物理实验报告

实验名称:	<u>声速的测定</u>
实验桌号:	
指导教师:	<u>王业伍</u>
班级:	
姓名:	
学号:	

浙江大学物理实验教学中心

实验日期: __2025__年__2__月__27__日 星期_四_上午

一、预习报告

1. 实验综述

实验现象: 驻波法中,移动接收端时示波器上会出现最大振幅波形,显示出驻波的特性;相位差法中,示波器上会出现李萨如图形,随着接收端移动,图形会在不同象限之间变化。 **实验原理:** 基于声波在介质中的传播特性。声速 ν 可通过声波的频率 f 和波长 λ 的关系 $\nu = \lambda f$ 计算。驻波法利用驻波共振条件 $L_n = n \frac{\lambda}{2}$,通过测量相邻最大振幅的位置差 $\Delta L = \frac{\lambda}{2}$ 来计算波长。相位差法则利用相位差与波长的关系,通过观察李萨如图形的变化来确定波

实验方法: 驻波法中,调节超声换能器至最佳工作状态后,移动接收端记录相邻最大振幅的位置,计算波长并求得声速。相位差法中,将发射端和接收端的信号输入示波器,观察李萨如图形的变化、记录接收端位置变化、计算波长并求得声速。

2.实验重点

长。

了解声波的特性,加深振动合成和波动干涉理论的理解。同时学会用相位差法和驻波法测定 声波在空气中传播的速度,学会示波器和信号发生器的使用。

3.实验难点

驻波法中接收端位置的精确调整和读数;相位差法中李萨如图形的准确识别和相位差的计算;示波器和信号发生器的使用。

二、原始数据

实验 2.9 声速的测定

波器上出现波幅最大为止。这时,显示的频率数值才是实验时所需的谐振频率。

调节好超声换能器至最佳工作状态后,可将移动接收端在标尺上来回移动, 观察干涉现象。缓慢移动接收端,使示波器上出现最大的振幅波形,从标尺上读 得此时的位置读数 L_1 ,继续同一方向移动接收端,逐次(连续的)读记相邻最大 振幅的位置 L_i 。连续记录 8 个数据,同时记下频率 f。若显示频率有微小增或 减,可读记起始频率 f_1 和结束测量时频率 f_2 ,计算声速时用 $f = \frac{1}{2}(f_1 + f_2)$ 。

3. 相位差法测量声速

将发射端的信号输入示波器 X 轴,这样发射端与接收端的振动信号分别输 人示波器的 X 轴、Y 轴偏转板上,在屏幕上显示了合成后的李萨如图形。移动 接收端就可以在示波器上看到一、三象限的直线,从标尺上读得此时的位置读数 L_1 。再继续移动接收端,测得在示波器上看到二、四象限的直线,从标尺上读得 此时的位置读数 L_2 ,同时记录下此时的f,连续记录 8 个数据。

4. 填写数据记录表 2-9-1

f = (40.62) kHz		环境温度	t= 14.5°	$C, t_{\overline{M}} = C$	
接收端位置读数/mm		相位差法	接收端位置读数/mm		
L_1	19.375	0	L_1	52,147	
L_2	23.622	π	L_2	56.241	
L_3	27.669 27.880	2π	L_3	60.354	
L_4		3π	L_4	64.46/	
$L_{\rm s}$		4π	L_5	68.713	
L		5π	L_6	73.000	
Ton the last		6π	L_7	77.181	
186 19 20		7π	L_8 .	81.402	
<i>L</i> ₈	41.211	Ā		8.3888	
À		v		340.8	
	接收端位 L ₁ L ₂ L ₃ L ₄	接收端位置读数/mm L ₁ 19.375 L ₂ 23.622 L ₃ 27.669 27.880 L ₄ 32.013 L ₅ 36.392 L ₆ 40.569 L ₇ 44.932	接收端位置读数/mm 相位差法 L ₁ 19.375 0 L ₂ 13.622	接收端位置读数/mm 相位差法 接收端位 L ₁ 19.375 0 L ₁ L ₂ 23.622	

【思考题】 →1-8/-1. 同频率两相互垂直的振动合成中,当相位差为2π的整数倍时,李萨如图 形为一、三象限的直线, 当相位差为 π 的奇数倍时是二、四象限的直线。试证

三、结果与分析

1. 数据处理与结果

振谐频率	f = 40.62kHz		环境温度	t = 14.5°C	
驻波法	接收端位置读数/mm		相位差法	接收端位置读数/mm	
1	L_1	19.375	0	L_1	52.147
2	L_2	23.622	π	L_2	56.241
3	L_3	27.880	2π	L_3	60.354
4	L_4	32.013	3π	L_4	64.461
5	L_5	36.392	4π	L_5	68.713
6	L_6	40.569	5π	L_6	73.000
7	L_7	44.932	6π	L_7	77.181
8	L_8	49.219	7π	L_8	81.402

根据实验原理以及逐差法可知, $\frac{\overline{\lambda}}{2} = \frac{(L_5 + L_6 + L_7 + L_8) - (L_1 + L_2 + L_3 + L_4)}{16}$,即:

$$\bar{\lambda} = \frac{(L_5 + L_6 + L_7 + L_8) - (L_1 + L_2 + L_3 + L_4)}{8}$$

可得驻波法中:

$$\bar{\lambda} = \frac{_{(36.392+40.569+44.932+49.219)-(19.375+23.622+27.880+32.013)}}{_{8}}mm = 8.5278mm$$

$$v = \bar{\lambda}f = 8.5278 \times 40.62m/s = 8.528 \times 40.62m/s = 346.4m/s$$

在相位差法中:

$$\bar{\lambda} = \frac{(68.713 + 73.000 + 77.181 + 81.402) - (52.147 + 56.241 + 60.354 + 64.461)}{8} mm = 8.3888 mm$$

$$v = \bar{\lambda}f = 8.3888 \times 40.62 m/s = 8.389 \times 40.62 m/s = 340.8 m/s$$

2. 误差分析

由声速与温度的关系式 $v_t=331.45\sqrt{1+\frac{t/^{\circ}C}{273.15}}m/s$ 可得在该实验室环境下的声速满足:

$$v_t = 331.45 \sqrt{1 + \frac{t/^{\circ}C}{273.15}} m/s = 331.45 \sqrt{1 + \frac{14.5}{273.15}} m/s = 340.13 m/s$$

则在驻波法中有(v_t 为公式计算值,当作常数处理,故不做近似):

$$\begin{split} \Delta v &= v - v_t = 346.4 m/s - 340.13 m/s = 346.4 m/s - 340.1 m/s = 6.3 m/s \\ \frac{\Delta v}{v_t} &= \frac{6.3}{340.13} \times 100\% = 1.9\% \\ \lambda_1 &= \frac{L_5 - L_1}{2} = \frac{36.392 - 19.375}{2} mm = 8.5085 mm, \lambda_2 = \frac{L_6 - L_2}{2} = \frac{40.569 - 23.622}{2} mm \\ &= 8.4735 mm \\ \lambda_3 &= \frac{L_7 - L_3}{2} = \frac{44.932 - 27.880}{2} mm = 8.5260 mm, \lambda_4 = \frac{L_8 - L_4}{2} = \frac{49.219 - 32.013}{2} mm \\ &= 8.6030 mm \end{split}$$

$$u_{\lambda A} &= \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\lambda_i - \bar{\lambda})^2} = 0.028 mm, u_{\lambda B} = \frac{\Delta_{i X}}{\sqrt{3}} = \frac{0.004}{\sqrt{3}} mm = 0.003 mm \end{split}$$

$$u_{\lambda} &= \sqrt{u_{\lambda A}^2 + u_{\lambda B}^2} = 0.029 mm, u_f = 0.01 kHz$$

$$u_v &= v \sqrt{(\frac{u_{\lambda}}{\bar{\lambda}})^2 + (\frac{u_f}{f})^2} = 1.1 m/s \end{split}$$

故测量结果为 $v = (346.4 \pm 1.1)m/s$,相对误差为1.9%

在相位差法中有:

$$\Delta v = v - v_t = 340.8m/s - 340.13m/s = 340.8m/s - 340.1m/s = 0.7m/s$$

$$\frac{\Delta v}{v_t} = \frac{0.7}{340.13} \times 100\% = 0.2\%$$

$$\lambda_1 = \frac{L_5 - L_1}{2} = \frac{68.713 - 52.147}{2} mm = 8.2830mm, \lambda_2 = \frac{L_6 - L_2}{2} = \frac{73.000 - 56.241}{2} mm$$

$$= 8.3795mm$$

$$\lambda_3 = \frac{L_7 - L_3}{2} = \frac{77.181 - 60.354}{2} mm = 8.4135mm, \lambda_4 = \frac{L_8 - L_4}{2} = \frac{81.402 - 64.461}{2} mm$$

$$= 8.4705mm$$

$$u_{\lambda A} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\lambda_i - \bar{\lambda})^2} = 0.04mm, u_{\lambda B} = \frac{\Delta_{\mathcal{K}}}{\sqrt{3}} = \frac{0.004}{\sqrt{3}} mm = 0.003mm$$

$$u_{\lambda} = \sqrt{u_{\lambda A}^2 + u_{\lambda B}^2} = 0.04mm, u_f = 0.01kHz$$

$$u_v = v \sqrt{(\frac{u_{\lambda}}{\bar{\lambda}})^2 + (\frac{u_f}{f})^2} = 1.7m/s$$

故测量结果为 $v = (340.8 \pm 1.7)m/s$,相对误差为0.2%

3. 实验探讨

本次实验完成了声速的测定,观察到驻波法中振幅变化及相位差法中李萨如图形变化。相位差法测得的相对误差更小,可能因为李萨如图形的变化更易观察。但两种方法的不确定度较大,可能受到周围噪声的影响导致图像抖动。

四、思考题

- 1. 设x轴信号(发射端)的波源振动方程为 $x = Asin(\omega t + \varphi)$,则当相位差为 2π 的整数倍时,y轴信号(接收端)的波源振动方程为 $y = Asin(\omega t + \varphi + 2k\pi) = Asin(\omega t + \varphi)$,则整合后的李萨如图形方程为y = x,即一三象限的直线;则当相位差为 π 的奇数倍时,y轴信号的波源振动方程为 $y = Asin(\omega t + \varphi + (2k + 1)\pi) = -Asin(\omega t + \varphi)$,则整合后的李萨如图形方程为y = -x,即二四象限的直线。
- 2. 由于信号频率越接近固有频率,接收端共振的振幅越大,故调整测试系统的振谐频率,有利于声能和电能的相互转换,从而有利于观察振幅变化及李萨如图形的变化。

3.
$$\frac{u_v}{v} = \sqrt{\left(\frac{u_{\lambda}}{\overline{\lambda}}\right)^2 + \left(\frac{u_f}{f}\right)^2} = \sqrt{\left(\frac{0.030}{8.560}\right)^2 + \left(\frac{0.01}{40}\right)^2} = 0.004_{\circ}$$