Struktur Data

Binary Indexed Tree or Fenwick Tree
Range Minimum Query
Segment Tree

Problems

Diketahui sebuah arr[0 . . . n-1].

Lakukan:

- Penjumlahan terhadap i elemen pertama (prefixsum).
- Ubah nilai dari array ke-i, arr[i] = x, dimana
 0 <= i <= n-1 (update).

arr	0	1	2	3	4	5	6	7	8	9
	20	50	30	10	40	60	70	100	80	90

Simple Solution 1

```
for (j=0; j<i; j++) {
    sum+=arr[j]; \longrightarrow O(n)
}

arr[0] = 25 \longrightarrow O(1)
```

arr	0	1	2	3	4	5	6	7	8	9
	20	50	30	10	40	60	70	100	80	90
arr	0	1	2	3	4	5	6	7	8	9
	25	50	30	10	40	60	70	100	80	90

Simple Solution 2

arr

0	1	2	3	4	5	6	7	8	9
20	50	30	10	40	60	70	100	80	90

```
for(j=0;j<i;j++) {
    sum+=arr[j];
    arr2[j]=sum;
}</pre>
```

arr2

0	1	2	3	4	5	6	7	8	9
20	70	100	110	150	210	280	380	460	550

- 1. Penjumlahan terhadap i elemen pertama. \rightarrow O(1)
- 2. Ubah nilai dari array ke-i, arr[i] = x, dimana $0 \le i \le n-1$. $\rightarrow O(n)$ Nilai yang diubah tdk hanya array ke-i, tetapi juga array setelahnya

Apakah mungkin mendapatkan O(log n) untuk kedua operasi tersebut?

Gunakan data structure:

- Binary Indexed Tree / Fenwick Tree
 - Tinggi tree: log n
 - Query Prefix sum : O(log n)
 - Update : O(log n)

Binary Indexed Tree / Fenwick Tree

• Ide:

- Setiap index akan menyimpan "partial sum" yang bervariasi, sehingga updatenya juga hanya akan mencakup sebagian saja, tidak semua.
- Total sum didapat dengan menelusuri tree dari leaf ke root
- Gunakan representasi biner :
- Ex: sum(13)

$$13 = 2^3 + 2^2 + 2^0$$

1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	7	3	0	5	8	3	2	6	2	1	1	4	5

$$sum(13) = range(1,8) + range(9,12) + range(13,13)$$

$$= 29 + 10 + 4 = 43$$

Binary Indexed Tree Construction

Binary Indexed Tree PrefixSum

sum(13) = range(1,8) + range(9,12) + range(13,13)

Binary Indexed Tree PrefixSum

sum(13) = range(1,8) + range(9,12) + range(13,13)

Binary Indexed Tree PrefixSum

sum(7) = range(1,4) + range(5,6) + range(7,7)

Binary Indexed Tree GetParents

- Extract last set bit: x & (-x)
- Remove it: x (x & (-x))

$$x = 13 = (00001101)_{2}$$

$$-x = -13 = (11110011)_{2}$$

$$x & (-x) = (00000001)_{2}$$

$$x - (x & (-x)) = (00001100)_{2}$$

Binary Indexed Tree Sum

```
def sum(bit_arr, idx):
    result = 0
    while idx:
        result += bit_arr[idx]
        idx -= idx & -idx
    return result
```

Binary Indexed Tree ADD

Binary Indexed Tree ADD

- Extract last set bit: x & (-x)
- Adding it: x + (x & (-x))

```
def add(bit_arr, idx, val):
    while idx < len(bit_arr):
        bit_arr[idx] += val
        idx += idx & -idx</pre>
```

Segment Tree

0	1	2	3	4	5
-1	3	4	0	2	1

- Min $(2,4) \to 0$
- Min (0,3) → -1
- Max $(1,5) \rightarrow 4$
- Max $(0,3) \rightarrow 4$
- Sum $(0,2) \rightarrow 6$
- Sum $(4,5) \rightarrow 3$

Range Minimum Query (RMQ)

Segment Tree

0	1	2	3	4	5	6	7
1	5	3	7	3	2	5	7

Minimum in range [1,7):

Update value at index 5 with 6:

0	1	2	3	4	5	6	7
1	5	3	7	3	6	5	7

Minimum in range [3,8):

3	4	5	6	7	2
7	3	6	5	7	3

Compute MRQ : O(n)

Compute update : O(1)

Segment Tree

Compute MRQ : O(log n)

Compute update : O(log n)

Segment Tree

Secara eksplisit menyimpan informasi minimum pada range tertentu

Minimum in range [1,7): 2

Update value at index 5 with 6

Minimum in range [3,8): 3

Segmen Tree Construction

	1: [0,8)										
2: [0,4) 3: [4,8)											
4: [0,	4: [0,2) 5: [2,4)				4,6)	7: [6,8)				
8: 0	9: 1	10: 2	11: 3	12: 4	13: 5	14: 6	15: 7				

- Index root start at 1
- The child nodes of nodes idx:
 - 2*idx (left child) and 2*idx+1 (right child)
- The parent of the node at idx is idx/2

```
Algorithm 1 Construction of Segment-Tree

1: procedure Construction(arr)

2: n \leftarrow \text{length of } arr

3: data \leftarrow \text{array of length } 2 \cdot n

4: copy arr to second half of data

5: for idx = n - 1 \dots 1 do

6: data[idx] \leftarrow \min(data[2 \cdot idx], data[2 \cdot idx + 1])
```

Segmen Tree Update

	1: [0,8)									
2: [0,4) 3: [4,8)										
4: [0	0, 2)	5: [2	2,4)	6: [4	4,6)	7: [6	5,8)			
8: 0	8: 0 9: 1 10: 2 11: 3 12: 4 13: 5 14: 6 15: 7									

Algorithm 2 Update of Segment-Tree

- 1: procedure UPDATE(idx, value)
- 2: $idx \leftarrow idx + n$
- 3: data[idx] ← value
- 4: while idx > 1 do
- 5: $idx \leftarrow idx/2$
- 6: $data[idx] \leftarrow min(data[2 \cdot idx], data[2 \cdot idx + 1])$

Segment Tree MRQ

	1: [0,8)									
2: [0,4) 3: [4,8)										
4: [0	0, 2)	5: [2	2,4)	6: [4	4,6)	7: [6,8)			
8: 0	8: 0 9: 1 10: 2 11: 3 12: 4 13: 5 14: 6 15: 7									

Algorithm 3 Compute minimum of range [left, right)			1							
1: [procedure Minimum(left, right) left ← left + n, right ← right + n 		1				3			
3:	$minimum \leftarrow \infty$	1			3		3		5	
4:	while left < right do	4			-	_		_	1,	
5:	if left is odd then	1	5	3	7	3	6	5	7	
6:	$minimum \leftarrow min(minimum, data[left])$	Minimum in range [3,8):?								
7:	$\textit{left} \leftarrow \textit{left} + 1$									
8:	if right is odd then									
9:	$\textit{right} \leftarrow \textit{right} - 1$									
10:	$minimum \leftarrow min(minimum, data[right])$									
11:	$\textit{left} \leftarrow \textit{left}/2, \textit{right} \leftarrow \textit{right}/2$									
12:	return minimum									