Lecture 28

 $V: [-2,2] \rightarrow [-2,2]$ V(X) = 2|X|-2 is a chaotic dynamic system

observe that the graph of the nth iterate of V consists of 2^n lines with slope 2^n and maps an interval J_n^* of length 1 to [-2,2]

Proof: Density. Let $x \in [-2,2]$. For any $n \in \mathbb{N}$, there is an interval J_n s.t. $x \in J_n$.

Then $V^n(J_n) = [-2,2]$ so there is a fixed point x_n of V^n in J_n so x_n is a periodic point of V and $|x-x_n| \leq \frac{1}{\sqrt{1-2}}$.

So $|x-x_n| \xrightarrow{n \to \infty} 0$

Thansitivity. Let $x,y \in [-2,2]$ and E>0 choose n such that $\frac{1}{2^{n-2}} < E$. There is an interval $s.t. X \in J_n^i$.

Since $V^n(J_n^i) = [-2,2]$, there is $Z \in J_n^i$ s.t. $V^n(z) = y$.

So $|X-Z| \le \frac{1}{2^{n-2}} < E$.

1y-Vn(x)=0<c

Sensitivity. Let $\beta = 2$ Let $x \in [-2,2]$ and $\epsilon > 0$. choose n = 1. $\frac{1}{2^{n-2}} < \epsilon$ There is J_n^i s.t. $x \in J_n^i$.
Take $y \in J_n^i$ s.t. |x-y| > 1 length $(J_n^i) = \frac{1}{2^{n-1}}$ Then $|x-y| < \frac{1}{2^{n-1}} < \epsilon$ and $\frac{V^n(x)-V^n(y)}{x-y} = (V^n)^n(c)$ for some ϵ between ϵ and ϵ $\Rightarrow \epsilon \in J_n^i$ so $|(V^n)^n(c)| = 2^n$ Thus $|V^n(x)-V^n(y)| = 2^n|x-y| > 2^n$. $\frac{1}{2^{n-1}} = 2$

2

This proves that V is chaotic.

We now use V to prove that Q-2 is chartic. Define acx) = -2cos (#x) $C(V(x)) = -2\cos(-\frac{\pi}{2}(2|x|-2)) = -2\cos(\pi|x|-\pi) = 2\cos(\pi x)$ $(2-2\cos(x)) = (-2\cos(\frac{\pi}{2}(x))^2 - 2 = 4\cos(\frac{\pi}{2}x) - 2$ $(os(d-\pi)=-cos(d))$ so the density 2 $=2(1+\cos(\pi x))-2$ $=2\cos(\pi x)$ proposition still seems to be a Conjugacy, but it is >[-2,2] cupplies to C and C still takes not one-to-one periodic pts of V it is two-to-one it is also onto and to per pts of () 2. So c continuous, can still be used to prove that O-z is chaotic.