Fast Matrix Exponentiation With Applications

Nurseiit Abdimomyn

UNIST

October 26, 2018

Outline

Introduction

2 Matrix exponentiation

3 Applications

Consider two matrices:

Consider two matrices:

• Matrix A is n * k dimensional.

Consider two matrices:

- Matrix A is n * k dimensional.
- Matrix B is k * m dimensional.

Consider two matrices:

- Matrix A is n * k dimensional.
- Matrix B is k * m dimensional.

Notice that A's columns and B's rows number are identical!

Consider two matrices:

- Matrix A is n * k dimensional.
- Matrix B is k * m dimensional.

Notice that A's columns and B's rows number are identical!

Then we define matrix C = A * B as:

$$\begin{bmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{bmatrix} * \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{bmatrix}$$

Consider two matrices:

- Matrix A is n * k dimensional.
- Matrix B is k * m dimensional.

Notice that A's columns and B's rows number are identical!

Then we define matrix C = A * B as:

$$\begin{bmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{bmatrix} * \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{bmatrix}$$

Thus, C is an n * m dimensional matrix.

Which is calculated as:
$$c_{ij} = \sum_{r=1}^{k} a_{ir} * b_{rj}$$

Couple of things to notice

 Matrix C has n * m elements and each element is computed in k steps with given formula.

Couple of things to notice

 Matrix C has n * m elements and each element is computed in k steps with given formula.

Thus, we can obtain C in O(n * m * k), given A and B.

Couple of things to notice

- Matrix C has n*m elements and each element is computed in k steps with given formula.
 - Thus, we can obtain C in O(n * m * k), given A and B.
- If n = m = k (i.e. both A and B have n rows and n columns), then C has n rows and n columns, and can be computed in $O(n^3)$.

• It is not commutative: $A * B \neq B * A$ in general case.

- It is not commutative: $A * B \neq B * A$ in general case.
- It is associative:

$$A * B * C = (A * B) * C = A * (B * C)$$
 in case $A * B * C$ exists;

- It is not commutative: $A * B \neq B * A$ in general case.
- It is associative:

$$A * B * C = (A * B) * C = A * (B * C)$$
 in case $A * B * C$ exists;

- If you have a matrix with n rows and n columns, then multiplying it by I_n gives the same matrix.
 - i. e. $I_n * A = A * I_n = A$.

- It is not commutative: $A * B \neq B * A$ in general case.
- It is associative: A * B * C = (A * B) * C = A * (B * C) in case A * B * C exists;
- If you have a matrix with n rows and n columns, then multiplying it by I_n gives the same matrix.
 i. e. I_n * A = A * I_n = A.

Where I_n is a matrix with n rows and n columns of such form:

$$I_n = \left[\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{array} \right]$$

Outline

Introduction

- Matrix exponentiation
- 3 Applications

Matrix exponentiation

Suppose we need to find some n * n dimensional square matrix A to the power p or A^p

Matrix exponentiation

Suppose we need to find some n*n dimensional square matrix A to the power p or A^p

We can do so via:

```
function matpow_naive(A, p):
  result = l_n
  for i = 1..p:
    result = result * A
  return result
```

Which will run in $O(n^3 * p)$

Fast Matrix exponentiation

Can we do it any faster?

Fast Matrix exponentiation

Can we do it any faster?

Yes, we can apply the BinPower algorithm here:

```
function matBinPow(A, p):
    result = I_n
    while p > 0:
        if p % 2 == 1:
            result = result * A
        A = A * A
        p = p / 2
    return result
```

Which will run in $O(n^3 * \log p)$

Outline

Introduction

- 2 Matrix exponentiation
- 3 Applications

Fibonacci numbers, F_n are defined as:

•
$$F_0 = F_1 = 1$$

•
$$F_i = F_{i-1} + F_{i-2}$$
 for $i > 1$.

Fibonacci numbers, F_n are defined as:

- $F_0 = F_1 = 1$
- $F_i = F_{i-1} + F_{i-2}$ for i > 1.

We want to calculate $F_n \mod M$, where $n < 10^{18}$ and $M = 10^9 + 7$.

Suppose we have a vector (matrix with one row and several columns) of (F_{i-2}, F_{i-1}) and we want to multiply it by some matrix, so that we get (F_{i-1}, F_i) as a result.

Suppose we have a vector (matrix with one row and several columns) of (F_{i-2}, F_{i-1}) and we want to multiply it by some matrix, so that we get (F_{i-1}, F_i) as a result. Let's call this matrix M: $(F_{i-2}, F_{i-1}) * M = (F_{i-1}, F_i)$

Two questions we should answer arise immediately:

- What are the dimensions of M?
- What are the exact values in M?

We can answer them using the definition of matrix multiplication:

We can answer them using the definition of matrix multiplication:

• The size. We multiply (F_{i-2}, F_{i-1}) , which has 1 row and 2 columns, by M. The result is (F_{i-1}, F_i) , which has 1 row and 2 columns.

We can answer them using the definition of matrix multiplication:

• The size.

We multiply (F_{i-2}, F_{i-1}) , which has 1 row and 2 columns, by M. The result is (F_{i-1}, F_i) , which has 1 row and 2 columns.

By definition, if we multiply a matrix with N rows and K columns by a matrix with K rows and L columns, we get a matrix with N rows and L columns.

Therefore, matrix M has K = 2 rows and L = 2 columns.

We can answer them using the definition of matrix multiplication:

• The values.

We can answer them using the definition of matrix multiplication:

The values.
 We now know that M has 2 rows and 2 columns, 4 values overall.
 Lets denote them by letters, as we usually do with unknown variables:

$$M = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

We can answer them using the definition of matrix multiplication:

The values.
 We now know that M has 2 rows and 2 columns, 4 values overall.
 Lets denote them by letters, as we usually do with unknown variables:

$$M = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

We want to find a, b, c and d.

We have,

$$M = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

We have,

$$M = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

We want to find a, b, c and d.

Let's see what we get if we multiply (F_{i-2}, F_{i-1}) by M by definition:

We have,

$$M = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

We want to find a, b, c and d.

Let's see what we get if we multiply (F_{i-2}, F_{i-1}) by M by definition:

$$(F_{i-2}, F_{i-1}) * \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (a * F_{i-2} + c * F_{i-1}, b * F_{i-2} + d * F_{i-1})$$

We have,

$$M = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

We want to find a, b, c and d.

Let's see what we get if we multiply (F_{i-2}, F_{i-1}) by M by definition:

$$(F_{i-2},F_{i-1})*\begin{bmatrix} a & b \\ c & d \end{bmatrix} = (a*F_{i-2}+c*F_{i-1},b*F_{i-2}+d*F_{i-1})$$

Moreover, we know that the result of this multiplication must be (F_{i-1}, F_i) : $(a * F_{i-2} + c * F_{i-1}, b * F_{i-2} + d * F_{i-1}) = (F_{i-1}, F_i)$

Now we can write the system of equations:

•
$$a * F_{i-2} + c * F_{i-1} = F_{i-1}$$

•
$$b * F_{i-2} + d * F_{i-1} = F_i$$

Now we can write the system of equations:

•
$$a * F_{i-2} + c * F_{i-1} = F_{i-1}$$

•
$$b * F_{i-2} + d * F_{i-1} = F_i$$

The easiest solution is to set:

$$a = 0, b = 1, c = 1, d = 1$$

Now we can write the system of equations:

•
$$a * F_{i-2} + c * F_{i-1} = F_{i-1}$$

•
$$b * F_{i-2} + d * F_{i-1} = F_i$$

The easiest solution is to set:

$$a = 0, b = 1, c = 1, d = 1$$

Thus, we obtain:

$$(F_{i-2}, F_{i-1}) * \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = (F_{i-1}, F_i)$$

You may wonder why on Earth would we need to overcomplicate the problem, introduce matrices or else? Hang on, you'll see in a moment.

You may wonder why on Earth would we need to overcomplicate the problem, introduce matrices or else? Hang on, you'll see in a moment. Initially, we have F_0 and F_1 . $(F_0, F_1) = (1, 1)$

You may wonder why on Earth would we need to overcomplicate the problem, introduce matrices or else?

Hang on, you'll see in a moment.

Initially, we have F_0 and F_1 .

$$(F_0, F_1) = (1, 1)$$

By multiplying this vector with the matrix M we get:

$$(F_1, F_2) = (1, 2) \text{ or } (1, 1) * M = (1, 2).$$

You may wonder why on Earth would we need to overcomplicate the problem, introduce matrices or else?

Hang on, you'll see in a moment.

Initially, we have F_0 and F_1 .

$$(F_0,F_1)=(1,1)$$

By multiplying this vector with the matrix M we get:

$$(F_1, F_2) = (1, 2) \text{ or } (1, 1) * M = (1, 2).$$

If we multiply (1,2) by M:

$$(1,2)*M=(2,3)$$

You may wonder why on Earth would we need to overcomplicate the problem, introduce matrices or else?

Hang on, you'll see in a moment.

Initially, we have F_0 and F_1 .

$$(F_0, F_1) = (1, 1)$$

By multiplying this vector with the matrix M we get:

$$(F_1, F_2) = (1, 2) \text{ or } (1, 1) * M = (1, 2).$$

If we multiply (1,2) by M:

$$(1,2)*M=(2,3)$$

But we could get the same result by multiplying (1,1) by M^2 .

$$(1,1)*M^2=(2,3).$$

You may wonder why on Earth would we need to overcomplicate the problem, introduce matrices or else?

Hang on, you'll see in a moment.

Initially, we have F_0 and F_1 .

$$(F_0, F_1) = (1, 1)$$

By multiplying this vector with the matrix M we get:

$$(F_1, F_2) = (1, 2) \text{ or } (1, 1) * M = (1, 2).$$

If we multiply (1,2) by M:

$$(1,2)*M=(2,3)$$

But we could get the same result by multiplying (1,1) by M^2 .

$$(1,1)*M^2=(2,3).$$

Now, can you see the pattern?

In general, we get:
$$(1,1) * M^k = (F_k, F_{k+1})$$

In general, we get: $(1,1)*M^k = (F_k,F_{k+1})$ Computing M^k takes $O(2^3*log(k))$ time. Thus, we can now find N-th Fibonacci number in O(log(N)) time.

In general, we get: $(1,1)*M^k = (F_k,F_{k+1})$ Computing M^k takes $O(2^3*log(k))$ time. Thus, we can now find N-th Fibonacci number in O(log(N)) time.

You can find the reference code at https://devnur.me/campunist

We can generalize the Fibonacci problem's solution to solve linear recurrent sequences.

We can generalize the Fibonacci problem's solution to solve linear recurrent sequences.

Let's take a look at more general problem than before. Suppose sequence A_i satisfies the following:

• $A_0 = a_0, A_1 = a_1, ..., A_{k-1} = a_{k-1}$ for given $a_0, a_1, ..., a_{k-1}$.

We can generalize the Fibonacci problem's solution to solve linear recurrent sequences.

Let's take a look at more general problem than before. Suppose sequence A_i satisfies the following:

- $A_0 = a_0, A_1 = a_1, ..., A_{k-1} = a_{k-1}$ for given $a_0, a_1, ..., a_{k-1}$.
- $A_i = c_1 * A_{i-1} + c_2 * A_{i-2} + ... + c_k * A_{i-k}$ for given $c_1, c_2, ..., c_k$.

We can generalize the Fibonacci problem's solution to solve linear recurrent sequences.

Let's take a look at more general problem than before. Suppose sequence A_i satisfies the following:

- $A_0 = a_0, A_1 = a_1, ..., A_{k-1} = a_{k-1}$ for given $a_0, a_1, ..., a_{k-1}$.
- $A_i = c_1 * A_{i-1} + c_2 * A_{i-2} + ... + c_k * A_{i-k}$ for given $c_1, c_2, ..., c_k$.

We need to find $A_N \mod 10^9 + 7$, for $N \le 10^{18}$ and $k \le 50$.

We can generalize the Fibonacci problem's solution to solve linear recurrent sequences.

Let's take a look at more general problem than before. Suppose sequence A_i satisfies the following:

- $A_0 = a_0, A_1 = a_1, ..., A_{k-1} = a_{k-1}$ for given $a_0, a_1, ..., a_{k-1}$.
- $A_i = c_1 * A_{i-1} + c_2 * A_{i-2} + ... + c_k * A_{i-k}$ for given $c_1, c_2, ..., c_k$.

We need to find $A_N \mod 10^9 + 7$, for $N \le 10^{18}$ and $k \le 50$.

Side note: sequence A_i is called **recurrent**, because computing A_i requires computing A_j for some j < i. Also, A_i is called **linear**, because it depends linearly on A_j for some j < i.

Thank you!