

Using medical data to create challenges

Summary

Introduction

- I. Medical data: issue & answers
 - A. Issue: Data privacy
 - B. Answers
- II. Challenges
 - A. Survival analysis
 - B. Binary classification
 - Conclusion

Introduction

- Create challenges
 - Codalab
 - University courses

- Domain: Healthcare
 - Using medical records

Medical data: issues & answers

I. Medical data: issue & answer

A. Issue: Data privacy

Data privacy is the relationship between the collection of data and its dissemination.

Example:

Name	Age	Gender	Localisation	HIV
Martine	23	М	Saclay	1

I. Medical data: issue & answer

B. Answers

- De-identification
 - Replace name by an identifier

ID	Age	Gender	Localisation	HIV
140203	23	M	Saclay	1

Major default : Other variables may contain information to directly retrieve the patient.

I. Medical data: issue & answer

B. Answers

- Data generation
- Learn the data distribution using
 a generative model (e.g. GAN, RandomForest)
 that ensures privacy
 - Generate samples according to this distribution

Context

These challenges are for the moment aimed at students of **RPI**, Rensselaer Polytechnic Institute as part of a statistical course they follow.

The objective of the challenge is

- for the participant to **acquire knowledge** around the topic of the challenge.
- for the teacher to have a tool to assess students' performance.

A. Binary classification

Objective:

Classify data where the outcome variable is the class p (0 or 1).

Example:

Predict life or death of hospitalized patients.

class
$$p = 0$$
 if alive 1 if dead

B. Survival analysis

Objective:

Analyze data where the outcome variable is the **time** *t* until the occurrence of an **event** *e*.

Example:

What is the probability that a patient dies 10 days after is hospitalization?

time t = 10 days event e = death

B. Survival analysis

Objective:

Analyze data where the outcome variable is the **time** *t* until the occurrence of an **event** *e*.

Example:

What is the probability that a patient dies 10 days after its hospitalization? time t = 10 days event e = death

B. Survival analysis

Example:

What is the probability that an individual dies of a cancer in function of the time and according to gender?

B. Survival analysis

f(t) = distribution function

F(t) = cumulative distribution function

S(t) = survival function

Presentation of the challenge

Survival Analysis - Jupyter Notebook

Conclusion: Objectives

- Data generation
 - Good quality
 - Ensure privacy (theoretically and practically)
- Challenges
 - Build fully functional challenges
 - Auto-grading system for the survival challenge
 - O ...

Thanks! Any questions?