

Algorithmen und Datenstruckturen

Vincent Dahmen 6689845 Roberto Seidel 6537468 Rafael Heid 6704828

26. Oktober 2015

2.1

2.1.1

 $3n^3-6n+20$ liegt in n^3 da für ein festes c (z.B. c=10000) immer $c\cdot n^3>3n^3-6n+20$ gilt. Formal gilt: $\lim_{n\to\infty}3n^3-6n+20=\lim_{n\to\infty}n^3$ damit liegt die Funktion aber genau in $O(n^3)$

2.1.2

$\lim_{n \to \infty} (n^2 \cdot \log(n))$	≤	$\lim_{n\to\infty} (n^3)$
	nach dem Satz von l'Hospital gilt	
$\lim_{n\to\infty}(2n\cdot log(n)+\tfrac{n^2}{n})$	≤	$\lim_{n\to\infty} (3n^2)$
$\lim_{n \to \infty} (2n \cdot \log(n) + n)$	≤	$\lim_{n\to\infty} (n^2)$
	Hier kann man wieder die Regeln von l'Hospital anwenden:	
$\lim_{n \to \infty} (2 \cdot \log(n) + \frac{2n}{n})$ $\lim_{n \to \infty} (2 \cdot \log(n) + 2)$	≤	$\lim_{n\to\infty} (2n)$
$\lim_{n \to \infty} (2 \cdot \log(n) + 2)$	≤	$\lim_{n\to\infty} (2n)$
n→∞	Ein letzes Mal kann man die Regel anwenden:	V.
$\lim_{n\to\infty}(\frac{2}{n}+2)$	≤	$\lim_{n\to\infty}(2n)$
0+2=2		∞

Ālso gilt die erste Behauptung schonmal. Nun wollen wir zeigen dass die Funktion auch in $\Omega(n^2)$ liegt.

Umforming notwendig, um L'Hospital anwenden zu können!

$$\begin{array}{c|cccc} \lim_{n\to\infty} (n^2 \cdot \log(n)) & & \geq & \lim_{n\to\infty} (n^2) \\ & & & \text{Wir leiten beide Funktionen ab (nach l'Hospital)} & \\ \lim_{n\to\infty} (2n \cdot \log(n) + \frac{n^2}{n}) & & \geq & \lim_{n\to\infty} (2n) \\ \lim_{n\to\infty} (2 \cdot \log(n) + 2) & & \leq & \lim_{n\to\infty} (2) \\ \infty & & \geq & 2 \end{array}$$

Wie hier ebenfalls gut zu erkennen ist liegt die Funktion ebenfalls in $\Omega(n^2).$

Damit ist die Aussage uneingeschränkt wahr.

2.2

Funktion
$$\in$$
 Äquivalenzklasse $\{4,1000\}$ \subset $O(1)$ $\{ln(n),log(n)\}$ \subset $O(\log(n)$ $n^{0.5}$ \in $O(\sqrt{n})$ $\sqrt{n^3}$ \in $O(n^{\frac{3}{2}})$ n^2 \in $O(n^2)$ 2^n \in $O(2^n)$

Die obige Tabelle zeigt das Wachstumsverhalten in aufsteigender Reihenfolge. Funktionen die in der gleichen Äquivalenzklasse liegen sind entsprechend geklammert. Es folgt eine Begründung der Zusammenfassungen.

end geklammert. Es folgt eine Begrundung der Zusammeniassungen.			
Funktion	Begründung		
$\{4, 1000\}$	Beide überschreiten nie einen konstanten Wert		
$ \{ln(n), log(n)\} $	Das Wachstum ist bis auf einen konstanten Faktor gleich		
10			
$ \sqrt{n}^3 $ $ n^2$	Nach den Potenzgesetzen gilt $\sqrt{n}^a = n^{\frac{a}{2}}$		
n^2			
2^n			
	We sind die Begrindungen?		
3	We sind die 3		
.0			

2.3

$$f(n),g(n)\in O(h(n))\implies f(n)\cdot g(n)\in O((h(n))^2)$$
 ist zu zeigen.

Dabei seien folgende Aequivalenzen gegeben:

$$f(n) \in O(h(n)) \iff f(n) \le c' \cdot h(n) \text{ fuer alle } n > n'_0$$

 $g(n) \in O(h(n)) \iff g(n) \le c'' \cdot h(n) \text{ fuer alle } n > n''_0$

Durch multiplizieren der rechten Aequivalenz-Seiten beider Funktionen er-

halten wir folgendes:

$$f(n) \cdot g(n) \leq (c' \cdot c'') \cdot (h(n))^2 \text{ fuer alle } n > n_0, \text{ wobei } n_0 = n'_0 \cdot n''_0 \\ \rightarrow f(n) \cdot g(n) \in O((h(n))^2)$$

Damit ist die Richtigkeit der Implikation gezeigt.

2.4

2.4.1

Substituionsmethode

$$T(n) = 3(T(n-1)) + 2$$

$$= 3(3(T(n-1-1)+2) + 2 = 9T(n-2) + 3 \cdot 2 + 2$$

$$= 3(9T(n-2-1) + 3 \cdot 2 + 2) + 2 = 21 \cdot T(n-3)3^2 \cdot 2 + 3 \cdot 2 + 2$$

$$= \dots$$
(vermutlich)
$$= 3^k \cdot T(n-k) + \sum_{i=0}^{k-1} (3^i \cdot 2)$$

Um die Vermutung zu bewweisen führen wir eine vollständige Induktion

rch. T(n) = Dabei nehmen wir an dass: $3^k \cdot T(n-k) + \sum_{i=0}^{k-1} (3^i \cdot 2)$ gilt. Nach k Abwichlungen

Die Funktion T(n) schränkt den Gültigkeitsbereich nicht ausreichend ein, da für negative Werte für n die Rekursion nie abbricht.

Für die Induktion nehmen wir an, dass $n \in \mathbb{N}$ liegt.

Daher ist unser Induktionsanfang auch bei n = 1.

Dann gilt:

$$T(1) = 3 \cdot T(1-1) + 2 = 3 \cdot 0 + 2 = 2$$

bzw mit unserer Annahme:

$$T(1) = 3^{1} \cdot T(1-1) + \sum_{i=0}^{k-1} (3^{i} \cdot 2) = 3 \cdot 0 + \sum_{i=0}^{1-1} (3^{i} \cdot 2) = 0 + 2$$

Indultions annahme? Damit haben wir den Induktionsanfang gezeigt. T(n+1)= T(n+1) $\begin{array}{lll} 3(T(n+1-1))+2 & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 3(3^k \cdot T(n-k-1) + \sum_{i=0}^{k-1} (3^i \cdot 2)) + 2 & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 3 \cdot 3^k \cdot T(n-(k+1)) + 3 \cdot \sum_{i=0}^{k-1} (3^i \cdot 2) + 2 & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) + 2 & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) \\ 2^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^i \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{$ $\begin{array}{lll} 3^{k+1} \cdot T(n-(k+1)) + \angle_{i=0} \left(3 \cdot 3 \cdot 2 \right) + 2 & = & 3 \cdot 1 \cdot (n-(k+1)) + \angle_{i=0} \left(3 \cdot 2 \right) \\ 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{k} (3^{i} \cdot 2) + 2 & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^{i} \cdot 2) \\ 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^{i} \cdot 2) & = & 3^{k+1} \cdot T(n-(k+1)) + \sum_{i=0}^{(k+1)-1} (3^{i} \cdot 2) \end{array}$

Die Rekursion bricht bei n-k=0 ab also wird mit k=n weitergerechnet:

$$\lim_{n\to\infty} (3^k \cdot T(n-n) + \sum_{i=0}^{n-1} (3^i \cdot 2)) = \lim_{n\to\infty} (3^n)$$
 Then the second of the second of

Damit liegt die Funktion in etwa $O(3^n)$

Die Abschätzung mit dem Mastertheorem ist hier nicht anwendbar, da die Rekursion im falschen Format vorliegt.

2.4.2wo ist die vollst. Includion? Vich ablen rzan

Ermitteln der Größenordnung mittels Induktion:

mitten der Größenordnung mittels Induktion:
$$S(k = n) = 4^2 \cdot S(\frac{n}{4} + n^2)$$

$$S(k = n + 1) = 4^2(4^2 \cdot S(\frac{n}{4^2} + h^2) + n^2 = 4^{2 \cdot 2} \cdot S(\frac{n}{4^2}) + 4n^2 + n^2$$

$$S(k = n + 2) = 4^2(4^{2 \cdot 2} \cdot S(\frac{n}{4^2} + 4 \cdot n^2 + n^2) + n^2 = 4^{3 \cdot 2} \cdot S(\frac{n}{4^2}) + 4^2n^2 + 4n^2 + n^2$$
...
$$S(k) = 4^{(k-1)\cdot 2} \cdot S(\frac{n}{4(k-1)}) + \sum_{i=0}^{k(k-2)} (4^i \cdot k^2)$$

Ermitteln der Groessenordnung mittels des Mastertheorems:

$$S(n) := \left\{ \begin{array}{ll} c, & fuer \ n = 1; \\ 16 \cdot S(\frac{n}{4}) + n^2, & sonst; \end{array} \right.$$

Fall 1: $S(n) \in \Theta(n^{\log_b(a)})$, falls $f(n) \in O(n^{\log_b(a) - \epsilon})$ fuer $cin \ \epsilon > 0$ Wegen $\log_b(a)$ mit b = 4 und $a = 16 \rightarrow \log_4(16) = 2$ und $f(n) = n^2 \text{ ist } f(n) \notin O(n^{2-\epsilon}), \text{ da mit } \epsilon > 0 \text{ } O(f(n)) > O(n^{2-\epsilon}) \text{ f(n)} = \omega(n^{2-\epsilon})$

Fall 2: $S(n) \in \Theta(n^{\log_b(a)} \log_2(n)), \ falls f(n) \in \Theta(n^{\log_b(a)})$ $mitf(n)und \log_b(a)wieobenistf(n) \in \Theta(n^2)$ $\lim_{n\to\infty} \frac{n^2}{n^2} = \lim_{n\to\infty} 1 = 1, \ da \ 0 < 1 < \infty \to f(n) \in \Theta$

Hiermit gilt $T(n) \in \Theta(n^{\log_b(a)} \log_2(n)) = \left(\bigcap_{n \in \mathbb{N}} L_{\mathbb{N}_2}(n) \right)$

Schanl euch nochmal die Substitutions methode in de ML au!