绿皮书 A Practical Guide to Quantitative Finance Interviews

LHY

2025年5月29日

目录

1	Gen	ieral P	rinciples 一般原则	1		
2	Bra	Brain Teasers 脑筋急转弯				
	2.1	Proble	em Simplification 问题简化	3		
		2.1.1	Screwy pirates 疯狂的海盗	3		
		2.1.2	Tiger and sheep 老虎和羊	4		
	2.2	Logic	Reasoning 逻辑推理	4		
		2.2.1	River crossing 过河问题	4		
		2.2.2	Horse race 赛马	4		
	2.3	Think	ing Out of the Box 跳出去思考	5		
		2.3.1	Box packing 盒子包装	5		
		2.3.2	Calendar cubes 日历方块	5		
		2.3.3	Door to offer 幸运门	5		
		2.3.4	Message delivery 信件传输	5		
		2.3.5	Last ball 最后的球	6		
		2.3.6	Quant salary 薪水问题	6		
	2.4	Applio	cation of Symmetry 对称性的使用	6		
		2.4.1	Coin piles 硬币堆	6		
		2.4.2	Mislabeled bags 错误标签的书包	7		
		2.4.3	Wise men 智者	7		
	2.5	Series	Summation 级数相加	7		
		2.5.1	Missing integers 丢失的整数	7		
		2.5.2	Counterfeit coins 找出假币	8		
		2.5.3	Glass balls 玻璃球	8		

	2.6	The P	igeon Hole Principle 鸽巢原理	8
		2.6.1	Matching socks 分袜子	8
		2.6.2	Have we met before 拉姆齐理论	9
		2.6.3	Ants on a square	9
	2.7	Modul	lar Arithmetic 模运算	9
		2.7.1	Prisoner problem 囚犯问题	9
		2.7.2	Division by 9 9 的倍数	10
	2.8	Math	Induction 数学归纳法	10
		2.8.1	Chocolate bar problem 巧克力棒问题	10
	2.9	Proof	by Contradiction 反证法	10
		2.9.1	Irrational number 无理数	10
3	Pro	babilit	y Theory 概率论	11
	3.1	Basic	Probability Definitions and Set Operations 基本概念	11
		3.1.1	Coin toss game 抛硬币游戏	11
		3.1.2	Drunk passenger 喝醉的乘客	11
		3.1.3	N points on a circle 圆上的点	12
	3.2	Combi	inatorial Analysis 组合分析	12
		3.2.1	Hopping rabbit 跳跃的兔子	12
		3.2.2	Screwy pirates 疯狂的海盗	13
		3.2.3	Derangement 完全错位排列	13
		3.2.4	Birthday problem 生日问题	13
		3.2.5	Cubic of integer 整数立方	13
	3.3	Condi	tional Probability and Bayes's formula 条件概率和贝叶斯公式	14
		3.3.1	Boys and girls 男孩女孩	14
		3.3.2	Unfair coin 不公平的硬币	14
		3.3.3	Von Neumann's Method 冯·诺伊曼方法	15
		3.3.4	Dice order 骰子的顺序	15
		3.3.5	Monty Hall problem 蒙提霍尔问题	15
		3.3.6	Branching Process 分支过程	15
		3.3.7	Candies in a jar 蜜罐中的糖果	16
		3.3.8	Coin toss game 扔硬币游戏	16
		3.3.9	Russian roulette series 俄罗斯转轮	17

目录		iii
	3.3.10 Gambler's Ruin Problem 赌徒破产问题	17
	3.3.11 Polya urn model 波利亚罐子模型	17
	3.3.12 Cars on road 路上的车	18
3.4	Discrete and Continuous Distributions 离散与连续分布	18

iv

Chapter 1

General Principles 一般原则

- Build a broad knowledge base
- Practice your interview skills
- Listen carefully
- Speak your mind
- Make reasonable assumptions

Chapter 2

Brain Teasers 脑筋急转弯

2.1 Problem Simplification 问题简化

2.1.1 Screwy pirates 疯狂的海盗

Question:

五个海盗有 100 个金币, 他们采用以下方式分配: 最年长的海盗提出分配策略, 所有人进行投票, 如果超过 50% 的海盗赞同, 通过, 反之最年长的海盗喂鲨鱼. 然后次年长的海盗开始. 假设所有海盗都是完美理性: 存活为主, 尽量获得更多金币, 如果两种策略差不多, 船上海盗越少越好.

Solution:

考虑两个海盗的简单情况,海盗代号从1到5,1大5小.

对于只有4和5的情况,无论4提出什么策略都会通过,所以5会避免出现此种情况.

对于 3、4 和 5, 3 知道如果 5 在这种策略下一无所获的话, 3 就会喂鲨鱼, 所以 3 给自己 99 个金币, 给 5 一个, 这会保障 3 的策略通过. 在这种情况下, 4 一无所获, 所以他要避免这种情况.

对于 2、3、4 和 5, 2 给自己 99 个, 给 4 一个, 会保证 2 的策略通过. 3 和 5 一无所获, 所以会避免这种情况.

对于 1、2、3、4 和 5, 1 给自己 98 个, 3 和 5 各一个, 1 的策略通过. 这也是实际会采取的策略.

2.1.2 Tiger and sheep 老虎和羊

Question:

一百只老虎和一只羊被放在一个只有草的神奇小岛上. 老虎可以吃草, 但它们更愿意吃羊. 假设 A. 每次只能有一只老虎吃一只羊, 而这只老虎吃完羊后自己也会变成一只羊. B. 所有的老虎都很聪明, 而且非常理性, 它们都想生存下去. 那么羊会被吃掉吗?

Solution:

两只老虎时不会, 三只老虎时会, 四只老虎时不会. 以此类推.

2.2 Logic Reasoning 逻辑推理

2.2.1 River crossing 过河问题

Question:

四个人, A、B、C 和 D 需要过河. 唯一的过河方式是通过一座旧桥, 最多只能容纳两人同时过桥. 由于天黑, 他们不能没有火炬过桥, 而他们只有一个火炬. 所以每对人只能以较慢的人的速度行走. 他们需要尽快地将所有人送到对岸. A 是最慢的, 需要 10 分钟过桥; B 需要 5 分钟; C 需要 2 分钟; D 需要 1 分钟. 那么将所有人送到对岸所需的最短时间是多少?

Solution:

关键是要认识到, 10 分钟的人应该和 5 分钟的人一起走, 这不应该发生在第一次穿越时, 否则其中一人就必须返回. 因此, C 和 D 应先过河 (2 分钟); 然后让 D 返回 (分钟); A 和 B 过河 (10 分钟); 让 C 返回 (2 分钟); C 和 D 再次过河 (2 分钟).

2.2.2 Horse race 赛马

Question:

这里有 25 匹马,每匹马以恒定的速度跑步,且每匹马的速度都不同于其他 马.由于跑道只有 5 条道,每场比赛最多只能有 5 匹马.如果你需要找到 3 匹最快的马,需要举行的最少比赛次数是多少?

Solution:

首先举行 5 场比赛, 得出每场比赛的前三名. 第一比赛, 得出前三名. 第一的第二第三, 第二的第三, 第三进行比赛, 得出前两名.

2.3 Thinking Out of the Box 跳出去思考

2.3.1 Box packing 盒子包装

Question:

把 53 块 $1 \times 1 \times 4$ 的砖放进 $6 \times 6 \times 6$ 的盒子.

Solution:

思考 $6 \times 6 \times 6$ 分成 27 个 $2 \times 2 \times 2$ 的小盒子, 14 个涂成黑色, 13 个涂成白色, 交替涂. 一黑一白最多可以放 4 个砖, 所以最多可以放 $13 \times 4 = 52$ 个砖.

2.3.2 Calendar cubes 日历方块

Question:

两个定制骰子, 印上 0-9 数字, 来显示每个月的日期, 应该怎么安排? *Solution:*

- 第一个: 012345
- 第二个: 012678

2.3.3 Door to offer 幸运门

Question:

有两扇门,一扇幸运一扇不幸.门前有守卫,一个讲真话,一个说假话.只能问一个守卫一个是或者否的问题,怎么知道幸运门?

Solution:

问一个守卫"对面那个守卫会告诉我这个门是幸运门吗".

2.3.4 Message delivery 信件传输

Question:

你需要使用一个盒子给同事传信,你们各有一把锁,锁不一样,只有本人可以打开,没有上锁的盒子里面的东西会被偷走.怎么给同事信件? Solution:

你先上锁,给同事后同事上锁,寄回来你开锁再给同事,同事开锁.

2.3.5 Last ball 最后的球

Question:

包中有 20 个蓝球和 14 个红球, 不放回的拿两个球. 如果同色, 放一个蓝球, 异色, 放一个红球, 你有无限的球. 包中最后的球是什么颜色? *Solution:*

- 拿出两个蓝球: 蓝球-1
- 拿出两个红球: 红球-2, 蓝球 +1
- 拿出异色: 蓝球-1

如果是 14 个红球, 红球一定成对拿走, 最后一个是蓝球. 如果是 13 个红球, 最后一个是蓝球.

2.3.6 Quant salary 薪水问题

Question:

如何在不知道其他人工资的情况下计算平均工资?

Solution:

第一个人的工资加随机数,如何传给其他人,最后第一个人减去随机数得到平均工资.

2.4 Application of Symmetry 对称性的使用

2.4.1 Coin piles 硬币堆

Question:

在一个黑暗的房间里面,有 1000 枚硬币,980 枚朝上,20 枚朝下. 你可以无数次反转硬币,可以把硬币分成两堆,朝下的个数一样吗?

Solution:

随机找到 20 个分成一堆, 全部反转, 即可达成目标.

2.4.2 Mislabeled bags 错误标签的书包

Question:

有三个书包,一个全是苹果,一个全是橘子,一个是苹果和橘子的混合,但是标签全部错误.最少拿多少个水果,可以分辨出来.

Solution:

因为标签全部错误, 所以只需要看混合书包. 混合书包一定的纯的, 拿出一个水果, 就可以判断全部.

2.4.3 Wise men 智者

Question:

国王抓了 50 个智者, 他有一个反着的杯子, 每分钟他可以随机叫一个智者来反转或不动杯子. 当有人正确地说他已经叫了全部智者, 那么所有智者得救. 所有智者只能交流一次. 有什么策略可以使所有人得救?

Solution:

选出一个传话者,他每次见到正的杯子会倒过来,剩下的人第一次看见倒着的杯子要正过来,传话者进行计数,49次时即可.

2.5 Series Summation 级数相加

$$\sum_{n=1}^{N} n = \frac{N(N+1)}{2}$$

$$\sum_{n=1}^{N} n^2 = \frac{N(N+1)(2N+1)}{6} = \frac{N^3}{3} + \frac{N^2}{2} + \frac{N}{6}$$

2.5.1 Missing integers 丢失的整数

Question:

在 1-100 的范围里面, 有 98 个不一样的数字, 怎么找到两个失去的数字?

Solution:

计算 98 个数字的和和平方和, 与 1-100 的结果做差, 解方程组可得.

2.5.2 Counterfeit coins 找出假币

Question:

10 个袋子,每个袋子有 100 个硬币,所有硬币重 10 克,只有一个袋子有假币,假币重 9 或者 11 克. 怎么使用一个显示精确重量的电子秤一次称出那个袋子有假币?

Solution:

每一个袋子各自取不同数量的硬币,一起称量.看理论值与实际值的差,即可猜出哪个袋子有假币.

2.5.3 Glass balls 玻璃球

Question:

你在 100 层楼上, 有两个玻璃球. 你可以往下扔球, 超过 X 层时, 球会破. 考虑最坏的情况, 为了得到 X, 最少要扔多少次球?

Solution:

假设在 N 层扔球, 球破了, 最坏要 N 次才可以得出. 球没有破, 尝试在 N+N-1 层扔球, 球破, 最坏要 N 次确定. 球没有破, 尝试 N+N-1+N-2 层, 以此类推最 多层数为 N(N+1)/2, 对于 100, N=14.

2.6 The Pigeon Hole Principle 鸽巢原理

如果鸽巢数量比鸽子少,那么在将所有鸽子放到鸽巢后,一定有至少一个鸽巢容纳多只鸽子.

2.6.1 Matching socks 分袜子

Question:

你抽屉里面有 2 只红外子, 20 只黄袜子, 31 只蓝袜子. 你要随机在抽屉拿多少只袜子, 才可以保证有成对的袜子?

Solution:

一共3个颜色,4只就可以.

2.6.2 Have we met before 拉姆齐理论

Question:

6个人的聚会中,一定有三个人互相不认识或者互相认识.

Solution:

对 A 来说, 至少 3 人认识或者不认识 A. 这三个人中或者最少两个人认识, 或者都不认识.

2.6.3 Ants on a square

Question:

有 51 个蚂蚁在长度为 1 的广场上, 是否可以拿一个直径 1/7 的圆盘盖住至少三个蚂蚁?

Solution:

将广场分成25部分,其中至少有一个区域最少有三只蚂蚁.

2.7 Modular Arithmetic 模运算

2.7.1 Prisoner problem 囚犯问题

Question:

明天,一百名囚犯将获得自由的机会. 他们都被告知,每人将被分配戴红色或蓝色的帽子. 每名囚犯都能看到其他人的帽子,但看不到自己的帽子. 帽子的颜色是随机分配的,一旦帽子被戴到头上,他们就不能以任何形式与他人交流,否则他们将被立即处决. 囚犯将被随机叫出,叫出的囚犯将猜测自己的帽子的颜色. 每名囚犯都会公开宣布自己的帽子的颜色,以便其他人都能听到. 如果囚犯正确猜测了自己的帽子的颜色,他将被立即释放;否则他将被处决. 他们被给予一夜来制定策略,以拯救尽可能多的囚犯. 他们可以采取什么样的策略,并且可以保证拯救多少囚犯?

Solution:

最少 99 个. 第一个犯人看红色帽子个数, 奇数就是红色, 反之蓝色. 其他人根据他的回答判断自己的颜色.

2.7.2 Division by 9 9 的倍数

Question:

证明任意一个数, 若所有整数位相加是 9 的倍数, 则该数是 9 的倍数. Solution:

$$a = a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_1 10 + a_0$$
, 若 $a_n + \dots + a_1 + a_0 = 9x$, 则 $a - 9x = a_n (10^n - 1) + a_{n-1} (10^{n-1} - 1) + \dots + a_1 (10 - 1)\%9 = 0$

2.8 Math Induction 数学归纳法

2.8.1 Chocolate bar problem 巧克力棒问题

Question:

一个巧克力有 6×8 样子,可以把巧克力分成两份 6×3 , 6×5 . 多少次可以把巧克力分成 48 份?

Solution:

每次断裂都可以使巧克力数量 +1, 所以有 48-1=47 次.

2.9 Proof by Contradiction 反证法

2.9.1 Irrational number 无理数

Question:

有理数可以使用分数表示, 证明 $\sqrt{2}$ 是无理数.

Solution:

假设 $\sqrt{2} = \frac{m}{n}$, 其中 mn 不可约分. 可得 $2n^2 = m^2$, m 是偶数, m = 2x, $m^2 = 4x^2$, $n^2 = 2x^2$, 得出 n 是偶数, mn 可以约分.

Chapter 3

Probability Theory 概率论

3.1 Basic Probability Definitions and Set Operations 基本概念

Outcome (ω): The outcome of an experiment or trial

Sample space OR Probability space Ω : The set of all possible outcomes of an experiment.

3.1.1 Coin toss game 抛硬币游戏

Question:

A 有 n+1 个硬币, B 有 n 个硬币. 抛完所有硬币后, A 朝上的数量比 B 多的概率是?

Solution:

考虑 A 有 n 个硬币, 这时候有对称性. 一共三种可能, 一方多或者一样 多. 可得式子 2x + y = 1. 考虑 A 多出的一个硬币, A 比 B 多的概率变成 x + 0.5y = x + 0.5(1 - 2x) = 0.5

3.1.2 Drunk passenger 喝醉的乘客

Question:

有 100 个人坐飞机,每个人都有自己的座位.第一个乘客喝醉了,随机坐了一个座位.如果其他乘客发现自己的座位被占,会随机挑选一个座位.第一百个

乘客正确做到自己座位的概率?

Solution:

只考虑第一个座位和第一百个座位,只有两种可能.第一个座位在第一百个之前坐,或在之后坐.两个事件概率相同.对于第一种情况,会成功做到自己座位上面,概率是 0.5.

3.1.3 N points on a circle 圆上的点

Question:

N 个点随机分布在圆上,它们都在一个半圆的概率是多少? *Solution:*

若选出任意一点为起始点,则所有点都在半圆的概率是 $\frac{1}{2}^{N-1}$,因为所有点等价,所以最终答案是 $N \times \frac{1}{2}^{N-1}$.

3.2 Combinatorial Analysis 组合分析

Permutation: A rearrangement of objects into distinct sequence.

$$\frac{n!}{n_1!n_2!...n_r!}$$

Combination: An unordered collection of objects.

$$\binom{n}{r} = \frac{n!}{(n-r)!r!}$$

Binomial theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$

3.2.1 Hopping rabbit 跳跃的兔子

Question:

兔子在 n 层台阶上, 可以一次跳下一层或者两层. 有多少种方式跳到地面? Solution:

跳下一层时, 问题变成 n-1 层, 跳下两层时, 问题变成 n-2 层. 所以可以写出 f(n) = f(n-1) + f(n-2). 根据 n=1 和 n=2 的情况, 可以得出解是斐波那契数 列.

3.2.2 Screwy pirates 疯狂的海盗

Question:

11 个海盗把宝藏放在一个保险箱里面,保险箱有很多锁,每个人有很多钥匙. 只有在最少 6 个人拥有相同锁的钥匙时,保险箱才可以打开.为了保证随机挑选的 6 个海盗都可以打开箱子,需要多少锁,每个海盗要带多少钥匙?

Solution:

需要 $\binom{11}{6}$ = 462 把锁, 那么一共 462×6 把钥匙, 每个人要带 462×6/11 = 252 把钥匙.

3.2.3 Derangement 完全错位排列

Question:

在排列中没有任何一个元素保持在原来的位置上的概率.

Solution:

$$D_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} \right)$$
$$D_n = \left\lfloor \frac{n!}{e} + \frac{1}{2} \right\rfloor$$

3.2.4 Birthday problem 生日问题

Question:

一年有 365 天, 为了让两个同学有相同生日的概率大于 0.5, 班里要有多少同学.

Solution:

可以转换为班里没有同学有相同生日的概率小于 0.5. 即 $\frac{365\times364\times\cdots\times(365-n+1)}{365^n}$ < 1/2. n=23.

3.2.5 Cubic of integer 整数立方

Question:

x 是 $1-10^{12}$ 的一个整数, x 的立方的最后两个数字是 11 的概率是多少? *Solution:*

x 总可以写为 a+10b, a 是 x 的最后一位. 这样 $x^3 = (a+10b)^3 = a^3 + 30a^2b + 300ab^2 + 1000b^3$, 最后一位数字只和 a 有关, 得出 a=1. 进而推出 b 的最后一位是 7, x 的最后两位是 71.

3.3 Conditional Probability and Bayes's formula 条件概率和贝叶斯公式

Conditional probability P(A|B): If P(B) > 0, then $P(A|B) = \frac{P(AB)}{P(B)}$ is the fraction of B outcomes that are also A outcomes.

Multiplication Rule:

$$P(E_1E_2\cdots E_n) = P(E_1)P(E_2 \mid E_1)P(E_3 \mid E_1E_2)\cdots P(E_n \mid E_1\cdots E_{n-1})$$

Bayes' Formula:

$$P(F_j \mid E) = \frac{P(E \mid F_j)P(F_j)}{\sum_{i=1}^{n} P(E \mid F_i)P(F_i)}$$

3.3.1 Boys and girls 男孩女孩

Question:

公司为至少有一个男孩的母亲举行宴会, Jackson 有两个孩子, 被邀请了, 那么两个孩子都是男生的概率是?

Solution:

B 代表最少有一个男孩的事件,A 代表都是男孩的事件。 $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(\{(b,b)\})}{P(\{(b,b),(b,g),(g,b)\})} = \frac{1/4}{3/4} = \frac{1}{3}$

3.3.2 Unfair coin 不公平的硬币

Question:

你有 1000 枚硬币, 999 正常, 一个不正常有两个正面. 你随机选择一个硬币, 扔了 10 次都朝上. 那么选出的是不正常的硬币的概率是? *Solution:*

3.3. CONDITIONAL PROBABILITY AND BAYES'S FORMULA 条件概率和贝叶斯公式15

应用贝叶斯公式, $P(A \mid B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$. A 是选出错误硬币事件, A^c 是选出正确硬币事件,B 是全部朝上事件.带入可得结果, $P(A \mid B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)} = \frac{1/1000 \times 1}{1/1000 \times 1 + 999/1000 \times 1/1024} \approx 0.5.$

3.3.3 Von Neumann's Method 冯·诺伊曼方法

Question:

对于一个坏硬币, 正反面概率不相等. 有什么办法可以使用这个硬币测 0.5 概率事件?

Solution:

连续扔两次, 正反和反正的概率一样, 舍弃正正和反反情况.

3.3.4 Dice order 骰子的顺序

Question:

连着扔三个骰子,结果严格递增的概率?

Solution:

概率是三次结果不一样且只按一种顺序.

 $P = P(\text{different numbers in all three throws}) \times P(\text{increasing order}|3 \text{ different numbers})$

$$= (1 \times \frac{5}{6} \times \frac{4}{6}) \times \frac{1}{6} = 5/54$$

3.3.5 Monty Hall problem 蒙提霍尔问题

Question:

Solution:

你面前有三扇门,一扇后面是汽车,其余是山羊. 你随机选择一扇,这时主人打开一扇有山羊并且没有被选择的门. 那么你是否应该换门?

如果最开始选择山羊 (2/3), 换门会得到车. 最开始车 (1/3), 换门会得到山羊, 不换门是车. 所以应该换门.

3.3.6 Branching Process 分支过程

Question:

一个变形虫有四种状态: 死亡, 保持不变, 分裂为两个和三个. 后代完全一样. 则该变形虫种群灭绝的概率?

Solution:

假设一只灭绝的概率是 P(E), 那么由

$$P(E) = P(E \mid F_1)P(F_1) + P(E \mid F_2)P(F_2) + \dots + P(E \mid F_n)P(F_n)$$

得到

$$P(E) = 1/4 \times 1 + 1/4 \times P(E) + 1/4 \times P(E)^{2} + 1/4 \times P(E)^{3}$$

解得 $P(E) = \sqrt{2} - 1 \approx 0.414$.

3.3.7 Candies in a jar 蜜罐中的糖果

Question:

在一个罐子中有 10 个红球, 20 个蓝球, 30 个绿球. 不放回拿球, 在拿完所有红球后, 至少还有一个蓝球和绿球的概率?

Solution:

所有球中最后一个球是绿球的概率是 $\frac{30}{60}$, 在所有红球和蓝球中最后一个球是蓝球的概率是 $\frac{20}{30}$. 以此类推, 可得出总概率为 $\frac{30}{60} \times \frac{20}{30} + \frac{20}{60} \times \frac{30}{40} = \frac{7}{12}$.

3.3.8 Coin toss game 扔硬币游戏

Question:

A 和 B 扔硬币, A 先开始. 如果最后两次先上后下, 游戏结束, 扔下的人获胜. A 获胜的概率?

Solution:

P(A) = 0.5P(A|H) + 0.5P(A|T) 是 A 获胜的概率, 1 - P(A) 是 B 获胜的概率. A 如果第一次下, 游戏等价 B 先扔. P(A|T) = 1 - P(A), A 第一次上, B 有一半概率赢, 有一半概率上. 这时有

$$P(A|H) = 0.5 \times 0 + 0.5 \times (1 - P(A|H)) \Rightarrow P(A|H) = 1/3$$

带入得 $P(A) = 1/2 \times 1/3 + 1/2(1 - P(A)) \Rightarrow P(A) = 4/9.$

3.3.9 Russian roulette series 俄罗斯转轮

Question:

一把左轮手枪有 6 个子弹孔, 只有一发子弹, 一个人扣动扳机后另一个人继续. 你要当第一个还是第二个? 如果每次扣动扳机后打乱顺序, 你要当第一个还是第二个?

Solution:

因为子弹位置随机, 所以两个人死亡概率相等.

假设第一个人死亡概率是 p, 第二个人就是 1-p. 因为事件都是相互独立的,那么在第一个人没死后, 他会变成第二个人. $p=1/6+5/6\times(1-p)\Rightarrow p=6/11$.

3.3.10 Gambler's Ruin Problem 赌徒破产问题

Question:

一个赌徒有 p 概率赢得一元, 1-p 概率输掉一元. 最开始有 i 元, 那么资产达到 N 元的概率?

Solution:

假设 P_i 是从 i 到 N 的概率. 那么 $P_0 = 0, P_N = 1$.

$$P_i = pP_{i+1} + qP_{i-1} \Rightarrow P_{i+1} - P_i = \frac{q}{p}(P_i - P_{i-1}) = (\frac{q}{p})^2(P_{i-1} - P_{i-2}) = \dots = (\frac{q}{p})^i(P_1 - P_0)$$

使用 P_N 取得 P_1 , 即可得到答案.

3.3.11 Polya urn model 波利亚罐子模型

Question:

从一个罐子中拿球,有红黑两种,第一次红球,第二次黑球.第 n 次拿到红球的概率是前 n-1 次拿到的红球比 n-1. 那么在第一百次拿到 50 个红球的概率? *Solution:*

引入记号 (n,k), 前 n 次有 k 个红球. 可以得到 $P_{3,1}=1/2, P_{3,2}=1/2$.

$$\begin{cases} P_{4,1} = P((4,1) \mid (3,1)) \times P_{3,1} + P((4,1) \mid (3,2)) \times P_{3,2} = \frac{2}{3} \times \frac{1}{2} + 0 \times \frac{1}{2} = \frac{1}{3} \\ P_{4,2} = P((4,2) \mid (3,1)) \times P_{3,1} + P((4,2) \mid (3,2)) \times P_{3,2} = \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{2} = \frac{1}{3} \\ P_{4,3} = P((4,3) \mid (3,1)) \times P_{3,1} + P((4,3) \mid (3,2)) \times P_{3,2} = 0 \times \frac{1}{2} + \frac{2}{3} \times \frac{1}{2} = \frac{1}{3} \end{cases}$$

使用数学归纳法猜测 $P_{n,k} = \frac{1}{n-1}$.

$$P_{n+1,k} = P\left(miss|(n,k)\right) P_{n,k} + P\left(score|(n,k-1)\right) P_{n,k-1}$$
$$= \left(1 - \frac{k}{n}\right) \frac{1}{n-1} + \frac{k-1}{n} \frac{1}{n-1} = \frac{1}{n}$$

3.3.12 Cars on road 路上的车

Question:

在高速公路上任意 20 分钟至少看见一辆车的概率是 609/625, 那么在任意 5 分钟看见一辆车的概率是?

Solution:

将任意一个时间段分成 4 份, 假设在一个 5 分钟内看见车的概率是 p, 那么在四段时间都看不见车的概率为 $(1-p)^4 = 1 - 609/625$, 得出 p = 3/5.

3.4 Discrete and Continuous Distributions 离散 与连续分布

表 3.1: Discrete Probability Distributions

Name	Probability Mass Function (pmf)	$\mathbf{E}[\mathbf{X}]$	$\mathrm{Var}(\boldsymbol{X})$
Uniform	$P(x) = \frac{1}{b-a+1}, x = a, \dots, b$	$\frac{b+a}{2}$	$\frac{(b-a+1)^2 - 1}{12}$
Binomial	$P(x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, \dots, n$	np	np(1-p)
Poisson	$P(x) = \frac{e^{-\lambda t}(\lambda t)^x}{x!}, x = 0, 1, \dots$	λt	λt
Geometric	$P(x) = (1-p)^{x-1}p, x = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negative Binomial	$P(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, x = r, r+1, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$

表 3.2: Continuous Probability Distributions

Name	Probability Density Function (pdf)	$\mathbf{E}[\mathbf{X}]$	$\mathbf{Var}(\mathbf{X})$
Uniform	$\frac{1}{b-a}, a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), x \in \mathbb{R}$	μ	σ^2
Exponential	$\lambda e^{-\lambda x}, x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma	$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, x \ge 0$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$
	$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy$		
Beta	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}, 0 < x < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$