ReactCNN 项目报告

丁霄汉 2017312365 黄锐泓 2016311939 郭高扬 2016311946

摘要

本项目实现了一个卷积神经网络可视化工具——ReactCNN,用来辅助卷积神经网络的调试与优化。这个可视化工具拥有与 Tensorboard 相似的工作原理,它在后台运行一个 VGG-16,然后在前端将 VGG-16 运行产生的实时数据进行可视化。具体地,ReactCNN 可以动态地将 VGG-16 中每层的 filter 输出均值、每层的 feature map 以及每层的 filter 聚类结果进行可视化,基于这些可视化结果,我们可以更好地窥视到 VGG-16 的内部工作原理,并对其进行异常检测和启发式冗余检测等,从而在一定程度上指导我们进一步优化 VGG-16。在实验部分,我们对 ReactCNN的可视化结果进行了详细的展示,实验结果说明该工具是可用且有效的。

1. 引言

随着人类社会数据量和计算能力的不断提升,卷积神经网络(CNN)在视觉、NLP等领域的应用日益广泛。然而,到目前为止,CNN的本质还是一个黑箱。一方面,CNN缺乏可解释性使得其难以调试;另一方面,CNN的设计过于经验主义,难以评价设计的好坏。

我们认为,CNN 的使用者和研究者期望得到以下重要信息:一张图进入网络后,网络的各个 filter 是怎样响应的;产生的输出(feature map)是怎样的;当网络的输出不正常时,是哪一部分出了问题;网络的设计是不是冗余的。

于是,我们寻求可视化技术的帮助,试图将 CNN 的输入、中间结果和输出可视化,以帮助使用者直观地看到网络的工作过程,辅助错误定位和调试;另一方面,我们希望使用者能够定性的、直观地评价网络的冗余性,为设计紧凑的、高效的 CNN 提供帮助。

2. 功能与实现

ReactCNN 主要分后台支撑和前台渲染两部分,其系统架构图如图 2.1 所示。后端负责运行 VGG-16 并存储中间数据。前端负责实时读取中间数据并可视化。

图 2.1 ReactCNN 系统架构图

具体地,ReactCNN 可以动态地将 VGG-16 中每层的 filter 输出均值、每层的 feature map 以及每层的 filter 聚类结果进行可视化,并支持启发式冗余检测,下边介绍 ReactCNN 一些重要部分的实现细节。

2.1 后台支撑

本项目使用 Tensorflow 作为深度学习框架。在实验中,我们使用了在 CIFAR-10 数据集上训练得到的 VGG-16 模型作为示例。

后端程序运行的过程本质上是前向传播的过程。我们设置batch size=1,每次向网络中输入(feed)1 幅图片,取出(fetch)每层的输出。

然而,将 VGG-16 中每一层的全部 feature map 都保存起来是不可行的。例如,对于每一幅输入图像,第一和第二卷积层各产生 64 个尺寸为 32×32 的矩阵。

在实践中我们发现,一个 filter 所输出的 feature map 矩阵的全局平均值(global average pooling)可以很好地代表这一个 filter 的行为。因此,我们从网络中 fetch 的实际上是feature map 的全局平均值(GAP值),这就大大减少了时间和空间开销。

由于 filter 本身数学形式缺乏可解释性(3 阶张量),我们通过两个 filter 的行为的相似性来估计两个 filter 本身的相似性。具体来说,当本系统采集到了两个 filter 在 M 幅图片上的输出(GAP 值)后,得到两个 M 维向量,我们用这两个向量的 Pearson 相关系数评价这两个 filter 的相似程度。随着系统运行时间变长,采集到的数据越来越多,这一估计会趋于稳定,最终很好地反映出 filter 之间的相似性。

经过必要的预处理后,我们把采集到的 GAP 值和由此计算出的相关系数写入缓存文件中,以备前端使用。

2.2 filter 全局平均值可视化

- 1) 创建最外层容器 svg、图片标签 image、用于显示各层 filter 的 g 标签以及用于显示分类结果和概率的 g 标签;
- 2) 使用函数 d3.scaleLinear()和 d3.interpolate()创建根据数值 大小选择颜色的取色器函数;
- 3) 使用函数 window.setInterval()创建定时器;
- 4) 实现定时器调用的函数 timer, 该函数的主要功能是定时读取当前后端处理完的图片、后端输出的包含对应各层 filter 全局平均值的文件以及包含所有 feature map 数值的文件, 并更新前端界面显示;
- 5)关于 filter 全局平均值可视化的具体细节如下:每个 filter 全局平均值以一个由其数值决定颜色的小矩形(rect 标签)来表示,颜色较深的表示数值较大,颜色较浅的表示数值较小,一共有 13 层网络,第 1-2 层分别有 64 个小矩形,3-4 层分别有 128 个小矩形,5-7 层分别有 256 个小矩形,8-13 层分别有 512 个小矩形,首先根据每层不同的数据个数通过绑定 data 和 enter()函数添加不同数量的 rect 标签,然后以外层 svg 的中轴线为中心,每层网络每行显示 8 个小矩形的形式来定位各个矩形的位置。当后台输出新的包含 filter 全局平均值的文件和包含所有 feature map 数值的文件时,由于数据的数量没有发生改变,因此小矩形的位置和数量也不会发生改变,只有小矩形的颜色会随着图片的更新发生改变;
- 6) 关于分类结果和概率的显示:概率最大的一类即为分类结果,颜色会标红。

2.3 feature map 可视化

- 1) 在最外层容器 svg 内创建用于显示单个 filter 详细展开对 应 feature map 的内层 svg 标签 ;
- 2) 在 2.2 中代表每个 filter 全局平均值的小矩形上绑定 mouseover 事件,用于显示对应 filter 展开的 feature map,以及 mouseout 事件,用于清空当前显示的 feature map;
- 3) 关于 feature map 的显示,同样地,每个数值以一个由其数值大小决定颜色的小矩形来表示,颜色深浅反映了数值的大小,不同网络层中 filter 对应的 feature map 分别会显示在该层的正上方,具体每个小矩形的位置由其所在网络层数、对应的 filter 位置、feature map 中数值的个数等综合计算得出。

2.4 filter 聚类可视化

为了对 filter 进行冗余分析,我们基于 filter 的行为特征对 filter 进行聚类,属于相同类的 filter 我们认为在一定程度上 具有相似的行为特征,从而有较大的概率是冗余的。

首先,我们对 filter 进行行为特征的提取。基于经验, filter 输出值的均值可以很好地刻画该 filter 的特征, 所以我们使用该均值来构建 filter 的特征向量。对于某个 filter, VGG-16 每处理一张图片,则其产生一个均值,则其特征向量增加一个维度,随着图片处理数量的增加,该特征向量的维度也会增加,直觉上对 filter 的刻画精度也会提高,聚类结果也会趋向于稳定。

接着,基于 filter 的行为特征,我们使用 Louvain 算法对 VGG-16 任意一层的所有 filter 进行聚类,Louvain 算法是一个基于图的社区发现算法,我们将每个 filter 看作一个点,将 filter 特征向量之间的协方差系数看作边,从而构造一个完全图,然后使用 Louvain 算法对该图进行聚类。

最后,我们使用 d3 的力导向图对 filter 的聚类结果进行可视化,相同类的 filter 颜色相同,距离相近,不同类的 filter 颜色不同,距离较远。

2.5 启发式冗余检测

基于 filter 的聚类结果,我们可以对 VGG-16 进行启发式冗余检测。点击力导向图中的某个 filter (表现为一个点),矩形图(即 filter 输出均值的可视化图)中对应的所有与该 filter 属于同一类(包括该 filter 本身)的 filter 会发生颜色变化,以告诉用户这些属于同一类的 filter 在 VGG-16 中的具体位置,从而指导用户进行进一步的冗余分析。

具体在实现过程中,对力导向图中的每个点增加监听事件, 监听到点击事件后,获取该 filter 所属的类别和属于该类别 的所有 filter 的 id,然后通知矩形图对相应 id 的 filter 进行颜 色刷新。

3. 结果展示

3.1 filter 全局平均值可视化展示

随着后端程序对不同的图片进行处理,前端会展示不同图片的各层网络中各个 filter 全局平均值的可视化结果以及对于该图片的分类结果,展示效果如图 3.1 所示:

图 3.1 filter 全局平均值可视化展示

该图中颜色的深浅表示了 filter 全局平均值的大小,右边的文字表示模型认为该图片有极大概率是 frog。

3.2 feature map 可视化展示

将鼠标滑动到任意一个小矩形块上时,在该层矩形组的正上方会显示该小矩形块对应的 filter 的具体的 feature map 的可视化展示,鼠标滑出小矩形范围时,对应的 feature map 会消失。如图 3.2 所示,鼠标滑动到了第三层网络的某个小矩形块上,在第三层矩形组的上方就显示了对应的 feature map 的可视化结果。

图 3.2 feature map 可视化展示

3.3 filter 聚类可视化展示

点击矩形图中的任意层,我们对该层的所有 filter 进行聚类并可视化。VGG-16 第四层某一时刻的 filter 聚类可视化结果 如图 3.3 所示:

图 3.3 filter 聚类可视化结果

该图展示了 VGG-16 的第四层的 128 个 filter 某一时刻的聚类结果。图中共有 128 个点,代表 128 个 filter,共由 25 个点簇,代表 25 个类别。属于同一类别的 filter 拥有相似的行为特征,从而有较大的概率是冗余的。

3.4 启发式冗余检测展示

启发式冗余检测的可视化效果如图 3.4 所示:

我们有理由认为其对应的 filter 的功能是提取绿色区域。

图中使用紫色箭头和方框标注出了力导向图和矩形图的对应 关系,在力导向图中,红色的簇代表属于同一类的若干 filter,点击该簇中的任意一点,矩形图中所有与该簇对应的 矩形也会显示为红色,以指导用户进行进一步的冗余检测。

一方面,作为一个 CNN 辅助调试和优化工具,本系统成功的实现了预期的功能。另一方面,在本系统的实现过程中,我们对 CNN 的基本理论和运作过程有了更多直观的感受。在实际使用中,我们发现较低层次的卷积层还是具有一定的可解释性的。例如,我们发现图 4 中当前显示的 feature map中的深色部分和输入图片中的绿色部分是高度重叠的,由此

图 4 具有一定的可解释性的 feature map

5. 分工

4. 总结

丁霄汉:后端逻辑设计和实现,模型设计、预训练、数据结构设计和预处理。

黄锐泓:负责不同层网络的 filter 全局平均值可视化展示和 feature map 可视化展示,同时参与启发式冗余检测功能的交 互实现。

郭高扬:负责神经网络不同层 filter 聚类结果的可视化展示,参与完成启发式冗余检测功能的实现。