## **Artificial Text Detection via Magnitude Functions**

Selected topics in Data Science, 2025

Hassan Iftikhar Pavel Gurevich



## **Motivation**

Why This Matters LLMs like GPT-4 blur the line between human and AI text. Detection is crucial for trust in academia, media, and online platforms. Existing methods fail as models evolve.

# **Limitations of Existing Methods**

| Method                       | Strengths                                                                                                                   | Weaknesses                                                                                        |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Magnitude<br>Function        | <ul> <li>Analyzes geometric shape of word<br/>embeddings - Multi-scale detection -<br/>Complements other methods</li> </ul> | <ul> <li>Computationally heavy - Hard to interpret numerically - Needs good embeddings</li> </ul> |
| Linguistic<br>Feature-Based  | <ul> <li>Fast and intuitive - Explains why a text is<br/>flagged - Detects simple AI errors</li> </ul>                      | - Fails on sophisticated models - Misses structural cues                                          |
| Supervised<br>Classification | - High accuracy with good training - Learns new Al behaviors - Detects subtle patterns                                      | - Needs lots of data - May not generalize - Ignores geometry                                      |

# **Our Idea — Magnitude Functions**



Use magnitude functions from Topological Data Analysis (TDA).



Text embeddings form a point cloud in high-dimensional space.



Magnitude functions capture the geometry of this cloud at different scales.

# **Theoretical Background**

• Given a metric space A, define:

$$Z_A(a,b)=e^{-d(a,b)}$$

Magnitude:

$$|A|=\mathbf{1}^TZ_A^{-1}\mathbf{1}$$

For varying scale t, define:

$$\Phi_A(t) = |tA|$$

• This gives a curve encoding geometric structure of the text.

# **Project Pipeline**



Data: DAIGT V2 dataset (human + AI texts)



Embeddings: BERT → token vectors



Magnitude Function: For various t values



Feature Extraction: Values of |tA|



Classification: Logistic Regression (AUC-based evaluation)

# **Visualizing Magnitude Functions**

Observation: Different shapes for real vs. generated texts





# **Parameter Optimization**



Optimal max tokens: 288



**Optimal t range:** [1e-8, 0.08]



Dense sampling not necessary beyond: ~50 t-points



# **Parameter Optimization**





## **Detection Performance**

| Training data  | AUC    |
|----------------|--------|
| Magnitude Only | 0.9154 |
| Embedding only | 0.9963 |
| Both Combined  | 0.9965 |

 $_{\rm OO}^{\Delta}$  Magnitude adds complementary signal.



Useful as a secondary feature set.

# Efficient Computation (CG Solver)



Direct Inversion: O(n<sup>3</sup>)



Conjugate Gradient: O(n²), 1.53× faster.



Same approximately accuracy achieved.

### Algorithm 1 Conjugate Gradient for Magnitude

```
Input: Pairwise distances d_{ij},
tolerance \varepsilon, max iterations K
Output: Magnitude |A|
    Z_{ij} \leftarrow \exp(-d_{ij})
    b \leftarrow (1, \dots, 1)^{\top}
    w \leftarrow 0, r \leftarrow b, p \leftarrow r, \rho \leftarrow r^{\top}r, k \leftarrow 0
    repeat
        q \leftarrow Z \cdot p
        \alpha \leftarrow \rho/(p^{\top}q)
        w \leftarrow w + \alpha \cdot p
        r \leftarrow r - \alpha \cdot q
        \rho_{\text{new}} \leftarrow r^{\top} r
         if \sqrt{\rho_{\text{new}}} \leq \varepsilon \cdot \sqrt{n} then
             break
         end if
        \beta \leftarrow \rho_{\text{new}}/\rho
        p \leftarrow r + \beta \cdot p
        \rho \leftarrow \rho_{\text{new}}
         k \leftarrow k + 1
    until k = K
```

return  $|A| = \sum_i w_i$ 

## Conclusion

- -> Magnitude functions capture topological structure of text embeddings.
- -> Boost detection robustness.
- -> Efficient CG method enables real-world usage.

## **Future Directions**

- -> Nonlinear feature fusion.
- -> Magnitude derivatives as features.
- -> Robustness to paraphrasing/adversarial attacks.
- -> Multi-lingual generalization
- -> Benchmarking on the modern LLMs

## References

### Gehrmann, S., Strobelt, H., Rush, A.

GLTR: Statistical detection and visualization of generated text. In Proceedings of the 57th ACL: System Demonstrations, Florence, 2019. https://aclanthology.org/P19-3019/

### Hu, X., Chen, P.-Y., Ho, T.-Y.

RADAR: Robust Al-text detection via adversarial learning. In NeurIPS 2023.

### Ippolito, D., Duckworth, D., Callison-Burch, C., Eck, D.

Automatic detection of generated text is easiest when humans are fooled. In *Proceedings of the 58th ACL*, Online, 2020. https://aclanthology.org/2020.acl-main.164/

#### Leinster, T., Meckes, M. W.

The magnitude of a metric space: From category theory to geometric measure theory. In De Gruyter Open, 2017. https://doi.org/10.1515/9783110550832-005

### **GitHub Repository**

(5)

<u>aithub.com/GurevichPE/Artifical-text-detection-via-magnitude-functions</u>

We'd love your feedback or collaboration!