Probabilidad continua

Análisis estadístico de datos

2021

- 1. Calcular la media y la desviación estándar de una variable aleatoria distribuida uniformemente entre los límites a y b. Comparar la desviación estándar con el semiancho (b-a)/2.
- 2. Mostrar que la identidad $Var(X) = E(X^2) E(X)^2$ es válida para una distribución continua.
- 3. Considerar dos variables continuas independientes idénticamente distribuidas (iid) X e Y. Si la media de ambas variables es μ y la varianza σ^2 , mostrar que $E(X+Y) = 2 \mu$ y $Var(X+Y) = 2 \sigma^2$.
- 4. Simular 1000 eventos distribuidos uniformemente entre 0 y 25. Construir los histogramas frecuencia y de densidad de 10 bines de igual ancho. Comparar ambos histogramas la función de densidad de probabilidad uniforme. Comparar la media y la desviación estándar de la muestra con los valores correspondientes de la distribución uniforme.
- 5. Simular 10 variables discretas X_i que siguen una distribución de Poisson con parámetro $\mu=1.7$ y calcular su suma $Y=\sum_{i=1}^{10}X_i$. Repetir este procedimiento 1000 veces para contruir un histograma de frecuencia de la variable Y. Comparar el histograma con una distribución Gaussiana con parámetros adecuados. Graficar el histograma y la distribución Gaussiana. Nota: Calcular los parámetros de la Gaussiana a partir de la media y varianza de las X_i .
- 6. Simular una variable aleatoria X que sigue una distribución normal estándar. Si el resultado de la simulación es x, calcular con la función de probabilidad acumulada la probabilidad acumalada $p(x) = F(x) = P(X \le x)$. Repetir la simulación 1000 veces, calcular la probabilidad p en cada iteración y llenar un histograma con su valor. Comparar el histograma de p con una función de densidad de probabilidad adecuada.
- 7. (Para entregar) Considerar 20 variables aleatorias que siguen una distribución normal estándar (X_1, \ldots, X_{20}) y hacer el cambio de variables $Y_i = X_i^2$. Identificar que función de densidad de probabilidad siguen las nuevas variables Y_i . Construir una nueva variable aleatoria $Z = \sum_{i=1}^{20} Y_i$. A continuación simular las 20 variables X_i y calcular el valor Z correspondiente. Repetir este proceso 10.000 veces y hacer un histograma de frecuencias de Z. Comparar el histograma con una distribución chi-cuadrado y otra normal con parámetros apropiados. Determinar si la distribución normal aproxima los datos satisfactoriamente.