Package 'inlamemi'

October 31, 2024

```
Type Package
Title Missing Data and Measurement Error Modelling in INLA
Version 1.1.0
Description Facilitates fitting measurement error and missing data imputation models using inte-
      grated nested Laplace approximations, according to the method described in Skarstein, Mar-
      tino and Muff (2023) <doi:10.1002/bimj.202300078>. See Skarstein and Muff (2024) <doi:10.48550/arXiv.2406.08172> for
      tails on using the package.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
VignetteBuilder knitr
RoxygenNote 7.3.1
Suggests INLA, knitr, testthat (>= 3.0.0), tibble, rmarkdown, spelling
Additional repositories https://inla.r-inla-download.org/R/stable/
Config/testthat/edition 3
Imports dplyr, ggplot2, rlang, stats, methods, scales
Depends R (>= 2.10)
URL https://emmaskarstein.github.io/inlamemi/,
      https://github.com/emmaSkarstein/inlamemi
Language en-US
NeedsCompilation no
Author Emma Skarstein [cre, aut, cph]
       (<https://orcid.org/0000-0002-6347-855X>),
      Stefanie Muff [aut] (<a href="https://orcid.org/0000-0002-8425-0757">https://orcid.org/0000-0002-8425-0757</a>)
Maintainer Emma Skarstein <emma@skarstein.no>
Repository CRAN
Date/Publication 2024-10-31 16:10:02 UTC
```

2 coef.inlamemi

Contents

	coef.inlamemi	
	fit_inlamemi	3
	framingham	6
	get_coef_imp	6
	get_coef_mis	7
	get_coef_moi	7
	get_imputed	8
	mar_data	8
	nhanes_survival	9
	plot.inlamemi	9
	print.inlamemi	11
	show_data_structure	11
	simple_data	12
	summary.inlamemi	13
	two_error_data	14
Index		15

coef.inlamemi

Extract model coefficients

Description

Extract model coefficients

Usage

```
## S3 method for class 'inlamemi'
coef(object, ...)
```

Arguments

```
object object of class 'inlamemi'
... other arguments
```

fit_inlamemi 3

fit_inlamemi

Fit model for measurement error and missing data in INLA

Description

A wrapper function around "INLA::inla()", providing the necessary structure to fit the hierarchical measurement error model that adjusts coefficient estimates to account for biases due to measurement error and missing data.

Usage

```
fit_inlamemi(
  formula_moi,
  formula_imp = NULL,
  formula_mis = NULL,
  family_moi,
  data,
  error_type = "classical",
  error_variable = NULL,
  repeated_observations = FALSE,
  classical_error_scaling = NULL,
  prior.prec.moi = NULL,
  prior.prec.berkson = NULL,
  prior.prec.classical = NULL,
  prior.prec.imp = NULL,
  prior.beta.error = NULL,
  prior.gamma.error = NULL,
  initial.prec.moi = NULL,
  initial.prec.berkson = NULL,
  initial.prec.classical = NULL,
  initial.prec.imp = NULL,
  control.family.moi = NULL,
  control.family.berkson = NULL,
  control.family.classical = NULL,
  control.family.imp = NULL,
  control.family = NULL,
  control.predictor = NULL,
)
```

Arguments

formula_moi an object of class "formula", describing the main model to be fitted.

formula_imp an object of class "formula", describing the imputation model for the mismeasured and/or missing observations.

4 fit_inlamemi

formula_mis an object of class "formula", describing the missingness model. Does not need

to have a response variable, since this will always be a binary missingness indi-

cator.

family_moi a string indicating the likelihood family for the model of interest (the main

model).

data an object of class data.frame or list containing the variables in the model.

error_type type of error (one or more of "classical", "berkson", "missing")

error_variable character vector with the name(s) of the variable(s) with error.

repeated_observations

Does the variable with measurement error and/or missingness have repeated observations? If so, set this to "TRUE". In that case, when specifying the formula, use the name of the variable without any numbers, but when specifying the data, make sure that the repeated measurements end in a number, i.e "sbp1" and "sbp2".

classical_error_scaling

can be specified if the classical measurement error varies across observations. Must be a vector of the same length as the data.

prior.prec.moi a string containing the parameters for the prior for the precision of the residual term for the model of interest.

prior.prec.berkson

a string containing the parameters for the prior for the precision of the error term for the Berkson error model.

prior.prec.classical

a string containing the parameters for the prior for the precision of the error term for the classical error model.

prior.prec.imp a string containing the parameters for the precision of the latent variable x, which is the variable being described in the imputation model.

prior.beta.error

parameters for the Gaussian prior for the coefficient of the error prone variable.

prior.gamma.error

parameters for the Gaussian prior for the coefficient of the variable with missingness in the missingness model.

initial.prec.moi

the initial value for the precision of the residual term for the model of interest.

initial.prec.berkson

the initial value for the precision of the residual term for the Berkson error term. initial.prec.classical

the initial value for the precision of the residual term for the classical error term.

initial.prec.imp

the initial value for the precision of the residual term for the latent variable r.

control.family.moi

control.family component for model of interest. Can be specified here using the inla syntax instead of passing the "prior.prec..." and "initial.prec..." arguments, or in the cases when other hyperparameters are needed for the model of interest, see for instance survival models.

fit_inlamemi 5

```
control.family.berkson
```

control.family component Berkson model. Can be specified here using the inla syntax instead of passing the "prior.prec..." and "initial.prec..." arguments. Useful in the cases when more flexibility is needed, for instance if one wants to specify a different prior distribution than Gamma.

control.family.classical

control.family component for classical model. Can be specified here using the inla syntax instead of passing the "prior.prec..." and "initial.prec..." arguments. Useful in the cases when more flexibility is needed, for instance if one wants to specify a different prior distribution than Gamma.

control.family.imp

control.family component for imputation model. Can be specified here using the inla syntax instead of passing the "prior.prec..." and "initial.prec..." arguments. Useful in the cases when more flexibility is needed, for instance if one wants to specify a different prior distribution than Gamma.

control.family control.family for use in inla (can be provided directly instead of passing the "prior.prec...." and "initial.prec..." arguments. If this is specified, any other "control.family..." or "prior.prec..." arguments provided will be ignored.

control.predictor

control.predictor for use in inla.

... other arguments to pass to 'inla'.

Value

An object of class inlamemi.

Examples

```
# Fit the model
simple_model <- fit_inlamemi(data = simple_data,</pre>
                            formula_moi = y \sim x + z,
                            formula_imp = x \sim z,
                            family_moi = "gaussian",
                            error_type = c("berkson", "classical"),
                            error_variable = "x",
                            prior.prec.moi = c(10, 9),
                            prior.prec.berkson = c(10, 9),
                            prior.prec.classical = c(10, 9),
                            prior.prec.imp = c(10, 9),
                            prior.beta.error = c(0, 1/1000),
                            initial.prec.moi = 1,
                            initial.prec.berkson = 1,
                            initial.prec.classical = 1,
                            initial.prec.imp = 1)
```

get_coef_imp

framingham

Framingham heart study data

Description

A data set with observations of heart disease status systolic blood pressure (SBP) and smoking status.

Usage

framingham

Format

```
## 'framingham' A data frame with 641 rows and 4 columns:
```

```
disease A binary response, 1 if heart disease, 0 otherwise
```

```
sbp1 log(SBP - 50) at examination 1 (centered)
```

sbp2 log(SBP - 50) at examination 2 (centered)

smoking Smoking status, 1 if smoking, 0 otherwise.

Source

MacMahon et al. (1990) https://doi.org/10.1016/0140-6736(90)90878-9

get_coef_imp

Extract coefficients for the imputation model (IMP)

Description

Extract coefficients for the imputation model (IMP)

Usage

```
get_coef_imp(inlamemi_model)
```

Arguments

inlamemi_model object of class 'inlamemi'

Value

A data frame with a summary of the posterior marginals for the coefficients in the imputation model.

get_coef_mis 7

get_coef_mis

Extract coefficients for the missingness model (MIS)

Description

Extract coefficients for the missingness model (MIS)

Usage

```
get_coef_mis(inlamemi_model)
```

Arguments

inlamemi_model object of class 'inlamemi'

Value

A data frame with a summary of the posterior marginals for the coefficients in the missingness model.

get_coef_moi

Extract coefficients for the model of interest (MOI)

Description

Extract coefficients for the model of interest (MOI)

Usage

```
get_coef_moi(inlamemi_model)
```

Arguments

inlamemi_model object of class 'inlamemi'

Value

A data frame with a summary of the posterior marginals for the coefficients in the model of interest.

8 mar_data

get_imputed

Extract imputed values

Description

Extract imputed values

Usage

```
get_imputed(inlamemi_model, error_variable)
```

Arguments

```
inlamemi_model object of class 'inlamemi'
error_variable character string indicating the name of the error variable for which to extract the imputed values.
```

Value

A list of two objects: the posterior marginal distributions for each element of the imputed covariate, and a data frame giving a summary of these marginals.

mar_data

Simulated data with observation missing at random (MAR)

Description

A simulated dataset to demonstrate how to set up a model in the case where there are two variables with measurement error.

Usage

mar_data

Format

'mar_data' A data frame with 1000 rows and 5 columns:

- y Response variable
- x Observed value of covariate, with almost 20 percent missing
- **x_true** Correct version of x, without missingness
- z1 Covariate correlated with x
- **z2** Covariate correlated with the missingness of x

Source

The dataset is simulated.

nhanes_survival 9

nhanes_survival

Survival data with repeated systolic blood pressure measurements

Description

A dataset containing a repeated blood pressure measurement along with some other variables for participants in the Third National Health and Nutrition Survey (NHANES III), merged with data from the US National Death Index by Ruth H. Keogh and Jonathan Bartlett. For the illustration purposes in this package, we have left out observations where smoking status is missing.

Usage

```
nhanes_survival
```

Format

```
## 'nhanes_survival' A data frame with 3433 rows and 8 columns:

sbp1 systolic blood pressure (standardized), first measurement

sbp2 systolic blood pressure (standardized), second measurement

sex sex (0 = female, 1 = male)

age age (standardized)

smoke smoking status (0 = no, 1 = yes)

diabetes diabetes status (0 = no, 1 = yes)

d censoring status (0 = censored, 1 = observed death due to cardiovascular disease)

t time until death due to cardiovascular disease occurs
```

Source

https://github.com/ruthkeogh/meas_error_handbook

plot.inlamemi

Plot model summary

Description

Plot model summary

10 plot.inlamemi

Usage

```
## S3 method for class 'inlamemi'
plot(
    x,
    plot_moi = TRUE,
    plot_imp = TRUE,
    plot_mis = TRUE,
    plot_intercepts = TRUE,
    error_variable_highlight = FALSE,
    greek = FALSE,
    palette = NULL,
    ...
)
```

Arguments

х	the model returned from the fit_inlamemi function.		
plot_moi	should the posterior mean for the coefficients of the model of interest be plotted? Defaults to TRUE.		
plot_imp	should the posterior mean for the coefficients of the imputation model be plotted? Defaults to TRUE.		
plot_mis	should the posterior mean for the coefficients of the missingness model be plotted? Defaults to TRUE.		
plot_intercepts			
	should the posterior mean for the intercept(s) be plotted? Defaults to TRUE.		
error_variable_highlight			
	should the coefficient(s) of the variable(s) with error be highlighted? (circled in black) Defaults to FALSE.		
greek	make the coefficient names into greek letters with the covariate name as subscript. Defaults to FALSE.		
palette	either a number (between 1 and 5), indicating the number of the color palette to be used, or a vector of the colors to be used.		
• • •	other arguments		

Value

An object of class "ggplot2" that plots the posterior mean and 95 % credible interval for each coefficient in the model. The coefficients are colored to indicate if they belong to the main or imputation model, and the variable with error is also highlighted.

Examples

print.inlamemi 11

```
error_type = c("berkson", "classical"),
prior.prec.moi = c(10, 9),
prior.prec.berkson = c(10, 9),
prior.prec.classical = c(10, 9),
prior.prec.imp = c(10, 9),
prior.beta.error = c(0, 1/1000),
initial.prec.moi = 1,
initial.prec.berkson = 1,
initial.prec.classical = 1,
initial.prec.imp = 1)
```

plot(simple_model)

print.inlamemi

Print method for inlamemi

Description

Print method for inlamemi

Usage

```
## S3 method for class 'inlamemi' print(x, ...)
```

Arguments

x object of class 'inlamemi'. ... other arguments.

show_data_structure

Visualize the model data structure as matrices in LaTeX

Description

Visualize the model data structure as matrices in LaTeX

Usage

```
show_data_structure(stack)
```

Arguments

stack

an object of class inla.stack returned from the function make_inlamemi_stacks, which describes the structure of the data for the measurement error and imputation model.

12 simple_data

Value

A list containing data frames with the left hand side (response_df) and right hand side (effects_df), along with the latex code needed to visualize the matrices (matrix_string).

Examples

simple_data

Simple simulated data

Description

A simulated dataset to demonstrate how to model different types of measurement error and missing data using the 'inlamemi' package.

Usage

```
simple_data
```

Format

'simple_data' A data frame with 1000 rows and 4 columns:

- y Response variable
- x Covariate measured with error, both Berkson and classical error and missing observations
- x_true Correct version of the covariate with error
- z Error free covariate, correlated with x

Source

The dataset is simulated.

summary.inlamemi 13

summary.inlamemi

Summary method for inlamemi

Description

Takes a fitted 'inlamemi' object produced by 'fit_inlamemi' and produces a summary from it.

Usage

```
## S3 method for class 'inlamemi'
summary(object, ...)
## S3 method for class 'summary.inlamemi'
print(x, ...)
```

Arguments

```
object model of class 'inlamemi'.... other argumentsx object of class summary.inlamemi.
```

Value

'summary.inlamemi' returns an object of class 'summary.inlamemi', a list of components to print.

Examples

```
# Fit the model
simple_model <- fit_inlamemi(data = simple_data,</pre>
                            formula_moi = y \sim x + z,
                            formula_imp = x \sim z,
                            family_moi = "gaussian",
                            error_type = c("berkson", "classical"),
                            prior.prec.moi = c(10, 9),
                            prior.prec.berkson = c(10, 9),
                            prior.prec.classical = c(10, 9),
                            prior.prec.imp = c(10, 9),
                            prior.beta.error = c(0, 1/1000),
                            initial.prec.moi = 1,
                            initial.prec.berkson = 1,
                            initial.prec.classical = 1,
                            initial.prec.imp = 1)
summary(simple_model)
```

14 two_error_data

two_error_data

Simulated data with two covariates with classical measurement error

Description

A simulated dataset to demonstrate how to set up a model in the case where there are two variables with measurement error.

Usage

```
two_error_data
```

Format

'two_error_data' A data frame with 1000 rows and 5 columns:

- y Response variable
- x1 Covariate measured with classical error, correlated with z
- x2 Covariate measured with classical error
- x1_true Correct version of x1
- **x2_true** Correct version of x2
- **z** Error free covariate, correlated with x1

Source

The dataset is simulated.

Index

```
* datasets
    framingham, 6
    {\sf mar\_data}, {\color{red} 8}
    nhanes_survival, 9
     simple_data, 12
     two_error_data, 14
coef.inlamemi, 2
fit_inlamemi, 3
framingham, 6
get_coef_imp, 6
{\tt get\_coef\_mis, 7}
get_coef_moi, 7
get_imputed, 8
mar_data, 8
nhanes_survival, 9
plot.inlamemi, 9
print.inlamemi, 11
print.summary.inlamemi
         (summary.inlamemi), 13
\verb|show_data_structure|, 11|
simple_data, 12
\verb|summary.inlamemi|, 13|
two_error_data, 14
```