SaUCy Reference: Reliable Broadcast

Overview

Adaptively secure broadcast [2]. Bracha [1]. We assume a static adversary.

Ideal Functionalities

Functionality \mathcal{F}_{ACAST}

 \mathcal{F}_{ACAST} interacts with an adversary \mathcal{S} and a set $\mathcal{P} = \{P_1, \dots, P_N\}$ of parties.

- 1. Upon receiving (Bcast, sid, m) from P_s :
 - If P_s is honest, then leak (Bcast, sid, P_s , m) and, for each P_i in \mathcal{P} , send (Bcast, sid, P_s , m) eventually.
 - If P_s is corrupted, then send nothing.

Protocol Definition

Protocol Π_{Bracha}

 Π_{Bracha} interacts with a set $\mathcal{P} = \{P_1, \dots, P_N\}$ of parties and can tolerate up to t failures.

- 1. Upon receiving (Value, v) from P_i , send (Initial, v) to all parties in \mathcal{P} .
- 2. Upon receiving an (Initial, v) message or $\left\lceil \frac{N+t}{2} \right\rceil$ (Echo, v) messages or $\left\lceil \frac{t+1}{2} \right\rceil$ (Ready, v) messages,
- send (Echo, v) to all parties in \mathcal{P} .

 3. Upon receiving $\left\lceil \frac{N+t}{2} \right\rceil$ (Echo, v) messages or $\left\lceil \frac{t+1}{2} \right\rceil$ (Ready, v) messages, send (Ready, v) to all parties in \mathcal{P} .
- 4. Upon receiving $\lceil \frac{t+1}{2} \rceil$ (Ready, v) messages, accept v.

Protocol Emulation

Theorem 1. Protocol Π_{Bracha} t-securely realizes the functionality $\mathcal{F}_{\mathsf{ACAST}}$ for t < N/3.

Proof sketch. Let \mathcal{A} be an adversary attacking Π_{Bracha} . We build a corresponding simulator \mathcal{S} as follows.

Simulator S_{ACAST}

- 1. Run a copy of the real world execution in a sandbox.
- 2. Whenever \mathcal{A} requests to corrupt some $P_i \in \mathcal{P}$, corrupt P_i and send the internal state of P_i to \mathcal{A} . Hereafter, S has P_i follow A's instruction.
- 3. Whenever A sends a message to the environment \mathcal{Z} , \mathcal{S} forwards this message to \mathcal{Z} .
- 4. Wait until an honest party P_i outputs a value m_i , and send this value to \mathcal{F}_{ACAST} .

Verifying that $\text{EXEC}[\Pi_{\text{Bracha}}, \mathcal{A}, \mathcal{Z}] \approx \text{EXEC}[\mathcal{F}_{\text{ACAST}}, \mathcal{S}, \mathcal{Z}]$ is left as an exercise to the reader because I have no idea what I'm doing.

References

- 1. Gabriel Bracha. Asynchronous byzantine agreement protocols. *Information and Computation*, 75(2):130–143, 1987.
- 2. Juan A Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adaptively secure broadcast, revisited. In *Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed computing*, pages 179–186. ACM, 2011.