

Página Principal ► Mis cursos ► Cálculo I 2020 ► Cuestionarios en Moodle. ► Cuestionario 2

Comenzado el	viernes, 9 de octubre de 2020, 10:53
Estado	Finalizado
Finalizado en	viernes, 9 de octubre de 2020, 13:50
Tiempo empleado	2 horas 57 minutos

Teniendo en cuenta los siguientes enunciados, tildar la(s) alternativas correcta(s):	
Problema 1:	
Determinar el punto, sobre la gráfica de la función $y=\sqrt{x-8}$ más cercano al punto $(4,0)$.	
Problema 2:	
Encuentre la base y la altura de un triángulo cuya suma de estas dos variables es A y su área es máxima.	
Seleccione una o más de una: $\hfill \Box$ a. No se puede plantear el problema 2 porque los valores dependen de A .	
b. El área máxima en el problema 2 es $\frac{A^2}{8}$.	
 c. El valor x correspondiente al punto (x, y) buscado en el problema 1 se obtiene considerando uno de los extremos del dominio de la función distancia en este contexto. d. El valor x correspondiente al punto (x, y) buscado en el problema 1 es x = ⁷/₂. 	
e. La base y la altura del triángulo en el problema 2 deben ser iguales. f. El valor x correspondiente al punto (x,y) buscado en el problema 1 se puede obtener al resolver la ecuación $x^2 - 7x + 8 = 0$	

Pregunta 2
Finalizado
Puntúa como 18,00

Pregunta 3

Finalizado

Puntúa como 18,00

Tildar la(s) alternativa(s) correcta(s):

Seleccione una o más de una:

- a. La ecuación $b^2x^2 + a^2y^2 = a^2b^2$ representa una elipse. Las rectas verticales de ecuaciones $x = \pm a$ son tangentes a la elipse en los puntos $(\pm a, 0)$.
- b. La curva de ecuación $y^2 = 5x^4 x^2$ se llama *kampila de Eudoxo* (ver figura).

Para que en un punto P(a,b) de la kampila, la recta tangente a ella sea paralela a la recta 9x-2y-5=0, debe cumplirse la condición $20a^3+2a=9b$.

- c. Sea la *lemniscata* de ecuación $a(x^2 + y^2)^2 = b(x^2 y^2)$, donde a, b son dos constantes reales positivas. Existen algunos valores positivos de a y b para los cuales la curva dada no tiene definida su recta tangente.
- d. Para cualquier valor real de a la expresión $\frac{dy}{dx}=-\frac{x}{y}$ representa la pendiente de la recta tangente a $x^2+y^2=a$.
- e. Sea la elipse $4x^2+y^2=72$ y la recta S cuya ecuación es 2y+ax+3=0, con $a\in\mathbb{R}-\{0\}$. En los puntos P(x,y) cuyas componentes verifican la condición 8x=ay, la recta tangente a la elipse resulta paralela a S.

Pregunta 4

Finalizado

Puntúa como 18.00

Tildar la(s) alternativa(s) correcta(s).

Fórmulas posiblemente útiles.

Perímetro de una circunferencia de diámetro d: πd

Área del círculo de radio r: πr^2

Area esfera de radio τ : 4 π τ^2

Volumen esfera de radio r: $\frac{4}{3} \pi r^3$

Volumen cilindro circular recto de altura h y radio de la base r: $\pi h r^2$

Seleccione una o más de una:

- a. El radio r de un círculo crece de a = 10 m a a = 10.1 m. El cambio relativo que este crecimiento del radio produce en el área del círculo es del 2%.
- b. Se midió el radio de una esfera y dio como resultado 21 cms, con un posible error de medición de, a lo más, 0.05 cms. Entonces el error máximo cometido al calcular el volumen es de, aproximadamente, 277 cms³.
- c. La cantidad de pintura necesaria para aplicar una capa de pintura de 0.15 cms de ancho en un techo semiesférico de radio r=25m es, aproximadamente, 375π cms³.
- d. Se midió el radio de una esfera y dio como resultado 21 cms, con un posible error de medición de, a lo más, 0.05 cms. El error porcentual o relativo cometido al calcular el volumen es del 7%.
- e. El radio r de la base de un cilindro circular recto, cambia en Δr con el tiempo. El cambio aproximado en el volumen está dado por $2\pi \cdot r \cdot h \cdot \Delta r$.

Pregunta 5

Finalizado

Puntúa como 14,00

Repasando un poco los métodos de integración. Tildá la(s) alternativa(s) correcta(s)

Seleccione una o más de una:

- a. Los valores de las constantes A = 5/9, B = 7/9 y C = -8/3 son los que permiten, aplicando el método de separación en fracciones parciales, calcular $\int \frac{x^2+3}{(x-1)(x+2)^2} dx$
- b. Para el cálculo de la integral $\int x^2 \ ln(x) \ dx$, resulta apropiado el método de integración por partes y, en él, la elección $u \equiv ln(x)$
- c. Eligiendo $u=sen^3x$ y dv=dx el método de integración por partes resuelve la integral $\int\!sen^3x\;dx$
- d. Implementando la sustitución $v=\sqrt{1+x}$, se puede calcular con éxito $\int x^2\sqrt{1+x} \ dx$
- e. Para el cálculo de la integral $\int \frac{dx}{\sqrt{1-x^2}}$ la sustitución x=sen(t) resulta apropiada para encontrar la

familia de primitivas

f. La elección $u=e^{-x}$ y $dv=(x^2+5)dx$ es apropiada para resolver la integral $\int (x^2+5)e^{-x}dx$

Pregunta 6	Marcar todas las alternativas que considere correctas.
Finalizado	
Puntúa como 18.00	Seleccione una o más de una:
.,,,,	a. La integral $\int \frac{a}{x^2-16} dx$, con $a<0$, puede re-escribirse como $\int a \left(\frac{1}{x-4} - \frac{1}{x+4}\right) dx$ y, así, es posible
	calcular su integral de manera más sencilla.
	b. Dada $a>0$, el cociente de polinomios $\frac{ax(x+9)}{x^2-9}$ se puede escribir en la forma $\frac{A}{x+3}+\frac{B}{x-3}$ para ciertas constantes A,B .
	c. Ninguna de las opciones restantes es correcta.
	d. El cociente de polinomios $\frac{x^2+4}{x(x^2-4)}$ se puede escribir en la forma $\frac{A}{x^2-4}+\frac{B}{x}$ para ciertas constantes A,B .

e. Es posible resolver la integral $\int \frac{1+e^x}{x(1-e^x)}\,dx$ utilizando la sustitución $u=e^x$ y luego el método de separación en suma de fracciones parciales.

◆ Foro de consultas sobre el Recuperatorio 1

Ir a...

~

Foro de consultas para el cuestionario 2 ▶