

Institut d'Optique Graduate School Interfaçage Numérique

Interfaçage Numérique

Travaux Pratiques

Semestre 6

Robotique et systèmes embarqués

4 séances

Ce sujet est disponible au format électronique sur le site du LEnsE - https://lense.institutoptique.fr/ dans la rubrique Année / Première Année / Interfaçage Numérique S6 / Robotique.

Robotique et systèmes embarqués

À l'issue des séances de TP concernant le **bloc de robotique**, les étudiant es seront capables de :

- Développer et mettre en œuvre une solution d'électronique embarquée pour mettre en mouvement un robot
- Concevoir un **programme embarqué** permettant de **rendre autonome les mouvements d'un robot**

Objectifs du mini-projet

L'objectif principal de ce mini-projet est de **développer le code embarqué d'une plateforme robotique** lui permettant de se déplacer de manière autonome le long d'une ligne sans percuter d'obstacle.

Vous aurez à votre disposition une **maquette** basée sur un robot Joy-It Car. Cette maquette est pilotée par une carte Nucléo (contenant un microcontroleur).

Déroulement du bloc

La liste des étapes à suivre pour la réalisation du programme embarqué de la plateforme de rayonnement lumineux est donnée à titre indicatif. L'ordre et le choix des différentes étapes sont laissés à l'appréciation des différents binômes.

Afin de faciliter la réutilisation des codes, il pourra être intéressant de définir des fonctions pour le pilotage des différents éléments.

Séance 1 / Arduino et Nucléo-STM32 (sans maquette!!)

Le sujet de cette séance est fourni dans un document annexe, disponible aussi sur le site du LEnsE - https ://-lense.institutoptique.fr/ dans la rubrique Année / Première Année / Interfaçage Numérique S6 / Bloc Systèmes embarqués / Intro Arduino et STM32.

- Etape 0 30 min Installer les drivers STM32 et tester un premier programme
- Etape 1 45 min Piloter des sorties numériques LED
- Etape 2 45 min Acquérir des données numériques Bouton-poussoirs
- Etape 3 45 min Mettre en œuvre des interruptions sur des événements externes
- Etape 4 45 min Utiliser des sorties modulées en largeur d'impulsion (PWM) LEDs
- Etape 5 60 min Acquérir des données analogiques Potentiomètre

Séance 2 / Prise en main de la maquette et déplacements élémentaires

- **Etape 6 60 min** Piloter l'intensité des LEDs de la maquette
- Etape 7 90 min Piloter les moteurs à courant continu
- Etape 8 60 min Acquérir des données des capteurs de ligne
- Etape 9 60 min Piloter les phares du robot à l'aide de la bibliothèque WS2812 (NeoPixel)

Séances 3 et 4 - Pilotage de haut niveau

Les deux séances suivantes seront consacrées au pilotage du robot pour lui permettre de suivre une ligne ou/et d'éviter les obstacles qu'il rencontre sur son chemin.

Les étapes possibles sont les suivantes :

- **Etape 10 120 min** Définir et tester une première structure de code permettant de piloter les deux moteurs du robot en fonction de la détection des lignes
- Etape 11 90 min Acquérir les signaux du capteur ultrason
- Etape 12 90 min Piloter le servomoteur associé au capteur ultrason
- Etape 13 180 min Améliorer le programme de contrôle du robot

Vous pourrez également ajouter d'autres éléments présents sur la carte : encodeur de vitesse sur les roues, capteurs de température (analogique ou numérique en I2C), accéléromètre (I2C).

Séance 2 / Prise en main de la maquette et déplacements élémentaires

Etape 6 - 60 min Piloter l'intensité des LEDs de la maquette

Etape 7 - 90 min Piloter les moteurs à courant continu

Etape 8 - 60 min Acquérir des données des capteurs de ligne

Etape 9 - 60 min Piloter les phares du robot à l'aide de la bibliothèque WS2812 (NeoPixel)

Objectifs de la séance

Cette seconde séance est consacrée à la **prise en main de la maquette** et au développement des **fonctionnalités permettant les déplacements élémentaires** de la plateforme.

Description de la maquette

Eléments constitutifs

Alimentation électrique

La tension maximale admissible par les moteurs est de 7 V!

Brochage

Entrées-Sorties standard

Maquette	Broche Nucléo	Туре	Description
LED1	PC7	Sortie / PWM	Led active à l' état haut
LED2	PB13 Sortie / PWM Led active à l' état bas		Led active à l' état bas
SW1	PA11	Entrée	Bouton-poussoir, par défaut état bas
SW2	PA12	Entrée	Bouton-poussoir, par défaut état bas
USERBUTTON	PC13	Entrée	Bouton-poussoir, par défaut état haut
POT_OUT	PC3	Entrée analogique	Potentiomètre

Moteurs

Maquette	Broche Nucléo	Туре	Description	
MOT_EN	PA9	Sortie	Validation des moteurs	
MOT_L_1	PB4	Sortie / PWM	Moteur Gauche direction 1	
MOT_L_2	PA8	Sortie / PWM Moteur Gauche direction		
MOT_R_1	PA0	Sortie / PWM Moteur Droit direction		
MOT_R_2	PA1	Sortie / PWM Moteur Droit direction		

Phares NeoPixel / SW2812

Maquette	quette Broche Nucléo		Description
DIN_1	PC0	Sortie	Phare avant droit
DIN_2	PA10	Sortie	Phare avant gauche
DIN_3	PC5	Sortie	Phare arrière gauche
DIN_4	PA13	Sortie	Phare arrière droit

Capteurs

Maquette	Broche Nucléo	Туре	Description	
TEMP_OUT	PC2	Entrée analogique	Capteur de température MCP9700	
LINE_L	PA7	Entrée	Capteur de ligne Gauche	
LINE_C	PB6	Entrée	Capteur de ligne Centre	
LINE_R	PA5	Entrée	Capteur de ligne Droit	
SPEED_L	PC9	Entrée	Vitesse moteur Gauche	
SPEED_R	PC8	Entrée	Vitesse moteur Droit	
US_TRIG	PB5	Sortie	Capteur ultrason - Trig	
US_ECHO	PB3	Entrée	Capteur ultrason - Echo	
SERVO	PB7	Sortie / PWM Servomoteur du capteur Ul		

Accéléromètre / MikroE-6DOF IMU 3 Click

Ce module fonctionne à l'aide du protocole I2C.

Maquette	Broche Nucléo	Type	Description
SDA	PB9	Entrée-Sortie	Signal de données bidirectionnel
SCL	PB8	Sortie	Signal d'horloge
RESET	PC4	Sortie	Reset matériel du composant
Interrupt	PB10	Entrée	Interruption sur réception

Capteur température numérique / TC74A2

Ce module fonctionne à l'aide du protocole I2C.

Maquette	Broche Nucléo	Туре	Description
SDA	PB9	Entrée-Sortie	Signal de données bidirectionnel
SCL	PB8	Sortie	Signal d'horloge

Communication nRF24L01

Ce module fonctionne selon le protocole SPI. Il doit nécessairement être utilisé avec un second module afin de pouvoir transmettre des données entre deux microcontroleurs.

Maquette	Broche Nucléo	Туре	Description	
SPI				
SCK	PC10	Sortie	Signal d'horloge	
MISO	PC11	Entrée	Données entrantes	
MOSI	PC12	Sortie	Données sortantes	
CS	PA14	Sortie	Sélection du composant	
CE	PD2	Sortie	Validation du composant (puissance)	
INT	PA15	Entrée	Interruption sur réception	

Utilisation de la sortie modulée PB7

```
1 LL_GPIO_SetAFPin_0_7(GPIOB, GPIO_PIN_7, GPIO_AF1_TIM2);
```

Etape 9 - Acquérir des données de l'accéléromètre (I2C)

Temps conseillé: 90 min

Le composant que nous allons étudier est un **accéléromètre et magnétomètre** intégrés sur une même puce de silicium. Sa référence est **FXOS8700CQ**. Ce composant est intégré au module *MikroE* **DOF6 - IMU Click**.

Protocole I2C

DESCRIPTION PROTOCOLE et CONNECTIQUES!

ATTENTION! Les broches utilisées sur la carte Nucléo pour l'I2C ne sont pas celles par défaut. Il est indispensable de préciser les broches SDA et SCL à l'aide des méthodes suivantes :

```
1 Wire.setSDA( PB9 );
2 Wire.setSCL( PB8 );
```

ightharpoonup Ouvrir le code 09_accelero.ino fourni. Compiler ce code et téléverser ce code dans la carte Nucléo.

Ce code contient les fonctions *test_FXOS()* et *read_i2c_buffer()*, ainsi que des définitions des registres internes du composant.

→ M

Configuration

Récupération des données

These registers contain the X-axis, Y-axis, and Z-axis 14-bit left-justified sample data expressed as 2's complement numbers. [NXP Doc p.52 of 113]

Traceur Série

```
Serial.print(valeur1);
Serial.print(",");
Serial.print(valeur2);
Serial.print(",");
Serial.print(valeur3);
Serial.print(",");
Serial.print(valeur4);
Serial.println();
```


Robot Joy-It Car / Présentation du matériel

La tension maximale admissible par les moteurs est de $7\,\mathrm{V}\,!$

Institut d'Optique Graduate School Interfaçage Numérique

Interfaçage Numérique

Travaux Pratiques

Semestre 6

Ressources

Bloc Robot

Liste des ressources

- Schéma de la carte du robot Joy-It CarPCB de la carte du robot Joy-It Car

