Семинар 6. Колебательные и вращательные уровни энергии. Водородоподобные атомы.

Клименок Кирилл Леонидович

08.10.2020

1 Теоретическая часть

Начнем мы наш семинар с определения оператора момента импульса, его собственных значений и собственных функций, а также их связи с энергией квантового ротатора. Далее мы рассмотрим модель Бора, которая дает некоторые верные результаты. После этого перейдем к строгим выводам по атому водорода через решение уравнения Шредингера.

1.1 Оператор момента импульса

Начнем с того, что вспомним, как определялся момент импульса в классической механике через векторное произведение: $\mathbf{L} = [\mathbf{r} \times \mathbf{p}]$. Как мы помним из прошлого семинара, все физические величины меняются на операторы, так будет и здесь:

$$\hat{\mathbf{L}} = [\hat{\mathbf{r}} \times \hat{\mathbf{p}}] = \begin{pmatrix} \hat{y}\hat{p}_z - \hat{z}\hat{p}_y \\ \hat{z}\hat{p}_z - \hat{x}\hat{p}_z \\ \hat{x}\hat{p}_y - \hat{y}\hat{p}_x \end{pmatrix}$$
(1)

Более того, мы можем также определить оператор Гамильтона, связанный с вращением:

$$\hat{H}_{rot} = \frac{\hat{L}^2}{2I} \tag{2}$$

И тут сразу же возникает проблема соотношения неопределённостей координаты и импульса. Если мы не можем однозначно определить и координату и импульс, то как же нам определить их векторное произведение? С другой стороны, наша теория из макромира о сохранении момента импульса и энергии, с ним связанной, должна перейти и в микромир. И вот тут я предлагаю не особенно заморачиваться и сказать, что, все-таки, одну проекцию момента импульса мы можем определить всегда (традиционно это проекция на ось z), а также мы можем определить его квадрат.

Для того, чтобы упростить себе жизнь, можно перейти от прямоугольных декартовых координат к сферическим: $(x, y, z) \to (r, \theta, \varphi)$. Честно сделав всю математику, получим:

$$\hat{L}_z = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) = -i\hbar \frac{\partial}{\partial \varphi}$$
 (3)

Все, оказывается, максимально удобно. Давайте теперь попробуем найти собственные значения для этого оператора, решив следующее уравнение:

$$-i\hbar \frac{\partial \psi}{\partial \varphi} = L_z \psi$$
$$\psi \sim \exp\left[i\frac{L_z}{\hbar}\varphi\right]$$

В силу однозначности волновой функции $\psi(\varphi) = \psi(\varphi + 2\pi m)$, и тогда все возможные состояния будут определяться соотношением $L_z = \hbar m$; $m \in \mathbb{Z}$. То есть, у нас возможны только целые значения проекций момента импульса на ось z (в единицах постоянной Планка). Если же мы введем максимальную длину проекции момента импульса l, то $m = 0, \pm 1, \pm 2, \ldots, \pm l$, и таких проекций будет всего 2l+1 штук. При этом, соотношение неопределенностей запрещает в явном виде говорить, что момент импульса направлен «строго вдоль оси z».

Рис. 1: Пример возможных значений проекции момента импульса на ось z.

Теперь давайте посчитаем среднее значение квадрата этой проекции и среднее значение квадрата всего момента импульса (просто умножив первое выражение на 3 из-за изотропности по 3 осям):

$$\langle \hat{L}_{z}^{2} \rangle = \hbar^{2} \frac{l^{2} + (l-1)^{2} + \dots + (-l+1)^{2} + (-l)^{2}}{2l+1} = \hbar^{2} \frac{\sum_{m=-l}^{l} m^{2}}{2l+1} = \frac{\hbar^{2}}{3} l(l+1)$$
$$\langle \hat{L}^{2} \rangle = \hbar^{2} l(l+1)$$

Так мы видим, что квадрат момента импульса тоже может быть только целым, но не равным квадрату в его проекции. Так же можно честно записать значение оператора квадрата момента

импульса в сферических координатах и решить задачу на его собственные значения (они совпадают с решением выше) и собственные функции, но это существенно более сложная математики и строго рассматривается в курсе теоретической физики. Здесь я просто приведу пару формул.

$$\hat{L^2} = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right]$$

$$\hat{L^2} \psi = \langle \hat{L^2} \rangle \psi$$

$$\psi = Y_{lm}(\theta; \varphi)$$

Здесь Y_{lm} ; $n,m \in \{\mathbb{N},0\}$ — специальные комплекснозначные сферические функции, которые можно посмотреть, например, в Ладавшице или Википедии.

Последнее, о чем стоит сказать в этой части, это приложение всей теории к «квантовому ротатору». По сути, квантовый ротатор, это не что иное, как обычная молекула, момент инерции I которой вдоль выбранной оси достаточно большой (много больше момента инерции атома). Вся теория для него верна, и его характерные уровни энергии это:

$$E_l = \frac{\hbar^2 l(l+1)}{2I}, l \in \mathbb{N} \tag{4}$$

1.2 Теория Бора для атома водорода

Для начала отдадим дань теории, придуманной Нильсом Бором, для того чтобы описать поведение электрона в атоме водорода. Её основные постулаты это:

- Наличие в атоме стационарных орбит, на которых электроны живут сколь угодно долго
- Излучение происходит только при переходе с одной орбиты на другую
- Момент импульса электрона квантуется

Далее у нас получается записать второй закон Ньютона (для электрона в атоме с зарядом Z) и последний постулат и решить систему:

$$\begin{cases} mvr = \hbar n; n \in \mathbb{N} \\ m\frac{v^2}{r} = \frac{Ze^2}{r} \end{cases} \Rightarrow \begin{cases} r_n = \frac{\hbar^2}{Ze^2m}n^2 \\ E_n = -\frac{Z^2me^4}{2\hbar^2}\frac{1}{n^2} = -Z^2Ry\frac{1}{n^2} \end{cases}$$

Ry = 13.6 эВ — постоянная Ридберга, которая по физическому смыслу соответствует энергии ионизации атома водорода из основного состояния.

В целом мы видим, что теория достаточно строгая, все хорошо описывает, а если проверить спектр атома водорода, то и вообще совпадает с экспериментом. Однако это не совсем так. Для основного состояния электрона в атоме водорода полный момент импульса не равен 0, но это не так в реальной жизни. Поэтому вся эта теория не верна, а нужна нам для общего развития и конкретных оценок в задании. Как это можно проверить, мы обсудим на следующем семинаре.

Рис. 2: Структура энергетических уровней в атоме водорода

1.3 Строгая теория для атома водорода

Начнем с того, что мы не будем сильно углубляться в математику, оставив это теорфизикам, а больше сориентируемся на следствиях из теории. Начнем с того, что для атома водорода можно записать уравнение Шредингера в сферических координатах.

$$-\frac{\hbar^2}{2m}\Delta\psi + U(r)\psi = E\psi \tag{5}$$

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial t}\right) + U(r)\psi + \frac{1}{2mr^2}\hat{L}^2\psi = E\psi$$
 (6)

Тут нужно отметить, что при записи Лапласиана переменные $\{r\}$ и $\{\theta; \varphi\}$ разделяются, при этом решение для угловой части мы уже записывали, и нам останется найти решение только для радиальной составляющей и перемножить их. Традиционно решение ищут в виде:

$$\psi(r,\theta,\varphi) = \frac{\xi(r)}{r} \times Y_{lm}(\theta;\varphi)$$

В результате у нас получается одномерная задача на функцию $\xi(r)$. Строгое решение я здесь не привожу, а когда нам понадобятся волновые функции в явном виде — запишу ответ. Первое, запишем финальный вид решения и обсудим следствия из него:

$$\psi_{nlm}(r,\theta,\varphi) = A \exp\left(-\varkappa_n r\right) r^l \left[\sum_{i=0}^{n-l-1} a_{l+1+i} r^i\right] Y_{lm}(\theta,\varphi)$$

Здесь A, \varkappa_n, a_n — некоторые постоянные, которые нам не важны. Основной результат, получающийся из этого решения, следующий: у нас появилось 3 числа l, m, n, которые имеют вполне понятный смысл и интерпретацию. Подробнее про каждое из них:

• $n = 1, 2, 3, \ldots$ главное квантовое число. Отвечает за основной уровень энергии: чем больше, тем ближе энергия электрона к 0.

- l = 0, 1, 2, ..., n 1 орбитальное квантовое число. Отвечает за полный момент импульса электрона для соответствующего уровня энергии n. Всегда меньше главного квантового числа. Исторически также принято обозначать буквами $\{s, p, d, f, ...\} \sim \{0, 1, 2, 3, ...\}$.
- $m = -l, -l + 1, \dots, l 1, l$ магнитное квантовое число, показывает проекцию полного момента на выделенную ось.

Если же построить плотность вероятности нахождения электрона $(\psi_{nlm}^2(r,\theta,\varphi))$, то можно получить явно те самые орбитали, про которые говорят химики. Уровни энергии в атоме также

Рис. 3: Плотность вероятности электрона в водородоподобном атоме для различных значений квантовых чисел

получаются из решения уравнения Шредингера 5 и совпадает с боровской теорией:

$$E_n = -\frac{Z^2 m e^4}{2\hbar^2} \frac{1}{n^2} = -Z^2 R y \frac{1}{n^2} \tag{7}$$

А переходы между уровнями соответствуют испусканию или поглощению света. Обычно, когда говорят о постоянной Ридберга, имеют в виду постоянную, вычисленную при неподвижном ядре. При учёте движения ядра масса электрона заменяется приведённой массой электрона и ядра ($\mu = \frac{m_1 m_2}{m_1 + m_2}$), и тогда

$$R = \frac{Ry}{1 + m/M_{\rm fig}}$$

Это может понадобиться в задачах на изотопический сдвиг (когда мы рассматриваем не водород, а дейтерий с массой ядра в 2 раза большей) или в экзотических случаях типа протонантипротон (как раз такой есть в задании).

Последнее, о чем стоит сказать, это кратности вырождения состояний для разных n — то есть сколько всего «вакансий» у нас есть на соответствующем уровне. Для этого заполним таблицу:

n	l	m	Состояние	Кратность вырождения	Всего состояний
1	0	0	1S	1	1
2	0	0	2S	1	1
	1	$0, \pm 1$	2P	3	4
3	0	0	3S	1	
	1	$0,\pm 1$	3P	3	9
	2	$0,\pm 1,\pm 2$	3D	5	

Видно, что кратность вырождения квадратично растет с уровнем. На самом деле, в следующем семинаре мы узнаем, что она растет как $2n^2$: эта двойка появляется из-за спина.

2 Практическая часть

2.1 Задача 4.7

Условие Найти среднее расстояние электрона от ядра в 1s-состоянии в атоме водорода. Волновая функция основного состояния $\psi_{100}(r,\theta,\varphi)=\frac{1}{\sqrt{\pi r_1^3}}\exp\left(-\frac{r}{r_1}\right),\,r_1$ — радиус первой Боровской орбиты.

Решение Эта задача является, по сути, отсылкой к прошлому семинару. Тут нам дана волновая функция, и надо найти среднее значение оператора координаты, проинтегрировав во всему пространству с учетом сферической симметрии:

$$\langle r \rangle = \int_{0}^{\infty} \psi_{100}^* r \psi_{100} 4\pi r^2 dr = \frac{1}{\pi r_1^3} \int_{0}^{\infty} \exp\left(-\frac{2r}{r_1}\right) r^3 dr = \frac{3}{2} r_1 \tag{8}$$

2.2 Задача 4.29

Условие В 1989 году в ЦЕРНе при пропускании медленных антипротонов через водородную камеру наблюдалось образование протонимума — атома, состоящего из протона и антипротона. Энергия излучения, соответствующая переходу протониума из состояния 2р в состояние 1s оказалась равной 10,1 кэВ. Определить вклад сильного взаимодействия в разность энергии указанных уровней.

Решение Пока в задаче мало что понятно. Давайте её постепенно раскручивать и разбираться в условии. Первое, если у нас есть конструкция протон-антипротон, то это по своей сути тот же атом водорода, только массы положительной и отрицательной частиц равны между собой. Прекрасно, мы можем записать его урони энергии, ведь в теоретической части мы как раз отмечали, как меняется постоянная Ридберга, если учесть движение ядра:

$$E_n = -\frac{Ry}{1 + m_e/m_p} \frac{1}{n^2} = -Ry \frac{m_p}{2m_e} \frac{1}{n^2} = -\frac{12.5}{n^2}$$
 кэВ

Теперь надо разобраться с переходом между 2p и 1s состояниями. Здесь мы просто смотрим на цифру в начале описания состояния — она будет отвечать за главное квантовое число и, соответственно, за уровень энергии. То есть, наблюдается переход с n=2 на n=1

$$\Delta E = 12.5 \left(\frac{1}{1^2} - \frac{1}{2^2} \right) = 9.4$$
 кэВ

Полученный результат не совпадает с экспериментальным из-за того, что в наших расчетах мы использовали только потенциал кулоновского взаимодействия, но ведь есть еще и другие взаимодействия, которые могут оказаться существенными. Величина этого несовпадения $\delta E = 10.1-9.4 = 0.7$ кэВ. Именно это и есть вклад сильного взаимодействия.

2.3 Задача 5.11

Условие В опытах с равными молекулами измерялись энергии перехода между тремя последовательными уровнями энергии вращательной полосы двухатомной молекулы. Найти квантовые числа l этих уровней и момент инерции I молекулы в этих случаях.

Рис. 4: структура уровней энергии к задаче 5.11

Решение Поскольку уровни энергии последовательны, они соответствуют уровням с номерами l, l+1, l+2, а тогда сама энергия будет пропорциональна l(l+1), (l+1)(l+2), (l+2)(l+3). Из соотношения энергии между уровнями найдем l:

$$\frac{2}{1} = \frac{(l+2)(l+3) - (l+1)(l+2)}{(l+1)(l+2) - l(l+1)} = \frac{l+2}{l+1} \Rightarrow l = 0$$

Для нахождения момента инерции воспользуемся данными о переходе с l=0 на l=1:

$$\Delta E_{0 \to 1} = \frac{\hbar^2 l(l+1)}{2I}$$

$$I = \frac{\hbar^2}{\Delta E_{0 \to 1}} = 6.9 \cdot 10^{-39} \text{ r} \cdot \text{cm}^2$$

2.4 Задача 5.13

Условие Какова максимальная длина волны СВЧ-излучения, с помощью которой можно вызвать переход между ротационными уровнями молекул хлора? Расстояние между ядрами атомов в молекуле Cl_2 равно $d=2\cdot 10^{-8}$ см. Относительная атомная масса изотопа хлора A=35.

Решение Максимальная длина волны соответствует минимальной частоте и, как следствие, минимальной энергии перехода. А она будет как раз между 0 и 1 уровнями (мы увидели это в предыдущей задаче). Осталось вспомнить как посчитать момент инерции, чтобы подставить его в формулу для энергии. Для двухатомных молекул все просто: $I = \mu d^2$, где μ — приведенная масса этой молекулы. В нашем случае она равна $m_{\rm Cl}/2 = 35/2 \cdot 1.6 \cdot 10^{-24}$ г, так как атомы в молекуле одинаковые. Теперь выразим максимальную длину волны из формулы для энергии:

$$\lambda = \frac{2\pi\hbar m_{\rm Cl}d^2}{2\hbar^2} = 2.1~{\rm cm}$$

2.5 Задача 5.25

Условие В угарном газе из-за возбуждения колебаний молекул наблюдается пик поглощения инфракрасного излучения на длине волны $\lambda=4,61$ мкм. Оценить амплитуду нулевых колебаний в молекуле угарного газа. Оценить температуру, при которой амплитуда тепловых колебаний превзойдет ее.

Решение Эта задача на квантовый гармонический осциллятор, про который мы говорили в прошлый раз. Мы помним, что энергия у его не бывает равна нулю из-за соотношения неопределнностей, и такая молекула колеблется с известной нам энергией $\hbar\omega/2$. Тогда мы можем записать эту энергию через коэффициент жесткости и амплитуду нулевых колебаний, а коэффициент жесткости выразить через частоту и приведенную массу:

$$\begin{cases} \frac{\hbar\omega}{2} = \frac{kA_0^2}{2} \\ \omega^2 = \frac{k}{\mu} \end{cases} \Rightarrow A_0 = \sqrt{\frac{\hbar}{\mu\omega}} = 4,74 \cdot 10^{-10} \text{ cm}$$

Условие на температуру получается из сравнения энергии нулевых колебаний и характерной тепловой энергии:

$$kT = \frac{\hbar\omega}{2} \Rightarrow T \sim 3100 \text{ K}$$

2.6 Комментарии к задачам из задания

Нулевки

Задача 4.29 Решена, см. 2.2.

Задача 4.38 Задача на закон Мозли и экранирование, решена в задачнике.

Задача 4.42 Очень похожа на 4.41, решенную в задачнике.

Задача 4.45 Оценить радиус орбиты мюона и подумать, как это может повлиять на решение.

Задача 5.16 Задача, почти что обратная к 5.13.

Задача 5.25 Решена, см. 2.5.

Задача 5.51 Для разных изотопов будет немного разная приведенная масса и, соответственно, момент инерции. Далее стандартные уровни энергии для ротатора.

Задача 5.55 Дублирую указание из учебника. Энергия, как функция уровня, должна расти монотонно.