Devoir de Mathématiques n°8

KÉVIN POLISANO MP*

Vendredi 4 décembre 2009

PARTIE I: CAS PARTICULIERS

- 1. D'après C, $\chi(1) = \chi(1)^2$ et $\chi(1) \neq 0$ sinon χ identiquement nulle $(\chi(a) = \chi(1)\chi(a))$, $\chi(1) = 1$.
- **2.** En itérant D, $\chi(a+kN) = \chi(a)$. Avec N = 2, a = 0 et a = 1: $\forall k \in \mathbb{Z}$, $\chi(2k) = 0$ et $\chi(2k+1) = 1$.
- 3. C donne $\chi(9) = \chi(3)^2$ et $\chi(9) = \chi(1+2\times 4) = \chi(1) = 1$. D'où $\chi(3) = \pm 1$.
- **4.** On effectue une sommation par paquets, via l'application $k \mapsto \varphi(k) = 4k$. Posons $u_k = \frac{\chi(k)}{k}$.

$$v_k = u_{4k} + u_{4k+1} + u_{4k+2} + u_{4k+3} = \frac{1}{4k+1} - \frac{1}{4k+3}$$

vu la 4-périodicité de χ . Et on a après changement de variable (et critère des séries alternées) :

$$S_n = \sum_{k=0}^{2n+1} \frac{(-1)^k}{2k+1} \longrightarrow \arctan(1) = \frac{\pi}{4}$$

d'après le résultat énoncé dans le préambule. La série $\sum v_n$ est donc convergente.

Or $(u_k) \to 0$ car les sous-suites (u_{4k}) , (u_{4k+1}) , (u_{4k+2}) , et (u_{4k+3}) tendent vers 0.

Et enfin $\varphi(k+1) - \varphi(k) = 4$ est une quantité bornée. Donc la série $\sum u_n$ converge.

Partie II : convergence de la série $\sum_{1}^{\infty} \frac{\chi(n)}{n}$

5. On a $\prod_{k \in P} ak = a^{\varphi(N)} \prod_{k \in P} k$, donc :

$$\prod_{k \in P} ak - \prod_{k \in P} k = (a^{\varphi(N)} - 1) \prod_{k \in P} k$$

Et $\forall k \in \{1,...,N-1\}, ak = q_kN + r_k \text{ avec } 0 \leq r_k < N, \text{ ainsi}$

$$\prod_{k \in P} (q_k N + r_k) - \prod_{k \in P} k = \alpha N + \prod_{k \in P} r_k - \prod_{k \in P} k$$

Par ailleurs $\forall k \in P, r_k \in P$. En effet sinon $\forall k \in P, \exists \beta_k \in \mathbb{N}$ tel que $r_k = \beta_k N$, alors :

$$ak = (q_k + \beta_k)N \Rightarrow N \text{ divise } ak$$

absurde d'après le théorème de Gauss ($a \wedge N = k \wedge N = 1$). De plus les r_k sont 2 à 2 distincts :

Si $r_k = r_{k'}$ alors $a(k-k') = (q_k - q_{k'})N \Rightarrow N$ divise k-k' (car $a \wedge N = 1$) d'où k = k' (car |k-k'| < N).

On en déduit que $k \mapsto r_k$ est une bijection de P(*), et par suite :

$$\prod_{k \in P} r_k = \prod_{k \in P} k$$

Il s'en suit que $(a^{\varphi(N)} - 1) \prod_{k \in P} k = \alpha N$ et comme N ne divise pas $\prod_{k \in P} k$ on en conclut que :

$$N \mid a^{\varphi(N)} - 1$$

6. D'après 5. $a^{\varphi(N)} = 1 + kN$ d'où $\chi(a)^{\varphi(N)} = \chi(a^{\varphi(N)}) = \chi(1 + kN) = \chi(1) = 1$, ainsi :

$$|\chi(a)| = 1$$

7. Utilisé et démontré dans la question 5.

8. D'après ce qui précède : $\sum_{k=1}^{N-1} \chi(ak) = \sum_{k=1}^{N-1} \chi(q_k N + r_k) \stackrel{D}{=} \sum_{k=1}^{N-1} \chi(r_k) \stackrel{(*)}{=} \sum_{k=1}^{N-1} \chi(k).$

9. D'après 8. $\chi(a) \sum_{k=1}^{N-1} \chi(k) = \sum_{k=1}^{N-1} \chi(k)$ et comme $\chi(a) \neq 1$ il vient :

$$\sum_{k=0}^{N-1} \chi(k) = \underbrace{\chi(0)}_{=0} + \underbrace{\sum_{k=1}^{N-1} \chi(k)}_{=0} = 0$$

Montrons alors par récurrence que $\forall n \in \mathbb{N}, \sum_{k=n}^{n+N-1} \chi(k) = 0$:

<u>Initialisation</u>: Effectuée, on vient de voir que $\sum_{k=0}^{N-1} \chi(k) = 0$ \checkmark .

<u>Hérédité</u>: Supposons $\sum_{k=n}^{n+N-1} \chi(k) = 0$, alors au rang suivant :

$$\sum_{k=n+1}^{n+N} \chi(k) = \sum_{k=n}^{n+N-1} \chi(k) + \underbrace{\chi(n+N) - \chi(n)}_{=0 \text{ (hyp.)}}$$

ce qui achève la récurrence.

10. \star Si $m \leq N-1$ on a d'après l'inégalité triangulaire :

$$\left| \sum_{k=1}^{m} \chi(k) \right| \leq \sum_{k=1}^{m} |\chi(k)| \stackrel{1}{=} \sum_{k \in P} |\chi(k)| = \varphi(N) \text{ car } \forall k \in P, |\chi(k)| = 1$$

¹: pour k non premier avec $N: \chi(k) = 0$.

Devoir de Mathématiques n°8

Kévin Polisano

 \star Si $m \ge N$, on écrit m = qN + r et on découpe la somme de façon à avoir des sommes nulles :

$$\sum_{k=0}^{qN+r} \chi(k) = \sum_{k=0}^{N-1} \chi(k) + \sum_{k=0}^{N+N-1} \chi(k) + \dots + \underbrace{\sum_{k=(q-1)N}^{(q-1)N+N-1} \chi(k)}_{=0} + \sum_{k=qN}^{qN+r} \chi(k)$$

Et par changement de variable dans la dernière somme on aboutit à :

$$\sum_{k=1}^{m} \chi(k) = \sum_{k=0}^{r} \chi(k) \text{ avec } r \leq N - 1$$

On applique alors la première \star et on trouve de même $\left|\sum_{k=1}^{m} \chi(k)\right| \leq \varphi(N)$.

11. Le fait que cette somme partielle soit bornée nous invite à faire une transformation d'Abel :

Avec les notations du rappel on pose $\alpha_k = \chi(k)$ et $u_k = \frac{1}{k}$ et on prend m = 2:

$$\sum_{k=2}^{m} \frac{\chi(k)}{k} = \underbrace{-u_1 T_0}_{=0} + \sum_{k=2}^{m-1} T_k \left(\frac{1}{k} - \frac{1}{k-1} \right) + \frac{T_m}{m}$$

Puisque d'après 10. $\forall m \in \mathbb{N}, |T_m| \leq \varphi(N)$ on a $\frac{T_m}{m} \xrightarrow[m \to +\infty]{} 0$. De même :

$$\left| \sum_{k=2}^{m-1} T_k \left(\frac{1}{k} - \frac{1}{k-1} \right) \right| \le \varphi(N) \sum_{k=2}^{m-1} \left(\frac{1}{k-1} - \frac{1}{k} \right)$$

Et
$$\sum_{k=2}^{m-1} \left(\frac{1}{k-1} - \frac{1}{k} \right)$$
 converge vers 1 donc $\sum_{k=2}^{m-1} T_k \left(\frac{1}{k} - \frac{1}{k-1} \right)$ est AC.

On en conclut que la série $\sum_{k\geqslant 2}\frac{\chi(k)}{k}$ converge et donc la série $\sum_{k\geqslant 1}\frac{\chi(k)}{k}$ converge.

PARTIE III: COMPORTEMENT ASYMPTOTIQUE

12. $n \wedge m = 1$ ainsi $(d|n \text{ et } d'|m) \Rightarrow dd'|nm. p|nm \Rightarrow \exists d|n \text{ et } d'|m \text{ tel que } p = dd'.$ Donc:

$$f_{nm} = \sum_{p|nm} \chi(p) = \sum_{\substack{d|n\\d'|m}} \chi(dd') = \sum_{\substack{d|n\\d'|m}} \chi(d)\chi(d') = \sum_{\substack{d|n\\d'|m}} \chi(d)\sum_{\substack{d'|n}} \chi(d') = f_n f_m$$

13. p premier donc $d|p^{\alpha} \Leftrightarrow \exists 0 \leq k \leq \alpha, d = p^k$, par conséquent :

$$f_{p^{\alpha}} = \sum_{k=0}^{\alpha} \chi(p^k) = \sum_{k=0}^{\alpha} \chi(p)^k = \frac{1 - \chi(p)^{\alpha+1}}{1 - \chi(p)} \text{ pour } \chi(p) \neq 1$$

Distinguons alors les cas:

- * Si $\chi(p) = 1$ alors $f_{p^{\alpha}} = \alpha + 1$.
- * Si $\chi(p) = 0$ alors $f_{p^{\alpha}} = 1$.
- * Si $\chi(p)=-1$ alors 2 sous-cas : si α impair $f_{p^{\alpha}}=0$, si α pair $f_{p^{\alpha}}=1$.

Devoir de Mathématiques n°8

Kévin Polisano

14. On décompose n en produit de facteurs premiers : $n=\prod p_i^{\alpha_i},$ de sorte que :

$$f_n = \prod f_{p_i}^{\alpha_i}$$

d'après 12. car les $p_i^{\alpha_i}$ sont premiers entre eux. D'après 13. les $f_{p_i} \geqslant 0$ donc $f_n \geqslant 0$.

Et il est clair que $f_n = \sum_{d|n} \chi(d) \le n$ étant donné que $\chi(k) \le 1$ pour tout k.

$$\forall n \geqslant 1, \quad 0 \leqslant f_n \leqslant n$$

15. On a $f_{n^2} = \prod f_{p_i}^{2\alpha_i}$, les exposants étant pairs, d'après 13. $\forall n \ge 1, f_{n^2} \ge 1$.

16. D'après 14. $0 \le \sum_{n=1}^{N} f_n x^n \le \sum_{n=1}^{N} n x^n$ et cette série est de Rcv égal à un. (Règle de D'Alembert)

Donc $R \ge 1$. Mais pour |x| > 1, la suite $(f_{n^2}x^{n^2})$ diverge $(|f_{n^2}x^{n^2}| \ge |x|^{n^2})$ vu 15.

Donc le rayon de convergence de la série entière $\sum f_n x^n$ est R = 1.

17. On a clairement

$$f(x) \geqslant \sum_{n=1}^{+\infty} f_{n^2} x^{n^2} \geqslant \sum_{n=1}^{+\infty} x^{n^2}$$

Considérons la fonction $g:t\mapsto x^{t^2}$ continue et décroissante sur $[1,+\infty[$.

$$n \le t \le n+1 \Rightarrow g(n) \ge g(t) \ge g(n+1)$$

On ne conserve que l'inégalité de gauche, et on intègre entre n et n+1:

$$g(n) \geqslant \int_{n}^{n+1} g(t)dt$$

Puis on somme de 1 à $+\infty$ et on obtient :

$$f(x) \geqslant \int_{1}^{+\infty} \exp(t^2 \ln(x)) dt$$

Effectuons le changement de variable $u = t\sqrt{-\ln(x)}$ (car pour $x \in [\frac{1}{2}, 1[, \ln(x) < 0)]$:

$$f(x) \geqslant \frac{1}{\sqrt{-\ln(x)}} \int_{\sqrt{-\ln(x)}}^{+\infty} e^{-u^2} du$$

Et comme sur $\left[\frac{1}{2}, 1\right], -\ln(x) \leq \ln(2)$ on a finalement :

$$f(x) \geqslant \frac{1}{\sqrt{-\ln(x)}} \int_{\ln(2)}^{+\infty} e^{-u^2} du$$