Time Series and the Analysis of Longitudinal Data

Gemma Wallace & Neil Yetz PSY 653 Module 6 Lab Mar 4, 2020

Class Example

A research team is interested if student performance in coding skills increased over time during a coding class. During each week of the program, all participants completed a coding challenge. Each challenge had a set of coding skills that had to be employed to solve the challenge, but each challenge focused on solving some substantive problem (e.g., mapping social networks of users on an online forum, developing an algorithm to recommend new music based on a user's Spotify history, etc.). Each student's performance on the challenge was graded by the research team using a valid and reliable rubric able to detect growth in skills over time.

This dataset was provided by Kim Henry, PhD.

Variables

- kid_id: Subject ID
- week: Week in program (0-6)
- perform: Performance grade (scaled from 1-10)

Load & install packages

```
60 - # Load Libraries
61 • ```{r}
62 library(psych)
  library(tidyverse)
63
64
65
   install.packages("lme4")
66
   install.packages("lmerTest")
  library(lme4)
   library(lmerTest)
68
69
70
```

Read in Data

```
58 - # Read in Data
59 * ```{r}
  grow <- read_csv("grow.csv")</pre>
61
     Parsed with column specification:
     cols(
       kid_id = col_double(),
       week = col_double(),
       perform = col_double()
62
```

Describe the data

Describe the data


```
71 - ```{r}
   agg_long <- aggregate(x=grow$perform,by=list(week = grow$week), FUN=mean)</pre>
   agg_long
74
                      week
                       <dbl>
                                                           <dbl>
                                                       4.687369
                                                       4.491740
                                                       4.587813
                                                       4.952047
                                                       5.035082
                                                       5.108235
                         6
                                                       5.469560
```

70 - # Aggregate data

7 rows

```
71 * ```{r}
72 agg_long <- aggregate(x=grow$perform,by=list(week = grow$week), FUN=mean)
73
   agg_long
74
                     week
                      <dbl>
                                                         <dbl>
                                                     4.687369
                                                     4.491740
                                                     4.587813
                                                                  Mean of Means = 4.9
                                                     4.952047
                                                     5.035082
                                                     5.108235
                                                     5.469560
                        6
```

70 - # Aggregate data

7 rows

Visualize the data!

```
"\frac{r, fig.width=9, fig.height=9}
ggplot(grow, aes(x = week, y = perform)) +
 geom_jitter(aes(color = factor(week))) +
geom_smooth(method = "loess", color = "red", size = 2) +
 xlab("Week") +
ylab("Performance") +
 labs(color = "Week")
```


Based on this plot, do you think you have justification to test for a linear effect of time on GPA?

What about a quadratic effect?

Visualize each individual subject!

```
```{r, fig.height = 12, fig.width=12}
qqplot(data = qrow, aes(x = week, y = perform)) +
 geom point() +
 geom smooth(method = "Im", se = FALSE) +
 scale_y_continuous(limits = c(0,10)) +
 scale_x_continuous(limits = c(0,6), breaks = c(0,1,2,3,4,5,6)) +
 facet wrap(~kid id) +
 labs(title = "Do students in the control condition improve their task performance
over the course of the program?",
 x = "Week in the program", y = "Task Performance")
```



Average Intercept = 4.47 Average Slope = 0.14



# Defining **fixed** and **random** effects in the Imer package

These definitions are a little different in longitudinal analyses than in ANOVAs.

**Fixed effect** = does not vary over subjects of groups – average value of slope or intercept

Random effect = might vary across subjects or groups – intercepts and slopes might be calculated for each group or each subject to see if they vary meaningfully

#### Build Baseline model

```
66 * ```{r}
67 mod1 <- lmer(perform ~ 1 + (1|kid_id), REML = TRUE, data = grow)
68 summary(mod1)
69
```



```
63 + ```{r}
 mod1 \leftarrow lmer(perform \sim 1 + (1|kid_id), REML = TRUE, data = grow)
65
 summary(mod1)
66
 Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
 Formula: perform \sim 1 + (1 \mid kid_id)
 Data: grow
 REML criterion at convergence: 2166.1
 Scaled residuals:
 Min 10 Median 30 Max
 -2.6469 -0.6424 -0.0085 0.5990 3.2746
 Random effects:
 Groups Name Variance Std.Dev.
 kid_id (Intercept) 0.8013 0.8951
 Residual
 0.9821 0.9910
 Number of obs: 700, groups: kid_id, 100
 Fixed effects:
 Estimate Std. Error df t value Pr(>|t|)
 (Intercept) 4.90455 0.09703 98.99999 50.55 <2e-16 ***
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

67

```
63 - ```{r}
 mod1 \leftarrow lmer(perform \sim 1 + (1|kid_id), REML = TRUE, data = grow)
65
 summary(mod1)
66
```

Formula: perform  $\sim 1 + (1 \mid kid_id)$ Data: grow Random intercept: On average, kids REML criterion at convergence: 2166.1

Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']

```
Min
 10 Median
 3Q
 Max
-2.6469 -0.6424 -0.0085 0.5990 3.2746
Random effects:
```

Scaled residuals:

Residual

Fixed effects:

Variance Std.Dev. Groups Name kid\_id (Intercept) 0.8013 0.8951 0.9821 0.9910 Number of obs: 700, groups: kid\_id, 100 Fixed Intercept: In the absence of any fixed effects, this intercept represents the "mean of means" of our outcome variable.

vary from the grand mean by .895

standard deviations

```
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 4.90455
 0.09703 98.99999
 50.55
 <2e-16 ***
```

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' '1

#### Add week as a fixed and random effect

```
173 - ```{r}
174 mod2 <- lmer(perform ~ 1 + week + (1 + week|kid_id), REML = TRUE, data = grow)
175 summary(mod2)
176 ```
```

```
174 mod2 < -limer(perform ~ 1 + week + (1 + week|kid_id), REML = TRUE, data = grow)
175 summary(mod2)
176
 Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
 Formula: perform ~ 1 + week + (1 + week | kid_id)
 Data: grow
 REML criterion at convergence: 2038.4
 Scaled residuals:
 Min 10 Median 30 Max
 -3.1997 -0.5740 0.0449 0.6342 3.0608
 Random effects:
 Groups Name Variance Std. Dev. Corr
 kid_id (Intercept) 0.42532 0.6522
 week 0.03774 0.1943 0.10
 Residual 0.71247 0.8441
 Number of obs: 700, groups: kid_id, 100
 Fixed effects:
 Estimate Std. Error df t value Pr(>|t|)
 (Intercept) 4.47310 0.08695 98.99841 51.442 < 2e-16 ***
 week
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
 Correlation of Fixed Effects:
 (Intr)
 week -0.292
```

173 → ```{r}

```
175
 summary(mod2)
176
 Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
 Formula: perform ~ 1 + week + (1 + week | kid_id)
 Data: grow
 Random Intercept: On average,
 REML criterion at convergence: 2038.4
 subject intercepts vary by 0.652
 standard deviations
 Scaled residuals:
 1Q Median
 Random Slope: On average, subject
 Min
 3Q
 Max
 -3.1997 -0.5740 0.0449 0.6342 3.0608
 slopes vary by 0.194 standard
 deviations
 Random effects:
 Groups
 Name
 Variance Std.Dev. Corr
 kid_id
 (Intercept) 0.42532 0.6522
 Fixed Intercept: The average intercept,
 week
 0.03774 0.1943
 0.10
 while incorporating week, is 4.473
 Residual
 0.71247 0.8441
 Number of obs: 700, groups: kid_id, 100
 Fixed Slope: On average, subject
 scores increased at a rate of 0.144 units
 Fixed effects:
 Estimate Std. Error
 df t value Pr(>|t|)
 0.08695 98.99841
 (Intercept) 4.47310
 51.442 < 2e-16 ***
 0.14382
 0.02514 99.00129
 5.722 1.13e-07 ***
 week
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Correlation of Fixed Effects:
 (Intr)
 week -0.292
```

mod2 <- lmer(perform ~ 1 + week + (1 + week|kid\_id), REML = TRUE, data = grow)

173 → ```{r}

174

```
175
 summary(mod2)
176
 Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
 Formula: perform ~ 1 + week + (1 + week | kid_id)
 Data: grow
 REML criterion at convergence: 2038.4
 ICC Calculation
 Scaled residuals:
 \circ \quad ICC = \sigma^2_{RandomEffect} / \sigma^2_{RandomTotal}
 Min 10 Median 30
 Max
 -3.1997 -0.5740 0.0449 0.6342 3.0608
 \circ ICC = .0377 / (.0377 + .7124)
 \circ ICC = .05028
 Random effects:
 Groups Name
 Variance Std.Dev. Corr
 • There is only a small amount of
 kid_id (Intercept) 0.42532 0.6522
 variation in slopes across subjects
 week
 0.03774 0.1943
 0.10
 (ICC = .050)
 Residual
 0.71247 0.8441
 Number of obs: 700, groups: kid_id, 100
 Fixed effects:
 Estimate Std. Error df t value Pr(>|t|)
 (Intercept) 4.47310 0.08695 98.99841 51.442 < 2e-16 ***
 week
 0.14382 0.02514 99.00129 5.722 1.13e-07 ***
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Correlation of Fixed Effects:
 (Intr)
```

174  $mod2 < -limer(perform ~ 1 + week + (1 + week|kid_id), REML = TRUE, data = grow)$ 

173 → ```{r}

week -0.292

# One final plot (Optional)

```
```{r, fig.width=12, fig.height=8}
# add_predictions comes from the modelr package
install.packages("modelr")
library(modelr)
# Get predicted values
mod2.plot <- add_predictions(data = grow, model = mod2)
# Make plot
ggplot(data = mod2.plot, aes(x = week, y = pred, group = kid_id)) +
 geom line(color = "grey53") +
 geom abline(intercept = 4.4731, slope = .1438, color="red", size=3) +
 scale_y_continuous(limits = c(0,10)) +
 scale x continuous(limits = c(0.6), breaks = c(0.1,2,3,4,5,6)) +
 labs(title = "Do students improve on task performance over the course of the program?",
  x = "Week", y = "Predicted Performance") +
 theme_bw()
```

Do students improve on task performance over the course of the program? 10.0 -Predicted Performance 0.0 y Week

Do students improve on task performance over the course of the program? 10.0 -Predicted Performance 0.0 y Week