1. Consider the following iterative algorithm that finds the length of the longest increasing subsequence in the array A[1..n].

```
\begin{array}{l} 1 \ L[1] \leftarrow 1 \\ 2 \ \mathbf{for} \ i \leftarrow 2 \ \mathbf{to} \ n \ \mathbf{do} \\ 3 \ L[i] \leftarrow 1 \\ 4 \ \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ i - 1 \ \mathbf{do} \\ 5 \ \mathbf{if} \ (A[j] < A[i]) \ \mathrm{and} \ (L[j] \geq L[i]) \ \mathrm{then} \ L[i] \leftarrow L[j] + 1 \\ 6 \ m \leftarrow L[n] \\ 7 \ \mathbf{for} \ i \leftarrow 2 \ \mathbf{to} \ n - 1 \ \mathbf{do} \\ 8 \ \mathbf{if} \ L[i] > m \ \mathrm{then} \ m \leftarrow L[i] \end{array}
```

(a) Give a precise statement of what it means for this algorithm to be partially correct.

Precondition: n is a positive integer, and A[1..n] is an array with elements from a totally ordered domain.

Postcondition: The array A[1..n] is unchanged, and m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1..n].

Partially correct: If n is a positive integer n, A[1..n] is an array with elements from a totally ordered domain, and the algorithm is executed and terminated, then A[1..n] is unchanged, and m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1..n].

(b) Prove that this algorithm is partially correct.

We will use L1, L2 to denote line 1, line 2, and so on.

We also assumed the line numbers of the pseudo-code are fixed (L6, L7, L8 instead of L7, L8, L9).

Proof of Question 1(b).

Assume n is a positive integer, A[1..n] is an array with elements from a totally ordered domain, and the algorithm is executed and terminated.

Since there are no assignments to A[1..n] in the algorithm, A[1..n] is unchanged.

For $l \in \mathbb{N}$. Let Q(l) = "immediately after the l^{th} iteration, L[l+1] contains the length of the longest increasing (finite) subsequence in A[1..(l+1)] that ends with the term A[l+1]"; and let P(l)="If the for-loop from line 2 to line 5 is executed at least l times, then Q(l)."

Lemma 1. $\forall l \in \mathbb{N}.P(l)$.

Proof of Lemma 1 by strong induction.

Let $l \in \mathbb{N}$ be arbitrary;

Assume $\forall k \in \mathbb{N}.(k < l)$ IMPLIES P(k).

Assume the for-loop from line 2 to line 5 is executed at least l times.

Case 1. l = 0.

Then trivially the length of the longest increasing subsequence in A[1..1] is 1, and we assigned L[1] = 1 on L1. Thus Q(0) holds.

For Case 1 Q(l).

Case 2. l = 1.

Then for the first iteration, i=2; on L3 L[2] is assigned with 1; on L4 since j is from 1 to 2-1=1, we only execute L5 once where j=1, and there are 2 subcases due to $L[1]=1 \ge 1 = L[2]$:

Subcase (1): A[j] < A[i]

Then on L5 L[2] is assigned with L[1] + 1 = 2, after this we end this iteration, and now

L[2] = 2 is indeed the length of the longest increasing subsequence in A[1..2].

Thus Q(l) holds for subcase 2.1.

Subcase (2): $A[j] \ge A[i]$.

Then no assignment on L5 has been made. After this we end this iteration, and now L[2] = 1 is indeed the length of the longest increasing subsequence in A[1..2] since $A[j] = A[1] \ge A[2] = A[i]$.

Thus Q(l) holds for subcase 2.2.

For all subcases of Case 2 we have shown Q(l) holds, so for Case 2 Q(l).

Case 3. l > 2.

We first assign L[l] = 1 on L3.

Now, let $S = \{ p \in [l] \mid A[p] < A[l] \}$, and let $S' = \{ L[p] \mid p \in S \}$.

Subcase (1): $S = \emptyset$.

Then since for all $p \in [l]$.NOT(A[p] < A[l]), no assignment on L5 has been made, and L[l+1] = 1 is indeed the length of the longest increasing subsequence in A[1..(l+1)] with the last term A[l+1] (all previous terms are at least A[l+1]).

Thus Q(l) holds for subcase 3.1.

Subcase (2): $S \neq \emptyset$.

Then by construction this implies $S' \neq \emptyset$.

i = l + 1 on L2.

Since S' is a finite non-empty subset of \mathbb{Z}^+ , we are allowed to construct $q = \max S'$.

Then $q \in S'$, by construction there exists $p' \in S$ such that q = L[p'], we instantiate such p'.

By inductive hypothesis (specialization and modus ponens), q is the length of the longest increasing subsequence in A[1..p'] that ends with the term A[p']. We instantiate such subsequence as $\{s_o\}_{o=1}^q$. Moreover, because $q = \max S'$, this means q is the length of the longest increasing subsequence in A[1..l] that ends with a term less than A[l].

Now, we claim the subsequence $\{s_o\}_{o=1}^q \circ \{A[l+1]\}$ is the longest increasing subsequence in A[1..(l+1)] that ends with the term A[l+1]. Indeed, firsly for a subsequence to be both increasing and ends with A[l+1], the term before A[l+1] must be less than A[l+1], and by $A8 \{s_o\}_{o=1}^q \circ \{A[l+1]\}$ is increasing since $\{s_o\}_{o=1}^q$ is increasing and $s_q = A[p'] < A[l+1]$ by definition of S. Secondly, obviously the concatenation shows the subsequence ends with A[l+1]. Lastly, $\{s_o\}_{o=1}^q$ being the longest increasing subsequence in A[1..l] implies $\{s_o\}_{o=1}^q \circ \{A[l+1]\}$ is the longest increasing subsequence in A[1..(l+1)] that ends with the term A[l+1].

Therefore, as long as we show L[l+1] = q+1, we can conclude Q(l) holds.

To this end, since $1 \le p' \le l = i - 1$, for the for-loop from L4 to L5, right after the iteration where j = p', since A[p'] < A[l], and $L[p'] \ge L[l]$ due to our construction of q, on L5 L[l+1] is assigned with L[p'] + 1 = q + 1. And after this iteration, consider 2 cases:

1. If A[j] < A[l], then since $L[x] \le L[p'] = L[l+1]$ for all $x \in S'$ by construction of q, no assignment on L5 has been made.

2. If $A[j] \ge A[l]$, then no assignment on L5 has been made.

For both subcases 3.2.1 and 3.2.2, we have shown that immediately after the l^{th} iteration, L[l+1] = q+1 is indeed the length of the longest increasing subsequence in A[1..(l+1)] that ends with the term A[l+1]. Thus Q(l) holds for subcase 3.2.

For all subcases of Case 3 we have shown Q(l) holds, so for Case 3 Q(l).

For all cases we have shown Q(l) holds, so Q(l).

By direct proof, P(l).

By strong induction, $\forall l \in \mathbb{N}.P(l)$. QED.

Now, since there are no assignments to i and j within their for-loop respectively, and so only finitely many for-loop iterations has performed thus the for loop from L2 to L5 eventually terminates. Now we are on L6.

Case 1. n = 1.

Then we assign m with L[n] = L[1] = 1 and the algorithm terminates. Thus m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1..n].

For Case 1 m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1..n].

Case 2. $n \ge 2$.

From L6 to L8, we assign m with the largest value in L[2..n], since $L[n] \ge L[1]$, such m is also the largest value in L[1..n]. Since by Lemma 1 L[y] is the length of the longest increasing subsequence in A[1..y] ending with A[y] for all $y \in [n]$, so the maximum of L[1..y] is indeed the length of the longest increasing subsequence in A[1..n].

For Case 2 m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1.n].

For all cases m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1..n], thus by proof of conjunction A[1..n] is unchanged, and m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1..n].

By direct proof, the algorithm is partially correct. QED.

```
2. For each k \in \mathbb{Z}^+, let X_k = \{x \in \{0,1\}^* : \text{NOT}(\exists y \in \{0,1\}^k.(x=y \cdot y))\} and consider the NFA N_k = (Q, \{0,1\}, \delta, q_0, F), where: Q = \{q_i : 0 \le i \le 2k+1\} \cup \{p_i : 0 \le i \le k-1\} \cup \{z_i : 0 \le i \le k-1\}, F = \{q_i : 0 \le i \le 2k-1\} \cup \{q_{2k+1}\}, \delta(q_i,0) = \{q_{i+1},z_0\} for 0 \le i \le k-1, \delta(q_i,1) = \{q_{i+1},p_0\} for 0 \le i \le k-1, \delta(q_i,0) = \delta(q_i,1) = \{q_{i+1}\} for k \le i \le 2k, \delta(q_{2k+1},0) = \delta(q_{2k+1},1) = \{q_{2k+1}\}, \delta(z_i,0) = \delta(z_i,1) = \{z_{i+1}\} for 0 \le i \le k-2, \delta(z_{k-1},1) = \{q_{2k+1}\}, \delta(z_{k-1},0) = \emptyset, \delta(p_i,0) = \delta(p_i,1) = \{p_{i+1}\} for 0 \le i \le k-2, \delta(p_{k-1},0) = \{q_{2k+1}\}, \delta(p_{k-1},0) = \{q_{2k+1}\}, \delta(p_{k-1},1) = \emptyset, and \delta(q,\lambda) = \emptyset for all q \in Q.
```

Here is a drawing for N_2 :

(a) For each state $q \in Q$, describe the set of strings $w \in \{0,1\}^*$ such that $q \in \delta^*(q_0,w)$. Your descriptions should not mention δ .

Description. Let $k \in \mathbb{Z}^+$ be arbitrary. By definition of δ^* , it is equivalent to describe for each $q \in Q$, what strings $w \in \{0,1\}^*$ will lead to state q from the initial state q_0 . We will prove our description in part (b).

Now, if $q = q_i$ for some $i \in [2k] \cup \{0\}$ (we instantiate such i), then q can be reached from q_0 by a string $w \in \{0,1\}^*$ if and only if w is a string with length i.

If $q = q_{2k+1}$, there are 2 cases that the string will reach q_{2k+1} : First, any string $w \in \{0,1\}^*$ with length at least 2k+1 will reach q_{2k+1} ; Second, if $w \in \{0,1\}^*$ has length at least k+1, and there exists 2 letters $a \in w$, $b \in w$ such that $a \neq b$ and they are k-1 letters apart, then w will reach q_{2k+1} (by " \in " we mean a is one of the letters of the string w, etc).

Let $\omega = \{w \in \{0,1\}^* \mid w \text{ has length at most } k-1\}.$

For p_0 , if $w = w' \cdot 1$ for some $w' \in \omega$, then w will reach p_0 ; For p_i with $i \in [k-1]$, if $w = w' \cdot 1 \cdot w''$ for some $w' \in \omega$ and $w'' \in \{0,1\}^i$, then w will reach p_i .

Similarly, for z_0 , if $w = w' \cdot 0$ for some $w' \in \omega$, then w will reach z_0 ; For z_i with $i \in [k-1]$, if $w = w' \cdot 0 \cdot w''$ for some $w' \in \omega$ and $w'' \in \{0,1\}^i$, then w will reach z_i .

(b) Prove that $L(N_k) = X_k$ for all $k \in \mathbb{Z}^+$

Proof of Question 2(b).

Let $k \in \mathbb{Z}^+$ be arbitrary.

Let $w \in \{0,1\}^*$ be arbitrary.

Consider 3 cases of the length of w: |w| < 2k, |w| = 2k, |w| > 2k.

Case 1. |w| < 2k.

Since $\delta(q_i, 0) = \{q_{i+1}, z_0\}$ and $\delta(q_i, 1) = \{q_{i+1}, p_0\}$ for $0 \le i \le k-1$, and $\delta(q_i, 0) = \delta(q_i, 1) = \{q_{i+1}\}$ for $k \leq i \leq 2k$, from these we have $q_{i+1} \in \delta(q_i, \alpha)$ for $0 \leq i \leq 2k$ where $\alpha \in \{0, 1\}$.