23CSE301 Machine Learning

V Sem. CSE B Practical – Week 2

Course Instructor: Dr. M. Anbazhagan

Pract. #	Experiment Title							
P1-P3	 Introduction: Python, Pandas (scikit learn and other libraries) Pre-processing: Dataset selection, Exploratory Data analysis and Feature engineering; Introduction to Colab/Jupyter Notebook, Pandas (Data Frames); Data Selection (iloc, loc); Sorting, Grouping merge, join, concat; Crosstab; Missing data treatment (fillna, dropna), Converting categorical values, Visualization (Line chart, Bar Chart, Pie chart, Scatter plot, Box plot); Distributions; Summary statistics. 							
	Lab 1 Evaluation (P1 to P3)							
P4	Dimensionality Reduction Technique: PCA							
P5	Feature Selection							
P6	Regression Algorithms: Linear Regression							
P7	Regression Algorithms: Logistic Regression							
P8	Classification Algorithms: Decision Tree Classifier							
10	Classification Algorithms: K-Nearest Neighbor Classifier							
	Lab 2 Mid-Term exam (P1 to P8)							
P9	Classification Algorithms: Random Forest Classifier, ensemble learning.							
P10	Classification Algorithms: Support Vector Machines							
P11	Classification Algorithms: Perceptron							
P12	Clustering: 1. K-Means Clustering							
2. Agglomerative Clustering								
	Lab 3 Evaluation (P1 to P12)							

The Essential Python Libraries

numpy

Foundation for numerical computing, ML models process data as arrays/matrices.

pandas

Primary tool for data loading, manipulation, and preprocessing before ML.

matplotlib

Basic data
visualization, helps
understand data
trends, distributions,
model results.

sklearn

Primary ML library for classical ML models, data preprocessing, model evaluation.

seaborn

Built on matplotlib, for attractive, statistical plots, useful for data exploration.

End-to-End Machine Learning Pipeline

Problem Definition

Is it classification, regression, clustering, or recommendation?

Data Collection

CSV, databases, sensors, APIs, or opensource datasets.

Data Exploration

Understand the data's structure, relationships, and patterns

Data

Preprocessing

Missing data handling,
Feature Scaling,
Encoding, Binning,
Normalization,
Standardization, etc.

Feature Engineering

Selection or Creating of features that influence the target variable.

Model Training

Train the selected model using the training data.

Model Evaluation

Test model performance on unseen data (test set).

Hyperparameter Tuning

Improve model performance by tuning parameters.

1. Reading and viewing a CSV file through a dataframe

```
import pandas as pd

df = pd.read_csv('/content/sample_data/california_housing_test.csv')

df.head()

df.tail(3)
```

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	-122.05	37.37	27.0	3885.0	661.0	1537.0	606.0	6.6085	344700.0
1	-118.30	34.26	43.0	1510.0	310.0	809.0	277.0	3.5990	176500.0
2	-117.81	33.78	27.0	3589.0	507.0	1484.0	495.0	5.7934	270500.0
3	-118.36	33.82	28.0	67.0	15.0	49.0	11.0	6.1359	330000.0
4	-119.67	36.33	19.0	1241.0	244.0	850.0	237.0	2.9375	81700.0

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
2997	-119.70	36.30	10.0	956.0	201.0	693.0	220.0	2.2895	62000.0
2998	-117.12	34.10	40.0	96.0	14.0	46.0	14.0	3.2708	162500.0
2999	-119.63	34.42	42.0	1765.0	263.0	753.0	260.0	8.5608	500001.0

2. Knowing the shape/info/columns

```
df.shape
df.info()
df.describe()
```

(3000, 9)

<cla< th=""><th colspan="11"><class 'pandas.core.frame.dataframe'=""></class></th></cla<>	<class 'pandas.core.frame.dataframe'=""></class>										
RangeIndex: 3000 entries, 0 to 2999											
Data	Data columns (total 9 columns):										
#	Column Non-Null Count Dtype										
0	longitude	3000 non-null	float64								
1	latitude	3000 non-null	float64								
2	housing_median_age	3000 non-null	float64								
3	total_rooms	3000 non-null	float64								
4	total_bedrooms	3000 non-null	float64								
5	population	3000 non-null	float64								
6	households	3000 non-null	float64								
7	median_income	3000 non-null	float64								
8	median_house_value	3000 non-null	float64								
dtyp	es: float64(9)										
memo	ry usage: 211.1 KB										

longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
3000.000000	3000.00000	3000.000000	3000.000000	3000.000000	3000.000000	3000.00000	3000.000000	3000.00000
-119.589200	35.63539	28.845333	2599.578667	529.950667	1402.798667	489.91200	3.807272	205846.27500
1.994936	2.12967	12.555396	2155.593332	415.654368	1030.543012	365.42271	1.854512	113119.68747
-124.180000	32.56000	1.000000	6.000000	2.000000	5.000000	2.00000	0.499900	22500.00000
-121.810000	33.93000	18.000000	1401.000000	291.000000	780.000000	273.00000	2.544000	121200.00000
-118.485000	34.27000	29.000000	2106.000000	437.000000	1155.000000	409.50000	3.487150	177650.00000
-118.020000	37.69000	37.000000	3129.000000	636.000000	1742.750000	597.25000	4.656475	263975.00000
-114.490000	41.92000	52.000000	30450.000000	5419.000000	11935.000000	4930.00000	15.000100	500001.00000
	3000.000000 -119.589200 1.994936 -124.180000 -121.810000 -118.485000 -118.020000	3000.000000 3000.00000 -119.589200 35.63539 1.994936 2.12967 -124.180000 32.56000 -121.810000 33.93000 -118.485000 34.27000 -118.020000 37.69000	3000.000000 3000.000000 -119.589200 35.63539 28.845333 1.994936 2.12967 12.555396 -124.180000 32.56000 1.000000 -121.810000 33.93000 18.000000 -118.485000 34.27000 29.000000 -118.020000 37.69000 37.000000	3000.000000 3000.000000 3000.000000 3000.000000 -119.589200 35.63539 28.845333 2599.578667 1.994936 2.12967 12.555396 2155.593332 -124.180000 32.56000 1.000000 6.000000 -121.810000 33.93000 18.000000 1401.000000 -118.485000 34.27000 29.000000 2106.000000 -118.020000 37.69000 37.000000 3129.000000	3000.000000 3000.000000 3000.000000 3000.000000 -119.589200 35.63539 28.845333 2599.578667 529.950667 1.994936 2.12967 12.555396 2155.593332 415.654368 -124.180000 32.56000 1.000000 6.000000 2.000000 -121.810000 33.93000 18.000000 1401.000000 291.000000 -118.485000 34.27000 29.000000 2106.000000 437.000000 -118.020000 37.69000 37.000000 3129.000000 636.000000	3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 14000.798667 1402.798667 1402.798667 12000000 12000000 12000000 12000000 10000000 1000000 1000000 1000000	3000.00000 489.91200 489.91200 1.994936 2.12967 12.555396 2155.593332 415.654368 1030.543012 365.42271 -124.180000 32.56000 1.000000 6.000000 2.000000 5.000000 2.00000 -121.810000 33.93000 18.000000 1401.000000 291.000000 780.000000 273.00000 -118.485000 34.27000 29.000000 2106.000000 437.000000 1742.750000 597.25000	3000.000000 3000.00000 3000.00000

3. Knowing columns/index/dtypes

```
df.columns
df.index
df.dtypes
```

RangeIndex(start=0, stop=3000, step=1)

	0
longitude	float64
latitude	float64
housing_median_age	float64
total_rooms	float64
total_bedrooms	float64
population	float64
households	float64
median_income	float64
median_house_value	float64
dtype: object	

4. Count missing values

df.isnull()
df.isnull().sum()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
2995	False	False	False	False	False	False	False	False	False
2996	False	False	False	False	False	False	False	False	False
2997	False	False	False	False	False	False	False	False	False
2998	False	False	False	False	False	False	False	False	False
2999	False	False	False	False	False	False	False	False	False
3000 ro	ws × 9 colum	ns							

5. Selecting Data

```
df['longitude'] # Single Column
df[['longitude', 'total_bedrooms']] # Multiple Columns
```

1	longitude								
0	-122.05								
1	-118.30								
2	-117.81								
3	-118.36								
4	-119.67								
2995	-119.86								
2996	-118.14								
2997	-119.70								
2998	-117.12								
2999	-119.63								
3000 rows × 1 columns									
dtype: flo	at64								

	longitude	total_bedrooms
0	-122.05	661.0
1	-118.30	310.0
2	-117.81	507.0
3	-118.36	15.0
4	-119.67	244.0
2995	-119.86	642.0
2996	-118.14	1082.0
2997	-119.70	201.0
2998	-117.12	14.0
2999	-119.63	263.0
3000 ro	ws × 2 colum	ns

6. loc[] Vs. iloc[]

- loc[] Label-based indexing
 - Accesses data using row and column labels (names)
 - Includes the end value in slicing
 - Supports boolean indexing and label ranges
 - df.loc['row_label', 'column_label']
- iloc[] Integer position-based indexing
 - Accesses data using integer positions (like list indexing)
 - Follows Python-style slicing (end index is exclusive)
 - Does not support label-based access or boolean Series with labels
 - df.iloc[0, 1]

7. Filtering / Conditional Selection

df[df['longitude'] > -120] df[(df['longitude'] > -120) & (df['latitude'] < 35)]

	longitude	latitude	housing_median_age	total_rooms	total_bedroo	ms population	n households	median_income	median_hous	e_value		
1	-118.30	34.26	43.0	1510.0	310	.0 809.0	277.0	3.5990	1	76500.0		
2	-117.81	33.78	27.0	3589.0	507	7.0 1484.0	495.0	5.7934	2	70500.0		
3	-118.36	33.82	28.0	67.0) 15	5.0 49.0	11.0	6.1359	3	30000.0		
4	-119.67	36.33		longitude l	atitude housir	ng_median_age	total_rooms	total_bedrooms	population	household	ls median_income	median_house_value
5	-119.56	36.51	1	-118.30	34.26	43.0	1510.0	310.0	809.0	277.	.0 3.5990	176500.0
	•••		2	-117.81	33.78	27.0	3589.0	507.0	1484.0	495.	.0 5.7934	270500.0
2995	-119.86	34.42	3	-118.36	33.82	28.0	67.0	15.0	49.0	11.	.0 6.1359	330000.0
2996	-118.14	34.06	9	-118.02	34.08	31.0	2402.0	632.0	2830.0	603.	.0 2.3333	164200.0
2997	-119.70	36.30	10	-118.24	33.98	45.0	972.0	249.0	1288.0	261.	.0 2.2054	125000.0
2998	-117.12	34.10										
2999	-119.63	34.42	2994	-117.93	33.86	35.0	931.0	181.0	516.0	174.	.0 5.5867	182500.0
1805 ro	ows × 9 colum	ns	2995	-119.86	34.42	23.0	1450.0	642.0	1258.0	607.	.0 1.1790	225000.0
			2996	-118.14	34.06	27.0	5257.0	1082.0	3496.0	1036.	.0 3.3906	237200.0
			2998	-117.12	34.10	40.0	96.0	14.0	46.0	14.	.0 3.2708	162500.0
			2999	-119.63	34.42	42.0	1765.0	263.0	753.0	260.	.0 8.5608	500001.0
			1611 rov	ws × 9 columns								

8. Sorting Data

df.sort_values('total_rooms')
df.sort_values('total_bedrooms', ascending=False)

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_ir	ncome median	_house_value]		
1115	-116.95	33.86	1.0	6.0	2.0	8.0	2.0	1.	.6250	55000.0			
740	-117.12	32.66	52.0	16.0	4.0	8.0	3.0	1.	.1250	60000.0			
2640	-114.62	33.62	26.0	18.0	3.0	5.0	3.0	0.	0.5360	275000.0			
641	-121.04	37.67	16.0	19.0	19.0	166.0	9.0	0.	0.5360	162500.0			
2690	-118.06	34.03	36.0	21.0	7.0	21.0	9.0	2	2.3750	175000.0			
1597	-117.12	33.49	4.0		de latitude ho	using_median	_age total_	rooms tot	tal_bedrooms	population	nouseholds	median_income	median_house_value
1146	-117.27	33.15		1563 -118.	44 33.98		21.0 18	3132.0	5419.0	7431.0	4930.0	5.3359	500001.0
292	-116.36	33.78	6.0	2429 -117.	20 33.58		2.0 30)450.0	5033.0	9419.0	3197.0	4.5936	174300.0
978	-121.53	38.48	5.0	978 -121.	53 38.48		5.0 27	7870.0	5027.0	11935.0	4855.0	4.8811	212200.0
2429	-117.20	33.58	2.0	2014 -117.	22 32.86		4.0 10	5289.0	4585.0	7604.0	4176.0	3.6287	280800.0
3000 ro	ws × 9 colum	ns		292 -116.	36 33.78		6.0 24	121.0	4522.0	4176.0	2221.0	3.3799	239300.0
							•••			•••			
				2690 -118.	06 34.03		36.0	21.0	7.0	21.0	9.0	2.3750	175000.0
				1355 -117.	11 32.66		52.0	25.0	5.0	14.0	9.0	1.6250	118800.0
				740 -117.	12 32.66		52.0	16.0	4.0	8.0	3.0	1.1250	60000.0
				2640 -114.	62 33.62		26.0	18.0	3.0	5.0	3.0	0.5360	275000.0
				1115 -116.	95 33.86		1.0	6.0	2.0	8.0	2.0	1.6250	55000.0
				3000 rows × 9 co	lumns								

9. Adding / Modifying Columns & Dropping Rows / Columns

df['house_value_IRS'] = df['median_house_value'] * 85

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	house_value_IRS
0	-122.05	37.37	27.0	3885.0	661.0	1537.0	606.0	6.6085	344700.0	29299500.0
1	-118.30	34.26	43.0	1510.0	310.0	809.0	277.0	3.5990	176500.0	15002500.0
2	-117.81	33.78	27.0	3589.0	507.0	1484.0	495.0	5.7934	270500.0	22992500.0
3	-118.36	33.82	28.0	67.0	15.0	49.0	11.0	6.1359	330000.0	28050000.0
4	-119.67	36.33	19.0	1241.0	244.0	850.0	237.0	2.9375	81700.0	6944500.0

df.drop('house_value_IRS', axis=1, inplace=True)
df.drop(1, axis=0, inplace=True)

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	-122.05	37.37	27.0	3885.0	661.0	1537.0	606.0	6.6085	344700.0
2	-117.81	33.78	27.0	3589.0	507.0	1484.0	495.0	5.7934	270500.0
3	-118.36	33.82	28.0	67.0	15.0	49.0	11.0	6.1359	330000.0
4	-119.67	36.33	19.0	1241.0	244.0	850.0	237.0	2.9375	81700.0
5	-119.56	36.51	37.0	1018.0	213.0	663.0	204.0	1.6635	67000.0

10. Group By

```
from sklearn.datasets import load_iris
import pandas as pd
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['target'] = iris.target
df.groupby('target').mean()
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
target				
0	5.006	3.428	1.462	0.246
1	5.936	2.770	4.260	1.326
2	6.588	2.974	5.552	2.026

11. Merging Dataframes

```
df1 = pd.read_csv('/content/sample_data/california_housing_train.csv')
df2 = pd.read_csv('/content/sample_data/california_housing_test.csv')
```

pd.merge(df1, df2, on='latitude')

	longitude_x	latitude	housing_median_age_x	total_rooms_x	total_bedrooms_x	population_x	households_x	median_income_x	median_house_value_x	longitude_y	housing_media
0	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0	-119.18	
1	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0	-118.41	
2	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0	-118.86	
3	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0	-118.30	
4	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0	-118.45	
209003	-124.19	40.78	37.0	1371.0	319.0	640.0	260.0	1.8242	70000.0	-124.15	
209004	-124.19	40.77	30.0	2975.0	634.0	1367.0	583.0	2.4420	69000.0	-124.16	
209005	-124.19	40.77	30.0	2975.0	634.0	1367.0	583.0	2.4420	69000.0	-123.28	
209006	-124.21	40.75	32.0	1218.0	331.0	620.0	268.0	1.6528	58100.0	-122.31	
209007	-124.30	41.80	19.0	2672.0	552.0	1298.0	478.0	1.9797	85800.0	-124.17	
209008 ro	209008 rows × 17 columns										

12. Renaming columns and Aggregate Functions

```
df.rename(columns={'sepal length (cm)': 'SepLen'}, inplace=True)
df['SepLen'].mean()
df['SepLen'].sum()
df['SepLen'].max()
df['SepLen'].min()
df['SepLen'].count()
df['SepLen'].std()
df['SepLen'].var()
```

```
Index(['SepLen', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)',
    'target'],
    dtype='object')
```

14. Exporting Data

```
df.to_csv('output.csv', index=False)
```

df.to_excel('output.xlsx', index=False)

Feature	Matplotlib	Seaborn			
Туре	Low-level plotting library	High-level wrapper over Matplotlib			
Code Complexity	More verbose, manual settings	Simpler, cleaner, with sensible defaults			
Style/Look	Basic by default	Beautiful, attractive, publication-quality visualizations			
Customization	Highly customizable (every axis, label, etc.)	Less control than Matplotlib, but most common customizations are easy			
Built-in Plots	Line, bar, scatter, histogram, pie, etc.	Advanced statistical plots (box, violin, pairplot, heatmap, etc.)			
Statistical Plots	Not built-in, must compute stats yourself	Built-in statistical visualizations (with grouping, hue, confidence intervals)			
Integration	Pure Python plotting library	Built on Matplotlib — integrates easily with Pandas and NumPy			
When to Use	When you need absolute control over every element	When you need quick, aesthetically pleasing exploratory or statistical plots			

Why is Data Visualization Important?

A picture is worth a thousand words!

1. Histogram: Shows distribution of a numerical variable

```
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('titanic')
sns.histplot(data=df, x='age', bins=20)
plt.show()
```


2. Bar Plot: Compares categories (like survival counts)

```
sns.countplot(x='sex', data=df)
plt.show()
```



```
counts = df['sex'].value_counts()
plt.bar(counts.index, counts.values)
plt.xlabel('Sex')
plt.ylabel('Count')
plt.title('Count of Each Sex Category')
plt.show()
```


3. Pie Chart: Proportional representation of a categorical column

```
df['class'].value_counts().plot.pie(autopct='%1.1f%%')
plt.ylabel('')
plt.show()
```


4. Box Plot: Shows distribution, median, and outliers

```
sns.boxplot(x='class', y='age', data=df)
plt.show()
```


5. Violin Plot: Combines boxplot and KDE (density) for better shape visualization

```
sns.violinplot(x='sex', y='age', data=df)
plt.show()
```


6. Scatter Plot: Shows distribution, median, and outliers

```
sns.scatterplot(x='age', y='fare', hue='survived', data=df)
plt.show()
```


7. Pair Plot: Plots pairwise scatterplots + histograms for multiple numerical features

```
sns.pairplot(df[['age', 'fare', 'survived']], hue='survived')
plt.show()
```


8. Heatmap (Correlation Matrix): Shows distribution, median, and outliers

```
numeric_df = df.select_dtypes(include=['number'])
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm')
plt.show()
```


9. Line Plot: Line chart of a variable against its index or another variable

```
sns.lineplot(x='age', y='fare', data=df)
plt.show()
```


10. Swarm Plot: Points distribution within categories (no overlap like scatter)

```
sns.swarmplot(x='class', y='age', data=df)
plt.show()
```


Exercise 1 - Week 2

- Pandas (Data Handling and Manipulation)
 - Load the dataset into a DataFrame.
 - Display the first 10 and last 5 rows.
 - Show summary statistics and data types of each column.
 - Filter records based on a condition (e.g., values greater than a threshold).
 - Add a new derived column using existing columns.
 - Group the data by a categorical column and compute mean/median for another numeric column.
 - Sort the DataFrame based on one or more columns.
 - Handle missing values by either dropping or filling them.
 - Export the final DataFrame to a new CSV file.
- Use any dataset of your choice (CSV/Excel/JSON)

Exercise 2 - Week 2

- Seaborn Visualization
 - One distribution plot (histogram, KDE, or violin plot).
 - One categorical plot (barplot, countplot, or boxplot).
 - One relationship plot (scatterplot or lineplot).
 - A correlation heatmap of numerical columns.
 - A pairplot to compare multiple relationships.
- Use any dataset of your choice (CSV/Excel/JSON)