Hello everyone!

Вступление

Тема

Генерация 3D-изображений дискретных динамических систем, заданных на поверхностях, из трехцветных графов.

План работы

В ходе работы предполагается создать программу, которая генерирует различные трехцветные графы, проверяет их допустимость как инварианта для диффеоморфизма, заданного на поверхности, и рисует 3D-изображение с каскадом, соответствующим сгенерированному графу.

Трёхцветный граф

В этой главе будет представлено построение трёхцветного графа по градиентноподобному каскаду на поверхности. Стоит отметить, что на языке трёхцветных графов получена полная топологическая классификация градиентноподобных каскадов на поверхностях.

Трёхцветный граф как полный топологический инвариант диффеоморфизма на поверхности

Определение 1. Диффеоморфизм $f: M^n \to M^n$, заданный на гладком замкнутом n-многообразии, называется диффеоморфизмом Морса-Смейла, если:

- 1) неблуждающее множество Ω_f гиперболично и конечно (т.е. состоит из конечного чила периодических точек, для которых модули собственных значений матрицы Якоби не равны единице);
- 2) для любых периодических точек p, q устойчивое многообразие W_p^s и неустойчивое многообразие W_q^u либо не пересекаются, либо трансверсальны в каждой точке пересечения.

Пусть $f:M^n\to M^n$ - диффеоморфизм Морса-Смейла, тогда периодические точки называются источниками, если неустойчивое многообразие W^u_q имеет размерность n, стоками, если 0, и сёдлами при остальных.

Далее скажем, что для любой периодической точки p диффеоморфизма f компоненты связности $W_p^s \backslash p$ ($W_p^u \backslash p$) называются её устойчивыми (неустойчивыми) сепаратрисами.

Рассмотрим класс диффеоморфизмов на поверхности M^2 , тогда диффеоморфизм Морса-Смейла называется градиентно-подобным, если $W_p^s\cap W_p^u=\emptyset$ для любых различных седловых точек p,q.

Удалим из поверхности M^2 замыкание объединения устойчивых и неустойчивых многообразий седловых точек f и получим множество $M'=M^2\backslash (W^u_{\Omega^0_f}\cup W^s_{\Omega^1_f}\cup W^s_{\Omega^1_f}\cup W^s_{\Omega^2_f}).$

M' является объединением ячеек, гомеоморфных открытому двумерному диску, граница которых имеет один из 3-х следующих видов: (картинка с ячейками)

 Π усть A - ячейка из M'

Определение 2. Конечным графом называется упорядоченная пара (B, E), для которой выполнены следующие условия:

- 1) В непустое конечное множество вершин
- 2) Е множество пар вершин, называемых рёбрами

Определение 3. Если граф содержит ребро e = (a,b), то каждую из вершин a, b называют инцидентной ребру e и говорят, что вершины a и b соединены ребром e.

Определение 4. Путём в графе называют конечную последовательность его вершин и рёбер вида: $b_0, (b_0, b_1), b_1, \ldots, b_{i-1}, (b_{i-1}, b_i), b_i, \ldots, b_{k-1}, (b_{k-1}, b_k), b_k, k >= 1$. Число k называется длиной пути, оно совпадает c числом входящих в него рёбер.

Определение 5. Граф называют связным, если любые две его вершины можно соединить путём.

Определение 6. Циклом длины $k \in \mathbb{N}$ в графе называют конечное подмножество его вершин и рёбер вида $\{b_0, (b_0, b_1), b_1, \dots, b_{i-1}, (b_{i-1}, b_i), b_i, \dots, b_{k-1}, (b_{k-1}, b_0)\}$. Простым циклом называют цикл, у которого все вершины и рёбра попарно различны.

Определение 7. $\Gamma pa\phi$ T называется трёхцветным графом, если: 1) множество рёбер графа T является объединением трёх подмножеств,

каждое из которых состоит из трёх рёбер одного и того же определенного цвета (цвета рёбер из разных подмножеств не совпадают, будем обозначать эти цвета буквами s, t, u, a рёбра для краткости будем называть s-, t-, u-рёбрами);

- 2) каждая вершина графа Т инцидентна в точности трём рёбрам различных цветов;
- 3) граф не содержит циклов длины 1.

Определение 8. Простой цикл трёхцветного графа Т назовём двухцветным циклом типа su, tu или st, если он содержит рёбра в точности двух цветов s и u, t u u, s u t соответственно. Непосредственно из определения трёхцветного графа следует, что длина любого двухцветного цикла является чётным числом (так как цвета рёбер строго чередуются), а отношение на множестве вершин, состоящее в принадлежности двёхцветному циклу определённого типа, является отношением эквивалентности.

Определение 9. Построим трёхцветный граф T_f , соответствующий диффеоморфизму $f \in G$, следующим образом:

- 1) вершины графа T_f взаимно однозначно соответствуют треугольным областям множества Δ ;
- 2) две вершины графа инцидентны ребру цвета s, t, u, если соответствующие этим вершинам треугольные области имеют общую s-, t-или u-кривую

 Γ раф T_f полностью удовлетворяет определению тр \ddot{e} хиветного графа

Теорема 1. Теорема 1. Для того чтобы диффеоморфизмы f, f' из класса G были топологически сопряжены, необходимо и достаточно, чтобы их графы (T_f, P_f) и $(T_{f'}, P_{f'})$ были изоморфны

Определение 10. Определение 2. Трёхцветный граф (T,P) назовём допустимым, если он обладает следующими свойствами:

- *1) граф Т связен*;
- 2) длина любого su-цикла графа T равна 4;
- 3) автоморфизм Р является периодическим.

Лемма 1. Пусть $f \in G$. Тогда трёхцветный граф (T_f, P_f) является допустимым.

Теорема 2. Пусть (T,P) - допустимый трёхцветный граф. Тогда существует диффеоморфизм $f: M^2 \to M^2$ из класса G, граф (T_f, P_f) которого изоморфен графу (T,P). При этом:

- 1) эйлерова характеристика поверхности M^2 вычисляется по формуле $X(M^2)=v_0-v_1+v_2$, где v_0,v_1,v_2 число всех tu-, su-, st-циклов графа T соответственно;
- 2) поверхность M^2 ориентируема тогда и только тогда, когда все циклы графа T имеют чётную длину

title2

title3

1 title4