Feedback — Week 1 Quiz

Help

Thank you. Your submission for this quiz was received.

You submitted this quiz on Fri 9 Jan 2015 5:00 PM PST. You got a score of 19.00 out of 20.00. You can attempt again, if you'd like.

Introduction

This first quiz will check your ability to execute basic operations on objects in R and to understand some basic concepts. For questions 11–20 you will need to load a dataset into R and do some basic manipulations in order to answer the questions on the quiz.

You may want to print a copy of the quiz questions to look at as you work on the assignment. It is recommended that you save your answers as you go in the event that a technical problem should occur with your network connection or computer. Ultimately, you must submit the quiz online to get credit!

Data

The zip file containing the data for questions 11–20 in this Quiz can be downloaded here:

• Week 1 Quiz Data

For this assignment you will need to unzip this file in your working directory.

Question 1

The R language is a dialect of which of the following programming languages?

Your Answer		Score	Explanation
• S	~	1.00	R is a dialect of the S language which was developed at Bell Labs.
O C			
Fortran			
Lisp			

Total 1.00 / 1.00

Question 2

The definition of free software consists of four freedoms (freedoms 0 through 3). Which of the following is NOT one of the freedoms that are part of the definition?

Your Answer		Score	Explanation
The freedom to redistribute copies so you can help your neighbor.	×	0.00	This is freedom 2.
The freedom to sell the software for any price.			
The freedom to improve the program, and release your improvements to the public, so that the whole community benefits.			
The freedom to study how the program works, and adapt it to your needs.			
Total		0.00 /	
		1.00	

Question 3

In R the following are all atomic data types EXCEPT

Your Answer		Score	Explanation
data frame	~	1.00	'data frame' is not an atomic data type in R.
ological			
numeric			
integer			
Total		1.00 / 1.00	

Question 4

If I execute the expression x <- 4 in R, what is the class of the object `x' as determined by the `class()' function?

Your Answer		Score	Explanation
o real			
integer			
• numeric	~	1.00	
o matrix			
Total		1.00 / 1.00	

Question 5

What is the class of the object defined by $x \leftarrow c(4, TRUE)$?

Your Answer		Score	Explanation
character			
numeric	~	1.00	The numeric class is the "lowest common denominator" here and so all elements will be coerced into that class.
ological			
integer			
Total		1.00 / 1.00	

Question Explanation

R does automatic coercion of vectors so that all elements of the vector are the same data class.

Question 6

If I have two vectors $x \leftarrow c(1,3,5)$ and $y \leftarrow c(3,2,10)$, what is produced by the expression rbind(x,y)?

Your Answer	Score	Explanation
a 3 by 3 matrix		
a 2 by3 matrix	✓ 1.00	The 'rbind' function treats vectors as if they were rows of a matrix. It then takes those vectors and binds them together row-wise to create a matrix.
a vector of length 3		
a vector of length 2		
Total	1.00 / 1.00	

Question 7

A key property of vectors in R is that

Your Answer		Score	Explanation
a vector cannot have have attributes like dimensions			
the length of a vector must be less than 32,768			
 elements of a vector can be of different classes 			
elements of a vector all must be of the same class	~	1.00	
Total		1.00 / 1.00	

Question 8

Suppose I have a list defined as x <- list(2, "a", "b", TRUE). What does x[[1]] give me?

Your Answer		Score	Explanation
a numeric vector of length 1.	~	1.00	
a list containing the letter "a".			
a list containing a numeric vector of length 1.			
a list containing the number 2.			
Total		1.00 / 1.00	

Question 9

Suppose I have a vector x <- 1:4 and a vector y <- 2. What is produced by the expression x + y?

Your Answer	Score	Explanation
a numeric vector with elements 3, 2, 3, 6.		
• a numeric vector with elements 3, 4, 5, 6.	✓ 1.00	
a numeric vector with elements 3, 2, 3, 4.		
a numeric vector with elements 1, 2, 3, 6.		
Total	1.00 / 1	.00

Question 10

Suppose I have a vector x <- c(17, 14, 4, 5, 13, 12, 10) and I want to set all elements of this vector that are greater than 10 to be equal to 4. What R code achieves this?

Your Answer	Score	Explanation
<pre> x[x > 10] == 4</pre>		

x[x >10] <- 4	✓ 1.00	You can create a logical vector with the expression x > 10 and then use the [operator to subset the original vector x.
○ x[x >		
4] <- 10		
x[x ==		
4] > 10		
Total	1.00	0 /
	1.00	n

Question 11

In the dataset provided for this Quiz, what are the column names of the dataset?

Your Answer	Score	Explanation
0 1, 2, 3, 4, 5, 6		
Ozone, Solar.R, Wind,Temp, Month, Day	1.00	You can get the column names of a data frame with the `names()' function.
Ozone, Solar.R, Wind		
Month, Day, Temp, Wind		
Total	1.00 / 1.00	

Question 12

Extract the first 2 rows of the data frame and print them to the console. What does the output look like?

Score	Explanation
	Score

131 8.0 76

18

9 29 Ozone Solar.R Wind Temp Month Day 7 NA 6.9 74 5 11 2 35 274 10.3 82 7 17 Ozone Solar.R Wind Temp Month Day 1 18 224 13.8 67 9 17 2 NA 258 9.7 81 7 22 1.00 You can extract the first two rows using the [operator Ozone Solar.R Wind and an integer sequence to index the rows. Temp Month Day 1 41 190 7.4 67 5 1 2 36 118 8.0 72 5 2 Total 1.00 /

Question 13

How many observations (i.e. rows) are in this data frame?

1.00

Your Answer	Score	Explanation
129		
45		
O 160		
153	✓ 1.00	You can use the `nrow()' function to compute the number of rows in a data frame.
Total	1.00 / 1.00	

Question 14

Extract the *last* 2 rows of the data frame and print them to the console. What does the output look like?

Ozone Solar.R Wind Te mp Month Day 152 31 244 10.9 78 8 19 153 29 127 9.7 82 6 7 Ozone Solar.R Wind Te mp Month Day 152 34 307 12.0 66 5 17 153 13 27 10.3 76 9 18 Ozone Solar.R Wind Te mp Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /	Your Answer	Score	Explanation
mp Month Day 152 31 244 10.9 78 8 19 153 29 127 9.7 82 6 7 Ozone Solar.R Wind Te mp Month Day 152 34 307 12.0 66 5 17 153 13 27 10.3 76 9 18 ✓ 1.00 The `tail()' function is an easy way to extract the la few elements of an R object. Dzone Solar.R Wind Te mp Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /	0		
152 31 244 10.9 78 8 19 153 29 127 9.7 82 6 7 Ozone Solar.R Wind Te mp Month Day 152 34 307 12.0 66 5 17 153 13 27 10.3 76 9 18 ✓ 1.00 The `tail()' function is an easy way to extract the la few elements of an R object. mp Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /			
8 19 153 29 127 9.7 82 6 7 Ozone Solar.R Wind Te mp Month Day 152 34 307 12.0 66 5 17 153 13 27 10.3 76 9 18 ✓ 1.00 The `tail()' function is an easy way to extract the la few elements of an R object. mp Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /	•		
153 29 127 9.7 82 6 7 Ozone Solar.R Wind Te mp Month Day 152 34 307 12.0 66 5 17 153 13 27 10.3 76 9 18 ✓ 1.00 The `tail()' function is an easy way to extract the la few elements of an R object. mp Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /			
Ozone Solar.R Wind Te mp Month Day 152 34 307 12.0 66 5 17 153 13 27 10.3 76 9 18 Ozone Solar.R Wind Te mp Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /			
Ozone Solar.R Wind Te mp Month Day 152 34 307 12.0 66 5 17 153 13 27 10.3 76 9 18 In the 'tail()' function is an easy way to extract the late few elements of an R object. Ozone Solar.R Wind Te mp Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /			
Ozone Solar.R Wind Te mp Month Day 152 34 307 12.0 66 5 17 153 13 27 10.3 76 9 18 ✓ 1.00 The `tail()' function is an easy way to extract the la Ozone Solar.R Wind Te mp Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /	6 7		
mp Month Day 152 34 307 12.0 66 5 17 153 13 27 10.3 76 9 18 ✓ 1.00 The `tail()' function is an easy way to extract the la few elements of an R object. mp Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /			
152 34 307 12.0 66 5 17 153 13 27 10.3 76 9 18 ✓ 1.00 The `tail()' function is an easy way to extract the la Ozone Solar.R Wind Te mp Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /	Ozone Solar.R Wind Te		
5 17 153 13 27 10.3 76 9 18 1.00 The `tail()' function is an easy way to extract the la few elements of an R object. The phonth Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Temp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /	mp Month Day		
153 13 27 10.3 76 9 18 ■	152 34 307 12.0 66		
●	5 17		
● ✓ 1.00 The `tail()' function is an easy way to extract the la few elements of an R object. ### Month Day 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /	153 13 27 10.3 76		
Ozone Solar.R Wind Te few elements of an R object. mp Month Day 152	9 18		
Ozone Solar.R Wind Te few elements of an R object. mp Month Day 152	(a)	1 00	The `tail()' function is an easy way to extract the last
mp Month Day 152		1.00	
152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /			ion dismones of an in education
9 29 153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /			
153 20 223 11.5 68 9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /			
9 30 Ozone Solar.R Wind Te mp Month Day 152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /			
Ozone Solar.R Wind Te mp Month Day 152			
mp Month Day 152	0		
152 11 44 9.7 62 5 20 153 108 223 8.0 85 7 25 Total 1.00 /	Ozone Solar.R Wind Te		
5 20 153 108 223 8.0 85 7 25 Total 1.00 /	mp Month Day		
153 108 223 8.0 85 7 25 Total 1.00 /			
7 25 Total 1.00 /	5 20		
Total 1.00 /	153 108 223 8.0 85		
	7 25		
1.00	Total	1.00 /	
1.00		1.00	

Question 15

What is the value of Ozone in the 47th row?

Your Answer	Score	Explanation
O 18		
34		
21	✓ 1.00	The single bracket [operator can be used to extract individual rows of a data frame.
63		
Total	1.00 / 1.00	

Question 16

How many missing values are in the Ozone column of this data frame?

Your Answer		Score	Explanation
37	~	1.00	
O 78			
<u>43</u>			
9			
Total		1.00 / 1.00	

Question Explanation

The `is.na' function can be used to test for missing values.

Question 17

What is the mean of the Ozone column in this dataset? Exclude missing values (coded as NA)

from this calculation.

Your Answer		Score	Explanation
42.1	~	1.00	
31.5			
O 18.0			
O 53.2			
Total		1.00 / 1.00	

Question Explanation

The 'mean' function can be used to calculate the mean.

Question 18

Extract the subset of rows of the data frame where Ozone values are above 31 and Temp values are above 90. What is the mean of Solar.R in this subset?

Your Answer		Score	Explanation
○ 205.0			
○ 334.0			
• 212.8	~	1.00	
○ 185.9			
Total		1.00 / 1.00	

Question Explanation

You need to construct a logical vector in R to match the question's requirements. Then use that logical vector to subset the data frame.

Question 19

What is the mean of "Temp" when "Month" is equal to 6?

Your Answer	Score	Explanation
-------------	-------	-------------

79.1	~	1.00
O 75.3		
90.2		
○ 85.6		
Total		1.00 / 1.00

Question 20

What was the maximum ozone value in the month of May (i.e. Month = 5)?

● 115✓ 1.00● 97	
97	
O 100	
O 18	
Total 1.00 / 1.00	