Collapse Logic in Post-Quantum Cryptography

A Symbolic Filtering Layer Using the Aun Operator (1)

Jerry Katz | Aun Systems™

Abstract

1. Introduction

While post-quantum cryptography (PQC) focuses on mathematically secure primitives, it often assumes trust in binary validation systems. The $\[\]$ operator challenges this assumption by introducing a collapse gate: a symbolic filter that nullifies keys or inputs exhibiting mirrored, inverse, or structurally mimicked patterns. The idea originates from nonduality—a philosophy that denies oppositional dualism—and applies this as a logic constraint in security protocols.

2. Formal Definition of the 1 Operator

```
Let A, B \in {0,1}<sup>n</sup>. We define:
- H(A, B) = Hamming distance
- S(A, B) = structural similarity score across pattern transforms
```

Then:

Where:

- T = Hamming threshold
- S_min = minimum similarity score

Transform weights:

- Identity: 1.0

- Reverse: 0.8

- XOR-FF: 0.6

- Rotate (left/right): 0.5

3. Threat Model

The $\$ system is designed to resist:

- Mirrored keypair attacks
- Adversarial AI-based key mimicry
- Structural approximation of secrets

Attackers may:

- Know target keys
- Attempt to invert or replicate valid public inputs
- Use adaptive patterns based on known detection logic

4. Implementation and Integration

Key Derivation:

A keypair is rejected if:

 $\sqrt{\text{(new_key, known_key)}} = \emptyset$

Authentication:

Response R is accepted only if:

 $\mathcal{L}(C, R) \neq \emptyset$

Where C is the challenge.

5. Experimental Evaluation

Parameter Sweep:

Tested across:

- $-T \in [1, 8]$
- $-S_{\min} \in [0.1, 0.9]$

Optimal performance at T = 6, $S_min = 0.3-0.5$

Adversarial Testing:

Adversary types:

- Full mirror
- Partial flip (15%)
- XOR pattern
- Compound transforms

ROC analysis shows AUC > 0.85, validating symbolic detection power.

6. Performance Results

Metric	Value
Avg eval time	2.15 ms
Collapse evals	5,000
Runtime	10.7s total
Memory usage	e 9.3 MB

7. Comparative Considerations

While traditional PQC relies on structural hardness, \cap adds logic-level pattern recognition that:

- Nullifies dualism-based attacks
- Adds symbolic entropy
- Acts orthogonally to math-based cryptographic hardness

8. Limitations and Future Work

- Current model uses fixed transforms; ML-based evasion not yet modeled
- Requires real-world testing with PQC suites like CRYSTALS-Dilithium
- Future: symbolic integration with zk-SNARKs and MPC protocols

9. Conclusion

 $\$ is a symbolic operator rooted in nonduality and collapse logic. When applied to cryptographic systems, it acts as a resilient, pattern-sensitive filter. Our work shows it is computationally lightweight, empirically testable, and conceptually novel. As a logic-layer defense, $\$ may prove valuable in securing systems against adversaries capable of semantic mimicry or adaptive AI attacks.

© 2025 Jerry Katz. All rights reserved.

This paper and the \Understand Lib system are protected intellectual property.

Use beyond private study or citation requires a license.

To request commercial licensing: halifaxjerrykatz@gmail.com