Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
Assembly La

Computer Organization

Outline

- Assembly-, Machine-, and High-Level Languages
- 2 Assembly Language Programman Holp
- Programmer'https://eduassistpro.ght/ste.mo/
- Pasic Computer Organizati edu_assist_pro

Memory Devices

- Random-Access Memory (RAM)
 - Usually called the main memory

 - It can be read and written to Assignment Project Exam Help
 It does not store information permanently (Volatile, when it is powered off, the stored information are gone)
 - Information stored in it can b https://eduassistpro.githerlogion/ence the name random access)
 - Information is accessed by an address that excitie edu_assistion of the piece of information in the RAM the RAM.
 - DRAM = Dynamic RAM
 - 1-Transistor cell + trench capacitor
 - Dense but slow, must be refreshed
 - Typical choice for main memory
 - SRAM: Static RAM
 - 6-Transistor cell, faster but less dense than DRAM
 - Typical choice for cache memory

Memory Devices

ROM (Read-Only-Memory)

- A read-only-memory, non-volatile i.e. stores information perm
 Has random access of stored information permembers in the permembers of stored information permembers.
- Used to store the inform https://eduassistpro.github.io/
- Many types: ROM, EPRO
- FLASH memory can be erased electrically it edu_assist_pro

Cache

- A very fast type of RAM that is used to store information that is most frequently or recently used by the computer
- Recent computers have 2-levels or more levels of cache; the first level is faster but smaller in size (usually called internal cache), and the second level is slower but larger in size (external cache).

Processor-Memory Performance Gap

- 1980 No cache in microprocessor
- 1995 Two-level cache on microprocessor

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

The Need for a Memory Hierarchy

- Widening speed gap between CPU and main memory
 - Processor operation takes less than 1 ns
- Main memory requires more than 50 ns to access • Each instructio

 Assignment Project Exam Help

 memory
- memory access
 - One memory https://eduassistpro.github.io/
 - Additional meradry weeshaf edu_assists ipvolving memory data access
- Memory bandwidth limits the instruction execution rate
- Cache memory can help bridge the CPU-memory gap
- Cache memory is small in size but fast

Typical Memory Hierarchy

- Registers are at the top of the hierarchy
 - Typical size < 1 KB
 - Access time < 0.5 ns Assignment Project Exami Helpessor
- Level 1 Cache (8 64 KB)
 - Access time: 0.5 1 ns
- L2 Cache (512KB 8MB) Add WeChatedy
 - Access time: 2 10 ns
- Main Memory (1 2 GB)
 - Access time: 50 70 ns
- Disk Storage (> 200 GB)
 - Access time: milliseconds

Magnetic Disk Storage

Disk Access Time =

Seek Time +

Rotation Latency +

Assignment Project ExamsHelpime

Add We Renatts edu assist pro

Seek Time: head movement to the desired track (milliseconds)

Rotation Latency: disk rotation until desired sector arrives under the head Direction of rotation Spindle

Transfer Time: to transfer data

Actuator Actuator Track 2

I Track 2

Track 1

Track 1

Track 0

Platter

Platter

Platter

Example on Disk Access Time

- Given a magnetic disk with the following properties
 - Rotation speed = 7200 RPM (rotations per minute)
 - Average sacking many efter je 512 bytes, Freth = 200 sectors
- Calculate
 - Time of one r https://eduassistpro.github.io/
 - Average time to alcter edu_assistutive sectors

Answer

- Rotations per second
- Rotation time in milliseconds
- Average rotational latency
- Time to transfer 32 sectors
- Average access time

$$= 7200/60 = 120 RPS$$

$$= 1000/120 = 8.33 \text{ ms}$$

$$= (32/200) * 8.33 = 1.33$$

$$\underline{m}$$
8 + 4.17 + 1.33 = 13.5 ms

Assignment Project Exam Help
Da https://eduassistpro.gtinub.io/
Add Wechartedu_assist_pro

Outline

- Introduction
- Numbering Systems
- Binary & Hexadecimal Numbers

 Assignment Project Exam Help
- Base Conversions https://eduassistpro.github.io/
- Integer Storage Sizes

- Add WeChat edu_assist_pro
- Binary and Hexadecimal Addition
- Signed Integers and 2's Complement Notation
- Binary and Hexadecimal subtraction
- Carry and Overflow
- Character Storage

Introduction

- Computers only deal with binary data (Os and 1s), hence all data manipulated by computers must be represented in binary format.
- Machine instructions managing many different feat data: Help
 - Numbers:
 - Integers: 33, +128, -2827
 https://eduassistpro.github.io/
 - Real numbers: 1.33, +9.5560
 - Alphanumeric characters (letters, dumitive eight edu_assist: examples: A, a, c, 1,3, ", +, Ctrl, Shift, etc.
 - Images (still or moving): Usually represented by numbers representing the Red, Green and Blue (RGB) colors of each pixel in an image,
 - Sounds: Numbers representing sound amplitudes sampled at a certain rate (usually 20kHz).
- So in general we have two major data types that need to be represented in computers; numbers and characters.

Numbering Systems

- Numbering systems are characterized by their base number.
- In general a numbering system with a base r will have r different digits (including the 0) in its its will range from 0 to r-

1 https://eduassistpro.github.io/

• The most widely used numbering sy edu_assististed in the table

below:

Numbering System	Base	Digits Set
Binary	2	10
Octal	8	76543210
Decimal	10	9876543210
Hexadecimal	16	FEDCBA9876543210

Binary Numbers

• Each digit (bit) is either 1 or 0

- Each bit represents a nower of Project Exam Help
- Every binary number i

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Converting Binary to Decimal

• Weighted positional notation shows how to calculate the decimal walken of easth binar Exit Help

```
Decimal = (d_{n-1} \text{ https://eduassistpro.githtb}. 40/× 2^1) + (d_0 × 2^0)
d = binary digit

Add WeChat edu_assist_pro
```

• binary 10101001 = decimal 169:

$$(1 \times 2^7) + (1 \times 2^5) + (1 \times 2^3) + (1 \times 2^0) =$$

128+32+8+1=169

Convert Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the translated value:

Assignment Project Exam Help least significant bit

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Another Procedure for Converting from Decimal to Binary

- Start with a binary representation of all 0's
- Determine the highest possible power of two the number.
- Put a 1 in the bit positi https://eduassistpro.github.jo/fest power of two found above.

 Add WeChat edu_assist_pro
- Subtract the highest power of two found above from the number.
- Repeat the process for the remaining number

Another Procedure for Converting from Decimal to Binary

Example: Converting 76d to Binary

- The highest power of 2 less or equal to 76 is 64, hence the seventh (MSB) bit is 1 Assignment Project Exam Help is 1
- Subtracting 64 from 7

 Link and power of https://eduassistpro.github.io/ ence the fourth bit position is Add WeChat edu_assist_pro
- We subtract 8 from 12 and get 4.
- The highest power of 2 less or equal to 4 is 4, hence the third bit position is 1
- Subtracting 4 from 4 yield a zero, hence all the left bits are set to 0 to yield the final answer

Hexadecimal Integers

• Binary values are represented in hexadecimal.

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Converting Binary to Hexadecimal

- Each hexadecimal digit corresponds to 4 binary bits.
- Example: Translate the binary integer 000101101010011110010100 to hexadecimal

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

M1023.swf

Converting Hexadecimal to Binary

 Each Hexadecimal digit can be replaced by its 4-bit binary number to form the binary equivalent. Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of 16:

```
Decimal = (d3 × 16³) + (d2 A $6$) griffle in the project in the pr
```

- Examples:
 - Hex 1234 = (1 × 163) + (2 dd 2 + Chat edu_assist) pro
 Decimal 4,660
 - Hex 3BA4 = (3×16^3) + $(11 * 16^2)$ + (10×16^1) + (4×16^0) = Decimal 15,268

Converting Decimal to Hexadecimal

Repeatedly divide the decimal integer by 16. Each remainder is a hex digit in the translated value:

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assistmorfognificant digit

stop when quotient is zero

Decimal 422 = 1A6 hexadecimal

Integer Storage Sizes

Standard sizes:

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

What is the largest unsigned integer that may be stored in 20 bits?

Binary Addition

- Start with the least significant bit (rightmost bit)
- Add each pair of bits
- Include the sargy inether addition in the resent

https://eduassistpro.github.io/

Hexadecimal Addition

• Divide the sum of two digits by the number base (16). The quotient becomes the carry value, and the remainder is the sum digit.

Important skill: Programmers frequently add and subtract the addresses of variables and instructions.

Signed Integers

Assignment Project Exam Help

- Several ways to represent a signed number
 - Sign-Magnitude
 - 1's complement
 - 2's complement

- https://eduassistpro.github.io/
- Divide the range of values into 2 eq.
 First part corresponds to the positive

 - Second part correspond to the negative numbers (< 0)
- Focus will be on the 2's complement representation
 - Has many advantages over other representations
 - Used widely in processors to represent signed integers

Two's Complement Representation

Positive numbers

Signed value = Unsigned value

Negative numbers

Signed value Assing meenta Project E

n = number of bit

https://eduassistp

Negative weight f

Another way to obtain the signature du is to assign a negative weight to most-significant bit

	1	0	1	1	0	1	0	0
	-128							
= -	128	+ ,	32	+ 1	6 +	- 4	= -	/ 6

8-bit Binary value	Unsigne d value	Signed value
00000000	0	0
00000001 xam Hel 00000010	1	+1
00000010	2	+2
ro.githul	o.io/	
10	126	+126
assist	pro ₂₇	+127
10000000	128	-128
10000001	129	-127
11111110	254	-2
11111111	255	-1

Forming the Two's Complement

starting value	00100100 = +36			
step1: reverse the bits (1's complement)	11011011			
step 2: add 1 to the value from step:1 Assignment Project Exan	n'Help ¹			
sum = 2's compleme	1011100 = -36			
https://eduassistpro.github.io/				

```
Sum of an integer and its 2's c t must be zero:

Add WeChat edu_assist_pro

00100100 + 11011100 = 000000 ) ⇒ Ignore Carry
```

The easiest way to obtain the 2's complement of a binary number is by starting at the LSB, leaving all the 0s unchanged, look for the first occurrence of a 1. Leave this 1 unchanged and complement all the bits after it.

Sign Bit

Highest bit indicates the sign. 1 = negative, 0 = positive

If highest digit of a hexadecimal is > 7, the value is negative

Examples: 8A and C5 are negative bytes

A21F and 9D03 are negative words

B1C42A00 is a negative double-word

Sign Extension

- Step 1: Move the number into the lower-significant bits
- Step 2: Fill all the remaining higher bits with the sign bit
- This will ensure that About I magnit Brown and Eigenard Eigenard
- Examples
 - https://eduassistpro.github.io/
 Sign-Extend 10110011 t

 10110011 = Add WeChat edu assist pro
 - Sign-Extend 01100010 to 16 bits 00000000 01100010 = +98
- Infinite 0s can be added to the left of a positive number
- Infinite 1s can be added to the left of a negative number

Two's Complement of a Hexadecimal

- To form the two's complement of a hexadecimal
 - Subtract each hexadecimal digit from 15
 - Add 1 Assignment Project Exam Help
- Examples:

https://eduassistpro.github.io/
• 2's complement of 6A3D = 95

- 2's complement of 92F0 = 6
- 2's complement of FFFF = 0001
- No need to convert hexadecimal to binary

Two's Complement of a Hexadecimal

- Start at the least significant digit, leaving all the 0s unchanged, look for the first occurrence of a non-zero digit.

 Assignment Project Exam Help
- Subtract this digit fro
- Then subtract all rema https://eduassistpro.github.io/
- Examples:

- Add WeChat edu_assist_pro
- 2's complement of 6A3D = 95C3
- 2's complement of 92F0 = 6D10
- 2's complement of FFFF = 0001

Binary Subtraction

- When subtracting A B, convert B to its 2's complement
- Add A to (-B)

- Carry is ignored dbetated assist_pro
 - Negative number is sign-extended with 1's
 - You can imagine infinite 1's to the left of a negative number
 - Adding the carry to the extended 1's produces extended zeros

Practice: Subtract 00100101 from 01101001.

Hexadecimal Subtraction

• When a borrow is required from the digit to the left, add 16 (decimal) to the current digit's value

Last Carry is ignored

Practice: The address of **var1** is 00400B20. The address of the next variable after var1 is 0040A06C. How many bytes are used by var1?

Ranges of Signed Integers

The unsigned range is divided into two signed ranges for positive and negative numbers

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Practice: What is the range of signed values that may be stored in 20 bits?

Carry and Overflow

- Carry is important when ...

 - Adding or subtracting unsigned integers
 Indicates that the unsigned sum is out of range
 - Either < 0 or > maximum https://eduassistpro.github.io/
- Overflow is important w
 - Adding or subtracting signed the sechat edu_assist_pro
 - Indicates that the signed sum is out of range
- Overflow occurs when
 - Adding two positive numbers and the sum is negative
 - Adding two negative numbers and the sum is positive
 - Can happen because of the fixed number of sum bits

Carry and Overflow Examples

- We can have carry without overflow and vice-versa
- Four cases are possible

Character Storage

- Character sets
 - Standard ASCII: 7-bit character codes (0 127)
 - Extended ASCII: 8-bit character codes (0 255)
 - Unicode: A6-bit character codes (0x-a65, FRE)
 - Unicode stan al character set
 - Defines cod https://eduassistpro.githlabgijages
 - Used in Windows-XP: each cha ed as 16 bits
 - UTF-8: variable de generali edu_assist poro
 - Encodes all Unicode characters
 - Uses 1 byte for ASCII, but multiple bytes for other characters
- Null-terminated String
 - Array of characters followed by a NULL character

ASCII Codes

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Examples:

- ASCII code for space character = 20 (hex) = 32 (decimal)
- ASCII code for 'A' = 41 (hex) = 65 (decimal)
- ASCII code for 'a' = 61 (hex) = 97 (decimal)

Control Characters

- The first 32 characters of ASCII table are used for control
- - Character 0 is the NULL ch https://eduassistpro.githtubgo/
 - Character 9 is the Horizontal Tab (HT) charac
 - Character OA (hex) = 10 (decimal) \ Sthe hat edu_assist_pro
 - Character OD (hex) = 13 (decimal) is the Carriage Return (CR)
 - The LF and CR characters are used together
 - They advance the cursor to the beginning of next line
- One control character appears at end of ASCII table
 - Character 7F (hex) is the Delete (DEL) character

Parity Bit

- Data errors can occur during data transmission or storage/retrieval.
- The 8th bit in the ASCII code is used for error checking.
- This bit is usually referred to as the parity bit. Help
- There are two ways fo https://eduassistpro.github.io/
 - Even Parity: Where the 8th bit is set su total number of 1s in the 8-bit code word is even. Add WeChat edu_assist_pro
 - Odd Parity: The 8th bit is set such that the total number of 1s in the 8-bit code word is odd.