RNA sequencing

- part 1 -

Deutsches Krebsforschungszentrum Angewandte Bioinformatik (Prof. Dr. Benedikt Brors) Dr. Siao-Han Wong (s.wong@dkfz.de)

Disclaimer

- Based on material from:
 - Benedikt Brors
 - Matthias Schlesner
 - Lena Voithenberg
 - Óscar González-Velasco
 - Roman Kurilov
 - et al.

Outline

Outline

Considerations

What are the goals of the experiment?

- differential expression analysis
- identification of rare transcripts
- detection of splice junctions
- transcriptome assembly

What are the characteristics of the system?

- RNA composition, e.g. rRNA, mRNA, miRNA
- introns
- high degree of alternative splicing
- reference genome/transcriptome available?

https://microbenotes.com/rna-splicing/

Experimental design

Comparison/Control

appropriate control condition

Account for confounding factors

groups based on level of confounding factor

Replicates

- sample size
- biological (and technical) replicates

Randomization

- Replicates reduce variance in point estimates
- Give a more realistic answer in heterogeneous settings
- Different levels of replication
 - Technical replicates (e.g. sequence same sample twice)
 - Biological replicates (sequence different samples from each condition)
 - Independent samples
- Biological variation typically much higher then technical "noise"

- Technical replicates: Prepare several libraries from the same sample
 - control for measurement accuracy

https://www.dreamstime.com/photos-images/tissue-culture-flask.html

- Technical replicates: Prepare several libraries from the same sample
 - control for measurement accuracy

- allows for conclusions about just this sample/ preparation and measurement accuracy
- → usually not needed for RNAseq

- Biological replicates: several samples from the same cell line
 - control for measurement accuracy and variations in environment and the cells' response to them

https://www.dreamstime.com/photos-images/tissue-culture-flask.html

- Biological replicates: several samples from the same cell line
 - control for measurement accuracy and variations in environment and the cells' response to them
 - **⇒** allows for conclusions about the specific cell line

- Biological replicates: samples from multiple individuals controls for
 - measurement accuracy,
 - variations in environment, and
 - variations in gene expression levels (between cells), or
 - variations in genotype (between individuals)

→ allows for conclusions about the species

Number of replicates

- Two replicates permit to
 - globally estimate variation
- Sufficiently many replicates permit to
 - estimate variation for each gene
 - randomize out unknown covariates
 - spot outliers
 - improve precision of expression and fold-change estimates
- Statistical rule of thumb: at least 6 per condition
 - But depends: in isogenic cell lines, less may be needed
 - In heterogeneous patient cohorts, many more are advisable
- Systematic analysis: Schurch et al., 2016 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878611/)

Replicates: Example I

Research question: are there any differences between untreated and treated plants?

Inspired by Functional Genomics Center Zurich

Replicates: Example I

Research question: are there any differences between untreated and treated plants?

Inspired by Functional Genomics Center Zurich

Avoid batch effects

Batch effects

- technical biases
- experimental conditions are confounded (e.g.
 - all untreated plants on one field, or
 - RNA from all treated cells extracted on day 1 and RNA from all controls extracted on day 2
 - controls and treated cells in different library preparation batches/sequencing runs
 - cases from different sample sites/laboratories)

=> reduce confounding factors:

- design your experiment (discuss with biostatisticians or bioinformaticians)
- randomize sample handling as much as possible
- during data quality control check for batch effects (principle component analysis, cluster analysis...)

Avoid batch effects - normalization

Zhu et al. (2017) Genome Medicine 9:108

Sequencing conditions

Sequencing depth

- dependent on scientific question (e.g. special interest in genes with low abundance)
- for transcript quantification: ~10-30 Mio reads
- for transcript reconstruction: ~200 Mio reads

http://genome.ucsc.edu/ENCODE/protocols/dataStandards/RNA_standards_v1_2011_May.pdf

Single-end or paired-end?

- single-end sequencing sufficient for expression level quantification
- paired-end: better mapping in low complexity regions

Outline

Visualize mapped reads

Genome browser

- UCSC Genome Browser: https://genome.ucsc.edu/
- Integrative Genomics Viewer: http://software.broadinstitute.org/software/igv/

Robinson et al. (2011) Nat. Biotechnology 29:24

Quantification of gene expression

=> detect amount of sequenced reads mapped to a specific gene or transcript

Levels of quantification

Gene level

- simple
- does not consider differentially spliced transcripts

Exon level

allows one to detect differential exon usage

Transcript/Isoform level

detection of isoform-specific reads

Quantification of gene expression

Gene models

- region of a gene thought to be transcribed into RNA
- source: Ensembl, UCSC, GENCODE, RefSeq, etc.
- formats: GTF, GFF, etc.

GTF file content

https://davetang.github.io/muse/read_gtf.html

Software for counting reads per genes or transcripts

- HTSeq
- featureCounts
- Cufflinks
- StringTie
- Kallisto
- Salmon

Many more...

HTSeq counting mode

Result of counts quantification

Counts per gene cannot be interpreted as the gene's expression level

Observation: Gene 5 has twice more counts than Gene 1

Read counts	Sample A	Sample B	Sample C
Gene 1	64	60	74
Gene 2	321	753	365
Gene 3	42	60	54
Gene 4	23	53	27
Gene 5	128	131	129

=> Is Gene 5 expression twice as high as the one from Gene 1?

Gene count matrix

Contributing factors

1. Expression level

Gene count matrix

Contributing factors

- 1. Expression level
- 2. Length of gene

gene 1 gene 5

Output read counting

Counts per gene cannot be interpreted as the gene's expression level

Observation: Gene 2 has twice more counts in Sample B than in Sample C

Read counts	Sample A	Sample B	Sample C
Gene 1	64	60	74
Gene 2	321	753	365
Gene 3	42	60	54
Gene 4	23	53	27
Gene 5	128	131	129

=> Is expression of Gene 2 twice as high in Sample B than in Sample C?

Output read counting

Contributing factors

- Expression level
- Differences in sequencing depth between the different samples

https://uclouvain-cbio.github.io/WSBIM2122/sec-rnaseq.html

Outline

From counts to expression measures

We want to normalize read counts for:

- 1. The sequencing depth
 - Sequencing runs with more depth will have more reads mapping to each gene
- 2. The length of the gene
 - Longer genes will have more reads mapping to them

Expression measures:

- RPKM (Reads Per Kilobase Million) or FPKM (Fragments Per Kilobase Million)
- TPM (Transcripts Per Million)

Introduced yesterday

Expression measures: RPKM and FPKM

- RPKM: Reads per kilobase per million mapped reads
- FPKM: Fragments per kilobase per million mapped reads (for pairedend data)

$$ext{RPKM}_g = rac{r_g imes 10^9}{ ext{fl}_g imes R}$$
 r_g: reads mapped for each gene R: total number of mapped reads for the sample $\sum r_g$ fl_g: feature length of each gene

Explanation:

Normalize for gene length ("reads per kilobase"): $\frac{r_g}{fl_g} 10^3$

Normalize for total number of reads ("per million $\frac{R}{10^6}$ Mapped reads"):

$$RPKM_g = \frac{\frac{r_g 10^3}{fl_g}}{\frac{R}{10^6}} = \frac{r_g \times 10^9}{fl_g \times R}$$

Normalization: RPKM/FPKM

 Problem: the probability of picking a read from a target does not directly relate to the relative target abundance in the sample

Introduced yesterday

TPM: transcripts per million

$$TPM = \frac{r_g \times rl \times 10^6}{fl_g \times T} \qquad T = \sum_{g \in G} \frac{r_g \times rl}{fl_g}$$

- r_q : number of reads for gene g
- *I_r*: read length
- fl_a: length of gene/transcript/exon
- T: total number of transcripts sampled in a sequencing run
- Proportional to RPKM, but with a sample-specific scaling factor; T estimate for #transcripts derived from #mapped reads per gene normalized by length of gene

$$\mathsf{TPM}_i = (\frac{FPKM_i}{\sum_j FPKM_j}) \cdot 10^6$$

Summary

