

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 10 martie 2018

CLASA a XI-a

Varianta 2

Problema 1. Arătați că, dacă $n \geq 2$ este un număr întreg, atunci există matricele inversabile $A_1, A_2, \ldots, A_n \in \mathcal{M}_2(\mathbb{R})$, cu elementele nenule, așa încât

$$A_1^{-1} + A_2^{-1} + \ldots + A_n^{-1} = (A_1 + A_2 + \ldots + A_n)^{-1}.$$

Gazeta Matematică

Problema 2. Considerăm mulțimea

$$M = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}) \mid ab = cd \right\}.$$

- a) Dați exemplu de matrice $A\in M$ astfel încât $A^{2017}\in M$ și $A^{2019}\in M,$ dar $A^{2018}\notin M.$
- b) Arătați că, dacă $A \in M$ și există numărul întreg $k \geq 1$ astfel încât $A^k \in M$, $A^{k+1} \in M$ și $A^{k+2} \in M$, atunci $A^n \in M$, oricare ar fi numărul întreg $n \geq 1$.

Problema 3. Fie şirul $(a_n)_{n\geq 1}$ cu proprietățile $a_n > 1$ şi $a_{n+1}^2 \geq a_n a_{n+2}$, oricare ar fi $n \geq 1$. Arătați că şirul $(x_n)_{n\geq 1}$ dat de $x_n = \log_{a_n} a_{n+1}$ pentru $n \geq 1$ este convergent şi calculați-i limita.

Problema 4. Fie a < b numere reale și $f:(a,b) \to \mathbb{R}$ o funcție astfel încât funcțiile $g:(a,b) \to \mathbb{R}, \ g(x) = (x-a)f(x)$ și $h:(a,b) \to \mathbb{R}, \ h(x) = (x-b)f(x)$ să fie crescătoare. Arătați că funcția f este continuă pe (a,b).