Why is this hard?

Based on B. Goldstein 2002

Why is this hard?

Selection Through Attention

Based on B. Goldstein 2002

The classic **black** box

Dynamically adaptable, non-linear system with feedback (and probably feed-forward...)

A different (black) box

Goal: Estimate an unknown function

Method: ??

Degree of Control To interfere or not?

- No control: Observational Research
 - examine things as they happen
 - often uses correlational analyses
 - Examples: Astronomy, Anthropology, Zoology, ...
- Complete control: Experimental or controlled research.
 - repeatedly and reliably produce a specific event in order to examine it
 - can talk about causation
 - Examples: Physics, Chemistry, Perceptual Psychology,...

Degree of Control Type of experimental studies

- Controlled experiment:
 - Examines more general questions (about the underlying parameters of the system and its influence on the participant)
 - Requires control over
 - what is shown (stimuli)
 - how and when the stimuli are shown (experimental procedure)
 - what the participants should do (task)

Degree of Control Type of experimental studies

- An example of controlled experimental methodology in psychology is Psychophysics:
 - Set of experimental methodology invented by Gustav Fechner in 1860 (and since extended by lots of people).
 - Provides mathematical descriptions of the functional relationship between variations in the physical world and the resulting variations in the psychological (or perceptual) world.
 - Requires very fine control over
 - what is shown (stimuli)
 - how and when the stimuli are shown (experimental procedure)
 - what the participants should do (task)

Degree of Control

 Powerful experiments in psychology (such as those in psychophysics) can be thought of as "exploring the parameter space" of a technique, procedure, or algorithm in order to determine the function relationship between parameter values and perceptual effects (possibly, in order to optimize the technique, etc.)

Control

 WARNING: The increased flexibility in answering questions that perceptual and psychophysical experiments offer comes at the cost of a need for increased vigilance, rigor, and expertise.

Flashback: Why is this hard?

Goal: Estimate an unknown function

Method: Systematically sample the function

Fundamental compromise

Specificity

You can only talk about what you measured

Fundamental compromise

Specificity

You can only talk about what you measured

Fundamental compromise

Specificity

You can only talk about what you measured

Generality

•Make broad statements without measuring every point...Interpolate!

Fundamental Compromise

Specificity

- You can only talk about what you measured
- •If too much varies at once, you cannot say what **caused** any differences

Generality

- •Make broad statements without measuring every point...Interpolate!
- •Systematically vary dimensions

- 2: Philosophy of experiments
- what is an experiment and how can we model this mathematically?

with material from Douglas Cunningham

Some terms in Experimental Design

- Each dimension that we manipulate is called a factor.
- Each value that we used from a factor is called a level.
- Usually, all combinations of factors are used. Any given combination is called a condition.
- Each single execution of a condition is a **trial**.
- Since only an examination of what happens under all relevant conditions can answer our question conclusively, the full collection of trials that addresses the current research question is an experiment.

What is Experimental Design?

Goal: Estimate an unknown function

Independent variable

Method: Systematically sample the function

Experiment I

Research Question:

– How accurately can people point to a target?

- Stimulus: Blue bullseye target
- Participants: One
- Task: Point (once) as quickly and accurately as possible to the center
- (total number of trials: 1)

Experiment I

Let B(x) be the perception-action loop for pointing accuracy (for this situation)

Situation: x (participant, task, stimulus, time of day, ...) (includes the Independent Variable)

Research Question:

– How accurately can people point to a target?

- Stimulus: Blue bullseye target
- Participants: One
- Task: Point (n times) as quickly and accurately as possible to the center
- (total number of trials: 1 x n)

Situation: x (participant, task, stimulus, time of day, ..)

- People cannot exactly repeat any performance
- There is some inherent, unintentional variation/noise

for
$$\varepsilon_W = 0$$
, $M(x) = B(x)$

$$M(x) = B(x) + \varepsilon_W$$

(note: Distributions have been rescaled)

for small ε_W each measurement is close to B(x)

 $M(x) = B(x) + \varepsilon_{w}$

in this case, we do many trials and find that most of the time the measurements fall in a very small region around the "true" value of B(x)

for small ε_W each measurement is close to B(x)

for large ε_W each measurement can be very far from B(x)

 $M(x) = B(x) + \varepsilon_w$

in this case, we do many trials and find that most of the time the measurements fall in a **large** region around the "true" value of B(x)

(note: Distributions have been rescaled)

Experiment Ib: Repeated Measures Cognitive Systems

- The average approximates B(x)
- B(x) is constant
- ϵ_{wl} is different every time we measure M(x)
- Bias from ϵ_{wl} is sometimes positive, sometimes negative
- With enough trials, we can estimate the error, and factor it out

trial 1:
$$m_1(x) = B(x) + \varepsilon_{w1}$$

trial 2:
$$m_2(x) = B(x) + \varepsilon_{w2}$$

trial n:
$$m_n(x) = B(x) + \varepsilon_{wn}$$

average:
$$\overline{M}(x) = \frac{\sum_{i=1}^{n} m_i}{n} = \frac{\sum_{i=1}^{n} B(x) + \varepsilon_{wi}}{n} \approx B(x)$$

- Anything that can reduce noise improves the approximation
- Increasing number of samples (trials) improves approximation

- How many repetitions?
 - There are equations for calculating this,
 based in part on
 - expected effect size
 - noise size
- Rule of thumb: More than 5 less than 20

Research Question:

– How accurately can people point to a target?

- Stimulus: Blue bullseye target
- Participants: One
- Task: Point (5 times) as quickly and accurately as possible to the center
- (total number of trials: 1 x 5)

Research Question:

— How accurately can people point to a target?

- Stimulus: Blue bullseye target
- Participants: One
- Task: Point (5 times) as quickly and accurately as possible to the center
- (total number of trials: 1 x 5)
- The results will be specific for this person
- B(x) might be different for different people
- To generalize to the population, we need more people!

Experiment Ic (Multiple Participants)

Research Question:

– How accurately can people point to a target?

- Stimulus: Blue bullseye target
- Participants: Several (p)
- Task: Point (once each) as quickly and accurately as possible to the center
- (total number of trials: 1 per person)

Experiment Ic (Multiple Participants)

We can calculate the error as above

- Is measuring many people once really the same as measuring one person multiple times?
- Why are people different?
 - Fundamentally different action-perception loops?
 - Constant (population) action-perception loop with everyone having a minor variation of that (e.g., noise)?

Experiment Ic (Multiple Participants)

- Per person, we assumed a constant effect B(x) plus internal noise ε_w = within person noise
- We can likewise assume a globally constant effect B(x) and additional noise between people ε_b = between person noise

$$\overline{M}(x) = \frac{\sum_{i=1}^{p} m_i}{p} = \frac{\sum_{i=1}^{n} B(x) + \varepsilon_{wi} + \varepsilon_{bi}}{p}$$

 Might be wise to sample each of the two error functions separately! (n trials for each of p participants)

$$\overline{M}(x) = \frac{\sum_{i=1}^{p} \sum_{j=1}^{n} m_{ij}}{pn} = \frac{\sum_{i=1}^{p} \sum_{j=1}^{n} B(x) + \varepsilon_{wj} + \varepsilon_{bi}}{pn}$$

How many samples??

- We are sampling unknown (noise) functions
- Multiple samples are needed per population
- How many participants?
- Again, there are equations for this
- As a rule of thumb,
 - for large effects, 10 is sufficient
 - for smaller effects, more
 - per Person (5+ repetitions per person)
- Two error terms, we need to sample both: Both Population and Person!

Experiment Id Multiple Participants and Repetitions

Research Question:

– How accurately can people point to a target?

- Stimulus: Blue bullseye target
- Participants: 10
- Task: Point (5 times) as quickly and accurately as possible to the center
- (total number of trials: $1 \times 5 = 5$ per person)

Experiment Id Multiple Participants and Repetitions

Why is performance so bad?

$$M(x) = B(x) + \varepsilon_w + \varepsilon_b$$

Experiment II (Color)

Research Question:

– How do changes in color affect pointing?

- Stimulus: Red and Blue bullseye targets
- Participants: 10
- Task: Point (5 times) as quickly and accurately as possible to the center
- (total number of trials: $2 \times 5 = 10$ per person)

Experiment II (Color)

$$M(x) = B(x) + \varepsilon_w + \varepsilon_b$$

$$M(x + \Delta c) = B(x + \Delta c) + \varepsilon_w + \varepsilon_b$$

$$M(x + \Delta c) \approx B(x) + B(\Delta c) + \varepsilon_w + \varepsilon_b$$

Effect of color change

Change in stimulus color

$$M(x + \Delta c) - M(x) = \{B(x) + B(\Delta c) + \varepsilon_w + \varepsilon_b\} - \{B(x) + \varepsilon_w + \varepsilon_b\}$$

$$M(x + \Delta c) - M(x) = \{B(x) - B(x)\} + \{\varepsilon_w + \varepsilon_b - \varepsilon_w - \varepsilon_b\} + B(\Delta c)$$

$$M(x + \Delta c) - M(x) = B(\Delta c)$$

The difference between conditions is the effect of changing color from blue to red

specificity

Note that splitting the function $B(x+\Delta c)$ into its component parts (B(x)) and $B(\Delta c)$ requires that the function B be homomorphic. Linear functions satisfy this property. Since we have assumed that the elements of x are independent of each other and can be modeled with as a linear, weighted sum, B is homomorphic.

Experiment II (Color)

- Are the means really different?
- Noise may "swamp" effect!
 - Control noise
 - Identify and remove unwanted variance
 - Run (complicated) statistics

Experiment III (Color and Size)

Research Question:

— How do changes in color and size affect pointing?

Methods:

- Stimulus: Large and small, Red and Blue bullseye targets
- Participants: 10
- Task: Point (5 times) as quickly and accurately as possible to the center
- (total number of trials: $2 \times 5 = 10$ per person)

Experiment IIIa (Color and Size)

Situation:
$$x + \Delta c + \Delta s$$

$$M(x) = B(x) + \varepsilon_w + \varepsilon_b$$

$$M(x + \Delta c + \Delta s) = B(x) + B(\Delta c) + B(\Delta s) + \varepsilon_w + \varepsilon_b$$

$$M(x + \Delta c + \Delta s) - M(x) = B(\Delta c) + B(\Delta s)$$

When changing two variables at the same time, you can no longer **conclusively** say what caused the difference between conditions

Experiment IIIb (Color and Size)

Research Question:

– How do changes in contrast affect pointing?

Methods:

- Stimulus: high and low contrast bullseye targets
- Participants: 10
- Task: Point (5 times) as quickly and accurately as possible to the center
- (total number of trials: $2 \times 5 = 10$ per person)

Research Question:

– How do changes in contrast affect pointing?

Methods:

- Stimulus: 8 bullseye targets, systematically varying contrast in equal steps
- Participants: 10
- Task: Point (5 times) as quickly and accurately as possible to the center
- (total number of trials: $8 \times 5 = 40$ per person)

$$M(x) = B(x) + \varepsilon_w + \varepsilon_b$$

$$M(x - p) = B(x - a) + \varepsilon_w + \varepsilon_b$$

$$M(x - 2p) = B(x - b) + \varepsilon_w + \varepsilon_b$$

$$M(x - 3p) = B(x - c) + \varepsilon_w + \varepsilon_b$$
...
$$M(x - 7p) = B(x - g) + \varepsilon_w + \varepsilon_b$$

Notes:

Measurements are in terms of a base condition x and multiples of 10% contrast change.

The underlying perception-action loop does not use this periodic representation.

Is trial 1 identical to trial 8?

- Different contrasts
- Difference in practice!
- So, any difference between trial 1 and trial 8 might be due to
 - Contrast
 - order/practice effect

(total number of trials: $1 \times 5 = 5$ per person)

- Solution 1: Eliminate order!
 - Everyone sees only one contrast
 - Each contrast is seen by one person
 - Between-participants design

- Difference between high and low might be due to
 - contrast
 - participant (P1 vs P8)
- So, multiple people per contrast.
- The higher ε_b is, the more participants one will need for **each** contrast condition
- 10 people for 8 groups= 80 people!

- Solution 2: Fully control for order
- We let everybody see every contrast, so we know that they act as their own control in terms of performance
- To explicitly check for order effects, we need to investigate how c1, c2, c3 may be different from c2, c3, c1 – for example
 - so we would need 10 people per possible order
- How many possible orders are there?
 - n! for n conditions
 - 6 for 3 conditions
 - 8! = 40320 for our 8 contrast levels \rightarrow >400000 participants!

- Solution 3: Compromise by controlling only for some orders
- Maybe we are just interested to see, whether there IS an order effect, not WHICH order it has
- So, we don't test all possible orders (n!), but only a subset (n) of orders
- A popular selection is the latin square design, which for three conditions A,B,C looks like this
- We recruit 10 people per row, and compare their performance – if any row is different from the others, we know that there is an order effect and that we have to be careful!
 - 8 * 10 participants total

- Solution 4: Compromise by accepting some noise
- We let every participant see a different, random order and hope that order noise is washed out over many participants
- This is a good assumption if individual differences in performance are smaller than order effects (which is often the case)
- Again, more participants are needed than 8, but perhaps one may be able to spend fewer than 80 – let's say 40 participants

Special Factors: Participants

- Why do people differ?
 - Natural talent
 - Expectations
 - Motivation
 - Fatigue
 - Physical differences (e.g., eye sight)
 - Experience

- What if we only used the authors?
 - Authors are not naive, can Bias
- What if we only used experts?
 - Experts/Novices have different skill levels, can Bias

Special Factors: Participants

- Sampling a distribution!
- Participants should be representative
- If you want to understand people in general, use people in general
- Use naive participants, unless
 - sure knowledge cannot affect results
 - desired population consists solely of experts
- If you want to understand how a technique will affect surgery, use surgeons!

What do you think?

 Going abroad, what are the differences that you have observed in other cultures?

– ...

People are WEIRD

- Arnett (2008) surveyed top journals in six subdisciplines of psychology and found that
 - 68% of subjects were from the US
 - 96% from 'Western' industrialized nations (European, North American, Australian or Israeli) = 12% of the world's population
- You're 4000 times more likely to be studied by a psychologist if you're a university undergraduate at a Western university than a randomly selected individual

People are WEIRD

• The weirdest people in the world? Joseph Henrich, Steven J. Heine and Ara Norenzayan (2010). Behavioral and Brain Sciences, Volume 33, Issue 2-3, 2010; 61-83.

Claim:

- psychologists test people from Western, Educated, Industrialized,
 Rich, and Democratic (WEIRD) societies
- this population shows considerable variation among visual perception, fairness, cooperation, spatial reasoning, categorization and inferential induction, moral reasoning, reasoning styles, selfconcepts and related motivations, and the heritability of IQ
- least representative population!

• Solution:

- cross-cultural research agenda!
- cautionary words in publications

People are WEIRD

Volume 4 Number 1

Volume 40 February 2014

Published bimonthly by the American Psychological Association ISSN 0096-1523

Journal of Experimental Psychology:

Human Perception and Performance

Editor

James T. Enns

Associate Editors
Sarah Creem-Regehr
Michael D. Dodd
Marc O. Ernst
Brett Fajen
Susanne Ferber
Rob Gray
Kathleen Rastle

Geoffrey Woodman

www.apa.org/pubs/journals/xhp

Journal of Experimental Psychology in High-Enrollment American Research Universities:

Undergraduate Psychology Students' Perception and Performance

Arrest T. Arrest

www.apa.org/pube/purrells/s/sp

Summary so far

Summary so far

Summary so far

- Try to remove variance through proper experimental design, and not through complex statistics
- The more complex your statistics become, the fewer the number of people that understand what you did or why becomes (i.e., you loose your audience)

General summary

- Once we are clear about our research question, we need to go about trying to answer it. In general, that means:
 - Show something (stimuli)
 - somehow (stimulus presentation)
 - to someone (participants)
 - And ask them to do something (the task)
 - (and then analyze the results)