DPM Design Group 11:

ECSE-211: Design Principles & Methods

Design Project

Alex Durham Ethan Ian John

Tasks Completed:

February 25 - March 10

Functionality: Localization, Odometry, Navigation

Hardware Designs (3x) + One Design Built

Software Architecture Design

Testing Document + Procedures

Strategic Planning (Ball Retrieval, Throwing, Defense)

Recent Tasks:

Task:	Gantt Due Date:	Completed?	Incomplete?	On Schedule?
Mechanical Design	3/16/17		X	Yes
Software Hierarchy	3/6/17	X		Yes
Preliminary API	3/13/17		Х	Yes
Testing Document	3/5/17	X		Yes
Wifi/Localization Software	3/5/17	X		Yes
Odometry/Navigation Software	3/9/17	Х		Yes
Obstacle Avoidance Software	3/9/17		X	No
Mobile Robot Hardware	3/5/17	X		Yes
Ball Retrieval Hardware*	3/11/17		X	No

Gantt Chart V2.0

Budget Update:

Team Member:		Reading Week (Overtime)	Week 2	Week 3	Week 4	Week 5	Total:
Alex	7	5	3				15
Durham	8	2	4				14
Ethan	2	4	7				13
lan	5	4	3				12
John	8	6	2				16
						Team Total:	70

- Currently under budget: 26% of budget consumed approx. 40% through the project
 - Saves budget for testing
 - Saves budget for closer to competition date:
 - Updates
 - Revisions
 - Final Documentation

Next up we'll discuss some Mechanical Design mock-ups!

Pros:

- Compact Design
- 2 Color sensors for odometry correction
- Low center of gravity (for stability when launching ball)
- Optimal ultrasonic sensor placement

Cons:

- One Ultrasonic sensor relies on a motor
- One Ultrasonic sensor is vertical therefore sees a smaller range of obstacles

• Pros:

- All ultrasonics are static
- Compact design
- Optimal ultrasonic sensor placement

• Cons:

 Only one color sensor for odometry correction

• Pros:

Two color sensors for odometry correction

• Cons:

- Ultrasonic sensors placed too far in front of robot
- US sensors off center
- o Non-compact design
- Not stable for ball launching

Figure 1: Use Case Diagram

What We Learned: Lab 5

STABILITY of robot base is *essential* to throw accurately

SIMPLISTIC THROWING
MECHANISMS work better than
complex ones (easier to control)

<u>Challenge:</u> Throw further with a simple mechanism and without tipping

Next Week

QUESTIONS

