初等数论选讲

Tangjz

中国梦游协会

2019年1月21日

写在前面

■ 冬令营是交流的平台, 欢迎打脸请各位不吝赐教

整体内容

- ■整除理论
- ■同余理论
- 不定方程
- 有理逼近
- ■数论函数

- 对于任意 $a,b \in \mathbb{Z}$, $b \neq 0$, 如果 $\exists_{q \in \mathbb{Z}}, a = bq$, 那么 b|a, 称 b 是 a 的约数(因数、因子), a 是 b 的倍数
- $c|b,b|a \Rightarrow c|a$
- $s, t \in \mathbb{Z}, c|a, c|b \Rightarrow c|sa + tb|$
- $a|b,b|a \Rightarrow |a| = |b|$

- 对于任意 $n \in \mathbb{Z}$,如果 $\exists_{k \in \mathbb{Z}, |k| \neq 1, |k| \neq n} k | n$,则称 n 为合数,否则为质数(素数、不可约数)
- 若 $n \in \mathbb{Z}^+$ 为合数,则 $\min_{k|n} k \leq \sqrt{n}$
- 对于任意 $n\in\mathbb{Z}^+$,存在唯一的质数分解 $n=\prod_{i=1}^k p_i^{e_i}$,这里 p_i 互不相同
- 令 $\pi(n)$ 表示不超过 n 的质数个数,有 $\pi(n) = \Theta\left(\frac{n}{\ln n}\right)$

- 对于 $x_1, x_2, \dots, x_n \in \mathbb{Z}$,且 $\forall_{i=1,2,\dots,n}, d | x_i$,则称 d 为它们的 公约数
- \blacksquare 当 x_1, x_2, \dots, x_n 不全为零,存在最大的公约数,称为 $\gcd(x_1, x_2, \dots, x_n)$
- \blacksquare 当 $\gcd(x_1, x_2, \cdots, x_n)$, 称 x_1, x_2, \cdots, x_n 互质(互素)
- **欧**几里得算法: $r_1 = a, r_2 = b, r_3 = r_2 \mod r_1, \cdots, r_{i+2} = r_i \mod r_{i+1}, \cdots, r_{m-1} = \gcd(a,b), r_m = 0$,这里 $m = \mathcal{O}(\log a + \log b)$

- 对于 $x_1, x_2, \cdots, x_n \in \mathbb{Z}$,且 $\forall_{i=1,2,\cdots,n}, x_i | d$,则称 d 为它们的公倍数
- 存在最小的正公倍数, 称为 $lcm(x_1, x_2, \cdots, x_n)$
- 对于质数 p 和 $x,y\in\mathbb{Z}$,有 $\gcd(p^x,p^y)=p^{\min(x,y)}$, $\operatorname{lcm}(p^x,p^y)=p^{\max(x,y)}$
- 对于 $a, b \in \mathbb{Z}^+$, 有 $a \cdot b = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$

试炼时间

- 给定整数 a, b, 求 $gcd(a, a+1, \cdots, b)$
- $1 < a < b < 10^{100}$
- 来源: Codeforces Round #347 (Div. 2) A. Complicated GCD

- 给定整数 n,选出三个不超过 n 的正整数 x,y,z 使得 lcm(x,y,z) 最大
- $1 \le n \le 10^6$
- 来源: Codeforces Round #146 (Div. 1) A. LCM Challenge

• 给定 n 个正整数 x_1, x_2, \dots, x_n , 选出尽量多的数字

$$x_{p_1}, x_{p_2}, \cdots, x_{p_m} \ (1 \le p_1 < p_2 < \cdots < p_m \le n)$$
 使得 $\gcd(x_1, x_2, \cdots, x_m) > 1$,或者确定解不存在

- $1 \le n, x_i \le 10^5$
- 来源: Codecraft-17 and Codeforces Round #391 B. Bash's Big Day

- 给定 n 个正整数 x_1, x_2, \dots, x_n ,删掉尽量少的数字使得所有数的 \gcd 变大,或者确定解不存在
- $1 \le n \le 3 \times 10^5, 1 \le a_i \le 1.5 \times 10^7$
- 来源: Codeforces Round #511 (Div. 1) A. Enlarge GCD

- 给定长度为 n 的序列 a₁, a₂, · · · , a_n, 有 q 个询问, 每次询问
 给定 x, 问有多少区间 (l, r) 满足 gcd(a_l, a_{l+1}, · · · , a_r) = x
- $1 \le n \le 10^5$, $1 \le q \le 3 \times 10^5$, $1 \le a_i, x \le 10^9$
- 来源: (Codeforces) Bayan 2015 Contest Warm Up D.CGCDSSQ

● 给定 m 个数 a_1, a_2, \cdots, a_m ,定义 $n = \prod_{i=1}^m a_i$,求最大的整数 k 使得存在 $d|n, d^k|n$,并对这个最大的 k 计算有多少可能的正整数 d

- $1 \le m \le 600, \ 2 \le a_i \le 10^{18}$
- 来源: Poland Olympiad Informatics 2010 Divine divisor

- 给定 n 个数 a_1, a_2, \cdots, a_n ,定义 $a = \prod_{i=1}^n a_i$,求 a 的约数个数
- $1 \le n \le 500$, $1 \le a_i \le 10^{18}$, 保证 a_i 的约数个数在 3 到 5 之间
- 来源: (Codeforces) Lyft Level 5 Challenge 2018 EliminationRound D. Divisors

- 给 n 个整数 a₁, a₂, · · · , a_n 和 m 个整数 b₁, b₂, · · · , b_m, 定义
 Q = a₁·a₂···a_n = A/B, 其中 A 与 B 互质。有 k 个询问,每个询问给出一个 M, 求一个整数 C 满足 0 ≤ C < M 且 A ≡ BC (mod M),或者确定解不存在
- \blacksquare $1 \leq n,m \leq 5000$, $1 \leq k \leq 50$, $2 \leq M \leq 10^{18}$, $1 \leq a_i,b_j \leq 10^{18}$
- 来源: Petrozavodsk Winter Camp 2016, SPb SU + SPb AUContest C. Fraction Factory

- 对任意正整数 u , 定义 f(u) 是 u 的所有质因子组成的集合。如果正整数 u 和 v 满足 u 整除 v 且 f(u) = f(v) ,那么认为 u 对 v 来说是友好的。给出两个正整数 k_1 和 k_2 ,分别求有 多少个数对它们来说是友好的
- 1 ≤ k₁, k₂ ≤ 10²⁴, 保证 k₁ 和 k₂ 拥有相同的最大质因子,不同的次大质因子(如果存在)
- 来源: Asia Regional Changchun Online 2015 K. Good

Numbers

■ 有 n 种糖果,第 i 种糖果数量为 C_i ,现在要用两种方式来包装它们。第一种方式要求每包只含一种糖果,第二种方式要求每包必须含所有种类糖果且每种数量均等。此外,要求每种包装方式至少使用一次,包装后每包糖果数量相等,严格大于 1,统计合法方案数。

- $2 \le n \le 10^5$, $1 \le C_i \le 10^9$
- 来源: Latin America Regional 2011 C. Candy's Candy

- 对于长度 A 宽度 B 的矩形,在其上沿着平行矩形边界的直线切若干刀,可以形成一系列小的矩形,给出每种小矩形的长 w 宽 h 和数量 c,求有多少种 A,B 能够切出这些小矩形
- $1 \le n \le 2 \times 10^5$, $1 \le w, h, c \le 10^{12}$
- 来源: Tinkoff Internship Warmup Round 2018 and Codeforces
 Round #475 (Div. 1) C. Cutting Rectangle

■ 有 n 种卡片,第 i 种面值为 c_i ,属性为 l_i ,买进卡片 i 后可以在数轴上任意向左右移动 l_i 步任意次,花费最小的代价使得从 x=0 的位置可以到达所有 $x\in\mathbb{Z}$ 的位置,或者确定解不存在

- $1 \le n \le 300, 1 \le c_i \le 10^5, 1 \le l_i \le 10^9$
- 来源: Codeforces Round #290 (Div. 1) Rectangle D. Fox And Jumping

- 找出最小的 n 个正整数 z 使得 $z = \left\lfloor \frac{x}{2} \right\rfloor + x + xy$ 不存在 x 和 y 均为正整数的解,按照 z 升序输出每个 $(z \mod (10^9 + 7))$
- 1 < n < 40
- 来源: Codeforces Round #139 (Div. 1) E. Unsolvable

Break Time

- 对于正整数 m, 若整数 a,b 满足 m|a-b, 也即存在整数 k 使得 a=b+km, 则称 a,b 在模 m 意义下同余,记作 $a\equiv b\pmod{m}$
- $a_1 \equiv b_1, a_2 \equiv b_2 \pmod{m} \Rightarrow a_1 \pm a_2 \equiv b_1 \pm b_2, a_1 a_2 \pmod{m}$
- 对于 $a \equiv b \pmod{m}$, 若 d|m, 则 $a \equiv b \pmod{d}$
- 对于 $a \equiv b \pmod{m}$, 若 d|a, d|b, d|m, 则 $\frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}$
- 对于 $a \equiv b \pmod{m}$, 有 $\gcd(a, m) = \gcd(b, m)$

- 对于任意整数 a,存在整数 q,r 使得 $a=mq+r,0\leq r< m$, 所有可能的 r 构成一个模 m 的剩余系,其定义了整数在模意 义下的等价类 $\{a \bmod m | a\in \mathbb{Z}\}$
- 对于质数 m,若 $\gcd(a,m)=1$,b 是任意整数,则 $\{(ax+b) \bmod m | x \in \mathbb{Z}\} = \{x \bmod m | x \in \mathbb{Z}\}$
- 对于质数 m_1 和 m_2 ,若 $\gcd(m_1, m_2) = 1$,则 $\{(m_2x_1 + m_1x_2) \bmod m_1m_2 | x_1 \in \mathbb{Z}, x_2 \in \mathbb{Z}\} = \{x \bmod m_1m_2 | x \in \mathbb{Z}\}$

- 对于正整数 m, $\{a \mod m | a \in \mathbb{Z}, \gcd(a, m) = 1\}$ 构成一个模 m 的简化剩余系,该集合的大小被定义为欧拉函数 $\varphi(m)$
- 对于正整数 m, 若 $\gcd(a,m)=1$, 则 $\{ax \bmod m | x \in \mathbb{Z}, \gcd(x,m)=1\}=\{x \bmod m | x \in \mathbb{Z}, \gcd(x,m)=1\}$
- 对于正整数 m_1 和 m_2 ,若 $\gcd(m_1, m_2) = 1$,则 $\{(m_2x_1 + m_1x_2) \bmod m_1m_2 | x_1 \in \mathbb{Z}, \gcd(x_1, m_1) = 1, x_2 \in \mathbb{Z}, \gcd(x_2, m_2) = 1\} = \{x \bmod m_1m_2 | x \in \mathbb{Z}, \gcd(x, m_1m_2) = 1\}$

- 对于正整数 m, 若 gcd(a, m) = 1, 则存在 s 满足 1 ≤ s < m,
 sa ≡ 1 (mod m), 也即存在整数 s,t 满足 sa + tm = 1, 记 s
 为 a 在模 m 意义下的乘法逆元 a⁻¹
- 扩展欧几里得算法: 寻找二元一次不定方程 $sx + ty = \gcd(x, y)$ 的一组整数解 (s, t)
 - $u_i x + v_i y = r_i$
 - $(u_1, v_1, r_1) = (1, 0, x), (u_2, v_2, r_2) = (0, 1, y)$
 - $q_{i+2} = \left\lfloor \frac{r_i}{r_{i+1}} \right\rfloor$
 - $(u_{i+2}, v_{i+2}, r_{i+2}) = (u_i, v_i, r_i) q_{i+2} \cdot (u_{i+1}, v_{i+1}, r_{i+1})$

中国剩余定理:对于两两互质的 m_i ,同余方程组

$$\begin{cases} x & \equiv r_1 \pmod{m_1} \\ x & \equiv r_2 \pmod{m_2} \\ \dots & \\ x & \equiv r_k \pmod{m_k}, \end{cases}$$

的解为 $x \equiv \sum_{i=1}^k r_i M_i' M_i \pmod{M}$,其中 $M = \prod_{i=1}^k m_i$, $M_i = \frac{M}{m_i}$, $M_i' \equiv M_i^{-1} \pmod{m_i}$

- 费马小定理: 若 p 是质数,则对于任意整数 a 有 $a^p \equiv a$ \pmod{p}
- 欧拉定理: 若 m 是正整数, $\gcd(a, m) = 1$,则有 $a^{\varphi(m)} \equiv 1$ (mod m)
- 威尔逊定理: 若 p 是质数,则有 $(p-1)! \equiv -1 \pmod{p}$

试炼时间

- 环上有 4n 个点,按顺时针编号 1 到 4n,求集合 $\{((n+1)x \bmod 4n) + 1 | x \in \mathbb{N}\}$ 的元素个数
- $1 \le n \le 10^9$
- 来源: Codeforces Round #122 (Div. 2) B. Square

■ 环上有 n 个点,按顺时针编号 1 到 n,对于整数 k,记集合 $\{(kx \bmod n) + 1 | x \in \mathbb{N}\}$ 的元素和为 f_k ,求有多少种不同的

- f_k ,升序输出
- $2 \le n \le 10^9$
- 来源: (Codeforces) Good Bye 2018
 - C. New Year and the Sphere Transmission

最大

n × n 的矩阵(下标从 0 开始)里有 m 个特殊点,给定整数 dx, dy,请你选定一组整数 x, y 使得集合
 {((x + kdx) mod n, (y + kdy) mod n)|k ∈ N} 中特殊点的数量

■ $1 \le n \le 10^6$, $1 \le m \le 10^5$, $1 \le dx, dy \le n$, $\gcd(n, dx) = \gcd(n, dy) = 1$

■ 来源: Codeforces Round #280 (Div. 2) – E. Vanya and Field

■ 给定一个周期为 n 的无穷序列中连续 n 项 $a_0, a_1, \cdots, a_{n-1}$,统计有多少整数对 (l,s) 满足 $0 \le l < n, 1 \le s < n$ 且

$$1 < n < 2 \times 10^5$$
, $1 < a_i < 10^6$

■ 来源: Codeforces Round #323 (Div. 1) – C. Superior Periodic Subarrays

 $\forall_{k\in\mathbb{Z}}, a_k > a_{l+k}$

- 构造三个 1 到 n 的置换 a[1..n], b[1..n], c[1..n] 使得 $\forall_{i=1,2,\cdots,n}, a_i + b_i \equiv c_i \pmod{n}$, 或者确定解不存在
- $1 < n < 10^5$
- 来源: Codeforces Round #183 (Div. 1) A. Lucky Permutation
 Triple

■ 构造一个 1 到 n 的置换 a[1..n] 使得序列

 $\{a_1 \bmod n, a_1 a_2 \bmod n, \cdots, \prod_{i=1}^n a_i \bmod n\}$ 为一个 0 到 n-1 的置换,或者确定解不存在

- $\blacksquare \ 1 \le n \le 10^5$
- 来源: Codeforces Round #278 (Div. 1) C. Prefix Product Sequence

- 给定 $a, b, c, x_1, x_2, y_1, y_2$,求 ax + by + c = 0 满足 $x_1 \le x \le x_2$ 且 $y_1 \le y \le y_2$ 的整数解数量
- 所有数字绝对值不超过 108
- 来源: SGU 106 The equation

■ 给定 $m, h_{i,0}, a_i, x_i, y_i \ (i = 1, 2)$, 定义

$$h_{i,j+1} = (x_i h_{i,j} + y_i) \mod m$$
,求最小非负整数 k 使得 $h_{i,k} = a_i$

- $2 \le m \le 10^6$, $0 \le h_{i,0}, a_i, x_i, y_i < m$
- 来源: Codeforces Round #305 (Div. 1) A. Mike and Frog

■ 有 n 个观察员,第一个观察员在 0 秒开始观察星空,随后第i 个观察员会在第 i-1 个观察员之后 a_i 秒观察,第一个观察员也会在第 n 个观察员之后 a_1 秒观察,有一颗星星每隔 T 秒闪烁一次,闪烁时一定是整数秒,问每个观察员有多少种可能成为第一个观察到这颗星星的人

- $1 \le T \le 10^9$, $2 \le n \le 2 \times 10^5$, $1 \le a_i \le 10^9$
- 来源: Codeforces Round #421 (Div. 1) D. Mister B and

Astronomers

■ 有 n 个带周期的无穷序列,第 i 个序列 a_i 的周期为 k_i,每
 个序列的第 1 项 a_{i,1} 到第 k_i 项 a_{i,ki} 给定。对于每种可能的元素取值 v,找到一个下标 j 使得 j ≤ 10¹⁰⁰ 且序列
 {a_{1,j}, a_{2,j}, ···, a_{n,j}} 中连续的 v 组成的区间最长,只对每个 v
 输出区间长度

- $\blacksquare \ 1 \leq n, \max(v) \leq 10^5$, $1 \leq k_i \leq 40$, $\sum_{i=1}^n k_i \leq 2 \times 10^5$
- 来源: (Codeforces) Intel Code Challenge Elimination Round F.

Cyclic Cipher

- 给定四个正整数 M,D,L,R,求最小非负整数 x 使得 $L \leq (Dx \bmod M) \leq R$,或者确定解不存在
- $1 \le M, D, L, R \le 2 \times 10^9$
- 来源: POJ Monthly, 2008.03.16 D. A Modular ArithmeticChallenge

- 给定两个十进制小数 a,b,求最小的正整数 k,使得存在整数 x 满足 ak < x < bk
- a, b 的有效数字小于 300 位
- 来源: Vijos 1504 强大的区间

- 给出随机生成的不含前导零的正整数 p,找到最小的非负整数 k 使得 2^k 的十进制表示最高位与 p 完全相同
- $1 \le p < 10^{50}$,随机时首先随机 p 的十进制长度,然后随机每一位的值
- 来源: Petrozavodsk Summer Camp 2014, Petr Mitrichev Contest 12 F. Recognize Power of Two

Thank you!

