WEAR TEST IN PIN-ON DISC MACHINE

· Acm of Experiment:

To determine wear of steel and Brass specimen

- sphoustus Required: Prin-on Disc Machine (Model TR-20), Digital balance, steel and Brass specimen pins
- strong: One material is taken in the form of a fin and other one in the form of a disc. The disc rotates and the fin is loaded against the disc. A load sensor measures the frictional force and a displacement sensor measures the wear. Wear is also measured by loss of weight of the fin. Wear is plotted against load to characterize the material property Both adhosive and abrasive wear can be estimated theoretically using Archard's law

0 = KWL where

9 - Volume of material lost from softer body (m3)

L - Total sliding distance (m)

W - Applied load (N)

H - Hardness of softer body (N/m2)

K- wear constant of Auchardie wear coefficient

Scanned by CamScanner

Observation:

TO BE FINANCE I THE FALL DAY

Material 1: steel

Time: 60s at each

Initial weight: 16.7845

	SL. No.	LOAD (Kg)	RPM Dis	FRICTIONAL FORCE (N)	WEAR (GM)
t	1	0.5	300	4.5	0.0016
	2. 2.	Medica 18	14 300 to	was w 78,19 ; how	10 - 0.0031 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3	1.5	K 11300 1/2.	100 to 9,500 1,000	0.0045
	4	2	300	9.6	0-0062
,	L. Tarris	i - 1 185	ne Inil	man a law inter	and the same of th

Material 2: Bross Time: 60s ot each Initial weight: 31.1873 gm

करिया केर तथ तथ तथ प्राथम के लिए के लेखिट केर तथित अन्ति

The first to deaded opened the wise. A lend request

SL. No.	LOAD CKg)	TO RIPM 1	FRICTIONAL FORCE (N)	WEAR (GIM)
	10.511	300 mills	y,1.46 St M	
2.	1	300	1-55 tour 2	0.0426
3.	1-5	300	1.75 MA	0.0930
4.	2	300	3.70	0.1432
(176 5. (1) (2)	2.5,	300	1.40	0.1958

do no a septency with former or into

en I ear proof the

٠	DISCUSSIONS					
>	wear in race of steel is also as compared to beau.					
	wear in both to case of steel and those increases with inversely in load this may be due to increasing smoothness of surface.					
,	Where water 5 main elypted not wear:					
	1) Almasine +) High temperature					
	2) sympact 3) coesacine					
	2) Adhesing					
>	Wear is inversely proportional to bardness of material.					
	thursfore from observations, it can be concluded that					
	Brow is notice than still					
	Relevant Graphs on Next Page					
	Jago and Nove Page					

Scanned by CamScanner