Machine Learning HW2

0560206 蔡孝謙

1.(a)

1.(b)(HW2_1_b.m)

Mathodology

Training by generative model

我把三個class分別用不同的matrix 存起來,並獲得以下變數

- N_k為class k的資料量
- Class k的 π , 其中 $\pi_k=N_k/N$
- Class k的μ,每個μ都是1*4的vector,因為有四個attribute
- Class k的S,用課本的公式算出來的
- 全部共用的 $S = \sum N_k/N *S_k$

有了這些值,就可以算Maximum likelihood,將 x_n 帶入每個class的pdf ($N(x_n \mid \mu_k, S)$) 找出比較大的pdf就是那個要的class

PCA

先將上面的S取eigenvector,並將原本的資料乘上前n大的eigenvalue對應到的eigenvector,就可以降維了

LDA

照課本的公式算出Sw和Sb, 然後將inv(Sw)*Sb取eigenvector, 再用跟PCA一樣的方法就能降維了

Result

[Generative model]

[Training data]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	39	0	0	39	100%
VIR	0	40	1	41	98%
VER	0	2	38	40	95%
Total	39	42	39	120	

[Testing data]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	11	0	0	11	100%
VIR	0	9	0	9	100%
VER	0	0	10	10	100%
Total	11	9	10	30	

[PCA Reduce dimension with generative model]

[Training data, Dimension =3]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	39	0	0	39	100%
VIR	0	40	1	41	98%
VER	0	2	38	40	95%
Total	39	42	39	120	

[Testing data, Dimension =3]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	11	0	0	11	100%
VIR	0	9	0	9	100%
VER	0	0	10	10	100%
Total	11	9	10	30	

[Training data, Dimension =2]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	39	0	0	39	100%
VIR	0	33	8	41	80%
VER	0	3	37	40	93%
Total	39	36	45	120	

[Testing data, Dimension =2]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	11	0	0	11	100%
VIR	0	7	2	9	78%
VER	0	3	7	10	70%
Total	11	10	9	30	

[Training data, Dimension =1]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	39	0	0	39	100%
VIR	0	31	10	41	76%
VER	3	5	32	40	80%
Total	42	36	42	120	

[Testing data, Dimension =1]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	11	0	0	11	100%
VIR	0	7	2	9	78%
VER	1	3	6	10	60%
Total	12	10	8	30	

[LDA Reduce dimension with generative model]

[Training data, Dimension =3]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	39	0	0	39	100%
VIR	0	40	1	41	98%
VER	0	2	38	40	95%
Total	39	42	39	120	

[Testing data, Dimension =3]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	11	0	0	11	100%
VIR	0	9	0	9	100%
VER	0	0	10	10	100%
Total	11	9	10	30	

[Training data, Dimension =2]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	39	0	0	39	100%
VIR	0	40	1	41	98%
VER	0	2	38	40	95%
Total	39	42	39	120	

[Testing data, Dimension =2]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	11	0	0	11	100%
VIR	0	7	2	9	78%
VER	0	3	7	10	70%
Total	11	10	9	30	

[Training data, Dimension =1]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	39	0	0	39	100%
VIR	0	40	1	41	98%
VER	0	2	38	40	95%
Total	39	42	39	120	

[Testing data, Dimension =1]

True\Predict	SET	VIR	VER	Total	Accuracy
SET	11	0	0	11	100%
VIR	0	7	2	9	78%
VER	1	3	6	10	60%
Total	12	10	8	30	

可以看到幾乎都可以把三種class分開,特別是SET(藍色的點),VIR跟VER也只有少部分有重疊,可以得到即使我們把dim從4維降到3維,經過適當的轉換(PCA、LDA皆是以eigenevector為座標軸)後,分類結果還是不錯的

2.(a)(HW2_2.m)

Mathodology

Gradient descent

因為沒有要把x經過 ϕ 的feature space 轉換,所以代課本的公式的時候就直接用x當作 $\phi(x)$ 先init一個w,然後固定learning rate,在照課本的公式去迭代,直到cross-entropy error<6 就停止訓練w

Newton Method

跟上題一樣,只是learning rate變成一個 $Matrix(X^T*H^{-1}*X)$,也是照課本的公式但因為一開始出現NAN,所以我error前面乘上一個 $\lambda=\exp(-2)$,就沒有這個問題

Result

[Gradient descent]

True\Predict	Class 1	Class 2	Class 3	Class 4	Class 5	Total	Accuarcy
Class 1	10	0	0	0	0	10	100%
Class 2	0	10	0	0	0	10	100%
Class 3	0	0	10	0	0	10	100%
Class 4	3	0	0	5	2	10	50%
Class 5	0	0	0	0	10	10	100%
Total	13	10	10	5	12	50	

Misclassification rate = 1-45/50 = 10%

Iteration times = 3551

True\Predict	Class 1	Class 2	Class 3	Class 4	Class 5	Total	Accuarcy
Class 1	10	0	0	0	0	10	100%
Class 2	0	10	0	0	0	10	100%
Class 3	0	0	10	0	0	10	100%
Class 4	3	0	0	5	2	10	50%
Class 5	0	0	0	0	10	10	100%
Total	13	10	10	5	12	50	

Misclassification rate = 1-45/50 = 10%Iteration times = 31

可以發現在牛頓法的iteration times比一般的Gradient descent快很多(3551次 ---> 31次)!!

PS: 若將λ變小(exp(-3)), iteration times會變多,是因為step size的縮小所以要迭代較多次

