- 1i)
$$Show \hat{F} = (\tilde{\mathcal{I}}/\hat{f}/\tilde{\mathcal{I}}) = Tr(\hat{f} P)$$

 $\hat{F} = \hat{f}(x) + \hat{f}(y)$.

I is our stater determinan of basis fultions.

Suppose we perform a unitary transferentian U, $X_a' = Z_1 \times b U_{ba}$.

Since our T is defined to be $\det(A)$, $A = \begin{pmatrix} x_1(x) & x_1(x) \end{pmatrix}$, then A' = AU will have $T' = \det(AU) = \det(A) \det(U)$. U is unitary, the vew antisymmetric watefunction differs but by a potational factor, of which vanishes in matrix elements.

It is always possible to find such U that diagonalizes. E (Stato 122), then we have $(X_a' | \hat{f} | X_b') = E_b \int_{ab}$. We can just drop the prime since it, abitary: $= \frac{1}{2} \left(\frac{1}{2} + \frac{1}{4} \right) = Z_{ab} \left(\frac{1}{2} \times \frac{1}{2} \right) = \sum_{ab} \left(\frac{1}{2} \times \frac{1}{2} \times$

Then we have: $\sum_{a} \langle \chi_{a} | f | \chi_{a} \rangle$ $= \sum_{a} \int d\gamma \ \chi_{a}^{*}(\tau) \ f(\gamma) \ \chi_{a}(\tau)$

For $X_a = \sum_{v}^{k} C_{va} P_a(\Upsilon)$, we get: $\sum_{v}^{k} \int_{v}^{k} \sum_{v}^{k} C_{va} C_{va} P_{va}(\Upsilon) P_{va}(\Upsilon)$ $= \sum_{v}^{k} \left(\sum_{v,v}^{k} C_{va} C_{va} \int_{v}^{k} d\Upsilon P_{va}(\Upsilon) P_{va}(\Upsilon)\right)$ $= \sum_{v}^{k} \left(\sum_{v,v}^{k} C_{va} C_{va} + F_{vv}\right)$ $= \sum_{v}^{k} \sum_{v}^{k} \sum_{v}^{k} C_{va} C_{va}$

= Tr(fP). , Where f= Fur, Pw = Za CvaCat