

DEPARTMENT OF COMPUTER APPLICATIONS

B.C.A. - SECOND YEAR (2014-2015 REGULATION)

THIRD SEMESTER

LESSON PLAN

SRM UNIVERSITY

FACULTY OF SCIENCE AND HUMANITIES

SRM NAGAR, KATTANKULATHUR – 603 203

Semester	Course Code	Course Title	L	T	P	Total of LTP	C
Ш	UCA14301	PROGRAMMING IN JAVA	3	2		5	4

UNIT I - INTRODUCTION TO JAVA

The Genesis of Java- Buzzwords- Object oriented Concepts- Lexical Issues- Data types and variables- Arrays- Operators - Control Statements: Selection- Iteration and jump Statement.

UNIT II - CLASSES AND METHODS

Introducing classes - Class fundamentals - Declaring Objects - Assigning object reference variables. Introducing method - Constructors- The this Keyword- Garbage Collection-Finalize() method- Overloading methods- Using objects as parameters- Argument Passing - Returning Objects- Recursion - static and final keyword - Nested and Inner Classes - String Class - Command Line arguments.

UNIT III - INHERITANCE, PACKAGES, INTERFACES

Inheritance Basics - using Super- method Overriding - Dynamic method dispatch - abstract classes- Using final with Inheritance - Packages - Access Protection - Importing packages - Interfaces.

UNIT IV - EXCEPTION HANDLING, MULTITHREADING, APPLET

Exception handling fundamentals- Types- Using try, catch, throw, throws and finally - Java thread model - Creating a Thread - Creating multiple threads - Thread priorities - synchronization - Inter-thread communication - Applet Basics - Applet Skeleton - HTML applet tag - Passing parameters to applet

UNIT V - I/O STREAMS, UTILITY CLASSES, EVENT HANDLING

I/O Streams: Byte Streams – Character Streams – Reading and Writing Files — Legacy Classes and Interface: Vector, Stack, The Enumeration Interface - Utility classes: String Tokenizer, Date, Calendar, Gregorian Calendar, Random, Scanner – Introduction to Event Handling: Event Classes – Event Listener Interfaces.

TEXT BOOK

1. Herbert Schildt, (2007),"Java: The Complete Reference", Seventh Edition, McGraw Hill.

REFERENCES

- 1. Arnold and J.Gosling,(2000), "The Java Programming Language", Second edition, Addision Wesley.
- 2. Art Gittleman, (2002), "Ultimate Java Programming", Wiley Publications.

LESSON PLAN

Subject Name: PROGRAMMING IN JAVA

Subject Code: UCA14301

	UNIT I			
Lecture Hour	Description	Reference with chapter		
1	The Genesis of Java	TB1, Ch-1		
2	Buzzwords	TB1, Ch-1		
3	Object Oriented Concepts	TB1, Ch-2		
4	Lexical Issues	TB1, Ch-2		
5	Data Types	TB1, Ch-3		
6	Variables	TB1, Ch-3		
7	Arrays	TB1, Ch-3		
8	(Contd.) Arrays	TB1, Ch-3		
9	Operators	TB1, Ch-4		
10	(Contd.) Operators	TB1, Ch-4		
11	Control Statements: Selection	TB1, Ch-5		
12	Iteration	TB1, Ch-5		
13	Jump Statement	TB1, Ch-5		

UNIT II			
Lecture Hour	Description	Reference with chapter	
14	Introducing Classes	TB1, Ch-6	
15	Class Fundamentals	TB1, Ch-6	
16	Declaring Objects	TB1, Ch-6	
17	Assigning Object Reference Variables	TB1, Ch-6	
18	Introducing Method	TB1 - Ch-6	
19	Constructors	TB1, Ch-6	
20	The this keyword	TB1, Ch-6	
21	Garbage Collection	TB1, Ch-6	

22	Finalize() method	TB1, Ch-6
23	Overloading Methods	TB1, Ch-7
24	Using objects as parameters	TB1, Ch-7
25	Argument Passing	TB1, Ch-7
26	Returning Objects	TB1, Ch-7
27	Recursion	TB1, Ch-7
28	Static and final keyword	TB1, Ch-7
29	Nested and Inner Classes	TB1, Ch-7
30	String Class	TB1, Ch-7
31	(Contd.) String Class	TB1, Ch-7
32	Command Line Arguments	TB1, Ch-7

	UNIT III			
Lecture Hour	Description	Reference with chapter		
33	Inheritance Basics	TB1, Ch-8		
34	(Contd.) Inheritance Basics	TB1, Ch-8		
35	Using Super	TB1, Ch-8		
36	Method Overriding	TB1, Ch-8		
37	Dynamic Method Dispatch	TB1, Ch-8		
38	Abstract Classes	TB1, Ch-8		
39	Using final with Inheritance	TB1, Ch-8		
40	Packages	TB1, Ch-9		
41	Access Protection	TB1, Ch-9		
42	Importing Packages	TB1, Ch-9		
43	Interfaces	TB1, Ch-9		
44	(Contd.) Interfaces	TB1, Ch-9		

	UNIT IV			
Lecture Hour	Description	Reference with chapter		
45	Exception Handling Fundamentals	TB1, Ch-10		
46	Types	TB1, Ch-10		
47	Using try, catch,	TB1, Ch-10		
48	Throw, throws	TB1, Ch-10		
49	finally	TB1, Ch-10		
50	Java thread Model	TB1, Ch-11		
51	Creating a thread	TB1, Ch-11		
52	Creating Multiple Threads	TB1, Ch-11		
53	Thread Priorities	TB1, Ch-11		
54	Synchronization	TB1, Ch-11		
55	Inter-thread Communication	TB1, Ch-11		
56	Applet Basics	TB1, Ch-12		
57	Applet Skeleton	TB1, Ch-12		
58	HTML Applet Tag	TB1, Ch-12		
59	Passing Parameters to Applet	TB1, Ch-12		

UNIT V			
Lecture Hour	Description	Reference with chapter	
60	I/O Streams: Byte Streams	TB1, Ch-13	
61	Character Streams	TB1, Ch-13	
62	Reading Files	TB1, Ch-13	
63	Writing Files	TB1, Ch-13	
64	Legacy Classes and Interface: Vector	TB1, Ch-17	
65	Stack	TB1, Ch-17	
66	The Enumeration Interface	TB1, Ch-17	
67	Utility Classes: String Tokenizer	TB1, Ch-18	
68	Date	TB1, Ch-18	
69	Calendar	TB1, Ch-18	
70	Gregorian Calendar	TB1, Ch-18	
71	Random	TB1, Ch-18	
72	Scanner	TB1, Ch-18	
73	Introduction to Event Handling: Event Classes	TB1, Ch-22	
74	(Contd.) Event Classes	TB1, Ch-22	
75	Event Listener Interfaces	TB1, Ch-22	

Semester	Course Code	Course Title	L	T	P	Total of LTP	С
III	UCA14302	MANAGING DATABASE	3	2	-	5	4

Unit I: INTRODUCTION

Data-Database-DBMS-File Processing system vs. DBMS-Data Independence-Data catalog-Three schema architecture of a database-Functional components of DB- ER Model: Entity-Attributes and its type – Entity and Relationship-Design issues of ER Model-Constraints.

Unit II: STRUCTURED QUERY LANGUAGE(SQL)

Overviews of SQL- Data Definition commands, set operations, aggregate function, null values, Data Manipulation commands, Data control commands, Views in SQL, Nested complex queries.

Unit III: RELATIONAL - DATABASE DESIGN.

Relational- Database Design: Design guidelines for relational schema, Functional Dependencies – Normal Forms – 1NF – 2NF-3NF- BCNF – 4NF-.Integrity and security in database: Domain constraints, Referential integrity.

Unit IV: TRANSACTION MANAGEMENT

Transaction MANAGEMENT: Transaction concept, Transaction state, ACID Properties, Implementation of Atomicity and Durability, concurrent executions, Serializability, Recoverability, Implementation of isolation.

Unit V: CONCURRENCY CONTROL AND PHYSICAL STORAGE MEDIA

Concurrency control: lock-based, Time stamp-based, validation-based protocols, Deadlock handling, Recovery system, Failure classification, storage structure, Overview of physical storage Media: Magnetic Disks- RAID- Tertiary storage_ File Organization-Organization of Records in Files- Indexing and Hashing- Ordered indices- Static Hashing-Dynamic Hashing.

BOOK FOR STUDY:

- 1. Abraham Silberschatz, Henry F. Korth and S. Sudarshan- "Database System Concepts", Fourth Edition, McGraw-Hill, 2002.(Unit I,IV and V)
- 2. Date C.J., Kannan A., Swamynathan S., (2006), "An Introduction to Database Systems", Eighth Edition, Pearson Education. (Unit II and III)

REFERENCES:

1. Ramez Elmasri and Shamkant B. Navathe, "Fundamental Database Systems", Third Edition, Pearson Education, 2003.

LESSON PLAN

Subject Name: Subject Code: MANAGING DATABASE

UCA14302

UNIT I			
Lecture Hour	Description	Reference with chapter	
1	Data-Database-DBMS	TB1,ch-1.1	
2	File Systems versus Database systems	TB1, Ch-1.2	
3	Data Independence : Logical and Physical	TB2, Ch-2.2.2	
4	Data catalog	TB2,Ch -3.3	
5	Data Models: Entity Relationship model	TB1, Ch-1.3.3	
6	Relational Model, Hierarchical and Network Model	TB1, Ch-1.3.3	
7	DBMS Architecture : The three schema architecture	TB2, Ch-2.2	
8	Data Modeling using Entity Relationship model	TB2, Ch-3	
9	Entity types, Entity Sets, Attributes, and Keys	TB2, Ch-3.3	
10	Relationships, Relationship types and constraints	TB2, Ch-3.4	
11	Weak Entity types, Refining the ER Design for the company database	TB2, Ch-3.5 TB2, Ch-3.6	
12	ER Diagrams, Naming Conventions	TB2, Ch-3.7	
13	Design Issues of ER Model	TB2, Ch-3.7	
14	Constraints	TB2, Ch-4.3	

UNIT II			
Lecture Hour	Description	Reference with chapter	
15	Overview of SQL	TB1, Ch – 3.1	
16	Data Definition Commands- Create, Alter	TB1, Ch-3.2	
17	Data Definition Commands- Drop, Desc	TB1, Ch-3.2	
18	Set Operations- Union , Union all, Intersect, Minus	TB1, Ch-3.4	
19	Set Operations- Cartesian product, division	TB1,Ch-3.4	
20	Aggregate Functions- maxi, min, sum, avg	TB1, Ch-3.5	
21	Aggregate Functions- count and null values	TB1, Ch-3.5,3.6	
22	Data Manipulation Commands- insert, delete	TB1, Ch-3.10	
23	Data Manipulation Commands- update and select	TB1, Ch-3.10	
24	Views in SQL	TB1 - Ch-3.9	
25	Nested queries	TB1, Ch-3.7	
26	Complex queries	TB1, Ch-3.8	
27	Data control commands	TB1, Ch-3.10.5	

UNIT III			
Lecture Hour	Description	Reference with chapter	
28	Database Design- Introduction	TB2, Ch-11.1	
29	Relational Model Concepts: Domains, Attributes, and Relations	TB2, Ch-7.1, 7.1.1	
30	Characteristics of Relations, Relational Model Notation	TB2, Ch-7.1.2, 7.1.3	
31	Relational Algebra: Select, Project, Rename Operation	TB2, Ch-7.4	
32	Functional Dependencies	TB2, Ch-12.2	
33	Non-loss Decomposition	TB2,Ch-12.2	
34	Normal Forms:1NF, 2NF, 3NF	TB2, Ch-12.3	
35	Boyce/codd Normal Form	TB2, Ch-12.5	
36	Multi-valued dependencies and 4NF	TB2, Ch-13.2	
37	Join Dependencies and 5NF	TB2, Ch-13.3	
38	Integrity and security in database- Domain constraint	TB2, Ch-9.5	
39	Integrity and security in database-Referential integrity	TB2, Ch-9.4	

UNIT IV			
Lecture Hour	Description	Reference with chapter	
40	Transaction Management- Transaction concept	TB1, Ch-15.1	
41	Properties of Transactions- ACID	TB1, Ch-15.1	
42	Transaction States	TB1, Ch-15.2	
43	Implementation of Atomicity and Durability	TB1, Ch-15.3	
44	Concurrent Executions	TB1, Ch-15.4	
45	Serializability-Introduction	TB1, Ch-15.5	
46	Confilict Serializability	TB1, Ch-15.5.1	
47	Non-Conflict Serializability	TB1, Ch-15.5.1	
48	View Serializability	TB1, Ch-15.5.2	
49	Recoverability- Recoverable Schedule	TB1, Ch-15.6.1	
50	Recoverability- Cascadeless Schedule	TB1, Ch-15.6.2	
51	Implementation of isolation	TB1, Ch-14.7	

UNIT V		
Lecture Hour	Description	Reference with chapter
52	Concurrency control	TB1, Ch-16
53	Locking Techniques: Types of Locks	TB1., Ch-16.1

54	Dealing with Deadlock and Starvation	TB1, Ch-16.6
55	Time Stamp Ordering	TB1, Ch-16.2
56	Validation Techniques	TB1, Ch-16.3
57	Granularity of Data Items	TB1, Ch-16.4
58	Recovery Concepts	TB1, Ch-17
59	Shadow Paging	TB1, Ch-11.3.1
60	Log Based Recovery	TB1, Ch-17.4
61	Secondary storage Devices: Hardware Description of Disk Devices	TB1, Ch - 11
62	Magnetic Tape Storage Devices	TB1, Ch - 11.1,11.2
63	RAID Technology	TB1, Ch-11.3
64	RAID Organizations and Levels	TB1, Ch-11.3.3
65	File Operations	TB1, Ch-11.6
66	Hashing Techniques	TB1 - Ch-12
67	External Hashing for Disk Files	TB1, Ch-12.6
68	Hashing Techniques that allow Dynamic File Expansion	TB1, Ch-12.7
69	Indexing: Types of Single level Ordered Indexes	TB1, Ch-12
70	Multilevel Indexes	TB1, Ch-12.2.2

UCA14303 - OPERATING SYSTEM

UNIT - INTRODUCTION (15 Hours)

Definition – Mainframe system – Desktop Systems – Multiprocessor systems – Distributed systems – clustered systems – Real time and Hand held systems – System components – Os Services – System Calls – Programs – Structures

UNIT II - PROCESSES & SCHEDULING (15 Hours)

Process concepts – Process Scheduling – operation on Process – Cooperating process – IPC – CPU Scheduling: Basic Concepts – Scheduling criteria – Scheduling algorithms – Multiprocessor Scheduling – Real time Scheduling

UNIT III - PROCESS SYNCHRONIZATION (15 Hours)

Background – The critical Section problem – synchronization hardware – semaphores

Classic Problems of Synchronization - critical Regions - Monitors - OS
 Synchronization

UNIT IV - DEADLOCKS (15 Hours)

System model – Deadlock Characterization – Methods for Handling Deadlocks – Deadlock prevention – Deadlock Avoidance – Deadlock Detection and Recovery from

Deadlock

UNIT V - MEMORY MANAGEMENT (15 Hours)

Swapping – Contiguous memory Allocation – Paging – segmentation – segmentation with paging – Demand Paging – Process creation – Page Replacement – Thrashing

TEXT BOOK

1. Abraham Silberschatz, Peter Baer Galvin & Greg Gagne, (2006), "Operating System Concepts", Sixth Edition, John Wiley & Sons, Inc.

REFERENCE BOOKS:

- 1. Milankovic M, (1992),"Operating System concepts and Design, 2nd edition, Tata Mcgraw hill.
- 2. H.M.Deitel, (2002), "An Introduction to Operating Sysems",2nd edition, Pearson Education.

LESSON PLAN

Subject Name: OPERATING SYSTEM

Subject Code: UCA14303

Unit I: Introduction

Definition - Mainframe system - Desktop Systems - Multiprocessor systems - Distributed Systems - clustered systems - Real time and Hand held systems - System components - OS Services - System calls - Programs - Structures

Day	Description	Reference with chapter
Day 1	Definition - What is an Operating System?	TB: Ch 1.1
Day 2	Mainframe Systems	TB: Ch 1.2
Day 3	Desktop Systems	TB: Ch 1.3
Day 4	Multiprocessor Systems	TB: Ch 1.4
Day 5	Distributed Systems	TB: Ch 1.5
Day 6	Clustered Systems	TB: Ch 1.6
Day 7	Real time Systems	TB: Ch 1.7
Day 8	Handheld Systems	TB: Ch 1.8
Day 9	System Components	TB: Ch 3.1
Day 10	OS Services	TB: Ch 3.2
Day 11	System Calls	TB: Ch 3.3
Day 12	Process, File, Device and Information Management	TB: Ch 3.3.1, 3.3.2, 3.3.3, 3.3.4
Day 13	System Programs	TB: Ch 3.4
Day 14	System Structure	TB: Ch 3.5
Day 15	Layered approach, Microkernals	TB: Ch 3.5.2, TB: Ch 3.5.3

UNIT II : Processes and Scheduling

Process concepts - Process scheduling - operation on process - cooperating process - IPC - CPU Scheduling : Basic concepts - Scheduling criteria - Scheduling algoritms - Multiprocessor scheduling - Real time scheduling

Day	Description	Reference with chapter
Day 16	Process Concept	TB: Ch 4.1

Day 17	Process Scheduling	TB: Ch 4.2
Day 18	Operation on processes	TB: Ch 4.3
Day 19	Cooperating processes	TB: Ch 4.4
Day 20	Interprocess Communication - Message Passing System	TB: Ch 4.5.1
Day 21	Naming	TB: Ch 4.5.2
Day 22	Synchronization, Buffering	TB: Ch 4.5.3, Ch 4.5.4
Day 23	An Example : Mach and Windows 2000	TB: Ch 4.5.5, Ch 4.5.6
Day 24	CPU Scheduling : Basic Concepts	TB: Ch 6.1
Day 25	Scheduling Criteria	TB: Ch 6.2
Day 26	Scheduling Algoritms - FCFS, Shortest Job first scheduling	TB: Ch 6.3.1, Ch 6.3.2
Day 27	Priority scheduling, Round-robin Scheduling	TB: Ch 6.3.3, Ch 6.3.4
Day 28	Multilevel Queue, Multilevel feedback queue scheduling	TB: Ch 6.3.5, Ch 6.3.6
Day 29	Multiprocessor Scheduling	TB: Ch 6.4
Day 30	Real time Scheduling	TB: Ch 6.5

Unit III: Process Synchronization

Background - The critical section problem - synchronization hardware - semaphores - Classic problems of Synchronization - critical Regions - Monitors - OS Synchronization

Day	Description	Reference with chapter
Day 31	Process Synchronization - Background	TB: Ch 7.1
Day 32	The Critical section problem	TB: Ch 7.2
Day 33	Two process Solutions	TB: Ch 7.2.1
Day 34	Multiple process Solutions	TB: Ch 7.2.2
Day 35	Synchronization hardware	TB: Ch 7.3
Day 36	Semaphores - Usage, Implementation	TB: Ch 7.4.1, Ch 7.4.2
Day 37	Deadlocks and starvation, Binary semaphores	TB: Ch 7.4.3, Ch 7.4.4
Day 38	Classic Problems of Synchronization - The Bounded Buffer problem	TB: Ch 7.5.1
Day 39	The Readers - Writers Problem	TB: Ch 7.5.2
Day 40	The Dinning philosophers problem	TB: Ch 7.5.3
Day 41	Critical Regions	TB: Ch 7.6
Day 42	Implementation of Conditional region	TB: Ch 7.6
Day 43	Monitors	TB: Ch 7.7
Day 44	OS Synchronization - Synchronization in Solaris 2	TB: Ch 7.8.1
Day 45	Synchronization in Windows 2000	TB: Ch 7.8.2

Unit IV: Deadlocks

System model - Deadlock Characterization - Methods for Handling Deadlocks - Deadlock prevention - Deadlock Avoidance - Deadlock Detection and Recovery from Deadlock

Day	Description	Reference with chapter
Day 46	Deadlocks - System model	TB: Ch 8.1
Day 47	Deadlock characterization - Necessary conditions	TB: Ch 8.2.1
Day 48	Resource Allocataion Graph	TB: Ch 8.2.2
Day 49	Methods for handling deadlocks	TB: Ch 8.3
Day 50	Deadlock Prevention - Mutual exclusion, Hold and Wait	TB : Ch 8.4.1, Ch 8.4.2
Day 51	No Preemption, Circular Wait	TB : Ch 8.4.3, Ch 8.4.4
Day 52	Deadlock Avoidance - Safe state	TB: Ch 8.5.1
Day 53	Resource Allocataion Graph Algorithm	TB: Ch 8.5.2
Day 54	Banker's Algorithm - Safety Algorithm	TB : Ch 8.5.3, Ch 8.5.3.1
Day 55	Resource request algorithm	TB : Ch 8.5.3.2
Day 56	Example	TB : Ch 8.5.3.3
Day 57	Deadlock Detection - Single instance of each resource type	TB : Ch 8.6, Ch 8.6.1
Day 58	Several instances of a Resource type	TB: Ch 8.6.2
Day 59	Recovery from deadlock - Process termination	TB: Ch 8.7, Ch 8.7.1
Day 60	Resource preemption	TB: Ch 8.7.2

Unit V: Memory management

Swapping - Contiguous memory allocation - Paging - segmentation - segmentation with paging - Demand paging - Process creation - Page Replacement - Thrashing

Day	Description	Reference with chapter
Day 61	Memory management - Swapping	TB: Ch 9.2
Day 62	Contiguous memory allocation	TB: Ch 9.3
Day 63	Fragmentation	TB : Ch 9.3.3
Day 64	Paging - Basic method	TB: Ch 9.4, Ch 9.4.1
Day 65	Hardware support, Protection	TB : Ch 9.4.2, Ch 9.4.3

Day 66	Structure of the page table	TB : Ch 9.4.4
Day 67	Shared pages	TB : Ch 9.4.5
Day 68	Segmentation - Basic method, Hardware	TB : Ch 9.5.1, Ch 9.5.2
Day 69	Protection and sharing, Fragmentation	TB : Ch 9.5.3, Ch 9.5.4
Day 70	Segmentation with paging	TB: Ch 9.6
Day 71	Demand paging	TB: Ch 10.2
Day 72	Process creation	TB: Ch 10.3
Day 73	Page Replacement - FIFO Page replacement	TB : Ch 10.4, Ch 10.4.2
Day 74	Optimal, LRU, LRU Approximation page replacement	TB : Ch 10.4.3, Ch 10.4.4, Ch 10.4.5
Day 75	Thrashing	TB: Ch 10.6