DAY10 groupby

```
In []: #takeaway: Group by; Iterator and iterable
In [1]: import pandas as pd
In [2]: pd.set_option('display.max_rows',10)
    pd.set_option('display.max_columns',10)
    pd.set_option('display.precision',2)
In [3]: url = 'https://raw.githubusercontent.com/datoujinggzj/DataScienceCrashCours
    df = pd.read_csv(url)
    feature_cols = df.columns[1:5]
```

下面给出了一系列的比较实用的一些aggregation function。

Summary statistics	Numpy operations	More complex operations
mean	np.mean	.agg()
median	np.min	agg(["mean", "median"])
min	np.max	agg(custom_function())
max	np.sum	
sum	np.product	
describe		
count or size		

(https://imgtu.com/i/baOIU1)

基础内容

groupby对象性质: https://pandas.pydata.org/docs/reference/groupby.html)

```
In [4]: df.groupby('Species')
Out[4]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000022BE5D3F55</pre>
```

```
In [5]: df.groupby('Species').groups
```

```
Out[5]: {'Iris-setosa': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1 6, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 3 4, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], 'Iris-ver sicolor': [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 6 5, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 8 3, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'Iris -virginica': [100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 12 6, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149]}
```

In [6]: df.groupby('Species').indices

```
9, 10, 11, 1
Out[6]: {'Iris-setosa': array([ 0, 1,
                                        2, 3,
                                                4,
                                                     5, 6,
                                                             7,
                                                                 8,
        2, 13, 14, 15, 16,
                17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3
        3,
                34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
               dtype=int64),
         'Iris-versicolor': array([50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 6
        1, 62, 63, 64, 65, 66,
                67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 8
        3,
                84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
               dtype=int64),
         'Iris-virginica': array([100, 101, 102, 103, 104, 105, 106, 107, 108, 10
        9, 110, 111, 112,
                113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
                126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138,
                139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149], dtype=int
        64)}
```

```
In [7]: df.groupby('Species').get_group('Iris-setosa')
```

Out[7]:		ld s	SepalLengthC	cm SepalWidtl	nCm	PetalLength	Cm	PetalWidthCm	Species
	0	1	Į.	5.1	3.5		1.4	0.2	Iris-setosa
	1	2	4	1.9	3.0		1.4	0.2	Iris-setosa
	2	3	4	4.7	3.2		1.3	0.2	Iris-setosa
	3	4	4	1.6	3.1		1.5	0.2	Iris-setosa
	4	5	Ę	5.0	3.6		1.4	0.2	Iris-setosa
	45	46	4	1.8	3.0		1.4	0.3	Iris-setosa
	46	47	ţ	5.1	3.8		1.6	0.2	Iris-setosa
	47	48	4	1.6	3.2		1.4	0.2	Iris-setosa
	48	49	ţ	5.3	3.7		1.5	0.2	Iris-setosa
	49	50	ţ	5.0	3.3		1.4	0.2	Iris-setosa
	50 r	ows ×	6 columns						
In [8]:	df.	grou	pby(' <mark>Spec</mark>	ies').all()					
Out[8]:			ld s	SepalLengthCm	Sep	oalWidthCm	Peta	alLengthCm P	etalWidthCm
		Spe	ecies						
		Iris-se	tosa True	True	- <u>-</u>	True		True	True
	Iris	-versio	color True	True	•	True		True	True
	lri	is-virgi	inica True	True)	True		True	True
In [9]:	df.	grou	pby('Spec	ies').ngrou	ıps				
Out[9]:	3								
(n [10]:	df.	grou	pby(' <mark>Spec</mark>	ies').size()				
Out[10]:	Spe	cies							

50

50

50

Iris-setosa

dtype: int64

Iris-versicolor

Iris-virginica

5.1

5.9

Iris-virginica

Iris-virginica

1.9

2.1

In [11]: df.groupby('Species').head(3)

Out[11]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	50	51	7.0	3.2	4.7	1.4	Iris-versicolor
	51	52	6.4	3.2	4.5	1.5	Iris-versicolor
	52	53	6.9	3.1	4.9	1.5	Iris-versicolor
	100	101	6.3	3.3	6.0	2.5	Iris-virginica

2.7

3.0

In [12]: df.groupby('Species').tail(3)

101

102

102 103

5.8

7.1

\cap	127-	- 1	г 1	ี	п.
U	'u	し		ᇈ	- 1

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
47	48	4.6	3.2	1.4	0.2	Iris-setosa
48	49	5.3	3.7	1.5	0.2	Iris-setosa
49	50	5.0	3.3	1.4	0.2	Iris-setosa
97	98	6.2	2.9	4.3	1.3	Iris-versicolor
98	99	5.1	2.5	3.0	1.1	Iris-versicolor
99	100	5.7	2.8	4.1	1.3	Iris-versicolor
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

In [13]: df.groupby('Species').first()

Out[13]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
Species					
Iris-setosa	1	5.1	3.5	1.4	0.2
Iris-versicolor	51	7.0	3.2	4.7	1.4
Iris-virginica	101	6.3	3.3	6.0	2.5

In [14]: df.groupby('Species').last()

Out[14]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
Species					
Iris-setosa	50	5.0	3.3	1.4	0.2
Iris-versicolor	100	5.7	2.8	4.1	1.3
Iris-virginica	150	5.9	3.0	5.1	1.8

In [15]: df.groupby('Species').nth(9)

Out[15]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
Species					
Iris-setosa	10	4.9	3.1	1.5	0.1
Iris-versicolor	60	5.2	2.7	3.9	1.4
Iris-virginica	110	7.2	3.6	6.1	2.5

In [16]: df.groupby('Species').sample(n=3,random_state = 1)

Out[16]:

		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
_	27	28	5.2	3.5	1.5	0.2	Iris-setosa
	35	36	5.0	3.2	1.2	0.2	Iris-setosa
	40	41	5.0	3.5	1.3	0.3	Iris-setosa
	67	68	5.8	2.7	4.1	1.0	Iris-versicolor
	78	79	6.0	2.9	4.5	1.5	Iris-versicolor
	93	94	5.0	2.3	3.3	1.0	Iris-versicolor
	115	116	6.4	3.2	5.3	2.3	Iris-virginica
	132	133	6.4	2.8	5.6	2.2	Iris-virginica
	142	143	5.8	2.7	5.1	1.9	Iris-virginica

In [19]: df.groupby('Species')[feature_cols].ohlc() # 用于股票数据

Out	[19]

			Sep	alLen	gthCm	SepalWidthCm	 PetalLengthCm		Pe	etalWi	dthCm	
		open	high	low	close	open	 close	open	high	low	close	
_	Species											
_	Iris-setosa	5.1	5.8	4.3	5.0	3.5	 1.4	0.2	0.6	0.1	0.2	
	lris- versicolor	7.0	7.0	4.9	5.7	3.2	 4.1	1.4	1.8	1.0	1.3	
	Iris-virginica	6.3	7.9	4.9	5.9	3.3	 5.1	2.5	2.5	1.4	1.8	

3 rows × 16 columns

描述性统计

In [20]: # 计算每个类别的四个特征的最大值。 df.groupby('Species')[feature_cols].max()

Out[20]:

	SepailengthCm	SepaiwidthCm	PetailengthCm	PetalwidthCm
Species				
Iris-setosa	5.8	4.4	1.9	0.6
Iris-versicolor	7.0	3.4	5.1	1.8
Iris-virginica	7.9	3.8	6.9	2.5

In [21]: # 计算每个类别的四个特征的描述性统计指标汇总 df.groupby('Species')[feature_cols].describe().T

Out[21]:

	Species	Iris-setosa	Iris-versicolor	Iris-virginica
	count	50.00	50.00	50.00
	mean	5.01	5.94	6.59
SepalLengthCm	std	0.35	0.52	0.64
	min	4.30	4.90	4.90
	25%	4.80	5.60	6.22
•••				
	min	0.10	1.00	1.40
	25%	0.20	1.20	1.80
PetalWidthCm	50%	0.20	1.30	2.00
	75%	0.30	1.50	2.30
	max	0.60	1.80	2.50

32 rows × 3 columns

Step 1: 对各组进行描述性统计: 第三四分位数(Q3)和第一四分位数(Q1)

In [22]: df.groupby('Species')[feature_cols].quantile([.25,.5,.75])

0114	- го	2 1	
υuι	- 4		

		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
Species					
	0.25	4.80	3.12	1.40	0.2
Iris-setosa	0.50	5.00	3.40	1.50	0.2
	0.75	5.20	3.68	1.58	0.3
	0.25	5.60	2.52	4.00	1.2
Iris-versicolor	0.50	5.90	2.80	4.35	1.3
	0.75	6.30	3.00	4.60	1.5
	0.25	6.22	2.80	5.10	1.8
Iris-virginica	0.50	6.50	3.00	5.55	2.0
	0.75	6.90	3.18	5.88	2.3

那么如何同时计算多个统计指标呢? 使用 agg() 函数

In [23]: import numpy as np
stats_list = [np.mean, np.var,'std','median','min','max'] # str function

df.groupby('Species')[feature_cols].agg(stats_list).T

Out[23]:

	Species	Iris-setosa	Iris-versicolor	Iris-virginica
	mean	5.01	5.94	6.59
	var	0.12	0.27	0.40
SepalLengthCm	std	0.35	0.52	0.64
	median	5.00	5.90	6.50
	min	4.30	4.90	4.90
	var	0.01	0.04	0.08
	std	0.11	0.20	0.27
PetalWidthCm	median	0.20	1.30	2.00
	min	0.10	1.00	1.40
	max	0.60	1.80	2.50

24 rows × 3 columns

Step 2: 那么如何对不同的列求不同的统计量? 请对:

- SepalLengthCm计算mean
- SepalWidthCm计算var
- PetalLengthCm计算max
- PetalWidthCm计算min

并使用rename函数对index和column进行重命名。

```
In [24]: agg_mapping = {
               'SepalLengthCm': 'mean',
               'SepalWidthCm' :'var',
               'PetalLengthCm': 'max',
               'PetalWidthCm': 'min'
In [25]: df.groupby('Species')[feature cols].agg(agg mapping).rename(columns = {'Sep
                                                                         'SepalWidthCm':'Se
                                                                         'PetalLengthCm': 'P
                                                                         'PetalWidthCm':'Pe
Out[25]:
                       SepalLengthC的均
                                       SepalWidthCm的方
                                                        PetalLengthCm的最大
                                                                           PetalWidthCm的最小
                                                                                         值
                                   值
               Species
                                  5.01
                                                  0.15
                                                                      1.9
                                                                                        0.1
             Iris-setosa
                  Iris-
                                  5.94
                                                  0.10
                                                                      5.1
                                                                                        1.0
             versicolor
           Iris-virginica
                                  6.59
                                                  0.10
                                                                      6.9
                                                                                        1.4
In [26]: df.groupby('Species')[feature cols].agg(agg mapping).rename(columns = {'Sep
                                                                         'SepalWidthCm':'Se
                                                                         'PetalLengthCm': 'P
                                                                         'PetalWidthCm':'Pe
                                                                        index = {
                                                                             'Iris-setosa':'
                                                                             'Iris-versicolo
                                                                             'Iris-virginica
                                                                        })
          # 答案应该和下面完全一样!
0
```

Out[26]:		SepalLengthC的均 值	SepalWidthCm的方 差	PetalLengthCm的最大 值	PetalWidthCm的最小 值
	Species				
	setosa	5.01	0.15	1.9	0.1
	versocolor	5.94	0.10	5.1	1.0
	virginica	6.59	0.10	6.9	1.4

NameError: name 'df' is not defined

Out[28]:

	SepalLengthC的均 值	SepalWidthCm的方 差	PetalLengthCm的最大 值	PetalWidthCm的最小 值
Species				
setosa	5.01	0.15	1.9	0.1
versocolor	5.94	0.10	5.1	1.0
virginica	6.59	0.10	6.9	1.4

Step 3: 那么如何对不同的列求不同的【自定义】统计量? 请对:

- SepalLengthCm计算IQR
- SepalWidthCm计算极差
- PetalLengthCm计算几何平均值
- PetalWidthCm均值大于1返回True, 反之为False

Out[29]:

$SepalLength Cm_iqr \quad Sepal Width Cm_range \quad PetalLength Cm_geomean \quad Petal Width Cm_bool \quad PetalLength Cm_geomean \quad PetalLength Cm_geomean$

Species				
Iris- setosa	0.40	2.1	1.45	False
Iris- versicolor	0.70	1.4	4.23	True
Iris- virginica	0.68	1.6	5.53	True

Out[30]:

$SepalLength Cm_iqr \quad SepalWidth Cm_range \quad PetalLength Cm_geomean \quad PetalWidth Cm_bool$

Species				
Iris- setosa	0.40	2.1	1.45	False
Iris- versicolor	0.70	1.4	4.23	True
Iris- virginica	0.68	1.6	5.53	True

```
In [31]: # **kwargs as tuples,
          df.groupby('Species')[feature cols].agg(
               SepalLengthCm_iqr = ('SepalLengthCm', lambda x: x.quantile(0.75)-x.quant
               SepalWidthCm_range = ('SepalWidthCm',lambda x: max(x)-min(x)),
              PetalLengthCm geomean = ('PetalLengthCm',lambda x: x.prod()**(1/len(x))
              PetalWidthCm bool = ('PetalWidthCm', lambda x: True if x.mean() > 1 els
Out[31]:
                    SepalLengthCm_iqr SepalWidthCm_range PetalLengthCm_geomean PetalWidthCm_bool
             Species
                Iris-
                                0.40
                                                   2.1
                                                                        1.45
                                                                                        False
             setosa
                Iris-
                                0.70
                                                   1.4
                                                                        4.23
                                                                                         True
           versicolor
                Iris-
                                0.68
                                                   1.6
                                                                        5.53
                                                                                         True
            virginica
```

```
In [32]: generator = df.groupby(['Species']).__iter__()
```

```
In [4]: # Iterable __iter__()
num = [1,2,3]
print(dir(num)) # check whether can be iterable
```

```
add ', ' class ', ' class getitem ', ' contains
  , '__delitem__', '__dir__', '__doc__',
, '__getattribute__', '__getitem__', '__
imul__' '__init__' '__init_subclass
                                                           _eq__', '__format_
                                                       __gt
                                                                     __hash_ ',
                                                                                      iadd
   __gccar-
_imul__', '__init__', '__init_subcrass__ ,
__' lt ', '__mul__', '__ne__', '__new__',
                                                                 iter__',
                                                                  reduce
                                                                                      reduce ex
                       '__reversed__', '__rmul__
                                                                 setattr
      '__repr__', '__reversed__
'__sizeof__', '__str__', '
                                          __subclasshook__', 'append', 'clear', 'cop
    'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'so
rt']
```

Above, we can see iter, so list num is iterable but not iterator since this does not have next method so it does not have state;

Iterator is state so it remembers where it is during iteration

```
In [ ]: #迭代器优点:
#1. 提供了一种通用不依赖索引的迭代取值方式;
#2. 节省内存,迭代器在内存中相当于只占一个数据的空间: 因为每次取值都上一条数据会在内存释放
```