工科数学分析

贺丹 (东南大学)

本章主要内容:

• 向量及其运算

- 向量及其运算
- 空间直角坐标系及向量运算的坐标表示

- 向量及其运算
- 空间直角坐标系及向量运算的坐标表示
- 平面和直线

- 向量及其运算
- 空间直角坐标系及向量运算的坐标表示
- 平面和直线
- 空间曲线和曲面

本节主要内容:

本节主要内容:

• 向量的概念

本节主要内容:

- 向量的概念
- 向量的线性运算

本节主要内容:

- 向量的概念
- 向量的线性运算
- 向量的数量积与向量积

定义1.1

定义1.1

如果一个量既有大小(用一个非负实数表示)又有方向,则称这个量为向量.

定义1.1

如果一个量既有大小(用一个非负实数表示)又有方向,则称这个量为向量.

定义1.1

如果一个量既有大小(用一个非负实数表示)又有方向,则称这个量为向量.

常用有向线段来表示向量.

定义1.1

如果一个量既有大小(用一个非负实数表示)又有方向,则称这个量为向量.

常用有向线段来表示向量.

以A为起点,B为终点的有向线段 所表示的向量、记作 \overrightarrow{AB} 或 \overrightarrow{a} .

定义1.1

如果一个量既有大小(用一个非负实数表示)又有方向,则称这个量为向量.

常用有向线段来表示向量.

以A为起点,B为终点的有向线段 所表示的向量、记作 \overrightarrow{AB} 或 \overrightarrow{a} .

向量的模

定义1.1

如果一个量既有大小(用一个非负实数表示)又有方向,则称这个量为向量.

常用有向线段来表示向量.

以A为起点,B为终点的有向线段 所表示的向量、记作 \overrightarrow{AB} 或 \overrightarrow{a} .

otag 向量的大小,记作 $|\vec{a}|$ (也称为向量 \vec{a} 的范数).

定义1.1

如果一个量既有大小(用一个非负实数表示)又有方向,则称这个量为向量.

常用有向线段来表示向量.

以A为起点,B为终点的有向线段 所表示的向量、记作 \overrightarrow{AB} 或 \overrightarrow{a} .

单位向量

定义1.1

如果一个量既有大小(用一个非负实数表示)又有方向,则称这个量为向量.

常用有向线段来表示向量.

以A为起点,B为终点的有向线段 所表示的向量、记作 \overrightarrow{AB} 或 \overrightarrow{a} .

otag 向量的大小,记作 $|\vec{a}|$ (也称为向量 \vec{a} 的范数).

单位向量 模等于1的向量.

定义1.1

如果一个量既有大小(用一个非负实数表示)又有方向,则称这个量为向量.

常用有向线段来表示向量.

以A为起点,B为终点的有向线段 所表示的向量、记作 \overrightarrow{AB} 或 \overrightarrow{a} .

otag 向量的大小,记作 $|\vec{a}|$ (也称为向量 \vec{a} 的范数).

单位向量 模等于1的向量.

与非零向量 \vec{a} 同向的单位向量称为向量 \vec{a} 的单位向量,记作 \vec{a}_0 .

零向量

负向量

负向量 模为 $|\vec{a}|$ 而方向与 \vec{a} 相反的向量称为 \vec{a} 的负向量,

零向量 模等于零的向量, 记为 $\vec{0}$, 其方向不定.

负向量 模为 $|\vec{a}|$ 而方向与 \vec{a} 相反的向量称为 \vec{a} 的负向量,记为 $-\vec{a}$.

负向量 模为 $|\vec{a}|$ 而方向与 \vec{a} 相反的向量称为 \vec{a} 的负向量, 记为 $-\vec{a}$.

▶ 若 \vec{a} 与 \vec{b} 的方向相同或相反,则称 \vec{a} 与 \vec{b} <mark>平行或共线</mark>,

负向量 模为 $|\vec{a}|$ 而方向与 \vec{a} 相反的向量称为 \vec{a} 的负向量,记为 $-\vec{a}$.

▶ 若 \vec{a} 与 \vec{b} 的方向相同或相反,则称 \vec{a} 与 \vec{b} <mark>平行或共线</mark>,记为 $\vec{a}//\vec{b}$.

负向量 模为 $|\vec{a}|$ 而方向与 \vec{a} 相反的向量称为 \vec{a} 的负向量,记为 $-\vec{a}$.

- ▶ 若 \vec{a} 与 \vec{b} 的方向相同或相反,则称 \vec{a} 与 \vec{b} 平行或共线,记为 \vec{a} // \vec{b} .
 - 显然零向量0与任何向量a平行.

负向量 模为 $|\vec{a}|$ 而方向与 \vec{a} 相反的向量称为 \vec{a} 的负向量,记为 $-\vec{a}$.

- ▶ 若 \vec{a} 与 \vec{b} 的方向相同或相反,则称 \vec{a} 与 \vec{b} <mark>平行或共线</mark>,记为 $\vec{a}//\vec{b}$.
 - 显然零向量0与任何向量a平行.

定义1.2

设 \vec{a} , \vec{b} 是两个向量,如果 $|\vec{a}| = |\vec{b}|$ 且 \vec{a} 与 \vec{b} 的方向相同,则称 \vec{a} 与 \vec{b} 相等,记作 $\vec{a} = \vec{b}$.

负向量 模为 $|\vec{a}|$ 而方向与 \vec{a} 相反的向量称为 \vec{a} 的负向量, 记为 $-\vec{a}$.

- ▶ 若 \vec{a} 与 \vec{b} 的方向相同或相反,则称 \vec{a} 与 \vec{b} 平行或共线,记为 \vec{a} // \vec{b} .
 - 显然零向量0与任何向量a平行.

定义1.2

设 \vec{a} , \vec{b} 是两个向量,如果 $|\vec{a}| = |\vec{b}|$ 且 \vec{a} 与 \vec{b} 的方向相同,则称 \vec{a} 与 \vec{b} 相等,记作 $\vec{a} = \vec{b}$.

• 两个相等的向量, 其起点未必是同一点.

负向量 模为 $|\vec{a}|$ 而方向与 \vec{a} 相反的向量称为 \vec{a} 的负向量,记为 $-\vec{a}$.

- ▶ 若 \vec{a} 与 \vec{b} 的方向相同或相反,则称 \vec{a} 与 \vec{b} 平行或共线,记为 \vec{a} // \vec{b} .
 - 显然零向量0与任何向量a平行.

定义1.2

设 \vec{a} , \vec{b} 是两个向量,如果 $|\vec{a}| = |\vec{b}|$ 且 \vec{a} 与 \vec{b} 的方向相同,则称 \vec{a} 与 \vec{b} 相等,记作 $\vec{a} = \vec{b}$.

- 两个相等的向量, 其起点未必是同一点.
- 一个向量和它经过平移后得到的向量是相等的。

▶ 向量的加法与减法

▶ 向量的加法与减法

▶ 向量的加法与减法

平行四边形法则

▶ 向量的加法与减法

平行四边形法则

以两个非零向量 \vec{a} 、 \vec{b} 为边的平行四边形的 对角线所表示的向量,称为两向量的和向量,记为 \vec{a} + \vec{b} .

▶ 向量的加法与减法

平行四边形法则

以两个非零向量 \vec{a} 、 \vec{b} 为边的平行四边形的 对角线所表示的向量,称为两向量的和向 量,记为 \vec{a} + \vec{b} .

▶ 向量的加法与减法

平行四边形法则

以两个非零向量 \vec{a} 、 \vec{b} 为边的平行四边形的 对角线所表示的向量,称为两向量的和向 量,记为 \vec{a} + \vec{b} .

三角形法则

▶ 向量的加法与减法

平行四边形法则

以两个非零向量 \vec{a} 、 \vec{b} 为边的平行四边形的 对角线所表示的向量,称为两向量的和向量,记为 \vec{a} + \vec{b} .

三角形法则

若以向量 \vec{a} 的终点为向量 \vec{b} 的起点,则由 \vec{a} 的起点到 \vec{b} 的终点的向量为 \vec{a} 与 \vec{b} 的和向量.

▶ 向量的加法与减法

平行四边形法则

以两个非零向量 \vec{a} 、 \vec{b} 为边的平行四边形的对角线所表示的向量,称为两向量的和向量,记为 \vec{a} + \vec{b} .

三角形法则

若以向量 \vec{a} 的终点为向量 \vec{b} 的起点,则由 \vec{a} 的 起点到 \vec{b} 的终点的向量为 \vec{a} 与 \vec{b} 的和向量。

该法则可以推广到任意有限个向量相加的情形.

如果 $\vec{a} = \vec{b} + \vec{c}$, 则称 \vec{c} 是 \vec{a} 与 \vec{b} 的差, 或 \vec{b} 是 \vec{a} 与 \vec{c} 的差, 分别记为 $\vec{c} = \vec{a} - \vec{b}$ 与 $\vec{b} = \vec{a} - \vec{c}$.

如果 $\vec{a} = \vec{b} + \vec{c}$, 则称 \vec{c} 是 \vec{a} 与 \vec{b} 的差, 或 \vec{b} 是 \vec{a} 与 \vec{c} 的差, 分别记为 $\vec{c} = \vec{a} - \vec{b}$ 与 $\vec{b} = \vec{a} - \vec{c}$.

如果 $\vec{a} = \vec{b} + \vec{c}$, 则称 \vec{c} 是 \vec{a} 与 \vec{b} 的差, 或 \vec{b} 是 \vec{a} 与 \vec{c} 的差, 分别记为 $\vec{c} = \vec{a} - \vec{b}$ 与 $\vec{b} = \vec{a} - \vec{c}$.

减法法则

如果 $\vec{a} = \vec{b} + \vec{c}$, 则称 \vec{c} 是 \vec{a} 与 \vec{b} 的差, 或 \vec{b} 是 \vec{a} 与 \vec{c} 的差, 分别记为 $\vec{c} = \vec{a} - \vec{b}$ 与 $\vec{b} = \vec{a} - \vec{c}$

减法法则

将向量 \vec{a} 与向量 \vec{b} 的起点重合,由向量 \vec{b} 的终点指向向量 \vec{a} 的终点的向量 \vec{c} 就是 $\vec{a} - \vec{b}$.

•
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (交換律);

•
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (交換律);

• $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (交換律);

• $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ (结合律);

•
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (交換律);

•
$$\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$$
 (结合律);

•
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (交換律);

$$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$$

$$\vec{a}+\vec{b}+\vec{c}$$

$$\vec{b}+\vec{c}$$

- $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ (结合律);
- $\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$;

•
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (交換律);

- $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ (结合律);
- $\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$;
- $\vec{a} + (-\vec{a}) = \vec{a} \vec{a} = \vec{0};$

•
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (交換律);

- $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ (结合律);
- $\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$;
- $\vec{a} + (-\vec{a}) = \vec{a} \vec{a} = \vec{0};$
- $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$.

设 \vec{a} 是一个非零向量, λ 是一个非零实数, 则 λ 与 \vec{a} 的乘积(简称数乘)仍是一个向量, 记作 $\lambda \vec{a}$, 且

设 \vec{a} 是一个非零向量, λ 是一个非零实数, 则 λ 与 \vec{a} 的乘积(简称 数乘)仍是一个向量, 记作 $\lambda \vec{a}$, 且

• $|\lambda \vec{a}| = |\lambda| \cdot |\vec{a}|$;

设 \vec{a} 是一个非零向量, λ 是一个非零实数, 则 λ 与 \vec{a} 的乘积(简称数乘)仍是一个向量, 记作 $\lambda \vec{a}$, 且

- $\bullet |\lambda \vec{a}| = |\lambda| \cdot |\vec{a}|;$
- $\lambda \vec{a}$ 的方向为 $\begin{cases} 5\vec{a}$ 同向,当 $\lambda > 0$, 与 \vec{a} 反向,当 $\lambda < 0$.

设 \vec{a} 是一个非零向量, λ 是一个非零实数, 则 λ 与 \vec{a} 的乘积(简称数乘)仍是一个向量, 记作 $\lambda \vec{a}$, 且

- $|\lambda \vec{a}| = |\lambda| \cdot |\vec{a}|;$
- $\lambda \vec{a}$ 的方向为 $\begin{cases} 5\vec{a}$ 同向,当 $\lambda > 0$, 与 \vec{a} 反向,当 $\lambda < 0$.
- 当 $\lambda = 0$ 或 $\vec{a} = \vec{0}$ 时, 规定 $\lambda \vec{a} = \vec{0}$.

• $(\lambda \mu)\vec{a} = \lambda(\mu \vec{a}) = \mu(\lambda \vec{a});$

- $(\lambda \mu)\vec{a} = \lambda(\mu \vec{a}) = \mu(\lambda \vec{a});$
- $\bullet \ \lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b};$

- $(\lambda \mu)\vec{a} = \lambda(\mu \vec{a}) = \mu(\lambda \vec{a});$
- $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b};$ $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a};$

- $(\lambda \mu)\vec{a} = \lambda(\mu \vec{a}) = \mu(\lambda \vec{a});$
- $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b};$ $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a};$
- $\bullet \ 1 \cdot \vec{a} = \vec{a}, \quad (-1) \cdot \vec{a} = -\vec{a};$

- $(\lambda \mu)\vec{a} = \lambda(\mu \vec{a}) = \mu(\lambda \vec{a});$
- $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}; \quad (\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a};$
- $1 \cdot \vec{a} = \vec{a}$, $(-1) \cdot \vec{a} = -\vec{a}$;
- $\bullet \ 0 \cdot \vec{a} = \vec{0}, \quad \lambda \cdot \vec{0} = \vec{0};$

- $(\lambda \mu)\vec{a} = \lambda(\mu \vec{a}) = \mu(\lambda \vec{a});$
- $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b};$ $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a};$
- $1 \cdot \vec{a} = \vec{a}$, $(-1) \cdot \vec{a} = -\vec{a}$;
- $\bullet \ 0 \cdot \vec{a} = \vec{0}, \quad \lambda \cdot \vec{0} = \vec{0};$
- 若 \vec{a} 是非零向量,则 \vec{a} 的单位向量 $\vec{a}_0 = \frac{\vec{a}}{|\vec{a}|}$;

- $(\lambda \mu)\vec{a} = \lambda(\mu \vec{a}) = \mu(\lambda \vec{a});$
- $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}; \quad (\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a};$
- $1 \cdot \vec{a} = \vec{a}$, $(-1) \cdot \vec{a} = -\vec{a}$;
- $0 \cdot \vec{a} = \vec{0}, \quad \lambda \cdot \vec{0} = \vec{0};$
- 若 \vec{a} 是非零向量,则 \vec{a} 的单位向量 $\vec{a}_0 = \frac{\vec{a}}{|\vec{a}|}$; 故任一非零向量 \vec{a} 都可以表示为 $\vec{a} = |\vec{a}| \cdot \vec{a}_0$.

- $(\lambda \mu)\vec{a} = \lambda(\mu \vec{a}) = \mu(\lambda \vec{a});$
- $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}; \quad (\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a};$
- $1 \cdot \vec{a} = \vec{a}$, $(-1) \cdot \vec{a} = -\vec{a}$;
- $\bullet \ 0 \cdot \vec{a} = \vec{0}, \quad \lambda \cdot \vec{0} = \vec{0};$
- 若 \vec{a} 是非零向量,则 \vec{a} 的单位向量 $\vec{a}_0 = \frac{\vec{a}}{|\vec{a}|}$; 故任一非零向量 \vec{a} 都可以表示为 $\vec{a} = |\vec{a}| \cdot \vec{a}_0$.
- 结论: 设向量 $\vec{a} \neq \vec{0}$, 则向量 \vec{b} 平行于 \vec{a} 的充分必要条件是: 存在唯一的实数 λ , 使 $\vec{b} = \lambda \vec{a}$.

例1. 试用向量证明三角形的中位线定理: 三角形两边中点的 连线平行于第三边且为第三边长度的一半.

例1. 试用向量证明三角形的中位线定理: 三角形两边中点的 连线平行于第三边且为第三边长度的一半.

例1. 试用向量证明三角形的中位线定理: 三角形两边中点的 连线平行于第三边且为第三边长度的一半.

证明:

证明: 如图, 设D是AB的中点, E是AC的中点,

证明: 如图, 设D是AB的中点,

则
$$\overrightarrow{AD} = \frac{1}{2}\overrightarrow{AB}, \ \overrightarrow{AE} = \frac{1}{2}\overrightarrow{AC},$$

证明: 如图, 设D是AB的中点,

$$\mathbf{NJ}\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AB},\ \overrightarrow{AE}=\frac{1}{2}\overrightarrow{AC},$$

$$\overrightarrow{DE} = \overrightarrow{AE} - \overrightarrow{AD}$$

证明: 如图, 设D是AB的中点,

$$\mathbf{NJ}\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AB},\ \overrightarrow{AE}=\frac{1}{2}\overrightarrow{AC},$$

$$\therefore \overrightarrow{DE} = \overrightarrow{AE} - \overrightarrow{AD} = \frac{1}{2} (\overrightarrow{AC} - \overrightarrow{AB})$$

证明: 如图, 设D是AB的中点,

则
$$\overrightarrow{AD} = \frac{1}{2}\overrightarrow{AB}, \ \overrightarrow{AE} = \frac{1}{2}\overrightarrow{AC},$$

$$\because \overrightarrow{DE} = \overrightarrow{AE} - \overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AC} - \overrightarrow{AB}) = \frac{1}{2}\overrightarrow{BC},$$

证明: 如图, 设D是AB的中点,

则
$$\overrightarrow{AD} = \frac{1}{2}\overrightarrow{AB}, \ \overrightarrow{AE} = \frac{1}{2}\overrightarrow{AC},$$

$$\therefore \overrightarrow{DE} = \overrightarrow{AE} - \overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AC} - \overrightarrow{AB}) = \frac{1}{2}\overrightarrow{BC},$$

∴
$$\overrightarrow{DE}//\overrightarrow{BC}$$
, $\mathbf{H}|\overrightarrow{DE}| = \frac{1}{2}|\overrightarrow{BC}|$.

▶ 向量在轴上的投影

▶ 向量在轴上的投影

▶ 向量在轴上的投影

两个向量的夹角

▶ 向量在轴上的投影

两个向量的夹角

设有两个非零向量 \vec{a} 和 \vec{b} ,任取空间一 $\triangle O$ 作 $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$. 规定不超过

▶ 向量在轴上的投影

两个向量的夹角

设有两个非零向量 \vec{a} 和 \vec{b} ,任取空间一点O 作 $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$. 规定不超过 π 的角 $\angle AOB$ 称为向量 \vec{a} 和 \vec{b} 的夹角.

▶ 向量在轴上的投影

两个向量的夹角

设有两个非零向量 \vec{a} 和 \vec{b} ,任取空间一点O 作 $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$. 规定不超过 π 的角 $\angle AOB$ 称为向量 \vec{a} 和 \vec{b} 的 \mathbf{y} 角.

设
$$\theta = \angle AOB(0 \le \theta \le \pi)$$
, 记为 (\vec{a}, \vec{b}) 或 $(\vec{a} \land \vec{b})$,

▶ 向量在轴上的投影

两个向量的夹角

设有两个非零向量 \vec{a} 和 \vec{b} ,任取空间一点O 作 $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$. 规定不超过 π 的角 $\angle AOB$ 称为向量 \vec{a} 和 \vec{b} 的 \mathbf{y} 角.

设
$$\theta = \angle AOB(0 \le \theta \le \pi)$$
, 记为 (\vec{a}, \vec{b}) 或 $(\vec{a} \land \vec{b})$, 即 $(\vec{a}, \vec{b}) = \theta$.

▶ 向量在轴上的投影

两个向量的夹角

设有两个非零向量 \vec{a} 和 \vec{b} ,任取空间一点O 作 $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$.规定不超过 π 的角 $\angle AOB$ 称为向量 \vec{a} 和 \vec{b} 的夹角.

设
$$\theta = \angle AOB(0 \le \theta \le \pi)$$
, 记为 (\vec{a}, \vec{b}) 或 $(\vec{a} \land \vec{b})$, 即 $(\vec{a}, \vec{b}) = \theta$.

• 如果向量 \vec{a} 和 \vec{b} 中有一个是零向量, 规定它们的夹角可在0与 π 之间任意取值.

▶ 向量在轴上的投影

两个向量的夹角

设有两个非零向量 \vec{a} 和 \vec{b} ,任取空间一点O 作 $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$. 规定不超过 π 的角 $\angle AOB$ 称为向量 \vec{a} 和 \vec{b} 的夹角.

设
$$\theta = \angle AOB(0 \le \theta \le \pi)$$
, 记为 (\vec{a}, \vec{b}) 或 $(\vec{a} \land \vec{b})$, 即 $(\vec{a}, \vec{b}) = \theta$.

- 如果向量 \vec{a} 和 \vec{b} 中有一个是零向量, 规定它们的夹角可在0与 π 之间任意取值.
- 类似地可以规定向量与一轴的夹角或空间两轴的夹角.

设有一个向量 $\overrightarrow{AB} = \vec{a}$ 及一轴 \vec{l} ,

设有一个向量 $\overrightarrow{AB} = \overrightarrow{a}$ 及一轴 \overrightarrow{l} ,过 \overrightarrow{AB} 的起点A和终点B,分别作垂直于 \overrightarrow{l} 的平面,它们与轴 \overrightarrow{l} 分别交于A'和B',

设有一个向量 $\overrightarrow{AB} = \vec{a}$ 及一轴 \vec{l} ,过 \overrightarrow{AB} 的起点A和终点B,分别作垂直于 \vec{l} 的平面,它们与轴 \vec{l} 分别交于A'和B',

设有一个向量 $\overrightarrow{AB} = \overrightarrow{a}$ 及一轴 \overrightarrow{l} ,过 \overrightarrow{AB} 的起点A和终点B,分别作垂直于 \overrightarrow{l} 的平面,它们与轴 \overrightarrow{l} 分别交于A'和B',

则有向线段 $\overrightarrow{A'B'}$ 的值 $\overrightarrow{A'B'}$, 叫做向量 \overrightarrow{AB} 在 \overrightarrow{l} 轴上的投影, 记为 $(\overrightarrow{AB})_{\overrightarrow{l'}}$ 或 $(\overrightarrow{a})_{\overrightarrow{l'}}$,即 $(\overrightarrow{AB})_{\overrightarrow{l'}} = A'B'$,轴 \overrightarrow{l} 称为投影轴,其中A'B'是一个数,其绝对值等于 $\overrightarrow{A'B'}$ 的长度,当 $\overrightarrow{A'B'}$ 与轴 \overrightarrow{l} 同方向时,其值为正;反方向时,其值为负.

向量 \overrightarrow{AB} 在轴 \overrightarrow{l} 上的投影,等于该向量的模乘以这个向量与轴 \overrightarrow{l} 的夹角的余弦,即

向量 \overrightarrow{AB} 在轴 \overrightarrow{l} 上的投影,等于该向量的模乘以这个向量与轴 \overrightarrow{l} 的夹角的余弦, 即 $(\overrightarrow{AB})_{\vec{l}} = |\overrightarrow{AB}|\cos(\overrightarrow{AB}, \vec{l})$.

向量 \overrightarrow{AB} 在轴 \overrightarrow{l} 上的投影,等于该向量的模乘以这个向量与轴 \overrightarrow{l} 的夹角的余弦, 即 $(\overrightarrow{AB})_{\vec{l}} = |\overrightarrow{AB}|\cos(\overrightarrow{AB}, \vec{l})$.

由此可知,两个相等向量在同一轴上的投影相等.

设物体在常力 \vec{F} 作用下沿某直线移动,位移为 \vec{S} ,则作用在物体上的常力 \vec{F} 所作的功为 $W=|\vec{F}|\cdot|\vec{S}|\cos\theta,$ 其中 θ 为力 \vec{F} 与位移 \vec{S} 的夹角.

设物体在常力 \vec{F} 作用下沿某直线移动,位移为 \vec{S} ,则作用在物体上的常力 \vec{F} 所作的功为

$$W = |\vec{F}| \cdot |\vec{S}| \cos \theta,$$

其中 θ 为力 \vec{F} 与位移 \vec{S} 的夹角.

定义1.3

设物体在常力 \vec{F} 作用下沿某直线移动,位移为 \vec{S} ,则作用在物体上的常力 \vec{F} 所作的功为

$$W = |\vec{F}| \cdot |\vec{S}| \cos \theta,$$

其中 θ 为力 \vec{F} 与位移 \vec{S} 的夹角.

定义1.3

两向量 \vec{a} 和 \vec{b} 的模与它们夹角的余弦的乘积, 称为向量 \vec{a} 与 \vec{b} 的数量积, 记为 $\vec{a}\cdot\vec{b}$,

设物体在常力 \vec{F} 作用下沿某直线移动,位移为 \vec{S} ,则作用在物体上的常力 \vec{F} 所作的功为

$$W = |\vec{F}| \cdot |\vec{S}| \cos \theta,$$

其中 θ 为力 \vec{F} 与位移 \vec{S} 的夹角.

定义1.3

两向量 \vec{a} 和 \vec{b} 的模与它们夹角的余弦的乘积, 称为向量 \vec{a} 与 \vec{b} 的数量积, 记为 $\vec{a} \cdot \vec{b}$, 即

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos(\vec{a}, \vec{b}).$$

设物体在常力 \vec{F} 作用下沿某直线移动,位移为 \vec{S} ,则作用在物体上的常力 \vec{F} 所作的功为

$$W = |\vec{F}| \cdot |\vec{S}| \cos \theta,$$

其中 θ 为力 \vec{F} 与位移 \vec{S} 的夹角.

定义1.3

两向量 \vec{a} 和 \vec{b} 的模与它们夹角的余弦的乘积, 称为向量 \vec{a} 与 \vec{b} 的数量积, 记为 $\vec{a}\cdot\vec{b}$, 即

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos(\vec{a}, \vec{b}).$$

其中 \vec{a} , \vec{b} 只要有一个是零向量, 则规定它们的数量积为零.

• 数量积也称为点积或内积.

• 数量积也称为点积或内积.

因为
$$(\vec{b})_{\vec{a}} = |\vec{b}|\cos(\vec{a},\vec{b}), \quad (\vec{a})_{\vec{b}} = |\vec{a}|\cos(\vec{a},\vec{b}),$$

因为
$$(\vec{b})_{\vec{a}} = |\vec{b}|\cos(\vec{a}, \vec{b}), \quad (\vec{a})_{\vec{b}} = |\vec{a}|\cos(\vec{a}, \vec{b}),$$

所以
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot (\vec{b})_{\vec{a}} = |\vec{b}| \cdot (\vec{a})_{\vec{b}}$$
.

因为
$$(\vec{b})_{\vec{a}} = |\vec{b}|\cos(\vec{a},\vec{b}), \quad (\vec{a})_{\vec{b}} = |\vec{a}|\cos(\vec{a},\vec{b}),$$

所以
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot (\vec{b})_{\vec{a}} = |\vec{b}| \cdot (\vec{a})_{\vec{b}}$$
.

因为
$$(\vec{b})_{\vec{a}} = |\vec{b}|\cos(\vec{a}, \vec{b}), \quad (\vec{a})_{\vec{b}} = |\vec{a}|\cos(\vec{a}, \vec{b}),$$
所以 $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot (\vec{b})_{\vec{a}} = |\vec{b}| \cdot (\vec{a})_{\vec{z}}.$

•
$$\vec{a} \cdot \vec{a} = |\vec{a}| \cdot |\vec{a}| \cos(\vec{a}, \vec{a}) = |\vec{a}|^2$$
;

因为
$$(\vec{b})_{\vec{a}} = |\vec{b}|\cos(\vec{a}, \vec{b}), \quad (\vec{a})_{\vec{b}} = |\vec{a}|\cos(\vec{a}, \vec{b}),$$
 所以 $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot (\vec{b})_{\vec{a}} = |\vec{b}| \cdot (\vec{a})_{\vec{b}}.$

•
$$\vec{a} \cdot \vec{a} = |\vec{a}| \cdot |\vec{a}| \cos(\vec{a}, \vec{a}) = |\vec{a}|^2;$$

($\vec{a} \cdot \vec{a}$ 常记为 \vec{a}^2 , 即 $\vec{a} \cdot \vec{a} = \vec{a}^2 = |\vec{a}|^2$)

因为
$$(\vec{b})_{\vec{a}} = |\vec{b}|\cos(\vec{a}, \vec{b}), \quad (\vec{a})_{\vec{b}} = |\vec{a}|\cos(\vec{a}, \vec{b}),$$
 所以 $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot (\vec{b})_{\vec{a}} = |\vec{b}| \cdot (\vec{a})_{\vec{b}}.$

- $\vec{a} \cdot \vec{a} = |\vec{a}| \cdot |\vec{a}| \cos(\vec{a}, \vec{a}) = |\vec{a}|^2;$ ($\vec{a} \cdot \vec{a}$ 常记为 \vec{a}^2 , 即 $\vec{a} \cdot \vec{a} = \vec{a}^2 = |\vec{a}|^2$)
- 设 \vec{a} 与 \vec{b} 是两个非零向量,则 $\cos(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$;

因为
$$(\vec{b})_{\vec{a}} = |\vec{b}|\cos(\vec{a}, \vec{b}), \quad (\vec{a})_{\vec{b}} = |\vec{a}|\cos(\vec{a}, \vec{b}),$$
 所以 $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot (\vec{b})_{\vec{a}} = |\vec{b}| \cdot (\vec{a})_{\vec{b}}.$

- $\vec{a} \cdot \vec{a} = |\vec{a}| \cdot |\vec{a}| \cos(\vec{a}, \vec{a}) = |\vec{a}|^2;$ ($\vec{a} \cdot \vec{a}$ 常记为 \vec{a}^2 , 即 $\vec{a} \cdot \vec{a} = \vec{a}^2 = |\vec{a}|^2$)
- 设 \vec{a} 与 \vec{b} 是两个非零向量,则 $\cos(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$;
- $\partial \vec{a} = \vec{b} = \vec{b$

• $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (交換律);

- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (交換律);
- $\lambda(\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b}$ (结合律);

- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (交換律);
- $\lambda(\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b}$ (结合律);
- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (分配律).

- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (交換律);
- $\lambda(\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b}$ (结合律);
- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (分配律).

例2. 试用向量证明余弦定理.

- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (交換律);
- $\lambda(\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b}$ (结合律);
- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (分配律).

例2. 试用向量证明余弦定理.

- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (交換律):
- $\lambda(\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b}$ (结合律);
- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (分配律).

例2. 试用向量证明余弦定理.

证明: 如图, 作 $\triangle ABC$ 及向量 \vec{a} , \vec{b} , \vec{c} , 则有 $\vec{c} = \vec{a} - \vec{b}$.

- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (交換律);
- $\lambda(\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b}$ (结合律);
- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (分配律).

例2. 试用向量证明余弦定理.

证明:如图,作 $\triangle ABC$ 及向量 $\vec{a}, \vec{b}, \vec{c},$ 则有 $\vec{c} = \vec{a} - \vec{b}$

从而
$$|\vec{c}|^2 = \vec{c} \cdot \vec{c} = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$$

$$= \vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b}$$

- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (交換律);
- $\lambda(\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b}$ (结合律);
- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (分配律).

例2. 试用向量证明余弦定理.

证明: 如图, 作 $\triangle ABC$ 及向量 $\vec{a}, \vec{b}, \vec{c},$

则有 $\vec{c} = \vec{a} - \vec{b}$.

从而
$$|\vec{c}|^2 = \vec{c} \cdot \vec{c} = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$$

$$= \vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} - 2\vec{a} \cdot \vec{b}$$

- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (交換律);
- $\lambda(\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b}$ (结合律);
- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (分配律).

例2. 试用向量证明余弦定理.

证明: 如图,作 $\triangle ABC$ 及向量 $ec{a},ec{b},ec{c},$

则有
$$\vec{c} = \vec{a} - \vec{b}$$
.

从而
$$|\vec{c}|^2 = \vec{c} \cdot \vec{c} = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$$

$$= \vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} - 2\vec{a} \cdot \vec{b}$$

$$= |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}| \cdot |\vec{b}| \cos(\vec{a}, \vec{b}).$$

例3. 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直, 且 $|\vec{a}|=1$, $|\vec{b}|=2$, $|\vec{c}|=3$, 求 $\vec{u} = \vec{a} + \vec{b} + \vec{c}$ 的长度, 它与向量 \vec{b} 的夹角.

例3. 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直, 且 $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 3$, 求 $\vec{u} = \vec{a} + \vec{b} + \vec{c}$ 的长度, 它与向量 \vec{b} 的夹角.

 \mathbf{M} : \vec{c} $\vec{d} \perp \vec{b}$, $\vec{a} \perp \vec{c}$, $\vec{b} \perp \vec{c}$,

例3. 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直, 且 $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 3$, 求 $\vec{u} = \vec{a} + \vec{b} + \vec{c}$ 的长度, 它与向量 \vec{b} 的夹角.

 $\mathbf{m}: \because \vec{a} \perp \vec{b}, \vec{a} \perp \vec{c}, \vec{b} \perp \vec{c}, \quad \therefore \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot \vec{c} = 0, \vec{b} \cdot \vec{c} = 0.$

例3. 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直, 且 $|\vec{a}|=1$, $|\vec{b}|=2$, $|\vec{c}|=3$, $\vec{x}\vec{u} = \vec{a} + \vec{b} + \vec{c}$ 的长度, 它与向量 \vec{b} 的夹角.

$$\mathbf{M}: \ \because \vec{a} \perp \vec{b}, \vec{a} \perp \vec{c}, \vec{b} \perp \vec{c}, \quad \therefore \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot \vec{c} = 0, \vec{b} \cdot \vec{c} = 0.$$
$$\ \because |\vec{u}|^2 = \vec{u} \cdot \vec{u} = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})$$

例3. 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直, 且 $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 3$, $\vec{x}\vec{u} = \vec{a} + \vec{b} + \vec{c}$ 的长度, 它与向量 \vec{b} 的夹角.

$$\mathbf{M}: \ \because \vec{a} \perp \vec{b}, \vec{a} \perp \vec{c}, \vec{b} \perp \vec{c}, \quad \therefore \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot \vec{c} = 0, \vec{b} \cdot \vec{c} = 0.$$

$$\ \because |\vec{u}|^2 = \vec{u} \cdot \vec{u} = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})$$

$$= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + 2\vec{a} \cdot \vec{c}$$

例3. 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直, 且 $|\vec{a}|=1$, $|\vec{b}|=2$, $|\vec{c}|=3$, $\vec{x}\vec{u}=\vec{a}+\vec{b}+\vec{c}$ 的长度, 它与向量 \vec{b} 的夹角.

$$\mathbf{M}: \ \because \vec{a} \perp \vec{b}, \vec{a} \perp \vec{c}, \vec{b} \perp \vec{c}, \quad \therefore \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot \vec{c} = 0, \vec{b} \cdot \vec{c} = 0.$$

$$\ \because |\vec{u}|^2 = \vec{u} \cdot \vec{u} = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})$$

$$= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + 2\vec{a} \cdot \vec{c}$$

$$= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c}$$

例3. 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直, 且 $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 3$, $\vec{x}\vec{u} = \vec{a} + \vec{b} + \vec{c}$ 的长度、它与向量 \vec{b} 的夹角.

$$\begin{aligned} \mathbf{\widetilde{R}} &: \because \vec{a} \perp \vec{b}, \vec{a} \perp \vec{c}, \vec{b} \perp \vec{c}, \quad \therefore \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot \vec{c} = 0, \vec{b} \cdot \vec{c} = 0. \\ &: \because |\vec{u}|^2 = \vec{u} \cdot \vec{u} = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) \\ &= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + 2\vec{a} \cdot \vec{c} \\ &= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 = 14. \end{aligned}$$

例3. 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直, 且 $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 3$, $\vec{x}\vec{u} = \vec{a} + \vec{b} + \vec{c}$ 的长度、它与向量 \vec{b} 的夹角.

$$\begin{aligned} \mathbf{\widetilde{R}} &: \because \vec{a} \perp \vec{b}, \vec{a} \perp \vec{c}, \vec{b} \perp \vec{c}, \quad \therefore \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot \vec{c} = 0, \vec{b} \cdot \vec{c} = 0. \\ &: \because |\vec{u}|^2 = \vec{u} \cdot \vec{u} = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) \\ &= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + 2\vec{a} \cdot \vec{c} \\ &= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 = 14. \\ &\therefore |\vec{u}| = \sqrt{14}. \end{aligned}$$

例3. 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直, 且 $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 3$, $\vec{x}\vec{u} = \vec{a} + \vec{b} + \vec{c}$ 的长度, 它与向量 \vec{b} 的夹角.

解:
$$\vec{c} \cdot \vec{a} \perp \vec{b}, \vec{a} \perp \vec{c}, \vec{b} \perp \vec{c}, \quad \therefore \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot \vec{c} = 0, \vec{b} \cdot \vec{c} = 0.$$

$$\vec{c} \cdot |\vec{u}|^2 = \vec{u} \cdot \vec{u} = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})$$

$$= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + 2\vec{a} \cdot \vec{c}$$

$$= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 = 14.$$

$$\vec{c} \cdot |\vec{u}| = \sqrt{14}.$$

$$\vec{c} \cdot \cos(\vec{u}, \vec{b})$$

例3. 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直, 且 $|\vec{a}|=1$, $|\vec{b}|=2$, $|\vec{c}|=3$, $\vec{x}\vec{u} = \vec{a} + \vec{b} + \vec{c}$ 的长度, 它与向量 \vec{b} 的夹角.

解:
$$\vec{c} \cdot \vec{a} \perp \vec{b}, \vec{a} \perp \vec{c}, \vec{b} \perp \vec{c}, \quad \vec{c} \cdot \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot \vec{c} = 0, \vec{b} \cdot \vec{c} = 0.$$

$$\vec{c} \cdot |\vec{u}|^2 = \vec{u} \cdot \vec{u} = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})$$

$$= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + 2\vec{a} \cdot \vec{c}$$

$$= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 = 14.$$

$$\vec{c} \cdot |\vec{u}| = \sqrt{14}.$$

$$\vec{c} \cdot |\vec{u}| = \sqrt{14}.$$

$$\vec{c} \cdot |\vec{u}| = \sqrt{14}.$$

例3. 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直, 且 $|\vec{a}|=1$, $|\vec{b}|=2$, $|\vec{c}|=3$, $\vec{x}\vec{u}=\vec{a}+\vec{b}+\vec{c}$ 的长度, 它与向量 \vec{b} 的夹角.

$$\mathbf{M}: \ \because \vec{a} \perp \vec{b}, \vec{a} \perp \vec{c}, \vec{b} \perp \vec{c}, \quad \therefore \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot \vec{c} = 0, \vec{b} \cdot \vec{c} = 0.$$

$$\therefore |\vec{u}| = \sqrt{14}.$$

$$\because \cos(\vec{u}, \vec{b}) = \frac{\vec{u} \cdot \vec{b}}{|\vec{u}||\vec{b}|} = \frac{(\vec{a} + \vec{b} + \vec{c}) \cdot \vec{b}}{|\vec{u}||\vec{b}|} = \frac{\vec{b} \cdot \vec{b}}{|\vec{u}||\vec{b}|} = \frac{|\vec{b}|}{|\vec{u}|} = \frac{2}{\sqrt{14}}$$

例3. 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直, 且 $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 3$, $\vec{x}\vec{u} = \vec{a} + \vec{b} + \vec{c}$ 的长度, 它与向量 \vec{b} 的夹角.

$$\begin{aligned} \mathbf{\widetilde{R}} &: \because \vec{a} \perp \vec{b}, \vec{a} \perp \vec{c}, \vec{b} \perp \vec{c}, \quad \therefore \vec{a} \cdot \vec{b} = 0, \vec{a} \cdot \vec{c} = 0, \vec{b} \cdot \vec{c} = 0. \\ &: \because |\vec{u}|^2 = \vec{u} \cdot \vec{u} = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) \\ &= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + 2\vec{a} \cdot \vec{c} \\ &= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 = 14. \end{aligned}$$

$$\therefore |\vec{u}| = \sqrt{14}.$$

$$\because \cos(\vec{u}, \vec{b}) = \frac{\vec{u} \cdot \vec{b}}{|\vec{u}||\vec{b}|} = \frac{(\vec{a} + \vec{b} + \vec{c}) \cdot \vec{b}}{|\vec{u}||\vec{b}|} = \frac{\vec{b} \cdot \vec{b}}{|\vec{u}||\vec{b}|} = \frac{|\vec{b}|}{|\vec{u}|} = \frac{2}{\sqrt{14}}$$

$$\therefore (\vec{u}, \vec{b}) = \arccos \frac{2}{\sqrt{14}}.$$

定义1.4

设由向量 \vec{a} 与 \vec{b} 所确定的一个向量 \vec{c} 满足下列条件:

定义1.4

设由向量 \vec{a} 与 \vec{b} 所确定的一个向量 \vec{c} 满足下列条件:

定义1.4

设由向量 \vec{a} 与 \vec{b} 所确定的一个向量 \vec{c} 满足下列条件:

• \vec{c} 与 \vec{a} , \vec{b} 都垂直,其方向由右手法则确定;

定义1.4

设由向量 \vec{a} 与 \vec{b} 所确定的一个向量 \vec{c} 满足下列条件:

- \vec{c} 与 \vec{a} , \vec{b} 都垂直,其方向由右手法则确定;
- $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \sin(\vec{a}, \vec{b})$.

定义1.4

设由向量 \vec{a} 与 \vec{b} 所确定的一个向量 \vec{c} 满足下列条件:

- \vec{c} 与 \vec{a} , \vec{b} 都垂直,其方向由右手法则确定;
- $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \sin(\vec{a}, \vec{b}).$

则称 \vec{c} 为向量 \vec{a} 与 \vec{b} 的向量积, 记为 $\vec{c} = \vec{a} \times \vec{b}$.

定义1.4

设由向量 \vec{a} 与 \vec{b} 所确定的一个向量 \vec{c} 满足下列条件:

- \vec{c} 与 \vec{a} , \vec{b} 都垂直,其方向由右手法则确定;
- $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \sin(\vec{a}, \vec{b}).$

则称 \vec{c} 为向量 \vec{a} 与 \vec{b} 的向量积, 记为 $\vec{c} = \vec{a} \times \vec{b}$.

• 如果 \vec{a} , \vec{b} 中有一个是零向量, 则规定它们的向量积为零向量.

定义1.4

设由向量 \vec{a} 与 \vec{b} 所确定的一个向量 \vec{c} 满足下列条件:

- \vec{c} 与 \vec{a} , \vec{b} 都垂直,其方向由右手法则确定;
- $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \sin(\vec{a}, \vec{b}).$

则称 \vec{c} 为向量 \vec{a} 与 \vec{b} 的向量积, 记为 $\vec{c} = \vec{a} \times \vec{b}$.

- 如果 \vec{a} , \vec{b} 中有一个是零向量, 则规定它们的向量积为零向量.
- 向量积也叫做叉积或外积.

 $|\vec{a} \times \vec{b}|$ 等于以a, b为邻边的平行四边形的面积.

 $|\vec{a} \times \vec{b}|$ 等于以a, b为邻边的平行四边形的面积.

 $|\vec{a} \times \vec{b}|$ 等于以a, b为邻边的平行四边形的面积.

 $|\vec{a} \times \vec{b}|$ 等于以a, b为邻边的平行四边形的面积.

$$\bullet \ \vec{a} \times \vec{0} = \vec{0}, \vec{0} \times \vec{a} = \vec{0};$$

 $|\vec{a} \times \vec{b}|$ 等于以a, b为邻边的平行四边形的面积.

- $\bullet \ \vec{a} \times \vec{0} = \vec{0}, \vec{0} \times \vec{a} = \vec{0};$
- $\vec{a} \times \vec{a} = \vec{0}$;

 $|\vec{a} \times \vec{b}|$ 等于以a, b为邻边的平行四边形的面积.

- $\bullet \ \vec{a} \times \vec{0} = \vec{0}, \vec{0} \times \vec{a} = \vec{0};$
- $\vec{a} \times \vec{a} = \vec{0}$;
- \vec{a} , \vec{b} 是两个非零向量,则 \vec{a} // \vec{b} \Leftrightarrow $\vec{a} \times \vec{b} = \vec{0}$;

 $|\vec{a} \times \vec{b}|$ 等于以a, b为邻边的平行四边形的面积.

- $\bullet \ \vec{a} \times \vec{0} = \vec{0}, \vec{0} \times \vec{a} = \vec{0};$
- $\vec{a} \times \vec{a} = \vec{0}$;
- \vec{a} , \vec{b} 是两个非零向量,则 \vec{a} // \vec{b} \Leftrightarrow $\vec{a} \times \vec{b} = \vec{0}$;
- $\vec{a} \perp (\vec{a} \times \vec{b}), \vec{b} \perp (\vec{a} \times \vec{b}).$

•
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$
 (反交换律);

- $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (反交换律);
- $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ (分配律);

- $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (反交换律);
- $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ (分配律);
- $(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b}) = \vec{a} \times (\lambda \vec{b})$

(与数乘向量的结合律).

解: 设平行四边形的两相邻边分别 为 \vec{m} , \vec{n} ,

解: 设平行四边形的两相邻边分别 为 \vec{m} , \vec{n} , 则 $\vec{c} = \vec{m} + \vec{n}$,

例4. 设平行四边形的对角线 $\vec{c}=\vec{a}+2\vec{b},\, \vec{d}=3\vec{a}-4\vec{b},\,$ 其中 $|\vec{a}|=1,$ $|\vec{b}|=2,\, \vec{a}\perp\vec{b},\,$ 求平行四边形的面积S.

解:设平行四边形的两相邻边分别

为 \vec{n} , 列 $\vec{c} = \vec{m} + \vec{n}$, $\vec{d} = \vec{m} - \vec{n}$,

例4. 设平行四边形的对角线 $\vec{c}=\vec{a}+2\vec{b},\, \vec{d}=3\vec{a}-4\vec{b},\,$ 其中 $|\vec{a}|=1,$ $|\vec{b}|=2,\, \vec{a}\perp\vec{b},\,$ 求平行四边形的面积S.

解: 设平行四边形的两相邻边分别 为 \vec{m} , \vec{n} , 则 \vec{c} = \vec{m} + \vec{n} , \vec{d} = \vec{m} - \vec{n} , 从而

解: 设平行四边形的两相邻边分别 为 \vec{m} , \vec{n} , 则 $\vec{c} = \vec{m} + \vec{n}$, $\vec{d} = \vec{m} - \vec{n}$,

从而

$$\vec{m} = \frac{1}{2}(\vec{c} + \vec{d}) = \frac{1}{2}(4\vec{a} - 2\vec{b}) = 2\vec{a} - \vec{b},$$

解: 设平行四边形的两相邻边分别

为 \vec{m} , \vec{n} , 则 $\vec{c} = \vec{m} + \vec{n}$, $\vec{d} = \vec{m} - \vec{n}$.

从而

$$\vec{m} = \frac{1}{2}(\vec{c} + \vec{d}) = \frac{1}{2}(4\vec{a} - 2\vec{b}) = 2\vec{a} - \vec{b},$$

$$\vec{n} = \frac{1}{2}(\vec{c} - \vec{d}) = \frac{1}{2}(-2\vec{a} + 6\vec{b}) = -\vec{a} + 3\vec{b},$$

解: 设平行四边形的两相邻边分别

为 \vec{m} , \vec{n} . 则 $\vec{c} = \vec{m} + \vec{n}$, $\vec{d} = \vec{m} - \vec{n}$.

从而

$$\vec{m} = \frac{1}{2}(\vec{c} + \vec{d}) = \frac{1}{2}(4\vec{a} - 2\vec{b}) = 2\vec{a} - \vec{b},$$

$$\vec{n} = \frac{1}{2}(\vec{c} - \vec{d}) = \frac{1}{2}(-2\vec{a} + 6\vec{b}) = -\vec{a} + 3\vec{b},$$

故 $S = |\vec{m} \times \vec{n}| = |(2\vec{a} - \vec{b}) \times (-\vec{a} + 3\vec{b})|$

解: 设平行四边形的两相邻边分别

为
$$\vec{n}$$
, \vec{n} , 则 $\vec{c} = \vec{m} + \vec{n}$, $\vec{d} = \vec{m} - \vec{n}$,

从而

$$\vec{m} = \frac{1}{2}(\vec{c} + \vec{d}) = \frac{1}{2}(4\vec{a} - 2\vec{b}) = 2\vec{a} - \vec{b},$$

$$\vec{n} = \frac{1}{2}(\vec{c} - \vec{d}) = \frac{1}{2}(-2\vec{a} + 6\vec{b}) = -\vec{a} + 3\vec{b},$$

故
$$S = |\vec{m} \times \vec{n}| = |(2\vec{a} - \vec{b}) \times (-\vec{a} + 3\vec{b})|$$

$$= |-2\vec{a}\times\vec{a} + \vec{b}\times\vec{a} + 6\vec{a}\times\vec{b} - 3\vec{b}\times\vec{b}|$$

解: 设平行四边形的两相邻边分别

为 \vec{m} , \vec{n} . 则 $\vec{c} = \vec{m} + \vec{n}$, $\vec{d} = \vec{m} - \vec{n}$.

从而

$$\vec{m} = \frac{1}{2}(\vec{c} + \vec{d}) = \frac{1}{2}(4\vec{a} - 2\vec{b}) = 2\vec{a} - \vec{b},$$

$$\vec{n} = \frac{1}{2}(\vec{c} - \vec{d}) = \frac{1}{2}(-2\vec{a} + 6\vec{b}) = -\vec{a} + 3\vec{b},$$
故 $S = |\vec{m} \times \vec{n}| = |(2\vec{a} - \vec{b}) \times (-\vec{a} + 3\vec{b})|$

$$= |-2\vec{a} \times \vec{a} + \vec{b} \times \vec{a} + 6\vec{a} \times \vec{b} - 3\vec{b} \times \vec{b}|$$

 $=5|\vec{a}\times\vec{b}|=5|\vec{a}||\vec{b}|\sin(\vec{a},\vec{b})$

解: 设平行四边形的两相邻边分别

为 \vec{m} , \vec{n} , 则 $\vec{c} = \vec{m} + \vec{n}$, $\vec{d} = \vec{m} - \vec{n}$.

从而

$$\vec{m} = \frac{1}{2}(\vec{c} + \vec{d}) = \frac{1}{2}(4\vec{a} - 2\vec{b}) = 2\vec{a} - \vec{b},$$

$$\vec{n} = \frac{1}{2}(\vec{c} - \vec{d}) = \frac{1}{2}(-2\vec{a} + 6\vec{b}) = -\vec{a} + 3\vec{b},$$

故
$$S = |\vec{m} \times \vec{n}| = |(2\vec{a} - \vec{b}) \times (-\vec{a} + 3\vec{b})|$$

$$= |-2\vec{a}\times\vec{a} + \vec{b}\times\vec{a} + 6\vec{a}\times\vec{b} - 3\vec{b}\times\vec{b}|$$

$$= 5|\vec{a} \times \vec{b}| = 5|\vec{a}||\vec{b}|\sin(\vec{a}, \vec{b}) = 5 \cdot 1 \cdot 2 \cdot 1 = 10.$$

定义1.5

称 $\vec{a} \cdot (\vec{b} \times \vec{c})$ 为向量 $\vec{a}, \vec{b}, \vec{c}$ 的混合积, 记为[$\vec{a}\vec{b}\vec{c}$],

定义1.5

称 $\vec{a} \cdot (\vec{b} \times \vec{c})$ 为向量 $\vec{a}, \vec{b}, \vec{c}$ 的混合积, 记为[$\vec{a}\vec{b}\vec{c}$],

即 [
$$\vec{a}\vec{b}\vec{c}$$
] = $\vec{a}\cdot(\vec{b}\times\vec{c}$).

定义1.5

称 $\vec{a} \cdot (\vec{b} \times \vec{c})$ 为向量 $\vec{a}, \vec{b}, \vec{c}$ 的混合积, 记为[$\vec{a}\vec{b}\vec{c}$],

即
$$[\vec{a}\vec{b}\vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}).$$

 $|\vec{b} \times \vec{c}|$ 在几何上表示以 \vec{b} , \vec{c} 为 边的平行四边形的面积S,

定义1.5

称 $\vec{a} \cdot (\vec{b} \times \vec{c})$ 为向量 $\vec{a}, \vec{b}, \vec{c}$ 的混合积, 记为[$\vec{a}\vec{b}\vec{c}$],

即
$$[\vec{a}\vec{b}\vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}).$$

 $|\vec{b} \times \vec{c}|$ 在几何上表示以 \vec{b} , \vec{c} 为 边的平行四边形的面积S,

$$\therefore [\vec{a}\vec{b}\vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c})$$

定义1.5

称 $\vec{a} \cdot (\vec{b} \times \vec{c})$ 为向量 $\vec{a}, \vec{b}, \vec{c}$ 的混合积, 记为[$\vec{a}\vec{b}\vec{c}$],

即
$$[\vec{a}\vec{b}\vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}).$$

 $|\vec{b} \times \vec{c}|$ 在几何上表示以 \vec{b} , \vec{c} 为 边的平行四边形的面积S.

$$\therefore [\vec{a}\vec{b}\vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c})$$

$$= |\vec{b} \times \vec{c}| \cdot (\vec{a})_{\vec{b} \times \vec{c}}$$

定义1.5

称 $\vec{a} \cdot (\vec{b} \times \vec{c})$ 为向量 $\vec{a}, \vec{b}, \vec{c}$ 的混合积, 记为[$\vec{a}\vec{b}\vec{c}$],

即
$$[\vec{a}\vec{b}\vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}).$$

 $|\vec{b} \times \vec{c}|$ 在几何上表示以 \vec{b} , \vec{c} 为 边的平行四边形的面积S.

$$\therefore [\vec{a}\vec{b}\vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c})$$
$$= |\vec{b} \times \vec{c}| \cdot (\vec{a})_{\vec{b} \times \vec{c}}$$
$$= S|\vec{a}| \cos \theta,$$

定义1.5

称 $\vec{a} \cdot (\vec{b} \times \vec{c})$ 为向量 $\vec{a}, \vec{b}, \vec{c}$ 的混合积, 记为[$\vec{a}\vec{b}\vec{c}$],

即
$$[\vec{a}\vec{b}\vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}).$$

 $|\vec{b} \times \vec{c}|$ 在几何上表示以 \vec{b} , \vec{c} 为 边的平行四边形的面积S.

$$\begin{split} \therefore \left[\begin{array}{l} \vec{a}\vec{b}\vec{c} \end{array} \right] &= \vec{a} \cdot (\vec{b} \times \vec{c}) \\ &= |\vec{b} \times \vec{c}| \cdot (\vec{a})_{\vec{b} \times \vec{c}} \\ &= S|\vec{a}|\cos\theta, \end{split}$$

其中
$$\theta = (\vec{a}, \vec{b} \times \vec{c}).$$

定义1.5

称 $\vec{a} \cdot (\vec{b} \times \vec{c})$ 为向量 $\vec{a}, \vec{b}, \vec{c}$ 的混合积, 记为[$\vec{a}\vec{b}\vec{c}$],

即
$$[\vec{a}\vec{b}\vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}).$$

 $|\vec{b} \times \vec{c}|$ 在几何上表示以 \vec{b} , \vec{c} 为 边的平行四边形的面积S,

$$\therefore [\vec{a}\vec{b}\vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c})$$
$$= |\vec{b} \times \vec{c}| \cdot (\vec{a})_{\vec{b} \times \vec{c}}$$
$$= S|\vec{a}|\cos\theta,$$

其中
$$\theta = (\vec{a}, \vec{b} \times \vec{c}).$$

设以 \vec{a} , \vec{b} , \vec{c} 为棱的平行六面体的体积为V,其底面积为S,高为h.

设以 \vec{a} , \vec{b} , \vec{c} 为棱的平行六面体的体积为V, 其底面积为S, 高为h.

因为当 \vec{a} , \vec{b} , \vec{c} 为右手系时, θ 为锐角, $\vec{a}\cos\theta = h$, 所以混合积

$$[\ \vec{a}\vec{b}\vec{c}\] = S|\vec{a}|\cos\theta = Sh = V.$$

设以 \vec{a} , \vec{b} , \vec{c} 为棱的平行六面体的体积为V, 其底面积为S, 高为h.

因为当 \vec{a} , \vec{b} , \vec{c} 为右手系时, θ 为锐角, $\vec{a}\cos\theta = h$, 所以混合积

$$[\vec{a}\vec{b}\vec{c}] = S|\vec{a}|\cos\theta = Sh = V.$$

同理当 \vec{a} , \vec{b} , \vec{c} 为左手系时, θ 为钝角, $\vec{a}\cos\theta = -h$, 所以混合积

$$[\vec{a}\vec{b}\vec{c}] = S|\vec{a}|\cos\theta = -Sh = -V.$$

设以 \vec{a} , \vec{b} , \vec{c} 为棱的平行六面体的体积为V, 其底面积为S, 高为h.

因为当 \vec{a} , \vec{b} , \vec{c} 为右手系时, θ 为锐角, $\vec{a}\cos\theta = h$, 所以混合积

$$[\vec{a}\vec{b}\vec{c}] = S|\vec{a}|\cos\theta = Sh = V.$$

同理当 \vec{a} , \vec{b} , \vec{c} 为左手系时, θ 为钝角, $\vec{a}\cos\theta = -h$, 所以混合积

$$[\vec{a}\vec{b}\vec{c}] = S|\vec{a}|\cos\theta = -Sh = -V.$$

综上讨论可知 $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = \pm V$.

 $[\vec{a}\vec{b}\vec{c}]$ 的绝对值表示以 \vec{a},\vec{b},\vec{c} 为棱的平行六面体的体积,其符号由 \vec{a},\vec{b},\vec{c} 成右手系还是成左手系而定.

 $[\vec{a}\vec{b}\vec{c}]$ 的绝对值表示以 \vec{a},\vec{b},\vec{c} 为棱的平行六面体的体积,其符号由 \vec{a},\vec{b},\vec{c} 成右手系还是成左手系而定.

 $[\vec{a}\vec{b}\vec{c}]$ 的绝对值表示以 \vec{a},\vec{b},\vec{c} 为棱的平行六面体的体积,其符号由 \vec{a},\vec{b},\vec{c} 成右手系还是成左手系而定.

混合积的性质

• 三向量 \vec{a} , \vec{b} , \vec{c} 共面 \Leftrightarrow [$\vec{a}\vec{b}\vec{c}$] = 0;

 $[\vec{a}\vec{b}\vec{c}]$ 的绝对值表示以 \vec{a},\vec{b},\vec{c} 为棱的平行六面体的体积,其符号由 \vec{a},\vec{b},\vec{c} 成右手系还是成左手系而定.

混合积的性质

• 三向量 $\vec{a}, \vec{b}, \vec{c}$ 共面 \Leftrightarrow [$\vec{a}\vec{b}\vec{c}$] = 0; 三向量 $\vec{a}, \vec{b}, \vec{c}$ 不共面 \Leftrightarrow [$\vec{a}\vec{b}\vec{c}$] \neq 0.

 $[\vec{a}\vec{b}\vec{c}]$ 的绝对值表示以 \vec{a},\vec{b},\vec{c} 为棱的平行六面体的体积,其符号由 \vec{a},\vec{b},\vec{c} 成右手系还是成左手系而定.

- 三向量 $\vec{a}, \vec{b}, \vec{c}$ 共面 \Leftrightarrow [$\vec{a}\vec{b}\vec{c}$] = 0; 三向量 $\vec{a}, \vec{b}, \vec{c}$ 不共面 \Leftrightarrow [$\vec{a}\vec{b}\vec{c}$] \neq 0.
- $\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$

 $[\vec{a}\vec{b}\vec{c}]$ 的绝对值表示以 \vec{a},\vec{b},\vec{c} 为棱的平行六面体的体积,其符号由 \vec{a},\vec{b},\vec{c} 成右手系还是成左手系而定.

- 三向量 $\vec{a}, \vec{b}, \vec{c}$ 共面 \Leftrightarrow [$\vec{a}\vec{b}\vec{c}$] = 0; 三向量 $\vec{a}, \vec{b}, \vec{c}$ 不共面 \Leftrightarrow [$\vec{a}\vec{b}\vec{c}$] \neq 0.
- $$\begin{split} \bullet \ \, \vec{a} \cdot (\vec{b} \times \vec{c}) &= \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b}) \\ &= -\vec{a} \cdot (\vec{c} \times \vec{b}) = -\vec{b} \cdot (\vec{a} \times \vec{c})) = -\vec{c} \cdot (\vec{b} \times \vec{a}), \end{split}$$

 $[\vec{a}\vec{b}\vec{c}]$ 的绝对值表示以 \vec{a},\vec{b},\vec{c} 为棱的平行六面体的体积,其符号由 \vec{a},\vec{b},\vec{c} 成右手系还是成左手系而定.

- 三向量 $\vec{a}, \vec{b}, \vec{c}$ 共面 \Leftrightarrow [$\vec{a}\vec{b}\vec{c}$] = 0; 三向量 $\vec{a}, \vec{b}, \vec{c}$ 不共面 \Leftrightarrow [$\vec{a}\vec{b}\vec{c}$] \neq 0.
- $\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$ $= -\vec{a} \cdot (\vec{c} \times \vec{b}) = -\vec{b} \cdot (\vec{a} \times \vec{c})) = -\vec{c} \cdot (\vec{b} \times \vec{a}),$ 或 $[\vec{a}\vec{b}\vec{c}] = [\vec{b}\vec{c}\vec{a}] = [\vec{c}\vec{a}\vec{b}] = -[\vec{a}\vec{c}\vec{b}] = -[\vec{b}\vec{a}\vec{c}] = -[\vec{c}\vec{b}\vec{a}].$

 $[\vec{a}\vec{b}\vec{c}]$ 的绝对值表示以 \vec{a},\vec{b},\vec{c} 为棱的平行六面体的体积,其符号由 \vec{a},\vec{b},\vec{c} 成右手系还是成左手系而定.

混合积的性质

- 三向量 $\vec{a}, \vec{b}, \vec{c}$ 共面 \Leftrightarrow [$\vec{a}\vec{b}\vec{c}$] = 0; 三向量 $\vec{a}, \vec{b}, \vec{c}$ 不共面 \Leftrightarrow [$\vec{a}\vec{b}\vec{c}$] \neq 0.
- $\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$ $= -\vec{a} \cdot (\vec{c} \times \vec{b}) = -\vec{b} \cdot (\vec{a} \times \vec{c})) = -\vec{c} \cdot (\vec{b} \times \vec{a}),$ 或 $[\vec{a}\vec{b}\vec{c}] = [\vec{b}\vec{c}\vec{a}] = [\vec{c}\vec{a}\vec{b}] = -[\vec{a}\vec{c}\vec{b}] = -[\vec{b}\vec{a}\vec{c}] = -[\vec{c}\vec{b}\vec{a}].$

说明: 轮换混合积[$\vec{a}\vec{b}\vec{c}$]因子的顺序, 其值不变, 对换两因子的位置, 只改变一个符号.

证明: 由题意可得

证明: 由题意可得 $\vec{a} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = \vec{a} \cdot \vec{0}$,

证明: 由题意可得 $\vec{a} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = \vec{a} \cdot \vec{0}$,

即 $\vec{a} \cdot (\vec{a} \times \vec{b}) + \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{c} \times \vec{a}) = 0.$

证明: 由题意可得 $\vec{a} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = \vec{a} \cdot \vec{0}$,

即
$$\vec{a} \cdot (\vec{a} \times \vec{b}) + \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{c} \times \vec{a}) = 0.$$

$$\vec{a} \cdot (\vec{a} \times \vec{b}) = 0, \quad \vec{a} \cdot (\vec{c} \times \vec{a}) = 0.$$

证明: 由题意可得 $\vec{a} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = \vec{a} \cdot \vec{0}$,

即
$$\vec{a} \cdot (\vec{a} \times \vec{b}) + \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{c} \times \vec{a}) = 0.$$

$$\vec{a} \cdot (\vec{a} \times \vec{b}) = 0, \quad \vec{a} \cdot (\vec{c} \times \vec{a}) = 0.$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = 0,$$

证明: 由题意可得 $\vec{a} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = \vec{a} \cdot \vec{0}$,

即
$$\vec{a} \cdot (\vec{a} \times \vec{b}) + \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{c} \times \vec{a}) = 0.$$

$$\vec{a} \cdot (\vec{a} \times \vec{b}) = 0, \quad \vec{a} \cdot (\vec{c} \times \vec{a}) = 0.$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = 0,$$

故 \vec{a} , \vec{b} , \vec{c} 共面.

