0

15/9/20

ソ

CAT-2 MAT2001 Statistics for Engineers

slot:

Timing: 2:30pt 3:15pm

Name: Parasharth 5

Reg. NO: 19 MID0020

$$y \setminus x -1 + 1 + 1 + 8$$

0 $\frac{1}{8}$ $\frac{3}{8}$ $\frac{4}{8}$

1 $\frac{2}{8}$ $\frac{2}{8}$ $\frac{4}{8}$

PCD $\frac{3}{8}$ $\frac{5}{8}$ $\frac{1}{2}$

CONDECTORITY)-EXX

$$\begin{split} & \mathbb{E}[\mathcal{X}] \ni \mathcal{Z}_{\mathcal{X}_{i}}(\rho_{i}) \ni -1 \begin{pmatrix} 3/8 \end{pmatrix} + 1 \begin{pmatrix} 5/8 \end{pmatrix} \ni \frac{2}{8} \ni \frac{1}{4} \\ & \mathbb{E}[\mathcal{Y}] \ni 2g_{i}(\rho_{i}) \ni 0 \begin{pmatrix} 4/8 \end{pmatrix} + 1 \begin{pmatrix} 4/8 \end{pmatrix} \ni 4/8 \ni \frac{1}{2} \\ & \mathbb{E}[\mathcal{X}^{2}] \ni \mathcal{Z}_{\mathcal{X}_{i}}^{2}(\rho_{i}) \ni (1) \begin{pmatrix} 3/8 \end{pmatrix} + 1 \begin{pmatrix} 5/8 \end{pmatrix} \ni \begin{pmatrix} 8/8 \end{pmatrix} \ni \begin{pmatrix} 8/8 \end{pmatrix} \ni \begin{pmatrix} 9/8 \end{pmatrix} \ni 1 \\ & \mathbb{E}[\mathcal{Y}^{2}] \ni \mathcal{Z}_{\mathcal{X}_{i}}^{2}(\rho_{i}) \ni 0 \begin{pmatrix} 4/8 \end{pmatrix} + 1 \begin{pmatrix} 4/8 \end{pmatrix} \ni 4/8 \ni 4/8 \ni 4/8 \end{split}$$
 $\mathbb{E}[\mathcal{Y}^{2}] \ni \mathcal{Z}_{\mathcal{X}_{i}}^{2}(\rho_{i}) \ni 0 \begin{pmatrix} 4/8 \end{pmatrix} + 1 \begin{pmatrix} 4/8 \end{pmatrix} \ni 4/8 \ni 4/8 \ni 4/8 \end{split}$

$$\nabla_{x}^{2} \ni E[x^{2}] - (E[x])$$

University

$$n_1 \Rightarrow 400$$

Passed $\Rightarrow 300$

Passed $\Rightarrow 300$
 $p_1 \Rightarrow 60.75$
 $p_2 \Rightarrow 60.6$

It is suight tailed by poltresis

Step 4:
$$z = \frac{\rho_1 - \rho_2}{\sqrt{\rho_1 + 1/n_2}}$$

$$p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$$

$$=$$
 $\frac{300 + 300}{900}$

$$= \frac{2700}{(0.2178)(0.0045)} = \frac{2700}{569.2099}$$

Step 5:

.. Proposition of bassed student in univosesity students is higher than affliated college students.

$$\Rightarrow \frac{1}{2} \left[\frac{e^{\frac{1}{2}x}}{\left[\frac{1}{2} \right]} \right]^{\frac{1}{2}}$$

$$P(x)=\frac{1}{2}\int_{0}^{\infty}e^{-\frac{1}{2}x}dx$$

$$=\frac{1}{2}\int_{0}^{\infty}e^{-\frac{1}{2}x}dx$$

$$=\frac{1}{2}\int_{0}^{\infty}e^{-\frac{1}{2}x}dx$$

$$=\frac{1}{2}\int_{0}^{\infty}e^{-\frac{1}{2}x}dx$$

$$=\frac{1}{2}\int_{0}^{\infty}e^{-\frac{1}{2}x}dx$$

$$=\frac{1}{2}\int_{0}^{\infty}e^{-\frac{1}{2}x}dx$$

$$=\frac{1}{2}\int_{0}^{\infty}e^{-\frac{1}{2}x}dx$$

Conditional probability => 0.606936

リ

$$\Rightarrow \frac{2}{3}$$

2=) 25-33

5 - 2.666

2 <u>340-33</u> <u>3</u>2.33

20

$$5q \Rightarrow na_0 + q_1 \leq x_1 + q_2 \leq x_2$$

 $20 \Rightarrow 4q_0 + q_1 (34) + q_2 (19)$

$$|40 = a_0(34) + a_1(364) + a_2(186)$$

$$a_1 = -0.085882$$