Practice KNN - We have a dataset that contains multiple user's information through the social network who are interested in buying SUV Car or not.

```
import pandas as pd
import numpy as np
import sklearn
import seaborn as sns
import matplotlib.pyplot as plt

df=pd.read_csv('/content/User_Data.csv')
df.head()
```

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0

▼ Exploratory Data Analysis

- Handling missing values if any
- · Apply label encoding to convert categorical data into numerical
- Handle outliers
- Visualization

```
EstimatedSalary 0
Purchased 0
dtype: int64
```

df.dtypes

User ID int64
Gender object
Age int64
EstimatedSalary int64
Purchased int64
dtype: object

*J*1 *J*

df.columns

Index(['User ID', 'Gender', 'Age', 'EstimatedSalary', 'Purchased'], dtype='object')

df.corr()

	User ID	Age	EstimatedSalary	Purchased
User ID	1.000000	-0.000721	0.071097	0.007120
Age	-0.000721	1.000000	0.155238	0.622454
EstimatedSalary	0.071097	0.155238	1.000000	0.362083
Purchased	0.007120	0.622454	0.362083	1.000000

Label Encoding

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df.Gender=le.fit_transform(df.Gender)
df.Gender.head()

Name: Gender, dtype: int64

Data Visualization

sns.countplot(x = "Gender", data = df);


```
x=df.drop(['Purchased','User ID',],axis='columns')
print(x)
y=df['Purchased']
print(y)
```

	Gender	Age	EstimatedSalary
0	1	19	19000
1	1	35	20000
2	0	26	43000
3	0	27	57000
4	1	19	76000
			• • •
395	0	46	41000
396	1	51	23000
397	0	50	20000
398	1	36	33000
399	0	49	36000

```
[400 rows x 3 columns]
0
1
        0
2
        0
3
        0
        0
395
        1
396
        1
397
        1
398
        0
399
```

Name: Purchased, Length: 400, dtype: int64

```
sns.countplot(x = "Gender", hue = "Purchased", data = df);
```


plt.grid()
plt.hist(x = df["Age"], bins = 20);

purch_0 = df[df["Purchased"] == 0].groupby(["EstimatedSalary"]).count()
purch_0["Purchased"].plot(kind = "hist")

purch_1 = df[df["Purchased"] == 1].groupby(["EstimatedSalary"]).count()
purch_1["Purchased"].plot(kind = "hist")

<matplotlib.axes._subplots.AxesSubplot at 0x7f3009b187d0>

sns.pairplot(data = df, hue = "Purchased", vars = ["Gender", "EstimatedSalary", "Age"]);


```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x.drop('Gender',axis=1,inplace=True)
x=scaler.fit_transform(x)
print(x)
```

- [[-1.78179743 -1.49004624] [-0.25358736 -1.46068138] [-1.11320552 -0.78528968] [-1.01769239 -0.37418169] [-1.78179743 0.18375059] [-1.01769239 -0.34481683] [-1.01769239 0.41866944] [-0.54012675 2.35674998] [-1.20871865 -1.07893824] [-0.25358736 -0.13926283] [-1.11320552 0.30121002] [-1.11320552 -0.52100597] [-1.6862843 0.47739916] [-0.54012675 -1.51941109] [-1.87731056 0.35993973] [-0.82666613 0.30121002] [0.89257019 -1.3138571] [0.70154394 -1.28449224] [0.79705706 -1.22576253] [0.98808332 -1.19639767] 0.70154394 -1.40195167] [0.89257019 -0.60910054] [0.98808332 -0.84401939] [0.70154394 -1.40195167] [0.79705706 -1.37258681] [0.89257019 -1.46068138] [1.08359645 -1.22576253] [0.89257019 -1.16703281] [-0.82666613 -0.78528968] [-0.63563988 -1.51941109] [-0.63563988 0.12502088] [-1.01769239 1.97500684] [-1.59077117 -1.5781408] [-0.92217926 -0.75592482] [-1.01769239 0.59485858] [-0.25358736 -1.25512738] [-0.44461362 -1.22576253] [-0.73115301 -0.60910054] [-1.11320552 0.06629116] [-1.01769239 -1.13766796] [-1.01769239 -1.54877595] [-0.44461362 -0.55037082] [-0.25358736 1.123426] [-0.73115301 -1.60750566] [-0.92217926 0.41866944] [-1.39974491 -1.46068138] [-1.20871865 0.27184516] [-1.01769239 -0.46227625] [-0.73115301 1.91627713] [-0.63563988 0.56549373] [-1.30423178 -1.1083031] [-1.87731056 -0.75592482] [-0.82666613 0.38930459] [-0.25358736 -1.37258681] [-1.01769239 -0.34481683] [-1.30423178 -0.4329114]
- https://colab.research.google.com/drive/1yLpbPzhi3GtKxfHM60H1ks78JCoTh3A4?usp=sharing#printMode=true

```
[-1.39974491 -0.63846539]
[-0.92217926 0.27184516]
[-1.49525804 -1.51941109]
```

Visualization

sns.heatmap(df.corr(),annot=True)
plt.title('Correlation')
plt.show()

sns.heatmap(df.isnull(),yticklabels=False)

sns.set_style('whitegrid')
sns.countplot(x='Purchased',hue='Gender',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3011699610>

sns.pairplot(df,hue='Gender',vars=['Age','Purchased','EstimatedSalary'],palette='gist_rainbow

Detecting Outliers

max_threshold=df['Age'].quantile(0.95)
print(max_threshold)
min_threshold=df['Age'].quantile(0.05)
print(min_threshold)

57.04999999999955

21.0

df[df['Age']>max_threshold]

	User ID	Gender	Age	EstimatedSalary	Purchased
64	15605000	0	59	83000	0
204	15660866	0	58	101000	1
212	15707596	0	59	42000	0
215	15779529	0	60	108000	1
219	15732987	1	59	143000	1
223	15593715	1	60	102000	1
258	15569641	0	58	95000	1
271	15688172	0	59	76000	1
272	15791373	1	60	42000	1
280	15609669	0	59	88000	1
300	15736397	0	58	38000	1
336	15664907	1	58	144000	1
355	15606472	1	60	34000	1
365	15807525	0	59	29000	1
366	15574372	0	58	47000	1
370	15611430	0	60	46000	1
371	15774744	1	60	83000	1
373	15708791	1	59	130000	1
379	15749381	0	58	23000	1
393	15635893	1	60	42000	1

df[df['Age']<min_threshold]</pre>

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	1	19	19000	0
4	15804002	1	19	76000	0
12	15746139	1	20	86000	0
14	15628972	1	18	82000	0
51	15764195	0	18	44000	0
72	15595228	0	20	23000	0
76	15746737	1	18	52000	0
82	15709476	1	20	49000	0
104	15672091	0	19	21000	0
136	15668504	0	20	82000	0
139	15741094	1	19	25000	0
140	15807909	1	19	85000	0
141	15666141	0	18	68000	0
149	15767871	1	20	74000	0
165	15578738	0	18	86000	0
186	15724402	0	20	82000	0
191	15662067	0	19	26000	0
193	15662901	1	19	70000	0
197	15680243	0	20	36000	0

Removing Outliers

df[(df['Age']<max_threshold)&(df['Age']>min_threshold)]

	User ID	Gender	Age	EstimatedSalary	Purchased
1	15810944	1	35	20000	0
2	15668575	0	26	43000	0
3	15603246	0	27	57000	0
5	15728773	1	27	58000	0
6	15598044	0	27	84000	0

Splitting Data into Train and Test

rom sklearn model selection import train test split

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=10)
```

KNN Classifier Model

from sklearn.neighbors import KNeighborsClassifier
KNN=KNeighborsClassifier(n_neighbors=3)
KNN.fit(x_train,y_train)

Prediction

```
y_pred=KNN.predict(x_test)
y_pred
```

```
array([0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1])
```

Confusion Matrix

```
from sklearn.metrics import confusion_matrix, accuracy_score
```

```
matrix = confusion_matrix(y_test, y_pred)
matrix
```

```
array([[46, 6], [ 1, 27]])
```

```
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy of model: {}%".format(accuracy*100))
```

Accuracy of model: 91.25%

Classification Report

from sklearn.metrics import classification_report

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.98	0.88	0.93	52
1	0.82	0.96	0.89	28
accuracy			0.91	80
macro avg	0.90	0.92	0.91	80
weighted avg	0.92	0.91	0.91	80

Box Plot

sns.boxplot(x='Purchased',y='Age',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f300972e1d0>

plt.figure(figsize=(15,6))
sns.boxplot(x='Age',y='EstimatedSalary',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3009704f90>

Visualization - Accuracy Score

```
plt.figure(figsize=(5,5))
sns.heatmap(matrix, annot=True, fmt=".2f", linewidths=.5, square = True, cmap = 'Blues_r')
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
A=f'Accuracy Score :{accuracy:.2f}'
plt.title(A)
plt.show()
```

