Wyznaczenie sumarycznie najkrótszych ścieżek rozłącznych krawędziowo

Korzeniowski Wojciech, Gadawski Łukasz

1 kwietnia 2015

1 Cel projektu

Realizacja projektu będzie polegała na zaimplementowaniu zmodyfikowanej wersji algorytmu Dijkstry, która umożliwi znalezienie dwóch rozłącznych krawędziowo ścieżek w skierowanym grafie dla dowolnej pary wierzchołków.

Jednym z praktycznych zastosowań wyznaczanie najkrótszych rozłącznych krawędziowo ścieżek w grafie może być chęć poprawy niezawodności sieci przesyłowych poprzez wykorzystanie najbardziej optymalnych ścieżek jako zapasowyh ścieżek. Innym z zastosowaniem może być podział transmisji danych pomiędzy dwie ścieżki dzięki podczas wystąpienia awari możliwa jest częściowa transmisja danych.

1.1 Wykorzystany algorytm

Do realizacji celu projektu zostanie wykorzystany zmodyfikowany algorytm Dijkstry opisany w Appendix A do artykułu [1].

Oznaczenia:

- d(i) odległość wierzchołka i od węzła startowego
- P(i) poprzednik wierzchołka i
 - 1. Rozpocznij z:

$$d(i) = \begin{cases} l(A, i) & dlai \in N(A), \\ \infty & dlai \notin N(A) \end{cases}$$

$$S = V - \{A\}$$

$$\forall P(i) = A, i \in S$$

d(A) = 0,

2. Krok:

- znajdź
$$j: d(j) = mind(i), i \in S$$
,
- $S = V - \{j\}$,

- jeśli j=Z to STOP gdzie Z to wierzchołek końcowy, w p.p. idź do kroku 3.

3. Krok:

$$\forall d(j) + l(j,i) < d(i) \Rightarrow d(i) = d(j) + l(j,i), P(i) = j$$

$$S = S \cup \{i\}$$

idź do kroku 2

1.2 Założenia realizacyjne

Implementacja projektu zostanie wykonana w języku Java w formie aplikacji konsolowej. Dane wejściowe dotyczące rozpatrywanego grafu zostaną wczytane z pliku testowego o następującej strukturze:

StartVertex EndVertex Weight

a	b	1
a	С	1
a	е	2
е	f	1
f	d	1

gdzie komentarz rozpoczyna się od znaku #, każda linia reprezentuję pojedynczą krawędź rozpatrywanego grafu przy czym pierwsza kolumna opisuję etykietę wierzchołka początkowego danej krawędzi, kolumna druga definiuje etykietę wierzchołka końcowego, a w ostatniej kolumnie znajduje się waga konkretnej krawędzi. Wynik działania algorytmu będą reprezentowały listy etykiet wierzchołków najkrótszych ścieżek jeśli takie będą istniały oraz wagi konkretnych ścieżek.

Literatura

[1] Ramesh Bhandari Optimal Diverse Routing in Telecommunication Fiber Networks