Curso de Graduação em Engenharia Eletrônica - Faculdade Gama - Universidade de Brasília

Curso de Pós-graduação em Sistemas Mecatrônicos – ENM – Universidade de Brasília

Disciplina: Projeto com Circuitos Reconfiguráveis - FGA (período 2017.1) Projeto de Sistemas em Chip – PPMEC (período 2017.1)

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br

Segunda Lista de Exercícios Circuitos Sequenciais e Projeto RTL Data de entrega (10 de Maio de 2017)

Aplica penalidade de 1.0 ponto por dia de atraso

Instruções: Enviar pelo moodle o relatório, arquivos VHDL, testbench, .txt e prints de simulação em uma pasta zipada chamada "sobrenome(s)-matrícula(s)".

Exercício 1. Filtro Sobel

- **a)** Usando como exemplo a arquitetura RTL desenvolvida em sala de aula para o filtro Sobel 3x3, implemente em VHDL um filtro Sobel 5x5. Implemente o filtro com os K_x para detectar bordas verticais e K_y para detectar bordas na direção horizontal. Use um multiplexador e um pino de entrada para selecionar o Kernel desejado. Parametrize o código de forma que a arquitetura possa ser testada para diferentes tamanhos de imagens e diferentes tamanhos de pixel.
- **b)** Modifique o arquivo de testbench desenvolvido em sala de aula de forma que possa realizar simulações comportamentais do circuito que implementa o filtro Sobel 5x5. As simulações devem ser realizadas com base no último número da sua matrícula, seguindo as condições mostradas na Tabela 1. Em caso de trabalho em duplas use o último número da matrícula de qualquer um dos integrantes.

Último número Tamanho Tamanho Imagens de teste da matricula da imagem pixel 0 e 1 150 x 150 8 bits gantrycrane.png 300 x 300 10 bits cameraman.tif 2 e 3 300 x 300 8 bits board.tif 250 x 250 10 bits coins.png toysflash.png 4 e 5 250 x 250 8 bits 100 x 100 10 bits tire.tif 6 e 7 100 x 100 8 bits tape.png 200 x 200 10 bits rice.png 8 bits 8 e 9 200 x 200 office_3.jpg 150 x 150 10 bits pillsetc.png

Tabela 1. Condições de simulação do Filtro Sobel 5x5

Nota: as imagens de teste podem ser encontradas no toolbox do Matlab ou no moodle da disciplina.

- **c)** Com base nas simulações estime a latência e o troughput do circuito. Considere que cada ciclio de relógio é de 100 MHz (período de 10 ns).
- **d)** Sintetize o circuito e coloque em uma tabela o reporte de síntese com o consumo de recursos de hardware (LUTs, Flip-flops, DSPs e BRAMs)

Curso de Graduação em Engenharia Eletrônica - Faculdade Gama - Universidade de Brasília

Curso de Pós-graduação em Sistemas Mecatrônicos – ENM – Universidade de Brasília Disciplina: Projeto com Circuitos Reconfiguráveis - FGA (período 2017.1)

Disciplina: Projeto com Circuitos Reconfiguraveis - FGA (periodo 2017)

Projeto de Sistemas em Chip – PPMEC (período 2017.1)

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br

Exercício 2. Multiplicação matricial 3x3

- **a)** Usando como exemplo o cruicto de multiplicação matricial 2x2 desenvolvido em sala de aula, implemente em VHDL um circuito de multiplicação matricial 3x3. Faça uso dos operadores de cálculo em ponto flutuante e implemente a arquitetura com maior capacidade de paralelismo.
- **b)** Crie um arquivo de tesbench de simulação automática usando arquivos texto com 100 valores aleatórios para cada entrada. O valor máximo e mínimo dos valores de entrada depende do último número da sua matrícula, seguindo as condições mostradas na Tabela 2. Em caso de trabalho em duplas use o último número da matrícula de qualquer um dos integrantes.

Tabela 2. Condições de simulação do circuito de multiplicação matricial 3x3

Último número da matricula	Faixa de valores	Tamanho palavra (sinal, expoente, mantissa)
0 e 1	[-1.0 e 1.0] [-10000 e 10000]	27 bits (1,8,18) 32 bits (1,8,23)
2 e 3	[-0.2 e 0.2] [-30000 e 30000]	27 bits (1,8,18) 32 bits (1,8,23)
4 e 5	[-0.4 e 0.4] [-50000 e 50000]	27 bits (1,8,18) 32 bits (1,8,23)
6 e 7	[-0.6 e 0.6] [-70000 e 70000]	27 bits (1,8,18) 32 bits (1,8,23)
8 e 9	[-0.8 e 0.8] [-90000 e 90000]	27 bits (1,8,18) 32 bits (1,8,23)

- **c)** Com base nas simulações estime a latência e o troughput do circuito. Considere que cada ciclio de relógio é de 100 MHz (período de 10 ns).
- **d)** Sintetize o circuito e coloque em uma tabela o reporte de síntese com o consumo de recursos de hardware (LUTs, Flip-flops, DSPs e BRAMs)

Bom Trabalho!