Домашня Робота з Еволюційних Систем #1

Захаров Дмитро

8 вересня, 2024

Зміст

1	Різі	ицеві рівняння	2
	1.1	Вправа 1	2
	1.2	Вправа 4	3
	1.3	Вправа 5	
2	Зас	осування різницевих рівнянь	4
	2.1	Вправа 1	4
	2.2	Вправа 2	4
	2.3	Вправа 3	4
	2.4	Вправа 4	
	2.5	Вправа 5	5
	2.6	Вправа 6	
	2.7	Вправа 7	
	2.8	Вправа 8	
	2.9	Вправа 9	

1 Різницеві рівняння

1.1 Вправа 1.

Умова Задачі 1.1. Розв'язати лінійне різницеве рівняння першого порядку (тобто знайти загальний розв'язок рівнянь):

$$x_{k+1} - \frac{k+2}{k+1} \cdot x_k = \frac{2}{k+3}$$

Розв'язання. Маємо рівняння виду $x_{k+1} = a_k x_k + f_k$, де $a_k = \frac{k+2}{k+1}$ та $f_k = \frac{2}{k+3}$. Спочатку розглянемо однорідне рівняння:

$$x_{k+1} = \frac{k+2}{k+1} x_k,$$

розв'язок якого ϵ , очевидно:

$$x_k = x_0 \cdot \prod_{j=0}^{k-1} \frac{j+2}{j+1} = x_0 \cdot \left(\frac{2}{1} \cdot \frac{3}{2} \cdot \dots \cdot \frac{k+1}{k}\right) = (k+1)x_0$$

Тепер скористаємось методом варіації сталих. Нехай тепер $x_k = c_k \prod_{j=0}^{k-1} a_j = (k+1)c_k$. Підставимо це у наше початкове рівняння:

$$(k+2)c_{k+1} = \frac{k+2}{k+1} \cdot (k+1)c_k + \frac{2}{k+3}$$

Звідси маємо:

$$c_{k+1} = c_k + \frac{2}{(k+2)(k+3)}$$

Звідки залишається порахувати суму:

$$c_k = c_0 + \sum_{j=0}^{k-1} \frac{2}{(j+2)(j+3)} = c_0 + 2\sum_{j=0}^{k-1} \left(\frac{1}{j+2} - \frac{1}{j+3}\right) = c_0 + 2\left(\frac{1}{2} - \frac{1}{k+2}\right)$$

Якщо позначимо $\widetilde{c}_0:=c_0+1,$ то остаточно $c_k=\widetilde{c}_0-\frac{2}{k+2}.$ Тоді:

$$x_k = (k+1)\left(\widetilde{c}_0 - \frac{2}{k+2}\right)$$

Вправи 2-3 розв'язуються аналогічно.

1.2 Вправа 4.

Умова Задачі 1.2. Розв'язати лінійне різницеве рівняння першого порядку (тобто знайти загальний розв'язок рівнянь):

$$x_{k+1} = x_k + \frac{1}{(3k+4)(3k+1)}$$

Розв'язання. Достатньо одразу скористатися формулою:

$$x_k = x_0 + \sum_{j=0}^{k-1} \frac{1}{(3j+4)(3j+1)} = x_0 + \frac{1}{3} \sum_{j=0}^{k-1} \left(\frac{1}{3j+1} - \frac{1}{3j+4} \right) = x_0 + \frac{1}{3} - \frac{1}{3(3k+1)}$$

Якщо позначити $\widetilde{x}_0 := x_0 + \frac{1}{3}$, то отримаємо розв'язок:

$$x_k = \widetilde{x}_0 - \frac{1}{3(3k+1)}$$

1.3 Вправа 5.

Умова Задачі 1.3. Розв'язати лінійне різницеве рівняння першого порядку (тобто знайти загальний розв'язок рівнянь):

$$x_{k+1} = x_k + \frac{(k+1)^2}{(2k+3)(2k+1)}$$

Розв'язання. Достатньо одразу скористатися формулою:

$$x_k = x_0 + \sum_{j=0}^{k-1} \frac{(j+1)^2}{(2j+3)(2j+1)}$$

Тут вже суму обрахувати дещо складніше. Для цього спочатку поділимо чисельник на знаменник:

$$(j+1)^2 = \frac{1}{4}(2j+3)(2j+1) + \frac{1}{4}$$

Тому звідси маємо:

$$x_k = x_0 + \sum_{j=0}^{k-1} \frac{1}{4} + \frac{1}{4} \sum_{j=0}^{k-1} \frac{1}{4(2j+3)(2j+1)}$$

Очевидно, що $\sum_{j=0}^{k-1} \frac{1}{4} = \frac{k}{4}$, а другу суму рахуємо як зазвичай:

$$\sum_{j=0}^{k-1} \frac{1}{4(2j+3)(2j+1)} = \frac{1}{8} \sum_{j=0}^{k-1} \left(\frac{1}{2j+1} - \frac{1}{2j+3} \right) = \frac{1}{8} \left(1 - \frac{1}{2k+1} \right) = \frac{1}{8} - \frac{1}{8(2k+1)}$$

Таким чином $x_k = \widetilde{x}_0 + \frac{k}{4} - \frac{1}{8(2k+1)}$.

2 Застосування різницевих рівнянь

2.1 Вправа 1.

Умова Задачі 2.1. Вкладник поклав деяку суму на депозит під 10% відсотків річних. Через скільки років його дохід збільшиться удвічі (без урахування жодних зовнішніх інвестицій та витрат)?

Розв'язання. Нехай вкладник має z_n грошей після n років, де z_0 — початкова сума. Тоді маємо рівняння $z_{n+1}=(1+r)z_n$ для r=0.1. Розв'язок цього рівняння $z_n=(1+r)^nz_0$. Нас цікавить таке мінімальне n, за яке $z_n\geq 2z_0$. Для цього достатньо розглянути рівняння $(1+r)^n=2$, звідки $n_{\min}=\lceil\log 2/\log(1+r)\rceil=8$.

2.2 Вправа 2.

Умова Задачі 2.2. Вкладник поклав 100 у.о. на депозит під 10 відсотків річних. Через скільки років його дохід збільшиться вдвічі, якщо кожен рік він одержує додатково 10 у.о.?

Розв'язання. Нехай вкладник має z_n грошей після n років, де $z_0 = 100$ — початкова сума. Тоді маємо рівняння $z_{n+1} = (1+r)z_n + f$ для r = 0.1, f = 10. Його розв'язок:

$$z_n = (1+r)^n z_0 + f \sum_{j=0}^{n-1} (1+r)^j = (1+r)^n z_0 + \frac{(1+r)^n - 1}{r} \cdot f$$

Нам потрібно знайти таке мінімальне n, за яке $(1+r)^n z_0 + \frac{f}{r}(1+r)^n - \frac{f}{r} \ge 2z_0$. І це рівняння ми навіть можемо достатньо явно розв'язати:

$$(1+r)^n \left(z_0 + \frac{f}{r}\right) \ge 2z_0 + \frac{f}{r} \implies n_{\min} = \left[\log\left(\frac{2z_0r + f}{z_0r + f}\right) / \log(1+r)\right] = 5$$

2.3 Вправа 3.

Умова Задачі 2.3. Вкладник поклав 100 у.о. на депозит під 5 відсотків річних. Яку суму він одержить через 5 років, якщо зовнішні надходження складають 20 у.о. у перші три та 30 у.о. протягом останніх двох років?

Розв'язання. Нехай вкладник має z_n грошей після n років, де $z_0 = 100$ — початкова сума. Тоді маємо рівняння $z_{n+1} = (1+r)z_n + f_n$ для r = 0.05, а надходження мають вигляд:

$$f_n = \begin{cases} 20, & n = 0, 1, 2, \\ 30, & n = 3, 4. \end{cases}$$

Далі залишається рахувати. Маємо $z_1=100\cdot 1.05+20=125$. Далі $z_2=125\cdot 1.05+20=151.25$. Далі $z_3=151.25\cdot 1.05+20\approx 178.81$. Далі $z_4=178.81\cdot 1.05+30\approx 217.75$. Нарешті, $z_5=217.75\cdot 1.05+30\approx 258.64$.

2.4 Вправа 4.

Умова Задачі 2.4. Нехай чисельність населення у 1970 році деякого міста складала 50 тис. осіб, а у 1980 році — 75 тис. осіб. Припускаючи, що чисельність населення у кінці року пропорційна чисельності населення на початку року зі сталим коефіцієнтом пропорційності, знайти, якою буде чисельність населення міста у 2000 році.

Розв'язання. Нехай z_n — кількість населення у тисячах у рік, починаючи з 1970. Згідно умові маємо рівняння $z_{n+1}=\alpha z_n$ для деякого $\alpha\in\mathbb{R}$. Тоді $z_n=\alpha^n z_0$ — розв'язок рівняння. За умовою $z_0=50$, а також ми знаємо, що $z_{10}=75$. Звідси $\alpha^{10}=\frac{75}{50}$. Нарешті, нас питають значення z_{30} . Згідно нашої формули $z_{30}=\alpha^{30}z_0=\left(\frac{75}{50}\right)^3\cdot 50=168.75$ (тисяч).

2.5 Вправа 5.

Умова Задачі 2.5. Нехай чисельність населення в теперешній рік складає 600 тис. осіб. Припускаючи, що коефіцієнт народжуваності довірнює 5 відсотків та смертності 0.1 відсоток, з'ясувати, через скільки років чисельність населення сягне 1 млн (міграцію не враховувати).

Розв'язання. Нехай z_n — кількість населення у тисячах у рік, починаючи з теперішнього. Згідно умови маємо рівняння $z_{n+1}=(1+\beta-\delta)z_n$ де $\beta=0.05, \delta=0.001$. Тоді $z_n=(1.049)^nz_0$ — розв'язок рівняння. Згідно умови $z_0=600$, а також ми хочемо знайти таке мінімальне n, за якого $z_n\geq 1000$. Звідси $(1.049)^n\geq \frac{1000}{600}$. Отже $n_{\min}=\left\lceil\log\left(\frac{1000}{600}\right)/\log 1.049\right\rceil=11$.

2.6 Вправа 6.

Умова Задачі 2.6. Нехай чисельність населення в теперешній рік складає 300 тис. осіб. Припускаючи, що коефіцієнт народжуваності довірнює 5 відсотків та смертності 1 відсоток, з'ясувати, через скільки років чисельність населення сягне 1 млн, якщо кожен рік населення за рахунок міграції збільшується на 1 тис.

Розв'язання. Задача по суті така сама, як і Вправа 2.2, тільки тут параметри такі: $r=\beta-\delta=0.04,\,z_0=300$ (у тисячах людей), f=1 і замість $2z_0$ маємо Z:=1000. Тоді

$$n_{\min} = \left\lceil \log \left(\frac{Zr + f}{z_0 r + f} \right) / \log(1 + r) \right\rceil = 30$$

2.7 Вправа 7.

Умова Задачі 2.7. Знайти $\lim_{t\to\infty} D(t)$, де D(t) — позначає кількість речовини препарату в організмі людини після t-го застосування препарату зі сталою дозою $f(t) \equiv D_0$.

Розв'язання. Маємо рівняння $D(t+1) = (1-p)D(t) + D_0$ для $p \in [0,1)$. Його розв'язок

$$D(t) = (1-p)^t D_0 + \sum_{i=0}^{t-1} (1-p)^j D_0 = (1-p)^t D_0 + \frac{1-(1-p)^t}{p} D_0$$

Звідси $\lim_{t\to\infty} D(t) = \frac{D_0}{p}$ оскільки $(1-p)^t \xrightarrow[t\to\infty]{} 0.$

2.8 Вправа 8.

Умова Задачі 2.8. Нехай одноразово введено препарат в організм та кожної доби виводиться 0.5 відсотків речовини. Через скідьки діб організм буде позбавлений 50 відсотків речовини?

Розв'язання. Нехай доза через t діб є D_t . Тоді маємо рівняння $D_{t+1} = (1-p)D_t$ для p = 0.005. Його розв'язок $D_t = (1-p)^tD_0$. Ми хочемо знайти мінімальне t за яке $D_t \le 0.5D_0$, отже розглядаємо рівняння $(1-p)^t = 0.5$. Звідси $t_{\min} = \lceil \log 0.5 / \log (1-p) \rceil = 139$.

2.9 Вправа 9.

Умова Задачі 2.9. Знайдіть розв'язок початкової задачі (1) (ханойські вежі) в явному вигляді. Переконайтесь в тому, що цей розв'язок уявляє собою послідовність цілих чисел.

Розв'язання. Рівняння мало вигляд $r_t = 1 + 2r_{t-1}$ для $r_1 = 1$. Його розв'язок:

$$r_t = 1 + 2r_{t-1} = 1 + 2(1 + 2r_{t-2}) = 1 + 2 + 2^2r_{t-2} = \dots = 1 + 2 + 2^2 + \dots + 2^{t-1} = 2^t - 1$$

Це очевидно цілі числа.