subspaces P, P', Q, Q' contains a vector from the basis B, the subspaces

$$Z_1 = P' \oplus (X \cap Y) \oplus Q$$
 and $Z_2 = P \oplus (X \cap Y) \oplus Q'$

are spanned by subsets of B and ortho-adjacent to each of X, Y, Z.

Consider any $Z' \in \mathcal{G}_{\infty}(H)$ ortho-adjacent to each of X,Y,Z. The subspaces X,Y,Z,Z' are mutually compatible and there is an orthonormal basis B' such that all these subspaces are spanned by subsets of B'. Then $X \cap Y, X', Y'$ are also spanned by subsets of B' and each of the 1-dimensional subspaces P, P', Q, Q' contains a vector from B'. The subspace Z' contains $X \cap Y$, the subspaces $X' \cap Z'$, $Y' \cap Z'$ are 1-dimensional and

$$Z' = (X' \cap Z') \oplus (X \cap Y) \oplus (Y' \cap Z')$$

(Z') is ortho-adjacent to X and Y). Recall that

$$Z = P \oplus (X \cap Y) \oplus Q.$$

Since $X' \cap Z'$ is a 1-dimensional subspace of X' containing a vector from B', it coincides with P or P'. Similarly, $Y' \cap Z'$ coincides with Q or Q'. Then Z and Z' are ortho-adjacent only when Z' is Z_1 or Z_2 .

Lemma 2. Let X, Y be elements of $\mathcal{G}_{\infty}(H)$ whose intersection is of codimension 2 in both X, Y. If there are ortho-adjacent $Z, Z' \in \mathcal{G}_{\infty}(H)$ such that each of them is ortho-adjacent to both X, Y, then X, Y are compatible.

Proof. We assert that $Z \cap Z'$ is contained in X or Y. If $Z \cap Z'$ is not contained in X, then $Z \cap X$ and $Z' \cap X$ are distinct hyperplanes of X and their sum is X. Similarly, if $Z \cap Z' \not\subset Y$, then $Z \cap Y$ and $Z' \cap Y$ are distinct hyperplanes of Y whose sum is Y. Then Z + Z' contains both X, Y. Since $Z \cap X$ and $Z' \cap X$ are subspaces of codimension 2 in Z + Z', the subspace X is a hyperplane of Z + Z'. For the same reason, Y is a hyperplane of Z + Z'. Then X, Y are adjacent which is impossible.

Without loss of generality, we can assume that $Z \cap Z'$ is contained in X. Then $Z \cap Z'$ is a hyperplane of X. The orthogonal complement of $X \cap Y$ in X + Y is 4-dimensional and we denote this subspace by M. Then

$$X' = X \cap M$$
 and $Y' = Y \cap M$

are 2-dimensional subspaces whose intersection is 0. Observe that each of Z, Z' contains $X \cap Y$ and is contained in X + Y which implies that

$$S = Z \cap M$$
 and $S' = Z' \cap M$

are distinct 2-dimensional subspaces. Since $Z \cap Z'$ is a hyperplane of X and $X \cap Y$ is contained in $Z \cap Z'$,

$$Z \cap Z' \cap M = S \cap S'$$

is a 1-dimensional subspace of X' which will be denoted by P. The subspaces

$$Z = (X \cap Y) \oplus S, \quad Z' = (X \cap Y) \oplus S'$$

are ortho-adjacent to $Y = (X \cap Y) \oplus Y'$ and, consequently, S and S' intersect Y' in certain 1-dimensional subspaces P_1 and P_2 , respectively. The subspaces P_1 , P_2 are distinct (since $S = P + P_1$ and $S' = P + P_2$ are distinct).