Solution to Q-1

State whether the following statement is true or false. Justify your answer.

Q-1. If a set $S \subset \mathbb{R}$ is finite, and $c := \sup S$, then $c \in S$.

It is given that the set S is finite. Suppose it contains $n \in \mathbb{N}$ elements. Since \mathbb{R} is ordered, we can sort the set and represent it as $S = \{a_1, a_2, \cdots, a_n\}$ such that $a_1 < a_2 < \cdots < a_n$.

Claim. $a_n = \sup S$

To prove this claim, we need to show that a_n satisfies the definition of supremum, i.e. to show that,

- 1. a_n is an upper bound and
- 2. Given $\epsilon > 0$, $\exists a \in S$ s. t. $a > a_n \epsilon$
 - 1 a_n is an upper bound, since for all $a_i \in S$, $a_n \ge a_i$.
 - 2 Also, since $a_n \in S$, For every $\epsilon > 0$, $a = a_n \in S$ exists, which satisfies $a > a_n \epsilon$

Thus, our Claim is true, hence the statement is true, as $\sup S = a_n \in S$

Krushnakant MA 109 : Calculus I