期末复习

第5章留数 5.1狐鱼青点

- 一、孤立奇点的概念
- 二、函数的零点与极点的关系
- 畜、函数在无穷远点的性态

一、孤立奇点的概念

定义 如果函数 f(z)在 z_0 不解析, 但 f(z)在 z_0 的某一去心邻域 $0 < |z - z_0| < \delta$ 内处处解析, 则称 z_0 为 f(z)的孤立奇点.

例
$$z=0$$
 是函数 $e^{\frac{1}{z}}$, $\frac{\sin z}{z}$ 的孤立奇点.

不应认为函数的奇点都是孤立的.

例如
$$z=0$$
 是函数 $f(z) = \frac{1}{\sin(1/z)}$ 的非孤立奇点。

换句话说, 在 z=0 的不论怎样小的去心领域内总有 f(z)的奇点存在.

综上所述:

孤立奇点	洛朗级数特点	$\lim_{z\to z_0}f(z)$
可去奇点	无负幂项	存在且为有限值
m级极点	含有限个负幂项 关于 $(z-z_0)^{-1}$ 的最高幂 为 $(z-z_0)^{-m}$	∞
本性奇点	含无穷多个负幂项	不存在 且不为∞

二、函数的零点与极点的关系

1.零点的定义 不恒等于零的解析函数 f(z)如果 能表示成 $f(z) = (z - z_0)^m \varphi(z)$, 其中 $\varphi(z)$ 在 z_0 解析且 $\varphi(z_0) \neq 0$, m为某一正整数, 那么 z_0 称为 f(z) 的 m 级零点.

例 z=0是函数 $f(z)=z(z-1)^3$ 的一级零点, z = 1是函数 $f(z) = z(z-1)^3$ 的三级零点.

注意: 不恒等于零的解析函数的零点是孤立的. 6

2.零点的判定

如果 f(z) 在 z_0 解析, 那么 z_0 为 f(z) 的 m 级 零点的充要条件是

$$f^{(n)}(z_0) = 0, (n = 0,1,2,\cdots m-1); f^{(m)}(z_0) \neq 0.$$

证 (必要性) 如果 z_0 为 f(z)的 m级零点

由定义:
$$f(z) = (z - z_0)^m \varphi(z)$$

设 $\varphi(z)$ 在 z_0 的泰勒展开式为:

$$\varphi(z) = c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + \cdots,$$

其中 $c_0 = \varphi(z_0) \neq 0$,

从而f(z)在 z_0 的泰勒展开式为

$$f(z) = c_0(z - z_0)^m + c_1(z - z_0)^{m+1} + c_2(z - z_0)^{m+2} + \cdots$$

展开式的前m项系数都为零,由泰勒级数的系数

公式知:
$$f^{(n)}(z_0) = 0, (n = 0,1,2,\cdots m-1);$$

并且
$$\frac{f^{(m)}(z_0)}{m!} = c_0 \neq 0.$$

充分性证明略.

3.零点与极点的关系

定理 如果 z_0 是 f(z) 的 m 级极点, 那么 z_0 就是 $\frac{1}{f(z)}$ 的 m 级零点. 反过来也成立.

这个定理为判断函数的极点提供了一个较为简单的方法

例 函数1/sinz有些什么奇点? 如果是极点, 指出它的级.

[解] 函数 $1/\sin z$ 的奇点显然是使 $\sin z=0$ 的点.这些奇点是 $z=k\pi(k=0,\pm 1,\pm 2,...)$. $\pm \exists \exists \sin z' |_{z=k\pi} = \cos z|_{z=k\pi} = (-1)k \neq 0$, 所以 $z=k\pi$ 是 sin z 的一级零点, 也就是 $1/\sin z$ 的一级极点.

例 求
$$f(z) = \frac{z^n}{e^z - 1}$$
 $(n \le 0)$ 的极点。

$$f(z) = \frac{1}{z^{1-n}(1 + z/2! + \dots + z^{m-1}/m! + \dots)} \Rightarrow z = 0$$
为 $1 - n$ 阶极点.

$$z = 2k\pi i \Rightarrow e^z - 1$$
的一阶零点 $(k \ne 0)$

$$\Rightarrow z = 2k\pi i \Rightarrow f(z)$$
的一阶极点 $(k \ne 0)$.

例 $\forall m \in \mathbb{Z}$ 讨论函数 $f(z) = \frac{e^z - 1}{z^m}$ 在 z = 0 处的性态。

解

$$m \le 0: z = 0$$
为解析点; $m = 1: z = 0$ 为可去奇点;

$$m > 1: f(z) = \frac{1}{z^m} \left(z + \frac{z^2}{2!} + \dots + \frac{z^m}{m!} + \frac{z^{m+1}}{(m+1)!} + \dots \right)$$
$$= \frac{1}{z^{m-1}} + \frac{1}{2!} \cdot \frac{1}{z^{m-1}} + \dots + \frac{1}{m!} + \frac{z}{(m+1)!} + \dots$$

$$\Rightarrow z = 0$$
为 $m - 1$ 阶极点。

三、函数在无穷远点的性态

1. 定义 如果函数 f(z) 在无穷远点 $z = \infty$ 的去心 邻域 $R < |z| < +\infty$ 内解析, 则称点 ∞ 为 f(z) 的孤 立奇点.

$$f(z) = \sum_{n=-\infty}^{+\infty} C_n z^n$$

令变换
$$z = \frac{1}{w}$$

则
$$f(z) = f\left(\frac{1}{w}\right) = \varphi(w),$$

$$R < |z| < +\infty$$
 映射为 $0 < |w| < \frac{1}{R}$

$$\varphi(w) = \sum_{n=-\infty}^{+\infty} b_n w^n$$

如果函数 f(z) 在无穷远点 $z=\infty$ 的去心邻域 $R<|z|<\infty$ 内解析,称点 ∞ 为 f(z)的孤立奇点.

作变换 $w = \frac{1}{-}$ 把扩充z平面上 ∞ 的去心邻域 $R < |z| < +\infty$ 映射成扩充w平面上原点的去心邻域: $0 < |w| < \frac{1}{R}$.

又 $f(z) = f(\frac{1}{w}) = \varphi(w)$.这样,我们可把在去心邻域 $R < |z| < + \infty$ 对f(z)的研究变为在 $0 < |w| < \frac{1}{R}$ 内对 $\varphi(w)$ 的研究.显然 $\varphi(w)$ 在 $0 < |w| < \frac{1}{R}$ 内解析,所以w = 0是孤立奇点.

$$\lim_{z \to \infty} f(z) = \lim_{w \to 0} \varphi(w) \Rightarrow f(z)$$
在无穷远点 $z = \infty$ 的奇点类型

等价于 $\varphi(w)$ 在w=0的奇点类型。

2.判别方法:判别法1 (利用洛朗级数的特点)

如果 f(z) 在 $R < |z| < +\infty$ 内的洛朗级数中:

- 1)不含正幂项;
- 2)含有有限多的正幂项且 z‴ 为最高正幂;
- 3)含有无穷多的正幂项;

那么 $z = \infty$ 是 f(z)的 1)可去奇点;

- 2) m 级极点;
- 3)本性奇点.

判别法2:(利用极限特点)

如果极限 $\lim_{z\to\infty} f(z)$

- 1)存在且为有限值;
- 2) 无穷大;
- 3)不存在且不为无穷大;

那么 $z = \infty$ 是 f(z) 的 1)可去奇点;

- 2)m级极点;
- 3)本性奇点.

即 $z=\infty$ 是f(z)的可去奇点, 极点或本性奇点, 完全看极限 $\lim_{z\to\infty} f(z)$ 是否存在(有限值), 为无穷大或即不存在又不是 无穷大来决定.

例 $f(z) = (z-2)(z^2+1)$. $z = \infty$ 为唯一奇点: 3阶极点.

例 $f(z) = e^{z-\frac{1}{z}}$. z = 0与 ∞ 均为本性奇点.

例 $f(z) = e^{\tan^{\frac{1}{z}}} \cdot \lim_{z \to \infty} f(z) = 1 \Rightarrow \infty$ 为f(z)的可去奇点.

$$z_k = 1/\left(k + \frac{1}{2}\right)\pi \quad (k = 0, \pm 1, \pm 2, \cdots)$$
为本性奇点

z=0为非孤立奇点;

练习 函数
$$f(z) = \frac{(z^2-1)(z-2)^3}{(\sin \pi z)^3}$$
在扩充复平面内

有些什么类型的奇点?如果是极点,指出它的级.

解 函数 f(z) 除点 $z=0,\pm 1,\pm 2\cdots$ 外,

在 $|z| < +\infty$ 内解析.

因 $(\sin \pi z)' = \cos \pi z$ 在 $z = 0, \pm 1, \pm 2, \cdots$ 处均不为零.

所以这些点都是 sin πz 的一级零点,

故这些点中除1,-1,2外,都是f(z)的三级极点.

因 $z^2-1=(z-1)(z+1)$,以1与-1为一级零点,

所以 1与-1是 f(z)的 2级极点.

当z=2时,

因为
$$\lim_{z \to 2} f(z) = \lim_{z \to 2} \frac{(z^2 - 1)(z - 2)^3}{(\sin \pi z)^3}$$

$$= \frac{3}{\pi^3},$$

那末 z=2 是 f(z) 的可去奇点.

当 $z = \infty$ 时,

函数 f(z) 有奇点 $z=0,\pm 1,\pm 2\cdots$

所以, $z = \infty$ 不是孤立奇点。

完整的说明方法见下一页

当
$$z = \infty$$
时,因为 $f\left(\frac{1}{\zeta}\right) = \frac{(1-\zeta^2)(1-2\zeta)^3}{\zeta^2 \sin^3 \frac{\pi}{\zeta}}$

$$\zeta = 0, \zeta_n = \frac{1}{n}$$
使分母为零, $\zeta_n = \frac{1}{n}$ 为 $f\left(\frac{1}{\zeta}\right)$ 的极点,

故
$$\zeta = 0$$
不是 $f\left(\frac{1}{\zeta}\right)$ 的孤立奇点,

所以 $z = \infty$ 不是 f(z) 的孤立奇点.

5.2 留数

一.留数的引入

一二.利用留数求积分

三.在无穷远点求留数

积分
$$\int_{C} f(z)dz$$

$$= \cdots + c_{-n} \oint_{C} (z - z_{0})^{-n} dz + \cdots + c_{-1} \oint_{C} (z - z_{0})^{-1} dz$$

$$= \frac{c}{\sqrt{(高阶导数公式)}}$$

$$+ \oint_{C} c_{0}dz + \oint_{C} c_{1}(z - z_{0})dz + \cdots + \oint_{C} c_{n}(z - z_{0})^{n} dz + \cdots$$

$$= \frac{c}{\sqrt{(n-1)^{2}}} (\sqrt{n} - \sqrt{n})^{n} dz + \cdots$$

$$= \frac{c}{\sqrt{(n-1)^{2}}} \sqrt{(n-1)^{2}} \sqrt{n} dz + \cdots$$

 $= 2\pi i \frac{c_{-1}}{c_{-1}}$ 洛朗级数中负幂项 $c_{-1}(z-z_0)^{-1}$ 的系数

即
$$c_{-1} = \frac{1}{2\pi i} \oint_C f(z) dz = \text{Res}[f(z), z_0]$$

$$f(z) 在 z_0 的 留数$$

定义 如果 z_0 为函数 f(z)的一个孤立奇点,则沿在 z_0 的某个去心邻域 $0 < |z - z_0| < R$ 内包含 z_0 的任意一条简单闭曲线 C 的积分 $\int_C f(z) dz$ 的值除以 $2\pi i$ 后所得的数称为 f(z)在 z_0 的留数.记作 Res[$f(z),z_0$].

例 求下列积分的值,其中C为包含z=0的简单正向闭曲线.

$$(1) \oint_C z^{-3} \cos z dz \quad (2) \oint_C e^{\frac{1}{z^2}} dz$$

解: (1)令 $f(z)=z^{-3}\cos z$,则z=0为f(z)的孤立奇点.

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots, |z| < \infty.$$

$$f(z) = \frac{1}{z^3} - \frac{1}{2z} + \frac{z}{4!} - \frac{z^3}{6!} + \cdots, 0 < |z| < \infty,$$

所以Res
$$[f(z),0]=-\frac{1}{2}$$
.

$$\oint_C z^{-3} \cos z \, \mathrm{d}z = -\pi i$$

(2) 令
$$f(z)=e^{\frac{1}{z^2}}$$
,则 $z=0$ 为 $f(z)$ 的孤立奇点.

$$e^{\xi} = 1 + \frac{\xi}{1!} + \frac{\xi^2}{2!} + \cdots + \frac{\xi^n}{n!} + \cdots, |z| < \infty,$$

以
$$\xi = \frac{1}{z^2}$$
 代入上式,得

$$f(z) = 1 + \frac{1}{1!} \cdot \frac{1}{z^2} + \frac{1}{2!} \cdot \frac{1}{z^4} + \dots + \frac{1}{n!} \cdot \frac{1}{z^{2n}} + \dots, 0 < |z| < \infty.$$

所以,Res[f(z),0]=0.

$$\oint_C e^{\frac{1}{z^2}} dz = 0$$

二、利用留数求积分

1.留数定理 函数 f(z) 在区域 D内除有限个孤立奇点 z_1, z_2, \cdots, z_n 外处处解析, C 是 D内包围诸奇点的一条正向简单闭曲线, 那么

$$\int_{C} f(z)dz = 2\pi i \sum_{k=1}^{n} \text{Res}[f(z), z_{k}].$$

2. 留数的计算方法

- (1) 如果 z_0 为 f(z) 的可去奇点,则 Res[$f(z), z_0$] = 0.
- (2) 如果 z_0 为 f(z) 的本性奇点,则需将 f(z)展开成洛朗级数求 c_{-1} .
- (3) 如果 z_0 为f(z)的极点,则有如下计算规则
- •规则1 如果 z_0 为 f(z)的一级极点,那么

Res
$$[f(z), z_0] = \lim_{z \to z_0} (z - z_0) f(z).$$

•规则2 如果 z_0 为f(z)的m级极点,那么

Res
$$[f(z), z_0] = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)].$$

•规则3 设 $f(z) = \frac{P(z)}{Q(z)}$, P(z)及Q(z)在 z_0 都解析,

如果 $P(z_0) \neq 0, Q(z_0) = 0, Q'(z_0) \neq 0$, 那么 z_0 为

$$f(z)$$
的一级极点,且有 $Res[f(z),z_0] = \frac{P(z_0)}{Q'(z_0)}$.

例 计算
$$f(z) = \frac{e^z}{\sin z}$$
 在 $z = 0$ 处的留数.

解:
$$P(z)=e^z$$
, $Q(z)=\sin z$,

于是
$$P(0)=1,Q(0)=0,Q'(0)=1.$$

Res[
$$f(z)$$
, 0] = $\frac{P(0)}{Q'(0)}$ = 1

例 求
$$f(z) = \frac{P(z)}{Q(z)} = \frac{z - \sin z}{z^6}$$
在 $z = 0$ 的留数.

解 如果利用洛朗展开式求 c_{-1} 较方便:

$$\frac{z - \sin z}{z^6} = \frac{1}{z^6} \left[z - \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots \right) \right]$$

:. Res
$$\left[\frac{z-\sin z}{z^6}, 0\right] = c_{-1} = -\frac{1}{5!}$$
.

例 计算积分
$$\oint_C \frac{z}{z^4-1} dz$$
, C 为正向圆周 $|z|=2$.

解 被积函数 $f(z) = \frac{z}{z^4 - 1}$ 有四个一级极点±1,±i 都在圆周|z|=2 内,所以

$$\oint_C \frac{z}{z^4 - 1} dz = 2\pi i \{ \text{Res}[f(z), 1] + \text{Res}[f(z), -1] \}$$

+ Res[
$$f(z)$$
, i] + Res[$f(z)$, $-i$]} ·

由规则3,
$$\frac{P(z)}{Q'(z)} = \frac{z}{4z^3} = \frac{1}{4z^2}$$
,故

$$\oint_C \frac{z}{z^4 - 1} dz = 2\pi i \left(\frac{1}{4} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4}\right) = 0.$$

例 计算积分 $\oint \frac{e^z}{z(z-1)^2} dz$, C 为正向圆周|z|=2.

 \mathbf{p} z=0 为被积函数的一级极点, z=1 为二级极点, 而

Res[
$$f(z)$$
,0] = $\lim_{z\to 0} z \cdot \frac{e^z}{z(z-1)^2} = \lim_{z\to 0} \frac{e^z}{(z-1)^2} = 1$.

Res[
$$f(z)$$
,1] = $\frac{1}{(2-1)!} \lim_{z \to 1} \frac{d}{dz} \left[(z-1)^2 \frac{e^z}{z(z-1)^2} \right]$

$$= \lim_{z \to 1} \frac{d}{dz} \left(\frac{e^z}{z} \right) = \lim_{z \to 1} \frac{e^z(z-1)}{z^2} = 0.$$

所以
$$\oint_C \frac{e^z}{z(z-1)^3} dz = 2\pi i \{ \text{Res}[f(z), 0] + \text{Res}[f(z), 1] \}$$

 $= 2\pi i(1+0) = 2\pi i.$

三、在无穷远点的留数

1. 定义 设函数 f(z)在圆环域 $R < |z| < +\infty$ 内解析,

C为圆环域内绕原点的任何一条正向简单闭曲线,

那么积分 $\frac{1}{2\pi i}$ $\oint f(z)dz$ 的值与C无关,**则称此定值**

为f(z)在∞点的留数,

为
$$f(z)$$
在∞点的留数,
记作 Res $[f(z),\infty] = \frac{1}{2\pi i} \oint_{C^-} f(z) dz = -\frac{1}{2\pi i} \oint_{C} f(z) dz$

注意积分路线取顺时针方向

说明 Res
$$[f(z),\infty]=-c_{-1}$$

$$=-c_{-1}$$

2.定理二

如果函数 f(z) 在扩充复平面内只有有限个孤立奇点,那么 f(z) 在所有各奇点 (包括∞点)的留数的总和必等于零.

(绕原点的并将 z_k包含在 内部的正向简单闭曲线) 由留数定义有:

$$\operatorname{Res}[f(z),\infty] + \sum_{k=1}^{\infty} \operatorname{Res}[f(z),z_{k}]$$

$$= \frac{1}{2\pi i} \oint_{C} f(z) dz + \frac{1}{2\pi i} \oint_{C} f(z) dz = 0.$$
[证学]

3.在无穷远点处留数的计算

•规则4

Res
$$[f(z),\infty] = -\text{Res}\left[f\left(\frac{1}{z}\right)\cdot\frac{1}{z^2},0\right]$$

说明: 定理二和规则4提供了计算函数沿闭曲线

积分的又一种方法:

$$\oint_C f(z) dz = 2\pi i \text{Res} \left[f\left(\frac{1}{z}\right) \cdot \frac{1}{z^2}, 0 \right]$$

此法在很多情况下此法更为简单.

例 计算积分 $\int_C \frac{z}{z^4-1} dz$, C为正向圆周: |z|=2.

解 函数 $\frac{z}{z^4-1}$ 在 |z|=2 的外部,除 ∞ 点外没有

其他奇点. 根据定理 二与规则4:

$$\oint_C \frac{z}{z^4 - 1} dz = -2\pi i \operatorname{Res}[f(z), \infty]$$

$$= 2\pi i \operatorname{Res}\left[f\left(\frac{1}{z}\right) \cdot \frac{1}{z^2}, 0\right]$$

$$= 2\pi i \operatorname{Res}\left[\frac{z}{1 - z^4}, 0\right] = 0.$$

使用内部奇点留数的方法见下一页。

例 计算积分
$$\oint_C \frac{z}{z^4-1} dz$$
, C 为正向圆周 $|z|=2$.

解 被积函数 $f(z) = \frac{z}{z^4 - 1}$ 有四个一级极点±1,±i 都在圆周|z|=2 内,所以

$$\oint_C \frac{z}{z^4 - 1} dz = 2\pi i \{ \text{Res}[f(z), 1] + \text{Res}[f(z), -1] \}$$

+ Res[
$$f(z)$$
, i] + Res[$f(z)$, $-i$]} ·

由规则2,
$$\frac{P(z)}{Q'(z)} = \frac{z}{4z^3} = \frac{1}{4z^2}$$
,故

$$\oint_{\mathbb{R}} \frac{z}{z^4 - 1} dz = 2\pi i \left(\frac{1}{4} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4} \right) = 0.$$

5.3 留数在定积分计算上的应用

- 一、形如 $\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$ 的积分
- $= \sum_{n=1}^{\infty} R(x) dx$ 的积分
- 三、形如 $\int_{-\infty}^{+\infty} R(x)e^{aix} dx \quad (a > 0)$ 的积分

一、形如 $\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$ 的积分

$$\Rightarrow z = e^{i\theta}$$

当 θ 历经变程 $[0,2\pi]$ 时,

z 沿单位圆周 |z|=1的正方向绕行一周.

$$\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$$

$$= \oint\limits_{|z|=1} R\left[\frac{z^2+1}{2z}, \frac{z^2-1}{2iz}\right] \frac{\mathrm{d}z}{iz}$$

$$= \int_{|z|=1}^{n} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}[f(z), z_{k}].$$

z的有理函数,且在单位圆周上分母不为零,满足留数定理的条件.

包围在单位圆周内的诸孤立奇点.

例 计算积分
$$\int_{0}^{2\pi} \cos^4 4\theta d\theta$$
 .

解:
$$\Leftrightarrow z = e^{i\theta} (0 \le \theta \le 2\pi)$$
,则 $\cos^4 4\theta = (\frac{z^4 + z^{-4}}{2})^4$,

$$\int_{0}^{2\pi} \cos^{4} 4\theta d\theta = \int_{|z|=1}^{2\pi} \left(\frac{z^{4} + z^{-4}}{2}\right)^{4} \frac{1}{iz} dz = \frac{1}{i} \int_{|z|=1}^{2\pi} \frac{(z^{8} + 1)^{4}}{16z^{17}} dz$$

在
$$0 < |z| < 1$$
内,被积函数的罗朗展开式为

$$\frac{(z^8+1)^4}{16z^{17}} = \frac{1}{16}z^{-17} + \frac{1}{4}z^{-9} + \frac{3}{8}z^{-1} + \cdots$$

$$\int_{0}^{2\pi} \cos^{4} 4\theta d\theta = \frac{1}{i} \left[2\pi i \operatorname{Res} \left[\frac{(z^{8} + 1)^{4}}{16z^{17}}, 0 \right] \right] = \frac{3}{4}\pi.$$

二、形如 $\int_{-\infty}^{+\infty} R(x) dx$ 的积分

有理函数 R(x)的分母至少比分子高两次,

并且分母在实轴上无孤立奇点.

一般设
$$R(z) = \frac{z^n + a_1 z^{n-1} + \dots + a_n}{z^m + b_1 z^{m-1} + \dots + b_m}, m - n \ge 2$$

(当z在实轴上的区间内变动时, R(z)=R(x))

$$\int_{-R}^{R} R(x) \mathrm{d}x$$

$$\int_{C_1} R(z) \mathrm{d}z$$

 C_R 与[-R,R]一起构成封闭曲线C,R(z)在C及其内部(除去有限孤立奇点)处处解析.根据留数定理得:

$$\int_{-R}^{R} R(x) dx + \int_{C_R} R(z) dz = 2\pi i \sum_{n} \operatorname{Res}[R(z), z_k]_{25}$$

$$\int_{-\infty}^{+\infty} R(x) \mathrm{d}x$$

$$\int_{-R}^{R} R(x) dx + \int_{C_R} R(z) dz = 2\pi i \sum_{k=1}^{\infty} \operatorname{Res}[R(z), z_k],$$

$$R \to +\infty: \int_{C_R} R(z) \mathrm{d}z \to 0$$

所以
$$\int_{-\infty}^{\infty} R(x)dx = 2\pi i \sum \text{Res}[R(z), z_k]$$

$$\int_{-R}^{R} R(x) dx + \int_{C_R} R(z) dz = 2\pi i \sum \text{Res}[R(z), z]$$
此等式不因 C_R 的半径 R 不断增大而有所改变.

因此
$$\int_{-\infty}^{+\infty} R(x) dx = 2\pi i \sum \text{Res}[R(z), z_k].$$

如果R(x)为偶函数,

$$\int_0^{+\infty} R(x) \, dx = \frac{1}{2} \int_{-\infty}^{+\infty} R(x) \, dx = \pi i \sum \text{Res}[R(z), z_k].$$

例 计算I =
$$\int_{-\infty}^{+\infty} \frac{x^2}{x^4 + x^2 + 1} dx$$

$$z^4 + z^2 + 1 = (z^2 + 1)^2 - z^2 = (z^2 + z + 1)(z^2 - z + 1) = 0$$

$$\Rightarrow f(z) = \frac{z^2}{z^4 + z^2 + 1}$$
的四个一阶极点为:

$$z_{1,2} = \pm \frac{1}{2} + \frac{\sqrt{3}}{2}i, z_{3,4} = \pm \frac{1}{2} - \frac{\sqrt{3}}{2}i, \pm \pm z_1, z_2$$

$$I = 2\pi i \{ \text{Res}[f(z), z_1] + \text{Res}[f(z), z_2] \}$$

$$= 2\pi i \left(\frac{1 + \sqrt{3}i}{4\sqrt{3}i} + \frac{1 - \sqrt{3}i}{4\sqrt{3}i} \right) = \frac{\pi}{\sqrt{3}}$$

例 计算
$$I = \int_0^{+\infty} \frac{1}{(x^2 + 1)^{n+1}} dx$$

解:
$$I = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{1}{(x^2 + 1)^{n+1}} dx$$

$$f(z) = \frac{1}{(z^2+1)^{n+1}}$$
在上半平面只有一个 $n+1$ 阶极点 $z=i$,

$$I = \pi i \text{Res}[f(z), i] = \pi i \frac{1}{n!} \frac{d^n}{dz^n} \left(\frac{1}{z+i}\right)^{n+1} = \pi i \frac{(-1)^n}{n!} \frac{(n+1)(n+2)\cdots 2n}{(2i)^{2n+1}}$$

$$= \frac{(n+1)(n+2)\cdots 2n}{n! \ 2^{2n+1}} \pi = \frac{\pi}{2} \cdot \frac{(2n-1)!!}{(2n)!!}$$

三、形如
$$\int_{-\infty}^{+\infty} R(x)e^{aix} dx$$
 的和例

R(x)是x的有理函数而分母的次数至少比分子的次数高一次,并且R(z)在实轴上无孤立奇点.

由留数定理:

$$\int_{-R}^{R} R(x)e^{aix}dx + \int_{C_R} R(z)e^{aiz}dz = 2\pi i \sum_{k} \operatorname{Res}[R(z)e^{aiz}, z_k]$$

由留数定理:

$$\int_{-R}^{R} R(x)e^{aix} dx + \int_{C_R} R(z)e^{aiz} dz = 2\pi i \sum_{k=1}^{R} \operatorname{Res}[R(z)e^{aiz}, z_k]$$

$$R \to +\infty:$$

$$\int_{-\infty}^{+\infty} R(x)e^{aix} dx = 2\pi i \sum_{k=0}^{\infty} \text{Res}[R(z)e^{aiz}, z_k]$$

$$e^{iax} = \cos ax + i \sin ax$$

$$\int_{-\infty}^{+\infty} R(x) \cos ax dx + i \int_{-\infty}^{+\infty} R(x) \sin ax dx$$

$$=2\pi i \sum \text{Res}[R(z)e^{aiz},z_k].$$

例 求积分
$$\int_{-\infty}^{+\infty} \frac{\cos x}{x_1^2 + 4x + 5} dx$$

解: 设R(z)= $\frac{1}{z^2+4z+5}$,则R(z)的分母高于分子二次,实轴上无奇点,上半平面只有一个一级极点z=-2+i,

$$\int_{-\infty}^{+\infty} R(x)e^{ix} dx = 2\pi i \operatorname{Res}[R(z)e^{iz}, -2+i]$$

$$= 2\pi i \lim_{z \to -2+i} [z - (-2+i)]R(z)e^{iz}$$

$$= 2\pi i \lim_{z \to -2+i} \frac{e^{iz}}{z + 2 + i} = 2\pi i \frac{e^{-1-2i}}{2i}.$$

$$\int_{-\infty}^{+\infty} \frac{\cos x}{x^2 + 4x + 5} dx = \text{Re}[2\pi i \frac{e^{-1-2i}}{2i}] = \pi e^{-1} \cos 2.$$

6.1共形映射概念

- 一、导函数的几何意义
- 二、共形映射的概念
- 產、几个简单的共形映射

$$\frac{w - w_0}{z - z_0} = \frac{f(z) - f(z_0)}{z - z_0} = \frac{|\triangle w| e^{i\varphi}}{|\triangle z| e^{i\theta}} = \frac{|\triangle w|}{|\triangle z|} e^{i(\varphi - \theta)},$$
所以 $|f'(z_0)| = \lim_{z \to z_0} \frac{|\Delta w|}{|\Delta z|}.$

称为曲线 C 在 z_0 的伸缩率

结论: $|f'(z_0)|$ 是经过映射 w = f(z) 后通过点 z_0 的任何曲线 C在 z_0 的伸缩率,它与曲线 C的形状及方向无关. 所以这种映射具有伸缩率的不变性.

$$\frac{w-w_0}{z-z_0}=\frac{f(z)-f(z_0)}{z-z_0}=\frac{\left|\triangle w\right|e^{i\varphi}}{\left|\triangle z\right|e^{i\theta}}=\frac{\left|\triangle w\right|}{\left|\triangle z\right|}e^{i(\varphi-\theta)},$$

所以
$$\arg f'(z_0) = \lim_{z \to z_0} (\varphi - \theta) = \varphi_0 - \theta_0.$$

称为曲线 C 在 z_0 的旋转角

结论: $\arg f'(z_0)$ 是经过映射 w = f(z) 后通过点 z_0 的任何曲线 C 在 z_0 的旋转角,它与曲线 C 的形状及方向无关. 所以这种映射具有旋转角的不变性.

结论:相交于点 z_0 的任意两条曲线 C_1 与 C_2 之间的夹角在其大小和方向上都等同于经过w = f(z)映射后跟 C_1 与 C_2 对应的曲线 Γ_1 与 Γ_2 之间的夹角.映射 w = f(z) 具有保持两曲线间夹角的大小和方向不变的性质, 此性质称为保角性.

综上所述,有

定理

设函数w = f(z)在区域D内解析, z_0 为D内一点,

且 $f'(z) \neq 0$, 那么映射 $w = f(z_0)$ 在 z_0 具有两个性

质: (1) 保角性; (2) 伸缩率不变性.

二、共形映射的概念

定义 设w = f(z)在区域D内的任意一点 z_0 具有保角性和伸缩率不变性,则 称 w = f(z) 是第一类保角映射.

设函数w = f(z)在区域D内解析, z_0 为D内一点,且 $f'(z) \neq 0$,那么映射 $w = f(z_0)$ 在 z_0 具有两个性

质: (1) 保角性; (2) 伸缩率不变性.

说明: 如果映射 w = f(z)具有伸缩率不变性,但仅保持夹角的绝对值不变而方向相反,则称之为第二类保角映射.

思考题:

关于实轴对称的映射 $W=\overline{z}$ 是第一类保角映射吗?

w=f(z)=u(x,y)+iv(x,y).因为w=f(z)在 z_0 处解析,则在该点满足柯西一黎曼方程

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

在该点的雅各比式有

$$\frac{\partial(u,v)}{\partial(x,y)} = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 = |f'(z_0)| \neq 0.$$

映射w=f(z)在 z_0 的邻域内是一一对应的.

定义6.2 设w = f(z)是区域D内的第一类保角映射. 如果当 $z_1 \neq z_2$ 时,有 $f(z_1) \neq f(z_2)$,则称f(z)为共形映射.

保形映射是把区域双方单值的映射成区域,在每一点 保角,在每一点具有伸缩率不变性。

练习: 考察函数 $w = e^z$ 构成的映射

函数 $w = e^z$ 在 $0 < Imz < 4\pi$ 是第一类保角的; 在 $0 < Imz < 2\pi$ 是保形的。

$$3. w = \frac{1}{z}$$
 反演变换

此映射可进一步分解为

$$w_1 = \frac{1}{\overline{z}}, \quad w = \overline{w}_1$$

欲由点z作出点w,可考虑如下作图次序:

$$z \rightarrow w_1 \rightarrow w$$

大于实轴对称

关键: 在几何上如何由 $z \rightarrow w_1$?

对称点的定义:

设C为以原点为中心,r为半径的圆周. 在以圆心为起点的一条半直线上,如果有两点 P与P'

满足关系式

$$OP \cdot OP' = r^2$$

那么就称这两点为关于这圆周的对称点.

规定: 无穷远点的对称点是圆心0.

作图:

设P在C外,从P作C的切线PT,由T作OP的垂线TP'与OP交于P',那么P与P'即互为对称点.

z与 w_1 是关于单位园周 |z|=1的对称点

反演映射规定和说明在在P127

核心就是说: 0和无穷远点有对应关系。

§ 6.2 共形映射的基本问题

一、问题一

二、问题二(基本问题)

一、问题一

对于给定的区域D和定义在区域D上的函数w = f(z),求象集合G = f(D).

1. 保域性定理

定理 设函数 w = f(z) 在区域 D 内解析,且不恒为常数,

P122 定理 6.2

则其象集合 G = f(D) 仍然为区域。

证明 (略)

意义 保域性定理将解析函数的象集合的求解问题变成了求象区域的问题。

一、问题一

2. 边界对应原理

定理 设区域D的边界为简单闭曲线C,函数w = f(z)在闭域

P122 定理 6.3

D = D + C上解析,且将曲线 C 双方单值地映射为简单闭曲线 Γ . 当 z 沿 C 的正向绕行时,相应的 w 的绕行方向定为 Γ 的正向,并令 G 是以 Γ 为边界的区域,则 w = f(z) 将 D 共形映射为 G。

证明 (略)

一、问题一

3. 求象区域的一般方法

设函数w = f(z)在闭域 $\overline{D} = D + C$ 上解析,且为一一映射。

(1) $\Leftrightarrow z = x + iy$, w = u + iv, 则有

(A)
$$\begin{cases} u = u(x, y), \\ v = v(x, y); \end{cases} \Rightarrow (B) \begin{cases} x = \varphi(u, v), \\ y = \psi(u, v). \end{cases}$$

(2) 求边界曲线 Γ 的象曲线 Γ .

(3) 求象区域.

方法一 沿边界 C 的正向找三点,考察象点的走向。

方法二 在区域D的内部找一点,考察象点的位置。

注意 对于具体的函数,将还会有一些特殊的方法。

例 已知函数 $w = \frac{1}{z+i}$, 区域 D 如图所示,求象区域 G。

解 (1) 由
$$w = \frac{1}{z+i}$$
, 有 $z = \frac{1}{w} - i$,

$$\Leftrightarrow z = x + iy, w = u + iv,$$

则有
$$x+iy=\frac{1}{u+iv}-i$$

$$=\frac{u}{u^2+v^2}-\frac{v}{u^2+v^2}i-i,$$

$$\Rightarrow x = \frac{u}{u^2 + v^2}, y = -\frac{u^2 + v^2 + v}{u^2 + v^2}.$$

例 已知函数 $w = \frac{1}{z+i}$, 区域 D 如图所示,求象区域 G。

$$\cancel{\text{pr}} (1) \quad x = \frac{u}{u^2 + v^2}, \quad y = -\frac{u^2 + v^2 + v}{u^2 + v^2}.$$

(2) 求边界曲线 Γ 的象曲线 Γ .

曲线 C 的方程为 x-y=0,

$$u^2 + v^2 + u + v = 0$$

即得象曲线「下的方程为

$$(u+\frac{1}{2})^2+(v+\frac{1}{2})^2=(\frac{\sqrt{2}}{2})^2.$$

例 已知函数 $w = \frac{1}{z+i}$, 区域 D 如图所示,求象区域 G。

- (2) 求边界曲线 C 的象曲线 Γ .
- (3) 求象区域.

方法一 在D的内部取一点 $z_0 = i$,

代入函数
$$w = \frac{1}{z+i}$$
,

得到象点 $w_0 = -\frac{1}{2}i$,

故象区域 G 在曲线 Γ 的"<u>内部</u>"。

例 已知函数
$$w = \frac{1}{z+i}$$
, 区域 D 如图所示,求象区域 G 。

- (2) 求边界曲线 C 的象曲线 Γ .
- (3) 求象区域.

方法二 在D的边界上取三点:

后续讨论
$$z_1=\infty, \longrightarrow w_1=0,$$
 将会看到 $z_2=-1-i, \longrightarrow w_2=-1,$ 就足够了 $z_3=0, \longrightarrow w_3=-i,$

故象区域 G 在曲线 Γ 的 "<u>内部</u>"。

二、问题二(基本问题)

对给定的区域D和G,求共形映射w = f(z),使G = f(D).

1. 黎曼存在唯一性定理

定理 设 D 和 G 是任意给的的两个单连域,在它们各自的边界

P124 定理 6.4

上至少含有两个点,则一定存在解析函数 w = f(z),将区域 D 双方单值地映射为 G。如果在区域 D 和 G 内再分别任意指定一点 z_0 和 w_0 ,并任给一个实数 θ_0 ($-\pi < \theta_0 \le \pi$),要求函数 w = f(z) 满足 $f(z_0) = w_0$ 且 $\arg f'(z_0) = \theta_0$,则映射 w = f(z) 的函数是唯一的。

证明 (略)

二、问题二(基本问题)

对给定的区域D和G,求共形映射w = f(z),使G = f(D).

2. 基本问题的简化 P128

对给定的单连域D, 求共形映射, 使得D映射为单位圆域。

•事实上,由此即可求得任意两个单连域之间的共形映射。

附:关于存在性与唯一性的补充说明。

1

附: 关于存在性与唯一性的补充说明

- 1. 关于存在性 P123
 - 若区域 *D* 为下列情形之一: (1) 扩充复平面; (2) 复平面; (3) 扩充复平面上除去一个有限点 **z**₀,则不存在解析函数, 使 *D* 共形映射为单位圆域。

其中,情形(3)可利用映射
$$\xi = \frac{1}{z-z_0}$$
 转化为情形(2)。

证明 若存在函数 w = f(z),将 D 共形映射为单位圆域 |w| < 1,则 w = f(z) 在整个复平面上解析且 |f(z)| < 1 (即有界),根据刘维尔(liouville)定理(见§ 3.4),f(z) 必恒为常数。这显然不是所要求的映射。

附: 关于存在性与唯一性的补充说明

- 2. 关于唯一性 P124
 - ●一般说来是不唯一的。

比如 对于任意给定的实常数 θ_0 , 函数 $w = z e^{i\theta_0}$ 将单位圆域 仍然映射为单位圆域。

6.3 分式线性映射

80

一、分式线性映射的概念

分式线性映射的性质

一、分式线性映射的概念

$$w = \frac{az+b}{cz+d} (ad-bc \neq 0, a,b,c,d均为常数.)$$

称为分式线性映射.

$$C = 0 \qquad \text{If } w = \frac{az+b}{d} = \frac{a}{d}(z+\frac{b}{a})$$

$$C = 0 \qquad \text{if } w = \frac{az+b}{d} = \frac{a}{d}(z+\frac{b}{a})$$

$$C \neq 0 \qquad \text{If } w = \frac{az+b}{cz+d} = \frac{a}{c} + \frac{bc-ad}{c(cz+d)}$$

z不同时,w也不同,所以是单射

一个一般形式的分式线性映射是由下列几种 特殊的简单映射复合而成:

(1)
$$w = z + b$$
 平移映射 (2) $w = ze^{i\theta_0}$ 旋转映射

(3)
$$w = rz (r > 0)$$
 相似映射 (4) $w = \frac{1}{7}$ 反演映射

分式线性映射

$$w = \frac{az+b}{cz+d} \left(\frac{a}{c} \neq \frac{b}{d} \rightarrow ad - bc \neq 0 \right)$$

$$\frac{\mathrm{d}w}{\mathrm{d}z} = \frac{ad - bc}{\left(cz + d\right)^2}$$

逆还是分式线性映射

$$cwz + dw - az - b = 0$$

$$z = \frac{-dw + b}{cw - a}, (-a)(-d) - bc \neq 0$$

两个分式线性映射的复合,仍是一个分式线性

$$w = \frac{\alpha \zeta + \beta}{\gamma \zeta + \delta} (\alpha \delta - \beta \gamma \neq 0),$$

$$\zeta = \frac{\alpha'z + \beta'}{\gamma'z + \delta'}(\alpha'\delta' - \beta'\gamma' \neq 0),$$

则

$$w = \frac{az + b}{cz + d}$$

式中
$$(ad-bc) = (\alpha\delta - \beta\gamma)(\alpha'\delta' - \beta'\gamma') \neq 0$$

也可将分式线性映射分解为一些简单映射的复合

$$w = \frac{\alpha \zeta + \beta}{\gamma \zeta + \delta} = \left(\beta - \frac{\alpha \delta}{\gamma}\right) \frac{1}{\gamma \zeta + \delta} + \frac{\alpha}{\gamma}.$$

令
$$\zeta_1 = \gamma \zeta + \delta, \zeta_2 = \frac{1}{\zeta_1}, 则$$

$$w = A\zeta_2 + B, (A, B$$
为常数)

二、分式线性映射的性质

1. 保形性

定理6.5 分式线性映射在扩充复平面上是共形映射.

函数
$$w = \frac{az+b}{cz+d}$$
 的导数除点 $z = -\frac{d}{c}$ 和 $z = \infty$ 以外处
处存在,而且 $\frac{\mathrm{d}w}{\mathrm{d}z} = \frac{ad-bc}{(cz+d)^2} \neq 0$,映射 $w = \frac{az+b}{cz+d}$ 除

那两个点以外是共形的.注: 逆也是分式线性, 双射

保角性

讨论iii)
$$w = \frac{1}{z}$$
, 这时 $w' = \left(\frac{1}{z}\right)' = \frac{-1}{z^2}$

当 $z \neq 0, z \neq \infty$ 时是解析函数,因此是保形映射. 而当z=0时 $w=\infty$, $z=\infty$ 时w=0,对这两点作保 形映射的补充规定,任何穿过z=0点的两条曲 线在0点的夹角,就是w=1/z在无穷远处的两 条曲线的夹角.则1/z在整个扩充复平面是保形 的.

2. 保圆性

所谓保圆性指在扩充复平面上将圆周映射为圆周的性质.

特殊地,直线可看作是半径为无穷大的圆周.

定理6.6 分式线性映射将扩充z平面上的圆周映射

成扩充w平面上的圆周,即具有保圆性.

考查: 反演映射
$$w = \frac{1}{z}$$

若z平面上圆方程为: $a(x^2 + y^2) + bx + cy + d = 0$

$$\Rightarrow z = x + iy, \quad w = \frac{1}{z} = u + iv,$$

有
$$\frac{1}{x+iv} = u+iv$$
 即 $x = \frac{u}{u^2+v^2}, y = \frac{-v}{u^2+v^2}$

反演映射
$$w = \frac{1}{z}$$

若z平面上圆方程为: $a(x^2 + y^2) + bx + cy + d = 0$

有
$$x = \frac{u}{u^2 + v^2}, y = \frac{-v}{u^2 + v^2}$$

代入 z 平面圆方程得其象曲线方程:

$$d(u^2 + v^2) + bu - cv + a = 0.$$

所以此映射在扩充复平面上具有保圆性.

映射w=1/z将方程 $a(x^2+y^2)+bx+cy+d=0$ 变为方程 $d(u^2+v^2)+bu-cv+a=0$

当a≠0,d≠0: 圆周映射为圆周;

当a≠0,d=0: 圆周映射成直线;

当a=0,d≠0: 直线映射成圆周;

当a=0,d=0: 直线映射成直线.

这就是说,映射w=1/z把圆周映射成圆周.

或者说, 映射w=1/z具有保圆性.

复合一起后,分式线性映射

$$w = f(z) = \frac{az+b}{cz+d} \quad (ad-bc \neq 0)$$

定理6.6 分式线性映射将扩充z平面上的圆周映射成扩充w平面上的圆周,即具有保圆性.

重要说明:如果给定的圆周或直线上没有点映射成无穷远点,那么它就映射成半径为有限的圆周;如果有一个点映射成无穷远点,那么它就映射成直线。

推论 在分式线性变换下,圆C映射成圆C.如果在C内任取一点 z_0 ,而点 z_0 的象在C的内部,那么C的内部就是映射到C的内部;如果 z_0 的象在C的外部,那么C的内部就映射成C的外部。

证明: 设 z_1,z_2 为C内的任意两点,用直线段把这两点连接起来.如果线段 z_1z_2 的象为圆弧 w_1w_2 ,且 w_1 在C之外, w_2 在C之内,那么弧 w_1w_2 必与C交于一点 w^* ,于是 w^* 必是C上某一点的象.

但w*又是线段z₁z₂上某一点的象,因而就有两个不同的点被映射为同一点.这就与分式线性映射的一一对应性相关盾.故推论成立.

3. 保对称点性

定理6.7 设点 z_1,z_2 是关于圆周C的一对对称点,则在分式线性映射下,它们的象点 w_1 与 w_2 也是关于C的象曲线 Γ 的一对对称点.

证 设经过 w_1 与 w_2 的任一圆周 Γ '是经过 z_1 与 z_2 的 圆周 Γ 由分式线性映射过来的. 由于 Γ 与C正 交, 而分式线性映射具有保角性, 所以 Γ '与C' (C的象)也必正交, 因此, w_1 与 w_2 是一对关于C' 的对称点.

定理6.8 在z平面上任意给定三个相 异的点 z_1, z_2, z_3 ,在w平面上也任意给定三个 相异的点 w_1, w_2, w_3 ,那么就存在唯一的分式线性映射,将 z_k (k = 1, 2, 3) 依次映射成 w_k (k = 1, 2, 3).

且有
$$\frac{w-w_1}{w-w_2}$$
: $\frac{w_3-w_1}{w_3-w_2} = \frac{z-z_1}{z-z_2}$: $\frac{z_3-z_1}{z_3-z_2}$.

对应点公式

分式线性映射对圆弧边界区域的映射:

- 1) 当二圆周上没有点映射成无穷远点时, 这二圆周的弧所围成的区域映射成二圆弧所 围成的区域.
- 2) 当二圆周上有一点映射成无穷远点时, 这二圆周的弧所围成的区域映射成一圆弧与 一直线所围成的区域.
- 3) 当二圆交点中的一个映射成无穷远点时, 这二圆周的弧所围成的区域映成角形区域.

6.3.6两个典型区域的映射

例 求将上半平面 Im(z) > 0映射成单位圆|w| < 1的分式线性映射.

解:设实轴映射成单位圆周,

上半平面某点 $z = \lambda$ 映射成圆心 w = 0

那么 $z = \lambda$ 必映射成 $w = \infty$

则所求映射具有下列形式: $w = k(\frac{z - \lambda}{z - \lambda})$ k为常数.

由于z为实数时,
$$|w|=1$$
, $\left|\frac{z-\lambda}{z-\overline{\lambda}}\right|=1$,

所以
$$|w|=|k|\frac{z-\lambda}{z-\overline{\lambda}}|=|k|=1$$
, 即 $k=e^{i\theta}$ (θ 为任意实数).

$$w = e^{i\theta} \left(\frac{z - \lambda}{z - \overline{\lambda}} \right), \quad (\text{Im}(\lambda) > 0)$$

上半平面映为单位圆的分式线性映射的一般形式

说明: 取
$$\lambda = i, \theta = -\frac{\pi}{2}$$
 , 得 $w = \frac{z-i}{iz-1}$.

若取
$$\lambda = i, \theta = 0$$
 , 得 $w = \frac{z-i}{z+i}$.

例 求将上半平面Im(z)>0映射成单位圆|w|<1且满足w(2i)=0,arg w'(2i)=0的分式线性映射.

解:由条件w(2i)=0知,所求的映射要将上半平面中

的点z=2i映射成单位圆周的圆心w=0. 所以

$$w = e^{i\theta} \left(\frac{z - 2i}{z + 2i} \right)$$
. 故有 $w'(z) = e^{i\theta} \frac{4i}{(z + 2i)^2}$,

$$w'(2i) = e^{i\theta} \left(-\frac{i}{4} \right).$$
 $\arg w'(2i) = \theta - \frac{\pi}{2} = 0, \ \theta = \frac{\pi}{2}.$

从而得所求的映射为 $w = i \left(\frac{z - 2i}{z + 2i} \right)$.

例 求将单位圆|z|<1映射成单位圆|w|<1的分式线性映射.

解 设
$$z = a \rightarrow w = 0$$
, 则 $z = \frac{1}{\overline{a}} \rightarrow w = \infty$.

因此可设所求分式线性映射为:

$$w = k \frac{z - a}{z - \frac{1}{\overline{a}}} = k \overline{a} \frac{z - a}{\overline{a}z - 1}$$

$$=k'\frac{z-a}{1-\overline{a}z}, (k'=-k\overline{a})$$

因为
$$|z|=1 \leftrightarrow |w|=1$$
, $|w|=|k'|\frac{z-a}{1-\overline{a}z}$,

所以
$$|w|=|k'|\frac{1-a}{1-\overline{a}}|=1.$$

又因为
$$|1-a|=|1-\overline{a}|$$
,

所以
$$|k'|=1$$
, 即 $k'=e^{i\theta}$.

故所求分式线性映射为:

$$w = e^{i\theta} \frac{z - a}{1 - \bar{a}z} \quad (\theta$$
为任意实数)

将单位圆映为单位圆的常用映射

例 求将单位圆映射成单位圆且满足条件 W(1/2)=0, W'(1/2)>0的分式线性映射.

[解] 由条件w(1/2)=0知, 所求的映射要将z=1/2映射成|w|<1的中心. 所以

$$w = e^{i\varphi} \left(\frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} \right), w' \left(\frac{1}{2} \right) = e^{i\varphi} \frac{\left(1 - \frac{1}{2}z \right) + \left(z - \frac{1}{2} \right) \frac{1}{2}}{\left(1 - \frac{1}{2}z \right)^2} \right|_{z = \frac{1}{2}} = e^{i\varphi} \frac{4}{3}$$

故
$$\arg w'\left(\frac{1}{2}\right) = \varphi$$
,由于 $w'\left(\frac{1}{2}\right) > 0$ 为正实数,从而 $\arg w'\left(\frac{1}{2}\right) = 0$

即
$$\varphi = 0$$
. 所以所求映射为 $w = \frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} = \frac{2z - 1}{2 - z}$.

6.4 几个初等函数所构成的映射

- 一、幂函数
- 二、指数函数

一、 幂函数 $w = z^n (n \ge 2$ 为自然数)

该函数在 z平面内处处可导,导数

$$\frac{\mathrm{d}w}{\mathrm{d}z} = nz^{n-1}$$

当z≠0时:

 $\frac{\mathrm{d}w}{\mathrm{d}z} \neq 0$,则在z平面内除原点外,

由 $w=z^n$ 所构成的映射是第一类保角映射.

(特殊地:单位圆周映射为单位圆周)

(正实轴
$$\theta = 0$$
 映射成正实轴 $\varphi = 0$)

即在 z = 0 处角形域的张角经过映 射变为原来的 n 倍.

因此, 当 $n \ge 2$ 时, 映射 $w = z^n$ 在 z = 0处没有保角性.

特殊地:

角形域
$$0 < \theta < \frac{2\pi}{n}$$
 ———角形域 $0 < \theta < 2\pi$

沿正实轴剪开的w平面

$$\theta = 0$$
映射成正实轴的上岸 $\varphi = 0$

$$\theta = \frac{2\pi}{n}$$
映射成正实轴的下岸 $\varphi = 2\pi$

映射特点: 把以原点为顶点的角形域映射成以原点为顶点的角形域, 但张角变成为原来的 n 倍. 如果要把角形域映射成角形域, 常利用幂函数.

例 求把角形域 $0 < \arg z < \frac{\pi}{4}$ 映射成单位圆 |w| < 1的一个映射.

二、指数函数 $w=e^{z}$

因为
$$w'=(e^z)'=e^z\neq 0$$
,

所以由 $w = e^z$ 所构成的映射是一个全平面上的第一类保角映射.

设
$$z = x + iy$$
, $w = \rho e^{i\varphi}$, 那么 $\rho = e^x$, $\varphi = y$,

$$z$$
平面 $w = e^z$ w 平面 $z = \ln w$

1)

2)

3) 带形域
$$0 < \text{Im}(z) < a$$

 $(0 < a \le 2\pi)$
 角形域 $0 < \text{arg } w < a$

特殊地:

映射特点: 把水平的带形域 0 < Im(z) < a 映射成角形域 0 < arg w < a.

如果要把带形域映射成角形域,常利用指数函数.

练习: 求把带形域 $0 < Im(z) < \pi$ 映射成单位圆

$$|w|$$
 < 1 的一个映射.

解

$$0 < \operatorname{Im}(z) < \pi$$

$$\eta = e^z$$

上半平面 $Im(\eta) > 0$

$$w = \frac{e^z - i}{e^z + i}$$

$$|w|=1$$

$$w = \frac{\eta - i}{\eta + i}$$

九种分解动作:

分式线性映射:

- 1.当二圆周上没有点映射成无穷远点时,这二圆周的弧所围成的区域映射成二圆弧所围成的区域。
- 2. 当二圆周上有一点映射成无穷远点时,这二圆周的弧 所围成的区域映射成一圆弧与一直线所围成的区域。

(可以不是半圆)

- 3.当二圆交点中的一个映射成无穷远点时,这二圆周的弧所围成的区域映成角形区域。
- 4.两个圆相切,切点映射为无穷远点,变成平行线,即 变成带状(条状)区域
- 5.上半平面变成单位圆内部
- 6.单位圆内部变成单位圆内部

- 7.幂函数:角形区域变成角形区域(上半平面是特殊的角形区域)
- 8.指数函数:水平的带状区域变成角形区域
- 9.指数函数:水平的半带状区域(虚部是负无穷到零) 变成扇形区域(扇形区域可以通过幂函数变成半圆形 区域,半圆形区域是而二圆周)

例 设区域 $D = \{z: |z| < 2, |z-1| > 1\}$,求一共形映射将D 映射成单位圆域。 P139 例6.16

解

例 设区域D由两个圆弧围成(如图所示),其中r>1,求一 共形映射将D映射成单位圆域。 P140 例6.17

第八章 Fourier 变换

- § 8.1 Fourier 变换的概念
- § 8.2 单位冲激函数
- § 8.3 Fourier 变换的性质

3. Fourier 级数的三角形式

定理 (Dirichlet 定理) 设 $f_T(t)$ 是以 T 为周期的实值函数,且在

P159 定理 8.1

区间 [-T/2, T/2] 上满足如下条件(称为 Dirichlet 条件):

- (1) 连续或只有有限个第一类间断点;
- (2) 只有有限个极值点.

则在 $f_T(t)$ 的连续点处有

$$f_T(t) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t),$$
 (A)

在 $f_T(t)$ 的间断处,上式左端为 $\frac{1}{2}[f_T(t+0)+f_T(t-0)]$.

3. Fourier 级数的三角形式

定理 (Dirichlet 定理)

$$f_T(t) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t), \tag{A}$$

其中,
$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f_T(t) \cos n\omega_0 t \, dt$$
, $n = 0, 1, 2, \cdots$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f_T(t) \sin n\omega_0 t \, dt$$
, $n = 1, 2, \cdots$

$$\omega_0 = \frac{2\pi}{T}, \,$$
称之为基频。

定义 称(A) 式为 Fourier 级数的三角形式。

4. Fourier 级数的物理含义

$$f_T(t) = A_0 + \sum_{n=1}^{+\infty} A_n \cos(n\omega_0 t + \theta_n)$$

- 表明 周期信号可以分解为一系列<mark>固定频率</mark>的简谐波之和, 这些简谐波的(角)频率分别为一个基频 ω_0 的倍数。
- 意义 认为"一个周期为T的周期信号 $f_T(t)$ 并不包含所有的 频率成份,其频率是以基频 ω_0 为间隔离散取值的。"
 - <u>这是周期信号的一个非常重要的特点</u>。

5. Fourier 级数的指数形式

推导
$$f_T(t) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} \left(\frac{a_n - jb_n}{2} e^{jn\omega_0 t} + \frac{a_n + jb_n}{2} e^{-jn\omega_0 t} \right).$$

$$f_T(t) = \sum_{n=0}^{+\infty} c_n e^{jn\omega_0 t},$$
 (B)

其中,
$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f_T(t) e^{-jn\omega_0 t} dt$$
, $n = 0, \pm 1, \pm 2, \cdots$

定义 称(B)式为 Fourier 级数的指数形式。

6. 离散频谱与频谱图

分析 由
$$c_0 = \frac{a_0}{2}$$
, $c_n = \frac{a_n - jb_n}{2}$, $c_{-n} = \frac{a_n + jb_n}{2}$,

P161

得
$$c_0 = A_0$$
, $|c_n| = |c_{-n}| = \frac{1}{2} \sqrt{a_n^2 + b_n^2} = \frac{A_n}{2}$,

$$\arg c_n = -\arg c_{-n} = \theta_n, \quad (n > 0).$$

即 c_n 的模与辐角正好是振幅和相位。

定义 称 $|c_n|$ 为振幅谱,称 $\arg c_n$ 为相位谱;

称 c_n 为<u>频谱</u>,记为 $F(n\omega_0) = c_n$.

1. 简单分析

(1) 非周期函数可以看成是一个周期为无穷大的"周期函数"

- 二、非周期函数的傅立叶变换
- 1. 简单分析
- (2) 当 T → +∞ 时,频率特性发生了什么变化?

分析 Fourier 级数表明周期函数仅包含离散的频率成份, 其频谱是以 $\omega_0 = 2\pi/T$ 为间隔离散取值的。

当 T 越来越大时,取值间隔越来越小;

当 T 趋于无穷时,取值间隔趋向于零,

即频谱将连续取值。

因此,一个非周期函数将包含所有的频率成份。

离散频谱变成连续频谱。

1. 简单分析

(3) 当T→+∞时,级数求和发生了什么变化?

分析
$$f(t) = \lim_{T \to +\infty} f_T(t) = \lim_{T \to +\infty} \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_0 t}$$

$$= \lim_{T \to +\infty} \sum_{n = -\infty}^{+\infty} \left[\frac{1}{T} \int_{-T/2}^{T/2} f_T(t) e^{-jn\omega_0 t} dt \right] e^{jn\omega_0 t}$$

将间隔 ω_0 记为 $\Delta\omega$, 节点 $n\omega_0$ 记为 ω_n ,

并由
$$T = \frac{2\pi}{\omega_0} = \frac{2\pi}{\Delta\omega}$$
 得

$$f(t) = \frac{1}{2\pi} \lim_{\Delta\omega \to 0} \sum_{n=-\infty}^{+\infty} \left[\int_{-\pi/\Delta\omega}^{\pi/\Delta\omega} f_T(t) e^{-j\omega_n t} dt \right] e^{j\omega_n t} \Delta\omega$$

- 1. 简单分析
- (3) 当T→+∞时,级数求和发生了什么变化?

分析 记
$$g_T(\omega) = \left[\int_{-\pi/\Delta\omega}^{\pi/\Delta\omega} f_T(t) e^{-j\omega t} dt \right] e^{j\omega t}$$
,则

$$f(t) = \frac{1}{2\pi} \lim_{\Delta\omega \to 0} \sum_{n=-\infty}^{+\infty} g_T(\omega_n) \Delta\omega$$

按照积分定义,在一定条件下,(C)式可写为

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt \right] e^{j\omega t} d\omega$$

级数求和变成函数积分。

2. Fourier 积分公式

定理 设函数 f(t) 满足

P164 定理 8.2

- (1) 在 $(-\infty, +\infty)$ 上的任一有限区间内满足 Dirichlet 条件;
- 8.2 (2) 绝对可积,即 $\int_{-\infty}^{+\infty} |f(t)| dt < +\infty$.

则在 f(t) 的连续点处,有

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt \right] e^{j\omega t} d\omega$$
 (D)

在 f(t) 的间断处,公式的左端应为 $\frac{1}{2}[f(t+0)+f(t-0)]$.

定义 称(D)式为Fourier积分公式。

3. Fourier 变换的定义

定义 (1) Fourier 正变换(简称<u>傅氏正变换</u>)

P164 定义 8.1

$$F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt = \mathcal{F}[f(t)]$$

(2) Fourier 逆变换(简称<u>傅氏逆变换</u>)

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega = \mathcal{F}^{-1} [F(\omega)]$$

其中, $F(\omega)$ 称为<u>象函数</u>,f(t)称为<u>象原函数</u>.

f(t)与 $F(\omega)$ 称为<u>傅氏变换对</u>,记为 $f(t) \leftrightarrow F(\omega)$.

注 上述变换中的广义积分为柯西主值。

4. Fourier 变换的物理意义

与Fourier级数的物理意义一样,Fourier变换同样刻画了一个非周期函数的频谱特性,不同的是,非周期函数的频谱是连续取值的。

 $F(\omega)$ 反映的是 f(t) 中各频率分量的分布密度,它一般为复值函数,故可表示为

$$F(\omega) = |F(\omega)| e^{j \arg F(\omega)}$$
.

定义 称 $F(\omega)$ 为频谱密度函数(简称为连续频谱或者频谱);

 $F(\omega)$ 称 $|F(\omega)|$ 为振幅谱,称 $|F(\omega)|$ 为相位谱。

133

例 求矩形脉冲函数
$$f(t) = \begin{cases} 1, & |t| \le a \\ 0, & |t| > a \end{cases}$$
 (a > 0) 的 Fourier 变换

及 Fourier 积分表达式。

P165 例8.2

$$\mathbf{f}(t) \quad F(\omega) = \mathcal{F}[f(t)] = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt \qquad \qquad \uparrow f(t)$$

$$= \int_{-a}^{a} e^{-j\omega t} dt = \frac{1}{-j\omega} e^{-j\omega t} \Big|_{-a}^{a}$$

$$= \frac{1}{-j\omega} (e^{-ja\omega} - e^{ja\omega})$$

$$=\frac{2}{\omega}\cdot\frac{(e^{-ja\omega}-e^{ja\omega})}{-2j}=2a\frac{\sin a\omega}{a\omega}.$$

例 已知f(t)的频谱为 $F(\omega) = \begin{cases} 1, & |\omega| \leq \omega_0 \\ 0, & |\omega| > \omega_0 \end{cases}$ $(\omega_0 > 0), 求 f(t).$

$$\mathbf{\cancel{F}} f(t) = \mathcal{F}^{-1}[F(\omega)]$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} e^{j\omega t} d\omega$$

$$\frac{\cos(\omega t + j \cdot \sin(\omega t) - e^{j(\omega t)})}{\cos(\omega t - j \cdot \sin(\omega t) - e^{j(\omega t)})} \frac{1}{2\pi jt} e^{j\omega t} \Big|_{-\omega_0}^{\omega_0} = \frac{1}{\pi t} \cdot \frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j}$$

$$=\frac{\sin \omega_0 t}{\pi t} = \frac{\omega_0}{\pi} \left(\frac{\sin \omega_0 t}{\omega_0 t} \right) = \frac{\omega_0}{\pi} \underbrace{S_a(\omega_0 t)}_{(\ref{eq:sinwood})}.$$

135

例 已知
$$f(t)$$
的频谱为 $F(\omega) = \frac{2}{i\omega}$,求 $f(t)$.

$$\mathbf{\widetilde{F}} \quad f(t) = \mathcal{F}^{-1}[F(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2}{j\omega} e^{j\omega t} d\omega$$

$$\int_{-\infty}^{\infty} \frac{j \sin \omega t}{j \omega} d\omega + \left(\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\cos \omega t}{j \omega} d\omega\right)^{\frac{1}{2}} \int_{-\infty}^{\infty} \frac{\cos \omega t}{j \omega} d\omega$$

$$\int \frac{\sin x}{7} \, dx = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin \omega t}{\omega} \, d\omega = \begin{cases} 1, & t > 0 \\ 0, & t = 0 \end{cases} \xrightarrow{\text{id} > \text{id} > \text{id}$$

$$\operatorname{sgn} t \longleftrightarrow \frac{2}{j\omega}.$$

二、单位冲激函数的概念及性质

1. 单位冲激函数的概念

定义 单位冲激函数 $\delta(t)$ 满足:

P168

$$(1)$$
 当 $t \neq 0$ 时, $\delta(t) = 0$;

$$(2) \int_{-\infty}^{+\infty} \delta(t) \, \mathrm{d} t = 1.$$

- 单位冲激函数 $\delta(t)$ 又称为 Dirac 函数或者 δ 函数。
- 显然,借助单位冲激函数,前面引例中质点的密度函数就可表示为 $P(x) = m\delta(x)$.

- 二、单位冲激函数的概念及性质
- 1. 单位冲激函数的概念
- 注 (1) 单位冲激函数 δ(t) 并不是经典意义下的函数,而是一个广义函数 (或者奇异函数),它不能用通常意义下的"值的对应关系"来理解和使用,而总是通过它的性质来使用它。
 - (2) 单位冲激函数有多种定义方式,前面给出的定义方式 是由 Dirac(狄拉克)给出的。

单位冲激函数 其它定义方式

三、单位冲激函数的 Fourier 变换

● 按照 Fourier 逆变换公式有

$$\mathcal{F}^{-1}[1] = \frac{1}{2\pi} \int_{-\infty}^{+\infty} 1 \cdot e^{j\omega t} d\omega = \delta(t).$$

• 重要公式
$$\int_{-\infty}^{+\infty} e^{j\omega t} d\omega = 2\pi \delta(t).$$

注 在 δ 函数的Fourier变换中,其广义积分是根据 δ 函数的性质直接给出的,而不是通过通常的积分方式得出来的,称这种方式的Fourier变换是一种广义的Fourier变换。

二、单位冲激函数的概念及性质

2. 单位冲激函数的性质

性质 (1) 筛选性质

P168 性质 8.1 设函数 f(t) 是定义在 $(-\infty, +\infty)$ 上的有界函数,

且在 t=0 处连续,则 $\int_{-\infty}^{+\infty} \delta(t) f(t) dt = f(0)$.

一般地, 若 f(t) 在 $t = t_0$ 点连续, 则

$$\int_{-\infty}^{+\infty} \delta(t-t_0) f(t) dt = f(t_0).$$

P169 性质 8.2 (2) 对称性质

 δ 函数为偶函数,即 $\delta(t) = \delta(-t)$.

例 分别求函数 $f_1(t)=1$ 与 $f_2(t)=t$ 的 Fourier 变换。

P170 例8.7 修改

解 (1)
$$F_1(\omega) = \mathcal{F}[f_1(t)] = \int_{-\infty}^{+\infty} 1 \cdot e^{-j\omega t} dt$$

= $2\pi \delta(-\omega) = 2\pi \delta(\omega)$.

(2) 将等式
$$\int_{-\infty}^{+\infty} e^{-j\omega t} dt = 2\pi \delta(\omega)$$
 的两边对 ω 求导,有

$$\int_{-\infty}^{+\infty} (-jt) e^{-j\omega t} dt = 2\pi \delta'(\omega),$$

$$\Rightarrow \int_{-\infty}^{+\infty} t e^{-j\omega t} dt = 2\pi j \delta'(\omega),$$

即得
$$F_2(\omega) = \mathcal{F}[f_2(t)] = 2\pi j \delta'(\omega)$$
.

例 求函数
$$u(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$
 的 Fourier 变换 $U(\omega)$ 。

解 已知
$$\mathcal{F}[\operatorname{sgn} t] = \frac{2}{j\omega}$$
,
$$\mathcal{F}[1] = 2\pi \delta(\omega),$$

得
$$U(\omega) = \frac{1}{2} (\mathcal{F}[\operatorname{sgn} t] + \mathcal{F}[1]) = \frac{1}{j\omega} + \pi \delta(\omega).$$

注 称 u(t)为单位阶跃函数,也称为 Heaviside 函数, 它是工程技术中最常用的函数之一。

例 分别求函数 $f_2(t) = e^{j\omega_0 t}$ 与 $f_2(t) = \cos \omega_0 t$ 的 Fourier 变换

P170 例8.7 部分

P170 例8.9

解 (1)
$$F_1(\omega) = \mathcal{F}[f_1(t)] = \int_{-\infty}^{+\infty} e^{j\omega_0 t} \cdot e^{-j\omega t} dt$$

$$= \int_{-\infty}^{+\infty} e^{j(\omega_0 - \omega)t} dt = 2\pi \delta(\omega_0 - \omega) = 2\pi \delta(\omega - \omega_0).$$

一、基本性质(汇总)

线性性质
$$\mathcal{F}[af(t)+bg(t)]=aF(\omega)+bG(\omega)$$
.

位移性质
$$\mathcal{F}[f(t-t_0)] = \mathbf{e}^{-j\omega t_0}F(\omega);$$
 (时移性质)

$$\mathcal{F}^{-1}[F(\omega-\omega_0)]=e^{j\omega_0t}f(t)$$
. (频移性质)

相似性质
$$\mathcal{F}[f(at)] = \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$$
.

一、基本性质(汇总)

微分性质
$$\mathcal{F}[f^{(n)}(t)] = (j\omega)^n F(\omega);$$

$$\mathcal{F}^{-1}[F^{(n)}(\omega)] = (-jt)^n f(t).$$

积分性质
$$\mathcal{F}\left[\int_{-\infty}^{t} f(t) dt\right] = \frac{1}{j\omega} F(\omega).$$

Parseval 等式
$$\int_{-\infty}^{+\infty} f^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |F(\omega)|^2 d\omega$$
.

(直接进入 Parseal 等式举例?)

例 设
$$f(t) = u(t) \cdot 2\cos\omega_0 t$$
, 求 $\mathcal{F}[f(t)]$.

解 己知
$$\mathcal{F}[u(t)] = \frac{1}{j\omega} + \pi \delta(\omega), = F(\omega)$$

根据线性性质和频移性质有

$$\mathcal{F}[f(t)] = \frac{1}{j(\omega - \omega_0)} + \pi \delta(\omega + \omega_0) + \frac{1}{j(\omega + \omega_0)} + \pi \delta(\omega - \omega_0)$$

$$=\frac{2j\omega}{\omega_0^2-\omega^2}+\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)].$$

例 已知抽样信号
$$f(t) = \frac{\sin 2t}{\pi t}$$
 的频谱为 $F(\omega) = \begin{cases} 1, & |\omega| \leq 2, \\ 0, & |\omega| > 2. \end{cases}$

求信号 g(t) = f(2t) 的频谱 $G(\omega)$. P173 例8.11 修改

解根据相似性质有

$$G(\omega) = \mathcal{F}[g(t)] = \mathcal{F}[f(2t)]$$

$$=\frac{1}{2}F\left(\frac{\omega}{2}\right)=\begin{cases}1/2, & |\omega|\leq 4,\\ 0, & |\omega|>4.\end{cases}$$

例 设 $f(t) = t^2 \cos t$, 求 $\mathcal{F}[f(t)]$.

解
$$\Leftrightarrow g(t) = \cos t$$
, 则 $f(t) = t^2 g(t)$, 近近近点(火)

又已知
$$G(\omega) = \mathcal{F}[\cos t] = \pi \delta(\omega - 1) + \pi \delta(\omega + 1)$$
,

根据<u>微分性质</u> $\mathcal{F}^{-1}[G''(\omega)] = (-jt)^2 g(t)$,有

$$\mathcal{F}[f(t)] = \mathcal{F}[t^2 g(t)] = -G''(\omega)$$
$$= -\pi \delta''(\omega - 1) - \pi \delta''(\omega + 1).$$

二、卷积与卷积定理

1. 卷积的概念与运算性质

定义 设函数 $f_1(t)$ 与 $f_2(t)$ 在区间 $(-\infty, +\infty)$ 上有定义, 如果

P176 8.2

定义 广义积分 $\int_{-\infty}^{+\infty} f_1(\tau) f_2(t-\tau) d\tau$ 对任何实数 t 都收敛,则 它在 $(-\infty, +\infty)$ 上定义了一个自变量为 t 的函数,称此 函数为 $f_1(t)$ 与 $f_2(t)$ 的<u>卷积</u>,记 为 $f_1(t)*f_2(t)$,即

$$f_1(t) * f_2(t) = \int_{-\infty}^{+\infty} f_1(\tau) f_2(t-\tau) d\tau.$$

二、卷积与卷积定理

2. 卷积定理

定理 设 $\mathcal{F}[f_1(t)] = F_1(\omega)$, $\mathcal{F}[f_2(t)] = F_2(\omega)$, 则有

P178 定理 8.4

$$\mathcal{F}[f_1(t) * f_2(t)] = F_1(\omega) \cdot F_2(\omega); \tag{A}$$

$$\mathcal{F}^{-1}[F_1(\omega) * F_2(\omega)] = 2\pi f_1(t) \cdot f_2(t). \tag{B}$$

证明
$$\mathcal{F}[f_1(t) * f_2(t)] = \int_{-\infty}^{+\infty} f_1(t) * f_2(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f_1(\tau) f_2(t-\tau) d\tau \right] e^{-j\omega t} dt$$

$$= \int_{-\infty}^{+\infty} f_1(\tau) e^{-j\omega \tau} \left[\int_{-\infty}^{+\infty} f_2(t-\tau) e^{-j\omega(t-\tau)} dt \right] d\tau = F_1(\omega) \cdot F_2(\omega);$$

同理可证(B)式。

例 设函数
$$f(t) = \frac{\sin at}{\pi t}$$
, $g(t) = \frac{\sin bt}{\pi t}$, 其中, $a > 0$, $b > 0$,

求函数 f(t) 和 g(t) 的卷积。 P178 例8.15

FW) GLM)

解 函数 f(t) 和 g(t) 均为抽样信号,其频谱分别为

$$F(\omega) = \begin{cases} 1, & |\omega| \le a, \\ 0, & |\omega| > a, \end{cases} G(\omega) = \begin{cases} 1, & |\omega| \le b, \\ 0, & |\omega| > b. \end{cases}$$

$$\diamondsuit c = \min(a,b), \quad \emptyset \quad F(\omega) \cdot G(\omega) = \begin{cases} 1, & |\omega| \le c, \\ 0, & |\omega| > c. \end{cases}$$

根据卷积定理有

$$f_1(t) * f_2(t) = \mathcal{F}^{-1}[F_1(\omega) \cdot F_2(\omega)] = \frac{\sin ct}{\pi t}.$$

151

例 求 $f(t) = e^{-at}u(t)\cos bt$ (a > 0) 的 Fourier 变换。 P179 例8.16

解 方法一 利用卷积定理求解

$$H(\omega) = \mathcal{F}[h(t)] = \pi[\delta(\omega+b) + \delta(\omega-b)],$$

$$\mathcal{F}[f(t)] = \mathcal{F}[g(t) \cdot h(t)] = \frac{1}{2\pi} G(\omega) * H(\omega)$$

$$=\frac{\pi}{2\pi}[G(\omega)*\delta(\omega+b)+G(\omega)*\delta(\omega-b)]$$

$$=\frac{1}{2}\left[\frac{1}{a+j(\omega+b)}+\frac{1}{a+j(\omega-b)}\right]=\frac{a+j\omega}{(a+j\omega)^2+\frac{1}{2}}.$$

例 求 $f(t) = e^{-at}u(t)\cos bt$ (a > 0) 的 Fourier 变换。

解 方法二 利用频移性质求解

根据频移性质有

$$\mathcal{F}[f(t)] = \frac{1}{2}[G(\omega+b) + G(\omega-b)]$$

$$= \frac{1}{2} \left[\frac{1}{a+j(\omega+b)} + \frac{1}{a+j(\omega-b)} \right] = \frac{a+j\omega}{(a+j\omega)^2 + b^2}.$$

第九章 Laplace 变换

- § 9.1 Laplace 变换的概念
- § 9.2 Laplace 变换的性质
- § 9.3 Laplace 逆变换
- § 9.4 Laplace 变换的应用

一、Laplace 变换的引入

2. 如何对 Fourier 变换要进行改造?

实施结果

$$\mathcal{F}[f(t)u(t)e^{-\beta t}] = \int_{-\infty}^{+\infty} f(t)u(t)e^{-\beta t}e^{-j\omega t}dt$$
$$= \int_{0}^{+\infty} f(t)e^{-(\beta+j\omega)t}dt$$

将上式中的 $\beta + j\omega$ 记为s,就得到了一种新的变换:

$$\int_0^{+\infty} f(t) e^{-st} dt = \frac{i 2 \pi}{2} F(s).$$

注意 上述广义积分存在的关键:

变量 s 的实部 $Re s = \beta$ 足够大。

二、Laplace 变换的定义

定义 设函数 f(t) 是定义在 $(0, +\infty)$ 上的实值函数,如果对于

P186 定义 9.1 复参数 $s = \beta + j\omega$,积分 $F(s) = \int_0^{+\infty} f(t) e^{-st} dt$ 在复平面

s 的某一区域内收敛,则称 F(s)为 f(t) 的 Laplace 变换或像函数,记为 $F(s)=\mathcal{L}[f(t)]$,即

$$F(s) = \mathcal{L}[f(t)] = \int_0^{+\infty} f(t) e^{-st} dt.$$

相应地,称 f(t)为 F(s)的 Laplace 逆变换或像原函数,记为 $f(t) = \mathcal{L}^{-1}[F(s)]$.

注 f(t) 的 Laplace 变换就是 $f(t)u(t)e^{-\beta t}$ 的 Fourier 变换。 156

Laplace简介

三、存在性定理

定理 设函数 f(t) 当 $t \ge 0$ 时,满足:

P188 定理 9.1

- (1) 在任何有限区间上分段连续;
- (2) 具有有限的增长性, 即存在常数 c 及 M > 0,使得 $|f(t)| \le M e^{ct}$,

(其中, c 称为函数 f(t) 的 "增长"指数)。

则象函数F(s)在半平面Res>c上一定存在且解析。

证明 (略)

四、几个常用函数的 Laplace 变换

(1)
$$\mathcal{L}[1] = \mathcal{L}[u(t)] = \frac{1}{s};$$

$$(4) \mathcal{L}[e^{at}] = \frac{1}{s-a};$$

(2)
$$\mathcal{L}[\delta(t)] = 1$$
;

(5)
$$\mathcal{L}[\cos at] = \frac{s}{s^2 + a^2}$$
;

(3)
$$\mathcal{L}[t^m] = \frac{m!}{s^{m+1}} = \frac{\Gamma(m+1)}{s^{m+1}};$$
 (6) $\mathcal{L}[\sin at] = \frac{a}{s^2 + a^2}.$

(6)
$$\mathcal{L}[\sin at] = \frac{a}{s^2 + a^2}$$
.

特点变换的结果均为分式函数。

• 部分基本性质汇总

线性性质
$$\mathcal{L}[a f(t) + b g(t)] = a F(s) + b G(s);$$

$$\mathcal{L}^{-1}[a F(s) + b G(s)] = a f(t) + b g(t).$$

相似性质
$$\mathcal{L}[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right)$$
.

延迟性质
$$\mathcal{L}[f(t-\tau)] = e^{-s\tau}F(s)$$
.
$$\mathcal{L}^{-1}[e^{-s\tau}F(s)] = f(t-\tau)u(t-\tau).$$

• 部分基本性质汇总

位移性质
$$\mathcal{L}[e^{at}f(t)] = F(s-a)$$
.

微分性质 $\mathcal{L}[f'(t)] = sF(s) - f(0)$.

$$\mathcal{L}[f^{(n)}(t)] = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0).$$

$$F'(s) = -\mathcal{L}[tf(t)];$$

$$F^{(n)}(s) = (-1)^n \mathcal{L}[t^n f(t)].$$

积分性质
$$\mathcal{L}\left[\int_0^t f(t) dt\right] = \frac{1}{s} F(s).$$

$$\int_{s}^{\infty} F(s) ds = \mathcal{L}\left[\frac{f(t)}{t}\right].$$

160

例 求函数 $f(t) = t \sin \omega t$ 的 Laplace 变换。 P192 例 9.8

解 已知
$$\mathcal{L}[\sin \omega t] = \frac{\omega}{s^2 + \omega^2}$$
,

根据象函数的导数性质有

$$\mathcal{L}[t\sin\omega t] = -\frac{\mathrm{d}}{\mathrm{d}s} \left[\frac{\omega}{s^2 + \omega^2} \right]$$
$$= \frac{2\omega s}{\left(s^2 + \omega^2\right)^2}.$$

例 求函数 $f(t) = t^2 \cos^2 t$ 的 Laplace 变换。 P192 例 9.9

$$\cancel{\mathbf{f}} \quad t^2 \cos^2 t = \frac{1}{2} t^2 (1 + \cos 2t),$$

已知
$$\mathcal{L}[1] = \frac{1}{s}, \ \mathcal{L}[\cos 2t] = \frac{s}{s^2 + 2^2},$$

根据线性性质以及象函数的导数性质有

$$\mathcal{L}[t^2 \cos^2 t] = \frac{1}{2} \cdot \frac{d^2}{ds^2} \left[\frac{1}{s} + \frac{s}{s^2 + 2^2} \right]$$
$$= \frac{2(s^6 + 24s^2 + 32)}{s^3 (s^2 + 4)^3}.$$

例 求函数 $f(t) = t e^{-3t} \sin 2t$ 的 Laplace 变换。

解 已知
$$\mathcal{L}\left[\sin 2t\right] = \frac{2}{s^2 + 2^2}$$

根据位移性质有

$$\mathcal{L}[e^{-3t}\sin 2t] = \frac{2}{(s+3)^2+4},$$

再由象函数的导数性质有

$$\mathcal{L}[te^{-3t}\sin 2t] = -\frac{d}{ds} \left(\frac{2}{(s+3)^2 + 4} \right)$$
$$= \frac{4(s+3)}{[(s+3)^2 + 4]^2}.$$

例 求函数 $f(t) = \int_0^t t \sin 2t \, dt$ 的 Laplace 变换。

解 已知
$$\mathcal{L}[\sin 2t] = \frac{2}{s^2+2^2}$$
,

根据微分性质有

$$\mathcal{L}[t\sin 2t] = -\frac{d}{ds}\left(\frac{2}{s^2+2^2}\right) = \frac{4s}{(s^2+4)^2},$$

再由积分性质得

$$\mathcal{L}\left[\int_0^t t \sin 2t \, dt\right] = \frac{1}{s} \cdot \frac{4s}{(s^2 + 4)^2} = \frac{4}{(s^2 + 4)^2}.$$

五、周期函数的像函数 P195

性质 设 f(t) 是 $[0, +\infty)$ 内以 T 为周期的函数,且逐段光滑,

則
$$\mathcal{L}[f(t)] = \frac{1}{1-e^{-sT}} \int_0^T f(t)e^{-st}dt$$
.

证明
$$\mathcal{L}[f(t)] = \int_0^T f(t) e^{-st} dt + \int_T^{+\infty} f(t) e^{-st} dt \stackrel{记为}{==} I_1 + I_2,$$

其中,
$$I_2 \stackrel{\diamondsuit x = t - T}{===} \int_0^{+\infty} f(x+T) e^{-s(x+T)} dx$$

$$= e^{-sT} \int_0^{+\infty} f(x) e^{-sx} dx = e^{-sT} \mathcal{L}[f(t)],$$

即得
$$\mathcal{L}[f(t)] = \frac{1}{1 - e^{-sT}} \int_0^T f(t) e^{-st} dt$$
.

六、卷积与卷积定理 P196

1. 卷积

● 按照上一章中卷积的定义,两个函数的卷积是指

$$f_1(t) * f_2(t) = \int_{-\infty}^{+\infty} f_1(\tau) f_2(t-\tau) d\tau.$$

• 如果函数满足: 当 t < 0 时, $f_1(t) = f_2(t) = 0$, 则有

$$f_1(t) * f_2(t) = \int_0^t f_1(\tau) f_2(t-\tau) d\tau, \quad (t \ge 0).$$

●显然,由上式给出的卷积的仍然满足交换律、结合律 以及分配律等性质。

六、卷积与卷积定理

2. 卷积定理

定理
$$\mathcal{L}[f_1(t)*f_2(t)] = F_1(s)\cdot F_2(s)$$
.

证明 左边 =
$$\mathcal{L}[f_1(t) * f_2(t)] = \int_0^{+\infty} [f_1(t) * f_2(t)] e^{-st} dt$$

$$= \int_0^{+\infty} \left[\int_0^t f_1(\tau) f_2(t-\tau) d\tau \right] e^{-st} dt$$

$$= \iint_D f_1(\tau) f_2(t-\tau) e^{-st} d\tau dt$$

$$= \int_0^{+\infty} f_1(\tau) \left[\int_{\tau}^{+\infty} f_2(t-\tau) e^{-st} dt \right] d\tau$$

六、卷积与卷积定理

2. 卷积定理

定理
$$\mathcal{L}[f_1(t)*f_2(t)] = F_1(s)\cdot F_2(s)$$
.

证明 左边 =
$$\int_0^{+\infty} f_1(\tau) \left[\int_{\tau}^{+\infty} f_2(t-\tau) e^{-st} dt \right] d\tau \stackrel{记为}{===} \int_0^{+\infty} f_1(\tau) I d\tau$$

其中
$$I = \int_{\tau}^{+\infty} f_2(t-\tau) e^{-st} dt$$

$$\stackrel{\Leftrightarrow}{=} x = t - \tau \qquad e^{-s\tau} \int_0^{+\infty} f_2(x) e^{-sx} dx = e^{-s\tau} F_2(s),$$

左边 =
$$\int_0^{+\infty} f_1(\tau) e^{-s\tau} d\tau \cdot F_2(s) = F_1(s) \cdot F_2(s) = 右边$$
。

例 已知
$$F(s) = \frac{s^2}{(s^2+1)^2}$$
, 求 $f(t) = \mathcal{L}^{-1}[F(s)]$.
P198例9.16

解 由于
$$F(s) = \frac{s}{s^2+1} \cdot \frac{s}{s^2+1}$$
, $\mathcal{L}\left[\frac{s}{s^2+1}\right] = \cos t$,故有

$$f(t) = \mathcal{L}^{-1}[F(s)] = \cos t * \cos t$$

$$= \int_0^t \cos \tau \cos(t - \tau) d\tau$$

$$= \frac{1}{2} \int_0^t [\cos t + \cos(2\tau - t)] d\tau$$

$$= \frac{1}{2} (t \cos t + \sin t).$$

一、反演积分公式——Laplace 逆变换公式

2. 反演积分公式

● 根据上面的推导,得到如下的 Laplace 变换对:

$$\begin{cases}
F(s) = \int_0^{+\infty} f(t) e^{-st} dt; \\
\downarrow \\
f(t) = \frac{1}{2\pi j} \int_{\beta - j\infty}^{\beta + j\infty} F(s) e^{st} ds, & (t > 0).
\end{cases}$$
(A)
$$\frac{B}{P199 (9.16) \sharp}$$

定义 称(B)式为反演积分公式。

注 反演积分公式中的积分路径是s平面上的一条直线 $Res = \beta$,该直线处于 F(s)的存在域中。

1. 留数法

●利用留数计算反演积分。

定理 设函数F(s)除在半平面 $Res \le c$ 内有有限个孤立奇点

P199 定理 9.2

 $s_1, s_2, \dots s_n$ 外是解析的,且当 $s \to \infty$ 时, $F(s) \to 0$,则

$$f(t) = \frac{1}{2\pi j} \int_{\beta - j\infty}^{\beta + j\infty} F(s) e^{st} ds$$

$$= \sum_{k=1}^{n} \text{Res} [F(s) e^{st}, s_k], (t > 0).$$

证明 (略) (进入证明?)

2. 查表法 常用

- •利用Laplace变换的性质,并根据一些已知函数的Laplace变换来求逆变换。
- •大多数情况下,象函数 F(s) 常常为(真)分式形式:

$$F(s) = \frac{P(s)}{Q(s)}$$
,其中, $P(s)$ 和 $Q(s)$ 是实系数多项式。

由于真分式总能进行部分分式分解,因此,利用<u>查表法</u>很容易得到象原函数。 (真分式的部分分式分解)

●此外,还可以利用卷积定理来求象原函数。

2. 查表法

● 几个常用的 Laplace 逆变换的性质

$$\mathcal{L}^{-1}[aF(s)+bG(s)]=af(t)+bg(t).$$

$$\mathcal{L}^{-1}[e^{-s\tau}F(s)] = f(t-\tau)u(t-\tau).$$

$$\mathcal{L}^{-1}[F(s-a)] = e^{at} f(t).$$

$$\mathcal{L}^{-1}[F_1(s)\cdot F_2(s)] = f_1(t) * f_2(t).$$

$$\mathcal{L}^{-1}[F'(s)] = -t f(t).$$
 $\mathcal{L}^{-1}[\frac{1}{s}F(s)] = \int_0^t f(t) dt.$

2. 查表法

● 几个常用函数的 Laplace 逆变换

$$\mathcal{L}^{-1}\left[\frac{1}{s}\right] = 1.$$

$$\mathcal{L}^{-1}\left[\frac{m!}{s^{m+1}}\right] = t^{m}.$$

$$\mathcal{L}^{-1}\left[\frac{s}{s^{2} + b^{2}}\right] = \cos bt.$$

$$\mathcal{L}^{-1}\left[\frac{b}{s^{2} + b^{2}}\right] = \sin bt.$$

$$\mathcal{L}^{-1}\left[1\right] = \delta(t).$$

$$\mathcal{L}^{-1}\left[\frac{1}{s-a}\right] = e^{at}.$$

$$\mathcal{L}^{-1}\left[\frac{m!}{(s-a)^{m+1}}\right] = e^{at}t^{m}.$$

$$\mathcal{L}^{-1}\left[\frac{s-a}{(s-a)^{2}+b^{2}}\right] = e^{at}\cos bt.$$

$$\mathcal{L}^{-1}\left[\frac{b}{(s-a)^{2}+b^{2}}\right] = e^{at}\sin bt.$$

例 已知 $F(s) = \frac{1}{(s-2)(s-1)^2}$, 求 $f(t) = \mathcal{L}^{-1}[F(s)]$.

解 方法一 利用查表法求解

(1)
$$F(s) = \frac{1}{(s-2)(s-1)^2}$$
$$= \frac{1}{s-2} + \frac{-1}{s-1} + \frac{-1}{(s-1)^2}. \quad (\text{ $\pm k$})$$

(2)
$$\[\pm \mathcal{L}^{-1} [\frac{1}{s-a}] = e^{at}, \ \mathcal{L}^{-1} [\frac{1}{(s-a)^2}] = t e^{at}, \ \[\neq at, \ \ \]$$

$$f(t) = \mathcal{L}^{-1}[F(s)] = e^{2t} - e^t - te^t$$
.

例 已知
$$F(s) = \frac{1}{(s-2)(s-1)^2}$$
, 求 $f(t) = \mathcal{L}^{-1}[F(s)]$.

解 方法二 利用留数法求解

(1)
$$s_1 = 2$$
, $s_2 = 1$ 分别为 $F(s)$ 的一阶与二阶极点,

Res[
$$F(s)e^{st}$$
, 2] = $\frac{1}{(s-1)^2}e^{st}\Big|_{s=2} = e^{2t}$,

Res
$$[F(s)e^{st}, 1] = (\frac{e^{st}}{s-2})'\Big|_{s=1} = -e^{t} - te^{t}.$$

(2)
$$f(t) = \text{Res}[F(s)e^{st}, 2] + \text{Res}[F(s)e^{st}, 1]$$

= $e^{2t} - e^t - te^t$.

一、求解常微分方程(组)

工具
$$\mathcal{L}[f^{(n)}(t)] = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0).$$

- 步骤 (1) 将微分方程(组) 化为象函数的代数方程(组);
 - (2) 求解代数方程得到象函数;
 - (3) 求 Laplace 逆变换得到微分方程(组)的解。

例 利用 Laplace 变换求解微分方程

$$x''' + 3x'' + 3x' + x = 6e^{-t}, x(0) = x'(0) = x''(0) = 0.$$

解 (1) $\diamondsuit X(s) = \mathcal{L}[x(t)],$

对方程两边取 Laplace 变换,并代入初值得

$$s^3X(s) + 3s^2X(s) + 3sX(s) + X(s) = \frac{6}{s+1}$$

求解此方程得
$$X(s) = \frac{3!}{(s+1)^4}$$
.

(2) 求 Laplace 逆变换,得

$$x(t) = \mathcal{L}^{-1}[X(s)] = t^3 e^{-t}.$$

例 利用 Laplace 变换求解微分方程组

P201 例9.19

$$\begin{cases} x'(t) + x(t) - y(t) = e^t, & x(0) = 1, \\ y'(t) + 3x(t) - 2y(t) = 2e^t, & y(0) = 1. \end{cases}$$

解 (1) 令 $X(s) = \mathcal{L}[x(t)], Y(s) = \mathcal{L}[y(t)],$

对方程组两边取 Laplace 变换,并代入初值得

整理得
$$\begin{cases} (s+1)X(s) - Y(s) = \frac{s}{s-1}, \\ 3X(s) + (s-2)Y(s) = \frac{s+1}{s-1}. \end{cases}$$

求解得
$$X(s) = \frac{1}{s-1}$$
, $Y(s) = \frac{1}{s-1}$.

例 利用 Laplace 变换求解微分方程组

$$\begin{cases} x'(t) + x(t) - y(t) = e^t, & x(0) = 1, \\ y'(t) + 3x(t) - 2y(t) = 2e^t, & y(0) = 1. \end{cases}$$

解 (1) 令
$$X(s) = \mathcal{L}[x(t)], Y(s) = \mathcal{L}[y(t)],$$

求解得
$$X(s) = \frac{1}{s-1}$$
, $Y(s) = \frac{1}{s-1}$.

(2) 求 Laplace 逆变换,得 $x(t) = y(t) = e^t$.