序列(mex)

显然由 $\max(\{A_1, A_2 ... A_N\}) \leq N$ 。

因此,如果 $M \geq N$,那么在 $S_i=1$ 的时候 A_i 必然有且仅有一种选择,在 $S_i=0$ 的时候有 M 种选择。答案就是 $M^{\sum [S_i=0]}$ 。

在 $M \leq N$ 的时候, $S_i=1$ 时可能由于 $\max(\{A_1,A_2,\dots A_{i-1}\})>M$ 而爆掉,因此需要记录 $A_1\sim A_{i-1}$ 一共占用了多少个位置。

记 $dp_{i,j}$ 表示填了前 i 个数,占用了 $0\sim M$ 中的 j 个数的方案数。

那么就有转移:
$$dp_{i,j} = egin{cases} dp_{i-1,j-1} &, S_i = 1 \\ j imes dp_{i-1,j} + (M-j) imes dp_{i-1,j-1} &, S_i = 0 \end{cases}$$

时间复杂度 O(NM)。

淘金(gold)

f(x) 只会存在因子 2,3,5,7。而由于数码只有 12 位,因此有 2,3,5,7 分别至多只有 36,24,12,12 个。

考虑数位DP,记 $f_{i,a,b,c,d}$ 表示已经处理了最高的 i 位,后面的位可以任选(没有 N 限制),当前乘积等于 $2^a3^b5^c7^d$ 的方案数。

最后会得到若干个二元组 (cnt, val),表示最终乘积等于 val 的有 cnt 个。

而对于在坐标 (val_1, val_2) 的数,就有 $cnt_1 \times cnt_2$ 个。

这是一个经典的贪心问题:将所有(cnt,val)对按照从小到大的顺序排序。

那么如果选取
$$(val_i,val_j)$$
 只有当 $egin{cases} (val_i,val_{j-1}) &,j
eq 1 \\ (val_{i-1},val_j) &,j=1 \end{cases}$ 被选取了之后才有可能。

初始的时候选取 (val_1,val_1) ,每当选取了 (val_i,val_j) 的时候,将 (val_i,val_{j+1}) 加入;如果 j=1,还需将 (val_{i+1},val_j) 加入。

使用堆维护, 时间复杂度 $O(K \log K)$ 。

最古的遗迹(ruin)

显然 N 次地震之后必然无法再发生地震,所以可以将 N 次看作是无数次,而每一次石柱是否变化都是与后缀有关的,所以考虑从后往前考虑。

如果一个位置的柱子的高度会从 h_i 变为 0,说明后缀种已经出现过了高度为 $1 \sim h_i$ 的柱子至少一个。

设计 DP $f_{i,j}$ 表示后 i 个柱子,出现了高度为 $1 \sim j$ 的固定的柱子,而没有出现高度为 j+1 的柱子。

前面已经有 c_0 个柱子消失了,还有 c_1 个柱子存在。

如果当前位置的柱子消失了,必然有 $h_i \leq j$,而只剩下 $j-c_0$ 个可选。

如果当前位置的柱子没有消失,则要么 $h_i=j+1$ 要么 $h_i>j+1$,对于第二种情况,我们不好确定 h_i 的选择,所以我们先不计算贡献。

对于 $h_i=j+1$ 它可能也同时激活了,前面某些 $h_{i'}>j+1$ 的柱子,构成了连续段,我们假设拓展到了 k,我们记需要再前面 c_1-j 个没有确定的存在柱子中选择 k-j-1 个,而当前柱子可能是从 $j+1\sim k$ 中的任何一个位置降到 j+1 的,也就是有 k-j+1 中选择。然后就是剩下的那些柱子的排布,这个可以用另一个 DP 预处理出来。

时间复杂度 $O(n^3)$ 。

末日魔法少女计划(matrix)

可以将 $A_{i,j}=1$ 看作拥有区间信息 [i,j),要求构造最少的区间信息,使得任何区间 [l,r) 都可以被最多 k 个已知区间的加和表示。

考虑 k=2 的时候,就是要构建猫树。找到一个中点 mid,所有的点都向这个点连边,然后递归到左右子树去处理。

这启发我们在 k>2 的时候也去搜索这样的结构,但是二叉的树就不一定优了,所以考虑 b 叉的数。

具体的,我们选择 b 个节点为关键节点,将这 b 个点之间递归距离为 k-2 的子问题,然后这 b 个节点分成的每一个区间都向左右端点连满边。每一个部分递归处理。

根据直觉,发现选择 b 个点,那么中间的 b-1 块应该是均匀的,同时最左和最右的两个块也应该是均匀的,所以考虑设计如下 DP:

 $f_{n,k}$ 表示 n 个节点,两两距离 $\leq k$ 至少需要多少个信息。

 $g_{n,k}$ 表示构造 b 叉树及其内部的 b 个块至少需要多少个信息。

为了方便处理,记中间变量 $f'_{n,k}=f_{n,k}+n$ 以及 $f''_{n,k}=f_{n,k}+2n$ 。

可以得到如下转移:

$$f_{n,k} = \min_{i=1}^{\left \lfloor rac{n}{2}
ight
floor} \{g_{n-2i,k} + 2f_{i,k}'\}$$

$$g_{n,k} = \min_b \{f_{b,k-2} + (b-1-((n-b) \mod (b-1))(f_{\lfloor \frac{n-b}{b-1} \rfloor}''k) + ((n-b) \mod (b-1)(f_{\lfloor \frac{n-b}{b-1} \rfloor + 1}''k)\}$$

需要特殊处理 $k \leq 2$ 或者 n=1 的一些 corner case,时间复杂度是 $O(n^2k)$ 的,发现刚好可以满足题目要求的限制。