$\max = 12$ балів

Тривалість: 90 хв.

BAPIAHT | F

Група Прізвище				Iм'я			ата
ьтати	1	2	3	4	5	6	\sum
Pesym							

1. 2 б. З'ясуйте, чи є елементи a та b групи G спряженими, якщо

(a)
$$G = S_7$$
, $a = (13)(27)(456)$, $b = (12)(34)(567)$;

(a)
$$G = S_7$$
, $a = (13)(27)(456)$, $b = (12)(34)(567)$;
(b) $G = GL_2(\mathbb{C})$, $a = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, $b = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

Відповідь обґрунтуйте.

- $2.^{2}$ б. Опишіть елементи факторгрупи $7\mathbb{Z}/28\mathbb{Z}$ та побудуйте для неї таблицю Келі. Доведіть, що ця факторгрупа є циклічною. Вкажіть всі твірні цієї факторгрупи.
- **3.**^{3 б.} Нехай $\sigma = (123)(46)$. Циклічна підгрупа $H = \langle \sigma \rangle$ групи S_8 діє природно на множині $\{1, 2, 3, 4, 5, 6, 7, 8\}$. Знайдіть орбіту та стабілізатор точки 5 у підгрупі Hвідносно цієї дії. Знайдіть нерухомі точки для підстановки σ^2 .
- **4.**^{3 б.} Доведіть, що відображення

$$f: \mathbb{C}^* \to \mathbb{C}^*, \quad f(z) = \frac{\overline{z}}{z}$$

є гомоморфізмом. Знайдіть його ядро та образ. Чи є це відображення мономорфізмом? епіморфізмом? Відповідь обґрунтуйте.

- **5.** 2 б. Нехай абелева група A діє на множині M. Доведіть, що коли елемент $a \in A$ лишає нерухомою якусь точку m орбіти, то a лишає нерухомими всі точки цієї орбіти.
- 6.26. Група називається періодичною, якщо всі її елементи мають скінченний порядок. Доведіть, що факторгрупа \mathbb{Q}/\mathbb{Z} є періодичною.

Наснаги та творчих успіхів!