STANISLAS H.P.

Théorème de d'Alembert-Gauss

PSI

3

On propose de démontrer le théorème de d'Alembert-Gauss : tout polynôme non constant de $\mathbb{C}[X]$ possède au moins une racine dans \mathbb{C} . On admettra le Théorème de Bolzano-Weierstrass : toute suite bornée de nombres complexes admet une sous-suite convergente.

Soit $P = \sum_{k=0}^p a_k X^k$ un polynôme de $\mathbb{C}[X]$ de degré p>0. Notons

$$\mathscr{P} = \{ |P(z)| \; ; \; z \in \mathbb{C} \}.$$

1. \mathscr{P} admet une borne inférieure notée α .

Comme $|P(0)| \in \mathscr{P}$, l'ensemble \mathscr{P} est une partie de \mathbb{R} non vide et minorée par 0 (le module est à valeurs positives). Ainsi, d'après le théorème de la borne inférieure, \mathscr{P} admet une borne inférieure notée α .

2. Soit r > 0. Pour tout nombre complexe z de module r,

$$|P(z)| \geqslant |a_p|r^p - \sum_{k=0}^{p-1} |a_k|r^k.$$

Nous allons utiliser les deux inégalités triangulaires.

$$|P(z)| = \left| \sum_{k=0}^{p} a_k z^k \right|$$

$$\geqslant \left| |a_p z^p| - \left| \sum_{k=0}^{p-1} a_k z^k \right| \right|$$

$$\geqslant |a_p z^p| - \left| \sum_{k=0}^{p-1} a_k z^k \right|$$

$$\geqslant |a_p z^p| - \sum_{k=0}^{p-1} \left| a_k z^k \right|$$

$$\geqslant |a_p| r^p - \sum_{k=0}^{p-1} |a_k| r^k.$$

Soit,

$$|P(z)| \ge |a_p|r^p - \sum_{k=0}^{p-1} |a_k|r^k.$$

On a utilisé ici $p \geqslant 1$, donc l'hypothèse qui affirme que P est non constant.

3. Ainsi, $\lim_{|z|\to+\infty} |P(z)| = +\infty$.

D'après les résultats sur les fonctions polynomiales, lorsque r tend vers $+\infty$, $|a_p|r^p - \sum_{k=0}^{p-1} |a_k|r^k \sim_{+\infty} |a_p|r^p$. Ainsi, pour tout $M \ge 0$, il existe un réel $r_0 > 0$ tel que si $|z| \ge r_0$, alors $|P(z)| \ge M$, soit

$$\lim_{|z| \to +\infty} |P(z)| = +\infty.$$

On a réutilisé ici $p \geqslant 1$, donc l'hypothèse qui affirme que P est non constant.

4. Il existe une suite $(z_n)_{n\in\mathbb{N}}\in\mathbb{C}^\mathbb{N}$ et $z_0\in\mathbb{C}$ tels que $\lim_{n\to+\infty}|P(z_n)|=|P(z_0)|=lpha$.

D'après la caractérisation séquentielle de la borne inférieure, il existe une suite $(\alpha_n) \in \mathscr{P}^{\mathbb{N}}$ telle que $\lim_{n \to +\infty} \alpha_n = \alpha$. D'après la définition de \mathscr{P} , pour tout $n \in \mathbb{N}$, il existe $y_n \in \mathbb{C}$ tel que $|P(y_n)| = \alpha_n$.

Comme $\lim_{n\to+\infty} |P(y_n)| = \alpha$, il existe un entier n_0 tel que pour tout entier $n \ge n_0$, $|P(y_n)| \in [\alpha - 1, \alpha + 1]$.

Or, d'après la question précédente, il existe un réel $r_1 > 0$ tel que si $|z| \ge r_1$, alors $|P(z)| \ge \alpha + 2$.

Ainsi, pour tout $n \in \mathbb{N}$, $|y_n| \leq r_1$. La suite $(y_n)_{n \in \mathbb{N}}$ est donc une suite bornée de \mathbb{C} et d'après le théorème de Bolzano-Weierstrass (pour les suites à valeurs complexes), $(y_n)_{n \in \mathbb{N}}$ admet une sous-suite convergente. Notons $(z_n)_{n \in \mathbb{N}}$ cette suite extraite et z_0 sa limite.

Comme $(|P(z_n)|)_{n\in\mathbb{N}}$ est une suite extraite de $(|P(y_n)|)_{n\in\mathbb{N}}$, la suite $(|P(z_n)|)_{n\in\mathbb{N}}$ converge vers α .

D'après les propriétés de passage à la limite dans les produits et modules de suites à valeurs complexes,

$$\lim_{n \to +\infty} |P(z_n)| = |P(z_0)| = \alpha.$$

H.P. II

5. On suppose que $\alpha \neq 0$ et on pose $Q = \frac{P(X+z_0)}{P(z_0)}$.

a)
$$\inf_{z \in \mathbb{C}} |Q(z)| = |Q(0)| = 1$$
.

Comme $|P(z_0)| = \alpha \neq 0$, le polynôme Q est bien défini. De plus, on a bien Q(0) = 1, soit |Q(0)| = 1.

Soit $z \in \mathbb{C}$. On a $|Q(z)| = \frac{|P(z+z_0)|}{|P(z_0)|}$. Or, d'après la définition de z_0 , $|P(z_0)| \leq |P(z+z_0)|$. Ainsi, $|Q(z)| \leq 1$ et

$$\inf_{z \in \mathbb{C}} |Q(z)| = |Q(0)| = 1.$$

b) Il existe
$$q \in \llbracket 1,p
rbracket$$
 et $b_q
eq 0$ tels que $Q = \sum\limits_{k=q+1}^p b_k X^k - b_q X^q + 1$.

Notons p le degré de Q, $Q = \sum_{k=0}^{p} c_k X^k$ et $q = \inf\{k \in [1, p] ; c_k \neq 0\}$ (q existe car $|c_0| = 1 \neq 0$ donc l'ensemble est une partie de \mathbb{N} non vide et minorée). Alors, en posant $b_q = -c_q$ et pour tout $k \in [q+1, p]$, $b_k = c_k$, on obtient bien

$$Q = 1 - b_q X^q + \sum_{k=q+1}^{p} b_k X^k.$$

c) On note (sous forme trigonométrique) $b_q = \rho e^{-i\theta}$ et $z = re^{i\theta/q}$. Il existe $r_0 > 0$ tel que pour tout $r \leqslant r_0$,

$$|Q(z)| - 1 \le -\rho r^q + \sum_{k=q+1}^p |b_k| r^k.$$

En utilisant les notations suggérées par l'énoncé ainsi que l'inégalité triangulaire,

$$Q(z) = 1 - \rho e^{-i\theta} r^q e^{i\theta} + \sum_{k=q+1}^p b_k z^k$$
$$= 1 - \rho r^q + \sum_{k=q+1}^p b_k z^k$$
$$|Q(z)| \le |1 - \rho r^q| + \sum_{k=q+1}^p |b_k| r^k.$$

Ainsi, pour r assez petit, $\rho r^q \leqslant 1$ et

$$|Q(z)| \le 1 - \rho r^q + \sum_{k=q+1}^p |b_k| r^k.$$

d) Ainsi, $\alpha = 0$.

Lorsque r tend vers 0, $-\rho r^q + \sum_{k=q+1}^p |b_k| r^k \sim_0 -\rho r^q < 0$. Ainsi, d'après

les résultats sur les équivalents, pour r assez petit, |Q(z)|-1<0 soit |Q(z)|<1. Or, ceci est impossible car $1=\inf_{z\in\mathbb{C}}|Q(z)|$.

On obtient ainsi une contradiction, soit

$$\alpha = 0$$
.

6. P possède une racine.

En effet, $\alpha = 0$ et il existe $z_0 \in \mathbb{C}$ tel que $P(z_0) = 0$.

Mathématiciens

BOLZANO Bernard (5 oct. 1781 à Prague-18 déc. 1848 à Prague). WEIERSTRASS Karl (31 oct. 1815 à Ostenfelde-19 fév. 1897 à Berlin).