Образовательный центр МГТУ им. Н.Э. Баумана

Выпускная квалификационная работа по курсу "Data Science"

Слушатель: Хайрутдинов Рамиль

Тема: Прогнозирование конечных свойств новых материалов (композиционных материалов)

Постановка задачи и план работы

- изучить предметную область
- провести разведочный анализ данных
- разделить данные на тренировочную и тестовую выборки
- выполнить препроцессинг (предобаботку)
- выбрать базовую модель и модели для подбора
- сравнить модели с гиперпараметрами по умолчанию
- подобрать гиперпараметры с помощью с помощью поиска по сетке с перекрестной проверкой
- сравнить модели после подбора гиперпараметров и выбрать лучшую
- сравнить качество лучшей и базовой моделей на тестовой выборке
- сравнить качество лучшей модели на тренировочной и тестовой выборке
- разработать приложение

Разведочный анализ данных

X_bp (матрица из базальтопластика):

• признаков: 10 и индекс

• строк: 1023

X_nup (наполнитель из углепластика):

• признаков: 3 и индекс

• строк: 1040

Объединение с типом INNER по индексу, получилось:

• признаков: 13

• строк: 1023

Разведочный анализ данных

Название	Файл	Тип	Непустых	Уникальных
		данных	значений	значений
Соотношение матрица-	X_bp	float64	1023	1014
наполнител				
Плотность, кг/м3	X_bp	float64	1023	1013
модуль упругости, ГПа	X_bp	float64	1023	1020
Количество отвердителя, м.%	X_bp	float64	1023	1005
Содержание эпоксидных	X_bp	float64	1023	1004
групп,%_2				
Температура вспышки, С_2	X_bp	float64	1023	1003
Поверхностная плотность,	X_bp	float64	1023	1004
г/м2				
Модуль упругости при	X_bp	float64	1023	1004
растяжении, ГПа				
Прочность при растяжении,	X_bp	float64	1023	1004
МПа				
Потребление смолы, г/м2	X_bp	float64	1023	1003
Угол нашивки, град	X_nup	float64	1023	2
Шаг нашивки	X_nup	float64	1023	989
Плотность нашивки	X_nup	float64	1023	988

	Среднее	Стандартное	Минимум	Максимум	Медиана
		отклонение	_		
Соотношение	2.9304	0.9132	0.3894	5.5917	2.9069
матрица-наполнитель	2.7504	0.7132	0.5054	5.5517	2.7007
Плотность, кг/м3	1975.7349	73.7292	1731.7646	2207.7735	1977.6217
модуль упругости,	739,9232	330.2316	2,4369	1911.5365	739.6643
ГПа	139.9232	330.2310	2.4309	1911.3303	739.0043
Количество	110,5708	28.2959	17.7403	198.9532	110.5648
отвердителя, м.%	110.5708	26.2939	17.7403	196.9332	110.3046
Содержание					
эпоксидных групп,	22.2444	2.4063	14.2550	33.0000	22.2307
%_2					
Температура	285.8822	40.9433	100.0000	413.2734	285.8968
вспышки, С_2	203.0022	40.9433	100.0000	413.2/34	203.0900
Поверхностная	482.7318	281.3147	0.6037	1399.5424	451.8644
плотность, г/м2	402.7310	201.5147	0.0037	1399.3424	431.6044
Модуль упругости	#2.220 <i>c</i>	2 1100	64.0541	02.6021	#2.2.coo
при растяжении, ГПа	73.3286	3.1190	64.0541	82.6821	73.2688
Прочность при	2466.9228	485 6280	1036.8566	3848 4367	2459.5245
растяжении, МПа	2400.9226	463.0260	1030.8300	3646.4307	2439.3243
Потребление смолы,	218.4231	59.7359	33.8030	414.5906	219.1989
г/м2	210.4231	39.1339	33.8030	414.5900	219.1969
Угол нашивки, град	44.2522	45.0158	0.0000	90.0000	0.0000
Шаг нашивки	6.8992	2.5635	0.0000	14.4405	6.9161
Плотность нашивки	57.1539	12.3510	0.0000	103.9889	57.3419
		1	1	1	

Гистограммы распределения и диаграммы "ящик с усами"

- Большинство количественные, вещественные, положительные, нормально распределенные
- Угол нашивки категориальный, бинарный

Попарные графики рассеяния точек

• Выбросы есть

• Зависимостей нет

Выбросы

Найдено:

- методом 3-х сигм 24 выброса
- методом межквартильных расстояний 93 выброса

После удаления осталось 1000 строк

Матрица корреляции

Корреляционная

зависимость

отсутствует

Потребление смолы, г/м2 Шаг нашивки Соотношение матрица-наполнитель Поверхностная плотность, г/м2 Модуль упругости при растяжении, ГПа Прочность при растяжении, МПа Угол нашивки, град Содержание эпоксидных групп,% Количество отвердителя, Гемпература вспышки,

0.25

-0.00

Предметная область: композитные материалы

Выходные переменные

Для каждого признака — отдельная модель

- модуль упругости при растяжении, Гпа (композит)=f(матрица, наполнитель, процесс);
- прочность при растяжении, Мпа(композит)=f(матрица, наполнитель, процесс);
- соотношение матрица-наполнитель (процесс) = f(матрица, наполнитель, композит).

Входные переменные

Значения признаков в разных диапазонах => необходим препроцессинг

- разделим на количественные и категориальные
- Категориальный один («Угол нашивки») OrdinalEncoder
 - список значений стал [0, 1]
- количественные все остальные StandardScaler
 - матожидание стало 0
 - стандартное отклонение стало 1
- создать объект-препроцесор, сохранить вместе с моделью
 - для train fit_transform
 - для test transform
 - для введенных данных transform

Метрики качества

- R2 или коэффициент детерминации
- RMSE (Root Mean Squared Error) или корень из средней квадратичной ошибки
- MAE (Mean Absolute Error) или средняя абсолютная ошибка
- MAPE (Mean Absolute Percentage Error) или средняя абсолютная процентная ошибка
- max error или максимальная ошибка данной модели

Модели

- Линейная регрессия
- Лассо (LASSO) и гребневая (Ridge) регрессия
- Метод опорных векторов для регрессии
- Метод k-ближайших соседей
- Деревья решений
- Случайный лес
- Градиентный бустинг
- Нейронная сеть

Модель для модуля упругости при растяжении

Значения выхода от 64 до 83

По умолчанию →

После подбора гиперпараметров ↓

Jt 63 V

	R2	RMSE	MAE	MAPE	max_error
DummyRegressor	-0.018012	-3.196837	-2.589076	-0.035338	-7.858063
LinearRegression	-0.029339	-3.212486	-2.591121	-0.035370	-8.050245
Ridge	-0.029266	-3.212377	-2.591059	-0.035369	-8.049493
Lasso	-0.018012	-3.196837	-2.589076	-0.035338	-7.858063
SVR	-0.068756	-3.272522	-2.636092	-0.035968	-8.096169
KNeighborsRegressor	-0.228960	-3.508454	-2.826728	-0.038587	-8.809429
DecisionTreeRegressor	-1.245350	-4.727658	-3.755910	-0.051265	-12.535198
RandomForestRegressor	-0.089733	-3.304112	-2.642280	-0.036080	-8.323619

R2 RMSE MAE MAPE max error : Ridge(alpha=70, positive=True, solver='lbfgs') -3.201530 -2.577152 -0.035176 -7.959058 Lasso(alpha=0.1) -0.019932 -3.199343 -2.581442 -0.035236 -7.930160 SVR(C=0.5, kernel='sigmoid') -0.024054 -3.203086 -2.583316 -0.035243 -8.116314 KNeighborsRegressor(n neighbors=29) -0.059458 -3.259411 -2.638205 -0.036045 -7.956574 -0.015694 -3.193718 -2.582909 -0.035254 DecisionTreeRegressor(max_depth=1, max_features=1, random_state=4344, splitter='random') -7.861263 RandomForestRegressor(bootstrap=False, criterion='absolute error', max_depth=3, max_features=2, n_estimators=50, -0.030235 -3.215300 -2.594014 -0.035363 -8.035027 random state=4344)

Модель для модуля упругости при растяжении

	R2	RMSE	MAE	MAPE	max_error
Модуль упругости, тренировочный	0.017295	-3.037284	-2.410294	-0.032850	-9.008468
Модуль упругости, тестовый	-0.035776	-3.277844	-2.610243	-0.035707	-8.152045

Модель для прочности при растяжении

Значения выхода от 1036 до 3791

По умолчанию →

После подбора гиперпараметров ↓

	R2	RMSE	MAE	MAPE	max_error
DummyRegressor	-0.023272	-479.709993	-381.342407	-0.169363	-1246.603286
LinearRegression	-0.034866	-482.179573	-384.522648	-0.170244	-1242.973850
Ridge	-0.034779	-482.159805	-384.504258	-0.170237	-1242.902268
Lasso	-0.034327	-482.063468	-384.364454	-0.170198	-1243.224304
SVR	-0.020411	-479.056248	-380.998666	-0.168651	-1242.263783
DecisionTreeRegressor	-1.103701	-684.934071	-554.567310	-0.239678	-1754.314464
GradientBoostingRegressor	-0.124182	-502.353407	-403.549852	-0.177907	-1304.367710

	R2	RMSE	MAE	MAPE	max_error
Ridge(alpha=990, random_state=4344, solver='sag')	-0.020567	-479.004881	-381.234480	-0.169168	-1241.965662
Lasso(alpha=40)	-0.022584	-479.545607	-381.220708	-0.169277	-1247.335738
SVR(C=0.3)	-0.020458	-479.068243	-380.981776	-0.168647	-1242.642174
DecisionTreeRegressor(criterion='absolute_error', max_depth=2, max_features=3, random_state=4344, splitter='random')	-0.005679	-475.639357	-377.565204	-0.167369	-1242.778485
GradientBoostingRegressor(max_depth=1, max_features=1, random_state=4344)	-0.021589	-479.254818	-382.510490	-0.169329	-1229.007586

Модель для прочности при растяжении

	R2	RMSE	MAE	MAPE	max_error
Базовая модель	-0.016795	497.332204	385.915353	0.161962	1402.747538
Лучшая модель (градиентный бустинг)	-0.023595	498.992530	387.420047	0.163368	1392.474237

	R2	RMSE	MAE	MAPE	max_error
Прочность при растяжении, тренировочный	0.057141	-472.832206	-374.670333	-0.164825	-1383.885510
Прочность при растяжении, тестовый	0.004028	-478.600202	-376.647056	-0.166046	-1384.841404

MLPRegressor из библиотеки sklearn

	R2	RMSE	MAE	MAPE	max_error
DummyRegressor	-0.011269	-0.911261	-0.737067	-0.299795	-2.684301
MLPRegressor	-0.052842	-0.929803	-0.751262	-0.306957	-2.790557

Значения выхода от 0.39 до 5.46

Нейросеть из библиотеки tensorflow

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 24)	312
dense_2 (Dense)	(None, 24)	600
dense_3 (Dense)	(None, 24)	600
dense_4 (Dense)	(None, 24)	600
dense_5 (Dense)	(None, 24)	600
dense_6 (Dense)	(None, 24)	600
dense_7 (Dense)	(None, 24)	600
dense_8 (Dense)	(None, 24)	600
out (Dense)	(None, 1)	25

Total params: 4,537 Trainable params: 4,537 Non-trainable params: 0

Обучение нейросети

Борьба с переобучением: ранняя остановка

Борьба с переобучением: Dropout

Значения выхода от 0.39 до 5.46

	R2	RMSE	MAE	MAPE	max_error
DummyRegressor	-0.004784	0.837505	0.659057	0.287431	2.501931
Нейросеть переобученная	-1.055588	1.197897	0.958529	0.334777	3.424804
Нейросеть с ранней остановкой	-0.253462	0.935421	0.762494	0.303079	2.425718
Нейросеть dropout	-0.272050	0.942331	0.756197	0.293931	3.040035

Выбираю нейросеть, обученную с ранней остановкой

	R2	RMSE	MAE	MAPE	max_error
Соотношение матрица-наполнитель, трениро	-0.026908	0.949794	0.753971	0.296951	2.861537
Соотношение матрица-наполнитель, тестовый	-0.253462	0.935421	0.762494	0.303079	2.425718

Разработка веб-приложения

Разработка веб-приложения

⊗ BKP x +			~	_ 0	×
← → C ♠ ① 127.0.0.1:5000/model_3/	>	☆ ☆	*		:
Прогнозирование соотношения матрица-наполнитель					
Плотность, кг/м3 (17002300) [1880.0					
Модуль упругости, ГПа (22000) [622.0					
Количество отвердителя, м.% (17200) 111.86					
Содержание эпоксидных групп,%_2 (1434) 22.2678571428571					
Температура вспышки, С_2 (100414) 284.615384615384					
Поверхностная плотность, г/м2 (0.61400) 470.0					
Модуль упругости при растяжении, ГПа (6483) 73.33333333333					
Прочность при растяжении, МПа (10363849) 2455.555555555					
Потребление смолы, г/м2 (33414) 220.0					
Угол нашивки, град (0 или 90) 90.0					
Шаг нашивки (015) 4.0					
Плотность нашивки (0104) 60.0					
Отправить					
Входные переменные:					
Плотность, кг/м3 упругости, ГПа Количество отвердителя, м.% Содержание эпоксидных групп,%_2 Померхностная вспышки, С_2 Померхностная плотность, г/м2 Померхн	и,	Ша ашивкі		Плотно наши	
0 1880.0 622.0 111.86 22.267857 284.615385 470.0 73.333333 2455.555556 220.0 90.0	4.0		60.0)	
Результат модели:					
Соотношение матрица-наполнитель					
2.5154960585858928					

Результаты

Цель задания решить не удалось

Дальнейшие поиски решения могли бы включать:

- консультации экспертов
- уточненную постановку задачи
- глубокое исследование первичных данных
- отбор признаков и уменьшение размерности
- эксперименты с градиентным бустингом
- углубление в нейросети

Спасибо за внимание!