Случайные процессы. Прикладной поток.

Теоретическое задание 10.

Мартингалы.

- 1. Пусть $(W_t, t \geqslant 0)$ винеровский процесс. Докажите, что процесс $Y_t = W_t^2 t$ является мартингалом относительно естественной фильтрации процесса W_t .
- 2. Пусть $(W_t, t \ge 0)$ винеровский процесс. Найдите все такие пары $(\alpha, \beta) \in \mathbb{R}^2$, что процесс

$$(X_t = \exp\{\alpha W_t + \beta t\}, t \ge 0)$$

является мартингалом (субмартингалом, супермартингалом) относительно естественной фильтрации процесса W_t .

3. Пусть $\xi_1, \ldots, \xi_n, \ldots$ — такая последовательность случайных величин, что для любого n существует плотность $f_n(x_1, \ldots, x_n)$ случайного вектора (ξ_1, \ldots, ξ_n) . Пусть $\eta_1, \ldots, \eta_n, \ldots$ — другая последовательность случайных величин, причем также для любого n существует плотность $g_n(x_1, \ldots, x_n)$ случайного вектора (η_1, \ldots, η_n) . Докажите, что процесс

$$X_n = \frac{g_n(\xi_1, \dots, \xi_n)}{f_n(\xi_1, \dots, \xi_n)}$$

является мартингалом относительно фильтрации ($\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n), \ n \in \mathbb{N}$).

- 4. Докажите, что если τ марковский момент относительно $\mathbb{F}=(F_t,t\geqslant 0)$, то τ является и опциональным моментом относительно \mathbb{F} .
- 5. Пусть $N = (N_t, t \ge 0)$ пуассоновский процесс интенсивности λ , а Y_n момент его n-го скачка. Пусть так же $\tau = \inf\{n \mid Y_n \ge x\}$. Покажите, что процесс $X_n = Y_n n/\lambda$ является мартингалом относительно фильтрации \mathbb{F}^Y и найдите $\mathsf{E}\tau$.
- 6. Пусть $(S_n, n \in \mathbb{N})$ простейшее случайное блуждание с вероятностью шага вправо p. Пусть a < x < b целые числа, а $X_n = x + S_n$, $n \geqslant 1$. Обозначим $\tau = \min\{n : S_n \in \{a,b\}\}$ момент выхода процесса X_n из полосы. Вычислите $\mathsf{E}\tau$.