'Which model is best?' Composite Relative goodness-of-fit testing with kernels

VMFS3

Supervisor : Dr François-Xavier Briol

University College London (UCL) - Department of Statistical Science

September 19, 2022

Introduction

2 Kernelized Stein discrepancy (KSD)

Methodology

4 Experiment

Part1. Introduction

Use Generative Model as intro

- What is it? Generative Model v.s. Preditive Model
- When we need? Data Augmentation, Image/vedio generation
- How to build?
 - Parametric generative model: Graphical Model (Boltzmann) machine), mixture gaussian etc...
 - Non-parametric generative models: GAN, VAE, diffusion models etc...

4 / 39

Challenges of Generative Model

Two challenges of generative model:

Model selection

- ▶ All models are wrong, but some are useful. George E.P.Box
- ▶ The model fits the data?
- Which model fits better?
- How to evaluate?

Computationally expensive

- Large amount of data are needed.
- ▶ Normalization constant term Z: p(x) = f(x)/Z

Use hypothesis testing for model selection

Two types of hypothesis testing:

- Goodness-of-fit testing (GOF)
 - Composite Goodness-of-fit testing (C-GOF)
 - Relative Goodness-of-fit testing (R-GOF)
 - Composite relative goodness-of-fit testing (CR-GOF).
- Two sample test (TST)

Goodness-of-fit testing (GOF)

- Suppose $D(\mathbb{P}, \mathbb{Q})$ is a statistical discrepancy. $D(\mathbb{P}, \mathbb{Q}) \geq 0$ and $D(\mathbb{P}, \mathbb{Q}) = 0$ iff \mathbb{P}, \mathbb{Q} .
- Given sample $\{X_i\}_{i=1}^n$, \mathbb{X} is its population. \mathbb{P}_{θ} is parametric model where $\theta \in \Theta$.
- **GOF:** determine if the model \mathbb{P}_{θ} fits the data \mathbb{X}
- $H_0: \mathbb{P} \in \mathbb{X}, H_1: \mathbb{P} \notin \mathbb{X}$

Composite goodness-of-fit testing (C-GOF)

- **C-GOF:** determine if the model set $\{\mathbb{P}\}_{\theta\in\Theta}$ fits the data \mathbb{X}
- $H_0: \{\mathbb{P}\}_{\theta \in \Theta} \in \mathbb{X}, H_1: \{\mathbb{P}\}_{\theta \in \Theta} \notin \mathbb{X}$

September 19, 2022

Relative goodness-of-fit testing (R-GOF)

- **R-GOF:** determine whether model \mathbb{P}_{θ} or \mathbb{Q}_{ϕ} fits the data \mathbb{X} better.
- $\bullet \ \ H_0: D(\mathbb{P}_\theta,\mathbb{X}) D(\mathbb{Q}_\phi,\mathbb{X}) \leq 0, H_1: D(\mathbb{P}_\theta,\mathbb{X}) D(\mathbb{Q}_\phi,\mathbb{X}) > 0$

 $D(\mathbb{P}, \mathbb{X})$

 \mathbb{X}

 $D(\mathbb{Q}, \mathbb{X})$

P

0

Composite Relative goodness-of-fit testing

- **CR-GOF:** determine whether model set $\{\mathbb{P}\}_{\theta\in\Theta}$ or $\{\mathbb{Q}\}_{\phi\in\Phi}$ fits the data \mathbb{X} better. Select $\mathbb{P}_{\theta^*}, \mathbb{Q}_{\phi^*}$ from $\{\mathbb{P}\}_{\theta\in\Theta}$ and $\{\mathbb{Q}\}_{\phi\in\Phi}$
- $H_0: D(\mathbb{P}_{\theta^*}, \mathbb{X}) D(\mathbb{Q}_{\phi^*}, \mathbb{X}) \leq 0, H_1: D(\mathbb{P}_{\theta^*}, \mathbb{X}) D(\mathbb{Q}_{\phi^*}, \mathbb{X}) > 0$

How to choose a statistical discrepancy D?

- Different D result in different hypothesis testing.
- Classical GOF methods (Chi-square test, K-S test, C-V test) cannot applied for the models that only known up to a normalization constant term.
- Use Kernelized Stein discrepancy (KSD) as D
- Kernel-based composite relative goodness-of-fit testing (KCR-GOF)

KCR-GOF

- KSD bypass the expensive computation of Z.
- What is KSD?

• Two kinds of statistical discrepancy: IPM and ϕ discrepancy.

Definition (Integral Pseudo-probability Metrics)

$$\mathcal{D}_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f \in \mathcal{F}} |\mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]|$$

- Different choice of f result in different IPMs.
- For KSD, f is choosed from a unit-ball in RKHS. Why?
 - Reproducing property
 - Stein discrepancy

Foundation of RKHS: Kernel Method

Definition (kernel function)

Given a Hilbert space \mathcal{H} and a non-empty set \mathcal{X} as well as a map function $\phi(x): \mathcal{X} \to \mathcal{H}$. Suppose $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$, then a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel function that

$$k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{H}}$$
 (1)

where $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ denotes the inner product of \mathcal{H} .

Foundation of RKHS: Kernel Method

Definition (Positive definite function)

A symmetric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive definite if $\forall n \geq 1, \forall (a_1, ..., a_n) \in \mathbb{R}^n, \forall (x_1, ..., x_n) \in \mathcal{X}^n$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) \ge 0$$
 (2)

The function $k(\cdot, \cdot)$ is strictly positive definite if for mutually distinct x_i , the equality holds only when all the a_i are zero.

Lemma

Let \mathcal{H} be any Hilbert space, \mathcal{X} a non-empty set and $\phi: \mathcal{X} \to \mathcal{H}$. Then a kernel function $k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$ is a positive definite function. And the reverse direction also holds.

Reproducing Kernel Hilbert spaces

 RKHS is a Hilbert space which contain function with special property call reproducing property.

$$\phi(\mathbf{x}) = (x_1, x_2, \sqrt{2}x_1x_2)^T \in \mathbb{R}^3$$
, where $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$ (3)

• Let's define a function $f: \mathbf{x} \in \mathbb{R}^2 \to f(\mathbf{x}) \in \mathbb{R}^1$ with the feature $(x_1, x_2, \sqrt{2}x_1x_2)^T \in \mathbb{R}^3$ where $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$ as below:

$$f(x) = ax_1 + bx_2 + c\sqrt{2}x_1x_2$$

• Equivalent representation for *f* just using its coefficients:

$$f(\cdot) = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

• $\langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$, where $k(\cdot, x) = \phi(x)$

Reproducing Kernel Hilbert spaces (RKHS)

Definition (RKHS)

A Hilbert space ${\cal H}$ of functions is a reproducing kernel Hilbert space (RKHS) if

- 1. $\forall x \in \mathcal{X}, k(\cdot, x) \in \mathcal{H}$
- 2. $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$.

VMFS3 Supervisor : Dr François-Xavier Briol'Which model is best?' Composite Relative go

18 / 39

Stein's method

Definition (Score function)

Assume that \mathcal{X} is a subset of \mathbb{R}^d and p(x) is a smooth density of \mathcal{X} , the (Stein) Score function of p is defined as

$$s_p = \nabla_x \log p(x) = \frac{\nabla_x p(x)}{p(x)}$$
 (4)

Definition (Stein class)

A function $f: \mathcal{X} \to \mathbb{R}$ is in the Stein class \mathcal{F} of p if f is smooth and satisfies

$$\int_{x \in \mathcal{X}} \nabla_x (f(x)p(x)) dx = 0$$
 (5)

September 19, 2022

Stein's method

Definition (Stein operator)

Given a target probability distribution \mathbb{P} on some set \mathcal{X} and its stein class \mathcal{F} , suppose \mathcal{A}_p is a linear opeartor acting on any function $f \in \mathcal{F}$. We call \mathcal{A}_p is a stein operator of P if the below euqation is hold:

$$\mathbb{E}_{X \sim p}[\mathcal{A}_p f(X)] = 0 \tag{6}$$

The most popular choice of Stein operator is the Langevin Stein operator.

Definition (Langevin Stein operator)

$$\mathcal{A}_{p}f(x) = s_{p}(x)f(x) + \nabla_{x}f(x) = \frac{1}{p(x)}\frac{d}{dx}(f(x)p(x))$$
 (7)

Definition (Stein discrepancy)

 \mathbb{P} is a target distribution support on a non-empty set \mathcal{X} , suppose \mathcal{F} is the stein class of it and \mathcal{A}_p is the stein operator acting on the stein class of \mathbb{P} . Then the stein discrepancy between \mathbb{P} and another distribution \mathbb{Q} can is given below, with appropriate norm $||\cdot||^*$:

$$\mathbb{S}(\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathcal{F}} ||(\mathbb{E}_{X \sim Q}[\mathcal{A}_{p}f(X)] - \mathbb{E}_{X \sim Q}[\mathcal{A}_{p}f(X)])||^{*}$$

$$= \sup_{f \in \mathcal{F}} ||(\mathbb{E}_{X \sim Q}[\mathcal{A}_{p}f(X)])||^{*}$$
(8)

Definition 2.5.1(Langevin Kernel Stein Discrepancy (KSD))

KSD is a kind of Stein discrepancy:

$$\mathbb{S}(\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathcal{F}} ||(\mathbb{E}_{X \sim Q}[\mathcal{A}_{p}f(X)] - \mathbb{E}_{X \sim Q}[\mathcal{A}_{p}f(X)])||^{*}$$

$$= \sup_{f \in \mathcal{F}} ||(\mathbb{E}_{X \sim Q}[\mathcal{A}_{p}f(X)])||^{*}$$
(9)

- Stein operator: Langevin Stein operator
- norm: L-2 norm
- choose f from a unit-ball of RKHS

Given the i.i.d sample $\{x_i\}$ drawn from an unknown p and the score function $s_q(x)$, we can estimate $\mathbb{S}(p,q)$ by

$$\hat{\mathbb{S}}_{u}(p,q) = \frac{1}{n(n-1)} \sum_{1 \le i \ne j \le n} h_{q}(x_{i}, x_{j})$$
 (10)

23 / 39

Part3. Methodology

KCR-GOF

ullet KSD bypass the expensive computation of Z.

Null hypothesis of KCR-GOF

$$H_0: \mathbb{S}(\mathbb{P}_{\theta^*}, \mathbb{X}) \leq \mathbb{S}(\mathbb{Q}_{\phi^*}, \mathbb{X}) H_1: \mathbb{S}(\mathbb{P}_{\theta^*}, \mathbb{X}) > \mathbb{S}(\mathbb{Q}_{\phi^*}, \mathbb{X})$$

$$(11)$$

If the distribution family $\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ fits the distribution \mathbb{X} better than $\{\mathbb{Q}_{\phi}\}_{\phi\in\Phi}$, then there exist at least one model $\mathbb{P}_{\theta^*}\in\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ that \mathbb{P}_{θ^*} fits \mathbb{X} better than all the models $\{\mathbb{Q}_{\phi}\}_{\phi\in\Phi}$. Formally,

$$\exists \mathbb{P}_{\theta^*} \in \{\mathbb{P}_{\theta}\}_{\theta \in \Theta}, \forall \mathbb{Q}_{\phi} \in \{\mathbb{Q}_{\phi}\}_{\phi \in \Phi} : \quad \mathbb{S}(\mathbb{P}_{\theta^*}, \mathbb{X}) \leq \mathbb{S}(\mathbb{Q}_{\phi}, \mathbb{X}) \quad (12)$$

$$\mathbb{P}_{\hat{\theta}} \in \{\mathbb{P}_{\theta}\}_{\theta \in \Theta}, \quad \text{where } \hat{\theta} = \arg\min_{\theta \in \Theta} \hat{\mathbb{S}}_{u}(\mathbb{P}_{\theta}, X_{n})$$
 (13)

Test statistic

As before, \mathbb{P}_{θ} is a parametric model with parameter θ and \mathbb{Q}_{ϕ} is a parametric model with parameter ϕ . \mathbb{X} is the population distribution (or data generating process) of a given sample $X_n = \{x_1, x_2, ..., x_n\}$. Then the null hypothesis can be equally rewrited in form of the difference of squared KSDs:

$$\mathbb{S}(\mathbb{P}_{\theta}, \mathbb{X}) - \mathbb{S}(\mathbb{Q}_{\phi}, \mathbb{X}) \le 0 \tag{14}$$

The above equation motivates us to design a test statistic to estimate the above difference of squared KSDs.

September 19, 2022

Recall that $\mathbb{S}(\mathbb{P}_{\theta}, \mathbb{X}) = E_{x_i,x_j}[h_{p_{\theta}}(x_i,x_j)]$ where $x_i,x_j \in \mathbb{X}$. Given $X_n = \{x_1,x_2,...,x_n\}$, it can be estimated by a U-statistic:

$$\hat{\mathbb{S}}_{u}(\mathbb{P}_{\theta}, X_{n}) = \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} h_{p_{\theta}}(x_{i}, x_{j})$$
 (15)

where

$$h_{p_{\theta}}(x,y) = \nabla \log \mathbb{P}_{\theta}(x)^{T} \nabla \log \mathbb{P}_{\theta}(y)k(x,y) + \nabla \log \mathbb{P}_{\theta}(y)^{T} \nabla_{x} k(x,y) + \nabla \log \mathbb{P}_{\theta}(x)^{T} \nabla_{y} k(x,y) + \langle \nabla_{x} k(x,\cdot), \nabla_{y} k(\cdot,y) \rangle_{\mathcal{H}}$$

$$(16)$$

Difference of KSDs

$$\mathbb{S}(\mathbb{P}_{\theta}, \mathbb{Q}_{\phi}) = \mathbb{S}(\mathbb{P}_{\theta}) - \mathbb{S}(\mathbb{Q}_{\phi}) = E_{x_i, x_j}[h_{p_{\theta}, q_{\phi}}(x_i, x_j)]$$
(17)

where $h_{p_{\theta},q_{\phi}}(x_i,x_j)=h_{p_{\theta}}(x_i,x_j)-h_{q_{\phi}}(x_i,x_j)$ for $x_i,x_j\in\mathbb{X}$. When two assumptions is statisfied (h is a symmetric matrix and $E[h(x_i,x_j)]<\infty$, then we can consturct a U-statistic. The difference of two U-statistic is also a U-statistic. Similar to the previous definition, let's define their difference as below:

Test statistic

$$\hat{\mathbb{S}}_{u}(\mathbb{P}_{\theta}, \mathbb{Q}_{\phi}) = \hat{\mathbb{S}}(\mathbb{P}_{\theta}, \mathbb{X}) - \hat{\mathbb{S}}_{u}(\mathbb{Q}_{\phi}, \mathbb{X}) = \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} h_{p_{\theta}, q_{\phi}}(x_{i}, x_{j})$$
(18)

where $h_{p_{\theta},q_{\phi}}(x_i,x_j)=h_{p_{\theta}}(x_i,x_j)-h_{q_{\phi}}(x_i,x_j)$ for $x_i,x_j\in X_n$.

Test procedure

Given two sets of candidate models $\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$, $\{\mathbb{Q}_{\phi}\}_{\phi\in\Phi}$ (usually only known up to normalization term) and a sample $X_n = \{x_1, x_2, ..., x_n\} \in \mathbb{X}$. The test procedure of our novel composite relative goodness-of-fit test is a two-stages testing as below:

Stage 1 (Estimation):

$$\hat{\theta} = \arg\min_{\theta \in \Theta} \hat{\mathbb{S}}_u(\mathbb{P}_{\theta}, X_n), \quad \hat{\phi} = \arg\min_{\phi \in \Phi} \hat{\mathbb{S}}_u(\mathbb{Q}_{\phi}, X_n)$$

Stage 2 (Testing): reject
$$H_0$$
 if $\hat{\mathbb{S}}_u(\mathbb{P}_{\hat{\theta}}, \mathbb{Q}_{\hat{\phi}}) \geq c_{\alpha}$

Algorithm 1: Wild bootstrap test

```
Input: X_n, \mathbb{P}_{\theta}, \mathbb{Q}_{\phi}, \alpha, b
\hat{\theta} = \arg\min_{\theta \in \Theta} \mathbb{S}(\mathbb{P}_{\theta}, X_n);
\hat{\phi} = \arg\min_{\phi \in \Phi} \mathbb{S}(\mathbb{Q}_{\phi}, X_n);
for k \in \{1, ..., b\} do
          w^{(k)} = (w_1, ..., w_n);
          \Delta^{(k)} = \frac{1}{n} \sum_{i,j=1}^{n} w_i^{(k)} w_i^{(k)} h_{p_{\hat{\theta}},q_{\hat{\phi}}}(x_i,x_j);
end
c_{\alpha} = \text{quantile}(\{\Delta^{(1)}, ..., \Delta^{(b)}\}, 1 - \alpha);
if \Delta = \hat{\mathbb{S}}_u(\mathbb{P}_{\hat{\theta}}, \mathbb{Q}_{\hat{\phi}}) \geq c_{\alpha} then
           reject the null;
else
            Do not reject;
end
```


Algorithm 2: Parametric bootstrap test

```
Input: X_n, \mathbb{P}_{\theta}, \mathbb{Q}_{\phi}, \alpha, b
\hat{\theta} = \arg\min_{\theta \in \Theta} \mathbb{S}(\mathbb{P}_{\theta}, X_n);
\hat{\phi} = \operatorname{arg\,min}_{\phi \in \Phi} \mathbb{S}(\mathbb{Q}_{\phi}, X_n);
for k \in \{1, ..., b\} do
            X_n^{(k)} \sim \mathbb{P}_{\hat{\theta}}(\text{ for type I error}), \mathbb{Q}_{\hat{\theta}}(\text{ for power}); \hat{\theta}^{(k)} = \arg\min_{\theta \in \Theta} \mathbb{S}(\mathbb{P}_{\theta}, X_n^{(k)});
                \hat{\phi}^{(k)} = \arg\min_{\phi \in \Phi} \mathbb{S}(\mathbb{Q}_{\phi}, X_n^{(k)}); \ \Delta^{(k)} = \hat{\mathbb{S}}_u(\mathbb{P}_{\hat{\theta}^{(k)}}, \mathbb{Q}_{\hat{\phi}^{(k)}});
end
c_{\alpha} = \text{quantile}(\{\Delta^{(1)}, ..., \Delta^{(b)}\}, 1 - \alpha);
if \Delta = \hat{\mathbb{S}}_u(\mathbb{P}_{\hat{\theta}}, \mathbb{Q}_{\hat{\alpha}}) \geq c_{\alpha} then
             reject the null;
else
             Do not reject;
end
```


Part4. Experiment

Experiemernt 1: We set the first set of candidate models $\{\mathbb{P}\}_{\theta \in \Theta}$ to be the Gaussian model, and the second set of candiate models $\{\mathbb{Q}\}_{\phi \in \Phi}$ to be the Laplace model. Under H_0 , we generate sample $X_n = \{x_i\}_{i=1}^n \sim \mathcal{N}(3,1)$ with different sample size n. Under H_1 , we generate sample $X_n = \{x_i\}_{i=1}^n \sim \text{Laplace}(3,1)$.

Type I error and power:

Experiemernt 2: We reverse the null hypothesis by setting $\{\mathbb{P}\}_{\theta \in \Theta}$ to be the Laplace model, and set $\{\mathbb{Q}\}_{\phi \in \Phi}$ to be the Gaussian model. Under H_0 , we generate sample $X_n = \{x_i\}_{i=1}^n \sim \mathcal{N}(3,1)$ with different sample size n. Under H_1 , we generate sample $X_n = \{x_i\}_{i=1}^n \sim \text{Laplace}(3,1)$.

reverse the null hypothesis:

Conclusion

 Kernel-based Composite Relative Goodness-of-fit testing (KCR-GOF)

- \bullet KSD bypass the expensive computation of Z.
- Experiment: Gaussian Model v.s. Laplace Model
- Fuure work: Kernelized exponential Model and kernel choice.

