18MAB102T-Advanced calculus and Complex Analysis **UNIT – I: MULTIPLE INTEGRALS**

MULTIPLE CHOICE QUESTIONS

		11	
1.	Evaluation of	$\iint dxdy$	is
		0.0	

- a) 1
- b) 2
- c) 0
- d) 4

2. The curve
$$y^2 = 4x$$
 is a

3. Evaluation of
$$\int_{0}^{\pi} \int_{0}^{\pi} d\theta d\phi$$
 is

- *a*) 1
- b) 0 c) $\pi/2$ d) π^2

- a) πr^2 b) $\pi a^2 b$ c) $\pi a b^2$ d) $\pi a b$

5.
$$\iint_{1}^{b} \frac{dxdy}{xy}$$
 is equal to

- a) loga + logb b) loga c) logb

- d) loga logb

6.
$$\int_{0}^{1} \int_{0}^{x} dx dy$$
 is equal to

- a) 1 b) 1/2 c) 2 d) 3

7.
$$\int_{0}^{1/2} dx dy$$
 is equal to

- a) $\int_{0}^{2} \int_{0}^{1} dy dx$ b) $-\int_{0}^{1} \int_{0}^{2} dx dy$ c) $\int_{2}^{0} \int_{0}^{1} dy dx$ d) $\int_{1}^{0} \int_{0}^{2} dy dx$

8. If R is the region bounded
$$x = 0$$
, $y = 0$, $x + y = 1$ then $\iint_R dxdy$ is equal to

- *a*) 1
- b) 1/2
- c) 1/3
- d) 2/3

9.	Area of the double	integral in	Cartesian c	o-ordinate is	equal to
----	--------------------	-------------	-------------	---------------	----------

a)
$$\iint_R dy dx$$
 b) $\iint_R r dr d\theta$ c) $\iint_R x dx dy$ d) $\iint_R x^2 dx dy$

10. Change the order of integration in
$$\int_{0.0}^{a.x} dxdy$$
 is

$$a) \int_{0.0}^{a.x} dxdy$$

b)
$$\int_{0.0}^{a.x} x dy dx$$

c)
$$\int_{0}^{a} \int_{v}^{a} dxdy$$

a)
$$\int_{0}^{a} \int_{0}^{x} dxdy$$
 b) $\int_{0}^{a} \int_{0}^{x} xdydx$ c) $\int_{0}^{a} \int_{0}^{a} dxdy$ d) $\int_{0}^{a} \int_{0}^{y} dxdy$

11. Area of the double integral in polar co-ordinate is equal to

$$b) \iint r^2 dr d\theta$$

a)
$$\iint_R dr d\theta$$
 b) $\iint_R r^2 dr d\theta$ c) $\iint_R (r+1) dr d\theta$ d) $\iint_R r dr d\theta$

$$d) \iint_{R} r dr d\theta$$

12.
$$\iiint_{000}^{123} dx dy dz$$
 is equal to

13. The name of the curve
$$r = a(1 + \cos \theta)$$
 is

- a) lemniscates
- b) cycloid
- c) cardioids
- d) hemicircle

14. The volume integral in Cartesian coordinates is equal to

a)
$$\iiint\limits_V dxdydz$$
 b) $\iiint\limits_V drd\theta d\phi$ c) $\iint\limits_R drd\theta$ d) $\iint\limits_R rdrd\theta$

c)
$$\iint_{\mathbb{R}} dr d\theta$$

$$d) \iint_{\mathbb{R}} r dr d\theta$$

15.
$$\iint_{0.0}^{1.2} x^2 y dx dy$$
 is equal to

$$a)\frac{2}{3}$$

b)
$$\frac{1}{3}$$

a)
$$\frac{2}{3}$$
 b) $\frac{1}{3}$ c) $\frac{4}{3}$ d) $\frac{8}{3}$

$$d)\frac{8}{3}$$

16.
$$\iint_{0}^{1} (x+y) dx dy$$
 is equal to

- a) 1 b) 2 c) 3 d) 4

17. In polar the integral
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy =$$

$$a) \int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^2} dr d\theta$$

b)
$$\int_{0}^{\pi/4} \int_{0}^{\infty} e^{-r} dr d\theta$$

a)
$$\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^2} dr d\theta$$
 b) $\int_{0}^{\pi/4} \int_{0}^{\infty} e^{-r} dr d\theta$ c) $\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^2} r dr d\theta$ d) $\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r} dr d\theta$

$$d)\int_{0}^{\pi/2}\int_{0}^{\infty}e^{-r}drd\theta$$

18.
$$\int_{0}^{\infty} \int_{0}^{y} \frac{e^{-y}}{y} dx dy$$
 is equal to

b) 0
$$c$$
) -1 d) 2

- 19. In the double integral other than integral is called
 - a) Variable b) Separable c) Constant
- d) Multiple
- 20. Changing the order of integration in the double integral based on
 - a) limits
- b) function
- c) region
- d) order
- 21. The value of the integral $\int_{0.0}^{2.1} xydxdy$ is
 - (a) 1
- (b) 2
- (c) 3 (d) 4
- 22. The value of the integral $\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin(\theta + \phi) d\theta d\phi$
 - (a) 1

- (b) 2 (c) 3 (d) 4
- 23. The region of integration of the integral $\int_{-b-a}^{b} \int_{-a}^{a} f(x,y) dx dy$ is
 - (a) square
- (b) circle
- (c) rectangle (d) triangle
- 24. The region of integration of the integral $\int_{0}^{1} \int_{0}^{x} f(x, y) dx dy$ is
 - (a) square (b) rectangle (c) triangle
- (d) circle
- 25. The limits of integration is the double integral $\iint_R f(x, y) dx dy$, where R is in the first quadrant and bounded by x = 0, y = 0, x + y = 1 are
 - (a) $\int_{x=0}^{1} \int_{y=0}^{1-x} f(x, y) dy dx$ (b) $\int_{y=1}^{2} \int_{x=0}^{1-y} f(x, y) dx dy$ (c) $\int_{y=0}^{1} \int_{x=1}^{y} f(x, y) dx dy$ (d) $\int_{y=0}^{2} \int_{x=0}^{1-y} f(x, y) dx dy$

18MAB102T-Advanced calculus and Complex Analysis UNIT – II: VECTOR CALCULUS

PART A MULTIPLE CHOICE QUESTIONS

1.	The direc	tional	derivative of	$\phi = xy + yz + zx$	at the point $(1,2,3)$ a	llong x- axis is
				41. 6		

(4 b) 5 c) 6 d) 0

2. In what direction from (3, 1, -2) is the directional derivative of $\phi = x^2y^2z^4$ maximum?

a) $\frac{1}{\sqrt{19}} (\overrightarrow{i} + 3 \overrightarrow{j} - \overrightarrow{k})$ b) $19(\overrightarrow{i} + 3 \overrightarrow{j} - 3 \overrightarrow{k})$

c) 96(i+3j-3k) d) $\frac{1}{\sqrt{19}}(3i+3j-k)$

If r is the position vector of the point (x, y, z) w.r.to the origin, then $\nabla \cdot r$ is

3. a) 2 b) 3 c) 0 d) 1

4. If r is the position vector of the point (x, y, z) w.r.to the origin, then $\nabla \times r$ is

a) $\nabla \times r = 0$ b) $x \ i + y \ j + z \ k = 0$ c) $\nabla \times r \neq 0$ d) i + j + k = 0

5. The unit vector normal to the surface $x^2 + y^2 - z^2 = 1$ at (1,1,1,) is

a) $\frac{\rightarrow}{\sqrt{3}}$ b) $\frac{2}{\sqrt{2}}$ c) $\frac{\rightarrow}{\sqrt{2}}$ d) $\frac{\rightarrow}{\sqrt{3}}$ d) $\frac{\rightarrow}{\sqrt{2}}$

6. If $\phi = xyz$, then $\nabla \phi$ is

7. If $F = (x+3y) \stackrel{\longrightarrow}{i} + (y-3z) \stackrel{\longrightarrow}{j} + (x-2z) \stackrel{\longrightarrow}{k}$ then F is

a) solenoidal b) irrotational c) constant vector d) both solenoidal & irrotational

8. If $\overrightarrow{F} = \lambda y^4 z^2 \overrightarrow{i} + 4x^3 z^2 \overrightarrow{j} + 5x^2 y^2 \overrightarrow{k}$ is a solenoidal, then the value of λ is

a) x b) -x c) any value d) 0

9. If $\overrightarrow{F} = \left(axy - z^3\right) \overrightarrow{i} + \left(a - 2\right)x^2 \overrightarrow{j} + \left(1 - a\right)xz^2 \overrightarrow{k}$ is irrotational then the value of a

a) 0 b) 4 c) -1 d) 2

10. If u and v are irrotational then $u \times v$ is

		\rightarrow \rightarrow					
19.	The value of	$\int r \cdot d r$	where C	is the line	y = x in the xy	-plane from (1	,1) to (2,2) is
		c					
	a) 0	b) 1	c) 2	d) 3			

- The work done by the conservative force when it moves a particle around a closed curve 20.
 - a) $\nabla \cdot F = 0$ b) $\nabla \times F = 0$ c) 0 d) $\nabla \cdot (\nabla \times F) = 0$
- 21. The connection between a line integral and a double integral is known as a) Green's theorem b) Stoke's theorem c) Gauss Divergence theorem d) convolution theorem
- 22. The connection between a line integral and a surface integral is known as a) Green's theorem b) Stoke's theorem c) Gauss Divergence theorem d) Residue theorem
- 23. The connection between a surface integral and a volume integral is known as a) Green's theorem b) Stoke's theorem c) Gauss Divergence theorem d) Cauchy's theorem
- Using Gauss divergence theorem , find the value of $\iint r \, ds$ where r is the position 24. vector and V is the volume a) 4V b) 0 c) 3V d) volume of the given surface
- If S is any closed surface enclosing the volume V and if $F = ax \ i + by \ j + cz \ k$ then the 25. value of $\iint_S \overrightarrow{F} \cdot n \, dS$ is

 a) abcV b) (a+b+c)V c) 0 d) abc(a+b+c)V

18MAB102T-Advanced calculus and Complex Analysis **UNIT – III LAPLACE TRANSFORM**

PART A **MULTIPLE CHOICE QUESTIONS**

1.
$$L(1) = (a) \frac{1}{s} (b) \frac{1}{s^{2}} (c) 1 (d) s$$

2.
$$L(e^{3t}) =$$

$$(a) \frac{1}{s+3}$$

(b)
$$\frac{1}{s-3}$$

$$(c) \frac{3}{s+3}$$

(a)
$$\frac{1}{s+3}$$
 (b) $\frac{1}{s-3}$ (c) $\frac{3}{s+3}$ (d) $\frac{s}{s-3}$

3.
$$L(e^{-at}) =$$

$$(a) \frac{1}{s+1}$$

$$(b) \frac{1}{s-1}$$

(a)
$$\frac{1}{s+1}$$
 (b) $\frac{1}{s-1}$ (c) $\frac{1}{s+a}$ (d) $\frac{1}{s-a}$

$$(d) \frac{1}{s-d}$$

4.
$$L(\cos 2t) =$$

$$(a) \frac{s}{s^2 + 4}$$

$$(b) \frac{s}{s^2 + 2}$$

(a)
$$\frac{s}{s^2+4}$$
 (b) $\frac{s}{s^2+2}$ (c) $\frac{2}{s^2+2}$ (d) $\frac{4}{s^2+4}$

$$(d) \frac{4}{s^2 + 4}$$

5.
$$L(t^4) =$$

(a)
$$\frac{4!}{s^5}$$
 (b) $\frac{3!}{s^4}$ (c) $\frac{4!}{s^4}$ (d) $\frac{5!}{s^4}$

6.
$$L(a^t) =$$

$$(a) \frac{1}{s - \log a} \quad (b) \frac{1}{s + \log a} \quad (c) \frac{1}{s - a} \qquad (d) \frac{1}{s + a}$$

$$(b) \frac{1}{s + \log a}$$

$$(c) \frac{1}{s-a}$$

$$(d) \frac{1}{s+a}$$

7.
$$L(\sinh \omega t) =$$

(a)
$$\frac{s}{s^2 + \omega^2}$$
 (b) $\frac{\omega}{s^2 + \omega^2}$ (c) $\frac{s}{s^2 - \omega^2}$ (d) $\frac{\omega}{s^2 - \omega^2}$

(b)
$$\frac{\omega}{s^2 + \omega^2}$$

$$(c) \frac{s}{s^2 - \omega^2}$$

$$(d) \frac{\omega}{s^2 - \omega^2}$$

8. An example of a function for which the Laplace transforms does not exist is

(a)
$$f(t) = t^2$$

(a)
$$f(t) = t^2$$
 (b) $f(t) = \tan t$ (c) $f(t) = \sin t$

$$(d) f(t) = e^{-at}$$

9. If
$$L(f(t)) = F(s)$$
, then $L(e^{-at} f(t)) =$

$$(a) F(s+a)$$

(b)
$$F(s-a)$$

$$(c) F(s) (d) -$$

(a)
$$F(s+a)$$
 (b) $F(s-a)$ (c) $F(s)$ (d) $\frac{1}{a}F\left(\frac{s}{a}\right)$

10.
$$L(e^{-at}\cos bt) =$$

(a)
$$\frac{s+b}{(s+b)^2+a^2}$$
 (b) $\frac{s+a}{(s+a)^2+b^2}$ (c) $\frac{a}{s^2+a^2}$ (d) $\frac{s}{s^2+b^2}$

$$(b) \frac{s+a}{(s+a)^2+b^2}$$

$$(c) \frac{a}{s^2 + a^2}$$

$$(d) \frac{s}{s^2 + b^2}$$

11.
$$L(te^t) =$$

(a)
$$\frac{1}{(s+1)^2}$$
 (b) $\frac{1}{s+1}$ (c) $\frac{1}{s-1}$ (d) $\frac{1}{(s-1)^2}$

12. $L(t \sin at) =$

(a)
$$\frac{2as}{(s^2+a^2)^2}$$
 (b) $\frac{2s}{(s^2+a^2)^2}$ (c) $\frac{s^2-a^2}{(s^2+a^2)^2}$ (d) $\frac{1}{s^2+a^2}$

13. $L(\sin 3t) =$

(a)
$$\frac{3}{s^2+3}$$
 (b) $\frac{3}{s^2+9}$ (c) $\frac{s}{s^2+3}$ (d) $\frac{s}{s^2+9}$

14. $L(\cosh t) =$

(a)
$$\frac{s}{s^2+1}$$
 (b) $\frac{s}{s^2-1}$ (c) $\frac{1}{s^2+1}$ (d) $\frac{1}{s^2-1}$

15. $L(t^{1/2}) =$

(a)
$$\frac{\Gamma(3/2)}{s^{1/2}}$$
 (b) $\frac{\Gamma(1/2)}{s^{3/2}}$ (c) $\frac{\Gamma(1/2)}{s^{1/2}}$ (d) $\frac{\Gamma(3/2)}{s^{3/2}}$

16. $L(t^{-1/2}) =$

(a)
$$\sqrt{\frac{\pi}{s}}$$
 (b) $\sqrt{\frac{\pi}{2s}}$ (c) $\sqrt{\frac{1}{s}}$ (d) $\frac{1}{s}$

17. $L[te^{2t}] =$

(a)
$$\frac{1}{(s-2)^2}$$
 (b) $-\frac{1}{(s-2)^2}$ (c) $\frac{1}{(s-1)^2}$ (d) $\frac{1}{(s+1)^2}$

18. If L[f(t)] = F(s) then $L\left\{f\left(\frac{t}{a}\right)\right\}$ is

(a)
$$aF(as)$$
 (b) $\frac{1}{a}F\left(\frac{s}{a}\right)$ (c) $F(s+a)$ (d) $\frac{1}{a}F(as)$

19. $L\left(\int_{0}^{t} \sin t dt\right)$ is

(a)
$$\frac{1}{s^2+1}$$
 (b) $\frac{s}{s^2+1}$ (c) $\frac{1}{(s^2+1)^2}$ (d) $\frac{1}{s(s^2+1)}$

20. $L(\sin t \cos t)$ is

(a)
$$L(\sin t).L(\cos t)$$
 (b) $L(\sin t) + L(\cos t)$

(c)
$$L(\sin t) - L(\cos t)$$
 (d) $\frac{1}{2}L(\sin 2t)$

21. If L[f(t)] = F[s] then L[tf(t)] =

(a)
$$\frac{d}{ds}F(s)$$
 (b) $-\frac{d}{ds}F(s)$ (c) $(-1)^n \frac{d}{ds}F(s)$ (d) $-\frac{d^2}{ds^2}F(s)$

22. If
$$L[f(t)] = F[s]$$
 then $L\left[\frac{f(t)}{t}\right] = (a)\int_{0}^{\infty} F(s)ds$ (b) $\int_{s}^{\infty} F(s)ds$ (c) $\int_{-\infty}^{\infty} F(s)ds$ (d) $\int_{a}^{\infty} F(s)ds$

23. $L\left[\frac{\cos t}{t}\right] = (a)\frac{s}{s^{2}+a^{2}}$ (b) $\frac{1}{s^{2}+a^{2}}$ (c) does not exist (d) $\frac{s^{2}-a^{2}}{(s^{2}+a^{2})^{2}}$

24. If $L[f(t)] = F[s]$ then $L[t^{n}f(t)] = (a)(-1)^{n}\frac{d^{n}}{ds^{n}}F(s)$ (b) $\frac{d^{n}}{ds^{n}}F(s)$ (c) $-\frac{d^{n}}{ds^{n}}F(s)$ (d) $(-1)^{n-1}\frac{d^{n}}{ds^{n}}F(s)$

25. $L\left[\frac{1-e^{-t}}{t}\right] = (a)\log\left(\frac{s}{s-1}\right)$ (b) $\log\left(\frac{s}{s+1}\right)$ (c) $\log\left(\frac{s+1}{s}\right)$ (d) $\log\left(\frac{s-1}{s}\right)$

26. $L(u_{a}(t))$ is

(a) $\frac{e^{as}}{s}$ (b) $\frac{e^{-as}}{s}$ (c) $-\frac{e^{-as}}{s}$ (d) $-\frac{e^{as}}{s}$

27. If $L[f(t)] = F[s]$ then $L[f'(t)] = (a)sL[f(t)] - f(0)$ (b) $sL[f(t)] - f(0)$ (c) $L[f(t)] - f(0)$ (d) $sL[f(t)] - f'(0)$

28. Using the initial value theorem, find the value of the function $f(t) = ae^{-bt}$
(a) a (b) a^{2} (c) ab (d) 0

29. Using the initial value theorem, find the value of $f(t) = e^{-2t} \sin t$
(a) 0 (b) 1 (c) ∞ (d) None of these

(a) 0 (b) 1 (c) ∞ (d) None of these

30. Using the initial value theorem, find the value of the function $f(t) = \sin^2 t$.

(a) 0 (b) ∞ (c) 1 (d) 2

31. Using the initial value theorem, find the value of the function $f(t) = 1 + e^{-t} + t^2$

(a) 2 (b) 1 (c) 0 (d) ∞

32. Using the initial value theorem find the value of the function $f(t) = 3 - 2\cos t$

 $(a) 3 \quad (b) 2 \quad (c) 1 \quad (d) 0$

33. Using the final value theorem, find the value of the function $f(t) = 1 + e^{-t}(\sin t + \cos t)$

(b) 0 (c) ∞ (d) None of these

34. Using the final value theorem, find the value of the function $f(t) = t^2 e^{-3t}$

(a) 0 (b) ∞ (c) 1 (d) t^2e^{-3t}

35. Using the final value theorem, find the value of the function $f(t) = 1 - e^{-at}$

(a) 0 (b) 1 (c) 2 (d)
$$\infty$$

36. The period of $\tan t$ is

(a)
$$\pi(b) \frac{\pi}{2}$$
 (c) 2π (d) $\frac{\pi}{4}$

37. The period of $|\sin \omega t|$ is

$$(a) \frac{\pi}{\omega}(b) \frac{2\pi}{\omega} (c) \pi\omega (d) 2\pi\omega$$

38. Inverse Laplace transform of $\frac{1}{(s-1)^2}$ is

(a)
$$te^{-t}$$
 (b) te^{t} (c) $t^{2}e^{t}$ (d) t

39. Inverse Laplace transform of $\frac{2}{s-b}$ is

(a)
$$2e^{-bt}$$
 (b) $2e^{bt}$ (c) $2te^{bt}$ (d) $2bt$

40. If $L^{-1}F[s] = f(t)$ then $L^{-1}\left(\frac{F(s)}{s}\right)$ is

$$(a) \int_{0}^{\infty} f(t)dt \qquad (b) \int_{0}^{a} f(t)dt \qquad (c) \int_{-\infty}^{\infty} f(t)dt \qquad (d) \int_{-a}^{a} f(t)dt$$

41. If $L^{-1}F[s] = f(t)$ then $L^{-1}\left(\frac{1}{s^2+1}\right)$ is

(a)
$$\frac{\sin 2t}{2}$$
 (b) $\frac{\sin \sqrt{2}t}{\sqrt{2}}$ (c) $\sin 2t$ (d) $\sin \sqrt{2}t$

42. Inverse Laplace transform of $\frac{1}{s^2-\alpha^2}$ is

(a)
$$\frac{\sin at}{a}$$
 (b) $\frac{\sinh at}{a}$ (c) $\sin at$ (d) $\sinh at$

43. If $L^{-1}F[s] = f(t)$ then $L^{-1}\left(\frac{1}{s^2}\right)$ is

(a)
$$t$$
 (b) $2t$ (c) $3t$ (d) t^2

44. Inverse Laplace transform of $\frac{s}{s^2-9}$ is

(a)
$$\cos 9t$$
 (b) $\cos 3t$ (c) $\cosh 9t$ (d) $\cosh 3t$

45. If $L^{-1}F[s] = f(t)$ then $L^{-1}(F(as))$ is

(a)
$$\frac{f(t)}{a}$$
 (b) $\frac{1}{a}f\left(\frac{t}{a}\right)$ (c) $f\left(\frac{t}{a}\right)$ (d) $f(at)$

46. Inverse Laplace transform of $\frac{1}{s^3}$ is

(a)
$$\frac{t}{2}$$
 (b) t (c) $\frac{t^2}{2}$ (d) t^2

47. Inverse Laplace transform of
$$\frac{s+3}{(s+3)^2+9}$$
 is

(a)
$$e^{3t}\cos 3t$$
 (b) $e^{-3t}\cos 3t$ (c) $e^{-3t}\cosh 3t$ (d) $e^{-3t}\cos 9t$

48. Inverse Laplace transform of
$$\frac{b}{s+a}$$
 is

(a)
$$ae^{-bt}$$
 (b) be^{-at} (c) ae^{bt} (d) be^{at}

49. The value of $e^{-t} * \sin t =$

$$(a)\left(\frac{\sin t - \cos t}{2}\right) \qquad (b)\left(\frac{\cos t - \sin t}{2}\right) \qquad (c)\left(\frac{e^{-t}}{2}\right) + \left(\frac{\sin t - \cos t}{2}\right) \qquad (d)\left(\frac{e^{-t}}{2}\right)$$

50. The value of $1 * e^t$ is

(a)
$$e^{t} - 1$$
 (b) $e^{t} + 1$ (c) e^{t} (d) e^{t}

18MAB102T-Advanced calculus and Complex Analysis **UNIT – IV: ANALYTIC FUNCTIONS**

MULTIPLE CHOICE QUESTIONS

1. Cauchy – Riemann equation in polar co-ordinates are

(a)
$$ru_r = v_\theta, u_\theta = -rv_r$$
 (b) $-ru_r = v_\theta, u_\theta = rv_r$

(c)
$$-ru_r = v_\theta, u_\theta = rv_r$$
 (d) $u_r = rv_\theta, ru_\theta = v_r$

2. If w = f(z) is analytic function of z, then

(a)
$$\frac{\partial w}{\partial z} = i \frac{\partial w}{\partial x}$$
 (b) $\frac{\partial w}{\partial z} = i \frac{\partial w}{\partial y}$ (c) $\frac{\partial^2 w}{\partial z \partial \overline{z}} = 0$ (d) $\frac{\partial w}{\partial \overline{z}} = 0$

3. The function f(z) = u + iv is analytic if

(a)
$$u_x = v_y, u_y = -v_x$$
 (b) $u_x = -v_y, u_y = v_x$

(b)
$$u_x = -v_y, u_y = v_x$$

(c)
$$u_x + v_y = 0, u_y - v_x = 0$$
 (d) $u_y = v_y, u_x = v_x$

$$(d) u_{v} = v_{v}, u_{x} = v_{x}$$

4. The function $w = \sin x \cosh y + i \cos x \sinh y$ is

- (a) need not be analytic (b) analytic (c) continuous

- (d) differentiable at origin

5. u(x,y) can be the real part of an analytic function if

- (a) u is analytic (b) u is harmonic
- (c) u is discontinuous (d) u is differentiable

6. If u and v are harmonic, then u + iv is

- (a) harmonic
- (b) need not be analytic
- (c) analytic
- (d) continuous

7. If a function u(x,y) satisfies $u_{xx} + u_{yy} = 0$, then u is

- (a) analytic
- (b) harmonic
- (c) differentiable (d) continuous

8. The function $\tan^{-1}\left(\frac{y}{r}\right)$ is

- (a) analytic
- (b) need not be analytic
- (c) harmonic (d) differentiable

9. If u + iv is analytic, then the curves $u = C_1$ and $v = C_2$

- (a) cut orthogonally
- (b) intersect each other
- (c) are parallel

10. The invariant p	oint of the trai	nsformation w	$=\frac{1}{z-2i}$ is			
(a) $z = i$	(b) z = -i	(c) z = 1	(d) z = -	1		
11. The transforma	ation $w = cz$ w	here c is real co	onstant kno	wn as		
(a) rotation	(b) reflect	cion (c) magni	ification	(d) magnification and	rotation	
12. The complex fu	unction $w = az$	where a is con	mplex const	ant geometrically impl	ies	
(a) rotation	(b) magnif	fication and rot	ation	(c) translation	(d) reflection	
13. The values of •	$C_1 \& C_2$ such the	hat the function	$f(z) = C_1$	$xy + i[C_2x^2 + y^2] \text{ is an}$	alytic are	
(a) $C_1 = 0, C_2 = 0$ (c) $C_1 = -2, C_2$	_	=				
14. The real part of	$f(z) = e^{2z} \text{ is}$,				
(a) $e^x \cos y$	(b) $e^x \sin y$	$(c) e^{2x} \cos 2y$	$(d) e^{2x} \sin^2 \theta$	12y		
15. If $f(z)$ is analytic	ic where $f(z)$	$= r^2 \cos 2\theta + ir$	$e^2 \sin p\theta$, th	e value of p is		
(a) $p = 1$	(b) $p = -2$	(c) $p = -1$	(d) p = 2			
16. The points at which the function $f(z) = \frac{1}{z^2 + 1}$ fails to be analytic an						
(a) $z = \pm 1$	(b) $z = \pm i$	(c) z = 0	$(d) z = \pm i$	2		
17. The critical poi	int of transforr	mation $w = z^2$	is			
(a) $z=2$	(b) z = 0	(c) z = 1	(d) z = -2	2		
18. An analytic fur	nction with cor	nstant modulus	is			
(a) zero (b) a	analytic (c)	constant (d)) harmonic			
19. The image of the and $y = I$ under			z-plane bour	nded by the lines $x = 0$,	y = 0, x = 2	

Dr.N.BALAJI, Assistant Professor (SG), Department of Mathematics, SRMIST 14

(d) coincides

- (a) parabola
- (b) circle
- (c) straight line
- (d) rectangle is magnified twice
- 20. If $f(z) & \overline{f(z)}$ are analytic function of z, then f(z) is
 - (a) analytic
- (b) zero
- (c) constant (d) discontinuous
- 21. The invariant points of the transformation $w = -\left(\frac{2z+4i}{iz+1}\right)$ are

 - (a) z = 4i, -i (b) z = -4i, i (c) z = 2i, i (d) z = -2i, i

- 22. The function $|z|^2$ is
 - (a) differentiable at the origin

- (b) analytic (c) constant (d) differentiable everywhere
- 23. If f(z) is regular function of z then,

 - $(a)\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = |f'(z)|^2 \qquad (b)\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$

 - $(c)\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right) |f(z)|^2 = 4|f'(z)|^2 \qquad (d)\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|$
- 24. The transformation w = z + c where c is a constant represents
 - (a) rotation
- (b) magnification
- (c) translation
- (d) magnification & rotation

- 25. The mapping $w = \frac{1}{7}$ is
 - (a) conformal
- (b) not conformal at z = 0 (c) conformal every where
- (d) orthogonal
- 26. The function $u + iv = \frac{x iy}{x iy + a}$ $(a \ne 0)$ is not analytic function of z where as u iv

 - (a) need not be analytic (b) analytic at all points
- (c) analytic except at z = -a

- (d) continuous everywhere
- 27. If z_1, z_2, z_3, z_4 are four points in the z-plane then the cross-ratio of these point is

- (a) $\frac{(z_1 z_2)(z_4 z_3)}{(z_1 z_4)(z_2 z_3)}$ (b) $\frac{(z_1 z_2)(z_3 z_4)}{(z_1 z_4)(z_3 z_2)}$ (c) $\frac{(z_1 z_2)(z_4 z_3)}{(z_1 z_4)(z_2 z_3)}$ (d) $\frac{(z_1 z_2)(z_3 z_4)}{(z_4 z_1)(z_3 z_2)}$
- 28. The values of the determinant of the transformation $w = \frac{1 iz}{z i}$
 - (a) zero (b) 2 (c) -2 (d) 1

18MAB102T-Advanced calculus and Complex Analysis **UNIT - V: COMPLEX INTEGRATION**

PARTA**MULTIPLE CHOICE QUESTIONS**

- 1. A curve which does not cross itself is called a
 - a. Curve
 - b. Closed curve
 - c. Simple closed curve
 - d. Multiple curve
- 2. The value of $\int_C \frac{z}{z-2} dz$ where c is the circle |z| = 1 is

 - a. $0 \\ b. \frac{\pi}{2}i$
- 3. The value of $\int_{\mathcal{C}} \frac{z}{(z-1)^2} dz$ where c is the circle |z| = 2 is
 - a. πi
 - b. $2\pi i$
 - c. $4\pi i$
 - d. 0
- 4. The value of $\int_{C} (z-2)^{n} dz$ (n \neq 1) where c is the circle |z-2| = 4 is
 - a. 2^n
 - b. n^2
 - c. 0
 - d. n

- 5. The value of $\int_C \frac{1}{2z+1} dz$ where c is the circle |z| = 1 is
 - a. 0
 - b. *πi*
 - c. $\frac{\pi}{2}i$
 - d. 2
- 6. The value of $\int_{C} \frac{1}{3z+1} dz$ where c is the circle |z| = 1 is
 - a. 0
 - b. *πi*
 - c. $\frac{2\pi}{3}i$
 - d. 2
- 7. If f(z) is analytic inside and on c, the value of $\int_C \frac{f(z)}{z-a} dz$, where c is the simple closed curve and a is any point within c, is
 - a. f(a)
 - b. $2\pi i f(a)$
 - c. $\pi i f(a)$
 - d. (
- 8. If f(z) is analytic inside and on c, the value of $\int_C f(z) dz$, where c is the simple closed curve, is
 - a. f(a)
 - b. $2\pi i f(a)$
 - c. $\pi i f(a)$
 - d. 0
- 9. If f(z) is analytic inside and on c, the value of $\int_C \frac{f(z)}{(z-a)^2} dz$, where c is the simple closed curve and a is any point within c, is
 - a. f'(a)
 - b. $2\pi i f'(a)$
 - c. $\pi i f'(a)$
 - d. 0
- 10. If f(z) is analytic inside and on c, the value of $\int_C \frac{f(z)}{(z-a)^3} dz$, where c is the simple closed curve and a is any point within c, is
 - a. f''(a)
 - b. $2\pi i f''(a)$
 - c. $\pi i f''(a)$
- Dr.N.BALAJI, Assistant Professor (SG), Department of Mathematics, SRMIST 17

- 11. Let C: |z a| = r be a circle, the f(z) can be expanded as a Taylor's series if
 - a. f(z) is a defined function within c
 - b. f(z) is a analytic function within c
 - c. f(z) is not a analytic function within c
 - d. f(z) is a analytic function outside c
- 12. Let $C_1: |z a| = R_1$ and $C_2: |z a| = R_2$ be two concentric circles $(R_2 < R_1)$, the f(z) can be expanded as a Laurent's series if
 - a. f(z) is analytic within C_2
 - b. f(z) is not analytic within C_2
 - c. f(z) is analytic in the annular region
 - d. f(z) is not analytic in the annular region
- 13. Let $C_1: |z a| = R_1$ and $C_2: |z a| = R_2$ be two concentric circles $(R_2 < R_1)$, the annular region is defined as
 - a. Within C_1
 - b. Within C_2
 - c. Within C_2 and outside C_1
 - d. Within C_1 and outside C_2
- 14. The part $\sum_{n=0}^{\infty} a_n (z-a)^n$ consisting of positive integral powers of (z-a) is called as
 - a. The analytic part of the Laurent's series
 - b. The principal part of the Laurent's series
 - c. The real part of the Laurent's series
 - d. The imaginary part of the Laurent's series
- 15. The part $\sum_{n=1}^{\infty} b_n (z-a)^{-n}$ consisting of negative integral powers of (z-a) is called as
 - a. The analytic part of the Laurent's series
 - b. The principal part of the Laurent's series
 - c. The real part of the Laurent's series
 - d. The imaginary part of the Laurent's series
- 16. The annular region for the function $f(z) = \frac{1}{z(z-1)}$ is
 - a. 0 < |z| < 1
 - b. 1 < |z| < 2
 - c. 1 < |z| < 0
 - d. |z| < 1
- 17. The annular region for the function $f(z) = \frac{1}{(z-2)(z-1)}$ is
- Dr.N.BALAJI, Assistant Professor (SG), Department of Mathematics, SRMIST 18

- a. 0 < |z| < 1
- b. 1 < |z| < 2
- c. 1 < |z| < 0
- d. |z| < 1
- 18. The annular region for the function $f(z) = \frac{1}{z^2 z 6}$ is
 - a. 0 < |z| < 1
 - b. 1 < |z| < 2
 - c. 2 < |z| < 3
 - d. |z| < 3
- 19. If f(z) is not analytic at $z = z_0$ and there exists a neighborhood of $z = z_0$ containing no other singularity, then
 - a. The point $z = z_0$ is isolated singularity of f(z)
 - b. The point $z = z_0$ is a zero point of f(z)
 - c. The point $z = z_0$ is nonzero of f(z)
 - d. The point $z = z_0$ is non isolated singularity of f(z)
- 20. If $f(z) = \frac{\sin z}{z}$, then
 - a. Z= 0 is a simple pole
 - b. Z=0 is a pole of order 2
 - c. Z= 0 is a removable singularity
 - d. Z=0 is a zero of f(z)
- 21. If $f(z) = \frac{\sin z z}{z^2}$, then
 - a. Z=0 is a simple pole
 - b. Z=0 is a pole of order 2
 - c. Z= 0 is a removable singularity
 - d. Z=0 is a zero of f(z)
- 22. If $\lim_{z \to a} (z a)^n f(z) \neq 0$ then
 - a. Z= a is a simple pole
 - b. Z= a is a pole of order n
 - c. Z= a is a removable singularity
 - d. Z= a is a zero of f(z)
- 23. If $f(z) = \frac{1}{(z-4)^2(z-3)^5(z-1)}$, then
 - a. 4 is a simple pole, 3 is a pole of order 3 and 1 is a pole of order 2
 - b. 3 is a simple pole, 1 is a pole of order 3 and 4 is a pole of order 2

- c. 1 is a simple pole, 3 is a pole of order 3 and 4 is a pole of order 2
- d. 3 is a simple pole, 4 is a pole of order 1 and 4 is a pole of order 2
- 24. If $f(z) = e^{\frac{1}{z-4}}$ then
 - a. Z = 4 is removable singularity
 - b. Z = 4 is pole of order 2
 - c. Z = 4 is an essential singularity
 - d. Z = 4 is zero of f(z)
- 25. If $f(z) = \cot \pi z$ then
 - a. $Z = \infty$ is a removable singularity
 - b. $Z = \infty$ is a simple pole
 - c. $Z = \infty$ is an isolated singularity
 - d. $Z = \infty$ is a non isolated singularity
- 26. Let z = a is a simple pole for f(z) and $b = \lim_{z \to a} (z a)f(z)$, then
 - a. b is a simple pole
 - b. b is a residue at a
 - c. b is removable singularity
 - d. b is a residue at a of order n
- 27. The residue of $f(z) = \frac{1 e^{2z}}{z^2}$ is
 - a. 0
 - b. 2
 - c. -2
 - d. :
- 28. The residue of $f(z) = \frac{e^{zz}}{(z+1)^2}$ is
 - a. e^{-2}
 - b. $-2e^{-2}$
 - c. -1
 - d. $2e^{-2}$
- 29. The residue of $f(z) = \cot z$ is
 - a. π
 - b. 1
 - c. -1
 - d. 0
- 30. The value of $\int_{c} \sin(\frac{1}{z}) dz$ where c is any circle with center at origin, is
 - a. 0
- Dr.N.BALAJI, Assistant Professor (SG), Department of Mathematics, SRMIST 20

- b. $2\pi i$
- c. $\frac{\pi}{2}i$
- d. **π**i

Answers:

- 1. c
- 2. a
- 3. d
- 4. c
- 5. b
- 6. c
- 7. b
- 8. d
- 9. b
- 10. c
- 11. b
- 12. c
- 13. d
- 14. a
- 15. b
- 16. a
- 17. b 18. c
- 19. a
- 20. c
- 21. c
- 22. b 23. c
- 24. c
- 25. d
- 26. b
- 27. c
- 28. d
- 29. b
- 30. b