پاییز ۱۳۹۴

تمرین سری هفتم سیستمهای عامل

پرهام الوانی ۹۲۳۱۰۵۸

سوال ۱

	FCFS	تعداد	SSTF	تعداد	SCAN	تعداد
		شیارهای		شیارهای		شیارهای
		پیموده شده		پیموده شده		پیموده شده
1	1	-	1	-	1	-
۵۵	۵۵	40	٩.	١٠	۱۵۰	۵٠
۵۸	۵۸	۴	۵۸	٣٢	18.	1.
٣٩	٣٩	19	۵۵	٣	114	74
۱۸	١٨	71	٣٩	۶	١٨	44
9+	٩٠	٧٢	٣٨	١	٣٨	۲٠
18+	18.	٧٠	١٨	۲٠	٣٩	١
10+	۱۵۰	1.	۱۵۰	١٣٢	۵۵	18
۳۸	٣٨	117	18.	١٠	۵۸	٣
۱۸۴	114	147	114	74	٩٠	٣٢
کل	-	۵۰۱	-	۲۳۸	-	19.

سوال ۲

اگر فرض کنیم با ورود هر پروسه، پروسه پیشین در حافظه swap می گردد.

ورود پروسه B:

$$t_{swapping} = t_{seek} + t_{read} = 5ms + \frac{20 * 8}{400}s = 405ms$$

ورود پروسه C و خروج پروسه B:

$$t_{swapping} = t_{seek} + t_{write} + t_{seek} + t_{read} = 5ms + \frac{20*8}{320}s + 5ms + \frac{15*8}{400}s$$
$$= 5ms + 500ms + 5ms + 300ms = 810ms$$

ورود پروسه B و خروج پروسه C:

$$t_{swapping} = t_{seek} + t_{write} + t_{seek} + t_{read} = 5ms + \frac{15 * 8}{320}s + 5ms + \frac{20 * 8}{400}s$$
$$= 5ms + 375ms + 5ms + 400ms = 785ms$$

ورود پروسه A و خروج پروسه B:

$$t_{swapping} = t_{seek} + t_{write} + t_{seek} + t_{read} = 5ms + \frac{20*8}{320}s + 5ms + \frac{15*8}{400}s$$
$$= 5ms + 500ms + 5ms + 300ms = 810ms$$

سوال ۳

در ابتدا حافظه مانند شکل زیر است.

2KB
7KB
5KB
8KB
30KB
10KB
101/D
10KB

اگر از first fit برای تخصیص حافظه به برنامهها استفاده کنیم، داریم:

2KB
7KB
/ KD
5KB
Program B
1 TOGTAIN B
70
Program A
5KB
Program C
1KB
10KB

اگر از best fit برای تخصیص حافظه به برنامهها استفاده کنیم، داریم:

2KB
7KB
5KB
Program B
Program A
5KB
Program C
1KB
10KB
10KB

اگر از worst fit برای تخصیص حافظه به برنامهها استفاده کنیم، داریم:

2KB
7KB
5KB
8KB
Program A
5KB
Program B
2KB
Program C
1KB

سوال ۴

الف) نصب یک پردازنده سریعتر باعث میشود بهرهوری سیستم کاهش یابد، زیرا کارها در زمان کمتری روی پردازنده قرار می گیرند.

ب) نصب یک دیسک بزرگتر برای paging فضای ذخیره سازی pageها در حافظه را افزایش می دهد و از بهرهوری paging disk می کاهد.

ج) افزایش اندازهی multiprogramming سیستم تعداد page faultها را افزایش میدهد، بنابراین از بهرهوری CPU می کاهد.

د) کاهش اندازهی multiprogramming سیستم تعداد page faultها را کاهش میدهد، بنابراین به بهرهوری CPU میافزاید.

هـ) افزایش حافظهی main memory از تعداد page fault کاسته و بهرموری CPU را افزایش میدهد.

و) نصب یک دیسک سریعتر زمان page swapها را کاهش داده و به بهرهوری پردازنده میافزاید.

ز) افزایش page size از تعداد page faultها کاسته و به زمان page swapها میافزاید، بنابراین با توجه به شرایط میتواند باعث افزایش یا کاهش بهرهوری پردازنده شود.

سوال ۵

در RAID سطح ۳ صرفا یک بیت parity برای تشخص و تصحیح خطا در نظر گرفته می شود و این در حالی است که در RAID در سطح ۲ تعدادی بیت برای تشخیص و تصحیح خطا در نظر گرفته می شود. (در این رابطه در ادامه بیشتر صحبت می شود.) در RAID سطح ۳ به این موضوع توجه میشود که کنترلر دیسک می تواند، خطاها را در سطح یک sector تشخیص دهد و به این ترتیب یک بیت برای تشخیص و تصحیح خطا کفایت می کند.

در RAID سطح ۲ مثلا برای تصحیح و تشخیص خطا در ۴ بیت می توان به صورت زیر و با استفاده از کد همینگ عمل نمود:

P1	P2	В3		P4	B5	В6	B7
	1	2	3	4	5	6	7
P1	X		Х		Х		Х
P2		X	Х			X	X
P4				X	Х	X	X

 $p1 = b3 \oplus b5 \oplus b7$

 $p2 = b3 \oplus b6 \oplus b7$

 $p3 = b5 \oplus b6 \oplus b7$

