全国硕士研究生入学统一考试备考用书

考研数学(二)

名师精选全真模拟冲刺题10套

考研辅导名师 陈启浩 编著

依据大纲选题 难易匹配真题 符合命题趋势

不止是模拟, 更接近实战

2016 考研数学(二)名师精选全真模拟冲刺题 10 套

考研辅导名师 陈启浩 编著

机械工业出版社

本书是考研数学冲刺阶段的复习指导书,适用于参加"数学二"考试的学生。书中包含了10套精心设计的模拟试题,题目难度稍高于考研真题。这些题目大部分为首次公开发布,并且非常适合考生用来检验复习效果以及进行临考重点复习。本书的解答部分,不仅给出了详尽的解答,还特别针对考试重点和难点进行了扩展复习。

本书可作为考生自学的复习材料,也可作为考研培训班的辅导教材,还可供大学数学基础课程的教学人员参考。

图书在版编目 (CIP) 数据

2016 考研数学 (二) 名师精选. 全真模拟冲刺题 10 套/陈启浩编著. —2 版. —北京: 机械工业出版社, 2015.5

全国硕士研究生人学统一考试备考用书 ISBN 978-7-111-48612-1

I. ①2… Ⅱ. ①陈… Ⅲ. ①高等数学 – 研究生 – 人学考试 – 题解 Ⅳ. ①013 – 44

中国版本图书馆 CIP 数据核字 (2014) 第 269247 号

机械工业出版社(北京市百万庄大街22号 邮政编码100037) 策划编辑:郑 玫 责任编辑:郑 玫 韩效杰版式设计:霍永明 责任校对:任秀丽封面设计:路恩中 责任印制:刘 岚北京京丰印刷厂印刷2015年4月第2版·第1次印刷184mm×260mm·12印张·290千字0001—3000册标准书号:ISBN 978-7-111-48612-1定价:29.80元

凡购本书,如有缺页、倒页、脱页,由本社发行部调换 电话服务 网络服务

服务咨询热线: 010-88361066 机工官网: www.cmpbook.com 读者购书热线: 010-68326294 机工官博: weibo.com/cmp1952

010-88379203 金 书 网: www. golden-book. com

封面无防伪标均为盗版 教育服务网: www. cmpedu. com

前 言

深入地读完我们编写的 2016 年全国硕士研究生入学统一考试备考用书(包括认真地推演了其中的每道例题和练习题)的考生,已经具有了较强的分析问题和解决问题的能力,具有了能够从容面对即将来临的研究生考试的实力.但是,为了把准备工作做得更充分,为了践行"战前多流汗,战时少流血",应在考试前进行 10 场"实战演习"——认真、独立地做完 10 套模拟试题,其中,各套模拟试题的难度稍高于考研真题,作为最后的冲刺.

书中的10套试题是根据考研的数学大纲和编者的教学经验精心设计的,它既涵盖性强,又重点突出.其中的问题新颖,既有较强的针对性,又有明显的前瞻性.书中给出了这10套试题的详细、规范的解答,每题之后都加有附注,用简明的语言指明了与本题有关的概念、方法等值得注意之点.当然,我们在"实战演习"时,不应一遇到困难就翻看解答,一定要认真、反复地思索,这样才能达到使用本书冲刺的目的——进一步提高应试能力,向着高分进发.使用本书的实践表明:弄通模拟试题,不想拿高分都难.

衷心祝愿考生们取得骄人的成绩,并欢迎对本书提出宝贵意见,可发邮件到 cqhshuxue @ gmail. com,非常感谢!

北京邮电大学教授 陈启浩

目 录

前言		
模拟试题	(-)	1
模拟试题	(二)	8
模拟试题	(三)	
模拟试题	(四)	
模拟试题	(五)	
模拟试题	(六)	
模拟试题	(七)	41
模拟试题	(八)	
模拟试题	(九)	55
模拟试题	(+)	61
模拟试题	(-)	解答
模拟试题	(二)	解答 ····································
模拟试题	(三)	解答 ······· 92
模拟试题	(四)	解答
模拟试题	(五)	解答
模拟试题	(六)	解答
模拟试题	(七)	解答
模拟试题	(八)	解答
模拟试题	(九)	解答
模拟试题	(十)	解答

模拟试题(一)

一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.

(1) 函数
$$f(x) = \begin{cases} \frac{\sin 2x}{(e^{\cos x} - 1)\ln(1 + \frac{1}{4}x)}, & -\pi < x < 0, \\ (e^{\cos x} - 1)\ln(1 + \frac{1}{4}x), & \text{的可去间断点个数为} \end{cases}$$
(A) 0. (B) 1. (C) 2. (D) 3.

(2) 使函数 $f(x) = x \ln(x + a) - \frac{1}{e}$ 仅有单调减少区间 $\left(0, \frac{1}{e}\right]$ 的常数 a 为

$$(A) -2.$$
 $(B) -1.$ $(C) 0.$ $(D) 1$

(3) 设函数 f(x) 在 $[a, +\infty)$ 上二阶可导, $b \in (a, +\infty)$,且 $f(a) = \frac{1}{b-a} \int_a^b f(x) dx = \lim f(x)$,则方程 f''(x) = 0 在 $[a, +\infty)$ 上

(A) 至少有一个实根.

(B) 至少有两个实根.

Γ

ſ

7

7

]

(C) 恰好有一个实根.

(D) 恰好有两个实根.

(4) 设函数 f(x)连续, 且 f(0) = f'(0) = 0, 记

$$F(x) = \begin{cases} \int_0^x \left(\int_0^u f(t) \, \mathrm{d}t \right) \, \mathrm{d}u, & x \le 0, \\ \int_{-x}^0 \ln(1 + f(x + t)) \, \mathrm{d}t, & x > 0, \end{cases}$$

则 F''(0) 为

(A) 1. (B)
$$\frac{1}{2}$$
. (C) $\frac{1}{3}$.

(5) 设二元函数 f(u, v) 有连续的偏导数, $z = f(e^x \sin y, e^x \cos y)$,其中 y = y(x) 是微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} + y = \sin x$ 满足 $y(0) = -\frac{1}{2}$ 的解,则 $\frac{\mathrm{d}z}{\mathrm{d}x}$ 为

(A) $(e^x \sin y + e^x \cos y) f'_u(u, v) + (e^x \cos y - e^x \sin y) f'_v(u, v)$ (其中 $u = e^x \sin y$, $v = e^x \cos y$).

(B)
$$(e^x \sin y + e^x \cos y) f'_u(u, v) + (e^x \cos y - e^x \sin y) f'_v(u, v)$$
 (其中 $u = e^x \sin y, v = e^x \sin y$)

$$e^x \cos y$$
, $y = \frac{1}{2}(\sin x - \cos y)$.

(C)
$$\left[e^x \sin y + e^x \cos y \cdot \frac{1}{2}(\cos x + \sin x)\right] f'_u(u, v) + \left[e^x \cos y - e^x \sin y \cdot \frac{1}{2}(\cos x + \sin x)\right]$$

• $f'_v(u, v)$ (其中 $u = e^x \sin y$, $v = e^x \cos y$).

(D)
$$\left[e^x \sin y + e^x \cos y \cdot \frac{1}{2}(\cos x + \sin x)\right] f'_u(u, v) + \left[e^x \cos y - e^x \sin y \cdot \frac{1}{2}(\cos x + \sin x)\right]$$

•
$$f'_v(u, v)$$
 (其中 $u = e^x \sin y$, $v = e^x \cos y$, $y = \frac{1}{2}(\sin x - \cos x)$).

(6) 设 D 是由曲线 $x^2-y^2=1$ 与直线 x=2 围成的平面图形,则二重积分 $\iint_D (x+y) d\sigma$ 为

- (A) $\sqrt{3}$.
- (B) $2\sqrt{3}$.
- (C) $3\sqrt{3}$.
- (D) 0.

Γ

- (7) 设 $A \in n(n \ge 2)$ 阶反对称矩阵, $A^* \ne 0$, 则 A^* 为对称矩阵是n为奇数的
- (A) 充分而非必要条件.

(B) 必要而非充分条件.

(C) 充分必要条件.

(D) 既非充分又非必要条件.

(8) 设矩阵 \mathbf{A} 与 $\mathbf{B} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ 相似,则 $r(\mathbf{A} - 2\mathbf{E}_3) + r(\mathbf{A} - \mathbf{E}_3)$ 为

- (A) 2.
- (B) 3
- (C) A
- (D) 5.

二、填空题: 9~14 小题,每小题 4分,共 24分,请将答案写在答题纸指定位置上.

(9) 极限
$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^{(-1)n_{\sin n}} = \underline{\hspace{1cm}}$$

(10) 设函数 $\varphi(x) = \begin{cases} 1-x, & x \leq 1, \\ x \ln x, & x > 1, \end{cases} \psi(x) = \begin{cases} (x-1)^2, & |x| \leq 1, \\ \ln x, & x > 1, \end{cases}$ 则定积分

$$\int_{-1}^{1} \varphi(\psi(x)) \, \mathrm{d}x = \underline{\qquad}.$$

(11) 曲线
$$y = \int_0^x \tanh dt$$
 在点 $\left(\frac{\pi}{4}, y\left(\frac{\pi}{4}\right)\right)$ 处的曲率为_____.

(12) 设二元函数 f(u, v) 具有连续偏导数,且在点(1, 0)的充分小领域内, $f(u, v) = 1 - u - 2v + o\left(\sqrt{(u-1)^2 + v^2}\right)$. 记 $g(x, y) = f(e^y, x + y)$,则 $\mathrm{d}g(x, y) \Big|_{(0,0)} = \underline{\hspace{1cm}}$.

(13) 设二元函数
$$f(x, y)$$
连续,则二次积分 $\int_0^{\frac{\pi}{2}} d\theta \int_1^{-\sin\theta + \sqrt{3+\sin^2\theta}} f(r\cos\theta, r\sin\theta) r dr$ 在直角坐

]

]

1

标系中先 x 后 y 的二次积分为_____

(14) 设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, 则 4 阶矩阵 $\begin{pmatrix} \mathbf{A}^{-1} & \mathbf{O} \\ A & C^* \end{pmatrix}^{-1} = \mathbf{C}^{-1}$

三、解答题: $15 \sim 23$ 小题, 共 94 分. 请将解答写在答题纸指定位置上, 解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

求极限
$$\lim_{x\to 0} \left(\frac{2+\mathrm{e}^{\frac{1}{x}}}{1+\mathrm{e}^{\frac{2}{x}}} + \frac{\sin x - \mid x\mid}{\mid x\mid}\right) \arctan \frac{1}{x}.$$

(16) (本题满分10分)

求由直线 y=x 与曲线 $y=x^2$ 围成的平面图形 D 分别绕直线 y=1 和 y 轴旋转一周而成的 旋转体体积.

(17) (本题满分10分)

分别求 a=1 与 a=2 时, 微分方程 $y''+a^2y=\sin x+2\cos 2x$ 的通解.

(18) (本题满分10分)

设二元函数
$$z=z(x, y)$$
满足
$$\begin{cases} \frac{\partial^2 z}{\partial x \partial y} = x + y, \\ z(x, 0) = x^2, \\ z(0, y) = y^2. \end{cases}$$
 记 $w=z(x+y, x-y)$, 求全微分 dw.

(19) (本题满分11分)

设二重积分 $\iint_D r^2 \sin\theta \sqrt{1-r^2\cos 2\theta} dr d\theta$ 在直角坐标系中的被积函数为 f(x, y) ,其中 $D = \left\{ (r, \theta) \left| 0 \le r \le \sec\theta, \ 0 \le \theta \le \frac{\pi}{4} \right\}, \ \ \ \, \vec{x} \, f(x, y) \right.$ 在 D 上的最大值与最小值.

- (20) (本题满分10分)
- (I)证明:当 |x| 充分小时,有 $x^2 \leq \tan^2 x \leq x^2 + x^4$;

(
$$II$$
) 设 $x_n = \sum_{k=1}^n \tan^2 \frac{1}{\sqrt{n+k}} (n=1, 2, \cdots), 求极限 \lim_{n \to \infty} x_n.$

(21) (本题满分11分)

设函数 f(x) 在 [0, 2] 上 2 阶可导,且满足 $\max\{|f(x)|, |f''(x)|\} \le 1$. 证明 $|f'(x)| \le 2(x \in [0, 2])$.

(22) (本题满分11分)

设向量组(A): $\boldsymbol{\alpha}_1 = (1, 0, 1)^T$, $\boldsymbol{\alpha}_2 = (0, 1, 1)^T$, $\boldsymbol{\alpha}_3 = (1, 3, 5)^T$ 与向量组(B): $\boldsymbol{\beta}_1 = (1, 1, 1)^T$, $\boldsymbol{\beta}_2 = (1, 2, 3)^T$, $\boldsymbol{\beta}_3 = (3, 4, a)^T$ 等价, 求

- (I)常数 a;
- (Ⅱ)(A)由(B)的线性表示式.

(23) (本题满 11 分).

设矩阵 $\mathbf{A} = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & a \\ 4 & a & 0 \end{pmatrix}$, 正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}(其中 \mathbf{x} = (x_1, x_2, x_3)^T, \mathbf{y} = (y_1, y_2, y_3)^T$, 使得二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 化为标准形, 其中正交矩阵 \mathbf{Q} 的第 1 列为 $\frac{1}{\sqrt{6}}(1, 2, 1)^T$, 求

- (I) 常数 a 及 f 的标准形;
- (\mathbb{I}) A^* 能否正交相似对角化? 如果能,写出使 $P^TA^*P = A$ 的正交矩阵 P 及对角矩阵 A; 如果不能,说明理由.

模拟试题(二)

一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将选项前的字母填在答题纸的指定位置上.

(A)
$$\frac{1}{2(x-1)^{11}} - \frac{1}{x^{11}} + \frac{1}{2(x+1)^{11}}$$
.

(B)
$$\frac{10!}{2(x-1)^{11}} + \frac{10!}{x^{11}} + \frac{10!}{2(x+1)^{11}}$$
.

(C)
$$\frac{10!}{2(x-1)^{11}} - \frac{10!}{x^{11}} + \frac{10!}{2(x+1)^{11}}$$
.

(D)
$$\frac{1}{2(x-1)^{11}} + \frac{1}{x^{11}} + \frac{1}{2(x+1)^{11}}$$
.

(2) 设函数 y = y(x) 的参数方程为 $\begin{cases} x = \ln^2(1+t), \\ y = (e^t - 1)^2, \end{cases}$ 且 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 在 t = 0 处连续,则 $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) \Big|_{t=0}$

为

(D) 3.

Γ

1

7

(3) $y\left(\frac{1}{e}\right) = \frac{1}{e}$ 是函数 $y = x + \ln x +$ 的

- (A) 最大值.
- (B) 最小值.
- (C) 极大值.
- (D) 极小值.

 $(4) \int_{\frac{\pi}{2}}^{\pi} \sin \sqrt{1 - \sin^2 x} dx =$

- (A) $\frac{3}{4}$. (B) $-\frac{1}{4}$. (C) $-\frac{3}{4}$. (D) $\frac{1}{4}$.

(5) 设二元函数f(x, y)满足 $f'_x(0, 0) = 1, f'_y(0, 0) = 2, 则$

- (A) f(x, y)在点(0, 0)处连续.
- (B) $df(x, y) \Big|_{(0,0)} = dx + 2dy.$

(C)
$$\lim_{x\to 0} \frac{f(x, x) - f(0, 0)}{x}$$
 - 落必达法则 $f'_x(0, 0) + f'_y(0, 0)$.

(D)
$$\lim_{x\to 0^-} \frac{f(x, 0) - f(0, 0)}{x} = f'_x(0, 0).$$

 $(6) \ \ \mathcal{U} \ D = \{\,(x,\ y) \ | \ x^2 + y^2 \leqslant 1 \,, \ y \geqslant 0\,\} \;, \ \ D_1 = \{\,(x,\ y) \ | \ x^2 + y^2 \leqslant 1 \,, \ x \geqslant 0 \,, \ y \geqslant 0\,\} \;,$ f(x)是连续函数,则以下等式正确的为

(A)
$$\iint\limits_{D} \left[f(x) + f(-x) \right] d\sigma = 4 \iint\limits_{D_{1}} f(x) d\sigma.$$

(B)
$$\iint\limits_{D} \left[f(x) - f(-x) \right] d\sigma = 4 \iint\limits_{D_{1}} f(x) d\sigma.$$

(C)
$$\iint_D f(x) d\sigma = 2 \iint_{D_1} f(x) d\sigma.$$

(D)
$$\iint_D f(x^2) d\sigma = 2 \iint_{D_1} f(x^2) d\sigma.$$

1

(7) 设 $A \in n(n > 2)$ 阶可逆矩阵,则 $(A^*)^* =$

- (A) A.
- (B) $|A|^{n-2}A$. (C) $|A|^{n-1}A$. (D) $|A|^*$.

1

(8) 设A, B 都是n 阶正定矩阵,则下列选项中为正定矩阵的是

(A)
$$A^* + 2B^*$$
. (B) $A^* - B^*$. (C) A^*B^* . (D) $\begin{pmatrix} AB & O \\ O & A + B \end{pmatrix}$.

二、填空题: 9~14 小题,每小题4分,共24分.请将答案写在答题纸指定位置上.

(9) 不定积分
$$\int \arctan \frac{1+x}{1-x} dx =$$
_____.

(10) 定积分
$$\int_{-1}^{2} \max\{1, x^2\} dx =$$
_____.

(11) 曲线
$$\begin{cases} x = t, \\ y = t + \frac{1}{2}t^2$$
 在点(0, 0)处的曲率圆面积为_____.

(12) 设二元函数
$$z = \begin{cases} \left(\frac{y}{x}\right)^{\ln x}, & x \ge 1, \ 0 < y < + \infty, \\ \ln(x^{\ln 2}) + y^2 - 3, & x < 1, \ 0 < y < + \infty, \end{cases}$$
 则 $\frac{\partial z}{\partial x} \Big|_{(1,2)} = \underline{\qquad}$

(13)
$$\stackrel{\sim}{\boxtimes} D = \{(x, y) \mid x^2 + y^2 \le 1, x \le y\}, \quad \iiint_D e^{\sqrt{x^2 + y^2}} d\sigma = = _____.$$

(0 0 1 -2)

(14) 设矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & -2 \\ 0 & 0 & -2 & 4 \\ 1 & 2 & -1 & 1 \\ -3 & 2 & 2 & 1 \end{pmatrix}$$
, 则 $r((\mathbf{A}^2)^*) = \underline{\qquad}$

三、解答题: 15~23 小题, 共 94 分, 请将解答写在答题纸指定位置上, 解答应写出文字说明, 证明过程或演算步骤.

求极限
$$\lim_{x\to 0} \left(\frac{2\cos x + x}{2\sqrt{1+x}}\right)^{\frac{1}{x^2}}.$$

(16) (本题满分10分)

设函数f(x)满足f(0) = 0, f'(0) = 1, 记

$$g(t) = \lim_{x\to 0} \left[1 + \sqrt[3]{\sin t} f(x)\right]^{\frac{\sqrt[3]{2}}{\ln(1+x)}},$$

求 g'(0).

(17) (本题满分10分)

求不定积分
$$\int \frac{1}{\sin x \sqrt{1 + \cos x}} dx$$
.

(18) (本题满分10分)

设函数 f(x) 满足 $e^x f(x) + 2e^{\pi - x} f(\pi - x) = 3\sin x$, 求 f(x) 在 $(0, \pi)$ 内的极值.

(19) (本题满分11分)

设函数 f(x) 在 [0, 1] 上 3 阶可导,且 f(0) = 0, f(1) = 1, f'(0) = f'(1) = 1. 证明:存在 $\xi \in (0, 1)$,使得 $f^{(3)}(\xi) = 0$.

(20) (本题满分10分)

设二元函数 $f(x, y) = x\sqrt{y} + \frac{12}{\pi^3} \int_D f(x, y) d\sigma$,其中 $D = \{(x, y) \mid 0 \le x \le \frac{\pi}{2}, 0 \le y \le x^2\}$. 记 $g(x) = f(\sin^2 x, x^4)$,求 g(x)的带拉格朗日型余项的 6 阶麦克劳林公式.

(21) (本题满分11分)

设二元连续函数 z=z(x, y) 由方程 $2x^2+2y^2+z^2-8z+8=0$ 确定,求 z=z(x, y) 在平面 区域 $D=\{(x, y)\mid x\geqslant 0,\ y\geqslant 0,\ x+y\leqslant 1\}$ 上的最大值与最小值.

(22) (本题满分11分)

设
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 & 4 & 0 \\ -1 & 0 & -2 \\ a & b & c \end{pmatrix}$, 求使矩阵方程 $\mathbf{AX} = \mathbf{B}$ 有解的常数 a , b , c ,

并求该方程的所有解.

(23) (本题满分11分)

设 A 是 3 阶实对称矩阵,r(A) = 2,且 A $\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 2 \\ 1 & 2 \end{pmatrix}$,求正交变换 x = Qy(其

中 $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}, \mathbf{y} = (y_1, y_2, y_3)^{\mathrm{T}}, \mathbf{Q}$ 是 3 阶正交矩阵),将二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} A^2 \mathbf{x}$ 化为标准形,并写出该标准形.

模拟试题(三)

选项		小题,每小题4分,共,请将选项前的字母填	32 分.每小题给出的 在答题纸指定位置上.	四个选项中,	只有-	一个			
	(1) 设函数 f(x) =	$\lim_{n\to\infty} \sqrt[n]{1+ x ^{3n}}, \ \iint f$	$f(x)$ 在 $(-\infty, +\infty)$ 上						
	(A) 处处可导.		合好有一个不可导点.						
	(C) 恰好有两个不	可导点. (D) 3							
]			
	(2) $i \exists F(x) = \int_0^{2x} \cos^2(2x - t) dt$, $\iint F''(x) $								
	(A) $4\sin 4x$.	(B) $-4\sin 4x$.	(C) 4cos4x.	(D) -4	$\cos 4x$.				
]			
	(3) 方程 $\ln x = \frac{x}{e} - \int_0^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} dx$ 的正根个数为								
	(A) 3.	(B) 2.	(C) 1.	(D) 0.					
]			
(4) 曲线 $y = \frac{1}{x(x+1)} + x \ln(1 + e^x)$ 的渐近线条数为									
	(A) 0.	(B) 1.	(C) 2.	(D) 3.					
]			
			(。)的某个邻域内具有						
$f_{x}'(x_{0}, y_{0}) = f_{y}'(x_{0}, y_{0}) = 0$. 记 $A = f_{xx}''(x_{0}, y_{0})$, $B = f_{xy}''(x_{0}, y_{0})$, $C = f_{yy}''(x_{0}, y_{0})$,则以下结论不正确的是									
	(A) $\stackrel{\text{def}}{=} A > 0$, $AC = 0$	$-B^2 > 0$ 时, $f(x_0, y_0)$	是极小值.						
(B) 当 $C > 0$, $AC - B^2 > 0$ 时, $f(x_0, y_0)$ 是极小值.									
	$(C) \stackrel{\text{def}}{=} AC - B^2 = 0$	时, $f(x_0, y_0)$ 不是极值	直.						
	(D) $\stackrel{\text{def}}{=} AC - B^2 < 0$	时, $f(x_0, y_0)$ 不是极位	直.						
]			
	(6) 微分方程 y"+	$2y' + 2y = \int_0^x e^t \sin t dt \bar{\pi}$	特解						
	$(A) -\frac{1}{8}e^x \cos x + \frac{1}{4}e^x \cos x +$	$\frac{1}{4}$.	$(B) \frac{1}{8} e^x \cos x + \frac{1}{4}$	÷.					
	$(C) -\frac{1}{8}e^x \sin x + \frac{1}{4}$	<u>.</u> •	$(D) \frac{1}{8} e^x \sin x + \frac{1}{4}$	·.					

(7) 设 A 是 2 阶矩阵, B 是 3 阶可逆矩阵, 且 |A| = 2, 则分块矩阵

$$\begin{pmatrix} \boldsymbol{o} & (2\boldsymbol{A})^* \\ (3\boldsymbol{B})^{-1} & \boldsymbol{o} \end{pmatrix}^{-1} \stackrel{\text{\tiny Φ}}{=} \mp$$

$$(A) \begin{pmatrix} \mathbf{o} & \frac{1}{4} \mathbf{A} \\ 3\mathbf{B} & \mathbf{o} \end{pmatrix}.$$

$$(B) \begin{pmatrix} 3B & O \\ O & \frac{1}{4}A \end{pmatrix}.$$

(C)
$$\begin{pmatrix} \boldsymbol{o} & \frac{1}{4}\boldsymbol{B} \\ 3\boldsymbol{A} & \boldsymbol{o} \end{pmatrix}$$
.

(D)
$$\begin{pmatrix} \boldsymbol{O} & 3\boldsymbol{B} \\ \frac{1}{4}\boldsymbol{A} & \boldsymbol{O} \end{pmatrix}$$
.

(8) 已知矩阵 $\mathbf{Q} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{pmatrix}$ 及 3 阶非零矩阵 \mathbf{P} 满足 $\mathbf{PQ} = \mathbf{O}$,则

(A) t = 6 时, r(P) = 1.

(B) t = 6 时, r(P) = 2.

]

]

(C) $t \neq 6$ 时, r(P) = 1.

(D) $t \neq 6$ 时, r(P) = 2.

二、填空题: 9~14 小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

- (9) 根据 $\lim_{n\to\infty} \frac{1}{n} [(n+1)(n+2)\cdots(n+n)]^{\frac{1}{n}} = \underline{\hspace{1cm}}.$
- (10) 设函数 f(x) 连续,且满足 $f(x)=x+2\int_0^{\frac{\pi}{2}}f(x)\cos x\mathrm{d}x$,则定积分 $\int_0^1f(x)\mathrm{d}x=$
- (11) 设 $z = f(e^x, x^2 + y^2)$,其中二元函数f(u, v)可微,且y = y(x)是由 $e^x + \sin y = x$ 确定的隐函数,则 $\frac{\mathrm{d}z}{\mathrm{d}x} = \underline{\hspace{1cm}}$.
 - (12) 微分方程 $(x\cos y + \cos x)y' y\sin x + \sin y = 0$ 的通解为_____.
- (13) 设函数 f(x, y) 连续,则 $\iint_D f(x, y) d\sigma$ (其中 D 是由曲线 $y = x^2 (x \le 0)$ 直线 x + y = 2 以及 x 轴围成的平面区域) 在极坐标系下,先 r 后 θ 的二次积分为
- (14) 设A, B 都是 4 阶矩阵,它们相似,且A 的特征值为 2, 1, 1, 2, 则行列式 $|B^* E_4| =$ _____.
- 三、解答题: 15~23 小题, 共94分. 请将解答题写在答题纸指定位置上, 解答应写出文字说明、证明过程及演算步骤.

(15) (本题满分10分)

已知函数 f(u) 在点 u=1 处可导,且 f'(1)=1,求极限

$$\lim_{x \to 0} \frac{f(\ln(1+x^2) + e^x - x) - f(1)}{\tan x \cdot (\sqrt{1+x} - 1)}.$$

(16) (本题满分10分)

求微分方程 $y'' + y = 5e^{2x} + 2\sin x$ 的通解.

(17) (本题满分10分)

设数列 $\{a_n\}$ 由递推式 $a_1=2$, $a_{n+1}=\frac{1}{3}\left(2a_n+\frac{1}{a_n^2}\right)(n=1,2,\cdots)$ 确定,求以下极限:

(I) $\lim_{n\to\infty}a_n($ 记为a);

$$(II) \lim_{x \to a} \left(\sqrt{2-x} + \ln \frac{1+x}{2} \right)^{\frac{1}{\sin^2(x-1)}}.$$

(18) (本题满分10分)

设二元连续函数 f(x, y) 满足 $f(x, y) = \frac{1}{2}x^2y + x + 3y \iint_D f(x, y) d\sigma$, 其中 D 是由曲线 $y = x^2$ 与直线 x = 1 及 x 轴围成的平面图形,求 f(x, y) 以及 $z = f(x^y, y^x)$ 的偏导数 $\frac{\partial z}{\partial x}$.

(19) (本题满分10分)

设函数 f(x) 在 [0, 1] 上可导,且 0 < f(x) < 1 及 f'(x) = 1,证明:存在唯一的 $\xi \in (0, 1)$,使得 $f(\xi) = \xi$.

(20) (本题满分11分)

设 z=z(x, y) 是由方程 $2x^2+2y^2+z^2+4xz+2z+3=0$ 确定的隐函数,求 z(x, y)的极值.

(21) (本题满分11分)

设二元函数
$$f(x, y) = \begin{cases} x \ln x, & x + y \le 1, \ x \ge 0, \ y \ge 0, \\ \frac{1}{(x^2 + y^2)^{\frac{3}{2}}}, & 1 < x + y \le 2, \ x \ge 0, \ y \ge 0, \end{cases}$$
求二重积分 $\iint_D f(x, y) d\sigma$,

其中 $D = \{(x, y) \mid x + y \le 2, x \ge 0, y \ge 0\}.$

(22) (本题满分11分)

已知线性方程组(I) $\begin{cases} x_1 + x_2 - 2x_3 = 1, \\ x_1 - 2x_2 + x_3 = 2, \end{cases}$ 有两个不同的解,且 a 为系数矩阵的秩,求其 $ax_1 + bx_2 + cx_3 = 0$,

通解及向量 $\boldsymbol{\xi} = (a, b, c)^{\mathrm{T}}$ 在基 $\boldsymbol{\eta}_1 = (1, 0, -1)^{\mathrm{T}}, \boldsymbol{\eta}_2 = (-1, 1, 1)^{\mathrm{T}}, \boldsymbol{\eta}_3 = (1, 1, 0)^{\mathrm{T}}$ 下的坐标.

(23) (本题满分11分)

已知 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + cx_3^2 + 2x_1x_3 + 2x_2x_3 (c \ge 2)$ 与 $g(x_1, x_2, x_3) = x_1^2 - 2x_1x_2 + 4x_2^2 + x_3^2$ 中有且仅有一个是正定二次型,求常数 c 及用可逆线性变换将正定二次型化为规范形,用正交变换将非正定二次型化为标准形.

模拟试题(四)

- (A) 若 f(x) 只有一个零点,则 f'(x) 必至少有两个零点.
- (B) 若 f'(x) 只有一个零点,则 f(x) 必至少有两个零点.
- (C) 若 f(x) 没有零点,则 f'(x) 至少有一个零点.
- (D) 若 f'(x) 没有零点,则 f(x) 至多有一个零点.
- (2) 设函数 f(x) 在($-\infty$, $+\infty$)上连续, $x_0 \neq 0$, $f(x_0) \neq 0$, 且(x_0 , $f(x_0)$) 是曲线 y =f(x)的拐点,则
 - (A) $f''(x_0) = 0$.
 - (B) $(x_0, -f(x_0))$ 是曲线 y = -f(x) 的拐点.
 - (C) $(-x_0, f(x_0))$ 不是曲线 y = f(-x) 的拐点.
 - (D) $(-x_0, -f(x_0))$ 不是曲线 y = -f(-x) 的拐点.
 - (3) 对于定积分 $I_1 = \int_{0}^{\frac{\pi}{2}} \sin(\sin x) dx$, $I_2 = \int_{0}^{\frac{\pi}{2}} \sin(\cos x) dx$, $I_3 = \int_{0}^{\frac{\pi}{2}} \cos(\sin x) dx$ 有
 - (A) $I_1 < I_2$.
- (B) $I_1 < I_3$.
- (C) $I_3 < I_2$.
 - (D) $I_3 < 1$.

Γ

7

1

(4) 反常积分 $\int_0^{+\infty} \frac{x \ln x}{(1+x^2)^2} dx$

- (A) 收敛于 0.
- (B) 收敛于 1.
- (C) 收敛于-1. (D) 发散.

Γ

1

1

(5) 设二元函数 $f(x, y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$

- (A) $f''_{xy}(0, 0) = f''_{yx}(0, 0)$. (B) $f''_{xy}(0, 0) > f''_{yx}(0, 0)$. (C) $f''_{xy}(0, 0) < f''_{yx}(0, 0)$. (D) $f''_{xy}(0, 0) = f''_{yx}(0, 0)$ 中至少有一个不存在.

(6) 设二元函数f(x, y)连续,记二次积分 $\int_{0}^{1} dy \int_{1-x}^{1} f(x,y) dx + \int_{1}^{2} dx \int_{-\sqrt{x-1}}^{1} f(x, y) dy$ 对 应的二重积分的积分区域为 D,则 D的边界上与直线 y=x-1 平行的切线方程为

(A)
$$y = x - \frac{3}{4}$$
. (B) $y = x + \frac{3}{4}$. (C) $y = x - \frac{1}{2}$.

Γ

7

- ①t=2 时, $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_4$ 线性相关; ②t=2 时, $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_4$ 线性无关;
- ③t=3 时, $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_4$ 线性相关; ④t=3 时, $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_4$ 线性无关.

则正确结论为

- (A) 13.
- (B) 23.
- (C) (1)(4).
- (D) 24.

(8) 设3 阶矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ a & 1 & b \\ 1 & 0 & 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0 & 0 & 1 \\ a & 1 & -b-1 \\ 1 & 0 & 0 \end{pmatrix}$$
都可相似对角化,则

(A)
$$a = \frac{1}{2}$$
, $b = -\frac{1}{2}$.

(B)
$$a = b = \frac{1}{2}$$
.

(C)
$$a = -\frac{1}{2}$$
, $b = \frac{1}{2}$.

(D)
$$a = b = -\frac{1}{2}$$
.

二、填空题: 9~14 小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

- (9) 曲线 $y = \frac{x^3}{(x-1)^2} + x^2 (e^{\frac{1}{x}} 1)$ 的非铅直渐近线方程为______.
- (10) 设函数 $f(x) = (\sin x^3)^3 + \ln \cos x$, 则 $f^{(4)}(0) =$
- (11) 微分方程 $x^2y'' xy' = \ln x$ 的通解为

(12) 定积分
$$\int_{-1}^{1} \left(|x| e^{-x} + \sin x^3 + \sqrt{1 - x^2} \right) dx = ____.$$

(13) 设二重积分
$$\iint_D (x^2 + 4y^2 + xy) d\sigma = \frac{9}{64}\pi$$
, 其中 $D = \{(x, y) \mid x^2 + y^2 \le ax\}$,则常数

(14) 设A 是 3 阶矩阵, α_1 , α_2 , α_3 都是 3 维列向量, 且线性无关, 已知

$$A\alpha_1 = \alpha_2 + \alpha_3$$
, $A\alpha_2 = \alpha_1 + \alpha_3$, $A\alpha_3 = \alpha_1 + \alpha_2$,

则 A 的最大特征值为

三、解答题: 15~23 小题, 共94 分. 请将解答写在答题纸指定位置上. 解答应写出文 字说明、证明过程或演算步骤.

(15)(本题满分10分)

设函数
$$f(x) = \begin{cases} \frac{1}{(1-x)\sin\pi x} - \frac{1}{\pi(1-x)^2}, & \frac{1}{2} < x < 1, \\ A, & x = 1 \end{cases}$$
 在点 $x = 1$ 处左连续,求常数 A .

(16) (本题满分10分)

设曲线 $C: y = x^2$, A(t) 是由曲线 C, 直线 x = -1, $x = t(t \ge -1)$ 及 x 轴围成的曲边梯形的面积, s(t) 为曲线 C 上由点(-1, 1) 到点 (t, t^2) 的弧长.

记由曲线
$$C_1$$
:
$$\begin{cases} x = A(t), \\ y = \frac{\mathrm{d}s(t)}{\mathrm{d}t}, & \text{直线 } x = 0, \ x = \frac{2}{3} \text{以及 } x \text{ 轴围成的平面图形 } D \ \pounds x \text{ 轴旋转一} \end{cases}$$

周而成的旋转体体积为 V, 求 V.

(17) (本题满分11分)

证明: 方程 $xe^{2x} - 2x - \cos x + \frac{1}{2}x^2 = 0$ 在(0, 1)内有且仅有一个实根.

(18) (本题满分10分)

设二元函数 f(u, v) 可微,且 f(1, 1) = 1, $f'_u(1, 1) = 2$, $f'_v(1, 1) = 3$,以及 $\varphi(x) = f(x, f(x, x))$ 是单调函数,求 $\frac{\mathrm{d}}{\mathrm{d}x} \int_0^{\varphi(x)} \varphi^{-1}(t) \, \mathrm{d}t \, \Big|_{x=1}$ (其中 φ^{-1} 是 φ 的反函数).

(19) (本题满分10分)

设函数 f(x, y) 连续,满足 $f(x, y) = xy + \iint_D f(x, y) d\sigma$,其中 $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le x^2\}$,求 $f(e^x, \sin x)$ 带佩亚诺型余项的 5 阶麦克劳林公式.

(20) (本题满分10分)

设 y(x) 是微分方程 $\frac{4}{\pi^2} \frac{\mathrm{d}^2 \varphi}{\mathrm{d}x^2} + y = x$ 满足 y(0) = 1 , $y'(0) = 1 + \frac{\pi}{2}$ 的解,求 y(x) 及极限 $\lim_{x\to 0} [y(x)]^{\frac{1}{x}}$.

(21) (本题满分11分)

设函数 f(u) 在[1, + ∞)上具有 2 阶连续偏导数,且 f(1)=0, f'(1)=1. 又设二元函数 $z=(x^2+y^2)f(x^2+y^2)$ 满足 $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0$,求.

(I) *f*(*u*)的表达式;

(II) 二重积分 $\iint_D \sqrt{x^2 + y^2} f(x^2 + y^2) d\sigma$, 其中 $D \neq D_1 = \{(x, y) \mid x^2 + y^2 \ge 1\}$ 与 $D_2 = \{(x-1)^2 + y^2 \le 1\}$ 的公共部分.

(22) (本题满分11分)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ -1 & 0 & a-3 \end{pmatrix}$$
有零特征值,且有矩阵 $\mathbf{B} = \begin{pmatrix} 2 & 2 & 3 \\ 3 & 4 & 8 \\ b+1 & c-2 & -3 \end{pmatrix}$,使得矩阵

方程 AX = B 有解, 求常数 a, b, c 及该矩阵方程的所有解.

(23) (本题满分11分)

设向量 $\boldsymbol{\beta} = (1, 1, -2)^{\mathrm{T}}$ 可由向量组 $\boldsymbol{\alpha}_1 = (1, 1, a)^{\mathrm{T}}, \boldsymbol{\alpha}_2 = (1, a, 1)^{\mathrm{T}}, \boldsymbol{\alpha}_3 = (a, 1, 1)^{\mathrm{T}}$ 线性表示,但表示式不是唯一的.

- (I) 求常数 a 及线性表示式的一般形式;
- (II) 对矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 及上述求得的 a, 求正交变换 x = Qy (其中 $x = (x_1, x_2, x_3)^T$, $y = (y_1, y_2, y_3)^T$, Q 是正交矩阵), 将二次型 $f(x_1, x_2, x_3) = x^T Ax$ 化为标准形, 并求此标准形.

模拟试题(五)

一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.

(1) 设函数
$$g(x)$$
满足 $g(1) = 0$, $g'(1) = -1$, 记 $f(x) = \begin{cases} g(x)\sin\frac{\pi}{2x}, & x \neq 1, \\ 0, & x = 1, \end{cases}$

等于

(A) 0.

(B) 1.

(C) -1.

(D) 不存在.

]

(2) 函数 $f(x) = \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin\pi x}{x^n + x^2 - 1}$ 的极大值与极小值分别为

(A) 1, -1. (B) -1. 1.

(C) 不存在, -1. (D) 1, 不存在.

(3) 设y = y(x)是由方程 $x^2y^2 + y = 1$ 确定的取正值的隐函数,则y(x)

(A) 有最小值, 但无最大值.

(B) 有最大值, 但无最小值.

(C) 既有最大值,又有最小值.

(D) 没有最大值与最小值.

7

(4) 设二元函数 $\varphi(x, y) = \int_{0}^{\frac{y}{2^2}} du \int_{0}^{u} \frac{1}{v^2} f\left(\frac{v}{v}\right) dv$ (其中 f 是连续函数),则 $\frac{\partial^2 \varphi}{\partial v^2}$

 $(A) \frac{1}{x^2} f\left(\frac{y}{x^2}\right). \qquad (B) \frac{1}{x^2} f\left(\frac{x^2}{y}\right). \qquad (C) \frac{1}{x^4} f\left(\frac{y}{x^2}\right). \qquad (D) \frac{1}{x^4} f\left(\frac{x^2}{y}\right).$

1

(5) 二元函数 f(x, y) 在点(0, 0) 处可微的充分条件是

(A) f(x, y)在点(0, 0)处连续.

 $(B) f_x'(0,0) 与 f_x'(0,0)$ 都存在.

(C) $\lim_{x \to 0} f'_x(x, 0) = f'_x(0, 0) = \lim_{x \to 0} f'_y(0, y) = f'_y(0, 0)$.

(D) $\lim_{(x,y)\to(0,0)} \frac{f(x, y) - f(0, 0)}{\sqrt{x^2 + x^2}} = 0.$

(6) 已知 $y_1 = x \ln x$, $y_2 = x \ln x + x$, $y_3 = 2x \ln x - x$ 是某个 2 阶齐次线性微分方程的三个特 解,则此微分方程为

(A)
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0.$$

(B)
$$\frac{d^2y}{dx^2} - 2y = 0$$
.

(C)
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0.$$

(D)
$$x^2 \frac{d^2 y}{dx^2} - 2y = 0$$
.

]

1

(7) 设 A 是 n 阶矩阵, α 是 n 维非零列向量. 记 $B = \begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix}$, 且 r(A) = r(B), 则线 性方程组

(A) $Ax = \alpha$ 有无穷多解.

(B) $Ax = \alpha$ 有唯一解.

(C) Bv = 0 有非零解.

(D) Bv = 0 只有零解.

(8) 设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 则以下矩阵中与 \mathbf{A} 合同且相似的是

$$(A) \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$$

$$\begin{pmatrix}
-1 & 0 & 0 \\
0 & \frac{3}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{3}{2}
\end{pmatrix}.$$

$$(C) \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & -2 & 1 \end{pmatrix}.$$

(D)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{3}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{3}{2} \end{pmatrix}.$$

二、填空题: 9~14 小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

(9) 设函数 f(x) 在点 x = 0 处连续,且 $\lim_{x \to 0} \frac{[f(x) + 1]x^2}{x - \sin x} = 2$,则曲线 y = f(x) 在点 (0, f(0)) 处的切线方程为

(10) 由拉格朗日中值定理知,对任意 $x \in (0, 1)$,对应地存在唯一的 $\xi(x) \in (0, x)$, 使得 $\arcsin x = \frac{x}{\sqrt{1-\xi^2(x)}}$,则极限 $\lim_{x\to 0^+} \frac{\xi(x)}{x} = \underline{\qquad}$.

(11) 设函数
$$f(x) = \begin{cases} \frac{1}{2}\cos x, & x \leq 1, \\ & \text{则定积分} \int_{-1}^{\pi} e^{2f(x)} \sin x dx = \underline{\qquad}. \\ \ln x, & x > 1, \end{cases}$$

- (12) 设二元函数 $z=\sin(xy)+\varphi\left(x,\frac{x}{y}\right)$, 其中 $\varphi(u,v)$ 具有 2 阶偏导数,满足 $\varphi''_{uv}+\frac{1}{y}\varphi''_{vv}=0,\; 则\;z''_{vy}=\underline{\qquad}.$
 - (13) 微分方程 $y'' + 2y' + y = 2e^{-x} + x$ 的通解为 = _____.
- (14) 设 A 是 $m \times n$ 矩阵, 其列向量组线性无关; B 是 n 阶矩阵, 满足 AB = A, 则 $r(B^*) =$ _____.
- 三、解答题: 15~23 小题, 共94分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.
 - (15) (本题满分10条)

求不定积分 $\int f(x) dx$, 其中 f(x) = |x+1| - |2x-1|.

(16) (本题满分10分)

设函数 $f(x) = \begin{cases} 2t^2 + \sin t, & t < 0, \\ y(t), & t \ge 0, \end{cases}$ 其中 y(t) 是微分方程 $\frac{\mathrm{d}y}{\mathrm{d}t} + 2y = \mathrm{e}^{-t}$ 满足 y(0) = 0 的解,求 f''(t).

(17) (本题满分10分)

设 f(x) 是正值连续函数,满足 $f(x)\cdot\int_0^x f(x-t)\,\mathrm{d}t=\sin x$ 及 $f\left(\frac{\pi}{2}\right)=\frac{1}{\sqrt{2}}$. 求 f(x) 在 $\left[\frac{\pi}{2},\ \pi\right]$ 上的平均值.

(18) (本题满分10分)

设函数 u=u(x, y)具有 2 阶连续偏导数,且满足 $u''_{xx}=u''_{yy}$,u(x, 2x)=x, $u'_{x}(x, 2x)=x^2$. 又设 D 是由半圆 $x^2+z^2=1(z\geq 0)$,曲线 $z=u''_{xx}(x, 2x)$, $z=u''_{xy}(x, 2x)$ 围成的平面图形,求 D 的面积.

(19) (本题满分11分)

设 f(x) 是 [0, 2] 上 2 阶可导的正值函数,且 f'(x) 单调增加,证明:积分 $\int_0^2 f(x) dx \ge 2f(1)$.

(20) (本题满分10分)

二元函数 $f(x, y) = x^2 + 2y^2 - x^2y^2$ 在 $D = \{(x, y) \mid x^2 + y^2 < 4, x + y > 2\}$ 内是否存在最大值与最小值? 如果存在算出最大值与最小值; 如果不存在请说明理由.

(21) (本题满分11分)

设凸曲线 \overrightarrow{OA} : y = y(x)通过点 O(0, 0) 和 A(1, 4), P(x, y) 是 \overrightarrow{OA} 上任一点. 已知曲线 \overrightarrow{OP} 与线段 \overrightarrow{OP} 围成的平面图形面积为 $x^{\frac{4}{3}}$,求

- (I) 求在[0, 1]上的连续函数 y = y(x);

(22) (本题满分11分)

设向量 $\boldsymbol{\alpha} = (1, 2, 1)^{\mathrm{T}}, \boldsymbol{\beta} = \left(1, \frac{1}{2}, 0\right)^{\mathrm{T}}, \boldsymbol{\gamma} = (0, 0, 8)^{\mathrm{T}}.$ 记 $\boldsymbol{A} = \boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}}, b = \boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\alpha}, \bar{x}$ 线性方程组, $2b^2\boldsymbol{A}^2\boldsymbol{x} = \boldsymbol{A}^4\boldsymbol{x} + b^4\boldsymbol{x} + \boldsymbol{\gamma}$ 的通解.

(23) (本题满分11分)

设实对称矩阵 $\mathbf{A} = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & -1 \\ 4 & -1 & 0 \end{pmatrix}$, 求使二次型 $f_1(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 与

 $f_2(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A}^* \mathbf{x}$ (其中 $\mathbf{x} = (x_1, x_2, x_3)^T$)都化为标准形的正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ (其中 $\mathbf{y} = (y_1, y_2, y_3)^T$, **Q** 是 3 阶正交矩阵),并写出它们的标准形.

模拟试题(六)

	1~8小题,每小题4分,		四个选项中,只有一个				
	求的,请将选项前的字母: $= x(x-2)^2 x(x-2) $ 的	• • •					
(A) 0.	(B) 1.	(C) 2.	(D) 3.				
(A) 0.	(D) 1.	(G) 2.	(D) 3.				
(a) 3n (() E	ケルス*** 同じ (* c/ .) 1.	$2\int_{0}^{x} c(x) dx$	1)目で、14個系数				
	(2) 设 $f(x)$ 是连续函数,则 $\int_{-x}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt (x \in (-\infty, +\infty)) 是 f(x)$ 为偶函数						
的	N = 4 N	(-) N=== 1	on the following				
(A) 充分而非		(B) 必要而非充					
(C) 充分必要	余件.	(D) 既非充分》	《非必要条件.				
(3) 方程 2*。	x² -1 =0 的实根个数为		L				
(A)1.	(B)2.	(C)3.	(D)4.				
(11)1.	(B)2.	(0)3.	(<i>B</i>)				
(4) 设二元函	数 $f(x, y)$ 在点 (x_0, y_0) 刻	止的 2 阶偏导数 f "(x, γ), $f''_{m}(x, y)$, $f''_{m}(x, y)$				
y)存在,则必有	J J J J J J J J J J J J J J J J J J J						
$(A) f''_{xy}(x_0, y_0)$	$(y_0) = f''_{yx}(x_0, y_0).$	$(B) f'_{x}(x, y) \not\in$	$E_{\Delta}(x_0, y_0)$ 处连续.				
$(C) f'_x(x, y)$	在点 (x_0, y_0) 处可微.	(D) $f'_{x}(x, y_0)$	在点 x ₀ 处可微.				
(5) 极坐标系	中的二次积分 $\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} f($	$(r\cos\theta,r\sin\theta)r\mathrm{d}r(其中f($	u,v) 连续) 在直角坐标				
系中的形式(先x后	f y) 为						
(A) $\int_0^1 dy \int_{-\sqrt{1-y}}^{\sqrt{1-y}}$	$\frac{1}{x^2}$ $f(x, y) dx$	(B) $\int_{0}^{1} dy \int_{1-\sqrt{1-y}}^{1+\sqrt{1-y}} dy \int_{1-\sqrt{y}}^{1+\sqrt{1-y}} dy dy$	$\frac{1}{(x,y)} f(x,y) dx$				
	- ,	0 1 11	,				
(C) $\int_{-1}^{1} dy \int_{-1}^{\sqrt{1}}$	$\int_{-y^2}^{-y^2} f(x,y) \mathrm{d}x.$	(D) $\int_{-1}^{1} dy \int_{1-\sqrt{1}}^{1+\sqrt{1}} dy$	$\underline{f(x,y)} \mathrm{d}x.$				
J -1 J - v	/1-y ²	J −1 J 1 − √1	1-y ²				
(6) 设2 阶可	导函数 y = y(x) 是 2 阶常系	系数微分方程 γ" + py' + qy	= e ^{2x} 满足初始条件y(0)				
	$\frac{1-\cos x}{y(x)}$ 为						
(A) 不存在.	(B) 0.	(C) 1.	(D) 2.				
() / 14	()	(-)					
(7) 设 $A \in n$ 阶实矩阵,则方程组 $Ax = 0$ 有解是方程组 $A^TAx = 0$ 有解的							
(A) 必要而非充分条件.		(B) 充分而非必	(B) 充分而非必要条件.				
(C) 充分必要条件.		(D) 既非充分也	(D) 既非充分也非必要条件.				

[] [] (8) 矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^3 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 的最小特征值为 (A) -1. (B) -2. (C) 1.

二、填空题: 9~14 小题,每小题 4分,共 24分.请将答案写在答题纸指定位置上.

(9) 设函数
$$f(x) = \begin{cases} (e^x + \sin x)^{\frac{1}{\ln(1+x)}}, & x > 0, \text{ 连续, 则常数 } a = \underline{\qquad}. \\ a, & x \leq 0 \end{cases}$$

(10) 设函数 $f(x) = \int_0^x \frac{\sin t}{t} dt$,则曲线 y = f(x) 在点(0,f(0)) 处的切线方程为_____.

(11) 设函数
$$y = y(x)$$
 的参数方程为
$$\begin{cases} x = \ln(1+t^2), \\ y = \arctan t, \end{cases}$$
 则
$$\frac{d^2y}{dx^2} = \underline{\qquad}.$$

(12) 设三元函数 z = f(u, x, y) 可微, 其中 $u = x^2 e^y$, 且 $f_x' + f_y' = 0$, 则 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$

(13) 2 阶常系数线性微分方程 $y'' - 2y' + y = e^x$ 的通解为

(14) 设4阶矩阵

$$A = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix},$$

则 $A^* =$ ______.

三、解答题: $15 \sim 23$ 小题, 共 94 分, 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

求不定积分
$$\int \frac{\sin x}{\sqrt{2 + \sin 2x}} dx$$
.

(16) (本题满分10分)

设连续函数 f(x) 与 g(x) 满足

$$f(x) = 3x^2 + g(x) - \int_0^1 f(x) dx, \ g(x) = 4x - f(x) + 2 \int_0^1 g(x) dx,$$

求由曲线 y = f(x) - x 与 x 轴围成的平面图形的面积.

(17) (本题满分10分)

设数列 $\{x_n\}$ 由以下递推式确定:

$$0 < x_0 < 1$$
, $x_{n+1} = -x_n^2 + 2x_n$ $(n = 0, 1, 2, \cdots)$.

- (I) 求极限 $\lim_{n\to\infty} x_n$;
- (\mathbb{I}) 计算当 $n \rightarrow \infty$ 时, $e^{\sin(x_n-1)} e^{x_n-1}$ 的等价无穷小.

(18) (本题满分10分)

证明: 当
$$x \in \left(0, \frac{\pi}{2}\right)$$
时, $2\sin x + \tan x > 3x$.

(19) (本题满分10分)

求二元函数 $u=x^2+y^2+(x^2+y^2)^2$ 在区域 $D=\{(x,y)\mid x+y\leqslant 1,\ x\geqslant 0,\ y\geqslant 0\}$ 上的最大值与最小值.

(20) (本题满分11分)

设函数 y=y(x) 满足微分方程式 $y''+(y')^2+1=0$ 及初始条件 $y(0)=y'(0)=\lim_{t\to 0}\frac{(1-\cos t)\big[t-\ln(1+\tan t)\big]}{t^3},$ 求 $y(x)\bigg(0{\leqslant}x{<}\frac{\pi}{2}\bigg).$

(21) (本题满分11分)

设 f(x) 是正值连续函数,a,b 都为常数,D 是椭圆 $\frac{x^2}{4} + \frac{y^2}{2} \le 1$ 与 $\frac{x^2}{2} + \frac{y^2}{4} \le 1$ 的公共部分,求二重积分 $\int_D \frac{af(x) + bf(y)}{f(x) + f(y)} d\sigma$.

(22) (本题满分11分)

设向量组 $\boldsymbol{\alpha}_1 = (1, 0, a)^T$, $\boldsymbol{\alpha}_2 = (0, 1, 1)^T$, $\boldsymbol{\alpha}_3 = (b, 3, 5)^T$ 不能由向量组 $\boldsymbol{\beta}_1 = (1, 1, 1)^T$, $\boldsymbol{\beta}_2 = (1, 2, 3)^T$, $\boldsymbol{\beta}_3 = (3, 4, b)^T$ 线性表示,但向量组 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 可由向量组 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$ 线性表示,求常数 a, b 的值.

(23) (本题满分11分)

设二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x} ($ 其中 $\mathbf{x} = (x_1, x_2, x_3)^T$, \mathbf{A} 是 3 阶实对称矩阵) 在正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y} ($ 其中, $\mathbf{y} = (y_1, y_2, y_3)^T$, \mathbf{Q} 是正交矩阵) 下的标准形为 $y_1^2 + y_2^2 - y_3^2$, 且 \mathbf{Q} 的第 3 列为 $\left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^T$, 求矩阵 \mathbf{A} 的伴随矩阵 \mathbf{A}^* .

模拟试题(七)

一、选择题: 1~8 小题, 每小题4分, 共32分. 每小题给出的四个选项中, 只有一个 选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.

Γ

1

1

1

(1) 设函数 $y = \sin x \cos 2x$, 则 $y^{(5)}(x) =$

(A)
$$\frac{1}{2}$$
(3⁵cos 3x - cos x). (B) $\frac{1}{2}$ (3⁵cos 3x + cos x).

(C)
$$\frac{1}{2}(3^5 \sin 3x - \sin x)$$
. (D) $\frac{1}{2}(3^5 \sin 3x + \sin x)$.

(2) $\mathcal{C}_{0}F(x) = \int_{0}^{x} \max\{e^{-t}, e^{t}\} dt$, M

$$(A) \ F(x) = \begin{cases} 1 - e^{-x}, & x < 0, \\ e^{x} - 1, & x \ge 0. \end{cases}$$

$$(B) \ F(x) = \begin{cases} e^{-x} - 1, & x < 0, \\ e^{x} - 1, & x \ge 0. \end{cases}$$

$$(C) \ F(x) = \begin{cases} 1 - e^{-x}, & x < 0, \\ 1 - e^{x}, & x \ge 0. \end{cases}$$

$$(D) \ F(x) = \begin{cases} e^{-x} - 1, & x < 0, \\ 1 - e^{x}, & x \ge 0. \end{cases}$$

(C)
$$F(x) = \begin{cases} 1 - e^{-x}, & x < 0, \\ 1 - e^{x}, & x \ge 0. \end{cases}$$
 (D) $F(x) = \begin{cases} e^{-x} - 1, & x < 0, \\ 1 - e^{x}, & x \ge 0. \end{cases}$

- (3) 微分方程 $y'' + 2y' + y = e^{-x} (\sin x + \cos 2x)$ 应有的特解形式为
- (A) $xe^{-x}(A_1\cos x + B_1\sin x + A_2\cos 2x + B_2\sin 2x)$.
- (B) $e^{-x}(A_1\cos x + B_1\sin x + A_2\cos 2x + B_2\sin 2x)$.
- (C) $e^{-x} [x(A_1 \cos x + B_1 \sin x) + A_2 \cos 2x + B_2 \sin 2x].$
- (D) $e^{-x} [(A_1 \cos x + B_1 \sin x) + x(A_2 \cos 2x + B_2 \sin 2x)].$
- (4) 设函数 f(x) 在点 x = 0 的某个邻域内有连续的 2 阶导数,且当 $x \rightarrow 0$ 时, f(x) f(-x)是 x 的 3 阶无穷小,则
 - (A) x = 0 不是 f(x) 的驻点,且(0,f(0))未必是曲线 y = f(x) 的拐点.
 - (B) x = 0 是 f(x) 的驻点,且(0,f(0))是曲线 y = f(x) 的拐点.
 - (C) x = 0 不是 f(x) 的驻点, 但(0, f(0)) 是曲线 y = f(x) 的拐点.
 - (D) x = 0 是 f(x) 的驻点,但(0, f(0))未必是曲线 y = f(x) 的拐点.
 - (5) 设 f(x) 是($-\infty$, $+\infty$)上连续的奇函数,则
 - $(A) \int_{-\infty}^{+\infty} f(x) dx$ 收敛.
 - (B) $\int_{-\infty}^{+\infty} f(x) dx$ 发散.
 - (C) $\int_{-\infty}^{+\infty} f(x) dx$ 收敛时,其值必为零.

(6) 设二元函数 $f(x, y) = \begin{cases} \frac{x^2 y^2}{(x^2 + y^2)^{\frac{3}{2}}}, & (x, y) \neq (0, 0), \\ (x^2 + y^2)^{\frac{3}{2}}, & (x, y) \neq (0, 0), \end{cases}$ 则 f(x, y) 在点(0, 0)处 (x, y) = (0, 0),

- (A) 不连续, 但两个偏导数存在.
- (B) 连续, 但两个偏导数不存在;

(C) 可微.

(D) 连续, 且两个偏导数存在.

(7) 设向量组 α , β , γ 线性无关, 向量组 α , β , δ 线性相关, 则

- (A) α 可由 β , γ , δ 线性表示.
- (B) **δ** 可由 **α**, **β**, **γ** 线性表示.
- (C) β 不可由 α , γ , δ 线性表示. (D) δ 不可由 α , β , γ 线性表示.

(8) 设A, B 都是n 阶实矩阵,且齐次线性方程组Ax = 0 与 Bx = 0 有相同的基础解系 $\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$, 则方程组① $(\boldsymbol{A} + \boldsymbol{B})\boldsymbol{x} = \boldsymbol{0}$, ② $\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0}$, ③ $\boldsymbol{B}^* \boldsymbol{x} = \boldsymbol{0}$ 以及④ $\begin{pmatrix} \boldsymbol{A} \\ \boldsymbol{B} \end{pmatrix} \boldsymbol{x} = \boldsymbol{0}$ 中,仍以 $\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$ 为基础解系的是

- (A) (1)(2).
- (B) 24.
- (C) 34.
- (D) ①③.

ſ

Γ

]

1

]

Γ]

- 二、填空题: 9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸指定位置上.
- (9) 函数 y = y(x) 由微分方程 $x^2y' + y + x^2e^{\frac{1}{x}} = 0$ 及 y(1) = 0 确定,则曲线 y = y(x) 的斜 渐近线方程为
 - (10) 设常数 a > 0, 则定积分 $\int_{a}^{a} x \sqrt{ax x^2} dx = _____.$
- (11) 设二元函数 f(x, y) 在点(0, 0) 处可微,且 f'(0, 0) = 1, f'(0, 0) = -1, 则极 限 $\lim_{t\to 0} \frac{f(2t,0) + f(0,\sin t) - 2f(t,t)}{t} = \underline{\hspace{1cm}}.$
- (12) 设f(x,y) 是二元连续函数,则 $\int_{0}^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\cos\theta+\sin\theta}}^{1} f(r\cos\theta, r\sin\theta) r dr$ 在直角坐标系中的二 次积分(先 y 后 x)为
 - (13) 微分方程($x^2 1$) dy + ($2xy \cos x$) dx = 0 满足 y(0) = 1 的特解为_____

(14) 设有矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & \lambda & 1 \\ 1 & 2 & 1 \end{pmatrix}$$
及 3 阶矩阵 \mathbf{B} ,它们满足 $r(\mathbf{B}) = 2$, $r(\mathbf{AB}) = 1$,则常

数 λ = ...

三、解答题: 15~23 小题, 共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

计算极限 $\lim_{x\to 0} f(g(x))$, 其中,

$$f(x) = \begin{cases} \frac{\ln(1 - x^4)}{x - \arctan x}, & x < 0, \\ \frac{e^{-x} + \frac{1}{2}x^2 + x - 1}{\sqrt{x}\sin \frac{x}{6}}, & x > 0, \end{cases} \qquad g(x) = \frac{e^{\frac{1}{x}}\arctan \frac{1}{x}}{1 + e^{\frac{2}{x}}}.$$

(16) (本题满分10分)

设函数 y(x) 在[0, + ∞)上有连续的导数,且满足

$$y(x) = 1 + x + 2 \int_0^x (x - t)y(t)y'(t)dt,$$

求 $y^{(n)}(x)$.

(17) (本题满分11分)

设 f''(x) 不变号,且曲线 y = f(x) 在点(1, 1) 处的曲率圆为 $x^2 + y^2 = 2$,证明:函数 f(x) 在(1, 2) 内无极值点,但有唯一零点.

(18) (本题满分11分)

设
$$e < a < b < e^2$$
, 证明: $\ln^2 b - \ln^2 a > \frac{4}{e^2} (b - a)$.

(19) (本题满分10分)

设区域 $D=\{(x,y)\mid 0\le x\le 2,\ \sqrt{2x-x^2}\le y\le \sqrt{4-x^2}\}$,分别求 D 绕 x 轴与 y 轴旋转一周而成的旋转体体积 V_x 与 V_y .

(20) (本题满分10分)

设 z = f(xy, yg(x)), 其中二元函数 f(u, v) 具有 2 阶偏导数,且 $f_u'(1, 0) = f_{uu}'(1, 0)$ = 1. 又设曲线 t = g(x) (其中 g(x)2 阶可导) 在点 x = 1 处与 x 轴相切,且(1, 0)是该曲线的 拐点,求在点(1, 1)处的 $\frac{\partial^2 z}{\partial x^2}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$.

(21) (本题满分10分)

求 2 阶微分方程 $y'' + ay = 2 + \cos x (a \ge 0)$ 的通解.

(22) (本题满分11分)

设 α_1 , α_2 , α_3 , α_4 是 4 维向量组,其中 α_1 , α_2 , α_3 线性无关, α_4 = α_1 + α_2 + 2 α_3 . 已 知三元线性方程组

$$(\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, -\boldsymbol{\alpha}_1 + a\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3)\boldsymbol{x} = \boldsymbol{\alpha}_4$$

有无穷多解.

- (I) 求常数 a 的值;
- (II) 对(I)中求得的 a 值, 计算所给方程组的通解.

(23) (本题满分11分)

已知矩阵
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & a & 6 \end{pmatrix}$$
 可相似对角化.

- (I) 求常数 a 的值;
- (II) 对求得的 a 值,求正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ (其中 $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$, $\mathbf{y} = (y_1, y_2, y_3)^{\mathrm{T}}$, \mathbf{Q} 是正交矩阵),将二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} A \mathbf{x}$ 化为标准形.

模拟试题(八)

- (1) 设数列 $\{x_n\}$ 由递推式 $x_1, x_{n+1} = f(x_n)(n=1, 2, \dots)$ 确定,则
- (A) 当 f(x) 单调增加且 $x_1 < x_2$ 时, $\{x_n\}$ 单调增加.
- (B) 当 f(x) 单调增加且 $x_1 > x_2$ 时, $\{x_n\}$ 单调增加.
- (C) 当f(x)单调减少且 $x_1 < x_2$ 时, $\{x_n\}$ 单调减少.
- (D) 当f(x)单调减少且 $x_1 > x_2$ 时, $\{x_n\}$ 单调减少.

(2) 设函数 y = f(x)可导,且曲线 y = f(x) 在点 $(x_0, y_0)(y_0 = f(x_0))$ 处的切线与直线 y=2-x垂直,则当 $\Delta x \rightarrow 0$ 时, $\Delta y \mid_{x=x_0} = f(x_0 + \Delta x) - f(x_0)$ 是

- (A) 与 Δx 同阶但非等价的无穷小.
- (B) 与 Δx 等价的无穷小.

(C) 比 Δx 高阶的无穷小.

(D) 比 Δx 低阶的无穷小.

(3) 设函数 y = y(x) 由方程 $xy + e^{2y} = \cos(xy)$ 确定,则 $\frac{d^2y}{dx^2}$ =

(A) -1.

(B) 0.

(C) $\frac{1}{2}$.

(D) 1.

1

1

(4) 下列等式中不正确的是

(A)
$$\int_{0}^{1} x^{2} dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^{2}$$
.

(B)
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{2n} \sum_{i=1}^{2n} \left(\frac{i}{2n}\right)^2$$
.

(C)
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \left(\frac{2i-1}{2n} \right)^2$$
.

(D)
$$\int_{0}^{1} x^{2} dx = \lim_{n \to \infty} \frac{1}{3n} \sum_{i=1}^{n} \left(\frac{3i-1}{3n} \right)^{2}$$
.

Γ

]

- (5) 设 z = z(x, y), y = y(x, z) 都是由方程 F(x, y, z) = 0 确定的二元函数. 如果 $z_0 =$ $z(x_0, y_0)$ 是 z = z(x, y)的一个极小值,则
 - (A) $y_0 = y(x_0, z_0)$ 是 y = y(x, z) 的一个极大值.
 - (B) $y_0 = y(x_0, z_0)$ 是 y = y(x, z)的一个极小值.
 - (C) $y_0 = y(x_0, z_0)$ 可能是 y = y(x, z) 的一个极值.
 - (D) $y_0 = y(x_0, z_0)$ 不是 y = y(x, z) 的极值.

(6) 记
$$I_i = \iint_{D_i} \sqrt{x^2 + y^2} d\sigma(i = 1, 2, 3)$$
,其中
$$D_1 = \{(x, y) \mid x^2 + y^2 \le 1\},$$

$$D_2 = \{(x, y) \mid (x - 1)^2 + y^2 \le 1\}, D_3 = \{(x, y) \mid x^2 + (y - 1)^2 \le 1\},$$

则 I_1 , I_2 , I_3 的大小满足

(A) $I_1 < I_2 = I_3$.

(B) $I_2 = I_3 < I_1$.

(C) $I_2 < I_3 = I_1$.

(D) $I_3 < I_2 = I_1$.

(7) 设 A 是 n 阶可逆矩阵, α 是 A 的对应于特征值 λ 的特征向量,且存在 n 阶可逆矩阵 P,使得 $P^{-1}AP=B$,则

- (A) B^* 有特征值 λ 及对应的特征向量 $P^{-1}\alpha$.
- (B) \mathbf{B}^* 有特征值 λ 及对应的特征向量(\mathbf{P}^*) $^{-1}$ α.
- (C) \mathbf{B}^* 有特征值 $\frac{|\mathbf{A}|}{\lambda}$ 及对应的特征向量 $\mathbf{P}^{-1}\alpha$.
- (D) \mathbf{B}^* 有特征值 $\frac{|\mathbf{A}|}{\lambda}$ 及对应的特征向量(\mathbf{P}^*) $^{-1}\alpha$.

[]

1

- (8) 设有 n 维向量组(I): $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, \cdots , $\boldsymbol{\alpha}_m$ 和(II): $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, \cdots , $\boldsymbol{\beta}_m$ ($m \leq n$), 记矩 阵 $\boldsymbol{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m)$ 和 $\boldsymbol{B} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_m)$, 则下列命题不正确的是
 - (A) 当(I)与(I)等价时, (I)与(I)等秩.
 - (B) 当(I)与(I)等秩时,(I)与(I)等价.
 - (C) 当A与B等价时, A与B等秩.
 - (D) 当A与B等秩时, A与B等价.

]

二、填空题: 9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸指定位置上.

(9) 设极限
$$\lim_{x\to 0} \frac{x-\sin x+f(x)}{x^4} = 1$$
,则极限 $\lim_{x\to 0} \frac{f(x)}{x^3} =$ _______.

(10) 已知f(x)是连续函数,且满足 $\int_0^x [5f(t)-2]dt = f(x) - e^{5x}, \text{则}f''(0) = ____.$

(11) 曲线
$$y = \begin{cases} 3x^2 + 2x^3, & x \le 0, \\ \ln(1+x) - x^2, & x > 0 \end{cases}$$
的拐点为______.

(12) 设二元函数
$$f(u, v)$$
可微,则 $\frac{\partial}{\partial x} f\left(e^{-\frac{y}{x}}, \cos \frac{1}{x}\right) = \underline{\qquad}$

(13) 设 2 阶常系数齐次线性微分方程 y'' + py' + qy = 0 的通解为

$$Y = e^{x} (C_1 \cos x + C_2 \sin x),$$

则 2 阶常系数非齐次线性微分方程 $y'' + py' + qy = e^x \cos 2x$ 的通解为 .

(14) 设A, B分别为2阶与4阶矩阵,且r(A)=1,r(B)=2,则

$$r\begin{pmatrix} O & A^* \\ B^* & O \end{pmatrix} = \underline{\qquad}$$

- 三、解答题: $15 \sim 23$ 小题, 共 94 分, 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.
 - (15) (本题满分10分)

设函数 $y = \varphi(\psi(x))$, 其中 $\varphi(x) = \begin{cases} x, & |x| \leq 1, \\ \sin x, & |x| > 1, \end{cases} \psi(x) = \begin{cases} x^2, & |x| \leq 2, \\ \cos x, & |x| > 2, \end{cases}$ y''(x).

(16) (本题满分10分)

求方程 $xe^{2x} - 2x - \cos x = 0$ 在(0, 1)内的实根个数.

(17) (本题满分11分)

设函数 f(x) 在 [a, b] 上连续,在 (a, b) 内 2 阶可导,且 $f'_+(a) > 0$,f(b) = 0. 此外,存在 $c \in (a, b)$,使得 f(c) = 0,f'(c) < 0. 证明:存在 $\xi \in (a, b)$,使得 $f''(\xi) = 0$.

(18) (本题满分10分)

设 $du = (2x\cos y + 3x^2y) dx + (x^3 - x^2\sin y + y) dy$ 及 u(0, 0) = 0,

- (I) 求 *u*(*x*, *y*)的表达式.
- (II) u(0,0) 是否为极值? 如果是,指出它是极大值还是极小值;如果不是,说明理由.

(19) (本题满分10分)

设函数 $f(x) = \int_0^x \left(3 - \frac{3}{2}\sqrt{t} - \frac{1}{\sqrt{t}}\right) dt (x \ge 0)$,求由曲线及 x 轴围成的图形的面积.

(20) (本题满分10分)

设变换 $\begin{cases} u=x-2y, \ \text{可把 } 6 \ \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = 0 \ \text{化简为} \frac{\partial^2 z}{\partial u \partial v} = 0, 求常数 a, 其中二元函数 z = z(x, y) 有连续的 2 阶偏导数.$

(21) (本题满分11分)

设微分方程 $y'-2y=\varphi(x)$,其中 $\varphi(x)=\begin{cases} 2, & x<1,\\ 0, & x>1.\end{cases}$ 求在 $(-\infty, +\infty)$ 上连续,在 $(-\infty, 1)\cup(1, +\infty)$ 上满足所给微分方程及条件 y(0)=0 的函数 y=y(x).

(22) (本题满分11分)

已知线性方程组(A)
$$\begin{cases} x_1 & +2x_2+x_3=3\,,\\ 2x_1+(a+4)x_2-5x_3=6\,, \ 有无穷多解.\\ -x_1 & -2x_2+ax_3=-3 \end{cases}$$

- (I) 求常数 $a(a \neq 0)$ 的值;
- (II) 对上述算得的 a 值,求方程组(A)与(B) $\begin{cases} x_1 + x_2 + x_3 = 0, \\ 2x_1 + \lambda x_2 = 1 \end{cases}$ 有公共解时的 λ 值及公共解.

(23) (本题满分11分)

设二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ (其中 $\mathbf{x} = (x_1, x_2, x_3)^T$, \mathbf{A} 是 3 阶实对称矩阵) 经正交 变换 $\mathbf{x} = \mathbf{Q} \mathbf{y}$ (其中 $\mathbf{y} = (y_1, y_2, y_3)^T$, \mathbf{Q} 是正交矩阵) 化为标准形 $2y_1^2 - y_2^2 - y_3^2$. 又设 $\mathbf{A}^* \boldsymbol{\alpha} = \boldsymbol{\alpha}$ (其中 $\boldsymbol{\alpha} = (1, 1, -1)^T$).

- (I) 求 Q, A;
- (II) 求将 $f(x_1, x_2, x_3)$ 化为规范形的可逆线性变换 $\mathbf{x} = \mathbf{C}\mathbf{z}($ 其中 $\mathbf{z} = (z_1, z_2, z_3)^{\mathrm{T}})$.

模拟试题(九)

一、选择题: 1~8 小题,每小题4分,共32分,每小题给出的四个选项中,只有一个 选项是符合题目要求的. 请将选项前的字母填在答题纸指定位置上.

(1) 函数
$$f(x) = \frac{\ln(1+x^2)}{(1-e^{\frac{x}{1-x}})x(1+x)}$$
的无穷间断点个数为
(A) 0. (B) 1. (C) 2. (D) 3.

(2) $\stackrel{\sim}{\aleph} M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1 + x^2} \cos^2 x dx, N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x) dx, P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^7 x) dx, M$ 它们的大小次序为

(A) M < N < P.

(B) N < M < P.

(C) P < M < N.

(D) P < N < M.

(3) 设函数 f(x) 在点 x_0 的邻域内连续,在点 x_0 的去心邻域内 2 阶可导,在点 x_0 的左侧 邻近单调增加且其图形是凹的,在点 x_0 的右侧邻近是单调减少且其图形是凸的,则以下结 论不正确的为

- (A) f(x)在点 x_0 处可导.
- (B) f(x)在点 x_0 处不可导.
- (C) $f(x_0)$ 是 f(x) 的极大值.
- (D) $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点.

]

Γ

7

1

(4) 设函数 $f(x) = \begin{cases} x, & x \leq 0, \\ \sin x, & x > 0, \end{cases}$

(A)
$$\int_{-1}^{x} f(t) dt = \begin{cases} \frac{1}{2}x^{2}, & x \leq 0, \\ -\cos x, & x > 0. \end{cases}$$
 (B) $\int_{-1}^{x} f(t) dt = \begin{cases} \frac{1}{2}(x^{2} - \cos x), & x > 0. \end{cases}$

$$(A) \int_{-1}^{x} f(t) dt = \begin{cases} \frac{1}{2} x^{2}, & x \leq 0, \\ -\cos x, & x > 0. \end{cases}$$

$$(B) \int_{-1}^{x} f(t) dt = \begin{cases} \frac{1}{2} (x^{2} - 1), & x \leq 0, \\ 1 - \cos x, & x > 0; \end{cases}$$

$$(C) \int_{-1}^{x} f(t) dt = \begin{cases} \frac{1}{2} x^{2}, & x \leq 0, \\ 1 - \cos x, & x > 0. \end{cases}$$

$$(D) \int_{-1}^{x} f(t) dt = \begin{cases} \frac{1}{2} (x^{2} - 1), & x \leq 0, \\ \frac{1}{2} (x^{2} - 1), & x \leq 0, \\ \frac{1}{2} (x^{2} - 1), & x \leq 0, \end{cases}$$

(5) 对二元函数 f(x, y), 以下命题正确的是

(A) 设f(x, y)在点 (x_0, y_0) 处可微,则 $f'_x(x, y)$, $f'_y(x, y)$ 在点 (x_0, y_0) 处连续.

(B) 设 f'(x, y), f'(x, y) 在点 (x_0, y_0) 处连续,则 f(x, y) 在点 (x_0, y_0) 处可微.

(C) 设 $f'_x(x, y)$, $f'_y(x, y)$ 在点 (x_0, y_0) 处可微, 则 $f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$.

(D) 设 $f_{xy}''(x, y)$ 在点 (x_0, y_0) 处连续,则 $f_{xy}''(x_0, y_0) = f_{yx}''(x_0, y_0)$.

(6) 设 $y_1 = e^x - e^{-x} \sin x$, $y_2 = e^x + e^{-x} \cos x$ 是 2 阶常系数非齐次线性微分方程 $y'' + py' + e^{-x} \cos x$ 是 2 阶常系数非齐次线性微分方程 $y'' + py' + e^{-x} \cos x$ 是 2 阶常系数非齐次线性微分方程 $y'' + py' + e^{-x} \cos x$

qy =	$f(x)$ 的两个特解,则 $f(x)$ 为 (A) $5e^{x}$. (B) e^{3x} . (C) e^{x} . (D) e^{-x} .
	$(A) \ \mathcal{S} \mathcal{C} . \qquad (B) \ \mathcal{C} . \qquad (B) \ \mathcal{C} . \qquad (C) \ \mathcal{C} . \qquad$
则该	(7) 设矩阵方程 $AX = B$ (其中 A 是 $m \times n$ 矩阵, B 是 $m \times l$ 矩阵, X 是 $n \times l$ 未知矩阵) 方程有无穷多解的充分必要条件是
, ,	(A) $r(\mathbf{A} \mid \mathbf{B}) = r(\mathbf{A}) = n$. (B) $r(\mathbf{A} \mid \mathbf{B}) = r(\mathbf{A}) < n$.
	(C) $r(A \mid B) > r(A)$. (D) $r(A \mid B) = r(A)$.
	[(8) 设 A , B 都是 n 阶实对称矩阵,则 A 与 B 合同的充分必要条件为(A) r(A) = r(B).
	$(B) \mid A \mid = \mid B \mid .$
	(C) A, B 的特征值相同.
	(D) 分别以 A , B 为矩阵的二次型有相同的规范形.
	[二、填空题: 9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸指定位置上.
	(9) 函数 $f(x) = \frac{1}{(x-1)(x+2)}$ 的 3 阶麦克劳林公式(带佩亚诺型余项)为
	(10) 曲线 $y = \frac{e^x \sin 2x}{x(2x+1)}$ 的渐近线方程为
	(11) 设函数 $f(x) = \int_0^x e^{-\frac{(t-1)^2}{2}} dt$,则定积分 $\int_0^1 (x-1)^2 f(x) dx = $
	(12) 设函数 $z = f(x + y, yg(x))$, 其中 f 具有 2 阶连续偏导数, 曲线 $w = g(x)$ 在点(0
1)夂	的切线方程为 $w=1+x$,且 $f(u,v)$ 的偏导数在 $u=v$ 处都为 v ,则 $\frac{\partial^2 z}{\partial x \partial y}\Big _{x=0\atop y=1}=$
	(13) 微分方程 $(x\cos y + \cos x)y' - y\sin x + \sin y = 0$ 的通解为
	(14) 设3阶矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, 则二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}$ (其中 $\mathbf{x} = (x_1, x_2, x_3)$)
$(x_3)^T$)的规范形为
	三、解答题: 15~23 小题, 共94 分. 请将解答写在答题纸指定位置上. 解答应写出了
字访	明、证明过程或演算步骤.
	(15) (本题满分10分)
	求极限 $\lim_{x\to 0^+} \frac{x-\sin x}{1-(1+x)^{x\sin^2\sqrt{x}}}$.

(16) (本题满分10分)

设函数 f(x) 具有 2 阶导数,满足 f(0)=1, f'(0)=0,且对任意 $x \ge 0$ 有 $f''(x)-5f'(x)+6f(x)\ge 0.$

证明: $f(x) \ge 3e^{2x} - 2e^{3x} (x \ge 0)$.

(17) (本题满分10分)

求不定积分 $\int \frac{1}{\sin x \cos x \sqrt{\sin^4 x + \cos^4 x}} dx.$

(18) (本题满分10分)

D 是由圆 $x^2 + y^2 = 2x$ 与直线 y = x - 1 及 x 轴围 成的位于该直线上方的区域(如图 9-18 中阴影部分所示),求 D 分别绕 x 轴与 y 轴旋转一周而成的旋转体体积 V_x 与 V_y .

(19) (本题满分11分)

设函数 f(x) 在 [0, 1] 上可微,且满足 $f(1) = 2\int_0^{\frac{1}{2}} x f(x) dx$. 证明: 存在 $\xi \in (0,1)$,使得 $f(\xi) + \xi f'(\xi) = 0$.

(20) (本题满分11分)

已知二元连续函数 f(x, y) 满足 $f(x,y) = y + \int_0^x f(x - t, y) dt$, 函数 g(x, y) 满足 $g_x'(x, y) = g_y'(x, y) = 1$ 及 g(0, 0) = 0. 求二重积分 $\iint_D f(\sqrt{x}, g(x, y)) d\sigma$, 其中 D 是由曲线 $x = y^2$ 及直线 x = 1 围成的平面图形.

(21) (本题满分10分)

设函数 y = y(x)满足

$$y(x) = x^3 - x \int_1^x \frac{y(t)}{t^2} dt + y'(x) (x \ge 1),$$

且极限 $\lim_{x\to +\infty} \frac{y(x)}{r^3}$ 存在,求 y(x).

(22) (本题满分11分)

设A 是 3 阶矩阵, α_1 , α_2 , α_3 是线性无关的 3 维列向量组. 已知

$$A\alpha_1 = \alpha_2 + \alpha_3$$
,
 $A\alpha_2 = \alpha_1 + a\alpha_3$,
 $A\alpha_3 = \alpha_1 + \alpha_2$,

问: a 为何值时, A 不可相似对角化?

(23) (本题满分11分)

设 A 是 3 阶实对称矩阵, 其秩为 2, 且满足

$$A \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}.$$

(I) 求A*;

(II) 求正交变换 $\mathbf{x} = C\mathbf{y}$ (其中 $\mathbf{x} = (x_1, x_2, x_3)^T$, $\mathbf{y} = (y_1, y_2, y_3)^T$, \mathbf{C} 为正交矩阵), 使得二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T (\mathbf{A}^* + \mathbf{A}) \mathbf{x}$ 成为标准形,并写出该标准形.

模拟试题(十)

一、选择题: 1~8 小	题,每小题4分,	共32分,	每小题给出的四个选项中,	只有一个
选项是符合题目要求的.	请将选项前的字母	建 填在答题组	氏指定位置上.	

(1)
$$x = 0$$
 是函数 $f(x) = \frac{(e^{\frac{1}{x}} + e)\tan x}{x(e^{\frac{1}{x}} - 1)}$ 的

(A) 可去间断点.

(B) 跳跃间断点.

(C) 无穷间断点.

(D) 第二类间断点, 但不是无穷间断点.

]

]

7

]

Γ

(2) 设函数
$$f(x)$$
的 $f''(x)$ 在点 $x = 0$ 处连续,且 $\lim_{x \to 0} \frac{f'(x)}{(e^x - 1)\sin x} = 1$,则

- (A) f(0) 是 f(x) 的极大值,但(0, f(0)) 不是曲线 y = f(x) 的拐点.
- (B) f(0)是 f(x)的极小值,但(0, f(0))不是曲线 y = f(x)的拐点.
- (C) f(0) 不是 f(x) 的极值, 但(0, f(0)) 是曲线 y = f(x) 的拐点.
- (D) f(0) 不是 f(x) 的极值,且(0,f(0)) 也不是曲线 y = f(x) 的拐点.

(3) 已知极限
$$\lim_{x\to 0} \frac{\sqrt{1+f(x)\tan x}-1}{x-\sin x} = 1$$
,则极限 $\lim_{x\to 0} \frac{f(x)}{1-\cos x} = 1$

- (A) $\frac{1}{2}$. (B) $\frac{1}{2}$.
- (D) 1.

(A) $I_1 > I_2 > 1$.

(B) $1 > I_1 > I_2$.

(C) $I_2 > I_1 > 1$.

(D) $1 > I_2 > I_1$.

(5) 设二元函数 f(x, y) 在点(0, 0) 的某个邻域内连续,且

$$\lim_{(x,y)\to(0,0)} \frac{f(x, y)}{x^2 + 1 - 2x\sin y - \cos^2 y} = 1,$$

则 f(0,0)

(A) 不是极值.

(B) 是极小值.

(C) 是极大值.

(D) 不存在.

(6) 设区域 $D_1 = \{(x, y) \mid x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$, $D_2 = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 1, y \ge 0\}$ 1 } , 及 $D_3 = \{(x, y) \mid x^2 + y^2 \le \frac{4}{\pi}, x \ge 0, y \ge 0\}$, 记

$$I_i = \int_{D_i} e^{-(x^2+y^2)} d\sigma(i = 1,2,3),$$
则

(A) $I_1 < I_2 < I_3$.

(B) $I_1 < I_3 < I_2$.

(C) $I_2 < I_1 < I_3$.

(D) $I_3 < I_1 < I_2$.

]

- (7) 设A 是 n 阶矩阵,则A 的每个 n_i 重特征值 λ_i 的特征矩阵 $\lambda_i E_n A$ 都满足 $r(\lambda_i E_n A) = n n_i$ 是 A 可相似对角化的
 - (A) 充分而非必要条件.

(B) 必要而非充分条件.

(C) 充分必要条件.

(D) 既非充分也非必要条件.

- (8) 设 $\mathbf{A} = (\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3, \, \boldsymbol{\alpha}_4)$ 是4 阶实对称矩阵,如果 $(1, \, 1, \, 0, \, 0)^{\mathrm{T}}, \, (1, \, 0, \, 1, \, 0)^{\mathrm{T}}$ 和 $(0, \, 0, \, 1, \, 1)^{\mathrm{T}}$ 是方程组 $\mathbf{A}^* \mathbf{y} = \mathbf{0}$ 的一个基础解系,则二次型 $f(x_1, \, x_2, \, x_3, \, x_4) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} (\mathbf{x} = (x_1, \, x_2, \, x_3, \, x_4))$ 的标准形应形如
 - (A) $a_1y_1^2 + a_2y_2^2 + a_3y_3^2$.

(B) $b_1 y_1^2 + b_2 y_2^2$.

(C) $c_1 y_1^2$.

(D) $d_1 y_1^2 + d_2 y_2^2 + d_3 y_3^2 + d_4 y_4^2$.

(其中 a_1 , a_2 , a_3 , b_1 , b_2 , c_1 , d_1 , d_2 , d_3 , d_4 都是非零常数.)

1

二、填空题: 9~14 小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

(9) 极限
$$\lim_{x \to \infty} \frac{\ln \sqrt{\sin \frac{1}{x} + \cos \frac{1}{x}}}{\sin \frac{1}{x} + \cos \frac{1}{x} - 1} = \underline{\qquad}$$

- (10) 设函数 f(x) 具有 2 阶导数,且满足 $\lim_{x\to 1} \frac{f(x)}{(x-1)^2} = 1$,则曲线 y = f(x) 在点(1,f(1)) 处的曲率 =
 - (11) 反常积分 $\int_{1}^{+\infty} \frac{1}{x\sqrt{1+x^5+x^{10}}} dx =$ ________.
 - (12) 设二元可微函数 z=z(x, y) 由方程 $\int_y^z \mathrm{e}^{\imath^2} \mathrm{d}t + xy + yz = 0$ 确定,则 $\left. \frac{\partial^2 z}{\partial x \partial y} \right|_{\substack{x=0 \ y=0}} =$
 - (13) 微分方程 (x^2-1) dy + $(2xy-\cos x)$ dx = 0 满足y(0) = 1 的特解为_____
 - (14) 已知 3 阶矩阵 $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$, 则 3 阶行列式 $\left| \left(\frac{1}{2} A^2 \right)^{-1} 3A^* \right| =$

三、解答题: 15~23 小题, 共94分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

设函数
$$F(x) = \frac{\int_0^x \arctan t^2 dt}{x^a}$$
 满足 $\lim_{x \to +\infty} F(x) = \lim_{x \to 0^+} F(x) = 0$,求常数 a 的取值范围.

(16) (本题满分10分)

设一容器是由图 10-16 的平面图形绕 y 轴旋转一周而成的旋转体. 现将容器充满水,求将水从容器顶部全部抽出,至少需做的功.

图 10-16

(17) (本题满分10分)

设函数 y = u(x) 由参数方程 $\begin{cases} x = x(t), \\ y = y(t) \end{cases}$ 确定,其中 x = x(t) 是满足 $x(t) \Big|_{t=0} = \frac{\mathrm{d}x}{\mathrm{d}t} \Big|_{t=0} = 0$ 的微分方程 $\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + x = 2\sin t$ 的特解.又设 $\frac{\mathrm{d}y}{\mathrm{d}x} = \cot t$,求满足 $y \Big|_{t=0} = 1$ 的可微函数 y(t).

(18) (本题满分10分)

求二元函数 $f(x, y) = x^2 + 2y^2 - x^2y^2$ 在区域 $D = \{(x, y) \mid x^2 + y^2 \le 4, 0 \le y \le 1, x \ge 0\}$ 上的最大值与最小值.

(19) (本题满分10分)

设函数 y = y(x) 是正值连续函数,满足 y(0) = 1 及

$$\Delta y(1 + \Delta y) = \frac{y\Delta x}{x^2 + 1} + o(\Delta x)(\Delta x \rightarrow 0)(o(1)$$
表示 $\Delta x \rightarrow 0$ 时的无穷小),其中 Δx , Δy 分别

是自变量与函数在任意点 x 处的增量. 记

$$D_1 = \{ (x, y) \mid 0 \le x \le 1, \ 0 \le y \le \sqrt{y(x)} \},$$

$$D_2 = \{ (x, y) \mid 0 \le x \le 1, \ 0 \le y \le y(x) \}.$$

分别记 D_1 绕 x 轴, D_2 绕 y 轴旋转一周而成的旋转体体积为 V_1 与 V_2 , 求 $V_1 + V_2$.

(20) (本题满分11分)

设二元函数
$$f(x, y) = \begin{cases} x + 2x^2y, & 0 \le x \le a, |y| \le a, \\ 0, &$$
其他,

(I) 求二重积分
$$I(a) = \iint_D f(x,y) \,\mathrm{d}\sigma$$
,其中 $D = \{(x,y) \mid x^2 + y^2 \ge ax\}$, $a > 0$;

(II) 求极限
$$\lim_{a \to 0^+} \frac{e^{I(a)} - 1}{\sin a - \ln(1+a) - \frac{1}{2}a^2}$$
.

(21) (本题满分11分)

设函数 f(x) 在 [0, 1] 上连续且 f(0) = f(1) = 0,在 (0, 1) 内二阶可导且 f''(x) < 0. 记 M 为 f(x) 在 [0, 1] 上的最大值,证明:存在唯一的 $\xi \in (0, 1)$,使得 $f'(\xi) = M$.

(22) (本题满分11分)

设方程组 $Ax = \beta$ 有解 $(1, 2, 2, 1)^{T}$ 和 $(1, -2, 4, 0)^{T}$,其中矩阵 $A = (\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4})$ 的秩为 3,且 α_{1} , α_{2} , α_{3} , α_{4} , β 都是 4 维列向量,求方程组 $By = \alpha_{1} + 2\alpha_{2}$ 的通解,其中矩阵 $B = (\alpha_{3}, \alpha_{2}, \alpha_{1}, \beta - \alpha_{4})$.

(23) (本题满分11分)

设 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, 其中 $\mathbf{x} = (x_1, x_2, x_3)^T$, 矩阵

$$A = \begin{pmatrix} 1 & 2b & 0 \\ 0 & a & 1 \\ 2 & 1 & 1 \end{pmatrix}.$$

- (I) 求二次型 $f(x_1, x_2, x_3)$ 的矩阵 B(实对称矩阵),并计算 B 有特征值 $\lambda = 0$,1,4 时 a,b 的值.
- (II) 对上述算得的 a, b 值,用正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}(\mathbf{Q}$ 是正交矩阵, $\mathbf{y} = (y_1, y_2, y_3)^{\mathrm{T}})$ 将 $f(x_1, x_2, x_3)$ 化为标准形.

模拟试题(一)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	В	С	A	D	D	В	С	D

(1) 在(
$$-\pi$$
, 0)内 $f(x)$ 仅有间断点 $x = -\frac{\pi}{2}$. 由于

$$\lim_{x \to -\frac{\pi}{2}} f(x) = \lim_{x \to -\frac{\pi}{2}} \frac{\sin 2x}{\left(e^{\cos x} - 1\right) \ln\left(1 + \frac{1}{4}x\right)}$$
$$= \frac{1}{\ln\left(1 - \frac{\pi}{8}\right)^{x \to -\frac{\pi}{2}} \cos x} = -\frac{2}{\ln\left(1 - \frac{\pi}{8}\right)},$$

所以 $x = -\frac{\pi}{2}$ 是 f(x) 的可去间断点.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin 2x}{\left(e^{\cos x} - 1\right) \ln\left(1 + \frac{1}{4}x\right)} = \frac{1}{e - 1} \lim_{x \to 0^{-}} \frac{2x}{\frac{1}{4}x}$$
$$= \frac{8}{e - 1} \neq 0 = \lim_{x \to 0^{+}} f(x),$$

所以, x = 0 不是 f(x) 的可去间断点.

由此可知, f(x)的可去间断点个数为 1. 因此选(B).

附注 寻找分段函数的间断点,除各个分段区间内的间断点外,还应通过考虑函数在分段点处的连续性,确定它是否为间断点.

(2) 当
$$a = -2$$
, -1 时, $f(x)$ 在 $\left(0, \frac{1}{e}\right]$ 上无定义,所以选项(A),(B) 应排除. 当 $a = 0$ 时, $f(x) = x \ln x - \frac{1}{e}$,且在 $\left(0, +\infty\right)$ 上,由

$$f'(x) = \ln x + 1 \begin{cases} <0, & 0 < x < \frac{1}{e}, \\ =0, & x = \frac{1}{e}, \\ >0, & x > \frac{1}{e} \end{cases}$$

知, f(x)的单调减少区间仅为 $\left(0, \frac{1}{e}\right]$. 因此选(C).

附注 本题是对选项逐一检验而得到正确选项. 这是求解单项选择题的常用方法之一.

(3) 由积分中值定理知,存在 $\xi \in (a, b)$,使得 $f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$.

由于 f(x) 在 $[a, \xi]$ 上可导,且 $f(a) = f(\xi)$ 所以由罗尔定理知,存在 $\xi_1 \in (a, \xi)$,使得 $f'(\xi_1) = 0$. 此外,由罗尔定理(推广形式)知,对 $(\xi_1, +\infty)$ 上满足 $f(\xi) = \lim_{x \to +\infty} f(x)$ 的可导函数 f(x),存在 $\xi_2 \in (\xi_1, +\infty)$,使得 $f'(\xi_2) = 0$.

由于f(x)在[a, + ∞)上二阶可导,即f'(x)在[a, + ∞)上可导,且由以上证明的 $f'(\xi_1) = f'(\xi_2)$ (=0),因此由罗尔定理知,存在 $\xi \in (\xi_1, \xi_2) \subset [a, +\infty)$,使得 $f''(\xi) = 0$.

根据以上推理得方程 f''(x) = 0 在 $(a, + \infty)$ 至少有一个实根. 因此选(A).

附注 题解中,有两点值得注意:

(I) 积分中值定可以精确为:

设f(x)在[a, b]上连续,则存在 $\xi \in (a, b)$,使得 $f(\xi)(b-a) = \int_a^b f(x) dx$.

(Ⅱ)罗尔定理有种种推广形式,其中之一是:

设f(x)在[a, $+\infty$)上连续,在(a, $+\infty$)上可导,且 $f(a) = \lim_{x \to +\infty} f(x)$,则存在 $\xi \in (a$, $+\infty$),使得 $f'(\xi) = 0$.

记住以上结论,对解题是有用.

得 $F'(x) = \ln(1 + f(x))$. 此外由

$$\begin{split} F_{-}'(0) &= \underset{x \to 0^{-}}{\lim} F'(x) &= \underset{x \to 0^{-}}{\lim} \int_{0}^{x} f(t) \, \mathrm{d}t = 0 \,, \\ F_{+}'(0) &= \underset{x \to 0^{+}}{\lim} F'(x) &= \underset{x \to 0^{+}}{\lim} \ln(1 + f(x)) = 0 \end{split}$$

知 F'(0) = 0. 所以由

$$F''(0) = \lim_{x \to 0^{-}} \frac{F'(x) - F'(0)}{x} = \lim_{x \to 0^{-}} \frac{\int_{0}^{x} f(t) dt}{x}$$

$$= \frac{\frac{\% \cancel{E} \times \cancel{E} \cancel{E} \cancel{E}}{\cancel{E}} \lim_{x \to 0^{-}} f(x) = f(0) = 0,$$

$$F''(0) = \lim_{x \to 0^{+}} \frac{F'(x) - F'(0)}{x} = \lim_{x \to 0^{+}} \frac{\ln(1 + f(x))}{x} = \lim_{x \to 0^{+}} \frac{f(x)}{x}$$

$$= \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = f'(0) = 0$$

得 F''(0) = 0. 因此选(D)

附注 题解中, $F'_{-}(0) = \lim_{x \to 0^{+}} F'(x) = \lim_{x \to 0^{+}} F'(x)$ 是根据以下结论:

设函数 $\varphi(x)$ 在点 x=0 处连续,在 $(-\delta,0)(\delta>0)$ 内可导,且 $\lim_{x\to 0^-}\varphi'(x)$ 存在,则 $\varphi'(0)=\lim_{x\to 0^+}\varphi'(x)$.

设函数 $\psi(x)$ 在点 x=0 处连续,在 $(0,\delta)(\delta>0)$ 内可导,且 $\lim_{x\to 0^+} \psi'(x)$ 存在,则 $\psi'_+(0)$ = $\lim_{x\to 0^+} \psi(x)$.

第二个结论是 2009 年考研真题,第一个结论的证明与第二个相似. 因此上述结论可以作为定理记住和应用.

(5) 所给微分方程的通解为

$$y(x) = e^{-\int dx} \left(C + \int \sin x \cdot e^{\int dx} dx \right) = e^{-x} \left(C + \int e^x \sin x dx \right)$$
$$= e^{-x} \left[C + \frac{1}{2} e^x (\sin x - \cos x) \right].$$

将
$$y(0) = -\frac{1}{2}$$
代人上式得 $C = 0$. 所以 $y(x) = \frac{1}{2}(\sin x - \cos x)$. 从而
$$\frac{\mathrm{d}z}{\mathrm{d}x} = f_u'(u, v) \left(\mathrm{e}^x \sin y + \mathrm{e}^x \cos y \cdot \frac{\mathrm{d}y}{\mathrm{d}x} \right) + f_v'(u, v) \left(\mathrm{e}^x \cos y - \mathrm{e}^x \sin y \cdot \frac{\mathrm{d}y}{\mathrm{d}x} \right)$$
$$= \left[\mathrm{e}^x \sin y + \mathrm{e}^x \cos y \cdot \frac{1}{2} (\cos x + \sin x) \right] f_u'(u, v) + \left[\mathrm{e}^x \cos y - \mathrm{e}^x \sin y \cdot \frac{1}{2} (\cos x + \sin x) \right] f_v'(u, v) ,$$

其中 $u = e^x \sin y$, $v = e^x \cos y$, $y = \frac{1}{2}(\sin x - \cos x)$. 因此选(D).

附注 计算 $\frac{dz}{dx}$ 时,应注意 y 是 x 的函数,具体是 $y = \frac{1}{2}(\sin x - \cos x)$.

(6)
$$\iint_D (x+y) d\sigma = \iint_{D_1} 2x d\sigma$$
 (由于 D 关于 x 轴对称, y 在对称点处的值互为相反数, x 在对称 点处的值彼此相等. D_1 是 D 的第一象限部分)
$$= \int_1^2 dx \int_0^{\sqrt{x^2-1}} 2x dy = \int_1^2 2x \sqrt{x^2-1} dx$$
$$= \frac{2}{2}(x^2-1)^{\frac{3}{2}} \Big|^2 = 2\sqrt{3}.$$

因此选(B).

附注 计算二重积分应充分利用积分区域的对称性. 当 D 具有某种对称性时,

$$\iint_{D} f(x,y) d\sigma = \begin{cases} 0, & \exists f(x,y) \text{ 在对称点处的值互为相反数,} \\ 2 \iint_{D_{1}} f(x,y) d\sigma, & \exists f(x,y) \text{ 在对称点处的值彼此相等,} \end{cases}$$

其中 D_1 是 D 按这种对称性划分成的两部分之一.

(7) 由(\mathbf{A}^*)^T =(\mathbf{A}^T)^{*} =($-\mathbf{A}$)^{*} =(-1)ⁿ⁻¹ \mathbf{A}^* 知, n 为奇数时, 有(\mathbf{A}^*)^T = \mathbf{A}^* , 即 \mathbf{A}^* 是对称矩阵. 反之, 当 \mathbf{A}^* 是对称矩阵, 即(\mathbf{A}^*)^T = \mathbf{A}^* 时, 由以上计算得(-1)ⁿ⁻¹ =1, 即 n 为奇数.

所以, A^* 为对称矩阵是 n 为奇数的充分必要条件, 因此选(C).

附注 对于 $n(n \ge 2)$ 阶矩阵 A, $A^* = 0$ 的充分必要条件是 r(A) < n-1. 因此 $A^* \ne 0$ 的充分必要条件是 r(A) = n 或 n-1.

(8) 由于 $A \sim B$. 所以存在3 阶可逆矩阵P. 使得

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P}=\mathbf{B}.$$

于是 $r(A-2E_3) = r(P^{-1}(A-2E_3)P) = r(B-2E_3)$. 由于

$$|\mathbf{B} - 2\mathbf{E}_3| = \begin{vmatrix} -2 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -2 \end{vmatrix} = -3 \neq 0,$$

所以, $r(A-2E_3) = r(B-2E_3) = 3$.

有
$$r(\mathbf{A} - \mathbf{E}_3) = r(\mathbf{B} - \mathbf{E}_3)$$
. 由于

$$|\mathbf{B} - \mathbf{E}_3| = \begin{vmatrix} -1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & -1 \end{vmatrix} = 0$$
, $|\mathbf{B} - \mathbf{E}_3|$ $|\mathbf{B} - \mathbf{E}_3|$

所以, $r(A - E_3) = r(B - E_3) = 2$.

从而 $r(A-2E_3) + r(A-E_3) = 5$. 因此选(D).

附注 本题也可按以下方法计算:

$$r(\mathbf{A} - 2\mathbf{E}_3) + r(\mathbf{A} - \mathbf{E}_3) = r(\mathbf{B} - 2\mathbf{E}_3) + r(\mathbf{B} - \mathbf{E}_3)$$
$$= r\left(\frac{\mathbf{B} - 2\mathbf{E}_3}{\mathbf{O}} + \frac{\mathbf{O}}{\mathbf{B} - \mathbf{E}_3}\right),$$

所以, $r(A-2E_3) + r(A-E_3) = 5$.

二、填空题

(9)
$$\boxplus \exists \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{(-1)^n \sin n} = e^{\lim_{n \to \infty} (-1)^n \sin n \cdot \ln \left(1 + \frac{1}{n}\right)},$$

其中, $|(-1)^n \sin n| < 1(n=1, 2, \dots), \lim_{n\to\infty} \ln\left(1+\frac{1}{n}\right) = 0$, 所以

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{(-1)^n \sin n} = e^0 = 1.$$

附注 设 $\alpha(x)$ 是有界函数, $\beta(x)$ 是某个极限过程中的无穷小,则在这个极限过程中有 $\lim \alpha(x)\beta(x) = 0$.

(10) 由于 $x \in [-1, 1]$ 时, $\psi(x) = (x-1)^2$. 显然 $x \in [-1, 0)$ 时, $\psi(x) > 1$; $x \in [0, 1]$ 时, $\psi(x) \le 1$, 所以

$$\varphi(\psi(x)) = \begin{cases} \psi(x) \ln \psi(x), & x \in [-1, 0), \\ 1 - \psi(x), & x \in [0, 1] \end{cases} = \begin{cases} (1 - x)^2 \ln(1 - x)^2, & x \in [-1, 0), \\ 1 - (x - 1)^2, & x \in [0, 1]. \end{cases}$$

于是
$$\int_{-1}^{1} \varphi(\psi(x)) dx = \int_{-1}^{0} (1-x)^{2} \ln(1-x)^{2} dx + \int_{0}^{1} [1-(x-1)^{2}] dx$$
, 其中

$$\int_{-1}^{0} (1-x)^{2} \ln(1-x)^{2} dx = -\frac{2}{3} \int_{-1}^{0} \ln(1-x) d(1-x)^{3}$$

$$= -\frac{2}{3} \left[(1-x)^3 \ln(1-x) \right]_{-1}^0 + \int_{-1}^0 (1-x)^2 dx = \frac{16}{3} \ln 2 - \frac{14}{9},$$

$$\int_0^1 \left[1 - (x - 1)^2 \right] \mathrm{d}x = \int_0^1 (2x - x^2) \, \mathrm{d}x = \left(x^2 - \frac{1}{3} x^3 \right) \Big|_0^1 = \frac{2}{3}.$$

所以,
$$\int_{-1}^{1} \varphi(\psi(x)) dx = \left(\frac{16}{3} \ln 2 - \frac{14}{9}\right) + \frac{2}{3} = \frac{16}{3} \ln 2 - \frac{8}{9}$$
.

附注 平时应练习分段函数的复合运算.

(11) 由 $y' = \tan x$, $y'' = \sec^2 x$ 得所求的曲率为

$$K = \frac{|y''|}{[1 + (y')^2]^{\frac{3}{2}}} \bigg|_{x = \frac{\pi}{4}} = \frac{2}{(1 + 1^2)^{\frac{3}{2}}} = \frac{1}{\sqrt{2}}.$$

附注 应记住曲线 y = y(x) (其中 y(x) 具有 2 阶导数) 在点(x_0 , $y(x_0)$) 处的曲率 $K(x_0)$ 的计算公式:

$$K(x_0) = \frac{y''}{[1 + (y')^2]^{\frac{3}{2}}} \bigg|_{x = x_0}.$$

(12) 由题设
$$f(u, v) = 1 - u - 2v + o(\sqrt{(u-1)^2 + v^2})$$

= $-(u-1) - 2(v-0) + o(\sqrt{(u-1)^2 + (v-0)^2})$ 知
 $f'(1, 0) = -1, f'(1, 0) = -2.$

记
$$u = e^y$$
, $v = x + y$, 则 $g(x, y) = f(u, v)$, 且
$$g'_x(x, y) = f'_x, g'_x(x, y) = f'_y \cdot e^y + f'_y.$$

所以, $dg(x, y) \mid_{(0,0)} = g'_x(0, 0) dx + g'_y(0, 0) dy$ $=f'_v(1, 0) dx + [f'_v(1, 0) + f'_v(1, 0)] dy = -2dx - 3dy.$

附注 本题获解的关键是由 $f(u, v) = 1 - u - 2v + o(\sqrt{(u-1)^2 + v^2})$ 得到 f'(1, 0) =-1, $f'_{r}(1, 0) = -2$.

$$(13) \int_0^{\frac{\pi}{2}} \mathrm{d}\theta \int_1^{-\sin\theta + \sqrt{3 + \sin^2\theta}} f(r\cos\theta, r\sin\theta) r \mathrm{d}r = \iint_D f(x,y) \, \mathrm{d}\sigma, \ \ \sharp \oplus D = \left\{ (r, \ \theta) \right\} \ \left| \ 1 \leqslant r \leqslant -\sin\theta + \sqrt{3 + \sin^2\theta}, \ 0 \leqslant \theta \leqslant \frac{\pi}{2} \right\}, \ \ \dot{\mathbf{E}} \ \dot{\mathbf{E$$

=3, 即 $x^2 + (y+1)^2 = 4$. **III** 为正向 x 轴. 所以 D 如图答 1-13 的阴影部分所示. 由此得到

$$\iint_{D} f(x,y) d\sigma = \int_{0}^{1} dy \int_{\sqrt{1-y^{2}}}^{\sqrt{4-(y+1)^{2}}} f(x,y) dx,$$

上式左右边即为所求的先x后y的二次积分.

附注 (I) 对某个二次积分 I. 要改变它的积分次 序或积分坐标系,总是先写出与 I 相等的二重积分,然 后再将该二重积分转换成所要求的二次积分.

(II) 如何由 $x^2+y^2+y=\sqrt{3x^2+4y^2}$ 得到 x^2+y^2+ 2y = 3? 具体如下:

曲
$$x^2 + y^2 + y = \sqrt{3x^2 + 4y^2}$$
 得 $(x^2 + y^2 + 2y) - y = \sqrt{3x^2 + 4y^2}$,即

图答 1-13

或者
$$(x^2 + y^2 + 2y)^2 - 2y(x^2 + y^2 + 2y) - 3(x^2 + y^2 + 2y) + 6y = 0$$
,
或者 $(x^2 + y^2 + 2y)^2 - (2y + 3)(x^2 + y^2 + 2y) + 2y \cdot 3 = 0$. 由此得到
$$[(x^2 + y^2 + 2y) - 2y][(x^2 + y^2 + 2y) - 3] = 0, \quad \mathbb{R} x^2 + y^2 + 2y = 3.$$

$$(14) \begin{pmatrix} A^{-1} & O \\ B & C^* \end{pmatrix}^{-1} = \begin{pmatrix} (A^{-1})^{-1} & O \\ -(C^*)^{-1}B(A^{-1})^{-1} & (C^*)^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} A & O \\ -\frac{1}{|C|}CBA & \frac{1}{|C|}C \end{pmatrix}$$

$$= \begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} & O \\ -\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} .$$

附注 这里利用了分块矩阵的求逆公式:

设A, D 都是可逆矩阵, 则

$$\begin{pmatrix} A & O \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ -D^{-1}CDA^{-1} & D^{-1} \end{pmatrix}.$$

同样有
$$\begin{pmatrix} A & B \\ O & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}BD^{-1} \\ O & D^{-1} \end{pmatrix}$$
.

三、解答题

(15) 由于
$$\lim_{x \to 0^{-}} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x - |x|}{|x|} \right) = \lim_{x \to 0^{-}} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} - \frac{\sin x}{x} - 1 \right) = \frac{2 + 0}{1 + 0} - 1 - 1 = 0,$$

$$\lim_{x \to 0^{+}} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x - |x|}{|x|} \right) = \lim_{x \to 0^{+}} \left(\frac{2 e^{-\frac{4}{x}} + e^{-\frac{3}{x}}}{e^{-\frac{4}{x}} + 1} + \frac{\sin x}{x} - 1 \right) = \frac{0 + 0}{0 + 1} + 1 - 1 = 0,$$
所以 $\lim_{x \to 0} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x - |x|}{|x|} \right) = 0.$ 此外 $\left| \arctan \frac{1}{x} \right| < \frac{\pi}{2},$ 因此
$$\lim_{x \to 0} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x - |x|}{|x|} \right) = 0.$$

附注 由于 $\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{x}{x}}} + \frac{\sin x - |x|}{|x|}$ 是以 x = 0 为分段点的分段函数,所以计算 $x \to 0$ 的极限

时,应从计算左、右极限入手. 在计算时还应注意到 $\lim_{x\to 0^+} \mathrm{e}^{\frac{1}{x}} = +\infty$, $\lim_{x\to 0^-} \mathrm{e}^{\frac{1}{x}} = 0$.

(16) 记 D 绕直线 $\gamma = 1$ 旋转一周而成的旋转体体积为 V, 则

$$V = \pi \left[\int_0^1 (1 - x^2)^2 dx - \int_0^1 (1 - x)^2 dx \right]$$
$$= \pi \int_0^1 (x^4 - 3x^2 + 2x) dx = \frac{\pi}{5}.$$

记D绕y轴旋转一周而成的旋转体体积为 V_x ,则

$$V_{y} = 2\pi \left(\int_{0}^{1} x \cdot x dx - \int_{0}^{1} x \cdot x^{2} dx \right)$$
$$= 2\pi \int_{0}^{1} (x^{2} - x^{3}) dx = \frac{\pi}{6}.$$

附注 应记住以下公式:

设平面图形 $D_1 = \{(x, y) \mid a \le x \le b, f_1(x) \le y \le f_2(x) \le k\}$ 绕直线 y = k 旋转一周而成的旋转体体积

$$V_{k} = \pi \left\{ \int_{a}^{b} [k - f_{1}(x)]^{2} dx - \int_{a}^{b} [k - f_{2}(x)]^{2} dx \right\}.$$

设平面图形 $D_2=\{(x,y)\mid c\leqslant a\leqslant x\leqslant b,\, f_1(x)\leqslant y\leqslant f_2(x)\}$ 绕直线 x=c 旋转一周而成的旋转体体积

$$V_c = 2\pi \Big[\int_a^b (x-c) f_2(x) \, \mathrm{d}x - \int_a^b (x-c) f_1(x) \, \mathrm{d}x \Big].$$

$$y'' + a^2 y = \sin x + 2\cos 2x \tag{1}$$

对应的齐次微分方程的通解为

$$Y = C_1 \cos |a| x + C_2 \sin |a| x$$
 (C_1 , C_2 是任意常数).

当a=1时,式(1)有特解

$$y^* = x(A_1\sin x + B_1\cos x) + (A_2\sin 2x + B_2\cos 2x).$$

将它代入a=1时的式(1)得

$$2A_1\cos x - 2B_1\sin x - 3A_2\sin 2x - 3B_2\cos 2x = \sin x + 2\cos 2x$$
.

由此得到 $A_1 = 0$, $B_1 = -\frac{1}{2}$, $A_2 = 0$, $B_2 = -\frac{2}{3}$. 故

$$y^* = -\frac{1}{2}x\cos x - \frac{2}{3}\cos 2x.$$

因此, 当a=1时, 式(1)的通解为

$$y = Y + y^* = C_1 \cos x + C_2 \sin x - \frac{1}{2}x \cos x - \frac{2}{3}\cos 2x.$$

当 a = 2 时,式(1)有特解

$$y^* = A_1 \sin x + B_1 \cos x + x (A_2 \sin 2x + B_2 \cos 2x).$$

将它代入a=2的式(1)得

$$3A_1\sin x + 3B_1\cos x + 4A_2\cos 2x - 4B_2\sin 2x = \sin x + 2\cos 2x$$
.

由此得到 $A_1 = \frac{1}{3}$, $B_1 = 0$, $A_2 = \frac{1}{2}$, $B_2 = 0$. 故

$$y^* = \frac{1}{3} \sin x + \frac{1}{2} x \sin 2x.$$

因此, 当 a=2 时, 式(1)的通解为

$$y = Y + y^* = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{3} \sin x + \frac{1}{2} x \sin 2x.$$

附注 设有 2 阶线性微分方程

$$y'' + ay' + by = e^{\alpha x} (a_1 \cos \beta x + b_1 \sin \beta x)$$
 (*)

(其中, a, b, a_1 , b_1 , α , β 都是常数),则式(*)有特解

$$y^* = x^k e^{\alpha x} (A\cos\beta x + B\sin\beta x)$$
,

其中, $k = \begin{cases} 0, & \text{当 } \alpha + \mathrm{i}\beta \text{ 是方程 } \lambda^2 + a\lambda + b = 0 \text{ 的 } 0 \text{ 重根,} \\ 1, & \text{当 } \alpha + \mathrm{i}\beta \text{ 是方程 } \lambda^2 + a\lambda + b = 0 \text{ 的 } 1 \text{ 重根,} \end{cases}$ 常数 A, B 可由 y^* 代入式(*)

确定.

 $z(x, 0) = x^2$ 两边对 x 求偏导数得 $\frac{\partial z(x, 0)}{\partial x} = 2x$,将它与由式(1)得到的 $\frac{\partial z}{\partial x} \Big|_{y=0} = \varphi(x)$ 比

较得 $\varphi(x) = 2x$, 所以

$$\frac{\partial z}{\partial x} = xy + \frac{1}{2}y^2 + 2x.$$

同样可得
$$\frac{\partial z}{\partial y} = xy + \frac{1}{2}x^2 + 2y$$
.
记 $u = x + y$, $v = x - y$, 则 $w = z(u, v)$, 所以

$$dw = dz(u, v) = \frac{\partial z}{\partial u}du + \frac{\partial z}{\partial v}dv = \frac{\partial z}{\partial u}(dx + dy) + \frac{\partial z}{\partial v}(dx - dy)$$

$$= \left[(x + y)(x - y) + \frac{1}{2}(x - y)^2 + 2(x + y) \right](dx + dy)$$

$$+ \left[(x + y)(x - y) + \frac{1}{2}(x + y)^2 + 2(x - y) \right](dx - dy)$$

$$= (3x^2 - y^2 + 4x) dx + (4y - 2xy) dy.$$

附注 题解有以下两点值得注意:

(I) 由
$$\frac{\partial^2 z}{\partial x \partial y} = x + y$$
 得 $\frac{\partial z}{\partial x} = xy + \frac{1}{2}y^2 + \varphi(x)$,而不是 $z = xy + \frac{1}{2}y^2 + C(C$ 是任意常数).

(II) 由题设知 z(x, y) 是关于 x 与 y 的对称函数(II z(y, x) = z(x, y)) ,所以 $\frac{\partial z(x, y)}{\partial y}$ 等

于互换 $\frac{\partial z(x,y)}{\partial x}$ 中的x与y即可.

(19)
$$\dot{\mathbf{h}} = \iint_{D} r^{2} \sin\theta \sqrt{1 - r^{2} \cos 2\theta} dr d\theta = \iint_{D} r \sin\theta \sqrt{1 - r^{2} (\cos^{2}\theta - \sin^{2}\theta)} r dr d\theta$$

$$= \iint_{D} y \sqrt{1 - x^{2} + y^{2}} d\sigma,$$

所以
$$f(x, y) = y \sqrt{1 - x^2 + y^2}$$
. 此外,

$$D = \left\{ (r, \theta) \mid 0 \le r \le \sec \theta, \ 0 \le \theta \le \frac{\pi}{4} \right\} = \left\{ (x, y) \mid 0 \le x \le 1, \ 0 \le y \le x \right\}$$

如图答 1-19 阴影部分所示. 由于

$$\frac{\partial f}{\partial x} = -\frac{xy}{\sqrt{1 - x^2 + y^2}}, \ \frac{\partial f}{\partial y} = \frac{1 - x^2 + 2y^2}{\sqrt{1 - x^2 + y^2}}.$$

所以,方程组 $\begin{cases} \frac{\partial f}{\partial x} = 0, \\ & \text{在 } D \text{ 的内部无解,即 } f(x, y) \text{ 在 } D \text{ 的内部} \\ \frac{\partial f}{\partial y} = 0 \end{cases}$

无可能极值点.

D有边界 $I: y = 0(0 \le x \le 1)$, $II: x = 1(0 \le y \le 1)$ 以及 $III: y = x(0 \le x \le 1)$.

在 $I \perp$, $f(x, y) \equiv 0$ (0 $\leq x \leq 1$), 所以它的最大值与最小值都为 0.

在 \mathbb{I} 上, $f(x, y) = y^2 (0 \le y \le 1)$, 所以它的最大值为 1, 最小值为 0.

在**II**上, $f(x, y) = x(0 \le x \le 1)$, 所以它的最大值为 1, 最小值为 0.

因此, f(x, y)在 D 的边界上, 即在 D 上的最大值为 1, 最小值为 0.

附注 解题时应注意的是, f(x, y) 在极坐标系中的表达式为 $r\sin\theta$ $\sqrt{1-r^2\cos 2\theta}$, 而不是 $r^2\sin\theta$ $\sqrt{1-r^2\cos 2\theta}$.

所以,在点x=0的充分小去心邻域内有

$$0 < \frac{\tan^2 x - x^2}{x^4} < 1.$$

由此证得, 当 |x| 充分小时, $x^2 \le \tan^2 x \le x^2 + x^4$.

(II)由(I)知

$$\frac{1}{n+k} = \left(\frac{1}{\sqrt{n+k}}\right)^2 \le \tan^2 \frac{1}{\sqrt{n+k}} \le \left(\frac{1}{\sqrt{n+k}}\right)^2 + \left(\frac{1}{\sqrt{n+k}}\right)^4 = \frac{1}{n+k} + \frac{1}{(n+k)^2},$$

所以 $\sum_{k=1}^{n} \frac{1}{n+k} \le \sum_{k=1}^{n} \tan^2 \frac{1}{\sqrt{n+k}} \le \sum_{k=1}^{n} \frac{1}{n+k} + \sum_{k=1}^{n} \frac{1}{(n+k)^2}$ $(n=1,2,\cdots).$

由于
$$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{n+k}=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\frac{1}{1+\frac{k}{n}}=\int_0^1\frac{1}{1+x}\mathrm{d}x=\ln 2$$
,

$$\lim_{n \to \infty} \left[\sum_{k=1}^{n} \frac{1}{n+k} + \sum_{k=1}^{n} \frac{1}{(n+k)^{2}} \right] = \ln 2 + \lim_{n \to \infty} \left[\frac{1}{n} \cdot \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left(1 + \frac{k}{n}\right)^{2}} \right]$$

$$= \ln 2 + 0 \cdot \int_0^1 \frac{1}{(1+x)^2} dx = \ln 2,$$

所以,由数列极限存在准则 I 知 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} \sum_{k=1}^n \tan^2 \frac{1}{\sqrt{n+k}} = \ln 2.$

附注 数列极限存在准则有两个:

准则 I 设有数列 $\{x_n\}$, $\{y_n\}$ 及 $\{z_n\}$, 如果它们满足

$$y_n \leq x_n \leq z_n (n = 1, 2, \cdots),$$

 $\coprod \lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n = A, \quad \iiint \lim_{n \to \infty} x_n = A.$

准则 \mathbb{I} 设数列 $\{x_n\}$ 单调不减有上界,或单调不增有下界,则 $\lim x_n$ 存在.

(21) 由于 f(t) 在[0, 2]上 2 阶可导,所以对任意 $x \in [0, 2]$ 及 $t \in [0, 2]$,有泰勒公式:

$$f(t) = f(x) + f'(x)(t-x) + \frac{1}{2!}f''(\xi)(t-x)^2(\xi \text{ 是介于 } t \text{ 与 } x \text{ 之间的实数}),$$

特别有

$$f(0) = f(x) - f'(x)x + \frac{1}{2}f''(\xi_1)x^2(\xi_1) + 2\pi i \pm 0 \text{ in } \xi \text{ in$$

$$f(2) = f(x) + f'(x)(2 - x) + \frac{1}{2}f''(\xi_2)(2 - x)^2(\xi_2 \text{ } \exists \forall \text{ } i = 2 \text{ } \text{ } \text{ } i). \tag{2}$$

式(2) -式(1)得

$$f(2) - f(0) = 2f'(x) + \frac{1}{2} [f''(\xi_2) (2 - x)^2 - f'(\xi_1) x^2],$$

即

$$f'(x) = \frac{1}{2} \left\{ f(2) - f(0) - \frac{1}{2} \left[f''(\xi_2) (2 - x)^2 - f''(\xi_1) x^2 \right] \right\}.$$

由此得到

$$\begin{split} |f'(x)| &\leqslant \frac{1}{2} \bigg\{ |f(2)| + |f(0)| + \frac{1}{2} \big[|f''(\xi_1)| (2-x)^2 + |f''(\xi_2)| x^2 \big] \bigg\} \\ &\leqslant 1 + \frac{1}{2} (2-2x+x^2) \leqslant 2 \quad (由于 2-2x+x^2 在[0, 2] 上的最大值为 2). \end{split}$$

附注 为了将f'(x)与f(x), f''(x)联系起来,常常使用带拉格朗日型余项的泰勒公式. 本题就是按此想法证明的.

(22) (
$$I$$
) 由(A)与(B)等价知, $r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$. 由于

$$| (\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3) | = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 1 & 4 \end{vmatrix} \neq 0$$
,即 $r(\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3) = 3$,所以

$$r(\boldsymbol{\beta}_1, \, \boldsymbol{\beta}_2, \, \boldsymbol{\beta}_3) = 3$$
,即 $0 \neq | \, (\boldsymbol{\beta}_1, \, \boldsymbol{\beta}_2, \, \boldsymbol{\beta}_3) \, | = \begin{vmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{vmatrix} = \begin{vmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & a - 3 \end{vmatrix} = a - 5$. 由此得

到 $a \neq 5$.

(II) 当 $a \neq 5$ 时,由

$$(\boldsymbol{\beta}_1, \, \boldsymbol{\beta}_2, \, \boldsymbol{\beta}_3 \mid \boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3) = \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 1 \\ 1 & 2 & 4 & 0 & 1 & 3 \\ 1 & 3 & a & 1 & 1 & 5 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 2 & 2 & -1 & -1 \\ 0 & 1 & 1 & -1 & 1 & 2 \\ 0 & 0 & 1 & \frac{2}{a-5} & -\frac{1}{a-5} & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{2a-14}{a-5} & \frac{-a+7}{a-5} & -1 \\ 0 & 1 & 0 & \frac{-a+3}{a-5} & \frac{a-4}{a-5} & 2 \\ 0 & 0 & 1 & \frac{2}{a-5} & -\frac{1}{a-5} & 0 \end{pmatrix}$$

知, (A)由(B)的线性表式为

$$\begin{cases} \boldsymbol{\alpha}_{1} = \frac{2a - 14}{a - 5} \boldsymbol{\beta}_{1} + \frac{-a + 3}{a - 5} \boldsymbol{\beta}_{2} + \frac{2}{a - 5} \boldsymbol{\beta}_{3}, \\ \boldsymbol{\alpha}_{2} = \frac{-a + 7}{a - 5} \boldsymbol{\beta}_{1} + \frac{a - 4}{a - 5} \boldsymbol{\beta}_{2} - \frac{1}{a - 5} \boldsymbol{\beta}_{3}, \\ \boldsymbol{\alpha}_{3} = -\boldsymbol{\beta}_{1} + 2\boldsymbol{\beta}_{2}. \end{cases}$$
(1)

附注 将初等行变换后的矩阵 $\begin{pmatrix} 1 & 0 & 0 & \frac{2a-14}{a-5} & \frac{-a+7}{a-5} & -1 \\ 0 & 1 & 0 & \frac{-a+3}{a-5} & \frac{a-4}{a-5} & 2 \\ 0 & 0 & 1 & \frac{2}{a-5} & -\frac{1}{a-5} & 0 \end{pmatrix}$ 的列向量由左至右顺

序记为 $\boldsymbol{\beta}_1'$, $\boldsymbol{\beta}_2'$, $\boldsymbol{\beta}_3'$; $\boldsymbol{\alpha}_1'$, $\boldsymbol{\alpha}_2'$, $\boldsymbol{\alpha}_3'$, 容易看到

$$\begin{cases} \boldsymbol{\alpha}_{1}' = \frac{2a - 14}{a - 15} \boldsymbol{\beta}_{1}' + \frac{-a + 3}{a - 5} \boldsymbol{\beta}_{2}' + \frac{2}{a - 5} \boldsymbol{\beta}_{3}', \\ \boldsymbol{\alpha}_{2}' = \frac{-a + 7}{a - 5} \boldsymbol{\beta}_{1}' + \frac{a - 4}{a - 5} \boldsymbol{\beta}_{2}' - \frac{1}{a - 5} \boldsymbol{\beta}_{3}', \\ \boldsymbol{\alpha}_{3}' = -\boldsymbol{\beta}_{1}' + 2\boldsymbol{\beta}_{2}'. \end{cases}$$
(2)

由于"初等行变换不改变列向量之间的线性表示关系"(记住这一结论),因此由式(2)直接得到式(1),即(A)由(B)的线性表示式.

(A)由(B)的线性表示式也可以用以下方法计算:

记 $\mathbf{e}_1 = (1, 0, 0)^T$, $\mathbf{e}_2 = (0, 1, 0)^T$, $\mathbf{e}_3 = (0, 0, 1)^T$, 则由

$$(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}) = (\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}) \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{pmatrix}^{-1}$$

$$(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}) = (\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}) \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{pmatrix}^{-1}$$

$$= (\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}) \begin{pmatrix} 2 - \frac{2}{a - 5} & -1 + \frac{4}{a - 5} & -\frac{2}{a - 5} \\ -1 - \frac{1}{a - 5} & 1 + \frac{2}{a - 5} & -\frac{1}{a - 5} \\ \frac{1}{a - 5} & -\frac{2}{a - 5} & \frac{1}{a - 5} \end{pmatrix}.$$

$$(1 & 0 & 1)$$

于是,
$$(\boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_3) = (\boldsymbol{e}_1, \ \boldsymbol{e}_2, \ \boldsymbol{e}_3) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{pmatrix}$$

$$= (\boldsymbol{\beta}_{1}, \, \boldsymbol{\beta}_{2}, \, \boldsymbol{\beta}_{3}) \begin{pmatrix} 2 - \frac{2}{a-5} & -1 + \frac{4}{a-5} & -\frac{2}{a-5} \\ -1 - \frac{1}{a-5} & 1 + \frac{2}{a-5} & -\frac{1}{a-5} \\ \frac{1}{a-5} & -\frac{2}{a-5} & \frac{1}{a-5} \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{pmatrix}$$

$$= (\boldsymbol{\beta}_{1}, \, \boldsymbol{\beta}_{2}, \, \boldsymbol{\beta}_{3}) \begin{pmatrix} \frac{2a-14}{a-5} & \frac{-a+7}{a-5} & -1 \\ -\frac{a+3}{a-5} & \frac{a-4}{a-5} & 2 \\ \frac{2}{a-5} & -\frac{1}{a-5} & 0 \end{pmatrix},$$

它即为式(1).

(23) (I) 由于 $\frac{1}{\sqrt{\epsilon}}(1, 2, 1)^{\mathsf{T}}$ 是 A 的一个特征向量,记它对应的特征值为 λ ,则有

$$\begin{pmatrix} \lambda & 1 & -4 \\ 1 & \lambda - 3 & -a \\ -4 & -a & \lambda \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 0, \quad \exists J \begin{cases} \lambda - 2 = 0, \\ 1 + 2(\lambda - 3) - a = 0, \\ -4 - 2a + \lambda = 0. \end{cases}$$

解此方程组得 $\lambda = 2$, a = -1

将 a = -1 代入 A, 得 A 的特征方程

$$\begin{vmatrix} \lambda & 1 & -4 \\ 1 & \lambda - 3 & 1 \\ -4 & 1 & \lambda \end{vmatrix} = (\lambda - 2)(\lambda - 5)(\lambda + 4) = 0,$$

它的根除 $\lambda_1 = \lambda = 2$ 外, 还有 $\lambda_2 = 5$, $\lambda_3 = -4$, 所以, $f(x_1, x_2, x_3)$ 的标准形为 $2y_1^2 + 5y_2^2 - 4$ $4y_3^2$.

(Ⅱ)由于 A^* 是实对称矩阵,所以它能化为对角形矩阵A.由于 A^* 的特征值为 μ_1 = $\frac{|A|}{\lambda_1} = -20, \ \mu_2 = \frac{|A|}{\lambda_2} = -8, \ \mu_3 = \frac{|A|}{\lambda_2} = 10, \ \text{MU}$

$$\mathbf{\Lambda} = \begin{pmatrix} -20 & & \\ & -8 & \\ & & 10 \end{pmatrix}.$$

由题设知, \boldsymbol{A} 的对应 $\boldsymbol{\lambda}_1 = 2$ 的特征向量为 $\boldsymbol{\xi}_1 = (1, 2, 1)^T$. 设对应 $\lambda_2 = 5$ 的特征向量为 $\boldsymbol{\xi}_2 = (u_1, u_2, u_3)^T$,则 $\boldsymbol{\xi}_2$ 满足

由于
$$\begin{pmatrix} 5 & 1 & -4 \\ 1 & 2 & 1 \\ -4 & 1 & 5 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \mathbf{0}.$$

$$\begin{pmatrix} 5 & 1 & -4 \\ 1 & 2 & 1 \\ 4 & 1 & 5 \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 5 & 1 & -4 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{(以下同)}} \begin{pmatrix} 0 & -9 & -9 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

所以,式(1)与 $\begin{cases} u_2 + u_3 = 0, \\ u_1 + u_2 = 0 \end{cases}$ 同解,它的基础解系为 $(1, -1, 1)^T$,故取 $\boldsymbol{\xi}_2 = (1, -1, 1)^T$.

设对应 $\lambda_3 = -4$ 的特征向量为 $\boldsymbol{\xi}_3 = (v_1, v_2, v_3)^T$,则由 \boldsymbol{A} 是实对称矩阵知 $\left\{ (\boldsymbol{\xi}_3, \, \boldsymbol{\xi}_1) = 0, \, \boldsymbol{\xi}_1 \right\} = 0$, 它的基础解系为 $\left\{ (\boldsymbol{\xi}_3, \, \boldsymbol{\xi}_2) = 0, \, \boldsymbol{\xi}_3 \right\} = 0$.

显然, ξ_1 , ξ_2 , ξ_3 是正交向量组. 现将它们单位化得

$$\boldsymbol{\xi}_{1}^{0} = \frac{\boldsymbol{\xi}_{1}}{\|\boldsymbol{\xi}_{1}\|} = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{T}, \ \boldsymbol{\xi}_{2}^{0} = \frac{\boldsymbol{\xi}_{2}}{\|\boldsymbol{\xi}_{2}\|} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{T}, \ \boldsymbol{\xi}_{3}^{0} = \frac{\boldsymbol{\xi}_{3}}{\|\boldsymbol{\xi}_{3}\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T}$$
 记 $\boldsymbol{P} = (\boldsymbol{\xi}_{1}^{0}, \boldsymbol{\xi}_{2}^{0}, \boldsymbol{\xi}_{3}^{0}), \ \boldsymbol{\mu} \boldsymbol{P}$ 即为所求的正交矩阵.

附注 设 A 是可逆矩阵,有特征值 λ 及与之对应的特征向量 ξ ,则 A^* 有特征值 $\mu = \frac{\mid A \mid}{\lambda}$ 及与之对应的特征向量 ξ . 所以当 P^TAP 为对角形矩阵时, P^TA^*P 也是对角形矩阵,且对角线上的元素都是 A^* 的特征值.

模拟试题(二)解答

一、选择题

(1) 由于
$$y = \frac{1}{2x} \left(\frac{1}{x-1} - \frac{1}{x+1} \right) = \frac{1}{2} \left[\frac{1}{x(x-1)} - \frac{1}{x(x+1)} \right]$$

$$= \frac{1}{2} \left[\left(\frac{1}{x-1} - \frac{1}{x} \right) - \left(\frac{1}{x} - \frac{1}{x+1} \right) = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} - \frac{2}{x} \right) \right],$$

所以,
$$y^{(10)} = \frac{1}{2} \left[(-1)^{10} \frac{10!}{(x-1)^{11}} + (-1)^{10} \frac{10!}{(x+1)^{11}} - 2(-1)^{10} \frac{10!}{x^{11}} \right]$$
$$= \frac{10!}{2(x-1)^{11}} - \frac{10!}{x^{11}} + \frac{10!}{2(x+1)^{11}}.$$
 因此选(C)

附注 应记住公式: 对 $a \neq 0$,

$$\left(\frac{1}{ax+b}\right)^{(n)} = (-1)^n \frac{a^n \cdot n!}{(ax+b)^{n+1}}.$$

(2) 由于
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2e^{t}(e^{t}-1)}{\frac{2}{1+t}\ln(1+t)} = \frac{e^{t}(1+t)(e^{t}-1)}{\ln(1+t)}$$
, 并且由题设知

$$\frac{dy}{dx} \Big|_{t=0} = \lim_{t \to 0} \frac{dy}{dx} = \lim_{t \to 0} \frac{e^{t}(1+t)(e^{t}-1)}{\ln(1+t)} = \lim_{t \to 0} \frac{e^{t}-1}{t} = 1,$$

所以,
$$\frac{d}{dt} \left(\frac{dy}{dx} \right) \Big|_{t=0} = \lim_{x \to 0} \frac{\frac{dy}{dx} - \frac{dy}{dx} \Big|_{t=0}}{t} = \lim_{t \to 0} \frac{\frac{e^t (1+t) (e^t - 1)}{\ln(1+t)} - 1}{t}$$

$$= \lim_{t \to 0} \frac{e^t (1+t) (e^t - 1) - \ln(1+t)}{t^2}$$

$$= \lim_{t \to 0} \frac{\left[e^{2t} - e^t - \ln(1+t) \right] + e^t t (e^t - 1)}{t^2}$$

$$= \lim_{t \to 0} \frac{e^{2t} - e^t - \ln(1+t)}{t^2} + 1$$

$$2e^{2t} - e^t - \frac{1}{1+t}$$
 $\lim_{t\to 0} \frac{2e^{2t} - e^t - \frac{1}{1+t}}{2t} + 1$

$$2(e^{2t}-1)-(e^{t}-1)-\left(\frac{1}{1+t}-1\right)$$

$$=\lim_{t\to 0}\frac{2t}{2t}+1=3.$$

因此选(D).

附注 由于在点 x = 0 的某个邻域内 $\frac{\mathrm{d}y}{\mathrm{d}x} = \begin{cases} \frac{\mathrm{e}^t(1+t)\,(\,\mathrm{e}^t-1\,)}{\ln(1+t)}, & t \neq 0, \\ 1, & t = 0 \end{cases}$

导数定义计算 $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\Big|_{t=0}$.

(3) 由于
$$y = x + \ln x + =\begin{cases} -x \ln x, & 0 \le x \le 1, \\ x \ln x, & x > 1 \end{cases}$$
 在(0, + \infty)上连续, 当 0 < x < 1 时,

$$y' = -(\ln x + 1) \begin{cases} >0, & 0 < x < \frac{1}{e}, \\ =0, & x = \frac{1}{e}, \\ <0, & \frac{1}{e} < x < 1; \end{cases}$$

当 x > 1 时, $y' = \ln x + 1 > 0$, 即 $y = x \mid \ln x \mid$ 在 $(1, +\infty)$ 上单调增加,且 $\lim_{x \to +\infty} y = +\infty$.所以 y =

图答 2-3

 $x \mid \ln x \mid$ 的概图如图答 2-3 所示. 由图可知 $y\left(\frac{1}{e}\right) = \frac{1}{e}$ 是 $y = x \mid \ln x \mid$ 的极大值(不是最大值). 因此选(C).

附注 本题是利用函数的单调性画出它的概图,快捷地得到正确的选项.

$$(4) \int_{\frac{\pi}{4}}^{\pi} \sin x \sqrt{1 - \sin^2 x} dx = \int_{\frac{\pi}{4}}^{\pi} \sin x | \cos x | dx$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin x \cos x dx - \int_{\frac{\pi}{2}}^{\pi} \sin x \cos x dx$$

$$= \frac{1}{2} \sin^2 x \Big|_{\frac{\pi}{4}}^{\frac{\pi}{2}} - \frac{1}{2} \sin^2 x \Big|_{\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{3}{4}. \quad 因此选(A)$$

附注 题解中应注意的是: 在 $\left[\frac{\pi}{4}, \pi\right]$ 上 $\sqrt{1-\sin^2 x} \neq \cos x$, 而应为 $\sqrt{1-\sin^2 x} = |\cos x|$.

(5) 由于f(x, y)在点(0, 0)的关于x的偏导数存在,所以

$$\lim_{x\to 0} \frac{f(x, 0) - f(0, 0)}{x} = f'_x(0, 0).$$

因此选(D).

附注 由于f(x, y)的偏导数仅在点(0, 0)处存在,所以选(A)(B)及(C)都不正确.

(6) 由于 D 关于 y 轴对称, 而 $f(x^2)$ 在对称点处的值彼此相等, 所以 $\iint_D f(x^2) d\sigma = 2 \iint_D f(x^2) d\sigma$. 因此选(D).

附注 在计算二重积分时, 应充分利用积分区域的对称性, 适当地化简二重积分.

(7) 对于 n > 2 有

$$(A^*)^* = (|A|A^{-1})^* = |A|^{n-1}(A^{-1})^* = |A|^{n-1}(A^*)^{-1}$$

= $|A|^{n-1}(|A|A^{-1})^{-1} = |A|^{n-1} \cdot \frac{1}{|A|}A = |A|^{n-2}A.$

因此选(B).

附注 当 A 是不可逆时,本题结论仍成立. 这是因为,当 A 不可逆,即 |A|=0 时, $|A|^{n-2}A=0$. 另一方面,当 |A|=0 时, $r(A^*)=1$,或 0,即 $r(A^*)< n-1$. 从而 $r((A^*)^*)=0$,由此得到 $(A^*)^*=0$.

故仍有 $(A^*)^* = |A|^{n-2}A$.

(8) 由 A 是正定矩阵知,A 是实对称矩阵,从而 A^* 也是实矩阵,并且由 A^T 得(A^*) T = (A^T) * = A^* ,所以 A^* 也是对称的。从而 A^* 也是实对称矩阵。此外,由 A 的特征值 λ_1 , λ_2 ,…, λ_n 全为正的知, A^* 的特征值 $\frac{|A|}{\lambda_1}$, $\frac{|A|}{\lambda_2}$,…, $\frac{|A|}{\lambda_n}$ 也全为正的。因此 A^* 是正定矩阵。同样可得 B^* 是正定矩阵。于是,对于任意 x(n 维非零列向量),有 $x^TA^*x>0$, $x^TB^*x>0$,由此可知

$$\boldsymbol{x}^{\mathrm{T}}(\boldsymbol{A}^{*}+2\boldsymbol{B}^{*})\boldsymbol{x}>0$$
,

即 $A^* + 2B^*$ 是正定矩阵. 因此选(A).

附注 应记住以下结论:

设 A , B 都是 n 阶正定矩阵,则 A + B , $A^{T} + B^{T}$, $A^{-1} + B^{-1}$, $A^{*} + B^{*}$ 都是正定矩阵,但 A - B , AB , $A^{T}B^{T}$, $A^{-1}B^{-1}$, $A^{*}B^{*}$ 等未必是正定矩阵.

二、填空题

(9)
$$\int \arctan \frac{1+x}{1-x} dx = \int (\arctan 1 + \arctan x) dx = \frac{\pi}{4}x + \int \arctan x dx$$

= $\frac{\pi}{4} + x \arctan x - \int \frac{x}{1+x^2} dx = \frac{\pi}{4}x + x \arctan x - \frac{1}{2} \ln(1+x^2) + C.$

附注 以下公式是常用的:

$$\arctan \frac{a+x}{1-ax} = \arctan a + \arctan x$$
,

$$\arctan \frac{a-x}{1+ax} = \arctan a - \arctan x.$$

(10) 由于
$$\max\{1, x^2\} = \begin{cases} 1, & |x| \leq 1, \\ x^2, & |x| > 1, \end{cases}$$
 所以
$$\int_{-1}^2 \max\{1, x^2\} dx = \int_{-1}^1 dx + \int_{1}^2 x^2 dx = 2 + \frac{7}{3} = \frac{13}{3}.$$

附注 同样可以计算 $\int_{-1}^{2} \min\{1, x^2\} dx$:

$$\int_{-1}^{2} \min\{1, x^2\} dx = \int_{-1}^{1} x^2 dx + \int_{1}^{2} dx = \frac{2}{3} + 1 = \frac{5}{3}.$$

(11) 曲线方程可以改写成 $y = x + \frac{1}{2}x^2$, 所以

$$y' = 1 + x$$
, $y'' = 1$.

因此,该曲线在点(0,0)处的曲率为

$$K = \frac{|y''|}{[1+(y')^2]^{\frac{3}{2}}} \bigg|_{x=0} = \frac{1}{[1+(1+x)^2]^{\frac{3}{2}}} \bigg|_{x=0} = \frac{1}{2\sqrt{2}},$$

于是由曲率圆的半径 $R = \frac{1}{K} = 2\sqrt{2}$ 得曲率圆的面积为

$$S = \pi R^2 = 8\pi.$$

附注 曲线 y = y(x) 在点 $(x_0, y(x_0))$ 处的曲率 K 计算公式为

$$K = \frac{|y''|}{[1 + (y')^2]^{\frac{3}{2}}} \bigg|_{x = x_0}.$$

(12) 由于
$$\lim_{x \to 1^{+}} \frac{z(x, 2) - z(1, 2)}{x - 1} = \lim_{x \to 1^{+}} \frac{\left(\frac{2}{x}\right)^{\ln x} - 1}{x - 1}$$

$$= \lim_{x \to 1^{+}} \frac{e^{\ln x(\ln 2 - \ln x)} - 1}{x - 1} = \lim_{x \to 1^{+}} \left[\frac{\ln x}{x - 1} \cdot (\ln 2 - \ln x)\right] = \ln 2 \lim_{x \to 1^{+}} \frac{\ln x}{x - 1} = \ln 2,$$

$$\lim_{x \to 1^{-}} \frac{z(x, 2) - z(1, 2)}{x - 1} = \lim_{x \to 1^{-}} \frac{\left[\ln (x^{\ln 2}) + 1\right] - 1}{x - 1} = \ln 2 \lim_{x \to 1^{-}} \frac{\ln x}{x - 1} = \ln 2,$$

所以 $\frac{\partial z}{\partial x}\Big|_{(1,2)} = \ln 2.$

附注 由于 $\frac{\partial z}{\partial x}\Big|_{(1,2)} = \frac{\mathrm{d}z(x,2)}{\mathrm{d}x}\Big|_{x=1}$,而 z(x,2) 是分段点为 x=1 的分段函数,所以按定义计算 $\frac{\mathrm{d}z(x,2)}{\mathrm{d}x}\Big|_{x=1}$.

$$(13) \iint_{D} e^{\sqrt{x^{2}+y^{2}}} d\sigma = \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} d\theta \int_{0}^{1} e^{r} r dr = \pi \int_{0}^{1} r de^{r}$$
$$= \pi \left(r e^{r} \Big|_{0}^{1} - \int_{0}^{1} e^{r} dr \right) = \pi.$$

附注 由于 D 是圆的一部分,而且被积函数是 $x^2 + y^2$ 的函数,所以用极坐标计算所给二重积分.

所以 $r(\mathbf{A}^2) = 3$, 从而 $r((\mathbf{A}^2)^*) = 1$.

附注 本题是利用以下公式(应记住)计算的:

设A 是n 阶矩阵,则

$$r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(A) = n - 1, \\ 0, & r(A) < n - 1. \end{cases}$$

三、解答题

$$(15) \lim_{x\to 0} \left(\frac{2\cos x + x}{2\sqrt{1+x}}\right)^{\frac{1}{x^2}} = e^{\lim_{x\to 0} \frac{\ln\left(\cos x + \frac{x}{2}\right) - \frac{1}{2}\ln(1+x)}{x^2}},$$

其中
$$\lim_{x\to 0} \frac{\ln\left(\cos x + \frac{x}{2}\right) - \frac{1}{2}\ln(1+x)}{x^2} = \frac{\frac{-\sin x + \frac{1}{2}}{\cos x + \frac{x}{2}} - \frac{1}{2(1+x)}}{\frac{\cos x + \frac{x}{2}}{2x}}$$

$$= \lim_{x\to 0} \frac{2(1+x)\left(-\sin x + \frac{1}{2}\right) - \left(\cos x + \frac{x}{2}\right)}{4(1+x)\left(\cos x + \frac{x}{2}\right) \cdot x}$$

$$= \frac{1}{4}\lim_{x\to 0} \frac{-2\sin x - 2x\sin x + \frac{1}{2}x + (1-\cos x)}{x} = -\frac{3}{8}.$$

所以,
$$\lim_{x\to 0} \left(\frac{2\cos x + x}{2\sqrt{1+x}}\right)^{\frac{1}{x^2}} = e^{-\frac{3}{8}}.$$

附注 本题是 1^{*} 型未定式极限,所以利用公式 $A^B = e^{BlnA}$ 转化成先计算" $\frac{0}{0}$ "型未定式极

限
$$\lim_{x\to 0} \frac{\ln\left(\cos x + \frac{x}{2}\right) - \frac{1}{2}\ln(1+x)}{x^2}$$
.

(16) 由于 $g(t) = \lim_{x\to 0} \left[1 + \sqrt[3]{\sin t} f(x)\right]^{\frac{\sqrt[3]{2}}{\ln(1+x)}} = e^{\lim_{x\to 0} \frac{\sqrt[3]{2} \cdot \ln[1 + \sqrt[3]{\sin t} f(x)]}{\ln(1+x)}}$,

其中
$$\lim_{x\to 0} \frac{\sqrt[3]{t^2} \cdot \ln[1 + \sqrt[3]{\sin t} f(x)]}{\ln(1+x)} = \sqrt[3]{t^2 \sin t} \lim_{x\to 0} \frac{f(x)}{x}$$

$$= \sqrt[3]{t^2 \sin t} \lim_{x\to 0} \frac{f(x) - f(0)}{x} = \sqrt[3]{t^2 \sin t} f'(0) = \sqrt[3]{t^2 \sin t}.$$

所以, $g(t) = e^{\sqrt[3]{t^2 \sin t}}$. 因此

$$g'(0) = \lim_{t \to 0} \frac{g(x) - g(0)}{x} = \lim_{t \to 0} \frac{e^{\frac{3}{2} + 2\sin t}}{t} - 1 = \lim_{t \to 0} \frac{e^{\frac{3}{2} + 2\sin t}}{t} = 1.$$

附注 题解中有两点值得注意:

(I) 由于 f(x) 仅在点 x = 0 处可导,所以极限 $\lim_{x \to 0} \frac{f(x)}{x}$ 必须按导数定义计算.

(Ⅱ) g'(0)也可以按以下方法计算:

曲于
$$t \neq 0$$
 时, $g'(t) = e^{3\sqrt[3]{t^2 \sin t}} \left(\frac{2}{3} t^{-\frac{1}{3}} \sin^{\frac{1}{3}} t + \frac{1}{3} t^{\frac{2}{3}} \sin^{-\frac{2}{3}} t \cos t \right)$,且

$$\lim_{t \to 0} g'(t) = \lim_{t \to 0} e^{\sqrt[3]{t^2 \sin t}} \cdot \lim_{t \to 0} \left[\frac{2}{3} \left(\frac{\sin t}{t} \right)^{\frac{1}{3}} + \frac{1}{3} \left(\frac{t}{\sin t} \right)^{\frac{2}{3}} \cos t \right] = \frac{2}{3} + \frac{1}{3} = 1,$$

所以, $g'(0) = \lim_{t \to 0} g'(t) = 1$.

$$(17) \int \frac{1}{\sin x} \frac{1}{\sqrt{1 + \cos x}} dx = \frac{1}{\sqrt{2}} \int \csc \frac{x}{2} \sec^2 \frac{x}{2} d\frac{x}{2} = \frac{1}{\sqrt{2}} \int \csc \frac{x}{2} d\tan \frac{x}{2}$$

$$= \frac{1}{\sqrt{2}} \left(\csc \frac{x}{2} \tan \frac{x}{2} + \int \tan \frac{x}{2} \cot \frac{x}{2} \csc \frac{x}{2} d\frac{x}{2} \right)$$

$$= \frac{1}{\sqrt{2}} \sec \frac{x}{2} + \frac{1}{\sqrt{2}} \int \csc \frac{x}{2} d\frac{x}{2}$$

$$= \frac{1}{\sqrt{2}} \sec \frac{x}{2} + \frac{1}{\sqrt{2}} \ln \left| \csc \frac{x}{2} - \cot \frac{x}{2} \right| + C.$$

附注 应记住以下积分公式:

$$\int \sec x \, \mathrm{d}x = \ln|\sec x + \tan x| + C,$$

$$\int \csc x \, \mathrm{d}x = \ln|\csc x - \cot x| + C.$$

(18)
$$\forall f$$
 $e^{x} f(x) + 2e^{\pi - x} f(\pi - x) = 3\sin x$ (1)

 $t = \pi - x$, 即 $x = \pi - t$ 得

即

$$e^{\pi^{-t}} f(\pi - t) + 2e^{t} f(t) = 3\sin t,$$

$$2e^{\pi^{-x}} f(\pi - x) + 4e^{x} f(x) = 6\sin x.$$
(2)

式(2) -式(1) 得 $e^x f(x) = \sin x$, 所以 $f(x) = e^{-x} \sin x$.

由于
$$f'(x) = e^{-x}(-\sin x + \cos x)$$

$$\begin{cases} >0, & 0 < x < \frac{\pi}{4}, \\ =0, & x = \frac{\pi}{4}, \end{cases}$$
 所以 $f(x)$ 在 $(0, \pi)$ 内有极大值
$$<0, \frac{\pi}{4} < x < \pi,$$

$$f\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}e^{-\frac{\pi}{4}}$$
, 无极小值.

附注 由于 f(x) 是由式(1)确定,所以要计算它在(0, π)内的极值,应先确定 f(x)的表达式.

(19) 记 F(x) = f(x) - x,则 F(x) 在[0, 1]上可导,且 F(0) = F(1) (=0),所以由罗尔定理知,存在 $\eta \in (0, 1)$,使得 $F'(\eta) = 0$. 于是 F'(x) 在[0, η]上可导,且 $F'(0) = F'(\eta)$,所以由罗尔定理知,存在 $\eta_1(0, \eta)$,使得 $F''(\eta_1) = 0$. 同样可知,存在 $\eta_2 \in (\eta, 1)$,使得 $F''(\eta_2) = 0$.

由此可知,F''(x)在[η_1 , η_2]上满足罗尔定理条件,因此存在 $\xi \in (\eta_1, \eta_2) \subset (0, 1)$,使得 $F^{(3)}(\xi) = 0$,即 $f^{(3)}(\xi) = 0$.

附注 罗尔定理的高阶导数形式有各种叙述,例如,

设 f(x) 在 [a, b] 上 2 阶可导,且 f(a) = f(c) = f(b) (其中 $c \in (a, b)$),则存在 $\xi \in (a, b)$,使得 $f''(\xi) = 0$.

设 f(x) 在 [a, b] 上 3 阶可导,且 $f(a) = f(x_1) = f(x_2) = f(b)$ (其中 $a < x_1 < x_2 < b$),或 $f'(a) = f'(\eta) = f'(b)$ (其中 $\eta \in (a, b)$),则存在 $\xi \in (a, b)$,使得 $f^{(3)}(\xi) = 0$.

(20) 记
$$A = \iint_{D} f(x,y) d\sigma$$
, 则所给等式成为

$$f(x, y) = x\sqrt{y} + \frac{12}{\pi^3}A$$
,

上式两边在 D 上二重积分得

$$A = \iint_{D} x \sqrt{y} d\sigma + \frac{12}{\pi^{3}} A \iint_{D} d\sigma$$

$$= \int_{0}^{\frac{\pi}{2}} dx \int_{0}^{x^{2}} x y^{\frac{1}{2}} y + \frac{12}{\pi^{3}} A \int_{0}^{\frac{\pi}{2}} dx \int_{0}^{x^{2}} dy$$

$$= \frac{\pi^{5}}{15 \times 16} + \frac{1}{2} A,$$

即
$$A = \frac{\pi^5}{120}$$
. 因此 $f(x,y) = x\sqrt{y} + \frac{\pi^2}{10}$.

于是, 对 $x \in (-\infty, +\infty)$ 有

$$\begin{split} g(x) = & f(\sin^2 x, \ x^4) = x^2 \sin^2 x + \frac{\pi^2}{10} \\ = & \frac{1}{2} x^2 (1 - \cos 2x) + \frac{\pi^2}{10} \\ = & \frac{1}{2} x^2 - \frac{1}{2} x^2 \left[1 - \frac{1}{2!} (2x)^2 + \frac{1}{4!} (2x)^4 + \frac{1}{6!} (\cos 2x)^{(6)} \Big|_{x = \xi} x^6 \right] + \frac{\pi^2}{10} \\ = & x^4 - \frac{1}{3} x^6 - \frac{2}{45} (\cos 2\xi \cdot x^8) \quad (\sharp \div \sharp \uparrow \uparrow 0 \; \exists \; x \; \not \sim 10) \end{split}$$

附注 注意: cosx 的 2n 阶带拉格朗型余项的麦克劳公式是

$$\cos x = 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} - \dots + (-1)^{n} \frac{1}{(2n)!}x^{2n} + \frac{1}{(2n+2)!}(\cos x)^{(2n+2)} \Big|_{x=\xi} x^{2n+2},$$

$$\text{ The } \cos x = 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} - \dots + (-1)^{n} \frac{1}{(2n)!}x^{2n} + \frac{1}{(2n+1)!}(\cos x)^{(2n+1)} \Big|_{x=\xi} x^{2n+1}.$$

(21) 所给方程两边对 x 求偏导数得

$$2x + z \frac{\partial z}{\partial x} - 4 \frac{\partial z}{\partial x} = 0$$
, $\exists \mathbb{I} \frac{\partial z}{\partial x} = \frac{2x}{4 - z}$.

同样可得 $\frac{\partial z}{\partial y} = \frac{2y}{4-z}$. 由于方程组 $\begin{cases} \frac{\partial z}{\partial x} = 0, & \begin{cases} \frac{2x}{4-z} = 0, \\ 0 \end{cases} & \text{在 } D \text{ 内部无解}, \text{即 } z = z(x,y) \text{ 在 } D \text{ 内部无} \end{cases}$

可能极值点.

D 有边界 $I: y = 0(0 \le x \le 1)$, $II: x = 0(0 \le y \le 1)$ 以及 $III: x + y = 1(0 \le x \le 1)$. 在 $I \perp$,所给方程为 $2x^2 + z^2 - 8z + 8 = 0$,即

$$z = 4 \pm \sqrt{8 - 2x^2}$$
 $(0 \le x \le 1)$.

它有最大值 $4+2\sqrt{2}$,最小值 $4-2\sqrt{2}$.同样可以算出 z 在 II 上有最大值 $4+2\sqrt{2}$,最小值 $4-2\sqrt{2}$.

在Ⅲ上, 所给方程成为

 $2x^{2} + 2(1 - x^{2}) + z^{2} - 8z + 8 = 0,$ $z = 4 \pm \sqrt{7 - 4\left(x - \frac{1}{2}\right)^{2}} (0 \le x \le 1).$

即

它有最大值 $4+\sqrt{6}$, 最小值 $4-\sqrt{7}$.

综上所述, z=z(x, y)在 D 上的

最大值 =
$$\max\{4+2\sqrt{2}, 4+\sqrt{6}\} = 4+2\sqrt{2},$$

最小值 = $\min\{4-2\sqrt{2}, 4-\sqrt{7}\} = 4-2\sqrt{2}.$

附注 在 $D \perp z \neq 4$ (这是因为z = 4 时,所给方程在为 $x^2 + y^2 = 4$,这在 $D \perp$ 是不可能

的),所以 z=z(x, y) 在 D 的内部的可能极值点仅来自方程组 $\begin{cases} \frac{\partial z}{\partial x} = 0, \\ 0 & \text{ 的解. 因此当它在 } D \end{cases}$

内无解时, z = z(x, y) 在 D 的内部无可能极值点.

(22) 使矩阵方程 AX = B 有解,必须

$$r(\mathbf{A}) = r(\mathbf{A} \mid \mathbf{B}).$$
(1)
由于 $(\mathbf{A} \mid \mathbf{B}) = \begin{pmatrix} 1 & 1 & 2 & 1 & 4 & 0 \\ -1 & 1 & 0 & -1 & 0 & -2 \\ 1 & 0 & 1 & a & b & c \end{pmatrix}$

$$\frac{\text{初等行变换}}{(以下同)} \begin{pmatrix} 1 & 1 & 2 & 1 & 4 & 0 \\ 0 & 2 & 2 & 0 & 4 & -2 \\ 0 & -1 & -1 & a - 1 & b - 4 & c \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix}
1 & 1 & 2 & 1 & 4 & 0 \\
0 & 1 & 1 & 0 & 2 & -1 \\
0 & -1 & -1 & a-1 & b-4 & c
\end{pmatrix}$$

$$\longrightarrow \begin{pmatrix}
1 & 1 & 2 & 1 & 4 & 0 \\
0 & 1 & 1 & 0 & 2 & -1 \\
0 & 0 & 0 & a-1 & b-2 & c-1
\end{pmatrix}$$

$$\longrightarrow \begin{pmatrix}
1 & 0 & 1 & 1 & 2 & 1 \\
0 & 1 & 1 & 0 & 2 & -1 \\
0 & 0 & 0 & a-1 & b-2 & c-1
\end{pmatrix},$$

所以,使式(1)成立的 a, b, c满足 $\begin{cases} a-1=0,\\ b-2=0, & \text{\mathbb{D}} \ a=1, & b=2, & c=1.\\ c-1=0, & \text{\mathbb{D}} \end{cases}$

当a=1, b=2, c=1 时, 所给的矩阵方程与

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \end{pmatrix}$$
 (2)

同解. 记 $X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$, 则式(2)等价于以下三个线性方程组

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \tag{3}$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{12} \\ x_{22} \\ x_{32} \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \tag{4}$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{13} \\ x_{23} \\ x_{33} \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}. \tag{5}$$

式(3)的通解为 $(x_{11}, x_{21}, x_{31})^{\mathrm{T}} = c_1(-1, -1, 1)^{\mathrm{T}} + (1, 0, 0)^{\mathrm{T}} = (-c_1 + 1, -c_1, c_1)^{\mathrm{T}}$,式(4)的通解为 $(x_{12}, x_{22}, x_{32})^{\mathrm{T}} = c_2(-1, -1, 1)^{\mathrm{T}} + (2, 2, 0)^{\mathrm{T}} = (-c_2 + 2, -c_2 + 2, c_2)^{\mathrm{T}}$,式(5)的通解为 $(x_{13}, x_{23}, x_{33})^{\mathrm{T}} = c_3(-1, -1, 1)^{\mathrm{T}} + (1, -1, 0)^{\mathrm{T}} = (-c_3 + 1, -c_3 - 1, c_3)^{\mathrm{T}}$. 所以,式(2),即所给的矩阵方程的解为

附注 (I)设矩阵方程 AX = B(其中 A, B 分别为 $m \times n$, $m \times l$ 矩阵),则 AX = B 有解的充分必要条件为 $r(A \mid B) = r(A)$.

特别 AX = B 有唯一解的充分必要条件为 $r(A \mid B) = r(A) = n$; AX = B 有无穷多解的充

分必要条件是 $r(A \mid B) = r(A) < n$.

(\mathbb{I}) 当矩阵方程 AX = B 有解时,可按以下方法求解:如果 A 可逆(此时 m = n),则 $X = A^{-1}B$;

如果 A 不可逆,则如题解中那样,将 AX = B 表示成若干个线性方程组,然后逐一计算各个方程组的通解,即可得到 X.

所以,A 有特征值 -1, 2, 它们对应的特征向量分别为 $\boldsymbol{\xi}_1 = (1, 0, -1)^T$, $\boldsymbol{\xi}_2 = (1, 1, 1)^T$. 由于 $r(\boldsymbol{A}) = 2$, 所以 \boldsymbol{A} 还有特征值 0, 设它对应的特征向量为 $\boldsymbol{\xi}_3 = (a, b, c)^T$, 则由 \boldsymbol{A} 是实对称矩阵知 $\boldsymbol{\xi}_3$ 满足

$$\begin{cases} (\xi_3, \xi_1) = 0, \\ (\xi_3, \xi_2) = 0, \end{cases} \text{ for } \begin{cases} a - c = 0, \\ a + b + c = 0. \end{cases}$$

取它的基础解系为 ξ_3 , 即 $\xi_3 = (1, -2, 1)^T$.

由此可知, A^2 有特征值 $(-1)^2 = 1$, $2^2 = 4$, $0^2 = 0$,且 ξ_1 , ξ_2 , ξ_3 是它们对应的特征向量.

显然, $\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$, $\boldsymbol{\xi}_3$ 是正交向量组, 现将它们单位化:

$$\eta_{1} = \frac{\xi_{1}}{\|\xi_{1}\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T},
\eta_{2} = \frac{\xi_{2}}{\|\xi_{2}\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{T},
\eta_{3} = \frac{\xi_{3}}{\|\xi_{3}\|} = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{T}.$$

 $= x^{T} A^{2} x$ 化为标准形 $y_{1}^{2} + 2y_{2}^{2}$.

附注 应熟练掌握用正交变换或可逆线性变换(即配方方法)将二次型化为标准形的方法.

模拟试题(三)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	С	В	В	D	С	A	В	С

(1) 当 | x | \leq 1 时,由 $1 \leq \sqrt[n]{1 + |x|^{3n}} \leq \sqrt[n]{2} (n = 1, 2, \dots)$ 知 $f(x) = \lim_{n \to \infty} \sqrt[n]{1 + |x|^{3n}} = 1$;

当 |
$$x$$
 | >1 时, $f(x) = |x|^3 \lim_{n \to \infty} \sqrt{1 + \left|\frac{1}{x}\right|^{3n}} = |x|^3$,

所以,
$$f(x) = \begin{cases} 1, & |x| \leq 1, \\ |x|^3, & |x| > 1. \end{cases}$$

显然 f(x) 在($-\infty$, -1) \cup (-1, 1) \cup (1, $+\infty$) 上可导, 但由

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = 0, \quad \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{x^{3} - 1}{x - 1} = 3$$

知, f(x)在点 x = 1 处不可导. 此外由 f(x) 是偶函数知, f(x) 在点 x = -1 处也不可导. 因此选(C).

附注 由于 f(x) 是由数列极限确定的,所以要讨论它的可导性,首先要通过数列极限计算,确定 f(x) 的解析表达式.

(2) 由于
$$F(x) = \int_0^{2x} \cos^2(2x - t) dx$$
 $\Rightarrow u = 2x - t$ $\int_0^{2x} \cos^2 u du$,所以 $F'(x) = 2\cos^2 2x$, $F''(x) = -4\sin 4x$.

因此选(B)

附注 要计算 $\frac{\mathrm{d}}{\mathrm{d}x}\int_a^{\varphi(x)} f(t,x) \, \mathrm{d}t$ 时,首先将被积函数中的x移到积分号外,或移到积分限中去.

(3) 记
$$f(x) = \ln x - \frac{x}{e} + \int_0^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} dx$$
,则 $f(x)$ 的定义域为 $(0, + \infty)$,

$$f'(x) = \frac{1}{x} - \frac{1}{e} \begin{cases} >0, & 0 < x < e \\ =0, & x = e \\ <0, & x > e \end{cases}$$

且 f(x) 的最大值 $f(e) = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} dx > 0$,以及 $\lim_{x \to 0^+} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = -\infty$,所以方程 f(x) = 0,即 $\ln x = \frac{x}{8} - \int_0^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} dx$ 的正根个数为 2. 因此选(B)

附注 设函数 f(x) 在(a, b) 内可导,且

$$f'(x) \begin{cases} >0, & a < x < x_0, \\ =0, & x = x_0, & \lim_{x \to a^+} f(x) = \lim_{x \to b^-} f(x) = -\infty, \\ <0, & x_0 < x < b, \end{cases}$$

则当 $f(x_0) > 0$ 时,在(a, b)内方程f(x) = 0 有且仅有两个实根;当 $f(x_0) = 0$ 时,在(a, b)内方程f(x) = 0 有且仅有一个实根;当 $f(x_0) < 0$ 时,在(a, b)内方程f(x) = 0 没有实根.

设函数 f(x) 在(a, b) 内可导,且

$$f'(x) \begin{cases} <0, & a < x < x_0, \\ =0, & x = x_0, & \lim_{x \to a^+} f(x) = \lim_{x \to b^-} f(x) = +\infty, \\ >0, & x_0 < x < b, \end{cases}$$

则当 $f(x_0)$ < 0 时,在(a, b)内方程f(x) = 0 有且仅有两个实根;当 $f(x_0)$ = 0 时,在(a, b)内方程f(x) = 0 有且仅有一个实根;当 $f(x_0)$ > 0 时,在(a, b)内方程f(x) = 0 没有实根.

$$\lim_{x \to -\infty} y = \lim_{x \to -\infty} \left[\frac{1}{x(x+1)} + x \ln(1 + e^x) \right] = \lim_{x \to -\infty} x \ln(1 + e^x)$$

$$= \lim_{x \to -\infty} \frac{\ln(1 + e^x)}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{e^x}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{x}{e^{-x}} = 0.$$

所以, 所给曲线有铅直渐近线 x=0, x=-1, 以及水平渐近线 y=0. 因此选(D).

附注 考虑所给曲线的非铅直渐近线时,注意到曲线方程中出现 e^x ,因此要分 $x \to + \infty$ 与 $x \to - \infty$ 两种情形计算.

由于 $\lim_{x\to +\infty} \frac{y}{x}$ 不存在,所以只要计算 $x\to -\infty$ 的情形. 由于 $\lim_{x\to -\infty} y=0$,所以曲线的非铅直渐近线仅有 y=0 (水平渐近线)

(5) 由于当 $AC - B^2 = 0$ 时, $f(x_0, y_0)$ 可能是极值,也可能不是极值,所以(C)不正确. 因此选(C).

附注 (C)的不正确性可用以下例子以明之:

设 $f_1(x, y) = x^3 + y^3$,记 $(x_0, y_0) = (0, 0)$,则 $f_x'(x_0, y_0) = f_y'(x_0, y_0) = 0$,且 $AC - B^2 = 0$. 此时 $f(x_0, y_0) = 0$ 不是f(x, y)的极值.

设 $f_2(x, y) = x^4 + y^4$,记 $(x_0, y_0) = (0, 0)$,则 $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$,且 $AC - B^2 = 0$. 此时 $f(x_0, y_0)$ 是f(x, y)的极值.

(6) 由于
$$\int_0^x e^t \sin t dt = \int_0^x \sin t de^t = e^x \sin x - \int_0^x \cos t de^t$$
$$= e^x \sin x - \left(e^x \cos x - 1 + \int_0^x e^t \sin t dt \right),$$

即
$$\int_0^x e^t \sin t dt = e^x \left(\frac{1}{2} \sin x - \frac{1}{2} \cos x\right) + \frac{1}{2}$$
,所以所给微分方程为

$$y'' + 2y' + 2y = e^x \left(\frac{1}{2} \sin x - \frac{1}{2} \cos x \right) + \frac{1}{2} . \tag{1}$$

由于式(1)对应的齐次方程的特征方程 λ^2 + 2 λ + 2 = 0 有根 $\lambda_{1,2}$ = -1 ± i,所以式(1)有特解

$$y^* = e^x (A\sin x + B\cos x) + C. \tag{2}$$

将式(2)代入式(1)得

$$e^{x}[(4A-4B)\sin x + (4A+4B)\cos x] + 2C = e^{x}(\frac{1}{2}\sin x - \frac{1}{2}\cos x) + \frac{1}{2}.$$

由此得到 A=0, $B=-\frac{1}{8}$, $C=\frac{1}{4}$. 所以 $y^*=-\frac{1}{8}\mathrm{e}^x\mathrm{cos}x+\frac{1}{4}$. 因此选(A).

附注 对于2阶常系数线性方程

$$y'' + ay' + by = f(x), \tag{1}$$

当f(x)为 $e^{\alpha x}P(x)$, $e^{\alpha x}[Q_1(x)\cos\beta x+Q_2(x)\sin\beta x]$ (这里P(x), $Q_1(x)$ 与 $Q_2(x)$ 都是多项式),式(1)有确定的特解形式.因此为了计算本题的特解,应先算出 $\int_x^x e^t \sin t dt$.

(7)
$$\exists \exists \exists (3B)^{-1} = (2A)^* \\
(3B)^{-1} = (3B)^{-1$$

所以
$$\begin{pmatrix} \mathbf{O} & (2\mathbf{A})^* \\ (3\mathbf{B})^{-1} & \mathbf{O} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{O} & ((3\mathbf{B})^{-1})^{-1} \\ (8(2\mathbf{A})^{-1})^{-1} & \mathbf{O} \end{pmatrix} = \begin{pmatrix} \mathbf{O} & 3\mathbf{B} \\ \frac{1}{4}\mathbf{A} & \mathbf{O} \end{pmatrix}$$
. 因此选(B).

附注 题解中应用了以下公式(应记住):

设 A 是 n 阶矩阵,则 $\mid A^* \mid = \mid A \mid {}^{n-1}(n \ge 2)$,, $\mid kA \mid = k^n \mid A \mid (k$ 是常数).

设A 是n 阶可逆矩阵,则 $A^* = |A|A^{-1}$.

设
$$A$$
, B 分别是 m , n 阶可逆矩阵,则 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} = \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix}$.

(8) 由题设知 $r(P) + r(Q) \le 3$. 由于当 $t \ne 6$ 时,r(Q) = 2,所以此时 $r(P) \le 1$. 此外,由 P 是非零矩阵知, $r(P) \ge 1$,从而 r(P) = 1. 因此选(C).

附注 本题也可按以下方法计算:

当 $t \neq 6$ 时, $r(\mathbf{Q}^T) = 2$,所以齐次线性方程组 $\mathbf{Q}^T \mathbf{x} = \mathbf{0}$ 的基础解系中只包含 3 - 2 = 1 个线性无关的解向量. 从而由 $\mathbf{Q}^T \mathbf{P}^T = \mathbf{0}$ 知,非零矩阵 \mathbf{P}^T 的线性无关列向量个数为 1,即得 $r(\mathbf{P}) = r(\mathbf{P}^T) = 1$.

二、填空题

(9) 由于
$$\lim_{n\to\infty} \frac{1}{n} [(n+1)(n+2)\cdots(n+n)]^{\frac{1}{n}}$$

= $\lim_{n\to\infty} \left[\left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \cdots \left(1 + \frac{n}{n} \right) \right]^{\frac{1}{n}} = e^{\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + \frac{i}{n}\right)},$

其中,
$$\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + \frac{i}{n}\right) = \int_{0}^{1} \ln(1+x) \, dx = x \ln(1+x) \Big|_{0}^{1} - \int_{0}^{1} \frac{x}{1+x} dx$$
$$= \ln 2 - \int_{0}^{1} \left(1 - \frac{1}{1+x}\right) dx = \ln 2 - \left[x - \ln(1+x)\right] \Big|_{0}^{1} = 2 \ln 2 - 1.$$

所以
$$\lim_{n\to\infty} \frac{1}{n} [(n+1)(n+2)\cdots(n+n)]^{\frac{1}{n}} = e^{2\ln 2 - 1} = \frac{4}{e}$$
.

附注 $\ln(1+x)$ 是[0,1] 上的连续函数, $\frac{1}{n}\sum_{i=1}^{n}\ln\left(1+\frac{i}{n}\right)$ 是它的一个积分和式, 所以

有

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \ln \left(1 + \frac{i}{n} \right) = \int_{0}^{1} \ln (1 + x) \, dy.$$

(10) 记
$$A = \int_{0}^{\frac{\pi}{2}} f(x) \cos x dx$$
,则 $f(x) = x + 2A$. 于是

$$\int_0^{\frac{\pi}{2}} f(x) \cos x \mathrm{d}x = \int_0^{\frac{\pi}{2}} x \cos x \mathrm{d}x + 2A \int_0^{\frac{\pi}{2}} \cos x \mathrm{d}x,$$

即 $A = \int_0^{\frac{\pi}{2}} x \cos x dx + 2A$. 所以

$$A = -\int_0^{\frac{\pi}{2}} x \cos x dx = -\int_0^{\frac{\pi}{2}} x d\sin x$$
$$= -\left(x \sin x \Big|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \sin x dx\right) = 1 - \frac{\pi}{2}.$$

于是 $f(x) = x + 2 - \pi$. 从而

$$\int_0^1 f(x) \, \mathrm{d}x = \int_0^1 (x + 2 - \pi) \, \mathrm{d}x = \frac{5}{2} - \pi.$$

附注 本题获解的关键,是注意到 $\int_0^{\frac{\pi}{2}} f(x) \cos x dx$ 是常数.

附注 计算 $\frac{dz}{dx}$ 时,要注意 $y \in x$ 的函数,而 $\frac{dy}{dx}$ 可由方程 $e^x + \sin y = x$ 两边对 x 求导得到.

(12)由于所给微分方程可以改写成

$$(x\cos y dy + \sin y dx) + (\cos x dy - y \sin x dx) = 0$$
,

即 $d(x\sin y + y\cos x) = 0$. 因此通解为 $x\sin y + y\cos x = C$

附注 对于微分方程 P(x, y) dx + Q(x, y) dy = 0,有时将 P(x, y) dx + Q(x, y) dy,经

适当转换后分成若干组,使各组分别是 某个二元函数的全微分,由此得到所给 微分方程的通解. 本题就是按此方法求 解的,十分快捷.

(13) D 如图答 3-13 所示. 用 \overline{AO} (其中 A 是曲线 $y = x^2$ 与直线 x + y = 2 的交点,其坐标为(-2, 4))将 D 分成 D_1 与 D_2 两部分(见图),所以

$$\begin{split} & \iint_{D} f(x,y) \, \mathrm{d}\sigma &= \iint_{D_{1}} f(x,y) \, \mathrm{d}\sigma + \iint_{D_{2}} f(x,y) \, \mathrm{d}\sigma \\ &= \int_{0}^{\pi - \arctan 2} \mathrm{d}\theta \int_{0}^{\frac{2}{\cos\theta + \sin\theta}} f(r \cos\theta, r \sin\theta) \, r \mathrm{d}r + \int_{\pi - \arctan 2}^{\pi} \mathrm{d}\theta \int_{0}^{\frac{\sin\theta}{\cos^{2}\theta}} f(r \cos\theta, r \sin\theta) \, r \mathrm{d}r. \end{split}$$

附注 顺便写出所给二重积分的先y后x与先x后y的二次积分:

$$\iint_{D} f(x,y) d\sigma = \int_{0}^{4} dy \int_{-\sqrt{y}}^{2-y} f(x,y) dx (£x fi y 的二次积分)$$

$$= \int_{0}^{2} dx \int_{0}^{2-x} f(x,y) dy + \int_{-2}^{0} dx \int_{x^{2}}^{2-x} f(x,y) dy (£y fi x 的二次积).$$

(14) 由于 $A \sim B$, 所以 B 有特征值 -2, -1, 1, 2, 从而 B^* 有特征值 $\frac{|B|}{-2} = -2$,

$$\frac{|\mathbf{B}|}{-1} = -4, \frac{|\mathbf{B}|}{1} = 4, \frac{|\mathbf{B}|}{2} = 2. \text{ 由此可知 } \mathbf{B}^* \sim \begin{pmatrix} -2 & & \\ & -4 & \\ & & 4 \\ & & 2 \end{pmatrix}.$$
所以
$$|\mathbf{B}^* - \mathbf{E}_4| = \begin{vmatrix} -3 & & \\ & & 3 \\ & & 1 \end{vmatrix} = 45.$$

附注 题解中有两点值得注意:

- (I) 设A 是可逆矩阵,有特征值 λ ,则 A^* 对应有特征值 $\frac{|A|}{\lambda}$.
- (Ⅱ) 设A, B 是相似的 n 阶矩阵,则 $|A E_n| = |B E_n|$. 三、解答题

(15)
$$\lim_{x \to 0} \frac{f(\ln(1+x^2) + e^x - x) - f(1)}{\tan x \cdot (\sqrt{1+x} - 1)} = \lim_{x \to 0} \frac{f(\ln(1+x^2) + e^x - x) - f(1)}{\frac{1}{2}x^2}$$

$$= \lim_{x \to 0} \left\lceil \frac{f(1 + (\ln(1 + x^2) + e^x - x - 1)) - f(1)}{\ln(1 + x^2) + e^x - x - 1} \cdot \frac{\ln(1 + x^2) + e^x - x - 1}{\frac{1}{2}x^2} \right\rceil$$

$$= \lim_{x \to 0} \frac{f(1 + (\ln(1 + x^2) + e^x - x - 1)) - f(1)}{\ln(1 + x^2) + e^x - x - 1} \cdot \lim_{x \to 0} \frac{\ln(1 + x^2) + e^x - x - 1}{\frac{1}{2}x^2} ,$$

其中
$$\lim_{x \to 0} \frac{f(1 + (\ln(1 + x^2) + e^x - x - 1)) - f(1)}{\ln(1 + x^2) + e^x - x - 1} \xrightarrow{\frac{1}{2}u = \ln(1 + x^2) + e^x - x - 1} \lim_{u \to 0} \frac{f(1 + u) - f(1)}{u}$$

$$= f'(1) = 1,$$

$$\lim_{x \to 0} \frac{\ln(1 + x^2) + e^x - x - 1}{\frac{1}{2}x^2} = 2 \left[\lim_{x \to 0} \frac{\ln(1 + x^2)}{x^2} + \lim_{x \to 0} \frac{e^x - x - 1}{x^2} \right] = 2 + 2 \lim_{x \to 0} \frac{e^x - x - 1}{x^2}$$

$$\frac{1}{2}x^2$$

$$\frac{1}{2}x^2$$

$$\frac{1}{x\to 0}$$

$$x^2$$

$$\frac{1}{x\to 0}$$

$$x^2$$

$$x \to 0$$

$$x^2$$

 洛必达法则
$$2 + 2 \lim_{x \to 0} \frac{e^x - 1}{2x} = 2 + 2 \times \frac{1}{2} = 3.$$

所以,
$$\lim_{x\to 0} \frac{f(\ln(1+x^2) + e^x - x) - f(1)}{\tan x \cdot (\sqrt{1+x} - 1)} = 1 \times 3 = 3.$$

附注 由于 f(u) 仅在点 u=1 处可导,因此对所给极限不能直接应用洛必达法则计算,而只能利用导数定义计算.

(16) 所给微分方程
$$y'' + y = 5e^{2x} + 2\sin x$$
 (1)

对应的齐次微分方程

$$y'' + y = 0 \tag{2}$$

的特征方程 $\lambda^2 + 1 = 0$ 有根 $\lambda = \pm i$, 所以式(2)的通解

$$Y = C_1 \cos x + C_2 \sin x.$$

式(1)有特解 $y^* = Ae^{2x} + x(B_1\cos x + B_2\sin x)$.

将它代入式(1)得

$$5Ae^{2x} - 2B_1\sin x + 2B_2\cos x = 5e^{2x} + 2\sin x$$

由此得到 A = 1, $B_1 = -1$, $B_2 = 0$. 所以 $y^* = e^{2x} - x\cos x$. 从而式(1)的通解为 $y = Y + y^* = C_1\cos x + C_2\sin x + e^{2x} - x\cos x$.

附注 应熟练掌握常系数线性微分方程的解法.

(17) (I) 显然 $\{a_n\}$ 是正项数列,且由

$$a_{n+1} = \frac{1}{3} \left(2a_n + \frac{1}{a_n^2} \right) = \frac{1}{3} \left(a_n + a_n + \frac{1}{a_n^2} \right)$$

$$\geqslant \sqrt[3]{a_n \cdot a_n \cdot \frac{1}{a_n^2}} = 1 (n = 1, 2, \dots)$$

知, $\{a_n\}$ 有下界. 此外

曲
$$a_{n+1} - a_n = \frac{1}{3} \left(2a_n + \frac{1}{a_n^2} \right) - a_n = \frac{1}{3} \left(\frac{1}{a_n^2} - a_n \right) \le 0 (n = 1, 2, \dots)$$
知, $\{a_n\}$ 单调不增. 从

而由数列极限存在准则知, $\lim_{x\to\infty}a_n$ 存在,记为 a. 对递推式两边取极限得 $a=\frac{1}{3}\left(2a+\frac{1}{a^2}\right)$,

所以 a=1. 即 $\lim_{n\to\infty} a_n=1$.

(II)
$$\lim_{x \to a} \left(\sqrt{2 - x} + \ln \frac{1 + x}{2} \right)^{\frac{1}{\sin^2(x - 1)}} = \lim_{x \to 1} \left(\sqrt{2 - x} + \ln \frac{1 + x}{2} \right)^{\frac{1}{\sin^2(x - 1)}}$$

$$= e^{\lim_{x \to 1} \frac{\ln \left(\sqrt{2 - x} + \ln \frac{1 + x}{2} \right)}{\sin^2(x - 1)}},$$

$$\lim_{x \to 1} \frac{\ln \left(\sqrt{2 - x} + \ln \frac{1 + x}{2} \right)}{\sin^2(x - 1)} \xrightarrow[t \to 0]{} \frac{\ln \left[1 + \left(\sqrt{1 - t} - 1 \right) + \ln \left(1 + \frac{t}{2} \right) \right]}{\sin^2 t}$$

$$= \lim_{t \to 0} \frac{\sqrt{1 - t} - 1 + \ln \left(1 + \frac{t}{2} \right)}{t^2} \xrightarrow[t \to 0]{} \frac{\text{A.S.L.M.}}{t \to 0} = \frac{1}{2} \left[-1 + 2 \times \left(-\frac{1}{2} \right) \right] = -\frac{1}{4}.$$

所以,
$$\lim_{x \to a} \left(\sqrt{2 - x} + \ln \frac{1 + x}{2} \right)^{\frac{1}{\sin^2(x - 1)}} = e^{-\frac{1}{4}}.$$

附注 当数列 $\{a_n\}$ 由递推式确定时,要计算它的极限,通常使用数列存在准则 II,即当 $\{a_n\}$ 单调不减有上界或单调不增有下界时, $\lim a_n$ 存在.

(18) 记
$$A = \iint_D f(x, y) d\sigma$$
, 则 $f(x, y) = \frac{1}{2}x^2y + x + 3Ay$. 于是有
$$\iint_D f(x,y) d\sigma = \iint_D \left(\frac{1}{2}x^2y + x\right) d\sigma + 3A \iint_D y d\sigma,$$
即 $A = \int_0^1 dx \int_0^{x^2} \left(\frac{1}{2}x^2y + x\right) dy + 3A \int_0^1 dx \int_0^{x^2} y dy = \frac{2}{7} + \frac{3}{10}A.$
所以 $A = \frac{20}{49}$. 从而 $f(x, y) = \frac{1}{2}x^2y + x + \frac{60}{49}y$, 由此得到
$$z = f(x^y, y^x) = \frac{1}{2}x^{2y} \cdot y^x + x^y + \frac{60}{49}y^x.$$

从而

$$\frac{\partial z}{\partial x} = \frac{1}{2} (2y \cdot x^{2y-1} \cdot y^x + x^{2y} \cdot y^x \ln y) + yx^{y-1} + \frac{60}{49} y^x \ln y$$
$$= x^{2y-1} y^{x+1} + \frac{1}{2} x^{2y} \cdot y^x \ln y + yx^{y-1} + \frac{60}{49} y^x \ln y.$$

附注 算出常数 $A = \iint_D f(x, y) d\sigma$ 是本题获解的关键. 它的计算步骤为:

将 f(x, y) 表示为 $f(x, y) = \frac{1}{2}x^2y + x + 3Ay$. 然后将上式两边在 D 上进行二重积分得到

A的一个方程,解之即得A.

(19) 作辅助函数 F(x) = f(x) - x, 则 F(x) 在[0, 1]上连续,且 F(0) F(1) = F(0) · [f(1) - 1] < 0,所以由连续函数的零点定理知,存在 $\xi \in (0, 1)$,使得 $F(\xi) = 0$,即 $f(\xi) = \xi$.

下面用及证法证明 ξ 的唯一性. 设另有不同于 ξ 的 $\eta \in (0, 1)$,使得 $f(\eta) = \eta$. 不妨设 $\eta < \xi$,则

$$f(\xi) - f(\eta) = \xi - \eta.$$

由拉格朗日中值定理知,存在 $\theta \in (\eta, \xi) \subset (0, 1)$, 使得

$$f'(\theta)(\xi - \eta) = \xi - \eta$$
, $\mathbb{H} f'(\theta) = 1$.

这与题设 $f'(x) \neq 1(x \in [0, 1])$ 矛盾. 因此满足式(1)的 ξ 是唯一的.

附注 唯一性问题,往往用反证法证明.本题就是如此.

(20) 所给方程两边对 x 求偏导数得

$$4x + 2z \frac{\partial z}{\partial x} + 4z + 4x \frac{\partial z}{\partial x} + 2 \frac{\partial z}{\partial x} = 0$$
, $\mathbb{R} \mathbb{P} \frac{\partial z}{\partial x} = -\frac{2x + 2z}{z + 2x + 1}$.

所给方程两边对γ求偏导数得

$$4y+2z\,\frac{\partial z}{\partial y}+4x\,\frac{\partial z}{\partial y}+2\,\frac{\partial z}{\partial y}=0\;,\;\; \exists [\frac{\partial z}{\partial y}=\,-\frac{2y}{z+2x+1}.$$

解方程组 $\begin{cases} \frac{\partial z}{\partial x} = 0, \\ \{ \frac{\partial z}{\partial y} = 0, \\ y = 0, \end{cases}$ 将它代人题中所给方程得 $x^2 + 2x - 3 = 0$, 即 x = -3, 1. 所

以 z = z(x, y) 的可能极值点为 $\begin{cases} x = -3, \\ y = 0 \end{cases}$ (此时 z = 3), $\begin{cases} x = 1, \\ y = 0 \end{cases}$ (此时 z = -1).

曲于
$$A = \frac{\partial^2 z}{\partial x^2} = -\frac{\left(2 + 2\frac{\partial z}{\partial x}\right)(z + 2x + 1) - (2x + 2z)\left(\frac{\partial z}{x} + 2\right)}{(z + 2x + 1)^2}$$
,

$$B = \frac{\partial^2 z}{\partial x \partial y} = -\frac{2 \frac{\partial z}{\partial y} (z + 2x + 1) - (2x + 2z) \cdot 2 \frac{\partial z}{\partial y}}{(z + 2x + 1)^2},$$

$$C = \frac{\partial^2 z}{\partial y^2} = -\frac{2(z+2x+1) - 2y \cdot \frac{\partial z}{\partial y}}{(z+2x+1)^2},$$

所以,由 $(AC-B^2)\mid_{(-3,0)}=(AC-B^2)\mid_{(-3,0,3)}=1>0$, $A\mid_{(-3,0)}=A\mid_{(-3,0,3)}=1>0$ 知,z(-3,0)=3 是 z=z(x,y)的极小值.

由 $(AC-B^2)\mid_{(1,0)}=(AC-B^2)\mid_{(1,0,-1)}=1>0$, $A\mid_{(1,0)}=A\mid_{(1,0,-1)}=-1<0$ 知,z(1,0)=-1是z=z(x,y)的极大值.

附注 应熟练掌握二元隐函数极值的计算方法.

(21) 用直线 x + y = 1 将 D 划分成 D_1 与 D_2 两部分(如图答 3-21),则

$$\iint_{D} f(x,y) d\sigma = \iint_{D_{1}} x \ln x d\sigma + \iint_{D_{2}} \frac{1}{(x^{2} + y^{2})^{\frac{3}{2}}} d\sigma,$$
其中
$$\iint_{D_{1}} x \ln d\sigma = \int_{0}^{1} dx \int_{0}^{1-x} x \ln x dy$$

$$= \int_{-1}^{1} (x - x^{2}) \ln x dx = \int_{0}^{1} \ln x d\left(\frac{1}{2}x^{2} - \frac{1}{3}x^{3}\right)$$

$$= \left[\ln x \cdot \left(\frac{1}{2}x^{2} - \frac{1}{3}x^{3}\right)\right] \Big|_{0}^{1} - \int_{0}^{1} \left(\frac{1}{2}x - \frac{1}{3}x^{2}\right) dx$$

$$= -\left(\frac{1}{4}x^{2} - \frac{1}{9}x^{3}\right) \Big|_{0}^{1} = -\frac{5}{36},$$

$$\iint_{D_{2}} \frac{1}{(x^{2} + y^{2})^{\frac{3}{2}}} d\sigma \xrightarrow{\frac{1}{\cos\theta + \sin\theta}} \int_{0}^{\frac{2}{\cos\theta + \sin\theta}} \frac{1}{r^{3}} \cdot r dr$$

$$= \int_{0}^{\frac{\pi}{2}} \left(-\frac{1}{r}\right) \Big|_{\frac{1}{\cos\theta + \sin\theta}}^{\frac{2}{\cos\theta + \sin\theta}} d\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (\cos\theta + \sin\theta) d\theta = 1.$$

所以, $\iint f(x, y) d\sigma = -\frac{5}{36} + 1 = \frac{31}{36}$.

$$x+y=2$$
,或 $r=\frac{2}{\cos\theta+\sin\theta}$
 $x+y=1$,或 $r=\frac{1}{\sin\theta+\cos\theta}$
 D_2
 D_1
 D_2
 D_3
 D_4
 D_2
 D_3
 D_4
 D_2
 D_3
 D_4
 D_2
 D_3
 D_4
 D_5
 D_5
 D_7
 D_8
 D_8
 D_8
 D_8

附注 $D_1 = D_2$ 都是角域的一部分,但是 $\iint_{D_1} x \ln x d\sigma$ 按直角坐标计算,而 $\iint_{D_2} \frac{1}{(x^2 + y^2)^{\frac{3}{2}}} d\sigma$ 按

所以由题设知, $\begin{cases} a+b+c=0,\\ -\frac{4}{3}a+\frac{1}{3}b=0, & \text{即 } a=2,\ b=8,\ c=-10. & \text{此时(I)与(II)}\\ a=2, \end{cases}$

$$\left(\frac{4}{3}, -\frac{1}{3}, 0\right)^{T}$$
, 所以(I)的通解为

$$(x_1, x_2, x_3)^T = C(1, 1, 1) + \left(\frac{4}{3}, -\frac{1}{3}, 0\right)^T$$
(其中 C 是任意常数).

对上述算得的 a, b, c 知, $\xi = (2, 8, -10)^{T}$.

设 ξ 关于向量组 η_1 , η_2 , η_3 下的线性表示式为

$$\boldsymbol{\xi} = y_1 \boldsymbol{\eta}_1 + y_2 \boldsymbol{\eta}_2 + y_2 \boldsymbol{\eta}_3 = (\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \boldsymbol{\eta}_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix},$$

即

$$\begin{pmatrix} 2 \\ 8 \\ -10 \end{pmatrix} = (\boldsymbol{\eta}_1, \ \boldsymbol{\eta}_2, \ \boldsymbol{\eta}_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix},$$

所以,
$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = (\boldsymbol{\eta}_1, \ \boldsymbol{\eta}_2, \ \boldsymbol{\eta}_3)^{-1} \begin{pmatrix} 2 \\ 8 \\ -10 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 2 \\ 8 \\ -10 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 1 & -2 \\ -1 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 8 \\ -10 \end{pmatrix} = \begin{pmatrix} 26 \\ 16 \\ -8 \end{pmatrix},$$

因此所求的线性表示式为

$$\xi = 26\eta_1 + 16\eta_2 - 8\eta_3$$
.

附注 由所给方程组有两个不同的解可得,这个方程组对应的齐次线性方程组有非零解,所以系数矩阵的秩≤2. 此外由系数矩阵本身可知,其秩≥2. 因此系数矩阵的秩为 2.

从而有
$$\begin{cases} a+b+c=0, \\ -\frac{4}{3}a+\frac{1}{3}b=0, \\ a=2. \end{cases}$$

(23) 由于 $g(x_1, x_2, x_3) = (x_1 - x_2)^2 + 3x_2^2 + x_3^2$ 在

$$\begin{cases} y_1 = x_1 - x_2, \\ y_2 = \sqrt{3}x_2, \\ y_3 = x_3, \end{cases}$$
即 可逆线性变换
$$\begin{cases} x_1 = y_1 + \frac{1}{\sqrt{3}}y_2, \\ x_2 = \frac{1}{\sqrt{3}}y_2, \\ x_3 = y, \end{cases}$$

下,成为 $y_1^2+y_2^2+y_3^2$,所以 $g(x_1, x_2, x_3)$ 是正定二次型,其规范形为 $y_1^2+y_2^2+y_3^2$. 由于 $f(x_1, x_2, x_3)$ 是非正定二次型,所以它的矩阵

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & c \end{pmatrix}$$

的顺序主子式不全为正,故有 $c \le 2$. 从而由题设 $c \ge 2$ 得 c = 2 于是

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

由于
$$|\lambda E_3 - A| = \begin{vmatrix} \lambda - 1 & 0 & -1 \\ 0 & \lambda - 1 & -1 \\ -1 & -1 & \lambda - 2 \end{vmatrix} = \lambda(\lambda - 1)(\lambda - 3), 所以 A 有特征值 $\lambda = 0$,$$

1, 3.

设A对应 $\lambda = 0$ 的特征向量为 $\xi = (a_1, a_2, a_3)^T$,则它满足

$$\begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \\ -1 & -1 & -2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}, \quad \exists \mathbb{I} \begin{cases} a_1 & +a_3 = 0, \\ a_2 + a_3 = 0. \end{cases}$$

可取它的基础解系为 ξ , 即 $\xi = (-1, -1, 1)^T$.

设 \boldsymbol{A} 的对应 $\boldsymbol{\lambda} = 1$ 的特征向量为 $\boldsymbol{\eta} = (b_1, b_2, b_3)^{\mathrm{T}}$,则它满足

$$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & -1 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0}, \quad \exists \mathbb{I} \begin{cases} b_3 = 0, \\ b_1 + b_2 + b_3 = 0. \end{cases}$$

可取它的基础解系为 η , 即 $\eta = (1, -1, 0)^{\mathrm{T}}$.

设 \boldsymbol{A} 的对应 $\boldsymbol{\lambda}=3$ 的特征向量为 $\boldsymbol{\zeta}=(c_1,\ c_2,\ c_3)^{\mathrm{T}}$,则由 \boldsymbol{A} 是实对称矩阵知

$$\begin{cases} (\zeta, \xi) = 0, \\ (\zeta, \eta) = 0, \end{cases} \quad \text{BF} \begin{cases} -c_1 - c_2 + c_3 = 0, \\ c_1 - c_2 = 0. \end{cases}$$

可取它的基础解系为 ζ , 即 $\zeta = (1, 1, 2)^T$.

显然, ξ , η , ζ 是正交向量组, 现将它们单位化:

$$\boldsymbol{\xi}^{0} = \frac{\boldsymbol{\xi}}{\|\boldsymbol{\xi}\|} = \left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{T},$$

$$\boldsymbol{\eta}^{0} = \frac{\boldsymbol{\eta}}{\|\boldsymbol{\eta}\|} = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)^{T},$$

$$\boldsymbol{\zeta}^{0} = \frac{\boldsymbol{\zeta}}{\|\boldsymbol{\zeta}\|} = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^{T},$$

 $(x_1, x_2, x_3)^T$, $z = (z_1, z_2, z_3)^T$)将 $f(x_1, x_2, x_3)$ 化为标准形 $z_2^2 + 3z_3^2$.

附注 由于 $\varphi(x_1, x_2, x_3) = (x_1, x_2, x_3)^{\mathrm{T}} \boldsymbol{B}(x_1, x_2, x_3)(\boldsymbol{B}$ 是实对称矩阵) 为正定二次型的充分必要条件是它的矩阵 \boldsymbol{B} 的顺序主子式都大于零. 故当题中 $f(x_1, x_2, x_3)$ 不是正

定二次型时,它的矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & c \end{pmatrix}$ 的顺序主子式 1, $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$,|A| = c - 2 不全大于

零. 于是有 $c \leq 2$.

模拟试题(四)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	D	В	В	A	С	A	С	A

(1) 设 f(x) = x, 则 f(x) 只有一个零点,但 f'(x) 没有零点. 表明选项(A) 不正确. 设 $f(x) = x^2$,则 f'(x) 只有一个零点,但 f(x) 也只有一个零点. 表明选项(B) 不正确. 设 $f(x) = e^x$,则 f(x) 没有零点,且 f'(x) 也没有零点. 表明选(C) 不正确. 因此选(D)

附注 (D)的结论可用反证法证明其正确,具体如下:

设 f(x) 有两个零点 x_1 , $x_2(x_1 < x_2)$, 则由罗尔定理知,存在 $\xi \in (x_1, x_2)$,使得 $f'(\xi)$ = 0,这与 f'(x) 没有零点相矛盾,从而 f(x) 至多有一个零点.

(2)由 $(x_0, f(x_0))$ 是曲线 y = f(x)的拐点知, $(x_0, -f(x_0))$ 是曲线 y = -f(x)的拐点. 因此选(B)

附注 实际上, $(-x_0, f(x_0))$ 是曲线 y = f(-x) 的拐点, $(-x_0, -f(x_0))$ 是曲线 y = -f(-x) 的拐点.

(3) 在 $\left[0, \frac{\pi}{2}\right]$ 上, $\sin(\sin x) \leq \sin x ($ 仅在点 x = 0 处取等号), $\cos(\sin x) \geq \cos x ($ 仅在点 x = 0 处取等号), 所以

$$\int_{0}^{\frac{\pi}{2}} \sin(\sin x) \, dx < \int_{0}^{\frac{\pi}{2}} \sin x \, dx = 1, \int_{0}^{\frac{\pi}{2}} \cos(\sin x) \, dx > \int_{0}^{\frac{\pi}{2}} \cos x \, dx = 1$$

故有 $I_1 < I_3$. 因此选(B)

附注 选项(A)是不正确的,这是由于

$$\begin{split} I_1 - I_2 &= \int_0^{\frac{\pi}{2}} \big[\sin(\sin x) - \sin(\cos x) \big] \mathrm{d}x \\ &= \int_0^{\frac{\pi}{4}} \big[\sin(\sin x) - \sin(\cos x) \big] \mathrm{d}x + \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \big[\sin(\sin x) - \sin(\cos x) \big] \mathrm{d}x \\ &= \int_0^{\frac{\pi}{4}} \big[\sin(\sin x) - \sin(\cos x) \big] \mathrm{d}x + \int_0^{\frac{\pi}{4}} \big[\sin(\cos t) - \sin(\sin t) \big] \mathrm{d}t \quad \Big(\sharp \dot{\tau} = \frac{\pi}{2} - t \Big) \\ &= \int_0^{\frac{\pi}{4}} \big[\sin(\sin x) - \sin(\cos x) \big] \mathrm{d}x + \int_0^{\frac{\pi}{4}} \big[\sin(\cos x) - \sin(\sin x) \big] \mathrm{d}x = 0 \,, \end{split}$$

所以, $I_1 = I_2$.

(4) 由于
$$\int_0^{+\infty} \frac{x \ln x}{(1+x^2)^2} dx = \int_0^1 \frac{x \ln x}{(1+x^2)^2} dx + \int_1^{+\infty} \frac{x \ln x}{(1+x^2)^2} dx$$

$$= \int_0^1 \frac{x \ln x}{(1+x^2)^2} dx - \int_0^1 \frac{t \ln t}{(1+t^2)^2} dt \quad \left(\sharp r = \frac{1}{t} \right)$$

$$= \int_0^1 \frac{x \ln x}{(1+x^2)^2} dx - \int_0^1 \frac{x \ln x}{(1+x^2)^2} dx = 0.$$

所以选(A).

附注 由于 $\lim_{x\to 0^+} \frac{x \ln x}{(1+x^2)^2} = 0$,所以本题是积分区间无穷长的反常积分.

(5) (x, y) ≠ (0, 0) <math> (5)

$$f'_{x}(x, y) = \frac{(3x^{2}y - y^{3})(x^{2} + y^{2}) - (x^{3}y - xy^{3})2x}{(x^{2} + y^{2})^{2}} = \frac{x^{4}y + 4x^{2}y^{3} - y^{5}}{(x^{2} + y^{2})^{2}},$$

$$f'_{y}(x, y) = \frac{(x^{3} - 3xy^{2})(x^{2} + y^{2}) - (x^{3}y - xy^{3})2y}{(x^{2} + y^{2})^{2}} = \frac{x^{5} - 4x^{3}y^{2} - xy^{4}}{(x^{2} + y^{2})^{2}},$$

并且 $f'_x(0, 0) = \lim_{x\to 0} \frac{f(x, 0) - f(0, 0)}{x} = 0, f'_y(0, 0) = \lim_{y\to 0} \frac{f(0, y) - f(0, 0)}{y} = 0,$

所以,
$$f''_{xy}(0, 0) = \lim_{y \to 0} \frac{f'_x(0, y) - f'_x(0, 0)}{y} = \lim_{y \to 0} \frac{-\frac{y^5}{y^4}}{y} = -1$$
,

$$f_{yx}''(0, 0) = \lim_{x \to 0} \frac{f_y'(x, 0) - f_y'(0, 0)}{x} = \lim_{x \to 0} \frac{\frac{x^5}{x^4}}{x} = 1.$$

故 $f_{xx}''(0,0) < f_{xx}''(0,0)$. 因此选(C).

所求的切线方程为

附注 在已算出 $f'_x(x, y)$ 时可按以下方法快捷算出 $f'_y(x, y)$,这是因为当 $\varphi(y, x) = -\varphi(x, y)$ 时, $\varphi'_y(x, y) = -\varphi'_x(y, x)$. 所以本题有

$$f_y'(x, y) = -\frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \Big|_{x = y, \text{ Tip}} = \frac{x^5 - 4x^3y^2 - xy^4}{(x^2 + y^2)^2}.$$

(6) 由于 $D = \{(x, y) \mid 1 - y \le x \le 1, 0 \le y \le 1\} + \{(x, y) \mid 1 \le x \le 2, \sqrt{x - 1} \le y \le 1\}$, 如图答 4-6 的阴影部分所示.

D 的边界由 I , II , III 三部分组成. 显然 II , III 上任一点的切线都为它们自己,从而不可能与直线 y=x-1 平行.

设 $(x_0, y_0)(x_0 = 1 + y_0^2, 0 < y_0 < 1)$ 是 I 上的一点,则此点的切线斜率倒数是 $2y_0$. 于是由题设得 $\frac{1}{2y_0} = 1$,即 $y_0 = \frac{1}{2}$ (对应地有 $x_0 = \frac{5}{4}$). 从而

$$y - \frac{1}{2} = x - \frac{5}{4}$$
, 即 $y = x - \frac{3}{4}$. 因此选(A).

附注 要计算 I 上的与直线 y = x - 1 平行的切线方程,应先确定切点的坐标.

所以, t = 2 时, $|(\alpha_1, \alpha_2, \alpha_3, \alpha_4)| = 0$, 即 α_1 , α_3 , α_4 线性相关; t = 3 时, $|(\alpha_1, \alpha_2, \alpha_3, \alpha_4)| \neq 0$, 即 α_1 , α_2 , α_3 , α_4 线性无关. 由此可知, 结论①④正确. 因此选(C).

附注 确定 $n \uparrow n$ 维列向量 α_1 , α_2 , …, α_n 线性相关性的好方法是计算行列式 $D = \bot(\alpha_1, \alpha_2, \dots, \alpha_n) \bot$. 如果 D = 0, 则 α_1 , α_2 , …, α_n 线性相关; 如果 $D \neq 0$, 则 α_1 , α_2 , …, α_n 线性无关.

(8) 由
$$|\lambda E_3 - A| = \begin{vmatrix} \lambda & 0 & -1 \\ -a & \lambda - 1 & -b \\ -1 & 0 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1)$$
知,A 的特征值为 $\lambda = 1$ (二

重), $\lambda = -1$.

由于 A 可相似对角化, 所以 $r(1 \cdot E_3 - A) = 3 - 2 = 1$, 即

$$r\begin{pmatrix} 1 & 0 & -1 \\ -a & 0 & -b \\ -1 & 0 & 1 \end{pmatrix} = r\begin{pmatrix} 1 & 0 & -1 \\ -a & 0 & -b \\ 0 & 0 & 0 \end{pmatrix} = 1, \quad \text{Mini} -a = b. \tag{1}$$

用 -b-1 代替 b, A 就成为 B, 所以由 B 可相似对角化得

$$-a = -b - 1. \tag{2}$$

由式(1),式(2)得 $a = \frac{1}{2}$, $b = -\frac{1}{2}$. 因此选(A).

附注 设 A 是 n 阶矩阵,则 A 可相似对角化的充分必要条件有好多种,其中常用的有:设 A 有特征值 λ_1 , λ_2 , … , λ_s ,它们的重数分别为 n_1 , n_2 , … , $n_s(n_1+n_2+\dots+n_s=n)$,则 A 可相似对角化的充分必要条件为

$$r(\lambda_i \boldsymbol{E}_n - \boldsymbol{A}) = n - n_i (i = 1, 2, \dots, s).$$

二、填空题

(9) 曲于
$$\lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{\frac{x^3}{(x-1)^2} + x^2 (e^{\frac{1}{x}} - 1)}{x}$$

$$= \lim_{x \to \infty} \frac{x^2}{(x-1)^2} + \lim_{x \to \infty} \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}} = 1 + 1 = 2,$$

所以,所给曲线的非铅直渐近线方程为 $y = 2x + \frac{5}{2}$.

附注 对于曲线 y = f(x), 如果极限 $\lim_{x \to \infty} \frac{y}{x}$ 存在为 a, 极限 $\lim_{x \to \infty} (y - ax)$ 存在为 b, 则该曲线的非铅直渐近线方程为 y = ax + b.

(10) 由于 $(\sin x^3)^3$ 是奇函数, 所以它在点 x = 0 处的 4 阶导数为 0.

由于
$$(\ln\cos x)' = -\tan x$$
, $(\ln\cos x)'' = (-\tan x)' = -\sec^2 x$, $(\ln\cos x)^{(3)} = (-\sec^2 x)' = -2\sec^2 x \tan x$,

$$|\text{FFU}, (\ln\cos x)^{(4)}|_{x=0} = \lim_{x\to 0} \frac{(\ln\cos x)^{(3)} - (\ln\cos x)^{(3)}|_{x=0}}{x}$$
$$= \lim_{x\to 0} \frac{-2\sec^2 x \tan x}{x} = -2.$$

从而
$$f^{(4)}(0) = 0 + (-2) = -2$$
.

附注 设 f(x) 在点 x=0 处任意阶可导,则

当f(x)是奇函数时, $f^{(2k)}(0) = 0(k=0, 1, 2, \cdots)$;

当f(x)是偶函数时, $f^{(2k+1)}(0) = 0(k=0, 1, 2, \cdots)$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}t},$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}t} \right) = \\ -\frac{1}{x^2} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{1}{x} \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} \frac{\mathrm{d}t}{\mathrm{d}x} = \\ -\frac{1}{x^2} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{1}{x^2} \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}.$$

将它们代入所给微分方程得

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 2 \frac{\mathrm{d}y}{\mathrm{d}t} = t. \tag{1}$$

式(1)的齐次微分方程的通解为 $Y = c_1 + c_2 e^{2t}$. 式(1)有特解 $y^* = t(A + Bt)$,将它代入式(1)得 $A = B = -\frac{1}{4}$,即 $y^* = t\left(-\frac{1}{4} - \frac{1}{4}t\right) = -\frac{1}{4}(t+t^2)$,所以式(1)的通解为 $y = Y + y^* = c_1 + c_2 e^{2t} - \frac{1}{4}(t+t^2) = c_1 + c_2 x^2 - \frac{1}{4}(\ln x + \ln^2 x).$

附注 $x^2y'' + axy' + by' = f(x)$ 是 2 阶欧拉方程,令 $x = e^t$ 可将它转化成 2 阶常系数线性 微分方程

$$\frac{d^{2}y}{dt^{2}} + (a-1)\frac{dy}{dt} + by = f(e^{t}).$$

$$(12) \int_{-1}^{1} (|x| e^{-x} + \sin x^{3} + \sqrt{1-x^{2}}) dx = \int_{-1}^{1} |x| e^{-x} dx + \int_{-1}^{1} \sqrt{1-x^{2}} dx$$

$$= \int_{-1}^{0} -xe^{-x} dx + \int_{0}^{1} xe^{-x} dx + \frac{\pi}{2} = \int_{-1}^{0} xde^{-x} - \int_{0}^{1} xde^{-x} + \frac{\pi}{2}$$

$$= \left(xe^{-x} \Big|_{-1}^{0} - \int_{-1}^{0} e^{-x} dx\right) - \left(xe^{-x} \Big|_{0}^{1} - \int_{0}^{1} e^{-x} dx\right) + \frac{\pi}{2}$$

$$= 2 - \frac{2}{e} + \frac{\pi}{2}.$$

附注 利用定积分几何意义有

$$\int_{-1}^{1} \sqrt{1 - x^2} dx = 上半单位圆的面积 = \frac{\pi}{2}.$$

$$\frac{\frac{\pi}{2}}{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} r^{2} (\cos^{2}\theta + 4\sin^{2}\theta) r dr$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{4} a^{4} \cos^{4}\theta (4 - 3\cos^{2}\theta) d\theta = 2a^{4} \int_{0}^{\frac{\pi}{2}} \cos^{4}\theta d\theta - \frac{3}{2}a^{4} \int_{0}^{\frac{\pi}{2}} \cos^{6}\theta d\theta$$

$$= 2a^{4} \cdot \frac{3 \cdot 1}{4 \cdot 2} \cdot \frac{\pi}{2} - \frac{3}{2}a^{4} \cdot \frac{5 \cdot 3 \cdot 1}{6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2} = \frac{9}{64} \pi a^{4}.$$

所以,由题设得 $\frac{9}{64}\pi a^4 = \frac{9}{64}\pi$,即 a = 1.

附注 本题题解有以下两点值得注意:

- (I) 计算二重积分时, 应先利用积分区域的对称性, 对所给的二重积分进行化简.
- (II) 记住公式:对大于1的正整数n有

$$\int_0^{\frac{\pi}{2}} \sin^n \theta d\theta = \begin{cases} \frac{(n-1)(n-3)\cdots 1}{n \cdot (n-2)\cdots 2} \cdot \frac{\pi}{2}, & n \text{ 为偶数时,} \\ \frac{(n-1)(n-3)\cdots 2}{n(n-2)\cdots 3}, & n \text{ 为奇数时.} \end{cases}$$

(14) 由题设得

$$A(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}. \tag{1}$$

记 $P = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$,则由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性无关知 P 可逆,于是式(1) 可以表示为 $P^{-1}AP = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{\Box} \boldsymbol{B}$,所以 $\boldsymbol{A} \sim \boldsymbol{B}$. 从而 $\boldsymbol{A} = \boldsymbol{B}$ 有相同的特征值.

由
$$|\lambda E_3 - B|$$
 = $\begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{vmatrix}$ = $(\lambda - 2)(\lambda + 1)^2$ 知, B 的最大特征值为 2,从而 A

的最大特征值为2.

附注 设A与B都是n阶矩阵,如果它们相似,则

- $(I) \mid A \mid = \mid B \mid.$
- (II) r(A) = r(B), 从而 A 与 B 等价.
- (Ⅲ) A 与 B 有相同的特征值.
- $(\mathbb{N}) A^* \sim B^*$.
- (V) 当 A 可逆时, B 也可逆, 且 A -1 ~ B -1.

三、解答题

(15) 由 f(x) 在点 x = 1 处左连续知,

$$A = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left[\frac{1}{(1-x)\sin\pi x} - \frac{1}{\pi(1-x)^{2}} \right]$$

$$= \lim_{x \to 1^{-}} \frac{\pi(1-x) - \sin\pi x}{\pi(1-x)^{2}\sin\pi x} \xrightarrow{\frac{x}{2}t = 1-x} \lim_{x \to 0^{+}} \frac{\pi t - \sin\pi t}{\pi t^{2}\sin\pi t} = \frac{1}{\pi^{2}t^{2}} \lim_{t \to 0^{+}} \frac{\pi t - \sin\pi t}{t^{3}}$$

$$\frac{\frac{3}{2}}{\pi t^{2}} = \frac{1}{3} \lim_{t \to 0^{+}} \frac{\frac{1}{2}(\pi t)^{2}}{t^{2}} = \frac{\pi}{6}.$$

附注 题解中有两点值得注意:

- (I) 作变量代换,将 $x\rightarrow 1^{-}$ 转换成 $t\rightarrow 0^{+}$.
- (II) 对 $\frac{0}{0}$ 型未定式极限 $\lim_{t\to 0^+}\frac{\pi t-\sin\pi t}{\pi t^2\sin\pi t}$ 在应用洛必达法则之前,先用等价无穷小代替,

将未定式极限简化为 $\frac{1}{\pi^2}\lim_{t\to 0^+}\frac{\pi t - \sin \pi t}{t^3}$.

(16) 由题设知,
$$x = A(t) = \int_{-1}^{t} x^{2} dx = \frac{1}{3}(t^{3} + 1)$$
, 此外由
$$s(t) = \int_{-1}^{t} \sqrt{1 + \left[(x^{2})' \right]^{2}} dx = \int_{-1}^{t} \sqrt{1 + 4x^{2}} dx$$
得 $y = \frac{ds(t)}{dt} = \sqrt{1 + 4t^{2}}$. 于是 C_{1} 的参数方程为
$$\begin{cases} x = \frac{1}{3}(t^{3} + 1), \\ y = \sqrt{1 + 4t^{2}} \end{cases}$$
 (1)

记由式(1)确定的函数为y = y(x),则

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4}{t\sqrt{1+4x^2}} \begin{cases} <0, -1 < t < 0 \left(\mathbb{R} \mathbb{P} 0 < x < \frac{1}{3} \right), \\ >0, 0 < t < 1 \left(\mathbb{R} \mathbb{P} \frac{1}{3} < x < \frac{2}{3} \right), \end{cases}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{4(1+2t)^2}{t^2(1+4t^2)^{\frac{3}{2}}} > 0 \quad \left(-1 < t < 1, \quad \mathbb{H} \ 0 < x < \frac{3}{2} \right).$$

于是 y = y(x) $\left(0 < x < \frac{2}{3}\right)$ 的概图如图答 4-16 所示. 因此

$$V = \pi \int_{0}^{\frac{2}{3}} y^{2}(x) dx \xrightarrow{\text{$\frac{5}{3}$} \pi} \frac{\pi}{1} (1 + 4t^{2}) \cdot t^{2} dt \qquad \sqrt{5}$$
$$= 2\pi \int_{0}^{1} (t^{2} + 4t^{4}) dt = \frac{34}{15} \pi.$$

附注 本题的关键是由 C_1 的参数方程, 画出 C_1 的 概图.

(17)
$$i \partial f(x) = xe^{2x} - 2x - \cos x + \frac{1}{2}x^2$$
, $\iint f(x) \Delta E[0, x]$

1]上连续,且

$$f'(x) = e^{2x} + 2xe^{2x} - 2 + \sin x + x$$
,

$$f''(x) = 4e^{2x} + 4xe^{2x} + \cos x + 1 > 0 \ (x \in (0, 1)),$$

所以、由 $f'(0)f'(1) = (-1) \times (3e^2 - 1 + \sin 1) < 0$ 知,存在唯一的 $x_0 \in (0, 1)$,使得

$$f'(x) \begin{cases} <0, & x \in (0, x_0), \\ =0, & x = x_0, \\ >0, & x \in (x_0, 1). \end{cases}$$

于是 $f(x) < f(0) = -1 < 0(x \in [0, x_0])$,即方程f(x) = 0在 $[0, x_0]$ 上无实根.

由于 $f(x_0)f(1) = f(x_0)\left(e^2 - 2 - \cos 1 + \frac{1}{2}\right) < 0$,且f(x)在 $(x_0, 1)$ 内单调增加,所以方程 f(x) = 0 在 $(x_0, 1)$ 内有且仅有一个实根.

综上所述,方程 f(x) = 0 在(0, 1) 内有且仅有一个实根.

附注 由于 f'(x) 在(0, 1) 内是变号的,所以不能由 f(0)f(1) < 0 确定方程 f(x) = 0 在 (0,1)内有且仅有一个实根. 因此需进一步分析, 即考虑 f''(x). 本题就是按此思路求解 的.

(18) 由于 $\varphi(x)$ 可导,且由 $\varphi(x)$ 单调知它的反函数 $\varphi^{-1}(x)$ 存在.于是

$$\frac{d}{dx} \int_{0}^{\varphi(x)} \varphi^{-1}(t) dt = \varphi^{-1}(\varphi(x)) \frac{d\varphi}{dx}
= x [f'_{u}(x, f(x, x)) + f'_{v}(x, f(x, x)) (f'_{u}(x, x) + f'_{v}(x, x))],$$

(1)

题解中应注意的是: $\varphi^{-1}(\varphi(x)) = x$.

(19) 记
$$A = \iint_{\Omega} f(x,y) d\sigma$$
, 则所给等式成为

 $\iint f(x,y) d\sigma = \iint xy d\sigma + A \iint d\sigma,$ 于是有

其中 $\int xy d\sigma = \int_0^1 dx \int_0^{x^2} xy dy = \frac{1}{12}, \iint d\sigma = \int_0^1 dx \int_0^{x^2} dy = \frac{1}{3}.$

将它们代入式(1)得

$$A = \frac{1}{12} + \frac{1}{3}A$$
, $\mathbb{R} P A = \frac{1}{8}$,

所以, $f(x, y) = xy + \frac{1}{8}$. 从而

$$f(e^{x}, \sin x) = e^{x} \sin x + \frac{1}{8}$$

$$= \left(1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \frac{1}{4!}x^{4} + o(x^{4})\right) \left(x - \frac{1}{3!}x^{3} + \frac{1}{5!}x^{5} + o(x^{6})\right) + \frac{1}{8}$$

$$= \frac{1}{8} + x + x^{2} + \frac{1}{3}x^{3} - \frac{1}{30}x^{5} + o(x^{5}) \left(\text{即为有求的带佩亚诺型余项的 5 阶麦克劳 林展开式} \right).$$

附注 计算初等函数的带佩亚诺型余项的麦克劳林展开式,通常总是利用常用函数 e*, $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^{\mu}$ 等的带佩亚诺型余项的适当阶麦克劳林公进行计算.

(20) 所给微分方程
$$\frac{4}{\pi^2} \frac{d^2 y}{dx^2} + y = x$$
 (1)

对应的齐次微分方程的通解为 $Y = C_1 \cos\left(\frac{\pi}{2}x\right) + C_2 \sin\left(\frac{\pi}{2}x\right)$. 此外,式(1)有特解 $y^* = x$. 所 以式(1)的通解为

$$y = Y + y^* = C_1 \cos \frac{\pi}{2} x + C_2 \sin \frac{\pi}{2} x + x,$$
 (2)

$$y' = -\frac{\pi}{2}C_1 \sin\frac{\pi}{2}x + \frac{\pi}{2}C_2 \cos\frac{\pi}{2}x + 1. \tag{3}$$

将
$$y(0) = 1$$
, $y'(0) = 1 + \frac{\pi}{2}$ 代人式 (2) 、式 (3) 得 $C_1 = C_2 = 1$, 所以

$$y(x) = \cos\frac{\pi}{2}x + \sin\frac{\pi}{2}x + x.$$

$$\lim_{x\to 0} [y(x)]^{\frac{1}{x}} = e_{x\to 0}^{\lim} \frac{\ln y(x)}{x},$$

其中,
$$\lim_{x\to 0} \frac{\ln y(x)}{x} = \frac{\text{洛必达法则}}{x} \lim_{x\to 0} \frac{y'(x)}{y(x)} = \frac{y'(0)}{y(0)} = 1 + \frac{\pi}{2}.$$

所以, $\lim_{x\to 0} [y(x)]^{\frac{1}{x}} = e^{1+\frac{\pi}{2}}$.

附注 注意题解中 $\lim_{x\to 0}[y(x)]^{\frac{1}{x}}$ 的计算方法. 它不是将已算出的 y(x) 的表达式代入计算,

而是应用洛必达法则和 y(0) = 1, $y'(0) = 1 + \frac{\pi}{2}$ 直接计算的, 比较快捷.

(21) (I) 令
$$u = x^2 + y^2$$
, 则 $z = uf(u)$, 于是
$$\frac{\partial z}{\partial x} = 2xf(u) + 2xuf'(u),$$

$$\frac{\partial^2 z}{\partial x^2} = 2f(u) + 8x^2f'(u) + 2uf'(u) + 4x^2uf''(u),$$

同样可得 $\frac{\partial^2 z}{\partial y^2} = 2f(u) + 8y^2 f'(u) + 2uf'(u) + 4y^2 uf''(u)$.

于是由
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
 得

即 所以,

$$u^{2}f''(u) + 3uf'(u) + f(u) = 0.$$

$$[u^{2}f'(u) + uf(u)]' = 0.$$

$$u^{2}f'(u) + uf(u) = C_{1}.$$
(1)

将f(1) = 0, f'(1) = 1 代入式(1) 得 $C_1 = 1$. 所以式(1)成为

$$u^2 f'(u) + u f(u) = 1$$
, 即 $f'(u) + \frac{1}{u} f(u) = \frac{1}{u^2}$ (线性微分方程)

$$f(u) = e^{-\int \frac{1}{u} du} \left(C + \int \frac{1}{u^2} e^{\int \frac{1}{u} du} du \right) = \frac{C_2}{u} + \frac{\ln u}{u}.$$
 (2)

将f(1) = 0 代入式(2) 得 $C_2 = 0$,所以 $f(u) = \frac{\ln u}{u} (u \ge 1)$.

(Ⅱ)D如图答 4-21 阴影部分所示. 所以

$$\iint_{D} \sqrt{x^{2} + y^{2}} f(x^{2} + y^{2}) d\sigma = \frac{\cancel{k} \cancel{k} + \cancel{k}}{\cancel{k} + \cancel{k}} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} d\theta \int_{1}^{2\cos\theta} r \cdot \frac{\ln r^{2}}{r^{2}} \cdot r dr$$

$$= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} d\theta \int_{1}^{2\cos\theta} 2\ln r dr = 2 \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} r(\ln r - 1) \Big|_{1}^{2\cos\theta} d\theta$$

$$= 8 \int_0^{\frac{\pi}{3}} \cos\theta (\ln 2 \cos\theta - 1) \, \mathrm{d}\theta = 8 \int_0^{\frac{\pi}{3}} [(\ln 2 - 1) + \ln \cos\theta] \, \mathrm{d}\sin\theta$$

$$=8\left\{\left[\left(\ln 2-1\right)+\ln \cos \theta\right]\sin \theta \left| \frac{\pi}{3}+\int_{0}^{\frac{\pi}{3}}\left(\sec \theta-\cos \theta\right)\mathrm{d}\theta\right\}$$

$$=8\left\{-\frac{\sqrt{3}}{2}+\left[\ln(\sec\theta+\tan\theta)-\sin\theta\right]\Big|_{0}^{\frac{\pi}{3}}\right\}=8\ln(2+\sqrt{3})-8\sqrt{3}.$$

附注 由于 D 是角域的一部分,而且被积函数是 $x^2 + y^2$ 的函数,所以题解中用极坐标计算所给的二重积分.

(22) 由 A 有零特征值知,

$$|A| = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ -1 & 0 & a - 3 \end{pmatrix} = a - 1 = 0, \quad \exists \exists a = 1.$$

要使矩阵方程 AX = B 有解,必须 $r(A \mid B) = r(A)$. 于是由

知
$$\begin{cases} b+3=0, & \text{即 } b=-3, & c=0. \end{cases}$$

设
$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$$
,并将 $a = 1$, $b = -3$, $c = 0$ 代入,则矩阵方程 $AX = B$ 与

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} 2 & 2 & 3 \\ -1 & 0 & 2 \end{pmatrix}$$
 (1)

同解, 而式(1)即为以下三个线性方程组

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \tag{2}$$

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{12} \\ x_{22} \\ x_{32} \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \tag{3}$$

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{13} \\ x_{23} \\ x_{33} \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}. \tag{4}$$

显然,式(2)的通解为 $C_1(2,1,-1)^T+(2,-1,0)^T=(2C_1+2,C_1-1,-C_1)^T$,式(3)的通解为 $C_2(2,1,-1)^T+(2,0,0)^T=(2C_2+2,C_2,-C_2)^T$,式(3)的通解为 $C_3(2,1,-1)^T+(3,2,0)^T=(2C_3+3,C_3+2,-C_3)^T$.

所以,
$$X = \begin{pmatrix} 2C_1 + 2 & 2C_2 + 2 & 2C_3 + 3 \\ C_1 - 1 & C_2 & C_3 + 2 \\ -C_1 & -C_2 & -C_3 \end{pmatrix}$$
 (其中 C_1 , C_2 , C_3 是任意常数).

附注 矩阵方程 AX = B 的解法同模拟试题(二)(22)的解答.

(23) (I) 由于
$$(\alpha_1, \alpha_2, \alpha_3)$$
 $= \begin{vmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{vmatrix} = (a + 2)(a - 1)^2$,所以

 $\mid (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \mid = 0$ 的解为 a = 1, -2.

能由 α_1 , α_2 , α_3 线性表示.

当 a = -2 时,

$$(\boldsymbol{\alpha}_{1}, \ \boldsymbol{\alpha}_{2}, \ \boldsymbol{\alpha}_{3} \ | \boldsymbol{\beta}) = \begin{pmatrix} 1 & 1 & -2 & 1 \\ 1 & -2 & 1 & 1 \\ -2 & 1 & 1 & -2 \end{pmatrix} \xrightarrow{\text{distribution}} \begin{pmatrix} 1 & 1 & -2 & 1 \\ 1 & -2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -3 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

知, β 可由 α_1 , α_2 , α_3 线性表示. 设表示式为 $\beta = x\alpha_1 + y\alpha_2 + z\alpha_3$, 即

$$(\boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \boldsymbol{\beta}.$$
 (1)

由以上的初等行变换知,式(1)与方程组 $\begin{cases} x & -z=1, \\ y-z=0 \end{cases}$ 同解,它对应的齐次方程组的通解为 $c(1,1,1)^{\mathrm{T}}$,且有特解 $(1,0,0)^{\mathrm{T}}$. 所以式(1)的通解为 $(x,y,z)^{\mathrm{T}}=c(1,1,1)^{\mathrm{T}}+(1,0,0)^{\mathrm{T}}=(c+1,c,c)$. 从而所求的a=-2,线性表示式的一般形式及 $\boldsymbol{\beta}=(c+1)\boldsymbol{\alpha}_1+c\boldsymbol{\alpha}_2+c\boldsymbol{\alpha}_3$ (其中c是任意常数).

(II) 由于 a = -2 时,

$$\begin{vmatrix} \lambda E_3 - A \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -1 & 2 \\ -1 & \lambda + 2 & -1 \\ 2 & -1 & \lambda - 1 \end{vmatrix} = \begin{vmatrix} \lambda & -1 & 2 \\ \lambda & \lambda + 2 & -1 \\ \lambda & -1 & \lambda - 1 \end{vmatrix} = \begin{vmatrix} \lambda & -1 & 2 \\ 0 & \lambda + 3 & -3 \\ 0 & 0 & \lambda - 3 \end{vmatrix}$$

$$= \lambda (\lambda - 3) (\lambda + 3),$$

所以, A 有特征值 $\lambda = 0$, 3, -3.

设对应 $\lambda = 0$ 的特征向量为 $\boldsymbol{a} = (a_1, a_2, a_3)^{\mathrm{T}}$,则 \boldsymbol{a} 满足

$$\begin{pmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}.$$
 (1)

由于
$$\begin{pmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix}$$
 初等行变换 $\begin{pmatrix} -1 & -1 & 2 \\ 0 & 3 & -3 \\ 0 & 0 & 0 \end{pmatrix}$ \longrightarrow $\begin{pmatrix} -1 & -1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ \longrightarrow $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$,

所以式(1)与方程组 $\begin{cases} a_1 & -a_3 = 0, \\ a_2 - a_3 = 0 \end{cases}$ 同解,故 \boldsymbol{a} 可取它的基础解系,即 $\boldsymbol{a} = (1, 1, 1)^T$.

设对应 $\lambda = 3$ 的特征向量为 $\boldsymbol{b} = (b_1, b_2, b_3)^{\mathrm{T}}$,则 \boldsymbol{b} 满足

$$\begin{pmatrix} 2 & -1 & 2 \\ -1 & 5 & -1 \\ 2 & -1 & 2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0}.$$
 (2)

由于
$$\begin{pmatrix} 2 & -1 & 2 \\ -1 & 5 & -1 \\ 2 & -1 & 2 \end{pmatrix}$$
 初等行变换 $\begin{pmatrix} 2 & -1 & 2 \\ -1 & 5 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ \longrightarrow $\begin{pmatrix} 0 & 9 & 0 \\ -1 & 5 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ \longrightarrow $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,

所以式(2)与方程组 $\begin{cases} b_1 & +b_3=0 \\ b_2 & =0 \end{cases}$ 同解,故**b**可取它的基础解系,即**b**=(1,0,-1)^T.

设对应 $\lambda = -3$ 的特征向量为 $\boldsymbol{c} = (c_1, c_2, c_3)^{\mathrm{T}}$,则由 \boldsymbol{A} 是实对称矩阵知, $\boldsymbol{c} = (a_1, b_2, c_3)^{\mathrm{T}}$,则由 \boldsymbol{A} 是实对称矩阵知, $\boldsymbol{c} = (a_1, b_2, b_3)^{\mathrm{T}}$ 。正交,所以有 $\begin{cases} c_1 + c_2 + c_3 = 0, \\ c_1 & -c_3 = 0, \end{cases}$ 故 \boldsymbol{c} 可取它的基础解系,即 $\boldsymbol{c} = (1, -2, 1)^{\mathrm{T}}$.

a, b, c 是正交向量组, 现将它们单位化得

$$\boldsymbol{\xi} = \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{\mathrm{T}},$$

$$\boldsymbol{\eta} = \frac{\boldsymbol{b}}{\|\boldsymbol{b}\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{\mathrm{T}},$$

$$\boldsymbol{\zeta} = \frac{\boldsymbol{c}}{\|\boldsymbol{c}\|} = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{\mathrm{T}}.$$

 (x_3) 化为标准形 $3y_2^2 - 3y_3^2$.

附注 由于当 $\mid (\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3) \mid \neq 0$,即 $\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3$ 线性无关时, $\boldsymbol{\beta}$ 必可由 $\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3$ 唯一线性表示。因此题解从 $\mid (\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3) \mid = 0$ 入手。

模拟试题(五)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
合采	С	A	В	С	D	С	С	В

$$(1) f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{g(x) \sin \frac{\pi}{2x}}{x - 1}$$
$$= \lim_{x \to 1} \frac{g(x)}{x - 1} = \lim_{x \to 1} \frac{g(x) - g(1)}{x - 1} = g'(1) = -1.$$

因此选(C).

附注 计算分段函数在分段点处的导数, 总是从导数定义出发.

(2) 由于

$$|x| < 1 \text{ ft}, \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin \pi x}{x^n + x^2 - 1} = -\sin \pi x;$$

$$|x| > 1 \text{ ft}, \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin \pi x}{x^n + x^2 - 1} = x;$$

$$x = 1 \text{ ft}, \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin \pi x}{x^n + x^2 - 1} = 1,$$

$$x = -1 \text{ ft}, \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin \pi x}{x^n + x^2 - 1} = -1,$$

所以, $y = f(x) = \begin{cases} -\sin\pi x, & |x| < 1, \\ x, & |x| \ge 1 \end{cases}$,的图形如图答 5-2 所示,由图可知,f(x)的极大值为 $f\left(-\frac{1}{2}\right) = 1$,极小值为 $f\left(\frac{1}{2}\right) = -1$. 因此选(A).

附注 画图得到正确选项,是解选择题的常用方法之一.

(3) 所给方程两边对x 求导得

$$2xy^2 + 2x^2yy' + y' = 0,$$
所以有 $y' = -\frac{2xy^2}{2x^2y + 1}$ $\begin{cases} >0, & x < 0, \\ =0, & x = 0,$ 由此可知 $y = y(x)$ 有最 $<0, & x > 0. \end{cases}$

大值 $\gamma(0) = 1$, 无最小值. 因此选(B).

附注 本题也可以用以下方法求解

由所给方程知 y(0) = 1. 当 $x \neq 0$ 时,方程可以改写成

$$y^2 + \frac{1}{x^2}y - \frac{1}{x^2} = 0$$
,

图答 5-2

它的 y > 0 的解为 $y = \frac{-1 + \sqrt{1 + 4x^2}}{2x^2} = \frac{2}{\sqrt{1 + 4x^2 + 1}}$. 由此可知,当 $x \neq 0$ 时,y < 1. 从而 y(0) = 1 是 y = y(x) 的最大值. 由于 $x \to \infty$ 时,y(x) > 0,但 $y(x) \to 0$,所以 y = y(x) 无最小值.

(4) 由于
$$\varphi(x,y) = \int_0^{\frac{y^2}{x^2}} du \int_0^u \frac{1}{y^2} f\left(\frac{v}{y}\right) dv$$

$$\frac{\Rightarrow t = \frac{v}{y}}{=} \int_0^{\frac{y^2}{x^2}} \frac{1}{y} du \int_0^{\frac{u}{y}} f(t) dt$$

$$\frac{\Rightarrow z = \frac{u}{y}}{=} \int_0^{\frac{y}{x^2}} dz \int_0^z f(t) dt,$$

所以, $\frac{\partial \varphi}{\partial y} = \frac{1}{x^2} \int_0^{\frac{y}{x^2}} f(t) dt$. 从而 $\frac{\partial^2 \varphi}{\partial y^2} = \frac{1}{x^4} f(\frac{y}{x^2})$. 因此选(C).

附注 要对 $\int_0^{\frac{v^2}{2^2}} du \int_0^u \frac{1}{y^2} f\left(\frac{v}{y}\right) dv$ 关于 y 求偏导数,应首先把被积函数中的 y 移到外层积分限或移出外层积分号. 本题题解就是如此处理的.

(5) 对于选项(D), 由
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0$$
 得 $\lim_{x\to 0} \frac{f(x,0)-f(0,0)}{|x|} = 0$. 所以

有
$$f'_x(0, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \to 0} \left[\frac{f(x, 0) - f(0, 0)}{|x|} \cdot \frac{|x|}{x} \right] = 0.$$
 同样可得

$$f'_{y}(0, 0) = 0$$
. 于是由 $\lim_{(x,y)\to(0,0)} \frac{f(x, y) - f(0, 0)}{\sqrt{x^2 + y^2}} = 0$ 得

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-f_x'(0,0)x-f_y'(0,0)y}{\sqrt{x^2+y^2}}=\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}}=0.$$

所以,由二元函数可微的定义知,f(x,y)在点(0,0)处可微.因此选(D)

附注 显然,选项(A),(B)不是f(x,y)在点(0,0)处可微的充分条件.选项(C)也不是充分条件.例如 $f(x,y) = \sqrt{\mid xy \mid}$,由

$$f_x'(x, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \to 0} \frac{0}{x} = 0, \ \text{特别由} \ f_x'(0, 0) = 0 \ \text{知},$$

 $\lim_{x\to 0} f_x'(x, 0) = f_x'(0, 0)$. 同样可得 $\lim_{x\to 0} f_y'(0, y) = f_y'(0, 0)$. 但是由

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)-f_x'(0,0)x-f_y'(0,0)y}{\sqrt{x^2+y^2}} = \lim_{(x,y)\to(0,0)} \frac{\sqrt{\mid xy\mid}}{\sqrt{x^2+y^2}} \neq 0.$$

知, f(x, y)在点(0, 0)处不可微.

(6) 显然选项(A), (B)的微分方程不可能有特解 y_1 , y_2 , y_3 . 下面考虑选项(C):

由于
$$\frac{dy_1}{dx} = 1 + \ln x$$
, $\frac{d^2y_1}{dx^2} = \frac{1}{x}$, 所以, $x^2 \frac{d^2y_1}{dx^2} - x \frac{dy_1}{dx} + y_1 = 0$.

由于
$$\frac{dy_2}{dx} = 2 + \ln x$$
, $\frac{d^2y_2}{dx^2} = \frac{1}{x}$, 所以, $x^2 \frac{d^2y_2}{dx^2} - x \frac{dy_2}{dx} + y_2 = 0$.

由于 $y_3 = 3y_1 - y_2$,所以它必满足 $x^2 \frac{d^2 y_3}{dx^2} - x \frac{dy_3}{dx} + y_3 = 0$. 因此选(C)

附注 (C)是正确的选项,也可如下证明:

令 $x = e^t$, 则 $y_1 = te^t$, $y_2 = te^t + e^t$, $y_3 = 2te^t - e^t$, 选项(C)中的微分方程(欧拉方程)成为

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 2\frac{\mathrm{d}y}{\mathrm{d}t} + y = 0. \tag{1}$$

由于式(1)的特征方程 λ^2 – 2λ + 1 = 0 有根 λ = 1(二重), 所以它有特解 e^t , te^t , 从而有特解 y_1 , y_2 , y_3 .

(7)由于选项(C)与(D)中有且仅有一个是正确的. 因此只要考虑这两个选项即可. 由 $r(B) = r(A) \le n < n + 1$ 知, By = 0 有非零解. 因此选(C).

附注 设 $A \in m \times n$ 矩阵,则

r(A) = n 是齐次线性方程组 Ax = 0 只有零解的充分必要条件;

r(A) < n 是齐次线性方程组 Ax = 0 有非零解的充分必要条件.

(8) A 有特征值 -1, 1, 2. 由
$$\begin{vmatrix} \lambda + 1 & 0 & 0 \\ 0 & \lambda - 1 & -2 \\ 0 & -2 & \lambda - 1 \end{vmatrix} = (\lambda - 3)(\lambda + 1)^2$$
 知,选项(A)的

矩阵 $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$ 有特征值 $\lambda = 3$, -1(二重), 它与 A 有不同特征值, 故不与 A 相似, 因此

不能洗(A).

3)知,它有特征值 -1, 1, 2,即与 A 有相同的特征值,所以这个实对称矩阵与 A 相似且合同。因此选(B)

附注 (I) 设A 与B 都是n 阶矩阵,则

A 与 B 相似的充分必要条件有以下两类:

- (i) 存在 n 阶可逆矩阵 P, 使得 $P^{-1}AP = B$.
- (ii) A 与 B 有相同的特征多项式,或者 A 与 B 有相同的特征值 $(n_i$ 重以 n_i 个计算).
- (Ⅱ)设A与B都是n阶实对称矩阵,则A与B合同的充分必要条件有以下三类:
- (i) 存在 n 阶可逆矩阵 C. 使得 $C^{T}AC = B$.
- (ii) 二次型 $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{x}^{\mathsf{T}} \mathbf{B} \mathbf{x} ($ 其中 $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathsf{T}})$ 有相同的规范形,或者这两个二次型有相同的正惯性指数,也有相同的负惯性指数.
 - (iii) A 与 B 有相同的特征值(n_i 重的以 n_i 个计算).

二、填空题

(9) 由
$$2 = \lim_{x \to 0} \frac{[f(x) + 1]x^2}{x - \sin x} = \lim_{x \to 0} \frac{\frac{f(x) + 1}{x}}{\frac{x - \sin x}{x^3}}$$
 知,
$$\lim_{x \to 0} \frac{f(x) + 1}{x} = 2 \lim_{x \to 0} \frac{x - \sin x}{x^3} = 2 \lim_{x \to 0} \frac{1 - \cos x}{3x^2} = \frac{1}{3},$$

所以, f(0) = -1, $f'(0) = \frac{1}{3}$. 因此所求的切线方程为

$$y-(-1)=\frac{1}{3}(x-0)$$
, $\mathbb{P} y=\frac{1}{3}x-1$.

附注 设 f(x) 在点 x_0 处连续,且 $\lim_{x \to x_0} \frac{f(x) - k}{x - x_0} = A(A, k 是常数),则 <math>f(x_0) = k$, $f'(x_0) = A$.

(10) 由
$$\arcsin x = \frac{x}{\sqrt{1 - \xi^2(x)}}$$
 特 $\xi = \frac{\sqrt{\arcsin^2 x - x^2}}{\arcsin x}$. 所以
$$\lim_{x \to 0^+} \frac{\xi(x)}{x} = \lim_{x \to 0^+} \frac{\sqrt{\arcsin^2 x - x^2}}{x \arcsin x} \xrightarrow{\frac{1}{2}} \frac{e^{t = \arcsin x}}{t} \lim_{t \to 0^+} \frac{\sqrt{t^2 - \sin^2 t}}{t \sin t}$$

$$= \lim_{t \to 0^+} \sqrt{\frac{t + \sin t}{t}} \cdot \lim_{t \to 0^+} \sqrt{\frac{t - \sin t}{t^3}},$$

$$\lim_{t \to 0^+} \sqrt{\frac{t + \sin t}{t}} = \sqrt{\lim_{t \to 0^+} \frac{t + \sin t}{t}} = \sqrt{2},$$

$$\lim_{t \to 0^+} \sqrt{\frac{t - \sin t}{t^3}} = \sqrt{\lim_{t \to 0^+} \frac{t - \sin t}{t^3}} \xrightarrow{\frac{\text{NACKB}}{160}} \sqrt{\lim_{t \to 0^+} \frac{1 - \cos t}{3t^2}} = \frac{1}{\sqrt{6}}.$$
因此

附注 只有对 $x \in (0, 1)$,存在唯一的 ξ 时, ξ 才是 x 的函数,才可以写成 $\xi(x)$. 下面证明上述的 ξ 是唯一的.

对函数 $\arcsin t$ 在 $[0, x](x \in (0, 1))$ 上应用拉格朗日中值定理,如果在(0, x)内存在两个 ξ_1, ξ_2 ,使得

$$\arcsin x = \frac{x}{\sqrt{1 - \xi_1^2}}, \quad \arcsin x = \frac{x}{\sqrt{1 - \xi_2^2}},$$

则 $\xi_1 = \xi_2$, 由此证明了唯一性.

$$(11) \int_{-1}^{\pi} e^{2f(x)} \sin x dx = \int_{-1}^{1} e^{2f(x)} \sin x dx + \int_{1}^{\pi} e^{2f(x)} \sin x dx$$
$$= \int_{-1}^{1} e^{\cos x} \sin x dx + \int_{1}^{\pi} x^{2} \sin x dx = -\int_{1}^{\pi} x^{2} d\cos x$$
$$= -\left(x^{2} \cos x\right) \Big|_{1}^{\pi} - \int_{1}^{\pi} 2x \cos x dx$$

$$= \pi^{2} + \cos 1 + \int_{0}^{\pi} 2x d \sin x$$

$$= \pi^{2} + \cos 1 + \left(2x \sin x \Big|_{0}^{\pi} - 2\int_{0}^{\pi} \sin x dx\right)$$

$$= \pi^{2} + \cos 1 - 4.$$

附注 由于 $e^{\cos x} \sin x$ 是奇函数,所以题解中 $\int_{-1}^{1} e^{\cos x} \sin x dx = 0$.

附注 要熟练掌握二元复合函数的1,2阶偏导数的计算

(13) 所给微分方程
$$y'' + 2y' + y = 2e^{-x} + x$$
 (1) 对应的齐次微分方程 $y'' + 2y' + y = 0$ 的通解为 $Y = (C_1 + C_2 x)e^{-x}$.

此外,式(1)有特解

$$y^* = Ax^2 e^{-x} + B + Cx.$$

将它代入式(1)得

$$(2Ae^{-x} - 4Axe^{-x} + Ax^{2}e^{-x}) + 2(2Axe^{-x} - Ax^{2}e^{-x} + C)$$

 $+ (Ax^{2}e^{-x} + B + Cx) = 2e^{-x} + x.$

由此得到 A=1 , B=-2 , C=1 . 所以

$$y^* = x^2 e^{-x} - 2 + x$$
.

因式(1)的通解为

$$y = Y + y^* = (C_1 + C_2 x) e^{-x} + x^2 e^{-x} - 2 + x.$$

(14)
$$\boxplus \exists r(\mathbf{A}) = r(\mathbf{A}\mathbf{B}) \leq r(\mathbf{B}), \ \boxplus r(\mathbf{A}) \leq r(\mathbf{B}).$$
 (1)

此外, 由
$$r(A) = n$$
 及 $r(A) + r(B) - n \le r(AB) \le r(A)$ 得 $r(B) \le r(A)$. (2) 所以, $r(B) = r(A) = n$. 从而 $r(B^*) = n$.

附注 题解中利用了关于矩阵秩的以下结论:

(I)设A是 $m \times n$ 矩阵, B是 $n \times l$ 矩阵, 则

$$r(\mathbf{A}) + r(\mathbf{B}) - n \leq r(\mathbf{AB}) \leq \min \{ r(\mathbf{A}), r(\mathbf{B}) \}.$$

(Ⅱ)设A是n阶矩阵,则

$$r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(A) = n - 1, \\ 0, & r(A) < n - 1. \end{cases}$$

三、解答题

(15) 由于
$$f(x) = \begin{cases} x-2, & x \le -1, \\ 3x, & -1 < x \le \frac{1}{2},$$
所以 $-x+2, & x > \frac{1}{2}, \end{cases}$

$$\int f(x) dx = \int_{-1}^{x} f(t) dt + C,$$

因此
$$\int f(x) dx = \begin{cases} \frac{1}{2}x^2 - 2x - \frac{5}{2} + C, & x \le -1, \\ \frac{3}{2}x^2 - \frac{3}{2} + C, & -1 < x \le \frac{1}{2}, \\ -\frac{1}{2}x^2 + 2x - 2 + C, & x > \frac{1}{2}. \end{cases}$$

附注 分段函数 f(x)的不定积分应用以下公式计算是比较快捷的:

$$\int f(x) dx = \int_{x_0}^x f(t) dt + C,$$

其中 x_0 是f(x)的最靠左边的分段点.

(16) 由于
$$y(t) = e^{-\int 2dt} (C + \int e^{-t} \cdot e^{\int 2dt} dt) = Ce^{-2t} + e^{-t}.$$

将
$$y(0) = 0$$
 代入上式得 $C = -1$,所以 $y(t) = -e^{-2t} + e^{-t} (t \ge 0)$.

当
$$t < 0$$
 时, $f'(t) = (2t^2 + \sin t)' = 4t + \cos t$;

当
$$t > 0$$
 时, $f'(t) = y'(t) = (-e^{-2t} + e^{-t})' = 2e^{-2t} - e^{-t}$.

由于
$$\lim_{t\to 0^{-}} f'(t) = 1$$
, $\lim_{t\to 0^{+}} f'(t) = 1$, 所以, $f'(0) = 1$. 因此

$$f'(t) = \begin{cases} 4t + \cos t, & t \le 0, \\ 2e^{-2t} - e^{-t}, & t > 0. \end{cases}$$

曲此可得,t < 0 时, $f''(t) = 4 - \sin t$;t > 0 时, $f''(t) = -4e^{-2t} + e^{-t}$.

由于 $\lim_{t\to 0^{-}} f''(t) = 4$, $\lim_{t\to 0^{+}} f''(t) = -3$,所以f''(0)不存在. 因此

$$f''(t) = \begin{cases} 4 - \sin t, & t < 0, \\ -4e^{-2t} + e^{-t}, & t > 0. \end{cases}$$

附注 f'(0) = 1 与 f''(0)不存在也可证明如下:

由于
$$f(t) = \begin{cases} 2t^2 + \sin t, & t < 0,$$
 所以
$$- e^{-2t} + e^{-t}, & t \ge 0, \end{cases}$$

$$f'_{-}(0) = \lim_{t \to 0^{-}} \frac{f(t) - f(0)}{t} = \lim_{t \to 0^{-}} \frac{2t^2 + \sin t}{t} = 1,$$

$$f'_{+}(0) = \lim_{t \to 0^{+}} \frac{f(t) - f(0)}{t} = \lim_{t \to 0^{+}} \frac{-e^{-2t} + e^{-t}}{t} = 1.$$

从而 f'(0) = 1.

由于
$$f'(t) = \begin{cases} 4t + \cos t, & t \leq 0, \text{ 所以} \\ 2e^{-2t} - e^{-t}, & t > 0, \end{cases}$$

$$f''_{-}(0) = \lim_{t \to 0^{-}} \frac{f'(t) - f'(0)}{t} = \lim_{t \to 0^{-}} \frac{4t + \cos t - 1}{t} = 4,$$

$$f''_{+}(0) = \lim_{t \to 0^{+}} \frac{f'(t) - f'(0)}{t} = \lim_{t \to 0^{+}} \frac{2e^{-2t} - e^{-t} - 1}{t} = -3.$$

从而 f"(0) 不存在.

(17) 令
$$u = x - t$$
, 则 $f(x) \cdot \int_0^x f(x - t) dt = \sin x$ 成为
$$f(x) \cdot \int_0^x f(u) du = \sin x, 即 \int_0^x f(u) du = \frac{\sin x}{f(x)}.$$

上式两边对 x 求导得 $f(x) = \frac{\cos x \cdot f(x) - \sin x \cdot f'(x)}{f^2(x)}$,即

$$f'(x) - \cot x \cdot f(x) = -\frac{1}{\sin x} f^3(x).$$

令
$$y = \frac{1}{f^2(x)}$$
, 得 $y' + 2\cot x \cdot y = \frac{2}{\sin x}$, 所以

$$y = e^{-\int 2\cot x dx} \left(c + \int \frac{2}{\sin x} e^{\int 2\cot x dx} dx \right)$$
$$= \frac{1}{\sin^2 x} \left(c + \int 2\sin x dx \right) = \frac{1}{\sin^2 x} (c - 2\cos x).$$

将
$$f\left(\frac{\pi}{2}\right) = \frac{1}{\sqrt{2}}$$
,即 $y\left(\frac{\pi}{2}\right) = 2$ 代入上式得 $c = 2$,所以,在 $\left(\frac{\pi}{2}\right)$,用上 $f(x) = \cos\frac{x}{2}$. 因此

$$f(x)$$
在 $\left[\frac{\pi}{2}, \pi\right]$ 上的平均值为

$$\frac{1}{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{\pi} f(x) dx = \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} \cos \frac{x}{2} dx = \frac{2}{\pi} (2 - \sqrt{2}).$$

附注 $y' + p(x)y = q(x)y^n (n \neq 0, 1)$ 称为伯努利方程,它可通过变量代换 $z = y^{1-n}$ 转换 成线性微分方程 $\frac{\mathrm{d}z}{\mathrm{d}x} + (1-n)p(x)z = (1-n)q(x)$ 后求解.

(18) u(x, 2x) = x 两边对 x 求导得

$$u_x'(x, 2x) + 2u_y'(x, 2x) = 1$$
,

再对 x 求导得 $\left[u''_{xx}(x, 2x) + 2u''_{xy}(x, 2x)\right] + 2\left[u''_{yx}(x, 2x) + 2u''_{yy}(x, 2x)\right] = 0$. 利用 $u''_{xx} = u''_{yy}, \ u''_{xy} = u''_{xx}$ 化简后得

$$5u_{xx}''(x, 2x) + 4u_{xy}''(x, 2x) = 0$$
 (1)

 $u_x'(x, 2x) = x^2$ 两边对 x 求导得

$$u_{xx}''(x, 2x) + 2u_{xy}''(x, 2x) = 2x.$$
 (2)

由式(1),式(2)得 $u_{xx}(x,2x) = -\frac{4}{3}x$, $u''_{xy}(x,2x) = \frac{5}{3}x$. 于是D如图答 5-18 的阴影部分所示,所以D的面积为

$$\iint_{D} d\sigma = \int_{\arctan \frac{5}{3}}^{\pi - \arctan \frac{4}{3}} d\theta \int_{0}^{1} r dr$$

$$= \frac{1}{2} \left(\pi - \arctan \frac{4}{3} - \arctan \frac{5}{3} \right).$$

附注 本题获解的关键是利用题设从 $u(x, 2x) = x, u_x(x, 2x) = x^2$ 中算出 $u''_{xx}(x, 2x)$ 与 $u''_{yy}(x, 2x)$ 的表达式.

(19) 由于 f(x) 在[0, 2]上 2 阶可导, 所以, 对于 $x \in [0, 2]$,

$$f(x) = f(1) + f'(1)(x-1) + \frac{1}{2!}f''(\xi)(x-1)^2(\xi)$$
 是介于 1 与 x 之间的实数)

由于f'(x)在[0, 2]上单调增加,所以有 $f''(x) \ge 0(x \in [0, 2])$,从而 $f(x) \ge f(1) + f'(1)(x - 1)(x \in [0, 2])$.

因此,
$$\int_0^2 f(x) dx \ge \int_0^2 [f(1) + f'(1)(x - 1)] dx = 2f(1) + f'(1) \int_0^2 (x - 1) dx$$
$$= 2f(1) + \frac{1}{2}f'(1)(x - 1)^2 \Big|_0^2 = 2f(1).$$

附注 设 $x_0 \in [0, 2]$,则写出 f(x) 在点 x_0 处的一阶泰勒公式是联系 f(x), f'(x) 与 f''(x) 的常用方法. 本题得证的关键是取 $x_0 = 1$.

(20) 由于
$$\frac{\partial f}{\partial x} = 2x - 2xy^2$$
, $\frac{\partial f}{\partial y} = 4y - 2x^2y$, 所以方程组
$$\begin{cases} \frac{\partial f}{\partial x} = 0, \\ \frac{\partial f}{\partial y} = 0, \end{cases}$$
即 $\begin{cases} 2x - 2xy^2 = 0, \\ 4y - 2x^2y = 0 \end{cases}$ 在 D 内

部的解为 $x = \sqrt{2}$, y = 1, 即在 D 内部 f(x, y) 在唯一可能极值点($\sqrt{2}$, 1), 由于

$$\left[\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}} - \left(\frac{\partial^{2} f}{\partial x \partial y} \right)^{2} \right] \Big|_{(\sqrt{2}, 1)} = \left[(2 - 2y^{2}) (4 - 2x^{2}) - (-4xy)^{2} \right]_{(\sqrt{2}, 1)} \\
= \left[(2 - 2y^{2}) (4 - 2x^{2}) - (-4xy)^{2} \right] \Big|_{(\sqrt{2}, 1)} = -32 < 0$$

所以 $(\sqrt{2}, 1)$ 不是f(x, y)在D内的极值点,即f(x, y)在D内无极值,从而f(x, y)在D内 不存在最大值与最小值

由于D是开区域, 当f(x, y)在D内取不到极值时, 必取不到最大值与最小值. (21) (I) 由题设得

$$\int_0^x y(t) dt - \frac{1}{2} x y(x) = x^{\frac{4}{3}}.$$

上式两边对 x 求导得

$$xy'(x) - y(x) = -\frac{8}{3}x^{\frac{1}{3}}, \quad \mathbb{R} \frac{xy' - y}{x^2} = -\frac{8}{3}x^{-\frac{5}{3}}, \quad \mathbb{E} \left(\frac{y}{x}\right)' = -\frac{8}{3}x^{-\frac{5}{3}}.$$

所以 $\frac{y}{x} = 4x^{-\frac{2}{3}} + C$, 将 y(1) = 4 代入得 C = 0. 所以

$$y = y(x) = 4x^{\frac{1}{3}}(0 \le x \le 1).$$

(II) $y = 4x^{\frac{1}{3}}$ 的反函数 $y = \varphi(x) = \left(\frac{x}{4}\right)^3$,所以 D 如图答 5-21 的阴影部分所示. 用曲线 y $=-x^3$ 将 D 划分成 D_1 与 D_2 两部分(如图所示).

由于 D_1 关于 y 轴对称,且在对称点处, g(x, y) =y[(x+1)f(x) + (x-1)f(-x)]的值互为相反数,所以

$$\iint_{D_1} y[(x+1)f(x) + (x-1)f(-x)]d\sigma = 0.$$
 (1)
由于 D_2 关于 x 轴对称,且在对称点处, $g(x, y)$ 的值

互为相反数, 所以

相反数,所以
$$\iint_{D_2} y[(x+1)f(x) + (x-1)f(-x)] d\sigma = 0.$$
 (2) 于是,由式(1),式(2)得

$$\begin{split} & \iint_{D} y \big[\, (x+1) f(x) \, + (x-1) f(-x) \, \big] \, \mathrm{d}\sigma \\ & = \iint_{D_{1}} y \big[\, (x+1) f(x) \, + (x-1) f(-x) \, \big] \, \mathrm{d}\sigma \, + \iint_{D_{2}} y \big[\, (x+1) f(x) \, + (x-1) f(-x) \, \big] \, \mathrm{d}\sigma \, = 0. \end{split}$$

附注 本题的题解有两点值得注意:

(I) 微分方程 $xy'(x) - y(x) = -\frac{8}{3}x^{\frac{1}{3}}$ 也可用以下方法求解:

所给微分方程可以改写成

图答 5-21

$$y'(x) - \frac{1}{x}y(x) = -\frac{8}{3}x^{-\frac{2}{3}}(线性微分方程),$$

所以, $y(x) = e^{\int \frac{1}{x} dx} \left(c + \int -\frac{8}{3}x^{-\frac{2}{3}} e^{\int -\frac{1}{x} dx} dx \right)$
 $= cx + 4x^{\frac{1}{3}}.$

(II) 计算 $\iint_D y[(x+1)f(x) + (x-1)f(-x)]d\sigma$ 的关键是将 D 划分成 D_1 与 D_2 两部分,然后利用对称性快捷地算出 D_1 与 D_2 上的二重积分.

(22) 由于
$$b = \beta^{\mathrm{T}} \alpha = \left(1, \frac{1}{2}, 0\right) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 2, b^4 = 16,$$

$$2b^{2}\boldsymbol{A}^{2} = 2 \cdot 2^{2} (\boldsymbol{\alpha}\boldsymbol{\beta}^{T}) (\boldsymbol{\alpha}\boldsymbol{\beta}^{T}) = 8\boldsymbol{\alpha}(\boldsymbol{\beta}^{T}\boldsymbol{\alpha})\boldsymbol{\beta}^{T} = 16\boldsymbol{A}, \quad \sharp \boldsymbol{\dagger}, \quad \boldsymbol{A} = \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 2 & 1 & 0 \\ 1 & \frac{1}{2} & 0 \end{pmatrix},$$

$$A^{4} = (\alpha \beta^{T}) (\alpha \beta^{T}) (\alpha \beta^{T}) (\alpha \beta^{T}) = \alpha (\beta^{T} \alpha)^{3} \beta^{T} = 8A$$

所以, 所给的方程组成为

$$(8\mathbf{A} - 16\mathbf{E}_3)\mathbf{x} = \mathbf{\gamma}, \quad \mathbb{P}(\mathbf{A} - 2\mathbf{E}_3)\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

或者

$$\begin{pmatrix}
-1 & \frac{1}{2} & 0 \\
2 & -1 & 0 \\
1 & \frac{1}{2} & -2
\end{pmatrix} \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$
(1)

由于
$$\begin{pmatrix} -1 & \frac{1}{2} & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 1 & \frac{1}{2} & -2 & 1 \end{pmatrix} \xrightarrow{ (以下同) } \begin{pmatrix} -1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix},$$

所以,式(1)与方程组

$$\begin{cases}
-2x_1 + x_2 = 0, \\
x_2 - 2x_3 = 1
\end{cases}$$
(2)

同解. 式(2)的导出组的通解为 $c(1, 2, 1)^{\mathrm{T}}$, 此外, 式(2)有特解 $\left(0, 0, -\frac{1}{2}\right)^{\mathrm{T}}$, 所以, 式(2),即式(1)的通解为 $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}} = c(1, 2, 1)^{\mathrm{T}} + \left(0, 0, -\frac{1}{2}\right)^{\mathrm{T}}$ (其中, c 是任意常数).

附注 设 α , β 都是n 维列向量, 则 $\alpha^T \beta$ 是一个常数, 记为c; $\alpha \beta^T$ 是n 阶矩阵, 记为

A.则 $r(A) \leq 1$. 且对正整数 k.有

$$A^{k} = (\alpha \beta)^{T} (\alpha \beta)^{T} \cdots (\alpha \beta^{T}) = c^{k-1} A.$$

$$(23) \ \text{diff} \ | \lambda E_{3} - A | = \begin{vmatrix} \lambda & 1 & -4 \\ 1 & \lambda - 3 & 1 \\ -4 & 1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 3 & 1 & -4 \\ \lambda - 1 & \lambda - 3 & 1 \\ \lambda - 3 & 1 & \lambda \end{vmatrix}$$

$$= \begin{vmatrix} \lambda - 3 & 1 & -4 \\ \lambda - 1 & \lambda - 3 & 1 \\ 0 & 0 & \lambda + 4 \end{vmatrix} = (\lambda - 2) (\lambda - 5) (\lambda + 4),$$

所以 A 有特征值 $\lambda = 2$, 5, -4.

设对应 $\lambda = 2$ 的特征向量为 $\boldsymbol{a} = (a_1, a_2, a_3)^T$,则 \boldsymbol{a} 满足

$$\begin{pmatrix} 2 & 1 & -4 \\ 1 & -1 & 1 \\ -4 & 1 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}. \tag{1}$$

由于
$$\begin{pmatrix} 2 & 1 & -4 \\ 1 & -1 & 1 \\ -4 & 1 & 2 \end{pmatrix}$$
 初等行变换 $\begin{pmatrix} 0 & 3 & -6 \\ 1 & -1 & 1 \\ 0 & -3 & 6 \end{pmatrix}$ \longrightarrow $\begin{pmatrix} 0 & 1 & -2 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ \longrightarrow $\begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$,

所以,式(1)与方程组 $\begin{cases} a_2 - 2a_3 = 0, \\ a_1 - a_2 = 0 \end{cases}$ 同解,故可取 \boldsymbol{a} 为它的基础解系,即 $\boldsymbol{a} = (1, 2, 1)^T$.

设对应 $\lambda = 5$ 的特征向量为 $\boldsymbol{b} = (b_1, b_2, b_3)^T$,则 \boldsymbol{b} 满足

$$\begin{pmatrix} 5 & 1 & -4 \\ 1 & 2 & 1 \\ -4 & 1 & 5 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0}. \tag{2}$$

由于
$$\begin{pmatrix} 5 & 1 & -4 \\ 1 & 2 & 1 \\ -4 & 1 & 5 \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 0 & -9 & -9 \\ 1 & 2 & 1 \\ 0 & 9 & 9 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

所以,式(2)与方程组 $\begin{cases} b_2+b_3=0, \\ b_1+b_2=0 \end{cases}$ 同解,故可取 \boldsymbol{b} 为它的基础解系,即 $\boldsymbol{b}=(1,-1,-1,-1)$ 1)^T.

设对应 $\lambda = -4$ 的特征向量为 $\boldsymbol{c} = (c_1, c_2, c_3)^T$,则由 \boldsymbol{A} 是实对称矩阵知, $\boldsymbol{c} 与 \boldsymbol{a}$, \boldsymbol{b} 都 正交, 所以有

$$\begin{cases} (\boldsymbol{c}, \boldsymbol{a}) = 0, \\ (\boldsymbol{c}, \boldsymbol{b}) = 0, \end{cases} \emptyset \begin{cases} c_1 + 2c_2 + c_3 = 0, \\ c_1 - c_2 + c_3 = 0. \end{cases}$$
由于它与 $\begin{cases} c_2 = 0, \\ c_1 + c_3 = 0. \end{cases}$ 同解,

故可取 c 为它的基础解系,即 $c = (1, 0, -1)^T$.

显然, a, b, c 是正交向量组, 现将它们单位化:

$$\boldsymbol{\xi} = \frac{\boldsymbol{a}}{\parallel \boldsymbol{a} \parallel} = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{\mathrm{T}},$$
$$\boldsymbol{\eta} = \frac{\boldsymbol{b}}{\parallel \boldsymbol{b} \parallel} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{\mathrm{T}},$$

正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下, $f(x_1, x_2, x_3) = 2y_1^2 + 5y_2^2 - 4y_3^2$ (标准形).

知,在正交变换x = Qy下,

$$f_{2}(x_{1}, x_{2}, x_{3}) = \mathbf{x}^{T} \mathbf{A}^{*} \mathbf{x} = \mathbf{y}^{T} (\mathbf{Q}^{T} \mathbf{A}^{*} \mathbf{Q}) \mathbf{y} = \mathbf{y}^{T} \begin{pmatrix} -20 \\ -8 \\ -10 \end{pmatrix} \mathbf{y}$$

$$= -20\gamma_{1}^{2} - 8\gamma_{2}^{2} + 10\gamma_{3}^{2} (\text{标准形}).$$

附注 由题解可知,如果 A 是 n 阶可逆实对称矩阵,则当正交变换 x = Qy (其中, $x = (x_1, x_2, \dots, x_n)^T$, $y = (y_1, y_2, \dots, y_n)$,Q 是正交矩阵)将二次型 $f_1(x_1, x_2, \dots, x_n) = x^T A x$ 化为标准形 $\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$ (其中 λ_1 , λ_2 , … , λ_n 是 A 的特征值)时,必将二次型 $f_2(x_1, x_2, \dots, x_n) = x^T A^* x$ 化为标准形 $\mu_1 y_1^2 + \mu_2 y_2^2 + \dots + \mu_n y_n^2$ (其中 μ_1 , μ_2 , … , μ_n 是 A^* 的特征值).

模拟试题(六)解答

一、选择题

 答案
 (1) (2) (3) (4) (5) (6) (7) (8)

 B C C D B C C B

(1) $f(x) = x \mid x \mid (x-2)^2 \mid x-2 \mid$,可能的不可导点为 x = 0 , 2. 在点 x = 0 邻近,

$$f(x) = -x \mid x \mid (x-2)^{3} = \begin{cases} x^{2}(x-2)^{3}, & x \le 0, \\ -x^{2}(x-2)^{3}, & x > 0, \end{cases}$$

$$f'(x) = \begin{cases} 2x(x-2)^{3} + 3x^{2}(x-2)^{2}, & x < 0, \\ -\left[2x(x-2)^{3} + 3x^{2}(x-2)^{2}\right], & x > 0, \end{cases}$$

$$2x(x-2)^{3} + 3x^{2}(x-2)^{2}$$

由此得到, $f_-''(0) = \lim_{x \to 0^-} \frac{2x(x-2)^3 + 3x^2(x-2)^2}{x} = -16, f_+''(0) = 16,$

所以, x = 0 是 f(x) 的 2 阶不可导点.

在点 x = 2 邻近.

$$f(x) = x^{2}(x-2)^{2} | x-2 | = \begin{cases} -x^{2}(x-2)^{3}, & x \leq 2, \\ x^{2}(x-2)^{3}, & x > 2, \end{cases}$$

$$f'(x) = \begin{cases} -\left[2x(x-2)^{3} + 3x^{2}(x-2)^{2}\right], & x < 2, \\ 2x(x-2)^{3} + 3x^{2}(x-2)^{2}, & x > 2, \end{cases}$$

$$f''(2) = \lim_{x \to 2^{-}} \frac{-\left[2x(x-2)^{3} + 3x^{2}(x-2)^{2}\right]}{x-2} = 0, f''(2) = 0,$$

由此得到

所以, x=2 是 f(x) 的 2 阶可导点. 因此选(B).

附注 应记住以下结论:

(x-a) | x-a | 在x=a 处 2 阶不可导, $(x-a)^2$ | x-a | 在点x=a 处 2 阶可导.

(2) 当f(x)是偶函数时,由定积分性质知 $\int_{-x}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt (-\infty < x < +\infty)$ 成立.

反之, 当 $\int_{-x}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt (-\infty < x < +\infty)$ 时,由

$$\int_{-x}^{x} f(t) dt = \int_{-x}^{0} f(t) dt + \int_{0}^{x} f(t) dt = \int_{0}^{x} f(-u) du + \int_{0}^{x} f(t) dt (\sharp P u = -t)$$

$$= \int_{0}^{x} f(-t) dt + \int_{0}^{x} f(t) dt$$

得 $\int_0^x f(-t) dt = \int_0^x f(t) dt$. 于是由 x 是($-\infty$, $+\infty$)上的任意实数知, $f(-t) = f(t)(-\infty < t < +\infty)$, 即 f(x) 是偶函数. 因此选(C).

附注 应记住本题的结论:

设f(x)是连续函数,则 $\int_{-x}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt (-\infty < x < +\infty)$ 是f(x)为偶函数的充分

必要条件.

(3) 显然 x = 0, 1 都是方程的实根. 记 $f(x) = 2^x - x^2 - 1$, 则 f(x) 连续,且 f(2) · $\lim_{x \to +\infty} f(x) < 0$,所以由零点定理(推广形式)知所给方程 f(x) = 0 在 $(2, +\infty)$ 上有实根,记为 x_0 .

如果 f(x) = 0 还有不同实根 x_1 ,不妨设 $x_1 > x_0$,则由 f(x) 在 $(2, +\infty)$ 上 3 阶可导,且 $f(0) = f(1) = f(x_0) = f(x_1)$ 及罗尔定理(高阶导数形式)知,存在 $\xi \in (0, x_1)$,使得

$$f^{(3)}(\xi) = 0. {1}$$

另一方面, 计算 f(x) 的 3 阶导数得

$$f^{(3)}(\xi) = 2^{\xi} (\ln 2)^3 \neq 0.$$
 (2)

由式(1)与式(2)矛盾知,方程f(x)=0,即 $2^x-x^2-1=0$ 除 0, 1, x_0 外,别无其他实根.因此选(C).

附注 (I)零点定理的一种推广形式

设函数 f(x) 在 $[a, +\infty)$ 上连续,且 $f(a) \cdot \lim_{x \to +\infty} f(x) < 0$,则存在 $\xi \in (a, +\infty)$,使得 $f(\xi) = 0$.

(Ⅱ) 罗尔定理的一种推广形式

设函数 f(x) 在 [a, b] 上连续,在 (a, b) 内 3 阶可导,且有 $x_1, x_2 \in (a, b)$ (其中 $x_1 < x_2$),使得 $f(a) = f(x_1) = f(x_2) = f(b)$,则存在 $\xi \in (a, b)$,使得 $f^{(3)}(\xi) = 0$.

题解中使用了以上两种推广形式.

(4) 由于 $f_{xx}''(x_0, y_0) = \frac{\mathrm{d}}{\mathrm{d}x} f_x'(x, y_0) \Big|_{x=x_0}$,所以由 $f_{xx}''(x, y)$ 在点 (x_0, y_0) 处存在知 $f_x'(x, y_0)$ 在点 x_0 处可微. 因此选(D).

附注 当题中所给的三个 2 阶偏导数在点 (x_0, y_0) 处连续时,选项(A)、(B)、(C)都正确,但仅假设这三个偏导数在点 (x_0, y_0) 处存在,未必能推出这三个选项正确.

(5) 由于
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr = \iint_D f(x, y) d\sigma,$$
其中
$$D = \left\{ (r, \theta) \mid 0 \le r \le 2\cos\theta, 0 \le \theta \le \frac{\pi}{2} \right\} = \left\{ (x, y) \mid (x - 1)^2 + y^2 \le 1, 0 \le y \le 1 \right\}$$

$$= \left\{ (x, y) \mid 1 - \sqrt{1 - y^2} \le x \le 1 + \sqrt{1 - y^2}, 0 \le y \le 1 \right\},$$

所以,由
$$\iint_{D} f(x,y) d\sigma = \int_{0}^{1} dy \int_{1-\sqrt{1-y^{2}}}^{1+\sqrt{1-y^{2}}} f(x,y) dx$$
 得

$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr = \int_0^1 dy \int_{1-\sqrt{1-x^2}}^{1+\sqrt{1-y^2}} f(x,y) dx. 因此选(B).$$

附注 将所给的二次积分改写成先 θ 后 r 次序的二次积分, 具体如下:

由于积分区域 $D = \{(r, \theta) \mid 0 \le \theta \le \arccos \frac{r}{2}, 0 \le r \le 2\}$,所以

$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr = \int_0^2 dr \int_0^{\arccos\frac{r}{2}} f(r\cos\theta, r\sin\theta) r d\theta.$$

(6) 由洛必达法则得

$$\lim_{x \to 0} \frac{1 - \cos x}{y(x)} = \lim_{x \to 0} \frac{\sin x}{y'(x)} = \lim_{x \to 0} \frac{\cos x}{y''(x)}$$
$$= \lim_{x \to 0} \frac{\cos x}{e^{2x} - py'(x) - qy(x)} = \frac{1}{1 - p \cdot 0 - q \cdot 0} = 1.$$

因此选(C).

附注 这里不必算出 y(x) (实际上,在未知 p, q 的情况下,计算 y(x) 是不容易的),只需利用洛必达法则即可算出所给的极限.

(7) 由于方程组 Ax = 0 的解 x_0 可使 $A^TAx_0 = 0$,所以 x_0 也是方程组 $A^TAx = 0$ 的解.

反之,设 $A^{T}Ax = 0$ 有解 ξ ,则 $\xi^{T}A^{T}A\xi = 0$,即 $(A\xi)^{T}(A\xi) = 0$.记实向量 $A\xi = (\xi_1, \xi_2, \dots, \xi_n)^{T}$,则由上式得 $\xi_1^2 + \xi_2^2 + \dots + \xi_n^2 = 0$,即 $\xi_1 = \xi_2 = \dots = \xi_n = 0$.所以有 $A\xi = 0$,即 ξ 也是方程Ax = 0的解.因此选(C).

附注 本题表明: 设 A 是 n 阶实矩阵,则 Ax = 0 与 $A^{T}Ax = 0$ 是同解方程组.

(8) 由于
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^3 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^4$$
$$= \begin{pmatrix} 0 & 4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^4 = \begin{pmatrix} 0 & 4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix},$$

所以, $|\lambda E_3 - A| = \begin{vmatrix} \lambda & -4 & 0 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda - 3 \end{vmatrix} = 0$ (其中 E 是 3 阶单位矩阵)有解 $\lambda = -2, 2, 3$.

从而 A 的最小特征值为 -2. 因此选(B).

附注 题解中,如果注意到 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 和 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ 都是初等矩阵,它们的三次方与四

次方分别左乘、右乘 $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ 表明,对 \mathbf{B} 施行三次"交换第一、二行"的初等变换后,

再施行四次"交换第二、三列"的初等变换,则可以很快获解.

二、填空题

(9) 由 f(x) 在点 x = 0 处连续知,

$$a = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(e^x + \sin x \right)^{\frac{1}{\ln(1+x)}} = e^{\lim_{x \to 0^+} \frac{\ln(e^x + \sin x)}{\ln(1+x)}},$$
(1)

其中,
$$\lim_{x\to 0^+} \frac{\ln(e^x + \sin x)}{\ln(1+x)} = \lim_{x\to 0^+} \frac{\ln[1 + (e^x + \sin x - 1)]}{x} = \lim_{x\to 0^+} \frac{e^x - 1 + \sin x}{x} = 2.$$
 (2)

将式(2)代入式(1)得 $a = e^2$.

附注 (I)计算 $\frac{0}{0}$ 型未定式极限 $\lim \frac{f(x)}{g(x)}$ 时,首先要对 $\lim \frac{f(x)}{g(x)}$ 进行化简,其中对f(x)或 g(x)作等价无穷小代替是最常用的,也是最有效的化简方法.

(II) 计算 0^0 , 1^∞ , ∞^0 型未定式极限 $\lim_{x \to \infty} [f(x)]^{g(x)}$ 时,应首先将函数指数化,即 $[f(x)]^{g(x)} = e^{g(x)\ln f(x)}$,于是

$$\lim[f(x)]^{g(x)} = e^{\lim(x)\ln f(x)} = \begin{cases} e^A, & \lim(x)\ln f(x) = A, \\ 0, & \lim(x)\ln f(x) = -\infty, \\ +\infty, & \lim(x)\ln f(x) = +\infty. \end{cases}$$

(10) 由于 t=0 是 $\frac{\sin t}{t}$ 的可去间断点,定义 $\frac{\sin t}{t}\Big|_{t=0}=\lim_{t\to 0}\frac{\sin t}{t}=1$,则 $\int_0^x \frac{\sin t}{t}dt$ 是积分上限函数.于是有

$$f(0) = \int_0^x \frac{\sin t}{t} dt \Big|_{x=0} = 0,$$

$$f'(0) = \frac{\sin x}{x} \Big|_{x=0} = 1,$$

从而所求的切线方程为y-f(0)=f'(0)(x-0), 即y=x.

附注 如果 x = a 是函数 f(x) 的可去间断点,且定义 $f(a) = \lim_{x \to a^+} f(x)$,则 $F(x) = \int_a^x f(t) dt$ 是积分上限函数,故有

$$F(a) = 0, \quad F'(a) = f(a).$$

题解中利用了上述结论.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{-\frac{1}{2t^2}}{\frac{2t}{1+t^2}} = -\frac{1+t^2}{4t^3}.$$

附注 计算由参数方程 $\begin{cases} x = \varphi(t), \\ y = \psi(t) \end{cases}$ 表示的函数 y = y(x) 的 2 阶导数时,必须按公式

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)}{\frac{\mathrm{d}x}{\mathrm{d}t}} \underbrace{\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}} = \frac{\mathrm{d}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)}{\mathrm{d}x}$$

计算.

$$(12) \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \left(f_1' \frac{\partial u}{\partial x} + f_2' \right) + \left(f_1' \frac{\partial u}{\partial y} + f_3' \right)$$
$$= f_1' (2xe^y + x^2e^y) + (f_x' + f_y') = f_1' (2 + x)xe^y.$$

附注 $\frac{\partial z}{\partial x}$ 与 f'_x 是不同的概念:

$$\frac{\partial z}{\partial x} = f_1' \frac{\partial u}{\partial x} + f_2', \overrightarrow{\mathbb{m}} f_x' = f_2'.$$

同样, $\frac{\partial z}{\partial y}$ 与 f'_y 也是不同的概念.

(13) y'' - 2y' + y = 0 的特征方程 $\lambda^2 - 2\lambda + 1 = 0$ 有根 $\lambda = 1$ (二重),所以 y'' - 2y' + y = 0 的通解为 $Y = (C_1 + C_2 x) e^x$.

此外,记 $e^x = e^{\alpha x}$,则 $\alpha = 1$ 是上述特征方程的二重根,所以, $y'' - 2y' + y = e^x$ 有特解 $y^* = x^2 \cdot Ae^x$,将它代入 $y'' - 2y' + y = e^x$ 得 $A = \frac{1}{2}$,故 $y^* = \frac{1}{2}x^2e^x$. 因此所求的通解为

$$y = Y + y^* = (C_1 + C_2 x) e^x + \frac{1}{2} x^2 e^x.$$

附注 要记住 2 阶常系数齐次线性微分方程的通解及右端函数为 $e^{\lambda x} P_n(x)$, $e^{\alpha x}[Q_l(x)\cdot\cos\beta x+R_m(x)\sin\beta x](P_n(x),Q_l(x),R_m(x)分别为 n,l,m 次多项式)或它们的线性组合的 2 阶常系数非齐次线性微分方程应有的特解形式.$

(14) 由于
$$A^* = |A|A^{-1}$$
,

其中,
$$|A|$$
 = $\begin{vmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{vmatrix}$ = $\begin{vmatrix} 0 & 1 & 2 \\ 0 & 1 & 1 \\ -1 & 0 & 0 \end{vmatrix}$ = $-\begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix}$ = 1,

$$\boldsymbol{A}^{-1} = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 0 & \begin{pmatrix} 1 & 0 \\ 0 & 0 & \begin{pmatrix} 0 & -1 \end{pmatrix} \\ \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}^{-1} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix},$$

从而
$$A^* = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}.$$

附注 如果记住以下公式,将能快捷地算出 A^* :

设A, B 都是n 阶可逆矩阵, 则

$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}^* = \begin{pmatrix} \mid B \mid A^* & O \\ O & \mid A \mid B^* \end{pmatrix},$$

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix}^* = \begin{pmatrix} O & \mid A \mid B^* \\ \mid B \mid A^* & O \end{pmatrix}.$$

三、解答题

$$(15) \int \frac{\sin x}{\sqrt{2 + \sin 2x}} dx = \frac{1}{2} \int \frac{\cos x + \sin x}{\sqrt{2 + \sin 2x}} dx - \frac{1}{2} \int \frac{\cos x - \sin x}{\sqrt{2 + \sin 2x}} dx$$
$$= \frac{1}{2} \int \frac{1}{\sqrt{3 - (\sin x - \cos x)^2}} d(\sin x - \cos x) - \frac{1}{2} \int \frac{1}{\sqrt{1 + (\sin x + \cos x)^2}} d(\sin x + \cos x)$$

$$= \frac{1}{2}\arcsin\frac{\sin x - \cos x}{\sqrt{3}} - \frac{1}{2}\ln(\sin x + \cos x + \sqrt{1 + \sin 2x}) + C.$$

附注 本题获解的关键是,把所给的不定积分表示为两个不定积分之差,然后利用基本积分公式(a > 0)

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C \pi \iint \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln |x + \sqrt{x^2 \pm a^2}| + C$$

计算. 顺便指出,下列两个不定积分公式也是常用的,应记住(a > 0):

$$\int \sqrt{a^2 - x^2} dx = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C;$$

$$\int \sqrt{x^2 \pm a^2} dx = \frac{a^2}{2} \ln |x + \sqrt{x^2 \pm a^2}| \pm \frac{x}{2} \sqrt{x^2 \pm a^2} + C.$$

$$(16) \stackrel{?}{i} = \int_0^1 f(x) dx, B = \int_0^1 g(x) dx, \boxed{y}$$

$$\begin{cases} f(x) = 3x^2 + g(x) - A, \\ g(x) = 4x - f(x) + 2B. \end{cases}$$

由此得到

$$f(x) = \frac{3}{2}x^2 + 2x + B - \frac{A}{2},$$

$$g(x) = -\frac{3}{2}x^2 + 2x + B + \frac{A}{2}.$$

在[0,1]上积分得

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{3}{2} + B - \frac{A}{2}, \, \exists \frac{3}{2} A = \frac{3}{2} + B,$$

$$\int_0^1 g(x) \, \mathrm{d}x = \frac{1}{2} + B + \frac{A}{2}, \, \exists \frac{1}{2} A = -1, \, \exists \frac{1}{2} A = -3.$$

因此
$$f(x) = \frac{3}{2}x^2 + 2x - \frac{5}{2}$$
. 由此得到所求图形面积

$$S = \int_{-\frac{5}{3}}^{1} |f(x) - x| dx = -\frac{1}{2} \int_{-\frac{5}{3}}^{1} (3x^{2} + 2x - 5) dx$$
$$= -\frac{1}{2} (x^{3} + x^{2} - 5x) \Big|_{-\frac{5}{3}}^{1} = \frac{128}{27}.$$

附注 由于y = f(x) - x的图形如图答6-16所示,所

以

$$S = \int_{-\frac{5}{3}}^{1} |f(x) - x| dx.$$

$$(17) (I) \exists x_0 \in (0, 1) \exists \exists x_0 \in ($$

同理可得 $0 < x_n < 1(n = 2, 3, \dots)$,所以 $\{x_n\}$ 有上界,并且由

图答 6-16

$$x_{n+1} - x_n = x_n (1 - x_n) > 0 (n = 0, 1, 2, \cdots)$$

知 $\{x_n\}$ 单调增加.因此,由数列极限存在准则知 $\lim x_n$ 存在,记为 A,对于所给的递推式两 边, $\Diamond n \rightarrow \infty$ 取极限得

$$A = -A^2 + 2A$$
, 即 $A = 1$, 0 (不合题意, 舍去),

由此得到 $\lim x_n = 1$.

(II) 将 $e^{\sin(x_n-1)} - e^{x_n-1}$ 中的 x_n-1 改为 x,考虑函数 $e^{\sin x} - e^x$.

由于 $x\to 0$ 时, $e^{\sin x} - e^x = e^x (e^{\sin x - x} - 1) \sim \sin x - x$

$$=x-\frac{1}{3!}x^3+o(x^4)-x=-\frac{1}{6}x^3+o(x^4)\sim -\frac{1}{6}x^3,$$

所以, 由 $x_n - 1 \to 0$ $(n \to \infty)$ 知, 当 $n \to \infty$ 时, $e^{\sin(x_n - 1)} - e^{x_n - 1}$ 的等价无穷小为 $-\frac{1}{6}(x_n - 1)^3$.

附注 由递推式确定的数列 $\{x_n\}$ 的极限,往往利用以下的数列极限存在准则计算: 如果,数列 $\{x_n\}$ 是单调不减有上界或单调不增有下界,则极限 $\lim x_n$ 存在.

(18) $i = f(x) = 2\sin x + \tan x - 3x$, i = 0

$$f'(x) = 2\cos x + \sec^2 x - 3 = \tan^2 x - 2(1 - \cos x)$$
$$> \tan^2 x - 2 \cdot \frac{x^2}{2} = \tan^2 x - x^2 > 0, \ x \in \left(0, \frac{\pi}{2}\right),$$

即 f(x) 在 $\left(0, \frac{\pi}{2}\right)$ 内单调增加. 所以, 对 $x \in \left(0, \frac{\pi}{2}\right)$ 有

$$f(x) > \lim_{x \to 0^+} f(x) = 0,$$

 $\mathbb{E}[2\sin x + \tan x > 3x \left(x \in \left(0, \frac{\pi}{2} \right) \right)].$

附注 要证明函数不等式 f(x) > g(x) $(x \in (a, b))$ (其中 f(x) 与 g(x) 在(a, b) 内可 导). 总是按以下步骤进行:

- (I) 作辅助函数 $\varphi(x) = f(x) g(x)$:
- (**I**) 计算 *φ*′(*x*).

如果 $\varphi'(x) > 0(x \in (a, b))$, 且 $\lim_{x \to a} \varphi(x) = A \ge 0$, 则有

$$\varphi(x) > 0$$
, $\mathbb{P} f(x) > g(x) (x \in (a, b))$.

如果 $\varphi'(x) < 0(x \in (a, b))$,且 $\lim_{x \to b^-} \varphi(x) = B \ge 0$,则有

$$\varphi(x) > 0$$
, $\mathbb{P} f(x) > g(x) (x \in (a, b))$.

(19) 由
$$\frac{\partial u}{\partial x} = 2x[1 + 2(x^2 + y^2)]$$
, $\frac{\partial u}{\partial y} = 2y[1 + 2(x^2 + y^2)]$ 知, 方程组
$$\begin{cases} \frac{\partial u}{\partial x} = 0, \\ \frac{\partial u}{\partial x} = 0 \end{cases}$$

0, y=0, 所以 u 在 D 的内部无可能极值点.

D 的边界由三部分组成 $I: x + y = 1(0 \le x \le 1)$, $II: y = 0(0 \le x \le 1)$, $III: x = 0(0 \le y \le 1)$.

$$i \exists f_1(x) = u \mid_{I} = x^2 + (1 - x)^2 + [x^2 + (1 - x)^2]^2$$
$$= 2x^2 - 2x + 1 + (2x^2 - 2x + 1)^2,$$

则
$$f_1'(x) = (4x-2)[1+2(2x^2-2x+1)]$$
 $\begin{cases} <0, & 0 < x < \frac{1}{2}, \\ =0, & x = \frac{1}{2}, \\ >0, & \frac{1}{2} < x < 1, \end{cases}$

所以, u 在 I 上的最大值为 u(0, 1) = u(1, 0) = 2, 最小值为 $u\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{3}{4}$.

记 $f_2(x) = u \mid_{\mathbb{I}} = x^2 + x^4$,它在(0, 1)内单调增加,所以 u 在 \mathbb{I} 上的最大值为 u(1, 0) = 2,最小值为 u(0, 0) = 0.

同样可得 u 在 III 上的最大值为 u(0, 1) = 2,最小值为 u(0, 0) = 0. 于是 u 在 D 的边界上的最大值为 2,最小值为 0,它们即分别为 u 在 D 上的最大值与最小值.

附注 二元连续函数 f(x, y) 在有界闭区域 D(它的边界为 C) 上必有最大值与最小值,它们可按以下步骤计算.

(I) 计算 f(x, y) 在 D 的内部的所有可能极值点,记为

$$(x_i, y_i)(i=1, 2, \dots, n).$$

(II) 计算 f(x, y) 在 C 上的最大值与最小值,分别记为 M_1 与 m_1 ,则 f(x, y) 在 D 上的最大值为 $\max\{f(x_1, y_1), f(x_2, y_2), \dots, f(x_n, y_n), M_1\}$,最小值为 $\min\{f(x_1, y_1), \dots, f(x_n, y_n), m_1\}$. 这里 M_1 与 m_1 有两种计算方法:

方法一 将 C 的方程代入 f(x, y),记 $\varphi(x) = f(x, y) \mid_C (a \le x \le b)$,然后按一元函数最值计算方法计算 $\varphi(x)$ 在 [a, b] 上的最值,由此得到 M_1 与 m_1 .

方法二 设 C 的方程为 c(x, y) = 0,用拉格朗日乘数法,计算 f(x, y) 在约束条件 c(x, y) = 0下的最值,即可得到 M_1 与 m_1 .

(20)
$$\exists \exists \lim_{t \to 0} \frac{(1 - \cos t) [t - \ln(1 + \tan t)]}{t^3} = \lim_{t \to 0} \left[\frac{1 - \cos t}{t^2} \cdot \frac{t - \ln(1 + \tan t)}{t} \right]$$

$$= \frac{1}{2} \lim_{t \to 0} \frac{t - \ln(1 + \tan t)}{t}$$

$$= \frac{1}{2} \left(1 - \lim_{t \to 0} \frac{\tan t}{t} \right) = 0,$$

所以, y(0) = y'(0) = 0.

令 p = y',则所给微分方程成为

$$p \frac{dp}{dy} = -(p^2 + 1), \quad \mathbb{N} \frac{p}{p^2 + 1} dp = -dy,$$

所以,
$$\frac{1}{2}\ln(1+p^2) = -y + C_1$$
,将 $p \mid_{y=0} = 0$ 代入得 $C_1 = 0$,因此

$$\frac{1}{2}\ln(1+p^2) = -y, \ \text{III} \ 1+p^2 = \mathrm{e}^{-2y},$$

从而 $p = \pm \sqrt{e^{-2y} - 1}$,即 $\frac{dy}{\sqrt{e^{-2y} - 1}} = \pm dx$,它的通解为

$$\arcsin e^y = \pm x + C.$$

将
$$y(0) = 0$$
 代入上式得 $C = \frac{\pi}{2}$, 所以有

$$\arcsin e^{y} = \pm x + \frac{\pi}{2}, \quad \exists \exists y = \ln \cos x \left(0 \le x < \frac{\pi}{2} \right).$$

附注 $y'' + (y')^2 + 1 = 0$ 是可降阶的 2 阶微分方程,由于在其中不出现 x,所以令 p = y',并将 y 看做自变量 $\left(\text{此时 } y'' = p \frac{\mathrm{d}p}{\mathrm{d}y} \right)$ 进行降阶.

(21) D 如图答 6-21 所示,显然它关于直线 y = x 对称,在对称点(x, y)与(y, x)处

$$\frac{af(x) + bf(y)}{f(x) + f(y)} - \frac{af(y) + bf(x)}{f(y) + f(x)}$$

的值互为相反数, 所以

$$\iint_{D} \left[\frac{af(x) + bf(y)}{f(x) + f(y)} - \frac{af(y) + bf(x)}{f(y) + f(x)} \right] d\sigma = 0,$$

$$\iint_{D} \frac{af(x) + bf(y)}{f(x) + f(y)} d\sigma = \iint_{D} \frac{af(y) + bf(x)}{f(y) + f(x)} d\sigma$$

$$= \frac{1}{2} \iint_{D} \left[\frac{af(y) + bf(x)}{f(y) + f(x)} + \frac{af(x) + bf(y)}{f(x) + f(y)} \right] d\sigma$$

$$a + b \iint_{D} \frac{a + b}{f(x) + f(x)} dx = 0.$$

 $=\frac{a+b}{2}\iint\limits_{D}\mathrm{d}\sigma=\frac{a+b}{2}\cdot 4\iint\limits_{D_{1}}\mathrm{d}\sigma($ 由于D关于x轴和y轴都对称,所以 $\iint\limits_{D}\mathrm{d}\sigma=4\iint\limits_{D_{1}}\mathrm{d}\sigma,$ 其中 D_{1} 是D的第一象限部分)

$$= 2(a+b) \cdot 2 \iint_{D_1'} d\sigma (由于 D_1 关于直线 y = x 对称,所以 \iint_{D_1} d\sigma = 2 \iint_{D_1'} d\sigma, 其中 D_1' 是 D_1$$

極坐标
$$4(a+b)$$
 $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{\frac{2}{\sqrt{1+\sin 2\theta}}} r dr = 4(a+b)$ $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2} r^2 \Big|_{0}^{\frac{2}{\sqrt{1+\sin 2\theta}}} d\theta$

$$= 8(a+b) \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{1+\sin^2 \theta} \mathrm{d}\theta = 8(a+b) \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{\sec^2 \theta + \tan^2 \theta} \mathrm{d}\tan \theta$$

$$=4(a+b)\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{\sqrt{2}}{2\tan^2\theta+1}\mathrm{d}(\sqrt{2}\tan\theta)=4\sqrt{2}(a+b)\cdot\arctan(\sqrt{2}\tan\theta)\Big|_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

图答 6-21

$$=4\sqrt{2}(a+b)\left(\frac{\pi}{2}-\arctan\sqrt{2}\right).$$

附注 利用积分区域的对称性是化简二重积分计算的重要手段. 对于二重积分 $\iint_D f(x,y) d\sigma$, 当积分区域 D 具有某种对称性时, 如果在对称点处 f(x,y) 的值互为相反数,则 $\iint_D f(x,y) d\sigma = 0$; 如果在对称点处 f(x,y) 的值彼此相等,则 $\iint_D f(x,y) d\sigma = 2 \iint_{D_1} f(x,y) d\sigma$ (其中 D_1 是 D 按其所具有的对称性划分成的两部分之一).

(22) 由于
$$\alpha_1$$
, α_2 , α_3 不能由 β_1 , β_2 , β_3 线性表示, 所以矩阵方程
$$(\beta_1, \beta_2, \beta_3)X = (\alpha_1, \alpha_2, \alpha_3)$$

无解,从而

$$r(\boldsymbol{\beta}_{1}, \, \boldsymbol{\beta}_{2}, \, \boldsymbol{\beta}_{3} \, \vdots \, \boldsymbol{\alpha}_{1}, \, \boldsymbol{\alpha}_{2}, \, \boldsymbol{\alpha}_{3}) > r(\boldsymbol{\beta}_{1}, \, \boldsymbol{\beta}_{2}, \, \boldsymbol{\beta}_{3}).$$
由于($\boldsymbol{\beta}_{1}, \, \boldsymbol{\beta}_{2}, \, \boldsymbol{\beta}_{3} \, \vdots \, \boldsymbol{\alpha}_{1}, \, \boldsymbol{\alpha}_{2}, \, \boldsymbol{\alpha}_{3}) = \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & b \\ 1 & 2 & 4 & 0 & 1 & 3 \\ 1 & 3 & b & a & 1 & 5 \end{pmatrix}$

$$\xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & b \\ 0 & 1 & 1 & -1 & 1 & 3 - b \\ 0 & 2 & b - 3 & a - 1 & 1 & 5 - b \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & b \\ 0 & 1 & 1 & -1 & 1 & 3 - b \\ 0 & 0 & b - 5 & a + 1 & -1 & b - 1 \end{pmatrix},$$

所以, b=5时, $r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3 \vdots \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = 3 > 2 = r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)$, 即此时 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 不能由 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 线性表示.

由于
$$\boldsymbol{\beta}_1$$
, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 可由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$ 线性表示, 所以矩阵方程 $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3)Y = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)$

有解,从而

$$r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 : \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3).$$
将 $b = 5$ 代入得

$$(\boldsymbol{\alpha}_{1}, \ \boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2}, \ \boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3} \vdots \boldsymbol{\beta}_{1}, \ \boldsymbol{\beta}_{2}, \ \boldsymbol{\beta}_{3}) = \begin{pmatrix} 1 & 1 & 6 & 1 & 1 & 3 \\ 0 & 1 & 4 & 1 & 2 & 4 \\ a & a+1 & a+6 & 1 & 3 & 5 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 6 & 1 & 1 & 3 \\ 0 & 1 & 4 & 1 & 2 & 4 \\ 0 & 0 & 2 - 5a & -a & 1 - a & 1 - 3a \end{pmatrix},$$

所以, $a \neq \frac{2}{5}$ 时, $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 \vdots \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3)$ (=3), 即此时, $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$ 线性表示.

附注 题解中有两点值得注意:

(I) 矩阵方程 AX = B 有解的充分必要条件是

$$r(A \mid B) = r(A)$$
.

而无解的充分必要条件是

$$r(A \mid B) > r(A)$$
.

(\mathbb{I}) 设有两个 n 维向量组(A): $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, …, $\boldsymbol{\alpha}_r$, (B) $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, …, $\boldsymbol{\beta}_s$, 则向量组(A) 可由向量组(B) 线性表示,且表示式唯一的充分必要条件是矩阵方程

$$(\boldsymbol{\beta}_1, \, \boldsymbol{\beta}_2, \, \cdots, \, \boldsymbol{\beta}_s) X = (\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \cdots, \, \boldsymbol{\alpha}_s) \tag{1}$$

有唯一解. 向量组(A)可由向量组(B)线性表示,但表示式不唯一的充分必要条件是矩阵方程(1)有无穷多解. 向量组(A)不可由向量组(B)线性表示的充分必要条件是矩阵方程(1)无解.

(23) 由 $f(x_1, x_2, x_3)$ 在正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下的标准形为 $y_1^2 + y_2^2 - y_3^2$ 知, \mathbf{A} 有特征值 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = -1$,且对应于 $\lambda_3 = -1$ 的特征向量为 $\boldsymbol{\alpha}_3 = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^T$.

设对应于 $\lambda_1 = \lambda_2 = 1$ 的特征向量为 $\alpha = (a_1, a_2, a_3)^T$,则由 A 是实对称矩阵知, α 与 α_3 正交,即

$$a_1 + a_3 = 0$$
.

它的基础解系为 $\alpha_1 = (0, 1, 0)^T$ 及 $\alpha_2 = (-1, 0, 1)^T$,它们可取为 A 的对应于 $\lambda_1 = \lambda_2 = 1$ 的特征向量. α_1 , α_2 , α_3 是正交向量组,现将它们单位化:

$$\boldsymbol{\xi}_{1} = \boldsymbol{\alpha}_{1} = (0, 1, 0)^{\mathrm{T}},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\alpha}_{2}}{\parallel \boldsymbol{\alpha}_{2} \parallel} = \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)^{\mathrm{T}},$$

$$\boldsymbol{\xi}_{3} = \boldsymbol{\alpha}_{3} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)^{\mathrm{T}},$$

它们是A的分别对应于特征值1, 1, -1的特征向量.

由此可知, A^* 的特征值为

$$\mu_1 = \frac{|A|}{\lambda_1} = -1$$
, $\mu_2 = \frac{|A|}{\lambda_2} = -1$, $\mu_3 = \frac{|A|}{\lambda_3} = 1$,

它们对应的特征向量分别为 ξ_1 , ξ_2 , ξ_3 , 记 $Q = (\xi_1, \xi_2, \xi_3)$ (正交矩阵), 则

$$\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}^{*}\boldsymbol{Q} = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 1 \end{pmatrix},$$

附注 题解中有两点值得注意:

- (I) 设A 是 n 阶可逆矩阵,有特征值 λ 及对应的特征向量 ξ ,则 A^* 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 ξ .
- (II) 设A 是可逆实对称矩阵,正交矩阵 Q 使它正交相似对角化,则 Q 也使 A^* (实对称矩阵)正交相似对角化.

模拟试题(七)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
台 柔	A	A	В	D	С	D	В	В

(1) 由于
$$y = \sin x \cos 2x = \frac{1}{2} (\sin 3x - \sin x)$$
,所以

$$y^{(5)} = \frac{1}{2} \left[3^5 \sin \left(3x + 5 \times \frac{\pi}{2} \right) - \sin \left(x + 5 \times \frac{\pi}{2} \right) \right]$$

$$= \frac{1}{2} (3^5 \cos 3x - \cos x).$$

因此选(A).

附注 应记住以下公式:

$$\left[\sin(ax+b)\right]^{(n)} = a^n \sin\left(ax+b+n\cdot\frac{\pi}{2}\right),$$
$$\left[\cos(ax+b)\right]^{(n)} = a^n \cos\left(ax+b+n\cdot\frac{\pi}{2}\right).$$

(2) 由于
$$\max\{e^{-t}, e^{t}\} = \begin{cases} e^{-t}, & t < 0, \text{所以} \\ e^{t}, & t \ge 0, \end{cases}$$

$$F(x) = \int_{0}^{x} \max\{e^{-t}, e^{t}\} dt = \begin{cases} \int_{0}^{x} e^{-t} dt, & x < 0, \\ \int_{0}^{x} e^{t} dt, & x \ge 0 \end{cases}$$

$$= \begin{cases} 1 - e^{-x}, x < 0, \\ e^{x} - 1, x \ge 0. \end{cases}$$

因此选(A).

附注 同样可以计算 $\int_{-\infty}^{x} \min\{e^{-t}, e^{t}\} dt$,具体如下:

由于
$$\min\{e^{-t}, e^{t}\} = \begin{cases} e^{t}, & t \leq 0, \text{所以} \\ e^{-t}, & t > 0, \end{cases}$$

$$\int_{-\infty}^{x} \min\{e^{-t}, e^{t}\} dt = \begin{cases} \int_{-\infty}^{x} e^{t} dt, & x \leq 0, \\ \int_{0}^{x} e^{t} dt + \int_{0}^{x} e^{-t} dt, & x > 0 \end{cases} = \begin{cases} e^{x}, & x \leq 0, \\ 2 - e^{-x}, & x > 0. \end{cases}$$

(3) 由于
$$e^{-x} \sin x = e^{\alpha x} \sin \beta_1 x$$
, $e^{-x} \cos 2x = e^{\alpha x} \cos \beta_2 x$ 中的 $\alpha + i \beta_1 = -1 + i, \alpha + i \beta_2 = -1 + 2i$

都不是 y'' + 2y' + y = 0 的特征方程之根,所以所给微分方程应有的特解形式为

 $e^{-x}(A_1\cos x + B_1\sin x + A_2\cos 2x + B_2\sin 2x).$

因此选(B).

附注 2 阶常系数线性微分方程

$$y'' + py' + qy = e^{\alpha x} [P_1(x) \cos \beta x + Q_m(x) \sin \beta x] (\beta \neq 0)$$

(这里 $P_l(x)$, $Q_m(x)$ 分别是l与m次多项式)应具有的特解形式为:

当 α + i β 不是 y'' + py' + qy = 0 的特征方程之根时,应具有的特解形式为 y^* = $e^{\alpha x} \left[R_n^{(1)}(x) \cos \beta x + R_n^{(2)}(x) \sin \beta x \right]$;

当 α + i β 是 y'' + py' + qy = 0 的特征方程之根时, 应具有的特解形式为 y^* = $e^{\alpha x}x[R_n^{(1)}(x)\cos\beta x + R_n^{(2)}(x)\sin\beta x]$.

以上的 $R_n^{(1)}(x)$ 与 $R_n^{(2)}(x)$ 都是 $n = \max\{l, m\}$ 次多项式.

(4) 由题设知

$$\lim_{x \to 0} \frac{f(x) - f(-x)}{x^3} = A \neq 0.$$

于是由洛必达法则得

$$\lim_{x \to 0} \frac{f'(x) + f'(-x)}{3x^2} = A.$$

从而 $\lim_{x\to 0} [f'(x) + f'(-x)] = 0$,即f'(0) = 0,所以x = 0 是f(x) 的驻点.

但是(0,f(0)) 未必是曲线的拐点,故选(D).

附注 记 $f_1(x) = \cos x + x^3$, $f_2(x) = x^3 \cos x$, 它们在点 x = 0 的邻域内都有 2 阶连续导数,且 $f_1(x) - f_1(-x) = 2x^3$, $f_2(x) - f_2(-x) = 2x^3 \cos x$ 都在 $x \to 0$ 时是 x 的 3 阶无穷小,但是由 $f_1''(0) = -1 \neq 0$ 知 $(0,f_1(0))$ 不是曲线 $y = f_1(x)$ 的拐点;由 $f_2''(x) = 6x \cos x - 6x^2 \sin x$ $\begin{cases} < 0, & x < 0, \\ = 0, & x = 0, ($ 在点 x = 0 的某个邻域内)知, $(0,f_2(0))$ 是曲线 $y = f_2(x)$ 的拐点. > 0, x > 0

(5)
$$\stackrel{+}{=} \int_{-\infty}^{+\infty} f(x) \, dx$$
 收敛时,有
$$\int_{-\infty}^{+\infty} f(x) \, dx = \int_{-\infty}^{0} f(x) \, dx + \int_{0}^{+\infty} f(x) \, dx = \int_{0}^{+\infty} f(-t) \, dt + \int_{0}^{+\infty} f(t) \, dt$$

$$= -\int_{0}^{+\infty} f(t) \, dt + \int_{0}^{+\infty} f(t) \, dt = 0.$$

因此选(C).

附注 当f(x) 在 $(-\infty, +\infty)$ 上连续,且 $\int_{-\infty}^{+\infty} f(x) dx$ 收敛时,有

$$\int_{-\infty}^{+\infty} f(x) dx = \begin{cases} 0, & f(x) 是奇函数, \\ 2 \int_{0}^{+\infty} f(x) dx, & f(x) 是偶函数. \end{cases}$$

(6)
$$\exists \exists \frac{x^2 y^2}{(x^2 + y^2)^{\frac{3}{2}}} \le \frac{\left[\frac{1}{2}(x^2 + y^2)\right]^2}{(x^2 + y^2)^{\frac{3}{2}}} = \frac{1}{4}(x^2 + y^2)^{\frac{1}{2}} \to 0 = f(0,0)((x,y) \to (0,0)),$$

所以 f(x,y) 在点(0,0) 处连续. 此外,由于

$$\lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = 0, \quad \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = 0,$$

所以,f(x,y) 在点(0,0) 处的两个偏导数都存在,因此选(D).

附注 f(x,y) 在点(0,0) 处不可微,证明如下:

由于
$$\frac{f(x,y) - f(0,0) - f'_x(0,0)x - f'_y(0,0)y}{(x^2 + y^2)^{\frac{1}{2}}} = \frac{x^2y^2}{(x^2 + y^2)^2}$$

$$\lim_{\substack{(x,y) \to (0,0) \\ \text{stable of } x}} \frac{x^2y^2}{(x^2 + y^2)^2} = \lim_{x \to 0} \frac{x^4}{4x^4} = \frac{1}{4}, \lim_{\substack{(x,y) \to (0,0) \\ \text{Hidden of } x}} \frac{x^2y^2}{(x^2 + y^2)^2} = \lim_{x \to 0} \frac{0}{x^4} = 0,$$

所以, $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)-f'_x(0,0)x-f'_y(0,0)y}{(x^2+y^2)^{\frac{1}{2}}}$ 不存在,从而 f(x,y) 在点(0,0) 处不

可微.

Ħ.

(7) 由 α , β , γ 线性无关知 α , β 线性无关,从而由 α , β , δ 线性相关知, δ 可由 α , β 线性表示,故 δ 可由 α , β , γ 线性表示. 因此选(B).

附注 关于向量组线性相关性的以下结论应记住:

(I) 设向量组(A): $\alpha_1,\alpha_2,\cdots,\alpha_m$.

如果(A)线性无关,则它的任一部分组都线性无关;

如果(A)的某一部分组线性相关,则(A)线性相关.

(II) 设向量组(B): $\alpha_1, \alpha_2, \dots, \alpha_m, \beta$.

如果(B) 线性相关,则至少存在一个向量可用其余向量线性表示;

如果(B) 线性相关,但 $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_m$ 线性无关,则 $\boldsymbol{\beta}$ 可由 $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_m$ 线性表示,且表示式是唯一的.

(8) 由于 $A^TAx = 0$ 与Ax = 0是同解方程组,所以 ξ_1, ξ_2 必是 $A^TAx = 0$ 的基础解系,即②正确.

由于Ax = 0与Bx = 0都有基础解系 $\xi_1, \xi_2,$ 所以 ξ_1, ξ_2 也是 $\binom{A}{B}x = 0$ 的基础解系,即④正确.

因此选(B).

附注 $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2$ 未必是 $(\boldsymbol{A} + \boldsymbol{B})\boldsymbol{x} = \boldsymbol{0}$ 的基础解系,例如 $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}\boldsymbol{x} = \boldsymbol{0}$ 与 $\begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix}\boldsymbol{x} = \boldsymbol{0}$ 有相同的基础解系 $(0,1)^{\mathrm{T}}$,但它不是 $\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix} \end{bmatrix}\boldsymbol{x} = \boldsymbol{0}$ 的基础解系,所以(A)、(D) 都不能选.

 $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2$ 也未必是 $\boldsymbol{B}^* \boldsymbol{x} = \boldsymbol{0}$ 的基础解系. 例如 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \boldsymbol{x} = \boldsymbol{0}$ 有基础解系 $(0,1,0)^T, (0,0,1)$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^* x = \mathbf{0}$$
 的基础解系, 这是因为 $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^*$ 是零矩阵, 故

$$\begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix}^* x = \mathbf{0} \, \mathbb{Z} \times \mathbb{Z}$$

二、填空题

(9) 所给微分方程 $x^2y' + y + x^2e^{\frac{1}{x}} = 0$ 可以改写成

$$y' + \frac{1}{x^2}y = -e^{\frac{1}{x}},$$

它的通解为

$$y = e^{-\int_{x^2}^{1} dx} \left(C - \int_{x}^{1} e^{\int_{x^2}^{1} dx} dx \right) = e^{\frac{1}{x}} (C - \int_{x}^{1} dx) = e^{\frac{1}{x}} (C - x).$$

将 y(1) = 0 代入得 C = 1. 所以 $y(x) = e^{\frac{1}{x}}(1-x)$,从而由

$$a = \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \left(e^{\frac{1}{x}} \cdot \frac{1-x}{x} \right) = -1,$$

$$b = \lim_{x \to \infty} (y - ax) = \lim_{x \to \infty} \left[e^{\frac{1}{x}} (1 - x) + x \right] = \lim_{x \to \infty} \left(e^{\frac{1}{x}} - \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}} \right) = 0$$

得曲线 y = y(x) 的斜渐近线方程为 y = -x.

附注 计算曲线 y = f(x) 的斜渐近线方程时,总是先计算

$$a = \lim_{x \to \infty} \frac{f(x)}{x} \, \text{fl} \, b = \lim_{x \to \infty} [f(x) - ax].$$

如果这两个极限中至少有一个不存在,则计算

$$a_1 = \lim_{x \to +\infty} \frac{f(x)}{x}$$
 $\sharp \mathbb{I} b_1 = \lim_{x \to +\infty} [f(x) - a_1 x];$

$$a_2 = \lim_{x \to -\infty} \frac{f(x)}{x} \not \exists 1 \ b_2 = \lim_{x \to -\infty} [f(x) - a_2 x].$$

$$(10) \int_0^a x \sqrt{ax - x^2} dx = \int_0^a x \sqrt{\left(\frac{a}{2}\right)^2 - \left(x - \frac{a}{2}\right)^2} dx$$

$$\frac{\Rightarrow t = x - \frac{a}{2}}{\int_{-\frac{a}{2}}^{\frac{a}{2}} \left(t + \frac{a}{2}\right) \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt}$$

$$= \int_{-\frac{a}{2}}^{\frac{a}{2}} t \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt + \frac{a}{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt$$

$$= \frac{a}{2} \cdot \frac{\pi}{2} \left(\frac{a}{2}\right)^2 = \frac{\pi}{16} a^3.$$

附注 题解中, $\int_{-\frac{a}{2}}^{\frac{a}{2}} \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt = \frac{\pi}{2} \left(\frac{a}{2}\right)^2$ 是根据定积分的几何意义直接得到的.

(11)
$$\boxplus \exists \lim_{t \to 0} \frac{f(2t, 0) + f(0, \sin t) - 2f(t, t)}{t}$$

$$=2\lim_{t\to 0}\frac{f(2t,\ 0)-f(0,\ 0)}{2t}+\lim_{t\to 0}\left[\frac{f(0,\ \sin t)-f(0,\ 0)}{\sin t}\cdot\frac{\sin t}{t}\right]-$$

$$2\lim_{t\to 0}\frac{f(t,\ t)-f(0,\ 0)}{t},$$
(1)

其中,
$$\lim_{t\to 0} \frac{f(2t, 0) - f(0, 0)}{2t} = f'_x(0, 0) = 1$$
,

$$\lim_{t \to 0} \left[\frac{f(0, \sin t) - f(0, 0)}{\sin t} \cdot \frac{\sin t}{t} \right] = \lim_{t \to 0} \frac{f(0, \sin t) - f(0, 0)}{\sin t} = f_y'(0, 0) = -1,$$

$$\lim_{t \to 0} \frac{f(t, t) - f(0, 0)}{t} = \lim_{t \to 0} \frac{\left[f'_x(0, 0) + f'_y(0, 0)\right]t + o(|t|)}{t}$$

(利用 f(x, y) 在点(0, 0)处可微)

$$=f'_x(0, 0) + f'_y(0, 0) = 0,$$

所以,将它们代入式(1)得

$$\lim_{t \to 0} \frac{f(2t, 0) + f(0, \sin t) - 2f(t, t)}{t} = 2 \times 1 + (-1) - 2 \times 0 = 1.$$

附注 由于 f(x, y) 仅在点(0, 0) 处可微,所以需用偏导数与全微分的定义计算本题中的极限.

由于 f(x, y) 在点(0, 0) 处可微, 所以有

$$f(x, y) - f(0, 0) = f'_x(0, 0)x + f'_y(0, 0)y + o(\sqrt{x^2 + y^2}),$$

特别当x = y = t时,上式成为

$$f(t, t) - f(0, 0) = [f'_x(0, 0) + f'_y(0, 0)]t + o(|t|).$$

计算 $\lim_{t\to 0} \frac{f(t, t) - f(0, 0)}{t}$ 时就利用了上式.

$$(12) \int_0^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\cos\theta + \sin\theta}}^{1} f(r\cos\theta, r\sin\theta) r dr = \iint_D f(x, y) d\sigma,$$

其中,
$$D = \left\{ (r,\theta) \mid \frac{1}{\cos\theta + \sin\theta} \le r \le 1, 0 \le \theta \le \frac{\pi}{2} \right\}$$

= 第一象限内由直线 x+y=1 和圆 $x^2+y^2=1$ 围成的区域

$$= \{ (x, y) \mid 1 - x \le y \le \sqrt{1 - x^2}, 0 \le x \le 1 \}.$$

所以
$$\int_0^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\cos\theta+\sin\theta}}^1 f(r\cos\theta, r\sin\theta) r dr = \int_0^1 dx \int_{\frac{1}{1-x}}^{\sqrt{1-x^2}} f(x,y) dy.$$

附注 本题是分两步完成的:

首先,将所给的极坐标系中的二次积分转换成直角坐标系中的二重积分,此时被积函数 为 f(x, y),积分区域为 D.

然后,将所得到的二重积分转换成先 γ 后x的二次积分.

(13) 所给微分方程可改写成

$$(x^2 dy + 2xy dx) - dy - \cos x dx = 0$$
, $\mathbb{II} d(x^2 y - y - \sin x) = 0$.

所以 $x^2y - y - \sin x = C$. 将 y(0) = 1 代入得 C = -1, 因此所求的特解为

$$x^2y - y - \sin x = -1.$$

附注 对于微分方程 P(x, y) dx + Q(x, y) dy = 0,有时可以将左边的表达式适当改写后凑成某个二元函数 u(x, y) 的全微分而求得通解 u(x, y) = C. 这是求解上述类型微分方程的常用方法之一,这样往往比较快捷.

本题也可按以下方法求解:

将所给微分方程改写成

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2x}{x^2 - 1}y = \frac{\cos x}{x^2 - 1}$$
(线性微分方程),

则它的通解为

$$y = e^{-\int \frac{2x}{x^2 - 1} dx} \left(C + \int \frac{\cos x}{x^2 - 1} e^{\int \frac{2x}{x^2 - 1} dx} dx \right)$$
$$= \frac{1}{x^2 - 1} (C + \int \cos x dx) = \frac{1}{x^2 - 1} (C + \sin x).$$

将 v(0) = 1 代入得 C = -1, 所以所求特解为

$$y = \frac{1}{x^2 - 1} (\sin x - 1).$$

(14) 由
$$r(A) + r(B) - 3 \le r(AB)$$
 得 $r(A) \le 2$, 所以
$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & \lambda & 1 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ 0 & \lambda & 3 \\ 0 & 2 & 2 \end{vmatrix} = 2(\lambda - 3) = 0,$$

由此得到 $\lambda = 3$.

附注 应记住关于矩阵的以下两个不等式:

(I) 设A, B 都是 $m \times n$ 矩阵, 则

$$r(\mathbf{A} + \mathbf{B}) \leq r(\mathbf{A}) + r(\mathbf{B}).$$

(II) 设A, B 分别是 $m \times n$ 和 $n \times l$ 矩阵, 则

$$r(\mathbf{A}) + r(\mathbf{B}) - n \leq r(\mathbf{A}\mathbf{B}) \leq \min\{r(\mathbf{A}), r(\mathbf{B})\}.$$

三、解答题

所以 $\lim_{x\to 0} g(x) = 0$. 此外,由

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} \frac{\ln(1-x^{4})}{x - \arctan x} = -\lim_{x\to 0^{-}} \frac{x^{4}}{x - \arctan x}$$

$$= \frac{\cancel{A}\cancel{\triangle} \cancel{\triangle} \cancel{\triangle} \cancel{\triangle} \cancel{\triangle}}{1 - \frac{1}{1+x^{2}}} = -4 \lim_{x\to 0^{-}} x(1+x^{2}) = 0,$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{e^{-x} + \frac{1}{2}x^{2} + x - 1}{\sqrt{x}\sin\frac{x}{6}} = 6\lim_{x \to 0^{+}} \frac{e^{-x} + \frac{1}{2}x^{2} + x - 1}{x^{\frac{3}{2}}}$$

$$= \frac{\cancel{\text{A.6.25}}\cancel{\text{A.5.2$$

得 $\lim_{x\to 0} f(x) = 0$. 于是

$$\lim_{x\to 0} f(g(x)) = \frac{e^{\frac{1}{2}u + g(x)}}{1 + e^{\frac{1}{2}u}} \lim_{x\to 0} f(u) = 0.$$

附注 本题实际上是利用复合函数的极限运算法则计算的:

设
$$x \rightarrow x_0$$
时, $u = g(x) \rightarrow u_0$, 且 $u \rightarrow u_0$ 时, $f(u) \rightarrow A$, 则
$$\lim_{x \rightarrow x_0} f(g(x)) = A.$$

 $(16) \gamma(0) = 1$, 此外, 由

$$y(x) = 1 + x + 2x \int_0^x y(t)y'(t) dt - 2 \int_0^x ty(t)y'(t) dt$$

得

$$y' = 1 + 2 \int_0^x y(t)y'(t) dt = 1 + y^2 - y^2(0) = y^2,$$

所以,
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{y} \right) = -1$$
,从而 $\frac{1}{y} = -x + C$. 将 $y(0) = 1$ 代入得 $C = 1$. 因此 $y = \frac{1}{1-x}$,从而
$$y^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}.$$

附注 计算 $\int_0^x (x-t)y(t)y'(t)dt$ 关于 x 的导数 时,必须首先将被积函数中的 x 移到积分 号外,故将它改写成

$$x \int_0^x y(t)y'(t) dt - \int_0^x ty(t)y'(t) dt.$$

(17) 由于曲线 y = f(x) 与曲率圆 $x^2 + y^2 = 2$ 在点(1, 1)处有相同的切线,从而 f'(1) = y'(1) = -1(曲率圆 $x^2 + y^2 = 2$ 在点(1, 1)处的切线斜率为 y'(1) = -1).

此外,曲线 y = f(x) 与曲率圆 $x^2 + y^2 = 2$ 在点(1, 1)处有相同的凹凸性,而 $x^2 + y^2 = 2$ 在点(1, 1)处是凸的,从而 f''(1) < 0. 由于 f''(x) 不变号,所以在(1, 2)内 f''(x) < 0,即 f'(x) 单调减少,故 f'(x) < f'(1) = -1 < 0($x \in (1, 2)$),从而 f(x) 在(1, 2)内无极值点.

由
$$f(1) = 1$$
,
 $f(2) = f(1) + [f(2) - f(1)] = 1 + f'(\xi) (其中 \xi \in (1, 2))$
 $< 1 + f'(1) = 0 (利用式(1))$

知, f(1)f(2) < 0, 并且上面已证 $f'(x) < 0(x \in (1, 2))$, 所以 f(x) 在 (1, 2) 内有唯一零点.

附注 曲率圆定义如下:

设函数 y=f(x) 在点 x_0 处 2 阶可导,则当曲线 y=f(x) 在点 (x_0, y_0) (其中 $y_0=f(x_0)$) 处的曲率 $K\neq 0$ 时,称以点 D 为圆心、 $R=\frac{1}{K}$ 为半径的圆为该曲线在点 (x_0, y_0) 处的曲率圆,

其中点 D 位于该曲线在点 (x_0, y_0) 处的法线(在凹的一侧)上,与点 (x_0, y_0) 的距离为 R. 曲率圆与曲线 y = f(x) 在点 (x_0, y_0) 处有相同的切线及凹凸性.

(18)
$$idf(x) = \ln^2 x - \ln^2 a - \frac{4}{e^2}(x - a)$$
, 则 $f(x)$ 在(e, e²) 内可导且

$$f'(x) = \frac{2\ln x}{x} - \frac{4}{e^2}, f''(x) = \frac{2(1 - \ln x)}{x^2} < 0,$$

所以f'(x)在 (e, e^2) 内单调减少,故有 $f'(x) > f'(e^2) = 0$,即f(x)在 (e, e^2) 内单调增加,由此得到,对 $(a, b) \subset (e, e^2)$ 有f(a) < f(b),即 $\ln^2 b - \ln^2 a > \frac{4}{e^2} (b - a) (e < a < b < e^2)$.

附注 (I)将欲证不等式中的b改为x,使证明文字不等式问题转化为证明函数不等式问题(可采用导数方法证明这个函数不等式),是证明文字不等式的常用方法之一.

(Ⅱ) 本题也可用柯西中值定理证明, 具体如下:

记 $g(x) = \ln^2 x$, G(x) = x,则它们在[a, b]上满足柯西中值定理的条件,所以存在 $\xi \in (a, b)$,使得

$$\frac{g(b) - g(a)}{G(b) - G(a)} = \frac{g'(\xi)}{G'(\xi)}, \exists I \frac{\ln^2 b - \ln^2 a}{b - a} = \frac{2\ln \xi}{\xi} > \frac{4}{e^2}$$

(这是由于 $\left(\frac{2\ln x}{x}\right)' = \frac{2(1-\ln x)}{x^2} < 0(x \in (e, e^2))$,即 $\frac{2\ln x}{x}$ 在 (e, e^2) 内单调减少,所以有

$$\frac{2\ln \xi}{\xi} > \frac{2\ln x}{x} \Big|_{x=e^2} = \frac{4}{e^2}$$
, 于是

$$\ln^2 b - \ln^2 a > \frac{4}{e^2} (b - a) (e < a < b < e^2).$$

(19) D 如图答 7-19 的阴影部分所示, 所以

$$V_{x} = \pi \int_{0}^{2} \left[(\sqrt{4 - x^{2}})^{2} - (\sqrt{2x - x^{2}})^{2} \right] dx$$

$$= \pi \int_{0}^{2} (4 - 2x) dx = 4\pi,$$

$$V_{y} = 2\pi \left(\int_{0}^{2} x \sqrt{4 - x^{2}} dx - \int_{0}^{2} x \sqrt{2x - x^{2}} dx \right),$$

其中,
$$\int_0^2 x \sqrt{4 - x^2} dx = -\frac{1}{3} (4 - x^2)^{\frac{3}{2}} \Big|_0^2 = \frac{8}{3}$$
,
$$\int_0^2 x \sqrt{2x - x^2} dx = \int_0^2 x \sqrt{1 - (x - 1)^2} dx$$

$$\frac{rac{1}{2}t = x - 1}{rac{1}{2}} \int_{-1}^{1} (t + 1) \sqrt{1 - t^2} dt$$

$$= \int_{-1}^{1} \sqrt{1 - t^2} dt = \frac{\pi}{2}.$$

所以
$$V_y = 2\pi \left(\frac{8}{3} - \frac{\pi}{2}\right) = \frac{16}{3}\pi - \pi^2$$
.

附注 应记住以下公式:

图答 7-19

设 $f_1(x)$, $f_2(x)$ 都是连续函数,且 $0 \le f_1(x) \le f_2(x)$ ($0 \le a \le x \le b$),记 $D = \{(x, y) \mid 0 \le a \le x \le b, f_1(x) \le y \le f_2(x)\}$,则

D 绕 x 轴旋转一周而成的旋转体体积

$$V_{x} = \pi \int_{a}^{b} x [f_{2}^{2}(x) - f_{1}^{2}(x)] dx;$$

D绕 γ 轴旋转一周而成的旋转体体积

$$V_y = 2\pi \int_a^b x [f_2(x) - f_1(x)] dx.$$

(20) 由题设知 g(1) = g'(1) = g''(1) = 0, 所以由

$$\frac{\partial z}{\partial x} = f'_{u}(xy, yg(x)) \cdot y + f'_{v}(xy, yg(x)) \cdot yg'(x)$$

得

$$\begin{aligned} \frac{\partial^{2}z}{\partial x^{2}} \Big|_{\substack{x=1\\y=1}} &= \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial z}{\partial x} \Big|_{y=1} \right) \Big|_{x=1} \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \Big[f'_{u}(x, g(x)) + f''_{v}(x, g(x)) g'(x) \Big] \Big|_{x=1} \\ &= \left\{ f''_{uu}(x, g(x)) + f''_{uv}(x, g(x)) g'(x) + \left[f''_{vu}(x, g(x)) + f''_{vv}(x, g(x)) g'(x) \Big] g'(x) + f''_{v}(x, g(x)) g''(x) \right\} \Big|_{x=1} \\ &= f''_{uv}(1, 0) = 1. \end{aligned}$$

同样可得

$$\begin{split} \frac{\partial^2 z}{\partial x \partial y} \Big|_{x=1 \atop y=1} &= \frac{\mathrm{d}}{\mathrm{d} y} \left(\frac{\partial z}{\partial x} \Big|_{x=1} \right) \Big|_{y=1} = \frac{\mathrm{d}}{\mathrm{d} y} [f_u'(y,0)y] \Big|_{y=1} \\ &= [f_{uu}''(y,0)y + f_u'(y,0)] \Big|_{x=1} = f_{uu}''(1,0) + f_u'(1,0) = 2. \end{split}$$

附注 注意, 题解中利用

$$\left. \frac{\partial^2 z}{\partial x^2} \right|_{x=1} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial z}{\partial x} \right|_{y=1} \right) \left|_{x=1} \pi \ln \frac{\partial^2 z}{\partial x \partial y} \right|_{x=1} = \frac{\mathrm{d}}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \right|_{x=1} \right) \left|_{y=1} \pi \ln \frac{\partial^2 z}{\partial x \partial y} \right|_{y=1} = \frac{\mathrm{d}y}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \right|_{y=1} \right) \left|_{y=1} \pi \ln \frac{\partial^2 z}{\partial x \partial y} \right|_{y=1} = \frac{\mathrm{d}y}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \right|_{y=1} \right) \left|_{y=1} \pi \ln \frac{\partial^2 z}{\partial x \partial y} \right|_{y=1} = \frac{\mathrm{d}y}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \right|_{y=1} \right) \left|_{y=1} \pi \ln \frac{\partial^2 z}{\partial x \partial y} \right|_{y=1} = \frac{\mathrm{d}y}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \right) \left|_{y=1} \pi \ln \frac{\partial^2 z}{\partial y} \right|_{y=1} = \frac{\mathrm{d}y}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \right) \left|_{y=1} \pi \ln \frac{\partial^2 z}{\partial y} \right|_{y=1} = \frac{\mathrm{d}y}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \right) \left|_{y=1} \pi \ln \frac{\partial^2 z}{\partial y} \right|_{y=1} = \frac{\mathrm{d}y}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \right) \left|_{y=1} \pi \ln \frac{\partial^2 z}{\partial y} \right|_{y=1} = \frac{\mathrm{d}y}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \right) \left|_{y=1} \pi \ln \frac{\partial^2 z}{\partial y} \right|_{y=1} = \frac{\mathrm{d}y}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \right) \left|_{y=1} \pi \ln \frac{\partial^2 z}{\partial y} \right|_{y=1} = \frac{\mathrm{d}y}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \right) \left|_{y=1} \pi \ln \frac{\partial^2 z}{\partial y} \right|_{y=1} = \frac{\mathrm{d}y}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \right) \left(\frac{\partial z}{\partial x} \right) \left(\frac{\partial z}{\partial y} \right) \left(\frac{\partial z}$$

进行计算,比较快捷.

(21) 微分方程
$$y'' + ay = 2 + \cos x$$
 (1)

对应的齐次线性微分方程为

$$y'' + ay = 0. (2)$$

当 a=0 时,式(1)成为 $y''=2+\cos u$,所以,它的通解为 $y=x^2-\cos x+A_1x+A_2$.

当 a=1 时,式(2)的特征方程根为 $r=\pm i$,所以式(2)的通解为 $Y_2=B_1\cos x+B_2\sin x$, 且式(1)有特解 $y_2^*=a_1+x(b_1\cos x+b_2\sin x)$,将它代人式(1)(此时 a=1)得

$$-2b_1 \sin x + 2b_2 \cos x + a_1 = 2 + \cos x$$
.

由此得到
$$\begin{cases} a_1 = 2, \\ -2b_1 = 0, \text{即 } a_1 = 2, \ b_1 = 0, \ b_2 = \frac{1}{2}, \ \text{所以 } y_2^* = 2 + \frac{1}{2}x\sin x. \ \text{从而此时式}(1) 的通 \\ 2b_2 = 1, \end{cases}$$

解为

$$y = Y_2 + y_2^* = B_1 \cos x + B_2 \sin x + 2 + \frac{1}{2} x \sin x.$$

当 $a \in (0, 1) \cup (1, +\infty)$ 时,式(2)的特征方程的根为 $r = \pm \sqrt{a}i$,所以式(2)的通解为 $Y_3 = C_1 \cos \sqrt{a}x + C_2 \sin \sqrt{a}x$,且式(1)有特解 $y_3^* = a_1 + b_1 \cos x + b_2 \sin x$,将它代入式(1)得 $aa_1 + (a-1)b_1 \cos x + (a-1)b_2 \sin x = 2 + \cos x$.

由此得到 $\begin{cases} aa_1=2\,,\\ (a-1)\,b_1=1\,,$ 即 $a_1=\frac{2}{a}\,,\;\;b_1=\frac{1}{a-1}\,,\;\;b_2=0\,,\;\;$ 所以 $y_3^*=\frac{2}{a}+\frac{1}{a-1}\cos x.\;\;$ 从而此时 $(a-1)\,b_2=0\,,\;\;$

式(1)的通解为

$$y = Y_3 + y_3^* = C_1 \cos \sqrt{ax} + C_2 \sin \sqrt{ax} + \frac{2}{a} + \frac{1}{a-1} \cos x.$$

上述的 A_1 , A_2 , B_1 , B_2 , C_1 , C_2 , 都是任意常数.

附注 要熟练掌握 2 阶常系数齐次线性微分方程 y'' + py' + qy = 0 的通解的计算和二阶常系数非齐次线性微分方程 y'' + py' + qy = f(x) (其中 f(x) 为 $e^{\lambda x}R_n(x)$ 或 $e^{\alpha x}[P_l(x)\cos\beta x + Q_m(x)\sin\beta x]$ 或它们的线性组合, $R_n(x)$,P(x), $Q_m(x)$ 分别是 n,l 及 m 次多项式)的特解的计算.

(22) (I)设 $x = (x_1, x_2, x_3)^T$,则所给方程组 $(\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, -\boldsymbol{\alpha}_1 + a\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3)\boldsymbol{x} = \boldsymbol{\alpha}_4,$ 成为 $x_1(\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2) + x_2(\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3) + x_3(-\boldsymbol{\alpha}_1 + a\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3) = \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3,$ 即 $(x_1 - x_3)\boldsymbol{\alpha}_1 + (-x_1 + x_2 + ax_3)\boldsymbol{\alpha}_2 + (x_2 + x_3)\boldsymbol{\alpha}_3 = \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3.$

于是由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 线性无关得 $\begin{cases} x_1 & -x_3 = 1, \\ -x_1 + x_2 + ax_3 = 1, \\ x_2 + x_3 = 2, \end{cases}$

$$\begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & a \\ 0 & 1 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}. \tag{1}$$

对式(1)的增广矩阵 \overline{A} 施行初等行变换:

$$\overline{A} = \begin{pmatrix} 1 & 0 & -1 & 1 \\ -1 & 1 & a & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & a - 1 & 2 \\ 0 & 1 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 0 & a - 2 & 0 \\ 0 & 1 & 1 & 2 \end{pmatrix}$$
 (2)

当所给方程组有无穷多解时, $r(\overline{A}) = r(A) < 3$ (其中 A 是式(1)的系数矩阵), 所以由式(2) 得 a-2=0, 即 a=2.

(Ⅱ) 当a=2时,式(1),即所给方程组与

$$\begin{cases} x_1 & -x_3 = 1, \\ x_2 + x_3 = 2 \end{cases} \tag{3}$$

同解. 它对应的导出组的通解为 $C(1, -1, 1)^{T}$, 且式(3)有特解(1, 2, 0)^T, 所以式(3), 即所给方程组的通解为

$$x = C(1, -1,1)^{T} + (1,2,0)^{T}$$
(其中 C 是任意常数).

附注 本题(I)获解的关键是根据 α_1 , α_2 , α_3 线性无关, 将所给方程组化简为方程组 (1).

(23) (I)由

$$|\lambda E_3 - A| = \begin{vmatrix} \lambda - 2 & -2 & 0 \\ -8 & \lambda - 2 & 0 \\ 0 & -a & \lambda - 6 \end{vmatrix} = (\lambda + 2)(\lambda - 6)^2$$

知 A 有特征值 $\lambda = -2$, 6 (二重), 所以 A 可相似对角化,

$$r(6E_3 - A) = 3 - 2 = 1, (1)$$

其中,
$$6E_3 - A = \begin{pmatrix} 4 & -2 & 0 \\ -8 & 4 & 0 \\ 0 & -a & 0 \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 4 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & -a & 0 \end{pmatrix}$$
. 因此满足式(1)的 $a = 0$,即当 A

可相似对角化时, a=0.

(II) 当
$$a = 0$$
 时, $\mathbf{A} = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$,所以
$$f(x_1, x_2, x_3) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = 2x_1^2 + 10x_1x_2 + 2x_2^2 + 6x_3^2$$

$$= \mathbf{x}^{\mathsf{T}} \begin{pmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix} \mathbf{x}.$$

记
$$\mathbf{B} = \begin{pmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
 (实对称矩阵),则

记
$$\mathbf{B} = \begin{pmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
 (实对称矩阵),则
$$\begin{vmatrix} \lambda \mathbf{E}_3 - \mathbf{B} \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -5 & 0 \\ -5 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 6 \end{vmatrix} = (\lambda + 3)(\lambda - 6)(\lambda - 7),$$
EEU R 有特征值)。 2. 6. 7

所以, **B** 有特征值 $\lambda = -3$, 6, 7.

设对应于 $\lambda = -3$ 的特征向量为 $\boldsymbol{\alpha} = (a_1, a_2, a_3)^{\mathrm{T}}$,则 $\boldsymbol{\alpha}$ 满足

$$\begin{pmatrix} -5 & -5 & 0 \\ -5 & -5 & 0 \\ 0 & 0 & -9 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = 0, \exists I \begin{cases} a_1 + a_2 & = 0, \\ a_3 = 0. \end{cases}$$

于是取 α 为它的基础解系,即 $\alpha = (-1, 1, 0)^{T}$.

设对应于 $\lambda = 6$ 的特征向量为 $\boldsymbol{\beta} = (b_1, b_2, b_3)^{\mathrm{T}}$,则 $\boldsymbol{\beta}$ 满足

$$\begin{pmatrix} 4 & -5 & 0 \\ -5 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_2 \end{pmatrix} = 0, \text{ BF} \begin{cases} 4b_1 - 5b_2 = 0, \\ -5b_1 + 4b_2 = 0. \end{cases}$$

于是取 β 为它的基础解系、即 $\beta = (0, 0, 1)^{T}$.

设对应于 $\lambda = 7$ 的特征向量为 $\gamma = (c_1, c_2, c_3)^T$,则 $\gamma 与 \alpha$, β 都正交,即

 $\begin{cases} -c_1+c_2 &=0,\\ &\text{于是取 } \boldsymbol{\gamma} \text{ 为它的基础解系,即 } \boldsymbol{\gamma} = (1,\ 1,\ 0)^{\mathrm{T}}. \end{cases}$

 α , β , γ 是正交向量组, 现将它们单位化:

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\alpha}}{\parallel \boldsymbol{\alpha} \parallel} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T},$$

$$\boldsymbol{\xi}_2 = \boldsymbol{\beta} = (0,0,1)^T,$$

$$\boldsymbol{\xi}_3 = \frac{\boldsymbol{\gamma}}{\parallel \boldsymbol{\gamma} \parallel} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{\mathrm{T}}.$$

记 $Q = (\xi_1, \xi_2, \xi_3)$ (正交矩阵),则所求正交变换为

$$x = Qy = \begin{pmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix} y,$$

它将二次型 $f(x_1, x_2, x_3)$ 化为标准形 $-3y_1^2 + 6y_2^2 + 7y_3^2$.

附注 用正交变换将二次型 $f(x_1, x_2, x_3)$ 化为标准形,首先要将二次型表示成 $\mathbf{x}^T \mathbf{B} \mathbf{x}$ (其中 \mathbf{B} 是实对称矩阵),这是本题获解的关键.此外,应熟练掌握用正交变换化二次型 $f(x_1, x_2, \dots, x_n) = \mathbf{x}^T \mathbf{B} \mathbf{x}$ (其中 $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, \mathbf{B} 是 n 阶实对称矩阵)为标准形的方法.

模拟试题(八)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	A	В	В	D	D	A	С	В

(1) 设f(x)是单调增加函数,则当 $x_1 < x_2$ 时, $f(x_1) < f(x_2)$,即 $x_2 < x_3$,同样可证 $x_3 < x_4$,…, $x_n < x_{n+1}$,…,即 $\{x_n\}$ 单调增加。因此选(A)。

附注 记住以下结论对判别数列 $\{x_n\}$ 的单调性是有用的:

设 $\{x_n\}$ 由递推式 x_1 , $x_{n+1}=f(x_n)$ $(n=1,2,\cdots)$ 确定,且 f(x) 是单调增加函数,则当 $x_1 < x_2$ 时, $\{x_n\}$ 单调增加;当 $x_1 > x_2$ 时, $\{x_n\}$ 单调减少.

(2) 由题设知
$$f'(x_0) = -\frac{1}{-1} = 1$$
, 所以

$$\Delta y\mid_{_{x=x_0}}=f'(x_0)\Delta x+o(\Delta x)=\Delta x+o(\Delta x).$$

即当 $\Delta x \rightarrow 0$ 时, Δy 与 Δx 是等价无穷小. 因此选(B).

附注 当函数 y = f(x) 在点 x_0 处可导(可微)时,

$$\Delta y \mid_{x=x_0} = f'(x_0) \Delta x + o(\Delta x).$$

当二元函数 z = f(x, y) 在点 (x_0, y_0) 处可微时,

$$\Delta z \mid_{(x_0, y_0)} = f'_x(x_0, y_0) \, \Delta x \, + f'_y(x_0, y_0) \, \Delta y \, + \, o(\sqrt{(\Delta x)^2 + (\Delta y)^2}).$$

(3) 由所给方程得 y(0) = 0. 对所给方程两边关于 x 求导得

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + y + 2\mathrm{e}^{2y}\frac{\mathrm{d}y}{\mathrm{d}x} = -\sin(xy)\left(x\frac{\mathrm{d}y}{\mathrm{d}x} + y\right),\,$$

所以 $y'(x) = \frac{dy}{dx} = \frac{-y[1 + \sin(xy)]}{x + 2e^{2y} + x\sin(xy)}$, 且 y'(0) = 0. 于是

$$\frac{d^{2}y}{dx^{2}}\Big|_{x=0} = \lim_{x \to 0} \frac{y'(x) - y'(0)}{x} = \lim_{x \to 0} \frac{-y[1 + \sin(xy)]}{x[x + 2e^{2y} + x\sin(xy)]}$$

$$= -\lim_{x \to 0} \left[\frac{y(x) - y(0)}{x} \cdot \frac{1 + \sin(xy)}{x + 2e^{2y} + x\sin(xy)} \right] = -y'(0) \cdot \frac{1}{2} = 0.$$

因此选(B).

附注 用二阶导数定义计算 $\frac{d^2y}{dx^2}\Big|_{x=0}$ 比先算出 $\frac{d^2y}{dx^2}$, 然后将 x=y=y'=0 代入快捷得多.

(4) 由于 x^2 在[0, 1]上连续,选项(A)、(B)、(C)的右边都是 x^2 在[0, 1]上的积分和式的极限,它们都等于 $\int_0^1 x^2 dx$,即选项(A)、(B)、(C)都正确.因此选(D).

附注 也可以通过直接计算确认(D)不正确:

$$\lim_{n \to \infty} \frac{1}{3n} \sum_{i=1}^{n} \left(\frac{3i-1}{3n} \right)^2 = \lim_{n \to \infty} \frac{1}{27n^3} \sum_{i=1}^{n} \left(9i^2 - 6i + 1 \right)$$

$$= \lim_{n \to \infty} \frac{1}{27n^3} \left[\frac{9}{6} n(n+1) \left(2n+1 \right) - \frac{6}{2} n(n+1) + n \right]$$

$$= \frac{1}{9} \neq \frac{1}{3} = \int_0^1 x^2 dx.$$

(5) 由于 $z_0 = z(x_0, y_0)$ 是 z = z(x, y) 的极小值,因此存在点 (x_0, y_0) 的某个邻域,对此邻域内的任一点(x, y) ($(x, y) \neq (x_0, y_0)$)处,都有 $z = z(x, y) > z_0$. 于是 y = y(x, z) 不能在点 (x_0, z_0) 的邻域内都有定义,从而 $y_0 = y(x_0, z_0)$ 不是 y = y(x, z) 的极值. 因此选(D).

附注 要使函数 z = f(x, y) 在点 (x_0, y_0) 处取到极值,首先必须使 z = f(x, y) 在点 (x_0, y_0) 的某个邻域内有定义.

(6) 由于 D_2 与 D_3 关于直线 y = x 对称, $\sqrt{x^2 + y^2}$ 在对称点(x, y)与(y, x)处的值彼此相等,所以 $I_2 = I_3$. 此外,由

$$I_{1} = \int_{0}^{2\pi} d\theta \int_{0}^{1} r \cdot r dr = \frac{2\pi}{3},$$

$$I_{2} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} r \cdot r dr = \frac{16}{3} \int_{0}^{\frac{\pi}{2}} \cos^{3}\theta d\theta = \frac{32}{9}$$

知 $I_1 < I_2$. 因此选(A).

附注 利用对称性直接得到 $I_2 = I_3$,使计算量减少,实际上 $I_3 = \frac{32}{9}$ 也可由计算得到:

$$I_{3} = \int_{0}^{\pi} d\theta \int_{0}^{2\sin\theta} r \cdot r dr = \frac{8}{3} \int_{0}^{\pi} \sin^{3}\theta d\theta = -\frac{8}{3} \int_{0}^{\pi} (1 - \cos^{2}\theta) d\cos\theta$$
$$= -\frac{8}{3} \left(\cos\theta - \frac{1}{3}\cos^{3}\theta\right) \Big|_{0}^{\pi} = \frac{32}{9}.$$

(7) 由于 $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$,所以当 \mathbf{A} 有特征值 λ 及对应的特征向量 α 时, \mathbf{B} 有特征值 λ 及对应的特征向量 $\mathbf{P}^{-1}\alpha$. 此外,由 \mathbf{A} 可逆知 \mathbf{B} 可逆,从而 \mathbf{B}^* 有特征值 $\frac{|\mathbf{B}|}{\lambda} = \frac{|\mathbf{A}|}{\lambda}$ 及对应的特征向量 $\mathbf{P}^{-1}\alpha$. 因此选(C).

附注 应记住以下结论:

设 n 阶矩阵 A 有特征值 λ 及对应的特征向量 α ,则 $B = P^{-1}AP(P \neq n$ 阶可逆矩阵) 有特征值 λ 及对应的特征向量 $P^{-1}\alpha$. 当 A 可逆时,A 的伴随矩阵 A^* 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 α .

(8) 由于当(I)与(II)等价时, (I)与(II)等秩; 当A与B等价时, A与B等秩, 反之也对, 所以选项(A)、(C)、(D)都正确. 因此选(B).

附注 当(I)与(I)等秩时,未必等价. 例如 $\alpha_1 = (1, 0, 0)^T$, $\alpha_2 = (0, 1, 0)^T$, $\beta_1 = (1, 0, 0)^T$, $\beta_2 = (0, 0, 1)^T$. 显然 $r(\alpha_1, \alpha_2) = r(\beta_1, \beta_2)$, 但是 α_2 不能由 β_1 , β_2 线性表示,即 α_1 , α_2 与 β_1 , β_2 不等价.

由本题可知, 题中的(I)、(II)等价与A、B等价是有区别的, 应注意这一点. 二、填空题

(9)
$$\pm 1 = \lim_{x \to 0} \frac{x - \sin x + f(x)}{x^4} = \lim_{x \to 0} \frac{\frac{x - \sin x}{x^3} + \frac{f(x)}{x^3}}{x}$$

知
$$\lim_{x\to 0}$$
 $\left[\frac{x-\sin x}{x^3} + \frac{f(x)}{x^3}\right] = 0$,从而

$$\lim_{x \to 0} \frac{f(x)}{x^3} = -\lim_{x \to 0} \frac{x - \sin x}{x^3} = \frac{\text{ÅBBBM}}{\text{ABBM}} - \lim_{x \to 0} \frac{1 - \cos x}{3x^2} = -\frac{1}{6}.$$

附注 类似地可考虑:

设
$$\lim_{x\to 0} \left[1 + x + \frac{f(x)}{x}\right]^{\frac{1}{x}} = e^3$$
,求 $\lim_{x\to 0} \left[1 + \frac{f(x)}{x}\right]^{\frac{1}{x}}$. 具体的计算如下.

由
$$\lim_{x \to 0} \left[1 + x + \frac{f(x)}{x} \right]^{\frac{1}{x}} = e^3 \ \text{得}\lim_{x \to 0} \frac{\ln \left[1 + x + \frac{f(x)}{x} \right]}{x} = 3.$$

由此得到 $\lim_{x\to 0} \left[x + \frac{f(x)}{x}\right] = 0$,从而有 $\lim_{x\to 0} \frac{f(x)}{x} = 0$ 以及

$$3 = \lim_{x \to 0} \frac{x + \frac{f(x)}{x}}{x} = 1 + \lim_{x \to 0} \frac{f(x)}{x^2}, \quad \text{Illim}_{x \to 0} \frac{f(x)}{x^2} = 2.$$

于是

$$\lim_{x \to 0} \left[1 + \frac{f(x)}{x} \right]^{\frac{1}{x}} = e^{\lim_{x \to 0} \frac{\ln \left[1 + \frac{f(x)}{x} \right]}{x}} = e^{\lim_{x \to 0} \frac{f(x)}{x^2}} = e^2.$$

(10)
$$\text{in} \int_0^x [5f(t) - 2] dt = f(x) - e^{5x}$$
 (4)

$$f(0) = 1,5f(x) - 2 = f'(x) - 5e^{5x} \text{ U} \text{ D} f'(0) = 8,$$
$$\frac{f'(x) - 8}{x} = \frac{5[f(x) - f(0)] + 5(e^{5x} - 1)}{x}.$$

所以有

即

$$f''(0) = 5f'(0) + 5 \times 5 = 65.$$

附注 本题也可以解答如下:

对所给等式两边关于 x 求导得

$$5f(x) - 2 = f'(x) - 5e^{5x},$$
 即
$$y' - 5y = 5e^{5x} - 2(其中 y = f(x)),$$
 所以,
$$y = e^{5x} [C + \int (5e^{5x} - 2)e^{-5x} dx] = e^{5x} \left(C + \frac{2}{5}e^{-5x} + 5x\right).$$

将
$$y \mid_{x=0} = 1$$
 代人上式得 $C = \frac{3}{5}$. 因此

$$y = e^{5x} \left(\frac{3}{5} + \frac{2}{5} e^{-5x} + 5x \right) = \frac{3}{5} e^{5x} + \frac{2}{5} + 5x e^{5x}.$$

从而
$$y' = 8e^{5x} + 25xe^{5x}$$
, $y'' = 65e^{5x} + 125xe^{5x}$. 由此得到

$$f''(0) = y''|_{x=0} = 65.$$

(11) 容易知道, 当
$$x < 0$$
 时, $y' = 6x + 6x^2$; $x > 0$ 时, $y' = \frac{1}{1+x} - 2x$. 由此可得 $y'_{-}(0) = 0$

$$\lim_{x\to 0^{-}}y'=\lim_{x\to 0^{-}}(6x+6x^{2})=0,\ y'_{+}(0)=\lim_{x\to 0^{+}}y'=\lim_{x\to 0^{+}}\left(\frac{1}{1+x}-2x\right)=1,\ \mathbb{P}\ y'(0)$$
 不存在. 所以

$$y' = \begin{cases} 6x + 6x^2, & x < 0, \\ \frac{1}{1+x} - 2x, & x > 0, \end{cases}$$

$$y'' = \begin{cases} 6 + 12x, & x < 0, \\ -\frac{1}{(1+x)^2} - 2, & x > 0. \end{cases}$$

于是方程 y'' = 0 有唯一解 $x = -\frac{1}{2}$, 且

$$y'' \begin{cases} < 0, & x < -\frac{1}{2}, \\ > 0, & -\frac{1}{2} < x < 0. \end{cases}$$

此外, γ 在点 x=0 处连续, 但 $\gamma''(0)$ 不存在, 且

$$y'' \begin{cases} > 0, & -\frac{1}{2} < x < 0, \\ < 0, & x > 0, \end{cases}$$

因此, 所给曲线有两个拐点: $\left(-\frac{1}{2}, \frac{1}{2}\right)$, (0, 0).

附注 对于连续曲线 y = f(x),其可能拐点的横坐标来自 f''(x) 的零点及使 f''(x) 不存在的点. 因此,本题的可能拐点横坐标除 $x = -\frac{1}{2}$ 外,还有 x = 0.

$$(12) \frac{\partial}{\partial x} f(e^{-\frac{y}{x}}, \cos \frac{1}{x}) = f'_{u} \cdot \frac{y}{x^{2}} \cdot e^{-\frac{y}{x}} + f'_{v} \cdot \frac{1}{x^{2}} \sin \frac{1}{x} = \frac{1}{x^{2}} \left(y e^{-\frac{y}{x}} f'_{u} + \sin \frac{1}{x} f'_{v} \right).$$

附注 计算多元复合函数的偏导数时,应先画出该函数与自变量之间的复合关系图,例如,本题的关系图为

$$z = f\left(e^{-\frac{y}{x}}, \cos\frac{1}{x}\right) \qquad y$$

$$v - x$$

(13) 由于 $y'' + py' + qy = e^x \cos 2x$ (1)

$$y'' + py' + qy = 0 \tag{2}$$

的齐次线性微分方程

的通解为 $Y = e^{x} (C_1 \cos x + C_2 \sin x)$,所以式(2)的特征方程有根 $1 \pm i$,从而 $p = -\lceil (1 + i) + r \rceil$ (1-i)] = -2, q = (1+i)(1-i) = 2, 即式(1)为

$$y'' - 2y' + 2y = e^x \cos 2x. (3)$$

式(3)应有特解

$$y^* = e^x (A\cos 2x + B\sin 2x).$$

将它代入式(3)得

$$e^{x}[(-3A + 4B)\cos 2x + (-4A - 3B)\sin 2x] - 2e^{x}[(A + 2B)\cos 2x + (B - 2A)\sin 2x] + 2e^{x}(A\cos 2x + B\sin 2x) = e^{x}\cos 2x,$$

即
$$A = -\frac{1}{3}$$
, $B = 0$. 因此 $y^* = -\frac{1}{3}e^x \cos 2x$.

于是式(1)的通解为

$$y = Y + y^* = e^* (C_1 \cos x + C_2 \sin x) - \frac{1}{3} e^x \cos 2x.$$

本题获解的关键是由 $Y = e^x (C_1 \cos x + C_2 \sin x)$ 确定式(2)的 p = q的值.

(14) 由于
$$r\begin{pmatrix} \mathbf{O} & \mathbf{A}^* \\ \mathbf{B}^* & \mathbf{O} \end{pmatrix} = r(\mathbf{A}^*) + r(\mathbf{B}^*), \tag{1}$$

其中, 由 r(A) = 1, 即 r(A)等于 A 的阶数 -1 知 $r(A^*) = 1$; 由 r(B) = 2, 即 r(B) 小于 B的阶数 -1 知 $r(\mathbf{B}^*) = 0$. 将它们代入式(1)得

$$r\begin{pmatrix} \mathbf{O} & \mathbf{A}^* \\ \mathbf{B}^* & \mathbf{O} \end{pmatrix} = 1 + 0 = 1.$$

附注 应记住以下公式:

设 $A \in n$ 阶矩阵, $A^* \in A$ 的伴随矩阵,

$$r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(A) = n - 1, \\ 0, & r(A) < n - 1. \end{cases}$$

三、解答题

(15) 由于
$$y = \varphi(\psi(x)) = \begin{cases} x^2, & |x| \leq 1, \\ \sin x^2, & 1 < |x| \leq 2, \text{并且} \\ \cos x, & |x| > 2, \end{cases}$$

当 |x| < 1 时, y'(x) = 2x,

当 1 < |x| < 2 时, $y'(x) = 2x\cos x^2$,

当|x| > 2时, $y'(x) = -\sin x$,

$$y'_{-}(1) = \lim_{x \to 1^{-}} y'(x) = 2, \ y'_{+}(1) = \lim_{x \to 1^{+}} y'(x) = 2\cos 1,$$

$$\begin{aligned} y'_{-}(1) &= \lim_{x \to 1^{-}} y'(x) = 2, \ y'_{+}(1) = \lim_{x \to 1^{+}} y'(x) = 2\cos 1, \\ y'_{-}(2) &= \lim_{x \to 2^{-}} y'(2) = 4\cos 4, \ y'_{+}(2) = \lim_{x \to 2^{+}} y'(2) = -\sin 2, \end{aligned}$$

所以, $\gamma'(x)$ 在点 x=1, 2 处都不存在. 由于 $\gamma(x)$ 是偶函数, 所以 $\gamma'(x)$ 在点 $\gamma(x)$ 在点 $\gamma(x)$ 是偶函数, 所以 $\gamma(x)$ 在点 $\gamma(x)$ = -1, -2 处也不存在. 从而

$$y'(x) = \begin{cases} 2x, & |x| < 1, \\ 2x\cos x^2, & 1 < |x| < 2, \\ -\sin x, & |x| > 2. \end{cases}$$

因此
$$y''(x) = \begin{cases} 2, & |x| < 1, \\ 2\cos x^2 - 4x^2\sin x^2, & 1 < |x| < 2, \\ -\cos x, & |x| > 2. \end{cases}$$

附注 本题的解答有两点值得注意:

(I)要计算分段函数的复合函数的导数或2阶导数,应先算出复合函数的表达式.

(II) 对于分段函数
$$f(x) = \begin{cases} f_1(x), & x \leq x_0, \\ f_2(x), & x > x_0, \end{cases}$$
 如果已算出 $f_1'(x)(x < x_0)$ 与 $f_2'(x)(x > x_0)$,

则当 $\lim_{x \to x_0^-} f_1'(x)$ 与 $\lim_{x \to x_0^+} f_2'(x)$ 都存在时, $f_-'(x_0) = \lim_{x \to x_0^-} f'(x)$, $f_+'(x_0) = \lim_{x \to x_0^+} f'(x)$.

$$f''(x) = 4(1+x)e^{2x} + \cos x > 0$$

知,f'(x)在(0, 1)内单调增加,且 $f'(0)f'(1) = -(3e^2 - 2 + \sin 1) < 0$,所以存在唯一的 $x_0 \in (0, 1)$,使得 $f'(x_0) = 0$,由此得到

$$f'(x) \begin{cases} <0, & 0 < x < x_0, \\ =0, & x = x_0, \\ >0, & x_0 < x < 1. \end{cases}$$

因此, 由 f(0) = -1 < 0 知 $f(x) < 0(x \in (0, x_0])$, 即方程 f(x) = 0 在 $(0, x_0]$ 上无实根. 此外, 由 $f(x_0) \cdot f(1) < 0$ 及 f'(x) > 0 $(x \in (x_0, 1))$ 知方程 f(x) = 0 在 $(x_0, 1)$ 上有唯一实根.

综上所述, 所给方程 $xe^{2x} - 2x - \cos x = 0$ 在(0, 1)内有唯一 实根.

图答 8-16

附注 由题解中分析可知, 曲线 y = f(x) 如图答 8-16 所示, 由图可知方程 f(x) = 0 在 (0, 1) 内有且仅有一个实根.

(17) c 将[a, b]分成两个小区间[a, c]与[c, b].

由于 $f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} > 0$,所以存在 $x_{1} \in (a, c)$,使得 $f(x_{1}) > f(a)$. 由于

 $f'(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} < 0, \text{ 所以存在 } x_2 \in (x_1, \ c), \text{ 使得 } f(x_2) > f(c). \text{ 因此, } f(x) \triangleq [a, b]$

c]上的最大值在 $(a,\ c)$ 内取到. 于是由费马引理知,存在 $\eta_{\scriptscriptstyle 1}\in (a,\ c)$,使得 $f'(\eta_{\scriptscriptstyle 1})$ =0.

此外,由 f(c) = f(b) (=0)知, f(x)在 [c, b] 上满足罗尔定理条件,所以存在 $\eta_2 \in (c, b)$,使得 $f'(\eta_2) = 0$.

由题设及以上证明知,f'(x)在[η_1 , η_2]上满足罗尔定理条件,所以存在 $\xi \in (\eta_1, \eta_2)$ $\subset (a, b)$,使得 $f''(\xi) = 0$.

附注 当函数 f(x) 在 [a, b] 上有连续导数时,如果 $f'_{+}(a) \cdot f'_{-}(b) < 0$,则容易知道,存在 $\xi \in (a, b)$,使得 $f'(\xi) = 0$. 但是,从本题的证明可知,"当 f(x) 在 [a, b] 上可导(未

必有连续导数)时,如果 $f'_{+}(a) \cdot f'_{-}(b) < 0$,则存在 $\xi \in (a, b)$,使得 $f'(\xi) = 0$. "记住这个结论有助于快速解题.

(18)(I)由于

$$du = (2x\cos y + 3x^2y) dx + (x^3 - x^2\sin y + y) dy$$

= $(2x\cos y dx - x^2\sin y dy) + (3x^2y dx + x^3 dy) + y dy$
= $d\left(x^2\cos y + x^3y + \frac{1}{2}y^2\right)$,

所以, $u = x^2 \cos y + x^3 y + \frac{1}{2} y^2 + C$. 将 u(0, 0) = 0 代人上式得 C = 0, 因此

$$u(x,y) = x^2 \cos y + x^3 y + \frac{1}{2} y^2.$$

(Ⅱ)由于在点(0,0)的充分小的去心邻域内,

$$u(x,y) = x^{2}(\cos y + xy) + \frac{1}{2}y^{2} > 0 = u(0,0),$$

所以, u(0, 0) = 0 是 u(x, y) 的极小值.

附注 题解中,根据极小值定义判定 u(0,0)=0 是 u(x,y) 的极小值,比较快捷. 但也可以用以下方法判定:

曲于
$$\frac{\partial u}{\partial x} = 2x\cos y + 3x^2y, \frac{\partial u}{\partial y} = x^3 - x^2\sin y + y,$$
所以,
$$\frac{\partial^2 u}{\partial x^2} = 2\cos y + 6xy, \frac{\partial^2 u}{\partial y^2} = -x^2\cos y + 1, \frac{\partial^2 u}{\partial x \partial y} = -2x\sin y + 3x^2.$$
于是由
$$\frac{\partial^2 u}{\partial x^2} \bigg|_{(0,0)} = 2 > 0, \left[\frac{\partial^2 u}{\partial x^2} \cdot \frac{\partial^2 u}{\partial y^2} - \left(\frac{\partial^2 u}{\partial x \partial y} \right)^2 \right] \bigg|_{(0,0)} = 2 \times 1 - 0 = 2 > 0$$
知, $u(0,0) = 0$ 是 $u(x,y)$ 的极小值.

(19) 因为
$$f(x) = \int_0^x \left(3 - \frac{3}{2}\sqrt{t} - \frac{1}{\sqrt{t}}\right) dt = 3x - x^{\frac{3}{2}} - 2x^{\frac{1}{2}}$$
$$= -x^{\frac{1}{2}}(x^{\frac{1}{2}} - 1)(x^{\frac{1}{2}} - 2).$$

并且 x > 4 时, f(x) < 0, 所以 $y = f(x)(x \ge 0)$ 的图形如图答 8-19 所示. 于是, 所求的面积为

$$A = \int_0^1 - (3x - x^{\frac{3}{2}} - 2x^{\frac{1}{2}}) dx + \int_1^4 (3x - x^{\frac{3}{2}} - 2x^{\frac{1}{2}}) dx$$
$$= -\left(\frac{3}{2}x^2 - \frac{2}{5}x^{\frac{5}{2}} - \frac{4}{3}x^{\frac{3}{2}}\right)\Big|_0^1 + \left(\frac{3}{2}x^2 - \frac{2}{5}x^{\frac{5}{2}} - \frac{4}{3}x^{\frac{3}{2}}\right)\Big|_1^4 = 1.$$

附注 计算平面图形面积时,应先画出该图形.

当平面图形 D 是由曲线 $y=f_1(x)$, $y=f_2(x)$ (其中 $f_1(x)$, $f_2(x)$ 在 [a,b] 上连续) 及直线 x=a , x=b 围成的,则 D 的面积为

$$S = \int_{0}^{b} |f_{1}(x) - f_{2}(x)| dx.$$

本题的平面图形实际上是由曲线 y = f(x), 直线 y = 0, x = 0, x = 4 围成的, 所以

$$A = \int_0^4 |f(x)| - 0 | dx = \int_0^4 |f(x)| dx$$

图答 8-19

(20) 由于
$$6\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = \left(2\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right) \left(3\frac{\partial}{\partial x} - \frac{\partial}{\partial y}\right) z,$$
并且
$$\frac{\partial}{\partial x} = \frac{\partial u}{\partial x} \frac{\partial}{\partial u} + \frac{\partial v}{\partial x} \frac{\partial}{\partial v} = \frac{\partial}{\partial u} + \frac{\partial}{\partial v},$$

$$\frac{\partial}{\partial y} = \frac{\partial u}{\partial y} \frac{\partial}{\partial u} + \frac{\partial v}{\partial y} \frac{\partial}{\partial v} = -2\frac{\partial}{\partial u} + a\frac{\partial}{\partial v},$$
所以
$$6\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = (2+a)\frac{\partial}{\partial v} \left[5\frac{\partial}{\partial u} + (3-a)\frac{\partial}{\partial v}\right] z$$

$$= 5(2+a)\frac{\partial^2 z}{\partial u \partial v} + (2+a)(3-a)\frac{\partial^2 z}{\partial v^2}.$$

于是由题设得

$$\begin{cases} 5(2+a) \neq 0, \\ (2+a)(3-a) = 0, \end{cases} \exists \exists a = 3.$$

附注 由于
$$\frac{\partial z}{\partial x}$$
可以理解为 $\frac{\partial}{\partial x}$ 作用于 z , 同样 $\frac{\partial^2 z}{\partial x \partial y}$ 可以理解为 $\frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} z \right)$ 或 $\frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} \right) z$, 因此有
$$6 \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = \left(2 \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) \left(3 \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right) z.$$

由此得到

$$6\,\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = 5(2+a)\,\frac{\partial^2 z}{\partial u \partial v} + (2+a)(3-a)\,\frac{\partial^2 z}{\partial v^2},$$

从而使得问题快速获解.

(21)
$$y' - 2y = \varphi(x)$$
 的通解为

于是,当 x < 1 时, $y = e^{2x} (C + e^{-2} - e^{-2x})$. 将 y(0) = 0 代入得 $C = 1 - e^{-2}$. 将它代入式(1)

得 $y(x) = \begin{cases} e^{2x}(1 - e^{-2x}), & x < 1, \\ e^{2x}(1 - e^{-2}), & x > 1. \end{cases}$ 由于 $\lim_{x \to 1^{-}} y(x) = \lim_{x \to 1^{+}} y(x)$,所以,所求函数

$$y(x) = \begin{cases} e^{2x} (1 - e^{-2x}), & x \le 1, \\ e^{2x} (1 - e^{-2}), & x > 1. \end{cases}$$

附注 本题是利用线性微分方程的通解公式

$$y = e^{2x} \left(C + \int_1^x \varphi(t) e^{-2t} dt \right)$$

和分段函数 $\varphi(t)e^{-2t}$ 的积分上限函数算出了 y(x), 十分快捷.

但也可以按以下方法计算(虽然不是十分快捷,但比较容易理解):

由题设知,在 $(-\infty,1)$ 上, $y(x)=y_1(x)$ 满足

$$y_1' - 2y_1 = 2$$
,

它的通解为 $y_1(x) = e^{2x} \left(C_1 + \int 2e^{-2x} dx \right) = e^{2x} \left(C_1 - e^{-2x} \right)$. 将 $y_1(0) = y(0) = 0$ 代入得 $C_1 = 1$, 所以

$$y_1(x) = e^{2x} - 1(x < 1).$$

由题设知,在 $(1, +\infty)$ 上, $y(x) = y_2(x)$ 满足

$$y_2' - 2y_2 = 0$$
,

它的通解为 $y_2(x) = C_2 e^{2x}$. 为使 y(x) 在 x = 1 处连续,必须

$$\lim_{x \to 1^{+}} y_{2}(x) = \lim_{x \to 1^{-}} y_{1}(x) = e^{2} - 1, \text{ {\it II} } C_{2}e^{2} = e^{2} - 1,$$

所以 $C_2 = 1 - e^{-2}$, 因此 $\gamma_2(x) = (1 - e^{-2})e^{2x}(x > 1)$. 由此得到

$$y(x) = \begin{cases} y_1(x), & x \le 1, \\ y_2(x), & x > 1 \end{cases} = \begin{cases} e^{2x} - 1, & x \le 1, \\ (1 - e^{-2})e^{2x}, & x > 1. \end{cases}$$

(22)(I)方程组(A)的增广矩阵

$$\overline{A} = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 2 & a+4 & -5 & 6 \\ -1 & -2 & a & -3 \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & a & -7 & 0 \\ 0 & 0 & a+1 & 0 \end{pmatrix},$$

所以,方程组(A)有无穷多解时,a+1=0,即a=-1.

(II) 当 a = -1 时,方程组(A)与(B)组成的方程组为

$$(C) \begin{cases} x_1 + 2x_2 + x_3 = 3, \\ 2x_1 + 3x_2 - 5x_3 = 6, \\ -x_1 - 2x_2 - x_3 = -3, \\ x_1 + x_2 + x_3 = 0, \\ 2x_1 + \lambda x_2 = 1. \end{cases}$$

对方程组(C)的增广矩阵 \overline{C} 施行初等行变换:

$$\begin{pmatrix}
1 & 2 & 1 & 3 \\
2 & 3 & -5 & 6 \\
-1 & -2 & -1 & 3 \\
1 & 1 & 1 & 0 \\
2 & \lambda & 0 & 1
\end{pmatrix}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 1 \\
2 & 3 & -5 & 6 \\
-1 & -2 & -1 & 3 \\
1 & 2 & 1 & 3 \\
2 & \lambda & 0 & 1
\end{pmatrix}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & -7 & 6 \\
0 & -1 & 0 & -3 \\
0 & 1 & 0 & 3 \\
0 & \lambda - 2 & -2 & 1
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & -7 & 3 \\
0 & 0 & -7 & 3 \\
0 & 0 & -2 & 7 - 3 \lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & -2 & 7 - 3 \lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & -2 & 7 - 3 \lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & -2 & 7 - 3 \lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & -2 & 7 - 3 \lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & -2 & 7 - 3 \lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{3}{7} \\
0 & 0 & 0 & -2 & 7 - 3 \lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{3}{7} \\
0 & 0 & 0 & \frac{43}{7} - 3\lambda
\end{pmatrix}}$$

由此可知,方程组(A)与(B)有公共解,即方程组(C)有解时, $r(C) = r(\overline{C})$ (其中 C 是方程组(C)的系数矩阵),即 $\lambda = \frac{43}{21}$,并且此时的公共解为 $x_1 = -\frac{18}{7}$, $x_2 = 3$, $x_3 = -\frac{3}{7}$.

附注 设方程组 $A_1x = b_1$, $A_2x = b_2$ (其中 A_1 , A_2 分别是 $m_1 \times n$ 与 $m_2 \times n$ 矩阵, b_1 , b_2 分别是 m_1 维与 m_2 维列向量),则这两个方程组有公共解的充分必要条件为方程组

$$\begin{cases} A_1 x = b_1, \\ A_2 x = b_2 \end{cases}$$

有解.

(23) (I)由题设知, *A* 有特征值 $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = -1$. 从而 $\lambda_1 = 2$ 对应于 A^* 的特征 值 $\mu_1 = \frac{|A|}{\lambda_1} = 1$, 所以由 $A^* \alpha = \alpha$ 知 $\mu_1 = 1$ 对应的特征向量为 $\alpha = (1, 1, -1)^T$, 由此可知 *A* 的对应于 $\lambda_1 = 2$ 的特征向量为 α .

设 \boldsymbol{A} 的对应于 $\lambda_2 = \lambda_3 = -1$ 的特征向量为 $\boldsymbol{\beta} = (b_1, b_2, b_3)^{\mathrm{T}}$,则由 \boldsymbol{A} 是实对称矩阵知 $\boldsymbol{\beta}$ 与 $\boldsymbol{\alpha}$ 正交,即

$$b_1 + b_2 - b_3 = 0.$$

故取 $\boldsymbol{\beta}$ 为这个方程的基础解系,即 $\boldsymbol{\beta}_1 = (-1, 1, 0)^T$, $\boldsymbol{\beta}_2 = (1, 0, 1)^T$. 现将它们正交化:

$$\boldsymbol{\gamma}_1 = \boldsymbol{\beta}_1 = (-1,1,0)^T, \boldsymbol{\gamma}_2 = \boldsymbol{\beta}_2 - \frac{(\boldsymbol{\beta}_2,\boldsymbol{\gamma}_1)}{(\boldsymbol{\gamma}_1,\boldsymbol{\gamma}_2)} \boldsymbol{\gamma}_1 = \left(\frac{1}{2},\frac{1}{2},1\right)^T.$$

显然 α , γ_1 , γ_2 是正交向量组, 现将它们单位化:

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\alpha}}{\parallel \boldsymbol{\alpha} \parallel} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^{T},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\gamma}_{1}}{\parallel \boldsymbol{\gamma}_{1} \parallel} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T},$$

$$\boldsymbol{\xi}_{3} = \frac{\boldsymbol{\gamma}_{2}}{\parallel \boldsymbol{\gamma}_{2} \parallel} = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^{T},$$

$$= \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{bmatrix}. \quad \text{由于}$$

$$\boldsymbol{Q}^{T} \boldsymbol{A} \boldsymbol{Q} = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix},$$

所以
$$A = Q$$
 $\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ Q^{T}
$$= \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{2}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.$$

(\mathbb{I}) 由于 $f(x_1, x_2, x_3)$ 在正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下的标准形为 $2y_1^2 - y_2^2 - y_3^2$,所以令

$$\begin{cases} z_1 = \sqrt{2}y_1, \\ z_2 = y_2, & 即 \mathbf{y} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 1 \\ 1 \end{pmatrix} z, 则$$

$$2y_1^2 - y_2^2 - y_3^2 = z_1^2 - z_2^2 - z_3^2$$
 (规范形).

从而 $f(x_1, x_2, x_3)$ 在可逆线性变换

$$x = Qy = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \\ & 1 & \\ & & 1 \end{pmatrix} z$$
$$= \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} z$$

下, 化为规范形, 即

$$f(x_1,x_2,x_3) = z_1^2 - z_2^2 - z_3^2$$

附注 (I) 设A 是 n 阶可逆矩阵,有特征值 λ 及对应的特征向量 α ,则 A 的伴随矩阵 A^* 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 α .

(Ⅱ)要熟练掌握用正交变换化二次型为标准形的方法及由正交变换与标准形计算二次型矩阵的方法.

模拟试题(九)解答

一、选择题

答案 (1) (2) (3) (4) (5) (6) (7) (8) B C A D B A B D

(1) f(x)有间断点 x = -1, 0, 1. 由于

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{\ln(1+x^2)}{(1 - e^{\frac{x}{1-x}})x(1+x)} = \infty ,$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\ln(1+x^2)}{(1 - e^{\frac{x}{1-x}})x(1+x)} = \lim_{x \to 0} \frac{x^2}{-\frac{x}{1-x} \cdot x} = -1 ,$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{\ln(1+x^2)}{(1 - e^{\frac{x}{1-x}})x(1+x)} = 0 ,$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{\ln(1+x^2)}{(1 - e^{\frac{x}{1-x}})x(1+x)} = \frac{\ln 2}{2} ,$$

所以、f(x)仅有一个无穷间断点 x = -1. 因此选(B).

附注 由题解可知, x=0, 1分别是 f(x)的可去间断点和跳跃间断点.

(2) 利用对称区间上定积分的性质可得:

$$M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1 + x^2} \cos^2 x dx = 0$$
 (由于被积函数是奇函数),

 $N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x) \, dx = 2 \int_{0}^{\frac{\pi}{2}} \cos^4 x \, dx > 0 \text{ (由于 } \sin^3 x \text{ 是奇函数}, \cos^4 x \text{ 是偶函数}, 在$ $\left[0, \frac{\pi}{2}\right] \bot \cos^4 x \ge 0, \text{且仅在点 } x = \frac{\pi}{2} \text{ 处取等号}),$

 $P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^7 x) \, \mathrm{d}x = -2 \int_0^{\frac{\pi}{2}} \cos^7 x \, \mathrm{d}x < 0 \text{ (由于 } x^2 \sin^3 x \text{ 是奇函数}, \cos^7 x \text{ 是偶函数}, \cot^7 x \text{ 是偶函数}, \cot^7 x \text{ 是偶函数}, \cot^7 x \text{ 2} \text{ Los}^7 x \text{ 2} \text{ 0}, \text{ 且仅在点 } x = \frac{\pi}{2} \text{ 处取等号), 所以, } P < M < N. 因此选(C).$

附注 应记住对称区间上定积分的性质. 设函数 f(x) 在 [-a, a](a>0) 上连续,则

$$\int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx, & f(x) \text{ 是偶函数,} \\ 0, & f(x) \text{ 是奇函数.} \end{cases}$$

(3) 设f(x)在点 x_0 处可导,并由已知条件,可知

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} \ge 0, f'_{+}(x_0) = \lim_{x \to x_0^{+}} \frac{f(x) - f(x_0)}{x - x_0} \le 0,$$

所以 $f'(x_0) = 0$. 于是,对于点 x_0 左侧邻近内的任意x有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(\xi)(x - x_0)^2(\sharp + \xi \in (x, x_0))$$
$$= f(x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2 \ge f(x_0).$$

这与f(x)在点 x_0 的左侧邻近单调增加(即 $f(x) < f(x_0)$)矛盾. 因此选(A).

附注 根据已知条件和函数的特性,本题只在选项(A), (B) 中选择即可. 题解中假定 f(x) 在点 x_0 处可导,结果推出矛盾,因此确定选(A).

$$(4) \int_{-1}^{x} f(t) dt = \int_{-1}^{0} f(t) dt + \int_{0}^{x} f(t) dt$$

$$= \int_{-1}^{0} t dt + \begin{cases} \int_{0}^{x} t dt, & x \leq 0, \\ \int_{0}^{x} \sin t dt, & x > 0 \end{cases} = -\frac{1}{2} + \begin{cases} \frac{1}{2}x^{2}, & x \leq 0, \\ 1 - \cos x, & x > 0 \end{cases}$$

$$= \begin{cases} -\frac{1}{2} + \frac{1}{2}x^{2}, & x \leq 0, \\ \frac{1}{2} - \cos x, & x > 0. \end{cases}$$

$$= \begin{cases} \frac{1}{2} + \frac{1}{2}x^{2}, & x \leq 0, \\ \frac{1}{2} - \cos x, & x > 0. \end{cases}$$

附注 分段连续函数 $f(x) = \begin{cases} f_1(x), & x \leq x_0, \\ f_2(x), & x > x_0 \end{cases}$ 的积分上限函数 $\int_a^x f(t) dt$ 总是按以下方法计算:

$$\int_{a}^{x} f(t) dt = \int_{a}^{x_{0}} f_{1}(t) dt + \begin{cases} \int_{x_{0}}^{x} f_{1}(t) dt, & x \leq x_{0}, \\ \int_{x_{0}}^{x} f_{2}(t) dt, & x > x_{0}. \end{cases}$$

(5) 根据函数 f(x, y) 在点 (x_0, y_0) 处可微的充分条件知, (B) 是正确的, 因此选(B).

附注 (I)函数 f(x, y) 在点 (x_0, y_0) 处可微的必要而非充分条件是 $f'_x(x_0, y_0)$ 和 $f'_x(x_0, y_0)$ 都存在.

函数 f(x, y) 在点 (x_0, y_0) 处可微的充分而非必要条件是 $f'_x(x, y)$, $f'_y(x, y)$ 在点 (x_0, y_0) 处都连续.

(Π) 由 $f'_{x}(x, y)$, $f'_{y}(x, y)$ 在点 (x_0, y_0) 处可微,只能保证 $f''_{xy}(x_0, y_0)$, $f''_{yx}(x_0, y_0)$ 存在,而不能保证 $f''_{xy}(x, y)$, $f''_{yx}(x, y)$ 在点 (x_0, y_0) 处连续,所以不能保证 $f''_{xy}(x_0, y_0)$ = $f''_{yx}(x_0, y_0)$.

由于 $f_{xy}''(x, y)$ 在点 (x_0, y_0) 处连续,不能保证 $f_{yx}''(x, y)$ 也在点 (x_0, y_0) 处连续,所以不能保证 $f_{xx}''(x_0, y_0) = f_{xx}''(x_0, y_0)$.

(6) 容易看到 $y_2 - y_1 = e^{-x} (\cos x + \sin x)$ 是 y'' + py' + qy = 0 的特解,从而 $p = -\lceil (-1+i) + (-1-i) \rceil = 2$,q = (-1+i)(-1-i) = 2.

此外,由题设知 e^x 是 y'' + py' + qy = f(x),即 y'' + 2y' + 2y = f(x)的特解,所以, $f(x) = (e^x)'' + 2(e^x)' + 2e^x = 5e^x$. 因此选(A).

附注 由于微分方程 y'' + py' + qy = f(x) 有解 $y_2 = e^x + e^{-x}\cos x$, 其中 $e^{-x}\cos x$ 是 y'' + py' + qy = 0 的解,所以由线性微分方程解的构造知, e^x 是 y'' + py' + qy = f(x) 的解.

(7) 已知方程组 $Ax = b(A \not\in m \times n$ 矩阵, $x \not\in n$ 维列向量, $b \not\in m$ 维列向量)有无穷多解的充分必要条件是

$$r(\mathbf{A} \vdots \mathbf{b}) = r(\mathbf{A}) < n.$$

记 $B = (b_1, b_2, \dots, b_l)(b_1, b_2, \dots, b_l)$ 都是 m 维列向量), $X = (x_1, x_2, \dots, x_n)$ (x_1, x_2, \dots, x_n) 都是 n 维列向量), 则 AX = B 有无穷多解的充分必要条件是

$$r(\mathbf{A} \vdots \mathbf{b}_1) = r(\mathbf{A}) \leq n, \ r(\mathbf{A} \vdots \mathbf{b}_2) = r(\mathbf{A}) \leq n, \ \cdots, \ r(\mathbf{A} \vdots \mathbf{b}_n) = r(\mathbf{A}) \leq n$$

(其中至少有一式只取不等号)。即

$$r(\mathbf{A} : \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_l) = r(\mathbf{A}) < n.$$

由此得到AX = B有无穷多解的充分必要条件是

$$r(\mathbf{A} : \mathbf{B}) = r(\mathbf{A}) < n.$$

因此选(B).

附注 应记住关于矩阵方程 $AX = B(A \not = m \times n$ 矩阵, $B \not = m \times l$ 矩阵, $X \not = n \times l$ 未知矩阵) 的解的结论:

该方程有无穷多解的充分必要条件是 r(A : B) = r(A) < n; 有唯一解的充分必要条件是 r(A : B) = r(A) = n; 无解的充分必要条件是 r(A : B) > r(A).

(8) 实对称矩阵 A, B 合同的充分必要条件是,分别以 A, B 为矩阵的二次型有相同的规范形. 因此选(D).

附注 (I)选项(A)是A与B合同的必要而非充分条件,选项(B)、(C)既不是必要条件,也不是充分条件.

- (II) 两个 n 阶实对称矩阵 A, B 合同的充分必要条件有两种:
- (i) A, B 的正、负特征值分别相等(k 重特征值按 k 个计算);
- (ii)以 A, B 为矩阵的二次型有相同的规范形.

二、填空题

$$(9) f(x) = \frac{1}{(x-1)(x+2)} = \frac{1}{3} \left(\frac{1}{x-1} - \frac{1}{x+2} \right) = -\frac{1}{3} \cdot \frac{1}{1-x} - \frac{1}{6} \cdot \frac{1}{1+\frac{x}{2}}$$
$$= -\frac{1}{3} (1+x+x^2+x^3+o(x^3)) - \frac{1}{6} \left(1 - \frac{x}{2} + \frac{x^2}{4} - \frac{x^3}{8} + o(x^3) \right)$$
$$= -\frac{1}{2} - \frac{1}{4}x - \frac{3}{8}x^2 - \frac{5}{16}x^3 + o(x^3).$$

附注 题解中是利用 $\frac{1}{1-x}$ 和 $\frac{1}{1+\frac{x}{2}}$ 的 3 阶麦克劳林公式(带佩亚诺型余项) 算得 f(x) 的 3

阶麦克劳林公式(带佩亚诺型余项)的. 现在用直接法计算:

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + o(x^3), \tag{1}$$

其中, $f(0) = -\frac{1}{2}$,

$$f'(0) = \left[\frac{1}{3} \left(\frac{1}{x-1} - \frac{1}{x+2} \right) \right]' \Big|_{x=0} = \frac{1}{3} \left[-\frac{1}{(x-1)^2} + \frac{1}{(x+2)^2} \right] \Big|_{x=0} = -\frac{1}{4},$$

$$f''(0) = \left[\frac{1}{3} \left(\frac{1}{x-1} - \frac{1}{x+2} \right) \right]'' \Big|_{x=0} = \frac{1}{3} \left[\frac{2}{(x-1)^3} - \frac{2}{(x+2)^3} \right] \Big|_{x=0} = -\frac{3}{4},$$

$$f^{(3)}(0) = \left[\frac{1}{3} \left(\frac{1}{x-1} - \frac{1}{x+2} \right) \right]^{(3)} \Big|_{x=0} = \frac{1}{3} \left[-\frac{6}{(x-1)^4} + \frac{6}{(x+2)^4} \right] \Big|_{x=0} = -\frac{15}{8}.$$

将它们代入式(1)得

$$f(x) = -\frac{1}{2} - \frac{1}{4}x + \frac{1}{2}\left(-\frac{3}{4}\right)x^2 + \frac{1}{6}\cdot\left(-\frac{15}{8}\right)x^3 + o(x^3)$$
$$= -\frac{1}{2} - \frac{1}{4}x - \frac{3}{8}x^2 - \frac{5}{16}x^3 + o(x^3).$$

所以,所给曲线的渐近线方程为 $x = -\frac{1}{2}$ 和 y = 0.

附注 由于
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{e^x \sin 2x}{x(2x+1)} = \lim_{x\to 0} \frac{\sin 2x}{x} = 2,$$

$$\lim_{x\to +\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} \frac{e^x \sin 2x}{x^2(2x+1)}$$
 不存在,

所以直线 x = 0 不是渐近线, $x \to + \infty$ 方向也无渐近线.

$$(11) \int_0^1 (x-1)^2 f(x) \, \mathrm{d}x = \frac{1}{3} \int_0^1 f(x) \, \mathrm{d}(x-1)^3$$

$$= \frac{1}{3} \Big[(x-1)^3 f(x) \Big|_0^1 - \int_0^1 (x-1)^3 \mathrm{e}^{-\frac{(x-1)^2}{2}} \, \mathrm{d}x \Big]$$

$$= -\frac{1}{3} \int_0^1 (x-1)^3 \mathrm{e}^{-\frac{(x-1)^2}{2}} \, \mathrm{d}x = \frac{1}{3} \int_0^1 (x-1)^2 \, \mathrm{d}\mathrm{e}^{-\frac{(x-1)^2}{2}}$$

$$= \frac{1}{3} \Big[(x-1)^2 \mathrm{e}^{-\frac{(x-1)^2}{2}} \Big|_0^1 - 2 \int_0^1 (x-1) \, \mathrm{e}^{-\frac{(x-1)^2}{2}} \, \mathrm{d}x \Big]$$

$$= -\frac{1}{3} \mathrm{e}^{-\frac{1}{2}} + \frac{2}{3} \mathrm{e}^{-\frac{(x-1)^2}{2}} \Big|_0^1 = \frac{2}{3} - \mathrm{e}^{-\frac{1}{2}}.$$

附注 本题也可以利用二次积分计算, 具体如下:

$$\int_{0}^{1} (x-1)^{2} f(x) dx = \int_{0}^{1} dx \int_{0}^{x} (x-1)^{2} e^{-\frac{(t-1)^{2}}{2}} dt$$

$$\frac{\text{交換积分次序}}{\int_{0}^{1} dt \int_{t}^{1} (x-1)^{2} e^{-\frac{(t-1)^{2}}{2}} dx$$

$$=-\frac{1}{3}\int_{0}^{1}(t-1)^{3}e^{-\frac{(t-1)^{2}}{2}}dt$$
,以下计算同题解.

$$\operatorname{MTU} \frac{\partial^2 z}{\partial x \partial y} \Big|_{\substack{x=0 \ y=1}} = \frac{\mathrm{d}}{\mathrm{d} y} (y + y^2) \Big|_{\substack{y=1}} = 3.$$

附注 由于 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0 \ y=1}} = \frac{\mathrm{d}}{\mathrm{d}y} \left(\frac{\partial z(0,y)}{\partial x} \right) \Big|_{y=1}$,所以可以先算出 $\frac{\partial z(0,y)}{\partial x} = \frac{\mathrm{id}}{\partial x} \varphi(y)$,然后计算 $\frac{\mathrm{d}\varphi(y)}{\mathrm{d}y}\Big|_{y=1}$ 即得 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0 \ y=1}}$,这样计算比先算出 $\frac{\partial^2 z}{\partial x \partial y}$,然后将 x=0,y=1 代入计算 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0 \ y=1}}$ 快捷.

(13) 所给微分方程可以改写成

$$(x\cos y + \cos x) dy + (-y\sin x + \sin y) dx = 0,$$

$$(x\cos y dy + \sin y dx) + (\cos x dy - y\sin x dx) = 0.$$

由此得到 $d(x\sin y + y\cos x) = 0$. 所以所给微分方程的通解为

$$x\sin y + y\cos x = C$$
.

附注 所给的微分方程既不是变量可分离的微分方程,也不是齐次微分方程和线性微分方程,因此,应采用适当分项凑全微分的方法求解.

(14) 由于
$$f(x_1, x_2, x_3) = (\mathbf{A}\mathbf{x})^{\mathrm{T}}(\mathbf{A}\mathbf{x}) = (x_1 + x_3, x_2 + x_3, x_3) \begin{pmatrix} x_1 + x_3 \\ x_2 + x_3 \\ x_3 \end{pmatrix}$$

$$= (x_1 + x_3)^2 + (x_2 + x_3)^2 + x_3^2,$$

$$\Leftrightarrow \begin{cases} y_1 = x_1 & +x_3, \\ y_2 = & x_2 + x_3, \\ y_3 = & x_3, \end{cases} \begin{cases} x_1 = y_1 & -y_3, \\ x_2 = & y_2 - y_3, (\text{可逆线性变换}), \text{则} \\ x_3 = & y_3 \end{cases}$$

$$f(x_1, x_2, x_3) = y_1^2 + y_2^2 + y_3^2 \text{(规范形)}.$$

附注 本题也可解答如下:

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 3 \end{pmatrix},$$

则

即

$$|\lambda E_3 - A^{\mathrm{T}} A| = \begin{vmatrix} \lambda - 1 & 0 & -1 \\ 0 & \lambda - 1 & -1 \\ -1 & -1 & \lambda - 3 \end{vmatrix} = (\lambda - 1) [\lambda - (2 + \sqrt{3})] [\lambda - (2 - \sqrt{3})],$$

即 $A^{T}A$ 有三个正特征值,所以 $f(x_1, x_2, x_3)$ 的规范形为 $y_1^2 + y_2^2 + y_3^2$.

三、解答题

$$(15) \lim_{x \to 0^{+}} \frac{x - \sin x}{1 - (1 + x)^{x \sin^{2} \sqrt{x}}} = -\lim_{x \to 0^{+}} \frac{x - \sin x}{e^{x \sin^{2} \sqrt{x} \ln(1 + x)} - 1} = -\lim_{x \to 0^{+}} \frac{x - \sin x}{x \sin^{2} \sqrt{x} \ln(1 + x)}$$
$$= -\lim_{x \to 0^{+}} \frac{x - \sin x}{x^{3}} \frac{\text{\&\&\&\&y}}{x^{3}} - \lim_{x \to 0^{+}} \frac{1 - \cos x}{3x^{2}} = -\frac{1}{6}.$$

附注 计算 $\frac{0}{0}$ 型未定式极限 $\lim \frac{f(x)}{g(x)}$ 时,首先进行化简,其中等价无穷小代替是化简的重要手段,只有不能或不易化简时,才考虑应用洛必达法则。

(16) 题设不等式可以改写成

$$[f'(x) - 2f(x)]' - 3[f'(x) - 2f(x)] \ge 0(x \ge 0).$$

记g(x) = f'(x) - 2f(x), 则上式成为

$$g'(x) - 3g(x) \ge 0, \mathbb{H}[e^{-3x}g(x)]' \ge 0 (x \ge 0).$$

所以,对
$$x \ge 0$$
, $e^{-3x}g(x) \ge [e^{-3x}g(x)]\Big|_{x=0} = g(0) = f'(0) - 2f(0) = -2$,

 $f'(x) - 2f(x) \ge -2e^{3x}.$

上式两边同乘 e^{-2x} 得[$e^{-2x}f(x)$]' $+2e^x \ge 0$,即[$e^{-2x}f(x) + 2e^x$]' ≥ 0 ($x \ge 0$). 由此推得,对 $x \ge 0$ 有

$$e^{-2x}f(x) + 2e^x \ge [e^{-2x}f(x) + 2e^x]\Big|_{x=0} = 3,$$

附注 在证明过程中多次应用以下结论:

当 $f'(x) - \lambda f(x) \ge 0$ 时有 $[e^{-\lambda x}f(x)]' \ge 0$ (其中 λ 是常数).

$$(17) \int \frac{1}{\sin x \cos x} \frac{1}{\sqrt{\sin^4 x + \cos^4 x}} dx = \int \frac{1}{\frac{1}{2} \sin 2x} \frac{1}{\sqrt{1 - \frac{1}{2} \sin^2 2x}} dx$$

$$= \int \frac{1}{\sqrt{\csc^2 2x - \frac{1}{2}}} \frac{d(2x)}{\sin^2 2x} = -\int \frac{1}{\sqrt{\cot^2 2x + \frac{1}{2}}} d\cot 2x$$

$$= -\ln\left(\cot 2x + \sqrt{\cot^2 2x + \frac{1}{2}}\right) + C.$$

附注 对于三角函数的不定积分,当被积函数中出现一种类型以上的三角函数时,总是利用三角函数的性质将它们合并成一种类型的三角函数,以便于不定积分的计算.

(18) 直线
$$y = x - 1$$
 与圆 $x^2 + y^2 = 2x$ 的交点 $C = \left(1 + \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

 V_x = 曲边三角形 *OBC* 绕 x 轴旋转一周而成的旋转体体积 – 三角形 *ABC* 绕 x 轴旋转一周 而成的旋转体体积(曲边三角形 *OBC* 与三角形 *ABC* 如图答 9-18 所示)

$$= \pi \int_0^{1+\frac{\sqrt{2}}{2}} (2x - x^2) dx - \frac{1}{3} \cdot \pi \left(\frac{\sqrt{2}}{2}\right)^2 \cdot \frac{\sqrt{2}}{2}$$

$$= \pi \left(\frac{2}{3} + \frac{5\sqrt{2}}{12} \right) - \frac{\sqrt{2}}{12} \pi = \pi \left(\frac{2}{3} + \frac{\sqrt{2}}{3} \right).$$

 $V_y =$ 曲边三角形 OBC 绕 y 轴旋转一周而成的旋转体体积 – 三角形 ABC 绕 y 轴旋转一周 而成的旋转体体积

其中,
$$\int_{0}^{1+\frac{\sqrt{2}}{2}} x \sqrt{2x-x^{2}} dx - \int_{1}^{1+\frac{\sqrt{2}}{2}} x(x-1) dx \right], \quad (1)$$

$$= 2\pi \left[\int_{0}^{1+\frac{\sqrt{2}}{2}} x \sqrt{2x-x^{2}} dx - \int_{1}^{1+\frac{\sqrt{2}}{2}} x(x-1) dx \right], \quad (1)$$

$$= -\frac{1}{3} (1-t^{2})^{\frac{3}{2}} \Big|_{-1}^{\frac{\sqrt{2}}{2}} + \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \cos^{2} u du (其中 t = \sin u) - \frac{\sqrt{2}}{2} + \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} (1 + \cos 2u) du = -\frac{\sqrt{2}}{12} + \frac{3\pi}{8} + \frac{1}{4}, -1$$

$$\int_{1}^{1+\frac{\sqrt{2}}{2}} x(x-1) dx = \left(\frac{1}{3} x^{3} - \frac{1}{2} x^{2} \right) \Big|_{1}^{1+\frac{\sqrt{2}}{2}} = \frac{1}{4} + \frac{\sqrt{2}}{12}.$$
图答 9-18

将它们代入式(1)得

$$V_{y} = 2\pi \left[\left(-\frac{\sqrt{2}}{12} + \frac{3\pi}{8} + \frac{1}{4} \right) - \left(\frac{1}{4} + \frac{\sqrt{2}}{12} \right) \right] = \frac{3}{4}\pi^{2} - \frac{\sqrt{2}}{3}\pi.$$

附注 应记住以下公式:

设函数 f(x) 是 $[a, b](a \ge 0)$ 上连续的非负函数,记 $D = \{(x, y) \mid 0 \le a \le x \le b, 0 \le y \le f(x)\}$,则 D 绕 x 轴旋转一周而成的旋转体体积

$$V_x = \pi \int_a^b f^2(x) \, \mathrm{d}x;$$

D 绕 y 轴旋转一周而成的旋转体体积

$$V_{y} = 2\pi \int_{a}^{b} x f(x) \, \mathrm{d}x.$$

(19) 由于 $f(\xi) + \xi f'(\xi) = 0$ 即为 $[xf(x)]' \Big|_{x=\xi} = 0$,所以作辅助函数 F(x) = xf(x),它在[0,1]上连续,在[0,1]内可导,且由

$$f(1) = 2 \int_0^{\frac{1}{2}} x f(x) \, \mathrm{d}x = x_1 f(x_1) \left(x_1 \in \left[0, \frac{1}{2} \right] \right) (根据积分中值定理), 即 F(1) = F(x_1),$$

从而可知, F(x)满足罗尔定理条件, 所以存在 $\xi \in (x_1, 1) \subset (0, 1)$, 使得 $F'(\xi) = 0$, 即 $f(\xi) + \xi f'(\xi) = 0$.

附注 题解中综合使用了罗尔定理与积分中值定理.

(20) 由于 $\int_0^x f(x-t,y) dt = \int_0^x f(u,y) du(u=x-t)$, 所以 $f(x,y) = y + \int_0^x f(u,y) du$, 从 而 f(0, y) = y, 且

$$f_x'(x,y) = f(x,y).$$

由此得到 $f(x, y) = ye^x$. 此外, 由题设知

$$dg(x,y) = g'_{x}(x,y)dx + g'_{y}(x,y)dy = d(x + y),$$

所以 g(x, y) = x + y + C. 从而由 g(0, 0) = 0 得 C = 0. 因此 g(x, y) = x + y.

由以上的f(x, y), g(x, y)得

$$f(\sqrt{x},g(x,y)) = e^{\sqrt{x}}(x+y).$$

以前,
$$\iint_{D} f(\sqrt{x}, g(x, y)) d\sigma = \iint_{D} e^{\sqrt{x}} (x + y) d\sigma$$

$$= \int_{0}^{1} dx \int_{-\sqrt{x}}^{\sqrt{x}} e^{\sqrt{x}} (x + y) dy = 2 \int_{0}^{1} x^{\frac{3}{2}} e^{\sqrt{x}} dx$$

$$= \frac{\Leftrightarrow t = \sqrt{x}}{2} 4 \int_{0}^{1} t^{4} e^{t} dt = 4 \left(t^{4} e^{t} \Big|_{0}^{1} - 4 \int_{0}^{1} t^{3} e^{t} dt \right)$$

$$= 4e - 16 \int_{0}^{1} t^{3} e^{t} dt = 4e - 16 \left(t^{3} e^{t} \Big|_{0}^{1} - 3 \int_{0}^{1} t^{2} e^{t} dt \right)$$

$$= -12e + 48 \int_{0}^{1} t^{2} e^{t} dt = -12e + 48 \left(t^{2} e^{t} \Big|_{0}^{1} - 2 \int_{0}^{1} t e^{t} dt \right)$$

$$= 36e - 96 \int_{0}^{1} t e^{t} dt = 36e - 96.$$

附注 题解中值得注意的是:

为了对 $f(x,y) = y + \int_0^x f(x-t,y) dt$ 的两边对 x 求偏导数,需将被积函数中的 x 移走,故 令 u = x - t.

(21) 将所给方程改写为

$$\frac{y(x)}{x} = x^2 - \int_1^x \frac{y(t)}{t^2} dt + \frac{y'(x)}{x}.$$
 (1)

上式两边对 x 求导得

$$\frac{xy' - y}{x^2} = 2x - \frac{y}{x^2} + \frac{xy'' - y'}{x^2},$$

$$y'' - \frac{x+1}{x}y' = -2x^2.$$
(2)

即

$$p' - \frac{x+1}{x}p = -2x^2$$
,

它的通解为

$$p = e^{\int \frac{x+1}{x} dx} \left(C_1 - \int 2x^2 e^{-\int \frac{x+1}{x} dx} dx \right)$$
$$= x e^x \left(C_1 - 2 \int x e^{-x} dx \right) = C_1 x e^x + 2(x+1)x,$$

从而,式(2)的通解为

$$y(x) = \int [C_1 x e^x + 2(x+1)x] dx$$
$$= C_1(x-1)e^x + \frac{2}{3}x^3 + x^2 + C_2.$$

由
$$\lim_{x\to +\infty} \frac{y(x)}{x^3}$$
存在知 $C_1 = 0$,所以

$$y(x) = \frac{2}{3}x^3 + x^2 + C_2. {3}$$

由题设等式得 y(1) = 1 + y'(1), 于是由式(3) 得 $C_2 = \frac{10}{3}$, 因此

$$y(x) = \frac{2}{3}x^3 + x^2 + \frac{10}{3}$$
.

附注 为消除题中所给等式中的积分运算,必须将它写成式(1). 此外,式(2)通解中的常数 C_1 与 C_2 分别由条件

$$\lim_{x\to +\infty}\frac{y(x)}{x^3}$$
 存在

和 y(1) = 1 + y'(1) (它是在所给等式中令 x = 1 得到的)确定.

(22)
$$\boxplus A(\alpha_1, \alpha_2, \alpha_3) = (\alpha_2 + \alpha_3, \alpha_1 + a\alpha_3, \alpha_1 + \alpha_2)$$

$$= (\boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_3) \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & a & 0 \end{pmatrix}$$

知,
$$\mathbf{P}^{-1}\mathbf{AP} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & a & 0 \end{pmatrix}$$
(其中 $\mathbf{P} = (\boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_3)$ 可逆), 即

$$A \sim \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & a & 0 \end{pmatrix}$$
 一選 B ,

所以,由 $f(\lambda) = |\lambda E_3 - B| = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -a & \lambda \end{vmatrix} = \begin{vmatrix} \lambda + 1 & -(\lambda + 1) & 0 \\ 0 & \lambda + a & -(\lambda + 1) \\ -1 & -a & \lambda \end{vmatrix}$

$$= (\lambda + 1) \begin{vmatrix} 1 & -1 & 0 \\ 0 & \lambda + a & -(\lambda + 1) \\ -1 & -a & \lambda \end{vmatrix} = (\lambda + 1) [\lambda^2 - \lambda - (1 + a)]$$

知, 方程 $f(\lambda) = 0$ 不可能有三重根. 这是因为, 如有三重根, 则

$$(\lambda + 1)[\lambda^2 - \lambda - (1 + a)] = (\lambda + 1)^3$$
,

但 $\lambda^2 - \lambda - (1+a) = (\lambda+1)^2$ 是不可能的. 此外,方程 $f(\lambda) = 0$ 有二重根时应分两种情形讨论:

(I) 当 $\lambda = -1$ 是方程 $f(\lambda) = 0$ 的二重根时,由以上计算知 a = 1,并且由

知, r(-E-B)=1=3-2(即矩阵 B 的阶数与 $\lambda=-1$ 的重数之差), 所以此时 B 可相似对角化. 由于 $A\sim B$, 所以此时 A 可相似对角化.

(II) 当 $\lambda = -1$ 不是方程 $f(\lambda) = 0$ 的二重根时,方程 $\lambda^2 - \lambda - (1 + a) = 0$ 必有二重根,

从而 $(-1)^2-4[-(1+a)]=0$,即 $a=-\frac{5}{4}$,并且此时的二重根为 $\lambda=\frac{1}{2}$,于是由

$$\frac{1}{2}E - B = \begin{pmatrix} \frac{1}{2} & -1 & -1 \\ -1 & \frac{1}{2} & -1 \\ -1 & \frac{5}{4} & \frac{1}{2} \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & -2 & -2 \\ -1 & \frac{1}{2} & -1 \\ -1 & \frac{5}{4} & \frac{1}{2} \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -2 & -2 \\ 0 & -\frac{3}{2} & -3 \\ 0 & -\frac{3}{4} & -\frac{3}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -2 \\ 0 & -\frac{3}{2} & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

知 $r\left(\frac{1}{2}\boldsymbol{E} - \boldsymbol{B}\right) = 2 \neq 1 = 3 - 2$ (即矩阵 \boldsymbol{B} 的阶数与 $\lambda = \frac{1}{2}$ 的重数之差),所以此时 \boldsymbol{B} 不可相似对角化. 由于 $\boldsymbol{A} \sim \boldsymbol{B}$,所以此时 \boldsymbol{A} 不可相似对角化.

综上所述, 当 $a = -\frac{5}{4}$ 时, A 不可相似对角化.

附注 设A 是n 阶矩阵,则A 可相似对角化的充分条件有以下四种:

- (I) A 有 n 个不同的特征值:
- (Ⅱ) A 有 n 个线性无关的特征向量;
- (Ⅲ) A 是实对称矩阵;
- (IV) A 的每个特征值 λ_i 都满足 $r(\lambda_i E A) = n n_i (n_i$ 是 λ_i 的重数,E 是 n 阶单位矩阵).

本题的求解就是从利用(Ⅳ)入手的.

(23) (I)
$$\exists A \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$

$$A\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = -\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, A\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},$$

所以,矩阵 A 有特征值 $\lambda = -1$, 1. 由于 r(A) = 2,所以 A 还有特征值 $\lambda = 0$. 显然对应于 $\lambda = -1$, 1,分别有特征向量 $\boldsymbol{\alpha}_1 = (1, 0, -1)^T$, $\boldsymbol{\alpha}_2 = (1, 0, 1)^T$. 设对应于 $\lambda = 0$ 的特征 向量为 $\boldsymbol{\alpha}_3 = (a_1, a_2, a_3)^T$,则 $\boldsymbol{\alpha}_3$ 与 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$ 都正交,故有

$$\begin{cases} \boldsymbol{\alpha}_1 \cdot \boldsymbol{\alpha}_3 = 0, & \text{BJ} \\ \boldsymbol{\alpha}_2 \cdot \boldsymbol{\alpha}_3 = 0, & \text{AJ} \end{cases} \begin{cases} a_1 - a_3 = 0, & \text{AJ} \\ a_1 + a_3 = 0, & \text{AJ} \end{cases}$$

所以可取 $\alpha_3 = (0, 1, 0)^T$. 显然 α_1 , α_2 , α_3 是正交向量组, 现将它们单位化:

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\alpha}_{1}}{\parallel \boldsymbol{\alpha}_{1} \parallel} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\alpha}_{2}}{\parallel \boldsymbol{\alpha}_{2} \parallel} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)^{T},$$

$$\boldsymbol{\xi}_{3} = \boldsymbol{\alpha}_{3} = (0, 1, 0)^{T}.$$
된阵), 则 $\boldsymbol{O}^{T} \boldsymbol{A} \boldsymbol{O} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

记
$$\mathbf{Q} = (\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3)$$
(正交矩阵),则 $\mathbf{Q}^{\mathrm{T}} A \mathbf{Q} = \begin{pmatrix} -1 & 1 \\ & 1 \\ & 0 \end{pmatrix}$,于是

$$\mathbf{A} = \mathbf{Q} \begin{pmatrix} -1 & & \\ & 1 & \\ & & 0 \end{pmatrix} \mathbf{Q}^{\mathrm{T}} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} -1 & & \\ & 1 & \\ & & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix}.$$

从而
$$A^* = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

(II) 显然
$$|Q| = -1$$
, 所以 $Q^* = |Q|Q^{-1} = -Q^T$, 因此
$$Q^T A^* Q = -Q^* A^* (-Q^T)^* = (Q^T A Q)^*.$$

于是
$$Q^{\mathsf{T}}(A^* + A)Q = (Q^{\mathsf{T}}AQ)^* + Q^{\mathsf{T}}AQ$$

$$= \begin{pmatrix} -1 & & \\ & 1 & \\ & & 0 \end{pmatrix}^* + \begin{pmatrix} -1 & & \\ & 1 & \\ & & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & & \\ & 0 & \\ & & -1 \end{pmatrix} + \begin{pmatrix} -1 & & \\ & 1 & \\ & & 0 \end{pmatrix} = \begin{pmatrix} -1 & & \\ & 1 & \\ & & -1 \end{pmatrix}. \tag{1}$$

由此可知, 取 C = Q, 则在正交变换 x = Cy = Qy 下, 二次型 $f(x_1, x_2, x_3)$ 化为标准 $\mathbb{E} - y_1^2 + y_2^2 - y_3^2$.

附注 我们知道,使 $x^{T}Ax$ 化为标准形的正交变换 x = Qy 也使 $x^{T}A^{*}x$ 化为标准形,即 $x^{T}A^{*}x = \mu_{1}y_{1}^{2} + \mu_{2}y_{2}^{2} + \mu_{3}y_{3}^{2}$,其中 μ_{1} , μ_{2} , μ_{3} 是 A^{*} 的特征值. 当 $|A| \neq 0$ 时, μ_{1} , μ_{2} , μ_{3} 可由 A 的特征值 λ_{1} , λ_{2} , λ_{3} 直接得到,即 $\mu_{1} = \frac{|A|}{\lambda_{1}}$, $\mu_{2} = \frac{|A|}{\lambda_{2}}$, $\mu_{3} = \frac{|A|}{\lambda_{3}}$. 但是现在 |A| = 0,故为了算出 μ_{1} , μ_{2} , μ_{3} ,或为了将 $x^{T}(A^{*} + A)x$ 化为标准形,采用了题解中的方法.

模拟试题(十)解答

一、选择题

(4)(7) (8)

所以x = 0是f(x)的跳跃间断点. 因此选(B).

附注 由于 $\lim_{x\to 0^{-}} e^{\frac{1}{x}} = 0$, $\lim_{x\to 0^{+}} e^{\frac{1}{x}} = \infty$, 所以当 f(x) 中包含有 $e^{\frac{1}{x}}$ 时,要计算 $\lim_{x\to 0} f(x)$,必须从计算 $\lim_{x\to 0^{-}} f(x)$ 与 $\lim_{x\to 0^{+}} f(x)$ 人手.

(2) 由于 $1 = \lim_{x \to 0} \frac{f'(x)}{(e^x - 1)\sin x} = \lim_{x \to 0} \frac{f'(x)}{x^2} = \frac{$ 洛必达法则 $\lim_{x \to 0} \frac{f''(x)}{2x}$,所以,在点 x = 0 的某个

邻域内 $f'(x) \ge 0$ (仅在点x = 0处取等号). 目

$$f''(x) \begin{cases} < 0, x < 0, \\ = 0, x = 0, \\ > 0, x > 0. \end{cases}$$

由此可知, f(0)不是 f(x)的极值, 但(0, f(0))是曲线 y = f(x)的拐点. 因此选(C).

由 1 = $\lim_{x \to 0} \frac{f'(x)}{(e^x - 1)\sin x}$ 及 $\lim_{x \to 0} (e^x - 1)\sin x = 0$ 知, $\lim_{x \to 0} f'(x) = 0$, 因此对

 $\lim_{x\to 0} \frac{f'(x)}{(e^x-1)\sin x}$ 中的分母可用等价无穷小代替,对 $\lim_{x\to 0} \frac{f'(x)}{r^2}$ 可使用洛必达法则.

(3) 由
$$\lim_{x\to 0} \frac{\sqrt{1+f(x)\tan x}-1}{x-\sin x} = 1$$
 知 $\lim_{x\to 0} f(x)\tan x = 0$,所以

$$\lim_{x \to 0} \frac{\frac{1}{2} f(x) \tan x}{x - \sin x} = 1, \lim_{x \to 0} \frac{f(x) \tan x}{x - \sin x} = 2.$$

由此可得

$$\lim_{x \to 0} \frac{f(x)}{1 - \cos x} = \lim_{x \to 0} \frac{f(x) \tan x}{(1 - \cos x) \tan x} = \lim_{x \to 0} \frac{f(x) \tan x}{\frac{1}{2}x^3}$$

$$= \lim_{x \to 0} \left(\frac{f(x) \tan x}{x - \sin x} \cdot \frac{x - \sin x}{\frac{1}{2}x^3} \right) = 4 \lim_{x \to 0} \frac{x - \sin x}{x^3}$$

因此选(C).

附注 本题是利用一个极限计算另一个极限,同样可以考虑以下问题:

设計
$$\left[\frac{\sin 3x}{x^3} + \frac{f(x)}{x^2}\right] = 1$$
, $\left[\frac{3 + f(x)}{x^2}\right]$ 解答如下:
$$\lim_{x \to 0} \frac{3 + f(x)}{x^2} = \lim_{x \to 0} \frac{3x + xf(x)}{x^3}$$

$$= \lim_{x \to 0} \frac{(3x - \sin 3x) + [\sin 3x + xf(x)]}{x^3}$$

$$= \lim_{x \to 0} \frac{3x - \sin 3x}{x^3} + \lim_{x \to 0} \left[\frac{\sin 3x}{x^3} + \frac{f(x)}{x^2}\right] = \lim_{x \to 0} \frac{3x - \sin 3x}{x^3} + 1$$

$$\frac{\frac{3x - \sin 3x}{x^3} + 1}{\frac{\sin 3x}{x^3} + \frac{f(x)}{x^2}} = \frac{11}{2}.$$

$$(4) \int_{0}^{\frac{\pi}{4}} \frac{\tan x}{x} dx = \int_{0}^{\frac{\pi}{4}} \frac{x}{\tan x} dx = \pi d$$

附注 题解中用排除法选(B),也可直接证明它是正确的.

 $I_1 > I_2$ 已证明了,下面证明 $I_1 < 1$.

(5) 由题设及 $\lim_{(x,y)\to(0,0)}(x^2+1-2x\sin y-\cos^2 y)=0$ 知, $f(0,0)=\lim_{(x,y)\to(0,0)}f(x,y)=0$. 于是在点(0,0)的某个充分小的去心邻域内有

$$f(x, y) - f(0, 0) > \frac{1}{2} (x^2 + 1 - 2x\sin y - \cos^2 y)$$
$$= \frac{1}{2} (x^2 + \sin^2 y - 2x\sin y) = \frac{1}{2} (x - \sin y)^2 \ge 0,$$

所以, f(0,0)是 f(x,y)的极小值, 因此选(B).

附注 由于 f(x, y) 的表达式未知,故用定义判定 f(0, 0) 是 f(x, y) 的极小值.

(6) 由于 $e^{-(x^2+y^2)}$ 是正值函数, $D_1 \subset D_2$,所以 $I_1 < I_2$.

圆 $x^2 + y^2 = \frac{4}{\pi}$ 将 D_2 划分成 S_3 与 S_4 两部分, S_1 , S_2 , S_3 , S_4 如图答 10-6 所示,则 D_2 =

 $S_3 \cup S_4$, $D_3 = S_1 \cup S_2 \cup S_4$. 由于 D_2 与 D_3 的面积同为 1, 所以 S_3 与 $S_1 \cup S_2$ 的面积相等, 此外, 在 S_3 上, $e^{-(x^2+y^2)} \leq e^{-\frac{4}{\pi}}$; 在 $S_1 \cup S_2$ 上, $e^{-(x^2+y^2)} \geq e^{-\frac{4}{\pi}}$, 所以

外、在
$$S_3$$
上、 $e^{-(x^2+y^2)}$ d $\sigma = \iint_{S_3} e^{-(x^2+y^2)} d\sigma + \iint_{S_4} e^{-(x^2+y^2)} d\sigma$

$$< \iint_{S_3} e^{-\frac{4}{\pi}} d\sigma + \iint_{S_4} e^{-(x^2+y^2)} d\sigma = \iint_{S_1 \cup S_2} e^{-\frac{4}{\pi}} d\sigma + \iint_{S_4} e^{-(x^2+y^2)} d\sigma$$

$$< \iint_{S_1 \cup S_2} e^{-(x^2+y^2)} d\sigma + \iint_{S_4} e^{-(x^2+y^2)} d\sigma = \iint_{S_3} e^{-(x^2+y^2)} d\sigma = I_3.$$
由上可知 $I_1 < I_2 < I_3$. 因此选(A).

图答 10-6

$$S_3$$
 与 $S_1 \cup S_2$ 的面积相等;

在
$$S_3$$
 上, $e^{-(x^2+y^2)} \le e^{-\frac{4}{\pi}}$;在 $S_1 \cup S_2$ 上, $e^{-(x^2+y^2)} \ge e^{-\frac{4}{\pi}}$,所以
$$\iint_{S_3} e^{-(x^2+y^2)} d\sigma < \iint_{S_3} e^{-\frac{4}{\pi}} d\sigma = \iint_{S_1 \cup S_2} e^{-\frac{4}{\pi}} d\sigma < \iint_{S_1 \cup S_2} e^{-(x^2+y^2)} d\sigma.$$

(7) $r(\lambda_i E - A) = n - n_i$ (对每个 A 的 n_i 重特征值 λ_i) 是 A 可相似对角化的充分必要条件. 因此选(C).

附注 应记住题中的这个充分必要条件. 它的特殊情形是: A 有 n 个线性无关的特征向量.

(8) 由题设知 $r(A^*) = 4 - 3 = 1$,从而 r(A) = 4 - 1 = 3,所以 A 的特征值中有且仅有 3 个不为零. 由此推得 $f(x_1, x_2, x_3, x_4) = \mathbf{x}^T A x$ 的标准形应形如 $a_1 y_1^2 + a_2 y_2^2 + a_3 y_3^2 (a_1, a_2, a_3)$ 全不为零). 因此选(A).

M注 应记住以下关于矩阵 A 的秩的结论:

- (I) 设A 是 n 阶矩阵,如果方程组 Ax=0 的基础解系为 x_1 , x_2 , …, x_s , 则 r(A)=n-s.
 - (II) 设A 是n 阶矩阵,则

$$r(A^*) = \begin{cases} n, r(A) = n, \\ 1, r(A) = n - 1, \\ 0, r(A) < n - 1. \end{cases}$$

二、填空题

(9)
$$\lim_{x \to \infty} \frac{\ln \sqrt{\sin \frac{1}{x} + \cos \frac{1}{x}}}{\sin \frac{1}{x} + \cos \frac{1}{x} - 1} = \frac{\ln \frac{1}{x} + \cos \frac{1}{x}}{\sin \frac{1}{x} + \cos \frac{1}{x}} = \frac{1}{2}.$$

附注 题解中令 $t = \sin \frac{1}{x} + \cos \frac{1}{x} - 1$,使问题快速获解.

(10) 对题设等式应用洛必达法则得

$$1 = \lim_{x \to 1} \frac{f(x)}{(x-1)^2} = \lim_{x \to 1} \frac{f'(x)}{2(x-1)},$$

所以,
$$f'(1) = \lim_{x \to 1} f'(x) = 0.$$
 (1)

于是
$$f''(1) = \lim_{x \to 1} \frac{f'(x) - f'(1)}{x - 1} = 2 \lim_{x \to 1} \frac{f'(x)}{2(x - 1)} = 2.$$
 (2)

由式(1),式(2)得曲线y = f(x)在点(1,f(1))处的曲率为

$$K = \frac{|f''(1)|}{\{1 + [f'(1)]^2\}^{\frac{3}{2}}} = 2.$$

附注 曲线 y = y(x) (其中 y = y(x) 二阶可导) 在点(x, y(x)) 处曲率的计算公式为

$$K = \frac{|y''(x)|}{\{1 + [y'(x)]^2\}^{\frac{3}{2}}}.$$

(11) 所给的无穷区间上反常积分是收敛的, 所以

$$\int_{1}^{+\infty} \frac{1}{x \sqrt{1 + x^{5} + x^{10}}} dx = \int_{1}^{+\infty} \frac{1}{x^{6} \sqrt{1 + \frac{1}{x^{5}} + \frac{1}{x^{10}}}} dx$$

$$\frac{\Rightarrow t = x^{-5}}{5} \frac{1}{5} \int_{0}^{1} \frac{1}{\sqrt{t^{2} + t + 1}} dt = \frac{1}{5} \int_{0}^{1} \frac{1}{\sqrt{\left(t + \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}}} dt$$

$$= \frac{1}{5} \ln\left[t + \frac{1}{2} + \sqrt{\left(t + \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}}\right] \Big|_{0}^{1} = \frac{1}{5} \ln\left(1 + \frac{2}{\sqrt{3}}\right).$$

附注 对于收敛的反常积分可以如定积分那样,使用换元积分法和分部积分法计算.

(12) 显然 x = 0, y = 0 时,所给方程成为 $\int_0^z e^{t^2} dt = 0$, 从而 z(0, 0) = 0. 此外,所给方程两边对 x 求偏导数得

$$e^{z^{2}} \frac{\partial z}{\partial x} + y + y \frac{\partial z}{\partial x} = 0, \quad \mathbb{R} \frac{\partial z}{\partial x} = \frac{-y}{e^{z^{2}} + y}, \quad \mathbb{H} \frac{\partial z(0,0)}{\partial x} = 0.$$

$$\frac{\partial^{2} z}{\partial x \partial y} \Big|_{\substack{x=0 \ y=0}} = \frac{d}{dy} \left[\frac{\partial z(0,y)}{\partial x} \right] \Big|_{y=0} = \lim_{y \to 0} \frac{\frac{\partial z(0,y)}{\partial x} - \frac{\partial z(0,0)}{\partial x}}{y}$$

$$= \lim_{y \to 0} \frac{\frac{-y}{e^{z^{2}(0,y)} + y}}{y} = \lim_{y \to 0} \frac{-1}{e^{z^{2}(0,y)} + y} = -\frac{1}{1+0} = -1.$$

附注 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{x=0}^{x=0}$ 也可以由 $\frac{\partial z}{\partial x}$ 对 求偏导数算出 $\frac{\partial^2 z}{\partial x \partial y}$, 然后将 x=y=z=0 代入计算

得到, 但没有如题解中那样对 $\frac{\partial z(0, y)}{\partial x}$ 按定义计算快捷.

(13) 将所给微分方程改写成

$$(x^2 dy + 2xy dx) - dy - \cos x dx = 0,$$

即 $d(x^2y - y - \sin x) = 0$, 所以所给微分方程的通解为

$$x^2y - y - \sin x = C.$$

从而

将 $\gamma(0) = 1$ 代入上式得 C = -1. 所以所求的特解为

$$x^2y - y - \sin x = -1.$$

附注 所给微分方程也可以改写为

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2x}{x^2 - 1}y = \frac{\cos x}{x^2 - 1}, \ (- 阶线性微分方程)$$

它的通解为

$$y = e^{-\int \frac{2x}{x^2 - 1} dx} \left(C + \int \frac{\cos x}{x^2 - 1} e^{\int \frac{2x}{x^2 - 1}} dx \right)$$
$$= \frac{1}{x^2 - 1} \left(C + \int \cos x dx \right) = \frac{1}{x^2 - 1} (C + \sin x).$$

将 $\gamma(0) = 1$ 代入上式得 C = -1. 所以所求的特解为

$$y = \frac{1}{x^2 - 1} (\sin x - 1).$$

(14) 显然 |A|=2, 此外, 记三阶单位矩阵为E, 则

$$\left(\frac{1}{2}A^{2}\right)^{-1} - 3A^{*} = 2(A^{-1})^{2} - 3|A|A^{-1} = (A^{-1})^{2} \cdot 2(E_{3} - 3A),$$

所以,

$$\left| \left(\frac{1}{2} A^2 \right)^{-1} - 3A^* \right| = |A^{-1}|^2 \cdot 8 |E_3 - 3A|$$

$$= \left(\frac{1}{2} \right)^2 \times 8 \times \begin{vmatrix} -2 & -3 & 0 \\ 0 & -2 & -3 \\ -3 & -3 & -5 \end{vmatrix} = -58.$$

附注 计算矩阵的行列式时,以下结论是常用的:

设A, B 都是n 阶行列式,则

$$|AB| = |A| |B|$$
, $|kA| = k^n |A| (k 为常数)$, $|A^*| = |A|^{n-1} (n > 1)$, $|A^{-1}| = \frac{1}{|A|} (A 可逆时)$.

三、解答题

(15) 当 a≤0 时,有

$$\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \frac{\int_0^x \arctan t^2 dt}{r^a} = + \infty ,$$

这与 $\lim_{x \to a} F(x) = 0$ 矛盾,所以a > 0.

当a > 0时,由

知 a-1 > 0,即 a > 1.

当a > 1时,由

$$0 = \lim_{x \to 0^{+}} F(x) = \lim_{x \to 0^{+}} \frac{\int_{0}^{x} \arctan t^{2} dt}{x^{a}} = \frac{\text{Asoliting } \lim_{x \to 0^{+}} \arctan x^{2}}{\lim_{x \to 0^{+}} \arctan x^{2}} = \lim_{x \to 0^{+}} \frac{x^{2}}{ax^{a-1}} = \lim_{x \to 0^{+}} \frac{1}{ax^{a-3}}$$

知 a-3 < 0,即 a < 3.从而 a 的取值范围为(1,3).

附注 求解时,应注意次序:

首先肯定 a>0, 只有这样才能对 $\lim_{x\to +\infty}\frac{\int_0^x\arctan t^2\mathrm{d}t}{\omega}$ 应用洛必达法则, 然后肯定 a>1, 因为

只有这样才能对 $\lim_{x\to 0^+} \frac{\arctan x^2}{ax^{a-1}}$ 施行等价无穷小代替.

(16) 题图中的阴影部分被直线 y=1 划分成上、下两部分,分别记为 D_1 与 D_2 ,且分别记由它们绕 y 轴旋转一周而成的旋转体为 Ω_1 与 Ω_2 .

于是,将容器中的水从容器顶部抽出需做的功为

$$W = W_1 + W_2,$$

其中, W_1 , W_2 分别为将 Ω_1 , Ω_2 中的水从顶部抽出需做的功.

由于
$$W_1 = \int_1^2 (2 - y) \cdot \pi [2 - (y - 2)^2] dy$$

$$\frac{t = 2 - y}{\pi} \pi \int_0^1 t (2 - t^2) dt = \frac{3}{4} \pi,$$

$$W_2 = \int_0^1 (2 - y) \cdot \pi y^2 dy = \frac{5}{12} \pi,$$

所以, $W = W_1 + W_2 = \frac{3}{4}\pi + \frac{5}{12}\pi = \frac{7}{6}\pi$. 因此,将容器中的水从容器顶部抽出至少需做的功为 $\frac{7}{6}\pi$.

附注 (I) W_1 是 dW_1 在[1,2]上的积分,其中 dW_1 是将纵坐标为 $y \in [1,2]$ 的水平平面下位于 Ω_1 中的高为 dy 的薄水片移到容器顶部所做的功,由于薄水片的重力为

$$\rho \cdot \pi[2 - (y-2)^2] dy = \pi[2 - (y-2)^2] dy (水的重力密度 \rho = 1),$$

所以, $dW_1 = \pi(2-y)[2-(y-2)^2]dy$.

对于 W, 也有同样的说法.

(Ⅱ) 顺便计算容器的体积 V:

$$V = V_1 + V_2,$$

其中, $V_1 = D_1$ 绕 y 轴旋转一周而成的旋转体体积

$$= \pi \int_{1}^{2} \left[2 - (y - 2)^{2} \right] dy = \pi \left(-\frac{1}{3} y^{3} + 2y^{2} - 2y \right) \Big|_{1}^{2} = \frac{5}{3} \pi,$$

 $V_2 = D_2$ 绕 y 轴旋转一周而成的旋转体体积

$$= \frac{1}{3}\pi \cdot 1^2 \cdot 1 = \frac{1}{3}\pi.$$

所以, $V = \frac{5}{3}\pi + \frac{1}{3}\pi = 2\pi$.

(17) 所给微分方程

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + x = 2\sin t \tag{1}$$

的齐次方程

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + x = 0 \tag{2}$$

的通解为 $X(t) = C_1 \cos t + C_2 \sin t$.

由于 $2\sin t = e^{\alpha t} \cdot 2\sin \beta t$ 的 $\alpha + i\beta = i$ 是式(2)的特征方程之根,所以式(1)有特解 $x^*(t) = t(A\cos t + B\sin t)$.

将它代入式(1)得

$$-2A\sin t + 2B\cos t = 2\sin t$$
.

所以有 $\begin{cases} -2A=2, & B=0, \\ B=0, \end{cases}$ 即 A=-1, B=0, 因此 $x^*(t)=-t\cos t.$ 从而式(1)的通解为

$$x(t) = X(t) + x^*(t) = C_1 \cos t + C_2 \sin t - t \cos t, \tag{3}$$

且

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = -C_1 \sin t + C_2 \cos t - \cos t + t \sin t. \tag{4}$$

将
$$x(t)$$
 $\Big|_{t=0} = \frac{\mathrm{d}x(t)}{\mathrm{d}t} \Big|_{t=0} = 0$ 代人式(3), 式(4)得 $C_1 = 0$, $C_2 = 1$. 所以 $\mathrm{d}x(t)$

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = t\sin\,t.$$

于是由
$$\frac{dy}{dx} = \cot t$$
, 即 $\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \cot t$, 得

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \cot t \cdot \frac{\mathrm{d}x}{\mathrm{d}t} = \cot t \cdot t \sin t = t \cos t.$$

因此

$$y(t) = \int t\cos t dt = \int t d\sin t = t \sin t - \int \sin t dt$$

$$= t\sin t + \cos t + C.$$

将 y(0) = 1 代入上式得 C = 0,所以所求的 $y(t) = t \sin t + \cos t$.

附注 本题在求出 x(t) 后,由 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 求满足 $y \mid_{t=0} = 1$ 的 y(t) 的表达式,它是由参数方程

$$\begin{cases} x = x(t), \\ y = y(t) \end{cases} (其中 x(t), y(t) 可导) 求 \frac{dy}{dx} 的逆问题.$$

(18) 由
$$f_x' = 2x(1-y^2)$$
, $f_y' = 2y(2-x^2)$ 得方程组

$$\begin{cases} f_{x}' = 0, \\ f_{x}' = 0, \end{cases} \quad \text{EII} \begin{cases} 2x(1 - y^{2}) = 0, \\ 2y(2 - x^{2}) = 0. \end{cases}$$

显然该方程组在 D 的内部无解,因此 f(x, y) 在 D 内部无可能极值点.

D 的边界由 I 、 II 、 III 、 IV组成 ,如图答 10-18 所示.

在 I:
$$x^2 = 4 - y^2 (0 \le y \le 1)$$
上,
 $f(x, y) \mid_{I} = (x^2 + 2y^2 - x^2y^2) \mid_{x^2 = 4 - y^2}$

$$=4-3y^2+y^4 = \frac{i \mathbb{Z}}{\varphi(y)},$$

由于 $\varphi'(y) = 4y \left(y^2 - \frac{3}{2} \right) < 0 (0 < y < 1)$,所以 f(x, y) 在 I 上的最大值为 $\varphi(0) = 4$,最小值为 $\varphi(1) = 2$.

在 $\mathbb{I}: y = 1 (0 \le x \le \sqrt{3})$ 上, $f(x, y) \mid_{\mathbb{I}} = 2$,所以 f(x, y) 在 \mathbb{I} 上的最大值与最小值都为 2.

在 III: x = 0 ($0 \le y \le 1$)上, $f(x, y) \mid_{\Pi} = 2y^2$, 所以 f(x, y)在 III上的最大值为 2,最小值为 0.

在**IV**: y = 0(0 $\leq x \leq 2$)上, $f(x, y) \mid_{\mathbb{N}} = x^2$, 所以f(x, y) 在**IV**上的最大值为 4. 最小值为 0.

图答 10-18

综上所述, f(x, y)在 D上的最大值为 4,最小值为 0.

附注 二元连续函数 f(x, y) 在有界闭区域 D 上的最值可按以下步骤计算:

- (I) 计算 f(x, y) 在 D 内部的可能极值点,设为 (x_1, y_1) , (x_2, y_2) ,…, (x_n, y_n) ;
- (\mathbb{I}) 计算 f(x, y) 在 D 的边界上的最大值与最小值,记为 M_1 与 m_1 .
- (**II**) 比较 $f(x_1, y_1)$, $f(x_2, y_2)$, …, $f(x_n, y_n)$, M_1 , m_1 , 则它们中最大(小)者即为 f(x, y)在 D 上的最大值(最小值).
 - (19) 所给等式可以改写成

$$\frac{\Delta y}{\Delta x}(1 + \Delta y) = \frac{y}{x^2 + 1} + o(1).$$

由于 y(x) 是连续函数, 所以 $\lim_{\Delta \to 0} \Delta y = 0$, 因此上式两边令 $\Delta x \to 0$ 取极限得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{1+x^2}, \ \exists \prod \frac{\mathrm{d}y}{y} = \frac{\mathrm{d}x}{1+x^2},$$

它的通解为 $\ln y = \arctan x + \ln C$, 即 $y = Ce^{\arctan x}$.

将 y(0) = 1 代入上式得 C = 1,所以 $y(x) = e^{\operatorname{arctan} x}$

由此可得

$$V_{1} = \pi \int_{0}^{1} (\sqrt{y(x)})^{2} dx = \pi \int_{0}^{1} e^{\arctan x} dx,$$

$$V_{2} = 2\pi \int_{0}^{1} xy(x) dx = 2\pi \int_{0}^{1} x e^{\arctan x} dx$$

$$= \pi \int_{0}^{1} e^{\arctan x} dx^{2} = \pi \left(x^{2} e^{\arctan x} \Big|_{0}^{1} - \int_{0}^{1} \frac{x^{2}}{1 + x^{2}} e^{\arctan x} dx \right)$$

$$= \pi e^{\frac{\pi}{4}} - \pi \int_{0}^{1} \left(1 - \frac{1}{1 + x^{2}} \right) e^{\arctan x} dx$$

$$= \pi e^{\frac{\pi}{4}} - \pi \int_{0}^{1} e^{\arctan x} dx + \pi \int_{0}^{1} e^{\arctan x} dx + \pi \int_{0}^{1} e^{\arctan x} dx$$
(1)

$$= \pi e^{\frac{\pi}{4}} - \pi \int_{0}^{1} e^{\arctan x} dx + \pi e^{\arctan x} \Big|_{0}^{1}$$

$$= 2\pi e^{\frac{\pi}{4}} - \pi - \pi \int_{0}^{1} e^{\arctan x} dx.$$
(2)

式(1)与式(2)相加得

$$V_1 + V_2 = 2\pi e^{\frac{\pi}{4}} - \pi.$$

设平面区域 $D = \{(x, y) \mid 0 \le a \le x \le b, 0 \le y \le f(x)\}$ (其中 f(x) 在 [a, b] 上连续), 则

D 绕 x 轴旋转—周而成的旋转体体积 $V_x = \pi \int_0^b f^2(x) dx$,

D 绕 y 轴旋转—周而成的旋转体体积 $V_y = 2\pi \int_a^b x f(x) dx$.

(20) (I)
$$I(a) = \iint_D f(x,y) d\sigma = \iint_{D \cap D_1} (x + 2x^2y) d\sigma$$
, 其中 $D_1 =$

 $\{(x, y) \mid 0 \le x \le a, |y| \le a\}, D \cap D_1$ 如图答 10-20 阴影部分所 示. 显然 $D \cap D_1$ 关于 x 轴对称, 在对称点处, x 的值彼此相等, 而 $2x^2y$ 的值互为相反数,所以

$$= a^3 - a \cdot \frac{1}{2} \cdot \pi \left(\frac{a}{2}\right) \left(\int_{-\frac{a}{2}}^{2} 2t \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt = 0$$
 是由奇函数在对称区间

上的定积分性质得到的, $\int_{-\frac{a}{2}}^{\frac{a}{2}} \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt =$

$$\frac{1}{2} \cdot \pi \left(\frac{a}{2}\right)^2$$
 是由定积分几何意义得到的)

$$= \left(1 - \frac{\pi}{8}\right)a^3.$$

(II) 由(I) 中算得的 I(a) 知

图答 10-20

$$\lim_{a \to 0^{+}} \frac{e^{I(a)} - 1}{\sin a - \ln(1 + a) - \frac{1}{2}a^{2}} = \lim_{a \to 0^{+}} \frac{I(a)}{\sin a - \ln(1 + a) - \frac{1}{2}a^{2}}$$

$$= \left(1 - \frac{\pi}{8}\right) \lim_{a \to 0^{+}} \frac{a^{3}}{\sin a - \ln(1 + a) - \frac{1}{2}a^{2}} = \frac{\frac{3a^{2}}{2} + \frac{3a^{2}}{2}}{\sin a - \ln(1 + a) - \frac{1}{2}a^{2}} = 3\left(1 - \frac{\pi}{8}\right) \lim_{a \to 0^{+}} \frac{3a^{2}}{\cos a - \frac{1}{1 + a} - a}$$

$$= 3\left(1 - \frac{\pi}{8}\right) \lim_{a \to 0^{+}} \frac{a^{2}}{(1 + a)(\cos a - 1) - a^{2}} = 3\left(1 - \frac{\pi}{8}\right) \lim_{a \to 0^{+}} \frac{1}{-(1 + a)\frac{1 - \cos a}{a^{2}} - 1}$$

$$= 3\left(1 - \frac{\pi}{8}\right) \cdot \frac{1}{-\frac{1}{2} - 1} = \frac{\pi}{4} - 2.$$

附注 在计算各种问题时,第一步总是化简. 在本题(I)的二重积分计算中,首先利用积分区域的对称性进行化简;(II)的 $\frac{0}{0}$ 型未定式极限计算,也是先利用等价无穷小代替进行化简. 化简后的问题变得简单些,容易计算些.

(21) 由题设知 f(x) 在 [0, 1] 上满足罗尔定理条件,所以存在 $x_0 \in (0, 1)$,使得 $f'(x_0) = 0$. 于是由 f''(x) < 0 ($x \in (0, 1)$)知

$$f'(x) \begin{cases} > 0, 0 < x < x_0, \\ = 0, x = x_0, \\ < 0, x_0 < x < 1, \end{cases}$$

由此可知 f(x) 在点 x_0 处取最大值 M, 即 $f(x_0) = M$.

记
$$F(x) = f(x) - Mx$$
, 则 $F(x)$ 在[x_0 , 1]上连续, 且

$$F(x_0)F(1) = M(1 - x_0) \cdot (-M) < 0,$$

所以由零点定理知,存在 $x_1 \in (x_0, 1)$,使得 $F(x_1) = 0$. 于是由 F(x)在[0, x_1]上连续,在 $(0, x_1)$ 内可导,且 $F(0) = F(x_1) (=0)$ 及罗尔定理知,存在 $\xi \in (0, x_1) \subset (0, 1)$,使得 $F'(\xi) = 0$. 由于 F''(x) = f''(x) < 0,所以上述的 ξ 是唯一的. 由此证得存在唯一的 $\xi \in (0, x_1)$,使得 $f'(\xi) = M$.

附注 本题是对辅助函数 F(x),证明满足 $F'(\xi) = 0$ 的 ξ 在 (0, 1) 内的存在性与唯一性. 由 $F''(x) < 0(x \in (0, 1))$ 即可推出 ξ 的唯一性. 欲证 ξ 的存在性,只要在 [0, 1] 上找到不同的两点 x_0 与 x_1 ,使得 $F(x_0) = F(x_1)$ 即可. 题解就是按此思路进行的.

(22) 由题设知(1, 2, 2, 1)^T - (1, -2, 4, 0)^T = (0, 4, -2, 1)^T 是方程组 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的解,所以有

$$4\boldsymbol{\alpha}_2 - 2\boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4 = 0$$
, $\mathbb{R}^{3} \boldsymbol{\alpha}_4 = -4\boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3$.

于是由 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4)$ 的秩为 3 知, $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性无关. 此外, 由题设 $(1, -2, 4, 0)^{\mathrm{T}}$ 是方程组 $\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$ 的解得

$$\boldsymbol{\beta} = \boldsymbol{\alpha}_1 - 2\boldsymbol{\alpha}_2 + 4\boldsymbol{\alpha}_3.$$

于是,方程组 $\mathbf{B}\mathbf{y} = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2$ 即为

$$(\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3) y = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2. \tag{1}$$

由于式(1)的系数矩阵的秩为3,且对应的齐次方程组的基础解系为 $(2,2,1,-1)^{T}$,此外式(1)有特解 $(-2,0,0,1)^{T}$,所以方程组 $\mathbf{B}\mathbf{y} = \boldsymbol{\alpha}_{1} + 2\boldsymbol{\alpha}_{2}$,的通解为

$$y = C(2,2,1,-1)^{T} + (-2,0,0,1)^{T}$$
(其中 C 是任意常数).

附注 要记住, 齐次线性方程组 Ax = 0 (其中 A 是 $m \times n$ 矩阵, x 是 n 维未知列向量)的基础解系中包含的线性无关的解向量个数为 n - r(A).

(23)(I)由于

$$f(x_1, x_2, x_3) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = x_1^2 + 2bx_1x_2 + 2x_1x_3 + ax_2^2 + 2x_2x_3 + x_3^2$$
$$= \mathbf{x}^{\mathsf{T}} \begin{pmatrix} 1 & b & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{x},$$

所以 $f(x_1, x_2, x_3)$ 的矩阵 $\mathbf{B} = \begin{pmatrix} 1 & b & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

由于 B 的特征值为 $\lambda = 0$, 1, 4, 所以有

$$\begin{cases} 1 + a + 1 = 0 + 1 + 4, & \text{ff } a = 3, b = 1. \\ | B | = 0 \cdot 1 \cdot 4, & \end{cases}$$

(II) 由以上计算知
$$\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

设 **B** 的对应于 $\lambda = 0$ 的特征向量为 $\alpha = (a_1, a_2, a_3)^T$,则 α 满足

$$\begin{pmatrix} -1 & -1 & -1 \\ -1 & -3 & -1 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}.$$
 (1)

由于

$$\begin{pmatrix} -1 & -1 & -1 \\ -1 & -3 & -1 \\ -1 & -1 & -1 \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

所以式(1)与方程组 $\begin{cases} a_1 + a_3 = 0, \\ a_2 = 0 \end{cases}$ 同解,可取 α 为它的基础解系,即 $\alpha = (1, 0, -1)^T.$

设 **B** 的对应于 $\lambda = 1$ 的特征向量为 $\beta = (b_1, b_2, b_3)^T$,则 β 满足

$$\begin{pmatrix} 0 & -1 & -1 \\ -1 & -2 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0},$$
 (2)

由于

$$\begin{pmatrix} 0 & -1 & -1 \\ -1 & -2 & -1 \\ -1 & -1 & 0 \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix},$$

所以式 (2) 与方程组 $\begin{cases} b_2 + b_3 = 0, \\ b_1 + b_2 = 0 \end{cases}$ 同解,可取它的基础解系为 $\boldsymbol{\beta}$,即 $\boldsymbol{\beta} = (-1, 1, -1)^T$.

设 \boldsymbol{B} 的对应于 $\boldsymbol{\lambda}$ = 4 的特征向量为 $\boldsymbol{\gamma} = (c_1,\ c_2,\ c_3)^{\mathrm{T}}$,则 $\boldsymbol{\gamma}$ 与 $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ 都正交,于是有 $\begin{cases} c_1 & -c_3 = 0, \\ -c_1 & +c_2 & -c_3 = 0. \end{cases}$

可取它的基础解系为 γ , 即 $\gamma = (1, 2, 1)^{T}$. 显然 α , β , γ 是正交向量组, 现将它们单位 化:

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\alpha}}{\parallel \boldsymbol{\alpha} \parallel} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\beta}}{\parallel \boldsymbol{\beta} \parallel} = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^{T},$$

$$\boldsymbol{\xi}_{3} = \frac{\boldsymbol{\gamma}}{\parallel \boldsymbol{\gamma} \parallel} = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{T}.$$

记 $Q = (\xi_1, \xi_2, \xi_3)$ (正交矩阵),则x = Qy,即

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix},$$

使得 $f(x_1, x_2, x_3) = y_2^2 + 4y_3^2$ (标准形).

附注 题中的 A 不是实对称矩阵,所以要用正交变换将 $f(x_1, x_2, x_3) = x^T Ax$ 化为标准形,必须首先将 $f(x_1, x_2, x_3)$ 改写成 $x^T Bx$ (其中 B 是实对称矩阵). 此外,要熟练掌握用正交变换把二次型化为标准形的方法.