Peter Muller

pmuller

This report details the methodology and findings from the traffic flow prediction model using historical traffic data. The goal was to develop a robust predictive model that leverages various features to forecast traffic volume accurately.

2. Data Preparation

2.1 Data Sources

- Training Data: Loaded from tra X tr.pkl and tra Y tr.pkl.
- **Test Data**: Loaded from tra_X_te.pkl and tra_Y_te.pkl.

2.2 Feature Engineering

The following features were used in the model:

- Traffic Features: Historical traffic flow data for multiple lanes.
- Day of the Week: One-hot encoded variables representing each day (Monday to Sunday).
- Hour of the Day: One-hot encoded variables for each hour (0-23).
- Directional Features: One-hot encoded variables for traffic direction (North, South, East, West).
- Number of Lanes: A feature indicating the number of lanes available on the road.

2.3 Data Transformation

- Normalization/Standardization: Features were normalized to improve model convergence.
- Rolling Averages: Implemented rolling averages to smooth out short-term fluctuations and capture long-term trends.

3. Model Development

3.1 Algorithm Selection

A Linear Regression model was chosen due to its interpretability and efficiency for continuous output prediction.

3.2 Training Iterations

The model was trained over 10 iterations with randomly selected subsets of data to assess its stability and performance variability.

3.3 Performance Metrics

The model's performance was evaluated using:

Mean Absolute Error (MAE)

- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)

4. Model Performance

4.1 Results

• Iteration 1:

o MAE: 0.521

o MSE: 0.352

o RMSE: 0.594

• Iteration 10:

o MAE: 0.210

o MSE: 0.080

o RMSE: 0.283

4.2 Average Performance Metrics

Average MAE: 0.479

Average MSE: 0.474

Average RMSE: 0.603

5. Insights and Observations

- Model Stability: The model exhibited varying performance across iterations, indicating sensitivity to data selection.
- **Feature Importance**: Added features such as the number of lanes and day of the week showed significant correlation with traffic flow, reinforcing their inclusion in the model.
- **Prediction Trends**: The model was semi-capable of predicting traffic flow for the next 15 minutes, demonstrating practical applicability for real-time traffic management systems.

6. Conclusion

The linear regression model developed for traffic flow prediction showed semi-promising results, with performance metrics indicating reasonable accuracy. Further enhancements could include exploring non-linear models, hyperparameter tuning, and incorporating additional features such as weather data. I did my best.

7. Future Work

- Explore more complex algorithms (e.g., Random Forest, Gradient Boosting).
- Incorporate external factors such as weather conditions and events.