Advanced Macroeconomics II

Handout 5 - Integration

Sergio Ocampo

Western University

October 5, 2020

Short recap

Prototypical DP problem:

$$V(k,z) = \max_{\{c,k'\}} u(c) + \beta E \left[V(k',z') | z \right]$$

$$\text{s.t.} c + k' = f(k,z)$$

$$z' = h(z,\eta); \eta \text{ stochastic}$$

▶ We are looking for functions V, g^c, g^k: We cannot solve this.

We need to solve an approximate problem:

- Approximate continuous function: Interpolation
 - Requires "exact" solution of maximization problem: Optimization
 - Requires computing expectations: Integration

Integration - Many options

- 1. Monte Carlo integration
- 2. Quadrature methods
- 3. Discretize state space
 - ► Tauchen (1986)
 - ► Tauchen & Hussey (1991)
 - Rouwenhorst (2008)
 - ► Gaussian mixture (i.a. Civale, Diez-Catalan & Faziletet, 2017)

Monte Carlo Integration

Monte Carlo integration

▶ Idea: Exploit the law of large numbers

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n f(x_i) = E[f(x)] = \int f(x) dG(x)$$

- Approximate your integral with a sum
- ▶ Key: Where to evaluate it... we need draws from $x \sim G$
 - Actually, we need a lot of draws
 - ▶ Monte Carlo relies on large numbers to get relative frequencies right
 - ▶ If density of $x \sim G$ at a is higher, there will be more draws x_i close to a
- ▶ Monte Carlo is generally costly, requires too many function evaluations.

Monte Carlo integration - Expectations

Algorithm 1: Expectation by Monte Carlo

input: Number of seeds (N_0) and number of candidates (N^*) **output**: E[V(k',z')|z] with $z'=h(z,\eta)$ and $\eta \sim G$

1. Generate N random draws for $\eta \sim G$. Call them $\{\eta_i\}_{i=1}^N$ Note: Do this once at the beginning of the code;

for i=1:N do

2. Evaluate $f_i = V(k', h(z, \eta_i))$

Note: This step requires interpolation of V in the z direction;

3. Return average: $E\left[V\left(k',z'\right)|z\right] \approx \frac{1}{N}\sum_{i}f_{i}$

Monte Carlo integration - When to use it?

- ► This is rarely the best way to go for expectations
 - ► Requires high *N* to provide good approximation
 - ▶ That is a lot of interpolations for each evaluation of the expectation
- Sometimes evaluations are not that expensive
 - ► Then Monte Carlo is cheap and easy
- It is a good tool for other integrals
 - Model simulation (with and without heterogeneity)
- ▶ It is the easiest method to parallelize
 - Depends on your computational resources

Quadrature Methods

▶ Idea: Approximate \int with \sum , like in Monte Carlo, but with less points

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{N} \omega_{i} f(x_{i})$$

- ▶ Key: Choose where to evaluate $\{x_i\}$ and appropriate weights $\{\omega_i\}$
- ightharpoonup Warning: GQ only works well if f is well approximated by an N-degree polynomial

Note: For equally spaced grid points and non-smooth functions use Romberg integration (see Numerical Recipes, Sec. 4.3)

Objective: Get a method with exact results for integrals of the type:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} W(x) h(x) dx = \sum_{i=1}^{N} w_{i} h(x_{i})$$

where $h(\cdot)$ is a polynomial and $W(\cdot)$ is a weighting function

- ► This method will give approximate results for functions (f) that are well approximated by a polynomial (h) times a weighting function (W)
- ▶ We only need that our original function satisfies: $f(x) \approx W(x) h(x)$
- ▶ We can always choose W(x) = 1 and then h(x) = f(x)
- ▶ We don't actually need to know h. We can define $h(x) = \frac{f(x_i)}{W(x_i)}$:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} W(x) h(x) dx \approx \sum_{i=1}^{N} \omega_{i} f(x_{i}) \quad \text{where } \omega_{i} = \frac{w_{i}}{W(x_{i})}$$

Algorithm 2: Gaussian Quadrature

input: Number of points N, integrand f, weighting function W **output**: Points $\{x_i\}$, weights $\{\omega_i\}$, integral $\int_a^b f(x) dx \approx \sum_i \omega_i f(x_i)$

- 1. Choose a weighting function W;
- 2. Construct the family of orthonormal polynomials wrt W up to degree N;
- 3. Obtain roots of the polynomial of degree N in [a, b] These roots are the points $\{x_i\}$;
- 4. Evaluate the auxiliary weights $w_i = \frac{\langle p_{N-1}|p_{N-1}\rangle}{p_{N-1}(x_i)p_N'(x_i)}$ The weights we look for are $\omega_i = \frac{w_i}{W(x_i)}$;
- 5. Evaluate the integral: $\int_a^b f(x) dx \approx \sum_i \omega_i f(x_i)$

We happen to know the solution for a bunch of weighting functions:

- ▶ Gauss-Legendre: W(x) = 1 for $x \in [-1, 1]$
 - ▶ Polynomial recursion: $(i+1)P_{i+1} = (2i+1)xP_i iP_{i-1}$
- ▶ Gauss-Chebyshev: $W(x) = \frac{1}{\sqrt{1-x^2}}$ for $x \in [-1, 1]$
 - ▶ Polynomial recursion: $T_{i+1} = 2xT_i T_{i-1}$
- ▶ Gauss-Hermite: $W(x) = e^{-x^2}$ for $x \in [-\infty, \infty]$
 - ▶ Polynomial recursion: $H_{i+1} = 2xH_i 2iH_{i-1}$

See Numerical Recipes for more results (including weights)

Note: Use Gauss-Hermite for integrating Gaussian shocks.

Let
$$h(x) = \frac{1}{\sqrt{\pi}}V\left(k', h\left(z, \sqrt{2}\sigma_{\eta}x + \mu_{\eta}\right)\right)$$
 and

$$W(x) = e^{-x^2} \propto \Phi(x)$$

Careful with extrapolation... $x \in (-\infty, \infty)$

Gaussian Quadrature - Problems

- How good is your approximation? God knows!
 - ▶ No practical error estimate...
 - There are theoretical estimates, they can be very large
- From NR: "[W(x)] is] ready to give high-order accuracy to integrands of the form polynomials times W(x), and ready to *deny* high order accuracy to integrands that are otherwise perfectly smooth and well behaved."
- ▶ Methods are not nested: going from N to N+1 changes all $\{x_i, w_i\}$
- ▶ Bad performance when function has kinks, or doesn't look polynomial

Gauss-Kronrod Quadrature

- ▶ This should be your go-to method
- Uses nested Gaussian quadrature to iteratively evaluate the integral
 - ► The nested part helps by reusing old function evaluations
- Provides a practical error bound from the change in the integral
- ▶ Better than Gaussian quadrature if function is not polynomial

Discretizing the State Space

General idea

- Instead of approximating the integral approximate the stochastic process
 - ▶ Discretize z (and $h(z, \eta)$) instead of η
 - Approximate process for z with a discrete Markov process
- Markov process characterized by:
 - ▶ Discrete state space: $z \in \{z_1, ..., z_N\}$
 - lacksquare Transition matrix: $\Pi=[\pi_{ij}]$, s.t. $\Pr\left(z^{'}=z_{j}|z=z_{i}
 ight)=\pi_{ij}, \ \sum_{j}\pi_{ij}=1$
- ► Compute expectation:

$$E\left[V\left(k^{'},z^{'}\right)|z=z_{i}\right]=\sum_{j=1}^{N}\pi_{ij}V\left(k^{'},z_{j}\right)$$

Note: No approximation. No interpolation.

Key problem: How to get transition matrix?

Two approaches:

- 1. Full blown estimation
 - ▶ Set a grid for z: $\{z_1, \ldots, z_N\}$
 - Estimate transition matrix to match desired moments
 - ▶ Moments of *z* or moments of the model
 - N(N-1) numbers to estimate
- 2. Parametrize process for z
 - ▶ Typical assumption is AR(1): $z' = h(z, \eta) = \rho z + \eta$
 - Use a method to choose Π to match properties of AR(1)
 - Only have to choose ho and σ_{η}

Tauchen (1986)

$$z^{'}=
ho z+\eta \qquad \eta \sim N\left(0,\sigma_{\eta}
ight)$$

- Note that E[z] = 0 and that shocks are symmetric
- ▶ Start from an equally spaced grid centered at 0: $\{z_1, \ldots, z_N\}$
 - ightharpoonup Heuristic: Extend grid Ω standard deviations around mean

$$z_1 = -\Omega \sigma_\eta, \dots, z_n = z_{n-1} + \Delta_z, \dots, z_N = \Omega \sigma_\eta$$
 where: $\Delta_z = \frac{2\Omega \sigma_\eta}{N-1}$

- Usually $\Omega = 3$, but this depends on what you are modeling
- ▶ Fill in transition probabilities from normal distribution:

$$\pi_{ij} = egin{cases} \Phi\left(rac{z_{j} -
ho z_{i} + \Delta_{z}/2}{\sigma_{\eta}}
ight) & ext{if } j = 1 \ \Phi\left(rac{z_{j} -
ho z_{i} + \Delta_{z}/2}{\sigma_{\eta}}
ight) - \Phi\left(rac{z_{j} -
ho z_{i} - \Delta_{z}/2}{\sigma_{\eta}}
ight) & ext{if } j = 2, \dots, N-1 \ 1 - \Phi\left(rac{z_{j} -
ho z_{i} - \Delta_{z}/2}{\sigma_{\eta}}
ight) & ext{if } j = N \end{cases}$$

Tauchen (1986)

Algorithm 3: Tauchen (1986)

input: Number of points N, width of grid Ω , process parameters ρ, σ_{η} **output**: Discrete approximation of $z' = \rho z + \eta$, $\eta \sim N(0, \sigma_{\eta})$: z grid and Π

1. Construct grid: $z = range(-\Omega \sigma_{\eta}, \Omega \sigma_{\eta}, length = N)$, $\Delta_{z} = \frac{2\Omega \sigma_{\eta}}{N-1}$;

for
$$i=1:N, j=1:N$$
 do

2. Fill in π_{ij} as:

$$\pi_{ij} = \begin{cases} \Phi\left(\frac{z_j - \rho z_i + \Delta_z/2}{\sigma_\eta}\right) & \text{if } j = 1\\ \Phi\left(\frac{z_j - \rho z_i + \Delta_z/2}{\sigma_\eta}\right) - \Phi\left(\frac{z_j - \rho z_i - \Delta_z/2}{\sigma_\eta}\right) & \text{if } j = 2, \dots, N-1\\ 1 - \Phi\left(\frac{z_j - \rho z_i - \Delta_z/2}{\sigma_\eta}\right) & \text{if } j = N \end{cases}$$

Tauchen & Hussey (1991)

Exploit Gaussian Quadrature

- ► Since shocks are normally distributed use Guass-Hermite
- ▶ Without persistence (say $z' \sim N(\mu, \sigma)$) we get:

$$E\left[V\left(k',z'\right)\right] = \int V\left(k',z'\right)\phi\left(\frac{z'-\mu}{\sigma}\right)dz' \approx \sum_{j=1}^{N} \frac{w_{j}}{\sqrt{\pi}}V\left(k',\sqrt{2}\sigma x_{j} + \mu\right)$$

with $\{x_i\}$ the roots of the Hermite polynomials and $\{w_i\}$ the weights

▶ With persistence we get: $E\left[V\left(k',z'\right)|z\right] = \int V\left(k',z'\right)\phi\left(\frac{z'-\rho z}{\sigma_{\eta}}\right)dz'$

Issue: Conditional mean of z' varies with z.

▶ We would have to evaluate objective for different values with each z

Tauchen & Hussey (1991)

Solution: Express integral wrt unconditional normal, apply formula

$$E\left[V\left(k',z'\right)|z\right] = \int \left(V\left(k',z'\right) \frac{\phi\left(\frac{z'-\rho z}{\sigma_{\eta}}\right)}{\phi\left(\frac{z'}{\sigma_{\eta}}\right)}\right) \phi\left(\frac{z'}{\sigma_{\eta}}\right) dz'$$

$$\approx \sum_{j=1}^{N} \frac{w_{j}}{\sqrt{\pi}} V\left(k',\sqrt{2}\sigma_{\eta}x_{j}\right) \frac{\phi\left(\frac{\sqrt{2}\sigma_{\eta}x_{j}-\rho z}{\sigma_{\eta}}\right)}{\phi\left(\frac{\sqrt{2}\sigma_{\eta}x_{j}}{\sigma_{\eta}}\right)}$$

- ▶ Fixed grid points: $z_i = \sqrt{2}\sigma_n x_i$, where $\{x_i\}$ are Gauss-Hermite nodes
 - ▶ Define $\omega_i = w_i/\sqrt{\pi}$, where $\{w_i\}$ are Gauss-Hermite weights
- ▶ Probabilities: $\pi_{ij} = \frac{\phi\left(\frac{z_j \rho z_i}{\sigma_{\eta}}\right)}{\phi\left(\frac{z_j}{\sigma_{\eta}}\right)} \frac{\omega_i}{s_i}$, where $s_i = \sum_n \frac{\phi\left(\frac{z_n \rho z_i}{\sigma_{\eta}}\right)}{\phi\left(\frac{z_n}{\sigma_{\eta}}\right)} \omega_i$

Tauchen & Hussey (1991)

Algorithm 4: Tauchen & Hussey (1991)

input : Number of points N, process parameters ρ, σ_{η} output: Discrete approximation of $z' = \rho z + \eta$, $\eta \sim N(0, \sigma_{\eta})$: z grid and Π

- 1. Obtain Gauss-Hermite nodes and weights $\{x,w\}$;
- 2. Define grid as $z_i = \sqrt{2}\sigma_{\eta}x_i$;

for
$$i=1:N, j=1:N$$
 do

3. Fill in
$$\pi_{ij} = \frac{\phi\left(\frac{z_j - \rho z_i}{\sigma_\eta}\right)}{\phi\left(\frac{z_j}{\sigma_\eta}\right)} \frac{\omega_i}{s_i}$$
 where $\omega_i = w_i / \sqrt{\pi}$ and $s_i = \sum_n \frac{\phi\left(\frac{z_n - \rho z_i}{\sigma_\eta}\right)}{\phi\left(\frac{z_n}{\sigma_\eta}\right)} \omega_i$;

Rouwenhorst (1995)

Objective: Construct a Markov Process that matches moments of z'

▶ Instead of starting from a grid and getting transition probabilities

Steps:

- 1. Construct a particular type of Markov Process
 - Construction is recursive
- 2. Derive properties of the Markov Process
 - Find stationary distribution and conditional moments
- 3. Match moments from AR(1) process

Rouwenhorst (1995) - Markov Process

- ▶ Pick size of the grid: $N \ge 2$
- Let $\{z_1,\ldots,z_N\}$ be an equally spaced grid such that $z_1=-\psi$ and $z_N=\psi$
 - We need to find ψ . Clearly $\Delta_z = \frac{2\psi}{N-1}$.
- ► Construct transition matrix recursively:

$$\begin{split} &\Pi_2 = \begin{bmatrix} p & 1-p \\ 1-q & q \end{bmatrix} \\ &\Pi_N = p \begin{bmatrix} \Pi_{N-1} & \vec{0} \\ \vec{0}^T & 0 \end{bmatrix} + (1-p) \begin{bmatrix} \vec{0} & \Pi_{N-1} \\ 0 & \vec{0}^T \end{bmatrix} + (1-q) \begin{bmatrix} \vec{0}^T & 0 \\ \Pi_{N-1} & \vec{0} \end{bmatrix} + q \begin{bmatrix} 0 & \vec{0}^T \\ \vec{0} & \Pi_{N-1} \end{bmatrix} \\ &\text{where } \vec{0} \text{ is an } (N-1) \times 1 \text{ zero vector. We need to find } p \text{ and } q. \end{split}$$

▶ Divide all rows by 2 to ensure they sum to 1 (except top and bottom)

Rouwenhorst (1995) - Moments

Results from Kopecky & Suen (2010)

Conditional Mean
$$E\left[z'|z=z_i\right]$$
 $(q-p)\,\psi+(p+q-1)\,z_i$
Conditional Var $V\left[z'|z=z_i\right]$ $\frac{4\psi^2}{(N-1)^2}\left[(N-i)\,(1-p)\,p+(i-1)\,q\,(1-q)\right]$
Unconditional Mean $E\left[z\right]$ $\frac{q-p}{2-(p+q)}\psi$
Unconditional Var $V\left[z\right]=E\left[z^2\right]$ $\psi^2\left[1-4s\,(1-s)+\frac{4s(1-s)}{N-1}\right]$; where $s=\frac{1-q}{2-(p+q)}$
Autocovariance $Cov\left[z',z\right]$ $(p+q-1)\,V\left[z\right]$
Autocorrelation $Corr\left[z',z\right]$ $p+q-1$

Moreover, the stationary distribution is Binomial (N-1, 1-s).

Rouwenhorst (1995) - Matching the AR(1)

$$z^{'} = \rho z + \eta$$
 where $\eta \sim N(0, \sigma_{\eta})$

► Conditional moments are immediate:

$$E\left[z^{'}|z=z_{i}
ight]=
ho z_{i} \qquad V\left[z^{'}|z=z_{i}
ight]=\sigma_{\eta}^{2}$$

Also the autocorrelation: $Corr\left[z',z\right]=\rho$

- ▶ Unconditional moments: E[z] = 0 $V[z] = \frac{\sigma_{\eta}^2}{1-\sigma^2}$
- ► Matching moments gives:

$$p = q$$
 $p + q - 1 = \rho \longrightarrow p = q = \frac{1 + \rho}{2}$

$$\sigma_{\eta}^{2} = \frac{4\psi^{2}}{(N-1)^{2}} \left[(N-i) (1-p) p + (i-1) q (1-q) \right] \longrightarrow \psi = \sqrt{N-1} \frac{\sigma_{\eta}}{\sqrt{1-\rho^{2}}}$$

Rouwenhorst (1995)

Algorithm 5: Rouwenhorst (1995): Discretize AR(1)

Function Rouwenhorst (N, ρ, σ_{η}) :

- 1. Define $p = 1 + \rho/2$ and $\psi = \sigma_n \sqrt{N 1/1 \rho^2}$
- 2. Construct grid: $\emph{z} = \textit{range}(-\psi, \psi, \textit{length} = \emph{N})$, $\Delta_{\emph{z}} = {}^{2\psi}\!/\textit{N}_{-1}$

if
$$N==2$$
 then

3.1. Define
$$\Pi_2 = \begin{bmatrix} p & 1-p \\ 1-q & q \end{bmatrix}$$

else

3.2.1.
$$\Pi_{N-1} = \text{Rouwenhorst}(N-1, \rho, \sigma_n)$$

3.2.2.
$$\Pi_N = \rho \begin{bmatrix} \Pi_{N-1} & \vec{0} \\ \vec{0}^T & 0 \end{bmatrix} + (1-\rho) \begin{bmatrix} \vec{0} & \Pi_{N-1} \\ 0 & \vec{0}^T \end{bmatrix} + (1-q) \begin{bmatrix} \vec{0}^T & 0 \\ \Pi_{N-1} & \vec{0} \end{bmatrix} + q \begin{bmatrix} 0 & \vec{0}^T \\ \vec{0} & \Pi_{N-1} \end{bmatrix}$$

- 3.2.3. Ajust intermediate rows to sum to 1
- 4. Bonus: Return stationary distribution G = Binomial(N-1, 1/2)

Gaussian Mixtures

Issue: Our AR(1) processes do not match higher order moments of data

- ▶ Papers by Guvenen and Song show earnings data is far from "Normal"
- ▶ Income process presents left skewness and high kurtosis
- ▶ Bloom, Guvenen & Salgado show importance of skewness for firms

Solution: Use Gaussian Mixture Models

- Shocks come from a mixture of gaussian sources
- ▶ More sources of variation allow us to capture higher order moments

Matching higher moments

Results from Civale, Diez-Catalan & Fazilet (2015)

$$z^{'}=
ho z+\eta$$
 where $\eta \sim egin{cases} N\left(\mu_{1},\sigma_{1}
ight) & ext{with prob. } p \ N\left(\mu_{2},\sigma_{2}
ight) & ext{with prob. } 1-p \end{cases}$

- lacktriangle This process is flexible enough to generate skewness and kurtosis in η
 - These properties are inherited by z
- The process imposes constraints
 - ▶ Parameter ρ is key
 - Given ρ and moments of z we get moments of $\Delta_k z$
 - ▶ Moments of $\Delta_k z$ are often the target in the data

How to use Gaussian mixtures

Good news: Tauchen's method applies!

- Let F_{η} be the CDF of the Gaussian mixture η
- ▶ Let $\{z_1, ..., z_N\}$ be a grid for z
- All formulas apply using the new distribution

Bad news: Results are sensitive to choice of state space grid

- ► Civale, Diez-Catalan & Fazilet (2015) propose optimizing over grid
 - They use the method of moments
- Process is incompatible with persistence of Skewness and Kurtosis
 - ► See Appendix B.2. where they propose a method to address this

Gaussian mixtures - Very popular

Gaussian mixtures used widely, mostly for income fluctuation problems

- ► Housing Wealth Effects: The Long View (Guren, McKay, Nakamura, Steinsson ,2020)
- ► Time-Varying Idiosyncratic Risk and Aggregate Consumption Dynamics (McKay, 2017)
- ► Countercyclical Labor Income Risk and Portfolio Choices over the Life-Cycle (Catherine, 2020)
- Nonlinear household earnings dynamics, self-insurance, and welfare (DeNardi, Fella, Paz-Pardo, 2020)
- ▶ Monetary policy according to HANK (Kaplan, Moll, Violante, 2018)
 - Continuous time methods mixing a jump process for kurtosis

Final Words on Methods

Literature's take: Use Rouwenhorst

- ▶ Three separate papers get to the same conclusion
 - Kopecky & Suen (2010)
 - ► Galindev & Lkhagvasuren (2010)
 - ► Fella, Gallipoli & Pan (2019)
- Rouwenhorst's method outperforms all competition
 - "A 5 point grid Rouwenhurst approximation is generally as accurate as a 25 grid point approximation with other methods"
 - ▶ Other methods suffer when $\rho \rightarrow 1$. Rouwenhorst suffers much less.
 - Rouwenhorst's design to match moments makes it better
 - Rouwenhorst does not target higher order moments, but still outperforms other methods at low grid sizes.

An example

- lacksquare Discretize $z^{'}=
 ho z+\eta$, where $\eta\sim \mathit{N}\left(\mu_{\eta},\sigma_{\eta}^{2}
 ight)$
- Choose $\rho=$ 0.95, $\mu_{\eta}=$ 0 and $\sigma_{\eta}=$ 0.2
- ► Simulate 10.000 periods of the Markov Chain

	Exact		Tauchen			Rouwenhorst		
	Moments		N=5	N=11	N=21	N=5	N=11	N = 21
<i>E</i> [<i>z</i>]	$rac{\mu_{\eta}}{1- ho}$	0	-0.01	-0.02	0.01	-0.03	0.00	0.01
$\sqrt{V[z]}$	$\frac{\sigma_{\eta}^{\prime}}{\sqrt{1-\rho^2}}$	0.64	0.40	0.38	0.37	0.65	0.63	0.63
corr(z,z')	ρ	0.95	0.87	0.88	0.88	0.95	0.95	0.95

Relevant Extensions

- Correlated AR(1) process (like a VAR)
 - ► Galindev & Lkhagvasuren (2010)
 - Method reduces to decomposing covariance matrix to get independent shocks
 - ► Then apply a modified version of Rouwenhorst
- Non-stationary process Designed for life cycle models
 - Fella, Gallipoli & Pan (2019)
 - Methods are extensions of Tauchen or Rouwenhorst
- Many other methods...Read the papers!

Application: GE capitalist/union economy

The economy: Two agents

Capitalists:

- ▶ Infinitively lived derive utility from consumption: $u(c) = c^{1-\gamma}/1-\gamma$
- Produce output with capital and labor (CRS technology): $y = zk^{\alpha}\ell^{1-\alpha}$
- ▶ Use their own capital (no borrowing), hire labor in market at wage w

Union:

- ▶ Infinitively lived derive utility from consumption: $u(c) = c^{1-\gamma}/1-\gamma$
- Weird union preferences: Demand constant wage
- Union internalizes effect on wages and controls labor to adjust price
- Hand-to-mouth (no borrowing or savings)

Capitalists

$$\begin{split} V\left(z,k;w\right) &= \max_{\left\{c,k'\right\}} u\left(c\right) + \beta E\left[V\left(z',k';w'\right)|z\right] \\ \text{s.t. } c+k' &\leq \pi\left(z,k;w\right) \\ \pi\left(z,k;w\right) &= \max_{\ell} zk^{\alpha}\ell^{1-\alpha} - w\ell + (1-\delta)\,k \\ \log z' &= \rho\log z + \eta; \qquad \eta \sim N\left(0,\sigma_{\eta}^{2}\right) \\ \text{Law of motion for wages (more on this later)} \end{split}$$

- ▶ Note that capitalists have to take w as given
 - We will talk how to deal with this explicitly later
 - For now: leap of faith

Capitalists - Profits

$$\pi(z, k: w) = \max_{\ell} zk^{\alpha}\ell^{1-\alpha} - w\ell + (1-\delta)k$$

Optimal labor choice:

$$\ell^{\star} = \left(\frac{1-\alpha}{w}z\right)^{\frac{1}{\alpha}}k$$

Optimal profits:

$$\pi(z, k; w) = \left[\underbrace{\alpha\left(\frac{1-\alpha}{w}\right)^{\frac{1-\alpha}{\alpha}} z^{\frac{1}{\alpha}} + (1-\delta)}_{\Gamma(z;w)}\right] k$$

Capitalists - Homothetic-Homogeneous DP

We are in luck!

- Capitalist problem is that of maximizing a homothetic objective subject to homogenous constraint.
- Particularly constraint is homogenous of degree 1

$$V(z, k; w) = \max_{\{c, k'\}} u(c) + \beta E \left[V(z', k'; w') | z \right]$$
s.t. $c + k' \le \Gamma(z; w) k$

ightharpoonup We can guess that the problem is separable in z and k

$$V(z, k; w) = v(z; w) u(k)$$

Capitalists - Guess and verify

$$V(z, k; w) = \max_{k'} \frac{\left(\Gamma(z; w) k - k'\right)^{1-\gamma}}{1-\gamma} + \underbrace{\beta E\left[\upsilon\left(z'; w'\right) | z\right]}_{\Upsilon(z)} \frac{\left(k'\right)^{1-\gamma}}{1-\gamma}$$

First order condition:

$$\left(\Gamma(z;w) k - k'\right)^{-\gamma} = \Upsilon(z) \left(k'\right)^{-\gamma}$$
$$\Gamma(z;w) k = \left(1 + (\Upsilon(z))^{\frac{-1}{\gamma}}\right) k'$$

Policy function: Save a fraction of income

$$k' = \underbrace{\frac{\Upsilon(z)^{\frac{1}{\gamma}}}{1 + \Upsilon(z)^{\frac{1}{\gamma}}}}_{s(z;w)} \underbrace{\Gamma(z;w) k}_{\pi(z,k;w)}$$

Capitalists - Guess and verify

$$v(z;w)\frac{k^{1-\gamma}}{1-\gamma} = ((1-s(z;w))\Gamma(z;w))^{1-\gamma}\frac{k^{1-\gamma}}{1-\gamma} + \Upsilon(z)(s(z;w)\Gamma(z;w))^{1-\gamma}\frac{k^{1-\gamma}}{1-\gamma}$$

$$v(z;w) = ((1-s(z;w))\Gamma(z;w))^{1-\gamma} + \Upsilon(z)(s(z;w)\Gamma(z;w))^{1-\gamma}$$

$$v(z;w) = \left[(1-s(z;w))^{1-\gamma} + \Upsilon(z)s(z;w)^{1-\gamma}\right]\Gamma(z;w)^{1-\gamma}$$

$$v(z;w) = \left[1+\Upsilon(z)^{\frac{1}{\gamma}}\right]\left(\frac{\Gamma(z;w)}{1+\Upsilon(z)^{\frac{1}{\gamma}}}\right)^{1-\gamma}$$

$$v(z;w) = \left[1+\Upsilon(z)^{\frac{1}{\gamma}}\right]^{\gamma}(\Gamma(z;w))^{1-\gamma}$$

$$v(z;w) = \left[1+\left(\beta E\left[v\left(z';w'\right)|z\right]\right)^{\frac{1}{\gamma}}\right]^{\gamma}(\Gamma(z;w))^{1-\gamma}$$

Workers' Union

$$W = u(\overline{w}) + \beta W \longrightarrow W = \frac{1}{1-\beta}u(\overline{w})$$

Not much to do here... sorry

General equilibrium

Market clearing:

▶ Union sets $\ell^s(z, k)$ such that:

$$w^* = (1 - \alpha) z \left(\frac{k}{\ell^s(z, k)}\right)^{\alpha} = \overline{w}$$

- ▶ Labor depends on z and k, but not wages
- ► Capitalists do not take into account their effect on aggregate prices
- ▶ However, we know how capital and productivity affect prices

Dynamic Programming: Final

$$v(z) = \left[1 + \left(\beta E\left[v\left(z'\right)|z\right]\right)^{\frac{1}{\gamma}}\right]^{\gamma} (\Gamma(z))^{1-\gamma}$$

where

$$\Gamma(z) = \alpha \left(\frac{1-\alpha}{\overline{w}}\right)^{\frac{1-\alpha}{\alpha}} z^{\frac{1}{\alpha}} + (1-\delta)$$

- Looks the same... but we dropped w as it is constant in equilibrium
- ▶ To solve the dynamic programming problem we need to integrate
 - No max involved, only integrals

-0.2

15

12

9

6

3

-0.4

0.0

log(z)

0.2

0.4

What to make of these graphs?

- ▶ We do not have a closed form solution... so hard to claim success
- Tauchen fails:
 - ▶ Differences in the expectations using Tauchen for $\rho > 0.5$
- Rouwenhorst vs Gauss-Kronrod
 - Hard to tell because GK uses a lot of extrapolation
- Rouwenhorst seems like the best option
 - Computationally feasible
 - ▶ Reliable for high persistence values