CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 15 GENNAIO 2024

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Scrivere una negazione della formula $\exists y \Big(\forall x \big((\varphi(x) \land \psi(y)) \rightarrow (\psi(y) \rightarrow \theta(x)) \big) \Big)$ in cui non appaia il connettivo di implicazione (qui φ , ψ e θ sono predicati unari).

Esercizio 2. Dare una definizione di partizione di un insieme ed enunciare il teorema fondamentale su partizioni e relazioni d'equivalenza. Fornire una partizione di \mathbb{Z} di cardinalità 2^{10} .

Esercizio 3. Determinare i numeri naturali n tali che $2^n < n!$. (Suggerimento: può essere utile fare uso del principio di induzione). Per quali insiemi finiti a si ha $|\mathcal{P}(a)| < |\operatorname{Sym}(a)|$?

Esercizio 4. Si consideri l'operazione $*: (a, b) \in \mathbb{Z}_{10} \times \mathbb{Z}_{10} \mapsto \bar{6}a + b \in \mathbb{Z}_{10}$.

- (i) Decidere se * è associativa, se è commutativa, se (\mathbb{Z}_{10} ,*) ha elementi neutri a sinistra o a destra e, nel caso la domanda abbia senso, quali suoi elementi sono simmetrizzabili. Che tipo di struttura algebrica è (\mathbb{Z}_{10} ,*)?
- (ii) Siano $P = \{\bar{2}a \mid a \in \mathbb{Z}_{10}\}\)$ e $D = \mathbb{Z}_{10} \setminus P$. Per ciascuno di P e D decidere se è una parte chiusa rispetto a * e, nel caso, rispondere, per la corrispondente struttura indotta, alle stesse domande poste al punto precedente per $(\mathbb{Z}_{10}, *)$.

Esercizio 5.

- (i) Stabilire quali tra $[2027]_{2024}$, $[1024]_{2024}$, $[-2]_{2024}$ e $[10001!]_{2024}$ sono invertibili in \mathbb{Z}_{2024} e quali sono divisori dello zero.
- (ii) Calcolare, utilizzando l'algoritmo euclideo, il massimo comun divisore positivo tra 209 e 165 e trovare quindi tutte le soluzioni delle equazioni congruenziali $209x \equiv_{165} 14$ e $165x \equiv_{209} 44$.

Esercizio 6. Siano F l'insieme delle parti finite non vuote di \mathbb{N} e f l'applicazione $x \in F \mapsto \min x + \max x \in \mathbb{N}$.

- (i) Spiegare perché f è ben definita come applicazione;
- (ii) determinare $\overleftarrow{f}(\{2\})$ e $|\overleftarrow{f}(\{2\})|$;
- (iii) f è iniettiva, suriettiva, biettiva?
- (iv) Detto σ il nucleo di equivalenza di f, determinare $[\{2\}]_{\sigma}$.

Sia ora τ la relazione d'ordine in F definita da:

$$\forall x, y \in F \ (x \tau y \iff (x = y \lor f(x) \text{ è un divisore proprio di } f(y))).$$

- (v) Determinare in (F, τ) eventuali elementi minimali, massimali, minimo, massimo. (F, τ) è un reticolo?
- (vi) Posto $M = \{\{1\}, \{2\}, \{2,3,4\}, \{1,3,5,7\}, \{5,6,7\}, \{9\}, \{10,11,15,60,62\}\}$, disegnare un diagramma di Hasse di (M,τ) , verificare se questo è un reticolo e, nel caso, se è distributivo, complementato, booleano.
- (vii) Determinare in (M,τ) una catena massimale C ed un sottoreticolo booleano massimale B.

Esercizio 7. Per ogni primo positivo p, si consideri il polinomio $f_p = (\bar{4}x^3 + x^2 - \bar{2}x - \bar{4})(x + \bar{1}) \in \mathbb{Z}_p[x]$.

- (i) Determinare l'insieme X dei primi p tali che il resto della divisione tra f_p e $x-\bar{2}$ sia $\bar{0}$.
- (ii) Posto $p = \max X$, decomporre f_p in prodotto di polinomi irriducibili in $\mathbb{Z}_p[x]$.
- (iii) f_p ha un divisore irriducibile monico di grado 2? In caso di risposta affermativa, dire quanti ne ha ed esibirne almeno uno.