Logica

- Modello
- Conseguenza
- Inferenza
- Algoritmo di inferenza
- Grounding

Modello

Modello = mondo possibile

- Un modello fissa i valori di verità delle formule, quindi i modelli possibili sono definiti da tutti i modi in cui è possibile assegnare valori agli elementi che determinano il valore di verità delle formule,
- Esempio consideriamo la formula x + y = 4:
 - Vera nei modelli x = 1, y = 3 oppure x = 2, y = 2 oppure x = 0, y = 4, ...
 - Falsa nei modelli x = 0, y = 0 oppure x = 1, y = 0 oppure ...
- Quando l'universo di riferimento è fisico (reale), il modello è un'astrazione matematica (simbolica) significativa di quella realtà
- Dati un modello m e una formula α : $\underline{m} \stackrel{.}{e} un \, \underline{modello} \, \underline{di} \, \underline{\alpha}$ se $\alpha \stackrel{.}{e} vera in m$
- Indichiamo con M(α) l'insieme dei modelli di α

Conseguenza (implicazione logica)

- Conseguenza logica: è una relazione fra due formule che dice che in <u>tutti i modelli</u> in cui la prima formula è vera, è vera anche la seconda, il fatto che da <u>A consegue B</u>è denotato: A |= B
- Esempio: (x+y=4) = (x+y<5)
- Attenzione al significato di A ⊭ B che coinvolge una nozione di direzionalità ...

Conseguenza (implicazione logica)

- A ⊭ B coinvolge una nozione di <u>direzionalità</u>:
 - il fuoco è posto sui modelli in cui A è vera, in almeno alcuni di questi B è falsa
 - $(x+y=4) \not\models (x<3)$ infatti:
 - Nel modello x=4, y=0 la prima formula è vera e la seconda è falsa
 - Non è rilevante che esista il modello x=2, y=8 in cui la prima formula è falsa ma la seconda è vera
 - Il fatto che B non sia sempre vera in tutti i modelli in cui è vera A non vuol dire che B sia sempre falsa.
 - <u>Possono esistere modelli in cui B è vera e A falsa</u>, esempio:
 - $(x+y=4) \not\models (x>4)$ and (y>0): ad esempio B è vera nel modello x=5, y=11

Visione insiemistica

Visione insiemistica

$$(x+y=4) = (x+y<5)$$

Visione insiemistica

$$(x+y=4) = (x<3)$$

Equivalenza

$$A \equiv B$$
 se e solo se $A \models B$ e $B \models A$

In altri termini due formule sono equivalenti quando sono vere negli stessi modelli. Insiemisticamente: M(A) = M(B)

Verità delle formule

- Validità
- Insoddisfacibilità
- Soddisfacibilità

Validità (tautologia)

- Una formula P è valida se è vera in tutti i modelli
- True è una formula valida
- Sono valide tutte le formule P tali che: P ≡ True
- Esempio
 - Q v ¬ Q è valida, si dice anche che è una <u>tautologia</u>

Insoddisfacibilità (contraddizione)

- Una formula P è insoddisfacibile se è <u>falsa in tutti i</u> modelli
- False è una formula insoddisfacibile
- Sono insoddisfacibili (contraddizioni) tutte le P tali che:

P **≡** False

- Esempio: Q ∧ ¬ Q è una contraddizione per come sono definiti gli operatori
- NB: P è valida se e solo se ¬ P è insoddisfacibile

Soddisfacibilità

- Una formula P è soddisfacibile se esiste <u>qualche</u> modello in cui è vera
- Quando una formula P è vera nel modello m, si dice che:
 - m soddisfa P
 - o anche che *m è un modello di P*
- Esempio:

nei CSP si cerca un modello (assegnamento di valori a variabili) tale per cui i suoi vincoli risultano tutti veri

Inferenza

Inferenza (dal latino "in ferre", portare dentro): è il processo con il quale da una proposizione, accolta come vera, si passa a una seconda proposizione la cui verità è derivata dalla prima

NB: <u>l'inferenza è sintattica</u>, lavora sulla struttura delle formule secondo il linguaggio di rappresentazione scelto

Esempio

Supponendo vero che "tutti gli uomini sono mortali" e che "Socrate è un uomo" posso inferire che "Socrate è mortale".

Posso farlo perché "vedo" un collegamento catturabile come regola generale di ragionamento:

$$uomo(X) \supset mortale(X)$$
 $uomo(X)$ $mortale(X)$

Regola di inferenza: modus ponens

MODUS PONENS:

Da un'implicazione e dalla sua premessa, derivo la conseguenza

Lavora sulla struttura delle formule: cioè A ⊃ B e A sono supposte vere

È il fondamento del ragionamento deduttivo:

Se piove, allora la strada è bagnata.

Piove.

La strada è bagnata

Regola di inferenza: eliminazione degli and

A	٨	В
	В	

ELIMINAZIONE DEI CONGIUNTI:

Da una congiunzione posso derivare un qualsiasi congiunto

Ancora una volta lavoriamo sulla struttura delle formule: cioè A ^ B è supposta vera

Se piove e tira vento.

Piove.

Inferenza

- Sia i un algoritmo di inferenza
- KB ⊢_i A

 (A è derivabile da KB utilizzando l'algoritmo i)
 se tale algoritmo permette di produrre una sequenza di passi che, partendo da KB, porta a A
- Si dice anche:
 - A segue da KB
 - A può essere inferito da KB
 - Esiste una dimostrazione (una prova) di A a partire da KB

Proprietà desiderate dell'algoritmo di inferenza

- Correttezza (soundness):
 l'algoritmo deriva solo formule che sono anche conseguenze logiche (preserva la verità):
 - Se $KB \vdash_{i} A$ allora $KB \models A$
- Completezza (completeness):
 l'algoritmo permette di derivare <u>tutte</u> le formule
 che sono anche conseguenze logiche
 - Se KB ⊨ A allora KB ⊢_i A

Inferenza e realtà

Le formule sono astrazioni usate per regionare sul mondo

I modelli catturano il mondo reale, insieme alla relazione di conseguenza

NOTE: (1) le logiche devono **sempre garantire la correttezza** (le inferenze devono corrispondere a reali conseguenze nel mondo); (2) **non sempre garantiscono la completezza** (cioè di catturare tutte le conseguenze possibili).

Grounding

- Cattura il legame fra la rappresentazione simbolica, formale e l'ambiente reale che essa rappresenta
- Possiamo immaginare il grounding come <u>derivante</u> <u>dalla percezione</u>
- Esempio:
 - quando piove le strade sono bagnate.
 - Vedo che piove e quindi concludo che <u>nel mondo</u> reale le strade sono bagnate

Logica proposizionale

- È uno dei più semplici tipi di logica. Le formule non includono variabili.
- Ne vedremo:
 - 1)Sintassi
 - 2)Semantica
 - 3)Inferenza
 - 4) Equivalenza, validità, soddisfacibilità

Logica proposizionale: formule

Formule atomiche:

- simboli proposizionali: ognuno rappresenta una formula che può essere vera o falsa
- Hanno un nome che inizia con la maiuscola
- Formule complesse: sono costruite componendo altre formule tramite gli operatori della logica:
 - Negazione: il termine <u>letterale</u> indica formule atomiche eventualmente negate
 - Congiunzione: le formule composte tramite questo operatore sono dette <u>congiunti</u>
 - Disgiunzione: le formule composte tramite questo operatore sono dette <u>disgiunti</u>
 - Implicazione: correla una formula detta <u>premessa</u> (o antecedente) a una formula detta <u>conclusione</u> (o conseguente)
 - Biimplicazione (o equivalenza)

Sintassi della logica proposizionale

Grammatica:

- formula → formulaAtomica | formulaComplessa
- formulaAtomica → True | False | simbolo
- simbolo \rightarrow P | Q | R | ...
- formulaComplessa → ¬ formula
 | (formula Λ formula)
 | (formula v formula)
 | (formula ⇒ formula)
 | (formula ⇔ formula)

Sintassi della logica proposizionale

Grammatica:

- formula → formulaAtomica | formulaComplessa
- formulaAtomica → True | False | simbolo
- simbolo \rightarrow P | Q | R | ...

```
    formulaComplessa → ¬ formula NEGAZIONE
    | (formula ∧ formula) CONGIUNZIONE
    | (formula ∨ formula) DISGIUNZIONE
    | (formula ⇒ formula) IMPLICAZIONE
    | (formula ⇔ formula) EQUIVALENZA
```

Sintassi della logica proposizionale

Grammatica:

- formula → formulaAtomica | formulaComplessa
- formulaAtomica → True | False | simbolo
- simbolo \rightarrow P | Q | R | ...
- formulaComplessa → ¬ formula

```
| (formula ∧ formula)
| (formula v formula)
| (formula ⇒ formula)
| (formula ⇔ formula)
```

Ordine di precedenza degli operatori dal più forte al più debole, es: ¬ Q v P equivale a ((¬ Q) v P)

Esempio: background knowledge proposizionale

```
R1) Piove ⇒ Atmosfera umida
R2) Notte ∧ (¬ Vento) ⇒ Atmosfera umida
R3) Atmosfera umida ⇒ (Prato bagnato ∧ Strada bagnata)
R4) Innaffiatore on ⇒ Prato bagnato
R5) Piove ⇒ Ombrello aperto
R6)
      Sole ∧ Vento ⇒ Innaffiatore on
R7) Sole ∧ Vento ⇒ Atmosfera asciutta
R8) Sole \Rightarrow \neg Notte
R9)
      Notte ⇒ ¬ Sole
R10) Atmosfera asciutta → ¬ Atmosfera umida
```

Vero o falso?

• Si consideri la formula:

Piove A Vento

• È vera oppure falsa?

Vero o falso?

• Si consideri la formula:

Piove A Vento

• È vera oppure falsa?

Semantica della logica proposizionale

• Premesse:

- La <u>semantica</u> definisce le <u>regole</u> con cui <u>si calcolano i</u> valori di verità di tutte le formule
- Nella logica proposizionale i valori di verità delle formule sono calcolati a partire da un modello e un modello è un assegnamento di un valore di verità a ciascuno dei simboli proposizionali specificati
- N simboli proposizionali, che possono valere vero o falso, possono produrre 2^N diversi modelli
- La semantica è calcolata <u>ricorsivamente</u>

Regole per il calcolo della semantica

Le formule atomiche

- **True** e **False** sono rispettivamente vera e falsa in ogni modello
- I valori di verità di tutti gli altri simboli proposizionali vanno specificati esplicitamente dal modello
- Formule complesse

Siano P e Q due formule della logica proposizionale:

- ¬ Q: è vera se e solo se Q è falsa nel modello
- (Q Λ P): è vera se e solo se sia P che Q sono vere nel modello
- (Q v P): è vera se e solo se o P o Q è vera nel modello
- $(Q \Rightarrow P)$: è sempre vera a meno che P sia vera e Q falsa nel modello
- (Q ⇔ P): è vera se P e Q sono entrambe vere o entrambe false nel modello
- Per le formule complesse si possono usare le tabelle di verità degli operatori

Tabelle di verità degli operatori

Р	Q	¬ P	P∧Q	$P \lor Q$	P⇒Q	P⇔Q
F	F	Т	F	F	Т	Т
F	Т	Т	F	Т	Т	F
Т	F	F	F	Т	F	F
Т	Т	F	V	Т	Т	Т

Implicazione

E' equivalente a ¬ P v Q Va interpretata nel seguente modo:

- se P è falsa, non mi interessa affermare il valore di Q;
- se P è vera, affermo che anche Q è vera
- Quindi Q deve essere vera nei casi in cui P lo è. Quando P non lo è la verità di Q non interessa.

Р	Q	\Rightarrow
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

Esempio: background knowledge proposizionale

R1) Piove ⇒ Atmosfera_umida (¬ Piove v Atmosfera_umida)

Piove Atmosfera umida ⇒

T T

T F

F T

F F

Spiegazione dell'implicazione

Serve per catturare quelle situazioni in cui il conseguente è vero ogni volta che lo è l'antecedente

Altri tipi di implicazione

- Esistono molti tipi di implicazione
- L'implicazione logica è un tipo di relazione che dipende dalle leggi della logica (non dipende dal significato delle parole)
- Altri tipi di implicazione dipendono dal significato delle parole:
 - Fido è un cane → fido è un mammifero
 - John ha vinto la partita → John ha giocato la partita
 - John è stato condannato per furto → il furto è un crimine

Tanti tipi di implicazione

- Esistono molti tipi di implicazione
- L'implicazione logica è un tipo di relazione che dipende dalle leggi della logica (non dipende dal significato delle parole)
- Altri tipi di implicazione dipendono dal significato delle parole:
 - Fido è un cane → fido è un mammifero ragionamento ontologico
 - John ha vinto la partita → John ha giocato la partita ragionamento temporale
 - John è stato condannato per furto → il furto è un crimine ragionamento causale

L'implicazione non è una relazione causale

P⇒Q

Esempi:

l'implicazione può essere vera in casi poco intuitivi perché istintivamente le attribuiamo una valenza causale, quindi ci sembra sensato:

piove ⇒ strada_bagnata

Mentre ci sembra assurdo:

Torino è in Lombardia ⇒ Giulio Cesare governò Roma

Invece questa implicazione è vera perché la premessa è falsa

Biimplicazione

 $P \Leftrightarrow Q$

Viene anche letta "se e solo se" perché è vera quando P e Q hanno lo stesso valore

Conseguenza logica?

Come dimostrare che KB = P?

1) Model Checking:

- Enumero i possibili modelli
- Seleziono quelli in cui KB è vera
- Verifico che in tutti questi P sia vera
- Costoso: dati N simboli proposizionali esistono 2^N modelli

2)Theorem proving:

 Permette di usare <u>regole di inferenza</u> per cercare una derivazione, senza costruire i modelli (più efficiente perché <u>ignora le proposizioni irrilevanti</u>, che possono essere numerose)

Theorem Proving: KB |= P?

- È possibile grazie a due risultati fondamentali:
 - Teorema di deduzione
 permette di rispondere vero se si dimostra
 l'equivalenza (KB ⇒ P) ≡ True
 - Dimostrazione per refutazione
 permette di rispondere vero se si dimostra
 l'equivalenza (KB ∧ ¬ P) ≡ False

Teorema di deduzione

Date due formule R e Q, $(R \models Q)$ se e solo se $(R \Rightarrow Q)$ è valida

- cioè: "Q è conseguenza logica di R" se e solo se "R implica Q"è valida (cioè è una tautologia)
- Quindi per verificare che KB ⊨ P:
 - 1) Posso dimostrare che KB ⇒ P è una formula valida, cioè vera in ogni modello, enumerando i modelli (costoso)
 - 2) Equivalentemente, per definizione di tautologia, posso dimostrare per **inferenza sintattica** (cioè manipolando la forma delle formule, senza costruire i modelli) che (KB ⇒ P) ≡ True
 - qual è il procedimento?

Validità e soddisfacibilità

- Validità e soddisfacibilità sono concetti collegati dalla negazione, in particolare:
 - A è valida se e solo se ¬ A è insoddisfacibile
 - A è soddisfacibile se e solo se ¬ A non è valida

Dimostreremo la validità (1) applicando la negazione e (2) dimostrando l'insoddisfacibilità della formula ottenuta

- (R ⇒ Q) equivale a (¬ R v Q)
- negata diventa ¬ (¬ R v Q)
- che è equivalente a (R Λ ¬ Q) per le leggi di De Morgan

Dimostrazione per refutazione

Date due formule R e Q, $(R \models Q)$ se e solo se $(R \land \neg Q)$ è insoddisfacibile

- È stata ottenuta ricordando che una contraddizione è la negazione di una tautologia
- Corrisponde a una dimostrazione per refutazione (o per assurdo o per contraddizione):

Per verificare che KB = P:

- 1) Assumo (per assurdo) ¬ P
- 2) dimostro che KB $\Lambda \neg P$ è *insoddisfacibile*, cioè che $\neg P$ è in contraddizione con gli assiomi noti, cioè che partendo da KB $\Lambda \neg P$ si dimostra False
- 3) La dimostrazione è del tutto analoga a una ricerca in uno spazio degli stati

Inferenza e dimostrazioni

- Dalle premesse, applicare una <u>sequenza di passi</u> per raggiungere una determinata <u>conclusione</u>
- Formulazione come problema di ricerca:
 - Stato iniziale: background knowledge
 - Azioni: regole di inferenza
 - Goal: stato che contiene la formula da dimostrare
- <u>Importante</u>: ci focalizziamo su <u>logiche monotóne</u>, cioè tali che:
 - Se (KB ⊨ P) allora (KB ∧ Q ⊨ P)
 cioè l'aggiunta di informazione (Q) non invalida mai le
 conclusioni precedenti, in altri termini l'insieme delle formule
 conseguenti può solo crescere con l'aggiunta di informazione

Regole di inferenza

 Abbiamo già citato modus ponens ed eliminazione dei congiunti.
 Altre regole di inferenza sono date dalle seguenti equivalenze logiche:

(α ∨ β)	=	(β ∨ α)	Commutatività v
(α∧β)	=	$(\beta \wedge \alpha)$	Commutatività ∧
$((\alpha \wedge \beta) \wedge \gamma)$	=	$(\alpha \wedge (\beta \wedge \gamma))$	Associatività ∧
$((\alpha \vee \beta) \vee \gamma)$	=	$(\alpha \vee (\beta \vee \gamma))$	Associatività ∨
$\neg(\neg\alpha)$	=	α	Elim. doppio negato
$(\alpha \Rightarrow \beta)$	=	$(\neg \beta \Rightarrow \neg \alpha)$	contrapposizione
$(\alpha \Rightarrow \beta)$	=	$(\neg \alpha \lor \beta)$	Elim. implicazione
$\neg(\alpha \land \beta)$	=	$(\neg \alpha \lor \neg \beta)$	De Morgan
$\neg(\alpha \vee \beta)$	=	$(\neg \alpha \land \neg \beta)$	De Morgan
$(\alpha \wedge (\beta \vee \gamma))$	=	$((\alpha \land \beta) \lor (\alpha \land \gamma))$	distributività
$(\alpha \vee (\beta \wedge \gamma))$	=	$((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$	distributività
$(\alpha \Leftrightarrow \beta)$	=	$((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$	Elim. bicondizionale

Correttezza e completezza

- La dimostrazione avviene coniugando:
 - 1) un algoritmo di inferenza
 - 2) e un insieme di regole di inferenza
- L'insieme di tutte le regole di inferenza viste è <u>corretto</u> (derivano solo conseguenze vere) e <u>completo</u> (deriva tutte le conseguenze logiche)
- Sottoinsiemi di queste regole possono non riuscire a produrre tutte le inferenze lecite; in questi casi il metodo non sarà completo
 - Es. se non metto la regola del doppio negato non posso derivare: $P \vdash \neg \neg P$ (e quindi che $P \vDash \neg \neg P$)

Regola di risoluzione

Risoluzione:

- regola di inferenza che
- unita a qualsiasi algoritmo di ricerca completo (cioè tale per cui se esistono soluzioni ne trova una)
- produce un algoritmo di inferenza corretto (cioè tale per cui se KB ⊢ P allora KB ⊨ P) e completo (cioè tale per cui se KB ⊨ P allora KB ⊢ P)

Regola di risoluzione (o Resolution)

- La resolution permette di realizzare dimostrazioni per refutazione sia in logica proposizionale che in logica del prim'ordine
- Regola di risoluzione:

Resolution

• Regola di resolution:

NB: i due letterali P_i e Q_i sono complementari (uno è la negazione dell'altro)

$$P_{_1} \vee P_{_2} \vee \ldots \vee P_{_{i-1}} \vee P_{_i} \vee P_{_{i+1}} \vee \ldots \vee P_{_n} \qquad \qquad Q_{_1} \vee Q_{_2} \vee \ldots \vee Q_{_{j-1}} \vee Q_{_j} \vee Q_{_{j+1}} \vee \ldots \vee Q_{_m}$$

La formula derivata è detta **resolvent**, in essa *ogni letterale* compare una volta sola

Tutte le formule convolte sono clausole, cioè sono disgiunzioni di letterali