

Ejemplos

Paquete datana

Este documento extiende los ejemplos de distintas funciones del paquete datana (C. Salas-Eljatib and N. Campos and N. Pino and J. Riquelme, 2025) implementado en el software R (R Core Team, 2025) para uso interno.

$\mathbf{\acute{I}ndice}$

1.	interp	2				
	1.1. Sobre esta función	2				
	1.2. Ejemplo	2				
2.	2. plotrend					
	2.1. Sobre esta función	3				
	2.2 Eiemplo	3				

1. interp

1.1. Sobre esta función

La función **interp** fue creada principalmente para los procesos de análisis de series de ahusamiento. La idea es que con esta función se generen los datos faltantes (*i.e.* alturas fustales, diámetros fustales) que permiten obtener volúmenes comerciales, además de ser un requisito para que las series de ahusamiento cumplan con los siguientes supuestos:

- 1. Diámetro decreciente en altura.
- 2. Que siempre exista una sección a la altura de tocón (generalmente 0.3 m), a la altura del DAP (1.3 m) y entre los dos valores anteriores (generalmente 0.8 m).
- 3. Que el diámetro con corteza simpre sea mayor que el diámetro sin corteza.
- 4. Que la última sección tenga diámetro 0 (cero) y hl = htot.

1.2. Ejemplo

Se cargan los datos de ahusamiento de un árbol

```
df <- read.csv(("./resources/ahusa.csv"))
head(df[, c("dl.cc", "hl")])</pre>
```

```
dl.cc hl

1 11.02 0.05

2 8.46 1.30

3 8.10 1.58

4 7.86 2.37

5 6.90 3.16

6 6.70 3.95
```

Este árbol no tiene una sección a los 0.8 metros, por lo que esta se genera

```
library(datana)
## la altura de la seccion sera 0.8 m
nuevaseccion <- 0.8
interpolada <- interp(x = df$dl.cc, y = df$hl, ylu = nuevaseccion)
interpolada$datares</pre>
```

```
y interpolated
Х
1
   11.020000 0.05
                           FALSE
2
    9.378939 0.80
                            TRUE
3
    8.460000 1.30
                           FALSE
                           FALSE
4
    8.100000 1.58
5
    7.860000 2.37
                           FALSE
6
    6.900000 3.16
                           FALSE
7
    6.700000 3.95
                           FALSE
8
    6.000000 4.74
                           FALSE
```


9	5.500000	5.53	FALSE
10	4.400000	5.60	FALSE
11	3.500000	6.32	FALSE
12	2.820000	7.11	FALSE
13	0.000000	9.00	FALSE

2. plotrend

2.1. Sobre esta función

esta es otra funciones

La función **interp** fue creada principalmente para los procesos de análisis de series de ahusamiento. La idea es que con esta función se generen los datos faltantes (*i.e.* alturas fustales, diámetros fustales) que permiten obtener volúmenes comerciales, además de ser un requisito para que las series de ahusamiento cumplan con los siguientes supuestos:

- 1. Diámetro decreciente en altura.
- 2. Que siempre exista una sección a la altura de tocón (generalmente 0.3 m), a la altura del DAP (1.3 m) y entre los dos valores anteriores (generalmente 0.8 m).
- 3. Que el diámetro con corteza simpre sea mayor que el diámetro sin corteza.
- 4. Que la última sección tenga diámetro 0 (cero) y hl = htot.

2.2. Ejemplo

Se cargan los datos de ahusamiento de un árbol

```
df <- read.csv(("./resources/ahusa.csv"))
head(df[, c("dl.cc", "hl")])</pre>
```

```
dl.cc hl

1 11.02 0.05

2 8.46 1.30

3 8.10 1.58

4 7.86 2.37

5 6.90 3.16

6 6.70 3.95
```

Este árbol no tiene una sección a los 0.8 metros, por lo que esta se genera

```
library(datana)
## la altura de la seccion sera 0.8 m
nuevaseccion <- 0.8
interpolada <- interp(x = df$dl.cc, y = df$hl, ylu = nuevaseccion)
interpolada$datares</pre>
```


X	y interpolated				
1	11.020000	0.05	FALSE		
2	9.378939	0.80	TRUE		
3	8.460000	1.30	FALSE		
4	8.100000	1.58	FALSE		
5	7.860000	2.37	FALSE		
6	6.900000	3.16	FALSE		
7	6.700000	3.95	FALSE		
8	6.000000	4.74	FALSE		
9	5.500000	5.53	FALSE		
10	4.400000	5.60	FALSE		
11	3.500000	6.32	FALSE		
12	2.820000	7.11	FALSE		
13	0.000000	9.00	FALSE		

Referencias

C. Salas-Eljatib and N. Campos and N. Pino and J. Riquelme (2025). datana: Data and functions to accompany $Análisis\ de\ datos\ con\ R.$

R Core Team (2025). R: A language and environment for statistical computing.