Data-Driven Prognostics of Lithium-Ion Rechargeable Batteries Using Bilinear Kernel Regression

Charlie Hubbard, John Bavlsik, Chinmay Hegde and Chao Hu Iowa State University

Applications

• Electric/hybrid vehicles

Mobile devices

Medical devices

Image credit: http://uhaweb.hartford.edu/; https://rahulmittal.files.wordpress.com; http://www.carsdirect.com/

Health of an Li-Ion Battery

- Available signals
 - Current
 - Voltage
 - Internal temperature
- Battery-health indicators
 - State of Charge (SOC)
 - State of Health (SOH)
 - Remaining Useful Life (RUL)

Remaining Useful Life Estimation

- Remaining Useful Life (RUL)
 - End of Service limit determined by application
 - Measured in charge/discharge cycles

Methods for SOH/RUL Estimation

- Model-based
 - Assume knowledge of physical system
 - Fit data to model of system
 - Si, et. all 2013
 - Gebraeel & Pan 2008
- Data-driven
 - Assume no knowledge of physical system
 - Machine learning/pattern recognition methods determine model
 - Neural Networks Liu, et. all 2010;
 - Relevance Vector Machines Hu, et. all 2015;

Data Deficiencies

- Types of deficiencies
 - Missing data
 - Noise

- Handling of deficiencies
 - Remove spurious data points
 - Allow model to ignore them

Our Approach

- Data-driven
- Least-squares regression based
 - Add additional regression step to find (and remove) noise in training data
 - Add kernel to transform data
 - Add regularization to encourage sparsity

Least-squares Regression

- Feature vector: *x*
 - Contains n most recent capacity readings
- Data matrix: $X = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{pmatrix}$

Empirically determined RUL: y

• RUL vector:
$$Y = \vdots$$
 y_1
 \vdots

Least-squares Regression

• Given *X* and *Y* , solve:

$$\min_{w} \|Y - Xw\|_2^2$$

- Prediction vector: \widehat{w}
- Predicted RUL: $\hat{y} = \langle x, \hat{w} \rangle$

Kernel Least-Squares Regression

- Replace X with kernel matrix, K
 - Transform data to higherdimensional space
 - Allows us to fit linear predictor, w to non-linear data
- Kernel choice is flexible
 - Dependent on data set
 - Gaussian Kernel is a common choice

Gaussian Kernel Matrix, K

• *i*th row of *K* given by:

$$K_i = \exp(-\frac{\|x - x_i\|_2^2}{r^2})$$

- Add a vector of ones as the first column of K
 - Allow of non-zero "y-intercept" for linear function

$$K_{i,1} = \frac{1}{1}$$

$$K_{i,(j\neq 1)} =$$

$$\left(\exp(-\frac{\|x_1 - x_1\|_2^2}{r^2}) \quad \cdots \quad \exp(-\frac{\|x_1 - x_{m+1}\|_2^2}{r^2}) \right)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\exp(-\frac{\|x_m - x_1\|_2^2}{r^2}) \quad \cdots \quad \exp(-\frac{\|x_m - x_{m+1}\|_2^2}{r^2}) \right)$$

Kernel Least-Squares Regression

• Given X and Y, obtain \widehat{w} by solving:

$$\min_{w} ||Y - Kw||_{2}^{2}$$

• Given feature vector x, compute: k(x) where $k(x)_1 = 1$,

$$k(x)_j = \exp\left(-\frac{\|x - x_j\|_2^2}{r^2}\right), j = \{2, \dots, m+1\}$$

• Predicted RUL: $\hat{y} = \langle k(x), \hat{w} \rangle$

Kernel Regression and LASSO

Overfitting

- Kernel regression can over-fit to training data
- Forcing w to be sparse can prevent over-fitting
 - w will be allowed to have only a few non-zero entries
 - Only the most representative points will be used to calculate \hat{y}

Enforcing Sparsity

 Least Absolute Shrinkage and Selection Operator (LASSO)

• Rewrite regression problem as: $\min_{w} ||Y - Kw||_{2}^{2} + \lambda ||w||_{1}$

Noise and Bilinear Regression

Noise appears in almost every data set

• Writing $K = K_{true} + E$ we look to find and remove errors from K to obtain more accurate predictions

Bilinear Regression

• Kernel regression with LASSO (noiseless training data): $\min_{w} \|Y - K_{true}w\|_{2}^{2} + \lambda \|w\|_{1}$

• With noise in training data:
$$K-E=K_{true}$$

$$\min_{w,E} \ \|Y-(K-E)w\|_2^2 + \lambda \|w\|_1$$

• Include a regularization term on E $\min_{w,E} \|Y - (K - E)w\|_2^2 + \lambda \|w\|_1 + \tau \|E\|_p^p$

Algorithm – Bilinear Regression

Setup

- **INPUTS:** Training data $\{(\mathbf{x}_{i}, y_{i})\}$, i=1, 2, ..., n.
- OUTPUTS: Estimated kernel prediction vector $\widehat{\mathbf{w}}$.
- **PARAMETERS:** Optimization parameters λ and τ , kernel bandwidth r, number of iterations T

Algorithm

Initialize: $\widehat{\mathbf{w}_0} \leftarrow 0, \widehat{E_0} \leftarrow 0, t \leftarrow 0.$

Compute: the kernel matrix *K*.

While t < T do:

$$t \leftarrow t + 1$$

Set $\overline{K} = K - \widehat{E_t}$. Solve:

$$\widehat{\mathbf{w}}_{t+1} = \arg\min \, \lambda ||\mathbf{w}||_1 + ||\mathbf{y} - \overline{K}\mathbf{w}||_2^2$$

Set $\overline{\mathbf{y}} = \mathbf{y} - K\widehat{\mathbf{w}}_{t+1}$. Solve:

$$\hat{E}_{t+1} = \arg\min \ \tau \| vec(E) \|_p^p$$

$$+\|\bar{\mathbf{y}}+E\widehat{\mathbf{w}}_{t+1}\|_2^2$$

Record prediction error:

$$PredErr(t) = \left\| \mathbf{y} - \left(K - \hat{E}_{t+1} \right) \widehat{\mathbf{w}}_{t+1} \right\|_{2}^{2}$$

Find t^* that minimizes Prederr(t).

Output: $\widehat{\mathbf{w}} \leftarrow \widehat{\mathbf{w}}_{t^*}$

Data Set

Test Cells

- 8 test cells
- Normalized capacity data from 700 charge/discharge cycles
 - Cells were cycled from 2002-2012
 - Weekly discharge rate

Noise Addition

- Imbued with Gaussian noise
 - Zero mean
 - std. dev. σ = {0, 0.005, 0.010, 0.015}

Experiment Setup

Cross Validations and Error Metric

- Leave-one-out cross validations (CVs)
- Root mean squared error (RMSE)

$$RMSE = \sqrt{\frac{1}{U} \sum_{l=1}^{8} \sum_{i \in \mathbf{I}_{l}} \left(\hat{y}_{\mathbf{X} \setminus \mathbf{X}_{l}}(\mathbf{x}_{i}) - y(\mathbf{x}_{i}) \right)^{2}}$$

Test Procedure

 Feature vectors: three most recent capacity readings

- For each noise level σ
 - Perform two 8-fold CVs

Results

RMSE								
Prediction Method	Noise in Training Data (std. dev of Gaussian noise)				Noise in Test and Training Data (std. dev of Gaussian noise)			
r rediction iviethod	0	0.005	0.01	0.015	0.005	0.01	0.015	
Lasso	31.24	33.052	34.72	50.42	42.33	61.53	83.67	
Bi-Lasso	30.26	31.62	33.28	46.22	40.96	60.16	82.40	
Bi-Tikhonov	29.57	30.92	32.80	48.88	40.57	60.58	83.52	
RVM	30.91	32.67	36.16	47.67	41.50	60.22	82.58	

Results

Noise-free test data

	RMSE						
	0	0.005	0.01	0.015			
Lasso	31.24	33.052	34.721	50.415			
Bi-Lasso	30.259	31.615	33.282	46.222			
Bi-Tikhonov	29.572	30.921	32.8	48.88			
RVM	30.91	32.67	36.16	47.67			

Error CDF's

Testing with Noisy Data

Summary

- RUL predictions in batteries can be of critical importance
- Capacity fade data is nonlinear and often noisy
- Our model leverages:
 - Error estimation (and removal)
 - Data transformations
 - Sparse predictions
- Key contribution: Provide accurate RUL estimation in the presence of noisy data

References

- Hubbard, Bavlisk, Hu, Hegde (2016).
 Data-Driven Prognostics of Lithium-Ion Rechargeable Batteries Using Bilinear Kernel Regression.
 Annual Conference of the Prognostics and Health Management Society 2016.
- Liu, J., Saxena, A., Goebel, K., Saha, B., & Wang, W. (2010).

 An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries.

 National Aeronautics and Space Administration Moffett Field, CA Ames Research Center.
- Hu, C., Jain, G., Schmidt, C., Strief, C., & Sullivan, M. (2015).
 - Online estimation of lithium-ion battery capacity using sparse Bayesian learning. *Journal of Power Sources*, 289, 105-113.
- Si, X. S., Wang, W., Hu, C. H., Chen, M. Y., & Zhou, D. H. (2013).

 A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. *Mechanical Systems and Signal Processing*, 35(1), 219-237.
- Gebraeel, N., & Pan, J. (2008).
 Prognostic degradation models for computing and updating residual life distributions in a time-varying environment. *IEEE Transactions on Reliability*, 57(4), 539-550