1

B.1 Results for AW1

In this section, we describe the results for RQ1, RQ2 and RQ4 (i.e., Sections B.1.1–Section B.1.3, respectively) for use case AW1.

B.1.1 Experiment Results for RQ1

This section describes the results for Experiment Results for RQ1.

B.1.1.1 Problem 1: This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 1. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, AUM))

TD	A 1: (1 A	A 1: (1 D	P	ET	P'	TR	Al	UM	О	FV	H	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 10010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TROOO	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.1.1.2 Problem 2: This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 2. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, PUS))

ТВ	A 1 A	A loo with me D	P	ET	P	TR	P	US	О	FV	I	IV	IC	GD
1 D	AlgorithmA	AlgorithmB	A12	р	A12	p	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

B.1.1.3 Problem 3: This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 3. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, ANU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	ΓR	A	NU	О	FV	I	IV	IC	GD
10	Aiguittilia	Aigoritimib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

			P	ET	P	TR	A	NU	О	FV	I	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
ED 020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TROEO	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.1.1.4 Problem 4: This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 4. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, PUU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P'	TR	P	UU	0	FV	H	IV	IC	GD
10	AigoriumA	Aigontillio	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

тр	A 1 A	A loo with me D	P	ET	P'	TR	P	UU	О	FV	I	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.1.1.5 Problem 5: This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 5. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, AUM, PUS))

тр	A 1: (1 A	A 1: (1 D	P	ET	P'	TR	A	UM	P	US	О	FV	H	IV	IC	GD
TB	AlgorithmA	Algorithmb	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 00/0	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	Algorithm A	AlgorithmB	P	ET	P'	ΓR	A	UM	P	US	О	FV	H	IV	IC	GD
1 1 1	AigontiiliA	Aigontillib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
TB070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 100	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.1.1.6 Problem 6: This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 6. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, AUM, ANU))

Magorithma Algorithma Alg								I									
NSGA2 SimpleRS O.5 O.01 O.9 O.01 O.1 O.01 O.9 O.01 O.1 O.0	ТВ	AlgorithmA	AlgorithmB						UM								
MoCell SimpleRS 0.5 0.01 0.5 0.01 0.0																	
SPEA2 SimpleRS 0.5 0.01 0.9 0.01 0.01 0.01 0.05 0.01 0.05 0.01				1	l							1	l				
SPEA2 SimpleRS 0.5 0.01 0.9 0.01 0.1 0.01 0.05 0.01 0.9 0.01 0.5 0.01 0.9 0.01 0.1 0.01	TB010			1						1		1					
TB020	1 DOTO		1							1		1					
MoCell SimpleRS 0.5 0.01 0.5 0.01 0.1 0.01 0.05 0.01 0.5 0.01 0.05 0.01 0.09 0.01 0.01 0.01 0.01			SimpleRS	>0.5	< 0.01	> 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	<0.01
TB020			SimpleRS	1						1		1	1			1	
SPEA2 SimpleRS Col. Co	TRO20	MoCell	SimpleRS	>0.5	< 0.01	> 0.5	< 0.01	l	< 0.01	1	< 0.01	1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2	1 0020		SimpleRS	< 0.5	< 0.01		< 0.01		< 0.01	1	< 0.01	1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030 MoCell SimpleRS C0.5 C0.01 C0.5 C0.01 C0.01 C0.01 C0.5 C0.01 C0.		CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2		NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
CellDE SimpleRS Co. Co. Co. Co. Co. Co. Co. Co.	TROSO	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 SimpleRS Co.5 Co.01 Co.5 Co.01 Co.1 Co.01 Co.0	1 0030	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell SimpleRS Co.5 Co.01 C		CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS Co.5 Co.01 Co.0 Co.01 Co.		NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050 CellDE SimpleRS Co.5 Co.01 Co.5	TD040	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2	1 5040	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050 MoCell SimpleRS <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 <0.5 <0.05 <0.05 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS Co.1 Co.01 Co		NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070 SimpleRS Co.1 Co.01 Co	TROFO	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	1 8050	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060 MoCell SimpleRS <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 <0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
TB080 SPEA2 SimpleRS Co.1 Co.01 Co.9 Co.01 Co.		NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	TDOCO	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070 NSGA2 SimpleRS <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 <0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070 MoCell SimpleRS <0.5 <0.01 >0.5 <0.01 <0.01 <0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		CellDE	SimpleRS	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
TB090 SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080 SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	TDOTO	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080 CellDE SimpleRS <0.5 >0.05 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.05 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	1 6070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080		CellDE		< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0		NSGA2	-	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	TDOOO	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
CellDE SimpleRS <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	1 B080	SPEA2		< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 SimpleRS <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 <0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01			1					l	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01		< 0.01
TB090 MoCell SimpleRS <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0			1							1		1			< 0.01	< 0.1	< 0.01
1B090 SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	T Docc		1	1				l					1				
	LR090							l				1					
			1	1						< 0.5		1	< 0.01				

TR	AlgorithmA	AlgorithmR	P	ET	P'	TR	Al	JM	A]	NU	О	FV	Н	IV	IC	GD
10	AigontiiliA		AIZ	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 1 0 0	SPEA2	1								< 0.01						
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.1.1.7 Problem 7: This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 7. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, AUM, PUU))

TD	A.1 **1 A	A1 '41 P	P	ET	P	TR	A	UM	P	UU	О	FV	I	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TD010	MoCell	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 6020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
1 207 0	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
1 2000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1		>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	
	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	<0.01

B.1.1.8 Problem 8: This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 8. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, PUS, ANU))

тр	A 1 41 A	A loo a with ma D	P	ET	P	TR	P	US	A	NU	О	FV	I	IV	I	GD
TB	AlgorithmA	Aigorithmb	A12	р	A12	р	A12	p								
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TD100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.1.1.9 Problem 9: This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 9. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, PUS, PUU))

ТВ	Algorithm A	AlgorithmB -	orithmA AlgorithmB		ET	P	TR	P	US	P	UU	О	FV	I	IV	IC	GD
1 1	Aigonumia	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	
TB010	MoCell	SimpleRS	l		1							< 0.01					
10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	
1 0020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	

ТВ	AlgorithmA	A loosith m D	P	ET	P	TR	P	US	P	UU	О	FV	Н	IV	I	GD
1 D	AigoriumA	Aigoriumb	A12	р	A12	р	A12	p	A12	р	A12	р	A12	р	A12	p
TROOO	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

B.1.1.10 Problem 10: This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 10. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW1, f(PET, PTR, ANU, PUU))

ТВ	Alcorithm A	AlgorithmB	P	ET	P	TR	A	NU	P	UU	О	FV	H	IV	IC	GD
1 D	AigoriumA	Aigoriumb	A12	p	A12	p	A12	р								
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5		< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TROAD	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	AlgorithmA	AlgorithmR	P	ET	P'	TR	A	NU	P	UU	О	FV	I	IV	IC	GD
1 1	Aigonumia	Aigoriumb	A12	p	A12	p	A12	p								
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TD100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.1.1.11 Holm-Bonferroni method: This section describes the results of the Holm-Bonferroni method.

TABLE 11. Results of the Holm-Bonferroni method for the Mann-Whitney U Test among Multi-Objective Algorithms and RS for HV and IGD (AW1)

Problem	TB	Adjusted_p	Reject
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.1 f(PET,PTR,AUM)	TB050	< 0.01	Y
F100.1 J(FL1,F1K,AUNI)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.2 f(PET,PTR,PUS)	TB050	< 0.01	Y
1700.2 ((1 £1,1 110,1 03)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
Prob.3 f(PET,PTR,ANU)	TB040	< 0.01	Y
1100.5 (1 L1,1 110,21104)	TB050	< 0.01	Y
	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y

Problem	ТВ	Adjusted_p	Reject
DI. 2 ((DET DED ANUI)	TB090	<0.01	Y
Prob.3 f(PET,PTR,ANU)	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
D 1.4 ((DET DED DILLI)	TB050	< 0.01	Y
Prob.4 f(PET,PTR,PUU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
D. A. F. ((DET DED ALIM DIC)	TB050	< 0.01	Y
Prob.5 f(PET,PTR,AUM,PUS)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Dual (WDET DTD ALIM ANIL)	TB050	< 0.01	Y
Prob.6 f(PET,PTR,AUM,ANU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Drob 7 f(DET DTD ALIM DILLI)	TB050	< 0.01	Y
Prob.7 f(PET,PTR,AUM,PUU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.8 f(PET,PTR,PUS,ANU)	TB050	< 0.01	Y
1 100.0 J(TL1,F1K,FU3,ANU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
Prob.9 f(PET,PTR,PUS,PUU)	TB030	< 0.01	Y
1100.0 1/1 [11,1 [13,1 [43,1 [44]]	TB040	< 0.01	Y
	TB050	< 0.01	Y
	TB060	< 0.01	Y

Problem	TB	Adjusted_p	Reject
	TB070	< 0.01	Y
Prob.9 f(PET,PTR,PUS,PUU)	TB080	< 0.01	Y
1700.5 ((1 £1,1 1 K,1 \alpha 5,1 \alpha \alpha)	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.10 f(PET,PTR,ANU,PUU)	TB050	< 0.01	Y
1700.10 j(1 L1,1 1 K,7 ii Va,1 aa)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y

^{*} Note that **Adjusted_p** refers to all adjusted p-value results. If **Adjusted_p** < 0.05 (0.01), it means that all adjusted p-values are less than 0.05 (0.01). If **Adjusted_p** > 0.05, it means there is at least one adjusted p-value that is greater than 0.05.
* **Reject** is **Y**, meaning rejecting the null hypothesis, and **N** means not rejecting the null hypothesis.

B.1.2 Experiment Results for RQ2

This section describes the results for Experiment Results for RQ2.

B.1.2.1 Problem 1: This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 12. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM))

ТВ	Metric	ChiSq	DF	p
	ET	3633.57	3	< 0.01
	CTR	7178.62	3	< 0.01
TB010	UM	8213.57	3	< 0.01
1 DO10	OFV	2877.07	3	< 0.01
	HV	244.18	3	< 0.01
	IGD	234.93	3	< 0.01
	ET	9648.1	3	< 0.01
	CTR	10499.62	3	< 0.01
TB020	UM	14862.99	3	< 0.01
1 0020	OFV	149.87	3	< 0.01
	HV	290.11	3	< 0.01
	IGD	235.44	3	< 0.01
	ET	10545.4	3	< 0.01
	CTR	10245.03	3	< 0.01
TB030	UM	18463.03	3	< 0.01
1 0000	OFV	1679.26	3	< 0.01
	HV	334.68	3	< 0.01
	IGD	288.07	3	< 0.01
	ET	11026.5	3	< 0.01
	CTR	9915.98	3	< 0.01
TB040	UM	19779.01	3	< 0.01
1 0040	OFV	2933.95	3	< 0.01
	HV	347.67	3	< 0.01
	IGD	319.49	3	< 0.01
	ET	14399.06	3	< 0.01
	CTR	7984.73	3	< 0.01
TB050	UM	24128.73	3	< 0.01
1 0000	OFV	13177.95	3	< 0.01
	HV	351.66	3	< 0.01
	IGD	323.24	3	< 0.01
	ET	16004.56	3	< 0.01
TB060	CTR	7923.55	3	< 0.01
1 0000	UM	23752.25	3	< 0.01
	OFV	15344.04	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB060	HV	349.22	3	< 0.01
1 D000	IGD	327.73	3	< 0.01
	ET	16394.56	3	< 0.01
	CTR	6793.54	3	< 0.01
TB070	UM	24403.62	3	< 0.01
1 D07 U	OFV	17480.22	3	< 0.01
	HV	344.85	3	< 0.01
	IGD	301.45	3	< 0.01
	ET	18019.29	3	< 0.01
	CTR	6366.13	3	< 0.01
TB080	UM	24431.76	3	< 0.01
1 DUOU	OFV	19297.28	3	< 0.01
	HV	345.21	3	< 0.01
	IGD	324.63	3	< 0.01
	ET	18222.34	3	< 0.01
	CTR	5781.01	3	< 0.01
TB090	UM	25390.28	3	< 0.01
1 0090	OFV	19604.71	3	< 0.01
	HV	351.41	3	< 0.01
	IGD	339.83	3	< 0.01
	ET	16167.22	3	< 0.01
	CTR	4808.97	3	< 0.01
TB100	UM	26966.73	3	< 0.01
1 D100	OFV	17236.93	3	< 0.01
	HV	350.52	3	< 0.01
	IGD	344.37	3	< 0.01

TABLE 13. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM))

ТВ	AlgorithmA	AlgorithmB	F	ET	C	TR	U	M	0	FV	ŀ	IV	I	GD
1 1 1			A12	p	A12	p	A12	p	A12	p	A12	р	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	> 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01

	I	T	т	ET		TR	т.	M		FV	т	IV	T/	13 GD
TB	AlgorithmA	AlgorithmB	A12		I		I				l			
	NSGA2	CellDE	<0.5	p <0.01	A12 >0.5	p <0.01	A12 <0.1	p <0.01	A12 <0.5	p <0.01	A12 >0.9	p <0.01	A12 <0.1	p <0.01
	MoCell	SPEA2	>0.5	< 0.01	<0.5	< 0.01	>0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.1	< 0.01
TB050	MoCell	CellDE	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.1	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.3	< 0.01	>0.5	< 0.01	<0.5	< 0.01	<0.3	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2 NSGA2	SPEA2	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.1	< 0.01
	NSGA2 NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB060	MoCell	SPEA2	>0.1	< 0.01	<0.5	< 0.01	>0.1	< 0.01	>0.1	< 0.01	<0.1	< 0.01	>0.1	< 0.01
	MoCell	CellDE	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.1	< 0.01	<0.1	<0.01
	SPEA2	CellDE	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	<0.3	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2 NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	<0.1	>0.01
	NSGA2 NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.3	<0.03
TB070	MoCell	SPEA2	>0.1	< 0.01	>0.5	>0.01	>0.1	< 0.01	>0.1	< 0.01	<0.1	< 0.01	>0.1	< 0.01
	MoCell	CellDE	<0.5	< 0.01	>0.5	<0.03	<0.5	< 0.01	<0.5	< 0.01	>0.1	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.3	< 0.01	>0.5	< 0.01	<0.3	< 0.01	<0.3	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.1	>0.01
	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
TB080	MoCell	SPEA2	>0.1	< 0.01	>0.5	>0.01	>0.1	< 0.01	>0.1	< 0.01	<0.1	< 0.01	>0.1	< 0.01
	MoCell	CellDE	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.1	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.3	< 0.01	>0.5	< 0.01	<0.3	< 0.01	<0.3	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.1	< 0.01
	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB090	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	>0.1	< 0.01	<0.1	< 0.01	>0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	>0.1	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	>0.5	>0.05	<0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.1	< 0.01
	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB100	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	>0.1	< 0.01	<0.1	< 0.01	>0.1	< 0.01
	MoCell	CellDE	<0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	< 0.5	< 0.01	>0.1	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.3	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.3	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	01 21 12	CCIDE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\0.01	/ 0.0	(0.01	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\0.01	\0.1	\0.01	/ 0./	\0.01	\0.1	(0.01

TABLE 14. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, AUM))

ТВ	Metric		Rai	nk			Confid	lence	
1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	1	4	2	30%	10%	40%	20%
	CTR	3	2	4	1	30%	20%	40%	10%
TB010	UM	1	3	2	4	10%	30%	20%	40%
10010	OFV	2	2	3	1	25%	25%	38%	12%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	2	1	38%	25%	25%	12%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB020	UM	1	3	2	4	10%	30%	20%	40%
1 0020	OFV	2	3	3	1	22%	33%	33%	11%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	4	3	2	1	40%	30%	20%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB030	UM	2	3	1	4	20%	30%	10%	40%
	OFV	1	3	2	4	10%	30%	20%	40%
	HV	3	2	4	1	30%	20%	40%	10%

TID	35.11		Rai	nk			Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE				
TB030	IGD	3	2	4	1	30%	20%	40%	10%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	3	2	4	1	30%	20%	40%	10%				
TD040	UM	2	3	1	4	20%	30%	10%	40%				
TB040	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	3	1	33%	22%	33%	11%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	3	2	4	1	30%	20%	40%	10%				
TB050	UM	2	3	1	4	20%	30%	10%	40%				
1 0000	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	4	1	30%	20%	40%	10%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	3	2	4	1	30%	20%	40%	10%				
TB060	UM	2	3	1	4	20%	30%	10%	40%				
1 0000	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	4	1	30%	20%	40%	10%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	3	2	2	1	38%	25%	25%	12%				
TB070	UM	2	3	1	4	20%	30%	10%	40%				
10070	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	3	1	33%	22%	33%	11%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	3	2	2	1	38%	25%	25%	12%				
TB080	UM	2	3	1	4	20%	30%	10%	40%				
1 1 1 1 1 1 1 1 1 1	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	3	1	33%	22%	33%	11%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	4	3	2	1	40%	30%	20%	10%				
TB090	UM	2	3	1	4	20%	30%	10%	40%				
12070	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	4	1	30%	20%	40%	10%				
	ET	3	2	4	1	30%	20%	40%	10%				
	CTR	3	3	2	1	33%	33%	22%	11%				
TB100	UM	2	3	1	4	20%	30%	10%	40%				
	OFV	2	3	1	4	20%	30%	10%	40%				
	HV	3	2	4	1	30%	20%	40%	10%				
	IGD	3	2	4	1	30%	20%	40%	10%				

B.1.2.2 Problem 2: This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 15. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, PUS))

TB	Metric	ChiSq	DF	p
	ET	2835.25	3	< 0.01
	CTR	46.14	3	< 0.01
TB010	USP	104.7	3	< 0.01
15010	OFV	55.26	3	< 0.01
	HV	109.4	3	< 0.01
	IGD	281.6	3	< 0.01
	ET	1875.35	3	< 0.01
TB020	CTR	79.61	3	< 0.01
	USP	79.69	3	< 0.01

TB	Metric	ChiSq	DF	p
	OFV	357.6	3	< 0.01
TB020	HV	209.33	3	< 0.01
	IGD	307.85	3	< 0.01
	ET	1524.13	3	< 0.01
	CTR	82.42	3	< 0.01
ED 22	USP	12.75	3	< 0.01
TB030	OFV	1099.09	3	< 0.01
	HV	262.93	3	< 0.01
	IGD	322.31	3	< 0.01
	ET	1545.09	3	< 0.01
	CTR	11.63	3	< 0.01
ED0.10	USP	8.49	3	< 0.05
TB040	OFV	1185.06	3	< 0.01
	HV	316.73	3	< 0.01
	IGD	333.49	3	<0.01
	ET	1001.17	3	< 0.01
	CTR	124.34	3	<0.01
	USP	82.89	3	<0.01
TB050	OFV	1006.07	3	<0.01
	HV	349.78	3	<0.01
	IGD	351.15	3	<0.01
	ET	833.32	3	<0.01
	CTR	152.45	3	<0.01
	USP	60.97	3	<0.01
TB060	OFV	839.92	3	<0.01
	HV	332.55	3	<0.01
	IGD	NaN	3	NaN
	ET	772.57	3	<0.01
	CTR	99.62	3	<0.01
	USP	107.65	3	<0.01
TB070	OFV	771.59	3	<0.01
	HV	332.76	3	<0.01
	IGD	NaN	3	NaN
	ET	874.91	3	<0.01
	CTR	170.54	3	<0.01
	USP	16.29	3	<0.01
TB080	OFV	882.14	3	<0.01
	HV	317.16	3	<0.01
	IGD	NaN	3	NaN
	ET	729.95	3	<0.01
	CTR	187.35	3	<0.01
	USP	35.54	3	<0.01
TB090	OFV	732	3	<0.01
	HV	299.7	3	<0.01
	IGD	NaN	3	NaN
	ET	640.35	3	<0.01
	CTR	79.79	3	<0.01
	USP	57.27	3	<0.01
TB100	OFV	645.57	3	<0.01
	HV	300.36	3	<0.01
	IGD	300.36 NaN	3	
	IGD	INAIN	3	NaN

TABLE 16. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, PUS))

ТВ	AlgorithmA	rithmA AlgorithmB	ET		CTR		USP		OFV		HV		IGD	
	Aigorumia		A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
TB01	0 NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01

TD	A1 '11 A	A1 '(1 D	l	ET	С	TR	U	SP	0	FV	F	ΙV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
12000	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	<0.5	< 0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	<0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	<0.5	< 0.05	>0.5	< 0.05	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05
TB040	NSGA2	CellDE	<0.1	<0.01	<0.5	< 0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	MoCell	SPEA2	>0.9	<0.01	>0.5	>0.05	>0.5	>0.05	>0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	<0.1	<0.01	<0.5	< 0.05	<0.5	>0.05	<0.1	<0.01	>0.9	<0.01	<0.1	<0.01
	SPEA2	CellDE	<0.1	<0.01	<0.5	>0.05	<0.5	< 0.05	<0.1	< 0.01	>0.9	<0.01	<0.1	<0.01
	NSGA2	MoCell	<0.1	<0.01	<0.5	>0.05	<0.5	>0.05	<0.1	< 0.01	>0.9	<0.01	<0.1	<0.01
	NSGA2	SPEA2	>0.5	<0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	<0.5	<0.01	>0.5	<0.01
TB050	NSGA2	CellDE	<0.1	<0.01	<0.5	<0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	<0.01	<0.1	<0.01
	MoCell	SPEA2	>0.9	<0.01	>0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01	>0.9	<0.01
	MoCell SPEA2	CellDE CellDE	<0.1	<0.01	<0.5 <0.5	< 0.01	<0.5 <0.5	< 0.01	<0.1	< 0.01	>0.9	<0.01	<0.1	<0.01
			<0.1	<0.01		<0.01		<0.01	<0.1	< 0.01		<0.01		<0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	>0.05	<0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2 NSGA2	SPEA2 CellDE	>0.5	<0.01 <0.01	>0.5 <0.5	<0.01	>0.5 <0.5	< 0.01	>0.5	<0.01	<0.5 >0.9	<0.01	=0.5 =0.5	>0.05 >0.05
TB060	MoCell	SPEA2	>0.1	<0.01	>0.5	< 0.01	>0.5	<0.01 <0.01	>0.1	< 0.01	<0.1	< 0.01	=0.5 =0.5	>0.05
	MoCell	CellDE	<0.1	<0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.1	<0.01	=0.5 =0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	<0.1	< 0.01	<0.5	>0.01	=0.5	>0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2 NSGA2	SPEA2	>0.1	< 0.01		<0.01	>0.5	<0.01	>0.1	< 0.01	<0.5	< 0.01	=0.5	>0.05
	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SPEA2	>0.1	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.1	< 0.01	<0.1	<0.01	=0.5	>0.05
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.1	< 0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	<0.1	< 0.01	>0.5	>0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	=0.5	>0.05
	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.9	< 0.01	<0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	<0.1	< 0.01	< 0.5	< 0.01	<0.5	< 0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
mp and	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.1	< 0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01	=0.5	>0.05
EED 4 * *	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB100	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01	=0.5	>0.05
	1			1 - 1 - 1									- /	

ТВ	AlgorithmA	AlgorithmB	I	ET	T CTR		USP		OFV		HV		IGD	
10	Aigontillia	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
TB100	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 1 1 1 1 0 0	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

TABLE 17. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, PUS))

ТВ	Matria		Ra	nk		Confidence					
1 B	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	2	25%	38%	12%	25%		
TB010	USP	3	2	1	2	38%	25%	12%	25%		
10010	OFV	2	2	1	1	33%	33%	17%	17%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	2	1	3	14%	29%	14%	43%		
TD020	USP	1	2	3	2	12%	25%	38%	25%		
TB020	OFV	1	2	2	3	12%	25%	25%	38%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
	USP	2	2	1	2	29%	29%	14%	29%		
TB030	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	3	1	33%	22%	33%	11%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	1	1	25%	25%	25%	25%		
	USP	1	1	1	1	25%	25%	25%	25%		
TB040	OFV	1	2	1	3	14%	29%	14%	43%		
	HV	3	2	3	1	33%	29%	33%	11%		
	IGD	3	2	3	1	33%	22%	33%	11%		
	ET	3						40%	10%		
			2	4	1	30%	20%				
	CTR	1	1	1	2	20%	20%	20%	40%		
TB050	USP	2	2	1	3	25%	25%	12%	38%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TB060	USP	2	2	1	3	25%	25%	12%	38%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	2	3	14%	14%	29%	43%		
TB070	USP	2	2	1	3	25%	25%	12%	38%		
10070	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TDOO	USP	2	2	1	2	29%	29%	14%	29%		
TB080	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		
TB090	ET	4	2	3	1	40%	20%	30%	10%		

ТВ	Metric		Rai	nk		Confidence						
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	CTR	2	3	1	4	20%	30%	10%	40%			
	USP	2	2	1	3	25%	25%	12%	38%			
TB090	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB100	USP	2	3	1	3	22%	33%	11%	33%			
10100	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			

B.1.2.3 Problem 3: This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 18. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, ANU))

ТВ	Metric	ChiSq	DF	p
	ET	8841.65	3	< 0.01
	CTR	231.33	3	< 0.01
TD010	NU	390.04	3	< 0.01
TB010	OFV	231.66	3	< 0.01
	HV	96.23	3	< 0.01
	IGD	277.24	3	< 0.01
	ET	4576.82	3	< 0.01
	CTR	188.49	3	< 0.01
TB020	NU	648	3	< 0.01
10020	OFV	599.33	3	< 0.01
	HV	189.27	3	< 0.01
	IGD	310.38	3	< 0.01
	ET	4314.38	3	< 0.01
	CTR	65.14	3	< 0.01
TB030	NU	365.09	3	< 0.01
1 0000	OFV	2443.95	3	< 0.01
	HV	272.22	3	< 0.01
	IGD	321.19	3	< 0.01
	ET	4779.46	3	< 0.01
	CTR	307.57	3	< 0.01
TB040	NU	129.98	3	< 0.01
1 DU40	OFV	3636.78	3	< 0.01
	HV	307.32	3	< 0.01
	IGD	332.08	3	< 0.01
	ET	5922.72	3	< 0.01
	CTR	983.7	3	< 0.01
TB050	NU	705.31	3	< 0.01
10000	OFV	5931.08	3	< 0.01
	HV	331.41	3	< 0.01
	IGD	338.67	3	< 0.01
	ET	7749.79	3	< 0.01
	CTR	1652.21	3	< 0.01
TB060	NU	395.12	3	< 0.01
1 0000	OFV	7813.63	3	< 0.01
	HV	319.26	3	< 0.01
	IGD	326.26	3	< 0.01
	ET	5732.36	3	< 0.01
	CTR	981.83	3	< 0.01
TB070	NU	92.06	3	< 0.01
	OFV	5722	3	< 0.01
	HV	289.15	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB070	IGD	287.7	3	< 0.01
	ET	4227.93	3	< 0.01
	CTR	1304.56	3	< 0.01
TB080	NU	568.98	3	< 0.01
1 0000	OFV	4239.94	3	< 0.01
	HV	258.79	3	< 0.01
	IGD	250.65	3	< 0.01
	ET	3686.56	3	< 0.01
	CTR	1146.55	3	< 0.01
TB090	NU	1126.84	3	< 0.01
1 D090	OFV	3693.9	3	< 0.01
	HV	252.71	3	< 0.01
	IGD	241.96	3	< 0.01
	ET	27654.24	3	< 0.01
	CTR	6256.79	3	< 0.01
TB100	NU	19244.85	3	< 0.01
10100	OFV	27868.45	3	< 0.01
	HV	327.31	3	< 0.01
	IGD	330.69	3	< 0.01

TABLE 19. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, ANU))

ТВ	AlgorithmA	AlgorithmB]	ET	С	TR	N	NU	О	FV	I	IV	IC	GD
1 D	AigoriumiA	Aigoriumib	A12	р										
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.05
TDOO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	AlgorithmA	AlgorithmB	I	ET	С	TR	N	NU	О	FV	F	IV	IC	GD
1 1 1	Aigonnina	Aigonnini	A12	р										
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10090	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 20. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, ANU))

тр	Matria		Rai	ık		Confidence					
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB010	NU	3	3	2	1	33%	33%	22%	11%		
1 10010	OFV	2	3	1	3	22%	33%	11%	33%		
	HV	2	1	3	1	29%	14%	43%	14%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	3	22%	33%	11%	33%		
TB020	NU	3	3	2	1	33%	33%	22%	11%		
1 0020	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	3	1	33%	22%	33%	11%		
	CTR	1	4	2	3	10%	40%	20%	30%		
TB030	NU	4	3	2	1	40%	30%	20%	10%		
1 0030	OFV	1	2	1	3	14%	29%	14%	43%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB040	NU	4	3	2	1	40%	30%	20%	10%		
1 0040	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		

TD	36.1		Rai	nk		Confidence					
ТВ	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	2	1	3	14%	29%	14%	43%		
TB050	NU	2	3	2	1	25%	38%	25%	12%		
1 0000	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	3	2	4	10%	30%	20%	40%		
TB060	NU	1	2	1	1	20%	40%	20%	20%		
1 0000	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB070	NU	2	3	2	1	25%	38%	25%	12%		
1 0070	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB080	NU	1	2	2	3	12%	25%	25%	38%		
1 0000	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB090	NU	1	3	2	4	10%	30%	20%	40%		
10070	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	4	1	3	20%	40%	10%	30%		
TB100	NU	2	3	1	4	20%	30%	10%	40%		
10100	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		

B.1.2.4 Problem 4: This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 21. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, PUU))

TB	Metric	ChiSq	DF	p
	ET	1915.44	3	< 0.01
	CTR	166.61	3	< 0.01
TB010	NUU	246.86	3	< 0.01
1 0010	OFV	200.45	3	< 0.01
	HV	151.78	3	< 0.01
	IGD	267.86	3	< 0.01
	ET	2372.13	3	< 0.01
	CTR	146.9	3	< 0.01
TB020	NUU	76.83	3	< 0.01
1 0020	OFV	496.65	3	< 0.01
	HV	248.22	3	< 0.01
	IGD	321.77	3	< 0.01
	ET	1860.15	3	< 0.01
TB030	CTR	112	3	< 0.01
1 0000	NUU	68.77	3	< 0.01
	OFV	1071.32	3	< 0.01

TB	Metric	ChiSq	DF	p
TB030	HV	301.27	3	< 0.01
1 0030	IGD	332.6	3	< 0.01
	ET	1467.08	3	< 0.01
	CTR	36.89	3	< 0.01
TB040	NUU	9.82	3	< 0.05
10040	OFV	894.28	3	< 0.01
	HV	308.6	3	< 0.01
	IGD	334.97	3	< 0.01
	ET	760.62	3	< 0.01
	CTR	146.49	3	< 0.01
TB050	NUU	147.38	3	< 0.01
1 0030	OFV	755.59	3	< 0.01
	HV	345.68	3	< 0.01
	IGD	348.22	3	< 0.01
	ET	782.76	3	< 0.01
	CTR	117.89	3	< 0.01
TB060	NUU	118.2	3	< 0.01
1 0000	OFV	778.39	3	< 0.01
	HV	338.66	3	< 0.01
	IGD	NaN	3	NaN
	ET	663.47	3	< 0.01
	CTR	151.95	3	< 0.01
TB070	NUU	96.46	3	< 0.01
1 DU/ U	OFV	661.02	3	< 0.01
	HV	338.08	3	< 0.01
	IGD	NaN	3	NaN
	ET	698.56	3	< 0.01
	CTR	113.91	3	< 0.01
TB080	NUU	61.12	3	< 0.01
1 0000	OFV	697.92	3	< 0.01
	HV	319.58	3	< 0.01
	IGD	NaN	3	NaN
	ET	759.66	3	< 0.01
	CTR	87.88	3	< 0.01
TD000	NUU	75.35	3	< 0.01
TB090	OFV	766.26	3	< 0.01
	HV	315.82	3	< 0.01
	IGD	NaN	3	NaN
	ET	710.67	3	< 0.01
	CTR	128.71	3	< 0.01
TD100	NUU	55.63	3	< 0.01
TB100	OFV	716.48	3	< 0.01
	HV	311	3	< 0.01
	IGD	308.27	3	< 0.01

TABLE 22. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, PUU))

ТВ	AlgorithmA	AlgorithmB	F	ET	CTR		N	UU	0	FV	HV		IGD	
10	AigoriumiA	Aigontillio	A12	p	A12 <0.5 >0.5 <0.1 >0.9 <0.5 <0.1 <0.1	p								
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
TB020	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
1 0020	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	p A12 <0.01	< 0.01	

TD	A1 '-1 A	A1 '41 D	I	ET	С	TR	N	UU	О	FV	I	ΙV	I	GD
LR	AlgorithmA	AlgorithmB	A12	р										
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TPOO	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 DU2U	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB020 = 1	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TROSO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TR040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TROSO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TP060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TR070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10090	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01

TABLE 23. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, PUU))

тр	Matria		Ra	nk	Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	2	25%	38%	12%	25%		
TB010	NUU	3	4	2	1	30%	40%	20%	10%		
10010	OFV	2	3	1	1	29%	43%	14%	14%		
	HV	2	1	3	1	29%	14%	43%	14%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	4	20%	30%	10%	40%		
TB020	NUU	2	3	1	2	25%	38%	12%	25%		
10020	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TB030	NUU	2	2	1	2	29%	29%	14%	29%		
12000	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	2	29%	29%	14%	29%		
TB040	NUU	2	2	1	1	33%	33%	17%	17%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	3	1	33%	22%	33%	11%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TB050	NUU	2	2	1	3	25%	25%	12%	38%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	1	2	20%	20%	20%	40%		
TB060	NUU	1	1	1	2	20%	20%	20%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	1	2	20%	20%	20%	40%		
TB070	NUU	1	1	2	3	14%	14%	29%	43%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	2	1	3 2	14% 20%	29% 20%	14% 20%	43% 40%		
TB080	NUU OFV	1 2	3	1		20%	30%	10%	40%		
	HV	3	2	1	4 1	30%	20%	40%	10%		
	IGD	1	1	4	1	25%	25%	25%	25%		
	ET		2			30%	25%	40%	10%		
	CTR	3	2	4	3	30%	20%	14%	43%		
	NUU	1	2		3	14%	29%	14%	43%		
TB090	OFV	2	3	1 1		20%	30%		43%		
			2		4			10%			
	HV	3		4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		

ТВ	Metric		Rai	nk		Confidence						
10	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB100	NUU	1	1	1	2	20%	20%	20%	40%			
10100	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			

B.1.2.5 Problem 5: This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 24. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, PUS))

TB	Metric	ChiSq	DF	p
	ET	5588.83	3	< 0.01
	CTR	9667.94	3	< 0.01
	UM	8372.77	3	< 0.01
TB010	USP	5160.22	3	< 0.01
	OFV	6046.32	3	< 0.01
	HV	225.41	3	< 0.01
	IGD	228.95	3	< 0.01
	ET	9745.54	3	< 0.01
	CTR	13233.72	3	< 0.01
	UM	14419.07	3	< 0.01
TB020	USP	9045.72	3	< 0.01
	OFV	3923.04	3	< 0.01
	HV	240.12	3	< 0.01
	IGD	287	3	< 0.01
	ET	9018.22	3	< 0.01
	CTR	13360.69	3	< 0.01
	UM	17132.87	3	< 0.01
TB030	USP	8099.9	3	< 0.01
	OFV	193.5	3	< 0.01
	HV	284.81	3	< 0.01
	IGD	240.39	3	< 0.01
	ET	12146.62	3	< 0.01
	CTR	12850.38	3	< 0.01
	UM	17071.38	3	< 0.01
TB040	USP	7876.4	3	< 0.01
	OFV	525.73	3	< 0.01
	HV	296.35	3	< 0.01
	IGD	248.72	3	< 0.01
	ET	13545.72	3	< 0.01
	CTR	10346.18	3	< 0.01
	UM	20740.31	3	< 0.01
TB050	USP	5989.35	3	< 0.01
	OFV	8998.3	3	< 0.01
	HV	321.77	3	< 0.01
	IGD	269.73	3	< 0.01
	ET	14641.74	3	< 0.01
	CTR	10418.48	3	< 0.01
	UM	21521.83	3	< 0.01
TB060	USP	5501.98	3	< 0.01
	OFV	11597.38	3	<0.01
	HV	315.9	3	<0.01
	IGD	278.4	3	<0.01
	ET	15571.27	3	< 0.01
TB070	CTR	9238.82	3	< 0.01
	UM	21528.76	3	<0.01
	USP	6066.41	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	OFV	14178.12	3	< 0.01
TB070	HV	315.4	3	< 0.01
	IGD	279.47	3	< 0.01
	ET	15246.08	3	< 0.01
	CTR	9040.51	3	< 0.01
	UM	21560.56	3	< 0.01
TB080	USP	5746.66	3	< 0.01
	OFV	15219.95	3	< 0.01
	HV	323.02	3	< 0.01
	IGD	248.08	3	< 0.01
	ET	15454.15	3	< 0.01
	CTR	8955.08	3	< 0.01
	UM	23581.32	3	< 0.01
TB090	USP	6403.79	3	< 0.01
	OFV	15619.22	3	< 0.01
	HV	324.11	3	< 0.01
	IGD	314.16	3	< 0.01
	ET	16574.3	3	< 0.01
	CTR	7363.56	3	< 0.01
	UM	24746.64	3	< 0.01
TB100	USP	5070.68	3	< 0.01
	OFV	17127.15	3	< 0.01
	HV	335.59	3	< 0.01
	IGD	309.49	3	< 0.01

TABLE 25. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, PUS))

ТВ	AlgorithmA	AlgorithmR	I	ET	C	TR	U	M	U	SP	О	FV	H	IV	IC	GD
1 D	AigoriumA	Aigoriumb	A12	p	A12	р	A12	р	A12	p	A12	p	A12	р	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	>0.05
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.05
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01		< 0.01	< 0.5	>0.05	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5		>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	>0.05
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5		< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05		< 0.01	>0.9	< 0.01	< 0.5	< 0.01
TB050	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
1 0000	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01

			F	ET	С	CTR		M	U	SP	O	FV	Н	IV	10	GD
TB	AlgorithmA	AlgorithmB	A12	р												
EDOFO	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5		>0.5	< 0.01	< 0.5			< 0.01	< 0.1	
TB050	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
TB060	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
TB070	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5		< 0.5	< 0.01	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	l	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.05
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB090	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	MoCell	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5		>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TR100	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 26. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, PUS))

ТВ	Metric		Rai	nk			Confid	dence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	1	4	2	30%	10%	40%	20%
	CTR	3	2	4	1	30%	20%	40%	10%
	UM	2	1	3	4	20%	10%	30%	40%
TB010	USP	3	2	4	1	30%	20%	40%	10%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	3	2	2	1	38%	25%	25%	12%
	IGD	3	3	2	1	33%	33%	22%	11%
	ET	2	1	3	1	29%	14%	43%	14%
	CTR	3	2	4	1	30%	20%	40%	10%
	UM	1	1	1	2	20%	20%	20%	40%
TB020	USP	4	2	3	1	40%	20%	30%	10%
	OFV	3	4	2	1	30%	40%	20%	10%
	HV	3	2	2	1	38%	25%	25%	12%
	IGD	3	3	2	1	33%	33%	22%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB030	UM	2	3	1	4	20%	30%	10%	40%
	USP	3	2	2	1	38%	25%	25%	12%
	OFV	3	4	2	1	30%	40%	20%	10%

ТВ	Metric _		Rai	nk			Confid	dence	
IB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TDOOO	HV	3	2	3	1	33%	22%	33%	11%
TB030	IGD	3	2	2	1	38%	25%	25%	12%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB040	USP	4	2	3	1	40%	20%	30%	10%
	OFV	2	4	1	3	20%	40%	10%	30%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	2	1	38%	25%	25%	12%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB050	USP	3	3	2	1	33%	33%	22%	11%
10000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB060	USP	3	3	2	1	33%	33%	22%	11%
1 0000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3		3		33%		33%	10%
	ET		2		1		22%	40%	
		3	2	4	1	30%	20%		10%
	CTR	4	2	3	1	40%	20%	30%	10%
TDOTO	UM	2	3	1	4	20%	30%	10%	40%
TB070	USP	3	3	2	1	33%	33%	22%	11%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	3	1	25%	25%	38%	12%
TTD 0.00	UM	2	3	1	4	20%	30%	10%	40%
TB080	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	4	2	3	1	40%	20%	30%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	2	1	38%	25%	25%	12%
	UM	2	3	1	4	20%	30%	10%	40%
TB090	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	3	2	1	40%	30%	20%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB100	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	3	1	33%	22%	33%	11%

B.1.2.6 Problem 6: This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 27. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, ANU))

IADEL 21. Headila for the Musikar	-vvallis lest allibrig ivid	ili-Objective Algoritima) (\times v i , i(i 🗀 i , i	(111, AOIVI, AIVO))

ТВ	Metric	ChiSq	DF	p
TB010	ET	1764.18	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	CTR	4593.89	3	< 0.01
	UM	7618.38	3	< 0.01
TB010	NU	6558.01	3	< 0.01
10010	OFV	1245.26	3	< 0.01
	HV	311.91	3	< 0.01
	IGD	279.19	3	< 0.01
	ET	1772.98	3	< 0.01
	CTR	8072.03	3	< 0.01
	UM	16005.9	3	< 0.01
TB020	NU	10881.09	3	< 0.01
	OFV	413.5	3	< 0.01
	HV	322.55	3	< 0.01
	IGD	247.6	3	<0.01
	ET	3829	3	< 0.01
	CTR	7675.22	3	<0.01
TD000	UM	16734.77	3	<0.01
TB030	NU	12032.63	3	<0.01
	OFV HV	3136.79 308.83	3	<0.01
	IGD	308.83	3 3	<0.01 <0.01
	ET	301.6 4405.2	3	<0.01 <0.01
	CTR	7720.82	3	<0.01
	UM	16936.03	3	<0.01
TB040	NU	12431.03	3	<0.01
1 DU40	OFV	3839.47	3	<0.01
	HV	319.13	3	<0.01
	IGD	319.15	3	<0.01
	ET	6934.64	3	<0.01
	CTR	5512.03	3	<0.01
	UM	16632.38	3	<0.01
TB050	NU	14445.36	3	<0.01
12000	OFV	8632	3	<0.01
	HV	323.61	3	<0.01
	IGD	341.41	3	< 0.01
	ET	7262.75	3	< 0.01
	CTR	5149.9	3	< 0.01
	UM	17071.86	3	< 0.01
TB060	NU	15071.38	3	< 0.01
	OFV	9182.83	3	< 0.01
	HV	326.71	3	< 0.01
	IGD	307.76	3	< 0.01
	ET	7795.92	3	< 0.01
	CTR	4508.42	3	< 0.01
	UM	17036.82	3	< 0.01
TB070	NU	15833.48	3	< 0.01
	OFV	9768.75	3	<0.01
	HV	330.08	3	<0.01
	IGD	347.6	3	<0.01
	ET	8804.58	3	<0.01
	CTR	3933.67	3	<0.01
TDOO	UM	17480.82	3	<0.01
TB080	NU OFV	16415.63 10778.7	3 3	<0.01 <0.01
	HV	347.75	3	<0.01
	IGD	347.75	3	<0.01
	ET	7836.56	3	<0.01
TB090	CTR	7836.56 3749.19	3	<0.01 <0.01
1 DU7U	UM	17199.18	3	<0.01
	UIVI	17 199.10		\U.U1

TB	Metric	ChiSq	DF	p
	NU	17495.25	3	< 0.01
TB090	OFV	9361.4	3	< 0.01
1 0090	HV	343.1	3	< 0.01
	IGD	361.82	3	< 0.01
	ET	8046.53	3	< 0.01
	CTR	3653.41	3	< 0.01
	UM	15623.16	3	< 0.01
TB100	NU	19301.74	3	< 0.01
	OFV	9051.11	3	< 0.01
	HV	353.03	3	< 0.01
	IGD	360.09	3	< 0.01

TABLE 28. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, ANU))

TD	A.1. *(1. A	A1 '(1 D	E	ET	С	TR	ι	J M	N	NU	О	FV	I	IV	IC	GD
TB	AlgorithmA	Algorithmb	A12	p	A12	р	A12	р	A12	р	A12	р	A12	p	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01		< 0.01		
TD010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01		< 0.01
TB010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 DU2U	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
TB040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5		>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	> 0.5	< 0.01	> 0.5	< 0.01		< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05		< 0.01	< 0.5	< 0.01	1	< 0.01	< 0.5	
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01
TB060	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01		< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01	< 0.1		< 0.5					< 0.01
	NSGA2	MoCell				< 0.05										
	NSGA2	SPEA2				< 0.01										
TB070	NSGA2	CellDE				< 0.01										
TB070 -	MoCell	SPEA2				< 0.01										
	MoCell	CellDE				< 0.01										
	SPEA2	CellDE	<0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01

ТВ	Alaarithm A	A loosith on D	I	ET	С	TR	U	M	N	IU	О	FV	I.	IV	IC	GD
1 D	AlgorithmA	Aigoriumb	A12	p												
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 00 90	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TR100	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100 -	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 29. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, ANU))

TD	24.		Ra	nk			Confid	dence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	1	4	2	30%	10%	40%	20%
	CTR	2	2	3	1	25%	25%	38%	12%
	UM	2	3	1	4	20%	30%	10%	40%
TB010	NU	3	4	1	2	30%	40%	10%	20%
	OFV	3	4	2	1	30%	40%	20%	10%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	4	1	20%	30%	40%	10%
	UM	3	2	1	4	30%	20%	10%	40%
TB020	NU	2	4	1	3	20%	40%	10%	30%
	OFV	1	3	1	2	14%	43%	14%	29%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	4	1	20%	30%	40%	10%
	UM	2	2	1	3	25%	25%	12%	38%
TB030	NU	2	3	1	3	22%	33%	11%	33%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	4	1	20%	30%	40%	10%
	UM	2	2	1	3	25%	25%	12%	38%
TB040	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	4	1	20%	30%	40%	10%
TB050	UM	2	3	1	4	20%	30%	10%	40%
	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%

TD	M-1		Rai	ık			Confic	lence	
ТВ	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB050	HV	3	2	4	1	30%	20%	40%	10%
1 0000	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	4	1	20%	30%	40%	10%
	UM	2	2	1	3	25%	25%	12%	38%
TB060	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	4	1	20%	30%	40%	10%
	UM	3	2	1	4	30%	20%	10%	40%
TB070	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB080	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	3	1	25%	25%	38%	12%
	UM	2	3	1	4	20%	30%	10%	40%
TB090	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	3	1	25%	25%	38%	12%
	UM	2	3	1	4	20%	30%	10%	40%
TB100	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

B.1.2.7 Problem 7: This section describes the results for prioritization problem f(PET, PTR, AUM, PUU). TABLE 30. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, PUU))

TB	Metric	ChiSq	DF	p
	ET	4733.9	3	< 0.01
	CTR	8477.29	3	< 0.01
	UM	8940.23	3	< 0.01
TB010	NUU	8581.67	3	< 0.01
	OFV	6493.22	3	< 0.01
	HV	248.35	3	< 0.01
	IGD	238.61	3	< 0.01
	ET	11748.7	3	< 0.01
	CTR	12328.77	3	< 0.01
	UM	15417.7	3	< 0.01
TB020	NUU	12552.5	3	< 0.01
	OFV	5889.18	3	< 0.01
	HV	270.92	3	< 0.01
	IGD	252.1	3	< 0.01
TB030	ET	11479.12	3	< 0.01

TB	Metric	ChiSq	DF	p
	CTR	11994.87	3	< 0.01
	UM	18136.47	3	< 0.01
TD000	NUU	12337.27	3	< 0.01
TB030	OFV	2058.67	3	< 0.01
	HV	268.29	3	< 0.01
	IGD	240.96	3	< 0.01
	ET	13442.26	3	< 0.01
	CTR	11379.27	3	< 0.01
	UM	19658.46	3	< 0.01
TB040	NUU	11654.87	3	< 0.01
	OFV	980.37	3	<0.01
	HV	289.48	3	<0.01
	IGD	263.56	3	<0.01
	ET	16858.46	3	<0.01
	CTR	9455.16	3	<0.01
	UM	22018.79	3	<0.01
TB050	NUU	9988.89	3	<0.01
10000	OFV	2995.11	3	<0.01
	HV	320.25	3	<0.01
	IGD	257.35	3	<0.01
	ET	1	l .	<0.01
		16186.81	3	
	CTR	8439.27	3	<0.01
ED040	UM	22504.49	3	<0.01
TB060	NUU	8859.32	3	<0.01
	OFV	5585.71	3	<0.01
	HV	319.11	3	<0.01
	IGD	278.57	3	< 0.01
	ET	17864.64	3	< 0.01
	CTR	7614.74	3	< 0.01
	UM	22545.4	3	< 0.01
TB070	NUU	8119.05	3	< 0.01
	OFV	9428.79	3	< 0.01
	HV	325.75	3	< 0.01
	IGD	286.39	3	< 0.01
	ET	17390.06	3	< 0.01
	CTR	7954.08	3	< 0.01
	UM	23437.45	3	< 0.01
TB080	NUU	8444.76	3	< 0.01
	OFV	10966.55	3	< 0.01
	HV	336.57	3	< 0.01
	IGD	289.83	3	< 0.01
	ET	16836.72	3	< 0.01
	CTR	7710.76	3	< 0.01
	UM	23961.86	3	< 0.01
TB090	NUU	8397.5	3	< 0.01
	OFV	12239.73	3	<0.01
	HV	339.42	3	< 0.01
	IGD	306.79	3	<0.01
	ET	15812.23	3	<0.01
	CTR	6755.84	3	<0.01
	UM	26878.67	3	<0.01
TB100	NUU	7129.24	3	<0.01
10100	OFV	13592.67	3	<0.01
	HV	336.74	3	<0.01
	IGD	301.94	3	<0.01
	130	301.94		\\\ 0.01

TABLE 31. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, PUU))

TD	A1 '11 A	A1 '(1 D	I	ET	С	TR	U	J M	N	UU	О	FV	I	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	p	A12	p	A12	p	A12	p	A12	р	A12	p	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	
TD010	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TD000	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	I	l .	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	I	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01		< 0.01		< 0.01	>0.5	< 0.01		< 0.01		< 0.01	< 0.5	
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01	< 0.5	I		>0.05		1
TD 0 0 0	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	1	< 0.01	>0.5	< 0.01	I	< 0.01		< 0.01	< 0.1	1
TB030	MoCell	SPEA2	>0.5	< 0.01		< 0.01		< 0.01	< 0.5	< 0.01		l .		< 0.01		>0.05
	MoCell	CellDE	< 0.5	< 0.01		< 0.01		< 0.01	>0.5	< 0.01				< 0.01	< 0.1	
	SPEA2	CellDE	< 0.1	< 0.01		< 0.01		< 0.01	>0.9	< 0.01				< 0.01	<0.1	
	NSGA2	MoCell	< 0.5	< 0.01		< 0.01		< 0.01	>0.5	< 0.01	< 0.5		>0.5	< 0.01	< 0.5	
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		>0.05		
	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01	I	< 0.01		< 0.01	<0.1	< 0.01
TB040	MoCell	SPEA2	>0.5	< 0.01		< 0.01		< 0.01	< 0.5	< 0.01	I	< 0.01		< 0.01		
	MoCell	CellDE	< 0.5	< 0.01		< 0.01		< 0.01	>0.5	< 0.01	1	< 0.01		< 0.01	< 0.1	1
	SPEA2	CellDE	<0.1	< 0.01	1	< 0.01		< 0.01	>0.9	< 0.01	I	< 0.01		< 0.01	<0.1	1
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	
	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB050	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01		< 0.01		< 0.01	>0.5	
	MoCell	CellDE	<0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01	< 0.5			< 0.01	<0.1	
	SPEA2	CellDE	<0.1	< 0.01	> 0.5	< 0.01		< 0.01	>0.5	< 0.01	< 0.5	< 0.01		< 0.01	<0.1	
	NSGA2	MoCell	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5			< 0.01	< 0.5	
	NSGA2	SPEA2	>0.5	< 0.01		< 0.01		< 0.01	>0.5	< 0.01	I	I		< 0.01		>0.05
	NSGA2	CellDE	<0.5	< 0.01		< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.5	l .	>0.9	< 0.01	<0.1	1
TB060	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.1	
	MoCell	CellDE	<0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.1	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01				< 0.01	>0.5	< 0.01				< 0.01		
	NSGA2	MoCell	<0.5									< 0.01				
	NSGA2	SPEA2	>0.5			< 0.01						< 0.01				>0.01
	NSGA2	CellDE	<0.5			< 0.01						< 0.01				<0.01
TB070	MoCell	SPEA2	>0.5			< 0.01	1				I	< 0.01			1	< 0.01
	MoCell	CellDE	<0.5			1					I	< 0.01			1	
	SPEA2	CellDE	<0.1	< 0.01							I	l .			1	
	NSGA2	MoCell	<0.5	< 0.01				< 0.01			1					
	NSGA2	SPEA2	>0.5	< 0.01		1		< 0.01								>0.01
	NSGA2	CellDE	<0.1	< 0.01			1	< 0.01				< 0.01				<0.03
TB080	MoCell	SPEA2	>0.1 >0.5			1	1					< 0.01			1	< 0.01
	MoCell	CellDE	<0.5				1					< 0.01			1	< 0.01
	SPEA2	CellDE	<0.3									< 0.01				
	NSGA2	MoCell	<0.1									< 0.01				
	NSGA2 NSGA2	SPEA2	< 0.5									< 0.01				>0.01
	NSGA2 NSGA2	CellDE	>0.5 <0.5									< 0.01				
TB090	MoCell	SPEA2	>0.5			< 0.01	1					< 0.01			1	1 1
	MoCell	CellDE	>0.5 <0.5			< 0.01						< 0.01				<0.01
	SPEA2	CellDE	<0.3	< 0.01								< 0.01				
	31 EAZ	CeliDE	√ 0.1	\0.01	/0.3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<0.1	<u> \0.01</u>	/0.3	√ 0.01	<0.1	<u> </u>	∕0.9	₹0.01	<0.1	_\U.U1

ТВ	AlgorithmA	AlgorithmB	ET		CTR		UM		NUU		OFV		HV		IGD	
			A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB100	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 32. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, AUM, PUU))

ТВ	Metric		Ra			Confidence					
1 D		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	1	4	2	30%	10%	40%	20%		
TB010	CTR	3	2	4	1	30%	20%	40%	10%		
	UM	1	2	3	4	10%	20%	30%	40%		
	NUU	3	2	4	1	30%	20%	40%	10%		
	OFV	3	2	4	1	30%	20%	40%	10%		
	HV	4	3	2	1	40%	30%	20%	10%		
	IGD	3	3	2	1	33%	33%	22%	11%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	4	1	30%	20%	40%	10%		
	UM	1	1	2	3	14%	14%	29%	43%		
TB020	NUU	3	2	4	1	30%	20%	40%	10%		
	OFV	2	2	3	1	25%	25%	38%	12%		
	HV	4	3	2	1	40%	30%	20%	10%		
	IGD	3	3	2	1	33%	33%	22%	11%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	4	1	30%	20%	40%	10%		
	UM	2	3	1	4	20%	30%	10%	40%		
TB030	NUU	3	2	4	1	30%	20%	40%	10%		
	OFV	2	3	4	1	20%	30%	40%	10%		
	HV	3	2	3	1	33%	22%	33%	11%		
	IGD	3	2	2	1	38%	25%	25%	12%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	4	1	30%	20%	40%	10%		
	UM	2	3	1	4	20%	30%	10%	40%		
TB040	NUU	3	2	4	1	30%	20%	40%	10%		
	OFV	2	4	3	1	20%	40%	30%	10%		
	HV	3	2	3	1	33%	22%	33%	11%		
	IGD	3	2	3	1	33%	22%	33%	11%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	4	1	30%	20%	40%	10%		
	UM	2	3	1	4	20%	30%	10%	40%		
TB050	NUU	3	2	4	1	30%	20%	40%	10%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	3	1	33%	22%	33%	11%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	4	3	2	1	40%	30%	20%	10%		
	UM	2	3	1	4	20%	30%	10%	40%		
TB060	NUU	4	3	2	1	40%	30%	20%	10%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	3	1	33%	22%	33%	11%		
	ET	3	2	4	1	30%	20%	40%	10%		
TB070	CTR	4	3	2	1	40%	30%	20%	10%		
	UM	2	3	1	4	20%	30%	10%	40%		

ТВ	Metric		Rai	nk		Confidence					
	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
TB070	NUU	4	3	2	1	40%	30%	20%	10%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	3	1	33%	22%	33%	11%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	4	3	2	1	40%	30%	20%	10%		
	UM	2	3	1	4	20%	30%	10%	40%		
TB080	NUU	4	3	2	1	40%	30%	20%	10%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	3	1	33%	22%	33%	11%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	4	3	2	1	40%	30%	20%	10%		
	UM	2	3	1	4	20%	30%	10%	40%		
TB090	NUU	4	3	2	1	40%	30%	20%	10%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	3	1	33%	22%	33%	11%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	3	2	1	33%	33%	22%	11%		
	UM	2	3	1	4	20%	30%	10%	40%		
TB100	NUU	3	3	2	1	33%	33%	22%	11%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	3	2	3	1	33%	22%	33%	11%		

B.1.2.8 Problem 8: This section describes the results for prioritization problem f(PET, PTR, PUS, ANU). TABLE 33. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, PUS, ANU))

ТВ	Metric	ChiSq	DF	р
	ET	9342.6	3	< 0.01
	CTR	121.28	3	< 0.01
	USP	177.7	3	< 0.01
TB010	NU	589.4	3	< 0.01
	OFV	188.03	3	< 0.01
	HV	62.37	3	< 0.01
	IGD	260.11	3	< 0.01
	ET	6071.64	3	< 0.01
	CTR	711.91	3	< 0.01
	USP	379.92	3	< 0.01
TB020	NU	956.32	3	< 0.01
	OFV	1239.7	3	< 0.01
	HV	177.27	3	< 0.01
	IGD	308.32	3	< 0.01
	ET	4826.36	3	< 0.01
	CTR	317.27	3	< 0.01
	USP	32.59	3	< 0.01
TB030	NU	454.12	3	< 0.01
	OFV	3253.46	3	< 0.01
	HV	271.77	3	< 0.01
	IGD	305.72	3	< 0.01
	ET	5872.83	3	< 0.01
	CTR	270.93	3	< 0.01
TB040	USP	146.28	3	< 0.01
1 DU4U	NU	346.89	3	< 0.01
	OFV	4448.6	3	< 0.01
	HV	279.2	3	< 0.01

TB	Metric	ChiSq	DF	p
TB040	IGD	322.52	3	< 0.01
	ET	9799.21	3	< 0.01
	CTR	1925.74	3	< 0.01
	USP	741.81	3	< 0.01
TB050	NU	170.49	3	< 0.01
	OFV	9919.18	3	< 0.01
	HV	317.56	3	< 0.01
	IGD	319.6	3	< 0.01
	ET	8947.41	3	< 0.01
	CTR	1633.53	3	< 0.01
	USP	609.2	3	< 0.01
TB060	NU	190.16	3	< 0.01
	OFV	9037.78	3	< 0.01
	HV	292.78	3	< 0.01
	IGD	NaN	3	NaN
	ET	5965.81	3	< 0.01
	CTR	1350.2	3	< 0.01
	USP	382.73	3	< 0.01
TB070	NU	258.33	3	< 0.01
	OFV	5993.69	3	< 0.01
	HV	274	3	< 0.01
	IGD	NaN	3	NaN
	ET	4163.67	3	< 0.01
	CTR	1041.16	3	< 0.01
	USP	421.73	3	< 0.01
TB080	NU	772.54	3	< 0.01
	OFV	4169.51	3	< 0.01
	HV	233.34	3	< 0.01
	IGD	NaN	3	NaN
	ET	3400.07	3	< 0.01
	CTR	1068.9	3	< 0.01
	USP	275.2	3	< 0.01
TB090	NU	1048.94	3	< 0.01
	OFV	3395.54	3	< 0.01
	HV	225.28	3	< 0.01
	IGD	NaN	3	NaN
	ET	26330.41	3	< 0.01
	CTR	6114.95	3	< 0.01
	USP	4379.79	3	< 0.01
TB100	NU	19146.76	3	< 0.01
	OFV	26777.5	3	< 0.01
	HV	311.15	3	< 0.01
	IGD	319.43	3	< 0.01

TABLE 34. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, PUS, ANU))

ТВ	Algorithm A	AlgorithmB	I	ET	C	TR	U	SP	N	IU	О	FV	F	IV	IC	GD
10	AigontiiliA	Aigontimib	A12	p												
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
1 0010	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TD	4.1 1.1 4	11 11 D	I	ET	С	TR	U	SP	N	NU .	О	FV	H	V	I	GD
TB	AlgorithmA	AlgorithmB	A12	p	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01
TB020	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	>0.05
TD 0 0 0	NSGA2	CellDE	< 0.1	< 0.01		< 0.01	>0.5	>0.05		< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
TB030	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01		<0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	>0.05		< 0.01		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05		< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.05		< 0.05	< 0.5	< 0.01		< 0.01	>0.5	< 0.05		>0.05		>0.05
TTD 0 4 0	NSGA2	CellDE	< 0.1	< 0.01		< 0.01	< 0.5	< 0.01	1	< 0.01	< 0.1	< 0.01		<0.01	< 0.1	< 0.01
TB040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	l	1	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	1	< 0.01		>0.05	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01			< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01			< 0.1	< 0.01		< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	1		1	< 0.01		< 0.01	>0.5	< 0.01
	NSGA2	CellDE	<0.1	< 0.01	1	< 0.01	< 0.5	< 0.01	1		1	< 0.01		< 0.01	< 0.1	< 0.01
TB050	MoCell	SPEA2	>0.9	< 0.01		< 0.01	>0.5	< 0.01	1	< 0.01	>0.9	< 0.01			>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	<0.5	< 0.01	< 0.5	>0.05		< 0.01	< 0.1	< 0.01		< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01		< 0.01	<0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01		$\frac{< 0.01}{< 0.01}$	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01		< 0.01	<0.1	< 0.01		$\frac{< 0.01}{< 0.01}$	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01		$\frac{< 0.01}{< 0.01}$	=0.5	>0.05
	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01		< 0.01	<0.1	< 0.01		$\frac{<0.01}{<0.01}$	=0.5	>0.05
TB060	MoCell	SPEA2	>0.9	< 0.01		< 0.01	>0.5	< 0.01	1	< 0.01	>0.9			$\frac{< 0.01}{< 0.01}$	=0.5	>0.05
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	1	< 0.01	<0.1	< 0.01		$\frac{<0.01}{<0.01}$	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	<0.1	< 0.01		$\frac{<0.01}{<0.01}$	=0.5	>0.05
	NSGA2	MoCell	<0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01		$\frac{< 0.01}{< 0.01}$	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.01		< 0.01	>0.5	< 0.01		$\frac{<0.01}{<0.01}$	=0.5	>0.05
	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01		< 0.01	<0.1	< 0.01		$\frac{<0.01}{<0.01}$	=0.5	>0.05
TB070	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	1	>0.01	>0.1 >0.5			$\frac{< 0.01}{< 0.01}$	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01		$\frac{< 0.01}{< 0.01}$	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01		< 0.01	<0.1	< 0.01		< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01		$\frac{0.01}{>0.05}$	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01		$\frac{>0.05}{<0.05}$	=0.5	>0.05
	NSGA2	CellDE	<0.1	< 0.01		< 0.01	<0.5	< 0.01	<0.5		<0.1	< 0.01	1 1	$\frac{< 0.03}{< 0.01}$	=0.5	-
TB080	MoCell	SPEA2						< 0.01								
	MoCell	CellDE	<0.1					< 0.01								>0.05
	SPEA2	CellDE	<0.1					< 0.01				< 0.01				>0.05
	NSGA2	MoCell	<0.5			< 0.01		< 0.01								
	NSGA2	SPEA2	>0.5	1	1	I	1	>0.01					<0.5			
	NSGA2	CellDE	<0.1							< 0.01		< 0.01				>0.05
TB090	MoCell	SPEA2	>0.1													>0.05
				1	1	I	1	l	1							
	MoCell SPEA2	CellDE CellDE	<0.1		1	I	1	l	1		1	<0.01		<0.01 <0.01		
			<0.1				1	l	1			<0.01				
	NSGA2	MoCell	<0.5			I	<0.5					<0.01		<0.01		
	NSGA2	SPEA2	>0.5					< 0.01				<0.01		<0.01		
TB100	NSGA2	CellDE	<0.1					< 0.01				< 0.01		<0.01		
	MoCell	SPEA2		< 0.01				l						<0.01		
	MoCell	CellDE	<0.1			< 0.01						< 0.01		<0.01		
	SPEA2	CellDE	< 0.1	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01

TABLE 35. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, PUS, ANU))

TD	34.1		Ra	nk			Confid	dence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	2	1	1	20%	40%	20%	20%
	USP	3	4	2	1	30%	40%	20%	10%
TB010	NU	4	3	2	1	40%	30%	20%	10%
	OFV	2	4	3	1	20%	40%	30%	10%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	2	25%	38%	12%	25%
	USP	2	3	1	1	29%	43%	14%	14%
TB020	NU	3	4	2	1	30%	40%	20%	10%
12020	OFV	2	4	1	3	20%	40%	10%	30%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	4	2	3	1	40%	20%	30%	10%
	CTR	2	3	1	3	22%	33%	11%	33%
	USP	1	2	1	1	20%	40%	20%	20%
TB030	NU	3	1	2	1	43%	14%	29%	14%
1 0030		2				20%	30%	10%	40%
	OFV		3	1	4				
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	4	2	3	1	40%	20%	30%	10%
	CTR	2	3	1	3	22%	33%	11%	33%
	USP	1	4	2	3	10%	40%	20%	30%
TB040	NU	3	2	1	2	38%	25%	12%	25%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
	USP	2	3	1	3	22%	33%	11%	33%
TB050	NU	1	3	2	1	14%	43%	29%	14%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	3	2	4	10%	30%	20%	40%
	USP	1	3	2	4	10%	30%	20%	40%
TB060	NU	2	3	1	4	20%	30%	10%	40%
10000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3			20%	30%		
				1	4			10%	40%
TDOTO	USP	1	2	1	3	14%	29%	14%	43%
TB070	NU	1	2	2	3	12%	25%	25%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB080	USP	2	3	1	4	20%	30%	10%	40%
	NU	1	2	2	3	12%	25%	25%	38%
	OFV	2	3	1	4	20%	30%	10%	40%

ТВ	Metric		Ra	nk			Confid	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB080	HV	2	2	3	1	25%	25%	38%	12%
1 0000	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	2	1	3	14%	29%	14%	43%
	USP	1	2	1	3	14%	29%	14%	43%
TB090	NU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	2	2	2	1	29%	29%	29%	14%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
	USP	2	4	1	3	20%	40%	10%	30%
TB100	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

B.1.2.9 Problem 9: This section describes the results for prioritization problem f(PET, PTR, PUS, PUU). TABLE 36. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, PUS, PUU))

TB	Metric	ChiSq	DF	p
	ET	3124.56	3	< 0.01
	CTR	303.16	3	< 0.01
	USP	67.96	3	< 0.01
TB010	NUU	384.57	3	< 0.01
	OFV	329.93	3	< 0.01
	HV	141.16	3	< 0.01
	IGD	262.09	3	< 0.01
	ET	2680.52	3	< 0.01
	CTR	108.44	3	< 0.01
	USP	38.06	3	< 0.01
TB020	NUU	106.88	3	< 0.01
	OFV	370.64	3	< 0.01
	HV	180.57	3	< 0.01
	IGD	294.51	3	< 0.01
	ET	2223.45	3	< 0.01
	CTR	58.31	3	< 0.01
	USP	7.68	3	>0.05
TB030	NUU	9.59	3	< 0.05
	OFV	1159.47	3	< 0.01
	HV	267.58	3	< 0.01
	IGD	309.03	3	< 0.01
	ET	1881.93	3	< 0.01
	CTR	95.27	3	< 0.01
	USP	42.58	3	< 0.01
TB040	NUU	48.12	3	< 0.01
	OFV	1318.4	3	< 0.01
	HV	286.5	3	< 0.01
	IGD	323.08	3	< 0.01
	ET	1129.57	3	< 0.01
	CTR	244.29	3	< 0.01
	USP	32.43	3	< 0.01
TB050	NUU	104.47	3	< 0.01
	OFV	1114.42	3	< 0.01
	HV	331.31	3	< 0.01
	IGD	NaN	3	NaN
TB060	ET	1040.51	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	CTR	137.34	3	< 0.01
	USP	33.73	3	< 0.01
TB060	NUU	95.41	3	< 0.01
1 0000	OFV	1038.41	3	< 0.01
	HV	314.48	3	< 0.01
	IGD	NaN	3	NaN
	ET	1030.89	3	< 0.01
	CTR	108.5	3	< 0.01
	USP	26.06	3	< 0.01
TB070	NUU	84.71	3	< 0.01
	OFV	1023.51	3	< 0.01
	HV	325.98	3	< 0.01
	IGD	NaN	3	NaN
	ET	865.35	3	< 0.01
	CTR	148.16	3	< 0.01
	USP	29.9	3	< 0.01
TB080	NUU	135.9	3	< 0.01
	OFV	855.2	3	< 0.01
	HV	303.3	3	< 0.01
	IGD	NaN	3	NaN
	ET	819.86	3	< 0.01
	CTR	174.04	3	< 0.01
	USP	57.86	3	< 0.01
TB090	NUU	133.01	3	< 0.01
	OFV	824	3	< 0.01
	HV	288.95	3	< 0.01
	IGD	NaN	3	NaN
	ET	868.4	3	< 0.01
	CTR	100.09	3	< 0.01
	USP	68.35	3	< 0.01
TB100	NUU	46.54	3	< 0.01
	OFV	873.91	3	< 0.01
	HV	277.79	3	< 0.01
	IGD	NaN	3	NaN

TABLE 37. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, PUS, PUU))

ТВ	Algorithm A	AlgorithmB	F	ET	C	TR	U	SP	N	UU	О	FV	H	IV	IC	GD
1 1	AigontiiliA	Aigoriumb	A12	p												
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.05
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

			F	ET	C	TR	U	SP	N	UU	O	FV	F	ΙV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	p										
	NSGA2	MoCell	<0.1	< 0.01	< 0.5	<0.01	>0.5	> 0.05		<0.01	< 0.5		>0.5	<0.01	<0.1	<0.01
	NSGA2	SPEA2	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05
	NSGA2	CellDE	<0.1	< 0.01		< 0.01	>0.5	>0.05		>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB040	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5		< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05		>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
EDOFO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TROCO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0070	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.5	< 0.01		>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	=0.5	>0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	MoCell	SPEA2	>0.9	< 0.01		>0.05	>0.5			>0.05	>0.9		< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.5	< 0.01		>0.05	>0.5	>0.05		>0.05	< 0.5			< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	> 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
12000	MoCell	SPEA2	>0.9	< 0.01		< 0.01	>0.5	< 0.01		< 0.01	>0.9		< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	<0.5	>0.05	< 0.5	>0.05	< 0.5		>0.5	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	=0.5	>0.05
TB100	NSGA2	CellDE	< 0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
== 100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.5	< 0.01	=0.5	>0.05
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	>0.05	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	> 0.05

TABLE 38. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, PUS, PUU))

ТВ	Metric		Rai	nk			Confid	lence	
1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
	USP	2	2	1	1	33%	33%	17%	17%
TB010	NUU	2	3	1	1	29%	43%	14%	14%
	OFV	2	3	1	1	29%	43%	14%	14%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
TB020	ET	3	2	4	1	30%	20%	40%	10%
1 0020	CTR	2	3	1	4	20%	30%	10%	40%

			Rai	nk			Confid	dence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	USP	2	2	2	1	29%	29%	29%	14%
	NUU	2	3	1	1	29%	43%	14%	14%
TB020	OFV	2	3	1	4	20%	30%	10%	40%
12020	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
	USP	1	2	1	2	17%	33%	17%	33%
TB030	NUU	1	2	1	2	17%	33%	17%	33%
1 0030	OFV	1	2	1	3	14%	29%	14%	43%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	4	2	3	1	40%	20%	30%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
FFD0.40	USP	2	2	1	2	29%	29%	14%	29%
TB040	NUU	2	3	1	3	22%	33%	11%	33%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
	USP	2	2	1	2	29%	29%	14%	29%
TB050	NUU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	2	1	3	14%	29%	14%	43%
	USP	2	2	1	3	25%	25%	12%	38%
TB060	NUU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	2	20%	20%	20%	40%
	USP	1	1	1	2	20%	20%	20%	40%
TB070	NUU	1	1	1	2	20%	20%	20%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	2	20%	20%	20%	40%
	USP	1	1	1	2	20%	20%	20%	40%
TB080	NUU	1	1	1	2	20%	20%	20%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
	USP	2	2	1	2	29%	29%	14%	29%
TB090	NUU	2	2	1	3	25%	25%	12%	38%
1 0070	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET						25%	40%	10%
TD100		3 2	2	4	1	30%			
TB100	CTR		2	1	3	25%	25%	12%	38%
	USP	2	2	1	3	25%	25%	12%	38%

ТВ	Metric		Rai	ık			Confic	lence	
10	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	NUU	1	2	1	3	14%	29%	14%	43%
TB100	OFV	2	3	1	4	20%	30%	10%	40%
10100	HV	3	2	3	1	33%	22%	33%	11%
	IGD	1	1	1	1	25%	25%	25%	25%

B.1.2.10 Problem 10: This section describes the results for prioritization problem f(PET, PTR, ANU, PUU). TABLE 39. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW1, f(PET, PTR, ANU, PUU))

ТВ	Metric	ChiSq	DF	p
	ET	10860.38	3	< 0.01
	CTR	283.83	3	< 0.01
	NU	243.01	3	< 0.01
TB010	NUU	194.95	3	< 0.01
	OFV	225.93	3	< 0.01
	HV	79.74	3	< 0.01
	IGD	259.92	3	< 0.01
	ET	6854.74	3	< 0.01
	CTR	98.42	3	< 0.01
	NU	727.91	3	< 0.01
TB020	NUU	313.31	3	< 0.01
	OFV	376.19	3	< 0.01
	HV	193.43	3	< 0.01
	IGD	310.62	3	< 0.01
	ET	5972.91	3	< 0.01
	CTR	435.74	3	< 0.01
	NU	265.06	3	< 0.01
TB030	NUU	411.92	3	< 0.01
	OFV	3379.61	3	< 0.01
	HV	272.27	3	< 0.01
	IGD	297.09	3	< 0.01
	ET	6258.67	3	< 0.01
	CTR	423.84	3	< 0.01
	NU	190.2	3	< 0.01
TB040	NUU	333.86	3	< 0.01
	OFV	4003.92	3	< 0.01
	HV	297.04	3	< 0.01
	IGD	324.8	3	< 0.01
	ET	10495.55	3	< 0.01
	CTR	2581.52	3	<0.01
	NU	565.27	3	< 0.01
TB050	NUU	1840.42	3	< 0.01
	OFV	10574.05	3	< 0.01
	HV	328.59	3	< 0.01
	IGD	337.27	3	< 0.01
	ET	8683.48	3	< 0.01
	CTR	2371.61	3	< 0.01
	NU	353.35	3	< 0.01
TB060	NUU	1793.97	3	<0.01
	OFV	8680.85	3	<0.01
	HV	311.57	3	< 0.01
	IGD	313.98	3	<0.01
	ET	5346.74	3	<0.01
	CTR	1243.37	3	<0.01
	NU	139.68	3	<0.01
TB070	NUU	1079.2	3	<0.01
	OFV	5407.61	3	<0.01
	HV	276.29	3	<0.01
		=: 0.=/		10.01

TB	Metric	ChiSq	DF	p
TB070	IGD	275.15	3	< 0.01
	ET	4583.76	3	< 0.01
	CTR	1257.47	3	< 0.01
	NU	1059.68	3	< 0.01
TB080	NUU	960.97	3	< 0.01
	OFV	4592.6	3	< 0.01
	HV	241.17	3	< 0.01
	IGD	236.49	3	< 0.01
	ET	3743.28	3	< 0.01
	CTR	1204.04	3	< 0.01
	NU	1239.21	3	< 0.01
TB090	NUU	1187.55	3	< 0.01
	OFV	3767.03	3	< 0.01
	HV	236.65	3	< 0.01
	IGD	234.6	3	< 0.01
	ET	25741.51	3	< 0.01
	CTR	7091.26	3	< 0.01
	NU	18532.45	3	< 0.01
TB100	NUU	6580.68	3	< 0.01
	OFV	26271.49	3	< 0.01
	HV	325.11	3	< 0.01
	IGD	328.48	3	< 0.01

TABLE 40. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW1, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmR	I	ET	С	TR	N	IU	N	UU	О	FV	F	IV	IC	GD
1 D	AigonumA	Aigoriumb	A12	p												
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	A 1 A	A 1 th D	I	ET	С	TR	N	JU	N	UU	О	FV	F	IV	IGD	
1 D	AlgorithmA	Aigorithmb	A12	р												
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.5	< 0.01		< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01		< 0.05	< 0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01		>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01			>0.5	
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01		< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10090	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05		< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	1	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01		< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 41. Rank Results for each Multi-Objective Algorithms (AW1, f(PET, PTR, ANU, PUU))

ТВ	Metric		Rai	nk			Confid	lence	
1 D	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
	NU	3	4	2	1	30%	40%	20%	10%
TB010	NUU	3	3	1	2	33%	33%	11%	22%
	OFV	3	3	1	2	33%	33%	11%	22%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	4	2	3	10%	40%	20%	30%
	NU	3	2	3	1	33%	22%	33%	11%
TB020	NUU	3	4	2	1	30%	40%	20%	10%
	OFV	1	3	2	4	10%	30%	20%	40%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
	NU	4	2	3	1	40%	20%	30%	10%
TB030	NUU	2	4	1	3	20%	40%	10%	30%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

TD	36.4.		Ra	nk			Confic	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
	NU	3	2	4	1	30%	20%	40%	10%
TB040	NUU	2	4	1	3	20%	40%	10%	30%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	3	2	4	10%	30%	20%	40%
	NU	3	4	1	2	30%	40%	10%	20%
TB050	NUU	1	3	2	3	11%	33%	22%	33%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
	NU	1	2	1	2	17%	33%	17%	33%
TB060	NUU	1	2	1	3	14%	29%	14%	43%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	2	1	3	14%	29%	14%	43%
	NU	1	3	2	4	10%	30%	20%	40%
TB070	NUU	1	2	1	3	14%	29%	14%	43%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	2	1	3	14%	29%	14%	43%
	NU	1	2	2	3	12%	25%	25%	38%
TB080	NUU	1	3	2	4	10%	30%	20%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	2	2	3	1	25%	25%	38%	12%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
	NU	1	2	2	3	12%	25%	25%	38%
TB090	NUU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	2	2	3	1	25%	25%	38%	12%
	IGD	2	2	3	1	25%	25%	38%	12%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
	NU	2	3	1	4	20%	30%	10%	40%
TB100	NUU	2	4	1	3	20%	40%	10%	30%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

B.1.2.11 Holm-Bonferroni method: This section describes the results of the Holm-Bonferroni method.

TABLE 42. Results of the Holm-Bonferroni method among Multi-Objective Algorithms for HV and IGD (AW1)

Problem	ТВ	Kruskal-Wal	lis Test	Mann-Whitney U Test		
Tiobieni	10	adjusted_p	reject	adjusted_p	reject	
Prob.1 f(PET,PTR,AUM)	TB010	< 0.01	Y	< 0.05	Y	
1700.1 ((1 L1,1 1 K,21 CHVI)	TB020	< 0.01	Y	< 0.05	Y	

Problem	ТВ	Kruskal-Wa	llis Test	Mann-Whitne	y U Test
Tioblem		adjusted_p	reject	adjusted_p	reject
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
	TB050	< 0.01	Y	< 0.01	Y
Prob.1 f(PET,PTR,AUM)	TB060	< 0.01	Y	< 0.01	Y
- · · · · · · · · · · · · · · · · · · ·	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.05	Y
	TB020	< 0.01	Y	<0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
<i>Prob.2 f(PET,PTR,PUS)</i>	TB050	< 0.01	Y	< 0.01	Y
1700,2) (1 21)1 110,1 0,0)	TB060	N/A	N/A	< 0.01	Y
	TB070	N/A	N/A	< 0.01	Y
	TB080	N/A	N/A	< 0.01	Y
	TB090	N/A	N/A	< 0.01	Y
	TB100	N/A	N/A	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.05	Y
	TB040	< 0.01	Y	< 0.05	Y
Prob.3 f(PET,PTR,ANU)	TB050	< 0.01	Y	< 0.01	Y
1100.5 J(FE1,F1K,ANU)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.05	Y
	TB090	< 0.01	Y	< 0.05	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
D 1 4 ((DET DED DILLI)	TB050	< 0.01	Y	< 0.01	Y
Prob.4 f(PET,PTR,PUU)	TB060	N/A	N/A	< 0.01	Y
	TB070	N/A	N/A	< 0.01	Y
	TB080	N/A	N/A	< 0.01	Y
	TB090	N/A	N/A	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.05	Y
	TB020	< 0.01	Y	<0.01	Y
	TB030	< 0.01	Y	< 0.05	Y
	TB040	< 0.01	Y	<0.01	Y
n 15 ((nn=n=n))	TB050	<0.01	Y	<0.01	Y
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	TB060	<0.01	Y	<0.01	Y
	TB070	<0.01	Y	<0.01	Y
	TB080	<0.01	Y	<0.05	Y
	TB090	<0.01	Y	<0.01	Y
	TB100	<0.01	Y	<0.01	Y
	TB010	<0.01	Y	<0.01	Y
	TB020	<0.01	Y	<0.01	<u>Y</u>
	TB030	<0.01	Y	<0.01	Y
	TB040	<0.01	Y	<0.01	Y
Prob.6 f(PET,PTR,AUM,ANU)	TB050	<0.01	Y	<0.01	Y
1 100.0 j(1 L1,1 1 N,AUIVI,AINU)	TB060	<0.01	Y	<0.01	<u>Y</u>
	TB070	<0.01	Y	<0.01	Y
	TB070		Y	<0.01	Y
		<0.01	Y		
	TB090	< 0.01	Y	< 0.01	Y

Problem	ТВ	Kruskal–Wa		Mann-Whitney U Test		
		adjusted_p	reject	adjusted_p	reject	
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	TB100	< 0.01	Y	< 0.01	Y	
·	TB010	< 0.01	Y	< 0.01	Y	
	TB020	< 0.01	Y	< 0.01	Y	
	TB030	< 0.01	Y	< 0.01	Y	
	TB040	< 0.01	Y	< 0.01	Y	
Prob.7 f(PET,PTR,AUM,PUU)	TB050	< 0.01	Y	< 0.01	Y	
Prov.7 J(PE1,P1K,AUM,PUU)	TB060	< 0.01	Y	< 0.01	Y	
	TB070	< 0.01	Y	< 0.01	Y	
	TB080	< 0.01	Y	< 0.01	Y	
	TB090	< 0.01	Y	< 0.01	Y	
	TB100	< 0.01	Y	< 0.01	Y	
	TB010	< 0.01	Y	< 0.05	Y	
	TB020	< 0.01	Y	< 0.01	Y	
	TB030	< 0.01	Y	< 0.01	Y	
	TB040	< 0.01	Y	< 0.01	Y	
Prob.8 f(PET,PTR,PUS,ANU)	TB050	< 0.01	Y	< 0.01	Y	
F100.6 J(FE1,F1K,FU3,ANU)	TB060	N/A	N/A	< 0.01	Y	
	TB070	N/A	N/A	< 0.01	Y	
	TB080	N/A	N/A	< 0.05	Y	
	TB090	N/A	N/A	< 0.01	Y	
	TB100	< 0.01	Y	< 0.01	Y	
	TB010	< 0.01	Y	< 0.05	Y	
	TB020	< 0.01	Y	< 0.01	Y	
	TB030	< 0.01	Y	< 0.05	Y	
	TB040	< 0.01	Y	< 0.01	Y	
Prob.9 f(PET,PTR,PUS,PUU)	TB050	N/A	N/A	< 0.01	Y	
F100.9 J(FE1,F1K,FU3,FUU)	TB060	N/A	N/A	< 0.01	Y	
	TB070	N/A	N/A	< 0.01	Y	
	TB080	N/A	N/A	< 0.01	Y	
	TB090	N/A	N/A	< 0.01	Y	
	TB100	N/A	N/A	< 0.01	Y	
	TB010	< 0.01	Y	< 0.05	Y	
	TB020	< 0.01	Y	< 0.01	Y	
	TB030	< 0.01	Y	< 0.01	Y	
	TB040	< 0.01	Y	< 0.05	Y	
Prob.10 f(PET,PTR,ANU,PUU)	TB050	< 0.01	Y	< 0.01	Y	
1 100.10 J(FL1,F1K,ANU,FUU)	TB060	< 0.01	Y	< 0.01	Y	
	TB070	< 0.01	Y	< 0.01	Y	
	TB080	< 0.01	Y	< 0.05	Y	
	TB090	< 0.01	Y	< 0.01	Y	
	TB100	< 0.01	Y	< 0.01	Y	

^{*} Note that **Adjusted_p** refers to all adjusted p-value results. If **Adjusted_p** < 0.05 (0.01), it means that all adjusted p-values are less than 0.05 (0.01). If **Adjusted_p** > 0.05, it means there is at least one adjusted p-value that is greater than 0.05.

* **Reject** is **Y**, meaning rejecting the null hypothesis, and **N** means not rejecting the null hypothesis.

B.1.3 Experiment Results for RQ4

This section describes the results for RQ4.

TABLE 43 Results for the Kruskal-Wallis Test among Test Case Prioritization Problems (AW1)

Metric	ChiSq	DF	p
ANOU	55751.20	10	< 0.01

TABLE 44. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Test Case Prioritization Problems (AW1)

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	р
Prob.1 f(PET,PTR,AUM)	Prob.2 f(PET,PTR,PUS)	SPEA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.3 f(PET,PTR,ANU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.4 f(PET,PTR,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	SPEA2	SPEA2	>0.5	< 0.01
Prob.1 f(PET,PTR,AUM)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
Prob.1 f(PET,PTR,AUM)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	SPEA2	< 0.5	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	NSGA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.3 f(PET,PTR,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.4 f(PET,PTR,PUU)	SPEA2	SPEA2	>0.5	>0.05
Prob.2 f(PET,PTR,PUS)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	NSGA2	< 0.5	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.5	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	<0.1	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.4 f(PET,PTR,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	<0.1	<0.01
Prob.3 f(PET,PTR,ANU)	Prob.6 f(PET,PTR,AUM,ANU)	SPEA2	SPEA2	<0.1	< 0.01
Prob.3 f(PET,PTR,ANU)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	SPEA2	<0.1	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	<0.5	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	NSGA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	<0.5	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	<0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	SPEA2	<0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	SPEA2	<0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	<0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	NSGA2	<0.5	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.5	< 0.05
Prob.4 f(PET,PTR,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	<0.1	< 0.01
Prob.5 f(PET,PTR,AUM,PUS)	Prob.6 f(PET,PTR,AUM,ANU)	SPEA2	SPEA2	<0.1	< 0.01
Prob.5 f(PET,PTR,AUM,PUS)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	SPEA2	<0.5	< 0.01
Prob.5 f(PET,PTR,AUM,PUS)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.5 f(PET,PTR,AUM,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	NSGA2	>0.9	< 0.01
Prob.5 f(PET,PTR,AUM,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.5 f(PET,PTR,AUM,PUS)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.6 f(PET,PTR,AUM,ANU)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.6 f(PET,PTR,AUM,ANU)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.6 f(PET,PTR,AUM,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	NSGA2	>0.9	< 0.01
Prob.6 f(PET,PTR,AUM,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.6 f(PET,PTR,AUM,ANU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.7 f(PET,PTR,AUM,PUU)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	>0.9	<0.01
Prob.7 f(PET,PTR,AUM,PUU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	NSGA2	>0.9	<0.01
Prob.7 f(PET,PTR,AUM,PUU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.7 f(PET,PTR,AUM,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.8 f(PET,PTR,PUS,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	NSGA2	>0.9	<0.01
Prob.8 f(PET,PTR,PUS,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	<0.01
Prob.8 f(PET,PTR,PUS,ANU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	<0.5	<0.01
Prob.9 f(PET,PTR,PUS,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	NSGA2	SPEA2	<0.3	<0.01
Prob.9 f(PET,PTR,PUS,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	<0.1	<0.01
1,00.0)(1 11,1 11,1 40,1 44)	1100.10 J(1 L1,1 1 K,211 Va,1 Ua)	OI EAZ	JI EAZ		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

TABLE 45
Results of the Holm-Bonferroni method for the Mann-Whitney U Test among Test Case Prioritization Problems (AW1)

Metric	Adjusted_p	Reject
ANOU	< 0.05	Y

^{*} Note that ${\bf Adjusted_p}$ refers to all adjusted p-value results. If ${\bf Adjusted_p} < 0.05$, it means that all adjusted p-values are less than 0.05. ${\bf Reject}$ is ${\bf Y}$, meaning rejecting the null hypothesis.