Simulating Language 12: Iterated Learning

Simon Kirby simon@ling.ed.ac.uk

How good is our model at learning?

What does it mean for something to be 'good' at learning?

How good is our model at learning?

- What does it mean for something to be 'good' at learning?
 - One answer: will two agents given the same data be able to communicate? Will a learner be able to communicate with its teacher?
 - Another answer: given some training data, can it recall that data?
 - A third answer: given some training data, can it generalise correctly to unseen data?
- Our training data is meaning-signal pairs, so an obvious test is simply whether meanings correctly map to signals (and vice versa) after learning
- So, some kinds of learner will be good at learning, and others will be bad, right?
- Not as simple as that... it will depend on what is being learned

A new kind of question

 Previously, we were interested in how good two innate signalling systems were for communication

 Now, we want to know what kinds of errors a particular learner makes with a particular language

- How well does it learn?
- Given an optimal language, it learns well:

TRAINING
m1→s1
m2→s2

 $m3\rightarrow s3$

	s1	s2	s3
m1	1	0	0
m2	0	1	0
m3	0	0	1

RESULT $m1 \rightarrow s1$ $m2 \rightarrow s2$ $m3 \rightarrow s3$

- How well does it learn?
- Given a language with synonymy?

TRAINING

	s1	s2	s3
m1	0	0	0
m2	O	0	0
m3	0	0	0

- How well does it learn?
- Given a language with synonymy, production behaviour depends on frequency of items in training:

TRAINING
m1→s1
m1→s2
m1→s2

	s1	s2	s3
m1	Ψ-	2	0
m2	0	O	0
m3	0	0	0

RESULT

m1→s2 only

- How well does it generalise?
- Unable to correctly generalise an optimal language:

TRAINING

	s1	s2	s3
m1	1	O	0
m2	0	1	0
m3	0	0	0

RESULT

- How well does it generalise?
- Unable to correctly generalise an optimal language:

TRAINING
m1→s1
m2→s2

	s1	s2	s3
m1	٦-	0	0
m2	0	1	0
m3	0	0	0

RESULT $m1 \rightarrow s1$ $m2 \rightarrow s2$ $m3 \rightarrow s1, s2, s3$

- How well does it generalise?
- Unable to correctly generalise to a maximally ambiguous language:

TRAINING
m1→s1
m2→s1

	s1	s2	s3
m1	1	Ο	0
m2	1	0	0
m3	0	0	0

RESULT $m1 \rightarrow s1$ $m2 \rightarrow s1$ $m3 \rightarrow s1, s2, s3$

Bias

- Our learner, though really simple, is not a completely "blank slate". It responds differently to different training sets
 - In this case: it struggles with synonyms, but is otherwise faithful to its data (to the extent that it misses 'obvious' generalisations)
- Where does this behaviour come from?
- Features of the architecture of the model create an inherent *learning bias* which may favour some languages over others
- What features could we modify to manipulate bias?
- One possibility: the way we update the weights...

Lateral inhibition

- Our current weight update rule: If signal node and meaning node are active, increase connection weight by one
- A reasonable addition: also reduce activation between competing meanings and signals (i.e. the meanings that don't match the signal, and the signals that don't match the meaning)

m1→s1

	s1	s2	s3
m1	۳-	-1	-1
m2	-1	0	0
m3	-1	0	0

What about lateral inhibition?

- How well does it generalise?
- Able to correctly generalise an optimal language!

TRAINING
m1→s1
m2→s2

	s1	s2	s3
m1	1	-2	-1
m2	-2	1	-1
m3	-1	-1	0

RESULT $m1 \rightarrow s1$ $m2 \rightarrow s2$ $m3 \rightarrow s3$

What about lateral inhibition?

- How well does it generalise?
- Seems positively unwilling to correctly generalise to a maximally ambiguous language!

TRAINING
m1→s1
m2→s1

	s1	s2	s3
m1	0	-1	-1
m2	0	-1	-1
m3	-2	0	0

RESULT $m1 \rightarrow s1$ $m2 \rightarrow s1$ $m3 \rightarrow s2, s3$

Other routes to optimal communication?

- Learning bias might (or might not) favour communicatively optimal languages through generalisation.
- Differences in learning not the only possible route to optimal signalling
- What if speakers actively tried to behave rationally while communicating?
 - Instead of simply producing what they learn, what if speakers avoided producing signals that were ambiguous in interaction?

"Rational" speaker model

- 1. Use matrix to choose signal.
- 2. Use matrix to see what meaning you'd understand if you heard that signal.
- 3. If it meanings don't match, change the signal to a random one.

m3

Possible routes to favouring optimal languages

- Differences in learning or interaction could possibly change the type of languages being preferred
- Two issues:
 - Where do these languages come come from in the first place?
 - How do we bridge the gap between learning bias/communicative strategies and universal properties of language structure?

THE PROBLEM OF LINKAGE

Solving the problem of linkage

 Where does the language data come from that our learners have to acquire?

Solving the problem of linkage

 Where does the language data come from that our learners have to acquire?

From other learners!

Solving the problem of linkage

- Where does the language data come from that our learners have to acquire?
- From other learners!
- Language persists over time by repeatedly being learned and used by multiple individuals in a population
- It is out of this continual process of iterated learning that the structure of language emerges
- Note, this is cultural rather than biological evolution

Key research question for iterated learning

What is the relationship between properties of individual learners and emergent universal properties of language structure?

- We can try and tackle this by using our computational model
- Place agents in population in which they learn from each others utterances.
- Start with random language and observe what languages emerge given different possible learning rules and communicative strategies.

1. Somebody dies

2. A child is born

3. Adults speak

4. Child learns

5. Child enters population

6. Repeat

An aside: other possible population models

- Mesoudi & Whiten (2008) review a number of different ways we could model cultural evolution.
 - Replacement method (gradually replace individuals)
 - Transmission chain (whole population learns from previous generation, which is then replaced)
 - Closed group (no turnover at all, individuals constantly learn from each other)

So what's going to happen?

- Find out in the lab next week!
- · We'll implement cultural evolution by iterated learning.
 - Test to see the effect of lateral inhibition, speaker rationality, population dynamics have on the emerging language.
- After the lab: more background readings will appear on the website on cultural evolution, speaker rationality, learning bias
- Then a bit of a mid-term break for a week and a half.