Estatística Matemática

Verossimilhança

Prof. Paulo Cerqueira Jr - cerqueirajr@ufpa.br Faculdade de Estatística - FAEST Programa de Pós-Graduação em Matemática e Estatística - PPGME Instituto de Ciências Exatas e Naturais - ICEN

https://github.com/paulocerqueirajr

1

Modelos estatísticos

Modelos Estatísticos

• Nosso ponto de partida será um estudo empírico (pode ser experimental ou observacional) que irá fornecer certo conjunto de dados (amostra) que denotamos por \mathbf{y} . Nos casos mais simples, $\mathbf{y} = (y_1, y_2, \dots, y_n)'$.

Suposição fundamental: considere ${f y}$ como um valor obtido de uma vetor aleatório Y.

- Nosso objetivo é usar ${f y}$ para tirar conclusões sobre a distribuição desconhecida $F(\cdot)$ de Y.
- Nossas conclusões sobre $F(\cdot)$ estão sujeitas à incerteza dado a aleatoriedade governando Y (que irá produzir \mathbf{y}). Devemos certificar que:
 - lacktriangle O nível de incerteza é o menor possível, considerando a aleatoriedade de Y.
 - Somos capazes de avaliar o nível de incerteza em nossas conclusões.

Modelos Estatísticos

- A natureza física do fenômeno que gera \mathbf{y} , o esquema de amostragem, e outras informações, irão colocar limites no conjunto de possíveis escolhas para $F(\cdot)$.
- Este conjunto (denotado por \mathcal{F}) é chamado de modelo estatístico.
- É intuitivo pensar que nossa inferênias serão mais precisas de formos capazes de selecionar o conjunto $\mathcal F$ menor possível, sob o requerimento de que $F\in\mathcal F$.
- Em alguns casos, podemos assumir que Y é uma a. a. com componentes independentes e identicamentes distribuídos. Neste caso, dizemos que \mathbf{y} é uma a.a. simples de Y.

- A princípio, \mathcal{F} pode ser qualquer conjunto de funções de distribuições, mas existe uma categoria de tais conjuntos que possui importante papel, tanto do ponto de vista teórico quando aplicado.
- Este caso ocorre todos os elementos de $\mathcal F$ são funções com a mesma formulação matemática, identificadas apenas pelas diferentes especificações de θ , que varia em $\Theta \in \mathbb R^k$,

$$\mathcal{F} = ig\{ F(\cdot \mid heta) : heta \in \Theta \subseteq \mathbb{R}^k ig\}$$

- Na grande maioria dos casos (em todos os casos que iremos considerar neste curso), toda a função de distribuição membro de ${\cal F}$ refere-se a v.a. discretas ou contínuas.
- ullet Então, ${\cal F}$ pode ser definida usando as f.p. ou f.d. correspondentes.
- ullet Podemos definir um modelo estatístico ${\mathcal F}$ (caso contínuo) como um conjunto de f.d's

$$\mathcal{F} = ig\{ f(\cdot \mid heta) : heta \in \Theta \subseteq \mathbb{R}^k ig\}$$

 θ : parâmetro.

 Θ : espaço paramétrico.

- \mathcal{F} , indicado acima, é chamado de classe paramétrica ou modelo paramétrico.
- Portanto, os elementos de ${\mathcal F}$ estão associados aos elementos de Θ .
- Em particular, existe um valor $\theta^* \in \Theta$, associado a $F(\cdot)$, chamado de **valor real** do parâmetro, e nossas inferências serão sobre θ^*

Definição 1 (Espaço amostral) É o conjunto $\mathcal Y$ de todos os possíveis resultados y compatíveis com o modelo paramétrico dado.

- Formalmente denotado por $\mathcal{Y}_{ heta}$ o suporte (domínio) da densidade $f(\cdot; heta)$, o espaço amostral é dado por $\mathcal{Y} = \bigcup_{ heta \in \Theta} \mathcal{Y}_{ heta}$.
- Frequentemente, entretanto, \mathcal{Y}_{θ} é o mesmo que as possíveis escolhas de θ , e este conjunto coincidirá com \mathcal{Y} .

Exemplo 1 Assuma que $Y \sim Binomial(n,\theta)$. Se $\theta \in [0,1]$, \mathcal{Y}_{θ} será o mesmo para todo θ . \mathcal{Y}_{θ} coincidirá com o espaço amostral $\mathcal{Y} = \{0,1,2,\ldots,n\}$.

- Se $heta\in[0,1]$, então $\mathcal{Y}_{ heta=0}=\{0\}$, $\mathcal{Y}_{ heta=1}=\{n\}$ e $\mathcal{Y}_{ heta\in(0,1)}=\{0,1,\ldots,n\}$.
- Neste caso, $\mathcal{Y} = igcup_{ heta \in [0,1]} \mathcal{Y}_{ heta} = \{0,1,\ldots,n\}.$

Exemplo 2 Se dois valores são amostrados independentemente da $N(\theta,1)$, então $\mathbf{y}=(y_1,y_2)^ op$, onde $y_i\in\mathbb{R}\ (i=1,2),$

$$\mathcal{Y} = \mathbb{R} imes \mathbb{R}, \quad Y \sim N \left[rac{ heta}{ heta}, I_2
ight],$$

em que,

$$f(y;\theta) = \phi(y_1 - \theta)\phi(y_2 - \theta)$$

- Se não houver qualquer restrição para heta, temos $\Theta=\mathbb{R}$.
- Se existir restrição (ex. sabemos que heta > 0)

- Aqui discutiremos três técnicas para construir famílias de distribuições.
- As famílias resultantes possuem interpretações físicas diretas que as tornam úteis para modelagem, além de apresentarem propriedades matemáticas convenientes. Considere apenas o caso contínuo.
- Os 3 tipos de famílias são:
 - i. locação;
 - ii. Iscala e
 - iii. locação e escala.
- Cada família é construída pela especificação de uma f.d f(x) chamada de densidade padrão da família.
- Todas as outras densidades da família podem ser geradas pela transformação da densidade padrão.

Teorema 1 Seja f(x) qualquer f.d. e considere μ e $\sigma>0$ como constantes conhecidas.

Então, a função
$$g(x|\mu,\sigma)=rac{1}{\sigma}f\left(rac{x-\mu}{\sigma}
ight)$$
 é uma f.d.

Prova: Para verificar que a transformação produziu um f.d. legítima, precisamos verificar que

$$\frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right)$$

se é:

- 1. não negativa;
- 2. integra 1.
- Logo, em relação a 1., tem-se

$$f(x)$$
 é uma f.d. $\Rightarrow f(x)>0, \forall x$, então $\dfrac{1}{\sigma}f\left(\dfrac{x-\mu}{\sigma}
ight)>0$, para todos os valores de x,μ e σ .

• Referente a 2.

$$\int_{-\infty}^{\infty} \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right) dx, \qquad y = \frac{x-\mu}{\sigma} e dy = \frac{1}{\sigma}.$$

Logo,

$$\int\limits_{-\infty}^{\infty}rac{1}{\sigma}f\left(y
ight)\sigma dy=\int\limits_{-\infty}^{\infty}f\left(y
ight)dy=1.$$

Definição 2 Seja f(x) qualquer f.d., então a família de densidades $f(x-\mu)$ indexada pelo parâmetro real μ é chamada de **família de locação (localização)** com densidade padrão f(x). O μ é conhecido como **parâmetro de localização da família**.

• O parâmetro μ simplesmente desloca a densidade f(x) de maneira que o formato do gráfico não é alterado, mas o ponto do gráfico de f(x) que estava acima de x=0, estará agora acima de $x=\mu$ para $f(x-\mu)$.

Exemplo 3 Se $\sigma > 0$ é especificado e definimos

$$f(x) = (2\pi\sigma^2)^{-1/2} \expiggl\{ -rac{1}{2\sigma^2} (x-\mu)^2 iggr\} I_{(-\infty,\infty)}(x),$$

então a família de localização com densidade padrão f(x) é o conjunto de distribuições Normais com média μ desconhecida e variância σ^2 conhecida.

- A família Cauchy com σ (conhecido) e μ (desconhecido) é outro exemplo de família de locação.
- O ponto principal da Definição 2 é que podemos iniciar com qualquer densidade f(x) e gerar uma família de densidades com a introdução do parâmetro de localização.
- Se X é uma variável aleatória com densidade $f(x-\mu)$, então X pode ser representada como $X=Z+\mu$, onde Z é variável aleatória com densidade f(z).

Exemplo 4 (Família de locação exponencial) Seja $f(x)=e^{-x}$ para todo $x\geq 0$ e f(x)=0 para x<0.

Para formar uma família de locação devemos substituir x por $x-\mu$

$$f(x) = \left\{egin{array}{ll} e^{-(x-\mu)} & x-\mu \geq 0 \ 0 & x-\mu < 0 \end{array}
ight. = \left\{egin{array}{ll} e^{-(x-\mu)} & x \geq \mu \ 0 & x < \mu \end{array}
ight.$$

Definição 3 Seja f(x) qualquer f.d., então para qualquer $\sigma>0$, a família de densidades $1/\sigma f[x/\sigma]$ indexada pelo parâmetro σ é chamada de **família de escala** com densidade padrão f(x) e parâmetro de escala σ .

• O efeito de introduzir σ é tanto esticar ($\sigma>1$) quanto contrair ($\sigma<1$) o gráfico f(x) a forma básica é mantida.

Exemplo 5 $Ga\left(\alpha,\beta=\frac{1}{\sigma}\right)$ com α conhecido e $\beta=\frac{1}{\sigma}$ onde σ é desconhecido.

A densidade padrão $Ga(\alpha,\beta=1)$

$$f(x|lpha,eta=1)=rac{1}{\Gamma\left(lpha
ight)}x^{lpha-1}\exp\{-x\}I_{(-\infty,\infty)}(x).$$

Logo,

$$f(x/\sigma) = rac{1}{\Gamma\left(lpha
ight)}rac{x^{lpha-1}}{\sigma^{lpha-1}}\mathrm{exp}\Big\{-rac{x}{\sigma}\Big\}I_{(-\infty,\infty)}(x) \ 1/\sigma f(x/\sigma) = rac{1}{\sigma^{lpha}}rac{1}{\Gamma\left(lpha
ight)}x^{lpha-1}\,\mathrm{exp}\Big\{-rac{x}{\sigma}\Big\}I_{(-\infty,\infty)}(x)$$

Exemplo 6 Família Normal com $\mu=0$ e σ^2 desconhecido.

A densidade padrão N(0,1)

$$f(x) = 1*(2\pi)^{-1/2} \expiggl\{ -rac{1}{2(1)} x^2 iggr\} I_{(-\infty,\infty)}(x),$$

Logo,

$$egin{align} f(x/\sigma) &= & (2\pi)^{-1/2} \expiggl\{ -rac{1}{2\sigma^2} (x-\mu)^2 iggr\} I_{(-\infty,\infty)}(x) \ &1/\sigma f(x/\sigma) = & (2\pi\sigma^2)^{-1/2} \expiggl\{ -rac{1}{2\sigma^2} (x-\mu)^2 iggr\} I_{(-\infty,\infty)}(x) \ & \end{aligned}$$

Definição 4 Seja f(x) qualquer f.d., então para qualquer μ real e qualquer $\sigma>0$ a família de densidades

$$rac{1}{\sigma}f\left\lceil rac{(x-\mu)}{\sigma}
ight
ceil$$
 ,

indexadas pelos parâmetros (μ, σ) , é chamada de família de locação e escala com densidade padrão f(x). Neste caso, μ é o parâmetro de localização e σ é o parâmetro de escala.

- Efeito da inclusão dos parâmetros:
 - μ irá deslocar o gráfico de maneira que o ponto que estava acima de 0, agora fica acima de μ .
 - lacksquare σ irá esticar ($\sigma>1$) ou contrair ($\sigma<1$) o gráfico de f(x).

• O seguinte teorema relaciona a transformação da f.d. f(x), que define uma família de locação e escala, com a transformação da variável aleatória Z com densidade f(z).

Teorema 2 Seja $f(\cdot)$ qualquer f.d. e considere $\mu \in \mathbb{R}$ e $\sigma \in \mathbb{R}^+$. Então X é uma v.a. com densidade $1/\sigma f[(x-\mu)/\sigma]$, se e somente se, existe uma v.a. Z com densidade f(z) e $X=\sigma Z+\mu$.

- No Teorema 2:
 - Se $\sigma = 1$: família de locação (apenas).
 - Se $\mu = 0$: família de escala (apenas).

• Fato importante a ser extraído do Teorema 12 é que $Z=rac{X-\mu}{\sigma},$ tem f.d.

$$f_Z(z) = rac{1}{1} f\left(rac{z-0}{1}
ight) = f(z),$$

isto é, a distribuição de Z é membro da família de locação escala com $\mu=0$ e $\sigma=1$.

• Frequentemente, cálculos são desenvolvidos para a v.a. padrão Z com f.d f(z) e então o resultado correspondente para a v.a. X com f.d. $1/\sigma f[(x-\mu)/\sigma]$ pode ser facilmente derivado.

Teorema 3 Seja Z uma v.a. com f.d. f(z). Suponha que E(Z) e Var(Z) existem. Se X é uma v.a. com densidade $1/\sigma f(x/\sigma)$, então,

$$E(X) = \sigma E(Z) + \mu e Var(X) = \sigma^2 Var(Z).$$

- ullet Em particular, se E(Z)=0 e Var(Z)=1, então, $E(X)=\mu$ e $Var(X)=\sigma^2$.
- Probabilidades para qualquer membro da família de locação escala pode ser calculada em termos da variável padrão Z.

$$P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = P\left(Z \le \frac{x - \mu}{\sigma}\right).$$

- ullet Considere o dado modelo do tipo: $\mathcal{F}=ig\{f(\cdot\mid heta): heta\in\Theta\subseteq\mathbb{R}^kig\}.$
- Quando um valor amostral y é observado, o valor da f.d $f(y;\theta)$ dependerá apenas de θ .
- Esta função nos parece a f.d para observar aquilo que de fato observamos (y).
- Se precisamos estabelecer um *ranking* envolvendo dois elementos de θ (considere θ' e θ''), então uma quantidade relevante e útil para esta tarefa será a razão $f(y;\theta')/f(y;\theta'')$, desde que o denominador não seja zero.
- Como esta razão não muda caso ambos os temos sejam multiplicados por uma constante postiva C, independentemente de θ , então para comparar os elementos de Θ a quantidade relevante será proporcional a $f(y;\theta)$.

Definição 5 Para o modelo $\mathcal{F}=\left\{f(\cdot\mid\theta):\theta\in\Theta\subseteq\mathbb{R}^k\right\}$ a partir do qual uma amostra $y\in\mathcal{Y}$ foi observada, usamos o termo **função de verossimilhança**, ou simplesmente **verossimilhança**, para a função de Θ para $\mathbb{R}^+\cup\{0\}$ escrita como

$$L(\theta; y) = c(y)f(y; \theta),$$

em que c(y) : constante positiva independente de heta.

- A verossimilhança é uma função de θ .
- A notação $L(\theta;y)$ é usada para enfatizar que esta função depende de y, no sentido de que para uma amostra diferente y' obteremos uma verossimilhança diferente $L(\theta;y')$.

- Note que não importa se escrevemos c ou c(y) na definição de verossimilhança, uma vez que a verossimilhança é uma função de θ .
- Mesmo que todo valor $L(\theta;y)$ seja determinado por distribuições de probabilidades, a função de verossimilhança **não é uma distribuição de probabilidade**.
- $L(\theta;y)$ é uma quantidade não negativa, e na maioria dos casos é positiva para todo θ . Sendo assim, definimos a função de log-verossimilhança como:

$$\ell(\theta; y) = \ln L(\theta; y) = c + \ln f(y; \theta),$$

com a convenção de que $\ell(\theta;y)=-\infty$ se $L(\theta;y)=0$.

Exemplo 7 Considere uma a.a. $\mathbf{y}=(y_1,y_2,\ldots,y_n)^{'}$ da v.a. $N(\mu,\sigma^2)$, onde $\theta=(\mu,\sigma^2)$ varia no espaço $\Theta=\mathbb{R}\times\mathbb{R}^+$.

Devido à independência das componentes, temos,

$$egin{array}{lll} L(heta;\mathbf{y}) &=& c \prod_{i=1}^n (2\pi\sigma^2)^{-1/2} \expiggl\{ -rac{1}{2\sigma^2} (y_i-\mu)^2 iggr\} \ &=& c \ (2\pi\sigma^2)^{-n/2} \expiggl\{ -rac{1}{2\sigma^2} \sum_{i=1}^n (y_i-\mu)^2 iggr\} \ &=& c \ (2\pi\sigma^2)^{-n/2} \expiggl\{ -rac{1}{2\sigma^2} iggl[\sum_{i=1}^n y_i^2 - 2\mu \sum_{i=1}^n y_i + n\mu^2 iggr] iggr\} \end{array}$$

- Qualquer constante não dependente de heta, por exemplo, c=1.
- Função de log-verossimilhança

$$\ell(heta; \mathbf{y}) = c - rac{n}{2} \ln 2\pi - rac{n}{2} \ln \sigma^2 - rac{1}{2\sigma^2} \left| \sum_{i=1}^n y_i^2 - 2\mu \sum_{i=1}^n y_i + n\mu^2
ight|$$

Exemplo 8 Considere uma a.a. $\mathbf{x}=(x_1,x_2,\ldots,x_n)'$ da v.a. $U(0,\theta)$, onde $\theta>0$. A f.d. associada a x_i é $f(x_i)=\frac{1}{\theta}$, se $x_i\in(0,\theta)$.

- Quando multiplicamos tais f.d.'s para obter $L(\theta;x)$, não podemos simplesmente multiplicar o termo $1/\theta$ sen considerar a condição se $x_i \in (0,\theta)$.
- Portanto, escrevemos a densidade para uma única observação, como segue,

$$rac{1}{ heta}I_{(0, heta)}(x),\ x\in\mathbb{R}.$$

Função de verossimilhança

$$egin{array}{lll} L(heta;\mathbf{x}) &=& c\prod_{i=1}^nrac{1}{ heta}I_{(0, heta)}(x_i) \ &=& rac{c}{ heta^n}\prod_{i=1}^nI_{(0, heta)}(x_i) \end{array}$$

ullet Note que $\prod_{i=1}^n I_{(0, heta)}(x_i)=1$, se

$$egin{array}{ll} 0 < x_1 < heta \ 0 < x_2 < heta \ dots & x_{(n)} < heta \ dots & x_{(n)} < heta \ 0 < x_n < heta \end{array}$$

Assim,

$$egin{array}{lll} L(heta;\mathbf{y}) &=& c\prod_{i=1}^nrac{1}{ heta}I_{(0, heta)}(x_i) \ &=& rac{c}{ heta^n}I_{(x_{(n)},\infty)}(heta) \end{array}$$

A log-verossimilhança:

$$\ell(heta; \mathbf{y}) = \left\{egin{array}{ll} \infty, & heta \leq x_{(n)} \ c - n \ln heta, & heta > x_{(n)} \end{array}
ight.$$

Princípio da verossimilhança.

- A função de verossimilhança conecta a informação pré-experimental (expressa pela escolha do modelo) com a informação experimental contida em y.
- Portanto, de certa forma, a verossimilhança contém tudo que sabemos sobre o problema de inferência em questão (sem levar em conta qualquer informação sobre θ que, por qualquer razão, não foi acomodada no modelo, tais como opiniões pessoais ou resultado de estudos relacionados).

Exemplo 9 O princípio da verossimilhança. Para um modelo estatístico $\{f(\cdot \mid \theta): \theta \in \Theta\}$ dois pontos $y,z \in \mathcal{Y}$ tal que $L(\theta;y) \propto L(\theta;z)$ devem levar às mesmas conclusões inferenciais.

- Esta afirmação representa a versão mais fraca do princípio da verossimilhança.
- A seguir apresentamos uma versão mais forte que diz que as conclusões coincidem mesmo quando as duas observações se referem a modelos distintos e espaços amostrais distintos.

Princípio da verossimilhança.

Definição 6 Considere um experimento que consiste em lançar várias vezes uma moeda, de forma independente, e seja θ a probabilidade de ocorrer coroa \bar{C} e $1-\theta$ a probabilidade de ocorrer cara C.

Suponha que o resultado do experimento foi:

$$\mathbf{x} = \{ ar{C}, ar{C}, ar{C}, ar{C}, ar{C}, C, C, ar{C}, ar{C}, ar{C}, C, C \}$$

Regras de parada:

- 1. Lançar a moeda 12 vezes (n^o de lançamentos fixado);
- 2. Lançar a moeda até aparecer 3 caras;
- 3. Lançar a moeda até aparecerem 2 caras consecutivas;
- 4. Lançar a moeda até o lançador ficar cansado.

Princípio da verossimilhança.

Em qualquer situação a verossimilhança é proporcional a

$$\theta^9(1-\theta)^3$$
,

• Segundo o princípio da verossimilhança as inferências devem ser a mesmas qualquer que tenha sido o processo experimental (ou a regra de parada).

- Em uma descrição mais simplificada da teoria estatística, alguns poderiam dizer que seu objetivo é selecionar as **operações** mais apropriadas para serem aplicadas aos dados.
- Visto que uma variedade destas operações serão consideradas, é necessário introduzir a seguinte definição:

Definição 7 Uma função $T(\cdot):y\to\mathbb{R}^R$, para algum inteiro positivo r, tal que T(y) não depende de θ , é chamada de **Estatística**, e o valor t=T(y) correspondendo ao valor observado y é chamado de valor amostral.

• A condição de que T(y) não dependa de θ é necessária para assegurar que a estatística seja calculável na presença dos dados.

Exemplo 10 Estatísticas para uma amostra (y_1, y_2, \dots, y_n) cujos elementos pertencem a \mathbb{R} :

$$egin{aligned} T_1 &= \sum\limits_{i=1}^n y_i, & T_1(\cdot): (y_1,y_2,\ldots,y_n)
ightarrow \mathbb{R} \ & T_2 &= \sum\limits_{i=1}^n \exp\{y_i\}, & T_2(\cdot): (y_1,y_2,\ldots,y_n)
ightarrow \mathbb{R}^+ \ & T_3 &= \left(\sum\limits_{i=1}^n y_i, \sum\limits_{i=1}^n \exp\{y_i\}
ight), & T_3(\cdot): (y_1,y_2,\ldots,y_n)
ightarrow \mathbb{R} imes \mathbb{R}^+ \end{aligned}$$

Obviamente, estes são apenas 3 exemplos entre inúmeros casos.

• Algumas vezes devemos considerar a imagem inversa dos valores de t de uma estatística T, isto é, conjuntos do tipo:

$$A_t = \left\{y: y \in \mathcal{Y}; T(y) = t
ight\},$$

formam uma partição do espaço amostral. Fazemos referência a esta partição induzida por T(y).

- ullet Por exemplo, se $T=\sum_{i=1}^n y_i$, os conjuntos $\{A_t\}$ serão hiperplanos paralelos uns aos outros.
- Um conjunto específico A_t é dado por todos os pontos $\mathbf{y}=(y_1,y_2,\ldots,y_n)'\in\mathbb{R}$ satisfazendo a equação $y_1+y_2+\cdots+y_n=t$.

Exemplo 11 Entre os tipos de estatísticas que iremos considerar, alguns são usados com frequência e a eles são dados nomes específicos. Para a amostra $(y_1, y_2, \ldots, y_n)'$ o r-ésimo momento amostral é a estatística de \mathcal{Y} para \mathbb{R} dada por

$$m_r = rac{1}{n} \sum_{i=1}^n y_i^r.$$

- ullet Em particular, $m_1=rac{1}{n}\sum_{i=1}^n y_i^1$ é a média amostral $ar{y}$.
- Outro exemplo de estatística é o que definimos como variância amostral:

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (y_i - ar{y})^2,$$

que assume valores em $\mathbb{R}^+ \cup \{0\}$.

- No caso da distribuição $N(\mu, \sigma^2)$, temos a verossimilhança indicada abaixo para uma amostra aleatória simples $(y_1, y_2, \dots, y_n)' = \mathbf{y}$.
- Considere $\theta = (\mu, \sigma^2)$,

$$L(heta; \mathbf{y}) = (2\pi\sigma^2)^{-n/2} \expiggl\{ -rac{1}{2\sigma^2} iggl[\sum_{i=1}^n y_i^2 - 2\mu \sum_{i=1}^n y_i + n\mu^2 iggr] iggr\}$$

- Veja que não é preciso conhecer todos os elementos individuais de (y_1,y_2,\ldots,y_n) para escrever $L(\theta;\mathbf{y})$ do *slide* anterior, dado a quantidade $\left(\sum\limits_{i=1}^n y_i,\sum\limits_{i=1}^n y_i^2\right)$.
- Essa função de verossimilhança é unicamente identificada, entre todas as possíveis funções de verossimilhança para o modelo estatístico escolhido, uma vez que dois valores $\left(\sum_{i=1}^n y_i, \sum_{i=1}^n y_i^2\right)$ são dados.
- A questão agora é saber se tal situação favorável pode ser estendida em geral, ou pelo menos para algumas classes de modelos (neste caso, para quais classes?) A seguir, iremos examinar a natureza e propriedades daquelas estatísticas capazes de sumarizar toda a informação presente na função de verossimilhança.

Definição 8 Para o modelo $\mathcal{F}=\{f(\cdot\mid\theta):\theta\in\Theta\}$, uma estatística T(y) é dita **suficiente** para θ se assume valores em dois pontos do espaço amostral somente se estes pontos possuem verossimilhanças equivalentes. Isto é:

$$orall \ y,z\in \mathcal{Y}, \quad T(y)=T(z)\Rightarrow L(heta;y)\propto L(heta;z), orall \ heta\in \Theta.$$

- Devemos ter em mente que a propriedade de suficiência está diretamente relacionada à escolha do modelo.
- Se o modelo é alterado, as estatísticas em questão podem não ser mais suficientes.
- Para qualquer modelo, sempre existirá uma estatística suficiente que será a própria amostra $\mathbf{y} = (y_1, \dots, y_n)'$, entretanto, esta estatística suficiente é uma escolha muito trivial e na prática é desconsiderada.

Exemplo 12 Suponha que θ pode assumir dois valores (0 e 1). As duas funções de verossimilhança correspondentes são fornecidas a seguir:

Note que:

$$L(heta=0;y=2) = 3 \underbrace{L(heta=0;y=1)}_{1/12} \ L(heta=1;y=2) = 3 \underbrace{L(heta=1;y=1)}_{2/12}$$

Estatística:

$$T(y)=I_{\{0\}}(y)=egin{cases} 1,& ext{se }y=0\ 0,& ext{se }y
eq0 \end{cases}$$
 $T(y=1)=0=T(y=2)\Rightarrow L(heta;y=1)\propto L(heta;y=2).$

Exemplo 13 Considere $g(\cdot; \theta)$ a f.d. associada a uma a.a. simples $\mathbf{y} = (y_1, y_2, \dots, y_n)$.

• A função de verossimilhança pode ser escrita como

$$L(heta;\mathbf{y}) = \prod_{i=1}^n g(y_i; heta) = \prod_{i=1}^n g(y_{(i)}; heta),$$

onde na última igualdade, os temos foram multiplicados após terem sido organizados de acordo com as estatísticas de ordem.

- Portanto, duas amostras com as mesmas estatísticas de ordem possuem as mesmas funções verossimilhança.
- Segue então que, para quaisquer f.d.'s $g(\cdot; \theta)$ as estatísicas de ordem são suficientes.

- Se $T(\cdot)$ é uma estatística suficiente, então $L(\theta; \mathbf{y})$ depende apenas através de $T(\mathbf{y})$. Isto significa que existe uma função g tal que $L(\theta; \mathbf{y}) \propto g(T(\mathbf{y})|\theta)$.
- ullet Note que $L(heta;\mathbf{y}) \propto f(\mathbf{y}| heta)$, logo

$$rac{f\left(\mathbf{y}| heta
ight)}{g\left(T(\mathbf{y})| heta
ight)},$$

não dependerá de θ .

Denote:

$$h(\mathbf{y}) = rac{f\left(\mathbf{y}| heta
ight)}{g\left(T(\mathbf{y})| heta
ight)},$$

portanto, se $T(\cdot)$ é estatística suficiente, a seguinte relação será válida: $f(\mathbf{y}|\theta) = h(\mathbf{y})g(T(\mathbf{y})|\theta)$.

Teorema 4 (Teorema da Fatoração de Neyman) Para o modelo

 $\mathcal{F} = \left\{ f(\cdot \mid \theta) : \theta \in \Theta \subseteq \mathbb{R}^k \right\}$ a estatística $T(\cdot)$ é sufuciente para θ se e somente se $f(\mathbf{y}; \theta)$ pode ser escrita na forma $f(\mathbf{y} | \theta) = h(\mathbf{y}) g\left(T(\mathbf{y}) | \theta\right)$ para alguma função $g \in h$.

Uma forma alternativa de interpretar a definição:

Se conhecermos o valor amostral de $t=T(\mathbf{y})$ e escrevessemos a verossimilhança $L_T(\theta;t)$ para o modelo estatístico associado a distribuição de T, então tal verssimilhança seria equivalente a $L(\theta;\mathbf{y})$.

Exemplo 14 Considere $g(\cdot; \theta)$ a f.d. associada a uma a.a. simples $\mathbf{y} = (y_1, y_2, \dots, y_n)$ obtida de forma que $Y_i \sim Bin(1, \theta)$.

• Temos a verossimilhança:

$$egin{array}{lll} L(heta;\mathbf{y}) &=& \prod_{i=1}^n heta^{y_i} (1- heta)^{1-y_i} \ &=& heta^{\sum\limits_{i=1}^n y_i} (1- heta)^{n-\sum\limits_{i=1}^n y_i} \ &=& heta^{T(\mathbf{y})} (1- heta)^{n-T(\mathbf{y})} \ &=& heta^{T(\mathbf{y})} (1- heta)^{n-T(\mathbf{y})} \ &=& heta^{T(\mathbf{y})} (1- heta)^{n-T(\mathbf{y})} \ \end{array}$$

• Temos então que $T(\mathbf{y})=\sum\limits_{i=1}^ny_i$ é uma estatística suficiente para heta e que $T(\mathbf{y})\sim Bin(n, heta)$, em que

$$\binom{n}{t} heta^t (1- heta)^{n-t}.$$

• Uma outra forma de definir estatística suficiente pode ser expressa como segue:

Definição 9 Uma estatística $T(\cdot)$ é suficiente para θ se a distribuição condicional de Y dado o valor de T(Y) não depende de θ . Em outras palavras:

$$P(Y = y | T(Y) = T(y), \theta) = P(Y = y | T(Y) = T(y)).$$

Exemplo 15 Sejam (X_1,\dots,X_n) uma a.a. da v.a. $X\sim Ber(\theta)$. Verifique se $T=\sum_{i=1}^n X_i$ suficiente para θ .

Exemplo 16 Considere $\mathbf{y}=(y_1,y_2,\ldots,y_n)$ uma a.a. simples da $N(\mu,\sigma^2)$,

$$egin{array}{lll} L(heta;\mathbf{y}) &=& \prod_{i=1}^n (2\pi\sigma^2)^{-1/2} \expiggl\{ -rac{1}{2\sigma^2} (y_i-\mu)^2 iggr\} I_{(-\infty,\infty)}(y_i) \ &=& (2\pi\sigma^2)^{-n/2} \expiggl\{ -rac{1}{2\sigma^2} iggl[\sum\limits_{i=1}^n y_i^2 - 2\mu \sum\limits_{i=1}^n y_i + n\mu^2 iggr] iggr\} \prod\limits_{i=1}^n I_{(-\infty,\infty)}(y_i) \ &=& \underbrace{(2\pi)^{-n/2} \prod\limits_{i=1}^n I_{(-\infty,\infty)}(y_i)}_{h(\mathbf{y})} \underbrace{\left(\sigma^2
ight)^{-n/2} \expiggl\{ -rac{1}{2\sigma^2} iggl[\sum\limits_{i=1}^n y_i^2 - 2\mu \sum\limits_{i=1}^n y_i + n\mu^2 iggr] }_{g(T(\mathbf{y})| heta)} \end{array}$$

• Então $T(\mathbf{y})=\left(\sum_{i=1}^n y_i,\sum_{i=1}^n y_i^2\right)$ é uma estatística suficiente para $\theta=(\mu,\sigma^2)$ de acordo com o método da fatoração de Neyman.

Observação: Qualquer função 1 a 1 de uma estatística suficiente também é uma estatística suficiente.

- Suponha que $T(\mathbf{y})$ é estatística suficiente e defina $T^*(\mathbf{y}) = r(T(\mathbf{y}))$ para todo \mathbf{y}
- r é uma função 1 a 1 com inversa r^{-1} .
- Teorema da Fatoração, existe g e h tal que

$$f(\mathbf{y}| heta) = h(\mathbf{y})g\left[r^{-1}(T^*(\mathbf{y}))| heta
ight]$$

ullet Defina $g^*(t| heta)=g(r^{-1}(t)| heta)$, então

$$f(\mathbf{y}| heta) = h(\mathbf{y})g^*\left[T^*(\mathbf{y})| heta
ight]$$

e pelo Teorema da Fatoração $T^*(\mathbf{y})$ é uma estatística suficiente.

No caso anterior considere:

$$(t_1,t_2)=\left(\sum_{i=1}^n y_i,\sum_{i=1}^n y_i^2
ight)$$
 nossa estatística suficiente para $heta=(\mu,\sigma^2)$.

• Veja que:

$$(ar{y},S^2) = \left(rac{t_1}{n},rac{t_2-(t_1^2/n)}{n-1}
ight) = \left(rac{\sum\limits_{i=1}^n y_i}{n},rac{\sum\limits_{i=1}^n (y_i-ar{y})^2}{n-1}
ight)$$

que são função 1 a 1 de $\left(t_{1},t_{2}
ight)$ com transformação inversa

$$t_1 = n ar{y} \;\; e \;\; t_2 = (n-1) S^2 + n ar{y}^2.$$

• Logo, (\bar{y}, S^2) também é uma estatística suficiente para $\theta = (\mu, \sigma^2)$.

Exemplo 17 Considere uma a.a. $\mathbf{y}=(y_1,y_2,\ldots,y_n)'$ da v.a. $U(\theta,2\theta)$, onde $\theta>0$. A f.d. associada a y_i é $f(y_i)=\frac{1}{\theta}$, se $y_i\in(\theta,2\theta)$.

- Quando multiplicamos tais f.d.'s para obter $L(\theta;y)$, não podemos simplesmente multiplicar o termo $1/\theta$ sem considerar a condição se $y_i \in (\theta,2\theta)$.
- Portanto, escrevemos a densidade para uma única observação, como segue,

$$rac{1}{ heta}I_{(heta,2 heta)}(y).$$

Função de verossimilhança

$$egin{array}{lll} L(heta;\mathbf{y}) &=& \prod_{i=1}^n rac{1}{ heta} I_{(heta,2 heta)}(y_i) \ &=& rac{1}{ heta^n} \prod_{i=1}^n I_{(heta,2 heta)}(y_i) \end{array}$$

$$ullet$$
 Note que $\prod_{i=1}^n I_{(heta,2 heta)}(y_i)=1$, se

$$egin{aligned} heta < y_1 < 2 heta \ heta < y_2 < 2 heta \ dots \end{aligned} \implies heta < y_{(1)} \;\; \mathrm{e} \;\; rac{y_{(n)}}{2} < heta \Longrightarrow \left[rac{y_{(n)}}{2} < heta < y_{(1)}
ight] \ heta < y_n < 2 heta \end{aligned}$$

Assim,

$$egin{array}{lll} L(heta;\mathbf{y}) &=& rac{1}{ heta^n} \prod_{i=1}^n I_{(heta,2 heta)}(y_i) \ &=& rac{1}{ heta^n} I_{(y_{(n)}/2,y_{(1)})}(heta) \end{array}$$

• Pelo critério da Fatoração, o par $(y_{(1)},y_{(n)})$ é uma estatística suficiente para heta.

- Lembre que qualquer função 1 a 1 de uma estatística suficiente é também estatística suficiente.
- Desta forma, podemos definir inúmeras estatísticas suficientes para um dado problema.
- Poderíamos perguntar se uma estatística suficiente é melhor que as outras.
- O objetivo de uma estatística suficiente é atingir uma redução nos dados sem perder informação sobre o parâmetro θ .
- Iremos preferir a estatística que atinge a maior redução nos dados e mantenha toda informação sobre θ

Definição 10 Uma estatística suficiente $T(\mathbf{y})$ é chamada de **Estatística suficiente minimal** se, para qualquer outra estatística suficiente $T^{'}(\mathbf{y}), T(\mathbf{y})$ é uma função de $T^{'}(\mathbf{y})$. Dizer que $T(\mathbf{y})$ é função de $T^{'}(\mathbf{y})$ significa que

$$T^{'}(\mathbf{x}) = T^{'}(\mathbf{y}) \Rightarrow T(\mathbf{x}) = T(\mathbf{y})$$

Exemplo 18 Duas estatísticas suficientes (caso Normal).

Já vimos anteriormente que se $\mathbf{y}=(y_1,y_2,\ldots,y_n)$ uma a.a. simples da $N(\mu,\sigma^2)$ com $\theta=(\mu,\sigma^2)$, temos $T^{'}(\mathbf{y})=(\bar{y},S^2)$ como estatística suficiente para (μ,σ^2) .

Se σ^2 é conhecido, podemos usar a Fatoração de Neyman e obter

$$egin{array}{lll} L(heta;\mathbf{y}) &=& (2\pi\sigma^2)^{-n/2} \expiggl\{ -rac{1}{2\sigma^2} iggl[\sum\limits_{i=1}^n y_i^2 - 2\mu \sum\limits_{i=1}^n y_i + n\mu^2 iggr] iggr\} \ &=& (2\pi\sigma^2)^{-n/2} iggle \expiggl\{ -rac{1}{2\sigma^2} \sum\limits_{i=1}^n y_i iggr\} iggl[\expiggl\{ -rac{n}{2} iggl[rac{\mu^2}{\sigma^2} - rac{2}{\sigma^2} ar{y} iggr] iggr\} \ h(\mathbf{y}) \end{array}$$

Portanto, $T(\mathbf{y}) = \overline{y}$ é estatística suficiente para μ .

- Se σ^2 é conhecido, temos que $T^{'}(\mathbf{y})=(\bar{y},S^2)$ e $T(\mathbf{y})=\bar{y}$ são estatísticas suficientes para μ .
- Claramente, $T(\mathbf{y})$ atinge maior redução nos dados neste caso.
- Podemos escrever $T(\mathbf{y})$ como função de $T^{'}(\mathbf{y})$ usando a seguinte igualdade: r(a,b)=a. Então, $T(\mathbf{y})=\bar{y}=r(\bar{y},S^2)=r(T^{'}(\mathbf{y}))$.
- Como $T(\mathbf{y})$ e $T^{'}(\mathbf{y})$ são ambas estatísticas suficientes, as duas possuem a mesmas informações sobre μ .
- Então a informação adicional S^2 não acrescenta nada ao nosso conhecimento de μ , dado que σ^2 é conhecido.
- Obviamente, se σ^2 é desconhecido, a estatística $T(\mathbf{y}) = \bar{y}$ deixa de ser sufuciente e $T'(\mathbf{y}) = (\bar{y}, S^2)$ passa a conter mais informação sobre (μ, σ^2) do que $T(\mathbf{y})$.

- Usar a última definição para encontrar uma estatística suficiente minimal não é uma tarefa prática.
- Teríamos que adivinhar que $T(\mathbf{y})$ é uma estatística suficiente minimal e então verificar a condição dada na definição.
- Felizmente, o seguinte resultado de Lehmman e Scheffé (1950) fornece uma maneira mais fácil de encontrar uma estatística suficiente minimal.

Teorema 5 Seja $f(\mathbf{y})$ é uma f.d. associada com a amostra \mathbf{y} . Suponha que exista uma função $T(\mathbf{y})$ tal que para quaisquer dois pontos amostrais x e y, a razão $f(x|\theta)/f(y|\theta)$ é constante como função de θ se e somente se T(x) = T(y). Então $T(\mathbf{y})$ é uma estatística suficiente minimal para θ .

Exemplo 19 Estatística suficiente minimal (caso Normal). Sejam (Y_1,Y_2,\ldots,Y_n) uma a.a. simples da $N(\mu,\sigma^2)$ com $\theta=(\mu,\sigma^2)$ desconhecido.

Considere $\mathbf{x}=(x_1,x_2,\ldots,x_n)$ e $\mathbf{y}=(y_1,y_2,\ldots,y_n)$ são dois pontos amostrais.

 (\overline{x}, S_x^2) é a média e a variância amostral de ${f x}$

 (\overline{y},S_y^2) é a média e a variância amostral de ${f y}$

O Exemplo 19 solicita a seguinte razão:

$$L(heta; \mathbf{y}) = rac{(2\pi\sigma^2)^{-n/2} \exp\left\{-rac{1}{2\sigma^2} \left[\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n\mu^2
ight]
ight\}}{(2\pi\sigma^2)^{-n/2} \exp\left\{-rac{1}{2\sigma^2} \left[\sum_{i=1}^n y_i^2 - 2\mu \sum_{i=1}^n y_i + n\mu^2
ight]
ight\}} \ = rac{\exp\left\{-rac{1}{2\sigma^2} \left[\sum_{i=1}^n (x_i + ar{x} - ar{x})^2 - 2n\mu ar{x}
ight]
ight\} \exp\left\{-rac{1}{2\sigma^2} n\mu^2
ight\}}{\exp\left\{-rac{1}{2\sigma^2} \left[\sum_{i=1}^n (y_i + ar{y} - ar{y})^2 - 2n\mu ar{y}
ight]
ight\} \exp\left\{-rac{1}{2\sigma^2} n\mu^2
ight\}} \ = rac{\exp\left\{-rac{1}{2\sigma^2} \left[\sum_{i=1}^n (x_i - ar{x})^2 + nar{x}^2 - 2n\mu ar{x}^2
ight]
ight\}}{\exp\left\{-rac{1}{2\sigma^2} \left[\sum_{i=1}^n (y_i - ar{y})^2 + nar{y}^2 - 2n\mu ar{y}^2
ight]
ight\}}$$

Assim,

$$L(\theta; \mathbf{y}) = \exp \left\{ -\frac{1}{2\sigma^2} \left[(n-1)S_x^2 + \bar{x}^2(n-2n\mu) - (n-1)S_y^2 - \bar{y}^2(n-2n\mu) \right] \right\}$$
$$= \exp \left\{ -\frac{1}{2\sigma^2} \left[(n-1)(S_x^2 - S_y^2)(n-2n\mu)(\bar{x}^2 - \bar{y}^2) \right] \right\}$$

• Este resultado será constante como função de μ e σ^2 se e somente se $\overline{x}=\overline{y}$ e $S_x^2=S_y^2$. Então pelo Exemplo 19 (\overline{X},S^2) é uma estatística suficiente minimal para (μ,σ^2) .

Exemplo 20 (Estatística suficiente minimal (caso Uniforme).) Sejam (X_1, X_2, \dots, X_n) uma a.a. simples da $Uniforme(\theta, \theta+1)$ com $-\infty < \theta < \infty$.

Considere $\mathbf{x}=(x_1,x_2,\ldots,x_n)$ e $\mathbf{y}=(y_1,y_2,\ldots,y_n)$ são dois pontos amostrais.

• A densidade para uma única observação, como segue,

$$f(x\mid heta)=I_{(heta, heta+1)}(x),\; heta\in \mathbb{R}.$$

Assim,

$$egin{aligned} heta < x_1 < heta + 1 \ heta < x_2 < heta + 1 \ dots \end{aligned} \implies heta < x_{(1)} \;\; \mathrm{e} \;\; x_{(n)} - 1 < heta \Longrightarrow \left[x_{(n)} - 1 < heta < x_{(1)}
ight] \ heta < x_n < heta + 1 \end{aligned}$$

• Logo,

$$f(x\mid heta)=I_{(x_{(n)}-1,x_{(1)})}(heta),\; heta\in \mathbb{R}.$$

• Então,

$$f(x \mid heta) = I_{(x_{(n)}-1,x_{(1)})}(heta) = \left\{egin{array}{ll} 1 & \sec x_{(n)} - 1 < heta < x_{(1)} \ 0 & ext{c.c.} \end{array}
ight.$$

• De forma similar:

$$f(y \mid heta) = I_{(y_{(n)}-1,y_{(1)})}(heta) = \left\{egin{array}{ll} 1 & \sec y_{(n)} - 1 < heta < y_{(1)} \ 0 & ext{c.c.} \end{array}
ight.$$

A razão $rac{f(x\mid heta)}{f(y\mid heta)}$ será constante como função de heta se e só $x_{(1)}=y_{(1)}$ e $x_{(n)}=y_{(n)}$.

Conclusão: $T(X)=(x_{(1)},x_{(n)})$ é uma estatística suficiente minimal para θ . Neste caso, note que a dimensão é diferente da dimensão do parâmetro.

Família Exponencial

Definição 11 Dizemos que a distribuição da v.a. Y pertence à família exponencial unidimensional se pudermos escrever sua f.p. ou f.d. como

$$f(y \mid heta) = h(x)c(heta) \expiggl\{ \sum_{i=1}^k \omega_i(heta)t_i(y) iggr\},$$

em que:

- $h(x) \ge 0$ e $t_i(y), i=1,\ldots,k$, são funções reais da observação y e são elementos que não dependem de θ .
- $c(\theta) \geq 0$ e $\omega_i(\theta), i=1,\ldots,k$, são funções reais de θ e são elementos que não dependem de y.

- Diversas distribuições são importantes membros da família exponencial.
- Por exemplo:
 - Caso contínuo: Normal, Gama, e Beta;
 - Binomial, Poisson, Binomial Negativa;
- Para verificar se uma certa distribuição pertence à família exponencial devemos identificar as funções $h(y), c(\theta), t_i(y)$ e $\omega_i(\theta)$, e mostrar que a família pode ser escreta conforme foi expressado acima.

Exemplo 21 Verifique se $Y \sim Binomial(n,p)$, pertence à família exponencial, em que n é um inteiro positivo e 0 . Nosso parâmetro de interesse é <math>p.

$$egin{array}{lcl} f(y|p) & = & inom{n}{y} p^y (1-p)^{n-y} \ & = & inom{n}{y} (1-p)^n igg(rac{p}{1-p}igg)^y \ & = & igl(rac{n}{y}igg) \underbrace{(1-p)^n}_{c(p)} & \exp \left\{ igcup_{t_1(y)} & \underbrace{\log \left(rac{p}{1-p}
ight)}_{\omega_1(p)}
ight\} \end{array}$$

- A família exponencial apresenta propriedades estatísticas interessantes.
- É possível tirar conclusões relevantes para uma família de distribuições sem realizar explicitamente os cálculos para cada caso específico.

Exemplo 22 Considere $Y=(Y_1,Y_2,\ldots,Y_n)$ i.i.d $N(\mu,\sigma^2)$. Assim a $f(Y|\mu,\sigma^2)$ é igual

$$= \prod_{i=1}^{n} (2\pi\sigma^{2})^{-1/2} \exp\left\{-\frac{1}{2\sigma^{2}} (y_{i} - \mu)^{2}\right\} I_{(-\infty,\infty)}(y_{i})$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left\{-\frac{1}{2\sigma^{2}} \left[\sum_{i=1}^{n} y_{i}^{2} - 2\mu \sum_{i=1}^{n} y_{i} + n\mu^{2}\right]\right\} \prod_{i=1}^{n} I_{(-\infty,\infty)}(y_{i})$$

$$= \prod_{i=1}^{n} \left[I_{(-\infty,\infty)}(y_{i})\right] (2\pi\sigma^{2})^{-n/2} \exp\left\{-\frac{1}{2\sigma^{2}} \left(\sum_{i=1}^{n} y_{i}^{2}\right) + \frac{2\mu}{2\sigma^{2}} \sum_{i=1}^{n} y_{i}\right\} \exp\left\{-\frac{1}{2\sigma^{2}} n\mu^{2}\right\}$$

$$= \prod_{i=1}^{n} \left[I_{(-\infty,\infty)}(y_{i})\right] (2\pi\sigma^{2})^{-n/2} \exp\left\{-\frac{1}{2\sigma^{2}} n\mu^{2}\right\} \exp\left\{-\frac{1}{2\sigma^{2}} \left(\sum_{i=1}^{n} y_{i}^{2}\right) + \underbrace{\frac{\mu}{\sigma^{2}} \sum_{i=1}^{n} y_{i}^{2}}_{\omega_{2}(\mu,\sigma^{2})} \right\} \exp\left\{-\frac{1}{2\sigma^{2}} n\mu^{2}\right\} \exp\left\{-\frac{1}{2\sigma^{2}} \left(\sum_{i=1}^{n} y_{i}^{2}\right) + \underbrace{\frac{\mu}{\sigma^{2}} \sum_{i=1}^{n} y_{i}^{2}}_{\omega_{2}(\mu,\sigma^{2})} \right\} \exp\left\{-\frac{1}{2\sigma^{2}} n\mu^{2}\right\} \exp\left\{-\frac{1}{2\sigma^{2}} \left(\sum_{i=1}^{n} y_{i}^{2}\right) + \underbrace{\frac{\mu}{\sigma^{2}} \sum_{i=1}^{n} y_{i}^{2}}_{\omega_{2}(\mu,\sigma^{2})} \right\} \exp\left\{-\frac{1}{2\sigma^{2}} n\mu^{2}\right\} \exp\left\{-\frac{1}{2\sigma^{2}} \left(\sum_{i=1}^{n} y_{i}^{2}\right) + \underbrace{\frac{\mu}{\sigma^{2}} \sum_{i=1}^{n} y_{i}^{2}}_{\omega_{2}(\mu,\sigma^{2})} \right\} \exp\left\{-\frac{1}{2\sigma^{2}} \left(\sum_{i=1}^{n} y_{i}^{2}\right) + \underbrace{\frac{\mu}{\sigma^{2}} \sum_{i=1}^{n} y_{i}^{$$

• É fácil encontrar uma estatística suficiente para uma distribuição da família exponencial. Considere o teorema abaixo.

Teorema 6 Sejam Y_1,Y_2,\ldots,Y_n observações i.i.d. de uma f.d. ou f.p $f(Y\mid\theta)$ que pertence à família exponencial dada por

$$f(y \mid heta) = h(x)c(heta) \expiggl\{ \sum_{i=1}^k \omega_i(heta)t_i(y) iggr\},$$

sendo $\theta = (\theta_1, \theta_2, \dots, \theta_d), \ d \leq K$.

Então, $T(Y) = (t_1(y), t_2(y), \ldots, t_k(y))$ é uma estatística suficiente para θ .

Prova: Considere o teorema da fatoração de Neyman

$$f(y \mid heta) = h(x) c(heta) \exp \left\{ \sum_{i=1}^k \omega_i(heta) t_i(y)
ight\}, \ g(T(Y) \mid heta)$$

- Então, $T(Y) = (t_1(y), t_2(y), \ldots, t_k(y))$ é uma estatística suficiente para θ .
- No exemplo anterior (caso Normal) temos $t_1(Y) = \sum\limits_{i=1}^n Y_i^2$ e $t_2(Y) = \sum\limits_{i=1}^n Y_i$.

Então,
$$\left(\sum_{i=1}^n Y_i^2, \sum_{i=1}^n Y_i\right)$$
 é estatística suficiente para (μ, σ^2) .

Ancilaridade e Completude

- Consideramos anteriormente as estatísticas suficientes. Estas estatísticas contêm toda a informação sobre θ que está disponível na amostra.
- Iremos introduzir agora um tipo diferente de estatística; ela apresenta um conceito oposto.

Definição 12 Uma estatística S(X) cuja distribuição não depende do parâmetro de interesse θ é dita estatística ancilar.

- Uma estatística ancilar não contém informação sobre θ . Ela é uma observação de uma variável aleatória cuja distribuição é fixa e conhecida (sem relação com θ).
- Paradoxalmente, uma estatística ancilar usada em conjunto com outras estatísticas pode conter informação sobre θ .

Exemplo 23 Sejam X_1,\ldots,X_n observações iid de uma distribuição pertencente à família de locação com f.d.a $F(x-\theta)$ sendo $-\infty < \theta < \infty$. A diferença $R = X_{(n)} - X_{(1)}$ é uma estatística ancilar?

Assuma que $X_1=Z_1+\theta,\ X_2=Z_2+\theta,\ \dots,\ X_n=Z_n+\theta$ sendo Z_1,\dots,Z_n observações iid com f.d.a. F(X).

A f.d.a. de R será

$$F_R\left(r\,|\, heta
ight) = P\left[R \leq r
ight] = P\left[\max_i(X_i) - \min_i(X_i) \leq r
ight]$$

Logo,

$$egin{array}{lcl} F_R\left(r\,|\, heta
ight) &=& P\left[\max_i(Z_i+ heta)-\min_i(Z_i+ heta)\leq r
ight] \ &=& P\left[\max_i(Z_i)+ heta-\min_i(Z_i)- heta\leq r
ight] \ &=& P\left[\max_i(Z_i)-\min_i(Z_i)\leq r
ight] \end{array}$$

Esta f.d.a. não depende de heta, logo R é uma estatística ancilar.

Exemplo 24 Sejam X_1, \ldots, X_n observações iid de uma distribuição pertencente à família de escala com f.d.a $F(x/\sigma)$ sendo $0 < \theta < \infty$. Qualquer estatística, que dependa da amostra apenas através de n-1 valores do tipo $X_1/X_n, \ldots, X_{n-1}/X_n$ será ancilar. Por exemplo:

$$rac{X_1+\cdots+X_n}{X_n}=X_1/X_n+\cdots+X_{n-1}/X_n+1,$$
 é ancilar.

Seja Z_1,\ldots,Z_n observações iid com f.d.a F(x) (temos aqui $\sigma=1$). Defina $X_1=\sigma Z_1,\ldots,X_n=\sigma Z_n.$

A f.d.a conjunta de $X_1/X_n, \ldots, X_{n-1}/X_n$ é dada por

$$egin{array}{lcl} F\left(y_1,\ldots,y_{n-1}\,|\,\sigma
ight) &=& P\left[X_1/X_n \leq y_1,\ldots,X_{n-1}/X_n \leq y_{n-1}
ight] \ &=& P\left[rac{\sigma Z_1}{\sigma Z_n} \leq y_1,\ldots,rac{\sigma Z_{n-1}}{\sigma Z_n} \leq y_{n-1}
ight] \ &=& P\left[rac{Z_1}{Z_n} \leq y_1,\ldots,rac{Z_{n-1}}{Z_n} \leq y_{n-1}
ight] \end{array}$$

A última probabilidade não depende de σ visto que a distribuição de Z_1,\ldots,Z_n não depende de σ .

Portanto, a distribuição de $X_1/X_n, \ldots, X_{n-1}/X_n$ não dependerá de σ , assim como a distribuição de qualquer função destas quantidades.

Caso particular: X_1 e X_2 são iid. $N(0,\sigma^2)$

O resultado acima indica que X_1/X_2 tem distribuição que não depende de σ .

É possível mostrar que $X_1/X_2 \sim Cauchy(0,1)$ para qualquer $\sigma>0$

- Uma estatística suficiente minimal é aquela que atinge a maior redução de dados possível, mantendo toda informação sobre θ .
- Intuitivamente, uma estatística suficiente minimal elimina toda a informação irrelevante na amostra, retendo apenas aquilo que interessa sobre θ .
- A distribuição de uma estatística ancilar não depende de θ , então poderíamos suspeitar que uma estatística suficiente minimal não tem relação com estatísticas acilares.
- Entretanto, isso não é necessariamente verdade.
- Investigaremos esta relação a seguir...

- É possível mostrar que se X_1,\dots,X_n são iid com distribuição $U(\theta,\theta+1)$, então $\left[X_{(n)}-X_{(1)},rac{X_{(1)}+X_{(n)}}{2}
 ight]$ é uma estatística suficiente minimal para θ .
- Temos também o seguinte resultado $X_{(n)}-X_{(1)}$ é estatística ancilar. (Ver, Casella e Berger(2002), pag. 282 e 283).
- Neste caso, a estatística ancilar é uma **componente importante** na formulação da estatística minimal.
- Aqui, estes dois tipos de estatísticas não são independentes.
- Para dar uma ideia de como uma estatistica ancilar pode trazer informação sobre θ , considere o próximo exemplo.

Exemplo 25 Caso particular: X_1 e X_2 são iid com f.p.

$$P(X = \theta) = P(X = \theta + 1) = P(X = \theta + 2) = \frac{1}{3},$$

sendo θ um inteiro desconhecido.

- Esta distribuição é da família de locação.
- Estatísticas de ordem: $X_{(1)} \leq X_{(1)}$.
- ullet Assuma $R=X_{(2)}-X_{(1)}$ e $M=rac{X_{(1)}+X_{(2)}}{2}$.
- Estatística suficiente minimal para heta:[R,M].
- Estatística ancilar: R.
- Considere o ponto [R,M]=(r,m), sendo m inteiro.

• $M=\frac{X_{(1)}+X_{(2)}}{2}$ então temos as seguintes possibilidades para m:

$$\begin{array}{lll} m&=&\frac{\theta+\theta}{2}&=&\theta&\text{ Lembre que }\theta \text{ e }m\text{ são inteiros, logo}\\ m&=&\frac{\theta+(\theta+1)}{2}&=&\theta+2,\text{ quando dispomos apenas da}\\ m&=&\frac{\theta+(\theta+2)}{2}&=&\theta+1\\ m&=&\frac{(\theta+1)+(\theta+1)}{2}&=&\theta+1\\ m&=&\frac{(\theta+1)+(\theta+2)}{2}&=&\theta+1\\ m&=&\frac{(\theta+2)+(\theta+2)}{2}&=&\theta+2\\ \end{array}$$

Lembre que θ e m são inteiros, logo

Suponha agora que R=2 é uma informação adicional obtida. $R=X_{(2)}-X_{(1)}$

Conclusão: O conhecimento de uma estatística ancilar (R) aumentou nosso conhecimento sobre θ .

• O conhecimento do valor de R sozinho, não traria qualquer informação sobre o valor de θ (no caso r=2, saberíamos que $X_{(1)}=\theta$ e $X_{(2)}=\theta+2$ mas não teríamos m para determinar θ).

- Para muitas situações, entretanto, nossa intuição de que uma estatística suficiente minimal é independente de qualquer estatística ancilar está correta.
- Os casos onde isso ocorre tem como base a seguinte definição:

Definição 13 Uma estatística $T=T(X_1,\ldots,X_n)$ é dita ser completa em relação à família $f(x\mid\theta), \theta\in\Theta$, se a única função real g, definida no domínio de T, tal que E(g(T))=0 para todo θ é a função nula, isto é, g(T)=0 com probabilidade um.

Té completa se, e somente se, $E(g(T(\mathbf{X})))=0, \theta\in\Theta$, implicar que $P(g(T(\mathbf{X}))=0)=1, \theta\in\Theta$.

• Note que a completude é uma propriedade de uma família de distribuições, e não de uma distribuição particular.

Exemplo 26 $X \sim N(0,1)$ e g(X) = X. Então,

$$E(g(X) = X) = E(X) = 0.$$

Entretando, $P(g(X)=0)=P(X=0) \neq 1$. Note que a N(0,1) é uma distribuição particular.

Exemplo 27 $X\sim N(\theta,1)$ com $\theta\in\mathbb{R}$. Nenhuma função de X, exceto g(X)=0 para todo θ , satisfaz E[g(X)]=0 para todo θ .

Então temos que $E[g(X)]=0 \Rightarrow P(g(X)=0)=1, \ orall heta.$

Dessa forma, a família de distribuições $X \sim N(\theta,1)$ é completa.

Exemplo 28 Suponha que $T \sim Binomial(n,p)$, com 0 .

Seja g uma função tal que $E_p(g(T))=0.$

Então,

$$egin{array}{lll} 0 = E_p\left[g(T)
ight] &= \sum\limits_{t=0}^n g(t)inom{n}{t}p^t(1-p)^{n-t} \ &= (1-p)^n\sum\limits_{t=0}^n g(t)inom{n}{t}\left(rac{p}{1-p}
ight)^t, \ orall p. \end{array}$$

O componente $(1-p)^n
eq 0$ para qualquer $p \in (0,1)$.

Entao devemos ter:

$$0 = \sum_{t=0}^n g(t) inom{n}{t} r^t,$$

$$\operatorname{\mathsf{com}} r = rac{p}{1-p} \in (0,\infty).$$

- A última expressão é um polinômio de grau n em r, onde o coeficiente r^t sera $g(t)\binom{n}{t}$.
- Para que o polinômio seja $0 \ \forall r$ cada coeficiente deve ser 0.
- ullet Veja, que $inom{n}{t}
 eq 0$, então g(t)=0, para $t=0,1,\ldots,n$.
- ullet Dado que $T=0,1,\ldots,n$, temos que $E_p\left[g(T)
 ight]=0\Rightarrow P_p(g(T)=0)=1, orall p.$

Conclusão: T é uma estatística completa.

• O teorema abaixo usa a completude para estabelecer uma condição na qual uma estatística suficiente minimal é independente de toda estatística ancilar.

Teorema 7 (Teorema de Basu) Se T(X) é uma estatística suficiente minimal completa, então T(X) é independente de toda estatística ancilar.

- O Teorema de Basu permite deduzir a independência de duas estatísticas sem ter que encontrar a distribuição conjunta delas.
- Para usar o Teorema de Basu, precisamos mostrar que a estatística é completa.
- Muitas vezes, isso é uma tarefa difícil em termos de análise.
- Felizmente, a maioria dos problemas que iremos trabalhar utilizam o seguinte resultado.

Teorema 8 (Estatistica completa da família exponencial.)

Seja X_1,\ldots,X_n observações iid de uma distribuição da Família Exponencial com f.d. ou f.p. do tipo

$$f(x\mid heta) = h(x)c(heta)\expiggl\{\sum_{j=1}^k \omega_j(heta)t_j(x)iggr\},\; heta = (heta_1, heta_2,\dots, heta_k)'$$

Então a estatística $T(X) = \left[\sum_{i=1}^n t_1(x), \sum_{i=1}^n t_2(x), \dots, \sum_{i=1}^n t_k(x)\right]$ é completa se e somente se $\{[\omega_1(\theta), \dots, \omega_k(\theta)] : \theta \in \Theta\}$ contém um conjunto aberto em \mathbb{R}^k .

- A condição de que o espaço paramétrico contenha um conjunto aberto é necessária para evitar a seguinte situação:
- A $N(\theta, \theta^2)$ é membro da família exponencial.
- ullet Verossimilhança: $(2\pi heta^2)^{-n/2}\expigg\{-rac{1}{2 heta^2}igg[\sum_{i=1}^n y_i^2-2 heta\sum_{i=1}^n y_i+n heta^2igg]igg\}$
- Formulação da FE:

$$\underbrace{(2\pi)^{-n/2}}_{h(x)}\underbrace{ heta^{-n}}_{c(heta)}\exp\left\{-\underbrace{rac{1}{2 heta^2}}_{\omega_1(heta)}\underbrace{rac{n}{y_i}}_{t_1(x)}+\underbrace{rac{1}{ heta}}_{\omega_2(heta)}\underbrace{rac{n}{t_1(x)}}_{t_1(x)}y_i
ight\}$$

 $\{\omega_1(\theta),\omega_2(\theta)\}=\left\{rac{1}{ heta^2},rac{1}{ heta}
ight\}$ que possui uma relação muito próxima com o espaço paramétrico $\{\theta,\theta^2\}$.

Conclusão: $\{\omega_1(\theta),\omega_2(\theta)\}$ não contém um aberto em \mathbb{R}^2 , então

$$T(X) = \left[t_1(x) = -rac{1}{2} \sum_{i=1}^n X_i^2, t_2(x) = \sum_{i=1}^n X_$$

não é uma estatítica completa.