Tema 1. Introducción a la inteligencia artificial.

Definición de IA.

- → Modelar aspectos del pensamiento humano por el ordenador.
- → Algorítmos avanzados.
- → Programar tareas interesantes.
- → Sistemas que actúan como humanos.
- → Sistemas que piensan como humanos.
- → Sistemas que actúan racionalmente.
- → Sistemas que piensan racionalmente.

<u>Sistemas que piensan como humanos.</u>

- → El modelo es el funcionamiento de la mente humana.
- → Establecemos una teoría sobre el funcionamiento de la mente.
- → A partir de la teoría podemos establecer modelos computacionales.
- → Ciencias cognitivas.

Sistemas que piensan racionalmente.

- → Las leyes del pensamiento racional se fundamentan en la lógica.
- → La lógica formal está en la base de los programas inteligentes.
- → Se presentan dos obstáculos:
 - · Es muy difícil formalizar el conocimiento.
 - · Hay un gran salto entre la capacidad teórica de la lógica y su realización práctica.

Sistemas que actúan como humanos.

La inteligencia artificial es el estudio de cómo hacer que los ordenadores hagan cosas que por el momento son realizadsa mejor por los seres humanos.

- → Trabajos de la vida diaria.
- → Tareas formales.
- → Tareas de los expertos: ingeniería, análisis científico, diagnosis médica, etc.

SÁCATE EL CARNET POR

185E*

REGALO DE 1 PRÁCTICA AL VENIR DE WUOLAH

Avda. Ciudad Jardín S/N, local 3, esquina con Avda Ramón y Cajal 955 123 942 - 955 126 993

- → El objetivo es construir un sistema que pase por humano.
- → Test de Turing: si un sitema lo pasa es inteligente.
- → Capacidades necesarias: procesamiento del lenguaje natural, representación del conocimiento...
- → La interacción de programas con personas hace que sea necesario que estos actúen como humanos.

Test de Turing.

→ Conducta inteligente: la capacidad de lograr eficiencia a nivel humano en todas las actividades de tipo cognoscitivo, suficiente para engañar a un evaluador.

Sistemas que actúan racionalmente.

- → Actuar racionalmente significa conseguir unos objetivos dadas unas creencias.
- → El paradigma es el agente.
- → Un agente percibe y actúa, siempre según su entorno. Un agente racional actúa de la manera correccta según información que posee.
- → Las capacidades necesarias coinciden con las del test de Turing.
- → Su visión es más general.

<u>Qué es la IA?</u>

- → Es una rama de la informática que estudia y resuelve problemas situados en la frontera de la misma.
- → Se basa en dos ideas fundamentales:
 - · Representación del conocimiento explícita y declarativa.
 - · Resolución de problemas.

<u>Áreas de trabajo de la IA.</u>

- → Representación del conocimiento.
- → Resolución de problemas.
- → Planificación de tareas.
- → Tratamiento del lenguaje natural.
- → Percepción.
- → Agentes autónomos.

Agentes.

Agentes e inteligencia artificial.

- → Inteligencia artificial: subcampo de la informática dedicado a la construcción de agentes que exhiben aspectos del comportamiento inteligente.
- → Los agentes permiten dar una nueva forma de mostrar la IA.

Concepto de agente inteligente.

- → Sistema de ordenador, situado en algún entorno, que es capaz de realizar acciones de forma autónoma y que es flexible para lograr los objetivos planteados.
 - · Situación: el agente recibe entradas sensoriales de un entorno donde está situado y realiza acciones que lo cambian.
 - · Autonomía: el sistema es capaz de actuar sin la intervención de los humanos y tiene control sobre sus propias acciones y estado.

Flexibilidad.

- → Reactivo: el agente debe percibir el entorno y responder de una forma temporal a los cambios en dicho entorno.
- → Pro-activo: los agentes no deben simplemente actuar, deben ser capaces de exhibir comportamientos dirigidos a lograr objetivos que sean oportunos, y tomas la iniciativa

cuando sea apropiado.

→ Social: los agentes deben ser capaces de interactuar, cuando sea apropiado, con otros agetes artificiales o humanos para completar su propio proceso de resolución del problema y ayudar a otros con sus actividades.

Sistemas basados en agentes.

- → Sistema en el que la abstracción clave utilizada es precisamente la de agente.
- → Sistemas multi-agente: un sistema diseñado e implementado con varios agentes interactuando.
- → Los sistemas multi-agente son interesantes para representar problemas que tienen múltiples perspectivas, formas de ser resueltos, o entidades para resolver el problema.

Interacción entre agentes.

- → Cooperación: trabajar juntos para resolver algo.
- → Coordinación: organizar una actividad para evitar las interacciones perjudiciales y explotar las beneficiosas.
- → Negociación: llegar a un acuerdo que sea aceptable por todas las partes implicadas.

Sistemas multi-agente.

- → Inteligencia artificial distribuida (SMA): una red más o menos unida de resolutores de problemas que trabajan conjuntamente para resolver problemas que están mas allá de las capacidades individuales o del conocimiento de cada resolutor del problema.
- \rightarrow Resolutor = agente.

Características de un SMA.

- → Cada agente tiene información incompleta, así cada uno tiene un punto de vista limitado.
- → No hay un sistema de control global.
- → Los datos no están centralizados.
- → La computación es asíncrona.

Cooperación y negociación.

- → Cooperación: herramienta fundamental en la formación de equipos.
- → Negociación: coordinación y resolución de conflictos.

Arquitecturas de agentes.

Arquitecturas deliberativas.

- → Sistema de símbolos físicos: un conjunto de entidades físicas (símbolos) que pueden combinarse para formas estructuras, y que es capaz de ejecutar procesos que operan con dichos símbolos de acuerdo a conjuntos de instrucciones codificadas simbólicamente.
- → La hipótesis de sistemas de símbolos físicos dice que tales sistemas son capaces de generar acciones inteligentes.
- → Agente deliberativo: contiene un modelo simbólico del mundo explícitamente representado, y cuyas decisiones se realizan a través de un razonamiento lógico basado en emparejamientos de patrones y manipulacione simbólicas.
- → El problema de trasladar en un tiempo razonable para que sea útil el mundo real en una descripción simbólica precisa y adecuada.
- → El problema de representar simbólicamente la información acerca de entidades complejas del mundo, y ocmo conseguir que los agentes razonen con esta información para que los resultados sean útiles.

Arquitecturas reactivas.

- → No incluye ninguna clase de modelo centralizado de representación simbólica del mundo, y no hace uso de razonamiento complejo.
 - · El comportamiento inteligente puede ser generado sin una representación explícita de la clase que la IA simbólica propone.
 - · El comportamiento inteligente puede ser generado sin un razonamiento abstracto explícito de la clase que la IA propone.
 - · La inteligencia es una propiedad emergente de ciertos sistemas complejos.
- → La inteligencia "real" está situada en el mundo, y no son sistemas incorpóreos tales como la demostración de teoremas o los sistemas expertos.
- → El comportamiento "inteligente" surge como el resultado de la interacción del agente con su entorno.

Tema 2. Agentes reactivos.

<u>Tipos de agentes.</u>

- → Agentes reactivos.
- → Agentes deliberativos.
- → Agentes que existen en mundos habitados por otros agentes.

Representaciones del mundo.

- → Modelos icónicos.
- → Modelos basados en características.

Diseño de un agente reactivo.

- → Percepción y acción:
 - · El agente reactivo percibe su entorno a través de sensores.
 - · Procesa la información percibida y hace una representación interna de la misma.
 - · Escoge una acción, considerando información percibida.
 - · Transforma la acción en señales para los actuadores y la realiza.

Representación.

Movimientos posibles.

- → Norte: mueve el robot una celda hacia arriba.
- → Este: mueve el robot una celda a la derecha.
- → Sur: mueve el robot una celda abajo.
- → Oeste: mueve el robot una celda a la izquierda.

Proceso en dos fases.

- → Procesamiento perceptual.
- → Fase de cálculo de la acción.

Percepción y acción.

→ Percepción:

- → Acción:
 - · Si todas las características son cero, moverse al norte.

Arquitecturas de agentes reactivos.

Sistemas de producción.

$$c_1 \rightarrow a_1$$

$$c_2 \rightarrow a_2$$

..

$$c_i \rightarrow a_i$$

c_i / c

Ci es una función booleana definida sobre el vector de características, habitualmente una conjunción de literales booleanos.

CURSOS DE INGLÉS EN EL EXTRANJERO

TU FUTURO NO TENDRÁ LÍMITES

DESCARGA **EL CATÁLOGO** GRATUITO

KAPLANINTERNATIONAL.COM/ES

41 ESCUELAS ALREDEDOR DEL MUNDO

80 AÑOS DE EXPERIENCIA

DESCARGA EL CATÁLOGO GRATUITO

Redes.

→ Red neuronal: red de unidades lógicas con umbral.

Arquitectura de subsunción.

- → Consiste en agrupar módulos de comportamiento.
- → Cada módulo de comportamiento tiene una acción asociada, recibe la percepción directamente y comprueba una condición. Si esta se cumple, el módulo devuelve la acción a realizar.
- → Un módulo se puede subsumir en otro. Si el módulo superior del esquema se cumple, se ejecuta este en lugar de los módulos inferiores.

Agentes reactivos con memoria.

- → Limitaciones del sistema sensorial de un agente.
- → Mejorar la precisión teniendo en cuentta la historia sensorial previa: sistemas con memoria.

Implementación de la memoria con representaciones icónicas.

→ Adicionalmente el robot podría utilizar otras estructuras de datos: matriz que almacene en el mapa con las casillas libres u ocupadas en el momento en el que se percibieron.

Implementación de la memoria con sistemas basados en pizarras.

- → Son extensiones de los sistemas de producción.
- → En el agente existen varios programas denominados Módulos de Conocimiento (MC), formados por una parte de condición y otra parte de acción.
- → Existe una memoria común a todos los MC denominada pizarra.

- Cada MC es experto en una parte concreta del problema a resolver.
- Cuando se cumple una condición, un MC puede actualizar la pizarra, realiza una acción concreta o ambas.
- Es necesario implementar un programa de resolución de conflictos cuando dos Mcs pueden actuar simultáneamente, decidiendo cuál actúa y cuál no o, en su caso, el orden de ejecución de ambos.
- → La actualización de una parte de la pizarra correspondiente a un MC puede desencadenar la ejecución de otros MCs.
- → La pizarra alberga la solución que se está construyendo conforme al objetivo general del agente.

Características de los agentes reactivos.

- → Se diseñan completamente y por tanto es necesario anticipar todas las posibles reacciones para todas las situaciones.
 - · Realizan pocos cálculos.
 - · Almacenan todo en memorial.