一维非齐次热传导方程的 Crank-Nicolson 格式

作业:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} &, \quad 0 \le x \le 1, 0 \le t \le 1\\ u(x,0) = e^x &, \quad 0 \le x \le 1\\ u(0,t) = e^t, u(1,t) = e^{1+t}, &, \quad 0 \le t \le 1 \end{cases}$$

该问题的精确解为 $u(x,t) = e^{x+t}$.

定义误差为

$$E_{\infty}(h,\tau) = \max_{1 \leq i \leq m-1 \atop 1 \leq k \leq n} |u(x_i,t_k) - u_k^k)|$$

用 Crank-Nicolson 格式求下述问题的数值解并对数值解、精度和误差阶进行相应的数值分析。

解:

将 xm 等分,将 tn 等分,记
$$h = \frac{1}{m}$$
, $\tau = \frac{1}{n}$
 $x_i = ih, 0 \le i \le m$
 $t_k = k\tau, 0 \le k \le n$

Crank-Nicolson 差分格式为

$$\begin{cases} \frac{u_i^{k+1} - u_i^k}{\tau} = \frac{1}{2} \left(\frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{h^2} + \frac{u_{i+1}^{k+1} - 2u_i^{k+1} + u_{i-1}^{k+1}}{h^2} \right) + f(x_i, t_{k+\frac{1}{2}}) \\ u_i^0 = e^{x_i} \\ u_0^k = e^{t_k}, u_m^k = e^{1+t_k} \end{cases}$$

其中,
$$1 \le i \le m-1, 1 \le k \le n, \gamma = \frac{\tau}{h^2}$$
 $f(x_i, t_k) = 0$ 写成矩阵形式 $A_1 u^{k+1} = A_2 u^k + f$

其中

$$A_{1} = \begin{bmatrix} 1 + \gamma & -\frac{\gamma}{2} \\ -\frac{\gamma}{2} & 1 + \gamma & -\frac{\gamma}{2} \\ & \ddots & \ddots & \ddots \\ & & -\frac{\gamma}{2} & 1 + \gamma \end{bmatrix}$$

图 1 t=1 处的数值解和精确解

$$A_2 = \begin{bmatrix} 1 - \gamma & \frac{\gamma}{2} \\ \frac{\gamma}{2} & 1 - \gamma & \frac{\gamma}{2} \\ & \ddots & \ddots & \ddots \\ & & \frac{\gamma}{2} & 1 - \gamma \end{bmatrix}$$
$$u^k = [u_1^k, u_2^k, \dots, u_{m-1}^k]^T$$

$$f = \left[\frac{\gamma}{2}(u_0^k + u_0^{k+1}), 0, 0 \cdots, 0, \frac{\gamma}{2}(u_m^k + u_m^{k+1})\right]^T$$

解方程,由第 k 层的值,能够求出第 k+1 层的值。

解题程序运行于 Matlab 2018a.

当 $\tau = \frac{1}{10}$, $h = \frac{1}{10}$ 时, t=1 处的数值解和精确解见图1, 从图像上看很接近。 当 $\tau = \frac{1}{10}$, $h = \frac{1}{10}$ 时, 取 x=0.5, 不同 t 处的值见表1, 当层数越深时,误差越大,这 是因为,每一次由k层求解k+1层时都有误差,随着t的增大,误差不断累积,越来越 大,到 t=1 处误差变得最大。

表 1 x=0.5 时,不同 t 处的数值解、精确解和误差

k	t	数值解	精确解	解 误差	
1	0.1	1.822349	1.822119	2.3053E-04	
2	0.2	2.014105	2.013753	3.5224E-04	
3	0.3	2.225953	2.225541	4.1241E-04	
4	0.4	2.460072	2.459603	4.6922E-04	
5	0.5	2.718802	2.718282	5.2042E-04	
6	0.6	3.004743	3.004166	5.7700E-04	
7	0.7	3.320755	3.320117	6.3794E-04	
8	0.8	3.670002	3.669297	7.0507E-04	
9	0.9	4.055979	4.055200	7.7949E-04	
10	1	4.482550	4.481689	8.6123E-04	

取不同 τ 和 h 时,t=1 处的误差见图2, 步长越小,误差也越小。 分别用向后 Euler 格式和 Crank-Nicolson 格式,取不同步长时最大误差和最大误差

图 2 不同步长下的误差

的比值见表2, 可知,用向后 Euler 格式, τ 变为原来的 4 倍,h 变为原来的 2 倍,误差会 变为原来的 4 倍,符合 $O(\tau+h^2)$ 的截断误差; 而 Crank-Nicolson 格式, τ 变为原来的 2 倍,t 变为原来的 2 倍,t 变为原来的 4 倍,符合 t 存合 t 变为原来的 6 倍,t 变为原来的 7 倍,t 变为原来的 9 倍,误差会变为原来的 4 倍,符合 t 的截断误差,精度高于向后 Euler 格式。

表 2 不同步长的最大误差和最大误差的比

Crank-Nicolson 格式			向后 Euler 格式		
h, au	$E_{\infty}(h,\tau)$	$E_{\infty}(2h,2\tau)/E_{\infty}(h,\tau)$	h, au	$E_{\infty}(h,\tau)$	$E_{\infty}(2h,4\tau)/E_{\infty}(h,\tau)$
1/10,1/10	8.61E-04	*	1/100,1/10	3.01E-03	*
1/20,1/20	2.17E-04	3.962274	1/400,1/20	7.60E-04	3.956615
1/40,1/40	5.44E-05	3.998647	1/1600,1/40	1.90E-04	3.997046
1/80,1/80	1.36E-05	3.999657	1/6400,1/80	4.76E-05	3.999261