2.2 Correction Planche 2

Partie 1: Mélange initial

1. Quantités de matière

$$n_{\rm O_2} = \frac{m_{\rm O_2}}{M_{\rm O_2}} = \frac{6,00}{32,0} = 0,188 \text{ mol}$$

$$n_{\rm CH_4} = \frac{m_{\rm CH_4}}{M_{\rm CH_4}} = \frac{9,00}{16,0} = 0,563 \text{ mol}$$

$$n_{\rm O_2} = 0.188 \text{ mol} \quad ; \quad n_{\rm CH_4} = 0.563 \text{ mol}$$

2. Fractions molaires

Quantité totale : $n_{tot} = n_{\rm O_2} + n_{\rm CH_4} = 0.188 + 0.563 = 0.751$ mol

$$x_{\text{O}_2} = \frac{n_{\text{O}_2}}{n_{tot}} = \frac{0.188}{0.751} = 0.250$$
$$x_{\text{CH}_4} = \frac{n_{\text{CH}_4}}{n_{tot}} = \frac{0.563}{0.751} = 0.750$$

$$x_{\text{O}_2} = 0.25$$
 ; $x_{\text{CH}_4} = 0.75$

3. Pression totale

$$P_{tot} = \frac{n_{tot}RT}{V} = \frac{0.751 \times 8.314 \times 273}{15.0} = \frac{1.705 \times 10^3}{15.0} = 114 \text{ Pa}$$

$$P_{tot} = 114 \text{ Pa} = 1.14 \times 10^{-3} \text{ bar}$$

4. Pressions partielles

$$P_{\text{O}_2} = x_{\text{O}_2} \times P_{tot} = 0.25 \times 114 = 28.5 \text{ Pa}$$

 $P_{\text{CH}_4} = x_{\text{CH}_4} \times P_{tot} = 0.75 \times 114 = 85.5 \text{ Pa}$

$$P_{\rm O_2} = 28.5 \; {\rm Pa} \; \; ; \; \; P_{\rm CH_4} = 85.5 \; {\rm Pa}$$

Partie 2 : Quotient réactionnel

5. Expression de Q_r

Pour la réaction $2SO_2(g) + O_2(g) = 2SO_3(g)$:

En activités:

$$Q_r = \frac{a_{\mathrm{SO}_3}^2}{a_{\mathrm{SO}_2}^2 \times a_{\mathrm{O}_2}}$$

En pressions partielles (gaz parfaits):

$$Q_r = \frac{(P_{SO_3}/P^o)^2}{(P_{SO_2}/P^o)^2 \times (P_{O_2}/P^o)}$$

Avec
$$P^{o} = 1 \text{ bar}$$
:
$$Q_{r} = \frac{P_{SO_{3}}^{2}}{P_{SO_{2}}^{2} \times P_{O_{2}}}$$

6. Calcul de Q_r

$$Q_r = \frac{(1.0)^2}{(0.50)^2 \times 0.25} = \frac{1.0}{0.25 \times 0.25} = \frac{1.0}{0.0625} = 16$$

$$Q_r = 16$$

7. Sens d'évolution

On compare Q_r et K^o :

$$-Q_r = 16$$

$$-K^o = 2.5 \times 10^3 = 2500$$

On a $Q_r < K^o$, donc le système évolue dans le sens direct.

Le système évolue dans le sens direct (\rightarrow)

8. Type de réaction

Avec $K^o = 2.5 \times 10^3 > 10^4$ est faux, mais $K^o > 10^4$ non plus.

En fait $10^{-4} < 2.5 \times 10^3 < 10^4$, donc:

La réaction est équilibrée (mais avec déplacement vers les produits)

9. Moyens pour favoriser SO₃

Deux moyens:

Moyen 1 : Augmenter la pression totale - Q_r contient P^2 au numérateur et P^3 au dénominateur - En augmentant P, on diminue Q_r - Donc $Q_r < K^o$: sens direct favorisé

Moyen 2 : Retirer SO3 au fur et à mesure - Diminue le numérateur de Q_r - Donc $Q_r < K^o$: formation de SO3 favorisée

Augmenter P ou retirer SO_3 en continu