

PERTEMUAN-4

WARNA

Warna

 Warna sebenarnya merupakan persepsi kita terhadap pantulan cahaya dari benda-benda.

Cahaya

- Cahaya merupakan energi elektromagnetik
- Cahaya dapat dibagi menjadi dua bagian :
 - Cahaya terlihat (visible light) yaitu bagian dari energi elektromagnetik dengan panjang gelombang 400-700 nm (nanometer)
 - Cahaya tidak terlihat (*invisible light*) yaitu bagian dari energi elektromagnetik dengan panjang gelombang < 400 nm atau > 700 nm
- Mata manusia hanya peka terhadap panjang gelombang 400 - 700 nm dan perbedaan panjang gelombang tersebut dipersepsikan sebagai 'warna'

Spektrum warna

Bagaimana manusia melihat warna?

Bagian mata yang sensitif terhadap cahaya disebut sebagai retina, retina berisi dua macam kelompok sel yaitu : rod dan cone

Bagaimana manusia melihat warna

Rods

- Hanya dapat membedakan terang dan gelap (hitam / putih)
- Mata mempunyai 120 juta rod
- Tidak sensitif terhadap warna

Cones

- Bagian retina yang peka terhadap warna
- Mata mempunyai 60 juta cones
- Ada tiga macam cones, masing-masing peka terhadap warna merah (L), biru (S) dan hijau (M).
- Dapat membedakan 200 warna sekaligus

Bagaimana manusia melihat warna?

- Fovea adalah arena di retina yang berisi cones
- Berukuran 1/150 inch
- Fovea hanya mempunyai sudut pandang sebesar 1,7 derajad.
 Diluar itu gambar terlihat kabur.
- Setiap cones di fovea mempunyai satu jalur syaraf ke otak dan dapat mengirim 'gambar' sekaligus (paralel)
 - Bandingkan: Video Kamera mempunyai 400.000 sensor tetapi hanya dapat mengirim 'gambar' satu persatu (stream)

Figure 2

Bagaimana manusia melihat warna?

Bagaimana warna dibuat?

- Warna dapat diproduksi berdasarkan dua cara :
 - Substractive Colour
 - Additive Colour
- Substractive : warna dihasilkan sebagai akibat dari diserapnya warna tertentu.
 - Tinta cetak
- Additive: warna dihasilkan sebagai campuran dari warna yang dipancarkan oleh sumber cahaya.
 - Monitor

Representasi warna di komputer

- Ada berbagai cara untuk menghasilkan warna menggunakan komputer.
- Beberapa model warna yang digunakan antara lain :
 - RGB
 - HSV / HSB
 - HLS
 - □ CMY(K)
 - CIE

RGB (Red, Green, Blue)

- Warna diperoleh dari campuran tiga warna dasar (primary color), yaitu : Red, Green, Blue
- Setiap komponen warna disimpan sebagai angka dari 0-255 (0-FF), dengan
 - 0 = tidak ada komponen
 - 255 = komponen digunakan penuh

CMY(K) / Cyan, Magenta, Yellow, Black

- Menggunakan warna dasar (primary color): Cyan, Magenta,
 Yellow dan Black.
- Warna lain diperoleh karena campuran warna dasar menyerap warna dasar dan memantulkan warna yang diinginkan.

Warna Tinta	Menyerap	Memantulkan	Terlihat
Cyan	Merah	Biru dan Hijau	Sian
Magenta	Hijau	Merah dan Biru	Magenta
Yellow	Biru	Merah dan Hijau	Kuning
Magenta+Yellow	Hijau dan Biru	Merah	Merah
Cyan + Magenta	Merah dan Hijau	Biru	Biru
Cyan + Yellow	Merah dan Biru	Hijau	Hijau

RGB dan CMY(K)

Catatan: warna merah disembunyikan

UNIVERSITAS

HSV/B (Hue, Saturation, Value / Brightness)

- HSB merupakan sistem warna yang menggunakan ukuran :
 - Hue: warna yang diinginkan, diukur dengan nilai 0° - 360°, dengan 0° = red,12°=green, 240°=blue
 - Saturation : keaslian warna, diukur dengan nilai 0% - 100%. Nilai 0 menyatakan warna putih dan 100% menyatakan warna asli
 - Value / Brightness : pengaruh kecerahan, 0% menyatakan tidak ada cahaya (hitam) dan 100% menyatakan warna putih.

HLS (Hue, Lightness, Saturation)

- Menggunakan ukuran :
 - Hue: warna yang diinginkan, diukur dengan nilai 0° - 360°, dengan 0° = red,12°=green, 240°=blue
 - Lightness: pengaruh warna putih, nilai maksimum Lightness menyatakan warna putih sedangkan nilai minimum menyatakan warna hitam.
 - Saturation : keaslian warna, diukur dengan nilai 0% - 100%. Nilai 0 menyatakan warna putih dan 100% menyatakan warna asli

CIE

CIE (Commission Internationale d'Eclairage)
 mendefinisikan tiga sumber cahaya hipotetis x,y,z yang
 menggunakan kurva positif dari spektrum

