Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра теоретической и прикладной информатики

Расчётно-графическая работа по дисциплине «Компьютерное моделирование»

Факультет: ПМИ

ГРУППА: ПМИ-61

Студенты: Ершов П.К., Мамонова Е.В., Цыденов З.Б.

БРИГАДА: 2

ПРЕПОДАВАТЕЛЬ: Черникова О. С. Карманов В. С.

Новосибирск

2020

1. Цель работы

Выполнить задания в варианте, продемонстрировав полученные в ходе изучения курса навыки.

2. Ход работы

Задание 1. Построить временную диаграмму работы системы массового обслуживания (СМО) с выходом на стационарный режим работы, заданной в варианте. Для этого смоделировать моменты прихода заявок в систему и длительности их обслуживания. По полученной модели оценить значения следующих показателей (с точки зрения клиента и с точки зрения владельца СМО): вероятность обслуживания, пропускную способность системы, вероятность отказа, среднее количество занятых каналов, вероятность простоя всей системы, среднее количество заявок в очереди, вероятность того, что в очереди будет одна заявка, среднее время обслуживания заявки, среднее время нахождения заявки в системе, среднее количество заявок в системе. Сделать общий вывод в виде рекомендаций владельцу, направленных на оптимизацию данной СМО. Вывести на оптимальное значение конкретный показатель качества (задан в варианте) за счет изменения параметров СМО. Для этого использовать усредненные результаты, полученные после не менее 5 запусков программы, решающей задачу из варианта.

Задание 2. Найти предельные вероятности для СМО, заданной в варианте. Для этого описать состояния, составить систему уравнений Колмогорова. Вычислить вероятность отказа, абсолютную и относительные пропускные способности СМО.

Вариант:

Номер бригады	Вариант задания 1	Вариант задания 2
2	2	4

Задача № 1.

Условие:

Моделирование работы небольшого магазина, который имеет один кассовый аппарат и одного продавца. Известны следующие параметры функционирования магазина:

- поток покупателей (требований), приходящих в магазин за покупками, равномерный;
- интервал времени прибытия покупателей колеблется в пределах от 8,7 до 10,3 мин включительно, или 9,5±0,8 мин;
- время пребывания покупателей у кассового аппарата составляет 2,3±0,7 мин. После этого покупатели подходят к продавцу для получения товара;
- время, потраченное на обслуживание покупателей продавцом, составляет 10+1,4 мин.

Оптимизация: требуется максимизировать среднее количество занятых каналов.

Создание модели

Так как в задании указано, что в магазине имеются один кассовый аппарат и один продавец, а покупатели переходят строго от первого ко второму, можно сделать вывод, что имеется одноканальная система с ожиданием. Так как поток покупателей равномерный, то можно воспользоваться равномерным дискретным распределением, для задания числа покупателей: uniform_discr(min, max), где min — это наименьшее количество покупателей, а max — наибольшее. Для задержки в прибытии покупателей и обслуживании на узлах выберем триангулярное распределение, так как у него есть минимальное, максимальное и наиболее

вероятное значение, что удовлетворяет определённом времени задержки с некоторой погрешностью.

Построим начальную модель:

В качестве запросов у нас будут покупатели. Для управления их количеством добавлена переменная buy_cash, объём которой управляется бегунком справа.

Кассой будет Cashbox с доступным ресурсом в единичном экземпляре.

Аналогично Seller является продавцов в единичном экземпляре.

Для измерения времени в системе добавлены TimeAll и TimeTotal для измерения всего времени в системе и TimeSeller и TimeSellerEnd для измерения времени обслуживания покупателей продавцом.

Начальным количеством покупателей укажем от 0, до 5 за один цикл.

Здесь событие event1 позволяет добавлять необходимое количество покупателей через указанный промежуток времени.

Для отображения работы добавим области для вывода покупателей и гистограммы времени обслуживания:

В качестве тестового промежутка времени укажем 8 часовой рабочий день.

▼ Модельное время			
Режим выполнения:	 Виртуальное время (максималь Реальное время со скоростью 	ная скорость)	
Остановить:	В заданную дату 🗸		
Начальное время:	0	Конечное время:	28800
Начальная дата:	24.03.2020	Конечная дата:	24.03.2020 🗐 🔻
	7:00:00		15:00:00

Проверка работоспособности.

Как можно увидеть, Seller заканчивает смену в 8 часов с огромной очередью.

Получим следующие значения, исходя из полученных результатов:

 $\frac{Bероятность обслуживания}{N}$: $P_{\text{обслуж}} = \frac{N_{\text{обслуж}}}{N}$, где N — число пришедших заявок, $N_{\text{обслуж}}$ — число обслуженных заявок; $P_{\text{обслуж}} = \frac{N_{\text{обслуж}}}{N} = \frac{48}{130} \approx 0,369$

 $\underline{\Pi ponycкная\ cnocoбнocmь\ cucmeмы}$: $A=\frac{N_{\rm oбc,nym}}{T_H}$, где T_H — время работы системы;

$$A = \frac{48}{8} = 6 \frac{\text{заявок}}{\text{час}}$$

 $\underline{\textit{Вероятность отказа:}}\ P_{\text{обслуж}} = \frac{N_{\text{отказ}}}{N}$, где $N_{\text{отказ}}$ — количество отказанных заявок;

 $P_{\text{обслуж}} = \frac{0}{130} = 0$, так как в системе заявки не отбрасываются.

 $\underline{\textit{Вероятность занятости канала:}} \, P_i = \frac{T_{\scriptscriptstyle 3 \text{ан}}}{T_H}$, где $T_{\scriptscriptstyle 3 \text{ан}}$ — время занятости одного канала;

Общее время в системе: 8941 секунд = 149,016 минут.

Время в системе для продавца: 8628 секунд = 143,8 минут.

Время в системе для кассы: 325 секунд = 5,416 минут.

$$P_{\text{Kacca}} = \frac{T_1}{T_H} = \frac{5,416}{480} \approx 0,0113.$$

$$P_{
m продавец} = rac{T_2}{T_H} = rac{143,8}{480} pprox 0,3.$$

$$P_{\text{общее}} = \frac{T_1}{T_H} = \frac{149,016}{480} \approx 0,31045.$$

Хотя СМО является одноканальной, кассу и продавца можно считать отдельными каналами, работающими последовательно.

<u>Среднее количество занятых каналов:</u> $N_{\text{с.к.}} = 1 * P_1 + 2 * P_2$, где $P_1 -$ вероятность занятости одного канала, $P_2 -$ вероятность занятости всех каналов;

$$N_{\text{c.k.}} = 1 * P_{\text{kacca}} + 2 * P_{\text{oбщee}} = 1 * 0.0113 + 2 * 0.31045 = 0.6322.$$

Мы взяли кассу как первый канал, так как она составляет наименьюшую часть от общей занятости всей системы. $\frac{0.6322}{2}*100\% = 31,61\%$, следовательно, система загружена менее чем на одну треть, что говорит о плохом использовании ресурсов.

<u>Вероятность простоя всей системы:</u> $P_{\text{прост}} =$

 $\frac{T_{\text{простоя}}}{T_{H}}$; Так как не возникает ситуации, когда все не работают, вероятность простоя равна 0.

Среднее количество заявок в очереди:

Среднее количество заявок 38.78

Как видно по гистограмме выше, среднее количество заявок в очереди равно 38.78.

Данные получены следующим образом:

Создаём событие, которое каждые 10 минут добавляет в данные гистограммы сумму между значением Cashbox (кассы) и Seller (продавца):

Так же из этого следует, что вероятность того, что в системе будет одна заявка = 0.

Среднее время обслуживания заявки:

Для кассы:

Составляет 325.65 секунд = 5.4275 минут.

Для продавца:

Составляет 8628.35 секунд = 143.806 минут.

Среднее время в системе:

Составляет 8941.53 секунд = 149.0255 минут.

Среднее количество заявок в системе:

реднее количество заявок в системе 85.43

Из диаграммы видно, что среднее количество заявок в системе равно 85.43.

Данные получены следующим образом:

Создаём событие, которое каждые 10 минут добавляет в данные гистограммы разницу между значением Buyers (источника) и Sink:

Таким образом, можно сделать вывод, что при текущем потоке покупателей система не справляется.

Проведём исследования:

Увеличим время работы до 100 часов и увеличим количество кассовых аппаратов до 2, а количество продавцов до 3.

Как хорошо видно из результатов работы системы, загруженность кассовых аппаратов упала с 60% до 30%. Время заявок в системе также упало почти в 9 раз: если раньше время в системе было равно 8941.53 секунд, то теперь оно равно 1568.6 секунд.

Однако, загруженность продавцов по-прежнему высокая: 87%.

Теперь увеличим число продавцов до 4.

Результаты вновь улучшились. Теперь продавцы загруженные на 69%. Время в системе упало до 881.42 секунд, т.е. почти в два раза.

Доведём число продавцов до 5.

Как видим, время в системе сократилось не так значительно: теперь оно составляет 809.27 секунд, что всего на 72.15 секунды меньше. В тоже время, загруженность продавцов упала до 52 процентов.

Попробуем убрать одну кассу, но оставим 5 продавцов.

Как видим, на загруженности продавцов это сказалось не сильно, но сказалось на загруженности кассы и времени в системе.

Попробуем уменьшить время обработки заявки у продавца на одну минуту:

Текущие параметры распределения времени у продавца: triangular(7.6, 10.4, 9). Т. е. время обработки заказа составляет от 7.6 минуты, до 10.4 минуты, в среднем 9 минут.

Количество касс: 2.

Количество продавцов: 5.

Из проведённого исследования видно, что уменьшение времени обработки запроса у продавца уже сократило время в системе на 68.03 секунд, по сравнению с начальной системой с 2 кассами и 5 продавцами.

Выводы по исследованию:

Исходя из полученных результатов, можно сделать вывод, что для улучшения работы СМО необходимо:

- 1. Увеличить количество каналов, особенно тех, время обработки заявок наибольшее (в данном случае продавцов).
- 2. Уменьшить время обработки заявок.

Задача № 2.

Условие:

Многоканальная система (3 канала) обслуживания представляет собой телефонную линию. Заявка-вызов, поступившая в систему, если канал занят, становится в очередь длиной 4. Если в очереди нет места, заявка покидает систему. Интенсивность потока заявок $\lambda = 0.5$ (число вызовов в минуту). Средняя продолжительность разговора 2 минуты. Входной поток заявок простейший, а время обслуживания экспоненциальное с параметром μ .

Создание модели

Так как указано, что время обслуживания экспоненциально с параметром μ , а среднее время разговора 2 минуты, то параметр μ определим, как математическое ожидание экспоненциального распределения, которое равно $\lambda^{-1}=2^{-1}=0.5$, значит $\mu=0.5$ и задержка будет определятся как:

Построим модель:

Укажем распределителю равные вероятности распределения заявок между каналами.

S distributor - SelectOutput5		
Имя:	distributor	
□Исключить		
Использовать:	ВероятностиУсловияНомер выхода	
Вероятность 1:	0.33	
Вероятность 2:	0.33	
Вероятность 3:	0.33	

Параметры системы:

Интенсивность потока заявок $\lambda = 0.5$.

Интенсивность потока обслуживания $\mu = 0.5$.

$$\rho = \frac{\lambda}{\mu} = \frac{0.5}{0.5} = 1$$

Так как система состоит из трёх каналов, у нас будет восемь (8) уравнений, т. к. число каналов m = 3, а число мест в очереди n = 4, плюс начальная вероятность P_0 .

Необходимо найти построить вероятности всех состояний системы, таких как:

- 1. Все каналы свободны.
- 2. Занят один любой канал.
- 3. Заняты два любых канала.
- 4. Заняты все каналы.
- 5. Заняты все каналы и одна заявка в очереди.
- 6. Заняты все каналы и все очереди заполнены.

Построим систему уравнений Колмогорова для СМО типа M/M/3/7 (m = 3, K = 3 + 4, где 3 - 4 число каналов, 4 - 4 вместимость очереди):

$$\begin{cases} \frac{dP_0}{dt} = -\lambda P_0 + \mu P_1 \\ \frac{dP_1}{dt} = \lambda P_0 - (\lambda + \mu) P_1 + 2\mu P_2 \\ \frac{dP_2}{dt} = \lambda P_1 - (\lambda + 2\mu) P_2 + 3\mu P_3 \\ \dots \\ \frac{dP_{m-1}}{dt} = \lambda P_{m-2} - (\lambda + (m-1)\mu) P_{m-1} + m\mu P_m \\ \frac{dP_m}{dt} = \lambda P_{m-1} - (\lambda + m\mu) P_m + m\mu P_{m+1} \\ \dots \\ \frac{dP_{m+1}}{dt} = \lambda P_m - (\lambda + m\mu) P_{m+1} + m\mu P_{m+2} \\ \dots \\ \frac{dP_K}{dt} = -\lambda P_{K-1} - m\mu P_K \end{cases}$$

Исходя из параметров СМО, получим следующую систему уравнения Колмогорова:

$$\begin{cases} \frac{dP_0}{dt} = -0.5P_0 + 0.5P_1 \\ \frac{dP_1}{dt} = 0.5P_0 - P_1 + P_2 \\ \frac{dP_2}{dt} = 0.5P_1 - 1.5P_2 + 1.5P_3 \\ \frac{dP_3}{dt} = 0.5P_2 - 2P_3 + 1.5P_4 \\ \frac{dP_4}{dt} = 0.5P_3 - 2P_4 + 1.5P_5 \\ \frac{dP_5}{dt} = 0.5P_4 - 2P_5 + 1.5P_6 \\ \frac{dP_6}{dt} = 0.5P_5 - 2P_6 + 1.5P_7 \\ \frac{dP_7}{dt} = -0.5P_6 - 1.5P_7 \end{cases}$$

<u>Вероятность отказа:</u> $P_{\text{отказа}} = P_{m+n} = P_7 = \rho^7 \frac{P_0}{n!n^m}$;

$$P_0 = (1 + \frac{\rho^1}{1!} + \frac{\rho^2}{2!} + \dots + \frac{\rho^m}{m!} + \frac{\rho^{m+1}}{m*m!} * \frac{1 - (\frac{\rho}{m})^n}{1 - \frac{\rho}{m}})^{-1} = \frac{1}{1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{3*3!} * \frac{1 - (\frac{1}{3})^4}{1 - \frac{1}{2}}} \approx 0.36377 = >$$

$$P_{\text{отказа}} = \frac{0.36377}{3! * 3^4} \approx 0.0007566$$

<u>Относительная пропускная способность:</u> $Q = 1 - P_{\text{отказа}} = 1 - P_7 = 1 - 0.0007566 = 0.999243.$

Абсолютная пропускная способность: $A = \lambda Q = \lambda (1 - P_7) = 0.5 * 0.999251 = 0.49962$.

3. Выводы

В ходе проведённой работы, полученные теоретические навыки были проверены на практике.

В ходе первого задания, была построена СМО и проведено исследование на предмет улучшения работы системы. Было установлено, что значительная разница во времени обслуживания у разных каналов, идущих последовательно, вызывает образование очереди.

Во втором задании была построена математическая модель СМО в качестве системы уравнения Колмогорова. Так же были вычислены теоретические пропускные способности системы. Было установлено, что относительная пропускная способность близка к 100%, а вероятность отказа крайне мала: менее 1 тысячной процента.