Separation of nearby hadronic showers using ArborPFA LCWS 2015

Eté Rémi

Université Claude Bernard Lyon 1 Institut de Physique Nucléaire de Lyon

29 octobre 2015

ED 52 - PHAST **Physique** & astrophysique de Lyon

- The CALICE SDHCAL prototype
- The Arbor Particle Flow Algorithm
- Algorithm performances
 - Single particle performances
 - Overlaid particle performances
- Conclusion and roadmap

The CALICE SDHCAL prototype

Description

Semi-Digital Hadron Calorimeter

- Sampling calorimeter
- 48 layers :
 - Steel absorber
 - Sensitive medium : GRPC
- Segmentation :
 - Transverse: 1 cm²
 - Longitudinal: 2.67 cm (abs. + sens)
- Semi digital readout with 3 thresholds

The CALICE SDHCAL prototype

A. Steen [CAN-053. EB]

The CALICE SDHCAL prototype

Energy reconstruction

$$E = \alpha(NHit) \cdot N_1 + \beta(NHit) \cdot N_2 + \gamma(NHit) \cdot N_3 \quad (1)$$

avec:

$$\alpha(\textit{NHit}) = \alpha_1 + \alpha_2 \cdot \textit{NHit} + \alpha_3 \cdot \textit{NHit}^2 \qquad (2)$$

$$\beta (\textit{NHit}) = \beta_1 + \beta_2 \cdot \textit{NHit} + \beta_3 \cdot \textit{NHit}^2 \eqno(3)$$

$$\gamma(NHit) = \gamma_1 + \gamma_2 \cdot NHit + \gamma_3 \cdot NHit^2$$
 (4)

Calice SDHCAL [CAN-037]

Principle

Particle Flow Algorithm based on hadronic shower tree-like topology.

Particle Flow Algorithm based on hadronic shower tree-like topology.

Principle

Particle Flow Algorithm based on hadronic shower tree-like topology.

Some definitions

- Object : Node linked by one or many connector(s) (+ seeds and leafs)
- Connector : Oriented link. Links two objects
- Flow direction: Connector orientation, backward or forward
- Tree : Set of objects linked by connectors. For each object :
 - 0 or 1 backward connector
 - 0 or many forward connector(s)
 - → Implies a unique tree structure solution (1 seed per tree)

(1) Object creation

- Create objects, ready to be connected.
 - Nearest Neigbours clustering in each layer
 - If cluster size <= 4, cluster = 1 object
 - If cluster > 4, each cluster hit = 1 object

Allows to:

- to do not care about the multiplicity in gaseous calorimeters
- decrease the size of the problem. NHit → NObject (< NHit)
- accelerate the connection procedure

After NN clustering

After object creation

The algorithms

Tree building

Iteration phase:

- Connector creation between objects (seeding)
- Connector cleaning to obtain a tree structure (cleaning)

Repeat the two previous algorithms as much as needed.

<u>Global idea</u>: create an initial tree structure to start with. Then alterate the latter by creating more optimized connections.

2 Connector creation 1

■ For each object, we look for nearby objects in the 3 next layers within a distance of 45 mm. A connection is then created for each of them.

③ Connector cleaning 1

■ Clean connectors to create a tree structure.

③ Connector cleaning 1

■ Clean connectors to create a tree structure. For each object :

3 Connector cleaning 1

■ Clean connectors to create a tree structure.

For each object:

• Computation of the reference direction :

$$\vec{C}_{ref} = w_{bck} \cdot \sum_{\sigma} \sum_{b} \vec{c}_{b,\sigma} - w_{fwd} \cdot \sum_{\delta} \sum_{f} \vec{c}_{f,\delta}$$
 (5)

③ Connector cleaning 1

■ Clean connectors to create a tree structure. For each object :

Computation of the reference direction :

$$\vec{C}_{ref} = w_{bck} \cdot \sum_{\sigma} \sum_{b} \vec{c}_{b,\sigma} - w_{fwd} \cdot \sum_{\delta} \sum_{f} \vec{c}_{f,\delta}$$
 (5)

 For each object in the backward direction, we define the κ order parameter:

$$\kappa = \left(\frac{\theta}{\pi}\right)^{\rho_{\theta}} \cdot \left(\frac{\Delta}{\Delta_{\textit{max}}}\right)^{\rho_{\Delta}} \tag{6}$$

③ Connector cleaning 1

■ Clean connectors to create a tree structure. For each object :

· Computation of the reference direction :

$$\vec{C}_{ref} = w_{bck} \cdot \sum_{\sigma} \sum_{b} \vec{c}_{b,\sigma} - w_{fwd} \cdot \sum_{\delta} \sum_{f} \vec{c}_{f,\delta}$$
 (5)

 For each object in the backward direction, we define the κ order parameter:

$$\kappa = \left(\frac{\theta}{\pi}\right)^{\rho_{\theta}} \cdot \left(\frac{\Delta}{\Delta_{max}}\right)^{\rho_{\Delta}} \tag{6}$$

• The connector with the smallest κ is kept.

3 Connector cleaning 1

- Clean connectors to create a tree structure. For each object :
 - Computation of the reference direction :

$$\vec{C}_{ref} = w_{bck} \cdot \sum_{\sigma} \sum_{b} \vec{c}_{b,\sigma} - w_{fwd} \cdot \sum_{\delta} \sum_{f} \vec{c}_{f,\delta}$$
 (5)

 For each object in the backward direction, we define the κ order parameter:

$$\kappa = \left(\frac{\theta}{\pi}\right)^{\rho_{\theta}} \cdot \left(\frac{\Delta}{\Delta_{max}}\right)^{\rho_{\Delta}} \tag{6}$$

- The connector with the smallest κ is kept.
- At the end of the algorithm, the other connectors are deleted.

3 Connector cleaning 1

■ Clean connectors to create a tree structure. For each object :

Computation of the reference direction :

$$\vec{C}_{ref} = w_{bck} \cdot \sum_{\sigma} \sum_{b} \vec{c}_{b,\sigma} - w_{fwd} \cdot \sum_{\delta} \sum_{f} \vec{c}_{f,\delta}$$
 (5)

 For each object in the backward direction, we define the κ order parameter:

$$\kappa \, = \, \left(\frac{\theta}{\pi}\right)^{\rho_{\theta}}. \left(\frac{\Delta}{\Delta_{\textit{max}}}\right)^{\rho_{\Delta}} \tag{6}$$

- The connector with the smallest κ is kept.
- At the end of the algorithm, the other connectors are deleted.
- \rightarrow Formation of a tree structure.

The algorithms

4 et 5 Connector alignment

■ From the latest tree structure, more connections are created. This creates an alignment within the shower. A second connector cleaning is then performed to obtain a final tree structure.

The algorithms

(6) Track-to-tree association

- Association between tracks and trees performed with simple criteria :
 - Distance between a tree seed and track extrapolation to the calorimeter front face.
 - Track momentum tree energy comparison
 - Handling of special cases as early interactions

2

(7) Neutral tree merging

- Interaction of neutral particles in an absorber.
- → Many seeds in the same layer, thus many reconstructed trees instead of a single one. Seeds belonging to this kind of configuration are identified and their trees merged.

(8) Pointing trees association

- Association between neutral (daughter) trees and charged or neutral (parent) trees as a function of their main axis (3D linear fit over object positions) and their energies.
 - D.c.a between axes.
 - D.c.a between axis and barycentre
 - Energy criteria (charged parent tree case)

PASSE TILE CHANGED PASTILLE

(9) Small neutral tree merging

■ Small trees (NObj < 20) are merged in the closest bigger tree (NObj > 20).

(1) Particle Flow Objects creation

- Creation of reconstructed particles :
 - one track (if charged particle)
 - one tree

Single particle reconstruction

Reconstruction inputs

- Data : CERN SPS 2012 August-September
- Particles: h[±]
- Energies: [10; 80] GeV by steps of 10 GeV
- "Fake" track generated :
 - $\vec{p} = (0, 0, E_{beam})$
 - Entry point \vec{e} : barycentre (b_x, b_y) of hits in the 5 first layers

$$\rightarrow \vec{e} = (b_x, b_y, z_{front})$$

• No magnetic field $(\vec{B} = \vec{0} \ T)$

Single particle analysis

Efficiency and Npfos

Single particle analysis Reconstructed energy and resolution

Overlaid particles

Overlay of two hadronic events

- Same data set
- Particle 1 energy: 10 GeV
- Particle 2 energies: [10; 50] GeV by steps of 10 GeV

Overlay algorithm:

- Determination of entry points and barycentres.
- Removal of hits belonging to the primary track segment of particle 1 (10 GeV)
- ullet Shower re-centered in calorimeter (x and y) and \pm d/2 shift in the x direction
- · Overlaid hits: the highest threshold is kept
- Hits are tagged 1, 2 or 3 (overlaid)

Overlaid particles Efficiency and purity

Efficiency and purity $\epsilon = \frac{\textit{Nhit}_{good}}{\textit{Nhit}_{ini,tot}} \tag{7}$

$$\rho = \frac{Nhit_{good}}{Nhit_{rec,tot}} \tag{8}$$

Overlaid particles Probability and energy

Conclusion and roadmap

Conclusion

- Particle flow algorithm development based hadronic shower tree topology for the SDHCAL prototype
- Performance extraction for single particle OK
- Performance extraction for two overlaid particles OK till 5 cm

CALICE Analysis Note submitted : CAN-054

Roadmap

- Correction of some algorithms → re-extract performances (to do)
- Implementation for ILD-like detectors :
 - Angular correction for connections (advanced)
 - Implémentation for ECal (started)
 - Muon reconstruction (to do)
 - Photon reconstruction → GARLIC
 - Energy calibration (ECal + HCal) (to do)
- Physics performances :
 - Jet energy resolution and scale (to do)
 - W Z separation
 - Physics channel $e+e-\rightarrow HZ$

Thanks for your attention!

Backup

Particle reconstruction and event selection

Reconstruction: clustering en temps

- Minimum NHit: 7
- ullet Time window : \pm 2

Backup

Particle reconstruction and event selection

Reconstruction: clustering en temps

- Minimum NHit: 7
- $\bullet \ \ \mathsf{Time window} : \pm \ 2$

Hadronic event selection

No cherenköv detector \rightarrow topological selection

• Muon : NHit/N_{layer} > 2.2

Neutral particles : NHit ∈ 5 first layers ≥ 4

• Radiative muons : $\frac{N_{touched\ layers}/RMS>5cm}{N_{touched\ layers}}$ < 20 %

• Electrons : $Z_{begin} \ge 5$ and $N_{touched\ layers} \ge 30$

Backup

ArborPFA - Second connector iteration

6 et 7 Connector alignment

■ From the previous tree structure, more connectors are created.

6 et 7 Connector alignment

■ From the previous tree structure, more connectors are created.

7 Connector cleaning 2

■ Similar second connector cleaning.

One difference : cleaning performed layer per layer starting from the last one, with $\delta=2$

 \rightarrow Connector aligned with forward connections.

 \rightarrow Tree structure!

Backup

60

