

חדו"א להנדסת תוכנה

מועד ב' מרצה:

משע"ח סמסטר ב'

השאלון מכיל עמודים (כולל עמוד זה וכולל דף נוסחאות).

בהצלחה!

הנחיות למדור בחינות שאלוני בחינה

- לשאלון הבחינה יש לצרף מחברת.
- ניתן להשתמש במחשבון מדעי לא גרפי עם צג קטן.

חומר עזר

.(A4 עמודים בפורמט) דף נוסחאות מצורף לשאלון \bullet

אחר / הערות

יש לענות על השאלות באופן הבא:

- יש לנמק היטב כל שלב של פתרון. תשובה ללא הסבר וללא נימוק, אפילו נכונה, לא תתקבל.
 - שאלות 1,2 יש לענות על כל השאלות!
 - . שאלות $\frac{1}{2}$ מתוך שלוש שאלות 3,4,5,6 יש לענות שלוש שאלות 3,4,5,6
 - שאלות 7,8 יש לענות על שאלה אחת בלבד מתוך שתיים.

שאלות 1 ו- 2 - חובה!

שאלה 1 חקרו באופן מלא את הפונקציה

$$f(x) = \frac{x^2}{x+1}$$

(תחום הגדרה, חיתוך עם הצירים, סימני הפונקציה, אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וציירו את סקיצת הגרף של הפונקציה.

שאלה 2

- אם הגבולות החד אדיים אם גבול בנקודה x=a אם גבול קיים לפונקציה אם לפונקציה אם הוכיחו את בנקודה או קיימים ושווים.
 - ב) הגדר את המושג נקודת אי רציפות סליקה.
 - ג) תתנו דוגמה לפונקציה בעלת נקודת אי רציפות סליקה.

שאלה 3

- $y=\tan x \; y=x \; x=rac{\pi}{4}$ השבו נפח הגוף המתקבל ע"י סיבוב התחום המישורי החסום ע"י הקווים הבאים: $x=\tan x \; y=x \; x=rac{\pi}{4}$ השבו נפח הגוף המתקבל ע"י סיבוב התחום המישורי החסום ע"י הקווים הבאים: x=x
 - $f(x)=\sqrt[3]{x}$ חשבו לפי ההגדרה את הנגזרת של

שאלה 4

א) חשבו את הגבולות הבאים:

$$\lim_{x\to 0} \left(\sin\left(\frac{\pi}{2}-x\right)\right)^{1/x^2}$$
 (2
$$\lim_{x\to \infty} \frac{2^x+3^x}{3^x+4^x}$$
 (1

ב) אזי הטענה: f(x)>D ומתקיים חום f(x)>D פונקציה מונוטונית עולה מונוטונית עולה החום הוכיחו את הטענה: $\frac{1}{f(x)}$

שאלה 5

א) חשבו את האינטגרלים הבאים:

$$\int \frac{x^3 + 2x + 1}{x^2 + 4x + 3} \, dx$$
 (2)

$$\int_{-\pi}^{\pi} \cos^2\left(\max\left(x, 2x - \frac{\pi}{2}\right)\right) dx$$
 (1)

ב) הוכיחו לפי הגדרת הגבול כי

$$\lim_{x \to \infty} \frac{1}{x} = 0 \ .$$

שאלה 6

א) חשבו את האינטגרל הבא

$$\int_0^\infty x \, e^{-x^2/2}$$

 $y + e^{xy} = 2$ מצאו את פולינום מקלורן מסדר 2 לפונקציה

שאלה 7

הוכיחו לכל b>0 ממשי מתקיים

$$\frac{b}{1+b^2} < \arctan(b) < b .$$

שאלה 8

x+y=1 על העקומה לעקומה שבהן שבהן שבהן המשיק הנקודות כל הנקודות כל הנקודות $M(x_0,y_0)$

פתרונות

שאלה 1

 $x \neq -1$:תחום הגדרה משלב 1

(0,0) נקודות חיתוך וסימני הפונקציה:

x	x < -1	-1 < x < 0	x > 0	
f(x)	_	+	+	

x=-1 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
, $n = \lim_{x \to \infty} (f(x) - m \cdot x) = -1$.

 $-x o \infty$ אסימפטוטה משופעת בתהליך כאשר אסימפטוטה לכן הקו

בר. $x o -\infty$ -בר.

שלב 6 תחומי עליה וירידה:

$$f'(x) = \frac{x(x+2)}{(x+1)^2}$$

(0,0) -ו (-2,-4) נקודות קריטיות:

x	x < -2	x = -2	-2 < x < -1	-1 < x < 0	x = 0	x > 0
f'(x)	+	0	_	_	0	+
f(x)	7	מקס	>	>	מינימום	7

שלב 7 תחוטמי קמירות:

$$f''(x) = \frac{2}{(x+1)^3}$$

נקודות פיתול: אין.

x	x < -1	x > -1		
f''(x)	_	+		
f(x)	↓ קמורה	למורה ↑		

:שלב <u>8</u> שרטוט

שאלה 2

(N

 \triangleq

נתון כי $\delta>0$ קיים $\forall \epsilon>0$ ההגדרה לפי הה $\lim_{x\to a}f(x)=L$ כך נתון כי

$$|x-a| < \delta$$
 \Rightarrow $|f(x) - L| < \epsilon$.

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי

שים לב

$$0<|x-a|<\delta$$
 $ightharpoonup -\delta < x-a < 0$ או $0< x-a < \delta$ $ightharpoonup a-\delta < x < a$ או $a< x < a+\delta$ $ightharpoonup x \in (a-\delta,a)$ או $x\in (a,a+\delta)$

-כלומר, $\forall \epsilon$ כך ש

$$x \in (a - \delta, a) \Rightarrow |f(x) - L| < \epsilon$$
 (1*)

$$x \in (a, a + \delta) \Rightarrow |f(x) - L| < \epsilon$$
 (2*)

אזי, בהינתן ערך מסוים ל- ϵ , ניתן למצוא ערך של δ כך שהתנאים (1*) ן- (1*) מתקיימים. אבל (1*) אזי, בהינתן ערך מסוים ל- ϵ , ניתן למצוא ערך של ϵ , ϵ , ϵ ווקא התנאי ההכרחי לקיום הגבול ϵ , ϵ ווקא התנאי ההכרחי לקיום הגבול הגבול (2*) דווקא התנאי ההכרחי לקיום הגבול ווקא התנאי החכרחי לקיום הגבול ווקא התנאי החברחי לקיום המבול ווקא התנאים החברחי החברחים החברחים

לכן הוכיחונו כי

$$\lim_{x\to a} f(x) = L \qquad \lim_{x\to a^-} f(x) = L \quad \text{-1} \lim_{x\to a^+} f(x) = L \ .$$

 \Rightarrow

-אם
$$\delta_1>0$$
 קיים $\forall \epsilon>0$ אז הו
, $\lim_{x\to a^+}f(x)=L=\lim_{x\to a^-}f(x)$ כך ש

$$x \in (a - \delta_1, a) \qquad \Rightarrow \qquad |f - L| < \epsilon , \tag{#1}$$

-ט כד ש $\delta_2>0$ כד ש $\forall \epsilon>0$ -ו

$$x \in (a, a + \delta_2)$$
 \Rightarrow $|f - L| < \epsilon$. (#2)

נגדיר $\delta:=\min(\delta_1,\delta_2)$ אז

$$x \in (a - \delta_1, a)$$
 -1 $x \in (a, a + \delta_2) \leadsto x \in (a - \delta_1, a + \delta_2)$ $\leadsto x \in (a - \delta, a + \delta)$ $\leadsto 0 < |x - a| < \delta$. (#3)

-לכן על-סמך (#3) ו- (#2) ו- (#3) הנתונים, $\delta>0$, $\forall \epsilon>0$, הנתונים, (#3) ו- והתנאים

$$0 < |x - a| < \delta$$
 \Rightarrow $|f(x) - L| < \epsilon$.

אבל זה דווקא התנאי ההכרחי לקיום הגבול גוו
ה $\lim_{x\to a}f(x)=L$ אבל ההכרחי ההכרחי התנאי ההכרחי

$$\lim_{x\to a^-} f(x) = L \quad \operatorname{-l}\lim_{x\to a^+} f(x) = L \qquad \Rightarrow \qquad \lim_{x\to a} f(x) = L \ .$$

המכללה האקדמית להנדסה סמי שמעון

. עצמה a פונקציה המוגדרת בסביבה של נקודה a אבל לא בהכרח בנקודה a עצמה a

אם קיימים הגבולות החד-צדדים הסופיים ו-

$$\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) \neq f(a)$$

f(x) או שליקה סליקה אי-רציפות היא נקודת מי מוגדר, אומרים לא f(a) או ש

$$f(x) = \frac{x^2 - 2x + 1}{x - 1} \ .$$

שאלה 3

()

(N

$$V = \pi \int_0^{\pi/4} \left(x^2 - \tan^2 x \right) = \pi \left[\frac{x^3}{3} + x - \tan(x) \right]_0^{\pi/4} = -1 + \frac{\pi}{4} + \frac{\pi^3}{192} \ .$$

$$\begin{split} \left(\sqrt[3]{x}\right)' &= \lim_{\Delta x \to 0} \frac{\sqrt[3]{x + \Delta x} - \sqrt{x}}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{1/3} - x^{1/3}}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{x^{1/3} + \frac{1}{3}x^{-2/3}\Delta x + \frac{\frac{1}{3}\cdot\left(\frac{-2}{3}\right)}{2}x^{-5/3}\Delta x^2 + \dots - x^{1/3}}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{\frac{1}{3}x^{-2/3}\Delta x + \frac{\frac{1}{3}\cdot\left(\frac{-2}{3}\right)}{2}x^{-5/3}\Delta x^2 + \dots}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{1}{3}x^{-2/3} + \frac{\frac{1}{3}\cdot\left(\frac{-2}{3}\right)}{2}x^{-5/3}\Delta x + \dots \\ &= \frac{1}{3}x^{-2/3} + \frac{\frac{1}{3}\cdot\left(\frac{-2}{3}\right)}{2}x^{-5/3} \cdot 0 + \dots \\ &= \frac{1}{3}x^{-2/3} \; . \end{split}$$

שאלה 4

$$\lim_{x \to \infty} \frac{2^x + 3^x}{3^x + 4^x} = \lim_{x \to \infty} \frac{\left(\frac{2}{4}\right)^x + \left(\frac{3}{4}\right)^x}{\left(\frac{3}{4}\right)^x + \left(\frac{4}{4}\right)^x}$$
$$= \lim_{x \to \infty} \frac{\left(\frac{2}{4}\right)^x + \left(\frac{3}{4}\right)^x}{\left(\frac{3}{4}\right)^x + 1} = 0$$

$$\begin{split} L &= \lim_{x \to 0} \left(\sin \left(\frac{\pi}{2} - x \right) \right)^{1/x^2} \\ &= \lim_{x \to 0} \left(\cos x \right)^{1/x^2} \\ &= \lim_{x \to 0} \left(1 + \cos x - 1 \right)^{1/x^2} \\ &= \lim_{x \to 0} \left(1 + \cos x - 1 \right)^{(\cos x - 1)/(x^2 \cdot (\cos x - 1))} \end{split}$$

נגדיר $y = \cos x - 1$ ונרשום הגבול בצורה

$$L = \left(\lim_{y \to 0} (1+y)^{1/y}\right)^{\lim_{x \to 0} \frac{\cos x - 1}{x^2}}$$
$$-e^{\lim_{x \to 0} \frac{\cos x - 1}{x^2}}$$

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | אַמפּוֹס אַשדוד ז'בוטינסקי 17245, אַמּפּוּס באר שבע ביאליק פינת בזל

ע"י לופיטל

לכן

$$\lim_{x \to 0} \frac{\cos x - 1}{x^2} = \lim_{x \to 0} \frac{(\cos x - 1)'}{(x^2)'} = \lim_{x \to 0} \frac{-\sin x}{2x} = \frac{-1}{2} .$$

$$L = e^{-1/2} = \frac{1}{\sqrt{e}}$$

. f מונוטונית \uparrow לכן

$$b > a \qquad \Leftrightarrow \qquad f(b) \ge f(a) \ . \tag{*}$$

אם לכן נקבל
$$\frac{1}{f(b)} \leq \frac{1}{f(a)}$$
 אז $f(b) \geq f(a)$ אם

$$b > a \qquad \Leftrightarrow \qquad \frac{1}{f(b)} \le \frac{1}{f(a)} \ . \tag{#}$$

מש"ל

שאלה 5

$$\int_{-\pi}^{\pi} \cos^2\left(\max\left(x,2x-\frac{\pi}{2}\right)\right) \, dx = 0 \text{ (1)}$$

$$\int \frac{x^3+2x+1}{x^2+4x+3} \, dx = \frac{x^2}{2} - 4x - \log(x+1) + 16\log(x+3) \text{ (2)}$$

ב) הגדרה של גבול:

f אם הגבול אז , $|f(x)-L|<\epsilon$ אז $x\in(a-\delta,a+\delta)$ כך אאם $\delta>0$ קיים $\epsilon>0$ אם לכל בנקודה .x=a

$$\left.\left|\frac{1}{x}-0\right|<\epsilon$$
 אז $x\in(\infty-\delta,\infty+\delta)$ כך שאם $\delta>0$ מספר מספר נבדוק האם נבדוק האם

אט
$$x\in(\infty-\delta,\infty)$$
 אם

$$0 - \frac{1}{x} < \epsilon \quad \Rightarrow \quad -\frac{1}{x} < \epsilon \quad \Rightarrow \quad -x > \epsilon \quad \Rightarrow \quad x < -\epsilon$$

 $x \in (\infty - \delta_1, \infty)$ כך שאם $\delta_1 = \epsilon$ לכן מצאונו $x < -\epsilon$ נקבל $x = \infty$ נקבל שאם לכן מצד שמאל של

 $x \in (0, \infty)$ אם

$$\frac{1}{x} - 0 < \epsilon \quad \Rightarrow \quad \frac{1}{x} < \epsilon \quad \Rightarrow \quad x > \epsilon \quad \Rightarrow \quad x < -\epsilon$$

 $\epsilon > 0$ עבור

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי

שאלה 6

(N

$$\int_0^\infty x \, e^{-x^2/2} = 1 \ .$$

(2

$$y(x) = 1 - x + \frac{x^2}{2} + O(x^3)$$

א"א , $\dfrac{\arctan b - \arctan 0}{b-0} = \arctan(c)' = \dfrac{1}{1+c^2}$ כך שי $c \in (0,b)$ כך משפט לגרנז' קיימת - $c \in (0,b)$ כד שאלה ל

$$\frac{\arctan b}{b} = \frac{1}{1+c^2} \ .$$

:b-נכפיל ב

$$\arctan b = \frac{b}{1+c^2} \ . \tag{#1}$$

בגלל ש- c < c < b אז

$$\frac{b}{1+c^2} > \frac{b}{1+b^2} \ , \tag{#2}$$

-1

$$\frac{b}{1+c^2} < b$$
 . (#3)

לכן, מ (2#) ו- (3#) נקבל

$$\frac{b}{1+b^2} < \frac{b}{1+c^2} < b \ . \tag{#4}$$

$$. rac{b}{1+b^2} < rctan b < b$$
 ונקבל $rac{b}{1+c^2}$ - $rac{a}{1+c^2}$ מציב (#1) נציב

שאלה 8 השיפוע של הקוy=1-x, או שקול x+y=1, או שקול השיפוע של הקו השיפוע של המשיק שווה x+y=1, נגזור את משוואת העקומה:

$$2x + 2y \cdot y' = 0$$
 \Rightarrow $y' = -\frac{x}{y}$.

נציב y'=-1 ונקבל

$$-\frac{x}{y} = -1 \qquad \Rightarrow \qquad y = x \ . \tag{*}$$

המכללה האקדמית להנדסה סמי שמעון

נציב את היחס הזה לתוך משוואת העקומה, קרי $x^2+y^2=4$ ונקבל:

$$2x^2 = 4 \qquad \Rightarrow \qquad x_1 = \sqrt{2} \ , \quad x_2 = -\sqrt{2} \ .$$

נציב את הערכים האלה במשוואת המשיק (*) . עבור $x_1=\sqrt{2}$ נקבל $y_1=\sqrt{2}$ נקבל . עבור $x_2=-\sqrt{2}$ ועבור $y_1=\sqrt{2}$ נקבל . $P_2(-\sqrt{2},-\sqrt{2})$, $P_1(\sqrt{2},\sqrt{2})$: לכן מצאונו שתי נקודות על העקומה שבהן המשיק מקביל להקו