1

Assignment 15

AVVARU BHARAT - EE20MTECH11008

Download the latex-tikz codes from

 $https://github.com/Bharat437/Matrix_Theory/tree/master/Assignment15$

1 Problem

(UGC,JUNE 2015,68):

Let $\mathbf{F}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be the function $\mathbf{F}(\mathbf{x}, \mathbf{y}) = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle$, where \langle , \rangle is the standard inner product of \mathbb{R}^n and \mathbf{A} is a $n \times n$ real matrix. Here D denotes the total derivative. Which of the following statements are correct?

- 1) $(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(\mathbf{u}, \mathbf{v}) = \langle \mathbf{A}\mathbf{u}, \mathbf{y} \rangle + \langle \mathbf{A}\mathbf{x}, \mathbf{v} \rangle.$
- 2) $(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(0, 0) = 0.$
- 3) $D\mathbf{F}(\mathbf{x}, \mathbf{y})$ may not exist for some $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}^n$.
- 4) $D\mathbf{F}(\mathbf{x}, \mathbf{y})$ does not exist at $(\mathbf{x}, \mathbf{y}) = (0, 0)$.

2 EXPLANATION

Inner product	Inner product between two vectors x and y is defined as	
	$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} \tag{2.0.1}$	
	Where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$	
Inner Product		
Property used	$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x} = \langle \mathbf{y}, \mathbf{x} \rangle$ (2.0.2)	
Total Derivative D	Total derivative is a linear transformation. For function $F(x, y)$, the total	
	derivative is given as $D\mathbf{F}(\mathbf{x}, \mathbf{y})$ which says that total derivative of	
	function \mathbf{F} at (\mathbf{x}, \mathbf{y}) .	

TABLE 1: Definitions and theorem used

3 Solution

Statement	Observations	
Given	Function $\mathbf{F}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, it is given as	
	$\mathbf{F}(\mathbf{x}, \mathbf{y}) = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{A}^T \mathbf{y}$	(3.0.1)
	where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ Using property (2.0.2), we can also get	
	$\implies \mathbf{F}(\mathbf{x},\mathbf{y}) = \langle \mathbf{y}, \mathbf{A}\mathbf{x} \rangle$	(3.0.2)
	$\implies \mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{y}^T \mathbf{A} \mathbf{x}$	(3.0.3)

Total Derivative D	Now we will calculate $D\mathbf{F}(\mathbf{x}, \mathbf{y})$	
	$D\mathbf{F}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \frac{\partial \mathbf{F}}{\partial \mathbf{x}} & \frac{\partial \mathbf{F}}{\partial \mathbf{y}} \end{pmatrix}$	(3.0.4)
	From (3.0.1),(3.0.3) we get	
	$\frac{\partial \mathbf{F}}{\partial \mathbf{x}} = \mathbf{y}^T \mathbf{A}$ $\frac{\partial \mathbf{F}}{\partial \mathbf{y}} = \mathbf{x}^T \mathbf{A}^T$	(3.0.5)
	$\frac{\partial \mathbf{F}}{\partial \mathbf{y}} = \mathbf{x}^T \mathbf{A}^T$	(3.0.6)
	Substitute (3.0.5) and (3.0.6) in (3.0.4)	
	$D\mathbf{F}(\mathbf{x}, \mathbf{y}) = (\mathbf{y}^T \mathbf{A} \mathbf{x}^T \mathbf{A}^T)_{1 \times n^2}$	(3.0.7)

TABLE 2: Observations

Option	Solution	True/ False
1	First we calculate $(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(\mathbf{u}, \mathbf{v})$ where $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$	
	Using (3.0.7) and block matrix multiplication we get	
	$(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(\mathbf{u}, \mathbf{v}) = (\mathbf{y}^T \mathbf{A} \mathbf{x}^T \mathbf{A}^T) \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} $ (3.0.8)	
	$\implies (D\mathbf{F}(\mathbf{x}, \mathbf{y}))(\mathbf{u}, \mathbf{v}) = \mathbf{y}^T \mathbf{A} \mathbf{u} + \mathbf{x}^T \mathbf{A}^T \mathbf{v} $ (3.0.9)	
	$(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(\mathbf{u}, \mathbf{v}) = \langle \mathbf{y}, \mathbf{A}\mathbf{u} \rangle + \langle \mathbf{A}\mathbf{x}, \mathbf{v} \rangle $ (3.0.10)	
	Using property (2.0.2) we get	True
	$(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(\mathbf{u}, \mathbf{v}) = \langle \mathbf{A}\mathbf{u}, \mathbf{y} \rangle + \langle \mathbf{A}\mathbf{x}, \mathbf{v} \rangle $ (3.0.11)	
2.	Using (3.0.9), if $\mathbf{u} = 0$ and $\mathbf{v} = 0$ then we get	
	$(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(0, 0) = 0 \tag{3.0.12}$	True
3.	Since from (3.0.7) we can say that $D\mathbf{F}(\mathbf{x}, \mathbf{y})$ will exist for any $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}^n$.	False
4.	From (3.0.7), if $(\mathbf{x}, \mathbf{y}) = (0, 0)$ we get	
	$D\mathbf{F}(\mathbf{x}, \mathbf{y}) _{(0,0)} = 0 \tag{3.0.13}$	
	Therefore we can say that $D\mathbf{F}(\mathbf{x}, \mathbf{y})$ will exist at $(\mathbf{x}, \mathbf{y}) = (0, 0)$.	False

TABLE 3: Solution