

- Define the problem
- Obtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

- Define the problem
- Obtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

- Define the problem
- Obtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

- Define the problem
- Obtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

https://api.pushshift.io/reddit/search/submission/?subreddit=Crypto_com (Submission)

b)https://api.pushshift.io/reddit/search/comment/?subreddit=Crypto_com (Comments)

Bodyweight fitness

a)https://api.pushshift.io/reddit/search/submission/?subreddit=bodyweightfitness (Submission)

b)https://api.pushshift.io/reddit/search/comment/?subreddit=bodyweightfitness (Comments)

- Define the problem
- Obtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

10,000 comments

Bodyweight fitness

9,898 comments

- Define the problem
- Obtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

Why I choose comments over posts

images

Crypto_com

text

Bodyweight fitness

- Define the problem
- Obtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

- Define the problem
- Obtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

- Lemmatization (cards >> card, banks>>bank, boxes>> box)
- Added to stop words: 'com','don','got','ha','wa','going'

- Define the problem
- Ohtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

- Define the problem
- Ohtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

- Define the problem
- Obtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

- Define the problem
- Ohtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

Train Accuracy Score

96.32

Test Accuracy Score

91.29

- Define the problem
- Obtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

Best Model

Logistic Regression **Best Max Features**

10,000

Boxplot grouped by SENTIMENTS

SENTIMENTAL ANALYSIS

Good balance of positive and negative Diverse group of participants -from amateur to seasoned

- Define the problem
- Obtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

Conclusion

Logistic regression model - achieved the best scores

(train / test scores: 0.9632 / 0.9129).

Potential improvements for future

More training data

More data cleaning & preprocessing

More intensive gridsearching