COMS30035, Machine learning: Classification and Neural Networks

Edwin Simpson (adapted from slides by Rui Ponte Costa)

Department of Computer Science, SCEEM University of Bristol

September 8, 2023

Textbooks

We will follow parts of the Chapter 4 and 5 of the Bishop book:

Bishop, C. M., Pattern recognition and machine learning (2006). Available for free here.

Agenda

- Discriminant functions
- Logistic regression
- Perceptron
- Neural networks (multi-layer perceptron)
 - Architecture
 - The backpropagation algorithm
 - Gradient descent

See: [Chapter 5, Bishop]

Classification

- It is the classical example of supervised learning
- ▶ Goal: Classify input data into one of K classes

Classification

- It is the classical example of supervised learning
- Goal: Classify input data into one of K classes
- Model: Discriminant function:
 - A function that takes an input vector x and assigns it to class C_k . For simplicity we will focus on K = 2 and will first study linear functions (see Bishop for the general cases).

- ► The simplest linear discriminant (LD) is $y(x) = w_0 + w^T x$
 - where y is used to predicted class C_k, x is the input vector (feature values)
 - \triangleright w_0 is a scalar, which we call bias
 - \blacktriangleright w_T is our vector of parameters, which we call weights

¹See Bishop p184 and p190.

- ► The simplest linear discriminant (LD) is $y(x) = w_0 + w^T x$
 - where y is used to predicted class C_k, x is the input vector (feature values)
 - \triangleright w_0 is a scalar, which we call bias
 - $ightharpoonup w_T$ is our vector of parameters, which we call weights
- This looks like linear regression! Except the next step...

¹See Bishop p184 and p190.

- ► The simplest linear discriminant (LD) is $y(x) = w_0 + \mathbf{w}^T \mathbf{x}$
 - where y is used to predicted class C_k, x is the input vector (feature values)
 - \triangleright w_0 is a scalar, which we call bias
 - \blacktriangleright w_T is our vector of parameters, which we call weights
- This looks like linear regression! Except the next step...
- For K = 2: An input vector x is assigned to class C_1 if $y(x) \ge 0$ and to class C_2 otherwise.

¹See Bishop p184 and p190.

- ▶ The simplest linear discriminant (LD) is $y(x) = w_0 + w^T x$
 - where y is used to predicted class C_k, x is the input vector (feature values)
 - \triangleright w_0 is a scalar, which we call bias
 - \blacktriangleright w_T is our vector of parameters, which we call weights
- This looks like linear regression! Except the next step...
- ▶ For K = 2: An input vector x is assigned to class C_1 if $y(x) \ge 0$ and to class C_2 otherwise.
- Optimisation: least-squares (as for regression) ¹, where we want to minimise the cost or error function:

$$E = \frac{1}{2} \sum_{n=1}^{N} (\boldsymbol{w}^T \boldsymbol{x}_n + w_0 - t_n)^2$$
 where t_n are the targets/labels (e.g. $t_1 = C_1$).

¹See Bishop p184 and p190.

LD and linear separability

Example

Linear separability is when two sets of points are separable by a line. We generated two sets of points using two Gaussians to illustrate this point, which can easily be fit by a LD. A *decision boundary* is the boundary that separates the two given classes, which our models will try to find.

Linear separability vs nonlinear separability

Example

Which datasets **are** and **are not** linearly separable²?

²Example from Sklearn here.

Linear separability vs nonlinear separability

Example

Which datasets **are** and **are not** linearly separable²?

Only the first dataset is linearly separable!

²Example from Sklearn here.

Linear discriminant

Example

Using sklearn we fitted a LD to the data:

As expected, the LD model only does a good job in finding a good separation in the first dataset.

Logistic regression

We use a logistic function to obtain the probability of class C_k : $y(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$ where σ denotes the logistic sigmoid function (s-shaped), for example:

Logistic regression

We use a logistic function to obtain the probability of class C_k : $y(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$ where σ denotes the logistic sigmoid function (s-shaped), for example:

- ▶ such that when $y \rightarrow 0$ we choose class 1 and $y \rightarrow 1$ class 2.
- Taking a probabilistic view: $p(C_1|\mathbf{x}) = y(\mathbf{x})$, and $p(C_2|\mathbf{x}) = 1 p(C_1|\mathbf{x})$.

Follow MLE recipe:

1. Define likelihood: For a data set $\{x_n, t_n\}$, where the targets $t_n \in \{0, 1\}$

we have
$$p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n}$$
 where $y_n = p(C_1|x_n)$. ³

³The exponent selects the probability of the target class (i.e. if $t_n = 1$ we get y_n ; if $t_n = 0$ we get $1 - y_n$).

⁴Note that we used the logarithm product and power rule.

 $^{^{5}}$ This solution makes sense since we want to optimise the difference between the model output y and the desired targets t.

Follow MLE recipe:

1. Define likelihood: For a data set $\{x_n, t_n\}$, where the targets $t_n \in \{0, 1\}$

we have
$$p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n}$$
 where $y_n = p(C_1|x_n)$. ³

2. Take negative logarithm of the likelihood 4:

$$-\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1-t_n) \ln(1-y_n)\}$$

³The exponent selects the probability of the target class (i.e. if $t_n = 1$ we get y_n ; if $t_n = 0$ we get $1 - y_n$).

⁴Note that we used the logarithm product and power rule.

 $^{^{5}}$ This solution makes sense since we want to optimise the difference between the model output y and the desired targets t.

Follow MLE recipe:

1. Define likelihood: For a data set $\{x_n, t_n\}$, where the targets $t_n \in \{0, 1\}$

we have
$$p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n}$$
 where $y_n = p(C_1|x_n)$. ³

2. Take negative logarithm of the likelihood ⁴:

$$-\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1-t_n) \ln(1-y_n)\}$$

3. Calculate the derivative w.r.t. the parameters **w**:5

$$\frac{d \ln p(t|\mathbf{w})}{d\mathbf{w}} = \sum_{n=1}^{N} (y_n - t_n) x_n$$

³The exponent selects the probability of the target class (i.e. if $t_n = 1$ we get y_n ; if $t_n = 0$ we get $1 - y_n$).

⁴Note that we used the logarithm product and power rule.

 $^{^{5}}$ This solution makes sense since we want to optimise the difference between the model output y and the desired targets t.

Follow MLE recipe:

1. Define likelihood: For a data set $\{x_n, t_n\}$, where the targets $t_n \in \{0, 1\}$

we have
$$p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n}$$
 where $y_n = p(C_1|x_n)$. ³

2. Take negative logarithm of the likelihood 4:

$$-\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1-t_n) \ln(1-y_n)\}$$

3. Calculate the derivative w.r.t. the parameters **w**:5

$$\frac{d \ln p(t|\mathbf{w})}{d\mathbf{w}} = \sum_{n=1}^{N} (y_n - t_n) x_n$$

4. Now we can use Eq. above to directly update **w** using the data x.

³The exponent selects the probability of the target class (i.e. if $t_n = 1$ we get y_n ; if $t_n = 0$ we get $1 - y_n$).

⁴Note that we used the logarithm product and power rule.

 $^{^{5}}$ This solution makes sense since we want to optimise the difference between the model output y and the desired targets t.

MLE using Gradient Descent

- Start with random weight values
- We want to adjust each weight w to minimise negative log likelihood: move downhill to the minimum
- ► The derivative represents the slope: $\frac{d \ln p(t|\mathbf{w})}{d\mathbf{w}} = \sum_{n=1}^{N} (y_n t_n) x_n$
- ▶ Increase or decrease w by a small amount in the downward direction

More details on calculating the derivative:

1. From here
$$-\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1-t_n) \ln (1-y_n)\}$$

⁶We used the chain rule and $d \ln(x) = 1/x$. We also used the derivative of the sigmoid $dy_n = y(1 - y_n)$.

More details on calculating the derivative:

1. From here
$$-\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1-t_n) \ln(1-y_n)\}$$

2. We get
$$\sum_{n=1}^{N} \{-\frac{t_n}{y_n} + \frac{(1-t_n)}{1-y_n}\} \{y_n(1-y_n)\} x_n^{-6}$$

⁶We used the chain rule and $d \ln(x) = 1/x$. We also used the derivative of the sigmoid $dy_n = y(1 - y_n)$.

More details on calculating the derivative:

1. From here
$$-\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1-t_n) \ln(1-y_n)\}$$

2. We get
$$\sum_{n=1}^{N} \{-\frac{t_n}{y_n} + \frac{(1-t_n)}{1-y_n}\} \{y_n(1-y_n)\} x_n^{-6}$$

3. The above simplifies to
$$\sum_{n=1}^{N} \{-t_n(1-y_n) + (1-t_n)y_n\}x_n$$

⁶We used the chain rule and $d \ln(x) = 1/x$. We also used the derivative of the sigmoid $dy_n = y(1 - y_n)$.

More details on calculating the derivative:

1. From here
$$-\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1-t_n) \ln(1-y_n)\}$$

2. We get
$$\sum_{n=1}^{N} \{-\frac{t_n}{y_n} + \frac{(1-t_n)}{1-y_n}\} \{y_n(1-y_n)\} x_n^{-6}$$

3. The above simplifies to
$$\sum_{n=1}^{N} \{-t_n(1-y_n) + (1-t_n)y_n\}x_n$$

4. And in turn to
$$\sum_{n=1}^{N} \{y_n - t_n\} x_n^{-7}$$

⁶We used the chain rule and $d \ln(x) = 1/x$. We also used the derivative of the sigmoid $dy_n = y(1 - y_n)$.

Logistic regression

Example

Using sklearn we fitted a logistic regression classifier to the data:

As you can see the results are very similar to LD, but because of probabilistic formulation we have an explicit probability of belonging to one or the other class (not shown); this can be very useful in real-world applications (e.g. self-driving cars or cancer detection).

- It is the very beginning of neural network models in ML!
- It is directly inspired on how neurons process information:

⁸Intuitively we want to improve our chances of having $t_n = y_n = -1$ or $t_n = y_n = 1$, which will both decrease our error function.

- It is the very beginning of neural network models in ML!
- It is directly inspired on how neurons process information:

It is an example of a linear discriminant model given by $y(\mathbf{x}) = f(\mathbf{w}^T \phi(\mathbf{x}))$

with a nonlinear activation function
$$f(a) = \begin{cases} +1, & a \ge 0 \\ -1, & a < 0 \end{cases}$$

⁸Intuitively we want to improve our chances of having $t_n = y_n = -1$ or $t_n = y_n = 1$, which will both decrease our error function.

- It is the very beginning of neural network models in ML!
- It is directly inspired on how neurons process information:

It is an example of a linear discriminant model given by $y(\mathbf{x}) = f(\mathbf{w}^T \phi(\mathbf{x}))$

with a nonlinear activation function
$$f(a) = \begin{cases} +1, & a \ge 0 \\ -1, & a < 0 \end{cases}$$

- ▶ Here the target $t = \{+1, -1\}$.
- And we aim to mimimise the following error $-\sum_{n=1}^{N} \mathbf{w}^{T} \phi_{n} t_{n}^{8}$

⁸Intuitively we want to improve our chances of having $t_n = y_n = -1$ or $t_n = y_n = 1$, which will both decrease our error function.

Example

The Perceptron of Rosenblatt (1962)

The perceptron played an important role in the history of machine learning (Rosenblatt 1962). Indeed it represents the very start of the current *deep learning* revolution. Frank Rosenblatt used IBM and special-purpose hardware for a parallel implementation of perceptron learning. Rosenblatt's work was criticized by Marvin Minksy, who showed that such models could only learn *linearly separable problems*. However, this limitation is only true in the case of single layers!

source: Bishop p193.

Quiz and video time!

Watch this very cool video about the perceptron ⁹.

Go to Blackboard unit page » Quizzes » Week 1 » Classification and neural networks

[Should take you less than 5 minutes]

⁹Note the comment at the end – it underlies all the recent successes using deep learning!

From a single layer perceptron:

However these and other linear (or near-linear) models have limited expressibility due to the *curse of dimensionality*.

To a Multiple Layer Perceptron (MLP) 10:

¹⁰Although, we call it perceptron, it typically uses logistic sigmoid activation functions (continous nonlinearities), instead of step-wise discontinous nonlinearities.

- Neural networks are at heart composite functions of linear-nonlinear functions.
- ▶ Deep learning¹¹ refers to neural networks (or MLPs) with more than 1 hidden layer
- ► They can be applied in any form of learning, but we will focus on supervised learning and classification in particular

¹¹ If you would like to learn more take our Applied Deep Learning unit in your 4th year.

¹²Here we focus on simple feedforward nnets but the recipe is the same for any neural network.

¹³Note that this makes them parametric models.

- Neural networks are at heart composite functions of linear-nonlinear functions.
- Deep learning¹¹ refers to neural networks (or MLPs) with more than 1 hidden layer
- ► They can be applied in any form of learning, but we will focus on supervised learning and classification in particular
- ► MLP recipe ¹²:
 - ▶ Define architecture (e.g. how many hidden layers and neurons) ¹³
 - Define cost function (e.g. mean squared error)
 - Optimise network using backprop:
 - 1. Forward pass calculate activations; generate y_k
 - 2. Calculate error/cost function
 - 3. Backward pass use backprop to update parameters

¹¹ If you would like to learn more take our Applied Deep Learning unit in your 4th year.

¹²Here we focus on simple feedforward nnets but the recipe is the same for any neural network.

¹³Note that this makes them parametric models.

Neural networks – forward pass step-by-step

- 1. Calculate activations of the hidden layer h: $a_j = \sum_{i=1}^D w_{ji} x_i^{(h)} + w_{j0}^{(h)}$ [linear]
- 2. Pass it through a nonlinear function: $z_i = \sigma(a_i)$ [nonlinear¹⁴]

¹⁴In MLP we typically use sigmoid functions.

¹⁵For classification problems we use a sigmoid at the output, where each output neuron codes for one class.

Neural networks – forward pass step-by-step

- 1. Calculate activations of the hidden layer h: $a_j = \sum_{i=1}^D w_{ji} x_i^{(h)} + w_{j0}^{(h)}$ [linear]
- 2. Pass it through a nonlinear function: $z_j = \sigma(a_j)$ [nonlinear¹⁴]
- 3. Calculate activations of the output layer o: $a_k = \sum_{i=1}^{D} w_{kj} z_j^{(o)} + w_{k0}^{(o)}$ [linear]
- 4. Compute predictions using a sigmoid: $y_k = \sigma(a_k)$ [nonlinear¹⁵]

¹⁴In MLP we typically use sigmoid functions.

¹⁵For classification problems we use a sigmoid at the output, where each output neuron codes for one class.

Neural networks – forward pass step-by-step

- 1. Calculate activations of the hidden layer h: $a_j = \sum_{i=1}^D w_{ji} x_i^{(h)} + w_{j0}^{(h)}$ [linear]
- 2. Pass it through a nonlinear function: $z_j = \sigma(a_j)$ [nonlinear¹⁴]
- 3. Calculate activations of the output layer o: $a_k = \sum_{i=1}^{D} w_{kj} z_j^{(o)} + w_{k0}^{(o)}$ [linear]
- 4. Compute predictions using a sigmoid: $y_k = \sigma(a_k)$ [nonlinear¹⁵]

5. All together:
$$y_k = \sigma \left(\sum_{i=1}^{D} w_{kj} \, \sigma \left(\sum_{i=1}^{D} w_{ji} x_i^{(h)} + w_{j0}^{(h)} \right) + w_{k0}^{(o)} \right)$$

¹⁴In MLP we typically use sigmoid functions.

¹⁵For classification problems we use a sigmoid at the output, where each output neuron codes for one class.

Neural networks – backward pass

We now need to optimise our weights, and as before we use derivatives to find a solution. Effectively backpropagating the output error signal across the network – backpropagation algorithm.

Neural networks - backward pass

We now need to optimise our weights, and as before we use derivatives to find a solution. Effectively backpropagating the output error signal across the network – backpropagation algorithm.

1. Compute the error (or cost) function: e.g.: $E = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{t}_n)^2$

 $^{^{16}\}sigma'$ denotes the derivative of the sigmoid activation function.

¹⁷Note that the updates for the bias terms w_0 do not depend on the activity of the previous layer z_i and x_i .

Neural networks - backward pass

We now need to optimise our weights, and as before we use derivatives to find a solution. Effectively backpropagating the output error signal across the network – backpropagation algorithm.

- 1. Compute the error (or cost) function: e.g.: $E = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{y}(\mathbf{x}_n, \mathbf{w}) \mathbf{t}_n)^2$
- 2. Use the *chain rule* to compute the gradients w.r.t. \boldsymbol{w} , $\frac{dE}{dw}$
- 3. For the output weights w_{kj} we get:

$$\frac{\partial E}{\partial w_{kj}} = \frac{\partial \dot{E}}{\partial y_k} \frac{\partial y_k}{\partial \sigma} \frac{\partial \sigma}{\partial w_{kj}} = \sigma'(y_n - t_n) z_j^{16}$$

 $^{^{16}\}sigma'$ denotes the derivative of the sigmoid activation function.

¹⁷Note that the updates for the bias terms w_0 do not depend on the activity of the previous layer z_i and x_i .

Neural networks - backward pass

We now need to optimise our weights, and as before we use derivatives to find a solution. Effectively backpropagating the output error signal across the network – backpropagation algorithm.

- 1. Compute the error (or cost) function: e.g.: $E = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) t_n)^2$
- 2. Use the *chain rule* to compute the gradients w.r.t. \boldsymbol{w} , $\frac{dE}{dw}$
- 3. For the output weights w_{kj} we get:

$$\frac{\partial E}{\partial w_{kj}} = \frac{\partial \dot{E}}{\partial y_k} \frac{\partial y_k}{\partial \sigma} \frac{\partial \sigma}{\partial w_{kj}} = \sigma'(y_n - t_n) z_j^{16}$$

4. Whereas for the input weights w_{ji} we get:

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial \sigma} \frac{\partial \sigma}{\partial z_j} \frac{\partial z_j}{\partial \sigma} \frac{\partial \sigma}{\partial w_{ji}} = \sigma'(y_n - t_n) w_{kj}^T \sigma' x_i^{17}$$

 $^{^{16}\}sigma'$ denotes the derivative of the sigmoid activation function.

¹⁷Note that the updates for the bias terms w_0 do not depend on the activity of the previous layer z_i and x_i .

Neural networks - gradient descent 19

In many ML methods is common to iteratively update the parameters by descending the gradient.

¹⁸ Figure from https://mc.ai/an-introduction-to-gradient-descent-2/

¹⁹ Its called descent because we are minimising the cost function, so descending on the function landscape, which can be quite hilly!

Neural networks - gradient descent 19

In many ML methods is common to iteratively update the parameters by descending the gradient.

In our neural network this means to update the weights using:

- $ightharpoonup w_{ji} = w_{ji} \Delta w_{ji}$, where $\Delta w_{ji} = \sigma'(y_n t_n) w_{kj}^T \sigma' x_i$
- $ightharpoonup w_{kj} = w_{kj} \Delta w_{kj}$, where $\Delta w_{kj} = \sigma'(y_n t_n)z_j$
- This is often done in mini-batches using a small number of samples to compute Δw.

¹⁸ Figure from https://mc.ai/an-introduction-to-gradient-descent-2/

¹⁹ Its called descent because we are minimising the cost function, so descending on the function landscape, which can be quite hilly!

Neural networks

Example

Using sklearn we fitted a MLP classifier to the data:

As you can see a MLP (with one hidden layer) can indeed perform very well in nonlinear classification problems. Note, however, because MLPs are highly flexible models they can easily *overfit* the data. To prevent this methods such as *early stopping* (stop when test performance starts decreasing) and *dropout* (randomly drop units in the network) are used.

Classification methods — overall comparison [Input data Linear Discriminant Logistic Regression Neural Net

Classification methods - overall comparison [including

methods from the upcoming lectures]

Tasks

▶ Post questions Teams > QA channel or bring them to the next lecture

Tasks

- Post questions Teams > QA channel or bring them to the next lecture
- Next lab (Week 2): Neural nets and SVMs
 - 1. See link to lab 2 on BB