Linear Systems Test #2 Equation Sheet

Charlie Coleman

Trigonometric Fourier Series:

$$x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} b_n \sin(n\omega_0 t)$$

$$a_0 = \frac{1}{T_0} \int_{T_0} x(t) dt \qquad \qquad a_n = \frac{2}{T_0} \int_{T_0} x(t) \cos(n\omega_0 t) dt \qquad \qquad b_n = \frac{2}{T_0} \int_{T_0} x(t) \sin(n\omega_0 t) dt$$

Complex Exponential Fourier Series:

$x(t)$ X_n	x(t)	$t) = \sum_{n = -\infty}^{\infty} X_n$	$e^{jn\omega_0 t} X_n = \frac{1}{T_0} \int_{T_0} x(t) dt$	$)e^{-jn\omega_0t}dt$
		x(t)	X_n	
real even mag., odd phase		real	even mag., odd phase	
real and even even mag. and purely real	re	eal and even	even mag. and purely real	
real and odd even mag. and purely imaginary	r	real and odd	even mag. and purely imaginary	

Relationship between complex and trig Fourier Series:

$$a_0 = X_0$$
 $a_n = X_n + X_{-n}$ $b_n = j[X_n - X_{-n}]$

Average power of a signal (Parseval's Theorem):

$$\frac{1}{T_0} \int_{t_0}^{t_0 + T_0} |x(t)|^2 dt = \sum_{n = -\infty}^{\infty} |X_n|^2$$

The Fourier Transform:
$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt \qquad \iff \qquad x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} dt$$

Rayleigh's Energy Theorem:
$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$

The Important Problem: (Works for all sinusoids)

$$y(t) = h(t) * A\cos(2\pi f_0 t + \theta) = A|H(f_0)|\cos(2\pi f_0 t + \theta + \angle H(f_0))$$

Ideal Filters: (Ideal Filters are not possible to create because they are not causal.)

Filter	H(f)	$\mathrm{h(t)}$
Low-Pass Filter	$\Pi\left(rac{f}{2f_c} ight)$	$(2f_c)\operatorname{sinc}(2f_ct)$
High-Pass Filter	$1 - \Pi\left(\frac{f}{2f_c}\right)$	$\delta(t) - (2f_c)\operatorname{sinc} 2f_c t$
Band-Pass Filter	$\Pi\left(\frac{f-f_0}{B}\right) + \Pi\left(\frac{f+f_0}{B}\right)$	$2B\operatorname{sinc}(Bt)\cos(2\pi f_0 t)$
Band-Reject Filter	$1 - \Pi\left(\frac{f - f_0}{B}\right) \Pi\left(\frac{f + f_0}{B}\right)$	$\delta(t) - 2B\operatorname{sinc}(Bt)\cos(2\pi f_0 t)$

Inductors and Capacitors:

Variable	Inductor	Capacitor			
v(t)	$L\frac{di(t)}{dt}$	$\frac{1}{C}\int i(t)dt$			
i(t)	$\frac{1}{L} \int v(t) dt$	$C\frac{dv(t)}{dt}$			