Propriedades de Função Composta e Inversa

- Função Composta

<u>Definição</u>

Dadas as funções $\mathbf{f}: A \to B$ e $\mathbf{g}: B \to C$ chama-se função composta das funções \mathbf{g} e \mathbf{f} à função $\mathbf{h}: A \to C$ tal que h(x) = g[f(x)].

Resumo

É uma função que depende de outra função.

<u>Notação</u>

A função composta h: $A \rightarrow C$, composta de g e f, é indicada por gof (lê-se: **g** bola **f**)

Exemplo

Seja a função f(x) = x + 1 e g(x) = 5x - 3

Observe que:

$$f(1) = 2$$
 e $g(2) = 7$, ou seja, $h(1) = (gof) = g[f(1]) = g(2) = 7$

$$f(2) = 3$$
 e $g(3) = 12$, ou seja, $h(2) = (gof) = g[f(2)] = g(3) = 12$

$$f(3) = 4$$
 e $g(4) = 17$, ou seja, $h(3) = (g \circ f) = g[f(3)] = g(4) = 17$

- Função Inversa

<u>Definição</u>

Seja f uma função de A em B.

A função f^{-1} : B \rightarrow A é a inversa de f se, e somente se:

$$(f \circ f^{-1})(x) = x, \ \forall x \in B$$

e
 $(f^{-1} \circ f)(x) = x, \ \forall x \in A$

Exemplo

Dada a função f(x)=2x+3 a sua inversa será $f^{-1}(x)=\frac{x-3}{2}$

<u>Resumo</u>

Para encontrar a função inversa, basta chamar f(x) de y e trocar x por y, e y por x, depois isolar o y

Passo a Passo

Substituir f(x) por y	y = 2x + 3
Trocar x por y e y por x	x = 2y + 3
"isolar" o y	$x = 2y + 3 \Leftrightarrow 2y = x - 3 \Leftrightarrow y = \frac{x - 3}{2}$
Substituir y por $f^{-1}(x)$	$f^{-1}(x) = \frac{x-3}{2}$