Date: 2020-10-14

Created by: Jonas Eichhorn

1/4

Charakterisierung der Wellenplatte W2

Die Bauelemente der Fiberbenches müssen charakterisiert werden. Die Bauelemente sind die verwendeten Fasern, die linear Polarisatoren, die Wellenplatten und ähnliches. Es wird deshalb dokumentiert wie die messbare Laserleistung durch die optischen Elemente reduziert wird. Interessant ist dabei wie stark die Laserleistung in Abhängigkeit seiner Ausrichtung zu linear polarisiertem Licht reduziert wird.

Aufbau

Ramanspektrometer	WiTec (ZAF)	
Powermeter	PM100D/S130C	
Linearpolarisatoren	P1, P2	
Zu charakterisierendes Bauteil	Wellenplatte W2	

Experiment 1: Nullpunktsbestimmung

Es soll herausgefunden werden, wie die Wellenplatter orientiert sein muss, dass sie die Lichtolarisation um 90° dreht. Der Laserstrahl wird durch eine Fiberbench geleitet. Im Strahlengang werden zwei Linearpolarisatoren, das zu untersuchende Bauteil und die Messsonde des Powermeters plaziert. Der Laser passiert dabei zuerst einen Linearpolarisator, dann die Wellenplatte, den zweiten Polarisator und trift zuletzt auf die Messsonde. Der erste Linearpolarisator wird in die Position rotiert, welche die gemessene Laserleistung maximiert, ohne dass Linearpolarisator 2 verwendet wird. Der zweite Linearpolarisator wird in die Position rotiert, welche die Laserleistung minimiert. Dabei sind beide Linearpolarisatoren verbaut. Die Laserleistung wird zuerst für den Aufbau ohne das zu charakterisierende Bauteil gemessen. Anschließend wird die Laserleistung für den Aufbau mit dem zu charakterisierenden Bauteil gemessen. Das zu charakterisierende optische Element wird nach jeder Messung rotiert und der neue Messwert vermerkt.

Position Linearpolarisator P1 / °	0
Position Linearpolarisator P2 / °	82
Maximale Laserleistung / mW	55,1
Gemessene Leistung ohne Laser / mW	0,2e-6

PDF generated with elabftw, a free and open source lab notebook

Date: 2020-10-14

Created by: Jonas Eichhorn

2/4

Experiment 2: Transmissionsverhalten

Es wird auch untersucht, wie stark die Wellenplatte in Abhängigkeit ihrer Rotation das Laserlicht absorbiert. Dafür wird der Laserstrahl durch eine Fiberbench geleitet. Im Strahlengang wird ein Linearpolarisator, die Wellenplatte und die Messsonde des Powermeters plaziert. Der Strahl passiert zuerst den Linearpolarisator und trifft zuletzt auf die Messsonde. Der Linearpolarisator ist so eingestellt, dass die Laserleistung ohne Wellenplatte maximal ist. Anschließend wird die Wellenplatte eingesetzt und die Laserleistung für verschiedene Positionen der Wellenplatte detektiert.

Position Linearpolarisator P1 / °	0
Maximale Laserleistung / mW	55,1
Gemessene Leistung ohne Laser / mW	1,3e-6

Messung für Exp. 1 und 2

Messwerte

Position Wellenplatte / °	Gemessene Leistung Messung 1 / mW	Gemessene Leistung ohne Bauteil Messung 1 / mW	Gemessene Leistung Messung 2 / mW	Gemessene Leistung ohne Bauteil Messung 2 / mW
0	98,2e-3	0,251e-3	1,587	1,646
10	0,445		1,587	
20	0,937		1,597	
30	1,263		1,593	
40	1,313		1,587	
50	1,080		1,586	
60	0,636		1,571	
70	227,7e-3		1,576	
80	4,84e-3		1,575	
90	115,3e-3		1,582	
100	0,482		1,604	
110	0,945		1,608	
120	1,262		1,594	
130	1,326		1,591	
140	1,046		1,576	

PDF generated with elabftw, a free and open source lab notebook

Date: 2020-10-14

Created by: Jonas Eichhorn

3 / 4

150	0,590		1,577	
160	205,4e-3		1,571	
170	3,85e-3		1,587	
180	128,5e-3		1,577	
190	0,483		1,583	
200	0,938		1,579	
210	1,274		1,585	
220	1,300		1,597	
230	1,038		1,596	
240	0,596		1,593	
250	188,9e-3		1,588	
260	5,21e-3		1,573	
270	133,7e-3		1,571	
280	0,483		1,583	
290	0,937		1,579	
300	1,256		1,590	
310	1,139		1,587	
320	1,079		1,591	
330	0,641		1,590	
340	196,6e-3		1,597	
350	8,27e-3		1,591	
36	1,322	204,2e-6	1,577	1,635
38	1,325		1,577	
34	1,292		1,583	
42	1,290		1,578	
82	0,493e-3		1,562	
84	7,32e-3		1,566	
86	33,5e-3		1,561	
78	22,28e-3		1,570	
126	1,338		1,582	
128	1,334		1,577	
124	1,328		1,582	
122	1,305		1,578	
172	0,274e-3		1,569	

Date: 2020-10-14

Created by: Jonas Eichhorn

4/4

174 10,02e-3 1,564 176 46,2e-3 1,572 168 13,67e-3 1,569 216 1,323 1,579 218 1,318 1,591 214 1,308 1,597 212 1,293 1,587 262 0,535e-3 1,586 264 4,84e-3 1,576 266 28,2e-3 1,576 258 19,71e-3 1,574 306 1,326 1,580 308 1,326 1,582 304 1,317 1,589 302 1,293 1,590 312 1,289 1,584			
168 13,67e-3 1,569 216 1,323 1,579 218 1,318 1,591 214 1,308 1,597 212 1,293 1,587 262 0,535e-3 1,586 264 4,84e-3 1,576 266 28,2e-3 1,576 258 19,71e-3 1,574 306 1,326 1,580 308 1,326 1,582 304 1,317 1,589 302 1,293 1,590	174	10,02e-3	1,564
216 1,323 1,579 218 1,318 1,591 214 1,308 1,597 212 1,293 1,587 262 0,535e-3 1,586 264 4,84e-3 1,576 266 28,2e-3 1,576 258 19,71e-3 1,574 306 1,326 1,580 308 1,326 1,582 304 1,317 1,589 302 1,293 1,590	176	46,2e-3	1,572
218 1,318 1,591 214 1,308 1,597 212 1,293 1,587 262 0,535e-3 1,586 264 4,84e-3 1,576 266 28,2e-3 1,576 258 19,71e-3 1,574 306 1,326 1,580 308 1,326 1,582 304 1,317 1,589 302 1,293 1,590	168	13,67e-3	1,569
214 1,308 1,597 212 1,293 1,587 262 0,535e-3 1,586 264 4,84e-3 1,576 266 28,2e-3 1,576 258 19,71e-3 1,574 306 1,326 1,580 308 1,326 1,582 304 1,317 1,589 302 1,293 1,590	216	1,323	1,579
212 1,293 1,587 262 0,535e-3 1,586 264 4,84e-3 1,576 266 28,2e-3 1,576 258 19,71e-3 1,574 306 1,326 1,580 308 1,326 1,582 304 1,317 1,589 302 1,293 1,590	218	1,318	1,591
262 0,535e-3 1,586 264 4,84e-3 1,576 266 28,2e-3 1,576 258 19,71e-3 1,574 306 1,326 1,580 308 1,326 1,582 304 1,317 1,589 302 1,293 1,590	214	1,308	1,597
264 4,84e-3 1,576 266 28,2e-3 1,576 258 19,71e-3 1,574 306 1,326 1,580 308 1,326 1,582 304 1,317 1,589 302 1,293 1,590	212	1,293	1,587
266 28,2e-3 1,576 258 19,71e-3 1,574 306 1,326 1,580 308 1,326 1,582 304 1,317 1,589 302 1,293 1,590	262	0,535e-3	1,586
258 19,71e-3 1,574 306 1,326 1,580 308 1,326 1,582 304 1,317 1,589 302 1,293 1,590	264	4,84e-3	1,576
306 1,326 308 1,326 304 1,317 302 1,293 1,580 1,582 1,589 302 1,293	266	28,2e-3	1,576
308 1,326 304 1,317 302 1,293 1,589 1,590	258	19,71e-3	1,574
304 1,317 1,589 302 1,293 1,590	306	1,326	1,580
302 1,293 1,590	308	1,326	1,582
	304	1,317	1,589
312 1,289 1,584	302	1,293	1,590
	312	1,289	1,584
352 197,1e-6 1,578	352	197,1e-6	1,578
354 7,76e-3 1,584	354	7,76e-3	1,584
356 29,1e-3 1,574	356	29,1e-3	1,574
248 28,5e-3 1,582	248	28,5e-3	1,582

Beobachtung

Die Wellenplatte ist sehr leicht verstellbar. Fehler der Wellenplattenposition größere Gefahr als bei den anderen Bauteilen. Die Position der Linearpolarisatoren unterscheidet sich von dem gestrigen Experiment und der Charakterisierung der Linearpolarisatoren.

Comment:

On 2020-10-14 10:18:32 Julian Hniopek wrote: Wieso dauert das so lange??:D

Unique eLabID: 20201014-f9efe9bc34792f19e9f9a30d659993f715ca7060 link: https://elab.ipht-jena.de/experiments.php?mode=view&id=28