QCM

Nom et prénom :	Durée/Duration : 15 minutes. Aucun document n'est autorisé. No document allowed.	
	L'usage de la calculatrice est interdit.	
	Using a calculator is forbidden. Les questions faisant apparaître le symbole ♣ peuvent	
	présenter une ou plusieurs bonnes réponses.	
	Questions with \(\bigs\) symbole may have one or several correct answers.	
	Les autres ont une unique bonne réponse.	
 Si aucune réponse n'est cochée po If no answer is marked, then no po 	The other ones have a unique correct answer. ur une question, alors aucun point n'y est attribué ni retranché.	
	éponses sont cochées, alors un point y est attribué.	
	answers are marked, then one point is earned.	
	n polynôme de degré $n-1$ en un point en	
We know how to evaluate a polynomial of		
O(n) opérations/operations.	$O(n^2)$ opérations/operations.	
$O(M(n) \log n)$ opérations/operations		
Question [evaln] & On sait évaluer u We know how to evaluate a polynomial of	n polynôme de degré $n-1$ en n points en degree $n-1$ in n points in	
$O(M(n) \log n)$ opérations/operations. $O(n^2)$ opérations/operations.	ons. \bigcirc $O(n)$ opérations/operations. \bigcirc Aucune de ces réponses n'est correcte.	
en n points que de l'interpoler en ces n po	uement, il est plus facile d'évaluer un polynôme de degré $n-1$ points. polynomial of degree $n-1$ in n points than to interpolate it in	
Vrai/True.	Faux/False.	
legré $n-1$ en n points que de l'évaluer e	aptotiquement, il est aussi difficile d'interpoler un polynôme de n ces n points. late a polynomial of degree $n-1$ in n points than to evaluate it	
Vrai/True.	Faux/False.	
Question [Aprime0] Si pour $i \neq j, x$ $c_i) = 0.$	$x_i \neq x_j$ et $A = \prod_{i=0}^{n-1} (x - x_i)$, alors on peut avoir $A' \mod (x - x_i)$	
	(x_i) , then we can have $A' \mod (x - x_i) = 0$.	
Vrai/True.	Faux/False.	
Question [diveuc1] \clubsuit On sait effectuer la division euclidienne d'un polynôme de degré $2n$ par un polynôme de degré n en We can perform the Euclidian division of a polynomial of degree $2n$ by one of degree n in		
O(n) opérations/operations. $O(M(n))$ opérations/operations.	$O(M(n) \log n)$ opérations/operations. $O(n^2)$ opérations/operations.	

CATALOGUE

Question [Aprime0] Pour x_0, \ldots, x_{n-1} des points disctints deux à deux et $L_i = \prod_{\substack{0 \le j \le n-1 \ j \ne i}} (x-x_j)$,		
on sait calculer $L_0(x_0), \ldots, L_{n-1}(x_{n-1})$ en $O(M(n))$ opérations. For pairwise distinct points x_0, \ldots, x_{n-1} and $L_i = \prod_{0 \le j \le n-1} (x-x_j)$, we know how to compute		
$L_0(x_0), \ldots, L_{n-1}(x_{n-1})$ in $O(M(n))$ operations.		
Vrai/True.	Faux/False.	
Question [Shamir1] Le partage de clef de Shamir de régime (1;n) ne nécessite qu'un seul participant		
pour retrouver le secret. Shamir's secret sharing of parameters $(1; n)$ only requires one participant to recover the secret.		
Vrai/True.	Faux/False.	
Question [Shamir2] \clubsuit Dans un partage de clef de Shamir de régime $(2;3)$, si les clefs des participants sont $(1,1)$ et $(2,1)$ dans \mathbb{F}_3 , alors la clef secrète est In Sharmir's secret sharing of parameters $(2;3)$, if the shared are $(1,1)$ and $(2,1)$ in \mathbb{F}_3 , then the secret is		
$ \begin{array}{c} 1.\\ 0. \end{array} $	2. Aucune de ces réponses n'est correcte.	
Question [Hankelcreuse2] Une famille $(M_n)_{n\in\mathbb{N}}$ de matrices de Hankel dans $\mathbb{K}^{n\times n}$ est une famille de matrices creuses. A family $(M_n)_{n\in\mathbb{N}}$ of Hankel matrices in $\mathbb{K}^{n\times n}$ is a family of sparse matrices.		
Vrai/True.	Faux/False.	
Question [diagcreuse] Une famille $(M_n)_{n\in\mathbb{N}}$ de matrices diagonales dans $\mathbb{K}^{n\times n}$ est une famille de matrices creuses. A family $(M_n)_{n\in\mathbb{N}}$ of diagonal matrices in $\mathbb{K}^{n\times n}$ is a family of sparse matrices.		
Vrai/True.	Faux/False.	
Question [mulcreuse] \clubsuit Deux matrices creuses de tailles n et ayant $m \geqslant n$ coefficients non nuls peuvent être multipliées en Two sparse matrices of size n with $m \ge n$ nonzero entries can be multiplied in		
$O(mn)$ opérations/operations. $O(n^3)$ opérations/operations.	$O(m^2)$ opérations/operations. $O(m)$ opérations/operations.	
Question [LUcreuse] ♣ La décomposition LU d'une matrice creuse The LU decomposition of a sparse matrix		
peut être dense/can be dense. peut être creuse/can be sparse.	est toujours dense/is always dense. est toujours creuse/is always sparse.	
Question [Wiedemann1] Si une matrice $M \in \mathbb{K}^{n \times n}$ vérifie $M^d + p_{d-1}M^{d-1} + \dots + p_0\mathrm{Id} = 0$, alors pour tout $x,y \in \mathbb{K}^n$ et $i \in \mathbb{N}$, $u_{i+d} + p_{d-1}u_{i+d-1} + \dots + p_0u_i = 0$ avec $u_i = y^\mathrm{T}M^ix$. If a matrix $M \in \mathbb{K}^{n \times n}$ satisfies $M^d + p_{d-1}M^{d-1} + \dots + p_0\mathrm{Id} = 0$, then for all $x,y \in \mathbb{K}^n$ and $i \in \mathbb{N}$, $u_{i+d} + p_{d-1}u_{i+d-1} + \dots + p_0u_i = 0$ with $u_i = y^\mathrm{T}M^ix$.		
Vrai/True.	Faux/False.	
Question [Wiedemann2] Si une matrice $M \in \mathbb{K}^{n \times n}$ et un vecteur $x \in \mathbb{K}^n$ vérifient pour tout $i \in \mathbb{N}$, $s_{i+d} + p_{d-1}s_{i+d-1} + \cdots + p_0s_i = 0$ avec $s_i = M^ix$, alors M vérifie $M^d + p_{d-1}M^{d-1} + \cdots + p_0\mathrm{Id} = 0$. If a matrix $M \in \mathbb{K}^{n \times n}$ and a vector $x \in \mathbb{K}^n$ satisfy for all $i \in \mathbb{N}$, $s_{i+d} + p_{d-1}s_{i+d-1} + \cdots + p_0s_i = 0$ with $s_i = M^ix$, then M satisfies $M^d + p_{d-1}M^{d-1} + \cdots + p_0\mathrm{Id} = 0$.		
Vrai/True.	Faux/False.	

