$$Maximizar 10x_1 + 8x_2$$

$$\begin{cases}
2x_1 + 2x_2 \le 50 \\
2x_1 + 4x_2 \le 80
\end{cases}$$

$$\begin{cases}
x_1 \ge 0, x_2 \ge 0
\end{cases}$$

 $Maximizar 10x_1 + 8x_2$

$$s. a: \begin{cases} 2x_1 + 2x_2 + x_3 = 50 \\ 2x_1 + 4x_2 + x_4 = 80 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0 \end{cases}$$

			10	8	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4
0	x_3	50	2	2	1	0
0	x_4	80	2	4	0	1
		0	0	0	0	0
			-10	-8	0	0

			10	8	0	0
C_B	χ_B	b	x_1	x_2	x_3	x_4
10	x_1	25	1	1	1/2	0
0	x_4	30	0	2	-1	1
		250	10	10	5	0
			0	2	5	0

			10	8	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4
10	x_1	25	1	1	1/2	0
0	x_4	30	0	2	-1	1
		250	10	10	5	0
			0	2	5	0

			10+Δ	8	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4
10+Δ	x_1	25	1	1	1/2	0
0	x_4	30	0	2	-1	1
		250	10+Δ	10+Δ	$5+\frac{\Delta}{2}$	0
			0	2+∆	$5+\frac{\Delta}{2}$	0

$$2+\Delta \ge 0 \to \Delta \ge -2$$

$$5+\frac{\Delta}{2} \ge 0 \to \Delta \ge -10$$

$$\Delta \ge -2$$

			10	8+Δ	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4
10	x_1	25	1	1	1/2	0
0	x_4	30	0	2	-1	1
		250	10	10	5	0
			0	2-Δ	5	0

$$2-\Delta \geq 0$$
 $\Delta \leq 2$

c) Variación del segundo termino independiente de las restricciones

$$\binom{50}{80} \to \binom{50}{80 + \Delta}$$

En la tabla final $b_{final}' = B^{-1} b_{inicial}'$

$$B^{-1} = \begin{pmatrix} 1/2 & 0 \\ -1 & 1 \end{pmatrix}$$

$$B^{-1}b_{inicial}' = \begin{pmatrix} 1/2 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 50 \\ 80 + \Delta \end{pmatrix} = \begin{pmatrix} 25 \\ 30 + \Delta \end{pmatrix} \rightarrow \Delta \ge -30$$

d) Nueva restricción a cumplir

$$x_1 + x_2 \le 30$$

Si se cumple la nueva restricción se mantiene la solución:

$$25+0=\leq 30$$

e) Escribir el dual y su solución

$$Maximizar 10x_1 + 8x_2$$

$$s. a: \begin{cases} 2x_1 + 2x_2 \le 50 \\ 2x_1 + 4x_2 \le 80 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

 $Maximizar 10x_1 + 8x_2$

$$s.a: \begin{cases} 2x_1 + 2x_2 \le 50 \\ 2x_1 + 4x_2 \le 80 \end{cases}$$
$$x_1 \ge 0, x_2 \ge 0$$

 $Minimizar 50y_1 + 80y_2$

$$s. a: \begin{cases} 2y_1 + 2y_2 \ge 10 \\ 2y_1 + 4y_2 \ge 8 \\ y_1 \ge 0, y_2 \ge 0 \end{cases}$$

$$y_1 = 5, y_2 = 0$$

c) Precio máximo por aumentar sus restricciones

Con una unidad más de la primera restricción: 5 euros = y_1

Con una unidad más de la segunda restricción: $0 \text{ euros} = y_2$

Ejercicio 2

$$Maximizar 50x_1 + 60x_2$$

$$s.a: \begin{cases} 24x_1 + 8x_2 \le 600 \\ 36x_1 + 12x_2 \le 800 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Dual

$$Maximizar 50x_1 + 60x_2$$

$$s. a: \begin{cases} 24x_1 + 8x_2 \le 600 \\ 36x_1 + 12x_2 \le 800 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

$$Minimizar$$
 $600y_1 + 800y_2$

$$s.a: \begin{cases} 24y_1 + 36y_2 \ge 50 \\ 8y_1 + 12y_2 \ge 60 \\ y_1 \ge 0, y_2 \ge 0 \end{cases}$$

 $Maximizar 50x_1 + 60x_2$

$$s. a: \begin{cases} 24x_1 + 8x_2 + x_3 = 600\\ 36x_1 + 12x_2 + x_4 = 800\\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0 \end{cases}$$

			50	60	0	0
C_B	χ_B	b	x_1	x_2	x_3	x_4
0	x_3	600	24	8	1	0
0	x_4	800	36	12	0	1
		0	0	0	0	0
			-50	-60	0	0

			50	60	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4
0	x_3	200/3	0	0	1	-2/3
60	x_2	200/3	3	1	0	1/12
		4000	180	60	0	5
			130	0	0	5

b) Por 200 euros:

$$Maximizar 50x_1 + 60x_2$$

$$s. a: \begin{cases} 24x_1 + 8x_2 \le 600 \\ 36x_1 + 12x_2 \le 800 \\ x_1 \ge 0, x_2 \ge 0 \end{cases} \rightarrow \begin{cases} 24x_1 + 8x_2 \le 800 \\ 36x_1 + 12x_2 \le 800 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

b) Variación del primer termino independiente de las restricciones

$$\binom{b}{800} \rightarrow \binom{800}{800}$$

En la tabla final $b_{final}' = B^{-1} b_{inicial}'$

$$B^{-1} = \begin{pmatrix} 1 & -2/3 \\ 0 & 1/12 \end{pmatrix}$$

$$B^{-1}b_{inicial}' = \begin{pmatrix} 1 & -2/3 \\ 0 & 1/12 \end{pmatrix} \begin{pmatrix} 800 \\ 800 \end{pmatrix} = \begin{pmatrix} 800/3 \\ 200/3 \end{pmatrix}$$
 El cambio es posible.

Pero: f = 4000, igual que antes. No sale a cuenta.

c) Por 200 euros:

$$Maximizar 50x_1 + 60x_2$$

$$s. a: \begin{cases} 24x_1 + 8x_2 \le 600 \\ 36x_1 + 12x_2 \le 800 \\ x_1 \ge 0, x_2 \ge 0 \end{cases} \rightarrow \begin{cases} 24x_1 + 8x_2 \le 600 \\ 36x_1 + 12x_2 \le 900 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

c) Variación del primer termino independiente de las restricciones

$$\binom{b}{800} \rightarrow \binom{600}{900}$$

En la tabla final $b_{final}' = B^{-1} b_{inicial}'$

$$B^{-1} = \begin{pmatrix} 1 & -2/3 \\ 0 & 1/12 \end{pmatrix}$$

$$B^{-1}b_{inicial}' = \begin{pmatrix} 1 & -2/3 \\ 0 & 1/12 \end{pmatrix} \begin{pmatrix} 600 \\ 900 \end{pmatrix} = \begin{pmatrix} 0 \\ 75 \end{pmatrix}$$
 El cambio es posible.

Pero ahora: f = 4500. Sale rentable.

			50	60+Δ	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4
0	χ_3	200/3	0	8	1	-2/3
60+Δ	x_2	200/3	3	1	0	1/12
		$4000 + \frac{200}{3}\Delta$	180+3Δ	60+Δ	0	$5+\frac{\Delta}{12}$
			130+3Δ	0	0	$5+\frac{\Delta}{12}$

e) Nueva variable

Maximizar
$$50x_1 + 60x_2 + 10x_5$$

$$s. a: \begin{cases} 24x_1 + 8x_2 \le 600 \\ 36x_1 + 12x_2 + 60x_5 \le 800 \\ x_1 \ge 0, x_2 \ge 0, x_5 \ge 0 \end{cases}$$

e) Nueva variable

Primera tabla
$$\rightarrow \begin{pmatrix} v' \\ 0 \\ 60 \end{pmatrix}$$

En la tabla final $v_{final}' = B^{-1} v_{inicial}'$

$$B^{-1} = \begin{pmatrix} 1 & -2/3 \\ 0 & 1/12 \end{pmatrix}$$

$$B^{-1}v_{inicial}' = \begin{pmatrix} 1 & -2/3 \\ 0 & 1/12 \end{pmatrix} \begin{pmatrix} 0 \\ 60 \end{pmatrix} = \begin{pmatrix} -40 \\ 5 \end{pmatrix}.$$

•

Seguimos con la misma solución

			50	60	0	0	10
C_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_3	200/3	0	8	1	-2/3	-40
60	x_2	200/3	3	1	0	1/12	5
		4000	180	60	0	5	300
			130	0	0	5	290

			10+Δ	8	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4
10+Δ	x_1	25	1	1	1/2	0
0	x_4	30	0	2	-1	1
		250	10+Δ	10+Δ	$5+\frac{\Delta}{2}$	0
			0	2+∆	$5+\frac{\Delta}{2}$	0

$$2+\Delta \ge 0 \to \Delta \ge -2$$

$$5+\frac{\Delta}{2} \ge 0 \to \Delta \ge -10$$

$$\Delta \ge -2$$

g) Análisis de sensibilidad del coeficiente de la función de x_2

			10	8+Δ	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4
10	x_1	25	1	1	1/2	0
0	x_4	30	0	2	-1	1
		250	10	10	5	0
			0	2-Δ	5	0

$$2-\Delta \geq 0$$
 $\Delta \leq 2$