

Equalmex

Unter rumänischen Adligen ist es allgemein bekannt, dass die Schönheit eines ganzzahligen Arrays $a[0], a[1], a[2], \ldots a[m-1]$ der Anzahl positiver ganzer Zahlen k entspricht, für die man das Array in k disjunkte Teilarrays (Sequenzen aufeinanderfolgender Elemente) aufteilen kann, sodass jedes Element genau in einem Teilarray enthalten ist und alle Teilarrays dasselbe minimale nicht enthaltene (minimal excluded) Element haben. Das minimale nicht enthaltene Element eines ganzzahligen Arrays ist die kleinste positive ganze Zahl (größer als 0), die nicht im Array vorkommt.

Gegeben ist ein ganzzahliges Array $v[0], v[1], \ldots v[n-1]$ sowie q Abfragen der Form (l_i, r_i) ($0 \le l_i \le r_i < n, 0 \le i < q$).

Für jede Abfrage soll die Schönheit des Arrays $v[l_i], v[l_i+1], \ldots, v[r_i]$ bestimmt werden.

Implementierungsdetails

Implementiere die folgende Funktion

```
std::vector<int> solve(
int n, std::vector<int>& v,
int q, std::vector<std::pair<int, int>>& queries);
```

- n: Größe des ganzzahligen Arrays
- v: Array der Länge n, das Ausgangsarray
- q: Anzahl der Abfragen
- queries: Array der Länge q, das die Abfragen beschreibt
- ullet Diese Funktion soll einen vector von q ganzer Zahlen zurückgeben, der die Antwort für jede Abfrage enthält.
- Diese Funktion wird genau einmal pro Testfall aufgerufen.

Beschränkungen

- $1 \le n \le 600,000$
- 1 < q < 600,000
- $1 \le v[i] \le 400,000$ für alle $0 \le i < n$
- $0 \le l_i \le r_i < n$ für alle $0 \le i < q$

Teilaufgaben

```
1. (4 Punkte) 1 \le n \le 10, 1 \le q \le 100
```

```
2. (6 Punkte) 1 \le n, q \le 100
```

- 3. (17 Punkte) $1 \le n, q \le 1,000$
- 4. (10 Punkte) $1 \leq n, q \leq 100,000$ und $1 \leq v[i] \leq 2$ für alle $0 \leq i < n$
- 5. (30 Punkte) $1 \le n, q \le 75,000$
- 6. (33 Punkte) Keine weiteren Beschränkungen.

Beispiele

Beispiel 1

Betrachte den folgenden Funktionsaufruf

```
solve(10, {1, 1, 2, 2, 3, 3, 1, 2, 3, 4}, 2, {{0, 5}, {0, 8}})
```

In diesem Beispiel ist n=10 und es gibt 2 Abfragen, für die gilt:

- $l_0=0$ und $r_0=5$
- $l_1 = 0$ und $r_1 = 8$

Für die erste Abfrage kann man das Intervall nur in ein einziges Teilarray aufteilen, nämlich von Position 0 bis Position 5.

Bei der zweiten Abfrage kann k entweder 1 oder 2 sein. Eine Möglichkeit, in 1 Teilarray aufzuteilen, ist das Teilarray von Position 0 bis Position 8. Eine Möglichkeit, in 2 Teilarrays aufzuteilen, ist von Position 0 bis 5 und von 6 bis 8.

Die Antwort auf die erste Abfrage ist 1, und auf die zweite Abfrage 2. Also soll der Aufruf von solve folgendes zurückgeben: {1, 2}.

Beispiel-Grader

Der Beispiel-Grader liest die Eingabe im folgenden Format:

- Zeile 1: *n q*
- Zeile 2: $v[0] \ v[1] \ \dots \ v[n-1]$
- Zeile 3 + i: $l_i \; r_i$ für alle $0 \leq i < q$

und gibt q Zeilen aus, das Ergebnis des Aufrufs der Funktion solve mit den entsprechenden Parametern.