

### Introduction of MariaDB

26th September 2017

GOTO Satoru Customer Solutions Engineer

### What is MariaDB?





# The Soul of Open Source

MariaDB was created to preserve openness and community, so that we can push ahead faster with the capabilities for tomorrow's applications.



## History of MySQL & MariaDB



| 1981 | Unireg (base of MySQL code)                 |
|------|---------------------------------------------|
| 1994 | Added SQL interface and renamed it MySQL    |
| 1995 | MySQL released under dual licensing         |
|      |                                             |
| 2005 | Oracle acquired InnoDB                      |
| 2008 | Sun acquired MySQL AB for 1 billion USD     |
| 2009 | Monty & others left Sun in Feb 2009         |
|      | to work on Maria engine in Monty Program Ab |
| 2009 | ě v č                                       |
| 2012 | MariaDB foundation was created              |
|      |                                             |
| 2013 | MariaDB started replacing MySQL in most     |
|      | Linux distributions                         |
| 2013 | Monty Program Ab merged with SkySQL         |
| 2014 | SkySQL Ab renamed to MariaDB Corporation    |
|      |                                             |



#### **History of MariaDB**



Feb 2010 MariaDB 5.1

Nov 2010 MariaDB 5.2

Apr 2012 MariaDB 5.3

Feb 2012 MariaDB 5.5

**Mar 2014 MariaDB 10.0** 

Oct 2015 MariaDB 10.1

May 2017 MariaDB 10.2.6 GA

Aug 2017 MariaDB 10.3.1 alpha

https://downloads.mariadb.org/mariadb/+releases/

https://github.com/MariaDB/server/releases

## MariaDB vs. MySQL





### MariaDB vs. MySQL More Storage Engines

• **ColumnStore** column oriented engine for Data warehousing(DWH)

• **Spider** in 10.0 and later

• **MyRocks** with great compression, in 10.2

• **Aria** MyISAM replacement with better caching

• FederatedX drop-in replacement for Federated

• OQGRAPH new in 5.2 - Open Query GRAPH

• SphinxSE new in 5.2

TokuDB in 5.5 and later -

• CONNECT in 10.0 and later

• SEQUENCE in 10.0 and later

• Cassandra in 10.0

https://mariadb.com/kb/en/library/mariadb-vs-mysql-features/

### MariaDB vs. MySQL Performance Improvements

- Query Optimizer enhancements
- Faster and safer replication
- Character set conversions
- Thread Pool
  - allows 200,000+ connections and with a notable speed improvement when using many connections
  - w/ MySQL only available with Enterprise version

https://mariadb.com/kb/en/library/mariadb-vs-mysql-features/

#### MariaDB vs. MySQL Extensions & New Features

• Window functions new in 10.2

• DECIMAL from 30 to 38 new in 10.2

• **Recursive CTE** new in 10.2 (Common Table Expressions)

• CHECK CONSTRAINT new in 10.2

• DEFAULT new in 10.2, for BLOB and TEXT

• Added catchall for list partitions new in 10.2

• EXECUTE IMMEDIATE new in 10.2 (Oracle-style )

• JSON functions new in 10.2

ms Precision in Processlist

Table Elimination

• Virtual Columns new in 5.2

#### MariaDB vs. MySQL Extensions & New Features

| • | Extended User Statistics              | new in 5.2                                |
|---|---------------------------------------|-------------------------------------------|
| • | KILL all queries for a user           | new in 5.3                                |
| • | KILL QUERY ID                         | terminates the query by query_id, leaving |
|   | the connection intact — new in 10.0.5 |                                           |

- Pluggable Authentication new in 5.2
- Enhancements to INFORMATION SCHEMA.PLUGINS table new in 5.2
- Group commit for the binary log new in 5.3
- Added --rewrite-db mysqlbinlog option to change the used database new in 5.2
- Progress reporting for ALTER TABLE and LOAD DATA INFILE new in 5.3
- Faster joins and subqueries

   HandlerSocket and faster HANDLER calls
   Dynamic Columns support
   new in 5.3
   new in 5.3
- GIS Functionality new in 5.3

#### MariaDB vs. MySQL Extensions & New Features

| <ul> <li>Multi-source replication</li> </ul> | n new in 10.0 |
|----------------------------------------------|---------------|
|----------------------------------------------|---------------|

| • GTID | new in 10.0, Global Transaction ID |
|--------|------------------------------------|
|--------|------------------------------------|

| • | SHOW EXPLAIN | new in 10.0, | gives the EXPLAIN | query plan |
|---|--------------|--------------|-------------------|------------|
|---|--------------|--------------|-------------------|------------|

| • | Roles | new in | 10. | 0 |
|---|-------|--------|-----|---|
|---|-------|--------|-----|---|

| • | PCRE | new in 10.0, Perl Compatible Regular Expression | 15 |
|---|------|-------------------------------------------------|----|
|---|------|-------------------------------------------------|----|

• DELETE ... RETURNING new in 10.0

https://mariadb.com/kb/en/library/mariadb-vs-mysql-features/

## MariaDB vs. MySQL Truly Open Source

- All code in MariaDB: released under GPL, LGPL or BSD
- MariaDB client libraries (for C, for Java (JDBC), for Windows (ODBC) are released under LGPL
  - allows link with closed source software
  - MySQL client libraries are released under GPL that does not allow linking with closed source software
- MariaDB includes test cases for all fixed bugs.
  - Oracle doesn't provide test cases for new bugs fixed in MySQL 5.5
  - All bugs / development plans are public
    - •https://jira.mariadb.org/
    - •https://github.com/MariaDB



By 2018, more than 70% of new inhouse applications will be developed on an ODBMS, and 50% of existing commercial RDBMS instances will have been converted or will be in process.

Gartner | STRATEGIC PLANNING ASSUMPTION

# The Only Innovating Community



# We're building a database that is easy to use, easy to extend, and easy to deploy:

on premise, in the cloud, or hybrid, operational or analytical — and with the languages and frameworks you prefer.



## Why consider MariaDB?



# Reduced Costs

Annual Subscriptions
Cloud Infrastructure
Modern Hardware



#### **Economics of Inevitable Change**



On premise...

- Oracle costs **80x** more
  - Organizations can save **\$9 million**
- In the cloud...
  - On AWS, Oracle costs 145x more
  - On Oracle Cloud, it costs **69x** more

### Default Database on Leading Linux Distros, **Available on Leading Cloud Platforms**

#### **Linux Distributions**























Cloud Services & Stacks





















#### OpenStack user survey April 2017

#### Which databases are used for OpenStack components?

MariaDB Galera Cluster moved from fourth to first place on this list, up 7 points, while MongoDB slipped 6 points. MySQL with Galera also dropped significantly, down 8 points. This follows a longerterm trend over time where deployments are moving away from MySQL (down 22% over past 18 months) to MariaDB and others. IBM DB2 was noted among other databases used.





| Distribution           | Estimated Reach | MariaDB Default since      |
|------------------------|-----------------|----------------------------|
| CentOS                 | 10 million      | 2013                       |
| RHEL                   | 5.3 million     | 2013                       |
| openSUSE               | 28 million      | 2015                       |
| Fedora                 | 13.4 million    | 2015                       |
| Debian                 | 1.5 million     | 2017                       |
| Ubuntu                 | 25 million      | Expected to follow Debian  |
| BSD, Mageia, macOS etc | 1 million       | Mostly all default MariaDB |

**J** 16.

**J** 19.

19. 🛧 22.

18.

18.

18.

19.

20.

Firebird

**Impala** 

Amazon Redshift 🖽

**DB-Engines** Ranking **RDBMS** Sep 2017

db-engines.com/en/ranking

Rank **Database Model DBMS** Sep Aug Sep Sep 2017 2016 2016 Oracle 🚦 👾 1359.09 Relational DBMS 1. -66.47MySQL 🚹 👾 1312.61 -27.69 2. Relational DBMS -41.41 Microsoft SQL Server 🖽 👾 1212.54 -12.93 +0.99 3. 3. Relational DBMS PostgreSQL 🔡 👾 372.36 +2.60 +56.01 Relational DBMS DB2 🖽 5. 5. 198.34 +0.87 +17.15 Relational DBMS Microsoft Access 128.81 +1.78 +5.50 6. 6. Relational DBMS 7. **SQLite 112.04** +1.19 +3.41 7. 7. Relational DBMS 8. Teradata 80.91 +1.67 +7.84 8. Relational DBMS SAP Adaptive Server 9. Relational DBMS -0.16 -2.41FileMaker 10. 61.00 +1.35 +5.64 10. 10. Relational DBMS **1**3. MariaDB 🖽 55.47 +0.78 +16.94 Relational DBMS Hive 🖽 48.62 +1.31 -0.21 **1**3. **J** 11. Relational DBMS SAP HANA 🛅 48.33 +0.36 +4.91 **J** 12. Relational DBMS **J** 12. Informix 14. 27.84 + 0.4114. 14. Relational DBMS -0.35Vertica 🖽 15. **1**6. 22.01 15. Relational DBMS +0.20+0.95 Microsoft Azure SQL Database 16. **1**7. 21.60 Relational DBMS -0.31 +2.1817. Netezza 19.40

Relational DBMS

Relational DBMS

Relational DBMS

Relational DBMS

137 systems in ranking, September 2017

Score

-0.17

-0.20

13.56 +0.51 +4.34

13.04 +0.21 +2.21

17.86

-0.41

+2.28

DB-Engines
Ranking of
RDBMS
Sep 2017

db-engines.com/en/ranking







#### 12 Million Users in 45 Countries Trust Critical Business Data to MariaDB





First American Title

Virgin money

**Financial Services** 

PAYBOX

Swedbank

Crédit Mutuel





## The database market is changing. It is time for a new leader.



#### What will this new leader provide?

**Enterprise Reliability** 

High Availability (Replication / Failover)

Disaster Recovery (Backup & Restore)

Performance (Thread Pool)

Scalability (Partitioning and Sharding)

Security (Firewall and Encryption)

**Open Source Innovation** 

**Open** Development (Tests and Roadmaps)

Community **Collaboration** (New Features)

Extensible Architecture (Custom Plugins)

Flexible Modeling (Dynamic Columns & JSON)

Streaming Integration (CDC and Kafka)

#### MariaDB Technology



#### **SERVER**

Enterprise-grade secure,
highly available and
scalable relational
database with
a modern, extensible
architecture



#### **MAXSCALE**

Next-generation database

proxy that manages
security, scalability and
high availability in scale-out
deployments



#### **COLUMNSTORE**

Columnar storage engine for massively parallel distributed query execution and data loading



#### **Extensible Architecture**



### MariaDB Storage Engines





#### MariaDB Storage Engines General Purpose

- XtraDB: best choice in many cases until MariaDB 10.1
   —performance-enhanced fork of InnoDB and is MariaDB's default engine until MariaDB 10.1
  - **InnoDB**: general transactional engine, default MariaDB **10.2**
  - MyISAM: small footprint and allows for easy copying between systems
     MySQL's oldest storage engine
  - **Aria** : MariaDB's modern improvement on MyISAM

https://mariadb.com/kb/en/library/choosing-the-right-storage-engine/

## MariaDB Storage Engines Scaling, Partitioning

- Galera Cluster: synchronous multi-master cluster. only InnoDB supported
- **TokuDB** is a transactional storage engine which is optimized for workloads that do not fit in memory, and provides a **good compression ratio**
- **Spider** uses partitioning to provide data **sharding** through multiple servers
  - <a href="https://www.slideshare.net/Kentoku/mariadb-103spider">https://www.slideshare.net/Kentoku/mariadb-103spider</a>
- **ColumnStore** utilizes a massively parallel **distributed** data architecture and is designed for big data scaling to process petabytes of data
  - <a href="https://www.slideshare.net/InsightTechnology/dbtstky2017-c37-mariadb">https://www.slideshare.net/InsightTechnology/dbtstky2017-c37-mariadb</a>

## MariaDB Storage Engines Compression / Archive

- **MyRocks**: enables greater compression than InnoDB, as well as less write amplification giving better endurance of flash storage(SSD) and improving overall throughput. Developed at **Facebook** 
  - <a href="https://enterprisezine.jp/dbonline/detail/9450">https://enterprisezine.jp/dbonline/detail/9450</a>
- TokuDB: transactional storage engine which is optimized for workloads that do not fit in memory, and provides a good compression ratio
- Archive: best used for archiving

## Storage Engines Connecting to other data sources

- **CONNECT**: allows access to different kinds of text files and remote resources as if they were regular MariaDB tables
- CSV: read and append to files stored in CSV format.
  - -since MariaDB 10.0, CONNECT is a better choice and is more flexibly able to read and write such files
  - FederatedX : uses libmysql to talk to the data source, the data source being a remote RDBMS.
    - -Currently, since FederatedX only uses libmysql, it can only talk to another MySQL RDBMS.
  - CassandraSE: allowing access to an older version of Apache Cassandra NoSQL DBMS.
    - -It was relatively experimental, and is no longer being actively developed



#### Storage Engines Full Text Search

- SphinxSE: proxy to run statements on a remote Sphinx DB server
- **Mroonga**: fast CJK-ready full text search
  - http://mroonga.org/ja/blog/2016/07/21/mariadb-community-event-in-tokyo.html
  - https://www.slideshare.net/kou/dbtechshowcasetokyo2017

### Storage Engines Cache, read-only

- MEMORY: does not write data on-disk (all rows are lost on crash) and is best-used for **read-only caches** of data from other tables, or for temporary work areas.
  - With the default XtraDB and other storage engines having good caching, there is less need for this engine than in the past.

#### **Evolution of MariaDB Server**

10.1 (GA)

Multi-master Replication (Galera)

Data-at-Rest Encryption

**Password Validation** 

Page Compression

Facebook Defragmentation

Spatial References (GIS)

10.2 (GA)

**MyRocks** 

Flashback (Point in Time Rollback)

Common Table Expressions

Window Functions

**Check Constraints** 

**JSON & GeoJSON Functions** 

Mult-Trigger Support

**Delayed Replication** 

Binary Log Compression

Per User Resource Limits

Virtual Column Indexes

10.3 (DEV)

Sequences & PL/SQL

**System Versioned Tables** 

As Of (Point in Time Querying)

User-defined Aggregate Functions

Intersect & Except

Hidden Columns



## MariaDB MaxScale

MariaDB MaxScale is a next-generation database proxy that manages security, scalability and high availability in a scale out deployment.



#### Security

Secure **database firewall** to prevent
cyber attacks like
SQL injection and
DDoS



### Scalability

Manage your scaled-out infrastructure without changing application code



#### High Availability

Ensure uptime
with no single
point of failure
and minimize
downtime
during upgrade



#### **Data Streaming**

Stream transactional data to data lake for real-time analytics



## MariaDB ColumnStore(AX)

High performance columnar storage engine that supports a wide variety of analytical use cases in highly scalable distributed environments



Power of SQL and Freedom of Open Source to Big Data Analytics



Single Interface for OLTP and analytics Easy to Manage and Scale



Parallel query processing for distributed environments

## MariaDB ColumnStore Architecture



## Services and Support

Put our **Expertise** to Work for You



## MariaDB TX 2.0

#### Transaction Platform







## MariaDB TX 2.0

Transaction Platform



#### **Software**

licensing and support for databases, the database proxies and database connectors



#### **Services**

credits for remote administration, enterprise architecture, migration planning services and more



#### **Tools**

tools for administration, monitoring, backup and replication management



## **Customer and Use Cases**



- Multi-terabyte DB80M transactions / month



- 250 servers, 600G + 1.5T archive
- 10M travelers/quarter
- 4M transactions/ month



• ~14TB in MariaDB production clusters



- 50+ Node Cluster
- Multi-billion rows
- 600 Million reads/second



- Over 150 servers
- 150-200k queries / sec on the MariaDB Cluster



- 3 to 10 TB
- Over billion rows, most tables 100's of millions of rows



- 70 million rows per day
- 4 billion impressions per month



• Over 5 TB in Pay Per click application



• 6TB and millions of CDR's

## **Get Started with MariaDB**

Download <a href="https://mariadb.com/downloads">https://mariadb.com/downloads</a>

Read the Technical overviews
<a href="https://mariadb.com/resources/datashe">https://mariadb.com/resources/datashe</a>
<a href="ets-guides">ets-guides</a>

Search the Knowledge Base <a href="https://mariadb.com/kb">https://mariadb.com/kb</a>

Watch a Webinar <a href="https://mariadb.com/resources/webinars">https://mariadb.com/resources/webinars</a>

# Upcoming events





Supporting continuity and open c

About MariaDB ~

Download

Learn

Get Invo

Blog



Home / Conferences/Events / Community /
Development / 2017-2 Developers Unconference and
Related Events, Shenzhen

Platinum Sponsors

13-17 November, 2017

## 2017-2 Developers Unconference and Related Events, Shenzhen







## M 18

FEB 26-27, 2018
CONRAD NEW YORK

m18.mariadb.com





## Latest news



## What is new in ColumnStore 1.1?

Columnar Engine based on MariaDB 10.2 Data Engine Native Data API for ColumnStore files: C++: LGPL **Streaming Data Adapters** Avro, JSON - BSL Streaming Change Data Capt (1) MaxScale & Kafka - BSL Streaming Insert via MaxScale R. Built-in Data Redundance Integrated GlusterFS for Data HA HA User defined distributed aggregate and Window functions Analytics Text, BLOB **Data Types** Backup, restre tool - BSL Ease of Use more ved string handling / memory utilization Performance eral performance improvements

Security

• Audit Plugin Integration

Certification

Tableau



