6주차(2/3)

# 객체지향 퍼셉트론 활용

파이썬으로배우는기계학습

한동대학교 김영섭교수

### 객체지향 퍼셉트론 활용

- 학습 목표
  - 객체지향 퍼셉트론 모델을 검증한다.
  - 객체지향 프로그래밍의 장점을 활용한다.

- 학습 내용
  - 객체지향 퍼셉트론의 장점 활용하기
  - Joy DataSet 으로 객체지향 퍼셉트론 검증하기

- 객체지향 퍼셉트론
- class Perceptron:



- 속성(데이터)
  - 차길이:4m
  - 차무게: 1380kg
- 기능(함수)
  - 전진
  - 후진

- 객체지향 퍼셉트론
  - class Perceptron:
  - 속성: 인스탄스 변수
    - eta, epochs, random\_seed
    - W, W\_
    - cost\_
    - miny, maxy
  - 기능: 메소드
    - \_\_init\_\_()
    - fit()
    - net\_input()
    - activate()
    - predict()



- 속성(데이터)
  - 차길이:4m
  - 차 무게: 1380kg
- 기능(함수)
  - 전진
  - 후진

- 객체지향 퍼셉트론
  - class Perceptron:
  - 속성: 인스탄스 변수
    - eta, epochs, random\_seed
    - W, W\_
    - cost\_
    - miny, maxy
  - 기능: 메소드
    - \_\_init\_\_()
    - fit()
    - net\_input()
    - activate()
    - predict()

- joy\_data.txt
  - data 폴더
  - OS 코멘드(셀에서, 느낌표로 시작)
  - 첫 5개 자료와 끝 5개 자료



- joy\_data.txt
  - data 폴더
  - OS 코멘드(셀에서, 느낌표로 시작)
  - 첫 5개 자료와 끝 5개 자료









- joy\_data.txt
  - import joy
  - joy.joy\_data() 호출

```
import joy
X, y = joy.joy_data()
print('X.shape={}'.
      format(X.shape, y.shape))
print(X[:5], y[:5])
print(X[-5:], y[-5:])
X.shape=(100, 2), y.shape=(100,)
[[1.72 3.12]
 [0.31 1.85]
 [1.56 2.85]
 [2.64 2.41]
 [1.23 2.54]] [1 1 1 1 1]
[[-2.26 0.01]
[-1.41 - 0.23]
 [-1.2 - 0.71]
 [-1.69 0.7]
 [-1.52 -1.14] [-1 -1 -1 -1 -1]
```

- joy\_data.txt
  - import joy
  - joy.joy\_data() 호출
  - X 형상: (100, 2)
  - y 형상: (100,)
  - 클래스 레이블: **1** 혹은 **-1**
  - Shuffling 전처리 필요성

```
import joy
X, y = joy.joy_data()
print('X.shape={}', y.shape={}'.
      format(X.shape, y.shape))
print(X[:5],___[:5])
print(X[-5:])
X.shape=(100, 2), y.shape=(100,)
[[1.72 3.12]
 [0.31 1.85]
 [1.56 2.85]
 [2.64 2.41]
 [1.23 2.54]] [1 1 1 1 1]
[[-2.26 0.01]
 [-1.41 - 0.23]
 [-1.2 - 0.71]
 [-1.69 0.7]
 [-1.52 -1.14] [-1 -1 -1 -1 -1]
```

- joy\_data.txt
  - import joy
  - joy.joy\_data() 호출
  - X 형상: (100, 2)
  - y 형상: (100,)
  - 클래스 레이블: **1** 혹은 **-1**
  - Shuffling 전처리 필요성

```
import joy
X, y = joy.joy_data()
print('X.shape={}', y.shape={}'.
      format(X.shape, y.shape))
print(X[:5], y[:5])
print(X[-5:], y[-5:])
X.shape=(100, 2), y.shape=(100,)
[[1.72 3.12]
 [0.31 1.85]
 [1.56 2.85]
 [2.64 2.41]
 [1.23 2.54]] [1 1 1 1 1]
[[-2.26 0.01]
 [-1.41 - 0.23]
 [-1.2 - 0.71]
 [-1.69 0.7]
 [-1.52 -1.14] [-1 -1 -1 -1 -1]
```

#### 2. 퍼셉트론 객체: 자료전처리

- joy\_data.txt
  - import joy
  - joy.joy\_data() 호출
  - X 형상: (100, 2)
  - y 형상: (100,)
  - 클래스 레이블: **1** 혹은 **-1**
  - Shuffling 전처리 필요성

```
X, y = joy.joy_data()
print(X[:5], y[:5])
[[1.72 \ 3.12]
 [0.31 1.85]
 [1.56 2.85]
 [2.64 2.41]
 [1.23 2.54]] [1 1 1 1 1]
X, y = joy.joy_data(standardized=True,
                     shuffled=True)
print(X[:5], y[:5])
[[-1.28409207 -1.15278304]
 [-1.43790346 -0.83714568]
 [ 0.41249418  0.10034442]
 [-1.37731109 -1.63330561]
 [-0.0769057 -1.03500791]] [-1 -1 1 -1 -1]
```

#### 2. 퍼셉트론 객체: 자료전처리

- joy\_data.txt
  - import joy
  - joy.joy\_data() 호출
  - X 형상: (100, 2)
  - y 형상: (100,)
  - 클래스 레이블: **1** 혹은 **-1**
  - Shuffling 전처리 필요성

```
X, y = joy.joy_data()
print(X[:5], y[:5])
[[1.72 3.12]
 [0.31 1.85]
 [1.56 2.85]
 [2.64 2.41]
 [1.23 2.54]] [1 1 1 1 1]
X, y = joy.joy_data(standardized=True,
                     shuffled=True)
print(X[:5], y[:5])
[[-1.28409207 -1.15278304]
 [-1.43790346 -0.83714568]
 [ 0.41249418  0.10034442]
 [-1.37731109 -1.63330561]
 [-0.0769057 -1.03500791]] [-1 -1 1 -1 -1]
```

- joy\_data.txt
  - 1. 학습자료 읽어오기

```
import joy
X, y = joy.joy_data()
ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_xyw(X, y, ppn.w)
```

- joy\_data.txt
  - 1. 학습자료 읽어오기

```
import joy
X, y = joy.joy_data()
ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_xyw(X, y, ppn.w)
```

- joy\_data.txt
  - 1. 학습자료 읽어오기
  - 2. 퍼셉트론 객체 생성

```
import joy
X, y = joy.joy_data()

ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_xyw(X, y, ppn.w)
```

- 1. 학습자료 읽어오기
- 2. 퍼셉트론 객체 생성
- 3. 퍼셉트론 학습

```
import joy
X, y = joy.joy_data()
ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_xyw(X, y, ppn.w)
```

- 1. 학습자료 읽어오기
- 2. 퍼셉트론 객체 생성
- 3. 퍼셉트론 학습
- 4. 시각화를 통한 자료 분류

```
import joy
X, y = joy.joy_data()
ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_xyw(X, y, ppn.w)
```





```
import joy
X, y = joy.joy_data()
ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_xyw(X, y, ppn.w)
```



```
import joy
X, y = joy.joy_data()
ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_xyw(X, y, ppn.w)
```



```
import joy
    X, y = joy.joy_Ndata()
    ppn = Perceptron(eta = 0.1, epochs=10)
    ppn.fit(X, y)
    joy.plot_xyw(X, y, ppn.w)
    joy.plot_xyw(X, y, ppn.w)
```



```
import joy
X, y = joy.toy_data()
ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_xyw(X, y, ppn.w)
joy.plot_xyw(X, y, ppn.w)
joy.plot_xyw(X, y, ppn.w)
```

## 3. 객체지향 퍼셉트론 활용: 반복학습과 오류

### 3. 객체지향 퍼셉트론 활용: 반복학습과 오류



## 3. 객체지향 퍼셉트론 활용: 가중치 변화 추적

self.w\_

### 3. 객체지향 퍼셉트론 활용: 가중치 변화 추적

self.w\_



## 3. 객체지향 퍼셉트론 활용: 다양한 Joy 모듈 기능들

plot\_decision\_regions()



```
import joy
X, y = joy.joy_data()
ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_decision_regions(X , y, ppn)
```

### 3. 객체지향 퍼셉트론 활용: 다양한 Joy 모듈 기능들

- 객체
  - 데이터와 함수로 구성되어 있음

```
import joy
X, y = joy.joy_data()
ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_decision_regions(X , y, ppn)
```

```
import joy
X, y = joy.joy_data()
ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_xyw(X, y, ppn.w)
```

### 3. 객체지향 퍼셉트론 활용: 다양한 Joy 모듈 기능들

- 객체
  - 속성과 함수로 구성
  - 파이썬에선 모든 것이 객체

```
import joy
X, y = joy.joy_data()
ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_decision_regions(X , y, ppn)
```

```
import joy
X, y = joy.joy_data()
ppn = Perceptron(eta = 0.1, epochs=10)
ppn.fit(X, y)
joy.plot_xyw(X, y, ppn.w)
```

### 객체지향 퍼셉트론 활용

- 학습 정리
  - 객체지향 퍼셉트론으로 Joy DataSet 적용하기
  - OOP의 장점을 활용한 프로그래밍 기법

- 차시 예고
  - 6-2 다층 퍼셉트론

6주차(2/3)

# 객체지향 퍼셉트론 활용

파이썬으로배우는기계학습

한동대학교 김영섭교수