128K x8 bit Low Power CMOS Static RAM

FEATURES

Process Technology: 0.6§- CMOS

Organization: 128Kx8

Power Supply Voltage: Single 5.0V; 3/4 10%

Low Data Retention Voltage: 2V(Min)

Three state output and TTL Compatible

Package Type : JEDEC Standard

32-DIP, 32-SOP, 32-TSOP I R/F

GENERAL DESCRIPTION

The KM681000B family is fabricated by SAMSUNG's advanced CMOS process technology. The family can support various operating temperature ranges and have various package types for user flexibility of system design. The family also support low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

Product	Operating			Power Dis	ssipation	
Family	Operating Temperature	Speed PKG Type		Standby (Isв1, Max)	Operating (Icc2)	
KM681000BL	Commercial(0~7;É)	55/70ns	32-DIP,32-SOP	100§Ë		
KM681000BL-L	Commercial(0~171)	33/70118	32-TSOP I R/F	20§Ë		
KM681000BLE	Extended(-25~85¡É)	70/100ns	32-SOP	100§Ë	70mA	
KM681000BLE-L	Extended(-25~05/E)	70/100113	32-TSOP I R/F	50 § Ë	701112	
KM681000BLI	Industrial(-40~85;É)	70/100ns	32-SOP	100 § Ë		
KM681000BLI-L	industrial(-40~05 [E)	70/100115	32-TSOP I R/F			

PIN DESCRIPTION

CS₂ A15 32-TSOP CS₂ Type I - Forward WE A13 A₈ 27 A2 32-DIP 26 A₉ 32-SOP 25 A₁₁ OE A10 CS₁ A₁ A2 A1 A0 I/O1 I/O2 I/O3 V\$ss I/O4 I/O5 I/O6 I/O₈ I/O₇ 19 I/O₆ /O₂ 32-TSOP I/Os /O₃ Type I-Reverse 17 I/O₄ I/O₇ I/Os CS₁

FUNCTIONAL BLOCK DIAGRAM

Name	Function
A0~A16	Address Inputs
WE	Write Enable Input
CS ₁ ,CS ₂	Chip Select Inputs
ŌĒ	Output Enable Input
I/O1~I/O18	Data Inputs/Outputs
Vcc	Power
Vss	Ground
N.C	No Connection

PRODUCT LIST & ORDERING INFORMATION

PRODUCT LIST

	Commercial Temp Product (0~70 ¡É)		Temp Products 5~85 ¡É)	Industrial Temp Products (-40~85;É)		
Part Name	Function	Part Name Function		Part Name	Function	
KM681000BLP-5	32-DIP,55ns,L-pwr	KM681000BLGE-7	32-SOP,70ns,L-pwr	KM681000BLGI-7	32-SOP,70ns,L-pwr	
KM681000BLP-5L	32-DIP,55ns,LL-pwr	KM681000BLGE-7L	32-SOP,70ns,LL-pwr	KM681000BLGI-7L	32-SOP,70ns,LL-pwr	
KM681000BLP-7	32-DIP,70ns,L-pwr	KM681000BLGE-10	32-SOP,100ns,L-pwr	KM681000BLGI-10	32-SOP,100ns,L-pwr	
KM681000BLP-7L	32-DIP,70ns,LL-pwr	KM681000BLGE-10L	32-SOP,100ns,LL-pwr	KM681000BLGI-10L	32-SOP,100ns,LL-pwr	
KM681000BLG-5	32-SOP,55ns,L-pwr	KM681000BLTE-7	32-TSOP F,70ns,L-pwr	KM681000BLTI-7	32-TSOP F,70ns,L-pwr	
KM681000BLG-5L	32-SOP,55ns,LL-pwr	KM681000BLTE-7L	32-TSOP F,70ns,LL-pwr	KM681000BLTI-7L	32-TSOP F,70ns,LL-pwr	
KM681000BLG-7	32-SOP,70ns,L-pwr	KM681000BLTE-10	32-TSOP F,100ns,L-pwr	KM681000BLTI-10	32-TSOP F,100ns,L-pwr	
KM681000BLG-7L	32-SOP,70ns,LL-pwr	KM681000BLTE-10L	32-TSOP F,100ns,LL-pwr	KM681000BLTI-10L	32-TSOP F,100ns,LL-pwr	
KM681000BLT-5	32-TSOP F,55ns,L-pwr	KM681000BLRE-7	32-TSOP R,70ns,L-pwr	KM681000BLRI-7	32-TSOP R,70ns,L-pwr	
KM681000BLT-5L	32-TSOP F,55ns,LL-pwr	KM681000BLRE-7L	32-TSOP R,70ns,LL-pwr	KM681000BLRI-7L	32-TSOP R,70ns,LL-pwr	
KM681000BLT-7	32-TSOP F,70ns,L-pwr	KM681000BLRE-10	32-TSOP R,100ns,L-pwr	KM681000BLRI-10	32-TSOP R,100ns,L-pwr	
KM681000BLT-7L	32-TSOP F,70ns,LL-pwr	KM681000BLRE-10L	32-TSOP R,100ns,LL-pwr	KM681000BLRI-10L	32-TSOP R,100ns,LL-pwr	
KM681000BLR-5	32-TSOP R,55ns,L-pwr					
KM681000BLR-5L	32-TSOP R,55ns,LL-pwr					
KM681000BLR-7	32-TSOP R,70ns,L-pwr					
KM681000BLR-7L	32-TSOP R,70ns,LL-pwr					

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN,VOUT	-0.5 to 7.0	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to 7.0	V	-
Power Dissipation	PD	1.0	W	-
Storage temperature	Tstg	-65 to 150	¡É	-
		0 to 70	įÉ	KM681000BL/L-L
Operating Temperature	TA	-25 to 85	įÉ	KM681000BLE/LE-L
		-40 to 85	¡É	KM681000BLI/LI-L
Soldering temperature and time	TSOLDER	260;É, 10sec (Lead Only)	-	-

^{*} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Item	Symbol	Min	Тур**	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input high voltage	VIH	2.2	-	Vcc+0.5	V
Input low voltage	VIL	-0.5***	-	0.8	V

 $^{^{\}star}$ 1) Commercial Product : Ta=0 to 70 $\rm i \, \acute{E},$ unless otherwise specified

CAPACITANCE* (f=1MHz, TA=25;É)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	Vin=0V	-	6	pF
Input/Output capacitance	Сю	Vio=0V	-	8	pF

^{*} Capacitance is sampled not 100% tested

²⁾ Extended Product : Ta=-25 to $85\,\mathrm{i}\,\mathrm{\acute{E}}$, unless otherwise specified

³⁾ Industrial Product : T_A=-40 to 85 ¡É, unless otherwise specified

^{**} TA=25;É

^{***} VIL(min)=-3.0V for ¡Â 50ns pulse width

DC AND OPERATING CHARACTERISTICS

ŀ	tem	Symbol	nbol Test Conditions*		Mi	Тур**	Max	Unit
Input leakage curi	rent	ILI	VIN=Vss to Vcc		-1	-	1	ŞË
Output leakage cu	urrent	llo	CS1=VIH or CS2=VIL or V	WE=VIL, VIO=Vss to Vcc	-1	-	1	ŞË
Operating power s	supply current	Icc	CS1=VIL, CS2=VIH, VIN=	VIH or VIL, IIO=0mA	-	7	15**	mA
Average operating			Cycle time=1§Á 100% d CS1¡Â0.2V, CS2¡ÃVcc-0		-	-	10***	mA
Average operating	Average operating current		IIO=0mA CS1=VIL,CS2=VIH Min cycle, 100% duty		-	-	70	mA
Output low voltage	e	Vol	IoL=2.1mA		-	-	0.4	V
Output high voltage	ре	Voн	IOH=-1.0mA		2.4	-	-	V
Standby Current(TTL)	ISB	CS₁=VIH, CS₂=VIL			-	3	mA
	KM681000BL KM681000BL-L		CS1¡ÃVcc-0.2V	L (Low Power) LL (Low Low Power)	-	-	100 20	ŞË ŞË
Standby Current (CMOS)	KM681000BLE	L (Low Power) LL (Low Low Power)	-	-	100 50	ŞË ŞË		
	KM681000BLI KM681000BLI-L		Other input=0~Vcc	L (Low Power) LL (Low Low Power)	-	-	100 50	ŞË ŞË

^{* 1)} Commercial Product : Ta=0 to 70 j $\acute{E},\,$ Vcc=5.0V j $^{3}\!\!\!/10\%,\,$ unless otherwise specified

A.C CHARACTERISTICS

TEST CONDITIONS(1.Test Load and Test Input/Output Reference)*

Item	Value	Remark
Input pulse level	0.8 to 2.4V	-
Input rising & falling time	5ns	-
input and output reference voltage	1.5V	-
Output load (See right)	CL=100pF+1TTL	-

^{*} See DC Operating conditions

^{*} Including scope and jig capacitance

²⁾ Extended Product : Ta=-25 to 85 j É, Vcc=5.0V j ¾ 10%, unless otherwise specified

²⁾ Industrial Product: Ta=-40 to 85 j É, Vcc=5.0V j ¾10%, unless otherwise specified

^{** 20}mA for Exteneded and Industrial Products

^{*** 15}mA for Extended and Industrial Products

$\textbf{TEST CONDITIONS} (2.\ \mathsf{Temperature}\ \mathsf{and}\ \mathsf{Vcc}\ \mathsf{Conditions})$

Product Family	Product Family Temperature		Speed Bin	Comments
KM681000BL/L-L	0~70;É	5.0V¦¾10%	55/70ns	Commercial
KM681000BLE/LE-L	-25~85¡É	5.0V¦¾10%	70/100ns	Extended
KM681000BLI/LI-L	-40~85¡É	5.0V¦¾10%	70/100ns	Industrial

PARAMETER LIST FOR EACH SPEED BIN

					Spee	d Bins			
	Parameter List	Symbol	55ns		70	70ns		Ons	Units
			Min	Max	Min	Max	Min	Max	
Read	Read cycle time	tRC	55	-	70	-	100	-	ns
	Address access time	tAA	-	55	-	70	-	100	ns
	Chip select to output	tCO1,tCO2	-	55	-	70	-	100	ns
	Output enable to valid output	tOE	-	25	-	35	-	50	ns
	Chip select to low-Z output	tLZ1,tLZ2	10	-	10	-	10	-	ns
	Output enable to low-Z output	tOLZ	5	-	5	-	5	-	ns
	Chip disable to high-Z output	tHZ1,tHZ2	0	20	0	25	0	30	ns
	Output disable to high-Z output	tohz	0	20	0	25	0	30	ns
	Output hold from address change	tOH	10	-	10	-	10	-	ns
Write	Write cycle time	twc	55	-	70	-	100	-	ns
	Chip select to end of write	tcw	45	-	60	-	80	-	ns
	Address set-up time	tAS	0	-	0	-	0	-	ns
	Address valid to end of write	tAW	45	-	60	-	80	-	ns
	Write pulse width	tWP	40	-	50	-	60	-	ns
	Write recovery time	twr	0	-	0	-	0	-	ns
	Write to output high-Z	twHZ	0	20	0	25	0	30	ns
	Data to write time overlap	tDW	25	-	30	-	40	-	ns
	Data hold from write time	tDH	0	-	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	5	-	ns

DATA RETENTION CHARACTERISTICS

Item	Symbol		Test Condition*		Min	Тур**	Max	Unit
Vcc for data retention	VDR		CS ₁ ***;ÃVcc-0.2V		2.0	-	5.5	V
		KM681000BL KM681000BL-L		L-Ver LL-Ver	-	1 0.5	50 10	
Data retention current	IDR	KM681000BLE KM681000BLE-L	Vcc=3.0V CS ₁ jÃVcc-0.2V	L-Ver LL-Ver	-	-	50 25	§Ë
		KM681000BLI KM681000BLI-L		L-Ver LL-Ver	-	-	50 25	
Data retention set-up time	trdf	\	See data retention waveform		0	-	-	ms
Recovery time	tRDF	}	See data retention	5	-	-	1113	

^{* 1)} Commercial Product : $T_A=0$ to 70; \acute{E} , unless otherwise specified

DATA RETENTION TIMING DIAGRAM

1) CS₁ Controlled

2) CS₂ controlled

²⁾ Extended Product : TA=-25 to 85 | É, unless otherwise specified

²⁾ Industrial Product : Ta=-40 to 85 i É, unless otherwise specified

^{**} T_A=25 ¡ É

^{***} $\overline{\text{CS}}_1$ j $\tilde{\text{A}}$ Vcc-0.2V,CS2 j $\tilde{\text{A}}$ Vcc-0.2V($\overline{\text{CS}}_1$ controlled) or CS2 j $\hat{\text{A}}$ 0.2V(CS2 controlled)

TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE (1)Address Controlled)

 $(\overline{CS}_{1}=\overline{OE}=VIL, CS_{2}=\overline{WE}=VIH)$

TIMING WAVEFORM OF READ CYCLEWE=VIH)

NOTES (READ CYCLE)

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(max.) is less than tLZ(min.) both for a given device and from device to device.

TIMING WAVEFORM OF WRITE CYCLE (1) WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE (2) CS1 Controlled)

TIMING WAVEFORM OF WRITE CYCLE (2) Controlled)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap of low \overline{CS}_1 , high CS_2 and low \overline{WE} . A write begins at the latest transition among \overline{CS}_1 going low, CS_2 going high, and \overline{WE} going low. A write ends at the earliest transition among \overline{CS}_1 going high, CS_2 going low and \overline{WE} going high, tWP is measured from the beginning or write to the end of write.
- 2. tCW is measured from the later of $\overline{\text{CS}}_1$ going low or CS2 going high to the end of write.
- 3. tAS is measured from the address calld to the beginning of write.
- 4. tWR is measured from the end of write to the address change. tWR1 applied in case a write ends at CS1, or WE going high, tWR2 applied in case a write ends at CS2 going to low.

FUNCTIONAL DESCRIPTION

CS ₁	CS ₂	WE	ŌĒ	Mode I/O Pin		Current Mode
Н	Х	Х	Х	Power Down	High-Z	ISB,ISB1
Х	L	Х	Х	Power Down	High-Z	ISB,ISB1
L	Н	Н	Н	Output Disable	High-Z	Icc
L	Н	Н	L	Read	Dout	Icc
L	Н	L	Х	Write Din		Icc

^{*} X means don't care

PACKAGE DIMENSIONS

Units: MillimeterS(Inches)

32 DUAL INLINE PACKAGE (600mil)

32 PLASTIC SMALL OUTLINE PACKAGE (525mil)

PACKAGE DIMENSIONS

Units: MillimeterS(Inches)

32 THIN SMALL OUTLINE PACKAGE TYPE I (0820F)

32 THIN SMALL OUTLINE PACKAGE TYPE I (0820R)

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.