Density

Kai Prince SFHEA

2025-08-06

Table of contents

Definition 0.1. For $A\subseteq G$ and Følner sequence $\Phi=(\Phi_N)_{n=1}^\infty,$ we write

$$\begin{split} _{\Phi}(A) &= \limsup_{N \to \infty} \frac{|\cdot|A \cap \Phi_N}{|\cdot|\Phi_N} \\ _{\Phi}(A) &= \liminf_{N \to \infty} \frac{|\cdot|A \cap \Phi_N}{|\cdot|\Phi_N} \end{split}$$

to be the upper and lower densities of A with respect to Φ , respectively. If these agree, then we can write

$$d_\Phi(A) = \lim_{N \to \infty} \frac{|\cdot|A \cap \Phi_N}{|\cdot|\Phi_N}$$

to be the density of A with respect to Φ . We also define the upper Banach density of A by

 $(A) = \sup \{ d_\Phi(A) : \text{for F\'olner sequences } \Phi \text{ where } d_\Phi(A) \text{ exists} \}.$

Proposition 0.1 (Monotonicity). Let $A, B \subseteq M$ be subsets. For $A \subseteq B$, we have

$$_{\Phi}(A) \leq_{\Phi} (B),$$

and

$$_{\Phi}(A) \leq_{\Phi} (B).$$

Proposition 0.2 (Translation Invariance). Let $B \subseteq M$ be a subset. For all $m \in M$, we have that

$$_{\Phi}(B) =_{m \cdot \Phi} (B) =_{\Phi} (m \cdot B)$$

and

$$_{\Phi}(B) =_{m \cdot \Phi} (B) =_{\Phi} (m \cdot B).$$

Lemma 0.1 (Upper/Lower Density Pairwise Additive). Let $A, B \subseteq M$ be subsets such that $d_{\Phi}(A)$ and $d_{\Phi}(B)$ both exist, then we have

$$\begin{split} &_{\Phi}(A \cup B) +_{\Phi} (A \cap B) = d_{\Phi}(A) + d_{\Phi}(B), \\ &_{\Phi}(A \cup B) +_{\Phi} (A \cap B) = d_{\Phi}(A) + d_{\Phi}(B). \end{split}$$

Further, we have $d_{\Phi}(A \cap B)$ exists if and only if $d_{\Phi}(A \cup B)$ exists.