智能工程

E] -	录				4.1	运动控制	15
_		-)<				4.2	定点控制器	16
1	基础	知识		5		4.3	轨迹跟踪控制器	18
2		人运动	形态	6		4.4	路径跟踪控制器	19
_	2.1		l器人	6	5	机器	人感知与定位建图	19
	2.2		L器人	6		5.1	传感器	19
		2.2.1	腿式机器人	6		5.2	光电传感器	20
		2.2.2	四足机器人	7			5.2.1 概述	20
		2.2.3	双足机器人	7			5.2.2 编码器	20
	2.3		L器人	8		5.3	里程计	21
3		人运动		8			5.3.1 里程计模型	21
J	3.1		· 之模型				5.3.2 里程计误差	22
	3.2			9		5.4	激光传感器	24
	3.3		全建模	10		5.5	点云匹配与定位	24
	55	3.3.1	空间描述与状态表达	10		5.6	卡尔曼滤波	24
		3.3.2	ICR法	11		5.7	蒙特卡洛定位	24
		3.3.3	约束方程法	11		5.8	SLAM	24
		3.3.4	例子	13	6	机器	人轨迹规划	24
	3.4	自由度	£	_	7	附录	<u>:</u>	24
4	٠.	人运动		15	•		误差转化展示	
•				_		•		

冬	片		图 4	瞬心	11
121	7 1		图 5	约束方程	12
			图 6	两轮差速机器人正运动学建模.	13
图 1	课程内容	5	图 7	运动控制器	15
图 2	两轮差速机器人模型	5	图 8	里程计建模方法	22
图 3	车轮类型	9	图 9	里程计误差转化展示	24
表	格		表 2	双足机器人方案对比	7
-12	1H		表 3	车轮类型对比	9
表 1	课程内容	5	表 4	约束方程	12

要 点

要点 1	腿式机器人稳定性	7
要点 2	腿式机器人步态	7
要点3	双足机器人运动机理	7
要点4	非完整约束	8
要点 5	车轮类型	9
要点6	ICR法运动学建模	11
要点7	约束方程法运动学建模	11
要点8	自由度分类	14
要点 9	定点控制器	16
要点 10	轨迹跟踪控制器	18
要点 11	路径跟踪控制器	19
要点 12	编码器	20

1 基础知识

图 1: 课程内容

	ui	\mathfrak{u}_{0}	R	F	$u_{\rm r}$	e	С
概	系统输入	系统输出	系统模型	反馈单元	系统给定	系统误差	控制器
念							
含	能对被控	作业目标	系统输入	系统输出	系统作业	作业目标	系统误差
义	对象施加	相应的可	输出映射	映射变换	目标	与系统当	与输入映
	作用的手	测系统状				前测量状	射
	段	态				态差值	
内	机器人运动学			机器丿	人 控制	机器人感	机器人轨
容						知	迹规划

表 1: 课程内容

课程内容

课程案例 移动机器人->轮式机器人->两轮差速机器人。

图 2: 两轮差速机器人模型

- 车轮半径r。
- 两轮转速 φ_l , φ_r : $ν_i = \varphi_i r$.
- 车轮到两轮中间点距离1。
- 1. 求 正 运 动 学 模型3.3.4。
- 2. 设计运动控制器4.1。
- 3. 里程计模型5.3.1。

2 机器人运动形态

2.1 移动机器人

自然界运动形态特点

- 能量利用率高。
- 适应野外复杂环境。
- 与身体尺寸、结构相适应。
- 运行速度高。

机器人实现自然界运动形态问题

- 机械结构、能量密度、感知与控制决策能力困难。
- 安全性、可靠性差。
- 成本高。
 - 于人造环境低效。

运动(LOCOMOION) 机器人与环境的物理交互方式。

- 稳定性。
- 接触特性。
- 环境特性。

2.2 腿式机器人

2.2.1 腿式机器人

研究意义

- 复杂恶劣环境的高适应性。
- 点接触的高通过能力。
- 控制多自由度、实时感知环境的高实现难度。

腿数影响

- 机构复杂度。
- 控制复杂度。
- 环境适应性: 腿越多, 通过性越好, 环境适应性越强。

- 系统稳定性 1: 腿数增加,由动态稳定向静态稳定过度。
 - 动态稳定: 执行器停止工作摔倒。运动过程中通常半数腿离地。
 - 静态稳定: 执行器停止工作不摔倒。点接触需保证三腿同时着地,面接触需保证 一条腿着地。

运动规划 运动学+动力学。

步态 2 一个行进周期内各腿抬落组合,k腿机器人的步态模式数量为 $N = (2^k - 1)!$ 。

2.2.2 四足机器人

- 点接触: 每条腿至少需要两个自由度, 执行器较少, 没有冗余。
- 行走(静态平衡): 一次移动一条腿,剩下腿支持身体,重心落在支持多边形内。适合攀爬,速度低,能效低。
- 奔跑(动态平衡): 一次移动多条腿,平衡建立在周期运动上。速度高,能效高,需要 实时控制与执行。

2.2.3 双足机器人

方案	国家	基础方式	重心	速度	环境适应性	能效
静态稳定	日本	面接触	左右变换	低	差	低
动态稳定	美国	点接触	适时调整	高	强	高

表 2: 双足机器人方案对比

两种方案

动态稳定运动机理 3

- 倒立摆模型:类似纯滚动,步距越小越趋于圆。步态不自然,重心变化(需做功),落地冲击大。
- 无源动态行走: 摆动与向前摔落结合, 势能转化为动能。

- 弹簧负载倒立摆 (SLIP): 仿照动物腿肌肉,增加弹簧缓冲并储存能量。周期往复运动 对称,动态稳定性可由庞加莱变换线性化后验证,条件为 $\lambda < 1$ (PPT.2.34-43)。
- 串联弹性驱动 (SEA): 更为高效, 更符合生物自然属性, 基于运动学的位置控制, 基 于动力学的力矩控制。可由其获得稳定平台(PPT.2.48-50)。

2.3 轮式机器人

研究意义

- 人造环境下高效:滚动摩擦,无重心起伏。
- 结构简单,可靠性高,成本低。
- 控制简单,系统复杂度低。

轮数对稳定性的影响 轮数增加,由动态稳定向静态稳定过度。

- 动态稳定: 执行器停止工作摔倒。倒立摆模型。
- 静态稳定: 执行器停止工作不摔倒。陀螺效应, 随动轮效应。

3 机器人运动学

3.1 运动学模型

表征机器人驱动(输入)和机器人空间位姿(输出)的关系。

机械臂与移动机器人在运动学模型上的区别

- 机械臂本体坐标系固定,精度高;移动机器人本体坐标系随动,精度低。
- 非完整约束 4: 移动机器人只知道码盘变化量无法获取位姿,状态取决于路径。这来 源于不可积的微分约束(车轮侧向滑动约束)。
- 微分运动学(Differential Kinematics): 速度空间替代位置空间。

3.2 车轮

类型 5

图 3: 车轮类型

类型	自由度	约束	分类/特点
标准轮	2	1	标准固定轮(无法旋转,只有一个自
(Standard	沿轮平面滚动	沿轮轴滑动	由度)
wheel)	沿垂直轴转动		标准转向轮 (舵轮)
脚轮	3	0	偏心距 d: 触地点到垂直旋转轴距离。
(Castor	沿轮平面滚动		扭矩压力,易损坏。
wheel)	沿垂直轴转动		
	沿路轴运动		
瑞典轮	3	0	麦克纳姆轮(Macanum wheel):45,
(Swedish	沿轮平面滚动(被动)		至少需要4个共同使用。
wheel)	沿轮轴转动 (主动)		连续切换轮:90,至少需要3个共同使
	沿垂直轴转动(被动)		用。
			对地面冲击大, 噪音大, 易损坏, 成
			本高。
球轮	3(全主动)	0	成本高,可靠性差。
(Spherical	沿两个正交轮轴转动		
wheel)	沿垂直轴转动		

表 3: 车轮类型对比

选取

- 数量: 至少三轮同时着地,才能保证静态稳定性。四轮可以提升稳定性,但需要适当的 悬架系统。
- 大小: 越大的轮子通过性越好, 但需要更大的扭矩。
- 多数形态都有非完整约束。

运动学建模 3.3

3.3.1 空间描述与状态表达

坐标系

- 惯性参考坐标系I: 作业目标、控制指令、传感器感知测量信息。
- 机器人参考坐标系R: 控制器误差输入、控制器控制指令。
- 笛卡尔坐标系: 右手法则。

位姿(POSE)

位置空间求导得到速度空间:

$$\xi_{I} = \begin{bmatrix} x_{I} \\ y_{I} \\ \theta_{I} \end{bmatrix}, \xi_{R} = \begin{bmatrix} x_{R} \\ y_{R} \\ \theta_{R} \end{bmatrix} \stackrel{\text{RP}}{\Longrightarrow} \xi_{I} = \begin{bmatrix} \dot{x}_{I} \\ \dot{y}_{I} \\ \dot{\theta}_{I} \end{bmatrix}, \xi_{R} = \begin{bmatrix} \dot{x}_{R} \\ \dot{y}_{R} \\ \dot{\theta}_{R} \end{bmatrix}$$

惯性参考坐标系旋转得到机器人参考坐标系:

$$\dot{\xi}_R = R\theta \dot{\xi}_I$$

旋转阵
$$R(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
为单位正交阵, $R^T = R^{-1}$ 。

3.3.2 ICR法 ⁶

瞬时旋转/曲率中心(ICR)

刚体上各点角速度相同。

图 4: 瞬心

步骤

- 1. 坐标系变换。
- 2. 确定约束。
- 3. 计算瞬心: 各轮轮轴到该点距离与速度成正比。
- 4. 求解 $\xi_R = \begin{bmatrix} \dot{x}_R & \dot{y}_R & \dot{\theta}_R \end{bmatrix}^T$ 。

约束方程法 7 3.3.3

在水平面上运动, 车轮与地面点接触, 不变形, 安装在钢体表面, 舵机转轴与地面 要求 垂直。

图 5: 约束方程

类型	约束	约束方程	主动轮	随动轮
标	纯滚动	$\begin{bmatrix} \sin(\alpha + \beta(t)) & -\cos(\alpha + \beta(t)) & -\log \beta(t) \end{bmatrix} R\theta \dot{\xi}_{I}$		x
准		$= r\dot{\phi}$		
轮	无滑动	$\label{eq:cos} \left[\cos(\alpha+\beta(t)) \ \sin(\alpha+\beta(t)) \ \ln\beta(t)\right] R\theta \dot{\xi}_I = 0$	$\sqrt{}$	
脚	纯滚动	$\begin{bmatrix} \sin(\alpha + \beta) & -\cos(\alpha + \beta) & -\log \beta \end{bmatrix} R\theta \dot{\xi}_{I} = r\dot{\phi}$		x
轮	无滑动	$\begin{bmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) & d + l \sin \beta \end{bmatrix} R\theta \dot{\xi}_{I} = -d\dot{\beta}$	$\sqrt{}$	x
瑞	纯滚动	$\left[\cos(\alpha+\beta+\gamma) \sin(\alpha+\beta+\gamma) \ln(\beta+\gamma)\right] R\theta \dot{\xi}_{I}$	$\sqrt{}$	x
典		$= r\dot{\varphi}\sin\gamma + r_{sw}\dot{\varphi}_{sw}$		
轮	无滑动	$\begin{bmatrix} \sin(\alpha + \beta + \gamma) & -\cos(\alpha + \beta + \gamma) & -\log(\beta + \gamma) \end{bmatrix} R\theta \dot{\xi}_{1}$		x
		$= r\dot{\phi}\cos\gamma$	(小轮)	

表 4: 约束方程

约束方程

根据各轮主/随动状态列运动约束方程,得到最多三个独立约束方程(对应平面三维 使用 位姿)。

以下以N标准轮(N_f个固定,N_s个转向)机器人为例:

• 滚动约束

$$\begin{split} J_1(\beta_s)R(\theta)\dot{\xi}_I - J_2\dot{\phi} &= 0 \\ \\ \mbox{\sharp} + J_1(\beta_s) &= \begin{bmatrix} J_{1f(N_f\times 3)} \\ J_{1s}(\beta_s)_{(N_s\times 3)} \end{bmatrix} \text{,} \\ \phi(t) &= \begin{bmatrix} \phi_f(t) \\ \phi_s(t) \end{bmatrix} \text{,} \\ J_2 &= \mbox{diag}(r_1,\cdots,r_N) \mbox{$\not$$} \mbox{$\not$$} \mbox{χ} \m$$

• 滑动约束

$$C_1(\beta_s)R(\theta)\dot{\xi}_I=0$$

其中
$$C_1(\beta_s) = \begin{bmatrix} C_{1f(N_f \times 3)} \\ C_{1s}(\beta_s)_{(N_s \times 3)} \end{bmatrix}$$
。

3.3.4 例子

以下以两轮差速机器人(见1)为例, $\alpha = \frac{\pi}{2}$, $\beta = 0$:

图 6: 两轮差速机器人正运动学建模

ICR法

两轮差速机器人的瞬心在两轮轮轴上,设其到机器人两轮中间的距离为R,有:

$$\dot{\theta} = \frac{\dot{x}_R}{R} = \frac{\dot{\phi}_1 r}{R - 1} = \frac{\dot{\phi}_r r}{R + 1}$$

解得 $R = \frac{\dot{\varphi}_r + \dot{\varphi}_l}{\dot{\varphi}_r - \dot{\varphi}_l}$,代回即可。

约束方程法

- 纯滚动: $\begin{bmatrix} \sin(\alpha+\beta) & -\cos(\alpha+\beta) & -l\cos\beta \end{bmatrix} \dot{\xi}_R = r\dot{\phi}_{\circ}$
- 无滑动: $\left[\cos(\alpha+\beta) \sin(\alpha+\beta) l\sin\beta\right]\dot{\xi}_R=0$ 。

正运动学模型

$$\dot{\xi}_R = \begin{bmatrix} \dot{x}_R \\ \dot{y}_R \\ \dot{\theta}_R \end{bmatrix} = \frac{r}{2} \begin{bmatrix} \dot{\phi}_l + \dot{\phi}_r \\ 0 \\ \frac{\dot{\phi}_r - \dot{\phi}_l}{l} \end{bmatrix}$$

3.4 自由度

概念

- 衡量机器人改变运行状态的能力。
- 需满足实际作业需求,考虑实现成本。
- 机器人设计基础、算法依据(一般自由度相同的机器人可采用相同的控制和规划算法)。
- 平面运动机器人自由度最大不能超过3。

分类

• 移动度(Degree of Mobility) δ_m : 瞬时改变机器人运动状态的能力。

$$\delta_m = dim[C_1(\beta_s)] = 3 - rank[C_1(\beta_s)] \in [0,3]$$

• 转向度(Degree of Steerability) δ_s : 间接改变机器人运动状态的能力。

$$\delta_s = \text{rank}[C_{1s}(\beta_s)] \in [0, 2]$$

• 机动度(Degree of Maneuverability) δ_M : 改变机器人运动状态的能力。

$$\delta_{\rm M} = \delta_{\rm m} + \delta_{\rm s}$$

- 机动度相同,结构不一定相同。
- $-\delta_{M}=2$,瞬心位于一条直线上; $\delta_{M}=3$,瞬心可分布于空间任何一点。

实例

- 全向机器人:
 - Type(3,0): 完整约束全方位移动机器人。
 - Type(2,1): 一个同心轮+两个瑞典轮。
 - Type(1,2): 多舵机全方位移动机器人。
- 非全向机器人:
 - Type(2,0): 差分移动机器人。
 - Type(1,1): 自动驾驶汽车(阿克曼转向)、自行车、叉车。

机器人运动控制 4

4.1 运动控制

图 7: 运动控制器

误差(惯性系下给定与反馈) ⇒ 输入(机器人系下控制输入)。

特点

- 大多存在滑动约束,是非完整系统,有侧向偏差和姿态偏差。
- 非线性,控制器设计复杂,还需要根据可获得的反馈信号选取,按顺序调节控制参数, 并且不能同时实现定点控制和跟踪控制。
- 不存在能完成控制目标的连续时不变(静态)反馈控制率。
- 受标定精度影响大, 且由于执行单元性能约束, 控制输入要合理限幅。

分类

- 定点(镇定)控制(Regulation Control): 以指定姿态到达指定位置。
- 跟踪控制:
 - 轨迹跟踪控制(Trajectory Tracking Control): 跟随给定轨迹(包含速度、姿态信 息)。
 - 路径跟踪控制(Path Tracking Control): 跟随给定路线。

开环控制 将运动轨迹分割成直线和圆弧,存在以下问题:

- 直线和圆弧的曲率不一致,不连续。
- 难以实现定义若干合适轨迹。
- 速度加速度约束。
- 无法自适应调整轨迹来面对环境变化。
- 所得轨迹不光滑。

控制器性能评价 取正定李雅普诺夫函数, 其导数负定则系统渐进稳定。

两轮差速机器人运动控制

$$\dot{\xi}_{R} = \begin{bmatrix} \dot{x}_{R} \\ \dot{y}_{R} \\ \dot{\theta}_{R} \end{bmatrix} = \frac{r}{2} \begin{bmatrix} \dot{\phi}_{1} + \dot{\phi}_{r} \\ 0 \\ \frac{\dot{\phi}_{r} - \dot{\phi}_{1}}{l} \end{bmatrix} = \begin{bmatrix} v_{1} \\ 0 \\ v_{2} \end{bmatrix} \stackrel{\text{\tiny $\underline{\phi}$}}{\Longrightarrow} \dot{\xi}_{I} = \begin{bmatrix} \dot{x}_{I} \\ \dot{y}_{I} \\ \dot{\theta}_{I} \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}$$

定点控制器 9

控制目标

机器人参考坐标系下误差
$$e = \begin{bmatrix} x & y & \theta \end{bmatrix}^T$$
,设计控制阵 $K = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \end{bmatrix}$,其中 $k_{ij} = k(t,e)$,得到控制输入 $\begin{bmatrix} \nu(t) \\ \omega(t) \end{bmatrix} = Ke$,使 $\lim_{t \to \infty} e(t) = 0$ 。

惯性系下,实际状态 $\mathbf{q} = \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{\theta} \end{bmatrix}^\mathsf{T}$ 与参考状态 $\mathbf{q}_r \begin{bmatrix} \mathbf{x}_r & \mathbf{y}_r & \mathbf{\theta}_r \end{bmatrix}^\mathsf{T}$ 之差为开环误差:

$$\tilde{\mathbf{q}} = \begin{bmatrix} \tilde{\mathbf{x}} & \tilde{\mathbf{y}} & \tilde{\mathbf{\theta}} \end{bmatrix}^\mathsf{T} = \begin{bmatrix} \mathbf{x} - \mathbf{x_r} & \mathbf{y} - \mathbf{y_r} & \mathbf{\theta} - \mathbf{\theta_r} \end{bmatrix}^\mathsf{T}$$

1. 转换到机器人系

$$e = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = R(\theta)^T \tilde{q} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{\theta} \end{bmatrix} \xrightarrow{\text{id} \mathcal{I}} \dot{e} = \begin{bmatrix} \dot{e}_1 \\ \dot{e}_2 \\ \dot{e}_3 \end{bmatrix} = R(\theta) \dot{\tilde{q}} + R(\dot{\theta}) \tilde{q} = \begin{bmatrix} v_1 + v_2 e_2 \\ -v_2 e_1 \\ v_2 \end{bmatrix}$$

2. 转换到极坐标系

$$\begin{cases} \rho &= \sqrt{\tilde{x}^2 + \tilde{y}^2} \\ \beta &= -\arctan 2(-\tilde{y}, -\tilde{x}) \stackrel{\text{idj}}{\Longrightarrow} \begin{bmatrix} \dot{\rho} \\ \dot{\beta} \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} -\cos \alpha & 0 \\ \frac{\sin \alpha}{\rho} & 0 \\ \frac{\sin \alpha}{\rho} & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

机器人系非线性控制器

设计控制器
$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} -k_1e_1 \\ -k_2e_2 + e_2^2\sin(t) \end{bmatrix}, \ \text{代入得} \begin{bmatrix} \dot{e}_1 \\ \dot{e}_2 \\ \dot{e}_3 \end{bmatrix} = \begin{bmatrix} -k_1e_1 + v_2e_2 \\ -v_2e_1 \\ -k_2e_2 + e_2^2\sin(t) \end{bmatrix}.$$

其有误差时扰动,效果不佳。

极坐标系线性控制器

设计控制器
$$\begin{cases} \nu_1 &= k_\rho \rho \\ \nu_2 &= k_\alpha \alpha + k_\beta \beta \end{cases}, \;\; 代入得$$

$$\begin{bmatrix} \dot{\rho} \\ \dot{\beta} \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} -k_{\rho}\rho\cos\alpha \\ -k_{\rho}\sin\alpha \\ k_{\rho}\sin\alpha - k_{\alpha}\alpha - k_{\beta}\beta \end{bmatrix} \overset{\alpha \to 0}{\Longrightarrow} \begin{bmatrix} -k_{\rho}\rho \\ -k_{\rho}\alpha \\ k_{\rho}\alpha - k_{\alpha}\alpha - k_{\beta}\beta \end{bmatrix}$$

其中前两行非线性耦合,在 $\alpha \rightarrow 0$ 时指数性稳定,非全局稳定。

极坐标系线性控制器

设计控制器
$$\begin{cases} \nu_1 &= k_\rho \rho \cos \alpha \\ \nu_2 &= k_\alpha \alpha + \frac{k_\rho \sin \alpha \cos \alpha}{\alpha} (\alpha - k_\beta \beta) \end{cases}, \ \ (代入得)$$

$$\begin{bmatrix} \dot{\rho} \\ \dot{\beta} \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} -k_\rho \rho \cos \alpha \cos \alpha \\ -k_\rho \cos \alpha \sin \alpha \\ k_\rho \cos \alpha \sin \alpha - k_\alpha \alpha - \underbrace{\frac{k_\rho \sin \alpha \cos \alpha}{\alpha}}_{\alpha \to 0, \frac{\sin \alpha}{\alpha} = 1} (\alpha - k_\beta \beta) \end{bmatrix}$$

其全局渐近稳定。

轨迹跟踪控制器 4.3

控制目标与误差变换

惯性系下,实际轨迹 $q(t) = \begin{bmatrix} x(t) & y(t) & \theta(t) \end{bmatrix}^T$ 与参考轨迹 $q_r \begin{bmatrix} x_r(t) & y_r(t) & \theta_r(t) \end{bmatrix}^T$ 之差 为开环误差:

$$\tilde{q}(t) = \begin{bmatrix} \tilde{x}(t) & \tilde{y}(t) & \tilde{\theta}(t) \end{bmatrix}^T = \begin{bmatrix} x(t) - x_r(t) & y(t) - y_r(t) & \theta(t) - \theta_r(t) \end{bmatrix}^T$$

控制目标为 $\lim_{n\to\infty} \tilde{q}(t) = 0$ 。

开环误差转换坐标系后求闭环误差,进而得到辅助误差信号:

$$e = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{\theta} \end{bmatrix} \stackrel{\text{iff}}{\Longrightarrow} \dot{e} = \begin{bmatrix} v_1 + v_2 e_2 - v_{1r} \cos e_3 \\ -v_2 e_1 + v_{1r} \sin e_3 \\ v_2 - v_{2r} \end{bmatrix}$$

控制器

设计控制器
$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} -k_1e_1 + v_{1r}\cos e_3 \\ -v_{1r}\frac{\sin e_3}{e_3}e_2 - k_2e_3 + v_{r2} \end{bmatrix}$$
,代入得
$$\begin{bmatrix} \dot{e}_1 \\ \dot{e}_2 \\ \dot{e}_3 \end{bmatrix} = \begin{bmatrix} -k_1e_1 + v_2e_2 \\ -v_2e_1 + v_{1r}\sin e_3 \\ -k_2e_3 - v_{1r}\frac{\sin e_3}{e_3}e_2 \end{bmatrix}$$

路径跟踪控制器

控制目标与误差变换

惯性系下,实际路径 $q(s) = \begin{bmatrix} x(s) & y(s) & \theta(s) \end{bmatrix}^T$ 与参考路径 $q_r \begin{bmatrix} x_r(s) & y_r(s) & \theta_r(s) \end{bmatrix}^T$ 之差 为开环误差:

$$\tilde{q}(s) = \begin{bmatrix} \tilde{x}(s) & \tilde{y}(s) & \tilde{\theta}(s) \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} x(s) - x_{\mathsf{r}}(s) & y(s) - y_{\mathsf{r}}(s) & \theta(s) - \theta_{\mathsf{r}}(s) \end{bmatrix}^{\mathsf{T}}$$

其中 $s\in[0,1]$ 为路径参考变量,控制目标为 $\lim_{n\to\infty}\tilde{\mathfrak{q}}(s)=0$ 。

作变换
$$\begin{cases} y_1 = x + b\cos\theta \\ y_2 = y + b\sin\theta \end{cases}$$
 进而得到闭环误差
$$\begin{bmatrix} \dot{y}_1 \\ \dot{y}_2 \end{bmatrix} = \begin{bmatrix} \cos\theta & -b\sin\theta \\ \sin\theta & b\cos\theta \end{bmatrix} \begin{bmatrix} \nu \\ \omega \end{bmatrix} = T(\theta) \begin{bmatrix} \nu \\ \omega \end{bmatrix}.$$

逆运算得到
$$\begin{bmatrix} \nu \\ \omega \end{bmatrix} = T^{-1}(\theta) \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\frac{\sin\theta}{b} & \frac{\cos\theta}{b} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix},$$

故
$$\begin{cases} \dot{y}_1 = u_1 \\ \dot{y}_2 = u_2 \\ \dot{\theta} = \frac{u_2\cos\theta - u_1\sin\theta}{b} \end{cases}$$

控制器

设计控制器
$$\begin{cases} u_1 = \dot{y}_{1d} + k_1(y_{1d} - y_1) \\ u_2 = \dot{y}_{2d} + k_2(y_{2d} - y_2) \end{cases}, \ \ f \begin{cases} \dot{\tilde{y}}_1 = -k_1 \tilde{y}_1 \\ \dot{\tilde{y}}_2 = -k_2 \tilde{y}_2 \end{cases}, \ \ \text{系统指数性收敛}.$$

机器人感知与定位建图 5

传感器

常见传感器 激光雷达(Laser)、里程计(Odometer)、声纳(Rader)、摄像机(Camera)、 惯导系统 (IMU)、加速度传感器 (Accelerometer)、陀螺 (Gyroscope)、力觉传感器 (Force Sensor)、罗盘(Compass)。

分类

- PC(Proprioceptive,本体感受)/EC(Exteroceptive,外感受)。
- A (Active, 有源)/P (Passive, 无源)。

特性

- 测量范围: 测量上下界之差。
- 动态范围: 测量范围上下界比率,常用对数表示,单位为dB。
- 分辨率: 最小可测量变化量, 一般为为动态范围下界。
- 线性度: 输入输出信号的映射关系。

5.2 光电传感器

把被测量变化转换成光信号变化, 再转换成电信号。

5.2.1 概述

辐射源、光学通路、光电器件。 组成

特性

- 不受电磁干扰影响。
- 非接触测量。
- 频谱宽, 高精度, 高分辨率, 高可靠性, 发应快。

5.2.2 编码器 12

测量系统相对运动角度,具有高精度、高分辨率和高可靠性。按结构可分为接触式、光 电式和电磁式,后两种为非接触式编码。

增量式旋转编码器

- 不能直接输出数字编码, 需要增数字电路。
- 原理: 遮光周期性变化,莫尔条纹明暗交替,电压周期性变化 $U_0 = U_m \cos(\frac{2\pi}{W}x)$,形成脉冲,根据脉冲数量可推算旋转角度,位置数据是相对的。
- 辨向: 为判断光栅移动方向,使用D触发器()整合两个光栅的信息。
 - D触发器: 时钟信号有效时, Q = D。
 - 边缘D触发器: 时钟信号处于有效边沿时,Q = D。

绝对式光电编码器

- 能直接输出某种码制的数码。
- 格雷码(余3循环码): 任意相邻数只有一位二进制数不同,可以由二进制码按位异或 (第一位保留)获得,属于可靠性编码,求反方便。

5.3 里程计

5.3.1 里程计模型

两轮差速机器人里程计模型 以下以两轮差速机器人(见1)为例。

$$\dot{\xi}_R = \begin{bmatrix} \dot{x}_R \\ \dot{y}_R \\ \dot{\theta}_R \end{bmatrix} = \frac{r}{2} \begin{bmatrix} \dot{\phi}_l + \dot{\phi}_r \\ 0 \\ \frac{\dot{\phi}_r - \dot{\phi}_l}{l} \end{bmatrix} = \begin{bmatrix} \nu \\ 0 \\ \omega \end{bmatrix} \xrightarrow{\text{\${$\dot{\phi}$}}} \begin{array}{c} \dot{\chi} & = \nu \cos \theta \\ \dot{y} & = \nu \sin \theta \\ \dot{\theta} & = \omega \end{array}$$

码盘读数为:

$$\begin{cases} \Delta s = \frac{r}{2}(\Delta\varphi_R + \Delta\varphi_L) & \text{ which the second points are } \\ \Delta\theta = \frac{r}{2d}(\Delta\varphi_R - \Delta\varphi_L) & \text{ which the second points } \end{cases} \begin{cases} \Delta s & = \nu_k T_s \\ \Delta\theta & = \omega_k T_s \end{cases}$$

图 8: 里程计建模方法

建模方法

• 欧拉法

$$\begin{cases} x_{k+1} = x_k + \nu_k T_s \cos \theta_k \\ y_{k+1} = y_k + \nu_k T_s \sin \theta_k \\ \theta_{k+1} = \theta_k + \omega_k T_s \end{cases}$$

• 二阶Runge-Kutta法

$$\begin{cases} x_{k+1} = x_k + \nu_k T_s \cos(\theta_k + \frac{\omega_k T_s}{2}) \\ y_{k+1} = y_k + \nu_k T_s \sin(\theta_k + \frac{\omega_k T_s}{2}) \\ \theta_{k+1} = \theta_k + \omega_k T_s \end{cases}$$

• 解析积分法

$$\begin{cases} x_{k+1} = x_k + \frac{\nu_k}{\omega_k} (\sin \theta_{k+1} - \sin \theta_k) \\ y_{k+1} = y_k - \frac{\nu_k}{\omega_k} (\cos \theta_{k+1} - \cos \theta_k) & \stackrel{\omega_k = 0}{\Longrightarrow} \begin{cases} x_{k+1} = x_k + \nu_k T_s \\ y_{k+1} = y_k \end{cases} \\ \theta_{k+1} = \theta_k + \omega_k T_s \end{cases}$$

5.3.2 里程计误差

误差来源

• 数值积分误差。

- 运动学参数误差: 速度不恒定, 半径误差。
- 打滑。

误差传播

二阶Runge-Kutta法的位姿更新为:

$$p' = f(x,y,\theta,\Delta\varphi_R,\Delta\varphi_L) = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \frac{r(\Delta\varphi_R + \Delta\varphi_L)}{2}\cos(\theta_k + \frac{r[\Delta\varphi_R - \Delta\varphi_L]}{4d}) \\ \frac{r(\Delta\varphi_R + \Delta\varphi_L)}{2}\sin(\theta_k + \frac{r[\Delta\varphi_R - \Delta\varphi_L]}{4d}) \\ \frac{r(\Delta\varphi_R - \Delta\varphi_L)}{2d} \end{bmatrix}$$

其中 $\Delta \phi_{R}$, $\Delta \phi_{L}$ 是控制输入量,有误差协方差矩阵迭代公式:

$$\sum_{p'} = \nabla_{p} \mathbf{f} \cdot \sum_{p} \cdot \nabla_{p} \mathbf{f}^{\mathsf{T}} + \nabla_{r|l} \mathbf{f} \cdot \sum_{\Delta} \cdot \nabla_{r|l} \mathbf{f}^{\mathsf{T}}$$

$$\underline{\hat{\mathbf{C}}}_{g}$$

$$\underline{\hat{\mathbf{C}}}_{g}$$

初始化姿态协方差矩阵 $\sum_{p'}$ (可零初始化),其更新量为:

$$\nabla_{p} f = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial \theta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\Delta s \sin(\theta_{k} + \frac{\Delta \theta}{2}) \\ 0 & 1 & \Delta s \cos(\theta_{k} + \frac{\Delta \theta}{2}) \\ 0 & 0 & 1 \end{bmatrix}$$

假设 $\Delta \phi_{R}$, $\Delta \phi_{I}$ 的误差相互独立,有控制输入量协方差矩阵:

$$\sum_{\Delta} = covar(\Delta \varphi_R, \Delta \varphi_L) = \begin{bmatrix} k_r || \Delta \varphi_R || & 0 \\ 0 & k_l || \Delta \varphi_L || \end{bmatrix}$$

其更新量为:

$$\nabla_{rl}f = \begin{bmatrix} \frac{\partial f}{\partial \Delta \varphi_R} & \frac{\partial f}{\partial \Delta \varphi_L} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}\cos(\theta_k + \frac{\Delta\theta}{2}) - \frac{r}{4d}\Delta s\sin(\theta_k + \frac{\Delta\theta}{2}) & \frac{r}{2}\cos(\theta_k + \frac{\Delta\theta}{2}) + \frac{r}{4d}\Delta s\sin(\theta_k + \frac{\Delta\theta}{2}) \\ \frac{r}{2}\sin(\theta_k + \frac{\Delta\theta}{2}) + \frac{r}{4d}\Delta s\cos(\theta_k + \frac{\Delta\theta}{2}) & \frac{r}{2}\sin(\theta_k + \frac{\Delta\theta}{2}) - \frac{r}{4d}\Delta s\cos(\theta_k + \frac{\Delta\theta}{2}) \\ \frac{r}{2d} & -\frac{r}{2d} \end{bmatrix}$$

误差转化展示 原理见7.1。

图 9: 里程计误差转化展示

直线运动时误差方向与运动方向垂直, 曲线运动时则不垂直。

- 激光传感器 5.4
- 5.5 点云匹配与定位
- 5.6 卡尔曼滤波
- 蒙特卡洛定位
- 5.8 SLAM
- 机器人轨迹规划
- 附录
- 7.1 误差转化展示

将误差传播协方差矩阵 \sum_p 转化成椭圆展示。

计算 取 \sum_p 左上二阶子阵 $\sum_{p_{xy}} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{xy} & \sigma_{yy} \end{bmatrix}$,计算特征值 λ_1, λ_2 和特征向量 $\overrightarrow{p}_1, \overrightarrow{p}_2$,其分别表示长短轴的大小和方向,圆心是 (x_k, y_k) (直接对 \sum_p 求取特征根和特征向量,再取前 两个,结果与其不同)。

意义

- 长短轴表示误差在不同方向上的大小,可通过开根号、乘系数等方法调节。
- 方向角表示误差传播的主要方向,体现了误差传播的各向异性。
- 椭圆大小反映了系统的误差范围,可按置信度缩放。

返回里程计5.3.2