Algorytmy Optymalizacji Dyskretnej GNU-MathProg GLPK

Arkadiusz Lewandowski 208836

17 kwietnia 2016

"GLPSOL: GLPK LP/MIP Solver, v4.57"

1 Przedsiębiorstwo lotnicze i zasoby

1.1 Opis problemu

Pewne przedsiębiorstwo lotnicze musi podjąć decyzję o zakupie paliwa do samolotów odrzutowych mając do wyboru trzech dostawców. Samoloty tankują paliwo regularnie na czterech lotniskach, które obsługują.

1.2 Dane

Możliwości dostawców:

Firma1 - 275k, Firma2 - 550k, Firma3 - 660k

Wymagania przedsiębiorstw:

Lotnisko1 - 110k, Lotnisko2 - 220k, Lotnisko3 - 330k, Lotnisko4 - 440k

1.3 Rozwiązanie zadania

Interpretacja zadania jako zagadnienia transportowego.

1.4 Model

Zbiór F - Firmy

Zbiór L - Lotniska

Funkcja a() dla zbioru F wskazuje możliwości firm.

Funkcja w() dla zbioru L wskazuje wymagania lotnisk.

Funkcja d() przyjmuje argument z L i argument z F - koszt za galon dla podanego lotniska i firmy.

Funkcja $\mathbf{x}()$ też przyjmuje dwa argumenty, ale służy do operowania ilością galonów paliwa.

Minimalizowany jest koszt dzięki funkcji celu: $\sum_{i,j}^{L,F} x_{i,j} * d_{i,j} \to_{min} \text{I pilnując tego, że firma nie może dać więcej niż ma} \forall_i \sum_{j}^F x_{i,j} <= a_j, \text{ a także wymagając by każde lotnisko dostało co najmniej tyle ile wskazano } \forall_j \sum_{i}^L x_{i,j} >= w_i.$

1.5 Wyniki

Minimalny koszt wynosi 8525000.00[galonów]

Lotnisko $1 \leftarrow Firma2 = 110000[galon\'ow]$

 $Lotnisko2 \leftarrow Firma1 = 165000[galonów]$

 $Lotnisko2 \leftarrow Firma2 = 55000[galonów]$

Lotnisko $3 \leftarrow Firma = 330000 [galon\'ow]$

 $Lotnisko4 \leftarrow Firma1 = 110000[galonów]$

Lotnisko $4 \leftarrow Firma3 = 330000 [galonów]$

1.6 Wnioski

Wszystkie firmy dostarczają paliwo. Firma1 wyczerpała swój cały zapas, Firma2 ma jeszcze 385k galonów paliwa, Firma3 także wyczerpała cały swój zapas.

Najkrótsza trasa między miastami $\mathbf{2}$

Opis problemu 2.1

Znaleźć połaczenie (ścieżke) miedzy zadanymi dwoma miastami, którego całkowity koszt jest najmniejszy i całkowity czas przejazdu nie przekracza z góry zadanego czasu przejazdu T.

2.2 Dane

Dana jest sieć połączeń między n miastami reprezentowana, za pomocą skierowanego grafu.

Dwa miasta.

Maksymalny dopuszczalny czas przejazdu między tymi miastami.

2.3 Rozwiązanie zadania

Zadanie zinterpretowane jako problem najkrótszej ścieżki w grafie skierowanym z górnym ograniczeniem kosztu przejazdu.

2.4 Model

Zbiór V - wszystkie wierzchołki grafu.

Zbiór A - zbiór par wierzchołków V x V.

maxtime - zmienna wskazująca maksymalny dopuszczalny czas. Funkcja c() wskazująca koszt przejścia po krawędzi między danymi dwoma wierzchołkami

Zmienna s $\in V$ - wskazuje wierzchołek, z którego szukana jest ścieżka. (domyśl-

Zmienna $t \in V$ - wskazuje wierzchołek, do którego szukana jest ścieżka. (domyślnie ostatni)

Funkcja x() - pomocniczne dla solvera, by rozstrzygać, czy brać daną ścieżkę

jako najkrótszą między danymi wierzchołkami i oraz j. Funkcja celu: Minimalizacja $\sum_{i,j}^A c_{i,j}*x_{i,j}$. Obserwując czy suma czasów na danej ścieżce jest krótsza niż wskazany maksymalny czas.

2.5 Wyniki

Minimalny koszt przejazdu = 8Minimalny czas przejazdu = 6

2.6 Wnioski

W zadaniu niezbędne jest ograniczenie całkowitoliczbowości ze względu na to, że solver zakłada, że nie musi brać całego kanału i bierze tylko tyle ile jest mu potrzebne do zminimalizowania wartości funkcji celu.

Koszt bez ograniczenia całkowitoliczbowości powoduje, że nie wiadomo, czy dana krawędź ma należeć do najkrótszej ścieżki.

3 Dzielnice i patrole

3.1 Opis problemu

Policja w miasteczku ma w swoim zasięgu trzy dzielnice. Każda dzielnica ma przypisaną pewną liczbę radiowozów. Policja pracuje w trzech zmianach. Zminimalizować ilość zasobów i pokryć dzielnice w trzech zmianach patrolami.

3.2 Dane

Minimalne liczby radiowozów dla każdej zmiany i dzielnicy:

$dzielnica \setminus zmiana$	z_1	z_2	z_3
p_1	1	2	3
p_2	4	5	6
p_3	7	8	9

Maksymalne liczby radiowozów dla każdej zmiany i dzielnicy:

$dzielnica \setminus$	z_1	z_2	z_3
p_1	3	7	5
p_2	5	7	10
p_3	8	12	10

Dla każdej zmiany i dzielnicy trzeba przypisać minimalną liczbę radiowozów.

$$\begin{array}{ll} \mathbf{p}_{1min} \leftarrow 10, & \mathbf{z}_{1min} \leftarrow 10, \\ \mathbf{p}_{2min} \leftarrow 20, & \mathbf{z}_{2min} \leftarrow 20, \\ \mathbf{p}_{3min} \leftarrow 13, & \mathbf{z}_{3min} \leftarrow 18, \end{array}$$

3.3 Rozwiązanie zadania

Interpretacja zadania jako problemu cyrkulacji. Dla powyższych danych zakładamy, że każda dzielnica i każda zmiana chcą zminimalizować między sobą liczbę wspólnych radiowozów.

3.4 Model

Zbiór V - wierzchołki grafu przedstawiającego problem.

Zbiór V_1 - wierzchołki będące dzielnicami.

Zbiór V_3 - wierzchołki będące zmianami.

Zbiór \mathbf{V}_2 - wierzchołki transportujące między $\mathbf{V}_1iV_3.$

ZbirA- zbiór krawędzi V x V.

Funkcja a
() - dla zbioru V_1 wskazuje ile minimalnie trzeba dzielnicom radiowo-zów.

Funkcja b
() - dla zbioru ${\rm V}_3$ wskazuje ile minimalnie trzeba zmianom radiowo-zów.

Funkcja c() - koszt (domyślnie 1) użyczenia radiowozu.

Funkcja u
() - maksymalna ilość radiowozów, które dzielnica lub zmiana może posiadać.

Funkcja l() - minimalna ilość radiowozów, które dzielnica lub zmiana może posiadać.

Funkcja $\mathbf{x}()$ - ilość branych radiowozów, musi być między wartościami $\mathbf{u}()$ i l(), dla tych samych krawędzi.

Funkcja celu: Minimalizacja kosztu: $\sum_{i,j}^{A} c_{i,j} * x_{i,j}$. Zwracając uwagę na to by nie wziąć mniej niż pozwala a(), ani więcej niż pozwala b().

3.5 Wyniki

Minimalny koszt wynosi 49.

$x[1,4].val \leftarrow 2$	$p_1 \rightarrow z_4$	2	radiowozy
$x[1,5].val \leftarrow 6$	$p_1 \rightarrow z_5$	6	radiowozów
$x[1,6].val \leftarrow 3$	$p_1 \rightarrow z_6$	3	radiowozy
$x[2,4].val \leftarrow 4$	$p_2 \rightarrow z_4$	4	radiowozy
$x[2,5].val \leftarrow 7$	$p_2 \rightarrow z_5$	7	radiowozów
$x[2,6].val \leftarrow 9$	$p_2 \rightarrow z_6$	9	radiowozów
$x[3,4].val \leftarrow 5$	$p_3 \rightarrow z_4$	5	radiowozów
$x[3,5].val \leftarrow 7$	$p_3 \rightarrow z_5$	7	radiowozów
$x[3,6].val \leftarrow 6$	$p_3 \rightarrow z_6$	6	radiowozów

Interpretacja wyników:

x[i,j] jest kanałem między wierzchołkiem i oraz j.

x[i,j].val jest optymalną wartością na kanale między wierzchołkiem i oraz j.

W zadaniu podane były 3 zmiany i 3 dzielnice, więc zbiór wierzchołków wynosi 6. Pierwsze trzy (1,2,3) są dzielnicami, a kolejne trzy (4,5,6) zmianami. Zatem jeśli patrzymy w wyniku na wartość i,j to jest to przepływ ze zbioru dzielnic w zbiór zmian.