

Algorithmes d'optimisation

Pr. Faouzia Benabbou (faouzia.benabbou@univh2c.ma)

Département de mathématiques et Informatique

Master Data Science & Big Data

Plan du Module: Algorithmes d'optimisation

Introduction

Objectif du Module

- Maîtriser les concepts fondamentaux de l'optimisation.
- Connaître et comprendre les algorithmes d'optimisation clés (avec et sans contraintes).
- Être capable de sélectionner et d'adapter l'algorithme approprié pour un problème donné.
- Développer des compétences en implémentation et en évaluation des des algorithmes.

Définition

- L'optimisation est le processus qui consiste à trouver les meilleures valeurs possibles pour certaines variables, afin de maximiser ou minimiser une fonction donnée.
- Cette fonction est souvent appelée fonction objective f.
- f peut représenter des coûts, des profits, de l'utilité ou d'autres valeurs d'intérêt dans un problème particulier.

Formalisation Mathématique

Soit une fonction f définie par :

$$E \subset \mathbb{R}^n \to \mathbb{R} \ n \ge 1$$

$$x = (x1, ..., xn) \to f(x)$$

On cherche soit le minimum ou le maximum de la fonction f:

$$\min_{\mathbf{x} \in \mathbf{E}} f(\mathbf{x}), \max_{\mathbf{x} \in \mathbf{E}} f(\mathbf{x})$$

Problème 1.

- Le coût d'un produit varie selon la vitesse de production x, il se traduit par : $C(x)=x^2$ 6x+10
- Déterminer le niveau de production donnant un coût minimal.

Problème 2.

- Une entreprise produit deux produits, montres (P1) et des bijoux
 (P2)
- Chaque produit nécessite un certain nombre d'heures de travail et utilise des ressources limitées.
- Le but est de déterminer combien de chaque produit fabriquer pour maximiser le profit total durant une période de travail de 100h

Problème 2.

- Données
 - ✓ Le profit par unité de P1 est de 50 €.
 - ✓ Le profit par unité de P2 est de 40 €.
 - ✓ Chaque unité de P1 nécessite 2 heures de travail.
 - ✓ Chaque unité de P2 nécessite 3 heures de travail.
- Fonction objectif
 - Le profit total P(x,y) de la production de x unités de P1 et y unités de P2 est donné par la fonction : P(x,y)=50x+40y, x : le nombre d'unités de P1, y : le nombre d'unités de P2.
- Contraintes: L'entreprise dispose de 100 heures de travail disponible: $2x+3y \le 100$ et $x \ge 0$, $y \ge 0$
- L'**objectif** est de maximiser cette fonction, c'est-à-dire de déterminer les valeurs de x et y qui maximisent P(x,y).

Problème 3.

- Un agriculteur possède un champ de 200 hectares.
- Il souhaite cultiver deux types de céréales : le blé et le maïs.
- Le blé rapporte 200 euros par hectare et nécessite 10 heures de travail par hectare.
- Le mais rapporte 300 euros par hectare et nécessite 20 heures de travail par hectare.
- L'agriculteur dispose de 1500 heures de travail.
- On veut déterminer la surface à cultiver pour chaque type de céréale afin de maximiser le revenu total de l'agriculteur.

Problème 3.

- Données
 - ✓ Le blé rapporte 200 euros par hectare, Le blé nécessite 10 heures de travail
 - ✓ Le maïs rapporte 300 euros par hectare, Le maïs nécessite 20 heures de travail par hectare.
- Fonction objective: R(x, y) = 200x + 300y (revenu total)
 - ✓ x : surface de blé cultivée (en hectares), y : surface de maïs cultivée (en hectares)
- Contraintes:
 - ✓ $x + y \le 200$ (surface totale du champ)
 - ✓ L'entreprise dispose de 100 heures de travail disponible: $10x + 20y \le 100$ (heures de travail disponibles)
 - \checkmark $x \ge 0$, $y \ge 0$ (les surfaces ne peuvent pas être négatives)
- L'**objectif** est de maximiser cette fonction, c'est-à-dire de déterminer les valeurs dedécision x et y qui maximisent R(x,y).

Problème 4

- Un livreur doit livrer des colis à plusieurs clients répartis dans une ville.
- Il doit déterminer l'itinéraire le plus court possible pour minimiser les coûts de transport (carburant, temps, etc.).
- On veut Minimiser la distance totale parcourue par le livreur.
- **Données**: distances entre les clients dij, i, j ∈ $\{1, ..., n\}$, n nombre de clients
- Fonction objective : $\sum_{i,j} dij$
- Contraintes:
 - Le livreur doit visiter tous les clients une seule fois.
 - Le livreur doit commencer et terminer son itinéraire à un point de départ spécifique (par exemple, un entrepôt).
- Variables de décision : L'ordre dans lequel le livreur visite les clients.

Comment résoudre un Problème d'optimisation

La résolution d'un problème d'optimisation, qu'il soit simple ou complexe, suit une démarche structurée, voici les étapes clés à suivre:

• 1. Comprendre et formuler un problème

- ✓ **Identifier l'objectif :** Définir clairement ce que l'on cherche à accomplir (maximiser, minimiser quoi?).
- ✓ **Définir les variables de décision :** Identifier les éléments sur lesquels on a un contrôle et dont les valeurs vont influencer le résultat.
- ✓ Exprimer la fonction objective : Traduire l'objectif en une équation mathématique qui dépend des variables de décision.
- ✓ **Définir les contraintes (s'il y en a) :** Identifier les limitations ou les restrictions qui s'appliquent aux variables de décision.
- ✓ **Choisir un modèle approprié :** Le type de **modèle** dépend de la nature du problème.

Comment résoudre un Problème d'optimisation

- Les étapes clés à suivre:
 - 2. Choisir un modèle approprié : Le type de modèle dépend de la nature du problème.
 - 3. Mise en œuvre et résolution
 - **✓** Choisir un outil de résolution :
 - o Logiciels de calcul formel (MatLab, Maple, Mathematica, etc.).
 - Langages de programmation (Python avec des librairies spécifiques, etc.).
 - Solveurs d'optimisation (Gurobi, choco etc.).
 - ✓ Implémenter l'algorithme choisi :
 - Transcrire le problème et la méthode de résolution en un langage compréhensible par l'ordinateur.
 - 4. Analyse et interprétation des résultats
 - ✓ Vérifier la convergence vers une solution
 - ✓ Auster le modèle, la méthode de résolution ou les paramètres en fonction des résultats obtenus.
 - ✓ Valider le modèle.

Domaines d'application

L'optimisation est un outil extrêmement puissant qui trouve des applications dans une variété de secteurs, allant de l'ingénierie à la finance, en passant par la logistique et l'intelligence artificielle.

Ingénierie

- Conception de structures plus légères, plus résistantes et plus économiques, telles que des ponts, des bâtiments ou des avions
- Maximiser l'efficacité énergétique des systèmes complexes, comme les réseaux électriques ou les centrales de production d'énergie.
- Conception de circuits électroniques en réduisant la taille et la consommation, etc.

Finance

- Gestion de portefeuille tout en maximisant les rendements et en minimisant les risques
- Dans le Trading des algorithmes d'optimisation sont utilisés pour prendre des décisions de trading automatisées en temps réel, etc.

Logistique et transport

- Planification des tournées de livraison
- Gestion des entrepôts, optimiser l'agencement des produits, le processus de préparation des commandes, etc.
- Optimisation du trafic aérien en minimisant les retards et maximisant l'utilisation des ressources

Domaines d'application

Intelligence artificielle

- Apprentissage automatique : Les algorithmes d'optimisation sont au cœur de l'apprentissage automatique, facilitant l'entraînement de modèles prédictifs performants.
- Reconnaissance d'images et de la parole

Médecine

L'optimisation est employée pour planifier des traitements de radiothérapie, concevoir des médicaments plus efficaces et améliorer la gestion des ressources hospitalières.

Agriculture

• Elle permet d'optimiser l'utilisation des terres, l'irrigation et la fertilisation pour maximiser les rendements agricoles.

Télécommunications

• L'optimisation est essentielle pour la conception de réseaux de communication efficaces et fiables

Rappels mathématiques