- Paralelismo Temporal y Espacial
 - Espacial: Existen varias unidades funcionales (simultaneidad)
 - Temporal: Se solapan tiempos.
- Ciclo de ejecución

- Pipeline
 - Instrucciones
- Tipos
 - Aritmeticos
 - de Instrucción
 - de Procesador
 - Uni/Multifuncionales
 - Estáticos/Dinámicos
 - Escalares/Vectoriales

- Pipelines Generales
 - Tablas de Reservas

Latencia

Tiempo en que tarda en llenarse un pipe, o sea que comienza a mostrar resultados

Lat = aprox (n * tK) (sin colisiones) Donde n es el nro. de la etapas y tk es el tiempo de la etapa más larga

- Aceleración Sk
- tk es la velocidad del pipeline en producción

$$SK = T / tk$$

Donde T es el tiempo de ejecución de una instrucción sin pipeline

Pipelines (Tabla de Reserva)

Tiempo		Ø	1	2	3	4	5	6	7	
Etapa	1	В	В					В	В	
Fig. 4.22.	2			В		В				
	3				В		В			

Pipelines "voraces"

 Estrategia "greedy" permite latencias de 3 y 8, en promedio (3+8)/2 = 5,5

Pipelines "no voraces"

Latencia óptima de 4

Latencia Optima

- Vector de colisiones
- 0 1 2 3 4 5 6 7
- 1 1 1 1 0 0 1 1 1
- Se desprecia el primero
- 1234567
- 1 1 0 0 1 1 1

Latencia Optima

Las posibles latencias son 3 o 4

Pipeline con ciclo salto incondicional

Pipeline con cero ciclo en salto incondicional

Pipeline Sumador de Punto Flotante en 4 etapas

Pipeline Vectorial

Pipelines y CPU

Pipelines (Problemas)

- Pipeline en Procesador
 - RAW, WAR, WAW
 - RAW Si 2) extrae después que 3) escribe
 - WAR Si 1) escribe después que 2) extraiga
 - WAW Si 3) escribe después que 4)
 - Condiciones de Salto

Programa Ejemplo 1) ALMACENAR X

2) SUMAR X

.

3) ALMACENAR X

.

4) ALMACENAR X

.....

Predicción de saltos condicionales

Estático

Nunca salta INTEL i486

Siempre Salta SUN SuperSaprc

(entre 40 y 60 % de aciertos)

Predicción de saltos incondicionales

- Dinámico (Dec Alpha 21064) 77 a 79 %
- (100 % de error en casos TNTN ... desde estado 0

Predicción de saltos incondicionales

- INTEL Pentium 78 a 89 %
- Estado 01 secuencia TNTN... 100% mal

Predicción de saltos incondicionales

