```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: s=pd.read_csv(r"C:\Users\user\Downloads\fiat500_VehicleSelection_Dataset - fiat
s

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lc
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.6115598
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.241889
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.417
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.634609
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.495650
1544	NaN	NaN	NaN	NaN	NaN	NaN	NaN	lenç
1545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	conc
1546	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Null valu
1547	NaN	NaN	NaN	NaN	NaN	NaN	NaN	fi
1548	NaN	NaN	NaN	NaN	NaN	NaN	NaN	sear
1549 rows × 11 columns								

```
In [3]: s=s.head(100)
s
```

Out[3]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	loı
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.61155986
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.2418899
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.4178
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.6346092
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.49565029
								••
95	96.0	sport	51.0	4292.0	165600.0	1.0	44.715408	11.3083000:
96	97.0	рор	51.0	1066.0	28000.0	1.0	41.769051	12.6628103
97	98.0	sport	51.0	2009.0	86000.0	2.0	40.633171	17.6346092
98	99.0	lounge	51.0	456.0	18592.0	2.0	45.393600	10.4822397;
99	100.0	pop	51.0	731.0	41558.0	2.0	45.571220	9.15913963

100 rows × 11 columns

In [4]: s.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 11 columns):

	•	•	
#	Column	Non-Null Count	Dtype
0	ID	100 non-null	float64
1	model	100 non-null	object
2	engine_power	100 non-null	float64
3	age_in_days	100 non-null	float64
4	km	100 non-null	float64
5	previous_owners	100 non-null	float64
6	lat	100 non-null	float64
7	lon	100 non-null	object
8	price	100 non-null	object
9	Unnamed: 9	0 non-null	float64
10	Unnamed: 10	0 non-null	object

dtypes: float64(7), object(4)

memory usage: 8.7+ KB

```
In [5]: | s.describe()
```

Out[5]:

	ID	engine_power	age_in_days	km	previous_owners	lat	Unr
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	
mean	50.500000	53.010000	1935.300000	58812.180000	1.180000	43.612648	
std	29.011492	6.014284	1414.251278	44728.034639	0.500101	2.083451	
min	1.000000	51.000000	366.000000	4000.000000	1.000000	38.218128	
25%	25.750000	51.000000	723.500000	19781.750000	1.000000	41.744165	
50%	50.500000	51.000000	1446.000000	44032.000000	1.000000	44.831066	
75%	75.250000	51.000000	3265.500000	95075.750000	1.000000	45.396568	
max	100.000000	74.000000	4658.000000	188000.000000	3.000000	46.176498	

```
In [6]: | s.columns
```

In [9]: sns.pairplot(s)

Out[9]: <seaborn.axisgrid.PairGrid at 0x2af16920610>

In [8]: |sns.distplot(s['ID'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='ID', ylabel='Density'>

In [11]: s1=s[['ID','engine_power','age_in_days','km', 'previous_owners','lat']]
s

Out[11]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	loı
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.61155986
1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12.2418899
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.4178
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.6346092;
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.49565029
								••
95	96.0	sport	51.0	4292.0	165600.0	1.0	44.715408	11.3083000;
96	97.0	pop	51.0	1066.0	28000.0	1.0	41.769051	12.6628103
97	98.0	sport	51.0	2009.0	86000.0	2.0	40.633171	17.6346092
98	99.0	lounge	51.0	456.0	18592.0	2.0	45.393600	10.4822397;
99	100.0	pop	51.0	731.0	41558.0	2.0	45.571220	9.15913963

100 rows × 11 columns

```
In [12]: sns.heatmap(s1.corr())
```

Out[12]: <AxesSubplot:>


```
In [13]: x=s1[['ID','engine_power','age_in_days','km', 'previous_owners']]
y=s1['lat']
```

Out[15]: LinearRegression()

```
In [16]: |lr.intercept_
```

Out[16]: 45.581529441997134

Out[17]:

	Co-efficient
ID	-0.003698
engine_power	- 0.002162
age_in_days	-0.000456
km	-0.000003
previous owners	-0.594245

```
In [18]: prediction=lr.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[18]: <matplotlib.collections.PathCollection at 0x2af23055d60>

In [19]: print(lr.score(x_test,y_test))

-0.12260963124395263

In []: