

Ferienkurs Experimentalphysik 3

Wintersemester 2014/2015 Thomas Maier, Alexander Wolf

Übungsblatt 1

Wellengleichung und Polarisation

Aufgabe 1: Wellengleichung

Eine transversale elektromagnetische Welle im Vakuum sei zirkular polarisiert und breite sich in z-Richtung aus:

$$\vec{E}(\vec{r},t) = E_0 \begin{pmatrix} \cos(kz - wt) \\ \sin(kz - wt) \\ 0 \end{pmatrix}$$
 (1)

Berechnen Sie für diese Welle:

- a) das B-Feld $\vec{B}(\vec{r},t)$
- b) den Poynting-Vektor $\vec{S}(\vec{r},t)$
- c) den Strahlungsdruck auf eine um den Winkel α gegen die Ausbreitungsrichtung geneigte, total absorbierende Ebene.

Aufgabe 2: Prisma

Ein gleichseitiges Prisma wird mit dem Licht einer Lampe bestrahlt. Das einfallende Licht treffe senkrecht auf eine Seite des Prismas.

- a) Zeichnen Sie den Strahlengang.
- b) Um welchem Winkel sieht man rotes $(n_r = 1, 54)$ und violettes $(n_v = 1, 56)$ Licht im Bezug zur ursprünglichen Strahlrichtung abgelenkt?

Aufgabe 3: Quader in Alkohol

Ein Lichtstrahl trete aus Luft $(n_L = 1)$ auf einen Plexiglasquader $(n_G = 1, 50)$, der fast komplett in Alkohol $(n_A = 1, 36)$ eingetaucht ist.

a) Berechnen Sie den Winkel $\Theta,$ für den sich am Punkt P
 Totalreflexion ergibt.

b) Wenn der Quader aus dem Alkohol gehoben wird, ergibt sich dann auch mit dem in a) berechneten Einstrahlwinkel am Punkt P Totalreflexion? Warum?

Aufgabe 4: Polarisationsgrad

Unpolarisiertes Licht der Intensität $I = I_{\perp} + I_{\parallel}$ fällt unter dem Brewster-Winkel auf eine Grenzfläche. Das Reflexionsvermögen für senkrechte Polarisation R_{\perp} (Anteil der reflektierten und senkrecht zur Einfallsebene polarisierten Intensität) betrage 0,2. Wie groß sind die Polarisationsgrade des reflektierten (P_r) und des transmittiert Lichts (P_t) in Abhängigkeit des Polarisationsgrads des eingestrahlten Lichts P_0 ? Hinweis:

$$P_i := \frac{I_{\perp,i} - I_{\parallel,i}}{I_{\perp,i} + I_{\parallel,i}} \tag{2}$$

Aufgabe 5: Fourier-Transformation

Berechnen Sie die Fouriertransformierte der folgenden Amplitudenverteilungen im Frequenzraum:

a)
$$E(w) = E_0 \delta(w - w_0)$$

b)
$$E(w) = E_0 \exp(-a|w|), a \ge 0$$

Aufgabe 6: Doppelbrechung

Ein Plättchen der Dicke d hat für die \hat{x} -polarisierte Strahlung den Brechungsindex $n_x(w) = 1 - \frac{\alpha}{w - w_0 + \Delta}$ und für die \hat{y} -polarisierte Strahlung den Brechungsindex $n_y(w) = 1 - \frac{\alpha}{w - w_0 - \Delta}$. Linear polarisierte Strahlung mit der Frequenz $w_0 + \delta$, welches in einem Winkel von 45° zu den x- und y-Achsen linear polarisiert ist, verlässt das Plättchen nach senkrechtem Einfall rechts/linkszirkular polarisiert. Bestimmen Sie die möglichen Werte von δ .

Aufgabe 7: Kleine Beweise

Für Motivierte ein paar kleine Beweise zur Thematik:

a) Zeigen Sie, dass aus den Maxwell-Gleichungen eine Wellengleichung für das magnetische Feld \vec{B} folgt.

b)	Zeigen Sie, dass jede lineare polarisierte Welle als Linearkombination aus zwei zirkular polarisierten Wellen beschrieben werden kann.			