Recitation 27: Cross products -**Instructor Notes**

Warm up:

If \vec{a} , \vec{b} , and \vec{c} are vectors in 3-space \mathbb{R}^3 , which of the following make sense?

- (a) $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$
- (d) $(\vec{a} \cdot \vec{b}) + \vec{c}$
- (g) $\vec{a} \cdot (\vec{b} \times \vec{c})$

- (b) $(\vec{a} \cdot \vec{b})\vec{c}$
- (e) $(\vec{a} \times \vec{b}) + \vec{c}$ (h) $\vec{a} \times (\vec{b} \cdot \vec{c})$

- (c) $(\vec{a} \times \vec{b}) \cdot \vec{c}$
- (f) $\vec{a} \cdot (\vec{b} + \vec{c})$
- (i) $(\vec{a} \times \vec{b})\vec{c}$

Instructor Notes: This problem can be split up among the groups if the instructor likes (with maybe 3 or so per group).

Group work:

Problem 1 Given three dimensional vectors \vec{u} , \vec{v} , and \vec{w} , use dot product or cross product notation to describe the following vectors:

- (a) The vector projection of \vec{w} onto \vec{u} .
- (b) A vector orthogonal to both \vec{u} and \vec{v} .
- (c) A vector with the length of \vec{v} and the direction of \vec{w} .
- (d) A vector orthogonal to $\vec{u} \times \vec{v}$ and \vec{w} .

Instructor Notes: This problem and the Warm-up are meant to force the students to make sense of scalar vs. vector quantities, as well as what quantities the dot and cross products produce.

Problem 2 Find a vector of length 7 that is perpendicular to both $\langle 5, -1, 8 \rangle$ and $\langle -2, 10, 5 \rangle$.
Instructor Notes: Using cross product to find perpendicular vectors.
Problem 3 Find the area of the triangle in \mathbb{R}^3 with vertices at $P(2,-1,0)$, $Q(1,1,4)$ and $R(2,-1,6)$.
Instructor Notes: Students should know that we can find the areas of triangles and parallelograms in \mathbb{R}^3 by using the cross product.
Problem 4 A wrench that is 30cm long lies along the positive y-axis and grips a bolt at the origin. A force is applied in the direction $(0,3,-4)$ at the end of the wrench. Find the magnitude of the force needed to supply 100J of torque to the bolt.
Instructor Notes: One goal in this problem is for students to make sense of the right-hand rule. The students need to know which direction of rotation tightens or loosens a bolt.