DS-MITM攻击SKINNY的Online Phase: k_{in} 的确定

如图,我们在 $R_3[14]$ 建立一个 δ -set。我们想要确定 k_{in} 。

假设我们已经知道 k_{in} 就是 $K_{0,1,2}$ 中橙色的部分,我们说明为什么这样可以确定P的Multiset—— $\{P\}$ 。

常规的DS-MITM从一个随机的P出发,计算到 R_3 再回推得到 $\{P\}$ 。

首先,state中橙色的crosshatch表示我们能计算出value的位置。

注意到我们无法计算出 $R_3[14]$ 的value,但这没有关系,我们使用multiset而不是sequence来减少 k_{in} 。

假设 $Z_2[6] = a, Z_2[10] = b, Z_2[14] = c$, 那么固定剩余字节,

 $Z_2[6]=a+x, Z_2[10]=b+x, Z_2[14]=c+x$,这里x取遍 $0,1,\ldots,256$ 将在 R_3 形成一个我们想要的multiset。所以不需要猜测任何 K_2 中的字节来计算 R_3 的value。

现在问题变成如何得到一个这样的 $\{Z_2\}$ 。

我们观察 S_2 ,在 S_2 中,三个有差分的位置的value我们都能计算,同样的,假设

 $S_2[5] = a, S_2[8] = b, S_3[15] = c$, 固定其他字节,

 $S_2[5] = a + x, S_2[8] = b + x, S_2[15] = c + x$,这里x取遍 $0, 1, \ldots, 256$,会在 Z_2 得到我们想要的multiset。

注意这里 $\{S_2\}$ 是可以继续推导到 $\{R_2\}$ 的,因为我们同时知道value和差分。

所以密钥恢复的第一步:随机选择一个P,猜测橙色部分的 k_{in} ,计算得到 S_2 ,然后在三个有差分的字节处遍历相同的差分x,然后往回推导。

由于 S_2 往回算到 S_1 是完全线性的,所以 S_1 的所有差分我们都能算出来。注意到在有差分的位置,我们也知道value,那么继续算到 R_1 。

同理,得到 S_0 的所有差分,结合 S_0 的value,得到 $\{P\}$ 。

我们发现,问题的关键在于状态 $S_{0,1,2}$,我们需要在所有 $S_{0,1,2}$ 差分不为零的位置知道 ${
m value}$ 。

所以我们首先对 $R_3[14]$ 求backward differential到 R_0 。 (星号所在位置)

为了确定 $S_2[\star]$ 的value,我们求backward determination,并求 SR^{-1} 得到:

若我们在 S_1 处橙色crosshatch的字节已知,且猜测 K_1 的橙色部分,则 $S_1[\star]$ 的value可以计算。

我们下一步是要确定 S_1 处橙色crosshatch的字节和有差分的字节 $S_1[\star]$ (求并集)。

注意 R_1 处橙色crosshatch的部分是求并集后的结果。同样的方法我们就确定了 K_0 。以上就是Online Phase中确定 k_{in} 的方法。