

Gameboard

Maths

Roots and Iteration 1ii

Roots and Iteration 1ii

It is given that $F(x)=2+\ln x$. The iteration $x_{n+1}=F(x_n)$ is to be used to find a root, α , of the equation $x=2+\ln x$.

Part A First 3 Terms

Taking $x_1=3.1$, find x_2 , and x_3 , giving your answers correct to 6 significant figures.

Give x_2 .

Give x_3 .

Part B Error

The error e_n is defined by $e_n=\alpha-x_n$. Given that $\alpha=3.14619$ correct to 5 decimal places, and that $F'(\alpha)\approx \frac{e_3}{e_2}$, use the values of e_2 and e_3 to make an estimate of $F'(\alpha)$ correct to 3 significant figures. State the true value of $F'(\alpha)$ correct to 4 significant figures.

Give the estimate of $F'(\alpha)$ correct to 3 significant figures.

State the true value of $F'(\alpha)$ correct to 4 significant figures..

D .		_
Part	(Convergence

the iteration by drawing a sketch of $y=x$ and $y=F(x)$, showing how the values of x_n th $lpha$. State whether the convergence is of the 'staircase' or 'cobweb' type.
Staircase
Cobweb

Used with permission from UCLES A-level Maths papers, 2003-2017.

Home Gameboard

Maths

Roots and Iteration 3i

Roots and Iteration 3i

Part A Sketch

By sketching two suitable graphs on a single diagram, find the number of roots to the equation

$$14 - x^2 = 3\ln x.$$

From your sketch, state how many roots there are to the equation

$$14 - x^2 = 3\ln x$$

Part C Iteration

Use the iterative formula $x_{n+1} = \sqrt{14 - 3 \ln x_n}$, with a suitable starting value to find α correct to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 36 - Numerical Methods & Integration

Gameboard

Maths

Roots and Iteration 1i

Roots and Iteration 1i

It is required to solve the equation $f(x) = \ln{(4x-1)} - x = 0$.

Part A Root existence

Part B Iteration with g(x)

Let $g(x) = \ln(4x - 1)$. Use the iterative formula $x_{r+1} = g(x_r)$ with $x_0 = 1.8$ to find x_1 , x_2 , and x_3 , correct to 5 decimal places.

Give x_1

Give x_2

Give x_3

Continue the iterative process with $x_{r+1}=g(x_r)$ to find eta correct to 3 decimal places.

Part C New rearrangement h(x)

The equation f(x)=0 can be rearranged into the form

$$x=h(x)=rac{e^{ax}+b}{c}$$

where a, b and c are constants. Find h(x).

The following symbols may be useful: e, h, x

Use the iterative formula $x_{r+1}=h(x_r)$ with $x_0=0.8$ to find lpha correct to 4 decimal places.

Part E Root finding analysis

Show that the iterative formula $x_{r+1} = g(x_r)$ will not find the value of α . Similarly, determine whether the iterative formula $x_{r+1} = h(x_r)$ will find the value of β .
The iterative formula $x_{r+1}=g(x_r)$ will not converge to a root if $oxed{igcap}$ near that root.
For $g(x)$, differentiating we find that $g'(x)=$ Using the value for α calculated in Part D, this gives $g'(\alpha)=$ > 1. Therefore the iterative formula $x_{r+1}=g(x_r)$ will not converge to α .
For $h(x)$, differentiating we find that $h'(x)=$ Using the value for eta calculated in Part B, $h'(eta)=$ > 1. Therefore the iterative formula $x_{r+1}=h(x_r)$ will not converge to eta .
Items:
$egin{aligned} egin{aligned} \left[e^x ight] & \left[g'(x) > 1 ight] & \left[g'(x) < 1 ight] & \left[1.87 ight] & \left[g'(x) < 1 ight] & \left[rac{1}{4x-1} ight] & \left[rac{e^x}{4} ight] & \left[g'(x) > 1 ight] & \left[rac{1}{4x} ight] \end{aligned}$
$egin{array}{ c c c c c c c c c c c c c c c c c c c$

Part F Staircase diagrams

From the figures below, select the two figures that illustrate the iterations for $x_{r+1} = g(x_r)$ and $x_{r+1} = h(x_r)$.

Figure 1: Graph of the iterative process for $x_{r+1}=g(x_r)$ towards $\beta.$

Figure 2: Graph of the iterative process for $x_{r+1}=g(x_r)$ towards $\beta.$

Figure 3: Graph of the iterative process for $x_{r+1}=g(x_r)$ towards eta.

Figure 4: Graph of the iterative process for $x_{r+1}=h(x_r)$ towards lpha.

Figure 5: Graph of the iterative process for $x_{r+1}=h(x_r)$ towards lpha.

Figure 6: Graph of the iterative process for $x_{r+1}=h(x_r)$ towards lpha.

Figure 2			
Figure 3			
Figure 4			
Figure 5			
Figure 6			

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 36 - Numerical Methods & Integration

Home Gameboard Maths

Newton-Raphson Method 1ii

Newton-Raphson Method 1ii

The diagram shows the curve with equation $y = xe^{-x} + 1$. The curve crosses the x-axis at $x = \alpha$.

Figure 1: A sketch of the curve $y = xe^{-x} + 1$.

Part A x-coordinate of stationary point

Use differentiation to calculate the x-coordinate of the stationary point.

The following symbols may be useful: x

Part B Explain

lpha is to be found using the Newton-Raphson method, with $f(x)=xe^{-x}+1$.

Explain why this method will not converge to lpha if an initial approximation x_1 is chosen such that $x_1>1$.

The iterative formula for the Newton-Raphson method is $x_{n+1} = x_n - \frac{f(x)}{f'(x)}$. For all values of x greater than 1, f(x) is positive, and the of f(x) is negative and close to . Hence, $-\frac{f(x)}{f'(x)}$ is positive and so x_{n+1} is larger than x_n . Visually, the x-intercepts of at successive approximations will reach progressively x-values and, hence, move further away from α .

Items:

	$lpha$ is to be found using the Newton-Raphson method, with $f(x) = xe^{-x} + 1$.
	Use this method, with a first approximation $x_1=0$, to find the next three approximations x_2 , x_3 , x Find $lpha$ correct to 3 significant figures.
	Write down x_2 .
•	Write down x_3 , correct to 4 significant figures.
\	Write down x_4 , correct to 4 significant figures.
•	Find $lpha$ correct to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

Part C

Values

STEM SMART Double Maths 36 - Numerical Methods & Integration

Gameboard

Maths

Newton-Raphson Method 4ii

Newton-Raphson Method 4ii

It is given that $f(x) = 1 - \frac{7}{x^2}$.

Part A Approximations

Use the Newton-Raphson method, with a first approximation $x_1 = 2.5$, to find the next approximations x_2 and x_3 to a root of f(x) = 0. Give the answers correct to 7 significant figures.

Write down a value for x_2 .

Write down a value for x_3 .

Part B Root

The root of f(x) = 0 for which x_1 , x_2 , and x_3 are approximations is denoted by α . Write down the exact value of α .

The following symbols may be useful: alpha

The error function e_n is defined by $e_n=\alpha-x_n$. Find e_1 , e_2 and e_3 , giving your answers to 5 decimal places.

Calculate e_1 to 5 decimal places.

Calculate \emph{e}_{2} to $\emph{5}$ decimal places.

Calculate \emph{e}_{3} to $\emph{5}$ decimal places.

Part D Ratio $rac{e_2^3}{e_1^2}$

Calculate $\frac{e_2^3}{e_1^2}$, giving your answer to 5 decimal places.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 36 - Numerical Methods & Integration

 ${\sf Gameboard}$

Maths

Newton-Raphson Method 3i

Newton-Raphson Method 3i

The equation $x^3 - 5x + 3 = 0$ may be solved by the Newton-Raphson method. Succesive approximations to the root are denoted by $x_1, x_2, ..., x_n, ...$

Part A Newton-Raphson Formula

Find the Newton-Raphson formula in the form $x_{n+1} = F(x_n)$, where $F(x_n)$ is a single fraction in its simplest form.

Give an expression for $F(x_n)$.

The following symbols may be useful: x_n

Part B The derivative $F^\prime(x)$

Give an expression for F'(x).

The following symbols may be useful: Derivative(F, x), x

Part C
$$F'(x)$$
 when $x=lpha$

Show that $F'(\alpha)=0$, where α is any one of the roots of equation $x^3-5x+3=0$. Then, fill in the blanks to complete the argument below.

To say that α is a root of the equation $x^3-5x+3=0$ means that α is a value of x which satisfies this equation, i.e. $\alpha^3-5\alpha+3=$

In part B it was found that F'(x)= _____. Hence, we can write $F'(x)=g(x)\times$ _____, where $g(x)=\frac{6x}{(3x^2-5)^2}.$ When $x=\alpha$, this means $F'(\alpha)=g(\alpha)\times$ _____. Hence, as we know $\alpha^3-5\alpha+3=0,$ $F'(\alpha)=0.$

Items:

$$oxed{x} oxed{0} oxed{1} oxed{\frac{6x}{(3x^2-5)^2}} oxed{\frac{(3x^2-5)^2}{6x}} oxed{6x} oxed{\frac{(x^3-5x+3)}{(3x^2-5)^2}} oxed{(lpha^3-5lpha+3)} oxed{lpha^3-5lpha+3)}$$

Part D Finding a root

Use the Newton-Raphson method to find the root of equation $x^3 - 5x + 3 = 0$ which is close to 2. Write down sufficient approximations to find the root correct to 5 significant figures.

Adapted with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 36 - Numerical Methods & Integration

Home Gameboard Maths Area: Numerical Integration 2ii

Area: Numerical Integration 2ii

Figure 1: The curve with equation $y=\sqrt{1+x^3}$, for $2\leqslant x\leqslant 3$.

Figure 1 shows the curve with equation $y=\sqrt{1+x^3}$, for $2\leqslant x\leqslant 3$. The region under the curve between these limits has area A.

${\bf Part \, A} \quad \ \, {\bf Bounding} \, A$

Using the figure below, fill in the blanks to explain why $3 < A < \sqrt{28}$.

Figure 2: A diagram showing rectangles with areas which bound A.

Two rectangles are shown in **Figure 2**. Both rectangles begin on the x-axis and have width one. The area of the smaller rectangle, which lies the curve, is . The area of the second rectangle, the top of which lies the curve, is . The rectangles have areas which bound A, and hence:

$$3 < A < \sqrt{28}$$

Items:

 $oxed{3} oxed{6} oxed{6} oxed{\sqrt{28}} oxed{ ext{above}} oxed{3\sqrt{28}} oxed{ ext{below}}$

J	n is divided into 5 strips, each of width 0.2. Use ved lower and upper bounds for A . Give your a	
Give the I	ower bound for A .	
Give the i	upper bound for A .	

Adapted with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

Part B

Improved bounds

STEM SMART Double Maths 36 - Numerical Methods & Integration

Home Gameboard Maths Area: Numerical Integration 3i

Area: Numerical Integration 3i

Figure 1: The diagram shows the curve $y = \mathrm{e}^{-\frac{1}{x}}$ for $0 < x \leqslant 1$.

Figure 1 shows the curve $y = e^{-\frac{1}{x}}$ for $0 < x \leqslant 1$. A set of (n-1) rectangles is drawn under the curve as shown.

Part A Lower bound

Fill in the blanks below to explain why a lower bound for $\int_0^1 e^{-\frac{1}{x}} dx$ can be expressed as:

$$rac{1}{n} imes \left(\mathrm{e}^{-n}+\mathrm{e}^{-rac{n}{2}}+\mathrm{e}^{-rac{n}{3}}+...+\mathrm{e}^{-rac{n}{n-1}}
ight)$$

The integral $\int_0^1 e^{-\frac{1}{x}} dx$ is the area enclosed between the curve and the x-axis between x=0 and x=1.

$$rac{1}{n} imes \left(\mathrm{e}^{-n}+\mathrm{e}^{-rac{n}{2}}+\mathrm{e}^{-rac{n}{3}}+...+\mathrm{e}^{-rac{n}{n-1}}
ight)$$

Items:

 $oxed{ {
m e}^{-n} } oxed{ n} oxed{ {
m a lower}} oxed{ egin{array}{c} rac{1}{n} \ \end{array}} egin{array}{c} {
m e}^{-rac{1}{n}} \ \end{array} egin{array}{c} {
m an upper} \ \end{array} egin{array}{c} > \ \end{array} egin{array}{c} = \ \end{array}$

Part B Upper bound

Using a set of 3 rectangles, write down a similar expression for an upper bound for $\int_0^1 e^{-\frac{1}{x}} dx$.

The following symbols may be useful: e

Part C Evaluate bounds			
Evaluate these bounds using $n=4$, giving your answers correct to 3 significant figures.			
Give the lower bound			
Give the upper bound			
Part D Difference between bounds			
When $n\geqslant N$, the difference between the upper and lower bounds is less than 0.001 . By expressing this difference in terms of n , find the least possible value of N .			
Adapted with permission from UCLES A-level Maths papers, 2003-2017.			
Gameboard: STEM SMART Double Maths 36 - Numerical Methods & Integration			

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

Gameboard

Maths

Trapezium Rule 3i

Trapezium Rule 3i

The value of $\int_0^8 \ln{(3+x^2)}\,\mathrm{d}x$ obtained by using the trapezium rule with four strips is denoted by A.

Part A Trapezium Rule

Find the value of A correct to 3 significant figures.

Part B Approximation of $\int_0^8 \ln{(9+6x^2+x^4)}\,\mathrm{d}x$

Write, in terms of A, an expression for an approximate value of $\int_0^8 \ln{(9+6x^2+x^4)}\,\mathrm{d}x$.

The following symbols may be useful: A

Part C Approximation of $\int_0^8 \ln{(3e+ex^2)}\,\mathrm{d}x$

Write, in terms of A, an expression for an approximate value of $\int_0^8 \ln{(3e+ex^2)}\,\mathrm{d}x$.

The following symbols may be useful: A

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 36 - Numerical Methods & Integration

Home Gameboard

Maths

Trapezium Rule 4i

Trapezium Rule 4i

Figure 1 shows the curve $y=1.25^x$.

Figure 1: The curve $y = 1.25^x$.

Part A x-Coordinate

A point on the curve has y-coordinate 2, calculate its x-coordinate, giving your answer to 3 significant figures.

Part B	Derivative of \boldsymbol{y}
Fir	nd $rac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x .
The	e following symbols may be useful: Derivative(y, x), e, ln(), log(), x
Part C	Trapezium Rule
	se the trapezium rule with 4 intervals to estimate the area of the region bounded by the curve, the es and the line $x=4$. Give your answer to three significant figures.
Part D	Overestimate or Underestimate?
ls	the estimate found in part C an overestimate or an underestimate?
	Underestimate
	Overestimate

Part E More Accurate Estimates

How co	How could the trapezium rule could be used to find a more accurate estimate of the shaded region?			
	Double the number of trapezia, keeping their width the same. Using more trapezia always results in a better approximation.			
	Use a larger number of (narrower) trapezia over the same interval. This will reduce the surplus area between the tops of the trapezia and the curve, and so give a more accurate approximation.			
	Use the same number of trapezia, but reduce the width of the trapezia. Narrower trapezia are a better fit to the curve as they reduce the surplus area between the tops of the trapezia and the curve, and so will yield a better approximation to the area.			
	Use rectangles instead of trapezia. Their shape will better fit this particular curve, and so give a more accurate approximation.			

Adapted with permission from UCLES A-level Maths papers, 2003-2017.