Hong Kong Mathematics Olympiad (1991 – 1992) Sample Event (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

 \boldsymbol{C}

30°

(i) 已知 $A = (b^m)^n + b^{m+n}$ 。當 b = 4,m = n = 1 時,求 A 的值。 Given $A = (b^m)^n + b^{m+n}$. Find the value of A when b = 4, m = n = 1.

A =

B =

(iii) 從下列方程求 C: $\sqrt{\frac{20B+45}{C}} = C$ 。

C =

- Solve for C in the following equation: $\sqrt{\frac{20B+45}{C}} = C$.
- (iv) 如圖所示,求D的值。 Find the value of D in the figure.

D =

Hong Kong Mathematics Olympiad (1991 – 1992) Final Event 1 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 若一凸 n 邊形之內角和為 1440°, 求 n 的值。

If the sum of the interior angles of an n-sided polygon is 1440°, find the value of n.

(iii) 如圖所示,若 z=p+q,求 z 的值。 In the figure, if z=p+q, find the value of z.

(iv) 若 S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + z, 求 S 的值。 If S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + z, find the value of S.

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Team No.

+ Bonus score Time

Total score Min.

Sec.

Hong Kong Mathematics Olympiad (1991 – 1992) Final Event 2 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(ii) 若 $\left(x + \frac{a}{4}\right)^2 = x^2 + \frac{a}{2} \cdot x + b$,求 b 的 值。

If $\left(x + \frac{a}{4}\right)^2 = x^2 + \frac{a}{2} \cdot x + b$, find the value of b.

(iii) 若 $c = \log_2 \frac{b}{9}$, 求 c 的值。
If $c = \log_2 \frac{b}{9}$, find the value of c .

c =

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed =

Team No.

Time

+ Bonus + score

Total score

Min. Sec.

Hong Kong Mathematics Olympiad (1991 – 1992) Final Event 3 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

 a =

(ii) 若直綫 ax + 2y + 1 = 0 與 3x + by + 5 = 0 互相垂直,求 b 的值。 If the lines ax + 2y + 1 = 0 and 3x + by + 5 = 0 are perpendicular to each other, find the value of b.

b =

(iii) 三點 (2,b)、(4,-b) 及 $(5,\frac{c}{2})$ 共緩,求 c 的值。

The three points (2, b), (4, -b) and $(5, \frac{c}{2})$ are collinear. Find the value of c.

c =

(iv) 若 $\frac{1}{x} : \frac{1}{y} : \frac{1}{z} = 3 : 4 : 5$ 且 $\frac{1}{x+y} : \frac{1}{y+z} = 9c : d$,求 d 的值。

If $\frac{1}{x} : \frac{1}{y} : \frac{1}{z} = 3 : 4 : 5$ and $\frac{1}{x+y} : \frac{1}{y+z} = 9c : d$, find the value of d.

d =

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Team No.

+ Bonus score Time Min. Sec.

Hong Kong Mathematics Olympiad (1991 – 1992) Final Event 4 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(ii) 若
$$B = \log_2\left(\frac{8A}{5}\right)$$
,求 B 的值。
If $B = \log_2\left(\frac{8A}{5}\right)$, find the value of B .

(iii) 已知
$$x + \frac{1}{x} = B \circ 若 C = x^3 + \frac{1}{x^3}$$
,求 C 的值。
Given $x + \frac{1}{x} = B$. If $C = x^3 + \frac{1}{x^3}$, find the value of C .

$$C =$$

(iv) 設
$$(p,q)=qD+p$$
。若 $(C,2)=212$,求 D 的值。
Let $(p,q)=qD+p$. If $(C,2)=212$, find the value of D .

$$D =$$

FOR OFFICIAL USE

Hong Kong Mathematics Olympiad (1991 – 1992) Final Event 5 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 設 $p \cdot q$ 為二次方程 $x^2 - 3x - 2 = 0$ 的兩根,且 $a = p^3 + q^3$,求a 的值。 Let p, q be the roots of the quadratic equation $x^2 - 3x - 2 = 0$ and $a = p^3 + q^3$. Find the value of a.

(iii) 求c的值。 Find the value of c.

(iv) 設 $\sqrt{2x+23} + \sqrt{2x-1} = c$ 及 $d = \sqrt{2x+23} - \sqrt{2x-1}$ 。 求 d 的值。 Let $\sqrt{2x+23} + \sqrt{2x-1} = c$ and $d = \sqrt{2x+23} - \sqrt{2x-1}$. Find the value of d.

d =

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Team No.

+ Bonus score Time

Total score

Min. Sec.

locx Final Events (Individual)

Hong Kong Mathematics Olympiad (1991 – 1992) Sample Event (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

細看下列各組數字:

Consider the following groups of numbers:

	(14,		12) 18, 26,		30)					
(i)					西數字。 If the 50 th group	o.				
(ii)	求第 Find				数字。 of the 50 th grou	p.				
(iii)					与為 50P,求 <i>I</i> if the sum of t		the 50 th gro	up is 50 <i>P</i> .	P=	
(iv)					和為 100Q,為 if the sum of		the 100 th gr	roup is 100 <i>Q</i> .	Q=	
Sc	OFFIC ore for curacy		<u>ISE</u>	×	Mult. factor fo	or =	=	Team No.		
						+ Bonus score		Time		
					То	tal score			Min.	Sec.
C:\Us	ers\852	90\Dro	pbox\[Oata\M	y Web\Competitio	ns\HKMO\HKM	OFinal\HKMC	01992final.docx	Final Events (Group Sample)

Hong Kong Mathematics Olympiad (1991 – 1992) Final Event 6 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

如圖所示, $\triangle ABC$ 及 $\triangle XYZ$ 為等邊三角形,同時亦為一柱體的底和面。 P 為 BY 的中點,且 BP=3 cm,XY=4 cm。

As shown in the figure, $\triangle ABC$ and $\triangle XYZ$ are equilateral triangles and are ends of a right prism. P is the mid-point of BY and BP = 3 cm, XY = 4 cm.

(iii) If
$$\cos \angle PCX = \frac{\sqrt{c}}{5}$$
, find the value of c .
若 $\cos \angle PCX = \frac{\sqrt{c}}{5}$, 求 c 的值。

(iv) If
$$\sin \angle PCX = \frac{2\sqrt{d}}{5}$$
, find the value of d .
若 $\sin \angle PCX = \frac{2\sqrt{d}}{5}$, 求 d 的值。

$$d =$$

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Team No.

+ Bonus score Time Min. Sec.

C:\Users\85290\Dropbox\Data\My Web\Competitions\HKMO\HKMOFinal\HKMO1992final.docx

Final Events (Group)

Hong Kong Mathematics Olympiad (1991 – 1992) Final Event 7 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

已知 OABC 為一平行四邊形。

Given that *OABC* is a parallelogram.

(i) 求 a 的值。 Find the value of a.

(ii) 求b的值。
Find the value of b.

(iii) 求 OABC 的面積。 Find the area of OABC.

(iv) 求 tan θ 的值。 Find the value of tan θ.

FOR OFFICIAL USE

Hong Kong Mathematics Olympiad (1991 – 1992) Final Event 8 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

(i) 一邊長 A cm 的等邊三角形之面積為 $\sqrt{3}$ cm 2 。求 A 的值。 The area of an equilateral triangle of side A cm is $\sqrt{3}$ cm 2 . Find the value of A.

(ii) 若 $19 \times 243^{\frac{A}{5}} = b$,求 b 的值。 If $19 \times 243^{\frac{A}{5}} = b$, find the value of b.

(iii) 方程 $x^3 - 173x^2 + 339x + 513 = 0$ 之根為-1、b 及 c。求c 的值。 The roots of the equation $x^3 - 173x^2 + 339x + 513 = 0$ are -1, b and c. Find the value of c.

<i>c</i> =			

(iv) 某三角錐體之底為一邊長 2c cm 之等邊三角形。若該三角錐體之高為 $\sqrt{27}$ cm,且其體積為 d cm³,求 d 的值。 The base of a triangular pyramid is an equilateral triangle of side 2c cm. If the height of the pyramid is $\sqrt{27}$ cm, and its volume is d cm³, find the value of d.

d =		
-----	--	--

Score for accuracy X Mult. factor for speed =

Bonus

Team No.

Time

Min.

Sec.

Total score

Final Events (Group)

Hong Kong Mathematics Olympiad (1991 – 1992) Final Event 9 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

若一正六邊形 ABCDEF 之面積為 $54\sqrt{3}$ cm²,且 AB = x cm, $AC = y\sqrt{3}$ cm, If the area of a regular hexagon ABCDEF is $54\sqrt{3}$ cm² and AB = x cm, $AC = y\sqrt{3}$ cm,

(i) 求x的值。 find the value of x.

x =

(ii) 求y的值。 find the value of y.

y =

細看以下之數形:

Consider the following number pattern:

- $T_1 = 2$ $T_2 = 8$ $T_3 = 18$ $T_4 = 32$
- (iii) 求 T_{10} 的值。 Find the value of T_{10} .

 $T_{10} =$

(iv) 若 $T_n = 722$,求 n 的值。 If $T_n = 722$, find the value of n.

n =

FOR OFFICIAL USE

Hong Kong Mathematics Olympiad (1991 – 1992) Final Event 10 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

The following shows the graph of $y = ax^2 + bx + c$.

(i) 求 c 的值。

Find the value of c.

(ii) 求 a 的值。

Find the value of a.

(iii) 求b的值。

Find the value of b.

(iv) 若 y=x+d 為 $y=ax^2+bx+c$ 的切線,求 d 的值。

If y = x + d is tangent to $y = ax^2 + bx + c$, find the value of d.

FOR OFFICIAL USE

Score for accuracy

× Mult. factor for speed

Team No.

+ Bonus score

Time

Total score

Sec.