

Plano de Verificação Funcional MUSA

Fazemos Qualquer Negócio Inc.

Compilação 1.0

Histórico de Revisões

Data	Descrição	Autor(es)
23/10/2014	Criação do documento.	Terseu Hunter

CONTENTS

1. Introdução

1.1. Propósito do Documento

The purpose of this document is define the verification plan of the MUSA Implementation. This document includes the verification environment used to perform the verification of the processor, beside the main characteristics of the design, the list of tests, list of assertions, and others.

1.2. Stakeholders

Nome	Papéis/Responsabilidades

1.3. Siglas e Abreviações

Sigla	Descrição
DUT	Design Under Test
IF	Interface

2. Visão Geral do DUT

3. Ambiente de Verificação

A metolologia de verificação adotada pelo projeto é baseada em *testbench*, compondo parte das análises por meio de verificação baseada em *waveform*. Situações especiais serão verificadas apartir de verificações baseadas em *assertions*. A interface do DUT será responsável por coletar os dados do MUSA e enviá-los para o *monitor*, no qual estarão declarados todos os *assertions*. A Figura abaixo apresenta um modelo conceitual do ambiente de verificação.

3.1. Design Under Test Interface

O DUT IF promove a interface entre o *monitor* e o DUT. Esta interface é responsável por controlar as informações trocadas entre o ambiente de verificação e o DUT. Dessa forma, ela deve conter instâncias de todos os sinais do DUT a serem utilizados ao longo do processo de verificação.

A interface do DUT possui tabém a implementação dos *assertions*. Estas estruturas têm como objetivo garantir que o comportamento dos sinais internos do DUT estão sendo produzidos e manipulados de maneira correta. Esta interface é instanciada na entidade *top level* do ambiente de verificiação e seus sinais são conectados aos sinais provenientes do DUT.

3.2. Monitor e Checker

O *monitor* é reponsável por observar o comportamento do DUT e coletar as suas saídas, de modo a verificar se as instruções estão funcionando da maneira desejada. O *monitor* observa o comportamento dos sinais de controle e, quando necessário, captura os dados armazenados na memória de instruções e no banco de registradores.

O *checker* é responsável por executar o modelo de referência com o mesmo programa usado pelo DUT e comparar os dados armazenados na memória de dados e no banco de registradores. Se qualquer mal funcionamento for identificado, o *checker* deve reportar uma mensagem de erro.

Quando a execução do programa chega ao fim, o monitor deve invocar o *checker*. O *monitor* identifica o final da execução do programa a partir de uma sequência de seis instruções NOP consecutivas.

O teste que será executado no modelo de referência deve ser definido no arquivo sim/tb/defines.sv. Para executar o teste no DUT, o procedimento deve ser realizado no arquivo de memória de instruções A SER DEFINIDO, a partir da alteração do caminho especificado na funcão read_memh.

3.3. Modelo de Referência

Tendo em vista garantir que o processador executará as instruções corretamente, foi desenvolvido um modelo de referência, capaz de simular o comportamento do processador MUSA. Este modelo é capaz de executar todas as instruções suportadas pelo MUSA. O arquivo do modelo de referência está localizado no diretório sim/model/.

3.4. Especificações de Projeto do Ambiente de Verificação

Componente Descrição

Nome do Documento	Plano de Verificação do MUSA
Versão e data do documento	Versão 1.0, 23 de outubro de 2014
Autor(es) / Proprietário(s)	Terseu Hunter
Metodologia de Verificação	Top-Down
Métodos de Verificação	Simulation and Formal Verification
Aplicação	ModelSim ALTERA Edition
Linguagens	System Verilog
Ambiente de verificação	Custom testbench
Arquivos de teste	No diretório: sim/tests
Tecnologias	FPGA Cyclone 3 Development Board

4. Lista de Funcionalidades

Feature Número	Feature Descrição	Prioridade
MUSA_F1	Signal are activated based on the instruction.	10
MUSA_F2	Communication with Instruction Memory	9
MUSA_F3	Read and write operation to the Data Memory.	9
MUSA_F4	Read and write operation to the Register File.	10
MUSA_F5	All interfaces protocols must work properly.	9

[®]PR®CESS

5. Lista de Testes

Número do Teste	Descrição	Método	Nível	Funcionalidade Verificadas	Prioridade	Proprietário	Situação
MUSA_T1	Execução de todas as instruções da categoria aritmética.	Sim	Unit	MUSA_F1, MUSA_F4	5	TBD	0%
MUSA_T2	MUSA_T2 Execução de todas as instruções de transferência de dados.		Unit	MUSA_F1, MUSA_F4	5	TBD	0%
MUSA_T3	Execução de todas as instruções da categoria lógica.	Sim	Unit	MUSA_F1, MUSA_F4	5	TBD	0%
MUSA_T4	Execução de todas as instruções da categoria salto condicional.	Sim	Unit	MUSA_F1, MUSA_F4	5	TBD	0%
MUSA_T5	Execução de todas as instruções da categoria salto incondicional.	Sim	Unit	MUSA_F1, MUSA_F2	5	TBD	0%
MUSA_T6	Acesso à memória de declarados	Assertion	Unit	MUSA_F3	7	TBD	0%
MUSA_T7	Acesso à memória de in- struções	Assertion	Unit	MUSA_F4	9	TBD	0%

continuação da página anterior							
Número do Teste	Descrição	Método	Nível	Funcionalidade Verificadas	Prioridade	Proprietário	Situação
MUSA_T8	Execução de programas completos sob a arquitetura.	Sim	Unit	MUSA_F3, MUSA_F4	8	TBD	0%
MUSA_T9	Teste de todos os protocolos de interface.	Assertion	Unit	MUSA_F5	8	TBD	0%

6. Assertions

Número	Critério	Status
MUSA_A1	Assertion para a busca correta das instrução.	Em andamento
MUSA_A2	Assertion para verificar a operação de decodificação	Em andamento
MUSA_A3	Assertion para verificar a operação do bloco de execução.	Em andamento
MUSA_A4	Assertion para leitura da memória de dados e write back.	Em andamento
MUSA_A5	Assertion para branches e instruções de salto.	Em andamento
MUSA_A6	Assertion para verificar os protocolos de interface.	Em andamento

7. RecursosRequirements

Recursos Quantidade Descri	ção Início	Duração
----------------------------	------------	---------

Recursos de Engenharia				
Engenheiro de Verificação N.A.		N.A	_	N.A.
Recursos Computacionais				
Computador	N.A.	N.A	_	N.A.
Recursos de Software				
ALTERA Quartus	1	WEB Edition	TBD	TBD dias
ALTERA ModelSIM	1	ALTERA WEB Edition	TBD	TBD dias

8. Cronograma

Recursos	Início	Duração	Ação	Recursos
TBD	TBD	TBD dias	Definam as tarefas nesta tabela :)	N/A