Course Title: CSE209

Section: 02

Semester: Fall 22

Assignment- 02

SUBMITTED TO

M. Saddam Hossain Khan

Senior Lecturer

Department of Computer Science & Engineering

East West University

SUBMITTED BY

Name: B M Shahria Alam

Student ID: 2021-3-60-016

Date of submission: 03 November 2022.

Here, a wire connected over 251. So the 251 resistor work here. So this is a short circuit.

So, 42 and 122 are in servies;

Herre,

144 s and 16 s are in parallel,

$$\frac{1}{RP_1} = \left(\frac{1}{144} + \frac{1}{16}\right)$$

Here,

5.6-2 and 14.4 st are in services,

and the 2012 and 1212 are in parallel] $RP_2 = \left(\frac{1}{20} + \frac{1}{12}\right)^{-1} \cdot 2$ $= 7.5 \cdot 2$

Here 7.51 and 2.51 are in services, and with 1512

they are parallel,

$$Rs_3 = (7.5 + 2.5) - 2$$
= 10.2

$$RP_{3} = \left(\frac{1}{10} + \frac{1}{15}\right)^{-1}$$

$$= 6.22$$

Herre, 192, 62 and 102 are in services

PSE = (5.6 + 14.4) IZ ILOS & SAO)

= 202

Herre,

$$30.52$$
 and 60.72 are in parallel,
 $RPA = \left(\frac{1}{30} + \frac{1}{60}\right)^{-1}$
 $= 20.02$

$$Rab = 20.2$$

$$Rab = 20.2$$