

TRUMPF's Problem – Overview

Base Example:

j Jobs containing o Operations on m Machines at Time t with Due Date d

 \rightarrow J₁:(O₁, T₁, D₁), J₂:(O₂, T₂, D₂), J₃:(O₃, T₃, D₃)... and O₁:(M₁, M₂, M₃), O₂:(M₄, M₅), O₃:(M₆) $\rightarrow X_{O,m,t}$

Different *additional* advancements for the Costfunction

Primary Goal:

Minimize the Total Number of Minutes over the Due Date

→ Higher Costs with every Time Step further over the Due Date

Additional Advancements:

Type	Meaning	Advantages
JIT	Just in Time Production	 Lower cost of storage In case of human interaction → time buffer for possible delays/errors
ASAP	Shortest Make span possible	 possibility to test boundaries of production capability and eventually increase capacity

Complexity of *Flexible* Job Shop Scheduling

Additional Complexity compared to Standard JSSP:

- Different number of machines per operation (3, 2, 1)
- Not every operation has to be included (e.g., only bending & painting)
 - Note: Errors for n Operations: with more Operations in less Jobs <<< less Operations in more Jobs
 - Graph by K. Kurowski et al.

- Time for every Job and Operation different: 20sec, 30sec,...8min → multiples of 10 sec → ≈2000
 Time Steps in 340min (Deadlines)
- Complexity: 0 * M * T = 3 * 6 * 2000 = 36.000

Variable Pruning for Complexity Reduction

Complexity: $O \cdot M \cdot T$

Pruning Strategies: Combinatorial > Logical > Time modulo

Combinatorial Pruning

- delete all Values whose Index cannot exist. E.g.:
- $X_{0, M, T} := X_{2, 1, 5} \rightarrow M_1$ (bending machine) is not in mapping Dictionary of O_2 (welding)

	• •	\mathbf{A}	
(.omni	lexity:		•
		1.1	

Х о, м, т	X _{1, 1, 1}	X _{1, 1, 2}	X _{1, 1, 3}		X _{1, 2, 1}	X _{1, 2, 2}	X _{1, 2, 3}		X _{2, 1, 1}	X _{2, 1, 2}	X _{2, 1, 3}	
X _{1, 1, 1}	0	0	0	0	0	0	0	0	0	0	0	0
X _{1, 1, 2}		0	0	0	0	0	0	0	0	0	0	0
X _{1, 1, 3}			0	0	0	0	0	0	0	0	0	0
				0	0	0	0	0	0	0	0	0
X _{1, 2, 1}					0	0	0	0	0	0	0	0
X _{1, 2, 2}						0	0	0	0	0	0	0
X _{1, 2, 3}							0	0	0	0	0	0
								0	0	0	0	0
X _{2, 1, 1}									0	0	0	0
X _{2, 1, 2}										0	0	0
X _{2, 1, 3}											0	0
												0

X _{O, M, T}	X _{1, 1, 1}	X _{1, 1, 2}	X _{1, 1, 3}		X _{1, 2, 1}	X _{1, 2, 2}	X _{1, 2, 3}	
X _{1, 1, 1}	0	0	0	0	0	0	0	0
X _{1, 1, 2}		0	0	0	0	0	0	0
X _{1, 1, 3}			0	0	0	0	0	0
				0	0	0	0	0
X _{1, 2, 1}					0	0	0	0
X _{1, 2, 2}						0	0	0
X _{1, 2, 3}							0	0
								0

Logical Pruning for Heads and Tails

- For any operation needs to be time for predecessor and successor operations, so we can remove illogical start times, e.g., Painting at t=0, if we also need to bend & weld
- We removed all variables $0 \le x_{ij} < S$, where S is the sum of execution times of all operations prior the considered one. Then, we also removed all variables $T S \le x_{ij} < T$, where S is the sum of execution times of all operations after the considered one. (Kurowski et al)

Complexity:

$$M[T - M\langle p \rangle + 1]$$

where $\langle p \rangle$ represents the average execution Time of the operations

-- (Venturelli et al)

Time Modulo Pruning

- Each operation can vary in time on each machine for every job
- Bending = mod 20sec | Welding = mod 30sec | Painting = mod 60sec | = mod 10sec
- Example A: Bending 120sec | Welding 330sec | Painting 420sec | = mod 30sec
- Example B: Bending 260sec | Welding 270sec | Painting 0sec | = mod 10sec

- Approach: Rounding up to common denominator with small margin of error (10sec), which brings us down from ≈ 2000 Timesteps to ≈ 670 (with a margin of error of 40sec down to 335 at mod 60sec)
- Added Value from real-world business perspective: small additional time buffers

<u>TRUMPF</u>

Phase Separation

Tuples regarding painting only with start time = end time welding

«The idea [...] is that good solutions for smaller subproblems with less jobs and less operations might not necessarily be part of a good solution for the original problem, following operations drastically change the picture. However, often in practice 'early' operations in a good solution of the smaller subproblem tend to stay rigid when compared to good solutions of the original problem.» – Denkena et al

Heuristic approach: Rolling Time Windows

- "The main idea behind the heuristic is to define a processing window and move it in time till the end of a schedule, so only a limited number of operations is considered. In other words, we iterate the processing window in time, and check all the operations if they fit into one of three categories, where: y K. Kurowski et al
 - W_{begin} : start time of window
 - W_{end} : end time of window
 - S_i : start time of operation i
 - p_i : execution time of operation i

 Operations reaching out of the processing window (from the left or the right side), will be assigned additional parameters

TRUMPF

Bottleneck Identification as Prioritization for Phase Separation and Rolling Time Window

- «In larger problems with many jobs, it is not practical to include all jobs in each iteration, so a choice about which jobs to exclude from the subproblem needs to be made each time. The idea in this approach is to assign a bottleneck factor $b_j^{(k)} > 0$ to each unfinished job j. [...] These weight factors should reflect how much the job contributes to the overall make span of the problem.» Denkena et al
- In our case the length of each operation in each job defines the bottleneck
- Also, the difference between make span and Due Date is decisive
- Easier alternative to bottleneck factor $b_j^{(k)}$: sort by "length per operation" and " Δ Due Date Total Time"

