RNA variants

position and possible consequences

everything what can go wrong, will go wrong

Johan den Dunnen

Gene < > phenotype

gene function

gene function 'explains' phenotype combination should make 'sense' for analysis use affected tissue RNA, protein analysis

expression

gene expressed in affected tissue select major reference transcript

RNA

..the neglected molecule

under-appreciated

most go blindly DNA > protein

...there is much more

gnomAD / ExAC

ExAC Browser (Beta) | Exome Aggregation Consortium

1:156084751 G / A	1	156084751	n.80-4G>A-	PASS	splice region		1	27826	0	0.00003594
1:156084753 A	1	156084753	n.80-2A>C†	PASS	splice acceptor	LC LoF	1	29400	0	0.00003401
1:156084756 C / A	1	156084756	p.Ala16Asp	PASS	missense		2	31032	0	0.00006445
1:156084760 C / T (rs11549668)	1	156084760	p.Ser17Ser	PASS	synonymous		813	33894	8	0.02399
1:156084783 G / T	1	156084783	p.Arg25Leu	PASS	missense		2	44832	0	0.00004461
1:156084787 C	1	156084787	p.lle26lle	PASS	synonymous		5	46600	0	0.0001073
1:156084841 C / G	1	156084841	p.Val44Val	PASS	synonymous		1	51050	0	0.00001959
1:156084851 C / G	1	156084851	p.Arg48Gly	PASS	missense		2	50862	0	0.00003932
1:156084856 G / A	1	156084856	n.355G>A†	PASS	splice region		1	51262	0	0.00001951
1:156084858 G / A	1	156084858	n.356+1G>A†	PASS	splice donor	LC LoF	3	51416	0	0.00005835
1:156084859 C	1	156084859	n.356+2C>T†	PASS	splice donor	LCLoF	6	52036	0	0.0001153
1:156084862 C	1	156084862	n.356+5C>T†	PASS	aplice region		1	52004	0	0.00001923

		Gen	e: CAV3
Constraint from ExAC	Expected no. variants	Observed no. variants	Constraint Metric
Synonymous	29.9	32	z = -0.24
Missense	59.8	41	z = 1.19
LoF	4.2	1	pLI = 0.34
CNV	2.4	5	z = -0.47

Population -	Allele Count \$	Allele Number	Number of Homozygotes	Allele Frequency
African	121	5274	2	0.02294
Other	2	532	0	0.003759
Latino	7	6052	0	0.001157
European (Non- Finnish)	1	39690	0	2.52e-05
East Asian	0	5584	0	0
European (Finnish)	0	4052	0	0
South Asian	0	10756	0	0
Total	131	71940	2	0.001821

ClinVar DMD

seems blind DNA > protein

(linked paper may have RNA)

LOVD DIMD

27	c.3628_3665del		-		r.3628_3665del		p.Lys1210*
27	c.3630delA		-		r.(?)		p.(Glu1211Lysfs*4)
27	c.3631G>T		3839G>T		r.[3631g>u, 3604_3786del, 3604_4071del]		p.[Glu1211*; Arg12 Arg1202_1357del]
27	c.3679C>T		-		r.(?)		p.(Gln1227*)
27	c.3697delC	Patie	ent data (#0006974)				p.(Gln1233Lysfs*4)
27	c.3700G>T	Phen	otype otype additional	muscular -	dystrophy, Becker (BMD)		p.(Glu1234*)
27	c.3705C>T (Reported 2 times)	Refer Rema		Japan:Kol - Japan	<u>e</u>		p.(=)
		1000	c origin	- М			
			ritance	unknown			
		Market Street,	anguinity	-			
		Fam_	Pat	-			

Variant data	
Allele	Parent #1
Reported pathogenicity	Pathogenic
Concluded pathogenicity	Unknown
Exon	27
DNA change	c.3631G>T (View in UCSC Genome Browser, Ensembl)
Var_pub_as	3839G>T
RNA change	r.[3631g>u, 3604_3786del, 3604_4071del]
Protein change	p.[Glu1211*; Arg1202_1262del; Arg1202_1357del]
DB-ID	DMD_00074
Variant remarks	10% diff.splice
Genet_ori	germline (inherited)
Segregation	
Reference	Shiga, Takeshima 2010, (OMIM 0074)
Template	DNA, RNA
Technique	RT-PCR, SEQ, SSCA
Frequency	
RE-site	+

Masafumi Matsuo

p.Lys1210*
p.(Glu1211Lysfs*4)
p.[Glu1211*; Arg1202_1262del; Arg1202_1357del]
p.(Gln1227*)
p.(Gln1233Lysfs*4)
p.(Glu1234*)
p.(=)

reported

Protein data

CK level

Submitter

Not like this

Human Molecular Genetics, 2012, Vol. 21, No. 4 doi:10.1093/hmg/ddr512 Advance Access published on November 7, 2011

Modeling the human *MTM1* p.R69C mutation in murine *Mtm1* results in exon 4 skipping and a less severe myotubular myopathy phenotype

Christopher R. Pierson^{1,2,4,*}, Ashley N. Dulin-Smith¹, Ashley N. Durban¹, Morgan L. Marsh Jordan T. Marshall¹, Andrew D. Snyder¹, Nada Naiyer¹, Jordan T. Gladman¹, Dawn S. Chandler^{1,3,4}, Michael W. Lawlor^{5,†}, Anna Buj-Bello⁶, James J. Dowling⁷ and Alan H. Beggs^{5,*}

unclear missense effect mouse model generated

- > no protein in mouse
 - > RNA analysis shows splice effect
 - > confirmed in human
 - > explains severity phenotype

RNA types

Palazzo & Lee (2015) Front Genet 6:1-11

- coding (mRNA) > protein
- non-coding > regulation

amount: RNA stability, translation

1 gene / many RNAs

transcription initiation different promoter / first exon stability, uORF, cap

where, when, how much

Splicing inclusion / exclusion exons encoding different proteins structure

polyA addition alternative last exons alternative polyA sites +/- RNA regulatory sequences stability

Transcription

EM transcription

Drosophila

1 gene / many RNAs

Scotti & Swanson (2016) Nat Rev Genet 17:19-32

Capping

- 5' cap added immediately after transcription starts
- block 5' end with 7-methylguanosine
- function
 prevent degradation
 by exonucleases
 regulation nuclear export
 promote translation
 loops with polyA

PolyA addition

- 3' polyA-tail added at 3' end many transcripts
- one gene often several 3' ends
- function prevent degradation by exonucleases stability, influences translation

Splicing

Scotti & Swanson (2016) Nat Rev Genet 17:19-32

Variants & splicing

Splicing regulation

Splicing regulation

 standard signals splice donor splice acceptor (AG) branch point (A)

Cartegni (2002) Nat Rev Genet 3:285-298

- exonic
 - ESE exonic splice enhancer
 - ESS exonic splice silencer (ESR repressor)
- intronic
 - ISE intronic splice enhancer
 - ISS intronic splice silencer

Splicing regulation

Cartegni (2002) Nat Rev Genet 3:285-298

SMA: masking ISS used in therapy

nonsense mediated mRNA decay

EJC = exon junction complex

PTC = premature termination codon

Ter = termination codon

Khajavi (2006) Eur j Hum Genet 14:1074-1081

NMD

mRNA stability

- single stranded RNA unstable quickly degraded nonsense mediated decay protected by cap, polyA tail, folding
- variants will affect stability ...and binding of RNAs and proteins

Sauna & Kimchi-Sarfaty (2011) Nat Rev Genet 12:683-691

RNA variants

- change of encoded protein
- affecting processing splicing, capping, polyA addition
- change in stability less stable (NMD) / more stable folding (hairpin structures)
- change in interactions
 binding other molecules
 miRNA, proteins
 change in cellular localisation
 altered traffickin, subcellular localisation

RNA...

- amount too much / too little stability (protein turnover)
- timing expression at wrong time (development) in reaction to wrong stimulus
- place wrong tissue

Dosage

- dosage-sensitive genes too much/little protein is deleterious incl. at wrong time, wrong place
- dosage-insensitive genes missing/extra copy not deleterious while variants in a copy are

ClinGen is working on a list of proven links

- dosage

 deletion / duplication

 deletion often more deleterious
- partial deletion / duplication intragenic incl. 5' or 3' end (gene / transcript / translation) leaves one normal copy

Translation

mRNA

translation initiation site (start codon)

Kozak sequence

translation termination site (stop codon)

uORF

codon usage > translation speed > protein folding

RNA/protein binding > stability, amount of protein

. . .

uORFs

untranslated OpenReadingFrame

uORFs

translation start (ATG) not annotated

RNA assays

- expression cloning clone exon(s) in splice construct transfect and express (cell line) analyse splice products generated
- NOTE

 artificial situation

 not complete gene/intron
 expression in other cell type (tissue specificity)
- RNA of patient preferable cell line, biopsy, IPS cells, ...

RNA > protein

gene expression profiling

(m)RNA ≠ protein extensive regulation of translation stored RNA

to confirm RNA results

Western blot, stain cells (IHC), ... proteomics (mass spec)

ribosome profiling bound = translated

Protein variant

p.Phe159Leu

on DNA

c.477C>A c.477C>G c.479T>C

in vitro test of p.Phe159 are all three variants identical?

Protein variant

p.Phe159Leu on DNA

c.477C>A

c.477C>G c.479T>C

in vitro test of p.Phe159

are all three variants identical?

NO

check potential consequences on RNA RNA sequence changes affect stability RNA, RNA folding, binding motifs codon changes > influence translation speed

be careful with classification of one variant based on other report giving same AA substitution

Repeat expansions

not all consequences understood, nor the size range

Fusion RNA

- from specific rearrangements translocation (leukemia)
- consider when 3' end gene missing transcription needs to end somewhere deletion might be in upstream gene (EPCAM)
- o in general deleterious consequences

RNA in practice

RNA +5 splice site

Splicing mutations in DMD/BMD detected by RT-PCR/PTT: detection of a 19AA insertion in the cysteine rich domain of dystrophin compatible with BMD

J Med Genet 1996;33:935-939

Pauline A M Roest, Mattie Bout, Astric C van der Tuijn, Ieke B Ginjaar, Egbert Bakker, Frans B L Hogervorst, Gert Jan B van Ommen, Johan T den Dunnen

proof of effect

in-frame insertion > *BMD*

```
exon 64 | exon 65

protein-L C L D L S

wild type | mRNA -CTTTGCT | TGGATCTCTTGAGC

genomic-CTTTGCT | gtaa ctattggccagtatttgaagatcttgatactatgtctttgcttagaataaaaa gtaggttgggta

BL207.1 | mRNA | CTTTGCT | gtaactattggccagtatttgaagatcttgatactatgtctttgcttagaataaaaa | TGGATCTCTTGAGC |
protein-L C C N Y W P V F E D L D T M S L L R I K M D L L S

exon 64 | inserted sequences | exon 65
```

culture cells in with cycloheximide (inhibit nonsense-mediated mRNA decay)

X-linked TOD

 Terminal Osseous Dysplasia pigmentary anomalies skin skeletal abnormalities limbs recurring digital fibromatosis childhood

X-linked (Xq25-ter)
dominant
male lethal
female skewed X_i

American Journal of Medical Genetics 94:91-101 (2000)

New Syndrome?

Recurrent Digital Fibroma, Focal Dermal Hypoplasia, and Limb Malformations

M.H. Breuning, 1* A.P. Oranje, 2 R.A.Th.M. Langemeijer, 3 S.E.R. Hovius, 4 A.F.M. Diepstraten, 5 J.C. den Hollander, 6 N. Baumgartner, 7 J.R. Dwek, 8 A. Sommer, 9 and H. Toriello 7

TOD X-exome,

- variant last nucleotide exon alters splicing!?
- RNA expression

 cultured cells / blood

 100% X_i, only normal allele expressed
 X_i "affected chromosome"

Sun et al. 2010

TOD X-exome

archived fibroma tissue
 (15 year old)
 both alleles expressed
 activated cryptic exonic splice site

Sun et al. 2010 Am.J.Hum.Genet. 87: 146

Aarskog-Scott syndrome

• Aarskog-Scott syndrome Emmelien Aten

AAS (OMIM305400)

faciogenital dysplasia

short proportionate stature, short limbs,
broad hands/feet, genital hypoplasia,
facial dysmorphisms

- X-linked recessive form FGD1 gene Xp11.21
- other forms autosomal dominant & recessive genes involved ?

Aarskog-Scott syndrome

- FGD1 gene variant intron -35delA predicted branch site
- RNA analysis expressed in blood / fibroblasts

PPCP controls

©Yu Sun Emmelien Aten

Aarskog-Scott syndrome

- why FGD1 variant missed?

 primer on variant site

 not standard to screen to -50
- exome capture
 lower coverage into intron
 variant filtering to -10
 many additional variants
 difficult to confirm
- few branch site variants rare, easily missed, difficult to proof

Brief Report

Human Mutation

OFFICIAL JOURNAL

Exome Sequencing Identifies A Branch Point Variant in Aarskog–Scott Syndrome

Emmelien Aten,^{1†} Yu Sun,^{1†} Rowida Almomani,¹ Gijs W.E. Santen,¹ Tobias Messemaker,¹ Saskia M. Maas,² Martijn H. Breuning,¹ and Johan T. den Dunnen¹*

www.LOVD.nl/FGD1

exome performed, RNA analysis would be simpler ...& much cheaper

Exome + RNAseg

- next to exome perform RNAseq
 5 50 million reads
- analyse RNA variants & allelic expression differences splice variants
- expression profiling (blood)
 compare to reference database
 5,000 control samples
 expression changes
 individual genes
 disturbed pathways

Gene annotation

Rbx1

detailed RNA studies reveal many new transcripts

4408-4428 Nucleic Acids Research, 2015, Vol. 43, No. 9 doi: 10.1093/nar/gkv281

Published online 14 April 2015

Assessing the translational landscape of myogenic differentiation by ribosome profiling

Eleonora de Klerk¹, Ivo F.A.C. Fokkema^{1,†}, Klaske A.M.H. Thiadens^{2,†}, Jelle J. Goeman³, Magnus Palmblad⁴, Johan T. den Dunnen¹, Marieke von Lindern² and Peter A.C. 't Hoen^{1,*}

alternative transcription initiation (RNAseq, CAGE)

alternative polyA site (SAGE)

Published online 6 July 2012

Nucleic Acids Research, 2010, Vol. 38, No. 16 e165

doi:10.1093/nar/gkq602

Nucleic Acids Research, 2012, Vol. 40, No. 18 9089-9101 doi:10.1093/nar/gks655

Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation

Eleonora de Klerk¹, Andrea Venema¹, S. Yahya Anvar¹, Jelle J. Goeman², OuHua Hu¹, Capucine Trollet^{3,4}, George Dickson³, Johan T. den Dunnen¹, Silvère M. van der Maarel¹, Vered Raz^{1,*} and Peter A. C. 't Hoen^{1,*}

Cell. Mol. Life Sci. (2014) 71:3537-3551 DOI 10.1007/s00018-014-1637-9

Eleonora de Klerk · Johan T. den Dunnen

Cellular and Molecular Life Sciences

REVIEW

Peter A. C. 't Hoen

RNA sequencing: from tag-based profiling to resolving complete transcript structure

Published online 7 July 2010

Tissue-specific transcript annotation and expression profiling with complementary next-generation

sequencing technologies

Matthew S. Hestand^{1,2}, Andreas Klingenhoff³, Matthias Scherf³, Yavuz Ariyurek², Yolande Ramos⁴, Wilbert van Workum⁵, Makoto Suzuki⁶, Thomas Werner³, Gert-Jan B. van Ommen¹, Johan T. den Dunnen^{1,2}, Matthias Harbers⁶ and Peter A.C. 't Hoen1,*

Acknowledgement

Presentation prepared by: Johan den Dunnen

Human Genetics & Clinical Genetics Leiden University Medical Center Leiden, Nederland

date: April 2019

variant classification
without RNA analysis

variant classification
without RNA analysis

