

OUTTA

추천시스템이란?

다양한 아이템 중 사용자가 선호할 아이템을 제공하는 시스템

일상 속 추천시스템

▲넷플릭스

▲ 무신사

▲ 올리브영

다양한 추천시스템

음악 친구 패션 영화

O Instagram

TikTok

BLY

WATCHA

Netflix Prize

■ 넷플릭스 상

2006년부터 2009년까지 진행된 넷플릭스의 온라인 영화 추천 시스템 개선 대회

■ 대회목표

넷플릭스의 영화 추천 정확도를 10% 이상 개선

■ 상금 기준

넷플릭스의 자체 알고리즘인 Cinematch의 성능보다 10%이상 향상한 경우 100만 달러

고민해봐야 할 것

어떤 사용자에게 무슨 아이템을 추천할 것인가
 사용자의 취향, 흥미, 의도, 상황에 맞는 아이템

• 어떤 데이터를 활용할 것인가

유저 데이터 - 나이 성별 직업 | 행동 데이터 - 클릭 구매 평가 | 아이템 데이터 - 가격 색상 이름

OUTTA

추천시스템 분류

데이터

알고리즘

모델

1. Best Recommendation

베스트

데이터

알고리즘

모델

2. Related Recommendation

22.500원 15,750원

OH)

▲올리브영

이런 시트팩/패드 상품은 어떠세요?

SNP 퓨어 비타민 토너 패드

19,000원

데이터

알고리즘

모델

3. Personalized Recommendation

데이터

알고리즘

모델

4. Context-aware Recommendation

회색 구름으로 채워진 날

부드러운 록에 취해 #얼터너티브록 #리드미컬 #댄스 #흥

흥+흥 댄스 맛집

돌고 #가요

서울〇

봄의 설렘을 담은 뮤직

봄바람 맞으며 듣는 감 성 발라드

기분 전환 하기 좋은 리 드미컬 팝

R&B

나만의 음악으로 채우는 밤

미니멀한 비트 + 빡센 랩 = 근본 #외힙 #dope

● 행복했던 날들이었다 DAY6 (데이식스)

떼창 Songs #노래방 #기분전환

Chill #저녁

밤에 듣기 좋은 음악

어둑해진 하늘에 띄운 우타이테

소중한 아이를 위한 명 품 클래식 자장가

EDM

재생목록이 비었습니다.

▲멜론

▲FLO

추천목적

• 데이터

알고리즘

모델

데이터에 따른 추천시스템 분류

Explicit Data

사용자가 아이템에 대한 자신의 선호도를 분명하게 표현한 데이터

평점

- 좋아요/싫어요
- 관심 상품/찜

Rate

-> 수집이 어렵다

Implicit Data

사용자가 아이템에 대해 간접적으로 선호도, 취향을 나타내는 데이터

• 클릭

• 시청

• 구매

Consume

-> 선호도 파악이 어렵다

추천목적

HOIE

• 알고리즘

모델

알고리즘에 따른 추천시스템 분류

Content-based Filtering

사용자가 어떤 아이템을 선호 하면 해당 아이템의 속성을 파악해 유사한 아이템을 추천

가시적 특성을 기반으로 아이템 유사도 측정

Item cold-start 문제 X

User cold-start 문제 다양성이 떨어지는 추천

Collaborative Filtering

아이템과 사용자의 관계를 이 용하여 사용자의 흥미에 맞는 아이템을 추천

잠재적 특성을 기반으로 아이템, 사용자의 유사도 측정

전반적으로 추천 정확도가 높음

Item/User cold start 문제 발생

Hybrid

Content-based

&

Collaborative Filtering

아이템 속성, 사용자 행동 이력 데이터 모두 사용한 추천 시스템

추천목적

HOIE

알고리즘

모델

모델에 따른 추천시스템 분류

Rating Prediction

점수를 예측하고 이를 토대로 추천하는 방식 e.g. 왓챠 - 사용자가 컨텐츠에 남길 평점을 예측하여 추천

Top – k Recommendation

정확한 점수 예측보다는 아이템의 순위에 초점을 둔 방식

OUTTA

학습 목표

66

사용자가 영화에 남길 평점을 예측하여 영화를 추천

"

효과 예상 평점을 제시하여 작품 선택에 도움을 줌 | 유사한 작품 추천 가능

실습 데이터

Movielens Dataset

671명의 사용자 | 약 9000개의 영화 | 약 10만 개의 평점

출처: GroupLens Research - (무비렌즈 | 그룹렌즈 (grouplens.org))

🤵 평점 예측

UserId	Movield	Title	genres	Rating
12	0	Toy Story	Adventure Animation Children Comedy Fantasy	4.1
12	1	Jumanji	Adventure Children Fantasy	3.2
12	2	Grumpier Old Men	Comedy Romance	예측
12	3	Waiting to Exhale	Comedy Drama Romance	3.7

실습할 추천시스템

추천목적

Personalized

데이터

Explicit

알고리즘

CBF, CF

모델

Rating Prediction

OUTTA

CBF (content - based filtering)

유사한 두 영화에 대해 비슷한 평점을 남길 것이라는 생각에서 출발

<원스>

- 드라마
- 멜로/로맨스

"유사한 장르"

<비긴 어게인>

- 드라마
- 멜로/로맨스
- 코미디

사전지식 for 유사도

장르의 벡터화

genres	Adventure	Comedy	Fantasy	Romance
비긴 어게인	0	1	0	1

$$b = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

내적

$$a_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \qquad a_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

$$a_1 \cdot a_2 = a_1^T a_2$$

=1 × 1 + 2 × 1 + 3 × 0 + 4 × 1 = 7

Euclidean Norm (l_2)

$$v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \sqrt{v \cdot v}$$
$$= \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}$$

코사인 유사도

코사인 유사도

$$sim(a,b) = \cos \theta = \frac{a \cdot b}{\|a\| \|b\|}$$

예제 $v_1 = [2,4]$, $v_2 = [4,1]$ 일 때, 두 벡터의 코사인 유사도는?

$$sim(v_1, v_2) = \frac{v_1 \cdot v_2}{\|v_1\| \|v_2\|}$$
$$= \frac{2 \times 4 + 4 \times 1}{\sqrt{2^2 + 4^2} \sqrt{4^2 + 1^2}}$$
$$= 0.65$$

Bag of word

Bag of word Beautiful 크러쉬 It's a beautiful life love 난 너의 곁에 있을게 beautiful life 너의 It's a beautiful life life beautiful 있을게 lt's 너의 뒤에 서 있을게 뒤에 lt's 곁에 beautiful beautiful love 있을게 너의

<Bag of word embedding>

단어	beautiful	It's	life	a	너의	있을게	난	곁에	뒤에	서	love
개수	3	2	2	2	2	2	1	1	1	1	1

TF-IDF

Term Frequency-Inverse Document Frequency

TF-IDF(w,d) = TF(w,d) ×
$$log(\frac{N}{1+DF(w)})$$

IDF(w) = $log(\frac{N}{1+DF(w)})$

- TF(w) : 특정 단어 w가 특정 문서 d에 나온 빈도
- DF(w) : 특정 단어 w가 나타난 문서의 수
- IDF(w): 전체 문서 수 N을 해당 단어의 DF로 나눈 뒤 로그 취한 값
- N은 전체 문서 수

예제

d1: 귀여운 강아지

d2: 물을 마시는 강아지 고양이

d3: 잠자는 고양이

단어	귀여운	강아지	고양이	물을	마시는	잠자는
DF						
IDF						
d1 TF d2 d3						
d1 TF-IDF d2 d3						

TF-IDF

Term Frequency-Inverse Document Frequency

예제 답

d1: 귀여운 강아지

d2: 물을 마시는 강아지 고양이

d3: 잠자는 고양이

단어	귀여운	강아지	고양이	물을	마시는	잠자는
DF	1	2	2	1	1	1
IDF	log(1.5)	log(1)	log(1)	log(1.5)	log(1.5)	log(1.5)
d1 TF d2 d3	1 0 0	1 1 0	0 1 1	0 1 0	0 1 0	0 0 1
d1 TF-IDF d2 d3	log(1.5) 0 0	log(1) 0 0	0 log(1) log(1)	0 log(1.5) 0	0 log(1.5) 0	0 0 log(1.5)

TF-IDF 이용한 영화 유사도

TF-IDF 결과 예시

MovieID	Adventure	Fantasy	Comedy	Romance	Drama	Thriller
1	0.00	0.00	0.38	0.00	0.59	0.00
2	0.12	0.66	0.45	0.15	0.00	0.00
3	0.27	0.00	0.00	0.62	0.34	1.03
4	0.00	0.13	0.22	0.18	0.55	0.00

영화 ID 1과 2 유사도

$$sim(a,b) = \frac{a^T b}{\|a\| \cdot \|b\|} \qquad sim(1,2) = \frac{0.38 \times 0.45}{\sqrt{0.59^2 + 0.38^2} \cdot \sqrt{(0.12^2 + 0.66^2 + 0.45^2 + 0.15^2}} = \frac{0.171}{0.7018 \times 0.8216} = 0.2966$$

CBF 평점 예측

$$\hat{r}_{u,i} = \frac{\sum_{j \in I_u} sim(i,j) \cdot r_{u,j}}{\sum_{j \in I_u} sim(i,j)}$$

사용자 u가 영화 i 에 남길 예상 평점

- I_u 사용자 u가 평점을 남긴 영화 전체 집합
- $r_{u,j}$ 사용자 u가 영화 j 에 남긴 평점
- sim(i,j) 영화 i와 j의 유사도

유사도와 평점

<예시: 영화 컨택트 예상 평점 구해보기>

컨택트(Arrival)

영화 (I _u)	평점 $r_{u,j}$	<i>sim</i> (컨택트 , <i>j</i>)	$\mathit{sim}($ 컨택트 $,j)\cdot r_{u,j}$
더 기버:기억 전달자	3.1	0.4	1.24
인터스텔라	4.2	0.35	1.47
더문	3.8	0.6	2.28
합계		1.35	4.99

$$\hat{r}_{u,i} = \frac{\sum_{j \in I_u} sim(i,j) \cdot r_{u,j}}{\sum_{j \in I_u} sim(i,j)}$$

사용자 u가 영화 i 에 남길 예상 평점

사용자 u가 컨택트에 남길 예상 평점 : $\frac{4.99}{1.35}$ = 3.696

OUTTA

CF (collaborative filtering)

사용자들이 영화에 남긴 평점 즉, 행동 이력을 통해 영화의 평점을 예측하여 추천

학습 내용

01) ITEM – BASED CF 아이템 간의 유사도를 구하여 영화의 평점을 예측해 추천하는 방식

02) USER - BASED CF 사용자 간의 유사도를 구하여 영화의 평점을 예측해 추천하는 방식

Item-based CF (collaborative filtering)

유사한 두 영화에 대해 비슷한 평점을 남길 것이라는 생각에서 출발

CBF와 동일한 가정 <u>단, 유사도 구하는 과정에 차이 있음</u>

CBF

Item-based CF

아이템 속성인 영화 장르를 이용한 유사도 측정

사용자들이 영화에 남긴 평점을 이용하여 유사도 측정

장르	비긴 어게인	어바웃 타임
Adventure	0	0
Comedy	1	1
Romance	1	1
Drama	1	0

라임

Item-based CF (collaborative filtering)

사용자 u가 영화 i 에 남길 예상 평점

$$\hat{r}_{u,i} = \frac{\sum_{j \in I_u} sim(i,j) \cdot r_{u,j}}{\sum_{j \in I_u} sim(i,j)}$$

- I_u 사용자 u가 평점을 남긴 영화 전체 집합
- $r_{u,j}$ 사용자 u가 영화 j 에 남긴 평점

영화 a와 b의 평점을 이용한 유사도

$$sim(a,b) = \frac{a^T b}{\|a\| \|b\|}$$

• 영화 장르의 TF-IDF를 계산하지 않고 영화에 남겨진 평점으로 유사도 계산

Item-based CF (collaborative filtering)

평점을 이용한 영화 유사도 구하기 주의 : 두 영화에 대해 평점 기록이 모두 있는 경우에만 계산

사용자 ID	Α	В	С	D
1	4.8	3.6	3.7	1.5
2	2.7	4.3		4.6
3	5.0	4.1	4.4	1.8
4		3.7	4.1	3.6

▲영화 평점 예시

예시 영화 A와 D의 유사도 구하기

$$sim(a,b) = \frac{a^T b}{\|a\| \|b\|}$$

$$sim(A, D) = \frac{4.8 \times 1.5 + 2.7 \times 4.6 + 5.0 \times 1.8}{\sqrt{4.8^2 + 2.7^2 + 5.0^2} \sqrt{1.5^2 + 4.6^2 + 1.8^2}}$$
$$= \frac{28.62}{29} = 0.74$$

User-based CF (collaborative filtering)

유사한 유저는 같은 영화에 대해 비슷한 평점을 남길 것이라는 생각에서 출발

"사용자 간의 유사도를 가중치처럼 적용하여 예상 평점을 구함"

User-based CF (collaborative filtering)

$$\hat{r}_{u,i} = \overline{r_u} + \frac{\sum_{v \in U_i} sim(u,v) \cdot (r_{v,i} - \overline{r_v})}{\sum_{v \in U_i} sim(u,v)}$$

사용자 u가 영화 i 에 남길 예상 평점

- U_i 영화 i에 대해 평점을 남긴 사용자 전체 집합
- $r_{v,i}$ 사용자 v가 영화 i에 남긴 평점
- $\overline{r_v}$ 사용자 \vee 가 영화에 남긴 평점들의 평균
- $\overline{r_u}$ 사용자 u가 영화에 남긴 평점들의 평균
- sim(u,v) 사용자 u와 v의 유사도

User-based CF (collaborative filtering)

평점을 이용한 유저 유사도 구하기 주의 : 두 유저에 대해 평점 기록이 모두 있는 경우에만 계산

사용자 ID	Α	В	С	D
1	4.8	3.6	3.7	1.5
2	2.7	4.3		4.6
3	5.0	4.1	4.4	1.8
4		3.7	4.1	3.6

▲영화 평점 예시

예시 유저 1과 4의 유사도 구하기

$$sim(a,b) = \frac{a^T b}{\|a\| \|b\|}$$

$$sim(1,4) = \frac{3.6 \times 3.7 + 3.7 \times 4.1 + 1.5 \times 3.6}{\sqrt{3.6^2 + 3.7^2 + 1.5^2} \sqrt{3.7^2 + 4.1^2 + 3.6^2}}$$
$$= \frac{33.89}{35.44} = 0.95$$

User-based 유사도와 평점

<예시: 사용자 u의 컨택트(i) 예상 평점 구하기>

	사용자 1 (v=1)	사용자 2 (v=2)	사용자 3 (v=3)
컨택트 $(r_{v,i}$)	4.4	3.5	4.7
평점 평균 $(\overline{r_v})$	4.2	3.9	4.15
사용자 유사도 $(sim(u, v))$	0.6	0.3	0.8

$$\hat{r}_{u,i} = \overline{r_u} + \frac{\sum_{v \in U_i} sim(u,v) \cdot (r_{v,i} - \overline{r_v})}{\sum_{v \in U_i} sim(u,v)}$$

$$\hat{r}_{u,i} = 4.0 + \frac{0.6 \times 0.2 + 0.3 \times (-0.4) + 0.8 \times 0.55}{0.6 + 0.3 + 0.8}$$
$$= 4.259$$

사용자 u의 평점 평균 $(\overline{r_u})$: 4.0

사용자 u가 컨택트에 남길 예상 평점 : 4.259

