

Mathématiques et Calcul 1 : examen de rattrapage Mardi 14 juin 2016

Durée: 1h30.

Tout document est interdit. Les calculatrices et les téléphones portables, même à titre d'horloge, sont également interdits.

On rappelle les développements limités suivants. Ils sont donnés au voisinage de 0 (n et p sont des entiers positifs quelconques).

$$\exp(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + o(x^n)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n)$$

$$\cos(x) = 1 - \frac{x^2}{2} + \dots + (-1)^p \frac{x^{2p}}{(2p)!} + o(x^{2p})$$

$$\sin(x) = x - \frac{x^3}{6} + \dots + (-1)^p \frac{x^{2p+1}}{(2p+1)!} + o(x^{2p+1})$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

Barème uniforme : 2 points/question (l'exercice 1 en comportant 3), sauf : Exercice 2 (2) c) sur 3 points et Exercice 2 (3) c) sur 4 points.

Exercice 1. Calculer le module et un argument des nombres complexes suivants

$$z_1 = \left(\frac{1+i}{1-i}\right)^3$$
, $z_2 = -1 - i\sqrt{3}$, $z_3 = \frac{1}{1+i\tan(\theta)}$

où *θ* ∈] − π /2, π /2[.

Solution.

• On a

$$z_1 = \left(\frac{1+i}{1-i}\right)^3 = \left(\frac{(1+i)^2}{(1-i)(1+i)}\right)^3 = i^3 = -i$$

donc son module est 1 et un de ses argument est $-\pi/2$.

- On a $|z_2| = \sqrt{1+3} = 2$ et $z_2 = 2(-1/2 i\sqrt{3}/2) = 2e^{-i\pi/3}$ donc son module est 2 et un de ses argument est $-\pi/3$.
- On a

$$z_3 = \cos(\theta) \frac{1}{\cos(\theta) + i\sin(\theta)} = \cos(\theta) \frac{1}{e^{i\theta}} = \cos(\theta) e^{-i\theta}.$$

De plus, comme $\theta \in]-\pi/2,\pi/2[$, $\cos(\theta)>0$, donc le module est $\cos(\theta)$ et un de ses argument est $-\theta$.

Exercice 2.

(1) Soit
$$f(x) = \frac{1}{4}(x^2 - 4x + 3)$$
.

- a) Donner les racines de l'équation f(x) = 0.
- b) Factoriser f(x).
- c) Donner le signe de f(x) et fonction de x.
- (2) Soit (u_n) la suite définie par $u_0 = \frac{1}{2}$ et $u_{n+1} = \frac{1}{4}u_n^2 + \frac{3}{4}$.
 - a) Montrer que pour tout $n \ge 0$, $0 \le u_n \le 1$.
 - b) Montrer que (u_n) est croissante.
 - c) Etudier la convergence de (u_n) .
- (3) Soit (v_n) la suite définie par $v_0 = 4$ et $v_{n+1} = \frac{1}{4}v_n^2 + \frac{3}{4}$.
 - a) Montrer que pour tout $n \ge 0$, $v_n \ge 4$.
 - b) Montrer que (v_n) est croissante.
 - c) Donner $\lim_{n\to\infty} v_n$.

Solution.

- (1) $\Delta = 1/4$, racines $r = \frac{1\pm 1/2}{1/2} = \frac{1/2 \text{ ou } 3/2}{1/2} = 1 \text{ ou } 3$. Donc $f(x) = \frac{1}{4}(x-1)(x-3)$ et f(x) est strictement positive sur $\mathbb{R}\setminus[1,3]$, strictement négative sur]1,3[et nulle en 1 et 3.
- (2) a) Récurrence.
 - b) $u_{n+1} u_n = f(u_n) \ge 0$ donc (u_n) croissante.
 - c) (u_n) est croissante et majorée par 1 donc converge vers une limite $\ell \le 1$. Comme u_{n+1} tend vers ℓ , $\ell = \frac{1}{4}\ell^2 + \frac{3}{4}$ donc $f(\ell) = 0$, donc $\ell = 1$ ou 3, mais $\ell \le 1$, donc $\ell = 1$.

- (3) a) Récurrence.
 - b) $v_{n+1} v_n = f(v_n) \ge 0$ donc (v_n) croissante.
 - c) (v_n) est croissante donc tend vers une limite finie ou $+\infty$. Si converge vers une limite L, comme v_{n+1} tend vers L, $L=\frac{1}{4}L^2+\frac{3}{4}$ donc f(L)=0, donc L=1 ou 3, mais $L\geq 4$ car pour tout $n,\ v_n\geq 4$, ce qui est impossible. Donc $\lim_{n\to\infty}v_n=+\infty$.

Exercice 3.

- (1) Donner le développement limité à l'ordre 2 de $f(x) = e^{2x} 2\sin(x) \cos(\sqrt{2}x)$.
- (2) En déduire $\lim_{x \to 0} \frac{f(\bar{x})}{x^2}$.
- (3) Donner le développement limité à l'ordre 3 de $g(x) = \frac{\ln(1+x)}{\cos(x)}$.
- (4) En déduire $\lim_{x\to 0} \frac{g(x)-x}{x^2}$.

Solution.

(1)
$$f(x) = 3x^2 + o(x^2)$$

(2)
$$\lim_{x \to 0} \frac{f(x)}{x^2} = 3$$
(3)
$$\frac{\ln(1+x)}{\cos(x)} = (x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^2))(1 + \frac{x^2}{2} + o(x^3)) = x - \frac{x^2}{2} + \frac{5}{6}x^3 + o(x^3)$$
(4)
$$\lim_{x \to 0} \frac{g(x) - x}{x^2} = -\frac{1}{2}.$$

Exercice 4. Soit
$$\mathscr{B} = \{\vec{u}_1 = (1, -1), \vec{u}_2 = (3, 2)\}$$
. Soit
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x, y) \longmapsto (x + y, x + 3y)$$

- a) Montrer que f est linéaire.
- b) Donner la matrice $M_{f,\mathscr{B}_0,\mathscr{B}_0}$ de f dans la base canonique $\mathscr{B}_0=\{\vec{e}_1=(1,0),\vec{e}_2=(0,1)\}$ de \mathbb{R}^2 .
- c) Montrer que \mathcal{B} est une base de \mathbb{R}^2 .
- d) Donner la matrice de passage $P=M_{Id,\mathcal{B},\mathcal{B}_0}$ de \mathcal{B}_0 à $\mathcal{B}.$
- e) Donner la matrice P^{-1} .
- f) Donner la matrice $M_{f,\mathcal{B},\mathcal{B}}$ de f dans la base \mathcal{B} .

Solution. a)
$$f(\alpha u + \beta v) = \dots$$
 b) $\begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$ c) liberté d) $P = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$ e) On a $P^{-1} = \begin{pmatrix} 2/5 & -3/5 \\ 1/5 & 1/5 \end{pmatrix}$ f) On a $M_{f,\mathscr{B},\mathscr{B}} = P^{-1}M_{f,\mathscr{B}_0,\mathscr{B}_0}P$
$$= \begin{pmatrix} 2/5 & -3/5 \\ 1/5 & 1/5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2/5 & -3/5 \\ 1/5 & 1/5 \end{pmatrix} \begin{pmatrix} 0 & 5 \\ -2 & 9 \end{pmatrix}$$

$$= \begin{pmatrix} 6/5 & -17/5 \\ -2/5 & 14/5 \end{pmatrix}$$