ADAPTIVE RECORDING METHOD FOR HIGH-DENSITY OPTICAL RECORDING APPARATUS AND ITS CIRCUIT

Patent number:

JP2000048362

Publication date:

2000-02-18

Inventor:

SEO JIN-GYO; SHU SEISHIN; YOON DU-SEOP; ROH MYUNG-DO; AHN YONG-JIN; KIM SEONG-SUE; LEE KYUNG-GEUN; CHO MYEONG-HO; YANG CHANG-JIN; KIM JONG-KYU; KO SEONG-RO; TATSUHIRO

OTSUKA

Applicant:

SAMSUNG ELECTRONICS CO LTD

Classification:

- international:

G11B7/0045; G11B7/007; G11B7/125; G11B7/00; G11B7/007; G11B7/125; (IPC1-7): G11B7/00;

G11B7/125

- european:

G11B7/0045; G11B7/007G; G11B7/125C; G11B7/125C1

Application number: JP19990208139 19990722 Priority number(s): KR19980029732 19980723

Also published as:

EP0977184 (A2) US6631110 (B1) JP2005243234 (A JP2002237043 (A JP2002237038 (A

more >>

Report a data error he

Abstract of JP2000048362

PROBLEM TO BE SOLVED: To provide an adaptive recording method for a high-density optical recording apparatus and its circuit. SOLUTION: This circuit includes a discriminator 102 which discriminates the size of the present mark of inputted data and the size of a previous and/or subsequent space, a generator 108 which generates adaptive recording pulses by controlling the waveform of the recording pulses according to the size of the present mark and the size of the previous and/or subsequent space and a driver 110 which drives the light source described above by converting the adaptive recording pulses to current signal forms according to the driving levels of the light outputs of respective channels. As a result, jitters are minimized by changing the width of the first pulse and/or last pulse of the recording pulses according to the size of the present mark of the inputted NRZI data and the size of the previous and/or subsequent space, by which the reliability and performance of the system are improved.

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2000-48362 (P2000-48362A)(43)公開日 平成12年2月18日(2000.2.18)

(51) Int. Cl. 7 G11B

識別記号

7/00

6 3 1

FΙ

G 1 1 B 7/00 631 テーマコート*(参考)

7/125

7/125

Α C

審査請求

有 請求項の数26 OL

(全11頁)

(21)出願番号

特願平11-208139

(22)出願日

平成11年7月22日(1999.7.22)

(31)優先権主張番号 199829732

(32)優先日

平成10年7月23日(1998.7.23)

(33)優先権主張国

韓国 (KR)

(71)出願人 390019839

三星電子株式会社

大韓民国京畿道水原市八達区梅灘洞416

(72)発明者 徐 賑▲ギョ▼

大韓民国ソウル特別市盧原区月渓1洞55-

2番地23/4

(72)発明者 朱 盛晨

大韓民国京畿道水原市長安区亭子洞395番

地東信アパート209棟803号

(74)代理人 100064908

弁理士 志賀 正武 (外1名)

最終頁に続く

(54)【発明の名称】高密度光記録機器のための適応的な記録方法及びその回路

(57)【要約】

【課題】 高密度光記録機器のための適応的な記録方法 及びその回路を提供する。

【解決手段】 入力されるデータの現在のマークの大き さと以前及び/または以降スペースの大きさとを判別す る判別器102と、現在のマークの大きさと以前及び/ または以降スペースの大きさに応じて記録パルスの波形 を制御して適応的な記録パルスを発生する発生器108 と、適応的な記録パルスを各チャンネルの光出力の駆動 レベルに応じて電流信号形態に変換して前記光源を駆動 する駆動器110とを含む。これにより、入力されるNR 21データの現在のマークの大きさと以前及び/または以 降スペースの大きさに応じて記録パルスの最初のパルス 及び/または最後のパルスの幅を変化させ、ジッタを最 小化させてシステムの信頼性及び性能を向上させる。

30

【特許請求の範囲】

【請求項1】 最初のパルス、最後のパルス及びマルチパルス列で構成された記録パルスにより入力データを光記録媒体上に記録する方法において、

- (a) 入力データの現在のマークの大きさと以前及び/または以降スペースの大きさに応じて記録パルスの波形を制御して適応的な記録パルスを発生する段階と、
- (b) 前記適応的な記録パルスにより前記入力データを 前記光記録媒体上に記録する段階とを含む適応的な記録 方法。

【請求項2】 前記(a)段階では以前スペースの大きさと現在のマークの大きさに応じて前記最初のバルスの上昇エッジが可変される適応的な記録パルスを発生することを特徴とする請求項1に記載の適応的な記録方法。

【請求項3】 前記(a)段階では現在のマークの大きさと以降のスペースの大きさに応じて前記最後のパルスの下降エッジが可変される適応的な記録パルスを発生することを特徴とする請求項1に記載の適応的な記録方法。

【請求項4】 前記(a)段階では以前スペースの大きさと現在のマークの大きさに応じて前記最初のパルスの上昇エッジが可変され、現在のマークの大きさと以降のスペースの大きさに応じて前記最後のパルスの下降エッジが可変される適応的な記録パルスを発生することを特徴とする請求項1に記載の適応的な記録方法。

【請求項5】 前記(a)段階では以前スペースの大きさと現在のマークの大きさに応じて前記最初のパルスの上昇エッジが前後にシフトされ、現在のマークの大きさと以降のスペースの大きさに応じて前記最後のパルスの下降エッジが前後にシフトされる適応的な記録パルスを発生することを特徴とする請求項1に記載の適応的な記録方法

【請求項6】 前記最初のパルスの上昇エッジをシフトした期間及び前記最後のパルスの下降エッジをシフトした期間には所定チャンネルの光出力が印加されることを特徴とする請求項5に記載の適応的な記録方法。

【請求項7】 前記所定チャンネルの光出力は再生光出力または記録光出力のうち何れか1つであることを特徴とする請求項6に記載の適応的な記録方法。

【請求項8】 (c) 入力データがランドトラックのデータなのか、グルーブトラックのデータなのかを示すランド/グルーブ信号に応じて前記適応的な記録パルスの波形を修正する段階をさらに含むことを特徴とする請求項1に記載の適応的な記録方法。

【請求項9】 (a) 入力データのマーク及びスペースの大きさをグループ化させたグループ化テーブルのうちグループ化ポインターを用いて1つを選択する段階と、(b) 前記選択されたグループ化テーブルに貯蔵されたデータを用いて記録パルスの幅データを算出する段階と、

(c) 算出された幅データに応答して発生する適応的な

2 記録パルスにより入力データを光記録媒体上に記録する 段階とを含む適応的な記録方法。

【請求項10】 前記グループ化テーブルには入力されるデータの現在のマークの大きさと以前及び/または以降のスペースの大きさを各々短バルスグループ、中バルスグループ及び長パルスグループにグループ化して記録パルスの最初のパルスと最後のバルスの幅データが貯蔵されていることを特徴とする請求項9に記載の適応的な記録方法。

10 【請求項11】 前記グループ化テーブルには入力されるデータがランドトラックのデータなのか、グループトラックのデータなのかに応じて現在のマークの大きさと以前及び/または以降のスペースの大きさとを各々短パルスグループ、中パルスグループ及び長パルスグループにグループ化して記録パルスの最初のパルス及び/または最後のパルスの幅データが貯蔵されていることを特徴とする請求項9に記載の適応的な記録方法。

【請求項12】 前記グループ化テーブルには記録媒体上のゾーン別に現在のマークの大きさと以前及び/または以降のスペースの大きさとを各々短パルスグループ、中パルスグループ及び長パルスグループにグループ化して記録パルスの最初のパルス及び/または最後のパルスの幅データが貯蔵されていることを特徴とする請求項9に記載の適応的な記録方法。

【請求項13】 前記(b)段階は、

(b1) 以前スペースの大きさ及び現在のマークの大きさの組合せに応じて最初のパルスの上昇エッジのシフト値を読出して最初のパルスの幅データを算出する段階と、(b2) 現在のマークの大きさ及び以降スペースの大きさ

に応じて最後のパルスの下降エッジのシフト値を読出して最後のパルスの幅データを算出する段階とを含む請求項9に記載の適応的な記録方法。

【請求項14】 光源の光出力を最適化させる最初のパルス、最後のパルス及びマルチパルス列で構成された記録パルスにより入力データを光記録媒体上に記録する方法において、

- (a) 入力されるデータの現在のマークの大きさと以前 及び/または以降スペースの大きさを判別する段階と、
- (b) 判別された現在のマークの大きさと以前及び/または以降スペースの大きさに応じて記録パルスの最初のパルス及び/または最後のパルスの幅を可変させるパルス幅データを発生する段階と、
- (c) 前記パルス幅データに応じて適応的な記録パルスを発生して前記適応的な記録パルスのための各チャンネルの光出力の駆動レベルに応じて電流信号形態に変換して前記光源を駆動する段階とを含む適応的な記録方法。

【請求項15】 前記(b)段階は、(b1) 前記以前スペースの大きさと現在のマークの大きさに応じて前記最初のパルスの上昇エッジを前後にシフトする第1パルス幅

50 データを発生する段階と、

(b2) 前記現在のマークの大きさ及び以降スペースの大きさに応じて前記最後のパルスの下降エッジを前後にシフトする第2パルス幅データを発生する段階とを含む請求項14に記載の適応的な記録方法。

【請求項16】 前記最初のパルスの上昇エッジを前後にシフトした期間と前記最後のパルスの下降エッジを前後にシフトした期間とには所定チャンネルの光出力が印加されることを特徴とする請求項15に記載の適応的な記録方法。

【請求項17】 前記所定チャンネルの光出力は再生光出力及び記録光出力のうち何れか1つであることを特徴とする請求項16に記載の適応的な記録方法。

【請求項18】 (d) 前記入力データがランドトラックのデータなのか、グルーブトラックのデータなのかを示すランド/グルーブ信号に応じて前記適応的な記録パルスの最初のパルスと最後のパルスの幅を修正する段階をさらに含み、前記入力データはNRZIデータである請求項14に記載の適応的な記録方法。

【請求項19】 光源の光出力を最適化させる最初のパルス、最後のパルス及びマルチパルス列で構成された記録パルスにより入力データを光記録媒体上に記録する装置において、

入力されるデータの現在のマークの大きさと以前及び/または以降スペースの大きさとを判別する判別器と、前記現在のマークの大きさと以前及び/または以降スペースの大きさに応じて記録パルスの波形を制御して適応的な記録パルスを発生する発生器と、

前記適応的な記録パルスを各チャンネルの光出力の駆動 レベルに応じて電流信号形態に変換して前記光源を駆動 する駆動器とを含む適応的な記録回路。

【請求項20】 前記発生器は、

前記以前スペースの大きさと現在のマークの大きさに応じて最初のパルス幅を可変させ、前記現在のマークの大きさと以降スペースの大きさに応じて最後のパルスの幅を可変させるパルス幅データを出力する記録波形制御器

前記パルス幅データに応じて適応的な記録パルスを発生する記録パルス発生器とを含む請求項19に記載の適応的な記録回路。

【請求項21】 前記記録波形制御器は前記現在のマークの大きさと以前及び/または以降スペースの大きさを各々短バルスグループ、中パルスグループ、長バルスグループにグループ化して記録パルスの最初のバルスの幅データと最後のバルスの幅データが貯蔵されているメモリとして構成されることを特徴とする請求項20に記載の適応的な記録回路。

【請求項22】 前記記録波形制御器を初期化させ、記録条件に応じて前記メモリに貯蔵されたパルス幅データを更新するように制御するマイコンをさらに含む請求項21に記載の適応的な記録回路。

【請求項23】 前記メモリには入力されるデータがランドトラックのデータなのか、グループトラックのデータなのかに応じて記録パルスの最初のパルスと最後のパルスの幅データが貯蔵されていることを特徴とする請求項21に記載の適応的な記録回路。

【請求項24】 前記メモリには記録媒体上のゾーン別に記録パルスの最初のパルス及び最後のパルスの幅データが貯蔵されていることを特徴とする請求項21に記載の適応的な記録回路。

10 【請求項25】 前記最初のパルスの幅が可変された期間及び前記最後パルスの幅が可変された期間には所定チャンネルの光出力が印加されることを特徴とする請求項20に記載の適応的な記録回路。

【請求項26】 前記所定チャンネルの光出力は再生光 出力及び記録光出力のうち何れか1つであることを特徴 とする請求項25に記載の適応的な記録回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は高密度光記録機器のための適応的な記録方法及びその回路に係り、特に光源(レーザーダイオード)の光出力を記録媒体の特性に最適化させるための適応的な記録方法及びその回路に関する。

[0002]

【従来の技術】マルチメディア時代は高容量の記録媒体を要求し、このような高容量の記録媒体を使用する光記録機器としては、MODD(Magnetic Optical Disc Drive)及びDVD-RAM(Digital Versatile Disc Random Access Memory)ドライブが挙げられる。

30 【0003】このような光記録機器は記録密度が高まることにより、最適のシステム状態が必要となって精密性が要求される。一般に、記録容量が増加すればデータ領域(domain)の時間軸方向の振れ(以下、ジッタ(jitter)と称する)が大きくなるため、高密度の記録を具現するためにこのようなジッタを最小化することが何よりも重要である。

【0004】従来には、図1の(a)に示されたようにマークが3T、5T、11T(Tはチャンネルクロック期間)等で構成された入力NRZI(Non Return to Zero Inversion)データに対して図1の(b)に示されたようにDVD-RAMフォーマットブックに明示された状態で記録バルス(write pulse)を構成して記録した。ここで、このNRZIデータはマークとスペースとに区分され、このスペースはオーバーライトのための消去光出力状態である。3Tマークより長いマーク、即ち3T、4T、...、11T、14Tのための記録バルスは最初のバルス、最後のパルス及びマルチパルス列で構成され、マークの大きさに応じてこのマルチパルス列の数のみが変化される。

【0005】即ち、再生光出力(図1の(c))、ピーク光出 50 力(記録光出力とも称する:図1の(d))及びパイアス光出 カ(消去光出力とも称する:図1の(e))の組合せで図1の (b)に示された記録パルスの波形が構成される。この 際、図1の(c)、(d)及び(e)に示された各光出力信号はロ ーアクティブ信号である。

【0006】この記録パルス波形は第1世代、2.6GB DVD -RAM標準とも同一である。即ち、2.6GB DVD-RAM標準案 によれば、記録パルスの波形は最初のパルス、マルチパ ルス列と最後のパルスからなり、最初のパルスの上昇エ ッジまたは最後のパルスの下降エッジをリードイン(リ ードイン)領域で読出して使用することはできるが、一 度設定された値により固定された形態の記録パルスを記 録することになって適応的な記録が不可能であった。

【0007】従って、図1の(b)に示されたように記録パ ルスを構成して記録する際、入力されるMRZIデータに応 じて、特にマークの前端部または後端部で熱的干渉が大 きく発生しうる。即ち、マークが大きくてスペースが小 さいか、逆にスペースが大きくてマークが小さい場合に ジッタが最も激しく発生される。これはシステムの性能 を劣化させる最も大きな要因であり、今後の高密度DVD-RAM、例えば第2世代、即ち、4.7GB DVD-RAM等では使用 しにくくなる問題点があった。

[0008]

【発明が解決しようとする課題】前記問題点を解決する ための本発明の目的は、入力されるデータの現在のマー クの大きさと以前及び/または以降スペースの大きさに 応じて発生される適応的な記録パルスを記録する方法を 提供するにある。

【0009】本発明の他の目的は入力されるデータの現 在のマークの大きさと以前及び/または以降スペースの 大きさに応じて適応的な記録パルスを発生してレーザー ダイオードの光出力を最適化させる高密度光記録機器の ための適応的な記録回路を提供するにある。

[0010]

【課題を解決するための手段】前記目的を達成するため の本発明に係る適応的な記録方法は、最初のパルス、最 後のパルス及びマルチパルス列で構成された記録パルス により入力データを光記録媒体上に記録する方法におい て、入力データの現在のマークの大きさと以前及び/ま たは以降スペースの大きさに応じて記録パルスの波形を 制御して適応的な記録パルスを発生する段階と、適応的 な記録パルスにより前記入力データを光記録媒体上に記 録する段階とを含むことを特徴とする。

【0011】前記他の目的を達成するための本発明に係 る適応的な記録回路は、光源の光出力を最適化させる最 初のパルス、最後のパルス及びマルチパルス列で構成さ れた記録パルスにより入力データを光記録媒体上に記録 する装置において、入力されるデータの現在のマークの 大きさと以前及び/または以降スペースの大きさとを判 別する判別器と、現在のマークの大きさと以前及び/ま たは以降スペースの大きさに応じて記録パルスの波形を 50 て変化させたり、現在のマークの大きさと以降スペース

制御して適応的な記録パルスを発生する発生器と、適応 的な記録パルスを各チャンネルの光出力の駆動レベルに 応じて電流信号形態に変換して光源を駆動する駆動器と を含むことを特徴とする。

[0012]

【発明の実施の形態】以下、添付された図面に基づき、 本発明に係る高密度光記録機器のための適応的な記録方 法及びその回路の望ましい実施形態を説明する。本発明 に係る適応的な記録回路は図2に示されたようにデータ 判別器102、記録波形制御器104、マイコン106、記録パ 10 ルス発生器108及び電流駆動器110で構成される。即ち、 データ判別器102は入力されるNRZIデータを判別し、記 録波形制御器104はデータ判別器102で判別された結果 と、ランド/グルーブ(LAND/GROOVE)信号に応じて記録パ ルスの波形を修正する。マイコン106は記録波形制御器1 04を初期化させたり、記録条件に応じて記録波形制御器 104に貯蔵されたデータが更新されるように制御する。 記録パルス発生器108は記録波形制御器104の出力に応じ て適応的な記録パルスを発生させ、電流駆動器110は記 録パルス発生器108から発生された適応的な記録パルス を各チャンネルの光出力レベルに応じて電流信号に変換 して光源を駆動させる。

【0013】次いで、図2に示された装置の動作を図3乃 至図7に基づいて説明する。図2において、データ判別器 102は入力されるNRZIデータ(図3の(a))から現在の記録 パルスに該当するマーク(以下、現在のマークと称す る)の大きさ、現在の記録パルスの最初のパルスに該当 する前部のスペース(以下、以前スペースと称する)の 大きさと現在の記録パルスの最後のパルスに該当する後 部のスペース(以下、以降スペースと称する)を判別して 以前及び/または以降スペースの大きさと現在のマーク の大きさとを記録波形制御器104に印加する。

【0014】ここで、以前スペースの大きさ、現在のマ ークの大きさと以降スペースの大きさは各々最短3Tから 最長14Tまで有しうるため、これら全ての組合せを考慮 すれば、約1000種以上の場合の数が発生するので、これ ら全ての場合の数に対する最初のパルスの上昇エッジと 最後のパルスの下降エッジのシフト量を求める回路また はメモリが必要なのでシステムが複雑になり、ハードウ ェアが増加されうる。従って、本発明では入力されるNR ZIデータの現在のマークの大きさ、以前スペースの大き さ及び以降スペースの大きさを短パルスグループ、中パ ルスグループ、長パルスグループにグループ化し、グル ープ化された現在のマークの大きさ、グループ化された 以前スペースの大きさ及びグループ化された以降スペー スの大きさを用いることもできる。

【0015】記録波形制御器104はデータ判別器102から 供給される以前スペースの大きさと現在のマークの大き さに応じて最初のパルスの上昇エッジを前後にシフトし

30

40

の大きさに応じて最後のパルスの下降エッジを前後にシ フトして変化させて最適の光出力を有する記録波形を作 る。この際、マークのマルチパルス列は図3の(b)に示さ れたように0.5Tで同一な形態を取ることになる。

【0016】また、記録波形制御器104は入力されるNRZ Iデータがランドトラックのデータなのか、グループト ラックのデータなのかを示す外部から流入されるランド /グルーブ(LAND/GROOVE)信号に応じて現在のマークの最 初のパルスの上昇エッジと現在のマークの最後のパルス の下降エッジをそれぞれの他の値に修正しうる。その理 10 由はランドとグルーブに応じてそれぞれの最適光出力が 異なるので、これを考慮した記録波形を作るためであ る。ランドとグルーブの最適光出力は1-2mW程度の差が 有り得、規格においても別に設定及び管理可能になって いる。

【0017】従って、記録波形制御器104は入力されるN RZIデータの現在のマークの大きさと以前及び/または以 降スペースの大きさに応じて最初のパルスの上昇エッジ のシフト値と最後のパルスの下降エッジのシフト値に該 当するデータが貯蔵されたメモリまたはロジック回路で 20 構成されうる。記録波形制御器104がメモリで構成され る場合、最初のパルスと最後のパルスの幅はチャンネル クロック(T)±メモリに貯蔵されたデータ値(シフト値) で決まる。また、このメモリにはランドトラック及びグ ループトラックの場合を各々反映した記録パルスの最初 のパルスのシフト値と最後のパルスのシフト値が貯蔵さ れうる。最初のパルスの上昇エッジのシフト値が貯蔵さ れたテーブルと最後のパルスの下降エッジのシフト値が 貯蔵されたテーブルとが一つのテーブルで構成されうる が、図6及び図7に示されたように別のテーブルで構成さ れることも出来る。

【0018】マイコン106は記録波形制御器104を初期化 させたり、記録条件に応じて最適に調整された最初のパ ルス及び/または最後のパルスのシフト値が更新される ように制御する。特に、ゾーンにより光出力を変化させ たり、最初のパルス及び最後のパルスのそれぞれのシフ ト値を再設定することも出来る。

【0019】このように記録パルスの波形を制御するパ ルス幅データは記録パルス発生器108に提供される。記 録パルス発生器108は記録波形制御器104から供給される 記録パルス波形を制御するパルス幅データによって図3 の(f)に示されたように適応的な記録パルスを発生さ せ、この適応的な記録パルスに対する各チャンネル(再 生、ピーク、バイアス)の電流の流れを制御する制御信 号(図3の(c)、(d)、(e))を電流駆動器110に印加する。 【0020】電流駆動器110は入力される各チャンネル

(再生、ピーク、バイアス) の光出力の駆動レベルを、 各チャンネル電流の流れを制御する制御信号に該当する 制御時間だけ電流に変換してレーザーダイオードに流し て、レーザーダイオードの連続的なオン/オフ動作また

は光量変化を通じて記録媒体上に適切な熱を加えて所望 の記録波形を記録する。この際、記録媒体上には図3の (g)に示されたように記録ドメインが形成される。

【0021】即ち、図3の(a) は入力されるNRZIデータ であり、このNRZIデータはマークとスペースとに区分さ れる。図3の(b) は基本記録波形を示しており、基本記 録波形は現在のマークの上昇エッジに比べて記録パルス の最初のパルスの上昇エッジが0.5T遅れている。図3の (c) は適応的な記録パルスの再生光出力の波形であり、 図3の(d) は適応的な記録パルスのピーク光出力の波形 であり、図3の(e) は適応的な記録パルスのバイアス光 出力の波形である。

【0022】図3の(f) は本発明に係る適応的な記録パ ルスの波形を示す。この適応的な記録パルスの最初のパ ルスの上昇エッジは以前スペースの大きさ及び現在のマ ークの大きさの組合せによって前後にシフトでき、シフ トした期間には任意の光出力(ここでは、再生光出力ま たは記録光出力)が印加され、同様に最後のパルスの下 降エッジは現在のマークの大きさ及び以降スペースの大 きさの組合せによって前後にシフトでき、シフトした期 間には任意の光出力(ここでは、再生光出力または記録 光出力)が印加される。

【0023】しかし、本発明の他の例として、最後のパ ルスの下降エッジは現在のマークの以降スペースの大き さを考慮せずに現在のマークの大きさに応じて前後にシ フトでき、最初のパルスの上昇エッジ及び最後のパルス の下降エッジの全てをシフトせずに何れか1つのパルス のエッジをシフトすることもでき、かつシフトの方向も 前後、前または後にのみシフトしうる。

【0024】図4は入力されるNRZIデータのグループ化 を説明するための図面であって、2種のグループ化の構 成例が示されている。第1例を説明すれば、ローグルー プ化ポインターが3であり、ハイグループ化ポインター が12であれば、短パルスグループのマークは3Tで、中パ ルスグループのマークは4T~11Tであり、長パルスグル ープのマークは14Tである。第2例を説明すれば、ロー グループ化ポインターが4であり、ハイグループ化ポイ ンターが11であれば、短パルスグループは3T、4Tで、中 パルスグループは5T、6T、7T、8T、9T、10Tであり、長 パルスグループは11T、14Tとなる。このようにローグル ープ化ポインター及びハイグループ化ポインターを使用 するので活用性を高め、ゾーン別に異にグループ化する ことも出来る。

【0025】図5はグループ化ポインターを用いて図4に 示されたように入力されるNR2Iデータを3つのグループ に分類する場合、以前及び/または以降スペース、現在 のマークの組合せに応じる場合の数を示しており、図6 は以前スペースの大きさ及び現在のマークの大きさに依 存する最初のパルスの上昇エッジのシフト値を示すテー 50 ブルの例であり、図7は現在のマークの大きさ及び以降

スペースの大きさに依存する最後のパルスの下降エッジ のシフト値を示すテーブルの例である。

【0026】図8は本発明に係る適応的な記録方法の一実施形態に係る流れ図であって、まず記録モードを設定し(S101段階)、記録モードが設定されれば適応的な記録モードなのかを判断する(S102段階)。S102段階で判断されたモードが適応的な記録モードならばグループ化ポインターを設定し(S103段階)、設定されたグループ化ポインターに応じるグループ化テーブルを選択する(S104段階)。この選択されたグループ化テーブルはグループ化ポインターだけでなく、前述したようにランド/グループを反映したテーブル、または記録媒体のゾーンを反映したテーブルで有り得る。

【0027】以前スペース及び現在のマークの組合せに応じて最初のパルスの上昇エッジのシフト値を図6に示されたようなテーブルから読出し(\$105段階)、現在のマーク及び以降スペースの組合せに応じて最後のパルスの下降エッジのシフト値を図7に示されたようなテーブルから読出する(\$106段階)。

【0028】読出されたシフト量に応じて最初のパルス 20 及び最後のパルスが制御された適応的な記録パルスを生成し(\$107段階)、生成された適応的な記録パルスに対する各チャンネル(再生、ビーク、パイアス)の光出力を制御してレーザーダイオードを駆動し(\$108段階)、ディスクに記録する(\$109段階)。\$102段階で適応的な記録モードが設定されていないと、\$107段階では一般の記録パルスを生成する。

【0029】図9は本発明に係る適応的な記録方法及び従来の記録方法により発生されるジッタ量を比較したグラフであって、ピーク光出力が9.5mW、マルチバルス列の基底光出力が1.2mW、クーリングバルス光出力が1.2mW、バイアス光出力が5.2mWである時、本発明の適応的な記録バルスを記録してから発生されるジッタ量が既存の固定された記録パルスを記録してから発生するジッタ量よりさらに小さいのが分かる。初期化条件は、速度4.2m/s、消去光出力7.2mW及び記録回数100回であった。

【0030】即ち、本発明は適応的に記録バルスの幅を変化させるにおいて以前スペースの大きさ及び現在のマークの大きさに応じて最初のバルスの上昇エッジを適応的にシフトさせ、記録パルスの波形を制御及び/または現在のマークの大きさ及び以降スペースの大きさに応じて最後のバルスの下降エッジを適応的にシフトさせて記録パルスの波形を制御することによって、ジッタ量を最

小化する。また、ランド/グルーブ信号に応じて記録パルスの波形を最適化させることができる。また、本発明はグループ化ポインターを使用してゾーン別に異にグループ化することもある。

10

【0031】本発明から提案された新たな適応的な記録方法は適応的な記録バルスを使用して大部の高密度光記録機器において使用可能である。

[0032]

【発明の効果】前述したように、本発明は入力されるNR 2Iデータの現在のマークの大きさ及び以前及び/または 以降スペースの大きさに応じて記録パルスの最初のパルス及び最後のパルスの幅を変化させてジッタを最小化させてシステムの信頼性及び性能を向上させる効果と、現在のマークの大きさと以前及び/または以降スペースの大きさをグループ化して記録パルスの幅を制御することでハードウェアの大きさを縮める効果がある。

【図面の簡単な説明】

【図1】 (a)乃至(e) は従来の記録パルスの構成を示す波形図である。

20 【図2】 本発明に係る高密度光記録機器のための適応 的な記録回路の一実施形態によるブロック図である。

【図3】 (a)乃至(g) は図2に示された適応的な記録回路により記録される適応的な記録パルスの波形図である。

【図4】 入力されるデータのグループ化を説明するための図である。

【図5】 図4に示されたグループ化により生成されるパルス組合せのテーブルを示す図である。

【図6】 本発明に係る最初のパルスの上昇エッジのシ フト値を示すテーブルの一例を示す図である。

【図7】 本発明に係る最後のパルスの下降エッジのシフト値を示すテーブルの一例を示す図である。

【図8】 本発明に係る適応的な記録方法の一実施形態に係る流れ図である。

【図9】 本発明に係る適応的な記録方法及び従来の記録方法により発生されるジッタ量を比較した図である。

【符号の説明】

102 データ判別器

104 記錄波形制御器

0 106 マイコン

108 記録パルス発生器

110 電流駆動器

【図1】

【図3】

【図4】

【図5】

以前スペース	現在の 配録マーク	以降スペース
短ペルス	短ペルス	短ベルス
煩ペルス	短ベルス	中ペルス
短べルス	短ペルス	長ベルス
短パルス	中ベルス	短パルス
痴パルス	中パルス	中ベルス
短パルス	中バルス	長ベルス
短ペルス	長ペルス	短パルス
短べルス	長ベルス	中ペルス
短べルス	長バルス	長パルス
中パルス	短ペルス	短パルス
中ペルス	坦ベルス	中ペルス
中ペルス	恒パルス	長バルス
中ペルス	中ベルス	短ペルス
中パルス	中ペルス	中ペルス
中ベルス、	中パルス	長パルス
中ペルス	長バルス	短べいス
中ペルス	長ペルス	中ペルス
中ペルス・	長パルス	長パルス
長ペルス	短ペルス	短ベルス
長パルス	短バルス	中ペルス
長ペルス	短パルス	長パルス
長パルス	中ペルス	短パルス。
長パルス	中ペルス	中ペルス
長ベルス	中ペルス	長ペルス
長パルス	長パルス	俎ベルス
長パルス	長パルス	中ペルス
長パルス	長ペルス	長パルス

【図6】

以前スペース	型在の 記録マーク	最初のベルスの 上昇エッジシフト量(ns)
短ベルス	短ペルス	+1
短パルス	中パルス	-1
短バルス	長ベルス	3
中パルス	短パルス	+2
中ペルス	中パルス	0
中バルス。	長ペルス・	-2
長パルス	促パルス	-3
長ペルス:	中ペルス	-1
長パルス	長ペルス	0

【図7】

現在の記録マーク・・	以降スペース	最後のパルスの 下降エッジシフト量(na)
短べルス	短ベルス・	+1
中ベルス	恒パルス	+2
長パルス	短ベルス	+4
短ベルス	中心ス	-1
中ペルス	中ペルス	0
長ペルス	中バルス	+1
短べんス	長ペルス	-3
中ペルス	長ペルス	-1
EMA	長パルス	0

【図8】

[図9]

フロントページの続き

(72)発明者 尹 斗燮

大韓民国京畿道水原市勧善区好梅実洞377 番地エルジー三益アパート110棟1901号

(72) 発明者 盧 明道

大韓民国京畿道水原市八達区梅灘1洞176番地梅灘アパート33棟207号

(72)発明者 安 龍津

大韓民国ソウル特別市瑞草区良才洞 2-31 番地サンミビラー301号

(72)発明者 金 成洙

大韓民国ソウル特別市瑞草区盤浦洞18-1 番地住公アパート221棟206号

(72)発明者 李 ▲キュン▼根

大韓民国京畿道城南市盆唐区書▲ヒュン▼ 洞87番地示範韓信アバート122棟502号 (72)発明者 趙 明昊

大韓民国ソウル特別市西大門区弘済3洞6-43番地2層

(72)発明者 楊 蒼鎭

大韓民国京畿道水原市八達区遠川洞35番地 住公アパート103棟1304号

(72)発明者 金 宗圭

大韓民国京畿道水原市八達区靈通洞956-2番地清明マウル大宇アパート306棟1703

(72)発明者 高 成魯

大韓民国京畿道軍浦市堂洞252-4番地東 亜アパート101棟603号

(72)発明者 大塚 達宏

大韓民国京畿道水原市八達区牛滿洞29-1 番地現代アパート18棟308号