Cryptanalysis of the 10-Round Hash and Full Compression Function of SHAvite-3-512

Praveen Gauravaram¹, Gaëten Leurent², Florian Mendel³, María Naya-Plasencia⁴, Thomas Peyrin⁵, Christian Rechberger⁶, Martin Schläffer³,

¹Department of Mathematics, DTU, Denmark, ²ENS, France, ³IAIK, TU Graz, Austria, ⁴FHNW Windisch, Switzerland, ⁵Ingenico, France, ⁶ESAT/COSIC, K.U.Leuven and IBBT, Belgium

Africacrypt 2010

(initially discussed at ECRYPT2 Hash³ workshop)

Outline

- Motivation
- 2 SHAvite-3
- Basic Attack Strategy
- 4 Attack on Compression Function
- Attack on Hash Function
- Conclusion

Overview

- Motivation
- 2 SHAvite-3
- Basic Attack Strategy
- Attack on Compression Function
- 6 Attack on Hash Function
- Conclusion

Cryptographic Hash Function

Hash function h maps arbitrary length input m to n-bit output h(m)

- Collision Resistance
 - find m, m' with $m \neq m'$ and h(m) = h(m')
 - birthday attack applies (freedom to choose h(m))
 generic complexity: 2^{n/2}
- Second-Preimage Resistance
 - given m, h(m) find m' with $m \neq m'$ and h(m) = h(m')
 - generic complexity: 2ⁿ
- Preimage Resistance
 - given h(m) find m
 - generic complexity: 2ⁿ

Hash Function Cryptanalysis

- Recent improvements in hash functions cryptanalysis
 - last decade: major weaknesses in many hash functions
 - especially in MD-family of hash functions
 - NIST standard SHA-1 broken
- NIST SHA-3 competition [Nat07] (2008-2012)
 - find a successor of SHA-1 and SHA-2
 - similar as AES competition (2000)

SHA-3 Candidates

- 64 submissions to NIST call (October 2008)
- 51 round 1 candidates (December 2008)
 - many broken, too slow, not chosen, ...
- 14 round 2 candidates (August 2009)
 - chosen by NIST, tweaks allowed
- 5 finalists (fall 2010)
 - to focus analysis
- choose winner in 2011
 - standardize SHA-3 in 2012

How to Compare Attacks on SHA-3 Candidates?

Attacks on Building Blocks

- very different requirements for different designs
 - building blocks often not ideal
 - sponge: trivial "compression function" collisions/preimages
 - distinguishers on building blocks?
- when is an attack interesting?
 - NIST: not anticipated by the designers
 - if it extends to the hash function

How to Compare Attacks on SHA-3 Candidates?

Attacks on Building Blocks

- very different requirements for different designs
 - building blocks often not ideal
 - sponge: trivial "compression function" collisions/preimages
 - distinguishers on building blocks?
- when is an attack interesting?
 - NIST: not anticipated by the designers
 - if it extends to the hash function

Attacks on Hash Function

- same requirements for all candidates
- a lot easier to compare
 - attacks on reduced hash function?
 - still hard to compare different security parameter(s)

How to Compare Attacks on SHA-3 Candidates?

Attacks on Building Blocks

- very different requirements for different designs
 - building blocks often not ideal
 - sponge: trivial "compression function" collisions/preimages
 - distinguishers on building blocks?
- when is an attack interesting?
 - NIST: not anticipated by the designers
 - if it extends to the hash function

Attacks on Hash Function

- same requirements for all candidates
- a lot easier to compare
 - attacks on reduced hash function?
 - still hard to compare different security parameter(s)

Collection of SHA-3 Attacks:

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

Overview

- Motivation
- 2 SHAvite-3
- Basic Attack Strategy
- Attack on Compression Function
- 6 Attack on Hash Function
- Conclusion

Description of SHAvite-3-512

- Designed by Orr Dunkelman and Eli Biham [BD08]
 - Round 2 candidate
 - tweaked
- Iterated hash function
 - single-pipe construction
 - Haifa design principle

SHAvite-3-512 Compression Function

- block cipher in Davies-Meyer mode
- state update:
 - 14-round Feistel network (F-function: 4 AES rounds)
- key schedule:

Martin Schläffer

parallel AES rounds with linear mixing layers

State Update

- $F_i(x) = AES(AES(AES(AES(x \oplus k_{0,i}^0) \oplus k_{0,i}^1) \oplus k_{0,i}^2) \oplus k_{0,i}^3)$
- $\bullet \ \textit{AES}(\textit{x}) = \textit{MixColumns}(\textit{ShiftRows}(\textit{SubBytes}(\textit{x})))$
- $RK_i = (k_{0,i}^0, k_{0,i}^1, k_{0,i}^2, k_{0,i}^3)$

Key Schedule

Key Schedule

Key Schedule (schematic)

- Round 1: plain counter words added: $cnt = c_0c_1c_2c_3$
- Round 2: inverted and shuffled counter words added

Overview

- Motivation
- 2 SHAvite-3
- Basic Attack Strategy
- Attack on Compression Function
- 6 Attack on Hash Function
- 6 Conclusion

• idea: keep B_i unchanged $B_{i+4} = B_i$

- idea: keep B_i unchanged $B_{i+4} = B_i$
- when does this happen?

$$F_{i+3}(B_{i+3}) = F'_{i+1}(D_{i+1})$$

- idea: keep B_i unchanged $B_{i+4} = B_i$
- when does this happen?

$$F_{i+3}(B_{i+3}) = F'_{i+1}(D_{i+1})$$

or more specific:

$$F_{i+2}(B_{i+2}) = 0$$

 $RK_{i+3} = RK'_{i+1}$

- second case:
 - two 128-bit conditions
 - but easier to fulfill
 - conditions can be "interleaved"

Interleaving

• interleave cancellation property with same value

•
$$Z = B_i = B_{i+4}$$

•
$$Z = B_{i+2} = B_{i+4}$$

Interleaving

i	A_i	B_i	C_i	D_i	conditions
3	?	Ζ	?	?	
4	?	?	Z	D_4	
5	D_4	Z	?	$Z + F_4'(D_4)$	$F_5(Z) = 0$
6	$Z + F'_4(D_4)$	D_4	Z	D_6	$RK_6 = RK_4'$
7	D_6	Z	D_4	$Z + F_6'(D_6)$	$RK_7 = RK_5$
8	$Z + F_6'(D_6)$	D_6	Z	D_8	$RK_8 = RK_6'$
9	D_8	Z	D_6	$Z + F_8'(D_8)$	$RK_9 = RK_5$
10	$Z + F_8'(D_8)$	D_8	Z	D_{10}	$RK_{10} = RK_8'$
11	D_{10}	Z	D_8	$Z + F'_{10}(D_{10})$	$RK_{11} = RK_7$

interleave cancellation property with same value

•
$$Z = B_i = B_{i+4}$$

•
$$Z = B_{i+2} = B_{i+4}$$

o conditions on state fulfill each other

• we can choose
$$Z = F_5^{-1}(0)$$

⇒ we get conditions only on keys (message expansion)

- construct all-zero subkeys [Pey09]
 - take the zero counter cnt = 0
 - choose salt such that $0 = AES(0 \oplus salt)$
 - salt = 0x525252...52

- tweak for SHAvite-3-512 (Round 2):
 - some counter words are inverted
 - all-zero subkey not possible anymore

- tweak for SHAvite-3-512 (Round 2):
 - some counter words are inverted
 - all-zero subkey not possible anymore
- choose $c_2 c_3 c_0 \overline{c_1} = 0$ (valid counter!)
 - many round keys get zero

;		R	K_i		RK'_i				_
,	$k_{0,i}^{0}$	$k_{0,i}^{1}$	$k_{0,i}^2$	$k_{0,i}^{3}$	$k_{1,i}^{0}$	$k_{1,i}^{1}$	$k_{1,i}^2$	$k_{1,i}^{3}$	1
0	?	?	?	?	?	?	?	?	М
1	?*	?	?	?	?	?	?	0	4
2	0	?	?	?	?	0	0	0	1
3	0	?	?	?	0	0	0	0	2
4	0	?	0	0	0	0	0	0	_
5	0	0*	0	0	0	0	0	0	3
6	0	0	0	0	0	0	0	0	3
7	0	0	0	0	0	0	0	0	4
8	0	0	0	0	0	0	0	0	4
9	0	0	0	0*	0	0	0	0	5
10	0	0	0	0	0	0	0	0	5
11	0	0	0	0	0	0	0	0	6
12	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	?*	?	7

• key conditions are fulfilled for $Z = B_3 = B_5 = \cdots = B_{13}$

;		R	K_i		RK'_i				_
,	$k_{0,i}^{0}$	$k_{0,i}^{1}$	$k_{0,i}^2$	$k_{0,i}^{3}$	$k_{1,i}^{0}$	$k_{1,i}^{1}$	$k_{1,i}^2$	$k_{1,i}^{3}$	r
0	?	?	?	?	?	?	?	?	М
1	?*	?	?	?	?	?	?	0	4
2	0	?	?	?	?	0	0	0	1
3	0	?	?	?	0	0	0	0	2
4	0	?	0	0	0	0	0	0	
5	0	0*	0	0	0	0	0	0	3
6	0	0	0	0	0	0	0	0	3
7	0	0	0	0	0	0	0	0	4
8	0	0	0	0	0	0	0	0	4
9	0	0	0	0*	0	0	0	0	5
10	0	0	0	0	0	0	0	0	5
11	0	0	0	0	0	0	0	0	_
12	0	0	0	0	0	0	0	0	6
13	0	0	0	0	0	0	?*	?	7

- key conditions are fulfilled for $Z = B_3 = B_5 = \cdots = B_{13}$
- in fact we can find 2224 weak salts

Overview

- Motivation
- 2 SHAvite-3
- Basic Attack Strategy
- 4 Attack on Compression Function
- 6 Attack on Hash Function
- 6 Conclusion

Compression Function

- partial preimage attack (of 128 bits):
 - given H_2 , compute M_i , cnt, salt, h_i
- ② collision or preimage only on H_0, H_1, H_3
 - complexity 2^{192} and 2^{384} ($|h_i| = 512$)

The 14-Round Characteristic

i	A_i	B_i	C_i	D_i	conditions
0	?	?	?	?	
1	?	?	?	?	
2	?	X	?	?	
3	?	Z	X	?	
4	?	Y	Z	D_4	
5	D_4	Z	Y	$Z+F_4'(D_4)$	$F_5(Z) = 0$
6 7	$Z + F_4'(D_4)$	D_4	Z	D_6	$RK_6 = RK_4'$
	D_6	Z	D_4	$Z + F_6'(D_6)$	$RK_7 = RK_5$
8	$Z + F_6'(D_6)$	D_6	Z	D_8	$RK_8 = RK_6'$
8 9	D_8	Z	D_6	$Z + F_8'(D_8)$	$RK_9 = RK_7$
10	$Z + F_8'(D_8)$	D_8	Z	D ₁₀	$RK_{10} = RK_8'$
11	D_{10}	Z	D_8	$Z + F'_{10}(D_{10})$	$RK_{11} = RK_9$
12	$Z + F'_{10}(D_{10})$	D_{10}	Z	?	$RK_{12} = RK'_{10}$
13	?	Z	D_{10}	?	$RK_{13} = RK_{11}$
14	?	?	Z	?	

- choose (M, cnt, salt) according to key conditions
- compute Z in round 5
- we know that we get $C_{14} = Z$
- missing: compute X, Y for given $H_2 = C_0 \oplus C_{14}$

Partial Preimage for 14-Rounds

i	A_i	B_i	C_i	D_i	conditions
0	?	?	?	?	
1	?	?	?	?	
2	?	X	?	?	
3	?	Z	X	?	
4	?	Y	Z	D_4	
5	D_4	Z	Y	$Z+F_4'(D_4)$	$F_5(Z) = 0$
6 7	$Z+F_4'(D_4)$	D_4	Z	D_6	$RK_6 = RK_4'$
7	D_6	Z	D_4	$Z + F_6'(D_6)$	$RK_7 = RK_5$
8	$Z + F_6'(D_6)$	D_6	Z	D_8	$RK_8 = RK_6'$
9	D_8	Z	D_6	$Z + F_8'(D_8)$	$RK_9 = RK_7$
10	$Z + F_8'(D_8)$	D_8	ž	D_{10}	$RK_{10} = RK_8'$
11	D ₁₀	D ₈ Z	D_8	$Z + F_{10}'(D_{10})$	$RK_{11} = RK_9$
12	$Z + F_{10}^{\prime\prime}(D_{10})$	D_{10}	ž	?	$RK_{12} = RK'_{10}$
13	?	ž	D_{10}	?	$RK_{13} = RK_{11}^{10}$
14	?	?	Ž	?	

• write $H_2 = C_0 \oplus C_{14}$ as a function of X, Y, Z:

$$H_2 = F_2(X) + F_0'(X + F_1(Z + F_4(Y) + F_2'(Y + F_3(Z))))$$

Partial Preimage for 14-Rounds

i	A_i	B_i	C_i	D_i	conditions
0	?	?	?	?	
1	?	?	?	?	
2	?	X	?	?	
3	?	Z	X	?	
4	?	Y	Z	D_4	
5	D_4	Z	Y	$Z + F_4'(D_4)$	$F_5(Z) = 0$
6 7	$Z+F_4'(D_4)$	D_4	Z	D_6	$RK_6 = RK_4'$
7	D_6	Z	D_4	$Z + F_6'(D_6)$	$RK_7 = RK_5$
8	$Z + F_6'(D_6)$	D_6	Z	D_8	$RK_8 = RK_6'$
9	D_8	Z	D_6	$Z + F_8'(D_8)$	$RK_9 = RK_7$
10	$Z + F_8'(D_8)$	D_8	Ž	D_{10}	$RK_{10} = RK_8'$
11	D ₁₀	D ₈ Z	D_8	$Z + F_{10}'(D_{10})$	$RK_{11} = RK_9$
12	$Z + F_{10}^{\prime}(D_{10})$	D_{10}	Ž	?	$RK_{12} = RK'_{10}$
13	?	Z	D_{10}	?	$RK_{13} = RK_{11}^{10}$
14	?	?	Z	?	

• write $H_2 = C_0 \oplus C_{14}$ as a function of X, Y, Z:

$$H_2 = F_2(X) + F'_0(X + F_1(Z + F_4(Y) + F'_2(Y + F_3(Z))))$$

• solve for X, Y using birthday effect (2⁶⁴):

$$F_0^{\prime-1}(H_2+F_2(X))+X=F_1(Z+F_4(Y)+F_2'(Y+F_3(Z)))$$

Results for the Full Compression Function

- collision attack:
 - complexity 2¹⁹² and 2¹²⁸ memory
- preimage attacks:
 - complexity 2³⁸⁴ and 2¹²⁸ memory
 - complexity 2⁴⁴⁸ without memory

with chosen salt and chosen counter

Overview

- Motivation
- 2 SHAvite-3
- Basic Attack Strategy
- Attack on Compression Function
- 6 Attack on Hash Function
- 6 Conclusion

Hash Function

Can we extend the attack on the compression function to an attack on the hash function?

- in general: yes
 - if the design is single-pipe,
 - and we fix one output word:
 - do a meet-in-the-middle attack on 512 bit chaining value (two blocks needed)
- in this case: no
 - because salt is different for each 2nd block
- ⇒ extend the attack of [BDLF10] by one round

Characteristic for 10 Rounds

i	A_i	B _i	C_i	D_i	condition
0	?	?	?	?	
1	?	?	?	?	
2	?	X	?	?	
3	?	Z_7	X	?	
4	?	Ϋ́	Z_7	D_4	
5	D_4	Z ₅	Ϋ́	$Z_7 + F_4'(D_4)$	
6	$Z_7 + F_4'(D_4)$	$D_4 + F_5(Z_5)$	Z_5	D_6	$F_6(D_4 + F_5(Z_5)) = F'_4(D_4)$
7	D_6	Z ₇	?	$Z_5 + F_6'(D_6)$	
8	$Z_5 + F_6'(D_6)$	$D_6 + F_7(Z_7)$	Z_7	?	$F_8(D_6 + F_7(Z_7)) = F_6'(D_6)$
9	?	Z_5	?	?	
10	?	?	<i>Z</i> ₅	?	

• fulfill conditions by carefully choosing subkey values [BDLF10]:

$$(k_{0,4}^1, k_{0,4}^2, k_{0,4}^3) = (k_{1,6}^1, k_{1,6}^2, k_{1,6}^3)$$
 and $k_{0,4}^0 + k_{1,6}^0 = F_5(Z_5)$
 $(k_{0,6}^1, k_{0,6}^2, k_{0,6}^3) = (k_{1,8}^1, k_{1,8}^2, k_{1,8}^3)$ and $k_{0,6}^0 + k_{1,8}^0 = F_7(Z_7)$

- compute $H_2 = C_0 \oplus C_{14}$ as a function of X, Y, Z_5, Z_7
 - using birthday effect again (2⁶⁴)

• find a message (M_2) according to key conditions (2^{224})

- find a message (M_2) according to key conditions (2^{224})
- ② find all 2^{128} partial preimages (solutions for X, Y)
 - using cycle finding algorithm
 - total complexity: $2^{128+64} = 2^{192}$

- find a message (M_2) according to key conditions (2^{224})
- ② find all 2^{128} partial preimages (solutions for X, Y)
 - using cycle finding algorithm
 - total complexity: $2^{128+64} = 2^{192}$
- to find a preimage for the compression function
 - repeat previous steps 2²⁵⁶ times
 - total complexity: $2^{224+256} = 2^{480}$

- find a message (M_2) according to key conditions (2^{224})
- ② find all 2^{128} partial preimages (solutions for X, Y)
 - using cycle finding algorithm
 - total complexity: $2^{128+64} = 2^{192}$
- to find a preimage for the compression function
 - repeat previous steps 2²⁵⁶ times
 - total complexity: $2^{224+256} = 2^{480}$
- construct a second-preimage for the hash function
 - using unbalanced meet-in-the-middle attack
 - complexity: 2⁴⁹⁷ and 2¹⁶ memory

Overview

- Motivation
- 2 SHAvite-3
- Basic Attack Strategy
- Attack on Compression Function
- 6 Attack on Hash Function
- 6 Conclusion

Conclusion

- Attacks on SHAvite-3-512:
 - Full Compression Function
 - 10/14 Rounds for the Hash Function
- Why does it work?
 - salt, cnt inputs: weaker compression functions (harder to extend attacks to hash function)
 - regular key schedule
 - Feistel: we can keep properties for many rounds
 - single-pipe design
- Security margin already rather small
- Attack did not use properties of AES yet (even works for ideal permutation instead of AES rounds)

References I

Eli Biham and Orr Dunkelman.

The SHAvite-3 Hash Function. Submission to NIST, 2008.

Available online at http://ehash.iaik.tugraz.at/uploads/f/f5/Shavite.pdf.

Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, and Pierre-Alain Fouque.

Attacks on Hash Functions based on Generalized Feistel - Application to Reduced-Round Lesamnta and SHAvite- 3_{512} .

Cryptology ePrint Archive, Report 2009/634, 2009.

http://eprint.iacr.org/.

Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, and Pierre-Alain Fouque.

Another Look at Complementation Properties.

In Seokhie Hong and Tetsu Iwata, editors, *FSE*, LNCS. Springer, 2010. to appear.

National Institute of Standards and Technology.

Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family.

Federal Register, 27(212):62212-62220, November 2007.

Available: http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf.

Thomas Peyrin.

Chosen-salt, chosen-counter, pseudo-collision on SHAvite-3 compression function, 2009. Available online: http://ehash.iaik.tugraz.at/uploads/e/ea/Peyrin-SHAvite-3.txt.