T319 - Introdução ao Aprendizado de Máquina: *Regressão Linear (Parte II)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Vimos a motivação por trás da regressão: encontrar funções que nos ajudem a prever valores.
- Definimos o problema matematicamente.
- Vimos como resolver o problema da regressão, i.e., encontrar os pesos do modelo, através da equação normal.
- Aprendemos o que é uma superfície de erro.
- Discutimos algumas desvantagens (complexidade, regressão nãolineares) da equação normal e vimos uma solução para essas desvantagens, a qual discutiremos a seguir.

Vetor Gradiente

- Vocês se lembram das aulas de cálculo vetorial, onde vocês aprenderam sobre o vetor gradiente?
 - **Vetor gradiente** é um vetor que indica a direção e o sentido no qual, por deslocamento a partir de um ponto especifico, obtém-se o maior incremento possível no valor de uma função, f.
- O **vetor gradiente** de uma função $f(x_0, x_1, ..., x_K)$, em relação aos seus argumentos $x_k, k=0,...,K$, é definido por

$$\nabla f(x_0, x_1, \dots, x_K) = \begin{bmatrix} \frac{\partial f(x_0, x_1, \dots, x_K)}{\partial x_0} & \frac{\partial f(x_0, x_1, \dots, x_K)}{\partial x_1} & \dots & \frac{\partial f(x_0, x_1, \dots, x_K)}{\partial x_K} \end{bmatrix}^T,$$

onde $\nabla f(x_0, x_1, ..., x_K)$ é o vetor que indica a direção e o sentido em que a função, $f(x_0, x_1, ..., x_K)$, tem a taxa de crescimento mais rápida.

- Notem, que cada elemento do vetor gradiente indica a direção e o sentido de máxima variação em relação àquele argumento da função.
- Se imaginem parados em um ponto $x_0(0), x_1(0), \dots, x_K(0)$ no domínio de f, o vetor $\nabla f(x_0(0), x_1(0), \dots, x_K(0))$ diz em qual direção e sentido devemos caminhar para aumentar o valor de f mais rapidamente.

Gradiente Ascendente

- O vetor gradiente em um ponto específico é um vetor tangente àquele ponto, onde um elemento do vetor com valor:
 - + significa que o ponto de máximo esta à frente.
 - o significa que o ponto de máximo está atrás.
 - 0 significa que ponto de máximo foi encontrado.

- Importante
- Portanto, o *vetor gradiente* nos permite encontrar o ponto de *máximo* da função, $f(x_0, x_1, ..., x_K)$.
 - Seguindo na direção e sentido indicados pelo vetor gradiente, chegamos ao ponto de máximo da função.
- Assim, um algoritmo de otimização *iterativo* que siga a direção e sentido indicados pelo *vetor gradient*e para encontrar o *ponto de máximo* de $f(x_0, x_1, ..., x_K)$ é conhecido como *gradiente ascendente*.

Gradiente Descendente

- Mas e se formos no sentido contrário ao da taxa de crescimento, dada pelo **vetor gradiente**, $\nabla f(x_0, x_1, ..., x_K)$, ou seja $-\nabla f(x_0, x_1, ..., x_K)$?
 - o Nesta caso, iremos na direção de **decrescimento** mais rápido da função, $f(x_0, x_1, ..., x_K)$.
- Portanto, um algoritmo de otimização *iterativo* que siga a direção e sentido contrário ao indicado pelo *vetor gradiente* para encontrar o *ponto* de $f(x_0, x_1, ..., x_K)$ é conhecido como *gradiente descendente*.

Características do Gradiente Descendente

- Algoritmo de otimização *iterativo* e *genérico*: encontra soluções ótimas para uma ampla gama de problemas.
 - Por exemplo, é utilizado em vários problemas de aprendizado de máquina e otimização.
- Escalona melhor do que o método da *equação normal* para grandes conjuntos de dados.
- É de fácil implementação.
- Não é necessário se preocupar com matrizes mal-condicionadas (determinante próximo de 0, i.e., quase *singulares*).
- Pode ser usado com modelos não-lineares.
- O único requisito é que a função de erro seja diferenciável.
- Quando aplicado a problemas de **regressão**, a ideia geral é ajustar os pesos, a, iterativamente, a fim de **minimizar** a **função de erro**, ou seja, encontrar seu **ponto de mínimo**.
- A seguir, veremos como aplicar o algoritmo do *gradiente* descendente ao problema da regressão linear.

O Algoritmo do Gradiente do Descendente (GD)

• O algoritmo inicializa os pesos, a, em um ponto aleatório do *espaço de pesos* e então, os atualiza no *sentido oposto* ao do *gradiente* até que algum critério de convergência seja atingido, indicando que um *mínimo local* ou o *global* da *função de erro* foi encontrado.

 $a \leftarrow$ inicializa em um ponto qualquer do espaço de pesos **loop** até convergir **ou** atingir número máximo de épocas **do**

$$a \leftarrow a \stackrel{\checkmark}{-} \alpha \frac{\partial J_e(a)}{\partial a}$$

 $J_e(a)$ passo de aprendizagem

valor inicial mínimo global aleatório $a_{
m \acute{o}timo}$

onde α é a *taxa/passo de aprendizagem* e $\frac{\partial J_e(a)}{\partial a}$ é o vetor gradiente da *função de erro*, ou seja, a derivada parcial da função em relação ao vetor de pesos, a.

- O *passo de aprendizagem* dita o tamanho dos passos/deslocamentos dados na direção e sentido oposto ao do *gradiente*. Ele pode ser constante ou decair com o tempo.
- Na sequência, veremos como encontrar o **vetor gradiente** da função de erro e implementar o algoritmo do **gradiente descendente**.

Exemplo #1

Exemplo 1: linear regression with gradient descent exemplo 1. ipynb

Neste exemplo, usaremos uma *função hipótese* com 2 pesos, a_1 e a_2 , sendo $a_0 = 0$

$$\hat{y}(n) = h(x(n)) = a_1x_1(n) + a_2x_2(n).$$

A função de erro é dada por

$$J_e(\mathbf{a}) = \frac{1}{N} \sum_{n=0}^{N-1} \left[y(n) - \left(a_1 x_1(n) + a_2 x_2(n) \right) \right]^2.$$

Operação da derivada parcial é distributiva.

E atualização dos pesos
$$a_k$$
, $k=1$ e 2 dada por
$$\frac{\partial J_e(a)}{\partial a_k} = \frac{1}{N} \sum_{n=0}^{N-1} \frac{\partial \left[y(n) - \left(a_1 x_1(n) + a_2 x_2(n) \right) \right]^2}{\partial a_k} = -\frac{2}{N} \sum_{n=0}^{N-1} \left[y(n) - \left(a_1 x_1(n) + a_2 x_2(n) \right) \right] x_k(n), \qquad k=1,2,$$

$$a_k = a_k - \alpha \frac{\partial J_e(a)}{\partial a_k} \div a_k = a_k + \alpha \sum_{n=0}^{N-1} \left[y(n) - \left(a_1 x_1(n) + a_2 x_2(n) \right) \right] x_k(n), \quad k=1,2.$$

onde o termo $\frac{2}{N}$ foi absorvido pelo **passo de aprendizagem**, α .

Superfície de contorno com o caminho feito pelo algoritmo até a convergência.

Exemplo #2

Exemplo: linear regression with gradient descent exemplo2.ipynb

Agora, consideramos uma **função hipótese** com os pesos, a_0 e a_1 ,

$$\hat{y}(n) = h(\mathbf{x}(n)) = a_0 + a_1 x_1(n).$$

A *função de erro* é dada por

$$J_e(\mathbf{a}) = \frac{1}{N} \sum_{n=0}^{N-1} [y(n) - (a_0 + a_1 x_1(n))]^2.$$

E a atualização dos pesos
$$a_k$$
, $k=0$ e 1 é dada por
$$\frac{\partial J_e(a)}{\partial a_k} = \frac{1}{N} \sum_{n=0}^{N-1} \frac{\partial \big[y(n) - \big(a_0 + a_1 x_1(n) \big) \big]^2}{\partial a_k} = -\frac{2}{N} \sum_{n=0}^{N-1} \big[y(n) - \big(a_0 + a_1 x_1(n) \big) \big] x_k(n)$$
, $k=0,1$, $a_k = a_k - \alpha \frac{\partial J_e(a)}{\partial a_k} \therefore a_k = a_k + \alpha \sum_{n=0}^{N-1} \big[y(n) - \big(a_0 + a_1 x_1(n) \big) \big] x_k(n)$, $k=0,1$,

onde $x_0(n) = 1 \ \forall n$.

- **OBS.1**: Temos o termo de bias nesta função hipótese, portanto, não se esqueçam da coluna de '1's na implementação do código.
- OBS.2: Para executar este exemplo, é necessário instalar a biblioteca ffmpeg com o comando: conda install ffmpeg

Generalizando a equação de atualização

 Baseado no que vimos nos exemplos anteriores, podemos generalizar a equação de atualização do pesos da seguinte forma:

$$\frac{\partial J_e(\boldsymbol{a})}{\partial a_k} = -\frac{2}{N} \sum_{n=0}^{N-1} [y(n) - \hat{y}(n)] x_k(n), \forall k,$$

$$a_k = a_k - \alpha \frac{\partial J_e(\boldsymbol{a})}{\partial a_k}$$

$$a_k = a_k + \alpha \sum_{n=0}^{N-1} [y(n) - \hat{y}(n)] x_k(n), \forall k.$$

- Essa equação pode ser aplicada a qualquer problema de regressão linear.
- Apenas não se esqueçam de que quando k=0, $x_0(n)=1$, $\forall n$.

Versões do Gradiente Descendente

Existem 3 diferentes versões para a implementação do algoritmo do Gradiente Descendente: Batelada, Estocástico e Mini-Batch.

• Batelada (do inglês batch): a cada iteração (nesse caso, uma época) do algoritmo, todos os exemplos de treinamento são considerados no processo de treinamento do modelo. Esta versão foi a utilizada nos exemplos anteriores.

$$a_k = a_k + \alpha \sum_{n=0}^{N-1} [y(n) - (a_1 x_1(n) + a_2 x_2(n))] x_k(n), k = 1, ..., K$$

Características:

- Utilizado quando se possui previamente todos os atributos e rótulos de treinamento, ou seja, o conjunto de treinamento.
- O Convergência garantida, dado que o passo de aprendizagem tenha o tamanho apropriado.
- Convergência pode ser bem lenta, dado que o modelo é apresentado a todos os exemplos a cada época.

Versões do Gradiente Descendente

 Gradiente Descendente Estocástico (GDE): também conhecido como online ou incremental (exemplo-a-exemplo). Com esta versão, os pesos do modelo são atualizados a cada novo exemplo de treinamento.

$$a_k = a_k + \alpha [y(n) - (a_1 x_1(n) + a_2 x_2(n))] x_k(n), k = 1, ..., K$$

Características:

- Aproxima o gradiente através de uma estimativa estocástica: aproximação através do gradiente calculado com um único exemplo de treinamento.
- Pode ser utilizado quando os atributos e rótulos são obtidos sequencialmente, ou seja, de forma online, exemplo a exemplo.
- Ou quando o conjunto de treinamento é muito grande. Nesse caso, escolhe-se aleatoriamente um par atributo/rótulo a cada iteração (i.e., atualização dos pesos).
- Computacionalmente mais rápido e menos custoso em termos de memória que o GD em batelada.
- o Convergência não é garantida com um passo de aprendizagem fixo. O algoritmo pode oscilar em torno do mínimo sem nunca convergir para o valores ótimos.
- o Esquemas de variação do passo de aprendizagem podem ajudar a garantir a convergência.
- Vantagem: o gradiente ruidoso, calculado com um único exemplo, ajuda o modelo a escapar de regiões com vários mínimos locais ou irregulares para uma região com o mínimo global.

Versões do Gradiente Descendente

• Mini-batch: é um meio-termo entre as duas versões anteriores. O conjunto de treinamento é dividido em vários subconjuntos (mini-batches) com elementos aleatórios (i.e., par atributo/rótulo), onde os pesos do modelo são ajustados a cada mini-batch.

$$a_k = a_k + \alpha \sum_{n=0}^{MB-1} [y(n) - (a_1 x_1(n) + a_2 x_2(n))] x_k(n), k = 1, ..., K$$

onde MB é o tamanho do mini-batch.

Características:

- Pode ser visto como uma generalização das 2 versões anteriores:
 - Caso MB = N, então se torna o GD em batelada.
 - Caso MB = 1, então se torna o GD estocástico.
- Computacionalmente mais rápido do que o GD em batelada, mas mais lento do que o GD estocástico.
- Convergência depende do tamanho do mini-batch.
- o Pode usar esquemas de variação do passo de aprendizagem para melhorar a convergência.

Implementação: GD em Batelada

Exemplo: batch gradient descent with figures.ipynb

import numpy as np # Define the number of examples. N = 1000# Generate target function. x1 = np.random.randn(N, 1)x2 = np.random.randn(N, 1)y = x1 + x2 + np.random.randn(N, 1)# Concatenate both column vectors, x1 and x2. $X = np.c_[x1, x2]$ # Constant learning rate. eta = 0.1# Number of iterations. n iterations = 1000# Random initialization. a = np.random.randn(2,1)# Batch gradient-descent loop. for iteration in range(n iterations): gradients = -2/N * X.T.dot(y - X.dot(a))a = a - eta * gradients

- Segue diretamente para o mínimo global.
- Atinge o mínimo global em 4 épocas.
- Nesse caso específico, segue linha reta entre a_0 e a_1 pois a taxa de decrescimento da superfície de erro é igual para os dois pesos (contornos são circulares).
- Não fica "oscilando" em torno do mínimo após alcançá-lo.
- Algoritmo para no mínimo pois o vetor gradiente no ponto ótimo é praticamente nulo.

Implementação: GD Estocástico

```
import numpy as np
# Define the number of examples.
N = 1000
# Generate target function.
x1 = np.random.randn(N, 1)
x2 = np.random.randn(N, 1)
y = x1 + x2 + np.random.randn(N, 1)
# Concatenate both column vectors, x1 and x2.
X = np.c [x1, x2]
# Number of epochs.
n = pochs = 1
# Constant learning rate.
alpha = 0.1
# Random initialization of parameters.
a = np.random.randn(2,1)
# Stocastic gradient-descent loop.
for epoch in range(n epochs):
  for i in range(N):
    random index = np.random.randint(N)
    xi = X[random index:random index+1]
    yi = y[random index:random index+1]
    gradients = -2*xi.T.dot(yi - xi.dot(a))
    a = a - alpha * gradients
```


Exemplo: stocastic gradient descent with figures.ipynb

- Devido à sua natureza estocástica, não apresenta um caminho regular/direto para o mínimo, mudando de direção várias vezes (gradiente ruidoso devido a aproximação do gradiente).
- Por aproximar o gradiente com apenas um exemplo, nem sempre irá na direção ideal, porque as derivadas parciais são "ruidosas".
- O algoritmo não converge suavemente para o mínimo, fica "oscilando" ou "ricocheteando" em torno dele.
- Quando o treinamento termina, os valores finais dos pesos são bons, mas não são ótimos.
- A convergência ocorre apenas na média.
- Tempo de treinamento é menor, nesse caso, com apenas uma época o algoritmo já se aproxima do ponto ótimo.
- Necessita de um esquema de ajuste do passo de aprendizagem, α , para ficar mais "comportado". Por exemplo, pode-se diminuir o valor do passo conforme o algoritmo caminhe em direção ao mínimo.

Implementação: GD Estocástico com Scikit-Learn

- A biblioteca Scikit Learn disponibiliza a classe SGDRegressor para realizar regressão linear utilizando o Gradiente Descendente Estocástico.
- A classe possui vários parâmetros que podem ser configurados (tipo de função de erro, esquema de variação do passo de aprendizagem, etc.).
- A função de erro pode ser configurada entre várias opções, mas por padrão, a classe usa o erro quadrático médio.
- É possível definir o esquema de variação do passo de aprendizagem: constante, redução programada ou adaptativo.
- Por padrão o esquema é o da escala inversa, "invscaling"

$$\alpha = \frac{\alpha_{init}}{i^{power}},$$

- Onde α_{init} é o passo inicial (por padrão = 0.01), i é o número da iteração e power é o expoente da escala inversa (por padrão = 0.25).
- Os outros tipos de GD não são implementados pela biblioteca.

```
import numpy as np
# Usamos a classe SGDRegressor do módulo Linear da biblioteca sklearn.
from sklearn.linear model import SGDRegressor
# Número de exemplos
N = 1000
# Criamos os features e labels.
x1 = np.random.randn(N, 1)
x2 = np.random.randn(N, 1)
y = 2*x1 + 4*x2 + np.random.randn(N, 1)
# Concatena os vetores coluna x1 e x2.
X = np.c [x1, x2]
# Instancia a classe SGDRegressor.
sgd reg = SGDRegressor(max iter=50, fit intercept=False)
# Treina o modelo.
sgd reg.fit(X, y.ravel())
print('a1: %1.4f' % (sgd reg.coef [0]))
print('a2: %1.4f' % (sgd reg.coef [1]))
a1: 1.9844
a2: 3.9802
```

Implementação: GD com Mini-Batch

```
import numpy as np
# Define the number of examples.
                                                     Tamanho do mini-batch: 10
# Generate target function.
x1 = np.random.randn(N, 1)
                                                            Cost-function's Contour
x2 = np.random.randn(N, 1)
y = x1 + x2 + np.random.randn(N, 1)
# Concatenate both column vectors, x1 and x2.
X = np.c [x1, x2]
# Constant learning rate.
alpha = 0.1
# Number of iterations.
                                                -2 -
n iterations = 1000
# Random initialization.
a = np.random.randn(2,1)
# Mini-batch size.
mb size = 10
# Mini-batch gradient-descent loop.
for epoch in range(n epochs):
    sdi = random.sample(range(0, N), N)
    for i in range(0, N//mb size):
        bi = sdi[i*mb size:mb size*(i+1)]
        xi = X[bi]
        yi = y noisy[bi]
        gradients = -(2.0/mb \text{ size})*xi.T.dot(yi - xi.dot(a))
        a = a - alpha*gradients
```

Exemplo: mini batch gradient descent with figures.ipynb

- O progresso do algoritmo é menos irregular do que com o GD estocástico, especialmente com mini-batches grandes o suficiente.
- Como resultado, o mini-batch oscila menos ao redor do mínimo global do que o GDE.
- Tem comportamento mais próximo do GD em batelada para mini-bacthes maiores.
- Oscilação em torno do mínimo diminui conforme o tamanho do mini-batch aumenta.
- Pode também ser usado com um esquema de variação do passo de aprendizagem.

Tarefas

- Quiz: "T319 Quiz Regressão: Parte II (1S2021)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #3.
 - Pode ser baixado do MS Teams ou do GitHub.
 - Pode ser respondido através do link acima (na nuvem) ou localmente.
 - Instruções para resolução e entrega dos laboratórios.
 - Laboratórios podem ser feitos em grupo.

Obrigado!

Online Courses

What they promise you will learn

What you actually learn

ONLINECOURSES

FROM YOUTUBE

GROMARTICLES

