ECE/CS 559 - Fall 2016 - Midterm and Solutions.

Erdem Koyuncu

• Q1 (24 pts): In the following, we follow the convention that $x_0 = 1$.

Recall that the step-activation function $u : \mathbb{R} \to \{0,1\}$ is defined as u(v) = 1 if $v \ge 0$, and u(v) = 0, otherwise. Then, for n inputs x_1, \ldots, x_n , a **perceptron** can be defined via the input-output relationship

$$y' = u\left(\sum_{i=0}^{n} w_i x_i\right) = u(w_0 + w_1 x_1 + \dots + w_n x_n),$$

where y' is the perceptron output, w_1, \ldots, w_n are the synaptic weights, and w_0 is the bias term.

We define a new type of neuron, namely, a sauron, via the input-output relationship

$$y = u\left(\prod_{i=0}^{n} (w_i + x_i)\right) = u((w_0 + 1)(w_1 + x_1) \cdots (w_n + x_n)),$$

where y is called the sauron output.

Let the real number 1 represent a TRUE, and the real number 0 represent a FALSE.

- (a) (8 pts): Let n = 1. Does there exist w_0, w_1 such that $y = 1 x_1$ for $x_1 \in \{0, 1\}$? In other words, can a single sauron implement the NOT gate? If your answer is "Yes," find specific w_0, w_1 such that the sauron implements the NOT gate. If your answer is "No," prove that no choice for w_0, w_1 can result in a sauron that implements the NOT gate.
- (b) (8 pts): Let n = 2. Does there exist w_0, w_1, w_2 such that $y = x_1x_2$ for $x_1, x_2 \in \{0, 1\}$? In other words, can a single sauron implement the AND gate? Justify your answer as in (a).
- (c) (8 pts): Let n = 2. Does there exist w_0, w_1, w_2 such that $y = ((x_1 + x_2) \mod 2)$ for $x_1, x_2 \in \{0, 1\}$? In other words, can a single sauron implement the XOR gate? Justify your answer as in (a).

Solution:

- (a) Yes. We need $u((1+w_0)(w_1+x_1)) = 1-x_1$ for $x_1 \in \{0,1\}$. In other words, we need $(1+w_0)w_1 \ge 0$ and $(1+w_0)(1+w_1) < 0$. One solution is $w_0 = -2$ and $w_1 = -\frac{1}{2}$.
- (b) No. The following inequalities need to be satisfied:

$$(1+w_0)w_1w_2 < 0,$$

$$(1+w_0)(1+w_1)w_2 < 0,$$

$$(1+w_0)w_1(1+w_2) < 0,$$

$$(1+w_0)(1+w_1)(1+w_2) \ge 0.$$

Dividing the third inequality by the first inequality, we obtain $\frac{1+w_2}{w_2} > 0$. Diving the fourth inequality by the second inequality, $\frac{1+w_2}{w_2} \le 0$, a contradiction.

(c) Yes. We need

$$(1+w_0)w_1w_2 < 0,$$

$$(1+w_0)(1+w_1)w_2 \ge 0,$$

$$(1+w_0)w_1(1+w_2) \ge 0,$$

$$(1+w_0)(1+w_1)(1+w_2) < 0.$$

By inspection, $w_0 = -2$, $w_1 = w_2 = -\frac{1}{2}$ will work.

- Q2 (26 pts): In the following, consider only neurons with the step-activation function $u(\cdot)$.
 - (a) (13 pts): Let $C_0 = \{\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \end{bmatrix}\}$ and $C_1 = \{\begin{bmatrix} 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \end{bmatrix}\}$ as illustrated in Figure (i). Members of classes C_0 and C_1 are represented by black disks and crosses, respectively.
 - [I] (7 pts): We wish to design a perceptron $y = u(w_0 + w_1x_1 + w_2x_2)$ such that y = 0 if $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{C}_0$ and y = 1 if $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{C}_1$. Suppose that we use the perceptron training algorithm for this purpose with initial weights $w_0 = 1$, $w_1 = 0$, $w_2 = 1$ and learning rate $\eta = 1$. Either prove that the algorithm will converge, or prove that it will not converge. You may use the perceptron convergence theorem.
 - [II] (6 pts): Design a neural network (single-layer or multi-layer) such that the network provides an output of 0 if $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{C}_0$ and an output of 1 if $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{C}_1$.
 - (b) (13 pts) Repeat (a) for classes $C_0 = \{\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \end{bmatrix}\}$ and $C_1 = \{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \end{bmatrix}\}$ illustrated in Figure (ii). Note that the only difference is that now, instead of the point $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$, we have the point $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in class C_1 .

Solution:

- (a) [I] PTA will not converge as the patterns are not linearly separable (the weights will always be updated).
 - [II] Let $y_1 = u(-x_2 3x_1 + 3)$ and $y_2 = u(-x_2 + 3x_1 + 3)$. The network $u(-\frac{3}{2} + y_1 + y_2)$ will work.
- (b) [I] PTA will converge as the patterns are linearly separable.
 - [II] The same network in (a)-[II] will work! Or, a simpler network is $u(-x_2 + \frac{1}{2})$.

In the following, $\log(\cdot)$ is the natural logarithm, e is the base of the natural logarithm, $|\cdot|$ is the absolute value $(|x| = x \text{ if } x \ge 0, \text{ and } |x| = -x \text{ if } x < 0)$, and \mathbb{R} is the set of real numbers. Recall $\frac{\partial e^x}{\partial x} = e^x$, and $e^{\log x} = x$, x > 0.

• Q3 (25 pts): Consider the activation function

$$f(v) = \begin{cases} 1 - e^{-v}, & v \ge 0, \\ -1 + e^{-|v|}, & v < 0. \end{cases}$$

For (a)-(c), consider a single-neuron network with input-output relationship $y = f(b + \mathbf{w}^T \mathbf{x})$, where y is the network output, b is the bias term, $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ are the synaptic weights, and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is the network input.

- (a) (3 pts): Calculate the derivative f'(v) in closed form.
- (b) (7 pts): Let $E = (d y)^2$, where d is a constant (a generic desired output). Find the delta-learning rule (the gradient-descent update equations) for b, w_1, w_2 given learning parameter $\eta = \frac{1}{2}$. Remember that you can write a single (vectorized) update equation that can handle all variables. The final update expression(s) may however contain only the terms/functions $d, y, f', f, \mathbf{w}, w_1, w_2, b$.
- (c) (6 pts): Consider the same delta-learning setup as in (b). Consider the training vectors $\mathbf{x}_1 = \begin{bmatrix} \log 2 \\ \log 3 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ \log 2 \end{bmatrix}$, with desired outputs $d_1 = \frac{2}{3}$, $d_2 = \frac{5}{2}$, respectively. Find the updated bias and the updated synaptic weights after one epoch of online learning given initial conditions b = 0, $\mathbf{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- (d) (9 pts) Consider now a multi-layer network as shown below.

Let $E = e^{(d-y)^4}$. Find the gradient-descent update equations for b, w_1, w_2, w_3 given learning parameter $\eta = \frac{1}{4}$. The final expression may only contain the terms/functions $d, y, f', f, \mathbf{w}, w_1, w_2, b, w_3$.

Hint: You do not have to apply some algorithm. Just write the input-output relationship of the network, and use chain rule. This is more of a calculus problem than a neural network problem!

Solution:

- (a) By calculus, $f'(v) = e^{-|v|}$.
- (b) The same delta-rule in class: $\begin{bmatrix} b \\ w_1 \\ w_2 \end{bmatrix} \leftarrow \begin{bmatrix} b \\ w_1 \\ w_2 \end{bmatrix} + (d-y)f'(v) \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$, where $v = b + \mathbf{w}^T \mathbf{x}$.
- (c) For initial bias/weights $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, if the input is \mathbf{x}_1 , we obtain $v = \log 3$ so that $y = 1 e^{-\log 3} = \frac{2}{3}$. Since $d_1 = \frac{2}{3}$, there will be no update. For the input x_2 , with same bias and weights we have started with, we obtain $v = \log 2$, so that $y = \frac{1}{2}$, and $f'(v) = \frac{1}{2}$. This gives $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + (\frac{5}{2} \frac{1}{2})\frac{1}{2}\begin{bmatrix} 1 \\ \log 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 + \log 2 \end{bmatrix}$ as the final weights after epoch 1.
- (d) We have $y = f(1 + w_3 f(b + \mathbf{w}^T \mathbf{x}))$. By calculus/chain rule, we obtain

$$w_{3} \leftarrow w_{3} - \eta \frac{\partial e^{(d-y)^{4}}}{\partial w_{3}} = w_{3} + (d-y)^{3} e^{(d-y)^{4}} f'(1 + w_{3} f(b + \mathbf{w}^{T} \mathbf{x})) f(b + \mathbf{w}^{T} \mathbf{x})$$
$$\begin{bmatrix} b \\ w_{1} \\ w_{2} \end{bmatrix} \leftarrow \begin{bmatrix} b \\ w_{1} \\ w_{2} \end{bmatrix} + (d-y)^{3} e^{(d-y)^{4}} f'(1 + w_{3} f(b + \mathbf{w}^{T} \mathbf{x})) w_{3} f'(b + \mathbf{w}^{T} \mathbf{x}) \begin{bmatrix} 1 \\ x_{1} \\ x_{2} \end{bmatrix}$$

- Q4 (25 pts): Design a (possibly multi-layer) neural network with two inputs $x_1, x_2 \in \mathbb{R}$ and a single output y such that y = 1 if $x_1 = 3$ and $x_2 = 2$, and y = 0, otherwise. In other words, the network output should assume a value of 1 only at the single point $(x_1, x_2) = (3, 2)$ of the input space \mathbb{R}^2 . Note that the inputs can be any real numbers. The neuron(s) of the network should use the step-activation function $u : \mathbb{R} \to \{0, 1\}$ given by u(v) = 1 if $v \ge 0$, and u(v) = 0, otherwise. The network should consist of 5 neurons at most. Spoilers and their partial credits:
 - (a) (3 pts): Design a network with input x_1 and output y such that y=1 if $x_1 \geq 3$, and y=0, otherwise.
 - (b) (4 pts): Design a network with input x_1 and output y such that y = 1 if $x_1 \le 3$, and y = 0, otherwise.
 - (c) (6 pts): Design a network with input x_1 and output y such that y=1 if $x_1=3$, and y=0, otherwise.
 - (d) (6 pts): Solve the original problem without any restrictions on the number of neurons.
 - (e) (6 pts): Solve the original problem.

You are not required to do (a)-(d) provided you can provide a correct solution to (e).

Solution:

- (a) $y_1 = u(x_1 3)$.
- (b) $y_2 = u(-x_1 + 3)$.
- (c) $u(y_1 + y_2 \frac{3}{2})$, i.e. AND the two previous networks.
- (d) and (e) We do (a) and (b) for $x_2 = 2$ as well, i.e. let $z_1 = u(x_2 2)$ and $z_2 = u(-x_2 + 2)$. Now, AND y_1, y_2, z_1, z_2 , i.e. let $y = u(y_1 + y_2 + z_1 + z_2 \frac{7}{2})$.