Summer Examination, 2010

Department of Creative Informatics Graduate School of Information Science and Technology The University of Tokyo

Creative Informatics

Instructions

- 1. Do not open this brochure until the signal to begin is given.
- 2. Write your examinee ID below on this cover.
- 3. Answer three out of the four problems.
- 4. Three answer sheets are given. Use a separate sheet for each problem. You may use the backside of the sheet.
- 5. Write down the examinee ID and the problem ID inside the top blanks of each sheet.
- 6. Do not take out the sheets and this brochure from this room.

Examinee ID		

Given a directed graph G=(V,E), we would like to find all-pairs shortest path lengths which are the all shortest path lengths between every pair of vertices, where the size of the set V, |V|=n. Let e_{uv} denote a directed edge from a vertex u to a vertex v, and δ_{uv} denote the length of the edge e_{uv} . The graph G may have a negative length edge but does not have any negative length cycle. The length of the edge from the vertex u to the same vertex u, $\delta_{uu}=0$, and when there exists no edge from the vertex u to the vertex v, $\delta_{uv}=\infty$.

Algorithm 1 on the next page outputs the *single-source shortest path lengths*. Let $s \in V$ be a single source vertex, the shortest path length from the vertex

Figure 1: Graph $G_1 = (V_1, E_1)$

s to a vertex $v \in V$ is stored in d(v). Algorithm 2 outputs the all-pairs shortest path lengths table D, where the length of the shortest path from a vertex u to a vertex v is stored in D(u, v). Each algorithm uses $d^{(k)}$ and $D^{(k)}$ $(k = 0, 1, \cdots)$ to store interim results, respectively. Answer the following questions.

- (1) Apply Algorithm 1 to the graph $G_1 = (V_1, E_1)$ in Figure 1 to obtain the shortest path length from a single-source vertex v_0 . Table 1 shows $d^{(0)}$ in Algorithm 1. Show the single-source path length $d^{(1)}$, $d^{(2)}$, $d^{(3)}$, and $d^{(4)}$ from the single-source vertex v_0 .
- (2) Apply Algorithm 2 to the graph $G_1 = (V_1, E_1)$ in Figure 1 to obtain the all-pairs shortest path lengths. Table 2 shows $D^{(0)}$ in Algorithm 2. Show the selected vertex $w \in V_1$ in the Main Loop and the corresponding table $D^{(1)}, D^{(2)}, D^{(3)}, D^{(4)}$, and $D^{(5)}$.
- (3) To obtain all-pairs shortest path lengths, consider Algorithm 1-ALL which applies Algorithm 1 for all vertices in V as a single-source vertex. Compare Algorithm 1-ALL and Algorithm 2.

Table 1: $d^{(0)}$ in Algorithm 1

destination	
v_0	0
v_1	∞
v_2	∞
v_3	∞
v_4	∞

Table 2: $D^{(0)}$ in Algorithm 2

source\destination	v_0	v_1	v_2	v_3	v_4
v_0	0	1	∞	5	9
v_1	∞	0	1	3	∞
v_2	∞	∞	0	-1	∞
v_3	∞	1	∞	0	1
v_4	1	∞	∞	∞	0

Algorithm 1

```
for all v \in V do d^{(0)}(v) = \infty end for d^{(0)}(s) = 0

/* Main Loop */
for k = 1 ... n - 1 do
for all e_{uv} \in E do
d^{(k)}(v) = \min(d^{(k-1)}(v), d^{(k-1)}(u) + \delta_{uv})
end for end for
```

Algorithm 2

```
k=0 for all u\in V do for all v\in V do D^{(k)}(u,v)=\delta_{uv} end for end for  \text{ '* Main Loop */}  for all w\in V do for all u\in V do for all v\in V do D^{(k+1)}(u,v)=\min(D^{(k)}(u,v),D^{(k)}(u,w)+D^{(k)}(w,v)) end for end for k=k+1 end for
```

Answer the following questions.

(1) As Figure 1 shows, an orthogonal coordinate frame $\Sigma_{\rm C}$ of a camera with the lens axis CZ and the projection plane S is placed at the point C. The plane S is orthogonal to the lens axis CZ and has the distance f from C. The point Q is projected to the point P on the plane S with the coordinates $\mathbf{P}_{\rm C} = (P_X, P_Y, f)^t$ in $\Sigma_{\rm C}$. The coordinates of three orientation vectors CX, CY, CZ are described as $\mathbf{X}_{\mathbf{W}} = (X_X, X_Y, X_Z)^t$, $\mathbf{Y}_{\mathbf{W}} = (Y_X, Y_Y, Y_Z)^t$ and $\mathbf{Z}_{\mathbf{W}} = (Z_X, Z_Y, Z_Z)^t$, and the position vector of C is $\mathbf{C}_{\mathbf{W}} = (C_X, C_Y, C_Z)^t$ in the coordinate frame $\Sigma_{\mathbf{W}}$. The superscript t indicates transpose.

Assume the distance from C to Q is d, show the vector $\mathbf{Q}_{\mathbf{C}}$ from the point C to the point Q with $\mathbf{P}_{\mathbf{C}}$ and d. When the vector $\mathbf{Q}_{\mathbf{W}}$ is the position vector of Q and the rotation matrix of $\Sigma_{\mathbf{C}}$ is $R_{\mathbf{C}}$ in $\Sigma_{\mathbf{W}}$, we have $\mathbf{Q}_{\mathbf{W}} = R_{\mathbf{C}}\mathbf{Q}_{\mathbf{C}} + \mathbf{C}_{\mathbf{W}}$. Show the elements of the rotation matrix $R_{\mathbf{C}}$.

- (2) When we observe the point Q from the camera placed at a point A, the projection point is $\mathbf{P}_{A} = (a_{X}, a_{Y}, f)^{t}$ in the camera coordinate frame Σ_{A} . Then, we translate the camera with the distance ℓ along the axis X to a point B and rotate it around the axis Y of the translated coordinate frame with the angle α . The rotated camera coordinate frame is Σ_{B} . The projection point becomes $\mathbf{P}_{B} = (b_{X}, b_{Y}, f)^{t}$ in Σ_{B} . Show the method to get the distance d_{A} from A to Q and the distance d_{B} from B to Q, when $\mathbf{P}_{A} = \mathbf{P}_{B}$ is obtained. Assume there is no error in the translation and rotation, and the XZ planes of Σ_{A} and Σ_{B} are aligned in the same plane.
- (3) Two cameras are placed at the points M and N, respectively. Let the position vectors of M and N be $\mathbf{M}_{\mathbf{W}}$ and $\mathbf{N}_{\mathbf{W}}$ and the rotation matrices be $R_{\mathbf{M}}$ and $R_{\mathbf{N}}$. The projection points of Q on these two cameras become $\mathbf{P}_{\mathbf{M}}$ and $\mathbf{P}_{\mathbf{N}}$. As the position vectors $\mathbf{Q}_{\mathbf{M}}$ and $\mathbf{Q}_{\mathbf{N}}$ of the point Q are the same in the coordinate frame $\Sigma_{\mathbf{W}}$. Denote the condition which the projection points $\mathbf{P}_{\mathbf{M}}$ and $\mathbf{P}_{\mathbf{N}}$ should satisfy.
- (4) Assume the projection points are described in an array and the condition in (3) is not satisfied. Let the evaluation function be $J = |(R_{\rm M} \mathbf{Q}_{\rm M} + \mathbf{M}_{\mathbf{W}}) (R_{\rm N} \mathbf{Q}_{\rm N} + \mathbf{N}_{\mathbf{W}})|^2$, and consider minimizing J to get $\mathbf{Q}_{\rm W}$. Let $d_{\rm M}$ and $d_{\rm N}$ be the distances from M and N to Q, respectively, when J is minimized. Denote $d_{\rm M}$ and $d_{\rm N}$. Then explain the method to get $\mathbf{Q}_{\rm W}$ in $\Sigma_{\rm W}$ with $d_{\rm M}$, $d_{\rm N}$.

(5)	Explain position	the best by two c	arranger ameras s	nent to a uch as (3	minimiz∈ 3).	e errors	when	we :	measure	a thre	e dimer	nsional
					4							

Design a multiplier whose inputs are two 3-bit numbers and the output is a 6-bit number according to the following steps.

(1) Show the truth-table of the full adder and the half adder shown in Figure 1. Then construct them using AND, OR and NOT gates.

Figure 1: A full adder and a half adder

(2) Design the 4-bit adder shown in Figure 2 using the adders designed in question (1) with additional AND, OR and NOT gates.

Figure 2: A 4-bit adder

(3) Design a 3-bit by 3-bit multiplier that produces 6-bit output using adders from (1) and (2) with additional AND, OR and NOT gates. Inputs for the multiplier are two unsigned 3-bit integers and the output is an unsigned 6-bit integer as shown in Figure 3.

Figure 3: An unsigned 3-bit multiplier

(4) Design a 3-bit by 3-bit multiplier that produces 6-bit output using adders from (1) and (2) with additional AND, OR and NOT gates. The inputs of the multiplier are two signed 3-bit integers and the output is a signed 6-bit integer as shown in Figure 4. Two's complement numbers are used both in inputs and the output numbers.

X,Y 3-bit Input (2's complement numbers)Z 6-bit Output (2's complement number)

Figure 4: A 3-bit multiplier of signed integers

(5) Describe the construction of an N-bit by N-bit multiplier whose computation time is $O(\log N)$.

Select <u>four items</u> out of the following eight items concerning information systems, and explain each item in approximately $4\sim8$ lines of text, using examples or images if necessary.

- (1) Bayes' theorem
- (2) Decision tree learning method
- (3) Spread-spectrum telecommunications and its applications
- (4) Normalization in relational database
- (5) Turing machine
- (6) Snoop cache
- (7) Unicode
- (8) Three user authentication or personal identification techniques and a comparative analysis