Course 3: Unsupervised Learning

Summary

Last session

- Supervised learning learning from labeled examples
- Bias/variance tradeoff
- 3 Overfitting and cross-validation
- Curse of dimensionality
- 5 Computational requirements

Today's session

- Learning from Unlabeled examples
- Clustering
- 3 Decomposition
- Manifold learning
- Feature Selection and preprocessing

Notations

Notations

Notations

Vector space (\mathbb{R}^d)

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels
- Main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors
 - Manifold Learning
- Applications:
 - Dimensionality reduction,
 - Quantization
 - Visualization...

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels
- Main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
 - Manifold Learning.
- Applications :
 - Dimensionality reduction, Quantization
 - Visualization

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels
- Main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
 - Manifold Learning.
- Applications :
 - Dimensionality reduction, Quantization
 - Visualization

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels
- Main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
 - Manifold Learning.
- Applications:
 - Dimensionality reduction Quantization
 - Visualization...

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels
- Main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
 - Manifold Learning.
- Applications:
 - Dimensionality reduction, Quantization
 - Visualization

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels
- Main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
 - Manifold Learning.
- Applications:
 - Dimensionality reduction, Quantization
 - Visualization...

A classical dataset: MNIST dataset (1/2)

MNIST Dataset

- "Toy" dataset (=small and easy)
- 60000 + 10000 handwritten digits

A classical dataset: MNIST dataset (2/2)

Hence, all images are interpreted as 1D vectors!

Example: clustering using L_2 norm (1/8)

Example: clustering using L_2 norm (1/8)

Example: clustering using L_2 norm (2/8)

An example to perform clustering is to rely on distances to centroids. We define K cluster centroids Ω_k , $\forall k \in [1..K]$.

Here, each vector is associated with the cluster whose centroid is of minimal distance.

Definitions

We denote $q: \mathbb{R}^d \to [1..K]$ a function that associates a vector **x** with the index of (one of) its closest centroid $\Omega_{q(\mathbf{x})}$. Formally:

- $\forall k \in [1..K], \Omega_k \in \mathbb{R}^d$
- $\forall \mathbf{x} \in X, \forall j \in [1..K], \|\mathbf{x} \Omega_{q(\mathbf{x})}\|_2 \le \|\mathbf{x} \Omega_j\|_2$
- Error $E(q) \triangleq \sum_{\mathbf{x} \in X} \|\mathbf{x} \Omega_{q(\mathbf{x})}\|_2$
- $X = \bigcup_{k} \underbrace{\{\mathbf{x} \in X, q(\mathbf{x}) = k\}}_{\text{cluster } k}$

Clustering MNIST

Using K-means algorithm with K = 10

Note: we recall that images are vectorized for the clustering to make sense!

They are only displayed in 2D to be interpretable.

Quantizing MNIST

- Replace **x** by $\Omega_{k(\mathbf{x})}$
- Compression factor $\kappa = 1 K/N$

K = 2

K = 1

K = 3

K = 4

 $\mathcal{K} = \mathcal{N}$ (each data point is its own centroid)

Choosing K

- Finding a compromise between error and compression,
- Simple practical method : "elbow".

Optimal clustering

- Define $E_{opt_K}(q^*) \triangleq \arg\min_{q:\mathbb{R}^d \to [1..K]} E(q)$,
- Finding an optimal clustering is an NP-hard problem.

Properties

- $ullet 0 = E_{opt_N}(q^*) \le E_{opt_{N-1}}(q^*) \le \cdots \le E_{opt_1}(q^*) = var(X),$
 - Proof: monotonicity by particularization, extremes with identity function (left) and variance (right).
- $0 \le K \le \frac{N-1}{N}$.

Changing the number of centroids changes the clustering... And the signification of clusters.

K-means algorithm

First: initialize K cluster centroids.

- Assign each data point to the cluster of closest centroid.
- 2 Compute the new centroids as the average of the data points in each cluster.
- Repeat.

K-means algorithm

First: initialize K cluster centroids.

- Assign each data point to the cluster of closest centroid.
- 2 Compute the new centroids as the average of the data points in each cluster.
- Repeat.

K-means algorithm

First: initialize K cluster centroids.

- Assign each data point to the cluster of closest centroid.
- 2 Compute the new centroids as the average of the data points in each cluster.
- 3 Repeat.

K-means algorithm

First: initialize *K* cluster centroids.

- Assign each data point to the cluster of closest centroid.
- 2 Compute the new centroids as the average of the data points in each cluster.
- 3 Repeat.

K-means algorithm

First: initialize *K* cluster centroids.

- Assign each data point to the cluster of closest centroid.
- 2 Compute the new centroids as the average of the data points in each cluster.
- 3 Repeat.

K-means algorithm

First: initialize K cluster centroids.

- Assign each data point to the cluster of closest centroid.
- 2 Compute the new centroids as the average of the data points in each cluster.
- Repeat.

K-means algorithm

First: initialize *K* cluster centroids.

- Assign each data point to the cluster of closest centroid.
- 2 Compute the new centroids as the average of the data points in each cluster.
- 3 Repeat.

K-means algorithm

First: initialize *K* cluster centroids.

- Assign each data point to the cluster of closest centroid.
- 2 Compute the new centroids as the average of the data points in each cluster.
- Repeat.

K-means algorithm

First: initialize K cluster centroids.

- Assign each data point to the cluster of closest centroid.
- 2 Compute the new centroids as the average of the data points in each cluster.
- 3 Repeat.

K-means algorithm

First: initialize K cluster centroids.

- Assign each data point to the cluster of closest centroid.
- 2 Compute the new centroids as the average of the data points in each cluster.
- Repeat.

Clustering using L_2 norm (8/8)

K-means algorithm

First: initialize *K* cluster centroids.

- Assign each data point to the cluster of closest centroid.
- 2 Compute the new centroids as the average of the data points in each cluster.
- 3 Repeat.

Reference: https://mubaris.com/posts/kmeans-clustering/

Clustering using L_2 norm (8/8)

K-means algorithm

First: initialize K cluster centroids.

- Assign each data point to the cluster of closest centroid.
- 2 Compute the new centroids as the average of the data points in each cluster.
- 3 Repeat.

Reference: https://mubaris.com/posts/kmeans-clustering/

$$x = 0.96 \times \longrightarrow$$

+ -0.12 $\times \longrightarrow$

$$x = 1.23 \times \longrightarrow +-0.04 \times \longrightarrow$$

$$x = 0.14 \times \longrightarrow + 0.99 \times \longrightarrow$$

$$x = 0.08 \times \longrightarrow +0.93 \times \longrightarrow$$

Definitions

Principal components analysis solves the following matrix factorization problem:

- The set X is considered as a matrix $X \in \mathcal{M}_{N \times d}(\mathbb{R})$,
- We consider decompositions using components $V \in \mathcal{M}_{K \times d}(\mathbb{R})$ and weights $U \in \mathcal{M}_{N \times k}(\mathbb{R})$,
- PCA estimates *K* components that are orthogonal and ordered by importance (variance explained)
- It is based on the Singular Value Decomposition (SVD) of the covariance matrix XX^{\top}

Definitions

Principal components analysis solves the following matrix factorization problem:

- The set X is considered as a matrix $X \in \mathcal{M}_{N \times d}(\mathbb{R})$,
- We consider decompositions using components $V \in \mathcal{M}_{K \times d}(\mathbb{R})$ and weights $U \in \mathcal{M}_{N \times k}(\mathbb{R})$,
- PCA estimates *K* components that are orthogonal and ordered by importance (variance explained)
- It is based on the Singular Value Decomposition (SVD) of the covariance matrix XX^{\top}

Definitions

Principal components analysis solves the following matrix factorization problem:

- The set X is considered as a matrix $X \in \mathcal{M}_{N \times d}(\mathbb{R})$,
- We consider decompositions using components $V \in \mathcal{M}_{K \times d}(\mathbb{R})$ and weights $U \in \mathcal{M}_{N \times k}(\mathbb{R})$,
- PCA estimates *K* components that are orthogonal and ordered by importance (variance explained)
- It is based on the Singular Value Decomposition (SVD) of the covariance matrix XX^{\top}

Example of reconstructions on MNIST with K = 32

Recall that each image is vectorized, hence each of these images correspond to a row in *V*.

Detailed example of a reconstruction

$$= 122.3 \times$$

= 122.3×

 $-316.2\times$

$$-316.2\times$$

$$-51.13\times$$

$$-316.2\times$$

$$-51.13\times$$

$$-556.9 \times$$

$$-51.13\times$$

$$-556.9\times$$

$$-217.1\times$$

•••

Reconstruction with all 32 components:

Example 3: Manifold Learning

Approaches to uncover lower dimensional structure of high dimensional data. Source: Manifold module, sklearn website

Working with features

N.b.: valid in unsupervised and supervised settings.

Feature preprocessing

Objective: change the statistical distribution of the features

- Scaling / Normalization
- Power transform
- Encode, discretization
- Manual feature engineering
- See more https:

//scikit-learn.org/stable/modules/preprocessing.html

Many techniques need or are greatly helped when features are on the unit sphere.

Working with features

N.b.: valid in unsupervised and supervised settings.

Feature selection

Objective: remove features

- Remove features with low variance
- Select features according to their explained variance towards labels (e.g. SelectKBest)
- See more https: //scikit-learn.org/stable/modules/feature_selection.html

Helps to adress the dimensionality curse.

In supervised learning: per class metric

Clustering Metrics:

- Error defined slide 8 : similar to inertia (sum of squared distances)
- The Silhouette score (per sample) is (b a)/max(a, b), with mean intra-cluster distance (a) and the mean nearest-cluster distance (b).

Clustering metrics using labels:

- Random Index: measures the similarity of two assignments, ignoring permutations
- Homogeneity: each cluster contains only members of a single class.
- Completeness: all members of a given class are assigned to the same cluster.

Clustering Metrics:

- Error defined slide 8 : similar to inertia (sum of squared distances)
- The Silhouette score (per sample) is (b a)/max(a, b), with mean intra-cluster distance (a) and the mean nearest-cluster distance (b).

Clustering metrics using labels:

- Random Index : measures the similarity of two assignments, ignoring permutations
- Homogeneity: each cluster contains only members of a single class.
- Completeness: all members of a given class are assigned to the same cluster.

Clustering Metrics:

- Error defined slide 8 : similar to inertia (sum of squared distances)
- The Silhouette score (per sample) is (b a)/max(a, b), with mean intra-cluster distance (a) and the mean nearest-cluster distance (b).

Clustering metrics using labels:

- Random Index: measures the similarity of two assignments, ignoring permutations
- Homogeneity: each cluster contains only members of a single class.
- Completeness: all members of a given class are assigned to the same cluster.

Clustering Metrics:

- Error defined slide 8 : similar to inertia (sum of squared distances)
- The Silhouette score (per sample) is (b a)/max(a, b), with mean intra-cluster distance (a) and the mean nearest-cluster distance (b).

Clustering metrics using labels:

- Random Index: measures the similarity of two assignments, ignoring permutations
- Homogeneity: each cluster contains only members of a single class.
- Completeness: all members of a given class are assigned to the same cluster.

Lab Session 3 and assignment (1/2)

Lab Unsupervised Learning

- Feature selection and preprocessing
- K-means clustering
- Principal Component Analysis (PCA)
- Tests on the modality chosen in Lab 1 (text, vision or audio), based on the same foundation model as in Lab 1.

Project 2 (P2)

You will choose a couple of unsupervised learning methods among those available (see Lab 3). You will present

- A brief description of the theory behind these methods,
- Basic tests on these techniques for your modality.

During Session 4 you will have 15 minutes to present.

Lab Session 3 and assignment (2/2)

List of Unsupervised Learning Methods

- Non-Negative Matrix Factorization & DBSCAN
- Spectral Clustering & Gaussian Mixture Models
- Agglomerative Clustering & UMAP