Разработка системы ссылочного ранжирования

Выполнил:

Ощепков Дмитрий Олегович

Научный руководитель доцент кафедры ПМИ: Татаринова Александра Геннадьевна

Актуальность

- Обусловлена широким применением алгоритмов ссылочного ранжирования для решения большого спектра различных задач.
- Ранжирование результатов поиска [1]
- В социальных сетях для определения влиятельных пользователей или контента [2]
- В анализе сетей для выявления ключевых узлов [3].

Цель

Заключается в реализации известных алгоритмов ссылочного ранжирования и исследование данных алгоритмов по производительности на реальных данных, а также формирование рекомендаций по их выбору.

Задачи

- 1. Выполнить обзор существующих алгоритмов ссылочного ранжирования, описать принципы их работы на примерах. Описание и анализ методов ранжирования.
- **2. Выбрать и проанализировать данные** для проведения экспериментального исследования.
- 3. Реализовать алгоритмы ссылочного ранжирования.
- **4. Провести исследование** реализованных алгоритмов по производительности, проанализировать полученные результаты и сформулировать выводы.

PageRank

PageRank — это алгоритм, разработанный Google для ранжирования веб-страниц в результатах поиска. Он основан на идее, что чем больше авторитетных страниц ссылаются на вашу страницу, тем она важнее и ценнее для пользователей.

•
$$pagerank := aP^{T} * pagerank + b(p_{u} * pagerank) + c\begin{bmatrix} \frac{1}{n} \\ \frac{1}{n} \end{bmatrix}$$
,

где a + b + c = 1, P — матрица переходов, pagerank — оценки ранжирования

PageRank

Интуитивно **узел 3 является наиболее авторитетным**, так как имеет наибольшее количество ссылок на себя

PageRank

• Одна итерация алгоритма на предыдущем графе

$$\bullet \begin{bmatrix}
0.14375 \\
0.213875 \\
0.213875 \\
0.426375
\end{bmatrix} = 0.85 \begin{bmatrix}
0 & 0.5 & 0 & 0 \\
0.33 & 0 & 0 & 0.5 \\
0.33 & 0 & 0 & 0.5 \\
0.33 & 0.5 & 1 & 0
\end{bmatrix} \begin{bmatrix}
0.25 \\
0.25 \\
0.25 \\
0.25
\end{bmatrix} + 0.15 \begin{bmatrix}
0.25 \\
0.25 \\
0.25 \\
0.25
\end{bmatrix}$$

- Красным вероятности перехода их входящих вершин в узел 3
- Синим вектор pagerank на предыдущем шаге
- Зеленым в контексте pagerank вектор обозначающий случайный переход к узлу 3

HITS

- HITS (Hyperlink-Induced Topic Search), как и PageRank, это алгоритм анализа ссылок для ранжирования веб-страниц. Однако, в отличие от PageRank, HITS фокусируется на двух типах страниц: авторитетах (authorities) и хабах (hubs).
- Итеративное правило обновление (аналогично pagerank):

$$a^+ = M^T h$$
$$h^+ = Ma,$$

где M — матрица перехода, h — вектор хабности, a — вектор авторитетности.

HITS

- Существует еще один способ найти рейтинг HITS.
- В статье [4] доказывается следующее утверждение:
- a это **главный собственный вектор** матрицы M^TM , а h главный собственный вектор матрицы MM^T [4, стр. 11].

• Учитывая, что при сингулярном разложении матрицы переходов $M = U\Sigma V$ столбцы матрицы V — **это собственные вектора** матрицы M^TM , мы можем найти a, не умножая матрицы большой размерности

- Этот набор данных представляет собой граф веб-страниц, где узлы соответствуют веб-страницам, а ориентированные ребра гиперссылкам между ними.
- Данные были опубликованы Google в 2002 году в рамках конкурса Google Programming Contest.
- Количество узлов: 875 713
- Количество ребер: 5 105 039

- Результаты работы Pagerank
- Эффективность С++ реализации
- Удалось получить скорость лучше, чем у networkx

- Результаты работы HITS
- Эффективность сингулярного разложения
- Не удалось получить скорость лучше, чем у networkx (скорее всего связано с точностью сингулярного разложения)

- Сравнение производительности
- PageRank работает быстрее, чем HITS

- Набор данных описывает рейтинги и теги, присвоенные пользователями сервиса рекомендаций фильмов MovieLens.
- Он содержит 20 000 263 рейтинга и 465 564 тега, относящихся к 27 278 фильмам.
- Эти данные были созданы 138 493 пользователями в период с 9 января 1995 года по 31 марта 2015 года.
- Сам набор данных был сгенерирован 17 октября 2016 года.

- На основе этого датасета был построен граф подобный тому, что на рисунке
- Если пользователь поставил оценку фильму, то в графе будет ребро между пользователем и фильмом равным оценке фильма

- Результаты работы Pagerank
- Эффективность С++ реализации
- Удалось получить скорость лучше, чем у networkx

- Результаты работы HITS
- Эффективность сингулярного разложения
- Удалось получить скорость лучше, чем у networkx

- Сравнение производительности алгоритмов
- HITS работает быстрее, чем Pagerank

• Метрики качества.

 Мы считаем фильм «хорошим», если пользователь оценил фильм выше, чем данная им средняя оценка всем фильмам.

Метрика	HITS	PageRank	
Accuracy	0.5681	0.5340	
Precision	0.5492	0.5250	
Recall	0.8666	0.9333	
F1 Score	0.6724 0.6720		
Pairorder	0.6712	0.6701	

Выводы

- Предпочитайте способ с сингулярным разложением методу простых итераций в алгоритме HITS, если только нет предпосылок, что алгоритм сойдется за малое количество итераций.
- Используйте библиотеки, которые работают с графом в нужном формате или реализуйте алгоритмы и хранение данных вручную так, чтобы избежать конвертацию данных. Это значительно ускорит процесс ранжирования.
- На датасете MovieLens **PageRank продемонстрировал более высокий recall**, в то время **как HITS продемонстрировал более высокий precision**. Выбирайте тот или иной алгоритм в зависимости от ваших требований по этим метрикам.

Спасибо за внимание

Литература

- 1. Schütze, Hinrich, Christopher D. Manning, and Prabhakar Raghavan. Introduction to information retrieval. Vol. 39. Cambridge: Cambridge University Press, 2008.
- 2. Brin, Sergey, and Lawrence Page. "The anatomy of a large-scale hypertextual web search engine." *Computer networks and ISDN systems* 30.1-7 (1998): 107-117.
- 3. Shahriari, Moshen, and Mahdi Jalili. "Ranking nodes in signed social networks." Social network analysis and mining 4 (2014): 1-12.

Литература

4. Kleinberg, Jon M. "Authoritative sources in a hyperlinked environment." *Journal of the ACM (JACM)* 46.5 (1999): 604-632.

Метрики

• Формализуем человеческую оценку в функциональный вид

•
$$O(p) = \begin{cases} 0 & if \ p \ is \ bad \\ 1 & if \ p \ is \ good \end{cases}$$

• Где $p \in V$, а V — множество вершин графа страниц

Метрики

•
$$I(T,O,p,q) =$$

$$\begin{cases} 1 \ if \ T(p) \geq T(q) \ and \ O(p) < O(q) \\ 1 \ if \ T(p) \leq T(q) \ and \ O(p) > O(q) \ ,$$
где $0 \ otherwise$

- *T* функция, возвращающая ранг вершины согласно алгоритму, а *p* и *q* это вершины графа.
- Теперь можем сформулировать pairwise orderedness

•
$$pairord(T, O, P) = \frac{|P| - \sum_{(p,q) \in P} I(T, O, p, q)}{|P|}$$

• Если pairord равна 1, не существует случаев, когда Т неверно оценил пару. Наоборот, если pairord равна нулю, то Т неверно оценил все пары.

Метрики

•
$$\operatorname{prec}(T, O) = \frac{\left| \{ p \in \chi | T(p) > \delta \text{ and } O(p) = 1 \} \right|}{\left| \{ q \in \chi | T(q) > \delta \} \right|}$$

•
$$prec = \frac{TP_i}{TP_i + FP_i}$$

•
$$rec(T, O) = \frac{\left| \{ p \in \chi | T(p) > \delta \text{ and } O(p) = 1 \} \right|}{\left| \{ q \in \chi | O(p) = 1 \} \right|}$$

•
$$rec = \frac{TP_i}{TP_i + FN_i}$$

•
$$F_{\beta} = \frac{(\beta^2 + 1)\pi p}{\beta^2 \pi + p}$$

Category		O(p) = 1	
		YES	NO
$T(p) > \delta$	YES	TP_i	FP_i
	NO	FN_i	TN_i