TEAM MAVERICKS ADITYA RAJ & ARYANSH KUMAR COMMNET PROBLEM STATEMENT 1

Problem Statement:

We are required to design a two stage miller-compensated op-amp with a capacitive load. A typical two stage op-amp looks like:

Figure 1: NMOS Two Stage op amp

Specifications	Value			
DC Gain	2000			
Input Common Mode Range	0.7 V to 1.6 V			
Phase margin	> 60 degrees			
Capacitive load (C _L)	5 pF			
Gain-bandwidth (GBW) product	50 MHz			

$$V_{th}(for\ nmos) = 0.7\pm0.15 V, \lambda = 0.04\ and\ U_n C_{ox} = 100\ uA/V^2\pm10\%$$

$$V_{th}(for\ pmos) = -0.7\pm0.15, \lambda = 0.05, U_p C_{ox} = 50\ uA/V^2\pm10\ \%$$

Introduction to Two Stage OpAmp:

Operational amplifiers (opamp) are essential components of analog system design. Integrated circuit design, as well as board level design, often uses operational amplifiers. This component is basically a high gain voltage amplifier used in many analog systems such as filters, regulators and function generators. This rudimentary device is also used to create buffers, logarithmic amplifiers and instrumentation amplifiers. Op Amps can also function as simple comparators. Knowledge of operational amplifier functionality and design is important in analog design.

The operational amplifier functions as a voltage amplifier. The relationship between the input and output voltage is given by:

$$V_0^+ = A_{v_0} (V_i^+ - V_i^-)$$

The simplest operational amplifier is the simple differential amplifier studied earlier. This amplifier can be improved by adding a second stage as an inverting amplifier with a current source load. The two stage amplifier shown in Figure 1(on pg no. 1) is referred to as a Miller compensated Opamp.

There was a need for two-stage operational amplifiers because they can provide high gain and high output swing in comparison to single Op Amp.

The two-stage amplifier can be modeled as a cascade of two amplifiers, as illustrated in Figure 8-4. The first stage is a differential amplifier, which produces an amplified version of the difference in input signals. This stage determines the CMRR, slew rate and other performance specifications determined by the differential amplifier. The second stage is an inverting amplifier. The purpose of this stage is to provide a large voltage gain. The gain stage and the input stage create two poles, which affect the stability of the feedback system. Usually some form of compensation is required to assure the amplifier is stable at unity gain. The technique used here is called Miller Compensation. Additional gain stages can be employed to increase the gain, but this degrades stability and requires complex compensation techniques.

What is Miller Compensation:

Miller compensation is a technique for stabilizing op-amps by means of a capacitance *Cf* connected in *negative-feedback fashion* across one of the *internal gain stages*, typically the second stage.

The addition of the compensation capacitor C_{c} caused the poles to split. One pole moved closer to the origin, while the other pole moved away from the origin .This compensation technique is called "pole splitting". The pole-zero plot of this transfer function is illustrated in Figure 8-8.

Important formulas:

GBW =
$$gm_1 / C_C$$

 $p_1 = 1 / (gm_2 \times R_1 \times R_2 \times C_C)$
 $p_2 = gm_2 / C_L$
Zero = gm_2 / C_C

Design Procedure (Using Miller Compensation):

Step 1:

• Evaluation of C_c from C_L To obtain a phase margin of 60° , it is required that the compensating capacitor C_c satisfy this following condition, i.e

$$C_c \ge 0.22 \times C_1$$

Step 2:

 Evaluation of Io from slew rate The slew rate of 2-stage Miller compensated OTA is given by,

$$I_{D5} = SR \times C_c$$

Step 3:

Evaluation of (w/l)_{3,4}

$$(w/I)_{3,4} = I_{D5} / (U_pC_{ox} * (V_{dd} - |V_{th3(max)}| - V_{in(max)} + V_{th1(min)})^2)$$

Step 4:

Evaluation of gm₁ We have,

$$gm_1 = GBW \times 2\pi \times C_c$$

Now Evaluation of (w/l)_{1.2}

$$(w/I)_{1.2} = (gm_1)^2 / (U_nC_{ox} \times I_{D5})$$

Step 5:

• Calculation of V_{D5(sat)}

$$V_{D5(sat)} = V_{in(min)} - V_{ss} - V_{th1(max)} - \sqrt{(I_{D5} / (U_n C_{ox} * (w/I)_{1,2}))}$$

Evaluation of (w/l)₅

$$(w/I)_5 = (2 \times I_{D5}) / (U_n C_{ox} \times V_{D5(sat)}^2)$$

 $(w/I)_5 = (w/I)_8$; Since they form a current mirror circuit

Step 6:

Evaluation of gm₆

$$gm_6 \ge 10 \approx gm_1$$

Select gm₆ from here then,

• Evaluation of gm₄

$$gm_4 = \sqrt{(I_{D5} * U_p C_{ox} * (w/I)_{3.4})}$$

Evaluation of (w/l)₆

$$(w/l)_6 = (w/l)_{3,4} * (gm_6 / gm_4)$$

Step 7:

Evaluation of I_{D6}

$$I_{D6} = (gm_6)^2 / (2 * U_pC_{ox} * (w/I)_6)$$

 $I_{D7} = I_{D6}$

Step 8:

Evaluation of (w/l)₇

$$(w/I)_7 = (w/I)_5 * (I_{D7} / I_{D5})$$

Code for parameter calculations:

```
#include<bits/stdc++.h>
      using namespace std;
      int main(){
            float icmrpos,icmrneg,vdd,vss;
            // cout<<"enter vdd"<<endl;</pre>
            cin>>vdd;
            // cout<<"enter vss"<<endl;</pre>
            cin>>vss;
            float sr;
10
            // cout<<"enter sr"<<endl;</pre>
11
            cin>>sr;
12
            float cc;
13
            // cout<<"enter cc"<<endl;</pre>
14
            cin>>cc;
   int main(){
        if(cc>1.1){
           float id5=sr*cc;
           cout<<"id5 ="<<id5<<"micro"<<endl;</pre>
           float r3=(id5/(50*((vdd-1.9)*(vdd-1.9))));
           cout<<"r3 = "<<r3<<endl;</pre>
           float gm1=314.159*cc;
           cout<<"gm1 = "<<gm1<<" micro"<<endl;</pre>
           int r1=ceil((gm1*gm1)/(100*id5));
           cout<<"r1 = "<<r1<<endl;</pre>
           int r2=r1;
           float vd5sat=(-0.15-vss-sqrt(id5/(100*r1)));
           cout<<"vd5sat = "<<vd5sat<<end1;</pre>
           int r5=ceil((2*id5)/(100*vd5sat*vd5sat));
           cout<<"r5 = "<<r5<<endl;
           int gm6=ceil(10*gm1);
           cout<<"gm6 = "<<gm6<<"micro"<<endl;</pre>
           float gm4=sqrt(id5*50*r3);
           cout<<"gm4 = "<<gm4<<"micro"<<endl;</pre>
           int r6=ceil((r3*gm6)/(gm4));
           cout<<"r6 = "<<r6<<endl;</pre>
           float id6=(gm6*gm6)/(100*r6);
           cout<<"id6 = "<<id6<<"micro"<<endl;</pre>
           int r7=ceil((id6*r5)/id5);
           cout<<"r7 = "<<r7<<endl;</pre>
            float gain=(2*gm1*gm6)/(id5*id6*0.09*0.09);
```

>>As it was tedious to calculate manually again and again so
We have written,
C++ code for calculating parameters by taking user input V_{dd}, V_{ss}, Slew Rate, and Cc.

>>Defining all parameters with given formulas and printing the calculated values.

```
>>Gain as Output
```

```
cout<<"gain = "<<gain<<endl;

return 0;

46
47 }</pre>
```

```
For input V_{dd} = 2.5v V_{ss} = -1.5v Slew \ Rate = 32 \ v/us C_c = 1.4pf \ (i.e \ greater \ than \ 1.1pf \ as \ from \ step \ 1 \ as \ C_L \ is \ 5 \ pf \ ) Output from given code is:
```

```
Received Output:
                                         I_{D5} = Drain current of M_5
                                  Copy
id5 =44.8micro
                                         r_3 = (w/l)_{3.4}
r3 = 2.48889
                                         gm<sub>1</sub> = Transconductance of M<sub>1</sub>
gm1 = 439.823 micro
                                         r_1 = (w/l)_{1,2}
r1 = 44
                                         V_{D5(sat)} = Voltage required for M_5 to remain in
vd5sat = 1.24909
                                         saturation
r5 = 1
                                         r_5 = (w/l)_{58}
gm6 = 4399micro
                                         gm_6 = Transconductance of M_6
gm4 = 74.6667micro
                                         gm_4 = Transconductance of M_4
r6 = 147
id6 = 1316micro
                                         r_6 = (w/l)_6
                                         I_{D6} = Drain current of M_6
r7 = 30
gain = 8102.94
                                         r_7 = (w/l)_7
                                         Gain = Calculated gain at particular frequency
```

Calculated Parameters:-

Specifications	Value	Width
(w/l) _{1,2}	44	22u
(w/l) _{3,4}	2.5	1245n
(w/l) _{5,8}	1	500n
(w/l) ₆	147	73.5u
(w/l) ₇	30	15u
I _{D5}	44.8 micro	
C _c	1.4 pf	

Value of L for all mosfets are taken as 500 nm and value of width is calculated accordingly.

Circuit Diagram (for output results):

Result:

DC operating point:

```
Tb (M5):
                                                                         -1.41205e-12
                                                                                       device current
        --- Operating Point ---
                                                         Is (M5):
                                                                         -4.44376e-05
                                                                                       device current
                                                         Id (M8):
                                                                         4.48e-05
                                                                                        device current
                                                         Ig (M8):
                                                                                        device current
V(n001):
                  2.5
                                   voltage
                                                         Ib (M8):
                                                                         -1.62736e-12
                                                                                       device current
V(n007):
                  0.117364
                                   voltage
                                                                         -4.48e-05
                                                         Is (M8):
                                                                                        device current
                  0.436008
V(vout):
                                   voltage
                                                         Id (M7):
                                                                         0.00136009
                                                                                        device current
                  1.2208
V(n004):
                                   voltage
                                                         Iq (M7):
                                                                                        device current
V(vin+):
                  0.7
                                   voltage
                                                         Ib (M7):
                                                                         -1.94601e-12
                                                                                       device current
V(n005):
                                   voltage
                                                         Is (M7):
                                                                         -0.00136009
                                                                                        device current
                  0.7
V(vin-):
                                   voltage
                                                         Id (M4):
                                                                         -2.22188e-05
                                                                                       device current
                                                         Ig (M4):
                                                                         -0
                                                                                        device current
V(n002):
                                   voltage
                                                                         1.2892e-12
                                                         Ib (M4):
                                                                                        device current
                  1.2208
V(n003):
                                   voltage
                                                         Is (M4):
                                                                         2.22188e-05
                                                                                        device current
V(n006):
                  -0.0979459
                                   voltage
                                                                         -0.00136009
                                                         Id (M6):
                                                                                        device current
V(vss):
                  -1.5
                                   voltage
                                                         Ig (M6):
                                                                         -0
                                                                                        device current
                  2.22188e-05
Id (M1):
                                   device current
                                                         Ib (M6):
                                                                         2.07399e-12
                                                                                        device current
                                   device current
Iq (M1):
                                                         Is (M6):
                                                                         0.00136009
                                                                                        device current
                  -1.32875e-12
Ib (M1):
                                   device current
                                                                                       device current
                                                         Id (M3):
                                                                         -2.22188e-05
                                                         Iq (M3):
                                                                         -0
                                                                                        device current
Is (M1):
                  -2.22188e-05
                                   device current
                                                         Ib (M3):
                                                                         1.2892e-12
                                                                                        device current
Id (M2):
                  2.22188e-05
                                   device current
                                                         Is (M3):
                                                                         2.22188e-05
                                                                                        device current
Ig (M2):
                                   device current
                                                         I (Cc):
                                                                         -1.09871e-24
                                                                                       device current
                  -1.32875e-12
Ib (M2):
                                   device current
                                                         I(C1):
                                                                         -2.18004e-24
                                                                                       device current
                  -2.22188e-05
Is (M2):
                                   device current
                                                         I(Ib):
                                                                         4.48e-05
                                                                                        device current
                  4.44376e-05
Id (M5):
                                   device current
                                                                         -0.00144933
                                                         I (Vdd):
                                                                                        device current
Iq(M5):
                                   device current
                                                         I(V2):
                                                                                        device current
Ib (M5):
                  -1.41205e-12
                                   device current
                                                         I(V3):
                                                                         0
                                                                                        device current
                                                         I(V4):
                                                                         0
                                                                                        device current
Is (M5):
                  -4.44376e-05
                                   device current
                                                         I(V5):
                                                                         0
                                                                                        device current
Id (M8):
                  4.48e-05
                                   device current
                                                         I(V6):
                                                                         0.00144933
                                                                                        device current
                  0
Ia (M8):
                                   device current
```

Bode plot:

At Input common dc voltage 0.7 Volts

At Input common dc voltage 1.6 Volts

Error:

Calculated Gain (at particular frequency) :- 78.17 dB

DC Gain (simulation):- 66.01 dB(for 0.7 volts) and 65.408 dB(for 1.6 volts)

Absolute Error = 12.16 dB (for 0.7 volts) and 12.762 dB(for 1.6 volts)

Specifications(LTSpice)	Value(At 0.7v)	Value(At 1.6v)
DC Gain	1997.56	1862.08
Phase Margin	85.23	85.297
Gain Bandwidth Product	9.98 MHz	9.82 MHz

As we can clearly see that our gain bandwidth product is very far away from expected (50 Mhz). Hence we try to decrease C_c as our GBW product is inversely proportional to C_c (as seen from table below). But after repeated simulations and calculations we see that our gain bandwidth remains nearly 10 Mhz for decreasing C_c value to 1.2pf. So now we further decrease it below 1.1pf to see the output results.

And after the simulation at somewhat lower values of C_c also we see that our phase margin is (>60°).

We have not increased the value of current I₅ because it will change our DC gain.

We have to compromise any value between Gain and Gain Bandwidth product as there is tradeoff between Gain and Gain Bandwidth product. The below circuit is realized only on the simulation basis.

Dependencies of device performance on various parameters

	Drain Current		M1 and M2		M3 and M4		Inverter	Inverter Load		Comp. Cap
	I ₅	I ₇	W/L	L	W	L	W_6/L_6	w_7	L_7	C_c
Increase DC Gain	$(\downarrow)^{1/2}$	([↓]) ^{1/2}	(↑) ^{1/2}	1		1	(↑)1/2		1	
Increase GB	$(\uparrow)^{1/2}$		$(\uparrow)^{1/2}$							\downarrow
Increase RHP Zero		(↑) ^{1/2}					(↑)1/2			\downarrow
Increase Slew	1									\downarrow
Rate Increase C _L										\downarrow

Image source - Allen and Holberg - CMOS Analog Circuit Design

So now we decrease the value of C_c to 0.258pf

Result:

DC operating point :

O <u>r</u>	perating Point -		_		
V(n001):	2.5	voltage			
V(n007):	0.117364	voltage			
V(vout):	0.436008	voltage			
V(n004):	1.2208	voltage			
V(vin+):	0.7	voltage			
V(n005):	0	voltage	Ig(M7):	0	device current
V(vin-):	0.7	voltage	Ib (M7):	-1.94601e-12	device current
V(n002):	0	voltage	Is (M7):	-0.00136009	device current
V(n003):	1.2208	voltage	Id(M4):	-2.22188e-05	device current
V(n006):	-0.0979459	voltage	Ig (M4):	-0	device current
V(vss):	-1.5	voltage	Ib (M4):	1.2892e-12	device current
Id(M1):	2.22188e-05	device current	Is (M4):	2.22188e-05	device_current
Iq (M1):	0	device current	Id(M6):	-0.00136009	device_current
Ib (M1):	-1.32875e-12	device current	Ig(M6):	-0	device_current
Is (M1):	-2.22188e-05	device current	Ib(M6):	2.07399e-12	device_current
Id (M2):	2.22188e-05	device_current	Is (M6):	0.00136009	device_current
Iq (M2):	0	device_current	Id(M3):	-2.22188e-05	device_current
Ib (M2):	-1.32875e-12	device_current	Ig (M3):	-0	device_current
Is (M2):	-2.22188e-05	device_current	Ib (M3):	1.2892e-12	device_current
` '		_	Is (M3):	2.22188e-05	device_current
Id (M5):	4.44376e-05	device_current	I (Cc):	-2.02476e-25	device_current
Ig (M5):	0	device_current	I(Cl):	-2.18004e-24 4.48e-05	device_current
Ib (M5):	-1.41205e-12	device_current	I (Ib):	-0.00144933	device_current device current
Is (M5):	-4.44376e-05	device_current	I (Vdd): I (V2):	0.00144933	device_current
Id(M8):	4.48e-05	device_current	I (V2):	0	device_current
Ig(M8):	0	device_current	I(V4):	0	device_current
Ib(M8):	-1.62736e-12	device_current	I(V4):	0	device_current
Is(M8):	-4.48e-05	device_current	I(V6):	0.00144933	device_current
Id(M7):	0.00136009	device current	-11-0/	0.00111333	

Bode plot:

At Input common dc voltage 0.7 Volts

At Input common dc voltage 1.6 Volts

DC Gain (simulation):- 66.01 dB(for 0.7 volts) and 65.408 dB(for 1.6 volts)

Specifications(LTSpice)	Value(At 0.7v)	Value(At 1.6v)	
DC Gain	1997.56	1862.08	
Phase Margin	70.05	70.74	
Gain Bandwidth Product	50.35 MHz	50.83 MHz	

LT Spice (Output log):

Semiconductor Device Operating Points:								
MOSFET Transistors								
Name:	m1	m2	m5	m8	m7	m4	mб	m3
Model:	nmos	nmos	nmos	nmos	nmos	pmos	pmos	pmos
Id:	2.30e-05	2.30e-05	4.59e-05	4.48e-05	1.38e-03	-2.30e-05	-1.38e-03	-2.30e-05
Vgs:	8.01e-01	8.01e-01	1.62e+00	1.62e+00	1.62e+00	-1.29e+00	-1.29e+00	-1.29e+00
Vds:	4.13e-01	4.13e-01	2.30e+00	1.62e + 00	2.33e+00	-1.29e+00	-1.67e+00	-1.29e+00
Vbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Vth:	7.00e-01	7.00e-01	7.00e-01	7.00e-01	7.00e-01	-7.00e-01	-7.00e-01	-7.00e-01
Vdsat:	1.01e-01	1.01e-01	9.17e-01	9.17e-01	9.17e-01	-5.89e-01	-5.89e-01	-5.89e-01
Gm:	4.53e-04	4.53e-04	1.00e-04	9.77e-05	3.01e-03	7.80e-05	4.69e-03	7.80e-05
Gds:	9.04e-07	9.04e-07	1.68e-06	1.68e-06	5.05e-05	1.08e-06	6.37e-05	1.08e-06
Gmb:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cbd:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e + 00	0.00e+00
Cbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cgsov:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cgdov:	0.00e+00	0.00e+00	0.00e + 00	0.00e+00	0.00e+00	0.00e + 00	0.00e + 00	0.00e+00
Cgbov:	0.00e + 00	0.00e + 00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cgs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cgd:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e + 00
Cgb:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00