Классическое определение вероятности

Задачи на разбор

1. Восемь книг случайным образом расставлены на полке. Найдите вероятность того, что тома имеющегося среди них трехтомника будут стоять рядом.

Ответ: $\frac{3}{28}$.

2. В цехе работают шесть мужчин и четыре женщины. По табельным номерам случайным образом отобраны семь человек. Найдите вероятность того, что среди отобранных лиц окажутся три женщины.

Otbet: $\frac{1}{2}$.

3. Для группы в 12 человек организована лотерея. Разыгрываются три различных подарка. Какова вероятность того, что подарки достанутся трем конкретным людям (один человек не может получить 2 подарка)?

Ответ: $\frac{1}{220}$.

4. Семь пронумерованных шаров случайным образом рассыпают по 4 лункам (в одну лунку может поместиться любое число шаров). Сколько существует различных способов распределения шаров? Какова вероятность того, что в результате данного опыта первая лунка окажется пустой?

Ответ: ≈ 0,133.

5. В библиотеке имеются книги по математике, физике и т.д., всего по 16 разделам науки. Поступили очередные 4 заказа на литературу. Считая, что любой состав заказанной литературы равновозможен, Найдите вероятность того, что: а) заказаны книги из различных разделов, б) заказы книги из одного и того же раздела.

Ответ: a) $\frac{455}{969}$; б) $\frac{4}{969}$.

6. Десять человек размещаются в гостинице в два трехместных и один четырехместный номер. Сколько существует способов их размещения? Какова вероятность того, что два определенных человека попадут в четырехместный номер?

Otbet: $4200, \frac{2}{15}$.

7. С какой вероятностью пятизначное число, записанное с помощью цифр 0, 1, 2, 3, 4, 5, не повторяя их, окажется кратным 5?

Ответ: $\frac{9}{25}$.

8. Восемь человек случайным образом рассаживаются за круглым столом. Какова вероятность того, что два определенных человека будут сидеть рядом?

OTBET: $\frac{2}{7}$.

9. Колода, состоящая из 36 карт, делится наугад на две равные части. Найдите вероятность того, что в каждой части окажется по два туза.

Ответ: $\frac{153}{385}$.

Задачи для самостоятельного решения

10. На первом этаже 9-этажного дома в лифт зашли 5 человек. Известно, что каждый их них с равной вероятностью может выйти на любом из этажей, начиная со второго. Найдите вероятность того, что все они выйдут: а) на пятом этаже, б) на одном и том же этаже, в) на разных этажах.

Otbet: a) $\frac{1}{8^5}$; б) $\frac{1}{8^4}$; в) $\frac{105}{512}$.

11. В урне 10 шаров. Вероятность того, что два наудачу извлеченных шара окажутся белыми, равна 2/15. Сколько в урне белых шаров?

Ответ: 4.

12. Наудачу выбирается трехзначное число, в десятичной записи которого нет нуля. Какова вероятность того, что в записи выбранного числа ровно 2 одинаковые цифры?

Ответ: $\frac{8}{27}$.

13. С какой вероятностью пятизначное число, составленное из цифр 1, 2, 3, 4, 5 будет четным (при условии, что каждая цифра входит в число только один раз)?

Otbet: $\frac{2}{5}$.

- **14.** С какой вероятностью пятизначное число, состоящее из цифр 2 и 7, будет кратным 3? Ответ: $\frac{5}{16}$.
- **15.** С какой вероятностью трехзначное число, составленное из цифр 2, 3, 5, 6, 8, будет нечетным?

Ответ: $\frac{2}{5}$.

16. Сколько чисел, больших 500, можно записать с помощью цифр 1, 2, 3, 4, 5, если цифры в записи числа не могут повторяться? С какой вероятностью составленное число будет а) оканчиваться цифрой 2; б) четным?

Otbet: 252, a) $\frac{17}{84}$; б) $\frac{17}{42}$.

- **17.** Брошены две игральные кости. Что вероятнее получить в сумме 7 или 8 очков? Ответ: 7 очков.
- **18.** Игральная кость брошена три раза. Какова вероятность того, что во всех случаях: а) выпадет разное число очков; б) выпадет четное число очков?

Ответ: a) $\frac{5}{9}$; б) $\frac{1}{8}$.

19. В урне 10 шаров: 2 белых, 3 черных и 5 синих. Наудачу извлекаются 3 шара. Какова вероятность того, что они разных цветов?

Otbet: $\frac{1}{4}$.

20. В урне 8 черных шаров и 6 белых. Наудачу извлекаются три шара. Найдите вероятность того, что: а) все три шара белые, б) два шара белые, а один черный, в) хотя бы один из них черный.

Otbet: a) $\frac{5}{91}$; б) $\frac{30}{91}$; в) $\frac{86}{91}$.

Otbet: a)
$$\frac{323}{1568490}$$
; 6) $\frac{97565}{470547}$; B) $\frac{41597}{61110}$.

22. На пяти одинаковых карточках написаны буквы: на двух карточках – Л, на остальных трех – И. Эти карточки разложены в ряд. Какова вероятность того, что при этом получится слово ЛИЛИИ?

Ответ:
$$\frac{1}{10}$$
.

23. Из 40 вопросов, входящих в экзаменационные билеты, студент знает 30. Найдите вероятность того, что среди трех случайным образом выбранных вопросов студент знает: а) все три вопроса, б) два вопроса, в) один вопрос, г) ни одного из вопросов.

Otbet: a)
$$\frac{203}{494}$$
; б) $\frac{435}{988}$; в) $\frac{135}{988}$; г) $\frac{3}{247}$.

24. Из мешка с жетонами, на которых написаны буквы A, B, K, M, O, C, вынимают 6 жетонов и располагают их в порядке извлечения. Какова вероятность того, что получится слово МОСКВА, если после каждого извлечения жетоны: а) не возвращаются обратно; б) возвращаются обратно?

Ответ: a)
$$\frac{1}{720}$$
; б) $\frac{1}{46656}$.

25. Для проведения соревнований 16 волейбольных команд разбиты на 2 подгруппы по 8 команд в каждой. Найдите вероятность того, что две наиболее сильные команды окажутся в: а) разных подгруппах, б) одной подгруппе.

Otbet: a)
$$\frac{8}{15}$$
; 6) $\frac{7}{15}$.

26. В урне 8 черных шаров и 6 белых. Наудачу извлекаются три шара. Найдите вероятность того, что: а) все три шара белые, б) два шара белые, а один черный, в) хотя бы один из них черный.

Otbet: a)
$$\frac{1}{11}$$
; б) $\frac{6}{11}$; в) $\frac{10}{11}$.

- 27. В лотерее разыгрывается 100 билетов. Выигрыши выпали на 20 билетов. Некто приобрел 5 билетов. Найдите вероятности следующих событий: а) выигрыш выпадет на все пять билетов, б) выигрыш выпадет на два билета, в) выигрыш выпадет хотя бы на один билет. Ответ: а) ≈ 0.0002; б) ≈ 0.207; в) ≈ 0.681.
- **28.** Из разрезной азбуки выкладывается слово *математика*. Затем все буквы этого слова тщательно перемешиваются и снова выкладываются в случайном порядке. Какова вероятность того, что снова получится слово *математика*?

OTBET:
$$\frac{1}{151200}$$
.

29. В мероприятии участвуют 8 девушек и 4 юноши. Случайным образом их разбивают на две равные по численности команды. С какой вероятностью в каждой команде будет хотя бы один юноша?

Otbet: $\frac{217}{231}$.

30. На одинаковых карточках написаны в троичной системе счисления все целые числа от 1 до 15. Наудачу извлекается карточка. Какова вероятность того, что выбранное число в своей записи содержит: а) не менее 2 единиц; б) хотя бы одну двойку; в) один ноль?

Otbet: a) $\frac{1}{3}$; б) $\frac{8}{15}$; в) $\frac{2}{5}$.