

Radio luminosity functions with machine learning and Radio Galaxy Zoo

Radio luminosity functions

with machine learning and Radio Galaxy Zoo

Radio luminosity functions

with machine learning and Radio Galaxy Zoo

Approximating functions based on existing data

Comoving density of radio sources as a function of radio luminosity

Radio luminosity functions with machine learning and Radio Galaxy Zoo

Approximating functions based on existing data

A citizen science project for matching radio emission to infrared galaxies

Comoving density of radio sources as a function of radio luminosity

Radio luminosity functions with machine learning and Radio Galaxy Zoo

Approximating functions based on existing data

A citizen science project for matching radio emission to infrared galaxies

Use machine learning to approximate how citizen scientists cross-identify, then cross-identify everything and make a luminosity function with a huge sample size

Citizen scientists cross-identify radio emission with infrared host galaxies

Radio luminosity functions

- Comoving density of radio sources as a function of radio luminosity
 - Units of dex⁻¹ Mpc⁻³
 - Distribution of radio source luminosities in a physically meaningful way
- Fractional radio luminosity functions
 - Luminosity distribution of physically-selected subsets may be different
 - Helps understand evolution and structure of radio galaxies

Radio luminosity function divided into radio due to star formation and radio due to active galactic nuclei.

Image: Mauch & Sadler (2007)

Binary classification

- Find a function that separates objects into two classes
- Well-understood

Equivalent:
$$f: \mathbb{R}^d \to \mathbb{R}$$

$$g(x) = \sigma(f(x))$$

$$g(x) = \sigma(f(x))$$

$$f: \mathbb{R}^d \to [0, 1]$$

$$h: \mathbb{R}^d \to \{\top, \bot\}$$

Assign hosts positive labels

- Assign hosts positive labels
- Assign everything else negative labels

- Assign hosts positive labels
- Assign everything else negative labels
- Train classifier to identify host and not host classes

- Assign hosts positive labels
- Assign everything else negative labels
- Train classifier to identify host and not host classes

Cross-identification as binary classification

$$\begin{array}{c} xid: Radio \rightarrow IR \\ xid(r) = \underset{i \in \ candidate \ IR \ hosts}{xid(r)} = \underset{i \in \ candidate \ IR \ hosts}{xid(r)} \\ & \overset{where}{f: \mathbb{R}^d \rightarrow \mathbb{R}} \\ f(i) = p(host \mid i) \\ & \text{is a binary classifier} \end{array}$$

Binary classification model

Luminosity function

- RGZ-Ex contains 157 007 cross-identified radio sources with 30 743 redshifts
- Large sample allows us to build a radio luminosity function of extended sources
 - Luminosities up to 10²⁷ W/Hz
 - Close match to Mauch and Sadler (2007) radio AGN luminosity function

Radio Galaxy Zoo: radio luminosity functions of extended sources

M. J. Alger^{1,2*} et al.

stronomy and Astrophysics, The Australian National University, Canberra, ACT 2611, Australia

Fractional luminosity function (Mid-IR)

- Divide radio luminosity function based on mid-infrared host colours
 - "Extended" star-forming sources below 10²³ W/Hz (visually verified)
 - Radio-loud sources dominated by "intermediate" galaxies

Bivariate luminosity function (Mid-IR)

- Divide radio luminosity function based on 12 μm/4.6 μm colour
 - "Extended" star-forming sources below 10²³ W/Hz (visually verified)
 - Radio-loud sources dominated by "intermediate" galaxies

The RGZ-Ex catalogue

- Catalogue of 157 007 candidate radio sources and their hosts
- Large but noisy
- Contains around *fifty* previously unidentified giant radio galaxies (≥1 Mpc)

RGZ-Ex and luminosity functions

- We developed an automated, machine learning approach to radio-infrared cross-identification
- We created a huge catalogue of candidate radio sources and their hosts
- We estimated fractional radio luminosity functions of extended radio sources
- We found ~50 new giants

Binary classification model

- ResNet-18 (multiclass)
 - Good accuracy
 - Low complexity
 - Very fast to train and use
- Remove last layer and replace with a binary classifier
- Add non-image features
 - Mid-infrared colours
 - 3.4 µm flux
 - Room for improvement e.g. add redshifts

Trade-offs between network complexity and accuracy on ImageNet.

Image: Canziani et al. (2016)

23