Análisis numérico de elementos finitos

Dr. Stefan Frei Department of Mathematics University College London

Curso compacto, Parte V Universidad Nacional Agraria La Molina Agosto 2-8, 2017

Ecuaciones de Stokes

Ecuaciones de Stokes

$$-\nu\Delta v + \nabla p = f \text{ in } \Omega,$$
$$\operatorname{div} v = 0 \text{ in } \Omega.$$

Formulación variacional:

Hallar
$$v \in \mathcal{V}, p \in \mathcal{L}$$
 tal que

$$\nu(\nabla v, \nabla \phi)_{\Omega} - (p, \operatorname{div} \phi)_{\Omega} = (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V},$$
$$(\operatorname{div} v, \xi)_{\Omega} = 0 \quad \forall \xi \in \mathcal{L}.$$

S. Frei | Elementos finitos

1

Sistemas de puntos de silla

Consideramos el problema general con espacios Hilbert $\mathcal V$ y $\mathcal L$: Hallar $v\in\mathcal V,p\in\mathcal L$ tal que

$$a(v,\phi) + b(p,\phi) = (f,\phi) \quad \forall \phi \in \mathcal{V},$$

$$b(v,\xi) = (g,\xi) \quad \forall \xi \in \mathcal{L}.$$
 (1)

Condiciones:

• $a(\cdot, \cdot)$ es \mathcal{V} -coercivo: Existe $\alpha > 0$ tal que

$$a(v, v) \ge \alpha ||v||_V^2 \quad \forall v \in \mathcal{V}.$$

• La forma $b(\cdot,\cdot)$ cumple una condición inf-sup (Babuška-Brezzi): Existe $\beta>0$ tal que

$$\sup_{\phi \in \mathcal{V}} \frac{b(p,\phi)}{\|\phi\|_{\mathcal{V}}} \geq \beta \|p\|_{\mathcal{L}} \quad \forall \phi \in \mathcal{L}.$$

Teorema (Babuška, Brezzi)

Bajo estas dos condiciones existe una solución única (v,p) de (1) para cada $f \in \mathcal{V}^*, g \in \mathcal{L}^*$ y se cumple

$$||v||_{\mathcal{V}} + ||p||_{\mathcal{L}} \le C\{||f||_{\mathcal{V}^*} + ||g||_{\mathcal{L}^*}\}.$$

Overview

1 Stokes: Discretización

2 Error de discretización

3 Technica de la estabilización

Discretización

Espacios conformes $V_h \subset V$, $\mathcal{L}_h \subset \mathcal{L}$:

- La **coercividad** de $a(\cdot,\cdot)$ se hereda automaticamente para $\mathcal{V}_h\subset\mathcal{V}$
- La condición inf-sup es una relación entre los espacios $\mathcal{V}_h, \mathcal{L}_h$ que tiene que ser probado

Si se cumple la condición inf-sup

$$\sup_{\phi_h \in \mathcal{V}_h} \frac{\left(p_h, \operatorname{div} \phi_h\right)}{\|\phi_h\|_{H^1(\Omega)}} \ge \beta \|p_h\|_{\Omega} \quad \forall \phi_h \in \mathcal{L}_h$$

el teorema de Babuška-Brezzi implica **existencia y unicidad** para la formulación variacional

Elementos simples

Los elementos conformes más simples no son inf-sup estables $(\mathcal{V}_h - \mathcal{L}_h)$

• Elementos $P_1 - P_0$ sobre triángulos y $Q_1 - Q_0$ sobre quadriláteros Pruebe en triangulaciones en quadriláteros uniformes:

$$\sup_{\phi_h \in \mathcal{V}_h} \frac{(\xi_h, \operatorname{div}\phi_h)}{\|\phi_h\|_{H^1(\Omega)}} = 0$$

para la función $\xi\in\mathcal{L}_h$ definido por $\xi_h=\pm 1$ alternantamente ("checkerboard instability")

• Elementos $P_k - P_k$ en triángulos y $Q_k - Q_k$ en quadriláteros

Criterio de Fortin

Teorema (Fortin)

Sea $\mathcal{V}_h \subset \mathcal{V}$ y $\mathcal{L}_h \subset \mathcal{L}$. Si existe una proyección $\pi_h : \mathcal{V} \to \mathcal{V}_h$ con las siguentes propiedades:

$$\begin{split} \|\nabla \pi_h \phi\| &\leq c_\pi \|\nabla \phi\| \quad \forall \phi \in \mathcal{V} \qquad \text{estabilidad } H^1 \\ \left(\mathrm{div}(\phi - \pi_h \phi), \xi_h\right) &= 0 \quad \forall \phi \in \mathcal{V}, \ \xi_h \in \mathcal{L}_h \qquad \text{ortogonalidad discreta} \end{split}$$

Entonces, se cumple la condición inf-sup discreta

$$\left\| \frac{\gamma}{c_{\pi}} \| \rho_h \| \le \sup_{\phi_h \in \mathcal{V}_h} \frac{\left(\rho_h, \operatorname{div} \phi_h \right)}{\| \nabla \phi_h \|}$$

Criterio de Fortin (Prueba)

Prueba: Utilizamos la condición inf-sup continuo $(p_h \in \mathcal{L}_h \subset \mathcal{L})$

$$\gamma \| p_h \| \le \sup_{\phi \in V} \frac{(p_h, \operatorname{div} \phi)}{\| \nabla \phi \|}$$

Introducimos $\pm \pi_h \phi \in V_h$ y utilizamos las dos condiciones:

$$\gamma \| p_h \| \leq \sup_{\phi \in V} \left(\frac{\overbrace{(p_h, \operatorname{div}(\phi - \pi_h \phi))}^{=0}}{\|\nabla \phi\|} + \frac{(p_h, \operatorname{div}(\pi_h \phi))}{\|\nabla \phi\|} \right) \\
= \sup_{\phi \in V} \frac{(p_h, \operatorname{div}(\pi_h \phi) \|\nabla \pi_h \phi\|}{\|\nabla \pi_h \phi\| \|\nabla \phi\|} \\
\leq c_\pi \sup_{\phi \in V} \frac{(p_h, \operatorname{div}(\pi_h \phi))}{\|\nabla \pi_h \phi\|} \leq c_\pi \sup_{\phi_h \in V_h} \frac{(p_h, \operatorname{div}(\phi_h))}{\|\nabla \phi_h\|} \\$$

Criterio de Fortin (Prueba)

Prueba: Utilizamos la condición inf-sup continuo $(p_h \in \mathcal{L}_h \subset \mathcal{L})$

$$\gamma \| p_h \| \le \sup_{\phi \in V} \frac{(p_h, \operatorname{div} \phi)}{\| \nabla \phi \|}$$

Introducimos $\pm \pi_h \phi \in V_h$ y utilizamos las dos condiciones:

$$\gamma \| p_h \| \leq \sup_{\phi \in V} \left(\frac{\overbrace{(p_h, \operatorname{div}(\phi - \pi_h \phi))}^{=0}}{\|\nabla \phi\|} + \frac{(p_h, \operatorname{div}(\pi_h \phi))}{\|\nabla \phi\|} \right) \\
= \sup_{\phi \in V} \frac{(p_h, \operatorname{div}(\pi_h \phi)\|\nabla \pi_h \phi\|}{\|\nabla \pi_h \phi\|\|\nabla \phi\|} \\
\leq c_{\pi} \sup_{\phi \in V} \frac{(p_h, \operatorname{div}(\pi_h \phi))}{\|\nabla \pi_h \phi\|} \leq c_{\pi} \sup_{\phi_h \in V_h} \frac{(p_h, \operatorname{div}(\phi_h))}{\|\nabla \phi_h\|} \\$$

Elementos inf-sup estables

Con el criterio de Fortin podemos mostrar que los siguientes elementos son inf-sup estables

ullet Elemento P_2-P_0 en triángulos, Q_2-P_0 en quadriláteros

• Elementos **Taylor-Hood** $P_2 - P_1$ y $Q_2 - Q_1$

Más general: $Q^k - Q^{k-1}$ en quadriláteros $(k \ge 2)$, pero solo $P^k - P^{k-2}$ en triángulos $(k \ge 3)$

Elementos con funciones "bulbos"

 El elemento estable con menos grados de libertad por elemento es el elemento "MINI" P₁^b - P₁, donde

$$P_1^b = P_1 \bigoplus \operatorname{span}(xy(h-x-y))$$

• Los elementos $P_k^b - P_{k-1}$, donde

$$P_k^b = P_k \bigoplus \operatorname{span}(xy(h-x-y))$$

• Elementos con **presión discontinua** $Q_k - P_{k-1}^{dc}$, $Q_k - Q_{k-1}^{dc}$, $P_k^b - P_{k-1}^{dc}$

Elementos con funciones "bulbos"

 El elemento estable con menos grados de libertad por elemento es el elemento "MINI" P₁^b - P₁, donde

$$P_1^b = P_1 \bigoplus \operatorname{span}(xy(h-x-y))$$

• Los elementos $P_k^b - P_{k-1}$, donde

$$P_k^b = P_k \bigoplus \operatorname{span}(xy(h-x-y))$$

• Elementos con **presión discontinua** $Q_k - P_{k-1}^{dc}$, $Q_k - Q_{k-1}^{dc}$, $P_k^b - P_{k-1}^{dc}$

Elementos con presión discontinua

Si el espacio de la presión es discontinua

$$\mathcal{L}_h = \{ v \in \mathcal{L}, v_{|T} \in P_k(T) \, \forall \, T \in \mathcal{T}_h \},$$

tenemos conservación de masa local en cada elemento T

Prueba: Podemos elegir

$$\xi_h = \left\{ egin{array}{ll} 1 \ ext{en} \ \mathcal{T}, \ 0 \ ext{en} \ \Omega \setminus \mathcal{T}. \end{array}
ight.$$

cómo función test:

$$0 = \int_{\Omega} \operatorname{div} \, v_h \, \xi_h \, dx = \int_{T} \operatorname{div} \, v_h \, dx = \int_{\partial T} v_h \cdot n \, dx$$

Overview

1 Stokes: Discretización

2 Error de discretización

Technica de la estabilización

Ortogonalidad de Galerkin

Problema continuo: Hallar $v \in \mathcal{V}, p \in \mathcal{L}$ tal que

$$\nu(\nabla v, \nabla \phi)_{\Omega} - (p, \operatorname{div}\phi)_{\Omega} = (f, \phi)_{\Omega} \quad \forall \phi \in \mathcal{V},$$
$$(\operatorname{div}v, \xi)_{\Omega} = 0 \quad \forall \xi \in \mathcal{L}.$$

Problema discreto: Hallar $v_h \in \mathcal{V}_h$, $p_h \in \mathcal{L}_h$ tal que

$$\nu(\nabla v_h, \nabla \phi_h)_{\Omega} - (p_h, \operatorname{div}\phi_h)_{\Omega} = (f, \phi_h)_{\Omega} \quad \forall \phi_h \in \mathcal{V}_h,$$
$$(\operatorname{div}v_h, \xi_h)_{\Omega} = 0 \quad \forall \xi_h \in \mathcal{L}_h.$$

Ortogonalidad de Galerkin

$$\begin{split} \nu(\nabla(v-v_h),\nabla\phi_h)_{\Omega} - ((p-p_h),\mathrm{div}\phi_h)_{\Omega} \\ + (\mathrm{div}(v-v_h),\xi_h)_{\Omega} = 0 \quad \forall \phi_h \in \mathcal{V}_h,\xi_h \in \mathcal{L}_h. \end{split}$$

Error en la norma de energía

Si utilizamos polinómios P_{m_v} para la velocidad y P_{m_p} para la presión:

$$\nu \|\nabla (v - v_h)\|_{\Omega} + \|p - p_h\|_{\Omega} \le ch^{m_v} \|\nabla^{m_v + 1}v\|_{\Omega} + ch^{m_p + 1} \|\nabla^{m_p + 1}p\|_{\Omega}$$

- Los errores de la velocidad y la presión no son separables. Un método optimal (con respeto a eficiencia) serían elementos P_m-P_{m-1} $(m_{\nu}=m_{\scriptscriptstyle P}+1)$
- Regularidad $v \in H^{m+1}(\Omega) \leftrightarrow p \in H^m(\Omega)$

Error L^2 de la velocidad

Para estimar el error de la velocidad en $L^2(\Omega)$ utilizamos un **problema dual** Hallar $z^v \in \mathcal{V}, z^p \in \mathcal{L}$ tal que

$$\nu(\nabla\phi,\nabla z^{\nu})_{\Omega}-(\xi,\mathrm{div}z^{\nu})_{\Omega}+(\mathrm{div}\phi,z^{\rho})_{\Omega}=\left(\frac{\nu-\nu_{h}}{\|\nu-\nu_{h}\|},\phi\right)_{\Omega}\quad\forall\phi\in\mathcal{V},\xi\in\mathcal{L}.$$

Con $\phi = v - v_h$ y $\xi = p - p_h$ y utilizando la ortogonalidad de Galerkin obtenemos

$$||v - v_h||_{\Omega} \le Ch(\nu||\nabla(v - v_h)||_{\Omega} + ||p - p_h||_{\Omega})$$

$$\le ch^{m_{\nu}+1}||\nabla^{m_{\nu}+1}v||_{\Omega} + ch^{m_{\rho}+2}||\nabla^{m_{\rho}+1}p||_{\Omega}.$$

Overview

1 Stokes: Discretización

2 Error de discretización

3 Technica de la estabilización

Elementos "equal order"

"Equal order" elements $P_k - P_k$, $Q_k - Q_k$

- Implementación simple
- Sistema en bloques

$$u_h(x) = \sum_{i=1}^{N} \begin{pmatrix} v_i^x \\ v_i^y \\ p_i \end{pmatrix} \phi_h^i(x)$$

- Ventajoso para métodos eficientes de solución (Método multi-malla)
- Problema: No son inf-sup estables

Condición inf-sup modificada

Revisamos la prueba del criterio de Fortin:

$$\begin{split} \gamma \| p_h \| &\leq \sup_{\phi \in V} \frac{\left(p_h, \operatorname{div} \phi \right)}{\| \nabla \phi \|} \\ &\leq \sup_{\phi \in V} \left(\frac{\overbrace{\left(p_h, \operatorname{div} (\phi - \pi_h \phi) \right)}^{\neq 0}}{\| \nabla \phi \|} + \frac{\left(p_h, \operatorname{div} (\pi_h \phi) \right)}{\| \nabla \phi \|} \right) \\ &= \sup_{\phi \in V} \frac{\left(p_h, \operatorname{div} (\phi - \pi_h \phi) \right)}{\| \nabla \phi \|} + c_{\pi} \sup_{\phi_h \in V_h} \frac{\left(p_h, \operatorname{div} \phi_h \right)}{\| \nabla \phi_h \|} \end{split}$$

La primera parte no es zero en general. Utilizamos integración por partes y elegimos π_h cómo interpolación de Clément

$$\begin{split} \frac{(p_h, \operatorname{div}(\phi - \pi_h \phi))}{\|\nabla \phi\|} &= \frac{(\nabla p_h, \phi - \pi_h \phi)}{\|\nabla \phi\|} \\ &\leq ch \frac{\|\nabla p_h\|_{\Omega} \|\nabla \phi\|_{\Omega}}{\|\nabla \phi\|_{\Omega}} = ch \|\nabla p_h\|_{\Omega}. \end{split}$$

Condición inf-sup modificada (cont.)

Para todos los pares $\mathcal{V}_h - \mathcal{L}_h$ se cumple la condición *inf-sup* modificada

$$\gamma_h \|p_h\| \leq \sup_{\phi_h \in V_h} \frac{(p_h, \operatorname{div}\phi_h)}{\|\nabla \phi_h\|} + h \|\nabla p_h\|_{\Omega}.$$

Existencia y unicidad

El problema discreta Hallar $v_h \in \mathcal{V}_h, p_h \in \mathcal{L}_h$ tal que

$$\nu(\nabla v_h, \nabla \phi_h)_{\Omega} - (p_h, \operatorname{div}\phi_h)_{\Omega} = (f, \phi_h)_{\Omega} \quad \forall \phi_h \in \mathcal{V}_h.$$

$$(\operatorname{div}v_h, \xi_h)_{\Omega} + \alpha h^2 (\nabla p_h, \nabla \xi_h)_{\Omega} = 0 \quad \forall \xi_h \in \mathcal{L}_h.$$

tiene una solución única

Condición inf-sup modificada (cont.)

Para todos los pares $\mathcal{V}_h - \mathcal{L}_h$ se cumple la condición inf-sup modificada

$$\gamma_h \|p_h\| \leq \sup_{\phi_h \in V_h} \frac{\left(p_h, \operatorname{div}\phi_h\right)}{\|
abla \phi_h\|} + h \|
abla p_h\|_{\Omega}.$$

Existencia y unicidad

El problema discreta Hallar $v_h \in \mathcal{V}_h, p_h \in \mathcal{L}_h$ tal que

$$\begin{split} &\nu(\nabla v_h,\nabla\phi_h)_{\Omega}-(p_h,\mathrm{div}\phi_h)_{\Omega}=(f,\phi_h)_{\Omega}\quad\forall\phi_h\in\mathcal{V}_h,\\ &(\mathrm{div}v_h,\xi_h)_{\Omega}+\alpha h^2(\nabla p_h,\nabla\xi_h)_{\Omega}=0\quad\forall\xi_h\in\mathcal{L}_h. \end{split}$$

tiene una solución única.

Error de discretización + estabilización

La estabilización causa un error adicional

Ortogonalidad de Galerkin

$$\begin{split} \nu(\nabla(v-v_h),\nabla\phi_h)_{\Omega} - ((p-p_h),\operatorname{div}\phi_h)_{\Omega} + (\operatorname{div}(v-v_h),\xi_h)_{\Omega} \\ - \alpha h^2(\nabla p_h,\nabla\xi_h)_{\Omega} &= 0 \quad \forall \phi_h \in \mathcal{V}_h,\xi_h \in \mathcal{L}_h. \end{split}$$

• Error en la norma de energía, restringida a orden 1

$$\nu \|\nabla (v - v_h)\|_{\Omega} + \|p - p_h\|_{\Omega} \\
\leq ch^{m_v} \|\nabla^{m_v+1}v\|_{\Omega} + ch^{m_p+1} \|\nabla^{m_p+1}p\|_{\Omega} + ch\|\nabla p\|_{\Omega}$$

ullet Error en la norma de $L^2(\Omega)$, restringida a orden 2

$$\|v - v_h\|_{\Omega} \le ch^{m_v+1} \|\nabla^{m_v+1}v\|_{\Omega} + ch^{m_p+2} \|\nabla^{m_p+1}p\|_{\Omega} + ch^2 \|\nabla p\|_{\Omega}$$

 Mayor orden de convergencía para estabilizaciones más complejas (por ejemplo Local projection stabilization (LPS))

Conclusión

Ecuaciones de Stokes/Navier-Stokes:

$$\partial_t v + v \cdot \nabla v - \nu \Delta v - \nabla p = f \text{ en } \Omega,$$

 $\operatorname{div} v = 0 \text{ en } \Omega.$

- Buena aproximación para la mayoría de fluidos y gases
- La condición inf-sup es esenciál para la teoría de las ecuaciones

$$\sup_{\phi \in \mathcal{V}} \frac{(\mathrm{div}\phi, \mathbf{p})}{\|\phi\|_{\mathcal{V}}} \ge \beta \|\mathbf{p}\|_{\mathcal{L}} \quad \forall \phi \in \mathcal{L}.$$

• Condición natural para partes $\Gamma_N \subset \partial \Omega$, donde no se impone condiciones de Dirichlet (*do-nothing condition*)

$$\nu \partial_n v - pn = 0$$
 en Γ_N .

- Dos posibilidades para obtener un sistema discreto bien-puesto
 - **1** Espacios $V_h \mathcal{L}_h$ que cumplen una **condición** *inf-sup* **discreta**
 - 2 Agregar terminos de estabilización a la formulación variacional

Conclusión (cont.)

Espacios $\mathcal{V}_h - \mathcal{L}_h$ que cumplen una condición inf-sup discreta

$$\sup_{\phi_h \in \mathcal{V}_h} \frac{\left(\mathrm{div}\phi_h, p_h\right)}{\|\phi_h\|_{\mathcal{V}}} \geq \beta_h \|p_h\|_{\mathcal{L}} \quad \forall \phi_h \in \mathcal{L}_h.$$

- V_h tiene que ser **suficientemente grande** en relación a \mathcal{L}_h
- Criterio de Fortin para probar que elementos son inf-sup estables
- Elementos de **Taylor-Hood** son populares: $P_2 P_1$ y $Q_k Q_{k-1}$
- Agregando funciones con "bulbos": $P_k^b P_{k-1}$, MINI-element $P_1^b P_1$
- Estimación del error

$$\nu \|\nabla (v - v_h)\|_{\Omega} + \|p - p_h\|_{\Omega} \le ch^{m_v} \|\nabla^{m_v + 1}v\|_{\Omega} + ch^{m_p + 1} \|\nabla^{m_p + 1}p\|_{\Omega}$$

favorece elementos $P_m - P_{m-1}$ o $Q_m - Q_{m-1}$

Estabilización

- "Equal-order elements" facil a implementar, particularmente para métodos de solución eficientes
- Estabilización simple $S(p,\xi)=\alpha h^2(\nabla p,\nabla \xi)$ limita el orden de convergencia

S. Frei | Elementos finitos

21