

동양인 나이 성별 분류

- 01. 프로젝트계획
- 02. 팀원 역할 분담
- 03. 데이터 현황
- **04.** Augmentaiton 및 Hyperparameter
- 05. 이미지 분류 모델 train 및 test 결과
- 06. 한계점 및 추후 계획

01. 프로젝트 계획

데이터 수집 10대-60대 여성, 남성 데이터 수집 및 분류

데이터 전처리 Labeling, Resize, Padding, Split

모델 훈련 Swin-T, ResNet50, ConvNeXT_large, VGG16

모델 테스트 결과 분석 이미지 분류 모델 비교 분석

02. 팀원 역할 분담 __

여익수	발표 자료 준비, 팀원 역할 분담, Train & Test 스크립트 수정				
권태윤	최적화 모델 조사, 모델 train 및 test 하이퍼 파라미터 최적화 값 조사				
이승윤	Dataset 구축, 데이터 전처리(crop, resize, split), 테스트 및 초기 실험 후 데이터 보강				
손병구	데이터 전처리(split, customdataset) 하이퍼파라미터 최적화 값 조사, loss & acc function 작성				
최유연	이미지 분류 모델 조사, 데이터 전처리, 모델 Train & Test				
공 통	모델 학습 및 실험에 이르는 전체 과정, 실험 결과 정리				

02. 데이터 수집 - Raw Data

- 데이터 수집

- AFAD-Dataset
- 20, 30대 용량 순으로 2000장의 추출
- 40대 이상 부족한 데이터는 UTK Face
 Dataset 추가
- K-Face 웹 사이트의 한국인 얼굴 사진 데이터베이스 자료 요청
- Web Crawling을 통한 test dataset 수집

02. 데이러 수집 - Pretrain(+UTK)

02. 데이터 현황

Train: Valid: Test = 85%: 10%: 5%

Resize Image

03. Aug 및 Hyperparameter

Hyper Parameter	optimizer	AdamW	NAdam		
	batch size	64	128		
	learning rate	0.001	0.0001		
	epoch	10	20		
	loss function	LabelSmoothingCrossEntropy			
	scheduler	X			

	C:	SmallestMaxSize	224	
Albu	Size	RandomCrop	200, 200	
	Rotate	ShiftScaleRotate	p=0.5	
		HorizontalFlip	p=0.5	
		VerticalFlip	p=0.5	
	Color	RGBShift	p=0.5	
		Random Brightness Contrast	p=0.5	

04. 모델 훈련 결과

Model Name	Optimizer	Learning Rate	Batch Size	Epochs	Train Loss	Train Acc	Valid Acc	Test Acc	.pt Size
Swin-T	AdamW	0.0001	128	50	0.512	0.962	0.733	75.30%	107MB
ConvNeXt_Large		0.0001	16	20	0.516	0.956	0.758	72.70%	748MB
EfficientNet-B3		0.0001	32	20	0.686	0.867	0.736	70.75%	42MB
ResNet50		0.001	128	20	0.885	0.752	0.703	70.55%	92MB
VGG16		0.0001	64	100	0.521	0.956	0.711	68.37%	512MB
Mobilenet_V2		0.001	64	10	1.655	0.702	0.681	67.98%	13.6MB

- ConvNeXt_Large, MobileNet_V2, Swin-T, VGG16, EfficientNet-B3의 총 6가지 이미지 분류 모델
 - 이 외에 ResNet50, VGG19, AlexNet 등의 실험에서는 Test Accuracy가 50%를 넘지 못하였음
- Augmentation 추가 및 scheduler 설정하여 train 진행
- Hyperparameter (optimizer, learning rate, batch size, epoch)을 조절하며 train 및 test 실행
 - optimizer의 경우 NAdam 등을 적용해 보았으나 동일 모델에서 AdamW 대비 못한 성능 보여줌
- 무겁고 가벼운 모델을 모두 사용해보았으나 Test Accuracy가 75%를 기록하지 못한 실험 결과 도출
- Swin-T에서 75%가 넘는 Test Accuracy를 기록하여 가장 높은 성능을 보임

04. 모델 레스트 결과

04. 모델 레스트 결과

04. 모델 레스트 결과

(**초록색** : 예측 결과, **빨간색** : 실제 결과)

20대

30대

40대

05. 한계점 및 추후 계획

- 한계점

- 1. 제공된 데이터셋 외에 단기간에 라벨별 데이터 수집하는 것이 쉽지 않았음
 - 가령, 데이터셋이 있다고 하더라도 동양인의 데이터는 절대적으로 부족하여 사용할 수 없었음
 - 동양인의 데이터로 제공된 것이 대체로 인도 쪽의 데이터가 다수를 차지하였음
- 2. 명확한 Classification을 위한 40대 이후 연령대 이미지의 데이터량이 충분하지 않음
- 3. 기존 Dataset의 labeling 하는 과정에서 불명확한 부분도 존재

- 추후 계획

- 1. K-Face에 요청한 한국인 얼굴 사진 데이터를 추가해 데이터 보완 및 모델 재학습 필요
- 2. 연령대 별로 충분한 양의 데이터 수집 이후 라벨을 늘려 상세한 연령대별 예측 수행

Q & A

Team 02. 여익수, 권태윤, 이승윤, 손병구, 최유연

召人持且工厂

Team 02. 여익수, 권태윤, 이승윤, 손병구, 최유연

