Ejercício 9bis

La distribución normal multivariada es la extensión de la distribución normal a múltiples dimensiones. La distribución normal de una sola variable se define utilizando dos parámetros: la esperanza y la desviación standard. Así, para definir una distribución normal multivariada hay que usar dos parámetros análogos. Por un lado, se utiliza la esperanza de la distribución en muchas variables. Así, si X es un vector aleatorio y $X_1...X_n$ son sus componentes (aleatorias), entonces la esperanza de X es un vector de la siguiente forma:

$$E[X] = (E[X_1], ..., E[X_n])^T$$

Esta esperanza conforma el valor µ de la distribución.

En una sola variable, la varianza y su relación con el desvío estándar se definen como:

$$V(X) = E[(X - E[X])^{2}] = \sigma_{X}^{2}$$

Sin embargo, cuando X es un vector aleatorio, tenemos que:

$$\Sigma = V(X) = E[(X - E[X])(X - E[X])^T] = E[XX^T] - E[X]E[X]^T$$

Así, Σ conforma la matriz de covarianzas, que contiene las covarianzas de cada componente de X para con todos los demás:

$$\Sigma = [Cov(X_i, X_i); 1 \le i \le n, 1 \le j \le n]$$

Definidos $\mu = E[X]$ y Σ , tenemos que la densidad de la distribución normal multivariada es:

$$f_X(x) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$

Donde $x \in \mathbb{R}^n$.

En aquellos casos en que Σ es una matrix definida positiva, $f_X(x)$ es una densidad. Si se calcula la densidad marginal sobre alguna de las variables X_i (es decir, sobre alguno de los componentes de X), se obtiene una distribución normal (unidimensional).

Esta distribución se construyó con μ = (0,0) y Σ =

1	0
0	1

Esta distribución se construyó usando μ = (- 2.5,0) y el mismo Σ de la distribución anterior. Así, se puede ver cómo μ desplaza la distribución, determina su centro.

Esta distribución se construyó con μ = (-2.5,0) y Σ =

1	0.5
0.5	1

Así, podemos ver cómo introducir una correlación entre las variables modifica la distribución, en este caso, girándola.

Esta distribución se construyó con μ = (1,0) y Σ =

3	0
0	1

Así, se evidencia cómo modificar la varianza de una de las variables y dejar las covarianzas en 0, hace que la distribución de esa variable se modifique, de una forma similar a lo que ocurriría si fuera unidimensional.