POL	SKO-JAPOŃSKA WYŻSZA TECHNIK KOMPUTEROW	LABORATORIUM PODSTAW ELEKTRONIKI						
Ćw. 7	SYMULACJA UKŁADÓW LINIOWYCH Rok al							
	lmię i Nazwisko	Ocena	Data wykonania ćwiczenia					
			Prowadzący zajęcia					

Zadanie 1.

Na rys.1. przedstawiono schemat tranzystorowego pasmowego wzmacniacza małych sygnałów.

Wykorzystane elementy mają następujące wartości:

 $R1 = 620 \text{ k}\Omega$, $R2 = 1.2 \text{M}\Omega$, $R3 = 2 \text{k}\Omega$, $R4 = 1.5 \text{k}\Omega$, C1 = 100 nF, $C2 = 200 \mu\text{F}$, C3 = 100 nF,

Q1 – tranzystor n-p-n o parametrach:

- idealne wzmocnienie dla pracy normalnej 220,
- rezystancja bazy 100Ω,
- pojemność złączowa baza-kolektor 5pF,
- napięcie Early'ego w kierunku przewodzenia 150 V.

Układ jest zasilany napięciem stałym VZAS = +12V. Rezystancja obciążenia RL = 1 k Ω . Na wejście układu podano napięcie sinusoidalnie zmienne o amplitudzie 0.1V.

Rys.1. Schemat wzmacniacza pasmowego

Należy przygotować zbiór wejściowy lpe-s-p1.cir zawierający opis układu z rys.1. umożliwiający przeprowadzenie analizy zmiennoprądowej w zakresie częstotliwości od 10 Hz do 100 MHz z gęstością 5 pkt. obliczeniowych na dekadę. Przyjąć temperaturę otoczenia równą 35°C. Wykorzystać dyrektywę **PROBE** do wizualizacji wyników.

Plik lpe-s-p1.cir

Charakterystyka częstotliwościowa wzmacniacza

Analiza wpływu pojemności CJC i C2 na pasmo przenoszenia wzmacniacza

C2 = 200 μF										
CJC	U(106) _{max}	U(106) _{0.7}	f _{min}	f _{max}						
рF	V	V	kHz	MHz						
15										
10										
5										
1.5										
1										

Tab.2.

CJC = 5 pF										
C2	U(106) _{max}	U(106) _{0.7}	f _{min}	f _{max}						
μF	V	٧	kHz	MHz						
200										
20										
2										
0.2										
0.02										

Zadanie 2.

Na rys.2. przedstawiono schemat układu dwóch kluczy tranzystorowych zasilających ten sam rezystor obciążenia RL.

Rys.2. Układ kluczy tranzystorowych

Wykorzystane elementy mają następujące wartości:

R1 = $1k\Omega$, R2 = $1k\Omega$, R3 = $2k\Omega$, R4 = $1k\Omega$, Q1, Q2 - tranzystory n-p-n o parametrach z zadana 1 (zamiast CJC - CJE)

- D1, D2 o parametrach:
 - rezystancja szeregowa 100Ω ,
 - pojemność złączowa 1pF.

Układ jest zasilany napięciem stałym VZAS = +5V. Rezystancja obciążenia RL = $500~\Omega$. Na wejście układu podano sygnał w postaci fali prostokątnej o częstotliwości 100~MHz i

współczynniku wypełnienia ε = 0.5. Poziom niski napięcia: 0 V, poziom wysoki: 5 V.

Należy przygotować zbiór wejściowy lpe-s-p2.cir zawierający opis układu z rys.2. umożliwiający przeprowadzenie analizy stanu nieustalonego (obserwację przebiegów czasowych) dla dwóch okresów sygnału wejściowego z odstępem między kolejnymi punktami przebiegów równym 0.5 ns. Przyjąć temperaturę otoczenia równą 35°C. Wykorzystać dyrektywę **PROBE** do wizualizacji wyników.

Plik	ipe-s	-p2.c	<u>ır</u>												_
	I	I	1	I	1	1	1	l	I	l	l	l	1	1	I

Przebiegi czasowe sygnału w punktach 101, 104, 106 I 107

Zwiększyć pojemność CJE tranzystora Q1 do 15 pF i pojemność diody D1 do 10 pF.

Przebiegi czasowe sygnału w punktach 101, 104, 106 I 107 dla zmienionych parametrów tranzystora Q1 i diody D1

Zadanie 3.

Na rys.3. przedstawiono schemat wzmacniacza z układem µA741.

Wykorzystane elementy mają następujące wartości:

R1 =
$$1k\Omega$$
, R2 = $10k\Omega$, RL = 51Ω .

Układ jest zasilany napięciami stałymi VPZAS = +15V i VNZAS = -15V. Na wejście układu podano napięcie sinusoidalnie zmienne o amplitudzie 0.1V.

Rys.3. Schemat wzmacniacza z układem µA741

Pobrać ze wskazanego przez prowadzącego katalogu plik eval.lib i zapisać go na dysk Z:.

Należy przygotować zbiór wejściowy lpe-s-p3.cir zawierający opis układu z rys.3. umożliwiający przeprowadzenie analizy zmiennoprądowej w zakresie częstotliwości od 1 Hz do 200 MHz z gęstością 5 pkt. obliczeniowych na dekadę. Przyjąć temperaturę otoczenia równą 35°C. Wykorzystać dyrektywę **PROBE** do wizualizacji wyników.

Plik lpe-s-p3.cir

Charakterystyka częstotliwościowa wzmacniacza

Wnioski: