Feng Wei

wei8

ECE 8560 Takehome#2

More Statistical PR

1. Assessing Classification Results from Takehome#1

We have know that this is a C=3 and d=4 problem. And in takehome#1 we use Bayesian classifier solved this problem. Now we know the true class is 3-1-2-3-2-1 and this sequence repeats throughout S_T . So we use this sequence to check our takehome#1 results, and compute the P_{error} . The confusion Matrix and P_{error} is showed below.

$$P(error) = P(\bar{x} \text{ is assigned to the wrong class})$$

$$P(error) = \Sigma \Sigma P(C_j | C_i) * P(C_i) \text{ where } i \neq j; i, j \text{ from 1 to 3}$$

$$P(error) = \frac{320 + 153 + 583 + 28 + 212 + 40}{5000 + 5000} = 8.9\%$$

 $Confusion\ Matrix$

Class\Assigned	C_1	C_2	C_3	Total
C_1	4527	320	153	5000
C_2	583	4389	28	5000
C_3	212	40	4748	5000

2. Separating Hyperplanes

In this part,we implement a (simple) Ho-Kashyap hyperplane classifier for the given training set. Consider the classes pairwise. We generate the 3 hyperplanes from the respective subsets of H. In each case, provide the exact parameters of the respective like bellow

$$\omega_{12} = \begin{bmatrix} 0.00835883 & -0.00464676 & 0.00095206 & -0.01810467 & -0.83225869 \end{bmatrix}$$

$$\omega_{13} = \begin{bmatrix} 1.354e - 03 & -3.981e - 03 & -5.304e - 02 & 1.727e - 04 & -3.429e - 01 \end{bmatrix}$$

$$\omega_{23} = \begin{bmatrix} -0.01891765 & -0.00719361 & -0.32457742 & 0.06494742 & -2.57168678 \end{bmatrix}$$

The Ho-Kashyap method is a Linear Discriminant Functions

In linear Discriminant Functions we want to use a ω to get a function like:

$$g(\bar{x}) = \bar{\omega}\bar{x} - \bar{\omega_0} = f(x) = \begin{cases} > 0 & class_1 \\ else & class_2 \end{cases}$$

After convert \overline{x} from d dimension to d+1 dimension;

Minimize the following criterion function, restricting to positive b

$$J_{hk}(a,b) = ||Ya - b||^2$$

As usual, take partial derivatives . After some math procedures we have :

$$a = (Y^T Y)^{-1} Y^T b$$
$$e^k = Y a^k - b^k$$
$$b^{k+1} = b^k + \alpha (e^k + |e^k|)$$

 $\mbox{ Iteration until} \quad k > k_{max} \mbox{ or } b^{k+1} = b^k$

In this case we set $k_{max} = 100$.

After we run the iteration we know these three class is not linearly separable.

 $\bullet \;\;$ Hyperplane classifier performance on S_T , as a confusion matrix and estimate of P_{error}

$$\bar{x} = (x_1, x_2, x_3, x_4, 1)^T$$

$$a = \omega_{12} * \bar{x}$$

$$b = \omega_{13} * \bar{x}$$

$$c = \omega_{23} * \bar{x}$$

$$Class = \begin{cases} Class_1 & a > 0 \text{ and } b > 0 \\ Class_2 & c > 0 \\ Class_3 & else \end{cases}$$

$$P(error) = P(\bar{x} \text{ is assigned to the wrong class})$$

$$P(error) = \Sigma \Sigma P(C_j | C_i) * P(C_i) \text{ where } i \neq j; i, j \text{ from 1 to 3}$$

$$P(error) = \frac{631 + 556 + 1119 + 23 + 497 + 13}{5000 + 5000} = 18.9\%$$

 $Confusion\ Matrix$

Class\Assigned	C_1	C_2	C_3	Total
C_1	3813	631	556	5000
C_2	1119	3858	23	5000
C_3	497	13	4490	5000

3. K - NNR Strategies

K-NNR classifier results on S_T using H. In order to improve the computation efficiency we use K-D tree to store H, that will make the compute more efficient but the error will increase at the same time.

$$P(error) = P(\bar{x} \text{ is assigned to the wrong class})$$

$$P(error) = \sum \sum P(C_j|C_i) * P(C_i) \text{ where } i \neq j; i, j \text{ from 1 to 3}$$

$$P(error) = \begin{cases} 13.4\% & k = 1\\ 11.1\% & k = 3\\ 10.5\% & k = 5 \end{cases}$$

k = 1 Confusion Matrix

Class\Assigned	C_1	C_2	C_3	Total
C_1	4090	634	276	5000
C_2	643	4270	87	5000
C_3	292	68	4640	5000

 $k = 3 \ Confusion \ Matrix$

Class\Assigned	C_1	C_2	C_3	Total
C_1	4329	465	206	5000
C_2	625	4326	49	5000
C_3	272	44	4684	5000

 $k = 5 \ Confusion \ Matrix$

Class\Assigned	C_1	C_2	C_3	Total
C_1	4392	414	194	5000
C_2	628	4320	52	5000
C_3	255	42	4703	5000

4. PCA results (feature derivation assessment on S_T)

We choose the two "best" features that derived from the given four dimensions data. The features is like bellow:

Before we use PCA, we should normalize the data, we choose Z-score to do normalization

For $Class_1$

The proportion of variance of each of the principal components.

$$[0.26413761 \ 0.25621136 \ 0.24194866 \ 0.23770236]$$

The weight vector for projecting a data point into PCA space for two "best" features $[0.64573123 \ 0.37947763 \ 0.54927163 \ 0.37057872]$

$$[-0.24091028 \ 0.61117142 \ 0.32117736 \ -0.68211204]$$

For $Class_2$

The proportion of variance of each of the principal components.

$$[0.25865031 \ 0.25017416 \ 0.24652209 \ 0.24465344]$$

The weight vector for projecting a data point into PCA space for two "best" features

$$[-0.38235534\ 0.5794042\ 0.54400402\ 0.471333]$$

$$[0.74435967 - 0.25969645 \ 0.38182738 \ 0.48238397]$$

For $Class_3$

The proportion of variance of each of the principal components.

$$[0.25865031 \ 0.25017416 \ 0.24652209 \ 0.24465344]$$

The weight vector for projecting a data point into PCA space for two "best" features

$$\begin{bmatrix} -0.66325964 \ 0.5608821 \ -0.15300357 \ -0.47126196 \end{bmatrix}$$
$$\begin{bmatrix} -0.07712786 \ -0.35779359 \ 0.74410786 \ -0.55887256 \end{bmatrix}$$

After we choose these two feature we treat these data as two dimensions data, use what We have did in assign one to classify the test data.

$$P(error) = P(\bar{x} \text{ is assigned to the wrong class})$$

$$P(error) = \Sigma \Sigma P(C_j | C_i) * P(C_i) \text{ where } i \neq j; i, j \text{ from 1 to 3}$$

$$P(error) = \frac{1388 + 394 + 595 + 91 + 5424 + 349}{5000 + 5000} = 22.4\%$$

 $Confusion\ Matrix$

Class\Assigned	C_1	C_2	C_3	Total
C_1	3218	1388	394	5000
C_2	595	4314	91	5000
C_3	542	349	4109	5000

5. Comparison and analysis of Parts 1-4

Method	P_{error}	Compexity
Bayesian classifier	8.9%	1
Separating Hyperplanes	18.9%	1
K-NN (5-NN)	10.5%	Use K-D tree
PCA	22.4%	Reduce dimension

From the table we know that Bayesian classifier has the lowest P_{error} . And PCA is much more efficient. Both have some advantages and disadvantages.