

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

TOPICWISE: DISCRETE MATHEMATICS-2 (GATE - 2019) - REPORTS

OVERALL ANALYSIS COMPARISON REPORT SOLUTION REPORT

ALL(17) CORRECT(6)

INCORRECT(5)

SKIPPED(6)

Q. 1

Which of the following is true?

Solution Video Have any Doubt?

If a graph is connected, then its complement must be disconnected.

Chromatic number of complete graph with n vertices is n-1.

Your answer is Wrong

If two graph G_1 and G_2 are isomorphic, then their complements may or may not be isomorphic.

If any simple graph with n nodes with n > 1, there are atleast two vertices of same degree.

Correct Option

Solution:

- If a graph is connected, then its complement may or may not be disconnected. Example: cyclic graph on 5 vertices.
- Chromatic number of complete graph with n vertices is n.
- If two graph G_1 and G_2 are isomorphic, then their complements will always be isomorph
- If any simple graph with n nodes with nodes > 1, there are atleast two vertices of s degree.

QUESTION ANALYTICS

Q. 2

What is the maximum number of edges present in a disconnected graph on $n \ge 3$ vertices?

Solution Video | Have any Doubt? |

 $(^{n}C_{2}-1)$

В

n – 2

 $(n-1)_{C_2}$

Your answer is **Correct**

Solution:

(c)

Maximum number of edges in connected graph:

$${}^{n}C_{2} = \frac{n(n-1)}{2}$$

So, by disconnected one vertex from it, we get:

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

 2 = 6 edges = 4C_2 edges

Disconnected graph on 4 vertices:

D

 $(n-2)C_2$

QUESTION ANALYTICS

Q. 3

What is the number of partition of $X = \{a, b, c, d, e, f\}$ where a and c are always in same block?

Solution Video Have any Doubt?

ation video Thave any Dod

A 15

В

52

Correct Option

Solution:

(b)

Since "a and c" are present in same block

So, {ac, b, d, e, f}

Using Bell number:

С

203

D

None of these

QUESTION ANALYTICS

Q. 4

Consider the recurrence relation $a_k = -8a_{k-1} - 15a_{k-2}$ with initial conditions $a_0 = 0$ and $a_1 = 2$. Which of the following is an explicit solution to this recurrence relation?

Solution Video Have any Doubt?

Your answer is Correct

foonis cimacierioneo edunnon menioni

Sign out

...(2)

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES $n^2 + 8n + 15 = 0$

 $n^2 + 5n + 3n + 15 = 0$

n(n+5) + 3(n+5) = 0

(n+3)(n+5) = 0

n = -3 and -5

$$a_k = (-3)^k C_1 + (-5)^k C_2$$

= $(-3)^0 C_1 + (-5)^0 C_2 = 0$

 $C_1 + C_2 = 0$

$$C_2 = 0 \qquad \dots (1)$$

 $a_1 = (-3)^1 C_1 + (-5)^1 C_2 = 2$ -3C₁ + -5C₂ = 2

Solving equation (1) and (2), we get $C_1 = 1$ and $C_2 = -1$

So, $a_n = (-3)^k - (-5)^k$

В

So,

 $k(-3)^k - k(-5)^k$

C

$$(-5)^k - (-3)^k$$

$$k(-3)^k - (-5)^k$$

QUESTION ANALYTICS

Q. 5

Consider the following statements:

 S_1 : D_{85} is Boolean Algebra.

 S_2 : Every finite lattice has a least element.

 S_3 : Every Poset has a greatest element.

Which of the following is always true?

FAQ Solution Video Have any Doubt?

Δ

 S_1 and S_3 only

Е

 S_2 and S_3 only

С

 S_1 and S_2 only

Correct Option

Solution:

(c)

 $S_1:D_{85}:85=5\times 17$ i.e. product of distinct prime number, hence Boolean Algebra. So True $S_2:$ Suppose elements of lattice are $a_1,a_2,a_3....a_n$, then $a_1\wedge a_2\wedge a_3.....\wedge a_n$ is the least elements

 S_3 : Poset (R, \leq) has no greatest element.

No greatest element as 3 sets are non comparable. So Not True

All of the above

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

Q. 6

Consider an equivalence relation R on the positive integers $A = \{2, 3, 4, 5, 6, 7, \dots, 22\}$ defined as mRn if the largest prime divisor of 'm' is the same as the largest prime divisor of 'n'. The number of equivalence classes of *R* is _____.

Solution Video Have any Doubt?

8

Correct Option

Solution:

"mRn" (largest prime divisor of m = largest prime divisor of 'n')

So, equivalence classes are

- 1. 2 R {2, 4, 8, 16}
- 2. 3 R {3, 6, 9, 12, 18, 21}
- 3. 5 R {5, 10, 15, 20}
- 4. 7 R {7, 14, 21}
- 5. 11 R {11, 22}
- 6. 13 R {13}
- 7. 17 R {17}
- 8. 19 R {19}

Number of equivalence classes are 8.

QUESTION ANALYTICS

Q. 7

Consider F be a family of all subsets of set {1, 2, 3, 100} that contain atleast 50 numbers, partially ordered with respect to containment. Then maximum size of chains in the Poset (F, \subseteq) that cover F is

Solution Video Have any Doubt?

51

Correct Option

Solution:

The maximum size of chain will be:

 $\{1, 2, 3, \dots, 50\} \subset \{1, 2, 3, \dots, 50, 51\} \subset \{1, 2, 3, \dots, 50, 51, 52\} \dots \{1, 2, 3, \dots, 100\}$

i.e. 51 (from 50 to 100)

QUESTION ANALYTICS

Q. 8

Consider the following graph:

The chromatic number of above graph is _____.

Solution Video Have any Doubt?

4/10

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES There κ_3 is subgraph present, so z cannot be the chromatic number.

So, 3 colors are needed to color the graph, hence chromatic number is 3.

QUESTION ANALYTICS

Q. 9

Suppose tree 'T' has 10 vertices of degree 4, 20 vertices of degree 3 and 30 vertices of degree 2. If all of the rest of vertices are of degree 1, then the number of vertices 'T' have is _____.

Solution Video Have any Doubt?

102

Your answer is Correct102

Solution:

102

Consider number of vertices of degree 1 = x

Total number of edges =
$$\frac{10 \times 4 + 20 \times 3 + 30 \times 2 + x \times 1}{2}$$
=
$$\frac{(x + 40 + 60 + 60)}{2} = \frac{x}{2} + \frac{160}{2}$$
=
$$\frac{x}{2} + 80$$
Total number of vertices =
$$10 + 20 + 30 + x$$

Since is tree, so number of edges must be = (Number of vertices) – 1 = (x + 60) - 1 = x + 59

Thus, $x + 59 = \frac{x}{2} + 80$ 2(x + 59 - 80) = x

 $2x - 2 \times 21 = x$ x = 42

Total number of vertices = x + 60= 42 + 60 = 102

QUESTION ANALYTICS

Q. 10

Which of the following is true?

Have any Doubt?

Α

The edge uv in a simple graph G is a cut edge, if and only if $n(G) \ge d(u) + d(v)$.

В

Every graph with fewer edge than vertices has component of a tree.

Correct Option

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

$$n(G) \ge d(u) + d(v)$$

$$7 \ge 2 + 2$$

 $7 \ge 4$ satisfied but u/v is not cut edge. So false

(b) Let, G be a graph such that $\left|E_{G}\right|<\left|V_{G}\right|$ further, suppose $G_{1},\ G_{2},\ G_{2}$ ______ G_{k} are con components of G, and if no connected component of G is a tree.

Hence, for each $1 \le i \le k$, $|E_{Gi}| \ge |V_{Gi}|$. Thus,

$$|E_G| = \sum_{i=1}^{k} |E_{Gi}| \ge \sum_{i=1}^{k} |V_{Gi}| \ge |V_G|$$

Which is a contradiction. Hence, there exists a component of G which is tree.

(c) Consider a graph:

Since graph is Eulerian graph but don't have eulerian circuit. So false

(d) Consider a graph:

Average degree (G) =
$$\frac{2e}{n}$$

Average degree (G) =
$$\frac{2e}{n}$$

Before removal of
$$v' = \frac{20}{7} = 2.857$$
 After removal of $v' = \frac{16}{6} = 2.66$

After removal of
$$v' = \frac{16}{6} = 2.66$$

So false

If G is an Eulerian graph with edges e, e'sharing a vertex, then G has an Eulerian circuit in which e and e'appear consecutively.

In connected graph G with at least 2 vertices and $\delta(G) < \Delta(G)$ deleting a vertex of $\delta(G)$ cannot reduce the average degree.

QUESTION ANALYTICS

Q. 11

Which one of the following is a solution for a_n , where $a_n = a_{n-1} + 3^{n-1}$ for n = 0, 1, 2, 3, with f(0) = 1

Solution Video | Have any Doubt ? |

$$\frac{1}{2}(1+3^{n-1})$$

Your answer is Wrong

 $\frac{1}{2}(1+n3^{n-1})$

$$\frac{1}{2}(1+3^n)$$

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

$$a_{n} = a_{n-1} + 3^{n-1}$$

$$a_{n} = \sum_{i=0}^{n} a_{i} x^{i}$$

$$= 1 + \sum_{i=1}^{n} a_{i} x^{i}$$

$$= 1 + \sum_{i=1}^{n} (a_{i-1} + 3^{i-1}) x^{i}$$

$$= 1 + \sum_{i=1}^{n} (a_{i-1} + x^{i}) + \sum_{i=1}^{n} (3^{i-1} x^{i})$$

$$= 1 + x \left[\sum_{i=0}^{n} a_{i} x^{i} \right] + x \left(\sum_{i=0}^{n} 3^{i} x^{i} \right)$$

$$a_{n} = 1 + x a_{n} + \frac{x}{n}$$

$$a_n = 1 + x a_n + \frac{x}{1 - 3x}$$

$$a_n(1-x) = 1 + \frac{x}{1-3x}$$

$$a_n = \frac{1 - 3x + x}{(1 - 3x)(1 - x)} = \frac{1 - 2x}{(1 - x)(1 - 3x)}$$
$$= \frac{A}{1 - x} + \frac{B}{1 - 3x} = \frac{\frac{1}{2}}{1 - x} + \frac{\frac{1}{2}}{1 - 3x}$$

$$a_n = \frac{1}{2}(1+x+x^2+x^3.....) + \frac{1}{2}(1+3x+(3x^2)+.....)$$
$$= \frac{1}{2}(1+3^n)$$

$$\frac{1}{2}(1+3^{n+1})$$

QUESTION ANALYTICS

Q. 12

Consider x, y, z and w be elements of a group G:

 P_1 : If given that $xyz^{-1}w = 1$, then y must be equal to $x^{-1}w^{-1}z$.

 P_2 : If xyz = 1, then yxz = 1.

Which of the following is true?

FAQ Solution Video Have any Doubt?

Only P₁

Your answer is Correct

Solution:

$$xyz^{-1}w = 1$$
, then $y = x^{-1}w^{-1}z$

$$y = x^{-1} w^{-1} z \text{ in } xyz^{-1}w = 1$$
$$x(x^{-1} w^{-1}z)z^{-1}w = 1$$

$$x(x^{-1} w^{-1}z)z^{-1}w = 1$$

 $w^{-1}z z^{-1}w = 1$

$$w^{-1}w = 1$$

$$P_2$$
:

$$xyz = 1$$
, then $xyz = 1$

$$x = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, y = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, z = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

 $\begin{bmatrix} 1 & 0 \end{bmatrix}$

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES And

 $xyz \neq yxz$ Hence false

В

Only P₂

C

Both P_1 and P_2

D

Neither P_1 nor P_2

QUESTION ANALYTICS

Q. 13

Which of the following is false?

FAQ Solution Video Have any Doubt?

Α

Every cyclic group is Abelien group.

В

Every Abelien group is cyclic group.

Correct Option

Solution:

(b)

- Every cyclic group is Abelien group but every Abelien group is not cyclic group.
- Every group of prime order is cyclic group and we know that every cyclic group is Abelien group hence, every group of prime order is Abelien group.
- If (G, *) be a cyclic group of even order, then there exist atleast one elements other than identity element such that $a^{-1} = a$.

(

Every group of prime order is Abelien group.

D

If (G, *) be a cyclic group of even order, then there exist atleast one elements other than identity element such that $a^{-1} = a$.

Your answer is Wrong

QUESTION ANALYTICS

Q. 14

Consider a_n represent the number of bit string of length 'n' containing even member of 0's. What is the recurrence relation?

FAQ Solution Video Have any Doubt?

 $a_{n-2} + (2^{n-1} - a_{n-1})$

Your answer is Wrong

В

$$a_{n-1} + a_{n-2} + 2^{n-1}$$

С

$$2a_{n-1} - a_{n-1} - a_{n-2}$$

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

📝 OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

Solution:

(d)

 $a_1 = 1 [\therefore \text{ strings} = 1]$

 $a_2 = 2$ [: strings are : 00, 11]

 $a_3 = 4$ [: strings are : 001, 100, 111, 010]

 $a_4 = 8$ [: strings are : 1111, 1001, 0011, 1100, 0101, 1010, 0110, 0

Option (a):

 $a_n = a_{n-2} + (2^{n-1} - a_{n-1})$

 $a_4 = a_{4-2} + 2^{4-1} - a_{4-1}$

 $= a_2 + 2^3 - a_3 = 2 + 8 - 1 = 9$ which is false.

Option (b):

 $a_n = a_{n-1} + a_{n-2} + 2^{n-1}$

 $a_4 = a_3 + a_2 + 2^3$

= 4 + 2 + 8 = 14 which is False.

Option (c):

 $a_n = 2a_{n-1} - a_{n-1} - a_{n-2}$

 $\Rightarrow \qquad \qquad a_4 = 2a_3 + a_3 - a_2$

 $= 2 \times 4 - 4 + 2 = 6$ which is False.

Option (d):

 $a_n = 2a_{n-1}$

 $a_4 = 2a_3$

= $2 \times 4 = 8$ which is true.

 \therefore Option (d): $a_n = 2a_{n-1}$ is correct.

QUESTION ANALYTICS

Q. 15

The number of ways to roll 5 six sided dice to get sum of 25 is ______

FAQ Solution Video Have any Doubt?

126

Correct Option

Solution:

126

Number of possible values on top of dice:

 $= \ \chi + \chi^2 + \chi^3 + \chi^4 + \chi^5 + \chi^6$

$$= \frac{x(1-x^6)}{1-x}$$

We need to find coefficient of x^{25} :

$$\left(\frac{x(1-x^6)}{1-x}\right)^5 = x^5(1-x^6)^5 \cdot \frac{1}{(1-x)^5} = x^{25}$$

 \Rightarrow Coefficient of x^{20} in $(1-x^6)^5 \cdot \frac{1}{(1-x)^5}$

 \Rightarrow Coefficient of x^{20} in $(1 - 5x^6 + 10x^{12} - 10x^{18} + 5x^{24} - x^{30}) \left(\sum_{n=0}^{\infty} {n+4 \choose 4} x^n \right)$

 \Rightarrow Coefficient of x^{20} in $[(^{20+4}C_4) - 5 \times (^{14+4}C_4) + 10 \times (^{8+4}C_4) - 10 \times (^{2+4}C_4)]x^{20}$

 $= (^{24}C_4) - 5 \times (^{18}C_4) + 10 \times (^{12}C_4) - 10 \times (^6C_4)$ = 10626 - 5 × (3060) + 10 × (495) - 10 × (15)

126

Your Answer is 45

Ashima Garg Course: GATE

Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES Solution Video Have any Doubt?

15

Correct Option

Solution:

15

With given degree sequence, simple graph will be:

Independence set or stable set is a set of vertices in a graph, no two of which are adjacent. So, largest independence set is $|\{a, d, f\}| = 3$

We know that,

Total vertex = Largest independence set + Minimal vertex cover

$$8 = 3 + y$$
$$y = 5$$

So, $x \times y = 5 \times 3 = 15$

QUESTION ANALYTICS

Q. 17

The number of non-negative integral solutions to the equation:

$$x_1 + x_2 + x_3 + x_4 \le 10$$

where $x_1, x_2, x_3, x_4 \ge 0$ is _____.

FAQ Have any Doubt?

1001

Your answer is Correct1001

Solution:

1001

$$\begin{array}{ll} x_1 + x_2 + x_3 + x_4 & \leq & 10 \\ \Rightarrow & x_1 + x_2 + x_3 + x_4 + x_5 & = & 10 \text{ [Box method]} \\ \text{Number of solutions} & = & ^{5-1+10}C_{10} \\ & = & (^{14}C_{10}) = 1001 \end{array}$$

QUESTION ANALYTICS