Sistemas Basados en Marcos

Sergio García Prado

27 de diciembre de 2016

I. Representar la siguiente descripción de los vasos sanguíneos mediante un sistema de marcos:

Figura 1: Representación de los basos sanquíneos

- a) Los vasos sanguíneos tienen forma tubular y transportan sangre.
- b) Los vasos sanguíneos se subdividen en tres categorías: arterias, capilares y venas. Estas categorías se subdividen como indica la figura 1.
- c) La aorta, la arteria y vena pulmonar y la arteria cubital son ejemplos de vasos sanguíneos específicos.
- d) Las arterias transportan sangre desde el corazón hasta los capilares de los tejidos y se distinguen de otros vasos por poseer una pared gruesa. En la mayoría de los casos, las arterias transportan sangre con un elevado contenido de oxígeno.
- e) Contrariamente a las arterias, las venas transportan sangre desde los capilares de los tejidos al corazón. Tienen una pared relativamente delgada. Usualmente, las venas contienen sangre pobre en oxígeno.
- f) La presión sanguínea media en las arterias es relativamente elevada (40-100 mmHg), frente a una presión media inferior a 10 mmHg en la mayoría de las venas.
- g) Las arterias pulmonares son un ejemplo de excepción a la descripción anterior. Estas arterias transfieren sangre del corazón a los pulmones y poseen una gruesa pared muscular. Por ello se las considera arterias. Sin embargo, estas arterias transfieren sangre con bajo contenido en oxígeno y su presión media es más bien baja (13 mmHg).
- h) Las grandes arterias tiene un diámetro entre 1 y 2,5 cm. Las pequeñas arterias tienen un diámetro de 0,4 cm. y las arteriolas de 0,003 cm.
- i) Las grandes venas tienen un diámetro entre 3 y 1,5 cm. y las pequeñas venas tienen un diámetro de 0.5 cm.

- j) La arteria aorta tiene un diámetro de 2,5 cm.
- k) La arteria pulmonar izquierda tiene un diámetro de 1,4 cm.
- 1) La vena cava tiene un diámetro de 3 cm.

I. Clases

El conjunto de clases utilizadas para la implementación mediante un modelo de marcos del enunciado ha sido el siguiente:

```
Class Vaso-Sanguíneo is subClassOf T;
        forma = tubular;
        contiene = fluido-sanguíneo;
        *oxígeno;
        *diámetro;
        *pared;
        *prisión
end
Class Arteria is subClassOf Vaso-Saguíneo;
        oxígeno = alto;
        pared = gruisa;
        dirección = órganos;
        max-prisión = 100;
        min-prisión = 40
end
Class Vena is subClassOf Vaso-Saguíneo;
        oxígeno = pobre;
        dirección = corazón;
        pared = delgada;
        max-prisión = 10
end
Class Capilar is subClassOf Vaso-Saguíneo;
        pared = muy-delgada
end
Class Gran-Arteria is subClassOf Arteria;
        max-diámetro = 2.5;
        min-diámetro = 1
end
```

```
Class Pequeña-Arteria is subClassOf Arteria;
        diámetro = 0.4
end
Class Arteriola is subClassOf Arteria;
        diametro = 0.003
end
Class Gran-Vena is subClassOf Vena;
        max-diámetro = 3;
        min-diámetro = 1.5
end
Class Pequeña-Vena is subClassOf Vena;
        diámetro = 0.5
end
II. Instancias
    El conjunto de instancias específicas que se describen en el enunciado es el siguiente:
Instance Aorta is instanceOf Gran-Arteria;
        diámetro = 2.5
end
Instance Arteria-Pulmonar-Izquierda is instanceOf Gran-Arteria;
        oxígeno = pobre;
        prisión = 13;
        diámetro = 1.4
end
Instance Arteria-Cubital is instanceOf Pequeña-Arteria;
end
Instance Vena-Pulmonar is instanceOf Gran-Vena;
end
Instance Vena-Caba is instanceOf Gran-Vena;
        diámetro = 3
end
```

III. Diagrama

Para facilitar la comprensión, en la figura 2 se ilustra el modelo de marcos de forma gráfica.

Figura 2: Ejercicio 1: Diagrama de Clases e Instancias

- II. Elaborar una jerarquía de marcos con herencia múltiple. La jerarquía debe de permitir obtener el área y el perímetro de cualquier polígono regular, así como el área de cualquier cuadrilátero. También debe permitir obtener la base, altura y apotema de cualquier cuadrado:
- a) Un polígono es una figura geométrica cerrada y plana limitada por tres o más líneas rectas que se cortan en sus vértices.
- b) Un polígono regular es aquel cuyos ángulos α son iguales, y cuyos lados l tienen la misma longitud. El segmento que une el centro del polígono con el punto medio de cualquiera de sus lados es la apotema.
- c) El perímetro de un polígono regular es el producto de su número de lados por la longitud del lado.
- d) Al área de un polígono regular es la mitad del producto de su perímetro por su apotema
- e) Un cuadrilátero es un polígono de cuatro lados.
- f) El área de un cuadrilátero es el producto de su base por la altura.
- g) Los cuadrados tienen los lados y los ángulos iguales. Su apotema mide la mitad del lado.

I. Clases

El conjunto de clases utilizadas para la implementación mediante un modelo de marcos del enunciado ha sido el siguiente:

```
Class Polígono is subClassOf T;
    tipo-ángulos: (type {igual, diferente});
    tipo-lados: (type {igual, diferente});
    n-lados: (type int);
    *área: (type real)
end
Class Polígono-regular is subClassOf Polígono;
    tipo-ángulos: (value igualis);
    tipo-lados: (value igualis);
    *lado-largo: (type real);
    *apotema: (type real);
    *perímetro: (type real, daemon ifNeeded
        perímetroRegular(a:lado-largo, a:n-lados)
    *área: (daemon ifNeeded
        areaRegular(a:perímetro, a:apotema)
end
Class Cuadrilátero is subClassOf Polígono;
   n-lados: (value 4);
    *base: (type real);
    *altura: (type real);
    *área: (daemon ifNeeded
        areaCuadrilatero(a:base, a:altura)
end
Class Cuadrado is subClassOf Cuadrilátero, Polígono-regular;
    *base: (daemon ifNeeded
        equals (a:lado-largo)
    );
    *altura: (daemon ifNeeded
        equals(a:lado-largo)
    );
    *apotema (daemon ifNeeded
       half(a:lado-largo)
end
```

II. Diagrama

Para facilitar la comprensión, en la figura 3 se ilustra el modelo de marcos de forma gráfica.

Figura 3: Ejercicio 2: Diagrama de Clases

III. Contradicciones

Existe una contradicción debido a la herencia múltiple del modelo de marcos diseñado. Esta sucede en la propiedad **área** de la clase **cuadrado**, que tiene dos implementaciones al mismo nivel de herencia. Estas se corresponden con los demonios *areaRegular y areaCuadrilatero*.