This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Office européen des brevets

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:31.10.2001 Bulletin 2001/44
- (21) Application number: 93906130.5
- (22) Date of filing: 18.02.1993

- (51) Int Cl.7: C12N 5/10, A01N 63/02
- (86) International application number: PCT/US93/01544
- (87) International publication number: WO 93/17098 (02.09.1993 Gazette 1993/21)
- (54) PRODUCTION OF VIRAL RESISTANT PLANTS VIA INTRODUCTION OF UNTRANSLATABLE PLUS SENSE VIRAL RNA

PRODUKTION VIRUS-RESISTENTER PFLANZEN DURCH EINFÜHRUNG VON NICHT-TRANSLATIERBARER VIRALER PLUS-STRANG-RNA

PRODUCTION DE PLANTES RESISTANT A DES VIRUS PAR INTRODUCTION D'ARN VIRAL DE NON TRANSLATION A SENS POSITIF

- (84) Designated Contracting States:

 AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
 PT SE
- (30) Priority: 19.02.1992 US 838509
- (43) Date of publication of application: 07.12.1994 Bulletin 1994/49
- (73) Proprietor: THE STATE OF OREGON
 ACTING BY AND THROUGH THE OREGON
 STATEBOARD OF HIGHER EDUCATION ON
 BEHALF OF THE UNIVERSITY OF OREGON
 Corvallis, OR 97331-2140 (US)
- (72) Inventors:
 - DOUGHERTY, William, G. Philomath, OR 97370 (US)
 - LINDBO, John, A.
 Corvallis, OR 97330 (US)
- (74) Representative: Gowshall, Jonathan Vallance FORRESTER & BOEHMERT Pettenkoferstrasse 20-22 80336 München (DE)
- (56) References cited:

EP-A- 0 242 016 EP-A- 0 298 918 EP-A- 0 325 066 EP-A- 0 425 004 EP-A- 0 426 195 EP-A- 0 504 869 WO-A-92/13089 WO-A-92/13090

- PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 87, August 1990 WASHINGTON US, pages 6291-6295, STANLEY, J., ET AL. 'Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants'
- VIROLOGY, vol. 164, 1988 pages 383-389, VAN DUN, C.M.P., ET AL. 'Transgenic tobacco expressing tobacco streak virus or mutated alfalfa mosaic virus coat protein does not cross-protect against alfalfa mosaic virus infection'
- ANNUAL MEETING OF THE AMERICAN PHYTOPATHOLOGICAL SOCIETY, ST. LOUIS, MISSOURI, USA, AUGUST 17-21, 1991.
 PHYTOPATHOLOGY 81 (10). 1991. 1174., LINDBO J A ET AL 'TRANSGENIC NICOTIANA-TABACUM PLANTS EXPRESSING VARIOUS FORMS OF THE TOBACCO ETCH VIRUS TEV COAT PROTEIN ARE RESISTANT TO TEV INFECTION.'
- Molecular Plant-Microbe Interactions, Volume 5, No. 2, issued March 1992, LINDBO et al.: "Pathogen-Derived Resistance to a Potyvirus: Immune and Resistant Phenotypes in Transgenic Tobacco Expressing Altered Forms of a Potyvirus Coat Protein Nucleotide Sequence", pages 144-153, see entire document.

:P 0 626 998 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- Virology, Volume 189, No. 2, issued August 1992, LINDBO et al.: "Untranslatable Transcripts of the Tobacco Etch Virus Coat Protein Gene Sequence can Interfere with Tobacco Etch Virus Replication in Transgenic Plants and Protoplasts", pages 725-733, see entire document.
- Molecular Plant-Microbe Interactions, Volume 4, No. 3, issued May 1991, KAWCHUK et al.: "Sense and Antisense RNA-Mediated Resistance to Potato Leafroll Virus In Russet Burbank Potato Plants", pages 247-253, see entire document.
- Plant Molecular Biology, Volume 17, issued 1991, VAN DER WILK et al.: "Expression of the Potato Leafroll Luteovirus Coat Protein Gene in Transgenic Potato Plants Inhibits Viral Infection", pages 431-439, see entire document.
- Journal of General Virology, Volume 72, issued August 1991, MARSH et al.: "Artificial Defective Interfering RNAs Derived from Brome Mosaic Virus", pages 1787-1792, see entire document.
- Proceedings of the National Academy of Sciences USA, Volume 88, Issued August 1991, DAY et al.: "Expression of an Antisense Viral Gene in Transgenic Tobacco Confers Resistance to the DNA Virus Tomato Golden Mosaic Virus", pages 6721-6725, see entire document.

- Virology, Volume 175, issued 1990, POWELL et al.: "Protection Against Tobacco Mosaic Virus Infection in Transgenic Plants Requires Accumulation of Coat Protein Rather than Coat Protein RNA Sequences", pages 124-130, see entire document.
- Virology, Volume 154, issued 1986, ALLISON et al.: "The Nucleotide Sequence of the Coding Region of Tobacco Etch Virus Genomic RNA: Evidence for the Synthesis of a Single Polyprotein", pages 9-20, see entire document.
- Trends in Genetics, Volume 5, No. 2, issued February 1989, BAULCOMBE: "Strategies for Virus Resistance in Plants", pages 56-60, see entire document.

Description

10

- 15

FIELD OF THE INVENTION

This invention is directed to the production of plants with a reduced susceptibility to virus infection.

BACKGROUND OF THE INVENTION

[0002] Plant viruses are responsible for major losses in worldwide crop production. Much effort is directed towards the development of new plant varieties which exhibit increased resistance to viral infection. Until recently such efforts were primarily based on the traditional plant breeding approach, however this approach is often limited by a lack of sources of resistance within the crop species. The advent of modern molecular biology techniques has facilitated the development of new methods of rendering plant varieties resistant to virus attack that are not limited by a requirement for preexisting resistance genes within a species.

Molecular Approaches

[0003] Many of these molecular approaches are based on the theory of pathogen derived resistance (Sanford and Johnston, 1985). This theory predicts that a "normal" host (plant) - pathogen (virus) relationship can be disrupted if the host organism expresses essential pathogen derived genes. It has been proposed that host organisms expressing pathogen gene products in excess amounts, at an inappropriate developmental stage, or in a dysfunctional form may disrupt the normal replicative cycle of the pathogen and result in an attenuated or aborted infection of the host.

[0004] Two approaches typify this pathogen derived resistance: coat protein mediated resistance and antisense RNA expression. It has been demonstrated that transgenic plants expressing a plant virus coat protein can be resistant to infection by the homologous virus. This coat protein mediated resistance has been demonstrated for several virus groups. While the mechanism of this resistance is not yet fully understood, it has been suggested that the presence of the plant synthesized coat protein prevents the removal of the protein coat (uncoating) of an invading virus and/or virus movement within the infected plant, leading to resistance.

[0005] Plants which express an RNA molecule which is complementary to plus sense RNA species encoded by the virus may show a decreased susceptibility to infection by that virus. Such a complementary RNA molecule is termed antisense RNA. It is thought that the plant encoded antisense RNA binds to the viral RNA and thus inhibits its function.

Potyviruses

[0006] The Potato Virus Y, or potyvirus, family represents a large number of plant viral pathogens which collectively can infect most crop species including both monocotyledonous and dicotyledonous plants. Potyvirus infection can induce a variety of symptoms including leaf mottling, seed and fruit distortion and can severely compromise crop yield and/or quality (Hollings and Brunt, 1981).

[0007] Potyviruses have a single-strand plus sense RNA of circa 10,000 nucleotides which has a viral encoded protein linked to the 5' end and a 3' polyadenylate region. A single open reading frame codes for a 351 kDa polyprotein which is proteolytically processed into mature viral gene products. The RNA is encapsidated by approximately 2,000 copies of a coat protein monomer to form a virion. This capsid protein is encoded by the sequence present at the 3' end of the large open reading frame.

[0008] Potyviruses can be transmitted by aphids and other sap feeding insects and in some instances can also be transmitted in the seeds of infected plants. Replication of the viral RNA is thought to occur in the cytoplasm of infected plant cells after uncoating. The replication mechanism involves both translation of the plus sense RNA to yield viral gene products (which include a replicase and a proteinase) and also the synthesis of a minus sense RNA strand. This minus sense strand then acts as a template for the synthesis of many plus sense genomes which are subsequently encapsidated in coat protein to yield infectious mature "virions", thus complete the replicative cycle of the virus.

[0009] Experiments have been reported in which transgenic plants expressing the coat protein gene of a potyvirus show a reduced susceptibility to virus infection (Lawson et al. 1990; Ling et al. 1991; Stark and Beachy 1989).

[0010] EP-A-0242016 discloses the incorporation of genetic material, in particular cDNA corresonding to plant viral satellite RNA, into a plant such that, when the plant is infected by a plant virus, the expression of the incorporated material modifies the plant virus or its effects.

⁵⁵ [0011] WO-A-9213090 discloses a method for producing transgenic plants with reduced virus susceptibility.

SUMMARY OF THE INVENTION

[0012] The disclosed invention concerns a method of producing plants with a decreased susceptibility to virus infection. This is achieved by transforming plants with a DNA molecule which includes a gene derived in part from the genome of a plant virus. This gene is specifically constructed to produce an untranslatable wersion of application. This gene is specifically constructed to produce an untranslatable wersion of application within the plant causes the production of this non-functional molecule which then inhibits viral replication within the plant, rendering the plant resistant to viral infections.

[0013] In particular, invention provides an alternative and novel approach to rendering plants resistant to potyvirus infection.

[0014] Plants are transformed with a gene construct engineered to express an untranslatable form of the plus sense RNA which encodes the coat protein of a potyvirus.

[0015] In the case of Tobacco Etch Virus (TEV), it is demonstrated that tobacco plants transformed with such a gene construct accumulate the untranslatable plus sense RNA but do not produce detectable levels of the coat protein. It is further shown that these plants are resistant to TEV infection. It is also shown that tobacco cells expressing this untranslatable plus sense RNA do not support TEV replication, unlike control tobacco cells and also unlike tobacco cells which are engineered to express the plus sense translatable RNA and which, as a result, accumulate TEV coat protein. Although the exact mechanism is unknown, it is proposed that the untranslatable plus sense RNA inhibits viral replication by binding to the minus sense RNA and preventing the minus sense RNA from functioning in the replication cycle. [0016] It is believed that this approach will be applicable to other potyviruses, to genes other than the coat protein gene and to other plus sense RNA virus families. It is also believed that this means of inhibiting gene function is applicable to other biological systems, including mammalian viruses.

DESCRIPTION OF DRAWINGS

[0017]

25

30

35

40

45

50

55

Fig. 1 represents the nucleotide sequence of the Tobacco Etch Virus genome and its deduced amino acid sequence, according to Allison et al. (1986). The nucleotide sequence of the plus sense strand of the DNA inserts is given. The first nucleotide (N) could not be determined unequivocally. The predicted amino acid sequence of the large ORF of reading frame three of the viron sense RNA is presented in the nucleotide sequence. This sequence is also set forth in SEQ ID No. 1 of the enclosed sequence listing. The termination codon at the end of the large ORF is marked with a *. The putative cleavage site between the large (54,000 Mw) nuclear inclusion protein and the capsid protein is indicated by the arrow. Oligonucleotide primer binding sites are underlined and labeled. Fig. 2 is a schematic representation of the construction of pTC:FL, utilized in construction of transformation vectors for the invention. Restriction endonuclease sites were introduced into pTL 37/8595 at positions A, B and C in the diagram. Following these nucleotide changes the mutated pTL 37/8595 was digested with the restriction enzyme Ncol, the DNA fragment delineated by the restriction enzyme sites at B and C was removed, and the plasmid religated to generate pTC:FL. pTC:FL contains the Tobacco Etch Virus (TEV) coat protein nucleotide sequence flanked by BamHI restriction sites and the TEV 5' and 3' untranslated sequences (UTS). T7 and SP6 promoters are also shown. Abbreviations used in this diagram are as follows: T7, T7 RNA polymerase promoter sequence; SP6, SP6 RNA polymerase promoter sequence; ori, origin of replication; M13 ori, bacteriophage M13 single-stranded origin of replication; amp^r, β-lactamase gene. Lightly stippled areas are TEV 5' and 3' untranslated sequences; solid black area, TEV genome cDNA nucleotides 144 to 200; striped area, a portion of the TEV NIb gene (TEV nt 8462-8517); heavily stippled areas, cDNA of TEV CP nucleotide sequence (TEV nt 8518-9309). Fig. 3 is a schematic representation of the forms of the Tobacco Etch Virus coat protein gene inserted into tobacco

in the invention. All constructs contained the enhanced CaMV 35S (Enh 35S) promoter, CaMV 35S 5' untranslated sequence (UTS) of 50 bp and the CaMV 35S 3' UTS/polyadenylation site of 110 bp. The nomenclature used to describe the transgenic plant lines is presented along with the gene products produced in those plant lines (far right column). Abbreviations are as follows: 35S, transgenic plants containing the CaMV 35S promoter and 5' and 3' UTS only; FL, transgenic plants containing the transgene coding for full-length, AS and RC transgenic plants contain the transgene expressed as an antisense form of the TEV CP gene, or an untranslated sense form of the TEV CP gene, respectively. Stippled areas represent various forms of the TEV CP nucleotide sequence.

Fig. 4 is a graphic representation of the appearance of systemic symptoms in plants infected with Tobacco Etch Virus showing responses of control plants and transformed plants generated as described in the invention. Ten B49 (wild type) plants and ten R2 plants of transgenic plant lines 35S #4, FL #3, FL #24, homozygous for the inserted TEV gene, were mechanically inoculated with 50 μl of 1:10 dilution of infected plant sap (A). Twenty B49 plants and 20 R1 plants of lines AS #3 and RC #5 were mechanically inoculated with 50 μl of 5 μg/ml TEV (B).

Plants were examined daily for the appearance of systemic symptoms. Plants were evaluated daily, and any plant displaying systemic symptoms (attenuated or wild-type) were recorded as symptomatic.

SEQUENCE LISTING

- [0018] The attached sequence listing sets forth nucleotide sequences relevant to the present invention.
- [0019] SEQ ID No. 1 is the complementary DNA sequence corresponding to the Tobacco Etch Virus Genome.
- [0020] SEQ ID No. 2 is the nucleotide sequence of the modified Tobacco Etch Virus coat protein gene present in pTC:FL.
- 10 [0021] SEQ ID No. 3 is the nucleotide sequence of the modified Tobacco Etch Virus coat protein gene present in pTC:RC.
 - [0022] SEQ ID No. 4 is the nucleotide sequence of the modified Tobacco Etch Virus coat protein gene present in pTC:AS. It is the inverse complement of SEQ ID No. 2.

15 DETAILED DESCRIPTION

[0023] The present invention relates to genetically engineered plants which are transformed with a DNA molecule encoding an untranslatable plus sense RNA molecule.

20 Definition of Terms

- [0024] Susceptible plant: A plant that supports viral replication and displays virus-induced symptoms.
- [0025] Resistant plant: A plant wherein virus-induced symptoms are attenuated and virus replication is attenuated.
- [0026] Plus sense RNA (and sense RNA): That form of an RNA which can serve as messenger RNA.
- 25 [0027] Minus sense RNA: That form of RNA used as a template for plus sense RNA production.
 - [0028] Antisense RNA: RNA complementary to plus sense RNA form.
 - [0029] Ro generation: Primary transformants.
 - [0030] R₁ generation: Progeny of primary transformants.
 - [0031] R₂ generation: Second generation progeny of R₀ generation (i.e., progeny of R₁ generation).
- 30 [0032] A gene derived in part from a plant virus RNA molecule: At least the portion of the gene encoding the untranslatable RNA molecule is derived from a plant virus RNA molecule.

GENERAL DESCRIPTION

- [0033] An unitranslatable plus sense RNA molecule is encoded by a gene located on the DNA molecule. The gene comprises DNA derived from a plant virus RNA genome and also DNA from heterologous sources. The DNA from heterologous sources includes elements controlling the expression of the virus-derived DNA sequences. The DNA sequences the DNA sequence of the general separation of the virus-derived DNA sequences. The DNA sequence of the general sequence of the g
 - [0034] More particularly, the portion of the gene which comprises DNA from a plant virus has been derived from a potyvirus. Plants transformed with the DNA molecule containing the gene are less susceptible to infection by potyviruses. Most specifically, the DNA from the potyvirus source has been derived from the coat protein gene of Tobacco Etch Virus and transformed plants are resistant to infection by Tobacco Etch Virus. Plants which can be made resistant to potyvirus infection include, but are not limited to, tobacco.
 - [0035] Accordingly, the present invention provides a method for genetically engineering plants by insertion, into the plant genome, a DNA construct containing a recombinant gene derived from a potyvirus genome such that the engineered plants display resistance to the potyvirus.
- [0036] In accordance with one aspect of the presen invention, genetically transformed plants which are resistant to infection by a plant potyvirus are produced by inserting into the genome of the plant a DNA sequence which causes the production of an untranslatable coat protein RNA of the potyvirus.
 - [0037] In accordance with another aspect of the present invention, a DNA sequence is provided to function in plant cells to cause the production of an untranslatable plus sense RNA molecule. There has also been provided, in accordance with yet another aspect of the present invention, bacterial and transformed plant cells that contain the above-
- described DNA. In accordance with yet another aspect of the present invention, a differentiated tobacco plant has been provided that comprises transformed tobacco cells which express the untranslatable coat protein RNA of Tobacco Etch Virus and which plants exhibit resistance to infection by Tobacco Etch Virus.
 - [0038] A mechanism by which an untranslatable plus sense RNA molecule, such as described in the current invention

can function to inhibit the normal biological function of a minus sense RNA molecule is proposed. One skilled in the art will recognize that the novel approach described herein is not limited to the specific experimental example given and will appreciate the wider potential utility of the invention.

[0039] The expression of a plant gene which exists in double-stranded DNA form involves transcription of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase enzyme, and the subsequent processing of the mRNA primary transcript inside the nucleus. This processing involves a 3' nontranslated region which causes polyadenylate nucleotides to be added to the 3' end of the viral RNA. Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the "promoter." The promoter region contains a sequence of bases that signals RNA polymerase to associate with the DNA and to initiate the transcription of mRNA using one of the DNA strands as a template to make a corresponding strand of RNA.

[0040] A number of promoters which are active in plant cells have been described in the literature. Promoters which are known or are found to cause transcription of viral RNA in plant cells can be used in the present invention. Such promoters may be obtained from plants or viruses and include, but are not limited to, the CaMV 35S promoter. As described below, it is preferred that the particular promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of untranslatable plus sense RNA to render the plant substantially resistant to virus infection. The amount of untranslatable plus sense RNA needed to induce resistance may vary with the plant type. Accordingly, while the 35S promoter is preferred, it should be understood that this promoter may not be the optimal one for all embodiments of the present invention. Furthermore, the promoters used in the DNA constructs of the invention may be modified, if desired, to affect their control characteristics. DNA sequences have been identified which confer regulatory specificity on promoter regions. For example, the small subunit of the ribulose bis-phosphate carboxylase (ss RUBISCO) gene is expressed in plant leaves but not in root tissues. A sequence motif that represses the expression of the ss RUBISCO gene in the absence of light, to create a promoter which is active in leaves but not in root tissue, has been identified. This and/or other regulatory sequence motifs may be ligated to promoters such as the CaMV 35S promoter to modify the expression patterns of a gene. Chimeric promoters so constructed may be used as described herein. For purposes of this description, the phrase "CaMV 35S promoter" will therefore include all promoters derived by means of ligation with operator regions, random or controlled mutagenesis, as well as tandem or multiple copies of enhancer elements, and the like.

[0041] The 3' nontranslated region of genes which are known or are found to function as polyadenylation sites for viral RNA in plant cells can be used in the present invention. Such 3' nontranslated regions include, but are not limited to, the 3' transcribed, nontranslated region of the CaMV 35S gene and the 3' transcribed, nontranslated regions containing the polyadenylation signals of the tumor-inducing (TI) genes of *Agrobacterium*, such as the tumor morphology large (tml) gene. For purposes of this description, the phrase "CaMV 35S 3' nontranslated region" will therefore include all such appropriate 3' nontranslated regions.

[0042] The DNA constructs of the disclosed embodiment contain, in double-stranded DNA form, a portion of a cDNA version of the single-stranded RNA genome of TEV. In potyviruses, including TEV, the viral genome includes, genesenceding the coat protein, a replicase enzyme and a proteinase, the disclosed embodiment utilizes the region of the genome encoding the coat protein gene. In considering the prosent invention and the evidence for the proposed mechanism by which an untranslated a plus sense and a molecule can inhibit viral replication, those skilled in the art will

recognize that other portions of a potyvirus genome could be substituted for the coat protein gene. Furthermore, it will be apparent that suitable genomic portions are not limited to complete gene sequences.

[0043] A disclosed embodiment of the invention utilizes a double-stranded complementary DNA (cDNA) derived from the region of the TEV genome encoding the coat protein gene. To the 5' end of this cDNA is ligated the CaMV 35S promoter and CaMV 35S RNA 5' nontranslated region. To the 3' end is ligated the CaMV 35S 3' nontranslated region. These 5' and 3' sequences are present to cause transcription of the gene in plant cells by the cellular enzyme RNA polymerase to produce an RNA molecule of sequence corresponding to the sequence of the coat protein cDNA sequence. Ordinarily, such an RNA would then be translated by ribosomes which would synthesize a protein of amino acid sequence specified by the nucleotide sequence of the RNA molecule. Particular amino acids are specified by nucleotide triplets termed codons. Codons which stipulate translation initiation and termination are also present in DNA and RNA sequences. The current invention relates to RNA molecules which are untranslatable by ribosomes. In the preferred embodiment the sequence of the TEV cDNA encoding the coat protein is mutated by a standard *in vitro* mutagenesis technique to produce a frameshift mutation early in the coat protein structural gene immediately followed by three translation termination signal codons. These mutations do not affect the ability of RNA polymerase to transcribe an RNA molecule from the cDNA but prevent translation of the transcribed RNA by ribosomes. Those skilled in the art will recognize that for the disclosed gene and for other genes, DNA sequences can be altered in other ways to cause the DNA to encode an untranslatable plus sense RNA molecule. Thus the disclosed invention is not limited to the mutations disclosed.

[0044] A disclosed embodiment utilizes a cDNA encoding the coat protein gene of TEV, mutated so as to encode an untranslatable plus sense RNA. It will be obvious to one skilled in the art that further sequence alteration of the cDNA

molecule could be used to confer additional features on the untranslatable plus sense RNA molecule. Additional features include those which would result in increased viral resistance of plants transformed with the cDNA molecule encoding an untranslatable plus sense RNA. The inclusion of a ribozyme sequence which causes the RNA catalyzed destruction of the target RNA molecule would constitute one such additional feature. Suitable ribozyme sequences are known, as discussed in Tabler and Tsagris (1991).

[0045] A DNA construct in accordance with the present invention is introduced, via a suitable vector and transformation method as described below, into plant cells and plants transformed with the introduced DNA are regenerated. Various methods exist for transforming plant cells and thereby generating transgenic plants. Methods which are known or are found to be suitable for creating stably transformed plants can be used in this invention. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods may include, but are not limited to: electroporation of plant protoplasts; liposome mediated transformation; polyethylene mediated transformation; transformation using viruses; microinjection of plant cells; microprojectile bombardment of plant cells and Agrobacterium tumefaciens (AT) mediated transformation. The latter technique is the method of choice for the disclosed preferred embodiment of the present invention.

[0046] In an embodiment of the current invention, the DNA sequences comprising the CaMV 35S promoter and CaMV 35S nontranslated 3' region and the mutated cDNA encoding an untranslatable plus sense RNA derived from the TEV coat protein gene are combined in a single cloning vector. This vector is subsequently transformed into AT cells and the resultant cells are used to transform cultured tobacco cells.

[0047] Vectors suitable for the AT mediated transformation of plants with the DNA of the invention are disclosed. It will be obvious to one skilled in the art that a range of suitable vectors is available, including those disclosed by Bevan (1983), Herrera-Estrella (1983), Klee (1985) and EP-A-120516 (Schilperoort et al.). Suitable vectors are available on a commercial basis from Clontech (Palo Alto, CA) and Pharmacia LKB (Pleasant Hill, CA) and other sources.

[0048] Following the transformation of plant cells and regeneration of transformed plants with the DNA molecules as described, regenerated plants are tested for increased virus resistance. Plants are preferably exposed to the virus at a concentration within a range where the rate of disease development correlates linearly with virus concentration. Methods for virus inoculation are well known to those skilled in the art and are reviewed by Kado and Agrawai (1972). One such method includes abrading a leaf surface with an aqueous suspension containing an abrasive material such as carborundrum and virus or dusting leaves with such an abrasive material and subsequently applying the virus onto the leaf surface. A virus suspension can be directly inoculated into leaf veins or alternatively plants can be inoculated using insect vectors. The virus suspension may comprise purified virus particles, or alternatively, sap from virus infected plants may be utilized.

[0049] Transformed plants are then assessed for resistance to the virus. The assessment of resistance or reduced susceptibility may be manifest in different ways dependent on the particular virus type and plant type. Those skilled in the art will realize that a comparison of symptom development on a number of inoculated untransformed plants with symptom development on similarly inoculated transformed plants will provide a preferred method of determining the effects of transformation with the specified DNA molecule on plant resistance. Symptoms of infection include, but are not limited to leaf mottling, chlorosis and etching. Plants showing increased viral resistance may be recognized by delay in appearance of such symptoms or attenuation or total lack of such symptoms.

40 Example

45

- 15

25

[0050] Work with tobacco plants and the Tobacco Etch Virus (TEV) is illustrative of the invention.

Construction of gene encoding untranslatable plus sense RNA molecule.

[0051] The Highly Aphid Transmissible (HAT) isolate of Tobacco Etch Virus (TEV) was obtained from Dr. Tom Pirone (University of Kentucky) and maintained in *Nicotiana tabacum* (Burley 21). The virus was purified from *Nicotiana tabacum* (Burley 21) 20 to 30 days following inoculation. Viral purification and RNA isolation procedures have been described (Dougherty and Hiebert (1980a). Complementary DNA (cDNA) was synthesized, made double-stranded and inserted into the bacterial plasmid pBR322 as described by Allison et al. (1985a, 1985b, 1986). cDNA synthesis was accomplished as follows: Purified viral RNA primed with oligo(dT₁₂₋₁₈) served as a template for single-strand cDNA synthesis by reverse transcriptase. Following the addition of homopolymeric tracts of deoxycytidine 5' monophosphate, second-strand synthesis, primed with oligo(dG₁₂₋₁₈), was completed with DNA polymerase I. *Sal*I and *Eco*RI linkers were ligated to the double-stranded cDNA and inserted into the bacterial plasmid pBR322 (Kurtz and Nicodemus 1981). The resulting cDNA clones were screened by colony hybridization (Hanahan and Meselson 1980) with oligo(dT₁₂₋₁₈) primed, ³²P-labeled single-stranded TEV cDNA. Plasmid DNA was isolated from colonies which hybridized with the probe, and the *SalI/Eco*RI cDNA inserts were sized by electrophoresis in a 0.8% (w/v) agarose gel using a horizontal water-cooled gel apparatus.

[0052] The Sall/EcoRl inserts from the recombinant molecules were isolated from an agarose gel with NA45 membrane (Schleicher & Schuell, Keene, NH) according to the manufacturer's protocol. The following restriction enzymes were used either alone or in combination to digest the isolated cDNA insert: Hindill, Xhol, Alul, HaellI, Rsal, Sau3A, and Taql. Restriction enzyme digestion products were inserted into the DNA of an appropriate M13 bacteriophage (Messing 1983) selected for the presence of corresponding polylinker restriction sites, and their nucleotide sequences were determined by dideoxy chain termination.

[0053] Plasmid pTL 37/8595 (Carrington and Dougherty 1987; Carrington et al. 1987) contains a cDNA copy of the genomic sequence of HAT TEV corresponding to nucleotides (nt) 1-200 and nt 8462-9495 (Fig. 2). (Numbering of the TEV genome nucleotides is according to that presented in Allison et al. 1986). The nucleotide sequence and deduced amino acid sequence of the Tobacco Etch Virus genome and the numbering system utilized by Allison et al. (1986) and herein is shown in Fig. 1 and SEQ ID No. 1 in the attached sequence listing. The first and last codons of the coat protein (CP) coding region in the TEV genome are nt 8518-8520 (encoding the amino acid serine) and 9307-9309 (opal stop codon) respectively. pTL 37/8595 was subject to *in vitro* site-directed mutagenesis as described by Taylor et al. (1985a, 1985b). In all cases, nucleotide changes were confirmed by dideoxy-nucleotide sequencing (Sanger et al. 1977).

[0054] TEV nt 9312-9317 were first mutated (Fig. 2) to generate a *Bam*HI restriction site (GGATCC). TEV nt 8516-8521 were then altered to generate an *Nco*I site (CCATGG), changing the first codon of the TEV CP coding region from AGT (Ser), to ATG (Met). A single oligonucleotide was then used to mutate TEV nt 133-138 to a *Bam*HI restriction site (GGATCC), nt 143-148 to an NcoI restriction site (CCATGG) and nt 142 to a deoxyadenylate residue. These mutations generated an NcoI site centered on the first codon of the TEV ORF and in a good translational start context as described by Kozak (1984). Digestion of the resulting plasmid with the restriction enzyme *Nco*I; removing TEV nt # 143-200/8462-8516, and religation generated plasmid pTC:FL. pTC:FL contained only the TEV CP gene flanked by *Bam*HI restriction sites and TEV 5' and 3' untranslated sequences (see Fig. 2). The nucleotide sequence of the TEV CP gene in pTC:FL produced by this mutagenesis scheme is shown in SEQ ID No. 2 in the attached

[0055] Plasmid pTC:RC (RNA Control, producing untranslatable plus sense RNA) was generated by insertion of a single deoxythymidylate residue after TEV nt 8529, and point mutations of TEV nt 8522 (G to C), 8534 (C to A), 8542 (G to A), and 8543 (A to G) to create a frameshift mutation immediately followed by three stop codons. An *Nhel* restriction site (GCTAGC) was simultaneously generated, for screening purposes, at nt 8539-8544. The nucleotide sequence of the TEV CP gene in pTC:RC produced by this mutagenesis scheme is shown in SEQ ID No. 3 in the attached sequence listing

[0056] All plasmids described above were linearized with *Hind*III, transcribed with T7 RNA polymerase (Melton et al. 1984), and translated in a rabbit reticulocyte lysate containing ³⁵S Methionine (Dougherty and Hiebert 1980a). Radiolabeled translation products were analyzed by electrophoretic separation on a 12.5% acrylamide gel containing SDS (Laemmli 1970) and detected by autoradiography. Transcripts of plasmid pTC:RC produced no detectable protein products, while transcripts from pTC:FL produced proteins of the expected sizes.

[0057] The various forms of the CP nucleotide sequence were then inserted as *Bam*HI cassettes into the plant expression vector pPEV (see below and Fig. 3).

[0058] The full length TEV CP open reading frame of pTC:FL was inserted in the reverse orientation to make the antisense (AS) construct pTC:AS. The nucleotide sequence of the TEV CP gene in pTC:AS is shown in SEQ ID No. 4 in the attached sequence listing.

Transformation Vector Construction

- 15

[0059] Construction of pPEV. The vector pPEV is part of a binary vector system for *Agrobacterium tumefaciens* mediated plant cell transformation. Plasmid pPEV was constructed from the plasmids pCGN 2113 (Calgene), pCIB 710 and pCIB 200 (Ciba Geigy Corp.). pCGN 2113 contains the "enhanced" Cauliflower Mosaic Virus (CaMV) 35S promoter (CaMV sequences -941 to 90/-363 to +2, relative to the transcription start site) in a pUC derived plasmid backbone. pCIB 710 has been described (Rothstein et al. 1987) and pCIB 200 is a derivative of the wide host range plasmid pTJS 75 (Schmidhauser and Helinski 1985) which contains left and right *A. tumefaciens* T37 DNA borders, the plant selectable NOS/NPT II chimeric gene from the plasmid Bin 6 (Bevan 1984) and part of a pUC polylinker. The small *EcoRI-EcoRV* DNA fragment of pCIB 710 (Rothstein et al. 1987) was ligated into *EcoRI-EcoRV* digested pCGN 2113. This regenerated the enhanced CaMV 35S promoter (Kay et al. 1987) of pCGN 2113 and introduced the CaMV 35S 5' and 3' untranslated sequences into pCGN 2113. The CaMV 35S promoterterminator cassette of the resulting plasmid was isolated as an *EcoRI-Xbal* DNA fragment and ligated into *EcoRI-Xbal* digested pCIB 200 to generate pPEV. CP nucleotide sequences from PTC:FL, pTC:RC, and pTC:AS were cloned as *Bam*HI cassettes into *Bam*HI digested pPEV and orientation of inserts confirmed by digestion with appropriate restriction endonucleases.

Transformation and Regeneration of Tobacco

[0060] pPEV plasmids containing TEV CP ORFs were mobilized from *E. coli* HB101 into *A. tumefaciens* A136 containing plasmid pCIB 542 (Ciba Geigy), using the helper plasmid pRK 2013 in *E. coli* HB101 and the tri-parental mating system of Ditta et al. (1980). Plasmid pCIB 42 supplied *vir* functions necessary for T-DNA transfer.

[0061] Leaf discs of Nicotiana tabacum cv Burley 49 were transformed and whole plants regenerated according to Horsch et al. (1985). Transformed tissue was selected by culturing callus on MS plates (Murashige and Skoog 1962) containing 1 μ g/ml 6-benzylaminopurine (Sigma Corp.), 01 μ g/ml α -naphthaleneacetic acid (Sigma Corp.), 500 μ g/ml carbenicillin and 100 μ g/ml Kanamycin sulfate (Sigma Corp.). Shoots were rooted on MS plates containing 500 μ g/ml carbenicillin and 100 μ g/ml kanamycin sulfate, and plantlets were transplanted into soil and transferred directly into the greenhouse approximately 2-3 weeks after rooting.

[0062] R0, R1 and R2 generation plants were screened by western and/or northern blot analyses. R2 seed (ca. 100 seeds per R2 plant) was screened for the kanamycin-resistant phenotype (kan') by surface sterilizing seed in 10% bleach for 5 min., washing twice in sterile water and germinating on MS plates containing 100 µg/ml kanamycin sulfate. R2 seed lines which were 100% kanamycin resistant were screened by western blot analysis for expression of TEV coat protein. Those transgenic plant lines generated and their nomenclature are presented in Fig. 3.

Molecular Analyses of Transgenic Plants

- 15

45

50

20 [0063] Transgenic tobacco plants were analyzed by western and northern blot analyses to determine the nature of protein and RNA products produced respectively. Total RNA samples isolated from the various transgenic lines were analyzed in northern blot hybridization studies. Total nucleic acids were isolated from tissue and RNA precipitated with LiCl as described by Verwoerd et al. (1989). RNAs were electrophoretically separated on 1.2% agarose gels containing 6% (v/v) formaldehyde and transferred to nitrocellulose. Prehybridization and hybridization conditions were as described in Sambrook et al. (1989). Strand specific riboprobes were generated from SP6 or T7 DNA dependent RNA polymerase transcription reactions of pTL 37/8595 linearized with the restriction enzymes Asp718 (Boehringer Mannheim, Indianapolis, IN) or HindIII, respectively, using α-labelled ³²P-CTP ribonucleotide and suggested procedures (Promega, Madison, WI).

[0064] An RNA transcript of approximately 1,000 nt was expected with all transgenic plant lines. Such a TEV CP transcript was detected in CP expressing plant lines by using a minus sense riboprobe containing the TEV CP sequence. A similar transcript was detected in AS plants by using a plus sense riboprobe containing the TEV CP sequence. The transcript in the RC line, while detected with a minus sense riboprobe, may have migrated as a slightly larger (ca 1,100-1,200 nt) RNA species, possibly due to termination at an alternately selected site and/or a longer poly-A tail on the transcript. Differing levels of CP transcript accumulation were observed among different transgenic plant lines. Transgenic plant lines expressing the coat protein of TEV were identified by western blot analysis using polyclonal antisera to TEV CP. Tissue samples of regenerated plants were ground in 10 volumes of 2X Laemmli (Tris-glicine) runner buffer (Laemmli 1970) and clarified by centrifugation in a microcentrifuge for 10 min. at 10,000xg. Protein concentration was estimated by the dye binding procedure of Bradford (1976) using BSA as a standard. Protein samples (50 µg total protein) were separated on a 12.5% polyacrylamide gel containing SDS and subjected to the immunoblot transfer procedures described by Towbin et al. (1979). Anti-TEV coat protein polyclonal primary antibodies, alkaline phosphatase conjugated secondary antibodies and the chromogenic substrates NBT (para-nitro blue tetrazolium chloride) and BCIP (5-bromo-4-chloro-3-indoyl phosphate para-toluidine salt) were used to detect bound antigen.

[0065] Coat protein products produced in FL plants were stable and accumulated to different levels in individual transgenic plant lines. It was estimated by western blot analysis that between 0.01% to 0.001% of total extracted protein was TEV CP.

Assessment of Resistance to TEV

[0066] Eight-week-old (circa 15 cm tall) R1 and R2 plants were inoculated with either purified virus preparations or infected plant sap. Inoculum was applied with sterile, premoistened cotton swabs. Infected plant sap inoculum was prepared by grinding TEV-infected *N. tabacum* Burley 21 leaf tissue (2 weeks postinoculation) in carborundum and 50 mM sodium phosphate buffer (pH 7.8) at a ratio of 1gm:02gm:10mls, respectively, and filtering the homogenate through cheesecloth. TEV virons were purified as described by Dougherty and Hiebert (1980b). One leaf per plant was dusted lightly with carborundum (320 grit) and inoculated at two interveinal locations with 50 µl (total) of inoculum. Inoculated plants were examined daily and the appearance and severity of systemic symptoms recorded. Symptoms on any leaf above the inoculated leaf were considered to be systemic.

[0067] Typically, inoculation of Burley 49 plants with TEV (either purified virus or plant sap) resulted in severe chlorosis and mosaic and mottle on systemically infected leaves approximately 6-7 days after inoculation. Severe etching of the

leaf followed within a few days. It was observed that transgenic plants containing only the CaMV promoter and untranslated sequences (i.e., 35S plant line) responded to challenge inoculation in a manner similar to wild type Burley 49, developing extensive chlorosis and etching at the same rate (Fig. 4A). Plant lines which expressed FL TEV CP showed little or no delay in the appearance of symptoms when inoculated with infected plant sap. However, FL transgenic plants did show a slight attenuation of symptoms and eventually (2-4 weeks after initial appearance of symptoms), younger leaf tissue emerged devoid of symptoms and virus as demonstrated by back inoculation experiments. Typically chlorosis and etching on older systemic leaves was limited.

[0068] Ten independently transformed RC lines and seven independently transformed AS lines were obtained. Progeny from three of the RC lines, including line RC #5 and from one of the AS lines, including AS #3, showed an altered response to viral infection relative to control plants. All of these lines were verified to be transformed and were producing expected RNA products. A possible explanation for the variation in observed phenotype is the previously noted "position effect" whereby the expression of genes from identical DNA sequences integrated at different locations within the genome show varying patterns of tissue specificity.

[0069] Ten R2 expressing plants of the FL expressing line were inoculated with infected plant sap, and 20 R1 plants of lines AS #3 and RC #5 were inoculated with 50 µl of a 5 µg/ml solution of purified TEV. Identical results to those obtained by purified TEV inoculation were obtained when AS #3 and RC #5 R1 plants were inoculated with TEV-infected plant sap, as described above.

[0070] Transgenic Burley 49 plant lines AS #3 and RC #5, expressing only TEV CP related RNA sequences, showed a delay in the appearance of symptoms and a modification of symptoms when inoculated with TEV (Fig. 4B). Since the 20 R1 plants were not screened for expression of CP RNA prior to inoculation, some of the symptomatic plants represented non-expressing plants in which the gene of interest had been lost during Mendelian segregation. Modified symptoms on AS #3 plants appeared as small chlorotic lesions often associated with a vein. Most of the leaves were devoid of symptoms and virus (determined by back inoculation experiments). Approximately 15% of RC #5 plants showed symptoms which were identical to those of infected Burley 49. However, the remaining RC #5 plants were entirely asymptomatic, and virus was not detected in back inoculation studies.

[0071] Plants from TEV resistant AS and RC lines showed no increased resistance, relative to untransformed controls, to infection by two other members of the potyvirus family, namely Tobacco Vein Mottling Virus and Potato Virus Y.

[0072] R₂ generation plants derived from TEV-resistant RC plants showed the expected Mendelian pattern of inheritance of the TEV-resistant phenotype.

Analysis of TEV Replication in Protoplasts Derived from Transgenic Plant Lines

[0073] In an attempt to explain the results obtained when AS and RC transgenic plants were challenged with TEV, it was sought to determine if all of the transgenic plant lines would support virus replication at a level comparable to Burley 49. Accumulation of viral encoded proteins was used as an indirect indicator of viral replication. Protoplasts were derived from leaf tissue of homozygous CP expressing plants and electroporated according to the procedure of Luciano et al. (1987) with TEV RNA. Protoplasts were prepared from transgenic plants and electroporated according to the procedure of Luciano et al. (1987). Protoplasts (1 X 10⁶) were resuspended in 450 μl electroporation buffer (330 mM mannitol, 1 mM KPO₄ pH 7.0, 150 mM KCl) and electroporated using a BTX Transfector 300 (BTX San Diego, CA) (950 micro Farads, 130-volt pulse amplitude, 3.5 mm electrode gap) in the presence or absence of 6 µg of purified TEV RNA. After electroporation, protoplasts were incubated for 96 hours in incubation medium as described in Luciano et al. (1987). Protoplasts were extracted in 2X Laemmli (Trisglycine) running buffer, and 5 x 104 extracted protoplasts were then subjected to western blot analysis as described above. Protoplast viability was measured by dye exclusion as described in Luciano et al. (1987). All electroporated protoplast samples had equivalent viability counts. The results indicated that protoplasts from all FL plant lines supported virus replication at levels comparable to wild type Burley 49 protoplasts. R1 transgenic plants from lines AS #3 and RC #5 were initially screened by northern analysis, and leaves from positive expressors were used in the production of protoplasts. Transfected protoplasts derived from AS #3 plants supported TEV replication, albeit at a reduced level. Protoplasts derived from RC #5 transgenic plant leaf tissue did not support TEV replication at a detectable level. These results, and those presented in the whole plant inoculation series, suggested AS and RC plants interfere with TEV replication.

Discussion of Data

10

30

50

[0074] The above example indicates that varying degrees of protection from TEV infection can be achieved by overexpression of coat protein and by expression of an antisense RNA. The current invention which comprises the expression of an untranslatable plus sense RNA molecule provides protection against TEV infection that is more effective
than either of these two methods. Plants of line RC #5, transformed with the disclosed DNA molecule encoding an
untranslatable plus sense RNA derived from the TEV coat protein gene, were asymptomatic and appear to be com-

pletely protected from virus infection. The disclosed invention therefore represents a new and effective way of generating potyvirus resistant germplasm.

[0075] Tobacco protoplasts derived from plants expressing the antisense RNA supported a reduced level of TEV replication compared to control cells derived from untransformed plants. In contrast, tobacco protoplasts derived from plants of line RC #5, expressing the untranslatable plus sense RNA did not support detectable TEV replication. This suggests that the untranslatable plus sense RNA was more effective at blocking TEV replication in the cells of those transformed plants tested.

[0076] It is proposed that the untranslatable plus sense RNA inhibits viral replication by hybridizing to the minus sense RNA replicative template of TEV. The finding that plants expressing untranslatable plus sense RNA derived from the TEV coat protein gene are not protected from infection by Potato Virus Y or Tobacco Vein Mottling Virus is therefore explained by the circa 40-50% amino acid sequence divergence between the coat proteins of these viruses and TEV (Allison et al. 1986; Robaglia et al. 1989; Domier et al. 1986).

[0077] From the above-described findings, it would be reasonable and entirely predictable that if plants were transformed with a gene encoding an untranslatable plus sense RNA derived from a gene which was highly conserved between viruses of the potyvirus family, that these plants would be protected from infection by a wide range of viruses. Regions of the potyvirus genome which are sufficiently conserved between potyvirus types to be potentially useful in such an approach may be readily determined by one skilled in the art. Highly conserved regions may be determined by reference to published sequence data (Allison et al. 1986; Robaglia et al. 1989; Domier et al. 1986; Lain et al. 1989; Maiss et al. 1989). The utility of the identified regions could be readily determined using the methodologies described

above and substituting the defined region for the TEV coat protein gene.

[0078] Regions of the potyvirus genome potentially suitable include, but are not limited to the genes encoding the viral replicase and the viral proteinase. Furthermore, it will be apparent to one skilled in the art that highly conserved portions of a particular gene may also serve in this role.

[0079] It will also be apparent to one skilled in the art that the described invention may also be used to produce plants resistant to viruses outside of the potyvirus family in instances where these viruses also produce a minus sense RNA replicative template.

BIBLIOGRAPHY

10

- 15

- 30 [0080] Allison et al. 1985a. Virology 147:309-316, Allison et al. 1985b. Proc. Natl. Acad. Sci. USA 82:3969-3972.
 - [0081] Allison et al. 1986. Virology 154:9-20.
 - [0082] Bevan 1984. Nucl. Acids Res. 12:8711-8721.
 - [0083] Bradford 1976. Nucl. Acids Res. 12:8711-8721.
 - [0084] Carrington and Dougherty 1987. J. Virol. 61:2540-2548.
- ³⁵ [0085] Carrington et al. 1987. Nucl. Acids Res. 15:10066.
 - [0086] Ditta et al. 1980. Proc. Natl. Acad. Sci. USA 77:7347-7351.
 - [0087] Domier et al. 1986. Nucl. Acids Res. 14:5417-5430.
 - [0088] Dougherty and Hiebert 1980a. Virology 101:466-474.
 - [0089] Dougherty and Hiebert 1980b. Virology 104:183-194.
- 40 [0090] Hanahan and Meselson 1980. Gene 10:63-67.
 - [0091] Herrera-Estrella et al. 1983. Nature (London) 303:209-213.
 - [0092] Hollings and Brunt 1981. Commonwealth Mycological Institute/Association of Applied Biologists Descrip. Plant Viruses, No. 245.
 - [0093] Horsch et al. 1985. Science 227:1229-1231.
- [0094] Kado and Agrawai 1972. Principles and Techniques in Plant Virology.
 - [0095] Kay et al. 1987. Science 236:1299-1302.
 - [0096] Kozak 1984. Nature (London) 308:241-246.
 - [0097] Kurtz and Nicodemus 1981. Gene 13:145-152.
 - [0098] Laemmli 1970. Nature (London) 227:680-685.
- 50 [0099] Lain et al. 1989. Virus Res. 13:157-172.
 - [0100] Lawson et al. 1990. Bio/Technology 8:127-134.
 - [0101] Ling et al. 1991. Bio/Technology 9:752-758.
 - [0102] Luciano et al. 1987. Plant Science 51:295-303.
 - [0103] Maiss et al. 1989. J. Gen. Virol. 70:513-524.
- ⁵⁵ [0104] Melton et al. 1984. Nucl. Acids Res. 12:7145-7156.
 - [0105] Messing 1983. "Methods in Enzymology" (R. Wu, L. Grossman, and K. Moldave, eds.). Vol. 101c, pp. 20-78. Academic Press, New York.
 - [0106] Murashige and Skoog 1962. Plant Physiol. 15:473-497.

10	[0109] Spring H [0110] [0111] [0112] [0113] [0114] [0115] [0116] [0117] [0118]	Rothstein et al. 1987. Gene 53:153-161. Sambrook et al. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratories, Cold Harbor, New York. Sanford and Johnston 1985. J. Theor. Biol. 113:395-405. Sanger et al. 1977. Proc. Natl. Acad. Sci. USA 74:5463-5467. Schmidhauser and Helinski 1985. J. Bact. 164:446-455. Stark and Beachy 1989. Bio/Technology 7:1257-1262. Tabler and Tsagris 1991. Gene 100:175-183. Taylor et al. 1985a. Nucl. Acids Res. 13:8749-8764. Taylor et al. 1985b. Nucl. Acids Res. 13:8765-8785.
		NOT EIGHT
	[0119]	
20		GENERAL INFORMATION:
		(i) APPLICANT: William G. Dougherty and John A. Lindbo
25		(ii) TITLE OF INVENTION: Production of Plants Showing Immunity to Viral Infection via Introduction of Genes Encoding Untranslatable Plus Sense RNA Molecules
		(iii) NUMBER OF SEQUENCES: 4
		(iv) CORRESPONDENCE ADDRESS:
30		(A) ADDRESSEE: Richard J. Polley
		(B) STREET: One World Trade Center 121 S.W. Salmon Street, Suite 1600
35		(C) CITY: Portland
<i></i>		(D) STATE: Oregon
		(E) COUNTRY: United States of America
40		(F) ZIP: 97204
		(v) COMPUTER READABLE FORM:
45		(A) MEDIUM TYPE: Diskette, 5.25 inch
45		(B) COMPUTER: IBM PC Compatible
		(C) OPERATING SYSTEM: MS DOS
50		(D) SOFTWARE: WordPerfect 5.1
		(vi) CURRENT APPLICATION DATA:
E F		(A) APPLICATION NUMBER: 07/838,509
55		(B) FILING DATE: February 19, 1992
		(C) CLASSIFICATION: 435

	(vi) PRIOR APPLICATION DATA: None	
	(vii) ATTORNEY/AGENT INFORMATION	
5	(A) NAME: Richard J. Polley, Esq.	
	(B) REGISTRATION NUMBER: 28,107	
	(C) REFERENCE/DOCKET NUMBER: 245-35829/RJP	
10	(viii) TELECOMMUNICATION INFORMATION:	
	(A) TELEPHONE: (503) 226-7391	
15	(B) TELEFAX: (503) 228-9446	
	(2) INFORMATION FOR SEQ ID NO: 1:	
20	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 9495	
	(B) TYPE: Nucleic Acid	
25	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: (A) DESCRIPTION: cDNA to genomic RNA	
	(iii) HYPOTHETICAL: No	
35	(iv) ANTI-SENSE: No	
33	(v) FRAGMENT TYPE: N/A	
	(vi) ORIGINAL SOURCE:	
40	(A) ORGANISM: Tobacco Etch Virus (TEV)	
	(B) STRAIN: Highly Aphid Transmitted (HAT)	
45	(vii) IMMEDIATE SOURCE: TEV propagated in N. tabacum Burley 49	
40	(viii) POSITION IN GENOME: N/A	
	(ix) FEATURE:	
50	(A) NAME/KEY: Coat protein gene	
	(B) LOCATION: Genomic nucleotides 8518-9306	
55	(C) IDENTIFICATION METHOD:	
J.,	(D) OTHER INFORMATION: SEQ. ID No. 1 is the cDNA corresponding to the Tobacco Etch Virus Genome.	
	(x) PUBLICATION INFORMATION:	

	EP 0 626 998 B1	
	(A) AUTHORS: Allison et al.	
5	(B) TITLE: The nucleotide sequence of the coding region of Tobacco Etch Virus Genomic RN for the Synthesis of a Single Polyprotein	IA: Evidence
3	(C) JOURNAL: Virology	
	(D) VOLUME: 154	•
10	(E) ISSUE:	
•	(F) PAGES: 9-20	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	NAAATAACAA ATCTCAACAC AACATATACA AAACAAAC	60
20	CTACTTCTAT TGCAGCAATT TAAATCATTT CTTTTAAAGC AAAAGCAATT TTCTGAAAAT	120
	TTTCACCATT TACGAACGAT AGCA ATG GCA CTG ATC TTT GGC ACA GTC AAC GCT Met Ala Leu Ile Phe Gly Thr Val Asn Ala 1 5 10	174
25	AAC ATC CTG AAG GAA GTG TTC GGT GGA GCT CGT ATG GCT TGC GTT ACC Asn Ile Leu Lys Glu Val Phe Gly Gly Ala Arg Met Ala Cys Val Thr 15 20 25	222
30		
35		
40 .		

										AGC Ser							270
5										CCA Pro							318
10										ACA Thr							366
										CTT Leu							414
- 15	CAT His									AAT Asn 100							462
20										CGT Arg							510
										GTT Val							558
25										CAA Gln							606
30										TTG Leu							654
										GTG Val 180							702
<i>35</i>	GTG Val	GAG Glu	ATC Ile	ATT Ile 190	AGC Ser	AAG Lys	AAG Lys	AGC Ser	GTC Val 195	CGA Arg	GCG Ala	AGG Arg	GTC Val	AAG Lys 200	AGA Arg	TTT Phe	750
40	GAG Glu	GCC	TCG Ser 205	GTG Val	CAA Gln	TTG Leu	TTC Phe	GCA Ala 210	AGT Ser	GTG Val	CGT Arg	CAC His	ATG Met 215	TAT Tyr	GGC	GAG Glu	798
										AAC Asn							846
. 45										GAG Glu							894
50	Leu	ACT Thr	TTT	GGT Gly	TCA Ser 255	AGT Ser	GGC Gly	CTA Leu	GTT Val	TTG Leu 260	AGG Arg	CAA Gln	GGC	TCG Ser	TAC Tyr 265	GGA Gly	942
	CCT Pro	GCG Ala	CAT His	TGG Trp 270	TAT Tyr	CGA	CAT	GGT Gly	ATG Met 275	TTC Phe	ATT	GTA Val	CGC Arg	GGT Gly 280	CGG Arg	TCG Ser	990
55	GAT Asp	GGG Gly	ATG Met 285	TTG Leu	GTG Val	GAT Asp	GCT Ala	CGT Arg 290	GCG Ala	AAG Lys	GTA Val	ACG Thr	TTC Phe 295	GCT Ala	GTT Val	TGT	1038

	CAC	TCA Ser 300	ATC Met	ACA Thr	CAT His	TAT Tyr	AGC Ser 305	GAC Asp	AAA Lys	TCA Ser	ATC Ile	TCT Ser 310	GAG Glu	GCA Ala	TTC Phe	TTC Phe	1086
5	ATA Ile 315	CCA Pro	TAC Tyr	TCT Ser	AAG Lys	AAA Lys 320	TTC Phe	TTG Leu	GAG Glu	TTG Leu	AGA Arg 325	CCA Pro	GAT Asp	GGA Gly	ATC Ile	TCC Ser 330	1134
10	CAT His	GAG Glu	TGT	ACA Thr	AGA Arg 335	GGA Gly	GTA Val	TCA Ser	GTT Val	GAG Glu 340	CGG	TGC Cys	GGT Gly	GAG Glu	GTG Val 345	GCT Ala	1182
	GCA Ala	ATC Ile	CTG Leu	ACA Thr 350	CAA Gln	GCA Ala	CTT	TCA Ser	CCG Pro 355	TGT Cys	GGT Gly	AAG Lys	ATC Ile	ACA Thr 360	TGC Cys	AAA Lys	1230
15	CGT Arg	TGC Cys	ATG Met 365	GTT Val	GAA Glu	ACA Thr	CCT Pro	GAC Asp 370	ATT Ile	GTT Val	GAG Glu	GGT Gly	GAG Glu 375	TCG Ser	GGA Gly	GAA Glu	1278
20	AGT Ser	GTC Val 380	ACC Thr	AAC Asn	CAA Gln	GGT Gly	AAG Lys 385	CTC Leu	CTA Leu	GCA Ala	ATG Met	CTG Leu 390	AAA Lys	GAA Glu	CAG Gln	TAT Tyr	1326
	CCA Pro 395	GAT Asp	TTC Phe	CCA Pro	ATG Met	GCC Ala 400	GAG Glu	AAA Lys	CTA Leu	CTC	ACA Thr 405	AGG Arg	TTT Phe	TTG Leu	CAA Gln	CAG Gln 410	1374
25	AAA Lys	TCA Ser	CTA Leu	GTA Val	AAT Asn 415	ACA Thr	AAT Asn	TTG Leu	ACA Thr	GCC Ala 420	TGC Cys	GTG Val	AGC Ser	GTC Val	AAA Lys 425	CAA Gln	1422
30	CTC Leu	ATT Ile	GGT Gly	GAC Asp 430	CGC Arg	AAA Lys	CAA Gln	GCT Ala	CCA Pro 435	TTC Phe	ACA Thr	CAC His	GTA Val	CTG Leu 440	GCT Ala	GTC Val	1470
	AGC Ser	GAA Glu	ATT Ile 445	CTG Leu	TTT Phe	AAA Lys	GGC Gly	AAT Asn 450	AAA Lys	CTA Leu	ACA Thr	GGG Gly	GCT Ala 455	GAT Asp	CTC Leu	GAA Glu	1518
35	GAG Glu	GCA Ala 460	AGC Ser	ACA Thr	CAT His	ATG Met	CTT Leu 465	GAA Glu	ATA Ile	GCA Ala	AGG Arg	TTC Phe 470	TTG Leu	AAC Asn	TAA Asn	CGC Arg	1566
40	ACT Thr 475	GAA Glu	AAT Asn	ATG Met	CGC Arg	ATT Ile 480	GGC	CAC His	CTT Leu	GGT Gly	TCT Ser 485	TTC Phe	AGA Arg	AAT Asn	AAA Lys	ATC Ile 490	1614
	TCA Ser	TCG Ser	AAG Lys	GCC Ala	CAT His 495	GTG Val	TAA GBA	AAC Asn	GCA Ala	CTC Leu 500	ATG Met	TGT Cys	GAT Asp	AAT Asn	CAA Gln 505	CTT Leu	1662
45	GAT Asp	CAG Gln	AAT Asn	GGG Gly 510	TAA neA	TTT Phe	ATT Ile	TGG Trp	GGA Gly 515	CTA Leu	AGG Arg	GGT Gly	GCA Ala	CAC His 520	GCA Ala	AAG Lys	1710
50	AGG Arg	TTT Phe	CTT Leu 525	AAA Lys	GGA Gly	TTT Phe	TTC Phe	ACT Thr 530	GAG Glu	ATT	GAC Asp	CCA Pro	AAT Asn 535	GAA Glu	GGA Gly	TAC Tyr	1758
	GAT Asp	AAG Lys 540	TAT Tyr	GTT Val	ATC Ile	AGG Arg	AAA Lys 545	CAT His	ATC Ile	AGG Arg	GGT Gly	AGC Ser 550	AGA Arg	AAG Lys	CTA Leu	GCA Ala	1806
55	ATT Ile 555	ely Gec	AAT Asn	TTG Leu	ATA Ile	ATG Met 560	TCA Ser	ACT Thr	GAC Asp	TTC Phe	CAG Gln 565	ACG Thr	CTC	AGG Arg	CAA Gln	CAA Gln 570	1854

											ATT Ile						1902
5											TGT Cys						1950
10											AAG Lys						1998
•											AAG Lys						2046
15											AAT Aan 645						2094
20											GTC Val						2142
											ATT Ile						2190
25	GCG Ala	TGG Trp	CCA Pro 685	ACA Thr	ATG Met	CAA Gln	GAT Asp	GTT Val 690	GCA Ala	ACT Thr	GCA Ala	TGC Cys	TAC Tyr 695	TTA Leu	CTT Leu	TCC Ser	2238
30	ATT Ile	CTT Leu 700	TAC Tyr	CCA Pro	GAT Asp	GTC Val	CTG Leu 705	AGA Arg	GCT Ala	GAA Glu	CTA Leu	CCC Pro 710	AGA Arg	ATT Ile	TTG Leu	GTT Val	2286
											GAT Asp 725						2334
35	ACG Thr	ACA Thr	GGA Gly	TAC Tyr	CAC His 735	ATG Met	TTG Leu	AAA Lys	ATG Met	AAC Asn 740	ACA Thr	ACA Thr	TCC Ser	CAG Gln	CTA Leu 745	ATT Ile	2382
40	GAA Glu	TTC Phe	GTT Val	CAT His 750	TCA Ser	GGT Gly	TTG Leu	GAA Glu	TCC Ser 755	GAA Glu	ATG Met	AAA Lys	ACT Thr	TAC Tyr 760	AAT Asn	GTT Val	2430
40	GGA Gly	GGG Gly	ATG Met 765	AAC Asn	Arg	GAT Asp	GTG Val	GTC Val 770	ACA Thr	CAA Gln	GGT Gly	GCA Ala	ATT Ile 775	GAG Glu	ATG Met	TTG Leu	2478
45	ATC Ile	AAG Lys 780	TCT Ser	ATA Ile	TAC Tyr	rya Lya	CCA Pro 785	CAT His	CTC Leu	ATG Met	AAG Lys	CAG Gln 790	TTA Leu	CTT Leu	GAG Glu	GAA Glu	2526
	GAG Glu 795	CCA Pro	TAC Tyr	ATA Ile	ATT Ile	GTC Val 800	CTG Leu	GCA Ala	ATA Ile	GTC Val	TCC Ser 805	CCT Pro	TCA Ser	ATT Ile	TTA Leu	ATT Ile 810	2574
50	GCC Ala	ATG Met	TAC Tyr	AAC Asn	TCT Ser 815	GGA Gly	ACT Thr	TTT Phe	GAG Glu	CAG Gln 820	GCG Ala	TTA Leu	CAA Gln	ATG Met	TGG Trp 825	TTG Leu	2622
55	CCA Pro	TAA neA	ACA Thr	ATG Met 830	AGG Arg	TTA Leu	GCT Ala	AAC Asn	CTC Leu 835	GCT Ala	GCC Ala	ATC Ile	TTG Leu	TCA Ser 840	GCC Ala	TTA Leu	2670

	GCG Ala	CAA Gln	AAG Lys 845	TTA Leu	ACT Thr	TTG	GCA Ala	GAT Asp 850	TTG Leu	TTC Phe	GTC Val	CAG Gln	CAG Gln 855	CGT Arg	AAT Asn	TTG Leu	2718
5	ATT Ile	AAT Asn 860	GAG Glu	TAT Tyr	GCG Ala	Gln	GTA Val 865	ATT Ile	TTG Leu	GAC Asp	AAT Asn	CTG Leu 870	Ile	GAC Asp	GGT Gly	GTC Val	2766
10	AGG Arg 875	GTT Val	TAA Asn	CAT His	TCG Ser	CTA Leu 880	TCC Ser	CTA Leu	GCA Ala	ATG Met	GAA Glu 885	ATT Ile	GTT Val	ACT	ATT Ile	AAG Lys 890	2814
	CTG Leu	GCC Ala	ACC Thr	CAA Gln	GAG Glu 895	ATG Met	GAC Asp	ATG Met	GCG Ala	TTG Leu 900	AGG Arg	GAA Glu	GGT Gly	GGC Gly	TAT Tyr 905	GCT Ala	2862
15	GTG Val	ACC Thr	TCT Ser	GAA Glu 910	AAG Lys	GTG Val	CAT His	GAA Glu	ATG Met 915	TTG Leu	GAA Glu	AAA Lys	AAC Aan	TAT Tyr 920	GTA Val	AAG Lys	2910
20	GCT Ala	TTG Leu	AAG Lys 925	GAT Asp	GCA Ala	TGG Trp	GAC Asp	GAA Glu 930	TTA Leu	ACT Thr	TGG Trp	TTG Leu	GAA Glu 935	AAA Lys	TTC Phe	TCC Ser	2958
	GCA Ala	ATC Ile 940	AGG Arg	CAT His	TCA Ser	AGA Arg	AAG Lys 945	CTC Leu	TTG Leu	AAA Lys	TTT Phe	GGG Gly 950	CGA Arg	AAG Lys	CCT Pro	TTA Leu	3006
25	ATC Ile 955	ATG Met	AAA Lys	AAC Aan	ACC Thr	GTA Val 960	GAT Asp	TGC Cys	GGC Gly	GGA Gly	CAT His 965	ATA Ile	GAC Asp	TTG Leu	TCT Ser	GTG Val 970	3054
30	AAA Lys	TCG Ser	CTT	TTC Phe	AAG Lys 975	TTC Phe	CAC His	TTG Leu	GAA Glu	CTC Leu 980	CTG Leu	AAG Lys	GGA Gly	ACC Thr	ATC Ile 985	TCA Ser	3102
	AGA Arg	GCC Ala	GTA Val	AAT Asn 990	GGT Gly	GLY	GCA Ala	AGA Arg	AAG Lys 995	GTA Val	AGA Arg	GTA Val	GCG Ala	AAC Lys 1000	ysu	GCC Ala	3150
35	ATG Met	ACA Thr	AAA Lys 1005	Gly	GTT Val	TTT Phe	CTC	AAA Lys 1010	Ile	TAC Tyr	AGC Ser	ATG Met	CTT Leu 1015	CCT Pro	GAC Asp	GTC Val	3198
40	TAC Tyr	AAG Lys 1020	Phe	ATC Ile	ACA Thr	GTC Val	TCG Ser 1025	Ser	GTC Val	CTT Leu	TCC Ser	TTG Leu 1030	Leu	TTG Leu	ACA Thr	TTC Phe	3246
	TTA Leu 1035	Phe	CAA Gln	ATT Ile	Asp	TGC Cys 1040	Met	ATA Ile	AGG Arg	GCA Ala	CAC His 1045	Arg	GAG Glu	GCG Ala	AAG Lys	GTT Val 1050	3294
45	GCT Ala	GCA Ala	CAG Gln	Leu	CAG Gln 1055	Lys	GAG Glu	AGC Ser	GAG Glu	TGG Trp 1060	Asp	AAT Asn	ATC Ile	ATC Ile	AAT Asn 1065	Arg	3342
	ACT Thr	TTC Phe	CAG Gln	TAT Tyr 1070	Ser	AAG Lys	CTT Leu	Glu	AAT Asn 1075	Pro	ATT Ile	GGC	TAT Tyr	CGC Arg 1080	Ser	ACA Thr	3390
50 . :	GCG Ala	GIU	GAA Glu 1085	Arg	CTC Leu	CAA Gln	Ser	GAA Glu 1090	His	CCC Pro	GAG Glu	GCT Ala	TTC Phe 1095	GAG Glu	TAC Tyr	TAC Tyr	3438
55	rys	TTT Phe 1100	Cys	ATT Ile	GGA Gly	Lys	GAA Glu 1105	Asp	CTC Leu	GTT Val	GAA Glu	CAG Gln 1110	Ala	AAA Lys	CAA Gln	CCG Pro	3486

	GAG Glu 1115	Ile	GCA Ala	TAC Tyr	TTT Phe	GAA Glu 1120	Lys	ATT Ile	ATA Ile	GCT Ala	TTC Phe 1125	Ile	ACA Thr	CTT Leu	GTA Val	TTA Leu 1130	3534
5	ATG Met	GCT Ala	TTT Phe	GAC Asp	GCT Ala 1135	Glu	CGG Arg	AGT Ser	GAT Asp	GGA Gly 1140	Val	TTC Phe	AAG Lys	ATA Ile	CTC Leu 1145	ABn	3582
10	AAG Lys	TTC Phe	AAA Lys	GGA Gly 1150	Ile	CTG Leu	AGC Ser	TCA Ser	ACG Thr 1159	Glu	AGG Arg	GAG Glu	ATC Ile	ATC Ile 1160		ACG Thr	3630
	CAG Gln	AGT Ser	TTG Leu 1165	Asp	GAT Asp	TAC Tyr	GTT Val	ACA Thr 1170	Thr	TTT Phe	GAT Asp	GAC Asp	AAT Aen 1175	Met	ACA Thr	ATC Ile	3678
15	AAC Asn	CTC Leu 1180	Glu	TTG Leu	TAA ABD	ATG Met	GAT Asp 1185	Glu	CTC Leu	CAC His	AAG Lys	ACG Thr 1190	Ser	CTT Leu	CCT Pro	GGA Gly	3726
20	GTC Val 1195	Thr	TTT Phe	AAG Lys	CAA Gln	TGG Trp 1200	Trp	AAC Aan	AAC Asn	CAA Gln	ATC Ile 1205	Ser	CGA Arg	GGC Gly	AAC Asn	GTG Val 1210	3774
	AAG Lys	CCA Pro	CAT His	TAT Tyr	AGA Arg 1215	Thr	GAG Glu	GGG Gly	CAC His	TTC Phe 1220	Met	GAG Glu	TTT Phe	ACC Thr	AGA Arg 1225	Asp	3822
25	ACT Thr	GCG Ala	GCA Ala	TCG Ser 1230	Val	GCC Ala	AGC Ser	GAG Glu	ATA Ile 1235	Ser	CAC His	TCA Ser	CCC Pro	GCA Ala 1240	Arg	GAT Asp	3870
30	TTT Phe	CTT Leu	GTG Val 1245	Arg	GGT	GCT Ala	GTT Val	GGA Gly 1250	Ser	GGA Gly	AAA Lys	TCC Ser	ACA Thr 1255	Gly	CTT Leu	CCA Pro	3918
30	TAC Tyr	CAT His 1260	Leu	TCA Ser	AAG Lys	AGA Arg	GGG Gly 1265	Arg	GTG Val	TTA Leu	ATG Met	CTT Leu 1270	Glu	CCT Pro	ACC Thr	AGA Arg	3966
<i>35</i>	CCA Pro 1275	Leu	ACA Thr	Asp	AAC Asn	ATG Met 1280	His	AAG Lys	CAA Gln	CTG Leu	AGA Arg 1285	Ser	GAA Glu	CCA Pro	TTT Phe	AAC Asn 1290	4014
	TGC Cys	TTC Phe	CCA Pro	ACT Thr	TTG Leu 1295	Arg	ATG Met	AGA Arg	GGG Gly	AAG Lys 1300	Ser	ACT Thr	TTT Phe	GGG GGG	TCA Ser 1305	Ser	4062
40	CCG Pro	ATC Ile	ACA Thr	GTC Val 1310	Met	ACT Thr	AGT Ser	GGA Gly	TTC Phe 1315	Ala	TTA Leu	CAC His	CAC His	TTT Phe 1320	Ala	CGA Arg	4110
45	AAC Aan	ATA Ile	GCT Ala 1325	Glu	GTA Val	AAA Lys	Thr	TAC Tyr 1330	Aap	TTT Phe	GTC Val	ATA Ile	ATT Ile 1335	Asp	GAA Glu	TGT Cys	4158
	CAT His	GTG Val 1340	Asn	GAT Asp	ĢCT Ala	TCT Ser	GCT Ala 1345	Ile	GCG Ala	TTT Phe	Arg	AAT Asn 1350	Leu	CTG Leu	TTT Phe	GAA Glu	4206
	CAT His 1355	GIU	TTT Phe	GAA Glu	Gly	AAA Lys 1360	Val	CTC Leu	AAA Lys	GTG Val	TCA Ser 1365	Ala	ACA Thr	CCA Pro	CCA Pro	GGT Gly 1370	4254
<i>55</i>	AGA Arg	GAA Glu	GTT Val	Glu	TTT Phe 1375	Thr	ACT Thr	CAG Gln	TTT Phe	CCC Pro 1380	Val	AAA Lys	CTC Leu	AAG Lys	ATA Ile 1385	Glu	4302

			Phe Gl			Ser Leu	CAA GGG Gln Gly			4350
5				сув С			CTA GTA Leu Val 1415	Tyr Val		4398
10		Asn Asp					CTT GTG Leu Val 1430			4446
				Asp G			AAG AGT Lys Ser			4494
15					er Val		CAT TTC His Phe		Ala	4542
20			Glu Ası			Ile Asp	ATT GAT Ile Asp			4590
				l Val P			GTG GAC Val Asp 1495	Asn Arg		4638
25	GTG CAG Val Gln 150	Tyr Ası	AAA AC Lys Th	GTG G Val V 1505	TG AGT	TAT GGG Tyr Gly	GAG CGC Glu Arg 1510	ATC CAA Ile Gln	AAA Lys	4686
30				His L			GCA CTT Ala Leu			4734
					lu Ile		ATG GTT Met Val		Glu	4782
35	GCT GCC Ala Ala	TTT CTP Phe Lev 155	Cys Ph	ATG T	AC AAT yr Asn 1555	Leu Pro	GTG ACA Val Thr	ACA CAG Thr Gln .1560	AGT Ser	4830
40				ı Glu A			TTA CAA Leu Gln 157	Ala Arg		4878
	ATG GCA Met Ala 158	Gln Phe	GAG CT.	A TCA T Ser T 1585	AT TTT Tyr Phe	TAC ACA Tyr Thr	ATT AAT Ile Asn 1590	TTT GTG Phe Val	CGA Arg	4926
45	TTT GAT Phe Asp 1595	GGT AGT Gly Ser	ATG CA Het Hi 16	Pro V	TC ATA	CAT GAC His Asp 160	AAG CTG Lys Leu	AAG CGC Lys Arg	TTT Phe 1610	4974
					he Leu		TTG GCG Leu Ala		Asn	5022
	AAA GGC Lys Gly	TTA TCC Leu Ser 163	Ser Tr	CTT A	ACG AGT Thr Ser 1635	Gly Glu	TAT AAG Tyr Lys	CGA CTT Arg Leu 1640	GGT Gly	5070
55	TAC ATA	GCA GAG Ala Glu 1645	GAT GC Asp Al	a Gly I	TA AGA lle Arg 1650	ATC CCA Ile Pro	TTC GTG Phe Val 165	Cys Lys	GAA Glu	5118

			GAC Asp					Glu					Val				5166
5		Gly	GAC Asp				Gly					Val					5214
10			TAT			Gln					Ser					Leu	5262
	GCA Ala	TGC Cys	ATC Ile	AAT Asn 1710	Arg	CGC Arg	ATA Ile	GCA Ala	GAT Asp 1715	Glu	CAA Gln	ATG Met	AAG Lys	CAG Gln 1720	Ser	CAT His	5310
15	TTT Phe	GAA Glu	GCC Ala 1725	Ala	ACT Thr	GGG Gly	AGA Arg	GCA Ala 1730	Phe	TCC Ser	TTC Phe	ACA Thr	AAT Asn 1735	Tyr	TCA Ser	ATA Ile	5358
20	CAA Gln	AGC Ser 1740	ATA Ile)	TTT Phe	GAC Asp	ACG Thr	CTG Leu 1745	Lys	GCA Ala	AAT Asn	TAT Tyr	GCT Ala 1750	Thr	AAG Lys	CAT His	ACG Thr	5406
	AAA Lys 1755	Glu	AAT Asn	ATT Ile	GCA Ala	GTG Val 1760	Leu	CAG Gln	CAG Gln	GCA Ala	AAA Lys 1765	Asp	CAA Gln	TTG Leu	CTA Leu	GAG Glu 1770	5 454
25	TTT Phe	TCG Ser	AAC Asn	CTA Leu	GCA Ala 1775	Lys	GAT Asp	CAA Gln	GAT Asp	GTC Val 1780	Thr	GGT Gly	ATC Ile	ATC Ile	CAA Gln 1785	Asp	5502
30	TTC Phe	AAT Asn	CAC His	CTG Leu 1790	Glu	ACT Thr	ATC Ile	TAT Tyr	CTC Leu 1795	Gln	TCA Ser	GAT Asp	AGC Ser	GAA Glu 1800	Val	GCT Ala	5550
	AAG Lys	CAT His	CTG Leu 1805	Lys	CTT Leu	AAA Lys	AGT Ser	CAC His 1810	Trp	TAA neA	AAA Lys	AGC Ser	CAA Gln 1815	Ile	ACT Thr	AGG Arg	5598
35	GAC Asp	ATC Ile 1820	ATA Ile	ATA Ile	GCT Ala	TTG Leu	TCT Ser 1825	Val	TTA Leu	ATT Ile	GGT Gly	GGT Gly 1830	Gly	TGG Trp	ATG Met	CTT Leu	5646
40	GCA Ala 1835	Thr	TAC Tyr	TTC Phe	AAG Lys	GAC Asp 1840	Lys	TTC Phe	AAT Asn	GAA Glu	CCA Pro 1845	Val	TAT Tyr	TTC Phe	CAA Gln	GGG Gly 1850	5694
	AAG Lys	AAG Lys	AAT Asn	CAG Gln	AAG Lys 1859	His	AAG Lys	CTT Leu	AAG Lys	ATC Met 1860	Arg	GAG Glu	GCG Ala	CGT Arg	GGG Gly 1865	Ala	5742
45	AGA Arg	GGG Gly	CAA Gln	TAT Tyr 1870	Glu	GTT Val	GCA Ala	GCG Ala	GAG Glu 1875	Pro	GAG Glu	GCG Ala	CTA Leu	GAA Glu 1880	His	TAC Tyr	5790
50	TTT Phe	GGA Gly	AGC Ser 1885	Ala	TAT Tyr	AAT Asn	AAC Asn	AAA Lys 1890	Gly	AAG Lys	CGC Arg	AAG Lys	GGC Gly 1895	Thr	ACG Thr	AGA Arg	5838
	GGA Gly	ATG Met 1900	GGT Gly	GCA Ala	AAG Lys	TCT Ser	CGG Arg 1905	Lys	TTC Phe	ATA Ile	AAC Asn	ATG Met 1910	Tyr	GJ Y GGG	TTT Phe	GAT Asp	5886
55	CCA Pro 1915	Thr	GAT Asp	TTT Phe	TCA Ser	TAC Tyr 1920	Ile	AGG Arg	TTT Phe	GTG Val	GAT Asp 1925	Pro	TTG Leu	ACA Thr	GGT Gly	CAC His 1930	5934

						Thr					Asp		GTG Val			Glu	5982
5	TTT Phe	GGA Gly	AAG Lys	GTT Val 1950	Arg	ACA Thr	CGC Arg	ATG Met	TTA Leu 1955	Ile	GAC Asp	GAT Asp	GAG Glu	ATA Ile 1960	Glu	CCT Pro	6030
10				Ser					Ile				TTG Leu 1975	Val			6078
	GLY	ACG Thr 1980	Lys	AAA Lys	GTT Val	CTT Leu	AAG Lys 1985	Val	GAT Asp	TTA Leu	ACA Thr	CCA Pro 1990		TCG Ser	TCG Ser	CTA Leu :	6126
15	CGT Arg 1995	Ala	AGT Ser	GAG Glu	AAA Lys	TCA Ser 2000	Thr	GCA Ala	ATA Ile	ATG Met	GGA Gly 2005	Phe	CCT Pro	GAA Glu	AGG Arg	GAG Glu 2010	6174
20	AAT Asn					Thr					Pro		GCT Ala			Gln	6222
	TTG Leu	CCA Pro	CCA Pro	AAG Lys 2030	Asn	GAG Glu	GAC Asp	TTG Leu	ACG Thr 2035	Phe	GAA Glu	GGA Gly		AGC Ser 2040	Leu	TTT Phe	6270
25	AAG Lys	GGA Gly	CCA Pro 2045	Arg	GAT Asp	TAC Tyr	AAC Asn	CCG Pro 2050	Ile	TCG Ser	AGC Ser	ACC Thr	ATT Ile 2055	Cys	CAT Hib	TTG Leu	6318
30	ACG Thr	AAT Asn 2060	Glu	TCT Ser	GAT Asp	GGG Gly	CAC His 2065	Thr	ACA Thr	TCG Ser	TTG Leu	TAT Tyr 2070	GGT Gly	ATT Ile	GGA Gly	TTT Phe	6366
	GGT Gly 2075	Pro	TTC Phe	ATC Ile	ATT Ile	ACA Thr 2080	Asn	AAG Lys	CAC His	TTG Leu	TTT Phe 2085	Arg	AGA Arg	TAA Asn	TAA Asn	GGA Gly 2090	6414
35	ACA Thr	CTG Leu	TTC Leu	GTC Val	CAA Gln 2095	Ser	CTA Leu	CAT His	GGT Gly	GTA Val 2100	Phe	AAG Lys	GTC Val	AAG Lys	AAC Asn 210	Thr	6462
40	ACG Thr	ACT Thr	TTG Leu	CAA Gln 2110	Gln	CAC	CTC Leu	ATT Ile	GAT Asp 2115	Gly	AGG Arg	GAC Asp	ATG Met	ATA Ile 2120	Ile	ATT Ile	6510
	CGC	ATG Met	CCT Pro 2125	Lys	GAT Asp	TTC Phe	CCA Pro	CCA Pro 2130	Phe	CCT Pro	CAA Gln	AAG Lys	CTG Leu 2135	Lys	TTT Phe	AGA Arg	6558
45	GAG Glu	CCA Pro 2140	Gln	AGG Arg	GAA Glu	GAG Glu	CGC Arg 2145	Ile	TGT Cys	CTT Leu	GTG Val	ACA Thr 2150	ACC Thr	AAC Asn	TTC Phe	CAA Gln	6606
50	ACT Thr 2155	Lys	AGC Ser	ATG Met	TCT Ser	AGC Ser 2160	Met	GTG Val	TCA Ser	GAC Asp	ACT Thr 2165	Ser	TGC Cys	ACA Thr	TTC Phe	CCT Pro 2170	6654
•	TCA Ser	TCT Ser	GAT Asp	GGC Gly	ATA Ile 2175	Phe	TGG Trp	AAG Lys	CAT His	TGG Trp 2180	Ile	CAA Gln	ACC Thr	AAG Lys	GAT Asp 218	Gly	6702
55	CAG Gln	TGT Cys	GGC Gly	AGT Ser 2190	Pro	TTA Leu	GTA Val	TCA Ser	ACT Thr 2195	Arg	GAT Asp	GGG Gly	TTC Phe	ATT Ile 2200	Val	GGT Gly	6750

	ATA CAC TCA Ile His Ser 220	Ala Ser Asn	TTC ACC AA Phe Thr As 2210	AC ACA AAC AAT an Thr Asn Asn	TAT TTC ACA Tyr Phe Thr 2215	AGC 6798 Ser
5	GTG CCG AAA Val Pro Lys 2220	Asn Phe Met	GAA TTG TT Glu Leu Le 2225	G ACA AAT CAG u Thr Asn Gln 223	Glu Ala Gln	CAG 6846 Gln
10			Leu Asn Al	T GAC TCA GTA a Asp Ser Val 2245		
				A GAG CCT TTT u Glu Pro Phe 2260		Lys
- 15			Asn Glu Le	G GTG TAC TCG u Val Tyr Ser 175		
20		Val Val Glu		A GGG AAC TTG er Gly Asn Leu		
	GAG TGT CCC Glu Cys Pro 2300	AGT CAG TTA Ser Gln Leu	GTC ACA AA Val Thr Ly 2305	AG CAT GTG GTT 'S His Val Val 231	Lys Gly Lys	TGT 7086 Cys
25	CCC CTC TTT Pro Leu Phe 2315	GAG CTC TAC Glu Leu Tyr 232	Leu Gln Le	G AAT CCA GAA su Asn Pro Glu 2325	AAG GAA GCA Lys Glu Ala	TAT 7134 Tyr 2330
30	TTT AAA CCG Phe Lys Pro	ATG ATG GGA Met Met Gly 2335	GCA TAT AR Ala Tyr Ly	AG CCA AGT CGA 's Pro Ser Arg 2340	CTT AAT AGA Leu Asn Arg 234	Glu
	GCG TTC CTC Ala Phe Leu	AAG GAC ATT Lys Asp Ile 2350	Leu Lys Ty	AT GCT AGT GAA Yr Ala Ser Glu 155	ATT GAG ATT Ile Glu Ile 2350	GGG 7230 Gly
35	AAT GTG GAT Asn Val Asp 236	Cys Asp Leu	CTG GAG CT Leu Glu Le 2370	T GCA ATA AGO Eu Ala Ile Ser	ATG CTC GTC Met Leu Val 2375	ACA 7278 Thr
40	AAG CTC AAG Lys Leu Lys 2380	GCG TTA GGA Ala Leu Gly	TTC CCA AC Phe Pro Th 2385	T GTG AAC TAC T Val ABN Tyr 239	: Ile Thr Asp	CCA 7326 Pro
40	GAG GAA ATT Glu Glu Ile 2395	TTT AGT GCA Phe Ser Ala 240	Leu Asn Me	G AAA GCA GCT et Lys Ala Ala 2405	ATG GGA GCA Met Gly Ala	CTA 7374 Leu 2410
45	TAC AAA GGC Tyr Lys Gly	AAG AAG AAA Lys Lys Lys 2415	GAA GCT CT Glu Ala Le	C AGC GAG CTC Lu Ser Glu Leu 2420	ACA CTA GAT Thr Leu Asp 242	Glu
	CAG GAG GCA Gln Glu Ala	ATG CTC AAA Met Leu Lys 2430	Ala Ser Cy	CC CTG CGA CTG S Leu Arg Leu 135	TAT ACG GGA Tyr Thr Gly 2440	AAG 7470 Lys
<i>50</i>	TTG GGA ATT Leu Gly Ile 244	Trp Asn Gly	TCA TTG AA Ser Leu Ly 2450	AA GCA GAG TTG 'S Ala Glu Leu	CGT CCA ATT Arg Pro Ile 2455	GAG 7518 Glu
55	AAG GTT GAA Lys Val Glu 2460	AAC AAC AAA Asn Asn Lys	ACG CGA ACT Thr Arg Th	OT TTC ACA GCA ar Phe Thr Ala 247	Ala Pro Ile	GAC 7566 Asp

	ACT CTT CTT GCT GGT ALTHOUGH Leu Leu Ala Gly L	AA GTT TGC GTG GAT ys Val Cys Val Asp 480	GAT TTC AAC AAT C Asp Phe Asn Asn G 2485	CAA TTT 7614 Sin Phe 2490
5	TAT GAT CTC AAC ATA A Tyr Asp Leu Asn Ile L 2495	ys Ala Pro Trp Thr	Val Gly Met Thr L	AG TTT 7662 Lys Phe 1505
10	TAT CAG GGG TGG AAT G Tyr Gln Gly Trp Asn G 2510	AA TTG ATG GAG GCT lu Leu Met Glu Ala 2515	TTA CCA AGT GGG T Leu Pro Ser Gly T 2520	GG GTG 7710 Crp Val
	TAT TGT GAC GCT GAT GG Tyr Cys Asp Ala Asp G: 2525	GT TCG CAA TTC GAC ly Ser Gln Phe Asp 2530	AGT TCC TTG ACT C Ser Ser Leu Thr P 2535	CCA TTC 7758 Pro Phe
- 15	CTC ATT AAT GCT GTA TO Leu Ile Asn Ala Val Le 2540	TG AAA GTG CGA CTT eu Lys Val Arg Leu 2545	GCC TTC ATG GAG G Ala Phe Met Glu G 2550	AA TGG 7806 Lu Trp
20	GAT ATT GGT GAG CAA AT Asp Ile Gly Glu Gln Me 2555	TG CTG CGA AAT TTG et Leu Arg Asn Leu 560	TAC ACT GAG ATA G Tyr Thr Glu Ile V 2565	TG TAT 7854 'al Tyr 2570
	ACA CCA ATC CTC ACA CC Thr Pro Ile Leu Thr Pr 2575	CG GAT GGT ACT ATC TO Asp Gly Thr Ile 2580	Ile Lys Lys His L	AA GGC 7902 ys Gly 585
25	AAC AAT AGC GGG CAA CC ABN ABN Ser Gly Gln Pr 2590	CT TCA ACA GTG GTG TO Ser Thr Val Val 2595	GAC AAC ACA CTC A Asp Asm Thr Leu M 2600	TG GTC 7950 et Val
30	ATT ATT GCA ATG TTA TA Ile Ile Ala Met Leu Ty 2605	AC ACA TGT GAG AAG yr Thr Cys Glu Lys 2610	TGT GGA ATC AAC A Cys Gly Ile Asn L 2615	AG GAA 7998 ys Glu
	GAG ATT GTG TAT TAC GT Glu Ile Val Tyr Tyr Va 2520	CC AAT GGC GAT GAC al Asn Gly Asp Asp 2625	CTA TTG ATT GCC A Leu Leu Ile Ala I 2630	TT CAC 8046 le His
35	CCA GAT AAA GCT GAG AG Pro Asp Lys Ala Glu Ar 2635 26	g Leu Ser Arg Phe	AAA GAA TCT TTC G Lys Glu Ser Phe G 2645	GA GAG 8094 ly Glu 2650
40	TTG GGC CTG AAA TAT GA Leu Gly Leu Lys Tyr Gl 2655	AA TTT GAC TGT ACC Lu Phe Asp Cys Thr 2660	Thr Arg Asp Lys T	CA CAG 8142 hr Gln 665
	TTG TGG TTC ATG TCA CA Leu Trp Phe Met Ser Hi 2670	AC AGG GCT TTG GAG is Arg Ala Leu Glu 2675	AGG GAT GGC ATG T Arg Asp Gly Met T 2680	AT ATA 8190 yr Ile
45	CCA AAG CTA GAA GAA GA Pro Lys Leu Glu Glu Gl 2685	AA AGG ATT GTT TCT .u Arg Ile Val Ser 2690	ATT TTG GAA TGG G Ile Leu Glu Trp A 2695	AC AGA 8238 8p Arg
50	TCC AAA GAG CCG TCA CA Ser Lys Glu Pro Ser Hi 2700	AT AGG CTT GAA GCC .s Arg Leu Glu Ala 2705	ATC TGT GCA TCA A Ile Cys Ala Ser M 2710	TG ATT 8286 et Ile
	GAA GCA TGG GGT TAT GA Glu Ala Trp Gly Tyr As 2715 27	p Lys Leu Val Glu	GAA ATC CGC AAT T Glu Ile Arg Asn P 2725	TC TAT 8334 he Tyr 2730
55	GCA TGG GTT TTG GAA CA Ala Trp Val Leu Glu Gl 2735	LA GCG CCG TAT TCA .n Ala Pro Tyr Ser 2740	Gln Leu Ala Glu G	AA GGA 8382 lu Gly 745

	AAG GCG Lys Ala	Pro T						Leu					Thr		8430
5	CAG CAC	GGA AG Gly TI 2765	CA AAC or Asn	TCT Ser	GAG Glu	ATA Ile 2770	Glu	GAG Glu	TAT Tyr	TTA Leu	AAA Lys 2775	Val	TTG Leu	TAT Tyr	8478
10	GAT TAC Asp Tyr 278	Asp I		Thr		Glu					Gln				8526
	GTG GAT Val Asp 2795				Ala					двр					8574
15	AAA GTC			Ala					Asp					Thr	8622
20	TCA GGA Ser Gly	Thr P						Asn					Lys		8670
	CAA TAT Gln Tyr						Val					Asn			8718
25	TTA GGA Leu Gly 286	Tyr L				Ile					Ala				8766
30	CAT GAG His Glu 2875	CAG T	TT GCC ne Ala	GCG Ala 2880	Trp	CAT His	CAG Gln	GCA Ala	GTG Val 288	Met	ACA Thr	GCC Ala	TAT Tyr	GGA Gly 2890	8814
	GTG AAT Val Asn			Met					Asn					Trp	8862
35	TGC ATA	Glu A	AT GGG an Gly 910	ACT Thr	TCC Ser	CCA Pro	AAT Asn 291	Leu	AAC Asn	GGA Gly	ACT Thr	TGG Trp 2920	Val	ATG Met	8910
40	ATG GAT Met Asp	GGT G Gly G 2925	AG GAT Lu Asp	CAA Gln	GTT Val	TCA Ser 2930	Tyr	CCG Pro	CTG Leu	AAA Lys	CCA Pro 2935	Met	GTT Val	GAA Glu	8958
	AAC GCG Asn Ala 294	Gln P	CA ACA	CTG Leu	AGG Arg 294	Gln	ATT Ile	ATG Met	ACA Thr	CAC His 2950	Phe	AGT Ser	GAC Asp	CTG Leu	9006
45	GCT GAA Ala Glu 2955	GCG TA	r Ile	GAG Glu 2960	Met	AGG Arg	AAT Asn	AGG Arg	GAG Glu 296	Arg	CCA Pro	TAC Tyr	ATG Met	CCT Pro 2970	9054
50	AGG TAT Arg Tyr	GGT C	TA CAG su Gln 297	Arg	AAC Asn	ATT Ile	ACA Thr	GAC Asp 2980	Met	AGT Ser	TTG Leu	TCA Ser	CGC Arg 298	Tyr	9102
	GCG TTC Ala Phe	Asp P	C TAT ne Tyr 990	GAG Glu	CTA Leu	ACT Thr	TCA Ser 299	Lys	ACA Thr	CCT Pro	GTT Val	AGA Arg 3000	Ala	AGG Arg	9150
55	GAG GCG Glu Ala	CAT AS His Me 3005	rg CAA et Gln	ATG Met	AAA Lys	GCT Ala 3010	Ala	GCA Ala	GTA Val	CGA Arg	AAC Asn 301	Ser	GGA Gly	ACT Thr	9198

5	Arg Leu Phe Gly Leu Asp Gly Asn Val Gly Thr Ala Glu Glu Asp Thr 3020 3025 3030	9246
	GAA CGG CAC ACA GCG CAC GAT GTG AAC CGT AAC ATG CAC ACA CTA TTA Glu Arg His Thr Ala His Asp Val Asn Arg Asn Met His Thr Leu Leu 3035 3040 3045 3050	9294
10	GGG GTC CGC CAG TGA TAGTTTCTGC GTGTCTTTGC TTTCCGCTTT TAAGCTTATT Gly Val Arg Gln	9349
	GTAATATATA TGAATAGCTA TTCACAGTGG GACTTGGTCT TGTGTTGAAT AGTATCTTAT	9409
	ATATTTAAT ATGTCTTATT AGTCTCATTA CTTAGGCGAA CGACAAAGTG AGGTCACCTC	9469
15	GGTCTAATTC TCCTATGTAG TGCGAG	9495
	(3) INFORMATION FOR SEQ ID NO: 2:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 792	
25	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Circular	
30	(ii) MOLECULE TYPE: cDNA to genomic RNA	
	(iii) HYPOTHETICAL: No	
35	(iv) ANTI-SENSE: No	•
	(v) FRAGMENT TYPE: N/A	
	(vi) ORIGINAL SOURCE:	
40	(A) ORGANISM: Tobacco Etch Virus	
	(B) STRAIN: Highly Aphid Transmitted	
4 5	(C) INDIVIDUAL ISOLATE: N/A	
	(vii) IMMEDIATE SOURCE:	
	(A) LIBRARY: No	
	(B) CLONE: pTC:FL	
	(viii) POSITION IN GENOME: N/A	
55	(ix) FEATURE:	
	(A) NAME/KEY: Mutations (AGT-ATG) introduced into nucleotides corresponding to genomi 8518-8520 of SEQ ID No. 1, to create initiating methionine codon.	c nucleotides

	(B) LOCATION: Nucleotides 1-3 of SEQ ID No. 2
	(C) IDENTIFICATION METHOD:
5	(D) OTHER INFORMATION: SEQ ID NO: 2 is the modified Tobacco Etch Virus coat protein gene presen in pTC:FL.
	(x) PUBLICATION INFORMATION:
10	(A) AUTHORS: Allison et al.
	(B) TITLE: The nucleotide sequence of the coding region of Tobacco Etch Virus Genomic RNA: Evidence for the Synthesis of a Single Polyprotein
15	(C) JOURNAL: Virology
	(D) VOLUME: 154
20	(E) ISSUE:
20	(F) PAGES: 9-20
	(A) AUTHORS: Lindbo and Dougherty
25	(B) TITLE: Untranslatable Transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in Transgenic Plants and Protoplasts
	(C) JOURNAL: Virology
30	(D) VOLUME: 189
	(E) ISSUE:
	(F) PAGES: 725-733
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
40	

		•													GGC Gly	ACT Thr	9
5	GTG Val	GAT Asp 5	GCT Ala	GGT Gly	GCT Ala	GAC Asp	GCT Ala 10	GGT Gly	AAG Lys	AAG Lys	AAA Lys	GAT Asp 15	CAA Gln	AAG Lys	GAT Asp	GAT Asp	57
10	AAA Lys 20	GTC Val	GCT Ala	GAG Glu	CAG Gln	GCT Ala 25	TCA Ser	AAG Lys	GAT Asp	AGG Arg	GAT Asp 30	GTT Val	AAT Asn	GCT Ala	GGA Gly	ACT Thr 35	105
•	TCA Ser	GGA Gly	ACA Thr	TTC Phe	TCA Ser 40	GTT Val	CCA Pro	CGA Arg	ATA Ile	AAT Asn 45	GCT Ala	ATG Met	GCC Ala	ACA Thr	AAA Lys 50	CTT Leu	153
15	CAA Gln	TAT Tyr	CCA Pro	AGG Arg 55	ATG Met	AGG Arg	GGA Gly	GAG Glu	GTG Val 60	GTT Val	GTA Val	AAC Asn	TTG Leu	AAT Asn 65	CAC His	CTT Leu	201
20	TTA Leu	GGA Gly	TAC Tyr 70	AAG Lys	CCA Pro	CAG Gln	CAA Gln	ATT Ile 75	GAT Asp	TTG Leu	TCA Ser	AAT Asn	GCT Ala 80	CGA Arg	GCC Ala	ACA Thr	249
	CAT His	GAG Glu 85	CAG Gln	TTT Phe	GCC Ala	GCG Ala	TGG Trp 90	CAT His	CAG Gln	GCA Ala	GTG Val	ATG Met 95	ACA Thr	GCC Ala	TAT Tyr	GGA Gly	297
25	GTG Val 100	TAA neA	GAA Glu	GAG Glu	CAA Gln	ATG Met 105	AAA Lys	ATA Ile	TTG Leu	CTA Leu	AAT Asn 110	GGA Gly	TTT Phe	ATG Met	GTG Val	TGG Trp 115	345
30	TGC Cys	ATA Ile	GAA Glu	AAT Asn	GGG Gly 120	ACT Thr	TCC Ser	CCA Pro	AAT Asn	TTG Leu 125	AAC Asn	GGA Gly	ACT Thr	TGG Trp	GTT Val 130	ATG Met	393

	ATG Met	GAT Asp	GGT	GAG Glu 135	GAT Asp	CAA Gln	GTT Val	TCA Ser	TAC Tyr 140	CCG Pro	CTG Leu	AAA Lys	CCA Pro	ATG Met 145	GTT Val	GAA Glu	4	41
5	AAC Asn	GCG Ala	CAG Gln 150	CCA Pro	ACA Thr	CTG Leu	AGG Arg	CAA Gln 155	ATT Ile	ATG Met	ACA Thr	CAC His	TTC Phe 160	AGT Ser	GAC Asp	CTG Leu	4	89
10	GCT Ala	GAA Glu 165	GCG Ala	TAT Tyr	ATT Ile	GAG Glu	ATG Met 170	AGG Arg	TAA neA	AGG Arg	GAG Glu	CGA Arg 175	CCA Pro	TAC Tyr	ATG Met	CCT Pro	5	37
	AGG Arg 180	Tyr	GGT Gly	CTA	CAG Gln	AGA Arg 185	AAC Asn	ATT Ile	ACA Thr	GAC Asp	ATG Met 190	AGT Ser	TTG Leu	TCA Ser	CGC Arg	TAT Tyr 195	5	85
15	GCG Ala	TTC Phe	GAC Asp	TTC Phe	TAT Tyr 200	GAG Glu	CTA Leu	ACT Thr	TCA Ser	AAA Lys 205	ACA Thr	CCT Pro	GTT Val	AGA Arg	GCG Ala 210	AGG Arg	6	33
20	GAG Glu	GCG Ala	CAT His	ATG Met 215	CAA Gln	ATG Met	AAA Lys	GCT Ala	GCT Ala 220	GCA Ala	GTA Val	CGA Arg	AAC Asn	AGT Ser 225	GGA Gly	ACT Thr	6	81
25	AGG Arg	TTA Leu	TTT Phe 230	GGT Gly	CTT Leu	GAT Asp	GGC Gly	AAC Asn 235	GTG Val	GGT Gly	ACT Thr	GCA Ala	GAG Glu 240	GAA Glu	GAC Asp	ACT Thr	7	29
	GAA Glu	CGG Arg 245	CAC His	ACA Thr	GCG Ala	CAC His	GAT Asp 250	GTG Val	AAC Asn	CGT Arg	AAC Asn	ATG Met 255	CAC His	ACA Thr	CTA Leu	TTA Leu	7	77
30	GGG Gly 260	GTC Val	CGC Arg	CAG Gln	TGA												7	92
	(4) II	NFOR	MATIC	N FO	R SE	D N	O: 3 :				,							
35		(i) SEC	JUEN	CE CH	HARA	CTER	STICS	S:										
		(B) LENG) TYPI ;) STR	E: Nuc	cleic A		uhle											
40) TOP								•							
45		(iii) HY (iv) AN (v) FR	LECU POTH ITI-SE AGME	IETIC. NSE: NT T	AL: No No YPE: 1	v/A	o gen	omic f	ANA	٠								
50		(A (B) ORG) STR) INDI	ANIS AIN: H	M: Tob lighly	acco Aphid	Trans		I									
•		(vii) IM	IMEDI.	ATE S	OUR	DE:												•
55) LIBR) CLO			;												
			OSITIO		GEN	OME:	N/A								•			

0	
10	(F) PAGES: 725-733
	(E) ISSUE:
35	(D) VOLUME: 189
	(C) JOURNAL: Virology
	(B) TITLE: Untranslatable Transcripts of the Tobacco Etch Virus Coat Protein Gene Sequence Can Intefere with Tobacco Etch Virus Replication in Transgenic Plants and Protoplasts
30	(A) AUTHORS: J. A. Lindbo and W. G. Dougherty
	(F) PAGES: 144-153
?5	(E) ISSUE: 2
	(D) VOLUME: 5
	(C) JOURNAL: Molecular Plant-Microbe Interactions
20	(B) TITLE: Pathogen-Derived Resistance to a Potyvirus: Immune and Resistant Phenotypes in Transger Tobacco Expressing Altered Forms of a Potyvirus Coat Protein Nucleotide Sequence
	(A) AUTHORS: J. A. Lindbo and W. G. Dougherty
5	(x) PUBLICATION INFORMATION:
	(D) OTHER INFORMATION: SEQ ID No: 3 is the modified Tobacco Etch Virus coat protein gene prese in pTC:RC.
10	(B) LOCATION: Nucleotide 13 of SEQ ID No. 3 (corresponding to position between nucleotides 8529 at 8530 of SEQ. ID No. 1)
,	(A) NAME/KEY: Frameshift mutation (insertion of T) producing stop codon
•	(B) LOCATION: Nucleotides 1-6 of SEQ ID NO. 3 (corresponding to nucleotides 8518-8523 of SEQ NO. 1)
	(A) NAME/KEY: Mutation of AGT-GGC (Ser-Gly) to ATG-GCC (Met-Ser)

	AAAGTCGCTG AGCAGGCTTC A	Aaaggatagg	GATGTTAATG	CTGGAACTTC	108
	AGGAACATTC TCAGTTCCAC	GAATAAATGC	TATGGCCACA	AAACTTCAAT	158
5	ATCCAAGGAT GAGGGGAGAG	STGGTTGTAA	ACTTGAATCA	CCTTTTAGGA	208
	TACAAGCCAC AGCAAATTGA 1	TTGTCAAAT	GCTCGAGCCA	CACATGAGCA	258
	GTTTGCCGCG TGGCATCAGG (AGTGATGAC	AGCCTATGGA	GTGAATGAAG	308
	AGCAAATGAA AATATTGCTA A	LATGGATTTA	TGGTGTGGTG	CATAGAAAAT	358
	GGGACTTCCC CAAATTTGAA C	CGGAACTTGG	GTTATGATGG	ATGGTGAGGA	408
	TCAAGTTTCA TACCCGCTGA A	laccaatggt	TGAAAACGCG	CAGCCAACAC	458
15	TGAGGCAAAT TATGACACAC I	TCAGTGACC	TGGCTGAAGC	GTATATTGAG	508
	ATGAGGAATA GGGAGCGACC A	TACATGCCT	AGGTATGGTC	TACAGAGAAA	558
20	CATTACAGAC ATGAGTTTGT C	PACGCTATGC	GTTCGACTTC	TATGAGCTAA	608
	CTTCAAAAAC ACCTGTTAGA G	CGAGGGAGG	CGCATATGCA	AATGAAAGCT	658
	GCTGCAGTAC GAAACAGTGG A	LACTAGGTTA	TTTGGTCTTG	ATGGCAACGT	708
25	GGGTACTGCA GAGGAAGACA C	TGAACGGCA	CACAGCGCAC	GATGTGAACC	758
	GTAACATGCA CACACTATTA G	GGGTCCGCC	AGTGA		793
30	(5) INFORMATION FOR SEQ ID N	10: 4			
	(i) SEQUENCE CHARACTER	ISTICS:			
	(A) LENGTH: 792				
35	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Do	ouble			
	(D) TOPOLOGY: Circular				
	(ii) MOLECULE TYPE: cDNA 1	to genomic RNA	4		
40	(iii) HYPOTHETICAL: No (iv) ANTI-SENSE: Yes				
	(v) FRAGMENT TYPE: N/A (vi) ORIGINAL SOURCE:				
					•
45	(A) ORGANISM: Tobacco (B) STRAIN: Highly Aphid				
	(C) INDIVIDUAL ISOLATE	:: N/A			
	(vii) IMMEDIATE SOURCE:				
50	(A) LIBRARY: No				
•	(B) CLONE: pTC:AS				
	(viii) POSITION IN GENOME: (ix) FEATURE:	N/A			
55					
	(A) NAME/KEY: (B) LOCATION:				
	(C) IDENTIFICATION MET	ГНОD:			

(D) OTHER INFORMATION: SEQ ID No. 4 is the modified Tobacco Etch Virus Coat protein gene present in pTC:AS. It is the inverse complement of SEQ ID No. 2.

(x) PUBLICATION INFORMATION:

- (A) AUTHORS: J. A. Lindbo and W. G. Dougherty
- (B) TITLE: Untranslatable Transcripts of the Tobacco Etch Virus Coat Protein Gene Sequence Can Interfere with Tobacco Etch Virus Replication in Transgenic Plants and Protoplasts
- (C) JOURNAL: Virology
- (D) VOLUME: 189
- 15 (E) ISSUE: --

5

10

20

- (F) PAGES: 725-733
- (A) AUTHORS: J. A. Lindbo and W. G. Dougherty
- (B) TITLE: Pathogen-Derived Resistance to a Potyvirus: Immune and Resistant Phenotypes in Transgenic Tobacco Expressing Altered Forms of a Potyvirus Coat Protein Nucleotide Sequence
- (C) JOURNAL: Molecular Plant-Microbe Interactions
- (D) VOLUME: 5
 - (E) ISSUE: 2
- 30 (F) PAGES: 144-153
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

35	TCACTGGGGG	ACCCCTAATA	GIGIGIGCAI	GTIACGGTTC	ACATCGTGCG	CTGTGTGCCG	60
	TTCAGTGTCT	TCCTCTGCAG	TACCCACGTT	GCCATCAAGA	CCAAATAACC	TAGTTCCACT	120
	GTTTCGTACT	GCAGCAGCTT	TCATTTGCAT	ATGCGCCTCC	CTCCCTCTAA	CAGGIGITII	180
40	TGAAGTTAGC	TCATAGAAGT	CGAACGCATA	GCGTGACAAA	CTCATGTCTG	TAATGITTCT	240
	CTGTAGACCA	TACCTAGGCA	TGTATGGTCG	CTCCCTATTC	CTCATCTCAA	TATACGCTTC	300
	AGCCAGGTCA	CTGAAGTGTG	TCATAATTTG	CCTCAGTGTT	GGCTGCGCST	TTTCAACCAT	360
45	TGGTTTCAGC	GGGTATGAAA	CITCATCCTC	ACCATCCATC	ATAACCCAAG	TTCCCTTCAA	420
45	ATTTGGGGAA	GTCCCATTTT	CTATGCACCA	CACCATAAAT	CCATTTAGCA	ATATTTCAT	480
	TIECTOTICS	TICACTOCAT	AGGCTSTCAT	CACTGCCTGA	TGCCACGCGG	CAAACTGCTC	540
	ATGTGTGGCT	CCAGCATTTS	АСАААТСААТ	TTGCTGTGGC	TTGTATCCTA	AAAGGTGATT	600
<i>50</i>	CAAGTTTACA	ACCACCTCTC	CCCTCATCCT	TGGATATTGA	AGTTTTGTGG	CCATAGCATT	660
	TATTCGTGGA	ACTGAGAATG	TTCCTCAAGT	TECAGCATTA	ACATCCCTAT	CCTTTGAAGC	720
	CTGCTCAGCG	ACTITATOAT	CCTTTTSATC	TTTCTTCTTA	CCAGCGTCAG	CACCAGCATE	780
55	CACAGTGCCC	AT					792

Claims

A method of producing applant with largeduced is usceptibility to viral infection, comprising:

transforming plant cells with a DNA molecule that encodes untranslatable plus-sense viral RNA molecule wherein the untranslatable plus-sense viral RNA molecule isoderive differentiable containing the interest of the containing the

regenerating a plant comprising the transformed plant cell.

10

5

- 2. A transgenic plant produced according to the method of Claim 1.
- 3. The method of Claim 1 wherein the untranslatable plus-sense viral RNA molecule is derived from a viral coat protein gene.

15

20

25

- 4. The method of Claim 1 wherein the untranslatable plus-sense viral RNA molecule is derived from a potyvirus.
- 5. ANDNA molecule useful for producing virus resistant plants comprising a promoter operably linked to a DNA molecule encoding an untranslatable plus-sense viral RNA molecule, derived from the nucleotide sequence of a plant virus gene.
- 6. The method of any one of Claims 1, 3 or 4 wherein the untranslatable plus-sense viral RNA molecule contains at least one mutation that renders the RNA molecule untranslatable, and expression of the untranslatable plus-sense viral RNA molecule within the plant reduces the susceptibility of the plant to virus infection;

and wherein the method further comprises the step of selecting a plant that shows a reduced susceptibility to infection by the virus.

Patentansprüche

30

35

1. Ein Verfahren zur Herstellung einer Pflanze mit einer reduzierten Anfälligkeit für eine virale Infektion, umfassend:

Transformation von Pflanzenzellen mit einem DNA-Molekül, das für ein nicht-translatierbares plus-strang virales RNA-Molekül kodiert, **dadurch gekennzeichnet**, **daß** das nicht-translatierbare plus-strang virale RNA-Molekül von der Nukleotidsequenz eines Pflanzenvirusgens abgeleitet ist; und

Regeneration einer Pflanze, beinhaltend die transformierte Pflanzenzelle.

40

2. Eine transgene Pflanze, hergestellt entsprechend des Verfahrens nach Anspruch 1.

- 3. Das Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das nicht-translatierbare plus-strang virale RNA-Molekül von einem viralen Hüllproteingen abgeleitet ist.
- Das Verfahren nach Anspruch 1, dadurch gekennzelchnet, daß das nicht-translatierbare plus-strang virale RNA-Molekül von einem Potyvirus abgeleitet ist.
 - 5. Ein DNA-Molekül, verwendbar zur Herstellung virusresistenter Planzen, umfassend einen Promoter, wirksam verbunden mit einem DNA-Molekül, das für ein nicht-translatierbares plus-strang virales RNA-Molekül kodiert, welches von der Nukleotidsequenz eines Pflanzenvirusgens abgeleitet ist.

50

- 6. Das Verfahren nach einem der Ansprüche 1, 3 oder 4, dadurch gekennzeichnet, daß das nicht-translatierbare plus-strang virale RNA-Molekül mindestens eine Mutation enthält, die das RNA-Molekül nicht-translatierbar macht, und daß die Expression des nicht-translatierbaren plus-strang viralen RNA-Moleküls in der Pflanze zu einer reduzierten Anfälligkeit der Pflanze gegen Virusinfektion führt;
- und, dadurch gekennzeichnet, daß das Verfahren weiterhin den Schritt der Selektion einer Pflanze umfaßt, die eine reduzierte Anfälligkeit für eine Infektion durch das Virus zeigt.

Revendications

5

10

- 15

25

30

35

40

45

50

55

- Méthode de production d'une plante avec une sensibilité réduite à l'infection virale, comprenant les étapes consistant:
 - à transformer des cellules végétales avec une molécule d'ADN qui code une molécule d'ARN viral sens plus non traduisible, la molécule d'ARN viral sens plus non traduisible étant dérivée de la séquence nucléotidique d'un gène de virus de plante ; et
 - à régénérer une plante comprenant la cellule végétale transformée.
- 2. Plante transgénique produite selon la méthode de la revendication 1.
- 3. Méthode selon la revendication 1, dans laquelle la molécule d'ARN viral sens plus non traduisible est dérivée d'un gène de protéine de capside virale.
- 4. Méthode selon la revendication 1, dans laquelle la molécule d'ARN viral sens plus non traduisible est dérivée d'un potyvirus.
- 5. Molécule d'ADN utile pour produire des plantes résistantes à des virus, comprenant un promoteur lié de façon opérationnelle à une molécule d'ADN codant une molécule d'ARN viral sens plus non traduisible, dérivée de la séquence nucléotidique d'un gène de virus de plante.
 - 6. Méthode selon l'une quelconque des revendications 1, 3 ou 4, dans laquelle la molécule d'ARN viral sens plus non traduisible contient au moins une mutation qui rend la molécule d'ARN non traduisible, et l'expression de la molécule d'ARN viral sens plus non traduisible dans la plante réduit la sensibilité de la plante à une infection virale; et la méthode comprenant en outre l'étape consistant à sélectionner une plante qui montre une sensibilité réduite à une infection par le virus.

NAA	AAATA	CAA	ATCT	CAAC	AC AZ	ACAT	ATAC.	AA A	ACAA	ACGA	ATC	TCAA	GCA	ATCA	AGCA	TT	60
CTA	TTC:	TAT	TGCA	CAAT	T T	TAAF	CATT	T CT	TTTA	AAGC	AAA	AGCA	ATT	TTCT	GAAA	AT	120
TTT	CACC	ATT	TACG	AACG/	AT AC							GGC Gly					174
AAC Asn	ATC Ile	CTG Leu	AAG Lys	GAA Glu 15	GTG Val	TTC Phe	GGT Gly	GGA Gly	GCT Ala 20	Arg	ATG Met	GCT Ala	TGC Cys	GTT Val 25	ACC	:	222
AGC Ser	GCA Ala	CAT His	ATG Met 30	GCT Ala	GGA Gly	GCG Ala	TAA neA	GGA Gly 35	AGC Ser	ATT Ile	TTG	AAG Lys	AAG Lys 40	Ala	GAA Glu	k I	270
GAG Glu	ACC Thr	TCT Ser 45	CGT	GCA Ala	ATC Ile	ATG Met	CAC His 50	AAA Lys	CCA Pro	GTG Val	ATC	TTC Phe 55	GGA Gly	GAA Glu	GAC Asp	:	318
TAC Tyr	ATT Ile 60	ACC	GAG Glu	GCA Ala	GAC Asp	TTG Leu 65	CCT Pro	TAC Tyr	ACA Thr	CCA Pro	CTC Leu 70	His	TTA Leu	GAG Glu	GTC Val	:	366
GAT Asp 75	GCT Ala	GAA Glu	ATG Met	GAG Glu	CGG Arg 80	ATG Met	TAT Tyr	TAT Tyr	CTT Leu	GGT Gly 85	CGT Arg	CGC Arg	GCG	CTC Leu	ACC Thr 90	•	414
CAT His	GCC	AAG Lys	AGA Arg	CGC Arg 95	AAA Lys	GTT Val	TCT Ser	GTG Val	AAT Asn 100	Asn	AAG Lys	AGG Arg	AAC	AGG Arg 105	Arg	· !	462
AGG Arg	AAA Lys	GTG Val	GCC Ala 110	AAA Lys	ACG Thr	TAC Tyr	GTG Val	GGG Gly 115	CGT Arg	GAT Asp	TCC	ATT	GTT Val 120	. Glu	AAG Lys	; ;	510
ATT Ile	GTA Val	GTG Val 125	CCC Pro	CAC His	ACC Thr	GAG Glu	AGA Arg 130	AAG Lys	GTT Val	GAT Asp	ACC	ACA Thr 135	GCA Ala	GCA Ala	GTG Val	•	558
GAA Glu	GAC Asp 140	ATT	TGC Cys	AAT Asn	GAA Glu	GCT Ala 145	ACC Thr	ACT Thr	CAA Gln	CTT Leu	GTG Val 150	His	AAT Asn	AGT Ser	ATG Met	;	606
CCA Pro 155	AAG Lys	CGT Arg	AAG Lys	AAG Lys	CAG Gln 160	AAA Lys	AAC Aan	TTC Phe	TTG Leu	CCC Pro 165	GCC Ala	ACT	TCA Ser	CTA Leu	AGT Ser 170	•	654
AAC Asn	GTG Val	TAT	GCC Ala	CAA Gln 175	ACT Thr	TGG Trp	AGC Ser	ATA Ile	GTG Val 180	Arg	AAA Lys	CGC	CAT	ATG Met 185	.Gln	; 1 .	702
GTG Val	GAG Glu	ATC Ile	ATT Ile 190	AGC Ser	AAG Lys	AAG Lys	AGC Ser	GTC Val 195	CGA Arg	GCG Ala	AGG Arg	GTC Val	AAG Lys 200	. Arg	TTT	•	750
GAG Glu	GGC Gly	TCG Ser 205	GTG Val	CAA Gln	TTG Leu	TTC Phe	GCA Ala 210	AGT Ser	GTG Val	CGT Arg	CAC	ATG Met 215	TAT	GGC	GAG Glu		798
wid	AAA Lys 220	Arg	GTG Val	GAC Asp	Leu	CGT Arg	Ile	GAC Asp	AAC Asn	Trp	CAG Glm	Gln	GAG Glu	ACA Thr	CTI Leu		846

FIG. 1

CTA Leu 235	GAC Asp	CTT Leu	GCT Ala	AAA Lys	AGA Arg 240	TTT Phe	AAG Lys	AAT Asn	GAG Glu	AGA Arg 245	GTG Val	GAT Asp	CAA Gln	TCG Ser	AAG Lys 250	894
CTC Leu	ACT Thr	TTT Phe	GGT Gly	TCA Ser 255	AGT Ser	G17 GCC	CTA Leu	GTT Val	TTG Leu 260	AGG Arg	CAA Gln	GGC Gly	Ser	TAC Tyr 265	GGA Gly	942
	GCG Ala															990
	GGG Gly															1038
	TCA Ser 300															1086
ATA Ile 315	CCA Pro	TAC	TCT	AAG Lys	AAA Lys 320	TTC Phe	TTG Leu	GAG Glu	TTG Leu	AGA Arg 325	CCA Pro	GAT Asp	GGA Gly	ATC Ile	TCC Ser 330	1134
CAT His	GAG Glu	TGT Cys	ACA Thr	AGA Arg 335	GGA Gly	GTA Val	TCA Ser	GTT Val	GAG Glu 340	CGG	TGC Cys	GGT Gly	GAG Glu	GTG Val 345	GCT Ala	1182
GCA Ala	ATC Ile	CTG Leu	ACA Thr 350	CAA Gln	GCA Ala	CTT Leu	TCA Ser	CCG Pro 355	TGT Cys	GGT Gly	AAG Lys	ATC Ile	ACA Thr 360	TGC Cys	AAA Lys	1230
CGT	TGC Cys	ATG Met 365	GTT Val	GAA Glu	ACA Thr	CCT Pro	GAC Asp 370	ATT Ile	GTT Val	GAG Glu	GGT Gly	GAG Glu 375	TCG Ser	GGA Gly	GAA Glu	1278
AGT Ser	GTC Val 380	ACC	AAC Asn	CAA Gln	GGT Gly	AAG Lys 385	CTC Leu	CTA Leu	GCA Ala	ATG Met	CTG Leu 390	AAA Lys	GAA Glu	CAG Gln	TAT Tyr	1326
CCA Pro 395	GAT Asp	TTC Phe	CCA Pro	ATG Met	GCC Ala 400	GAG Glu	AAA Lys	CTA Leu	CTC Leu	ACA Thr 405	AGG Arg	TTT Phe	TTG Leu	CAA Gln	CAG Gln 410	1374
AAA Lys	TCA Ser	CTA Leu	GTA Val	AAT Asn 415	ACA Thr	AAT Asn	TTG Leu	ACA Thr	GCC Ala 420	TGC Cys	GTG Val	AGC Ser	GTC Val	AAA Lys 425	CAA Gln	1422
CTC Leu	ATT Ile	GGT Gly	GAC Asp 430	CGC Arg	AAA Lys	CAA Gln	GCT Ala	CCA Pro 435	TTC Phe	ACA Thr	CAC His	GTA Val	CTG Leu 440	GCT Ala	GTC Val	1470
	GAA Glu															1518
GAG Glu	GCA Ala 460	AGC Ser	ACA Thr	CAT His	ATG Met	CTT Leu 465	GAA Glu	ATA Ile	GCA Ala	AGG Arg	TTC Phe 470	TTG Leu	AAC Asn	AAT Asn	CGC Arg	1566
ACT Thr 475	GAA Glu	AAT naA	ATG Met	CGC Arg	ATT 11e 480	GJ À GGC	CAC His	CTT Leu	GGT Gly	TCT Ser 485	TTC Phe	AGA Arg	AAT Asn	AAA Lys	ATC Ile 490	1614

TCA Ser	TCG Ser	AAG Lys	GCC Ala	CAT His 495	GTG Val	TAA neA	AAC	GCA Ala	CTC Leu 500	ATG Met	TGT	GAT Asp	AAT Asn	CAA Gln 505	CTT Leu	:	1662
						ATT Ile										;	1710
						TTC Phe										;	1758
						AAA Lys 545										;	1806
ATT Ile 555	GGC Gly	TAA neA	TTG Leu	ATA Ile	ATG Met 560	TCA Ser	ACT Thr	GAC Asp	TTC Phe	CAG Gln 565	ACG Thr	CTC Leu	AGG Arg	CAA Gln	CAA Gln 570	;	1854
ATT Ile	CAA Gln	GGC Gly	GAA Glu	ACT Thr 575	ATT Ile	GAG Glu	CGT Arg	AAA Lys	GAA Glu 580	ATT Ile	GGG Gly	AAT Asn	CAC His	TGC Cys 585,	ATT Ile	. :	1902
TCA Ser	ATG Met	ccc Arg	AAT Asn 590	GGT Gly	TAA neA	TAC Tyr	GTG Val	TAC Tyr 595	CCA Pro	TGT Cys	TGT Cys	TGT Cys	GTT Val 600	ACT Thr	CTT Leu	;	1950
GAA Glu	GAT Asp	GGT Gly 605	AAG Lys	GCT Ala	CAA Gln	TAT Tyr	TCG Ser 610	GAT Asp	CTA Leu	AAG Lys	CAC His	CCA Pro 615	ACG Thr	AAG Lys	AGA Arg	:	1998
CAT His	CTG Leu 620	GTC Val	ATT Ile	GGC Gly	AAC Asn	TCT Ser 625	GGC Gly	GAT Asp	TCA Ser	AAG Lys	TAC Tyr 630	CTA Leu	GAC Asp	CTT Leu	CCA Pro	:	2046
GTT Val 635	CTC Leu	AAT Asn	GAA Glu	GAG Glu	AAA Lys 640	ATG Met	TAT Tyr	ATA Ile	GCT Ala	AAT Asn 645	GAA Glu	GGT Gly	TAT. Tyr	TGC Cys	TAC Tyr 650	;	2094
ATG Met	AAC Asn	ATT Ile	TTC Phe	TTT Phe 655	GCT Ala	CTA Leu	CTA Leu	GTG Val	AAT Asn 660	GTC Val	AAG Lys	GAA Glu	GAG Glu	GAT Asp 665	GCA Ala	:	2142
AAG Lys	GAC Asp	TTC Phe	ACC Thr 670	AAG Lys	TTT Phe	ATA Ile	AGG Arg	GAC Asp 675	ACA Thr	ATT Ile	GTT Val	CCA Pro	AAG Lys 680	CTT Leu	GGA Gly	;	2190
GCG Ala	TGG Trp	CCA Pro 685	ACA Thr	ATG Met	CAA Gln	GAT Asp	GTT Val 690	GCA Ala	ACT Thr	GCA Ala	TGC Cys	TAC Tyr 695	TTA Leu	CTT Leu	TCC Ser	:	2238
ATT Ile	CTT Leu 700	TAC Tyr	CCA Pro	GAT Asp	GTC Val	CTG Leu 705	AGA Arg	GCT Ala	GAA Glu	CTA Leu	CCC Pro 710	AGA Arg	ATT Ile	TTG Leu	GTT Val	;	2286
GAT Asp 715	CAT His	GAC Asp	AAC Asn	AAA Lys	ACA Thr 720	ATG Met	CAT His	GTT Val	TTG Leu	GAT Asp 725	TCG Ser	TAT Tyr	GGG Gly	TCT Ser	AGA Arg 730	:	2334
ACG Thr	ACA Thr	GGA Gly	TAC Tyr	CAC His 735	ATG Met	TTG Leu	AAA Lys	ATG Met	AAC Asn 740	ACA Thr	ACA Thr	TCC Ser	CAG Gln	CTA Leu 745	ATT Ile	;	2382

					GGT Gly											2430
					GAT Asp											2478
					AAA Lys											2526
					GTC Val 800											2574
					GGA Gly											2622
					TTA Leu											2670
GCG Ala	CAA Gln	AAG Lys 845	TTA Leu	ACT Thr	TTG Leu	GCA Ala	GAT Asp 850	TTG Leu	TTC Phe	GTC Val	CAG Gln	CAG Gln 855	CGT Arg	AAT Asn	TTG Leu	2718
					CAG Gln											2766
AGG Arg 875	GTT Val	AAT Asn	CAT His	TCG Ser	CTA Leu 880	TCC Ser	CTA Leu	GCA Ala	ATG Met	GAA Glu 885	ATT Ile	GTT Val	ACT Thr	ATT Ile	AAG Lys 890	2814
CTG																
Leu	GCC Ala	ACC Thr	CAA Gln	GAG Glu 895	ATG Met	GAC Asp	ATG Met	GCG Ala	TTG Leu 900	AGG Arg	GAA Glu	GGT Gly	GGC Gly	TAT Tyr 905	GCT Ala	2862
Leu	Ala	Thr	Gln GAA	Glu 895 AAG	ATG Met GTG Val	Asp	Met GAA	Ala	Leu 900 TTG	Arg	Glu AAA	Gly AAC	Gly TAT	Tyr 905 GTA	Ala	2862
GTG Val GCT	Ala ACC Thr	Thr TCT Ser	GAA Glu 910 GAT	Glu 895 AAG Lys GCA	Met	Asp CAT His	Met GAA Glu GAA	Ala ATG Met 915	Leu 900 TTG Leu ACT	Arg GAA Glu TGG	Glu AAA Lys TTG	Gly AAC Asn GAA	TAT Tyr 920	Tyr 905 GTA Val	Ala AAG Lys	
GTG Val GCT Ala	Ala ACC Thr TTG Leu ATC	Thr TCT Ser AAG Lys 925 AGG	GAA Glu 910 GAT Asp	Glu 895 AAG Lys GCA Ala TCA	Met GTG Val	CAT His GAC Asp	Met GAA Glu GAA Glu 930 CTC	Ala ATG Met 915 TTA Leu	Leu 900 TTC Leu ACT Thr	GAA Glu TGG Trp	AAA Lys TTG Leu GGG	Gly AAC Asn GAA Glu 935 CGA	TAT Tyr 920 AAA Lys	Tyr 905 GTA Val TTC Phe	Ala AAG Lys TCC Ser	2910
GTG Val GCT Ala GCA Ala	Ala ACC Thr TTG Leu ATC Ile 940 ATG	Thr TCT Ser AAG Lys 925 AGG Arg	GAA Glu 910 GAT Asp CAT His	Glu 895 AAG Lys GCA Ala TCA Ser	Met GTG Val TGG Trp	CAT His GAC Asp AAG Lys 945 GAT	GAA Glu GAA Glu 930 CTC Leu	Ala ATG Met 915 TTA Leu TTG Leu	Leu 900 TTG Leu ACT Thr AAA Lys	GAA Glu TGG Trp TTT Phe	AAA Lys TTG Leu GGG Gly 950 ATA	Gly AAC Asn GAA Glu 935 CGA Arg	TAT Tyr 920 AAA Lys AAG Lys	TYP 905 GTA Val TTC Phe CCT Pro	Ala AAG Lys TCC Ser TTA Leu GTG	2910 2958
GTG Val GCT Ala GCA Ala ATC Ile 955 AAA	Ala ACC Thr TTG Leu ATC Ile 940 ATG Met	Thr TCT Ser AAG Lys 925 AGG Arg AAA Lys	GAA Glu 910 GAT ASP CAT His	Glu 895 AAG Lys GCA Ala TCA Ser ACC Thr	Met GTG Val TGG Trp AGA Arg GTA Val	CAT His GAC Asp AAG Lys 945 GAT Asp	Met GAA Glu GAA Glu 930 CTC Leu TGC Cys	Ala ATG Met 915 TTA Leu TTG Leu GGC Gly	Leu 900 TTG Leu ACT Thr AAA Lys GGA Gly	GAA Glu TGG Trp TTT Phe CAT His 965 CTG	Glu AAA Lys TTG Leu GGG Gly 950 ATA Ile	Gly AAC Asn GAA Glu 935 CGA Arg GAC Asp	Gly TAT Tyr 920 AAA Lys AAG Lys TTG Leu ACC	Tyr 905 GTA Val TTC Phe CCT Pro TCT Ser	Ala AAG Lys TCC Ser TTA Leu GTG Val 970 TCA	2910 2958 3006

ATG Met	ACA Thr	AAA Lys 100	Gly	GTT Val	TTT Phe	CTC Leu	AAA Lys 1010	Ile	TAC Tyr	AGC Ser	ATG Met	CTT Leu 1019	Pro	GAC Asp	GTC Val	3198
TAC Tyr	AAG Lys 1020	Phe	ATC Ile	ACA Thr	GTC Val	TCG Ser 1025	Ser	GTC Val	CTT Leu	TCC Ser	TTG Leu 1030	Leu	TTG Leu	ACA Thr	TTC Phe	3246
TTA Leu 103	TTT Phe 5	CAA Gln	ATT Ile	GAC Asp	TGC Cys 1040	Met	ATA Ile	AGG Arg	GCA Ala	CAC His 1045	Arg	GAG Glu	GCG- Ala	AAG Lys	GTT Val 1050	3294
GCT Ala	GCA Ala	CAG Gln	TTG Leu	CAG Gln 105	Lys	GAG Glu	AGC Ser	GAG Glu	TGG Trp 1060	Asp	TAA naA	ATC Ile	ATC Ile	AAT Asn 1069	Arg	3342
ACT Thr	TTC Phe	CAG Gln	TAT Tyr 1070	Ser	AAG Lys	CTT Leu	GAA Glu	AAT Asn 1075	Pro	ATT Ile	G1y GCC	TAT Tyr	CGC Arg 1080	Ser	ACA Thr	3390
GCG Ala	GAG Glu	GAA Glu 108	Arg	CTC Leu	CAA Gln	TCA Ser	GAA Glu 1090	His	CCC Pro	GAG Glu	GCT Ala	TTC Phe 1095	Glu	TAC Tyr	TAC Tyr	3438
AAG Lys	TTT Phe 1100	Cys	ATT Ile	GGA Gly	AAG Lys	GAA Glu 110	Asp	CTC Leu	GTT Val	GAA Glu	CAG Gln 1110	Ala	AAA Lys	CAA Gln	CCG Pro	3486
GAG Glu 111	ATA Ile 5	GCA Ala	TAC Tyr	TTT Phe	GAA Glu 1120	Lys	ATT Ile	ATA Ile	GCT Ala	TTC Phe 1129	Ile	ACA Thr	CTT Leu	GTA Val	TTA Leu 1130	3534
ATG Met	GCT Ala	TTT Phe	GAC Asp	GCT Ala 1135	Glu	CGG Arg	AGT Ser	GAT Asp	GGA Gly 1140	Val	TTC Phe	AAG Lys	ATA Ile	CTC Leu 1145	Asn	3582
AAG Lys	TTC Phe	AAA Lys	GGA Gly 1150	Ile	CTG Leu	AGC Ser	TCA Ser	ACG Thr 1155	Glu	AGG Arg	GAG Glu	ATC Ile	ATC Ile 1160	Tyr	ACG Thr	3630
CAG Gln	AGT Ser	TTG Leu 1165	Asp	GAT Asp	TAC Tyr	GTT Val	ACA Thr 1170	Thr	TTT Phe	GAT Asp	GAC Asp	AAT Asn 1179	Met	ACA Thr	ATC Ile	3678
AAC Asn	CTC Leu 1180	Glu	TTG Leu	AAT Asn	ATG Met	GAT Asp 118	Glu	CTC Leu	CAC His	AAG Lys	ACG Thr 1190	Ser	CTT Leu	CCT Pro	GGA Gly	3726
GTC Val 119	ACT Thr	TTT Phe	AAG Lys	CAA Gln	TGG Trp 1200	Trp	AAC Asn	AAC Asn	CAA Gln	ATC Ile 120	Ser	CGA Arg	GGC Gly	AAC Asn	GTG Val 1210	3774
AAG	CCA Pro	CAT His	TAT Tyr	AGA Arg 121	Thr	GAG Glu	GGG Gly	CAC His	TTC Phe 1220	Met	GAG Glu	TTT Phe	ACC Thr	AGA Arg 1225	Asp	3822
ACT Thr	GCG Ala	GCA Ala	TCG Ser 1230	Val	GCC Ala	AGC Ser	GAG Glu	ATA Ile 1235	Ser	CAC His	TCA Ser	Pro	GCA Ala 1240	Arg	GAT Asp	3870
TTT Phe																3918

TAC CAT TTA TO Tyr His Leu So 1260	CA AAG AGA er Lys Arg	GGG AGA GTG Gly Arg Val 1265	Leu Met I	CTT GAG CCT Leu Glu Pro 1270	ACC AGA Thr Arg	3966
CCA CTC ACA G Pro Leu Thr A 1275	AT AAC ATG sp Asn Met 1280	His Lys Gln	CTG AGA A Leu Arg S 1285	AGT GAA CCA Ser Glu Pro	TTT AAC Phe Asn 1290	4014
TGC TTC CCA ACCYS Phe Pro T	CT TTG AGG hr Leu Arg 1295	ATG AGA GGG Met Arg Gly	AAG TCA A Lys Ser 3	ACT TTT GGG Thr Phe Gly	TCA TCA Ser Ser 1305	4062
CCG ATC ACA G' Pro Ile Thr V	TC ATG ACT al Met Thr 310	AGT GGA TTC Ser Gly Phe 131	Ala Leu H	CAC CAC TTT His His Phe 1320	Ala Arg	4110
AAC ATA GCT GAASN Ile Ala G 1325	AG GTA AAA lu Val Lys	ACA TAC GAT Thr Tyr Asp 1330	TTT GTC A	ATA ATT GAT lle lle Asp 1335	GAA TGT . Glu Cys	4158
CAT GTG AAT G His Val Asn A 1340	AT GCT TCT sp Ala Ser	GCT ATA GCG Ala Ile Ala 1345	Phe Arg A	AAT CTA CTG Asn Leu Leu 1350	TTT GAA Phe Glu	4206
CAT GAA TTT GA His Glu Phe G 1355	AA GGA AAA lu Gly Lys 1360	Val Leu Lys	Val Ser A	GCC ACA CCA Ala Thr Pro	CCA GGT Pro Gly 1370	4254
AGA GAA GTT G	AA TTT ACA lu Phe Thr 1375	ACT CAG TTT Thr Gln Phe	CCC GTG Pro Val I	AAA CTC AAG Lys Leu Lys	ATA GAA Ile Glu 1385	4302
GAG GCT CTT AG Glu Ala Leu So 1.	GC TTT CAG er Phe Gln 390	GAA TTT GTA Glu Phe Val 139	Ser Leu (CAA GGG ACA Gln Gly Thr 1400	Gly Ala	4350
AAC GCC GAT G Asn Ala Asp V 1405	TG ATT AGT al Ile Ser	TGT GGC GAC Cys Gly Asp 1410	AAC ATA C Asn Ile I	CTA GTA TAT Leu Val Tyr 1415	GTT GCT Val Ala	4398
AGC TAC AAT G Ser Tyr Asn As 1420	AT GTT GAT sp Val Asp	AGT CTT GGC Ser Leu Gly 1425	Lys Leu I	CTT GTG CAA Leu Val Gln 1430	AAG GGA Lys Gly	4446
TAC AAA GTG TO Tyr Lys Val So 1435	CG AAG ATT er Lys Ile 1440	Asp Gly Arg	ACA ATG A Thr Met I 1445	AAG AGT GGA Lys Ser Gly	GGA ACT Gly Thr 1450	4494
GAA ATA ATC AG Glu Ile Ile T	CT GAA GGT hr Glu Gly 1455	ACT TCA GTG Thr Ser Val	AAA AAG C Lys Lys E 1460	CAT TTC ATA His Phe Ile	GTC GCA Val Ala 1465	4542
ACT AAC ATT ATT Thr Asn Ile II	TT GAG AAT le Glu Asn 470	GGT GTA ACC Gly Val Thr 147	Ile Asp 1	ATT GAT GTA Ile Asp Val 1480	Val Val	4590
						4638
GAT TTT GGG AG Asp Phe Gly Ti 1481	CT AAG GTT hr Lys Val	GTA CCA GTT Val Pro Val 1490	TTG GAT (GTG GAC AAT Val Asp Asn 1495	AGA GCG Arg Ala	4030

CTC GGT AGA Leu Gly Arg 1515		g His Lys	Glu Gly V			
CAA ACA AAT Gln Thr Asn						Glu
GCT GCC TTT Ala Ala Phe		e Met Tyr				
GTT TCA ACC Val Ser Thr 156	Thr Leu Le		Ala Thr I		Ala Arg	
ATG GCA CAG Met Ala Gln 1580						
TTT GAT GGT Phe Asp Gly 1595	Ser Met Hi		Ile His A			
AAG CTA CAC Lys Leu His						Asn
AAA GGC TTA Lys Gly Leu						
TAC ATA GCA Tyr Ile Ala 164	Glu Asp Al		Arg Ile 1		Cys Lys	
ATT CCA GAC Ile Pro Asp 1660	TCC TTG CA Ser Leu Hi	T GAG GAA s Glu Glu 1665	ATT TGG (CAC ATT GTA His Ile Val	GTC GCC	CAT 5166
		1005		1670	VOI 1.120	nis .
AAA GGT GAC Lys Gly Asp 1675	TCG GGT AT Ser Gly II 16	T GGG AGG e Gly Arg	Leu Thr	1670 AGC GTA CAG	GCA GCA	AAG 5214
Lys Gly Asp	Ser Gly II 16 ACT CTG CA	T GGG AGG e Gly Arg BO A ACG GAT	Leu Thr S	1670 AGC GTA CAG Ser Val Gln 1685 TCA ATT GCG Ser Ile Ala	GCA GCA Ala Ala	AAG 5214 Lys 1690 CTA 5262 Leu
Lys Gly Asp 1675 GTT GTT TAT	Ser Gly II 16 ACT CTG CA Thr Leu Gl 1695 AAT AGA CG	T GGG AGG e Gly Arg 80 A ACG GAT n Thr Asp	GTG CAC 'Val His : 1700	AGC GTA CAG Ser Val Gln 1685 TCA ATT GCG Ser Ile Ala	GCA GCA Ala Ala AGG ACT Arg Thr 1705	AAG 5214 Lys 1690 CTA 5262 Leu
Lys Gly Asp 1675 GTT GTT TAT Val Val Tyr	Ser Gly II 16 ACT CTG CA Thr Leu Gl 1695 AAT AGA CG Asn Arg Ar 1710 GCA ACT GG Ala Thr Gl	T GGG AGG e Gly Arg 80 A ACG GAT n Thr Asp C ATA GCA g Ile Ala G AGA GCA	GTG CAC 'Val His : 1700 GAT GAA (Asp Glu (1715 TTT TCC : Phe Ser :	AGC GTA CAG Ser Val Gln 1685 TCA ATT GCG Ser Ile Ala CAA ATG AAG Gln Met Lys	GCA GCA Ala Ala AGG ACT Arg Thr 1705 CAG AGT Gln Ser 1720 TAC TCA Tyr Ser	AAG 5214 Lys 1690 CTA 5262 Leu 5310 His 5358
Lys Gly Asp 1675 GTT GTT TAT Val Val Tyr GCA TGC ATC Ala Cys Ile TTT GAA GCC Phe Glu Ala	Ser Gly II 16 ACT CTG CA Thr Leu GI 1695 AAT AGA CG Asn Arg Ar 1710 GCA ACT GG Ala Thr GI 5 TTT GAC AC	T GGG AGG e Gly Arg 80 A ACG GAT n Thr Asp C ATA GCA g Ile Ala G AGA GCA y Arg Ala 1730 G CTG AAA	GTG CAC 'Val His '1700 GAT GAA 'Asp Glu '1715 TTT TCC 'Phe Ser '1	AGC GTA CAG Ser Val Gln 1685 TCA ATT GCG Ser Ile Ala CAA ATG AAG Gln Met Lys TTC ACA AAT Phe Thr Asn 173	GCA GCA Ala Ala AGG ACT Arg Thr 1705 CAG AGT Gln Ser 1720 TAC TCA Tyr Ser 5	AAG 5214 Lys 1690 CTA 5262 Leu 5 CAT 5310 His 5358 Ile 5406

Phe Ser Asn Leu	GCA AAG GAT CAA Ala Lys Asp Gln 1775	GAT GTC ACG Asp Val Thr 1780	GGT ATC ATC Gly Ile Ile	CAA GAC 5502 Gln Asp 1785
TTC AAT CAC CTG Phe Asn His Leu 179	Glu Thr Ile Tyr			Val Ala
AAG CAT CTG AAG Lys His Leu Lys 1805		Trp Asn Lys		
GAC ATC ATA ATA Asp Ile Ile Ile 1820				
GCA ACG TAC TTC Ala Thr Tyr Phe 1835			Val Tyr Phe	
AAG AAG AAT CAG Lys Lys Asn Gln	AAG CAC AAG CTT Lys His Lys Leu 1855	AAG ATG AGA Lys Met Arg 1860	GAG GCG CGT Glu Ala Arg	GGG GCT 5742 Gly Ala 1865
AGA GGG CAA TAT Arg Gly Gln Tyr 187	Glu Val Ala Ala	GAG CCA GAG Glu Pro Glu 1875	GCG CTA GAA Ala Leu Glu 1880	His Tyr
TTT GGA AGC GCA Phe Gly Ser Ala 1885	TAT AAT AAC AAA Tyr Asn Asn Lys 189	Gly Lys Arg	AAG GGC ACC Lys Gly Thr 1895	ACG AGA 5838 Thr Arg
GGA ATG GGT GCA Gly Met Gly Ala 1900	AAG TCT CGG AAA Lys Ser Arg Lys 1905	TTC ATA AAC Phe Ile Asn	ATG TAT GGG Met Tyr Gly 1910	TTT GAT 5886 Phe Asp
CCA ACT GAT TTT Pro Thr Asp Phe 1915	TCA TAC ATT AGG Ser Tyr Ile Arg 1920	Phe Val Asp	CCA TTG ACA Pro Leu Thr	GGT CAC 5934 Gly His
		1925	5	1930
ACT ATT GAT GAG Thr Ile Asp Glu	TCC ACA AAC GCA Ser Thr Asn Ala 1935	CCT ATT GAT	TTA GTG CAG	CAT GAG 5982
ACT ATT GAT GAG Thr Ile Asp Glu TTT GGA AAG GTT Phe Gly Lys Val 195	Ser Thr Asn Ala 1935 AGA ACA CGC ATG Arg Thr Arg Met	A CCT ATT GAT A Pro Ile Asp 1940 C TTA ATT GAC	TTA GTG CAG Leu Val Gln	CAT GAG 5982 His Glu 1945 GAC CCT 6030 Glu Pro
THE ILE ASP GLU TIT GGA AAG GIT Phe Gly Lys Val	Ser Thr Asn Ala 1935 AGA ACA CGC ATG Arg Thr Arg Met 0 ACC CAC ACC ACA	CCT ATT GAT Pro Ile Asp 1940 TTA ATT GAC Leu Ile Asp 1955 ATC CAT GCT Tle His Ala	TTA GTG CAG Leu Val Gln GAT GAG ATA Asp Glu Ile 1960 TAT TTG GTG	CAT GAG 5982 His Glu 1945 GAC CCT 6030 Glu Pro
THT GGA AAG GTT Phe Gly Lys Val 195 CAA AGT CTT AGC Gln Ser Leu Ser	Ser Thr Asn Ala 1935 AGA ACA CGC ATG Arg Thr Arg Met 0 ACC CAC ACC ACA Thr His Thr Thr 197 GTT CTT AAG GTT	A CCT ATT GAT Pro Ile Asp 1940 G TTA ATT GAC Leu Ile Asp 1955 A ATC CAT GCT Ile His Ala 70	TTA GTG CAG Leu Val Gln GAT GAG ATA Asp Glu Ile 1960 TAT TTG GTG TYr Leu Val 1975 CCA CAC TCG	CAT GAG 5982 His Glu 1945 GAG CCT 6030 Glu Pro AAT AGT 6078 Asn Ser TCG CTA 6126
Thr Ile Asp Glu TTT GGA AAG GTT Phe Gly Lys Val 195 CAA AGT CTT AGC Gln Ser Leu Ser 1965 GGC ACG AAG AAA Gly Thr Lys Lys	Ser Thr Asn Ala 1935 AGA ACA CGC ATG Arg Thr Arg Met 0 ACC CAC ACC ACA Thr His Thr Thr 197 GTT CTT AAG GTT Val Leu Lys Val 1985 AAA TCA ACA GCA	CCT ATT GAT Pro lle Asp 1940 G TTA ATT GAC Leu lle Asp 1955 A ATC CAT GCT Tile His Ala TO G GAT TTA ACA Asp Leu Thr	TTA GTG CAG Leu Val Gln GAT GAG ATA Asp Glu Ile 1960 TAT TTG GTG Tyr Leu Val 1975 CCA CAC TCG Pro His Ser 1990 TTT CCT GAA Phe Pro Glu	CAT GAG 5982 His Glu 1945 GAG CCT 6030 Glu Pro AAT AGT 6078 Asn Ser TCG CTA 6126 Ser Leu AGG GAG 6174

TTG CCA CCA AA Leu Pro Pro Ly 20	s Asn Glu Asp	TTG ACG TTT Leu Thr Phe 2035	GAA GGA GAA Glu Gly Glu	AGC TTG TTT Ser Leu Phe 2040	6270
AAG GGA CCA CG Lys Gly Pro Ar 2045	C GAT TAC AAC 3 Asp Týr Asr	CCG ATA TCG Pro Ile Ser 2050	AGC ACC ATT Ser Thr Ile 2055	Cys His Leu	6318
ACG AAT GAA TC Thr Asn Glu Se 2060	r GAT GGG CAC r Asp Gly His 206	Thr Thr Ser	TTG TAT GGT Leu Tyr Gly 2070	ATT GGA TTT Ile Gly Phe	6366
GGT CCC TTC AT Gly Pro Phe Il 2075	C ATT ACA AAC E Ile Thr Asr 2080	AAG CAC TTG Lys His Leu	TTT AGA AGA Phe Arg Arg 2085	AAT AAT GGA Asn Asn Gly 2090	6414
ACA CTG TTG GT Thr Leu Leu Va	C CAA TCA CTA l Gln Ser Lev 2095	A CAT GGT GTA His Gly Val 210	Phe Lys Val	AAG AAC ACC LyB ABn Thr 2105	6,462
ACG ACT TTG CA Thr Thr Leu Gl 21	n Gln His Lev	C ATT GAT GGG 1 Ile Asp Gly 2115	AGG GAC ATG Arg Asp Met	ATA ATT ATT Ile Ile Ile 2120	6510
CGC ATG CCT AA Arg Met Pro Ly 2125				Lys Phe Arg	6558
GAG CCA CAA AG Glu Pro Gln Ar 2140	G GAA GAG CGC g Glu Glu Arc 214	J Ile Cys Leu	GTG ACA ACC Val Thr Thr 2150	AAC TTC CAA Asn Phe Gln	6606
ACT AAG AGC AT Thr Lys Ser Me 2155	G TCT AGC ATC Ser Ser Met 2160	GTG TCA GAC Val Ser Asp	ACT AGT TGC Thr Ser Cys 2165	ACA TTC CCT Thr Phe Pro 2170	6654
TCA TCT GAT GG Ser Ser Asp Gl	C ATA TTC TGG Y Ile Phe Trp 2175	AAG CAT TGG Lys His Trp 218	Ile Gln Thr	AAG GAT GGG Lys Asp Gly 2185	6702
CAG TGT GGC AG Gln Cys Gly Se 21	r Pro Leu Val	A TCA ACT AGA Ser Thr Arg 2195	GAT GGG TTC Asp Gly Phe	ATT GTT GGT Ile Val Gly 2200	6750
				2200	
ATA CAC TCA GC Ile His Ser Al 2205	A TCG AAT TTG A Ser Asn Phe	C ACC AAC ACA Thr Asn Thr 2210	AAC AAT TAT Asn Asn Tyr 221	TTC ACA AGC Phe Thr Ser	6798
Ile His Ser Al	s Ser Asn Phe	Thr Asn Thr 2210 A TTG TTG ACA Leu Leu Thr	Asn Asn Tyr 221:	TTC ACA AGC Phe Thr Ser	6798 6846
GTG CCG AAA AA Val Pro Lys As	TTC ATG GAM Phe Met Glu 222 TTGG CGA TTM	Thr Asn Thr 2210 A TTG TTG ACA 1 Leu Leu Thr 25	ASN ASN TYP 221! AAT CAG GAG ASN G1n G1u 2230 TCA GTA TTG	TTC ACA AGC Phe Thr Ser GCG CAG CAG Ala Gln Gln TGG GGG GGC	
GTG CCG AAA AA Val Pro Lys As 2220 TGG GTT AGT GG Trp Val Ser G1	E TTC ATG GAM The Met Glu 222 T TGG CGA TTM TTP ATG Leu 2240 C ATG AGC AAM	TTG TTG ACA Leu Leu Thr A AAT GCT GAC A AAT GCT GAC A SAN Ala Asp	Asn Asn Tyr 221! AAT CAG GAG Asn Gin Glu 2230 TCA GTA TTG Ser Val Leu 2245 CCT TTT CAG Pro Phe Gin	TTC ACA AGC Phe Thr Ser GCG CAG CAG Ala Gln Gln TGG GGG GGC Trp Gly Gly 2250 CCA GTT AAG	6846

			Val		GAA Glu			Ser					Pro			7038
GAG Glu	TGT Cys 2300	Pro	AGT Ser	CAG Gln	TTA Leu	GTC Val 2305	Thr	AAG Lys	CAT His	GTG Val	GTT Val 2310	Lys	GGA Gly	AAG Lys	TGT Cys	7086
	Leu				TAC Tyr 2320	Leu					Glu					7134
					GGA Gly 5					Ser					Glu	7182
				Asp	ATT Ile				Ala					Ile		7230
			Cys		TTG Leu			Leu					Leu			7278
AAG Lys	CTC Leu 2380	Lys	GCG Ala	TTA Leu	GGA Gly	TTC Phe 238	Pro	ACT Thr	GTG Val	AAC Asn	TAC Tyr 2390	Ile	ACT Thr	GAC Asp	CCA Pro	7326
GAG Glu 239	Glu	ATT Ile	TTT Phe	AGT Ser	GCA Ala 2400	Leu	AAT Asn	ATG Met	AAA Lys	GCA Ala 240	Ala	ATG Met	GGA Gly	GCA Ala	CTA Leu 2410	7374
TAC Tyr	AAA Lys	GGC Gly	AAG Lys	AAG Lys 241	AAA Lys 5	GAA Glu	GCT Ala	CTC Leu	AGC Ser 2420	Glu	CTC Leu	ACA Thr	CTA Leu	GAT Asp 242	Glu	7422
CAG Gln	GAG Glu	GCA Ala	ATG Met 243	Leu	AAA Lys	GCA Ala	AGT Ser	TGC Cys 243	Leu	CGA Arg	CTG Leu	TAT Tyr	ACG Thr 2440	Gly	AAG Lys	7470
TTG Leu	GGA Gly	ATT Ile 2449	Trp	AAT Asn	GGC Gly	TCA Ser	TTG Leu 2450	Lув	GCA Ala	GAG Glu	TTG Leu	CGT Arg 245	Pro	ATT Ile	GAG Glu	7518
AAG Lys	GTT Val 2460	Glu	AAC Asn	AAC Asn	AAA Lys	ACG Thr 246	Arg	ACT Thr	TTC Phe	ACA Thr	GCA Ala 2470	Ala	CCA Pro	ATA Ile	GAC Asp	7566
ACT Thr 2475	Leu	CTT Leu	GCT Ala	GGT Gly	AAA Lys 2480	Val	TGC Cys	GTG Val	GAT Asp	GAT Asp 248	Phe	AAC Aan	AAT	CAA Gln	TTT Phe 2490	7614
					AAG Lys 5					Val					Phe	7662
TAT Tyr	CAG Gln	GGG Gly	TGG Trp 2510	Asn	GAA Glu	TTG Leu	ATG Met	GAG Glu 251	Ala	TTA Leu	CCA Pro	AGT Ser	GGG Gly 252	Trp	GTG Val	7710
TAT Tyr	TGT Cys	GAC Asp	GCT Ala	GAT Asp	GGT Gly	TCG Ser	CAA Gln	TTC Phe	GAC Asp	AGT Ser	TCC Ser	TTG Leu	ACT Thr	CCA Pro	TTC Phe	7758

CTC Leu	ATT Ile 254	Asn	GCT Ala	GTA Val	TTG Leu	AAA Lys 254	Val	CGA Arg	CTT Leu	GCC Ala	TTC Phe 2550	Met	GAG Glu	GAA Glu	TGG Trp	7806
GAT Asp 255	ATT Ile 5	GGT Gly	GAG Glu	CAA Gln	ATG Met 2560	Leu	CGA Arg	AAT Asn	TTG Leu	TAC Tyr 2565	Thr	GAG Gļu	ATA Ile	GTG Val	TAT Tyr 2570	7854
ACA Thr	CCA Pro	ATC	CTC Leu	ACA Thr 257	Pro	GAT Asp	GGT Gly	ACT Thr	ATC 11e 2580	Ile	AAG Lys	AAG Lys	CAT His	AAA Lys 2585	Gly	7902
AAC Asn	AAT Asn	AGC Ser	GGG Gly 2590	Gln	CCT Pro	TCA Ser	ACA Thr	GTG Val 2595	Val	GAC Asp	AAC Asn	ACA Thr	CTC Leu 2600	Met	GTC · Val	7950
ATT	ATT Ile	GCA Ala 260	Met	TTA Leu	TAC Tyr	ACA Thr	TGT Cys 2610	Glu	AAG Lys	TGT Cys	GGA Gly	ATC Ile 2615	Asn	AAG Lye	GAA Glu	7998
GAG Glu	ATT Ile 2620	Val	TAT Tyr	TAC Tyr	GTC Val	AAT Asn 2625	Gly	GAT Asp	GAC Asp	CTA Leu	TTG Leu 2630	Ile	GCC Ala	ATT Ile	CAC His	8046
CCA Pro 263	GAT Asp 5	AAA Lys	GCT Ala	GAG Glu	AGG Arg 2640	Leu	AGT Ser	AGA Arg	TTC Phe	AAA Lys 2645	Glu	TCT Ser	TTC Phe	GGA Gly	GAG Glu 2650	8094
TTG Leu	GGC Gly	CTG Leu	AAA Lys	TAT Tyr 265	Glu	TTT Phe	GAC Asp	TGT Cys	ACC Thr 2660	Thr	AGG Arg	GAC Asp	AAG Lys	ACA Thr 2665	Gln	8142
TTG Leu	TGG Trp	TTC Phe	ATG Met 2670	Ser	CAC His	AGG Arg	GCT Ala	TTG Leu 2675	Glu	AGG Arg	Asp	GGC Gly	ATG Met 2680	Tyr	ATA Ile	8190
CCA Pro	AAG Lys	CTA Leu 2685	Glu	GAA Glu	GAA Glu	AGG Arg	ATT Ile 2690	Val	TCT Ser	ATT Ile	TTG Leu	GAA Glu 2695	Trp	GAC Asp	AGA Arg	8238
TCC Ser	AAA Lys	GAG	CCG	~~~												
	2700		Pro	Ser	CAT His	AGG Arg 2709	Leu	GAA Glu	GCC Ala	ATC Ile	TGT Cys 2710	Ala	TCA Ser	ATG Met	ATT Ile	8286
GAA Glu 271	GCA Ala	TGG	Pro	Ser TAT	His	Arg 2705 AAG Lys	Leu	Glu	Ala	Ile GAA	Cys 2710 ATC Ile	Ala CGC	Ser	Met TTC	Ile	8286 8334
Glu 271! GCA	GCA Ala	TGG Trp	Pro GGT Gly TTG	TAT Tyr	GAC Asp 2720 CAA Gln	Arg 2705 AAG Lys GCG	CTG Leu	Glu GTT Val	GAA Glu TCA	GAA Glu 2725 CAG Gln	Cys 2710 ATC Ile	CGC Arg	AAT Asn GAA	Met TTC Phe	TAT Tyr 2730 GGA Gly	
Glu 271! GCA Ala AAG	GCA Ala 5	TGG Trp GTT Val	Pro GGT Gly TTG Leu TAT	TAT Tyr GAA Glu 2735 CTG Leu	GAC Asp 2720 CAA Gln	Arg 2705 AAG Lys GCG Ala	CTG Leu CCG Pro	Glu GTT Val TAT Tyr	GAA Glu TCA Ser 2740 CTT Leu	GAA Glu 2725 CAG Gln	Cys 2710 ATC Ile CTT Leu	CGC Arg GCA Ala	Ser AAT Asn GAA Glu	Met TTC Phe GAA Glu 2745 ACA Thr	TAT Tyr 2730 GGA Gly	8334
Glu 271! GCA Ala AAG Lys	GCA Ala TGG Trp	TGG Trp GTT Val CCA Pro	GGT Gly TTG Leu TAT Tyr 2750 ACA Thr	TAT Tyr GAA Glu 2735 CTG Leu	GAC Asp 2720 CAA Gln GCT Ala	Arg 2705 AAG Lys GCG Ala GAG Glu	CTG Leu CCG Pro ACT Thr	Glu GTT Val TAT Tyr GCG Ala 2755 GAA Glu	GAA Glu TCA Ser 2740 CTT Leu	GAA Glu 2725 CAG Gln AAG Lys	Cys 2710 ATC Ile CTT Leu TTT Phe	CGC Arg GCA Ala TTG Leu	AAT Asn GAA Glu TAC Tyr 2760 GTG Val	Met TTC Phe GAA Glu 2745 ACA Thr	TAT Tyr 2730 GGA Gly TCT Ser	8334 8382

GTG GA Val As 2795	AT GCT sp Ala	GGT Gly	GCT Ala	GAC Asp 2800	Ala	GGT Gly	AAG Lys	AAG Lys	AAA Lys 280	Asp	CAA Gln	AAG Lys	GAT Asp	GAT Asp 2810	8574
AAA G	rc GCT al Ala	GAG Glu	CAG Gln 281	Ala	TCA Ser	AAG Lys	GAT Asp	AGG Arg 2820	Asp	GTT Val	AAT Asn	GCT Ala	GGA Gly 2825	Thr	8622
TCA GO	GA ACA ly Thr	TTC Phe 283	Ser	GTT Val	CCA Pro	CGA Arg	ATA Ile 2835	Asn	GCT Ala	AŢG Met	GCC Ala	ACA Thr 2840	Lys	CTT Leu	8670
CAA TI Gln Ty	AT CCA yr Pro 284	Arg	ATG Met	AGG Arg	GGA Gly	GAG Glu 2850	Val	GTT Val	GTA Val	AAC Asn	TTG Leu 285	Asn	CAC His	CTT Leu	8718
Leu G	A TAC Ly Tyr 360	AAG Lys	CCA Pro	CAG Gln	CAA Gln 2865	Ile	GAT Asp	TTG Leu	TCA Ser	AAT Asn 2870	Ala	CGA Arg	GCC Ala	ACA Thr	B7.66
CAT GAT HIS GAT 2875	AG CAG Lu Gln	TTT	GCC Ala	GCG Ala 2880	Trp	CAT His	CAG Gln	GCA Ala	GTG Val 2885	Met	ACA Thr	GCC Ala	TAT Tyr	GGA Gly 2890	8814
GTG AF	AT GAA sn Glu	GAG Glu	CAA Gln 289	Met	AAA Lys	ATA Ile	TTG Leu	CTA Leu 2900	Asn	GGA Gly	TTT Phe	ATG Met	GTG Val 2905	Trp	8862
TGC AT	TA GAA le Glu	AAT Asn 291	Gly	ACT Thr	TCC Ser	CCA Pro	AAT Asn 291	Leu	AAC Asn	GGA Gly	ACT Thr	TGG Trp 2920	Val	ATG Met	8910
ATG GF Met As	AT GGT Sp Gly 292	Glu	GAT Asp	CAA Gln	GTT Val	TCA Ser 2930	Tyr	CCG Pro	CTG Leu	AAA Lys	CCA Pro 2935	Met	GTT Val	GAA Glu	8958
AAC GC Asn Al 29	CG CAG La Gln 940	CCA Pro	ACA Thr	CTG Leu	AGG Arg 2945	Gln	ATT Ile	ATG Met	ACA Thr	CAC His 2950	Phe	AGT Ser	GAC Asp	CTG Leu	9006
GCT GA Ala Gl 2955	A GCG Lu Ala	TAT Tyr	ATT Ile	GAG Glu 2960	Met	AGG Arg	TAA Asn	AGG Arg	GAG Glu 2965	Arg	CCA Pro	TAC Tyr	ATG Met	CCT Pro 2970	9054
AGG TA Arg Ty	T CCT	CTA Leu	CAG Gln 2975	Arg	AAC Asn	ATT Ile	ACA Thr	GAC Asp 2980	Met	AGT Ser	TTG Leu	TCA Ser	CGC Arg 2985	Tyr	9102
GCG TI Ala Ph	C GAC ne Asp	TTC Phe 2990	Tyr	GAG Glu	CTA Leu	ACT Thr	TCA Ser 2995	Lys	ACA Thr	CCT Pro	GTT Val	AGA Arg 3000	Ala	AGG Arg	9150
GAG GC Glu Al	G CAT A His 300!	Met	CAA Gln	ATG Met	AAA Lys	GCT Ala 3010	Ala	GCA Ala	GTA Val	CGA Arg	AAC Asn 3015	Ser	GGA Gly	ACT Thr	9198
AGG TT Arg Le 30	TA TTT eu Phe 120	GGT Gly	CTT Leu	GAT Asp	GGC Gly 3025	Asn	GTG Val	GGT Gly	ACT Thr	GCA Ala 3030	Glu	GAA Glu	GAC Asp	ACT Thr	9246
GAA CG Glu Ar 3035	G CAC	ACA Thr	GCG Ala	CAC His	GAT Asp	GTG Val	AAC Asn	CGT Arg	AAC Asn	ATG Met	CAC His	ACA Thr	CTA Leu	TTA Leu	9294

Gly Val Arc		AGTITUTGU G	referriec r	rrecerr	MAGCITATT	9349
GTAATATATA	TGAATAGCTA	TTCACAGTGG	GACTTGGTCT	TGTGTTGAAT	AGTATCTTAT	9409
TAATTTTATA	ATGTCTTATT	AGTETCATTA	CTTAGGCGAA	CGACAAAGTO	AGGTCACCTC	9469
GGTCTAATTC	TCCTATGTAG	TGCGAG				9495

pTL 37/8595

GENERATE BamHI SITE

1. AT A(nt 93 | 2-93 | 7)

2 GENERATE Nool SITE AT B (nt 8516-8521)

³GENERATE BamHI SITE (nt 133-138) Nool SITE (nt 143-148) AND DEOXYADENYLATE-RESIDUE (at nt 142) at C.

DIGEST WITH Nool

REMOVE TEV NUCLEOTIDES 143-200/8462-8516 (FLANKED BY SITES B AND C)AND RELIGATE.

FIG. 2

