#### **Notes**

#### **Assignments**

**4.14**, **4.25**, **4.31**, **4.33**, **4.35** 

#### **Tutorial problems**

- Basic Problems wish Answers 4.10, 4.16
- Basic Problems 4.26, 4.30

#### **Mid-term examination**

- Time: Nov. 14 (Sunday) 7:00-9:00 pm
- Venue: TBD
- Range: Chapters 1-4
- Allow: one (A4) page note
- Problem language: English
- Final examination: 40% for Chapters 1-4



# Chapter 4 The Continuous-Time Fourier Transform

(cont.)

Review

#### So, on the derivation of FT ...



As  $T \to \infty$ ,  $x(t) = \tilde{x}(t)$  for all t

#### The CT Fourier Transform Pair

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt \qquad -FT$$
Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \quad \text{Inverse FT}$$
Inverse Fourier Transform

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

#### **CT Fourier Transform Pair**

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

#### **CT Fourier Series Pair**

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

$$x(t) = \sum_{k = -\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$x(t) = \sum_{k=0}^{+\infty} a_k e^{jk\omega_0 t}$$

Harmonically related

### With CTFT, now the frequency response of an LTI system makes complete sense

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k \longrightarrow \underbrace{H(jk\omega_0)}_{"gain"} a_k$$

$$H(j\omega) = \int_{-\infty}^{+\infty} h(t) e^{-j\omega t} dt$$

· 有文科技大学 SUSTC

Frequency response

Impulse response  $\mathcal{F}$ 

#### CT Fourier Transforms of Periodic Signals

Suppose

$$X(j\omega) = \delta(\omega - \omega_0)$$



$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \delta(\omega - \omega_0) e^{j\omega t} d\omega = \frac{1}{2\pi} e^{j\omega_0 t} \qquad \text{periodic in } t \text{ with}$$

frequency ω<sub>o</sub>

That is

$$e^{j\omega_0 t} \longleftrightarrow 2\pi\delta(\omega - \omega_0)$$

— All the energy is concentrated in one frequency —  $\omega_0$ 

### Fourier Transform for Periodic Signals – Unified Framework

More generally, if x(t) = x(t+T), then

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \longleftrightarrow X(j\omega) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - k\omega_0)$$
 Discrete spectra



#### **CTFT Properties (cont.)**

10

6) Duality



#### Review

inverse
relationship
between signal
"width" in
time/frequency
domains



$$x(t)\longleftrightarrow X(j\omega)$$

#### **CTFT Properties (cont.)**

- Time reversal

$$x(-t) \longleftrightarrow X(-j\omega)$$

- Conjugate Symmetry

$$x(t) \text{ real} \longleftrightarrow X(-j\omega) = X^*(j\omega)$$

$$X(-j\omega) = X(j\omega)$$

Or 
$$\operatorname{Re}\{X(-j\omega)\} = \operatorname{Re}\{X(j\omega)\}$$

$$\angle X(-j\omega) = -\angle X(j\omega)$$

$$\operatorname{Im}\{X(-j\omega)\} = -\operatorname{Im}\{X(j\omega)\}$$

Odd

a)

$$x(t)$$
 real and even  $x(t) = x(-t) = x*(t)$ 

$$\Rightarrow X(j\omega) = X(-j\omega) = X*(j\omega)$$
 — Real & even

x(t) real and odd x(t) = -x(-t) = x \* (t)b)

$$x(t) = -x(-t) = x * (t)$$

$$\Rightarrow X(j\omega) = -X(-j\omega) = -X*(j\omega)$$
 — Purely imaginary & odd

c)  $X(j\omega) = \text{Re}\{X(j\omega)\} + j\text{Im}\{X(j\omega)\}$ 

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$r(t) = F_{V}(r(t)) \qquad Od(r)$$

For real  $x(t) = Ev\{x(t)\} + Od\{x(t)\}$ 

### Table 4.2 Basic Fourier Transform Pairs

|                                                                   |                                                                                                                        | Fourier series coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal                                                            | Fourier transform                                                                                                      | (if periodic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                   | 12                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$                  | $2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$                                                            | $a_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $e^{j\omega_0 t}$                                                 | $2\pi\delta(\omega-\omega_0)$                                                                                          | $a_1 = 1$ $a_k = 0$ , otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   |                                                                                                                        | u <sub>k</sub> = 0, otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\cos \omega_0 t$                                                 | $\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$                                                                 | $a_1 = a_{-1} = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                   |                                                                                                                        | $a_k = 0$ , otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\sin \omega_0 t$                                                 | $\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$                                                       | $a_1 = -a_{-1} = \frac{1}{2i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                   |                                                                                                                        | $a_k = 0$ , otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                   |                                                                                                                        | $a_0 = 1,  a_k = 0, \ k \neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x(t) = 1                                                          | $2\pi  \delta(\omega)$                                                                                                 | (this is the Fourier series representation for any choice of $T > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Periodic square wave                                              |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $x(t) = \begin{cases} 1, &  t  < T_1 \end{cases}$                 | $\stackrel{+\infty}{\sim} 2 \sin k\omega_0 T_1$                                                                        | $\frac{\omega_0 T_1}{\pi}$ sinc $\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $[0, T_1 <  t  \le \frac{r}{2}]$                                  | $\sum_{k=-\infty} \frac{1}{k} \delta(\omega - k\omega_0)$                                                              | $\frac{1}{\pi}$ sinc $\left(\frac{1}{\pi}\right) = \frac{1}{k\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| x(t+T) = x(t)                                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| **                                                                | 2 +% ( 2 1)                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\sum_{n=-\infty}^{+\infty} \delta(t-nT)$                         | $\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$                                   | $a_k = \frac{1}{T}$ for all $k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ t  < T_1$                                                       | $2 \sin \omega T_1$                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $x(t) \begin{cases} 1, &  t  < T_1 \\ 0, &  t  > T_1 \end{cases}$ | $\frac{2\sin\omega T_1}{\omega}$                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\sin Wt$                                                         | $ \omega  < W$                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\pi t$                                                           | $X(j\boldsymbol{\omega}) = \begin{cases} 1, &  \boldsymbol{\omega}  < W \\ 0, &  \boldsymbol{\omega}  > W \end{cases}$ | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\delta(t)$                                                       | 1                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| u(t)                                                              | $\frac{1}{j\omega} + \pi \delta(\omega)$                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\delta(t-t_0)$                                                   | $e^{-j\omega t_0}$                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                   | 1                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $e^{-at}u(t)$ , $\Re e\{a\}>0$                                    | $\overline{a+j\omega}$                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $te^{-at}u(t)$ , $\Re e\{a\} > 0$                                 | 1                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ie atty oretal = 0                                                | $(a+j\omega)^2$                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$                              | 1                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\Re e\{a\} > 0$                                                  | $(a+j\omega)^n$                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A - 44 USA - 100 -                                                |                                                                                                                        | The state of the s |

$$e^{-at}u(t) \longleftrightarrow \frac{1}{a+j\omega}$$
 $e^{-at}u(t) \longleftrightarrow \frac{1}{(a+i\omega)}$ 

#### Example 4.3 Impulse function

(a) 
$$x(t) = \delta(t)$$

- Let x(t) be a signal with Fourier transform  $X(j\omega)$ . Suppose we are given the following facts:
  - $\bullet$  x(t) is real
  - $x(t) = 0 \text{ for } t \le 0$
  - $\frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{Re}\{X(j\omega)\} e^{j\omega t} d\omega = |t| e^{-|t|}$

Determine a closed-form expression for x(t).

#### **Problem 4.24 (a)**

 Determine which, if any, of the real signals in (a)-(f) have Fourier transforms that satisfy each of the following condition:

• Re
$$\{X(j\omega)\}=0$$
 Q,  $\phi$ 

$$\lim_{|\omega| \to \infty} \{X(j\omega)\} = 0$$

There exists a real a such that  $e^{ja\omega}X(j\omega)$  is real

$$\int_{-\infty}^{\infty} X(j\omega)d\omega = 0 \text{ in }$$

- $\bullet \int_{-\infty}^{\infty} \omega X(j\omega) d\omega = 0$
- $X(j\omega)$  is periodic





### 8) Convolution Property

$$y(t) = h(t) * x(t) \longleftrightarrow Y(j\omega) = H(j\omega)X(j\omega)$$
  
where  $h(t) \longleftrightarrow H(j\omega) \quad x(t) \longleftrightarrow X(j\omega)$ 

Basically a consequence of the eigenfunction property

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)e^{j\omega t} d\omega \longrightarrow x(t) = \int_{-\infty}^{+\infty} \left(\frac{1}{2\pi} X(j\omega)d\omega\right) e^{j\omega t}$$

$$coefficient$$

$$de^{j\omega t} \longrightarrow h(t) \longrightarrow h($$

#### The Frequency Response Revisited

$$x(t) \longrightarrow h(t) \longrightarrow y(t) = h(t) * x(t)$$

$$Y(j\omega) = H(j\omega)X(j\omega)$$

$$\Downarrow$$

The frequency response  $H(j\omega)$  of a CT LTI system is simply the Fourier transform of its impulse response h(t)

#### Example #1:

$$x(t) = e^{j\omega_o t} \longrightarrow H(j\omega)$$

Recall

$$e^{j\omega_o t} \longleftrightarrow 2\pi\delta(\omega - \omega_o)$$

$$Y(j\omega) = H(j\omega)X(j\omega) = H(j\omega)2\pi\delta(\omega-\omega_0) = 2\pi H(j\omega_0)\delta(\omega-\omega_0)$$

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(j\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi H(j\omega_0) \delta(\omega - \omega_0) e^{j\omega t} d\omega$$

$$y(t) = H(j\omega_0)e^{j\omega_0 t}$$



#### Frequency Response Examples

#### **Example 4.16** A differentiator

$$y(t) = \frac{dx(t)}{dt}$$
 — an LTI system

From differentiation property  $\Rightarrow \frac{d}{dt} \stackrel{FT}{\longleftrightarrow} j\omega$ 



- 1) Amplifies high frequencies (enhances sharp edges)
- 2)  $+\pi/2$  phase shift  $(j = e^{j\pi/2})$  Larger at high  $\omega_0$  phase shift  $\frac{d}{dt}\sin\omega_0 t = \omega_0\cos\omega_0 t = \omega_0\sin(\omega_0 t + \frac{\pi}{2})$

$$\frac{d}{dt}\cos\omega_0 t = -\omega_0 \sin\omega_0 t = \omega_0 \cos(\omega_0 t + \pi/2)$$



Questions:

- 1) Is this a causal system?
- 2) What is h(0)?





20

#### **Example #4:** Cascading filtering operations





#### Example 4.20

$$\frac{\sin 4\pi t}{\pi t} * \frac{\sin 8\pi t}{\pi t} = ?$$

$$\uparrow Y(j\omega) = X(j\omega)$$

$$\Rightarrow y(t) = x(t)$$

$$Y(j\omega)$$

$$\downarrow 1$$

$$\downarrow -4\pi$$

$$4\pi$$

$$\omega$$

#### Example #6:

$$e^{-at^{2}} * e^{-bt^{2}} = ?$$

$$\updownarrow \qquad \qquad \uparrow$$

$$\sqrt{\frac{\pi}{a}} e^{-\frac{\omega^{2}}{4a}} \times \sqrt{\frac{\pi}{b}} e^{-\frac{\omega^{2}}{4b}} = \frac{\pi}{\sqrt{ab}} e^{-\frac{\omega^{2}}{4} \left(\frac{1}{a} + \frac{1}{b}\right)}$$

Gaussian × Gaussian = Gaussian, Gaussian \* Gaussian = Gaussian

Review from the last lecture, right-sided exponential



$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt = \int_{0}^{+\infty} \underbrace{e^{-at}e^{-j\omega t}}_{e^{-(a+j\omega)t}} dt$$
$$= -\left(\frac{1}{a+j\omega}\right)e^{-(a+j\omega)t} \int_{0}^{\infty} = \frac{1}{a+j\omega}$$

#### Example 4.19

$$h(t) = e^{-t}u(t) , x(t) = e^{-2t}u(t)$$

$$y(t) = h(t) * x(t) = ?$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$Y(j\omega) = H(j\omega)X(j\omega) = \frac{1}{(1+j\omega)} \cdot \frac{1}{(2+j\omega)}$$

Partial fraction expansion
$$Y(j\omega) = \frac{1}{1+j\omega} \frac{a=1}{2+j\omega} \frac{1}{2+j\omega}$$

$$\psi \text{ inverse } FT$$

$$y(t) = \left[e^{-t} - e^{-2t}\right]u(t)$$

## CTFT Properties 9) Multiplication Property

Since *FT* is highly symmetric,

$$x(t) = \mathcal{F}^{-1}\{X(j\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \, e^{j\omega t} d\omega, \quad X(j\omega) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) \, e^{-j\omega t} dt$$

thus if

then the other way around is also true

$$x(t) * y(t) \longleftrightarrow X(j\omega) \cdot Y(j\omega)$$

$$x(t) \cdot y(t) \longleftrightarrow \frac{1}{2\pi} X(j\omega) * Y(j\omega)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$$

- A consequence of *Duality* 

### Examples of the Multiplication Property: Modulation Property

Frequency shift

$$e^{j\omega_0 t} x(t) \longleftrightarrow F \times X(j(\omega - \omega_0))$$

$$e^{j\omega_0 t} \cdot x(t) \longleftrightarrow \frac{1}{2\pi} [2\pi\delta(\omega - \omega_0) * X(j\omega)]$$

$$= X(j(\omega - \omega_0))$$

#### Example 4.21

$$r(t) = s(t) \cdot p(t) \iff R(j\omega) = \frac{1}{2\pi} [S(j\omega) * P(j\omega)]$$

For 
$$p(t) = \cos \omega_0 t \iff P(j\omega) = \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$$

$$R(j\omega) = \frac{1}{2}S(j(\omega - \omega_0)) + \frac{1}{2}S(j(\omega + \omega_0))$$

#### (cont.)



**Amplitude Modulated Signal** 

ironbark.xtelco.com.au



#### (cont.)



 $\omega_1$ : bandwidth

 $r(t) = s(t) \cdot \cos(\omega_0 t)$ Amplitude modulation (AM)



$$R(j\omega) = \frac{1}{2} [S(j(\omega - \omega_o))]$$

$$+ S(j(\omega + \omega_o))]$$

$$+ S(j(\omega + \omega_o))]$$

$$(-\omega_0 - \omega_1) (-\omega_0 + \omega_1)$$

$$(\omega_0 - \omega_1) (\omega_0 + \omega_1)$$

Drawn assume  $\omega_0$ -  $\omega_1$ >0 i.e.  $\omega_0$ >  $\omega_1$ 



### Frequency-Selective Filtering with Variable Center Frequency



Figure 4.26 Implementation of a bandpass filter using amplitude modulation with a complex exponential carrier.















**Figure 4.27** Spectra of the signals in the system of Figure 4.26.

# Table 4.1 Properties of the Fourier Transform

| Section                                   | Property                                                             | Aperiodic signal                                                                            | Fourier transform                                                                                                                                                            |
|-------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           |                                                                      | x(t) $y(t)$                                                                                 | $X(j\omega)$<br>$Y(j\omega)$                                                                                                                                                 |
| 4.3.1<br>4.3.2<br>4.3.6<br>4.3.3<br>4.3.5 | Linearity Time Shifting Frequency Shifting Conjugation Time Reversal | $ax(t) + by(t)$ $x(t - t_0)$ $e^{j\omega_0 t}x(t)$ $x^*(t)$ $x(-t)$                         | $aX(j\omega) + bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$ $X(j(\omega - \omega_0))$ $X^*(-j\omega)$                                                                           |
| 4.3.5                                     | Time and Frequency<br>Scaling<br>Convolution                         | x(at) $x(t) * y(t)$                                                                         | $\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$ $X(j\omega)Y(j\omega)$                                                                                                        |
| 4.5                                       | Multiplication                                                       | x(t)y(t)                                                                                    | $\frac{1}{2\pi} \int_{0}^{+\infty} X(j\theta)Y(j(\omega-\theta))d\theta$                                                                                                     |
| 4.3.4                                     | Differentiation in Time                                              | $\frac{d}{dt}x(t)$                                                                          | $j\omega X(j\omega)$                                                                                                                                                         |
| 4.3.4                                     | Integration                                                          | $\int_{-\infty}^{t} x(t)dt$                                                                 | $\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$                                                                                                                       |
| 4.3.6                                     | Differentiation in Frequency                                         | tx(t)                                                                                       | $j\frac{d}{d\omega}X(j\omega)$ $\begin{cases} X(j\omega) = X'(-j\omega) \\ \Re\{X(j\omega)\} = \Re\{X(-j\omega)\} \end{cases}$                                               |
| 4.3.3                                     | Conjugate Symmetry for Real Signals                                  | x(t) real                                                                                   | $\begin{cases} \mathfrak{Gm}\{X(j\omega)\} = -\mathfrak{Gm}\{X(-j\omega)\} \\  X(j\omega)  =  X(-j\omega)  \\ \langle X(j\omega) = -\langle X(-j\omega) \rangle \end{cases}$ |
| 4.3.3                                     | Symmetry for Real and                                                | x(t) real and even                                                                          | $X(j\omega)$ real and even                                                                                                                                                   |
| 4.3.3                                     | Even Signals<br>Symmetry for Real and<br>Odd Signals                 | x(t) real and odd                                                                           | $X(j\omega)$ purely imaginary and odd                                                                                                                                        |
| 4.3.3                                     | Even-Odd Decompo-<br>sition for Real Sig-<br>nals                    | $x_e(t) = \mathcal{E}v\{x(t)\}$ [x(t) real]<br>$x_o(t) = \mathcal{O}d\{x(t)\}$ [x(t) real]  | $\Re e\{X(j\omega)\}$ $j \Im m\{X(j\omega)\}$                                                                                                                                |
|                                           |                                                                      | <del>.</del>                                                                                |                                                                                                                                                                              |
| 4.3.7                                     |                                                                      | on for Aperiodic Signals $= \frac{1}{2\pi} \int_{-\infty}^{+\infty}  X(j\omega) ^2 d\omega$ |                                                                                                                                                                              |

#### Example #8: LTI Systems Described by LCCDE's

(Linear-constant-coefficient differential equations)

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

Using the Differentiation Property

$$\frac{d^k x(t)}{dt^k} \longleftrightarrow (j\omega)^k X(j\omega)$$

Transform both sides of the equation

$$\sum_{k=0}^{N} a_k (j\omega)^k Y(j\omega) = \sum_{k=0}^{M} b_k (j\omega)^k X(j\omega)$$

$$Y(j\omega) = \underbrace{\left[\frac{\sum_{k=0}^{M} b_k(j\omega)^k}{\sum_{k=0}^{N} a_k(j\omega)^k}\right]}_{H(j\omega)} X(j\omega)$$

$$H(j\omega) = \underbrace{\left[\frac{\sum_{k=0}^{M} b_k(j\omega)^k}{\sum_{k=0}^{N} a_k(j\omega)^k}\right]}_{H(j\omega)}$$

$$H(j\omega) = \left[ \frac{\sum_{k=0}^{M} b_k(j\omega)^k}{\sum_{k=0}^{N} a_k(j\omega)^k} \right]$$

• A causal and stable LTI system S has the frequency response

$$H(j\omega) = \frac{j\omega + 4}{6 - \omega^2 + 5j\omega}$$

- $\diamond$  Determine a differential equation relating the input x(t) and output y(t) of S
- lack Determine the impulse response h(t) of S
- What is the output of S when the input is  $\chi(t) = e^{-4t}u(t) te^{-4t}u(t)$