Für den Anntelder

95

Unser Zeichen: 7865

Epothilonderivate und deren Verwendung

Die vorliegende Erfindung betrifft allgemein Epothilonderivate und deren Verwendung zur Herstellung von Arzneimitteln. Insbesondere betrifft die vorliegende Erfindung die Herstellung der Epothilonderivate der nachfolgend dargestellten allgemeinen Formeln 1 bis 7 sowie deren Verwendung zur Herstellung von therapeutischen Mitteln und Mitteln für den Pflanzenschutz.

$$\begin{array}{c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

In den vorstehenden Formeln 1 bis 7 bedeuten:

R = H, C1- bis C4-Alkyl;

R1, R2, R3, R4, R5 = H, C1- bis C6-Alkyl,

C1- bis C6-Acyl-Benzoyl,

C1- bis C4-Trialkylsilyl,

Benzyl,

Phenyl,

C1- bis C6-Alkoxy-,

C6-Alkyl-, Hydroxy- und Halogen
substituiertes Benzyl bzw. Phenyl;

wobei auch zwei der Reste R¹ bis R⁵ zu der Gruppierung $-(CH_2)_n$ - mit n = 1 bis 6 zusammentreten können und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt.

In der Formel 1 sind X und Y entweder gleich oder verschieden und stehen jeweils für Halogen, OH, O-(C₁- bis C₆)-Acyl, O-(C₁- bis C₆)-Alkyl, O-Benzoyl.

In der Formel 3 steht X allgemein für -C(0)-, -C(S)-, -S(0)-, $-CR^1R^2$ -, wobei R^1 und R^2 die Bedeutung haben wie oben angegeben, und $-SiR_2$, wobei R die Bedeutung hat wie oben angegeben.

In der Formel 4 bedeutet X Sauerstoff, NOR³, N-NR⁴R⁵, und N-NHCONR⁴R⁵, wobei die Reste R³ bis R⁵ die oben angegebene Bedeutung haben.

In der Formel 5 bedeutet X Wasserstoff, C₁- bis C₁₈-Alkyl, C₁- bis C₁₈-Acyl, Benzyl, Benzoyl und Cinnamoyl.

Verbindungen gemäß der allgemeinen Formel 1 sind ausgehend von Epothilon A und B sowie von deren 3-O- und/oder 7-O- geschützten Derivaten durch Öffnung des 12,13-Epoxids zugänglich. Werden dazu Hydrogenwasserstoffsäuren in einem bevorzugt nicht wässrigen Lösungsmittel eingesetzt, wobei man

die Halogenhydrine X = Hal, Y = OH und Y = OH, Y = Hal erhält. Protonensäuren wie z.B. Toluolsulfonsäure und Trifluoressigsäure führen in Gegenwart von Wasser zu 12,13-Diolen, die anschließend nach Standardverfahren acyliert (z.B. mit Carbonsäureanhydriden und Pyridin oder Triethylamin/DMAP) oder alkyliert (Alkylhalogenide und Silberoxid) werden. Die 3- und 7-Hydroxygruppen können dazu vorübergehend als Formiat (Abspaltung mit NH3/MeOH) oder p-Methoxybenzylether (Abspaltung mit DDQ) geschützt werden.

Verbindungen gemäß der allgemeinen Formel 2 sind aus Epothilon A und B sowie deren 3-O- und/oder 7-O-geschützten Derivaten durch Reduktion, z.B. mit NaBH4 in Methanol erhältlich. Sind dabei 3-OH und/oder 7-OH reversibel geschützt, so können nach Acylierung oder Alkylierung und Entfernen der Schutzgruppen 5-O-monosubstituierte, 3,5- oder 5,7-O-disubstituierte Derivate der allgemeinen Formel 2 erhalten werden.

Umsetzungen von Epothilon A und B mit bifunktionellen elektrophilen Reagenzien, wie (Thio)Phosgen, (Thio)Carbonyldimidazol, Thionylchlorid oder Dialkylsilyldichloriden bzw. -bistriflaten ergeben Verbindungen der allgemeinen Formel 3. Als Hilfsbasen dienen dabei Pyridin, Trialkylamine, ggf. zusammen mit DMAP bzw. 2,6-Lutidin in einem nichtprotischen Lösungsmittel. Die 3,7-Acetale der allgemeinen Formel 3 entstehen durch Umacetalisierung z.B. von Dimethylacetalen in Gegenwart eines sauren Katalysators.

Verbindungen gemäß der allgemeinen Formel 4 werden aus Epothilon A und B oder ihren 3-O- und/oder 7-O-geschützten Derivaten durch Ozonolyse und reduktive Aufarbeitung, z.B. mit Dimethylsulfid, erhalten. Die C-16-Ketone können anschließend nach dem Fachmann geläufigen Standardverfahren in Oxime, Hydrazone oder Semicarbazone umgewandelt werden. Sie werden weiterhin durch Wittig-, Wittig-Horner-, Julia-oder Petersen-Olefinierung in C-16/C-17-Olefine überführt.

Durch Reduktion der C-16-Ketogruppe, z.B. mit einem Aluminium- oder Borhydrid, sind die 16-Hydroxyderivate gemäß der allgemeinen Formel 5 erhältlich. Diese können, wenn 3-OH und 7-OH mit entsprechenden Schutzgruppen versehen sind, selektiv acyliert oder alkyliert werden. Die Freisetzung der 3-OH- und 7-OH-Gruppen erfolgt z.B. bei O-Formyl durch NH₃/MeOH, bei O-p-Methoxybenzyl durch DDQ.

Die Verbindungen der allgemeinen Formel 6 werden aus Derivaten von Epothilon A und B erhalten, bei denen die 7-OH-Gruppe durch Acyl- oder Ethergruppen geschützt ist, in dem die 3-OH-Gruppe z.B. formyliert, mesyliert oder tosyliert und anschließend durch Behandlung mit einer Base z.B. DBU eliminiert wird. Die 7-OH-Gruppe kann wie oben beschrieben freigesetzt werden.

Verbindungen der allgemeinen Formel 7 werden aus Epothilon A und B oder deren 3-OH- und 7-OH-geschützten Derivaten durch basische Hydrolyse erhalten, z.B. mit NaOH in MeOH. Die Carboxylgruppe kann mit Diazoalkanen nach Schutz der 19-OH-Gruppe durch Alkylierung in Ester umgewandelt werden.

Die Erfindung betrifft ferner Mittel für den Pflanzenschutz in Landwirtschaft, Forstwirtschaft und/oder Gartenbau, bestehend aus einer oder mehreren der vorstehend aufgeführten Epothilonderivate bzw. bestehend aus einem oder mehreren der vorstehend aufgeführten Epothilonderivate neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n).

Schließlich betrifft die Erfindung therapeutische Mittel, bestehend aus einer oder mehreren der vorstehend aufgeführten Verbindungen oder einer oder mehreren der vorstehend aufgeführten Verbindungen neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n). Diese Mittel können insbesondere cytotoxische Aktivitäten entwickeln und/oder Immunsuppression bewirken, so daß sie besonders bevorzugt als Cytostatika verwendbar sind.

Die Erfindung wird im folgenden durch die Beschreibung von einigen ausgewählten Ausführungsbeispielen näher erläutert und beschrieben.

Beispiele

Verbindung 1a:

20 mg (0.041 mmol) Epothilon A werden in 1 ml Aceton gelöst, mit 50 μ l (0.649 mmol) Trifluoressigsäure versetzt und über Nacht bei 50 °C gerührt. Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natrium-sulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schicht-chromatographie (Laufmittel: Dichlormethan/Aceton, 85: 15). Ausbeute: 4 mg (19 %) Isomer I

4 mg (19 %) Isomer II

Isomer I

R_f (Dichlormethan/Aceton, 85 : 15): 0.46

IR (Film): \emptyset = 3440 (m, b, Sch), 2946 (s, Sch), 1734 (vs), 1686 (m), 1456 (m), 1375 (w), 1256 (s, Sch), 1190 (w, b, Sch), 1071 (m, Sch), 884 (w), 735 (w) cm⁻¹.

MS (20/70 eV): m/e (%) = 493 (43 [M-H₂O]⁺), 394 (47), 306 (32), 206 (30), 181 (40), 166 (72), 139 (100), 113 (19), 71 (19), 57 (24), 43 (24).

<u>Hochauflösung:</u> C₂₆H₃₉O₆NS ber.: 493.2498 für [M-H₂O]* gef.: 493.2478

Isomer II

R_c (Dichlormethan/Aceton, 85 : 15): 0.22

IR (Film): $\bar{v} = 3484$ (s, b, Sch), 2942 (vs, Sch), 1727 (vs), 1570 (w), 1456 (m), 1380 (m), 1265 (s), 1190 (w), 1069 (m), 975 (w), cm⁻¹.

MS (20/70 eV): m/e (%) = 493 (21 [M-H₂O]*), 394 (12), 306 (46), 206 (37), 181 (63), 166 (99), 139 (100), 113 (21), 71 (23), 57 (33), 43 (28).

<u>Hochauflösung:</u> C₂₆H₃₉O₆NS ber.: 493.2498 für [M-H₂O]* gef.: 493.2475

Verbindung 1b:

55 mg (0.111 mmol) Epothilon A werden in 0.5 ml
Tetrahydrofuran gelöst, mit 0.5 ml 1 N Salzsäure versetzt und
30 Minuten bei Raumtemperatur gerührt. Anschließend wird mit 1
N Phos-phatpuffer pH 7 versetzt und die wäßrige Phase viermal
mit Ethylacetat extrahiert. Die vereinigten organischen Phasen
werden mit gesättigter Natriumchlorid-Lösung gewaschen, über
Natriumsulfat getrocknet und vom Lösungsmittel befreit.
Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Methanol, 90 : 10). Ausbeute: 19 mg (32 %)

 $\frac{R_{f} \text{ (Dichlormethan/Methanol, 90 : 10):}}{IR \text{ (Film):}} \quad \forall = 3441 \text{ (s, br, Sch), 2948 (s, Sch), 1725}}{(vs, Sch), 1462 (m), 1381 (w), 1265 (m), 1154 (w), 972 (m, br, Sch) cm⁻¹.}$

<u>UV (Methanol):</u> λ_{max} (lg ϵ) = 210 (4.29), 248 (4.11) nm.

MS (20/70 eV): m/e (%) = 529 (13 [M⁺]), 494 (10), 342 (38), 306 (23), 194 (32), 164 (100), 140 (31), 113 (15), 57 (16).

Hochauflösung: C₂₆H₄₀O₆ClNS ber.: 529.2265 für [M⁺],

gef.: 529.2280

Verbindung 1c:

25 mg (0.047 mmol) 12-Chlor-13-hydroxy-epothilon A (1b) werden in 1 ml Dichlormethan gelöst, mit 29 mg (0.235 mmol) Dimethylaminopyridin, 151 µl (1.081 mmol) Triethylamin und 20 µl (0.517 mmol) 98 %-iger Ameisensäure versetzt. Das Reaktionsgemisch wird mit Eis/Natriumchlorid abgekühlt. Nach Erreichen von - 15 °C werden dem Reaktionsgemisch 40 µl (0.423 mmol) Essigsäureanhydrid zugegeben und 70 Minuten bei - 15 °C gerührt. Nach dem ein Dünnschichtchromatogramm keinen vollständigen Umsatz anzeigt, werden dem Reaktionsgemisch weitere 6 mg (0.047 mmol) Di-methylaminopyridin, 7 µl (0.047 mmol) Triethylamin, 2 µl 98 %-ige Ameisensäure (0.047 mmol) und 4 µl (0.047 mmol) Essigsäureanhydrid zugesetzt und 60 Minuten gerührt.

Zur Aufarbeitung wird das Reaktionsgemisch auf Raumtemperatur erwärmt, mit 1 M Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit.

Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Aceton, 90 : 10).

<u>Ausbeute 1c:</u> 5 mg (18 %)

Verbindung 1c:

MS (20/70 eV): m/e (%) = 613 (9 [M⁺]), 567 (43), 472 (63), 382 (23), 352 (21), 164 (100),

151 (33), 96 (31), 69 (17), 44 (26).

Hochauflösung: C₂₉H₄₀O₉NSCl ber.: 613.2112 für [M^{*}]

gef.: 613.2131

Verbindung 1d:

10 mg (0.020 mmol) Epothilon B werden in 0.5 ml Tetrahydrofuran gelöst, mit 0.5 ml 1 N Salzsäure versetzt und 30 Minuten bei Raumtemperatur gerührt. Anschließend wird mit 1 M Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schicht-chromatographie (Laufmittel: Dichlormethan/Aceton, 85 : 15).

Ausbeute: 1 mg (9 %)

 $\frac{R_{f} \text{ (Dichlormethan/Aceton, 85 : 15):}}{MS \text{ (20/70 eV):}} \quad \text{m/e (%) = } \quad 543 \text{ (3 [M^+]), 507 (14), 320 (19),} \\ & 234 \text{ (9), 194 (17), 182 (23), 164} \\ & (100), 140 \text{ (22), 113 (14), 71} \\ & (13).$

<u>Hochauflösung:</u> C₂₇H₄₂O₆NSCl ber.: 543.2421 für [M⁺]

gef.: 543.2405

Verbindung 2a:

100 mg (0.203 mmol) Epothilon A werden in 4 ml Tetrahydro-furan/1 M Phosphatpuffer pH 7 (1 : 1) gelöst und solange mit Natrium-borhydrid (150 mg = 3.965 mmol) versetzt bis das Edukt laut Dünn-schichtchromatogramm vollständig abreagiert ist. Anschließend wird mit 1 M Phosphatpuffer pH 7 verdünnt und die

wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit.

Die Reinigung des Rohproduktes erfolgt durch Kieselchromatographie (Laufmittel: Dichlormethan/Aceton, 95 : 5 - grad - nach Dichlormethan/Aceton, 85 : 15).

Ausbeute: (20 %)

 R_f (Dichlormethan/Aceton, 75 : 25): 0.27

IR (Film): $\tilde{v} = 3413$ (s, b, Sch), 2965 (vs, Sch), 1734 (vs), 1458 (m, b, Sch), 1383 (m, Sch), 1264 (s, b, Sch), 1184 (m, b, Sch), 1059 (s, Sch), 966 (s), 885 (w), 737 (m) cm⁻¹

MS (20/70 eV): m/e (%) = 495 (6 [M⁺]), 477 (8), 452 (12), 394 (9), 364 (16), 306 (49), 194 (19), 178 (35), 164 (100), 140 (40), 83 (21), 55 (27).

<u>Hochauflösung:</u> C₂₆H₄₁O₆NS ber.: 495.2655 für [M⁺] gef.: 495.2623

Verbindung 3a-d (a-d sind Stereoisomere):

100 mg (0.203 mmol) Epothilon werden in 3 ml Pyridin gelöst, mit 50 μl (0.686 mmol) Thionylchlorid versetzt und 15 Minuten bei Raumtemperatur gerührt. Anschließend wird mit 1 M Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes und Trennung der vier Stereoisomeren 3a-d erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Toluol/Methanol, 90 : 10).

Verbindung 3a:

<u>Ausbeute:</u> 4 mg (12 %)

 $\frac{R_{f} \text{ (Toluol/Methanol, 90 : 10):}}{IR \text{ (Film):}} \quad \tilde{v} = 2961 \text{ (m, b, Sch), 1742 (vs), 1701 (vs),}}{1465 \text{ (m, Sch), 1389 (m, Sch), 1238 (s, Sch), 1210 (vs, Sch), 1011 (s, Sch), 957 (s, b, Sch), 808 (m, Sch), 768 (s, Sch) cm⁻¹}$

<u>UV (Methanol):</u> λ_{max} (lg ϵ) = 210 (4.50), 248 (4.35) nm.

MS (20/70 eV): m/e (%) = 539 (40 [M⁺]), 457 (22), 362 (16), 316 (27), 222 (30), 178 (30), 164 (100), 151 (43), 96 (38), 69 (29), 55 (28), 43 (20).

Hochauflösung: C₂₆H₃₇O₇NS₂ ber.: 539.2011 für [M⁺]

Verbindung 3b:

<u>Ausbeute:</u> 14 mg (13 %)

 R_f (Toluol/Methanol, 90 : 10): 0.44

<u>UV (Methanol):</u> λ_{max} (lg ϵ) = 211 (4.16), 250 (4.08) nm.

MS (20/70 eV): m/e (%) = 539 (27 [M⁺]), 475 (17), 322 (41), 306 (67), 222 (16), 206 (17), 194 (19), 178 (32), 164 (100), 151 (33), 125 (18), 113 (15), 96 (39), 81 (23), 64 (58), 57 (42), 41 (19).

Hochauflösung: $C_{26}H_{37}O_7NS_2$ ber.: 539.2011 für [M⁺] gef.: 539.1998

Verbindung 3c:

Ausbeute: 4 mg (4 %)

 R_{ϵ} (Toluol/Methanol, 90 : 10): 0.38

 $MS (20/70 \text{ eV}): \text{ m/e (%)} = 539 (51 [M^{+}]), 322 (22), 306 (53),$

222 (36), 178 (31), 164 (100), 151 (41), 96

(25), 81 (20), 69 (26), 55 (25), 41 (25).

Hochauflösung: C₂₆H₃₇O₇NS₂ ber.: 539.2011 für [M⁺]

gef.: 539.2001

Verbindung 3d:

Ausbeute: 1 mg (1 %)

R_f (Toluol/Methanol, 90 : 10): 0.33

 $MS (20/70 \text{ eV}): \text{m/e} (\%) = 539 (69 [M^*]), 322 (35), 306 (51),$

222 (41), 178 (31), 164 (100), 151

(46), 96 (31), 81 (26), 69 (34),

55 (33), 41 (35).

Hochauflösung: C₂₆H₃₇O₇NS₂ ber.: 539.2011 für [M⁺]

gef.: 539.1997

Verbindung 4a:

10 mg (0.020 mmol) Epothilon A werden in 2 ml Dichlormethan gelöst, auf -70 °C abgekühlt und anschließend 5 Minuten mit Ozon bis zur schwachen Blaufärbung behandelt. Das resultierende Reaktionsgemisch wird anschließend mit 0.5 ml Dimethylsulfid versetzt und auf Raumtemperatur erwärmt. Zur Aufarbeitung wird das Reaktionsgemisch vom Lösungsmittel befreit und schließlich durch präparative Schichtchromatographie (Laufmittel: Dichlormethan/Aceton/Methanol, 85 : 10 : 5) gereinigt.

Ausbeute: 5 mg (64 %)

 $\frac{R_{\rm f} \ ({\rm Dichlormethan/Aceton/Methanol}, \ 85 : 10 : 5):0.61}{{\rm IR} \ ({\rm Film}):} \qquad \forall = 3468 \ ({\rm s, \ br, \ Sch}) \,, \ 2947 \ ({\rm s, \ br, \ Sch}) \,, \\ 1734 \ ({\rm vs, \ Sch}) \,, \ 1458 \ ({\rm w}) \,, \ 1380 \ ({\rm w}) \,, \ 1267 \,, \\ ({\rm w}) \,, \ 1157 \ ({\rm w}) \,, \ 1080 \ ({\rm w}) \,, \ 982 \ ({\rm w}) \ {\rm cm}^{-1} \,.$

<u>UV (Methanol):</u> λ_{max} (lg ϵ) = 202 (3.53) nm.

MS (20/70 eV): m/e (%) = 398 (2 [M⁺]), 380 (4), 267 (14), 249 (17), 211 (20), 193 (26), 171

(34), 139 (34), 111 (40), 96

(100), 71 (48), 43 (50).

Hochauflösung: C₂₁H₃₄O₇ ber.: 398.2305 für [M⁺]

gef.: 398.2295

Verbindung 6a:

10 mg (0.018 mmol) 3,7-Di-O-formyl-epothilon A werden in 1 ml Di-chlormethan gelöst, mit 27 µl (0.180 mmol) 1,8-Diazabicy-clo[5.4.0]undec-7-en (DBU) versetzt und 60 Minuten bei Raumtemperatur gerührt.

Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Natriumdihydrogenphosphat-Puffer pH 4.5 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit.

Nach Beseitigung des Lösungsmittel wird das resultierende Rohprodukt in 1 ml Methanol gelöst, mit 200 μ l einer ammoniakalischen Methanollösung (2 mmol NH $_3$ /ml Methanol) versetzt und über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt.

Ausbeute: 4 mg (22 %)

R_f (Dichlormethan/Aceton, 85 : 15): 0.46

<u>IR (Film):</u> V = 3445 (w, br, Sch), 2950 (vs, br, Sch),

1717 (vs, Sch), 1644 (w), 1466 (m, Sch),

1370 (m, Sch), 1267 (s, br, Sch), 1179

(s, Sch), 984 (s, Sch), 860 (w), 733 (m)

 cm^{-1} .

<u>UV (Methanol):</u> λ_{max} (lg ϵ) = 210 (4.16) nm.

MS (20/70 eV): m/e (%) = 475 (28 [M⁺]), 380 (21), 322 (37), 318 (40), 304 (66), 178 (31), 166-(100), 151 (29), 140 (19), 96 (38), 81 (20), 57 (26).

<u>Hochauflösung:</u> $C_{26}H_{37}O_5NS$ ber.: 475.2392 für [M⁺]

gef.: 475.2384

Verbindung 6b:

50 mg (0.091 mmol) 3,7-Di-O-formyl-epothilon A (werden in 1 ml Dichlorethan gelöst, mit 2 ml (0.013 mol) 1,8-Diazabicyclo [5.4.0]undec-7-en (DBU) versetzt und 12 Stunden bei 90 °C gerührt.

Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Natriumdihydrogenphosphat-Puffer pH 4.5 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit.

Die Reinigung des aus zwei Verbindungen bestehenden Rohproduktes erfolgt mittels präparativer Schichtchromatographie (Laufmittel: Dichlormethan/Aceton, 90 : 10).

<u>Ausbeute:</u> 7 mg (15 %)

Substanzcode

R_f (Dichlormethan/Aceton, 90 : 10): 0.62

<u>UV (Methanol):</u> λ_{max} (lg ϵ) = 210 (4.44) nm.

55 (26), 43 (22).

Hochauflösung: C₂₇H₃₇O₆NS ber.: 503.2342 für [M⁺]

gef.: 503.2303

Verbindung 6c:

5 mg (0.009 mmol) 3,7-Di-O-acetyl-epothilon werden in 1 ml Methanol gelöst, mit 150 μ l einer ammoniakalischen Methanollösung (2 mmol NH $_3$ /ml Methanol) versetzt und über Nacht bei 50 °C ge-rührt.

Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Toluol/Methanol, 90 : 10).

<u>Ausbeute:</u> 3 mg (67 %)

R_f (Dichlormethan/Aceton, 90 : 10): 0.55

IR (Film): \forall = 2934 (s, b, Sch), 1719 (vs, b, Sch), 1641 (m), 1460 (m, Sch), 1372 (s, Sch), 1237 (vs, b, Sch), 1179 (s, Sch), 1020 (s), 963 (s, Sch), 737 (vs) cm⁻¹.

<u>UV (Methanol):</u> λ_{max} (lg ϵ) = 210 (4.33) nm.

MS (20/70 eV): m/e (%) = 517 (57 [M*]), 422 (58), 318 (31), 194 (20), 181 (34), 166 (100), 151 (31), 96 (96), 81 (32), 69 (27), 55 (29), 43 (69).

<u>Hochauflösung:</u> C₂₈H₃₉O₆NS ber.: 517.2498 für [M⁺] gef.: 517.2492

Verbindung 7a:

20 mg (0.041 mmol) Epothilon werden in 0.5 ml Methanol gelöst, mit 0.5 ml 1 N Natronlauge versetzt und 5 Minuten bei Raum-

temperatur gerührt.

Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M
Phosphatpuffer pH 7 versetzt und die wäßrige-Phase viermal mit
Ethylacetat ex-trahiert. Die vereinigten organischen Phasen
werden mit gesättigter Natriumchlorid-Lösung gewaschen, über
Natriumsulfat getrocknet und vom Lösungsmittel befreit.
Die Reinigung des Rohproduktes erfolgt mit Hilfe der
präparativen Schichtchromatographie (Laufmittel:
Dichlormethan/Methanol, 85 : 15).

<u>Ausbeute:</u> 11 mg (52 %)

R_f (Dichlormethan/Methanol, 85 : 15): 0.92

IR (Film): $\tilde{V} = 3438$ (s, br, Sch), 2971 (vs, br, Sch), 1703 (vs), 1507 (m), 1460 (s, Sch), 1383 (m, Sch), 1254 (w), 1190 (w, br, Sch), 1011 (w, br, Sch), 866 (w, br), 729 (s) cm⁻¹.

MS (20/70 eV): m/e (%) = 423 (0.1 [M⁺]), 323 (4), 168 (89), 140 (100), 85 (31), 57 (67).

<u>Hochauflösung:</u> $C_{23}H_{37}O_4NS$ ber.: 423.2443 für [M⁺] gef.: 423.2410

Verbindung 7b:

5 mg (0.009 mmol) 7-O-Acetyl-epothilon werden in 1 ml Methanol gelöst, mit 200 µl einer ammoniakalischen Methanollösung (2 mmol NH₃/ml Methanol) versetzt und zwei Tage bei 50 °C gerührt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Toluol/Methanol, 90 : 10).

<u>Ausbeute:</u> 3 mg (59 %)

R_f (Dichlormethan/Methanol, 90 : 10): 0.63

IR (Film): v = 3441 (m, b, Sch), 2946 (s, Sch), 1732(vs), 1600 (w), 1451 (m), 1375 (m), 1246

(s, b, Sch), 1013 (m, b, Sch) cm⁻¹.

<u>UV (Methanol):</u> λ_{max} (lg ϵ) = 211 (3.75), 247 (3.59) nm.

 $MS (20/70 \text{ eV}): \text{ m/e (%)} = 567 (1 [M^*]), 465 (4), 422 (7),$

388 (5), 194 (5), 182 (7), 168

(65), 164 (17), 140 (100), 97

(10), 71 (22), 43 (27).

<u>Hochauflösung:</u> $C_{29}H_{45}O_8NS$ ber.: 567.2866 für [M⁺]

gef.: 567.2849

Patentansprüche

1. Epothilonderivat der Formel 1

wobei R = H, C₁- bis C₄-Alkyl; R¹, R² = H, C₁- bis C₆-Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt, und X und Y entweder gleich oder verschieden sind und jeweils für Halogen, OH, O-(C₁- bis C₆)-Acyl, O-(C₁- bis C₆)-Alkyl, O-Benzoyl stehen.

2. Epothilonderivat der Formel 2

$$OR^3$$
 OR^2
 OR^3
 OR^2
 OR^3
 OR^2
 OR^3

wobei R = H, C₁- bis C₄-Alkyl; R¹, R², R³ = H, C₁- bis C₆- Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt.

3. Epothilonderivat der Formel 3

wobei R = H, C₁- bis C₄-Alkyl; R¹, R² = H, C₁- bis C₆-Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt, und X allgemein für -C(0)-, -C(S)-, -S(0)-, $-CR^1R^2$ - und $-SiR_2$ - steht, wobei R, R¹ und R² die Bedeutung hat wie oben angegeben.

4. Epothilonderivat der Formel 4

$$0 \\ R \\ 0 \\ 0 \\ R^{1}$$

wobei R = H, C₁- bis C₄-Alkyl; R¹, R² = H, C₁- bis C₆-Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt, X Sauerstoff, NOR³, N-NR⁴R⁵, und N-NHCONR⁴R⁵ bedeutet, wobei die Reste R³ bis R⁵ die oben angegebene Bedeutung haben.

5. Epothilonderivat der Formel 5

$$\begin{array}{c|c}
 & OR^2 \\
 & R & O \\
 & OR^1 & OR^2 \\
 & OR^1 & OR^2 & O$$

wobei R = H, C₁- bis C₄-Alkyl; R¹, R² = H, C₁- bis C₆-Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt, und X Wasserstoff, C₁- bis C₁₈-Alkyl, C₁- bis C₁₈-Acyl, Benzyl, Benzoyl und Cinnamoyl bedeutet.

6. Epothilonderivat der Formel 6

wobei R = H, C₁- bis C₄-Alkyl und R¹ = H, C₁- bis C₆-Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenylist, und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt.

7. Epothilonderivat der Formel 7

$$R^{10}$$
 R^{20}
 OR^{4}
 OR^{4}
 OR^{3}
 OR^{3}

wobei R = H, C₁- bis C₄-Alkyl und R¹, R² = H, C₁- bis C₆- Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt.

- 8. Mittel für den Pflanzenschutz in der Landwirtschaft und Forstwirtschaft und/oder im Gartenbau, bestehend aus einem oder mehreren der Verbindungen gemäß einem der vorangehenden Ansprüche oder einer oder mehreren dieser Verbindungen neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n).
- 9. Therapeutisches Mittel, insbesondere zum Einsatz als Cytostatikum, bestehend aus einer oder mehrerer der Verbindungen nach einem oder mehreren der Ansprüche 1 bis 7 oder einer oder mehrerer der Verbindungen nach einem oder mehreren der Ansprüche 1 bis 7 neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n).

Zusammenfassung

Die vorliegende Erfindung betrifft Epothilonderivate und deren Verwendung.

GERMAN PATENT OFFICE

(1)	Character of the Comma Party Office and	the Alexand are	
In the address, give street, house comber	Shipments of the German Patent Office are to be directed to: To: Dr. Hans D. Bocters Patent Attorney		Application for granting a patent
and, if applicable,			
F.O. box examper			
	Bereiteranger 15		File No. (taxed by the German
	81541 Munich		Patent Office)
			195 42 986.9
(2)	Belevene of the anothers		
(2)	Reference of the Applicant/ Representative (mus. 20 digits)	Telephone No. of the Applicant/ Representative	Date
	7865-GBF	089/65 00 86	Nov. 17, 1995
(3)		If applicable, No. of general power of attoracy	
	[] Applicant [] Power of Ammey	[x] Representative	
(4)	Applicant	Representative	
Fill out only when	Gesellschaft für Biotechnologische	Dr. Hans D. Boeters	
विविधासक प्राप्तक प्रेसी	Forschung mbH (GBF)	DinlIng. Robert Bauer	
ω	Mascheroder Weg 1	Dr. Enno Meyer	
	38124 Braunschweig	Bereiteranger 15	
		81541 Munich	
(6)			
(5)	Application code No.	Representative code No.	Delivery address code No.
	Description of the second	•	
ക്ര			
	Epothilone Derivatives and their use		
(7)	Other applications	-	File No. of the main Application
per emphasions and	[] The application is an addition to Pacent Applia	(of the main Peters)	
cost information on the reverse side	[] Application for examination - examination of the application (§ 44 Patent Law)		
CONTRACTOR CONTRA	() Application for search - determination of publi	libet document without experiments	
	(§ 43 of the Patent Law)		
	Supply of copies of the determined publications in / 2 copies [] Examination process () Research process		
	[] Defengent of the decision of graving to meaning		
	(§ 49 of Section 2 of the Patent Law) (Maximum 15 months from the date of		
	application or priority)		
(B)	Explanations File No. of the intest Application		
	[] Division/exclusion from the Parent Application -		
	[] Interested in granting licenses (without obligation)		
	() With prior lane open and thus agreement with free imperious of the documents		
	(§ 31, Section 2, No. 1 of the Patent Law)		
(9)	[] Domesic priority (date, file number of the pri	••	(in case of excessive length, submit as
•	[] Foreign priority (dete, country, file number of	f the prior application) }	a separace sheet in two capies)
(10)	(10) Payment of fees in the amount of 100.00 DM		
Explanation and cost	[] Check is attached [x] Transfer (after receipt [] Receipt Stamps are attached [] charge in my/mar account at		
information on the	र्धा क्षेत्रंटर व्य स्टब्स्	• • • • • • • • • • • • • • • • • • • •	Dreaker Bank AG, Munich
ारुव ाः अंतेः		revenue etde, possibily on	No.:
		a acpusate states)	
(11)		[] Tele	ax sent previously on
Attaclements 1-4,	1. Power of Anomey		
cards 3 capitos	2 mining the inventor		
	summary (optionally with drawings pages of specifications	·	
	5 optional reference number list		
	6. pages of Patent Chains		
	number of Peters Claims	•	
	7 pages of drawings		
	8 copy(ics) of prior application		
	9		
			(Dr. Meyer)
		(12)	

November 17, 1995/pl

Our reference: 7865

EPOTHILONE DERIVATIVES AND THEIR USE

The present invention concerns general epothilone derivatives and their use for the production of drugs. Especially, the present invention is concerned with the preparation of epothilone derivatives according to the general Formulas 1 to 7 given below, as well as with their use for the production of therapeutic agents and agents for plant protection.

DE 195 42 986.9

DE 195 42 986.9

In the above Formulas 1 to 7, the symbols have the following meanings:

```
R = H, C_{1-4}-alkyl;

R^1, R^2, R^3, R^4, R^5 = H, C_{1-6}-alkyl,

C_{1-6}-acyl-benzoyl,

C_{1-4}-trialkylsilyl,

benzyl,

phenyl,

C_{1-6}-alkoxy-,
```

 C_{6} -alkyl-, hydroxy and halogen-substituted benzyl or phenyl;

also, two of the groups R^1 to R^5 may be combined to form the grouping $-(CH_2)_n$ - with n=1 to 6 and the alkyl or acyl groups contained in the groups are either straight-chain or branched groups.

In Formula 1, X and Y are either identical or different and can stand for halogens, OH, O- (C_{1-6}) -acyl, O- (C_{1-6}) -alkyl, O-benzoyl.

In Formula 3, X generally stands for -C(O)-, -C(S)-, -S(O)-, $-CR^1R^2$ -, where R^1 and R^2 have the meaning given above and $-SiR_2$ -, where R has the meaning given above.

In Formula 4, X stands for oxygen, NOR³, N-NR⁴R⁵, and N-NHCONR⁴R⁵, where the groups R³ to R⁵ have the meaning given above.

In Formula 5, X stands for hydrogen, C₁₋₁₈-alkyl, C₁₋₁₈-acyl, benzyl, benzoyl and cinnamoyl.

Compounds according to general Formula 1 are accessible starting from epothilone A and B, as well as from their 3-O- and/or 7-O-protected derivatives by opening the 12,13-epoxide. When hydrogen halides are used for this purpose in a preferred nonaqueous solvent, the halohydrins X = Hal, Y = OH and Y = OH, Y = Hal are obtained. Protonic acids, for example, toluenesulfonic acid and trifluoroacetic acid, lead to 12,13-diols in the presence of water and then these are acylated subsequently according to standard methods (for example, with carboxylic acid anhydrides and pyridine or triethylamine/DMAP) or are alkylated (alkyl

halides and silver oxide). For this purpose, the 3- and 7-hydroxy groups can be protected temporarily as the formate (cleaved with NH₂/MeOH) or p-methoxybenzyl ether (cleaved with DDQ).

Compounds according to general Formula 2 are obtainable from epothilone A and B as well as from their 3-O- and/or 7-O-protected derivatives by reduction, for example, with NaBH, in methanol. If the 3-OH and/or 7-OH groups are protected reversibly during this process, after acylation or alkylation, and removal of the protecting groups, 5-O-monosubstituted, 3,5- or 5,7-O-disubstituted derivatives according to general Formula 2 can be obtained.

Reactions of epothilone A and B with bifunctional electrophilic reagents, such as (thio)phosgene, (thio)carbonyldimidazole [sic], thionyl chloride or dialkylsilyl dichlorides or bistriflates give compounds having general Formula 3. The bases used as aids here can be pyridine, trialkylamine, optionally together with DMAP or 2,6-lutidine in an aprotic solvent. The 3,7-acetals having general Formula 3 are formed by transacetalization, for example, of dimethylacetals, in the presence of an acidic catalyst.

Compounds according to general Formula 4, obtained from epothilone A and B or from their 3-O- and/or 7-O-protected derivatives by ozonolysis and reductive processing, for example, with dimethyl sulfide. The C-16 ketones can then be converted to the oximes, hydrazones or semicarbazones according to standard methods known to the expert in the field. Furthermore, they are converted into C-16/C-17 olefins by the Wittig, Wittig-Horner, Julia or Petersen olefination method.

The 16-hydroxy derivatives according to general Formula 5 are obtainable by reduction of the C-16 keto group, for example, with aluminum hydride or borohydride. When the 3-OH and 7-OH groups are protected correspondingly, they can be acylated or alkylated selectively. The liberation of the 3-OH- and 7-OH groups is done, for example, with NH₃/MeOH in the case of O-formyl and with DDQ in the case of O-p-methoxybenzyl.

The compounds having general Formula 6 are obtained from derivatives of epothilone A and B in which the 7-OH group is protected by acyl or ether groups, in which the 3-OH group

is, for example, formylated, mesylated or tosylated and then eliminated by treatment with a base, for example, DBU. The 7-OH group can be liberated as described above.

Compounds having general Formula 7 are obtained from epothilone A and B or from their 3-OH- and 7-OH-protected derivatives by basic hydrolysis, for example, with NaOH in MeOH. After protection of the 19-OH group, the carboxyl group can be converted to the ester by alkylation with diazoalkanes.

Furthermore, the invention is concerned with means for plant protection in agriculture, forestry and/or gardening, consisting of one or several of the epothilone derivatives described above or consisting of one or several of the epothilone derivatives described above in addition to one or several of the usual carrier(s) and/or diluent(s).

Finally, the invention is concerned with therapeutic agents, consisting of one or several of the compounds listed above or of one or several of the compounds listed above in addition to one or several of the usual carrier(s) and/or diluent(s). These agents can exhibit especially cytotoxic activities and/or cause immune suppression, so that they can especially preferably be used as cytostatic agents.

The invention is explained further and described by the description of a few selected practical examples.

Examples

Translator's note: In the infrared spectra in the examples, the general English abbreviations are used, s, m, w, vs, b, etc., except for Sch = shoulder and ny = ν (nu) Also, the abbreviation lg stands for log.

Compound 1a

20 mg (0.041 mmole) of epothilone A is dissolved in 1 mL of acetone, with 50 μ L (0.649 mmole) of trifluoroacetic acid is added and the mixture is stirred overnight at 50°C. For work-up, the reaction mixture is treated with 1 M pH 7 phosphate buffer and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed. The purification of the crude product is done with the aid of preparative layer-chromatography (solvent: dichloromethane/acetone, 85:15).

Yield: 4 mg (19%) isomer I 4 mg (19%) isomer II

Isomer I

R_e (dichloromethane/acetone, 85:15): 0.46

IR (Film): 0 = 3440 (m, b, Sch), 2946 (s, Sch), 1734

(vs), 1686 (m), 1456 (m), 1375 (w), 1256

(s, Sch), 1190 (w, b, Sch), 1071 (m, Sch), 884 (w), 735 (w) cm⁻¹.

MS (20/70 eV); m/e (%) = 493 (43 [M-H₂O]), 394 (47), 306 (32), 206 (30), 181 (40), 166 (72), 139 (100), 113 (19), 71 (19), 257 (24), 43 (24).

High resolution: C₂₆H₃₉O₆NS calculated: 493.2498 for [M-H₂O]⁺

found: 493.2478

Isomer II

R, (dichloromethane/acetone, 85:15): 0.22

IR (Film): V = 3484 (s, b, Sch), 2942 (vs, Sch), 1727 (vs), 1570 (w), 1456 (m), 1380 (m), 1265 (s), 1190 (w), 1069 (m), 975 (w), cm⁻¹.

MS (20/70 eV): m/e (%) = 493 (21 [M-H₂0]*), 394 (12), 306 (46), 206 (37), 181 (63), 166 (99), 139 (100), 113 (21), 71 (23), 57 (33), 43 (28).

High resolution: C₂₆H₃₉O₆NS calculated: 493.2498 for [M-H₂O]⁺

found: 493.2475

Compound 1b

Epothilone A, 55 mg (0.111 mmole), is dissolved in 0.5 mL of tetrahydrofuran, 0.5 mL of 1 N hydrochloric acid is added and the mixture is stirred for 30 minutes at room temperature. Then 1 N phosphate buffer of pH 7 is added and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed. The purification of the crude product is done with the aid of preparative layer chromatography (solvent: dichloromethane/methanol, 90:10).

Yield 1c: 19 mg (32%).

R. (dichloromethane/methanol, 90:10): 0.46

IR (Film): V = 3441 (s, br. Sch), 2948 (s, Sch), 1725
(vs, Sch), 1462 (m), 1381 (w), 1265 (m),
1154 (w), 972 (m, br. Sch) cm⁻¹.

UV (Methanol): \(\lambda_{mx}\) (lg \(\epsilon\)) = 210 (4.29), 248 (4.11) nm.

MS (20/70 eV): m/e (%) = 529 (35 [M]), 494 (10), 342 (38),
306 (23), 194 (32), 164 (100), 140
(31), 113 (15), 57 (16).

High resolution: $C_{26}H_{40}O_6CINS$ calculated: 529.2265 for [M⁺], found; 529.2280

Compound 1c

12-Chloro-13-hydroxy-epothilone A (1b), 25 mg (0.047 mmole), is dissolved in 1 mL of dichloromethane, and then 29 mg (0.235 mmole) of dimethylaminopyridine, 151 μ L (1.081 mmole) of triethylamine and 20 μ L (0.517 mmole) of 98% formic acid are added. The reaction mixture is cooled with ice/sodium chloride. After reaching -15°C, 40 μ L (0.423 mmole) of acetic anhydride is added to the reaction mixture, followed by stirring for 70 minutes at -15°C. Since the thin-layer chromatogram did not show complete conversion, another 6 mg (0.047 mmole) of dimethylaminopyridine, 7 μ L (0.047 mmole) of triethylamine, 2 μ L of 98% formic acid (0.047 mmole) and 4 μ L (0.047 mmole) of acetic anhydride are added to the reaction mixture, followed by stirring for 60 minutes.

For work-up, the reaction mixture is heated to room temperature, 1 M phosphate buffer with pH 7 is added and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed.

The purification of the crude product is done with the aid of preparative layer chromatography (solvent: dichloromethane/acetone, 90:10).

Yield: 5 mg (18%).

Compound 1c

R. (Dichloromethane/acetone, 90-10): 0.67:

IR (Film): 0 = 3497 (w, b, Sch), 2940 (s, b, Sch), 1725 (vs), 1468 (m, b, Sch), 1379 (m), 1265 (s), 1253 (s), 1175 (vs), 972 (m, b, Sch), 737 (s) cm⁻¹.

MS (20/70 eV): m/e (%) = 613 (9 [M*]), 567 (43), 472 (63), 382 (23), 352 (21), 164 (100), 151 (33), 96 (31), 69 (17), 44

High resolution: C₂₉H₄₀O₉NSCI calculation: 613.2112 for [M⁺] found: 613.2131

Compound 1d

10 mg (0.020 mmole) of epothilone B is dissolved in 0.5 mL of tetrahydrofuran, then 0.5 mL of 1 N hydrochloric acid is added and the mixture stirred for 30 minutes at room temperature. Then 1 M phosphate buffer at pH 7 is added and the aqueous phase is extracted 4 times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed.

The purification of the crude product is done with the aid of preparative layer chromatography (solvent: dichloromethane/acetone, 85:15).

Yield: 1 mg (9%)

R. (Dichloromethane/acetone, 85:15): 0.38

MS (20/70 eV): m/e (%) = 543 (3 [M]), 507 (14), 320 (19), 234 (9), 194 (17), 182 (23), 164 (100), 140 (22), 113 (14), 71 (13).

High resolution: C₂₁H₄₂O₆NSCl calculated: 543.2421 for [M⁺]

found: 543,2405

Compound 2a

Epothilone A, 100 mg (0.203 mmole), is dissolved in 4 mL of tetrahydrofuran/1 M phosphate buffer, pH 7 (1:1) and sodium borohydride (150 mg = 3.965 mmole) is added until the thin-layer chromatogram shows that the starting material reacted completely. Then the mixture is diluted with 1 M phosphate buffer, pH 7 and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed.

The purification of the crude product is done by silica gel chromatography (solvent: dichloromethane/acetone, 95:5 - in 5 steps to dichloromethane/acetone, 85:15).

Yield: (20%)

R. (Dichloromethane/acetone, 75:25): 0.27

IR (Film) = 3413 (s.b. Sch), 2965 (vs. Sch), 1734

(vs), 1458 (m, b, Sch), 1383 (m, Sch),

1264 (s. Sch), Sch), 1184 (m, b, Sch), 1059

(s. Sch), 965 (s), 885 (w), 737 (m) cm

High resolution: C₂₆H₄₁O₆NS calculated: 495.2655 for [M⁺]

found: 495.2623

Compound 3a-d (a-d are stereoisomers)

Epothilone, 100 mg (0.203 mmole) is dissolved in 3 mL of pyridine, with 50 μ L (0.686 mmole) of thionyl chloride added and the mixture is stirred for 15 minutes at room temperature. Then, 1 M phosphate buffer, pH 7, is added and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed. The purification of the crude product and separation of the four stereoisomers 3a-d is done with the aid of preparative layer chromatography (solvent: toluene/methanol, 90:10).

Compound 3a

Yield: 4 mg (12%)

R. (toluene/methanol, 90:10): 0.50

IR (Film): 0 = 2961 (m, b, Sch), 1742 (vs), 1701 (vs),
1465 (m, Sch), 1389 (m, Sch), 1238 (s,
Sch), 1210 (vs, Sch), 1011 (s, Sch), 957
(s, b, Sch), 808 (m, Sch), 768 (s, Sch) cm

<u>UV (Methanol):</u> λ_{max} (lg ϵ) = 210 (4.50), 248 (4.35) nm.

 $m/e (%) = 539 (40 [M^{2}]), 457 (22), 362 (16),$ 316 (27), 222 (30), 178 (30), 164 (100) = 151 (43), 96 (38), 69 (29), 55 (28) = 43 (20).

High resolution: $C_{26}H_{37}O_7NS_2$ calculated: 539.2011 for $[M^+]$

Compound 3b

Yield: 14 mg (13%)

R. (toluene/methanol, 90:10): 0.44

IR (Film): 0 = 2963 (s. br., Sch.), 1740 (vs.), 1703 (s.),
1510 (w.), 1464 (m., br., Sch.), 1389 (m., Sch.),
1240 (s., br., Sch.), 1142 (m.), 1076 (w.), 1037
(w.), 1003 (m.), 5945 (s., br., Sch.), 806 (m.,
Sch.), 775 (s.), 737 (m.) cm⁻¹

<u>uv</u> (Methanol): λ_{me} (lg ϵ) = 211 (4.16), 250 (4.08) nm.

MS (20/70 eV): m/e (%) = 539 (27 [M]), 475 (17), 322 (41), 306 (67), 222 (16), 206 (17), 194 (19), 178 (32), 164 (100), 151 (33), 125 (18), 113 (15), 96 (39), 81 (23), 64 (58), 57 (42), 41 (19).

a constraint of move

High resolution: C₂₆H₃₇O₇NS₂ calculated: 539.2011 for [M⁺]

found: 539.1998

Compound 3c

Yield: 4 mg (4%)

R. (toluene/methanol, 90:10): 0.38

MS (20/70 eV): m/e (%) = \$39 (M1), 322, (22), 306 (53), 222 (36), 178 (32), 164 (100), 151 (41), 96 (25), 81 (20), 6% (26), 55 (25), 41 (25).

High resolution: C₂₆H₃₇O₇NS₂ calculated: \$39.2011 for [M⁺]

found: 539.2001

Compound 3d

<u>Yield</u>: 1 mg (1%)

R_c (toluene/methanol, 90:10): 0.33

MS (20/70 eV): m/e (%) = 539 (65 (M1), 322 (35), 306 (51), 222 (41), 178 (31), 164 (100), 151 (46), 96 (31), 81 (26), 69 (34), 55 (33), 41 (35).

High resolution: C₂₆H₃₇O₇NS₂ calculated: 539.2011 for [M⁺]

found: 539.1997

Compound 4a

Epothilone A, 10 mg (0.020 mmole), is dissolved in 2 mL of dichloromethane, cooled to -70°C and then treated with ozone for 5 minutes until a weak blue coloration develops. The resulting reaction mixture is then treated with 0.5 mL of dimethyl sulfide and heated to room temperature. In the work-up, the solvent is removed from the reaction mixture and finally the product is purified with preparative layer chromatography (solvent: dichloromethane/acetone/methanol, 85:10:5).

<u>Yield</u>: 5 mg (64%)

R. (Dichloromethane/acetone/methanol, 85:10:5): 0.61

```
IR (Film): V = 3468 (s, br, Sch), 2947 (s, br, Sch), 1734 (vs, Sch), 1458 (w), 1380 (w), 1267 (w), 1157 (w), 1080 (w), 982 (w) cm<sup>-3</sup>.

UV (Methanol): \( \lambda_{\text{ms}} \) (1g \( \epsilon \)) = 202 (3.53) nm.

MS (20/70 eV): m/e (%) = 398 (2 [M]), 380 (4), 267 (14), 249 (17), 211 (20), 193 (26), 171 (34), 139 (34), 111 (40), 96 (100), 71 (48), 43 (50).
```

<u>High resolution</u>: $C_{21}H_{24}O_7$ calculated:

398.2305 for [M⁺]

found:

398.2295

Compound 6a

3,7-Di-O-formyl-epothilone A, 10 mg (0.018 mmole), is dissolved in 1 mL of dichloromethane, 27 μ L (0.180 mmole) of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is added and the mixture stirred at room temperature for 60 minutes.

For work-up, the reaction mixture is treated with 1 M sodium dihydrogen phosphate buffer, pH 4.5, and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed.

Ø19

After elimination of the solvent, the resulting crude product is dissolved in 1 mL of methanol, treated with 200 μ L of ammoniacal methanol solution (2 mmole of NH₂/mL of methanol) and stirred overnight at room temperature. For work-up, the solvent is removed in vacuum.

<u>Yield</u>: 4 mg (22%)

R. (Dichloromethane/acetone, 85:15): 0:46

IR (Film): 0 = 3445 (w, br. Sch), 2950 (vs. br. Sch),

1717 (vs. Sch), 1644 (w), 1466 (m. Sch),

1370 (m. Sch), 1267 (s. br. Sch), 1179

(s. Sch), 984 (s. Sch), 860 (w), 733 (m)

UV (Methanol): λ_{max} (lg ϵ) = 210-(4.16) nm.

MS (20/70 eV): m/e (%) = 4.75 (28 [M]), 380 (21), 322 (37), 318 (40), 304 (66), 178 (31), 166 (100), 151 (29), 140 (19), 96 (38), 81 (20), 57 (26).

High resolution: C₂₆H₃₇O₅NS calculated: 475.2392 for [M⁺]

found: 475.2384

Compound 6b

1

3,7-Di-O-formyl-epothilone A, 50 mg (0.091 mmole), is dissolved in 1 mL of dichloroethane, 2 mL (0.013 mole) of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is added and the mixture stirred for 12 hours at 90°C.

For work-up, the reaction mixture is treated with 1 M sodium dihydrogen phosphate buffer, pH 4.5, and the aqueous phase extracted four times with ethyl acetate. The combined

^{1 [}Note: Compound 5 was not mentioned in the original. It jumps from 4 to 6.]

For work-up, the reaction mixture is treated with 1 M sodium dihydrogen phosphate buffer, pH 4.5, and the aqueous phase extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent removed.

The purification of the crude product, which consists of two compounds, is done with the aid of preparative layer chromatography (solvent: dichloromethane/acetone, 90:10).

Yield: 7 mg (15%)

Substance code

R. (Dichloromethane/acetone, 90:10): 0.62.

```
IR (Film): V = 2951 (m; br., Sch), 1723 (vs), 1644 (w, br., Sch), 1468 (w), 1377 (w), 1271 (m, br., Sch), 1179 (s), 987 (m, br., Sch), 735 (w, br., Sch) cm<sup>-1</sup>.

UV (Methanol): \( \lambda_{max} \) (lg \( \epsilon \)) = 210 (4.44) nm.

MS (20/70 eV): m/e (\( \epsilon \)) = 503 (68 [M]), 408 (58), 390 (32), 334 (25), 316 (34), 220 (21), 206 (27), 194 (20), 181 (33), 164 (100), 151 (34), 139 (28), 113 (20), 96 (82), 81 (33), 67 (24), $$

SS (261, 43 (22).
```

High resolution: C₂₇H₃₇O₆NS calculated: 503.2342 for [M⁺]

found: 503.2303

Compound 6c

3.7-Di-O-acetyl-epothilone, 5 mg (0.009 mmole), is dissolved in 1 mL of methanol, 150 μ L of an ammoniacal methanol solution (2 mmole of NH₂/mL of methanol) is added and the mixture stirred overnight at 50°C.

For work-up, the solvent is removed in vacuum and the crude product is purified with the aid of preparative layer chromatography (solvent: toluene/methanol, 90:10).

Yield: 3 mg (67%)

R. (Dichloromethane/acetone, 90:10): 0.55

```
IR (Film): 0 = 2934 (s. b. Sch), 1719 (vs. b. Sch),

1641 (m), 1460 (m, Sch), 1372 (s. Sch),

1237 (vs. b. Sch), 1179 (s. Sch), 1020

(s), 963 (s. Sch), 737 (vs) cm<sup>-1</sup>.

UV (Methanol): \(\lambda_{\text{ms}}\) (lg \(\epsilon\)) = 210 (4.33) nm.

MS (20/70 eV): m/e (%) = 517 (57 [M]), 422 (58), 318

(31), 194 (20), 181 (34), 166

(100), 151 (31), 96 (96), 81

(32), 69 (27), 55 (29), 43 (69).
```

High resolution: C₂₈H₃₉O₆NS calculated: 517.2498 for [M⁺]

found: 517.2492

Compound 7a

Epothilone, 20 mg (0.041 mmole), is dissolved in 0.5 mL of methanol, 0.5 mL of 1 N sodium hydroxide is added and the mixture stirred for 5 minutes at room temperature.

For work-up, the reaction mixture is treated with 1 M phosphate buffer, pH 7, and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed. The purification of the crude product is done with the aid of preparative layer chromatography. (Solvent: dichloromethane/methanol, 85:15).

Yield: 11 mg (52%)

4 22

R. (Dichloromethane/methanol, 85:15): 0.92

IR (Film): 0 = 3438 (s, br. Sch), 2971 (vs. br. Sch), 1703 (vs), 1507 (m), 1460 (s, Sch), 1383 (m, Sch), 1254 (w), 1190 (w, br. Sch), 1011 (w, br. Sch), 866 (w, br), 729 (s) cm⁻¹.

MS (20/70 eV): m/e (%) = 423 (0.1 [M]), 323 (4), 168 (89), 140 (100), 85 (31), 57 (67).

High resolution: C₂₃H₃₇O₄NS calculated: 423.2443 for [M⁺]

found: 423.2410

Compound 7b

5 mg (0.009 mmole) of 7-O-acetyl-epothilone is dissolved in 1 mL of methanol, 200 μ L of an ammoniacal methanol solution (2 mmole of NH₂/mL of methanol) is added and the mixture is stirred for 2 days at 50°C. For work-up, the solvent is removed in vacuum. The purification of the crude product is done with the aid of preparative layer chromatography (solvent: toluene/methanol, 90:10).

Yield: 3 mg (59%)

R. (Dichloromethane/methanol, 90:10): 0.63

IR (Film): V = 3441 (m, b, Sch), 2946 (s, Sch), 1732(vs), 1600 (w), 1451 (m), 1375 (m), 1246
(s, b/Sch), 1013 (m, b, Sch) cm⁻¹.

UV (Methanol): λ_{max} (lg ϵ) = 211 (3.75), 247 (3.59) nm.

(10), 71 (22), 43 (27).

High resolution: C₂₀H₄₅O₈NS calculated: 567.2866 for [M⁺]

found: 567.2849

Patent Claims

1. Epothilone derivative having Formula 1

where R = H, $C_{1.4}$ -alkyl; R^1 , $R^2 = H$, $C_{1.6}$ -alkyl, $C_{1.6}$ -acyl, benzoyl, $C_{1.4}$ -trialkylsilyl, benzyl, phenyl, $C_{1.6}$ -alkoxy, C_{6} -alkyl-, hydroxy- and halogen-substituted benzyl or phenyl; and the alkyl and acyl groups in these groups are straight-chain or branched groups and X and Y are either the same or different and stand for halogen, OH, O- $(C_{1.6}$ -acyl, O- $(C_{1.6}$ -alkyl or O-benzoyl).

2. Epothilone derivative having formula 2

where R = H, C_{14} -alkyl; R^1 , R^2 , $R^3 = H$, C_{16} -alkyl, C_{16} -acyl, benzoyl, C_{14} -trialkylsilyl, benzyl, phenyl, C_{16} -alkoxy-, C_{6} -alkyl-, hydroxy- and halogen-substituted benzyl or phenyl; the alkyl and acyl groups contained in these groups are straight-chain or branched groups.

3. Epothilone derivative according to formula 3

where R = H, C_{14} -alkyl; R^1 , $R^2 = H$, C_{16} -alkyl, C_{16} -acyl, benzoyl, C_{14} -trialkylsilyl, benzyl, phenyl, C_{16} -alkoxy-, C_{6} -alkyl-, hydroxy-, and halogen-substituted benzyl and phenyl;

the alkyl and acyl groups contained in these groups are straight-chain or branched groups and X stands generally for -C(O)-, -C(S)-, -S(O)-, $-CR^1R^2$ - and $-SiR_2$ -, where R, R¹ and R² have the meaning given above.

4. Epothilone derivative according to formula 4

where R = H, $C_{1.4}$ -alkyl; R^1 , R^2 , R^3 , R^4 , $R^5 = H$, $C_{1.6}$ -alkyl, $C_{1.6}$ -acyl, benzoyl, $C_{1.4}$ -trialkylsilyl, benzyl, phenyl, $C_{1.6}$ -alkoxy-, C_{6} -alkyl-, hydroxy- and halogen-substituted benzyl or phenyl; the alkyl and acyl groups contained in these groups are straight-chain or branched groups; X stands for oxygen, NOR^3 , $N-NR^6R^5$, and $N-NHCONR^4R^5$, where the groups R^3 to R^5 have the meaning given above.

5. Epothilone derivative having formula 5

where R = H, C_{14} -alkyl; R^1 , $R^2 = H$, C_{16} -alkyl, C_{16} -acyl, benzoyl, C_{14} -trialkylsilyl, benzyl, phenyl, C_{16} -alkoxy-, C_{6} -alkyl-, hydroxy- and halogen-substituted benzyl or phenyl; the alkyl and acyl groups contained in these groups are straight-chain or branched groups and X stands for hydrogen, C_{1-18} -alkyl, C_{1-18} -acyl, benzyl, benzoyl and cinnamoyl.

6. Epothilone derivative according to formula 6

in which R = H, C_{14} -alkyl and $R^1 = H$, C_{16} -alkyl, C_{16} -acyl, benzoyl, C_{14} -trialkylsilyl, benzyl, phenyl, C_{16} -alkoxy-, C_{6} -alkyl-, hydroxy- and halogen-substituted benzyl or phenyl; the alkyl and acyl groups contained in these groups are straight-chain or branched groups.

7. Epothilone derivative according to formula 7

in which R = H, C_{1-4} -alkyl; and R^1 , R^2 , = H, C_{1-6} -alkyl, C_{1-6} -acyl, benzoyl, C_{1-4} -trialkyls-ilyl, benzyl, phenyl, C_{1-6} -alkoxy-, C_{6} -alkyl-, hydroxy- and halogen-substituted benzyl or phenyl; the alkyl and acyl groups contained in these groups are straight-chain or branched groups.

- 8. Means for plant protection in agriculture and forestry and/or in gardening, consisting of one or several of the compounds according to one of the previous Claims, or according to one or several of these compounds together with one or several usual carrier(s) and/or diluent(s).
- 9. Therapeutic agent, especially for use as cytostatic agent, consisting of one or several of the compounds according to one or several of Claims 1 to 7, or one or several compounds according to one or several of Claims 1 to 7 together with one or several of the usual carrier(s) and/or diluent(s).

Summary

The present invention is concerned with epothilone derivatives and their application.