Homework 9

1 Problem

For circuit A in the appendix:

- Determine the current profile i(t) in response to a step-input of V_0 volts using the impedance method. (Hint: find the impedance of the total circuit Z_{circuit} , solve for I(s) assuming V(s) is the desired step input, and use the inverse Laplace transform.)
- Determine the voltage profile $v_{\text{cap}}(t)$ across the capacitor in response to a step-input of V_0 volts using the impedance method. (Hint: use the ratio of Z_{circuit} to Z_{cap} to find the desired transfer function, as described in the notes.)
- If R = 10 ohm and $C = 15\mu$ F how long does it take the capacitor's voltage to reach ≈ 2 % of V_0 ? (Hint: determine the time constant first)

2 Problem

For circuit B in the appendix:

- Determine the current profile i(t) in response to a step-input of V_0 volts using the impedance method.
- Determine the voltage profile $v_{\text{ind}}(t)$ across the inductor in response to a step-input of V_0 volts using the impedance method.

3 Problem

For circuit C in the appendix:

• Derive the transfer function

$$G_{V o V_{
m output}} = rac{V_{
m out}(s)}{V(s)}$$

from input voltage V(s) to output voltage $V_{out}(s)$ (across the parallel RC connection)

- State the natural frequency and damping ratio of the circuit in terms of *R*, *C*, and *L*.
- Given C = 10E-6 Farads and L = 1E-3 Henries select R (units of ohms) so the circuit is critically damped and state the natural frequency of the circuit in Hz.

4 Problem

For circuit D in the appendix. Assume that all resistors, capacitors, and inductors have the same value R, C, and L, respectively. Find the total equivalent impedance of the circuit, Z_{circuit} . (Hint: simplify the circuit step-by-step, similar to this example [Link])

Appendix

