第三章 非线性规划

第七节 乘子法

 $(NP) \quad \min f(X)$

s.t.
$$\begin{cases} g_i(X) \ge 0, i = 1, 2, \dots, m \\ h_j(X) = 0, j = 1, 2, \dots, p \end{cases}$$

- → Hestens乘子法
 Powell乘子法

 → Powell → Pow
- Rockaffellar乘子法 不等式约束问题

第三章 非线性规划

Hestens 乘子法

$$(NP) \min f(X)$$

 $s.t.h_{j}(X) = 0, j = 1, 2, \dots, p$

- 乘子法迭代原理
 - 乘子法迭代步骤
 - 乘子法举例

复习: 罚函数法

 $\min f(X)$ (NP)

$$s.t.h_j(X) = 0$$
$$j = 1, 2, \dots, p$$

$$\min_{S,t} f(X)$$

$$S,t > g_i(X) \ge 0, i = 1, 2, ...$$

$$s.t.\begin{cases} g_i(X) \ge 0, i = 1, 2, \dots, m \\ h_j(X) = 0, j = 1, 2, \dots, p \end{cases}$$

求解 $\min_{X \in \mathbb{R}^n} \varphi(X, M_k)$

$$X^{(k)}(M_k) \xrightarrow{M_k \to \infty} X^*$$

$$\varphi(X, M_k) = f(X) + M_k \sum_{i=1}^{m} [\min(0, g_i(X))]^2 + M_k \sum_{j=1}^{p} h_j^2(X)$$

 $\min f(X)$ (NP)

复习:

$$s.t.h_j(X) = 0 \ \mu_j$$

 $j=1,2,\dots,p$

Lagrange函数: $L(X, \mu) = f(X) + \sum_{i=1}^{r} \mu_{i} h_{i}(X)$

设 X^* 是(NP)最优解,则存在Lagrange乘子 μ^* 使

$$\nabla_{X}L(X^{*},\mu^{*}) = \nabla f(X^{*}) + \sum_{j=1}^{p} \mu_{j}^{*} \nabla h_{j}(X^{*}) = 0 \quad \mu^{*} = (\mu_{1}^{*},\mu_{2}^{*},\dots,\mu_{p}^{*})$$

$$X*$$
是(NP)最优解 $\nabla f(X^*) + \sum_{j=1}^p \mu_j^* \nabla h_j(X^*) = 0$ μ^* 称为 $X*$ 相应的 $Lagrange$ 乘子

(NP)
$$\min f(X)$$

 $s.t.h_j(X) = 0 \ \mu_j$
 $j=1,2,\dots,p$

Lagrange函数:
$$L(X, \mu) = f(X) + \sum_{j=1}^{p} \mu_j h_j(X)$$

$$X^*$$
是(NP)最优解 $\nabla f(X^*) + \sum_{j=1}^p \mu_j^* \nabla h_j(X^*) = \mathbf{0}$

 $\mu^* = (\mu_1^*, \mu_2^*, \dots, \mu_p^*)$ 称为 X^* 相应的Lagrange乘子

改进罚函数法的思想:

罚函数:
$$\varphi(X,M) = f(X) + M \sum_{j=1}^{p} h_j^2(X)$$

一般情况下, X^* 不是 $\min_{X \in \mathbb{R}^n} \varphi(X, M)$ (对固定的M)的最优解

$$(NP) \quad \min f(X)$$

$$s.t.h_i(X) = 0$$

$$X*$$
是(NP)最优解 $\nabla f(X^*) + \sum_{j=1}^p \mu_j^* \nabla h_j(X^*) = 0$

罚函数:
$$\varphi(X,M) = f(X) + M \sum_{j=1}^{P} h_j^2(X)$$

一般情况下, X^* 不是 $\min_{X \in \mathbb{R}^n} \varphi(X, M)$ (对固定的M)的最优解

因此一般情况下, X^* 不是 $\min_{X \in \mathbb{R}^n} \varphi(X, M)$ 的最优解

(NP)
$$\min f(X)$$

 $s.t.h_j(X) = 0$

$$X*$$
是(NP)最优解 $\nabla f(X^*) + \sum_{j=1}^p \mu_j^* \nabla h_j(X^*) = 0$

罚函数:
$$\varphi(X,M) = f(X) + M \sum_{j=1}^{p} h_{j}^{2}(X)$$

一般情况下, X^* 不是 $\min_{X \in \mathbb{R}^n} \varphi(X, M)$ (对固定的M)的最优解

因此,需要求解一系列的 $\min_{X \in \mathbb{R}^n} \varphi(X, M_k)$,其最优解

$$X^{(k)}(M_k) \xrightarrow{M_k \to \infty} X^*$$

为了提高效率,对罚函数进行改进,使 X^* 是改进后的罚函数的最优解。

 $(NP)\min f(X)$

Lagrange 函数:
$$L(X,\mu) = f(X) + \sum_{j=1}^{p} \mu_{j} h_{j}(X)$$
 $s.t.h_{j}(X) = 0$ $j = 1,2,\dots, p$

罚函数:
$$\varphi(X,M) = f(X) + M \sum_{j=1}^{p} h_j^2(X)$$

乘子罚函数:
$$\varphi(X,\mu,C) = f(X) + \sum_{j=1}^{p} \mu_j h_j(X) + \frac{C}{2} \sum_{j=1}^{p} h_j^2(X)$$

结论: X^* 是(NP)的最优解 $\Rightarrow X^*$ 是 $\varphi(X,\mu^*,C)$ 的驻点。

即
$$\exists \mu^*$$
使 $\nabla_X \varphi(X^*, \mu^*, C) = \mathbf{0}$

证明:

$$\forall X^*$$
是(NP)的最优解 $\longrightarrow \nabla f(X^*) + \sum_{i=1}^{p} \mu_j^* \nabla h_j(X^*) = 0$

$$L(X, \mu) = f(X) + \sum_{j=1}^{p} \mu_{j} h_{j}(X)$$

$$\nabla f(X^{*}) + \sum_{j=1}^{p} \mu_{j}^{*} \nabla h_{j}(X^{*}) = 0$$

$$(NP) \min f(X)$$

$$s.t.h_{j}(X) = 0$$

$$j = 1, 2, \dots, p$$

乘子罚函数:

$$\varphi(X,\mu,C) = f(X) + \sum_{j=1}^{p} \mu_j h_j(X) + \frac{C}{2} \sum_{j=1}^{p} h_j^2(X)$$

结论: X^* 是(NP)的最优解 $\Rightarrow X^*$ 是 $\varphi(X,\mu^*,C)$ 的驻点。

$$(NP)$$
 → 求解 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^*, C)$

讨论(NP) 的最优解 X^* 与 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^*, C)$ 的最优解的关系

$$L(X,\mu) = f(X) + \sum_{j=1}^{p} \mu_j h_j(X)$$

$$(NP) \min f(X)$$

$$s.t.h_j(X) = 0$$

乘子罚函数:

$$\varphi(X,\mu,C) = f(X) + \sum_{j=1}^{p} \mu_j h_j(X) + \frac{C}{2} \sum_{j=1}^{p} h_j^2(X)$$
 $j = 1,2,\dots, p$

讨论(NP) 的最优解 X^* 与 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^*, C)$ 的最优解的关系

定理3 X^* 是(NP)的最优解 \Rightarrow X^* 是 $\varphi(X,\mu^*,C)$ 的驻点。

设 $f(X), h_i(X)$ 是二次连续可微;

20
$$X^*$$
 是(*NP*)的最优解,且3 μ^* 使 $\nabla f(X^*) + \sum_{j=1}^r \mu_j^* \nabla h_j(X^*) = 0$

30 对每个满足
$$Z^T \nabla h_j(X^*) = 0$$
的 $Z \neq 0$,有 $Z^T \nabla_X^2 L(X^*, \mu^*)Z > 0$

则 \exists 正数 C^* 使得对 $\forall C \geq C^*$, X^* 是 $\min_{X \in R^n} \varphi(X, \mu^*, C)$ 的最优解

$$\nabla_X^2 L(X^*, \mu^*) = \nabla^2 f(X^*) + \sum_{j=1}^p \mu_j^* \nabla^2 h_j(X^*)$$

 $(NP)\min f(X)$

乘子罚函数:

$$s.t.h_j(X) = 0$$

 $j = 1, 2, \dots, p$

$$\varphi(X,\mu,C) = f(X) + \sum_{j=1}^{p} \mu_j h_j(X) + \frac{C}{2} \sum_{j=1}^{p} h_j^2(X)$$

讨论(NP) 的最优解 X^* 与 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^*, C)$ 的最优解的关系

定理3-20

 X^* 是(*NP*)的最优解 $\xrightarrow{3^0} X^*$ 是 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^*, C)$ 的最优解 定理3-21 $(\forall C \geq C^*, C \land X \rightarrow \infty)$

设 X^* 是 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^*, C)$ 的最优解

则 X^* 是(NP)的最优解

$$\iff h_j(X^*) = 0, j = 1, 2, \dots, p$$

μ* 是其相应的Lagrange乘子

$$\left\{ \varphi(X, \mu^*, C) = f(X) + \sum_{j=1}^{p} \mu_j^* h_j(X) + \frac{C}{2} \sum_{j=1}^{p} h_j^2(X) \right\} \begin{cases} \min f(X) \\ s.t.h_j(X) = 0 \\ j = 1, 2, \dots, p \end{cases}$$

则 X^* 是(NP)的最优解 $\Leftrightarrow h_j(X^*)=0, j=1,2,...,p$ μ^* 是其相应的Lagrange乘子

证明:

- ⇒显然

则对 $\forall X \in D$,都有: $f(X) = \varphi(X, \mu^*, C) \ge f(X^*)$

所以, X^* 是(NP)的最优解。

$$\varphi(X, \mu^*, C) = f(X) + \sum_{j=1}^{p} \mu_j^* h_j(X) + \frac{C}{2} \sum_{j=1}^{p} h_j^2(X)$$
 min $f(X)$

$$s.t. h_j(X) = 0$$

$$j = 1, 2, \dots, p$$

则 X^* 是(NP)的最优解, $\iff h_i(X^*)=0, j=1,2,\dots,p$ μ* 是其相应的Lagrange乘子

证明:

则 X^* 是(NP)的最优解。

又因为 X^* 是 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^*, C)$ 的最优解,

: μ* 是 X * 相应的Lagrange乘子

$$X^*$$
是(NP) 的最优解 $\longrightarrow \nabla f(X^*) + \sum_{j=1}^p \mu_j^* \nabla h_j(X^*) = \mathbf{0} = \mathbf{0}$ $\varphi(X, \mu, C) = f(X) + \sum_{j=1}^p \mu_j h_j(X) + \frac{C}{2} \sum_{j=1}^p h_j^2(X)$

讨论(NP) 的最优解 X^* 与 $\min_{X \in R^n} \varphi(X, \mu^*, C)$ 的最优解的关系

定理3-20 定理3-21

正理3-20 たほ3-21 X^* 是(NP)的最优解 X^* 是 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^*, C)$ 的最优解 $h_j(X^*) = 0$ $(\forall C \geq C^*, C$ 不必 $\to \infty)$

求 $\min_{X \in \mathcal{X}} \varphi(X, \mu^*, C)$ 的最优解 \longrightarrow 求(NP)的最优解 X^*

问题: Lagrange乘子 μ^* 如何求得?

思路:用迭代法得到 $\mu^{(k)} \xrightarrow{k \to \infty} \mu^*$

$$X^*$$
是(*NP*) 的最优解 $\longrightarrow \nabla f(X^*) + \sum_{j=1}^p \mu_j^* \nabla h_j(X^*) = 0$ = 0

乘子罚函数:
$$\varphi(X,\mu,C) = f(X) + \sum \mu_j h_j(X) + \frac{C}{2} \sum_{j=1}^p h_j^2(X)$$

 $\mu^{(k)}$ 的修正公式: 给定一个足够大的C > 0, 设已求得 $\mu^{(k)}$, 求解 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^{(k)}, C)$ 得最优解 $X^{(k)}$

$$0 = \nabla_{X} \varphi(X^{(k)}, \mu^{(k)}, C) = \nabla f(X^{(k)}) + \sum_{j=1}^{p} \mu_{j}^{(k)} \nabla h_{j}(X^{(k)}) + C \sum_{j=1}^{p} h_{j}(X^{(k)}) \nabla h_{j}(X^{(k)})$$

$$X^{(k)} \xrightarrow{k \to \infty} X^*$$

$$\mu^{(k)} \xrightarrow{k \to \infty} \mu^*$$

$$\mu^{(k)} \xrightarrow{k \to \infty} \mu^*_j$$

$$X^{(k)} \xrightarrow{k \to \infty} X^* \qquad \mathbf{0} = \nabla f(X^{(k)}) + \sum_{j=1}^{p} (\underline{\mu_j^{(k)}} + Ch_j(X^{(k)})) \nabla h_j(X^{(k)})$$

$$\mu_j^{(k)} \xrightarrow{k \to \infty} \mu_j^* \qquad \mathbf{0} = \nabla f(X^*) + \sum_{j=1}^{p} \underline{\mu_j^*} \nabla h_j(X^*)$$

$$\therefore \mu_j^{(k+1)} = \mu_j^{(k)} + Ch_j(X^{(k)}) \quad j = 1, 2, \dots, p$$

$$(NP)\min f(X)$$

$$s.t.h_{j}(X) = 0$$

乘子罚函数:
$$\varphi(X,\mu,C) = f(X) + \sum \mu_j h_j(X) + \frac{C}{2} \sum_{j=1}^p h_j^2(X)$$

 $\mu^{(k)}$ 的修正公式: 给定一个足够大的C > 0, 设已求得 $\mu^{(k)}$,

求解 $\min \varphi(X, \mu^{(k)}, C)$ 得最优解 $X^{(k)}$

$$\mu_j^{(k+1)} = \mu_j^{(k)} + Ch_j(X^{(k)}) \quad j = 1, 2, \dots, p$$

$$\mu^{(k)} = (\mu_1^{(k)}, \dots, \mu_j^{(k)}, \dots, \mu_p^{(k)}) \longrightarrow \mu^{(k+1)} = (\mu_1^{(k+1)}, \dots, \mu_j^{(k+1)}, \dots, \mu_p^{(k+1)})$$

再求解 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^{(k+1)}, C)$ 得最优解 $X^{(k+1)}$,重复以上过程得到两个点列: $\{X^{(k)}\}$, $\{\mu^{(k)}\}$

收敛结论: $\mu^{(k)} \rightarrow \mu^*(X^* \text{相应} Lagrange$ 的乘子) $X^{(k)} \rightarrow X^*(C$ 足够大, 不必 $\rightarrow \infty$)

 $(NP)\min f(X)$ $s.t.h_i(X) = 0$

乘子罚函数:

$$\varphi(X,\mu,C) = f(X) + \sum_{j=1}^{n} \mu_j h_j(X) + \frac{C}{2} \sum_{j=1}^{p} h_j^2(X)$$

求解 $\min_{x} \varphi(X, \mu^{(k)}, C)$ 得最优解 $X^{(k)}$

$$\mu^{(k)}$$
的修正公式: $\mu_j^{(k+1)} = \mu_j^{(k)} + Ch_j(X^{(k)})$ $j = 1,2,\dots,p$

收敛结论: $\mu^{(k)} \rightarrow \mu^*(X^* \text{相应} Lagrange$ 的乘子) $X^{(k)} \rightarrow X^*(C$ 足够大, 不必 $\rightarrow \infty$)

停机准则:

$$\therefore X^{(k)} \to X^* \therefore h(X^{(k)}) \to h(X^*) = 0 : ||h(X^{(k)})|| \to ||h(X^*)|| = 0$$

 $(NP)\min f(X)$ $s.t.h_i(X) = 0$

乘子罚函数:

$$\varphi(X,\mu,C) = f(X) + \sum_{j=1}^{n} \mu_j h_j(X) + \frac{C}{2} \sum_{j=1}^{p} h_j^2(X)$$

求解 $\min_{x} \varphi(X,\mu^{(k)},C)$ 得最优解 $X^{(k)}$

$$\mu^{(k)}$$
的修正公式: $\mu_j^{(k+1)} = \mu_j^{(k)} + Ch_j(X^{(k)})$ $j = 1, 2, \dots, p$

收敛结论: $\mu^{(k)} \rightarrow \mu^*(X^* \text{相应} Lagrange}$ 的乘子) $X^{(k)} \rightarrow X^*(C$ 足够大, 不必 $\rightarrow \infty$)

$$X^{(k)} \rightarrow X^*(C足够大, 不必 \rightarrow \infty)$$

停机准则: $||h(X^{(k)})|| < \varepsilon$

若在迭代过程中, $X^{(k)} \to X^*$ 过慢, $\mathbb{P}[h(X^{(k)})] \to [h(X^*)] = 0$ 过慢

即
$$\frac{\|h(X^{(k)})\|}{\|h(X^{k-1})\|} > r(0 < r < 1)$$
,则增大罚因子 C ,加快收敛速度。

停机准则: $||h(X^{(k)})|| < \varepsilon$

 $(NP) \min_{f(X)} f(X)$ $s.t.h_{j}(X) = 0$ $j = 1, 2, \dots, p$

若在迭代过程中, $X^{(k)} \to X^*$ 过慢,即 $\|h(X^{(k)})\| \to \|h(X^*)\| = 0$ 过慢

即 $\frac{\|h(X^{(k)})\|}{\|h(X^{k-1})\|} > r(0 < r < 1)$,则增大罚因子C,加快收敛速度。

 $(NP)\min f(X)$ $s.t.h_i(X) = 0$

乘子罚函数:

$$\varphi(X,\mu,C) = f(X) + \sum_{j=1}^{n} \mu_j h_j(X) + \frac{C}{2} \sum_{j=1}^{p} h_j^2(X)$$

求解 $\min_{x} \varphi(X,\mu^{(k)},C)$ 得最优解 $X^{(k)}$

$$\mu^{(k)}$$
的修正公式: $\mu_j^{(k+1)} = \mu_j^{(k)} + Ch_j(X^{(k)})$ $j = 1, 2, \dots, p$

收敛结论: $\mu^{(k)} \rightarrow \mu^*(X^* \text{相应} Lagrange}$ 的乘子) $X^{(k)} \rightarrow X^*(C$ 足够大, 不必 $\rightarrow \infty$)

$$X^{(k)} \rightarrow X^*(C$$
足够大, 不必 $\rightarrow \infty$)

停机准则: $||h(X^{(k)})|| < \varepsilon$

若在迭代过程中, $X^{(k)} \to X^*$ 过慢, $\mathbb{P}[h(X^{(k)})] \to [h(X^*)] = 0$ 过慢

即
$$\frac{\|h(X^{(k)})\|}{\|h(X^{k-1})\|} > r(0 < r < 1)$$
,则增大罚因子 C ,加快收敛速度。

第三章 非线性规划

Hestens乘子法

$$(NP) \min f(X)$$

 $s.t. h_j(X) = 0, j = 1, 2, \dots, p$

- ✓ 乘子法迭代原理
- 乘子法迭代步骤
 - 乘子法举例

2. 乘子法迭代步骤

 $(NP)\min f(X)$

乘子罚函数:

子罚函数:
$$\varphi(X,\mu,C) = f(X) + \sum_{i=1}^{p} \mu_i h_i(X) + \frac{C}{2} \sum_{i=1}^{p} h_i^2(X)$$
 $s.t.h_j(X) = 0$ $j = 1,2,\cdots,p$

10 给定 $X^{(0)}$, $\mu^{(1)}(=1)$, ε , C, 0 < r < 1, $\alpha > 1$, 令k := 1

 2^{0} 求解 $\min_{X \in \mathbb{R}^{n}} \varphi(X, \mu^{(k)}, C)$ 得最优解 $X^{(k)}$ (用数值迭代方法)

$$3^0$$
 若 $\|h(X^{(k)})\|$ < ε ,则迭代终止, $X^* = X^{(k)}$

否则若
$$\frac{\|h(X^{(k)})\|}{\|h(X^{k-1})\|} > r$$
,则令 $C = \alpha C$,转40

否则转40

$$4^0$$
 计算 $\mu_j^{(k+1)} = \mu_j^{(k)} + Ch_j(X^{(k)}), j = 1, 2, \dots, p,$ 令 $k := k+1$ 转 2^0

第三章 非线性规划

Hestens乘子法

$$(NP) \min f(X)$$

 $s.t. h_j(X) = 0, j = 1, 2, \dots, p$

- ✓ 乘子法迭代原理
- ✓ 乘子法迭代步骤
- 乘子法举例

3. 乘子法举例
$$\varphi(X,\mu,C) = f(X) + \sum_{j=1}^{p} \mu_j h_j(X) + \frac{C}{2} \sum_{j=1}^{p} h_j^2(X)$$
 例(补充) 用乘子法求解 $\min_{s.t.} f(X) = 2x_1^2 - x_1 x_2 + x_2^2$ 解.
$$h_1(X) = x_1 + x_2 - 2 = 0 \quad \mu_1^{(k)}$$

解:

$$\varphi(X,\mu^{(k)},C) = 2x_1^2 - x_1x_2 + x_2^2 + \mu_1^{(k)}(x_1 + x_2 - 2) + \frac{C}{2}(x_1 + x_2 - 2)^2$$

$$\Re C = 2 \qquad = 2x_1^2 - x_1x_2 + x_2^2 + \mu_1^{(k)}(x_1 + x_2 - 2) + (x_1 + x_2 - 2)^2$$

求解 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^{(k)}, C)$ 得最优解 $X^{(k)}$ (用数值迭代方法)

$$0 = \frac{\partial \varphi}{\partial x_1} = 4x_1 - x_2 + \mu_1^{(k)} + 2(x_1 + x_2 - 2)$$

$$0 = \frac{\partial \varphi}{\partial x_2} = -x_1 + 2x_2 + \mu_1^{(k)} + 2(x_1 + x_2 - 2)$$

$$X^{(k)} = \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \end{pmatrix} = \begin{pmatrix} \frac{12 - 3\mu_1^{(k)}}{23} \\ \frac{20 - 5\mu_1^{(k)}}{23} \end{pmatrix}$$

$$\mu_1^{(k+1)} = \mu_1^{(k)} + Ch_1(X^{(k)}) = \mu_1^{(k)} + 2(x_1^{(k)} + x_2^{(k)} - 2) = \frac{7\mu_1^{(k)} - 28}{23}$$

3. 乘子法举例

例(补充) 用乘子法求解
$$\min_{s.t.} f(X) = 2x_1^2 - x_1x_2 + x_2^2$$

解: $h_1(X) = x_1 + x_2 - 2 = 0$ $\mu_1^{(k)}$
 $\varphi(X, \mu^{(k)}, C) = 2x_1^2 - x_1x_2 + x_2^2 + \mu_1^{(k)}(x_1 + x_2 - 2) + \frac{C}{2}(x_1 + x_2 - 2)^2$
求解 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^{(k)}, C)$ 取 $C = 2$
$$X^{(k)} = \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \end{pmatrix} = \begin{pmatrix} \frac{12 - 3\mu_1^{(k)}}{23} \\ \frac{20 - 5\mu_1^{(k)}}{23} \end{pmatrix}$$
 $\mu_1^{(1)} = 1$ $\mu_1^{(7)} = -1.746$
$$\mu_1^{(2)} = -0.913 \quad \mu_1^{(8)} = -1.748$$

$$\mu_1^{(3)} = -1.495 \quad \mu_1^{(9)} = -1.749$$

$$\mu_1^{(4)} = -1.671 \quad \mu_1^{(10)} = -1.75$$

$$\mu_1^{(5)} = -1.725 \quad \mu_1^{(11)} = -1.75$$

$$\mu_1^{(6)} = -1.741$$

$$\mu_1^{(k)} \to \mu_1^* = -1.75$$

3. 乘子法举例

例(补充) 用乘子法求解 $\min_{s.t.} f(X) = 2x_1^2 - x_1x_2 + x_2^2$ 解: $h_1(X) = x_1 + x_2 - 2 = 0 \quad \mu_1^{(k)}$ $\varphi(X, \mu^{(k)}, C) = 2x_1^2 - x_1x_2 + x_2^2 + \mu_1^{(k)}(x_1 + x_2 - 2) + \frac{C}{2}(x_1 + x_2 - 2)^2$ 求解 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^{(k)}, C)$ 取C = 2

$$X^{(k)} = \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \end{pmatrix} = \begin{pmatrix} \frac{12 - 3\mu_1^{(k)}}{23} \\ \frac{20 - 5\mu_1^{(k)}}{23} \end{pmatrix} \xrightarrow{\mu_1^{(k)} \to -1.75} X^* = \begin{pmatrix} \frac{3}{4} \\ \frac{5}{4} \end{pmatrix} \qquad f^* = \frac{7}{4}$$

$$\mu_1^{(k+1)} = \frac{7\mu_1^{(k)} - 28}{23}$$
 $\mu_1^{(k)} \to \mu_1^* = -1.75$

3. 乘子法举例

例(补充) 用乘子法求解
$$\min_{s.t.} f(X) = 2x_1^2 - x_1x_2 + x_2^2$$

解: $h_1(X) = x_1 + x_2 - 2 = 0$ $\mu_1^{(k)}$
 $\varphi(X, \mu^{(k)}, C) = 2x_1^2 - x_1x_2 + x_2^2 + \mu_1^{(k)}(x_1 + x_2 - 2) + \frac{C}{2}(x_1 + x_2 - 2)^2$
求解 $\min_{X \in \mathbb{R}^n} \varphi(X, \mu^{(k)}, C)$ 取 $C = 2$
$$X^{(k)} = \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \end{pmatrix} = \begin{pmatrix} \frac{12 - 3\mu_1^{(k)}}{23} \\ \frac{20 - 5\mu_1^{(k)}}{23} \end{pmatrix} \xrightarrow{\mu_1^{(k)} \to -1.75} X^* = \begin{pmatrix} \frac{3}{4} \\ \frac{5}{4} \end{pmatrix} \qquad f^* = \frac{7}{4}$$

$$\mu_1^{(k+1)} = \frac{7\mu_1^{(k)} - 28}{23} \longrightarrow \mu_1^* = \frac{7\mu_1^* - 28}{23} \longrightarrow \mu_1^* = -1.75$$

$$\mu_2^{(k)} \to \mu_2^* = -1.75$$

第三章 非线性规划

Hestens乘子法

$$(NP) \min f(X)$$

 $s.t.h_j(X) = 0, j = 1, 2, \dots, p$

- ✓ 乘子法迭代原理
- ✓ 乘子法迭代步骤
- ✓ 乘子法举例

作业: P246 24(1)

作业: P203 5(1)