Métricas críticas do funcional volume sobre variedades compactas com bordo

Adam Oliveira da Silva

Universidade Federal do Pará - UFPA

22 de Setembro de 2019

Organização da Palestra

Organização da Palestra

- Motivações
- Exemplos
- Alguns resultados de Rigidez
- Estimativas de volume

Consideremos:

• (M^n, g) uma variedade Riemanniana conexa de dimensão $n \ge 3$;

Consideremos:

- (M^n, g) uma variedade Riemanniana conexa de dimensão n > 3;
- \mathcal{M} o espaço das métricas Riemannianas suaves sobre M;

Consideremos:

- (M^n, g) uma variedade Riemanniana conexa de dimensão n > 3;
- \mathcal{M} o espaço das métricas Riemannianas suaves sobre M;
- \mathcal{G} o grupo de difeomorfismos sobre M.

Consideremos:

- (M^n, g) uma variedade Riemanniana conexa de dimensão n > 3;
- \mathcal{M} o espaço das métricas Riemannianas suaves sobre M;
- \mathcal{G} o grupo de difeomorfismos sobre M.

Definição:

Chamamos um funcional $\mathcal{F}:\mathcal{M}\to\mathbb{R}$ de Funcional Riemanniano, se ele é invariante pela ação do grupo \mathcal{G} , isto é, se $\mathcal{F}(\varphi^*g)=\mathcal{F}(g)$ para cada $\varphi\in\mathcal{G}$ e $g\in\mathcal{M}$.

Gradiente de funcionais Riemannianos

Gradiente de funcionais Riemannianos

Definition

Um funcional Riemanniano \mathcal{F} possui um gradiente em g, se existe $a \in \Gamma(S^2(T^*M))$ tal que para todo $h \in \Gamma(S^2(T^*M))$,

$$\left. \frac{\partial}{\partial t} \mathcal{F}(g(t)) \right|_{t=0} = \mathcal{F}'_{g}(h) = \langle a, h \rangle_{L^{2}}.$$

Gradiente de funcionais Riemannianos

Definition

Um funcional Riemanniano \mathcal{F} possui um gradiente em g, se existe $a \in \Gamma(S^2(T^*M))$ tal que para todo $h \in \Gamma(S^2(T^*M))$,

$$\left. \frac{\partial}{\partial t} \mathcal{F}(g(t)) \right|_{t=0} = \mathcal{F}'_{g}(h) = \langle a, h \rangle_{L^{2}}.$$

Neste caso, dizemos que a é o gradiente de $\mathcal F$ e denotaremos por $a=\nabla \mathcal F.$

O tensor curvatura de Riemann é o (1,3)—tensor

 $Rm: \mathfrak{X}(M)^3 \to \mathfrak{X}(M)$ definido por

$$\begin{array}{lcl} Rm(X,Y)Z & = & \nabla_{X,Y}^2 Z - \nabla_{Y,Z}^2 Z \\ & = & \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z, \end{array}$$

para todo $X, Y, Z \in \mathfrak{X}(M)$.

O tensor curvatura de Riemann é o (1,3)—tensor

$$Rm: \mathfrak{X}(M)^3 o \mathfrak{X}(M)$$
 definido por

$$Rm(X,Y)Z = \nabla_{X,Y}^2 Z - \nabla_{Y,Z}^2 Z$$

= $\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$,

para todo $X, Y, Z \in \mathfrak{X}(M)$.

$$Rm(X, Y, Z, W) = -\langle Rm(X, Y)Z, W \rangle.$$

O tensor curvatura de Riemann é o (1,3)—tensor $Rm: \mathfrak{X}(M)^3 \to \mathfrak{X}(M)$ definido por

$$\begin{array}{lcl} Rm(X,Y)Z & = & \nabla_{X,Y}^2 Z - \nabla_{Y,Z}^2 Z \\ & = & \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z, \end{array}$$

para todo $X, Y, Z \in \mathfrak{X}(M)$.

$$Rm(X, Y, Z, W) = -\langle Rm(X, Y)Z, W \rangle.$$

Em coordenadas:

$$Rm(\partial_i, \partial_j)\partial_k = R_{ijk}{}^I \partial_I$$

$$Rm(\partial_i, \partial_j, \partial_k, \partial_I) = R_{ijkI}.$$

Assim,

$$R_{ijkl} = -\langle Rm(\partial_i, \partial_j) \partial_k, \partial_l \rangle = -\langle R_{ijk}{}^m \partial_m, \partial_l \rangle = -R_{ijk}{}^m g_{ml},$$

isto é, o índice superior desce na terceira posição.

Dado um plano bidimensional $\Pi \subset T_pM$ e $X_p, Y_p \in T_pM$ vetores que geram Π , então

$$K(\Pi) = \frac{Rm(X, Y, X, Y)}{g(X, X)g(Y, Y) - g(X, Y)^2},$$
(1)

não depende da base escolhida para Π , e é chamada **curvatura** seccional do plano Π .

Dado um plano bidimensional $\Pi \subset T_pM$ e $X_p, Y_p \in T_pM$ vetores que geram Π , então

$$K(\Pi) = \frac{Rm(X, Y, X, Y)}{g(X, X)g(Y, Y) - g(X, Y)^2},\tag{1}$$

não depende da base escolhida para Π , e é chamada **curvatura** seccional do plano Π .

Uma variedade Riemanniana completa e com curvatura seccional constante é dita uma **forma espacial**.

O **tensor de Ricci** é definido como o (0,2)— tensor

$$\operatorname{Ric}(X,Y)=tr(U o\operatorname{Rm}(U,X)Y).$$

Em coordenadas teremos:

$$R_{ij} = R_{lij}^{\ \ l} = g^{lm} R_{limj}$$

e a curvatura escalar é

$$R=g^{ij}R_{ij}.$$

(Bishop - Gromov, 1964)

Seja (M^n, g) uma variedade Riemanniana completa com $Ric \ge (n-1)kg$, k constante, e $p \in M$ um ponto arbitrário. Então

$$Vol(B_r(p)) \leq Vol(B_r^k).$$

(Bishop - Gromov, 1964)

Seja (M^n,g) uma variedade Riemanniana completa com $Ric \geq (n-1)kg$, k constante, e $p \in M$ um ponto arbitrário. Então

$$Vol(B_r(p)) \leq Vol(B_r^k).$$

Pergunta:

(Bishop - Gromov, 1964)

Seja (M^n,g) uma variedade Riemanniana completa com $Ric \geq (n-1)kg$, k constante, e $p \in M$ um ponto arbitrário. Então

$$Vol(B_r(p)) \leq Vol(B_r^k).$$

Pergunta:

• controle na curvatura escalar⇒ Comparação de volume ?

(Bishop - Gromov, 1964)

Seja (M^n,g) uma variedade Riemanniana completa com $Ric \geq (n-1)kg$, k constante, e $p \in M$ um ponto arbitrário. Então

$$Vol(B_r(p)) \leq Vol(B_r^k).$$

Pergunta:

• controle na curvatura escalar⇒ Comparação de volume ?

Conjectura: (Schoen, 1989)

Seja (M^n, g) uma variedade hiperbólica fechada. Se h é outra métrica sobre M com $R_h \ge R_g$, então $Vol(h) \ge Vol(g)$.

• (M^3, g) uma variedade Riemanniana com bordo $\partial M = \Sigma$.

- (M^3, g) uma variedade Riemanniana com bordo $\partial M = \Sigma$.
- (Σ, γ) isometricamente mergulhada em \mathbb{R}^3 como uma hipersuperfície estritamente convexa Σ_0 .

- (M^3, g) uma variedade Riemanniana com bordo $\partial M = \Sigma$.
- (Σ, γ) isometricamente mergulhada em \mathbb{R}^3 como uma hipersuperfície estritamente convexa Σ_0 .
- g ponto crítico do funcional volume V(.) sobre $\mathcal{M}_{\gamma}^0 = \{g, R_g = 0 \text{ e } g|_{\Sigma} = \gamma\}.$

- (M^3, g) uma variedade Riemanniana com bordo $\partial M = \Sigma$.
- (Σ, γ) isometricamente mergulhada em \mathbb{R}^3 como uma hipersuperfície estritamente convexa Σ_0 .
- g ponto crítico do funcional volume V(.) sobre $\mathcal{M}_{\gamma}^{0} = \{g, R_{g} = 0 \text{ e } g|_{\Sigma} = \gamma\}.$

Então

$$V_g \geq V_0$$

com igualdade \Leftrightarrow (M,g) é isométrica à bola Euclidiana padrão.

Hilbert (1915):

Hilbert (1915):

Funcional curvatura escalar total ou Funcional de Einstein-Hilbert

$$g \to \int_M R_g dV_g$$

onde R_g e dV_g denotam, respectivamente, a curvatura escalar e a forma de volume de M^n .

Hilbert (1915):

Funcional curvatura escalar total ou Funcional de Einstein-Hilbert

$$g \to \int_M R_g dV_g$$

onde R_g e dV_g denotam, respectivamente, a curvatura escalar e a forma de volume de M^n .

Relatividade Geral: As equações de Einstein surgem como as equações de Euler-Lagrange desse funcional.

$$\mathcal{M}_1 = \{g \in \mathcal{M} | \mathit{Vol}(g) = 1\}$$

$$\mathcal{M}_1 = \{g \in \mathcal{M} | \mathit{Vol}(g) = 1\}$$

(Hilbert, 1915)

Uma métrica $g \in \mathcal{M}_1$ é ponto crítico para o funcional de Einstein-Hilbert se, e somente se, g é uma métrica de Einstein, isto é, $Ric_g = \frac{R_g}{n}g$.

$$\mathcal{M}_1 = \{g \in \mathcal{M} | \mathit{Vol}(g) = 1\}$$

(Hilbert, 1915)

Uma métrica $g \in \mathcal{M}_1$ é ponto crítico para o funcional de Einstein-Hilbert se, e somente se, g é uma métrica de Einstein, isto é, $Ric_g = \frac{R_g}{n}g$.

Problema de Yamabe:

$$\mathcal{M}_1 = \{g \in \mathcal{M} | \mathit{Vol}(g) = 1\}$$

(Hilbert, 1915)

Uma métrica $g \in \mathcal{M}_1$ é ponto crítico para o funcional de Einstein-Hilbert se, e somente se, g é uma métrica de Einstein, isto é, $Ric_g = \frac{R_g}{n}g$.

Problema de Yamabe:

(Schoen, 1984)

Dada uma variedade Riemanniana (M, g), o funcional

$$g o Vol(g)^{-(n-2)/n} \int_M R_g dV_g$$

atinge um mínimo na classe conforme de g.

Consideremos:

• (M^n, g) uma variedade Riemanniana conexa, compacta e com bordo conexo suave Σ , $n \ge 3$.

- (M^n, g) uma variedade Riemanniana conexa, compacta e com bordo conexo suave Σ , $n \ge 3$.
- γ uma métrica suave sobre Σ .

- (M^n, g) uma variedade Riemanniana conexa, compacta e com bordo conexo suave Σ , n > 3.
- γ uma métrica suave sobre Σ .
- $\mathcal{M}_{\gamma}^{R} = \{ g \in \mathcal{M}; R_{g} = R \text{ e } g |_{T\Sigma} = \gamma \}.$

- (M^n, g) uma variedade Riemanniana conexa, compacta e com bordo conexo suave Σ , $n \ge 3$.
- γ uma métrica suave sobre Σ .
- $\mathcal{M}_{\gamma}^{R} = \{ g \in \mathcal{M}; R_{g} = R \text{ e } g|_{T\Sigma} = \gamma \}.$
- ullet O funcional volume $V:\mathcal{M}_{\gamma}^R
 ightarrow\mathbb{R}$ dado por

$$V(g)=\int_M dV_g.$$

Caracterização variacional

Caracterização variacional

Teorema (Miao e Tam, 2009)

Seja $g \in \mathcal{M}_{\gamma}^R$ tal que o primeiro autovalor de Dirichlet de $(n-1)\Delta_g + R$ é positivo. Então g é ponto crítico do funcional volume $V(\cdot)$ em \mathcal{M}_{γ}^R se, e somente se, existe uma função f em M satisfazendo o seguinte sistema de Equações Diferenciais Parciais

$$\left\{ egin{array}{ll} -(\Delta_g f)g +
abla_g^2 f - f ext{Ric}_g = g, & ext{em } M \ f = 0, & ext{sobre } \Sigma. \end{array}
ight.$$

Caracterização variacional

Teorema (Miao e Tam, 2009)

Seja $g \in \mathcal{M}_{\gamma}^R$ tal que o primeiro autovalor de Dirichlet de $(n-1)\Delta_g + R$ é positivo. Então g é ponto crítico do funcional volume $V(\cdot)$ em \mathcal{M}_{γ}^R se, e somente se, existe uma função f em M satisfazendo o seguinte sistema de Equações Diferenciais Parciais

$$\begin{cases} -(\Delta_g f)g + \nabla_g^2 f - fRic_g = g, & \text{em } M \\ f = 0, & \text{sobre } \Sigma. \end{cases}$$

Observação

Se (M,g) satisfaz $-(\Delta_g f)g + \nabla_g^2 f - fRic_g = g$, então R_g é constante.

Definição

Uma métrica crítica de Miao-Tam, ou simplesmente métrica crítica, é uma tripla (M^n, g, f) , $n \ge 3$, onde (M^n, g) é uma variedade Riemanniana compacta e conexa com bordo suave $\partial M = \Sigma$ e f é uma função suave em M tal que $f^{-1}(0) = \Sigma$ e satisfaz ao seguinte sistema de equações:

$$-(\Delta_g f)g + \nabla_g^2 f - fRic_g = g,$$

onde $\nabla_g^2 f$ denota o Hessiano de f. Tal função f será chamada de função potencial.

Definição

Uma métrica crítica de Miao-Tam, ou simplesmente métrica crítica, é uma tripla (M^n, g, f) , $n \ge 3$, onde (M^n, g) é uma variedade Riemanniana compacta e conexa com bordo suave $\partial M = \Sigma$ e f é uma função suave em M tal que $f^{-1}(0) = \Sigma$ e satisfaz ao seguinte sistema de equações:

$$-(\Delta_g f)g + \nabla_g^2 f - fRic_g = g,$$

onde $\nabla_g^2 f$ denota o Hessiano de f. Tal função f será chamada de função potencial.

(Miao e Tam, 2009)

g é ponto crítico de $V \Leftrightarrow g$ é uma métrica de Miao-Tam.

Bola geodésica em \mathbb{R}^n

- (M^n, g) bola geodésica centrada na origem de raio R_0 em \mathbb{R}^n ;
- $f(x) = \frac{1}{2(n-1)}(R_0^2 |x|^2).$

Bola geodésica em \mathbb{R}^n

- (M^n, g) bola geodésica centrada na origem de raio R_0 em \mathbb{R}^n ;
- $f(x) = \frac{1}{2(n-1)}(R_0^2 |x|^2).$

Bola geodésica em \mathbb{H}^n

- (M^n, g) bola geodésica centrada em $p \in \mathbb{H}^n$ de raio R_0 ;
- $f(x) = \frac{1}{(n-1)} (1 \frac{\cosh r(x)}{\cosh R_0}).$

Bola geodésica em \mathbb{R}^n

- (M^n, g) bola geodésica centrada na origem de raio R_0 em \mathbb{R}^n ;
- $f(x) = \frac{1}{2(n-1)}(R_0^2 |x|^2).$

Bola geodésica em \mathbb{H}^n

- (M^n, g) bola geodésica centrada em $p \in \mathbb{H}^n$ de raio R_0 ;
- $f(x) = \frac{1}{(n-1)} (1 \frac{\cosh r(x)}{\cosh R_0}).$

Bola geodésica em \mathbb{S}^n

- (M^n,g) bola geodésica centrada em $p\in\mathbb{S}^n$ de raio $R_0<\frac{\pi}{2}$;
- $f(x) = \frac{1}{(n-1)} (\frac{\cos r(x)}{\cos R_0} 1).$

(Miao e Tam, 2009)

Se M é um domínio limitado com bordo suave em \mathbb{R}^n , \mathbb{H}^n ou \mathbb{S}^n (se $M^n\subset \mathbb{S}^n$, suponha ainda que $V(M)<\frac{1}{2}V(\mathbb{S}^n)$). Então a correspondente métrica nesse espaço é um ponto crítico do funcional volume $V(\cdot)$ em \mathcal{M}^R_γ se, e somente se, M é uma bola geodésica.

(Miao e Tam, 2009)

Se M é um domínio limitado com bordo suave em \mathbb{R}^n , \mathbb{H}^n ou \mathbb{S}^n (se $M^n\subset \mathbb{S}^n$, suponha ainda que $V(M)<\frac{1}{2}V(\mathbb{S}^n)$). Então a correspondente métrica nesse espaço é um ponto crítico do funcional volume $V(\cdot)$ em \mathcal{M}^R_γ se, e somente se, M é uma bola geodésica.

Questão

As bolas geodésicas das formas espaciais simplesmente conexas \mathbb{R}^n , \mathbb{S}^n e \mathbb{H}^n são as únicas métricas críticas de Miao-Tam?

(Miao e Tam, 2009)

Se M é um domínio limitado com bordo suave em \mathbb{R}^n , \mathbb{H}^n ou \mathbb{S}^n (se $M^n\subset \mathbb{S}^n$, suponha ainda que $V(M)<\frac{1}{2}V(\mathbb{S}^n)$). Então a correspondente métrica nesse espaço é um ponto crítico do funcional volume $V(\cdot)$ em \mathcal{M}^R_γ se, e somente se, M é uma bola geodésica.

Questão

As bolas geodésicas das formas espaciais simplesmente conexas \mathbb{R}^n , \mathbb{S}^n e \mathbb{H}^n são as únicas métricas críticas de Miao-Tam? Não!!!

(Miao e Tam, 2009)

Se M é um domínio limitado com bordo suave em \mathbb{R}^n , \mathbb{H}^n ou \mathbb{S}^n (se $M^n\subset \mathbb{S}^n$, suponha ainda que $V(M)<\frac{1}{2}V(\mathbb{S}^n)$). Então a correspondente métrica nesse espaço é um ponto crítico do funcional volume $V(\cdot)$ em \mathcal{M}^R_γ se, e somente se, M é uma bola geodésica.

Questão

As bolas geodésicas das formas espaciais simplesmente conexas \mathbb{R}^n , \mathbb{S}^n e \mathbb{H}^n são as únicas métricas críticas de Miao-Tam? Não!!!

(Miao e Tam, 2011)

Construiram exemplos de métricas críticas conformemente planas que não são métricas de Einstein.

(Miao e Tam, 2011)

Seja (M^n, g, f) uma métrica crítica de Miao-Tam localmente conformemente plana, simplesmente conexa e com bordo Σ isométrico à esfera canônica \mathbb{S}^{n-1} . Então (M^n, g) é isométrica a uma bola geodésica em \mathbb{R}^n , \mathbb{H}^n ou \mathbb{S}^n .

(Miao e Tam, 2011)

Seja (M^n, g, f) uma métrica crítica de Miao-Tam localmente conformemente plana, simplesmente conexa e com bordo Σ isométrico à esfera canônica \mathbb{S}^{n-1} . Então (M^n, g) é isométrica a uma bola geodésica em \mathbb{R}^n , \mathbb{H}^n ou \mathbb{S}^n .

(Miao e Tam, 2011)

Seja (M^n, g, f) uma métrica crítica de Miao-Tam Einstein e bordo Σ suave. Então (M^n, g) é isométrica a uma bola geodésica em \mathbb{R}^n , \mathbb{H}^n ou \mathbb{S}^n .

• (Barros-Diógenes-Ribeiro Jr, 2015) $\sqrt{n=4}$, simp. conexa, Bach-flat e $\Sigma \approx \mathbb{S}^3$

- (Barros-Diógenes-Ribeiro Jr, 2015) $\sqrt{n=4}$, simp. conexa, Bach-flat e $\Sigma \approx \mathbb{S}^3$
- (Kim-Shin, 2016) $\sqrt{n}=4$, simp. conexa, divW=0 e $\Sigma \approx \mathbb{S}^3$

- (Barros-Diógenes-Ribeiro Jr, 2015) \sqrt{n} =4, simp. conexa, Bach-flat e $\Sigma \approx \mathbb{S}^3$
- (Kim-Shin, 2016) $\sqrt{n}=4$, simp. conexa, divW=0 e $\Sigma \approx \mathbb{S}^3$
- (Baltazar-Ribeiro Jr., 2017)
 ✓ Ricci Paralelo

- (Barros-Diógenes-Ribeiro Jr, 2015) $\sqrt{n}=4$, simp. conexa, Bach-flat e $\Sigma \approx \mathbb{S}^3$
- (Kim-Shin, 2016) $\sqrt{n}=4$, simp. conexa, divW=0 e $\Sigma \approx \mathbb{S}^3$
- (Baltazar-Ribeiro Jr., 2017)
 ✓ Ricci Paralelo

Em qualquer caso temos que M^n é isométrica a uma bola geodésica em \mathbb{R}^n , \mathbb{H}^n ou \mathbb{S}^n .

(Batista-Diógenes-Raniere-Ribeiro Jr., 2016)

Seja (M^3,g,f) uma métrica crítica de Miao-Tam, compacta, orientada, com bordo conexo Σ e curvatura escalar não negativa. Então, Σ é uma esfera bidimensional e

$$|\Sigma| \le \frac{4\pi}{C(R)},\tag{2}$$

onde $C(R)=\frac{R}{6}+\frac{1}{4|\nabla f|^2}$ é constante. Além disso, a igualdade em (2) ocorre se, e somente se, (M^3,g) é isométrica a bola geodésica em alguma forma espacial simplesmente conexa \mathbb{R}^3 ou \mathbb{S}^3 .

(Batista-Diógenes-Raniere-Ribeiro Jr., 2016)

Seja (M^3,g,f) uma métrica crítica de Miao-Tam, compacta, orientada, com bordo conexo Σ e curvatura escalar não negativa. Então, Σ é uma esfera bidimensional e

$$|\Sigma| \le \frac{4\pi}{C(R)},\tag{2}$$

onde $C(R) = \frac{R}{6} + \frac{1}{4|\nabla f|^2}$ é constante. Além disso, a igualdade em (2) ocorre se, e somente se, (M^3, g) é isométrica a bola geodésica em alguma forma espacial simplesmente conexa \mathbb{R}^3 ou \mathbb{S}^3 .

Observação

Ainda em 2016, E. Barbosa et al. mostraram que este resultado também é válido no caso de curvatura escalar negativa, supondo a curvatura média do bordo H > 2.

Estimativas e resultados de Rigidez

Teorema (Barros, —, 2017)

Seja $(M^n,g,f), n \geq 4$, uma métrica crítica de Miao-Tam, compacta, orientada, com bordo conexo Σ e curvatura escalar $R=n(n-1)\varepsilon$, onde $\varepsilon=-1,0,1$. Suponha que Σ seja uma variedade de Einstein com curvatura escalar R^Σ positiva. Se $\varepsilon=-1$, assumimos ainda que a curvatura média de Σ satisfaz H>n-1. Então temos

$$|\Sigma|^{\frac{2}{n-1}} \le \frac{Y(\mathbb{S}^{n-1}, [g_{can}])}{C(R)},\tag{3}$$

onde $C(R) = \frac{n-2}{n}R + \frac{n-2}{n-1}H^2$ é uma constante positiva. Além disso, a igualdade ocorre em (3) se, e somente se, (M^n, g) é isométrica a uma bola geodésica em alguma das formas espaciais simplesmente conexas \mathbb{S}^n , \mathbb{R}^n ou \mathbb{H}^n .

• (M^n, g) variedade Riemanniana fechada de dimensão $n \ge 3$;

- (M^n, g) variedade Riemanniana fechada de dimensão $n \ge 3$;
- [g] a classe conforme de uma métrica $g \in \mathcal{M}$;

- (M^n, g) variedade Riemanniana fechada de dimensão $n \ge 3$;
- [g] a classe conforme de uma métrica $g \in \mathcal{M}$;
- Constante de Yamabe:

$$Y(M,[g]) = \inf_{\tilde{g} \in [g]} \frac{\int_M R_{\tilde{g}} dV_{\tilde{g}}}{(\int_M dV_{\tilde{g}})^{\frac{n-2}{n}}}.$$

- (M^n, g) variedade Riemanniana fechada de dimensão $n \ge 3$;
- [g] a classe conforme de uma métrica $g \in \mathcal{M}$;
- Constante de Yamabe:

$$Y(M,[g]) = \inf_{\tilde{g} \in [g]} \frac{\int_M R_{\tilde{g}} dV_{\tilde{g}}}{(\int_M dV_{\tilde{g}})^{\frac{n-2}{n}}}.$$

• $Y(\mathbb{S}^n, [g_{can}]) = n(n-1)\omega_n^{2/n}$, onde ω_n denota o volume da esfera canônica unitária \mathbb{S}^n .

$$\begin{cases} -(\Delta_g f)g + \nabla_g^2 f - fRic_g = g & \text{em} \quad M \\ f = 0 & \text{sobre} \quad \Sigma. \end{cases}$$

$$egin{cases} -(\Delta_g f)g +
abla_g^2 f - f Ric_g = g & ext{em} & M \ f = 0 & ext{sobre} & \Sigma. \end{cases}$$

• Curvatura escalar constante $R_g = n(n-1)\varepsilon$, onde $\varepsilon = -1, 0, 1$;

$$egin{cases} -(\Delta_g f)g +
abla_g^2 f - f Ric_g = g & ext{em} & M \ f = 0 & ext{sobre} & \Sigma. \end{cases}$$

- Curvatura escalar constante $R_g = n(n-1)\varepsilon$, onde $\varepsilon = -1, 0, 1$;
- $|\nabla f|$ é constante positiva sobre Σ ;

Fatos sobre métricas críticas de Miao-Tam

$$\begin{cases} -(\Delta_g f)g + \nabla_g^2 f - fRic_g = g & \text{em} \quad M \\ f = 0 & \text{sobre} \quad \Sigma. \end{cases}$$

- Curvatura escalar constante $R_g = n(n-1)\varepsilon$, onde $\varepsilon = -1, 0, 1$;
- $|\nabla f|$ é constante positiva sobre Σ ;
- Σ é uma hipersuperfície totalmente umbílica com curvatura média $H=rac{1}{|\nabla f|};$

Fatos sobre métricas críticas de Miao-Tam

$$\begin{cases} -(\Delta_g f)g + \nabla_g^2 f - fRic_g = g & \text{em} \quad M \\ f = 0 & \text{sobre} \quad \Sigma. \end{cases}$$

- Curvatura escalar constante $R_g = n(n-1)\varepsilon$, onde $\varepsilon = -1, 0, 1$;
- $|\nabla f|$ é constante positiva sobre Σ ;
- Σ é uma hipersuperfície totalmente umbílica com curvatura média $H=\frac{1}{|\nabla f|}$;
- $2Ric(\nu,\nu) + R^{\Sigma} = R + \frac{n-2}{n-1}H^2$, onde $\nu = -\frac{\nabla f}{|\nabla f|}$ é o campo normal unitário exterior ao bordo Σ .

$$f \mathring{Ric} = \nabla^2 f$$

$$f|\mathring{Ric}|^2 = \langle \mathring{Ric}, \nabla^2 f \rangle = div(\mathring{Ric}(\nabla f)).$$

Lemma

Seja (M^n, g, f) uma métrica crítica de Miao-Tam compacta, orientada, conexa e com bordo suave conexo Σ . Então,

$$\int_{M} f |\mathring{Ric}|^{2} dV_{g} = -H \int_{\Sigma} \mathring{Ric}(\nabla f, \nabla f) ds.$$

Proposição

Seja (M^n,g,f) , $n\geq 3$, uma métrica crítica de Miao-Tam compacta, orientada, conexa, com bordo suave conexo Σ e curvatura escalar $R=n(n-1)\varepsilon$, onde $\varepsilon=-1,0,1$. Então, a seguinte identidade ocorre

$$\int_{\Sigma} R^{\Sigma} ds = 2H \int_{M} f |\mathring{Ric}|^{2} dV_{g} + C(R)|\Sigma|,$$

onde C(R) é uma constante dada por

$$C(R) = \frac{n-2}{n-1}(H^2 + (n-1)^2\varepsilon).$$

(Ilias, 1983)

Seja $(M^n,g),\ n\geq 3$, uma variedade Riemanniana compacta sem bordo. Suponha que $\mathcal{R}(M,g)\geq \mathcal{R}(\mathbb{S}^n,\frac{1}{\delta}g_{can})=(n-1)\delta>0$, então

$$\left(\int_{M}|f|^{\frac{2n}{n-2}}dV_{g}\right)^{\frac{n-2}{n}} \leq \left[K(n,2)\right]^{2}\left(\frac{\omega_{n}(\delta)}{|M|}\right)^{\frac{2}{n}}\int_{M}|\nabla f|^{2}dV_{g}$$

$$+ |M|^{-\frac{2}{n}}\int_{M}|f|^{2}dV_{g},$$

para toda $f \in H^{1,2}(M)$, onde $\omega_n(\delta) = \delta^{-\frac{n}{2}}\omega_n$.

$$\mathcal{R}(M,g) = \inf\{Ric(V,V) \mid V \in TM, |V|_g = 1\};$$

$$K(n,2) = \sqrt{\frac{4}{n(n-2)\omega_n^{2/n}}}$$

é a melhor constante para desigualdades do tipo Sobolev:

$$\Big(\int_{\Sigma}|\varphi|^{p}ds\Big)^{\frac{1}{p}}\leq A\Big(\int_{\Sigma}|\nabla\varphi|^{q}ds\Big)^{\frac{1}{q}}+B\Big(\int_{\Sigma}|\varphi|^{q}ds\Big)^{\frac{1}{q}},\quad (4)$$

onde
$$\frac{1}{p} = \frac{1}{q} - \frac{1}{n-1}$$
, $1 \leq q < n-1$ e $q \in \mathbb{R}$.

Aplicando à variedade Σ^{n-1} o teorema citado devido à Ilias para $\delta=\frac{R^\Sigma}{(n-1)(n-2)}>0$, obtemos

$$\begin{split} \Big(\int_{\Sigma}|\varphi|^{\frac{2(n-1)}{n-3}}ds\Big)^{\frac{n-3}{n-1}} & \leq & [K(n-1,2)]^2\Big(\frac{\omega_{n-1}(\delta)}{|\Sigma|}\Big)^{\frac{2}{n-1}}\int_{\Sigma}|\nabla\varphi|^2ds \\ & + & |\Sigma|^{-\frac{2}{n-1}}\int_{\Sigma}|\varphi|^2ds, \end{split}$$

para toda $\varphi \in H^{1,2}(\Sigma)$, onde $\omega_{n-1}(\delta) = \delta^{-\frac{n-1}{2}}\omega_{n-1}$, $\omega_{n-1} = |\mathbb{S}^{n-1}|$ e K(n-1,2) é a melhor constante para desigualdades do tipo Sobolev.

$$\begin{split} \Big(\int_{\Sigma}|\varphi|^{\frac{2(n-1)}{n-3}}ds\Big)^{\frac{n-3}{2(n-1)}} & \leq & [\mathcal{K}(n-1,2)]\Big(\frac{\omega_{n-1}(\delta)}{|\Sigma|}\Big)^{\frac{1}{n-1}}\Big(\int_{\Sigma}|\nabla\varphi|^2ds\Big)^{\frac{1}{2}} \\ & + & |\Sigma|^{-\frac{1}{n-1}}\Big(\int_{\Sigma}|\varphi|^2ds\Big)^{\frac{1}{2}}. \end{split}$$

$$\left(\int_{\Sigma} |\varphi|^{\frac{2(n-1)}{n-3}} ds\right)^{\frac{n-3}{2(n-1)}} \leq \left[K(n-1,2)\right] \left(\frac{\omega_{n-1}(\delta)}{|\Sigma|}\right)^{\frac{1}{n-1}} \left(\int_{\Sigma} |\nabla \varphi|^{2} ds\right)^{\frac{1}{2}} + |\Sigma|^{-\frac{1}{n-1}} \left(\int_{\Sigma} |\varphi|^{2} ds\right)^{\frac{1}{2}}.$$

Com isto, temos

$$(\omega_{n-1})^{\frac{2}{n-1}} \geq \delta |\Sigma|^{\frac{2}{n-1}}.$$

$$\left(\int_{\Sigma} |\varphi|^{\frac{2(n-1)}{n-3}} ds\right)^{\frac{n-3}{2(n-1)}} \leq \left[K(n-1,2)\right] \left(\frac{\omega_{n-1}(\delta)}{|\Sigma|}\right)^{\frac{1}{n-1}} \left(\int_{\Sigma} |\nabla \varphi|^{2} ds\right)^{\frac{1}{2}} + |\Sigma|^{-\frac{1}{n-1}} \left(\int_{\Sigma} |\varphi|^{2} ds\right)^{\frac{1}{2}}.$$

Com isto, temos

$$(\omega_{n-1})^{\frac{2}{n-1}} \geq \delta |\Sigma|^{\frac{2}{n-1}}.$$

Substintuindo $\delta = \frac{R^{\Sigma}}{(n-1)(n-2)} > 0$, obtemos

$$Y(\mathbb{S}^{n-1},[g_{can}]) \ge R^{\Sigma} |\Sigma|^{\frac{2}{n-1}}.$$
 (5)

Integrando a equação anterior sobre Σ e usando a Proposição acima, obtemos

$$|\Sigma|^{\frac{2}{n-1}} \le \frac{Y(\mathbb{S}^{n-1}, [g_{can}])}{C(R)}.$$
 (6)

Integrando a equação anterior sobre Σ e usando a Proposição acima, obtemos

$$|\Sigma|^{\frac{2}{n-1}} \le \frac{Y(\mathbb{S}^{n-1}, [g_{can}])}{C(R)}.$$
 (6)

Além disso, se ocorre a igualdade em (6) devemos ter

$$\int_{M} f |\mathring{Ric}|^{2} dV_{g} = 0.$$

Isto é, (M^n, g) é uma variedade de Einstein.

Integrando a equação anterior sobre Σ e usando a Proposição acima, obtemos

$$|\Sigma|^{\frac{2}{n-1}} \le \frac{Y(\mathbb{S}^{n-1}, [g_{can}])}{C(R)}.$$
 (6)

Além disso, se ocorre a igualdade em (6) devemos ter

$$\int_{M} f |\mathring{Ric}|^{2} dV_{g} = 0.$$

Isto é, (M^n, g) é uma variedade de Einstein.Logo, temos que M^n é isométrica a uma bola geodésica em \mathbb{R}^n , \mathbb{S}^n ou \mathbb{H}^n .

Integrando a equação anterior sobre Σ e usando a Proposição acima, obtemos

$$|\Sigma|^{\frac{2}{n-1}} \le \frac{Y(\mathbb{S}^{n-1}, [g_{can}])}{C(R)}.$$
 (6)

Além disso, se ocorre a igualdade em (6) devemos ter

$$\int_{M} f |\mathring{Ric}|^{2} dV_{g} = 0.$$

Isto é, (M^n, g) é uma variedade de Einstein.Logo, temos que M^n é isométrica a uma bola geodésica em \mathbb{R}^n , \mathbb{S}^n ou \mathbb{H}^n .

A recíproca??

Integrando a equação anterior sobre Σ e usando a Proposição acima, obtemos

$$|\Sigma|^{\frac{2}{n-1}} \le \frac{Y(\mathbb{S}^{n-1}, [g_{can}])}{C(R)}.$$
 (6)

Além disso, se ocorre a igualdade em (6) devemos ter

$$\int_{M} f |\mathring{Ric}|^{2} dV_{g} = 0.$$

Isto é, (M^n, g) é uma variedade de Einstein.Logo, temos que M^n é isométrica a uma bola geodésica em \mathbb{R}^n , \mathbb{S}^n ou \mathbb{H}^n .

A recíproca?? (Exercício)

Corolário

Seja (M^n,g,f) , $n\geq 4$, uma métrica crítica de Miao-Tam, compacta, orientada, com bordo conexo Σ isométrico à esfera canônica $\mathbb{S}^{n-1}(r)$ de raio $r=\left(\frac{(n-1)(n-2)}{C(R)}\right)^{1/2}$, e curvatura escalar $R=n(n-1)\varepsilon$, onde $\varepsilon=-1,0,1$. Além disso, se $\varepsilon=-1$, assumimos que a curvatura média de Σ satisfaz H>n-1. Então (M^n,g) é isométrica a uma bola geodésica em alguma das formas espaciais simplesmente conexas \mathbb{S}^n , \mathbb{R}^n ou \mathbb{H}^n .

Corolário

Seja (M^n,g,f) , $n\geq 4$, uma métrica crítica de Miao-Tam, compacta, orientada, com bordo conexo Σ isométrico à esfera canônica $\mathbb{S}^{n-1}(r)$ de raio $r=\left(\frac{(n-1)(n-2)}{C(R)}\right)^{1/2}$, e curvatura escalar $R=n(n-1)\varepsilon$, onde $\varepsilon=-1,0,1$. Além disso, se $\varepsilon=-1$, assumimos que a curvatura média de Σ satisfaz H>n-1. Então (M^n,g) é isométrica a uma bola geodésica em alguma das formas espaciais simplesmente conexas \mathbb{S}^n , \mathbb{R}^n ou \mathbb{H}^n .

Corolário

Com as mesmas condições do Teorema, porém $R \geq 0$, deduzimos

$$\left(\frac{nH}{n-1}\right)^{\frac{2}{n-1}}|M|^{\frac{2}{n-1}} \le \frac{Y(\mathbb{S}^{n-1},[g_{can}])}{C(R)}.$$
 (7)

Ainda, a igualdade acontece em (7) se, e somente se, (M^n, g) é isométrica a uma bola geodésica no espaço euclidiano \mathbb{R}^n .

Obrigado!