Data Collection and Preprocessing

Project Name: COVID-19 Chest X-Ray Image Classification

The dataset of chest X-ray images was prepared for deep learning classification to detect COVID-19, Bacterial Pneumonia, and Normal cases using a Convolutional Neural Network (CNN) with transfer learning (VGG16)

PREPROCESSING STEPS:

SECTION	DESCRIPTION
Data Overview	Collected chest X-ray dataset organized into train and test folders, each containing subfolders for classes (Normal, COVID-19, Bacteria).
Image Resizing	Resized all images to 64×64 pixels for uniform input into the CNN model.
Rescaling	Applied pixel normalization by rescaling image values from 0–255 → 0–1.
Data Augmentation	Used ImageDataGenerator to apply transformations and split 20% of training data into validation automatically.
Train / Validation split	Training set = 80% of train folder, Validation set = 20% of train folder (via subset in ImageDataGenerator).
Test set	Loaded separately from the test directory without augmentation, only rescaling.
Label Encoding	Automatically handled by flow_from_directory, mapping class subfolders to categorical one-hot labels.
Model Preparation	Used VGG16 pretrained on ImageNet as

	the base model (without top layers). Added custom layers: Flatten → Dense → Dropout → Output.
Visualization	Generated plots comparing training accuracy/loss vs validation accuracy/loss across epochs.

Data Preprocessing Code Snapshots :

SECTION	CODE
Data Overview	<pre>[1]: import os os.listdir("chest_xray_covid/Data") [1]: ['test', 'train']</pre>
Image Resizing	<pre>[2]: Image_size = [64, 64] train_path = 'chest_xray_covid/Data/train' test_path = 'chest_xray_covid/Data/test'</pre>
Train / Validation split	<pre>import tensorflow as tf from tensorflow import keras from tensorflow.keras.preprocessing.image import ImageDataGenerator # Rescale imageS train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2 # < split 20% of train into validation)) test_datagen = ImageDataGenerator(rescale=1./255) # Training set (80% of train data) training_set = train_datagen.flow_from_directory('chest_xray_covid/Dataftrain', target_size=(64, 64), batch_size=32, class_mode='categorical', subset='training', # < important seed=42)</pre>

```
# Validation set (20% of train data)
                                                                                                                                                                                                                       val_set = train_datagen.flow_from_directory(
                                                                                                                                                                                                                                       'chest_xray_covid/Data/train',
                                                                                                                                                                                                                                       target_size=(64, 64),
                                                                                                                                                                                                                                       batch_size=32,
                                                                                                                                                                                                                                       class_mode='categorical',
                                                                                                                                                                                                                                       subset='validation', # <-- important</pre>
                                                                                                                                                                                                                       )
Test set
                                                                                                                                                                                                                       # Test set (uses separate test folder)
                                                                                                                                                                                                                       test_set = test_datagen.flow_from_directory(
                                                                                                                                                                                                                                   'chest_xray_covid/Data/test',
                                                                                                                                                                                                                                   target_size=(64, 64),
                                                                                                                                                                                                                                   batch_size=32,
                                                                                                                                                                                                                                   class_mode='categorical'
Model Preparation
                                                                                                                                                                                                                     from keras.applications import VGG16
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Flatten, Dropout, Input
                                                                                                                                                                                                                    base_model = VGG16(input_shape = (64, 64, 3), include_top=False , weights="imagenet")
                                                                                                                                                                                                                   inp = base_model.input
x = base_model.output
x = Flatten()(x)
x = Dense(1024, activation = 'relu')(x)
x = Dropout(0.5)(x)
                                                                                                                                                                                                                     output = Dense(3, activation = 'softmax')(x)
model = Model(inputs = inp, outputs = output)
                                                                                                                                                                                                                    model.summary()
                                                                                                                                                                                                                   model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
                                                                                                                                                                                                                   test_loss, test_acc = model.evaluate(test_set)
                                                                                                                                                                                                                   C:\Users\lenovo\\ppOsta\local\Programs\Python\Python33\\ib\site-packages\keras\src\trainers\data_adapters\py_dataset_adapt
'PyOstaset' class should call 'super()__init__(*'Noarge)' in its constructor. '*'Noarge' can include 'workers', 'use_multi
.bo not pass these arguments to fit(f)' as step vuil lbe dignord
.self._user_if_super_noc_allad()
.12 \lambda 1 \lambda 2 \lambda 2 \lambda 2 \lambda 1 \lambda 2 \lambda 2 \lambda 1 \lambda 2 \lambda 1 \lambda 2 \lambda 2 \lambda 1 \lambda 2 \lambda 2 \lambda 1 \lambda 2 \lambda 
                                                                                                                                                                                                                   history = model.fit(training_set, epochs = 5, validation_data = val_set)
Visualization
                                                                                                                                                                                                                   import matplotlib.pyplot as plt
                                                                                                                                                                                                                   # Assuming you already trained your model
                                                                                                                                                                                                                   # history = model.fit(...)
                                                                                                                                                                                                                   # PLot accuracy
                                                                                                                                                                                                                   plt.figure(figsize=(8, 6))
                                                                                                                                                                                                                   plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Model Accuracy')
                                                                                                                                                                                                                   plt.xlabel('Epoch')
                                                                                                                                                                                                                   plt.ylabel('Accuracy')
plt.legend(loc='lower right')
                                                                                                                                                                                                                   plt.show()
                                                                                                                                                                                                                   # Plot Loss
                                                                                                                                                                                                                   plt.figure(figsize=(8, 6))
                                                                                                                                                                                                                   plt.plct(history, history['loss'], label='Training Loss')
plt.plct(history.history['val_loss'], label='Validation Loss')
plt.title('Model Loss')
                                                                                                                                                                                                                   plt.xlabel('Epoch')
                                                                                                                                                                                                                   plt.ylabel('Loss')
                                                                                                                                                                                                                   plt.legend(loc='upper right')
```