```
In [1]:
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    df = pd.read_csv("Social_Network_Ads.csv")
    df
```

Out[1]:		User ID	Gender	Age	EstimatedSalary	Purchased
	0	15624510	Male	19	19000	0
	1	15810944	Male	35	20000	0
	2	15668575	Female	26	43000	0
	3	15603246	Female	27	57000	0
	4	15804002	Male	19	76000	0
	395	15691863	Female	46	41000	1
	396	15706071	Male	51	23000	1
	397	15654296	Female	50	20000	1
	398	15755018	Male	36	33000	0
	399	15594041	Female	49	36000	1

400 rows × 5 columns

Out[2]:		Age	EstimatedSalary	Purchased
	0	19	19000	0
	1	35	20000	0
	2	26	43000	0
	3	27	57000	0

	Age	EstimatedSalary	Purchased
4	19	76000	0
395	46	41000	1
396	51	23000	1
397	50	20000	1
398	36	33000	0
399	49	36000	1

400 rows × 3 columns

```
In [3]: x = df_cleaned.drop(["Purchased"],axis=1)
y = df_cleaned["Purchased"]
x
```

Out[3]:		Age	EstimatedSalary
	0	19	19000
	1	35	20000
	2	26	43000
	3	27	57000
	4	19	76000
	395	46	41000
	396	51	23000
	397	50	20000
	398	36	33000
	399	49	36000

400 rows × 2 columns

```
from sklearn.model selection import train test split
In [4]:
         x train, x test, y train, y test = train test split(x,y)
         print(x train.shape, x test.shape)
         (300, 2) (100, 2)
         from sklearn.preprocessing import StandardScaler
In [5]:
         scalar = StandardScaler()
         x train = scalar.fit transform(x train)
         x test = scalar.fit transform(x test)
         x train[0:5]
Out[5]: array([[ 0.902812 , -1.28659058],
                [-0.69314683, 0.26814367],
               [-0.03598731, 0.21056092],
               [ 1.74773139, -0.27889245],
                [-1.06866655, 0.29693505]])
         from sklearn.svm import SVC
In [6]:
         model = SVC(kernel="rbf", random state=0)
         model.fit(x train,y train)
         y pred = model.predict(x test)
         model.score(x train,y train)*100
In [7]:
In [8]: from sklearn.metrics import confusion matrix
         confusion matrix(y test,y pred)
Out[8]: array([[57, 6],
               [ 5, 32]], dtype=int64)
In [11]: from sklearn.metrics import classification report
         print(classification report(y test,y pred))
                      precision
                                   recall f1-score
                                                     support
                   0
                           0.92
                                     0.90
                                               0.91
                                                          63
                           0.84
                                     0.86
                                               0.85
                                                          37
```

accuracy			0.89	100
macro avg	0.88	0.88	0.88	100
weighted avg	0.89	0.89	0.89	100

In []: