BROUILLON - OPTIMISATION BASIQUE SANS DÉRIVER... QUOIQUE!

CHRISTOPHE BAL

 $Document,\ avec\ son\ source\ L^{A}T_{E}X,\ disponible\ sur\ la\ page \\ https://github.com/bc-writings/bc-public-docs/tree/main/math/optimization/\\ area/hyperbola-rectangle-hidden-symmetry.$

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Un problème d'optimisation de niveau pré-universitaire	2
2.	La classique méthode via la dérivation	2
3.	Sans dériver, c'est possible!	2
4.	Et si on généralisait	4

Date: 28 Avril 2025 - 30 Avril 2025.

XXXXX

1. Un problème d'optimisation de niveau pré-universitaire

Soit la fonction f définie sur [0;7] par $f(x) = \frac{7-x}{x+2}$. Considérons M un point sur $\mathscr{C}_f : y = f(x)$, et le rectangle MNOP comme ci-dessous. Est-il possible de placer M tel que Aire(MNOP) soit maximale?

2. La classique méthode via la dérivation

Traditionnellement, nous étudions les variations de la fonction $A(x) = xf(x) = \frac{7x-x^2}{x+2}$, via sa dérivée $A'(x) = \frac{-x^2-4x+14}{(x+2)^2}$, dont le signe dépend de celui du trinôme $T(x) = -x^2-4x+14$ qui s'annule en $(-2\pm 3\sqrt{2})$. Nous obtenons aisément le tableau de variations suivant.

x	0	$3\sqrt{2}-2$			7
T(x)		+	0	_	
A'(x)		+	0	_	
A(x)			▼ _		*

Finalement, Aire(MNOP) est maximale uniquement lorsque $x_M = 3\sqrt{2} - 2$.

Remarque 1. Comme $A''(x) = -\frac{36}{(2+x)^3}$, la fonction A est concave.

3. Sans dériver, c'est possible!

Nous proposons ici une méthode géométrico-algébrique sans user de la notion de dérivée. Pour ce faire, commençons par symétriser le problème en obtenant une hyperbole symétrique par rapport à la 1^{re} bissectrice $\mathcal{D}: y = x$. Il suffit de considérer la fonction g définie sur [0;3,5] par $g(x) = f(2x) = \frac{7-2x}{2x+2}$. Cette opération algébrique correspond à appliquer une dilatation horizontale de coefficient 0,5.

La calcul suivant démontre que $\mathscr{C}_g: y = g(x)$ est bien symétrique rapport à \mathscr{D} .

$$g(g(x)) = \left(7 - 2 \cdot \frac{7 - 2x}{2x + 2}\right) \div \left(2 \cdot \frac{7 - 2x}{2x + 2} + 2\right)$$

$$= \frac{7(2x + 2) - 2(7 - 2x)}{2(7 - 2x) + 2(2x + 2)}$$

$$= \frac{18x}{18}$$

$$= x$$

Cette propriété de symétrie nous permet de deviner le rôle essentiel de $\gamma=1,5\sqrt{2}-1$, l'unique solution sur $[0\,;3,5]$ de g(x)=x, c'est-à-dire de $\frac{7-2x}{2x+2}=x$, soit $2x^2+4x-7=0$. Notons alors $\mathscr{A}(x)=xg(x)$ pour $x\in[0\,;3,5]$. Nous allons démontrer, sans dériver, la croissance stricte de \mathscr{A} sur $[0\,;\gamma]$, et par conséquent sa décroissance stricte sur $[\gamma\,;3,5]$ par raison de symétrie. Considérons donc a et b deux réels tels que $0\leq a< b\leq \gamma$, puis observons le schéma suivant.

Nous avons $\mathcal{A}(a) < \mathcal{A}(b)$ si, et seulement si, a(g(a) - g(b)) < (b - a)g(b). Nous voilà partis pour un peu de calcul...

• Le point précédent nous amène aux calculs suivants.

$$\frac{2(a+1)(b+1)}{b-a} \left(a \left(g(a) - g(b) \right) - (b-a)g(b) \right)$$

$$= 9a - (7-2b)(a+1)$$

$$= 2a + 2ab + 2b - 7$$

• En nous souvenant de $0 \le a < b \le \gamma$, nous avons $2a + 2ab + 2b - 7 < 2b^2 + 4b - 7$. Or, les racines de $2x^2 + 4x - 7$ sont γ et $\overline{\gamma} = -1,5\sqrt{2} - 1$, donc $b \in]\overline{\gamma}$; $\gamma[$ donne $2b^2 + 4b - 7 < 0$, puis a(g(a) - g(b)) < (b - a)g(b).

Nous arrivons au tableau de variations suivant.

Finalement, pour revenir à A(x) maximale, il suffit d'inverser la dilatation horizontale qui a permis de passer de f(x) à g(x), soit prendre $2\gamma = 3\sqrt{2} - 2$, au lieu de γ . Finalement, Aire(MNOP) est maximale uniquement lorsque $x_M = 3\sqrt{2} - 2$.

4. Et si on généralisait...

Considérons la fonction homographique f définie sur $\left[0\,;\frac{\beta}{\alpha}\right]$ par $f(x)=\frac{-\alpha x+\beta}{x+\delta}$ où l'on suppose $(\alpha\,;\beta\,;\delta)\in(\mathbb{R}_+^*)^3$ en utilisant des paramètres positifs comme en Physique. ¹ Considérons M un point sur $\mathscr{C}_f:y=f(x)$, et le rectangle MNOP comme ci-dessous. Est-il possible de placer M tel que Aire(MNOP) soit maximale?

Pour minimiser le nombre de paramètres utilisés, commençons par appliquer une dilatation horizontale de coefficient $\frac{\alpha}{\beta}$, ce qui donne $g(x)=f(\frac{\beta}{\alpha}x)=\frac{\beta(1-x)}{\delta+\frac{\beta}{\alpha}x}=\alpha\cdot\frac{1-x}{\mu+x}$ en notant $\mu=\frac{\alpha\delta}{\beta}$. Par confort, appliquons ensuite une dilatation verticale de coefficient $\frac{1}{\alpha}>0$, ce qui fournit $h(x)=\frac{1-x}{\mu+x}$. Nous arrivons au problème de maximisation de $\mathscr{A}(x)=xh(x)=\frac{x-x^2}{x+\mu}$ sur $[0\,;1]$.

^{1.} Ces contraintes permettent d'obtenir la situation graphique proposée juste après.

$$\mathscr{A}'(x) = \frac{(1-2x)(x+\mu) - (x-x^2)}{(x+\mu)^2}$$
$$= \frac{-x^2 - 2\mu x + \mu}{(x+\mu)^2}$$

Nous sommes amener à étudier le signe du trinôme $T(x) = -x^2 - 2\mu x + \mu$.

$$\Delta = 4\mu^2 + 4\mu$$
$$= 4\mu(\mu + 1)$$

Comme $\mu > 0$, nous avons deux racines $r_1 = -\mu - \sqrt{\mu(\mu+1)}$ et $r_2 = -\mu + \sqrt{\mu(\mu+1)}$. Or, $0 < \mu < \mu + 1$ donne $0 < r_2 < 1$, puis le tableau de variations suivant.

x	0		r_2		1
T(x)		+	0	_	
$\mathscr{A}'(x)$		+	0	_	
$\mathscr{A}(x)$			*		•

Finalement, Aire(MNOP) est maximale uniquement lorsque $x_M = \frac{\beta}{\alpha}r_2$, c'est-à-dire pour $x_M = \sqrt{\delta(\delta + \frac{\beta}{\alpha})} - \delta$ en revenant aux données initiales, car $\frac{\beta}{\alpha}\mu = \delta$.

Remarque 2. Les calculs suivants montrent la concavité de \mathscr{A} , et donc de l'aire du rectangle initialement étudié.

$$\mathscr{A}''(x) = \frac{-2(x+\mu)\cdot(x+\mu)^2 - (-x^2 - 2\mu x + \mu)\cdot 2(x+\mu)}{(x+\mu)^4}$$
$$= \frac{-2x^2 - 4\mu x - 2\mu^2 + 2x^2 + 4\mu x - 2\mu}{(x+\mu)^3}$$
$$= \frac{-2\mu(\mu+1)}{(x+\mu)^3}$$