ROBEM I Assume $(N_t: t \geq 0)$ is a Possion process with parament $\alpha \geq 0$ and initial value 0. $\{\xi_n: n \in \mathbb{N}\}$ are i.i.d. r.v. with distribution μ and independent with $(N_t: t \geq 0)$. Let $X_t = \sum_{n=0}^{N_t} \xi_n, t \geq 0$. $\forall s \geq 0$,

- 1. $(N_{s+t} N_s : t \ge 0)$ is a Possion process with parament α .
- 2. $\{\xi_{N_s+n}:n\in\mathbb{N}^+\}$ are i.i.d. with distribution μ and are independent with $(N_{s+t}-N_s:t\geq 0)$.
- 3. $(X_t : t \ge 0)$ satisfies $\forall 0 = t_0 < t_1 < \dots < t_n, X_{t_1}, X_{t_k} X_{t_{k-1}}, k = 2, \dots, n$ are independent.
- SPETION. 1. Suppose $(N_t: t \geq 0)$ satisfies $N_t N_s \sim Possion(\alpha(t-s)), \forall t \geq s \geq 0$, then $(N_{t+r} N_r) (N_{s+r} N_r) = N_{t+r} N_{s+r} \sim Possion(a(t-s))$. Besides, $\forall 0 = t_0 < t_1 < t_2 < \cdots < t_n$, $D_t := N_{t+r} N_r$, then $D_{t_k} D_{t_{k-1}} = N_{t_k+r} N_{t_{k-1}+r}, \forall k = 1, \cdots, n$. So $D_{t_k} D_{t_{k-1}} = N_{s_k} N_{s_{k-1}}, \forall k = 1, \cdots, n$, where $s_k = t_k + r$, are independent to each other. Besides, $N_{0+r} N_r = 0$, obviously $D_{t_k} D_{t_{k-1}}$ is independent to $N_{0+r} N_0$. Last, since the orbit of $(N_t: t \geq 0)$ is continuous, then $N_{t+r} N_r$ is continuous for any $t \geq 0$. Thus, by the definition of Possion process, we get $(N_{t+r} N_r: t \geq 0)$ is Possion process.
- 2. Assume (Ω, \mathscr{F}) , $(\mathbb{N}, \mathscr{P}(\mathbb{N}))$, (E, \mathscr{E}) are sigma algebra. $\xi_n : \Omega \to E$, $N_t : \Omega \to \mathbb{N}$. First of all, we prove that $\forall n \in \mathbb{N}^+$, ξ_{N_s+n} has contribution μ : $\forall A \in \mathscr{E}$, $\mathbb{P}(\{\xi_{N_s+n} \in A\}) = \mathbb{P}(\bigcup_{k=0}^{\infty} \{\xi_{k+n} \in A, N_s = k\}) = \sum_{k=0}^{\infty} \mathbb{P}(\xi_{k+n} \in A, N_s = k) = \sum_{k=0}^{\infty} \mathbb{P}(\xi_{k+n} \in A) \mathbb{P}(N_s = k) = \sum_{k=0}^{\infty} \mathbb{P}(\xi_1 \in A)$.

Secondly, we prove that $\{\xi_{N_s+n}: n \in \mathbb{N}^+\}$ are independent: $\forall J \subset \mathbb{N}^+$, $\operatorname{card}(J) < \infty$, $\{A_i \in \mathscr{E}: i \in J\}$, then $\mathbb{P}(\bigcap_{i \in J} \{\xi_{N_s+i} \in A_i\}) = \mathbb{P}(\bigcup_{k=0}^{\infty} (\bigcap_{i \in J} \{\xi_{k+i} \in A_i, N_s = k\})) = \sum_{k=0}^{\infty} \mathbb{P}(\bigcap_{i \in J} \{\xi_{k+i} \in A_i\}) \cap \{N_s = k\}) = \sum_{k=0}^{\infty} \mathbb{P}(\bigcap_{i \in J} \{\xi_{k+i} : i \in A_i\}) \mathbb{P}(N_s = k) = \sum_{k=0}^{\infty} \mathbb{P}(\bigcap_{i \in J} \{\xi_{1+i} \in A_i\}) = \prod_{i \in J} \mathbb{P}(\xi_{1+i} \in A_i) = \prod_{i \in J} \mathbb{P}(\xi_{N_s+i} \in A_i).$

Last, we will prove that $\{\xi_{N_s+n}:n\in\mathbb{N}^+\}$ are independent with $(N_{t+s}-N_s:t\geq 0)$. $\forall \{A_n\in\mathcal{E}:n\in\mathbb{N}^+\},k\in\mathbb{N},$ then $\mathbb{P}(\bigcap_{n\in\mathbb{N}^+}\{\xi_{N_s+n}\in A_n\}\cap\{N_{t+s}-N_s=k\})=\mathbb{P}(\bigcup_{i\in\mathbb{N}}(\bigcap_{n\in\mathbb{N}^+}\{\xi_{i+n}\in A_n\}\cap\{N_{t+s}=k+i,N_s=i\}))=\sum_{i\in\mathbb{N}}\mathbb{P}(\bigcap_{n\in\mathbb{N}^+}\{\xi_{i+n}\in A_n\}\cap\{N_{t+s}=k+i,N_s=i\})=\sum_{i\in\mathbb{N}}\mathbb{P}(\bigcap_{n\in\mathbb{N}^+}\{\xi_{i+n}\in A_n\})\mathbb{P}(N_{t+s}=k+i,N_s=i)=\sum_{i\in\mathbb{N}}\prod_{n\in\mathbb{N}^+}\mathbb{P}(\xi_{1+n}\in A_n)\mathbb{P}(N_{t+s}=k+i,N_s=i)=\sum_{i\in\mathbb{N}}\prod_{n\in\mathbb{N}^+}\mathbb{P}(\xi_{1+n}\in A_n)\mathbb{P}(N_{t+s}=k+i,N_s=i)=\prod_{n\in\mathbb{N}^+}\mathbb{P}(\xi_{N_s+n}\in A_n)\mathbb{P}(N_{t+s}-N_s=k)=\mathbb{P}(\bigcap_{n\in\mathbb{N}^+}\{\xi_{N_s+n}\in A_n\})\mathbb{P}(N_{t+s}-N_s=k).$

3. $\forall 0 = t_0 < t_1 < \dots < t_n$, then $X_{t_1} = \sum_{i=1}^{N_{t_1}} \xi_i, X_{t_k} - X_{t_{k-1}} = \sum_{i=1}^{N_{t_k} - N_{t_{k-1}} + i} \xi_{N_{t_{k-1}} + i} \xi_i, k = 1$

$$\begin{split} &2, \cdots, n, \text{ then } \forall \{A_k \in \mathscr{E} : k = 1, \cdots, n\}, \\ &\mathbb{P}(\bigcap_{k=1}^{n} \sum_{i=1}^{N_{t_k} - N_{t_{k-1}}} \xi_{i+N_{t_{k-1}}} \in A_k) \\ &= \mathbb{P}(\bigcup_{0 \leq u_1 \leq \cdots \leq u_n} \{\sum_{i=u_{k-1} + 1}^{u_k} \xi_i \in A_k, N_{t_k} = u_k, k = 1, \cdots, n\}) \\ &= \sum_{0 \leq u_1 \leq \cdots \leq u_n} \mathbb{P}(\sum_{i=u_{k-1} + 1}^{u_k} \xi_i \in A_k, k = 1, \cdots, n | N_{t_k} = u_k, k = 1, \cdots, n\}) \mathbb{P}(N_{t_k} = u_k, k = 1, \cdots, n) \\ &= \sum_{0 \leq u_1 \leq \cdots \leq u_n} \mathbb{P}(\sum_{i=u_{k-1} + 1}^{u_k} \xi_i \in A_k, k = 1, \cdots, n\}) \mathbb{P}(N_{t_k} = u_k, k = 1, \cdots, n) \\ &= \sum_{0 \leq u_1 \leq \cdots \leq u_n} \prod_{k=1}^{n} \mathbb{P}(\sum_{i=u_{k-1} + 1}^{u_k} \xi_i \in A_k) \prod_{j=1}^{n} \mathbb{P}(N_{t_j} = u_j) \\ &= \sum_{0 \leq u_1 \leq \cdots \leq u_n} \prod_{k=1}^{n} \mathbb{P}(\sum_{i=1}^{u_k - u_{k-1}} \xi_{u_{k-1} + i} \in A_k) \prod_{j=1}^{n} \mathbb{P}(N_{t_j} - N_{t_{j-1}} = u_j - u_{j-1}) \\ &= \sum_{0 \leq u_1 \leq \cdots \leq u_n} \prod_{k=1}^{n} \mathbb{P}(\sum_{i=1}^{u_k - u_{k-1}} \xi_{u_{k-1} + i} \in A_k) \mathbb{P}(N_{t_k} - N_{t_{k-1}} = u_k - u_{k-1}) \\ &= \sum_{u_1 - u_0 \in \mathbb{N}} \cdots \sum_{u_n - u_{n-1} \in \mathbb{N}} \prod_{k=1}^{n} \mathbb{P}(\sum_{i=1}^{u_k - u_{k-1}} \xi_{u_{k-1} + i} \in A_k, N_{t_k} - N_{t_{k-1}} = u_k - u_{k-1}) \\ &= \prod_{k=1}^{n} \sum_{u_k - u_{k-1} \in \mathbb{N}} \mathbb{P}(\sum_{i=1}^{u_k - u_{k-1}} \xi_{u_{k-1} + i} \in A_k, N_{t_k} - N_{t_{k-1}} = u_k - u_{k-1}) \\ &= \prod_{k=1}^{n} \mathbb{P}(\sum_{i=1}^{N_{t_k} - N_{t_{k-1}}} \xi_{i+N_{t_{k-1}}} \in A_k) \end{split}$$

ROBEM II X is a possion random measure on (E, \mathcal{E}) with intensity μ , where μ is σ finite measure. Prove $\forall f \in (E, \mathcal{E}), f \geq 0$,

$$\mathbb{E}e^{-X(f)} = \exp\left\{-\int_{E} (1 - e^{-f(x)})\mu(dx)\right\}.$$

SOUTON. 1. First, we consider μ is finite and $f = \sum_{i=1}^n \theta_i \mathbb{1}_{B_i}(x)$: Since X is a possion random measure, then $\exists \eta \xi_1, \dots, \xi_n, \dots$, where $\eta \sim Possion(\mu(E)), \{\xi_n : n \in \mathbb{N}^+\}$ are i.i.d., $\xi_1 \sim \overline{\mu} :=$

$$\mu(E)^{-1}\mu$$
.

$$\mathbb{E}e^{-X(f)} = \sum_{m=0}^{\infty} \mathbb{E}(\exp\left\{-\sum_{j=1}^{m} \sum_{i=1}^{n} \theta_{i} \mathbb{1}_{B_{i}}(\xi_{j})\right\}) \mathbb{P}(\eta = m)$$

$$= \sum_{m=0}^{\infty} e^{-\mu(E)} \frac{\mu(E)^{m}}{m!} (\mathbb{E}(\exp\left\{-\sum_{i=1}^{n} \theta_{i} \mathbb{1}_{B_{i}}(\xi_{1})\right\}))^{m}$$

$$= \sum_{m=0}^{\infty} e^{-\mu(E)} \frac{1}{m!} (\int_{E} \exp\left\{-\sum_{i=1}^{n} \theta_{i} \mathbb{1}_{B_{i}}(x)\right\} \mu(\mathrm{d}x))^{m}$$

$$= \exp\left\{-\mu(E) + \int_{E} \exp\left\{-\sum_{i=1}^{n} \theta_{i} \mathbb{1}_{B_{i}}(x)\right\} \mu(\mathrm{d}x)\right\}$$

$$= \exp\left\{\int_{E} \exp\left\{-\sum_{i=1}^{n} \theta_{i} \mathbb{1}_{B_{i}}(x)\right\} \mu(\mathrm{d}x)\right\}$$

$$= \exp\left\{\int_{E} -(1 - \exp\left\{-\int_{i=1}^{n} \theta_{i} \mathbb{1}_{B_{i}}(x)\right\} \mu(\mathrm{d}x)\right\}$$

$$= \exp\left\{\int_{E} -(1 - \exp\left\{-\int_{i=1}^{n} \theta_{i} \mathbb{1}_{B_{i}}(x)\right\} \mu(\mathrm{d}x)\right\}$$

- 2. Secondly, we consider μ is finite and $0 \leq f \in (E, \mathbb{E})$: Then $\exists f_j \geq 0, j \in \mathbb{N}$ is simple measurable function, such that $f_j \to f, j \to \infty, \forall \omega \in \Omega$. So by LCDT, we get $\mathbb{E}e^{-X(f)} = \exp\{\int_E -(1-\exp\{-f(x)\})\mu(\mathrm{d}x)\}$.
- 3. Lastly, we consider μ is σ finite and $0 \leq f \in (E, \mathbb{E})$: Then $E = \bigcup_{i=1}^{\infty} E_i$, $\forall i, \mu(E_i) < \infty$. Let $X_i = X \mathbb{1}_{E_i}(x)$, so $\mathbb{E}e^{-X(f)} = \mathbb{E}e^{\sum_{i=1}^{\infty} X_i(f)} = \mathbb{E}\exp\{\sum_{i=2}^{\infty} X_i(f)\}\exp(\int_{E_1} -(1 \exp\{-f(x)\})\mu(\mathrm{d}x)) = \exp\{\sum_{i=1}^{\infty} \int_{E_i} -(1 \exp\{-f(x)\})\mu(\mathrm{d}x)\}$.

ROBEM III μ is a finite measure, X is a possion random measure with intensity μ on (E, \mathscr{E}) . $\phi: (E, \mathscr{E}) \to (F, \mathscr{F})$ is measurable. Prove: $X \circ \phi^{-1}$ is a possion random measurable with intensity $\mu \circ \phi^{-1}$ on (F, \mathscr{F}) .

SOUTHON. Obviously, $\mu \circ \phi^{-1}$ is measurable on (\mathscr{F}) and finite.

- 1. First, we prove $X \circ \phi^{-1}(B) \sim Possion(\mu \circ \phi^{-1}(B)), \forall B \in \mathscr{F}$: Since $\forall B \in \mathscr{F}, \phi^{-1}(B) \in \mathscr{E}$, then $X \circ \phi^{-1}(B) = X(\phi^{-1}(B)) \sim Possion(\mu(\phi^{-1}(B))) = Possion(\mu \circ \phi^{-1}(B))$.
- 2. Secondly, $\forall B_i \in \mathscr{F}, i \in \mathbb{N}, B_i \cap B_j = \emptyset, i \neq j$, Then $\phi^{-1}(B_i) \cap \phi^{-1}(B_j) = \emptyset$, then $X(\phi^{-1}(B_i)), i \in \mathbb{N}$ are independent. Besides, $X \circ \phi^{-1}(\bigcup_{i \in \mathbb{N}} B_i) = X(\phi^{-1}(\bigcup_{i \in \mathbb{N}} B_i)) = X(\bigcup_{i \in \mathbb{N}} X(\phi^{-1}(B_i))) = \sum_{i \in \mathbb{N}} X(\phi^{-1}(B_i)) = \sum_{i \in \mathbb{N}} X(\phi^{-1}(B$

ROBEM IV $\alpha \geq 0$ is constant, μ is probability on \mathbb{R} and $\mu(\{0\}) = 0$. Let N(ds, dz, du) is a possion random measure on $(0, \infty) \times \mathbb{R} \times (0, \infty)$ with intensity $ds\mu(dz)du$. Y_0 is independent with

N(ds, dz, du). Let

$$Y_t = Y_0 + \int_0^t \int_{\mathbb{R}} \int_0^{\alpha} zN(ds, dz, du), t > 0.$$

Prove: $(Y_t: t \ge 0)$ is a compound possion random process with rate α and jumpping distribution μ

SOLTION. 1. Obviouly, since N(ds,dz,du) is a possion random measure, then $\forall 0=t_0 < t_1 < \cdots < t_n, Y_{t_0}, Y_{t_k} - Y_{t_{k-1}}, k=2,\cdots,n$ are independent.

2. $\forall s, t \geq 0, \theta \in \mathbb{R}$, then

$$\mathbb{E}e^{i\theta(Y_{s+t}-Y_s)} = \mathbb{E}\exp\left\{\int_s^{s+t} \int_{\mathbb{R}} \int_0^\alpha i\theta z N(ds, du, dz)\right\}$$

$$= \exp\left\{t\alpha \int_{\mathbb{R}} (e^{i\theta z} - 1)\mu(dz)\right\}$$

$$= \exp(-t\alpha) \sum_{k=0}^\infty \frac{1}{k!} (t\alpha \int_{\mathbb{R}} e^{i\theta z} \mu(dz))^k$$

$$= e^{-t\alpha} \sum_{k=0}^\infty \frac{(\alpha k)^k}{k!} \int_{\mathbb{R}} e^{i\theta z} \mu^{*k}(dz)$$
(3)

ROBEM V μ is a finite measure, X is a possion random measure with intensity μ on (E, \mathscr{E}) . Prove:

1. $\mathbb{E}[X(f)e^{-X(g)}] = \mu(fe^{-g})\mathbb{E}[e^{-X(g)}]$

2. $\mathbb{E}[X(f)^2 e^{-X(g)}] = [\mu(f^2 e^{-g}) + \mu(f e^{-g})^2] \mathbb{E}[e^{-X(g)}]$

- 1. $\forall \theta \geq 0$, then $\mathbb{E}e^{-X(\theta f + g)} = \exp\left\{-\int_{E}(1 e^{-\theta f(x) g(x)})\mu(dx)\right\}$. Since $e^{-X(\theta f + g)} \geq 0$, then $\mathbb{E}[X(f)e^{-X(\theta f + g)}] = \exp\left\{-\int_{E}(1 e^{-\theta f(x) g(x)})\mu(dx)\right\}\int_{E}f(x)e^{-\theta f(x) g(x)}\mu(dx)$. Thus, when $\theta = 0$, we can get $\mathbb{E}[X(f)e^{-X(g)}] = \mu(fe^{-g})\mathbb{E}[e^{-X(g)}]$.
- 2. $\forall \theta \geq 0$, then $\mathbb{E}[X(f)e^{-X(\theta f + g)}] = \exp\left\{-\int_{E} (1 e^{-\theta f(x) g(x)})\mu(dx)\right\} \int_{E} f(x)e^{-\theta f(x) g(x)}\mu(dx)$. Since $f \geq 0$, $e^{-X(\theta f + g)} \geq 0$, then

$$\mathbb{E}[X(f)^{2}e^{-X(\theta f+g)}]$$

$$= \exp\left\{-\int_{E} (1 - e^{-\theta f(x) - g(x)})\mu(dx)\right\} \left(\int_{E} f(x)e^{-\theta f(x) - g(x)}\mu(dx)\right)^{2}$$

$$+ \exp\left\{-\int_{E} (1 - e^{-\theta f(x) - g(x)})\mu(dx)\right\} \int_{E} f(x)^{2}e^{\theta f(x) - g(x)}\mu(dx).$$

Thus, when $\theta = 0$, we can get $\mathbb{E}[X(f)^2 e^{-X(g)}] = [\mu(f^2 e^{-g}) + \mu(f e^{-g})^2] \mathbb{E}[e^{-X(g)}].$