2007~2018 年高考真题汇编"双曲线"

1	【2008 ∵ ·2】	双曲线 $\frac{x^2}{10} - \frac{y^2}{2} = 1$ 自	1的隹距为	()	
1.	2000 × 21	10	2	1 11 11 11 11		

A. $3\sqrt{2}$ B. $4\sqrt{2}$ C. $3\sqrt{3}$ D. $4\sqrt{3}$

2.【2009 理·4】双曲线 $\frac{x^2}{4} - \frac{y^2}{12} = 1$ 的焦点到渐近线的距离为

(A) $2\sqrt{3}$ (B) 2 (C) $\sqrt{3}$

(D) 1

3.【2011 文·4】椭圆 $\frac{x^2}{16} + \frac{y^2}{8} = 1$ 的离心率为()

A. $\frac{1}{3}$ B. $\frac{1}{2}$ C. $\frac{\sqrt{3}}{3}$ D. $\frac{\sqrt{2}}{2}$

4.【2013 理 I ·4 文 I ·4】已知双曲线 C: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的离心率为 $\frac{\sqrt{5}}{2}$,则 C 的渐近 线方程为(

A. $y = \pm \frac{1}{4}x$ B. $y = \pm \frac{1}{3}x$ C. $y = \pm \frac{1}{2}x$ D. $y = \pm x$

5.【2014 文 I·4】已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{3} = 1(a > 0)$ 的离心率为 2,则 a = ()

A. 2 B. $\frac{\sqrt{6}}{2}$ C. $\frac{\sqrt{5}}{2}$ D. 1

6.【2014 理 I·4】已知 F 是双曲线 $C: x^2 - my^2 = 3m(m > 0)$ 的一个焦点,则点 F 到 C的一条 渐近线的距离为

 $A \cdot \sqrt{3}$

B. 3 $C. \sqrt{3}m$ D. 3m

7.【2015 理 I·5】已知 $M(x_0, y_0)$ 是双曲线 $C: \frac{x^2}{2} - y^2 = 1$ 上的一点, F_1, F_2 是 C 的两个焦点,

若 $\overrightarrow{MF_1} \cdot \overrightarrow{MF_2} < 0$,则 y_0 的取值范围是(

A. $\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$ B. $\left(-\frac{\sqrt{3}}{6}, \frac{\sqrt{3}}{6}\right)$ C. $\left(-\frac{2\sqrt{2}}{3}, \frac{2\sqrt{2}}{3}\right)$ D. $\left(-\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3}\right)$

8.【2016 理 $I \cdot 5$ 】已知方程 $\frac{x^2}{m^2 + n} - \frac{y^2}{3m^2 - n} = 1$ 表示双曲线,且该双曲线两焦点间的距离为4,

取值范围是()

A. (-1,3) B. $(-1,\sqrt{3})$ C. (0,3) D. $(0,\sqrt{3})$

9.【2017 文 II · 5】 若 a > 1,则双曲线 $\frac{x^2}{a^2} - y^2 = 1$ 的离心率的取值范围是

A. $(\sqrt{2}, +\infty)$ B. $(\sqrt{2}, 2)$ C. $(1, \sqrt{2})$ D. (1, 2)

10.【2017 理Ⅲ·5】已知双曲线 C: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的一条渐近线方程为 $y = \frac{\sqrt{5}}{2}x$,且与 椭圆 $\frac{x^2}{12} + \frac{y^2}{2} = 1$ 有公共焦点,则 *C* 的方程为

A. $\frac{x^2}{8} - \frac{y^2}{10} = 1$ B. $\frac{x^2}{4} - \frac{y^2}{5} = 1$ C. $\frac{x^2}{5} - \frac{y^2}{4} = 1$ D. $\frac{x^2}{4} - \frac{y^2}{2} = 1$

11.【2017 文 $I \cdot 5$ 】已知 F 是双曲线 $C: x^2 - \frac{y^2}{2} = 1$ 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,点

A 的坐标是(1,3).则 $\triangle APF$ 的面积为

A. $\frac{1}{3}$ B. $\frac{1}{2}$ C. $\frac{2}{3}$

12.【2018 理 II·5 文 II·6】双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的离心率为 $\sqrt{3}$,则其渐近线方程为

A. $y = \pm \sqrt{2}x$ B. $y = \pm \sqrt{3}x$ C. $y = \pm \frac{\sqrt{2}}{2}x$ D. $y = \pm \frac{\sqrt{3}}{2}x$

点,|AB|为C的实轴长的2倍,则C的离心率为()

B. $\sqrt{3}$ C. 2 D. 3

14.【2017 理 II ·9】若双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的一条渐近线被圆 $(x-2)^2 + y^2 = 4$ 所截得的弦长为 2,则C的离心率为

A. 2 B. $\sqrt{3}$ C. $\sqrt{2}$ D. $\frac{2\sqrt{3}}{3}$

15.【2012 理·8 文·10】等轴双曲线 C 的中心在原点,焦点在 x 轴上,C 与抛物线 $y^2 = 16x$ 的准线 交于 A, B 两点, $|AB|=4\sqrt{3}$,则 C 的实轴长为 ()

A. $\sqrt{2}$ B. $2\sqrt{2}$ C. 4 D. 8

16.【2018 文III·10】已知双曲线 C: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率为 $\sqrt{2}$,则点(4,0)到C的 渐近线的距离为

A. $\sqrt{2}$ B. 2 C. $\frac{3\sqrt{2}}{2}$ D. $2\sqrt{2}$

17.【2015 理 $II \cdot 11$ 】已知 A, B 为双曲线 E 的左, 右顶点, 点 M 在 E 上, ΔABM 为等腰三角形, 且 顶角为 120° ,则 E 的离心率为(

B. 2 C. $\sqrt{3}$ D. $\sqrt{2}$

2 21.【2010 理·12】已知双曲线 E 的中心为原点, P(3,0) 是 E 的焦点,过 F 的直线 l 与 E 相交于 A B 两点,且 AB 的中点为 N(-12,-15) ,则 E 的方程式为

(A)
$$\frac{x^2}{3} - \frac{y^2}{6} = 1$$
 (B) $\frac{x^2}{4} - \frac{y^2}{5} = 1$ (C) $\frac{x^2}{6} - \frac{y^2}{3} = 1$ (D) $\frac{x^2}{5} - \frac{y^2}{4} = 1$

22.【2007 理·13 文·13】已知双曲线的顶点到渐近线的距离为 2,焦点到渐近线的距离为 6,则该双曲线的离心率为_____.3

23.【2008 理·14】设双曲线 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ 的右顶点为 A,右焦点为 F.过点 F 平行双曲线的一条渐近

线的直线与双曲线交于点 B,则 $\triangle AFB$ 的面积为______. $\frac{32}{15}$

25.【2015 文 II ·15】已知双曲线过点 $(4,\sqrt{3})$,且渐近线方程为 $y=\pm\frac{1}{2}x$,则该双曲线的标准方程为______. $\frac{x^2}{4}-y^2=1$

26.【2017 理 I ·15】已知双曲线 C: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a>0, b>0) 的右顶点为 A,以 A 为圆心,b 为半径做圆 A,圆 A 与双曲线 C 的一条渐近线交于 M、N 两点。若 $\angle MAN=60^\circ$,则 C 的离心率为 _______。 $\frac{2\sqrt{3}}{3}$

27.【2015 文 I ·16】已知 F 是双曲线 $C: x^2 - \frac{y^2}{8} = 1$ 的右焦点,P 是 C 左支上一点, $A(0,6\sqrt{6})$,当 ΔAPF 周长最小时,该三角形的面积为______. 12 $\sqrt{6}$

MF_1 与 x			
2是坐标			
为			
的直线与			
交于 A,			
则该双			
一条渐近			
<mark>5</mark>			
示准方程			
, <i>b</i> 为半			
离心率为			
$\sqrt{6}$),当			