

9.19 首先证明如下结论:

引理 9.5 设 T 为 k 叉正则树 $(k \ge 1)$, 且 T 中有 t 片树叶和 i 个分支点,则

$$t = (k-1)i + 1.$$

证明: 由题设可知,T 中各项点出度之和为 ki,各项点入度之和为 t+i-1。从而由图论基本定理有

$$ki = \sum_{v_i \in V(T)} d^+(v_i) = \sum_{v_i \in V(T)} d^-(v_i) = t + i - 1$$

整理得
$$t = (k-1)i+1$$
。

再证原题。

证明: 对T的高度k作归纳。

当 k=0 时,L=I=0。命题成立。

设对所有 $k < t(t \ge 1)$,命题都成立。当 k = t 时,对任意高度为 k 的 2 叉正则树 T,设 v_0 是 T 的树根且 T 中共有 l 片树叶, T_1 和 T_2 分别是 v_0 的两个子顶点导出的子树。 i_1, l_1, I_1, L_1 和 i_2, l_2, I_2, L_2 分别是 T_1 和 T_2 中的分支点数、树叶数、各分支点的层数之和以及各树叶的层数之和。由归纳假设,有 $L_1 = I_1 + 2i_1$ 和 $L_2 = I_2 + 2i_2$ 。

注意到,除 v_0 外,T 中的每一个分支点都在 $V(T_1) \cup V(T_2)$ 中,且 $V(T_1) \cap V(T_2) = \varnothing$ 。所以应有 $i=i_1+i_2+1$ 。由于 T 的高度 $t\geq 1$,所以 v_0 不可能是树叶。因此,T 的树叶全都在 $V(T_1) \cup V(T_2)$ 中。所以有 $l=l_1+l_2$ 。另一方面, $V(T_1) \cup V(T_2)$ 中每一个顶点相对 T_1 (或 T_2)的 层数这一顶点相对于 T 的层数少 1,且 v_0 在 T 中的层数为 0。因此有 $I=I_1+i_1+I_2+i_2$ 和 $L=L_1+l_1+L_2+l_2$ 。

从而有:

$$L = L_1 + l_1 + L_2 + l_2$$

 $= (I_1 + 2i_1) + l_1 + (I_2 + 2i_2) + l_2$ (归纳假设)
 $= I + i_1 + i_2 + l_1 + l_2$ ($I = I_1 + I_2 + i_1 + i_2$)
 $= I + i_1 + i_2 + l$ ($l = l_1 + l_2$)
 $= I + i_1 + i_2 + i + 1$ (引理 9.5)
 $= I + 2i$ ($i = i_1 + i_2 + 1$)

这就证明了当k = t时, 命题也成立。