臺北區 107 學年度第二學期 指定科目第二次模擬考試

數學甲

一作答注意事項-

考試範圍:第一~四冊全、選修數學甲全

考試時間:80分鐘

作答方式: •選擇(填)題用 2B 鉛筆在「答案卡」上作答; 更正時, 應以橡皮擦擦拭, 切勿使用修正液(帶)。

- · 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

選填題作答說明:選填題的題號是 A,B,C,……,而答案的格式每題可能不同,考生必須依各題的格式填答,且每一個列號只能在一個格子畫記。請仔細閱讀下面的例子。

例:若第 B 題的答案格式是 (18) ,而依題意計算出來的答案是 3/8 ,則考 生必須分別在答案卡上的第 18 列的音與第 19 列的 8 畫記,如:

例:若第 C 題的答案格式是 $\frac{202}{50}$,而答案是 $\frac{-7}{50}$ 時,則考生必須分別在答案卡的第 20 列的二與第 21 列的 $\frac{7}{2}$ 畫記,如:

祝考試順利

版權所有・翻印必究

第壹部分:選擇題(單選題、多選題及選填題共占 76 分)

一、單選題(占18分)

說明:第1題至第3題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇(填)題答案區」。各題答對者,得6分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

- 1. 已知實係數函數 f(x) 的圖形是由實係數函數 $g(x) = \cos x$ 的圖形經以下步驟變換得到:
 - 一、先將g(x)圖形上所有點的縱坐標伸長為原來的3倍(橫坐標不變);
 - 二、將所得到的圖形向右平移 $\frac{\pi}{2}$ 單位長。

若 $0 \le x \le 2\pi$ 且最小值 $m \le f(x) + g(x) \le$ 最大值 M,求 M - m = ?

- $(1)\ \frac{\sqrt{10}}{2}$
- $(2) \sqrt{10}$
- (3) $\frac{3}{2}\sqrt{10}$
- $(4) \ 2\sqrt{10}$
- $(5) \ 3\sqrt{10}$

2. 設實係數函數 $f(x) = x^3 + (a-1)x^2 + ax$,若f(x) = -f(-x),則f(x) 在原點的切線方程式為下列何者?

$$(1) y = \frac{1}{3} x$$

$$(2) y = -\frac{1}{3}x$$

$$(3) y = \frac{1}{\sqrt{3}} x$$

(4)
$$y = -\frac{1}{\sqrt{3}}x$$

$$(5) y = x$$

- 3. 已知集合 $A = \{z \mid |z-2| \le |z| \le 2\}$,試求集合 A 在複數平面上所形成的圖形面積為何?
 - (1) $\frac{2}{3}\pi + \sqrt{3}$
 - $(2) \; \frac{4}{3} \pi$
 - (3) $\frac{8}{3}\pi$
 - (4) $\frac{4\pi}{3} \sqrt{3}$
 - (5) $\frac{8}{3} 2\sqrt{3}$

二、多選題(占40分)

- 說明:第4題至第8題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇(填)題答案區」。各題之選項獨立判定,所有選項均答對者,得 8分;答錯1個選項者,得4.8分;答錯2個選項者,得1.6分;答錯多於2個選項或 所有選項均未作答者,該題以零分計算。
- 4. 甲、乙兩人進行象棋比賽,約定先勝 3 局者獲得比賽的勝利,比賽隨即結束。除了第五局甲獲勝的機率為 $\frac{2}{3}$ 外,其餘每局比賽甲獲勝的機率都是 $\frac{1}{2}$ 。假設各局比賽結果互相獨立,則下列選項哪些正確?
 - (1)甲以 3:0 獲勝的機率為 $\frac{1}{8}$
 - (2)甲以 3:1 獲勝的機率為 $\frac{1}{16}$
 - (3)甲以 3:2 獲勝的機率為 $\frac{1}{4}$
 - (4)甲以3:0獲勝的機率>甲以3:1獲勝的機率>甲以3:2獲勝的機率
 - (5)若比賽結果為 3:0 或 3:1,則勝方得 3 分,輸方得 0 分;若比賽結果為 3:2,則勝方得 2 分,輸方得 1 分,則甲獲勝時得分的期望值為 $\frac{23}{16}$ 分

- 5. 若 $\langle a_n \rangle$, $\langle b_n \rangle$ 為二數列,則下列敘述何者正確?
 - (1)若 $\lim_{n\to\infty}(a_n+b_n)$ 存在,則 $\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$
 - (2)若 $\lim_{n\to\infty} a_n = 0$,則無窮級數 $\sum_{n=1}^{\infty} a_n$ 收斂
 - (3)若 $\langle b_n \rangle = \left\langle \frac{\pi}{5} \right\rangle^n$,則無窮級數 $\sum_{n=1}^{\infty} b_n$ 收斂
 - (4)若 $\langle a_n \rangle$ 收斂到0,則數列 $\langle a_n^2 \rangle$ 亦收斂到0
 - (5)若 $\lim_{n\to\infty} |b_n| = 0$,則 $\lim_{n\to\infty} b_n = 0$

6. 如右圖在空間中有一個邊長為 1 的正立方體,它的長寬高分別在x 軸、y 軸以及 z 軸上,若將此正立方體如右圖往 x 軸負向翻轉 45度,產生新坐標系 x' 軸、y' 軸以及 z' 軸,則下列敘述何者正確?

- (2)原坐標系中點(0,1,0)仍然還是新坐標系中的點(0,1,0)
- (3)原坐標系中點 (0,0,1) 變為新坐標系中的點 (1,0,1)
- (4)原坐標系中 xy 平面變為新坐標系中 x'+z'=0
- (5)原坐標系中 yz 平面變為新坐標系中 x'-z'=0

- 7. 若在坐標平面上繪製直線 y=12x+a 與 $y=x^3$ 的圖形,則下列選項何者正確?
 - (1)當 a=-25 時,兩圖形恰有 1 個交點
 - (2)當 a=-3 時,兩圖形恰有 4 個交點
 - (3)當 a=0 時,兩圖形恰有 3 個交點
 - (4)當 a=16 時,兩圖形恰有 2 個交點
 - (5)當 a=25 時,兩圖形恰有 2 個交點

- 8. x , y 為正整數且 x < y , $\log x$ 的首數是 m ,尾數是 a , $\log y$ 的首數是 n ,尾數是 b ,已知 $m^2 + n^2 = 5$,a + b = 1 ,則 x 可能之值為何?
 - (1) 10
 - (2)25
 - (3) 32
 - (4) 40
 - (5)80

三、選填題(占18分)

說明:1.第A至C題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(9-16)。 2.每題完全答對給6分,答錯不倒扣,未完全答對不給分。

A. 已知三次實係數函數 f(x) 滿足 $f(0) = f\left(\frac{1}{2}\right) = f(1) = 0$, f(3) > 0,且 f(x) 的圖形與 x 軸所圍成 區域的面積為 $\frac{1}{16}$,則 $f(2) = _______$ 。

B. 空間坐標中,如右圖,一四面體 ABCD (此為示意圖),其頂點坐標為 A(-1,3,3)、B(1,3,4),C(3,-5,-5),D(2,2,7),則四面體 ABCD 中,以 ABC 為底面時,高為 $\sqrt{\textcircled{10}}$ 。

C. 如右圖,已知
$$A(1,0)$$
, $Q(m,n)$, $P\left(\frac{-3}{5},\frac{4}{5}\right)$ 均在單位圓上,
$$\angle QOP = 60^{\circ}$$
,試求點 Q 的 x 坐標 $m = \frac{10(2) + (3)\sqrt{14}}{15(6)}$ 。 (化為最簡分數)

第貳部分:非選擇題(占24分)

說明:本部分共有二大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二) 與子題號((1)、(2)、……),同時必須寫出演算過程或理由,否則將予扣分甚至零分。 作答務必使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。每一子題配分標於題末。

- 一、某工廠的某產品裝箱包裝,每箱 200 件,每箱產品交貨前都會先進行檢驗,若檢驗為不合格品就會更換成合格品。檢驗時先從這箱產品中任取 20 件檢驗,再根據檢驗結果決定是否對剩下的所有產品做檢驗。設每件產品不合格機率均為 p(0 且各項產品是否為不合格互相獨立,試求:
 - (1) 若抽驗的 20 件產品中恰有 2 件為不合格品的機率為 f(p),則當 $p=p_0$ 時, f(p) 有最大值時, p_0 的值為何?(6 分)
 - (2) 承(1),現對一箱產品抽檢 20 件後發現恰有 2 件為不合格品且以 p_0 為 p 的值。已知每件產品的檢驗費用為 2 元,若有不合格品進入客戶手中,則每件產品要賠償客戶 25 元。若不對剩下的產品做檢驗,將這一箱產品的檢驗費用和賠償費用的和記為隨機變數 X,試求期望值 E(X)。(4 分)
 - (3) 承(2),若以隨機變數X的期望值做為決策依據,是否該對剩下的產品做檢驗?(2分)

- 二、1973 年研發出原型手機 DynaTAC,據說當時在民間有一群設計師設計出一隻長方體原型機,開始設計成形時只有底面邊長為 9~cm 的正方形,設計師規劃正方形邊長每減少 x~cm,x>0,高(從 <math>0 公分開始增加)就增加 2x~cm,設計師希望能有最大體積放入最多的零件,則:
 - (1) 設計出來的手機,正方形邊長與高分別為幾公分。(10分)
 - (2) 手機體積最大為多少立方公分。(2分)

數學考科詳解

題號	1.	2.	3.	4.	5.	6.	7.	8.	
答案	(4)	(5)	(4)	(1)(3)(5)	(3)(4)(5)	(2)(4)(5)	(1)(3)(4)	(2)(4)(5)	

第壹部分:選擇題

一、單撰題

1. (4)

難易度:中

出處:選修數學甲(上)第二章〈三角函數〉

目標:三角函數疊合的性質

解析:由題意可推得 $f(x) = 3\cos\left(x - \frac{\pi}{2}\right) = 3\sin x$

 $\therefore f(x) + g(x) = 3 \sin x + \cos x = \cos x + 3 \sin x$

$$= \sqrt{10} \left(\frac{1}{\sqrt{10}} \cos x + \frac{3}{\sqrt{10}} \sin x \right) = \sqrt{10} \sin (x+\theta) \left(\sin \theta = \frac{1}{\sqrt{10}}, \cos \theta = \frac{3}{\sqrt{10}} \right)$$

 $\therefore -1 \le \sin(x+\theta) \le 1 \Rightarrow -\sqrt{10} \le \sqrt{10} \sin(x+\theta) \le \sqrt{10}$

$$\therefore -\sqrt{10} \le f(x) + g(x) \le \sqrt{10} \Rightarrow M = \sqrt{10}$$
 , $m = -\sqrt{10} \Rightarrow M - m = \sqrt{10} - (-\sqrt{10}) = 2\sqrt{10}$ 放選(4)。

2. (5)

難易度:易

出處:選修數學甲(下)第二章〈多項式函數的微積分〉

目標:導函數的理解

解析: f(x)=0 為奇函數 $a=1 \Rightarrow f(x)=x^3+x$

 $\therefore f'(x) = 3x^2 + 1$, f'(0) = 1,又 f(x) = 0 過原點 \therefore 所求切線方程式為 y = x

故撰(5)。

3. (4)

難易度:易

出處:選修數學甲(上)第二章〈三角函數〉、第三冊第二章〈直線與圓〉

目標:熟悉複數平面及線性規劃

解析: $\Leftrightarrow z = x + yi, x, y \in \mathbb{R}$

$$|z| \le 2 \Rightarrow \sqrt{x^2 + y^2} \le 2 \Rightarrow x^2 + y^2 \le 4$$

⇒ 其圖形為以 O 為圓心, 半徑為 2 的圓及其內部

$$|z-2| \le |z| \Rightarrow \sqrt{(x-2)^2 + y^2} \le \sqrt{x^2 + y^2} \Rightarrow x^2 - 4x + 4 + y^2 \le x^2 + y^2 \Rightarrow x \ge 1$$

交集圖形如右圖陰影部分

所求面積為
$$\frac{1}{3} \cdot \pi \cdot 2^2 - \frac{1}{2} \cdot 2 \cdot 2 \cdot \sin 120^\circ = \frac{4\pi}{3} - \sqrt{3}$$

二、多選題

4. (1)(3)(5)

難易度:易

出處:第二冊第三章〈機率〉、選修數學甲(上)第一章〈機率統計〉

目標:二項分布、期望值的應用

解析:設隨機變數 X 表示甲進行的比賽局數,則 X 可能的值為 3,4,5 設 P(X) 表示甲比賽 X 局獲勝的機率

(1)
$$\bigcirc$$
: $P(3) = C_3^3 \left(\frac{1}{2}\right)^3 = \frac{1}{8}$

$$P(4) = C_2^3 \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right) \cdot \frac{1}{2} = \frac{3}{16}$$

$$(4) \times : \frac{1}{8} < \frac{3}{16} < \frac{1}{4}$$

即甲以3:0獲勝的機率<甲以3:1獲勝的機率<甲以3:2獲勝的機率

(5) 🔾 :	甲獲勝時的得分	3	3	2
	機率	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{4}$

甲獲勝時得分的期望值為 $E(X) = 3 \times \frac{1}{8} + 3 \times \frac{3}{16} + 2 \times \frac{1}{4} = \frac{3}{8} + \frac{9}{16} + \frac{1}{2} = \frac{23}{16}$ 分

故撰(1)(3)(5)。

5. (3)(4)(5)

難易度:中

出處:選修數學甲(下)第一章〈極限與函數〉

目標:無窮數列的收斂與發散

解析:(1) \times : 設 $a_n = n$, $b_n = 1 - n$,則 $\lim_{n \to \infty} (a_n + b_n) = 1$,但 $\lim_{n \to \infty} a_n$, $\lim_{n \to \infty} b_n$ 不存在

$$(2)$$
 \times : 設 $a_n = \frac{1}{n}$,則 $\lim_{n \to \infty} a_n = 0$,但 $\sum_{n=1}^{\infty} \frac{1}{n}$ 發散

$$(3)$$
 \bigcirc : \therefore $-1 < \frac{\pi}{5} < 1$ $\therefore \sum_{n=1}^{\infty} b_n$ 收斂

(4) 〇:當
$$n$$
 足夠大時,則 $-1 < a_n < 1 \Rightarrow -1 < 0 < a_n^2 < 1$,且 $a_n^2 < |a_n|$ 又 $\lim_{n \to \infty} a_n = 0 \Rightarrow \lim_{n \to \infty} |a_n| = 0 \Rightarrow \lim_{n \to \infty} a_n^2 = 0$

(5) 〇:設
$$c_n = |b_n|$$
, $d_n = -|b_n| = -c_n$,則 $d_n \le b_n \le c_n$,又 $\lim_{n \to \infty} |b_n| = 0$

$$\Rightarrow \lim_{n \to \infty} c_n = 0$$
, $\lim_{n \to \infty} d_n = \lim_{n \to \infty} (-c_n) = 0$,由夾擠定理可得 $\lim_{n \to \infty} b_n = 0$

故撰(3)(4)(5)。

6. (2)(4)(5)

難易度:中

出處:第四冊第一章〈空間向量〉、第四冊第二章〈空間中的平面與直線〉

目標:了解空間坐標與直線平面的應用

解析:令在新坐標系中正立方體的八個頂點分別為

$$A(0,0,0) \cdot B(1,0,0) \cdot C(1,1,0) \cdot D(0,1,0)$$

$$E(0,0,1)$$
, $F(1,0,1)$, $G(1,1,1)$, $H(0,1,1)$

(1)
$$\times$$
: 原坐標系中 z 軸為新坐標中 \overrightarrow{AF} ,即
$$\begin{cases} x'=t \\ y'=0 \\ z'=t \end{cases}$$

$$(2)$$
 〇:原坐標系中 y 軸仍為 \overrightarrow{AD} ,即 y' 軸,因此仍為 $(0,1,0)$

故承(1),
$$\sqrt{t^2+0^2+t^2} = 1 \Rightarrow t = \frac{1}{\sqrt{2}}$$

因此為新坐標系中
$$\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$$

承(3),在新坐標系中的法向量為
$$\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$$
,即 $\frac{x'}{\sqrt{2}}+\frac{z'}{\sqrt{2}}=0 \Rightarrow x'+z'=0$

在新坐標系中為
$$\left(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right)$$
,即 $\frac{x'}{\sqrt{2}}-\frac{z'}{\sqrt{2}}=0$ \Rightarrow $x'-z'=0$

故選(2)(4)(5)。

7. (1)(3)(4)

難易度:易

出處:選修數學甲(下)第二章〈多項式函數的微積分〉

目標:三次多項式函數的圖形

解析: $12x+a=x^3 \Rightarrow x^3-12x=a$

$$\Rightarrow f(x) = x^3 - 12x$$

$$f'(x) = 3x^2 - 12 = 3(x+2)(x-2)$$
, $f''(x) = 6x$

作圖如右

$$f(0)=0$$
, $f(2)=16$, $f(-2)=16$

$$a=16, -16$$
 時,有 2 個交點

-16<a<16 時,有3個交點

故選(1)(3)(4)。

難易度:中

出處:第一冊第三章〈指數、對數函數〉

目標:了解首尾數的意義及對數的運算

解析: $\log x = m + a$, $\log y = n + b$, $x < y \Rightarrow m \leq n$

$$\therefore m^2 + n^2 = 5 \quad \therefore m = 1 \quad n = 2$$

$$a+b=1$$
, $0 < a < 1$, $0 < b < 1$

$$\log x = m + a = 1.\dots \Rightarrow 10 < x < 100$$

 $\log xy = \log x + \log y = m + a + n + b = 1 + 2 + 1 = 4$

$$\therefore x = 16, 20, 25, 40, 50, 80$$

故選(2)(4)(5)。

三、選填題

A. 6

難易度:中

出處:選修數學甲(下)第二章〈多項式函數的微積分〉

目標:多項式與積分的綜合問題

解析::
$$f(0)=f\left(\frac{1}{2}\right)=f(1)=0, f(3)>0$$
,作略圖如右

$$\frac{\ln x}{\ln x} f(x) = ax(2x-1)(x-1)$$

$$= a(2x^3 - 3x^2 + x)$$

$$\Rightarrow \int_0^{\frac{1}{2}} a(2x^3 - 3x^2 + x) dx - \int_{\frac{1}{2}}^1 a(2x^3 - 3x^2 + x) dx = \frac{1}{16}$$

$$\Rightarrow a \left(\frac{1}{2} x^4 - x^3 + \frac{1}{2} x^2 \right) \begin{vmatrix} \frac{1}{2} - a \left(\frac{1}{2} x^4 - x^3 + \frac{1}{2} x^2 \right) \begin{vmatrix} \frac{1}{2} - \frac{1}{16} \end{vmatrix}$$

$$\Rightarrow a \left(\frac{1}{32} - \frac{1}{8} + \frac{1}{8} - 0 - \left(\frac{1}{2} - 1 + \frac{1}{2} - \left(\frac{1}{32} - \frac{1}{8} + \frac{1}{8} \right) \right) \right) = \frac{1}{16}$$

$$\Rightarrow a \left(\frac{1}{32} - 0 - \left(0 - \frac{1}{32} \right) \right) = \frac{1}{16}$$

$$\Rightarrow a = 1$$

$$\Rightarrow f(x) = 2x^3 - 3x^2 + x$$

故
$$f(2) = 16 - 12 + 2 = 6$$
。

難易度:易

出處:第四冊第二章〈空間中的平面與直線〉

目標:平面方程式與距離公式的應用

解析:A(-1,3,3)

$$C(3,-5,-5)$$

四面體 ABCD 中,

則以ABC為底,所求的高為點D到A,B,C所在平面的距離

先找出A,B,C所在的平面E

$$\overrightarrow{AB} = (1-(-1), 3-3, 4-3) = (2, 0, 1)$$

$$\overrightarrow{AC} = (3-(-1), -5-3, -5-3) = (4, -8, -8)$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = (8, 20, -16) = 4(2, 5, -4)$$

∴取法向量 n = (2, 5, -4)

設 $A \cdot B \cdot C$ 三點所在平面 $E \triangleq 2x + 5y - 4z + k = 0$

將
$$A(-1,3,3)$$
 代入 $\Rightarrow 2 \cdot (-1) + 5 \cdot 3 - 4 \cdot 3 + k = 0$

$$d(D, E) = \frac{|2 \times 2 + 5 \times 2 - 4 \times 7 - 1|}{\sqrt{2^2 + 5^2 + (-4)^2}} = \frac{|-15|}{\sqrt{45}} = \frac{15}{3\sqrt{5}} = \sqrt{5} \circ$$

C.
$$\frac{-3+4\sqrt{3}}{10}$$

難易度:中

出處:第四冊第三章〈矩陣〉

目標: 旋轉矩陣

解析:將P點以圓心順時針旋轉 60° 可得Q(m,n)

$$\Rightarrow \begin{bmatrix} \cos(-60^\circ) & -\sin(-60^\circ) \\ \sin(-60^\circ) & \cos(-60^\circ) \end{bmatrix} \begin{bmatrix} -\frac{3}{5} \\ \frac{4}{5} \end{bmatrix} = \begin{bmatrix} m \\ n \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{3}{5} \\ \frac{4}{5} \end{bmatrix} = \begin{bmatrix} m \\ n \end{bmatrix}$$

$$m = \frac{1}{2} \times \left(-\frac{3}{5} \right) + \frac{\sqrt{3}}{2} \times \frac{4}{5} = \frac{-3 + 4\sqrt{3}}{10}$$

第貳部分:非選擇題

$$-\cdot(1)\frac{1}{10}$$
; (2) 490 (元); (3)要檢驗

難易度:中

出處:選修數學甲(上)第一章〈機率統計〉、選修數學甲(下)第二章〈多項式函數的微積分〉

目標:了解機率分布及期望值的使用

解析:
$$(1)f(p) = C_2^{20}p^2(1-p)^{18}$$

$$\therefore f'(p) = C_2^{20}(p^2 \cdot (-18(1-p)^{17}) + 2p(1-p)^{18}) = C_2^{20} \cdot 2p \cdot (1-p)^{17}(1-10p)$$

$$\Leftrightarrow f'(p) = 0 \Rightarrow p = 0 \cdot 1 \cdot \frac{1}{10}$$

故當
$$p_0 = \frac{1}{10}$$
 時有最大值。

(2)令y表示剩下產品中不合格件數

$$y \sim B(180, 0.1)$$

$$E(y) = 180 \times 0.1 = 18$$

$$\nabla X = 20 \times 2 + 25y$$

$$E(X) = 40 + 25E(y) = 490 \ (\overline{\pi}) \circ$$

(3)全部檢驗的費用為 200×2=400 < E(X) ∴要檢驗。

$$-20 -$$

二、(1)正方形的邊長為6公分,高為6公分;(2)手機體積最大為216立方公分

難易度:易

出處: 選修數學甲(下)第二章〈多項式函數的微積分〉

目標:微積分在生活中的應用

解析:(1)設邊長減少x公分,高增加2x公分,0 < x < 9

體積為
$$(9-x)\times(9-x)\times2x=2x^3-36x^2+162x$$

$$\Rightarrow f(x) = 2x^3 - 36x^2 + 162x$$

則
$$f'(x) = 6x^2 - 72x + 162$$

$$=6(x^2-12x+27)$$

$$=6(x-9)(x-3)$$

$$f'(x) = 0$$
, $x = 9$ $\equiv 3$

取x=3,底面正方形邊長為6公分,高為6公分。

(2)最大體積為 6x6x6=216 立方公分。

非選擇題批改原則

 $-\cdot (1)\frac{1}{10}$; (2) 490 ; (3)要檢驗

難易度:中

出處:選修數學甲(上)第一章〈機率統計〉、選修數學甲(下)第二章〈多項式函數的微積分〉

目標:了解機率分布及期望值的使用

解析:
$$(1) f(p) = C_2^{20} p^2 (1-p)^{18}$$
 (2分)

$$\Leftrightarrow f'(p) = 0 \Rightarrow p = 0 \cdot 1 \cdot \frac{1}{10}$$

故當
$$p_0 = \frac{1}{10}$$
 時有最大值 (2分)

(2)令 y 表示剩下產品中不合格件數

$$v \sim B(180, 0.1)$$

$$E(y) = 180 \times 0.1 = 18$$
 (2 $\%$)

$$\nabla X = 20 \times 2 + 25y$$

$$E(X) = 40 + 25E(y) = 490$$
 (2 $\%$)

- (3)全部檢驗的費用為 200×2=400 < E(X) ∴要檢驗。 (2分)
- 二、(1)正方形的邊長為6公分,高為6公分;(2)手機體積最大為216立方公分

難易度:易

出處:選修數學甲(下)第二章〈多項式函數的微積分〉

目標:微積分在生活中的應用

解析: (1) 設邊長減少x 公分, 高增加2x 公分, 0 < x < 9 (2分)

體積為
$$(9-x)\times(9-x)\times2x=2x^3-36x^2+162x$$
 (2分)

$$\Rightarrow f(x) = 2x^3 - 36x^2 + 162x$$

則
$$f'(x) = 6x^2 - 72x + 162$$
 (2 分)

$$=6(x^2-12x+27)$$

=6(x-9)(x-3)

$$f'(x)=0$$
, $x=9$ 或3 (2分)

取x=3,底面正方形邊長為6公分,高為6公分。 (2分)

(2)最大體積為 6×6×6=216 立方公分。 (2分)