

$$\mu = 58$$
 +30 Marks

 $\mu = 58$ +30 Marks

 $\mu = 58$ +30 Marks

 $\mu = 58$ Marks

$$\begin{array}{c|cccc}
(x - \overline{x}) & (x - \overline{x})^{2} \\
-4 & 16 \\
+4 & 16 \\
-15 & 225 \\
1 & 196 \\
\hline
-454 \\
\hline
-5 = 90.8
\end{array}$$

0= 190.8

= 9.53

$$\frac{7}{250000}$$

$$\frac{7}{250000}$$

$$-4/9.5 = -0.42$$

$$-15/9.5 = -1.57$$

$$1/9.5 = 0.1$$

$$14/9.5 = 1.47$$

7score = X - M 7score = X

X. - How many standard deviations away the Mean value.

Marks	Zsco
54	-0.4
62	+ 0.42
4 3	-1.57
59 72	0.1
72	+1.47
M=58	$\mu = 0$
0=9.5	G = 1

Standardize Nermal distribution

$$76\% = \frac{680 - 711}{29}$$

$$= -1.06$$

14.45 ./.

2-table

47-1.

Confidence Intervals

Point Estimate -> X

Range Estimate =
$$\times \pm \stackrel{\times}{\Rightarrow}$$
 $C = 95\%$
 $A = 95\%$

Margin of Error

 $A = 95\%$
 $A = 95\%$

And $A = 95\%$
 $A = 95\%$

$$C = 95 \cdot 1 \quad x = 5 \cdot 1 = 5 \cdot$$

C = 80%

C = 80%.

$$C = 95^{-1}/. = 0.95^{-1}$$
 $x = 5^{-1}/. = 0.05^{-1}$
 $x = 2.5 = 0.025^{-1}$

C= 90%

$$\Delta = \frac{Z_{K/2} \cdot \sigma_{pop}}{\sqrt{n}}$$

$$\Delta = \frac{1.96 \cdot 2500}{\sqrt{140}}$$

$$= 414.125$$

$$X = 1940$$
 $M = 140$
 $C = 90 \%$
 $X = 1 - C$
 $X = 10 \%$
 $X = 10 \%$
 $X = 10 \%$

