Лекция 5. Логистическая регрессия

МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ

ПАПУЛИН С.Ю. (papulin.study@yandex.ru)

Содержание

1.	. Me	Метод максимального правдоподобия		
	1.1.	Оцє	енка параметра дискретного распределения Бернулли	2
	1.2.	Оце	енка параметров нормального закона распределения	4
	1.3.	Оце	енка параметров линейной регрессии	5
2	. Кла	ассиф	рикация	6
3.	. Лоі	гистич	ческая регрессия	7
	3.1.	Обь	щие сведения	7
	3.2.	Лог	истическая функция для задачи классификации	8
	3.3.	Фун	нкция потерь логистической регрессии	10
	3.4.	Обу	учение (оценка параметров)	14
	3.4	.1.	Градиентный спуск	15
	3.4	.2.	Стохастический градиентный спуск	16
	3.5.	Пре	едсказание	16
	3.6.	Взв	ешенная логистическая регрессия	17
4	. Мн	югокл	лассовая классификация	17
	4.1.	Пол	пиномиальная логистическая регрессия	17
	4.2.	.2. One-vs-rest		19
	4.3.	One	e-vs-one	19
С	писок	литер	ратуры	20

1. Метод максимального правдоподобия

Методы максимального правдоподобия (Maximum Likelihood Estimation – MLE) используются для оценки параметров (так же как метод оценки апостериорного максимума, про который в одной из следующих лекций).

Метод максимального правдоподобия – метод оценки, который позволяет по имеющейся выборке оценить параметры вероятностного распределения генеральной совокупности. Другими словами, у нас есть выборка и задача MLE оценить параметры вероятностного распределения данных, из которых была взята эта выборка.

Функция правдоподобия L(x| heta) для каждого значения heta определяет меру правдоподобия получения наблюдения x

$$\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} L(\boldsymbol{x}|\theta) = \underset{\theta}{\operatorname{argmax}} p(\boldsymbol{x}|\theta) = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{n} p(x_i|\theta)$$

Или с использованием логарифма:

$$\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} \log \prod_{i=1}^{n} p(x_i|\theta) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p(x_i|\theta)$$

Замечание

В данном случаем для функции правдоподобия используется обозначение $L(x|\theta)$. Существуют и другие варианты, например, $L(\theta|x)$, $L(x;\theta)$ или $L_X(\theta)$

Замечание

Для дискетной случайной величины используется функция вероятности (pmf), а для непрерывной – функция плотности вероятности (pdf)

1.1. Оценка параметра дискретного распределения Бернулли

Частный случай

Дана выборка 1110. Найти оценку вероятности p появления 1?

Функция правдоподобия в этом случае будет иметь вид:

$$L(x_1, x_2, x_3, x_4|p) = p \cdot p \cdot p \cdot (1-p) = p^3 \cdot (1-p)$$

Чтобы найти

$$\hat{p} = \operatorname*{argmax}_{p} L(x_1, x_2, x_3, x_4 | p)$$

Возьмем производную и приравняем полученное выражение к нулю:

$$\frac{d}{dp}L(x_1, x_2, x_3, x_4|p) = 3p^2 - 4p^3 = 0$$

В итоге оценка вероятности будет равна

$$\hat{p} = 3/4$$

Общий случай

Дана выборка x_1, x_2, \dots, x_n . Полагаем, что значение каждого наблюдения подчиняется закону Бернулли, т. е. $x_1, x_2, \dots, x_n \sim \mathcal{B}(x|p)$, где $x \in \{0,1\}$, p — переменная, соответствующая вероятности появления 1.

Распределение Бернулли имеет вид:

$$p(x|p) = \begin{cases} p, \text{если } x = 1 \\ q = 1 - p, \text{если } x = 0 \end{cases}$$

Или можно записать, как

$$p(x|p) = p^{x}(1-p)^{(1-x)}$$

Необходимо найти оценку параметра p по имеющейся выборке?

Решение:

Наша задача найти:

$$\hat{p} = \operatorname*{argmax}_{p} L(x_1, x_2, \dots, x_n | p)$$

Или эту же задачу можно представить как

$$\hat{p} = \underset{p}{\operatorname{argmax}}[\log L(x_1, x_2, \dots, x_n | p)]$$

Функция правдоподобия имеет вид:

$$L(x_1, x_2, ..., x_n | p) = \prod_{i=1}^{n} p(x_i | p)$$

Возьмём логарифм от функции правдоподобия:

$$\log L(x_1, x_2, ..., x_n | p) = \log \prod_{i=1}^n p(x_i | p) = \sum_{i=1}^n \log p(x_i | p) = \sum_{i=1}^n \log [p^{x_i} (1 - p)^{(1 - x_i)}]$$

$$= \sum_{i=1}^n [x_i \log p + (1 - x_i) \log (1 - p)]$$

Получаем

$$\log L(x_1, x_2, \dots, x_n | p) = \sum_{i=1}^n [x_i \log p + (1 - x_i) \log(1 - p)]$$

Чтобы найти максимум, возьмем производную по p и приравняем полученное выражение к нулю:

$$\frac{d}{dp} \sum_{i=1}^{n} [x_i \log p + (1 - x_i) \log(1 - p)] = \sum_{i=1}^{n} \left[\frac{x_i}{p} + \frac{1 - x_i}{1 - p} \right] = 0$$

Таким образом,

$$\hat{p} = \frac{\sum_{i=1}^{n} x_i}{n}$$

1.2. Оценка параметров нормального закона распределения

Дана выборка $x_1, x_2, ..., x_n$. Полагаем, что значение каждого наблюдения подчиняется нормальному закону распределения, т. е. $x_1, x_2, ..., x_n \sim \mathcal{N}(x|\mu, \sigma^2)$

Необходимо найти оценки параметров μ , σ^2 ?

Решение:

Нормальное распределение данных с одним признаком:

$$p(x_i|\mu,\sigma^2) = \mathcal{N}(x_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(x_i-\mu)^2}$$

Функция правдоподобия:

$$L(x_1, x_2, \dots, x_n | \mu, \sigma^2) = \prod_{i=1}^n p(x_i | \mu, \sigma^2) = \prod_{i=1}^n \mathcal{N}(x_i | \mu, \sigma^2) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2}$$

Логарифм функции правдоподобия:

$$\log L(x_1, x_2, \dots, x_n | \mu, \sigma^2) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Тогда неизвестные параметры μ и σ^2 можно оценить следующим образом:

$$\begin{split} \hat{\theta}_{MLE} &= (\hat{\mu}_{MLE}, \hat{\sigma}_{MLE}^2) \\ &= \underset{\mu, \sigma^2}{\operatorname{argmax}} L(x_1, x_2, \dots, x_n | \mu, \sigma^2) = \underset{\mu, \sigma^2}{\operatorname{argmax}} \left[-\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 \right] \end{split}$$

Приравняем частные производные по параметрам к нулю:

$$\frac{\partial L(x_1, x_2, \dots, x_n | \mu, \sigma^2)}{\partial \mu} = 0$$

$$\frac{\partial L(x_1, x_2, \dots, x_n | \mu, \sigma^2)}{\partial \sigma^2} = 0$$

В итоге получим, что

$$\hat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu}_{MLE})^2$$

1.3. Оценка параметров линейной регрессии

Дана выборка $\{(x_i, y_i)\}_{1..n}$

Линейная регрессия в общем виде представляется как:

$$y_i = \boldsymbol{\theta}^T \boldsymbol{x}_i + \varepsilon_i$$

Полагаем, что

$$\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

$$\sigma^2 = \text{var}[\varepsilon_i]$$

Найти оценки параметров θ и σ^2 ?

Функция плотности распределения для y_i :

$$p(y_i|X) = \mathcal{N}(y_i|\boldsymbol{\theta}^T\boldsymbol{x}_i, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2}(y_i - \boldsymbol{\theta}^T\boldsymbol{x}_i)^2\right]$$

Функция правдоподобия для всей выборки будет иметь вид:

$$L(\mathbf{y}|X;\boldsymbol{\theta},\sigma^2) = \prod_{i=1}^n p(y_i|X;\boldsymbol{\theta},\sigma^2) = \left[\frac{1}{\sqrt{2\pi}\sigma}\right]^n \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \boldsymbol{\theta}^T \boldsymbol{x}_i)^2\right]$$
$$= \left[2\pi\sigma^2\right]^{-n/2} \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \boldsymbol{\theta}^T \boldsymbol{x}_i)^2\right]$$

Возьмем логарифм от функции правдоподобия

$$\log L(\mathbf{y}|X;\boldsymbol{\theta},\sigma^2) = -\frac{n}{2}\log 2\pi\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \boldsymbol{\theta}^T \boldsymbol{x}_i)^2 =$$

$$= -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \boldsymbol{\theta}^T \boldsymbol{x}_i)^2$$

Наша задача сводится к тому, чтобы найти такие параметры θ , которые бы максимизировали функцию правдоподобия (или её логарифм):

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}}[\log L(\mathbf{y}|X;\boldsymbol{\theta},\sigma^2)]$$

Чтобы найти оценки неизвестных параметров $m{ heta}$ и σ^2 , найдем частные производные и приравняем их к нулю:

$$\nabla \log L(\mathbf{y}|X;\boldsymbol{\theta},\sigma^2) = \mathbf{0}$$

В частности, частные производные по $oldsymbol{ heta}$:

$$\nabla_{\theta} \log L(\mathbf{y}|X; \boldsymbol{\theta}, \sigma^2) = \frac{\partial}{\partial \boldsymbol{\theta}} \log L(\mathbf{y}|X; \boldsymbol{\theta}, \sigma^2) = \mathbf{0}$$

И частная производная по σ^2 :

$$\frac{\partial}{\partial \sigma^2} \log L(\mathbf{y}|X;\boldsymbol{\theta},\sigma^2) = 0$$

Если решим систему уравнений для частных производные по $m{ heta}$, то найдем значения оценок параметров $m{\hat{ heta}}$. Далее эти значения надо подставить для оценки σ^2 . В итоге получим, что

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \mathbf{y}$$

И

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \widehat{\boldsymbol{\theta}}^T \boldsymbol{x}_i)^2$$

2. Классификация

Цель классификации – получить входной вектор x и соотнести его с одним из K дискретных классов c_k , где $k=1,\ldots,K$. Как правило, классы представляются как несовместные события, то есть каждому входному вектору присваивается один и только один класс.

Для вероятностных моделей с двумя классами наиболее удобным представлением целевого значения является переменная y со значениями 0 или 1, $y \in \{0,1\}$. При этом y=0 представляет класс c_0 , а y=1 класс c_1 . Иногда для представления классов используются значения -1 и 1.

Примеры:

- Медицинская диагностика
- Кредитный скоринг
- Распознавание образов

Существует три подхода в классификации:

- дискриминантная функция (discriminant function)
 Напрямую назначает входному вектору определенный класс.
- дискриминативная модель (discriminative model)

Представляет вероятность $p(c_k|x)$ как параметрическую модели и оценивает параметры на обучающем множестве. После получения вероятностей для всех классов принимает решение о принадлежности некоторому классу. Пример: логистическая регрессия, метод опорных векторов

• порождающая модель (generative model)

Использует условные по классу вероятности $p(x|c_k)$ и априорные вероятности $p(c_k)$ для классов, и затем вычисляется апостериорная вероятность $p(c_k|x)$ по теореме Байеса:

$$p(c_k|x) = \frac{p(x|c_k)p(c_k)}{p(x)}$$

Пример: наивный байесовский классификатор, смешанная гауссовская модель (Gaussian Mixture Model), скрытая марковская модель

Порождающая модель строит вероятностную модель для каждого класса и определяет, насколько входной вектор (наблюдаемое значение) соответствует каждой из моделей, и на основе этого дает заключение о принадлежности к какому-либо классу. Дискриминативная модель обучается для распознавания/различения классов. Такая модель может отличить один класс от другого, но не имеет представления о моделях самих классов.

3. Логистическая регрессия

3.1. Общие сведения

Логистическая регрессия является методом классификации и относится к классу методов обучения с учителем. Таким образом, для обучения используется множество с известными целевыми значениями (метками) у (например, 0 или 1) для каждого наблюдения/экземпляра.

Кроме того, логистическая регрессия относится к параметрическим методам, то есть необходимо найти значения параметров, при которых модель будет иметь наименьшую ошибку классификации.

Задача заключается в оценке параметров heta таким образом, чтобы \hat{y} для каждого наблюдения соответствовала бы действительному значению y.

Для этого необходимо:

- 1) Задать метрику определения близости \hat{y} и y. Выражается в виде расстояния и называется функция потерь (loss/cost function)
- 2) Решить задачу оптимизации, т. е. найти способ определения параметров, для которых функция потерь будет минимальна

Параметр θ_i определяет, насколько важным является входной признак для принятия решения по отнесению наблюдения к конкретному классу. Например, если параметр положительный, то он ассоциируется с классом 1, если отрицательный, то с классом 0.

3.2. Логистическая функция для задачи классификации

Линейная регрессия для классификации

Функцию линейной регрессии можно записать следующим образом

$$z = \sum_{i=0}^{p} \theta_i x_i = \boldsymbol{\theta}^T \boldsymbol{x}.$$

Замечание

Здесь и далее полагаем, что $x_0 = 1$

Чтобы построить классификатор на её основе, необходимо задать критерий отнесения значения z к тому или иному классу. Для этому можно использовать простой порог, например:

$$\hat{y} = \begin{cases} 1, \text{если } z > 0.5 \\ 0 \text{ иначе} \end{cases}$$

Пример применения метода наименьших квадратов (МНК) для задачи классификации:

Проблемы классификации с линейной регрессией:

• С одним признаком

Рисунок x — Классификакция посредством линейно регрессии для одномерного пространства признаков

С двумя признаками

Рисунок x — Классификакция посредством линейно регрессии для двумерного пространства признаков

Логистическая функция (сигмоида) (Logistic/sigmoid function)

Как было показано ранее, классификатор на основе линейной регрессии чувствителен к выбросам. Что избежать данной проблемы, рассмотрим сигмоидальную функцию вида

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Рисунок х – Сигмоидальная функция

Если вместо z подставить функцию линейной регрессии с одним признаком, то получим следующую сигмойду:

$$\sigma(x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x)}},$$

где параметры θ_0 и θ_1 контролируют смещение по x и крутизну кривой, соответственно.

В общем виде для p признаков сигмоидальная функция примет вид

$$\sigma(\mathbf{x}) = \frac{1}{1 + e^{-\theta^T \mathbf{x}'}}$$

так как

$$z = \sum_{i=0}^{p} \theta_i x_i = \boldsymbol{\theta}^T \boldsymbol{x},$$

Преимущества использования сигмоидальной функции:

- Возвращает действительное значение
- Область значения от 0 до 1, что соответствует значениям вероятностей
- Выбросы (outlier) будут стремиться к 0 или 1
- Дифференцируема

Представим логистическую функцию как вероятность принадлежности к классу 1:

$$p(y = 1|x) = h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Тогда принадлежность к классу 0 можно записать как

$$p(y = 0|x) = 1 - h_{\theta}(x) = \frac{e^{-\theta^T x}}{1 + e^{-\theta^T x}}$$

Сумма вероятностей принадлежности классу 1 или классу 0:

$$p(y = 0|x) + p(y = 1|x) = 1$$

Функция принятия решения

$$\hat{y} = \begin{cases} 1, \text{если } p(y = 1|x) > 0.5 \\ 0 \text{ иначе} \end{cases}$$

Каким образом найти параметры θ ? Метод максимального правдоподобия поможет нам разобраться как решается эта задача. Далее рассмотрим какой будет функция правдоподобия в данном случае и как найти неизвестные параметры θ .

3.3. Функция потерь логистической регрессии

Если рассматривать, что элементы выборки x_1, x_2, \dots, x_n независимы, то функцию правдоподобия для классификации (дискриминативной) можно записать как

$$L(\mathbf{y}|X,\boldsymbol{\theta}) = \prod_{i=1}^{n} p(y_i|\mathbf{x}_i,\boldsymbol{\theta}).$$

Задача заключается в поиске параметров $oldsymbol{ heta}$, при которых функция правдоподобия примет максимальное значение:

$$\widehat{\boldsymbol{\theta}} = \operatorname*{argmax}_{\boldsymbol{\theta}} L(\mathbf{y}|X, \boldsymbol{\theta})$$

Другими словами, можно сказать, что необходимо найти такие параметры θ , при которых мы с наибольшей вероятностью получим исходную выборку целевых значений $y_1, y_2, ..., y_n$.

Замечание

Ранее отмечалось, что оценку неизвестного параметра в методе максимального правдоподобия можно записать следующим образом

$$\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} L(\boldsymbol{x}|\theta) = \underset{\theta}{\operatorname{argmax}} p(\boldsymbol{x}|\theta) = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{n} p(x_i|\theta)$$

Вероятность появления некоторого y_i при заданных x_i и $oldsymbol{ heta}$, что можно записать в следующем виде

$$p(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = p(y_i = 1|\mathbf{x}_i,\boldsymbol{\theta})^{y_i}p(y_i = 0|\mathbf{x}_i,\boldsymbol{\theta})^{1-y_i}$$

Ранее приведенное выражение (распределение Бернулли) можно пояснить следующим образом:

• если действительное значение $y_i = 1$:

$$p(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = p(y_i = 1|\mathbf{x}_i,\boldsymbol{\theta})^{1} \underbrace{p(y_i = 0|\mathbf{x}_i,\boldsymbol{\theta})^{0}}_{1}$$

• если действительное значение $y_i = 0$:

$$p(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = \underbrace{p(y_i = 1|\mathbf{x}_i,\boldsymbol{\theta})^0}_{1} p(y_i = 0|\mathbf{x}_i,\boldsymbol{\theta})^1$$

Замечание

Распределение Бернулли имеет вид:

$$p(x|p) = \begin{cases} p, \text{если } x = 1\\ q = 1 - p, \text{если } x = 0 \end{cases}$$

Или можно записать, как

$$p(x|p) = p^{x}(1-p)^{(1-x)}$$

Если учесть, что вероятность появления $y_i=1$ при заданном \pmb{x}_i и $\pmb{\theta}$ можно представить как сигмоидальную функцию, получим

$$p(y_i = 1 | \boldsymbol{x}_i, \boldsymbol{\theta}) = h_{\theta, i}$$

И

$$p(y_i = 0 | \boldsymbol{x}_i, \boldsymbol{\theta}) = 1 - h_{\theta,i}$$

Получаем следующую общую запись вероятности

$$p(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = h_{\theta,i}^{y_i} (1 - h_{\theta,i})^{1 - y_i}.$$

Приведенное выражения обладает рядом важных свойств:

• Максимизация вероятности также максимизирует логарифм вероятности

$$\log p(y_i|\mathbf{x}_i, \boldsymbol{\theta}) = \log \left(h_{\theta,i}^{y_i} (1 - h_{\theta,i})^{1 - y_i} \right) = y_i \log h_{\theta,i} + (1 - y_i) \log (1 - h_{\theta,i})$$

Замечание

Для распределения Бернулли

$$\log[p^{x_i}(1-p)^{(1-x_i)}] = x_i \log p + (1-x_i) \log(1-p)$$

- Данная функция является вогнутой
- Меняем знак, чтобы получить выпуклую функцию
- Локальный минимум выпуклой функции является глобальным минимумом

Полученное выражение называется перекрестная энтропия, которую далее будем использовать как функцию потерь (cross-entropy loss function):

$$l_{CE,i}(\boldsymbol{\theta}) = -\log p(y_i|\boldsymbol{x_i},\boldsymbol{\theta}) = -y_i \log h_{\theta,i} - (1-y_i) \log(1-h_{\theta,i})$$

или

$$l_{CE,i}(\theta) = -y_i \log \frac{1}{1 + e^{-\theta^T x_i}} - (1 - y_i) \log \left(1 - \frac{1}{1 + e^{-\theta^T x_i}} \right)$$

Мы хотим, чтобы потери были небольшими, если оценка h_{θ} близка к действительному значению y, и наоборот большими, если значения значительно отличаются.

Идеальный классификатор присвоит вероятность $p(y_i|x_i, \theta) = 1$ корректному исходу (y=1) или y=0) и вероятность $p(y_i|x_i, \theta) = 0$ для некорректного. Другими словами, если действительное значение класса равно y=1, то значение вероятности отнесения классификатором наблюдения x к классу 1 должно быть равно 1, а к классу 0, соответственно, 0. Аналогично для y=0, значение вероятности отнесения классификатором наблюдения x к классу 0 должно быть равно 1, а к классу 1, соответственно, 0. Для такого классификатора функция потерь будет иметь нулевое значение.

Рисунок – Функция ошибки для одного наблюдения

Обучение логистической регрессии происходит на множестве наблюдений. Для выборки из n наблюдений функцию правдоподобия можно записать следующим образом

$$L(\mathbf{y}|X,\boldsymbol{\theta}) = \prod_{i=1}^{n} h_{\theta,i}^{y_i} (1 - h_{\theta,i})^{1-y_i}.$$

Если взять логарифм от функции правдоподобия, то получим:

$$\log L(\mathbf{y}|X,\boldsymbol{\theta}) = \log \prod_{i=1}^{n} p(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = \sum_{i=1}^{n} [y_i \log h_{\theta,i} + (1-y_i) \log(1-h_{\theta,i})]$$

Для оценки неизвестных параметров $oldsymbol{ heta}$ необходимо решить следующую задачу

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log L(\mathbf{y}|X, \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{n} [y_i \log h_{\theta, i} + (1 - y_i) \log(1 - h_{\theta, i})]$$

Замечание

Логарифм функции максимального правдоподобия для распределения Бернулли

$$\log L(x_1, x_2, ..., x_n | p) = \sum_{i=1}^{n} [x_i \log p + (1 - x_i) \log(1 - p)]$$

Оценка неизвестного параметра

$$\hat{p} = \underset{p}{\operatorname{argmax}}[\log L(x_1, x_2, \dots, x_n | p)]$$

Однако в качестве функции потерь для задачи классификации посредством логистической регрессии, как правило, используют среднюю перекрестную энтропию, которая имеет следующий вид

$$L_{CE}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} l_{CE,i}(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log h_{\theta,i} + (1 - y_i) \log(1 - h_{\theta,i})]$$

По сути, мы меняем задачу максимизации на задачу минимизации.

Замечание

В контексте классификации расстояние Кульбака-Лейблера (Kullback–Leibler divergence) определяет ассиметричную меру того, как одно случайное распределение P (наблюдаемые данные) отличается от другого Q (предсказания)

$$D_{KL}(P \parallel Q) = H(P,Q) - H(P) = -\sum_{i} p(x) \log q(x) + const,$$

где H(P,Q) – кросс-энтропия между двумя распределениями вероятностей случайных величие P и $\mathbb Q$

$$H(P,Q) = -\sum_{i} p(x) \log q(x)$$

и H(P) – энтропия (мера неопределенности)

$$H(P) = -\sum_{i} p(x) \log p(x) = const$$

В случае с логистической регрессией при одном наблюдении (x,y)

$$H(P,Q) = -y \log h_{\theta} - (1-y) \log(1-h_{\theta})$$

Таким образом, для оценки параметров логистической регрессии необходимо решить следующую задачу:

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} L_{CE}(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} l_{CE,i}(\boldsymbol{\theta})$$

Почему не использовать MSE в качестве функции потерь:

$$L_{MSE}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h_{\theta,i})^2$$
?

Данная функция не является выпуклой (без доказательства)

Замечание

В контексте классификации расстояние Кульбака-Лейблера (Kullback–Leibler divergence) определяет ассиметричную меру того, как одно случайное распределение P (наблюдаемые данные) отличается от другого Q (предсказания)

$$D_{KL}(P \parallel Q) = H(P,Q) - H(P) = -\sum_{i} p(x) \log q(x) + const,$$

где H(P,Q) – кросс-энтропия между двумя распределениями вероятностей случайных величин P и Q

$$H(P,Q) = -\sum_{i} p(x) \log q(x)$$

и H(P) – энтропия (мера неопределенности)

$$H(P) = -\sum_{i} p(x) \log p(x) = const$$

В случае с логистической регрессией при одном наблюдении (x,y)

$$H(P,Q) = -y \log h_{\theta} - (1-y) \log(1-h_{\theta})$$

В итоге для задачи классификации получаем

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} D_{KL}(P \parallel Q) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} H(P, Q)$$

3.4. Обучение (оценка параметров)

Обучение логистической регрессии производится посредством итеративных методов с использованием частных производных различных порядков. В данном случае нет аналитического решения (закрытой формы) подобно методу наименьших квадратов в линейной регрессии.

Как было отмечено ранее для обучения нам необходимо решить следующую задачу оптимизации:

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} L_{CE}(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} l_{CE,i}(\boldsymbol{\theta})$$

Рассмотрим два варианта: градиентный спуск и стохастический градиентный спуск.

3.4.1. Градиентный спуск

Выборка:

$$S = \{(x_1, y_1), \dots, (x_n, y_n)\}$$

Замечание: чтобы использовать более общую запись, принимаем $\mathit{x}_{i0} = 1$

Итерация:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla L_{CE}(\boldsymbol{\theta})$$

Функция потерь:

$$L_{CE}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} l_{CE,i}(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} y_i \log h_{\theta,i} + (1 - y_i) \log(1 - h_{\theta,i})$$

Частная производная по θ_i :

$$\frac{\partial L_{CE}(\boldsymbol{\theta})}{\partial \theta_j} = \sum_{i=1}^n (h_{\theta,i} - y_i) x_{ij} = \sum_{i=1}^n \left(\frac{1}{1 + e^{-\theta^T x_i}} - y_i \right) x_{ij}$$

Вывод

$$\frac{d}{dx}\log x = \frac{1}{x}$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\frac{1}{1+e^x} = \sigma(x)(1-\sigma(x))$$

2)
$$\frac{\partial l_{CE}(\boldsymbol{\theta})}{\partial \theta_{j}} = -\frac{\partial}{\partial \theta_{j}} (y \log h_{\theta} + (1 - y) \log(1 - h_{\theta})) = -\frac{y}{h_{\theta}} \frac{\partial}{\partial \theta_{j}} h_{\theta} - \frac{1 - y}{1 - h_{\theta}} \frac{\partial}{\partial \theta_{j}} (1 - h_{\theta})$$

$$= -\left(\frac{y}{h_{\theta}} - \frac{1 - y}{1 - h_{\theta}}\right) \frac{\partial}{\partial \theta_{j}} h_{\theta} = -\left(\frac{y - h_{\theta}}{h_{\theta} (1 - h_{\theta})}\right) \frac{\partial}{\partial \theta_{j}} h_{\theta}$$

$$= -\left(\frac{y - h_{\theta}}{h_{\theta} (1 - h_{\theta})}\right) h_{\theta} (1 - h_{\theta}) \frac{\partial}{\partial \theta_{j}} \theta^{T} x = -\left(\frac{y - h_{\theta}}{h_{\theta} (1 - h_{\theta})}\right) h_{\theta} (1 - h_{\theta}) x_{j}$$

$$= -(y - h_{\theta}) x_{j} = (h_{\theta} - y) x_{j}$$

3)
$$\frac{\partial L_{CE}(\boldsymbol{\theta})}{\partial \theta_i} = \sum_{i=1}^{n} (h_{\theta,i} - y_i) x_{ij}$$

Градиент $L_{CE}(\theta)$:

$$\nabla L_{CE}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial L_{CE}}{\partial \theta_0} \\ \vdots \\ \frac{\partial L_{CE}}{\partial \theta_p} \end{bmatrix}$$

3.4.2. Стохастический градиентный спуск

Одно наблюдение:

(x, y),

где

$$x = \left(x_1, x_2, \dots, x_p\right)^T$$

Итерация:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla l_{CE,i}(\boldsymbol{\theta})$$

Функция потерь:

$$l_{CE}(\boldsymbol{\theta}) = -y \log h_{\theta} - (1 - y) \log(1 - h_{\theta})$$

Частная производная по θ_i :

$$\frac{\partial L_{CE}(\boldsymbol{\theta})}{\partial \theta_i} = (h_{\theta} - y)x_j = \left(\frac{1}{1 + e^{-\boldsymbol{\theta}^T x}} - y\right)x_j$$

Градиент $l_{CE}(\theta)$:

$$abla l_{CE}(oldsymbol{ heta}) = egin{bmatrix} rac{\partial l_{CE}}{\partial heta_0} \ dots \ rac{\partial l_{CE}}{\partial heta_0} \end{bmatrix}$$

Алгоритм. Стохастический градиентный спуск

1	load(S)	Загрузка обучающего множества
2	initialize($oldsymbol{ heta}$)	Начальное значение
3	while stopCriteria is False:	Количество эпох, проверка сходимости
4	shuffle(S)	Тасовка
5	for (x, y) in S :	Цикл по всем элементам S
6	$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla l_{CE}(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y})$	Обновление значения
7	$\widehat{m{ heta}} \leftarrow m{ heta}$	
8	return $\widehat{m{ heta}}$	

3.5. Предсказание

После того, как были получены оценки параметров $\widehat{\pmb{\theta}}$ на обучающем множестве, модель готова предсказывать значения классов для новых данных. Для оценки качества обученной модели, как правило, используется тестовое множество. Для нового наблюдения x_* предсказание вычисляется следующим образом:

$$\hat{y} = \begin{cases} 1, \text{если} \frac{1}{1 + e^{-\hat{\theta}^T x_*}} > 0.5 \\ 0 \text{ иначе} \end{cases}$$

Особенность логистической регрессии является то, что данных метод дает вероятностное представление о принадлежности к классам:

$$\hat{p}(y=1|\mathbf{x}_*,\widehat{\boldsymbol{\theta}}) = \frac{1}{1+e^{-\widehat{\boldsymbol{\theta}}^T \mathbf{x}_*}}$$

В некоторых случаях используют вероятности вместо предсказания класса \hat{y} .

3.6. Взвешенная логистическая регрессия

Кросс-энтропия для взвешенной регрессии будет иметь вид

$$l_{CE}^{W} = -w_1 y \log h_{\theta} - w_0 (1 - y) \log(1 - h_{\theta}),$$

где w_0 и w_1 – веса классов 0 и 1, соответственно.

Далее всё аналогично тому, как было рассмотрено ранее.

Если веса классов неизвестны, то в общем виде их можно определить следующим образом:

$$w_i = \frac{n}{K \cdot n_i},$$

где n – количество наблюдений; K – количество классов; n_i – количество наблюдений i-го класса.

Взвешенная логистическая регрессия может быть полезной, например, при использовании несбалансированной по классам выборке. В этом случае наблюдений одного класса значительно больше, чем другого, и мы хотим придать больше веса классу с меньшим количеством наблюдений.

4. Многоклассовая классификация

4.1. Полиномиальная логистическая регрессия (multinomial logistic regression/softmax regression)

В многоклассовой классификации количество классов больше двух. Пусть k обозначает класс c_k из множества C. Всего классов K, то есть |C|=K и $1\leq k\leq K$.

Вероятность принадлежности классу k при заданном входном векторе x:

$$p(y = k|x) = \operatorname{softmax}(z_k) = \frac{e^{z_k}}{\sum_{i=1}^{K} e^{z_i}}$$

где

$$z_k = \boldsymbol{\theta}_k^T \boldsymbol{x}.$$

Для всех классов:

softmax(
$$\mathbf{z}$$
) = $\begin{pmatrix} e^{z_1} & e^{z_2} \\ \sum_{j=1}^K e^{z_j} & \sum_{j=1}^K e^{z_j} \end{pmatrix}^T$,

где

$$\mathbf{z} = (z_1 \quad z_2 \quad \cdots \quad z_K)^T.$$

При этом должны выполняться условия:

$$\sum_{k=1}^{K} \operatorname{softmax}(z_k) = 1$$

ν

$$0 \le \operatorname{softmax}(z_i) \le 1$$
.

Обучение

Общая задача:

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} L_{CE}(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} l_{CE,i}(\boldsymbol{\theta})$$

Кросс-энтропия как функция потерь в многоклассовой логистической регрессии для одного наблюдения:

$$l_{CE}(\theta) = -\sum_{k=1}^{K} 1\{y = k\} \log p(y = k | x) = -\sum_{k=1}^{K} 1\{y = k\} \log \frac{e^{\theta_k^T x}}{\sum_{i=1}^{K} e^{\theta_i^T x}}$$

где

$$1\{y = k\} = \begin{cases} 1, \text{ если } y = k \\ 0, \text{ иначе} \end{cases}$$

Частная производная по параметрам k-ой модели $\boldsymbol{\theta}_k$:

$$\nabla_{\theta_{k}} l_{CE}(\boldsymbol{\theta}) = \frac{\partial l_{CE}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{k}} = \begin{bmatrix} \frac{\partial l_{CE}(\boldsymbol{\theta})}{\partial \theta_{k,0}} \\ \vdots \\ \frac{\partial l_{CE}(\boldsymbol{\theta})}{\partial \theta_{k,n}} \end{bmatrix} = -[1\{y = k\} - p(y = k|x)]x_{k} = -\left[1\{y = k\} - \frac{e^{\boldsymbol{\theta}_{k}^{T}x}}{\sum_{j=1}^{K} e^{\boldsymbol{\theta}_{j}^{T}x}}\right]x_{k},$$

где

$$oldsymbol{ heta}_k = egin{bmatrix} heta_{k,0} \ dots \ heta_{k,p} \end{bmatrix}.$$

Градиент $\nabla l_{CE}(\boldsymbol{\theta})$:

$$\nabla l_{CE}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial l_{CE}}{\partial \theta_{1,0}} & \cdots & \frac{\partial l_{CE}}{\partial \theta_{K,0}} \\ \vdots & \ddots & \vdots \\ \frac{\partial l_{CE}}{\partial \theta_{1,p}} & \cdots & \frac{\partial l_{CE}}{\partial \theta_{K,p}} \end{bmatrix}.$$

Предсказание:

$$\hat{y} = \underset{1 \le k \le K}{\operatorname{argmax}} p(y = k | \mathbf{x}_*) = \underset{1 \le k \le K}{\operatorname{argmax}} \operatorname{softmax} \left(\widehat{\boldsymbol{\theta}}_k^T \mathbf{x}\right) = \underset{1 \le k \le K}{\operatorname{argmax}} \frac{e^{\widehat{\boldsymbol{\theta}}_k^T \mathbf{x}_*}}{\sum_{j=1}^K e^{\widehat{\boldsymbol{\theta}}_j^T \mathbf{x}_*}}$$

4.2. One-vs-rest

Для каждого класса строится бинарный классификатор h_k , где $1 \le k \le K$. Целевые значения обучающего набора данных для k-го классификатора представляется как набор, состоящий из двух классов: 1 – элементы k-го класса, 0 – все остальные. В качестве выходного значения каждый бинарный классификатор должен выдавать вероятностную оценку принадлежности тому или иному классу.

В итоге предсказание для некоторого наблюдения x будет иметь вид:

$$\hat{y} = \operatorname*{argmax}_{1 \le k \le K} h_k(\mathbf{x})$$

Проблемы:

• Несбалансированная выборка при бинарной классификации

4.3. One-vs-one

Для каждой пары классов строится отдельный бинарный классификатор f_{ij} , где $1 \leq i,j \leq K$ и $i \neq j$. Всего получается

$$\frac{K(K-1)}{2}$$

классификаторов. Для каждого из них используется только те элементы обучающего множества, которые соответствуют данному бинарному классификатору. При этом выходным значением должно быть предсказание конкретного класса, а не вероятности.

В качестве итогового предсказания будет класс, предсказанный большинством бинарных классификаторов.

Проблемы:

• Может иметь одинаковое количество голосов для нескольких классов

Список литературы

- Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg. URL: https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
- Chapter 5. Logistic Regression // Speech and Language Processing. Daniel Jurafsky & James H.
 Martin URL: https://web.stanford.edu/~jurafsky/slp3/
- Chapter 4. Classification // An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshir. URL: http://faculty.marshall.usc.edu/gareth-james/ISL/