Weak Law of Large Numbers

Let $\{X_n\}$ be a sequence of r.vs and let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the mean of first n r.vs. The

weak laws deal with *limits of probabilities involving* \overline{X}_n . The strong laws deal with *probabilities involving limits of* \overline{X}_n .

Definition of Weak Law of Large Numbers

A sequence $\{X_n\}$ of r.vs is said to satisfy the **Weak Law of Large Numbers (WLLN)** if

$$\lim_{n\to\infty} P\left[\left|\frac{S_n}{n} - E\left(\frac{S_n}{n}\right)\right| < \epsilon\right] = 1$$

for any $\epsilon > 0$, where $S_n = \sum_{i=1}^n X_i$, $i.e., \frac{S_n}{n} \xrightarrow{P} E\left(\frac{S_n}{n}\right)$

Theorem1: Let $\{X_n\}$ be a sequence of r.vs and let $S_n=X_1+\cdots+X_n$ with $B_n=V(S_n)<\infty$. If $\frac{B_n}{n^2}\longrightarrow 0$ as $n\longrightarrow\infty$, then for any $\epsilon>0$,

$$\lim_{n\to\infty} P\left[\left|\frac{S_n}{n} - E\left(\frac{S_n}{n}\right)\right| < \epsilon\right] = 1$$

i. e., $\{X_n\}$ satisfies WLLN.

Proof: On applying Chebychev's inequality to the variable $\frac{S_n}{n}$, we have

$$P\left[\left|\frac{S_n}{n} - E\left(\frac{S_n}{n}\right)\right| \ge \epsilon\right] \le \frac{V\left(\frac{S_n}{n}\right)}{\epsilon^2} = \frac{V(S_n)}{n^2 \epsilon^2} = \frac{B_n}{n^2 \epsilon^2} \longrightarrow 0$$

as $n \to \infty$. Thus,

$$\lim_{n\to\infty} P\left[\left|\frac{S_n}{n} - E\left(\frac{S_n}{n}\right)\right| \ge \epsilon\right] = 0 \Longrightarrow \lim_{n\to\infty} P\left[\left|\frac{S_n}{n} - E\left(\frac{S_n}{n}\right)\right| < \epsilon\right] = 1$$

 $\Longrightarrow \{X_n\}$ satisfies WLLN.

Corollary 1: Let $\{X_n\}$ be a sequence of r.vs, $\overline{X_n}=\frac{S_n}{n}$ and $\mu=E\left(\frac{S_n}{n}\right)$. If $\frac{B_n}{n^2}\to 0$ as $n\to\infty$, then

$$\lim_{n\to\infty} P[\overline{X_n} \leq k] = \begin{cases} 0 & \text{if } k < \mu \\ 1 & \text{if } k > \mu \end{cases}$$

Proof: Since WLLN holds for $\{X_n\}$, we have

$$\lim_{n \to \infty} P[|\overline{X_n} - \mu| < \epsilon] = 1 \Longrightarrow \lim_{n \to \infty} P[|\overline{X_n} - \mu| \ge \epsilon] = 0 \qquad \dots (1)$$

Since $\{\overline{X_n} \le \mu - \epsilon\} \subset \{|\overline{X_n} - \mu| \ge \epsilon\}$, we have

$$P(\overline{X_n} \le \mu - \epsilon) \le P(|\overline{X_n} - \mu| \ge \epsilon)$$

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le \mu - \epsilon) \le \lim_{n \to \infty} P(|\overline{X_n} - \mu| \ge \epsilon)$$

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le \mu - \epsilon) = 0$$

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le k) = 0$$
, where $k = \mu - \epsilon$, i.e., $k < \mu$ since $\epsilon > 0$

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le k) = 0 \text{ if } k < \mu$$

Further, $P(\overline{X_n} \le \mu + \epsilon) + P(|\overline{X_n} - \mu| > \epsilon) \ge 1$, since the region is larger than sample space covered.

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le \mu + \epsilon) \ge 1 \ \left(\because \lim_{n \to \infty} P(|\overline{X_n} - \mu| > \epsilon) = 0 \right)$$

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le \mu + \epsilon) = 1$$

$$\Rightarrow \lim_{n\to\infty} P(\overline{X_n} \le k) = 1$$
 where $k = \mu + \epsilon i.e., k > \mu$ since $\epsilon > 0$

$$\Rightarrow \lim_{n \to \infty} P(\overline{X_n} \le k) = 1 \text{ if } k > \mu$$

Thus,
$$\lim_{n \to \infty} P(\overline{X_n} \le k) = \begin{cases} 0, & k < \mu \\ 1, & k > \mu \end{cases}$$

Variations of the WLLN

The following are some special cases of Theorem1 which are stated without proof.

Theorem 2: (Bernoulli's WLLN)

Let $\{X_n\}$ be a sequence of Bernoulli trials with probability of success equal to p. If S_n is the number of successes in n trials, then

$$\lim_{n \to \infty} P\left[\left| \frac{S_n - np}{n} \right| < \epsilon \right] = 1, \ \forall \ \epsilon > 0$$

Theorem 3: (Khinchine's WLLN)

Let $\{X_n\}$ be a sequence of i.i.d.r.vs with $E(X_i) = \mu < \infty$, i = 1,2,..., then the WLLNs holds i.e.,

$$\lim_{n \to \infty} P\left[\left| \frac{S_n}{n} - \mu \right| > \epsilon \right] = 0$$

Theorem 4: (Bernstein's WLLN)

Let $\{X_n\}$ be a sequence of random variables for which $var(X_n) = {\sigma_n}^2 < k$, $\forall i$, where k is independent of n. If $\sigma_{ij} = cov(X_i, X_j) \to 0$ as $|i-j| \to \infty$ (Asymptotic uncorrelatedness) then the WLLN holds.

Example 1: Let $\{X_n\}$ be i.i.d.r.vs with mean μ and variance σ^2 , if

$$\frac{{X_1}^2 + {X_2}^2 + \dots + {X_n}^2}{n} \xrightarrow{P} c$$

as $n \to \infty$ for some constant $c(0 \le c < \infty)$, then find c.

Solution: Here $E(X_i) = \mu$ and $V(X_i) = \sigma^2 \ \forall \ i$.

Let
$$S_n = {X_1}^2 + {X_2}^2 + \dots + {X_n}^2$$
. Then

$$E(S_n) = nE(X_1^2)$$
 (: Xs are i.i.d.r.vs)

$$= n \left[V(X_1) + \left(E(X_1) \right)^2 \right]$$

$$\Rightarrow E(S_n) = n(\sigma^2 + \mu^2)$$

Since $E(X^2) = V(X) + (E(X))^2 = \sigma^2 + \mu^2$ exists for each X^2 in S_n , by Khinchine's WLLN, we have

$$\frac{S_n}{n} = \frac{X_1^2 + X_2^2 + \dots + X_n^2}{n} \quad E(X_1^2) = \mu^2 + \sigma^2$$

Thus, $c = \mu^2 + \sigma^2$.

Example 2: If the i.i.d. r.vs $X_k(k=1,2,...)$ assume the value $2^{r-2\ln r}$ with probability $\frac{1}{2^r}$, examine if the WLLN holds for the sequence $\{X_k\}$.

Solution:

$$E(X_k) = \sum_{r=1}^{\infty} 2^{r-2\ln r} \cdot \frac{1}{2^r} = \sum_{r=1}^{\infty} \left(2^{-2}\right)^{\ln r} = \sum_{r=1}^{\infty} \left(\frac{1}{4}\right)^{\ln r}$$

$$= \sum_{r=1}^{\infty} (r)^{\ln \left(\frac{1}{4}\right)} \left(\because a^{\ln n} = n^{\ln a}\right)$$

$$= \sum_{r=1}^{\infty} \left(\frac{1}{r}\right)^{\ln 4} \text{ converges since } \ln 4 = 1.39 > 1 \quad \left(\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges if } p > 1\right)$$
Thus $E(X_k) < \infty$

Since $\{X_k\}$ are i.i.d.r.vs with $E(X_k) < \infty$, the WLLN holds for the sequence, by Khinchine's theorem.

Example 3: Let $\{X_n\}$ be a sequence of i.i.d U(0,1) r.vs. For the geometric mean $G_n=(X_1.X_2.\dots.X_n)^{\frac{1}{n}}$, show that $G_n\overset{P}{\longrightarrow}c$ where c is some constant. Find c.

Solution: Let $Y = -\ln X$ where $X \sim U(0,1)$. The c.d.f. of Y is given by

$$F_Y(y) = P(Y \le y) = P(-\ln X \le y) = P(X \ge e^{-y}) = \int_{e^{-y}}^1 1 \, dx = 1 - e^{-y}$$

 \Rightarrow $F_Y(y) = 1 - e^{-y}$ and the p.d.f of Y is given by

$$f_Y(y) = \frac{d}{dx} \left(F_Y(y) \right) = e^{-y} \text{ for } y > 0.$$

Then E(Y) = V(Y) = 1.

Thus, the sequence $\{Y_n\}$ is i.i.d with finite mean $E(Y_n)=1$. Hence, by Khinchine's WLLN

$$\sum_{i=1}^{n} \frac{Y_i}{n} \xrightarrow{P} E(Y_1) = 1 \qquad \dots (1)$$

But
$$\ln G_n = \sum_{i=1}^n \ln \frac{X_i}{n} = -\sum_{i=1}^n \frac{Y_i}{n}$$

$$\Rightarrow \sum_{i=1}^{n} \frac{Y_i}{n} = -\ln G_n \qquad \dots (2)$$

From (1) and (2), we have

$$-\ln G_n \stackrel{P}{\longrightarrow} 1$$
 i.e., $G_n \stackrel{P}{\longrightarrow} e^{-1}$

Thus, $c = \frac{1}{e}$.

Example 4: Let X_i can have only two values i^{α} and $-i^{\alpha}$ with equal probabilities. If $\{X_i\}$ is a sequence of independent r.vs, then show that WLLN holds if $\alpha < \frac{1}{2}$.

Solution: Here $E(X_i) = i^{\alpha} \frac{1}{2} - i^{\alpha} \frac{1}{2} = 0$ and

$$V(X_i) = E(X_i^2) = i^{2\alpha} \frac{1}{2} + i^{2\alpha} \frac{1}{2} = i^{2\alpha}$$

Let
$$S_n = \sum_{k=1}^n X_k$$
 . Then

$$B_n = V(S_n) = \sum_{i=1}^n V(X_i) \qquad (\because X_i \text{s are independent})$$

$$= \sum_{i=1}^n i^{2\alpha} = 1^{2\alpha} + 2^{2\alpha} + \dots + n^{2\alpha}$$

$$= \int_0^n x^{2\alpha} dx \quad (\text{Euler - Maclaurion formula})$$

$$\Rightarrow B_n = \frac{n^{2\alpha+1}}{2\alpha+1} \Rightarrow \frac{B_n}{n^2} = \frac{n^{2\alpha+1}}{2\alpha+1} \to 0 \text{ as } n \to \infty \text{ if } \alpha < \frac{1}{2}$$
Thus, $\frac{B_n}{n^2} \to 0 \text{ as } n \to \infty \text{ when } \alpha < \frac{1}{2}$

Therefore, $\{X_n\}$ holds WLLN when $\alpha < \frac{1}{2}$.