

函数的定义与性质

- ■函数的定义
 - □函数定义

 - □函数的像
- ■函数的性质
 - □函数的单射、满射、双射性
 - □构造双射函数

函数定义

定义 设 F 为二元关系, 若 $\forall x \in \text{dom} F$ 都存在 唯一的 $y \in \text{ran} F$ 使 xFy 成立, 则称 F 为函数. 对于函数F, 如果有 xFy, 则记作 y=F(x), 并称 y 为 F 在 x 的值.

例1
$$F_1$$
={ $\langle x_1,y_1 \rangle, \langle x_2,y_2 \rangle, \langle x_3,y_2 \rangle$ } F_2 ={ $\langle x_1,y_1 \rangle, \langle x_1,y_2 \rangle$ } F_1 是函数, F_2 不是函数

函数相等

定义 设F, G为函数, 则 $F = G \Leftrightarrow F \subseteq G \land G \subseteq F$

如果两个函数 F 和 G 相等,一定满足下面两个条件:

- (1) dom F = dom G
- (2) $\forall x \in \text{dom} F = \text{dom} G$ 都有 F(x) = G(x)

实例 函数

$$F(x)=(x^2-1)/(x+1), G(x)=x-1$$

不相等, 因为 dom F⊂dom G.

从A到B的函数

定义 设A,B为集合,如果 f为函数 dom f = A $ran f \subseteq B$, 则称 f为从A到B的函数,记作 f: $A \rightarrow B$.

实例

 $f: N \rightarrow N, f(x)=2x$ 是从 N 到 N 的函数 $g: N \rightarrow N, g(x)=2$ 也是从 N 到 N 的函数

$B \vdash A$

定义 所有从A到B的函数的集合记作 B^A ,读作"B上A",符号化表示为

$$B^A = \{f \mid f: A \rightarrow B\}$$

计数:

 $|A|=m, |B|=n, 且m, n>0, |B^A|=n^m.$ $A=\varnothing, 则 B^A=B^\varnothing=\{\varnothing\}.$ $A\neq\varnothing$ 且 $B=\varnothing, 则 B^A=\varnothing^A=\varnothing.$

实例

例2 设
$$A = \{1, 2, 3\}, B = \{a, b\}, 求 B^A$$
.

解
$$B^A = \{f_0, f_1, \dots, f_7\}$$
, 其中
$$f_0 = \{<1, a>, <2, a>, <3, a>\}, f_1 = \{<1, a>, <2, a>, <3, b>\}$$

$$f_2 = \{<1, a>, <2, b>, <3, a>\}, f_3 = \{<1, a>, <2, b>, <3, b>\}$$

$$f_4 = \{<1, b>, <2, a>, <3, a>\}, f_5 = \{<1, b>, <2, a>, <3, b>\}$$

$$f_6 = \{<1, b>, <2, b>, <3, a>\}, f_7 = \{<1, b>, <2, b>, <3, b>\}$$

函数的像

定义 设函数 $f: A \rightarrow B, A_1 \subseteq A$. A_1 在 f 下的像: $f(A_1) = \{f(x) \mid x \in A_1\}$ 函数的像 f(A)

注意: 函数值 $f(x) \in B$, 而像 $f(A_1) \subseteq B$.

例3 设
$$f: N \rightarrow N$$
, 且 $f(x) = \begin{cases} x/2 & \exists x$ 为偶数 $f(x) = \begin{cases} x/2 & \exists x \end{cases}$ 得数 $f(A) = f(\{0,1\}) = \{f(0), f(1)\} = \{0,2\}$

函数的性质

定义 设 $f: A \rightarrow B$,

- (1) 若 ran f = B, 则称 $f: A \rightarrow B$ 是满射的.
- (2) 若 $\forall y \in \text{ran} f$ 都存在唯一的 $x \in A$ 使得 f(x)=y, 则称 $f: A \rightarrow B$ 是单射的.
- (3) 若 $f: A \rightarrow B$ 既是满射又是单射的,则称 $f: A \rightarrow B$ 是双射的

f满射意味着: $\forall y \in B$, 都存在 $x \in A$ 使得 f(x) = y.

f单射意味着: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

实例

例4

判断下面函数是否为单射,满射,双射的,为什么?

(1)
$$f: \mathbf{R} \to \mathbf{R}, f(x) = -x^2 + 2x - 1$$

(2)
$$f: Z^+ \to R$$
, $f(x) = \ln x$, Z^+ 为正整数集

(3)
$$f: \mathbf{R} \rightarrow \mathbf{Z}, f(x) = \lfloor x \rfloor$$

(4)
$$f: R \to R, f(x) = 2x+1$$

(5)
$$f: \mathbf{R}^+ \to \mathbf{R}^+$$
, $f(x) = (x^2 + 1)/x$, 其中 \mathbf{R}^+ 为正实数集.

实例(续)

- 解 (1) $f: R \rightarrow R, f(x) = -x^2 + 2x 1$ 在x = 1取得极大值0. 既不单射也不满射.
 - (2) *f*: Z⁺→R, *f*(*x*)=ln*x* 单调上升, 是单射. 但不满射, ran*f*={ln1, ln2, ...}.
 - (3) $f: R \to Z, f(x) = \lfloor x \rfloor$ 满射, 但不单射, 例如 f(1.5) = f(1.2) = 1.
 - (4) $f: R \rightarrow R, f(x)=2x+1$ 满射、单射、双射.
 - (5) $f: \mathbf{R}^+ \to \mathbf{R}^+, f(x) = (x^2 + 1)/x$ 有极小值f(1) = 2. 该函数既不单射也不满射.

构造从A到B的双射函数

有穷集之间的构造

例5
$$A=P(\{1,2,3\}), B=\{0,1\}^{\{1,2,3\}}$$

解 $A=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}\}.$
 $B=\{f_0,f_1,\ldots,f_7\},$ 其中
 $f_0=\{<1,0>,<2,0>,<3,0>\}, f_1=\{<1,0>,<2,0>,<3,1>\},$
 $f_2=\{<1,0>,<2,1>,<3,0>\}, f_3=\{<1,0>,<2,1>,<3,1>\},$
 $f_4=\{<1,1>,<2,0>,<3,0>\}, f_5=\{<1,1>,<2,0>,<3,1>\},$
 $f_6=\{<1,1>,<2,1>,<3,0>\}, f_7=\{<1,1>,<2,1>,<3,1>\}.$

$$\Leftrightarrow$$
 $f: A \rightarrow B$,
 $f(\emptyset) = f_0, f(\{1\}) = f_1, f(\{2\}) = f_2, f(\{3\}) = f_3,$
 $f(\{1,2\}) = f_4, f(\{1,3\}) = f_5, f(\{2,3\}) = f_6, f(\{1,2,3\}) = f_7$

构造从A到B的双射函数(续)

实数区间之间构造双射

构造方法: 直线方程

构造双射 $f:A \rightarrow B$

解

构造从A到B的双射函数(续)

A 与自然数集合之间构造双射

方法: 将A中元素排成有序图形, 然后从第一个元素开始 按照次序与自然数对应

例7 A=Z, B=N,构造双射 $f: A\rightarrow B$

将Z中元素以下列顺序排列并与N中元素对应:

Z: 0 -1 1 -2 2 -3 3...

$$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$$

N: 0 1 2 3 4 5 6...

则这种对应所表示的函数是:

$$f: \mathbf{Z} \to \mathbf{N}, f(x) = \begin{cases} 2x & \geq 0 \\ -2x - 1 & x < 0 \end{cases}$$

常函数、恒等函数、单调函数

- 1. 设f: $A \rightarrow B$, 若存在 $c \in B$ 使得 $\forall x \in A$ 都有 f(x)=c, 则称 f: $A \rightarrow B$ 是常函数.
- 2. 称 A 上的恒等关系 I_A 为 A 上的恒等函数, 对所有的 $x \in A$ 都有 $I_A(x)=x$.
- 3. 设 $f: R \to R$,如果对任意的 $x_1, x_2 \in R$, $x_1 < x_2$,就 有 $f(x_1) \le f(x_2)$,则称 f 为单调递增的;如果对任意的 $x_1, x_2 \in A$, $x_1 < x_2$,就有 $f(x_1) < f(x_2)$,则称 f 为 严格单调递增的.

类似可以定义单调递减 和严格单调递减 的函数.

集合的特征函数

4. 设 A 为集合, $\forall A' \subseteq A$, A' 的 特征函数 $\chi_{A'}$: $A \rightarrow \{0,1\}$ 定义为

$$\chi_{A'}(a) = \begin{cases} 1, & a \in A' \\ 0, & a \in A - A' \end{cases}$$

实例 集合: $X = \{A, B, C, D, E, F, G, H\}$,

子集: $T = \{A, C, F, G, H\}$

T的特征函数 χ_{τ} :

$$x$$
 A B C D E F G H $\chi_T(x)$ 1 0 1 0 0 1 1 1

自然映射

5. 设R是A上的等价关系,令

 $g: A \rightarrow A/R$

 $g(a) = [a], \forall a \in A$

称 g 是从 A 到商集 A/R 的自然映射.

实例

例8 (1) A的每一个子集A'都对应于一个特征函数,不同的子集对应于不同的特征函数. 例如 $A=\{a,b,c\}$,则有

$$\chi_{\varnothing} = \{ \langle a, 0 \rangle, \langle b, 0 \rangle, \langle c, 0 \rangle \},$$

$$\chi_{\{a,b\}} = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 0 \rangle \}$$

(2) 给定集合 *A*, *A* 上不同的等价关系确定不同的自然映射, 其中恒等关系确定的自然映射是双射, 其他的自然映射一般来说是满射. 例如

$$A = \{1, 2, 3\}, R = \{<1,2>,<2,1>\} \cup I_A$$

 $g(1) = g(2) = \{1,2\}, g(3) = \{3\}$

函数的复合与反函数

- ■函数的复合
 - □函数复合的定理
 - □函数复合的性质
- ■反函数
 - □反函数存在的条件
 - □反函数的性质

函数复合的定理

注意 本课件和教材采用右复合,与关系的合成运算保持一致,不同于一般数学教材中采用的左复合. 定理 设F, G是函数, 则F0G也是函数, 且满足

- $(1) \operatorname{dom}(F \circ G) = \{ x \mid x \in \operatorname{dom} F \wedge F(x) \in \operatorname{dom} G \}$
- (2) $\forall x \in \text{dom}(F \circ G)$ 有 $F \circ G(x) = G(F(x))$
- 推论1 设F, G, H为函数, 则 ($F \circ G$) $\circ H$ 和 $F \circ (G \circ H)$ 都是函数, 且 ($F \circ G$) $\circ H = F \circ (G \circ H)$
- 推论2 设 $f: A \rightarrow B, g: B \rightarrow C, \cup f \circ g: A \rightarrow C, \cup$

函数复合运算的性质

定理 设 $f: A \rightarrow B, g: B \rightarrow C$.

- (1) 如果 $f: A \rightarrow B, g: B \rightarrow C$ 都是满射的,则 $f \circ g: A \rightarrow C$ 也是满射的.
- (2) 如果 $f: A \rightarrow B, g: B \rightarrow C$ 都是单射的,则 $f \circ g: A \rightarrow C$ 也是单射的.
- (3) 如果 $f: A \rightarrow B, g: B \rightarrow C$ 都是双射的,则 $f \circ g: A \rightarrow C$ 也是双射的.
- 证 (1) $\forall c \in C$, 由 $g: B \to C$ 的满射性, $\exists b \in B$ 使得 g(b)=c. 对这个b, 由 $f: A \to B$ 的满射性, $\exists a \in A$ 使得 f(a)=b. 由合成定理有 $f \circ g(a)=g(f(a))=g(b)=c$ 从而证明了 $f \circ g: A \to C$ 是满射的.

函数复合运算的性质

(2) 假设存在 $x_1, x_2 \in A$ 使得 $f \circ g(x_1) = f \circ g(x_2)$ 由合成定理有 $g(f(x_1)) = g(f(x_2))$.

因为 $g: B \rightarrow C$ 是单射的, 故 $f(x_1)=f(x_2)$. 又由于 $f: A \rightarrow B$ 也是单射的, 所以 $x_1=x_2$. 从而证明 $f \circ g: A \rightarrow C$ 是单射的.

(3) 由(1)和(2)得证.

定理 设 $f: A \rightarrow B$,则 $f = f \circ I_B = I_A \circ f$

反函数存在的条件

任给函数 F, 它的逆 F^{-1} 不一定是函数, 是二元关系. 实例: $F=\{\langle a,b\rangle,\langle c,b\rangle\}$, $F^{-1}=\{\langle b,a\rangle,\langle b,c\rangle\}$

任给单射函数 $f: A \rightarrow B$, 则 f^{-1} 是函数, 且是从 ranf 到 A的双射函数, 但不一定是从 B 到 A 的双射函数.

实例:
$$f: \mathbb{N} \to \mathbb{N}$$
, $f(x) = 2x$, $f^{-1}: \operatorname{ran} f \to \mathbb{N}$, $f^{-1}(x) = x/2$

反函数

定理 设 $f: A \rightarrow B$ 是双射的,则 $f^{-1}: B \rightarrow A$ 也是双射的.

证 因为f是函数,所以 f^{-1} 是关系,且

 $\operatorname{dom} f^{-1} = \operatorname{ran} f = B$, $\operatorname{ran} f^{-1} = \operatorname{dom} f = A$,

对于任意的 $y \in B = \text{dom } f^{-1}$, 假设有 $x_1, x_2 \in A$ 使得

$$< y, x_1 > \in f^{-1} \land < y, x_2 > \in f^{-1}$$

成立,则由逆的定义有

$$< x_1,y> \in f \land < x_2,y> \in f$$

根据f的单射性可得 $x_1 = x_2$,从而证明了 f^{-1} 是函数,且是满射的.下面证明 f^{-1} 的单射性.

若存在 $y_1, y_2 \in B$ 使得 $f^{-1}(y_1) = f^{-1}(y_2) = x$, 从而有 $< y_1, x > \in f^{-1} \land < y_2, x > \in f^{-1}$

$$\Rightarrow \langle x, y_1 \rangle \in f \land \langle x, y_2 \rangle \in f \Rightarrow y_1 = y_2$$

反函数的定义及性质

对于双射函数 $f: A \rightarrow B$, 称 $f^{-1}: B \rightarrow A$ 是它的反函数.

反函数的性质 定理 设 $f: A \rightarrow B$ 是双射的,则 $f^{-1} \circ f = I_B$, $f \circ f^{-1} = I_A$

对于双射函数 $f: A \rightarrow A$,有 $f^{-1} \circ f = f \circ f^{-1} = I_A$

函数复合的结论

定理 设 $f: A \rightarrow B, g: B \rightarrow C$,

- (1) 如果 $f \circ g$ 是满射的,则g是满射的.
- (2) 如果 $f \circ g$ 是单射的,则f是单射的.
- (3) 如果 $f \circ g$ 是双射的,则g是满射的,f是单射的.

雨课堂 Rain Classroom

左逆、右逆

定义 设 $f: A \rightarrow B, g: B \rightarrow A,$ 若 $f \circ g = I_A$, 则称 $g \rightarrow f$ 的右逆函数, $f \rightarrow g$ 的左逆函数.

定理 设 $f: A \rightarrow B$,

- (1) f有右逆函数,当且仅当f是单射的.
- (2) f有左逆函数,当且仅当f是满射的。
- (3) ƒ有左逆和右逆函数,当且仅当ƒ是双射的。

雨课堂