高等数字集成电路作业-第四五章

Author: 文家宝

1. 基础概念问题

1. 请简要描述10进制整数与16进制整数之间相互转换方法?

将10进制整数通过除2取余数的方法得到2进制表示,再将2进制数按照每4位表示一个16进制数的方式转成16进制表示。

2. 请简要描述数的原码、反码和补码的表示方式和对应表示数值范围?

原码:原码就是符号位加上真值的绝对值,即用第一位表示符号,其余位表示值

[+1]原 = 0000 0001

[-1]原 = 1000 0001

8位二进制表示数的范围:[-127, 127] 3. 请简要描述格雷码编码方式和优点,并具体给出5位格雷码映射关系表格??

格雷码:在一组数的编码中,使得任意两个相邻的代码只有一位二进制数不同。二进制转变为格雷码通 过相邻位异或实现

自然二进制数 5位格雷码

00000	00000
00001	00001
00010	00011
00011	00110
00100	00111

格雷码

日然——江刺致	3位恰亩均
00101	00101
00110	00100
00111	01100
01000	01101
01001	01111
01010	01110
01011	01010
01100	01011
01101	01001
01110	01000
01111	11000
10000	11001
10001	11011
10010	11010
10011	11110

自然二进制数	5位格雷码
日然——匹刚奴	3 四代由に

10100	11111
10110	11101
10111	11100
11000	10100
11001	10101
11010	10111
11011	10110
11100	10010
11101	10011
11110	10001
11111	10000

优点:在相邻位间转换时,只有一位产生变化。大大地减少了由一个状态到下一个状态时逻辑的混淆。

4. 请简要描述IEEE 754标准中32位单精度浮点数格式、范围和精度?简要比较并分析浮点数和定点数在硬件实现方面的优缺点?

浮点数:优点:能够表示高精度,范围大 缺点:计算电路非常复杂 定点数:优点:计算电路很简单 缺点:不能够表示高精度,范围小

2. 基于VerilogHDL进行逻辑电路设计

1. 跑表

设计一个跑表时序逻辑电路,通过按钮控制及数字显示,有时分秒显示,可以清零、开始和暂停。系统主时钟频率为10 MH。 其中按钮Clear实现清零功能(任意状态按下时分秒值清零并停止计时)、按钮Start/Stop实现开始和暂停功能(若当前状态为停止则按下继续进行计时,若当前状态为计时则按下暂停计时)。

模块输入输出功能定义:

名称	方向	位宽	描述
clk	Input	1	系统时钟,10 MHz
rst_n	Input	1	异步复位,低电平有效
clear	Input	1	清零按钮,上升沿有效
start_stop	Input	1	开始/暂停按钮,上升沿有效
hr_h	Output	4	时高位输出,取值0~5
hr_l	Output	4	时低位输出,取值0~9
min_h	Output	4	分高位输出,取值0~5
min_l	Output	4	分低位输出,取值0~9
sec_h	Output	4	秒高位输出,取值0~5
sec_l	Output	4	秒低位输出,取值0~9

实现思路:

```
always @(posedge clk or negedge rst_n) begin
  if (!rst_n)begin
    sec_h <= 4'b0;
    sec_l <= 4'b0;
    sec_cout<=1'd0;
end else if (clear)begin
    sec_l <= 0;
    sec_h <= 0;</pre>
```

```
sec_cout<=1'd0;
   end else if (start_stop)begin
      if(sec_l>=4'd9)begin
         sec_l <= 0;
         if(sec_h>=4'd5)begin
            sec_cout<=1'd1;
            sec_h <= 0;
         end else begin
            sec_h \le sec_h + 4'd1;
            sec_cout<=1'd0;
         end
      end else begin
         sec_h <= sec_h;</pre>
         sec_l <= sec_l +4'd1;
         sec_cout<=1'd0;
      end
   end else begin
      sec_l <= sec_l;
      sec_h <= sec_h;
      sec_cout<=sec_cout;</pre>
   end
end
reg min_cout;
always @(posedge clk or negedge rst_n) begin
   if (!rst_n)begin
      min_h <= 7'b0;
      min_l <= 7'b0;
      min_cout<=1'd0;
   end else if (clear)begin
      min_l <= 0;
      min_h <= 0;
      min_cout<=1'd0;
   end else begin
      if(min_l>=4'd9)begin
        // $display("%d",min_l);
         if(sec_cout)begin
            min_l <= 0;
         end
         if(min_h>=4'd5&&sec_cout)begin
            min_cout<=1'd1;
            min_h <= 0;
         end else if(sec_cout)begin
            min_h <= min_h +4'd1;
            min_cout<=1'd0;
         end
      end else begin
         min_h <= min_h;
         min_l <= min_l +sec_cout;</pre>
         min_cout<=1'd0;
      end
   end
```

```
end
reg hr_cout;
always @(posedge clk or negedge rst_n) begin
   if (!rst_n)begin
      hr_h <= 7'b0;
      hr_l <= 7'b0;
      hr_cout<=1'd0;</pre>
   end else if (clear)begin
      hr_l <= 0;
      hr_h <= 0;
      hr_cout<=1'd0;</pre>
   end else begin
      if(hr_l>=4'd9)begin
         if(min_cout)begin
             hr_l <= 0;
         end
         if(hr_h>=4'd5&&min_cout)begin
             hr_cout<=1'd1;
             hr_h <= 0;
         end else if(min_cout&&hr_l==4'd9)begin
             hr_h <= hr_h +4'd1;
             hr_cout<=1'd0;</pre>
         end
      end else begin
         hr_h <= hr_h;
         hr_l <= hr_l +min_cout;</pre>
         hr_cout<=1'd0;</pre>
      end
   end
end
endmodule
```

仿真截图:

逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为434Mhz,采用最小面积约束进行综合

```
set RST_NAME
                       rst_n
set CLK_NAME
                       clk
set CLK_PERIOD_I
                       10
set CLK_PERIOD
                       [expr $CLK_PERIOD_I*0.95]
set CLK SKEW
                       [expr $CLK_PERIOD*0.05]
set CLK_SOURCE_LATENCY [expr $CLK_PERIOD*0.1]
set CLK_NETWORK_LATENCY
                       [expr $CLK_PERIOD*0.1]
set CLK_TRAN
                       [expr $CLK_PERIOD*0.01]
                       [expr $CLK_PERIOD*0.4]
set INPUT_DELAY_MAX
set INPUT_DELAY_MIN
set OUTPUT_DELAY_MAX
                        [expr $CLK_PERIOD*0.4]
set OUTPUT_DELAY_MIN
                       6
set MAX_FANOUT
set MAX_TRAN
                       5
set MAX_CAP
                       1.5
set ALL_INPUT_EX_CLK [remove_from_collection [all_inputs] [get_ports
$CLK_NAME]]
#======Define Design
Environment==========
#GUIDANCE: use the default
set_max_area 0
#set_max_transition $MAX_TRAN [current_design]
#set_max_fanout $MAX_FANOUT [current_design]
#set_max_capacitance $MAX_CAP [current_design]
#======= Set Design
Constraints============
#-----Clock and Reset Definition-----
set_drive 0 [get_ports $CLK_NAME]
create_clock -name $CLK_NAME -period $CLK_PERIOD [get_ports $CLK_NAME]
set_dont_touch_network [get_ports $CLK_NAME]
set_clock_uncertainty $CLK_SKEW [get_clocks $CLK_NAME]
set_clock_transition $CLK_TRAN [all_clocks]
set_clock_latency -source $CLK_SOURCE_LATENCY [get_clocks $CLK_NAME]
set_clock_latency -max $CLK_NETWORK_LATENCY [get_clocks $CLK_NAME]
#rst_ports
set_drive 0
                              [get_ports $RST_NAME]
set_dont_touch_network
                              [get_ports $RST_NAME]
set_false_path -from
                              [get_ports $RST_NAME]
set_ideal_network -no_propagate
                             [get_ports $RST_NAME]
#-----I/O Constraint-----
set_input_delay -max $INPUT_DELAY_MAX
                                  -clock $CLK_NAME
```

\$ALL_INPUT_EX_CLK		ATLAY MIN	o l o o l c	COLIZ NAME	
<pre>set_input_delay \$ALL_INPUT_EX_CLK</pre>		PELAY_MIN	-CLOCK	\$CLK_NAME	
set_output_delay		DELAY MAX	-clock	\$CLK NAME	[all outnuts]
set_output_delay					
-add	+			+	[0.10_000]
set_load 0.2 [a	all_outputs]				
Point			Incr	Path	
clock clk (rise				0.00	
clock network d				1.90	
watch_u0/sec_h_				1.90	
watch_u0/sec_h_		(QXIM)		3.76 3.76	
watch_u0/sec_h[sec_h[0] (out)	oj (watch)			3.76	
data arrival ti	ne		0.00	3.76	1
adea arrivat ei				0.70	
clock clk (rise	edge)		9.50	9.50	
clock network d	• ,		1.90	11.40	
clock uncertain	ty		-0.47	10.92	
output external	delay		-3.80	7.12	
data required t	ime			7.12	
data required to				7.12	
data arrival ti	ne 			-3.76	
slack (MET)				3.36	
Stack (MLT)				3.30	
	Internal	Switchi	ng	Leaka	ige
Total					
Power Group	Power	Power		Power	
Power (%) Attrs				
io_pad		0.00	90	0.00	000
0.0000 (0.00%		0.00	3.0	0.00	100
memory 0.0000 (0.00%		0.00	30	0.00	100
black_box	•	0.00	90	0.00	000
0.0000 (0.00%				0.00	
clock_network	•	0.00	90	0.00	000
0.0000 (0.00%)				
register	0.2202	8.6813e-	93	3.4926e+	-04
0.2289 (95.57%					
sequential		0.00	90	0.00	000
0.0000 (0.00%	•			0.00	0.4
combinational 5.		4.9921e-	93	3.8542e+	-04
1.0615e-02 (4	•				
Total		1 36730-	92 mW	7 34680+	-04 nW
0.2395 mW	0.2230 IIIW	I.30/3C-	OZ IIIVV	7.340061	O-T μW
Library(s) Used:					

ss_1v62_125c (File: /opt/PDKs/smic_180/SM00LB501-FE-00000-r0p0-00rel0/aci/sc-m/synopsys/ss_1v62_125c.db) Number of ports: 73 Number of nets: 185 Number of cells: 135 Number of combinational cells: 100 Number of sequential cells: 32 Number of macros/black boxes: 0 Number of buf/inv: 13 Number of references: 2 Combinational area: 1251,263981 Buf/Inv area: 85.612799 Noncombinational area: 1442.246437 Macro/Black Box area: 0.00000 Net Interconnect area: undefined (No wire load specified) Total cell area: 2693.510418

2. 快速加法器

实现快速加法器组合逻辑,要实现的功能如下: 输入为两个16位有符号数,输出17位相加结果。要求采用超前 进位(Carry-look-ahead)结构

 $\mathbf{0}110000010000000 + \mathbf{1}0000000000000000 = \mathbf{1}111000001000001 (24704) + (-32767) = (-8063)$

模块输入输出功能定义:

名称	方向	位宽	描述
a	Input	16	输入数据,二进制补码
b	Input	16	输入数据,二进制补码
sum	Input	17	输出和a + b,二进制补码

实现思路一:快速加法器

```
module adder(
   input a,
   input b,
   input ci,
   output sum
);
```

```
assign sum = a \wedge b \wedge ci;
endmodule
module cla(
    input c0,
    output c1,
    output c2,
    output c3,
    output c4,
    input p1,
    input p2,
    input p3,
    input p4,
    input g1,
    input g2,
    input g3,
    input g4
);
    assign c1 = g1 \land (p1 \& c0);
    assign c2 = g2 \land (p2 \& g1) \land (p2 \& p1 \& c0);
    assign c3 = g3 \land (p3 \& g2) \land (p3 \& p2 \& g1) \land (p3 \& p2 \& p1 \& c0);
    assign c4 = g4 \land (p4&g3)\land (p4&p3&g2)\land (p4&p3&p2&g1)\land (p4&p3&p2&p1&c0);
endmodule
module adder_cla4(
      input [3:0] a,
      input [3:0] b,
      input ci,
      output Gm,
      output Pm,
      output [3:0] sum
);
    wire p1, p2, p3, p4, g1, g2, g3, g4;
    wire c1, c2, c3;
    adder_u0(
         .a(a[0]),
         .b(b[0]),
         .ci(ci),
         .sum(sum[0])
    );
    adder_u1(
         .a(a[1]),
         .b(b[1]),
         .ci(c1),
         .sum(sum[1])
    );
    adder_u2(
```

```
.a(a[2]),
         .b(b[2]),
        .ci(c2),
        .sum(sum[2])
    );
    adder adder_u3(
        .a(a[3]),
         .b(b[3]),
        .ci(c3),
        .sum(sum[3])
    );
    cla cla(
        .co(ci),
        .c1(c1),
        .c2(c2),
        .c3(c3),
        .c4(),
        .p1(p1),
        .p2(p2),
        .p3(p3),
        .p4(p4),
        .g1(g1),
        .g2(g2),
        .g3(g3),
        .g4(g4)
    );
    assign p1 = a[0] \land b[0];
    assign p2 = a[1] \land b[1];
    assign p3 = a[2] \land b[2];
    assign p4 = a[3] \land b[3];
    assign g1 = a[0] \& b[0];
    assign g2 = a[1] \& b[1];
    assign g3 = a[2] \& b[2];
    assign g4 = a[3] \& b[3];
  assign Pm = p1 \& p2 \& p3 \& p4;
  assign Gm = g4 \land (p4 \& g3) \land (p4 \& p3 \& g2) \land (p4 \& p3 \& p2 \& g1);
endmodule
module cla16(
    input
            [15:0] a_i,
    input [15:0] b_i,
    output [16:0] sum_o
);
    wire c4, c8, c12;
```

```
wire Pm1, Gm1, Pm2, Gm2, Pm3, Gm3, Pm4, Gm4;
adder_cla4 adder_4_u0(
  .a(a_i[3:0]),
  .b(b_i[3:0]),
  .ci(1'b0),
  .Gm(Gm1),
  .Pm(Pm1),
  .sum(sum_o[3:0])
);
adder_cla4 adder_4_u1(
  .a(a_i[7:4]),
  .b(b_i[7:4]),
  .ci(c4),
  .Gm(Gm2),
  .Pm(Pm2),
  .sum(sum_o[7:4])
);
adder_cla4 adder_4_u2(
  .a(a_i[11:8]),
  .b(b_i[11:8]),
  .ci(c8),
  .Gm(Gm3),
  .Pm(Pm3),
  .sum(sum_o[11:8])
);
adder_cla4 adder_4_u3(
  .a(a_i[15:12]),
  .b(b_i[15:12]),
  .ci(c12),
  .Gm(Gm4),
  .Pm(Pm4),
  .sum(sum_o[15:12])
);
assign c4 = Gm1;
assign c8 = Gm2 \land (Pm2 \& Gm1);
assign c12 = Gm3 \land (Pm3 \& Gm2) \land (Pm3 \& Pm2 \& Gm1);
assign sum_o[16] = sum_o[15];
```

仿真截图:

逻辑综合: 采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为,采用最小面积约束进行综合

```
#=======Env
Vars===========
set RST_NAME
                       rst_n
set CLK_NAME
                       clk
set CLK_PERIOD_I
                        2.5
set CLK_PERIOD
                       [expr $CLK_PERIOD_I*0.95]
set CLK_SKEW
                       [expr $CLK_PERIOD*0.05]
set CLK_SOURCE_LATENCY
                       [expr $CLK_PERIOD*0.1]
set CLK_NETWORK_LATENCY
                      [expr $CLK_PERIOD*0.1]
set CLK_TRAN
                        [expr $CLK_PERIOD*0.01]
set INPUT_DELAY_MAX
                        [expr $CLK_PERIOD*0.4]
set INPUT_DELAY_MIN
                         0
set OUTPUT_DELAY_MAX
                        [expr $CLK_PERIOD*0.4]
set OUTPUT_DELAY_MIN
set MAX_FANOUT
                       6
set MAX_TRAN
                       5
                       1.5
set MAX_CAP
set ALL_INPUT_EX_CLK [remove_from_collection [all_inputs] [get_ports
$CLK_NAME]]
#======Define Design
Environment===========
#GUIDANCE: use the default
set max area 0
#set_max_transition $MAX_TRAN [current_design]
#set_max_fanout $MAX_FANOUT [current_design]
#set_max_capacitance $MAX_CAP
                            [current_design]
#======== Set Design
Constraints==========
#-----Clock and Reset Definition-------
set_drive 0 [get_ports $CLK_NAME]
create_clock -name $CLK_NAME -period $CLK_PERIOD [get_ports $CLK_NAME]
set_dont_touch_network [get_ports $CLK_NAME]
```

```
set_clock_uncertainty $CLK_SKEW [get_clocks $CLK_NAME]
set_clock_transition $CLK_TRAN [all_clocks]
set_clock_latency -source $CLK_SOURCE_LATENCY [get_clocks $CLK_NAME]
set_clock_latency -max $CLK_NETWORK_LATENCY [get_clocks $CLK_NAME]
#rst_ports
set_drive 0
                              [get_ports $RST_NAME]
set_false_path -from
set_dont_touch_network
                              [get_ports $RST_NAME]
                              [get_ports $RST_NAME]
set_ideal_network -no_propagate [get_ports $RST_NAME]
set_input_delay -max $INPUT_DELAY_MAX -clock $CLK_NAME
$ALL_INPUT_EX_CLK
set_input_delay -min $INPUT_DELAY_MIN -clock $CLK_NAME
$ALL_INPUT_EX_CLK -add
set_output_delay -max $OUTPUT_DELAY_MAX -clock $CLK_NAME [all_outputs]
set_output_delay -min $OUTPUT_DELAY_MIN -clock $CLK_NAME [all_outputs]
-add
set_load 0.2 [all_outputs]
Number of ports:
                                    276
Number of nets:
                                    453
Number of cells:
                                    230
Number of combinational cells:
                                   154
                                   51
Number of sequential cells:
Number of macros/black boxes:
                                    0
Number of buf/inv:
                                     21
Number of references:
                                     7
Combinational area:
                            3055.718386
Buf/Inv area:
                             155.859198
Noncombinational area:
                             3178.649651
Macro/Black Box area:
                             0.000000
Net Interconnect area: undefined (No wire load specified)
Total cell area:
                             6234.368036
              Internal
                            Switching
                                             Leakage
Total
Power Group Power
                            Power
                                             Power
             ) Attrs
Power ( %
io_pad
                0.0000
                              0.0000
                                              0.0000
0.0000 ( 0.00%)
                        0.0000
         0.0000
                                              0.0000
memory
0.0000 ( 0.00%)
black_box 0.0000
                        0.0000
                                              0.0000
0.0000 ( 0.00%)
clock_network 0.0000
                               0.0000
                                               0.0000
0.0000 ( 0.00%)
```

register 3.3634 (93.08%)	3.0447	0.3186	1.2987e+05
sequential	0.0000	0.0000	0.0000
0.0000 (0.00%) combinational 0.2499 (6.92%)	0.1771	7.2620e-02	1.7797e+05
Total 3.6133 mW	3.2218 mW	0.3912 mW	3.0784e+05 pW
	3.2218 mW	0.3912 mW	3.0784e+05 pW

1. 桶形移位器

实现桶形移位器组合逻辑,要实现的功能如下:输入为32位二进制向量,根据方向和位移值输出循环移位后的32位结果。例如:输入向量0001100010**1000000000000000000**,方向左,位移值10,输出向量**100000000000000000000**0001100010;输入向量**00000001111**1111110000000000011,方向右,位移植20,输出向量1111000000000011**000000001111**.

模块输入输出功能定义:

名称	方向	位宽	描述
data_in	Input	32	输入数据
dir	Input	1	位移方向0:循环左移 1:循环右移
sh	Input	5	位移值,取值0~31
data_out	Output	32	输出数据

实现思路

```
always @(*)begin
if(dir)begin // right
  data_out = sh[0] ? {data_in[0], data_in[31:1]} : data_in;
  data_out = sh[1] ? {data_in[1:0], data_out[31:2]} : data_out;
  data_out = sh[2] ? {data_in[3:0], data_out[31:4]} : data_out;
  data_out = sh[3] ? {data_in[7:0], data_out[31:8]} : data_out;
  data_out = sh[4] ? {data_in[15:0], data_out[31:16]} : data_out;
end else begin // left
  data_out = sh[0] ? {data_in[30:0], data_in[31]} : data_in;
```

```
data_out = sh[1] ? {data_out[29:0], data_in[31:30]} : data_out;
  data_out = sh[2] ? {data_out[27:0], data_in[31:28]} : data_out;
  data_out = sh[3] ? {data_out[23:0], data_in[31:24]} : data_out;
  data_out = sh[4] ? {data_out[15:0], data_in[31:16]} : data_out;
  end
end
```

仿真截图:

逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为200Mhz,采用最小面积约束进行综合

```
Vars============
set RST_NAME
                         rst_n
set CLK_NAME
                         clk
set CLK_PERIOD_I
                         10
set CLK_PERIOD
                         [expr $CLK_PERIOD_I*0.95]
set CLK SKEW
                         [expr $CLK_PERIOD*0.05]
set CLK_SOURCE_LATENCY
                         [expr $CLK_PERIOD*0.1]
                         [expr $CLK_PERIOD*0.1]
set CLK_NETWORK_LATENCY
set CLK_TRAN
                         [expr $CLK_PERIOD*0.01]
set INPUT_DELAY_MAX
                         [expr $CLK_PERIOD*0.4]
set INPUT_DELAY_MIN
                           0
set OUTPUT_DELAY_MAX
                         [expr $CLK_PERIOD*0.4]
set OUTPUT_DELAY_MIN
set MAX FANOUT
                        6
set MAX_TRAN
                        5
set MAX_CAP
                        1.5
set ALL_INPUT_EX_CLK [remove_from_collection [all_inputs] [get_ports
$CLK_NAME]]
#======Define Design
Environment===========
#GUIDANCE: use the default
set_max_area 0
                                [current_design]
#set_max_transition $MAX_TRAN
#set_max_fanout
                   $MAX_FANOUT
                                [current_design]
#set_max_capacitance $MAX_CAP
                                [current_design]
```

```
#======== Set Design
Constraints===========
#-----Clock and Reset Definition------
set_drive 0 [get_ports $CLK_NAME]
create_clock -name $CLK_NAME -period $CLK_PERIOD [get_ports $CLK_NAME]
set_dont_touch_network [get_ports $CLK_NAME]
set_clock_uncertainty $CLK_SKEW [get_clocks $CLK_NAME]
set_clock_transition $CLK_TRAN [all_clocks]
set_clock_latency -source $CLK_SOURCE_LATENCY [get_clocks $CLK_NAME]
set_clock_latency -max $CLK_NETWORK_LATENCY [get_clocks $CLK_NAME]
#rst_ports
set_drive 0
                              [get_ports $RST_NAME]
set_dont_touch_network
                              [get_ports $RST_NAME]
set_false_path -from
                              [get_ports $RST_NAME]
set_ideal_network -no_propagate [get_ports $RST_NAME]
#-----I/O Constraint-----
set_input_delay -max $INPUT_DELAY_MAX -clock $CLK_NAME
$ALL_INPUT_EX_CLK
set_input_delay -min $INPUT_DELAY_MIN -clock $CLK_NAME
$ALL_INPUT_EX_CLK -add
set_output_delay -max $OUTPUT_DELAY_MAX -clock $CLK_NAME [all_outputs]
set_output_delay -min $OUTPUT_DELAY_MIN -clock $CLK_NAME [all_outputs]
-add
set_load 0.2 [all_outputs]
Report : timing
      -path full
      -delay max
      -max_paths 1
Design : top
Version: L-2016.03-SP1
Date : Sun Oct 23 23:02:29 2022
Operating Conditions: ss_1v62_125c Library: ss_1v62_125c
Wire Load Model Mode: top
 Startpoint: data_out_reg_0_
            (rising edge-triggered flip-flop clocked by clk)
 Endpoint: data_out[0]
          (output port clocked by clk)
 Path Group: clk
 Path Type: max
 Point
                                     Incr Path
                                    0.00 0.00
 clock clk (rise edge)
```

clock network	delay (ideal)	1.90	1.90	
data_out_reg_0	_/CK (DFFRQX1M)	0.00	1.90 r	
data out reg 0	_/Q (DFFRQX1M)	1.74	3.64 r	
data_out[0] (out)		0.00		
data_odt[o] (o	•	0.00	3.64	
uala arrival l	Tille		3.04	
clock clk (ris	e edge)	9.50	9.50	
clock network		1.90		
	,		10.92	
clock uncertai	•			
output externa		-3.80	7.12	
data required	time		7.12	
data required			7.12	
data arrival t			-3.64	
slack (MET)			3.49	
	Internal	Switching	Leakage	
Total	Davis	Davis		
Power Group		Power	Power	
Power (%) Attrs			
io_pad	0.0000	0.0000	0.0000	
0.000 (0.00	%)			
memory	0.0000	0.0000	0.0000	
9.0000 (0.00	%)			
black_box		0.0000	0.0000	
		0.0000	0.0000	
0.0000 (0.00	*			
- · · · -	0.0000	0.0000	0.0000	
0.0000 (0.00	%)			
register	0.5165	0.1363	8.3525e+04	
0.6529 (87.15	%)			
sequential		0.0000	0.0000	
0.0000 (0.00		0.0000	0.0000	
,	,	4.7940e-02	1 50670105	
9.6281e-02 (1		4.79400-02	1.58076+05	
•	•			
	0.5647 mW	0.1842 mW	2.4220e+05 pW	
9.7492 mW				
1				
_ibrary(s) Used:				
		Vo /omi = 400 /0::00: =	F04 FF 00000	0
0 = 4 00 10=	/ E = 1 / /	KS/SM1C 180/SM001 R	501-FE-00000-r0p	⊍ -
	(File: /opt/PD			
	` .			
00rel0/aci/sc-m/	synopsys/ss_1v6	2_125c.db)		
00rel0/aci/sc-m/ Number of ports:	synopsys/ss_1v6	2_125c.db) 142		
00rel0/aci/sc-m/ Number of ports: Number of nets:	synopsys/ss_1v6	2_125c.db) 142 620		
00rel0/aci/sc-m/ Number of ports: Number of nets: Number of cells:	synopsys/ss_1v6	2_125c.db) 142 620 511		
ss_1v62_125c 00rel0/aci/sc-m/ Number of ports: Number of nets: Number of cells: Number of combin	synopsys/ss_1v6	2_125c.db) 142 620		
00rel0/aci/sc-m/ Number of ports: Number of nets: Number of cells:	synopsys/ss_1v6	2_125c.db) 142 620 511		

Number of buf/inv: 30
Number of references: 2

Combinational area: 5250.918320
Buf/Inv area: 197.567997
Noncombinational area: 3226.944084
Macro/Black Box area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 8477.862404