### Parallel Simulation of Systemc Loosely-Timed Transaction Level Models

Master of Science Thesis

# Konstantinos Sotiropoulos

KTH Royal Institute of Technology
Intel Sweden AB

Supervisor: Björn Runåker (Intel Sweden AB)

Examiner: Prof. Ingo Sander (KTH)

Academic advisor: PhD student George Ungureanu (KTH)

#### Overview

- 1 Introduction
  - Motivation
  - Problem Statement
  - Purpose
  - Qualitative Research Methodology
- 2 Background
  - SystemC LT TLMs
  - The DE Model of Computation
  - SystemC's DES
  - Parallel DES

#### Motivation

- This project stems from the work of Björn Runåker: speeding up the simulation of 5G radio base stations.
- A coarse-grained approach was adopted: multiple instantiations of SystemC's simulation engine.
- But motivated a **finer-grained** approach: parallelism within a single instance?

#### Problem Statement

- The verdict is categorical: SystemC's Reference Simulation Environment must be bypassed.
- Transaction Level Modeling in SystemC: breaks the separation of concerns between execution and communication.
- Address the question:
  - can we transform a SystemC TLM 2.0 LT model simulation into a parallel application?

#### Purpose

- SystemC TLM 2.0 used to construct **Virtual Platforms**: enabling hardware/software co-simulation.
- From SystemC Evolution Day 2016:

  "SystemC must embrace true parallelism
  otherwise it will go down the same path as the dinosaurs"

## Qualitative Research Methodology



### The Role of SystemC TLM 2.0



Enabling the reuse of IP components in a "plug and play" fashion.

### The DE Model of Computation

- Provides the **operational semantics** of: Electronic System-Level Design Languages.
- A model is a system of:

  processes that execute and communicate
- Logic Time vs Real Time: logic time is also relativistic.

#### The DE Manifold



#### **Execution:**

$$b = f(a) \implies a \propto b \implies a \sqsubset b$$

#### Communication:

$$c = g(b) \implies b \propto c \implies b \sqsubset c$$

### SystemC's DES

- A realization of the DE MoC: is a **Discrete Event Simulator (DES)**.
- SystemC's DES:
  uses **coroutines** to emulate space dimensionality.
- Enforces a global perspective on logic time: since space is emulated.

#### Parallel DES

- A Parallel DES preserves spatial decomposition: processes must keep their own perspective of logic time.
- Communication is **Synchronization**:
  a global perspective of logic time is realized through communication.

### Causality Hazard



Event e might occur earlier in real time than f.

Event e may causally affect event f.

How can  $p_2$  determine when it is safe to advance its logic time perspective?

# The End