Windows 安装 Nvidia-Docker GPU 驱动 PaddlePaddle

1. 安装最新显卡驱动

注意一定要在 Windows 上安装带 WSL 的显卡驱动,不要在 WSL Ubuntu 中安装显卡驱动。

查看自己的显卡型号:

上去 Nvidia 下载自己型号的驱动: https://developer.nvidia.com/cuda/wsl

NVIDIA Driver Downloads Select from the dropdown list below to identify the appropriate driver for your NVIDIA product. Product Type: GeForce Product Series: GeForce RTX 30 Series Product: GeForce RTX 3090 Operating System: Windows 10 64-bit Download Type: Studio Driver (SD) Language: Chinese (Simplified)

Search

Download Type 选择 SD

Game Ready Drivers: you are a gamer who prioritizes day of launch support for the latest games, patches, and DLCs.

Studio Drivers: you are a content creator who prioritizes stability and quality for creative workflows including video editing, animation, photography, graphic design, and livestreaming.

等待 Windows 显卡驱动安装即可, 重启电脑。

2. 安装和配置 WSL2

手动安装 WSL

可参考《舊版 WSL 的手動安裝步驟》:

https://learn.microsoft.com/zh-cn/windows/wsl/install-manual

下载 Linux 内核更新包&安装:

https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi

开启和配置 WSL,打开 cmd 输入指令:

自动管理员 PowerShal

Start-Process nowershell -Verh run As

在新弹出的 PowerShell 中输入

‡ 启用 wsl 低於 18362 的版本不支持 WSL ?

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all

/norestart

启用虚拟制

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart

· 设置 wsl 默认版本

wsl --set-default-version 2

如果报错:命令列選項無效:--set-default-version 没有升级 Linux 内核,文上有 URL 下载安装即可

如果报错: 红色一大串

查看 Windows 版本是否太低

输入启动 WSL 可以看到,太低则升级 Windows

Deployment Image Servicing and Management tool Version: 10.0.17763.1

Image Version: 10.0.17763.194

选择子系统, 推介 Ubuntu 20.04LTS

/resource/CanonicalGroupLimited.UbuntuonWindows_2004.2021.825.0.AppxBundle 双击安装即可

可选操作

避免占用太多系统盘内容,把 Linux 系统搬到其他盘

安装好后继续在 PowerShell 输入指令

子系统打包 移动到自己的文件夹

- # 查看列表
- wel --ovport Ilbuntu D./WSI/Ilbuntu tai
- # 卸载 Ubuntu
- ws1 --unregister Ubuntu
- ‡ 导入〈名字〉〈安装路径〉〈tar 路径〉
- wsl --import Ubuntu C:\Ubuntu D:\backUp\Ubuntu.tam
- wsl --list
- # 讲入子系统

bash

查看是否有显卡驱动

nvidia-smi

3. 安装 CUDA

这里安装 CUDA 固定使用 11.7.0 版本 选择 Linux -> x86_64 -> WSL-Ubuntu -> 2.0 runfile(local)

如果 apt-get 安装太慢可选择更换 apt 源

- # apt-get
- # 可选操作,如果国内网谏太慢请更换国内代理
- # 备份源文件

sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak

编辑源列表文件

sudo vim /etc/apt/sources.list

- # 删除里面全部内容
- #添加以下内容

deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse

deb-src http://mirrors.aliyun.com/ubuntu/ bionic main restricted

universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted

universe multiverse

deb-src http://mirrors.aliyun.com/ubuntu/ bionic-security main

restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted

universe multiverse

deb-src http://mirrors.aliyun.com/ubuntu/ bionic-updates main

restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/bionic-backports main restricted

universe multiverse

deb-src http://mirrors.aliyun.com/ubuntu/ bionic-backports main

restricted universe multivers

deb http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted

universe multiverse

deb-src http://mirrors.aliyun.com/ubuntu/ bionic-proposed main

restricted universe multiverse

更新一下 apt-get 源

sudo apt-get update

安装 CUDA

注意这里有任何软连接错误请无视!!!!!

#安装 gcc Cuda 安装需要

apt install -y build-essential

- # 提示软链接错误无需理会
- # 下载和安装

wget

https://developer.download.nvidia.com/compute/cuda/11.7.0/local_insta llers/cuda_11.7.0_515.43.04_linux.run__

sudo sh cuda 11.7.0 515.43.04 linux.run

#accept 全选安装即可

修改环境变量

修改环境变量 vim [~]/.bashrc

文件未追加

export PATH=/usr/local/cuda/bin\${PATH:+:\${PATH}

export

LD_LIBRARY_PATH=/usr/local/cuda/lib64\${LD_LIBRARY_PATH:+:\${LD_LIBRARY_ PATH}}

reload 环境变量配置 source ~/.bashrc

检查是否生效

nvcc -V

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Tue_May__3_18:49:52_PDT_2022
Cuda compilation tools, release 11.7, V11.7.64
Build cuda_11.7.r11.7/compiler.31294372_0

显示这个内容则安装成功

```
测试 CUDA
# 测试 cuda
apt install -y git
cd /home
git clone https://github.com/NVIDIA/cuda-samples.git
cd /home/cuda-samples/Samples/1_Utilities/deviceQuery
make
./deviceQuery
# 输出 Pass 则成功了
```

```
Total amount of shared memory per block: 49152 bytes

Total shared memory per multiprocessor: 65536 bytes

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647, 65535, 65535)

Maximum memory pitch: 512 bytes

Concurrent copy and kernel execution: Yes with 6 copy engine(s)

Run time limit on kernels: Yes

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device supports Unified Addressing (UVA): Yes

Device supports Unified Addressing (UVA): Yes

Device supports Compute Preemption: Yes

Supports Managed Memory: Yes

Supports Mode: Yes

Supports Mode: Yes

Supports MultiDevice Co-op Kernel Launch: No

Device PCI Domain ID / Bus ID / location ID: 0 / 216 / 0

Compute Mode: Yes access from NVIDIA Geforce RTX 2080 Ti (GPUI) -> NVIDIA Geforce RTX 2080 Ti (GPUI): No

Peer access from NVIDIA Geforce RTX 2080 Ti (GPUI) -> NVIDIA Geforce RTX 2080 Ti (GPUI): No

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.0, CUDA Runtime Version = 11.7, NumDevs = 2

Result = PASS
```

L没有 Pass 则显卡驱动可能未配置好,尝试重启 or 重新安装

li.显示 cuda-samples nvcc fatal : Unsupported gpu architecture 'compute_90'则不支持 90 算力。 进入/home/cuda-samples/Samples/1_Utilities/deviceQuery 修改 Makefile 文件删除 282 行的 90删除 284 行的 90

4. Nvidia Docker 安装

这里安装 Nvidia Docker 安装 docker 核心 以及 nvidia-docker2 就行

```
# 更新 apt 源
curl https://get.docker.com | sh
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
    && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo
apt-key add - \
    && curl -s -L |
https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.li
st | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt update
sudo apt-get install nvidia-docker2
service docker start
docker ps
```

这里基本上不会有太多的问题

```
# nvidia-docker 测试
sudo docker run -idt --name nvidia_docker_test --gpus all --shm-size 16G
nvidia/cuda:11.7.1-base-ubuntu22.04
sudo nvidia-docker start nvidia_docker_test
sudo nvidia-docker attach nvidia_docker_test
# 查看是否有显卡驱动
nvidia-smi
# 有则判定 nvidia-docker 已经成功安装和使用
exit
```

5. 使用 PaddleDetection 镜像和测试

拉取 PaddlePaddle 项目测试
cd /home
git clone https://github.com/PaddlePaddle/PaddleDetection.git

进入 paddlepaddle 镜像 docker
docker run --gpus all --shm-size=1g --ulimit \
memlock=-1 -it --name Test -v
/home/PaddleDetection:/home/PaddleDetection
--rm nvcr.io/nvidia/paddlepaddle:22.10-py3
cd /home/PaddleDetection

安装 pip 依赖 这里使用了代理
pip install -r requirements.txt -i
https://pypi.tuna.tsinghua.edu.cn/simple
在 GPU 上预测一张图片
export CUDA_VISIBLE_DEVICES=0
python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o
use_gpu=true
weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_co
co.pdn=rams --infer_img=demo/000000014439_ing

打开\home\PaddleDetection\output 里面有一张输出图

