Planejamento de Teste

NutriVitta –
Calculadora de IMC

Histórico da Revisão

Data	Versão	Descrição	Autor
25/08/2022	1.0		Igor Nunes

Índice:

1.	Resu	ımo	4
2.	Intro	odução	4
	2.1	Introdução	4
	2.2	Objetivos	4
3.	Esco	po Geral	5
	3.1	Elementos que serão testados	5
	3.2	Requisitos de testes	5
	3.3	Casos de teste	6
		3.3.1 Teste do método QuadradoAltura	6
		3.3.2 Teste do método CalcularIMC	7
4.	Estra	atégia de Testes	9
	4.1	Técnica	9
	4.2	Explicação Detalhada	9
	4.3	Recursos Utilizados	9
		4.3.1 Ferramentas	10
		4.3.2 Sistema	10
5.	Dese	enho de Testes	10
6.	Cron	nograma das Atividades	13
7.	Rela	tório de Testes	14
	7.1	Teste de Unidade	14
	7.2	Teste de Integração	15
	7.3	Responsáveis	16
8.	Norn	mas e Referências Utilizadas	17

1. Resumo

Esse documento tem por objetivo apresentar o planejamento de teste para determinados elementos do código-fonte, que serão devidamente apresentados e descritos nas seguintes seções do projeto da Calculadora de IMC, um sistema em desenvolvimento da empresa NutriVitta que visa o cálculo do IMC (índice de massa corporal) para a avaliação do grau de obesidade de um indivíduo.

2. Introdução

2.1 Introdução:

A NutriVitta é uma empresa atuante no ramo da nutrição prestando atendimento clínico para seus clientes e tem como objetivo, para poder garantir a melhor realização dessa tarefa, o desenvolvimento de uma calculadora de IMC, uma aplicação que vise o cálculo do IMC. Com a intenção de produzir um sistema com a menor possibilidade de apresentação de erros, foram traçadas rotas de testes para as funcionalidades da aplicação ao longo de seu desenvolvimento, que serão apresentadas e discutidas por meio deste documento.

2.2 Objetivos:

Esse documento de Plano de Teste compõe-se dos seguintes objetivos:

- Identificar informações de projeto existentes e os componentes de software que devem ser testados;
- Listar os Requisitos a testar recomendados;
- Recomendar e descrever as estratégias de teste a serem empregadas;
- Identificar os recursos necessários e prover uma estimativa dos esforços de teste;
- Listar os elementos resultantes do projeto de testes.

3. Escopo Geral

Os testes realizados na aplicação da Calculadora de IMC da empresa NutriVitta, serão dos tipos de teste de unidade e de integração sobre os métodos existentes no sistema, verificando se as contas realizadas pelos usuários apresentarão resultados satisfatórios e corretos, seguindo a classificação de obesidade que pode ser observado no quadro a seguir:

Quadro 1 –	Classificação	do IMC	(2017)).
------------	---------------	--------	--------	----

Categoria	IMC
Abaixo do peso	Abaixo de 18,5
Peso normal	18,5 - 24,9
Sobrepeso	25,0 - 29,9
Obesidade Grau I	30,0 - 34,9
Obesidade Grau II	35,0 - 39,9
Obesidade Grau III	40,0 e acima

Fonte: Abeso

3.1 Elementos que serão testados:

- Método QuadradoAltura;
- Método CalcularIMC.

3.2 Requisitos de testes:

Será considerado como aprovado sem erros o(s) seguinte(s) fluxo(s) de teste(s):

 Valores pré-determinados serão passados para o método e a conta deverá ser realizada retornando o resultado que siga a classificação do Quadro 1, sem apresentação de erro qualquer.

3.3 Casos de teste:

A seguir, serão apresentados os casos de teste, sendo demonstrado o fluxo básico e os resultados esperados:

3.3.1 Teste do método QuadradoAltura:

Método TesteQuadradoAltura:

- 1. Fluxo:
 - a. Entrada de dados: altura (1,80) e resultado esperado (3,24);
 - b. Método QuadradoAltura faz a conta e retorna o resultado real;
 - c. O resultado esperado é comparado com o resultado real;
- 2. Resultados esperados:
 - a. Caso o resultado esperado seja igual ao resultado real, o teste será aprovado;
 - b. Caso o resultado esperado seja diferente do resultado real, o teste falhará.

Método TesteQuadradoAlturaLista:

- 1. Fluxo:
 - a. Entrada de conjunto de dados: alturas e resultados esperados;
 - b. O primeiro conjunto de dados é testado: altura (1,70) e resultado esperado (2,89);
 - c. Método QuadradoAltura faz a conta e retorna o resultado real;
 - d. O resultado esperado é comparado com o resultado real;
 - e. O segundo conjunto de dados é testado: altura (1,60) e resultado esperado (2,56);
 - f. Método QuadradoAltura faz a conta e retorna o resultado real;
 - g. O resultado esperado é comparado com o resultado real;
 - h. O terceiro conjunto de dados é testado: altura (1,90) e resultado esperado (3,61);
 - i. Método QuadradoAltura faz a conta e retorna o resultado real;
 - j. O resultado esperado é comparado com o resultado real;
- 2. Resultados esperados:
 - a. Caso o resultado esperado seja igual ao resultado real para cada conjunto de dados, o teste será aprovado;

b. Caso o resultado esperado seja diferente do resultado real para cada conjunto de dados, o teste falhará.

3.3.2 Teste do método CalcularIMC:

Método TesteCalcularIMC:

1. Fluxo:

- a. Entrada de dados: altura em metros (1,80), peso em quilogramas (70,0) e resultado esperado (Categoria: Peso normal);
- Método CalcularIMC chama o método QuadradoAltura e faz as contas necessárias e retorna o resultado real em formato de string;
- c. É feito uma comparação do resultado esperado com o resultado real, para ver se o real contém o esperado;

2. Resultados esperados:

- a. Caso o resultado esperado esteja contido na string do resultado real, o teste será aprovado;
- b. Caso o resultado esperado não esteja contido na string do resultado real, o teste falhará.

Método TesteCalcularIMCLista:

1. Fluxo:

- a. Entrada de conjunto de dados: altura (em metros), peso (em quilogramas) e resultado esperado;
- b. O primeiro conjunto de dados é testado: altura (1,80), peso (50,0) e resultado esperado (Categoria: Abaixo do peso);
- Método CalcularIMC chama o método QuadradoAltura e faz as contas necessárias e retorna o resultado real em formato de string;
- d. É feita uma comparação do resultado esperado com o resultado real, para ver se o real contém o esperado;
- e. O segundo conjunto de dados é testado: altura (1,80), peso (90,0) e resultado esperado (Categoria: Sobrepeso);
- f. Método CalcularIMC chama o método QuadradoAltura e faz as contas necessárias e retorna o resultado real em formato de string;

- g. É feita uma comparação do resultado esperado com o resultado real, para ver se o real contém o esperado;
- h. O terceiro conjunto de dados é testado: altura (1,80), peso (110,0) e resultado esperado (Categoria: Obesidade Grau I);
- Método CalcularIMC chama o método QuadradoAltura e faz as contas necessárias e retorna o resultado real em formato de string;
- j. É feita uma comparação do resultado esperado com o resultado real, para ver se o real contém o esperado;
- k. O quarto conjunto de dados é testado: altura (1,80), peso (120,0) e resultado esperado (Categoria: Obesidade Grau II);
- Método CalcularIMC chama o método QuadradoAltura e faz as contas necessárias e retorna o resultado real em formato de string;
- m. É feita uma comparação do resultado esperado com o resultado real, para ver se o real contém o esperado;
- n. O quinto conjunto de dados é testado: altura (1,80), peso (140,0) e resultado esperado (Categoria: Obesidade Grau III);
- Método CalcularIMC chama o método QuadradoAltura e faz as contas necessárias e retorna o resultado real em formato de string;
- p. É feita uma comparação do resultado esperado com o resultado real, para ver se o real contém o esperado;
- q. O sexto conjunto de dados é testado: altura (0), peso (120,0) e resultado esperado (Altura inválida!);
- Método CalcularIMC chama o método QuadradoAltura e faz as contas necessárias e retorna o resultado real em formato de string;
- s. É feita uma comparação do resultado esperado com o resultado real, para ver se o real contém o esperado;
- t. O primeiro conjunto de dados é testado: altura (-1,80), peso (120,0) e resultado esperado (Opa! Ocorreu um erro!);
- Método CalcularIMC chama o método QuadradoAltura e faz as contas necessárias e retorna o resultado real em formato de string;
- v. É feita uma comparação do resultado esperado com o resultado real, para ver se o real contém o esperado;

2. Resultados esperados:

- a. Caso o resultado esperado esteja contido na string do resultado real para cada conjunto de dados, o teste será aprovado;
- b. Caso o resultado esperado não esteja contido na string do resultado real para cada conjunto de dados, o teste falhará.

4. Estratégia de Testes

4.1 Técnica:

Será utilizada a técnica estrutural (caixa-branca) para a avaliação e validação do código fonte da aplicação e dos métodos escolhidos. Serão analisados o fluxo e a conclusão do teste para verificar se ocorreu/ocorrerá ou não alguma anormalidade durante o processo com o auxílio de um projeto de automação na linguagem C# e outras ferramentas que simularão a entrada de dados para o sistema pelo usuário final.

4.2 Explicação detalhada:

Serão passados valores pré-determinados como parâmetros para os métodos existente da classe Calculadora e os valores esperados para cada operação (ou outros tipos de dados para confirmação, como um verdadeiro ou falso). Realizada a conta com os parâmetros de entrada, o resultado retornado pelo método será comparado com o valor esperado. Caso o valor esperado e o resultado retornado sejam diferentes, o teste falhará. Caso ambos sejam iguais, o teste terá sucesso.

4.3 Recursos utilizados:

Essa seção tem como objetivo apresentar as ferramentas e tecnologias utilizadas na realização do planejamento, execução e avaliação do teste.

4.3.1 Ferramentas:

As seguintes ferramentas são utilizadas nesse projeto:

	Ferramenta	Proprietário
Planejamento de Teste	Microsoft Office Word	Microsoft
Desenho de Teste	Visual Studio 2022	Microsoft
Execução de Teste	.NET 6.0	Microsoft

4.3.2 Sistema:

A tabela a seguir mostra as condições do computador utilizado e alguns complementos necessários para a realização do projeto:

Sistema	Complementos
Sistema operacional Windows 10 com processador Intel Core i7, memória RAM de 16GB e 520GB de armazenamento SSD.	Além das ferramentas citadas na seção anterior, foram utilizados os projetos de testes MSTest e o XUnit para a preparação, execução e verificação dos testes.

5. Desenho de Testes

Nesta seção será apresentado o código desenvolvido para a realização dos testes. O primeiro código fará referência ao teste do método QuadradoAltura, com a utilização com projeto de teste MSTest:

```
using CaulculadoraIMCPFS;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace CalculadoraIMCMSTest
    [TestClass]
    public class TesteCalculadoraIMCMSTest
        [TestMethod]
        public void TesteQuadradoAltura()
            // Arrange - Preparação
            double altura = 1.80;
            double resultadoEsperado = 3.24;
            // Act - Ação
            var resultado = Calculadora.QuadradoAltura(altura);
            // Assert - Verificação
            Assert.AreEqual(resultadoEsperado, resultado);
        }
        [DataTestMethod]
        [DataRow(1.7, 2.89)]
        [DataRow(1.6, 2.56)]
        [DataRow(1.9, 3.61)]
        public void TesteQuadradoAlturaLista(double altura,
double resultadoEsperado)
        {
            // Act - Ação
            var resultado = Calculadora.QuadradoAltura(altura);
            // Assert - Verificação
            Assert.AreEqual(resultadoEsperado, resultado);
        }
    }
}
```

O próximo código fará referência ao teste do método CalcularIMC, com a utilização do projeto de teste XUnit:

```
using CaulculadoraIMCPFS;
using Xunit;
namespace CalculadoraIMCXUnit
    public class TesteCalculadoraIMCXUnit
         [Fact]
         public void TesteCalcularIMC()
              // Arrange - Preparação
              double altura = 1.80;
              double peso = 70.0;
              string resultadoEsperado = "Categoria: Peso normal";
              // Act - Ação
              var resultado = Calculadora.CalcularIMC(altura,
peso);
              // Assert - Verificação
              Assert.Contains(resultadoEsperado, resultado);
         }
         [Theory]
         [InlineData(1.8, 50.0, "Categoria: Abaixo do peso")]
[InlineData(1.8, 90.0, "Categoria: Sobrepeso")]
         [InlineData(1.8, 110.0, "Categoria: Obesidade Grau I")]
[InlineData(1.8, 120.0, "Categoria: Obesidade Grau II")]
[InlineData(1.8, 140.0, "Categoria: Obesidade Grau III")]
         [InlineData(0, 120.0, "Altura inválida!")]
         [InlineData(-1.8, 120.0, "Opa! Ocorreu um erro!")]
         public void TesteCalcularIMCLista(double altura, double
peso, string resultadoEsperado)
         {
              // Act - Ação
              var resultado = Calculadora.CalcularIMC(altura,
peso);
              // Assert - Verificação
              Assert.Contains(resultadoEsperado, resultado);
         }
    }
}
```

6. Cronograma das atividades

A tabela a seguir mostra o cronograma para realização das atividades:

Tarefa	Data de Início	Data de Término
Planejamento de Teste	15/02/2022	17/02/2022
Documentos de requisitos de revisão	17/02/2022	17/02/2022
Preparação do ambiente de testes	18/02/2022	18/02/2022
Desenvolver o Desenho de Teste	19/02/2022	19/02/2022
Executar o Teste	20/02/2022	20/02/2022
Avaliar Teste	20/02/2022	21/02/2022

7. Relatórios de testes

Nesta seção serão apresentados os relatórios dos resultados dos testes de unidade e de integração, sendo este último realizado na aplicação Chapter Web API.

7.1 Testes de unidades

- Testes do projeto MSTest:

Testes em grupo: 4;

Duração da execução do teste: 5ms;

Duração total: 3 min;

Resultados: 4 Aprovados, 0 Com Falhas, 0 Ignorados;

Descrição: Os testes foram realizados com sucesso, sem apresentar qualquer tipo de erro. Não foram necessários testes adicionais.

- Testes do projeto XUnit:

Testes em grupo: 8;

Duração da execução do teste: 13ms;

Duração total: 5 min;

Resultados: 8 Aprovados, 0 Com Falhas, 0 Ignorados;

Descrição: Os testes foram realizados com sucesso, sem apresentar qualquer tipo de erro. Não foram necessários testes adicionais.

7.2 Testes de Integração

Testes do projeto XUnit:

Testes em grupo: 2;

Duração da execução do teste: 189ms;

Duração total: 2 min;

Resultados: 2 Aprovados, 0 Com Falhas, 0 Ignorados;

Descrição: Os testes foram realizados com sucesso, sem apresentar qualquer tipo de erro. Não foram necessários testes adicionais.

7.3 Responsáveis

Os responsáveis pelo planejamento, execução e avaliação do teste, além de demais possíveis alterações e adaptações será a equipe:

Representante	Igor dos Santos Nunes
Dosorioão	Responsável pelo planejamento,
Descrição	execução e avaliação do teste
	Graduando em Engenharia da
Tipo de Formação	Computação e Programador Full-
_	Stack.
	Testar a funcionalidade do
	componente escolhido, além de
Responsabilidade	garantir integridade do teste, deste
	documento e dos outros relatórios
	advindos do projeto.
Envolvimente	Dedicado integralmente ao
Envolvimento	projeto.

8. Normas e referências utilizadas

A equipe responsável por esse projeto utilizou como base a norma IEEE 829 (2008) para a confecção do planejamento do mesmo e deste documento e seguiu o formato de modelo referência de plano de teste da IBM (disponível no seguinte link: https://www.ibm.com/docs/pt-br/elm/6.0?topic=sections-test-plan-template-reference), sendo possível a existência de alterações e adaptações para a montagem do projeto.