

Analyzing the time-frequency content of EEG data

Alexander Enge

Neuro Lab @ Humboldt-Universität zu Berlin

25/05/2022

Today

- Why study neural oscillations?
 - Evoked vs. induced activity
- 2 Frequency analysis
 - Sine waves, Fourier transform
- 3 Time-frequency analysis
 - Morlet wavelets
- 4 Example workflow
 - MNE-Python style, hu-neuro-pipeline style

Why study neural oscillations?

Empirical data

Algorithm

Computation

- Working memory
- Language
- Consciousness

Evoked vs. induced activity

Frequency analysis

Goal: Examine which frequencies (oscillations) contribute to a stretch of continuous EEG

Approach: Decompose the continuous EEG into a set of sine waves \rightarrow Fourier transform

Sine waves

Sine waves

Fourier transform

Joseph Fourier (1768–1830):

Any signal can be expressed as sum of weighted sine waves, each with its own frequency, amplitude, and phase

$$\begin{split} f(t) &= A_0 + A_1 \cos(\omega t + \varphi_1) + A_2 \cos(\omega t + \varphi_2) + ... + A_N \cos(\omega t + \varphi_N) \\ &= \sum_{n=0}^N A_n \cos(\omega t + \varphi_n) \quad \text{where } A = \text{amplitude, } \omega = \text{frequency, } \varphi = \text{phase} \end{split}$$

Fourier transform

Frequency analysis in MNE-Python


```
# Read raw data
from mne.io import read_raw_brainvision
raw = read_raw_brainvision('data/raw/05.vhdr')

# Downsample to make subsequent computations faster
raw = raw.resample(125.)

# Plot spectrum for a single channel
_ = raw.plot_psd(picks='Cz', color='b', spatial_colors=False)
```



```
# Plot spectrum for all channels, restricted to 0-30 Hz
_ = raw.plot_psd(fmax=30, color='b', spatial_colors=False)
```


Frequency analysis

Time-frequency analysis

Goal: Estimate how power (or phase) at each frequency changes over time, e.g., in response to a stimulus

Approach: Apply the Fourier transform to a short time window and move this window over time points in the epoch \rightarrow Short-term Fourier transform (STFT), Morlet wavelet convolution

Morlet wavelets

Basline correction

- Should fit at least one full cycle at the lowest frequency
 - E.g., 5 Hz \rightarrow min. 200 ms baseline
- Should account for the 1/f scaling \rightarrow Divisive baseline
 - Subtract + divide by mean baseline: Percent signal change
 - Divide by mean baseline + take logarithm: Decibel
- Baseline should end before rather than at stimulus onset
 - Prevents post-stimulus activity "smearing" into the baseline

Time-frequency analysis in MNE-Python


```
# Load functions
import numpy as np
from mne import events from annotations. Epochs
from mne.time_frequency import tfr_morlet
# Segment continuous signal to epochs
events. = events from annotations(raw, regexp='Stimulus')
triggers = [201, 205]
epochs = Epochs(raw, events, triggers, tmin=-0.5, tmax=1.5, baseline=(-0.2, 0.))
print(epochs.get_data().shape) # Dimensions: (trials, channels, time points)
## (240, 64, 251)
# Applu Morlet wavelet decomposition
freqs = np.arange(6...30...step=2.)
n_cycles = np.arange(3., 15., step=1.)
tfr = tfr morlet(epochs, freqs, n_cycles, return itc=False, average=False)
print(tfr.data.shape) # Dimensions: (trials, channels, frequencies, time points)
## (240, 64, 12, 251)
```



```
# Divisive baseline correction to get percent signal change
tfr = tfr.apply_baseline((-0.3, -0.1), mode='percent')

# Plot power at one channel, averaged across epochs
tfr_ave = tfr.average()
tfr_ave.plot(picks='Cz', cmap='turbo')
```


Time-frequency analysis with the pipeline

General settings:

```
# Import the Puthon package from R
pipeline <- reticulate::import("pipeline")</pre>
# Run the pipeline with the `tfr` (time-frequency) options
res <- pipeline$group_pipeline(
 vhdr_files = "data/raw",
 log_files = "data/log",
 output_dir = "output",
 ocular_correction = "data/cali",
 triggers = c(201:208, 211:218).
 average_by = c("n_b", "DeviantPosRL", "n_b/DeviantPosRL"),
 perform_tfr = TRUE,
 tfr freqs = seq(6, 30, bv = 2).
 tfr_cycles = seq(3, 15, by = 1),
 tfr_baseline_tmin = -0.3,
 tfr_baseline_tmax = -0.1,
  ... # See next 2 slides
```

Time-frequency analysis with the pipeline

For effects with a priori knowledge about their distribution:

 \rightarrow Then use the single trial data frame to run mixed models

Time-frequency analysis with the pipeline

For exploratory analyses \rightarrow Cluster-based permutation tests:

 \rightarrow Creates a new data frame with cluster-level *p*-values across time, space (channels), and frequencies

General remarks

- Richer view of the EEG signal (evoked + induced activity)
- Many new parameters to think carefully about:
 - Design \rightarrow Longer inter-trial interval; jittering
 - Wavelet frequencies + number of cycles $\rightarrow T/f$ tradeoff
 - Baseline correction window and method
 - Interpretation:
 - Narrow-band vs. broad-band
 - · Oscillation vs. rate of change
- Everything matters

Thanks

