

BACCALAURÉAT, SÉRIE S

ENSEIGNEMENT OBLIGATOIRE ET ENSEIGNEMENT DE SPÉCIALITÉ FORMULAIRE DE MATHÉMATIQUES

I. NOMBRES COMPLEXES, GÉOMÉTRIE

A. NOMBRES COMPLEXES

Dans le repère orthonormal (O; \vec{u}, \vec{v}) le point M(x, y), où $(x, y) \in \mathbb{R}^2$, a pour affixe z.

z a pour forme algébrique x + i y.

Partie réelle de z: Re(z) = x

Partie imaginaire de z: Im(z) = y

Conjugué de $z : \overline{z} = x - iy$

Module de $z:|z|=\sqrt{z\overline{z}}=\sqrt{x^2+y^2}$

Si $z \neq 0$.

z a pour forme trigonométrique : $z = \rho(\cos\theta + i\sin\theta)$

z a pour forme exponentielle : $z = \rho e^{i\theta}$

Module de $z : |z| = \rho$

Argument de z: arg $z = \theta$ [2 π]

Conjugué de $z: z = \rho e^{-i\theta}$

Propriétés des modules

Pour tout $z \in \mathbb{C}, |\overline{z}| = |z|$

Pour tout $z \in \mathbb{C}^*$, $\left| \frac{1}{z} \right| = \frac{1}{|z|}$

Pour tous $z \in \mathbb{C}$ et $z' \in \mathbb{C}$, |zz'| = |z| |z'|

Si A et B ont pour affixes respectives z_A et z_B alors \overrightarrow{AB} a pour affixe $z_B - z_A$ et $AB = |z_B - z_A|$.

Propriétés des arguments

Pour tous $z \in \mathbb{C}^*$ et $z' \in \mathbb{C}^*$,

$$\arg(z\,z') = \arg(z) + \arg(z') \quad [2\,\pi]$$

$$\operatorname{arg}\left(\frac{z}{\pi'}\right) = \operatorname{arg}(z) - \operatorname{arg}(z')$$
 [2 π]

Caractérisation complexe de transformations $M(z) \mapsto M'(z')$

Translation de vecteur \vec{u} d'affixe $t, t \in \mathbb{C}$: z' = z + t

Homothétie de centre Ω d'affixe ω , $\omega \in \mathbb{C}$, et de rapport

 $k \in \mathbb{R}^* : z' - \omega = k(z - \omega)$

Rotation de centre Ω d'affixe $\omega,\,\omega\in\mathbb{C},$ et d'angle de

mesure $\theta \in \mathbb{R}$: $z' - \omega = e^{i\theta}(z - \omega)$

B. GÉOMÉTRIE

Produit scalaire de deux vecteurs non nuls du plan

$$\overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{OA} \times \overrightarrow{OB}'$$

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = OA \times OB \times \cos \theta$$

Produit scalaire et coordonnées

Si \vec{u} et \vec{v} admettent pour coordonnées respectives

(x, y, z) et (x', y', z') dans un repère orthonormal

de l'espace alors $\vec{u}.\vec{v} = x x' + y y' + z z'$ et $||\vec{u}|| = \sqrt{\vec{u}.\vec{u}}$.

Une équation de la sphère de centre Ω de coordonnées

(a, b, c) et de rayon R est $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$.

II. ALGÈBRE, TRIGONOMÉTRIE

A. IDENTITÉS REMARQUABLES

Pour tous $a \in \mathbb{C}$, $b \in \mathbb{C}$,

$$(a + b)^3 = a^3 + 3 a^2 b + 3 a b^2 + b^3$$

$$(a-b)^3 = a^3 - 3 a^2 b + 3 a b^2 - b^3$$

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Pour tous $a \in \mathbb{C}$, $b \in \mathbb{C}$ et pour tout $n \in \mathbb{N}^*$,

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + b^n$$

B. ÉQUATION DU SECOND DEGRÉ DANS C

Soient a, b et c trois nombres réels $(a \neq 0)$ et $\Delta = b^2 - 4$ a c.

L'équation $az^2 + bz + c = 0$ admet :

lorsque Δ > 0, deux solutions réelles

$$z_1 = \frac{-b - \sqrt{\Delta}}{2 a}$$
 $z_2 = \frac{-b + \sqrt{\Delta}}{2 a}$

- lorsque $\Delta = 0$, une solution réelle $z_1 = -\frac{b}{2a}$

- lorsque $\Delta < 0$, deux solutions complexes conjuguées

$$z_1 = \frac{-b - i\sqrt{-\Delta}}{2a} \qquad z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$$

Si
$$\Delta \neq 0$$
, $az^2 + bz + c = a(z - z_1)(z - z_2)$

Si
$$\Delta = 0$$
, $az^2 + bz + c = a(z - z_1)^2$

Formules de duplication

C. TRIGONOMÉTRIE

Formules d'addition

Pour tous $a \in \mathbb{R}$ et $b \in \mathbb{R}$, cos(a + b) = cos a cos b - sin a sin bcos(a - b) = cos a cos b + sin a sin b

 $\cos(2 a) = \cos^2 a - \sin^2 a$ $\cos(2 a) = 2\cos^2 a - 1$ $\sin(a+b) = \sin a \cos b + \cos a \sin b$ $\sin(a-b) = \sin a \cos b - \cos a \sin b$ $\sin(2 a) = 2 \sin a \cos a$

ш. PROBABILITÉS

A. GÉNÉRALITÉS

Si les événements A et B sont incompatibles alors

$$P(A \cup B) = P(A) + P(B)$$
.

Dans le cas général : $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

$$P(\overline{A}) = 1 - P(A)$$

$$P(\Omega) = 1$$

$$P(\Phi) = 0$$

Si A_1, \ldots, A_n forment une partition de $A, P(A) = \sum_{i=1}^{n} P(A_i)$.

Dans le cas de l'équiprobabilité,

$$P(A) = \frac{\text{Nombre d' \'el\'ements de } A}{\text{Nombre d'\'el\'ements de } \Omega}$$

Probabilité conditionnelle de B sachant A

 $P_A(B)$ est définie par $P(A \cap B) = P_A(B) \times P(A)$

Cas où A et B sont indépendants : $P(A \cap B) = P(A) \times P(B)$

Formule des probabilités totales

Si les événements B_1, B_2, \dots, B_n forment une partition de Ω alors $P(A) = P(A \cap B_1) + P(A \cap B_2) + ... + P(A \cap B_n)$

B. VARIABLE ALÉATOIRE

Espérance mathématique : $E(X) = \sum_{i=1}^{n} p_i x_i$

Variance: $V(X) = \sum_{i=1}^{n} p_i (x_i - E(X))^2 = \sum_{i=1}^{n} p_i x_i^2 - (E(X))^2$

Ecart-type : $\sigma_X = \sqrt{V(X)}$

C. COMBINAISONS ET FORMULE DU BINÔME

Pour tout $n \in \mathbb{N}^*$ et pour tout $p \in \mathbb{N}$, $0 \le p \le n$,

$$n! = 1 \times 2 \times 3 \times \dots \times n \qquad 0! = 1.$$

$$\binom{n}{p} = \frac{n(n-1)\dots(n-p+1)}{p!} = \frac{n!}{p!(n-p)!}$$

$$\binom{n}{n} = \binom{n}{n-n} \qquad \binom{n}{n} = \binom{n-1}{n-1} + \binom{n-1}{n}$$

Le nombre de sous-ensembles à p éléments d'un ensemble à n éléments est égal à $\binom{n}{n}$.

Pour tous $a \in \mathbb{C}$, $b \in \mathbb{C}$ et pour tout $n \in \mathbb{N}^*$,

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \dots + \binom{n}{k} a^{n-k} b^k + \dots + b^n$$

D. LOIS DE PROBABILITÉ

Loi de Bernoulli de paramètre $p, p \in [0; 1]$

X peut prendre les valeurs 0 et 1 avec les probabilités

$$P(X = 1) = p$$
 et $P(X = 0) = 1 - p$
 $E(X) = p$ $V(X) = p(1 - p)$

Loi binomiale $\mathcal{B}(n, p), n \in \mathbb{N}^*, p \in [0; 1]$

X peut prendre les valeurs entières $0, 1, \dots, n$

Pour
$$0 \le k \le n$$
, $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

$$\mathbb{E}(X) = n \ p \qquad \qquad \mathbb{V}(X) = n \ p(1-p)$$

Loi uniforme sur [0; 1]

J étant un intervalle inclus dans [0; 1],

P(J) = longueur de J

Loi exponentielle de paramètre λ sur $[0; +\infty[$,

dite aussi loi de durée de vie sans vieillissement

Pour
$$0 \le a \le b$$
, $P([a, b]) = \int_{a}^{b} \lambda e^{-\lambda t} dt$

Pour tout $c \ge 0$, $P([c, +\infty[) = 1 - \int_{-\infty}^{c} \lambda e^{-\lambda t} dt$

IV. ANALYSE

A. SUITES ARITHMÉTIQUES, SUITES GÉOMÉTRIQUES

Suite arithmétique de premier terme $u_0 \in \mathbb{R}$ et de raison $a \in \mathbb{R}$

Pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} = u_n + a$

$$u_n = u_0 + n a$$

Suite géométrique de premier terme $u_0 \in \mathbb{R}$ et de raison $b \in \mathbb{R}^*$

Pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} = b u_n$

$$u_n = u_0 b^n$$

Somme de termes

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Si
$$b \neq 1$$
 alors $1 + b + b^2 + ... + b^n = \frac{1 - b^{n+1}}{1 - b}$.

Limite d'une suite géométrique

Si
$$0 < b < 1$$
 alors $\lim_{n \to +\infty} b^n = 0$.

Si
$$b > 1$$
 alors $\lim_{n \to +\infty} b^n = +\infty$.

B. PROPRIÉTÉS ALGÉBRIQUES DE FONCTIONS USUELLES

1. Fonctions exponentielles et logarithmes

$$e^0 = 1$$

Pour tous réels a et b,

$$e^{a-b} = \frac{e^a}{b}$$

$$e^{a+b} = e^a e^b$$
 $e^{a-b} = \frac{e^a}{b}$ $(e^a)^b = e^{ab}$

Pour tout
$$x \in]0$$
; $+\infty[$, $\ln x = \int_1^x \frac{1}{t} dt$

$$\ln 1 = 0$$

Pour tous a > 0 et b > 0,

$$\ln a \; b = \ln a + \ln b$$

$$\ln \frac{a}{1} = \ln a - \ln b$$

Pour tout $a \in]0$; $+\infty[$ et pour tout $x \in \mathbb{R}$,

$$\ln\left(a^x\right) = x \ln a$$

Pour tout
$$x \in]0$$
; $+\infty[$, $\log x = \frac{\ln x}{\ln 10}$

Pour tout $x \in \mathbb{R}$ et pour tout $y \in]0; +\infty[$,

$$y = e^x$$
 équivaut à $x = \ln y$.

2. Racine nême

Pour tout $n \in \mathbb{N}^*$, pour tous $x \in [0; +\infty[$ et $y \in [0; +\infty[$,

$$y = \sqrt[n]{x}$$
 équivaut à $x = y^n$.

Pour tout $n \in \mathbb{N}^*$ et pour tout $x \in]0; +\infty[, x^{\frac{1}{n}} = \sqrt[n]{x}]$

C. LIMITES USUELLES DE FONCTIONS

Comportement à l'infini

$$\lim \ln x = +\infty$$

$$\lim e^x = +\infty$$

$$\lim_{x \to 0} e^x = 0$$

Comportement à l'origine

$$\lim_{x\to 0} \ln \, x = -\infty$$

$$\lim_{x \to 0} x \ln x = 0$$

Croissances comparées à l'infini

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \qquad \lim_{x \to -\infty} x e^x = 0$$

$$\lim x e^x = 0$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

Pour tout $n \in \mathbb{N}^*$,

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$

$$\lim_{x \to -\infty} x^n e^x = 0$$

$$\lim_{m \to +\infty} \frac{\ln x}{x^m} = 0$$

$$\lim_{n \to +\infty} x^n e^{-x} =$$

Comportement à l'origine de $\ln(1+x)$, e^x , $\sin x$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

D. DÉRIVÉES ET PRIMITIVES

Les formules ci-dessous peuvent servir à la fois pour calculer des dérivées et des primitives sur des intervalles convenables. Les hypothèses permettant de les utiliser doivent être vérifiées par les candidats.

1. Dérivées et primitives des fonctions usuelles

f(x)	f'(x)
k	0
x	1
$x^n, n \in \mathbb{N}^*$	$n x^{n-1}$
$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{1}{x^n}, n \in \mathbb{N}^*$	$-\frac{n}{x^{n+1}}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\ln x$	$\frac{1}{x}$
e^x	e^x
a^x	$a^x \times \ln a$
$\cos x$	$-\sin x$
$\sin x$	cos x
an x	$\frac{1}{\cos^2 x}$

2. Opérations sur les dérivées

$$(u+v)' = u'+v' \qquad (ku)' = ku' \text{ k étant une constante}$$

$$(uv)' = u'v+uv' \qquad \left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2} \qquad (v\circ u)' = (v'\circ u)u'$$

$$(e^u)' = e^uu' \qquad (\ln u)' = \frac{u'}{u}$$

$$(u^n)' = nu^{n-1}u' \quad (n\in\mathbb{N}^*)$$

E. CALCUL INTÉGRAL

Les hypothèses permettant d'utiliser les formules suivantes doivent être vérifiées par les candidats.

Formules fondamentales

Si
$$F$$
 est une primitive de f alors
$$\int_a^b f(t) \, \mathrm{d}t = F(b) - F(a).$$

$$\int_b^a f(t) \, \mathrm{d}t = -\int_a^b f(t) \, \mathrm{d}t$$
 Si $g(x) = \int_a^x f(t) \, \mathrm{d}t$ alors $g'(x) = f(x)$.

Formule de Chasles

$$\begin{split} &\int_a^c f(t) \, \mathrm{d}t = \int_a^b f(t) \, \mathrm{d}t + \int_b^c f(t) \, \mathrm{d}t \\ &Linearite \\ &\int_a^b (\alpha \, f(t) + \beta \, g(t)) \, \mathrm{d}t = \alpha \int_a^b f(t) \, \mathrm{d}t + \beta \int_a^b g(t) \, \mathrm{d}t \end{split}$$

Si
$$a \le b$$
 et $f \ge 0$ alors $\int_a^b f(t) dt \ge 0$.

0 1

Si
$$a \le b$$
 et $f \le g$ alors $\int_a^b f(t) dt \le \int_a^b g(t) dt$.

Inégalité de la moyenne

Si
$$a \le b$$
 et $m \le f \le M$
alors $m(b-a) \le \int_a^b f(t) dt \le M(b-a)$

Intégration par parties

$$\int_a^b u(t) \, u'(t) \, \mathrm{d}t = [u(t) \, v(t)]_a^b - \int_a^b u'(t) \, v(t) \, \mathrm{d}t$$
La valeur moyenne de f sur $[a, b]$ $(a \neq b)$ est $\frac{1}{b-a} \int_a^b f(t) \, \mathrm{d}t$.

F. ÉQUATIONS DIFFÉRENTIELLES

Pour tous $a\in\mathbb{R}^*$ et $b\in\mathbb{R}$, les solutions de l'équation différentielle $y'=a\,y+b$ sont les fonctions définies sur \mathbb{R} par $f(x)=C\,\mathrm{e}^{a\,x}-\frac{b}{a}$, $C\in\mathbb{R}$.

ENSEIGNEMENT DE SPÉCIALITÉ

A. CONGRUENCES

Pour tous $a\in\mathbb{Z},\ b\in\mathbb{Z}$, pour tout $p\in\mathbb{N}^*$, pour tout $n\in\mathbb{N}$ et $n\geqslant 2$,

si
$$a \equiv b \ [n]$$
 et $a' \equiv b' \ [n]$, alors

$$a+a'\equiv b+b'$$
 $[n]$ $a-a'\equiv b-b'$ $[n]$ $a^p\equiv b^p$ $[n]$

B. CARACTÉRISATION COMPLEXE DES SIMILITUDES

- Similitude directe: z' = a z + b où $a \in \mathbb{C}^*$, $b \in \mathbb{C}$
- Similitude indirecte: $z' = a \overline{z} + b$ où $a \in \mathbb{C}^*, b \in \mathbb{C}$

Dans les deux cas, le rapport de la similitude est égal à [a]

C. ENSEMBLES DE POINTS

Dans un repère orthonormal $(O; \vec{i}, \vec{j}, \vec{k})$, une équation du cylindre d'axe $(O; \vec{k})$ et de rayon r > 0 est $x^2 + y^2 = r^2$. Une équation d'un cône d'axe $(O; \vec{k})$ est $x^2 + y^2 = z^2 \tan^2 \theta$.

