Pattern Database Heuristics for Greedy Search

Carmen St. Jean

Proposal

■ Proposal

- Algorithm: Greedy Search
- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

Greedy search will solve the sliding tile puzzle better with the fringe pattern database than a more specialized pattern database as a heuristic.

Algorithm: Greedy Search

- Proposal
- Algorithm: Greedy Search
- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

- Assume b is branching factor and m is maximum depth.
 - Best-first search with queue ordered by heuristic value
 - Complete in finite spaces
 - Inadmissible
 - \blacksquare b^m time
 - \blacksquare b^m space

Algorithm: Greedy Search

- Proposal
- Algorithm: Greedy Search
- Domain:
- N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

- Assume b is branching factor and m is maximum depth.
 - Best-first search with queue ordered by heuristic value
 - Complete in finite spaces
 - Inadmissible
 - \blacksquare b^m time
 - \blacksquare b^m space
 - Tends to yield suboptimal solutions in a reasonable time

Domain: N-Puzzle

- Proposal
- Algorithm:
- Greedy Search
- Domain: N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- **■** Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

- lacksquare N numbered square tiles, one blank tile
- Objective: rearrange tiles by sliding the blank space to reach goal configuration
- Commonly solved with A* using Manhattan Distance heuristic

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

■ Insight into

Proposal

■ Results

■ A pattern is a partial specification of a state

- Proposal
- Algorithm: Greedy Search
- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

- A pattern is a partial specification of a state
 - ◆ Some elements of the state are abstracted

- Proposal
- Algorithm: Greedy Search
- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- \blacksquare Special
- Abstraction
- Insight into Proposal
- Results

- A pattern is a partial specification of a state
 - ◆ Some elements of the state are abstracted
- A target pattern is a partial specification of the goal state

- Proposal
- Algorithm: Greedy Search
- Domain:
- N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

- A pattern is a partial specification of a state
 - ◆ Some elements of the state are abstracted
- A target pattern is a partial specification of the goal state
- A pattern database is set of all patterns obtained by permuting the target pattern

- Proposal
- Algorithm: Greedy Search
- Domain:
- N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

- A pattern is a partial specification of a state
 - ◆ Some elements of the state are abstracted
- A target pattern is a partial specification of the goal state
- A pattern database is set of all patterns obtained by permuting the target pattern
- Every pattern knows its exact solution cost for the target pattern

- Proposal
- Algorithm: Greedy Search
- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

- A pattern is a partial specification of a state
 - ◆ Some elements of the state are abstracted
- A target pattern is a partial specification of the goal state
- A pattern database is set of all patterns obtained by permuting the target pattern
- Every pattern knows its exact solution cost for the target pattern
 - ◆ Admissible heuristic

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- \square N-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into
- Proposal
- Results

■ Abstract away some tiles

- Proposal
- Algorithm:
- Greedy Search
 Domain:
- N-Puzzle
- Pattern Databases
- \square N-Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into
- Proposal
- Results

- Abstract away some tiles
- Can be more accurate than Manhattan distance

- Proposal
- Algorithm: Greedy Search
- Domain:
- N-Puzzle
- Pattern Databases
- \square N-Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

- Abstract away some tiles
- Can be more accurate than Manhattan distance
- Can use multiple disjoint pattern databases at once

- Proposal
- Algorithm: Greedy Search
- Domain:
- N-Puzzle
- Pattern Databases
- \square N-Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

- Abstract away some tiles
- Can be more accurate than Manhattan distance
- Can use multiple disjoint pattern databases at once
- Lots of different abstractions possible

- Proposal
- Algorithm: Greedy Search
- Domain:
- N-Puzzle
- Pattern Databases
- $\blacksquare N$ -Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

- Abstract away some tiles
- Can be more accurate than Manhattan distance
- Can use multiple disjoint pattern databases at once
- Lots of different abstractions possible
 - ◆ Fringe abstraction (outer edge)
 - Special abstraction (keep tiles furthest from goal position)

- Proposal
- Algorithm: Greedy Search
- Domain:

N-Puzzle

- Pattern Databases
- \blacksquare N-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

- Abstract away some tiles
- Can be more accurate than Manhattan distance
- Can use multiple disjoint pattern databases at once
- Lots of different abstractions possible
 - ◆ Fringe abstraction (outer edge)
 - Special abstraction (keep tiles furthest from goal position)
- Less tiles abstracted, more powerful pattern database

- Proposal
- Algorithm: Greedy Search
- Domain:
- N-Puzzle
- Pattern Databases
- \blacksquare N-Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

- Abstract away some tiles
- Can be more accurate than Manhattan distance
- Can use multiple disjoint pattern databases at once
- Lots of different abstractions possible
 - ◆ Fringe abstraction (outer edge)
 - Special abstraction (keep tiles furthest from goal position)
- Less tiles abstracted, more powerful pattern database
- More timely to calculate and larger space required when fewer tiles are abstracted

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

■ Insight into

Proposal

■ Results

Independent of start configuration.

- Proposal
- Algorithm:
- Greedy Search
 Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into
- Proposal
- Results

Independent of start configuration.

	1	2	3
4	5	6	7
8	9	10	11

- Proposal
- Algorithm: Greedy Search
- Domain:

N-Puzzle

- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

■ Insight into

Proposal

■ Results

Independent of start configuration.

	<u>. </u>		
	1	2	3
4	5	6	7
8	9	10	11

	Α	2	3
Α	Α	6	7
Α	Α	Α	Α

		Α	Α	А
	А	Α	Α	Α
Ī	8	9	10	11

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

Independent of start configuration.

	1	2	3
4	5	6	7
8	9	10	11

	Α	2	3		А	Α	Æ
Α	Α	6	7	А	А	А	4
A	A	A	A	8	9	10	1

Example:

2	6	3	4
10	9	5	
8	7	1	11

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

Independent of start configuration.

	1	2	3
4	5	6	7
8	9	10	11

	А	2	3		А	Α	А
A	A	6	7	A	A	A	A
Α	Α	A	Α	8	9	10	11

Example:

2	6	3	4
10	9	5	
8	7	1	11

2	6	3	Α
Α	Α	Α	
Α	7	Α	Α

Α	Α	Α	Α
10	9	А	
8	Α	Α	11

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

Independent of start configuration.

	1	2	3
4	5	6	7
8	9	10	11

	А	2	3		А	Α	Α
Α	А	6	7	Α	А	А	Α
Α	Α	Α	Α	8	9	10	11

Example:

2	6	3	4
10	9	5	
8	7	1	11

2	6	3	А
Α	Α	Α	
Α	7	Α	А

Α	Α	Α	Α
10	9	А	
8	А	А	11

Heuristic value of state:

$$h = cost + cost$$

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- **■** Fringe Abstraction
- Special Abstraction
- Insight into Proposal
- Results

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special Abstraction
- Insight into Proposal
- Results

2	6	3	4
10	9	5	
8	7	1	11

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- Fringe Abstraction
- Special Abstraction
- Insight into Proposal
- Results

2	6	3	4
10	9	5	
8	7	1	11

2_2	6_2	3_1	4_4
10_3	91	5_1	
80	7_3	1 ₃	11_0

- Proposal
- Algorithm:
- **Greedy Search**
- lacktriangle Domain: N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- Fringe Abstraction
- Special Abstraction
- Insight into Proposal
- Results

2	6	3	4
10	9	5	
8	7	1	11

2_2	6_2	3_1	4_4
10_3	9_1	5_1	
80	7_3	1_3	11_0

Α	Α	Α	4
10	A	Α	
Α	7	1	Α

2	6	3	A
A	A	5	
Α	А	Α	А

- Proposal
- Algorithm:
- **Greedy Search**
- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special Abstraction
- Insight into Proposal
- Results

2	6	3	4
10	9	5	
8	7	1	11

2_2	6_2	3_1	4_4
$\boxed{10_3}$	91	5_1	
80	7_3	1_3	110

	1	2	3
4	5	6	7
8	9	10	11

Α	А	Α	4
10	Α	Α	
Α	7	1	А

2	6	3	А
A	A	5	
Α	А	А	Α

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special Abstraction
- Insight into Proposal
- Results

2	6	3	4
10	9	5	
8	7	1	11

2_2	6_2	3_1	4_4
10_3	9_{1}	5_1	
80	73	1 ₃	110

	1	2	3
4	5	6	7
8	9	10	11

Α	А	А	4
10	Α	Α	
Α	7	1	Α

	-	•	-
	1	А	Α
4	Α	Α	7
Α	А	10	Α

2	6	3	А
Α	Α	5	
Α	Α	Α	А

	A	2	3
Α	5	6	Α
Α	А	А	А

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

Greedy search will solve the sliding tile puzzle better with the fringe pattern database than a more specialized pattern database as a heuristic.

- Proposal
- Algorithm:

Greedy Search

- Domain:
- $N\operatorname{-Puzzle}$
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

Greedy search will solve the sliding tile puzzle better with the fringe pattern database than a more specialized pattern database as a heuristic.

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

Greedy search will solve the sliding tile puzzle better with the fringe pattern database than a more specialized pattern database as a heuristic.

Why?

■ Fringe

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

Greedy search will solve the sliding tile puzzle better with the fringe pattern database than a more specialized pattern database as a heuristic.

- Fringe
 - ◆ Solving remaining tiles will not disturb solved tiles

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

Greedy search will solve the sliding tile puzzle better with the fringe pattern database than a more specialized pattern database as a heuristic.

- Fringe
 - ◆ Solving remaining tiles will not disturb solved tiles
 - h = 0 means you're actually close to the goal

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

Greedy search will solve the sliding tile puzzle better with the fringe pattern database than a more specialized pattern database as a heuristic.

- **■** Fringe
 - ◆ Solving remaining tiles will not disturb solved tiles
 - h = 0 means you're actually close to the goal
- Specialized

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

Greedy search will solve the sliding tile puzzle better with the fringe pattern database than a more specialized pattern database as a heuristic.

- Fringe
 - ◆ Solving remaining tiles will not disturb solved tiles
 - h = 0 means you're actually close to the goal
- Specialized
 - ◆ Solving remaining tiles might disturb solved tiles

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

Greedy search will solve the sliding tile puzzle better with the fringe pattern database than a more specialized pattern database as a heuristic.

- Fringe
 - ◆ Solving remaining tiles will not disturb solved tiles
 - h = 0 means you're actually close to the goal
- Specialized
 - ◆ Solving remaining tiles might disturb solved tiles
 - h = 0 does not guarantee you're close to the goal

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- *N*-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

■ Insight into Proposal

Results

	Greedy	A*
Fringe	44,171	218,816
Specialized	196,073	333,928

Table 1: Number Nodes Expanded

- Proposal
- Algorithm:
- **Greedy Search**
- Domain:
- $N\operatorname{-Puzzle}$
- Pattern Databases
- N-Puzzle PDBs
- Fringe Abstraction
- Special
- Abstraction
- Insight into Proposal
- Results

	Greedy	A*
Fringe	44,171	218,816
Specialized	196,073	333,928

Table 1: Number Nodes Expanded

This shows:

■ Fringe is better than specialized for both greedy and A* on puzzles of this size

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

	Greedy	A*
Fringe	44,171	218,816
Specialized	196,073	333,928

Table 1: Number Nodes Expanded

This shows:

- Fringe is better than specialized for both greedy and A* on puzzles of this size
- Previously, it was shown specialized works better on big puzzles with big pattern databases, this does not generalize to smaller puzzles with disjoint pattern databases

- Proposal
- Algorithm:

Greedy Search

- Domain:
- N-Puzzle
- Pattern Databases
- N-Puzzle PDBs
- Fringe Abstraction
- Special

Abstraction

- Insight into Proposal
- Results

	Greedy	A*
Fringe	44,171	218,816
Specialized	196,073	333,928

Table 1: Number Nodes Expanded

This shows:

- Fringe is better than specialized for both greedy and A* on puzzles of this size
- Previously, it was shown specialized works better on big puzzles with big pattern databases, this does not generalize to smaller puzzles with disjoint pattern databases (Which one?)