

AD-A092 375

TECHNICAL
LIBRARY

AD

MEMORANDUM REPORT ARBRL-MR-03060

(Supersedes IMR No. 686)

ESTIMATED EFFECT ON PROJECTILE FLIGHT
STABILITY OF AN INTERIOR CANTILEVER BEAM

Charles H. Murphy

September 1980

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 3

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22151.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

*The use of trade names or manufacturers' names in this report
does not constitute indorsement of any commercial product.*

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER MEMORANDUM REPORT ARBRL-MR-03060	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) ESTIMATED EFFECT ON PROJECTILE FLIGHT STABILITY OF AN INTERIOR CANTILEVER BEAM		5. TYPE OF REPORT & PERIOD COVERED Final
7. AUTHOR(s) Charles H. Murphy		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BLL) Aberdeen Proving Ground, MD 21005		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS RDT&E 1L161102AH43
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research and Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL), Aberdeen Proving Ground, MD 21005		12. REPORT DATE September 1980
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES
		15. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES This report supersedes Interim Memorandum Report No. 686 dated June 1980.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Moving Internal Shell Parts Arming Ball Rotor Internal Projectile Rings Quasi-linear Angular Motion		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) (jah) Results of a published theory of the effect of a moving internal part on the angular motion of a spinning projectile are summarized and applied to a projectile with an internal cantilever beam. An example of a 155mm shell is worked out in detail.		

TABLE OF CONTENTS

	Page
I. INTRODUCTION.	5
II. GENERAL THEORY.	5
III. APPLICATION TO CANTILEVER BEAM.	7
DISTRIBUTION LIST.	11

I. INTRODUCTION

In Reference 1, a general theory was developed for predicting the influence of internal component motion on projectile stability. The effect of the center-of-mass motion of a ball rotor in the M505 fuse on the stability of two Army shell was predicted successfully by the theory and it has been recently used in the Air Force development of an improved 20mm projectile. In another application involving the performance of an 8-inch Army projectile, the effect of the forced precession of a spinning component was correctly predicted.

In a recent projectile design, the need for an internal cantilever beam became apparent. Since this beam could have some movement, the designers have expressed concern as to the possibility of flight instability induced by vibrations of this beam. It is the purpose of this report to show how the general theory of Reference 1 can be applied to this problem.

II. GENERAL THEORY

The theory assumes that the only part of the component motion that need be considered is that performed at the circular frequency of the fast mode of the projectile pitching and yawing motion. This component motion can be

- (1) a circular motion of the component's center of mass in a plane perpendicular to the projectile's axis (M505 ball rotor);
- (2) forced precession of the component's spin axis about the projectile's axis (8-inch projectile); or
- (3) a combination of both of these motions.

The center-of-mass motion has a radius ϵ and a phase angle ϕ_ϵ with respect to the plane of the angle of attack, while the spin-axis motion has a cone angle γ and a phase angle ϕ_γ with respect to the angle-of-attack plane. The motions are shown to have the following effect on the fast-mode frequency ϕ_1 , the fast-mode damping λ_1 , and the spin moment M_x .

1. C. H. Murphy, "Influence of Moving Internal Parts on Angular Motion of Spinning Projectiles," Journal of Guidance and Control 1, No. 2, March-April 1978, pp. 117-122. (See also BRL MR 2731, AD A037338, February 1977.)

$$\Delta \dot{\phi}_1 = \frac{-\dot{\phi}_1 r C_1}{K_1 (2 I_t \dot{\phi}_1 r - L_{x0})} \quad (1)$$

$$\Delta \lambda_1 = \frac{\dot{\phi}_1 S_1}{K_1 (2 I_t \dot{\phi}_1 - L_{x0})} \quad (2)$$

$$\Delta M_x = -\dot{\phi}_1 K_1 S_1 \quad (3)$$

$$L_{x0} = I_{xb} p + I_{xc} p_c \quad (4)$$

$$S_1 = (I_{xc} p_c - I_{tc} \dot{\phi}_1) \gamma \sin \phi_\gamma - m_c x_c \dot{\phi}_1 \epsilon \sin \phi_\epsilon \quad (5)$$

$$C_1 = (I_{xc} p_c - I_{tc} \dot{\phi}_1) \gamma \cos \phi_\gamma - m_c x_c \dot{\phi}_1 \epsilon \cos \phi_\epsilon \quad (6)$$

where K_1 is the amplitude of the fast-mode motion

I_{xb} , I_{xc} are spin moments of inertia of the projectile body and component, respectively

I_{tb} , I_{tc} are pitch moments of inertia of the projectile body and component, respectively

$$I_x = I_{xb} + I_{xc}$$

$$I_t = I_{tb} + I_{tc} + m_b x_b^2 + m_c x_c^2$$

m_b , m_c are the masses of the body and component, respectively

x_b , x_c are the axial distances between the projectile c.m. and the body c.m. or the component c.m.

$\dot{\phi}_{1r}$ is the fast-mode frequency for a rigid projectile ($\gamma = \epsilon = 0$)

$\dot{\phi}_1$ $\dot{\phi}_{1r} + \Delta \dot{\phi}_1$

p_c is the spin of the component.

It should be noted that the minus signs in Equations (5-6) do not appear in the definitions of S_1 and C_1 in Reference 1. Unfortunately, there is a systematic error in all ϕ_ϵ relations in Reference 1. It can be corrected, however, by replacing ϕ_ϵ by $\phi_\epsilon + 180^\circ$ in all of these relations and this is the cause of the minus signs in Equations (5-6).

III. APPLICATION TO CANTILEVER BEAM

ϵ and γ can be estimated easily since they are fixed by clearances or by elastic properties of the projectile structure. The phase angles, ϕ_γ and ϕ_ϵ , depend on friction forces of some kind and are quite difficult to estimate accurately. Upper bounds for the contribution of component motion to the fast-mode damping can be obtained by using the worst possible values of $\sin \phi_\gamma$ and $\sin \phi_\epsilon$.

To illustrate the use of this theory on a 155mm shell with an internal cantilever beam, we will use the parameters given in Table 1. This 45-kg shell has a 3.4-kg forward-facing cantilever beam whose attachment point is 23 cm forward of the shell center of mass. If we assume the beam has a parabolic deflection in a plane containing the projectile's axis and take γ to be the inclination at its center,

TABLE 1. PARAMETERS OF A HYPOTHETICAL 155MM SHELL

$$p = p_c = 660 \text{ rad/s}$$

$$\dot{\phi}_{1r} = \dot{\phi}_1 = 62 \text{ rad/s}$$

$$I_x = 1500 \text{ km-cm}^2$$

$$I_t = 22000 \text{ km-cm}^2$$

$$I_{xc} = 2.6 \text{ km-cm}^2$$

$$I_{tc} = 68 \text{ km-cm}^2$$

$$m_c = 3.4 \text{ kg}$$

$$x_c = 31 \text{ cm}$$

$$l_c = 15 \text{ cm}$$

$$d_c = 2.5 \text{ cm}$$

$$m_c x_c \dot{\phi}_1 = 6500 \text{ kg-cm/s}$$

$$I_{xc} p - I_{tc} \dot{\phi}_1 = -2500 \text{ kg-cm}^2/\text{s}$$

$$\lambda_{1r} = - .13 \text{ 1/s}$$

$$2 I_t \dot{\phi}_1 - I_x p = 1.74 \times 10^6 \text{ kg-cm}^2/\text{s}$$

$$p_{CR} = 2500 \text{ 1/s}$$

$$\gamma = 4\epsilon/\ell_c \quad (7)$$

$$\begin{aligned} \phi_\epsilon &= \phi_\gamma \text{ for a forward-facing cantilever} \\ &= \phi_\gamma + 180^\circ \text{ for a rearward-facing cantilever} \end{aligned} \quad (8)$$

where ℓ_c is the length of the beam.

For no internal friction, ϕ_ϵ should be 180° for positive x_c . An extreme upper bound for the effect of friction would be given by a change in this phase angle of 60° . Thus we will assume ϕ_ϵ to be 240° . Equation (2) can now be used to give a conservative estimate of the required deflection to change λ_{1r} by 50%. (If x_c were negative, the no friction value of ϕ_ϵ is 0° and we would assume the friction value to be 60° .)

$$\left(\frac{\epsilon}{K_1}\right)_{\text{req}} = \frac{(|\lambda_{1r}|/2) (2 I_t \dot{\phi}_1 - I_x p)}{\dot{\phi}_1 \left[(I_{xc} p - I_{tc} \dot{\phi}_1) (4/\ell_c) - m_c x_c \dot{\phi}_1 \right] \sin 240^\circ} \quad (9)$$

For our hypothetical shell this yields

$$\left(\frac{\epsilon}{K_1}\right)_{\text{req}} = .30 \text{ cm/rad} \quad (10)$$

A relation between deflection and fast-mode amplitude can be obtained by assuming that the beam deflection can be described by an elastic spring constant k and equating the spring force to the centrifugal force.

$$k \epsilon = m_c \dot{\phi}_1^2 (K_1 |x_c| + \epsilon) \quad (11)$$

or

$$\frac{\epsilon}{K_1} = \frac{|x_c| \dot{\phi}_1^2}{p_{CR}^2 - \dot{\phi}_1^2} \quad (12)$$

where

$$p_{CR} = \sqrt{k/m_c}$$

Equations (10) and (12) show that a p_{CR} of 630 1/s is required for the beam to cause significant instability. Our projectile has a p_{CR} four times larger than this so it can only have trouble if its beam is sixteen times softer than it is.

In summary, then, the theory of Reference 1 can be used to determine the effect on stability of an interior cantilever beam. If rough estimates show a very small effect, a more detailed analysis is unnecessary. In our example this is the case.

DISTRIBUTION LIST

No. of <u>Copies</u>	<u>Organization</u>	No. of <u>Copies</u>	<u>Organization</u>
12	Commander Defense Technical Info Center ATTN: DDC-DDA Cameron Station Alexandria, VA 22314	1	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E P. O. Box 209 St. Louis, MO 63166
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035
2	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS Dover, NJ 07801	1	Commander US Army Communications Rsch and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703
7	Commander US Army Armament Research and Development Command ATTN: DRDAR-LCA-F, A. Loeb DRDAR-LCA-FA, Mr. E. Friedman Mr. D. Mertz DRDAR-LCA, Mr. W. R. Benson DRDAR-LCU, A. Moss DRDAR-LCN, Mr. F. Scerbo Mr. F. Saxe Dover, NJ 07801	1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703
1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299	1	Commander US Army Harry Diamond Labs ATTN: DRXDO-TI 2800 Powder Mill Road Adelphi, MD 20783
1	Director US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189	1	Commander US Army Missile Command ATTN: DRSMI-R Redstone Arsenal, AL 35809
		1	Commander US Army Missile Command ATTN: DRSMI-YDL Redstone Arsenal, AL 35809

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army Tank Automotive Research & Development Cmd ATTN: DRDTA-UL Warren, MI 48090	1	AFATL (DLNL, Mr. K. Cobb) Eglin AFB, FL 32542
1	Project Manager Nuclear Munitions ATTN: DRCPM-NUC, E. Sciuk USA ARRADCOM Dover, NJ 07801	2	Director Sandia Laboratories ATTN: Division 1331, Mr. H. R. Vaughn Mr. A. E. Hodapp, Jr. Albuquerque, NM 87115
1	Project Officer Army Fuze Mgt Project Office ATTN: DRDAR-FU, LTG G. W. Cook USA ARRADCOM Dover, NJ 07801	1	General Electric Company Armament Systems Department ATTN: Mr. Robert H. Whyte Lakeside Avenue Burlington, VT 05401
1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002	<u>Aberdeen Proving Ground</u>	
1	Commander Naval Surface Weapons Center ATTN: Dr. W. R. Chadwick Dahlgren, VA 22448	Dir, USAMSAA ATTN: DRXSY-D DRXSY-MP, H. Cohen Cdr, USATECOM ATTN: DRSTE-TO-F Dir, USACSL, Bldg. E3516 ATTN: DRDAR-CLB-PA	

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet and return it to Director, US Army Ballistic Research Laboratory, ARRADCOM, ATTN: DRDAR-TSB, Aberdeen Proving Ground, Maryland 21005. Your comments will provide us with information for improving future reports.

1. BRL Report Number _____

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name: _____

Telephone Number: _____

Organization Address: _____

