View on GitHub

Circuitos Digitais

Repo of Digital Circuits course - CRT0384

PRÁTICA 09 - MÁQUINAS DE ESTADO FINITOS - Máquina de Moore

Voltar à home

OBJETIVOS

 Projeto e implementação de uma máquina de estados finitos usando flip-flops e portas lógicas

Material Necessário:

- 02 TTL SN74HC74;
- Portas lógicas AND/OR/NOT/NAND/NOR
- Kit Digital

Máquina de estados finitos é o nome dado ao modelo genérico de circuitos sequenciais, como os contadores síncronos. Nesses circuitos, a saída depende das entradas e do estado atual, que corresponde a um conjunto de variáveis binárias denominadas variáveis de estado.

Um dos modelos de MEF utilizados é o modelo de Moore, mostrado a seguir:

O procedimento genérico para a síntese de uma MEF consiste em:

- Determinar quantos estados s\u00e3o necess\u00e1rios e selecionar um deles para estado inicial.
- Realizar a codificação dos estados, obtendo as variáveis de estado.
- Definir o tipo de flip-flop a ser utilizado
- Construir o diagrama de estados escolhendo um dos modelos (Moore ou Mealy) e determinando as condições para as transições entre estados.
- Construir a tabela do próximo estado, a tabela de excitações e a tabela das saídas.
- Sintetizar os circuitos combinacionais: lógica do próximo estado e

saída.

PARTE 1 - PRÁTICA - SÍNTESE DE UMA MEF de Moore

Projete um contador utilizando máquina de estados para a seguinte sequência irregular de quatro estados: 000, 010, 111, 101 e, em seguida, volte ao estado inicial. Escreva a tabela de excitação e de próximo estado e representar a lógica de transição de estados e da saída. Utilize o mapa-K para determinar as expressões lógicas de Y2, V1 e V0

OBS: utilizar modelo de Moore e FFs tipo D

###

PRÓXIMO ESTADO $Q_2 o D_2$ EQUAÇÕES DE SAÍDA $Y_2Y_1Y_0$ -

 $\frac{}{Q_2\,Y_0} - \operatorname{Q_{-}\{0\}^{\}} \operatorname{Q_{-}\{1\}^{\}} Y_1$

PARTE 2 - MODIFICAÇÃO DA MEF

Modifique a MEF da parte 1 para que a contagem seja feita no sentido contrário, conforme diagrama a seguir:

 $Q_2\,Q_2$

###

PRÓXIMO ESTADO $Q_2 o D_2$ EQUAÇÕES DE SAÍDA $Y_2Y_1Y_0$ -

 $\frac{\phantom{Q_{1}}}{Q_{2}\,Y_{0}} - \,\mathrm{Q}_{0}^{0}^{1} \,\, Y_{1}$

DATASHEET 74HC74 FLIP-FLOP TIPO D

5 Pin Configuration and Functions

N, NS, D, DB, PW, J, or W Package 14-Pin PDIP, SO, SOIC, SSOP, TSSOP, CDIP, or CFP Top View

Table 1. Function Table

	INPUTS			OUTPUTS	
PRE	CLR	CLK	D	Q	Q
L	Н	X	Χ	Н	L
Н	L	X	Х	L	Н
L	L	X	Х	H ⁽¹⁾	H ⁽¹⁾
Н	Н	1	Н	Н	L
Н	Н	1	L	L	Н
Н	Н	L	Х	Q_0	\overline{Q}_0

(1) This configuration is nonstable; that is, it does not persist when PRE or CLR returns to its inactive (high) level.

CIs Lógicos: 74HC04 (6-NOT), 74HC08 (4-AND), 74HC32 (4-OR)

7400 - NAND

SN5400 . . . J PACKAGE SN54LS00, SN54S00 . . . J OR W PACKAGE SN7400, SN74S00 . . . D, N, OR NS PACKAGE SN74LS00 . . . D, DB, N, OR NS PACKAGE (TOP VIEW)

--- 7402 - NOR

74HC04 - NOT

logic diagram (positive logic)

SN5404...J PACKAGE SN54LS04, SN54S04...J OR W PACKAGE SN7404...N PACKAGE SN74LS04, SN74S04...D OR N PACKAGE (TOP VIEW)

74HC08 - AND

logic diagram (positive logic)

SN5408, SN54LS08, SN54S08 . . . J OR W PACKAGE SN7408 . . . J OR N PACKAGE SN74LS08, SN74S08 . . . D, J OR N PACKAGE (TOP VIEW)

74HC32

logic diagram

positive logic

$$Y = A + B \text{ or } Y = \overline{\overline{A} \cdot \overline{B}}$$

SN5432, SN54S32 . . . J OR W PACKAGE SN7432 . . . N PACKAGE SN74LS32, SN74S32 . . . D OR N PACKAGE (TOP VIEW)

Circuitos Digitais maintained by $\underline{marcielbp}$

Published with GitHub Pages