About Dataset:

Attributes:

• 'country' : indexed on country

• 'continent': the continent on which the country belongs

• 'population' : population of the country

• 'day' : last updated on • 'time' : last updated time

• 'Cases': total number of cases • 'Deaths' : total number of deaths

• 'Recovered': total number of recovery • 'Tests' : Number of tests conducted

In [25]: import numpy as np import pandas as pd import matplotlib.pyplot as plt

import seaborn as sns

In [26]: df = pd.read_csv('covid_19.csv')

In [27]: df.head()

Out[27]:

	country	continent	population	day	time	Cases	Recovered	Deaths	Tests
0	Saint- Helena	Africa	6115.0	2024- 06-30	2024-06- 30T16:15:16+00:00	2166	2.0	NaN	NaN
1	Falkland- Islands	South- America	3539.0	2024- 06-30	2024-06- 30T16:15:16+00:00	1930	1930.0	NaN	8632.0
2	Montserrat	North- America	4965.0	2024- 06-30	2024-06- 30T16:15:16+00:00	1403	1376.0	8.0	17762.0
3	Diamond- Princess	NaN	NaN	2024- 06-30	2024-06- 30T16:15:16+00:00	712	699.0	13.0	NaN
4	Vatican-City	Europe	799.0	2024- 06-30	2024-06- 30T16:15:16+00:00	29	29.0	NaN	NaN

In [28]: df.shape

Out[28]: (238, 9)

In [29]: df.info()

```
RangeIndex: 238 entries, 0 to 237
        Data columns (total 9 columns):
                         Non-Null Count Dtype
         #
             Column
             country
                         238 non-null
                                          object
         0
         1
             continent
                         236 non-null
                                          object
         2
             population 229 non-null
                                          float64
                         238 non-null
         3
             day
                                          object
         4
             time
                         238 non-null
                                          object
                         238 non-null
                                          int64
         5
             Cases
         6
             Recovered
                         190 non-null
                                          float64
         7
                         233 non-null
                                          float64
             Deaths
         8
             Tests
                         213 non-null
                                          float64
        dtypes: float64(4), int64(1), object(4)
        memory usage: 16.9+ KB
In [30]:
         df.isnull().sum()
Out[30]: country
                         0
          continent
                         2
          population
                         9
          day
                         0
          time
                         0
          Cases
                         0
          Recovered
                        48
                         5
          Deaths
          Tests
                        25
          dtype: int64
         df.dropna(subset=['population'],inplace=True)
In [31]:
         df.dropna(subset=['Recovered'],inplace=True)
         df.dropna(subset=['Deaths'],inplace=True)
         df.dropna(subset=['Tests'],inplace=True)
         df.duplicated().sum()
In [32]:
Out[32]:
         df.describe()
In [33]:
Out[33]:
                  population
                                     Cases
                                              Recovered
                                                               Deaths
                                                                              Tests
          count 1.690000e+02 1.690000e+02 1.690000e+02 1.690000e+02 1.690000e+02
                3.393555e+07 3.358564e+06 3.288112e+06 3.437705e+04 3.114130e+07
                1.199166e+08 1.082718e+07 1.062387e+07 1.199160e+05
                                                                      1.129389e+08
           min
                4.965000e+03
                              1.403000e+03 4.380000e+02
                                                         1.000000e+00
                                                                       7.850000e+03
                1.369429e+06 3.613800e+04 3.233200e+04
                                                         3.160000e+02
           25%
                                                                      4.004660e+05
           50%
                8.680837e+06 2.720100e+05 2.588880e+05
                                                         3.165000e+03
                                                                      2.525756e+06
```

2.791155e+07 1.734582e+06 1.724921e+06 1.805700e+04 1.346373e+07

max 1.448471e+09 1.118201e+08 1.098144e+08 1.219487e+06 1.186852e+09

<class 'pandas.core.frame.DataFrame'>

75%

```
In [34]: df.country.nunique()
Out[34]: 169
In [35]: df['continent'].nunique()
Out[35]: 6
In [37]: df['Testing_Rate'] = df['Tests'] / df['population']
    df['Case_Rate'] = df['Cases'] / df['population']
    df['Active Cases'] = df['Cases'] - df['Recovered'] - df['Deaths']
```

Pair Plot

```
In [39]: sns.pairplot(data=df)
```

Out[39]: <seaborn.axisgrid.PairGrid at 0x2111632d9d0>

Deaths by Continent

Cases by Continent

```
In [43]: plt.figure(figsize=(5, 3))
    sns.boxplot(data=df, x='continent', y='Cases', palette='cividis')
    plt.xlabel('Continent')
    plt.ylabel('Cases')
    plt.xticks(rotation=90)
    plt.show()
    plt.tight_layout()

C:\Users\negar\AppData\Local\Temp\ipykernel_4848\3010117995.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(data=df, x='continent', y='Cases', palette='cividis')
```


Deaths by Country

```
In [45]: deathbyCountry = df.groupby('country')['Deaths'].sum().sort_values(ascending=False).reset_index(
    plt.figure(figsize=(6,4))
    sns.barplot(x='Deaths',y='country', data=deathbyCountry, palette='cividis')
    plt.ylabel('Country')

C:\Users\negar\AppData\Local\Temp\ipykernel_4848\1154196552.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign th
    e `y` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x='Deaths',y='country', data=deathbyCountry, palette='cividis')
```

Out[45]: Text(0, 0.5, 'Country')

Cases by Country

```
In [47]: casesbyCountry = df.groupby('country')['Cases'].sum().sort_values(ascending=False).reset_index()
    plt.figure(figsize=(7,4))
    sns.barplot(x='Cases',y='country', data=casesbyCountry, palette='cividis')
    plt.ylabel('Country')

C:\Users\negar\AppData\Local\Temp\ipykernel_4848\1157279710.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign th
    e `y` variable to `hue` and set `legend=False` for the same effect.

    sns.barplot(x='Cases',y='country', data=casesbyCountry, palette='cividis')

Out[47]: Text(0, 0.5, 'Country')
```


Corrolation

```
In [49]: df_corr = df.corr(numeric_only=True)
    df_corr
```

Out[49]:

	population	Cases	Recovered	Deaths	Tests	Testing_Rate	Case_Rate	Active Cases
population	1.000000	0.236048	0.233388	0.272309	0.304887	-0.081935	-0.123764	0.252894
Cases	0.236048	1.000000	0.999862	0.891011	0.860752	0.105958	0.257422	0.568058
Recovered	0.233388	0.999862	1.000000	0.885428	0.862549	0.108168	0.260940	0.554809
Deaths	0.272309	0.891011	0.885428	1.000000	0.798248	0.039729	0.088098	0.699288
Tests	0.304887	0.860752	0.862549	0.798248	1.000000	0.273163	0.199763	0.349114
Testing_Rate	-0.081935	0.105958	0.108168	0.039729	0.273163	1.000000	0.555450	-0.038891
Case_Rate	-0.123764	0.257422	0.260940	0.088098	0.199763	0.555450	1.000000	0.025508
Active Cases	0.252894	0.568058	0.554809	0.699288	0.349114	-0.038891	0.025508	1.000000

```
In [50]: plt.figure(figsize=(8,5))
    sns.heatmap(df_corr, cmap='cividis', annot=True)
    plt.tight_layout()
```


Tests by Country

Out[52]: Text(0, 0.5, 'Country')

Testing Rate and Case Rate

```
In [54]: plt.figure(figsize=(5, 3))
    plt.scatter(df['Testing_Rate'], df['Case_Rate'], alpha=0.5)
    plt.xlabel('Testing Rate (Tests / Population)')
    plt.ylabel('Case Rate (Cases / Population)')
    plt.title('Relationship Between Testing Rate and Case Rate')
```

Out[54]: Text(0.5, 1.0, 'Relationship Between Testing Rate and Case Rate')

Population and Cases

```
In [56]: plt.figure(figsize=(5, 3))
    sns.scatterplot(data=df,x='population',y='Cases', alpha=0.5)
    plt.title('Population vs Cases')
    plt.xlabel('Population')
    plt.ylabel('Cases')
```

Out[56]: Text(0, 0.5, 'Cases')

Active Cases per Country

```
In [58]: activebyCountry = df.groupby('country')['Active Cases'].sum().sort_values(ascending=False).reset
sns.barplot(x='Active Cases',y='country', data=activebyCountry, palette='cividis')
plt.ylabel('Country')

C:\Users\negar\AppData\Local\Temp\ipykernel_4848\3903671761.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign th
e `y` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x='Active Cases',y='country', data=activebyCountry, palette='cividis')
```

Out[58]: Text(0, 0.5, 'Country')

