Lab 6 Report

Hung-I Lin UIN:424009692

Background

In this week's lab, we go through the process to design the filter and fabricate a band pass filter by copper taper on FR4 substrate. By reading the table to determine the coefficients of filter prototype. Next, using the Richard's Transformation to convert the LC values into short stubs or open stubs. Because the short stubs in series section is hard to be implemented on the circuit board, Kuroda identities can help us to solve this problem to transform the series stubs into shunt open stubs.

Design

Task 1.

a. N5_MaxFlat_LPF_T-Line

By going through the design process from step 1 to step 5.3.

The transformation procedure can help us to know the impedance and length for each line in this design.

The design parameters are shown in the following table.

Design Parameter:		N5 MaxFl	at LPF TL	ine			at 2.5 GHz
Unit:mm		Unit:mm		Unit:mm		Unit:mm	
Wue1	1.76	Lue1	8.635	Wstub1	0.084	Lstub1	9.095
Wue2	0.539	Lue2	8.897	Wstub2	3.963	Lstub2	8.351
Wue3	0.539	Lue3	8.897	Wstub3	8.4	Lstub3	8.04
Wue4	1.76	Lue4	8.635	Wstub4	3.963	Lstub4	8.351
Wo	3.118			Wstub5	0.084	Lstub5	9.095

Then, enter this information into the "N5_MaxFlat_LPF_T-Line.zov" and HFSS.

b. N5_MaxFlat_LPF_LC.zov

From step 2, we determine the LC coefficient of the filter prototype.

Next, doing impedance scaling to map this performance to our design frequency.

The process is shown below.

Then, enter those information into the "N5_MaxFlat_LPF_LC.zov"

c. N5_MaxFlat_LPF_T-Line_Tapped_Stubs

From step 5.3, we get impedance and length information for each line.

By doing the following calculation, we can make this design be a symmetric one and reduce the area on the board.

$$\frac{26A \cdot \frac{7}{8}}{0.C} = \frac{208.00}{0.C}$$

$$\frac{20A}{308.00} = \frac{208.00}{308.00} = \frac{208.00}{308.00}$$

$$\frac{20A}{308.00} = \frac{208.00}{308.00} = \frac{208.00}{308.00}$$

$$\frac{20A}{308.00} = \frac{208.00}{308.00} = \frac{208.00}{308.00}$$

$$\frac{20B}{308.00} = \frac{208.00}{308.$$

The design parameters are shown in the following table.

Design Parameter:		N5 MaxFl	at LPF Tli		at 2.5 GHz		
Unit:mm		Unit:mm		Unit:mm		Unit:mm	
Wue1	1.76	Luei	8.635	Wstub1	1	Lstub1	2.79
WUE2	0.539	Lue2	8.897	Wstub2	1	Lstub2	8.531
WUE3	0.539	Lue3	8.897	Wstub3	1	Lstub3	10.841
Wue4	1.76	Lue4	8.635	Wstub4	1	Lstub4	8.531
Wo	3.118			Wstub5	1	Lstub5	2.79

Task 2.

By going through the design process from step 1 to step 5.3.

The transformation can help us to know the impedance and length for each line in this design.

The design parameters are shown in the following table.

Design Parameter:		N5_HalfdB_EqRip_BSF_T-Line					at 3 GHz
Unit:mm		Unit:mm		Unit:mm		Unit:mm	
W ₀	3.116	Luei	12.94	Wstub1	1.478	Lstub1	14.45
				Wstub2	0.666	Lstub2	14.75
				Wstub3	3.116	Lstub3	14.03
				Wstub4	0.666	Lstub4	14.75
				Wstub5	1.478	Lstub5	14.45

Procedure

Following the step-by-step description of the activities from "PreLab 6 TAMU ECEN 452 Spring 2016 (Prof. Huff).pdf"

Results and Discussion

Task 1

Max Flat LBF

From the simulation result, the data from Tapper HFSS is close to the Z0lver results, from TL model and LC model. The result from this three design are closer to our design goal. But, TL HFSS simulation results are not. The reason is the distance between 43 ohm and 25 ohm impedance stubs, just 2.715 mm, is too close. The energy in this frequency can easily "jump" to the other side. Making the capacitance value formed by the open stubs are

different with our prior calculation. And need some tuning work to improve the performance.

By seeing the HFSS simulation result, the E field coupling between these two stubs is very strong.

Task 2

Equi-ripple band-stop filter

The S parameter results from measurement are similar to the HFSS simulation results before 2.5 GHz. The difference between the data above 2.5 GHz is more obvious. The reason is some fabrication error is "larger" to high frequency wavelength. The loss tangent for FR4 is not 0.01 at high frequency as well.

Conclusion

- After going through the filter design procedure step by step, the calculations for Richard's Transformation and Kuroda's identities are not a problem.
- Z0Iver is a good software to simulate the analytical solution to verify the full-wave simulation results.
- The distance between elements is very important and must to be designed carefully in high frequency.

Reflection

Unit	Series	Unit	Series	Shunt	Series	Unit	Series	Unit
Element	SC	Element	SC	oc	SC	Element	SC	Element
ue3	z1'	ue1'	z2	z3	z4	ue2'	z5'	ue4
1.00000	0.38194	0.61803	1.61803	0.50000	1.61803	0.61803	0.38194	1.00000
1	N3=1+2 ue3/z1'		N5=1+ Ue1'/z2		N6=1+ Ue2'/z4		N4=1+: Ue4'/z5'	
N3=3	N3=3 _{3.6182}		38197		N6=1.3	N6=1.38197		.6182
Shunt	Unit	Shunt	Unit	Shunt	Unit	Shunt	Unit	Shunt
OC	Element	oc	Element	OC	Element	OC	Element	OC
z1''	ue3'	z2'	ue1"	z3	ue2"	z4'	ue4'	z5''
ue3*N3	z1'*N3	ue1'*N5	z2*N5	0.50000	z4*N5	ue2'*N6	z5'*N3	ue4*N4
Shunt	Unit	Shunt	Unit	Shunt	Unit	Shunt	Unit	Shunt
oc	Element	oc	Element	oc	Element	oc	Element	OC
z1''	ue3'	z2'	ue1"	z3	ue2"	z4'	ue4'	z5''
3.6182	1.3808	0.85410	2.23607	0.50000	2.23607	0.85410	1.38196	3.6182
	-							
Shunt	Unit	Shunt	Unit	Shunt	Unit	Shunt	Unit	Shunt
oc	Element	oc	Element	oc	Element	oc	Element	OC
181	69	43	112	25	112	43	69	181
0.125λ	0.125λ	0.125λ	0.125λ	0.125λ	0.125λ	0.125λ	0.125λ	0.125λ

The number in yellow rectangular need some corrections.