

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет прикладної математики

Лабораторна робота №2 - №3

Задача динамічного деформування твердого тіла

«Чисельні методи математичної фізики»

Роботу виконав:

Студент 5 курсу, групи КМ-31мн, Цибульник Антон Владиславович

Роботу приймав:

Професор кафедри ПМА, Ориняк Ігор Володимирович

Зміст

$\S 1$	Постановка задачі	2
§2	Ідея методу початкових параметрів (МПП)	3
§ 3	Ідея методу зважених залишків (МЗЗ)	4
$\S 4$	Рішення однорідного рівняння деформації	5
	Деталізація поставленої задачі за МПП	5
	Складання рівнянь системи	6
	Визначення власних частот	9
	Визначення власних форм	11
	Деталізація поставленої задачі за МЗЗ	14
	Огляд двох базових функцій	16
	Визначення власних частот	17
	Визначення власних форм	19
	Огляд п'ятьох базових функцій	20
	Визначення власних частот	21
	Визначення власних форм	22

§1 Постановка задачі

У лабораторній роботі розглядається задача динамічного деформування балки в часі. Для балки, що згинається, кожна точка s балки довжиною 2L в кожен момент часу t характеризується чотирма параметрами: переміщенням W(s,t), кутом згинання $\theta(s,t)$, згинальним моментом M(s,t) та внутрішньою поперечною силою Q(s,t). Відтак, деформуванню балки відповідатиме така система диференціальних рівнянь:

$$\frac{\partial W(s,t)}{\partial s} = \theta(s,t), \quad \frac{\partial \theta(s,t)}{\partial s} = M(s,t), \quad \frac{\partial M(s,t)}{\partial s} = Q(s,t), \quad \frac{\partial Q(s,t)}{\partial s} = \alpha(s,t), \quad (1.1)$$

де в рамках потавленої задачі розподілена сила $\alpha(s,t)$ має дві складові різної природи: силу інерції, направлену в протилежний до напрямку переміщення бік

$$p_{in}(s,t) = -\frac{\partial^2 W(s,t)}{\partial t^2},\tag{1.2}$$

та зовнішню силу

$$p_{ex}(s,t) = p_0 \,\delta(s - L/2)\cos\eta t,\tag{1.3}$$

де p_0 є константою, $\delta(s-s_0)$ є дельта-функцією Дірака, яка задає зосереджену силу в точці $s_0=L/2$, а параметр η є частотою дії зовнішньої сили.

Зауважимо, що сталі характеристики системи, такі як модуль пружності E, характеристика геометрії січення J та площа перерізу балки S покладені одниці. Також зазначимо, що дельта-функція Дірака $\delta(s-s_0)$ приймає нульове значення усюди, окрім околу точки s_0 , де її значення сягає нескінченності:

$$\delta(s - s_0) = \begin{cases} 0, & s \neq s_0 \\ \infty, & s = s_0 \end{cases} , \tag{1.4}$$

та, крім того, в загальному випадку дельта-функція Дірака $\delta(s)$ володіє такими властивостями на області дії D :

$$\int_{D} \delta(s) \, ds = 1 \tag{1.5}$$

$$\int_{D} \delta(s - s_0) f(s) ds = f(s_0)$$
(1.6)

Отже, звівши систему чотирьох рівнянь (1.1) до одного рівняння четвертого ступеня, моделювання динамічного деформування балки описуватиметься таким диференціальним співвідношенням:

$$\frac{\partial^4 W(s,t)}{\partial s^4} + \frac{\partial^2 W(s,t)}{\partial t^2} = p_{ex}(s,t) = p_0 \,\delta(s-L/2)\cos\eta t \tag{1.7}$$

із чотирма граничними умовами

$$W(0,t) = 0,$$
 $W(2L,t) = 0,$ $\frac{\partial^2 W(0,t)}{\partial s^2} = 0,$ $\frac{\partial^2 W(2L,t)}{\partial s^2} = 0$ (1.8)

Наостанок, балка, яка підлягає деформуванню, згідно з умовами задачі має особливість — проміжну опору в точці L. Тож на додачу до граничних умов (1.8) отримуємо обмеження виду

$$W(L,t) = 0 (1.9)$$

У подальших викладках буде розглянуто пошук точного аналітичного розв'язку за методом початкових параметрів (МПП) й наближеного аналітичного розв'язку за методом зважених залишків (МЗЗ) для системи рівнянь (1.7) у випадку відсутності дії зовнішнього навантаження (однорідне рівняння деформації) та у випадку наявного зовнішнього навантаження (неоднорідне рівняння деформації).

§2 Ідея методу початкових параметрів (МПП)

Метод початкових параметрів розглядає довільну систему як такі сутності: елементи; межі між елементами (кінці, вузли), де відбувається спряження дотичних елементів; границі всієї системи. При цьому для системи вводиться поняття потужності N — кількості параметрів, які визначають стан системи в кожній його точці s. Виокремлення окреслених вище сутностей системи відбувається поетапно разом із такими супутніми процедурами:

- 1. Система дробиться на декілька окремих ділянок (елементів), і кожна така ділянка нумерується відповідним чином. Після цього визначаються вхідні та вихідні краї кожного елемента, а також вузли точки одночасного дотику декількох елементів. Іншими словами, відбувається організація обходу по елементах системи;
- 2. Нумерація невідомих змінних (параметрів) на кожному із двох країв кожного елемента системи;
- 3. Складання так званих рівнянь зв'язку для кожного елемента. Ці рівняння зв'язують параметри в кінцевій точці елемента зі значеннями в точці початку елемента. Рівняння зв'язку випливають з фізичних чи геометричних властивостей кожного елемента та системи в цілому;
- 4. Складання рівнянь спряження в кожному вузлі системи;
- 5. Складання рівнянь, що відповідають граничним умовам системи.

Для системи потужності N, що складається з K елементів, кількість невідомих параметрів системи складає 2KN, адже для кожного елемента визначено невідомі змінні (параметри) на його початку та в його кінці. Відповідно, кількість складених рівнянь згідно з методом початкових параметрів має бути 2KN.

§3 Ідея методу зважених залишків (МЗЗ)

Метод зважених залишків оперує рівнянням вигляду

$$G(y) = f(x), (3.1)$$

де G(y) — деякий заданий лінійний диференціальний оператор над функцією y(x), а f(x) у правій частині є певним зовнішнім навантаженням (дією зовнішніх сил). Припускається, що функція y(x) має форму суми M так званих базових функцій $\phi_i(x)$, помножених на невідомі коефіцієнти a_i :

$$y(x) = \sum_{i=1}^{M} a_i \phi_i(x) \tag{3.2}$$

Зауважимо, що перелік базових функцій задається так, щоб задовольнити нульові граничні умови задачі. Отже, оскільки вигляд (3.2) — лише наближення невідомої функції y(x), вводиться поняття залишку диференціального оператора:

$$R(x) = \sum_{i=1}^{M} a_i G(\phi_i(x)) - f(x)$$
 (3.3)

Мета методу полягає у мінімізації утвореного залишку R(x) шляхом пошуку оптимальних значень коефіцієнтів a_i через почергову процедуру «зваження» з кожною базовою функцією $\phi_i(x)$:

$$\int_{\mathbb{R}} R(x) \,\phi_i(x) \, dx = 0, \ i = \overline{1, M}$$
(3.4)

Таким чином, кількість рівнянь (3.4) дорівнює кількості невідомих коефіцієнтів a_i , що дозволяє розв'язати утворену систему рівнянь та отримати наближене аналітичне рішення згідно з припущенням (3.2).

§4 Рішення однорідного рівняння деформації

Деталізація поставленої задачі за МПП

Розглянемо покроково кожен етап МПП в рамках задачі динамічного деформування тіла на площині. Перш за все, з огляду на поставлену задачу (1.1), потужність системи складає N=4. Організацію обходу по елементах системи виконаємо таким чином: визначимо K=2 елементи та, відповідно, один вузол у точці опори L (Рис. 1).

Рис. 1: Балка довжиною 2L як система двох елементів

Дію зовнішнього навантаження (1.3) на систему (1.7) позначено на Рис. 2.

Рис. 2: Балка під дією зосередженої сили

Складемо нумерацію невідомих параметрів переміщення W(s,t), кута згинання $\theta(s,t)$, згинального моменту M(s,t) та внутрішньої поперечної сили Q(s,t) на початку та в кінці кожного елемента. В результаті отримаємо 2KN=16 змінних, зображених у Табл. 1.

	Елеме	нт «1»	Елемент «2»		
	Початок Кінець		Початок	Кінець	
W(s,t)	x_1	x_5	x_9	x_{13}	
$\theta(s,t)$	x_2	x_6	x_{10}	x_{14}	
M(s,t)	x_3	x_7	x_{11}	x_{15}	
Q(s,t)	x_4	x_8	x_{12}	x_{16}	

Таблиця 1: Нумерація невідомих параметрів системи

Складання рівнянь системи

Пошук розв'язку задачі динамічного деформування тіла на площині при відсутній дії зовнішнього навантаження $p_{ex}(s,t) = 0$ описуватиметься згідно з (1.7) однорідним рівнянням виду

$$\frac{\partial^4 W(s,t)}{\partial s^4} + \frac{\partial^2 W(s,t)}{\partial t^2} = 0 \tag{4.1}$$

Для визначення рівнянь зв'язку на елементі «1» та елементі «2» (Рис. 1) використаємо метод Фур'є, який ще називають методом розділення змінних. Метод полягає у представленні невідомої функції W(s,t) у вигляді добутку функції кординати W(s) та функції часу T(t):

$$W(s,t) = W(s) T(t)$$

$$(4.2)$$

Підставимо цей вираз у рівняння (4.1):

$$\frac{d^4W(s)}{ds^4}T(t) + \frac{d^2T(t)}{dt^2}W(s) = 0$$
 (4.3)

Відтак, виконавши еквівалентні перетворення, отримаємо

$$\frac{W^{(4)}(s)}{W(s)} + \frac{T''(t)}{T(t)} = 0 \implies \frac{W^{(4)}(s)}{W(s)} = -\frac{T''(t)}{T(t)} = \omega^2, \tag{4.4}$$

де введемо константу ω , яка матиме зміст власної частоти розв'язку однорідного диференціального рівняння (4.1).

Згідно з умовами задачі, функція часу T(t) розглядатиметься лише як частинний розв'язок, який задовільняє відповідному диференціальному рівнянню (4.4), тож в межах лабораторної роботи покладемо

$$T(t) = \cos \omega t, \tag{4.5}$$

при цьому зауважимо, що при підстановці цього частинного рішення у рівняння (4.3) функціональна залежність від часу скорочується. Таким чином, керівним розв'язком системи стає функція W(s) відносно координати.

Власне кажучи, наступним кроком перейдемо до розгляду розв'язку рівняння (4.4) відносно координати, позначивши $k_\omega^4 = \omega^2$:

$$W^{(4)}(s) - k_{\omega}^4 W(s) = 0 \tag{4.6}$$

Тоді, виконавши заміну $W(s)=e^{\lambda s}$, знайдемо розв'язок лінійного однорідного диференціального рівняння четвертого ступеня зі сталими коефіцієнтами за методологією пошуку власних значень $(\lambda_j)_{j=\overline{1,4}}$ відповідного характеристичного рівняння:

$$\lambda_{1,2,3,4} = -k_{\omega}, k_{\omega}, -ik_{\omega}, ik_{\omega},$$
 (4.7)

а відтак розв'язок, відповідно, матиме вигляд:

$$W(s) = \sum_{j=1}^{4} C_j e^{\lambda_j s} = C_1 e^{-k_\omega s} + C_2 e^{k_\omega s} + C_3 e^{-ik_\omega s} + C_4 e^{ik_\omega s}, \tag{4.8}$$

де, враховуючи тригонометричні співвідношення

$$\cosh s = \frac{e^s + e^{-s}}{2}, \qquad \sinh s = \frac{e^s - e^{-s}}{2}, \tag{4.9}$$

$$\cos s = \frac{e^{is} + e^{-is}}{2}, \qquad \sin s = \frac{e^{is} - e^{-is}}{2},$$
 (4.10)

остаточний розв'язок рівняння (4.6) матиме вид:

$$W(s) = C_1 \cosh k_{\omega} s + C_2 \sinh k_{\omega} s + C_3 \cos k_{\omega} s + C_4 \sin k_{\omega} s \tag{4.11}$$

В рамках методу МПП коефіцієнти C_1 , C_2 , C_3 , C_4 визначатимуться через задовільнення локальних граничних умов на кожній ділянці системи $s \in [0, L]$ при фіксованому t:

$$W(0) = W_0, \qquad \frac{dW(0)}{ds} = \theta_0, \qquad \frac{d^2W(0)}{ds^2} = M_0, \qquad \frac{d^3W(0)}{ds^3} = Q_0, \qquad (4.12)$$

відтак матимемо

$$C_1 = \frac{W_0}{2} + \frac{M_0}{2k_\omega^2}, \qquad C_2 = \frac{\theta_0}{2k_\omega} + \frac{Q_0}{2k_\omega^3},$$
 (4.13)

$$C_3 = \frac{W_0}{2} - \frac{M_0}{2k_\omega^2}, \qquad C_4 = \frac{\theta_0}{2k_\omega} - \frac{Q_0}{2k_\omega^3},$$
 (4.14)

а отже, згрупувавши складові функції W(s) навколо значень невідомих параметрів на початку елемента, отримуємо розв'язок однорідного рівняння деформації відносно координати:

$$W(s) = W_0 K_1(s) + \theta_0 K_2(s) + M_0 K_3(s) + Q_0 K_4(s), \tag{4.15}$$

де нижче наведені функції є так званими узагальненими функціями Крилова:

$$K_1(s) = \frac{1}{2}(\cosh k_{\omega}s + \cos k_{\omega}s) \tag{4.16}$$

$$K_2(s) = \frac{1}{2k_{\omega}}(\sinh k_{\omega}s + \sin k_{\omega}s) \tag{4.17}$$

$$K_3(s) = \frac{1}{2k_{\odot}^2} (\cosh k_{\omega} s - \cos k_{\omega} s) \tag{4.18}$$

$$K_4(s) = \frac{1}{2k_\omega^3} (\sinh k_\omega s - \sin k_\omega s) \tag{4.19}$$

Таким чином, взявши першу похідну від переміщення (4.15) для кута згинання, другу похідну для згинального моменту та третю похідну для внутрішньої поперечної сили, отримуємо відповідну систему рівнянь зв'язку в локальних координатах на кожному елементі системи, враховуючи відповідні значення початкових параметрів.

Наприклад, на елементі «1» (Рис. 1) початкові параметри позначимо як W_0 , θ_0 , M_0 та Q_0 , а отже в межах локальних координат $s \in [0, L]$ матимемо такі рівняння зв'язку:

$$W(s) = W_0 K_1(s) + \theta_0 K_2(s) + M_0 K_3(s) + Q_0 K_4(s)$$
(4.20)

$$\theta(s) = k_{\omega}^4 W_0 K_4(s) + \theta_0 K_1(s) + M_0 K_2(s) + Q_0 K_3(s)$$
(4.21)

$$M(s) = k_{\omega}^{4} W_{0} K_{3}(s) + k_{\omega}^{4} \theta_{0} K_{4}(s) + M_{0} K_{1}(s) + Q_{0} K_{2}(s)$$

$$(4.22)$$

$$Q(s) = k_{\omega}^{4} W_{0} K_{2}(s) + k_{\omega}^{4} \theta_{0} K_{3}(s) + k_{\omega}^{4} M_{0} K_{4}(s) + Q_{0} K_{1}(s)$$

$$(4.23)$$

Або у матричному вигляді:

$$\begin{pmatrix}
W(s) \\
\theta(s) \\
M(s) \\
Q(s)
\end{pmatrix} = \begin{pmatrix}
K_1(s) & K_2(s) & K_3(s) & K_4(s) \\
k_{\omega}^4 K_4(s) & K_1(s) & K_2(s) & K_3(s) \\
k_{\omega}^4 K_3(s) & k_{\omega}^4 K_4(s) & K_1(s) & K_2(s) \\
k_{\omega}^4 K_2(s) & k_{\omega}^4 K_3(s) & k_{\omega}^4 K_4(s) & K_1(s)
\end{pmatrix} \begin{pmatrix}
W_0 \\
\theta_0 \\
M_0 \\
Q_0
\end{pmatrix}$$
(4.24)

Аналогічними міркуваннями в межах локальних координат $s \in [0, L]$ на елементі «2» з початковими параметрами W_L , θ_L , M_L та Q_L матимемо такі рівняння зв'язку у матричному вигляді:

$$\begin{pmatrix}
W(s) \\
\theta(s) \\
M(s) \\
Q(s)
\end{pmatrix} = \begin{pmatrix}
K_1(s) & K_2(s) & K_3(s) & K_4(s) \\
k_{\omega}^4 K_4(s) & K_1(s) & K_2(s) & K_3(s) \\
k_{\omega}^4 K_3(s) & k_{\omega}^4 K_4(s) & K_1(s) & K_2(s) \\
k_{\omega}^4 K_2(s) & k_{\omega}^4 K_3(s) & k_{\omega}^4 K_4(s) & K_1(s)
\end{pmatrix} \begin{pmatrix}
W_L \\
\theta_L \\
M_L \\
Q_L
\end{pmatrix}$$
(4.25)

На додачу до вісьмох рівнянь зв'язку (4.24) та (4.25) введемо чотири рівняння, що відповідають глобальним граничним умовам (1.8), та чотири рівняння спряження в точні опори (Табл. 2). Відтак, матимемо повний комплект із 16 рівнянь для 16 невідомих змінних (Табл. 1) системи.

У складеній системі рівнянь значення власної частоти так і лишається невизначеним. У наступному підрозділі будуть наведені кроки, покликані визначити значення ω .

Граничні рівняння зліва	Рівняння спряження	Граничні рівняння справа	
$x_1 = 0$ $x_3 = 0$	$x_9 = x_5$ $x_{10} = x_6$ $x_{11} = x_7$ $x_9 = 0$	$x_{13} = 0$ $x_{15} = 0$	

Таблиця 2: Рівняння зв'язку та спряження системи

Визначення власних частот

Враховуючи граничні умови $x_1 = 0$ та $x_3 = 0$ (Табл. 2), а також умову нульового переміщення в точці опори $x_5 = 0$, зафіксуємо змінну x_2 (значення θ_0), і тоді згідно з рівнянням зв'язку для переміщення на елементі «1» (4.24) матимемо:

$$x_5 = x_1 K_1(L) + x_2 K_2(L) + x_3 K_3(L) + x_4 K_4(L) \implies x_4 = -\frac{K_2(L)}{K_4(L)} x_2$$
 (4.26)

Відтак маємо змогу визначити значення параметрів в кінці елемента «1»:

$$x_6 = x_2 \left(K_1(L) - K_3(L) \frac{K_2(L)}{K_4(L)} \right)$$
(4.27)

$$x_7 = x_2 \left(k_\omega^4 K_4(L) - K_2(L) \frac{K_2(L)}{K_4(L)} \right)$$
(4.28)

$$x_8 = x_2 \left(k_\omega^4 K_3(L) - K_1(L) \frac{K_2(L)}{K_4(L)} \right)$$
 (4.29)

Аналогічним чином, згідно з рівняннями спряження та враховуючи умову нульового переміщення в точці опори, матимемо:

$$x_9 = x_5 = 0 (4.30)$$

$$x_{10} = x_6 = x_2 \left(K_1(L) - K_3(L) \frac{K_2(L)}{K_4(L)} \right)$$
(4.31)

$$x_{11} = x_7 = x_2 \left(k_\omega^4 K_4(L) - K_2(L) \frac{K_2(L)}{K_4(L)} \right)$$
 (4.32)

Рівняння зв'язку для переміщення на елементі «2» буде таким:

$$x_{13} = x_9 K_1(L) + x_{10} K_2(L) + x_{11} K_3(L) + x_{12} K_4(L)$$
(4.33)

А тоді, враховуючи граничну умову $x_{13} = 0$ та умову $x_9 = 0$, отримаємо:

$$x_{12} = -\frac{K_2(L)}{K_4(L)} x_{10} - \frac{K_3(L)}{K_4(L)} x_{11}$$
(4.34)

Наостанок, рівняння зв'язку для елемента «2» вкажуть на вирази

$$x_{14} = x_{10}K_1(L) + x_{11}K_2(L) + x_{12}K_3(L)$$
(4.35)

$$x_{15} = x_{10} k_{\omega}^{4} K_{4}(L) + x_{11} K_{1}(L) + x_{12} K_{2}(L)$$
(4.36)

$$x_{16} = x_{10} k_{\omega}^{4} K_{3}(L) + x_{11} k_{\omega}^{4} K_{4}(L) + x_{12} K_{1}(L)$$

$$(4.37)$$

Стратегія пошуку значення власної частоти ω ($k_{\omega}^4 = \omega^2$) полягатиме у тому, щоб для рівняння моменту сил (4.36) виконувалася гранична умова $x_{15} = 0$. Тоді, поклавши значення кута, наприклад, $x_2 = 1$, отримаємо шукані значення частоти. На Рис. З продемонстровано графік залежності власної частоти та відповідного значення змінної x_{15} .

Рис. 3: Значення моменту сили за МПП

Отже, перебравши $\omega \in (0,1)$ з кроком 10^{-4} , перелічимо у Табл. З значення власних частот для балки довжиною 2L=20, які наближено (з похибкою не більше 10^{-4}) відповідають виконанню умови $x_{15}=0$.

ω_1	ω_2	ω_3	ω_4	ω_5
0.0987	0.1542	0.3948	0.4996	0.8883

Таблиця 3: Значення власних частот ω за МПП

Визначення власних форм

Визначивши значення власних частот, маємо змогу розв'язати відповідні системи рівнянь (4.24) та (4.25) при фіксованих значеннях ω , отримавши при цьому відповідні власні форми — рівняння для переміщення W(s) на елементі «1» і на елементі «2».

Наприклад, на Рис. 4 продемонстрована власна форма для балки довжиною 2L=20 з урахуванням проміжної опори в точці L та при власній частоті $\omega_1=0.0987$ для $s\in[0,L]$:

$$F_1(s) = \begin{cases} K_2(s, k_{\omega_1}) - 0.09K_4(s, k_{\omega_1}), & \text{елем. «1»} \\ -0.99K_2(s, k_{\omega_1}) + 4 \cdot 10^{-5}K_3(s, k_{\omega_1}) + 0.09K_4(s, k_{\omega_1}), & \text{елем. «2»} \end{cases}, (4.38)$$

при цьому усі рівняння спряження та граничні умови виконуються. Аналогічним чином отримуємо власну форму при власній частоті $\omega_2 = 0.1542$ (Рис. 5):

$$F_2(s) = \begin{cases} K_2(s, k_{\omega_2}) - 0.15K_4(s, k_{\omega_2}), & \text{елем. «1»} \\ -3 \cdot 10^{-4}K_2(s, k_{\omega_2}) + 0.54K_3(s, k_{\omega_2}) - 0.21K_4(s, k_{\omega_2}), & \text{елем. «2»} \end{cases}$$
(4.39)

Рис. 4: Власна форма $F_1(s)$ для частоти $\omega_1=0.0987$ при $\theta_0=1$ за МПП

Рис. 5: Власна форма $F_2(s)$ для частоти $\omega_2=0.1542$ при $\theta_0=1$ за МПП

Наступною вкажемо власну форму, зображену на Рис. 6, при власній частоті $\omega_3=0.3948$:

$$F_3(s) = \begin{cases} K_2(s, k_{\omega_3}) - 0.39 K_4(s, k_{\omega_3}), & \text{елем. «1»} \\ K_2(s, k_{\omega_3}) - 2 \cdot 10^{-4} K_3(s, k_{\omega_3}) - 0.39 K_4(s, k_{\omega_3}), & \text{елем. «2»} \end{cases}, (4.40)$$

при частоті $\omega_4 = 0.4996$ (Рис. 7):

$$F_4(s) = \begin{cases} K_2(s, k_{\omega_4}) - 0.5K_4(s, k_{\omega_4}), & \text{елем. «1»} \\ 5 \cdot 10^{-4}K_2(s, k_{\omega_4}) - K_3(s, k_{\omega_4}) + 0.7K_4(s, k_{\omega_4}), & \text{елем. «2»} \end{cases}, \tag{4.41}$$

та при частоті $\omega_5 = 0.8883$ (Рис. 8):

$$F_5(s) = \begin{cases} K_2(s, k_{\omega_5}) - 0.89K_4(s, k_{\omega_5}), & \text{елем. «1»} \\ -K_2(s, k_{\omega_5}) + 4 \cdot 10^{-4}K_3(s, k_{\omega_5}) + 0.89K_4(s, k_{\omega_5}), & \text{елем. «2»} \end{cases}$$
(4.42)

Рис. 6: Власна форма $F_3(s)$ для частоти $\omega_3=0.3948$ при $\theta_0=1$ за МПП

Рис. 7: Власна форма $F_4(s)$ для частоти $\omega_4=0.4996$ при $\theta_0=1$ за МПП

Рис. 8: Власна форма $F_5(s)$ для частоти $\omega_5=0.8883$ при $\theta_0=1$ за МПП

Деталізація поставленої задачі за МЗЗ

Застосуємо метод зважених залишків до заданої задачі деформування при відсутності зовнішніх сил. Змоделюємо проміжну точки опори балки як дію зосередженої сили — дельта-функції Дірака в точці L — з невідомою інтенсивністю z та пропорційною функції часу $\cos \omega t$, де ω матиме сенс власної частоти коливання. Відтак, задача деформування з граничними умовами (1.8) описуватиметься рівнянням

$$\frac{\partial^4 W(s,t)}{\partial s^4} + \frac{\partial^2 W(s,t)}{\partial t^2} = z\delta(s-L)\cos\omega t \tag{4.43}$$

Наближений аналітичний вигляд функції переміщення W(s) покладемо так:

$$W(s,t) = [a_1\phi_1(s) + a_2\phi_2(s)]\cos\omega t,$$
(4.44)

де набір з M=2 базових функцій обрано з експоненціальної сім'ї:

$$\phi_1(s) = e^{-\frac{4s}{2L}} + C_{11}e^{-\frac{3s}{2L}} + C_{12}e^{-\frac{2s}{2L}} + C_{13}e^{-\frac{s}{2L}} + C_{14}, \tag{4.45}$$

$$\phi_2(s) = e^{-\frac{3s}{2L}} + C_{21}e^{-\frac{2s}{2L}} + C_{22}e^{-\frac{s}{2L}} + C_{23} + C_{24}e^{\frac{s}{2L}}, \tag{4.46}$$

при цьому в силу нульових граничних умов (1.8) коефіцієнти C_{ij} дорівнюють:

C_{11}	C_{12}	C_{13}	C_{14}	C_{21}	C_{22}	C_{23}	C_{24}
-2.2834	1.0149	0.4912	-0.2227	-2.9305	2.6637	-0.7915	0.0583

Таблиця 4: Значення коефіцієнтів базових функцій (4.45) й (4.46)

Враховуючи наведену формалізацію системи, залишок матиме вид:

$$R(s) = a_1 \left[\frac{d^4 \phi_1(s)}{ds^4} - \omega^2 \phi_1(s) \right] + a_2 \left[\frac{d^4 \phi_2(s)}{ds^4} - \omega^2 \phi_2(s) \right] - z\delta(s - L)$$
 (4.47)

Тоді з урахуванням умови (1.9) нульового переміщення в точці опори, система рівнянь (3.4) для визначення невідомих коефіцієнтів a_1, a_2 та z згідно з методом зважених залишків записуватиметься на проміжку від 0 до 2L таким чином:

$$\int_{0}^{2L} R(s) \,\phi_1(s) \,ds = 0,\tag{4.48}$$

$$\int_{0}^{2L} R(s) \,\phi_2(s) \,ds = 0,\tag{4.49}$$

$$W(L) = 0, (4.50)$$

що розписується у систему

$$a_1 \int_{0}^{2L} \left[\phi_1^{(4)}(s) - \omega^2 \phi_1(s) \right] \phi_1(s) \, ds + a_2 \int_{0}^{2L} \left[\phi_2^{(4)}(s) - \omega^2 \phi_2(s) \right] \phi_1(s) \, ds - z \phi_1(L) = 0$$

$$(4.51)$$

$$a_1 \int_{0}^{2L} \left[\phi_1^{(4)}(s) - \omega^2 \phi_1(s) \right] \phi_2(s) \, ds + a_2 \int_{0}^{2L} \left[\phi_2^{(4)}(s) - \omega^2 \phi_2(s) \right] \phi_2(s) \, ds - z \phi_2(L) = 0$$

$$(4.52)$$

 $a_1\phi_1(L) + a_2\phi_2(L) = 0 (4.53)$

Позначивши відповідні визначені інтеграли через позначки I_{ij} , матриця коефіцієнтів отриманої лінійної однорідної системи рівнянь записуватиметься у вигляді

$$A_{3\times 3}^{M33} = \begin{pmatrix} I_{11}(\omega) & I_{21}(\omega) & -\phi_1(L) \\ I_{12}(\omega) & I_{22}(\omega) & -\phi_2(L) \\ \phi_1(L) & \phi_2(L) & 0 \end{pmatrix}, \tag{4.54}$$

при цьому значення власної частоти ω залишається невизначеним.

Огляд двох базових функцій

Як зазначалося вище, для МЗЗ розглядаються дві базові функції вигляду

$$\phi_1(s) = e^{-\frac{4s}{2L}} + C_{11}e^{-\frac{3s}{2L}} + C_{12}e^{-\frac{2s}{2L}} + C_{13}e^{-\frac{s}{2L}} + C_{14}$$

$$(4.55)$$

$$\phi_2(s) = e^{-\frac{3s}{2L}} + C_{21}e^{-\frac{2s}{2L}} + C_{22}e^{-\frac{s}{2L}} + C_{23} + C_{24}e^{\frac{s}{2L}}$$

$$\tag{4.56}$$

Для більш наочної картини зобразимо на рисунках нижче значення функцій $\phi_1(s)$ й $\phi_2(s)$, а також значення похідних $\phi_1^{(4)}(s)$ і $\phi_2^{(4)}(s)$, які, власне, також входять в матрицю коефіцієнтів $A_{3\times 3}^{\text{M33}}$ (4.54). Судячи з графіків, обрані функції є несиметричними — натомість вони дещо зсунуті відносно центру балки. Це спостереження дещо прояснить результати у наступному підрозділі.

Рис. 9: Графіки базових функцій (4.45) й (4.46)

Рис. 10: Графіки похідних від базових функцій (4.45) й (4.46)

Визначення власних частот

Повертаючись до пошуку значень власної частоти ω , стратегія полягатиме у тому, щоб відповідний визначник матриці $A_{3\times3}^{\text{M33}}$ дорівнював нулю. Таким чином вдасться досягнути лінійної залежності системи рівнянь, а отже, отримати нетривіальний розв'язок при фіксованих значеннях обраних параметрів.

Перебравши $\omega \in (0,1)$ з кроком 10^{-4} , на Рис. 11 продемонстровано графік залежності власної частоти та відповідного значення визначника матриці $A_{3\times 3}^{\text{M33}}$ (4.54). Відмасштабувавши зображення (Рис. 12), маємо змогу визначити для балки довжиною 2L=20 шукане значення власної частоти, яке наближено (з похибкою не більше 10^{-12}) відповідає виконанню умови нульового визначника:

$$\omega_1 = 0.1093 \tag{4.57}$$

Рис. 11: Значення визначника системи рівнянь за МЗЗ (M=2 базових функцій)

Рис. 12: Відмасштабовані на $[-10^{-8}, 10^{-8}]$ значення визначника системи рівнянь за МЗЗ (M=2 базових функцій)

Визначення власних форм

Викресливши із матриці $A_{3\times3}^{\text{M33}}$ одне рівняння так, щоб для новоутвореної матриці $\det A_{2\times2}^{\text{M33}} \neq 0$, і зафіксувавши, скажімо, значення параметра a_1 , маємо змогу розв'язати систему рівнянь при певних значеннях власної частоти ω , отримавши при цьому відповідні власні форми — рівняння для переміщення W(s) згідно з формулою (4.44).

Таким чином, власна форма для деформації балки із урахуванням проміжної опори в точці L та при власній частоті $\omega_1 = 0.1093$ продемонстрована на Рис. 13.

Рис. 13: Порівняльний графік власних форм за МПП та за МЗЗ (M=2 базових функцій)

Як підсумок, зауважуємо дві риси. По-перше, модель МЗЗ із двох базових функцій є не надто «гнучкою»: на етапі пошуку власних частот було віднайдено лише одне значення на проміжку, на якому у випадку МПП вдалося віднайти п'ять значень власних частот (тим не менш, варто зауважити, що отримана власна частота ω_1 відрізняється від аналогічного значення частоти ω_1 за МПП лише на $\Delta\omega\approx 0.01$). По-друге, в силу несиметричності сукупності двох обраних базових функцій (Рис. 9), власна форма за методом МЗЗ має незбалансований «перегин» в лівій частині графіка (Рис. 13).

Огляд п'ятьох базових функцій

У цьому підрозділі спробуємо покращити результати методу МЗЗ, розглянувши набір з M=5 базових функцій, які задовольняють усім умовам методу (коефіцієнти C_{ij} визначені згідно із граничними умовами):

$$\phi_1(s) = e^{-\frac{4s}{2L}} + C_{11}e^{-\frac{3s}{2L}} + C_{12}e^{-\frac{2s}{2L}} + C_{13}e^{-\frac{s}{2L}} + C_{14}$$

$$(4.58)$$

$$\phi_2(s) = e^{-\frac{3s}{2L}} + C_{21}e^{-\frac{2s}{2L}} + C_{22}e^{-\frac{s}{2L}} + C_{23} + C_{24}e^{\frac{s}{2L}}$$

$$\tag{4.59}$$

$$\phi_3(s) = e^{-\frac{2s}{2L}} + C_{31}e^{-\frac{s}{2L}} + C_{32} + C_{33}e^{\frac{s}{2L}} + C_{34}e^{\frac{2s}{2L}}$$

$$\tag{4.60}$$

$$\phi_4(s) = e^{-\frac{s}{2L}} + C_{41} + C_{42}e^{\frac{s}{2L}} + C_{33}e^{\frac{2s}{2L}} + C_{44}e^{\frac{3s}{2L}}$$

$$\tag{4.61}$$

$$\phi_5(s) = 1 + C_{51}e^{\frac{s}{2L}} + C_{52}e^{\frac{2s}{2L}} + C_{53}e^{\frac{3s}{2L}} + C_{54}e^{\frac{4s}{2L}}$$

$$\tag{4.62}$$

Сукупність вказаних базових функцій демонструє збалансованість (симетричність) як за віссю абсцис, так і за віссю ординат, що дозволяє зробити припущення та прогнози про більш оптимальний результат методу зважених залишків.

Рис. 14: Графіки базових функцій (4.58) - (4.62)

Визначення власних частот

Виконавши аналогічні кроки, описані щодо методу МЗЗ на стр. 14, було отримано матрицю коефіцієнтів $A_{5\times 5}^{\text{MЗЗ}}$ для відповідної системи рівнянь у випадку M=5 базових функцій. В результаті перебору $\omega\in(0,1)$ з кроком 10^{-4} вдалося прослідкувати залежність власної частоти та відповідного значення визначника вказаної матриці (Рис. 15).

Рис. 15: Значення визначника системи рівнянь за МЗЗ (M=5 базових функцій)

Відмасштабувавши зображення (Рис. 16), маємо змогу визначити для балки довжиною 2L=20 значення власних частот, які наближено (з похибкою не більше ніж 10^{-29}) відповідають виконанню умови нульового визначника (Табл. 5).

	ω_1	ω_2	ω_3	ω_4	ω_5
МПП	0.0987	0.1542	0.3948	0.4996	0.8883
M33	0.0987	0.1576	0.4253	0.6132	
$\Delta\omega$	0.0	0.0034	0.0305	0.1136	

Таблиця 5: Значення ω за МПП та за МЗЗ (M=5 базових функцій)

Рис. 16: Відмасштабовані на $[-10^{-28}, 10^{-28}]$ значення визначника системи рівнянь за МЗЗ (M=5 базових функцій)

Визначення власних форм

Аналогічним чином, викресливши із матриці $A_{5\times5}^{M33}$ одне рівняння так, щоб для новоутвореної матриці $\det A_{4\times4}^{M33} \neq 0$, і зафіксувавши значення параметра a_1 , маємо змогу розв'язати систему рівнянь при значеннях власної частоти ω (Табл. 5) та отримати відповідні власні форми — рівняння для переміщення W(s).

Порівняльні графіки кривих за аналітичним методом МПП та наближеним аналітичним рішенням МЗЗ наведені нижче. Міру несхожості ліній $W(s)_{\text{мпп}}$ та $W(s)_{\text{мзз}}$ визначатимемо як середнє арифметичне поточкових відносних похибок:

$$\Delta F(s) = \frac{1}{|I|} \sum_{i \in I} \left| \frac{W(s_i)_{\text{MIII}} - W(s_i)_{\text{M33}}}{W(s_i)_{\text{MIII}}} \right|, \quad I = \{1, 2, \dots, 2L\}$$
 (4.63)

У таблиці нижче наведені міри несхожості між результатами методів МПП та M33:

$\Delta F_1(s)$	$\Delta F_2(s)$	$\Delta F_3(s)$	$\Delta F_4(s)$	
2.22%	10.83%	23.44%	38.27%	

Таблиця 6: Похибки між власними формами за МПП та за МЗЗ (M=5 базових функцій)

Рис. 17: Власна форма $F_1(s)$ за МПП та за МЗЗ (M=5 базових функцій)

Рис. 18: Власна форма $F_2(s)$ за МПП та за МЗЗ (M=5 базових функцій)

Рис. 19: Власна форма $F_3(s)$ за МПП та за МЗЗ (M=5 базових функцій)

Рис. 20: Власна форма $F_4(s)$ за МПП та за МЗЗ (M=5 базових функцій)