Problem Set 3

Noella James

02/11/2017

collaborators: none

1 Problem 3-1: Updating MST after edge addition.

Input: G(V, E) weighted graph w/non-negative weights. T = MST(G), T = (V, E'), $E' \subseteq E$. $e \in V \times V - E$. e = (u, v)

Output: MST of Graph $G' = (V, E \mid \{e\})$

Explanation of Algorithm: For this algorithm, we must use the cycle lemma. Let e = (u, v) where $u, v \in V$. There exists a path from u to v in T. Inclusion of edge e results in a cycle in T. So the algorithm finds a cycle in T and removes the highest weighted edge in the cycle.

1.1 Algorithm

Please refer Algorithm 1 MST Edge addition.

1.2 Complexity

$$\begin{split} m &= |E'| \text{ ($\#$ of edges)} \\ n &= |V| \text{ ($\#$ of nodes)} \\ m &\leq n-1 \end{split}$$

Line 7 in Algorithm 1 loops m times. Within the loop, Find-Set is called, which has a complexity of $\log n$. Thus, the overall complexity is $O(n \log n)$.

Algorithm 1 MST Edge addition

```
1: procedure Edge Addition(G, T, e)
                                                     \triangleright G(V, E) weighted graph w/non-
    negative weights. T = MST(G), T = (V, E'), E' \subseteq E. \ e \in V \times V - E.
    e = (u, v)
        Make-Set(u)
 2:
        Make-Set(v)
 3:
                                \triangleright U is the representative of the set after the Union
        U \leftarrow \text{Union}(u, v)
    operation
        e' \leftarrow e
 5:
        w' \leftarrow w(e)
                                        \triangleright Initialize w' to the weight of edge e = (u, v)
 6:
        for all edges f = (s, t) \in E' such that Find(s) or Find(t) = U do
 7:
            if Find-Set(s) \notin U then
 8:
 9:
                 U \leftarrow \text{Union}(U,s)
                                                      ▷ Update representative of the set
            else
10:
                 U \leftarrow \text{Union}(U,t)
                                                      ▶ Update representative of the set
11:
            end if
12:
            if w' < w((s,t)) then
13:
                                                                    ▶ Found a heaver edge
                e' \leftarrow (s, t)
14:
                 w' \leftarrow w((s,t))
15:
            end if
16:
        end for
17:
        if e' \neq e then
                                \triangleright An existing edge in the graph G is heavier than e
18:
            E'' \leftarrow E' \bigcup e - e'
19:
            T' \leftarrow (V, E'')
20:
        else
21:
            T' \leftarrow T
22:
        end if
23:
        \mathbf{return}\ T'
24:
25: end procedure
```

1.3 Correctness

Lemma 1.1. The addition of the edge e to T results in a cycle. The edge e is added to the MST if there exists another edge e' in the cycle whose weight is greater than the weight of e.

Proof. In T, which is an MST of G, there is a path from vertex u to v. Therefore, the addition of the edge e to T will result in a cycle since there are multiple paths from vertex u to v.

Assume an edge e' such that the weight of e' is greater than the weight of e and e' is part of the cycle.

Consider $T' \triangleq T - \{e'\} \bigcup \{e\}$

Claim 1: Weight of T' only smaller or equal to weight of T because e' is the heaviest edge.

Claim 2: T' spans all vertices.

Thus, the edge e' can be removed and replaced by e, and we get a Tree T that has a smaller total sum of weights. If no such e' exists, e is the heaviest edge in the cycle and is not added to T.