Nom:

Question de cours :

- Soit une application $f: E \longrightarrow F$. Soit $x \in E$, on pose y = f(x). À quel ensemble appartient y? x est-il l'image de y ou l'inverse ? x est-il l'antécédent de y ou l'inverse ?
- ullet Pour $x\in\mathbb{R}$, on pose f(x)=2x+1 et $g(x)=rac{1}{x^2+1}$. Donner une expression de $g\circ f$ et $f\circ g$.

Exercice:

- 1. On considère les applications : $\varphi: x \mapsto x^2$, $\psi: x \mapsto \sqrt{x}$ et $\theta: x \mapsto 2x+1$ Écrire les applications suivantes comme compositions de φ, ψ et $\theta: f_1: x \mapsto 2x^2+1$ $f_2: x \mapsto |x|$ $f_3: x \mapsto 4x^2+4x+1$
- 2. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2 x 2$. On note A l'ensemble des antécédents de 0 par f. Déterminer A.

Exercice:

Pour les applications suivantes, considérées de $\mathbb Z$ dans $\mathbb Z$, dire si elles sont bijectives :

1.
$$n \mapsto n^2$$
,

$$2. n \mapsto n+1.$$

3.
$$n \mapsto 3n$$

Exercice:

On considère la fonction

$$f \colon \mathbb{R} \to \mathbb{R}$$

 $x \mapsto -x^2 + 2x + 3$

Dire si f est une bijection. Si ce n'est pas le cas, trouver deux intervalles $I, J \subset \mathbb{R}$ tels que la fonction

$$g \colon I \to J$$

 $x \mapsto g(x) = f(x)$

soit une bijection et donner une expression de la réciproque de g.

Commentaire:

Nom:

Question de cours :

- Rappeler la définition d'une application bijective.
- $\bullet \ \ \text{Pour} \ x \in \mathbb{R}^* \text{, on pose} \ f(x) = 3x^2 + 1 \ \text{et} \ g(x) = \frac{1}{3x}. \ \ \text{Donner une expression de} \ g \circ f \ \text{et} \ f \circ g.$

Exercice:

- 1. On considère les applications : $\varphi: x \mapsto x^3$, $\psi: x \mapsto \frac{1}{x}$ et $\theta: x \mapsto x+1$ Écrire les applications suivantes comme compositions de φ, ψ et $\theta: f_1: x \mapsto \frac{1}{x^3}$ $f_2: x \mapsto x^3+3x^2+3x+1$ $f_3: x \mapsto \frac{1}{x^3+3x^2+3x+1}$ 2. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2-6x+8$. On note A l'ensemble des antécédents de 0 par
- f. Déterminer A.

Exercice:

On considère l'application $x\mapsto 2x$. Dire si elle est bijective si c'est une application de :

1.
$$\mathbb{R}$$
 dans \mathbb{R} ,

2.
$$\mathbb{Z}$$
 dans \mathbb{Z} ,

3.
$$\mathbb{Q}$$
 dans \mathbb{Q} .

Exercice:

On considère la fonction

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto -2x^2 - 8x$$

Dire si f est une bijection. Si ce n'est pas le cas, trouver deux intervalles $I,J\subset\mathbb{R}$ tels que la fonction

$$g \colon I \to J$$

 $x \mapsto g(x) = f(x)$

soit une bijection et donner une expression de la réciproque de g.

Commentaire:

Nom:

Question de cours :

- À quelle condition sur une application f peut-on parler d'application réciproque? Rappeler la définition de l'application réciproque.
- Pour $x \in \mathbb{R}_+$, on pose $f(x) = x^2 + 2$ et $g(x) = \sqrt{x}$. Donner une expression de $g \circ f$ et $f \circ g$.

Exercice:

1. On considère les applications : $\varphi: x \mapsto x^2 - 1$, $\psi: x \mapsto \frac{1}{x}$ et $\theta: x \mapsto 3x - 1$ Écrire les applications suivantes comme compositions de φ, ψ et $\theta: f_1: x \mapsto 3x^2 - 4$ $f_2: x \mapsto \frac{1}{x^2} - 1$ $f_3: x \mapsto \frac{1}{9x^2 - 6x}$ 2. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2 - 4$. On note A l'ensemble des antécédents de 0 par f. Déterminer A.

Exercice:

On considère la fonction

$$f \colon \mathbb{R} \to \mathbb{R}$$

 $x \mapsto 5x^2 + 6x + 1$

Dire si f est une bijection. Si ce n'est pas le cas, trouver deux intervalles $I,J\subset\mathbb{R}$ tels que la fonction

$$g \colon I \to J$$

 $x \mapsto g(x) = f(x)$

soit une bijection

Exercice:

Soit une application $f: E \longrightarrow F$. On dit que f est injective si $: \forall x,y \in E, \ f(x) = f(y) \Rightarrow x = y$. Autrement dit, tout élément de F possède au plus un antécédent.

On dit que f est surjective si : $\forall y \in F, \exists x \in E, \ f(x) = y$. Autrement dit, tout élément de F possède au moins un antécédent. Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications.

- 1. Montrer que : $g \circ f$ injective $\Rightarrow f$ injective.
- 2. Montrer que : $g \circ f$ surjective $\Rightarrow g$ surjective.

Commentaire: