6. Крайни автомати и регулярни езици

Твърдение. Множеството на езиците, които се разпознават от краен детерминиран автомат са затворени относно:

- а. Обединение;
- b. Конкатенация;
- с. Звезда на Клини;
- d. Допълнение;
- е. Сечение.

Доказателство:

Нека $M_1=<K_1$, Σ , Δ_1 , S_1 , $F_1>$ и $M_2=<K_2$, Σ , Δ_2 , S_2 , $F_2>$ са крайни автомати, такива, че $K_1\cap K_2=\emptyset$, $L_1=L(M_1)$ и $L_2=L(M_2)$

а. $L_1 \cup L_2$ се разпознава от краен автомат

$$M = \langle K_1 \cup K_2 \cup \{s\}, \ \Sigma, \ \Delta_1 \cup \Delta_2 \cup \{(s, \varepsilon, s_1), (s, \varepsilon, s_2)\}, \ s, \ F_1 \cup F_2 \rangle$$

b. $L_1 \circ L_2$ се разпознава от краен автомат

$$M = \langle K_1 \cup K_2, \Sigma, \Delta_1 \cup \Delta_2 \cup \{(f_1, \varepsilon, s_2) | f_1 \in F_1\}, s_1, F_2 \rangle$$

с. Звезда на Клини се разпознава от краен автомат

$$M = \langle K_1 \cup \{s_1\}, \ \Sigma, \ \Delta_1 \cup \{(s, \varepsilon, s_1)\} \cup \{(f_1, \varepsilon, s_1) | f_1 \in F_1\}, \ s, \ F_1 \cup \{s\} > 0$$

d. $\Sigma^* \setminus L_1$ се разпознава от краен автомат

$$M = \langle K_1, \Sigma, \Delta_1, S_1, K_1 \backslash F_1 \rangle$$

е. Сечението се разпознава от краен автомат

$$\Sigma^* \backslash (L_1 \cap L_2) \xrightarrow{\text{Де Морган}} (\Sigma^* \backslash L_1) \cup (\Sigma^* \backslash L_2)$$

$$L_1\cap L_2=\Sigma^*\backslash[(\Sigma^*\backslash L_1)\cup(\Sigma^*\backslash L_2)]=\Sigma^*\backslash(\Sigma^*\backslash(L_1\cap L_2))\Longrightarrow$$
 се разпознава от краен (детерминиран) автомат

Теорема. Един език L се разпознава от краен автомат \iff L е регулярен език.

Твърдение 1. Ако L е регулярен, то L се разпознава от краен автомат.

Доказателство на Твърдение 1.

L е регулярен \Longrightarrow съществува регулярен израз lpha, такъв, че $L=\mathcal{L}[lpha]$. Доказателството ще проведем с индукция относно построението на lpha.

1. $\alpha = \emptyset$, $\mathcal{L}[\alpha] = \emptyset$

2. $\alpha = \alpha \in \Sigma$

3. $\alpha = \alpha_1 \cup \alpha_2$

$$\mathcal{L}[\alpha] = \mathcal{L}[\alpha_1] \cup \mathcal{L}[\alpha_2]$$

Съгласно ИП, $\mathcal{L}[\alpha_1]$ и $\mathcal{L}[\alpha_2]$ се разпознават от краен автомат.

Съгласно **а.** от предното твърдение $\mathcal{L}[\alpha]=\mathcal{L}[\alpha_1]\cup\mathcal{L}[\alpha_2]$ се разпознава от краен автомат.

4. $\alpha = \alpha_1 \circ \alpha_2$

Тогава
$$L = \mathcal{L}[\alpha] = \mathcal{L}[\alpha_1] \circ \mathcal{L}[\alpha_2].$$

Съгласно ИП, $\mathcal{L}[\alpha_1]$ и $\mathcal{L}[\alpha_2]$ се разпознават от краен автомат.

Съгласно **b.** от предното твърдение $\mathcal{L}[\alpha]=\mathcal{L}[\alpha_1]\circ\mathcal{L}[\alpha_2]$ се разпознава от краен автомат.

5. $\alpha = (\alpha_1)^*$ u $L = \mathcal{L}[\alpha] = (\mathcal{L}[\alpha_1])^*$

Съгласно ИП, $\mathcal{L}[\alpha_1]$ се разпознава от краен автомат.

Съгласно **с.** от предното твърдение L се разпознава от краен автомат.

Твърдение 2. Ако L се разпознава от краен автомат, то L е регулярен.

Доказателство на Твърдение 2.

Hека L = L(M),

 $M = \langle K, \Sigma, \Delta, s, F \rangle$

 $K = \{q_1, \dots, q_n\}, s = q_1,$

R(i,j,k) — езици, зависещи от i,j,k, където $i,j=\overline{1,n},\ k=\overline{0,n}$

 $w \in \Sigma^*$, такава, че $(q_i, w) \vdash_M^* (q_j, \varepsilon)$ и не съществуват в този преход състояния, които да имат индекси $\geq k+1$.

$$(q_i,w) \vdash_{M} \left(q_{l_1},w_1
ight) \vdash_{M} \ldots \vdash_{M} \left(q_{l_p},w_p
ight) \vdash_{M} \left(q_j,arepsilon
ight)$$
, където $l_1,\ldots,l_p \leq k$.

Поставяме си за цел да докажеме, че R(i,j,k) са регулярни езици за $i,j=\overline{1,n}$ и $k=\overline{0,n}.$

$$\cup \{R(1,j,n) | q_j \in F\} = L(M)$$
 $R(1,j,n) = \{w | (q_1,w)\} \vdash_M^* (q_j,\varepsilon)\}$, където $q_j \in F$.

Ще го докажеме с индукция относно $k, 0 \le k \le n$.

3a
$$k = 0$$

 $R(i, j, 0) \subseteq \Sigma \cup \{\varepsilon\}.$
 $R(i, j, 0) = \begin{cases} \emptyset \\ \varepsilon \\ \{a, b\} \end{cases}$

Допускаме, че твърдението е вярно за R(i,j,k-1), за произволни i,j. Ще докажем за R(i,j,k) (т.е. че е регулярен език).

$$\begin{split} R(i,j,k) &= R(i,j,k-1) \cup \left(R(i,k,k-1) \circ (R(k,k,k-1))^* \circ R(k,j,k-1) \right) \\ (q_i,w) &\vdash_{M}{}^* \left(q_j, \varepsilon \right) \\ (q_i,w) &\vdash_{M}{}^* \left(q_k, w_1 \right) \vdash_{M}{}^* \left(q_k, w_2 \right) \vdash_{M}{}^* \ldots \vdash_{M}{}^* \left(q_k, w_p \right) \vdash_{M}{}^* \left(q_j, \varepsilon \right) \end{split}$$

<u>Заб.</u> $(q_i, w) \vdash_{M}^* (q_k, w_1)$ и тн. са междинни преходи с индекс $\leq k-1$.

Нека $M=<K,\Sigma,\Delta,s,F>-$ краен автомат.

Ще разгледаме автомати, такива, че ако $(q,u,p)\in \Delta$, то $p\neq s$ и $q\neq f$.

$$F = \{f\}$$

$$K = \{q_1, ..., q_n\},\ q_{n-1} = s, q_n = f.$$

$$q_{n-1} = s, q_n = f.$$

1.

2.

3.

