Correction of Theorem 0.1

Miaoyan Wang, March 1, 2020

We now extend Theorem 4.1 to the case of unknown cut-off points **b**. Assume that the true parameters $(\Theta^{\text{true}}, \boldsymbol{b}^{\text{true}}) \in \mathcal{P} \times \mathcal{B}$, where the feasible sets are defined as

$$\mathcal{P} = \{ \Theta \in \mathbb{R}^{d_1 \times \dots \times d_K} : \operatorname{rank}(\mathcal{P}) \leq \boldsymbol{r}, \ \langle \Theta, \mathcal{J} \rangle = 0, \ \|\Theta\|_{\infty} \leq \alpha \},$$
$$\mathcal{B} = \{ \boldsymbol{b} \in \mathbb{R}^{L-1} : \|\boldsymbol{b}\|_{\infty} \leq \beta, \ \min_{\boldsymbol{\ell}} (b_{\ell} - b_{\ell-1}) \geq \Delta \}.$$

Here, $\mathcal{J} = [\![1]\!] \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ denotes a tensor of all ones. The constraint $\langle \Theta, \mathcal{J} \rangle = 0$ is imposed to ensure the identifiability of Θ and \boldsymbol{b} . We propose the constrained M-estimator

$$(\hat{\Theta}, \hat{\boldsymbol{b}}) = \underset{(\Theta, \boldsymbol{b}) \in \mathcal{P} \times \mathcal{B}}{\operatorname{arg max}} \mathcal{L}_{\mathcal{Y}}(\Theta, \boldsymbol{b}). \tag{1}$$

The estimation accuracy is assessed using the mean squared error (MSE):

$$MSE\left(\hat{\Theta}, \Theta^{\text{true}}\right) = \frac{1}{\prod_{k} d_{k}} \|\hat{\Theta} - \Theta^{\text{true}}\|_{F}, \quad MSE\left(\hat{\boldsymbol{b}}, \boldsymbol{b}^{\text{true}}\right) = \frac{1}{L-1} \|\hat{\boldsymbol{b}} - \boldsymbol{b}^{\text{true}}\|_{F}.$$

To facilitate the examination of MSE, we define an order-(K+1) tensor, $\mathcal{Z} = [\![z_{\omega,\ell}]\!] \in \mathbb{R}^{d_1 \times \cdots \times d_K \times (L-1)}$, by stacking the parameters $\Theta = [\![\theta_\omega]\!]$ and $\boldsymbol{b} = [\![b_\ell]\!]$ together. Specifically, let $z_{\omega,\ell} = -\theta_\omega + b_\ell$ for all $\omega \in [d_1] \times \cdots \times [d_K]$ and $\ell \in [L-1]$; that is,

$$\mathcal{Z} = -\Theta \otimes \mathbf{1} + \mathcal{J} \otimes \mathbf{b},$$

where **1** denotes a length-(L-1) vector of all ones. Under the identifiability constraint $\langle \Theta, \mathcal{J} \rangle = 0$, there is an one-to-one mapping between \mathcal{Z} and (Θ, \boldsymbol{b}) , with rank $(\mathcal{Z}) \leq (\operatorname{rank}(\Theta), 2)^T$. Furthermore,

$$\|\hat{\mathcal{Z}} - \mathcal{Z}^{\text{true}}\|_F^2 = \|\hat{\Theta} - \Theta^{\text{true}}\|_F^2 (L - 1) + \|\hat{\boldsymbol{b}} - \boldsymbol{b}^{\text{true}}\|_F^2 \left(\prod_k d_k\right), \tag{2}$$

where $\mathcal{Z}^{\text{true}} = \Theta^{\text{true}} \otimes \mathbf{1} + \mathcal{J} \otimes \boldsymbol{b}^{\text{true}}$ and $\hat{\mathcal{Z}} = \hat{\Theta} \otimes \mathbf{1} + \mathcal{J} \otimes \hat{\boldsymbol{b}}$.

We make the following assumptions about the link function.

Assumption 1. The link function $f: \mathbb{R} \mapsto [0,1]$ satisfies the following properties:

- 1. f(z) is twice-differentiable and strictly increasing in z.
- 2. $\dot{f}(z)$ is strictly log-concave and symmetric with respect to z=0.

We define the following constants that will be used in the theory:

$$C_{\alpha,\beta,\Delta} = \max_{|z| \le \alpha + \beta} \max_{\substack{z' \le z - \Delta \\ z'' \ge z + \Delta}} \max \left\{ \frac{\dot{f}(z)}{f(z) - f(z')}, \frac{\dot{f}(z)}{f(z'') - f(z)} \right\},$$

$$D_{\alpha,\beta,\Delta} = \max_{|z| \le \alpha + \beta} \max_{\substack{z' \le z - \Delta \\ z'' \ge z + \Delta}} \max \left\{ -\frac{\partial}{\partial z} \left(\frac{\dot{f}(z)}{f(z) - f(z')} \right), \frac{\partial}{\partial z} \left(\frac{\dot{f}(z)}{f(z'') - f(z)} \right) \right\},$$

$$A_{\alpha,\beta,\Delta} = \min_{|z| \le \alpha + \beta} \min_{\substack{z' \le z - \Delta \\ z'' \le z - \Delta}} \left(f(z) - f(z') \right).$$

$$(3)$$

Remark 1. The condition $\Delta = \min_{\ell}(b_{\ell} - b_{\ell-1}) > 0$ on the feasible set \mathcal{B} guarantees the strict positiveness of f(z) - f(z') and f(z'') - f(z). Therefore, the denominators in the above quantities $C_{\alpha,\beta,\Delta}, D_{\alpha,\beta,\Delta}$ are well-defined. Furthermore, by Theorem 8.1, f(z) - f(z') is strictly log-concave in (z,z') for $z \leq z' - \Delta, z, z' \in [-\alpha - \beta, \alpha + \beta]$. Based on Assumption 1 and closeness of the feasible set, we have $C_{\alpha,\beta,\Delta} > 0$, $D_{\alpha,\beta,\Delta} > 0$, $A_{\alpha,\beta,\Delta} > 0$.

Remark 2. Add the specific bound for logistic link.

Theorem 0.1 (Statistical convergence with unknown **b**). Consider an ordinal tensor $\mathcal{Y} \in [L]^{d_1 \times \cdots \times d_K}$ generated from model (1) with the link function f and parameters $(\Theta^{\text{true}}, \mathbf{b}^{\text{true}}) \in \mathcal{P} \times \mathcal{B}$. Suppose the link function f satisfies Assumption 1. Define $r_{\text{max}} = \max_k r_k$, and assume $r_{\text{max}} = \mathcal{O}(1)$.

Then with very high probability, the estimator in (1) satisfies

$$\|\hat{\mathcal{Z}} - \mathcal{Z}^{\text{true}}\|_F^2 \le \frac{c_1 r_{\text{max}}^{K-1} C_{\alpha,\beta,\Delta}^2}{A_{\alpha,\beta,\Delta}^2 D_{\alpha,\beta,\Delta}^2} \left(L - 1 + \sum_k d_k \right), \tag{4}$$

In particular,

$$\operatorname{MSE}\left(\hat{\Theta}, \Theta^{\operatorname{true}}\right) \leq \min\left(4\alpha^{2}, \ \frac{c_{1}r_{\max}^{K-1}C_{\alpha,\beta,\Delta}^{2}}{A_{\alpha,\beta,\Delta}^{2}D_{\alpha,\beta,\Delta}^{2}} \frac{L-1+\sum_{k}d_{k}}{(L-1)\prod_{k}d_{k}}\right),$$

and

$$MSE\left(\hat{\boldsymbol{b}}, \boldsymbol{b}^{true}\right) \leq \min\left(4\beta^{2}, \ \frac{c_{1}r_{\max}^{K-1}C_{\alpha,\beta,\Delta}^{2}}{A_{\alpha,\beta,\Delta}^{2}D_{\alpha,\beta,\Delta}^{2}} \frac{L-1+\sum_{k}d_{k}}{(L-1)\prod_{k}d_{K}}\right),$$

where $c_1, C_{\alpha,\beta,\Delta}, D_{\alpha,\beta,\Delta}$ are positive constants independent of the tensor dimension, rank, and number of ordinal levels.

Proof. (sketch)

Let $\nabla_{\mathcal{Z}} \mathcal{L}_{\mathcal{Y}} = [\![\frac{\partial \mathcal{L}_{\mathcal{Y}}}{\partial z_{\omega,\ell}}]\!] \in \mathbb{R}^{d_1 \times \cdots \times d_K \times [L-1]}$ denote the score function, and $\mathbf{H} = \nabla_{\mathcal{Z}}^2 \mathcal{L}_{\mathcal{Y}}$ the Hessian matrix. Following the same argument in the previous version (Taylor expansion, $r_{\text{max}}(\mathcal{Z}) = r_{\text{max}}(\Theta)$, etc.), we have

$$\|\hat{\mathcal{Z}} - \mathcal{Z}^{\text{true}}\|_F^2 \le c_1 r_{\text{max}}^{K-1} \frac{\|\nabla_{\mathcal{Z}} \mathcal{L}_{\mathcal{Y}}(\mathcal{Z}^{\text{true}})\|_{\sigma}^2}{\lambda_1^2 \left(\boldsymbol{H}(\check{\mathcal{Z}})\right)},\tag{5}$$

where $\nabla_{\mathcal{Z}} \mathcal{L}_{\mathcal{Y}}(\mathcal{Z}^{\text{true}})$ is the score evaluated at $\mathcal{Z}^{\text{true}}$, $\boldsymbol{H}(\check{\mathcal{Z}})$ is the Hession evaluated at $\check{\mathcal{Z}}$, for some $\check{\mathcal{Z}}$ between $\hat{\mathcal{Z}}$ and $\mathcal{Z}^{\text{true}}$, and $\lambda_1(\cdot)$ is the largest matrix eigenvalue.

Hence, it suffices to bound the score and the Hession.

1. (Score.) The (ω, ℓ) -th entry in $\nabla_{\mathcal{Z}} \mathcal{L}_{\mathcal{Y}}$ is

$$\frac{\partial \mathcal{L}_{\mathcal{Y}}}{\partial z_{\omega,\ell}} = \mathbb{1}_{\{y_{\omega}=\ell\}} \frac{\dot{f}(z)}{f(z) - f(z')} \bigg|_{(z, z') = (z_{\omega,\ell}, z_{\omega,\ell-1})} - \mathbb{1}_{\{y_{\omega}=\ell+1\}} \frac{\dot{f}(z)}{f(z'') - f(z)} \bigg|_{(z'', z) = (z_{\omega,\ell+1}, z_{\omega,\ell})}$$

which is upper bounded in magnitude by $C_{\alpha,\beta,\Delta} > 0$. Therefore, with very high probability,

$$\|\nabla_{\mathcal{Z}}\mathcal{L}_{\mathcal{Y}}(\mathcal{Z}^{\text{true}})\|_{\sigma} \leq C_{\alpha,\beta,\Delta} \sqrt{L-1+\sum_{k} d_{k}}.$$

2. (Hession.) The entries in the Hession matrix are

$$\begin{aligned} \text{Diagonal: } & \frac{\partial^2 \mathcal{L}_{\mathcal{Y}}}{\partial z_{\omega,\ell}^2} = \mathbbm{1}_{\{y\omega=\ell\}} \frac{\ddot{f}(z) \left(f(z) - f(z')\right) - \dot{f}^2(z)}{\left(f(z) - f(z')\right)^2} \Bigg|_{(z,\ z') = (z_{\omega,\ell},\ z_{\omega,\ell-1})} - \\ & \mathbbm{1}_{\{y\omega=\ell+1\}} \frac{\ddot{f}(z) \left(f(z'') - f(z)\right) + \dot{f}^2(z)}{\left(f(z'') - f(z)\right)^2} \Bigg|_{(z'',\ z) = (z_{\omega,\ell+1},\ z_{\omega,\ell})}, \end{aligned} \\ & \text{Off-diagonal: } & \frac{\partial^2 \mathcal{L}_{\mathcal{Y}}}{\partial z_{\omega,\ell} z_{\omega,\ell+1}} = \mathbbm{1}_{\{y\omega=\ell+1\}} \frac{\dot{f}(z_{\omega,\ell}) \dot{f}(z_{\omega,\ell+1})}{\left(f(z_{\omega,\ell+1}) - f(z_{\omega,\ell})\right)^2} \quad \text{and} \quad \frac{\partial^2 \mathcal{L}_{\mathcal{Y}}}{\partial z_{\omega,\ell} z_{\omega',\ell'}} = 0 \text{ otherwise.} \end{aligned}$$

Based on Assumption 1, the Hessian matrix H has the following three properties:

- (a) The Hession matrix is a block matrix, $\boldsymbol{H} = \operatorname{diag}\{\boldsymbol{H}_{\omega} : \omega \in [d_1] \times \cdots \times [d_K]\}$, and each block $\boldsymbol{H}_{\omega} \in \mathbb{R}^{(L-1)\times (L-1)}$ is a tridiagonal matrix.
- (b) The off-diagonal entries are either zero or strictly positive.
- (c) The diagonal entries are either zero or strictly negative. Furthermore,

$$\begin{aligned} & \boldsymbol{H}_{\omega}(\ell,\ell) + \boldsymbol{H}_{\omega}(\ell,\ell-1) + \boldsymbol{H}_{\omega}(\ell,\ell+1) \\ & = \frac{\partial^{2} \mathcal{L}_{\mathcal{Y}}}{\partial z_{\omega,\ell}^{2}} + \frac{\partial^{2} \mathcal{L}_{\mathcal{Y}}}{\partial z_{\omega,\ell}z_{\omega,\ell+1}} + \frac{\partial^{2} \mathcal{L}_{\mathcal{Y}}}{\partial z_{\omega,\ell-1}z_{\omega,\ell}} \\ & = \mathbb{1}_{\{y_{\omega}=\ell\}} \frac{\partial}{\partial z} \left(\frac{\dot{f}(z)}{f(z) - f(z')} \right) \bigg|_{(z, z') = (z_{\omega,\ell}, z_{\omega,\ell-1})} - \mathbb{1}_{\{y_{\omega}=\ell+1\}} \frac{\partial}{\partial z} \left(\frac{\dot{f}(z)}{f(z) - f(z')} \right) \bigg|_{(z'', z) = (z_{\omega,\ell+1}, z_{\omega,\ell})} \end{aligned}$$

We will show that, with very high probability over \mathcal{Y} , \boldsymbol{H} is negative definite in that

$$\lambda_1(\boldsymbol{H}) = \max_{\boldsymbol{z}} \frac{\boldsymbol{z}^T \boldsymbol{H} \boldsymbol{z}}{\|\boldsymbol{z}\|_F^2} \le -c_2 A_{\alpha,\beta,\Delta} D_{\alpha,\beta,\Delta}, \tag{6}$$

where $A_{\alpha,\beta,\Delta}$, $D_{\alpha,\beta,\Delta} > 0$ are constants defined in (3), and $c_1 > 0$ is a constant.

Let $\boldsymbol{z}_{\omega} = (z_{\omega,1}, \dots, z_{\omega,L-1})^T \in \mathbb{R}^{L-1}$ and $\boldsymbol{z} = (\boldsymbol{z}_{1,\dots,1}, \dots, \boldsymbol{z}_{d_1,\dots,d_K})^T \in \mathbb{R}^{(L-1)\prod_k d_k}$. It follows from property (a) that

$$oldsymbol{z}^T oldsymbol{H} oldsymbol{z} = \sum_{\omega} oldsymbol{z}_{\omega}^T oldsymbol{H}_{\omega} oldsymbol{z}_{\omega}.$$

Furthermore, properties (b) and (c) (or similar arguments as in page 29, arXiv preprint) imply that

$$\boldsymbol{z}_{\omega}^{T}\boldsymbol{H}_{\omega}\boldsymbol{z}_{\omega} \leq -D_{\alpha,\beta,\Delta}\sum_{\ell}z_{\omega,\ell}^{2}\underbrace{\mathbb{1}_{\{y_{\omega}=\ell \text{ or } \ell+1\}}}_{\text{Bernoulli r.v. with probability bounded by }A_{\alpha,\beta,\Delta}}.$$

Therefore,

 $\leq -D_{\alpha,\beta,\Delta} < 0.$

$$\boldsymbol{z}^{T}\boldsymbol{H}\boldsymbol{z} = \sum_{\omega} \boldsymbol{z}_{\omega}^{T}\boldsymbol{H}_{\omega}\boldsymbol{z}_{\omega} \leq -D_{\alpha,\beta,\Delta} \sum_{\omega} \sum_{\ell} z_{\omega,\ell}^{2} \mathbb{1}_{\{y_{\omega}=\ell \text{ or } \ell+1\}}.$$
 (7)

Based on central limit theorem (and concentration properties of Bernoulli r.v.'s), as the tensor dimension goes to infinity,

$$\sum_{\omega} \sum_{\ell} z_{\omega,\ell}^2 \mathbb{1}_{\{y_{\omega}=\ell \text{ or } \ell+1\}} \to \sum_{\omega} \sum_{\ell} z_{\omega,\ell}^2 \mathbb{P}(y_{\omega}=\ell \text{ or } \ell+1) \ge c_2 A_{\alpha,\beta,\Delta} \|\boldsymbol{z}\|_F^2$$
 (8)

holds with very high probability. By (7) and (8), we have

$$z^T H z \leq -c_2 A_{\alpha,\beta,\Delta} D_{\alpha,\beta,\Delta} ||z||_F^2$$

and therefore (6) is proved. Plugging (4) and (6) into (5) yields

$$\|\hat{\mathcal{Z}} - \mathcal{Z}^{\text{true}}\|_F^2 \le \frac{c_1 r_{\text{max}}^{K-1} C_{\alpha,\beta,\Delta}^2}{A_{\alpha,\beta,\Delta}^2 D_{\alpha,\beta,\Delta}^2} \left(L - 1 + \sum_k d_k \right).$$

The MSEs for $\hat{\Theta}$ and $\hat{\boldsymbol{b}}$ readily follow from (2).