# Math 221 Notes

## VOGEL, Max

## UW-Madison, Summer 2020

## Contents

| 1 | Week 1 |       |                                                      | 2 |
|---|--------|-------|------------------------------------------------------|---|
|   | 1.1    | Day 1 |                                                      | 2 |
|   |        | 1.1.1 | Factoring:                                           | 2 |
|   |        | 1.1.2 | Rules:                                               | 2 |
|   |        | 1.1.3 | Functions:                                           | 2 |
|   |        |       | 1.1.3.1 Finding domain:                              | 3 |
|   |        |       | 1.1.3.2 Picewise:                                    | 3 |
|   |        |       | 1.1.3.3 Types                                        | 3 |
|   |        |       | 1.1.3.4 Increasing & Decreasing:                     | 4 |
|   |        | 1.1.4 | Limits                                               | 4 |
|   |        |       | 1.1.4.1 Infinite Limits                              | 4 |
|   |        | 1.1.5 | Lines                                                | 5 |
|   | 1.2    | Day 2 |                                                      | 5 |
|   |        | 1.2.1 | Limit Laws:                                          | 5 |
|   |        | 1.2.2 | Piecewise / $(\epsilon, \delta)$ definition of limit | 6 |
|   | 1.3    | Day 3 |                                                      | 6 |
|   |        | 1.3.1 | Continuous Function:                                 | 6 |
|   | 1.4    | Day 4 |                                                      | 7 |
|   |        | 1.4.1 | Line:                                                | 7 |
|   |        |       | 1.4.1.1 Secant Line:                                 | 7 |
|   |        |       | 1.4.1.2 Tangent Line:                                | 8 |
|   |        |       | 1.4.1.3 Derivatives:                                 | 8 |

## 1 Week 1

## 1.1 Day 1

#### 1.1.1 Factoring:

$$(a+b)(a^2 - ab + b^2) = a^3 + b^3$$
$$(a-b)(a^2 + ab + b^2) = a^3 - b^3$$

#### 1.1.2 Rules:

$$a < b \rightarrow -a > -b$$

$$-ax < b \rightarrow x > -\frac{b}{a}$$

$$|x| = b \rightarrow x = b \lor x = -b$$

$$|x| < b \rightarrow -b < x < b$$

$$|x| = b \rightarrow x > b \lor x < -b$$

$$a^{m}a^{n} = a^{m+n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

$$(ab)^{m} = a^{m}b^{m}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$(a^m)^n = a^{mn}$$

$$\sqrt{a} = a^{\frac{1}{2}}$$

$${}^n\sqrt{a} = a^{\frac{1}{n}}$$

$$(\sqrt[n]{a})^m = \sqrt[n]{a^m} = a^{\frac{m}{n}}$$

$$\sqrt{a}\sqrt{b} = \sqrt{ab}$$

$$\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}$$

#### 1.1.3 Functions:

**Definition:** Assigns each element x in a set D exactly one element, called f(x), in set E.

In terms of a graph, a curve can only be a function if no vertical lines intersect the curve more than once (vertical line test).

- The set D is called the domain possible x values.
- The set E is called the range possible y values.
- If f is a function with domain D, then it graph is the set of ordered pairs  $\{(x, f(x)|x) \text{ is a element of, } \in D\}$

## 1.1.3.1 Finding domain:

1. 
$$f(x) = \sqrt{x+2} \to x+2 \ge 0 \to x \ge -2 \to [-2, +\infty)$$

2. 
$$f(x) = \frac{1}{x^2 - x} \to x^2 - x \neq 0 \to x(x - 1) \neq 0 \to x \neq 0 \land x \neq 1 \to (-\infty, 0) \cup (0, 1) \cup (1, +\infty)$$

#### 1.1.3.2 Picewise:

- Open circles, o, and circle brackets, (), are non-inclusive.
- Closed circles, •, and square brackets, [], are inclusive.
- Formatted as:

$$f(x) = \begin{cases} y = 5\&x < 0\\ y = x^2\&x \ge 0 \end{cases}$$

## 1.1.3.3 Types

#### Even:

- A function is even if f(x) = f(-x)
- The graph is symmetric with respect to the y-axis.
- Examples:  $x^4 2, x^{20} + x^6, \cos(x), |x|$

#### Odd:

- A function is even if f(x) = -f(x)
- The graph has rotational symmetry about origin.
- Examples:  $x^3, x^7 + x, \sin(x), |x|x$
- Even times odd function is always odd.
- Even times even is always even.
- Odd times odd is always even.

## 1.1.3.4 Increasing & Decreasing:

**Increasing:** A function f is called increasing on an interval if  $f(x_1) < f(x_2)$  whenever  $x_1 < x_2$ . In other words, the slope must always be positive.

**Decreasing:** A function f is called increasing on an interval if  $f(x_1) > f(x_2)$  whenever  $x_1 < x_2$ . In other words, the slope must always be negative.

#### 1.1.4 Limits

**Definition:** Supposing f(x) is defined when x is near the number a, we write  $\lim_{x\to a} f(x) = L$  and say "the limit of f(x), as x approaches a, equals L".

- $\lim_{x\to a} f(x) = L$  if and only if (iff,  $\iff$ )  $\lim_{x\to a^-} f(x) = L \wedge \lim_{x\to a^+} f(x) = L$
- That is, the limit does not exist,  $\nexists$ , if x approaches different values when from the left and right sides
- Approaching from left (from  $-\infty \to \infty$ ) is notated as  $x \to a^-$
- Approaching from right (from  $\infty \to -\infty$ )) is notated as  $x \to a^+$
- iff,  $\iff$ :

$$A \iff B \rightarrow$$

A is necessary and sufficient for B  $\rightarrow$ 

B is necessary and sufficient for A  $\rightarrow$ 

A is equivalent to B

• A vertical asymptote exists if the limit from left side is  $+\infty$  or  $-\infty$ , and the limit from the right side is the opposite.

#### 1.1.4.1 Infinite Limits

• If function limit is  $\pm \infty$  (if the denominator is 0 at f(a)), you can find whether its + or - by solving the limit for each term. If the term is positive, then it's  $+\infty$ , and vice-versa, e.g.

$$\lim_{x \to -2^+} \frac{x-1}{x^2(x+2)}$$

$$\frac{\lim_{x \to -2^{+}} [x-1]}{\lim_{x \to -2^{+}} [x^{2}] \cdot \lim_{x \to -2^{+}} [(x+2)]}$$

$$\frac{\ominus}{\oplus \cdot \oplus}$$

$$\ominus \to -\infty$$

### 1.1.5 Lines

- Slope-Point form: y b = m(x + a) (a, b) will be a point of the equation.
- Slope-Intercept form: y = mx + b (0, b) will be the y-intercept.
- Vertex form: y = a(x h) + k (h, k) will be the vertex.
- Point-Point form:  $y y_1 = \frac{y_2 y_1}{x_2 x_1}(x x_1) (x_1, y_1)$  and  $(x_2, y_2)$  will be points of the equation.
- Intercept form:  $\frac{x}{a} + \frac{y}{b} = 1 (a, b)$  will be a point of the equation.

## 1.2 Day 2

#### 1.2.1 Limit Laws:

Supposing c is a constant and  $\lim_{x\to a} f(x)$  and  $\lim_{x\to a} g(x)$  exists, then

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [cf(x)] = c \cdot \lim_{x \to a} f(x)$$

$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[ \frac{f(x)}{g(x)} \right] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[ \frac{f(x)}{g(x)} \right] = \lim_{x \to a} f(x) \lim_{x \to a} g(x) \neq 0$$

$$\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$$

$$\lim_{x \to a} f(x) = 0$$

$$\lim_{x \to a} f(x$$

**Direct Substitution Property:** If f is a polynomial or rational function, and a is in the domain of f, then  $\lim_{x\to a} f(x) = f(a)$ 

**Theorem 1.6.1:** If f(x) = g(x) when  $x \neq a$ , then  $\lim_{x\to a} f(x) = \lim_{x\to a} g(x)$ 

**Theorem 1.5.1:** If  $f(x) = L \iff \lim_{x \to a^-} f(x) = L = \lim_{x \to a^+} f(x)$ 

**Theorem 1.6.2:** If  $f(x) \leq g(x)$  when x is near a and the limits of f and g both

exist as x approaches a, then  $\lim_{x\to a} f(x) \le \lim_{x\to a} g(x)$ **Squeeze Theorem:** If  $f(x) \le g(x) \le h(x)$  when x is near a and  $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$ , then  $\lim_{x\to a} g(x) = L$ 

### 1.2.2 Piecewise / $(\epsilon, \delta)$ definition of limit

If for every small number  $\epsilon > 0$  there is a number  $\delta > 0$  such that if  $0 < |x - a| < \delta$  then  $|f(x) - L| < \epsilon$ .



## 1.3 Day 3

### 1.3.1 Continuous Function:

**Definition:** A function f is continuous at a number if  $\lim_{x\to a} f(x) = f(a)$ . Graphically, a function is continuous if you can draw it without having your pen leave paper. More formally, f(x) is continuous at x = aiff:

- 1. f(a) is defined  $(a \in D : a \text{ is in the domain of } f)$ .
- 2.  $\lim_{x\to a} f(x)$  exists, and equals f(x) = f(a).

If one of the aforementioned statements is incorrect, then f(x) is discontinuous at x = a

**Theorem 1:** A function is continuous on an interval if it's continuous at every number in the interval.

If f and g are continuous at x = a, then the following are also continuous at a:

$$f + g, f - g, cf, fg, \frac{f}{g}$$
 for  $g(a) \neq 0$ 

**Theorem 2:** The following types of functions are continuous at every number in there domain:

- 1. Polynomials (always  $(-\infty, \infty)$ )
- 2. Rational functions
- 3. Root functions
- 4. Trig functions

**Theorem 3: Intermediate Value Theorem (IVM):** Suppose that f is continuous on the close interval [a, b] and let N be any number between f(a) and f(b), where  $f(a) \neq f(b)$ . Then there exists at least on number c in (a, b) such that f(c) = N



- 1.4 Day 4
- 1.4.1 Line:
- **1.4.1.1** Secant Line: A line that locally intersects two points on a curve.

$$\frac{\text{Rise}}{\text{Run}} = \frac{\Delta y}{\Delta x} = \frac{y_1 - y_0}{x_1 - x_0} = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h}$$



**1.4.1.2** Tangent Line: The line through a pair of infinitely close points on the curve so that the line is "just touching". Slope equation (also known as "Difference Quotient"):

$$\lim_{h \to 0} \left\lceil \frac{f(a+h) - f(a)}{h} \right\rceil$$

**1.4.1.3 Derivatives:** The derivative of a function f at a number a, denoted by f'(a), is

$$f'(a) = \lim_{h \to 0} \left[ \frac{f(a+h) - f(a)}{h} \right]$$

and the equation of the tangent line to the curve y = f(x) at the point (a, f(a)) can be written in point-slope form as

$$y - f(a) = f'(a)(x - a)$$