A Speedrun to the Yoneda Lemma

Pete Su

2021-10-18

1. The Big Picture

The Yoneda Lemma is a basic and beloved result in category theory. Even though it is called a "lemma", a word usually used to describe a minor result that you prove on the way to the main event, the Yoneda lemma *is* a main event. It is a result that expresses one of the main goals of category theory: it characterizes universal facts about general abstract constructs.

Its statement is deceivingly simple [8]:

Let C be a locally small category. Let X be an object of C, and let $F: C \to \mathbf{Sets}$ be a functor from C to the category \mathbf{Sets} . Then there is an invertible mapping

$$Hom(\mathbf{C}(X, -)) \cong FX$$

and this mapping is natural in both F and X.

But as Sean Carroll famously wrote about general relativity, "..., these statements are incomprehensible unless you sling the lingo" [1].

I am going to do the following dumb thing: having stated a version of the lemma above I'm going to define only the parts of the category theory language needed to explain what it means. Then we will restate the result in several ways at the end for perspective.

In the spirit of video game speedruns [5], we will skip entire interesting areas of material in category theory in the name of getting to the end of our "game" as fast as possible. Clearly this will be no substitute for really learning the subject. Any of the references listed at the end will be a good place to start to better understand the whole game.

Note: I am not a mathematician or a category theory expert. I just wrote this down trying to figure out the language. So everything in this document is probably wrong.

2. Categories

Categories have a deliciously chewy multi-part definition.

Definition 1. A category **C** consists of:

- A collection of *objects* that we will denote with upper case letters X, Y, Z, ..., and so on. We call this collection *Objects*(C). Traditionally people write just C to mean *Objects*(C) when the context makes clear what is going on.
- A collection of *arrows* denoted with lower case letters f, g, h, ..., and so on. Other names for *arrows* include *mappings* or *functions* or *morphims*. We will call this collection *Arrows*(**C**).

The objects and arrows of a category satisfy the following conditions:

- Each arrow f maps one object $A \in Objects(\mathbb{C})$ to another object $B \in Objects(\mathbb{C})$ and we denote this by writing $f : A \to B$. A is called the *domain* of f and B the *codomain*.
- For each pair of arrows $f: A \to B$ and $g: B \to C$ we can form a new arrow $g \circ f: A \to C$ called the *composition* of f and g. This is also sometimes written gf.
- For each $A \in Objects(\mathbb{C})$ there is a function $1_A : A \to A$, called the *identity* at A that maps A to itself. Sometimes this object is also written as id_A .

Finally, we have the last two rules:

- For any $f: A \to B$ we have that $1_B \circ f$ and $f \circ 1_A$ are both equal to f.
- Given $f: A \to B$, $g: B \to C$, $h: C \to D$ we have that $(h \circ g) \circ f = h \circ (g \circ f)$, or alternatively (hg)f = h(gf). What this also means is that we can always just write hgf if we want.

We will call the collection of all arrows from A to B $Arrows_{\mathbb{C}}(A,B)$. We will usually write Arrows(A,B) when it's clear what category A and B come from. People also write Hom(A,B) or $Hom_{\mathbb{C}}(A,B)$, or hom(A,B) or just $\mathbb{C}(A,B)$ to mean Arrows(A,B). Here "Hom" stands for homomorphism, which is a standard word for mappings that preserve some kind of structure. Category theory, and the Yoneda lemma, it it turns out, is mostly about the arrows.

For this note the only specific category that we will run into is **Sets**, where the objects are sets and the arrows are mappings between sets.

Speaking of sets, in the definition of categories we were careful about not calling anything a *set*. This is because some categories involve collections of things that are too "large" to be called sets and not get into set theory trouble. Here are two more short definitions about this that we will need.

Definition 2. A category **C** is called *small* if *Arrows*(**C**) is a set.

Definition 3. A category C is called *locally small* if $Arrows_C(A, B)$ is a set for every $A, B \in C$.

For the rest of this note we will only deal with locally small categories, since in the the setup for the lemma, we are given a category **C** that is locally small.

Finally, one more notion that we'll need later is the idea of an isomorphism.

Definition 4. An arrow $f: X \to Y$ in a category C is an *isomorphism* if there exists an arrow $g: B \to A$ such that $gf = 1_X$ and $fg = 1_Y$. We say that the objects X and Y are *isomorphic* to each other whenever there exists an isomorphism between them. If two objects in a category are isomorphic to each other we write $X \cong Y$.

Note that in the category **Sets** the isomorphisms are exactly the invertible mappings between sets. An invertible mapping is also called a *bijection* (because it's injective and surjective, you see), so you will see that word sometimes.

3. Functors

As we navigate our way from basic categories up to the statement of the lemma we will travel through multiple layers conceptual abstraction. Functors are the first step up this ladder.

Functors are the *arrows between categories*. That is, if you were to define the category where the objects were all categories of some kind then the arrows would be functors.

Definition 5. Given two categories C and D a *functor* $F:C\to D$ is defined by two sets of parallel rules. First:

- For each object $X \in \mathbf{C}$ we assign an object $F(X) \in \mathbf{D}$.
- For each arrow $f: X \to Y$ in **C** we assign an arrow $F(f): F(X) \to F(Y)$ in **D**.

So F maps objects in \mathbf{C} to objects in \mathbf{D} and also arrows in \mathbf{C} to arrows in \mathbf{D} such that the domains and codomains match up the right way. That is, the domain of F(f) is F applied to the domain of f, and the codomain of F(f) is F applied to the codomain of f. In addition the following must be true:

- If $f: X \to Y$ and $g: Y \to Z$ are arrows in C then $F(g \circ f) = F(g) \circ F(f)$ (or F(gf) = F(g)F(f)).
- For every $X \in \mathbf{C}$ it is the case that $F(1_X) = 1_{F(X)}$.

Again, a functor consists of two mappings, one on objects and one on arrows. And, these mappings preserve all of the structure of a category, namely domains and codomains, composition, and identities.

If $F : C \to D$ is a functor from a category C to another category D and an object $X \in C$ we may write FX to mean F(X). This is analogous to the more compact notation for composition of arrows above.

Functors are notationally confusing because we are using one letter to denote two mappings. So if $F : \mathbf{C} \to \mathbf{D}$ and $X \in \mathbf{C}$ then F(X) is the functor applied to the object, which will be an object in \mathbf{D} . On the other hand, if $f : A \to B$ is an arrow in \mathbf{C} then F(f) is an arrow in \mathbf{D} . This seems obvious from the definition but in proofs and calculations the notations will often shift back and forth without enough context and can be disorienting.

4. Natural Transformations

Natural transformations are the next step up the ladder. If functors are arrows between categories, then natural transformations are arrows between functors.

Definition 6. Let **C** and **D** be categories, and let F and G be functors $C \to D$. To define a *natural transformation* α from F to G, we assign to each object X of C, an arrow $\alpha_X : FX \to GX$ in **D**, called the *component* of α at X. In addition, for each arrow $f : X \to Y$ of **C**, the following diagram has to commute:

$$\begin{array}{ccc} FX & \xrightarrow{Ff} & FY \\ \downarrow \alpha_X & & \downarrow \alpha_Y \\ GX & \xrightarrow{Gf} & GY \end{array}$$

This is the first commutative diagram that I've tossed up. There is no magic here. The idea is that you get the same result no matter which way you travel through the diagram. So here $\alpha_Y \circ F$ and $G \circ \alpha_X$ must be equal.

We write natural transformations with double arrows, $\alpha : F \Rightarrow G$, to distinguish them in diagrams from functors (which are written with single arrows):

You might wonder to yourself: what makes natural transformations "natural"? The answer appears to be related to the fact that you can construct them from *only* what is given to you in the categories at hand. The natural transformation takes the action of F on C and lines it up exactly with the action of G on C. No other assumptions or conditions are needed. In this sense they define a relationship between functors that is just sitting there in the world no matter what, and thus "natural". Another apt way of putting this is that natural transformations give a canonical way of moving between the images of two functors [2].

As with arrows, it will be useful to define what an isomorphism means in the context of natural transformations:

Definition 7. A *natural isomorphism* is a natural transformation $\alpha : F \Rightarrow G$ in which every component α_X is an isomorphism. In this case, the natural isomorphism may be depicted as $\alpha : F \cong G$.

5. Functor Categories

We are almost there, but there are two more steps up the abstraction ladder. We have in our one hand objects called functors, and we have in our other hand the natural transformations. So the next obvious thing is to make a category out of them.

Definition 8. Let **C** and **D** be categories. The *functor category* from **C** to **D** is constructed as follows:

- The objects are functors $F: C \rightarrow D$;
- The arrows are natural transformations $\alpha : F \Rightarrow G$.

Right now you should be wondering to yourself: "wait, does this definition actually work?" I have brazenly claimed without any justification that the it's OK to use the natural transformations as arrows. Luckily it's fairly clear that this works out if you just do everything component-wise. So if we have all of these things:

- Three functors, $F: C \to D$ and $G: C \to D$ and $H: C \to D$.
- Two natural transformations $\alpha : F \Rightarrow G$ and $\beta : G \Rightarrow H$
- One object $X \in \mathbf{C}$.

Then you can define $(\beta \circ \alpha)(X) = \beta(X) \circ \alpha(X)$ and you get the right behavior. Similarly, the identity transformation 1_F can be defined component-wise: $(1_F)(X) = 1_{F(X)}$.

There are a lot of standard notations for the functor category, none of which I really like. The most popular seems to be [C, D], but you also see D^C , and various abbreviations like Fun(C, D) or Func(C, D), or Funct(C, D). I think we should just spell it out and use Functor(C, D). So there.

Now we can define this notation:

Definition 9. Let C and D be categories, and let $F, G \in Functor(C, D)$. Then we'll write Natural(F, G) for the set of all natural transformations from F to G, which in this context is the same as the arrows from F to G in the functor category.

You will also see people write Hom(F,G), $Hom_{\mathbb{C}}(F,G)$ or even $\mathbb{C}(F,G)$ for this in the context a functor category \mathbb{C} .

6. Representing Functors

The last conceptual step that we need is a way to relate *functors* to *objects*. The following definition is a natural way to do this once you see how it works but is also probably the most confusing definition in these notes.

Definition 10. Given a locally small category C and an object $X \in C$ we define the functor

$$Arrows(X, -) : \mathbf{C} \to \mathbf{Sets}$$

using the following assignments:

• A mapping from $C \to \textbf{Sets}$ that assigns to each $Y \in \textit{Objects}(C)$ the set Arrows(X,Y)

• A mapping from $Arrows(\mathbf{C}) \to Arrows(\mathbf{Sets})$ that assigns to each arrow $f: A \to B$ to a mapping f_* defined by $f_*(g) = f \circ g$ for each arrow $g: X \to A$.

The notation Arrows(X, -) needs a bit of explanation. Here the idea is that we have defined a mapping with two arguments, but then fixed the object X. Then we use the "-" symbol as a placeholder for the second argument. So Arrows(X, Y) is the value of the mapping as we vary the second argument through all the other objects Y. This is a bit of an abuse of notation since we are apparently using the symbol Arrows to mean two different things. Oh well.

The definition of the mapping for arrows also needs a bit of explanation. Given $A, B \in \mathbf{C}$ and an arrow $f: A \to B$, it should be the case that Arrows(X, -) applied to f is an arrow that maps $Arrows(X, A) \to Arrows(X, B)$. We will call this arrow f_* . If $g: X \to A$ is in Arrows(X, A) then the value that we want for f_* at g is $f_*(g) = (f \circ g): X \to B$. This mapping is called the *post-composition* map of f since we apply f *after* g. You also see it written as $f \circ -$. The *pre-composition* map is then f^* or $- \circ f$.

Thus, we have worked out that the value of Arrows(X, -) at f should be the arrow $f \circ -$. Sometimes you will see this written $Arrows(X, f) = f \circ -$, which I find a bit odd because now we are overloading the kinds of things that can go into the "-" slot.

Check over this formula in your head, and note that there are *two* function applications (one for the functor, and one inside that for the post-composition arrow), and two different kinds of placeholder.

Other notations for this functor include Hom(X,-), $Hom_{\mathbb{C}}(X,-)$, H^X , h^X , and just plain $\mathbb{C}(X,-)$. In my notation we should have written this as $Arrows_{\mathbb{C}}(X,-)$, but I'm lazy. This kind of functor is also called a *hom-functor*.

Finally, we can give two more important definitions.

Definition 11. Given an object $X \in \mathbb{C}$ we call the functor Arrows(X, -) defined above the functor *represented* by X.

In addition, we can characterize another important relationship between objects and functors:

Definition 12. Let **C** be a category. A functor $F : \mathbf{C} \to \mathbf{Sets}$ is called *representable* if it is naturally isomorphic to the functor $Arrows_{\mathbf{C}}(X, -) : \mathbf{C} \to \mathbf{Sets}$ for some object X of **C**. In that case we call X the *representing object*.

7. Opposites and Duals

Our next jump in abstraction is to talk about duality. Duality in mathematics comes up in a lot of different ways. Covering it all is way beyond the scope of these notes. But the following definition is a basic part of category theory so it's worth including.

Definition 13. Let C be a category. Then we write C^{op} for the *opposite* or *dual* category of C, and define it as follows:

- The objects of C^{op} are the same as the objects of C.
- $Arrows(\mathbf{C}^{op})$ is defined by taking each arrow $f: X \to Y$ in $Arrows(\mathbf{C})$ and flipping their direction, so we put $f': Y \to X$ into $Arrows(\mathbf{C}^{op})$. In particular for $X, Y \in Objects(\mathbf{C})$ we have $Arrows_{\mathbf{C}}(A, B) = Arrows_{\mathbf{C}^{op}}(B, A)$ (or $\mathbf{C}(A, B) = \mathbf{C}^{op}(B, A)$.
- Composition of arrows is the same, but with the arguments reversed.

The *principle of duality* then says, informally, that every categorical definition, theorem and proof has a dual, obtained by reversing all the arrows.

Duality also applies to functors.

Definition 14. Given categories C and D a *contravariant* functor from C to D is a functor $F: C^{op} \to D$ where:

- $F(X) \in Objects(\mathbf{D})$ for each $X \in Objects(\mathbf{C})$.
- For each arrow $f \in Arrows(\mathbf{C})$ an arrow $F(f) : FY \to FX$ in $Arrows(\mathbf{D})$.

In addition

- For any two arrows f, $g \in Arrows(\mathbb{C})$ where $g \circ f$ is defined we have $F(f) \circ F(g) = F(g \circ f)$.
- For each $X \in Objects(\mathbf{C})$ we have $1_{F(X)} = F(1_X)$

Note how the arrows and composition go backwards when they need to. With this terminology in mind, we call regular functors from $C \to D$ covariant.

8. Yoneda Again

Now we have all the language we need to look at the statement of the lemma again. So, here is what we wrote down before, more verbosely, and in my notation.

Lemma 1 (Yoneda). Let **C** be a locally small category, $F : \mathbf{C} \to \mathbf{Sets}$ a functor, and $X \in Objects(\mathbf{C})$. We can define a mapping from $Natural(Arrows(X, -), F) \to FX$ by assigning each transformation $\alpha : Arrows(X, -) \Rightarrow F$ the value $\alpha_X(1_X) \in FX$. This mapping is invertible and is natural in both F and X.

So now we can break it down:

- In principle the natural transformations from *Arrows*(*X*, −) ⇒ F could be a giant complicated thing.
- But actually it can only be as large as FX. The fact that this mapping is invertible implies that Natural(Arrows(X, -), F) and FX are isomorphic (e.g. $Natural(Arrows(X, -), F) \cong FX$).
- In other words, every natural transformation from Arrows(X, -) to F is the same as an element of the set FX. In particular, all we need to know is how $\alpha_X(1_X)$ is defined to know how any of the natural transformations are defined.
- Which is pretty amazing.

To write this in the dual language, you just change Arrows(X, -) to Arrows(-, X), which switches the direction of all the arrows and the order of composition in the composition maps.

So with that, here are some other ways people write the result, and how their lingo translates to my notational scheme. As one last bit of terminology, in some of the definitions below the word *bijection* is used to mean an invertible mapping.

This statement is due to Tom Leinster [4], and uses the contravariant language.

Lemma 2 (Yoneda). Let **C** be a locally small category. Then

$$[\textbf{C}^{op},\textbf{Sets}](H_X,F)\cong F(X)$$

naturally in $X \in \mathbf{C}$ and $F \in [\mathbf{C}^{op}, \mathbf{Sets}]$.

Here $[C^{op}, Sets]$ is the category of functors from C^{op} to Sets and H_X is Arrows(-,X). The notation $[C^{op}, Sets](H_X,F)$ denotes the arrows in the functor category $[C^{op}, Sets]$ between H_X and F, so it's the same as $Natural(H_X,F)$.

Emily Rhiel's [8] version is what I used at the top:

Lemma 3 (Yoneda). Let **C** be a locally small category and $X \in \mathbf{C}$. Then for any functor $F : \mathbf{C} \to \mathbf{Sets}$ there is a bijection

$$Hom(\mathbf{C}(X, -), F) \cong FX$$

that associates each natural transformation $\alpha : \mathbf{C}(X, -) \Rightarrow F$ with the element $\alpha_X(1_X) \in FX$. Moreover, this correspondence is natural in both X and F.

Here $Hom(\mathbf{C}(X, -), F)$ means Natural(Arrows(X, -), F). I think this is my favorite "standard" way of writing this.

Peter Smith [10] does this:

Lemma 4 (Yoneda). For any locally small category \mathbb{C} , object $X \in \mathbb{C}$, and functor $F : \mathbb{C} \to \mathbf{Sets}$ we have $Nat(\mathbb{C}(X, -), F) \cong FX$ both naturally in $X \in \mathbb{C}$ and $F \in [\mathbb{C}, \mathbf{Sets}]$.

He uses the [C, Sets] notation for the functor category, and *Nat* where we use *Natural*.

Paolo Perrone [7] writes the contravariant version, and uses the standard term "presheaf" for a functor from C^{op} to **Sets**.

Lemma 5 (Yoneda). Let **C** be a category, let X be an object of **C**, and let $F : \mathbf{C}^{op} \to \mathbf{Sets}$ be a presheaf on **C**. Consider the map from

$$Hom_{[\mathbf{C}^{\mathrm{op}},\mathbf{Sets}]}(Hom_{\mathbf{C}}(-,X),\mathsf{F})\to\mathsf{F}X$$

assigning to a natural transformation $\alpha: Hom_{\mathbb{C}}(-,X) \Rightarrow F$ the element $\alpha_X(\mathrm{id}_X) \in FX$, which is the value of the component α_X of α on the identity at X.

This assignment is a bijection, and it is natural both in X and in F.

Here he writes $Hom_{\mathbb{C}}$ for $Arrows_{\mathbb{C}}$ and $Hom_{[\mathbb{C}^{op}, \mathbf{Sets}]}$ to mean the arrows in the functor category $[\mathbb{C}^{op}, \mathbf{Sets}]$, which are the natural transformations.

Finally, Peter Johnstone [3] has my favorite, relatively concrete statement:

Lemma 6 (Yoneda). Let **C** be a locally small category, let X be an object of **C** and let $F: C \to \mathbf{Sets}$ be a functor. Then

- (i) there is a bijection between natural transformations $C(X, -) \Rightarrow F$
- (ii) the bijection in (i) is natural in both F and X.

9. One More Thing

Your reward for having climbed with me all the way the abstraction ladder to get to our result is that I'm going to give you one more surprise step up in abstraction!

Suppose you are given an object Y and you apply the Yoneda lemma by substituting Arrows(Y, -) for the functor F. Then

$$Natural(Arrows(X, -), Arrows(Y, -)) \cong Arrows(Y, -)(X) = Arrows(Y, X)$$

or

$$Arrows(X, Y) \cong Natural(Arrows(Y, -), Arrows(X, -))$$

Note the order of the arguments! We can also write:

$$Arrows(X, Y) \cong Natural(Arrows(-, X), Arrows(-, Y))$$

Now the idea is to use this fact to define a yet another new functor $\mathcal{Y}: \mathbf{C} \to Arrows(\mathbf{C}^{op}, \mathbf{Sets})$ that maps objects to arrow functors and arrows to their *pre*composition map. So for each object Y and arrow f define

$$\mathcal{Y}(Y) = Arrows(-, Y) : \mathbb{C}^{op} \to \mathbf{Sets}$$

and

$$\mathcal{Y}(f) = f^* = - \circ f$$

Notice the direction of the arrows! This functor wraps up all of the represented for all of the objects in **C** into one mapping, and so is our last jump up the abstraction chain.

Using the Yoneda lemma we can show that this functor is an *embedding* of C inside $Arrows(C^{op}, Sets)$, which amounts to meaning that both mappings above are invertible. The functor \mathcal{Y} is then called the *Yoneda* embedding. Of course you can define this in the dual way too if you want.

This is the origin of statements like "The Yoneda lemma says that every object in **C** can be understood by understanding the maps into (or out of) it.". This notion can be made precise:

Corollary 7. Let **C**, X, and Y be given as above.

- X and Y are isomorphic if and only if for every object $A \in \mathbb{C}$, the sets Arrows(X, A) and Arrows(Y, A) are naturally isomorphic.
- X and Y are isomorphic if and only if the functors that they represent are naturally isomorphic. In particular, if X and Y represent the same functor then they must be isomorphic.

10. Cheat Sheet

C, D Categories.

C^{op} Opposite categories.

Objects Objects in a category category C. Often just written C.

 $Arrows(\mathbf{C})$ Arrows in a category.

 $Arrows_{\mathbb{C}}(X,Y)$ Arrows between two objects. Also written Arrows(X,Y) or

Hom(X, Y) or $Hom_{\mathbb{C}}(A, B)$ or just $\mathbb{C}(X, Y)$.

 $f: X \to Y$ An arrow from X to Y. $g \circ f$, gf Composition of arrows.

 $X \cong Y$ Isomorphism.

 $F: \mathbf{C} \to \mathbf{D} \qquad \text{A functor from } \mathbf{C} \text{ to } \mathbf{D}.$ $\alpha: F \Rightarrow G \qquad \text{Natural transformation}.$

Functor(**C**, **D**) The functor category between **C** and **D**. Also written [**C**, **D**]

or **D**^C.

Natural(F, G) The collection of natural transformations from F to G. Also

written [C, D](F, G), or Nat(F, G) or just Hom(F, G).

Arrows(X, -) The represented or "arrow" functor for X. Also called the

"hom" functor and written C(X, -), H^X , hom, or Hom(X, -).

 $f \circ -, - \circ f$ Pre- and post-composition maps. Also written f_* and f^* .

References

- [1] Sean Carroll, A No-Nonsense Introduction to General Relativity, 2001.
- [2] Julia Goedecke, Category Theory Notes, 2013.
- [3] Peter Johnstone, Category Theory, notes written by David Mehrle, 2015.
- [4] Tom Leinster, Basic Category Theory, 2016.
- [5] LobosJr, Dark Souls 1 Speedrun, Personal Best, 2013.
- [6] Saunders Mac Lane, *Categories for the Working Mathematician*, Second Edition, Springer, 1978.
- [7] Paolo Perrone, Notes on Category Theory with examples from basic mathematics.
- [8] Emily Rhiel, Category Theory in Context, Dover, 2016.
- [9] Emily Rhiel, ACT 2020 Tutorial: The Yoneda lemma in the category of matrices.
- [10] Peter Smith, Category Theory: A Gentle Introduction, 2019.