February 26, 2015 Matt Landreman

Equations implemented in the minimal solver for stellarator monoenergetic transport coefficients

This code solves the following normalized kinetic equation:

$$\xi B \left[i \frac{\partial f}{\partial \theta} + \frac{\partial f}{\partial \zeta} \right] - \left[1 - \xi^2 \right] \frac{1}{2} \left[i \frac{\partial B}{\partial \theta} + \frac{\partial B}{\partial \zeta} \right] \frac{\partial f}{\partial \xi} - \frac{v}{2} \frac{\partial}{\partial \xi} \left[1 - \xi^2 \right] \frac{\partial f}{\partial \xi} = \left[1 + \xi^2 \right] \frac{1}{B} \left[G \frac{\partial B}{\partial \theta} - I \frac{\partial B}{\partial \zeta} \right]. \tag{1}$$

This is a 3D linear inhomogeneous equation for $f(\theta,\zeta,\xi)$. The independent variables θ and ζ are periodic spatial coordinates (with period 2π), and the independent variable ξ is the cosine of the pitch angle in velocity space. The domain of ξ is [-1,1]. In (1), ν is a constant scaling the diffusive term. The constants G, I, and ι are related to the geometry of the magnetic field. The magnetic field strength $B(\theta,\zeta)$ is a specified function. The model used in the code is

$$B(\theta,\zeta) = 1 + \varepsilon_t \cos \theta + \varepsilon_h \cos(h\theta - N\zeta)$$
 (2)

where h is called helicity_1 in the code and N is called Nperiods. Since the system has a discrete symmetry in ζ , the code only simulates the domain $\zeta \in \left[0, \, 2\pi \, / \, N\right]$ rather than the full 2π .

For a discretization of the ξ coordinate that is both sparse and spectrally accurate, the unknown f is expanded in Legendre polynomials $P_{\ell}(\xi)$:

$$f(\theta,\zeta,\xi) = \sum_{\ell} f_{\ell}(\theta,\zeta) P_{\ell}(\xi). \tag{3}$$

We discretize (1) by applying the operation

$$\frac{2L+1}{2} \int_{-1}^{1} d\xi \, P_L(\xi)(\quad \cdot \quad). \tag{4}$$

Thus, (1) becomes

$$\sum_{L} M_{L,\ell} f_{\ell} = R_L \tag{5}$$

where the main linear operator has become

$$M_{L,\ell} = \left[\frac{L+1}{2L+3}\delta_{L+1,\ell} + \frac{L}{2L-1}\delta_{L-1,\ell}\right]B\left[i\frac{\partial}{\partial\theta} + \frac{\partial}{\partial\zeta}\right]$$

$$-\frac{1}{2}\left[i\frac{\partial B}{\partial\theta} + \frac{\partial B}{\partial\zeta}\right]\left[\frac{(L+1)(L+2)}{2L+3}\delta_{L+1,\ell} - \frac{(L-1)L}{2L-1}\delta_{L-1,\ell}\right]$$

$$+\frac{\nu}{2}L[L+1]\delta_{L,\ell}$$
(6)

and the right-hand side is

$$R_{L} = \frac{1}{B} \left[G \frac{\partial B}{\partial \theta} - I \frac{\partial B}{\partial \zeta} \left[\frac{4}{3} \delta_{L,0} + \frac{2}{3} \delta_{L,2} \right] \right]. \tag{7}$$

The PDE (1) has a single null solution, f = constant. We eliminate this null solution by imposing one extra equation in an additional row of the matrix. For physical reasons, we choose this condition to be

$$\int d\theta \int d\zeta \int d\xi \frac{f}{R^2} = 0.$$
 (8)

In the Legendre modal expansion, (8) becomes

$$\int d\theta \int d\zeta \, \frac{f_0}{R^2} = 0 \,. \tag{9}$$

To keep the linear system square, we also add one extra unknown, a number λ , which is added to the left-hand side of (1). (λ is independent of all 3 independent variables.) Equivalently, to the left-hand side of (5) we add $\lambda \delta_{L,0}$. We can think of λ as a source in the kinetic equation (1), and it plays a role like a Lagrange multiplier. By applying the operation

$$\int d\theta \int d\zeta \int d\xi \frac{1}{R^2} (...) \tag{10}$$

to (1) and integrating by parts in several places, it can be seen that all terms vanish or cancel except λ , forcing $\lambda = 0$. Thus, we are not really changing our original equation (1) by introducing λ , since it will always end up vanishing.

Combining (5) and (9), our final linear system has the 2×2 block structure

$$\begin{pmatrix}
M_{L,\ell} & \delta_{L,0} \\
\int d\theta \int d\zeta \left(1/B^2\right) & 0
\end{pmatrix}
\begin{pmatrix}
f_{\ell} \\
\lambda
\end{pmatrix} = \begin{pmatrix}
R_{L} \\
0
\end{pmatrix}.$$
(11)