Informatik **G**: Einführung in die Theoretische Informatik

VO 6
Beschreibungsäquivalenz (Nachtrag)
Pumping Lemma
Komplexität und
Abschlusseigenschaften

Prof. Dr. Markus Chimani

Theoretische Informatik, Uni Osnabrück

Sommersemester 2013

Alles das gleiche!

Theorem. Reguläre Grammatiken, reguläre Ausdrücke, DEAen und NDEAen erlauben alle **genau** die selben Sprachen zu beschreiben (nämlich die regulären Sprachen).

Beweis.

Ringschluss in 5 Lemmata:

Seien X und Y jew. eine der vier Beschreibungsarten.

Lemma X → Y: Nimm eine beliebige Instanz der Art X. Wir erstellen eine Instanz der Art Y, die die selbe Sprache beschreibt.

⇒ Y kann mind. so viele

Sprachen beschreiben wie X.

Apropos...

- **A** Ist trivial, da DEA \subset NDEA.
- **B** Kann man für NDEAen die keine ε -Übergänge enthalten analog zu Lemma 1 machen.

Reguläre Sprachen & endliche Automaten

Beispiele zum Äquivalenzbeweis (Wiederholung des Tafelbilds)

Beispielsprache

► Reg. Ausdruck:

c (ab | aba)*

► Reg. Grammatik:

$$S \rightarrow c \mid cA$$

$$A \rightarrow aB$$

$$B \rightarrow b \mid bA \mid bC$$

$$C \rightarrow a \mid aA$$

▶ **NDEA** (mit und ohne ε)

▶ DEA

Lemma 1: DEA → **Reguläre Grammatik**

Durch den Beweis generiert:

$$A_1 \rightarrow cA_2 \mid c$$
 $A_2 \rightarrow aA_3$
 $A_3 \rightarrow bA_4 \mid b$
 $A_4 \rightarrow aA_5 \mid a$
 $A_5 \rightarrow bA_4 \mid aA_3$

Handgestrickt:

$$S \rightarrow c \mid cA$$
 $A \rightarrow aB$
 $B \rightarrow b \mid bA \mid bC$
 $C \rightarrow a \mid aA$

Lemma 2: Reguläre Grammatik → **NDEA**

$$S \rightarrow c \mid cA$$
 $A \rightarrow aB$
 $B \rightarrow b \mid bA \mid bC$ $C \rightarrow a \mid aA$

Durch den Beweis generiert:

Lemma 3: NDEA \rightarrow DEA

Durch den Beweis generiert:

Handgestrickt:

Lemma 4: RegEx → **NDEA**

$\textbf{Lemma 5: DEA} \rightarrow \textbf{RegEx}$

0,1,[2]	1	2	3	4	5
1	ε	С	[ca]	Ø	Ø
2	Ø	ε	а	Ø	Ø
3	Ø	Ø	ε	b	Ø
4	Ø	Ø	Ø	ε	а
5	Ø	Ø	а	b	ε

3	1	2	3	4	5
1	ε	С	ca	cab	Ø
2	Ø	ε	а	ab	Ø
3	Ø	Ø	ε	b	Ø
4	Ø	Ø	Ø	ε	а
5	Ø	Ø	а	b ab	ε

4	1	2	3	4	5
1	ε	С	ca	cab	caba
2	Ø	ε	а	ab	aba
3	Ø	Ø	ε	b	ba
4	Ø	Ø	Ø	ε	а
5	Ø	Ø	а	b ab	$x := \varepsilon (b ab)a$

5	1	2	3	4	5
1	ε	С	ca cabax*a	cab cabax*(b ab)	cabax*
2	Ø	ε	a abax*a	ab abax*(b ab)	abax*
3	Ø	Ø	εbax^*a	b bax*(b ab)	bax*
4	Ø	Ø	ax*a	$\varepsilon ax^*(b ab)$	ax*
5	Ø	Ø	x*a	x*(b ab)	X *

$\textbf{Lemma 5: DEA} \rightarrow \textbf{RegEx}$

0,1,[2]	1	2	3	4	5
1	ε	С	[ca]	Ø	Ø
2	Ø	ε	а	Ø	Ø
3	Ø	Ø	ε	b	Ø
4	Ø	Ø	Ø	ε	а
5	Ø	Ø	а	b	ε

3 1 2 3 1 5 4 1 2 3 1	5
Startzustand: 1, Endzustände: 2,4,5	caba
RegEx, durch den Beweis generiert:	aba
c cab caba($arepsilon (b ab)a)^*(b ab)$ caba($arepsilon (b ab)a)^*$	ba
RegEx, handgestrickt:	а
c (ab aba)*	$\epsilon := \varepsilon (b ab)a$

5	1	2	3	4	5
1	ε	С	ca cabax*a	cab cabax*(b ab)	cabax*
2	Ø	ε	a abax*a	ab abax*(b ab)	abax*
3	Ø	Ø	ε bax*a	b bax*(b ab)	bax*
4	Ø	Ø	ax*a	$\varepsilon ax^*(b ab)$	ax*
5	Ø	Ø	x*a	x*(b ab)	X *

Reguläre Sprachen &

Pumping Lemma

endliche Automaten

Nicht-Regularität

Gegeben: Eine Sprache *L*.

Frage: Ist *L* regulär?

Falls ja:

Beweis durch reg. Grammatik, reg. Ausdruck, DEA oder NDEA, die/der $\it L$ beschreibt.

Falls nein:

Wie beweist man, dass eine Sprache nicht regulär ist?

- ▶ Pumping Lemma → jetzt
- Myhill-Nerode Theorem: Äquivalenzrelation und Minimalautomat (werden wir nicht besprechen)

 $uv^*w \in L$.

Pumping Lemma

Pumping Lemma (für reguläre Sprachen).

1 $|v| \ge 1$, 2 $|uv| \le n$,

Sei L eine reguläre Sprache. Es gibt eine Zahl n:=n(L) (d.h. in Abhängigkeit von L), so dass alle Wörter $z\in L$ mit $|z|\geq n$ sich zerlegen lassen als z=u v w mit den Eigenschaften:

Beweis. $L \to \exists$ DEA $\mathcal A$ mit Zuständen $\mathcal Z$. Wähle $n := |\mathcal Z|$.

Bei \mathcal{A} -Abarbeitung eines Wortes z werden |z|+1 Zustände abgelaufen (inkl. Startzustand). Da $|z|\geq n$: mindestens ein Zustand wird öfters (mind. 2x) besucht.

Wähle Zerlegung z = uvw so, dass das man nach Lesen des letzten Symbols von u und von uv im gleichen Zustand (Z_i) ist. Dabei ist es trivial. 1 und 2 zu erfüllen.

Nun könnte man von Z_i aus auch mehrmals (inkl. 0-mal) v ablaufen, bevor man w abläuft $\to uv^*w \in L \to 3$.

Anwendung des Pumping Lemmas

 \forall reg. Spr. L: $\exists n$: $\forall z \in L \text{ mit } |z| \ge n$: $\exists u \lor w = z \text{ mit}$:

- 1 $|v| \ge 1$, 2 $|uv| \le n$, 3 $uv^*w \in L$.

Aufgabe: Sei $L = \{a^i b^i \mid i \ge 0\}$ die Sprache der Worte deren vordere Hälfte lauter a, und deren hintere Hälfte lauter b sind. Zeige, dass L nicht regulär ist.

Lösung: Beweis durch Widerspruch.

Nimm an, L wäre regulär, dann würde für L das Pumping Lemma gelten. Sei *n* die entsprechende Wortmindestgröße.

Betrachte das Wort $z = a^n b^n \in L$.

- $ightharpoonup \exists Zerteilung z = uvw mit 1 3.$
 - 2: uv besteht nur aus a-Symbolen.
 - 1: $|v| = \ell > 1$.
- ▶ Da \exists : $uw = a^{n-\ell}b^n \in L \rightarrow Widerspruch.$

Anwendung des Pumping Lemmas

$$\forall$$
 reg. Spr. L : $\exists n$: $\forall z \in L \text{ mit } |z| \ge n$: $\exists u \ v \ w = z \text{ mit}$:
$$|u| \ge 1, \qquad |u| \le n, \qquad |u| \le n.$$

Aufgabe: Sei $L = \{a^{2^i} \mid i \ge 0\}$, d.h. Worte die aus "2er-Potenz" vielen "a"s bestehen. Zeige, dass L nicht regulär ist.

Lösung: Beweis durch Widerspruch.

Nimm an, L wäre regulär, dann würde für L das Pumping Lemma gelten. Sei n die entsprechende Wortmindestgröße.

Wähle ein k, so dass $2^k > n$. Betrachte das Wort $z = a^{2^k} \in L$.

- ▶ \exists Zerteilung z = uvw mit $\boxed{1 3}$. $\boxed{2}$: $|uv| \le n \to |w| \ge 1$.
- Da ■: y = uv²w ∈ L: |uv²w| = |uvw| + |v| < 2|uvw|
 y ist länger als z, aber kürzer als nächste 2er-Potenz.
 → Widerspruch.

Grenzen des Pumping Lemmas

Beobachtung.

Es gibt nicht-reguläre Sprachen, für die das Pumping Lemma **nicht stark genug** ist, um die Nicht-Regularität zu beweisen.

Beispiel. Sei $L = \{c^j a^i b^i \mid i, j \ge 0\} \cup \{a^j b^i \mid i, j \ge 0\}.$ $\rightarrow L$ kann nicht regulär sein, da (in erster Teilmenge) nur ein paar c vor einer nicht-regulären Sprache stehen (siehe vorhin)

Pumping Lemma.

Betrachte bel. Wort $z=c^ja^ib^i$ oder $z=a^jb^i$ mit $|z|\geq n$ aus L. Zerlegung: $u=\varepsilon$, v=z[1], $w=[2\ldots]$ (v ist das erstes Symbol von z, w ist der Rest). \to Jedes u v^* w liegt in L!

- ightarrow Kein Widerspruch ightarrow Beweis funktioniert nicht.
- ⇒ Es gibt jedoch andere Methoden (statt dem Pumping Lemma), um den Beweis der Nicht-Regularität zu führen (siehe einschlägige Literatur).

Reguläre Sprachen & endliche Automaten

Komplexität und Abschlusseigenschaften

Komplexitäten

Sei L eine reguläre Sprache. Annahme: L ist als DEA gegeben (Zustände \mathcal{Z} , Startzustand Z_{start} , Endzustände \mathcal{Z}_{end}).

Wortproblem. Sei w ein Wort. Ist $w \in L$?

Laufe den DEA mit w als Eingabe ab.

Nach $\mathcal{O}(|w|)$ Schritten kennt man die Antwort.

Leerheitsproblem. Ist $L = \emptyset$?

 $L \neq \emptyset \iff \exists Z' \in \mathcal{Z}_{\mathsf{end}} \mathsf{mit} \mathsf{ einem Pfad } Z_{\mathsf{start}} \leadsto Z'.$

ightarrow Mittels Tiefensuche in linearer Zeit $\mathcal{O}(|\mathcal{Z}|)$ entscheidbar.

Endlichkeitsproblem. Ist *L* eine endliche Menge?

L unendlich $\iff\exists Z_0\in\mathcal{Z},Z'\in\mathcal{Z}_{end}$ mit Pfaden $Z_{start}\leadsto Z_0$, $Z_0\leadsto Z'$ und einem Kreis, der Z_0 enthält.

 \rightarrow Mittels Tiefensuche in linearer Zeit $\mathcal{O}(|\mathcal{Z}|)$ entscheidbar.

Abgeschlossenheit

Theorem.

Reguläre Sprachen sind abgeschlossen bezüglich Verkettung, Vereinigung, Schnitt und Komplementbildung.

D.h. gegeben zwei reguläre Sprachen L_1, L_2 . Die folgenden Sprachen sind auch regulär: $L_1 L_2, L_1 \cup L_2, L_1 \cap L_2, \Sigma^* \setminus L_1$.

Beweis. Seien A_1, A_2 die zugehörigen deterministische EAen.

Verkettung.

Vereinigung.

Schnitt.

 \rightarrow nächste Seite.

Komplementbildung.

Alle Nicht-Endzustände von \mathcal{A}_1 (inkl. Falle) werden Endzustände, und umgekehrt.

Abgeschlossenheit

Beweis (Schnitt).

 $w \in L_1 \cap L_2 \iff \mathcal{A}_1 \text{ und } \mathcal{A}_2 \text{ akzeptieren } w.$

ightarrow Wir bauen einen (deterministischen) endlichen Automaten, der das gleichzeitige Ablaufen beider Automaten simuliert.

Seien \mathcal{Z}, \mathcal{Y} die Zustandsmengen der Automaten.

Neuer Automat:

- ▶ Zustandsmenge $\mathcal{Z} \times \mathcal{Y}$ (=alle Paare von \mathcal{A}_1 - \mathcal{A}_2 -Zuständen)
- Startzustand (Z_{start}, Y_{start}), wobei Z_{start}, Y_{start} die Startzustände der einzelnen Automaten sind
- ▶ Übergänge $\delta((Z,Y), a) := (\delta_1(Z,a), \delta_2(Y,a))$ für alle $Z \in \mathcal{Z}, Y \in \mathcal{Y}, a \in \Sigma$
- ▶ Ein Zustand (Z, Y) ist ein Endzustand genau dann wenn $Z \in \mathcal{Z}_{end}$ und $Y \in \mathcal{Y}_{end}$

Reguläre Sprachen &

Zusammenfassung

endliche Automaten

Reguläre Sprachen: Zusammenfassung Reguläre Sprachen...

- ...werden beschrieben durch
 - Reguläre Grammatiken
 - Reguläre Ausdrücke
 - Deterministische Endliche Automaten
 - Nicht-deterministische Endliche Automaten
- ...erfüllen
 - Pumping Lemma
 - Abgeschlossenheit bzgl. Verkettung, Vereinigung, Schnitt und Komplementbildung
- ...erlauben
 - das effiziente Entscheiden (in Linearzeit!) des Wort-, Leerheits- und Endlichkeitsproblems

Reguläre Sprachen: Zusammenfassung

Motivation:

- ► Hopcroft-Motwani-Ullman: 200 von 600 Seiten geschafft
- Schöning: 40 von 180 Seiten geschafft