Physics 106a — Classical Mechanics

Michael Cross

California Institute of Technology

Fall Term, 2013

Lecture 10

Applications of the Hamiltonian Formulation

Applications of the Hamiltonian Formulation

- Towards Statistical Mechanics
 - Phase space volumes are conserved
 - Liouville's theorem
 - Equal probability assumption
- Towards Quantum mechanics
 - Schrodinger's equation
 - Time dependence

Liouville's Theorem

Conservation of probability:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}_{\rm ph}) = 0$$

Expanding the derivative

$$\frac{\partial \rho}{\partial t} + \vec{v}_{ph} \cdot \vec{\nabla} \rho + \rho \vec{\nabla} \cdot \vec{v}_{ph} = 0.$$

Hamiltonian dynamics:

$$\vec{\nabla}_{ph} \cdot \vec{v}_{ph} = \sum_{k=1}^{N} \left(\frac{\partial \dot{q}_k}{\partial q_k} + \frac{\partial \dot{p}_k}{\partial p_k} \right) = \sum_{k=1}^{N} \left(\frac{\partial}{\partial q_k} \frac{\partial H}{\partial p_k} - \frac{\partial}{\partial p_k} \frac{\partial H}{\partial q_k} \right) = 0$$

■ Liouville's theorem:

$$\frac{d\rho}{dt} \equiv \frac{\partial\rho}{\partial t} + \vec{v}_{\rm ph} \cdot \vec{\nabla}\rho = 0$$

Equilibrium: $\partial \rho / \partial t = 0$ gives

$$\vec{v}_{\rm ph} \cdot \vec{\nabla} \rho = 0$$

Poisson Bracket

Definition

For functions $A(\{q_k\}, \{p_k\}, t), B(\{q_k\}, \{p_k\}, t)$

$$[A, B]_{q,p} = \sum_{k=1}^{N} \left(\frac{\partial A}{\partial q_k} \frac{\partial B}{\partial p_k} - \frac{\partial A}{\partial p_k} \frac{\partial B}{\partial q_k} \right)$$

Time Dependence

Physical observable $O(\lbrace q_k \rbrace, \lbrace p_k \rbrace, t)$ e.g. $\vec{L} = \sum_i \vec{r}_i \times \vec{p}_i$

Time dependence of the observable under Hamiltonian dynamics

$$\frac{dO}{dt} = \sum_{k=1}^{N} \left(\frac{\partial O}{\partial q_k} \dot{q}_k + \frac{\partial O}{\partial p_k} \dot{p}_k \right) + \frac{\partial O}{\partial t}$$

Using the Hamilton equations of motion for \dot{q}_k , \dot{p}_k gives

$$\frac{dO}{dt} = [O, H]_{q,p} + \frac{\partial O}{\partial t}$$

If $\partial O/\partial t = 0$ and $[O, H]_{q,p} = 0$, then O is a constant of the motion

If A, B are both constants of the motion, then [A, B] is a constant of the motion (although it may not be nontrivial or new).

Towards Quantum Mechanics

- In quantum mechanics a physical observable is represented by an *operator* \hat{O} , and the possible values of the observable that can be measured are given by the eigenvalues o of the equation $\hat{O}\Psi = o\Psi$
 - energy ⇒ Hamiltonian
 - momentum $\Rightarrow -i\hbar\vec{\nabla}$ (in the position representation)
- Typically, operators do not commute: operating on a wave function first with \hat{B} and then \hat{A} is not the same as operating in the reverse order $\hat{A}\hat{B}\Psi \neq \hat{B}\hat{A}\Psi$

Commutator:
$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

■ Time dependence in quantum mechanics can be represented in a number of ways. In the *Heisenberg picture* the operators have a time dependence

$$\frac{d\hat{O}}{dt} = -\frac{i}{\hbar}[\hat{O}, \hat{H}] + \frac{\partial \hat{O}}{\partial t}$$

cf. the classical result with

Poisson bracket $\Rightarrow -i/\hbar \times \text{commutator}$