\overline{PH} 223 \overline{TSC}

Shashwat Chakraborty

14th September 2023

Cauchy-Riemann conditions

Let f be a complex function with u and v as its real and imaginary parts, respectively. Then, f is differentiable iff the following holds:

$$u_x = v_y$$
$$u_y = -v_x$$

In a more compact form:

$$f_y = i f_x$$

Equivalent condition for differentiability

f is differentiable \longleftrightarrow "Pure function of z"

 \mathbf{Q} .

Is $u(x,y) = xy + 3x^2y - y^3$ harmonic? If yes, find it's harmonic conjugate.

Ans.

Yes! $u_{xx} + u_{yy} = 0 \implies u$ is harmonic. Let the harmonic conjugate be v(x, y). u and v satisfy the CR conditions:

$$v_y = u_x = y + 6xy$$

$$v = \frac{y^2}{2} + 3xy^2 + g(x)$$

$$v_x = 3y^2 + g'(x) = -u_y = -x - 3x^2 + 3y^2$$

$$g(x) = -\frac{x^2}{2} - x^3$$

$$v(x, y) = \frac{y^2}{2} + 3xy^2 - \frac{x^2}{2} - x^3$$

\mathbf{Q} .

Consider a function f defined on a simply connected domain Ω . Statement: If $f'(z) = 0 \ \forall z \in \Omega$, then $f(z) = \text{constant in } \Omega$. True or False?

Ans.

False! The keyword to note is *simply connected*. Thus, Ω can be a union of two (or more) simply connected islands:

$$\Omega = \Omega_1 \cup \Omega_2$$

f can take different values c_1 and c_2 on the two islands.

Analytic functions

In simple terms, an analytic function is: a function with a Taylor expansion.

Radius of convergence:

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

Cauchy condition for analytic functions

Let f be an analytic function and $\mathcal C$ be a closed contour in the complex plane $\mathbb C$. Then

$$\int_{\mathcal{C}} f(z)dz = 0$$

\mathbf{Q} .

Find the radius of convergence of the following power series (about z = 0):

$$S = \sum_{n} \frac{(-1)^n}{n!} z^{n^2}$$

Ans.

Use ratio test (or root test)! R = 1

Cauchy Integral Formula (CIF)

If f(z) is analytic on and inside a contour C, then (for $z_0 \in C$)

$$\int_{\mathcal{C}} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

Cauchy Residue Theorem

Let f be a complex function having n singular points (z_1, z_2, \dots, z_n) in the interior of a closed contour C. Then

$$\int_{\mathcal{C}} f(z)dz = \sum_{i=1}^{n} \operatorname{Res}(z_i)$$

Laurent Series

Suppose a non-analytic function f has an isolated singularity at z_0 . In that case, it can be expressed as a series (Laurent series) in an annular region around z_0 bounded by two closed curves C_1 and C_2 :

$$f(z) = \sum_{n \ge 0} a_n (z - z_0)^n + \sum_{n \ge 1} b_n (z - z_0)^{-n}$$

$$a_n = \frac{1}{2\pi i} \int_{\mathcal{C}_1} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi$$

$$b_n = \frac{1}{2\pi i} \int_{\mathcal{C}_2} \frac{f(\xi)}{(\xi - z_0)^{-n+1}} d\xi$$

\mathbf{Q} .

Evaluate the following integral:

$$\int_0^{2\pi} \frac{\cos^2(3x)}{5 - 4\cos(2x)} dx$$

Ans.

Define $z = e^{i\theta}$ and substitute

$$\cos(n\theta) = \left(z^n + z^{-n}\right)/2$$

Vector Spaces

Important Definitions:

 $|a\rangle, |b\rangle \in S_N \longleftarrow$ N-dimensional vector space

- Scalar product: $\langle a|b\rangle$

 - $\langle a|a\rangle \geq 0$
 - bi-linear
- **2** Metric distance: $P(|a\rangle, |b\rangle)$
 - $\bullet \ P(\left|a\right\rangle,\left|b\right\rangle) = P(\left|b\right\rangle,\left|a\right\rangle)$
 - $P(|a\rangle,|b\rangle) = 0$ iff $|a\rangle = |b\rangle$
 - triangle inequality

Function Spaces

Things to remember:

- Infinite-dimensional basis
- ② Parseval's equality condition → "completeness"
- Metric Distance:

$$P(|f\rangle, |g\rangle) = \sqrt{\int_a^b w(x)|f(x) - g(x)|^2 dx}$$

Scalar product:

$$\langle f|g\rangle = \int_a^b \underbrace{w(x)}_{\text{weight}} \overline{f}(x)g(x)dx$$

Fourier Series

Let f be a function on [-L, L], then it's Fouries series expansion is given by

$$FS(f(x)) = \frac{1}{\sqrt{2L}} \left[A_0 + \sum_{m \ge 1} A_m \cos(\frac{m\pi x}{L}) + \sum_{m \ge 1} B_m \sin(\frac{m\pi x}{L}) \right]$$

$$A_0 = \frac{1}{\sqrt{2L}} \int_{-L}^{L} f(x) dx$$

$$A_m = \sqrt{\frac{2}{L}} \int_{-L}^{L} f(x) \cos(\frac{m\pi x}{L}) dx$$

$$B_m = \sqrt{\frac{2}{L}} \int_{-L}^{L} f(x) \sin(\frac{m\pi x}{L}) dx$$

Q. When is it equal to f(x)??

 \mathbf{Q} .

Consider the following 2π -periodic function:

$$f(x) := \begin{cases} 0 & \text{for } x \in [-\pi, 0) \\ x^2 & \text{for } x \in [0, \pi) \end{cases}$$

Note that the 2π -periodicity of the above function essentially says that

$$f(\pi) := f(-\pi) = 0.$$

Find the Fourier series of the above function and deduce the value of the following, pretty well-known, infinite sum:

$$S = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$$

Ans.

Let us note the following two results before proceeding $(n \in \mathbb{N})$

$$\int_0^{\pi} x^2 \sin(nx) dx = \frac{(-1)^{n+1}}{n} \pi^2 + 2 \frac{1 - (-1)^n}{n^3}$$

and

$$\int_0^{\pi} x^2 \cos(nx) dx = \frac{2\pi (-1)^n}{n^2}$$

Thus, we obtain the Fourier series for

$$f(x) := \begin{cases} 0 & \text{for } x \in [-\pi, 0) \\ x^2 & \text{for } x \in [0, \pi) \end{cases}$$
 is

$$f(x) := \begin{cases} x^2 & \text{for } x \in [0, \pi) \end{cases}$$

$$f(x) = \frac{\pi^2}{6} + \sum_{n=0}^{\infty} \left(\frac{2(-1)^n}{n^2} \cos(nx) + \left[\frac{(-1)^{n+1}}{n} \pi + \frac{2}{\pi} \cdot \frac{1 - (-1)^n}{n^3} \right] \sin(nx) \right)$$

Plugging in x = 0, we get

$$0 = \frac{\pi^2}{6} + \sum_{n=1}^{\infty} \frac{2(-1)^n}{n^2} \implies 1 - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12} \to S = ?$$

Fourier Transform

FT and inverse FT

The Fourier transform $\tilde{f}(k)$ of a function f(x) is related to it as

$$\tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx}dx$$
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{f}(k)e^{ikx}dk$$

Generalized Distributions

Generalized distributions are limits of sequences of *good* functions.

Dirac Delta

Properties:

$$\int_{-\infty}^{\infty} \delta(x)f(x)dx = f(0)$$
$$\delta(x)f(x) = f(0)\delta(x)$$

FT for Differential Equations

Some important results:

• FT of derivatives:

$$FT\left(g^{(m)}(x)\right) = (ik)^m FT\left(g(x)\right)$$

② Derivatives of FT:

$$\frac{d^n}{d(-ik)^n}FT\left(g(x)\right) = FT\left(x^ng(x)\right)$$

3 Convolution theorem:

$$f(x) \otimes g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)g(x-y)dy$$
$$FT(f(x) \otimes g(x)) = FT(f(x)) \times FT(g(x))$$

 \mathbf{Q} .

Let a > 0. Applying the Fourier transform in the x variable, show the solution u(t,x) to the following first-order partial differential equation:

$$\begin{cases} \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 & \text{for } (t, x) \in (0, \infty) \times \mathbb{R} \\ u(0, x) = u_0(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

is

$$u(t,x) = u_0(x - at)$$
 for $(t,x) \in [0,\infty) \times \mathbb{R}$.

Ans.

On taking the Fourier transform of the given differential equation, we get

$$\frac{d}{dt}\hat{u} + ika\hat{u} = 0$$

Let the Fourier transform of the initial condition be denoted as $\hat{u}_0(k)$, given by

$$\hat{u}_0(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u_0(x) e^{-ikx} dx$$

The solution of the differential equation is clearly

$$\hat{u}(t,k) = \hat{u}_0(k)e^{-ikat}$$

Taking its inverse Fourier transform gives

$$u(t,x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{u}_0(k) e^{ik(x-at)} dx$$
$$= u_0(x - at)$$