Project 3: Online Health Science Knowledge Chatbot Methods and Technologies for Sub-Tasks B/C, E/F, L/M

Team 3.2

March 9, 2025

Sub-Tasks B/C: Keyword Extraction & Inverted Index

Objective 1.2: Keyword Extraction and Indexing

- Method 1: Medical Entity Recognition
 - SpaCy NER Pipeline:
 - Pre-trained biomedical models (e.g., en_core_sci_md) for symptom/disease/drug extraction.
 - Custom rules via Matcher to handle domain-specific terms (e.g., rare diseases).
- Method 2: Inverted Index Construction
 - Lightweight Indexing with Whoosh:
 - Tokenization and stopword removal using nltk.
 - Trade-off: Efficiency for small-to-medium datasets (vs. Elasticsearch).
- Tech Stack:
 - Python, SpaCy, NLTK, Whoosh.

Sub-Tasks E/F: Query Classification

Objective 2.1/2.2: Topic Classification

- Method 1: Unsupervised Clustering
 - K-means with TF-IDF/PCA:
 - Reduce dimensionality to 50-100 features to avoid the "curse of dimensionality."
 - Validate clusters using pyLDAvis for human-in-the-loop refinement.
- Method 2: Supervised Fine-Tuning
 - DistilBERT Multi-Label Classification:
 - Freeze base layers; train only the classification head for efficiency.
 - Optimize for Macro-F1 to handle class imbalance.
- Tech Stack:
 - Scikit-learn, HuggingFace Transformers, PyTorch.

Sub-Tasks L/M: Next-Question Prediction

Objective 5: Context-Aware Prediction

- Method 1: Session Chain Extraction
 - Regex-Based Parsing:
 - Extract $[Q \rightarrow A \rightarrow Q]$ chains from structured Amazon conversations.
 - Store in Neo4j for contextual graph traversal (e.g., symptom—treatment—side-effect).
- Method 2: Generative Prediction
 - GPT-2-small Fine-Tuning:
 - Input: [Q1, A1]; Output: Top-3 candidate Q2.
 - Beam search (beam=5) with length penalty for diverse yet relevant predictions.
- Tech Stack:
 - Neo4j, HuggingFace Transformers, Pandas.