Project Tungsten Phase II Joining a Billion Rows per Second on a Laptop

Sameer Agarwal
Spark Meetup | SAP | June 30th 2016

About Me

- Software Engineer at Databricks (Spark Core/SQL)
- PhD in Databases (UC Berkeley)
- Research on BlinkDB (Approximate Queries in Spark)

Storage

Network

CPU

Network

CPU

2010 Storage 50+MB/s (HDD)

1Gbps

~3GHz

\$databricks

Storage

Network

CPU

databricks

2010

50+MB/s

(HDD)

1Gbps

~3GHz

2016

500+MB/s

(SSD)

10Gbps

~3GHz

Storage

Network

CPU

databricks

2010

50+MB/s

(HDD)

1Gbps

~3GHz

2016

500+MB/s

(SSD)

10Gbps

~3GHz

10X

10X

On the flip side

Spark IO has been optimized

- Reduce IO by pruning input data that is not needed
- New shuffle and network implementations (2014 sort record)

Data formats have improved

• E.g. Parquet is a "dense" columnar format

CPU increasingly the bottleneck; trend expected to continue

Goals of Project Tungsten

Substantially improve the **memory and CPU** efficiency of Spark backend execution and push performance closer to the limits of modern hardware.

Note the focus on "execution" not "optimizer": very easy to pick broadcast join that is 1000X faster than Cartesian join, but hard to optimize broadcast join to be an order of magnitude faster.

databricks

Phase 1 Foundation

Phase 2 Order-of-magnitude Faster

Memory Management Code Generation Cache-aware Algorithms Whole-stage Codegen Vectorization

Phase 1 Laying The Foundation

Summary

Perform manual memory management instead of relying on Java objects

- Reduce memory footprint
- Eliminate garbage collection overheads
- Use java.unsafe and off heap memory

Code generation for expression evaluation

Reduce virtual function calls and interpretation overhead

Cache conscious sorting

• Reduce bad memory access patterns

Phase 2 Order-of-magnitude Faster

Going back to the fundamentals

Difficult to get order of magnitude performance speed ups with profiling techniques

- For 10x improvement, would need of find top hotspots that add up to 90% and make them instantaneous
- For 100x, 99%

Instead, look bottom up, how fast should it run?

select count(*) from store_sales
where ss_item_sk = 1000

Volcano Iterator Model

Standard for 30 years: almost all databases do it

Each operator is an "iterator" that consumes records from its input operator

```
class Filter(
    child: Operator,
    predicate: (Row => Boolean))
    extends Operator {
    def next(): Row = {
     var current = child.next()
     while (current == null ||predicate(current)) {
        current = child.next()
    }
    return current
    }
}
```


Downside of the Volcano Model

- 1. Too many virtual function calls
 - o at least 3 calls for each row in Aggregate
- 2. Extensive memory access
 - o "row" is a small segment in memory (or in L1/L2/L3 cache)
- 3. Can't take advantage of modern CPU features
 - o SIMD, pipelining, prefetching, branch prediction, ILP, instruction cache, ...
- databricks

What if we hire a college freshman to implement this query in Java in 10 mins?

```
select count(*) from store sales
where ss item sk = 1000
long count = 0;
for (ss item sk in store sales) {
  if (ss item sk == 1000) {
    count += 1;
```

databricks

Volcano model 30+ years of database research

VS

college freshman hand-written code in 10 mins

How does a student beat 30 years of research?

Volcano	ha

hand-written code

1. Many virtual function calls

s 1

1 No virtual function calls

ı. Many

Data in memory (or cache)

2. Data in CPU registers

۷.

No loop unrolling, SIMD, pipelining

3. Compiler loop unrolling, SIMD,

pipelining

Take a

Take advantage of all the information that is known **after** query compilation

databricks

Whole-stage Codegen

Fusing operators together so the generated code looks like hand optimized code:

- Identify chains of operators ("stages")
- Compile each stage into a single function
- Functionality of a general purpose execution engine; performance as if hand built system just to run your query

Whole-stage Codegen: Planner

Whole-stage Codegen: Spark as a "Compiler"

But there are things we can't fuse

Complicated I/O

- CSV, Parquet, ORC, ...
- Sending across the network

External integrations

- Python, R, scikit-learn, TensorFlow, etc
- Reading cached data

Columnar in memory format

In-memory Row Format

1 john 4.1

2 mike 3.5

3 sally 6.4

In-memory Column Format

1 2 3

john mike sally

4.1 3.5 6.4

Why columnar?

- 1. More efficient: denser storage, regular data access, easier to index into. Enables vectorized processing.
- 2. More compatible: Most high-performance external systems are already columnar (numpy, TensorFlow, Parquet); zero serialization/copy to work with them
- 3. Easier to extend: process encoded data, integrate with columnar cache etc.

databricks

Putting it All Together

Phase 1 Spark 1.4 - 1.6 Phase 2 Spark 2.0+

Memory Management Code Generation Cache-aware Algorithms Whole-stage Code Generation Columnar in Memory Support

Operator Benchmarks: Cost/Row (ns)

primitive	Spark 1.6	Spark 2.0
filter	15 ns	1.1 ns
sum w/o group	14 ns	0.9 ns
sum w/ group	79 ns	10.7 ns
hash join	115 ns	4.0 ns
sort (8-bit entropy)	620 ns	5.3 ns
sort (64-bit entropy)	620 ns	40 ns
sort-merge join	750 ns	700 ns
Parquet decoding (single int column)	120 ns	13 ns

TPC-DS (Scale Factor 1500, 100 cores)

Status

- Being released as part of Spark 2.0
 - Both Whole stage codegen and vectorized Parquet reader is on by default
- Back to profiling techniques
 - Improve quality of generated code, optimize Parquet reader further
- Try it out and let us know!

Further Reading

Apache Spark as a Compiler: Joining a Billion Rows per Second on a Laptop Deep dive into the new Tungsten execution engine

by Sameer Agarwal, Davies Liu and Reynold Xin Posted in **ENGINEERING BLOG** | May 23, 2016

Spark Summit 2016 will be held in San Francisco on June 6–8. Check out the full agenda and get your ticket before it sells out!

http://tinyurl.com/project-tungsten

2016 Apache Spark Survey

Spark Summit EU Brussels October 25-27

The CFP closes at 11:59pm on July 1st For more information and to submit:

https://spark-summit.org/eu-2016/

Questions?

databricks