Hands on with FPGA's: Module 7

Venkat Rangan

Questions on Module 6

Topics

- Pre-class: Open floor for questions
 - Module 6
- Clock Domain Crossing
 - Mhys
 - How to deal with it?
- IP Reuse
 - FuseSoC
 - LiteX
- IDE's: tips/tricks
- Open discussion

Clock Domain Crossing

Metastability

Techniques

- Double flop receiving signal
- Register sending signal

- What if tx_clk is much faster than rx_clk?
 - Assume a 1 clock wide pulse on tx_data

Safe Solution for CDC

Use Acknowledge

- Pros:
 - Reliable transfer across clock domain
- Cons:
 - Significantly larger synchronization delay

Other CDC techniques...

- Asynchronous FIFO's for multiple bits
 - Can be just 2 deep FIFO

- Gray encoding
 - Only 1 transition between successive counts

Binary	Gray	Decimal of Gray
0000	0000	0
0001	0001	1
0010	0011	3
0011	0010	2
0100	0110	6
0101	0111	7
0110	0101	5
0111	0100	4
1000	1100	12
1001	1101	13
1010	1111	15
1011	1110	14
1100	1010	10
1101	1011	11
1110	1001	9
1111	1000	8
	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1100 1101 1100	0001 0001 0010 0011 0010 0110 0100 0110 0101 0101 0111 0100 1110 1100 1101 1101 1101 1110 1101 1110 1101 1111 1110 1010

https://en.wikipedia.org/wiki/Gray_code

Lets build an SoC!

- Use LiteX
- Follow instructions below to install
 - For windows, use WSL!
 - Will not work well in the Powershell/Command prompt
- If you haven't set up usbip with WSL2 yet: https://docs.microsoft.com/enus/windows/wsl/connect-usb
- After you have the upduino board connected to WSL (ie shows up properly via sudo dmesg and/or Isusb, udev rules are present etc)
- wget https://raw.githubusercontent.com/enjoydigital/litex/master/litex setup.py && chmod +x litex setup.py
- ./litex setup.py --init --install --user --config=full
- · ./litex setup.py --gcc riscv
- rm -rf \overline{l} itex-boards
- git clone https://github.com/tinyvision-ai-inc/litex-boards
- Install and add oss-cad-suite to path (if you haven't already) then exit wsl and open powershell/cmd wsl --shutdown to "reboot" the linux vm. Re-open your wsl terminal and ensure your upduino_v3 is still accessible
- python3 ./litex-boards/litex_boards/targets/upduino_v3.py --cpuvariant minimal --build --flash

IDE's: Tips/tricks

- Emacs: Verilog mode:
 - Demo of auto completion
- Visual Studio: TerosHDL

<u>Module 7:</u>

- Challenge:
 - Create your own version of a processor using LiteX or FuseSoC
 - Locate the I2C and SPI cores in it
 - Can you program your I2C controller to produce some outputs?
 - Hook up any 12C device to the FPGA and try to read/write registers

Open Discussion