Chapitre 17

Fractions rationnelles

17	Fractions rationnelles	1
	17.2 Addition, multiplication et produit par un scalaire	2
	17.10Degré d'une fraction	2

Addition, multiplication et produit par un scalaire 17.2

Soit $\frac{P}{Q}$ et $\frac{R}{S}$ deux fractions rationnelles et soit $\lambda \in \mathbb{K}$. On pose

$$\frac{P}{Q} + \frac{R}{S} = \frac{PS + QR}{QS}, \ \frac{P}{Q} \times \frac{R}{S} = \frac{PR}{QS} \text{ et } \lambda \times \frac{P}{Q} = \frac{\lambda P}{Q}.$$

Montrons que l'addition est bien définie.

Soit $\frac{P_1}{Q_1} = \frac{P}{Q}$ et $\frac{R}{S}$ dans $\mathbb{K}(X)$. Montrons que :

$$\frac{PS + QR}{QS} = \frac{P_1S + Q_1R}{Q_1S}$$

On a:

$$(PS + QR)Q_1S - (P_1S + Q_1R)QS = S^2(\underbrace{PQ_1 - P_1Q}_{=0}) + RS(\underbrace{QQ_1 - Q_1Q}_{=0})$$

$$= 0$$

On raisonne de la même manière pour $\frac{R}{S} = \frac{R_1}{S_1}$ et ainsi, l'opération est bien définie.

17.10Degré d'une fraction

Soit $F = \frac{P}{Q}$ une fraction. On pose $\deg(F) = -\infty$ si F = 0 et $\deg(F) = \deg(P) - \deg(Q)$ sinon. Le degré d'une fraction est donc un élément de $\mathbb{Z} \cup \{-\infty\}.$

Si $\frac{P_1}{Q_1} = \frac{P}{Q}$, alors:

$$\begin{split} P_1Q &= PQ_1\\ &\operatorname{donc}\ \deg(P_1Q) = \deg(PQ_1)\\ &\operatorname{donc}\ \deg(P_1) + \deg(Q) = \deg(P) + \deg(Q_1)\ (\mathbb{K}\ \mathrm{int\`egre})\\ &\operatorname{donc}\ \deg(P_1) - \deg Q_1 = \deg(P) - \deg(Q) \end{split}$$