

FCC SAR Test Report

APPLICANT : CT Asia

EQUIPMENT : **GSM** mobile phone

BRAND NAME : BLU

MODEL NAME : Deco XT

FCC ID : YHLBLUDECOXT

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

FCC OET Bulletin 65 Supplement C (Edition 01-01)

The product was received on Jun. 05, 2012 and completely tested on Jun. 19, 2012. We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full.

Reviewed by:

Jones Tsai / Manager

IIac MRA

SPORTON INTERNATIONAL (KUNSHAN) INC. No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 1 of 34
Report Issued Date : Jun. 26, 2012

Table of Contents

1. Statement of Compilance	
2. Administration Data	5
2.1 Testing Laboratory	5
2.2 Applicant	
2.3 Manufacturer	
2.4 Application Details	
3. General Information	
3.1 Description of Equipment Under Test (DUT)	6
3.2 Product Photos	6
3.3 Applied Standards	
3.4 Device Category and SAR Limits	7
3.5 Test Conditions	
4. Specific Absorption Rate (SAR)	
4.1 Introduction	
4.2 SAR Definition	
5. SAR Measurement System	
5.1 E-Field Probe	
5.2 Data Acquisition Electronics (DAE)	
5.3 Robot	11
5.4 Measurement Server.	
5.5 Phantom	
5.6 Device Holder	
5.7 Data Storage and Evaluation	
5.8 Test Equipment List	
6. Tissue Simulating Liquids	
7. Uncertainty Assessment	
8. SAR Measurement Evaluation	13 24
8.1 Purpose of System Performance check	
8.2 System Setup	
8.3 Validation Results	
9. DUT Testing Position	
9.1 Define two imaginary lines on the handset	∠ ാ
9.1 Define two imaginary lines on the handset	
9.3 Tilted Position	
9.4 Body Worn Position	
10. Measurement Procedures	
10.1 Spatial Peak SAR Evaluation	
10.3 Volume Scan Procedures	
10.4 SAR Averaged Methods	
10.5 Power Drift Monitoring	
11. SAR Test Configurations	∠ŏ
11.1 Exposure Positions Consideration	
12. SAR Test Results	
12.1 Conducted Power (Unit: dBm)	
12.2 Test Records for Head SAR Test	
12.3 Test Records for Body-worn SAR Test	
12.4 Simultaneous Transmitting Configurations	
12.5 Simultaneous Multi-band Transmission	
13. References	34
Appendix A. Plots of System Performance Check	
Appendix B. Plots of SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Product Photos	
Appendix E. Test Setup Photos	

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 2 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA260505	Rev. 01	Initial issue of report	Jun. 26, 2012

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 3 of 34
Report Issued Date : Jun. 26, 2012

Report No.: FA260505

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for CT Asia DUT: GSM mobile phone, Brand Name: BLU, Model Name: Deco XT are as follows.

<Standalone SAR>

Band	Position	SAR _{1g} (W/kg)
GSM850	Head	0.447
GSM1900	Head	0.112
802.11 b/g	Head	0.018
GSM850	Body-worn (1.5 cm Gap)	0.842
GSM1900	Body-worn (1.5 cm Gap)	0.149
802.11 b/g	Body-worn (1.5 cm Gap)	0.023

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (Edition 01-01).

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT

: 4 of 34 Page Number Report Issued Date: Jun. 26, 2012

Report No. : FA260505

FCC SAR Test Report

2. Administration Data

2.1 <u>Testing Laboratory</u>

Test Site	SPORTON INTERNATIONAL (KUNSHAN) INC.		
Test Site Location	No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C. TEL: +86-0512-5790-0158 FAX: +86-0512-5790-0958		

2.2 Applicant

Company Name	CT Asia
	RMA2011, 20/F, GOLDEN CENTRAL TOWER, NO.3037# JINTIAN ROAD, FUTIAN DISTRICT

2.3 Manufacturer

Company Name	Zechin Communications Co., Ltd.
	Unit804, 8th Floor Desay Tech Building Gaoxin Road South,Nanshan District Shenzhen, China

2.4 Application Details

Date of Receipt of Application	Jun. 05, 2012
Date of Start during the Test	Jun. 11, 2012
Date of End during the Test	Jun. 19, 2012

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 5 of 34
Report Issued Date : Jun. 26, 2012

Report No.: FA260505

3. General Information

3.1 Description of Equipment Under Test (DUT)

Product Feature & Specification		
DUT	GSM mobile phone	
Brand Name	BLU	
Model Name	Deco XT	
FCC ID	YHLBLUDECOXT	
Tx Frequency	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz 802.11b/g: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz	
Rx Frequency	GSM850: 869.2 MHz ~ 893.8 MHz GSM1900: 1930.2 MHz ~ 1989.8 MHz 802.11b/g: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz	
Maximum Average Output Power to Antenna	GSM850: 32.68 dBm GSM1900: 28.90 dBm 802.11b: 19.37 dBm 802.11g: 17.68 dBm Bluetooth: 7.97 dBm	
Antenna Type	WWAN: Fixed Internal Antenna WLAN: PIFA Antenna Bluetooth: Dipole Antenna	
HW Version	ver2.0	
SW Version	REL_C1.2ZZ02V01.01	
Type of Modulation	GSM: GMSK GPRS: GMSK 802.11b: DSSS (BPSK / QPSK / CCK) 802.11g: OFDM (BPSK / QPSK / 16QAM / 64QAM) Bluetooth (1Mbps): GFSK Bluetooth EDR (2Mbps): π /4-DQPSK Bluetooth EDR (3Mbps): 8-DPSK	
Dual Transfer Mode	Class B – DUT cannot support Packet Switched and Circuit Switched Network simultaneously	
(DTM) Category	but can automatically switch between Packet and Circuit Switched Network.	
DUT Stage	Identical Prototype	
Remark:		

- 1. The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. There are two different types of EUT. They are single SIM card mobile and dual SIM card mobile. The others are the same including circuit design, PCB board, structure and all components. It is special to declare. After pre-scan two types of EUT, we found test result of the sample that dual SIM was the worst, so we choose dual SIM card mobile to perform all test. For the dual SIM card mobile, after pre-scan two SIM cards, we found test result with SIM1 card was the worst, so we choose SIM1 card to perform all test.

3.2 Product Photos

Please refer to Appendix D.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT

: 6 of 34 Page Number Report Issued Date: Jun. 26, 2012 : Rev. 01

Report Version

FCC SAR Test Report

3.3 Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2003
- FCC OET Bulletin 65 Supplement C (Edition 01-01)
- FCC KDB 447498 D01 v04
- FCC KDB 648474 D01 v01r05
- FCC KDB 941225 D03 v01
- FCC KDB 248227 D01 v01r02

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 Test Conditions

3.5.1. Ambient Condition

Ambient Temperature	20 to 24 °C	
Humidity	< 60 %	

3.5.2. Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT. The DUT was set from the emulator to radiate maximum output power during all tests.

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has over 99% duty cycle and is treated as 1.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT

: 7 of 34 Page Number Report Issued Date: Jun. 26, 2012

Report No. : FA260505

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 8 of 34
Report Issued Date : Jun. 26, 2012

Report No.: FA260505

5. SAR Measurement System

Fig 5.1 SPEAG DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- > A computer operating Windows XP
- DASY software
- > Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- > Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 9 of 34
Report Issued Date : Jun. 26, 2012

5.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1. E-Field Probe Specification

<ES3DV3>

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB		
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)	Fig 5.2	Photo of ES3DV3
Dynamic Range	5 μW/g to 100 mW/g; Linearity: ± 0.2 dB		
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm		

<EX3DV4 Probe>

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB		
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)		100
Dynamic Range	10 μW/g to 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μW/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm		
		Fig 5.3	Photo of EX3DV4

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 10 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

5.1.2. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

5.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Report No. : FA260505

Fig 5.4 **Photo of DAE**

5.3 <u>Robot</u>

The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability ±0.035 mm)
- > High reliability (industrial design)
- > Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Fig 5.5 **Photo of DASY5**

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT

: 11 of 34 Page Number Report Issued Date: Jun. 26, 2012 Report Version : Rev. 01

5.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Fig 5.6 Photo of Server for DASY5

5.5 Phantom

<SAM Twin Phantom>

SAM I WITH Hantonia		
Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	The state of the s
Dimensions	Length: 1000 mm; Width: 500 mm;	
	Height: adjustable feet	
Measurement Areas	Left Hand, Right Hand, Flat Phantom	
		Fig 5.7 Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 12 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

5.6 Device Holder

<Device Holder for SAM Twin Phantom>

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of ± 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig 5.8 **Device Holder**

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 13 of 34 Report Issued Date: Jun. 26, 2012 : Rev. 01

Report Version

5.7 Data Storage and Evaluation

5.7.1. Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2. Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

Conversion factor ConvF_i
 Diode compression point dcp_i

Device parameters: - Frequency f

- Crest factor cf - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

SPORTON INTERNATIONAL (KUNSHAN) INC.

Media parameters:

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 14 of 34

Report Issued Date : Jun. 26, 2012

Report No.: FA260505

The formula for each channel can be given as :

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Report No. : FA260505

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

$$\text{E-field Probes}: E_i = \sqrt{\frac{v_i}{\text{Norm}_i \cdot \text{ConvF}}}$$

H-field Probes :
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i, (i = x, y, z)

Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Page Number

Report Version

: 15 of 34

: Rev. 01

Report Issued Date: Jun. 26, 2012

5.8 Test Equipment List

Manufacturer	Name of Equipment	Tyme/Medal	Serial Number	Calib	ration
Wallulacturer	Name of Equipment	Type/Model	Seriai Nullibei	Last Cal.	Due Date
SPEAG	Dosimetric E-Field Probe	ES3DV3	3270	Sep. 12, 2011	Sep. 11, 2012
SPEAG	Dosimetric E-Field Probe	EX3DV4	3697	Sep. 02, 2011	Sep. 01, 2012
SPEAG	Data Acquisition Electronics	DAE4	1303	Nov. 10, 2011	Nov. 09, 2012
SPEAG	Data Acquisition Electronics	DAE4	1210	Nov. 18, 2011	Nov. 17, 2012
SPEAG	835MHz System Validation Kit	D835V2	4d091	Nov. 18, 2011	Nov. 17, 2012
SPEAG	1900MHz System Validation Kit	D1900V2	5d118	Nov. 21, 2011	Nov. 20, 2012
SPEAG	2450MHz System Validation Kit	D2450V2	736	Jul. 25, 2011	Jul. 24, 2012
SPEAG	SAM Twin Phantom	QD 000 P40 CD	TP-1670	NCR	NCR
SPEAG	SAM Twin Phantom	QD 000 P40 CD	TP-1671	NCR	NCR
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1477	NCR	NCR
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1479	NCR	NCR
SPEAG	Test Arch Phantom	Par phantom	1105	NCR	NCR
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
Anritsu	Radio Communication Analyzer	MT8820C	6201091028	Jun. 10, 2012	Jun. 09, 2013
Agilent	Base Station	E5515C	MY50267224	Dec. 29, 2011	Dec. 28, 2012
Agilent	ENA Series Network Analyzer	E5071C	MY46111157	Apr. 13, 2012	Apr. 14, 2013
Agilent	Dielectric Probe Kit	85070E	MY44300475	NCR	NCR
R&S	Signal Generator	SMR40	100455	Dec. 30, 2011	Dec. 29, 2012
AR	Amplifier	551G4	333096	NCR	NCR
Agilent	Power Meter	E4416A	MY45101555	Aug. 23, 2012	Aug. 22, 2012
Agilent	Power Sensor	E9327A	MY44421198	Aug. 23, 2012	Aug. 22, 2012
ARRA	Power Divider	A3200-2	N/A	NA	NA
MCL	Attenuation	BW-S10W5	N/A	NA	NA
R&S	Spectrum Analyzer	FSP30	101400	Jun. 1, 2012	May. 31, 2013

Table 5.1 Test Equipment List

Note: The calibration certificate of DASY can be referred to appendix C of this report.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 16 of 34
Report Issued Date : Jun. 26, 2012

Report No. : FA260505

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.2.

Fig 6.1 Photo of Liquid Height for Head SAR

Fig 6.2 Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(ε _r)
				For Head				
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
				For Body				
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7

Table 6.1 Recipes of Tissue Simulating Liquid

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT

: 17 of 34 Page Number Report Issued Date: Jun. 26, 2012

FCC SAR Test Report

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

The following table shows the measuring results for simulating liquid.

Freq. (MHz)	Liquid Type	Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
835	Head	21.5	0.913	40.859	0.90	41.5	1.44	-1.54	±5	Jun. 11, 2012
835	Body	21.6	0.976	54.36	0.97	55.2	0.62	-1.52	±5	Jun. 11, 2012
1900	Head	21.4	1.415	40.527	1.40	40.0	1.07	1.32	±5	Jun. 11, 2012
1900	Body	21.3	1.535	54.565	1.52	53.3	0.99	2.37	±5	Jun. 11, 2012
2450	Head	21.4	1.807	37.921	1.8	39.2	0.39	-3.26	±5	Jun. 19, 2012
2450	Body	21.5	1.983	51.49	1.95	52.7	1.69	-2.30	±5	Jun. 19, 2012

Table 6.2 Measuring Results for Simulating Liquid

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 18 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

Table 7.1 Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 7.2.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 19 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

⁽b) κ is the coverage factor

FCC SAR Test Report

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Standard Uncertainty (1g)
Measurement System					
Probe Calibration	6.0	Normal	1	1	± 6.0 %
Axial Isotropy	4.7	Rectangular	√3	0.7	± 1.9 %
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	± 3.9 %
Boundary Effects	1.0	Rectangular	√3	1	± 0.6 %
Linearity	4.7	Rectangular	√3	1	± 2.7 %
System Detection Limits	1.0	Rectangular	√3	1	± 0.6 %
Readout Electronics	0.3	Normal	1	1	± 0.3 %
Response Time	0.8	Rectangular	√3	1	± 0.5 %
Integration Time	2.6	Rectangular	√3	1	± 1.5 %
RF Ambient Noise	3.0	Rectangular	√3	1	± 1.7 %
RF Ambient Reflections	3.0	Rectangular	√3	1	± 1.7 %
Probe Positioner	0.4	Rectangular	√3	1	± 0.2 %
Probe Positioning	2.9	Rectangular	√3	1	± 1.7 %
Max. SAR Eval.	1.0	Rectangular	√3	1	± 0.6 %
Test Sample Related					
Device Positioning	2.9	Normal	1	1	± 2.9 %
Device Holder	3.6	Normal	1	1	± 3.6 %
Power Drift	5.0	Rectangular	√3	1	± 2.9 %
Phantom and Setup					_
Phantom Uncertainty	4.0	Rectangular	√3	1	± 2.3 %
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	± 1.8 %
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	± 1.6 %
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	± 1.7 %
Liquid Permittivity (Meas.)	2.5	Normal	1	0.6	± 1.5 %
Combined Standard Uncerta	inty				± 11.0 %
Coverage Factor for 95 %					K = 2
Expanded Uncertainty					± 22.0 %

Table 7.2 Uncertainty Budget of DASY for frequency range 300 MHz to 3 GHz

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 20 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

8. SAR Measurement Evaluation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Fig 8.1 System Setup for System Evaluation

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 21 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. Calibrated Dipole

The output power on dipole port must be calibrated to 24 dBm (250 mW) before dipole is connected.

Fig 8.2 Photo of Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Measurement Date	Frequency (MHz)	Liquid Type	Targeted SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	Normalized SAR _{1g} (W/kg)	Deviation (%)
Jun. 11, 2012	835	Head	9.4	2.36	9.44	0.43
Jun. 11, 2012	835	Body	9.42	2.36	9.44	0.21
Jun. 11, 2012	1900	Head	40.30	9.7	38.80	-3.72
Jun. 11, 2012	1900	Body	41.80	10.2	40.80	-2.39
Jun. 19, 2012	2450	Head	54.8	12.9	51.60	-5.84
Jun. 19, 2012	2450	Body	52.3	12.6	50.40	-3.63

Table 8.1 Target and Measurement SAR after Normalized

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 22 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

9. <u>DUT Testing Position</u>

This DUT was tested in six different positions. They are right cheek, right tilted, left cheek, left tilted, Front of the DUT with phantom 1.5 cm gap, and Back of the DUT with phantom 1.5 cm gap, as illustrated below:

9.1 Define two imaginary lines on the handset

- The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Fig 9.1 Illustration for Handset Vertical and Horizontal Reference Lines

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 23 of 34 Report Issued Date: Jun. 26, 2012

9.2 Cheek Position

- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.2).

Fig 9.2 Illustration for Cheek Position

9.3 Tilted Position

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.3).

Fig 9.3 Illustration for Tilted Position

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 24 of 34
Report Issued Date : Jun. 26, 2012

9.4 Body Worn Position

- (a) To position the device parallel to the phantom surface with either keypad up or down.
- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 1.5 cm.

Fig 9.4 Illustration for Body Worn Position

<DUT Setup Photos>

Please refer to Appendix E for the test setup photos.

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT

TEL: 86-0512-5790-0158

Page Number : 25 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

10. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the highest power channel.
- (b) Keep DUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the DUT in the positions as Appendix E demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR results for the highest power channel on each testing position.
- (g) Find out the largest SAR result on these testing positions of each band
- (h) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 26 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

10.2 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

10.3 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the DUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

10.4 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

10.5 Power Drift Monitoring

All SAR testing is under the DUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of DUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 27 of 34
Report Issued Date : Jun. 26, 2012

Report No. : FA260505

11. SAR Test Configurations

11.1 Exposure Positions Consideration

Top Side

Bottom Side

Back View

Antenna	Length	Width
WWAN Antenna (Tx / Rx)	5.0 cm	3.0 cm
WLAN Antenna (Tx / Rx)	1.3 cm	0.4 cm
Bluetooth Antenna (Tx / Rx)	2.3 cm	0.5 cm

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 28 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

12. SAR Test Results

12.1 Conducted Power (Unit: dBm)

<GSM/GPRS>

	Burst A	verage Pow	er				
Band		GSM850		GSM1900			
Channel	128 189 251 512 661						
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8	
GSM (1 Uplink)	32.40	32.53	32.68	28.51	28.65	28.81	
GPRS 8 (1 Uplink) - CS1	32.38	32.54	32.67	28.51	28.65	<mark>28.90</mark>	
GPRS 10 (2 Uplink) - CS1	31.65	31.80	31.94	27.74	27.88	28.13	
GPRS 11 (3 Uplink) - CS1	30.06	30.18	30.32	26.15	26.30	26.59	
GPRS 12 (4 Uplink) - CS1	29.22	29.36	29.50	25.37	25.52	25.79	

Soul	Source-Based Time-Averaged Power										
Band		GSM850		GSM1900							
Channel	128	189	251	512	661	810					
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8					
GSM (1 Uplink)	23.40	23.53	23.68	19.51	19.65	19.81					
GPRS 8 (1 Uplink) – CS1	23.38	23.54	23.67	19.51	19.65	19.90					
GPRS 10 (2 Uplink) - CS1	25.65	25.80	25.94	21.74	21.88	22.13					
GPRS 11 (3 Uplink) – CS1	25.80	25.92	26.06	21.89	22.04	22.33					
GPRS 12 (4 Uplink) – CS1	26.22	26.36	<mark>26.50</mark>	22.37	22.52	<mark>22.79</mark>					

Remark: The source-based time-averaged power is linearly scaled the maximum burst averaged power based on time slots. The calculated method are shown as below:

Source based time averaged power = Maximum burst averaged power (1 Uplink) - 9 dB

Source based time averaged power = Maximum burst averaged power (2 Uplink) - 6 dB

Source based time averaged power = Maximum burst averaged power (3 Uplink) - 4.26 dB

Source based time averaged power = Maximum burst averaged power (4 Uplink) - 3 dB

Note:

- For Head SAR testing, GSM should be evaluated, therefore the DUT was set in GSM for GSM850 and set in GSM for GSM1900 due to its highest source-based time-average power.
- 2. For Body-worn SAR testing, GPRS should be evaluated, therefore the DUT was set in GPRS 12 for GSM850 and set in GPRS 12 for GSM1900 due to its highest source-based time-average power.
- 3. Per 2010/10 workshop, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 4. The DUT do not support DTM function.

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT

TEL: 86-0512-5790-0158

Page Number : 29 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

FCC SAR Test Report

<WLAN>

Mode Cha		_	Average power (dBm)							
	Channel	Frequency (MHz)	Data Rate (bps)							
			1M	2M	5.5M	11M				
	CH 01	2412 MHz	17.36	17.31	17.1	17.3				
802.11b	CH 06	2437 MHz	18.32	18.24	17.98	18.26				
	CH 11	2462 MHz	<mark>19.37</mark>	19.28	19.19	19.36				

		Average power (dBm)										
Mode	Channel	Frequency (MHz)		Data Rate (bps)								
		` ,	6M	9M	12M	18M	24M	36M	48M	54M		
	CH 01	2412 MHz	15.49	15.15	15.25	15.18	15.05	15.17	15.46	15.27		
802.11g	CH 06	2437 MHz	16.66	16.19	16.53	16.56	16.14	16.39	16.23	16.46		
	CH 11	2462 MHz	17.68	17.36	17.65	17.66	17.32	17.57	17.22	17.30		

Note:

- 1. Per 2010/10 TCB workshop and KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion
- 2. Per KDB 248227, 11g output power is less than 1/4 dB higher than 11b mode, thus the SAR can be excluded.

<Bluetooth>

		F				Avera	ge powe	r (dBm)				
Mode	Channel	Frequency (MHz)		Data Rate								
		(1411 12)	DH1	DH3	DH5	2DH1	2DH3	2DH5	3DH1	3DH3	3DH5	
	CH 00	2402 MHz	7.24	7.27	7.26	6.98	6.96	6.97	7.24	7.25	7.32	
Bluetooth	CH 39	2441 MHz	7.91	7.92	7.88	7.67	7.62	7.65	7.88	7.90	<mark>7.97</mark>	
	CH 78	2480 MHz	7.49	7.47	7.45	7.22	7.19	7.22	7.44	7.48	7.51	

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 30 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

12.2 Test Records for Head SAR Test

<GSM>

Plot No.	Band	Mode	Test Position	Ch.	SAR _{1g} (W/kg)	
1	GSM850	GSM	Right Cheek	251	<mark>0.447</mark>	
2	GSM850	GSM	Right Tilted	251	0.242	
3	GSM850	GSM	Left Cheek	251	0.392	
4	GSM850	GSM	Left Tilted	251	0.217	
11	GSM1900	GSM	Right Cheek	810	<mark>0.112</mark>	
12	GSM1900	GSM	Right Tilted	810	0.040	
13	GSM1900	GSM	Left Cheek	810	0.102	
14	GSM1900	GSM	Left Tilted	810	0.048	

Note: Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

<WLAN>

Plot No.	Band	Mode	Test Position	Ch.	SAR _{10g} (W/kg)
15	802.11b	-	Right Cheek	11	0.012
16	802.11b	-	Right Tilted	11	0.017
17	802.11b	-	Left Cheek	11	0.013
18	802.11b	-	Left Tilted	11	<mark>0.018</mark>

Note: Per KDB 648474, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 31 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

12.3 Test Records for Body-worn SAR Test

<GSM>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Ear- phone	SAR _{1g} (W/kg)
5	GSM850	GPRS12	Front	1.5	251	٧	0.416
6	GSM850	GPRS12	Back	1.5	251	٧	0.812
7	GSM850	GPRS12	Back	1.5	128	v	<mark>0.842</mark>
8	GSM850	GPRS12	Back	1.5	189	٧	0.784
9	GSM1900	GPRS12	Front	1.5	810	V	0.055
10	GSM1900	GPRS12	Back	1.5	810	v	<mark>0.149</mark>

Note: Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

<WLAN>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Ear- phone	SAR _{1g} (W/kg)
19	802.11b	-	Front	1.5	11	V	0.00702
20	802.11b	-	Back	1.5	11	V	0.023

Note: Per KDB 648474, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT

: 32 of 34 Page Number Report Issued Date: Jun. 26, 2012 Report Version : Rev. 01

12.4 Simultaneous Transmitting Configurations

	Applicable Combination		
Simultaneous Transmission	GSM/GPRS + Bluetooth		
	GSM/GPRS + WLAN		
	WLAN + Bluetooth		
	GSM/GPRS + Bluetooth + WLAN		

Note:

- 1. Per KDB 648474 D01, Bluetooth (7.97 dBm) output power ≤ 2P_{Ref} and the distance to other transmitting antennas ≥ 5cm, therefore, Bluetooth stand-alone SAR is not required.
- 2. Per KDB 648474 D01, simultaneous transmission SAR for Bluetooth + WLAN is not required, because Bluetooth stand-alone SAR is not required and the maximum WLAN SAR is 0.023 W/kg, thus the SAR summation is less than 1.6 W/kg.
- 3. Per KDB 648474 D01, simultaneous transmission SAR for WWAN + Bluetooth is not required, because Bluetooth standalone SAR is not required and the maximum WWAN SAR is 0.842 W/kg, thus the SAR summation is less than 1.6 W/kg.
- 4. Per KDB 648474 D01, the simultaneous transmission SAR for WWAN and WLAN was not required, because the SAR summation (Head: 0.459 W/kg; Body: 0.865 W/kg) is less than 1.6 W/kg.

12.5 Simultaneous Multi-band Transmission

<Maximum SAR list for each band and position>

	GSM 850	GSM 1900	802.11b/g	Max. SAR Summation	Separation (cm)	Result
Right Cheek	0.447	0.112	0.012	0.459	ı	PASS
Right Tilted	0.242	0.040	0.017	0.259	ı	PASS
Left Cheek	0.392	0.102	0.013	0.405	ı	PASS
Left Tilted	0.217	0.048	0.018	0.235	-	PASS
Front	0.416	0.055	0.00702	0.423	1.5	PASS
Back	0.842	0.149	0.023	0.865	1.5	PASS

Note:

- The maximum SAR summation is calculated based on the same configuration and test position.
- 2. For 1g-SAR scalar summation < 1.6W/kg, simultaneous SAR measurement is not necessary.

Test Engineer: Krin Wu

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : 33 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

13. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", June 2001
- [5] SPEAG DASY System Handbook
- [6] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007
- [7] FCC KDB 447498 D01 v04, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", November 2009
- [8] FCC KDB 648474 D01 v01r05, "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas", September 2008
- [9] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007
- [10] FCC KDB 941225 D02 v02 "3GPP R6 HSPA and R7 HSPA+ SAR Guidance", December 2009.
- [11] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008
- [12] FCC KDB 941225 D04 v01, "Evaluating SAR for GSM/(E)GPRS Dual Transfer Mode", January 27 2010
- [13] FCC KDB 941225 D06 v01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", April 2011
- [14] FCC KDB 388624 D02, "Permit But Ask List", April 2011.

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT

TEL: 86-0512-5790-0158

Page Number : 34 of 34
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

Appendix A. Plots of System Performance Check

The plots are shown as follows.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT Page Number : A1 of A1
Report Issued Date : Jun. 26, 2012
Report Version : Rev. 01

System Check_Head_835MHz_120611

DUT: D835V2 - SN: 4d091

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL_835_120611 Medium parameters used: f = 835 MHz; $\sigma = 0.913$ mho/m; $\varepsilon_r = 40.859$; ρ

Date: 2012-06-11

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(6.04, 6.04, 6.04); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.54 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.038 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.586 mW/g

SAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.54 mW/g

Maximum value of SAR (measured) = 2.54 mW/g

System Check_Body_835MHz_120611

DUT: D835V2 - SN: 4d091

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_835_120611 Medium parameters used: f = 835 MHz; $\sigma = 0.976$ mho/m; $\varepsilon_r = 54.36$; ρ

Date: 2012-06-11

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(6.16, 6.16, 6.16); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.55 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.407 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.577 mW/g

SAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.54 mW/g Maximum value of SAR (measured) = 2.55 mW/g

System Check_Head_1900MHz_120611

DUT: D1900V2 - SN: 5d118

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL_1900_120611 Medium parameters used: f = 1900 MHz; $\sigma = 1.415$ mho/m; $\varepsilon_r =$

Date: 2012-06-11

40.527; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(5.14, 5.14, 5.14); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.2 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.165 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.908 mW/g SAR(1 g) = 9.7 mW/g; SAR(10 g) = 5.04 mW/g Maximum value of SAR (measured) = 10.9 mW/g

System Check_Body_1900MHz_120611

DUT: D1900V2 - SN: 5d118

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900_120611 Medium parameters used: f = 1900 MHz; $\sigma = 1.535$ mho/m; $\varepsilon_r =$

Date: 2012-06-11

54.565; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(4.64, 4.64, 4.64); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.5 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.868 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 18.663 mW/g

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.3 mW/gMaximum value of SAR (measured) = 11.6 mW/g

0 dB = 11.6 mW/g = 21.29 dB mW/g

System Check Head 2450MHz 120619

DUT: D2450V2 - SN: 736

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL_2450_120619 Medium parameters used: f = 2450 MHz; $\sigma = 1.807$ mho/m; $\varepsilon_r =$

37.921; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 21.4°C

DASY5 Configuration:

- Probe: EX3DV4 SN3697; ConvF(6.67, 6.67, 6.67); Calibrated: 2011-9-2
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.4.5 (3634)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.691 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.931 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 27.843 W/kg SAR(1 g) = 12.9 mW/g; SAR(10 g) = 5.9 mW/g Maximum value of SAR (measured) = 14.614 mW/g

System Check Body 2450MHz 120619

DUT: D2450V2 - SN: 736

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450_120619 Medium parameters used: f = 2450 MHz; $\sigma = 1.983$ mho/m; $\varepsilon_r =$

51.49; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3697; ConvF(6.73, 6.73, 6.73); Calibrated: 2011-9-2
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.4.5 (3634)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.530 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.401 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 25.163 W/kg SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.91 mW/g Maximum value of SAR (measured) = 14.544 mW/g

Appendix B. Plots of SAR Measurement

The plots are shown as follows.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDECOXT

: B1 of B1 Page Number Report Issued Date: Jun. 26, 2012

Report No.: FA260505

Report Version : Rev. 01

01 GSM850_Right Cheek_Ch251

DUT: 260505

Communication System: Generic GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_835_120611 Medium parameters used: f = 849 MHz; $\sigma = 0.925$ mho/m; $\varepsilon_r = 40.705$; ρ

Date: 11.06.2012

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(6.04, 6.04, 6.04); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch251/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.482 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.146 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.636 mW/g

SAR(1 g) = 0.447 mW/g; SAR(10 g) = 0.311 mW/g

Maximum value of SAR (measured) = 0.466 mW/g

01 GSM850_Right Cheek_Ch251_2D

DUT: 260505

Communication System: Generic GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_835_120611 Medium parameters used: f = 849 MHz; $\sigma = 0.925$ mho/m; $\varepsilon_r = 40.705$;

Date: 11.06.2012

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(6.04, 6.04, 6.04); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch251/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.482 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.146 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.636 mW/g

SAR(1 g) = 0.447 mW/g; SAR(10 g) = 0.311 mW/gMaximum value of SAR (measured) = 0.466 mW/g

02 GSM850_Right Tilted_Ch251

DUT: 260505

Communication System: Generic GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_835_120611 Medium parameters used: f = 849 MHz; $\sigma = 0.925$ mho/m; $\varepsilon_r = 40.705$; ρ

Date: 11.06.2012

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(6.04, 6.04, 6.04); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch251/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.255 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.931 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.314 mW/g

SAR(1 g) = 0.242 mW/g; SAR(10 g) = 0.179 mW/g

Maximum value of SAR (measured) = 0.251 mW/g

0 dB = 0.251 mW/g = -12.01 dB mW/g

03 GSM850_Left Cheek_Ch251

DUT: 260505

Communication System: Generic GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_835_120611 Medium parameters used: f = 849 MHz; $\sigma = 0.925$ mho/m; $\varepsilon_r = 40.705$; ρ

Date: 11.06.2012

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(6.04, 6.04, 6.04); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch251/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.453 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.818 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.517 mW/g

SAR(1 g) = 0.392 mW/g; SAR(10 g) = 0.283 mW/g

Maximum value of SAR (measured) = 0.410 mW/g

0 dB = 0.410 mW/g = -7.74 dB mW/g

04 GSM850_Left Tilted_Ch251

DUT: 260505

Communication System: Generic GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_835_120611 Medium parameters used: f = 849 MHz; $\sigma = 0.925$ mho/m; $\varepsilon_r = 40.705$; ρ

Date: 11.06.2012

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(6.04, 6.04, 6.04); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch251/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.230 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.927 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.282 mW/g

SAR(1 g) = 0.217 mW/g; SAR(10 g) = 0.161 mW/g

Maximum value of SAR (measured) = 0.227 mW/g

11 GSM1900_Right Cheek_Ch810

DUT: 260505

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900_120611 Medium parameters used: f = 1910 MHz; σ = 1.425 mho/m; ϵ_r =

Date: 11.06.2012

40.491; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(5.14, 5.14, 5.14); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch810/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.113 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.940 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.174 mW/g

SAR(1 g) = 0.112 mW/g; SAR(10 g) = 0.065 mW/g

Maximum value of SAR (measured) = 0.120 mW/g

0 dB = 0.120 mW/g = -18.42 dB mW/g

11 GSM1900_Right Cheek_Ch810_2D

DUT: 260505

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900_120611 Medium parameters used: f = 1910 MHz; $\sigma = 1.425$ mho/m; $\epsilon_r =$

Date: 11.06.2012

40.491; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(5.14, 5.14, 5.14); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch810/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.113 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.940 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.174 mW/g

SAR(1 g) = 0.112 mW/g; SAR(10 g) = 0.065 mW/gMaximum value of SAR (measured) = 0.120 mW/g

12 GSM1900_Right Tilted_Ch810

DUT: 260505

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900_120611 Medium parameters used: f = 1910 MHz; $\sigma = 1.425$ mho/m; $\epsilon_{r} =$

Date: 11.06.2012

40.491; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(5.14, 5.14, 5.14); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch810/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.0429 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.556 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.064 mW/g

SAR(1 g) = 0.040 mW/g; SAR(10 g) = 0.024 mW/g

Maximum value of SAR (measured) = 0.0436 mW/g

0 dB = 0.0436 mW/g = -27.21 dB mW/g

13 GSM1900_Left Cheek_Ch810

DUT: 260505

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900_120611 Medium parameters used: f = 1910 MHz; $\sigma = 1.425$ mho/m; $\epsilon_r =$

Date: 11.06.2012

40.491; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(5.14, 5.14, 5.14); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch810/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.104 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.455 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.162 mW/g

SAR(1 g) = 0.102 mW/g; SAR(10 g) = 0.060 mW/g

Maximum value of SAR (measured) = 0.108 mW/g

0 dB = 0.108 mW/g = -19.33 dB mW/g

14 GSM1900_Left Tilted_Ch810

DUT: 260505

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900_120611 Medium parameters used: f = 1910 MHz; $\sigma = 1.425$ mho/m; $\epsilon_r =$

Date: 11.06.2012

40.491; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(5.14, 5.14, 5.14); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch810/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.0510 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.086 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.078 mW/g

SAR(1 g) = 0.048 mW/g; SAR(10 g) = 0.028 mW/g

Maximum value of SAR (measured) = 0.0523 mW/g

0 dB = 0.0523 mW/g = -25.63 dB mW/g

#15 802.11b_Right Cheek_1M_Ch11

DUT: 260505

Communication System: WIFI; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: HSL_2450_120619 Medium parameters used: f = 2462 MHz; $\sigma = 1.823$ mho/m; $\varepsilon_r =$

37.857; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.4 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3697; ConvF(6.67, 6.67, 6.67); Calibrated: 2011-9-2
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.4.5 (3634)

Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAP (interpolated) = 0.021 mW/g

Maximum value of SAR (interpolated) = 0.021 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.207 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.025 W/kg

SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00561 mW/g

Maximum value of SAR (measured) = 0.016 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.207 V/m; Power Drift = -0.22 dB

Peak SAR (extrapolated) = 0.045 W/kg

SAR(1 g) = 0.011 mW/g; SAR(10 g) = 0.00636 mW/g

Maximum value of SAR (measured) = 0.013 mW/g

#16 802.11b_Right Tilted_1M_Ch11

DUT: 260505

Communication System: WIFI; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: HSL 2450 120619 Medium parameters used: f = 2462 MHz; $\sigma = 1.823$ mho/m; $\varepsilon_r =$

37.857; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 21.4°C

DASY5 Configuration:

- Probe: EX3DV4 SN3697; ConvF(6.67, 6.67, 6.67); Calibrated: 2011-9-2
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.4.5 (3634)

Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.021 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.093 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.036 W/kg

SAR(1 g) = 0.017 mW/g; SAR(10 g) = 0.00854 mW/g

Maximum value of SAR (measured) = 0.020 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.093 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.033 W/kg

SAR(1 g) = 0.00528 mW/g; SAR(10 g) = 0.00412 mW/g

Maximum value of SAR (measured) = 0.012 mW/g

#17 802.11b_Left Cheek_1M_Ch11

DUT: 260505

Communication System: WIFI; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: HSL 2450 120619 Medium parameters used: f = 2462 MHz; $\sigma = 1.823$ mho/m; $\varepsilon_r =$

37.857; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.4 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3697; ConvF(6.67, 6.67, 6.67); Calibrated: 2011-9-2
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.4.5 (3634)

Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.020 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.341 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.020 W/kg SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00609 mW/g Maximum value of SAR (measured) = 0.014 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.341 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.033 W/kg SAR(1 g) = 0.013 mW/g; SAR(10 g) = 0.00595 mW/g Maximum value of SAR (measured) = 0.015 mW/g

#18 802.11b_Left Tilted_1M_Ch11

DUT: 260505

Communication System: WIFI; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: HSL 2450 120619 Medium parameters used: f = 2462 MHz; $\sigma = 1.823$ mho/m; $\varepsilon_r =$

37.857; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3697; ConvF(6.67, 6.67, 6.67); Calibrated: 2011-9-2
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.4.5 (3634)

Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.019 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.788 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.038 W/kg SAR(1 g) = 0.018 mW/g; SAR(10 g) = 0.00977 mW/g Maximum value of SAR (measured) = 0.019 mW/g

#18 802.11b_Left Tilted_1M_Ch11_Earphone_2D

DUT: 260505

Communication System: WIFI; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: HSL 2450 120619 Medium parameters used: f = 2462 MHz; $\sigma = 1.823$ mho/m; $\varepsilon_r =$

37.857; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3697; ConvF(6.67, 6.67, 6.67); Calibrated: 2011-9-2
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.4.5 (3634)

Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.019 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.788 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.038 W/kg SAR(1 g) = 0.018 mW/g; SAR(10 g) = 0.00977 mW/g Maximum value of SAR (measured) = 0.019 mW/g

05 GSM850_GPRS 12_Front_1.5cm_Ch251

DUT: 260505

Communication System: GPRS/EDGE12; Frequency: 848.8 MHz; Duty Cycle: 1:2

Medium: MSL_835_120611 Medium parameters used: f = 849 MHz; $\sigma = 0.988$ mho/m; $\varepsilon_r = 54.239$;

Date: 11.06.2012

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(6.16, 6.16, 6.16); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.443 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.387 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.564 mW/g

SAR(1 g) = 0.416 mW/g; SAR(10 g) = 0.299 mW/g

Maximum value of SAR (measured) = 0.442 mW/g

0 dB = 0.442 mW/g = -7.09 dB mW/g

06 GSM850_GPRS 12_Back_1.5cm_Ch251

DUT: 260505

Communication System: GPRS/EDGE12; Frequency: 848.8 MHz; Duty Cycle: 1:2

Medium: MSL_835_120611 Medium parameters used: f = 849 MHz; $\sigma = 0.988$ mho/m; $\varepsilon_r = 54.239$;

Date: 11.06.2012

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(6.16, 6.16, 6.16); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.860 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.709 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.124 mW/g

SAR(1 g) = 0.812 mW/g; SAR(10 g) = 0.572 mW/g

Maximum value of SAR (measured) = 0.858 mW/g

0 dB = 0.858 mW/g = -1.33 dB mW/g

07 GSM850_GPRS 12_Back_1.5cm_Ch128

DUT: 260505

Communication System: GPRS/EDGE12; Frequency: 824.2 MHz; Duty Cycle: 1:2

Medium: MSL_835_120611 Medium parameters used: f = 824.2 MHz; $\sigma = 0.966$ mho/m; $\epsilon_{r} =$

Date: 11.06.2012

54.437; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6°C; Liquid Temperature: 21.6°C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(6.16, 6.16, 6.16); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch128/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.693 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.699 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.168 mW/g

SAR(1 g) = 0.842 mW/g; SAR(10 g) = 0.591 mW/g

Maximum value of SAR (measured) = 0.880 mW/g

0 dB = 0.880 mW/g = -1.11 dB mW/g

07 GSM850_GPRS 12_Back_1.5cm_Ch128_2D

DUT: 260505

Communication System: GPRS/EDGE12; Frequency: 824.2 MHz; Duty Cycle: 1:2

Medium: MSL_835_120611 Medium parameters used: f = 824.2 MHz; $\sigma = 0.966$ mho/m; $\epsilon_{r} =$

Date: 11.06.2012

54.437; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(6.16, 6.16, 6.16); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch128/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.693 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.699 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.168 mW/g

SAR(1 g) = 0.842 mW/g; SAR(10 g) = 0.591 mW/g

Maximum value of SAR (measured) = 0.880 mW/g

08 GSM850_GPRS 12_Back_1.5cm_Ch189

DUT: 260505

Communication System: GPRS/EDGE12; Frequency: 836.4 MHz; Duty Cycle: 1:2

Medium: MSL_835_120611 Medium parameters used: f = 836.4 MHz; $\sigma = 0.977$ mho/m; $\epsilon_{r} =$

Date: 11.06.2012

54.349; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6°C; Liquid Temperature: 21.6°C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(6.16, 6.16, 6.16); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.824 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.720 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.097 mW/g

SAR(1 g) = 0.784 mW/g; SAR(10 g) = 0.536 mW/g

Maximum value of SAR (measured) = 0.839 mW/g

0 dB = 0.839 mW/g = -1.52 dB mW/g

09 GSM1900_GPRS 12_Front_1.5cm_Ch810

DUT: 260505

Communication System: GPRS/EDGE12; Frequency: 1909.8 MHz; Duty Cycle: 1:2

Medium: MSL_1900_120611 Medium parameters used: f = 1910 MHz; σ = 1.544 mho/m; ϵ_r =

Date: 11.06.2012

54.546; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(4.64, 4.64, 4.64); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.0574 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.557 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.092 mW/g

SAR(1 g) = 0.055 mW/g; SAR(10 g) = 0.034 mW/g

Maximum value of SAR (measured) = 0.0587 mW/g

0 dB = 0.0587 mW/g = -24.63 dB mW/g

10 GSM1900_GPRS 12_Back_1.5cm_Ch810

DUT: 260505

Communication System: GPRS/EDGE12; Frequency: 1909.8 MHz; Duty Cycle: 1:2

Medium: MSL_1900_120611 Medium parameters used: f = 1910 MHz; σ = 1.544 mho/m; ϵ_r =

Date: 11.06.2012

54.546; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(4.64, 4.64, 4.64); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.169 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.705 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.267 mW/g

SAR(1 g) = 0.149 mW/g; SAR(10 g) = 0.077 mW/g

Maximum value of SAR (measured) = 0.167 mW/g

0 dB = 0.167 mW/g = -15.55 dB mW/g

10 GSM1900_GPRS 12_Back_1.5cm_Ch810_2D

DUT: 260505

Communication System: GPRS/EDGE12; Frequency: 1909.8 MHz; Duty Cycle: 1:2

Medium: MSL_1900_120611 Medium parameters used: f = 1910 MHz; $\sigma = 1.544$ mho/m; $\epsilon_{r} =$

Date: 11.06.2012

54.546; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ES3DV3 SN3270; ConvF(4.64, 4.64, 4.64); Calibrated: 12.09.2011;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.169 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.705 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.267 mW/g

SAR(1 g) = 0.149 mW/g; SAR(10 g) = 0.077 mW/g

Maximum value of SAR (measured) = 0.167 mW/g

#19 802.11b_Front_1.5cm_1M_Ch11_Earphone

DUT: 260505

Communication System: WIFI; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL 2450 120619 Medium parameters used: f = 2462 MHz; $\sigma = 1.999$ mho/m; $\varepsilon_r =$

51.454; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3697; ConvF(6.73, 6.73, 6.73); Calibrated: 2011-9-2
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.4.5 (3634)

Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.00831 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.310 V/m; Power Drift = 2.01 dB Peak SAR (extrapolated) = 0.012 W/kg

SAR(1 g) = 0.00666 mW/g; SAR(10 g) = 0.00514 mW/g

Maximum value of SAR (measured) = 0.00804 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.310 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.015 W/kg

SAR(1 g) = 0.00702 mW/g; SAR(10 g) = 0.00557 mW/g

Maximum value of SAR (measured) = 0.015 mW/g

#20 802.11b_Back_1.5cm_1M_Ch11_Earphone

DUT: 260505

Communication System: WIFI; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL 2450_120619 Medium parameters used: f = 2462 MHz; $\sigma = 1.999$ mho/m; $\varepsilon_r =$

51.454; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3697; ConvF(6.73, 6.73, 6.73); Calibrated: 2011-9-2
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.4.5 (3634)

Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.026 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.684 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.041 W/kg SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.014 mW/g Maximum value of SAR (measured) = 0.026 mW/g

#20 802.11b_Back_1.5cm_1M_Ch11_Earphone_2D

DUT: 260505

Communication System: WIFI; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450_120619 Medium parameters used: f = 2462 MHz; $\sigma = 1.999$ mho/m; $\varepsilon_r =$

51.454; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3697; ConvF(6.73, 6.73, 6.73); Calibrated: 2011-9-2
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.4.5 (3634)

Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.026 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.684 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.041 W/kg SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.014 mW/g Maximum value of SAR (measured) = 0.026 mW/g

