Onde Fluidi e Termodinamica

Riassunto da:

"FISICA: Meccanica e Termodiamica - P. Mazzoldi, M. Nigro, C. Voci"

corso A Università degli studi di Torino, Torino Maggio 2024

Indice

1	Ond	le	
		1.0.1	Fonometria
			Livello sonoro
		1.0.2	Assorbimento dell'energia
	1.1	Pacch	etti d'onde
		1.1.1	Velocità di fase e velocità di gruppo
			o Doppler
		1.2.1	Sorgente in moto

Onde

1.0.1 Fonometria

Per essere messo in movimento il timpano ha bisogno di un'intensità minima che chiamiamo **soglia di udibilità**. Il limite superiore invece è chiamata **soglia del dolore** e rappresenta l'intensità sopra alla quale si percepisce una sensazione dolorosa. Entrambe vengono espresse o in funzione della frequenza o in funzione della lunghezza d'onda ($\lambda = v/f$); si ha quindi che le frequenze all'interno delle due soglie sono

$$20\,\mathrm{Hz} < f < 20\,000\,\mathrm{Hz}$$

$$17.15 \,\mathrm{m} < \lambda < 1.715 \,\mathrm{cm}$$

La **soglia minima** convenzionale dell'udibilità è l'intensità $I_0 = 10^{-12} \text{W/m}^2$ alla frequenza $f = 10^3 \text{Hz}$. A questa si possono associare la corrispondente onda di pressione e ampiezza delle oscillazioni:

$$\Delta p_{\text{max}} = \sqrt{2\rho_0 v I_0} = 2.97 \cdot 10^{-5} \text{Pa}$$

e poiché $\Delta p_{\text{max}} = \rho_0 v \omega \xi_0$

$$\xi_0 = \frac{\Delta p_{\text{max}}}{2\pi f \rho_0 v} = 1.07 \cdot 10^{-11} \text{m}$$

Alla soglia del dolore invece si ottengono

$$\Delta p_{\text{max}} = \sqrt{2\rho_0 v I_0} = 29.7 \text{Pa}$$

 $\xi_0 = \frac{\Delta p_{\text{max}}}{2\pi f \rho_0 v} = 1.07 \cdot 10^{-5} \text{m}$

In sintesi: l'orecchio umano si estendi su

- **3** ordini di grandezza in **frequenza**: $0 10^3$ Hz
- 12 ordini di grandezza in **intensità**: $1 10^{1} 2 \text{W/m}^2$
- 6 ordini di grandezza in ampiezza di oscillazione: $10^{-11} 10^{-5} \mathrm{m}$

Livello sonoro

Presa una certa intensità I si definisce un **livello sonoro** L rispetto a I_0 . Il livello sonoro è una valutazione logaritmica relativa di intensità e si esprime in decibel (dB).

Al livello sonoro associamo delle curve isofoniche, ovvero il luogo dei punti in cui si percepisce la stessa sensazione uditiva *S*.

$$L = 10\log_{10}\frac{I}{I_0} \tag{1.1}$$

Vediamo come il livello sonoro risulta essere particolarmente pratico poiché L=0 con I_0 per f=1000Hz, quindi vale 0 alla soglia di udibilità; e vale 120 con $I/I_0=10^{12}$ alla soglia del dolore.

– Attenzione-

Il valore d'intensità I_0 dipende dalla frequenza. Per questo anche il livello sonoro L non dipende tanto da I_0 quanto più dalla frequenza.

Le curve isofoniche infatti non descrivono eguale intensità I ma eguale rapporto I/I_0 , che dipende dalla frequenza. Possiamo dire che S è una grandezza fisiologica e L una grandezza fisiologica e.

Secondo la legge psicofisica di Fechner e Weber

$$S = kB = k10\log_1 0 \frac{I}{I_0} = k'\log_1 0 \frac{I}{I_0}$$

quindi

$$S_2 - S_1 = k' \log_1 0 \frac{I_2}{I_1} \tag{1.2}$$

la sensazione sonora è proporzionale al logaritmo del rapporto tra le intensità che hanno prodotto le sensazioni

1.0.2 Assorbimento dell'energia

Come abbiamo visto l'intensità di un'onda non rimane costante ma decresce al propagarsi dell'onda (nelle onde sferiche più rapidamente, nelle cilindriche meno...). Questo comportamento viene attribuito ad un **assorbimento di energia** dovuto a fenomeni di attrito interno. Studiando il fenomeno su uno spessore dx si ha un'aattenuazione che può essere considerata proporzionale all'intensità in x e allo spessore dx.

$$dI = -\alpha I(x) dx$$

dove α è il **coefficiente di assorbimento**.

$$\int_{I_0}^{I} \frac{dI}{I} = -\alpha \int_0^x dx$$

$$I(x) = I_0 e^{-\alpha x}$$
(1.3)

Quindi la decrescità dell'intensità è esponenziale. Definiamo la distanza $x_0 = \frac{1}{\alpha}$ detta **lunghezza di assorbimento** la distanza tra due punti tali che $I(x_1)/I(x_2) = \frac{1}{\rho}$.

Abbiamo appurato precedentemente che l'ampiezza dell'onda è direttamente proporzionale a \sqrt{I}

$$I = CA^2 \rightarrow A = \sqrt{\frac{I}{C}} = \sqrt{\frac{I_0 e^{-\alpha x}}{C}}$$

quindi la funzione d'onda in un mezzo che assorbe energia è:

Onde piane:
$$\xi = \left(\frac{I_0 e^{-\alpha x}}{C}\right)^{\frac{1}{2}} \sin(kx - \omega t) = \xi_0 \left(I_0 e^{-\alpha x/2}\right)^{\frac{1}{2}} \sin(kx - \omega t)$$

Onde sferiche:
$$\xi = \frac{\left(\frac{I_0 e^{-\alpha x}}{C}\right)^{\frac{1}{2}}}{r} \sin(kx - \omega t) = \xi_0 \frac{\left(I_0 e^{-\alpha x/2}\right)^{\frac{1}{2}}}{r} \sin(kx - \omega t)$$

Onde cilindriche:
$$\xi = \frac{\left(\frac{I_0 e^{-\alpha x}}{C}\right)^{\frac{1}{2}}}{\sqrt{r}} \sin(kx - \omega t) = \xi_0 \frac{\left(I_0 e^{-\alpha x/2}\right)^{\frac{1}{2}}}{\sqrt{r}} \sin(kx - \omega t)$$

1.1 Pacchetti d'onde

Fino ad ora abbiamo considerato onde armoniche di lunghezza e durata infinita. Tutte le sorgenti emettono onde attraverso processi di durata finita, quindi, nella realtà, un'onda ha una propria durata e estensione spaziale.

Considerato un pacchetto di lughezza Δx e durata Δt , tali che $\Delta x = v \Delta t$. Il pacchetto è poi caratterizzato da N oscillazioni tali che

$$\Delta x = N\lambda$$
 $\Delta t = NT$

ed esprimiamo il numero di onde k e la pulsazione ω come

$$k = \frac{2\pi}{\lambda} = \frac{2\pi N}{\Delta x}$$
 $\omega = \frac{2\pi}{T} = \frac{2\pi N}{\Delta t}$

Se ammettiamo (come nella figura) che N non sia fisso ma abbia una acerta indeterminazione che esprimiamo come ΔN = 1, possiamo trovare altre espressioni per k e ω :

Queste osservazioni mettono i vevidenza la sostanziale differenza tra onda e pacchetto d'onda: mentre la prima ha una lunghezza d'onda λ e una frequenza f ben definite che la descrivono completamente, nel secondo è presente una **banda di frequenze** e un **intervallo di numeri d'onda**

$$\Delta f = \frac{1}{\Delta t}$$
 $\Delta k = \frac{2\pi}{\Delta x}$

Da quest'ultime espressioni notiamo che al crescere di Δx e Δt minori risultano queste bande, infatti la limite per $\Delta x, \Delta t \to \infty$ troviamo l'onda armonica. Se andiamo a considerare **brevi durate e piccole lunghezze** nel pacchetto sono contenute bande di lunghezze d'onda e frequenze distribuite significatibamente nell'intorno di λf .

1.1.1 Velocità di fase e velocità di gruppo

Poiché diversi segmenti d'onda contenuti in un pacchetto possono avere frequenze diverse, la velocità del pacchetto non può essere identificata con quella delle componenti. Tuttavia è essenziale identificare la

velocità del pacchetto perché il fenomeno fisico è rappresentato proprio dal pacchetto ed è la sua velocità quella con cui si propaga l'**energia** dell'onda.

Andiamo quindi a distinguere la **velocità di fase**, quella con cui si muovono le singole componenti dell'onda, e **velocità di gruppo**. La velocità dell'onda dipende dalla frequenza quando la propagazione avviene in un **mezzo dispersivo** come può avvenire per onde sulla superficie di un liquido o onde elettromagnetiche in mezzi materiali o in cavità conduttrici.

Mostriamo un esempio di velocità di gruppo nel caso di un pacchetto con solo due onde armoniche:

$$\xi(x,t) = \xi_0 \sin(k_1 x - \omega_1 t) + \xi_0 \sin(k_2 x - \omega_2 t)$$

$$prostaferesi: \quad \sin \alpha + \sin \beta = 2 \sin\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right)$$

$$\xi(x,t) = 2\xi_0 \sin\left(\frac{(k_1 + k_2)x - (\omega_1 + \omega_2)t}{2}\right) \cos\left(\frac{(k_1 - k_2)x + (\omega_2 - \omega_1)t}{2}\right)$$

Definiti k_m , ω_m e Δk , $\Delta \omega$

$$\begin{bmatrix} k_m = \frac{k_1 + k_2}{2} \end{bmatrix} \qquad \begin{bmatrix} \omega_m = \frac{\omega_1 + \omega_2}{2} \end{bmatrix} \qquad \begin{bmatrix} \Delta k = \frac{k_1 - k_2}{2} \end{bmatrix} \qquad \begin{bmatrix} \Delta \omega = \frac{\omega_1 - \omega_2}{2} \end{bmatrix}$$
$$\xi(x, t) = 2\xi_0 \cos\left(\frac{\Delta k}{2}x - \frac{\Delta \omega}{2}t\right) \sin(k_m x - \omega_m t)$$

In sostanza il moto relativo di un'onda rispetto all'altra produce la sovrapposizione mostrata sopra: **l'onda di alta frequenza cambia** durante il moto ma **l'inviluppo conserva la stessa forma**.

L'ampiezza dell'onda modulata

$$A = 2\xi_0 \cos\left(\frac{\Delta k}{2}x - \frac{\Delta \omega}{2}t\right)$$

non è costante ma presenta una struttura di tipo ondulatorio e descrive l'inviluppo dell'onda di alta frequenza.

Abbiamo quindi un'onda di alta frequenza che si propaga con **velocità di fase media** v_f e con ampiezza modulata da un'onda che si propaga con velocità v_g **velocità di gruppo**:

$$v_f = \frac{\omega_m}{k_m}$$
 $v_g = \frac{\Delta \omega}{\Delta k}$

Più in dettaglio la velocità di gruppo, nel limite del continuo, è definita come

$$v_g = \frac{d\boldsymbol{\omega}}{d\boldsymbol{k}}$$

invece dall'espressione della velocità di fase possiamo esprimere la pulsazione in funzione di v_f e k:

$$\boldsymbol{\omega(k)} = v_f(k)\boldsymbol{k}$$

da cui

$$v_g = v_f + k \frac{dv_f}{dk} \tag{1.4}$$

La velocità di gruppo può quindi essere minore o maggiore della velocità di fase, dipende dal segno della derivata di v_f : se la velocità delle singole componenti decresce, allora la velocità di gruppo sarà minore, se invece è in crescita, la velocità di gruppo sarà maggiore. Il caso di **mezzo non dispersivo**, ovvero quando $v_g = v_f$ si ha quando $dv_f/dk = 0$.

 $Servendosi\ delle\ seguenti\ uguaglianze$

$$\boxed{\frac{dk}{k}} = \boxed{-\frac{d\lambda}{\lambda}} = \boxed{\frac{df}{f}}$$

la 1.4 è riscrivibile come

$$= v_f - \lambda \frac{dv_f}{d\lambda} = v_f + f \frac{dv_f}{df}$$

E' bene capire che la struttura del pacchetto in generale si modifica durante la propagazione e proprio per questo la velocità di fase (delle singole componenti) varia in funzione di k così come la velocità di gruppo

1.2 Effetto Doppler

Se una sorgente di onde S e un rivelatore di onde R sono n moto reciproco la frequenza percepita dal rivelatore è in generale diversa dalla frequenza propira della sorgenre. Questo fenomeno prende il nome di effetto Doppler e si osserva per tutti i tipi di onde.

Prendiamo in esame una sorgente che emette un qualsiasi tipo di onde armoniche sferiche di velocità v, chiamiamo **fronte d'onda** la superficie sferica su cui la fase è costante e facciamo coincidere il fronte d'onda con una cresta. La cresta successiva a quella fissata sul fronte d'onda si trova a distanza spaziale λ e temporale T con differenza di fase 2π . In un tempo Δt l'onda avanza di uno spazio $v\Delta t$ e il rivelatore viene attraversato da tanti fronti contenuti nello spazio $v\Delta t$:

$$N = \frac{v\Delta t}{\lambda}$$

quindi il rivelatore percepisce una frequenza

$$f_R = \frac{N}{\Delta t} = \frac{v \Delta t}{\lambda \Delta t} = \frac{v}{\lambda} = f$$

In questa condizione la frequenza percepita dal rivelatore è la frequenza propria della sorgente.

1.2.1 Sorgente in moto

Supponiamo che la sorgente si stia muovendo con velocità $v_S < v$ verso il rivelatore. Ogni intervallo T_0 la sorgente percorre un tratto $v_S T_0$ sicuramente minore di λ ($v_S < v \rightarrow v_S T_0 < \lambda_0 = v T$). Si ha quindi che la distanza tra due fronti d'onda consecutivi è

$$\lambda_R = \lambda_0 - \nu_S T$$

quindi il rivelatore è attraversato da più fronti d'onda del caso precedente poiché è aumentata la loro "densità". Riscrivendo l'espressione di λ_R possiamo trovare una nuova espressione della frequenza percepita da R:

$$\lambda_R = \lambda_0 - \nu_S T_0 = \nu T_0 - \nu_S T_0 = \nu \frac{1}{f_0} - \nu_S \frac{1}{f_0} = \frac{\nu - \nu_S}{f_0}$$

quindi essendo la frequenza il numero di creste in un periodo: $f = \frac{N}{T}$, esprimendo N come numero di lunghezze d'onda nello spazio percorso in un periodo: $N = \frac{\nu T}{\lambda}$, troviamo che un'espressione della frequenza è il rapporto tra la velocità dell'onda e la lunghezza d'onda

$$f_R = \frac{v}{\lambda_R} = \frac{v}{\frac{v - v_S}{f_0}} \rightarrow$$

$$f_R = \frac{v}{v - v_S} f_0$$

$$(1.5)$$