BIO-0208 Aula1: O modelo básico da genética de populações

Contagem de frequências genotípicas e alélicas e populações em equilíbrio de Hardy-Weinberg

Leitura: Ridley, 5.1-5.5

Modelos em ciência

O que esperamos de um modelo?

simplificação da natureza

Modelo pouco útil:

- modelo imensamente complicado
 - ex., modelo de evolução que exija informação sobre todos os detalhes dos seres sob estudo (idade, número de células, características reprodutivas, dieta, história de vida, etc.)

Modelo útil:

Simplifica <u>e</u> trás informações sobre o mundo natural Permite fazer previsões testáveis

Alguns modelos bastante familiares

A estrutura da molécula de DNA

 Modelos de funcionamento de sistemas biológicos

Phylogenetic Tree of Life

Parentesco entre seres vivos

Definindo um modelo para evolução

O que é evolução?

Definindo um modelo para evolução

O que é evolução?

 "Mudança". Mas o que é que muda?

Definindo um modelo para evolução

O que é evolução?

 "Mudança". Mas o que é que muda?

 Mudança na composição de uma população que seja herdável

Definições de evolução

 "Mudança de frequências alélicas ao longo do tempo"

Definições de evolução

"Mudança de frequências alélicas ao longo do tempo"

- 1. Acaso (deriva genética)
- 2. Seleção natural
- 3. Mutação
- 4. Migração e fluxo gênico

Definições de evolução

"Conversão de variação entre indivíduos na variação entre espécies"

Nosso desafio

 Descrever a variação genética numa população

 Formular um modelo sobre o que faz composição genética mudar ao longo do tempo

O que é selecionado?

- indivíduos?
- genes?
- populações (aula 11)

Como surge isolamento entre espécies?

- diferenças ao acaso
- adaptação a localidades (aula 12)

O que torna espécies diferentes?

- acaso?
- seleção natural? (aula 3)

Porque há regiões do genoma aparentemente sem função?

- DNA lixo?
- Útil? (aula 5)

O tamanho populacional importa na evolução?

- sim, seleção difere em função do tamanho
- tamanho não influencia como opera seleção (aula 6)

Recombinação é útil?

- Cria combinações vantajosas
- Elimina variantes ruins (aula 7)

Porque há modularidade?

- É vantajosa
- Se forma por acaso, como consequência de características do desenvolvimento (aula 10)

Qual a base genética da variação morfológica?

- poucos genes de grande efeito
- muitos genes de efeito pequeno (aula 9)

Descrição de variação genética

locus: um "endereço" no genoma

alelo: a identidade de uma variante genética

Indivíduo diplóide possui dois alelos num lócus

Definindo alelos

ATCTTCTACTTCCCTTATGTA
ATCTTCTACTTCCCTTACGTA
ATCTCCTACTTCCCTTACGTA
ATCTCCTACTTCCCTTACGTA

Lócus: trecho do genoma

ATCTTCTACTTCCCTTATGTA
ATCTTCTACTTCCCTTACGTA
ATCTCCTACTTCCCTTACGTA
ATCTCCTACTTCCCTTACGTA

alelo 1
alelo 2
alelo 3
alelo 3

Alelos: tipo de sequência de DNA

Sítio polimórfico

Definindo alelos

ATCTTCTACTTCCCTTATGTA
ATCTTCTACTTCCCTTACGTA
ATCTCCTACTTCCCTTACGTA
ATCTCCTACTTCCCTTACGTA

Lócus: trecho do genoma

```
ATC TTC TAC TTC CCT TAT GTA alelo 1
ATC TTC TAC TTC CCT TAC GTA alelo 2
ATC TCC TAC TTC CCT TAC GTA alelo 3
ATC TCC TAC TTC CCT TAC GTA alelo 3

Ile Phe Tyr Phe Pro Tyr Val alelo A
Ile Phe Tyr Phe Pro Tyr Val alelo A
Ile Ser Tyr Phe Pro Tyr Val alelo a
Ile Ser Tyr Phe Pro Tyr Val alelo a
```

Alelos: tipo de sequência de proteína produzia

Definindo alelos

Bases de dados na era genômica

Um exemplo:

1092 indivíduos

Identificou 37 milhões de SNPs

Frequências genotípicas e alélicas

ld1 Aa

ld2 Aa

ld3 Aa

ld4 Aa

ld5 AA

Id6 AA

Id7 AA

Id8 AA

ld9 AA

ld10 aa

Frequências genotípicas e alélicas

ld1 Aa

ld2 Aa

ld3 Aa

ld4 Aa

ld5 AA

Id6 AA

Id7 AA

Id8 AA

ld9 AA

ld10 aa

Frequências genotípicas

 $f_{Aa} = 4/10$

 $f_{AA} = 5/10$

 $f_{aa} = 1/10$

Frequências alélicas (p e q)

$$f(A) = f_{AA} + f_{Aa} * 1/2 =$$

$$5/10 + 2/10 = 7/10 = 0,7$$

Ou contado

$$f(A)=14/20 = 7/10 = 0,7$$

$$f(a) = 3/10 = 0,3$$

Descrevendo a variabilidade de uma amostra

Diversidade gênica, H (ou taxa de heterozigose esperada)

$$H=0,48$$

$$f(A)=0,9$$

 $f(a)=0,1$

$$H=0,18$$

Godfrey Hardy 1877-1947

Motivação: "the idea that a dominant character should show a tendency to spread over a whole population, or that a recessive should tend to die out."

Wilhem Weinberg 1862-1937

 p^2

2pq

 q^2

Frequências alélicas: p e q

Um exemplo com dados reais: população humana

	MM	MN	NN
Obs	79	138	61
Esperado	Total*p ²	Total*2pq	Total*q ²
	78.8	138.7	60.8

Total=278 p=0,53; q=0,47

Conclusão: Não refutamos a hipótese de que a população está evoluindo conforme esperado pelo modelo básico de HW

O modelo básico da genética de populações: equilíbro de Hardy-Weinberg

Propriedade evolutiva	Pressuposto de HW
Tamanho da população	
Forma de cruzamento	
Sobrevivência dos genótipos	
Introdução de novos alelos (mutação e migração)	

O modelo básico da genética de populações: equilíbro de Hardy-Weinberg

Parâmetro do modelo evolutivo	Pressuposto de HW
Tamanho da população	Infinito
Forma de cruzamento	Aleatório
Sobrevivência dos genótipos	Igual para todos (i.e., sem seleção)
Introdução de novos alelos (mutação e migração)	Não ocorre

Como pensar nos modelos

Como pensar nos modelos

"All models are wrong, but some are useful"

George E.P. Box (1987)

Ideias principal da aula

- · Conceito de frequência genotípicas e alélicas
- ·Sob os pressupostos de HW, frequências alélicas não mudam
- ·Modelo de HW
 - ·Prevê frequências genotípicas a partir das alélicas (assumindo pressupostos)
 - ·Se a previsão "falhar", é sinal que algum dos pressupostos pode estar sendo violado
- · Heterozigose esperada (H) é estima diversidade populacional