Evaluating Differentially Private Machine Learning in Practice

Bargav Jayaraman and David Evans
Department of Computer Science
University of Virginia

Our Objective

To evaluate the privacy leakage of private mechanisms

Leakage is quantified in terms of inference attacks

Rest of the Talk

1. Background on Applying Differential Privacy to Machine Learning

2. Experimental Evaluation of Differentially Private Machine Learning Implementations

ERM Algorithms using $\epsilon \leq 1$

ERM Algorithms using $\epsilon \leq 1$

Output Perturbation

ERM Algorithms using $\epsilon \leq 1$

Output Perturbation

Applying DP to Deep Learning

Deep Learning requiring high ϵ value

Improving Composition

Improving Composition

If each iteration is $\ensuremath{\epsilon}$ -DP

By composition, model: $T\epsilon$ -DP

Model is:
$$(O(\sqrt{T}\epsilon), \delta)$$
 -DP

Moments Accountant [Abadi et al. (2016)]

Concentrated DP [Dwork et al. (2016)]

Zero Concentrated DP [Bun & Steinke (2016)]

Rènyi DP [Mironov (2017)]

Lower ϵ value with recent DP notions

Lower ϵ value with recent DP notions

Lower ϵ value with recent DP notions

Experiments

Model

Task

Evaluation Metric

Logistic Regression

100 class classification on CIFAR-100

Accuracy Loss

Neural Network

100 class classification on Purchase-100

Privacy Leakage

Training and Testing

Membership Inference Attacks

1. Reza Shokri, Marco Stronati, Congzheng Song and Vitaly Shmatikov Membership Inference Attacks Against Machine Learning Models, S&P 2017

Membership Inference Attacks

Neural Networks

NN has 103,936 trainable parameters so it has more capacity to learn on training data

^{*}New results, included in the updated version of the paper

^{*}New results, included in the updated version of the paper

^{*}New results, included in the updated version of the paper

^{*}New results, included in the updated version of the paper

^{*}New results, included in the updated version of the paper

Number of times identified as member (out of 5 runs)

Thank You!

Questions?

<u>Speaker:</u> Bargav Jayaraman

Project Site: https://bargavjayaraman.github.io/ project/evaluating-dpml/

Code Available: https://github.com/bargavj/EvaluatingDPML