Kompartemen dalam Model

Figure 1: Diagram Kompartemen Misinformasi COVID-19

1. S (Susceptible)

- Individu yang rentan terhadap infeksi karena belum terinfeksi, belum divaksinasi, atau belum memiliki imunitas.
- Rentan terhadap infeksi melalui kontak dengan individu yang terinfeksi (I).

2. V (Vaccinated)

- Individu yang telah divaksinasi dan memiliki kekebalan parsial terhadap penyakit.
- Masih memiliki kemungkinan kecil untuk terinfeksi jika terkena paparan.

3. Vm (Misinformed Susceptible)

• Individu yang rentan terhadap infeksi karena dipengaruhi oleh misinformasi vaksin sehingga menolak vaksinasi.

4. I (Infected)

• Individu yang terinfeksi COVID-19 dan dapat menularkan penyakit kepada individu rentan (S, V, Vm).

5. R (Recovered)

• Individu yang telah pulih dari infeksi dan memiliki kekebalan.

6. *N*

• Total populasi:

$$N = S + V + Vm + I + R$$

Persamaan Diferensial Model

1. Persamaan untuk Susceptible (S)

$$\frac{dS}{dt} = \alpha N - \frac{\beta_1 SI}{N} - \gamma_1 S - \gamma_2 S - \mu S$$

- αN : Laju kelahiran populasi baru yang masuk ke S.
- $\frac{\beta_1 SI}{N}$: Infeksi yang terjadi pada individu rentan melalui kontak dengan I.
- $\gamma_1 S$: Individu rentan yang beralih keVkarena divaksinasi.
- $\gamma_2 S$: Individu rentan yang beralih ke Vm karena terpengaruh misinformasi.
- μS : Kematian alami pada individu rentan.

2. Persamaan untuk Vaccinated (V)

$$\frac{dV}{dt} = \gamma_1 S - \frac{\beta_2 VI}{N} - \mu V$$

- $\gamma_1 S$: Individu rentan yang divaksinasi.
- $\frac{\beta_2 VI}{N}$: Infeksi pada individu yang telah divaksinasi.
- μV : Kematian alami pada individu yang divaksinasi.

3. Persamaan untuk Misinformed (Vm)

$$\frac{dVm}{dt} = \gamma_2 S - \frac{\beta_3 VmI}{N} - \mu Vm$$

- $\gamma_2 S$: Individu rentan yang menjadi kelompok Vm karena misinformasi.
- $\frac{\beta_3 VmI}{N}$: Infeksi pada individu yang menolak vaksin karena misinformasi.
- μVm : Kematian alami pada individu Vm.

4. Persamaan untuk Infected (I)

$$\frac{dI}{dt} = \frac{\beta_1 SI}{N} + \frac{\beta_2 VI}{N} + \frac{\beta_3 VmI}{N} - \gamma_3 I - \mu I$$

- $\frac{\beta_1 SI}{N}$: Infeksi dari individu S.
- $\frac{\beta_2 VI}{N}$: Infeksi dari individu V.
- $\frac{\beta_3 VmI}{N}$: Infeksi dari individu Vm.
- $\gamma_3 I$: Individu yang pulih dari infeksi.
- μI : Kematian alami atau karena penyakit pada individu yang terinfeksi.

5. Persamaan untuk Recovered (R)

$$\frac{dR}{dt} = \gamma_3 I - \gamma R$$

- $\gamma_3 I$: Individu yang pulih dari infeksi.
- \bullet γR : Kehilangan kekebalan jika kekebalan tidak bersifat permanen.

Parameter Penting dalam Model

- $\beta_1, \beta_2, \beta_3$: Tingkat kontak efektif antara individu yang terinfeksi dengan S, V, dan Vm.
- $\bullet \ \gamma_1, \gamma_2$: Laju vaksinasi dan laju terpengaruh misinformasi.
- \bullet γ_3 : Laju pemulihan dari infeksi.
- μ : Laju kematian alami.
- α : Laju kelahiran.