

Linear Algebra – Math 205 Exercise Set of Lect 14 (SPRING 2023)

Date: 27/02/2023

Homework 9b: Exercise Set 5.3 Solution

Question 11

Show that if $S: \{v_1, v_2, \dots, v_r\}$ is a linearly independent set of vectors, then so is every nonempty subset of S

Solution: Please take a look at the solution manual.

Question 13

Show that if $\{v_1, v_2, \ldots, v_r\}$ is a linearly dependent set of vectors in a vector space V, and if v_{r+1}, \ldots, v_n are any vectors in V, then $\{v_1, v_2, \ldots, v_r, v_{r+1}, \ldots v_n\}$ is also linearly dependent.

Solution: Please take a look at the solution manual.

Question 15

Show that if is $\{v_1, v_2\}$ linearly independent and v_3 does not lie in span $\{v_1, v_2\}$, then $\{v_1, v_2, v_3\}$ is linearly independent.

Solution: Please take a look at the solution manual.

Question 18

Under what conditions is a set with one vector linearly independent? Solution: The vector $\overrightarrow{v_1}$ should be nonzero. Let's take zero vector...

$$\overrightarrow{0} = k_1 \overrightarrow{v_1} \Rightarrow k_1 = 0 \qquad \qquad :: \overrightarrow{v_1} \neq 0$$

Question 24

Indicate whether each statement is always true or sometimes false. Justify your answer by giving a logical argument or a counterexample.

(a) The set 2×2 of matrices that contain exactly two 1's and two 0's is a linearly independent set in M_{22} .

Solution: False. Let the set of 2×2 matrices be

$$\left\{E_1 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, E_4 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, E_5 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\right\}$$

$$\overrightarrow{0} = k_1 E_1 + k_2 E_2 + k_3 E_3 + k_4 E_4 + k_5 E_5$$

Take $k_1 = 0, k_2 = k_4 = 1, k_3 = k_5 = -1$ Hence it is not linearly independent.

(b) If $\{v_1, v_2\}$ is a linearly dependent set, then each vector is a scalar multiple of the other

Solution: True. By using linear dependent definition

$$\overrightarrow{0} = k_1 v_1 + k_2 v_2 \Rightarrow k_1, k_2 \neq 0$$

It implies one vector can written as the scalar multiplication of other vector.

(c) If $\{v_1, v_2, v_3\}$ is a linearly independent set, then so is the set $\{kv_1, kv_2, k_3\}$ for every nonzero scalar k.

Solution: True. By definition of linear independent, any vector v_i can be written as the linear combination of the $\{kv_1, kv_2, k_3\}$.

(d) The converse of Theorem 5.3.2a is also true.

Solution: True. A set of vectors is linearly dependent if there is a nontrivial linear combination of the vectors that equals 0, i.e, part (a).

Question 25

Show that if $\{v_1, v_2, v_3\}$ is a linearly dependent set with nonzero vectors, then each vector in the set is expressible as a linear combination of the other two.

Solution: False. The definition only requires that at least one vector be expressible as a linear combination of the other two. Here's an easy example in \mathbb{R}^2 that shows we don't have to have each vector expressible in terms of the other two (even when all the vectors are nonzero): $v_1 = (1,0), v_2 = (2,0), v_3 = (0,1)$. Obviously the vector v_3 cannot be expressed in terms of v_1 and v_2 .