

19.07.2003

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen:	102 29 969.2
Anmeldetag:	03. Juli 2002
Anmelder/Inhaber:	Wittenstein AG, Igelsheim/DE
Bezeichnung:	System zum Herstellen von Getrieben
IPC:	F 16 H 1/46

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 10. Juli 2003
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

Agurks

**PRIORITY
DOCUMENT**
 SUBMITTED OR TRANSMITTED IN
 COMPLIANCE WITH RULE 17.1(a) OR (b)

10

Wittenstein AG
Walter-Wittenstein-Strasse 1
DE-97999 Igersheim

15

System zum Herstellen von Getrieben

Die Erfindung betrifft ein System zum Herstellen von
20 Getrieben, welches aus verschiedenen Baugruppen besteht.

Es sind Getriebe bekannt, die aus ein, zwei oder ggf. drei
Gehäuseteilen bestehen und entsprechende Stufen,
Übersetzungsstufen etc. aufweisen.

Ferner sind Kinematiken bekannt, bei Getrieben als SP- oder
TP-Kinematiken. Die einzelnen Getriebe sind als Baureihen,
beispielsweise in der Kinematik SP oder in der Kinematik TP
ausgeführt. Dabei können entweder nur lange gerade Getriebe
30 mit einer bestimmten Baureihe ausgeführt werden. Mit ganz
anderen Baugruppen können kurze, dicke Getriebe,
beispielsweise als TP-Getriebe ausgeführt werden.

Es gibt daher nur verschiedene Grundbauarten, Getriebe mit
35 unterschiedlichen Kinematiken.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein System der eingangs genannten Art zu schaffen, welches universell einsetzbar ist und bei welchem 5 zumindest teilweise Baugruppen für unterschiedlichste Kinematiken und Grundbauarten von Getriebe verwendet werden können.

Dabei sollen die Anzahl von Baugruppen für beliebige Typen 10 minimiert werden, wobei verschiedene Kinematiken, Übersetzungsverhältnisse bzw. Leistungsflüsse realisiert werden sollen. Ferner sollen die Teile zur Reduktion von Fertigungskosten reduziert werden.

15 Zur Lösung dieser Aufgabe führt, dass über eine unterschiedliche Montage der Baugruppe (H_{an}) mit der Baugruppe (H_{ab}) und (A_2) ein Getriebe der SP-Kinematik oder TP-Kinematik zusammensetzbare ist.

20 Bei der vorliegenden Erfindung können mit den wesentlichen Kernbaugruppen, wie beispielsweise Motor, Adapterplatte Motor, Hohlwellenrad der Abtriebsstufe, Hohlrad der Antriebsstufe sowie Abtriebseinheit, ausgeführt als Abtriebswelle oder Abtriebsflansch, ein-, zwei- oder dreistufige Getriebe mit unterschiedlichen Abtriebseinheiten hergestellt werden. Dabei soll die Abtriebseinheit als Abtriebswelle oder als Abtriebsflansch ausgebildet sein.

30 Ferner ist wichtig bei der vorliegenden Erfindung, dass über unterschiedliche Montagen ein entsprechendes unterschiedliches Verbinden des Hohlrades der Antriebsstufe mit einerseits einem Universalplanetenradträger der Abtriebsstufe ein Getriebe nach der TP-Kinematik realisiert 35 werden kann oder durch eine andere Montage das Hohlrad der

Antriebsstufe mit dem feststehenden Gehäuse verschraubt werden kann, um ein Getriebe der SP-Kinematik zu realisieren.

- 5 Dabei können sämtliche Getriebe als TP- oder SP-Getriebe mit den gleichen Kernbaugruppen zusammenmontiert werden, ohne das zusätzliche andere zusätzliche Baugruppen erforderlich sind.
- 10 Gleichzeitig kann in dem Universalsystem bzw. Universalbaukasten jeweils ein ein-, zwei- oder dreistufiges Getriebe wählbar mit Einheiten hergestellt werden.
- 15 Hierdurch wird die Anzahl sämtlicher Baugruppen für unterschiedliche Getriebekinematiken und unterschiedliche Getriebetypen, ob lang oder kurz bzw. TP- oder SP-Getriebe erheblich reduziert.
- 20 Dabei sind verschiedene Kinematiken auch Übersetzungsverhältnisse und Leistungsflüsse mit ein und denselben Baugruppen realisierbar.

Ferner können die einzelnen Baugruppen bzw. Gehäuseteile miteinander verschraubt oder verschweisst, verklebt oder über formschlüssige Verbindungen miteinander verbunden werden. D.h. ferner, dass auch kundenspezifische Getriebe, was insbesondere beispielsweise Flansche, Wellen, Abtriebsflansche, Sensoren od. dgl. betrifft, sehr leicht spezifizieren sind, da lediglich diese Baugruppen der Abtriebseinheit bzw. der Abtriebswelle bzw. des Abtriebsflansches spezifiziert und angepasst werden müssen. Alle übrigen Baugruppen können zur Herstellung eines ein-, zwei- oder dreistufigen Getriebes als TP- oder SP-Ausführung ihre ursprüngliche Form beibehalten.

Auch können entsprechende einzelne Baugruppen der Abtriebswelle oder des Abtriebsflansches beispielsweise mit entsprechenden Sensoren od. dgl. versehen werden. Dies soll
5 ebenfalls im Rahmen der vorliegenden Erfindung liegen.

Insbesondere die Wahl der Abtriebsbaugruppen bzw. der Abtriebseinheiten eignen sich besonders zur Spezifizierung von Getrieben für spezielle kundenspezifische Veränderungen
10 od. dgl..

Auch ist denkbar, ggf. an ein-, zwei- oder dreistufige Getriebe, ausgeführt als SP- oder TP-Getriebe, unterschiedliche Motoren und Anbauteile zuflanschen.
15 Hierdurch entsteht ein universelles System, insbesondere ein Universalbaukasten, welcher gewährleistet, dass die einzelnen Baugruppen zur Herstellung von Getrieben mit unterschiedlichen Kinematiken, unterschiedlichen wählbaren Übersetzungsverhältnissen und unterschiedliche
20 Getriebeausführungen bzw. Getriebetypen als SP- oder TP-Baureihen in ein und derselben Anzahl von Baugruppen aufgebaut werden kann. Dies spart erhebliche Fertigungskosten ein und gewährleistet dem Benutzer, dass er selbst anwenderspezifisch ein Getriebe aufbauen kann.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in

5

Figur 1a eine schematisch dargestellte Anordnung von einzelnen Baugruppen zum Herstellen von unterschiedlichen Getrieben, insbesondere zum Herstellen eines einstufigen, zweistufigen und dreistufigen Getriebes;

10

Figur 1b schematisch dargestellte Ansichten auf einen Kinematikplan eines SP-Getriebes und eines TP-Getriebes;

15

Figur 2a und 2b schematisch dargestellte Draufsichten auf einen Motor sowie eine Adapterplatte für einen Motor;

20

Figuren 3a und 3b schematisch dargestellte Längsschnitte durch zwei verschiedene Anbauteile mit Klemmnaben und integriertem Sonnenrad;

25

Figur 3c einen schematisch dargestellten Längsschnitt durch ein weiteres Anbauteil mit integriertem Sonnenrad und Planetenrad;

30

Figur 4 einen schematisch dargestellten Längsschnitt durch das Bauteil Hohlrad der Antriebsstufe;

35

Figur 5 einen schematisch dargestellten Längsschnitt durch ein weiteres Bauteil als Hohlwellenrad der Abtriebsstufe;

Figuren 6a und 6b schematisch dargestellte Längsschnitte durch Abtriebseinheiten, ausgeführt als Abtriebsflansch A_F oder Abtriebswelle A_w .

35

Gemäss Figur 1a zeigt ein erfindungsgemässes System S zum Herstellen von unterschiedlichen Getrieben, einstufigen, zweistufigen oder dreistufigen Getrieben unterschiedliche Möglichkeiten auf, ein ein- oder zwei- oder dreistufiges
5 Getriebe aus unterschiedlichen Baugruppen, zusammenzusetzen, wobei gewisse gleiche Baugruppen in jedem Getriebe verwendet werden können.

Jedes Getriebe kann auch als Baugruppe von Bauteilen mit
10 Motor M ggf. Adapterplatte Motor A_M sowie das Hohlwellenrad H_{ab} und eine hier gestrichelt dargestellte Abtriebseinheit A_E verwendet werden.

Dabei kann als Abtriebseinheit A_E dem Hohlwellenrad der
15 Abtriebsstufe H_{ab} wahlweise eine Abtriebswelle A_W oder ein Abtriebsflansch A_F als Baugruppe nachgeschaltet werden.

Soll ein einstufiges Getriebe hergestellt werden, so werden die Baugruppen Motor ggf. Adapterplatte A_M ein erstes
20 Anbauteil A_1 dann das Hohlwellenrad der Abtriebsstufe H_{ab} und abschliessend eine beliebige Abtriebseinheit A_E angefügt. An das Hohlwellenrad der Abtriebsstufe H_{ab} schliesst entweder die Abtriebswelle A_W oder Abtriebsflansch A_F als Abtriebseinheit A_E an. Die Ausführung der Abtriebseinheit A_E ist kundenspezifisch wählbar und lässt sich auch kundenspezifisch ändern.

Hierdurch entsteht ein einstufiges Getriebe, welches sich insbesondere im Bereich der Abtriebseinheit A_E
30 kundenspezifisch modifizieren lässt. Beispielsweise können beliebige Flansche, Sonderausführungen von Wellen, Sensoren od. dgl. in diesen Baugruppen modifiziert sein oder diese entsprechend verändert werden.

Diese passen dann noch auf die Baugruppen Motor M, Anbauteil A₁ bzw. insbesondere auf das Hohlwellenrad der Abtriebsstufe H_{ab}.

- 5 Um ein zweistufiges Getriebe zu erhalten, wird ebenfalls wieder der Motor M, ggf. die Adapterplatte Motor A_M mit einem zweiten Anbauteil A₂ verbunden, an welches ein Hohlrad der Antriebsstufe H_{an} anschliesst. An dieses schliesst dann in oben beschriebener Weise das
10 Hohlwellenrad der Abtriebsstufe H_{ab} an, woran wieder in oben beschriebener Weise je nach Kundenwunsch und Ausführungsform eine beliebige Antriebseinheit A_E als Abtriebswelle A_w oder als Abtriebsflansch A_f ausgeführt sein kann. Wichtig ist hier, dass zumindest bei der
15 Aufführung eines ein- oder zweistufigen Getriebes zumindest die Baugruppen Motor M, Adapterplatte Motor A_M und Hohlwellenrad der Abtriebsstufe H_{ab} und wahlweise die Antriebseinheit A_E wieder ohne Änderungen als gleiche Baugruppen verwendet werden können.

20

Um ein dreistufiges Getriebe zu erhalten muss bei einem entsprechenden Aufbau des zweistufigen Getriebes lediglich zwischen die Baugruppen, Anbauteil A₂ und Hohlrad der Antriebsstufe H_{an} ein weiteres Anbauteil A₃ dazwischen eingesetzt werden.

- Je nach Kundenwunsch und Ausführung des dreistufigen Getriebes lässt sich dann in oben beschriebener Weise an
30 das Hohlwellenrad der Abtriebsstufe H_{ab} wahlweise eine beliebige Antriebseinheit A_E als Abtriebswelle A_w oder Antriebsflansch A_f anschliessen.

- Um mit diesen wenigen Baugruppen ein ein-, zwei- oder dreistufiges Getriebe zu realisieren, wobei die jeweiligen
35 gekennzeichneten Baugruppen entsprechend mit 1 für

einstufig, 2 für zweistufig oder 3 für dreistufig jeweils verbunden werden müssen, können unterschiedliche Getriebe zusammengesetzt werden.

- 5 Auf diese Weise lässt sich baukastenartig mit einer minimalen Anzahl von Baugruppen ein zwei- oder dreistufiges Getriebe realisieren. Die einzelnen Baugruppen müssen lediglich miteinander verschraubt, verschweisst, zusammengefügt oder sonstwie miteinander verbunden werden.
- 10 Hierauf sei die Erfindung nicht beschränkt.

Ferner ist von Vorteil, dass insbesondere durch die Wahl von Antriebseinheit A_E als Antriebswelle A_W oder Antriebsflansch A_F lange oder kurze Getriebe mit spezifischen Wellen oder Flanschen ein- oder mehrstufig hergestellt werden können. Hierdurch können unterschiedliche Übersetzungsverhältnisse, Leistungsflüsse durch verschiedene Kinematiken als TP oder SP ausgeführt werden.

- 20 Hierdurch lassen sich Getriebe universell herstellen, wobei mit ein und denselben, im wesentlichen gleichen Baugruppen Getriebe hergestellt werden können, die unterschiedliche Typen, die unterschiedliche Kinematiken besitzen. Dies wird lediglich mit einer ganz begrenzten Anzahl von Baugruppen als Universalbaukasten realisiert. Dabei können die unterschiedlichen Getriebetypen als SP- oder TP-Getriebe aus Baugruppen ein-, zwei- und dreistufige hergestellt werden. Auf diese Weise lässt sich nicht nur der Getriebetyp sondern auch die gewünschte Grösse des Getriebes und die gewünschte Kinematik des Getriebes kundenspezifisch variieren und individuell mit ein und demselben Bauteil erstellen.
- 30

Zur Herstellung eines zweistufigen TP-Getriebes wird das Hohlrad 20 des Hohlrades der Antriebsstufe H_{an} , siehe Figur 4, mit dem Universalplanetenradträger 9 des Hohlwellenrades H_{ab} der Abtriebsstufe, siehe Figur 5, fest verbunden,
5 insbesondere fest verschraubt.

Zur Herstellung eines zweistufigen SP-Getriebes, wird durch einen anderen Montagevorgang ein Hohlrad 20 des Hohlrades der Antriebsstufe H_{an} mit dem feststehenden Gehäuseteil 3
10 des Anbauteiles A_2 fest verbunden, insbesondere fest verschraubt.

Dabei können die gleichen Baugruppen Hohlwellenrad der Abtriebsstufe H_{ab} und Hohlrad der Antriebsstufe H_{an} sowie
15 Anbauteil A_2 verwendet werden, um entweder ein SP- oder TP-Getriebe zu realisieren. Es kommt hier lediglich auf den unterschiedlichen Montagevorgang der einzelnen Baugruppen an und um hier unterschiedliche Kinematiken mit ein und denselben Baugruppen zu erhalten.

20

Im folgenden werden die einzelnen Baugruppen zum Herstellen der unterschiedlichen Getriebe wie folgt beschrieben:

Die unterschiedlichen Kinematiken eines SP-Getriebes oder eines TP-Getriebes sind schematisch in Figur 1b dargestellt. Beim Kinematikplan eines SP-Getriebes ergeben sich andere Übersetzungsverhältnisse als beim TP-Getriebe. Auf Einzelheiten des Kinematikplanes des SP- und TP-Getriebes wird nicht näher eingegangen, da dies im Stand
30 der Technik bekannt ist.

Gemäss Figur 2a kann ein beliebiger Motor M mit einer Motorwelle 1 direkt mit einem Anbauteil A_1 oder A_2 , wie es insbesondere in Figur 3a und 3b dargestellt ist, verbunden
35 werden. Ggf. wird eine Adapterplatte Motor A_M dazwischen

eingesetzt, wobei sich die Adapterplatte Motor A_M mit den Anbauteilen A_1 oder A_2 verbinden lässt.

Die hier nur angedeutete Motorwelle 1 greift in eine entsprechende Klemmnabe 2 der Baugruppen A1 oder A2 ein. Das Anbauteil A1 bzw. A2 weist ausser einer Klemmnabe 2 ein Gehäuseteil 3 auf, in welchem jeweils ein Sonnenrad 4 über Lager 5 gelagert ist, wobei das Sonnenrad 4 als Steckhülse 6 ausgeführt ist.

10

Die Anbauteile A_1 und A_2 der Figuren 3a und 3b unterscheiden sich lediglich etwas in der Form und Dimensionierung des Gehäuseteiles 3.

15 Bei der Herstellung des einstufigen Getriebes ist der Motor M direkt mit der Klemmnabe 2 bzw. mit dem Anbauteil A_1 verbunden. An das Anbauteil A_1 schliesst das Hohlwellenrad der Abtriebsstufe H_{ab} verbunden, welches in Figur 5 dargestellt ist. Dabei weist das Hohlwellenrad der 20 Abtriebsstufe H_{ab} ein Planetenrad 7 auf, welches mit einem Sonnenrad 8 in Eingriff steht. Ein Planetenrad 9 ist in einem Gehäuseteil 10 über Lager 11 gelagert. Das Gehäuseteil 10 ist im äusseren Bereich mit einem Zentrierflansch 12 versehen, auf welchen die in den Figuren 6a und 6b dargestellten Antriebswelle A_W oder Abtriebsflansch A_F aufsteckbar ist.

In Figur 5 ragt der Universalplanetenradträger 9 etwas über das Gehäuseteil 10 hervor. Der Abtriebsflansch A_F weist ein 30 Gehäuseteil 14 auf, in welchem ein Lager 15 sowie ein Flansch 16 vorgesehen ist.

Der Flansch 16 dient zum Aufnehmen und Anschliessen von beliebigen Werkstücken und/oder Werkzeugen oder zum 35 Antreiben von beliebigen Lasten od.dgl..

Ferner ist der Gehäuseteil 14 mit einem passenden Zentrierflansch 17 versehen, der auf den entsprechenden Zentrierflansch 12 des Hohlwellenrades der Abtriebsstufe 5 H_{ab} zusammenpasst. Wird bei dem einstufigen Getriebe als Abtriebseinheit A_E der Abtriebsflansch A_F gewählt, so passen die Gehäuseteile 14 und 10 passgenau ineinander, wobei das Lager 15 des Antriebsflansches A_F gleichzeitig eine zusätzliche Lagerung des Universalplanetenradträgers 9 10 des Hohlwellenrades der Abtriebsstufe H_{ab} bildet.

Dabei wird kraft- und/oder formschlüssig der Universalplanetenradträger 9 mit dem Flansch 16 des Abtriebsflansches A_F verbunden.

15 Wird bei dem einstufigen Getriebe an das Hohlwellenrad H_{ab} die Antriebswelle A_W adaptiert und angeschlossen, so schliesst ein Gehäuseteil 17, wie es insbesondere in Figur 6b dargestellt ist, stirnseitig an das Gehäuseteil 10 des Hohlwellenrades H_{ab} an. Innerhalb des Gehäuseteiles 17 ist 20 eine Welle 18 über ein Lager 19 gelagert.

Wichtig ist ferner bei der vorliegenden Erfindung, dass sich bei Abtriebswelle A_W und Abtriebsflansch A_F , wie es in den Figuren 6a und 6b dargestellt ist, die Ausführungsform, die Grösse der Gehäuseteile 14 und 17 verändern und kundenspezifisch ausgebilden lassen. Gleiches gilt auch für die Grösse, die Art des Flansches 16 bzw. der Welle 18. Wird, wie es in Figur 1 dargestellt ist, ein zweistufiges 30 Getriebe aufgebaut, so wird der Motor M das Anbauteil A_2 , wie es in Figur 3b beschrieben ist, zusammengefügt, ggf. mit dazwischengesetzter Adapterplatte A_M , wobei zwischen das Anbauteil A_2 das Hohlwellenrad H_{ab} der Abtriebsstufe ein Hohlrad der Antriebsstufe H_{an} dazwischen eingesetzt wird, 35 wie es insbesondere in Figur 4 dargestellt ist. Dieses

weist ein Hohlräder 20 auf, in welchem ein Universalplanetenradträger 21 zumindest einen Planeten 22 trägt, der ein Sonnenrad 23 kämmt. Dabei ist der Universalplanetenradträger 21 jeweils beidseits des 5 Sonnenrades 22 ausgebildet und trägt einerseits ein Lager 24 und ist auf der gegenüberliegenden Seite als Steckhülse 25 ausgebildet.

Im Bereich der Steckhülse 25 schliesst an das Hohlräder der 10 Antriebsstufe H_{an} das Hohlwellenrad der Abtriebsstufe H_{ab} an, in dem das Sonnenrad 8 form- und/oder kraftschlüssig mit dem Universalplanetenradträger 21 verbunden wird und ein innenliegender Bereich des Universalplanetenradträgers 9, siehe Figur 5, in das Hohlräder 20 eingreift und das 15 Hohlräder H_{an} der Antriebsstufe integriert bzw. lagert.

Das Hohlräder der Antriebsstufe H_{an} ist als sogenannte zweite Stufe, insbesondere Vorstufe zwischen Anbauteil A_2 und Hohlräder der Antriebsstufe H_{an} einsetzbar.

20 Das Lager 24 des Hohlrades der Antriebsstufe H_{an} wird beim Zusammenfügen der Baugruppen A_2 und H_{an} im Gehäuseteil 3 auf einem Lagersitz 26 des Gehäuseteiles 3, der Baugruppe A_2 , siehe Figur 3b, gelagert bzw. aufgenommen. Formschlüssig wird das Sonnenrad 4 des Anbauteiles A_2 mit dem Sonnenrad 23 des Hohlrades H_{an} verbunden.

Ferner lassen sich die Gehäuseteile 3 und 10 des Anbauteiles A_1 bzw. Hohlwellenrad der Abtriebsstufe H_{ab} , wie 30 es in den Figuren 3b und 5 dargestellt ist, miteinander verbinden, wobei dazwischen das Hohlräder der Antriebsstufe H_{an} in oben beschriebener Weise eingesetzt ist. Die Gehäuseteile 3 und 10 können miteinander verschraubt, verschweisst oder auch kraft- oder formschlüssig 35 miteinander verbunden werden.

Um ein dreistufiges Getriebe zu realisieren, werden die Baugruppen Motor ggf. Adapterplatte Motor A_M mit dem Anbauteil A_2 (siehe Figur 3b) in oben beschriebener Weise verbunden, wobei zwischen Anbauteil A_2 und dem oben beschriebenen Hohlrad der Antriebsstufe H_{an} ein Anbauteil A_3 zwischengeschaltet eingesetzt wird. Dabei besteht das Anbauteil A_3 aus einem Gehäuseteil 27, welcher das Gehäuseteil 10 des Hohlwellenrades der Abtriebsstufe H_{ab} und andererseits den Gehäuseteil 3 des Anbauteiles A_2 miteinander verbindet.

Innerhalb des Gehäuseteiles 27 ist ein Hohlrad 31 vorgesehen, welches einen Planeten 32 kämmt, der auf einem Universalplanetenradträger 28 sitzt. Zumindest ein Planet 32 kämmt ein Sonnenrad 33. Ferner sitzt auf einem Teil des Universalplanetenradträgers 28 ein Lager 30. Diese Baugruppen entsprechen in etwa dem Aufbau des Hohlrades der Antriebsstufe H_{an} , wie es in Figur 4 aufgezeigt ist.

Wird das Anbauteil A_3 mit dem Hohlrad der Antriebsstufe H_{an} zusammengefügt, so greift form- und/oder kraftschlüssig das Sonnenrad 23 in die Steckhülse 29 des Planetenradträgers 28 ein, wobei das Lager 24 in einem Lagersitz des Gehäuseteiles 27 gelagert ist. Hierdurch überträgt der Universalplanetenradträger 28 das Moment auf die Sonne 23.

Andererseits werden beim Verbinden der Baugruppen A_2 und A_3 zum Herstellen des dreistufigen Getriebes die Gehäuseteile 3 und 27 miteinander verbunden, wobei das Lager 30 in den Lagersitz 26 eingreift und das Sonnenrad 33 in die Steckhülse 6 des Planenträgerträgers 4 des Anbauteiles A_2 eingreift.

Hierdurch wird ebenfalls eine Zwischenstufe hergestellt.

Um ein TP-Getriebe mit einer TP-Kinematik zu realisieren,
insbesondere einer zweistufigen Ausführung wird das Hohlrad
20 des Hohlrades der Antriebsstufe H_{an} am
5 Universalplanetenradträger 9 des Hohlwellenrades H_{AB} der
Abtriebsstufe verbunden bzw. verschraubt.

Soll ein Getriebe, beispielsweise ein zweistufiges Getriebe
der SP-Kinematik hergestellt werden, so wird ein anderer
10 Montagevorgang das Hohlrad 20 des Hohlrades der
Antriebsstufe H_{an} an dem feststehenden Gehäuseteil 3 des
Anbauteiles A_2 , siehe Figuren 3b und 4, angeschraubt.

Auf diese Weise lässt sich mit den Baugruppen H_{an} , H_{ab} und
15 A_2 durch unterschiedliche Montage der einzelnen Baugruppen
ein SP- oder TP-Getriebe zusammensetzen.

PATENTANSPRÜCHE

5 1. System zur Herstellen von Getrieben, welches aus verschiedenen Baugruppen (M , A_1 , A_2 , A_3 , H_{an} , H_{ab} , A_E , A_W , A_F) besteht,

dadurch gekennzeichnet,

10 dass über eine unterschiedliche Montage der Baugruppe (H_{an}) mit der Baugruppe (H_{ab}) und (A_2) ein Getriebe der SP-Kinematik oder TP-Kinematik zusammensetzbare ist.

15 2. System nach Anspruch 1, dadurch gekennzeichnet, dass ein einstufiges Getriebe aus den Baugruppen Motor (M), Anbauteil (A_1), Hohlwellenrad der Abtriebsstufe (H_{ab}), Abtriebseinheit (A_E) als Abtriebswelle (A_W) oder Abtriebsflansch (A_F) oder kundenspezifische 20 Abtriebsstufe zusammensetzbare ist.

3. System nach Anspruch 1, dadurch gekennzeichnet, dass zum Herstellen eines zweistufigen Getriebes die Baugruppe Motor (M), Anbauteil (A_2), Hohlrad der Antriebsstufe (H_{an}), Holwellenrad der Abtriebsstufe (H_{ab}) und anschliessender Antriebseinheit (A_E) zusammensetzbare ist.

4. System nach wenigstens einem der Ansprüche 1 bis 3, 30 dadurch gekennzeichnet, dass zum Herstellen eines dreistufigen Getriebes zwischen Anbauteil (A_2) und Hohlrad der Antriebsstufe (H_{an}) das Anbauteil (A_3) einsetzbar ist.

5. System nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Hohlrad der Antriebsstufe (H_{an}) ein Hohlrad (20) aufweist, in welchem ein Sonnenrad (23), ein Universalplanetenradträger (21) und Planeten (22) eingesetzt sind.
10. System nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Hohlwellenrad der Abtriebsstufe (H_{ab}) aus dem Gehäuseteile (10) mit Universalplanetenradträger (9) und eingesetztem Planeten (7) und Sonnenrad (8) ausgebildet ist.
15. System nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Anbauteil (A_1 und A_2) aus einem Gehäuseteil (3) mit über Lager (5) eingesetzter Klemmnabe (2) mit Sonnenrad (3) mit integrierter Steckhülse (6) gebildet ist.
20. 8. System nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zum Herstellen eines Getriebes mit einer TP-Kinematik das Hohlrad (20) des Hohlrad der Antriebsstufe (H_{an}) mit dem Universalplanetenradträger (9) des Hohlwellenrades der Abtriebsstufe (H_{ab}) fest verbindbar, insbesondere fest verschraubt ist.
30. 9. System nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zum Herstellen eines SP-Getriebes mit SP-Kinematik das Hohlrad (20) des Hohlrades der Antriebsstufe (H_{an}) mit dem Gehäuseteil (3) des Anbauteiles (A_2) fest verbindbar, insbesondere fest verschraubt ist.

10. System nach wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Anbauteil (A₃) aus einem Gehäuseteil (27) gebildet ist, in welchem ein Hohlrad (31) mit integriertem Planeten (32), Universalplanetenradträger (28) und Sonnenrad (33) integriert ist, wobei der Planetenradträger (28) einerseits eine Steckhülse (29) aufweist.
5
10. System nach wenigstens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass zum Herstellen von zweistufigen TP-Getrieben das Hohlrad (20) des Hohlrades der Antriebsstufe (H_{an}) mit dem Universalplanetenradträger (9) des Hohlwellenrades (Hab) drehfest verbunden, insbesondere verschraubt ist.
15
12. System nach wenigstens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass zum Herstellen eines zweistufigen SP-Getriebes das Hohlrad (20) des Hohlrades der Antriebsstufe (H_{an}) mit dem Gehäuse (3) des Anbauteiles (A₂) fest verbunden, insbesondere fest verschraubt ist.
20
13. System nach wenigstens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass zum Herstellen eines dreistufigen TP- oder SP-Getriebes das Hohlrad (31) des Anbauteiles (A₃) fest mit dem Gehäuseteil (3) des Anbauteiles (A₂) verbunden, insbesondere verschraubt ist und das Hohlrad (20) des Hohlrades der Antriebsstufe (H_{an}) fest mit dem Gehäuseteil (27) des Anbauteiles (A₃) verbunden, insbesondere verschraubt ist.
30
14. System nach wenigstens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass zum Herstellen eines
35

dreistufigen TP- oder SP-Getriebes das Hohlrad (20) der Antriebsstufe (H_{an}) nach rechts mit der Abtriebsstufe (H_{ab}) oder nach links mit dem Gehäuseteil (27) des Anbauteiles (A_3) verbunden,
5 insbesondere verschraubt ist.

15. System nach wenigstens einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass zum Herstellen eines dreistufigen TP- oder SP-Getriebes das Hohlrad (31) des Anbauteiles (A_3) nach rechts mit dem Gehäuseteil (27) des Anbauteiles (A_3) oder nach links mit dem Gehäuseteil (3) des Anbauteiles (A_2) verbunden,
10 insbesondere fest verschraubt ist.

ZUSAMMENFASSUNG

- 5 Bei einem System zur Herstellen von Getrieben, welches aus verschiedenen Baugruppen (M , A_1 , A_2 , A_3 , H_{an} , H_{ab} , A_E , A_W , A_F) besteht, soll über eine unterschiedliche Montage der Baugruppe (H_{an}) mit der Baugruppe (H_{ab}) und (A_2) ein Getriebe der SP-Kinematik oder TP-Kinematik zusammensetzbare
10 sein.

(Figur 1a)

Fig. 1a

Fig. 16

Fig. 36

Fig. 3a

Fig. 2b

Fig. 2a

Fig. 4

Fig. 3c

Δw

Fig 66

Δf

Fig 6a

Δg

Fig. 5

DR. PETER WEISS & DIPL.-ING. A. BRECHT
Patentanwälte
European Patent Attorney

5

Aktenzeichen: P 2796/DE

Datum: 25.03.2002

B/HU

Positionszahlenliste

1	Motorwelle	34	Lagersitz	67	
2	Klemmnabe	35		68	
3	Gehäuseteil	36		69	
4	Sonnenrad	37		70	
5	Lager	38		71	
6	Steckhülse	39		72	
7	Planetenrad	40		73	
8	Sonnenrad	41		74	
9	Planetenradträger	42		75	
10	Gehäueteil	43		76	
11	Lager	44		77	
12	Zentrierflansch	45		78	
13	Flansch	46		79	
14	Gehäuseteil	47			
15	Lager	48		A_E	Abtriebseinheit
16	Flansch	49		A_F	Abtriebsflansch
17	Gehäuseteil	50		A_M	Adapterplatte Motor
18	Welle	51		A_W	Abtriebswelle
19	Lager	52		A_1	Anbauteil
20	Hohlrad	53		A_2	Anbauteil
21	Planetenradträger	54		A_3	Anbauteil
22	Planet	55		H_{ab}	Hohlwellenrad d. Abtriebsstufe
23	Sonnenrad	56		H_{an}	Hohlrad d. Antriebsstufe
24	Lager	57		M	Motor
25	Steckhülse	58		S	System
26	Lagersitz	59		SP	Getriebe
27	Gehäuseteil	60		TP	Getriebe
28	Planetenradträger	61			
29	Steckhülse	62			
30	Lager	63			
31	Hohlrad	64			
32	Planet	65			
33	Sonnenrad	66			