What is claimed is:

WO 2005/058830

1. A compound of formula I

 L_2 , L_4 , L_6 and L_8 are each independently of the others C_1 - C_4 alkylene which may be substit-

wherein

 R_1 is -L₁₀-R₄, -L₁₁-X₁-R₅, -NR₆R₇, -X₂-R₈ or -X₃-L₁-R₉;

uted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy and to which C_1 - C_4 alkylene group there may additionally be spirocyclically bound a C_2 - C_5 alkylene group, and wherein that C_2 - C_5 alkylene group may in turn be interrupted once or twice by oxygen, sulfur, sulfinyl or by sulfonyl and/or substituted by C_1 - C_4 alkyl or by C_1 - C_4 alkoxy; C_1 - C_4 and C_2 are each independently of the others C_1 - C_4 alkylene which may be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy; C_1 - C_4 alkoxy, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkyl, cyano, C_1 - C_3 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfonyl; C_1 - C_6 alkoxylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene group which may be substituted once, twice or three times by C_1 - C_6 alkoxy- C_1 - C_6 alkoxy-C

 R_4 is halogen, cyano, rhodano, C_1 - C_6 alkoxycarbonyl, C_3 - C_6 alkenyloxycarbonyl, C_3 - C_6 alkynyloxycarbonyl, benzyloxycarbonyl, $C(0)NR_{25a}R_{26a}$, formyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 haloalkylcarbonyl, C_1 - C_4 alkoxy- C_1 - C_4 alkoxy- C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkylsulfonylamino- C_1 - C_4 alkylcarbonyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl, C_1 - C_6 alkylsulfonyloxy or phenylsulfonyloxy, wherein the phenyl groups may be substituted by one or more C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro groups; or R_4 is a three- to ten-membered, monocyclic or fused bicyclic ring system which may be aromatic, saturated or partially saturated and which may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, and wherein the ring system may contain not more than 2 oxygen atoms and not more than two sulfur atoms, and each ring system may

itself be substituted once, twice or three times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_4 alkoxy- C_1 - C_2 alkyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, hydroxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, mercapto, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 alkenylthio, C_3 - C_6 alkoxycarbonylalkylthio, C_3 - C_6 alkylthio, C_4 - C_6 alkoxycarbonylalkylthio, C_4 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, cultivelylaminosulfonyl, di(C_1 - C_2 alkyl)aminosulfonyl, di(C_1 - C_4 alkyl)amino, halogen, cyano, nitro, phenyl or by benzylthio, and wherein phenyl and benzylthio may in turn be substituted on the phenyl ring by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, and wherein the substituent on the nitrogen in the heterocyclic ring are other than halogen;

or R_4 is hydrogen when L_{10} is a C_1 - C_6 alkylene group which may be substituted once, twice or three times by C_1 - C_6 alkyl or by halogen; or when L_{10} is a C_2 - C_6 alkenylene or C_2 - C_6 alkynylene group which may be substituted once, twice or three times by C_1 - C_6 alkyl, halogen, hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 cycloalkyloxy, C_1 - C_6 alkoxy- C_1 -

 R_{25a} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{26a} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl;

or R_{25a} together with R_{26a} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 -haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 L_{11} is a C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene group which may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 cycloalkyloxy, C_1 - C_6 -alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy or by C_1 - C_2 alkylsulfonyloxy; X_1 is oxygen, -OC(O)-, -C(O)-, -C(=NR_{14a})-, -C(O)O-, -C(O)NR_{14b}-, -OC(O)O-, -N(R₁₀)-O-, -O-NR₁₁-, thio, sulfinyl, sulfonyl, -SO₂NR₁₂-, -NR₁₃SO₂-, -N(SO₂R_{14c})-, -N(R_{14d})C(O)- or -NR₁₄-;

 R_{10} , R_{11} , R_{12} , R_{13} , R_{14b} , R_{14d} and R_{14} are each independently of the others hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl,

or C_1 - C_6 alkoxy- C_1 - C_6 alkyl substituted by C_1 - C_6 alkoxy, or benzyl or phenyl, wherein phenyl and benzyl may in turn be substituted once, twice or three times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C1-C6alkoxy, C1-C6haloalkoxy, halogen, cyano, hydroxy or by nitro;

R_{14a} is hydroxy, C₁-C₆alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy or benzyloxy; R_{14c} is C_1 - C_6 alkyl;

 R_5 is hydrogen or a C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl or C_3 - C_6 cycloalkyl group which may be substituted once, twice or three times by chlorine, bromine, iodine, hydroxy, amino, formyl, nitro, cyano, mercapto, C1-C6alkoxy, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C_2 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl, halo-substituted C_3 - C_6 cycloalkyl, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 haloalkoxy, C_3 - C_6 haloalkenyloxy, cyano- C_1 - C_6 alkoxy, C_1 - C_6 alkoxy- $C_1-C_6 alkoxy,\ C_1-C_6 alkoxy-C_1-C_6 alkoxy-C_1-C_6 alkoxy,\ C_1-C_6 alkoxy,\ C_1-C_6$ $sulfinyl-C_1-C_6 alkoxy,\ C_1-C_6 alkylsulfonyl-C_1-C_6 alkoxy,\ C_1-C_6 alkoxy,\ C_1-C_6$ C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, phenylcarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylthio, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl, benzyloxy, benzylthio, benzylsulfinyl, benzylsulfonyl, C_1 - C_6 alkylamino, di(C_1 - C_6 alkyl)amino, $R_{15a}C(X_{23})N(R_{18a})\text{-, }R_{16a}N(R_{17a})C(X_{24})\text{-, }R_{16b}N(R_{17b})C(X_{25})NR_{18b}\text{-, }R_{15c}SO_{2}N(R_{18c})\text{-, }R_{15c}SO_{2}N(R_{18c})\text{-, }R_{16b}N(R_{17b})C(X_{25})NR_{18b}\text{-, }R_{15c}SO_{2}N(R_{18c})\text{-, }R_{16b}N(R_{17b})C(X_{25})NR_{18b}\text{-, }R_{15c}SO_{2}N(R_{18c})\text{-, }R_{15c}SO_$ $R_{16c}N(R_{17c})C(X_{26})O\text{-, }R_{15b}C(X_{27})O\text{-, }R_{19}R_{20}C\text{=}NO\text{-, }R_{15}S(O)_{2}O\text{-, }R_{16}N(R_{17})SO_{2}\text{-, rhodano, }R_{16c}N(R_{17c})C(X_{26})O\text{-, }R_{16c}N(R_{17c})C(X_{16})O\text{-, }R_{16c}N(R_{17c})C(X_{16}$ phenyl, phenoxy, phenylthio, phenylsulfinyl or by phenylsulfonyl or which may be substituted from one to seventeen times by fluorine; wherein the phenyl- or benzyl-containing groups may in turn be substituted by one or more C1-C6alkyl, C1-C6haloalkyl, C1-C6alkoxy, C₁-C₆haloalkoxy, halogen, cyano, hydroxy or nitro groups;

 R_{15a} , R_{15b} and R_{15c} are hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 cycloalkyl, phenyl, benzyl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy or benzyloxy, wherein the phenyl groups may be substituted once, twice or three times by C1-C6alkyl, C1-C6haloalkyl, C1-C6alkoxy, C₁-C₆haloalkoxy, halogen, cyano, hydroxy or by nitro;

 R_{16a} , R_{16b} and R_{16c} are hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_6 cycloalkyl or phenyl, wherein phenyl may be substituted once, twice or three times by C₁-C₆alkyl, C₁-C₅haloalkyl, C₁-C₅alkoxy, C₁-C₅haloalkoxy, halogen, cyano, hydroxy or by nitro; R_{17a} , R_{17b} , R_{17c} , R_{18a} , R_{18b} and R_{18c} are hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl; X_{23} , X_{24} , X_{25} , X_{26} and X_{27} are oxygen or sulfur;

 R_{15} , R_{16} , R_{17} , R_{19} and R_{20} are each independently of the others hydrogen, C_1 - C_6 alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkoxy-C₁-C₆alkyl, or C_1 - C_6 alkoxy- C_1 - C_6 alkyl substituted by C_1 - C_6 alkoxy, or benzyl or phenyl, wherein phenyl and benzyl may in turn be substituted once, twice or three times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, halogen, cyano, hydroxy or by nitro; or R₅ is a three- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic, saturated or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, and wherein the ring system is bound to the substituent X_1 directly or via a C₁-C₄alkylene, C₂-C₄alkenylene, C₂-C₄alkynylene, -N(R₁₈)-C₁-C₄alkylene, $-O-C_1-C_4\\ alkylene, -S-C_1-C_4\\ alkylene, -S(O)-C_1-C_4\\ alkylene or -SO_2-C_1-C_4\\ alkylene chain, -S(O)-C_1-C_4\\ alkylene or -SO_2-C_1-C_4\\ alkylene chain, -S(O)-C_1-C_4\\ alkylene or -SO_2-C_1-C_4\\ alkylene chain, -S(O)-C_1-C_4\\ alkylene chai$ wherein the ring system may not be interrupted by -C(=O)-, -C(=S)-, -C(=NR_{5a})-, -N(=O)-, -S(=O)- or by -SO₂-, and each ring system may contain not more than 2 oxygen atoms and not more than two sulfur atoms, and the ring system itself may be substituted once, twice or three times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, hydroxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, mercapto, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C_3 - C_6 alkynylthio, C_2 - C_5 alkoxyalkylthio, C_3 - C_5 acetylalkylthio, C_3 - C_6 alkoxycarbonylalkylthio, C_2 - C_4 cyanoalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, di(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may in turn be substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the

R_{5a} is C₁-C₆alkyl, hydroxy, C₁-C₆alkoxy, cyano or nitro;

heterocyclic ring are other than halogen;

 R_{18} is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, or benzyl or phenyl, wherein phenyl and benzyl may in turn be substituted once, twice or three times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or by nitro;

 R_6 is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_6 haloalkyl, hydroxy, C_1 - C_6 alkoxy, -C(O) R_{19a} or -C(S) R_{20a} ;

 R_{19a} and R_{20a} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenyl, benzyl, heteroaryl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, benzyloxy, C_1 - C_4 alkylthio or a group $NR_{21}R_{22}$;

 R_{21} and R_{22} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl or phenyl, and wherein phenyl, benzyl, benzyloxy and heteroaryl in R_{19a} , R_{20a} ,

 R_{21} and R_{22} may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino; or R_{21} together with R_{22} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R₆ is -L₂-X₄-R₂₄; wherein

WO 2005/058830

 X_4 is oxygen, -NR₂₃-, -S-, -S(O)- or -S(O)₂-;

R₂₃ is hydrogen, C₁-C₆alkoxy, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or is phenyl which may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃-alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino; R₂₄ is hydrogen or a C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C₁-C₆alkoxy, C₁-C₃alkoxy-C₁-C₃alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆-alkylsulfonyl, cyano, C(X₅)NR₂₅R₂₆, C₃-C₆cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group either *via* a C atom or *via* a N atom, and wherein the phenyl– and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₄alkylcarbonylamino;

or R_{24} is $C(O)-R_{74}$ or $C(S)-R_{75}$;

X₅ is oxygen or sulfur;

 R_{25} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{26} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl;

or R_{25} together with R_{26} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or

substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino; or R_6 is - L_3 - R_{27} ;

 R_{27} is formyl, C_1 - C_6 alkylcarbonyl, C_3 - C_6 cycloalkylcarbonyl, benzoyl, C_1 - C_6 alkoxycarbonyl, cyano, $C(X_6)NR_{28}R_{29}$, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl;

or R_{27} is C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl each of which may in turn be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy;

X₆ is oxygen or sulfur;

 R_{28} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{29} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl;

or R_{28} together with R_{29} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_7 is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, phenyl, benzyl, heteroaryl, $C(X_7)R_{30}$ or $NR_{33}R_{34}$, wherein phenyl, benzyl and heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 -alkylthio, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

X₇ is oxygen or sulfur;

 R_{30} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, benzyloxy, C_1 - C_4 alkylthio or a group $NR_{31}R_{32}$;

 R_{31} and R_{33} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{32} and R_{34} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkynyl;

or R_{31} together with R_{32} or R_{33} together with R_{34} , in each case with the respective N atom to which they are bonded, form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R₇ is -L₄-X₈-R₃₅; wherein

 X_8 is oxygen, -NR₃₆-, -S-, -S(O)- or -S(O)₂-;

 R_{36} is hydrogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or is phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 -alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino; R_{35} is hydrogen or a C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, cyano, $C(X_9)NR_{37}R_{38}$, C_3 - C_6 cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group either via a C atom or via a N atom, and wherein the phenyl— and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylcarbonylamino;

X₉ is oxygen or sulfur;

 R_{37} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 halo-

alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₃₈ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{37} together with R_{38} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino; or R_7 is - L_5 - R_{39} ;

 R_{39} is formyl, C_1 - C_6 alkylcarbonyl, C_3 - C_6 cycloalkylcarbonyl, benzoyl, C_1 - C_6 alkoxycarbonyl, cyano, $C(X_{10})NR_{40}R_{41}$, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl;

or R_{39} is C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl each of which may in turn be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy;

X₁₀ is oxygen or sulfur;

 R_{40} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₄₁ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{40} together with R_{41} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R₆ and R₇ together with the nitrogen atom to which they are bonded form a carbocyclic 3-to 7-membered, saturated or partially saturated or unsaturated monocyclic or bicyclic ring system which may be interrupted once by oxygen, once by sulfur, from one to three times by nitrogen and/or substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl,

 C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 -haloalkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl; wherein each ring system may not be interrupted by -C(=O)-, -C(=S)-, $-C(=NR_{5a})$ -, -N(=O)-, -S(=O)- or by $-SO_2$ -;

 R_{5a} is C_1 - C_6 alkyl, hydroxy, C_1 - C_6 alkoxy, cyano or nitro;

 X_2 is oxygen, -NR₄₂-, sulfur, -S(O)- or -S(O)₂-;

 R_{42} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, $C(X_{11})R_{43}$ or $NR_{46}R_{47}$;

X₁₁ is oxygen or sulfur;

 R_{43} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, benzyloxy, C_1 - C_4 alkylthio or a group $NR_{44}R_{45}$;

 R_{44} and R_{46} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{45} and R_{47} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkynyl;

or R_{44} together with R_{45} or R_{46} together with R_{47} , in each case with the respective N atom to which they are bonded, form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonyl-amino;

or R₄₂ is -L₆-X₁₂-R₄₈; wherein

 X_{12} is oxygen, -NR₄₉-, -S-, -S(O)- or -S(O)₂-;

 R_{49} is hydrogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or is phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 -alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{48} is a C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy, C_3 - C_6 alkynyloxy, C_3 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, cyano, $C(X_{13})NR_{50}R_{51}$, C_3 - C_6 cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by

oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group either via a C atom or via a N atom, and wherein the phenyl— and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxy-carbonyl or by C_1 - C_4 alkylcarbonylamino;

X₁₃ is oxygen or sulfur;

 R_{50} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₅₁ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{50} together with R_{51} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R₄₂ is -L₇-R₅₂;

 R_{52} is formyl, C_1 - C_6 alkylcarbonyl, C_3 - C_6 cycloalkylcarbonyl, benzoyl, C_1 - C_6 alkoxycarbonyl, cyano, $C(X_{14})NR_{53}R_{54}$, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl;

or R_{52} is C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl each of which may in turn be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy;

X₁₄ is oxygen or sulfur;

 R_{53} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₅₄ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{53} together with R_{54} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 -haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_8 is hydrogen or a C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, cyano, $C(X_{16})NR_{55}R_{56}$, C_3 - C_6 cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, and wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group either via a C atom or via a N atom, and wherein the phenyl— and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_4 alkylcarbonylamino;

X₁₅ is oxygen or sulfur;

 R_{55} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{56} is hydrogen, $C_1\text{-}C_6\text{alkyl},\,C_3\text{-}C_6\text{alkenyl}$ or $C_3\text{-}C_6\text{alkynyl};$

or R_{55} together with R_{56} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R_8 is cyano, C(O)- R_{76} or C(S)- R_{77} ;

 X_3 is oxygen, -NR₅₇-, sulfur, -S(O)- or -S(O)₂-;

 R_{57} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, $C(X_{16})R_{58}$ or $NR_{61}R_{62}$;

X₁₆ is oxygen or sulfur;

 R_{58} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, benzyloxy, C_1 - C_4 alkylthio or a group $NR_{59}R_{60}$;

 R_{59} and R_{61} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfonyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{60} and R_{62} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkynyl;

or R_{59} together with R_{60} or R_{61} together with R_{62} , in each case with the respective N atom to which they are bonded, form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R₅₇ is -L₈-X₁₇-R₆₃; wherein

 X_{17} is oxygen, -NR₆₄-, -S-, -S(O)- or -S(O)₂-;

R₆₄ is hydrogen, C₁-C₆alkoxy, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or is phenyl which may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃-alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

R₆₃ is a C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C₁-C₆alkoxy, C₁-C₃alkoxy-C₁-C₃alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, cyano, C(X₁₈)NR₆₅R₆₆, C₃-C₆cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group either *via* a C atom or *via* a N atom, and wherein the phenyl– and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkyl-thio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxy-carbonyl or by C₁-C₄alkylcarbonylamino;

X₁₈ is oxygen or sulfur;

 R_{65} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 halo-

PCT/EP2004/014113 WO 2005/058830

alkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

- 140 -

R₆₆ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R₆₅ together with R₆₆ and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino; or R₅₇ is -L₉-R₆₇;

R₆₇ is formyl, C₁-C₆alkylcarbonyl, C₃-C₆cycloalkylcarbonyl, benzoyl, C₁-C₆alkoxycarbonyl, cyano, C(X₁₉)NR₆₈R₆₉, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C1-C4alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C1-C3haloalkylthio, cyano, nitro or by C1-C4alkoxycarbonyl; or R67 is C3-C6cycloalkyl or C5-C6cycloalkenyl each of which may in turn be substituted once, twice or three times by C₁-C₄alkyl, halogen or by C₁-C₄alkoxy;

X₁₉ is oxygen or sulfur;

R₆₈ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or phenyl which may be substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, C1-C3alkylthio, C1-C3alkylsulfinyl, C1-C3alkylsulfonyl, C1-C3haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

Reg is hydrogen, C1-C6alkyl, C3-C6alkenyl or C3-C6alkynyl;

or R₆₈ together with R₆₉ and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

L₁ is C₁-C₄alkylene which may be substituted once, twice or three times by C₁-C₄alkyl, halogen or by C₁-C₄alkoxy and to which C₁-C₄alkylene group there may be spirocyclically bound a further C2-C5alkylene group which may in turn be interrupted once or twice by oxygen, sulfur, sulfinyl or by sulfonyl and/or substituted by C₁-C₄alkyl or by C₁-C₄alkoxy;

or L_1 is C_1 - C_4 alkylene which may be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy, and wherein a carbon atom of that C_1 - C_4 alkylene group together with R_9 or with R_{70} forms, by means of a further C_2 - C_6 alkylene chain, a ring system which may additionally be interrupted once or twice by oxygen, sulfur, sulfinyl or by sulfonyl and/or substituted by C_1 - C_4 alkyl or by C_1 - C_4 alkoxy; R_9 is a group $-X_{20}$ - R_{70} , wherein X_{20} is oxygen, $-NR_{71}$ -, -S-, -S(O)- or $-S(O)_2$ -;

R₇₁ is hydrogen or a C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C₁-C₆alkoxy, C₁-C₃alkoxy-C₁-C₃alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆-alkylsulfonyl, cyano, C(X₂₁)NR₇₂R₇₃, C₃-C₆cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group either *via* a C atom or *via* a N atom, and wherein the phenyl– and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

X₂₁ is oxygen or sulfur;

 R_{72} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₇₃ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{72} together with R_{73} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{70} is hydrogen or a C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, cyano, $C(X_{15a})NR_{55a}R_{56a}$, C_3 - C_6 cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, and wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may

be bonded to the C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group either via a C atom or via a N atom, and wherein the phenyl— and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

X_{15a} is oxygen or sulfur;

 R_{55a} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{56a} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl;

or R_{55a} together with R_{56a} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R_{70} is cyano, C(O)- R_{78} or C(S)- R_{79} ;

or R_9 is formyl, C_1 - C_6 alkylcarbonyl, C_3 - C_6 cycloalkylcarbonyl, benzoyl, C_1 - C_6 alkoxycarbonyl, cyano, $C(X_{35})NR_{125}R_{126}$, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl;

or R_9 is C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl each of which may in turn be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy;

 X_{35} is oxygen or sulfur;

 R_{125} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy,

 C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₁₂₆ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{125} together with R_{126} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{74} , R_{75} , R_{76} , R_{77} , R_{78} and R_{79} are each independently of the others hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenyl, benzyl, heteroaryl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, benzyloxy, C_1 - C_4 alkylthio or $NR_{127}R_{128}$, wherein phenyl, benzyl or heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{127} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cvano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₁₂₈ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{127} together with R_{128} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_3 is hydroxy, O^-M^+ wherein M^+ is a metal cation or an ammonium cation, or is halogen or $S(O)_0R_{80}$, wherein

p is 0, 1 or 2;

 R_{80} is C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_3 - C_{12} allenyl, C_3 - C_{12} cycloalkyl or C_5 - C_{12} -cycloalkenyl;

or R_{80} is R_{121} - C_{12} alkylene or R_{122} - C_{2} - C_{12} alkenylene, wherein the alkylene or alkenylene chain may be interrupted by -O-, -S-, -S(O)-, $-SO_2$ - or by -C(O)- and/or substituted from one to five times by R_{123} ;

or R_{80} is phenyl which may be substituted once, twice, three times, four times or five times by R_{124} ;

 R_{121} and R_{122} are each independently of the other halogen, cyano, rhodano, hydroxy, C_1 - C_6 alkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyloxy, phenylsulfonyloxy, C_1 - C_6 alkylcarbonyloxy, benzoyloxy, C_1 - C_6 alkoxycarbonyloxy, C_1 - C_6 alkylcarbonyl, C_1 - C_4 alkoxycarbonyloxy, C_1 - C_6 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl, C_3 - C_6 cycloalkyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl-containing groups may in turn be substituted once, twice or three times by halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or by nitro;

 R_{123} is hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, cyano, carbamoyl, carboxy, C_1 - C_4 alkoxycarbonyl or phenyl, wherein phenyl may be substituted once, twice or three times by hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl or by C_1 - C_4 alkoxy;

 R_{124} is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro;

 A_1 is -C($R_{112}R_{113}$)- or -NR₁₁₄-;

 A_2 is $-C(R_{115}R_{116})_{m}$, -C(=O)-, -O-, $-NR_{117}$ - or $-S(O)_{q}$ -;

 A_3 is -C($R_{118}R_{119}$)- or -NR₁₂₀-;

with the proviso that A_2 is other than -O- or -S(O)_q- when A_1 is -NR₁₁₄- and/or A_3 is -NR₁₂₀; R₁₁₂ and R₁₁₈ are each independently of the other hydrogen, C₁-C₄alkyl, C₂-C₄alkenyl, C₂-C₄alkynyl, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, C₁-C₄alkoxycarbonyl, hydroxy, C₁-C₄alkoxy, C₃-C₄alkenyloxy, C₃-C₄alkynyloxy, hydroxy-C₁-C₄alkyl, C₁-C₄alkylsulfonyloxy-C₁-C₄alkyl, halogen, cyano or nitro;

 R_{113} and R_{119} are each independently of the other hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl;

or R₁₁₃ together with R₁₁₂ and/or R₁₁₉ together with R₁₁₈ form a C₂-C₅alkylene chain which may be interrupted by -O-, -C(O)O- or by -S(O)_r-;

 R_{114} and R_{120} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl or C_1 - C_4 alkoxy;

 R_{115} is hydrogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 hydroxyalkyl, C_1 - C_4 alkoxy- C_1 - C_3 alkyl, C_1 - C_4 alkylthio- C_1 - C_3 alkyl, C_1 - C_4 alkylcarbonyloxy- C_1 - C_3 alkyl, C_1 - C_4 alkylsulfonyloxy- C_1 - C_3 alkyl, tosyloxy- C_1 - C_3 alkyl, di(C_1 - C_4 alkoxy) C_1 - C_3 alkyl, C_1 - C_4 alkoxycarbonyl, formyl, C_3 - C_5 oxacycloalkyl, C_3 - C_5 thiacycloalkyl, C_3 - C_4 dioxacycloalkyl, C_3 - C_4 dithiacycloalkyl, C_1 - C_4 alkoxyiminomethyl, cyano, carbamoyl, C_1 - C_4 alkylaminocarbonyl or di(C_1 - C_4 alkyl)aminocarbonyl;

or R_{115} together with R_{112} or R_{113} or R_{114} or R_{116} or R_{118} or R_{119} or R_{120} or, when m is 2, also with a second R_{115} form a C_1 - C_4 alkylene bridge;

R₁₁₆ is hydrogen, C₁-C₃alkyl or C₁-C₃haloalkyl;

 R_{117} is hydrogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkyl)aminocarbonyl;

m is 1 or 2; and

q and r are each independently of the other 0, 1 or 2;

and also to agronomically acceptable salts, tautomers, isomers and enantiomers of those compounds.

2. A compound of formula II

$$\begin{array}{ccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

wherein R₁ and R₂ are as defined for formula I in claim 1 and Y is C₁-C₄alkoxy, benzyloxy, hydroxy, fluorine, chlorine, bromine, cyano or phenoxy which may be substituted by an electron-withdrawing group.

- 3. A herbicidal composition which, besides comprising formulation adjuvants, comprises a herbicidally effective amount of compound of formula I.
- 4. A method of controlling grasses and weeds in crops of useful plants, which comprises applying a herbicidally effective amount of a compound of formula I or of a composition comprising such a compound to the plants or the locus thereof.