YÜKSEK DÜZEY PROGRAMLAMA PROJE ÖDEVİ

FUNDA TAŞDEMİR 202113172015

label: Her satırda, o satırdaki el yazısı rakamının ne olduğunu gösterir. **pixel0, pixel1, ..., pixel784**: 0'dan 784'e kadar olan sütunlar, el yazısı rakamlarının piksellerini gösterir.

Veri Setinin Özellikleri

Toplam Giriş Sayısı: 42,000 örnek Toplam Özellik Sayısı: 785 sütun

Veri Türü: Tüm sütunlar int 64 türünde, bu tam sayı olarak saklandığını belirtir.

Sonuçların Anlamı

El yazısı rakamları tanımak için kullanılan bir veri setidir. 0'dan 9'a kadar olan rakamların el yazısı örnekleri bulunuyor.

Gerekli Kütüphanelerin İçe Aktarılması

numpy: Sayısal işlemler için kullanılır.

matplotlib.pyplot: Verileri görselleştirmek için kullanılır.

seaborn: Daha estetik görselleştirme araçları sağlar.

Etiketlerin Dağılımını Görselleştirme

Bu sütun, veri setindeki sınıfları gösterir.

Grafikteki yatay eksen, label sütununu temsil ediyor.

data=train_data: Grafikte kullanılacak veri.

Lojistik Regresyon ile Sınıflandırma

Lojistik regresyon modeli kullanılarak veri setindeki etiketlerin sınıflandırılması beklenmektedir.

Sonuçlar:

Model Eğitimi: Eğitim seti kullanılarak lojistik regresyon modeli eğitildi.

Doğruluk Oranı: Test setinde modelin doğruluk oranı %0.89 olarak hesaplandı.

Karışıklık Matrisi ile Performans Analizi

Modelin tahmin performansını analiz etmek için karışıklık matrisi kullanıldı.

Sonuçlar:

Karışıklık matrisi, bir ısı haritası olarak görselleştirildi.

Hücrelerdeki yüksek değerler, modelin doğru tahminler yaptığını gösterir.

Dışındaki hücrelerdeki değerler, modelin yaptığı hataları gösterir.

Sınıflandırma

Modelin her sınıf için doğruluk, geri çağırma, ve F1 skorlarını analiz etmek istenildi.

Precision ve Recall: Değerlerin yüksek olduğu sınıflar modelin bu sınıflarda güçlü olduğunu gösterir.

Düşük Performanslı Sınıflar: Belirli bir sınıfta düşük bir F1 skoru varsa, bu sınıfta modelin zayıf olduğunu gösterir.

KNN Algoritması ile Sınıflandırma

K-Nearest Neighbors algoritmasını kullanarak rakamları sınıflandırmak ve model performansını değerlendirmek amacıyla kullanıldı.

Doğruluk Oranı: KNN algoritmasının doğruluk oranı:0.93

Random Forest Modeli ile Çalışma

Random Forest algoritması, birden fazla karar ağacını bir araya getirerek sınıflandırma yapar. Bu model, genelde daha basit algoritmalara kıyasla daha yüksek doğruluk sağlar.

Kullanılan parametreler:

n_estimators=100: Model, 100 adet karar ağacı kullanılarak eğitildi.

random_state=42: Rastgelelik kontrolü sağlamak için belirlendi.

Doğruluk Oranı:

Test verisinde modelin doğruluk oranı %93

Precision, Recall ve F1-score değerleri dengelidir, böylece modelin her sınıfta benzer performans gösterdiğini gösterir.

