Math 462 Homework 2

Paul Hacking

February 5, 2013

In the problems below S^2 denotes the sphere of some radius R > 0 in \mathbb{R}^3 with center the origin O. Justify your answers carefully.

(1) Recall the spherical cosine rule: For a spherical triangle on a sphere of radius R=1 with vertices A,B,C, angles a,b,c, and opposite side lengths α,β,γ , we have

$$\cos \alpha = \cos \beta \cos \gamma + \sin \beta \sin \gamma \cos a.$$

Now suppose that the triangle is small, i.e., the side lengths α, β, γ are much smaller that R=1. Use the approximations $\cos x \approx 1-x^2/2$ and $\sin x \approx x$ for $x=\alpha, \beta, \gamma \approx 0$ in the spherical cosine rule and simplify the resulting equation. Explain your result.

(2) Consider a spherical triangle on the sphere

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

of radius R = 1 with vertices A, B, C, angles a, b, c and opposite side lengths α, β, γ . In this question we will prove the *spherical sine rule*:

$$\frac{\sin \alpha}{\sin a} = \frac{\sin \beta}{\sin b} = \frac{\sin \gamma}{\sin c}.$$

- (a) Position the triangle on the sphere so that the vertex A is at the north pole and the vertex B lies in the xz-plane. Compute the coordinates of the vertices A, B, C in terms of $a, b, c, \alpha, \beta, \gamma$ using spherical coordinates.
- (b) Using part (a), show that $\overrightarrow{OA} \cdot (\overrightarrow{OB} \times \overrightarrow{OC}) = \sin a \sin \beta \sin \gamma$.

(c) We have the identity

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = \det(\mathbf{a} \ \mathbf{b} \ \mathbf{c})$$

where $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$ and $(\mathbf{a} \mathbf{b} \mathbf{c})$ denotes the 3×3 matrix with columns $\mathbf{a}, \mathbf{b}, \mathbf{c}$ (why?). Use this identity together with (b) (and the corresponding equations for cyclic permutations of A, B, C) to deduce the spherical sine rule.

(3) Let A be a 2×2 orthogonal matrix. Then the linear map

$$T: \mathbb{R}^2 \to \mathbb{R}^2, \quad T(\mathbf{x}) = A\mathbf{x}$$

is either a rotation about the origin, or a reflection in a line through the origin.

- (a) Show that $\det A = +1$ if T is a rotation and $\det A = -1$ if T is a reflection.
- (b) Show that if T is a reflection then the eigenvalues of A are ± 1 . Describe the eigenvectors geometrically.
- (c) Show that if T is a rotation through angle θ counter-clockwise, then the eigenvalues of A are $e^{\pm i\theta} = \cos \theta \pm i \sin \theta$.
- (4) Describe the following isometries geometrically.
 - (a) $R: \mathbb{R}^2 \to \mathbb{R}^2$, $R(x,y) = \frac{1}{\sqrt{2}}(x+y, x-y)$.
 - (b) $S: \mathbb{R}^2 \to \mathbb{R}^2$, $S(x,y) = \frac{1}{5}(3x 4y, 4x + 3y)$.
 - (c) $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(x,y,z) = \frac{1}{3}(x-2y-2z,-2x+y-2z,-2x-2y+z)$. [Hint: T is given by reflection in a plane.]
- (5) Consider the sphere $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = R^2\}$ with center the origin and radius R. Consider the cylinder

$$C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = R, -R < z < R\}$$

with radius R and axis the interval (-R, R) on the z-axis. (So the sphere S^2 lies inside the cylinder.) We can "roll out" the cylinder to obtain a rectangle. Mathematically, let R denote the rectangular region

$$R = \{(u, v) \in \mathbb{R}^2 \mid 0 \le u < 2\pi R, -R < v < R\} \subset \mathbb{R}^2.$$

We define a bijection

$$F: R \to C$$
, $F(u, v) = (R\cos(u/R), R\sin(u/R), v)$

which identifies the rectangle R with the cylinder C. Now let N = (0,0,R) and S = (0,0,-R) be the north and south poles of the sphere S^2 , and define a bijection

$$G: S^2 \setminus \{N, S\} \to C, \quad G(x, y, z) = \left(\frac{Rx}{\sqrt{x^2 + y^2}}, \frac{Ry}{\sqrt{x^2 + y^2}}, z\right)$$

given by projecting radially outward from the z-axis. Combining, we get a bijection

$$F^{-1} \circ G \colon S^2 \setminus \{N, S\} \to R$$

which can be used to draw a map of the surface of the sphere in the plane. [It is called the Gall-Peters projection.]

(a) Find an explicit formula for the bijection

$$H := G^{-1} \circ F \colon R \to S^2 \setminus \{N, S\}.$$

(This is the inverse of the Gall Peters projection $F^{-1} \circ G$ considered above.)

(b) Show that the function H preserves areas. [Hint: To do this, write $H(u,v)=\mathbf{x}(u,v)=(x(u,v),y(u,v),z(u,v))$. Then (from Math 233) the area of the image H(T) of a region $T\subset R$ under the function H is given by the integral

$$\int \int_{T} \left\| \frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v} \right\| du \ dv.$$

So *H* preserves areas iff the function $\|\frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v}\|$ is constant, equal to 1 (why?).]