Question 1

- a) The plot of the coffee price index can be seen in Figure 1 in the appendix. There is an obvious upward trend, but seasonality cannot be observed from the time series plot.
- b) In Figure 2, AC is high at all lags, which is a strong sign of a significant trend in the data. In PACF plot, there is a spike with high coefficient at lag 1 and a spike with relatively less and negative coefficient at lag 2. By only looking at PACF plot, I would say that the data is coming from AR(2) model. In Figure 3, it can be inferred that the detrended data is coming from either AR(2) or MA(2) distribution.

c) MAE of AR(2) model with detrending: 2.70268 MAPE of AR(2) model with detrending: 0.03528 RMSE of AR(2) model with detrending: 3.94290

d) MAE of MA(2) model with detrending: 2.71354 MAPE of MA(2) model with detrending: 0.03550 RMSE of MA(2) model with detrending: 3.93859

From Figure 4 and 6, it can be seen all coefficients except intercepts are significant for both models. MA(2) model has slightly less AIC and BIC values. It also has less RMSE than AR(2). Therefore, MA(2) looks like a better model for this data.

e) MAE of AR(2) model with detrending on test set: 12.27281 MAPE of AR(2) model with detrending on test set: 0.12987 RMSE of AR(2) model with detrending on test set: 14.13357

MAE of MA(2) model with detrending on test set: 12.14096 MAPE of MA(2) model with detrending on test set: 0.12811 RMSE of MA(2) model with detrending on test set: 13.97662

I split the data with 75-25 split for training and test sets. Test set errors of the models trained with training sets are given above.

Method	Spec.	RMSE (Train)	MAPE (Test)
Benchmark (HW1)	-	4.14	0.036
ARIMA(2,1,0)	$\phi_1 = 0.2079$ $\phi_2 = 0.1099$	3.943	0.130
ARIMA(0,1,2)	$\theta_1 = 0.2083$ $\theta_2 = 0.1543$	3.939	0.128

Question 2

- a) Time series plot can be seen in Figure 8.
- b) Results of SARIMA model can be seen in Figure 9. Since we only detrend and deseasonalized, there is only intercept, which has a p-value of 0.963. Therefore, only detrending and deseasonalizing is definitely not enough.
- c) Corresponding plots can be seen in Figure 10, 11 and 12.
- d) I used AR(2) with detrending & deseasonalizing and AR(2)+MA(3) with detrending & deseasonalizing. The corresponding SARIMA results can be seen in Figure 13 and 14.

MAE of AR(2) model with detrending and deseasonalizing: 14.05637 MAPE of AR(2) model with detrending and deseasonalizing: 0.03323 RMSE of AR(2) model with detrending and deseasonalizing: 18.36874

MAE of AR(2)&MA(3) model with detrending and deseasonalizing: 13.18680 MAPE of AR(2)&MA(3) model with detrending and deseasonalizing: 0.03104 RMSE of AR(2)&MA(3) model with detrending and deseasonalizing: 16.57181

e) I used AR(2) & MA(3) model since it has a lower RMSE value.

One-quarter ahead forecast for quarter 155: 403.25083 95 percent confidence interval for the forecast: (370.771, 435.731)

f) MAE of AR(2) model with detrending and deseasonalizing on test set: 13.72438 MAPE of AR(2) model with detrending and deseasonalizing on test set: 0.03371 RMSE of AR(2) model with detrending and deseasonalizing on test set: 18.33355

MAE of AR(2)&MA(3) model with detrending and deseasonalizing on test set: 12.62688 MAPE of AR(2)&MA(3) model with detrending and deseasonalizing on test set: 0.03106 RMSE of AR(2)&MA(3) model with detrending and deseasonalizing on test set: 16.85520

I split the data with 75-25 split for training and test sets. Test set errors of the models trained with training sets are given above.

g)

Method	Spec.	RMSE (Train)	MAPE (Test)
Benchmark	-	-	-
SARIMA(2,1,0)(0,1,0,4)	$\phi_1 = -0.9534$ $\phi_2 = -0.5409$	18.369	0.034
SARIMA(2,1,3)(0,1,0,4)	$\phi_1 = -0.4025$ $\phi_2 = -0.6638$ $\theta_1 = -0.7007$ $\theta_2 = 0.8461$ $\theta_3 = -0.8434$	16.571	0.031

Question 3

- a) OLS results of dummies can be seen in Figure 15. R² is 0.21 and MSE is 7476.83910.
- b) OLS results of dummies and trend term can be seen in Figure 16. R² is 0.782 and MSE is 2062.08204. R² has improved significantly and MSE decreased a lot. Therefore, the model with trend term explains the variance of the data better which means the data has trend.

c) For the OLS without trend:

One-quarter ahead forecast for quarter 155: 377.52105

95 percent confidence interval for the forecast: (208.045, 546.997)

For the OLS with trend:

One-quarter ahead forecast for quarter 155: 506.64019

95 percent confidence interval for the forecast: (417.638, 595.642)

d)

Method	Coefficients	R ²	MSE
	M1 = -67.33		
Model without trend	M2 = -115.38	0.21	7476.839
	M3 = -102.25		
	t = 1.6554		
Model with trend	M1 = -65.67	0.782	2062.082
woder with trend	M2 = -115.38	0.782	2002.082
	M3 = -100.59		

Appendix

Figure 1: Time series plot of coffee price index

Figure 2: ACF and PACF plots of coffee price index

Figure 3: ACF and PACF plots of detrended data

Figure 4: AR(2) results of detrended data

SARIMAX R	lesults						
Dep. V	ariable:		price	No. O	oservatio	ns:	385
	Model:	SARIMA	X(2, 1, 0)	Lo	g Likeliho	ood -10	071.722
	Date:	Mon, 04 A	Apr 2022		4	AIC 2	151.443
	Time:	2	21:33:35		ı	BIC 2	167.246
S	Sample:		0		н	QIC 2	157.711
			- 385				
Covarianc	е Туре:		opg				
	coef	std err	z	P> z	[0.025	0.975]	
intercept	0.1432	0.233	0.615	0.539	-0.313	0.600	
ar.L1	0.2079	0.028	7.529	0.000	0.154	0.262	
ar.L2	0.1099	0.035	3.109	0.002	0.041	0.179	
sigma2	15.5459	0.630	24.686	0.000	14.312	16.780	
Ljung	-Box (L1)	(Q): 0.03	3 Jarqu	e-Bera	(JB): 11	24.85	
	Prob	(Q): 0.87	7	Prob	(JB):	0.00	
Heteroske	dasticity	(H): 0.41	1	SI	kew:	0.93	
Prob(H)	(two-sid	ed): 0.00)	Kurte	osis:	11.17	

Figure 5: AR(2) model vs. real data

Figure 6: MA(2) results of detrended data

SARIMAX Results

Dep. Va	ariable:		price	No. O	bservatio	ns:	385
	Model:	SARIMAX	((0, 1, 2)	Lo	g Likeliho	ood -1	071.301
	Date:	Mon, 04 A	pr 2022			AIC 2	150.603
	Time:	2	21:33:35		ı	BIC 2	166.405
S	ample:		0		н	QIC 2	156.871
			- 385				
Covarianc	е Туре:		opg				
	coef	std err	z	P> z	[0.025	0.975]	
intercept	0.2076	0.306	0.679	0.497	-0.392	0.807	
ma.L1	0.2083	0.030	6.949	0.000	0.150	0.267	
ma.L2	0.1549	0.037	4.139	0.000	0.082	0.228	
sigma2	15.5119	0.663	23.405	0.000	14.213	16.811	
Ljung-	·Box (L1)	(Q): 0.01	Jarqu	e-Bera	(JB): 11	48.32	
	Prob	(Q): 0.92	2	Prob	(JB):	0.00	
Heteroske	dasticity	(H): 0.42	2	S	kew:	1.01	
Prob(H)	(two-sid	ed): 0.00)	Kurt	osis:	11.23	

Figure 7: Real data vs. MA(2) model

Figure 8: Time series plot of Australian beer production

Figure 9: SARIMA results of detrended and deseasonalized AusBeer data

SARIMAX R	esults							
Dep. V	ariable:			prod	l No.	Obse	ervations	154
	Model: S	ARIMAX(0), 1, 0)x(0	0, 1, 0, 4) 1	Log L	ikelihood	-705.976
	Date:	N	/lon, 04	Apr 2022	2		AIC	1415.953
	Time:			21:33:36	3		BIC	1421.961
S	Sample:			()		HQIC	1418.394
				- 154	4			
Covarianc	е Туре:			opę	9			
	coef	std err	z	P> z	[0.0]	25	0.975]	
intercept	-0.1047	2.283	-0.046	0.963	-4.5	79	4.370	
sigma2	763.8084	78.855	9.686	0.000	609.2	55 9	918.361	
Ljung	-Box (L1) (0	2): 55.25	Jarqu	ıe-Bera	(JB):	2.99)	
	Prob(0	2): 0.00)	Prob	(JB):	0.22	?	
Heteroske	dasticity (l	H): 3.04		s	kew:	-0.20)	
Prob(H)	(two-side	d): 0.00)	Kurt	osis:	3.56	3	

Figure 10: ACF and PACF plots of detrended AusBeer data

Figure 11: ACF and PACF plots of deseasonalized AusBeer data

Figure 12: ACF and PACF plots of both detrended and deseasonalized AusBeer data

Figure 13: AR(2) results of AusBeer data

SARIMAX Results

SARIMAX R	lesults						
Dep. V	ariable:			prod	No. Obs	ervations:	154
	Model: S	ARIMAX(2	2, 1, 0)x(0,	1, 0, 4)	Log l	ikelihood	-645.877
	Date:	N	Лоп, 04 A	pr 2022		AIC	1299.754
	Time:		2	1:33:37		BIC	1311.770
S	Sample:			0		HQIC	1304.636
				- 154			
Covariano	е Туре:			opg			
	coef	std err	z	P> z	[0.025	0.975]	
intercept	-0.2012	1.577	-0.128	0.898	-3.292	2.889	
ar.L1	-0.9534	0.062	-15.260	0.000	-1.076	-0.831	
ar.L2	-0.5409	0.073	-7.414	0.000	-0.684	-0.398	
sigma2	338.2869	31.493	10.742	0.000	276.562	400.012	
Ljung	-Box (L1) (C	Q): 0.18	Jarque-	Bera (JE	3): 11.78		
	Prob(C	Q): 0.67		Prob(JE	3): 0.00		
Heteroske	edasticity (F	i): 3.65		Ske	w: 0.17		
Prob(H)) (two-sided	d): 0.00		Kurtos	is: 4.34		

Figure 14: AR(2) & MA(3) results of AusBeer data

SARIMAX Results

SANIIVIAA N	lesuits						
Dep. V	ariable:			prod	No. Obse	ervations:	154
	Model: S	ARIMAX(2	!, 1, 3)x(0,	1, [], 4)	Log L	ikelihood.	-631.745
	Date:	N	1on, 04 A	pr 2022		AIC	1277.490
	Time:		2	1:33:37		BIC	1298.518
8	Sample:			0		HQIC	1286.033
				- 154			
Covariano	e Type:			opg			
	coef	std err	z	P> z	[0.025	0.975]	
intercept	-0.1479	0.418	-0.354	0.723	-0.966	0.671	
ar.L1	-0.4025	0.059	-6.774	0.000	-0.519	-0.286	
ar.L2	-0.6638	0.063	-10.567	0.000	-0.787	-0.541	
ma.L1	-0.7007	0.053	-13.198	0.000	-0.805	-0.597	
ma.L2	0.8461	0.045	18.956	0.000	0.759	0.934	
ma.L3	-0.8434	0.058	-14.610	0.000	-0.957	-0.730	
sigma2	269.2314	31.183	8.634	0.000	208.114	330.349	
Ljung	-Box (L1) (C	2): 1.06	Jarque-	Bera (JI	3): 0.75		
	Prob(0	0.30		Prob(JI	3): 0.69		
Heteroske	edasticity (F	H): 3.41		Ske	w: -0.06		
Prob(H) (two-side	d): 0.00		Kurtos	is: 3.33		

Figure 15: OLS results of AusBeer data with dummies

OLS Regression Results

Dep. V	ariable	:		prod	F	R-squared:	0.210
	Mode	l:		OLS	Adj. F	R-squared:	0.194
P	Method	ı:	Least S	quares	ı	-statistic:	13.29
	Date	e: M	on, 04 Ap	or 2022	Prob (F	-statistic):	9.73e-08
	Time	e :	2	1:33:37	Log-L	.ikelihood:	-905.32
No. Obser	vations	s:		154		AIC:	1819.
Df Re	siduals	s:		150		BIC:	1831.
Df	Mode	l:		3			
Covariand	е Туре	:	noi	nrobust			
		coef	std err	t	P> t	[0.025	0.975]
Intercept	479.7	7684	14.213	33.756	0.000	451.685	507.852
M1	-67.3	300	19.971	-3.371	0.001	-106.790	-27.870
M2	-115.3	8812	19.971	-5.778	0.000	-154.842	-75.921
МЗ	-102.2	2474	20.100	-5.087	0.000	-141.963	-62.532
_							
Omr	ibus:	54.9	51 D i	urbin-Wa	itson:	0.079	
Prob(Omn	ibus):	0.0	00 Jar o	que-Bera	(JB):	16.787	
S	kew:	-0.5	74	Prol	b(JB):	0.000226	
Kur	tosis:	1.8	60	Cond	d. No.	4.82	

Figure 16: OLS results of AusBeer data with dummies and trend variable

OLS Regres	ssion Re	esults					
Dep. \	/ariable	e:		prod	F	-squared:	0.782
	Mode	l:		OLS	Adj. F	-squared:	0.776
1	Method	d:	Least S	quares	F	-statistic:	133.7
	Date	e: M	on, 04 Ap	or 2022	Prob (F	-statistic):	2.97e-48
	Time	e:	2	1:33:37	Log-L	ikelihood:	-806.14
No. Obser	vations	s:		154		AIC:	1622.
Df Re	siduals	s:		149		BIC:	1637.
D	f Mode	l:		4			
Covarian	се Туре	e:	nor	robust			
		coef	std err	t	P>ltl	[0.025	0.9751
Intercept			std err 9.935	t 35.296	P> t	[0.025 331.018	0.975] 370.280
Intercept	350.6					-	-
	350.6	6493 6554	9.935	35.296	0.000	331.018	370.280
t	350.6 1.6	6493 6554 6746	9.935 0.084	35.296 19.780 -6.241	0.000	331.018 1.490	370.280
t M1	350.6 1.6 -65.6	6493 6554 6746 8812	9.935 0.084 10.523	35.296 19.780 -6.241	0.000 0.000 0.000	331.018 1.490 -86.469	370.280 1.821 -44.880
t M1 M2 M3	350.6 1.6 -65.6 -115.3 -100.5	5493 5554 5746 3812 5920	9.935 0.084 10.523 10.523 10.591	35.296 19.780 -6.241 -10.965 -9.497	0.000 0.000 0.000 0.000	331.018 1.490 -86.469 -136.175 -121.521	370.280 1.821 -44.880 -94.588
t M1 M2 M3 Omi	350.6 1.6 -65.6 -115.3 -100.5	6493 6554 6746 8812	9.935 0.084 10.523 10.523 10.591	35.296 19.780 -6.241 -10.965	0.000 0.000 0.000 0.000	331.018 1.490 -86.469 -136.175	370.280 1.821 -44.880 -94.588
t M1 M2 M3	350.6 1.6 -65.6 -115.3 -100.5	3493 3554 3746 3812 5920 3.87 0.14	9.935 0.084 10.523 10.523 10.591 6 Dur 4 Jarqu	35.296 19.780 -6.241 -10.965 -9.497 rbin-Wats	0.000 0.000 0.000 0.000 0.000	331.018 1.490 -86.469 -136.175 -121.521 285	370.280 1.821 -44.880 -94.588
t M1 M2 M3 Omi	350.6 1.6 -65.6 -115.3 -100.5	5493 5554 5746 3812 5920	9.935 0.084 10.523 10.523 10.591 6 Dur 4 Jarqu	35.296 19.780 -6.241 -10.965 -9.497	0.000 0.000 0.000 0.000 0.000	331.018 1.490 -86.469 -136.175 -121.521	370.280 1.821 -44.880 -94.588

Figure 17: Comparison of best OLS and ARIMA models with real data

