Tutorial 4

Disjoint sets

Problem 21.3-3 (572): Give a sequence of m MAKE-SET, FIND-SET and UNION, n of which are MAKE-SET, that takes $\Omega(m \log n)$ time when we use union by rank only.

Solution: First do MAKE-SET of $\{x_1\},\ldots,\{x_n\}$. Next create a tree of height $\Omega(\log n)$ by n-1 UNION: first UNION (x_1,x_2) , UNION $(x_3,x_4),\ldots$, UNION (x_{n-1},x_n) of size 2; then create sets of size 4 by pairwise UNION of these, etc. This gives a *binomial tree* (page 527), which has $\binom{k}{i}$ of its 2^k nodes at depth i, for $i=0,\ldots,k$. Hence at least half of the n nodes are at depth $\geq (\log n)/2$, so each FIND-SET on these nodes takes $\Omega(\log n)$ time. Letting $m\geq 3n$, we have more than m/3 FIND-SET, so the total cost is $\Omega(m\log n)$.

Alternatively, stop the initial UNION sequence above when we have \sqrt{n} binomial trees, each of size \sqrt{n} and height $(\log n)/2$.

Problem 21.3-5 (572): Show that any sequence of m MAKE-SET, FIND-SET, and UNION, where all UNION appear before any FIND-SET, takes only O(m) time if both path compression and union by rank are used?

What happens in the same situation if only path compression is used?

Solution: n-1 UNION take O(n) time and create n-1 tree edges. One FIND-SET compresses each edge along the path to the root, so that later FIND-SET on nodes on this path becomes direct children to the root. Thereby cannot m FIND-SET take more time than O(m + number of edges) = O(m + n).

The result is the same if only path compression is used, since the argument above does not refer to union by rank.

Computational geometry

Problem 33.1-6 (1021): Given a point $p_0 = (x_0, y_0)$ the *right horisontal ray* from p_0 is the point set $\{p_i = (x_i, y_i) : x_i \ge x_0, y_i = y_0\}$. Show how to determine in O(1) time if a right horisontal ray from p_0 intersects a segment $p_1 p_2$.

Solution: Let $p_1=(x_1,y_1),\ p_2=(x_2,y_2)$ and assume $x_1 < x_2$. If $x_2 < x_0$ there is no intersection. Otherwise let $p_0'=(x_2,y_0)$ and determine if $\overrightarrow{p_1p_2}$ intersects $\overrightarrow{p_0p_0'}$ by the method from the lecture.

Problem 33.1-7 (1021): Describe an algorithm that in O(n) time decides if a point p_0 is inside a simple n-vertex polygon P.

Solution: First check that p_0 is not on the boundary of P by going through the vertices and the edges in between. This takes O(n) time.

Then count the number of intersections between polygon edges and the right horisontal ray from p_0 . The polygon may be represented as a list of consecutive eges, so check for each edge if it is intersected by the ray. This also takes linear time. An even number of intersections implies that p_0 is inside the polygon.

There are special cases to consider when the ray goes through a polygon vertex: if both edges to the vertex are below or above the ray, don't change the count; if one edge is below and the other above, increase the count by 1.

Problem 33.2-2 (1028): Given two segments a and b that are comparable at x, determine in O(1) time if $a >_x b$ or $b >_x a$ holds.

Solution: If the the segments are nonintersecting we can use cross product. Let a's left endpoint be $p_1 = (x_1, y_1)$ and its right endpoint be $p_2 = (x_2, y_2)$. Let b's left endpoint be $p_3 = (x_3, y_3)$ and its right endpoint be $p_4 = (x_4, y_4)$.

Assume without loss of generality that $x_1 < x_3$ and consider $\overrightarrow{p_1p_2}$ and $\overrightarrow{p_2p_3}$. If there is a left turn at p_2 , then $b >_x a$.

If a and b intersect before x, then their right endpoints determine whether $a >_x b$. If they intersect after x, compare their left endpoints instead.

Problem 33.2-4 (1028): Determine in $O(n \log n)$ time if an *n*-vertex polygon is simple.

Solution: Use the sweep line algorithm to decide if polygon segments intersect. Ignore intersections at common endpoint, and continue the search.

Problem 33.2-7 (1028): Find all k intersections between n segments in $O((n+k)\log n)$ time.

Solution: Assume segments are not vertical and uppdate a *sweep-line status*: a red-black tree T of segments that the sweep line intersects, and an *event list*: a priority queue ordered by x value of the 2n endpoints + nearest intersection points.

Events:

- 1. If it's a left point of a segment ℓ , then insert ℓ into T.

 If ℓ intersects a neighbor, then insert intersection point in the event list
- 2. If it's a right point of a segment ℓ , then delete ℓ from T.

 If ℓ 's neighbors intersect ahead, then insert intersection point in the event list
- 3. If it's an intersection between two segments ℓ_1 and ℓ_2 , then interchange their order in T. If new neighbors intersect ℓ_1 or ℓ_2 , then insert intersection point in the event list

Sorting takes $O(n \log n)$ time. Each update of a red-black tree takes $O(\log n)$ time, while updating the priority queue for $k \le n^2$ intersections takes $O(\log(n+k)) = O(\log n)$ time.

Total time for 2n + k events is thereby $O((n + k) \log n)$.

Problem 33.3-5 (1039): Construct the on-line convex hull in $O(n^2)$ time.

Solution: In O(n) time decide if the new point p is outside the current hull H. If that is the case, compute the angles from p to all vertices of H, in O(n) time, and connect p to the two vertices with smallest and largest angle.

Alternatively, compute in O(n) time p's closest vertex q on H. From q step through the vertices of H in both directions, until we have found vertices q_l och q_r where a left and right turn is made relative to a segment from p. Connect p to q_l and q_r to get the new convex hull. Each new point thereby requires linear time, and hence the total time is $O(n^2)$.

Discussion of assignment 4

- 1. Remember to motivate the time complexities in (b) and (c).
- 2. Choose a suitable starting point.
- 3. Participate in the programming contest on Saturday October 2.