Università di Pisa

SCUOLA DI INGEGNERIA

Corso di Laurea in Artificial Intelligence and Data Engineering

Kmeans

Candidati Alice Nannini Fabio Malloggi Marco Parola Stefano Poleggi Relatore

Prof. Pietro Ducange

Contents

1	Introduzione	1
2	Dataset	1
3	Implementazione Hadoop	2
4	Implementazione Spark	2
5	Test e risultati	2

1 Introduzione

Le due implementazioni dell'algoritmo kmeans sviluppate devono essere eseguite con i seguenti input:

- File contenente il dataset
- Numero di centroidi/cluster
- Directory di output
- Numerosità di campioni nel dataset (l'algoritmo può essere eseguito facendo l'ipotesi di conoscere questo valore)

La terminazione dell'algoritmo può avvenire a causa di due eventi:

- Si è superato una threshold relativa al numero di iterazioni che possono essere eseguite
- I centri calcolati al passo i-esimo e al passo i+1-esimo non discostano oltre una certa threshold (norma euclidea)

2 Dataset

I dataset per i test finali sono stati generati con un script python mostrato in seguito ed hanno il seguente formato 'dataset numPoints kClusters dimPoints'.

```
import random
# inputs: n (records), k (clusters), d (dimensions)
numPoints = [1000,10000,100000]
kClusters = [7,13]
dimPoints = [3,7]
for n in numPoints:
    for k in kClusters:
        for d in dimPoints:
            # open a new file
            f = open("data/dataset_"+str(n)+"_"+str(k)+"_"+str(d)+".txt", "a")
            # compute the interval for creating the clusters
            interval = round(n/(2*k))
            count = 0
            print("dataset_"+str(n)+"_"+str(k)+"_"+str(d)+"; int: "+str(interval))
            # compute each point
            for i in range(n):
                if( (i%interval) == 0 and i!= 0):
                    count = count + 2
                x = ""
                for j in range(d):
```

```
x = x + str( interval*count + random.random()*interval )
x = x + " "
x = x + "\n"
# write the new point coordinates in the file
f.write(x)

f.close()
```

Lista dei file per il dataset genereati dal precedente codice:

- $\bullet \ dataset_100000_13_3.txt$
- $\bullet \ dataset_100000_13_7.txt$
- $\bullet \ dataset_100000_7_3.txt$
- $\bullet \ dataset_100000_7_7.txt$
- $\bullet \ dataset_10000_13_3.txt$
- $\bullet \ dataset_10000_13_7.txt$
- $\bullet \ dataset_10000_7_3.txt$
- $\bullet \ dataset_10000_7_7.txt$
- dataset_1000_13_3.txt
- dataset_1000_13_7.txt
- $\bullet \ dataset_1000_7_3.txt$
- dataset_1000_7_7.txt

3 Implementazione Hadoop

- 4 Implementazione Spark
- 5 Test e risultati