SFU

A Discriminative Latent Model of Object Classes and Attributes

Yang Wang and Greg Mori
Vision and Media Lab, Simon Fraser University, Burnaby, BC, Canada

Overview

- Joint modeling of object classes and (correlated) attributes
- Use of word embedding to train Keras layers
- A general learning framework for classification with auxiliary labels

Model Formulation

Training data: IMDB movie review. Labeled as negative and positive

Training algorithm for embedding: Hierarchical softmax

Training algorithm for Keras layers: softmax with stochastic gradient descent

Learning and Inference

Scoring: score(w,h) computes the compatibility of word w with the context h

$$\mathbf{P}(w_t|h) = softmax(score(w_t, h))$$

$$= \frac{exp(socre(w_t, h))}{\sum_{w'inVocab} exp(score(w', h))}$$

Learning with latent attributes:

$$\min_{\mathbf{w},\xi} \beta ||\mathbf{w}||^2 + \sum_{n=1}^{N} \xi^{(n)}$$
s.t. $\max_{\mathbf{h}} \mathbf{w}^{\top} \Phi(\mathbf{x}^{(n)}, \mathbf{h}, y^{(n)}) - \max_{\mathbf{h}} \mathbf{w}^{\top} \Phi(\mathbf{x}^{(n)}, \mathbf{h}, y)$

$$\geq \Delta(y, y^{(n)}) - \xi^{(n)}, \forall n, \forall y$$

Another choice is to use the ground-truth attribute labels h^n (i.e. learning with observed attributes).

Attribute Relation Graph

Running minimum spanning tree with NormMI(j, k)as the weight on the edge (j, k).

Other Loss Functions

A simple modification of Δ will optimize different (training) errors.

Overall accuracy:

$$\Delta_{0/1}(y, y^{(n)}) = \begin{cases} 1 \text{ if } y \neq y^{(n)} \\ 0 \text{ otherwise} \end{cases}$$

Mean per-class accuracy:

$$\Delta_{\text{new}}(y, y^{(n)}) = \begin{cases} \frac{1}{m_p} & \text{if } y \neq y^{(n)} \text{ and } y^{(n)} = p \\ 0 & \text{otherwise} \end{cases}$$

where m_p is the number of training examples with class p.

Experiments

a-Pascal dataset:

a Lascal datasett			
overall	mean per-class		
62.16	46.25		
59.15	50.84		
58.77	38.52		
53.74	44.04		
58.5	34.3		
59.4	37.7		
	62.16 59.15 58.77 53.74 58.5		

a-Yahoo dataset:

method	overall	mean per-class
Our approach with $\Delta_{0/1}$	78.67	71.45
Our approach with Δ_{new}	79.88	73.31
SVM with $\Delta_{0/1}$	74.43	65.96
SVM with $\Delta_{ m new}$	74.51	66.74