

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BSM-202(N)
MATHEMATICS - II

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

				GRO)UP - A	A.					
(Multiple Choice Type Questions)											
١.	Choo	se	the corre	ct al	ternati	ves	for	any	ten	of	the
	following:						•	•	10	× 1 =	10
(i) $\iint f(x,y)dxdy$ represents											
	<i>"</i>	a\	Surface a	rea		b)	Volu	ame			
		•	Work dor			d)	Arc	lengt	h.		
	ii)	the	value of J								
	;	a)	17			b)	19	*			
		•	17! 19!			d)	0.			·	
The number of independent solutions in								in a	sec	ond	
order differential equation are											
	;	a)	infinitely	many	,	b)	2				
		c)	1			d/	0.				

Turn over

- For the 2nd order ODE y''(x) + xy'(x) y = 0, the iv) point x = 0 is
 - a) ordinary point
 - b) isolated point
 - e point of discontinuity
 - d) regular singular point,

$$\lim_{z \to 0} \frac{\overline{z}}{z} =$$

b) -∞

- d) does not exist.
- yi) The transformation $w = z^2$ maps the line x = a to a
 - a) elliptical path b) hyperbolic path
 - c) parabolic path
- d circular path.
- (ii)) The complete primitive of the equation $y = px + \sqrt{a^2 p^2 + b^2}$, $p = \frac{dy}{dx}$ is

- a) y = cxb) $y = cx \sqrt{a^2c^2 + b^2}$ c) $y = cx + \sqrt{a^2c^2 + b^2}$ d) $y = \frac{cx}{\sqrt{a^2p^2 + b^2}}$
- (iii) $\oint \frac{\cos 3z}{z-5} dz$, over C, where C: |z| = 5 is

b) 5

d) 0.

- The residue of $\frac{z^3}{(z-1)^4(z-2)(z-3)}$ at z=1 is

d) $\frac{101}{17}$.

(xi)
$$J_{-\frac{1}{2}}(x) =$$

(xi) $J_{-\frac{1}{2}}(x) =$

(xi) $J_{-\frac{1}{2}}(x) =$

(xi) $\sqrt{\frac{2}{\pi x}} \sin x$

(b) $\sqrt{\frac{2}{\pi x}} \cos x$

(c) $\sqrt{\frac{2x}{\pi}} \cos x$

(d) $\sqrt{\frac{2x}{\pi}} \sin x$

(xii) $\sqrt[3]{\int_{1/2}^{3} dx dy} = ? \text{ where } R = \{ 2 \le x \le 3 \& 4 \le y \le 6 \}$

(a) 1

(b) 12

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

None of these.

2. Solve $\frac{d^2y}{dx^2} + a^2y = \sin ax$, using D operator method.

Evaluate $\iint (x^2 + y^2) dxdy$, over the region bounded by xy = 1, y = 0, y = x and x = 2. http://www.makaut.com

Find the pole and residue of $f(z) = \frac{z^2}{z^2 + 9}$

Determine the analytic function f(z) = u + iv, whose imaginary part is $v = x^4 - 6x^2y^2 + y^4$.

6. Prove that $\int_{-1}^{+1} P_m(x) P_n(x) dx = 0, m \neq n$.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. a) Evaluate $\int_0^a \int_0^{\sqrt{a^2-y^2}} (x^2+y^2) dy dx$ changing to polar coordinates.

b) Evaluate $\oint \vec{F} \cdot d\vec{r}$ by Stoke's theorem, where $-\vec{F} = y^2 \hat{i} + x^2 \hat{j} - (x+z)\hat{k}$ where C is the boundary of the triangle with vertices (0, 0, 0), (1, 0, 0) and (1, 1, 0).

II/3202(2)(N)-2006

3

Turn over

- c) Find the general solution of $\frac{d^2y}{dx^2} + a^2y = \sec ax$ using the method of variation of parameters.
- 8. a) Find the power series solution of the differential equation $(1-x^2)\frac{d^2y}{dx^2} + 2y = 0$, y(0) = 4, y'(0) = 5.

b) Prove that
$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$
.

9. (a) Solve
$$y = px + ap(1-p)$$
, $p = \frac{dy}{dx}$.

b) Solve
$$(x^2D^2 + 4xD + 2)y = e^x$$
.

Solve
$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$
.

Show that if w = f(z) is an analytic function of z, then

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \log |f'(z)| = 0.$$

http://www.makaut.com

- Show that the circle |w| = 1 corresponds to the circle $x^2 + y^2 \pm 2y 1 = 0$.
- Expand the function $f(z) = \frac{z^2 1}{(z + 2)(z + 3)}$ when |z| < 2, |z| < 3, |z| < 3, |z| > 3.
- 11. a) Using the contour integration method, prove that $\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2} \text{ https://www.makaut.com}$
 - b) Evaluate $\iiint (x + y + z + 1)^{-3} dxdydz$ over the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1.