Exercise 1:

Solve the following:

1)
$$\operatorname{Ln}(x+1) + \operatorname{Ln}(x+2) = \ln(x+3)$$

2)
$$\ln\left(\frac{x+1}{x+3}\right) = 1$$

$$3) (lnx)^2 - 3lnx + 2 = 0$$

 $+\infty$

4)
$$\ln (x-2) - \ln(x-3) \le \ln 2$$

$$5) \begin{cases} x + y = 9 \\ lnx + lny = 1 \end{cases}$$

2) Domain:

solving
$$x + 1 = 0$$

$$x = -1$$

Cndn:
$$x + 3 \neq 0$$

$$x \neq -3$$

$$\mathbf{x} \neq -3$$

x +3

$$\frac{x+1}{x+3}=e^1$$

$$x + 1 = x.e + 3e$$

$$x - xe = 3e - 1$$

$$x (1-e) = 3e - 1 - - > x = \frac{3e^{-1}}{1-e}$$

1) Domain:

$$x > -1$$
, $x > -2$, $x > -3$

Number line: $]-1, +\infty[$

$$Ln[(x+1)(x+2)] = Ln(x+3)$$

$$Ln(x^2 + x + 2x + 2) = Ln(x + 3)$$

$$x^2 + 3x + 2 = x + 3$$

$$x^2 + 2x - 1 = 0$$

$$x' = -1 + \sqrt{2}$$
 (acc.) and $x'' = -1 - \sqrt{2}$ (rej.)

3) Domain: x > 0

Let
$$t = \ln x$$

$$t^2-3t+2=0$$

$$t=2$$
 and $t=1$

Then,
$$lnx = 2$$
 $lnx = 1$

$$x = e^2 \qquad x = e$$

(both accepted)

Exercise 1:

Solve the following:

4)
$$\ln (x-2) - \ln(x-3) \le \ln 2$$

$$5) \begin{cases} x + y = 9 \\ lnx + lny = 1 \end{cases}$$

4) Domain:

$$x > 2$$
, $x > 3$

Number line: $]3, +\infty[$

$$\ln \frac{x-2}{x-3} \le \ln 2$$

$$\frac{x-2}{x-3}-2\leq 0$$

$$\frac{x-2-2(x-3)}{x-3} \leq \mathbf{0}$$

$$\frac{-x+4}{x-3} \le 0 \longrightarrow table$$

Number line: domain + sol

Solution: [4, $+\infty$ [

5)
$$x + y = 9$$

 $ln(xy) = 1$ [change $lnx + lny$ to $ln(xy)$]
 $xy = e^{1}$

Then S = 9 and P = e

$$x^2 - 9x + e = 0$$
 ---> calculator
 $x' = 8.69$ (accepted) and $y = 0.31$ (accepted)

Exercise 2:

Find the following limits

$$1) \lim_{x\to 0} \left(\frac{\ln(1+x)}{x}\right)$$

2)
$$\lim_{x\to+\infty} \left(\frac{x\ln x}{x+1}\right)$$
)

$$3) \lim_{x \to +\infty} \ln(\frac{x-1}{x+2})$$

1)
$$\lim_{x\to 0} \left(\frac{\ln(1+x)}{x}\right) = \frac{\ln 1}{0} = \frac{0}{0}$$
 [Ind. form]

$$\lim_{x\to 0} \left(\frac{\ln(1+x)}{x}\right) = \lim_{x\to 0} \left(\frac{\frac{1}{1+x}}{1}\right)$$
$$= \frac{1}{1+0} = 1$$

2)
$$\lim_{x \to +\infty} \left(\frac{x \ln x}{x+1} \right) = \frac{+\infty}{+\infty}$$
 [Ind. form]

L'HR:

$$\lim_{x \to +\infty} \left(\frac{x \ln x}{x+1}\right) = \lim_{x \to +\infty} \left(\frac{\ln x + 1}{1}\right)$$
$$= +\infty$$

$$(xlnx)' = u'v + v'u$$
$$= 1lnx + x \cdot \frac{1}{x} = lnx + 1$$

3)
$$\lim_{x\to+\infty} \ln(\frac{x-1}{x+2}) = \ln\frac{+\infty}{+\infty}$$
 [Ind. form]

$$\lim_{x\to+\infty} \ln\left(\frac{x-1}{x+2}\right) = \ln\left(\lim_{x\to+\infty} \frac{x-1}{x+2}\right)$$

Using H.R

$$\ln(\lim_{x\to+\infty}\frac{1}{1}) = \ln 1$$

Exercise 3

Part A:

Let g be the function defined over $]0; + \infty [$ as $h(x) = x^2 - \ln x + 2$.

- 1) a) Find $\lim_{x\to 0} h(x)$ and $\lim_{x\to +\infty} h(x)$.
 - b) Set up the table of variations of h, deduce that h(x) > 0.

Part B

f is the function defined over]0;+ ∞ [as $f(x) = x - \frac{1 - \ln x}{x}$, (C) is the graph of f.

- 1) a- Find $\lim_{x\to 0} f(x)$ and $\lim_{x\to +\infty} f(x)$.
 - b-Prove that the line (Δ) with equation y = x is an asymptote to (C).
 - c- Study the relative position between (C) and (Δ).
- 2) a- Prove that $f'(x) = \frac{h(x)}{x}$.
 - b- Set up the table of variation of f(x).
 - c- Find the equation of tangent (T) at point B of abscissa 1.
 - d- Calculate $f(\frac{1}{2})$, f(1), then plot (Δ) , (C) and (T).

Test 1 Solution

A]
$$h(x) = x^2 - \ln x + 2$$
.

a)
$$\lim_{x\to 0} h(x) = 0 - \text{Ln } 0 + 2$$

= $+\infty$

$$\lim_{x\to+\infty}h(x)=+\infty-\infty+2$$

$$\lim_{x \to +\infty} x \left(x - \frac{Lnx}{x} + \frac{2}{x}\right) = +\infty \left(+\infty - 0 + 0\right) \text{ Ind. form}$$

$$= +\infty$$

b) h'(x) =
$$2x - \frac{1}{x}$$

= $\frac{2x^2 - 1}{x}$
 $2x^2 - 1 = 0$
 $x = \sqrt{\frac{1}{2}}$

h(x)

h(x)

 $x = \sqrt{\frac{1}{2}}$
 $x = \sqrt{\frac{1}{2}}$

Min h(x) = 2.48 > 0

So, h(x) > 0 for any $x \in]0, +\infty[$

B]
$$f(x) = x - \frac{1 - \ln x}{x}$$

a)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x - \frac{1}{x} - \frac{\ln x}{x})$$
$$= + \infty - 0 - 0$$

$$= +\infty$$

$$\lim_{x \to 0} f(x) = 0 - \frac{1 - \ln 0}{0}$$

$$= -\frac{1 - (-\infty)}{0}$$

$$= -\frac{1-(-\infty)}{0}$$

So,
$$x = 0$$
 is V.A at $-\infty$

Test 1_ Solution

B]
$$f(x) = x - \frac{1 - lnx}{x}$$

b) y = x is O.A?

$$\lim_{x \to +\infty} [f(x) - (x)] = \lim_{x \to +\infty} -\frac{1 - \ln x}{x}$$
$$= \lim_{x \to +\infty} \frac{1}{x} = 0$$

y= x is O.A at + ∞

c) Relative position:

f(x)
$$-(x) = -\frac{1-\ln x}{x}$$

1 - $\ln x = 0$
Lnx = 1
 $x = e^{1}$

(C) below (d)

(C) Above (d)

(C) Intersects (d)

in (e, e)

$$f(x) = x - \frac{1 - \ln x}{x}$$
2)a) $f'(x) = 1 - (\frac{u'v - v'u}{v^2})$

$$= 1 - \frac{-1 - 1 - \ln x}{x^2}$$

$$= \frac{x^2 + 2 - \ln x}{x^2} = \frac{h(x)}{x^2} > 0$$

$$[h(x) > 0 \text{ from part A and } x^2 > 0]$$

b) table:

Test 1_ Solution

$$f(x) = x - \frac{1 - lnx}{x}$$

c) Tangent (D) to (C) at point B with x=1

(D):
$$y-y_B = f'(x_B) (x - x_B)$$

$$y - 0 = 3 (x - 1)$$

(T):
$$y = 3x - 3$$

d) Plot

$$Y = x O.A$$

(e, e) int. point

$$X = 0 V.A$$

(T):
$$y = 3x - 3$$

At B(1,0)

$$f'(1) = \frac{1+2-ln1}{1} = 3$$

$$f(1) = 1 - \frac{1-0}{1} = 0$$

3) Find the area bounded by (C), (d) and the 2 lines x = 1 and x= e.

$$A = \int_{1}^{e} y_{(d)} - f(x) dx$$

$$= \int_{1}^{e} x - \left(x - \frac{1 - \ln x}{x}\right) dx$$

$$= \int_{1}^{e} \frac{1 - \ln x}{x} dx$$

$$U = 1 - \ln x$$
 $u' = -\frac{1}{x} \text{ or du} = -\frac{1}{x} dx$

$$= -\int_{1}^{e} u \, du$$

$$= -\left[\frac{(1-\ln x)^{2}}{2}\right]_{1}^{e}$$

$$= -\left[\frac{(1-\ln e)^{2}}{2} - \frac{(1-\ln 1)^{2}}{2}\right]$$

$$= -\left(0 - \frac{1}{2}\right) = \frac{1}{2}u^{2}$$

