EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

05179394

PUBLICATION DATE

20-07-93

APPLICATION DATE

: 27-12-91

APPLICATION NUMBER

: 03346932

APPLICANT:

KUBOTA CORP;

INVENTOR:

SHIKATA TAKASHI:

INT.CL.

C22C 37/00 B21B 27/00 C22C 37/08

TITLE

COMBINATION ROLL

ABSTRACT :

PURPOSE: To develop the combination roll having an outside layer which is less thermally deformed during use and is highly resistant to wear by constituting the roll to be used for rolling, etc., of steel products of an outside layer made of a cast iron contg. a hard metal carbide, an intermediate layer made of a high-carbon cast steel and an inside layer made of a graphite cast iron.

CONSTITUTION: The roll for rolling the steel products is made of the combination structure, such as solid roll or sleeve-like roll consisting of the outside layer 1, the intermediate layer 3 and the inside layer 2. The outside layer 1 of the roll is made of the wear resistant cast iron contg., by weight, 1.0 to 3.0% C, 0.1 to 2.0% Si, 0.1 to 2.0% Mn, 0.1 to 4.5% Ni, 3.0 to 10.0% Cr, 0.1 to 9.0% Mo, 1.5 to 10.0% W, 0.5 to 10.0% Co and 3.0 to 10.0% in total of one or two kinds of V and Nb. The intermediate layer 3 is made of the high-carbon cast steel contg. 1.0 to 2.5% C, 0.2 to 3.0% Si, 0.2 to 1.5% Mn, ≤4% all of Cr, Mo and Ni, further ≤12% in total of W, V and Nb and a small amt. of Co. The inside layer 2 is made of the flake graphite cast iron, spheroidal graphite cast iron or graphite steel.

COPYRIGHT: (C)1993,JPO&Japio

(USPTO) X. IALIS 30A9 SIHT

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平5-179394

(43)公開日 平成5年(1993)7月20日

(51) Int.Cl. ⁵	識別記号	庁内整理番号	FI	技術表示箇所
C 2 2 C 37/00	В	7217-4K		
B 2 1 B 27/00	С	7728-4E		
C 2 2 C 37/08	Z	7217-4K		

審査請求 未請求 請求項の数4(全 13 頁)

(21)出顧番号	特顧平3-346932	(71)出顧人 000001052
		株式会社クポタ
(22)出顧日	平成3年(1991)12月27日	大阪府大阪市浪速区敷津東一丁目2番47号
		(72)発明者 森川 長
		兵庫県尼崎市西向島町64番地 株式会社ク
	#34	ポタ尼崎工場内
		(72)発明者 瀬戸 良登
		兵庫県尼崎市西向島町64番地 株式会社ク
		ボタ尼崎工場内
		(72)発明者 岡林 昭利
		「兵庫県尼崎市西向島町64番地 株式会社ク
		ポタ尼崎工場内
		(74)代理人 弁理士 安田 敏雄
		最終頁に続く
		· ·

(54) 【発明の名称】 複合ロール

(57)【要約】

【目的】 耐摩耗性に優れかつ均一材質の外層を備えた 複合ロールを提供する。

【構成】 外層1 と中間層3、中間層3 と内層2 とが相互に溶着して構成されている。外層は、化学組成が重量%で、C:1.0~3.0%、Si:0.1~2.0%、Mn:0.1~2.0%、Mn:0.1~2.0%、Ni:0.1~4.5%、Cr:3.0~10.0%、Mo:0.1~9.0%、W:1.5~10.0%、V,Nb:一種又は二種の総計で3.0~10.0%、Co:0.5~10.0%および残部実質的にFeからなる。外層には前記合金成分の他、Al,Ti,Zr:各々0.01~0.50%の内の一種又は二種以上、又はおよびB:0.01~0.50%を含有させることができる。中間層は特定組成の高炭素鋳鋼、内層は片状黒鉛鋳鉄、球状黒鉛鋳鉄又は黒鉛鋼により形成されている。

【特許請求の範囲】

【請求項1】 耐摩耗鋳鉄材で形成された外層と、該外 層の内周面に溶着された中間層と、該中間層の内周面に 溶着された内層とからなる複合ロールにおいて、

前記外層は、化学組成が重量%で、

C :1.0 ~3.0 %. Si:0.1~2.0%.

 $Mn: 0.1 \sim 2.0 \%$ N1:0.1~4.5%.

Mo: 0.1 ~9.0 %. Cr:3.0~10.0%、

w : 1.5 ~10.0%.

V, Nb:一種又は二種の総計で3.0~10.0%、

Co:0.5~10.0%、

および残部実質的にFeからなり、

前記中間層は、化学組成が重量%で、

C : 1.0 ~2.5 %. Si:0.2~3.0%.

 $Mn: 0.2 \sim 1.5 \%$ Ni:4.0%以下、

Cr:4.0 %以下、 Mo:4.0%以下、 W,V, Nb:総計で12%以下、

残部が外層から混入したCoおよび実質的にFeからな

前記内層は片状黒鉛鋳鉄、球状黒鉛鋳鉄又は黒鉛鋼で形 20 Cr:3.0~10.0%、 成されていることを特徴とする複合ロール。

【請求項2】 耐摩耗鋳鉄材で形成された外層と、該外 層の内周面に溶着された中間層と、該中間層の内周面に 溶着された内層とからなる複合ロールにおいて、

前記外層は、化学組成が重量%で、

C :1.0 ~3.0 %. Si:0.1~2.0 %.

Ni:0.1~4.5%. Mn: 0.1 ~2.0 %.

Mo: 0.1 ~9.0 %. $Cr: 3.0 \sim 10.0\%$

W : 1.5 ~10.0%

V. Nb:一種又は二種の総計で3.0~10.0%、

Co:0.5~10.0%、

Al, Ti, Zr:各々0.01~0.50%の内の一種又は二 種以上

および残部実質的にFeからなり、

前記中間層は、化学組成が重量%で、

C:1.0~2.5%. Si:0.2~3.0%.

Ni:4.0%以下、 Mn: 0.2 ~1.5 %.

Mo:4.0 %以下、 Cr:4.0%以下、

W , V , N b , A l , T i , Z r : 総計で12%以下、 残部が外層から混入したCoおよび実質的にFeからな *40*

前記内層は片状黒鉛鋳鉄、球状黒鉛鋳鉄又は黒鉛鋼で形 成されていることを特徴とする鉄鋼圧延用複合ロール。

【請求項3】 耐摩耗鋳鉄材で形成された外層と、該外 層の内周面に溶着された中間層と、該中間層の内周面に 溶着された内層とからなる複合ロールにおいて、

前記外層は、化学組成が重量%で、

Si: 0.1 ~2.0 %. C: 1.0~3.0%

Ni:0.1~4.5%. Mn: 0.1 ~2.0 %

Mo: 0.1 ~9.0 %. Cr:3.0~10.0%.

W : 1.5 ~10.0%、

V, Nb:一種又は二種の総計で3.0~10.0%、

Co: 0.5 ~10.0%, B: 0.01~0.50%,

および残部実質的にFeからなり、

前記中間層は、化学組成が重量%で、

Si:0.2~3.0%. C:1.0~2.5%

Ni:4.0%以下、 Mn: 0.2 ~1.5 %.

Cr:4.0 %以下、

Mo:4.0 %以下、

W, V, Nb, B:総計で12%以下、

10 残部が外層から混入したCoおよび実質的にFeからな

前記内層は片状黒鉛鋳鉄、球状黒鉛鋳鉄又は黒鉛鋼で形 成されていることを特徴とする複合ロール。

【請求項4】 耐摩耗鋳鉄材で形成された外層と、該外 層の内周面に溶着された中間層と、該中間層の内周面に 溶着された内層とからなる複合ロールにおいて、

前記外層は、化学組成が重量%で、

Si:0.1~2.0 %. C :1.0 ~3.0 %.

N1:0.1~4.5 %.

 $Mn: 0.1 \sim 2.0 \%$

 $Mo: 0.1 \sim 9.0 \%$.

W: 1.5~10.0%.

V, Nb:一種又は二種の総計で3.0~10.0%、

Co:0.5 ~10.0%、

A1, Ti, Zr:各々0.01~0.50%の内の一種又は二 種以上、

B: 0.01~0.50%,

および残部実質的にFeからなり、

前記中間層は、化学組成が重量%で、

C: 1.0 ~2.5 %,

Si:0.2~3.0%.

30 Mn: 0.2 ~1.5 %.

NI:4.0%以下、

Cr:4.0 %以下、

Mo:4.0 %以下、

W, V, Nb, Al, Ti, Zr, B:総計で12%以 下,

残部が外層から混入したCoおよび実質的にFeからな

前記内層は片状黒鉛鋳鉄、球状黒鉛鋳鉄又は黒鉛鋼で形 成されていることを特徴とする複合ロール。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は鉄鋼圧延用等の複合ロー ルに関する。

[0002]

【従来の技術】複合ロールには、耐摩耗材で形成された 圧延使用層たる外層に強靭材によって形成された中実状 内層 (軸芯部) を溶着したものや、凶1に示すように外 層1 と内層2 との間に中間層3 を介在させたものがあ る。尚、図2に示すように、円筒形ロールはスリーブロ ールとも呼ばれ、通常、ロール軸に焼きばめ等により固 着され、組み立てられて圧延に供される。

50 【0003】前記中間層3 は、外層1 と内層2 とを直接

-660-

溶着した場合に生じる、外層1 から内層2 への高合金元素の混入を防止し、内層の強靭性劣化防止のために形成されるものである。従来、耐摩耗性に優れた外層材として、特公昭58-30382 号公報、特公昭61-16415 号公報に開示されているように、Crを10~25%含有した高クロム鋳鉄や耐焼付性をも改善した黒鉛晶出高クロム鋳鉄が使用されている。

[0004]

【発明が解決しようとする課題】近年、圧延条件が苛酷になり、より高い耐摩耗性が要求されるようになった。このため、前記公報に言及されているように、高クロム鋳鉄や黒鉛晶出高クロム鋳鉄にNb, Vの一種又は二種を合計で2%以下添加して、その微細炭化物を結晶核として生成させ、これによって組織の微細化、緻密化を図り、もって耐摩耗性の向上が図られている。しかし、耐摩耗性の向上の要求に十分応えているとはいえないのが実情である。

【0005】一方、鉄鋼圧延における耐摩耗性を大幅に 改善するには、材質中にWを多量に添加すればよいと考 えられる。しかしながら、複合ロールの外層は、主とし 20 て遠心力鋳造によって鋳造されることから、Wが比重差 により分離し、周方向に偏析が生じて均一な材質が得難 いという問題がある。本発明はかかる問題に鑑みなされ たもので、耐摩耗性に優れかつ均一材質の外層を備えた 鉄鋼圧延用等の複合ロールを提供することを目的とす る。

[0006]

【課題を解決するための手段】本発明の複合ロールは、 外層と中間層、中間層と内層とが相互に溶着して構成されており、前配外層は、化学組成が重量%で、

C:1.0 ~3.0 %, Si:0.1 ~2.0 %,

Mn: 0.1 ~2.0 %, Ni: 0.1 ~4.5 %,

Cr: 3.0 ~10.0%, Mo: 0.1 ~9.0 %,

W: 1.5~10.0%,

V, Nb:一種又は二種の総計で3.0 ~10.0%、

Co:0.5~10.0%、

および残部実質的にFeからなり、前記中間層はC:1.0~2.5%合有した特定組成の高炭素鋳鋼からなり、前記内層は片状黒鉛鋳鉄、球状黒鉛鋳鉄又は黒鉛鋼により形成されている。また、外層成分には、前配外層合金成分のほかに、Al, Ti, Zr:各々0.01~0.50%の内の一種又は二種以上、又は及びB:0.01~0.50%を含有することができる。

[0007]

【作用】本発明の複合ロールに係る外層は、Cr, Mo, W, Nb, V, FeおよびCが相互に結合した高硬度の複合炭化物が基地中に存在するため、またCoの作用による基地の強化により、常温および高温における硬度が向上し、耐摩耗性が飛躍的に向上する。このため、従来の高クロム鋳鉄等と同程度の寿命を確保する場合、

外層厚さは鋳込み厚さで80mm程度以下すなわち従来の厚さの80%程度と薄くてもよいため、高価な合金を多量に含む外層材の使用量が少なくて済む。また、外層は高クロム鋳鉄等と同様、焼入れ熱処理が施されて高硬度が付与される。この際、本発明に係る外層材は高硬度であり、高クロム鋳鉄等に比べて残留応力が高くなるが、外層を薄くすることができるため、残留応力を低く抑えることができ、耐事故性を改善することができる。また、鋳込み厚さを80mm程度以下に薄くすることができるため、急冷凝固することができ、マクロ偏析が生じにくく、また微細組織になり、耐摩耗性が更に向上する。一方、外層を厚く形成する場合でも、質量の大きいWを10%以下に抑えたので、偏析が比較的生じ易い遠心力鋳造により外層を鋳造形成しても、マクロ偏析は生じにくく、組織の均一性に優れる。

【0008】特定組成の高炭素鋳鋼により、外層と内層との間に中間層を形成したので、外層の高合金成分が内層に混入して、その強靭性を劣化するのを防止することができる。また、中間層と内層との境界部は低合金となるので、炭化物層の形成が抑制され、境界強度の向上を図ることができる。また、外層のオーステナイト熱処理の際、内層の温度上昇を防止することができ、内層材質の強靭性劣化を防止しつつ、外層のみを1100℃以上の高温に加熱することができる。また、本発明の中間層組成では、外層の焼入れ時にマルテンサイト変態することがないので、外層に焼入れ熱処理を施しても、過大な残留応力が生じることがなく、耐事故性に優れる。

【0009】また、内層を片状黒鉛鋳鉄、球状黒鉛鋳鉄 又は黒鉛鋼すなわち、黒鉛の晶出した鉄鋼材で形成した 30 ので、ヤング率を 19000kg/mm² 程度以下とすることが でき、過負荷時にロールの偏平化によって負荷を吸収 し、耐事故性を向上することができる。また、低温歪取 り焼鈍によって、外層熱処理時の残留応力を軽減するこ とができる。また、熱伝導性ひいては放熱性に優れ、圧 延時のロールの熱変形を防止することができる。又、良 好な靭性を有するため、衝撃的な圧延トルクに対しても 耐えることができる。

[0010]

記内層は片状黒鉛鏡鉄、球状黒鉛鏡鉄又は黒鉛鋼により 【実施例】まず、本発明の複合ロールの外層に使用され 形成されている。また、外層成分には、前配外層合金成 40 る耐摩耗鏡鉄材の化学組成の限定理由について説明す 分のほかに、Al,Ti,Zr:各々0.01~0.50%の内 る。以下、成分の単位はすべて重量%である。

C:1.0 ~3.0 %

Cは主としてFeおよびCrと結合してMrC。型の高硬度複合炭化物を形成すると共に、Cr, Mo, V, Nb, Wと結合してMC型, Ms C型, M2 C型等の高硬度複合炭化物をも形成する。この高硬度複合炭化物形成のために、1.0%以上のC%が必要である。一方、3.0%を越えてCが含有されると炭化物量が増すと共に脆くなり、耐クラック性が劣化するため、3.0%以下とする。

Si:0.1 ~2.0 %

Siは本発明材が鋳造合金であるため、湯流れ性の確保 のために必要な元素であり、同時に又、使用原材料から 0.1%程度は不可避的に含有される。しかし、2.0%を 越えると初性の低下を招くため好ましくない。

Mn: 0.1 ~2.0 %

Mnは硬化能を増し、また、Sと結合してMnSを生成し、Sによる脆化を防ぐ元素であり、同時に使用原材料から 0.1%程度は不可避的に含有される。しかし、 2.0%を越えると物性の低下を招くため好ましくない。

NI:0.1 ~4.5 %

Niは基地中に固溶し、連続冷却変態線図(CCT図) および等温変態線図 (TTT図) におけるベーナイト変 態を長時間側に移動させるため、焼入れ性が向上し、焼 入れ時の冷却速度を遅くしても途中でペーナイト変態が 起こらず、多量の残留オーステナイトがマルテンサイト 変態するため、高硬度が得られる。本発明のような複合 ロールの外層材の場合、焼入れ時の外層と内層の熱膨張 差に起因する熱応力が大きく、また重量物である大形口 ールの場合、熱容量が大きく、冷却速度を大きくするこ とが困難であるものについては焼入れ時の冷却速度が遅 くても焼入れ組織が得られることは大変重要である。こ の際、 0.1%未満ではこのような効果が得られず、一 方、 4.5%を越えて含有されると、残留オーステナイト が増して、高硬度が得難くなる。なお、 0.1% N i 以上 では焼入れ温度から 400~650 ℃までの温度にかけての 冷却速度が 100℃/Hr以上あれば焼入れ組織が得られ **5.**

Cr:3.0 ~10.0%

CrはFe, Mo, V, Nb, Wと共にCと結合して、 高硬度複合炭化物を形成して高温に於ける耐摩耗性の向 上に寄与する。また、一部は基地中に固溶して焼入れ性 および耐摩耗性を改善する。 3.0%未満ではこれらの効 果が少なく、耐摩耗性改善が期待できない。一方、10.0 %を越えて含有されると靭性の劣化を来すため好ましく ない。

Mo:0.1 ~9.0 %

MoはFe, Cr, V, Nb, Wと共にCと容易に結合して、主としてMr Ca 型、Ma C型、Ma C型複合炭化物を形成し、常温および高温硬度を高めて耐摩耗性の 40向上に寄与する。MoはWに比較して少量添加でその効果を発揮する。このさい、0.1%未満では所期の耐摩耗性を得ることができず、一方、9.0%を越えると物性の低下を来し好ましくない。

W:1.5~10.0%

Wも同様にFe, Cr, Mo, V, Nbと共にCと容易に結合して複合炭化物を形成し、常温および高温硬度を高めて耐摩耗性の向上に寄与する。 1.5%未満では所期の耐摩耗性を得ることができず、一方、10.0%を越えると概性の所下を来し、耐レートクラック性を悪化させ

る。また、遠心力鋳造の際、マクロ偏析を生成し易くさせる。このため10.0%以下とする。

V, Nb:一種又は二種の総計で0.3~10.0% VはNbと同様にFe, Cr, Mo, Wと共にCと容易 に結合して、主としてMC型の複合炭化物を形成し、常 温および高温硬度を高めて耐摩耗性の向上に寄与する。 また、このMC型複合炭化物は厚さ方向に枝状に生成す るため、基地の塑性変形を抑止し、機械的性質、さらに は耐クラック性の向上にも寄与する。単独または二種を 10 複合して 3.0%以上添加しないとかかる効果は現れにく い。しかし、添加量が10.0%を越えると靭性の低下を招 来すると共に、遠心力鋳造の際、マクロ偏析を生成し易

Co: 0.5 ~10.0%

くなる。このため、10.0%以下とする。

Coは本発明を特徴づける重要な元素であり、基地を改 善する上で大きな効果がある。CoはCの拡散を抑制す る特殊な作用があり、炭化物の形成には無関係に基地に 固溶して強靭性を増すと共に、高温硬さと耐摩耗性を向 上する効果がある。また、Coは炭化物生成元素のオー ステナイト中への固溶量を増大させるため、基地の硬さ と焼戻し抵抗が増大する。これらの効果を期待するには 0.5%以上の含有が必要であるが、10.0%を超えて添加 してもその効果が飽和し、かつ、高価な元素であるの で、0.5 ~10.0%とする。なお、高合金の鋳鉄材料を違 心力鋳造によって鋳造し、複合ロールを製作する場合、 炭化物の分布に不均一性ができ易く、鋳造条件の適正化 が必要であるが、本発明のCoを含有する高合金材料の 場合、Сοは上述のように炭化物の形成には無関係に基 地に固溶するため、炭化物の不均一性を大きくすること なく上述の優れた効果を期待できる。

【0011】本発明外層の耐摩耗鋳鉄材は以上の合金成分のほか残部がFeおよび不純物で形成される。尚、P,Sは原料より不可避的に混入するが、材質を脆くするので少ない程望ましく、P:0.2 %以下、S:0.1 %以下に止めておくのがよい。本発明に係る外層の耐摩耗鋳鉄材には、前記合金成分のほかに、下記組成範囲のA1,Ti,Zrの内の一種又は二種以上、又は及びBを含有するものを含む。

A1, Ti, Zr:各々0.01~0.50%

7 A1, Ti, Zrは溶湯中で酸化物を生成して、溶湯中の酸素含有量を低下させ、製品の健全性を向上させると共に、生成した酸化物が結晶核として作用するために凝固組織の微細化に効果がある。0.01%未満ではこの効果は十分ではなく、一方、0.50%を越えて含有されると介在物となって残留し、好ましくない。尚、A1, Ti, Zrは、本発明では主として鋳造組織の微細化による耐摩耗性改善のために添加されるものであり、単に脱ガスを目的として添加されるものではない。

B: 0.01~0.50%

と靭性の低下を来し、耐ヒートクラック性を悪化させ 50 Bは溶湯中の酸素と結合して、脱酸効果を示す。その

他、生成した酸化物を核とする凝固組織の微細化効果、 ・および基地中に溶け込んだBによる焼入れ性の増大効果 を有する。圧延ロールのような大質量の鋳物の場合、冷 却温度を速くすることが困難な場合があるが、焼入れ性 の増大によって、焼入れ組織を得易くなる。0.01未満で はこのような効果が十分ではなく、一方0.50%を越える と材質が脆くなり好ましくない。

【0012】次に本発明複合ロールの内層材について説 明する。内層材としては、下記の理由により黒鉛が晶出 状黒鉛鋳鉄 (DCIと略記)、黒鉛鋼 (SGSと略記) を用いる。

黒鉛晶出材を用いる理由

① 圧延使用時には、過負荷状態の発生(例えば、2枚 板噛み) は避けられないが、外層材のヤング率は 21000 ~ 23000kg/m² と高いため、外層材中に大きな応力が 発生する。中間層のヤング率は 20000~ 23000kgf /mm ² であるが、層厚が25~30mm程度と比較的薄いため、複 合化する内層材のヤング率が低ければ、過負荷時には、 ロールの偏平化によって内層材の方で負荷を吸収し得 20 多となり、強度が低下する。

【0013】このため、内層材のヤング率を低くする方 が、使用時の安全性を増す。20000kg/mm² 未満のヤン グ率とするためには、内層材は、黒鉛の晶出したもので なければならない。

② 外層材は特殊合金が含まれており、また、焼戻し2 次硬化現象によって硬化するため、一般に残留応力の除 去がされ難い材料である。このため、複合ロールに対 し、外層材の硬化熱処理すると、外層材の変態による膨 張により、外層には圧縮応力、内層には引張応力が生じ 30 P,Sは不純元素であるため少ない程よく、 0.2%以下 る。内層材の引張応力が過大になると、内層の破損や中 間層・内層の境界部での破断が生じ、ロールの破壊に至

【0014】破壊を防止するには、複合ロールに歪取り 焼鈍を施し、内層材の残留応力を解放すればよい。しか し、600 ℃を越える高温歪取り焼鈍では外層の硬度低下 を招来する。従って、低温歪取り焼鈍により、内層材の 残留応力を解放する必要がある。このためには、内層材 は黒鉛が晶出したものがよい。尚、本発明の場合、低温 することができる。

③ ロールは使用時に圧延材(1000℃前後)から熱を受 ける。ロールの熱変形を防止、所定形状を維持するには 放熟が良好でなければならない。従って、内層は熱の伝 導が良くなければならない。そのため内層材として黒鉛 晶出材が好適である。

④ ロールのネック部には、ペンディングカとモーター トルクに耐える強度が必要である。衝撃的な荷重もある ことから、強度とともに物性も重要である。黒鉛を晶出 させることにより、靭性を向上させることができる。

【0015】次に、複合ロールの内層を形成する各種内 層材の特徴および好ましい組成(単位wt%)について説 明する。内層は叙上の通り、黒鉛を含むことが必要であ るが、外層と内層との溶着時に外層の高合金成分の混入 が必然的に生じる。この点を考慮して組成を決定する必 要がある。

8

FCの場合

F C は鋳造性が良好で、ヤング率が10000 ~15000 kg/ mm² と低く、又黒鉛の形態が片状であるため、残留応力 した材料、具体的には片状黒鉛鋳鉄 (FCと略記)、球 10 の除去が容易で、熱伝導率も高い。また、加工性も良好 で、中空ロールの内層材として用いた場合、内面加工が 容易である。もっとも、強度は30kg/mm²程度が限度で あるため、圧延荷重の大きな条件下で使用する複合ロー ルには適さない。尚、下記組成のFCの固相線は1130~ 1170℃である。

> 【0016】以下に好ましい組成例と限定理由を示す。 C:25~4.0 %

Cは黒鉛を晶出させるために必要であり、 2.5%未満で は黒鉛量が少ない。一方、4.0 %を越えると黒鉛量が過

Si:0.8~2.5 %

Siは黒鉛晶出を助長する作用をなし、 0.8%未満では 黒鉛化が不充分である。一方、 2.5%を越えると基地が 脱くなる。

[0017] Mn:0.2~1.5%

Mnは基地の強化と共にSの客を防ぐ作用がある。 0.2 %未満ではその作用がほとんど期待できない。一方、 1.5%を越えると材質が脆くなる。

P. S:各々0.2 %以下

に止めるのがよい。

【0018】低濃度のものは高コストになるため、経済 性を考慮すると、0.01%程度以上の含有は止むを得ない であろう。

Ni:3.0 %以下

Niは黒鉛化と基地の強化のために有効であるが、3.0 %を越えると未変態組織が残留し易くなり、強度が劣化

【0019】Cr, Mo:各々2.0%以下

歪取り焼鈍は外層の焼戻し熱処理によりその目的を達成 40 Cr, Moは基地の強化作用があるが、多過ぎると黒鉛 化を阻害させる。基地強化のためには、 0.1%以上含有 させることが望ましい。一方、黒鉛化の阻害を防止する には、外層からの混入量を含めて 2.0%以下に止める必 要がある。

> 【0020】W, V, Nb:総計で4.0 %以下 これらの元素は外層から必然的に混入する。W, V, N bは内層材質改善作用はない。従って、これらの元素は 不純物として解釈され、内層材の機械的性質を劣化させ ない範囲として、4%まで許容される。尚、外層にA 50 1, Ti, Zr, Bを含む場合、これらの元素も中間層

20

を介して内層に必然的に混入するが微量であるため、材 質上ほとんど問題にはならない。また、Coも必然的に 混入するが、Coは内層材質を劣化させないので、特に 制限されない。

【0021】FCは以上の成分の他、残部実質的にFe で形成される。尚、中間層に溶着する前すなわち鋳込前 の溶湯組成範囲を下記に例示する。溶湯組成は溶着後に 上記内層組成となるように、中間層からの成分混入量が 考慮されて決定される。

C: 2.5 ~4.0 %.

Si:0.8~2.5%,

Mn: 0.2 ~1.5 %,

P:0.2%以下、

S : 0.2 %以下、 Сг:2.0%以下、

N1:3.0 %以下。 Mo: 2.0 %以下、

残部実質的にFe

(2) DCIの場合

DCIは鋳造性が良好で、ヤング率が15000 ~19000 kg **/ロロタ であり、黒鉛量も多い。更に、その黒鉛の形態** は、FCと異なり、球状であるため、強度および靭性も 優れている。また、加工性も良好である。このため内層 材として好適である。尚、特公昭59-52930 号公報、特 公昭59-52931 号公報に開示されているように、フェラ イト・オーステナイト共存温度域(780 ~900 ℃)に加 熱保持後、200 ~800 ℃/Hrで急冷し、オーステナイ トを微細パーライト化する熱処理により、基地組織がフ ェライト・パーライトの2相混合組織となる。この組織 はクラックの進展、残留応力の除去効果に特に優れる。 前記2相混合組織化の熱処理は、複合ロールの外層の硬 化熱処理の前熱処理として行えばよい。尚、下記組成の DCIの固相線は1130~1170℃である。

【0022】以下に好ましい組成例と限定理由を示す。

C: 2.5~4.0 %.

Si:1.3~3.5%.

 $Mn: 0.2 \sim 1.5 \%$.

P:0.2%以下、

S : 0.2 %以下、

Ni:3.0%以下、

Cr:2.0%以下、

Mo:2.0 %以下、

W, V, Nb:総計で4%以下、 Mg:0.02~0.1 %.

残部中間層から混入したCoおよび実質的にFe

Si,Mg以外の成分限定理由はFCと同様のため、こ の二成分について説明する。

[0023] Siは黒鉛化促進元素である。DCIは黒 40 鉛の球状化のため、Mgが含有される。Mgは強力な黒 鉛化阻害元素であるため、Mgの存在下で黒鉛化を図る には、S i 1.3%以上必要である。一方、 3.5%を越え ると、基地を脆くすると共に、多量のフェライトを折出 させ、強度も低下する。Mgは黒鉛を球状化させる作用 を有する。その作用を得るためには0.02%以上必要であ る。一方、 0.1%を越えると、黒鉛化を阻害し、又鋳造 欠陥を発生させ易くする。

【0024】尚、外層に溶着する前のDCIの好適な溶 湯組成を下記に例示する。

10

C: 2.5 ~4.0 %

Si:1.3~3.5%.

Mn: 0.2 ~1.5 %. S : 0.2 %以下、

P :0.2 %以下、

N1:3.0%以下、

Cr:2.0 %以下、

Mo:2.0 %以下、

Mg: 0.02~0.1 %.

残部実質的にFe

(3) SGSの場合

SGSはヤング率が17000 ~20000 kg/m² と高く、ま た黒鉛量も少ないため、残留応力は比較的除去され難 い。また、鋳造性もあまり良好ではなく、大きな押湯等 10 を必要とする。しかし、強度は40kg/mm²以上と優れて おり、また靱性にも優れているので、大きなペンダー荷 重等が働く苛酷な使用条件で用いられるロールには最適 である。また、固相線(下記組成のSGSの場合)が11 70~1250℃とFC, DCIに比べて高いので、外層のオ ーステナイト化熱処理の際に劣化しにくい利点がある。

【0025】以下に好ましい組成例と限定理由を示す。

C: 1.0 ~2.3 %,

 $Si:0.5\sim3.0\%$

Mn: 0.2 ~1.5 %.

P :0.2 %以下、 N1:3.0 %以下、

S : 0.2 %以下、 Cr:2.0%以下、

Mo:2.0 %以下、

W. V. Nb:合計で4.0 %以下、

残部中間層から混入したCoおよび実質的にFe

C, Si以外の成分限定理由はFCと同様のため、この 二成分について説明する。

【0026】Cは黒鉛を晶出させるために必要である。 1.0%未満では黒鉛の晶出は生じにくい。一方、 2.3% を越えると黒鉛形状が崩れて、強度が低下する。Siは 黒鉛化のために必要である。 0.5%未満では黒鉛晶出は 困難となり、一方、 3.0%を越えると基地が脆くなる。 30 尚、外層に溶着する前のSGSの好適な溶過組成を下記

に例示する. [0027]

C: 1.0 ~2.3 %,

Si:0.5~3.0%.

 $Mn: 0.2 \sim 1.5 \%$

P :0.2 %以下、

S : 0.2 %以下、

Ni:3.0%以下、

Cr:2.0%以下、

Mo:2.0 %以下、

残部実質的にFe

次に、中間層について説明する。中間層は、外層の合金 成分が内層に混入するのを軽減することを目的の一つと して形成されるが、それ自体も30kg/mm²程度以上の強 度が必要である。強度が不足すると、外層と中間層との 境界部が破断し、外層が剥離する。従って、中間層には 外層から多量の合金成分が混入しても高強度な材質とす る必要がある。かかる理由から、中間層材としては下記 組成の高炭素鋳鋼(ADと略記)が好適である。以下、 本発明に係る中間層材の組成と限定理由を示す。

C:1.0 ~2.5 %

Cは強度向上に寄与するが、 1.0%未満では凝固点が高 くなり、溶着が不充分になり易い。一方、 2.5%を越え 50 ると炭化物が過多となり、材質が脆くなる。

--664---

Si:0.2~3.0%

Siは脱ガスの促進作用、湯流れ性の向上作用がある。 0.2%未満ではかかる作用が期待できず、一方、 3.0% を越えると材質が脆化する。尚、高Si領域ではNi含 有量との関係で黒鉛の晶出が見られる場合があるが、材 質上問題はない。

Mn:0.2 ~1.5 %

Mnは内層材のダクタイル鋳鉄と同様の理由によって上 配範囲に限定される。

Ni:4.0%以下

Niは材質を強化する作用がある。しかし、 4.0%を越 えると作用が飽和すると共に未変態組織が生じ易くな り、強度が劣化する。

Cr, Mo: 各々 4.0%以下

Cr,Moは材質を強化する作用がある。しかし、 4.0 %を越えると機械的性質がかえって劣化するようにな

W, V, Nb:総計で12%以下

これらの元素は中間層の材質を向上する作用はほとんど ないが、外層からの混入は避けられない。中間層材質の 20 機械的性質を劣化させない範囲として、12%まで許容さ れる。尚、外層にAl, Ti, Zr, Bを含む場合、こ れらの元素も中間層に必然的に入ってくる。この場合、 同様の理由により、これらの元素を含めて統計で12%以 下とする。また、Coも外層から必然的に混入してくる が、中間層材質を劣化させないので、特に制限されな

【0028】中間層材の成分は、以上の他、残部実質的 にFe で形成される。尚、P, Sは不純物であり、材質 を脆くするため少ない程よく、本発明においては、内層 30 材と同様、両者とも 0.2%以下に止めるのがよい。尚、 外層に溶着する前の溶湯組成範囲を下記に例示する。溶 湯組成は溶着後に上記中間層組成となるように、外層か らの成分混入量が考慮されて決定される。

[0029]

C : 1.0 ~2.5 % , Si:0.2~3.0%,

Mn: 0.2 ~1.5 % , P : 0.2 %以下、

S : 0.2 %以下、 Ni:4.0%以下、

Cr:4.0%以下、 Mo:4.0%以下、

残部実質的にFe

本発明では、外層と内層(軸芯部)との間に 1.0~2.5 % Cの中間層を設けたので、内層に有害な合金元素が外 層から内層へ、溶着の際に直接混入するのを大幅に抑制 することができるほか、下記の効果を奏する。

【0030】外層の焼入れ熱処理の際、オーステナイト 化熱処理のため、外層を1100℃以上に加熱するのがよい が、外層を1100℃以上に加熱しても内層への伝熱は中間 層を介して行われるため、熱量の調整により内層の温度 を1100℃以下に容易に抑えることができ、内層の溶損を

て、Cr, Mo, W, Vの濃度が高くなるが、それでも これらの元素は外層よりも低く抑えられるので、外層と 内層を直接溶着させた時よりも、外層と中間層を溶着さ せた後、中間層と内層を溶着させる方が、内層の溶着部 分の合金濃度は低くできる。このため、中間層を設けた 場合は内層との境界に炭化物層が形成されにくく、境界 強度が改善できる。

12

【0031】また、本発明に係る中間層はロールの焼入 れ熱処理中にその大半がパーライト変態し、更に残部は 10 ペイナイト変態する。マルテンサイト変態は起こらない か、起こしてもごくわずかの量である。このため、マル テンサイト変態に伴う大きな膨張挙動がなく、ロールへ の残留応力を大きくすることはない。 尚マルテンサイト 変態を多量に起こすと、外層のマルテンサイト変態と合 わさって、外層・中間層に大きな圧縮の残留応力(軸方 **向)、内層にはそれに見合う大きな引張の残留応力(軸** 方向)が働らき、内層が引張・破壊する。

【0032】本発明の複合ロールは、通常、中実状ロー ルの場合、外層および中間層が遠心力鋳造された後、そ の内部に内層(軸芯部)が静置鋳造される。また、スリ ープロールの場合、外層、中間層に引き続いて内層も遠 心力鋳造される。図3は横型遠心力鋳造装置を示してお り、遠心力鋳造用金型4 は回転ローラ5,5 によって回転 自在に支持されており、溶湯は堪鉢6 から注湯樋7 を介 して金型4 内に鋳込まれる。8は湯止め用砂型である。 中実状の複合ロールを鋳造するには、まず、外層材溶湯 を回転する金型4 に鋳込み、それが凝固した後に、外層 1の内周面に中間層材溶湯を鋳込んで、中間層3 を遠心 力鋳造する。その後、外層1 と中間層3 とを内有した金 型4 を起立させ、その両端に軸芯部形成用の上型、下型 を連設して静置鋳型を構成し、その内部に内層材溶場を 鋳込めばよい。該横型遠心力鋳造装置においては、金型 内に鋳込まれた溶湯の各部は金型の回転毎に上下動する ため、Gの変動があり、またローラや金型の偏心や傷に より振動が発生し易く、鋳込まれた外層材溶湯中の成分 は移動し易い。このため、厚肉の外層を鋳造する場合、 成分の移動により偏析が生じ易くなるので、通常、凝固 開始温度+70℃程度以下として比較的低温で鋳込むのが よい。もっとも、本発明に係る外層材は高耐摩耗材であ 40 るために、摩耗しにくく、外層は比較的薄くてもよく、 鋳込厚さで80mm(望ましくは55~70mm)程度までは金型 により急冷されるため、前記温度より高温で鋳込んでも 偏析のおそれはほとんどない。尚、製品外層厚さとして は中間層による溶解代20mm、加工代10mmを考慮すると50

【0033】図4は立型遠心力鋳造装置を示しており、 遠心力鋳造用金型11の上下端には上型12、下型13が組み 立てられており、該鋳型は回転する基盤14に同心状に機 械的に固定されている。このため、堰鉢15を介して鋳型 防止することができる。中間層は外層との溶着によっ 50 内に鋳込まれ、遠心力の作用で金型11内面に上昇し付着

mm (望ましくは25~40mm) 程度となる。

した外層材溶湯16は、Gの変動や振動を受けにくい。従って、立型遠心力鋳造すれば、厚肉の外層を鋳造する場合でも偏析が生じにくいため、より高温で鋳込むことができ、作業性の向上や異物の混入による鋳造欠陥の防止に効果的である。尚、遠心力鋳造用金型11のみ基盤14に固定し、外層および中間層を鋳造後、上型、下型を組み立て、軸芯部を静置鋳造してもよいことは勿論である。

【0034】本発明の外層耐摩耗欝飲材は、複合ロールの外層として鋳造後、ロール全体を焼入れ温度(オーステナイト化温度)から 400~ 650℃までの温度域を 100 10 ℃/Hr以上の冷却速度で焼入れることにより、良好な焼入れ組織を得ることができる。焼戻しは 500~ 600℃の温度で1回ないし数回行なうとよい。本発明に係る外層材は、オーステナイト化熱処理の際に基地中に固溶したMo,W,V,Nb等が焼戻し熱処理によって微細炭化物として析出し、焼戻し2次硬化現象を生じるため、高温硬度に優れる。

【0035】外層の加熱方法としては、ロール全体を加熱炉に入れて加熱する方法、外層外周面の回りに誘導加熱コイルや多数のガスパーナを配置しておき、これらによって外層のみを急速加熱する方法がある。前者は昇温に時間がかかり、外層表面に厚い酸化膜ができ、外層の歩留りが低下する。更に、鋳鉄材質の内層の溶損を回避して加熱するには1100℃(望ましくは1000℃)以下の加熱に止めなければならず、このため炭化物を基地中に十分固溶させることが難しく、以後の熱処理によっても十分な硬度が得難いという問題がある。これに対して、外層のみの加熱方法によれば、中間層の形成と相まって、

外層を1100℃以上に、内層を1100℃未満に確実に止める ことができるので、内層の部分溶験や、結晶粒の粗大化 による強度低下を防止することができる。また、内層 (軸芯部)の中心に向かうほど低温となるため、オース テナイト化温度に加熱後、外層の熱を内部へ透がすこと ができ、焼入れの際、外層深部の冷却速度を大きくする ことができる。

14

【0036】本発明の複合ロールは熱間圧延、冷間圧延を問わず、圧延設備の圧延用ロールおよびその付帯設備のピンチロールあるいは圧延材の搬送用ローラー等の、耐摩耗性を要求されるロール、ローラーに適用される。 尚、圧延材としては、鉄鋼および非鉄金属のみならず非金属をも対象とする。次に本発明の具体的実施例を掲げる。

- (1) 内径 o 1040mmの遠心力鋳造用金型に表 1 の外層材溶 湯を遠心力鋳造し、外層が完全に凝固した後引き続い て、同表の中間層材溶湯を遠心力鋳造し、外層と中間層 とを溶着させた。鋳込量は肉厚で外層70mm、中間層25mm とした。尚、実施例は試料No.1~6であり、No.7の従 来例の外層材は耐摩耗性を改善した高クロム鋳鉄材であ る。表中の組成の単位は重量%、残部は実質的にFeで ある。
- (2) 中間層が完全に凝固するのを待って、金型の回転を 止め、外層および中間層を内有した金型を垂直に立て て、両端に上型および下型を連設して、その内部に同表 に併せて示した内層材(軸芯材)溶湯を鋳込んだ。

[0037]

【表1】

				15									,					•			16	70		-0
- 1	金			DC I			000	200		Ç	2	1		DCI				3			20			DCI
	20	1	,	0.082	1	1	ı	ı			1		'	0.057	1	,	120	130.5	1	'	23. 28.	7	,	0.083
ſ	2	1	'	1	1	ı	1	1	ļ		1		,	-	8.8	1	1	8	3	,	1	1	1	ı
e	77	1		ı	1	1	ļ	,	1	1	,	1	,	7	1	,	1	1	21.5	,	,	1	,	1
ě	=	ı		1	١	1	ı	1	1		9	3		,	i	1		8	B	1	,	1	,	1
=	H.			1		ı		1		1	8	1	1	7	ı	,	1	1-	-+-	1	1	1	,	1
5	3 5	3:1		1	3.36 30	1	1	7.20	!	,	1	-	T	,	4.28	ı	1	7.17		1		,	ï	1
ź	€ 1			1 8		ı	ı	2.48	1	1	,	1		-+	<u>ت</u>	i	1	Ti	1-	Ţ	1	1	1	7
>	. 6	30.1		1	4.22	1	ı	3.20	1	1	5.50	,		_	2.00	1	,	8	,	1,	200	150		,
3	8	1	Ī	8	8	i	,	5.25	1	,	88.	,		1	કું	ı	1	3.73	,]	1,	1	Ť	
£	2.33	3 E	0 13	3 2	3.0	0.01	9. 0	7.99	90.0	0.18	3.88	20	2	_	-+	0.0	<u>ම</u>	-	+-	5	ر ا	3 8	3 8	3.
ප්	83	8	2	\$ 2	0.06	0.01	90.0	4.2	0.13	0.13	5.77	9.0	2 2	2 2	3,12	0.01	9.0	6.27	_	+	\top	+	\neg	21.0
:	0.75	1.20	8	9 15	3	2.88	1.25	3.02	0.80	0.97	8	0.08	8	8	8	0.03	1.13	1.13	0.83	88		-	3 6	5
S	0.011	0.010	0.00	0 0	3000	S3	0.020	0.010	0.018	0.022	0.019	0.013	0 033	8		0.012	0.022	0.017	0.0	0.033				
а.	0.02	0.021	0.059	760 0	1	0.023	0.88 88	0.026	0.026	0.055	0.023	0.019	8	8	3 6	0.018	0.057	0.0 830	0.021	0.055	0.021	0.019	8	3
£	0.68	0.33	83	9	Ē	2	0.30	1.83	1.83	0.56	0.78	0.61	14.0	<u>×</u>	3 8	3	83	0.91	0.56	0.48	88.0	0.70	8	4
ïS	0.68	0.78	2.83	0.50		_	R	1.37	8.3	1.42	0.74	0.56	2.02	9		-	2.87	1.10	0.51	1.89	0.71	0.30	2.83	
ပ	2.03	1.67	3.57	2.57	_		83	1.38	2.00	3.45	1.42	1.40	3.49	8		-+	3.57	2.3	1.52	3.24	2.77	.58	3.56	1
京	外層	書	医	外層				_	臺	Щ	座	中国	连		9					座		中國國		-1
K K	4	=		*	- E		K.		"	₹C	太	→	K	*	±		K	太		松	本		K	-
	L			L					- -			~		ı		د			9			_		1

【0038】(3) 鋳造された複合ロールを粗加工した 後、実施例のロールに対しては、600℃に均一に予熱 後、図5に示すように、ロールを水平に対向配置されか つロール軸方向に沿って250mmピッチで平行に列設され たガスパーナ21間に回転自在に支持し、ロールを回転さ せながら、外層の表面を加熱した。外層表面温度が1170 50 ト化した。

で、内層の中心部の温度が 830でとなったところで加熱を止めた。加熱に要した時間は 300分であった。熱伝導の温度データより、本例の場合、内層外周面付近の温度は 960でと推定された。一方、従来のロールに対しては、ロール全体を1050℃で 5 時間保持してオーステナイト化した。

17

(4) 実施例および従来例のロールに対して、加熱停止後、速やかに噴霧水冷を行い、ロール表面温度を 500℃に急冷した後、常温まで放冷した。その後、550℃で20時間保持する焼戻し熱処理を2回繰り返した。熱処理後の外層表面硬度は、下記表2の通りであった。同表より、実施例の外層は、従来例のそれに比べて、硬度の向*

*上が著しく、耐摩耗性に優れていることが分かる。尚、 外層表面の酸化状態を観察したところ、酸化層の厚さ は、実施例では 0.5mm程度であったのに対して、従来例 では 3.0mm程度と著しかった。

18

[0039]

【表2】

試料 Na.	1	2	3	4	5	6	7
硬度(Hs)	83	8 3	8 4	84	8.5	86	76

【0040】(5) 胴表面を仕上加工した後、超音波探傷 試験によって溶着状況を確認したところ、いずれのロー ルについても溶着は良好であった。次に、ロール胴部を 切断し、外層断面を目視観察したところ、いずれのロー ルも成分の偏析は認められなかった。又、中間層の層厚 の中央部および内層(軸芯部)中心部における成分を分 析した結果を表3に示す。同表より、実施例および従来 例とも内層における外層高合金成分の混入量は非常に少 ないことが分かる。

[0041]

【表3】

		19					(11)					4	特 20	開平 5
		19	г	r _		F								
金林		DC I		SGS		FC		DC 1		DCI		DC I		DCI
26	ı	ലെ വ	1	1	,	ı	,	0.056	-	0.068	ı	0.065	1	0.060
B	1	ı	ı	1	'	1	1	1	0.11	0.01	9.0 8	1	ı	ı
77	ı	ı	1	1	1	1	ı	,	1	ı	0.06	ŀ	1	ı
F	ı	1	١	1	1	ı	0.0	1	١	ı	9.8 8	1	ı	ı
I.A.	ı	1	1	ı	ı	ı	0.10	0.0	1	1	0.05	1	ı	ı
3	0.53	න.0	1.43	0.13	2.98	0.30	0.88	0.03	1.86	0.27	2.09	0.20	1	1
£	1	1	0.43	0.0	1.02	0.07	ı	,	0.57	0.08	1	1	1	ı
>	2.59	0.16	1.71	0.18	1.31	0.12	2.23	0.20	2.00	0.20	2.77	0.23	0.10	0.01
*	2.20	0.17	1.61	0.16	2.13	0.22	3.48	0.33	1.88	0.15	1.50	0.14	ı	1
ē	0.93	0.19	1.60	0.14	89. 88	0.48	1.69	0.22	2.40	0.19	0.79	0.11	0.77	90.0
ප්	3.52	0.37	2.49	0.27	1.78	12.0	2.38	12.0	1.54	0.12	2.61	0.38	7.21	0.53
Ni	1.03	1.90	2.45	1.36	1.70	1.03	0.80	0.97	0.33	1.09	0.88	2.30	1.88	0.83
S	0.010	0.033	0.017	0.018	0.013	0.021	0.015	0.023	0.011	0.02	0.013	0.023	0.009	0.019
Ъ	0.021	0.050	0.027	0.033	0.025	0.053	0.020	0.048	0.020	0.055	0.024	0.063	0.020	090'0
Æ	0.48	0.29	0.62	0.51	1.14	0.62	0.69	0.42	0.73	0.33	0.70	0.50	0.76	0.42
Si	0.72	2.26	1.74	1.35	0.75	1.36	0.ස	1.92	0.89	2.75	0.76	1.82	0.70	2.73
ပ	1.83	3,48	2.14	1.58	1.38	3.37	1.41	3.38	1.63	3.45	1.84	3.17	2.03	3.48
A T	中国研	内面	山田	内層	中間層	内層	中間層	内庫	中國國	内層	中國國	氏	中国	医

【0042】(6) また、各試料の内層から引張試験片を採取し、引張試験を行った結果を表4に示す。 同表より、内層がDCIの実施例のNo.1および4~6は従来例のNo.7に比して、高強度であり、従来例は実施例に比

して約20%の劣化が認められる。 【0043】 【表4】

21							22
战料》	a 1	2	3	4	5	6	7
引張強: (kg/m²)	48.5	58.8	23.1	49.2	50.3	49.7	38.1

[0044]

【発明の効果】以上説明した通り、本発明の複合ロールはその外層をCoの所定量を含み、Cr,Mo.W,V,Nbの所定量を含有した特殊鋳鉄材で形成したので、これらの高硬度複合炭化物の存在により、耐摩耗性 10 を飛躍的に向上させることができ、また鋳造に際しマクロ偏析も生じにくい。また、特定組成の高炭素鋳鋼により中間層を形成したので、外層から内層への高合金成分の混入を著しく軽減することができ、境界強度の向上を図ることができ、マルテンサイト変態しないため残留応力を増加させることがなく、更に外層のオーステナイト化熱処理時の内層の溶損や強度低下を防止することができる。また、内層を片状黒鉛鋳鉄、球状黒鉛鋳鉄又は黒鉛鋼で形成したので、強度および制性が良好で、ヤング率を外層のそれよりかなり低くすることができ、過負荷時にはロールの偏平化によって外層に過大な応力を生じ

るのを防止することができ、安全性や耐事故性に優れる。更に、放熱性にも優れるため、熱変形も生じにくい。

【図面の簡単な説明】

10 【図1】本発明に係る中実状複合ロールの断面図であ

【図2】本発明に係るスリーブ状複合ロールの断面図である。

- 【図3】横型遠心力鋳造装置の主要部断面図である。
- 【図4】 立型遠心力鋳造装置の主要部断面図である。
- 【図5】複合ロール外層加熱状態を示す断面図である。 【符号の説明】
- 1 外層
- 2 内層
- 20 3 中間層

[図2]
(図3)
(図3)

【図5】

フロントページの続き

(72)発明者 木村 広之 兵庫県尼崎市西向島町64番地 株式会社ク ボタ尼崎工場内 (72)発明者 志方 敬 兵庫県尼崎市西向島町64番地 株式会社ク ポタ尼崎工場内

(OTARU) >::1A18 3DA9 21HT