CS 2022/ MA 2201 Discrete Mathematics A term 2020

Solutions for Homework 1

1. Exercise 16 on page 14.

Solution:

- (a) $r \wedge \neg q$
- (b) $p \wedge q \wedge r$
- (c) $r \to p$
- (d) $p \wedge \neg q \wedge r$
- (e) $(p \land q) \to r$
- (f) $r \leftrightarrow (q \lor p)$
- (20 points)
- 2. Construct truth tables for each of the following compound propositions.
 - (a) $(p \wedge q) \vee (p \wedge r)$
 - (b) $(q \wedge p) \leftrightarrow (q \oplus p)$

Solution:

	p	q	r	$(p \land q) \lor (p \land r)$
	T	T	T	T
	T	$\mid T \mid$	F	T
	T	F	T	T
(a)	T	F	F	F
	F	T	T	F
	F	T	F	F
	F	F	T	F
	F	F	F	F
				•

(b)
$$\begin{vmatrix} p & q & (q \land p) \leftrightarrow (q \oplus p) \\ T & T & F \\ T & F & F \\ F & T & F \\ F & F & T \end{vmatrix}$$

(20 points)

3. Are the following compound propositions tautologies?

(a)
$$((p \to q) \land (q \to r)) \to (p \to r)$$

(b)
$$((p \land q) \land (q \land r)) \rightarrow (p \land r)$$

(c)
$$((p \oplus q) \land (q \oplus r)) \rightarrow (p \oplus r)$$

In other words are the logical operators implication, conjunction and exclusive-or transitive?

Solution:

(a) $((p \to q) \land (q \to r)) \to (p \to r)$ is a tautology because

p	q	r	$((p \to q) \land (q \to r)) \to (p \to r)$
T	T	T	T
$\mid T$	T	F	T
$\mid T$	F	T	T
$\mid T$	F	F	T
F	T	T	T
$\mid F \mid$	T	F	T
F	F	T	T
F	F	F	T

(b) $((p \land q) \land (q \land r)) \rightarrow (p \land r)$ is also a tautology because

p	q	r	$((p \land q) \land (q \land r)) \to (p \land r)$
T	T	T	T
$\mid T \mid$	T	F	T
$\mid T \mid$	F	T	T
$\mid T \mid$	F	F	T
F	T	T	T
F	T	F	T
F	F	T	T
F	F	F	T

(c) $((p \oplus q) \land (q \oplus r)) \rightarrow (p \oplus r)$ is not a tautology as seen by the case where p and r are T and q is F, or the case where p and r are F and q is T.

Thus the operators \rightarrow and \land are transitive but \oplus is not transitive. (20 points)

4. Exercise 28 on page 38.

Solution: They are logically equivalent since they have the same columns in the truth table:

p	q	r	$(p \to q) \lor (p \to r)$	$p \to (q \lor r)$
T	T	T	T	T
$\mid T \mid$	T	F	T	T
T	F	T	T	T
$\mid T \mid$	F	F	F	F
F	T	T	T	T
F	T	F	T	T
F	F	T	T	T
F	F	F	T	T

(20 points)

5. Exercise 16 on page 70.

Solution: There are more than one correct solutions. Here is one. Let P(s, c, m) be the statement that student s has class standing c and is majoring in m. The variable s ranges over students in the class, the variable s ranges over the four class standings, and the variable s ranges over all possible majors. Then:

- (a) $\exists s \exists m P(s, junior, m)$. This is T.
- (b) $\forall s \exists c P(s, c, computer science)$. This is F, since there are some mathematics majors.
- (c) $\exists s \exists c \exists m \ (P(s,c,m) \land (c \neq junior) \land (m \neq mathematics))$. This is true, since there is a sophomore majoring in computer science.
- (d) $\forall s(\exists cP(s, c, computerscience) \lor \exists mP(s, sophomore, m))$. This is false, since there is a freshman mathematics major.

(e) $\exists m \forall c \exists s P(s, c, m)$. This is false. It cannot be that m is mathematics, since there is no senior mathematics major, and it cannot be that m is computer science, since there is no freshman computer science major. Nor, of course, can m be any other major.

(20 points)