Последовательная RLC-цепь

При прохождении гармонического тока $i = Imcos\omega t$ через электрическую цепь, состоящую из последовательно соединенных элементов R, L, C на зажимах этой цепи создается гармоническое напряжение, равное алгебраической сумме гармонических напряжений на отдельных элементах (второй закон Кирхгофа):

Рисунок 2.13 Последовательное соединение сопротивления, индуктивности и емкости.

$$U_R = i R$$
; $U_L = L^*(di/dt)$; $U_c = (1/C)^* \int i dt$, где $I = I_m(\sin\omega t - \phi)$ (1 форм.)

Напряжение u_R на сопротивлении R совпадает по фазе с током i, напряжение u_L на индуктивности L опережает, а напряжение u_C на емкости C отстает от i на $\pi/2$.

Из первой формулы можно увидеть сдвиг фаз каждого элемента. У резистора он отсутствует, то есть напряжение и ток совпадают по фазе, у катушки индуктивности напряжение опережает ток на угол $\pi/2$, а у конденсатора, напротив, отстает.

Резонанс напряжения

Условием возникновения резонанса является равенство частоты источника питания резонансной частоте $w=w_p$, а следовательно и индуктивного и емкостного сопротивлений $x_L=x_C$. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке U_L и на конденсаторе U_C будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.

При резонансе напряжения U_C и U_L могут быть намного больше, чем напряжение источника, что опасно для цепи.