Genome annotation

Endrews Delbaje 29.03.2022

Genome annotation

The standardized identification and registry of functional elements in a genome sequence.

Labels, coordinates, functions...

It requires:

- Identification of all potential coding regions (CDS);
- Start and stop coordinates of the genes/structure in the genome;
- Identification of functions by homology (or if the function is unknown).

Identification of coding regions

Finding ORFs (Open Reading Frames) - Localization of start-stop codons

Example:

ATGAGGTGACACCGCAAGCCTTATATTAGCTAA

- 3 ATG AGG TGA CAC CGC AAG CCT TAT ATT AGC TAA
- 2 A TGA GGT GAC ACC GCA AGC CTT ATA TTA GCT AA
- 1 AT GAG GTG ACA CCG CAA GCC TTA TAT TAG CTA A
- -1 TA CTC CAC TGT GGC GTT CGG AAT ATA ATC GAT T
- -2 T ACT CCA CTG TGG CGT TCG GAA TAT AAT CGA TT
- -3 TAC TCC ACT GTG GCG TTC GGA ATA TAA TCG ATT

Identification of coding regions

Finding ORFs (Open Reading Frames) - Localization of start-stop codons

For the same DNA sequence there can be many possibilities of ORFs:

Genome annotation formats

GFF (GFF3) (general feature format)

One line per feature and 9 columns

Example:

seqname	source	feature	start	end	score	strand	phase	attribute
scaffold1	prokka	CDS	12000	12980		+		Amoa
scaffold1	prokka	tRNA	13000	13082		-		tRNA-Leu

. . .

Other formats:

GBK

Tables

Function assignment - Database search

Functional assignment by homology using the best database hits:

Public available databases

NCBI (GenBank): Varied sequence community oriented database;

ENA: Varied sequence community oriented database;

KEGG: Gene database curated and organized for pathways;

Pfam: Protein database organized by protein families;

UniProt: Partially curated protein database;

...

Nowadays the process is automatized - Genome annotation by programs/platforms:

PROKKA
Genome Annotation Pipeline (PGAP)
EggNOG

. . .

Specialized annotation

Normally for complex regions or meta-features

Biosynthetic gene clusters (e.g. AntiSMASH program):

Cylindrospermopsin gene cluster - C. raciborskii

CRISPR/Cas (e.g. CRISPRone program):

Viral sequences, transposons, microRNA, etc.

Prokka: rapid prokaryotic genome annotation

Workflow:

Prodigal: ORF finding

and translation;

Aragorn: tRNA;

Barrnap: rRNA.

Search with **BLAST+** and

HMMR3 in the databases:

ISfinder: transposases;

NCBI Bactarial antimicrobial;

UniProtKB: curated protein

database.

PROKKA: Results summary

```
contigs: 1
bases: 4495168
CDS: 3873
gene: 3927
rRNA: 8
repeat region: 9
tRNA: 45
tmRNA: 1
```

PROKKA: Annotation table (.tbl)

```
5776 5234 CDS

EC_number 7.1.1.6

db_xref COG:COG0723

gene petC_1

inference ab initio prediction:Prodigal:002006

inference similar to AA sequence:UniProtKB:POC8N8

locus_tag GNOHDOCP_00006

product Cytochrome b6-f complex iron-sulfur subunit
```

Database of Clusters of Orthologous Genes (COGs)

Orthologous genes - Recapitulating:

The orthologous group in the database is labeled using a code. **Example:**

COG0105 - Nucleoside diphosphate kinase

Each COGs includes proteins that are inferred to be orthologs (direct evolutionary counterparts)

Database of Clusters of Orthologous Genes (COGs)

We can divide the genes in categories using the COGs codes:

Α	RNA processing and modification	
В	Chromatin Structure and dynamics	
С	Energy production and conversion	
D	Cell cycle control and mitosis	
E	Amino Acid metabolis and transport	
F	Nucleotide metabolism and transport	
G	Carbohydrate metabolism and transport	
Н	Coenzyme metabolism	
I	Lipid metabolism	
J	Transsation	
K	Transcription	
L	Replication and repair	
M	Cell wall/membrane/envelop biogenesis	
N	Cell motility	
0	Post-translational modification, protein turnover, chaperone functions	
Р	Inorganic ion transport and metabolism	
Q	Secondary Structure	
Т	Signal Transduction	
U	Intracellular trafficing and secretion	
Υ	Nuclear structure	
Z	Cytoskeleton	
R	General Functional Prediction only	
S	Function Unknown	

