehen.

Besonders bevorzugte Metallverbindungen der Formel (XX) sind Methyllithium, Ethyllithium, n-Butyllithium, Methylmagnesiumchlorid, Methylmagnesiumbromid, Ethylmagnesiumchlorid, Ethylmagnesiumbromid, Butylmagnesiumchlorid, Dimethylmagnesium, Diethylmagnesium, Dibutylmagnesium, n-Butyl-n-octylmagnesium, n-Butyl-n-heptyl-magnesium, insbesondere n-Butyl-n-octylmagnesium, Tri-n-hexyl-aluminium, Tri-iso-butyl-aluminium, Tri-n-butylaluminium, Triethylaluminium, Dimethylaluminiumchlorid, Dimethylaluminiumfluorid, Methylaluminiumdichlorid, Methylaluminiumsesquichlorid, Diethylaluminiumchlorid und Trimethylaluminium und Mischungen davon. Auch die partiellen Hydrolyseprodukte von Aluminiumalkylen mit Alkoholen können eingesetzt werden.

Wenn eine Metallverbindung E) eingesetzt wird, ist sie bevorzugt in einer solchen Menge

im Katalysatorsystem enthalten, daß das molare Verhältnis von M^G aus Formel (XX) zu Über-

10

15

20

30

35

40

gangsmetall aus Monocyclopentadienylverbindung A) von 2000:1 bis 0,1:1, bevozugt von 800:1 bis 0,2:1 und besonders bevorzugt von 100:1 bis 1:1 beträgt.

In der Regel wird der Katalysatorfeststoff zusammen mit weiterer Metallverbindung E) der allgemeinen Formel (XX), wobei diese sich von der oder den bei der Herstellung des Katalysatorfeststoffs verwendeten Metallverbindungen E) unterscheiden kann, als Bestandteil eines Katalysatorsystems zur Polymerisation oder Copolymerisation von Olefinen eingesetzt. Es ist auch möglich, insbesondere dann, wenn der Katalysatorfeststoff keine aktivierende Komponente C) enthält, daß das Katalysatorsystem zusätzlich zum Katalysatorfeststoff eine oder mehrere aktivierende Verbindungen C) enthält, die gleich oder verschieden von eventuell im Katalysatorfeststoff enthaltenden aktivierenden Verbindungen C) sind.

Bevorzugt wird zur Herstellung der erfindungsgemäßen Katalysatorsysteme mindestens eine der Komponenten A) und/oder C) auf dem Träger B) durch Physisorption oder auch durch eine chemische Reaktion, das bedeutet eine kovalente Anbindung der Komponenten, mit reaktiven Gruppen der Trägeroberfläche fixiert. Die Reihenfolge der Zusammengabe von Trägerkomponente B), Komponente A) und gegebenenfalls Komponente C) ist beliebig. Die Komponenten A) und C) können unabhängig voneinander oder auch gleichzeitig oder vorvermischt zu B) zugegeben werden. Nach den einzelnen Verfahrensschritten kann der Feststoff mit geeigneten inerten Lösungsmitteln wie aliphatischen oder aromatischen Kohlenwasserstoffen gewaschen werden.

In einer bevorzugten Ausführungsform wird der Monocyclopentadienylkomplex A) in einem geeigneten Lösungsmittel mit der aktivierenden Verbindung C) in Kontakt gebracht, wobei üblicherweise ein lösliches Reaktionsprodukt, ein Addukt oder ein Gemisch erhalten wird. Die so erhaltene Zubereitung wird dann mit dem gegebenenfalls vorbehandelten Träger B) in Kontakt gebracht, und das Lösungsmittel vollständig oder teilweise entfernt. Bevorzugt erhält man dann einen Feststoff in Form eines frei fließenden Pulvers. Beispiele für die technische Realisierung eines solchen Verfahrens sind in WO 96/00243, WO 98/40419 oder WO 00/05277 beschrieben. Einer weitere bevorzugte Ausführungsform ist, zunächst die aktivierende Verbindung C) auf dem Träger B) zu erzeugen und anschließend diese geträgerte aktivierende Verbindung mit dem Monocyclopentadienylkomplex A) in Kontakt zu bringen.

Die Komponente D) kann ebenfalls in beliebiger Reihenfolge mit den Komponenten A) und optional B), C) und E) umgesetzt werden. Bevorzugt wird D) zuerst mit Komponente C) in Kontakt gebracht und danach mit den Komponenten A) und B) und eventuell weiterem C) wie weiter oben verfahren. In einer anderen bevorzugten Ausführungsform wird ein Katalysatorfeststoff aus den Komponenten A), B) und C) wie weiter oben beschrieben dargestellt und dieser während, zu Beginn oder kurz vor der Polymerisation mit der Komponente E) in Kontakt gebracht. Bevorzugt wird E) zuerst mit dem zu polymerisierenden α -Olefin in Kontakt gebracht und anschliessend der Katalysatorfeststoff aus den Komponenten A), B) und C) wie weiter oben beschrieben, zugegeben.

Der Monocyclopentadienylkomplex A) kann dabei entweder vor oder nach Kontaktierung mit den zu polymerisierenden Olefinen mit der oder den Komponenten C) und/oder D) in Kontakt gebracht werden. Auch eine Voraktivierung mit ein oder mehreren Komponenten C) vor der Durchmischung mit dem Olefin und weitere Zugabe der gleichen oder anderer Komponenten C) und/oder D) nach Kontaktierung dieses Gemisches mit dem Olefin ist möglich. Eine Voraktivierung erfolgt in der Regel bei Temperaturen zwischen 10-100°C, bevorzugt zwischen 20-80°C.

Es ist weiterhin möglich, das Katalysatorsystem zunächst mit α -Olefinen, bevorzugt linearen C_2 - C_{10} -1-Alkenen und insbesondere mit Ethylen oder Propylen vorzupolymerisieren und dann den resultierenden vorpolymerisierten Katalysatorfeststoff bei der eigentlichen Polymerisation zu verwenden. Üblicherweise liegt das Massenverhältnis von bei der Vorpolymerisation eingesetztem Katalysatorfeststoff zu hinzupolymerisiertem Monomer im Bereich von 1:0,1 bis 1:1000, bevorzugt 1:1 bis 1:200.

Weiterhin kann als Additiv während oder nach der Herstellung des Katalysatorsystems eine geringe Menge eines Olefins, bevorzugt eines α-Olefins, beispielsweise Vinylcyclohexan, Styrol oder Phenyldimethylvinylsilan, als modifizierende Komponente, ein Antistatikum oder eine geeignete inerte Verbindung wie eine Wachs oder Öl zugesetzt werden. Das molare Verhältnis von Additiven zu Übergangsmetallverbindung B) beträgt dabei üblicherweise von 1:1000 bis 1000:1, bevorzugt von 1:5 bis 20:1.

Die erfindungsgemäßen Katalysatorsysteme eignen sich zur Polymerisation von Olefinen und vor allem zur Polymerisation von α-Olefinen, d.h. Kohlenwasserstoffen mit endständigen Doppelbindungen. Geeignete Monomere können funktionalisierte olefinisch ungesättigte Verbindungen wie Acrolein, Ester- oder Amidderivate der Acryl- oder Methacrylsäure, beispielsweise Acrylate, Methacrylate oder Acrylnitril oder Vinylester, beispielsweise Vinylacetat sein. Bevorzugt sind unpolare olefinische Verbindungen, worunter auch arylsubstituierte α-Olefine fallen. Besonders bevorzugte α-Olefine sind lineare oder verzweigte C₂-C₁₂-1-Alkene, insbesondere lineare C₂-C₁₀-1-Alkene wie Ethen, Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Hepten, 1-Octen, 1-Decen oder verzweigte C₂-C₁₀-1-Alkene wie 4-Methyl-1-penten, konjugierte und nicht konjugierte Diene wie 1,3-Butadien, 1,5-Hexadien, oder 1,7-Octadien oder vinylaromatische Verbindungen wie Styrol oder substituiertes Styrol. Es können auch Gemische aus verschiedenen α-Olefinen polymerisiert werden. Bevorzugt wird mindestens ein Olefin ausgewählt aus der Gruppe Ethen, Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Hepten, 1-Octen und 1-Decen polymerisiert.

Geeignete Olefine sind auch solche, bei denen die Doppelbindung Teil einer cyclischen Struktur ist, die ein oder mehrere Ringsysteme aufweisen kann. Beispiele hierfür sind Cyclopenten, Cyclohexen, Norbornen, Tetracyclododecen oder Methylnorbornen oder Diene wie 5-Ethyliden-2-norbornen, Norbornadien oder Ethylnorbornadien.

40

35

30

5

10

15

Es können auch Gemische aus zwei oder mehreren Olefinen polymerisiert werden. Im Gegensatz zu einigen bekannten Eisen- und Cobaltkomplexen zeigen die erfindungsgemässen Übergangsmetallkomplexe eine gute Polymerisationsaktivität auch mit höheren α -Olefinen, so daß ihre Eignung zur Copolymerisation besonders hervorzuheben ist. Insbesondere lassen sich die erfindungsgemäßen Übergangsmetallkomplexe zur Polymerisation oder Copolymerisation von Ethen oder Propen einsetzen. Als Comonomere bei der Ethenpolymerisation werden bevorzugt C_3 - C_8 - α -Olefine oder Norbornen, insbesondere 1-Buten, 1-Penten, 1-Hexen und/oder 1-Octen verwendet. Bevorzugt werden Monomermischungen mit mindestens 50 mol-% Ethen verwendet. Bevorzugte Comonomere bei der Propylenpolymerisation sind Ethen und/oder Buten.

10

20

25

5

Die Polymerisation kann in bekannter Weise in Masse, in Suspension, in der Gasphase oder in einem überkritischen Medium in den üblichen, für die Polymerisation von Olefinen verwendeten Reaktoren durchgeführt werden. Sie kann diskontinuierlich oder bevorzugt kontinuierlich in einer oder mehreren Stufen erfolgen. Es kommen Hochdruck-Polymerisationsverfahren in Rohrreaktoren oder Autoklaven, Lösungsverfahren, Suspensionsverfahren, gerührte Gasphasenverfahren oder Gasphasenwirbelschichtverfahren in Betracht.

15

Die Polymerisationen werden üblicherweise bei Temperaturen im Bereich von -60 bis 350°C und unter Drücken von 0,5 bis 4000 bar bei mittleren Verweilzeiten von 0,5 bis 5 Stunden, bevorzugt von 0,5 bis 3 Stunden durchgeführt. Die vorteilhaften Druck- und Temperaturbereiche zur Durchführung der Polymerisationen hängen üblicherweise von der Polymerisationsmethode ab. Bei den Hochdruck-Polymerisationsverfahren, die üblicherweise bei Drücken zwischen 1000 und 4000 bar, insbesondere zwischen 2000 und 3500 bar, durchgeführt werden, werden in der Regel auch hohe Polymerisationstemperaturen eingestellt. Vorteilhafte Temperaturbereiche für diese Hochdruck-Polymerisationsverfahren liegen zwischen 200 und 320°C, insbesondere zwischen 220 und 290°C. Bei Niederdruck-Polymerisationsverfahren wird in der Regel eine Temperatur eingestellt, die mindestens einige Grad unter der Erweichungstemperatur des Polymerisates liegt. Insbesondere werden in diesen Polymerisationsverfahren Temperaturen zwischen 50 und 180°C, vorzugsweise zwischen 70 und 120°C, eingestellt. Bei den Suspensionspolymerisationen wird üblicherweise in einem Suspensionsmittel, vorzugsweise in einem inerten Kohlenwasserstoff, wie beispielsweise iso-Butan, oder Gemischen von Kohlenwasserstoffen oder aber in den Monomeren selbst polymerisiert. Die Polymerisationstemperaturen liegen i.a. im Bereich von -20 bis 115°C, der Druck i.a. im Bereich von 1 bis 100 bar. Der Feststoffgehalt der Suspension liegt i.a. im Be-

35

reich von 10 bis 80 %. Es kann sowohl diskontinuierlich, z.B. in Rührautoklaven, als auch kontinuierlich, z.B. in Rohrreaktoren, bevorzugt in Schleifenreaktoren, gearbeitet werden. Insbesondere kann nach dem Phillips-PF-Verfahren, wie in der US-A 3 242 150 und US-A 3 248 179 beschrieben, gearbeitet werden. Die Gasphasenpolymerisation wird i.a. im Bereich von 30 bis 125°C durchgeführt.

Von den genannten Polymerisationsverfahren ist die Gasphasenpolymerisation, insbesondere in

15

Gasphasenwirbelschicht-Reaktoren, die Lösungspolymerisation, sowie die Suspensionspolymerisation, insbesondere in Schleifen- und Rührkesselreaktoren, besonders bevorzugt. Die Gasphasenpolymerisation kann auch in der sogenannten condensed oder supercondensed Fahrweise durchgeführt werden, bei dem ein Teil des Kreisgases unter den Taupunkt gekühlt und als Zwei-Phasen-Gemisch in den Reaktor zurückgeführt wird. Des weiteren kann ein sogenannter Multizonenreaktor eingesetzt werden, worin zwei Polymerisationszonen miteinander verknüpft sind und das Polymer abwechselnd, mehrfach durch diese zwei Zonen geleitet wird, wobei die beiden Zonen auch unterschiedliche Polymerisationsbedingungen besitzen können. Eine derartiger Reaktor ist beispielsweise in der WO 97/04015 beschrieben. Die verschiedenen oder auch gleichen Polymerisationsverfahren können auch wahlweise miteinander in Serie geschaltet sein und so eine Polymerisationskaskade bilden, wie beispielsweise im Hostalen Verfahren. Auch eine parallele Reaktorführung zwei oder mehrerer gleicher oder verschiedener Verfahren ist möglich. Weiterhin können bei den Polymerisationen auch Molmassenregler, beispielsweise Wasserstoff, oder übliche Zuschlagstoffe wie Antistatika mitverwendet werden.

Die erfindungsgemässen Monocyclopentadienylkomplexe und die sie enthaltenden Katalysatorsysteme können auch mittels kombinatorischer Methoden dargestellt oder mit Hilfe dieser kombinatorischen Methoden auf ihre Polymerisationsaktivität getestet werden.

Durch das erfindungsgemäßen Verfahren lassen sich Polymerisate von Olefinen darstellen. Der Begriff Polymerisation, wie er zur Beschreibung der Erfindung hier verwendet wird, umfaßt sowohl Polymerisation als auch Oligomerisation, d.h. Oligomere und Polymere mit Molmassen Mw im Bereich von etwa 56 bis 10000000 können durch diese Verfahren erzeugt werden.

Auf Grund ihrer guten mechanischen Eigenschaften eignen sich die mit dem erfindungsgemäßen Katalysatorsystem hergestellten Polymerisate von Olefinen vor allem für die Herstellung von Folien, Fasern und Formkörpern.

Die erfindungsgemäßen Katalysatorsysteme zeichnen sich dadurch aus, daß mit ihnen Polymere mit niedrigeren Molmassen erhalten werden, als mit Katalysatorsystemen, welche keinen Arylsubstituenten besitzen. Die erfindungsgemässen Katalysatorsysteme zeigen ausserdem sehr hohe Aktivitäten.

Beispiele

35 Alle Synthesen und Polymerisationen wurden unter einer Stickstoff-Schutzgasatmosphäre durchgeführt.

Die Dichte [g/cm³] wurde nach ISO 1183 bestimmt.

40 Der Staudinger Index (η)[dl/g] wurde mit einem automatischen Ubbelohde Viskometer (Lauda

PVS 1) mit Dekalin als Lösungsmittel bei 130°C bestimmt (ISO1628 bei 130°C, 0,001 g/ml Decalin).

Die NMR Spektren wurden an einem Bruker DRX 200 (¹H: 200.13 MHz) gemessen. Als interner Standard diente bei ¹H-NMR-Spektren das Signal des nicht vollständig deuterierten Anteils der verwendeten Lösungsmittel. Alle Signale wurden auf die entsprechenden Literaturwerte kalibriert.

Massenspektren wurden an einem Finnigan MAT 8230 aufgenommen, hochaufgelöste Massenspektren an einem Micromass CTD ZAB-2F VH Spektrometer gemessen.

10

Abkürzungen in den folgenden Tabellen:

Kat.

Katalysator

t(Poly)

Dauer der Polymerisation

Polymer

Menge an gebildetem Polymer

15 Dichte

Polymerdichte

Prod.

Produktivität des Katalysators in g erhaltenem Polymer pro mmol eingeseztem Kataly-

· sator (Chromkomplex) pro Stunde

Hexen

Hexen während der Polymerisation anwesend oder nicht

20 Beispiel 1

1.1. Darstellung von 2-Methyl-3-(trimethylsilyloxy)-cyclopent-2-enon

Zu einer Mischung von 7,8 g (70 mmol) 2-Methylcyclopentan-1,3-dion und 0,29 g (4,4 mmol) Imidazol wurde 37,8 g (240 mmol) Hexamethyldisilazan zugegeben und anschliessend 2 h auf 120°C erhitzt. Man liess die Mischung unter Rühren auf Raumtemperatur abkühlen und destil-

lierte alle flüchtigen Anteile ab. 12,7 g (68 mmol, 98 %) 2-Methyl-3-(trimethylsilyloxy)-cyclopent-2enon wurden nach Destillation bei 60-63°C und 3x10⁻³ mbar als farblose Flüssigkeit erhalten.

NMR 1 H (200,13 MHZ, CDCl₃): 0.26 (9H, s, Me₃Si); 1.52 (3H, s, Me); 2.47-2.34 (4H, m, CH₂). NMR 1 H (50,1 MHZ, CDCl₃): 0.0 (Me₃Si); 5.3 (Me); 25.6 (CH₂); 32.9 (CH₂); 120.1 (C_{alkene}); 180.9 (C_{alkene-OTMS}); 205.9 (C-O).

1.2. Darstellung von 2-Methyl-3-(8-chinolyl)cyclopent-2-enon

Eine Mischung von 38,7 g (186 mmol) 8-Bromchinolin in 250 ml Tetrahydrofuran wurde auf -80°C gekühlt und anschliessend 74,4 ml n-Butyllithium (2,5 M in Hexan, 186 mmol) unter Rühren zugegeben. Man liess die Mischung weitere 15 min Rühren und gab unter Rühren 49,9 g (186 mmol) 2-Methyl-3-(trimethylsilyloxy)-cyclopent-2-enon zu. Man liess die Mischung unter Rühren auf Raumtemperatur erwärmen und eine weitere Stunde Rühren. Danach wurde die Reaktion mit einem Gemisch aus 40 g Eis und 30 ml konzentrierter Salzsäure hydrolysiert und das so erhaltene gemisch 3 h am Rückfluss erhitzt. Man liess die Mischung unter Rühren auf Raumtemperatur abkühlen und gab Ammonial-Lösung hinzu, bis ein pH von 12 erreicht war. Dann wurde die wäss-

30

35

rige Phase von der organischen Phase abgetrennt und die Wasserphase zweimal mit Diethylether extrahiert. Die organischen Phasen wurden vereinigt, über Magnesiumsulfat getrocknet, abfiltriert und das Lösungsmittel abdestilliert. Der so erhaltene Rückstand wurde bei 119-139°C und 2x10⁻² mbar destilliert und ergab 31,1 g (139,3 mmol, 74,9 %) 2-Methyl-3-(8-chinolyl)cyclopent-2-enon.

5

15

20

25

30

35

40

NMR 1 H (200,13 MHZ, CDCl₃): 1.69 (3H, t, Me); 2.58 (2H, m, CH₂); 3.12 (2H, m, CH₂); 7.39 (1H, dd, H₃); 7.47-7.60 (2H, m, CH_{chinolyl}); 7.82 (1H, dd, CH_{chinolyl}); 8.16 (1H, dd, H₄); 8.87 (1H, dd, H₂). MS (EI), m/z (%): 223 (8) [M⁺]; 195 (32) [M⁺-2CH₂]; 180(100) [M+-2CH₂-CH₃].

1.3. Darstellung von 3-Hydroxy-2-methyl-3-phenyl-1-(8-chinolyl)-cyclopenten

Eine Mischung von 2,4 g (10,75 mmol) 2-Methyl-3-(8-chinolyl)cyclopent-2-enon in 100 ml Tetrahydrofuran wurde auf -90°C gekühlt und anschliessend 7,2 ml Phenyllithium (1,8 M in Cyclohexan/Diethylether, 12,9 mmol) unter Rühren zugegeben. Man liess die Mischung eine weitere Stunde bei dieser Temperatur Rühren und gab dann 1 ml Essigsäureethylester zu. Dann liess man unter Rühren auf Raumtemperatur erwärmen, siedete 10 min unter Rückfluss und gab nach Abkühlen auf Raumtemperatur 100 ml Wasser zu. Dann wurde die wässrige Phase von der organischen Phase abgetrennt und die Wasserphase zweimal mit Diethylether extrahiert. Die organischen Phasen wurden vereinigt, über Magnesiumsulfat getrocknet, abfiltriert und das Lösungsmittel abdestilliert. Der Rückstand wurde in 5 ml Toluol gelöst und dann mit 80 ml Hexan versetzt. Der ausgefallene Niederschlag wurde abfiltriert und getrocknet. Man erhielt 1,874 g (6,22 mmol,

NMR ¹H (200,13 MHZ, CDCl₃): 1.48 (3H, m, Me); 2.57 (2H, m, CH₂); 2.98 (1H, m, CH₂); 3.2 (1H, m, CH₂); 4.31 (1H, s, OH); 7.39 (1H, dd, H₃); 7.25-7.81 (9H, m, CH_{chinolyl+Phenyl}); 8.16 (1H, dd, H₄); 8.88 (1H, dd, H₂).

1.4. Darstellung von 2-Methyl-3-phenyl-1-(8-chinolyl)cyclopentadien

57,9 % Ausbeute) 3-Hydroxy-2-methyl-3-phenyl-1-(8-chinolyl)-cyclopenten.

Zu einer Lösung von 1,717 g (5,7 mmol) 3-Hydroxy-2-methyl-3-phenyl-1-(8-chinolyl)-cyclopenten in 100 ml Tetrahydrofuran wurde eine Mischung von 5 ml Wasser und 5 ml konzentrierte Salzsäure zugegeben. Man liess die Mischung 90 min bei Raumtemperatur Rühren und gab dann Ammoniak-Lösung hinzu, bis ein pH von 12 erreicht war. Dann wurde die wässrige Phase von der organischen Phase abgetrennt und die Wasserphase zweimal mit Diethylether extrahiert. Die organischen Phasen wurden vereinigt, über Magnesiumsulfat getrocknet, abfiltriert und das Lösungsmittel abdestilliert. Der so erhaltene Rückstand wurde bei 157-170°C und 2x10⁻² mbar destilliert und ergab 1,12 g (3,95 mmol, 69,3 %) 2-Methyl-3-phenyl-1-(8-chinolyl)cyclopentadien.

NMR 1 H (200,13 MHZ, CDCi₃): 1.2 (3H, d, Me); 2.01 (3H, m, Me); 2.10 (3H, m, Me); 3.65 (2H, m, CH₂); 3.9 (2H, m, CH₂); 4.78 (1H, s, CHMe); 6.58 (1H, m, CpH); 6.64 (1H, m, CpH); 7.01 (1H, m, CpH); 7.03 (1H, m, CpH); 7.23-7.87 (27H, m, CH_{chinolyl+Phenyl}); 8.13-8.22 (3H, m, H₄); 8.97-9.05 (3H, m, H₂).

1.5. Darstellung von (2-Methyl-3-phenyl-1-(8-chinolyl)-cyclopentadienyl)chromdichlorid

Eine Lösung von 1,09 g (3,85 mmol) 2-Methyl-3-phenyl-1-(8-chinolyl)cyclopentadien in 40 ml
Tetrahydrofuran wurde zu einer Suspension von 0,157 g (3,85 mmol) Kaliumhydrid in 20 ml Tetrahydrofuran gegeben. Nach beendeter Zugabe wurde das Reaktionsgemisch 6 h bei Raumtemperatur gerührt und anschliessend zu einer Lösung von 1,44 g (3,85 mmol) Chromtrichloridtris-(tetrahydrofuran) in 50 ml Tetrahydrofuran unter Rühren zugegeben. Man rührte noch weitere 12 h bei Raumtemperatur, dann wurde das Lösungsmittel abdestilliert und der Rückstand mit 3 mal Hexan und 3 mal mit Toluol gewaschen. Der löslichen Anteile des so erhaltenen Rückstands wurden in Methylenchlorid aufgenommen und filtriert. Das Filtrat wurde von Lösungsmittel befreit gewaschen und im Vakuum getrocknet. Man erhielt 0,969 g (2,39 mmol) (2-Methyl-3-phenyl-1-(8-chinolyl)-cyclopentadienyl)chromdichlorid (62%).

NMR 1 H (200,13 MHZ, CDCl₃): -53.3 (1H, H₄); -16.5 (1H, H₅₋₇); 11.2 (3H, Me); 14.8 (1H, H₅); 49.4 (1H, H₃). MS (EI), m/z (%):404 (100) [M+]; 369 (76) [M+-Cl]; 332; (92) [M+-2HCl]; 280 (48) [M+-2HCl-Cr].

25 Beispiel 2

20

30

2.1. Darstellung von 3-Hydroxy-2-methyl-3-(4-benzotrifluorid)-1-(8-chinolyl)-cyclopenten Eine Lösung von 3,51 g (15,6 mmol) 4-Brombenzotrifluorid in 80 ml Tetrahydrofuran wurde auf -90°C gekühlt und anschliessend 6,2 ml n-Butyllithium (2,5 M in Hexan, 15,6 mmol) unter Rühren zugegeben. Nach 15 Minuten Rühren bei dieser Temperatur wurde eine Lösung von 2,9 g (13 mmol) 2-Methyl-3-(8-chinolyl)cyclopent-2-enon (siehe Beispiel 1.2) in 40 ml Tetrahydrofuran unter Rühren zugegeben. Man liess die Mischung eine weitere Stunde bei dieser Temperatur Rühren und gab dann 1 ml Essigsäureethylester zu. Dann liess man unter Rühren auf Raumtemperatur erwärmen und gab anschliessend 100 ml Wasser zu. Danach wurde die wässrige Phase von der organischen Phase abgetrennt und die Wasserphase zweimal mit Diethylether extrahiert. Die organischen Phasen wurden vereinigt, über Magnesiumsulfat getrocknet, abfiltriert und das Lösungsmittel abdestilliert. Der Rückstand wurde in 5 ml Toluol gelöst und dann mit 80 ml Hexan versetzt. Der ausgefallene Niederschlag wurde abfiltriert und getrocknet. Man erhielt 2,69 g (7,28 mmol) 3-Hydroxy-2-methyl-3-(4-benzotrifluorid)-1-(8-chinolyl)-cyclopenten. Eine zweite Fraktion wurde nach Abkühlen der Mutterlösung ergalten (1,42 g, 3,84 mmol, Gesamtausbeute: 85,4%).

NMR 1 H (200,13 MHZ, CDCl₃): 1.42 (3H, m, Me); 2.52 (2H, m, CH₂); 2.98 (1H, m, CH₂); 3.18 (1H, m, CH₂); 4.10 (1H, s, OH); 7.39 (1H, dd, H₃); 7.56-7.84 (7H, m, CH_{chinolyt+Aryl}); 8.18 (1H, dd, H₄); 8.89 (1H, dd, H₂).

MS (EI), m/z (%): 369 (9) [M $^+$]; 351 (100) [M $^+$ - H₂O]; 336 (12) [M $^+$ -H₂O-Me]; 181 (72) [M $^+$ -H₂O-Me-chinolyl-CH₂].

2.2. Darstellung von 2-Methyl-3-(4-benzotrifluorid)-1-(8-chinolyl)cyclopentadien
Zu einer Lösung von 3,61 g (9,8 mmol) 3-Hydroxy-2-methyl-3-(4-benzotrifluorid)-1-(8-chinolyl)cyclopenten in 100 ml Tetrahydrofuran wurde eine Mischung von 5 ml Wasser und 5 ml konzentrierte Salzsäure zugegeben. Man liess die Mischung 90 min bei Raumtemperatur Rühren und
gab dann Ammoniak-Lösung hinzu, bis ein pH von 12 erreicht war. Dann wurde die wässrige
Phase von der organischen Phase abgetrennt und die Wasserphase zweimal mit Diethylether
extrahiert. Die organischen Phasen wurden vereinigt, über Magnesiumsulfat getrocknet, abfiltriert
und das Lösungsmittel abdestilliert. Der so erhaltene Rückstand wurde bei 169-176°C und 2x10⁻²
mbar destilliert und ergab 2,09 g (5,9 mmol, 60,2 %) 2-Methyl-3-(4-benzotrifluorid)-1-(8-chinolyl)cyclopentadien.

NMR ¹H (200,13 MHZ, CDCl₃): 1.13 (3H, d, Me); 1.97 (3H, m, Me); 2.03 (3H, m, Me); 3.62 (2H, m, CH₂); 3.87 (2H, m, CH₂); 4.81 (1H, q, CHMe); 6.59 (1H, m, CpH); 6.66 (1H, m; CpH); 7.07 (1H, m, CpH); 7.26 (1H, m, CpH); 7.31-7.88 (24H, m, CH_{Chinolyl+Aryl}); 8.14-8.24 (3H, m, H₄); 8.93-9.02 (3H, m, H₂).

MS (EI), m/z (%): 351 (100) [M $^{+}$]; 167 (72) [M $^{+}$ -F₃CC₆H₄-C₃H₃].

2.3. Darstellung von (2-Methyl-3-(4-benzotrifluorid)-1-(8-chinolyl)-cyclopentadienyl)chromdichlorid

5

10

15

20

30

35

40

Eine Lösung von 2,09 g (5,95 mmol) 2-Methyl-3-(4-benzotrifluorid)-1-(8-chinolyl)cyclopentadien in 40 ml Tetrahydrofuran wurde zu einer Suspension von 0,242 g (5,95 mmol) Kaliumhydrid in 20 ml Tetrahydrofuran gegeben. Nach beendeter Zugabe wurde das Reaktionsgemisch 6 h bei Raumtemperatur gerührt und anschliessend zu einer Lösung von 2,23 g (5,95 mmol) Chromtrichloridtris(tetrahydrofuran) in 50 ml Tetrahydrofuran unter Rühren zugegeben. Man rührte noch weitere 12 h bei Raumtemperatur, dann wurde das Lösungsmittel abdestilliert und der Rückstand mit 3 mal Hexan und 3 mal mit Toluol gewaschen. Der so erhaltenen Rückstand wurden 3 mal mit

Methylenchlorid extrahiert und abfiltriert. Die vereinigten Methylenchlorid-Extrakte wurden vom Lösungsmittel befreit, gewaschen und im Vakuum getrocknet. Man erhielt 1,58 g (3,34 mmol) (2-Methyl-3-(4-benzotrifluorid)-1-(8-chinolyl)-cyclopentadienyl)chromdichlorid (56,1%).

5 NMR 1 H (200,13 MHZ, CDCl₃): -54.1 (1H, H₄); -17.1 (1H, H₅); 13.5 (3H, Me); 14.9 (1H, H₆); 48.8 (1H, H₃).

MS (EI), m/z (%): 472 (100) [M $^{+}$]; 437 (82) [M $^{+}$ -CI]; 400 (49) [M $^{+}$ -2HCI]; 380 (22) [M $^{+}$ -2HCI-Cr-HF]; 348 (23) [M $^{+}$ -2HCI-Cr].

10 Beispiel 3 (Vergleichsbeispiel)

15

25

30

35

40

3.1. Darstellung von 2-Methyl-3-pentyl-1-(8-chinolyl)-cyclopentadien

Eine Lösung von 6,8 g (32 mmol) 8-Bromchinolin in 90 ml Tetrahydrofuran wurde auf -90°C ge-kühlt und anschliessend 12,8 ml n-Butyllithium (2,5 M in Hexan, 32 mmol) unter Rühren zugegeben. Nach 15 Minuten Rühren bei dieser Temperatur wurden 5,3 g (32 mmol) 2-Methyl-3-pentylcyclopent-2-enon (Dihydroisojasmon) unter Rühren zugegeben. Man liess die Mischung eine weitere Stunde bei dieser Temperatur Rühren, liess auf Raumtemperatur erwärmen und siedete dann eine Stunde am Rückfluss. Nach Abkühlen auf Raumtemperatur wurde eine Mischung aus 30 g Eis und 30 g konzentrierter Salzsäure zugegeben und das so erhaltene Gemisch 2 h am Rückfluss erhitzt. Man liess die Mischung unter Rühren auf Raumtemperatur abkühlen und gab Ammonial-Lösung hinzu, bis ein pH von 12 erreicht war. Danach wurde die wässrige Phase von der organischen Phase abgetrennt und die Wasserphase zweimal mit Diethylether extrahiert. Die organischen Phasen wurden vereinigt, über Magnesiumsulfat getrocknet, abfiltriert und das Lösungsmittel abdestilliert. Der Rückstand wurde in 5 ml Toluol gelöst und dann mit 80 ml Hexan versetzt. Der ausgefallene Niederschlag wurde abfiltriert und getrocknet. Der so erhaltene Rückstand wurde bei >110°C und 1x10°2 mbar destilliert und ergab 2,6 g 2-Methyl-3-pentyl-1-(8-chinolyl)-cyclopentadien.

3.2. Darstellung von (2-Methyl-3-pentyl-1-(8-chinolyl)-cyclopentadienyl)chromdichlorid

Eine Lösung von 0,5 g (1,81 mmol) 2-Methyl-3-pentyl-1-(8-chinolyl)-cyclopentadien in 20 ml Tetrahydrofuran wurde zu einer Suspension von 0,07 g (1,81 mmol) Kaliumhydrid in 20 ml Tetrahydrofuran gegeben. Nach beendeter Zugabe wurde das Reaktionsgemisch 16 h bei Raumtemperatur gerührt und anschliessend zu einer Lösung von 0,67 g (1,81 mmol) Chromtrichloridtris(tetrahydrofuran) in 20 ml Tetrahydrofuran unter Rühren zugegeben. Man rührte noch weitere 16 h bei

Raumtemperatur, dann wurde ausgefallene Produkt abfiltriert und zweimal mit Hexan gewaschen. Man erhielt 0,45 g (1,12 mmol) (2-Methyl-3-pentyl-1-(8-chinolyl)-cyclopentadienyl)chromdichlorid (62%).

5 Beispiele 4-7

Polymerisation

Es wurde in einem 1l-Vierhalskolben mit Kontaktthermometer, Rührer mit Teflonblatt, Heizpilz und Gaseinleitungsrohr bei 40°C unter Argon polymerisiert. Zu einer Lösung der in Tabelle 1 angegebenen Menge des entsprechenden Komplexes in 250 ml Toluol wurde die entsprechende MAO-

Menge (10%ige Lösung in Toluol, Cr:Al siehe Tabelle 1) zugegeben und auf 40°C im Wasserbad erhitzt.

Bei den Ethylenhomopolymerisationen wurde Ethylen mit einer Flußgeschwindigkeit von ca. 20 bis 40 l/h bei Atmosphärendruck durchgeleitet. Im Falle der Ethylen/1-Hexen Copolymerisation wurden kurz vor der Ethylenzugabe 3 ml Hexen vorgelegt und anschließend Ethylen mit einer Flußgeschwindigkeit von ca. 20 bis 40 l/h bei Atmosphärendruck durchgeleitet. Die Restmenge an Hexen (6 ml) wurde innerhalb von 15 min über einer Tropftrichter zudosiert. Nach der in Tabelle 1 angegebenen Zeit unter konstantem Ethylenfluß wurde die Polymerisation durch Zugabe von methanolischer HCl-Lösung (15 ml konzentrierte Salzsäure in 50 ml Methanol) abgebrochen.

20 Anschließend wurden 250 ml Methanol zugegeben und das entstandene weiße Polymer abfiltriert, mit Methanol gewaschen und bei 70°C getrocknet.

25

30

			Dichte	[g/cm ₃]	n.d.	0,921	0,917	606'0
	5		Eta-Wert	[dl/g]	1,08	10,4	62'0	0,55
	10		Prod.	[g/(mmol M·h)]	1895	738	2263	1754
	15		Polymer	[6]	13,3	3,8	13,8	13,1
			Hexen	,	nein	nein	. <u>ख</u>	ïa
	20		t(Poly)	[min]	15	30	15	15
	25		Cr:Al		1:500	1:350	1:500	1:500
	30	abelle 1: Polymerisationsergebnisse	Menge Kat.	([lourl]) [bu]	13,3 (28,1)	10,2 (25,8)	11,5 (24,3)	12,1 (29,9)
		olymerisatior	Kat. aus	Bsp.	2	က	7	
	35	rabelle 1: P	Bsp.	L	4	22	. 9	7

Patentansprüche

5

10

15

20

- 1. Monocyclopentadienylkomplexe gefunden, die folgendes Strukturmerkmal der allgemeinen Formel Cp-Y_mM^A (I) enthalten, worin die Variablen folgende Bedeutung haben:
 - Cp ein Cyclopentadienyl-System mit einem Arylsubstituenten,
 - Y ein an Cp gebundener Substituent, enthaltend mindestens einen neutralen Donor, welcher mindestens ein Atom der Gruppen 15 oder 16 des Periodensystems enthält,
 - M^A Titan, Zirkon, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän oder Wolfram, sowie Elemente der 3. Gruppe des Periodensystems und der Lanthaniden und
 - m 1, 2 oder 3.
- 2. Monocyclopentadienylkomplexe nach Anspruch 1, der allgemeinen Formel $Cp-Y_mM^AX^A_n$ (V), worin die Variablen die folgende Bedeutung besitzen:
 - Cp ein Cyclopentadienyl-System mit einem Arylsubstituenten,
- Y ein an Cp gebundener Substituent, enthaltend mindestens einen neutralen Donor, welcher mindestens ein Atom der Gruppen 15 oder 16 des Periodensystems enthält,
- 25 M^A Titan, Zirkon, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän oder Wolfram, sowie Elemente der 3. Gruppe des Periodensystems und der Lanthaniden und
 - m 1, 2 oder 3,
- 30 X^A unabhängig voneinander Fluor, Chlor, Brom, Jod, Wasserstoff, C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1-10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR^{23A}R^{24A}, OR^{23A}, SR^{23A}, SO₃R^{23A}, OC(O)R^{23A}, CN, SCN, β-Diketonat, CO, BF₄, PF₆, oder sperrige nichtkoordinierende Anionen oder zwei Reste X^A für einen substituierten oder unsubstituierten Dienliganden, insbesondere einen 1,3-Dienliganden, stehen, und die Reste X^A gegebenenfalls miteinander verbunden sind,
 - R^{23A}-R^{24A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, SiR^{25A}₃, wobei die organischen Reste R^{23A}-R^{24A} auch durch Halogene oder Stickstoff- und

10

15

20

30

35

40

Sauerstoffhaltige Gruppen substituiert sein können und je zwei Reste R^{23A}-R^{24A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,

R^{25A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei Reste R^{25A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und

n 1, 2, oder 3 ist.

3. Monocyclopentadienylkomplexe nach den Ansprüchen 1 oder 2, worin Y durch die Gruppe – Z_k-A- gebildet wird und einen Monocyclopentadienylkomplex enthalten das Strukturelement der allgemeinen Formel Cp–Z_k-A-M^A (II) bilden, worin die Variablen folgende Bedeutung haben:

 R^{1A} E^{1A} E^{1A} E^{2A} E^{2A} E^{3A} E^{3A} E^{4A} E^{4A} E^{4A} E^{4A} E^{4A}

worin die Variablen folgende Bedeutung besitzen:

25 E^{1A}-E^{5A} Kohlenstoff oder maximal ein E^{1A} bis E^{5A} Phosphor,

unabhängig voneinander Wasserstoff, C₁-C₂₂-Alkyl, C₂-C₂₂-Alkenyl, C₆-C₂₂-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR^{5A}₂, N(SiR^{5A}₃)₂, OR^{5A}, OSiR^{5A}₃, SiR^{5A}₃, BR^{5A}₂, wobei die organischen Reste R^{1A}-R^{4A} auch durch Halogene substituiert sein können und je zwei vicinale Reste R^{1A}-R^{4A} auch zu einem fünf-, sechs- oder siebengliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R^{1A}-R^{4A} zu einem fünf-, sechs- oder siebengliedrigen Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P,O oder S enthält und wobei mindestens ein R^{1A}-R^{4A} ein C₆-C₂₂-Aryl ist, worin das Aryl auch durch N-, P-, O- oder S-haltige Substitenten, C₁-C₂₂-Alkyl, C₂-C₂₂-Alkenyl, Halogene oder Halogenalkyle oder Halogenaryle mit 1 –10 C-Atomen substituiert sein kann,

 R^{5A} unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je

10

15

20

25

30

40

zwei geminale Reste R^{5A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,

Z eine divalente Brücke zwischen A und Cp ist, ausgewählt aus der folgenden Gruppe

$$R^{6A}$$
 $C = C$
 R^{7A}
 R^{6A}
 R^{6A}
 R^{8A}
 R^{6A}
 R^{6A}

$$-BR^{6A}$$
-, $-BNR^{6A}R^{7A}$ -, $-AIR^{6A}$ -, $-Sn$ -, $-S$ -, $-SO$ -, $-SO_2$ -, $-NR^{6A}$ -, $-CO$ -, $-PR^{6A}$ - oder $-P(O)R^{6A}$ - ist, wobei

L^{1A}-L^{3A} unahängig voneinander Silizium oder Germanium bedeutet,

R^{6A}-R^{11A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{12A}₃ bedeutet, wobei die organischen Reste R^{6A}-R^{11A} auch durch Halogene substituiert sein können und je zwei geminale oder vicinale Reste R^{6A}-R^{11A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und

unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest C_1 - C_{10} -Alkoxy oder C_6 - C_{10} -Aryloxy bedeutet und je zwei Reste R^{12A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und

A eine neutrale Donorgruppe enthaltend ein oder mehrere Atome der Gruppe 15 und/oder 16 des Periodensystems der Elemente oder ein Carben, bevorzugt ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem,

5

- M^A ein Metall ausgewählt aus der Gruppe Titan in der Oxidationsstufe 3, Vanadium, Chrom, Molybdän und Wolfram und
- k 0 oder 1 ist.

10

4. Monocyclopentadienylkomplexe nach den Ansprüchen 1 bis 3, worin A eine Gruppe der Formel (IVa) oder (IVb) ist:

15 R

20 , wobei

E^{6A}-E^{11A} unabhängig voneinander Kohlenstoff oder Stickstoff,

25

R^{16A}-R^{21A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{22A}₃ bedeutet, wobei die organischen Reste R^{16A}-R^{21A} auch durch Halogene oder Stickstoff und weitere C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{22A}₃ substituiert sein können und je zwei vicinale Reste R^{16A}-R^{21A} oder R^{16A} und Z auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und

30

R^{22A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R^{22A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und

- p unabhangig voneinander 0 für E^{6A}-E^{11A} gleich Stickstoff und 1 für E^{6A}-E^{11A} gleich Kohlenstoff ist.
- 5. Monocyclopentadienylkomplexe nach den Ansprüchen 3 bis 4, worin –Z-A und der Arylsub-40 stituent in 1,3-Position zueinander sitzen.

- 6. Katalysatorsystem zur Olefinpolymerisation, enthaltend
 - A) mindestens einen Monocyclopentadienylkomplex gemäss den Ansprüchen 1 bis 5,

5
B) optional einen organischen oder anorganischen Träger,

- C) optional eine oder mehrere aktivierende Verbindungen,
- 10 D) optional weitere zur Olefinpolymerisation geeignete Katalysatoren und
 - e) optional eine oder mehrere Metallverbindungen der Gruppe 1, 2 oder 13 des Periodensystems.
- Vorpolymerisiertes Katalysatorsystem, enthaltend ein Katalysatorsystem nach Anspruch 6 und hinzupolymerisiert ein oder mehrere lineare C₂-C₁₀-1-Alkene im Massenverhältnis von 1:0,1 bis 1:1000 bezogen auf das Katalysatorsystem.
- Verwendung eines Katalysatorsystems nach den Ansprüchen 6 oder 7 zur Polymerisation
 oder Copolymerisation von Olefinen.
 - 9. Verfahren zur Herstellung von Polyolefinen durch Polymerisation oder Copolymerisation von Olefinen in Gegenwart eines Katalysatorsystems nach den Ansprüchen 6 oder 7.
- 25 10. Verfahren zur Darstellung von Cyclopentadiensystemen der Formel (VIa),

30

 $A = \begin{pmatrix} R^{30A} & E^{12A} & E^{13A} \\ C & E^{16A} & E^{14A} \\ R^{31A} & E^{16A} & E^{14A} \\ R^{29A} & R^{28A} \end{pmatrix}$ (VIa)

worin die Variablen folgende Bedeutung haben:

- 35 E^{12A}-E^{16A} Kohlenstoff, wobei jeweils vier benachbarte E^{12A}-E^{16A} ein konjugiertes Diensystem bilden und das verbleibende der E^{12A}-E^{16A} zusätzlich einen Wasserstoff trägt,
- unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl,

 Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest,

 NR^{32A}₂, N(SiR^{32A}₃)₂, OR^{32A}, OSiR^{32A}₃, BR^{32A}₂, SiR^{32A}₃, wobei die organischen Re-

ste R^{26A}-R^{29A} auch durch Halogene substituiert sein können und je zwei vicinale Reste R^{26A}-R^{29A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R^{26A}-R^{29A} zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält.

5

10

15

R^{30A}-R^{31A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{32A}₃ bedeutet, wobei die organischen Reste R^{30A}-R^{31A} auch durch Halogene substituiert sein können und R^{30A} oder R^{31A} und A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,

unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R^{32A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,

m gleich 0, 1 oder 2 ist,

20 A

eine neutrale Donorgruppe enthaltend ein oder mehrere Atome der Gruppe 15 und/oder 16 des Periodensystems der Elemente oder ein Carben, bevorzugt ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem,

25

dadurch gekennzeichnet, dass es folgenden Schritt enthält:

- a) die Umsetzung eines (A-(CR^{29A}R^{30A})_m) -Anions mit einem Cyclopentandion oder einem Silylether eines enolisierten Cyclopentandions.
- 11. Verfahren zur Darstellung von Cyclopentadiensystemen der Formel (VIb),

30

35

worin die Variablen folgende Bedeutung haben:

10

15

20

25

30

35

40

E^{12A}-E^{16A} Kohlenstoff, wobei jeweils vier benachbarte E^{12A}-E^{16A} ein konjugiertes Diensystem bilden und das verbleibende der E^{12A}-E^{16A} zusätzlich einen Wasserstoff trägt,

R^{26A}-R^{28A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, SiR^{32A}₃, wobei die organischen Reste R^{26A}-R^{28A} auch durch Halogene substituiert sein können und je zwei vicinale Reste R^{27A}-R^{28A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R^{27A}-R^{28A} zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält,

R^{30A}-R^{31A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{32A}₃ bedeutet, wobei die organischen Reste R^{30A}-R^{31A} auch durch Halogene substituiert sein können und R^{30A} oder R^{31A} und A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,

R^{32A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R^{32A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,

Aryl^A C₆-C₂₂-Aryl, wie beispielsweise Phenyl, Naphthyl, Biphenyl, Anthracenyl oder Phenantrenyl, worin das Aryl auch durch N-, P-, O- oder S-haltige Substitenten, C₁-C₂₂-Alkyl, C₂-C₂₂-Alkenyl, Halogene oder Halogenalkyle oder Halogenaryle mit 1–10 C-Atomen substituiert sein kann und

m gleich 0 oder 1 ist,

A ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem,

dadurch gekennzeichnet, dass es folgenden Schritt enthält:

a) die Umsetzung eines (A-(CR^{30A}R^{31A})_m)⁻-Anions mit einem Cyclopentenon-System der Formel (VII)

$$R^{32A}_{3}SiO$$
 R^{28A}
 R^{27A}
 R^{27A}

zu einem Cyclopentenon der Formel (VIII)

5

$$\begin{array}{c|c}
R^{26A} & R^{30A} \\
C & A \\
R^{31A} & M
\end{array}$$
(VIII)

10

12. Cyclopentadiensysteme der Formel (VIb),

aus der Gruppe N, P, O oder S enthält,

sechsgliedrigen Ring verbunden sein können,

20

15

worin die Variablen folgende Bedeutung haben:

2

^{12A}-E^{16A} Kohlenstoff, wobei jeweils vier benachbarte E^{12A}-E^{16A} ein konjugiertes Diensystem bilden und das verbleibende der E^{12A}-E^{16A} zusätzlich einen Wasserstoff trägt,

25

30

R^{30A}-R^{31A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl,
Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder
SiR^{32A}₃ bedeutet, wobei die organischen Reste R^{30A}-R^{31A} auch durch Halogene
substituiert sein können und R^{30A} oder R^{31A} und A auch zu einem fünf- oder

35

m

Α

 R^{32A} unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R^{32A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können.

5

Aryl^A C₆-C₂₂-Aryl, wie beispielsweise Phenyl, Naphthyl, Biphenyl, Anthracenyl oder Phenantrenyl, worin das Aryl auch durch N-, P-, O- oder S-haltige Substitenten, C₁-C₂₂-Alkyl, C₂-C₂₂-Alkenyl, Halogene oder Halogenalkyle oder Halogenaryle mit 1–10 C-Atomen substituiert sein kann und

10

gleich 0 oder 1 ist und

ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem ist.

15

13. Cyclopentenon der Formel (VIII)

 $\begin{array}{c|c}
R^{26A} & R^{30A} \\
C & A \\
R^{31A} \\
R^{27A}
\end{array}$ (VIII)

25

20

worin die Variablen folgende Bedeutung haben:

unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, SiR^{32A}₃, wobei die organischen Reste R^{26A}-R^{28A} auch durch Halogene substituiert sein können und je zwei vicinale Reste R^{27A}-R^{28A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R^{27A}-R^{28A} zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält,

35

30

R^{30A}-R^{31A} unabhängig voneinander Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₆-C₂₀-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR^{32A}₃ bedeutet, wobei die organischen Reste R^{30A}-R^{31A} auch durch Halogene substituiert sein können und R^{30A} oder R^{31A} und A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können.

E	R ^{32A}	unabhängig voneinander Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_6 - C_{20} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R^{32A} auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,
5	Aryi ^A	C ₆ -C ₂₂ -Aryl, wie beispielsweise Phenyl, Naphthyl, Biphenyl, Anthracenyl oder Phenantrenyl, worin das Aryl auch durch N-, P-, O- oder S-haltige Substitenten, C ₁ -C ₂₂ -Alkyl, C ₂ -C ₂₂ -Alkenyl, Halogene oder Halogenalkyle oder Halogenaryle mit 1–10 C-Atomen substituiert sein kann und
10		1 10 0 / Komon dubokkulore odin karin and
, 0	m	gleich 0 oder 1 ist und
	Α	ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem ist.
15		•
	4-	
20		

Monocyclopentadienylkomplexe

Zusammenfassung

Monocyclopentadienylkomplexe, in welchen das Cyclopentadienyl-System mindestens einen verbrückten Donor und mindestens eine Arylgruppe trägt und ein Katalysatorsystem enthaltend mindestens einen der Monocyclopentadienylkomplexe, sowie Verfahren zu deren Herstellung, die Verwendung des Katalysatorsystems zur Polymerisation oder Copolymerisation von Olefinen und ein Verfahren zur Herstellung von Polyolefinen durch Polymerisation oder Copolymerisation von Olefinen in Gegenwart des Katalysatorsystems und die Herstellung des dazugehörigen Cyclopentadienylsystems.

