DĚLAT DOBRÝ SOFTWARE NÁS BAVÍ

PROFINIT

Machine-learning: základy

Jan Hučín 29. března 2019

Osnova

- 1. Co si pod tím představit
- 2. Základní typy ML
- 3. Modelování
- 4. Vyhodnocení modelu
- 5. Nasazení modelu

Účel ML

automatický proces

ze známých vlastností jednotky (člověk, objekt):

- predikce události
 - přestane splácet
 - přežije následující rok
- predikce hodnoty veličiny
 - výše majetku, počet a věk dětí
 - výsledek v testu
- klasifikace
 - je to spam?
 - sestavení tříd podobných případů
- výpočet charakteristiky
 - redukce dimenzionality

Názvosloví ML

predikovaná/odhadovaná veličina:

- target
- response
- vysvětlovaná proměnná, cílová proměnná
- závislá proměnná

vstupní veličiny:

- prediktory, regresory
- příznaky
- vysvětlující proměnné
- nezávislé proměnné

Typy ML

Známé případy (**trénovací množina**)

- > supervised learning učení s učitelem
- odhad vychází ze souvislostí pozorovaných na známých případech

Typy ML

- unsupervised learning učení bez učitele
- odhad vychází ze vzájemných vztahů jednotek

Supervised learning: modelování

Modelování

hledáme, jak ze vstupní informace odvodit vlastnost:

- matematický vzorec (např. regrese, lineární model)
- posloupnost rozhodnutí (např. rozhodovací strom)
- iterativní algoritmus (např. neuronová síť, gradient boosting)
- podobnost (např. nearest neighbours)

Modelování – příklady

- odhad celkovým průměrem
- odhad skupinovým průměrem (muži/ženy; mladí/staří)
- odhad funkčním vztahem (hmotnost jako funkce výšky)
- odhad kombinací efektů:
 - celkový průměr + efekt pohlaví + efekt bydliště + funkce věku + ...
- → lineární model (regrese)

Jak dobrý je můj model?

odhad číselné hodnoty

> MSE (mean squared error) = průměr čtverců odchylek

predikce události

confusion matrix

	predikce ano	predikce ne
skutečnost ano	true positive	false negative
skutečnost ne	false positive	true negative

Jak dobrý je můj model?

Problém:

Metriky počítám na datech, která jsem použil k sestavení modelu.

- model si mohu hodně ohnout podle dat
- chybu tím zmenším
- odhad na nových datech ale může být zkreslený
- overfitting (přeučení modelu)

Řešení = cross-validace

- z dat oddělím malou část testovací množina
- > zbytek použitý jako trénovací → sestavení a naučení modelu
- odhady pro testovací množinu pomocí naučeného modelu
- porovnání odhadů a skutečnosti na testovací množině
- opakujeme pro jiné dělení dat

Cross-validace

Cross-validace

Nasazení modelu

- > Model sestavím a naučím na všech datech.
- Odhad na nových datech pomocí modelu:
 - bodový odhad
 - intervalový odhad (vezme se v úvahu chyba z cross-validace)

Díky za pozornost

PROFINIT

Profinit, s.r.o. Tychonova 2, 160 00 Praha 6

