

Cloud Computing for Data Analysis Final Project

University of North Carolina at Charlotte

Credit Score Classification

Group-5

Gaurav Avula Naga Nikhil Bijjala Harshini Karnati Rohan Katari Naga Srivatsav Machiraju

Date: 12/11/2023

Business scenario overview

- The project addresses the problem of assessing individuals' creditworthiness accurately, helping financial institutions make informed lending decisions.
- Determining the credit worthiness of a individual using advanced machine learning algorithms.
- By developing a machine learning model for credit score classification, it aims to provide an opportunity to improve risk assessment, reduce defaults, and expand access to credit for qualified applicants.

Solution overview

A high-level description

- The scope of this project involves designing and implementing a machine learning model for credit score classification.
- It encompasses data collection, preprocessing, and feature engineering to create a comprehensive dataset for model training.

Design Considerations

- The machine learning model will be selected, trained, and fine-tuned using various algorithms and techniques, with a focus on predictive accuracy and interpretability.
- Additionally, model evaluation and validation will be carried out rigorously to ensure its reliability.
- Integration with relevant AWS services for model deployment, data storage, real-time scoring, and monitoring.

Solution overview

Use Cases

- 1. **Automate credit approvals** with a machine learning model for swift and accurate assessments of creditworthiness.
- 2. **Mitigate risks** by using the model to assess and manage potential credit losses in the application process.
- 3. **Personalize financial offerings** by leveraging the model to tailor credit terms, interest rates, and limits based on predicted credit scores.

Architecture diagram of the solution

Machine Learning Lifecycle Applied

Project Demonstration following the Machine Learning Lifecycle

Data Retrieval

Data Preprocessing

4.2 Helper Functions

Created following functions that will help in exploring analysing & cleaning of the data

```
def get_column_details(df,column):
   print("Details of", column, "column")
   #DataType of column
   print("\nDataType: ",df[column].dtype)
   #Check if null values are present
   count_null = df[column].isnull().sum()
   if count null==0:
       print("\nThere are no null values")
   elif count_null>0:
       print("\nThere are ",count_null," null values")
   #Get Number of Unique Values
   print("\nNumber of Unique Values: ",df[column].nunique())
   #Get Distribution of Column
   print("\nDistribution of column:\n")
   print(df[column].value_counts())
def fill_missing_with_group_mode(df, groupby, column):
   print("\nNo. of missing values before filling with group mode:",df[column].isnull().sum())
   # Fill with local mode
   mode_per_group = df.groupby(groupby)[column].transform(lambda x: x.mode().iat[0])
   df[column] = df[column].fillna(mode_per_group)
   print("\nNo. of missing values after filling with group mode:",df[column].isnull().sum())
#Method to clean categorical field
def clean_categorical_field(df,groupby,column,replace_value=None):
   print("\n-----")
   print("\nCleaning steps ")
   #Replace with np.nan
   if replace value!=None:
```


df[column] = df[column].replace(replace value.np.nan)

Data Transformation

```
: #Label Encoding
  from sklearn.preprocessing import LabelEncoder
  categorical_columns = ['Occupation','Type_of_Loan','Credit_Mix','Payment_of_Min_Amount','Payment_Behaviour','Credit_Score']
  # Initialize the LabelEncoder
  label_encoder = LabelEncoder()
  # Loop through each column and apply label encoding
  for column in categorical_columns:
      df_train[column] = label_encoder.fit_transform(df_train[column])
: df_train.head()
     Month Age Occupation Annual Income Monthly Inhand Salary Num Bank Accounts Num Credit Card Interest Rate Num of Loan Type of Loan ... CI
                                                                           3.0
         1 23.0
                        12
                                 19114.12
                                                  1824.843333
                                                                                            4.0
                                                                                                        3.0
                                                                                                                    4.0
                                                                                                                                 128 ...
         2 23.0
                        12
                                 19114.12
                                                  1824.843333
                                                                           3.0
                                                                                            4.0
                                                                                                        3.0
                                                                                                                    4.0
                                                                                                                                 128 ...
         3 23.0
                        12
                                 19114.12
                                                  1824.843333
                                                                           3.0
                                                                                           4.0
                                                                                                        3.0
                                                                                                                    4.0
                                                                                                                                 128 ...
                                                                                                                                 128 ...
         4 23.0
                        12
                                 19114.12
                                                  1824.843333
                                                                           3.0
                                                                                            4.0
                                                                                                       3.0
                                                                                                                    4.0
                                                  1824.843333
                                                                                            4.0
                                                                                                                    4.0
                                                                                                                                 128 ...
         5 23.0
                        12
                                 19114.12
                                                                           3.0
                                                                                                        3.0
  5 rows × 24 columns
: #Spli Input & Output Data
 X = df train.drop('Credit Score',axis=1)
 y = df_train['Credit_Score']
 print(X.shape)
  print(y.shape)
  (100000, 23)
  (100000,)
: #Normalize Data
  from sklearn.preprocessing import MinMaxScaler
  scaler = MinMaxScaler()
  X = scaler.fit transform(X)
```


Modeling and Evaluation

```
# List of classifiers to test
classifiers = [
   ('Decision Tree', DecisionTreeClassifier()),
    ('Random Forest', RandomForestClassifier()),
    ('KNN', KNeighborsClassifier(n neighbors=5)),
    ('Gaussion NB',GaussianNB()),
   ('XGB',xgb.XGBClassifier())
# Iterate over each classifier and evaluate performance
for clf_name, clf in classifiers:
   # Perform cross-validation
   scores = cross_val_score(clf, X_train, y_train, cv=5, scoring='accuracy')
   # Calculate average performance metrics
   avg_accuracy = scores.mean()
   avg_precision = cross_val_score(clf, X_train, y_train, cv=5, scoring='precision_macro').mean()
   avg_recall = cross_val_score(clf, X_train, y_train, cv=5, scoring='recall_macro').mean()
   # Print the performance metrics
   print(f'Classifier: {clf name}')
   print(f'Average Accuracy: {avg_accuracy:.4f}')
   print(f'Average Precision: {avg_precision:.4f}')
   print(f'Average Recall: {avg recall:.4f}')
   print('----')
```

```
# Creating the Random Forest classifier
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)

# Training the classifier
rf_classifier.fit(X_train, y_train)

# Making predictions on the test set
y_pred = rf_classifier.predict(X_test)

# Evaluating the model
evaluate_model(y_test, y_pred)
```


Demo- Results

Approach 1

Approach 2

Classification	on Report			
	precision	recall	f1-score	support
0	0.89	0.95	0.92	10635
1	0.88	0.91	0.89	10635
2	0.89	0.79	0.84	10635
accuracy			0.89	31905
macro avg	0.89	0.89	0.88	31905
weighted avg	0.89	0.89	0.88	31905

Lessons learned

- Initially, the model execution time on SageMaker was excessively long. We identified that the instance we used in SageMaker had a lower configuration. Once we updated it, the issue was resolved.
- We faced issues while cleaning the data, as there were numerous missing and erroneous values. To gain a better understanding of how to handle missing data, we referred to AWS SageMaker examples and tutorials.
- We have learned about various model evaluation metrics, such as precision, recall, F1-Score, and AUC. We also gained insights into AWS Cost Explorer and identified possible cost for each service that we have used.
- We have developed the model for predicting the credit score. As a next step, we will develop a GUI where businesses can enter the financial details of the user and determine the creditworthiness of the person.

Thank you

