E0 230

Computational Methods of Optimization Tutorial 1

Nov. 7, 2020

- 1. Suppose $x, y \in \mathbb{R}^n$. Prove the following statements.
 - (a) $|||x|| ||y||| \le ||x y|| \le ||x|| + ||y||$
 - (b) $2x^Ty = ||x||^2 + ||y||^2 ||x y||^2$
 - (c) $||x||_2 \le \sqrt{n} ||x||_{\infty}$
 - (d) $||x||_1 \le n||x||_{\infty}$
 - (e) $||x||_1 \le \sqrt{n}||x||_2$
- 2. Note that $H_f(x)$ denotes the Hessian of a function $f: \mathbb{R}^n \to \mathbb{R}$
 - (a) Show that $e^x \ge 1 + x$.
 - (b) Suppose n=1, and $f^{(k)}$, the kth derivative of f w.r.t x is absolutely continuous. Show that given

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{k!}f^{(k)}(x_0)(x - x_0)^k + R_k$$

we have

$$R_k = \int_{x_0}^x \frac{f^{(k+1)}(t)}{k!} (x-t)^k dt.$$

(c) Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, such that $\max_{x,i} |\lambda_i(H_f(x))| = M < \infty$, where $\lambda_i(H_f(x))$ is the *i*th eigenvalue of $H_f(x)$. Show that there exists a constant L such that, for each x, y, we have

$$f(y) - f(x) \le \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$

What is the smallest value of L for which this expression is satisfied?

- 3. Suppose we have matrices $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times n}$, $m \neq n$
 - (a) Suppose A has n orthogonal eigenvectors. Show that we can write $A = V^T \Lambda V$, where the columns of V are the eigenvectors of A, and the diagonal elements of Λ are the eigenvalues of A. When are we unable to use this decomposition?
 - (b) Suppose B is of rank r. What are the ranks of BB^T and B^TB ? With this result, what can you say about the row and column ranks of B and B^T ?
 - (c) Let $p(l) = \det(lI A)$. For any A, we have p(A) = 0 (this is the Cayley-Hamilton theorem). Show that $p(A) = p(P^{-1}AP)$ for any invertible matrix P. What does this say about the eigenvalues of A and $P^{-1}AP$?
 - (d) Show that we can decompose $B = U\Sigma V^T$, where Σ is diagonal and positive-semidefinite, and U and V are unitary matrices.

- (e) Show that A, B are equivalent if and only if, for all vectors $v \in \mathbb{R}^n$, Av = Bv.
- (f) The Frobenius norm of a matrix is given by $||B||_F = \sqrt{\text{Tr}(B^TB)}$. Show that $||B||_F = \sqrt{\sum_k \sigma_k(B)^2}$, where $\sigma_k(B)$ is the kth largest singular value of B.
- (g) Show that $B_k = \sum_{i=1}^k \sigma_i u_i v_i^T$, where $k \leq \min\{m, n\}$, satisfies $||B B_k||_F \leq ||B C||_F$ for any $C \in \mathbb{R}^{m \times n}$ of rank k.
- (h) Consider the function $f: U \to \mathbb{R}$, where $f(x) = x^T A x$ and U is the set of all unit vectors of dimension n. Show that range $(f) \subseteq [\lambda_{min}(A), \lambda_{max}(A)]$.
- (i) What is the solution to

$$s^* = \operatorname*{argmax}_{x} \frac{\|Bx\|_2}{\|x\|_2}$$
?

Remark: s^* is the Spectral norm of B, denoted by $||B||_2$.

4. Consider the polynomial

$$p(x, y, z) = x^{4}y^{2} + x^{2}y^{4} + z^{6} - 3x^{2}y^{2}z^{2}.$$

Show that

$$f^* = \inf_{x,y,z} p(x,y,z) = 0.$$

5. Suppose A, B are symmetric and that the problems

$$(P1) \quad \mathop{\rm argmin}_{x} x^T A x \quad \text{and} \quad (P2) \quad \mathop{\rm argmin}_{x} x^T B x$$

have unique solutions $x_{P1} = x_{P2} = 0$. What is the solution to

$$\underset{x}{\operatorname{argmin}} \, x^T A B x,$$

and is it unique? (hint: every PD matrix has a unique, positive definite square root - can you prove this?)

6. Suppose we have m scalar data points $\{x_i\}_{i=1}^m$. What is the solution to

$$z_2 = \operatorname*{argmin}_{z} \sum_{i} (x_i - z)^2.$$

7. Suppose we have m pairs of data points (x_i, y_i) , where $x_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$. Solve

$$x_* = \operatorname*{argmin}_{w} \sum_{i} (y_i - w^T x_i)^2.$$

What if there are only $r < \min\{m, n\}$ linearly independent data points? Will you still have a unique solution (show why or why not).

8. Suppose we have positive definite $A \in \mathbb{R}^{n \times n}$, and linearly independent vectors $\{v_i\}_{i=1}^m$, where m < n. How would you convert the problem

$$\underset{x}{\operatorname{argmin}} x^T A x \text{ such that } x \in \operatorname{span}(v_1, ..., v_m)$$

into an unconstrained problem? Does this problem have a unique solution? If so, under what conditions would this problem not have a unique solution?