COE328 Digital Systems

Lecture 15 Dr. Shazzat Hossain

Moore state: output depends on 1. State diagram =

Reset

W=1/Z=0

Mealy State Circuit

- Mealy Circuit: Outputs depend on the present state and inputs.
- · Design steps for FSM:

Step#1: Determine how many states are possible

Step#2: Which transitions are possible from one state to another state

Step#3: Begin from a state (when power is turned on or reset is used)

Cors → B → W=1/20

Suppose that we wish to design a circuit that meets the following specification:

- 1. The circuit has one input, w, and one output, z.
- 2. All changes in the circuit occur on the positive edge of a clock signal.
- 3. The output z is equal to 1 if during two immediately preceding clock cycles the input w was equal to 1. Otherwise, the value of z is equal to 0.

w= 9 2=0 W=1 2=1

						4					
Clock cycle:	t ₀	tı	12	13	14	ts.	t ₆	t7	ts	to.	t10
_ w:	10	1	0	1	0	0	1	1	1	0	1
- 2:	0	0	0	0	0	1	0	0	1	1	0

Figure 8.2 Sequences of input and output signals.

State Table

State - assigned : A=0

logic Function		Next	output, Z		
For Z	Plesent state	ω <u>-</u> υ	W=1	ωεο	<u> </u>
1	7	Y	Y		
W	0	0 -	1	6	C

Figure 8.25 State-assigned table for the FSM in F

State-assigned table Present state W -0 w=1 0 0 0 1

T

 \bigcirc

1 1

0

Formula sheet

Design Using T-FF

Present State		Nex	Outp	out, z		
	W	=0	V	V=1	W=0	W=1
у	Υ	Т	Υ	Т	vv=0	VV=1
0	0	0	1	1	0	0
1	0	1	1	0	0	1

0	1	
1	0	

 $T = \overline{w}y + w\overline{y}$ z=wy

Characteristic

table

N.S Ôn Onti K J \bigcirc 0 0 0 1 \bigcirc (0 0

Tomake some that this table on your formul. sheet

. . . -

Design a Counter using the Sequential Circuit Approach

We will design a counter using the sequential circuit approach

The counting sequence is: 0-1-2-3-4-5-6-7-0

There exists an input signal w. The value of this signal is considered during each clock.

If w=0, the present count remains the same. If w=1, the count will be incremented.

Modulo-8 Counter

• State Diagram and State Table

Figure 8.60 gives a state diagram for the desired counter. There is a state associated with each count. In the diagram state A corresponds to count 0, state B to count 1, and so on. We show the transitions between the states needed to implement the counting sequence. Note that the output signals are specified as depending only on the state of the counter at a given time, which is the Moore model of sequential circuits. The state diagram may be represented in the state-table form as shown in Figure 8.61.

State table for the coun

Figure 8.60 State diagram for the counter.

160

State Table and State-assigned Table

Figure 8.61

Three state variables are needed to represent the eight states. Let these variables, denoting the present state, be called y_i , y_i , and y_i . Let Y_i , Y_i , and Y_i denote the corresponding next-state functions. The most convenient (and simplest) state assignment is to encode each state with the binary number that the counter should give as output in that state. Then the required output signals will be the same as the signals that represent the state variables. This leads to the state-assigned table in Figure 8.62.

Present state	Next	Outpu	
	w = 0	w = 1	
A	A	В	0
В	В	C	1
C	C	D	2
D	D	E	3
E	E	F	4
F	F	G	5
G	G	H	6
H	Н	A	7

	Present	Next	Next state					
	state	w = 0	w = 1	Count				
	J2 J1 J0	$Y_2 Y_1 Y_0$	$Y_2 Y_1 Y_0$	Z2Z1Z0				
Α	000	000 -	001	000				
В	001	001	010	001				
C	010	010	011	010				
D	011	011-	100	011				
E	100	100 -	101	100				
F	101	101-	110	101				
G	110	110	111	110				
Н	111	111	000	111				

7,521 7,521

w Jo

11

0

۵

()

ں

0

Figure 8.61 State table for the counter.

Figure 8.62 State-assigned table for the counter.

logic Furtion

Y,= ωη+ηίνο +ωνίχο -

٥

(

δ

Implementation using D Flip-Flops

When using D-type flip-flops to realize the finite state machine, each next-state function, Y_n , is connected to the D input of the flip-flop that implements the state variable y. The next-state functions are derived from the information in Figure 8.62. Using Karnaugh maps in Figure 8.63

Figure 8.62 State-assigned table for the counter.

Logic Function

 $Y_2 = \bar{w}y_2 + \bar{y}_0y_2 + \bar{y}_1y_2 + wy_0y_1\bar{y}_2$

16

Implementation

Implementation Using JK Flip-Flops

The final step in the design is to choose the type of flip-flops and derive the expressions that control the flip-flop inputs. The most straightforward choice is to use D-type flip-flops. We pursue this approach first. Then we show the alternative of using JK-type flip-flops. In either case the flip-flops must be edge triggered to ensure that only one transition takes place during a single clock cycle.

Present State	Next State D-FF	J K-FF	T-FF
(0)	0	0 d	0
0	1	1 d	1
1	1	d 0	0
1	0	d 1	1

	TKZ JK, Nex	ct sta	te	,	ω= l			
Preent state	ν=/0 Υ ₂ Υ ₁ Υ.	J ₂ K ₂	J, k,	State-a J.k.	snigned Tube	k2 J1K1	Juko (البهده
0 0 0	1000	09	00	υd	3// /	00	19	
40 0 N	0001	06	08	90	0 0	b) 19	91	
VO NO	0 (0	07	90	09	1 1 0	d do	l9	
O O \\	0 1	09	20	do	000	16. 61	91	
(k) 0 0	100	90	09	لۍ٥	roll	do 0d	19	
Vol	() 0 1	do	09	do	X O	60 10	41	
110	110	0 6	20	09	A	do de	19	
	1 1	9	90	do	000	<u>d1</u> d	18	

State-assigned Table

Once the table in Figure 8.65 has been derived, it provides a truth table with inputs y_1, y_2, y_3, y_4 and y_5, y_6, y_8 and outputs

. !	0, J., N., J	, and Kr. We can then derive expressions				ressions it	Pi	resent State	Next	State D-FF	J K-FF	T-FF
								0 -	\leftarrow	0	0 d	0
								0		1	1 d	1
								1		1	d 0	0
								1		0	d 1	1
ĺ	Present				Flip-flo	p inputs (N	ext State	e)				
	state	state u> ≤ 0		w =	= 1		Count					
	32,51,30		J_2K_2	J_1K_1	$J_0 K_0$	22.21.20						
	000	000	0d	0d	0d	001	0d	0d	1d	000		
	001	001	0d	0d	d0	010	0d	1d	d1	001		
	010	010	0d	d0	0d	011	0d	d0	1d	010		
	011	011	0d	d0	d0	100	1d	d1	d1	011		
	100	100	d0	0d	0d	101	d0	0d	1d	100		
	101	101	d0	0d	d0	110	d0	1d	d1	101		
	110	110	d0	d0	0d	111	d0	d0	1d	110		
	111	111	d0	d0	d0	000	d1	d1	d1	111		

Figure 8.65 Excitation table for the counter with JK flip-flops.

169

Logic Function

Logic Function

Figure 8.66 Karnaugh maps for JK flip-flops in the counter.

Implementation

Figure 8.67 Circuit diagram using JK flip-flops.

Modulo 5 country

Implement using T Flip-Flops

	Present state y2 y1 y0	Next		
		w = 0	w = 1	Count
		$Y_2 Y_1 Y_0$	$Y_2 Y_1 Y_0$	Z2Z1Z0
A	000	000	001	000
В	001	001	010	001
C	010	010	011	010
D	011	011	100	011
E	100	100	101	100
F	101	101	110	101
G	110	110	111	110
Н	111	111	000	111

Next State D-FF	J K-FF	T-FF	
0	0 d	0	
1	1 d	1	
1	d 0	0	
0	d 1	1 /	
	0 1 1 0 0	0 0 d 1 1 d	0 0 d 0 1 1 d 1

- Convert the state assigned table to T-Type FFs Design the circuit, use the K-Map