Pravděpodobnost a statistika - zkoušková písemka 25.5.2011

Jméno a příjmení	1	2	3	4	celkem	známka

Úloha 1. V pojišťovně vypozorovali, že denně obdrží průměrně 12 hlášení o pojistné události (hlášení chodí pouze v pracovní době od 9:00 do 17:00, žádná doba přitom není preferovaná). Doba do hlášení příští pojistné události má exponenciální rozdělení.

- a) Určete pravděpodobnost, že na příští hlášení bude pojišťovna čekat alespoň dvě pracovní hodiny.
- b) Určete čas t takový, že s pravděpodobností 0.9 doba čekání na příští hlášení nepřekročí t.
- c) Určete pravděpodobnost, že všechna hlášení v daném dni přijdou do 16:00.
- d) Určete pravděpodobnost, že od 9:00 do 12:00 přijdou přesně 3 hlášení.
- e) Jaká je souvislost mezi exponenciálním a Poissonovým rozdělením?

Úloha 2. Kostka má náhodnou délku hrany rovnoměrně rozdělenou na intervalu (1,5).

- a) Určete distribuční funkci, hustotu, střední hodnotu a rozptyl náhodné veličiny X udávající délku hrany kostky.
- b) Určete pravděpodobnost, že délka hrany je v rozmezí 3-6cm.
- c) Určete distribuční funkci rozdělení náhodné veličiny Y udávající objem kostky.
- d) Předpokládejme, že deset takových kostek chceme prostrkávat čtvercovým otvorem s hranou délky 4cm. Určete rozdělení náhodné veličiny Z udávající počet kostek, které otvorem prostrčíme, a spočtěte pravděpodobnost, že otvorem prošly maximálně dvě kostky.
- e) Předpokládejme, že do téhož otvoru strkáme 100 takových kostek. Spočtěte pravděpodobnost, že otvorem projde alespoň 80 kostek. (použijte CLV)

Úloha 3. Při nástupu do prvního ročníku policejní akademie byla provedena studentům zdravotní prohlídka, při které byla změřena mimo jiné výška jednotlivých studentů. Vzorek naměřených hodnot (v cm) je uveden v následující tabulce:

174	186	181	189	195	197	188	177	188	192	181	188	201	180	183
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

- a) Nakreslete histogram a boxplot těchto dat.
- b) Odhadněte z histogramu, jaké rozdělení má výška studenta.
- c) Odhadněte střední hodnotu a rozptyl tohoto rozdělení z dat. $(\sum x_i = 2800, \sum (x_i \bar{x})^2 = 797.33)$
- d) Jak je definovaná teoretická střední hodnota a rozptyl náhodné veličiny?
- e) Otestujte, zda je možné říct, že střední výška studenta je 190cm.
 (Využijte faktu, že za jistých předpokladů má

$$\frac{\bar{X}_n - \mu_0}{S_n} \sqrt{n}$$

rozdělení t_{n-1} .)

Úloha 4. Nechť X označuje platovou třídu (1 nejnižší, 3 nejvyšší) a Y schopnost splácet úvěr (1 dobrá, 0 špatná). V tabulce jsou počty klientů jisté banky spadající do příslušných skupin dvojice "platová třída - schopnost splácet".

$Y \mid X$	1	2	3
0	12	10	8
1	8	30	52

- a) Určete marginální rozdělení X a Y.
- b) Spočtěte korelaci corr(X, Y).
- c) Určete $P(X \le 2, Y = 0)$.
- d) Otestujte, zda je možno považovat platovou třídu a schopnost splácet úvěr za nezávislé náhodné veličiny.

(Využijte faktu, že za jistých předpokladů má

$$\sum_{i} \sum_{j} \frac{\left(n_{ij} - \frac{n_{i}, n_{.j}}{n}\right)^{2}}{\frac{n_{i}, n_{.j}}{n}}$$

rozdělení $\chi^2_{(r-1)(c-1)}$ kde r je počet řádků a c je počet sloupců v tabulce.)

e) Definujte nezávislost jevů A a B.

Návod: V bodech a)-c) použijte odhadnuté pravděpodobnosti $P(X=i,Y=j)=n_{ij}/n$, kde n_{ij} je hodnota z tabulky a n je počet pozorování.