

Exercise 5A

Question 39:

Given: ABC is a triangle in which AD is the bisector of $\angle A$.

Proof: (i) In △ACD

Exterior \(\text{ADB} = \text{ DAC+\text{ACD}} \)

= ZBAD + ZACD

[∴ ∠DAC= ∠BAD(given)]

∴ ∠ADB > ∠BAD

The side opposite to angle $\angle ADB$ is the longest side in $\triangle ADB$

So, AB > BD

(ii) Again in ∆ABD

Exterior \(\angle ADC \) = \(\angle ABD + \angle BAD \)

= ∠ABD + ∠CAD

∠ADC > ∠CAD

The side opposite to angle $\angle ADC$ is the longest side in $\triangle ACD$

So, AC > DC

Question 40:

Given :A \triangle ABC is which AB=AC side BC of \triangle ABC is produced to D.

To prove: AD> AC Proof: In ∆ABC

 $Ext.\angle ACD = \angle B + \angle BAC$

 $= \angle ACB + \angle BAC \quad [\because \angle B = \angle C \text{ as } AB = AC]$

= \(CAD + \(CDA + \(BAC \)

[::Ext.\(\angle\)ACB=\(\angle\)CAD+\(\angle\)CDA]

I

⇒ ∠ACD > ∠CDA

So the side opposite to ∠ACD, is the longest.

∴ AD > AC

********* END *******