Introduction to Robotics CSE 461

Lecture 13: Introduction to CNNs and Object Detection

Niloy Irtisam Lecturer, Dept. of Computer Science and Engineering Brac University

Last Class

What is Machine Learning

Neural Network

Mother Law of Machine Learning

$$w1 * x1 + w2 * x2 + w3 * x3 = y$$

x1, x2,, xn = Featuresw1, w2,, wn = Weights

y = output/ target

Neural Network

$$w1 * x1 + w2 * x2 + w3 * x3 = y$$

Input Layer Hidden Layer

Output Layer

Neural Network

Hidden Layers

Two types

- 1. Features are given (Handcrafted Features)
- 2. Raw Data is given not features

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa

Out[33]=

1.	Some data column
	may not a good
	feature.

Some data column may need to be transformed.

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa

1.	Some data column
	may not a good
	feature.

2.	Some data column
	may need to be
	transformed.

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa

- 1. We can do it by our hand (Handcrafted)
- 2. Neural network does this automatically (Deep Learning)

Deep Learning

Deep learning is a type of machine learning based on artificial neural networks in which multiple layers of processing are used to extract progressively higher level features from data.

Let's Do object detection

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa

Cat

Cat

Dog

Dog

Features ??

Pixels as Features

Pixels as Features

Problem with "Pixels as features"

3x3		
1	1	0
4	2	1
0	2	1

$$12*12 = 144$$

680*420*3 = 856,800

Problem with "Pixels as features"

No Structural Features

2	4	9	1	4
2	1	4	4	6
1	1	2	9	2
7	3	5	1	3
2	3	4	8	5

2 -5
Filter /
Kernel

-4

Χ

2

7

3

4

Image

Feature

Convolution

Kernels

Image

Convolved Feature

Pooling Layer

- Used for reducing the number of parameters in case of large images
- Also called Subsampling or Down sampling
- Retains major information
- Max pooling and average pooling are two types of pooling that are used

Architecture of CNNs

In the eyes of the CNN

Classification **Object Detection** Classification + Localization CAT CAT CAT, DOG, DUCK

Some Popular Algorithms

- Solved most of the challenges except for the speed:
 - Faster R-CNN
 - Single Shot MultiBox Detector (SSD)
 - Retina Net
- YOLO algorithm was able to solve the object detection speed issue. Some of it's features are:
 - Speed: This algorithm improves the speed of detection because it can predict objects in real-time.
 - **High accuracy**: provides accurate results with minimal background errors.
 - Learning capabilities: The algorithm has excellent learning capabilities.
 - It has multiple versions: YOLO V1, YOLO 9000, YOLO V3, YOLO V4
 - However, it has lower accuracy than state-of-the-art object detection algorithms

YOLO (You Only Look Once)

- The YOLO framework takes the entire image in a single instance and predicts the bounding box coordinates and class probabilities for these boxes
- It uses the following techniques:
 - Residual blocks
 - Bounding box regression
 - Intersection Over Union (IOU)

Basic Working Principle

2. Each grid predicts B bounding boxes

3.Return bounding boxes above confidence threshold

B=1

If the center of a object falls into a grid cell, that grid cell is responsible for detecting that object

All other bounding boxes have confidence. Threshold below, suppose 0.90. So they were removed