Homework 3

Due date: February 6th, 2025

Martin Coyne, Flora Dedvukaj, Jiahao Gao, Anton Karabushin, Zhihan Lin, Joshua Morales

1. *Proof.* It is sufficient to show that

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = g'(p)$$

since letting $\lambda = g'(p)$ would complete the proof. By the mean value theorem on $[p_n, p]$, or $[p, p_n]$, there exists a $\xi_n \in (p_n, p)$ such that

$$\frac{|g(p_n) - g(p)|}{|p_n - p|} = \frac{|p_{n+1} - p|}{|p_n - p|} = g'(\xi_n).$$

Since $p_n \xrightarrow{n \to \infty} p$, we must have $\xi_n \xrightarrow{n \to \infty} p$. Therefore, by the continuity of g', we must have

$$g'(\xi_n) \xrightarrow{n \to \infty} g'(p).$$

Therefore, taking the limit of both sides of the first equation gives

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = \lim_{n \to \infty} g'(\xi_n) = g'(p)$$

which is the desired result.

2. (a) Note that

$$f'(x) = 5x^4 - 7.2x^2 + 1.28x + 1.536 \implies f'(0.8) = 0$$

$$f''(x) = 20x^3 - 14.4x + 1.28 \implies f''(0.8) = 0$$

$$f'''(x) = 60x^2 - 14.4 \implies f'''(0.8) = -14.4 \neq 0$$

Therefore, 0.8 is a root of multiplicity 3 of f.

(b)

n	x_n
0	2
1	1.68
2	1.4363
3	1.2536
4	1.1190
5	1.0216
6	0.9038
7	0.9038
8	0.8703
9	0.8474
10	0.8318

(c) Using $\mu(x) = \frac{f(x)}{f'(x)}$, we see the following:

n	x_n
0	2
1	0.6286
2	0.78835
3	0.79995
4	0.80000
5	0.80000
6	0.80000
7	0.80000
8	0.80000
9	0.80000
10	0.80000

which clearly converges much faster.

3. (a) Since f is a "suitably" differentiable function, we may assume that $f^{(i)}(x)$ is continuous in some "suitable" region around p, for all $0 \le i \le m$. Since p is a root of multiplicity m, We must have that $f^{(m-1)}(p) = 0$ and $f^{(m)}(p) \ne 0$. Therefore, by repeated application of L'Hopital's Rule m-1 times, and by the fact that $f \in C^m$, we have

$$\lim_{x \to p} \mu(x) = \lim_{x \to p} \frac{f(x)}{f'(x)} = \lim_{x \to p} \frac{f^{(m-1)}(x)}{f^{(m)}(x)} = \frac{f^{(m-1)}(p)}{f^{(m)}(p)} = 0.$$

which us the desired result.

(b) Note that since p is a root of f with multiplicity m, there exists a function g(x) such that

$$f(x) = (x - p)^m g(x).$$

where $g(p) \neq 0$. Therefore, we have

$$\mu(x) = \frac{f(x)}{f'(x)} = \frac{(x-p)^m g(x)}{m(x-p)^{p-1} g(x) + (x-p)^m g'(x)} = \frac{(x-p)g(x)}{mg(x) + (x-p)g'(x)}.$$

If we let $h(x) := \frac{g(x)}{mg(x) + (x-p)g'(x)}$, we then have

$$h(p) = \frac{g(p)}{mg(p)} = \frac{1}{m} \neq 0.$$

Thus, since $\mu(x) = (x - p)h(x)$, and $h(p) \neq 0$, p must be a simple root of $\mu(x)$. Therefore, $\mu'(p) \neq 0$, which is the desired result.

(c) For $x \neq p$, by the quotient rule, we have

$$\frac{\mu(x)}{\mu'(x)} = \frac{f(x)}{f'(x)} \frac{f'(x)^2}{f'(x)^2 - f(x)f''(x)} = \frac{f(x)f'(x)}{f'(x)^2 - f(x)f''(x)}$$

which is the desired result.

¹which is also differentiable in a suitable interval.

4. Proof. Suppose there exists, two degree n polynomials, p_1 and p_2 , such that

$$p_1(x_i) = y_i = p_2(x_i)$$

for all $0 \le i \le n$. It suffices to show that $p_1(x) = p_2(x)$. Therefore, the polynomial,

$$f(x) = p_1(x) - p_2(x)$$

is a polynomial of degree at most n, with n+1 distinct roots, x_0, x_1, \ldots, x_n . However, by the Fundamental Theorem of Algebra, f must be the 0 polynomial.² Therefore,

$$f(x) = 0,$$

which means that $p_1(x) = p_2(x)$, which is the desired result.

5. (a) We can take (0,7), (2,11), (3,28), and (4,63) as $(x_0,y_0), (x_1,y_1), ...(x_n,y_n)$ respectively. We find the following:

$$L_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)}$$

$$L_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

Plugging in the points from above, we get:

$$L_0(x) = \frac{(x-2)(x-3)(x-4)}{(-2)(-3)(-4)} = \frac{-1}{24}(x-2)(x-3)(x-4)$$

$$L_1(x) = \frac{(x-0)(x-3)(x-4)}{(-2)(-1)(-2)} = \frac{1}{4}(x)(x-3)(x-4)$$

$$L_2(x) = \frac{(x-0)(x-2)(x-4)}{(3)(1)(-1)} = \frac{-1}{3}(x)(x-2)(x-4)$$

$$L_3(x) = \frac{(x-0)(x-2)(x-3)}{(4)(2)(1)} = \frac{1}{8}(x)(x-2)(x-3)$$

Using the y-values from above, we get the following interpolation:

Which can be simplified to become

$$P(x) = x^3 - 2x + 7$$

²Since otherwise it would be a non-zero degree n polynomial with more than n distinct roots.

(b) To find the approximation of f(1), we just plug in 1 for x in P(x):

$$P(1) = 1^2 - 2(1) + 7 = 1 - 2 + 7 = 6$$

(c)

$$\int_0^4 x^3 - 2x + 7 = 76$$

6. Let $g \in C^n[a, b]$, and consider n + 1 distinct points $x_0, x_1, \ldots, x_n \in [a, b]$ such that

$$x_0 < x_1 < \dots < x_n$$
.

Assume further that

$$g(x_0) = g(x_1) = \dots = g(x_n) = 0.$$

We aim to prove that there exists a point $\xi \in [x_0, x_n]$ such that $g^{(n)}(\xi) = 0$.

Define the polynomial

$$h(x) = \prod_{i=0}^{n} (x - x_i)$$

which is of degree n + 1 and satisfies $h(x_i = 0)$ for all i = 0, 1, ..., n

Since $g(x_0) = g(x_1) = 0$, by Rolle's Theorem there exists a point $c_1 \in (x_0, x_1)$ such that

$$g'(c_1)=0.$$

Similarly, $g(x_1) = g(x_2) = 0$ implies there exists a point $c_2 \in (x_1, x_2)$ such that

$$g'(c_2) = 0.$$

Continuing this, we find that g'(x) has zeros in $(x_0, x_1), (x_1, x_2), \dots, (x_{n-1}, x_n)$.

For each interval where g'(x) has a zero, apply Rolle's Theorem again to g'(x). For example, in (x_0, x_1) , there exists a point $d_1 \in (c_1, c_2)$ such that

$$g''(d_1)=0.$$

Similarly, zeros of g''(x) can be found in $(c_2, c_3), (c_3, c_4), \ldots, (c_{n-1}, c_n)$.

By iteratively applying Rolle's Theorem, we find that:

- g'(x) has zeros in $(x_0, x_1), \ldots, (x_{n-1}, x_n),$
- g''(x) has zeros in the intervals formed by zeros of g'(x),
- This process continues until the *n*-th derivative.

After n applications of Rolle's Theorem, there exists a point $\xi \in [x_0, x_n]$ such that

$$g^{(n)}(\xi) = 0.$$

7. We know that

$$|f(x) - p(x)| = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} x - x_i$$

Since $x_0, x_1, ..., x_n$ are evenly spaced,

$$\prod_{i=0}^{n} (x - x_i) \le \frac{1}{4} \left(\left(\frac{x_n - x_0}{n} \right)^{n+1} (n!) \right)$$

So,

$$|f(x) - p(x)| = \left| \left(\frac{f^{11}(\xi)}{11!} \right) \left(\frac{1.6875 - 0}{10} \right)^{11} (10!) \right|$$

 $f(x) = \sin(0.16875x)$, so

$$|f(x) - p(x)| = \max(-\frac{((0.16875)^{11}\cos(0.16875)(0))}{11!}, -\frac{((0.16875)^{11}\cos(0.16875)(1.6785))}{11!})$$

.

Since

$$|-((0.16785)^{11}(\cos(0.16785)(x=0)))| = 3.15996008e^{-9}$$

and

$$|-((0.16785)^{11}(\cos(0.16785)(x=1.6875)))|=3.15867894e^{-9}$$

The maximum value of f^{11} is at x = 0. Then,

$$\left| \left(-\frac{(0.16875)^{11}(\cos(0.16875(1.6875)|))}{11!} \right) \frac{1}{4} (0.16875)^{11} (10!) \le 2.178e^{-19}$$

•

Then, the error bound of $|f(x) - p(x)| \le 2.178(10^{-9})$ on [0, 1.6875].