Project Report

Summary

In this project, we have worked on the 'diabetic_data.csv' dataset. The given dataset contains records of diabetic patients admitted to US hospitals from 1999 to 2008.

We have performed **Data Cleaning**, **Data Transformation**, **EDA (Exploratory Data Analysis)**, and the **Model Prediction** using **Random Forest Classifier** and **Model Evaluation** using **Cross-Validation Procedure**.

Part 1: Building up a basic Predictive Model

1. Data Cleaning and Transformation:

- This Data Frame consists of **101766 Rows** and **50 Columns**. With the **missing** values in the form of "?" in the dataset.
- Only column "weight" has missing values of more than 50% compared to other columns.
- Transformed the "age" column in the middle value according to the given range.
- Replaced the possible missing values in columns diag_1, diag_2, and diag_3 by the number 0.
- Converted the values of the column "readmitted" into 0 for "NO" and 1 for "<30" and ">30" for binary classification.
- Dropped unnecessary columns for easy data exploration.

Correlation of other numeric columns with respect to "readmitted":

1.000000
0.217194
0.112564
0.103011
0.082142
0.074093
0.051289
0.046772
0.039986
0.039253
-0.004923
-0.014852
-0.038267
-0.044748

Categorical Features:

• The categorical features after the removal of unnecessary features are:'race', 'gender', 'diag_1', 'diag_2', 'diag_3', 'change'

Numerical Features:

The numerical features after the removal of unnecessary features are:
 'encounter_id', 'patient_nbr', 'age', 'time_in_hospital',
 'num_lab_procedures', 'num_procedures', 'num_medications',
 'number_outpatient', 'number_emergency', 'number_inpatient',
 'number_diagnoses', 'diabetesMed', 'readmitted'

Outliers in the Dataset:

 After removing outliers, the resulting data frame has 67799 Rows and 13 Columns.

2. Data Exploration:

> Impact of "age" on "readmission" using CountPlot:

Observation:

• As the age increases, the chances of getting readmitted increases

> "readmission" according to the "race" using CountPlot:

Caucasian 51472
AfricanAmerican 13379
Hispanic 1435
Other 1031
Asian 482

Race availability using PieChart:

Observation:

• Availability of Caucasian is 75.92%, AfricanAmerican is 19.73%, Hispanic is 0.71%, Asian is 1.52%, and Other is 2.12%.

• African Americans are more likely to be readmitted than other ethnic groups as their readmission rate.

> Readmission According to Gender using CountPlot:

Displot:

Observation:

• Women patients are more likely to be readmitted than men.

Impact of Diagnose type on readmission:

Observation:

- As Diagnose types i.e. diag_1, diag_2, diag_3 are 'object' data type columns and contains a huge numbers of values.
- Therefore, they can't be plotted against readmitted feature.

3. Model Building:

Procedure:

- > Separating Independent "x" and Dependent "y" variable.
- > Train Test Splitting the dataset in x_train, x_test, y_train, y_test.
- > Building the Random Forest Classifier and training the model.

Model Evaluation:

Confusion Matrix:

[6097, 1902]

[3393, 2168]

Cross Validation Methods:

	precision	recall f1-score		support
0	0.64	0.76	0.70	7999
1	0.53	0.39	0.45	5561
accuracy			0.61	13560
macro avg	0.59	0.58	0.57	13560
weighted avg	0.60	0.61	0.60	13560

Observation:

- By Seeing this classification Report, we can conclude that the model did not predicted well with the testing data.
- By providing the accuracy of 61% approx.

Part 2: Improved Model

1. K-Means Clustering Approach:

- Taking 2 attributes "age" and "num_lab_procedures" for clustering.
- Scaling the attributes for better clustering using MinMaxScaler.
- Finding the better K value for the number of clusters in K-means clustering.
- Plotting the sum of squared error for K value.

- Training the clustering algorithm for clusters.
- Plotting the clusters.

