DEE2505: Data Structures

Programming Assignment #2: Polynomial GCD

(due 23:59, Oct 29th, 2019)

Introduction:

The greatest common divisor(GCD) for two or more univariate polynomials is important and elementary in algebra. For example, polynomial GCD can be used in root-finding algorithm when polynomials have multiple roots. Further, GCD computations allow us to compute the square-free factorization, even for multivariate polynomials. In computer algebra systems, most of the modern theory of polynomial GCD has been developed to satisfy the need of efficiency.

Objective:

In this programming assignment, you are asked to write a C++ program to derive the GCD of two univariate polynomials and return the GCD.

Provided files:

- (1) *main.cpp*: it executes the function *FindGCD*() and checks the answer. It can be changed if necessary for you to debug.
- (2) *GCD.cpp* & *GCD.h*: these are the program files you need to implement. The function *FindGCD()* receives two arrays, each of the arrays contains all the coefficients from 1 input polynomial. *FindGCD()* will return the GCD of input polynomials in the same way(as a coefficient array).
- (3) *example*: this is an exemplary input test case, which can be used to test your program.

Implementation Details:

The polynomial $A_0x^0+A_1x^1+A_2x^2+A_3x^3+\cdots+A_{998}x^{998}+A_{999}x^{999}$ will be stored in a **long** integer array with size=1000 as follows:

arra	ıy[0]	array[1]	array[2]	 array[998]	array[999]
A	Λ_0	A_1	A_2	 A998	A999

The two inputs and the answer will all be stored in this format, and the output of *FindGCD()* should also be stored in the same way, with the same array size.

The returned GCD should be a <u>polynomial function with irreducible integral</u> <u>coefficients</u>, and <u>the coefficient of the highest power of the variable should be</u> <u>positive</u>. If there is no GCD between two inputs, you should return 1. Also, if both of

the input are zero-degree polynomials (constant polynomials), you should return 1 as well.

Example:

GCD you calculate	GCD you should return
3x^3-6	x^3-2
-3x^3+6	x^3-2
6	1

The input file will look like this:

1	x^3-1 <- Polynomial 1
2	x^2-2x+1 <- Polynomial 2
3	x−1 <- GCD of Polynomial 1 &Polynomial 2
4	x^999-1 <- Polynomial 1
5	x^601-1 <- Polynomial 2
6	x-1 <- GCD of Polynomial 1 &Polynomial 2
7	2 <- Polynomial 1
8	5 <- Polynomial 2
9	1 <- GCD of Polynomial 1 & Polynomial 2
10	2 <- Polynomial 1
11	x^999-1<- Polynomial 2
12	1 <- GCD of Polynomial 1 & Polynomial 2
13	100x^99-100 <- Polynomial 1
14	1000x^2-2000x+1000 <- Polynomial 2
15	x-1 <- GCD of Polynomial 1 &Polynomial 2
	3 4 5 6 7 8 9 10 11 12 13 14

There are 900 test patterns in the example case. The first and the second lines indicate 2 input polynomials, and the third line is the golden answer (the GCD of the input polynomials).

* Note that the input polynomials would all be nonzero polynomials, and the coefficients will always be smaller than **INT_MAX**. However, the coefficients may exceed **INT_MAX** during your calculation. (**INT_MAX**= 2^31-1=2147483647 and the size of **long** integer is 8byte under Linux system)

Language:

C or C++.

Platform:

You may develop your software on UNIX/Linux.

Compile: \$ g++ main.cpp GCD.cpp

Execution: \$./a.out

Submission

Please compress the following files into a zip file and name it by your <u>name and student ID</u>. For example, "HW2_0750264_陳玥融.zip". Then upload the compressed file to the new E3 website by the deadline (Oct 29th,2019).

- (1) GCD.h
- (2) GCD.cpp

Grading policy:

- (1) Example case correctness (60%)
- (2) Hidden case correctness (10%)
- (3) Hidden case ranking (30%, ranked by run time)