Bounds for g-and-k cdf

Dennis Prangle

The g-and-k distribution is defined by its quantile function:

$$x = Q(z) = A + B\left(1 + c\frac{1 - \exp(-gz)}{1 + \exp(-gz)}\right)(1 + z^2)^k z \tag{1}$$

where z is the corresponding standard normal quantile. To find the cdf we must numerically solve $z = Q^{-1}(x)$. This requires providing bounds $\underline{z}(x) \leq Q^{-1}(x) \leq$ $\bar{z}(x)$. This document describes the derivation of some bounds.

We make the assumption that

$$0 \le c < 1 \tag{2}$$

Following Rayner and MacGillivray (2002), typically c = 0.8 and values outside [0,1) seem of little practical interest.

First make the change of variable y = (x - A)/B so that

$$y = R(z) = \left(1 + c\frac{1 - \exp(-gz)}{1 + \exp(-gz)}\right) (1 + z^2)^k z \tag{3}$$

and we require $\underline{z} \leq R^{-1}(y) \leq \bar{z}$.

Consider $f(z) = (1 - \exp(-gz)/(1 + \exp(-gz))$. It is straightforward to check that |f(z)| < 1, sign(f(z)) = sign(z), $\lim_{z \to -\infty} f(z) = -1$, $\lim_{z \to \infty} f(z) = 1$.

Using (2) it follows that sign(y) = sign(z). So for y = 0 the cdf is known exactly. Also we can take we can take $\underline{z} = 0$ for y > 0 and $\overline{z} = 0$ for y < 0.

Case $k \geq 0$

In this case $(1+z^2)^k \ge 1$. Suppose y>0. Then z>0 so $1+cf(z)\ge 1$. Thus (3) gives $y\ge z$ so we

Suppose instead y < 0. Then z < 0 and $1 + cf(z) \ge 1 - c$ (which is positive by (2)). Thus (3) gives $|y| \ge (1-c)|z|$, and $z \ge y/(1-c)$ allowing $\underline{z} = y/(1-c)$.

Case k < 0

From Rayner and MacGillivray (2002), k > -1/2 is required for a valid distribution. For clarity, let m = -k.

Consider the case y > 0. Then as above $1 + cf(z) \ge 1$ and (3) gives

$$y \ge (1+z^2)^{-m}z\tag{4}$$

Suppose $z \le 1$, then $(1+z^2) \le 2$, so $(1+z^2)^{-m}z \ge 2^{-m}z$ and (4) gives

$$y \ge 2^{-m}z > z/2$$

(n.b. $2^{-m} \ge 2^{-1/2}$, but we use 1/2 as a lower bound for convenience in the code) so we can take $\bar{z} = 2y$.

Suppose z > 1. Then $(1+z^2)^{-m} = z^{-2m}(1+z^{-2})^{-m} \ge z^{-2m}2^{-m} > z^{-2m}/2$. Hence (4) gives

$$y \ge z^{1-2m}/2$$

so that we can use $\bar{z} = (2y)^{1/(1-2m)}$.

For the case y < 0, adapting the argument of the $k \ge 0$ case gives

$$\underline{z} = \begin{cases} 2y/(1-c) & \text{for } |z| \le 1\\ -[2|y|/(1-c)]^{1/(1-2m)} & \text{for } |z| > 1 \end{cases}$$

Finally, note that it is easy to evaluate $|z| \le 1$ by testing $|y| \le R(1)$.

Summary

- For y = 0, z = 0 and it is not necessary to find bounds.
- For $k \ge 0$ and y > 0, $(\underline{z}, \overline{z}) = (0, y)$.
- For k > 0 and y < 0, $(z, \bar{z}) = (y/(1-c), 0)$.
- For k < 0 and $R(1) \ge y > 0$, $(z, \bar{z}) = (0, 2y)$.
- For k < 0 and y > R(1), $(z, \bar{z}) = (0, [2y]^{1/(1-2m)})$.
- For k < 0 and $R(-1) \le y < 0$, $(z, \bar{z}) = (2y/(1-c), 0)$.
- For k < 0 and y < R(-1), $(z, \bar{z}) = -([2|y|/\{1-c\}]^{1/(1-2m)}, 0)$.

References

Rayner, G. D. and MacGillivray, H. L. (2002). Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions. *Statistics and Computing*, 12(1):57–75.