MT251P – Lecture 3

Fiacre Ó Cairbre

Section 1.3 – Propositional Logic.

Elementary and Compound Propositions.

A proposition is a statement that is either true or false, but not both.

Example 9.

Consider the following three statements:

P1: 3 is a prime number.

P2: 2 + 2 = 5

P3: 81 is divisble by 3

The above three statements are all propositions. However the statement – Where are you going? – is not a proposition.

Remark 6.

A proposition takes exactly one of the values, true or false. Typically, we denote true by T or 1 and we denote false by F or 0. For example, P1 and P3 above take the value T or 1 and P2 above takes the value F or 0.

Our three propositions above are called elementary propositions because they cannot be broken down into simpler propositions. However, consider the proposition:

P4: 6 > 5 and 110 is even.

Then, P4 is a compound proposition because it's constructed using the connective 'and' from the two simpler propositions, P5, P6 where:

P5: 6 > 5

P6: 110 is even.

Remark 7.

We use the following three fundamental operations to construct compound propositions from elementary propositions

1. Negation (NOT).

The negation of a proposition P is denoted by $\neg P$ and is formed by negating the statement in P. So, $\neg P$ takes the value T \iff P takes the value F. This will then mean that $\neg P$ takes the value F \iff P takes the value T.

2. Conjunction (AND).

The conjunction of two propositions P and Q is denoted by $P \wedge Q$ and takes the value T \iff P and Q both take the value T.

3. Disjunction (OR).

The disjunction of two propositions P and Q is denoted by $P \vee Q$ and takes the value T \iff P or Q (or both) take the value T.

Truth Tables.

The expressions $\neg P$, $P \land Q$ and $P \lor Q$ are examples of formulas in propositional algebra. Formulas are built from variables (like P, Q etc.), logical operations (like \neg , \land , \lor etc.) and the values T, F. Formulas define propositional functions (for example, $\neg P$ has one variable, $P \land Q$ has two variables etc). When we give a value to each variable in a formula, then the value of the formula is determined.

A truth table tells us what value the formula takes for all combinations of the variables. In a truth table, the T, F values in a column give us the value of the formula that appears on the top of the column.

Example 10.

The truth table for negation is

Example 11.

The truth table for disjunction is

Example 12.

The truth table for conjunction is

Example 13.

Construct the truth table for $\neg (P \land (\neg Q))$.

Remark 8.

If formulas G, H have identical truth tables (meaning that we have identical columns under each of the two formulas at the right end of each table), then G and H are called equivalent. This means that G and H define the same propositional function and we write $G \sim H$ to denote that G is equivalent to H.