

Kubernetes Networking Seattle Kubernetes Meetup

CJ Cullen <cjcullen@google.com>
Software Engineer
@cj_cullen
github.com/cjcullen

docker0 172.16.1.0/24

docker0 172.16.1.0/24

Host ports

Host ports A: 172.16.1.1 8000 11878

IPs are routable

vs docker default private IP

Pods can reach each other without NAT

even across nodes

No brokering of port numbers

too complex, why bother?

This is a fundamental requirement

- can be L3 routed
- can be underlayed (cloud)
- can be overlayed (SDN)

On GCE/GKE

- GCE Advanced Routes (program the fabric)
- "Everything to 10.1.1.0/24, send to this VM"

Plenty of other ways

- AWS: Route Tables
- Weave
- Calico
- Flannel
- OVS
- OpenContrail
- Cisco Contiv
- Others...

On GCE/GKE

- GCE Advanced Routes (program the fabric)
- "Everything to 10.1.1.0/24, send to this VM"

Plenty of other ways

- AWS: Route Tables
- Weave
- Calico
- Flannel
- OVS
- OpenContrail
- Cisco Contiv
- Others...

On GCE/GKE

- GCE Advanced Routes (program the fabric)
- "Everything to 10.1.1.0/24, send to this VM"

Plenty of other ways

- AWS: Route Tables
- Weave
- Calico
- Flannel
- OVS
- OpenContrail
- Cisco Contiv
- Others...

Small group of containers & volumes

Tightly coupled

The atom of scheduling & placement

Shared namespace

- share IP address & localhost
- share IPC, etc.

Managed lifecycle

- bound to a node, restart in place
- can die, cannot be reborn with same ID

Example: data puller & web server

Small group of containers & volumes

Tightly coupled

The atom of scheduling & placement

Shared namespace

- share IP address & localhost
- share IPC, etc.

Managed lifecycle

- bound to a node, restart in place
- can die, cannot be reborn with same ID

Example: data puller & web server

Small group of containers & volumes

Tightly coupled

The atom of scheduling & placement

Shared namespace

- share IP address & localhost
- share IPC, etc.

Managed lifecycle

- bound to a node, restart in place
- can die, cannot be reborn with same ID

Example: data puller & web server

Services

Services

A group of pods that work together

grouped by a selector

Defines access policy

"load balanced" or "headless"

Gets a stable virtual IP and port

- sometimes called the service portal
- also a DNS name

VIP is managed by *kube-proxy*

- watches all services
- updates iptables when backends change

Hides complexity - ideal for non-native apps

kube-proxy

apiserver

kubectl run ...

kubectl expose ...

apiserver

watch

Node X kube-proxy

iptables

Userspace proxy isn't ideal

Burns CPU copying bytes

"Proxy" is just parallel copy loops.

Loses source IP

Everything looks like it's from the node IP.

Userspace TCP listening = higher latency

apiserver

iptables kube-proxy kubectl run ... Node X kube-proxy apiserver watch iptables

iptables kube-proxy kubectl expose ... Node X kube-proxy apiserver watch

iptables

apiserver

Mean Latency

contrib/for-tests/netperf-tester --number=1000

Mean Latency Microseconds

Services

Services are just an abstraction

• Only requirement: route (and maybe load balance) a virtual IP to a set of backends.

Kube-proxy is an implementation

- Kube-proxy watches apiserver.
- iptables is re-configured on changes.

There could be other ways

Userspace, iptables, IP Virtual Servers?

Run SkyDNS as a pod in the cluster

- kube2sky bridges Kubernetes API -> SkyDNS
- Tell kubelets about it (static service IP)

Strictly optional, but practically required

- LOTS of things depend on it
- Probably will become more integrated

Or plug in your own!

kubernetes

kubernetes.default

kubernetes.default.svc.cluster.local

foo.my-namespace.svc.cluster.local

Run SkyDNS as a pod in the cluster

- kube2sky bridges Kubernetes API -> SkyDNS
- Tell kubelets about it (static service IP)

- LOTS of things depend on it
- Probably will become more integrated

Or plug in your own!

Run SkyDNS as a pod in the cluster

- kube2sky bridges Kubernetes API -> SkyDNS
- Tell kubelets about it (static service IP)

Strictly optional, but practically required

- LOTS of things depend on it
- Probably will become more integrated

Or plug in your own!

/etc/resolv.conf

nameserver 10.0.0.10

Run SkyDNS as a pod in the cluster

- kube2sky bridges Kubernetes API -> SkyDNS
- Tell kubelets about it (static service IP)

Strictly optional, but practically required

- LOTS of things depend on it
- Probably will become more integrated

Or plug in your own!

/etc/resolv.conf

nameserver 10.0.0.10

watch apiserver

What happens when I...

What happens when I...

/etc/resolv.conf

nameserver 10.0.0.10

What happens when I...

What happens when I...

What happens when I...

What happens when I...

What happens when I...

What happens when I...

\$ curl foo.my-namespace

10.1.0.6

10.1.3.1

10.1.6.3

What happens when I...

\$ curl foo.my-namespace

10.1.0.6

10.1.3.1

10.1.6.3

What happens when I...

What happens when I...

\$ curl foo.my-namespace

Hello World!

What about external?

External Services

Services IPs are only available **inside** the cluster

Need to receive traffic from "the outside world"

Builtin: Service "type"

- nodePort: expose on a port on every node
- loadBalancer: provision a cloud load-balancer

DiY load-balancer solutions

- socat (for nodePort remapping)
- haproxy
- nginx

The Bleeding Edge

Ingress (L7)

Services are assumed L3/L4

Lots of apps want HTTP/HTTPS

Ingress maps incoming traffic to backend services

- by HTTP host headers
- by HTTP URL paths

HAProxy and GCE implementations

No SSL yet

Status: **BETA** in Kubernetes v1.1

Ingress (L7)

Services are assumed L3/L4

Lots of apps want HTTP/HTTPS

Ingress maps incoming traffic to backend services

- by HTTP host headers
- by HTTP URL paths

HAProxy and GCE implementations

No SSL yet

Status: **BETA** in Kubernetes v1.1

Network Plugins

Network Plugins

Introduced in Kubernetes v1.0

VERY experimental

Uses CNI (CoreOS) in v1.1

- Simple exec interface
- Not using Docker libnetwork
 - but can defer to Docker for networking

Cluster admins can customize their installs

DHCP, MACVLAN, Flannel, custom

Kubernetes is Open

- open community
- open design
- open source
- open to ideas

Networking is Hard

- help guide us!

http://kubernetes.io

https://github.com/kubernetes/kubernetes

slack: kubernetes

twitter: @kubernetesio

