CAFE60v1: A 60-year large ensemble climate reanalysis: Supplemental

2	information.
3	Terence J. O'Kane*
4	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
5	Paul A. Sandery
6	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
7	Vassili Kitsios
8	CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia, and Laboratory for Turbulence
9	Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering
10	Monash University, Clayton, Victoria 3800, Australia
11	Pavel Sakov
12	Bureau of Meteorology, Docklands, Victoria, Australia
13	Matthew A. Chamberlain
14	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
15	Dougal T. Squire
16	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Mark A. Collier

18	CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
19	Christopher C. Chapman
20	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
21	Russell Fiedler
22	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
23	Dylan Harries
24	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
25	Thomas S. Moore
26	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
27	Doug Richardson
28	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
29	James S. Risbey
30	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
31	Benjamin J. E. Schroeter
32	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
33	Serena Schroeter
34	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
35	Bernadette M. Sloyan
36	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

37	Carly Tozer
38	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
39	Ian G. Watterson
40	CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
41	Amanda Black
42	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
43	Courtney Quinn
44	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
45	Richard J. Matear
46	CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

⁴⁷ *Corresponding author address: CSIRO Oceans and Atmosphere, Hobart, Tasmania

E-mail: terence.okane@csiro.au

ABSTRACT

We detail the available variables and their temporal resolution

The authors were supported by the Australian Commonwealth Scien-Acknowledgments. tific and Industrial Research Organisation (CSIRO) Decadal Climate Forecasting Project 51 (https://research.csiro.au/dfp). We gratefully acknowledge the support of National Comput-52 ing Infrastructure (NCI) Australia and the Pawsey Supercomputing Centre. We appreciate support from Stephen Griffies and Naishali Naik at NOAA GFDL in providing the CM2.1 model codes and radiative forcing data. Data from the RAPID MOC monitoring 55 project are funded by the Natural Environment Research Council and are freely available 56 (https://www.rapid.ac.uk/rapidmoc). GLODAP (https://www.glodap.info/index.php/data-access/) and WOA (https://www.nodc.noaa.gov/OC5/woa18/woa18data.html) data are also freely available. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation 61 (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF (https://wcrp-cmip.github.io/CMIP6_CVs/docs/CMIP6_source_id.html).)

64 LIST OF TABLES

65	Table 1.	Atmospheric variables	7
66	Table 2.	Atmospheric variables cont	8
67	Table 3.	Ocean variables	ç
68	Table 4.	Ocean forcing variables	10
69	Table 5.	Ocean scalar variables	10
70	Table 6.	Ocean biogeochemical variables	11
71	Table 7.	Land surface variables	12

TABLE 1: Atmospheric variables

Variable	abbreviation	units	temporal resolution
evap	evaporation rate	kg/m2/s	daily, monthly
lwflx	net (down-up) longwave flux	w/m2	daily, monthly
shflx	sensible heat flux	w/m2	daily, monthly
tau_x	zonal wind stress	pa	daily, monthly
tau_y	meridional wind stress	pa	daily, monthly
t_ref	temperature at 2 m	deg_k	daily, monthly
q_ref	specific humidity at 2 m	kg/kg	daily, monthly
u_ref	zonal wind component at 10 m	m/s	daily, monthly
v_ref	meridional wind component at 10 m	m/s	daily, monthly
t_surf	surface temperature	deg_k	daily, monthly
t_ref_min	min temperature at 2 m	deg_k	daily, monthly
t_ref_max	max temperature at 2 m	deg_k	daily, monthly
ps	surface pressure	Pa	daily, monthly
slp	sea-level pressure	Pa	daily, monthly
h500	500-mb hght	m	daily, monthly
hght	geopotential height	m	daily, monthly
sphum	specific humidity	kg/kg	daily, monthly
temp	temperature	deg_K	daily, monthly
ucomp	zonal wind	m/sec	daily, monthly
vcomp	meridional wind	m/sec	daily, monthly
omega	omega	pa/sec	daily, monthly

TABLE 2: Atmospheric variables cont.

Variable	abbreviation	units	temporal resolution
DELP	delp field	pa	daily, monthly
wvp	Column integrated water vapor	kg/m2	daily, monthly
awp	Column integrated cloud mass	kg/m2	daily, monthly
precip	Total precipitation rate	kg/m2/s	daily, monthly
prec_conv	Precipitation rate from convection	kg(h2o)/m2/s	daily, monthly
rh	relative humidity	percent	daily, monthly
lwdn_sfc	LW flux down at surface	watts/m ²	daily, monthly
lwup_sfc	LW flux up at surface	watts/m ²	daily, monthly
olr	outgoing longwave radiation	watts/m ²	daily, monthly
qo3	ozone mixing ratio	kg/kg	daily, monthly
qo3_col	ozone column	DU	daily, monthly
swdn_sfc	SW flux down at surface	watts/m ²	daily, monthly
swup_sfc	SW flux up at surface	watts/m ²	daily, monthly
swdn_toa	SW flux down at TOA	watts/m ²	daily, monthly
swup_toa	SW flux up at TOA	watts/m ²	daily, monthly
vis_exopd_vl_c	visband column volcanic extopdep	dimensionless	daily, monthly
tot_cld_amt	total cloud amount	percent	daily, monthly

Note: some banding can be noticed about the Antarctic for certain mean atmospheric diagnostics. This is a diagnostic artefact and does not impact model dynamics.

TABLE 3: Ocean variables

Variable	abbreviation	units	temporal resolution
eta_t	surface height on T cells [Boussinesq (volume conserving) model]	m	daily, monthly
sss	Practical Sea Surface Salinity	psu	daily
sst	Potential Temperature at surface	°C daily, monthl	
mld	mixed layer depth determined by density criteria	m daily	
temp_vdiff_impl	implicit vert diffusion of heat	watts/m ²	monthly
salt_vdiff_impl	implicit vert diffusion of Practical Salinity	kg/(sec*m ²)	monthly
neutral_diffusion_temp	rho*dzt*cp*explicit neutral diffusion tendency (heating)	watts/m ²	monthly
neutral_diffusion_salt	rho*dzt*explicit neutral diffusion tendency for salt	kg/(sec*m ²)	monthly
neutral_gm_temp	rho*dzt*cp*GM stirring (heating)	watts/m ²	monthly
neutral_gm_salt	rho*dzt*GM stirring tendency for salt	kg/(sec*m ²)	monthly
age_global	Age (global)	yr	monthly
salt_sponge_tend	rho*dzt*tendency due to sponge	kg/(sec*m ²)	monthly
temp_sponge_tend	rho*dzt*cp*heating due to sponge	watts/m ²	monthly
salt	Practical Salinity	psu	monthly
temp	Potential temperature	°C	monthly
u	i-current	m/s	monthly
v	j-current	m/s	monthly
wt	dia-surface velocity T-points	m/s	monthly
tx_trans	T-cell i-mass transport	Sv (10-9 kg/s)	monthly
ty_trans	T-cell j-mass transport	Sv (10-9 kg/s)	monthly
tx_trans_gm	T-cell mass i-transport from GM	Sv (10-9 kg/s)	monthly
ty_trans_gm(T-cell mass j-transport from GM	Sv (10-9 kg/s)	monthly
cfc_11	CFC-11	mol/kg	monthly
cfc_12	CFC-12	mol/kg	monthly

TABLE 4: Ocean forcing variables

Variable	abbreviation	units	temporal resolution
pme_net	precip-evap into ocean (total w/ restore + normalize)	(kg/m ³)*(m/sec)	monthly
river	mass flux of river (runoff + calving) entering ocean	(kg/m ³)*(m/sec)	monthly
evap	mass flux from evaporation/condensation (> 0 enters ocean)	(kg/m ³)*(m/sec)	monthly
fprec	snow falling onto ocean (> 0 enters ocean)	(kg/m ³)*(m/sec)	monthly
lprec	liquid precip (including ice melt/form) into ocean (> 0 enters ocean)	(kg/m ³)*(m/sec)	monthly
swflx	shortwave flux into ocean (> 0 heats ocean)	W/m ²	monthly
lw_heat	longwave flux into ocean (< 0 cools ocean)	W/m ²	monthly
sens_heat	sensible heat into ocean (< 0 cools ocean)	W/m ²	monthly
sfc_hflux_total	surface heat flux from coupler plus restore (omits mass transfer heating)	W/m ²	monthly
tau_x	i-directed wind stress forcing u-velocity	N/m ²	monthly
tau_y	j-directed wind stress forcing v-velocity	N/m ²	monthly

TABLE 5: Ocean scalar variables

Variable	Variable abbreviation		temporal resolution
total_ocean_river total liquid river water and calving ice entering ocean		kg/sec/1e15	monthly
total_ocean_evap	total_ocean_evap total evaporative ocean mass flux (> 0 enters ocean)		monthly
total_ocean_pme_sbc	total ocean precip-evap via sbc (liquid, frozen, evaporation)	kg/sec/1e15	monthly
total_ocean_fprec	total snow falling onto ocean (> 0 enters ocean)	(kg/sec)/1e15	monthly
total_ocean_lprec	total liquid precip into ocean (> 0 enters ocean)	(kg/sec)/1e15	monthly
total_ocean_calving	total water entering ocean from calving land ice	(kg/sec)/1e15	monthly
total_ocean_runoff	total liquid river runoff (> 0 water enters ocean)	(kg/sec)/1e15	monthly
salt_total	total mass of salt in liquid seawater	kg/1e18	monthly
temp_total	Total heat in the liquid ocean referenced to 0 $^{\circ}\text{C}$	Joule/1e25	monthly
total_ocean_hflux_pme	total ocean heat flux from pme transferring water across surface	Watts/1e15	monthly
ke_tot	Globally integrated ocean kinetic energy	10 ¹⁵ Joules	monthly
pe_tot	Globally integrated ocean potential energy	10 ¹⁵ Joules	monthly
eta_nonbouss_globa	global average surface height nonboussinesq	m	monthly

TABLE 6: Ocean biogeochemical variables

Variable	abbreviation	units	temporal resolution
no3†	NO ₃	mmol/m ³	monthly, daily for surface no3
phy†	phytoplankton	mmol/m ³	monthly, daily for surface phy
02†	O_2	mmol/m ³	monthly
det†	detritus	mmol/m ³	monthly
zoo†	zooplankton	mmol/m ³	monthly
caco3†	Calcium Carbonate	mmol/m ³	monthly
dic†	Dissolved Inorganic Carbon	mmol/m ³	monthly
alk†	alkalinity	mmol/m ³	monthly
adic†	anthropogenic DIC	mmol/m ³	monthly
fe†	iron	mmol/m ³	monthly, daily for surface fe
stf03	Flux into ocean - oxygen	mmol/m ² /s	daily, monthly
stf07	Flux into ocean - DIC, PI	mmol/m ² /s	daily, monthly
stf10	Flux into ocean - DIC, inc. ADIC	mmol/m ² /s	daily, monthly
pco2	pCO_2		daily, monthly
paco2	anthropogenic pCO ₂		daily, monthly
pprod_gross_2d	Vertically integrated Gross PHY production	mmolN/m²/s	daily, monthly
pprod_gross	Gross PHY production	mmolN/m ³ /s	monthly
det_sediment	Accumulated DET in sediment at base of water column	mmolN/m ²	monthly
caco3_sediment	Accumulated CaCO3 in sediment at base of water column	mmolN/m ²	monthly
total_co2_flux	Total surface flux of inorganic C (natural) into ocean"	Pg/yr	monthly
total_aco2_flux	Total surface flux of inorganic C (natural + anthropogenic) into ocean	Pg/yr	monthly

† indicates surface only variable is also avaialbe

TABLE 7: Land surface variables

Variable	abbreviation	units	temporal resolution
cover_type	Land surface cover type	dimensionless	monthly
albedo	albedo	dimensionless	monthly
groundwater	mass of water below bucket	kg/m ²	monthly
latent	latent heat flux	W/m ²	monthly
precip	total precipitation rate	kg/(m ² s)	monthly
sens	sensible heat flux	W/m ²	monthly
smelt	snow melt rate	kg/(m ² s)	monthly
snow	mass of snow on ground	kg/m ²	monthly
snowfall	snowfall rate	kg/(m ² s)	monthly
water	mass of water in bucket	kg/m ²	monthly
sroff	surface runoff of snow	kg/(m ² s)	monthly
wroff	surface runoff of water	kg/(m ² s)	monthly