UNIVERSITY OF VICTORIA

EXAMINATIONS DECEMBER 2000

CSC 230 F01: COMPUTER ARCHITECTURE AND ASSEMBLY LANGUAGE

NAME	. STUDENT NO	
INSTRUCTOR: M. WATHEQ EL-KHARASHI	SECTION: F01	
TO BE ANSWERED ON THE PAPER	DURATION: THREE HOURS	

STUDENTS MUST COUNT THE NUMBER OF PAGES IN THIS EXAMINATION PAPER BEFORE BEGINNING TO WRITE, AND REPORT ANY DISCREPANCY IMMEDIATELY TO THE INVIGILATOR.

THIS QUESTION PAPER HAS SIX PAGES PLUS THIS COVER PAGE.

- The exam is worth a total of 100 points.
- Point values for each question are shown in square brackets.
- Read the entire paper carefully before starting work. Attempt every question. Do the
 easiest questions first. Leave 15 minutes at the end to check your work.
- Answer in the spaces provided (you do not necessarily have to use all the space
 provided and may use other areas on the <u>fronts</u> of the pages if necessary). Use the
 backs of the pages for rough work.
- This is a closed book examination. No course notes, books or calculators, are permitted.
- You are permitted to use the 6811 information sheets provided.

QUESTION	MAX. MARK	STUDENT'SMARK
1	10	
2	8	
3	6	
4	15	
5	12	
6	6	
7	5	
8	12	
9	15	
10	11	
TOTAL	100	

- 1. [10 marks]
 - a) $1101.101_2 = _13.625_{_10} = _10.4_{_16}$

1101 1019 -

b) $22.15_{10} = _{10110.001001} = _{16.26} = _{16.26}$

- c) The 8-bit two's complement representation of -31₁₀ is _11100001_2
- 2. [8 marks] For the IEEE single precision floating point representation of the decimal value -12.125, complete the following:
 - the value of the sign bit (binary)

_1___

• the value stored for the exponent (decimal)

_130____

the stored mantissa (do not show the hidden bit) (binary)

oinary) _100001___ (trailing zeros could be ignored)

• the complete 32 bit representation (hexadecimal)

C1420000

3. [6 marks] Perform the following binary division (perform all steps in binary):

$$0.100_2 \div 1.1111_2$$

$$= 1000_2 \div 11111_2$$

verify:
$$0.5 \div 1.9375_{10} = 8 \div 31_{10} = 0.25806_{10} = 0.010000_2$$

```
4. [15 marks] The following program copies string STR2 to string STR1. Parameters
   are passed to subroutine SCPY via program memory. Fill in the 15 blanks (indicated
             ) in the program shown below so that it behaves as described in the
  comments.
       SBASE EQU
                     $1FF
              ORG
                     $100
       STR2
              FCC
                     'UVic'
              FCB
                      00
       STR1
              RMB
                     $C000
              ORG
                      #SBASE
              LDS
              JSR
                     SCPY
                                  ; EXECUTE CPYSTR
              FDB
                     STR1
                                  ; DESTINATION STRING
              FDB
                     STR2
                                  ; SOURCE STRING
              STOP
       SCPY
              PSHX
                                  ; SAVE USED REGISTERS
              PSHY
              PSHA
              TSX
              LDX
                     5 , x 2
                     0 ,x
              LDY
                                  ; SET Y TO POINT TO DESTINATION
                     2 ,x
              LDX
                                   SET X TO POINT TO SOURCE
      SCPY1 LDAA
                     0, X
                                    COPY STRING ONE CHAR AT A TIME
              STAA
                     0,Y
                                  ; INCLUDING THE TERMINATOR
             BEO
                     SCPY2
                                  ; EXIT LOOP AT TERMINATOR
              INX
              INY
             BRA
                     SCPY1
      SCPY2 TSX
                    5 , x
             LDY
             INY
             INY
             INY
             INY
             STY
                     5 , x
               PULA
                                  ; RESTORE REGISTERS
               PULY
               PULX
               RTS
```

END

- 5. [12 marks] In the following you are required to write simple instruction sequences that perform the indicated function. The answer to the first question is provided as an example:
 - a) program the input capture system to capture the time of a rising edge on IC1

LDAB	#\$10	
STAB	\$1021_	

b) program PORT A to allow bits 0-2 to be used as general purpose input port pins.

LDAB	#\$00
STAB	\$1021

c) program the output compare system so that pin 6 of PORT A is toggled each time the contents of TCNT are equal to the contents of the corresponding TOC2.

LDAB	#\$40	
STAB	\$1020	
		_

d) program PORT D to turn LEDs connected to pins 1 and 3 ON.

LDAB	#\$3F	(can be any number that has pins $1,3=1$)
STAB	\$1009	(allow counting 0 -7 or 1 - 8)
LDAB	#\$0A	(\$05 is also okay)
STAB	\$1008	

6. [6 marks] Compare between caches and virtual memory with respect to: purpose, data unit, and method of implementation:

	Caches	Virtual memory
purpose	speed	expand memory
data unit	line	page
method of implementation	hardware	hardware /software

7. [5 marks] Number the following steps from 1 to 5 in the order they are performed in processing an interrupt on the 6811 using the interrupt jump table technique:

↓ correct answer

1	1	1	1	recognize the interrupt event and set the event flag
3	2	3	2	load the PC with the value from the appropriate interrupt vector
5	5	5	5	execute the first instruction of the interrupt handling routine
2	3	4	4	push the processor registers onto the stack
4	4	2	3	execute the appropriate jump instruction in the jump table
5	4	3	2 mc	arks (the list shows the common responses, others: 1 mark)

8. [12 marks] In a table, differentiate between RISC and CISC with respect to number of registers, memory access, addressing modes, and instruction count, length, and complexity.

Aspect	CISC	RISC
Number of registers	Less # of registers	Contains lots of registers
memory access	Almost all instruction	Only load and store
	groups could access	instructions access
	memory	memory
addressing modes	A lot	Few
	Rich	Simple
instruction count	Less than RISC	More than CISC
instruction length	Might be variable	Fixed
instruction complexity	More complex than RISC	Complexity is reduced

9. [15 marks] A push button is connected as an input to IC2. The program below polls IC2 and turns pin 2 of PORT B ON only after the button has been pressed and released the number of times specified by the constant LIMIT. For example, in the program below as LIMIT = 5, pin 2 of PORT B will not be turned ON until the button has been pressed and releases 5 times.

Modify the program to use the input capture interrupt capabilities of the 6811. You are required to make the *minimum* possible modifications in the given program.

REGBASE	EQU	\$1000
PORTB	EQU	\$4
TMSK1	EQU	\$22
TCTL2	EQU	\$21
TFLG1	EQU	\$23
IC2F	EQU	\$8
IC2	EQU	\$2
PIN2	EQU	\$4
SBASE	EQU	\$1FF
LIMIT	EQU	5
COUNT	RMB	1
DONE	RMB	1
MAIN	ORG	\$C000
	LDS	#SBASE
	LDY	#REGBASE
	LDAA	#IC2
	STAA	TFLG1, Y
	BSET	TCTL2, Y IC2F
	LDAA	#LIMIT
	STAA	COUNT
	LDAA	#0
	STAA	DONE
AGAIN	JSR	CHECK
	TST	DONE
	BEQ	AGAIN
	LDAA	#PIN2
	STAA	PORTB, Y
	STOP	
CHECK	PSHA	
LOOP	BRCLR	TFLG1, Y IC2 LOOP
	LDAA	#IC2
	STAA	TFLG1, Y
	DEC	COUNT
	TST	COUNT
	BNE	EXIT
	INC	DONE
EXIT	PULA	
	RTS	
	END	

(Answer to question: 9)

REGBASE PORTB TMSK1 TCTL2 TFLG1 IC2F IC2 PIN2 SBASE LIMIT	EQU EQU EQU EQU EQU EQU EQU EQU	\$1000; Students do not need to repeat \$4; the definition part \$22 \$21 \$23 \$8 \$2 \$4 \$1FF 5
COUNT	RMB RMB ORG JMP	1 1 \$00E5 IC2INT
MAIN	ORG LDS LDY SEI LDAA STAA BSET BSET LDAA STAA LDAA STAA CLI	\$C000 #SBASE #REGBASE #IC2 TFLG1,Y TCTL2,Y IC2F TMSK1,Y IC2 #LIMIT COUNT #0 DONE
AGAIN	TST BEQ LDAA STAA STOP	DONE AGAIN #PIN2 PORTB, Y
IC2INT EXIT	LDAA STAA DEC TST BNE INC RTI END	#IC2 TFLG1,Y COUNT COUNT EXIT DONE

10. [11 marks]

a) [3 marks] What is the key feature of a load/store machine?

Only load and store instructions access memory.

b) [1 mark] What is the purpose of the PC register on the 6811?

points to hext line of executed.

It points to next byte of program code to be executed.

c) [3 marks] State 3 distinct situations in which the value in the PC is modified.

Any three of the following points

It is updated as bytes of code are fetched.

return from

- A branch instruction is executed.
- A jump instruction is executed.
- A JSR instruction is executed.
- An RTS instruction is executed.
- In processing an interrupt
- An RTI instruction is executed.

d) [2 marks] Explain the functional differences between the 6811 JMP and JSR instructions.

The JSR instruction pushes the PC onto the stack. The JMP does not.

e) [2 marks] Explain the functional differences between the 6811 RTS and RTI instructions.

The RTI instruction pulls all registers off the stack. The RTS does not.

END OF EXAMINATION