

算法基础 Foundation of Algorithms

主讲人 徐云 Fall 2018, USTC

- Part 1 Foundation
- Part 2 Sorting and Order Statistics
- Part 3 Data Structure
- Part 4 Advanced Design and Analysis Techniques
- Part 5 Advanced Data Structures
- Part 6 Graph Algorithms
 - chap 22 Elementary Graph Algorithms
 - chap 23 Minimum Spanning Trees
 - chap 24 Single-Source Shortest Paths
 - chap 25 All-Pairs Shortest Paths
- Part 7 Selected Topics
- Part 8 Supplement

Part 6 Graph Algorithms

- 22 Elementary Graph Algorithms
- 23 Minimum Spanning Trees
- 24 Single-Source Shortest Paths
- 25 All-Pairs Shortest Paths

22 Elementary Graph Algorithms

- Background and History
- Graph Foundations
- Breadth-first Search (BFS)
- Depth-first Search (DFS)

Background and History (1)

- 1736: Leonhard Euler(1707-1783)
 - □Basel, 1707-St. Petersburg, 1786.
 - □He wrote A solution to a problem concerning the geometry of a place. First paper in graph theory.
- Problem of the Königsberg bridges:
 - Starting and ending at the same point, is it possible to cross all seven bridges just once and return to the starting point?

Background and History (2)

The map of Konigsberg in the eighteenth century, showing the river and the seven bridges that inspired Euler to introduce the first graph, creating graph theory.

Graph Definitions (1)

- Graph G = (V, E)
 - \square \lor = set of vertices; E = set of edges \subseteq ($\lor \times \lor$);
- Types of graphs
 - Undirected: edge (u, v) = (v, u); for all v, (v, v) ∉ E (No self loops.)
 - □ Directed: (u, v) is edge from u to v, denoted as u → v. Self loops are allowed.
 - Weighted: each edge has an associated weight, given by a weight function w: $E \rightarrow R$.
 - □ Dense: $|E| \approx |V|^2$.
 - □ Sparse: $|E| \ll |V|^2$.
- $|E| = O(|V|^2)$

Graph Definitions (2)

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
 - □ Symmetric if G is undirected.
 - □ Not necessarily so if G is directed.
- If G is connected:
 - □ There is a path between every pair of vertices.
 - $\Box |E| \ge |V| 1.$
 - □ Furthermore, if |E| = |V| 1, then G is a tree.
- Other definitions in Appendix B (B.4 and B.5) as needed.

Representation of Graphs

- Two standard ways:
 - □ Adjacency Lists.

□ Adjacency Matrix.

1 2 3 4	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

Their advantages and disadvantages.

Graph Traversals

- Some applications involving graph G:
 - □ Is G connected?
 - □Does G contain a cycle?
 - □Is G a tree?
 - □Is G bipartite?
 - Find connected components.
 - Topological sorting
 - □ Is directed G strongly connected?

Breadth-first Search (BFS)

• Goal

- □ Systematically explores the edges of G to visit each node of G reachable from s. And,
- □ based on all vertices at distance k from s, discovers any vertices at distance k + 1 from s.

Basic idea

- □ Use a First-In-First-Out (FIFO) queue to implement the frontier (新语点) or gray nodes later.
- Expand the *frontier* between already discovered and undiscovered vertices one step at a time.
- Thinking: which one is better?
 - O(|V|+|E|) time via adjacency list, and $O(|V|^2)$ via adjacency matrix, generally.
 - Depend on the density/sparseness of the graph.

BFS: Method

- Input: Graph G = (V, E), either directed or undirected, and source vertex $s \in V$.
- Output:
 - Builds breadth-first tree with root s that contains all reachable vertices. And,
 - $\square d[v]$ = distance (shortest, or pathsmallest # of edges) from s to v, for all $v \in V$. $d[v] = \infty$ if v is not reachable from s.
 - $\square \pi[v] = u$ such that (u, v) is last edge on shortest path $s \sim v$, which u is v's predecessor.

Definitions:

- Path between vertices u and v: Sequence of vertices $(v_1, v_2, ..., v_k)$ such that $u = v_1$ and $v = v_k$, and $(v_i, v_{i+1}) \in E$, for all $1 \le i \le k-1$.
- Length of the path: Number of edges in the path.
- Path is simple if no vertex is repeated.

BFS: Coloring the Nodes

- To ease illustration, we use colors (white, gray and black) to denote the state of the node during the search.
 - □ White Undiscovered.
 - □ Gray Discovered but not finished.
 - □ Black Finished.
- All nodes change color in order: white → gray →black.

BFS for Shortest Paths

First iteration

Finished

Second iteration

Discovered

Third iteration

O Undiscovered

Algorithm of BFS

15

```
BFS(G,s)
1. for each vertex u in V[G] - \{s\}
                                                          white: undiscovered
             do color[u] \leftarrow white
                                                          gray: discovered
                                                          black: finished
3
                 d[u] \leftarrow \infty
                 \pi[u] \leftarrow \text{nil}
4
                                                          Q: a queue of discovered vertexes
     color[s] \leftarrow gray
                                                              color[v]: color of v
    d[s] \leftarrow 0
                                                          d[v]: distance from s to v
7 \pi[s] \leftarrow \text{nil}
                                                          \pi[u]: predecessor of v
   Q \leftarrow \Phi
     enqueue(Q,s)
10 while Q \neq \Phi
11
             \mathbf{do} \mathbf{u} \leftarrow \text{dequeue}(\mathbf{Q})
12
                          for each v in Adj[u]
13
                                       do if color[v] = white
14
                                                     then color[v] \leftarrow gray
15
                                                            d[v] \leftarrow d[u] + 1
16
                                                            \pi[v] \leftarrow u
                                                            enqueue(Q, v)
17
```

 $color[u] \leftarrow black$

18

BFS: Example (1)

BFS: Example (2)

2018/12/18 算法基础 17

Analysis of BFS

- Initialization takes O(|V|).
- Traversal Loop
 - □ After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1). So, total time for queuing is O(|V|).
 - The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(|E|)$.
- Summing up over all vertices => total running time of BFS is $O(|\mathcal{U}+|\mathcal{E}|)$, linear in the size of the adjacency list representation of graph.
- Correctness Proof
 - We omit for BFS and DFS later.

BFS Tree

- For a graph G = (V, E) with source s, the predecessor subgraph of G is $G_{\pi} = (V_{\pi}, E_{\pi})$ where

 - $\square E_{\pi} = \{ (\pi[\nu], \nu) \in E \colon \nu \in V_{\pi} \{s\} \}$
- The predecessor subgraph G_{π} is a *breadth-first* tree if:
 - \square V_{π} consists of the vertices reachable from s and
 - of or all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called *tree edges*. $|E_{\pi}| = |V_{\pi}| 1$.

Depth-first Search (DFS)

Goal

- □ Systematically explore every vertex and edge of G.
- □ Go "deeper" whenever possible.
- Method: Until there are no more undiscovered nodes
 - □ Pick an undiscovered node and start a depth first search from it.
 - □ The search proceeds from the most recently discovered node to discover new nodes.
 - When the last discovered node v is fully explored, backtrack to the node used to discover v. Eventually, the start node is fully explored.

Remark

□ Don't require a pre-specified source node in textbook.

Output varies depending on the nodes order.

2018/12/18 算法基础 20

DFS: Method

 Input: G = (V, E), directed or undirected. No source vertex given!

Output:

- □ 2 timestamps on each vertex. Integers between 1 and 2|V|.
 - d[v] = discovery time (v turns from white to gray)
 - f[v] = finishing time (v turns from gray to black)
- \square $\pi[v]$: predecessor of v is $\pi[v]$, such that v was discovered during the scan of $\pi[v]$'s adjacency list.
- Uses the same coloring scheme for vertices as BFS.

DFS: Pseudo-code

DFS(*G*)

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. $time \leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(u)

Uses a global timestamp *time*.

DFS-Visit(u)

- 1. $color[u] \leftarrow GRAY$ // White vertex u has been discovered
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
- 5. **do if** color[v] = WHITE
- 6. **then** $\pi[v] \leftarrow u$
- 7. DFS-Visit(v)
- 8. $color[u] \leftarrow BLACK$ // Blacken u; it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

DFS: Example (1)

DFS: Example (2)

DFS: Example (3)

DFS: Example (4)

Analysis of DFS

- Loops on lines 1-2 & 5-7 take ⊕(|V|) time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex $v \in V$ when it's painted gray the first time. Lines 3-6 of DFS-Visit is executed |Adj[v]| times. The total cost of executing DFS-Visit is $\sum_{v \in V} |Adj[v]| = \Theta(|E|)$
- Total running time of DFS is $\Theta(|V|+|E|)$.

Depth-First Forest & Depth-First Trees

• DFS produce a *depth-first forest* comprised of *depth-first trees*.

 Each depth-first tree is made of edges (u, v) such that u is gray and v is white when (u, v) is explored.

DFS: Classification of Edges (1)

- Tree edges edges belonging to the depthfirst forest.
- Back edges non-tree edges from a node to an ancestor in a depth first tree.
 - □ See the edges labeled B in the previous slide.
- Forward edges non-tree edges from a node to a descendant in a depth first tree.
 - □ See the edge labeled F in the previous slide.
- Cross edges the rest of the edges, can be within a single depth-first tree or between two depth-first trees.
 - □ See the edge labeled C in the previous slide.

DFS: Classification of Edges (2)

- The type of some edges can be determined when the edges are encountered during DFS.
- When edge (u, v) is first explored, the color of node v determines the type of (u, v):
 - □ It's a tree edge if vis white.
 - □ It's a back edge if v is gray.
 - □ It's a forward or cross edge if v is black.

DFS: Classification of Edges (3)

- Note that for an undirected graph, edge (u, v) is the same as edge (v, u).
- In this case, we classify the edge according to whichever of (u, v) or (v, u) is first encountered by DFS.
- Theorem 1: When a graph is undirected, its edges are either tree edges or back edges.
- Example: Treat the graph below as an undirected graph.

- Edge (x, u) would be encountered before (u, x), making the edge a back edge.
- Edge (y, w) would be encountered before (w, y), making the edge a tree edge.

算法基础

DFS: Applications

- Is undirected graph G connected?
- Find connected components.
- Does a directed graph G contain a directed cycle?
- Does an undirected graph G contain a cycle?
- Is an undirected graph G a tree?

End of Ch22-25-part1