APMA 2110 - Homework 9

Milan Capoor

Nov 18, 2024

1. Let $f \in \mathcal{L}^1(\mathbb{R})$ be Lebesgue integrable. Prove that for any $\varepsilon > 0$, $\exists \delta > 0$ such that if $|h| < \delta$, then

$$\int_{\mathbb{R}} |f(x+h) - f(x)| \ dx < \varepsilon$$

By integrability, pick $R_1 > 0$ such that

$$\int_{-\infty}^{-R} |f(x+h)| \ dx < \frac{\varepsilon}{6}, \quad \int_{R}^{\infty} |f(x+h)| < \frac{\varepsilon}{6}$$

Similarly, pick $R_2 > 0$ such that

$$\int_{-\infty}^{-R} |f(x)| \ dx < \frac{\varepsilon}{6}, \quad \int_{R}^{\infty} |f(x)| < \frac{\varepsilon}{6}$$

Let $R = \max\{R_1, R_2\}$. Then,

$$\int_{\mathbb{R}} |f(x+h) - f(x)| dx = \int_{-\infty}^{-R} |f(x+h) - f(x)| dx + \int_{-R}^{R} |f(x+h) - f(x)| dx + \int_{R}^{\infty} |f(x+h) - f(x)| dx
\leq \int_{-\infty}^{-R} |f(x+h)| + |f(x)| dx + \int_{-R}^{R} |f(x+h) - f(x)| dx + \int_{R}^{\infty} |f(x+h)| + |f(x)| dx
< \frac{2\varepsilon}{3} + \int_{-R}^{R} |f(x+h) - f(x)| dx$$

It suffices to show that

$$\int_{-R}^{R} |f(x+h) - f(x)| \ dx < \frac{\varepsilon}{3}$$

By reduction to smooth functions, $\exists \phi$ such that

$$\int_{-R}^{R+h} |f(x) - \phi(x)| \ dx < \frac{\varepsilon}{9}$$

SO

$$\int_{-R}^{R} |f(x+h) - f(x)| \ dx \le \int_{-R}^{R} |f(x+h) - \phi(x+h)| + \int_{-R}^{R} |\phi(x+h) - \phi(x)| \ dx + \int_{-R}^{R} |\phi(x) - f(x)| \ dx$$
so
$$\int_{-R}^{R} |f(x+h) - \phi(x+h)| \ dx < \frac{\varepsilon}{9} \text{ and } \int_{-R}^{R} |\phi(x) - f(x)| \ dx < \frac{\varepsilon}{9}.$$

All that is left is to show that

$$\int_{-R}^{R} |\phi(x+h) - \phi(x)| \ dx < \frac{\varepsilon}{9}$$

But ϕ is smooth, hence continuous: $\exists \delta > 0$ s.t. $|x - y| < \delta \implies |\phi(x) - \phi(y)| < \frac{\varepsilon}{18R}$. In particular,

$$|x+h-x| = |h| < \delta \implies |\phi(x+h) - \phi(x)| < \frac{\varepsilon}{18R}$$

so by monotonicity,

$$\int_{-R}^{R} |\phi(x+h) - \phi(x)| \ dx \le \int_{-R}^{R} \frac{\varepsilon}{18R} \ dx = \frac{R\varepsilon}{18R} + \frac{R\varepsilon}{18R} = \frac{\varepsilon}{9}$$

All together, for $|h| < \delta$,

$$\int_{-R}^{R} |f(x+h) - f(x)| dx \le \frac{\varepsilon}{9} + \frac{\varepsilon}{9} + \frac{\varepsilon}{9} = \frac{\varepsilon}{3}$$

and

$$\int_{\mathbb{R}} |f(x+h) - f(x)| \ dx < \frac{2\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \quad \blacksquare$$

2. Let $f \in \mathcal{L}^1(\mathbb{R})$ be Lebesgue integrable. Show that

$$F(t) = \int_{-\infty}^{x} f(t) \ dt$$

is continuous.

Let $\varepsilon > 0$ and suppose $|x - y| < \delta$ for $\delta > 0$. We want to show that

$$|F(x) - F(y)| = \left| \int_{-\infty}^{x} f(t) \ dt - \int_{-\infty}^{y} f(t) \ dt \right| = \left| \int_{y}^{x} f(t) \ dt \right| < \varepsilon$$

Since $f \in \mathcal{L}^1$, from a lemma in class,

$$\left| \int_{u}^{x} f(t) \ dt \right| \le \int_{u}^{x} |f(t)| \ dt$$

By reduction to smooth functions, $\exists \phi$ such that

$$\int_{y}^{x} |f(t) - \phi(t)| \ dt < \frac{\varepsilon}{2} \implies \int_{y}^{x} |f(t)| \ dt \le \int_{y}^{x} |f(t) - \phi(t)| \ dt + \int_{y}^{x} |\phi(t)| \ dt$$

Since ϕ is smooth, it is finite on the closed interval [y, x] (otherwise, not continuous). Let $|\phi(t)| \leq M$ for $t \in [y, x]$. Then,

$$\int_{y}^{x} |f(t)| dt \le M |x - y|$$

Let $\delta = \frac{\varepsilon}{2M}$. Again by continuity (smoothness),

$$|x - y| < \delta = \frac{\varepsilon}{2M} \implies \int_{y}^{x} |f(t)| dt < \frac{\varepsilon}{2}$$

So for $|x - y| < \frac{\varepsilon}{2M}$,

$$|F(x) - F(y)| < \varepsilon$$

and F is continuous.

3. Let $X=Y=[0,1], \mathcal{A}=\mathcal{B}[0,1]$ (Borel Sets), μ be the Lebesgue measure, and ν be the counting measure. If $D=\{(x,x):x\in[0,1]\}$ is the diagonal in $X\times Y$, show

- $\iint \mathbb{1}_D d\mu d\nu$
- $\iint \mathbb{1}_D d\nu d\mu$
- $\int \mathbb{1}_D d(\mu \times \nu)$

are all unequal.

First, notice that $D \subseteq \mathcal{B}([0,1]) \otimes \mathcal{B}([0,1])$ so by a Lemma from class,

$$D_x = \{ y \in Y : (x, y) \in D \} \in \mathcal{B}([0, 1])$$
$$D^y = \{ x \in X : (x, y) \in D \} \in \mathcal{B}([0, 1])$$

 \mathbf{SO}

$$\int \int \mathbb{1}_{D(x,y)} d\mu(x) d\nu(y) = \int \left(\int \mathbb{1}_{D^y(x)} d\mu \right) d\nu$$
$$= \int \left(\int_{\{x:x=y\}} 1 d\mu \right) d\nu$$
$$= \int \mu(\{y\}) d\nu = 0$$

Similarly,

$$\int \left(\int \mathbb{1}_D d\nu(y) \right) d\mu(x) = \int \left(\int_D \mathbb{1}_{D_x} d\nu(y) \right) d\mu(x)$$

$$= \int \nu(\{x\}) d\mu$$

$$= \int 1 d\mu$$

$$= \mu([0, 1]) = 1$$

Define

$$(\mu \times \nu)(E) = \inf \left\{ \sum_{i} \mu(A_i) \nu(B_i) \mid E \subseteq \bigcup_{i} A_i \times B_i \right\}$$

for $A_i \times B_i$ disjoint rectangles.

If $D \subseteq \bigcup_i A_i \times B_i$, then $\bigcup_i (A_i \cap B_i)$ covers [0,1] and we must have that $\mu(A_n \cap B_n) > 0$ for some n. But this implies that $A_n \cap B_n$ is uncountable, so $\nu(A_n \cap B_n) = \infty$. Hence,

$$\sum_{i} \mu(A_n)\nu(B_n) = \infty$$

for all covers of D by rectangles so $(\mu \times \nu)(D) = \infty$.

Hence,

$$\int \mathbb{1}_{D} d(\mu \times \nu) = \infty$$

$$\int \int \mathbb{1}_{D} d\mu d\nu = 0$$

$$\int \int \mathbb{1}_{D} d\nu d\mu = 1 \quad \blacksquare$$

4. (Fubini) Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ -finite measure spaces and let $(X \times Y, \mathcal{L}, \mu \times \nu)$ be the product measure. If $f \in \mathcal{L}^1(\mu \times \nu)$, show that

- 1. f_x is \mathcal{B} -measurable for a.e. x
- 2. f^y is \mathcal{A} -measurable for a.e. y
- 3. f_x is integrable for a.e. x
- 4. f^y is integrable for a.e. y
- 5. If $x \to \int f_x d\nu$ and $y \to \int f^y d\mu$ are measurable and integrable, then

$$\int f \ d(\mu \times \nu) = \int \int f(x,y) \ d\mu(x) \ d\nu(y) = \int \int f(x,y) \ d\nu(y) \ d\mu(x)$$

Since $f \in \mathcal{L}^1(\mu \times \nu)$, it is measurable on $\mathcal{M} \otimes \mathbb{N}$. By a lemma in class, we have that f_x and f_y are measurable for a.e. x and y respectively.

In class, we showed the result for the special case $f = \mathbb{1}_E$ for $E \in \mathcal{M} \times \mathbb{N}$. By linearity, the result holds for simple functions. For $f \in \mathcal{L}^1(\mu \times \nu)$, we can sat $f \geq 0$ WLOG and then approximate f by simple functions $\phi_n \nearrow f$.

Let

$$g(x) = \int f_x \, d\nu$$
$$h(y) = \int f^y \, d\mu$$

and g_n, h_n be the corresponding sections of ϕ_n .

By MCT, $g_n \nearrow g$ and $h_n \nearrow h$ so g, h are measurable and

$$\int g \ d\mu = \lim \int g_n \ d\mu = \lim \int \phi_n \ d(\mu \times \nu) = \int f \ d(\mu \times \nu)$$
$$\int h \ d\nu = \lim \int h_n \ d\nu = \lim \int \phi_n \ d(\mu \times \nu) = \int f \ d(\mu \times \nu)$$

In particular, since $f \in \mathcal{L}^1(\mu \times \nu)$, f_x and f^y are integrable for a.e. x and y respectively and the result follows.

5. Let ν be a measure on the Borel sets of the positive real line $[0,\infty)$ such that

$$\phi(t) = \nu([0, t))$$

Let (X, \mathcal{M}, μ) be a measure space and $f \geq 0$ measurable. Show that

$$\int_{\Omega} \phi(f(x)) \ d\mu = \int_{0}^{\infty} \mu(\lbrace x : f(x) > t \rbrace) \ dt$$

$$\int_{X} \phi(f(x)) \ d\mu = \int_{X} \nu[0, f(x)) \ d\mu$$

$$= \int_{X} \int_{0}^{\infty} \mathbb{1}_{[0, f(x))} \ d\nu \ d\mu$$

$$= \int_{0}^{\infty} \int_{X} \mathbb{1}_{[0, f(x))} \ d\mu \ d\nu \qquad \text{(Tonelli)}$$

$$= \int_{0}^{\infty} \mu([0, f(x))) \ d\nu$$

$$= \int_{0}^{\infty} \mu(\{t : f(x) > t\}) \ d\nu$$

$$= \int_{0}^{\infty} \mu(\{x : f(x) > t\}) \ dt$$