1 Groups

1.5 Homomorphisms and normal subgroup

1. Define

$$\varphi: S_n \to GL(n, \mathbb{P})$$

 $\sigma \mapsto (e_{\sigma}(1), \cdots, e_{\sigma}(n))$

According to Example 1.5.1 φ is a homomorphism. If $(e_{\sigma}(1), \dots, e_{\sigma}(n)) = (e_{\tau}(1), \dots, e_{\tau}(n))$, then $\sigma(i) = \tau(i), i = 1, \dots, n$. So $\sigma = \tau$, hence φ is injective.

 $\forall (e_{i_1}, \cdots, e_{i_n}) \in W, \text{ if we let } \sigma = \begin{pmatrix} 1 & \cdots & n \\ i_1 & \cdots & i_n \end{pmatrix} \text{ then } \varphi(\sigma) = (e_{i_1}, \cdots, e_{i_n}).$ Hence $\varphi : S_n \to W$ is surjective, and hence an isomorphism.

2. Define

$$\begin{array}{cccc} \varphi: & H & \to & a^{-1}Ha \\ & h & \mapsto & a^{-1}ha \end{array}$$

If $\forall h_1, h_2 \in H \ \varphi(h_1) = \varphi(h_2), i.e., a^{-1}h_1a = a^{-1}h_2a$, then $h_1 = h_2$. So φ is injective.

 $\forall a^{-1}ha \in a^{-1}Ha$ we have that $\varphi(h) = a^{-1}ha$. So φ is surjective. Hence φ is isomorphism.

- 3. If H is a normal, according to the definition, $aHa^{-1} \subseteq H = a(a^{-1}Ha)a^{-1} \subseteq aHa^{-1}$, hence $H = aHa^{-1}$. Since $H = aHa^{-1}$, $Ha = aHa^{-1}a = aH$. Suppose Ha = aH, for any $x \in H$, then $ax \in aH$, thus there exists $y \in H$ such that ax = ya, therefore $axa^{-1} = yaa^{-1} = y \in H$, that is H is normal.
- 4. $S \neq \emptyset$ for $e \in S$. Let $\langle S \rangle = \{x_1^{\epsilon_1} x_2^{\epsilon_2} ... x_n^{\epsilon_n} | x_i \in S, \epsilon_i = \pm 1, n \in \mathbb{Z}\}$, for any $x_1^{\epsilon_1} x_2^{\epsilon_2} ... x_n^{\epsilon_n} \in \langle S \rangle$ and any $g \in G$, then

$$gx_1^{\epsilon_1}x_2^{\epsilon_2}...x_n^{\epsilon_n}g^{-1} = (gx_1g^{-1})^{\epsilon_1}(gx_2g^{-1})^{\epsilon_2}...(gx_ng^{-1})^{\epsilon_n}.$$

Since $gSg^{-1} \subseteq S$ for $g \in G$,

$$gx_1^{\epsilon_1}x_2^{\epsilon_2}...x_n^{\epsilon_n}g^{-1} \in < S >.$$

Hence $\langle S \rangle \triangleleft G$.

- 5. $G = \{\pm 1, \pm i, \pm j, \pm k\}$, then $C(G) = \{\pm 1\}$ is normal. Hence $< i> = \{\pm 1, \pm i\}$, while [G:< i>] = 2, thus $< i> > \triangleleft G$. Similarly, $< \pm i>$ and $< \pm j> , < \pm k>$ are normal. While the order of subgroup P of G perhaps is 1, 2, 4, 8. If |P| = 1, then $P = \{1\}$ is normal. If |P| = 2, then P = < -1> is normal. While G has not other element whose order is 2, thus there is only one subgroup whose order is 2. While elements whose order is 4 are $\pm i, \pm j, \pm k$, therefore G has 3 subgroups whose order is 4.
- 6. For any $a \in G$ and any $b \in H$, $aba^{-1} = baa^{-1} = b \in H$ for $H \leq C(G)$, hence $H \triangleleft G$. If $G/H = \langle aH \rangle$, then $G = \{a^k h | h \in H, k \in \mathbb{Z}\}$. For any $a^{k_1}h_1, a^{k_2}h_2 \in G$, $a^{k_1}h_1 \cdot a^{k_2}h_2 = a^{k_1+k_2}h_1h_2 = a^{k_2}h_2 \cdot a^{k_1}h_1$, therefore G is abelian.

- 7. Suppose there exists an isomorphism $\varphi: (\mathbb{Z}, +) \to (\mathbb{Q}, +)$, then $\varphi^{-1}: (\mathbb{Q}, +) \to (\mathbb{Z}, +)$ is an isomorphism. Hence for any $n \geq 1$, $\mathbb{Z} = \varphi^{-1}(\mathbb{Q}) = \varphi^{-1}(n\mathbb{Q}) = n\varphi^{-1}(\mathbb{Q}) = n\mathbb{Z}$, it is impossible, therefore any bijection between \mathbb{Z} and \mathbb{Q} is not an isomorphism between the group $(\mathbb{Z}, +)$ and the group $(\mathbb{Q}, +)$.
- 8. Let $A = \{x_1, x_2, ..., x_{n-1}\}$, construct

where $f_1(x_i) = \sigma_i$, $f_2(x_i) = (i, i + 1)$, $\lambda(x_i) = x_i$, then according to Theorem 1.5.2, there exists a unique group homomorphism φ_i such that $\varphi_i \circ \lambda = f_i$. Considering

since $Ker\varphi_1$ is a normal group generated by

$${x_i x_{i+1} x_i x_{i+1}^{-1} x_i^{-1} x_{i+1}^{-1} | i = 1, ..., n-1},$$

while $Ker\varphi_2$ is a normal group generated by

$${x_i x_{i+1} x_i x_{i+1}^{-1} x_i^{-1} x_{i+1}^{-1}, x_i^2 | i = 1, ..., n-1}.$$

Then $Ker\varphi_2\supseteq Ker\varphi_1$, and φ_i induce isomorphism $\overline{\varphi_1}:F(A)/Ker\varphi_1\to B_n$ and isomorphism $\overline{\varphi_2}:F(A)/Ker\varphi_2\to S_n$ respectively. Define $\psi:F(A)/Ker\varphi_1\to F(A)/Ker\varphi_2$, $\psi(aKer\varphi_1)=aKer\varphi_2$, then ψ is a group isomorphism. Hence $\overline{\varphi}_2\circ\psi\circ\overline{\varphi}_2^{-1}:B_n\to S_n$ is a group homomorphism. Since ψ is surjective, $\overline{\varphi}_2\circ\psi\circ\overline{\varphi}_2^{-1}$ is epimorphism.

- 9. $N\subseteq H\Leftrightarrow NH=H \text{ or }N\cap H=N.$ Since N is a normal subgroup, $NH/N=H/N\cap H,$ then $[G:H]=[G:NH][NH:H]=[G:NH][N:H\cap H]$. Since (|N|,[G:H])=1 and $[N:H\cap N]|[G:H],$ $([N:H\cap N],|N|)=1,$ but $[N:H\cap N]||N|,$ $[N:H\cap N]=1,$ i.e. $N\subseteq H.$ $N\lhd H$ for $N\lhd G.$
- 10. (a) $G_1 = G_2 = (\mathbb{Z}, +), H_1 = 2\mathbb{Z}, H_2 = 3\mathbb{Z}, H_1 \cong H_2$, but $G_1/H_1 \ncong G_2/H_2$.
 - (b) $G_1 = G_2 = (\mathbb{Z}[x], +), H_1 = (\mathbb{Z}, +), H_2 = (\mathbb{Z} + x\mathbb{Z}, +), G_1/H_1 \cong G_2/H_2$, but $H_1 \ncong H_2$.

- (c) $G_1=\mathbb{Z}_6, G_2=S_3, H_1=2\mathbb{Z}_6, H_2=<(123)>, H_1\cong H_2$ and $G_1/H_1\cong G_2/H_2\cong \mathbb{Z}_2,$ but $G_1\ncong G_2.$
- 11. For any $f(n) \in f(N)$ and any $a \in G$, there exists $a_1 \in G$ such that $f(a_1) = a$ for f is an isomorphism. Then $af(n)a^{-1} = f(a_1)f(n)f(a_1)^{-1} = f(a_1na_1^{-1}) \in f(N)$, moreover, $f(n)^{-1} = f(n^{-1}) \in f(N)$, f(N) is closed under multiplication, and $e = f(e) \in f(N)$, so $f(N) \triangleleft G$. Define $\varphi : G/N \to G/f(N)$, $aN \to f(a)f(N)$. If aN = bN, then $a^{-1}b \in N$, hence $f(a^{-1}b) = f(a)^{-1}f(b) \in f(N)$, thus φ is well-defined. If $aN \in Ker\varphi$, i.e. f(a)f(N) = f(N), then $f(a) \in f(N)$, thus f(a) = f(n) for some $n \in N$. Since f is injective, $a = n \in N$, then aN = N, hence φ is injective. Since f is an isomorphism, φ is surjective. Therefore $G/N \cong G/f(N)$.
- 12. (1) For any $x,y \in G$, $I_a(xy) = a(xy)a^{-1} = axa^{-1} \cdot aya^{-1} = I_a(x)I_a(y)$. $I_{a^{-1}}I_a(xy) = a^{-1}(axya^{-1})a = xy$, hence $I_{a^{-1}}I_a = id_G$. Similarly, $I_aI_{a^{-1}} = id_G$. Therefore I_a is an automorphism.
 - (2) $(I_a)^{-1} = I_{a^{-1}}, id_G = I_e$ and $I_a \circ I_b = I_{ab}$, hence Inn(G) is a subgroup of Aut(G). For any $\varphi \in Aut(G), \ \varphi \circ I_a \circ \varphi^{-1}(x) = \varphi(a\varphi^{-1}(x)a^{-1}) = \varphi(a)x\varphi(a)^{-1} = I_{\varphi(a)}(x)$ for any $x \in G$. Therefore $varphi \circ I_a \circ \varphi^{-1} = I_{\varphi(a)} \in Inn(G)$, then $Inn(G) \lhd Aut(G)$.
 - (3) If φ is a nonidentity automorphism of G, since G is an abelian group, $Inn(G) = \{id_G\}$, hence φ is not an automorphism. Therefore φ is an outer automorphism.
 - (4) It is obvious that φ is an automorphism of $GL(n,\mathbb{P})$. If $\varphi = I_A$ for $A \in GL(n,\mathbb{P})$, then $\varphi(B = (B^{-1})^T = ABA^{-1}$ for any $B \in GL(n,\mathbb{P})$.

Take
$$B = \begin{pmatrix} 1 & & & \\ & 2 & & \\ & & \ddots & \\ & & & n \end{pmatrix}$$
, then $\varphi(B) = \begin{pmatrix} 1 & & & \\ & \frac{1}{2} & & \\ & & \ddots & \\ & & & \frac{1}{n} \end{pmatrix}$

has eigenvalues:1, $\frac{1}{2}$, ..., $\frac{1}{n}$. While eigenvalues of ABA^{-1} are 1, 2, ..., n, hence $(B^{-1})^T \neq ABA^{-1}$. It is contradiction, thus $\varphi \neq I_A$ for any A. Therefore φ is an outer automorphism.

- 13. If $\varphi: G \to G$, $a \to a^{-1}$, is an automorphism, then $ab = \varphi((ab)^{-1}) = \varphi(b^{-1}a^{-1}) = \varphi(b^{-1})\varphi(a^{-1}) = ba$ for any $a,b \in G$, hence G is abelian. On the contrary, if G is abelian, then $\varphi(ab) = (ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} = \varphi(a)\varphi(b)$ for any $a,b \in G$, hence φ is an endomorphism. At the same time, φ is bijective, therefore φ is an automorphism. If G is abelian, then $\psi(ab) = (ab)^k = a^kb^k = \psi(a)\psi(b)$ for any $a,b \in G$, hence ψ is an endomorphism.
- 14. Suppose $\lambda: \{x,y,z\} \to G$, $\xi(x) = a^2, \xi(y) = b^2, \xi(z) = ab$, according to Theorem 1.5.2, there exists an unique group homomorphism $\varphi: G \to F(\{a,b\})$, $Im(\varphi) = \langle x,y,z \rangle$. While $\varphi(x^{k_1}y^{k_2}) = a^{2k_1}b^{2k_2}$, $\varphi(x^{k_1}z^{k_2}) = a^{2k_1+1}(ba)^{k_2-1}b$, $\varphi(y^{k_1}z^{k_2}) = b^{2k_1-1}(ba)^{k_2}b$, $\varphi(y^{k_1}x^{k_2}) = b^{2k_1}(a)^{2k_2}$, $\varphi(z^{k_1}x^{k_2}) = b^{2k_1+1}(ba)^{k_2-1}b$, $\varphi(y^{k_1}z^{k_2}) = b^{2k_1-1}(ba)^{k_2}b$, $\varphi(y^{k_1}x^{k_2}) = b^{2k_1}(a)^{2k_2}$, $\varphi(z^{k_1}x^{k_2}) = b^{2k_1-1}(ba)^{k_2-1}b$, $\varphi(y^{k_1}z^{k_2}) = b^{2k_1-1}(ba)^{k_2-1}b$

- $(ab)^{k_1}(a)^{2k_2} = a(ba)^{k_1}a^{2k_2-1}, \varphi(z^{k_1}y^{k_2}) = (ab)^{k_1}(b)^{2k_2} = a(ba)^{k_1-1}b^{2k_2+1},$ hence reduced words in G through the action of φ are still reduced. Thus φ is injective, therefore φ is an isomorphism between G and $\langle x, y, z \rangle$.
- 15. (1) For any $\varphi \in Aut(\mathbb{Z}^n)$, let $e_i = (0, ..., 1, ..., 0)^T$ where all rows are 0 expect the i_{th} , then $\varphi(e_i) = ((a_{1i}, ..., a_{ni})^T) = \sum_{k=1}^n a_{ik}e_k$. Suppose $\varphi^{-1}(e_i) = (b_{1i}, ..., b_{ni})^T = \sum_{k=1}^n b_{ki}e_k$, then $e_i = \varphi\varphi^{-1}(e_i) = \sum_{k=1}^n b_{ki}\varphi(e_k) = \sum_{k=1}^n \sum_{s=1}^n b_{ki}a_{sk}e_s$, hence $\sum_{k=1}^n a_{sk}b_{ki} = \delta_{is}$, therefore $(\varphi(e_1), \varphi(e_2), ..., \varphi(e_n)) \in GL(n, \mathbb{Z})$ and it's inverse matrix is $(\varphi^{-1}(e_1), ..., \varphi^{-1}(e_n))$. Define $\Phi : Aut(\mathbb{Z}^n) \to GL(n, \mathbb{Z})$ such that $\varphi \to (\varphi(e_1), ..., \varphi(e_n))$. If $\Phi(\varphi) = \Phi(\psi)$, then for any $(a_1, ..., a_n)^T \in \mathbb{Z}^n$,

$$\varphi((a_1, ..., a_n)^T) = \sum_{k=1}^n a_k \varphi(e_k) = \sum_{k=1}^n a_k \psi(e_k) = \psi((a_1, ..., a_n)^T),$$

- hence Φ is injective. For any $(\alpha_1,...,\alpha_n) \in GL(n,\mathbb{Z})$, then $\varphi((a_1,...,a_n)^T) = \sum_{k=1}^n a_k \alpha_k \in Aut(\mathbb{Z}^n), \ \varphi^{-1}((a_1,...,a_n)^T) = \sum_{k=1}^n a_k \beta_k$ where $(\beta_1,...,\beta_n) = (\alpha_1,...,\alpha_n)^{-1}$. Since $\Phi(\varphi) = (\alpha_1,...,\alpha_n)$, hence Φ is bijective. We can easily testified that $\Phi(\varphi \circ \psi) = \Phi(\varphi)\Phi(\psi)$. Therefore $Aut(\mathbb{Z}^n) \cong GL(n,\mathbb{Z})$.
- (2) Suppose $A = \{x_1, x_2, ..., x_n\}$, $\lambda : A \to F(A)$ which is free group of A. Define $\varphi : A \to \mathbb{Z}_n$, $\varphi(x_i) = e_i$, then there exists an unique group homomorphism $\psi : F(A) \to \mathbb{Z}_n$ such that $\psi(x_i) = e_i$. It is obvious that ψ is epimorphism. Let $N = \langle \{x_i x_j x_i^{-1} x_j^{-1} | 1 \leq i, j \leq n \} \rangle$ is a normal subgroup, then $N \subseteq Ker\psi$. For any $x_{i_1}^{k_1}, ..., x_{i_m}^{k_m} \in Ker\psi$, then

$$x_{i_1}^{k_1}...x_{i_m}^{k_m} = x_{i_1}^{k_1-1}x_{i_1}x_{i_2}x_{i_1}^{-1}x_{i_2}^{1-1}x_{i_1}^{1-k_1}x_{i_1}^{k_1-1}x_{i_2}x_{i_1}x_{i_2}^{-1}x_{i_2}^{k_2}...x_{i_m}^{k_m}.$$

$$x_{i_1}^{k_1}...x_{i_m}^{k_m} \in N$$
 iff $x_{i_1}^{k_1-1}x_{i_2}x_{i_1}x_{i_2}^{k_2-1}...x_{i_m}^{k_m} \in N.$ While

$$x_{i_1}^{k_1-1}x_{i_2}x_{i_1}x_{i_2}^{k_2-1}...x_{i_m}^{k_m}=x_{i_1}^{k_1-2}x_{i_1}x_{i_2}x_{i_1}^{-1}x_{i_2}^{-1}x_{i_1}^{2-k_1}x_{i_1}^{k_1-2}x_{i_2}x_{i_1}^2x_{i_2}^{k_2-1}...x_{i_m}^{k_m},$$

- so $x_{i-1}^{k_1-2}x_{i_2}x_{i_1}^2x_{i_2}^{k_2-1}...x_{i_m}^{k_m} \in N$. Hence iff $x_{i_2}x_{i_1}^{k_1}x_{i_2}^{k_2-1}...x_{i_m}^{k_m} \in N$, and then iff $x_{i_2}^{k_2}x_{i_1}^{k_1}x_{i_3}^{k_3}...x_{i_m}^{k_m} \in N$. Since $\varphi(x_{i_1}^{k_1}...x_{i_m}^{k_m}) = k_1e_{i_1} + ... + k_me_{i_m} = 0$, that is the sum of occurrence nabout e_{i_1} is 0. Through above process, we get that x_{i_1} is not occur in $x_{i_2}^{k_2}...x_{i_m}^{k_m}$, therefore $x_{i_1}^{k_1}...x_{i_m}^{k_m} \in N$. Thus $Ker\psi = N$. According to the Fundamental Theorem of Homomorphism, then $F[\{x_1,...x_n\}]/< x_i x_j x_i^{-1} x_j^{-1} > \cong \mathbb{Z}^n$.
- 16. $HN_G(P)/H \cong N_G(P)/H \cap N_G(P) = N_G(P)/N_H(P)$. For any $g \in G$, $gPg^{-1} \subseteq gHg^{-1} \subseteq H$, then there exists $a \in H$ such that $gPg^{-1} = a^{-1}Pa$, hence $agPg^{-1}a^{-1}$, thus $ag \in N_G(P)$, therefore $g = a^{-1}(ag) \in HN_G(P)$.

- 17. Suppose X is a G-set. Define $\varphi: G \to Sym(X), \ \varphi(a) = L_a$, the left translation. Since $L_a \circ L_{a^{-1}} = id_X = L_{a^{-1}}L_a$ for any $L_a \in Sym(X)$, $\varphi(ab) = L_{ab}$. For any $x \in X$, we have $L_{ab}(x) = a(bx) = L_a(bx) = L_a \circ L_b(x)$. Thus $L_{ab} = L_a \circ L_b$ and $\varphi(ab) = \varphi(a)\varphi(b)$. On the contrary, suppose $\varphi: G \to Sym(X)$. For any $g \in G$ and $x \in X$, define $G \cdot x := \varphi(g)(x)$. Then $e \cdot x = \varphi(e)(x) = id_x(x) = x$. For any $f, g \in G$ and any $x \in X$, $(fg) \cdot x = \varphi(fg)(x) = (\varphi(f) \cdot \varphi(g))(x) = \varphi(f)(varphi(g)(x)) = f \cdot (g \cdot x)$. Hence X is a G-set.
- 18. Define $G \times G/H \to G/H$, $(g, aH) \mapsto ga \cdot H$. Then there is a homomorphism $\varphi: G \to Sym(G/H)$. If $\varphi(g) = id$, then gH = H and $g \in H$. Hence $Ker\varphi \subseteq H$, $Ker\varphi \lhd G$. Since $[G: Ker\varphi] = [G: H][H: Ker\varphi]$, $[H: Ker\varphi]|[G: Ker\varphi]$. On the other hand, $G/Ker\varphi \cong Im\varphi \leq Sym(G/H)$, then $|Im\varphi| \mid p!$, hence $[G: Ker\varphi] \mid p!$. If a prime q satisfies $q \mid [G: Ker\varphi]$, then $q \leq p$. By the assumption on p, we have q = p. Hence $[G: Ker\varphi] = p$ and $Ker\varphi = H \lhd G$.
- 19. Without loss of generality, we could Suppose $H = \langle a_1, ..., a_s \rangle$, $K/H = \langle b_1H, ..., b_nH \rangle$, then $K = \{b_{i_1}^{s_1}a_{i_1}...b_{i_n}^{s_n}a_{i_n}|b_{i_j} \in \{b_1, ..., b_n\}, a_{i_j} \in H, s_i \in \mathbb{Z}\}$, thus $K = \langle b_ia_j|1 \leq j \leq s, 1 \leq i \leq n \rangle$, hence K is finitely generated.
- 20. Since $N \triangleleft G, NP = PN \leq G, PN/N \leq G/N, [G/N:PN/N] = [G:PN].$ Since $[G:P] = [G:PN][PN:P], p \nmid [G:PN] = [G/N:PN/N].$ As $NP/N \cong P/N \cap P, |NP/N| = p^n$ for some n. Therefore NP/N is a Sylow p-subgroup of G/N.
- 21. Define $\varphi: \langle k \rangle / \langle km \rangle \to \mathbb{Z}_m$, $\varphi(kl+\langle km \rangle) = \bar{l}$. For any $kl_1 + \langle km \rangle, kl_2 + \langle km \rangle \in \langle k \rangle / \langle km \rangle$, then $\varphi(kl_1 + \langle km \rangle + kl_2 + \langle km \rangle) = \bar{l}_1 + \bar{l}_2 = \bar{l}_1 \bar{l}_2 = \varphi(kl_1 + \langle km \rangle) + \varphi(kl_2 + \langle km \rangle)$. If $kl + \langle km \rangle \in Ker\varphi$, i.e. $\varphi(kl + \langle km \rangle) = \bar{0}$, thus $l = mn, (n \in \mathbb{Z})$, hence $kl + \langle km \rangle = \langle km \rangle$, therefore φ is injective. If $\bar{l} \in \mathbb{Z}_m$, then there is $kl + \langle km \rangle \in \langle k \rangle / \langle km \rangle$ such that $\varphi(kl + \langle km \rangle) = \bar{l}$, hence φ is surjective. Therefore $\langle k \rangle / \langle km \rangle \cong \mathbb{Z}_m$.
- 22. If $a + tor(H) \in tor(H/tor(H))$, then there is $n_1 > 0$ such that $n_1(a + tor(H)) = n_1a + tor(H) = 0 + tor(H)$, thus $n_1a \in tor(H)$, hence there exists $n_2 > 0$ such that $n_2(n_1a) = 0$, i.e. $(n_2n_1)a = 0$, therefore $a \in tor(H)$. Whence a + tor(H) = 0 + tor(H), hence H/tor(H) is torsionfree.
- 23. Let $P:=\begin{pmatrix} \frac{1}{\sqrt{2}}E_n & \frac{1}{\sqrt{2}}E_n \\ -\frac{1}{\sqrt{2}}E_n & \frac{1}{\sqrt{2}}E_n \end{pmatrix}$, $J:=\begin{pmatrix} 0 & E_n \\ E_n & 0 \end{pmatrix}$, $Q:=\begin{pmatrix} \frac{1}{\sqrt{2}}E_n & -\frac{1}{\sqrt{2}}E_n \\ \frac{1}{\sqrt{2}}E_n & \frac{1}{\sqrt{2}}E_n \end{pmatrix}$, $S:=\begin{pmatrix} E_n & 0 \\ 0 & -E_n \end{pmatrix}$. Then $PQ=E_{2n}$ Define $\varphi:O(n+n,\mathbb{R})\to G$, $\varphi(A)=QAP$, then $(QAP)^TJ(QAP)=QSP=J$, thus φ is well-defined. Since $Q,P\in GL(2n,\mathbb{R}), \ \varphi$ is surjective. For any $A,B\in O(n+n,\mathbb{R})$, then $\varphi(AB)=QABP=(QAP)(QBP)=\varphi(A)\varphi(B)$, hence φ is isomorphic.

24. Let $\iota: S \to F(S)$ which is free group of S. Then

 $\psi \circ \varphi : F(S) \to F(S)$ and $id_{F(S)} : F(S) \to F(S)$ satisfy $\psi \circ \varphi \circ \iota = id_{F(S)} \circ \iota$, hence $\psi \circ \varphi = id_{F(S)}$. Similarly, $\varphi \circ \psi = id_G$. Therefore $F(S) \cong G$.