

Alex K George 2014-17-115

LANDSLIDES

 Landslides are defined as mass movement of rock, debris or earth down a slope and have come to include broad range of motions whereby falling, sliding and flowing under the influence of gravity dislodges earth material.

- Khanna, B.K and Khanna, N., 2011.

- Take place in conjunction with
 - I. Earthquakes
 - II. Floods/ prolonged rainfall
 - III. Volcanoes
- Hilly terrain is highly sensitive to landslides Himalayas and Western Ghats

LANDSLIDE FEATURES

PHUMI MINING

Lateral spread

Rotational Landslide

Translational Landslide

Topple

Creep

Rockfall

CAUSES OF LANDSLIDES

Landslides occurs when several factors converge,

A. Natural Factors

- Gravity works more effectively on steeper slopes
- Geological factors weak, sensitive or weathered materials
- Heavy and prolonged rainfall rapid rise in water level and saturation
- Earthquakes plate tectonic moves the soil that covers it also moves
- Forest fire causes erosion and induce floods and landslides
- Volcanoes kill vegetation over extensive area and spreads volcanic rocks, subsequent rainy season will trigger landslides
- Waves can erode the beach or the toe of a bluff, cutting into slope
- Freezing and Thawing

CAUSES OF LANDSLIDES

Landslides occurs when several factors converge,

B. Anthropogenic Factors

- Inappropriate drainage system natural drainage lines on slopes are blocked by terracing/ contour bounding
- Cutting and deep excavations on slopes for buildings, roads, canals and mining — modification of natural slopes, blocking of surface drainage, loading of critical slopes and withdrawal to toe support
- Change in slope/ land use pattern, deforestation, settlements, agricultural practices on steep slope

ELEMENTS AT RISK

Settlements built

- ✓on the steep slopes
- ✓at the toe of slopes
- ✓at the mouth of the streams emerging from mountain valley

LANDSLIDE PRONE AREAS

EFFECTS

- Landslides destroys everything and anything that comes in their path.
 - Roads
 - · Rail lines
 - Lines of communication
 - Settlements
 - River flows/ Damming
 - Agricultural production
 - · Land area
 - Flooding
 - Water availability, quality and quantity
 - · Flora and Fauna
- Fatalities depends on the place and time of occurrence.
- Estimated casualties per year, world-wide: 600 1000 persons

LANDSLIDE LOSSES

Country	Yearly losses Million US \$
Japan	4.700
Italy	2.600
United States	1.800
India	1.350
China	500
Spain	220
Canada	50
Hong Kong	25
New Zealand	12
Norway	6

WARNING

- Very difficult to predict the occurrence
- areas of high risk can be determined by
 - Geology
 - Hydrology
 - Vegetation cover
 - Post occurrence
- System measures the water level in the ground, and then using a geotechnical mathematical model it evaluates the potential for a landslide. A warning message is then send to a website and also to people's smartphones.

SIGNS OF LANDSLIDES

- Springs, seeps, or saturated ground in areas that have not typically been wet before.
- New cracks or unusual bulges in the ground, street pavements or sidewalks.
- Soil moving away from foundations, and ancillary structures such as decks and patios tilting and/or moving relative to the house.
- Sticking doors and windows, and visible open spaces.
- Broken water lines and other underground utilities.
- Leaning telephone poles, trees, retaining walls or fences.
- Sunken or dropped-down road beds.
- Rapid increase in a stream or creek water levels, possibly accompanied by increased turbidity (soil content).
- Sudden decrease in creek water levels even though rain is still falling or just recently stopped.

What to do if suspect imminent landslide danger:

- ✓ Contact local fire and police control rooms.
- ✓Inform neighbours who are likely to be affected. Help them in evacuation.
- ✓ Evacuation out of the likely path of the landslide is the best protection.

What to do during a landslide:

- ✓ Quickly move out of path of the landslide or debris flow.
- ✓ If inside a building, stay inside and take cover under a desk, table or other sturdy furniture.
- ✓ If escape is not possible, curl into tight ball and protect your head.

What to do after a landslide:

- ✓ Check for injured and trapped persons, without entering the slide and direct and assist rescuers.
- ✓ Help vulnerable group persons in neighbourhood for emergency assistance.
- ✓ Listen to local radio or television station.
- ✓ Watch for flooding, which may occur after a landslide or debris flow.
- ✓ Look for and report damaged utility lines to authorities.
- Replant damaged ground as soon as possible since erosion caused can lead to flash flooding.
- ✓ Seek professional advice for evaluation of landslide hazard and designing corrective techniques to reduce landslide risk.

MAJOR LANDSLIDES

YEAR	PLACE	CASUALTIES
1248	Mount Granier (France)	1000+
1919	Kelud (Indonesia)	5110
1920	Haiyuan (China)	>100000
1933	Diexi (China)	~ 3100
1941	Huaraz (Peru)	4000-6000
1949	Gharm (Tajikistan)	~7200
1962	Ranrahirca (Peru)	4000-5000
1970	Yungay (Peru)	>22000
1985	Armero (Colombia)	23000
1999	Vargas (Venezuela)	30000
2013	Kedarnath (India)	5700

Uttarakhand Floods and Landslides - 2013

- Multi-day cloudburst caused devastating floods and landslides becoming the country's worst natural disaster since the 2004 tsunami
- Unscientific developmental programmes
- Activities for 70 hydro electric power projects lead to ecological imbalance.

MITIGATORY MEASURES

National Core Group for Landslide Mitigation, 2004 (MHA).

- Hazard Mapping: locate areas prone to slope failures help in planning developmental activities
- Proper Drainage and Drainage Correction: allowing excess water to move without hindrance – deep drainage
- Engineering Structure: slope stabilisation geogids, nailing, anchors
- Insurance
- Proper Land use Measures
- Afforestation and Reforestation of the Areas
- Developmental Activities: only after detailed study of region, avoid constructions along natural drainage
- Creation of Awareness Among Local People

SETTLEMENT POLICY

- ✓ Avoid permanent settlements in high risk zones.
- ✓ Diversion of stream channel in upper slopes, especially above settlements should be strictly disallowed.
- ✓ Adequate provision for drainage of storm water from high sloping terrain, to reduce saturation.
- ✓ Maintain existing natural drainage channels and hallows, without any blocking, division or modification.

REFERENCES

- Khanna, B.K. and Khanna, N. 2011. Disasters. New India Publishing Company, New Delhi, 278p.
- http://www.csre.iitb.ac.in/rn/resume/landslide/india.html
- http://saarc-sdmc.nic.in/pdf/landslide.pdf
- http://www.adpc.net/casita/Course%20Modules/Landslide%20hazard%20assessment/Landslides_types_and_causes.pdf
- http://www.civildefence.govt.nz/assets/Uploads/publications/consistent-messages-part-Blandslides.pdf
- http://www.idahogeology.org/DrawOnePage.asp?PageID=83
- http://en.wikipedia.org/wiki/List_of_landslides
- https://2014.spaceappschallenge.org/project/landslide-ewas--early-warning-system
- http://landslides.usgs.gov/learn/prepare.php
- http://www.nat-hazards-earth-syst-sci.net/13/85/2013/nhess-13-85-2013.pdf
- http://www.fao.org/fileadmin/templates/rap/files/NRE/Forestry_Group/Landslide_Policy Brief.pdf