Chapter 1: Basic of real analysis of several variables Refresher Courses in Analysis

Guendalina PALMIROTTA

University of Luxembourg, Department of Mathematics

September 1, 2023

1.1. Banach's fixed point theorem

2 1.2. Implicit function theorem

3 1.3. Inverse function theorem

Motivation example

We already know that the equation

$$x^2 = 2$$

has a unique solution $x \in (0, \infty)$, called

$$\sqrt{2} = 1.41421356237...$$

In fact, we know that

There is an alternative way to **construct** $\sqrt{2}$:

Step 1: Reformulate the eq. $x^2 = 2$ as "fixed point problem"

Motivation example

Step 2: Choose $x_0 \in [1, 2]$ an define recursively

Step 3: Estimate. let $x, y \in [1, 2]$, then

Contracting function

Definition 1 (contracting function)

Let (X, d) be a metric space and let $f: X \to X$ be a map.

We say that f is **contracting** if there exists a constant $C \in [0,1)$ such that $\forall x,y \in X$ we have

$$d(f(x), f(y)) \leq C \cdot d(x, y).$$

Remarks

• Def. 1 can be generalized as follows:

- f is contracting $\Rightarrow f$ is continuous (even Lipschitz continuous).
- f is Lipschitz continuous $\Rightarrow f$ is continuous.

Banach's fixed point theorem

Theorem 1 (Banach's fixed point theorem)

Let (X, d) be a complete metric space and let $f: X \to X$ be a contracting map. **Then** f has a unique fixed point $\overline{x} \in X$.

In other words, the equation f(x) = x has exactly one solution $\overline{x} \in X$.

Moreover, for any $x_0 \in X$, the sequence $(f^n(x_0))_n$, where $f^n(x) = f \circ \cdots \circ f(x)$, converge to the fixed point $\overline{x} \in X$.

Sketch of the proof

Banach's fixed point theorem

Banach's fixed point theorem

Remarks

- Thm. 1 shows that our "construction" of $\sqrt{2}$ was correct.
- Thm. 1 also provides a practical method to solve equations like f(x) = x (at least approx. by computers).
- Thm. 1 does NOT work for "Lipschitz constant" L = 1 in general.

Simplest example:

1.1. Banach's fixed point theorem

2 1.2. Implicit function theorem

3 1.3. Inverse function theorem

Preparation

Let

$$U\subset\mathbb{R}^p imes\mathbb{R}^q$$
, $(p,q\geq 1)$, be open and

 $F:U\to\mathbb{R}^q$ be a cont. diff. map.

We consider the equation

(1)

Given x, we want to find y s.t. (1) is satisfied. For fixed x, (1) is a system of p equations in q variables.

General question:

Under which conditions can we solve (1) uniquely if possible?

<u>Find</u> a solution y =: g(x) depending on x s.t. F(x, g(x)) = 0. Ideally, we want that g is a "nice" function, that means cont. diff. We may ask:

What can be said about it differential dg(x)?

Preparation

Recall the solution: $U \subset \mathbb{R}^p \times \mathbb{R}^q$, $F : U \to \mathbb{R}^q$ of class C^1 .

We want to **find** a solution function ("implicit function") defined on some open subset $U_1 \subset \mathbb{R}^p$ with values in another open subset $U_2 \subset \mathbb{R}^q$

A necessary condition for the existence of a C^1 -solution Let $(x, y) \in U$ be fixed.

We consider the differential of F at (x, y)

$$dF(x,y): \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}$$
 linear map.

dF(x, y) can be written as a sum of 2 maps. Let

 $p_1: \mathbb{R}^p imes \mathbb{R}^q o \mathbb{R}^p$ and

 $p_1: \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^q$ be the projections.

A necessary condition for the existence of a \mathcal{C}^1 -solution

Then

In matrix notation, we have

A necessary condition for the existence of a \mathcal{C}^1 -solution

Let $U_1 \times U_2 \subset U$, and $g: U_1 \to U_2$ be differentiable. We consider the function $f: U_1 \to \mathbb{R}^q$ given by

In other words: $\Rightarrow f$ is differentiable, and by the chain rule we obtain

If g is a solution of (1a), then
$$f(x) = 0 \ \forall x \in U_1$$
, therefore $df(x) = 0 \ \forall x \in U_2$. $\Rightarrow dg(x)$ is a solution of

• If the linear map $d_2F(x,g(x))$ is invertible, then we get a unique solution:

• If $d_2F(x,g(x))$ is NOT invertible, then it could happen that (2a) has NO solution.

Implicit function theorem

Theorem 2 (Implicit function theorem)

Assume: $U \subset \mathbb{R}^p \times \mathbb{R}^q$ open and $F: U \to \mathbb{R}^q$ cont. diff. (i.e. $F \in \mathcal{C}^1(U, \mathbb{R}^q)$). If $(x_0, y_0) \in U$ s.t.

- (a) $F(x_0, y_0) = 0$,
- (b) $d_2F(x_0, y_0)$ is invertible, i.e. $det(d_2F(x_0, y_0)) \neq 0$,

then \exists open neighb. $U_1 \subset \mathbb{R}^p$ of x_0 and $U_2 \subset \mathbb{R}^q$ of y_0 with $U_1 \times U_2 \subset U$ s.t.

- (i) for each $x \in U_1$ there is a unique $y = g(x) \in U_2$ with F(x, g(x)) = 0,
- (ii) the function $g:U_1\to U_2$ defined by (1) is cont. diff.

Hence $d_2F(x,g(x))$ is invertible $\forall x \in U_1$ and

$$dg(x) = -[d_2F(x,g(x))]^{-1} \cdot d_1F(x,g(x)).$$

Sketch of the proof: Resets of Banach's fixed point theorem (Thm. 1).

1.1. Banach's fixed point theorem

2 1.2. Implicit function theorem

3 1.3. Inverse function theorem

Problem

<u>Framework</u>: $U \subset \mathbb{R}^q$ be open and $f: U \to \mathbb{R}^q$ be a \mathcal{C}^1 -function.

We look for an inverse function

We can rewrite (i) as an "implicit function problem", namely

Inverse function theorem

Theorem 3 (Inverse function theorem)

Assume: $U \subset \mathbb{R}^n$ open, $f: U \to \mathbb{R}^n$ cont. diff., $x_0 \in U$ s.t. $df(x_0)$ is invertible. **Then**: \exists open neighbs. $U_0 \subset U$ of x_0 and $V = f(U) \subset \mathbb{R}^n$ of $f(x_0)$, and a cont. diff. function

$$g=(f|_{U_0})^{-1}:V\to U_0.$$

Moreover.

$$dg(f(x)) = [df(x)]^{-1} \ \forall x \in U_0.$$

Remark:

Application of Thm. 3: Diffeomorphismus

Definition 2 (diffeomorphism)

Let $U, V \subset \mathbb{R}^n$ be open and $f: U \to V$ be a map of class \mathcal{C}^k , $k \in \mathbb{N}^*$ (or of class \mathcal{C}^{∞}).

f is called **diffeomorphism** of class \mathcal{C}^k (or \mathcal{C}^{∞}) \iff

- (i) f is bijective and
- (ii) $f^{-1}: V \to U$ is also of class C^k (or C^{∞}).

Proposition 1

Let $U, V \subset \mathbb{R}^n$ be open and $f: U \to V$ bijective of class \mathcal{C}^k (or \mathcal{C}^{∞}).

Then, the following conditions are equivalent:

- (a) df(x) is an invertible map $\forall x \in U$.
- (b) $f^{-1}: V \to U$ is differentiable.
- (c) $f: U \to V$ is a diffeomorphism of C^k .

Examples

(1) (example of a bijective \mathcal{C}^{∞} map that is **not** a diffeomorphism)

(2) (polar coord. in the plane \mathbb{R}^2)

Overview of this chapter