Name _____

GEOMETRY OF MANIFOLDS QUALIFYING EXAM Fall 1999 (Auckly & Miller)

Work as many as you can in the 2 hours. Best of luck.

1. (A) On \mathbb{R}^2 let

$$X = x^{2}y \frac{\partial}{\partial x} + (x+y) \frac{\partial}{\partial y}$$

$$Y = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$$

$$\alpha = -y dx + x dy$$

Calculate:

a) [X,Y]

b) $L_Y \alpha$

c) $L_Y d\alpha$

- **2.** On \mathbb{R}^2 consider the metric $g = (1+x^2)dx^2 + \frac{1}{2}(dx \otimes dy + dy \otimes dx) + dy^2$.
 - a) Compute $\nabla_{\frac{\partial}{\partial x}}(y\,dx)$.
 - b) Calculate the sectional curvature.
- **3.** On $\{(x,y)\}|x^2+y^2<1\}$, let $g=\frac{dx^2+dy^2}{(1-x^2-y^2)^2}$ be a metric.
 - a) Show that $\phi(z) = \frac{az+b}{\overline{b}z+\overline{a}}$ is an isometry if $|a|^2 |b|^2 = 1$ and z = x + iy.

Hint: Show that if $w = \phi(z)$ is analytic then $dw \otimes d\overline{w} = |\phi'(z)|^2 dz \otimes d\overline{z}$.

- b) Using this metric, compute the radius and area of a circle with Euclidean radius R < 1 centered at the origin.
- **4.** Let α be a differential 2-form on the 2-sphere S^2 with $\int_{S^2} \alpha = 1$. Suppose $f: S^3 \to S^2$ is smooth, S^3 the 3-sphere.
 - a) Show that there exists a 1-form $\,\theta\,$ on $\,S^3\,$ such that $\,f^*\alpha=d\theta\,.$
 - b) Define $Q(f) = \int_{S^3} \theta \wedge d\theta$. Show that this is independent of the choice of α and θ . Hint: First show that for α fixed it is independent of choice of θ .

- **5.** Suppose that $F: N \to M$ is a smooth covering mapping and that M is a Riemannian manifold with metric g.
 - a) Show that there exists a unique metric on N so that F is a local isometry.
 - b) Suppose that N is connected and compact. Determine the relation between volume (M) and volume (N) in terms of the fundamental groups of M and N.
- **6.** Suppose M is a smooth oriented n-dimensional manifold and X is a complete vector field which generates the 1-parameter group of diffeomorphisms $(F_t)_t$. Suppose that μ is a differential n-form on M and that U is a relatively compact (\overline{U} is compact) open subset of M.
 - a) Show that $\left. \frac{d}{dt} \right|_{t=0} \int_{F_t(U)} \mu = \int_U L_X \mu$.
 - b) For $M=R^3$ and $\mu=dx\wedge dy\wedge dz$, the usual volume element, calculate an expression for $L_X\mu$ for any vector field $X=f\frac{\partial}{\partial x}+g\frac{\partial}{\partial y}+h\frac{\partial}{\partial z}$. Thus obtain a formula for $\frac{d}{dt}\Big|_{t=0}$ volume $(F_t(U))$.
- 7. Prove that smooth connected manifolds are topologically homogeneous. That is, given $p, q \in M$ there is a diffeomorphism $f: M \to M$ so that f(p) = q.
- 8. On \mathbb{R}^2 with coordinates (x^1,x^2) let a connection (Γ^i_{jk}) be given by $\Gamma^1_{11} = \frac{\partial f}{\partial x^1}$ and $\Gamma^2_{22} = \frac{\partial f}{\partial x^2}$ and all other $\Gamma^i_{jk} = 0$ Here $f: \mathbb{R}^2 \to R$ is some given function. Let $P_0(x^1_0,x^2_0)$ be a given point. If $v:[a,b] \to \mathbb{R}^2$ is a smooth curve such that $v(a) = v(b) = P_0$, let T_v be the 2×2 matrix which represents (with respect to $\left(\frac{\partial}{\partial x^1},\frac{\partial}{\partial x^2}\right)$) the holonomy transformation $T_{p_0}\mathbb{R}^2 \to T_{p_0}\mathbb{R}^2$ of parallel transport around v.
 - a) Show that T_v is a diagonal matrix with determinant equal to 1.
 - b) For $f(x^1, x^2) = x^1 x^2$ let

$$v_c: [0,4] \to \mathbb{R}^2$$
 by

$$v_c(t) = ((\ln c)t, 0) \text{ if } 0 \le t < 1,$$

$$v_c(t) = (\ln c, t - 1) \text{ if } 1 \le t < 2,$$

$$v_c(t) = ((\ln c)(3-t), 1)$$
 if $2 < t < 3$.

$$v_c(t) = (0, 4 - t)$$
 if $3 \le t \le 4$.

Find T_{v_c} .