线性代数 第3讲

第一章第2讲 线性映射的表示矩阵

上一讲要点回顾

线性映射的一个存在唯一性定理

线性映射的表示矩阵

线性方程组的矩阵表示及几种特殊结构的矩阵(方程组)

什么是"线性"

若
$$f(x) = x$$
, 则 $f(x+y) = x + y = f(x) + f(y)$

$$f(kx) = kx = kf(x)$$

若
$$f(x) = c$$
, 则 $f(x+y) = c \neq f(x) + f(y)$

$$f(kx) = c \neq kf(x)$$

若
$$f(x) = x^2$$
, 则 $f(x+y) = (x+y)^2 \neq x^2 + y^2 = f(x) + f(y)$

$$f(kx) = k^2 x^2 \neq kf(x)$$

线性就是1次,保持加法和数乘的运算关系

定义 1.1.7 (线性映射) 映射 $f: \mathbb{R}^n \to \mathbb{R}^m$, 如果满足

- 1. 任取 $\boldsymbol{x}, \boldsymbol{x}' \in \mathbb{R}^n$, 都有 $f(\boldsymbol{x} + \boldsymbol{x}') = f(\boldsymbol{x}) + f(\boldsymbol{x}')$;
- 2. 任取 \boldsymbol{x} , $\in \mathbb{R}^n$, $k \in \mathbb{R}$, 都有 $f(k\boldsymbol{x}) = kf(\boldsymbol{x})$,

则称 f 为从 \mathbb{R}^n 到 \mathbb{R}^m 的**线性映射**.

线性映射一定把零向量映射为零向量: $f(0_n) = 0_m$

定义 1.1.9 (线性变换) 从 \mathbb{R}^n 到自身的线性映射称为 \mathbb{R}^n 上的线性变换.

特别地, \mathbb{R}^n 上的 恒同变换

是线性变换.

线性运算与线性(向量)空间

定义 1.1.4 (线性运算) 为 \mathbb{R}^m 中的向量定义两种运算²

1. 两个
$$m$$
 维向量的**向量加法**:
$$\begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \coloneqq \begin{bmatrix} a_1 + b_1 \\ \vdots \\ a_m + b_m \end{bmatrix};$$

2. 一个
$$m$$
 维向量与一个数的**数乘**: $k\begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix} \coloneqq \begin{bmatrix} ka_1 \\ \vdots \\ ka_m \end{bmatrix}$;

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

向量的加法和数乘统称向量的线性运算.

带有线性运算的集合 \mathbb{R}^m , 称为**向量空间** \mathbb{R}^m 或**线性空间** \mathbb{R}^m .

空间=集合+运算

m维向量空间=m维向量+加法与数乘运算

$$f: \quad \mathbb{R}^{n} \quad \rightarrow \quad \mathbb{R}^{m}$$

$$\boldsymbol{x} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} \quad \mapsto \quad \boldsymbol{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \begin{bmatrix} a_{11}x_{1} + \dots + a_{1n}x_{n} \\ a_{21}x_{1} + \dots + a_{2n}x_{n} \\ \vdots \\ a_{n}, x_{n} + \dots + a_{n}, x_{n} \end{bmatrix}$$

$$(1.1.1)$$

$$f(\boldsymbol{x} + \boldsymbol{x}') = \begin{bmatrix} a_{11}(x_1 + x_1') + \dots + a_{1n}(x_n + x_n') \\ \vdots \\ a_{m1}(x_1 + x_1') + \dots + a_{mn}(x_n + x_n') \end{bmatrix}$$

线性变换是不是一定为 1.1.1这样的形式呢?

$$=\begin{bmatrix}a_{11}x_1+\cdots+a_{1n}x_n\\ \vdots\\ a_{m1}x_1+\cdots+a_{mn}x_n\end{bmatrix}+\begin{bmatrix}a_{11}x_1'+\cdots+a_{1n}x_n'\\ \vdots\\ a_{m1}x_1'+\cdots+a_{mn}x_n'\end{bmatrix}=f(\boldsymbol{x})+f(\boldsymbol{x}'),$$

$$f(k\boldsymbol{x}) = \begin{bmatrix} a_{11}kx_1 + \dots + a_{1n}kx_n \\ \vdots \\ a_{m1}kx_1 + \dots + a_{mn}kx_n \end{bmatrix} = k \begin{bmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{bmatrix} = kf(\boldsymbol{x}),$$

其中
3
, $\boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, $\boldsymbol{x}' = \begin{bmatrix} x_1' \\ \vdots \\ x_n' \end{bmatrix} \in \mathbb{R}^n$, $k \in \mathbb{R}$. 由观察可知,等式左边的 $\boldsymbol{x} + \boldsymbol{x}'$, $k\boldsymbol{x}$ 是 \mathbb{R}^n

中的线性运算,而等式右边的 $f(\mathbf{x}) + f(\mathbf{x}'), kf(\mathbf{x})$ 是 \mathbb{R}^m 中的线性运算.

线性映射的一个存在唯一性定理

一般n维向量的表示

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \cdot \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \cdot \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$\boldsymbol{e}_{1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \boldsymbol{e}_{2} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \boldsymbol{e}_{n} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}. \tag{1.2.1}$$

一组向量 a_1, a_2, \dots, a_n 称为向量组

一般用黑体字母表示

这组向量称为 \mathbb{R}^n 的标准坐标向量组,其中 e_i 称为第 i 个标准坐标向量.这组向量的特

殊之处在于, \mathbb{R}^n 中的任意向量 $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \end{bmatrix}$ 都可以轻易地由它们做线性运算得到:

$$\boldsymbol{x} = x_1 \boldsymbol{e}_1 + \dots + x_n \boldsymbol{e}_n.$$

由于线性映射保持线性运算, 因此有

$$f(\mathbf{x}) = x_1 f(\mathbf{e}_1) + \dots + x_n f(\mathbf{e}_n). \tag{1.2.2}$$

线性组合与线性表示

定义 1.2.1 (线性组合与线性表示) 给定 \mathbb{R}^m 中向量组 a_1, \dots, a_n 和一组数 $k_1, \dots, k_n \in$ \mathbb{R} , 称向量 $k_1 \mathbf{a}_1 + \cdots + k_n \mathbf{a}_n$ 是向量组 $\mathbf{a}_1, \cdots, \mathbf{a}_n$ 的一个**线性组合**.

设 \boldsymbol{b} 是 \mathbb{R}^m 中的向量,如果存在一组数 $k_1, \dots, k_n \in \mathbb{R}$,使得 $\boldsymbol{b} = k_1 \boldsymbol{a}_1 + \dots + k_n \boldsymbol{a}_n$, 则称 b 可以被向量组 a_1, \dots, a_n 线性表示.

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1, \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2, \\ \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m. \end{cases} \quad x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$x_{1}\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_{2}\begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_{n}\begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$$

 $x_1a_1+\cdots+x_na_n=b,$

求解线性方程组本质上就是:b是否可以用向量组 a_1, \dots, a_n 线性表示?如何表示?

线性映射的等价

任意向量 $\mathbf{x} \in \mathbb{R}^n$ 都可以被 \mathbb{R}^n 的标准坐标向量组 $\mathbf{e}_1, \cdots, \mathbf{e}_n$ 线性表示,而 $f(\mathbf{x})$ 也以同样方式被它们在 f 下的像 $f(\mathbf{e}_1), \cdots, f(\mathbf{e}_n)$ 线性表示. 可以说明,线性映射 f 由 n 个特殊的像 $f(\mathbf{e}_1), \cdots, f(\mathbf{e}_n)$ 所决定.

命题1.2.2 设 $f,g:R''\to R'''$ 是两个线性映射,如果 $f(e_i)=g(e_i),i=1,2,\cdots,n$ 则 f=g.

证明. 如果 $f(e_i) = g(e_i), i = 1, 2, \dots, n$, 则对任意 $x \in \mathbb{R}^n$, $x = x_1 e_1 + \dots + x_n e_n$

$$f(x) = f(x_1e_1 + \dots + x_ne_n) = x_1f(e_1) + \dots + x_nf(e_n) = x_1g(e_1) + \dots + x_ng(e_n) = g(x)$$

对任意 $x \in R^n$, 都有 f(x) = g(x), 这意味着两个映射相等。

一个线性映射 $f: R'' \to R'''$ 完全由 $f(e_1), \dots, f(e_n)$ 决定。 那么 $f(e_1), \dots, f(e_n)$ 是否能够取到 R''' 中的任意向量呢?

也就是说,对 R^m 中的任意向量组 a_1,\cdots,a_n ,是否存在线性映射 $f:R^n\to R^m$,满足 $f\left(e_1\right)=a_1,\cdots,f\left(e_n\right)=a_n$.

命题1.2.3, 任取 R^m 中的 n个向量 a_1, \dots, a_n ,都 存在唯一的线性映 射 $f: R^n \to R^m$,满足 $f(e_1) = a_1, \dots, f(e_n) = a_n$.

首先定义映射

给出一个构造性的证明

$$f\colon \quad \mathbb{R}^n \quad o \quad \mathbb{R}^m$$
 $m{x} = egin{bmatrix} x_1 \ dots \ x_n \end{bmatrix} \quad \mapsto \quad x_1 m{a}_1 + \dots + x_n m{a}_n.$

下面根据定义验证它是线性映射:

$$\begin{split} f(\boldsymbol{x}+\boldsymbol{x}') &= (x_1+x_1')\boldsymbol{a}_1 + \dots + (x_n+x_n')\boldsymbol{a}_n \\ &= (x_1\boldsymbol{a}_1 + \dots + x_n\boldsymbol{a}_n) + (x_1'\boldsymbol{a}_1 + \dots + x_n'\boldsymbol{a}_n) \qquad \not \sharp \, \pitchfork \,, \; \; \boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \boldsymbol{x}' = \begin{bmatrix} x_1' \\ \vdots \\ x_n' \end{bmatrix} \in \mathbb{R}^n, k \in \mathbb{R}. \end{split}$$

$$f(k\boldsymbol{x}) = kx_1\boldsymbol{a}_1 + \dots + kx_n\boldsymbol{a}_n = k(x_1\boldsymbol{a}_1 + \dots + x_n\boldsymbol{a}_n) = kf(\boldsymbol{x}),$$

$$\begin{cases} 2 & x + 3 & y = 5 \\ 4 & x + 5 & y = 9 \end{cases}$$

(2	3)	(5)
4	$5\Big)_{2\times2}$	$\left(9\right)_{2\times1}$

星期一	星期二	星期三	星期四	星期五	星期六	星期日
30	31 世四	1	2	3	4	5
廿三		坜	山六	世七	廿八	廿九
6	7	8	9	10	11	12
≘+	白露	初二	初三	教师节	初五	初六
13	14	15	16	17	18	19
初七	初八	初九	初十	+	+=	+≡
20	21	22	23	24	25	26
十四	中秋节	+☆	秋分	十八	十九	=+
27	28 #=	29 ⊕≘	30	1	2 天生	5万歪

学生代码	数学	物理	化学	语文	历史	英语
1	65	61	72	84	81	79
2	77	77	76	64	70	55
3	67	63	49	65	67	57
4	80	69	75	74	74	63
5	74	70	80	84	81	74
6	78	84	75	62	71	64
7	66	71	67	52	65	57
8	77	71	57	72	86	71
9	83	100	79	41	67	50
•••	•••	•••	•••	•••	•••	•••

$$\begin{bmatrix} 65 & 61 & 72 & 84 & 81 & 79 \\ 77 & 77 & 76 & 64 & 70 & 55 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 98 & 96 & 93 & 89 & 98 & 90 \end{bmatrix}_{100 \times 6}$$

$$A = \left[a_{ij}\right]_{m \times n} \quad \text{\'et} \quad A_{m \times n}$$

矩阵乘向量的运算

$$\begin{cases} 2x + 3y = 5 \\ 4x + 5y = 9 \end{cases} \qquad x \cdot \begin{bmatrix} 2 \\ 4 \end{bmatrix} + y \cdot \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x + 3y \\ 4x + 5y \end{bmatrix} \qquad \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} a_{11}b_1 + a_{12}b_2 + \cdots + a_{1n}b_n \\ a_{11}b_1 + a_{12}b_2 + \cdots + a_{1n}b_n \\ \vdots \\ a_{m1}b_1 + a_{m2}b_2 + \cdots + a_{mn}b_n \end{bmatrix}$$

命题1.2.2 设 $f,g:R''\to R'''$ 是两个线性映射,如果 $f(e_i)=g(e_i), i=1,2,\cdots,n$ 则 f=g.

一个线性映射 $f: \mathbb{R}^n \to \mathbb{R}^m$ 完全由 $f(e_1), \dots, f(e_n)$ 决定。

定义 1.2.4 (线性映射的表示矩阵) 设线性映射 $f: \mathbb{R}^n \to \mathbb{R}^m, e_i$ 为 \mathbb{R}^n 的标准坐标向 量,若 $\mathbf{a}_i = f(\mathbf{e}_i)$,则称矩阵 $A = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix}$ 为线性映射 f 在标准坐标向量下的表 示矩阵.

$$a_{1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, a_{2} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, a_{n} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ \vdots \\ x_{n} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$$

$$f(x) = x_{1}a_{1} + x_{2}a_{2} + x_{n}a_{n} = \begin{bmatrix} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \\ \vdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = Ax$$

以后我们用A表示这个线性映射, $A(x) = x_1a_1 + x_2a_2 + x_na_n$

A(x) = Ax

例 1.2.8 对例 1.1.8 中的线性映射, 我们计算其表示矩阵.

1. 结账是一个从 ℝ³ 到 ℝ 的线性映射,其中定义域 ℝ³ 的标准坐标向量分别是一千克 苹果、一千克香蕉和一千克樱桃,它们对应的单价分别是 12.98、9.98 和 129.98 元. 因此结账作为线性映射,它的表示矩阵是

$$A = [$$
结账(一千克苹果) 结账(一千克香蕉) 结账(一千克樱桃) $]$ = $[12.98 \ 9.98 \ 129.98]$;

其表达式可以由矩阵和向量乘法给出:

$$m{A}(m{x}) = Am{x} = egin{bmatrix} 12.98 & 9.98 & 129.98 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = 12.98x_1 + 9.98x_2 + 129.98x_3.$$

2. 营养是一个从 \mathbb{R}^3 到 \mathbb{R}^2 的线性映射. 它的表示矩阵为

其表达式为:

$$\mathbf{A}(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 12 & 12 & 3 \\ 135 & 208 & 99 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{bmatrix} 12x_1 + 12x_2 + 3x_3 \\ 135x_1 + 208x_2 + 99x_3 \end{bmatrix}.$$

例 1.2.9 考虑例 1.1.10 中平面向量构成的线性空间 \mathbb{R}^2 上的线性变换的表示矩阵.

1. 旋转变换 R_{θ} 的表示矩阵为

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

其表达式为:

$$m{R}_{ heta}(m{x}) = R_{ heta}m{x} = egin{bmatrix} \cos heta & -\sin heta \\ \sin heta & \cos heta \end{bmatrix} egin{bmatrix} x_1 \\ x_2 \end{bmatrix} = egin{bmatrix} x_1 \cos heta - x_2 \sin heta \\ x_1 \sin heta + x_2 \cos heta \end{bmatrix}.$$

$$R_{\theta} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \quad R_{\theta} \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} \cos(\theta + \frac{\pi}{2}) \\ \sin(\theta + \frac{\pi}{2}) \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

$$\boldsymbol{R}_{\theta}\left(\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}\right) = \boldsymbol{R}_{\theta}\left(x_{1}\begin{bmatrix}1\\0\end{bmatrix} + x_{2}\begin{bmatrix}0\\1\end{bmatrix}\right) = x_{1}\boldsymbol{R}_{\theta}\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + x_{2}\boldsymbol{R}_{\theta}\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$$

$$=x_1\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}+x_2\begin{bmatrix}-\sin\theta\\\cos\theta\end{bmatrix}=\begin{bmatrix}x_1\cos\theta-x_2\sin\theta\\x_1\sin\theta+x_2\cos\theta\end{bmatrix}.$$

2. 反射变换 H_{θ} 的表示矩阵为

$$H_{\theta} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}.$$

其表达式为:

$$m{H}_{ heta}(m{x}) = H_{ heta}m{x} = egin{bmatrix} \cos 2 heta & \sin 2 heta \ \sin 2 heta & -\cos 2 heta \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} x_1\cos 2 heta + x_2\sin 2 heta \ x_1\sin 2 heta - x_2\cos 2 heta \end{bmatrix}.$$

$$m{H}_{ heta}\left(egin{bmatrix} 1 \\ 0 \end{bmatrix}
ight) = egin{bmatrix} \cos 2 heta \\ \sin 2 heta \end{bmatrix}, \quad m{H}_{ heta}\left(egin{bmatrix} 0 \\ 1 \end{bmatrix}
ight) = egin{bmatrix} \cos(2 heta - rac{\pi}{2}) \\ \sin(2 heta - rac{\pi}{2}) \end{bmatrix},$$

$$\boldsymbol{H}_{\boldsymbol{\theta}}\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = x_1\begin{bmatrix}\cos 2\theta\\\sin 2\theta\end{bmatrix} + x_2\begin{bmatrix}\sin 2\theta\\-\cos 2\theta\end{bmatrix} = \begin{bmatrix}x_1\cos 2\theta + x_2\sin 2\theta\\x_1\sin 2\theta - x_2\cos 2\theta\end{bmatrix}.$$

3. 对换变换 P 的表示矩阵为

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

其表达式为:

$$\mathbf{P}(\mathbf{x}) = P\mathbf{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}.$$

对换变换: 对换 \mathbb{R}^2 中向量的两个分量 x_1, x_2 也构成一个线性变换:

$$\begin{array}{cccc} \boldsymbol{P} \colon & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} & \mapsto & \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}. \end{array}$$

可以看到,其实 P 也是关于直线 $x_2 - x_1 = 0$ 的反射.

4. 伸缩变换 C_k 的表示矩阵为

$$C_k = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}.$$

其表达式为:

$$m{C}_k(m{x}) = C_k m{x} = egin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} egin{bmatrix} x_1 \\ x_2 \end{bmatrix} = egin{bmatrix} kx_1 \\ x_2 \end{bmatrix}.$$

伸缩变换: 设 $k \in \mathbb{R}$,定义一个 \mathbb{R}^2 上的变换 C_k ,它把向量在 x_1 方向拉伸 k 倍, x_2 方向保持不变,其表达式为:

$$egin{array}{cccc} oldsymbol{C}_k \colon & \mathbb{R}^2 &
ightarrow & \mathbb{R}^2 \ & egin{bmatrix} x_1 \ x_2 \end{bmatrix} &
ightarrow & egin{bmatrix} kx_1 \ x_2 \end{bmatrix}. \end{array}$$

计算下面线性映射的表示矩阵

$$f: R^4 \to R^4, f\left[\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right] = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 + x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 + x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 + x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$f: R^4 \to R^4, f\left[\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right] = \begin{bmatrix} x_4 \\ x_3 \\ x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} x_4 \\ x_3 \\ x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\begin{bmatrix} x_4 \\ x_3 \\ x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

容易得到, (1.1.2) 中 \mathbb{R}^n 上的恒同变换的表示矩阵为

$$egin{bmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \ddots & dots \ dots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & 1 \end{bmatrix},$$

即对角元素(对角线上的元素,或者所在行数和所在列数相等的元素)都是 1,非对角元素都是 0.这个矩阵称为 n 阶恒同矩阵或 n 阶单位矩阵,记为 I_n .它还可以用标准坐

标向量组表示:
$$I_n = \begin{bmatrix} \boldsymbol{e}_1 & \cdots & \boldsymbol{e}_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{e}_1^{\mathrm{T}} \\ \vdots \\ \boldsymbol{e}_n^{\mathrm{T}} \end{bmatrix}$$
. 对 \mathbb{R}^n 中任意向量 \boldsymbol{x} ,容易验证 $I_n \boldsymbol{x} = \boldsymbol{x}$.

这意味着,它对应的线性映射 I 能够很容易地由像求出原像(二者相等).

一般线性方程的矩阵表达形式

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1, \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2, \\ \vdots & \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m. \end{cases}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$Ax = b$$

$$Ax = b$$

最好解的线性方程组

$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \qquad \begin{cases} a_{11}x_1 = b_1 \\ a_{22}x_2 = b_2 \\ \vdots \\ a_{nn}x_2 = b_n \end{cases}$$

一般地,非对角元素全为零的方阵称为对角矩阵,而其中为零的元素往往省略不写:

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d_n \end{bmatrix} = \begin{bmatrix} d_1 \\ & d_2 \\ & & \ddots \\ & & d_n \end{bmatrix} =: \operatorname{diag}(d_i).$$

如果对角元素依次为 d_1, \dots, d_n , 那么这个对角矩阵常用 $\operatorname{diag}(d_i)$ 表示.

4

上三角和下三角矩阵

形如
$$U = \begin{bmatrix} u_{11} & \cdots & u_{1n} \\ & \ddots & \vdots \\ & & u_{nn} \end{bmatrix}$$
 的方阵称为 n 阶上三角矩阵,形如 $L = \begin{bmatrix} l_{11} & & \\ \vdots & \ddots & \\ l_{n1} & \cdots & l_{nn} \end{bmatrix}$

的方阵称为 n 阶下三角矩阵. 如果上(下)三角矩阵的对角元素都是 0,则称为严格上 (下)三角矩阵. 如果上(下)三角矩阵的对角元素都是 1,则称为单位上(下)三角矩阵.

如果上三角矩阵的对角元素都不为零,那么给定向量 b,它在对应线性映射 U 下的原像 x 也容易求得. 事实上,观察

$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ & u_{22} & \cdots & u_{2n} \\ & & \ddots & \vdots \\ & & & u_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} u_{11}x_1 + u_{12}x_2 + \cdots + u_{1n}x_n \\ & u_{22}x_2 + \cdots + u_{2n}x_n \\ \vdots \\ & & & \vdots \\ u_{nn}x_n \end{bmatrix}, \quad \Box \mathcal{H}$$

类似地,如果下三角矩阵的对角元素都不为零,那么给定向量 b,它在对应线性映射 L 下的原像 x 也容易求得. 事实上,观察

$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} l_{11} \\ l_{21} & l_{22} \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} l_{11}x_1 \\ l_{21}x_1 + l_{22}x_2 \\ \vdots \\ l_{n1}x_1 + l_{n2}x_2 + \cdots + l_{nn}x_n \end{bmatrix},$$

即可从第 1 个分量相等关系开始计算,从 x_1 到 x_n 逐个得出 x 的所有元素. 这种自上而下逐个代入从而求出每一个分量的方法,称为**前代法**.

利用回代法或前代法可以求出向量在表示矩阵是对角元素都不为零的三角矩阵的线性映射下的原像. 那么对任意线性映射,有何方法来求解向量的原像呢? 这将在下节详细阐述.

作业 (9月18日)

练习1.2

1. (2, 4), 2 (3, 6), 4, 5 (1, 2, 3, 6)

9月22日提交