# Chapter 5 part 1

Continuous Random Variables

Jingchen (Monika) Hu

Vassar College

**MATH 241** 

### Outline

- Continuous random variables
- Expectation and variance of continuous random variable
- Uniform distribution

### Outline

- Continuous random variables
- Expectation and variance of continuous random variable
- 3 Uniform distribution

## Continuous random variables

A continuous random variable X can take any real value in  $(-\infty, \infty)$ .

#### Definition

X is a continuous random variable if there exists a **nonnegative** function f defined for any  $x \in (-\infty, \infty)$ , such that for any set B of real numbers,

$$P(X \in B) = \int_{B} f(x)dx$$

This function f is called the probability density function (pdf) of the random variable X.

Examples of continuous random variable

- Rainfall amount for a year.
- Lifetime of your first car.
- Amount of beer consumed on a game day.

### Pdf and cdf

For pdf to be valid, in additional to being non-negative,

$$\int_{-\infty}^{\infty} f(x)dx = P(-\infty < X < \infty) = 1$$

Cdf function of continuous random variable

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x)dx$$

 For continuous random variable, probability to be a single point is zero.

$$P(X = a) = \int_a^a f(x)dx = 0$$
$$P(X < a) = P(X \le a) - P(X = a) = F(a)$$

Probability on an interval

$$P(a \le X \le b) = F(b) - F(a) = P(a < X < b)$$



 $P(a \le X \le b)$  = area of shaded region

Connection between pdf and cdf of continuous random variable. If we know the pdf,

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x)dx$$

How to find the pdf if we know the cdf?

$$f(x) = \frac{d}{dx}F(x)$$

Suppose that  $\boldsymbol{X}$  is a continuous random variable whose pdf is

$$f(x) = \begin{cases} c(8x - 4x^3) & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

• Find P(X > 0.5).

Suppose that  $\boldsymbol{X}$  is a continuous random variable whose pdf is

$$f(x) = \begin{cases} c(8x - 4x^3) & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

• Find P(X > 0.5).

$$P(X > 0.5) = \int_{0.5}^{\infty} f(x)dx$$

$$= \int_{0.5}^{1} \frac{8x - 4x^{3}}{3} dx$$

$$= \frac{1}{3} \left( 4x^{2} - x^{4} \Big|_{0.5}^{1} \right)$$

$$= \frac{1}{3} \left[ 3 - 4 \times \left( \frac{1}{2} \right)^{2} + \left( \frac{1}{2} \right)^{4} \right] = \frac{1}{3} \times \frac{33}{16} = \frac{11}{16}$$

Suppose that X is a continuous random variable whose pdf is

$$f(x) = \begin{cases} c(8x - 4x^3) & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

• Find the cdf function F(x).

$$\int_{-\infty}^{\infty} f(x)dx = 1 \Longrightarrow c = 1/3$$

$$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & x < 0\\ \frac{4x^2 - x^4}{3} & 0 \le x \le 1\\ 1 & x > 1 \end{cases}$$

Note that F(0) = 0 and F(1) = 1.

## Interpretation of the pdf

For some small value h > 0,

$$P\left(x - \frac{h}{2} \le X \le x + \frac{h}{2}\right) = \int_{x - \frac{h}{2}}^{x + \frac{h}{2}} f(t)dt$$

$$\approx \left[\left(x + \frac{h}{2}\right) - \left(x - \frac{h}{2}\right)\right] f(x)$$

$$= h \cdot f(x)$$

The larger f(x) is, the more likely X is to be "near" x.

## Recap

A continuous random variable X can take more than countable number of values in  $\mathbb{R}$ .

We defined continuous random variable using pdf

$$P(X \in B) = \int_{B} f(x)dx$$

Cdf function of continuous random variable

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$
$$f(x) = \frac{d}{dx}F(x)$$

Comparing discrete random variables and continuous random variables.

|                                              | discrete | continuous |
|----------------------------------------------|----------|------------|
| values can take                              |          |            |
| pmf / pdf                                    |          |            |
| validness (i.e. the sum of probability is 1) |          |            |
| cdf                                          |          |            |
| from cdf to pmf / pdf                        |          |            |
| probability at a single point                |          |            |

|                         | discrete                     | continuous                                         |
|-------------------------|------------------------------|----------------------------------------------------|
|                         | a countable number           | any real value in                                  |
| values can take         |                              | $(-\infty,\infty)$                                 |
|                         | pmf, $p(x)$                  | pdf, $f(x)$                                        |
| pmf / pdf               | - , ,                        | . ,                                                |
|                         | $\sum_{x:p(x)>0} p(x) = 1$   | $\int_{-\infty}^{\infty} f(x)dx = P(-\infty < X <$ |
| validness (i.e. the sum |                              | $P(-\infty < X < $                                 |
| of probability is 1)    |                              | $\infty)=1$                                        |
|                         | $F(a) = \sum_{x \le a} p(x)$ | $F(a) = P(X \le$                                   |
| cdf                     |                              | $a) = \int_{-\infty}^{a} f(x)dx$                   |
|                         | use a graph and pay          | take derivative with                               |
| from cdf to pmf / pdf   | attention to start /         | respect to the ran-                                |
|                         | end points                   | dom variable                                       |
|                         | p(x)                         | 0                                                  |
| probability at a single | _ ,                          |                                                    |
| point                   |                              |                                                    |

## Outline

- Continuous random variables
- Expectation and variance of continuous random variable
- 3 Uniform distribution

## Expectation and variance of continuous random variable

• Recall that expected value of the discrete random variable X with pmf p(x),

$$E[X] = \sum_{\mathsf{all}\ x} x p(x)$$

ullet We define expected value of a continuous random variable X with pdf f(x) as

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Definitions of variance and standard deviation are the same.

$$Var(X) = E[X^2] - (E[X])^2, \quad SD(X) = \sqrt{Var(X)}$$

Definition:

$$Var(X) = E[(X - \mu)^2]$$

# Properties of E[X] for continuous random variable

ullet Recall that expected value of the discrete random variable X with pmf p(x),

$$E[g(X)] = \sum_{\mathsf{all}\ x} g(x)p(x)$$

• Similarly, expected value of a continuous random variable X with pdf f(x) as

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

# Properties of E[X] for continuous random variable

Similarly as discrete random variable, for continuous random variable  ${\cal X}$  and  ${\cal Y}$ 

Sum of two random variable's

$$E[X+Y] = E[X] + E[Y]$$

ullet If a and b are constants, then

$$E[aX + b] = aE[X] + b$$

If a and b are constants, then

$$Var(aX + b) = a^2 Var(X)$$

Find  $E[e^X]$ , if the pdf of X is given by

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Find  $E[e^X]$ , if the pdf of X is given by

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

$$E[e^X] = \int_0^1 e^x dx = e - 1$$

 $\boldsymbol{X}$  is a continuous random variable. Its pdf  $f(\boldsymbol{x})$  is an even function, i.e.,

$$f(-x) = f(x)$$
, for any  $x > 0$ 

What is E[X]?

- Cannot decide. Need more information.
- **0**
- **1**
- **a** e

X is a continuous random variable. Its pdf f(x) is an even function, i.e.,

$$f(-x) = f(x)$$
, for any  $x > 0$ 

What is E[X]?

- Cannot decide. Need more information.
- 0

$$E[X] = \int_{-\infty}^{0} x f(x) dx + \int_{0}^{\infty} x f(x) dx \quad (\text{let } y = -x)$$

$$= \int_{-\infty}^{0} (-y) f(-y) d(-y) + \int_{0}^{\infty} x f(x) dx$$

$$= \int_{-\infty}^{0} y f(-y) dy + \int_{0}^{\infty} x f(x) dx = -\int_{0}^{\infty} y f(y) dy + \int_{0}^{\infty} x f(x) dx$$

The density function of X is given by

$$f(x) = \begin{cases} a + bx^2 & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

If  $E[X] = \frac{3}{5}$ , find a and b.

The density function of X is given by

$$f(x) = \begin{cases} a + bx^2 & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

If  $E[X] = \frac{3}{5}$ , find a and b.

$$E[X] = \int_0^1 x f(x) dx = \int_0^1 x (a + bx^2) dx = \int_0^1 ax + bx^3 dx$$
$$= \frac{1}{2}ax^2 + \frac{1}{4}bx^4|_0^1 = \frac{a}{2} + \frac{b}{4} = \frac{3}{5}$$

Moreover,

$$\int_0^1 f(x)dx = \int_0^1 a + bx^2 dx = ax + \frac{1}{3}bx^3|_0^1 = a + \frac{b}{3} = 1$$

Then we have a = 3/5 and b = 6/5.

Comparing discrete random variables and continuous random variables.

|           | discrete | continuous |
|-----------|----------|------------|
| E[X]      |          |            |
| E[g(X)]   |          |            |
| Var(X)    |          |            |
| σ         |          |            |
| E[aX+b]   |          |            |
| Var(aX+b) |          |            |
| E[X+Y]    |          |            |

|           | discrete                   | continuous                             |
|-----------|----------------------------|----------------------------------------|
|           | $\sum_{x:p(x)>0} xp(x)$    | $\int_{-\infty}^{\infty} x f(x) dx$    |
| E[X]      | r                          |                                        |
|           | $\sum_{x:p(x)>0} g(x)p(x)$ | $\int_{-\infty}^{\infty} g(x) f(x) dx$ |
| E[g(X)]   |                            |                                        |
|           | $E[X^2] - E[X]^2$          | $E[X^2] - E[X]^2$                      |
| Var(X)    |                            |                                        |
|           | $\sqrt{E[X^2] - E[X]^2}$   | $\sqrt{E[X^2] - E[X]^2}$               |
| $\sigma$  |                            |                                        |
|           | aE[X] + b                  | aE[X] + b                              |
| E[aX + b] |                            |                                        |
|           | $a^2Var(X)$                | $a^2Var(X)$                            |
| Var(aX+b) |                            |                                        |
|           | E[X] + E[Y]                | E[X] + E[Y]                            |
| E[X+Y]    |                            |                                        |

## Outline

- Continuous random variables
- Expectation and variance of continuous random variable
- Uniform distribution

## Uniform Distribution

Let's define a continuous probability distribution that has some constant value c between  $\alpha$  and  $\beta$  where  $\alpha < \beta$ . What is the pdf?

$$f(x) = \begin{cases} c & \text{if } \alpha < x < \beta \\ 0 & \text{otherwise} \end{cases}$$

$$1 = \int_{-\infty}^{\infty} f(x)dx = \int_{\alpha}^{\beta} cdx = c(\beta - \alpha) \Longrightarrow c = \frac{1}{\beta - \alpha}$$

#### Definition

A continuous random variable X has a Uniform distribution on the interval  $(\alpha,\beta)$  if its pdf is

$$X \sim \textit{Unif}(\alpha,\beta) \Longleftrightarrow f(x) = \frac{1}{\beta - \alpha} \cdot \mathbf{1}_{(\alpha,\beta)}(x) = \begin{cases} \frac{1}{\beta - \alpha} & \textit{if } \alpha < x < \beta \\ 0 & \textit{otherwise} \end{cases}$$

## Cdf of Uniform distribution

For any  $x \in (\alpha, \beta)$ ,

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{\alpha}^{x} \frac{1}{\beta - \alpha} dt = \frac{x - \alpha}{\beta - \alpha}$$

 $\bullet \ \, X \sim \mathrm{Unif}(\alpha,\beta) \text{, then its cdf is } F(x) = \begin{cases} 0 & \text{if } x \leq \alpha \\ \frac{x-\alpha}{\beta-\alpha} & \text{if } \alpha < x < \beta \\ 1 & \text{if } x \geq \beta \end{cases}$ 





## Mean of a Uniform distribution

• (required) Expected value of  $X \sim \mathsf{Unif}(\alpha, \beta)$  is

$$E[X] = \frac{\alpha + \beta}{2}$$

$$E[X] = \int_{a}^{\beta} \frac{x}{\beta - \alpha} dx = \frac{x^{2}}{2(\beta - \alpha)} \Big|_{\alpha}^{\beta}$$
$$= \frac{\beta^{2} - \alpha^{2}}{2(\beta - \alpha)} = \frac{\alpha + \beta}{2}$$

## Variance of a Uniform distribution

• (required) Variance of  $X \sim \mathsf{Unif}(\alpha, \beta)$  is

$$Var(X) = \frac{(\beta - \alpha)^2}{12}$$

$$E[X^2] = \int_a^\beta \frac{x^2}{\beta - \alpha} dx = \frac{x^3}{3(\beta - \alpha)} \Big|_\alpha^\beta$$

$$= \frac{\beta^3 - \alpha^3}{3(\beta - \alpha)} = \frac{\beta^2 + \beta\alpha + \alpha^2}{3}$$

$$Var(X) = E[X^{2}] - E[X]^{2} = \frac{\beta^{2} + \beta\alpha + \alpha^{2}}{3} - \frac{(\beta + \alpha)^{2}}{4}$$
$$= \frac{4b^{2} + 4\beta\alpha + 4\alpha^{2}}{12} - \frac{3b^{2} + 6\alpha\beta + 3\alpha^{2}}{12}$$
$$= \frac{\beta^{2} - 2\beta\alpha + \alpha^{2}}{12} = \frac{(\beta - \alpha)^{2}}{12}$$

## Uniform distribution: probability calculation

If 
$$X \sim \mathrm{Unif}(\alpha,\beta)$$
, then 
$$P(X \in B) = \frac{\mathrm{length}(B)}{\beta - \alpha}$$

#### Question

If X is uniformly distributed over (0, 10), calculate the probability that (a) X < 3, (b) X > 6, and (c) 3 < X < 8.

# Uniform distribution: probability calculation

If 
$$X \sim \mathrm{Unif}(\alpha,\beta)$$
, then 
$$P(X \in B) = \frac{\mathrm{length}(B)}{\beta - \alpha}$$

#### Question

If X is uniformly distributed over (0, 10), calculate the probability that (a) X < 3, (b) X > 6, and (c) 3 < X < 8.

You can solve this using definitions...

- Part (a):  $P(X < 3) = \int_0^3 \frac{1}{10} dx = \frac{3}{10}$
- Part (b):  $P(X > 6) = \int_6^1 0 \frac{1}{10} dx = \frac{4}{10}$
- Part (c):  $P(3 < X < 8) = \int_3^8 \frac{1}{10} dx = \frac{1}{2}$

# Uniform distribution: probability calculation

If 
$$X \sim \mathrm{Unif}(\alpha,\beta)$$
, then 
$$P(X \in B) = \frac{\mathrm{length}(B)}{\beta - \alpha}$$

#### Question

If X is uniformly distributed over (0, 10), calculate the probability that (a) X < 3, (b) X > 6, and (c) 3 < X < 8.

You can solve this using definitions...

- Part (a):  $P(X < 3) = \int_0^3 \frac{1}{10} dx = \frac{3}{10}$
- Part (b):  $P(X > 6) = \int_6^1 0 \frac{1}{10} dx = \frac{4}{10}$
- Part (c):  $P(3 < X < 8) = \int_3^8 \frac{1}{10} dx = \frac{1}{2}$

Or recognize the result above to get  $\frac{3}{10}$  directly by  $\frac{3-0}{10}$ . Same for (b) and (c).

## Recap

Expectation for continuous random variable X and a function of it g(X)

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Uniform distribution  $X \sim \mathsf{Unif}(\alpha, \beta)$ 

Mean and variance

$$E[X] = \frac{\alpha + \beta}{2}, \quad Var(X) = \frac{(\beta - \alpha)^2}{12}$$