Corrigé de la feuille d'exercices 8

Exercice 1. 1. Raisonnons par double inclusion.

• Montrons que : $]-\infty,0] \subset \{x \in \mathbb{R}, \forall \epsilon > 0, x < \epsilon\}.$

Soit $x \in]-\infty, 0]$, on a : $x \in \mathbb{R}$. Soit $\epsilon > 0$, on a : $x \le 0 < \epsilon$. Donc $x < \epsilon$.

Ainsi : $\forall \epsilon > 0, x < \epsilon$. Donc :

$$]-\infty,0]\subset\{x\in\mathbb{R},\forall\epsilon>0,x<\epsilon\}\}$$

• Montrons que $\{x \in \mathbb{R}, \forall \epsilon > 0, x < \epsilon\} \subset]-\infty, 0].$

Soit $x \in \mathbb{R}$ tel que : $\forall \epsilon > 0, x < \epsilon$.

Par l'absurde. Supposons $x \in \mathbb{R}_+^*$ et posons $\epsilon_0 = \frac{x}{2}$.

On a alors : $\epsilon_0 > 0$ et $\epsilon_0 < x$ (car x > 0), ce qui est absurde.

Ainsi, $x \in]-\infty, 0]$.

Par conséquent, $\{x \in \mathbb{R}, \forall \epsilon > 0, x < \epsilon\} \subset]-\infty, 0].$

Et finalement, $\{x \in \mathbb{R}, \forall \epsilon > 0, x < \epsilon\} =]-\infty, 0].$

- 2. Raisonnons par double inclusion.
 - On a immédiatement que $\{x \in \mathbb{R}, \exists \epsilon > 0, x < \epsilon\} \subset \mathbb{R}$.
 - Montrons que : $\mathbb{R} \subset \{x \in \mathbb{R}, \exists \epsilon > 0, x < \epsilon\}$ Soit $x \in \mathbb{R}$. Posons, $\epsilon = |x| + 1$. On a alors : $\epsilon > 0$ et $\epsilon > x$. Donc $\mathbb{R} \subset \{x \in \mathbb{R}, \exists > 0, x < \epsilon\}$.

D'où $\mathbb{R} = \{x \in \mathbb{R}, \exists > 0, x < \epsilon\}$

- 3. Raisonnons par double inclusion.
 - Montrons que : $\{0\} \subset \{x \in \mathbb{R}, \forall \epsilon > 0, x < \epsilon\}.$

 $0 \in \mathbb{R} \text{ et } |0| = 0.$

Soit $\epsilon > 0$, $|0| < \epsilon$.

Donc: $\forall \epsilon > 0, \ x < \epsilon$.

D'où $\{0\} \subset \{x \in \mathbb{R}, \forall \epsilon > 0, x < \epsilon\}\}.$

• Montrons que $\{x \in \mathbb{R}, \forall \epsilon > 0, x < \epsilon\} \subset]-\infty, 0].$

Soit $x \in \mathbb{R}$ tel que : $\forall \epsilon > 0, |x| < \epsilon$.

Raisonnons par l'absurde.

Supposons $x \neq 0$.

Posons
$$\epsilon = \frac{|x|}{2}$$
.

On a $\epsilon > 0$ et $\epsilon < |x|$. Absurde.

Ainsi, x = 0.

Par conséquent, $\{x \in \mathbb{R}, \forall \epsilon > 0, x < \epsilon\} \subset \{0\}.$

Et finalement, $\{x \in \mathbb{R}, \forall \epsilon > 0, x < \epsilon\} = \{0\}.$

Exercice 2. 1. Raisonnons par double implication.

• Supposons $E \subset F$. Montrons que $\mathcal{P}(E) \subset \mathcal{P}(F)$.

Soit $X \in \mathcal{P}(E)$. On a : $X \subset E \subset F$ donc $X \subset F$ d'où $X \in \mathcal{P}(F)$.

Ceci montre : $\mathcal{P}(E) \subset \mathcal{P}(F)$.

Ainsi : $E \subset F \implies \mathcal{P}(E) \subset \mathcal{P}(F)$.

• Réciproquement, supposons $\mathcal{P}(E) \subset \mathcal{P}(F)$. Montrons que $E \subset F$.

Soit $x \in E$.

On a : $\{x\} \in \mathcal{P}(E) \subset \mathcal{P}(F)$, donc $\{x\} \subset F$ d'où $x \in F$.

Ceci montre : $E \subset F$.

Ainsi : $\mathcal{P}(E) \subset \mathcal{P}(F) \implies E \subset F$.

On a donc bien équivalence.

2. Soit $X \in \mathcal{P}(A)$,

$$X \in \mathcal{P}(E \cap F) \iff X \subset E \cap F$$

$$\iff X \subset E \text{ et } X \subset F$$

$$\iff X \in \mathcal{P}(E) \text{ et } X \in \mathcal{P}(F)$$

$$\iff X \in \mathcal{P}(E) \cap \mathcal{P}(F)$$

On conclut donc $\mathcal{P}(E \cap F) = \mathcal{P}(E) \cap \mathcal{P}(F)$.

- 3. Soit $X \in \mathcal{P}(E \cup F)$, alors $X \subset E \cup F$. Donc :
 - soit $X \subset E$ donc $X \in \mathcal{P}(E)$ d'où $X \in \mathcal{P}(E) \cup \mathcal{P}(F)$.
 - soit $X \subset F$ donc $X \in \mathcal{P}(F)$ d'où $X \in \mathcal{P}(E) \cup \mathcal{P}(F)$.

Ainsi, dans tous les cas, $X \in \mathcal{P}(E) \cup \mathcal{P}(F)$. Donc : $\mathcal{P}(E) \cup \mathcal{P}(F) \subset \mathcal{P}(E \cup F)$.

La réciproque est fausse en général. En effet, si un ensemble est inclus dans une réunion $E \cup F$, cela n'implique pas, en général, que X soit dans E ou que X soit dans F. En effet, X peut contenir des éléments de E qui ne sont pas dans F et des éléments de F qui ne sont pas dans E.

Pour montrer la non-inclusion, donnons un contre-exemple :

 $\mathcal{P}(E) \cup \mathcal{P}(F) = \{\emptyset, \{1\}\} \cup \{\emptyset, \{2\}\} = \{\emptyset, \{1\}, \{2\}\}.$

Dans cet exemple, on n'a pas égalité entre $\mathcal{P}(E \cup F)$ et $\mathcal{P}(E) \cup \mathcal{P}(F)$.

Exercice 3. On raisonne par double implication.

• Supposons A = B.

On a alors $A \cap B = A = A \cup B$.

• Réciproquement, supposons $A \cup B = A \cap B$.

Montrons par double inclusion que A = B.

• Montrons que $A \subset B$.

Soit $x \in A$. Alors, $x \in A \cup B$ donc $x \in A \cap B$ donc $x \in B$.

Ainsi, $A \subset B$.

• Par symétrie entre A et B, on obtient de même $B \subset A$.

Ainsi, A = B.

Finalement, on a bien prouvé que $A \cup B = A \cap B \iff A = B$.

Exercice 4. 1. On raisonne par double implication.

- Supposons $A \cup B = B$. Montrons que $A \subset B$. Soit $x \in A$, alors $x \in A \cup B = B$ donc $x \in B$. Ainsi, $A \subset B$.
- Réciproquement, supposons que $A \subset B$. Montrons par double inclusion que $A \cup B = B$.
 - On sait déjà que $B \subset A \cup B$.
 - Montrons $A \cup B \subset B$. Soit $x \in A \cup B$, alors $(x \in A \text{ ou } x \in B)$.
 - * Si $x \in B$. Il n'y a rien à prouver.
 - * Si $x \in A$ alors, $x \in B$ car $A \subset B$.

Ainsi, dans tous les cas $x \in B$. Donc $A \cup B \subset B$.

Donc par double inclusion $A \cup B = B$.

Finalement, on a bien prouvé que $A \cup B = B \iff A \subset B$

- 2. On raisonne par double implication.
 - Supposons $A \cap B = \emptyset$.

Soit $x \in A$, on a $x \notin \emptyset$ donc $x \notin A \cap B$. Or, $x \in A$, Ainsi, $x \notin B$.

Ainsi, $x \in C_E^B$.

Donc $A \subset C_E^{\widetilde{B}}$.

• Supposons désormais $A \subset C_E^B$.

Supposons qu'il existe $x \in A \cap B$. Alors, $x \in A$ donc $x \in C_E^B$. De plus, $x \in B$. Ainsi, $x \in B \cap C_E^B = \emptyset$. Absurde.

Ainsi, $A \cap B = \emptyset$.

On a finalement bien prouvé : $A \cap B = \emptyset \iff A \subset C_F^B$.

- 3. On raisonne par double implication.
 - Supposons $A \cup B = E$.

Soit $x \in C_E^A$. On a $x \in E$ donc $x \in A \cup B$. Or, $x \notin A$ donc $x \in B$. Ainsi, $C_E^A \subset B$.

• Supposons $C_E^A \subset B$.

Montrons par double inclusion que $A \cup B = E$.

• On sait déjà que $A \cup B \subset E$.

- Soit $x \in E$.
 - * si $x \in A$ alors $x \in A \cup B$.
 - * sinon $x \in C_E^A$ donc $x \in B$ d'où $x \in A \cup B$.

Ainsi, $E \subset A \cup B$.

On a donc $E = A \cup B$.

Finalement, on a prouvé que $A \cup B = E \iff C_E^A \subset B$

- 4. On raisonne par double implication.
 - Supposons $A \cap B = A \cap C$ et $A \cup B = A \cup C$. Montrons par double inclusion que B = C.
 - Montrons que $B \subset C$. Soit $x \in B$.
 - * Si $x \in A$ alors $x \in A \cap B = A \cap C$ donc $x \in C$.
 - * Si $x \notin A$, alors, $x \in A \cup B$ donc $x \in A \cup C$. Or, $x \notin A$ donc $x \in C$. Ainsi, $B \subset C$
 - Par symétrie entre B et C, on montre de même que $C \subset B$.

Ainsi, B = C.

5.

• Réciproquement, si B=C, on a directement que $A\cap B=A\cap C$ et $A\cup B=A\cup C$.

Finalement, on a bien prouvé que : $(A \cap B = A \cap C \text{ et } A \cup B = A \cup C \iff B = C.$

$$\begin{split} A \setminus (B \cap C) &= A \cap C_E^{B \cap C} \\ &= A \cap \left(C_E^B \cup C_E^C \right) \\ &= (A \cap C_E^B) \cup (A \cap C_E^C) \\ &= (A \setminus B) \cup (A \setminus C) \end{split}$$

Exercice 5. 1. Soient $A, B \in \mathcal{P}(E)$.

$$\begin{split} A\Delta B &= (A \setminus B) \cup (B \setminus A) \\ &= (A \cap C_E^B) \cup (B \cap C_E^A) \\ &= (A \cup (B \cap C_E^A)) \cap (C_E^B \cup (B \cap C_E^A)) \\ &= (A \cup B) \cap (A \cup C_E^A) \cap (C_E^B \cup B) \cap (C_E^B \cup C_E^A) \\ &= (A \cup B) \cap E \cap E \cap C_E^{A \cap B} \\ &= (A \cup B) \cap C_E^{A \cap B} \\ &= (A \cup B) \setminus [A \cap B) \end{split}$$

2. Soient $A, B \in \mathcal{P}(E)$.

$$\begin{split} C_E^A \Delta C_E^B &= (C_E^A \cup C_E^B) \setminus (C_E^A \cap C_E^B) \\ &= (C_E^A \cup C_E^B) \cap C_E^{C_E^A \cap C_E^B} \\ &= C_E^{A \cap B} \cap C_E^{C_E^A \cup B} \\ &= C_E^{A \cap B} \cap (A \cup B) \\ &= (A \cup B) \cap C_E^{A \cap B} \\ &= (A \cup B) \setminus \{A \cap B\} \\ &= A \Delta B \end{split}$$

- 3. Soient $A, B, C \in \mathcal{P}[E)$. Raisonnons par double implication.
 - Supposons que B=C. Alors, on a directement que $A\Delta B=A\Delta C$.
 - Supposons que $A\Delta B = A\Delta C$. Montrons par double inclusion que B=C.
 - Montrons que $B \subset C$. Soit $x \in B$.

- * Si $x \in A$ alors $x \in A \cup B$ et $x \in A \cap B$ donc $x \notin A \Delta B$. Ainsi, $x \notin A \Delta C$. Or, $x \in A \cup C$. Donc $x \in A \cap C$. Ainsi, $x \in C$.
- * Si $x \notin A$ alors $x \in A \cup B$ et $x \notin A \cap B$ donc $x \in A \Delta B$. Ainsi, $x \in A \Delta C$ donc $x \in A \cup C$. Or, $x \notin A$ ainsi, $x \in C$.

Ainsi, dans tous les cas, $x \in C$.

Donc $B \subset C$.

• Par symétrie entre B et C, on montre de même que $C \subset B$.

Ainsi, B = C.

On a donc montré que $A\Delta B = A\Delta C \iff B = C$.

Exercice 6. Raisonnons par analyse-synthèse.

Analyse :Supposons qu'il existe $X \in \mathcal{P}(E)$ tel que $X \cup A = B$.

• Montrons $A \subset B$.

Soit $x \in A$ alors $x \in X \cup A$ donc $x \in B$ d'où $A \subset B$.

Ainsi, si $A \not\subset B$, l'équation $X \cup A = B$ n'admet pas de solution.

• Montrons $X \subset B$.

Soit $x \in X$ alors $x \in X \cup A$ donc $x \in B$ d'où $X \subset B$.

Ainsi, $B \setminus A \subset X \subset B$.

• Montrons que $B \setminus A \subset X$.

Soit $x \in B \setminus A$, alors $x \in B$ et $x \notin A$.

Or, $B = X \cup A$ donc $x \in X \cup A$ d'où $x \in X$ ou $x \in A$. Or, $x \notin A$ donc $x \in X$.

Ainsi, $B \setminus A \subset X$.

Synthèse : Supposons $A \subset B$. Soit $X \in \mathcal{P}(E)$ tel que $B \setminus A \subset X \subset B$.

 $\overline{\text{Montrons}}$ par double inclusion que $A \cup X = B$.

• Montrons que $B \subset A \cup X$.

Soit $x \in B$.

- si $x \in A$ alors $x \in A \cup X$.
- si $x \notin A$ alors $x \in B \setminus A$. Or, $B \setminus A \subset X$ donc $x \in X$. D'où $x \in A \cup X$.

Ainsi, $B \subset A \cup X$.

• Montrons que $A \cup X \subset B$.

Soit $x \in A \cup X$, alors $x \in A$ ou $x \in X$.

- si $x \in A$ alors $x \in B$ car $A \subset B$.
- si $x \in X$ alors $x \in B$ car $X \subset B$.

Ainsi, $A \cup X \subset B$. Donc $A \cup X = B$.

Finalement, si A est inclus dans B, l'ensemble des solutions de l'équation est :

$${X \in \mathcal{P}(E), B \setminus A \subset X \subset B}.$$

Et si A n'est pas inclus dans B, l'équation n'admet aucun solution.

Exercice 7. Raisonnons par analyse-synthèse.

Analyse :Supposons qu'il existe $X \in \mathcal{P}(E)$ tel que $X \cup A = B$.

• Montrons que $B \subset A$.

Soit $x \in B$, alors $x \in A \cap X$ donc $x \in A$.

Ainsi, $B \subset A$. Ainsi, si $B \not\subset A$, l'équation n'admet pas de solution.

• Montrons que $B \subset X$.

Soit $x \in B$, alors $x \in A \cap X$ donc $x \in X$.

Ainsi, $B \subset X$.

• Montrons $X \subset B \cup C_E^A$.

Soit $x \in X$.

- si $x \in C_E^A$ alors $x \in B \cup C_E^A$.
- si $x \in A$ alors $x \in X \cap A$ donc $x \in B$ d'où $x \in B \cup C_E^A$.

Ainsi, dans tous les cas $x \in B \cup C_E^A$.

Donc $X \subset B \cup C_E^A$.

Ainsi, $B \subset X \subset B \cup C_E^A$.

Synthèse : Supposons $B \subset A$. Soit $X \in \mathcal{P}(E)$ tel que $B \subset X \subset B \cup C_E^A$. Montrons par double inclusion que $A \cap X = B$.

- Montrons que $B \subset A \cap X$. Soit $x \in B$. Alors, $x \in X$ car $B \subset X$ et $x \in A$ car $B \subset A$. Donc $B \subset A \cap X$.
- Montrons que $A \cap X \subset B$.

Soit $x \in A \cap X$, alors $x \in A$ et $x \in X$.

Comme $x \in X$ alors $x \in B \cup C_E^A$ car $X \subset B \cup C_E^A$. Or, $x \in A$ donc $x \notin C_E^A$.

Ainsi, $x \in B$.

D'où $A \cap X \subset B$.

On a donc $A \cap X = B$.

Finalement, si B est inclus dans A, l'ensemble des solutions de l'équation est :

$$\{X \in \mathcal{P}(E), B \subset X \subset B \subset C_E^A\}.$$

Si B n'est pas inclus dans A, l'équation n'admet aucune solution.

1 Applications

Exercice 8.

$$A \cup B = A \cap B \iff \mathbb{1}_{A \cup B} = \mathbb{1}_{A \cap B}$$

$$\iff \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_{A \cap B} = \mathbb{1}_{A \cap B}$$

$$\iff \mathbb{1}_A + \mathbb{1}_B - 2\mathbb{1}_{A \cap B} = 0$$

$$\iff \mathbb{1}_A + \mathbb{1}_B - 2\mathbb{1}_A\mathbb{1}_B = 0$$

$$\iff \mathbb{1}_A \times \mathbb{1}_A + \mathbb{1}_B \times \mathbb{1}_B - 2\mathbb{1}_A\mathbb{1}_B = 0 \quad \text{car } \mathbb{1}_A \text{ et } \mathbb{1}_B \text{ sont à valeurs dans } \{0, 1\}$$

$$\iff (\mathbb{1}_A - \mathbb{1}_B)^2 = 0$$

$$\iff \mathbb{1}_A - \mathbb{1}_B = 0$$

$$\iff \mathbb{1}_A = \mathbb{1}_B$$

$$\iff A = B$$

Exercice 9. 1.

$$\begin{cases} A \cap B = A \cap C \\ A \cup B = A \cup C \end{cases} \iff \begin{cases} \mathbbm{1}_{A \cap B} = \mathbbm{1}_{A \cap C} \\ \mathbbm{1}_{A \cup B} = \mathbbm{1}_{A \cup C} \end{cases} \\ \iff \begin{cases} \mathbbm{1}_{A} \times \mathbbm{1}_{B} = \mathbbm{1}_{A} \times \mathbbm{1}_{C} \\ \mathbbm{1}_{A} + \mathbbm{1}_{B} - \mathbbm{1}_{A} \mathbbm{1}_{B} = \mathbbm{1}_{A} + \mathbbm{1}_{C} - \mathbbm{1}_{A} \mathbbm{1}_{C} \end{cases} \\ \iff \begin{cases} \mathbbm{1}_{A} \times \mathbbm{1}_{B} = \mathbbm{1}_{A} \times \mathbbm{1}_{C} \\ \mathbbm{1}_{A} + \mathbbm{1}_{B} = \mathbbm{1}_{A} + \mathbbm{1}_{C} \end{cases} \\ \iff \begin{cases} \mathbbm{1}_{A} \times \mathbbm{1}_{B} = \mathbbm{1}_{A} \times \mathbbm{1}_{C} \\ \mathbbm{1}_{B} = \mathbbm{1}_{C} \end{cases} \\ \iff \mathbbm{1}_{B} = \mathbbm{1}_{C} \end{cases} \\ \iff \mathbbm{1}_{B} = \mathbbm{1}_{C} \end{cases}$$

2. Montrons tout d'abord que : $\forall A, B \in \mathcal{P}(E), A \subset B \iff \mathbb{1}_1 \leq \mathbb{1}_B$. Soient $A, B \in \mathcal{P}[E)$.

Raisonnons par double implication.

* Supposons $A \subset B$.

Soit $x \in E$.

- si $x \in A$, alors $\mathbb{1}_A(x) = \mathbb{1}_B(x) = 1$. Donc $\mathbb{1}_A(x) \le \mathbb{1}_B(x)$.
- si $x \notin A$, alors $\mathbb{1}_A(x) = 0 \le \mathbb{1}_B(x)$.

Ainsi, $\forall x \in E$, $\mathbb{1}_A(x) \leq \mathbb{1}_B(x)$.

Donc $\mathbb{1}_A \leq \mathbb{A}_B$

* Supposons $\mathbb{1}_A \leq \mathbb{1}_B$. Montrons que $A \subset B$.

Soit $x \in A$. Alors $\mathbb{1}_A(x) = 1$ donc $\mathbb{1}_B(x) \ge 1$.

D'où $\mathbb{1}_B(x) = 1$.

Ainsi, $x \in B$.

D'où $A \subset B$.

Ainsi, $\mathbb{1}_A \leq \mathbb{1}_B \iff A \subset B$.

$$\begin{cases} A \cap B \subset A \cap C \\ A \cup B \subset A \cup C \end{cases} \iff \begin{cases} \mathbbm{1}_{A \cap B} \leq \mathbbm{1}_{A \cap C} \\ \mathbbm{1}_{A \cup B} \leq \mathbbm{1}_{A \cup C} \end{cases}$$

$$\iff \begin{cases} \mathbbm{1}_{A} \times \mathbbm{1}_{B} \leq \mathbbm{1}_{A} \times \mathbbm{1}_{C} \\ \mathbbm{1}_{A} + \mathbbm{1}_{B} - \mathbbm{1}_{A} \mathbbm{1}_{B} \leq \mathbbm{1}_{A} + \mathbbm{1}_{C} - \mathbbm{1}_{A} \mathbbm{1}_{C} \end{cases}$$

$$\iff \begin{cases} \mathbbm{1}_{A} \times (\mathbbm{1}_{B} - \mathbbm{1}_{C}) \leq 0 \\ \mathbbm{1}_{B} - \mathbbm{1}_{C} - \mathbbm{1}_{A} \times (\mathbbm{1}_{B} - \mathbbm{1}_{C}) \leq 0 \end{cases}$$

$$\iff \begin{cases} \mathbbm{1}_{B} - \mathbbm{1}_{C} \leq 0 \\ (\mathbbm{1} - \mathbbm{1}_{A}) (\mathbbm{1}_{B} - \mathbbm{1}_{C}) \leq 0 \end{cases} \quad \text{car } \mathbbm{1}_{A} \geq 0$$

$$\iff \mathbbm{1}_{B} \leq \mathbbm{1}_{C} \quad \text{car } \mathbbm{1} - \mathbbm{1}_{A} \geq 0$$

$$\iff \mathbbm{1}_{C} \subset C$$

2 Image directe - Image réciproque

Exercice 10. • Montrons que : $f^{-1}(\{1\}) = \{-1, 1\}$:

- Soit $x \in f^{-1}(\{1\})$ alors, f(x) = 1 donc $x^2 = 1$. Ainsi, $x = \pm 1$. Donc $x \in \{-1, 1\}$. Ainsi, $f^{-1}(\{1\}) \subset \{-1, 1\}$.
- Soit $x \in \{-1, 1\}$. Alors $x^2 = 1$ donc $f(x) \in \{1\}$. Ainsi, $x \in f^{-1}(\{1\})$. Donc $\{-1, 1\} \subset f^{-1}(\{1\})$.

Ainsi, $f^{-1}(\{1\}) = \{-1, 1\}.$

- Montrons que $f^{-1}([-1,4]) = [-2,2]$.
 - Soit $x \in f^{-1}([-1,4])$. Alors, $f(x) \in [-1,4]$ donc $x^2 \in [-1,4]$ D'où $x^2 \in [0,4]$. Donc $x \in [-2,2]$. Ainsi, $f^{-1}([-1,4]) \subset [-2,2]$.
 - Soit $x \in [-2, 2]$. Alors $x^2 \in [0, 4]$ donc $f(x) \in [0, 4]$ donc $f(x) \in [-1, 4]$. Ainsi, $x \in f^{-1}([-1, 4])$. Ainsi, $[-2, 2] \subset f^{-1}([-1, 4])$.

Donc $f^{-1}([-1,4]) = [-2,2].$

- Montrons que f([-1, 4]) = [0, 16]
 - Soit $y \in f([-1, 4])$. Alors, il existe $x \in [-1, 4]$ tel que y = f(x). Ainsi, $y = x^2$. Si $x \in [-1, 0]$ alors $x^2 \in [0, 1]$.

Si $x \in [0, 4]$ alors $x^2 \in [0, 16]$.

Ainsi, dans tous les cas $x^2 \in [0, 16]$ donc $y \in [0, 16]$.

Ainsi, $f([-1, 4]) \subset [0, 16]$

• Soit $y \in [0, 16]$. Posons $x = \sqrt{y}$. Alors $f(x) = f(\sqrt{y}) = (\sqrt{y})^2 = y$ et $x \in [0, 4]$ donc $x \in [-1, 4]$ donc $y \in f([-1, 4])$. Ainsi, $[0, 16] \subset f([-1, 4])$

Donc f([-1,4]) = [0,16].

- Montrons que $f(f^{-1}([-1,4])) = f([-2,2]) = [0,4]$ On a vu que $f^{-1}([-1,4]) = [-2,2]$ donc $f(f^{-1}([-1,4])) = f([-2,2])$.
 - Soit $y \in f([-2,2])$, alors, il existe $x \in [-2,2]$ tel que f(x) = y. Si $x \in [-2,2]$ alors $x^2 \in [0,4]$. Ainsi, $y \in [0,4]$ donc $f([-2,2]) \subset [0,4]$.
 - Soit $y \in [0,4]$. Posons $x = \sqrt{y}$. Alors $f(x) = f(\sqrt{y}) = y$. De plus, $x \in [0,2]$ donc $x \in [-2,2]$. Donc $y \in f([-2,2])$. Ainsi, $[0,16] \subset f([-2,2])$ donc f([-2,2]) = [0,4].
- Montrons que $f^{-1}(f([-1,4])) = f^{-1}([0,16]) = [-4,4]$
 - Soit $x \in f^{-1}([0,16])$. Alors $f(x) \in [0,16]$ donc $x^2 \in [0,16]$ donc $x \in [-4,4]$. Ainsi, $f^{-1}([0,16]) \subset [-4,4]$.
 - Soit $x \in [-4, 4]$. Si $x \in [-4, 0], x^2 \in [0, 16]$. Si $x \in [0, 4]$ alors $x^2 \in [0, 16]$.

Ainsi dans tous les cas $x^2 \in [0, 16]$ donc $f(x) \in [0, 16]$. Ainsi, $x \in f^{-1}([0, 16])$ donc $[-4, 4] \subset f^{-1}([0, 16])$. D'où $f^{-1}([0, 16]) = [-4, 4]$.

Exercice 11. 1. Soit $A \in \mathcal{P}(E)$.

Soit $x \in A$, alors $f(x) \in f(A)$ par définition. Donc $x \in f^{-1}(f(A))$. Ainsi $A \subset f^{-1}(f(A))$.

2. Soit $x \in f(f^{-1}(B))$, alors il existe $y \in f^{-1}(B)$ tel que x = f(y). Comme $y \in f^{-1}(B)$, $f(y) \in B$, donc $x \in B$. Ainsi $f(f^{-1}(B)) \subset B$.

1. Soient A et B deux parties de F. Exercice 12.

- Supposons $A \subset B$. Montrons que $f^{-1}(A) \subset f^{-1}(B)$. Soit $x \in f^{-1}(A)$, on a $f(x) \in A$ donc $f(x) \in B$ car $A \subset B$, puis $x \in f^{-1}(B)$. On conclut : $f^{-1}(A) \subset f^{-1}(B)$.
- Procédons par double inclusion.
 - Montrons que $f^{-1}(A \cup B) \subset f^{-1}(A) \cup f^{-1}(B)$. Soit $x \in f^{-1}(A \cup B)$. Alors $x \in f^{-1}(A)$ ou $x \in f^{-1}(B)$. Donc $f(x) \in A \cup B$ donc $f(x) \in A$ ou $f(x) \in B$. Ainsi, $x \in f^{-1}(A)$ ou $x \in f^{-1}(B)$. Donc $x \in f^{-1}(A) \cup f^{-1}(B)$. Ainsi, $f^{-1}(A \cup B) \subset f^{-1}(A) \cup f^{-1}(B)$.
 - Montrons que $f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B)$. Soit $x \in f^{-1}(A) \cup f^{-1}(B)$. Alors, $f(x) \in A$ ou $f(x) \in B$. Ainsi, $f(x) \in A \cup B$ donc $x \in f^{-1}(A \cup B)$. Ainsi, $f^{-1}(A) \cup f^{-1}(B) \subset f^{-1}(A \cup B)$.

On a donc prouvé que $f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B)$.

- Raisonnons par double inclusion.
 - Montrons que $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$. Soit $x \in f^{-1}(A \cap B)$. Alors, $f(x) \in A \cap B$ donc $f(x) \in A$ et $f(x) \in B$. Ainsi, $x \in f^{-1}(A)$ et $x \in f^{-1}(B)$. D'où $x \in f^{-1}(A) \cap f^{-1}(B)$. Ainsi, $f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$.
 - Montrons que $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B)$. Soit $x \in f^{-1}(A) \cap f^{-1}(B)$. Alors, $f(x) \in A$ et $f(x) \in B$. Ainsi, $f(x) \in A \cap B$. Donc $x \in f^{-1}(A \cap B)$. D'où $f^{-1}(A) \cap f^{-1}(B) \subset f^{-1}(A \cap B)$.

On conclut : $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

- Raisonnons par double inclusion:
 - Montrons que $f^{-1}(C_F^A) \subset C_E^{f^{-1}(A)}$. Soit $x \in f^{-1}(C_F^A)$, alors $f(x) \in C_F^A$ donc $f(x) \notin A$ donc $x \notin f^{-1}(A)$ d'où $x \in C_E^{f^{-1}(A)}$.
 - Montrons que $C_E^{f^{-1}(A)} \subset f^{-1}(C_F^A)$. Soit $x \in C_E^{f^{-1}(A)}$, alors $x \notin f^{-1}(A)$. Donc $f(x) \notin A$. Ainsi, $f(x) \in C_E^A$ donc $x \in f^{-1}(C_E^A)$.

Ainsi, $f^{-1}(C_F^A) = C_F^{f^{-1}(A)}$

- 2. Soient A et B des parties de E.
 - Supposons $A \subset B$. Montrons que $f(A) \subset f(B)$. Soit $y \in f(A)$. Il existe $a \in A$ tel que y = f(a). Or, $a \in B$ car $A \subset B$. Ainsi, $f(a) \in f(B)$ donc $y \in f(B)$. On obtient $f(A) \subset f(B)$.
 - Raisonnons par double inclusion.
 - Montrons que $f(A) \cup f(B) \subset f(A \cup B)$. On sait que $A \subset A \cup B$ et $B \subset A \cup B$. Ainsi, d'après la question précédente, on obtient : $f(A) \subset$ $f(A \cup B)$ et $f(B) \subset f(A \cup B)$ donc $f(A) \cup f(B) \subset f(A \cup B)$.
 - Montrons que $f(A \cup B) \subset f(A) \cup f(B)$.

Soit $y \in f(A \cup B)$.

Il existe $x \in A \cup B$ tel que y = f(x).

On a : $x \in A$ ou $x \in B$.

Si $x \in A$, alors $f(x) \in f(A)$ donc $x \in f(A) \cup f(B)$.

Si $x \in B$, alors $f(x) \in f(B)$ donc $x \in f(A) \cup f(B)$.

Ainsi, dans tous les cas, on a $x \in f(A) \cup f(B)$.

Donc $f(A \cup B) \subset f(A) \cup f(B)$

On a donc prouvé que $f(A \cup B) = f(A) \cup f(B)$.

- Soit $y \in f(A \cap B)$. Il existe $x \in A \cap B$ tel que y = f(x). Or, $x \in A$ donc $y = f(x) \in f(A)$. De plus, $x \in B$ donc $y = f(x) \in f(B)$. Ainsi, $y \in f(A) \cap f(B)$. D'où $f(A \cap B) \subset f(A) \cap f(B)$.
- (b) Prenons $A = \{-1, 2\}, B = \{2, 1\}$ et $f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^2 \end{array}$. On a : $f(A \cap B) = f(\{2\}) = \{4\}, f(A) = \{1, 4\}$ et $f(B) = \{1, 4\}. \text{ Ainsi, } f(A) \cap f(B) = \{1, 4\}. \text{ Donc } f(A) \cap f(B) \neq f(A \cap B).$ (c) Prenons $E = F = \mathbb{R}, f: \begin{array}{c} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^2 \end{array} \text{ et } A = \mathbb{R}_+.$

On a $C_{\mathbb{R}}^{\mathbb{R}_+} = \mathbb{R}_-^*$ et $f(C_R^{\mathbb{R}_+}) = f(\mathbb{R}_-^*) = \mathbb{R}_+^*$. De plus, $f(\mathbb{R}_+) = \mathbb{R}_+$. Ainsi, $C_{\mathbb{R}}^{f(\mathbb{R}_+)} = C_{\mathbb{R}}^{\mathbb{R}_+} = \mathbb{R}_-^*$. Donc $C_{\mathbb{R}}^{f(\mathbb{R}_+)} \neq f(C_{\mathbb{R}}^{\mathbb{R}_+})$.

3 Injections - Surjections - Bijections

1. L'application f_1 est injective. Exercice 13.

Soit $(n_1, n_2) \in \mathbb{N}^2$. Supposons que $f_1(n_1) = f_1(n_2)$.

Alors $2n_1 = 2n_2$ d'où $n_1 = n_2$.

En revanche, f_1 n'est pas surjective (donc pas bijective) car par exemple, l'entier 1 (et plus généralement tout entier impair) n'admet aucun antécédent par f_1 .

2. Soit $(a,b) \in \mathbb{R}^2$ et soit $(x,y) \in \mathbb{R}^2$. On a :

$$f_2(x,y) = (a,b) \iff (2x+3y,x+2y) = (a,b)$$

$$\iff \begin{cases} 2x+3y = a \\ x+2y = b \end{cases}$$

$$\iff \begin{cases} x+2y = b \\ -y = a - 2b \end{cases}$$

$$\iff \begin{cases} y = -a + 2b \\ x = 2a - 3b \end{cases}$$

Ainsi, tout élément $(a,b) \in \mathbb{R}^2$ admet un unique antécédent par f_2 donné par (x,y) = (2a-3b, -a+2b). On en déduit donc directement que f_2 est bijective donc injective et surjective.

3. f_3 n'est pas injective. En effet, $f_3(1,2) = (3,2)$ et $f_3(2,1) = (3,2)$. Donc $f_3(1,2) = f_3(2,1)$ avec $(1,2) \neq (2,1)$. Supposons que f_3 est surjective alors il existe $(x,y) \in \mathbb{R}^2$ tel que $f_3(x,y) = (0,3)$.

Alors $f_3(x,y) = (0,3) = (y+x,xy)$. Or, deux couples de réels sont égaux ssi leurs membres sont égaux.

D'où x + y = 0 et xy = 3. Ainsi, x = -y et $y^2 = -3$ ce qui est absurde car $y^2 \ge 0$.

Ainsi, f_3 n'est pas surjective et a fortiori, f_3 n'est pas bijective.

4. f_4 n'est pas injective. En effet, $f_4(1,1) = f_4(0,0)$ et $(1,1) \neq (0,0)$. f_4 est surjective.

Soit $x \in \mathbb{R}$, $f_4(x,0) = x$. Ainsi, (x,0) est un antécédent de x.

Donc: $\forall x \in \mathbb{R}, \ \exists (u, v) \in \mathbb{R}^2, f_4(u, v) = x.$

5. Soit $n \in \mathbb{N}$.

Soit $(n, n') \in \mathbb{N}^2$. Supposons f(n) = f(n').

- Si n et n' sont pairs alors $\frac{n}{2} = \frac{n'}{2}$ donc n = n'.
- Si n et n' sont impairs alors $-\frac{(n+1)}{2} = -\frac{(n'+1)}{2}$ donc n = n'.
- Si n est pair et n' impair alors $\frac{n}{2} = -\frac{(n'+1)}{2}$ d'où n = -n' 1 < 0 Impossible.
- Si n est impair et n' pair alors $-\frac{(n+1)}{2} = \frac{n'}{2}$ d'où n' = -n 1 < 0 Impossible.

Ainsi, dans tous les cas (possible), n = n'. Donc, f_5 est injective.

Si $m \ge 0$. Posons n = 2m, on a $n \in \mathbb{N}$ et $f_5(n) = \frac{2m}{2} = m$. Si m < 0. Posons n = -2m - 1, on a $n \in \mathbb{N}$ et $f_5(n) = \frac{2m}{2} = m$.

Ainsi, f_5 est surjective.

Finalement, f_5 est bijective.

6. L'application f_6 n'est pas injective car on a par exemple $f_6(0) = f_6(2i\pi) = 1$, ni surjective car le complexe 0 n'admet pas d'antécédent par f_6 .

1. g n'est pas injective car f(1) = f(-1) et $1 \neq -1$. Exercice 14.

f n'est pas non plus surjective. En effet, soit $x \in \mathbb{R}$, on a $x^2 - 1 < x^2 + 1$. De plus, $x^2 + 1 > 0$. Ainsi, $\frac{x^2 - 1}{x^2 + 1} < 1$. Donc par exemple 2 n'admet aucun antécédent par f.

2. Soit $x \in \mathbb{R}, x^2 + 1 \neq 0$.

De plus, on a prouvé dans la question 1 que : $\forall x \in \mathbb{R}_+, \frac{x^2 - 1}{x^2 + 1} < 1$.

De plus, soit $x \in \mathbb{R}$,

$$\frac{x^2 - 1}{x^2 + 1} \ge -1 \quad \Longleftrightarrow \quad x^2 - 1 \ge -x^2 - 1$$

$$\iff \quad 2x^2 \ge 0$$

La dernière proposition étant toujours vraie, on a : $\forall x \in \mathbb{R}_+, \frac{x^2 - 1}{x^2 + 1} \ge 1$.

Donc finalement : $\forall x \in \mathbb{R}_+, \frac{x^2 - 1}{x^2 + 1} \in [-1, 1[$.

Ainsi, g est bien définie.

Soit $y \in [-1, 1[$, soit $x \in \mathbb{R}_+$, on a:

$$\begin{split} g(x) &= y \\ \iff \frac{x^2-1}{x^2+1} &= y \\ \iff x^2-1 &= y(x^2+1) \\ \iff x^2(1-y) &= 1+y \\ \iff x^2 &= \frac{1+y}{1-y} \quad \text{car } 1 \neq y \\ \iff x &= \sqrt{\frac{1+y}{1-y}} \quad \text{ou } x = -\sqrt{\frac{1+y}{1-y}} \quad , \frac{1+y}{1-y} \geq 0 \text{ car } y \in [-1,1[$$

$$\iff x = \sqrt{\frac{1+y}{1-y}} \quad , \text{ car } x \in \mathbb{R}_+ \end{split}$$

L'équation g(x) = y admet donc une unique solution $x = \sqrt{\frac{1+y}{1-y}}$ dans \mathbb{R}_+ .

Ainsi, g est bijective et :

$$g^{-1}: [-1,1[: \rightarrow \mathbb{R}_+]$$
 $x \mapsto \sqrt{\frac{1+x}{1-x}}.$

Exercice 15. f n'est pas injective. En effet, f(1,0)=(1,0)=f(1,1) mais $(1,0)\neq (1,1)$. Soit $(u,v)\in \mathbb{R}^2$, soit $(x,y)\in \mathbb{R}^2$.

$$f(x,y) = (u,v)$$
 \iff $(x,xy-y^3) = (u,v)$ \iff
$$\begin{cases} x = u \\ xy - y^3 = v \end{cases}$$

Posons $g_u: \mathbb{R} \to \mathbb{R}$ $y \mapsto uy - y^3$.

 g_u est continue sur \mathbb{R} et $\lim_{y \to +\infty} g_u(y) = \lim_{y \to +\infty} \left(-y^3 \left(1 - \frac{u}{y^2}\right)\right) = -\infty$ et $\lim_{y \to -\infty} g(y) = \lim_{y \to -\infty} \left(-y^3 \left(1 - \frac{u}{y^2}\right)\right) = +\infty$. Ainsi, d'après le théorème des valeurs intermédiaires, il existe (au moins un) $y_u \in \mathbb{R}_+$ tel que $g_u(y_u) = v$. Ainsi, le couple $(u, y_u) \in \mathbb{R}^2$ est un antécédent de (u, v). f est donc surjective.

Exercice 16. 1. • Supposons $q \circ f$ injective.

Montrons que f est injective.

Soient $x, y \in E$. Supposons f(x) = f(y). alors g(f(x)) = g(f(y)) donc $(g \circ f)(x) = (g \circ f)(y)$. Or, $g \circ f$ est injective donc x = y.

Ainsi, f est injective.

• Supposons $g \circ f$ surjective.

Montrons que g est surjective.

Soit $y \in H$. Comme $g \circ f$ est surjective, il existe $x \in E$ tel que $y = (g \circ f)(x)$ Donc y = g(f(x)). Posons u = f(x). On a $u \in F$ et y = g(u).

Ainsi, g est surjective.

2. Supposons $g \circ f$ et $h \circ g$ bijectives.

On a donc $g \circ f$ bijective donc surjective. Ainsi, g est surjective.

De même, $h \circ g$ est bijective donc injective. Ainsi, g est injective.

Donc g est injective et surjective donc bijective.

On peut donc considérer g^{-1} .

De plus, g^{-1} est bijective. Ainsi, par composition, $g^{-1} \circ (g \circ f)$ est bijective. Or, $g^{-1} \circ (g \circ f) = (g^{-1} \circ g) \circ f = Id_F \circ f = f$. Donc f est bijective.

De même, $(h \circ g) \circ g^{-1}$ est bijective. Or, $(h \circ g) \circ g^{-1} = h \circ (g \circ g^{-1}) = h \circ Id_G = h$. Donc h est bijective.

Exercice 17. 1. Raisonnons par double implication.

• Supposons f injective.

Soit $A \in \mathcal{P}(E)$, montrons que $A = f^{-1}(f(A))$.

Raisonnons par double inclusion.

- Montrons que $A \subset f^{-1}(f(A))$. Soit $x \in A$, alors $f(x) \in f(A)$ par définition, donc $x \in f^{-1}(f(A))$. Ainsi $A \subset f^{-1}(f(A))$.
- Montrons que $f^{-1}(f(A)) \subset A$. Soit $x \in f^{-1}(f(A))$. Alors $f(x) \in f(A)$ donc il existe $a \in A$ tel que f(x) = f(a). Or, par injectivité de f, on obtient x = a donc $x \in A$. Ainsi $A \subset f^{-1}(f(A))$.

D'où par double inclusion $A = f^{-1}(f(A))$.

• Réciproquement, supposons que : $\forall A \in \mathcal{P}(E)$, $A = f^{-1}(f(A))$. Montrons que f est injective. Soit $(x,y) \in E^2$. Supposons que f(x) = f(y). Posons $A = \{x\}$. On a $f(y) = f(x) \in f(A)$, donc $y \in f^{-1}(f(A))$. Or, $f^{-1}(f(A)) = A$ par hypothèse donc $y \in A$. Ainsi, $y \in \{x\}$ donc y = x. Ainsi f est injective.

Finalement, on a prouvé que :

$$f$$
 injective $\iff \forall A \in \mathcal{P}(E), A = f^{-1}(f(A))$

- 2. Raisonnons par double implication.
 - Supposons f surjective. Soit $B \in \mathcal{P}(F)$. Montrons par double inclusion que $B = f(f^{-1}(B))$. On raisonne par double inclusion.
 - Montrons que $f(f^{-1}(B)) \subset B$. Soit $x \in f(f^{-1}(B))$, alors il existe $y \in f^{-1}(B)$ tel que x = f(y). Comme $y \in f^{-1}(B)$, $f(y) \in B$, donc $x \in B$. Ainsi $f(f^{-1}(B)) \subset B$.
 - Montrons que $B \subset f(f^{-1}(B))$. Soit $y \in B$, alors $y \in F$ et comme f surjective, il existe $x \in E$ tel que f(x) = y. Ainsi, $f(x) \in B$, donc $x \in f^{-1}(B)$, puis $f(x) \in f(f^{-1}(B))$ donc $y \in f(f^{-1}(B))$. Ainsi, $B = f(f^{-1}(B))$.

Donc par double inclusion, $B = f(f^{-1}(B))$.

• Réciproquement, supposons que : $\forall B \in \mathcal{P}(F), B = f(f^{-1}(B))$ et montrons que f est surjective. Soit $y \in F$. On pose $B = \{y\}$. On sait que $B = f(f^{-1}(B))$. Ainsi, $f(f^{-1}(B))$ est non vide. Donc $f^{-1}(B)$ est non vide (car $f(\emptyset) = \emptyset$) donc il existe $x \in f^{-1}(B)$. Ainsi, $x \in E$ et $f(x) \in B$ donc f(x) = y. On a alors $f(x) \in B$ donc f(x) = y. Ainsi, f est surjective.

On a donc montré :

$$f$$
 surjective $\iff \forall B \in \mathcal{P}(F), B = f(f^{-1}(B)).$

Exercice 18. 1. Soit $v \in \mathcal{F}(E, E)$, soit $u \in \mathcal{F}(E, E)$, on a :

$$\Phi_f(u) = v \iff f \circ u \circ f^{-1} = v$$
 $\iff u = f^{-1} \circ v \circ f$

2. Soit $u \in \mathcal{F}(E, E)$. On a

$$\Phi_f \circ \Phi_g(u) = \Phi_f(g \circ u \circ g^{-1}) = f \circ (g \circ u \circ g^{-1}) \circ f^{-1} = (f \circ g) \circ u \circ (g^{-1} \circ f^{-1}) = (f \circ g) \circ u \circ (f \circ g)^{-1} = \Phi_{f \circ g}(u)$$

donc $\Phi_f \circ \Phi_q = \Phi_{f \circ q}$.

- . Montrons que $\Phi_f(\mathcal{I}) = \mathcal{I}$. On raisonne par double inclusion.
 - Montrons que $\Phi_f(\mathcal{I}) \subset \mathcal{I}$. Soit $v \in \Phi_f(\mathcal{I})$ alors il existe $u \in \mathcal{I}$ tel que $v = \Phi_f(u)$. Or, $\Phi_f(u) = f \circ u \circ f^{-1}$ est une composée d'injections, donc $\Phi_f(u)$ est injective. Ainsi, $v \in \mathcal{I}$.

Ainsi $\Phi_f(\mathcal{I}) \subset \mathcal{I}$.

• Montrons que $\mathcal{I} \subset \Phi_f(\mathcal{I})$. Soit $u \in \mathcal{I}$, on a $u = (\Phi_f \circ (\Phi_f)^{-1})(u) = (\Phi_f \circ \Phi_{f^{-1}})(u)$ par le 2. Ainsi, $u = \Phi_f(\Phi_{f^{-1}}(u))$. De plus, $\Phi_{f^{-1}}(u) = f^{-1} \circ u \circ f \in \mathcal{I}$ comme composée de fonctions injectives. Ainsi $u \in \Phi_f(\mathcal{I})$ et $\mathcal{I} \subset \Phi_f(\mathcal{I})$.

Finalement, on a bien prouvé que $\Phi_f(\mathcal{I}) = \mathcal{I}$.

- Montrons que $\Phi_f(S) = S$. On raisonne par double inclusion.
 - Montrons que $\Phi_f(\mathcal{S}) \subset \mathcal{S}$.

Soit $v \in \Phi_f(\mathcal{S})$. Alors, il existe $u \in \mathcal{S}$ tel que $v = \Phi_f(u)$. Or, $\Phi_f(u) = f \circ u \circ f^{-1}$ est une composée de surjections, donc est surjective. $\Phi_f(u) \in \mathcal{S}$. Donc $v \in \Phi_f(\mathcal{S})$.

Ainsi $\Phi_f(\mathcal{S}) \subset \mathcal{S}$.

• Montrons que $\mathcal{S} \subset \Phi_f(\mathcal{S})$.

Soit $u \in \mathcal{S}$, on a $u = (\Phi_f \circ (\Phi_f)^{-1})(u) = (\Phi_f \circ \Phi_{f^{-1}})(u))$ par le 2.

Ainsi, $u = \Phi_f(\Phi_{f^{-1}}(u))$. De plus, $\Phi_{f^{-1}}(u) = f^{-1} \circ u \circ f \in \hat{\mathcal{S}}$ comme composée d'applications surjectives. Ainsi $u \in \Phi_f(\mathcal{S})$ et $\mathcal{S} \subset \Phi_f(\mathcal{S})$.

Ainsi $\Phi_f(\mathcal{S}) = \mathcal{S}$.

Exercice 19. 1. Raisonnons par double implication.

- Supposons f est injective. Montrons que $A \cup B = E$. On a f(E) = (A, B) et $f(A \cup B) = (A, B)$ donc par injectivité, $E = A \cup B$.
- Réciproquement, supposons $A \cup B = E$. Montrons que f est injective.

Soit $(X,Y) \in \mathcal{P}(E)^2$. Supposons que f(X) = f(Y).

On a alors $(X \cap A, X \cap B) = (Y \cap A, Y \cap B)$. Ainsi, $X \cap A = Y \cap A$ et $X \cap B = Y \cap B$.

D'où, $(X \cap A) \cup (X \cap B) = (Y \cap A) \cup (Y \cap B)$ donc $X \cap (A \cup B) = Y \cap (A \cup B)$ donc $X \cap E = Y \cap E$. Ainsi, X = Y.

Donc f est injective.

On a donc prouvé que : f injective $\iff A \cup B = E$.

- 2. Raisonnons par double implication.
 - Supposons que f est surjective. Montrons que $A \cap B = \emptyset$.

Il existe $X \in \mathcal{P}(E)$ tel que $f(X) = (A, \emptyset)$.

Ainsi, $(X \cap A, X \cap B) = (A, \emptyset)$.

On a alors $X \cap A = A$ et $X \cap B = \emptyset$.

Montrons par l'absurde que $A \cap B = \emptyset$.

Supposons qu'il existe $x \in A \cap B$, alors $x \in A = A \cap X$, donc $x \in X$, et $x \in B$, donc $x \in X \cap B = \emptyset$ Absurde.

Ainsi, $A \cap B = \emptyset$.

• Réciproquement, supposons que $A \cap B = \emptyset$. Montrons que f est surjective.

Soit $(Y, Z) \in \mathcal{P}(A) \times \mathcal{P}(B)$. Posons $X = Y \cup Z \in \mathcal{P}(E)$.

On a : $X \cap A = (Y \cup Z) \cap A = (Y \cap A) \cup (Z \cap A) = Y \cup \emptyset = Y$ (car $Y \subset A$ donc $Y \cap A = Y$ et $A \cap B = \emptyset$, $Z \subset B$, donc $Z \cap A = \emptyset$).

De même $X \cap B = (Y \cup Z) \cap B = (Y \cap B) \cup (Z \cap B) = \emptyset \cup Z = Z$ (car $Z \subset B$ donc $Z \cap B = Z$ et $A \cap B = \emptyset$, $Y \subset A$, donc $Y \cap A = \emptyset$).

D'où $f(X) = (X \cap A, X \cap B) = (Y, Z)$.

Ainsi, f est surjective.

On a donc prouvé que : f surjective \iff $A \cap B = \emptyset$.

3. f est bijective si et seulement si $A \cap B = \emptyset$ et $A \cup B = E$. Dans ce cas l'application $P(A) \times P(B) \rightarrow P(E)$ est la réciproque de f, comme vu dans la question précédente.

Exercice 20. Supposons f strictement croissante (on procède de même dans le cas strictement décroissante). Soit $x, t \in I$. Par l'absurde, supposons que f(x) = f(t) et $x \neq t$.

Alors, x < t ou x > t.

- Si x < t alors f(x) < f(t) par stricte croissance de f. Absurde.
- x > t alors f(x) > f(t) f par stricte croissante de f. Absurde.

Ainsi, $f(x) = f(t) \implies x = t$.

f est donc injective.

4 Relations d'équivalence

Exercise 21. 1. • Soit $X \in \mathcal{P}(E)$, on a $X \cup A = X \cup A$, donc $X \sim X$ et \sim est réflexive.

• Soit $(X,Y) \in \mathcal{P}(E)^2$. Supposons que $X \sim Y$. Alors $X \cup A = Y \cup A$, donc $Y \cup A = X \cup A$ et $Y \sim X$ donc \sim est symétrique.

• Soit $(X,Y,Z) \in \mathcal{P}(E)^3$. Supposons que $X \sim Y$ et $Y \sim Z$. Alors $X \cup A = Y \cup A$ et $Y \cup A = Z \cup A$ donc $X \cup A = Z \cup A$ ainsi $X \sim Z$ et \sim est transitive.

En conclusion \sim est une relation d'équivalence sur $\mathcal{P}(E)$.

2. Soit $X \in \mathcal{P}(E)$. Notons $cl_{\sim}(X)$ la classe d'équivalence de f_0 pour la relation \sim . Soit $Y \in \mathcal{P}(E)$, on a :

$$X \sim Y \iff X \cup A = Y \cup A$$

Montrons que $cl_{\sim}(X) = \{(X \setminus A) \cup B, B \subset A\}$. On raisonne par double inclusion.

• Montrons que $cl_{\sim}(X) \subset \{(X \setminus A) \cup B, B \subset A\}.$

Soit $Y \in cl_{\sim}(X)$. Alors, $X \cup A = Y \cup A$. On a alors : $(X \cup A) \cap C_E^A = (Y \cup A) \cap C_E^A$. Or : $(X \cup A) \cap C_E^A = (X \cap C_E^A) \cup (A \cap C_E^A) = (X \cap C_E^A) \cup \emptyset = X \cap C_E^A = X \setminus A$. De même, $(Y \cup A) \cap C_E^A = Y \setminus A$.

Donc $X \setminus A = Y \setminus A$.

On a alors: $Y = Y \cap E = Y \cap (A \cup C_E^A) = (Y \cap A) \cup (Y \cap C_E^A) = (Y \cap A) \cup Y \setminus A$. Posons $B = Y \cap A$. On a $B \subset A$ et $Y = (X \setminus A) \cup B$.

 $cl_{\sim}(X) = \{(X \backslash A) \cup B, B \subset A\}.$

• Montrons que $\{(X \setminus A) \cup B, B \subset A\} \subset cl_{\sim}(X)$.

Soit $Y \in \{(X \setminus A) \cup B, B \subset A\}$. Il existe $B \subset A$ tel que $Y = (X \setminus A) \cup B$.

On a alors:

$$Y \cup A = (X \setminus A) \cup B \cup A$$

$$= (X \cap C_E^A) \cup A \quad \text{car } B \subset A \text{ donc } B \cup A = A$$

$$= (X \cup A) \cap (C_E^A \cup A)$$

$$= (X \cup A) \cap E$$

$$= X \cup A$$

Donc $Y \sim X$. Ainsi, $Y \in cl_{\sim}(X)$.

Par double inclusion, on a donc : $cl_{\sim}(X) = \{(X \setminus A) \cup B, B \subset A\}.$

• La relation \mathcal{R} est réflexive : soit $f \in E$, on a f' = f' donc $f\mathcal{R}f$. Exercice 22.

- Elle est par ailleurs symétrique : soient $f, g \in E$. Supposons que f' = g' alors g' = f'. Ainsi, $g\mathcal{R}f$.
- Enfin, elle est transitive : soient $f, g, h \in E$. Supposons que $f\mathcal{R}g$ et $g\mathcal{R}h$ alors f' = g' et g' = h' donc f' = h' et $f\mathcal{R}h$.

La relation \mathcal{R} est donc bien une relation d'équivalence.

2. Soit $f_0 \in E$. Notons $cl_{\mathcal{R}}(f_0)$ la classe d'équivalence de f_0 pour la relation \mathcal{R} . Soit $f \in E$, on a :

$$f \in cl_{\mathcal{R}}(f_0) \iff f' = f'_0$$

$$\iff (f - f_0)' = 0$$

$$\iff \exists C \in \mathbb{R}, \forall x \in \mathbb{R}, (f - f_0)(x) = C$$

$$\iff \exists C \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = C + f_0(x)$$

Ainsi, on a:

$$cl_{\mathcal{R}}(f_0) = \{ f_0 + C, C \in \mathbb{R} \}$$

• La relation \mathcal{R} est réflexive : Soit $x \in \mathbb{R}$, on a : $x^2 - x^2 = x - x = 0$, donc $x\mathcal{R}x$.

- Soient $x, y \in \mathbb{R}$, supposons que $x\mathcal{R}y$, alors $x^2 y^2 = x y$, donc $y^2 x^2 = y x$. Ainsi, $y\mathcal{R}x$ donc \mathcal{R} est symétrique.
- Soient $x, y, z \in \mathbb{R}$, supposons que $x\mathcal{R}y$ et $y\mathcal{R}z$. On a $x^2 y^2 = x y$ et $y^2 z^2 = y z$. Ainsi :

$$x^{2} - z^{2} = (x^{2} - y^{2}) + (y^{2} - z^{2}) = x - y + y - z = x - z,$$

donc xRz et R est transitive.

En conclusion, \mathcal{R} est une relation d'équivalence sur \mathbb{R} .

2. Soit $x \in \mathbb{R}$. Notons $cl_{\mathcal{R}}(x)$ la classe d'équivalence de x pour la relation \mathcal{R} . On a $cl_{\mathcal{R}}(x) = \{y \in \mathbb{R}, y\mathcal{R}x\} = \{y \in \mathbb{R}, x^2 - y^2 = x - y\}$. Soit $y \in \mathbb{R}$, on a :

$$x^{2} - y^{2} = x - y \iff (x + y)(x - y) = x - y$$
$$\iff (x + y - 1)(x - y) = 0$$
$$\iff y = x \text{ ou } y = 1 - x$$

Ainsi, $cl_{\mathcal{R}}(x) = \{x, 1 - x\}.$

Remarque : si $x = \frac{1}{2}$, $cl_{\mathcal{R}}(x) = \left\{\frac{1}{2}\right\}$.