

$ au_1^{\#2}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#_{1}}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{ ext{-}}lpha}^{\#2}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#1}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + ^{lphaeta}$	$\tau_1^{\#_1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} \dagger^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

<u>t</u>1 2

 $\frac{i\,k\,t_1}{\sqrt{2}}$

0

 \vdash

 $\tau_{0}^{\#1} == 0$

 $k^2 t_1$

0

 \sim

0

 $\sigma_{1}^{\#1}{}^{lpha}$:

+2ik

 $t_1^{\#2}\alpha$

Н

 $\sigma_{0}^{\#1} = 0$

<u>t</u>1 2

 \sim

 $t_1^{\#1}\alpha$

 $\omega_2^{\#1} \dagger^{\alpha\beta}$

 $f_{2^{+}}^{#1}\dagger^{\alpha\beta}$

 $\omega_2^{\#1} \dagger^{\alpha\beta\chi}$

#

SO(3) irreps

0 ==

Source constraints

20

2

 $-2ik \sigma_{2+}^{\#1}\alpha\beta == 0$

 $t_2^{\#1}\alpha\beta$

Total

 \sim

0 ==

 $+ik \sigma_{1+}^{\#2\alpha\beta}$ =

 $t_1^{\#1}\alpha\beta$

 $\sigma_{1}^{\#2\alpha}$

II

 $\sigma_{1}^{\#1}{}^{lpha}$

$\sigma_{2^{-}}^{\#1} lpha eta \chi$	0	0	$\frac{2}{t_1}$
$\tau_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + ^{lphaeta}$	$\tau_{2+}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

	Massive partic	Massive particle		
?	Pole residue:	$-\frac{1}{r_2} > 0$		
$J^P = 0^-$	Polarisations:	1		
$\frac{1}{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2} > 0$		
·	Spin:	0		
	Parity:	Odd		

(No massless particles)