Homework 2 Name: Wang Jue NetID: jwr0983

GitHub Link: https://github.com/MSIA/jwr0983 msia text analytics 2020/tree/homework2

Problem 1

For this problem I used 3 different models to evaluate the performance of different parameters for word2vec in gensim library. The first one uses CBOW with window size = 5, embedding size = 100 and minimum count = 3, the second using CBOW with window size = 10 and embedding size = 150 and minimum count = 3, while the third one uses skip-gram with window size = 10, embedding size = 100 and minimum count = 3.

Computation run-time:

- CBOW with window size 5 and embedding size 100: 1.95 seconds
- CBOW with window size 10 and embedding size 150: 1.98 seconds
- Skip-gram with window size 5 and embedding size 100: 2.97 seconds

From the above results we see that skip-gram is generally slower than CBOW on this dataset. The reason is that skip-gram approach involves more calculations. For the same window size skip gram has to undergo significantly more backward propagations than CBOW, making it computationally more inefficient.

Similar words:

We used the following 10 words to test whether the three models give comparable results in terms of similar words. The results are mostly similar, and as an example, for the word "god", the first model gives the top 5 similar words "existence, fact, belief, evidence, and manifestation", the second model gives "existence, fact, belief, evidence, manifestation", while the third model gives "satan, exist, believing, existence and exists". As the corpus is relatively small, we see that the embedding size of 100 is sufficient to give sensible results.

Problem 2

	Distributed representations of words and phrases and their compositionality	Bert: Pre-training of deep bidirectional transformers for language understanding
Date of Publication	16 Oct 2013	11 Oct 2018
Number of Google Scholar	22964	10265
Citation		

Ease of installation	Original implementation in C;	Available in pytorch
	Available in Python genism	transformers library and other
	library	major frameworks
Algorithm Summary	Proposes two model	BERT stands for Bidirectional
	architectures for learning	Encoder Representations from
	distributed representations of	Transformers. BERT is designed
	words that try to minimize	to pre- train deep bidirectional
	computational complexity	representations from unlabeled
	including Continuous Bag-of-	text by jointly conditioning on
	Words Model and Continuous	both left and right context in all
	Skip-gram Model. Continuous	layers. The model randomly
	Bag-of-Words Model predicts	masks some of the tokens from
	the current word based on the	the input, and the objective is
	context, and the Skip-gram	to predict the original
	predicts surrounding words	vocabulary id of the masked word based on its context.
	given the current word. The encoded word vectors show	word based on its context.
	multiple degrees of similarity, it	
	was shown for example that	
	vector("King") - vector("Man") +	
	vector("Woman") results in a	
	vector that is closest to the	
	vector representation of the	
	word Queen	
Corpus Size in Original	In the original paper the authors	For the pre-training corpus we
Implementation	have restricted the vocabulary	use the BooksCorpus (800M
	size to 1 million most frequent	words) (Zhu et al., 2015) and
	words	English Wikipedia (2,500M
		words). Use document-level
		corpus rather than shuffled
		sentence-level corpus
Training Complexity	CBOW: $Q = N \times D + D \times D$	Time complexity of bidirectional
	log2(V)	transformer with number of
		layer L, hidden size H, and number of self-attention heads
	Skip-gram: $Q = C \times (D + D \times D)$	as A. (For base model Total
	log2(V))	Parameters = 110M, for Large
	Vis size of vocabulant N	model total parameters =
	V is size of vocabulary, N previous words are encoded, D	340M)
	is dimension of encoded vector,	
	C is maximum distance of words	
	C is maximum distance of words	