Chapter 6 Wireless and Mobile Networks

Universidad de Costa Rica Facultad de Ingeniería Escuela de Ciencias de la Computación e Informática CI-1320 – Redes de Computadoras

Esta presentación está basada en la versión distribuida por los autores del libro de texto: Kurose y Ross.

KUROSE ROSS

Networking:
A Top Down
Approach
6th edition
Jim Kurose, Keith
Ross
Addison-Wesley
March 2012

Ch. 6: Wireless and Mobile

Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered Internet access
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Chapter 6 outline

6.1 Introduction

<u>Wireless</u>

- 6.2 Wireless links, characteristics
 - CDMA
- 6.3 IEEE 802.11
 wireless LANs ("Wi-Fi")
- 6.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Mobility

- 6.5 Principles:
 addressing and routing
 to mobile users
- 6.6 Mobile IP
- 6.7 Handling mobility in cellular networks
- 6.8 Mobility and higherlayer protocols
- 6.9 Summary

Characteristics of selected wireless links

network

network infrastructure

- infrastructure mode
- base station connects mobiles into wired network
- handoff: mobile changes base
 - station providing connection into wired network

Elements of a wireless network

ad hoc mode

- no base
 stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves

into a
network: route
among
themselves

Wireless network

taxonomy

		single hop	multiple hops
in	frastructu (e.g., APs)	host connects to tase station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net
ir	no Ifrastructป	nn naca ciaiinn n	INTACHAT WALL HALLA TA

Chapter 6 outline

6.1 Introduction

<u>Wireless</u>

- 6.2 Wireless links, characteristics
 - CDMA
- 6.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 6.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

<u>Mobility</u>

- 6.5 Principles:
 addressing and routing
 to mobile users
- 6.6 Mobile IP
- 6.7 Handling mobility in cellular networks
- 6.8 Mobility and higherlayer protocols
- 6.9 Summary

Wireless Link Characteristics (1)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources:
 standardized wireless network frequencies
 (e.g., 2.4 GHz) shared by other devices
 (e.g., phone); devices (motors) interfere
 as well
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- * SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

—— QAM256 (8 Mbps)

— — - QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless network

characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- * B, A hear each other
- * B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- * B, A hear each other
- * B, C hear each other
- A, C can not hear each other interfering at B Wireless, Mobile Networks 6-15

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- * encoded signal = (original data) X
 (chipping sequence)
- * decoding: inner-product of encoded
 signal and chipping sequence

CDMA encode/decode

CDMA: two-sender

channel sums together transmissions by sender 1 and 2

using same code as sender 1, receiver recovers sender 1's original data from summed

Practice

Given are the following chip sequences:

```
A: (-1 -1 -1 +1 +1 -1 +1 +1)
```

The stations want to transmit the following bits: A: 1, B: 0, C: 0, D: -. What is the resulting chip sequence?

A station receives the chip sequence (-1 +1 -3 +1 -1 -3 +1 +1). Which stations have sent, which bits were transmitted?

Chapter 6 outline

6.1 Introduction

<u>Wireless</u>

- 6.2 Wireless links, characteristics
 - CDMA
- 6.3 IEEE 802.11
 wireless LANs ("Wi-Fi")
- 6.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

<u>Mobility</u>

- 6.5 Principles:
 addressing and routing
 to mobile users
- 6.6 Mobile IP
- 6.7 Handling mobility in cellular networks
- 6.8 Mobility and higherlayer protocols
- 6.9 Summary

IEEE 802.11 Wireless

LAN

802.11b

- *2.4-5 GHz unlicensed spectrum
- ❖up to 11 Mbps
- *direct sequence spread
 spectrum (DSSS) in physical
 layer
 - all hosts use same chipping code

802.11a

- 5-6 GHz range
- up to 54 Mbps

802.11g

- 2.4-5 GHz range
- up to 54 Mbps

802.11n: multiple antennae

- 2.4-5 GHz range
- up to 200 Mbps

- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions
 wireless

802.11 LAN

architecture

BSS 2

- wireless host communicates with base station
 - base station =
 access point (AP)
- * Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP):
 base station
 - ad hoc mode: hosts only

802.11: Channels, association

- * 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- * host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP's subnet

802.11: passive/active

scanning

passive scanning:

- (1)beacon frames sent from APs
- (2)association Request frame sent: H1 to selected AP
- (3)association Response frame sent from selected AP to H1

<u>active</u> scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

IEEE 802.11: multiple

- access
 avoid collisions: 2+ nodes transmitting at same time
- * 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- * 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collision in an case hidden Dexposed terminar, facing
 - Llisions: A's signal C's signal strength CSMA (oilision) A (voidante) space

IEEE 802.11 MAC Protocol:

CSMA/CA 802.11 sender

- 1 if sense channel idle for **DIFS** then transmit entire frame (no CD)
- 2 if sense channel busy then start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

if frame received OK

return ACK after SIFS (ACK needed due to hidden terminal problem)

Avoiding collisions

more)
dea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS

802.11 frame: addressing

802.11 frame:

802.11 frame

802.11 frame: more

802.11: mobility within

same subnet

- H1 remains in same IP subnet: IP address can remain same
- switch: which AP
 is associated
 with H1?
 - self-learning (Ch.
 5): switch will
 see frame from H1
 and "remember"
 which switch port
 can be used to
 reach H1

802.11: advanced

capabilities Rate adaptation

base station, mobile dynamically change transmission rate (physical layer modulation technique) SNR varies operating point

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

802.11: advanced çapahilities

- node-to-AP: "I am going to sleep until next beacon frame"
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-to-mobile frames waiting to be sent
 - node will stay awake if AP-tomobile frames to be sent; otherwise sleep again until next beacon Frame

802.15: personal area

network

- * less than 10 m diameter
- replacement for cables
 (mouse, keyboard,
 headphones)
- ad hoc: no
 infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - master grants requests
- * 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - up to 721 kbps

- Master device
- Slave device
- Parked device (inactive)

<u>Chapter 6 outline</u>

6.1 Introduction

Wireless

- 6.2 Wireless links, characteristics
 - CDMA
- 6.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 6.4 Cellular Internet access
 - architecture
 - standards (e.g., GSM)

Mobility

- 6.5 Principles:
 addressing and routing
 to mobile users
- 6.6 Mobile IP
- 6.7 Handling mobility in cellular networks
- 6.8 Mobility and
 higher-layer protocols
- 6.9 Summary

Components of cellular network archi

MSC

cell

- covers
 geographical
 region
- * base station (BS) analogous to 802.11 AP
- * mobile users attach to network through

* airinterface:
physical and
link layer

BS

manages call setup (more la handles mobility (more late Mobile **Switching** Center Public telephone network Mobile Switching Center wired network

connects cells to wired tel

Wireless, Mobile Networks 6-37

Cellular networks: the

first hop

Two techniques for sharing mobile-to-BS radio spectrum

- combined FDMA/TDMA: divide spectrum in frequency channels, divide each channel into time slots frequency
- * CDMA: code division bands multiple access

<u>2G (voice) network arc</u>hitect

<u>3G (voice+data) network archi</u>

<u>3G (voice+data) network archi</u>

<u>Chapter 6 outline</u>

6.1 Introduction

Wireless

- 6.2 Wireless links, characteristics
 - CDMA
- 6.3 IEEE 802.11
 wireless LANs ("Wi-Fi")
- 6.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Mobility

- 6.5 Principles:
 addressing and routing
 to mobile users
- 6.6 Mobile IP
- 6.7 Handling mobility in cellular networks
- 6.8 Mobility and
 higher-layer protocols
- 6.9 Summary

What is mobility?

* spectrum of mobility, from the *network* perspective:

<u>Mobility: vocabulary</u>

Mobility: more

vocabulary

permanent address: remains constant (e.g., 128.119.40.186)

visited network: network in which mobile currently resides (e.g., 79.129.13/24)

care-of-address: address in visited network. (e.g., 79,129.13.2)

wide area network

correspondent: wants to communicate with mobile

foreign agent: entity in visited network that performs mobility functions on behalf of mobile.

How do *you* contact a mobile friend:

Consider friend frequently changing

*addresses, how do you foodsper?

call her parents?

expect her to let
 you know where
 he/she is?

I wonder where Alice moved to?

Mobility: approaches

- * let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 - routing tables indicate where each mobile located
 - no changes to end-systems
- let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

<u>Mobility: approaches</u>

- let routing handle it routers advertise permanent addr/ not lile-nodes-in-residence via/ scalable ing table exchange.
 routing table to millions of a where each mobile mobiles.
 - no changes to end-systems
- let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: registration

end result:

- foreign agent knows about mobile
- home agent knows location of mobile

Mobility via indirect routing

Indirect Routing: comments

- mobile uses two addresses:
 - permanent address: used by correspondent (hence mobile location is transparent to correspondent)
 - care-of-address: used by home agent to forward datagrams to mobile
- foreign agent functions may be done by mobile itself
- triangle routing: correspondent-home
 - network-mobile
 - inefficient when correspondent, mobile are in same network

Indirect routing: moving between networks

- suppose mobile user moves to another network
 - registers with new foreign agent
 - new foreign agent registers with home agent
 - home agent update care-of-address for mobile
 - packets continue to be forwarded to mobile (but with new care-of-address)
- * mobility, changing foreign networks transparent: on going connections can be maintained!

Mobility via direct routing

Mobility via direct routing: comments

- overcome triangle routing problem
- non-transparent to correspondent: correspondent must get care-ofaddress from home agent
 - what if mobile changes visited network?

Accommodating mobility with direct routing

- anchor foreign agent: FA in first visited network
- data always routed first to anchor FA
- when mobile moves: new FA arranges to have data forwarded from old FA (chaining)

<u>Chapter 6 outline</u>

6.1 Introduction

Wireless

- 6.2 Wireless links, characteristics
 - CDMA
- 6.3 IEEE 802.11
 wireless LANs ("Wi-Fi")
- 6.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Mobility

- 6.5 Principles:
 addressing and routing
 to mobile users
- 6.6 Mobile IP
- 6.7 Handling mobility in cellular networks
- 6.8 Mobility and
 higher-layer protocols
- 6.9 Summary

Mobile IP

- * RFC 3344
- has many features we've seen:
 - home agents, foreign agents, foreignagent registration, care-ofaddresses, encapsulation (packetwithin-a-packet)
- three components to standard:
 - indirect routing of datagrams
 - agent discovery
 - registration with home agent

Mobile IP: indirect routing

Mobile IP: agent

discovery

agent advertisement: foreign/home agents advertise service by broadcasting ICMP messages (typefield = 9)

H,F bits: home and/or foreign agent

R bit: registration required

Mobile IP:

Components of cellular network as

different cellular networks, operated by different providers

Handling mobility in cellular networks

- home network: network of cellular
 provider you subscribe to (e.g., Sprint
 PCS, Verizon)
 - home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)
- * visited network: network in which mobile currently resides
 - visitor location register (VLR): database with entry for each user currently in network
 - could be home network

GSM: indirect routing

GSM: handoff with common MSC

- handoff goal: route
 call via new base
 station (without
 interruption)
- reasons for handoff:
 - stronger signal to/from new BSS (continuing connectivity, less battery drain)
 - load balance: free up channel in current BSS
 - GSM doesn't mandate why to perform handoff (policy), only how (mechanism)
- handoff initiated by old BSS

GSM: handoff with common

MSC

- 1. old BSS informs MSC of impending handoff, provides list of 1⁺ new BSSs
- 2. MSC sets up path (allocates resources) to new BSS
- 3. new BSS allocates radio channel for use by mobile
- 4. new BSS signals MSC, old BSS: ready
- 5. old BSS tells mobile: perform handoff to new BSS
- 6. mobile, new BSS signal to activate new channel
- 7. mobile signals via new BSS to MSC: handoff complete. MSC reroutes call
- 8 MSC-old-BSS resources released

GSM: handoff between

MSCs

(a) before handoff

- * anchor MSC: first MSC
 visited during call
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- optional path
 minimization step to
 shorten multi-MSC
 chain

GSM: handoff between

MSCS

(b) after handoff

- * anchor MSC: first
 MSC visited during
 call
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- * optional path
 minimization step
 to shorteness, Marks 6-67
 MSC chain

Mobility: GSM versus

<u>MODILE</u>	I P	
GSM element	Comment on GSM element M	obile IP element
Home system	Network to which mobile user's permanent phone number belongs	Home network
Gateway Mobile Switching Center, or "home MSC". Home Location Register (HLR)	Home MSC: point of contact to obtain routable address of mobile user. HLR: database in home system containing permanent phone number, profile information, current location of mobile user, subscription information	Home agent
Visited System	Network other than home system where mobile user is currently residing	Visited network
Visited Mobile services Switching Center. Visitor Location Record (VLR)	Visited MSC: responsible for setting up calls to/from mobile nodes in cells associated with MSC. VLR: temporary database entry in visited system, containing subscription information for each visiting mobile user	
Mobile Station Roaming Number (MSRN), or "roaming number"	Routable address for telephone call segment between home MSC and visited MSC, visible to neither the mobile nor the correspondent.	Care-of- address

Wireless, mobility: impact on higher layer protocols

- ❖ logically, impact *should* be minimal ...
 - best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- ... but performance-wise:
 - packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
 - TCP interprets loss as congestion, will decrease congestion window un-necessarily
 - delay impairments for real-time traffic
 - limited bandwidth of wireless links

<u>Chapter 6 summary</u>

Wireless

- wireless links:
 - capacity, distance
 - channel impairments
 - CDMA
- * IEEE 802.11 ("Wi-Fi")
 - CSMA/CA reflects wireless channel characteristics
- cellular access
 - architecture
 - standards (e.g., GSM, 3G, 4G LTE)

Mobility

- principles: addressing, routing to mobile users
 - home, visited networks
 - direct, indirect routing
 - care-of-addresses
- case studies
 - mobile IP
 - mobility in GSM
- impact on higherlayer protocols