

planetmath.org

Math for the people, by the people.

lattice polynomial

Canonical name LatticePolynomial Date of creation 2013-03-22 16:30:53 Last modified on 2013-03-22 16:30:53

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771) Entry type Definition Classification msc 06B25

Defines lattice polynomial function
Defines equivalent lattice polynomials
Defines weight of a lattice polynomial
Defines arity of a lattice polynomial

Defines Boolean polynomial

A lattice polynomial, informally, is an expression involving a finite number of variables x, y, z, \ldots , two symbols \vee, \wedge , and sometimes the parentheses (,) in a meaningful manner. Loosely speaking, whenever p and q are lattice polynomials, the only lattice polynomials that can be formed from p, q, \vee, \wedge are $p \vee q$ and $p \wedge q$. We will explain formally what meaningful manner is a little later. Some examples of lattice polynomials are $x \vee (x \vee x), (y \wedge x) \vee x$, and $(x \vee y) \wedge (y \vee z) \wedge (z \vee x)$, while $\vee \wedge x, xy \wedge yz, z\vee$) (are not lattice polynomials.

To formally define what a lattice polynomial is, we resort to model theory. To begin with, we have a countable set of variables $V = \{x, y, z, \ldots\}$, a set of binary function symbols $F = \{\vee, \wedge\}$. We define pairwise disjoint sets $S_0, S_1, \ldots, S_n, \ldots$ recursively, as follows:

- $S_0 = V$,
- $S_{k+1} = \{(p \vee q), (p \wedge q) \mid p, q \in S_k\} \cup S_k.$

Then we set $S = \bigcup_{i=0}^{\infty} S_i$. An element of S is called a *lattice polynomial*.

Note that in the above definition, $((x \lor y) \lor z)$ is a lattice polynomial while $(x \lor y \lor z)$ is not, for any variables $x,y,z \in V$. To reduce the number of parentheses in a lattice polynomial, we typically identify $(p \lor q)$ with $p \lor q$ and $(p \land q)$ with $p \land q$. In addition, since the meet and join operations are associative in any lattice, it is a common practice to further reduce the number of parentheses in a lattice polynomial by identifying both $(p \lor (q \lor r))$ and $((p \lor q) \lor r)$ with $p \lor q \lor r$, and $(p \land (q \land r))$ and $((p \land q) \land r)$ with $p \land q \land r$.

Another thing that can be said about the above construction of is that any given lattice polynomial can be constructed from S_0 in a finite number of steps. If $p \in S_n - S_{n-1}$, $n \ge 1$, then p can be constructed in exactly n steps. The minimum number of variables (in S_0) that is required to construct p is called the *arity* of p. For example, if $p = ((x \lor y) \land x)$ then the arity of p is 2. If an n-ary lattice polynomial p can be constructed from x_1, \ldots, x_n , we often write $p = p(x_1, \ldots, x_n)$.

One more important number associated with a lattice polynomial p is its weight, defined recursively as w(p) = 1 if $p \in S_0$, and $w(p \vee q) = w(p \wedge q) = w(p) + w(q)$.

Given any n-ary lattice polynomial p and any lattice L, we can associate p with an m-ary lattice polynomial function $f: L^m \to L$ defined by

$$f(a_1, \ldots, a_m) := p(a_1, \ldots, a_n)$$
, where $m \ge n$ and $a_i \in L$.

The expression $p(a_1, \ldots, a_n)$ is the *evaluation* of p at (a_1, \ldots, a_n) . That is, we substitute each x_i for a_i , and we interpret \vee and \wedge in p as the join and meet operations in L.

Two lattice polynomials p, q of arities m, n, where $m \ge n$, are said to be equivalent if their corresponding m-ary lattice polynomial functions evaluate to the same values in any lattice. For example, $x \lor y$ and $y \lor x$ are equivalent. Similarly, $x, x \lor x, x \land x$, and $x \lor (y \land x)$ are equivalent lattice polynomials.

Remark. Similarly, one can define a *Boolean polynomial* by enlarging the set F of function symbols to include the unary operator ', and $S_{k+1} = \{(p \vee q), (p \wedge q), (p') \mid p, q \in S_k\} \cup S_k$. Then a Boolean polynomial is just an element of $S = \bigcup_{i=0}^{\infty} S_i$. The weight of a Boolean polynomial is similarly defined, with the additional w(p') = w(p).