Няколко спомена от последните години

1. Нека \mathcal{L} е предикатният език без формално равенство и единствен нелогически символ — P, двуместен предикатен символ. Нека $\mathcal{A} = \langle C, P^{\mathcal{A}} \rangle$, където C е множеството на всички окръжности (с ненулев радиус) в евклидовата равнина, а

$$P^{\mathcal{A}} = \{(c_1, c_2) \mid c_1, c_2 \in C \text{ и } c_1 \text{ е вътрешно допирателна за } c_2\}.$$

Напишете такава формула от \mathcal{L} , че:

- а) $\mathcal{A} \models \varphi_{=}[c_{1}, c_{2}]$ точно тогава, когато $c_{1} = c_{2}$;
- б) $\mathcal{A} \models \varphi_{NTPP}[c_1, c_2]$ точно тогава, когато c_1 е във вътрешността на кръга, определен от c_2 , и окръжностите c_1, c_2 нямат общи точки;
- в) $\mathcal{A} \models \varphi_{PP}[c_1, c_2]$ точно тогава, когато кръгът, определен от c_1 , е собствено подмножество на кръга, определен от c_2 ;
- г) $\mathcal{A} \models \varphi_{PO}[c_1, c_2]$ точно тогава, когато c_1 и c_2 имат точно две общи точки;
 - д) $\mathcal{A} \models \varphi_{EC}[c_1, c_2]$ точно тогава, когато c_1 и c_2 са външно допирателни;
- е) $\mathcal{A} \models \varphi_{DC}[c_1, c_2]$ точно тогава, когато затворените кръгове, определени от c_1 и c_2 нямат общи точки.

2. Нека \mathcal{L} е предикатният език без формално равенство и единствен нелогически символ — P, двуместен предикатен символ. Нека $\mathcal{A} = \langle C, P^{\mathcal{A}} \rangle$, където C е множеството на всички окръжности (с ненулев радиус) в евклидовата равнина, а

 $P^{\mathcal{A}} = \{(c_1, c_2) \mid c_1, c_2 \in C, c_1 \text{ лежи във вътрешността на } c_2 \text{ и нямат общи точки}\}.$

Напишете такава формула от \mathcal{L} , че:

- а) $A \models \varphi_{=}[c_{1}, c_{2}]$ точно тогава, когато $c_{1} = c_{2}$;
- б) $\mathcal{A} \models \varphi_{PP}[c_1, c_2]$ точно тогава, когато кръгът, определен от c_1 , е собствено подмножество на кръга, определен от c_2 ;
- в) $\mathcal{A} \models \varphi_{TPP}[c_1, c_2]$ точно тогава, когато c_1 е вътрешно допирателна за c_2 ;
- г) $\mathcal{A} \models \varphi_{PO}[c_1,c_2]$ точно тогава, когато c_1 и c_2 имат точно две общи точки;
 - д) $\mathcal{A} \models \varphi_{EC}[c_1, c_2]$ точно тогава, когато c_1 и c_2 са външно допирателни;
- е) $\mathcal{A} \models \varphi_{DC}[c_1,c_2]$ точно тогава, когато затворените кръгове, определени от c_1 и c_2 нямат общи точки.

3. Нека \mathcal{L} е предикатният език без формално равенство и единствен нелогически символ — P, двуместен предикатен символ. Нека $\mathcal{A} = \langle C, P^{\mathcal{A}} \rangle$, където C е множеството на всички окръжности (с ненулев радиус) в евклидовата равнина, а

$$P^{\mathcal{A}} = \{(c_1, c_2) \mid c_1, c_2 \in C \text{ и } c_1 \text{ е външно допирателна за } c_2\}.$$

Напишете такава формула от \mathcal{L} , че:

- а) $\mathcal{A} \models \varphi_{=}[c_1, c_2]$ точно тогава, когато $c_1 = c_2$;
- б) $\mathcal{A} \models \varphi_{NTPP}[c_1, c_2]$ точно тогава, когато c_1 е във вътрешността на кръга, определен от c_2 , и окръжностите c_1, c_2 нямат общи точки;
- в) $\mathcal{A} \models \varphi_{TPP}[c_1, c_2]$ точно тогава, когато c_1 е вътрешно допирателна за c_2 ;
- г) $\mathcal{A} \models \varphi_{PP}[c_1, c_2]$ точно тогава, когато кръгът, определен от c_1 , е собствено подмножество на кръга, определен от c_2 ;
- д) $\mathcal{A} \models \varphi_{PO}[c_1,c_2]$ точно тогава, когато c_1 и c_2 имат точно две общи точки:
- е) $\mathcal{A} \models \varphi_{DC}[c_1, c_2]$ точно тогава, когато затворените кръгове, определени от c_1 и c_2 нямат общи точки.
- **3.** Нека \mathcal{L} е предикатният език с формално равенство и единствен нелогически символ f, двуместен фунционален символ. Нека $\mathcal{A} = \langle \omega, + \rangle$, където ω е множеството на естествените числа.
- а) Докажете, че функцията $h, h: \omega \to \omega, h(n) = 3n^2 + 4$ не е термално определима в \mathcal{A} .
- б) Покажете, че графиката на $g,\,g:\omega\to\omega,\,g(n)=3n+4$ е определима в $\mathcal A$ с формула от $\mathcal L.$
- **4.** Докажете, че формулата $\exists x \forall y (p(x,y) \iff \neg \exists z (p(y,z) \& p(z,y)))$, където p е двуместен предикатен символ, е неизпълнима.
- **5.** С метода на резолюцията докажете, че множеството от предикатни дизюнкти

```
 \begin{aligned} &\{p(a,x,f(y)),p(a,z,f(g(b))),\neg q(y,z)\}, & \{\neg q(g(b),w),r(w,a)\}, \\ &\{\neg p(a,w,f(g(b))),r(x,a)\}, & \{p(a,u,f(g(u))),r(u,a),q(g(b),b)\}, \\ &\{\neg r(v,a)\} \end{aligned}
```

е неизпълнимо. (a и b са различни индивидни константи, f и g са едноместни функционални символи, p, q и r са предикатни символи с арности съответно 3, 2, 2; x,y,z,u,v и w са различни индивидни променливи).

Задача 1. Да се дефинира на Пролог двуместен предикат с аргументи X и Y, който по даден списък X от списъци генерира при преудовлетворяване в Y елементите на декартовото произведение на елементите на X. Например, ако X е $[L_1, L_2, L_3, L_4]$, елементите на декартовото произведение

на елементите на X са списъците от вида $[a_1, a_2, a_3, a_4]$, където за всяко i, $1 \le i \le 4$, a_i е елемент на L_i .

- Задача 2. Да се дефинира на Пролог двуместен предикат, който по дадени две цели числа разпознава дали те имат едни и същи прости делители.
- 1. Опишете представяне на неориентиран граф. Напишете програма на Пролог, която по даден неориентиран граф разпознава дали той е свързан и ацикличен.
- **2.** Нека $a_{n+2} = a_{n+1} + a_n$ за всяко естествено число n и $a_1 = a_0 = 1$. Нека $b_{n+2} = (-1)^{n+1} 3 b_{n+1} + (-1)^n b_n$ за всяко естествено число n и $b_1 = b_0 = 1$. Да се напише програма на Пролог, която по дадено естествено число n намира най-малкото естествено число k, за което $b_k \leq a_n < b_{k+1}$, ако има такова k, и -1 в противен случай.
- **Задача 1.** Казваме, че крайна редица от числа $[a_1,\dots,a_n]$ е сегментна, ако съществува такава подредица $[a_{n_1},a_{n_2},\dots,a_{n_k}]$, където $1\leq n_1< n_2<\dots< n_k\leq n$, че $a_{n_1}< a_{n_2}<\dots< a_{n_k}$ и $\exists c \forall i (0< i< n\ \&\ a_i> a_{i+1}\implies a_{i+1}=c\ \&\ \exists j (i=n_j))$. Да се дефинира на пролог предикат p(L), който по даден списък от числа L проверява дали той задава сегментна редица.
- Задача 2. Ако E е списък от списъци с дължина 2, да означим с G(E) ориентирания граф, в който няма изолирани върхове и от върха u към върха v има ребро точно тогава, когато [u,v] е елемент на списъка E. Да се дефинира на пролог предикат p(E,v), който по даден списък от двуелементии списъци E и връх v на графа G(E) проверява дали в G(E) има цикъл, преминаващ през v.
- Задача 1. Казваме, че крайна редица от числа $[a_1,\ldots,a_n]$ е сегментна, ако съществува такава подредица $[a_{n_1},a_{n_2},\ldots,a_{n_k}]$, където $1 \leq n_1 < n_2 < \cdots < n_k \leq n$, че $a_{n_1} < a_{n_2} < \cdots < a_{n_k}$ и $\exists c \forall i (0 < i < n \& a_i > a_{i+1} \implies a_i = c \& \exists j (i+1=n_j))$. Да се дефинира на пролог предикат p(L), който по даден списък от числа L проверява дали той задава сегментна редица.
- Задача 2. Ако E е списък от списъци с дължина 2, да означим с G(E) ориентирания граф, в който няма изолирани върхове и от върха u към върха v има ребро точно тогава, когато [u,v] е елемент на списъка E. Да се дефинира на пролог предикат p(E,n,u,v), който по даден списък от двуелементни списъци E, естествено число n и върхове u и v от графа G(E) проверява дали в G(E) има път от u до v с дължина не по-голяма от n.
- Задача 1. Да се докаже, че множеството, съдържащо само следните три формули, е изпълнимо:

```
 \forall x \forall y \forall z (p(x,y) \Longrightarrow \neg p(x,z) \vee \neg p(z,y)) 
 \forall x \forall y \forall z \forall t (p(x,y) \& p(y,z) \& p(z,t) \Longrightarrow p(x,t)) 
 \exists x \exists y \forall z (p(x,z) \vee p(y,z))
```

Задача 2. Нека L е език без функционални символи и единствен предикатен символ p, който е двуместен. Да означим с A_n броя на структурите за езика L, чийто универсум е множеството $\{0,1,\ldots,n-1\}$, а с B_n броя на структурите със същия универсум, в които освен това е вярна формулата $\exists xp(x,x)$. Да се намери

$$\lim_{n\to\infty} \frac{B_n}{A_n}$$

Задача 1. Да се докаже, че множеството, съдържащо само следните три формули, е изпълнимо:

```
 \forall x \forall y \forall z (p(x,y) \lor p(y,z) \lor p(x,z)) \\ \forall x \forall y \forall z \forall t (p(x,y) \implies p(x,z) \lor p(z,t) \lor p(t,y)) \\ \exists x \exists y \neg p(x,y)
```

Задача 2. Нека L е език без функционални символи и единствен предикатен символ p, който е двуместен. Да означим с A_n броя на структурите за езика L, чийто универсум е множеството $\{0,1,\ldots,n-1\}$, а с B_n броя на структурите със същия универсум, в които освен това е вярна формулата $\forall xp(x,x)$. Да се намери

$$\lim_{n\to\infty}\frac{A_n}{B_n}$$

Задача 1. Да се докаже, че множествата $\{\varphi_1, \varphi_2\}$ и $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ са изпълними, където $\varphi_1 \leftrightharpoons \forall x p(x,x), \varphi_2 \leftrightharpoons \exists x \forall y p(x,y), \qquad \varphi_3 \leftrightharpoons \exists x \exists y (\neg p(x,y) \& \neg p(y,x))$ и $\varphi_4 \leftrightharpoons \exists x \forall y p(y,x).$

Задача 2. Нека $\mathcal{A} = \langle \mathbb{N}, D^{\mathcal{A}} \rangle$ е структура за езика без формално равенство, без функционални символи, без индивидни константи, имащ само двуместния предикатен символ D, където

$$\langle n, k \rangle \in D^{\mathcal{A}} \longleftrightarrow$$
 има такова $s \in \mathbb{N}$, че $2k = ns$.

Да се докаже, че:

- а) $\{0\}$, $\{1\}$, $\{2\}$ са определими;
- б) {3} не е определимо.

Задача 1. Да се докаже, че множествата $\{\varphi_1, \varphi_2\}$ и $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ са изпълними, където $\varphi_1 \leftrightharpoons \forall x p(x,x),$ $\varphi_2 \leftrightharpoons \exists x \forall y p(y,x), \qquad \varphi_3 \leftrightharpoons \exists x \forall y p(x,y)$ и $\varphi_4 \leftrightharpoons \exists x \exists y \exists z (\neg p(x,y) \& p(z,y) \& p(z,x)).$

Задача 2. Нека $\mathcal{A}=\langle \mathbb{N}, D^{\mathcal{A}} \rangle$ е структура за езика без формално равенство, без функционални символи, без индивидни константи, имащ само двуместния предикатен символ D, където

$$\langle n, k \rangle \in D^{\mathcal{A}} \longleftrightarrow$$
 има такова $s \in \mathbb{N}$, че $3k = ns$.

Да се докаже, че:

а) $\{0\}$, $\{1\}$, $\{3\}$ са определими;

б) {5} не е определимо.

Задача 1. Да се дефинира на пролог предикат p(L,M), който по даден списък от числа L при преудовлетворяване генерира в M всички списъци, такива че:

- множеството от елементите на M е подмножество на множеството от елементите на L;
- за всеки елемент X на M съществува такъв елемент Y на M, че множеството { X-Y, X*Y, X+Y } е подмножество на множеството от елементите на L.

Задача 2. Да се дефинира на пролог предикат t(M,T), който по дадена матрица M генерира в T транспонираната ѝ матрица. Матрица представяме като списък от редове, всеки от които е списък от елементите на този ред.

Задача 3. С метода на резолюцията да се докаже, че следната формула е предикатна тавтология:

$$\forall x \neg \forall y (p(x,y) \iff \neg \exists z (p(z,y) \& p(y,z))).$$

Задача 4. Нека \mathcal{A} е структурата $\langle \mathbb{N}, s^{\mathcal{A}} \rangle$ за предикатния език без формално равенство \mathcal{L} , имащ един триместен предикатен символ s, където

$$\langle n, k, \ell \rangle \in s^{\mathcal{A}}$$
 точно тогава, когато $n + k = \ell$.

Да се докаже, че:

а) всяко едно от множествата

$$\{0\}, \{1\}, \{3\}, \{\langle n, k \rangle \mid 5$$
 дели $n - k\}$

е определимо в \mathcal{A} с формула от \mathcal{L} ;

б) идентитетът е единственият автоморфизъм в \mathcal{A} .

Задача 5. Да се докаже изпълнимостта на множеството от следните формули:

Задача 1. Да се докаже, че множеството от следните четири формули е изпълнимо:

$$\neg \exists x p(x,x), \qquad \forall x \forall y (p(x,y) \Rightarrow \exists z (p(x,z) \& p(z,y))), \\ \forall x \exists y (p(x,y) \lor p(y,x)), \quad \exists x \forall y (\neg (x \doteq y) \Rightarrow p(x,y)).$$

Задача 2. Нека \mathcal{L} е езикът на предикатното смятане от първи ред без формално равенство, който има само един нелогически символ — двуместния предикатен символ p. Нека \mathcal{A} е структурата за \mathcal{L} с универсум множеството на естествените числа и

$$\langle n,k \rangle \in p^{\mathcal{A}} \longleftrightarrow$$
 броят на простите делители на n е не по-голям от броя на простите делители на k

Да се докаже, че: (а) множествата $\{0\}$ и $\{1\}$ са определими; (б) множеството $\{2012\}$ е неопределимо.

Задача 1. Да се докаже, че множеството от следните четири формули е изпълнимо:

$$\begin{split} \forall x \neg p(x,x), & \forall x \forall y (p(x,y) \Rightarrow \exists z (p(x,z) \& p(z,y))), \\ \forall x \exists y (p(x,y) \lor p(y,x)), & \neg \forall x \exists y \neg (\neg (x \doteq y) \Rightarrow p(x,y)). \end{split}$$

Задача 2. Нека \mathcal{L} е езикът на предикатното смятане от първи ред без формално равенство, който има само един нелогически символ — двуместния предикатен символ p. Нека \mathcal{A} е структурата за \mathcal{L} с универсум множеството на естествените числа и

$$\langle n,k \rangle \in p^{\mathcal{A}} \longleftrightarrow$$
 броят на простите делители на n е по-голям или равен на броя на простите делители на k

Да се докаже, че: (a) множествата $\{0\}$ и $\{1\}$ са определими; (б) множеството $\{2012\}$ е неопределимо.

Зад. 1. Да се дефинира на Пролог предикат p, който по даден списък от списъци L разпознава дали L може да се сортира по \subset . (Ако l_1 и l_2 са списъци, $l_1 \subset l_2$ означава, че елементите на l_1 са елементи на l_2 , но не всички елементи на l_2 са елементи на l_1 .)

Внимание: [[0],[1]] не може да се сортира по \subset !

Зад. 2. Ако n е естествено число с десетичен запис $c_1c_2\ldots c_k$, негатив на n наричаме числото с десетичен запис $d_1d_2\ldots d_k$, където $d_i=9-c_i$ за $i=1,2,\ldots,k$. Да се напише предикат на Пролог, който генерира всички естествени числа, чийто негатив е просто число.

Пример: Негативът на числото 992 е 007, т.е. 7.

Зад. 1. Да се дефинира на Пролог предикат p, който по даден списък от списъци L разпознава дали L може да се сортира по \subseteq . (Ако l_1 и l_2 са списъци, $l_1 \subseteq l_2$ означава, че елементите на l_1 са елементи на l_2 , но не всички елементи на l_2 са елементи на l_1 .)

Внимание: [[0],[1]] не може да се сортира по \subseteq !

Зад. 1. Да се докаже, че множеството от следните две формули е изпълнимо: $\exists x (\exists y p(x,y) \& \exists y p(y,x)),$

 $\neg \exists x \exists y (p(x,y) \& p(y,x)).$

Зад. 1. Нека L е списък от списъци, $L=[\ell_1,\ell_2,\ldots,\ell_n]$. Казваме, че двойката от списъци F,G е разбиване на L, ако $F=[\ell_{i_1},\ell_{i_2},\ldots,\ell_{i_k}]$ и $G=[\ell_{j_1},\ell_{j_2},\ldots,\ell_{j_{n-k}}]$, където $\{i_1,i_2,\ldots,i_k,j_1,j_2,\ldots,j_{n-k}\}=\{1,2,\ldots,n\}.$

Обединение на списък от списъци е множеството на всички обекти, които са елементи на някой елемент на списъка.

Да се дефинира на Пролог едноместен предикат p, който по даден списък от списъци L разпознава дали L може да се разбие на два списъка, които имат едно и също обединение.

Зад. 2. Нека \mathcal{L} е езикът на предикатното смятане без равенство, който има предикатния символ p с арност 4 за единствен нелогически символ. Нека \mathcal{A} е структурата за \mathcal{L} с универсум множеството на целите числа и за произволни цели числа k, l, m, n:

$$\langle k, l, m, n \rangle \in p^{\mathcal{A}} \longleftrightarrow k + l + m = n.$$

Да се докаже, че: а) $\{0\}$ е определимо; б) $\{1\}$ е неопределимо; в) множеството на четните числа е определимо.

Зад. 1. Нека L е списък от списъци, $L=[\ell_1,\ell_2,\ldots,\ell_n]$. Казваме, че списътът M е подредица на L, ако $M=[\ell_{i_1},\ell_{i_2},\ldots,\ell_{i_k}]$, където $1\leq i_j\leq n$ за $j=1\ldots k$ и $i_1< i_2<\cdots< i_k$.

Да се дефинира на Пролог едноместен предикат p, който по даден списък от списъци L разпознава дали има такава подредица M на L, че конкатенацията на елементите на M да е елемент на L.

- **Зад. 2.** Да се дефинира на Пролог едноместен предикат p, който при презадоволяне генерира всички прости числа c десетичен запис, който започва c десетичния запис на факултетния Ви номер.
- **Зад. 1.** Да се дефинира на Пролог двуместен предикат p, който по даден списък от списъци L генерира в M най-дългата обща подредица на елементите на L.
 - **Зад. 2.** Нека L е списък, който има следния вид:

$$[[x_1, y_1], [x_2, y_2], \dots, [x_n, y_n]].$$

Ще казваме, че L представя бинарната релация R, ако

$$R = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}.$$

Да се дефинира на Пролог:

а) едноместен предикат s, който по даден списък L, представящ бинарната релация R, разпознава дали R е симетрична релация.

- б) едноместен предикат t, който по даден списък L, представящ бинарната релация R, разпознава дали R е транзитивна релация.
- в) триместен предикат c, който по дадени два списъка L_1 и L_2 , представящи съответно бинарните релации R_1 и R_2 , генерира в L_3 списък, представящ композицията R_3 на R_1 и R_2 .

 $Hanomhянe: (x,z) \in R_3$ тогава и само тогава, когато има двойки (x,y) и (y,z), такива че $(x,y) \in R_1$ и $(y,z) \in R_2$.

Задача 1. Да се дефинира на Пролог предикат p(X,Y), който по даден списък от числа X при преудовлетворявания дава в Y всички разделяния на X. Разделяне на X е такъв списък $[X_1,X_2,\ldots,X_n]$, че конкатенацията на списъците X_1,X_2,\ldots,X_n е X.

Задача 2. Да се докаже, че е изпълнимо множеството от следните формули:

```
 \forall x \forall y \forall z ((p(x,y) \& p(y,z)) \Rightarrow p(x,z)) 
 \exists x (\neg p(x,x) \& \forall y \forall z (p(y,z) \Rightarrow p(x,z))) 
 \forall x \forall y (p(x,y) \Rightarrow p(y,y)) 
 \forall x \exists y (p(x,y) \& \forall z (p(x,z) \Rightarrow (p(z,x) \lor p(y,z))))
```

Задача 3. Нека \mathcal{L} е език на предикатното смятане без равенство, в който q и r са съответно триместен и двуместен предикатен символ. Нека \mathcal{A} е структурата за \mathcal{L} с универсум \mathbb{R} , в която q и r са интерпретирани по следния начин:

$$\langle a, b, c \rangle \in q^{\mathcal{A}} \longleftrightarrow ab = c,$$

 $\langle a, b \rangle \in r^{\mathcal{A}} \longleftrightarrow a + 2 = b.$

Да се докаже, че са определими множествата $\{2\}, \{\frac{1}{2}\}, \{\sqrt{2}\}, \{\sqrt[3]{2}\}$ и $\{a \mid a>1\}.$

Задача 1. Да се дефинира на Пролог предикат p(X,Y), който по даден списък от числа X при преудовлетворявания дава в Y всички секции на X. Секция на списък $[a_1,a_2,\ldots,a_n]$ е списък $[a_{i_1},a_{i_2},\ldots,a_{i_k}]$, където $1\leq i_1< i_2<\cdots< i_k\leq n$ и $a_{i_1}\leq a_{i_2}\leq\cdots\leq a_{i_k}$.

Задача 2. Да се докаже, че е изпълнимо множеството от следните формули:

```
\forall x \forall y \forall z ((p(x,y) \& p(y,z)) \Rightarrow p(x,z))
\exists x \forall y \forall z ((p(y,z) \& p(z,y)) \Rightarrow (p(x,y) \& p(y,x)))
\forall x \forall y (p(x,y) \Rightarrow \exists z (p(x,z) \& p(z,y)))
\exists x \forall y \forall z (p(y,z) \Rightarrow p(x,z))
\neg \exists x \forall y \forall z (p(y,z) \Rightarrow p(y,x))
```

Задача 3. Нека \mathcal{L} е език на предикатното смятане без равенство, в който p и r са съответно триместен и двуместен предикатен символ. Нека \mathcal{A} е структурата за \mathcal{L} с универсум \mathbb{R} , в която p и r са интерпретирани по следния начин:

$$\langle a, b, c \rangle \in p^{\mathcal{A}} \longleftrightarrow a + b = c,$$

 $\langle a, b \rangle \in r^{\mathcal{A}} \longleftrightarrow a^2 = b.$

Да се докаже, че са определими множествата $\{2\},\,\{\frac{1}{2}\},\,\{\sqrt{2}\,\},\,\{a\mid a>1\}$ и $\{\sqrt[3]{2}\,\}.$