Name:			

1. Show that $\sum_{i=1}^{n} (i+1)2^i = n2^{n+1}$ for all positive integers n.

Solution: We prove the statement using induction by n. The base case for n=1 is true since $4=(1+1)\cdot 2=1\cdot 2^{1+1}=4$.

Now we need to prove the induction step. Let us assume that $\sum_{i=1}^{n} (i+1)2^i = n2^{n+1}$. Note that $\sum_{i=1}^{n+1} (i+1)2^i = \sum_{i=1}^{n} (i+1)2^i + (n+2)2^{n+1} = n2^{n+1} + (n+2)2^{n+1} = (2n+2)2^{n+1} = (n+1)2^{n+2}$. Hence, by the induction principle $\sum_{i=1}^{n} (i+1)2^i = n2^{n+1}$ for any positive integer n.

- 2. Let n be a positive integer and A_1, \ldots, A_n be some sets. Let us define union of these sets as follows:
 - 1. $\bigcup_{i=1}^{1} A_i = A_1$,
 - 2. $\bigcup_{i=1}^{k+1} A_i = (\bigcup_{i=1}^k A_i) \cup A_{k+1}$.

Show that $\bigcup_{i=1}^{n} [i] = [n]$.

Solution: We prove the statement using induction by n. If n = 1, the statement is true since $\bigcup_{i=1}[i] = [1] = [1].$

To prove the induction step we assume that $\bigcup_{i=1}^n [i] = [n]$. By the definition of the union $\bigcup_{i=1}^{n+1} [i] = (\bigcup_{i=1}^n [i]) \cup [n+1]$. Hence, $\bigcup_{i=1}^{n+1} [i] = [n] \cup [n+1] = [n+1]$.

Therefore by the induction principle, $\bigcup_{i=1}^{n} [i] = [n]$ for any positive integer n.

3. Let Ω be some set. Consider $A_1, \ldots, A_n \subseteq \Omega$. Show that $\bigcup_{i=1}^n A_i = \{x \in \Omega : \exists i \in [n] \ x \in A_i\}$.

Solution: We prove the statement using induction by n. For n=1 the statement is clearly true. Let us now prove the induction step from n to n+1. Assume that $\bigcup_{i=1}^n A_i = \{x \in \Omega : \exists i \in [n] \ x \in A_i\}$. Note that $\bigcup_{i=1}^{n+1} A_i = (\bigcup_{i=1}^n A_i) \cup A_{n+1} = \{x \in \Omega : \exists i \in [n] \ x \in A_i\} \cup A_{n+1}$. We denote $\{x \in \Omega : \exists i \in [n] \ x \in A_i\}$ by B. By the definition of union, $B \cup A$ is the set of all x such that either $x \in B$ or $x \in A_{n+1}$; therefore

$$B \cup A = \{x \in \Omega \ : \ (\exists i \in [n] \ x \in A_i) \text{ or } x \in A_{n+1}\} = \{x \in \Omega \ : \ \exists i \in [n+1] \ x \in A_i\} \,.$$

Which finishes the proof.