HƯỚNG DẪN THỰC HÀNH MÔN XÁC SUẤT THỐNG KÊ

Tài liệu này hướng dẫn cho sinh viên Trường Đại học Xây dựng sử dụng công cụ tính toán hỗ trợ việc học tập và thi môn Xác suất thống kê với 12 lệnh của phần mềm Mathematica và 11 lệnh Excel.

Yêu cầu: tự học 10 tiết, tổng thời gian thực hành làm mẫu trên lớp 3 tiết, thực hành trên phòng máy 3 tiết.

1 Mathematica

Download phần mềm và xem video hướng dẫn thực hành lần lượt tại:

megaurl.in/xstk megaurl.in/XstkMathematicaExcel

Diền thông tin lấy từ file Keygen.exe vào mục tương ứng trong quá trình cài đặt (mỗi máy có MathID riêng):

- * Mathematica: Chép License từ Keygen, bấm OK.
- * Keygen: Lấy MathID từ Mathematica \rightarrow Generate License Number.
- * Mathematica: bấm Back, chép License mới vào o OK o chép Password vào o OK.

Giao diện:

Cách sử dụng Mathematica:

- * Xuống dòng dể nhập lệnh tiếp theo trong cùng khối lệnh.
- * Biên dịch cả khối lệnh (Shift + 📋) khi nhập xong mỗi lệnh, xem kết quả, soát và sửa lỗi.
- * Lập biểu thức toán học bằng các phép toán + * / (Ctrl + /), lũy thừa (Ctrl + 6), nhóm biểu thức trong dấu () và các hàm

Hàm lý thuyết	$\sin x$	$\cos x$	$\tan x$	$\cot x$	$\ln x$
Nhập trong Math Sin[x]		Cos[x]	Tan[x]	Cot[x]	Log[x]
	$\arcsin x$	$\arccos x$	$\arctan x$	$\operatorname{arccot} x$	$\log_a x$
	ArcSin[x]	ArcCos[x]	AcrTan[x]	ArcCot[x]	Log[a,x]

với x là biến hoặc biểu thức.

* Mathematica phân biệt **CHỮ HOA** và **chữ thường**. Các lệnh (hàm) có sẵn của Mathematica có chữ cái đầu mỗi từ viết hoa (lệnh có thể là từ ghép), các tham số của lệnh được đặt trong dấu [] và ngăn cách bởi dấu ,

- * Vào [Menu] Help/Help Browser để tìm hiểu các lệnh.
- * Thanh công cụ **BasicInput** hỗ trợ nhập nhanh các kí hiệu và biểu thức toán học theo mẫu, gọi ra bằng thao tác [Menu]File \rightarrow Palettes

Các lệnh trong môn học:

	Lệnh	Kết quả		
1	Binomial[n, k]	C_n^k		
2	var = expr	gán biểu thức expr cho biến var		
3	f[x_] := expr	khai báo hàm số 1 hay nhiều biến		
	f[x_, y_] := expr			
4	f[x]	$\int f(x)$		
	f'''[x]	f'''(x)		
5	Plot[f[x] , {x,a,b}]	đồ thị hàm số $y=f\left(x\right)$ trên $\left(a,b\right)$		
6	expr//N	đưa các số trong biểu thức về số thập phân		
7	expr/.x->a	giá trị của biểu thức khi thay x bởi a,\dots		
	expr/.{x->a, y-> b}			
8	Expand[expr]	khai triển, rút gọn biểu thức		
	Simplify[expr]			
9	T4[h:2. +h/2] 1 1 1	skq1 nếu biểu thức logic đúng		
9	If[biểu thức logic, kq1, kq2]	kq2 ngược lại		
10	Thao tác [RClick] $ ightarrow$	mẫu điền ma trận		
10	Create Table/Matrix/Palette			
11	Table[expr, {i,a,b}]	dãy, ma trận theo công thức		
12 Table[expr, {i,a,b}, {j,c,d}]		dãy, ma trận theo công thức		

Trong một lệnh, ta thường dùng biến tạm % để gọi kết quả của lệnh vừa thực thi ngay trước đó.

VD1:

Kết quả	Lệnh
$C_{10}^4 = 210$	Binomial[10, 4]
	$\sum_{k=0}^{10} \texttt{Binomial}[800, k] * 0.005^{k} * 0.995^{800-k}$
$\sum_{k=0}^{\frac{k=0}{\infty}} k \frac{\lambda^k e^{-\lambda}}{k!} = \lambda$	$\sum_{k=0}^{\infty} k \frac{\lambda^k * E^{-\lambda}}{k!}$

VD2: Đại lượng ngẫu nhiên X có hàm mật độ $f\left(x\right)=ae^{4x-x^{2}}$

a) Tìm a.

b) Tîm EX, DX.

c) Tîm P(1 < X < 3.5).

HD	Lệnh
a) $\int_{-\infty}^{\infty} f(x) dx = 1 \Rightarrow ae^4 \sqrt{\pi} = 1 \Rightarrow a = \frac{1}{e^4 \sqrt{\pi}} = 0.01033$	$egin{aligned} \mathbf{f}[\mathbf{x}] &:= \mathbf{a} * \mathbf{E}^{4\mathbf{x} - \mathbf{x}^2} \ \int_{-\infty}^{\infty} \mathbf{f}[\mathbf{x}] d\mathbf{x} \ \mathbf{a} &= rac{1}{\mathbf{E}^4 \sqrt{\pi}} \ \mathbf{a} / \mathbf{N} \end{aligned}$
b) $\left EX = \int_{-\infty}^{\infty} x f(x) dx \right = 2.$	$ex = \int_{-\infty}^{\infty} x * f[x] dx$
	$ex2 = \int_{-\infty}^{\infty} x^2 * f[x] dx$ $ex2 - ex^2$
$DX = E(X^2) - (EX)^2 = \frac{1}{2}.$	
c) $P(1 < X < 3.5) = \int_{1}^{3.5} f(x) dx = 0.9044.$	$\int_{1}^{3.5} f[x] dx$

VD3: Đại lượng ngẫu nhiên X có hàm mật độ $f(x) = \begin{cases} kx, & x \in [0,2] \\ 0, & x \notin [0,2] \end{cases}$

a) Xác định k.

b) Tìm hàm phân bố F(x). c) Tính P(0 < X < 1).

HD	Lệnh
	$\begin{aligned} \mathbf{f}[\mathbf{x}_{-}] &:= \mathbf{If}[0 \leq \mathbf{x} \leq 2, \mathbf{k} * \mathbf{x}, 0] \\ \int_{-\infty}^{\infty} \mathbf{f}[\mathbf{x}] \mathbf{d} \mathbf{x} \\ \mathbf{k} &= \frac{1}{2} \end{aligned}$
$\text{b) } F\left(x\right) = \boxed{\int_{-\infty}^{x} f\left(t\right) dt} = \begin{cases} 0 & \text{n\'eu } x \leq 0 \\ \frac{x^2}{4} & \text{n\'eu } 0 < x \leq 2 \\ 1 & \text{n\'eu } x > 2. \end{cases}$	$egin{aligned} g[t] &:= If[t < x, f[t], 0] \ \int_{-\infty}^{\infty} g[t] dt \end{aligned}$
(trường hợp $=0$ trong Math bị ẩn)	
c) $P(0 < X < 1) = $	$\int_0^1 f[x] dx$

Chú ý: Mathematica có thể tính nhanh $I=\int_D f\left(x\right)dx$, khi $f\left(x\right)$ xác định phân nhánh, $D\subset\mathbb{R}^n$ là miền phức tạp hoặc phụ thuộc tham số, qua hai bước:

$$g\left(x\right) = \begin{cases} f\left(x\right), & \text{n\'eu } x \in D \\ 0 & \text{n\'eu } x \notin D \end{cases} \Rightarrow I = \int_{\mathbb{R}^n} g\left(x\right) dx.$$

VD4: Véctơ ngẫu nhiên (X,Y) có hàm mật độ xác suất đồng thời

$$f\left(x,y\right) = \begin{cases} A\left(2x^2 + xy + y^2\right) & \text{n\'eu } (x,y) \in [0,1] \times [0,1] \\ 0 & \text{n\'eu } (x,y) \notin [0,1] \times [0,1] \end{cases}. \text{ Tìm}$$

a) Tìm A.

b) Tính EX.

c) Tính $P(X < 0.5 \mid Y > 0.5)$.

HD	Lệnh
	f[x_,y_] := If[
	$0 \le x \le 1 \&\&0 \le y \le 1,$
	$ A(2x^2 + x * y + y^2), 0] $
a) $\left[\iint_{\mathbb{R}^2} f(x,y) dx dy\right] = 1 \Rightarrow \frac{5A}{4} = 1 \Rightarrow \left[A = \frac{4}{5}\right]$	$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f[x, y] dy \right) dx$ $A = \frac{4}{\pi}$
b) $EX = \iint_{\mathbb{R}^2} xf(x,y) dx dy = \frac{2}{3}.$	$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} x * f[x, y] dy \right) dx$
c) $P(X < 0.5 \mid Y > 0.5) = \frac{P(X < \overline{0.5}, Y > \overline{0.5})}{P(Y > 0.5)} = \frac{\overline{t}}{m}$.	
$t = \iint_{x<0.5,y>0.5} f(x,y) dx dy = 0.1875.$	extstyle ext
$m = \iint_{y>0.5} f(x,y) dxdy = 0.65.$	$\mathbf{m} = \int_{-\infty}^{\infty} \left(\int_{0.5}^{\infty} \mathbf{f}[\mathbf{x}, \mathbf{y}] d\mathbf{l} \mathbf{y} \right) d\mathbf{x}$
$P(X < 0.5 \mid Y > 0.5) = 0.2885.$	$\frac{t}{m}$

2 Excel

Ngoài cách gỗ hàm trực tiếp, có thể nhập hàm bằng thao tác trên giao diện, bằng một trong ba cách:

- Phím tắt Shift + F3, hoặc
- ullet Nhấp vào nút $\overline{f_x}$ ngay phía dưới thanh Menu, hoặc
- $\bullet \ [{\tt Menu}] \ {\tt Formulas} \ \to \ {\tt Insert} \ \ {\tt Function}.$

Trên giao diện, nên chọn chủ đề Statistical để lọc các hàm sử dụng trong môn học:

	Giá trị	Tham số	Lệnh	Ví dụ & chú thích
13	$\Phi\left(x\right)$	$x \in \mathbb{R}$	=norm.dist(x,0,1,true)	$\Phi\left(2\right) = 0.9772$
14	z_0 s/c:		=norm.inv(p,0,1)	$\Phi\left(z_0\right) = 0.95$
	$\Phi\left(z_0\right) = p$	0	* · · ·	$\Rightarrow z_0 = 1.6449$
15	t_p^k	$k \in \mathbb{N}^*$	=t.inv.2t(p,k)	$t_{0.1}^{29} = 1.6991$
16	$\chi^{2}\left(p,k\right)$		=chisq.inv.rt(p,k)	$\chi^2 \left(0.05, 25 \right) = 37.6525$
17	\overline{x}		=average(X)	
18	$s^{\prime 2}$		=var.s(X)	Nhập x_1, x_2, \dots, x_n liên tiếp vào 1
19	s'	x_1, x_2, \ldots, x_n	=sqrt(ô chứa s'²)	cột $(n \text{ ô đầu của cột A}) \Rightarrow X$ là
20	s^2		=var.p(X)	A1:An
21	r	<i>m</i> . <i>m</i>	=correl(X, Y)	X là A1:An, Y là B1:Bn. Đường hồi
22	a	x_1, x_2, \ldots, x_n	=slope(Y, X)	quy tuyến tính thực nghiệm của ${\cal Y}$
23	<i>b</i>	y_1, y_2, \ldots, y_n	=intercept(Y, X)	theo X là $y = ax + b$.

Lệnh Excel không phân biệt chữ hoa hay chữ thường, khi dấu chấm thập phân là dấu ".", có dạng = tên_lệnh(tham số 1 , tham số 2 , ...)

và khi dấu chấm thập phân là dấu ",", là

= $ten_lenh(tham số 1; tham số 2; ...)$

VD5: Mẫu cỡ 50 từ $X \in N\left(a,\sigma^2\right)$ với $\sigma=2$ cho số liệu theo bảng sau:

x_i	10 – 12	12 – 14	14 – 16	16 – 18
n_i	9	18	17	6

- a) Tìm ƯLKC của a.
- b) Tìm KTC của a với độ tin cậy 97%.
- c) Kiểm định ở mức ý nghĩa 7% xem EX=13 hay EX>13.
- d) Kiểm định ở mức ý nghĩa 6% xem có phải EX=13 hay không.

HD	Lệnh	
a) $X \in N\left(a,\sigma^2\right) \Rightarrow a = EX \text{ có ULKC } \overline{x} = 13.8$	Nhập x_i vào cột A:	
b) $\sigma = 2 \Rightarrow KTC$ của $a: (\overline{x} - z_0 \frac{\sigma}{\sqrt{n}}, \overline{x} + z_0 \frac{\sigma}{\sqrt{n}}).$	$oldsymbol{11}$ vào ô A1 $ ightarrow$ đưa con trỏ về góc dưới	
$\Phi(z_0) = \frac{1+\gamma}{2} = \frac{1+0.97}{2} = 0.985 \Rightarrow \boxed{z_0 = 2.1701}$	bên phải ô A1 để thấy dấu $igspace + o$ kéo tới	
$(20) - \frac{1}{2} - \frac{1}{2} = 0.363 \Rightarrow 20 = 2.1761$ KTC: $(13.1862, 14.4138)$.	dòng 9 <i>(copy công thức)</i>	
	$oldsymbol{13}$ vào A10, copy tới dòng $9+18=27$	
c) $z_{qs} = \frac{\overline{x - a_0}}{\sigma} \sqrt{n} = 2.8284.$	15 vào A28 tới dòng $27 + 17 = 44$	
$\Phi(z_0) = 1 - \alpha = 0.93 \Rightarrow z_0 = 1.4758$	17 tới dòng 50	
$z_{qs}>z_0\Rightarrow$ bác bỏ $EX=13$ (chấp nhận $EX>13$).		
d) $H: EX = 13, K: EX \neq 13, \alpha = 0.06.$	=average(A1:A50)	
$z_{qs} = 2.8284$ (như ý (c)).	=norm.inv(0.985, 0, 1)	
$\Phi(z_0) = 1 - \frac{\alpha}{2} = 0.97 \Rightarrow \boxed{z_0 = 1.8808}$	=norm.inv(0.93, 0, 1)	
$ z_{qs} >z_0\Rightarrow$ bác bỏ H (chấp nhận $EX eq13$).	=norm.inv(0.97, 0, 1)	

VD6: Mẫu cỡ n=31 từ $X \in N\left(a,\sigma^2\right)$ cho số liệu theo bảng sau

- a) Tìm ƯLKC của a và σ^2 .
- b) Tìm KTC của a với độ tin cậy 92%.
- c) Kiểm định ở mức ý nghĩa 4% xem EX=64 hay EX<64.

HD	Lệnh
a) $X\in N\left(a,\sigma^{2}\right)\Rightarrow EX=a,DX=\sigma^{2}.$ ULKC của a là	Nhập x_i vào cột A: 59 (vào 3 ô), 61
$\overline{x}=62.0322$, của σ^2 là $s'^2=2.6323$	(12 ô), 63 (13 ô), 65 (3 ô)

VD7: Phương pháp thứ nhất cho tỷ lệ sản phẩm tốt là 85%. Kiểm tra 300 sản phẩm sản xuất theo phương pháp thứ hai thì thấy có 30 phế phẩm. Hãy kiểm định ở mức ý nghĩa 8% xem có phải phương pháp thứ hai tốt hơn phương pháp thứ nhất không.

HD: p = tỷ lệ sản phẩm tốt sản xuất theo phương pháp thứ hai. Bài toán

$$H: p = 0.85, K: p > 0.85, \alpha = 0.08.$$

 $m={
m s\acute{o}}$ sản phẩm tốt sản xuất theo phương pháp thứ hai =270.

$$z_{qs} = \frac{\frac{m}{n} - p_0}{\sqrt{p_0 (1 - p_0)}} \sqrt{n} = \boxed{\frac{270}{300} - 0.85 \over \sqrt{0.85 \cdot 0.15}} \sqrt{300} = 2.4254.$$

$$\Phi(z_0) = 1 - \alpha = 0.92 \Rightarrow \boxed{z_0 = 1.4051}$$

 $z_{qs}>z_0\Rightarrow$ bác bỏ H tức là phương pháp thứ hai tốt hơn.

Lenh Excel: =(270/300-0.85)/sqrt(0.85*0.15)*sqrt(300) và =norm.inv(0.92, 0, 1)

VD8: Với mức ý nghĩa 0.06 hãy kiểm định H:EX=EY với đối thuyết K:EX>EY trong đó X,Y là 2 đại lượng ngẫu nhiên có phân bố chuẩn. Biết rằng 2 mẫu độc lập cỡ n=17 và từ X và m=13 từ Y cho ta số liệu sau:

Cho biết DX = 0.03, DY = 0.02.

HD:
$$\overline{x} = 22.0824$$
, $\overline{y} = 21.9385$ $\Rightarrow z_{qs} = \boxed{\frac{\overline{x} - \overline{y}}{\sqrt{\frac{DX}{n} + \frac{DY}{m}}}} = 2.5036$.

$$\Phi(z_0) = 1 - \alpha = 0.94 \Rightarrow \boxed{z_0 = 1.5548}$$

 $z_{as} > z_0 \Rightarrow \mathsf{bác} \; \mathsf{bó} \; H.$

Excel: Nhập x_i vào cột A, y_i vào cột B. Địa chỉ mẫu của X là A1:A17 và Y là B1:B13

VD9: Khảo sát thu nhập (triệu đồng) trong 1 tháng của 10 công nhân ngành A và 15 công nhân ngành B ta thu được số liệu sau:

Giả sử thu nhập trong 1 tháng của 1 công nhân ngành A và B là những đại lượng ngẫu nhiên X,Y có phân bố chuẩn với phương sai bằng nhau. Hãy kiểm định ở mức ý nghĩa 3% giả thuyết nói rằng thu nhập trung bình của công nhân 2 ngành trên như nhau với đối thuyết cho rằng thu nhập trung bình của công nhân ngành B cao hơn ngành A.

$$\begin{split} &\textit{HD: } H: EX = EY, K: EX < EY, \alpha = 0.03. \\ &\overline{x} = 1.26 \text{, } \overline{y} = 1.3333 \text{, } \overline{s_X^2 = 0.0124} \text{, } \overline{s_Y^2 = 0.01422} \\ &t_{qs} = \overline{\frac{\overline{x} - \overline{y}}{\sqrt{ns_X^2 + ms_Y^2}}} \sqrt{\frac{nm\,(n+m-2)}{n+m}} = -1.4832. \\ &t_0 = t_{2\alpha}^{n+m-2} = \overline{t_{0.06}^{23} = 1.9782} \end{split}$$

 $t_{qs}>-t_0\Rightarrow$ chấp nhận H, tức là thu nhập trung bình của công nhân 2 ngành trên như nhau.

VD10: Mẫu cỡ n=100 từ đại lượng ngẫu nhiên X cho ta số liệu sau:

Hãy kiểm định ở mức ý nghĩa 7% xem có phải X có phân bố chuẩn $N\left(4,1.3^2\right)$.

HD:
$$H: X \in N(4, 1.3^2), K: X \notin N(4, 1.3^2), \alpha = 0.07$$

S_i	n_i	p_{i0}	E_{i}	$\frac{\left(n_i - E_i\right)^2}{E_i}$
$(-\infty,2]$	4	0.06197	6.1968	0.7788
(2, 3]	12	0.1589	15.891	0.9527
(3, 4]	27	0.2791	27.9122	0.02981
(4, 5]	30	0.2791	27.9122	0.1561
(5, 6]	20	0.1589	15.891	1.0625
(6, 7]	5	0.05146	5.146	0.004141
$(7,\infty)$	2	0.01051	1.0508	0.8574
			χ^2_{qs}	3.8415

$$\chi_0^2 = \chi^2 \left(0.07, 7 - 1 \right) = 11.6599. \; \chi_{qs}^2 < \chi_0^2 \Rightarrow {\rm chấp} \; {\rm nhận} \; H.$$

Mathematica:

$$\begin{array}{l} \mathbf{f}[\mathbf{x}_{-}] := \frac{1}{1.3\sqrt{2\pi}} \mathbf{E}^{-\frac{(\mathbf{x}-4)^2}{2*1.3^2}} \\ \mathbf{S} = \{-\infty, 2, 3, 4, 5, 6, 7, \infty\} \\ \mathbf{n} = \{4, 12, 27, 30, 20, 5, 2\} \\ \mathbf{p} = \mathsf{Table}[\int_{\mathbf{S}_{[\![i]\!]}}^{\mathbf{S}_{[\![i]\!]}} \mathbf{f}[\mathbf{x}] d\mathbf{x}, \{\mathbf{i}, 1, 7\}] \\ \mathbf{e} = 100 * \mathbf{p} \\ \mathbf{t} = \frac{(\mathbf{n} - \mathbf{e})^2}{\mathbf{e}} \\ \\ \sum_{i=1}^{7} \mathbf{t}_{[\![i]\!]} \end{array} \qquad \text{tinh theo vi tri turng ting}$$

Excel:

$$\begin{array}{lll} p_{10} = P\left(X \leq 2 \mid H\right) & = \text{norm.dist}(2,4,1.3,\text{true}) \\ p_{20} = P\left(2 < X \leq 3 \mid H\right) & = \text{norm.dist}(3,4,1.3,\text{true}) - \text{norm.dist}(2,4,1.3,\text{true}) \\ E_1 = np_{10} & = 100 * \hat{o} \text{ chứa } p_{10} \\ & = (\hat{o} \text{ chứa } n_1 - \hat{o} \text{ chứa } E_1)^2 / \hat{o} \text{ chứa } E_1 \\ E_i, \frac{(n_i - E_i)^2}{E_i}, \; i = \overline{2,7} & \text{copy công thức từ 2 ô chứa } E_1 \text{ và } \frac{(n_1 - E_1)^2}{E_1} \\ \chi^2_{qs} & = \text{sum}(\text{địa chỉ của dãy } \frac{(n_i - E_i)^2}{E_i}) \end{array}$$

$$\chi_0^2$$
 =chisq.inv.rt(0.07,6)

VD11: Mẫu cỡ n=60 từ đại lượng ngẫu nhiên X cho ta số liệu dưới đây:

Kiểm định ở mức ý nghĩa 8% xem X có phân bố đều không?

HD: *
$$H: X \in U[a,b], K: X \in U[a,b], \alpha = 0.08.$$

 $\overline{x}=14.0583$, $s^2=5.5924$, s=2.3648. Ước lượng theo phương pháp bình phương tối thiểu của a là $a^*=\overline{x}-s\sqrt{3}=9.9623$, của b là $b^*=\overline{x}+s\sqrt{3}=18.1543$ (số tham số chưa biết r=2).

* $H': X \in U$ [9.9623, 18.1543], $K': X \notin U$ [9.9623, 18.1543], $\alpha = 0.08$.

S_i	n_i	p_{i0}	E_i	$\frac{\left(n_i - E_i\right)^2}{E_i}$
$(-\infty, 11]$	9	0.1267	7.6001	0.2578
(11, 12]	6	0.1221	7.3242	0.2394
(12, 13]	7	0.1221	7.3242	0.01435
(13, 14]	8	0.1221	7.3242	0.06236
(14, 15]	6	0.1221	7.3242	0.2394
(15, 16]	7	0.1221	7.3242	0.01435
$(16,\infty)$	17	0.263	15.7788	0.09451
	- -		χ^2_{qs}	0.9222

$$\chi_0^2 = \chi^2 (\alpha, h - r - 1) = \chi^2 (0.08, 7 - 2 - 1) = 8.3365.$$

 $\chi^2_{qs} < \chi^2_0 \Rightarrow$ chấp nhận H (X có phân bố đều).

Excel: tính a^*, b^* .

 $\it Mathematica$: tính $\it p_{i0}$ với khai báo

$$f[x_{_}] := If[9.9623 \le x \le 18.1543, \frac{1}{18.1543 - 9.9623}, 0]$$

rồi thực hiện tiếp như ví dụ 10.

VD12: Mẫu cỡ 200 từ VTNN (X, Y) cho ta số liệu sau:

Kiếm định ở mức ý nghĩa 5% xem X và Y độc lập nhau không?

HD: (Bảng sau vừa tính toán và trình bày, vừa mô tả một trang Excel)

	Α	В	C	D	E E	Excel						
1	Bảng n_{ij}, n_{i*}, n_{*j} :											
2	X Y	Т	N	М	\sum							
3	С	26	48	24	98	=sum(B3:D3)						
4	K	51	43	8	102							
5	\sum	77	91	32	200	=sum(B3:B4)						
6	Bảng E_i	<i>j</i> :										
7		37.73	44.59	15.68		=\$E3*B\$5/\$E\$5						
8		39.27	46.41	16.32								
9	Bảng $\frac{(n)}{n}$	$\frac{E_{ij} - E_{ij})^2}{E_{ij}}$:										
10		3.6468	0.2608	4.4147		=(B3-B7)^2/B7						
11		3.5038	0.2506	4.2416								
	$\chi^2_{qs} =$	16.3181	=sum(B10:D11)									
	$\chi_0^2 = \chi^2 \left[\alpha, (h-1)(k-1) \right] = \chi^2 \left[0.05, (2-1)(3-1) \right] = \boxed{5.9915} \text{ =chisq.inv.rt(0.05,2)}$											
	$\chi^2_{qs}>\chi^2_0\Rightarrow X,Y$ không độc lập.											

Mathematica:

$$\begin{array}{l} \text{ematica:} \\ n = \begin{pmatrix} 26 & 48 & 24 \\ 51 & 43 & 8 \end{pmatrix} \\ nx = \text{Table}[\sum_{j=1}^{3} n_{[\![i,j]\!]}, \{i,1,2\}] \\ ny = \text{Table}[\sum_{j=1}^{2} n_{[\![i,j]\!]}, \{j,1,3\}] \\ e = \text{Table}[\frac{nx_{[\![i]\!]}*ny_{[\![j]\!]}}{200.0}, \{i,1,2\}, \{j,1,3\}] \\ t = \frac{(n-e)^2}{e} \\ \sum_{i=1}^{2} \sum_{j=1}^{3} t_{[\![i,j]\!]} \\ \end{array}$$

VD13: Mẫu cỡ n=12 từ véctơ ngẫu nhiên (X,Y) cho ta số liệu sau:

												3.1
y_i	13	14	10	14.5	14	13.5	9.5	16	18	12.5	15	14.5

- a) Tìm hệ số tương quan mẫu giữa X và Y. Có thể dùng hồi quy bình phương trung bình tuyến tính của Y đối với X để dự báo giá trị của Y được không, vì sao?
- b) Tìm hàm hồi quy bình phương trung bình tuyến tính thực nghiệm của Y đối với X và ước lượng sai số bình phương trung bình.
- c) Dự báo giá trị của Y khi biết X=2.3.

HD	Lệnh					
a) $r = 0.957$. $ r $ khá lớn $(\geq 0.8) \Rightarrow$ có thể	Nhập $(3,13)$ vào hai ô A1 và B1, $(3.5,14)$					
dùng hồi quy bình phương trung bình tuyến tính	vào A2, B2 $(3.1, 14.5)$ vào A12, B12					
của Y theo X để dự báo giá trị của $Y.$	=correl(A1:A12,B1:B12)					
b) Hàm hồi quy $Y = aX + b$: $a = 3.4397$,	=slope(B1:B12,A1:A12)					
b = 2.6154	=intercept(B1:B12,A1:A12)					
$\boxed{s_Y^2=5.0191\Rightarrow} \text{ sai số } s_{Y/X}^2=s_Y^2\left(1-r^2\right)=0.4221.$	=var.p(B1:B12)					
c) Khi $X=2.3$ ta dự báo $Y=aX+b=$						
10.5266.						

Thống kê thời gian thực hành:

VD	1	2	3	4	5	6	7	8	9	10	11	12	13	\sum
Time	1'2"	1'21"	1'1"	1'37''	3'9"	2'33"	47''	2'5"	2'24''	3'9"	4'26''	1'55"	2'45''	31'56"
										1'49''		1'53"		