- 1. (2.5 punts) La fórmula recurrent $a_{n+1} = \sqrt{3} a_n$, amb $a_1 = 1$, defineix una successió de nombres reals $\{a_n\}$.
 - a) Demostreu que $1 \le a_n \le 3, \ \forall n \ge 1$
 - b) Demostreu que $\{a_n\}$ és creixent.
 - c) Demostreu que $\{a_n\}$ és convergent.
 - d) Calculeu $\lim_{n\to\infty} a_n$.
- 2. (2.5 punts) Considereu la integral següent:

$$I = \int_{1.2}^{1.6} \frac{e^x}{x} \, dx.$$

- a) Sabent que la funció $f(x) = \frac{e^x}{x}$ satisfà $0 < f^{(4)}(x) < 11$, $\forall x \in [1.2, 1.6]$, calculeu el nombre de subintervals necessaris per obtenir el valor de la integral I amb una precisió de quatre decimals correctes fent ús del mètode de Simpson $(error < 0.5 \cdot 10^{-4})$.
- b) Doneu el valor aproximat de la integral I amb la precisió demanada a l'apartat a).
- 3. (2.5 punts) Considereu la funció $f(x,y) = x^3 + y^3 xy^2 x + 16$.
 - a) Calculeu la derivada direccional de f en el punt P=(1,1) en la direcció del vector $\overrightarrow{v}=(2,1)$.
 - b) Quina és la direcció en la qual f creix més ràpidament en el punt P=(1,1)? Trobeu la derivada direccional de f en aquesta direcció.
 - c) Escriure les equacions del pla tangent i de la recta normal a la superfície z = f(x, y) en el punt M = (1, 1, 16).
- 4. (2.5 punts) Considereu la funció $f(x,y) = x^2 + y^2 + x + y$.
 - a) Trobeu i classifiqueu els punts crítics de f.
 - b) Trobeu els extrems absoluts de f en el recinte:

$$K = \{(x, y) \in \mathbb{R} : x^2 + y^2 \le 2, y \ge 0\}.$$

- 1. (2.5 punts) La fórmula recurrent $a_{n+1} = \sqrt{3 a_n}$, amb $a_1 = 1$, defineix una successió de nombres reals $\{a_n\}$.
 - a) Demostreu que $1 \le a_n \le 3, \ \forall n \ge 1$
 - b) Demostreu que $\{a_n\}$ és creixent.
 - c) Demostreu que $\{a_n\}$ és convergent.
 - d) Calculeu $\lim_{n\to\infty} a_n$.

SOLUCIÓ:

Considerem la successió de nombres reals $\{a_n\}$ definida per $a_{n+1} = \sqrt{3 a_n}$ i $a_1 = 1$.

- a) Demostració per inducció sobre n:
 - (i) És cert per a n = 1: $1 \le a_1 \le 3$, ja que $a_1 = 1$.
 - (ii) Suposem que per a cert $n \geq 1$ se satisfà $1 \leq a_n \leq 3$ (Hipòtesi d'inducció: $1 \leq a_n \leq 3$), i demostrarem que aleshores se satisfà per a n+1: $1 \leq a_{n+1} \leq 3$: A partir de la hipòtesi d'inducció: $1 \leq a_n \leq 3$, s'obté multiplicant per 3: $3 \leq 3a_n \leq 9$, i fent l'arrel quadrada, que conserva designaltats: $\sqrt{3} \leq \sqrt{3a_n} \leq 3$; per tant $1 \leq a_{n+1} \leq 3$, com volíem demostrar.
- b) Demostrem per inducció sobre n que $a_n \leq a_{n+1} \ \forall n \geq 1$:
 - (i) Per a n=1 es satisfà: $a_1 \leq a_2$, ja que $a_1=1$ i $a_2=\sqrt{3}$.
 - (ii) Suposem que per a cert $n \geq 1$ se satisfà $a_n \leq a_{n+1}$ (Hipòtesi d'inducció: $a_n \leq a_{n+1}$), i demostrarem que aleshores se satisfà per a n+1: $a_{n+1} \leq a_{n+2}$: a partir de la hipòtesi d'inducció: $a_n \leq a_{n+1}$, s'obté multiplicant per 3: $3a_n \leq 3a_{n+1}$, i fent l'arrel quadrada: $\sqrt{3a_n} \leq \sqrt{3a_{n+1}}$, és a dir $a_{n+1} \leq a_{n+2}$, com volíem demostrar.
- c) La successió a_n és fitada per l'apartat a) i monòtona per l'apartat b), i per tant és convergent, pel teorema de la convergència monòtona.
- d) Sigui $l=\lim_{n\to\infty}a_n$; aleshores $l=\lim_{n\to\infty}a_{n+1}$. A partir de la fórmula de recurrència $a_{n+1}=\sqrt{3\,a_n}$, s'obté:

$$l = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{3 a_n} = \sqrt{3l} \implies l^2 = 3l \implies l(l-3) = 0.$$

Finalment, atès que la successió a_n és creixent i $a_1 = 1$, i per tant l no pot ser 0, tenim $l = \lim_{n \to \infty} a_n = 3$.

2. (2.5 punts) Considereu la integral següent:

$$I = \int_{1.2}^{1.6} \frac{e^x}{x} \, dx.$$

- a) Sabent que la funció $f(x) = \frac{e^x}{x}$ satisfà $0 < f^{(4)}(x) < 11 \ \forall x \in [1.2, 1.6]$, calculeu el nombre de subintervals necessaris per obtenir el valor de la integral I amb una precisió de quatre decimals correctes fent ús del mètode de Simpson ($error < 0.5 \cdot 10^{-4}$).
- b) Doneu el valor aproximat de la integral I amb la precisió demanada a l'apartat a).

SOLUCIÓ:

Considerem la funció $f(x) = \frac{e^x}{r}$.

a) Una fita superior de l'error del mètode de Simpson és:

$$\left| \int_{a}^{b} f(x)dx - S(n) \right| \le \frac{(b-a)^{5}}{180n^{4}} M_{4},$$

sent M_4 una fita superior del valor abssolut de la derivada quarta de f en l'interval (a,b). En aquest exercici, $a=1.2,\ b=1.6$, i atès que $0< f^{(4)}(x)< 11\ \forall x\in[1.2,1.6]$, tenim que $M_4=11$. Aleshores per obtenir el valor de la integral I amb una precisió de quatre decimals correctes, trobarem el nombre de subintervals n imposant $\frac{(0.4)^5}{180n^4}11<0.5\cdot 10^{-4}$, que equival a $n^4>\frac{(0.4)^5\cdot 11\cdot 10^4}{180\cdot 0.5}$, és a dir $n\geq 1.89$. Aleshores el nombre de subintervals per obtenir el valor de la integral I amb una precisió de quatre decimals correctes fent ús del mètode de Simpson és n=2.

b) Substituint $a=1.2,\ b=1.6,\ n=2$ a la fórmula de Simpson, s'obté:

$$\frac{0.2}{3} [f(1.2) + 4f(1.4) + f(1.6)] \simeq 1.163246$$

El valor de la integral amb la precisió demanada é $I=1.16325\pm0.00005.$

- 3. (2.5 punts) Considereu la funció $f(x,y) = x^3 + y^3 xy^2 x + 16$.
 - a) Calculeu la derivada direccional de f en el punt P=(1,1) en la direcció del vector $\overrightarrow{v}=(2,1)$.
 - b) Quina és la direcció en la qual f creix més ràpidament en el punt P=(1,1)? Trobeu la derivada direccional de f en aquesta direcció.
 - c) Escriure les equacions del pla tangent i de la recta normal a la superfície z = f(x, y) en el punt M = (1, 1, 16).

a) La funció f és polinòmica i per tant de classe C^1 en tot \mathbb{R}^2 . El vector $\overrightarrow{v}=(2,1)$ no és unitari, el normalitzem i tenim: $\overrightarrow{v}'=(\frac{2}{\sqrt{5}},\frac{1}{\sqrt{5}})$, aleshores la derivada direccional de f en el punt P=(1,1) en la direcció del vector $\overrightarrow{v}=(2,1)$ és:

$$D_{\overrightarrow{v}}f(P) = \overrightarrow{\nabla}f(P) \cdot \overrightarrow{v}'.$$

Les derivades parcials de f són:

$$\frac{\partial f}{\partial x} = 3x^2 - y^2 - 1$$
 $\frac{\partial f}{\partial y} = 3y^2 - 2xy$

Per tant $\overrightarrow{\bigtriangledown} f(P) = (\frac{\partial f}{\partial x}(1,1), \frac{\partial f}{\partial y}(1,1)) = (1,1)$, i aleshores:

$$D_{\overrightarrow{v}}f(P) = \overrightarrow{\nabla}f(P) \cdot \overrightarrow{v}' = (1,1) \cdot (\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}) = \frac{3\sqrt{5}}{5}$$

b) Atès que f és de classe C^1 en el punt P, la direcció en la qual f creix més ràpidament en el punt P = (1,1) és la del vector gradient de f en P, es a dir la direcció del vector (1,1).

La derivada direccional de f en aquesta direcció és el mòdul del vector gradient de f en P, es a dir $|(1,1)| = \sqrt{2}$.

c) L'equació del pla tangent a una superfície z=f(x,y) en un punt (a,b,f(a,b)) és:

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b).$$

Per tant, fent $a=1,\ b=1,\ f(a,b)=16,\ \frac{\partial f}{\partial x}(a,b)=\frac{\partial f}{\partial y}(a,b)=1$, tenim l'equació del pla tangent a la superfície z=f(x,y) en el punt M=(1,1,16):

$$z = x + y + 14$$
.

L'equació contínua de la recta normal a una superfície z=f(x,y) en un punt (a,b,f(a,b)) és:

$$\frac{x-a}{\frac{\partial f}{\partial x}(a,b)} = \frac{y-b}{\frac{\partial f}{\partial y}(a,b)} = \frac{z-f(a,b)}{-1}.$$

Per tant, fent $a=1,\ b=1,\ f(a,b)=16,\ \frac{\partial f}{\partial x}(a,b)=\frac{\partial f}{\partial y}(a,b)=1$, tenim l'equació contínua de la recta normal a la superfície z=f(x,y) en el punt M=(1,1,16):

$$x - 1 = y - 1 = -z + 16.$$

- 4. (2.5 punts) Considereu la funció $f(x,y) = x^2 + y^2 + x + y$.
 - a) Trobeu i classifiqueu els punts crítics de f.
 - b) Trobeu els extrems absoluts de f en el recinte:

$$K = \{(x, y) \in \mathbb{R} : x^2 + y^2 \le 2, y \ge 0\}.$$

SOLUCIÓ:

a) La funció f és polinòmica i per tant de classe C^2 en tot \mathbb{R}^2 , per tant els els punts crítics de f són les solucions del sistema:

$$\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases} \Leftrightarrow \begin{cases} 2x + 1 = 0 \\ 2y + 1 = 0 \end{cases}$$

Per tant la funció f té un únic punt crític que és el punt $\left(-\frac{1}{2}, -\frac{1}{2}\right)$. Per tal de classificar aquest punt crític, calculem la matriu Hessiana de f en aquest punt:

$$H(f)\left(-\frac{1}{2}, -\frac{1}{2}\right) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

Atès que el seu determinant és positiu i $\frac{\partial^2 f}{\partial x^2} \left(-\frac{1}{2}, -\frac{1}{2}\right) = 2 > 0$, el punt crític $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ és un mínim relatiu.

b) Atès que f és contínua en tot \mathbb{R}^2 i el recinte K és un compacte (és un semicercle tancat), pel teorema de Weierstrass, f té extrems absoluts en K.

El punt crític trobal a l'apartat anterior no pertany a l'interior de K, per tant no hi ha punts crítics de f a l'interior de K.

Buscarem els punts crítics de f condicionats a ser en la frontera de K:

(i) Punts crítics de f condicionats a ser sobre el segment $\{(x,y) \in \mathbb{R} : y = 0, x^2 + y^2 \le 2\}$: fent y = 0 tenim $f(x,0) = x^2 + x$, que és una funció d'una variable $\varphi(x) = x^2 + x$. Per trobar els punts crítics igualem la seva derivada a 0 i resolem: $\varphi'(x) = 2x + 1 = 0 \Rightarrow x = \frac{-1}{2}$. Així s'obté el punt crític $\left(\frac{-1}{2}, 0\right)$.

(ii) Punts crítics de f condicionats a ser sobre el segment circular $\{(x,y) \in \mathbb{R} : x^2 + y^2 = 2, y \ge 0\}$: construïm la funció de Lagrange:

$$L(x, y, \lambda) = x^{2} + y^{2} + x + y - \lambda(x^{2} + y^{2} - 2)$$

Igualem les seves tres derivades parcials a zero i resolem:

$$\begin{cases} \frac{\partial L}{\partial x} = 0 \\ \frac{\partial L}{\partial y} = 0 \end{cases} \Leftrightarrow \begin{cases} 2x + 1 - 2\lambda x = 0 \\ 2y + 1 - 2\lambda y = 0 \\ x^2 + y^2 - 2 = 0 \end{cases}$$
$$\frac{\partial L}{\partial \lambda} = 0$$

Restant les dues primeres equacions s'obté: $2(x-y)(1-\lambda)=0$. Per tant y=x o $\lambda=1$.

Si $\lambda = 1$, la primera equació equival a 1 = 0, per tant no s'obté cap solució.

Si y = x, de la tercera equació obtenim $2x^2 = 2$, d'on $x = \pm 1$. En el cas x = -1, aleshores y = -1, que no compleix la condició $y \ge 0$. En el cas x = 1, aleshores y = 1 i s'obté el punt crític (1, 1).

(iii) Vèrtexs de K: $(-\sqrt{2},0)$ i $(\sqrt{2},0)$.

Les imatges per f dels punts crítics trobats són:

$$f\left(\frac{-1}{2},0\right) = \frac{3}{4}, \ f(1,1) = 4, \ f(-\sqrt{2},0) = 2 - \sqrt{2}, \ f(\sqrt{2},0) = 2 + \sqrt{2}.$$

Per tant, el valor màxim absolut de f en K és 4 i l'assoleix al punt (1,1) i el valor mínim absolut de f en K és $2-\sqrt{2}$ i l'assoleix al punt $(-\sqrt{2},0)$.