La théorie des jeux:

Cours sur les Sociétés Virtuelles GMIN334 Master 2-Informatique

Jacques Ferber

LIRMM - Université Montpellier II 161 rue Ada 34292 Montpellier Cedex 5

Email: ferber@lirmm.fr

Home page: www.lirmm.fr/~ferber

Version 1.1 Sept. 2012

Présentation

- ◆ La théorie des jeux constitue une approche mathématique de problèmes de stratégie tels qu'on en trouve en recherche opérationnelle et en économie.
- Elle étudie les situations où les choix de deux protagonistes - ou davantage - ont des conséquences pour l'un comme pour l'autre.
- ◆ Utilisé pour analyser les situations de coopération/ conflits qui prennent en compte les choix de l'autre (des autres)

Exemple

Restaurant

- n personnes sont au restaurant
- Chaque personne choisit de payer ce qu'il consomme: c'est un problème de décision individuelle.
- Avant le repas, on décide de partager la note en n, quel que soit ce qu'on mange: cela devient un jeu!!
 - Fintérêt à manger plus que les autres, et que les autres mangent moins..

Applications dans de nombreux domaines

• Economie, domaine militaire, gestion d'entreprise, systèmes multi-agents, etc..

Exemple et définition

◆ Le jeu: Pierre/ciseau/feuille

• Pierre gagne contre ciseau, ciseau contre feuille, feuille contre pierre

Définitions:

- Joueurs: les protagonistes d'une situation de coopération/ compétition..
- Choix, action: une décision
- Stratégie: une suite de choix
- Gain (payoff): ce que chaque joueur gagne en fonction des coups des autres

Représentation sous forme de matrices

Deux joueurs:

• pierre gagne contre ciseau, ciseau contre feuille, feuille contre pierre

	J2: P	J2: C	J2: F
J1: P	0,0	1,0	0,1
J1: C	0,1	0,0	1,0
J1: F	1,0	0,1	0,0

Jeux simultanés

Le principe

- Si jeu coopératif: les joueurs peuvent se concerter avant de faire un choix. Si jeu non coopératif, les joueurs ne peuvent pas communiquer avant..
 - > On traitera plus le cas des jeux non coopératifs, plus classiques..
- \triangleright Chaque joueur *i* choisit sa stratégie s_i sans connaître les choix des autres.
- Alors each joueur i reçoit son gain $u_i(s_1, s_2, ..., s_n)$.
- Le jeu s'arrête
- Une grande catégorie de jeux qui ont été très analysés
- > Formalisation
 - Un ensemble fini de joueurs {1, 2, ..., n}
 - ightharpoonup Espace des stratégies (choix) de chaque joueur S_1 S_2 ... S_n
 - Les fonctions de gain de chaque joueur u_1 u_2 ... u_n où $u_i: S_1 \times S_2 \times ... \times S_n \rightarrow R$.
- Exemple

Jeux à 2 joueurs

	J2: d1	J2: d2
J1: d1	x,x	u,v
J1: d2	v,u	у,у

- Jeux symétriques
- ♦ Jeu d'accord social ssi:
 - x ou y > 0 et, si x et y > 0, alors x = y
 - u ou v négatif ou nul

Exemple d'accord social

- ♦ Deux personnes, Jean et Marie, décident d'aller au restaurant..
- ♦ Ils ne communiquent pas, mais ils connaissent leur préférences mutuelles (informations complètes)
- ♦ Jean et Marie préfèrent le restau Indien à la pizzéria
 - Un bon début de soirée en perspective

		Jean	
		Pizza	Indien
N.A. a sai a	Pizza	1 , 1	0,0
Marie	Indien	0,0	2 , 2

Exemple de jeu sans accord social: la bataille des sexes

- ♦ Un autre jour, Jean et Marie ont décidé de sortir ensemble. Chacun préfère sortir plutôt qu'être seul..
- Marie préfère l'Opéra, Jean le match de foot
- Mais on suppose qu'ils ne communiquent pas, mais ils connaissent leur préférences (informations complètes)
- ◆ La solution, il faut que l'un choisisse le choix de l'autre, mais que l'autre ne change pas de choix..
 - Une mauvaise soirée en perspective

		Joan	
		Opéra	Match foot
N 4 a vi a	Opéra	2 , 1	0,0
Marie	Match foot	0,0	1 , 2

.lean

Match foot

Dilemme des prisonniers

Le dilemme du prisonnier

- chaque prisonnier peut trahir (T) ou non (S)
- si aucun n' avoue (S-S) : 2 ans
- si les 2 trahissent (T-T): 4 ans
- si un seul trahit: il est libre et l'autre a 5 ans

Joueur 2

Joueur 1

	S:	T:
S:	-2,-2	-5,0
Т:	0,-5	-4,-4

- x = -2, y = -4
- u = -5, v = 0
- Ce n' est pas un jeu d'accord social

Equilibre de Nash

- L'équilibre de Nash décrit une issue d'un jeu non coopératif dans lequel aucun joueur n'a intérêt à modifier sa stratégie, compte tenu des stratégies des autres joueurs.
- ♦ Soit un jeu non-coopératif à n joueurs, et s*= (s*₁,...,s*₁) une combinaison de choix stratégiques de ces n joueurs
 - s*_i est le choix stratégique du joueur i
 - $s_i^* \in S_i$, l'ensemble des stratégies praticables par le joueur i.
 - $u_i(s_1,...,s_n)$ est le gain du joueur i lorsque s est sélectionné.
- $\forall s_i \in S_i \ u_i \ (s^*_1, ... \ s^*_i, ... s^*_n) > u_i \ (s^*_1, ... \ s_i, ... s^*_n)$

Exemple

Joueur 2

	${f L}$	C	\mathbf{R}
T	0,4	4 , 0	5, 3
M	4 , 0	0, 4	5, 3
В	3, 5	3 , 5	6,6

La combinaison des stratégies (B, R) possède la propriété suivante:

Joueur 1

- Le joueur 1 ne peut pas faire mieux que B, sachant que le joueur 2 choisit L, C ou R
- Le joueur 2 ne peut pas mieux faire que R, sachant que le joueur 1 choisit T, B ou M
- Il existe donc un équilibre de Nash (et en plus optimal..)
 - tout le monde est heureux! (jeu d'accord social, on verra pourquoi avec Pareto)

Equilibre de Nash dans le dilemme du prisonnier

- ♦ Il existe un équilibre de Nash dans le dilemme du prisonnier. Celui ou les deux trahissent !!
 - Bien qu'il existe un autre équilibre, mais qui ne peut être choisi « rationnellement » par aucun des deux joueurs..
 - Car rester silencieux (S) ne constitue pas un équilibre: l'autre joueur pouvant améliorer son gain en jouant (T)

Joueur 2

Joueur 1

	S:	T:
S:	-2,-2	-5,0
T:	0,-5	-4,-4

Jeux de coordination

- ◆ Jeux symétriques dans lesquels il s'agit simplement de se mettre d'accord (sans compétition)
 - Ex: rouler à gauche ou à droite

Joueur 2

Joueur 1

	G:	D:
G:	1,1	-1,-1
D:	-1,-1	1,1

2 équilibres de Nash

Un problème politique: les marchands de glace

- ◆ Deux marchands de glace doivent choisir un emplacement sur une plage où les clients sont répartis uniformément (prix et glaces sont les mêmes
- Emplacement au hasard:
 - Chaque acheteur étant paresseux va vers le plus proche...
 - Donc Bleu a plus d'acheteur que Rouge (nombre proportionnel à la ligne de plage devant chaque vendeur.

Marchands de glace #2

♦ Même en cas de symétrie, chacun à intérêt à aller vers le centre de la plage

◆ Résultat final: les marchands se retrouvent au centre (équilibre de Nash)

♦ Mais pas un équilibre optimal, si l'on prend en compte le déplacement des clients...

Optimum de Pareto

- ◆ Préférence au sens de Pareto >_P:
 - Entre les états des agents d'un jeu
 - $(u_1, ... u_i, ... u_n) >_P (u'_1, ... u'_i, ... u'_n) \text{ ssi } \forall i \in [1, n], u_i \ge u'_i$
- Optimum de Pareto: maximum de cette relation
- on ne peut augmenter le gain d'un agent sans diminuer celui d'un autre
 - Très souvent utilisé en économie pour décrire un monde optimum

Accord social

- ♦ Choix des restaus et accord social:
 - Deux équilibres de Nash (P-I et I-P)
 - Un optimum de Pareto (I-I)

		Jean	
		Pizza	Indien
N.A. and a	Pizza	1 , 1	0,0
Marie	Indien	0,0	2 , 2

Pareto et l'économie

Utilitarisme stricte: principe du plus grand bonheur:

- On cherche à augmenter les gains (le bonheur, la satisfaction) de l'ensemble de la population.
- Mais si les gains des riches augmentent au détriment des pauvres?
- Pareto permet d'atteindre les états les plus satisfaisants et l'utilitarisme (la somme des gains) de partager les états de Pareto en préférant les états les plus satisfaisants.

♦ Néanmoins Pareto n'est ni équitable, ni « social »:

- Sur l'ensemble des états de Pareto on peut préférer les états offrant les plus grands biens..
 - L'augmentation des riches si elle ne diminue pas la richesse des pauvres est donc meilleure au sens de Pareto et de l'utilitarisme.

Pareto et l'économie

- Le cas d'un système n'offrant que des possibilités de plus grandes richesses
 - Tous les états sont des optima de Pareto, car l'augmentation des richesses de l'un ne se fait jamais au détriment des richesses de l'autre..
 - Le critère utilitariste considère que l'état D, D est bien meilleur que les autres états, mais cela n'est pas très équitables en terme de répartition de richesses
 - Mais il n'est pas sûr de ce fait que le joueur 1 joue D, car il n'a aucun intérêt pour lui.. (en jouant C, il a pratiquement la même assurance de gains)

Joueur 2

	A	В	\mathbf{C}	D
A	5, 10	10, 20	10, 30	15, 40
В	10, 20	10, 30	15,30	15, 50
C	15, 30	20, 40	20, 50	20, 50
D	20, 20	20, 50	20, 70	20, 200

Joueur 1

Les équilibres du dilemme des prisonniers

Joueur 2

Joueur 1

	S:	T:
S:	-2,-2	-5,0
T:	0,-5	-4,-4

- ♦ équilibre de Nash: (T,T)
- optimum de Pareto: (S,S)

Les équilibres

- ♦ Lorsque Pareto inclut dans Nash, pas de pbs...
- **♦** Lorsque Pareto n'est pas inclus dans Nash:
 - pbs de coopération. Le moindre écart peut faire repasser dans l'équilibre de Nash qui n'est pas optimal au sens de Pareto (ex: dilemme du prisonnier).
- Question: comment obtenir l'optimum de Pareto?
 - Par la coopération...
 - Communication
 - ou itération (et évolution)

Compétition sur les dilemmes du prisonnier

- ♦ Lancé par Axelrod.. Livre en 1984 (Donnant donnant)
- ♦ Idée:
 - Mettre en compétition des programmes qui jouent au dilemme du prisonnier itératif.
- ♦ Le nombre d'itération
 - Nombre n est connu d'avance
 - Nombre peut s' arrêter à n'importe quel moment
- On fait la somme à la fin des gains obtenus

Stratégies sur des suites (1)

- Donnant-donnant : coopération au premier tour, puis stratégie précédente du partenaire.
- Majorité mou : choix majoritaire de l'adversaire, coopération si égalité et au premier tour.
- Rancunière: coopération, puis défection permanente si le partenaire fait une fois défection
- Donnant-donnant dur : coopération, sauf si le partenaire a trahi une des 2 fois précédentes
- Gentille : toujours coopérer
- Périodique gentille : séquence cyclique de deux coopération, puis une défection

Stratégies sur des suites (2)

- Sondeur: séquence trahir, coopérer, coopérer
- Lunatique : défection une fois sur deux en moyenne (séquences aléatoires)
- Méfiante : défection au premier tour, puis stratégie précédente du partenaire
- ♦ Majorité dur: choix majoritaire de l'adversaire, défection si égalité et au premier tour.
- Méchante : toujours faire défection
- Périodique méchante : séquence cyclique de deux défections, puis une coopération

Comparaison

Tournoi du 50e anniversaire

- Chaque équipe pouvait soumettre plusieurs programmes
- ♦ Équipe Nick Jennings (Southampton)
- ◆ Stratégie = séquence de 10 coups pour se reconnaître
 - Si oui: stratégie maitre esclave
 - Si non: stratégie méchante
- ◆ En fait: création d'une coalition entre deux programmes pour faire augmenter les gains

Evolutionary Game Theory

- La théorie des jeux évolutifs
 - Utilise le principe du dilemme du prisonnier itératif..
- ◆ Concept d'ESS (evolutionary stable strategy)
 - Stratégie qui, sur un long terme évolutionnaire, se révèle particulièrement stable et empêche le développement d'autres stratégies plus nouvelles.
 - La stratégie « tit for tat » (donnant donnant) dans le dilemme du prisonnier est évolutionnairement stable. Elle peut battre n'importe quelle stratégie que l'on pourrait inventer pour ce jeu.

Stratégies dominante

- On dit qu'une stratégie s1 domine une stratégie s2 si ses gains sont meilleurs, quels que soient les choix des autres joueurs.
- Une stratégie est dominée si il existe une autre stratégie qui réalise un meilleur gain, indépendamment des autres choix..