НИУ «Высшая школа экономики»

ФАКУЛЬТЕТ МАТЕМАТИКИ

Введение в топологию

лектор: Пирковский Алексей Юльевич

Оглавление

1	Лекці	ия 1. 30 октября 2019 г	5		
	1.1	Метрики, метрические пространства	5		
2	Лекці	Лекция 2. 6 ноября 2019 г			
	2.1	Открытые множества в метрическом пространстве	7		
	2.2	Топологические пространства	8		
	2.3	Хаусдорфово топологическое пространство	9		
	2.4	Топология Зарисского	9		
3	Лекция 3. 7 ноября 2019 г				
	3.1	Сходимость последовательностей в топологическом пространстве	11		
	3.2	Замыкание, внутренность, граница	12		
4	Лекці	ия $4.~13$ ноября 2019 г	12		
	4.1	Аксиомы счетности	13		
	4.2	Непрерывные отображения	14		
5	Лекці	ия $5.~20$ ноября 2019 г	15		
	5.1	Подпространства топологических пространств	17		
6	Лекці	Лекция 6. 21 ноября 2019 г			
	6.1	Инициальные топологии. Произведения топологических пространств.	18		
	6.2	Произведения множеств	19		
	6.3	Произведения топологических пространств	19		
7	Лекция 7. 27 ноября 2019 г				
	7.1	Финальные топологии. Дизъюнктные объединения	21		
	7.2	Дизъюнктные объединения множеств	22		
	7.3	Дизъюнктные объединения (несвязные суммы) топологических пространств	22		
	7.4	Связные топологические пространства	22		
8	Лекці	ия 8. 4 декабря 2019 г	23		
9	Лекция 9. 5 декабря 2019 г				
	9.1	Связные компоненты	26		
	9.2	Компактные топпологические пространства.	27		
10	Лекці	ия 10. 11 декабря 2019 г	28		
	10.1	Основные свойства компактных пространств	28		
	10.2	Некоторые свойства центрированных множеств.	29		
	10.3	Теорема Тихонова.	29		
11	Лекці	ия 11. 18 декабря 2019 г	30		

	11.1	Локально компактные топологическтие пространства.	30
	11.2	Одноточечная компактификация	31
12	Лекци	я 12. 15 января 2020 г	32
	12.1	Эквивалентные нормы	32
13	12.2	Факторпространства	33
	Лекци	я 13. 22 января 2020 г	34
	13.1	Частные случаи факторпространтв. Стягивание	34

1 Лекция 1. 30 октября 2019 г.

Введение: какая бывает топология и чем она занимается. Метрические пространства, нормированные пространства, евклидовы пространства. Примеры: \mathbb{R}_n , C[a,b], дискретная метрика, $l^{\infty}(S)$, l^1 , l^2 , p-адическая метрика на \mathbb{Q} , метрика Хаусдорфа.

1.1 Метрики, метрические пространства

X - множество

Определение. *Метрика* на X - функция $\rho: X \times X \longrightarrow [0; +\infty)$, удовлетворяющая следующим условиям:

- (1) $\rho(x,y) = \rho(y,x) \quad \forall x,y \in X$
- (2) $\rho(x,x) = 0 \quad \forall x \in X$
- (3) $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z) \quad \forall x,y,z \in X$ (неравенство треугольника)
- (4) $\rho(x,y) > 0 \quad \forall x \neq y$

Определение. *Метрическим пространством* называется пара (X, ρ) , то есть некоторое множество X с заданной на нем метрикой.

Определение. Функция ρ называется *полуметрикой*, если выполняются (1)-(3) условия, а (X, ρ) тогда - полуметрическое пространство.

Пример 0.
$$X$$
 - мн-во $\rho(x,y) = \begin{cases} 1, \text{ если } x \neq y \\ 0, \text{ если } x = y \end{cases}$

Пример 1. $X = \mathbb{R}$ $\rho(x,y) = |x-y|$

Пример 2. Три метрики на \mathbb{R}^n :

$$\rho_1(x,y) = \sum_{i=1}^n |x_i-y_i|$$

$$\rho_2(x,y) = \sqrt{\sum_{i=1}^n \left(x_i-y_i\right)^2} \text{ - евклидова метрика}$$

$$\rho_\infty(x,y) = \max_{1\leqslant i\leqslant n} |x_i-y_i|$$

Пример 3. X = C[a, b] - мн-во всех непрерывных функций из [a, b] в \mathbb{R} .

Равномерная метрика: $\rho(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)|$

Упражнение. Доказать, что ρ из примера 3, действительно, является метрикой.

Наблюдение: В примере 3 X - векторное пространство над \mathbb{R} , и $\rho(x,y) = \rho(x-y,0)$

Определение Пусть X - векторное пространство над \mathbb{K} (где $\mathbb{K}=\mathbb{R}$, дибо $\mathbb{K}=\mathbb{C}$)

Функция $X \longrightarrow [0, +\infty), \ x \in X \longrightarrow ||x||,$ называется **нормой** на векторном пространстве X, если она удовлетворяет следующим условиям:

- $(1) ||\lambda x|| = |\lambda| ||x|| \quad (\lambda \in \mathbb{R}, x \in X)$
- $(2) \ ||x+y|| \leqslant ||x|| + ||y|| \quad (x,y \in X)$
- $(3) ||x|| > 0 \quad \forall x \neq 0$
- $(X, ||\cdot||)$ нормированное пространство.

Наблюдение: Пусть $(X, ||\cdot||)$ - нормированное пространство. Тогда $\rho(x, y) = ||x - y|| \quad (x, y \in X)$ - метрика на X (метрика, порожденная нормой)

Упражнение. Доказать, что ρ из наблюдения, действительно, является метрикой.

Пример 4. Три нормы на \mathbb{K}^n :

$$||x||_1 = \sum_{i=1}^n |x_i|$$
 $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ (евклидова норма) $||x||_\infty = \max_{1 \le i \le n} |x_i|$

Они порождают метрики из примера 2.

Пример 5. Равномерная норма на C[a,b]: $||f||=\sup_{t\in [a,b]}|f(t)|$ Она порождает метрику из примера 3

Обозначение X,Y - множества.

 Y^X - множество всех отображений из X в Y

В частности: $\mathbb{K}^{\mathbb{N}}$ - множество числовых последовательностей в \mathbb{K}

 $\mathbf{\Pi}$ ример 6. S - множество

$$l^{\infty}\left(S
ight)=\left\{f\in\mathbb{K}^{S}\colon f \text{ ограничена}
ight\} \qquad ||f||=\sup_{s\in S}|f(s)|$$
 - равномерная норма

Частный случай: $l^{\infty}=l^{\infty}\left(\mathbb{N}\right)$ - пространство ограниченных последовательностей

Пример 7.
$$l^1 = \left\{ x = (x_i) \in \mathbb{K}^{\mathbb{N}} \colon \text{ ряд} \sum_{i=1}^{\infty} |x_i| \text{ сходится} \right\}$$

Норма на
$$l^1$$
: $||x||_1 = \sum_{i=1}^{\infty} |x_i|$

Пример 8.
$$l^2 = \left\{ x = (x_i) \in \mathbb{K}^{\mathbb{N}} : \text{ ряд} \sum_{i=1}^{\infty} |x_i|^2 \text{ сходится} \right\}$$

i=1 - векторное подпространство в $\mathbb{K}^{\mathbb{N}}$ - след. из неравенства $(a+b)^2\leqslant 2(a^2+b^2)$ $\quad (a,b\geqslant 0)$

Определение E - векторное пространство над $\mathbb R$

Cкалярное произведение на E - функция $E \times E \longrightarrow \mathbb{R} \ (x,y) \in E \times E \longrightarrow \langle x,y \rangle \in \mathbb{R}$, удовлетворяющая условиям:

- (1) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ $(\alpha, \beta \in \mathbb{R}, x, y, z \in E)$
- (2) $\langle x, y \rangle = \langle y, x \rangle \ (\forall x, y \in E)$
- (3) $\langle x, x \rangle > 0 \ \forall x \neq 0$

Eвклиdово пространство - векторное пространство E над \mathbb{R} , снабженное скалярным произведением.

Факты

- (1) $|\langle x,y\rangle| \leqslant \sqrt{\langle x,x\rangle}\sqrt{\langle y,y\rangle}$ неравенство Коши-Буняковского
- (2) ||x|| = $\sqrt{\langle x,x \rangle}$ норма на E

Пример 9. Норма $||\cdot||_2$ на \mathbb{R}^n порождено скалярным произведением $\langle x,y \rangle = \sum_{i=1}^n x_i y_i$. Норма $||\cdot||_2$ на l^2 порождена

скалярным произведением $\langle x,y\rangle=\sum_{i=1}^n x_iy_i$ (упраженение: доказать сходимость этого ряда)

Упражнение. Доказать сходимость этого ряда.

Упражнение*. Доказать, что остальные нормы из примеров не порождаются скалярным произведением.

Пример 10. p - $a \partial u \cdot u \cdot e c \kappa a s$ метрика на $\mathbb Q$

Пусть $p \in \mathbb{N}$ - простое

Hаблюdение: Каждый $x\in\mathbb{Q}\setminus\{0\}$ имеет вид $x=p^r\frac{a}{b}$, где $a,r\in\mathbb{Z},b\in\mathbb{N}$, причем $p\nmid a,p\nmid b$

Определение p - $a\partial u$ ческая норма $x \in Q \setminus \{0\}$ - это $|x|_p = p^{-r}; \ |0|_p = 0$

Упражнение

- (1) $|-x|_p = |x|_p$
- (2) $|xy|_p = |x|_p |y|_p$
- $(3) |x|_p > 0 \quad \forall x \neq 0$
- (4) $|x + y|_p \le \max\{|x|_p, |y|_p\} \le |x|_p + |y|_p$
- (5) $\rho_p(x,y) = |x-y|_p$ метрика на $\mathbb Q$

Пример 11. метрика хаусдорфа

Определение X - метрическое пространство, $x \in X, A \subset X$

$$ho(x,A)=\inf\left\{
ho(x,a):a\in A
ight\}$$
 - расстояние от x до A

X - метрическое пространство

Определение. Подмножество $A\subset X$ ограничено, если $\exists\, C>0: \rho(x,y)\leqslant C\ \ \forall\, x,y\in A$

Обозначение $\mathfrak{B}(x) = \Big\{ A \subset X \colon A \text{ ограничено} \Big\}$

Определение $Paccmonule \ Xaycdop \phi a \ {
m между} \ A, B \in \mathfrak{B}(x)$ - это

$$\rho_H(A, B) = \max \left\{ \sup_{a \in A} \rho(a, B), \sup_{b \in B} \rho(b, A) \right\}$$

Упраженение ρ_H - полуметрика на $\mathfrak{B}(x)$

2 Лекция 2. 6 ноября 2019 г.

Открытые множества в метрическом пространстве. Топологические пространства. Метризуемость. Хаусдорфовость. Сравнение топологий. Замкнутые мнжества. Примеры: дискретная и антидискретная топологии, топология Зарисского.

2.1 Открытые множества в метрическом пространстве

 (X, ρ) - метрическое пространство, $x \in X, r \geqslant 0$.

Определение. Открытый шар с центром в x радиуса r - это

$$B_r(x) = \{ y \in X : \rho(y, x) < r \}$$

3амкнутый шар с центром в x радиуса r - это

$$\overline{B}_r(x) = \{ y \in X : \rho(y, x) \leqslant r \}$$

Пример. $x = \mathbb{R} \to B_r(x) = (x - r, x + r); \quad \overline{B}_r(x) = [x - r, x + r]$

Упражнение. Нарисовать $B_1(o)$ на (\mathbb{R}^2, ρ_p) для $p = 1, p = 2, p = \infty$.

Пример. X = C[a, b] с равномерной метрикой

(картинка графика) $\overline{B}_r(f)$ состоит из тех непрерывных функций, графики которых содержатся в заштрихованном множестве

Определение. (X, ρ) - метрическое пространство, $A \subset X, x \in A$

$$x$$
 - внутренняя точка $A \Longleftrightarrow \exists \, \varepsilon > 0 \colon B_{\varepsilon}(x) \subset A$

A называется открытым \iff все его точки - внутренние

Предложение 1. Открытый шар $B_r(x)$ открыт.

Доказательство

Пусть
$$y \in B_r(x)$$
, т.е $\rho(y,x) < r$.

Положим
$$\varepsilon = r - \rho(y, x)$$

Покажем:
$$B_{\varepsilon}(y) \subset B_r(x)$$
 (*)

(картинка док-ва)
$$\Pi \text{усть } z \in B_{\varepsilon}(y)$$

$$\rho(z,x)\leqslant \rho(z,y)+\rho(y,x)<\varepsilon+\rho(y,x)=r\Rightarrow z\in B_r(x)\Rightarrow (*)$$
доказано

 $\Rightarrow B_r(x)$ открыто \square

Предложение 2.

- (1) Ø открыто
- (2) X открыто

(3)
$$\{U_i\}_{i\in I}$$
 - семейство открытых множеств в $X \to \bigcup_{i\in I} U_i$ открыто

$$(4)\ U_1,U_2,\dots,U_n\subset X\ \text{- открыты}\Rightarrow \bigcap_{i=1}^n U_i\ \text{открыто}$$
 Доказательство (1), (2) очевидны

(3)
$$x \in \bigcup_{i \in I} U_i \Rightarrow \exists i_0 \in X : x \in U_{i_0} \Rightarrow \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset U_{i_0} \Rightarrow B_{\varepsilon}(x) \subset \bigcup_{i \in I} U_i$$

(4) достаточно для n=2

$$x \in U_1 \cap U_2$$

$$\exists \, \varepsilon_1 \varepsilon_2 > 0 \colon B_{\varepsilon_1}(x) \subset U_1, B_{\varepsilon_2} \subset U_2$$

Обозначим $\varepsilon = \min \{ \varepsilon_1, \varepsilon_2 \} \Rightarrow B_{\varepsilon}(x) \subset U_1 \cap U_2$

2.2 Топологические пространства

Определение. Пусть X - множество, $\tau \subset 2^X$

au называется топологией на X, если

- (1) $\emptyset \in \tau$
- (2) $X \in \tau$
- $(3)\ \{U_i\}_{i\in I}$ семейство множеств из $\tau\Rightarrow\bigcup_{i\in I}U_i\in\tau$

(4)
$$U_1, \dots U_n \in \tau \Rightarrow \bigcap_{i=1}^n U_i \in \tau$$

 (X, τ) называется топологическим пространством

Множества из au называются открытыми

Наблюдение. Из предложения 2: каждая метрика ho на множестве X порождает топологию $au_
ho$ на X

Определение.

Топологическое пространство (X,τ) называется метризуемым $\iff \exists$ метрика $\rho\colon X\times X\to [0;\; +\infty)\colon \tau_\rho=\tau$

3амечение Если $\tau= au_{
ho}$, то такая ho не единственная!

Например: $\tau_{\rho} = \tau_{2\rho}$

Пример-упражнение Метрики $\rho_1, \rho_2, \rho_\infty$ на \mathbb{K}^n (где $\mathbb{K} = \mathbb{R}$ либо \mathbb{C}) порождают одну и ту же топологию на \mathbb{K}^n

Пример 1 (дискретная топология)

X - \forall множество, $\tau = 2^X$

Рассмотрим
$$\rho\colon X\times X\to [0;\,+\infty),\quad \rho(x,y)= \begin{cases} 1,\ \text{если }x\neq y,\\ 0\ \text{иначе} \end{cases}$$

Заметим: $\tau = \tau_{\rho}$

Действительно: $B_1(x)=x\Rightarrow x$ открыто в τ_ρ \forall $x\in X\Rightarrow$ каждое $A\subset X$ открыто в τ_ρ , т.к. $A=\bigcup_{x\in A}x\Rightarrow \tau_\rho=\tau$ дискретная топология

Пример 2. (антидискретная топология)

X - \forall множество, $\tau = \{\emptyset, X\}$

Определение. Пусть τ_1, τ_2 - топологии на множестве X

Говорят, что τ_1 грубее τ_2 (τ_2 moньше τ_1), если $\tau_1 \subset \tau_2$

Синонимы: грубее = слабее, тоньше = сильнее

Дискретная - самая тонкая, антидискретная - самая грубая.

Определение. Окрестность точки x в топологическом пространстве X - любое открытое множество $U\subset X$, содержащее x

2.3Хаусдорфово топологическое пространство

Определение.

Топологическое пространство X называется хаусдорфовым $\iff \forall x,y \in X, x \neq y, \exists$ окрестности $U\ni x,V\ni$

Предложение. Метризуемое топологическое пространство хаусдорфово.

Доказательство: Пусть (X, ρ) - метр. пространство, $x, y \in X, x \neq y$. Обозначим $a = \rho(x, y), \ a > 0$

Из неравенства треугольника: $B_{\frac{a}{2}}(x) \cap B_{\frac{a}{2}}(y) = \emptyset$

(картинка с шарами)

Следствие: Антидискретная тополония на множестве, содержащем более 1 элемента, неметризуема (т.к. неухаусдорфова)

Определение. Пусть X - топологическое пространство.

Множество $F \subset X$ называется замкнутым $\iff X \setminus F$ открыто.

 Π редложение. Пусть X - топологическое пространство, $\tau' = \{F \subset X : F \text{ замкнуто}\}$. Тогда:

$$(1) \varnothing \in \tau'$$

(2) $x \in \tau'$

$$(3) \ \{F_i\} \text{ - семейство множество из } \tau' \Rightarrow \bigcap_{i \in I} F_i \in \tau'$$

$$(4) \ F_1, F_2, \dots, F_n \in \tau' \Rightarrow \bigcup_{i=1}^n F_i \text{ замкнуто}$$

$$45 X \setminus \bigcap_{i \in I} F_i = \bigcup_{i \in I} (X \setminus F_i)$$
$$X \setminus \bigcup_{i \in I} F_i = \bigcap_{i \in I} (X \setminus F_i)$$

(4)
$$F_1, F_2, \dots, F_n \in \tau' \Rightarrow \bigcup_{i=1}^n F_i$$
 замкнуто

t Наблюдение: Если X - множество, $au' \subset 2^X$ удовлетворяет (1) - (4) из предл. $\Rightarrow \{X \backslash F \colon F \in au'\}$ - топология на X

2.4 Топология Зарисского

Пример (топология Зарисского)

X - множество, $\mathbb{K} = \mathbb{R}$ или \mathbb{C} .

Определение. $A \subset \mathbb{K}^X$ - подалгебра в K^X , если

- (1) A векторное подпространство в K^{X}
- (2) $1 \in A$ (где 1 функция, тождественно равная единице)
- (3) $f,g \in A \Rightarrow fg \in A \ (fg$ поточечное произведение f и g)

Зафиксируем какую-либо подалгебру $A \subset \mathbb{K}^X$

$$\forall S \subset A$$
 обозначим $V(S) = \{x \in x \colon \forall f \in S \mid f(x) = 0\}$

Yпражиение. На X существует топология, в которой $F \subset X$ замкнуто $\iff F = V(S)$ для некоторого $S \subset A$.

Она называется топологией Зарисского

Важный частный случай: $X=\mathbb{K}^n,\ A=\mathbb{K}[t_1,\ldots,t_n]$

Упражнение: Описать топологию Зарисского в явном виде для следующих случаев:

- (1) X любое множество, $A = \mathbb{K}^X$
- (2) $X = \mathbb{K}, A = \mathbb{K}[t]$
- (3) $X = [a, b] \subset \mathbb{R}, A = C[a, b]$

3 Лекция 3. 7 ноября 2019 г.

База и предбаза топологии. Примеры. Критерий существования топологии с данной (пред)базой. Пример: топология поточечной сходимости. Сходимость последовательностей в топологическом пространстве. База и предбаза в точке. Описание сходимости в метрическом пространстве. Замыкание множества в топологическом пространстве. Свойства операции замыкания. Предельные и изолированные точки.

Лемма. X — множество, $\beta \subset 2^X$. Следующие свойства множества $A \subset X$ эквивалентны:

$$(2) \ \forall \ x \in A \exists \ B \in \beta \colon x \in B \subset A$$

Доказательство $(1) \Rightarrow (2)$

Пусть
$$A = \bigcup \gamma, \gamma \subset \beta, x \in A \Rightarrow \exists B \in \gamma \colon x \in B \Rightarrow B$$
 удовл. (2)

$$(2) \Rightarrow (1) \ \forall x \in A \exists B \in \beta \colon x \in B_x \subset A \Rightarrow \gamma = \{B_x \colon x \in A\}$$
удовл. (1)

$$\gamma \subset 2$$

Обозначение: $\bigcup_{C \in \gamma} C = \cup \gamma$

Определение. (X, τ) — топологическое пространство

(1) $\beta \subset \tau$ — база топологии τ (или база (X,τ)) \iff кажд. $U \in \tau$ является объединением некоторого подсемейства в $\beta \Longleftrightarrow \hspace{0.5cm} \forall \, U \in \tau \forall \, x \in U \exists \, B \in \beta \colon x \in B \subset U$

(2)
$$\sigma \subset \tau$$
 — предбаза τ (предбаза (X,τ)) \iff семейство $\{U_1 \cap \ldots \cap U_n \colon U_i \in \sigma, \ n \in \mathbb{N}\}$

Пример. (X, ρ) — метрическое пространство $\Longrightarrow \{B_r(x): x \in X, r > 0\}$ — база τ_ρ

Пример: $X = \mathbb{R}$ $\sigma = \{(^-\infty; b); (a, +\infty): a, b \in \mathbb{R}\}$ — предбаза \mathbb{R} , но не база.

Предложение X — множество, $\beta, \sigma \subset 2^X$

Предложение
$$X$$
 — множество, $\beta, \sigma \subset 2^X$

$$(1) \text{ На } X \exists \text{ топология c базой } \beta \Longleftrightarrow \begin{cases} (a) \cup \beta = X \\ (b) \forall B_1, B_2 \in \beta \ \forall \ x \in B_1 \cap B_2 \ \exists B_3 \in \beta \colon x \in B_3 \subset B_1 \cap B_2 \end{cases}$$

$$(2) \text{ На } X \exists \text{ топология c предбазой } \sigma \Longleftrightarrow \cup \sigma = X$$

(2) На $X \exists$ топология с предбазой $\sigma \Longleftrightarrow \cup \sigma$

Обозначим
$$\tau = \{ \cup \gamma \colon \gamma \subset B \}$$
. Покажем τ — топология на X

$$\varnothing = \cup \varnothing \in \tau; \; X = \cup \beta \in \tau;$$
 объединение множеств из τ принадлежит τ

Пусть $U_1, U_2 \in \tau$. Хотим: $U_1 \cap U_2 \in \tau$

Пусть $x \in U_1 \cap U_2 \Longrightarrow \exists B_1, B_2 \in \beta \colon x \in B_k \subset U_k \ (k=1,2) \Rightarrow x \in B_1 \cap B_2 \Longrightarrow_{(b)} \exists B_3 \in \beta \colon x \in B_3 \subset B_1 \cap B_2 \subset B_1 \cap B_2 \subset B_2 \cap B_2 \subset B_1 \cap B_2 \subset B_2 \subset B_2 \cap B_2 \subset B_2 \subset B_2 \cap B_2 \subset B_$ $U_1 \cap U_2 \Longrightarrow_{\pi} U_1 \cap U_2 \in \tau \Rightarrow \tau$ — топология на X, и β — её база.

- (2) (\Rightarrow) из открытости X
- (\Leftarrow) Семейство $\{U_1 \cap \ldots \cap U_n \colon U_i \in \sigma, n \in \mathbb{N}\}$ удовл. (a), (b) \Rightarrow оно база топологии, а σ её предбаза. \square

Пример. (топология поточечной сходимости)

Пусть $\mathbb{K} = \mathbb{R}$ или \mathbb{C} , $S \subset \mathbb{K}^X$ (где X — любое множество)

 $\forall\,x\in X,$ для каждого интервала (для $\mathbb{K}=\mathbb{C}$ — открытый круг) $I\subset\mathbb{R}$ обозначим

$$G(x,I) = \{ f \in S \colon f(x) \in I \}$$

Семейство $\{G(x,I)\colon x\in X,I\subset\mathbb{R}$ — интервал (для $\mathbb{K}=\mathbb{C}$ — открытый круг) $\}$ является предбазой некоторой топологии на S. Она называется mononorueй nomoчечной сходимости на S

Сходимость последовательностей в топологическом пространстве

X — топологическое пространство, $x \in X$, (x_n) — последовательность в X.

Определение. (x_n) cxodumcs к x (x является npedenom $(x_n)) \Longleftrightarrow \forall$ окрестности $U \ni x \exists N \in \mathbb{N} \ \forall n \geqslant N \ x_n \in U$ Обозначение $x_n \to x \ (n \to \infty)$, или $x = \lim_{n \to \infty} x_n$

Определение. (1) Семейство β_x окрестностей точки $x \in X$ — база окрестностей x (база в x) \Longleftrightarrow для любой окрестности $U \ni x \; \exists \; V \in \beta_x \subset U$

(2) Семейство σ_x окрестностей точки $x \in X$ — npedбаза okpecmhocmeй <math>x (npedбаза в x) \iff $\{U_1 \cap \ldots \cap U_n \colon U_i \in \sigma_x, \ n \in \mathbb{N}\}$ — база в x.

Пример. (X, ρ) — метрическое пространство.

$$\{B_r(x)\colon r>0\}$$
 — база в x

$$\left\{B_{\frac{1}{n}}(x)\colon n\in\mathbb{N}\right\}$$
 — тоже

Предложение X — топологическое пространство, $x \in X$, σ_x — предбаза в x, (x_n) — последовательность в X.

$$x_n \to x(n \to \infty) \iff \forall \ V \in \sigma_x \ \exists \ N \in \mathbb{N} \ \forall \ n \geqslant \mathbb{N} \ x_n \in V$$

Доказательство: (\Leftarrow) Пусть U — окрестность $x \Rightarrow \exists V_1, \dots, V_p \in \sigma_x \colon V_1 \cap \dots \cap V_p \subset U$

$$\exists N_1, \dots, N_p : \forall n \geqslant N_i \ x_n \in V_i \ (i = 1, \dots, p)$$

Обозначим
$$N=\max_{1\leqslant i\leqslant n}N_i\Rightarrow \forall\, n\geqslant N\quad x_n\in V_1\cap\ldots\cap V_p\subset U$$
 \square

 $Cnedcmbue\ (X, \rho)$ — метрическое пространство, $x \in X, (x_n)$ — последовательность в X. Следующие утверждения эквивалентны:

- (1) $x_n \to x$
- (2) \forall открытого шара U с центром в $x \exists N \in \mathbb{N} \ \forall n \geqslant N \ x_n \in U$
- (3) $\forall \ \varepsilon > 0 \ \exists \ N \in \mathbb{N} \ \forall \ n \geqslant N \ \rho(x_n, x) < \varepsilon$
- (4) $\rho(x_n,x)\to 0$

Предложение. X — хаусдорфово топологическое пространство, (x_n) — последовательность в X, $x_n \to x \in X, x_n \to X$ $y \in X \Rightarrow x = y$

Доказательство: пусть $x \neq y \Rightarrow \exists$ окрестности $U \ni x, V \ni y, U \cap V = \varnothing$

$$\exists\: N_1\colon\:\forall\: n\geqslant N_1,\; x_n\in U\\ \exists\: N_2\colon\:\forall\: n\geqslant N_2\; x_n\in V \end{cases} \Rightarrow x_n\in U\cap V\;\;\forall\: n\geqslant \max\{N_1,N_2\} -\text{противоречие.}\;\;\square$$

Пример. X — антидискретное топологическое пространство

Каждая последовательность в X сходится к каждой точке $x \in X$

Пример. X — дискретное топологическое пространство

$$x_n \to x \Longleftrightarrow \exists N \in \mathbb{N} \ \forall n \geqslant N \ x_n = x$$

Действительно: (\Rightarrow) $\{x\}$ — окрестность x. Далее см. определение сходимости.

Пример-упражнение.

$$\mathbb{K} = \mathbb{R}$$
 или \mathbb{C} , X — множество, $S \subset \mathbb{K}^X$

Пусть $f_n \to f$ в S с топологией поточечной сходимости $\Longleftrightarrow \forall \, x \in X \ f_n(x) \to f(x)$

3.2 Замыкание, внутренность, граница ...

X — топологическое пространство, $A \subset X$

Определение. Замыкание A — множество $\overline{A} = \bigcap \{F \subset X : F \text{ замк}, F \supset A\}$

Hаблюдение. \overline{A} — наименьшее замкнутое множество, содержащее A. (В частности, если A замкнуто, то $A=\overline{A}$).

Предложение.

(1)
$$A \subset B \subset X \Rightarrow \overline{A} \subset \overline{B}$$

$$(2) \ \overline{\overline{A}} = \overline{A}$$

$$(3) \ \overline{A \cup B} = \overline{A} \cup \overline{B}$$

Доказательство: (1) из опр. (2) из наблюдения

(3)
$$A \subset A \cup B \Rightarrow^{(1)} \overline{A} \subset \overline{A \cup B}$$
. Аналогично, $\overline{B} \cup \overline{A \subset B} \Rightarrow \overline{A} \cup \overline{B} \subset \overline{A \cup B}$

$$A \cup B \subset \overline{A} \cup \overline{B} \Rightarrow^{(1)} \overline{A \cup B} \subset \overline{\overline{A} \cup \overline{B}} = \overline{A} \cup \overline{B}$$
, т.к. $\overline{A} \cup \overline{B}$ замкнуто. \square .

Предложение. $x \in \overline{A} \iff \forall$ окрестности $U \ni x \quad U \cap A \neq \varnothing$.

Доказательство:

$$x\notin\overline{A}\Longleftrightarrow\exists\text{ замкн. }F\subset X\colon F\supset A, x\notin F\Longleftrightarrow \exists\text{ откр }U\subset X\colon \ U\cap A=\varnothing,\text{ и }x\in U\Longleftrightarrow\exists\text{ oкр }U\ni x,\ \ U\cap A=\varnothing\ \Box$$

Определение. X — топологическое пространство, $A \subset X$

 $x \in X-$ предельная точка $A \Longleftrightarrow x \in \overline{A \backslash \{x\}}, \Longleftrightarrow$ в каждой окрестности x есть точки из A, отличные от x.

 $A' = \{x \in X : x - \text{предельная точка } A\} - npouseoдное множество множества A$

Из предл. $\overline{A} = A \cup A'$. В частности: A замкнуто $\iff A' \subset A$

Определение. $x \in A - u$ золированная точка $A \iff x \in A \backslash A' \iff \exists$ окрестность $U \ni x : U \cap A = \{x\}$

 $\overline{A} = A'$ изолированные точки A.

4 Лекция 4. 13 ноября 2019 г.

Предельные и изолированные точки, внутренность и граница множества; примеры. Плотные множества и сепарабельные пространства. Первая и вторая аксиомы счетности. Описание замыкания через последовательности в пространствах с первой аксиомой счетности. Непрерывные отображения топологических пространств.

X — топологическое пространство, $A \subset X$

Определение. Внутренность A — это $\mathrm{Int}\,(A) = \bigcup \,\{V \subseteq X \colon V, V \subset A\}$

Наблюдение:

- (1) $\operatorname{Int} A$ наиболее открытое множество, содержащееся в A. В частности: A откр $\Longleftrightarrow A = \operatorname{Int} A$.
- (2) Если (X, ρ) метрическое пространство, то $x \in \operatorname{Int} A \iff \exists \varepsilon > 0 \colon B_{\varepsilon}(x) \subset A$

Упраженение. Int $A = X \setminus \overline{X \setminus A}$; $\overline{A} = X \setminus \operatorname{Int}(X \setminus A)$

$$\operatorname{Int} A \subset A \subset \overline{A}$$

Определение. Граница A — это $\delta A = \overline{A} \backslash \operatorname{Int}(A)$

Hаблю dение. $x \in \delta A \iff \forall$ окрестности $U \ni x \ U \cap A \neq \emptyset$ и $U \cap (x \backslash A) \neq \emptyset$

Пример 1. $x = \mathbb{R}, A = \mathbb{Z} \Rightarrow \overline{A} - \mathbb{Z}$, Int $A = \emptyset$

 $\delta A=A=\mathbb{Z}$, все точки A изолированные, $\overline{A'}=\varnothing$

Пример 2. $X = \mathbb{R}, A = (0,1) \iff \overline{A} = [0; 1], \text{Int } A = A = (0, 1), \delta A = \{0,1\}.$

(картинка с прямой)

Изолированных точек нет, A' = [0, 1]

$$\mathbf{\Pi} \mathbf{pимер 3.} \ X = \mathbb{R}, A = \left\{ \frac{1}{n} \colon n \in \mathbb{N} \right\} \cup \{0\} \Rightarrow \overline{A} = A \ ((\text{т.к. } \mathbb{R} \backslash A = (-\infty; \ 0) \cup (1; +\infty) \cup \left(\bigcup_{n=1}^{\infty} \left(\frac{1}{n+1}, \frac{1}{n}\right)\right)^{-} \text{открытое}),$$
 (картинка с прямой)
$$\mathbf{Int} \ A = \varnothing, \ \delta A = A \ \{ \mathbf{u} \mathbf{s} \mathbf{o} \mathbf{n} \mathbf{u} \mathbf{p} \mathbf{o} \mathbf{b} \mathbf{a} \mathbf{h} \mathbf{h} \mathbf{b} \mathbf{e} \ \mathbf{t} \mathbf{o} \mathbf{v} \mathbf{k} \mathbf{h} \mathbf{e} = \left\{ \frac{1}{n} \colon n \in \mathbb{N} \right\}; \ \{0\} = A'$$

X — топологическое пространство.

Определение. Множество $A\subset X$ плотно в X (всюду плотно в X) $\Longleftrightarrow \overline{A}=X$

Наблюдение. А плотно в $X \Longleftrightarrow \forall x \in X \forall$ окрестности $U \ni x \ U \cap A \neq \emptyset$

A плотно в $X \Longleftrightarrow \forall$ непустого открытого $U \subset X$ $U \cap A \neq \varnothing$

Определение. X сепарабельно \iff существует не более чем счетное плотное подмножество в X

Пример 1. Дискретное пространство сепарабельно \iff оно само не более чем счетно

Пример 2. Антидискретное пространство сепарабельно (каждое непустое подмножество плотно)

Пример 3. \mathbb{R} сепарабельно (т.к. \mathbb{Q} плотно в \mathbb{R})

Пример-упражнение 4. \mathbb{R}^n , \mathbb{C}^n , l^1 , l^2 сепарабельны, l^{∞} несепарабельно.

4.1 Аксиомы счетности

X — топологическое пространство

Определение. (1) X удовлетворяет 1-ой аксиоме счетности $\iff \forall \ x \in X$ существует не более чем счетная база окрестностей x.

(2) X удовлетворяет 2-ой аксиоме счетности (является пространством со счётной базой) \iff существует не более чем счетная база топологии на X.

Предложение. X удовлетворяет 2-ой аксиоме счетности $\Rightarrow X$ удовлетворяет 1-ой аксиоме счетности

Доказательство: Пусть β — не более чем счетная база топологии на X.

 $x \in X$; тогда $\{U \in \beta \colon U \ni x\}$ — база окрестностей $x \square$

Пример 1. X метризуемо $\iff X$ удовлетворяет 1-ой аксиоме счетности.

Действительно, $\forall \, x \in X \quad \left\{ B_{\frac{1}{n}}(x) \colon n \in \mathbb{N} \right\}$ — база окрестностей x.

Пример 2. Дискретное пространство X удовлетворяет 1-ой аксиоме счетности.

Оно удовлетворяет 2-ой аксиоме счетности \iff оно не более чем счетно.

Пример 3. \mathbb{R} удовлетворяет 2-ой аксиоме счетности.

А именно, $\{(a, b) : a < b, a, b \in \mathbb{Q}\}$ — база \mathbb{R} .

Действительно, $\forall c, d \in \mathbb{R}, c < d$, выполнено $(c, d) = \bigcup \{(a, b) : a, b \in \mathbb{Q}, c < a < b < d\}$ — в силу плотности \mathbb{Q} в \mathbb{R} .

Определение. Семейство $\beta(x)$ окрестностей точки $x \in X$ — база окрестностей $x \Longleftrightarrow$ для любой окрестности $U \ni x, \ V \subset U$.

Предложение: Топологическое пространство со счетной базой сепарабельно.

Доказательство: $\{U_n \colon n \in \mathbb{N}\}$ — счетная база в X,

 $U_n \neq 0 \forall n$

 $\forall n \in \mathbb{N}$ выберем $x_n \in U_n \Rightarrow \{x_n \colon n \in \mathbb{N}\}$ плотно в X

Упражнение: Для метризуемых пространств: счетная база \iff сепарабельность.

В частности: \mathbb{R}^n , \mathbb{C}^n , l^1 , l^2 , — со счетной базой.

Лемма: Пусть X — топологическое пространство, удовлетворяющее 1-ой аксиоме счетности.

Тогда $\forall x \in X$ существует база окрестностей $\{U_n \colon n \in \mathbb{N}\}$ точки x, такая что $U_n \supset U_{n+1} \forall n$.

Предложение. X — топологическое пространство, $A \subset X, \ x \in X$

- (1) Если существует последовательность (x_n) такая, что $x_n \to x \Rightarrow x \in \overline{A}$,
- (2) Если X удовлетворяет 1-ой аксиоме счетности, то верно и обратное.

Доказательство: (1) \Rightarrow (2) Пусть U — окрестность $x \Rightarrow \exists n \in \mathbb{N} : x_n \in U \Rightarrow U \cap A \neq \emptyset \Rightarrow x \in \overline{A}$.

 $(2)\Rightarrow (1)$ Пусть $x\in \overline{A}$, и пусть $\{U_n\colon n\in\mathbb{N}\}$ — база окрестностей x такая, что $U_{n+1}\subset U_n \forall\, n$.

Выберем любую последовательность $x_n \in U_n \cap A$. Покажем, что $x_n \to x$.

Пусть U — окрестность точки x. Тогда $\exists N \in \mathbb{N}$, т.ч. $U_n \subset U \Rightarrow \forall n \geqslant N \ x_n \in U_n \subset U \Rightarrow x_n \to x$ \square .

4.2 Непрерывные отображения

Определение. X, Y — топологические пространства, $f: X \to Y, x \in X$

f — непрерывно в $x \iff \forall$ окрестности $V \ni f(x) \exists$ окрестность $U \ni x \colon f(U) \subset V$

f — непрерывно в $x \iff$ оно непрерывно в каждой точке $x \in X$.

Предложение. Пусть $f: X \to Y$ — отображение топологических пространств, $x \in X, y = f(x)$

 β_x — база окрестностей $x,\,\sigma_y$ — предбаза окрестностей y.

Тогда: f непрерывно в $x \Longleftrightarrow \forall V \in \sigma_y \exists U \in \beta_x \colon f(U) \subset V$.

Доказательство: $(\Rightarrow) \forall V \in \sigma_y \exists$ окрестность W такая, что $f(W) \subset V$; $\exists U \in \beta_x \colon U \subset W \Rightarrow f(U) \subset V$.

 (\Leftrightarrow) Пусть V — окрестность $y\exists~V_1,V_2,\ldots,V_p\in\sigma_y$ т.ч. $V_1\cap\ldots\cap V_p=W$

 $\forall i = 1, \dots, p \; \exists \; U_i \subset \beta_x, \; \text{t.y.} \; f(U_i) \subset V_i \Rightarrow f(U_1 \cap \dots \cap U_p) \subset V \quad \Box.$

 $Cnedcmeue: (X, \rho_x), (Y, \rho_y)$ — метрические пространства $x \in X$

Отображение $f\colon X\to Y$ непрерывно в $x\Longleftrightarrow \forall \, \varepsilon>0\,\,\exists\,\,\delta$ такая, что $\forall\,\,x\in X$, удовлетворяющий $\rho_X(x,x')<\varepsilon$ выполняется $\rho_Y(f(x),f(x'))<\varepsilon$.

 \mathcal{A} оказательство: применить предл. к базам окрестностей x и f(x), состоящим из открытых шаров с центрами x и y.

Теорема

X,Y — топологические пространства, $f\colon X\to Y$ отображение. Следующие утверждения эквивалентны:

- (1) f непрерывно
- (2) для любой окрестности $V \subset Y$ $f^{-1}(V)$ открыто в X
- (3) для любого замкнутого $B\subset Y$ $f^{-1}(B)$ замкнуто в X
- (4) для любого $A \subset X$ $f(\overline{A}) \subset \overline{f(A)}$.

5 Лекция 5. 20 ноября 2019 г.

X, Y — топологические пространства, $x \in X$

Определение. отображение $f\colon X\to Y$ непрерывно в $x\Longleftrightarrow\exists\ V\ni f(x)\exists\ U\ni x\colon f(U)\subset V$

f непрерывно, если f непрерывно в $x \forall x \in X$

Теорема. Следующие утверждения эквивалентны:

- (1) f непрерывно,
- $(2) \forall V \subset Y f^{-1}(V)$ открыто в X,
- (3) \forall замкнутого $B \subset Yf^{-1}(B)$ замкнуто в X,
- $(4) \ \forall \ A \subset X \ \ f(\overline{A}) \subset \overline{f(A)}$

Доказательство:

 $(1) \Rightarrow (2)$ Пусть $V \subset Y$ — открыто.

$$\forall\,x\in f^{-1}(V)\exists \ \text{ окр }U_x\ni x\colon f(U_x)\subset V\Rightarrow U_x\subset f^{-1}(V)\Rightarrow \bigcup_{x\in f^{-1}(V)}U_x=f^{-1}(V)\Rightarrow f^{-1}(V) \text{ открыто.}$$

$$(2)\Rightarrow (3)-\text{ следует из равенства }f^{-1}\left(Y\backslash B\right)=X\backslash f^{-1}(B) \ \forall\,B\subset Y$$

$$(3)\Rightarrow (4)\ \forall\ A\subset X\quad A\subset f^{-1}\left(f(A)\right)\subset \underbrace{f^{-1}\left(\overline{f(A)}\right)}\Rightarrow \overline{A}\subset f^{-1}\left(\overline{f(A)}\right),..f(\overline{A})\subset \overline{f(A)}$$

 $(4) \Rightarrow (3)$ Пусть $B \subset Y$ замнкуто, $A = f^{-1}(B)$

$$f(\overline{A}) \subset \overline{f(A)} \subset \overline{B} = B \Rightarrow \overline{A} \subset f^{-1}(B) = A, ... A$$

Заметим, что (2) и (3) эквивалентны.

$$(2)\Rightarrow(1)\;\forall\;x\in X\;\text{пусть}\;V-\text{окрестность}\;f(x)\Rightarrow V=f^{-1}\left(V\right)-\text{окрестность}\;x,\;\mathsf{и}\;f(U)\subset V\quad\square.$$

Cnedcmeue. Пусть au_1, au_2 — топологии на множестве X.

Тогда $\tau_1 \subset \tau_2 \iff$ отображение $f: (X, \tau_2) \Rightarrow (X, \tau_1), f(x) = x$, непрерывно.

 $\Pi pedложение. Пусть <math>f: X \to Y$ — отображение топологических пространств, σ — предбаза Y.

f непрерывно $\Longleftrightarrow \forall \ V \in \sigma \ \ f^{-1}(V)$ открыто в X

Доказательство: (
$$\Leftarrow$$
) Пусть $V\subset Y$ открыто $\Rightarrow\ V=\bigcup_{\alpha\in A}\bigcap_{\beta\in B_{\alpha}}V_{\alpha\beta},$ где $V_{\alpha\beta}\in\sigma\Rightarrow$

$$\Rightarrow f^{-1}(V) = \bigcup_{\alpha \in A} \bigcap_{\beta \in B} f^{-1}(V_{\alpha\beta})$$
 — открыто в X \square .

 $\alpha\in A$ $\beta\in B_{\alpha}$ Предложение. X,Y,Z — топологические пространства, $f\colon X\to Y,g\colon Y\Rightarrow Z,\ x\in X,\ y=f(x)$

Предположение: f непрерывно в x, g непрерывно в $y \Rightarrow g \circ f$ непрерывно в x.

В частности: если f и g непрерывны, то и $g \circ f$ непрерывно.

Доказательство:

Пусть
$$W$$
 — окрестность $(g \circ f)(x) = g(x)$

$$\exists \ V \ni y \colon g(V) \subset W$$

$$\exists \ U \ni y \colon f(U) \subset V$$

$$\Rightarrow (g \circ f)(U) \subset W$$

Определение. X,Y — топологические пространства, $x\in X,f\colon X\to Y$

f секвенциально непрерывно в $x \Longleftrightarrow \forall$ последовательности (x_n) в X, т.ч. $x_n \to x$, выполнено $f(x_n) \to f(x)$.

Предложение. $f: X \to Y$ — отображение топологических пространств, $x \in X$.

- (1) f непрерывно в $x \Rightarrow f$ секвенциально непрерывно в x.
- (2) Если X удовлетворяет 1-ой аксиоме счетности (непрерывно, метризуемо), то верно и обратное

Доказательство: (1) Пусть $x_n \to x$, V — окрестность f(x)

 \exists окрестность $U \ni x \colon f(U) \subset V$

 $\exists N \in \mathbb{N} \ \forall n \geqslant Nx_n \in U \Rightarrow \forall n \geqslant N \ f(x_n) \in V \Rightarrow f(x_n) \to f(x)$

(2) Предположение: f не является непрерывным в x

 \exists база окрестностей $\{U_n \colon n \in \mathbb{N}\}$ точки $x \colon U_n \supset U_{n+1} \ \forall n$

 \exists окрестность $V \ni f(x) \colon f(U_n) \not\subset V \ \forall \, n \in \mathbb{N}$

то есть $\forall n \in \mathbb{N} \exists x_n \in U_n, f(x_n) \notin V \Rightarrow x_n \to x$, но $f(x_n) \not\to f(x)$ — противоречие. \square .

Обозначение. $C(X,Y) = \{f \colon X \to Y \mid f \}$

 $C(X)=C(X,\mathbb{K}),$ где $\mathbb{K}=\mathbb{R}$ или $\mathbb{C}.$

Определение. $f \in C(X,Y)$ — гомеоморфизм $\iff \exists \ g \in C(Y,X) \colon fg = \mathrm{id}_Y$ и $gf = \mathrm{id}_X$

Определение. ' (эквивалентное предыдущему)

 $f \colon X \to Y - \mathit{гомеоморфизм} \iff f$ непрерывно, биективно, и f^{-1} непрерывно.

Наблюдение:

(1) $f: X \to Y, g: Y \to Z$ — гомеоморфизмы $\Rightarrow g \circ f: X \to Z$ — гомеоморфизм.

Определение. X и Y *гомеоморфии* \Longleftrightarrow \exists гомеоморфизм $X \to Y$.

Определение. X, Y — топологические пространства, $f: X \to Y$.

f открыто $\Longleftrightarrow \forall$ открытого $U \subset X$ f(U) открыто в Y

f замкнуто $\Longleftrightarrow \forall$ замкнутого $B \subset X$ f(B) замкнуто в Y

Наблюдение:

Отображение $f \colon X \to Y$ — гомеоморфизм $\iff f$ непрерывно, биективно и открыто.

Отображение $f \colon X \to Y$ — гомеоморфизм $\iff f$ непрерывно, биективно и замкнуто.

Пример-упражнение 1. X — нормированное пространство, $x \in X, r > 0$

 $f: B_1(0) \to B_r(x), \quad f(y) = x + ry$ — гомеоморфизм.

Пример-упражнение 2. X — нормированное пространство, $x \in X, r > 0$

 $f \colon B_1(0) o X, \; f(x) = rac{x}{1-||x||}$ — гомеоморфизм.

Пример-упражнение 3.

$$S^1 = \{(x, y) \in \mathbb{R} : x^2 + y^2 = 1\}$$

$$C = \{(x, y) \in R \colon \max\{|x|, |y|\} = 1\}$$

$$f \colon C \to S^1, \quad f(p) = \frac{p}{||p||_2}$$
 — гомеоморфизм.

Пример-упражнение 4. (стереографическая проекция)

(картинка 3)

$$S^2 = \{(x, y) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

— сфера

$$f \colon S^2 \backslash \{N\} \to \mathbb{R}^2$$
 — гомеоморфизм

Построить аналогичный гомеоморфизм между $S^n \setminus \{N\}$ и \mathbb{R}^n

Определение. Топологическое пространство M — monoлогическое mhoroofpasue (C^0 -mhoroofpasue) pasmep-normu n, если

- (1) М хаусдорфово
- $(2) \ M$ со счетной базой
- (3) $\forall x \in X \; \exists$ окрестность $U \ni x$, гомеоморфная открытому подмножеству в \mathbb{R}^n (здесь топология на U определяется так: $V \subset U$ открыто в $U \Longleftrightarrow V$ открыто в M)

Если U — как в (3), $\varphi: U \to V$ — гомеоморфизм, где $V \subset \mathbb{R}^n$ открыто, то (U, φ) называется картой на M.

Пример 1. \mathbb{R}^n — топологическое многообразие.

Пример 2 - упражнение. Открытое подмножество в \mathbb{R}^n — топологическое многообразие (доказать наличие счетной базы)

Пример 3 - упражнение. Сфера $S^n \subset \mathbb{R}^{n+1}, S^n = \{x \in \mathbb{R}^{n+1} : ||x||_2 = 1\}$ — топологическое многообразие. Сколькими $\kappa apmamu$ она покрывается?

5.1 Подпространства топологических пространств

 (X,τ) — топологическое пространство, $Y\subset X$

Обозначение. $\tau_Y = \{U \cap Y : U \in \tau\}$

Hаблю dение. au_Y — топология на Y

Определение. τ_Y — топология, *индуцированная* (*унаследованная*) из (X, τ) .

Определение. (Y, τ_Y) — называется топологическим подпространством в (X, τ) .

Предложение. Пусть (X, ρ) — метрическое пространство, $Y \subset X, \tau_{\rho}$ — топология на Y, порожденная ограничением метрики ρ на $Y \times Y \Rightarrow \tau_{\rho} = \tau_{Y}$.

Доказательство: Базу τ_{ρ} образуют шары $B_{r}^{Y}(y) = \{z \in Y : \rho(z,y) < r\} \quad (y \in Y, r > 0)$

Заметим, что $B_r^Y(y) = B_r(y) \cap Y$ (где $B_r(y) = \{z \in X \colon \rho(z,y) < r\}) \Rightarrow B_r^Y(y) \in \tau_Y \Rightarrow \tau_\rho \subset \tau_Y$

Пусть $V \in \tau_Y \colon V = U \cap Y$, где U открыто в X.

Пусть $y \in V \Rightarrow \exists \, r > 0 \colon \ B_r(y) \subset U \Rightarrow B_r^Y(y) \subset V \Rightarrow V \in \tau_\rho \Rightarrow \tau_Y = \tau_\rho \quad \Box.$

(картинка 4). Обозначение. X — множество, $Y \subset X$

 $i_Y \colon Y \to X, i_Y(y) = y \; \forall \; y \in Y - \textit{отображение включения } Y \; \mathsf{B} \; X.$

Теорема: (основное свойство индуцированной топологии)

 (X,τ) — топологическое пространство, $Y\subset X$. Снабдим Y индуцированной топологией τ_Y . Тогда:

- (1) τ_Y самая грубая топология на X в которой $i_Y \colon Y \to X$ непрерывно,
- (2) Если Z топологическое пространство, то $f: Z \to Y$ непрерывно $\iff i_Y \circ f: Z \to X$ непрерывно.

Иначе говоря: f непрерывно как отображение из Z в $Y \Longleftrightarrow$ оно непрерывно как отображение из Z в X.

Доказательство:

(1) $i_Y^{-1}(U) = U \cap Y \Rightarrow i_Y$ непрерывно.

Пусть σ — топология на Y, т.ч. $i_Y \colon (Y,\sigma) \to X$ непрерывно $\Longleftrightarrow \forall U \in \tau$ $\underbrace{i_Y^{-1}(U)}_{=U \cap Y} \in \sigma \Rightarrow \tau_Y \subset \sigma$.

 $(2) \,\, \forall \, U \subset X$

$$(i_Y \circ f)^{-1}(U) = f^{-1}(i_Y^{-1}(U)) = f^{-1}(U \cap Y)$$

¹ A существует ли самая тонкая? Да — дискретная.

 $i_Y \circ f$ непрерывно $\iff \forall U \in \tau (i_Y \circ f)^{-1}(U)$ открыто в $Z \iff \forall V \in \tau_Y \ f^{-1}(V)$ открыто в $Z \Rightarrow f$ непрерывно \square . Упраженение. τ_Y — единственная топология на Y, удовл (1), и единственная топология на Y, удовлетворяющая (2).

6 Лекция 6. 21 ноября 2019 г.

Вспомним материалы прошлой лекции:

 (X, τ) - топологическое пространство, $Y \subset X$

 $au_Y = \{U \cap Y \colon U \in au\}$ - undyyupoванная топология на Y.

 $i_Y \to x$ - отображение включения. $i_Y(y) = y \; \forall \; y \in Y$

 au_Y - самая грубая топология на Y, в которой i_Y непрерывно

 $f\colon X\to Y$ - отображение множеств, $A\subset X$

Определение. Ограничение f на A - это $f|_A \colon A \to Y$, $(f|_A)(a) = f(a) \ \forall \ a \in A$

Предложение. X,Y - топологические пространства, $A\subset X,\ f\colon X\to Y$ непрерывно $\Rightarrow f|_A\colon A\to Y$ непрерывно \mathcal{A} оказательство: $f|_A=f\circ i_a$

Предложение:

- (1) Множество $B\subset Y$ замкнуто в $\tau_Y\Longleftrightarrow B=F\cap Y$ для некоторого замкнутого $F\subset X$
- (2) $\forall A \subset Y$ (замыкание A в (Y, τ_Y)) $= \overline{A} \cap Y$, где \overline{A} замыкание A в X.

Доказательство: (1) следует из формулы $Y \setminus B = (X \setminus B) \cap Y \ \forall B \subset Y$

(2) (Замыкание
$$A$$
 в $X) = \bigcap \{C \subset Y \colon C \ (Y, \tau_Y) \ C \supset A\} = ^{(1)} \cap \{F \cap Y \colon F \ F \supset A\} = (\cap \{F \colon F \ X \ F \supset A\}) \cap Y = \overline{A} \cap Y \ \Box$

Предложение: X - топологическое пространство, $A \subset Y \subset X$

- (1) Если Y открыто в X, то A открыто в $Y \Longleftrightarrow A$ открыто в X
- (2) Если Y замкнуто в X, то A замкнуто в $Y \Longleftrightarrow A$ замкнуто в X

Доказательство: (1) $\Rightarrow A = Y \cap U$, где U открыто в $X \Rightarrow A$ открыто в X

$$(\Leftarrow)A = Y \cap \underbrace{A} \Rightarrow A$$
 открыто в Y

(2) Аналогично. □

6.1 Инициальные топологии. Произведения топологических пространств.

1 Инициальные топологии

X - множество, $(X_i, \tau_i)_{i \in I}$ - семейство топологических пространств $(I \neq \varnothing); \ (f \colon X \to X_i)_{i \in I}$ - семейство отображений.

Определение. Инициальная топология на X, порожденная семейством $(f_i)_{i\in I}$ - это топология τ_{in} на X с предбазой $\{f_i^{-1}(U)\colon i\in I, U\in \tau_i\}$

Пример 1. X - топологическое пространство, $Y \subset X$

Индуцированная топология на Y = инициальная топология, порожденная $\{i_Y : Y \to X\}$

Обозначение: pt - топологическое пространство, состоящее из одной точки. (от слова point)

Пример 2. X - множество. Инициальная топология на X, порожденная $\{X \to \mathrm{pt}\}$ - антидискретная топология.

Теорема (основные свойства инициальной топологии)

$$Y \xrightarrow{g} X$$

$$f_i \circ g \qquad \qquad |$$

- $Y \xrightarrow{g} X$ X множество, снабженное инициальной топологией, порожденной семейством $(f_i \colon X \to X_i)_{i \in I}$ (1) τ_{in} самая грубая топология на X, в которой все f непрерывны, f_i (2) Если Y топологическое пространство, то отображение $g \colon Y \to X$ непрерывно $\iff f_i \circ g \colon Y \to X_i$

Доказательство: (1) $\forall i \in I \ \forall U \in \tau_i \quad f_i^{-1}(U) \in \tau_{in} \Rightarrow f_i$ непрерывно.

Пусть σ - некоторая топология на X, т.ч. $\forall i \in U \quad f_i \colon (X,\sigma) \to X_i$ непрерывно

 $\forall i \in I \ \forall U \in \tau_i \quad f_i^{-1}(U) \in \sigma \Rightarrow (\tau_{in}) \subset \sigma \Rightarrow \tau_{in} \subset \sigma$

- (2) (\Rightarrow) Если g непрерывно, то $f_i \circ g$ непрерывно, т.к. f непрерывно
- (\Leftarrow) Пусть $f_i \circ g$ непрерывно $\forall i$

Достаточно доказать: \forall множества $V \subset X$ из предбазы $\tau_{in} = g^{-1}(V)$ открыто в Y

 $V=f_i^{-1}(U),$ где $U\subset X$ открыто $\Rightarrow g^{-1}(f_i^{-1}(U))=(f_i\circ g)^{-1}(U)$ - открыто в Y

 $Упраженение _{in}$ - единственная топология на X со свойством (2).

6.2Произведения множеств

 $(X_i)_{i\in I}$ - семейство множеств.

Определение. Произведение семейства $(X_i)_{i \in I}$ - множество:

$$\prod_{i \in I} X_i = \left\{ x \colon I \to \bigcup_{i \in I} X_i \middle| \forall i \in I \ x(i) \in X_i \right\}$$

 $extit{\it Частный случай Если } X_i = Y orall i, ext{ то } \prod X_i = Y^I$ - множество всех отображений I o Y

Обозначения. $\forall \, x \in \prod_{i \in I} X_i \;\; x_i = x(i), \;\; x = (x_i)_{i \in I} \;\; (x_i \in X_i)$

Если $I=\{1,\dots,n\},$ то вместо $\prod_{i\in I}X_i$ пишут $\prod_{i=1}^nX_i$ или $X_1\times X_2\times \dots \times X_n$

 $i\in I$ i=1 В этом случае элементы $X_1\times X_2\times\ldots\times X_n$ - упорядоченные наборы (x_1,\ldots,x_n) , где $x_i\in X_i$.

Обозначение. $\forall \, j \in I \;\; p_J \colon \prod_{i \in I} X_i \to X_j, \;\; p_j(x) = x_j$

 p_i - каноническая проекция на X_i

Произведения топологических пространств

 $(X_i, au_i)_{i \in I}$ - семейство топологических пространств, $X = \prod X_i$

Определение. Топология произведения (muxoновская топология) на X - это инициальная топология, порожденная семейством $\left\{p_j\colon X\to X_j\right\}_{j\in I}$ канонических проекций.

Hаблю dенuе: $(1) \ \forall \$ открытого $U \subset X_i$

$$p_i^{-1}(U) = \prod_{j \in J}$$
, где $V_j = \begin{cases} U & j = i \\ X_j & j \neq i \end{cases}$. Множества вида (1) образуют предбазу X . (2) \forall конечного $I_0 \subset I$, $\forall i \in I_0$ пусть $U_i \subset X_i$ - открытое множество.
$$(**) \bigcap_{i \in I_0} p_i^{-1}(U_i) = \prod_{j \in I} V_j, \text{ где } V_j = \begin{cases} U_j & j \in I_0 \\ X_j & j \notin I_0 \end{cases}$$

(**)
$$\bigcap_{i \in I_0} p_i^{-1}(U_i) = \prod_{j \in I} V_j$$
, где $V_j = \begin{cases} U_j & j \in I_0 \\ X_j & j \notin I_0 \end{cases}$

Множества вида (**) образуют базу X

(3) Если I конечно, то базу X образуют множества вида $\prod_{i \in I} U_i$, где $U_i \subset X_i$ открыто.

Предостережение-упражнение: Если I бесконечно, то $\prod_{i=1}^n U_i$ не обязательно открыто в X (где $U_i \subset X_i$ открыто)

Отступление: коммутативные диаграммы

(здесь будут картинки диаграмм)

Теорема (универсальное свойство произведения)

 $(X_i)_{i\in I}$ - семейство топологических пространств, $X=\prod_{i\in I}X_i,\ p_i\colon X o X_i$ - каноническая проекция; Y - топологическое пространство.

 $Y \xrightarrow{f} X$ Тогда для любого семейства $(f_i\colon Y \to X_i)_{i\in I}$ непрерывных отображений $\exists\,!$ непрерывное отображение $f\colon Y \to X_i$, такое что диаграмма (D) коммутативна $\forall\, i\in I$

Доказательство: Определим $f\colon Y\to X$ так: $(f(y))_i=f_i(y)\ \forall\ y\in Y, \forall\ i\in I$

Отображение f делает диаграмму (D) и является единственным отображением с этим свойством. Его непрерывность следует из теоремы о свойствах инициальной топологии.

$$\mathit{Предложение}.\;(X_i,
ho_i)\;(i=1,\ldots,n)$$
 - метрические пространства, $X=\prod_{i=1}^n X_i$

Определим
$$\rho \colon X \times X \to [0,+\infty)$$
 так: $\rho(x,y) = \max_{1 \leqslant i \leqslant n} \rho_i(x_i,y_i)$

Тогда ρ -метрика на X, и она порождает топологию на X.

Доказательство: Упражнение: ρ - метрика.

Обозначим τ = топология произведения на X, τ_{ρ} - тополония, порожденная ρ .

Заметим:
$$\rho(x,y) < r \Longleftrightarrow \rho_i(x_i,y_i) < r \ \forall \ i=1,\ldots,n$$

Заметим:
$$\rho(x,y) < r \Longleftrightarrow \rho_i(x_i,y_i) < r \ \forall \ i=1,\dots,n$$
 $(\Rightarrow)B_r(x) = \prod_{i=1}^n B_r(x_i) \Rightarrow B_r(x)$ открыто в $\tau \Rightarrow \tau_\rho \subset \tau$

Пусть
$$U$$
 - множество из базы τ ; $U = \prod_{i=1}^n U_i$, где $U_i \subset X_i \forall \ i$ открыто

Пусть
$$x \in U$$
. Тогда $\forall 1 = 1, \dots, n \ x_i \in U_i \Rightarrow \exists r_i > 0 \colon B_r(x) \subset U_i$

Пусть
$$x\in U$$
. Тогда $\forall\, 1=1,\ldots,n\ x_i\in U_i\Rightarrow \exists\, r_i>0\colon B_r(x)\subset U_i$ Обозначим $r=\min_{1\leqslant i\leqslant n}r_i\Longleftrightarrow B_r(x)\prod_{i=1}^nB_r(x_i)\subset\prod_{i=1}^nB_{r_i}(x)\subset\prod_{i=1}^nU_i=U$ $\Rightarrow\, U$ открыто в $\tau_\rho\Rightarrow\tau\subset\tau_\rho\Rightarrow\tau=\tau_\rho$ \square

$$\Rightarrow U$$
 открыто в $\tau_o \Rightarrow \tau \subset \tau_o \Rightarrow \tau = \tau_o \square$

 $\mathit{Cnedcmeue} \colon \mathbb{K} = \mathbb{R}$ или \mathbb{C}

Стандартная топология на \mathbb{K}^n , порожденная $||\cdot||_{\infty}$ (или $||\cdot||_1$ или $||\cdot||_2$) совпадает с топологией произведения $\mathbb{K} \times \mathbb{K} \times \ldots \times \mathbb{K}$.

Лекция 7. 27 ноября 2019 г.

Обозначение. $(X_i)_{i\in I}, (Y_i)_{i\in I}$ — семейства множеств, $(f_i\colon X_i\to Y_i)_{i\in I}$ — семейство отображений.

Определение. (декартово) произведение семейства
$$(f_i)$$
 отображение $\prod_{i \in I} f_i \colon \prod_{i \in I} X_i \to \prod_{i \in I} Y_i, (x_i)_{i \in I} \mapsto (f_i(x_i))_{i \in I}$
Предложение. Пусть $(X_i)_{i \in I}, (Y_i)_{i \in I}$ — семейства топологических пространств, $(f_i \colon X_i \to Y_i)_{i \in I}$ — семейство

непрерывных отображений.

Тогда
$$\prod f_i \colon \prod X_i o \prod Y_i$$
 — непрерывно.

Доказательство: Обозначим
$$X-\prod X_i, Y=\prod Y_i, f=\prod f_i$$

$$\begin{array}{c|c}
X & \xrightarrow{f} & Y \\
p_i^X & & \downarrow p_i^Y \\
X_i & & & Y_i
\end{array}$$

 p_i^X p_i^Y p_i^Y p_i^Y p_i^Y p_i^Y p_i^Y p_i^Y p_i^Y p_i^X непрывно $\forall i$ (см. свойства инициальной топологии) $\iff f_i \circ p_i^X$

Cnedcmeue: X — топопологическое пространство, $\mathbb{K} = \mathbb{R}$ или $\mathbb{C}, C(X) = C(X, \mathbb{R})$.

Тогда $\forall f,g \in C(X)$ $f+g \in C(X)$ и $fg \in C(X)$

Если
$$f(x) \neq 0 \ \forall \ x \in X$$
, то $\frac{1}{f} \in C(X)$

Доказательство:

Предложение: Топологическое пространство X — хаусдорфово \iff диагональ $D_X = \{(x,x) \colon x \in X\} \subset X \times X$ замкнута в $X \times X$

Доказательство: D_x замк в $X \times X \Longleftrightarrow \forall p \in (X \times X) \backslash D_x \exists$ окрестность W вида $W = U \times V$

(где $U, V \subset X$ откр.), т.ч. $W \cap D_x = \emptyset$ (картинка квадрата)

 $\Longleftrightarrow \forall \, x,y \in X$, т.ч. $x \neq y, \exists \,$ откр $U,V \subset X,$ т.ч. $x \in U,y \in V,$ и $U \cap V = \varnothing \Longleftrightarrow X$ хаусдорфово.

Cледствие 1. X,Y — топологические пространства, Y хаусдорфово, $f,g\colon X\to Y$ непрерывно $\Rightarrow \{x\in X\colon f(x)=g(x)\}$ замкнуто в X.

Доказательство: Рассмотрим $F: X \to Y \times Y$, F(x) = (f(x), g(x)), F непрерывно.

 $\{x: f(x) = g(x)\} = F^{-1}(D_Y), \text{ a } D_Y \text{ замкнуто в } Y \times Y. \square.$

 $\mathit{Cnedcmeue}\ 2.\ X, Y$ — топологические пространства, Y хаусдорфово, $f,g\colon X\to Y$ непрерывно.

Пусть $X_0 \subset X$ — плотное подмножество, $f\big|_{x_0} = g\big|_{x_0} \Rightarrow f = g$

Доказательство: Множество $S=\{x\in X\colon f(x)=g(x)\}$ замкнуто и содержит $X_0\Rightarrow S=X$ \square .

Финальные топологии. Дизъюнктные объединения

X — множество, $(X_i, \tau_i)_{i \in I}$ — семейство топологических пространств; $(f_i \colon X_i \to X)_{i \in I}$ — семейство отображений **Определение.** Φ инальная топология на X, порожденная семейством отображений $(f_i)_{i\in I}$ — это

$$\tau_{\text{fin}} = \{ U \subset X \colon f^{-1}(U) \in \tau_i \ \forall \ i \in I \}$$

 $\it 3ame$ чание: $au_{
m fin}$ действительно является топологией на $\it X$

Примечание: Финальная топология на X_i , порожденная отображением $\{\emptyset \to X\}$ — дискретная топология.

Теорема: (основные свойства финальной топологии)

- (1) $au_{
 m fin}$ самая тонкая топология на X_i , т.ч. все $f_i\colon X_i o X$ непрерывны (существует ли самая грубая? Да: антидискретная)
- (2) Если Y топологическое пространство, то отображение $g\colon X\to Y$ непрерывно $\Longleftrightarrow g\circ f_i$ непрерывно $\forall i$

 $\iff \forall \ i \in I \quad g \circ f_i \colon X_i \to Y$ непрерывно. \square Упражнение: τ_{fin} — единственная топология на X, обладающая свойством (2).

7.2 Дизъюнктные объединения множеств

 $(X_i)_{i\in I}$ — семейство множеств.

Определение. Дизтюнктное объединение семейства $(X_i)_{i\in I}$ — множество

$$\bigsqcup_{i \in I} X_i = \{(x, i) \colon i \in I, x \in X_i\}$$

Обозначение $\forall j \in I \quad q_j \colon X_j \to \sqcup_{i \in I} X_i; \ q_j(x) = (x,j)$ — каноническое вложение X_j в $\sqcup_{i \in I} X_i$.

Наблюдение:

- (1) q_i инъекция ∀ j
- (2) $q_i(X_i) \cap q_i(X_i) = \emptyset \ \forall i \neq j$
- $(3) \sqcup_{i \in I} X_i = \bigcup_{i \in I} q_i(X_i)$

 $Cornamenue \colon {\rm \widetilde{O}}{\rm Toж}{\it дествляем} \ X_j \subset q_j(X)$ посредством q_j

7.3 Дизъюнктные объединения (несвязные суммы) топологических пространств

 $(X_i)_{i\in I}$ — семейство топ пр; $X=\sqcup_{i\in I}X_i,q_j\colon X_j\to X$ — каноническое вложение $(j\in I).$

Определение. Топология дизтонктного объединения на X — финальная топология, порожденная семейством $(q_i \colon X_i \to X)_{i \in I}$ канонических вложений.

Таким образом $U\subset X$ откр $\Longleftrightarrow U\cap X_i$ открыто в $X_i \forall\ i\in I$

Теорема: (универсальное свойство дизъюнктного объединения)

 $(X_i)_{i\in I}$ — семейство топологических пространст, Y — топологическое пространство, $X=\sqcup_{i\in I}X_i$.

Тогда для любого семейства непрерывных отображений $(f_i\colon X_i\to Y)_{i\in I}$ существует единственное непрерывное $f\colon X\to Y$, т.ч. диаграмма (D) коммутативна $\forall\,i\in i$

Доказательство:

зададим $f \colon X \to Y$ так:

$$f((x,i)) = f_i(x) \quad (\forall i \in I, \forall x \in X_i) \quad (*)$$

Отображение f делает (D) коммутативной и является единственным отображением с этим свойством (т.к. (*) эквивалентно $f(q_i(x)) = f_i(x)$).

Непрерывность f из теоремы $1 \square$.

7.4 Связные топологические пространства

Определение. Топологическое пространство X **связно** $\Longleftrightarrow X$ не представимо в виде $X=U\cup V$, где U,V открыты, непусты и $U\cap V=\varnothing$

X несвязно, если оно не является связным

Подмножество $Y \subset X$ связно \iff оно связно как топологическое пространство в индуцированной топологии.

Haблюdenue: X связно $\Longleftrightarrow X$ не представимо в виде $X=A\cup B$, где A,B замкнуты, непусты и $A\cap B=\varnothing$

 \iff не существует подмножества $A \subset X, A \neq X, A \neq \emptyset$, открытого и замкнутого одновременно.

Пример. Дискретное пространство, состоящее более чем из 1 точки, несвязно.

Пример 2. Антидискретное пространство связно.

Пример 3. $\mathbb{R}\setminus\{0\}$ несвязно, т.к. $\mathbb{R}\setminus\{0\} = (-\infty; 0) \cup (0; +\infty)$.

Пример 4. (картинка) $\overline{B_1}(0,0) \cup \overline{B_1}(0,3) \subset \mathbb{R}^2$ — несвязное.

Пример 5. Любое подмножество $A \subset \mathbb{Q}$ (с топологией, индуцированной из \mathbb{R}), состоящее более чем из одной точки, несвязно.

Действительно: пусть $a,b \in A, a < b. \exists$ иррац. $c \in \mathbb{R}$, т.ч. a < c < b

 $U=A\cap (-\infty;\ c), V=A\cap (c,\ +\infty)\Rightarrow U,V$ откр. в $A,U\cap V=\varnothing,U\cup V=A.$

8 Лекция 8. 4 декабря 2019 г.

Предложение. Отрезок $[a, b] \subset \mathbb{R}$ связен.

Доказательство: (от противного)

Предположим, что $[a, b] = U \cup V$, $U, V \subset [a, b]$ открыты (в топологии отрезка [a, b]), непусты, $U \cap V = \emptyset$.

Можем считать, что $b \in V \Rightarrow \exists \varepsilon > 0$, т.ч. $(b - \varepsilon; b] \subset V$ (1)

Обозначим $c = \sup V$.

Заметим, что:

c > a (иначе $U = \{a\}$ — противоречие с тем, что U открыто),

c < b в силу (1)

Если $c \in U \Rightarrow \exists \ \delta > 0 \colon (c - \delta, c + \delta) \subset U \Rightarrow c + \frac{\delta}{2} \in U$ — противоречит с определением c.

Если $c \in V \Rightarrow \exists \, \delta > 0 \colon (c - \delta, c + \delta) \subset V \Rightarrow \forall \, x \in U \, x \leqslant c - \delta$ — противоречие с определением c.

Значит, $c \notin U \cup V = [a, b]$ — противоречие. Следовательно, отрезок [a, b] связен. \square

Теорема: (свойства связных пространств)

- (1) X, Y топологические пространства, X связно, $f: X \to Y$ непрерывно $\Rightarrow f(X)$ связно.
- (2) Пусть $X=U\cup V,\quad U,V$ открыты, $U\cap V=\varnothing;$

пусть $A \subset X$ связно $\Rightarrow A \subset U$ либо $A \subset V$.

- (3) $A, B \subset X, A \subset B \subset \overline{A}, A$ связно $\Rightarrow B$ связно.
- (4) Пусть $(A_i)_{i \in I}$ семейство связных подмножеств X, имеющих общую точку $\Rightarrow \bigcup_i A_i$ связно,
- (5) Пусть любые $x, y \in X$ лежат в некотором связном подмножестве $X \Rightarrow X$ связно.
- (6) Произведение конечного числа связных топологических пространств связно:

 $X_1, \dots X_n$ — связные топологические пространства $\Rightarrow X_1 \times \dots \times X_n$ связно.

Доказательство:

(1) Можем считать: f(X) = Y (f — сюръекция)

Пусть $Y = U \cap V$, U, V открыты, непусты, $U \cap V = \emptyset$

$$f$$
 — сюръекция $\Rightarrow X = \underbrace{f^{-1}(U) \cup f^{-1}(V)}_{\text{пересек.} — противоречие}$

 $(2) \ A = \underbrace{(U \cap A) \cup (V \cap A)}_{\text{откр. B A и не пересек.}} \Rightarrow U \cap A$ либо $V \cap A$ пусто. Если $U \cap A = \varnothing \Rightarrow A = V \cap A$, т.е. $A \subset V$.

(3) Можем считать, что B=X; тогда $\overline{A}=X$

Пусть $X=U\cup V,\ U,V\subset X$ откр, непусты, $U\cap V=\varnothing$

Из (2) $A \subset U$ либо $A \subset V$. Пусть $A \subset U \Rightarrow A \cap V = \emptyset$ — противоречие с тем, что $\overline{A} = X \Rightarrow X$ связно.

(4) Можем считать: $\bigcup_{i\in I}A_i=X$. Пусть $a\in A_i \forall\ i\in I$ Пусть $X=U\cup V,\ U,V\subset X$ откр, непусты, $U\cap V=\varnothing$

Пусть $a \in U$. Из (2): $A_i \subset U \ \forall i \in I \Rightarrow V = \emptyset$ — противоречие. $\Rightarrow X$ связно.

(5) Зафиксируем произвольную точку $x\in X$. $\forall\,y\in X\;\exists\;$ связ $A_{xy}\subset X$, т.ч. $x,y\in A_{xy}\Rightarrow\bigcup_{y\in X}A_{xy}=X$

Из (4): X связно.

(6) Достаточно доказать для n=2 (индукция). Обозначим $X_1=X, X_2=Y$

Зафиксируем $p = (x_1, y_1) \in X \times Y, q = (x_2, y_2) \in X \times Y$

Обозначим $A = \{x_1\} \times Y, \quad B = X \times \{y_2\}$

A гомеоморфно Y,B гомеоморфно $X\Rightarrow A,B$ связны.

$$(x_1,y_2) \in A \cap B \Rightarrow A \cap B = \varnothing \xrightarrow{(4)} A \cup B$$
 связно.

 $p, q \in A \cup B \xrightarrow{(5)} X \times Y$ связно.

Упражнение. Доказать: произведение любого семейства связных топологических пространств связно.

Определение. X — топологическое пространство, $x, y \in X$

 $I\!Iym$ ь в X из x в y — непрерывное отображение $f\colon [0,1]\to X$, т.ч. f(0)=x, f(1)=y

Определение. X линейно связно, если $\forall x,y \in X$ существует путь из x в y

Предложение. X линейно связно $\Rightarrow X$ связно.

Доказательство: Пусть $x, y \in X$; $f: [0, 1] \to X$ — путь из x в y; C = f([0, 1])

C связно (т.к. [0,1] связен; см. π (1) теоремы); $x,y \in C$. Теорема, $\pi(5) \Rightarrow X$ связно. \square

Теорема: (свойства линейно связных пространств)

- (1) X,Y топологические пространства, X линейно связно, $f\colon X\to Y$ непрерывно $\Rightarrow f(X)$ линейно связно.
- (2) Пусть $(A_i)_{i \in I}$ семейство линейно связных подмножеств X, имеющих общую точку $\Rightarrow \bigcup A_i$ линейно связно,
- (3) Произведение конечного числа линейно связных топологических пространств линейно связно:

 $X_1, \dots X_n$ — линейно связные топологические пространства $\Rightarrow X_1 \times \dots \times X_n$ линейно связно.

Доказательство: упражнение.

Пример 1. X — нормированное пространство над $\mathbb{R} \Rightarrow X$ линейно связно.

Действительно:

 $\forall x, y \in X$ рассмотрим $f: [0,1] \to X$, f(t) = ty + (1-t)x

f непрерывно (упражнение), f(0) = x, f(1) = y

Определение. Пусть X — векторное пространство над $\mathbb{R}; x, y \in X$

Обозначим $[x,y] = \{ty + (1-t)x \colon 0 \le t \le 1\}$. Это множество называется *отрезком*

c концами x, y.

Множество $A \subset X$ выпукло $\iff \forall x, y \in A$ выполнено $[x, y] \subset A$

Упраженение. Шар в нормированном пространстве — выпуклое множество.

Пример 2. Любое выпуклое подмножество нормированного пространства (над \mathbb{R}) линейно связно. (док-во — см. пример 1)

Пример 3/упр.

X — нормированное пространство над \mathbb{R} , dim $X > 1 \Rightarrow X \setminus \{0\}$ линейно связно.

Пример 4. X — нормированное пространство над \mathbb{R} , dim X > 1

Сфера $S = \{x \in X : ||x|| = 1\}$ линейно связна

Действительно: рассмотрим $f \colon X \backslash \{0\} \to S, \ f(x) = \frac{x}{||x||}.$

Упражнение: f непрерывно и сюръективно

 $\Rightarrow S$ линейно связно.

Пример 5. (*n*-мерный тор)

Обозначим
$$S^1 = \{(x, y) \in \mathbb{R}^2 \colon x^2 + y^2 = 1\}$$
 (окружность)

$$T^n = \underbrace{S^1 \times \dots S^1}_{n} - n$$
-мерный тор. T^n линейно связен.

Упражнение. Обозначим
$$X = \left\{ \left(x, \sin \frac{1}{x} \right) : 0 < x \leqslant 1 \right\} \cup \left\{ (0,y) \colon -1 \leqslant y \leqslant 1 \right\} \subset \mathbb{R}^2$$

Доказать: X связно, но не линейно связно.

Определение. Подмножество $A \subset \mathbb{R}$ — промежуток $\iff A = (a,b)$ (где $-\infty \leqslant a < c \leqslant +\infty$),

либо
$$A = [a, b] \quad (-\infty < a \leqslant b < +\infty),$$

либо
$$A = [a, b)$$
 (где $-\infty < a < b \le +\infty$),

либо
$$A = (a, b] (-\infty \leqslant a < b < +\infty),$$

либо $A=\varnothing$

Упражнение: A — промежуток \iff A выпукло

Предложение. Следующие утверждения эквивалентны:

(1) A связно; (2) A линейно связно; (3) A — промежуток.

 \mathcal{A} оказательство: $(3)\Rightarrow (2)$ — очевидно; $(2)\Rightarrow (1)$ — знаем.

 $(1)\Rightarrow(3)$: предположим, что A ограничено. Обозначим $a=\inf A,\ b=\sup A\Rightarrow A\subset [a,\ b]$

Покажем, что $(a,b) \subset A$. (этого нам достаточно)

Пусть $\exists \ c \in (a,b)$, т.ч. $c \notin A$. Обозначим $U = (-\infty; \ c) \cap A, \ V = (c; \ +\infty) \cap A$.

U,V открыты в $A,U\cap V=\varnothing,\quad U\cup V=A,U\neq\varnothing,V\neq\varnothing$

— противоречие со связностью A.

Для неограниченного A рассуждения аналогичны (упр.) \square

Следствие (теорема о промежуточном значении)

X — связное топологическое пространство, $f \in C(X, \mathbb{R}), x, y \in X$ $f(x) \leqslant f(y)$

Тогда $\forall c \in [f(x), f(y)] \ \exists \ z \in X, \ \text{т.ч.} \ c = f(z).$

Доказательство: f(X) связное подмножество $\mathbb{R} \Rightarrow f(X)$ — промежуток; $f(x), f(y) \in f(X) \Rightarrow [f(x), f(y)] \subset f(X)$ \square .

9 Лекция 9. 5 декабря 2019 г.

9.1 Связные компоненты.

Определение. Пусть (X, τ) - топологическое просранство. Связное множество $A \subset X$ называется **связной компо**нентой (или **компонентой связности**), если оно является максимальным по вложению среди связных множеств. Иначе говоря, $\forall B \supsetneq A \Rightarrow B$ - несвязное.

Теорема: (Свойства связных компонент)

- (1) Связные компоненты образуют разбиение X (то есть $\forall X_1, X_2$ связные компоненты $\Rightarrow X_1 = X_2$ или $X_1 \cap X_2 = \emptyset$ и $X = \bigcup \{A \subset X \mid A$ компонента свзности в $X\}$).
- $(2)\ \forall\ x\in X\ \Rightarrow\ C(x):=igl|\ \{A\subset X\mid A
 ightarrow x.$
- (3) Всякое непустое связное множество $A \subset X$ содержится ровно в одной связной компоненте.
- (4) Связные компоненты замкнуты в X.

Доказательство:

(1), (2): пусть X_1, X_2 - копмоненты связности, $X_1 \cap X_2 \neq \emptyset$. Тогда (по свойствам свяных множеств) $X_1 \cup X_2$ тоже связное, $X_1 \cup X_2 \supset X_1, X_2$, а так как X_1, X_2 - максимальные, то $X_1 = X_1 \cup X_2 = X_2$.

Аналогично, C(x) - связное и содержит в себе любое связное множество, содержащее точку x, значит оно максимальное, то есть является компонентой связности.

Теперь множество $\{C(x) \mid x \in X\}$ есть множество всех связных компонент и очевидно, что объединение элементов этого множества является все множество X.

- (3): пусть B такая компонента связности, что $A \cap B \neq \emptyset$ (такая существует, так как $\forall x \in A \exists B = C(x) : x \in B \cap A \neq \emptyset$), тогда $A \cup B \supset B$ связное множество, а значит $A \cup B = B$. B единственно в силу (1).
 - (4): пусть B связная компонента, тогда $\overline{B}\supset B$ связное множество $\Rightarrow \overline{B}=B$. \square

Cnedcmeue: если X - пространство, состоящее из конечного числа связных компонент, то компоненты связности открыты.

Доказательство: $X=C_1\cup...\cup C_n \Rightarrow C_i=X\backslash (C_1\cup...\cup C_{i-1}\cup C_{i+1}\cup...\cup C_n)=X\backslash [$ замкнутое множество] $\Rightarrow C_i$ открытое множество. \square

- **Пример 1.** Связные компоненты $\mathbb{R}\setminus\{0\}$ это $(-\infty, 0)$ и $(0, +\infty)$.
- **Пример 2.** X_1, X_2 непустые связные пространства, $X = X_1 \sqcup X_2 \ \Rightarrow \ X_1, \ X_2$ связные компоненты X.
- **Пример 3.** X дискретное топологическое пространство \Rightarrow связные компоненты все одноэлементые множества.
- **Пример 4.** То же самое верно для $X=\mathbb{Q}$ со стандартной топологией.

Упраженение: описать компоненты канторова множества.

Определение. Линейно связное $A \subset X$ называется *линейно связной компонентой*, если A - максимальное линейно связное множество.

Теорема

- (1) Линейно связные компоненты образуют разбиение X.
- (2) $\forall x \in X$ множество $PC(x) := \bigcup \{A \subset X \text{линейно связное} \mid A \ni x\} = \{y \in X \mid \exists \text{ путь из } x \text{ в } y\}$ является линейно связной компонентой, содержащей x.
- (3) Всякое непустое линейно связное подмножество $A\subset X$ содержится ровно в одной линейно связной компо-

ненте.

Доказательство: в качестве упражнения. \square

Cnedcmeue: разбиение пространства на линейно свзные компоненты является измельчением разбиения на связные компоненты.

Упражнение: описать линейно связные компоненты $X = \{(x, \sin\frac{1}{x})\} \cup [(0, -1), (0, 1)]$. Замкнуты ли они?

Определение. Топологическое пространство X называется *локально линейно связным*, если $\forall x \in X \ \forall U$ окрестности точки $x \exists V \subset U$ - линейно связная окрестность точкиx.

Пример 5. Открытое множество нормированного пространства локально линейно связно.

Пример 6. Любое топологическое многообразие локально линейно связно.

Предложение. Пусть X - локально линейно связное пространство, тогда его линейно связные компоненты открыты в X и совпадают со связными компонентами.

Доказательство: Пусть A - линейно связная компонента. $\Rightarrow \forall x \in A \exists U_x \ni x$ - линейно связная окрестность $A \cup U_x \supset A$ - линейно связно $\Rightarrow A = A \cup U_x$, то есть $U_x \subset A \Rightarrow A = \bigcup_{x \in A} U_x$ - объединение открытых множеств, значит A - открыто.

Пусть B - связная компонента, такая что $A \subset B$. $B \setminus A = \bigcup \{$ линейно связные компоненты, содержащиеся в B и отличные от $A \} \Rightarrow B \setminus A$ - открыто $\Rightarrow B = A \cup B \setminus A$ - объединение открытых $\Rightarrow B \setminus A = \emptyset$. \square

9.2 Компактные топпологические пространства.

Пусть X - множество, $\Gamma \subset 2^X$.

Определение. Γ - *покрытие* подмножества $Y \subset X$ (Γ *покрывает* Y или Y *покрывается* семейством Γ), если $\bigcup \Gamma \supset Y$. Если на X есть топология, то открытое покрытие означает покрытие открытыми множествами, замкнутое покрытие - замкнутыми.

Определение. Топологическое пространство X - **компактино**, если из всякого открытого покрытия Γ можно извлечь конечное подпокрытие (то есть конечное подсемейство $\Omega \subset \Gamma$, являющееся покрытием).

Определение. $F \subset 2^X$. F - центрированное семейство, если всякое конечное семейство $F_0 \subset F$ имеет непустое пересечение: $\bigcap F_0 \neq \varnothing$.

Предложение. Топологическое пространство X компактно \iff \forall $\Gamma \subset 2^X$ - центрированное семейство его замкнутых подмножеств \Rightarrow $\bigcap \Gamma \neq \varnothing$.

Доказательство: Пусть X - множество, $\mathcal{F}\subset 2^X$, $\Gamma=\{X\backslash F\mid F\in\mathcal{F}\}$. Заметим:

- $(1) \bigcap \mathcal{F} = \varnothing \Leftrightarrow \Gamma \text{покрытие } X;$
- (2) $\bigcap \mathcal{F}$ центрированное \Leftrightarrow никакое конечное подсемейство в Γ не покрывает X.

Скомбинировав эти два замечания, получим требуемое.

Предложение. X - топологическое пространство, $Y \subset X$.

Y - компактно в индуцированной топологии \iff каждое покрытие Y множествами, открытыми в X, имеет конечное подпокрытие.

Доказательство: \Rightarrow : Пусть $\{U_i \mid i \in I\}$ - покрытие Y множестами, открытыми в X. Обозначим $V_i = U_i \cap Y$ - открытые в индуцированной топологии множества $\Rightarrow \{V_i\}$ - открытое покрытие $Y \Rightarrow \exists i_1, \dots, i_n : Y = V_{i_1} \cup \dots \cup V_{i_n} \Rightarrow Y \subset U_{i_1} \cup \dots \cup U_{i_n}$.

 \Leftarrow : Пусть $\{V_i \mid i \in I\}$ - покрытие Y множестами, открытыми в Y, тогда $V_i = U_i \cap Y$, где U_i - некоторые открытые в X множества $\Rightarrow \{U_i\}$ - открытое покрытие $Y \Rightarrow \exists i_1, \ldots, i_n : Y = U_{i_1} \cup \ldots \cup U_{i_n} \Rightarrow Y \subset V_{i_1} \cup \ldots \cup V_{i_n}$. \square

Пример 7. Конечное топологическое пространство компактно.

Пример 8. Дискретное пространство компактно \iff оно конечно.

Пример 9. Антидискретное пространство компактно

Теорема

Отрезок $[a, b] \subset \mathbb{R}$ компактен

Доказательство: смотреть курс анализа

10 Лекция 10. 11 декабря 2019 г.

10.1 Основные свойства компактных пространств.

Напоминание.

Пусть X - метрическое пространство, $A \subset X$. Диаметр множества A - число (возможно ∞) $diam\ A := \sup\{\rho(x,\ y) \mid x,\ y \in X\}$.

Множество A - *ограничено*, если $diam A < \infty$.

Предложение. A - ограниченное множество $\leftrightarrow A$ содержится в некотором шаре.

Доказательство:

$$\Leftarrow: A \subset B_r(x) \Rightarrow diam \ A \leqslant 2r < \infty.$$

 \Rightarrow : $A \subset B_{diam\ A}(x), x \in A$. \square

Теорема: (Основные свойства компактных пространств)

- (1) $f: X \to Y$ непрерывное отображение, X компактно $\Rightarrow f(X)$ компактно.
- (2) X компактно, $Y \subset X$ замкнуто $\Rightarrow Y$ компактно.
- (3) X хаусдорфово, A, $B \subset X$ компактны, $A \cap B = \varnothing \Rightarrow \exists$ открытые множества U, $V \subset X : U \supset A$, $V \supset B$, $U \cap V = \varnothing$.
- (4) X хаусдорфово, $Y \subset X$ компакт $\Rightarrow Y$ замкнуто в X.
- (5) X метрическое пространство, $Y \subset X$ компакт $\Rightarrow Y$ ограничено.
- (6) X компакт, Y хаусдофово, $f: X \to Y$ непрерывно $\Rightarrow f$ замкнуто.
- (7) X компакт, Y хаусдофово, $f: X \to Y$ непрерывная биекция $\Rightarrow f$ гомеоморфизм.

Доказательство:

- (1): Можем считать f(X) = Y. Пусть $U \subset 2^Y$ открытое покрытие $Y \Rightarrow \{f^{-1}(V) \mid V \in U\}$ открытое покрытие X в силу непрерывности $f \Rightarrow \exists V_1, \ldots, V_n \in U$: $\bigcup_{i=1}^n f^{-1}(V_i) = X \Rightarrow \bigcup_{i=1}^n V_i = Y \Rightarrow V_1, \ldots, V_n$ Конечное подпокрытие Y.
- (2): Пусть $\{U_i\}_{i\in I}$ покрытие Y множествами, открытыми в X, тогда $\{U_i\}_{i\in I} \cup \{X\backslash Y\}$ открытое покрытие X, значит $\exists V_1, \ldots, V_n \in \{U_i\}_{i\in I} \cup \{X\backslash Y\}$ конечное подпокрытие X. Если $X\backslash Y = V_i$, то $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots, V_n$ конечное подпокрытие Y.
- (3): Зафиксируем $x \in A$. $\forall y \in B \; \exists \; U_{xy} \ni x, \; V_{xy} \ni Y : \; U_{xy} \cap V_{xy} = \varnothing$, значит $\{V_{xy}\}$ покрытие $B \Rightarrow B \subset V_{xy_1} \cup \ldots \cup V_{xy_n} = V_x$ открытое множество. Обозначим $U_x = U_{xy_1} \cap \ldots \cap U_{xy_n}$ открытое множество, $U_x \ni x, \; V_x \supset B, \; U_x \cap V_x = \varnothing$. Теперь $\{U_x \mid x \in A\}$ открытое покрытие $A \Rightarrow \exists \{U_{x_1}, \ldots, U_{x_n}\}$ конечное подпокрытие A. Положим $U = \bigcup_{i=1}^n U_{x_i}, \; V = \bigcap_{i=1}^n V_{x_i}$ открытые монжества, $U \supset A, \; V \supset B, \; U \cap V = U \cap (\bigcap_{i=1}^n V_{x_i}) = \bigcap_{i=1}^n (U \cap V_{x_i}) = \bigcap_{i=1}^n (U \cap V_{x_i})$

$$\bigcup_{i=1}^n (U_{x_i} \bigcap_{j=1}^n (V_{x_j})) = \varnothing, \text{ так как } U_{x_i} \bigcap_{j=1}^n (V_{x_j}) \subset U_{x_i} \cap V_{x_i} = \varnothing.$$
 (4): Пусть $x \in X \backslash Y$. $\{x\}, \ Y$ - компакты, тогда по (3) $\exists \ U \ni x, V \supset Y : \ u \cap V = \varnothing \ \Rightarrow \ U \cap Y = \varnothing \ \Rightarrow \ x \notin \overline{Y} \ \Rightarrow \ Y = \overline{Y}.$

- (5): Рассмотрим открытые шары $\{B_r(x)\mid r\in\mathbb{R}\}$, где $x\in X$ некоторая точка. Заметим, что $Y\subset X=\bigcup B_r(x)\ \exists\ r_1,\ \dots,\ r_n:$

 $Y \subset B_{r_1}(x) \cup \ldots \cup B_{r_n}(x) = B_r(x)$, где $r = \max\{r_1, \ldots, r_n\}$.

- (6): Пусть $B\subset X$ замкнуто $\Rightarrow B$ компактно в $X\Rightarrow f(B)$ компактно в хаусдорфовом $Y\Rightarrow f(B)$ замкнуто.
- (7): Частный случай (6). □

Некоторые свойства центрированных множеств.

X - множество

Определение. Семейство $\mathcal{F}\subset 2^X$ называется $\emph{центрированным}$, если для любого конечного $\mathcal{F}_0\subset \mathcal{F}\ \Rightarrow\ \bigcap \mathcal{F}_0\neq\varnothing$. **Предложение 1.** X - компактно $\Leftrightarrow \forall$ центрированного семейства $\mathcal F$ замкнутых множеств $\bigcap \mathcal F \neq \varnothing$.

Доказательство: было ранее. □

Предложение 2. X - компактно $\Leftrightarrow \forall$ центрированного семейства $\mathcal F$ множеств $\bigcap \{\overline F \mid F \in \mathcal F\} \neq \varnothing$.

Локазательство:

 \Rightarrow : семейство $\{\overline{F} \mid F \in \mathcal{F}\}$ - центрированное, далее смотреть предложение (1). \square

Лемма. X, Y - множества, $\mathcal{F} \subset 2^X$ - центрированное семейтсво.

- (1) $f: X \to Y$ отображение $\Rightarrow \{f(A) \mid A \in \mathcal{F}\}$ центрированное семейство.
- (2) Существует максимальное по включению центрированное семейство $\mathcal{F}_{\max} \supset \mathcal{F}$.
- (3) Если $\mathcal F$ максимальное центрированное множество, то $\forall \ A_1, \ \ldots, \ A_n \in \mathcal F$ выполнено $A_1 \cap \ \ldots \ \cap A_n \in \mathcal F$.

Доказательство:

(1):
$$\forall A_1, \ldots, A_n \in \mathcal{F} \Rightarrow \bigcap_{i=1}^n g(A_i) \supset g(\bigcap_{i=1}^n A_i) \neq \varnothing.$$
(2): Обозначим $\Gamma = \{\xi \subset 2^X \mid \xi$ - центрированное семейство $\}.$

Пусть $A \subset \Gamma$ - линейно упорядоченное по вложению подмножество.

Обозначим $\mathcal{H} = \bigcup \{\xi \mid \xi \in A\}$. Покажем, что \mathcal{H} центрированное семейство.

Действительно, пусть $H_1, \ldots, H_n \in \mathcal{H} \Rightarrow \forall i = 1, \ldots, n \quad H_i \in \xi_i$, где $\xi_i \in A \exists k : \xi_k \supset \xi_i \ \forall i \Rightarrow H_1, \ldots, H_n \in \xi_k \Rightarrow H_1, \ldots, H_n \in \xi_$ \mathcal{H} - центрированное.

Значит $\mathcal{H} \in \Gamma$, $\mathcal{H} \ni \xi \ \forall \ \xi \supset A$, то есть максимальное $\Rightarrow \ \Gamma$ удовлетворяет условиям леммы Цорна.

Тогда по лемме существует максимальный элемент $\mathcal{F}_{max} \in \Gamma$.

(3): Семейство $\{A_1\cap\ldots\cap A_n\}\cup\mathcal{F}$ центрировано и содержит максимальный $\mathcal{F}\Rightarrow$ эти множества совпадают. \square

10.3Теорема Тихонова.

Теорема: (Тихонова)

$$(X_i)_{i \in I}$$
 - семейство компактных пространств $\Rightarrow X = \prod_{i \in I} X_i$ компактно.

textitДоказательство:

Пусть $\mathcal{F} \subset 2^X$ - центрированное семейство. Из леммы (2) следует, что найдется максимальное $\mathcal{F}_{max} \supset \mathcal{F}$. Достаточно доказать, что $\bigcap \{\overline{A} \mid A \in \mathcal{F}_{max}\} \neq \emptyset$ (это множество содержится в пересечении замыканий элементов из \mathcal{F}).

 $p_i: X \to X_i$ - канонические проекции. Семейство $\{p_i(A) \mid A \in \mathcal{F}_{max}\} \subset 2^{X_i}$ является центрированным $\forall i$ (из леммы $(1)) \Rightarrow \exists x_i \in p_i(A) \ \forall \ ; A \in \mathcal{F}_{max}$ (из предложения 2).

Обозначим $x=(x_i)_{i\in I}\in X$. Пусть U - базисная окрестность точки x вида $U=\bigcap_{i\in J}p_i(U_i)$, где $J\subset I$ конечно, $U_i\subset X_i$ открыты. Покажем, что $U\cap A\neq\varnothing$ \forall $A\in\mathcal{F}$.

Действительно, $\forall i \in J \ x_i \in U_i \Rightarrow U_i \cap p_i(A) \neq \varnothing \ \forall A \in \mathcal{F}_{max} \Rightarrow p_i^{-1}(U_i) \cap A \neq \varnothing \ \forall A \in \mathcal{F}$. Тогда по лемме (3) $\mathcal{F}_{max} \cup \{p_i^{-1}\}$ - центрированное $\Rightarrow p_i^{-1} \in \mathcal{F}_{max} \ \forall i \in J$ (в силу максимальности) $U \in \mathcal{F}_{max} \Rightarrow \forall A \in \mathcal{F}_{max} \ U \cap A \neq \varnothing$ $\Rightarrow \forall A \in \mathcal{F}_{max} \ x \in \overline{A}$, то есть $x \in \bigcap \{\overline{A} \mid A \in \mathcal{F}_{max}\}$, что равносильно компактности. \square

Cnedcmbue: подмножество $X \subset \mathbb{R}^n$ компактно тогда и только тогда, когда оно замкнуто и ограничено в евклидовой метрике.

Доказательство:

⇒: из свойств компактных пространств.

 \Leftarrow : X ограничено $\Rightarrow X$ содержится в замкнутом кубе $C \subset \mathbb{R}^n$, C компактно как произведение отрезков; X замкнуто в $C \Rightarrow X$ компактно. \square

11 Лекция 11. 18 декабря 2019 г.

11.1 Локально компактные топологическтие пространства.

Определение. Топологическое пространство X называется *покально компактным*, если $\forall \ x \in X \ \exists \ U \ni x$ окрестность : \overline{U} - компактно.

Пример 1. Компактное пространство локально компактно.

Пример 2. Дискретное пространство локально компактно.

Пример 3. \mathbb{R}^n локально компактно.

Пример 4. Открытые подмножества в \mathbb{R}^n локально компактны.

Пример 5. Топологическое многообразие локально компактно.

Пример 6. \mathbb{Q} не локально компактно.

 \mathcal{A} оказательство: Возьмем произвольную базисную окрестность $\forall x \in \mathbb{Q} \quad \forall U = (a, b) \cap \mathbb{Q} \ni x$. Ее замыкание - множество $\overline{U} = [a, b] \cap \mathbb{Q}$ - не является компактным, так как семейство $\mathcal{F} = \{(r, b], [a, r_1), (r_1, r_2), ..., (r_{n-1}, r_n), ...\}$, где r - произвольное иррациональное число из $U, r_n \longrightarrow r \ (n \to \infty), \ r_i \in \mathbb{R} \backslash \mathbb{Q}, \ r_i > r_{i-1} \ \forall \ i \in \mathbb{N}$ является открытым покрытием \overline{U} , но любое конечное подмножество не является покрытием: $\forall \mathcal{A} \subset \mathcal{F}$ - конечное подсемейство $\Rightarrow \exists n \in \mathbb{N}: (r_{n-1}, r_n) \in \mathcal{A}, \ n$ - наибольший $\Rightarrow [r_n, r] \subset X \backslash \bigcup \mathcal{A}$. \square

Пример 7. $\mathbb{R}^{\mathbb{N}}$ - не локально компактное.

Доказательство: Пусть $U\subset\mathbb{R}^\mathbb{N}$ - базисное открытое множество, $U=\prod_{i\in\mathbb{N}}U_i$, где $U_i\subset\mathbb{R}$ - открытое множество, причем только конечное их количество отлично от прямой: $\exists \ J$ - конечное подмножество натуральных чисел, такое что $U_i\subsetneq\mathbb{R} \Leftrightarrow i\in J$. Зафиксируем $i\in\mathbb{N}:\ U_i=\mathbb{R}$. Каноническая проекция $p_i:\mathbb{R}^\mathbb{N}\to R$ - непрерывное отображение \Rightarrow если \overline{U} - компакт, то $p_i(\overline{U})\supset p_i(U)=U_i=\mathbb{R}$ - компакт \Rightarrow противоречие $\Rightarrow\ \forall\ V$ - открытое множество $\forall\ U$ - базисное открытое множество, $U\subset V\Rightarrow \overline{U}$ - не компактно $\Rightarrow\ V$ - не компактно. \square

Предложение 1. $X_1, ..., X_n$ - локально компактные пространства, тогда $X = X_1 \times ... \times X_n$ - локально компактное пространство.

Доказательство: Пусть $x=(x_1, ..., x_n), U=U_1\times ...\times U_n$ - окрестность x, где $U_i: \overline{U}_i$ компактно.

Докажем, что $\overline{U}=\overline{U}_1\times...\times\overline{U}_n$: во-первых, $\overline{U}_1\times...\times\overline{U}_n=\mathbb{R}^n\setminus\bigcup_{i=1}^n(\mathbb{R}\times...\times(\mathbb{R}\backslash\overline{U}_i)\times...\times\mathbb{R})$ - замкнутое множество

 $\Rightarrow \overline{U} \subset \overline{U}_1 \times ... \times \overline{U}_n$, а во-вторых, $\forall \ y = (y_1, ..., \ y_n) \in \overline{U}_1 \times ... \times \overline{U}_n \ \Rightarrow \ \forall \ i \ \forall \ V_i$ - окрестность $y_i \ V_i \cap U_i \neq \varnothing \ \Rightarrow \ \forall \ V_i$ - базисная окрестность $y_i \ V_i \cap U_i \neq \varnothing \ \Rightarrow \ \forall \ V_i \cap U_i \neq \varnothing \ \Rightarrow \$

Имеем, что $\overline{U}=\overline{U}_1 \times ... \times \overline{U}_n$ - произведение компактов, значит компактно. \square

Наблю дение: произведение бесконечного числа локально компактных не всегда локально компактное (см. пример 7).

Предложение 2. X - локально компактное пространство, $Y \subset X$ является замкнутым $\Rightarrow Y$ - локально компактное.

Доказательство: $\forall y \in Y \exists U \subset X$ - окрестность в $X : \overline{U}$ - компактно. $Y \cap \overline{U}$ - замкнутое подмножество компакта $\Rightarrow \overline{U} \cap Y$ - компактно. \square

Предложение 3. X - хаусдорфово локально компактное топологическое пространство, $Y \subset X$ - открытое подмножество $\Rightarrow Y$ является локально компактным.

Доказательство:

Лемма. X - хаусдорфово локально компактное топологическое пространство, $x \in X$, тогда внутри всякой окрестности $U \ni x$ найдется окрестность $V \ni x$, $U \supset \overline{V}$ - компакт.

Доказательство леммы: добавьте картиночееееек, я их делать не умееееееею :'(

 $\exists \ W \ni x$ - окрестность: \overline{W} - компакт. Пусть $K = \overline{W} \backslash U$ - замкнутое подмножество компакта $\Rightarrow \ K$ - компакт, $x \notin K$.

Это означает, что найдутся такие окрестности $V'\ni x,\; U'\supset K,\;$ что $U'\cap V'=\varnothing,\;$ тогда $V=V'\cap W$ - искомое:

V - окрестность $x,\,\overline{V}\subset \overline{W} \,\Rightarrow\, \overline{V}$ - компакт. $\overline{V}\subset \overline{V'}\cap \overline{W}\subset \overline{X\backslash U'}\cap \overline{W}=X\backslash U'\cap \overline{W}\subset X\backslash K\cap \overline{W}=\overline{W}\backslash K=U.$ \blacktriangle

Для всякого $y \in Y$ найдется окрестность $V \ni x$ в $X: \overline{V}$ - компакт, $\overline{V} \subset Y \implies V$ - открыто в Y и замыкание V в Y - это $\overline{V} \cap Y = \overline{V}$ - компактное пространство. \square

11.2 Одноточечная компактификация.

Обозначения: $X_+ := X \sqcup \{\infty\}, \ \tau_+ = \tau \cup \{U \subset X_+ \mid \infty \in U, \ X \setminus U \text{ - компактное замкнутое множество}\}$

Упраженение: доказать, что τ_{+} действительно является топологией на X_{+} .

Определение. (X_+, τ_+) - одноточечная компактификация топологического пространства (X, τ) .

Определение. $X,\ Y$ - топологичесие пространтва, $f:\ X\to Y$ - *открытое вложение*, если оно непрерывно, инъективно и открыто.

Haбnodehue: открытое вложение является гомеоморфизмом X и f(X).

Теорема

X - топологическое пространство, $i_X: X \to Y, \ i_X(x) = x$ - отображение включения.

- (1) Отображение включения является открытым вложением.
- $(2)X_+$ компактно.
- $(3)X_+$ хаусдорфово $\Leftrightarrow X$ хаусдорфово и локально компактно.
- (4) Если X компактно, то X_+ дизъюнктное объединение $X \sqcup \{\infty\}$ как топологических пространств, $\{\infty\}$ изолированная точка.
- (5) X некомпактно $\Leftrightarrow X$ плотно в X_+

Доказательство:

(1): i_X инъективно (очевидно) и открыто (в силу тождественности на X и факта, что $\tau \subset \tau_+$).

Посмотрим на прообраз открытого множества $U\subset X_+$: $i_X^{-1}(U)=U\cap X=X\setminus (X_+\setminus U),\ X_+\setminus U$ - замкнутое по определению $\Rightarrow i_X^{-1}(U)$ открыто.

(2): Пусть $\{U_i\}_{i\in I}$ - открытое покрытие X_+ , тогда ∞ содержится в каком-то множестве из покрытия, скажем в $U_j,\ j\in I.\ X_+ackslash U_j$ - компактное пространство, $\{U_i\}_{i\in I\setminus\{j\}}$ - его открытое покрытие $\Rightarrow\ \exists\ i_1,\ ...,\ i_n:\ \{U_{i_k}\}_{k=\overline{1,n}}$ конечное подпокрытие $X_+ \backslash U_j \Rightarrow \{U_{i_k}\}_{k=\overline{1,n}} \cup \{U_j\}$ - конечное подпокрытие X_+ .

(3):

 \Rightarrow : пусть X_+ хаусдорфово, тогда из (1) au совпадает с индуцированной топологией au_+ на $X \Rightarrow X$ хаусдорфово.

Пусть $x\ni X$, тогда найдутся окрестности $U\ni X, V\ni \infty$, которые не пересекаются, то есть $U\subset X_+\backslash V$, тогда \overline{U} замкнутое подмножество компактного пространства $X_+ \backslash V \Rightarrow$ компактно, значит X локально компактно.

 \Leftarrow : Пусть X хаусдорфово и локально компактно, тогда $\forall x, y \in X \; \exists \; U, \; V \subset XU \ni x, \; V \ni y$ - открыты в X_+ и не пересекаются. теперь если одна из этих точек, без ограничения общности пусть y, то для x существует $U\subset X:\overline{U}$ компактно, замкнуто, то есть $V = X_+ \setminus \overline{U}$ - окрестность $y, U \cap V = \emptyset$.

(4): $X_+\setminus\{\infty\}$ - замкнутое компактное множество $\Rightarrow \{\infty\}$ - окрестность ∞ , то есть ∞ - изолированная точка в X_+ . $\forall \ U \in \tau_+ \ U \cap X$ открыто и $U \cap \{\infty\}$ открыто, значит τ_+ совпадает с топологией дизъюнктного объединения X и $\{\infty\}$. (5):

⇐: из (4).

 \Rightarrow : если X - не плотно в X_+ , то найдется такое непустое открытое в X_+ множество U, что $U \subset X_+ \backslash X = \{\infty\}$, то есть $U=\{\infty\} \ \Rightarrow \ X=X_+\backslash\{\infty\}$ - компакт. \square

Предложение 4. (Y, τ) - компактное хаусдорфово топологическое пространство, $y_0 \in Y$ и $X = Y \setminus \{y_0\}$. Определим

$$f: X_+ \to Y, x \mapsto \begin{cases} x, & x \in X \\ y_0, & x = \infty \end{cases}$$

тогда f - гомеоморфизм.

Доказательство:

f - биекция, так как $f(X_+)=\overbrace{X}^{f(X)}\cup \overbrace{\{y_0\}}^{f(\{\infty\})}=Y,\; f|_X=i_X,$ то есть инъекция и сюръекция.

Пусть $U \in \tau$, $y_0 \notin U$, тогда $f^{-1}(U) = U$ - открытое в τ_+ . Если $U \ni y_0$, то $f^{-1}(U) = U \setminus \{y_0\} \cup \{\infty\} = V$, $X_+ \setminus V = Y \setminus U$ замкнутое подмножество компактного Y, значит компактно, то есть V - открыто в одноточечной компактификации.

Тогда $f:\underbrace{X_+}_{\text{компакт}} o \underbrace{Y}_{\text{хаусдорфово}}$ - непрерывная биекция $\Rightarrow f$ - гомеоморфизм. \square Пример 8.

12 Лекция 12. 15 января 2020 г.

12.1Эквивалентные нормы.

X - векторное пространство над \mathbb{K} ($\mathbb{K}=\mathbb{R}, \mathbb{C}$). Пусть $||\cdot||', ||\cdot||''$ - две нормы на X, τ', τ'' соответственно топологии, порожденные нормами на X.

Определение. Норма $||\cdot||'$ мажорируется нормой $||\cdot||''$ ($||\cdot||' \prec ||\cdot||''$), если $\tau' \subset \tau''$.

Определение. нормы *эквивалентны* ($||\cdot||' \sim ||\cdot||''$), если $\tau' = \tau''$.

Предложение 1. Следующие утверждения эквивалентны:

- $(1) ||\cdot||' \prec ||\cdot||''$
- (2) $\lim_{n \to \infty} x_n = x \Rightarrow \lim_{n \to \infty} x_n = x,$ (3) $\exists c > 0 : \forall x \in X ||x||' \leqslant c||x||''.$

Доказательство:

 $(1)\Leftrightarrow (2)$: $(1)\Leftrightarrow$ отображение $I:(X,\tau'')\to (X,\tau'),\ x\mapsto x$ непрерывно \Leftrightarrow (так как метрическое пространство) оно секвенциально непрерывно \Leftrightarrow (2).

 $(3) \Rightarrow (2) \colon \Pi \text{ усть } x_n \to x \text{ в } \tau'', \text{ то есть } ||x - x_n||'' \to 0, \ ||x - x_n||' \leqslant c||x - x_n||'' \ \Rightarrow \ ||x - x_n||', \text{ то есть } x_n \to x \text{ в } \tau'.$

то есть $||y_n||'' \to 0 \Leftrightarrow y_n \to 0$ в τ'' . $||y_n||' = \frac{||x_n||'}{n||x_n||''} > \frac{n^2||x_n||''}{n||x_n||''} = n$, то есть $y_n \to 0$ \square $Cnedemeue: ||\cdot||' \sim ||\cdot||'' \Leftrightarrow \exists c, \ C > 0: \ \forall \ x \in Xc||x||' \leqslant ||x||'' \leqslant C||x||'$.

Теорема

На конечномерном векторном пространстве любые две нормы эквивалентны.

Доказательство:

Пусть $||\cdot||$ - какая-либо норма на \mathbb{K}^n . Покажем, что $||\cdot|| \sim ||\cdot||_2$:

$$\forall x = (x_1, \ldots, x_n) \in X = \mathbb{K}^n ||x|| = ||\sum_{i=1}^n x_i e_i||, \text{ где } e_i = (\underbrace{0, \ldots, 1}_i, 0, \ldots, 0). ||\sum_{i=1}^n x_i e_i|| \leqslant \sum_{i=1}^n |x_i| ||e_i|| \leqslant (\text{по})$$

неравенству Коши-Буняковского) $\sqrt{\sum_{i=1}^n |x_i|^2} \sqrt{\sum_{i=1}^n ||e_i||^2} = C||x||_2 \Rightarrow ||\cdot|| \prec ||\cdot||_2.$

Теперь покажем, что $f: X \to \mathbb{R}_{\geqslant 0}$, $x \mapsto ||x||$ непрерывна на $(X, ||\cdot||_2)$: Действительно, $|f(x) - f(y)| = |||x|| - ||y||| \leqslant ||x - y|| \leqslant C||x - y||_2$, отсюда следует, что $X_n \to x$ ($||\cdot||_2$) влечет $f(x_n) \to f(x) \Rightarrow f$ секвенциально непрерывна на $(X, ||\cdot||_2)$.

Для $S^{n-1} \subset \mathbb{R}^n$ существует $\min_{x \in S} f(x) = a > 0$, так как S^{n-1} компакт, а f - непрерывна. Теперь $\forall x \neq 0$ рассмотрим $y = \frac{x}{||x||_2}. \ y \in S \ \Rightarrow f(y) = \frac{||x||}{||x||_2} \geqslant a \ \Rightarrow \ a||x||_2 \leqslant ||x|| \leqslant C||x||_2.$

Теорема: (Эквивалентна предыдущей)

Любая норма на \mathbb{K}^n порождает топологию произведения.

 \mathcal{A} оказательство: $||\cdot||_{\infty}$ порождает топологию произведения. \square

12.2 Факторпространства.

Пусть даны множество X, отношение эквивалентности \sim , $\forall x \in X \ [x]$ - класс эквивалентности элемента x.

Определение. Фактормножество (фактор множества) X по \sim - это множество $X/_{\sim} = \{[x] \mid x \in X\}$ смежных классов. $q: X \to X \to x/_q, \ x \mapsto [x]$ - отображение факторизации.

Определение. Фактортопология на факторе $X/_{\sim}$ - это финальная топология τ_q , порожденная отображением факторизации, то есть $U \in \tau_q \Leftrightarrow q^{-1}(U)$ открыто в X. $(X/_{\sim}, \tau_q)$ - факторпостранство пространства X по разбиению (отношению эквивалентности) \sim .

Теорема

- (1) τ_q самая тонкая топология на $X/_{\sim}$, в котором q непрерывно,
- (2) Пусть Y топологическое пространство, тогда $g: X/_{\sim} \to Y$ непрерывно $\Leftrightarrow g \circ q: X \to Y$ нерперывно.

Доказательство: по свойствам финальной топологии.

Теорема: (Универсальное свойство факторпространств)

Пусть Y - топологическое пространство, $f: X \to Y$ - непрерывное отображение, постоянное на классах: $f([x]) = \{f(x)\}$, тогда $\exists !$ непрерывное отображение $\tilde{f}: X/_{\sim} \to Y$, которое делает диаграмму коммутативной.

Доказательство:

 $\forall \ U \in x/_{\sim}$ выберем $x \in U$ и положим $\tilde{f}(U) = f(x)$. Это дает однозначное задание функции \tilde{f} , так как f постоянна на каждом элементе класса, так что \tilde{f} корректно определена и делает диаграмму коммутативной, иное отображение не делает. По предыдущей теореме она непрерывна. \square

Теорема

Пусть выполнены условия предыдущей теоремы, тогда:

- (1) \tilde{f} сюръекция $\iff f$ сюръекция,
- (2) \tilde{f} инъекция $\iff \forall x, y \in X \quad f(x) = f(y) \Leftrightarrow x \sim y$,
- (3) Пусть (1) и (2) выполнены, X компактно, Y хаусдорфово, тогда \tilde{f} гомеоморфизм.

Доказательство:

- (1): $\tilde{f}(X/_{\sim}) = \tilde{f}(q(X)) = f(X)$.
- $(2): \ \tilde{f} \text{ инъекция} \Longleftrightarrow \forall \ U, \ V \in X/_{\sim} \quad \tilde{f}(U) = \tilde{f}(V) \ \Leftrightarrow \ U = V \Longleftrightarrow \ \forall \ x, \ y \in X \quad \tilde{f}(q(x)) = \tilde{f}(q(y)) \ \Leftrightarrow \ q(x) = q(y), \ \text{что и означает эквивалентность } x \sim y.$
- (3): X компактно $\Rightarrow X/_{\sim} = q(X)$ компактно, из (1), (2): \tilde{f} непрерывная биекция из компакта в хаусдорфово. \square

Пример 1. Введем отношение эквивалентности на отрезке $[0,\ 1]$: $0 \sim 1, x \sim x$, тогда $[0,\ 1]/_{\sim} \cong S^1$

 \mathcal{A} оказательство: $f(t)=e^{2\pi it}$ - непрерывная сюрьекция. \square

Пример 2. Введем отношение эквивалентности на квадрате $[0, 1] \times [0, 1], (t, 0) \sim (t, 1), (0, t) \sim (1, t),$ а остальные классы - одноэлементные. тогда $[0, 1] \times [0, 1] / [0, 1] \times [0, 1] \cong T^2$.

Доказательство: $f(s,t)=(e^{2\pi is},e^{2\pi it})$. \square

Пример 3. Введем отношение эквивалентности на \mathbb{R} : $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$. Обозначим $\mathbb{R}/\mathbb{Q} = \mathbb{R}/_{\sim}$, тогда топология на \mathbb{R}/\mathbb{Q} антидискретна.

Доказательство: $U \subset \mathbb{R}/\mathbb{Q}$ - открытое непустое множество, тогда $q^{-1}(U) \subset \mathbb{R}$ открыто, непусто и инвариантноотносительно прибавления рационального числа: $\forall \ x \in q^{-1}(U) \ \forall \ v \in \mathbb{Q} \ \ x + v \in q^{-1}(U)$, то есть оно открыто и содержит плотное множество $x + \mathbb{Q}$, а значит каждую точку этого множества осдержит вместе со своей окрестностью, значит совпадает со всей прямой \mathbb{R} . \square

13 Лекция 13. 22 января 2020 г.

13.1 Частные случаи факторпространтв. Стягивание.

X - топологическое пространство, $A\subset X$. Введем отношение эквивалентности: $x\sim y\Leftrightarrow x=y$ или $x,y\in A$. Обозначение: $X/_A=X/_\sim$.

Определение. Говорят, что $X/_A$ получено из X *стягиванием* A в точку.

Пример 1. $[0, 1]/_{\{0, 1\}} \cong S^1$

Лемма. Пусть Y - хаусдорфово топологическое пространство, $X \subset Y$ - открытое множество. Тогда $f: Y \to X_+$,

$$f(x) = \begin{cases} x, & x \in X \\ \infty, & x \notin X \end{cases}$$
 - непрерывно.

Пусть $U \subset X_+$ - открыто. далее возможны 2 случая: $\infty \notin U(*)$ и $U \ni \infty(**)$.

(*): тогда по определению τ_+ $U\subset X$ и U открыто в X, $f^{-1}(U)=U$ - открыто.

(**): Тогда $K=X_+\backslash U$ - компактно, замкнуто, $K\subset Y$, но Y хаусдорфово, значит K - замкнут в Y и $f^{-1}(U)=$ $Y \backslash f^{-1}(K) = Y \backslash K$ - открыто, то есть отображение f непрерывно. \square

Пример 2. $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}, \ \overline{D} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leqslant 1\}, \ S^1 = \partial \overline{D}.$ Покажем, что $\overline{D}/S^1 \cong S^2$. Действительно, $D\cong\mathbb{R}^2 \ \Rightarrow \ D_+\cong\mathbb{R}^2_+\cong S^2$. Зафиксируем гомеоморфизм $\phi:\ D_+\to S^2$

Обозначим $g=\phi\circ f:\;\overline{D}\to S^2,\; \tilde{g}$ - биекция и нерперывна, S^2 - хаусдорфово, \overline{D} - компактно, значит \tilde{g} - гомеоморфизм.