An end-to-end CNN in BCI with EEG for target/non-target classification task

Convolutional vs conventional approaches

My approach vs Conventional BCI approaches

Data collection and experimental setup

- 1. Target vs non-target detection for all subjects
- 2. How all subjects Faces vs Flips perform in classification
- 3. Five subjects data
- 4. Labels were 83% non-target vs 33% target
- 5. Labels were very unbalanced
- 6. Walk through github and for data shape and type
- 7. Data were RAW, no filtering only epochs/ trials
- 8. Input data features is normalized and labels are one-hot encoded.

End-to-end CNN

- Local feature extraction: convolutional filters
- Global feature extraction: fully connected layer or MLP
- Classifier: Softmax
- 4. Loss function: cross entropy
- 5. Learning approach: backprop

Fig. 2 The common structure of convolutional neural network.

Results on all subject Faces

- 1. Epoch: 100/100 Train loss: 0.003697 Valid loss: 0.468953
- 2. Epoch: 100/100 Train acc: 1.000000 Valid acc: 0.877434
- 3. Epoch: 100/100 Test loss: 0.698612 Test acc: 0.880451
- 4. Overfitting is happening

Results on all subjects Flipps

- 1. Epoch: 100/100 Train loss: 0.024262 Valid loss: 0.488262
- 2. Epoch: 100/100 Train acc: 0.989130 Valid acc: 0.861963
- 3. Epoch: 100/100 Test loss: 0.921476 Test acc: 0.869922
- 4. Overfitting is also happening

Confusion matrix

		True condition				
	Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive $\overline{\Sigma}$ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma}{\Gamma}$ False positive $\frac{\Sigma}{\Gamma}$ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma}{\Gamma}$ False negative $\frac{\Sigma}{\Gamma}$ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
Click thumbnail for interactive chart: pop. C+ C- prev. ACC Pc+ T+ F+ PPV FDR		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio	F ₁ score =
Pc- F-		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	$(DOR) = \frac{LR+}{LR-}$	1 + 1 Recall + Precision

Final point

Convolutional vs conventional:
CNNs are computational heavy
They need a lot of data.
End-to-end possible
Overfitting problem
Much easier than conventional

"Try to make things simple enough but not simpler than that"

- Probably from Einstein
Provable by Heisenberg uncertainty principle