Time-Mass Duality Theory (T0 Model) Derivation of Parameters κ , α , and β

Johann Pascher

March 30, 2025

Abstract

This document presents a comprehensive theoretical analysis of the central parameters of the T0 model:

- 1. Fundamental derivations in natural units ($\hbar = c = G = 1$)
- 2. Conversion to SI units for experimental predictions
- 3. Microscopic justification of the correlation length L_T
- 4. Perturbative derivation of β via Feynman diagrams

Contents

1	Introduction	2	
2	Derivation of κ	2	
3	Derivation of α		
4		2 3 3	
5	Cosmological Implications		
6	Summary 6.1 Microscopic Justification of L_T	4	

1 Introduction

The T0 model postulates a duality between temporal and mass-related descriptions of physical processes. Key parameters are:

- κ : Modification of the gravitational potential $\Phi(r) = -\frac{GM}{r} + \kappa r$
- α : Photon energy loss rate $(1 + z = e^{\alpha r})$
- β : Wavelength dependence of redshift $(z(\lambda) = z_0(1 + \beta \ln(\lambda/\lambda_0)))$

2 Derivation of κ

Theorem 2.1 (Derivation of κ). In natural units ($\hbar = c = G = 1$):

$$\kappa = \beta \frac{yv}{r_g}, \quad r_g = \sqrt{\frac{M}{a_0}} \tag{1}$$

In SI units:

$$\kappa_{SI} = \beta \frac{yvc^2}{r_q^2} \approx 4.8 \times 10^{-11} \ m/s^2$$
(2)

3 Derivation of α

Theorem 3.1 (Derivation of α). In natural units ($\hbar = c = G = 1$):

$$\alpha = \frac{\lambda_h^2 v}{L_T}, \quad L_T \sim \frac{M_{Pl}}{m_h^2 v} \tag{3}$$

In SI units:

$$\alpha_{SI} = \frac{\lambda_h^2 vc^2}{L_T} \approx 2.3 \times 10^{-18} \ m^{-1}$$
 (4)

4 Derivation of β

Theorem 4.1 (Derivation of β). In natural units ($\hbar = c = G = 1$):

$$\beta = \frac{\lambda_h^2 v^2}{4\pi^2 \lambda_0 \alpha_0} \tag{5}$$

Perturbative result:

$$\beta = \frac{(2\pi)^4 m_h^2}{16\pi^2 v^4 y^2 M_{Pl}^2 \lambda_0^4 \alpha_0} \approx 0.008 \tag{6}$$

4.1 Feynman Diagram Analysis

4.2 Experimental Consequences

$$z(\lambda) = z_0 \left(1 + 0.008 \ln \frac{\lambda}{\lambda_0} \right) \tag{7}$$

5 Cosmological Implications

- κ explains rotation curves without dark matter.
- α describes cosmic expansion without dark energy.
- β leads to wavelength-dependent redshift, testable with JWST.

Figure 1: Rotation curves in the T0 model.

Parameter	Natural Form	SI Value
κ	$\beta \frac{yv}{r_q}$	$4.8 \times 10^{-11} \text{ m/s}^2$
α	$\frac{\lambda_h^2 v}{L_T}$	$2.3\times 10^{-18}~{\rm m}^{-1}$
β	$\frac{(2\pi)^4 m_h^2}{16\pi^2 v^4 y^2 M_{\rm Pl}^2 \lambda_0^4 \alpha_0}$	0.008

6 Summary

Appendix: Detailed Explanations

- 6.1 Microscopic Justification of L_T
 - Higgs fluctuations:

$$\langle \delta \Phi(x) \delta \Phi(0) \rangle \sim \frac{m_h}{16\pi^2 M_{\rm Pl}} e^{-m_h|x|}$$
 (8)

• Cosmic scale:

$$L_T \sim \frac{M_{\rm Pl}}{m_h^2 v} \approx 6.3 \times 10^{27} \text{ m}$$
 (9)

References

[1] Example reference.