Grammar Defined Variable Space

Andries W. Coetzee
January 3, 2014
Linguistic Society of America
Minneapolis

Invariant Grammar

Variable Grammar: Two models

Grammar Defined Variable Space

Other factors ...

Variable t/d-deletion

Collaboration with Shigeto Kawahara

Word-final t/d variably deletes from consonant clusters

 Extensively studied in variationist sociolinguistics over the pasts four decades.

Grammatical influences

Following context

(Coetzee, 2004; Coetzee & Pater, 2011)

		Pre-C west bank	Pre-V west end	Pre-Pause <i>west.</i>
	AAVE	76	29	73
Pre-C >	Jamaica	85	63	71
Pre-C > Pre-Pause > Pre-V	NYC	100	66	83
	Tejano	62	25	46
	Trinidad	81	21	31
	Philadelphia	100	38	12
Pre-C > Pre-V > Pre-Pause	Chicano	62	45	37
rie-v > rie-rause	Columbus	80	76	63

Non-grammatical influences

Usage frequency

Some variable processes apply more often to words with higher usage frequencies

(Hooper 1976; Bybee 2000, 2001, 2002, 2006; Jurafsky et al. 2001; Coetzee 2009; Gahl 2008; etc.)

t/d-deletion in the Buckeye Corpus (Pitt et al. 2007)

Following phonological context

Constraints

*CT No word-final clusters ending on t/d

Max No deletion

Max-Pre-V No deletion before a vowel

Max-Pre-# No deletion before a pause

• "Licensing by cue" (Steriade 2001, 2008; see Coetzee 2004 for perceptual motivation of the positional Max-constraints.)

Grammar Only: Noisy HG

$$H(cand) = \sum_{i=1}^{n} (w_i + nz_i)C_i(cand)$$

		101.1	98.9	0.9	-1.3		Frequency	
			×	MAX- Pre-##	× >		riequ	lericy
		*CT	MAX	Max- Pre-#	Max- Pre-V	Н	Ε	0
west bank	west bank	-1				-101.1		
	wes_bank		-1			-98.9	76	75
west end	west end	-1		-1		-101.1		
	wes_ end		-1		-1	-98.9	63	62
west.	west.	-1				-101.1		
	wes		-1	-1	_	-99.8	80	79

Evaluation

Frequency scaling

Frequency	Deletion	Importance of faithfulness
Low	Low	High
Average	Average	Average
High	High	Low

As frequency goes up, the weight of faithfulness constraints are scaled down.

$$H(cand) = \sum_{i=1}^{n} (w_i + nz_i + \mathbf{sf}) F_i(cand) + \sum_{j=1}^{m} (w_j + nz_j) M_j(cand)$$

Evaluation

Basic HG
Frequency Scaled HG

Mean Square Error

2

4

6

0

	Basic HG	Scaled HG	% Improvement
Pre-C	23,117	3,043	86.8
Pre-Pause	5,186	1,609	69.0
Pre-V	14,220	3,544	75.1

Nasal Place Assimilation

• Production:

- Perception
 - Both pronunciations recognized as ten.
 - Listeners have to "undo" assimilation.

Multiple influences

- Place of articulation
 More before velar than labial.
 te[ŋ] cats > te[m] pens
 Speech rate (Barry 1992)
 More at faster rates
 Other
- Frequency (Dilley & Pitt 2007)
 More in frequent than infrequent collocations gree[ŋ] card > gree[ŋ] cardigan
- Lexicality
 More in words than non-words.

Experiment: Tokens

Alveolar	Velar	Labial
aspiri[n] tablet	apiri[ŋ] capsule	aspiri[m] powder
bargai[n] deal	bargai[ŋ] getaways	bargai[m] price
Be[n] Thomas	Be[ŋ] Kingsley	Be[m] Potter
billio[n] dollars	billio[ŋ] gallons	billio[m] barrels
canno[n] defense	canno[ŋ] guards	canno[m] balls
Joh[n] Doe	Joh[ŋ] Green	Joh[m] Black
muffi[n] tops	muffi[ŋ] cups	muffi[m] pans
pe[n] tip	pe[ŋ] case	pe[m] pocket
te[n] toes	te[ŋ] cats	te[m] pens
va[n] tires	va[ŋ] keys	va[m] price

Slow Faster Fastest

Results

Perceptual Harmonic Grammar

Markedness

AGR-PLACE Nasal must agree in place with

following onset

Faithfulness

DEP[LAB] Don't insert [labial]

DEP[DOR] Don't insert [dorsal]

Max[cor] Don't delete [coronal]

Predicted [n]-response in grammar only model

Rate Scaling

Rate	Assimilation	Importance of faithfulness
Slow	Less	Higher
Faster	More	Lower
Fastest	Even more	Even lower

As rates goes up, the weight of faithfulness constraints are scaled down.

$$H(cand) = \sum_{i=1}^{n} (w_i + nz_i + \mathbf{f}) F_i(cand) + \sum_{j=1}^{m} (w_j + nz_j) M_j(cand)$$

Model Comparisons

Mean Square Error

Basic HG	Scaled HG	% Improvement		
34.1	1.5	91.4		

Grammar Defined Variable Space

$$H(cand) = \sum_{i=1}^{n} (w_i + nz_i) F_i(cand) + \sum_{j=1}^{m} (w_j + nz_j) M_j(cand)$$

Grammar Defined Variable Space

Grammatically determined limits

Constraints have grammatical content

	MAX	Max- Pre-Pause	MAX- PRE-V	Н
/west bank/→ [wes_ bank]	-1			-W _{MAX}
/west end/ → [wes_ end]	-1		-1	$-(w_{M^{AX}}+w_{M^{AX}-P^{RE}-V})$
/west/ → [wes_]	-1	-1		-(W _{Max} + W _{Max-Pre-Pause})

$$O H(wes_bank) \ge \begin{cases} H(wes_end) \\ H(wes_) \end{cases}$$

Never more deletion in Pre-V or Pre-Pause than Pre-C

- Anttila, Arto. (1997). Deriving variation from grammar. In Hinskens, Frans, Roeland van Hout & Leo Wetzels (eds.) Variation, Change and Phonological Theory.
- Amsterdam: John Benjamins, 35-68.
- Anttila, Arto. (2002). Variation and phonological theory. In Chambers, Jack K., Peter Trudgill & Natalie Schilling-Estes (eds.) *Handbook of Language Variation and Change*. Oxford: Blackwell, 206-243.
- Anttila, Arto. (2007). Variation and optionality. In de Lacy, Paul (ed.) *The Cambridge Handbook of Phonology*. Cambridge: Cambridge University Press, 519-536.
- Barry, Martin C. (1992) Palatalisation, assimilation and gestural weakening in connected speech. *Speech Communication*, 11:393-400.
- Bayley, Robert. (2002). The quantitative paradigm. In Chambers, J.K, Peter Trudgill & Natalie Schilling-Estes (eds.) *The Handbook of Language Variation and Change*. Oxford: Blackwell, 117-141.
- Boersma, Paul. (1998). Functional Phonology: Formalizing the Interactions between Articulatory and Perceptual Drives. The Hague: Holland Academic Graphics.
- Boersma, Paul. (2009). Cue constraints and their interactions in phonological perception. In Boersma, Paul & Silke Hamman (eds.) *Phonology in Perception*. Berlin: Mouton de Gruyter, 55-110.

- Boersma, Paul & Joe Pater. (2008). *Convergence Properties of a Gradual Learning Algorithm for Harmonic Grammar*. Ms. University of Amsterdam, and University of Massachusetts, Amherst. [ROA #970.].
- Boersma, Paul & David Weenink. (2009). *Praat: Doing Phonetics by Computer (Version 5.1.20)*. [Computer Program.] Retrieved October 31, 2009, from http://www.praat.org.
- Bybee, Joan L. (2000). The phonology of the lexicon: evidence from lexical diffusion. In Barlow, Michael & Suzanne Kemmer (eds.) *Usage-Based Models of Language*. Stanford: CSLI, 65-85.
- Bybee, Joan L. (2001). *Phonology and Language Use*. Cambridge: Cambridge University Press.
- Bybee, Joan L. (2002). Word frequency and context of use in lexical diffusion of phonetically conditioned sound change. *Language Variation and Change* 14, 261-290.
- Bybee, Joan L. (2006). From usage to grammar: the mind's response to repetition. *Language* 82, 711-733.
- Cedergren, Henrietta J. & David Sankoff. (1974). Variable rules: Performance as a statistical reflection of competence. *Language* 50, 333-355.
- Chomsky, Noam & Morris Halle. (1968). *The Sound Pattern of English*. New York: Harper & Row.

- Coetzee, Andries W. (2004). What It Means to be a Loser: Non-Optimal Candidates in Optimality Theory. Ph.D., Dissertation, University of Massachusetts.
- Coetzee, Andries W. (2006). Variation as accessing "non-optimal" candidates. *Phonology* 23, 337-385.
- Coetzee, Andries W. (2009). An integrated grammatical/ non-grammatical model of phonological variation. In Kang, Young-Se, Jong-Yurl Yoon, Hyunkyung Yo, Sze-Wing Tang, Yong-Soon Kang, Youngjun Jang, Chul Kim, Kyoung-Ae Kim & Hye-Kyung Kang (eds.) *Current Issues* in *Linguistic Interfaces. Volume 2*. Seoul: Hankookmunhwasa., 267-294.
- Coetzee, Andries W. (2011). Syllables in speech perception: evidence from perceptual epenthesis. In Cairns, Chuck & Eric Raimy (eds.) *Handbook of the Syllable*. Leiden: E.J. Brill, 295-328.
- Coetzee, Andries W. & Shigeto Kawahara. (to appear). Frequency biases in phonological variation. *Natural Language and Linguistic Theory*, 31:47-89.
- Coetzee, Andries W. & Joe Pater. (2011). The place of variation in phonological theory. In Goldsmith, John, Jason Riggle & Alan Yu (eds.) *Handbook of Phonological Theory. 2nd Edition.* Cambridge: Blackwell, 401-434.
- Dilley, Laura C. & Mark A. Pitt. (2007) A study of regressive place assimilation in spontaneous speech and its implications for spoken word recognition. *JASA*, 122:2340-2353.

- Gahl, Susanne. (2008). *Time* and *thyme* are not homophones: the effect of lemma frequency on word durations in spontaneous speech. *Language* 84, 474-496.
- Goldsmith, John. (1993). Harmonic phonology. In Goldsmith, John (ed.) *The Last Phonological Rule: Reflections on Constraints and Derivations*. Chicago: Chicago University Press, 21-60.
- Goldsmith, John. (ed.) (1995). *The Handbook of Phonological Theory*. Oxford: Blackwell.
- Hooper, Joan B. (1976). Word frequency in lexical diffusion and the source of morphological change. In Christie, William M. (ed.) *Current Progress in Historical Linguistics*. Amsterdam: North-Holland Publishing Co., 95-105.
- Itô, Junko & Armin Mester. (2001). Covert generalizations in Optimality Theory: the role of stratal faithfulness constraints. *Proceedings of the 2001 International Conference on Phonology and Morphology*. Seoul: The Phonology-Morphology Circle of Korea, 3-33.
- Jesney, Karen. (2007). The locus of variation in weighted constraint grammars. Ms. Poster presented at the Workshop on Variation, Gradience and Frequency in Phonology. Stanford University, July 2007 [Downloaded on December 27, 2007 from http://people.umass.edu/kjesney/papers.html.]

Jurafsky, Daniel, Alan Bell, Michelle Gregory & William D. Raymond. (2001). Probabilistic relations between words: evidence from reduction in lexical production. In Bybee, Joan L. & Paul Hopper (eds.) *Frequency and the Emergence of Linguistic Structure*. Amsterdam: Benjamins, 229-254.

Kiparsky, Paul. (1993). An OT perspective on phonological variation. Ms. Handout from Rutgers Optimality Workshop 1993, also presented at NWAV 1994, Stanford University. Available at http://www.stanford.edu/~kiparsky/Papers/nwave94.pdf. Labov, William. (1969). Contraction, deletion, and inherent variability of the English copula. Language 45, 715-762.

Labov, William. (1989). The child as linguistic historian. Language Variation and Change 1, 85-97.

Legendre, Géraldine, Yoshiro Miyata & Paul Smolensky. (1990). Can connectionism contribute to syntax?

Harmonic Grammar, with an application. In Ziolkowski, M., M. Noske & K. Deaton (eds.) *Proceedings of the 26th Regional Meeting of the Chicago Linguistic Society*. Chicago: Chicago Linguistic Society, 237-252. Lindblom, Bjorn. (1990). Explaining phonetic variation: a

sketch of the H & H theory. In Hardcastle, W.J. & A. Marchal (eds.) *Speech Production and Speech Modeling*. Dordrecht: Kluwer Academic Publishers, 403-439.

Pater, Joe. (2008). Gradual learning and convergence. *Linguistic Inquiry* 39, 334-345.

Pater, Joe. (2009). Weighted constraints in generative linguistics. *Cognitive Science* 33, 999-1035.

Pierrehumbert, Janet B. (2001) Stochastic Phonology. *Glot International*, 5:195-207.

Pitt, Mark A., Laura Dilley, Keith Johnson, S. Kieling, William D. Raymond, Elizabeth Hume & E. Fosler-Lussier. (2007). *Buckeye Corpus of Conversational Speech. (2nd Release).* [www.buckeyecorpus.osu.edu]. Columbus: Department of Psychology, Ohio State University.

Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt & Michael Becker. (2010). Harmonic Grammar with Linear Programming: From liner systems to linguistic typology. *Phonology* 27, 77-117.

Reynolds, Bill (1994). *Variation and Phonological Theory*. Ph.D. Dissertation, University of Pennsylvania.

Sankoff, David, Sali Tagliamonte & Eric Smith. (2005). Goldvarb X: A Variable Rule Application for Macintosh and Windows. Department of Linguistics, University of Toronto. [Software package available at http://individual.utoronto.ca/tagliamonte/Goldvarb/ GV_index.htm.].

Smolensky, Paul. (2006). Harmony in linguistic cognition. *Cognitive Science* 30, 779-801.

Sonderegger, Morgan, Andrea Beltrama, Tasos
Chatzikonstantinou, Erin Franklin, Brett Kirken, Jackson
Lee, Maria Nelson, Krista Nicoletto, Talia Penslar,
Hannah Provenza, Natalie Rothfels, Max Bane, Peter
Graff & Jason Riggle. *Coronal stop deletion on reality*TV. Paper presented at the 2012 Annual Meeting of
the Linguistic Society of America.

Steriade, Donca. (2001). Directional asymmetries in place assimilation. In Hume, Elizabeth & Keith Johnson (eds.) *The Role of Speech Perception in Phonology*. San Diego: Academic Press, 219-250.

Steriade, Donca. (2008). The phonology of perceptibility effects: the P-map and its consequences for constraint organization. In Hanson, Kristin & Sharon Inkelas (eds.) *The Nature of the Word: Studies in Honor of Paul Kiparsky*. Cambridge: MIT Press, 151-180.

van Oostendorp, Marc. (1997). Style levels in conflict resolution. In Hinskens, Frans, Roeland van Hout & Leo Wetzels (eds.) *Variation, Change and Phonological Theory*. Amsterdam: John Benjamins, 207-229.

Vaux, Bert. (2008). Why the phonological component must be serial and rule based. In Vaux, Bert & Andrew Nevins (eds.) *Rules, Constraints, and Phonological Phenomena*. Oxford: Oxford University Press, 20-60.