Alzheimer's Diagnosis using Brain Scan Data

Cameron DeArman, Andrew Calkins, and Kamryn Bendolph

Whoa!

By using MRI scans of patient's brains, we have developed a machine learning algorithm that should tell us which patients may be experiencing memory loss.

TABLE OF CONTENTS

How we came about our data and how we chose our topic of interest.

PRESENTATION

Demonstration of the model.

O2 ANALYSIS

Break down of the data and the direction we took.

04

CONCLUSION

Closing remarks, Future work, and Questions

"Being the richest man in the cemetery doesn't matter to me. Going to bed at night saying we've done something wonderful, that's what matters to me."

-Steve Jobs

Introduction

- It all started with an idea that lead to a Google search
- We then found our MRI data on the USC Image
 & Data Archive
- We then began research on what others had done before
- Once we had an idea what we what to do we dove into the data.

Analysis

Data

Our data consists of 420 MRI scans of patients who have been seen by a doctor concerning possible memory loss. Theses scans came in a nii file with three possible diagnosis:

- CN Normal Control or Functioning
- MCI Mild Cognitive Impairment
- AD Alzheimer's Disease

By Using these three categories we were able to train our machine to know what these images were supposed to look like.

Division of Our Data

In order to simplify our model, instead of using three groups, we decided to use only two. We left CN in a group alone and paired MCI with AD.

Steps of Data Preparation

01

Divided Data by making a Binary Classifier

04

We standardized our image sizes

02

Defined our Nii files as arrays ranging from 0 - 1776

05

Use a Convolutional
Neural Network as
our Machine

03

We then chose to slice across the Z-axis

06

Deployed model by using streamlit

Presentation

Check Out Our APP!

Conclusion

Our Product

We were able to explore slices of an MRI images and determine AD Cases.

Overfit model Accuracy Score: 72%

TIME SPENT: <1 Week

Future Work

We want to be able to examine the entire nii file which we believe would lead to better results.

Reduce overfitting Hopeful Accuracy: >85%

EST. TIME: 3 WEEKS

Expanding Our Product

DESKTOP SOFTWARE

By creating a desktop software, we would be able to market our product to Doctors offices to use in house to assist with their own analysis.

THANKS!

Cameron:

cmdearma@bsc.edu

Andrew:

awcalkin@bsc.edu

Kamryn:

larbandal@bas.adu

krbendol@bsc.edu

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories