Reinforcement Learning Basics Any% Speedrun

David Quarel

ARENA

Thursday, 8th June 2023

 Up to this point we've been mostly within the regime of supervised learning: Given some labelled data, train a model to minimise loss, then deploy to classify new data.

- Up to this point we've been mostly within the regime of supervised learning: Given some labelled data, train a model to minimise loss, then deploy to classify new data.
 - We have access to labelled training data, and only deploy the agent after we get good performance. Agent only sees "real world" once it's already performing well

- Up to this point we've been mostly within the regime of supervised learning: Given some labelled data, train a model to minimise loss, then deploy to classify new data.
 - We have access to labelled training data, and only deploy the agent after we get good performance. Agent only sees "real world" once it's already performing well
 - Data is i.i.d between batches

- Up to this point we've been mostly within the regime of supervised learning: Given some labelled data, train a model to minimise loss, then deploy to classify new data.
 - We have access to labelled training data, and only deploy the agent after we get good performance. Agent only sees "real world" once it's already performing well
 - 2 Data is i.i.d between batches
 - No planning required, future predictions don't depend on past predictions

- Up to this point we've been mostly within the regime of supervised learning: Given some labelled data, train a model to minimise loss, then deploy to classify new data.
 - We have access to labelled training data, and only deploy the agent after we get good performance. Agent only sees "real world" once it's already performing well
 - 2 Data is i.i.d between batches
 - No planning required, future predictions don't depend on past predictions
- RL is vastly different: Agent takes actions in an interactive environment, receive scalar reward as feedback. This lends itself to several problems:

- Up to this point we've been mostly within the regime of supervised learning: Given some labelled data, train a model to minimise loss, then deploy to classify new data.
 - We have access to labelled training data, and only deploy the agent after we get good performance. Agent only sees "real world" once it's already performing well
 - 2 Data is i.i.d between batches
 - No planning required, future predictions don't depend on past predictions
- RL is vastly different: Agent takes actions in an interactive environment, receive scalar reward as feedback. This lends itself to several problems:
 - Sparse reward: Very little feedback during learning

- Up to this point we've been mostly within the regime of supervised learning: Given some labelled data, train a model to minimise loss, then deploy to classify new data.
 - We have access to labelled training data, and only deploy the agent after we get good performance. Agent only sees "real world" once it's already performing well
 - 2 Data is i.i.d between batches
 - No planning required, future predictions don't depend on past predictions
- RL is vastly different: Agent takes actions in an interactive environment, receive scalar reward as feedback. This lends itself to several problems:
 - Sparse reward: Very little feedback during learning
 - Reward attribution: Hard to tell which action was the one that caused the good reward

- Up to this point we've been mostly within the regime of supervised learning: Given some labelled data, train a model to minimise loss, then deploy to classify new data.
 - We have access to labelled training data, and only deploy the agent after we get good performance. Agent only sees "real world" once it's already performing well
 - 2 Data is i.i.d between batches
 - 3 No planning required, future predictions don't depend on past predictions
- RL is vastly different: Agent takes actions in an interactive environment, receive scalar reward as feedback. This lends itself to several problems:
 - Sparse reward: Very little feedback during learning
 - Reward attribution: Hard to tell which action was the one that caused the good reward
 - No ground truth Optimal or even good policies may be unknown, (in pure RL settings) no data from good players to compare against

- Up to this point we've been mostly within the regime of supervised learning: Given some labelled data, train a model to minimise loss, then deploy to classify new data.
 - We have access to labelled training data, and only deploy the agent after we get good performance. Agent only sees "real world" once it's already performing well
 - 2 Data is i.i.d between batches
 - 3 No planning required, future predictions don't depend on past predictions
- RL is vastly different: Agent takes actions in an interactive environment, receive scalar reward as feedback. This lends itself to several problems:
 - Sparse reward: Very little feedback during learning
 - Reward attribution: Hard to tell which action was the one that caused the good reward
 - No ground truth Optimal or even good policies may be unknown, (in pure RL settings) no data from good players to compare against
 - Explore vs. Exploit tradeoff:
 - Exploration: Taking actions to learn how the world works (and improve the policy).
 - Exploitation: Taking actions that maximise the expected sum of reward given current policy.

- Up to this point we've been mostly within the regime of supervised learning: Given some labelled data, train a model to minimise loss, then deploy to classify new data.
 - We have access to labelled training data, and only deploy the agent after we get good performance. Agent only sees "real world" once it's already performing well
 - ② Data is i.i.d between batches
 - No planning required, future predictions don't depend on past predictions
- RL is vastly different: Agent takes actions in an interactive environment, receive scalar reward as feedback. This lends itself to several problems:
 - Sparse reward: Very little feedback during learning
 - Reward attribution: Hard to tell which action was the one that caused the good reward
 - No ground truth Optimal or even good policies may be unknown, (in pure RL settings) no data from good players to compare against
 - Explore vs. Exploit tradeoff:
 - Exploration: Taking actions to learn how the world works (and improve the policy).
 - Exploitation: Taking actions that maximise the expected sum of reward given current policy.
 - **Online only:** No clear distinction between training and testing. Agent gets

How Much Information is the Machine Given during Learning?

"Pure" Reinforcement Learning (cherry)

The machine predicts a scalar reward given once in a while.

A few bits for some samples

Supervised Learning (icing)

- ▶ The machine predicts a category or a few numbers for each input
- ► Predicting human-supplied data
- ► 10→10,000 bits per sample

Self-Supervised Learning (cake génoise)

- ▶ The machine predicts any part of its input for any observed part.
- ▶ Predicts future frames in videos
- Millions of bits per sample

© 2019 IEEE International Solid-State Circuits Conference

1: Deen Learning Hardware: Past Present & Future

ロト 4周ト 4 重ト 4 重ト 重 めなべ

• The simplest type of RL environment with interaction: (equivalent to MDP with 1-state)

- The simplest type of RL environment with interaction: (equivalent to MDP with 1-state)
- Agent has a set of "arms" (actions) A. Environment has a family of reward distributions $\{p_a\}_{a\in\mathcal{A}}$ for each action.

- The simplest type of RL environment with interaction: (equivalent to MDP with 1-state)
- Agent has a set of "arms" (actions) A. Environment has a family of reward distributions $\{p_a\}_{a\in\mathcal{A}}$ for each action.
- Agent chooses an action a_i and receives reward $r \sim p_i(\cdot)$. Distributions p_i are unknown to agent.

- The simplest type of RL environment with interaction: (equivalent to MDP with 1-state)
- Agent has a set of "arms" (actions) A. Environment has a family of reward distributions $\{p_a\}_{a\in\mathcal{A}}$ for each action.
- Agent chooses an action a_i and receives reward $r \sim p_i(\cdot)$. Distributions p_i are unknown to agent.
- Want to always choose the arm with the highest expected payout:

$$q_*(a) = \mathbb{E}[r_t|a_t = a]$$

- The simplest type of RL environment with interaction: (equivalent to MDP with 1-state)
- Agent has a set of "arms" (actions) A. Environment has a family of reward distributions $\{p_a\}_{a\in\mathcal{A}}$ for each action.
- Agent chooses an action a_i and receives reward $r \sim p_i(\cdot)$. Distributions p_i are unknown to agent.
- Want to always choose the arm with the highest expected payout:

$$q_*(a) = \mathbb{E}[r_t|a_t = a]$$

 Need to balance trying all the arms to get a good estimate of the value of each arm, v.s. always trying to pull the best arm.

• The simplest type of RL environment with interaction: (equivalent to MDP with 1-state)

- The simplest type of RL environment with interaction: (equivalent to MDP with 1-state)
- Agent has a set of "arms" (actions) \mathcal{A} . Environment has a family of reward distributions $\{p_a\}_{a\in\mathcal{A}}$ for each action.

- The simplest type of RL environment with interaction: (equivalent to MDP with 1-state)
- Agent has a set of "arms" (actions) A. Environment has a family of reward distributions $\{p_a\}_{a\in A}$ for each action.
- Agent chooses an action a_i and receives reward $r \sim p_i(\cdot)$.

- The simplest type of RL environment with interaction: (equivalent to MDP with 1-state)
- Agent has a set of "arms" (actions) A. Environment has a family of reward distributions $\{p_a\}_{a\in A}$ for each action.
- Agent chooses an action a_i and receives reward $r \sim p_i(\cdot)$.
- Want to always choose the arm with the highest expected payout:

$$q_*(a) = \mathbb{E}[r_t|a_t = a]$$

- The simplest type of RL environment with interaction: (equivalent to MDP with 1-state)
- Agent has a set of "arms" (actions) A. Environment has a family of reward distributions $\{p_a\}_{a\in\mathcal{A}}$ for each action.
- Agent chooses an action a_i and receives reward $r \sim p_i(\cdot)$.
- Want to always choose the arm with the highest expected payout:

$$q_*(a) = \mathbb{E}[r_t|a_t = a]$$

 Need to balance trying all the arms to get a good estimate of the value of each arm, v.s. always trying to pull the best arm.

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value $q_*(a)$ of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean $q_*(a)$, unit-variance normal distribution, as suggested by these gray distributions.

ullet Keep track of $\hat{Q}(a)$, the estimated value of each arm after t arm-pulls

$$\hat{Q}_t(a) = \frac{\text{sum of rewards when } a \text{ taken up to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1, a_i=a}^{t-1} r_t}{\sum_{i=1, a_i=a}^{t-1} 1}$$

ullet Keep track of $\hat{Q}(a)$, the estimated value of each arm after t arm-pulls

$$\hat{Q}_t(a) = \frac{\text{sum of rewards when } a \text{ taken up to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1, a_i=a}^{t-1} r_t}{\sum_{i=1, a_i=a}^{t-1} 1}$$

• $\hat{Q}_t(a)$ represents the empirical average reward obtained from arm a up to time t.

ullet Keep track of $\hat{Q}(a)$, the estimated value of each arm after t arm-pulls

$$\hat{Q}_t(a) = \frac{\text{sum of rewards when } a \text{ taken up to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1,a_i=a}^{t-1} r_t}{\sum_{i=1,a_i=a}^{t-1} 1}$$

- $\hat{Q}_t(a)$ represents the empirical average reward obtained from arm a up to time t.
- ullet In practice, easier to init $\hat{Q}_1(a)=\hat{R}_1(a)=\hat{N}_1(a)=0$ and

$$\hat{R}_{t+1}(a) \leftarrow \hat{R}_t(a) + r_t \llbracket a_t = a
rbracket \quad \hat{N}_{t+1}(a) \leftarrow \hat{N}_t(a) + \llbracket a_t = a
rbracket$$
 $\hat{Q}_{t+1}(a) \leftarrow rac{\hat{R}_{t+1}(a)}{N_{t+1}(a)}$

where $\llbracket P \rrbracket = 1$ if P evaluates to True, else $\llbracket P \rrbracket = 0$.

ullet Keep track of $\hat{Q}(a)$, the estimated value of each arm after t arm-pulls

$$\hat{Q}_t(a) = \frac{\text{sum of rewards when } a \text{ taken up to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1,a_i=a}^{t-1} r_t}{\sum_{i=1,a_i=a}^{t-1} 1}$$

- $\hat{Q}_t(a)$ represents the empirical average reward obtained from arm a up to time t.
- ullet In practice, easier to init $\hat{Q}_1(a)=\hat{R}_1(a)=\hat{N}_1(a)=0$ and

$$\hat{R}_{t+1}(a) \leftarrow \hat{R}_t(a) + r_t \llbracket a_t = a
rbracket \quad \hat{N}_{t+1}(a) \leftarrow \hat{N}_t(a) + \llbracket a_t = a
rbracket$$
 $\hat{Q}_{t+1}(a) \leftarrow rac{\hat{R}_{t+1}(a)}{N_{t+1}(a)}$

where $[\![P]\!]=1$ if P evaluates to True, else $[\![P]\!]=0$.

• Choose arm with highest estimated payout: $a_t := \arg\max \hat{Q}_t(a)$.

ullet Keep track of $\hat{Q}(a)$, the estimated value of each arm after t arm-pulls

$$\hat{Q}_t(a) = \frac{\text{sum of rewards when } a \text{ taken up to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1, a_i=a}^{t-1} r_t}{\sum_{i=1, a_i=a}^{t-1} 1}$$

- $\hat{Q}_t(a)$ represents the empirical average reward obtained from arm a up to time t.
- ullet In practice, easier to init $\hat{Q}_1(a)=\hat{R}_1(a)=\hat{N}_1(a)=0$ and

$$\hat{R}_{t+1}(a) \leftarrow \hat{R}_t(a) + r_t \llbracket a_t = a
rbracket \quad \hat{N}_{t+1}(a) \leftarrow \hat{N}_t(a) + \llbracket a_t = a
rbracket$$
 $\hat{Q}_{t+1}(a) \leftarrow rac{\hat{R}_{t+1}(a)}{N_{t+1}(a)}$

where $[\![P]\!]=1$ if P evaluates to True, else $[\![P]\!]=0$.

- Choose arm with highest estimated payout: $a_t := \arg\max \hat{Q}_t(a)$.
- Problem: Can get stuck in local minima.

First approach: Just do random stuff every now and again, hope for the best

$$a_t^{\epsilon-greedy} = egin{cases} \mathsf{Do} \ \mathsf{random} \ \mathsf{action} & \mathsf{Prob} \ \epsilon \ \mathsf{arg} \ \mathsf{max}_{a'} \ Q_t(a') & \mathsf{Prob} \ 1 - \epsilon \end{cases}$$

• First approach: Just do random stuff every now and again, hope for the best

$$a_t^{\epsilon-greedy} = egin{cases} \mathsf{Do} \ \mathsf{random} \ \mathsf{action} & \mathsf{Prob} \ \epsilon \ \mathsf{arg} \ \mathsf{max}_{a'} \ Q_t(a') & \mathsf{Prob} \ 1 - \epsilon \end{cases}$$

Better approach: Give a bonus to actions seldom taken

$$a_t^{UCB} = rg \max_{a'} \left(Q_t(a') + c \sqrt{rac{\ln t}{N_t(a')}}
ight)$$

First approach: Just do random stuff every now and again, hope for the best

$$a_t^{\epsilon-greedy} = egin{cases} \mathsf{Do} \ \mathsf{random} \ \mathsf{action} & \mathsf{Prob} \ \epsilon \ \mathsf{arg} \ \mathsf{max}_{a'} \ Q_t(a') & \mathsf{Prob} \ 1 - \epsilon \end{cases}$$

Better approach: Give a bonus to actions seldom taken

$$a_t^{UCB} = rg \max_{a'} \left(Q_t(a') + c \sqrt{rac{\ln t}{N_t(a')}}
ight)$$

Intuition: Error of $Q_t(a)$ is $\propto \frac{1}{\sqrt{N_t(a)}}$. Add a bonus proportional to variance, so actions with high variance \equiv few samples get explored

• First approach: Just do random stuff every now and again, hope for the best

$$a_t^{\epsilon-greedy} = egin{cases} \mathsf{Do} \ \mathsf{random} \ \mathsf{action} & \mathsf{Prob} \ \epsilon \ \mathsf{arg} \ \mathsf{max}_{\mathsf{a'}} \ Q_t(\mathsf{a'}) & \mathsf{Prob} \ 1-\epsilon \end{cases}$$

Better approach: Give a bonus to actions seldom taken

$$a_t^{UCB} = rg \max_{a'} \left(Q_t(a') + c \sqrt{rac{\ln t}{N_t(a')}}
ight)$$

- **Intuition:** Error of $Q_t(a)$ is $\propto \frac{1}{\sqrt{N_t(a)}}$. Add a bonus proportional to variance, so actions with high variance \equiv few samples get explored
- Add $\ln t$ to numerator to ensure every action is sampled infinitely often (in case you get an unlucky run). $\ln t$ is optimal because math. c=2 works good in practice.

• Environment has states S, actions A, rewards R, environment distribution $p: S \times A \times S \times R \rightarrow [0,1]$.

- Environment has states S, actions A, rewards R, environment distribution $p: S \times A \times S \times R \rightarrow [0,1]$.
 - Think of p(s, a, s', r) as $Pr(s_{t+1} = s', r_{t+1} = r | s_t = s, a_t = a)$. We write p(s', r | s, a) for clarity.

- Environment has states S, actions A, rewards R, environment distribution $p: S \times A \times S \times R \rightarrow [0,1]$.
 - Think of p(s, a, s', r) as $Pr(s_{t+1} = s', r_{t+1} = r | s_t = s, a_t = a)$. We write p(s', r | s, a) for clarity.
- In timestep t, agent samples $a_t \sim \pi(s_t)$ from policy π_t . Environment samples $(s_{t+1}, r_{t+1}) \sim p(\cdot \mid s_t, a_t)$.

- Environment has states S, actions A, rewards R, environment distribution $p: S \times A \times S \times R \rightarrow [0,1]$.
 - Think of p(s, a, s', r) as $Pr(s_{t+1} = s', r_{t+1} = r | s_t = s, a_t = a)$. We write p(s', r | s, a) for clarity.
- In timestep t, agent samples $a_t \sim \pi(s_t)$ from policy π_t . Environment samples $(s_{t+1}, r_{t+1}) \sim p(\cdot \mid s_t, a_t)$.
- Generates an interaction history, or trajectory

$$s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, r_3, s_3, \dots$$

Agent-Environment Interaction Loop (MDPs)

- Environment has states S, actions A, rewards R, environment distribution $p: S \times A \times S \times R \rightarrow [0,1]$.
 - Think of p(s, a, s', r) as $Pr(s_{t+1} = s', r_{t+1} = r | s_t = s, a_t = a)$. We write p(s', r | s, a) for clarity.
- In timestep t, agent samples $a_t \sim \pi(s_t)$ from policy π_t . Environment samples $(s_{t+1}, r_{t+1}) \sim p(\cdot \mid s_t, a_t)$.
- Generates an interaction history, or trajectory

$$s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, r_3, s_3, \dots$$

 Agent may choose to update choice of policy at any timestep. Most RL algorithms focus on the mechanism that does this.

Agent-Environment Interaction Loop (MDPs)

- Environment has states S, actions A, rewards R, environment distribution $p: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \mathcal{R} \rightarrow [0, 1].$
 - Think of p(s, a, s', r) as $Pr(s_{t+1} = s', r_{t+1} = r | s_t = s, a_t = a)$. We write p(s', r|s, a) for clarity.
- In timestep t, agent samples $a_t \sim \pi(s_t)$ from policy π_t . Environment samples $(s_{t+1}, r_{t+1}) \sim p(\cdot \mid s_t, a_t).$
- Generates an interaction history, or *trajectory*

$$s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, r_3, s_3, \dots$$

 Agent may choose to update choice of policy at any timestep. Most RL algorithms focus on the mechanism that does this.

Figure: Agent-Environment interaction loop

ullet At timestep t, the return G_t is the sum of all future rewards:

$$G_t = r_{t+1} + r_{t+2} + r_{t+3} + \dots$$

ullet At timestep t, the $return\ G_t$ is the sum of all future rewards:

$$G_t = r_{t+1} + r_{t+2} + r_{t+3} + \dots$$

Goal: Maximise the return.

• At timestep t, the return G_t is the sum of all future rewards:

$$G_t = r_{t+1} + r_{t+2} + r_{t+3} + \dots$$

- Goal: Maximise the return.
 - For episodic (finite length interaction) environments of maximum duration T, return $G_t = r_{t+1} + r_{t+2} + \ldots + r_T$ well defined.

• At timestep t, the return G_t is the sum of all future rewards:

$$G_t = r_{t+1} + r_{t+2} + r_{t+3} + \dots$$

- Goal: Maximise the return.
 - For episodic (finite length interaction) environments of maximum duration T, return $G_t = r_{t+1} + r_{t+2} + \ldots + r_T$ well defined.
- **Problems:** (for continuing environments)
 - The return may diverge or be undefined (compare $2,2,2,2,\ldots$ with $1,1,1,1,\ldots$).
 - The agent might be lazy (compare $1, 1, 1 \dots$ with $0, 0, \dots, 0, 1, 1, 1, \dots$).
 - The environment is stochastic, and the rewards are often up to chance. How to trade-off unlikely big rewards with likely small rewards?
 - May desire rewards now to be more valuable than rewards later: \$100 now?
 Or \$110 in a year?

• At timestep t, the return G_t is the sum of all future rewards:

$$G_t = r_{t+1} + r_{t+2} + r_{t+3} + \dots$$

- Goal: Maximise the return.
 - For episodic (finite length interaction) environments of maximum duration T, return $G_t = r_{t+1} + r_{t+2} + \ldots + r_T$ well defined.
- **Problems:** (for continuing environments)
 - The return may diverge or be undefined (compare $2, 2, 2, 2, \ldots$ with $1, 1, 1, 1, \ldots$).
 - The agent might be lazy (compare $1, 1, 1 \dots$ with $0, 0, \dots, 0, 1, 1, 1, \dots$).
 - The environment is stochastic, and the rewards are often up to chance. How to trade-off unlikely big rewards with likely small rewards?
 - May desire rewards now to be more valuable than rewards later: \$100 now?
 Or \$110 in a year?
- Solutions:
 - Add a discount factor $\gamma \in [0,1)$ so rewards more imminent are worth more, and the return is always well defined.

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$

Want agent to choose actions to maximise the expected return.

- Stationary: The environmental distribution p is fixed and does not change over time
 - Old data is as useful as new data

- Stationary: The environmental distribution p is fixed and does not change over time
 - · Old data is as useful as new data
- **3** Markovian: The behaviour of the environment at timestep t depends only on the current state s_t and action a_t .
 - Only need to consider the current state to act optimally, the past is irrelevant

- Stationary: The environmental distribution p is fixed and does not change over time
 - Old data is as useful as new data
- **3** Markovian: The behaviour of the environment at timestep t depends only on the current state s_t and action a_t .
 - Only need to consider the current state to act optimally, the past is irrelevant
- **§** Fully Observable: The state is a full description of the world
 - Agent always has access to sufficient information to choose the optimal action

These kind of environments are called *Markov Descision Processes* (MDPs), and have the following "nice" properties

- Stationary: The environmental distribution p is fixed and does not change over time
 - Old data is as useful as new data
- **Markovian:** The behaviour of the environment at timestep t depends only on the current state s_t and action a_t .
 - Only need to consider the current state to act optimally, the past is irrelevant
- Fully Observable: The state is a full description of the world
 - Agent always has access to sufficient information to choose the optimal action
- Reward Hypothesis:

"That all of what we mean by goals and purposes can be well thought of as the maximization of the expected value of the cumulative sum of a received scalar signal (called reward)." -Rich Sutton

 Reward alone is sufficient to communicate any possible goal or desired behaviour

Value Function

• Want to define the "goodness" (value) of a state, so the agent can take actions to move towards "good" states, and away from "bad" states.

Value Function

- Want to define the "goodness" (value) of a state, so the agent can take actions to move towards "good" states, and away from "bad" states.
- The value of a state depends also on how the agent chooses actions, called a policy $\pi: \mathcal{S} \times A \to [0,1]$. Actions are sampled $a \sim \pi(\cdot|s)$.

Value Function

- Want to define the "goodness" (value) of a state, so the agent can take actions to move towards "good" states, and away from "bad" states.
- The value of a state depends also on how the agent chooses actions, called a policy $\pi: \mathcal{S} \times A \to [0,1]$. Actions are sampled $a \sim \pi(\cdot|s)$.

Value Function

$$egin{aligned} V_{\pi}(s) = & \mathbb{E}_{\pi}[G_t | s_t = s] \ = & \mathbb{E}_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots | s_t = s] \end{aligned}$$

(Expectation is also with respect to the environment p.)

We note that since

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$

= $r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \dots)$
= $r_{t+1} + \gamma G_{t+1}$

We note that since

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$

= $r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \dots)$
= $r_{t+1} + \gamma G_{t+1}$

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid s_t = s]$$

We note that since

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$

= $r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \dots)$
= $r_{t+1} + \gamma G_{t+1}$

$$egin{aligned} V_{\pi}(s) &= \mathbb{E}_{\pi}[G_t \mid s_t = s] \ &= \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1} \mid s_t = s] \end{aligned}$$

We note that since

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$

= $r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \dots)$
= $r_{t+1} + \gamma G_{t+1}$

$$\begin{aligned} V_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t} \mid s_{t} = s] \\ &= \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1} \mid s_{t} = s] \\ &= \mathbb{E}_{\pi}[r_{t+1} \mid s_{t} = s] + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid s_{t} = s] \end{aligned}$$

We note that since

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$

= $r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \dots)$
= $r_{t+1} + \gamma G_{t+1}$

$$\begin{split} V_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t} \mid s_{t} = s] \\ &= \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1} \mid s_{t} = s] \\ &= \mathbb{E}_{\pi}[r_{t+1} \mid s_{t} = s] + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid s_{t} = s] \\ &= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)r \\ &+ \gamma \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \mathbb{E}_{\pi}[G_{t+1} \mid s_{t+1} = s'] \end{split}$$

We note that since

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$

= $r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \dots)$
= $r_{t+1} + \gamma G_{t+1}$

$$\begin{split} V_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t} \mid s_{t} = s] \\ &= \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1} \mid s_{t} = s] \\ &= \mathbb{E}_{\pi}[r_{t+1} \mid s_{t} = s] + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid s_{t} = s] \\ &= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)r \\ &+ \gamma \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \mathbb{E}_{\pi}[G_{t+1} \mid s_{t+1} = s'] \\ &= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) (r + \gamma V_{\pi}(s')) \end{split}$$

This gives the **Bellman equation**

Bellman Equation

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) (r + \gamma V_{\pi}(s'))$$

This gives the Bellman equation

Bellman Equation

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) (r + \gamma V_{\pi}(s'))$$

• Equation is linear in $V_{\pi}(\cdot)$, giving a set of **linear** simultaneous equations.

This gives the Bellman equation

Bellman Equation

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) (r + \gamma V_{\pi}(s'))$$

- Equation is linear in $V_{\pi}(\cdot)$, giving a set of **linear** simultaneous equations.
- Given policy π , can now easy solve for $V_{\pi}(s_1), V_{\pi}(s_2), \ldots$

This gives the Bellman equation

Bellman Equation

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) (r + \gamma V_{\pi}(s'))$$

- Equation is linear in $V_{\pi}(\cdot)$, giving a set of **linear** simultaneous equations.
- Given policy π , can now easy solve for $V_{\pi}(s_1), V_{\pi}(s_2), \ldots$
- Computing V_{π} from π is called **policy evaluation**.

Value Function (simplified)

Assume policy $\pi: S \to A$ is deterministic, define transition probability $T(s' \mid s, a) := \sum_{r \in \mathcal{R}} p(s', r \mid s, a)$ and assume reward $r_{t+1} := R(s_t, a_t, s_{t+1})$ is deterministic function of s_t, a_t, s_{t+1} .

Bellman Equation

$$V_{\pi}(s) = \sum_{s'} T(s'|s,a) \left(R(s,a,s') + \gamma V_{\pi}(s')\right)$$

where $a = \pi(s)$.

Example Environment

- States $S = s_0, s_L, s_R$, actions $A = \{a_L, a_R\}$, rewards $R = \{0, 1, 2\}$.
- Each transition indicates if an action is taken, the reward returned and which state to transition to
- What is the best action from state s_0 ?

• Policy π_1 is **better** than π_2 ($\pi_1 \ge \pi_2$) if $\forall s. V_{\pi_1}(s) \ge V_{\pi_2}(s)$. A policy is **optimal** if it is better than all other policies.

- Policy π_1 is **better** than π_2 $(\pi_1 \ge \pi_2)$ if $\forall s. V_{\pi_1}(s) \ge V_{\pi_2}(s)$. A policy is **optimal** if it is better than all other policies.
- \bullet Theorem: An optimal policy π^* always exists. Define optimal value function as

$$V_*(s) := V_{\pi^*}(s) \equiv \max_{\pi} V_{\pi}(s)$$

- Policy π_1 is **better** than π_2 $(\pi_1 \ge \pi_2)$ if $\forall s. V_{\pi_1}(s) \ge V_{\pi_2}(s)$. A policy is **optimal** if it is better than all other policies.
- \bullet Theorem: An optimal policy π^* always exists. Define optimal value function as

$$V_*(s) := V_{\pi^*}(s) \equiv \max_{\pi} V_{\pi}(s)$$

Optimal Bellman Equation

$$V_*(s) = \max_{a} \sum_{s'} T(s'|s,a) (R(s,a,s') + \gamma V_*(s'))$$

- Policy π_1 is **better** than π_2 $(\pi_1 \ge \pi_2)$ if $\forall s. V_{\pi_1}(s) \ge V_{\pi_2}(s)$. A policy is **optimal** if it is better than all other policies.
- \bullet Theorem: An optimal policy π^* always exists. Define optimal value function as

$$V_*(s) := V_{\pi^*}(s) \equiv \max_{\pi} V_{\pi}(s)$$

Optimal Bellman Equation

$$V_*(s) = \max_{a} \sum_{s'} T(s'|s,a) (R(s,a,s') + \gamma V_*(s'))$$

Gives a set of **non-linear** simultaneous equations with variables $V_*(s_1), V_*(s_2), \ldots$

- Policy π_1 is **better** than π_2 $(\pi_1 \ge \pi_2)$ if $\forall s. V_{\pi_1}(s) \ge V_{\pi_2}(s)$. A policy is **optimal** if it is better than all other policies.
- \bullet Theorem: An optimal policy π^* always exists. Define optimal value function as

$$V_*(s) := V_{\pi^*}(s) \equiv \max_{\pi} V_{\pi}(s)$$

Optimal Bellman Equation

$$V_*(s) = \max_{a} \sum_{s'} T(s'|s,a) (R(s,a,s') + \gamma V_*(s'))$$

Gives a set of **non-linear** simultaneous equations with variables $V_*(s_1), V_*(s_2), \ldots$ **Problem:** No clear way to solve for $V_*(\cdot)$

- Policy π_1 is **better** than π_2 ($\pi_1 \geq \pi_2$) if $\forall s. V_{\pi_1}(s) \geq V_{\pi_2}(s)$. A policy is optimal if it is better than all other policies.
- Theorem: An optimal policy π^* always exists. Define optimal value function as

$$V_*(s) := V_{\pi^*}(s) \equiv \max_{\pi} V_{\pi}(s)$$

Optimal Bellman Equation

$$V_*(s) = \max_{a} \sum_{s'} T(s'|s,a) (R(s,a,s') + \gamma V_*(s'))$$

Gives a set of **non-linear** simultaneous equations with variables $V_*(s_1), V_*(s_2), \ldots$ **Problem:** No clear way to solve for $V_*(\cdot)$

Can't just compute V_{π} using policy evaluation for all π , as there are $|\mathcal{A}|^{|\mathcal{S}|}$ many to choose from.

8th June 2023

Policy Improvement

Obviously we have that

$$\begin{split} V_*(s) &= \max_{\mathbf{a}} \sum_{s'} T(s'|s, \mathbf{a}) \left(R(s, \mathbf{a}, s') + \gamma V_*(s') \right) \\ &\geq \sum_{s'} T(s'|s, \pi(s)) \left(R(s, \pi(s), s') + \gamma V_*(s') \right) = V_{\pi}(s) \end{split}$$

Policy Improvement

Obviously we have that

$$\begin{aligned} V_*(s) &= \max_{\mathbf{a}} \sum_{s'} T(s'|s, \mathbf{a}) \left(R(s, \mathbf{a}, s') + \gamma V_*(s') \right) \\ &\geq \sum_{s'} T(s'|s, \pi(s)) \left(R(s, \pi(s), s') + \gamma V_*(s') \right) = V_{\pi}(s) \end{aligned}$$

• Given a policy π_n , can feed it through the optimal Bellman equation to get a better policy π_{n+1}

Policy Improvement

Obviously we have that

$$egin{aligned} V_*(s) &= \max_{m{a}} \sum_{m{s}'} T(m{s}'|m{s},m{a}) \left(R(m{s},m{a},m{s}') + \gamma V_*(m{s}')
ight) \ &\geq \sum_{m{s}'} T(m{s}'|m{s},m{\pi}(m{s})) \left(R(m{s},m{\pi}(m{s}),m{s}') + \gamma V_*(m{s}')
ight) = V_\pi(m{s}) \end{aligned}$$

• Given a policy π_n , can feed it through the optimal Bellman equation to get a better policy π_{n+1}

Policy Improvement

$$\pi_{n+1}(s) \leftarrow \operatorname*{arg\,max}_{a} \sum_{s'} T(s'|s,a) \left(R(s,a,s') + \gamma V_{\pi_n}(s') \right)$$

Policy Improvement (I)

$$\pi_{n+1}(s) \leftarrow \operatorname*{arg\,max}_{a} \sum_{s'} T(s'|s,a) \left(R(s,a,s') + \gamma V_{\pi_n}(s') \right)$$

Policy Evaluation (E)

Solve

$$V_{\pi}(s) = \sum_{\mathsf{a}} \pi(\mathsf{a}|\mathsf{s}) \sum_{\mathsf{s}',\mathsf{r}} p(\mathsf{s}',\mathsf{r}|\mathsf{s},\mathsf{a}) (\mathsf{r} + \gamma V_{\pi}(\mathsf{s}'))$$

for $V_{\pi}(s_1), V_{\pi}(s_2),$

Policy Improvement (I)

$$\pi_{n+1}(s) \leftarrow rg \max_{a} \sum_{s'} \mathcal{T}(s'|s,a) \left(\mathcal{R}(s,a,s') + \gamma V_{\pi_n}(s') \right)$$

Policy Evaluation (E)

Solve

$$V_{\pi}(s) = \sum_{\mathsf{a}} \pi(\mathsf{a}|\mathsf{s}) \sum_{\mathsf{s}',\mathsf{r}} p(\mathsf{s}',\mathsf{r}|\mathsf{s},\mathsf{a}) (\mathsf{r} + \gamma V_{\pi}(\mathsf{s}'))$$

for
$$V_{\pi}(s_1), V_{\pi}(s_2),$$

• Start with arbitrary policy π_0 .

Policy Improvement (I)

$$\pi_{n+1}(s) \leftarrow \operatorname*{arg\,max}_{a} \sum_{s'} \mathcal{T}(s'|s,a) \left(\mathcal{R}(s,a,s') + \gamma V_{\pi_n}(s') \right)$$

Policy Evaluation (E)

Solve

$$V_{\pi}(s) = \sum_{\mathsf{a}} \pi(\mathsf{a}|s) \sum_{\mathsf{s}',\mathsf{r}} p(\mathsf{s}',\mathsf{r}|s,\mathsf{a}) (\mathsf{r} + \gamma V_{\pi}(\mathsf{s}'))$$

for
$$V_{\pi}(s_1), V_{\pi}(s_2),$$

- Start with arbitrary policy π_0 .
- Note that π_* is fixed point of policy improvement.

Policy Improvement (I)

$$\pi_{n+1}(s) \leftarrow rg \max_{a} \sum_{s'} \mathcal{T}(s'|s,a) \left(\mathcal{R}(s,a,s') + \gamma V_{\pi_n}(s') \right)$$

Policy Evaluation (E)

Solve

$$V_{\pi}(s) = \sum_{\mathsf{a}} \pi(\mathsf{a}|s) \sum_{\mathsf{s}',\mathsf{r}} p(\mathsf{s}',\mathsf{r}|s,\mathsf{a}) (\mathsf{r} + \gamma V_{\pi}(\mathsf{s}'))$$

for
$$V_{\pi}(s_1), V_{\pi}(s_2),$$

- Start with arbitrary policy π_0 .
- Note that π_* is fixed point of policy improvement.
- Alternate until policy is stable

Policy Improvement (I)

$$\pi_{n+1}(s) \leftarrow rg \max_{a} \sum_{s'} \mathcal{T}(s'|s,a) \left(\mathcal{R}(s,a,s') + \gamma V_{\pi_n}(s') \right)$$

Policy Evaluation (E)

Solve

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) (r + \gamma V_{\pi}(s'))$$

for $V_{\pi}(s_1), V_{\pi}(s_2),$

- Start with arbitrary policy π_0 .
- Note that π_* is fixed point of policy improvement.
- Alternate until policy is stable

$$\pi_0 \xrightarrow{E} V_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V_{\pi_1} \xrightarrow{E} \pi_2 \xrightarrow{I} V_{\pi_2} \xrightarrow{E} \dots \xrightarrow{I} \pi_* \xrightarrow{E} V_{\pi^*} \xrightarrow{I} \pi_*$$

Policy Improvement (I)

$$\pi_{n+1}(s) \leftarrow rg \max_{a} \sum_{s'} \mathcal{T}(s'|s,a) \left(\mathcal{R}(s,a,s') + \gamma V_{\pi_n}(s') \right)$$

Policy Evaluation (E)

Solve

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) (r + \gamma V_{\pi}(s'))$$

for $V_{\pi}(s_1), V_{\pi}(s_2), \ldots$

- Start with arbitrary policy π_0 .
- Note that π_* is fixed point of policy improvement.
- Alternate until policy is stable

$$\pi_0 \xrightarrow{E} V_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V_{\pi_1} \xrightarrow{E} \pi_2 \xrightarrow{I} V_{\pi_2} \xrightarrow{E} \dots \xrightarrow{I} \pi_* \xrightarrow{E} V_{\pi^*} \xrightarrow{I} \pi_*$$

Theorem: Policy iteration converges to optimal policy in finitely many steps!

Problems with Policy Iteration

- Requires white-box access to the environmental distribution T and reward function R.
- Only works for environments with few enough states and actions to sweep through.

Problems with Policy Iteration

- Requires white-box access to the environmental distribution T and reward function R.
- Only works for environments with few enough states and actions to sweep through.

For the moment, we weaken only the first assumption, and assume the environment is now a black box, from which state-reward pairs (s', r) can be sampled given state-action pairs (s, a) as input.

• Goal: Perform policy evaluation without access to environmental distribution.

- **Goal:** Perform policy evaluation without access to environmental distribution.
- Motivation: Consider once again the value function:

$$V_{\pi}(s) = \underset{\substack{s' \sim T(\cdot|s,a)}}{\mathbb{E}} [R(s,a,s') + \gamma V_{\pi}(s')]$$

- Goal: Perform policy evaluation without access to environmental distribution.
- **Motivation:** Consider once again the value function:

$$V_{\pi}(s) = \underset{\substack{s = \pi(s) \ s' \sim T(\cdot|s,a)}}{\mathbb{E}} [R(s,a,s') + \gamma V_{\pi}(s')]$$

On timestep t, this is (on average), equal to the actual reward r_{t+1} , plus the discounted value of the actual next state s_{t+1} .

$$V_{\pi}(s_t) \approx r_{t+1} + \gamma V_{\pi}(s_{t+1})$$

- Goal: Perform policy evaluation without access to environmental distribution.
- **Motivation:** Consider once again the value function:

$$V_{\pi}(s) = \underset{\substack{s = \pi(s) \\ s' \sim T(\cdot|s,a)}}{\mathbb{E}} [R(s,a,s') + \gamma V_{\pi}(s')]$$

On timestep t, this is (on average), equal to the actual reward r_{t+1} , plus the discounted value of the actual next state s_{t+1} .

$$V_{\pi}(s_t) \approx r_{t+1} + \gamma V_{\pi}(s_{t+1})$$

We define the **TD-Error** as the difference

$$\delta_t := r_{t+1} + \gamma V_{\pi}(s_{t+1}) - V_{\pi}(s_t)$$

- **Goal:** Perform policy evaluation without access to environmental distribution.
- Motivation: Consider once again the value function:

$$V_{\pi}(s) = \underset{\substack{s = \pi(s) \ s' \sim T(\cdot|s,a)}}{\mathbb{E}} [R(s,a,s') + \gamma V_{\pi}(s')]$$

On timestep t, this is (on average), equal to the actual reward r_{t+1} , plus the discounted value of the actual next state s_{t+1} .

$$V_{\pi}(s_t) \approx r_{t+1} + \gamma V_{\pi}(s_{t+1})$$

We define the TD-Error as the difference

$$\delta_t := r_{t+1} + \gamma V_{\pi}(s_{t+1}) - V_{\pi}(s_t)$$

This then gives us an update rule to improve on our estimate \hat{V}_{π} of V_{π} , similar to SGD, called TD(0).

$$\hat{V}_{\pi}(s_t) \leftarrow \hat{V}_{\pi}(s_t) + \alpha \delta_t
\equiv \hat{V}_{\pi}(s_t) + \alpha \left(r_{t+1} + \gamma \hat{V}_{\pi}(s_{t+1}) - \hat{V}_{\pi}(s_t) \right)$$

where $\alpha \in (0,1]$ is the **learning rate**.

David Quarel (ARENA)

Q-Value

• Q-value is the expected return from state s, taking action a, and thereafter following policy π .

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots | s_t = s, a_t = a]$$

Q-Value

• Q-value is the expected return from state s, taking action a, and thereafter following policy π .

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots | s_t = s, a_t = a]$$

which has it's own Bellman equation

Q-value Bellman

$$Q_{\pi}(s, a) = \sum_{s'} T(s'|s, a) (R(s, a, s') + \gamma Q_{\pi}(s', a'))$$

where $a' = \pi(s')$

Optimal Q-value Bellman

$$Q_*(s, a) = \sum_{s'} T(s'|s, a) \left(R(s, a, s') + \max_{a'} Q_*(s', a') \right)$$

Q-value vs. Value

Can state Q in terms of V, and vice-versa.

$$Q_{\pi}(s, a) = \sum_{s'} T(s'|s, a) (R(s, a, s') + \gamma V_{\pi}(s'))$$

$$V_{\pi}(s) = \sum_{s'} T(s'|s, \pi(s)) (R(s, a, s') + \gamma Q_{\pi}(s', \pi(s')))$$

$$Q_*(s, a) = \sum_{s'} T(s'|s, a) (R(s, a, s') + \gamma V_*(s'))$$

$$V_*(s) = \max_{a} \sum_{s'} T(s'|s, a) \left(R(s, a, s') + \gamma \max_{a'} Q_*(s', a')\right)$$

Q-value vs. Value

Can state Q in terms of V, and vice-versa.

$$Q_{\pi}(s, a) = \sum_{s'} T(s'|s, a) (R(s, a, s') + \gamma V_{\pi}(s'))$$

$$V_{\pi}(s) = \sum_{s'} T(s'|s, \pi(s)) (R(s, a, s') + \gamma Q_{\pi}(s', \pi(s')))$$

$$Q_*(s, a) = \sum_{s'} T(s'|s, a) (R(s, a, s') + \gamma V_*(s'))$$

$$V_*(s) = \max_{a} \sum_{s'} T(s'|s, a) \left(R(s, a, s') + \gamma \max_{a'} Q_*(s', a')\right)$$

(exercise to the reader...)

ullet So far, we have been learning a policy π , and using π to compute V_{π} .

- ullet So far, we have been learning a policy π , and using π to compute V_{π} .
- Even if we were given V_* directly, can't recover π_* without white-box access to T and R (environment).

$$\pi_*(s) = \underset{a}{\operatorname{arg max}} \sum_{s'} T(s'|s,a) \left(R(s,a,s') + \gamma V_*(s') \right)$$

- ullet So far, we have been learning a policy π , and using π to compute V_{π} .
- Even if we were given V_* directly, can't recover π_* without white-box access to T and R (environment).

$$\pi_*(s) = \operatorname*{arg\,max}_{s} \sum_{s'} T(s'|s,a) \left(R(s,a,s') + \gamma V_*(s')\right)$$

• However, given Q_* , we can directly recover π_*

$$\pi_*(s) = rg \max_a Q_*(s,a)$$

- ullet So far, we have been learning a policy π , and using π to compute V_{π} .
- Even if we were given V_* directly, can't recover π_* without white-box access to T and R (environment).

$$\pi_*(s) = \underset{a}{\operatorname{arg max}} \sum_{s'} T(s'|s,a) \left(R(s,a,s') + \gamma V_*(s') \right)$$

• However, given Q_* , we can directly recover π_*

$$\pi_*(s) = \arg\max_a Q_*(s,a)$$

• Idea: Learn Q_* instead, recover policy π_*

Apply same argument as $\mathsf{TD}(0)$ to the Q-Value

$$Q_*(s, a) = \underset{s' \sim T(\cdot \mid s, a)}{\mathbb{E}} [R(s, a, s') + \gamma Q_*(s', \pi_*(s'))]$$

Apply same argument as TD(0) to the Q-Value

$$Q_*(s,a) = \underset{s' \sim T(\cdot \mid s,a)}{\mathbb{E}} [R(s,a,s') + \gamma Q_*(s',\pi_*(s'))]$$

On timestep t, this is (on average), equal to the actual reward r_{t+1} , plus the discounted Q-value of the actual next state-action pair s_{t+1} , a_{t+1} .

$$Q_*(s_t, a_t) \approx r_{t+1} + \gamma Q_*(s_{t+1}, a_{t+1})$$

Apply same argument as TD(0) to the Q-Value

$$Q_*(s,a) = \mathop{\mathbb{E}}_{s' \sim T(\cdot|s,a)} \left[R(s,a,s') + \gamma Q_*(s',\pi_*(s')) \right]$$

On timestep t, this is (on average), equal to the actual reward r_{t+1} , plus the discounted Q-value of the actual next state-action pair s_{t+1} , a_{t+1} .

$$Q_*(s_t, a_t) \approx r_{t+1} + \gamma Q_*(s_{t+1}, a_{t+1})$$

SARSA Update Rule

$$\hat{Q}_{*}(s_{t}, a_{t}) \leftarrow \hat{Q}_{*}(s_{t}, a_{t}) + \alpha \left(r_{t+1} + \gamma \hat{Q}_{*}(s_{t+1}, a_{t+1}) - \hat{Q}_{*}(s_{t}, a_{t})\right)$$

where $\alpha \in (0,1]$ is the **learning rate**.

Apply same argument as $\mathsf{TD}(0)$ to the Q-Value

$$Q_*(s,a) = \underset{s' \sim T(\cdot \mid s,a)}{\mathbb{E}} [R(s,a,s') + \gamma Q_*(s',\pi_*(s'))]$$

On timestep t, this is (on average), equal to the actual reward r_{t+1} , plus the discounted Q-value of the actual next state-action pair s_{t+1} , a_{t+1} .

$$Q_*(s_t, a_t) \approx r_{t+1} + \gamma Q_*(s_{t+1}, a_{t+1})$$

SARSA Update Rule

$$\hat{Q}_{*}(s_{t}, a_{t}) \leftarrow \hat{Q}_{*}(s_{t}, a_{t}) + \alpha \left(r_{t+1} + \gamma \hat{Q}_{*}(s_{t+1}, a_{t+1}) - \hat{Q}_{*}(s_{t}, a_{t})\right)$$

where $\alpha \in (0,1]$ is the **learning rate**.

Actions drawn from ε -greedy strategy

$$\pi^{\varepsilon\text{-greedy}}(s) = \begin{cases} \text{random action} & \text{prob } \varepsilon \\ \text{arg max}_a \ \hat{Q}_*(s,a) & \text{prob } 1-\varepsilon \end{cases}$$

Apply same argument as TD(0) to the Q-Value

$$Q_*(s,a) = \underset{s' \sim T(\cdot \mid s,a)}{\mathbb{E}} [R(s,a,s') + \gamma Q_*(s',\pi_*(s'))]$$

On timestep t, this is (on average), equal to the actual reward r_{t+1} , plus the discounted Q-value of the actual next state-action pair s_{t+1} , a_{t+1} .

$$Q_*(s_t, a_t) \approx r_{t+1} + \gamma Q_*(s_{t+1}, a_{t+1})$$

SARSA Update Rule

$$\hat{Q}_*(s_t, a_t) \leftarrow \hat{Q}_*(s_t, a_t) + \alpha \left(r_{t+1} + \gamma \hat{Q}_*(s_{t+1}, a_{t+1}) - \hat{Q}_*(s_t, a_t) \right)$$

where $\alpha \in (0,1]$ is the **learning rate**.

Actions drawn from ε -greedy strategy

$$\pi^{\varepsilon\text{-greedy}}(s) = \begin{cases} \text{random action} & \text{prob } \varepsilon \\ \text{arg max}_a \ \hat{Q}_*(s,a) & \text{prob } 1-\varepsilon \end{cases}$$

Theorem: Under "niceness" conditions SARSA guaranteed to converge to Q_* .

• Why always learn from a_{t+1} , epecially when a_{t+1} was a random exploration action? Why not instead learn from the action $\arg\max_{a'} Q(s_{t+1}, a')$ that should have been taken?

• Why always learn from a_{t+1} , epecially when a_{t+1} was a random exploration action? Why not instead learn from the action $\arg\max_{a'} Q(s_{t+1}, a')$ that should have been taken?

Q-Learning Update Rule

$$\hat{Q}_*(s_t, a_t) \leftarrow \hat{Q}_*(s_t, a_t) + \alpha \left(r_{t+1} + \gamma \max_{a'} \hat{Q}(s_{t+1}, a') - \hat{Q}(s_t, a_t) \right)$$

• Why always learn from a_{t+1} , epecially when a_{t+1} was a random exploration action? Why not instead learn from the action $\arg\max_{a'} Q(s_{t+1}, a')$ that should have been taken?

Q-Learning Update Rule

$$\hat{Q}_*(s_t, a_t) \leftarrow \hat{Q}_*(s_t, a_t) + \alpha \left(r_{t+1} + \gamma \max_{a'} \hat{Q}(s_{t+1}, a') - \hat{Q}(s_t, a_t) \right)$$

Actions taken via ε -greedy strategy over $\hat{Q}_*(s, a)$.

• Why always learn from a_{t+1} , epecially when a_{t+1} was a random exploration action? Why not instead learn from the action $\arg\max_{a'} Q(s_{t+1}, a')$ that should have been taken?

Q-Learning Update Rule

$$\hat{Q}_*(s_t, a_t) \leftarrow \hat{Q}_*(s_t, a_t) + \alpha \left(r_{t+1} + \gamma \max_{a'} \hat{Q}(s_{t+1}, a') - \hat{Q}(s_t, a_t) \right)$$

Actions taken via ε -greedy strategy over $\hat{Q}_*(s, a)$.

Theorem: Under "niceness" conditions Q-learning guaranteed to converge to Q_* .

• Why always learn from a_{t+1} , epecially when a_{t+1} was a random exploration action? Why not instead learn from the action $\arg\max_{a'} Q(s_{t+1}, a')$ that should have been taken?

Q-Learning Update Rule

$$\hat{Q}_*(s_t, a_t) \leftarrow \hat{Q}_*(s_t, a_t) + \alpha \left(r_{t+1} + \gamma \max_{a'} \hat{Q}(s_{t+1}, a') - \hat{Q}(s_t, a_t)\right)$$

Actions taken via ε -greedy strategy over $\hat{Q}_*(s, a)$.

Theorem: Under "niceness" conditions Q-learning guaranteed to converge to Q_* .

• Q-Learning tends to converge faster than SARSA, and chooses more aggressive/risky moves (SARSA learns from the moves that were actually taken, including any exploration).

• Why always learn from a_{t+1} , epecially when a_{t+1} was a random exploration action? Why not instead learn from the action $\arg\max_{a'} Q(s_{t+1}, a')$ that should have been taken?

Q-Learning Update Rule

$$\hat{Q}_*(s_t, a_t) \leftarrow \hat{Q}_*(s_t, a_t) + \alpha \left(r_{t+1} + \gamma \max_{a'} \hat{Q}(s_{t+1}, a') - \hat{Q}(s_t, a_t) \right)$$

Actions taken via ε -greedy strategy over $\hat{Q}_*(s, a)$.

Theorem: Under "niceness" conditions Q-learning guaranteed to converge to Q_* .

- Q-Learning tends to converge faster than SARSA, and chooses more aggressive/risky moves (SARSA learns from the moves that were actually taken, including any exploration).
- Can generalise further by including the action taken by SARSA in expectation (Expected SARSA).

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in \mathbb{S}^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A) \right]$$

$$S \leftarrow S'; A \leftarrow A';$$

until S is terminal

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$

Initialize Q(s,a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

 $S \leftarrow S'$

until S is terminal

8th June 2023

Beyond Tabular Learning

 All the methods up to this point assume sweeping through all state-action pairs is tractable

Beyond Tabular Learning

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?
 - State aggregation?

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?
 - State aggregation?
 - Parameterised policy π_{θ} , learn best θ ?

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?
 - State aggregation?
 - Parameterised policy π_{θ} , learn best θ ?
 - Craft a heuristic by hand?

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?
 - State aggregation?
 - Parameterised policy π_{θ} , learn best θ ?
 - Craft a heuristic by hand?
- In general, would like the agent to learn useful features for us

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?
 - State aggregation?
 - Parameterised policy π_{θ} , learn best θ ?
 - Craft a heuristic by hand?
- In general, would like the agent to learn useful features for us
 - Something deep learning excels at!

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?
 - State aggregation?
 - Parameterised policy π_{θ} , learn best θ ?
 - Craft a heuristic by hand?
- In general, would like the agent to learn useful features for us
 - Something deep learning excels at!
- Idea: Reduce the reinforcement learning problem to a supervised learning problem? Problems include

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?
 - State aggregation?
 - Parameterised policy π_{θ} , learn best θ ?
 - Craft a heuristic by hand?
- In general, would like the agent to learn useful features for us
 - Something deep learning excels at!
- Idea: Reduce the reinforcement learning problem to a supervised learning problem? Problems include
 - Interaction with environment is NOT i.i.d

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?
 - State aggregation?
 - Parameterised policy π_{θ} , learn best θ ?
 - Craft a heuristic by hand?
- In general, would like the agent to learn useful features for us
 - Something deep learning excels at!
- Idea: Reduce the reinforcement learning problem to a supervised learning problem? Problems include
 - Interaction with environment is NOT i.i.d
 - Dump experience into a buffer and shuffle

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?
 - State aggregation?
 - Parameterised policy π_{θ} , learn best θ ?
 - Craft a heuristic by hand?
- In general, would like the agent to learn useful features for us
 - Something deep learning excels at!
- Idea: Reduce the reinforcement learning problem to a supervised learning problem? Problems include
 - Interaction with environment is NOT i.i.d
 - Dump experience into a buffer and shuffle
 - Rewards are sparse

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?
 - State aggregation?
 - Parameterised policy π_{θ} , learn best θ ?
 - Craft a heuristic by hand?
- In general, would like the agent to learn useful features for us
 - Something deep learning excels at!
- Idea: Reduce the reinforcement learning problem to a supervised learning problem? Problems include
 - Interaction with environment is NOT i.i.d
 - Dump experience into a buffer and shuffle
 - Rewards are sparse
 - $oldsymbol{arepsilon}$ arepsilon-greedy explore, hope for the best

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?
 - State aggregation?
 - Parameterised policy π_{θ} , learn best θ ?
 - Craft a heuristic by hand?
- In general, would like the agent to learn useful features for us
 - Something deep learning excels at!
- Idea: Reduce the reinforcement learning problem to a supervised learning problem? Problems include
 - Interaction with environment is NOT i.i.d
 - Dump experience into a buffer and shuffle
 - Rewards are sparse
 - \bullet $\ensuremath{\varepsilon}\textsc{-}\mbox{greedy}$ explore, hope for the best
 - No ground truth to compare against

- All the methods up to this point assume sweeping through all state-action pairs is tractable
- What about large/continuous state spaces?
 - State aggregation?
 - Parameterised policy π_{θ} , learn best θ ?
 - Craft a heuristic by hand?
- In general, would like the agent to learn useful features for us
 - Something deep learning excels at!
- Idea: Reduce the reinforcement learning problem to a supervised learning problem? Problems include
 - Interaction with environment is NOT i.i.d
 - Dump experience into a buffer and shuffle
 - Rewards are sparse
 - \bullet $\ensuremath{\varepsilon}\textsc{-}\mbox{greedy}$ explore, hope for the best
 - No ground truth to compare against
 - Bootstrap from current estimates (i.e. Q-Learning)

$$\delta_t = r_{t+1} + \gamma \max_{a'} Q_*(s_{t+1}, a'; \theta) - Q_*(s_t, a_t; \theta)$$

• The Q-Value estimate $\hat{Q}_*(s,a;\theta)$ is now stored as a network, with parameters θ . Recall the TD-error for Q-Learning

$$\delta_t = r_{t+1} + \gamma \max_{a'} Q_*(s_{t+1}, a'; \theta) - Q_*(s_t, a_t; \theta)$$

• **Idea:** Accumulate experience $(s^i, a^i, r^i, s^i_{\text{new}})$ via interaction, optimise θ to minimise loss $L(\theta)$

• The Q-Value estimate $\hat{Q}_*(s,a;\theta)$ is now stored as a network, with parameters θ . Recall the TD-error for Q-Learning

$$\delta_t = r_{t+1} + \gamma \max_{a'} Q_*(s_{t+1}, a'; \theta) - Q_*(s_t, a_t; \theta)$$

• **Idea:** Accumulate experience $(s^i, a^i, r^i, s^i_{\text{new}})$ via interaction, optimise θ to minimise loss $L(\theta)$

$$\delta_t = r_{t+1} + \gamma \max_{a'} Q_*(s_{t+1}, a'; \theta) - Q_*(s_t, a_t; \theta)$$

- Idea: Accumulate experience $(s^i, a^i, r^i, s^i_{\text{new}})$ via interaction, optimise θ to minimise loss $L(\theta)$
 - In practice, experience is accumulated in a buffer, and batches are sampled at random to make data "more i.i.d".

$$\delta_t = r_{t+1} + \gamma \max_{a'} Q_*(s_{t+1}, a'; \theta) - Q_*(s_t, a_t; \theta)$$

- **Idea:** Accumulate experience $(s^i, a^i, r^i, s^i_{\text{new}})$ via interaction, optimise θ to minimise loss $L(\theta)$
 - In practice, experience is accumulated in a buffer, and batches are sampled at random to make data "more i.i.d".
 - \bullet Also use seperate set of parameters $\theta_{\rm target}$ for the target network, copy weights every so often.

$$\delta_t = r_{t+1} + \gamma \max_{a'} Q_*(s_{t+1}, a'; \theta) - Q_*(s_t, a_t; \theta)$$

- **Idea:** Accumulate experience $(s^i, a^i, r^i, s^i_{\text{new}})$ via interaction, optimise θ to minimise loss $L(\theta)$
 - In practice, experience is accumulated in a buffer, and batches are sampled at random to make data "more i.i.d".
 - \bullet Also use seperate set of parameters $\theta_{\rm target}$ for the target network, copy weights every so often.

$$L(heta) = rac{1}{N} \sum_{i=1}^{N} \left(r^i + \gamma \max_{a'} Q_*(s_{\mathsf{new}}, a'; heta_{\mathsf{target}}) - Q_*(s_t, a_t; heta)
ight)^2$$

• The Q-Value estimate $\hat{Q}_*(s,a;\theta)$ is now stored as a network, with parameters θ . Recall the TD-error for Q-Learning

$$\delta_t = r_{t+1} + \gamma \max_{a'} Q_*(s_{t+1}, a'; \theta) - Q_*(s_t, a_t; \theta)$$

- **Idea:** Accumulate experience $(s^i, a^i, r^i, s^i_{\text{new}})$ via interaction, optimise θ to minimise loss $L(\theta)$
 - In practice, experience is accumulated in a buffer, and batches are sampled at random to make data "more i.i.d".
 - \bullet Also use seperate set of parameters $\theta_{\rm target}$ for the target network, copy weights every so often.

$$L(heta) = rac{1}{N} \sum_{i=1}^{N} \left(r^i + \gamma \max_{a'} Q_*(s_{\mathsf{new}}, a'; heta_{\mathsf{target}}) - Q_*(s_t, a_t; heta)
ight)^2$$

Then, perform gradient update step over parameters

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(\theta)$$

Algorithm 1 Deep Q-Learning with Replay Buffer

```
Input: Environment p, Number of episodes M, replay buffer size N
  1: Initialise replay buffer \mathcal{D} to capacity N
 2: for episode = 1 to M do
 3:
            Sample initial state s from environment
            d \leftarrow \text{False}
 4.
            Initalize target parameters \theta_{\text{target}} \leftarrow \theta
            while d = \text{False do}
 6:
                 a \leftarrow \begin{cases} \text{random action} & \text{prob } \varepsilon \\ \arg \max_{a'} Q(s, a'; \theta) & \text{prob } 1 - \varepsilon \end{cases}
                  Sample (s_{\text{new}}, r, d) \sim p(\cdot | s, a)
 8:
 9:
                  Store experience (s, a, r, s_{\text{new}}, d) in \mathcal{D}
10:
                  s_{\text{new}} \leftarrow s
                  if Learning on this step then
11:
                        Sample minibatch B \leftarrow \{(s^i, a^i, r^i, s^i_{\text{new}}, d^i)\}_{i=1}^{|B|} from \mathcal{D}
12:
13:
                        for j = 1 to |B| do
                            y^{j} \leftarrow \begin{cases} r^{j} & d^{j} = \text{True} \\ r^{j} + \gamma \max_{a'} Q(s_{\text{new}}^{j}, a'; \theta_{\text{target}}) & d^{j} = \text{False} \end{cases}
14:
                        end for
15:
                        Define loss L(\theta) = \frac{1}{|B|} \sum_{i=1}^{|B|} (y^i - Q(s^i, a^i; \theta))^2
16:
                        Gradient descent step \theta \leftarrow \theta - \eta \nabla_{\theta} L(\theta)
17:
                  end if
18:
19:
                  if Update target this step then
                       \theta_{\mathrm{target}} \leftarrow \theta
20:
                  end if
21:
22:
            end while
```

• Learn π directly. π is stochastic, push up (down) probability $\pi(a|s)$ of good (bad) actions, converge to π^* .

- Learn π directly. π is stochastic, push up (down) probability $\pi(a|s)$ of good (bad) actions, converge to π^* .
- Policy π_{θ} is parameterised by θ , such that $\nabla_{\theta}\pi_{\theta}$ exists

- Learn π directly. π is stochastic, push up (down) probability $\pi(a|s)$ of good (bad) actions, converge to π^* .
- Policy π_{θ} is parameterised by θ , such that $\nabla_{\theta}\pi_{\theta}$ exists
- Measure of performance $J(\theta)$

- Learn π directly. π is stochastic, push up (down) probability $\pi(a|s)$ of good (bad) actions, converge to π^* .
- Policy π_{θ} is parameterised by θ , such that $\nabla_{\theta}\pi_{\theta}$ exists
- Measure of performance $J(\theta)$
- Update step $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \eta \widehat{
 abla_{ heta} J(oldsymbol{ heta})}$

- Learn π directly. π is stochastic, push up (down) probability $\pi(a|s)$ of good (bad) actions, converge to π^* .
- Policy π_{θ} is parameterised by θ , such that $\nabla_{\theta}\pi_{\theta}$ exists
- ullet Measure of performance J(heta)
- Update step $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \eta \widehat{
 abla_{oldsymbol{ heta}J(oldsymbol{ heta})}}$
- ullet Learn preferences h(s,a, heta), and (assuming $|\mathcal{A}|$ "small") define softmax policy

$$\pi^{ ext{softmax}}_{m{ heta}}(a|s) = rac{\exp(h(s,a,m{ heta})/T)}{\sum_{a'} \exp(h(s,a',m{ heta})/T)}$$

where T is temperature (hyperparamter).

• Use neural network to learn $h(s, a, \theta)$

Softmax vs. greedy

Advantages

- $\pi_{\varepsilon\text{-greedy}}$ always does uniformly random actions. $\pi_{\theta}^{\text{softmax}}$ is still stochastic, but biased towards good moves
- $\pi_{\theta}^{\text{softmax}}$ is continuous w.r.t preferences $h(s,a,\theta)$. $\pi_{\varepsilon\text{-greedy}}$ might dramatically change behaviour in response to small perturbations in $\hat{Q}_* \equiv$ better convergence
- π is a simpler function than Q. Learning π directly learns faster(?)

Disadvantages

- More computationally expensive/more complex
- $\pi_{ heta}^{ ext{softmax}}$ will play near uniform for two states with similar values. $\pi_{arepsilon ext{-greedy}}$ will choose the best
- $\pi_{\theta}^{\rm softmax}$ will only converge to deterministic policy with a temperature schedule, hard to choose a priori/requires domain knowledge

Log-derivative trick

Note that

$$\frac{d}{dx}\log f(x) = \frac{1}{f(x)} \cdot \frac{d}{dx}f(x)$$

Hence,

$$\frac{d}{dx}f(x) = f(x)\frac{d}{dx}\log f(x)$$

Or, in the form we will use it

$$\nabla_{\theta} P_{\theta}(x) = P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x)$$

- Assume episodic environment, length t', no discount $\gamma = 1$. WLOG starting state s_0 .
- Define $J(\theta) = V_{\pi_{\theta}}(s_0)$.
- Let $au = extstyle s_0, extstyle a_0, extstyle r_1, extstyle s_1, \dots, extstyle s_{t'}$ denote a trajectory
- $G(\tau) = \sum_{t=0}^{t'} r_t$ the return.
- $\Pr(\tau|\theta) = \prod_{k=t}^{t'} \pi_{\theta}(a_k|s_k) T(s_{k+t}|s_k, a_k)$ is the probability of sampling τ from environment given policy params. θ .

- Assume episodic environment, length t', no discount $\gamma = 1$. WLOG starting state s_0 .
- Define $J(\theta) = V_{\pi_{\theta}}(s_0)$.
- Let $au = s_0, a_0, r_1, s_1, \ldots, s_{t'}$ denote a trajectory
- $G(\tau) = \sum_{t=0}^{t'} r_t$ the return.
- $\Pr(\tau|\theta) = \prod_{k=t}^{t'} \pi_{\theta}(a_k|s_k) T(s_{k+t}|s_k, a_k)$ is the probability of sampling τ from environment given policy params. θ .

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \mathbb{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} \left[G(\tau) \right]$$

- Assume episodic environment, length t', no discount $\gamma = 1$. WLOG starting state s_0 .
- Define $J(\theta) = V_{\pi_{\theta}}(s_0)$.
- Let $au = s_0, a_0, r_1, s_1, \ldots, s_{t'}$ denote a trajectory
- $G(\tau) = \sum_{t=0}^{t'} r_t$ the return.
- $\Pr(\tau|\theta) = \prod_{k=t}^{t'} \pi_{\theta}(a_k|s_k) T(s_{k+t}|s_k, a_k)$ is the probability of sampling τ from environment given policy params. θ .

$$egin{aligned}
abla_{m{ heta}} J(m{ heta}) &=
abla_{m{ heta}} \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[G(au)
ight] \ &=
abla_{m{ heta}} \sum_{ au} \mathsf{Pr}(au | m{ heta}) G(au) \end{aligned}$$

- Assume episodic environment, length t', no discount $\gamma = 1$. WLOG starting state s_0 .
- Define $J(\theta) = V_{\pi_{\theta}}(s_0)$.
- Let $\tau = s_0, a_0, r_1, s_1, \dots, s_{t'}$ denote a trajectory
- $G(\tau) = \sum_{t=0}^{t'} r_t$ the return.
- $\Pr(\tau|\theta) = \prod_{k=t}^{t'} \pi_{\theta}(a_k|s_k) T(s_{k+t}|s_k, a_k)$ is the probability of sampling τ from environment given policy params. θ .

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \mathbb{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} \left[G(\tau) \right]$$

$$= \nabla_{\boldsymbol{\theta}} \sum_{\tau} \Pr(\tau | \boldsymbol{\theta}) G(\tau)$$

$$= \sum_{\tau} \nabla_{\boldsymbol{\theta}} \Pr(\tau | \boldsymbol{\theta}) G(\tau)$$

- Assume episodic environment, length t', no discount $\gamma = 1$. WLOG starting state s_0 .
- Define $J(\theta) = V_{\pi_{\theta}}(s_0)$.
- Let $au = s_0, a_0, r_1, s_1, \ldots, s_{t'}$ denote a trajectory
- $G(\tau) = \sum_{t=0}^{t'} r_t$ the return.
- $\Pr(\tau|\theta) = \prod_{k=t}^{t'} \pi_{\theta}(a_k|s_k) T(s_{k+t}|s_k, a_k)$ is the probability of sampling τ from environment given policy params. θ .

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[G(\tau) \right] \\ &= \nabla_{\theta} \sum_{\tau} \Pr(\tau | \theta) G(\tau) \\ &= \sum_{\tau} \nabla_{\theta} \Pr(\tau | \theta) G(\tau) \\ &= \sum_{\tau} \Pr(\tau | \theta) \left(\nabla_{\theta} \log \Pr(\tau | \theta) G(\tau) \right) \text{ (Log Derivative trick)} \end{split}$$

- Assume episodic environment, length t', no discount $\gamma = 1$. WLOG starting state s_0 .
- Define $J(\theta) = V_{\pi_{\theta}}(s_0)$.
- Let $au = s_0, a_0, r_1, s_1, \ldots, s_{t'}$ denote a trajectory
- $G(\tau) = \sum_{t=0}^{t'} r_t$ the return.
- $\Pr(\tau|\theta) = \prod_{k=t}^{t'} \pi_{\theta}(a_k|s_k) T(s_{k+t}|s_k, a_k)$ is the probability of sampling τ from environment given policy params. θ .

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[G(\tau) \right] \\ &= \nabla_{\theta} \sum_{\tau} \Pr(\tau | \theta) G(\tau) \\ &= \sum_{\tau} \nabla_{\theta} \Pr(\tau | \theta) G(\tau) \\ &= \sum_{\tau} \Pr(\tau | \theta) \left(\nabla_{\theta} \log \Pr(\tau | \theta) G(\tau) \right) \text{ (Log Derivative trick)} \\ &= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\nabla_{\theta} \log \Pr(\tau | \theta) G(\tau) \right] \end{split}$$

Note that

$$abla_{m{ heta}} \log \mathsf{Pr}(au | m{ heta}) =
abla_{m{ heta}} \log \prod_{k=t}^{t'} \pi_{m{ heta}}(a_k | s_k) \mathcal{T}(s_{k+t} | s_k, a_k)$$

Note that

$$\begin{aligned} \nabla_{\theta} \log \Pr(\tau | \theta) &= \nabla_{\theta} \log \prod_{k=t}^{t'} \pi_{\theta}(a_k | s_k) \mathcal{T}(s_{k+t} | s_k, a_k) \\ &= \nabla_{\theta} \sum_{k=t}^{t'} \log \pi_{\theta}(a_k | s_k) \mathcal{T}(s_{k+t} | s_k, a_k) \end{aligned}$$

Note that

$$\begin{split} \nabla_{\boldsymbol{\theta}} \log \Pr(\tau|\boldsymbol{\theta}) &= \nabla_{\boldsymbol{\theta}} \log \prod_{k=t}^{t'} \pi_{\boldsymbol{\theta}}(a_k|s_k) T(s_{k+t}|s_k, a_k) \\ &= \nabla_{\boldsymbol{\theta}} \sum_{k=t}^{t'} \log \pi_{\boldsymbol{\theta}}(a_k|s_k) T(s_{k+t}|s_k, a_k) \\ &= \nabla_{\boldsymbol{\theta}} \sum_{k=t}^{t'} \log \pi_{\boldsymbol{\theta}}(a_k|s_k) + \log T(s_{k+t}|s_k, a_k) \end{split}$$

Note that

$$\begin{split} \nabla_{\theta} \log \Pr(\tau | \theta) &= \nabla_{\theta} \log \prod_{k=t}^{t'} \pi_{\theta}(a_k | s_k) T(s_{k+t} | s_k, a_k) \\ &= \nabla_{\theta} \sum_{k=t}^{t'} \log \pi_{\theta}(a_k | s_k) T(s_{k+t} | s_k, a_k) \\ &= \nabla_{\theta} \sum_{k=t}^{t'} \log \pi_{\theta}(a_k | s_k) + \log T(s_{k+t} | s_k, a_k) \\ &= \nabla_{\theta} \sum_{k=t}^{t'} \log \pi_{\theta}(a_k | s_k) + \nabla_{\theta} \sum_{k=t}^{t'} \log T(s_{k+t} | s_k, a_k) \end{split}$$

Note that

$$\begin{split} \nabla_{\theta} \log \Pr(\tau | \theta) &= \nabla_{\theta} \log \prod_{k=t}^{t'} \pi_{\theta}(a_k | s_k) T(s_{k+t} | s_k, a_k) \\ &= \nabla_{\theta} \sum_{k=t}^{t'} \log \pi_{\theta}(a_k | s_k) T(s_{k+t} | s_k, a_k) \\ &= \nabla_{\theta} \sum_{k=t}^{t'} \log \pi_{\theta}(a_k | s_k) + \log T(s_{k+t} | s_k, a_k) \\ &= \nabla_{\theta} \sum_{k=t}^{t'} \log \pi_{\theta}(a_k | s_k) + \nabla_{\theta} \sum_{k=t}^{t'} \log T(s_{k+t} | s_k, a_k) \\ &= \nabla_{\theta} \sum_{k=t}^{t'} \log \pi_{\theta}(a_k | s_k) \end{split}$$

Vanilla Policy Gradient (VPG)

$$abla_{m{ heta}} J(m{ heta}) = \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[
abla_{m{ heta}} \sum_{k=t}^{t'} \log \pi_{m{ heta}}(a_k|s_k) G(au)
ight]$$

Clever trick 1: The future cannot affect the past

- $\pi_{\theta}(a_i|s_i)$ gets bumped by the full return $G(\tau)$. Obviously a_t has no effect on $r_0, r_1, \ldots, r_{t-1}$
- At timestep t, swap full return $G(\tau)$ with partial return $\sum_{j=t}^{t'} r_j$

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} \left[\nabla_{\boldsymbol{\theta}} \sum_{k=t}^{t'} \log \pi_{\boldsymbol{\theta}}(a_k | s_k) \sum_{j=k}^{t'} R(s_j, a_j, s_{j+1}) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} \left[\nabla_{\boldsymbol{\theta}} \sum_{k=t}^{t'} \log \pi_{\boldsymbol{\theta}}(a_k | s_k) Q_{\pi_{\boldsymbol{\theta}}}(s_k, a_k) \right]$$

Algorithm 1 Vanilla Policy Gradient ($\gamma = 1$)

Input: Environment p, Number of episodes M

- 1: $\mathbf{for} \text{ episode} = 1 \text{ to } M \mathbf{do}$
- 2: Generate episode $s_0, a_0, r_1, s_1, \dots, s_{T-1}, a_{T-1}, r_T$
- 3: Define $G_t = \sum_{i=t+1}^T r_i$ for $0 \le t \le T-1$
- 4: Define gain $J(\boldsymbol{\theta}) = \sum_{t=0}^{T-1} G_t \log \pi_{\boldsymbol{\theta}}(a_t|s_t)$
- 5: Gradient ascent step $\theta \leftarrow \theta + \eta \nabla_{\theta} J(\theta)$
- 6: end for

Algorithm 2 Efficient Vanilla Policy Gradient ($\gamma = 1$)

Input: Environment p, Number of episodes M

- 1: $\mathbf{for} \text{ episode} = 1 \text{ to } M \mathbf{do}$
- 2: Generate episode $s_0, a_0, r_1, s_1, \dots, s_{T-1}, a_{T-1}, r_T$
- 3: Initalise array $G = \{G_0, G_1, \dots, G_{T-1}\}$
- 4: $G_{T-1} \leftarrow r_T$
- 5: **for** timestep in episode t = T 2, T 1 to 0 **do**
- 6: $G_t \leftarrow r_{t+1} + G_{t+1}$
- 7: end for
- 8: Define gain $J(\boldsymbol{\theta}) = \sum_{t=0}^{T-1} G_t \log \pi_{\boldsymbol{\theta}}(a_t|s_t)$
- 9: Gradient ascent step $\theta \leftarrow \theta + \eta \nabla_{\theta} J(\theta)$
- 10: end for

Let P_{θ} be a parameterised probability distribution over random variable x. Then

$$\mathbb{E}_{x \sim \mathsf{P}_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \mathsf{P}_{\boldsymbol{\theta}}(x)] = 0$$

Let P_{θ} be a parameterised probability distribution over random variable x. Then

$$\mathbb{E}_{x \sim \mathsf{P}_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \mathsf{P}_{\boldsymbol{\theta}}(x)] = 0$$

$$\sum_{x} \mathsf{P}_{\boldsymbol{\theta}}(x) = 1$$

Let P_{θ} be a parameterised probability distribution over random variable x. Then

$$\mathbb{E}_{x \sim \mathsf{P}_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \mathsf{P}_{\boldsymbol{\theta}}(x)] = 0$$

$$\sum_{x} P_{\theta}(x) = 1$$

$$\nabla_{\theta} \sum_{x} P_{\theta}(x) = \nabla_{\theta} 1 = 0$$

Let P_{θ} be a parameterised probability distribution over random variable x. Then

$$\mathbb{E}_{\mathbf{x} \sim \mathsf{P}_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \mathsf{P}_{\boldsymbol{\theta}}(\mathbf{x})] = 0$$

$$\sum_{x} P_{\theta}(x) = 1$$

$$\nabla_{\theta} \sum_{x} P_{\theta}(x) = \nabla_{\theta} 1 = 0$$

$$\nabla_{\theta} \sum_{x} P_{\theta}(x) = 0$$

Let P_{θ} be a parameterised probability distribution over random variable x. Then

$$\mathbb{E}_{\mathbf{x} \sim \mathsf{P}_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \mathsf{P}_{\boldsymbol{\theta}}(\mathbf{x})] = 0$$

$$\sum_{x} P_{\theta}(x) = 1$$

$$\nabla_{\theta} \sum_{x} P_{\theta}(x) = \nabla_{\theta} 1 = 0$$

$$\nabla_{\theta} \sum_{x} P_{\theta}(x) = 0$$

$$\sum_{x} \nabla_{\theta} P_{\theta}(x) = 0$$

Let P_{θ} be a parameterised probability distribution over random variable x. Then

$$\mathbb{E}_{\mathbf{x} \sim \mathsf{P}_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \mathsf{P}_{\boldsymbol{\theta}}(\mathbf{x})] = 0$$

Proof:

$$\sum_{x} P_{\theta}(x) = 1$$

$$\nabla_{\theta} \sum_{x} P_{\theta}(x) = \nabla_{\theta} 1 = 0$$

$$\nabla_{\theta} \sum_{x} P_{\theta}(x) = 0$$

$$\sum_{x} \nabla_{\theta} P_{\theta}(x) = 0$$

Apply log-derivative trick

Let P_{θ} be a parameterised probability distribution over random variable x. Then

$$\mathbb{E}_{\mathbf{x} \sim \mathsf{P}_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \mathsf{P}_{\boldsymbol{\theta}}(\mathbf{x})] = 0$$

Proof:

$$\sum_{x} P_{\theta}(x) = 1$$

$$\nabla_{\theta} \sum_{x} P_{\theta}(x) = \nabla_{\theta} 1 = 0$$

$$\nabla_{\theta} \sum_{x} P_{\theta}(x) = 0$$

$$\sum_{x} \nabla_{\theta} P_{\theta}(x) = 0$$

Apply log-derivative trick

$$\sum_{x} \mathsf{P}_{\boldsymbol{\theta}}(x) \nabla_{\boldsymbol{\theta}} \mathsf{P}_{\boldsymbol{\theta}}(x) = 0$$

Let P_{θ} be a parameterised probability distribution over random variable x. Then

$$\mathbb{E}_{x \sim \mathsf{P}_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \mathsf{P}_{\boldsymbol{\theta}}(x)] = 0$$

Proof:

$$\sum_{x} P_{\theta}(x) = 1$$

$$\nabla_{\theta} \sum_{x} P_{\theta}(x) = \nabla_{\theta} 1 = 0$$

$$\nabla_{\theta} \sum_{x} P_{\theta}(x) = 0$$

$$\sum_{x} \nabla_{\theta} P_{\theta}(x) = 0$$

Apply log-derivative trick

$$\sum_{x} \mathsf{P}_{\theta}(x) \nabla_{\theta} \mathsf{P}_{\theta}(x) = 0$$
$$\mathbb{E}_{x \sim \mathsf{P}_{\theta}} [\nabla_{\theta} \log \mathsf{P}_{\theta}(x)] = 0$$

$$\mathbb{E}_{\mathsf{a}_t \sim \pi_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathsf{a}_t|s_t)b(s_t)] = 0$$

$$\mathbb{E}_{a_t \sim \pi_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(a_t|s_t)b(s_t)] = 0$$

So, can add/subtract any such **baseline function** b into VPG without changing the result (in expectation),

$$abla_{m{ heta}} J(m{ heta}) = \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[
abla_{m{ heta}} \sum_{k=t}^{t'} \log \pi_{m{ heta}}(a_k|s_k) igg(Q_{\pi_{m{ heta}}}(s_k,a_k) - b(s_k) igg)
ight]$$

$$\mathbb{E}_{a_t \sim \pi_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(a_t|s_t)b(s_t)] = 0$$

So, can add/subtract any such **baseline function** b into VPG without changing the result (in expectation),

$$abla_{m{ heta}} J(m{ heta}) = \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[
abla_{m{ heta}} \sum_{k=t}^{t'} \log \pi_{m{ heta}}(a_k|s_k) igg(Q_{\pi_{m{ heta}}}(s_k,a_k) - b(s_k) igg)
ight]$$

Clever trick 2: Choose $b(s_t) = V_{\pi_{\theta}}(s_t)$, the on-policy value function

$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[
abla_{m{ heta}} \sum_{k=t}^{t'} \log \pi_{m{ heta}}(a_k | s_k) igg(Q_{\pi_{m{ heta}}}(s_k, a_k) - V_{\pi_{m{ heta}}}(s_k) igg)
ight] \ &= \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[
abla_{m{ heta}} \sum_{k=t}^{t'} \log \pi_{m{ heta}}(a_k | s_k) A_{\pi_{m{ heta}}}(s_t, a_t)
ight] \end{aligned}$$

where $A_{\pi}(s,a) := Q_{\pi}(s,a) - V_{\pi}(s)$ is the **advantage** function

$$\mathbb{E}_{a_t \sim \pi_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(a_t|s_t)b(s_t)] = 0$$

So, can add/subtract any such **baseline function** b into VPG without changing the result (in expectation),

$$abla_{m{ heta}} J(m{ heta}) = \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[
abla_{m{ heta}} \sum_{k=t}^{t'} \log \pi_{m{ heta}}(a_k|s_k) igg(Q_{\pi_{m{ heta}}}(s_k, a_k) - b(s_k) igg)
ight]$$

Clever trick 2: Choose $b(s_t) = V_{\pi_{\theta}}(s_t)$, the on-policy value function

$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{ au \sim \pi_{ heta}} \left[
abla_{ heta} \sum_{k=t}^{t'} \log \pi_{ heta}(a_k|s_k) igg(Q_{\pi_{ heta}}(s_k, a_k) - V_{\pi_{ heta}}(s_k) igg)
ight] \ &= \mathbb{E}_{ au \sim \pi_{ heta}} \left[
abla_{ heta} \sum_{k=t}^{t'} \log \pi_{ heta}(a_k|s_k) A_{\pi_{ heta}}(s_t, a_t)
ight] \end{aligned}$$

where $A_{\pi}(s,a) := Q_{\pi}(s,a) - V_{\pi}(s)$ is the **advantage** function

• $V_{\pi_{\mathbf{A}}}$ learned by separate critic network.

$$\mathbb{E}_{\mathsf{a}_t \sim \pi_{\boldsymbol{\theta}}}[\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\mathsf{a}_t|\mathsf{s}_t)b(\mathsf{s}_t)] = 0$$

So, can add/subtract any such **baseline function** b into VPG without changing the result (in expectation),

$$abla_{m{ heta}} J(m{ heta}) = \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[
abla_{m{ heta}} \sum_{k=t}^{t'} \log \pi_{m{ heta}}(a_k|s_k) igg(Q_{\pi_{m{ heta}}}(s_k,a_k) - b(s_k) igg)
ight]$$

Clever trick 2: Choose $b(s_t) = V_{\pi_{\theta}}(s_t)$, the on-policy value function

$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[
abla_{m{ heta}} \sum_{k=t}^{t'} \log \pi_{m{ heta}}(a_k | s_k) igg(Q_{\pi_{m{ heta}}}(s_k, a_k) - V_{\pi_{m{ heta}}}(s_k) igg)
ight] \ &= \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[
abla_{m{ heta}} \sum_{k=t}^{t'} \log \pi_{m{ heta}}(a_k | s_k) A_{\pi_{m{ heta}}}(s_t, a_t)
ight] \end{aligned}$$

where $A_{\pi}(s,a) := Q_{\pi}(s,a) - V_{\pi}(s)$ is the **advantage** function

- $V_{\pi_{\theta}}$ learned by separate critic network.
- Reduces variance, only update policy when critic disagrees

Note: Police gradient uses gradient ascent, so we actually maximise loss!

Note: Police gradient uses gradient **ascent**, so we actually **maximise** loss!

• Don't blame me, the PPO paper use this convention too!

Note: Police gradient uses gradient ascent, so we actually maximise loss!

Don't blame me, the PPO paper use this convention too!
 Define policy gradient "loss" (gain?)

$$L^{PG}(\boldsymbol{\theta}) = \mathbb{\hat{E}}\left[\sum_{k=t}^{t'} \log \pi_{\boldsymbol{\theta}}(a_k|s_k) A_{\pi_{\boldsymbol{\theta}}}(s_t, a_t)\right]$$

Note: Police gradient uses gradient ascent, so we actually maximise loss!

Don't blame me, the PPO paper use this convention too!
 Define policy gradient "loss" (gain?)

$$L^{PG}(\boldsymbol{\theta}) = \hat{\mathbb{E}}\left[\sum_{k=t}^{t'} \log \pi_{\boldsymbol{\theta}}(a_k|s_k) A_{\pi_{\boldsymbol{\theta}}}(s_t, a_t)\right]$$

where $\hat{\mathbb{E}}$ indicates the expectation is approximated by a batch of samples, and $\hat{A}(s_t,a_t)=\hat{Q}(s_t,a_t)-\hat{V}_{\phi}(s_t)$, where

• $Q(s_t, a_t) = \sum_{k=t}^{t'} R(s_t, a_t, s_{t+1} \text{ Q-value computed using empirical return } - (-)')_/$

Note: Police gradient uses gradient ascent, so we actually maximise loss!

Don't blame me, the PPO paper use this convention too!
 Define policy gradient "loss" (gain?)

$$L^{PG}(\boldsymbol{\theta}) = \mathbb{\hat{E}}\left[\sum_{k=t}^{t'} \log \pi_{\boldsymbol{\theta}}(a_k|s_k) A_{\pi_{\boldsymbol{\theta}}}(s_t, a_t)\right]$$

- $Q(s_t, a_t) = \sum_{k=t}^{t'} R(s_t, a_t, s_{t+1} \text{ Q-value computed using empirical return } (")_/"$
- $\hat{V}_{\phi}(s_t)$ computed using critic network

Note: Police gradient uses gradient ascent, so we actually maximise loss!

Don't blame me, the PPO paper use this convention too!
 Define policy gradient "loss" (gain?)

$$L^{PG}(\boldsymbol{\theta}) = \mathbb{\hat{E}}\left[\sum_{k=t}^{t'} \log \pi_{\boldsymbol{\theta}}(a_k|s_k) A_{\pi_{\boldsymbol{\theta}}}(s_t, a_t)\right]$$

- $Q(s_t, a_t) = \sum_{k=t}^{t'} R(s_t, a_t, s_{t+1} \text{ Q-value computed using empirical return } (")_/"$
- $\hat{V}_{\phi}(s_t)$ computed using critic network
- Note that $\hat{A}(s_t, a_t)$ has no dependance on θ .

Note: Police gradient uses gradient ascent, so we actually maximise loss!

Don't blame me, the PPO paper use this convention too!
 Define policy gradient "loss" (gain?)

$$L^{PG}(\boldsymbol{\theta}) = \hat{\mathbb{E}}\left[\sum_{k=t}^{t'} \log \pi_{\boldsymbol{\theta}}(a_k|s_k) A_{\pi_{\boldsymbol{\theta}}}(s_t, a_t)\right]$$

- $Q(s_t, a_t) = \sum_{k=t}^{t'} R(s_t, a_t, s_{t+1} \text{ Q-value computed using empirical return } (")_/"$
- $\hat{V}_{\phi}(s_t)$ computed using critic network
- Note that $\hat{A}(s_t, a_t)$ has no dependance on θ .
- However, this leads to destructively large policy updates

Note: Police gradient uses gradient ascent, so we actually maximise loss!

Don't blame me, the PPO paper use this convention too!
 Define policy gradient "loss" (gain?)

$$L^{PG}(\boldsymbol{\theta}) = \hat{\mathbb{E}}\left[\sum_{k=t}^{t'} \log \pi_{\boldsymbol{\theta}}(a_k|s_k) A_{\pi_{\boldsymbol{\theta}}}(s_t, a_t)\right]$$

- $Q(s_t, a_t) = \sum_{k=t}^{t'} R(s_t, a_t, s_{t+1} \text{ Q-value computed using empirical return } (")_/"$
- $\hat{V}_{\phi}(s_t)$ computed using critic network
- Note that $\hat{A}(s_t, a_t)$ has no dependance on θ .
- However, this leads to destructively large policy updates

