

M5 Project: Cross-modal Retrieval

Week 2

Introduction to Object detection and Instance Segmentation with Detectron 2

Rubèn Pérez Tito rperez@cvc.uab.es

Ernest Valveny ernest@cvc.uab.es

In M5 project, we will use Detectron2 framework from Facebook Artificial Intelligence Research (FAIR), which is a research platform for object detection and segmentation in Pytorch.

https://github.com/facebookresearch/detectron2

Detectron2 is Facebook Al Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark.

What can we find at Detectron2?

- It supports a range of tasks related to object detection:
 - Powered by PyTorch deep learning framework.
 - Object detection with boxes
 - Object detection with instance segmentation masks
 - Human pose prediction
 - Semantic segmentation
 - Panoptic segmentation

What can we find at Detectron2?

What can we find at Detectron2?

- It includes many models:
 - Faster R-CNN
 - Mask R-CNN
 - RetinaNet
 - Dense Pose
 - TensorMask
 - Panoptic FPN
 - Cascade R-CNN

What can we find at Detectron2?

Check <u>model zoo and baselines</u>

COCO Object Detection Baselines

Faster R-CNN:

Name	lr sched	train time (s/iter)	inference time (s/im)	train mem (GB)	box AP	model id	download
R50-C4	1x	0.551	0.102	4.8	35.7	137257644	model metrics
R50-DC5	1x	0.380	0.068	5.0	37.3	137847829	model metrics
R50-FPN	1x	0.210	0.038	3.0	37.9	137257794	model metrics
R50-C4	3x	0.543	0.104	4.8	38.4	137849393	model metrics
R50-DC5	3x	0.378	0.070	5.0	39.0	137849425	model metrics
R50-FPN	3x	0.209	0.038	3.0	40.2	137849458	model metrics
R101-C4	3x	0.619	0.139	5.9	41.1	138204752	model metrics
R101-DC5	3x	0.452	0.086	6.1	40.6	138204841	model metrics
R101-FPN	3x	0.286	0.051	4.1	42.0	137851257	model metrics
X101-FPN	3x	0.638	0.098	6.7	43.0	139173657	model metrics

COCO Instance Segmentation Baselines with Mask R-CNN

Name	lr sched	train time (s/iter)	inference time (s/im)	train mem (GB)	box AP	mask AP	model id	download
R50-C4	1x	0.584	0.110	5.2	36.8	32.2	137259246	model metrics
R50-DC5	1x	0.471	0.076	6.5	38.3	34.2	137260150	model metrics
R50-FPN	1x	0.261	0.043	3.4	38.6	35.2	137260431	model metrics
R50-C4	3x	0.575	0.111	5.2	39.8	34.4	137849525	model metrics
R50-DC5	3x	0.470	0.076	6.5	40.0	35.9	137849551	model metrics
R50-FPN	3x	0.261	0.043	3.4	41.0	37.2	137849600	model metrics
R101-C4	3x	0.652	0.145	6.3	42.6	36.7	138363239	model metrics
R101-DC5	3x	0.545	0.092	7.6	41.9	37.3	138363294	model metrics
R101-FPN	3x	0.340	0.056	4.6	42.9	38.6	138205316	model metrics
X101-FPN	3x	0.690	0.103	7.2	44.3	39.5	139653917	model metrics

Faster R-CNN paper

- Extract feature map and region proposals
- 2. Infer class, confidence and bounding box for each proposal

Faster R-CNN paper

Novel RPN

Mask R-CNN paper

- Extension of Faster R-CNN
- Predicts a binary mask for each Rol head.

Mask R-CNN

Head architecture

How to start using Detectron2?

Detectron2 beginner's <u>tutorial</u>

Detectron2 Beginner's Tutorial

Welcome to detectron2! This is the official colab tutorial of detectron2. Here, we will go through some basics usage of detectron2, including the following:

- · Run inference on images or videos, with an existing detectron2 model
- Train a detectron2 model on a new dataset

You can make a copy of this tutorial by "File -> Open in playground mode" and make changes there. DO NOT request access to this tutorial.

How to start using Detectron2?

- Official installation instructions
- M5 installation instructions

Note: Detectron2 beginner's tutorial is thought to be run in Google Colab, not on the server. Therefore:

- You need to install opency-python (included in instructions)
- Check PIL version => If problems:

```
!pip install Pillow==5.3.0
```

You can't use cv2_imshow from google.colab.patches but

```
cv2.imwrite(img filename,img) #otherwise
```

Dataset: KITTI-MOTS

- Tracking and segmentation of CARS and PEDESTRIANS
 - Training data
 - 12 sequences
 - 8,073 pedestrian masks + 18,831 car masks
 - Validation data
 - 9 sequences
 - 3,347 pedestrian masks + 8,068 car masks
 - Testing data: 29 sequences
- (*) More details on training and validation split in the original paper: <u>link</u>

Dataset: KITTI-MOTS

Annotation format

- Class ids:
 - 1 -> car
 - 2 -> pedestrian
- Class id is obtained by floor division by 1000
- Instance id is obtained by modulo 1000
- Car instances: 1000, 1001, 1002, etc.
- Pedestrian instances: 2000, 2001, 2002, etc.

Week 2. Introduction to Object Detection and Instance segmentation

Details on tasks, deliverables, and marks for this week

Week1	Introduction to Pytorch - Image Classification
Week2	Object Detection, Recognition and Segmentation I
Week3	Object Detection, Recognition and Segmentation II
Week4	Image Retrieval
Week5	Cross-modal Retrieval
Week6	Presentation

M5 Project: Goals per week

Goals

- Get familiar with Detectron2 framework.
- b. Set up project
- c. Run inference with pre-trained Faster R-CNN (detection) and Mask R-CNN (detection and segmentation) on KITTI-MOTS dataset.
- d. Evaluate pre-trained Faster R-CNN (detection) and Mask R-CNN (detection and segmentation) on KITTI-MOTS dataset.
- e. Fine-tune Faster R-CNN and Mask R-CNN on KITTI-MOTS
- f. Start writing paper

Marks

- (C) Achieve (a)-(d)
- (B) Achieve (a)-(e)
- (A) Achieve (a)-(f) goals

Deliverable (for next week)

- Github repository (code explanation & instructions)
- Presentation with information about models and results.
 - Include 1 final summary slide
- Report on overleaf about object detection and segmentation.

Task (a): Get familiar with Detectron2 framework

- Installation of the framework
- Follow Detectron2 beginner's tutorial

Task (b): **Set up project**

- Review descriptions of the official <u>challenge</u> (KITTI-MOTS).
- Get familiar with how to read images and annotations.
- You will find KITTI-MOTS dataset on the server.
 - /home/mcv/datasets/KITTI-MOTS/

Task (c): Run inference with pre-trained Faster R-CNN (detection) and Mask R-CNN (detection and segmentation) on KITTI-MOTS dataset.

- Apply Faster R-CNN using Detectron2 framework with pretrained weights of COCO on KITTI-MOTS dataset.
- Apply Mask R-CNN using Detectron2 framework with pretrained weights of COCO on KITTI-MOTS dataset.
- Provide dataset description as well as qualitative results on your presentation.

Task (d): Evaluate pre-trained Faster R-CNN (detection) and Mask R-CNN (detection and segmentation) on KITTI-MOTS dataset

- Apply Faster R-CNN using Detectron2 framework with pretrained weights of COCO on KITTI-MOTS dataset.
- Apply Mask R-CNN using Detectron2 framework with pretrained weights of COCO on KITTI-MOTS dataset.
- Use official validation partition of KITTI-MOTS as your test set.
- Don't use KITTI-MOTS evaluation metrics. Instead use official COCO metrics provided by Detectron2.
 - You will have to map class labels of KITTI-MOTS to class labels of COCO.
 Modify MetadataCatalog: <u>Official documentation</u>, <u>detectron2 thread</u>
- Provide metric description as well as quantitative results on your presentation.

Task (e): Fine-tune Faster R-CNN and Mask R-CNN on KITTI-MOTS.

- Train Faster R-CNN and Mask R-CNN using Detectron2 framework on KITTI-MOTS dataset.
 - Split original training set into training and validation sets.
- Evaluate fine-tuned models on your test set using COCO metrics.
- Compare results with pre-trained models without finetuning.
- Include quantitative results and comparison in your presentation.

Task (f): **Start writing paper**.

- You can use CVPR paper format.
- Include a brief introduction to the task (Max ½ page)
- Related work of object detection and instance segmentation (Max 1 page).
- Description of Datasets and metrics
- Write your experiments with your quantitative and qualitative results.
 - Experiments in presentation should be more extensive than in the paper.
- Use appropriate references wherever required.
- Use the feedback from the presentations to improve your paper.

General tips

- The weekly presentation objective is to follow the students' progress.
 Therefore, extensive experiments are welcome. You should also include problems you faced and examples you find interesting.
- The final report/paper objective is to summarize your work and teach you how to write a paper. Only the most relevant experiments and qualitative results are expected. Those, from where you can get relevant conclusions.
- Don't limit the results section to show the results. You must compare and get some insights or conclusions of the results of your experiments.

• Code on Github project

- Report your results in your **presentation**.
 - Remember 1 minute slide to present summary of conclusions and difficulties.

Overleaf link on your Github

Due date: Monday 21st March before 10:00 AM