Microelectronic Grade Silicone Materials for CSP

Mike Gaul, Ann Norris Stanton Dent,

Dow Corning Corporation

Outline

- The nature of silicones
- Silicone polymerization
- Root cause of silicone outgassing
- Development of materials for use in the uBGA package
- Resolution of Lead bond issues
- X-ray Photoelectron Spectroscopy images
- Conclusions

Nature of Silicones

egree of Alkyl Substitution

 SiO_2

Silica

Glasses

 $R_1SiO_{3/2}$

Silsesquioxanes Silicone resins 7

O-Si-O CH₃

R₂SiO

Silicone

polymers

Hard & Brittle

Soft & Flexible

Properties of Silicone Fluids

 Me_3S $SiMe_3$

- Wide OSiO angle => Fr
- Free rotation, low Tg, Tm, etc
- Strong Si-O Bond =>
- **High Thermostability**
- PDMS backbones are covered by CH₃'s, hydrophobicity

Silicone Properties*

- Liquid at high molecular weight
- Low apparent activation energy for viscous flow
- Low surface energy
- High gas permeability
- High dielectric strength

- Thermal stability
- Oxidative resistance
- Low boiling points
- Excellent flammability properties
- Low surface shear viscosity
- Relative to hydrocarbon materials

Equilibration Polymerization of Silicones

- Acid or base catalysis
- Time, temperature and solvent effects
- Molecular weight control
- End block
- trimethylsilyl
- dimethylhydroxyl
- dimethylvinyl
- others

Equilibration Polymerization of Silicones

Polymerization:

$$x(Me_2SiO)_4 + Me_3SiOSiMe_3 \xrightarrow{Cat} (Me_2SiO)_y + Me_3SiO(Me_2SiO)_z$$
 SiMe_3

- Equilibrium mixture of cyclics and linears
- High Mw linear polymer
- Typically 11-18 wt. % cyclics for PDMS
- Low molecular weight species are very volatile and low viscosity

Low Mw Silicones

	Viscosity	Boiling	
	@ 25 C	Point	Mw
Compound	cŚ	C	
Water	1.0	100	18
MM	0.7	101	162
D ₃	·	135	222
MDM	1.0	153	237
_ D4	2.3	175	297
MD ₂ M	1.5	. 196	311
D ₅	3.9	211	371
MD ₃ M	2.1	230	. 385
D_6	6.6	245	445
MD ₄ M	2.6	· 260	459
D7 .	9.5	276	519
MD ₅ M	3.2	287	. 533
D ₈	13.2	303	593
MD ₆ M	. 3.9	310	. 607
D ₉	18.0	326	667
MD ₇ M	4.5		. 681

$$H_3C$$
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

M (D)_n M Linear series

Removal of Low Mw Species

- Vacuum strip dependent on:
- time, temperature, vacuum level
- Liquid-liquid solvent extraction
- Non-solvent precipitation
- Super critical fluid extraction
- High pressure liquid chromatography

D13-D20	D4-D12		Compounds		
11860	20600	PPM	Grade	microelectronic	Non-
734	0	PPM	Grade	Microelectronic	

- •Greater than 95% reduction in low Mw species
- •Remaining material is high Mw
- high viscosity & high boiling

Typical Silicone Formulation

- Silicone polymer
- outgassing
- Filler
- Crosslinker
- Adhesion promoter
- Catalyst (Pt)

Condensation Cure

- No cure by-products
- •Heat activated
- •Can be 1-part or 2-part

JBGA Package

Material and Process Considerations for CSP Lead Bonding

- Design considerations
- Nubbins or pads
- Proximity to lead bond area
- Material considerations
- Rheology
- Low volatility
- Low creep
- Off set stencil printing
- Gross contamination during printing
- Time between print and cure

Non-microelectronic grade materials led to:

- Migration of silicone onto leads
- Cure silicone nubbins

Self diffusion of low Mw components

- $D \propto 1/Mw^2$
- Surface spreading
- ηαMw
- Outgassing

Use of non-microelectronics grade silicones led to increases in:

- Lead bond ultrasonic frequency
- Cleaning frequency of lead bond tip
- Deformation of the lead
- High failure rate due to heel breaks

material eliminated all problems: Microelectronics grade silicone

- Increased yield
- Increased productivity
- Increased reliability

XPS of TAB tape showing leads

Non-Microelectronic Grade Silicone

Microelectronic Grade Silicone

£ :

Summary

- Silicones have unique properties due to their chemical composition
- Equilibration polymerization of silicones
- Low Mw species present root cause
- Can be removed by further processing
- Not all silicone materials are alike
- is commercially available Low outgassing microelectronic grade silicone material set
- outgassing silicone material set. Companies are in production with µBGA using a low

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS _
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.