Home / My courses	/ <u>tring2-SU21-MAD101</u> / Progress Test 1 / <u>Progress Test 1 - SE1510</u>
Ctautad au	Turanday, 25 May, 2021, 2:22 DM
	Tuesday, 25 May 2021, 2:23 PM Finished
	Tuesday, 25 May 2021, 3:32 PM
	1 hour 8 mins
	25.00/30.00
	8.33 out of 10.00 (83 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	
a. Fb. T The correct answer	is: F
Question 2	
Correct	
Mark 1.00 out of 1.00	
Which is the false v	alue in these statements.
O a. A ∪ (B − A) :	= A ∪ B
\bigcirc b. A \subseteq (A \cup B)	
© c. A ∩ (B − A) =	= B ✓
d. A − B ⊆ A	

The correct answer is: $A \cap (B - A) = B$

Question 3 Correct
Mark 1.00 out of 1.00
Let p and q be the propositions. p: I bought a lottery ticket this week. q: I won the million dollar jackpot on Thursday. Express the English sentence "Either I did not buy a lottery ticket this week, or else I did buy one and win the million dollar jackpot" as a proposition.
\bigcirc a. p \rightarrow (p \lor q)
\bigcirc b. $\neg p \land (p \lor q)$
© c. ¬p ∨ (p ∧ q)
\bigcirc d. p \land (p \land q)
The correct answer is: $\neg p \lor (p \land q)$
Question 4 Correct
Mark 1.00 out of 1.00
Let p and q be the propositions. p: I bought a lottery ticket this week. q: I won the million dollar jackpot on Thursday. Express the English sentence "If I did not buy a lottery ticket this week, then I did not win the million dollar jackpot" as a proposition.
○ a. p ∧ q
○ b.¬p∨q
\bigcirc c. p $\rightarrow \neg q$
d. $\neg p \rightarrow \neg q $
The correct answer is: $\neg p \rightarrow \neg q$
Question 5 Correct
Mark 1.00 out of 1.00
Let p, q, and r be the propositions. p: You get an A on the final exam. q: You do every exercise in this book. r: You get an A in this class. Write a proposition to express this sentence "Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class."
\bigcirc a. (p \land q) \lor r
○ b. p ∧ q ∨ r
\odot c. $(p \land q) \rightarrow r$
○ d. p ∧ q ∧ r

The correct answer is: $(p \land q) \rightarrow r$

The correct answer is: 3

Question 9 Correct	
Mark 1.00 out of 1.00	
Let C(x) be the statement "x has a cat," let D(x) be the statement "x has a dog," and let F(x) be the statement "x has a fer this statement "Some student in your class has a cat and a ferret, but not a dog." in terms of C(x), D(x), F(x), quantifiers, connectives. Let the domain consist of all students in your class.	
\bigcirc a. $\exists x(C(x) \lor D(x) \lor F(x))$	
\bigcirc b. $\exists x (C(x) \lor F(x) \lor \neg D(x))$	
\bigcirc c. $\exists x(C(x) \land D(x) \land F(x))$	
\odot d. $\exists x (C(x) \land F(x) \land \neg D(x))$	~
The correct answer is: $\exists x(C(x) \land F(x) \land \neg D(x))$	
Question 10	
Correct	
Mark 1.00 out of 1.00	
Let p and q be the propositions. p: I bought a lottery ticket this week. q: I won the million dollar jackpot on Thursday. Exsentence "I bought a lottery ticket this week if and only if I won the million dollar jackpot" as a proposition.	xpress the English
\odot a. p \leftrightarrow q	~
○ b. ¬p ∨ q	
\bigcirc c. p \rightarrow q	
\bigcirc d. p $\rightarrow \neg q$	
The correct answer is: $p \leftrightarrow q$	
Question 11	
Incorrect 14.100	
Mark 0.00 out of 1.00	
Find the equivalence proposition of this: $q \rightarrow (p \lor r)$	
\bigcirc a. $\neg p \rightarrow (q \rightarrow r)$	
b. ¬p ∧ (q → r)	
$\bigcirc c. \neg p \rightarrow (q \lor r)$	
\odot d. $\neg p \lor (q \rightarrow r)$	×

https://lmsdn.fpt.edu.vn/mod/quiz/review.php?attempt=27290&cmid=7963

The correct answer is: $\neg p \rightarrow (q \rightarrow r)$

Question 12 Correct
Mark 1.00 out of 1.00
Find the truth value of this compound proposition: (p \oplus q) \wedge (p \oplus \neg q), where p=T, q=T.
○ b. T
The correct answer is: F
Question 13
Correct
Mark 1.00 out of 1.00
Determine whether this biconditionals are true or false: " $0 > 1$ if and only if $2 > 1$."
○ a. T
The correct answer is: F
Question 14
Correct Mark 1.00 out of 1.00
Mark 1.00 out of 1.00
Let p, q, and r be the propositions. p: You get an A on the final exam. q: You do every exercise in this book. r: You get an A in this class. Write a proposition to express this sentence "You will get an A in this class if and only if you either do every exercise in this book or you get an A on the final."
\bigcirc a. r \leftrightarrow (q \lor p)
\bigcirc b. r \leftrightarrow (q \land p)
\bigcirc c. r \rightarrow (q \land p)
\bigcirc d. r \rightarrow (q \lor p)
The correct answer is: $r \leftrightarrow (q \lor p)$

Question 15 Correct
Mark 1.00 out of 1.00
Which is the false value in these statements.
a. $\{\{\varnothing\}\} \subset \{\{\varnothing\}, \{\varnothing\}\} $
\bigcirc b. $\emptyset \in \{\emptyset\}$
\bigcirc c. $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$
$\bigcirc d. \varnothing \in \{\varnothing, \{\varnothing\}\}$
The correct answer is: $\{\{\emptyset\}\}\subset \{\{\emptyset\}, \{\emptyset\}\}$
Question 16
Correct
Mark 1.00 out of 1.00
Let p, q, and r be the propositions. p: You get an A on the final exam. q: You do every exercise in this book. r: You get an A in this class. Write a proposition to express this sentence "You get an A on the final, but you don't do every exercise in this book; nevertheless, you get an A in this class."
■ a. p ∧ ¬q ∧ r ✓
○ b. p ∧ ¬q ∨ r
○ c. p ∧ ¬q ∨ ¬r
\bigcirc d. p $\land \neg q \land \neg r$
The correct answer is: $p \land \neg q \land r$
Question 17
Correct
Mark 1.00 out of 1.00
Translate this English sentence to the quantification: There exists an animal such that if it is a rabbit, then it hops. Where R(x) is "x is a rabbit" and H(x) is "x hops" and the domain consists of all animals.
\bigcirc a. $\forall x (R(x) \land H(x))$
\bigcirc b. $\exists x (R(x) \land H(x))$
\bigcirc c. $\forall x (R(x) \rightarrow H(x))$
\odot d. $\exists x (R(x) \rightarrow H(x))$
The correct answer is: $\exists x(R(x) \rightarrow H(x))$

Progress Test 1 - SE1510: Attempt review Question 18 Correct Mark 1.00 out of 1.00 Find the compound proposition that is a tautology. \bigcirc a. $[\neg p \lor (p \land q)] \rightarrow q$ \bigcirc b. $[(p \land q) \lor (p \rightarrow r) \land (q \rightarrow r)] \rightarrow r$ \bigcirc c. $[(p \rightarrow q) \rightarrow (q \rightarrow r)] \land (p \rightarrow r)$ \bigcirc d. $[p \land (p \rightarrow q)] \rightarrow q$ The correct answer is: $[p \land (p \rightarrow q)] \rightarrow q$ Question 19 Incorrect Mark 0.00 out of 1.00 Which is the false value in these statements. \bigcirc a. $(A - C) \cap (C - B) = \emptyset$ \bigcirc b. $(B - A) \cup (C - A) = (B \cup C) - A$ \bigcirc c. (A \cup B \cup C) \subseteq (A \cup B) \bigcirc d. (A \cup B) \subseteq (A \cup B \cup C) The correct answer is: $(A \cup B \cup C) \subseteq (A \cup B)$ Question 20 Correct Mark 1.00 out of 1.00 Let N(x) be the statement "x has visited Hoi An," where the domain consists of the students in your school. Express this English sentence in the quantification: Some student in the school has not visited Hoi An. a. ¬∃xN(x) b. ∃x¬N(x) \bigcirc c. $\neg \forall x N(x)$ d. 3xN(x)

The correct answer is: $\exists x \neg N(x)$

Question 24
Correct Mark 1.00 out of 1.00
What is the cardinality of this set: $\{\emptyset\}$
O a. 2
○ b. 0
 c. 1 ✓
O d. 3
The correct answer is: 1
Question 25 Correct
Mark 1.00 out of 1.00
Let $Q(x)$ be the statement " $x + 1 > 2x$." If the domain consists of all integers, which is the false values?
a. ∀xQ(x)
○ b. ∃xQ(x)
b. ∃xQ(x)c. ∃x¬Q(x)
○ c. ∃x¬Q(x)
○ c. ∃x¬Q(x)
○ c. ∃x¬Q(x)○ d. Q(-1)
○ c. $\exists x \neg Q(x)$ ○ d. $Q(-1)$ The correct answer is: $\forall x Q(x)$
○ c. ∃x¬Q(x)○ d. Q(-1)
○ c. $\exists x \neg Q(x)$ ○ d. $Q(-1)$ The correct answer is: $\forall x Q(x)$
 c. ∃x¬Q(x) d. Q(−1) The correct answer is: ∀xQ(x) Question 26 Correct Mark 1.00 out of 1.00
○ c. $\exists x \neg Q(x)$ ○ d. $Q(-1)$ The correct answer is: $\forall x Q(x)$ Question 26 Correct
 c. ∃x¬Q(x) d. Q(−1) The correct answer is: ∀xQ(x) Question 26 Correct Mark 1.00 out of 1.00
○ c. $\exists x \neg Q(x)$ ○ d. $Q(-1)$ The correct answer is: $\forall x Q(x)$ Question 26 Correct Mark 1.00 out of 1.00 Which is the false value in these statements.
○ c. $\exists x \neg Q(x)$ ○ d. $Q(-1)$ The correct answer is: $\forall x Q(x)$ Question 26 Correct Mark 1.00 out of 1.00 Which is the false value in these statements. ○ a. $(A \oplus B) \oplus B = B$
○ c. $\exists x \neg Q(x)$ ○ d. $Q(-1)$ The correct answer is: $\forall x Q(x)$ Question 26 Correct Mark 1.00 out of 1.00 Which is the false value in these statements. ○ a. $(A \oplus B) \oplus B = B$ ○ b. $A \oplus B = B \oplus A$
○ c. $\exists x \neg Q(x)$ ○ d. $Q(-1)$ The correct answer is: $\forall xQ(x)$ Question 26 Correct Mark 1.00 out of 1.00 Which is the false value in these statements. ○ a. $(A \oplus B) \oplus B = B$ ○ b. $A \oplus B = B \oplus A$ ○ c. $A \oplus B = (A - B) \cup (B - A)$
○ c. $\exists x \neg Q(x)$ ○ d. $Q(-1)$ The correct answer is: $\forall xQ(x)$ Question 26 Correct Mark 1.00 out of 1.00 Which is the false value in these statements. ○ a. $(A \oplus B) \oplus B = B$ ○ b. $A \oplus B = B \oplus A$ ○ c. $A \oplus B = (A - B) \cup (B - A)$

25/5/2021 Progress Test 1 - SE1510: Attempt review Question 27 Correct Mark 1.00 out of 1.00 Which is the false value in these statements if the domain consists of all real numbers. \bigcirc a. $\exists x(x^3 = -1)$ b. $∀x(2^x = x)$ \bigcirc c. $\exists x(x^4 = x^2)$ ○ d. $\forall x((-x)^2 = x^2)$ The correct answer is: $\forall x(2^x = x)$ Question 28 Correct Mark 1.00 out of 1.00 If n is an integer, $Ln/2J+\Gamma n/2J=?$ a. n O b. 2n o. n/2 Od. n/4 The correct answer is: n Question 29 Incorrect Mark 0.00 out of 1.00 Find the compound proposition that is a tautology. \bigcirc a. $[p \land (p \rightarrow \neg q)] \rightarrow q$ \bigcirc b. $[\neg p \land (p \lor q)] \rightarrow \neg q$

- \bigcirc c. $[(p \lor q) \land (p \rightarrow r) \lor (q \rightarrow r)] \rightarrow r$
- $\bigcirc \ d. \ [(p \rightarrow q) \ \land \ (q \rightarrow r)] \rightarrow (p \rightarrow r)$

The correct answer is: $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$

Question 30	
Incorrect	
Mark 0.00 out of 1.00	
Determine whether this biconditionals are true or false: "1 + 1 = 3 if and only if monkeys can fly."	
a. F	×
○ b. T	
The correct answer is: T	
■ Exercises-02	
Jump to	

3. Algorithms and Number Theory ►