A Natureza do Problema As Missões Espaciais O Foguete Um roteiro para o Brasil

Propulsão Espacial Barreiras, limites e perspectivas

José Nivaldo Hinckel

Fibaforte EIC

19 de Julho de 2018

Roteiro

- A Natureza do Problema
- As Missões Espaciais
- O Foguete
 - O foguete autônomo
 - O foguete aspirado
- Um roteiro para o Brasil
 - Conclusões

Fundamentos

Objetivo: alterar estado mecânico (posição e velocidade) da carga útil

Requisitos: Fonte de energia e troca de momento

- Propulsão terrestre: Veículo troca momento com a Terra.
- Propulsão aérea: Veículo troca momento com meio atmosférico.
- Propulsão espacial: Veículo troca momento ejetando massa embarcada.

Fração da energia disponível transferida para a carga útil depende da razão entre a massa do veículo e a massa de reação.

Introdução - A natureza do problema.

- Poço gravitacional criado pela presença de corpos massivos
 - Primeiro degrau Órbita circular em baixa altitude (LEO)
- Grandes distâncias espaciais ($\approx 10^6$ km)
 - Ex. $d = 10^8$ km v = 20.000 km/h t = 5000 h
- Grandes incrementos de velocidade (> 10 km/s)
 - Ex. $\Delta v = 10 \text{ km/s}$ $a = 20 \text{ m/s}^2$ t = 500 s
- Energia específica > 10⁸ J/kg
 - Uma ordem de grandeza maior que a energia química específica
- Operação no vácuo (sistema reatiavo)
 - Não há apoio

As Missões Espaciais

- Injeção em órbita baixa: Colocar um satélite ou nave em órbita circular de ≈ 200 km e apogeu igual à altura da órbita final.
- Injeção em órbita de transferência: órbita com perigeu de \approx 200 km e apogeu igual á altura da órbita final.
- Injeção em órbita geoestacionária: órbita circular equatorial de 36.000 km de altura.
- Injeção em órbita heliossíncrona: órbita circular polar com altura de \approx 800 km.
- Trajetórias interplanetárias: Escape do campo gravitacional de um corpo celeste, ou captura pelo campo gravitacional de outro corpo celeste.

Velocidades Características de Algumas Missões Espaciais

Missão	ΔV Ideal	ΔV Efetivo
	[km/s]	[km/s]
Satelizar a Terra	7,9 - 11,5	9,1 - 13,2
Escape da Terra	11,2	12,9
Escape da Lua	2,3	2,7
Terra a Lua (pouso suave)	13,1	16,1
Terra a Marte (pouso suave)	17,5	20
Terra a Lua (pouso suave e retorno)	15,9	18,6
Terra a Marte (pouso suave e retorno)	22,9	27
Terra a α -Centauri (50 anos)	30.000	

Carga útil relativa partindo de órbita baixa terrestre

Missão	Carga útil relativa (%)
Satelizar a Terra	100
Escapar da Terra	35 - 35
órbita Geoetacionária	10 - 25
Descida na Lua (suave)	10 - 20
Descida na Lua e retorno	1 -4
Satelizar a Lua	20 -30
Circunavegar a Lua	30 - 42
Descida em Marte	0,5 - 3

A equação fundamental do foguete: Tsiolkowsky

Empuxo: $F = \dot{m}C$

Impulso específico: $I_{sp} = C = \frac{F}{\dot{m}} = \sqrt{2(h_0 - h_f)}$

Incremento de velocidade: $\Delta V = C \ln \frac{m_0}{m_f}$

Massa de propelente: $m_p = m_0[1 - e^{-\frac{\Delta V}{C}}]$

O foguete autônomo

- Energia e massa de ejeção embarcados
- Decolagem Vertical
- Elevada razão Empuxo/Peso
- Aceleração elevada (m/s²): 2 100
- Massa de propelente (%): 70 75
- Massa estrutural (%): 8 30
- Razão de mistura (O/F): 1,5 8
- Massa de oxidante(%): >50
- Perda gravitacional(m/s): 1200 1800
- Perda aerodinâmica (m/s): 150 200
- Outras perdas (m/s): 50 200

O foguete autônomo (estado atual) I

- Eficiência energética superior a 90%
 - Limites físicos para conversão da energia embarcada em energia da carga útil
- Coeficiente estrutural: 8 a 10% para estágios grandes
 - Melhoramento nos parâmetros acima tem custo elevado e reduzido impacto no desempenho do veículo
- Taxa de falha: 2 a 5% para veículos operacionais
 - Margens de segurança reduzida. Densidade de potência elevada
- Custo elevado; mas comparável a outros veículos (ex. aviões)

O foguete autônomo (estado atual) II

- O foguete é utilizado uma única vez
- Não há escala econômica para sistemas de veículos reutilizáveis
 - Requisito de centenas de missões anuais

O foguete autônomo (escalonamento)

- Massa satelizável depende do coeficiente estrutural
 - Coeficiente estrutural é inversamente proporcional ao tamanho

$$\varepsilon \propto \frac{m_s}{m_t} \approx \frac{L^2}{L^3} \approx L^{-1}$$

- Perda aerodinâmica inversamente proporcional ao coeficiente balístico (razão de massa por área da seção frontal).
 - Coeficiente balístico é inversamente proporcional ao tamanho.
- Os efeitos combinados resultam em degradação do desempenho variando inversamente com o quadrado do tamanho.
- Inviáveis foguetes com massa inicial inferior a 20 toneladas.

Veículos propulsionados por motor aspirado

- Combustível embarcado; oxidante aspirado do meio
- Motor multi-modo (turbo-jato, ramjet, scramjet)
 - Baixa razão Empuxo/Peso
 - Aceleração moderada
- Decolagem horizontal (trem de pouso)
- Sustentação aerodinâmica (asas)
- Adquire velocidade orbital na atmosfera densa
- Trajetória de pressão dinâmica máxima; elevada carga estrutural e térmica
- Coeficiente estrutural elevado
- Incremento de velocidade limitado

Outras alternativas

Super-canhão

•
$$a = 1000 m/s^2$$
 $t = 8 s$ $D = 32.000 m$

Rail Gun

•
$$a = 100 m/s^2$$
 $t = 40 s$ $D = 320.000 m$
• $M_D = 100 kg$ $P = 100 MW$

- Beamed energy (laser, micro-ondas)
 - Área de captura de massa de ejeção
 - Colimação, transmissão e captura de feixe a grande distância (> 100 km
 - Tempo de residência para conversão da energia
 - Eficiência de conversão (grande parte da energia vai par a massa de ejeção.
 - Carga térmica e estrutural

O Foguete (máquina de ação e reação) I

Químico Energia e massa de ejeção são fornecidas pelos propelentes embarcados.

Impulso específico limitado (2500 - 4700 m/s²)

Elétrico Energia provém de fontes internas ou externas. Empuxo limitado à potência disponível Impulso específico elevado: 10.000 - 40.000 m/s²)

O Foguete (máquina de ação e reação) II

Nuclear Energia proveniente de um reator nuclear (fissão, fusão).

Massa de ejeção embarcada

Ciclo térmico: a energia fornecida pelo reator é utilizada para aquecer um gás, ejetado através de um bocal convergente-divergente.

Impulso especico elevado: 7000 m/s.

Ciclo elétrico: Reator alimenta gerador que fornece energia para propulsor elétrico.

Os Parâmetros relevantes do foguete

- Coeficiente estrutural: Razão entre massa estrutural e massa total do foguete ou estágio (5 - 30%)
- Impulso específico: Impulso por unidade de massa do propelente (1500 - 4800 m/s)
- Razão Empuxo/Peso Inicial (1,2 2)
- Pressão de câmara de combustão (10 350 Bar)
- Fração de carga útil (0,5 20%)

O empuxo de motores foguete

Orientação e controle	0,1 - 500 N
Manobras orbitais	5 - 5000 N
Estágios de aceleração	50.000 - 500.000 N
Estágios de lançamento	500.000 - 2.000.000 N

O foguete químico I

Princípio de funcionamento

- A energia química dos propelentes é convertida em energia térmica dos produtos de combustão (gases) através do processo de queima.
- A energia térmica dos gases é convertida em energia cinética, através de um processo de expansão num bocal convergente-divergente.
- A ejeção dos gases em alta velocidade resulta em impulso transmitido ao foguete.

O Foguete Químico (continuação) I

Sólido Oxidante e combustível no estado sólido:

pré-misturados

Combustão na superfície do grão propelente.

Câmara inteira é sujeita a pressão elevada.

Elevado coeficiente estrutural.

Modulação limitada e pré-programada do empuxo.

Extinção com queima total do propelente.

Estocável por longos períodos.

Impulso específico limitado (1800 - 2800 m/s)

O Foguete Químico (continuação) II

Híbrido O combustível é sólido; o oxidante líquido, injetado durante a queima.

Possibilidade de modulação do empuxo e extinção controlado do motor.

O Foguete químico (continuação) I

- Líquido Combustível e oxidante são embarcados no estado líquido.
 - Estocagem dos propelentes a baixa pressão; reduz consideravelmente o coeficiente estrutural do foguete.
 - Líquidos a temperatura ambiente.
 Possibilidade de estocagem por longos períodos de tempo.
 - Líquidos criogênicos. Curto período entre o carregamento e o lançamento.
 - Mecanismos de partida.

O Foguete químico (continuação) II

- Sistemas dedicados de ignição para pares não hipergólicos. Número limitado de partidas.
- Ignição espontânea de pares hipergólicos.
 Número ilimitado de partidas.

Definição de grade de missões

- Foco inicial em comunicações e observação da Terra voltadas para integração nacional, monitoramento territorial e ambiental, segurança e defesa.
- Convencimento e engajamento dos clientes.
- Cronograma de transição de missões tecnológicas para operacionais.

Veículos de sondagem

- Estabelecer um ritmo de produção e lançamento de 2 a 3 veículos de sondagem por ano por período de 10 anos.
- Alocar parte destas missões para chamadas de oportunidade para os diversos agentes envolvidos no programa, incluindo universidades e parceiros industriais.
- Finalidades:
 - Treinamento das equipes: tanto dos campos de lançamento quanto de integração e operação.
 - Missões precursoras de sistemas espaciais.
 - Popularização do acesso ao espaço.
 - Apoio à pesquisa nas áreas de física de atmosfera e outras demandadas nacionais e estrangeiras.

Um veículo de cargas: "workhorse"

- Objetivo: Num prazo de 20 anos dispor de um veículo operacional.
- Desenvolvimento de um veículo de primeira geração para cargas de 1 a 4 toneladas em órbita baixa e incremento de velocidade de de 9 km/s a 12 km/s num prazo de 8 a 12 anos.
- Ritmo de 1 a 2 missões anuais durante 3 ou 4 anos, crescendo para um ritmo de 4 a 6 missões anuais durante um período de adicional de 6 a 10 anos.
- Migração para um veículo de geração avançada com capacidade de cargas de 6 a 8 toneladas e incrementos de velocidade de 9 km/s a 15 km/s.

Cooperação técnica e programa conjunto

- Redução de prazo e riscos através de cooperação com parceiros detentores do ciclo completo de projeto e produção.
- Internalização progressiva da tecnologia: aquisição de componentes e sistemas completos, produção local sob licença, projeto e produção internos.
- Possível ampliação de programa para incluir países da América do Sul.
 - Diluição de custos.
 - Melhor sustentabilidade econômica.
 - Instrumento de agregação e integração política e tecnológica.

Conclusões I

- A motivação principal para o programa espacial brasileiro é o caráter estratégico representado pela exploração dos recursos espaciais em comunicações e observação da Terra para fins de segurança, defesa e governança.
- O envelope de missões, em termos de massa satelizável e incremento de velocidade não sofrerá grandes alterações nas próximas décadas.

Conclusões II

- Limitações associadas ao escalonamento de tamanho e custos de produção do foguete estabelecem um piso para a massa na decolagem do foguete em torno de 30 toneladas. A fração de carga satelizável cresce rapidamente para veículos com massa total variando entre 30 e 100 toneladas. Para veículos com massa total variando entre 100 e 600 toneladas a fração de carga satelizável ainda é crescente, porém mais lentamente.
- O foguete químico continuará a ser o meio de acesso ao espaço nas próximas décadas.

Conclusões III

- Os programas com maturidade tecnológica exauriram em grande parte os avanços tecnológicos possíveis em termos de desempenho energético e eficiência estrutural do foguete químico.
- Considerações ligadas à sustentabilidade técnica limitam o cronograma de desenvolvimento de um foguete a uma duração não superior a uma década e meia para o primeiro foguete e à metade deste prazo para versões posteriores.
- A sustentabilidade técnica requer um ritmo mínimo de produção e lançamento de um veículo por ano.

Conclusões IV

- A sustentabilidade econômica cresce à medida que o ritmo de produção e lançamento passa de 1 a 2 missões anuais para um ritmo de 4 a 6 missões anuais. Este crescimento do ritmo pode ser obtido com incrementos muito pequenos dos recursos humanos e infraestrutura em relação ao patamar de sustentabilidade técnica.
- Vencido o patamar de sustentabilidade econômica abre-se a perspectiva de operações com retorno comercial.

Conclusões V

- Há uma janela de oportunidade para que o Brasil entre no jogo do acesso ao espaço com um veículo que atenda a uma grade significativa de missões que satisfaçam interesses estratégicos do país.
- O envelope de missões do veículo de entrada deve atender cargas com 1 a 4 toneladas em órbita baixa e incrementos de velocidade de 9 km/s a 12 km/s. Estes envelope permite a realização de missões de observação e comunicações.
- O prazo para o início de operação do primeiro veículo não deve ultrapassar 12 anos.

Conclusões VI

 A migração para um veículo de primeira geração avançada, com ampliação do envelope de lançamento para 6 a 8 toneladas em órbita baixa e incrementos de velocidade de 9 km/s a 15 km/s deverá ser realizada num horizonte de 20 anos. A Natureza do Problema As Missões Espaciais O Foguete Um roteiro para o Brasil

Missões Veículos de sondagem Veículos Lançadores Conclusões

Walking gets too boring, when you learn how to fly! - Shakira - Gypsy