Programare logică

Signaturi, Algebre, Morfisme

Mul ξ imi S-sortate

$$S \neq \emptyset$$

lacktriangleO mulţime S- sortată A este o familie $A=\{A_s\}_{s\in S}$.

Mulţimi S-sortate

$$S \neq \emptyset$$

- **O mulţime** S- sortată A este o familie $A = \{A_s\}_{s \in S}$.
- Dacă $A = \{A_s\}_{s \in S}$ și $B = \{B_s\}_{s \in S}$ atunci

$$\blacksquare \emptyset = \{\emptyset_s\}_{s \in S}, \emptyset_s = \emptyset \text{ or. } s \in S,$$

$$\blacksquare A \subseteq B \Leftrightarrow A_s \subseteq B_s \text{ or. } s \in S,$$

$$\blacksquare A \cup B = \{A_s \cup B_s\}_{s \in S}, A \cap B = \{A_s \cap B_s\}_{s \in S},$$

$$\blacksquare A \times B = \{A_s \times B_s\}_{s \in S}.$$

Mulţimi S-sortate

$$S \neq \emptyset$$

- **O mulţime** S- sortată A este o familie $A = \{A_s\}_{s \in S}$.
- Dacă $A = \{A_s\}_{s \in S}$ și $B = \{B_s\}_{s \in S}$ atunci

$$\blacksquare \emptyset = \{\emptyset_s\}_{s \in S}, \emptyset_s = \emptyset \text{ or. } s \in S,$$

$$\blacksquare A \subseteq B \Leftrightarrow A_s \subseteq B_s \text{ or. } s \in S$$
,

$$\blacksquare A \cup B = \{A_s \cup B_s\}_{s \in S}, A \cap B = \{A_s \cap B_s\}_{s \in S},$$

$$\blacksquare A \times B = \{A_s \times B_s\}_{s \in S}.$$

Exemplu:
$$S = \{nat, bool\}, A = \{A_{nat}, A_{bool}\},$$

 $A_{nat} = \mathbb{N}, A_{bool} = \{T, F\}$

sorturi=tipuri, elemente de sort s= date de tip s

$$A = \{A_s\}_{s \in S}, B = \{B_s\}_{s \in S}, C = \{C_s\}_{s \in S}$$

■O funcție S- sortată $f: A \to B$ este o familie de funcții $f = \{f_s\}_{s \in S}$, unde $f_s: A_s \to B_s$ oricare $s \in S$.

$$A = \{A_s\}_{s \in S}, B = \{B_s\}_{s \in S}, C = \{C_s\}_{s \in S}$$

- ■O funcție S- sortată $f: A \to B$ este o familie de funcții $f = \{f_s\}_{s \in S}$, unde $f_s: A_s \to B_s$ oricare $s \in S$.
- ■Dacă $f: A \rightarrow B$ şi $g: B \rightarrow C$, definim $f; g: A \rightarrow C$, $f; g = \{f_s; g_s\}_{s \in S}$

$$A = \{A_s\}_{s \in S}, B = \{B_s\}_{s \in S}, C = \{C_s\}_{s \in S}$$

- ■O funcție S- sortată $f: A \to B$ este o familie de funcții $f = \{f_s\}_{s \in S}$, unde $f_s: A_s \to B_s$ oricare $s \in S$.
- ■Dacă $f: A \rightarrow B$ şi $g: B \rightarrow C$, definim $f; g: A \rightarrow C$, $f; g = \{f_s; g_s\}_{s \in S}$
- $f_s;g_s:A_s\to C_s,$ $f_s;g_s(a):=g_s(f_s(a)) \text{ or. } s\in S\text{, } a\in A_s$

$$A = \{A_s\}_{s \in S}, B = \{B_s\}_{s \in S}, C = \{C_s\}_{s \in S}$$

- ■O funcție S- sortată $f: A \to B$ este o familie de funcții $f = \{f_s\}_{s \in S}$, unde $f_s: A_s \to B_s$ oricare $s \in S$.
- ■Dacă $f: A \rightarrow B$ şi $g: B \rightarrow C$, definim $f; g: A \rightarrow C$, $f; g = \{f_s; g_s\}_{s \in S}$
- $f_s;g_s:A_s\to C_s,$ $f_s;g_s(a):=g_s(f_s(a)) \text{ or. } s\in S\text{, } a\in A_s$
- $\blacksquare 1_A : A \to A, 1_A = \{1_{A_s}\}_{s \in S}$

$$A = \{A_s\}_{s \in S}, B = \{B_s\}_{s \in S}, C = \{C_s\}_{s \in S}$$

- ■O funcție S- sortată $f: A \to B$ este o familie de funcții $f = \{f_s\}_{s \in S}$, unde $f_s: A_s \to B_s$ oricare $s \in S$.
- ■Dacă $f: A \rightarrow B$ şi $g: B \rightarrow C$, definim $f; g: A \rightarrow C$, $f; g = \{f_s; g_s\}_{s \in S}$
- $f_s;g_s:A_s\to C_s,$ $f_s;g_s(a):=g_s(f_s(a)) \text{ or. } s\in S\text{, } a\in A_s$
- $\blacksquare 1_A : A \to A, 1_A = \{1_{A_s}\}_{s \in S}$
- $\bullet(f;g); h=f;(g;h)$ (compunerea este asociativă)

$$A = \{A_s\}_{s \in S}, B = \{B_s\}_{s \in S}, C = \{C_s\}_{s \in S}$$

- ■O funcție S- sortată $f: A \to B$ este o familie de funcții $f = \{f_s\}_{s \in S}$, unde $f_s: A_s \to B_s$ oricare $s \in S$.
- ■Dacă $f: A \rightarrow B$ şi $g: B \rightarrow C$, definim $f; g: A \rightarrow C$, $f; g = \{f_s; g_s\}_{s \in S}$
- $lackbox{1}_s;g_s:A_s o C_s,$ $f_s;g_s(a):=g_s(f_s(a)) \ ext{or.} \ s\in S,\ a\in A_s$
- $\blacksquare 1_A : A \to A, 1_A = \{1_{A_s}\}_{s \in S}$
- $\bullet(f;g); h=f;(g;h)$ (compunerea este asociativă)
- $f: 1_B = f, 1_A; f = f \text{ or. } f: A \to B$

$$A = \{A_s\}_{s \in S}, B = \{B_s\}_{s \in S},$$

■O funcţie S-sortată $f:A\to B$ se numeşte injectivă, (surjectivă, bijectivă) dacă f_s este injectivă, (surjectivă, bijectivă) oricare $s\in S$.

$$A = \{A_s\}_{s \in S}, B = \{B_s\}_{s \in S},$$

- ■O funcţie S-sortată $f:A\to B$ se numeşte injectivă, (surjectivă, bijectivă) dacă f_s este injectivă, (surjectivă, bijectivă) oricare $s\in S$.
- ■O funcţie S-sortată $f:A\to B$ se numeşte inversabilă dacă există $g:B\to A$ a.î. $f;g=1_A$ şi $g;f=1_B$.

$$A = \{A_s\}_{s \in S}, B = \{B_s\}_{s \in S},$$

- ■O funcţie S-sortată $f:A\to B$ se numeşte injectivă, (surjectivă, bijectivă) dacă f_s este injectivă, (surjectivă, bijectivă) oricare $s\in S$.
- ■O funcţie S-sortată $f:A\to B$ se numeşte inversabilă dacă există $g:B\to A$ a.î. $f;g=1_A$ şi $g;f=1_B$.

Propoziţie. O funcţie S-sortată $f:A\to B$ este inversabilă dacă şi numai dacă este bijectivă (f_s este bijectivă oricare $s\in S$).

 (S,Σ) signatură multisortată

 $\blacksquare S$ mulţimea sorturilor

 (S, Σ) signatură multisortată

- $\blacksquare S$ mulţimea sorturilor
- lacksquare Σ mulţimea simbolurilor de operaţii $\sigma: s_1 \cdots s_n o s$

 (S,Σ) signatură multisortată

- S mulţimea sorturilor
- Σ mulţimea simbolurilor de operaţii $\sigma: s_1 \cdots s_n \to s$
 - lacksquare este simbolul (numele) operaţiei

 (S,Σ) signatură multisortată

- $\blacksquare S$ mulţimea sorturilor
- $\blacksquare \Sigma$ mulţimea simbolurilor de operaţii $\sigma: s_1 \cdots s_n \to s$
 - lacksquare este simbolul (numele) operaţiei
 - $\blacksquare s_1, \cdots, s_n, s \in S$

 s_1, \dots, s_n sorturile argumentelor

s sortul rezultatului

 $< s_1 \cdots s_n, s >$ aritatea operaţiei

 (S,Σ) signatură multisortată

- S mulţimea sorturilor
- $lacktriangleq \Sigma$ mulţimea simbolurilor de operaţii $\sigma: s_1 \cdots s_n \to s$
 - lacksquare este simbolul (numele) operaţiei
 - $s_1, \cdots, s_n, s \in S$

 s_1, \dots, s_n sorturile argumentelor

s sortul rezultatului

 $< s_1 \cdots s_n, s >$ aritatea operaţiei

■dacă n=0 atunci $\sigma:\to s$ este simbolul unei operaţii constante

 (S,Σ) signatură multisortată

$$S^* := \bigcup_{n \ge 0} S^n$$

 $S^0 := \{\lambda\}, S^n := \{s_1 \cdots s_n | s_i \in S \text{ or. } i\}$

(S,Σ) signatură multisortată

$$S^* := \bigcup_{n \ge 0} S^n$$

 $S^0 := \{\lambda\}, S^n := \{s_1 \cdots s_n | s_i \in S \text{ or. } i\}$

$$\Sigma = (\Sigma_{w,s})_{w \in S^*, s \in S}$$

$$\sigma \in \Sigma_{w,s} \Leftrightarrow \sigma : w \to s$$

$$w = s_1 \cdots s_n \in S^*$$

(S,Σ) signatură multisortată

$$S^* := \bigcup_{n \geq 0} S^n$$

 $S^0 := \{\lambda\}, S^n := \{s_1 \cdots s_n | s_i \in S \text{ or. } i\}$

$$\Sigma = (\Sigma_{w,s})_{w \in S^*, s \in S}$$

$$\sigma \in \Sigma_{w,s} \Leftrightarrow \sigma : w \to s$$

$$w = s_1 \cdots s_n \in S^*$$

 $lacktriangleright \sigma$ este supraîncărcat (overloaded) dacă

$$\sigma \in \Sigma_{w_1,s_1} \cap \Sigma_{w_2,s_2}$$
 şi $< w_1,s_1> \neq < w_2,s_2>$

(S,Σ) signatură multisortată

$$S^* := \bigcup_{n \geq 0} S^n$$

 $S^0 := \{\lambda\}, S^n := \{s_1 \cdots s_n | s_i \in S \text{ or. } i\}$

$$\Sigma = (\Sigma_{w,s})_{w \in S^*, s \in S}$$

$$\sigma \in \Sigma_{w,s} \Leftrightarrow \sigma : w \to s$$

$$w = s_1 \cdots s_n \in S^*$$

 $lacktriangleright \sigma$ este supraîncărcat (overloaded) dacă

$$\sigma \in \Sigma_{w_1,s_1} \cap \Sigma_{w_2,s_2} \ \Si < w_1,s_1 > \neq < w_2,s_2 >$$

este permisă supraîncărcarea operaţiilor

- $\blacksquare BOOL = (S, \Sigma)$
 - $\blacksquare S = \{bool\}$
 - $\blacksquare \Sigma = \{T : \rightarrow bool, F : \rightarrow bool, \}$

 $\neg: bool \rightarrow bool,$

 $\vee : bool\ bool \rightarrow bool,$

 $\wedge : bool\ bool \rightarrow bool\}$

- $\blacksquare BOOL = (S, \Sigma)$
 - $\blacksquare S = \{bool\}$
 - $\blacksquare \Sigma = \{T : \rightarrow bool, F : \rightarrow bool, \}$

 $\neg: bool \rightarrow bool,$

 $\vee: bool\ bool \rightarrow bool,$

 $\wedge : bool\ bool \rightarrow bool\}$

- $\blacksquare NAT = (S, \Sigma)$
 - $\blacksquare S = \{nat\}$
 - $\blacksquare \Sigma = \{0 : \rightarrow nat, succ : nat \rightarrow nat\}$

- $\blacksquare NATBOOL = (S, \Sigma)$
 - $\blacksquare S = \{bool, nat\}$
 - $$\begin{split} \blacksquare \Sigma &= \{T : \rightarrow bool, F : \rightarrow bool, 0 : \rightarrow nat, \\ succ : nat \rightarrow nat, \\ &\leq: nat \ nat \rightarrow bool \} \end{split}$$

- $\blacksquare NATBOOL = (S, \Sigma)$
 - $\blacksquare S = \{bool, nat\}$
 - $$\begin{split} \blacksquare \Sigma &= \{T : \rightarrow bool, F : \rightarrow bool, 0 : \rightarrow nat, \\ succ : nat \rightarrow nat, \\ &\leq: nat \ nat \rightarrow bool \} \end{split}$$
- $\Sigma = (\Sigma_{w,s})_{w \in S^*, s \in S}$ $\Sigma_{\lambda,bool} = \{T, F\}, \Sigma_{\lambda,nat} = \{0\},$ $\Sigma_{nat,nat} = \{succ\}, \Sigma_{nat\ nat,bool} = \{\leq\},$ $\Sigma_{w,s} = \emptyset \text{ pentru celelalte} < w, s > \in S^* \times S$

```
■STIVA = (S, \Sigma)

■S = \{elem, stiva\}

■\Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva,

push : elem \ stiva \rightarrow stiva,

pop : stiva \rightarrow stiva,

top : stiva \rightarrow elem\}
```

■ $AUTOMAT = (S, \Sigma)$ ■ $S = \{intrare, stare, iesire\}$ ■ $\Sigma = \{s0 : \rightarrow stare, f : intrare stare \rightarrow stare, g : stare \rightarrow iesire\}$

- $\blacksquare AUTOMAT = (S, \Sigma)$
 - $\blacksquare S = \{intrare, stare, iesire\}$
 - $\Sigma = \{s0 : \rightarrow stare, \\ f : intrare \ stare \rightarrow stare, \\ f : intrare \rightarrow stare, \\ f$
 - $g: stare \rightarrow iesire \}$
- $\blacksquare GRAF = (S, \Sigma)$
 - $\blacksquare S = \{arc, nod\}$
 - $\blacksquare \Sigma = \{v0 : arc \to nod, \quad v1 : arc \to nod\}$

Signaturi ordonat-sortate

 (S, \leq, Σ) signatură ordonat-sortată

- $\blacksquare(S,\Sigma)$ signatură multisortată
- $\blacksquare(S, \leq)$ mulţime parţial ordonată
- condiţia de monotonie

$$\sigma \in \Sigma_{w_1,s_1} \cap \Sigma_{w_2,s_2}, w_1 \leq w_2 \Rightarrow s_1 \leq s_2$$

Exemplu:

 $S = \{elem, stiva, nvstiva\}, elem \leq stiva, nvstiva \leq stiva$ $\Sigma = \{empty : \rightarrow stiva, push : elem stiva \rightarrow nvstiva,$ $pop : nvstiva \rightarrow stiva, top : nvstiva \rightarrow elem\}.$

În practică se folosesc signaturi ordonat-sortate.

Algebre multisortate

 (S,Σ) - signatură multisortată

O algebră multisortată de tip (S, Σ) este o pereche (A_S, A_Σ) , unde

- $\blacksquare A_S = \{A_s\}_{s \in S}$ (mulţimea suport)
- $\blacksquare A_{\Sigma} = \{A_{\sigma}\}_{{\sigma} \in \Sigma}$ (familie de operaţii) a.î.
 - ■dacă $\sigma : \to s$ atunci $A_{\sigma} \in A_s$
 - ■dacă $\sigma: s_1 \cdots s_n \to s$ atunci $A_\sigma: A_{s_1} \times \cdots \times A_{s_n} \to A_s$ $A = (A_S, A_\Sigma)$ este o (S, Σ) -algebră

■BOOL = $(S = \{bool\}, \Sigma)$ $\Sigma = \{T : \rightarrow bool, F : \rightarrow bool, \neg : bool \rightarrow bool,$ $\forall : bool \ bool \rightarrow bool, \land : bool \ bool \rightarrow bool\}$

- ■BOOL = $(S = \{bool\}, \Sigma)$ $\Sigma = \{T : \rightarrow bool, F : \rightarrow bool, \neg : bool \rightarrow bool,$ $\forall : bool \ bool \rightarrow bool, \land : bool \ bool \rightarrow bool\}$
- $\blacksquare BOOL$ -algebra A:

$$A_{bool} := \{0, 1\}$$

 $A_T := 1, A_F := 0, A_{\neg}(x) := 1 - x,$
 $A_{\lor}(x, y) := max(x, y), A_{\land}(x, y) := min(x, y)$

- ■BOOL = $(S = \{bool\}, \Sigma)$ $\Sigma = \{T : \rightarrow bool, F : \rightarrow bool, \neg : bool \rightarrow bool,$ $\forall : bool \ bool \rightarrow bool, \land : bool \ bool \rightarrow bool\}$
- $\blacksquare BOOL$ -algebra A:

$$A_{bool} := \{0, 1\}$$

 $A_T := 1, A_F := 0, A_{\neg}(x) := 1 - x,$
 $A_{\lor}(x, y) := max(x, y), A_{\land}(x, y) := min(x, y)$

 $\blacksquare BOOL$ -algebra B:

$$B_{bool} := \mathcal{P}(\mathbb{N})$$

 $B_T := \mathbb{N}, B_F := \emptyset, B_{\neg}(X) := \mathbb{N} \setminus X,$
 $B_{\lor}(X,Y) := X \cup Y, B_{\land}(X,Y) := X \cap Y$

- $NAT = (S = \{nat\}, \Sigma)$ $\Sigma = \{0 : \rightarrow nat, succ : nat \rightarrow nat\}$
- $\blacksquare NAT$ -algebra A:

$$A_{nat} := \mathbb{N}$$
 $A_0 := 0$, $A_{succ}(x) := x + 1$

- $NAT = (S = \{nat\}, \Sigma)$ $\Sigma = \{0 :\rightarrow nat, succ : nat \rightarrow nat\}$
- $\blacksquare NAT$ -algebra A:

$$A_{nat}:=\mathbb{N}$$
 $A_0:=0$, $A_{succ}(x):=x+1$

 $\blacksquare NAT$ -algebra B:

$$B_{nat} := \{0, 1\}$$

 $B_0 := 0, B_{succ}(x) := 1 - x$

- $NAT = (S = \{nat\}, \Sigma)$ $\Sigma = \{0 : \rightarrow nat, succ : nat \rightarrow nat\}$
- $\blacksquare NAT$ -algebra A:

$$A_{nat} := \mathbb{N}$$
 $A_0 := 0$, $A_{succ}(x) := x + 1$

 $\blacksquare NAT$ -algebra B:

$$B_{nat} := \{0, 1\}$$

 $B_0 := 0, B_{succ}(x) := 1 - x$

 $\blacksquare NAT$ -algebra C:

$$C_{nat} := \{2^n | n \in \mathbb{N}\}$$

 $C_0 := 1, C_{succ}(2^n) := 2^{n+1}$

■STIVA = $(S = \{elem, stiva\}, \Sigma)$ $\Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva, pop : stiva \rightarrow stiva, push : elem stiva \rightarrow stiva, top : stiva \rightarrow elem \}$

- ■STIVA = $(S = \{elem, stiva\}, \Sigma)$ $\Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva, pop : stiva \rightarrow stiva, push : elem stiva \rightarrow stiva, top : stiva \rightarrow elem\}$
- ■STIVA-algebra A: $A_{elem} := \mathbb{N}, A_{stiva} := \mathbb{N}^*$ $A_0 := 0, A_{empty} := \lambda, A_{push}(n, n_1 \cdots n_k) := n n_1 \cdots n_k,$ $A_{pop}(\lambda) = A_{pop}(n) := \lambda,$ $A_{pop}(n_1 n_2 \cdots n_k) := n_2 \cdots n_k \text{ pt. } k \geq 2,$ $A_{top}(\lambda) := 0, A_{top}(n_1 \cdots n_k) := n_1 \text{ pt. } k \geq 1.$

- ■STIVA = $(S = \{elem, stiva\}, \Sigma)$ $\Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva, pop : stiva \rightarrow stiva, push : elem stiva \rightarrow stiva, top : stiva \rightarrow elem\}$
- ■STIVA-algebra A: $A_{elem} := \mathbb{N}, A_{stiva} := \mathbb{N}^*$ $A_0 := 0, A_{empty} := \lambda, A_{push}(n, n_1 \cdots n_k) := n n_1 \cdots n_k,$ $A_{pop}(\lambda) = A_{pop}(n) := \lambda,$ $A_{pop}(n_1 n_2 \cdots n_k) := n_2 \cdots n_k \text{ pt. } k \geq 2,$ $A_{top}(\lambda) := 0, A_{top}(n_1 \cdots n_k) := n_1 \text{ pt. } k \geq 1.$
- ■STIVA-algebra B: $B_{elem} := \{0\}$, $B_{stiva} := \mathbb{N}$ $B_0 := 0$, $B_{empty} := 0$, $B_{push}(0, n) := n + 1$ or. n, $B_{pop}(0) := 0$, $A_{pop}(n) := n 1$ pt. $n \ge 1$, $B_{top}(n) := 0$ or. n.

■ $AUTOMAT = (S = \{intrare, stare, iesire\}, \Sigma)$ $\Sigma = \{s0 : \rightarrow stare, f : intrare stare \rightarrow stare, g : stare \rightarrow iesire\}$

- ■AUTOMAT = $(S = \{intrare, stare, iesire\}, \Sigma)$ $\Sigma = \{s0 : \rightarrow stare, f : intrare stare \rightarrow stare, g : stare \rightarrow iesire\}$
- $\blacksquare AUTOMAT$ -algebra A:

$$A_{intrare} = \{x, y\}, A_{stare} = \{s0, s1\}, A_{iesire} := \{T, F\}$$

 $A_{s0} := s0, A_g(s0) := F, A_g(s1) := T,$
 $A_f(x, s0) := s0, A_f(y, s0) := s1,$
 $A_f(x, s1) := s0, A_f(y, s1) := s1$

■AUTOMAT = $(S = \{intrare, stare, iesire\}, \Sigma)$ $\Sigma = \{s0 : \rightarrow stare, f : intrare stare \rightarrow stare, g : stare \rightarrow iesire\}$

$\blacksquare AUTOMAT$ -algebra A:

 $A_{intrare} = \{x, y\}, A_{stare} = \{s0, s1\}, A_{iesire} := \{T, F\}$ $A_{s0} := s0, A_g(s0) := F, A_g(s1) := T,$ $A_f(x, s0) := s0, A_f(y, s0) := s1,$ $A_f(x, s1) := s0, A_f(y, s1) := s1$

$\blacksquare AUTOMAT$ -algebra B:

$$B_{intrare} = B_{stare} = B_{iesire} := \mathbb{N}$$

 $B_{s0} := 0, B_f(m, n) := m + n, B_g(n) := n + 1$

Subalgebre

 (S,Σ) - signatură multisortată (A_S,A_Σ) , (B_S,B_Σ) (S,Σ) -algebre (B_S,B_Σ) este (S,Σ) -subalgebră a lui (A_S,A_Σ) dacă

- $\blacksquare B_s \subseteq A_s \text{ or. } s \in S,$
- $\blacksquare B_{\sigma} = A_{\sigma} \text{ or. } \sigma : \to s,$
- $lacksquare B_{\sigma}(b_1,\ldots,b_n)=A_{\sigma}(b_1,\ldots,b_n) ext{ or. } \sigma:s_1\cdots s_n o s,$ or. $(b_1,\ldots,b_n)\in B_{s_1} imes\cdots imes B_{s_n}.$

 $B = \{B_s\}_{s \in S}$ este parte stabilă a lui $A = \{A_s\}_{s \in S}$

 $\blacksquare BOOL$ -algebra B:

$$B_{bool} := \mathcal{P}(\mathbb{N})$$

 $B_T := \mathbb{N}, B_F := \emptyset, B_{\neg}(X) := \mathbb{N} \setminus X,$
 $B_{\vee}(X,Y) := X \cup Y, B_{\wedge}(X,Y) := X \cap Y$

- $ullet B_1 = \{\emptyset, \mathbb{N}\} \cup \{\{n\} | n \in \mathbb{N}\}$ nu este parte stabilă.
- $lackbox{\blacksquare} B_2 = \{\emptyset, \mathbb{N}\} \cup \{\{n\}, \mathbb{N} \setminus \{n\}\}\}$ este parte stabilă ($n \in \mathbb{N}$ fixat).

 $\blacksquare AUTOMAT$ -algebra A

$$A_{intrare} = \{x, y\}, A_{stare} = \{s0, s1\}, A_{iesire} := \{T, F\}$$

 $A_{s0} := s0, A_g(s0) := F, A_g(s1) := T,$
 $A_f(x, s0) := s0, A_f(y, s0) := s1,$
 $A_f(x, s1) := s0, A_f(y, s1) := s1$

 $\blacksquare P = \{P_{intrare} := \{x\}, P_{stare} := \{s0\}, P_{iesire} := \{F\}\}$ este parte stabilă a lui A

Algebre ordonat-sortate

 (S, \leq, Σ) signatură ordonat-sortată O algebră ordonat-sortată de tipul (S, \leq, Σ) este o (S, Σ) -algebră (A_S, A_Σ) care satisface următoarele proprietăți:

$$\blacksquare s_1 \le s_2 \Rightarrow A_{s_1} \subseteq A_{s_2}$$

- $ullet \sigma \in \Sigma_{w_1,s_1} \cap \Sigma_{w_2,s_2}$, $w_1 \leq w_2 \Rightarrow$ $A_{\sigma}^{w_2,s_2}(\mathbf{x}) = A_{\sigma}^{w_1,s_1}(\mathbf{x})$ oricare $\mathbf{x} \in A_{w_1}$.
- ■Semantica unui modul in CafeObj este o algebră ordonat-sortată (mod!) sau o clasă de algebre ordonat-sortate (mod*).