	x	y	z		
I:	3	1	1	b	← II
II:	-1	1	1	2	$\leftarrow \text{III}$
III:	1	3	3	-2	$\leftarrow \mathbf{I}$
I:	-1	1	1	2	
П:	1	3	3	-2	$\leftarrow + I$
III:	3	1	1	b	$\leftarrow +3\mathrm{I}$
I:	-1	1	1	2	
П:	0	4	4	0	
III:	0	4	4	b+6	$\leftarrow - \Pi$
I:	-1	1	1	2	
I: II:	-1 0	1 4	1 4	2 0	

 $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix}$

6. Aufgabe

a)

$$\vec{a} = \begin{pmatrix} -1\\1\\3\\ \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} 2\\-1\\0\\ \end{pmatrix}$$

$$\vec{d} = \begin{pmatrix} 1\\2\\3\\ \end{pmatrix}$$

$$\vec{c} = \vec{a} \times \vec{b} = \begin{pmatrix} -1\\1\\3\\ \end{pmatrix} \times \begin{pmatrix} 2\\-1\\0\\ \end{pmatrix} = \begin{pmatrix} 3\\6\\-1\\ \end{pmatrix}$$

	α	β	γ		
I:	-1	2	3	1	
II:	1	-1	6	2	$\leftarrow + I$
III:	3	0	-1	3	$\leftarrow + (3 \cdot I)$
I:	-1	2	3	1	
II:	0	1	9	3	
III:	0	6	8	6	$\leftarrow -(6\cdot II)$
I:	-1	2	3	1	
II:	0	1	9	3	
III:	0	0	-46	-12	←: (-2)
I:	-1	2	3	1	
II:	0	1	9	3	
III:	0	0	23	6	

III:
$$0\alpha + 0\beta + 23\gamma = 6$$

$$\Rightarrow \qquad \gamma = \frac{6}{23}$$
II:
$$0\alpha + 1\beta + 9\gamma = 3$$

$$\Leftrightarrow \qquad \beta + \frac{9 \cdot 6}{23} = 3$$

$$\Leftrightarrow \qquad \beta = \frac{69}{23} - \frac{54}{23}$$

$$\Leftrightarrow \qquad \beta = \frac{15}{23}$$
II:
$$-1\alpha + 2\beta + 3\gamma = 1$$

$$\Leftrightarrow \qquad -\alpha + \frac{2 \cdot 15}{23} + \frac{3 \cdot 6}{23} = 1$$

$$\Leftrightarrow \qquad -\alpha = \frac{23}{23} - \frac{30}{23} - \frac{18}{23}$$

$$\Leftrightarrow \qquad -\alpha = -\frac{25}{23}$$

$$\Leftrightarrow \qquad \alpha = \frac{25}{23}$$

b)

$$\vec{a} = \begin{pmatrix} 1\\3 \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} 0\\4\\1 \end{pmatrix}$$

$$\vec{c} = \begin{pmatrix} \alpha\\2\\3 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = t_1 \cdot \vec{a} + t_2 \cdot \vec{b} + t_3 \cdot \vec{c}$$

$$= t_1 \cdot \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} + t_2 \cdot \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix} + t_3 \cdot \begin{pmatrix} \alpha \\ 2 \\ 3 \end{pmatrix}$$

	t_1	t_2	t_3	
I:	-1	0	α	$\mathbf{II} \rightarrow 0$
II:	1	4	2	$0 \leftarrow \mathbf{III}$
III:	3	1	3	$0 \leftarrow \mathbf{I}$
I:	1	4	2	0
II:	3	1	3	$0 \leftarrow -(3 \cdot \mathbf{I})$
III:	-1	0	α	$\mathbf{I} \leftarrow \mathbf{I}$
I:	1	4	2	0
II:	0	-11	-3	0
III:	0	4	$\alpha + 2$	$0 \leftarrow (11 \cdot \mathbf{III}) + (4 \cdot \mathbf{II})$
I:	1	4	2	0
II:	0	-11	-3	0
III:	0	0	$11\alpha + 10$	0

Falls $11\alpha + 10 \neq 0$ gilt, hätte dieses LGS eine einzige Lösung, nämlich $t_1 = 0, t_2 = 0, t_3 = 0$. Also wären die die Vektoren in diesem Fall linear unabhängig.

Im Gegensatz, falls $11\alpha + 10 = 0$, wären die Vektoren also linear abhängig. Also sind für $\alpha = -10/11$ die Vektoren linear abhängig.

Probe:

$$\begin{pmatrix} \frac{-10}{11} \\ 2 \\ 3 \end{pmatrix} = t_1 \cdot \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} + t_2 \cdot \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix}$$
$$\frac{-10}{11} = -1t_1$$
$$\frac{10}{11} = t_1$$

Übungsblatt 6

$$2 = 1t_1 + 4t_2$$

$$\frac{12}{11} = 4t_2$$

$$\frac{3}{11} = t_2$$

$$3 = 3t_1 + 1t_2$$

$$= 3\frac{10}{11} + \frac{3}{11}$$

$$= \frac{30}{11} + \frac{3}{11}$$

$$= \frac{33}{11}$$

c)

$$\vec{a} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix}$$

$$\vec{c} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 Aus b) wissen wir, dass $\{\vec{a}, \vec{b}, \vec{c}\}$ linear unabhängig sind, denn $1 \neq \frac{-10}{11}$

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in \mathbb{R}^3$$

$$\vec{v} = \alpha \cdot \vec{a} + \beta \cdot \vec{b} + \gamma \cdot \vec{c}$$