

**PATENT APPLICATION
NOVEL METHODS OF DIAGNOSIS OF ANGIOGENESIS,
COMPOSITIONS AND METHODS OF SCREENING FOR
ANGIOGENESIS MODULATORS**

Inventor(s):

Richard Murray, a citizen of the United States residing at
22643 Woodridge Court, Cupertino, California 95014

Richard Glynne, a citizen of the United Kingdom residing at
2039 Alma Street, Palo Alto, CA 94301

Susan R. Watson, a citizen of the United Kingdom residing at
805 Balra Drive, El Cerrito, CA 94530

Assignee:

EOS Biotechnology, Inc.

Entity: Small

NOVEL METHODS OF DIAGNOSIS OF ANGIOGENESIS, COMPOSITIONS AND METHODS OF SCREENING FOR ANGIOGENESIS MODULATORS

5

CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a continuation-in-part (CIP) of co-pending United States Patent Application "Novel Methods Of Diagnosis Of Angiogenesis, Compositions And Methods Of Screening For Angiogenesis Modulators", Attorney Docket No. A65110-1, filed on August 11, 2000, which claims the benefit of priority to U.S.S.N. 60/148,425 filed August 11, 1999, both of which are incorporated herein by reference.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

FIELD OF THE INVENTION

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in angiogenesis; and to the use of such expression profiles and compositions in diagnosis and therapy of angiogenesis. The invention further relates to methods for identifying and using agents and/or targets that modulate angiogenesis.

20

BACKGROUND OF THE INVENTION

Both vasculogenesis, the development of an interactive vascular system comprising arteries and veins, and angiogenesis, the generation of new blood vessels, play a role in embryonic development. In contrast, angiogenesis is limited in a normal adult to the placenta, ovary, endometrium and sites of wound healing. However, angiogenesis, or its absence, plays an important role in the maintenance of a variety of pathological states. Some of these states are characterized by neovascularization, e.g., cancer, diabetic retinopathy, glaucoma, and age related macular degeneration. Others, e.g., stroke, infertility, heart disease, ulcers, and scleroderma, are diseases of angiogenic insufficiency.

Angiogenesis has a number of stages (see, e.g., Folkman, *J.Natl Cancer Inst.* 82:4-6, 1990; Firestein, *J Clin Invest.* 103:3-4, 1999; Koch, *Arthritis Rheum.* 41:951-62, 1998; Carter, *Oncologist* 5(Suppl 1):51-4, 2000; Browder et al., *Cancer Res.* 60:1878-86, 2000; and Zhu and Witte, *Invest New Drugs* 17:195-212, 1999). The early stages of angiogenesis include endothelial cell protease production, migration of cells, and proliferation. The early

stages also appear to require some growth factors, with VEGF, TGF- α , angiostatin, and selected chemokines all putatively playing a role. Later stages of angiogenesis include population of the vessels with mural cells (pericytes or smooth muscle cells), basement membrane production, and the induction of vessel bed specializations. The final stages of 5 vessel formation include what is known as "remodeling", wherein a forming vasculature becomes a stable, mature vessel bed. Thus, the process is highly dynamic, often requiring coordinated spatial and temporal waves of gene expression.

Conversely, the complex process may be subject to disruption by interfering with one or more critical steps. Thus, the lack of understanding of the dynamics of 10 angiogenesis prevents therapeutic intervention in serious diseases such as those indicated. It is an object of the invention to provide methods that can be used to screen compounds for the ability to modulate angiogenesis. Additionally, it is an object to provide molecular targets for therapeutic intervention in disease states which either have an undesirable excess or a deficit 15 in angiogenesis. The present invention provides solutions to both.

SUMMARY OF THE INVENTION

The present invention provides compositions and methods for detecting or modulating angiogenesis associated sequences.

In one aspect, the invention provides a method of detecting an angiogenesis-associated transcript in a cell in a patient, the method comprising contacting a biological 20 sample from the patient with a polynucleotide that selectively hybridized to a sequence at least 80% identical to a sequence as shown in Table 1. In one embodiment, the biological sample is a tissue sample. In another embodiment, the biological sample comprises isolated nucleic acids, which are often mRNA.

In another embodiment, the method further comprises the step of amplifying 25 nucleic acids before the step of contacting the biological sample with the polynucleotide. Often, the polynucleotide comprises a sequence as shown in Table 1. The polynucleotide can be labeled, for example, with a fluorescent label and can be immobilized on a solid surface.

In other embodiments the patient is undergoing a therapeutic regimen to treat a 30 disease associated with angiogenesis or the patient is suspected of having an angiogenesis-associated disorder.

In another aspect, the invention comprises an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Table 1. The nucleic acid molecule can be labeled, for example, with a fluorescent label,

In other aspects, the invention provides an expression vector comprising an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Table 1 or a host cell comprising the expression vector.

5 In another embodiment, the isolated nucleic acid molecule encodes a polypeptide having an amino acid sequence as shown in Table 2.

In another aspect, the invention provides an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Table 1. In one embodiment, the isolated polypeptide has an amino acid sequence as shown in Table 2.

10 In another embodiment, the invention provides an antibody that specifically binds a polypeptide that has an amino acid sequence as shown in Table 2. The antibody can be conjugated to an effector component such as a fluorescent label, a toxin, or a radioisotope. In some embodiments, the antibody is an antibody fragment or a humanized antibody.

15 In another aspect, the invention provides a method of detecting a cell undergoing angiogenesis in a biological sample from a patient, the method comprising contacting the biological sample with an antibody that specifically binds to a polypeptide that has an amino acid sequence as shown in Table 2. In some embodiment, the antibody is further conjugated to an effector component, for example, a fluorescent label.

20 In another embodiment, the invention provides a method of detecting antibodies specific to angiogenesis in a patient, the method comprising contacting a biological sample from the patient with a polypeptide comprising a sequence as shown in Table 2.

25 The invention also provides a method of identifying a compound that modulates the activity of an angiogenesis-associated polypeptide, the method comprising the steps of: (i) contacting the compound with a polypeptide that comprises at least 80% identity to an amino acid sequence as shown in Table 2; and (ii) detecting an increase or a decrease in the activity of the polypeptide. In one embodiment, the polypeptide has an amino acid sequence as shown in Table 2. In another embodiment, the polypeptide is expressed in a cell.

30 The invention also provides a method of identifying a compound that modulates angiogenesis, the method comprising steps of: (i) contacting the compound with a cell undergoing angiogenesis; and (ii) detecting an increase or a decrease in the expression of a polypeptide sequence as shown in Table 2. In one embodiment, the detecting step comprises hybridizing a nucleic acid sample from the cell with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Table 1.

In another embodiment, the method further comprises detecting an increase or decrease in the expression of a second sequence as shown in Table 2.

In another embodiment, the invention provides a method of inhibiting angiogenesis in a cell that expresses a polypeptide at least 80% identical to a sequence as shown in Table 2, the method comprising the step of contacting the cell with a therapeutically effective amount of an inhibitor of the polypeptide. In one embodiment, the polypeptide has an amino acid sequence shown in Table 2. In another embodiment, the inhibitor is an antibody.

In other embodiments, the invention provides a method of activating angiogenesis in a cell that expresses a polypeptide at least 80% identical to a sequence as shown in Table 2, the method comprising the step of contacting the cell with a therapeutically effective amount of an activator of the polypeptide. In one embodiment, the polypeptide has an amino acid sequence shown in Table 2.

Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.

Table 1 provides nucleotide sequence of genes that exhibit changes in expression levels as a function of time in tissue undergoing angiogenesis compared to tissue that is not.

Table 2 provides polypeptide sequence of proteins that exhibit changes in expression levels as a function of time in tissue undergoing angiogenesis compared to tissue that is not.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and treatment of disorders associated with angiogenesis (sometimes referred to herein as angiogenesis disorders or AD), as well as methods for screening for compositions which modulate angiogenesis. By "disorder associated with angiogenesis" or "disease associated with angiogenesis" herein is meant a disease state which is marked by either an excess or a deficit of vessel development. Angiogenesis disorders associated with increased angiogenesis include, but are not limited to, cancer and proliferative diabetic retinopathy. Pathological states for which it may be desirable to increase angiogenesis include stroke, heart disease, infertility, ulcers, and scleradoma. Also provided are methods for treating AD.

Definitions

The term "angiogenesis protein" or "angiogenesis polynucleotide" refers to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologs that: (1) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino acid sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acids, to an angiogenesis protein sequence of Table 2; (2) bind to antibodies, *e.g.*, polyclonal antibodies, raised against an immunogen comprising an amino acid sequence of Table 2, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to an anti-sense strand corresponding to a nucleic acid sequence of Table 1 and conservatively modified variants thereof; (4) have a nucleic acid sequence that has greater than about 95%, preferably greater than about 96%, 97%, 98%, 99%, or higher nucleotide sequence identity, preferably over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a sense sequence corresponding to one set out in Table 1. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, *e.g.*, human; rodent, *e.g.*, rat, mouse, hamster; cow, pig, horse, sheep, or any mammal. An "angiogenesis polypeptide" and an "angiogenesis polynucleotide," include both naturally occurring or recombinant.

A "full length" angiogenesis protein or nucleic acid refers to an angiogenesis polypeptide or polynucleotide sequence, or a variant thereof, that contains all of the elements normally contained in one or more naturally occurring, wild type angiogenesis polynucleotide or polypeptide sequences. The "full length" may be prior to, or after, various stages of post-translation processing.

"Biological sample" as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides, *e.g.*, of an angiogenic protein. Such samples include, but are not limited to, tissue isolated from primates, *e.g.*, humans, or rodents, *e.g.*, mice, and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, and frozen sections taken for histologic purposes. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate *e.g.*, chimpanzee or human; cow; dog; cat; a rodent, *e.g.*, guinea pig, rat, mouse; rabbit; or a bird; reptile; or fish.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of

cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention *in vivo*. Archival tissues, having treatment or outcome history, will be particularly useful.

5 The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 70% identity, preferably 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region (e.g., SEQ ID NOS:1-4),
10 when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site <http://www.ncbi.nlm.nih.gov/BLAST/> or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may
15 be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

20 For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
25

30 A "comparison window", as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, *Adv. Appl. Math.* 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, *J. Mol.*

Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, *Proc. Nat'l. Acad. Sci. USA* 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., *Current Protocols in Molecular Biology* (Ausubel *et al.*, eds. 5 1995 supplement)).

A preferred example of algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul *et al.*, *Nuc. Acids Res.* 25:3389-3402 (1977) and Altschul *et al.*, *J. Mol. Biol.* 215:403-410 (1990), respectively. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/>). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul *et al.*, *supra*). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, *Proc. Natl. Acad. Sci. USA* 89:10915 (1989)) alignments (B) of 10, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, *Proc. Nat'l. Acad. Sci. USA* 90:5873-5878 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match 5 between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.

An indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as described below. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host 20 cells may be cultured cells, explants, cells *in vivo*, and the like. Host cells may be prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, and the like (see, e.g., the American Type Culture Collection catalog or web site, www.atcc.org).

The terms "polypeptide," "peptide" and "protein" are used interchangeably 25 herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.

The term "amino acid" refers to naturally occurring and synthetic amino acids, 30* as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ -carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α carbon that is

bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical

- 5 compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

H10 “Conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence with respect to the expression product, but not with respect to actual probe sequences.

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” where the alteration results in the substitution of an amino acid with a chemically similar amino acid.

Conservative substitution tables providing functionally similar amino acids are well known in

the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.

The following eight groups each contain amino acids that are conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (*see, e.g., Creighton, Proteins* (1984)).

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, *see, e.g., Alberts et al., Molecular Biology of the Cell* (3rd ed., 1994) and Cantor and Schimmel, *Biophysical Chemistry Part I: The Conformation of Biological Macromolecules* (1980). “Primary structure” refers to the amino acid sequence of a particular peptide. “Secondary structure” refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β-sheet and α-helices. “Tertiary structure” refers to the complete three dimensional structure of a polypeptide monomer. “Quaternary structure” refers to the three dimensional structure formed, usually by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

A “label” or a “detectable moiety” is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include ³²P, fluorescent dyes, electron-dense reagents, enzymes (*e.g.,* as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins which can be made detectable, *e.g.,* by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide.

An “effector” or “effector moiety” or “effector component” is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to an antibody. The “effector” can be a variety of molecules including, for example, detection moieties including radioactive compounds, fluorescent compounds, an enzyme or substrate, tags such

as epitope tags, a toxin; a chemotherapeutic agent; a lipase; an antibiotic; or a radioisotope emitting "hard" e.g., beta radiation.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, e.g., biotin, streptavidin.

As used herein a "nucleic acid probe or oligonucleotide" is defined as a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization. Thus, for example, probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. It will be understood by one of skill in the art that probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled as with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled such as with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence.

The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all.

The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region

from another source. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

A “promoter” is defined as an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A “constitutive” promoter is a promoter that is active under most environmental and developmental conditions. An “inducible” promoter is a promoter that is active under environmental or developmental regulation. The term “operably linked” refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

An “expression vector” is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed operably linked to a promoter.

The phrase “selectively (or specifically) hybridizes to” refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

The phrase “stringent hybridization conditions” refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijsen, *Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes*, “Overview of principles of hybridization and the strategy of nucleic acid assays” (1993). Generally, stringent conditions are selected to be about 5-10°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50%

of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m , 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 5 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42°C, or, 5x SSC, 1% SDS, incubating at 65°C, with wash in 0.2x SSC, and 0.1% SDS at 65°C. For PCR, a temperature of about 36°C is typical for low stringency amplification, although annealing temperatures may vary between about 32°C and 48°C depending on primer length. For high stringency PCR amplification, a temperature of about 62°C is typical, although high stringency annealing temperatures can range from about 50°C to about 65°C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90°C - 95°C for 30 sec - 2 min., an annealing phase lasting 30 sec. - 2 min., and an extension phase of about 72°C for 1 - 2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis *et al.* (1990) *PCR Protocols, A Guide to Methods and Applications*, Academic Press, Inc. N.Y.).

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 1X SSC at 45°C. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., and Current Protocols in Molecular Biology, ed. Ausubel, *et al*

The phrase “functional effects” in the context of assays for testing compounds that modulate activity of an angiogenesis protein includes the determination of a parameter that is indirectly or directly under the influence of the angiogenesis protein, e.g., a functional, physical, or chemical effect, such as the ability to increase or decrease angiogenesis. It 5 includes binding activity, the ability of cells to proliferate, expression in cells undergoing angiogenesis, and other characteristics of angiogenic cells. “Functional effects” include *in vitro*, *in vivo*, and *ex vivo* activities.

By “determining the functional effect” is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of an 10 angiogenesis protein sequence, e.g., functional, physical and chemical effects. Such functional effects can be measured by any means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the angiogenesis protein; 15 measuring binding activity or binding assays, e.g. binding to antibodies, and measuring cellular proliferation, particularly endothelial cell proliferation. Determination of the functional effect of a compound on angiogenesis can also be performed using angiogenesis assays known to those of skill in the art such as an *in vitro* assays, e.g., *in vitro* endothelial cell tube formation assays, and other assays such as the chick CAM assay, the mouse corneal 20 assay, and assays that assess vascularization of an implanted tumor. The functional effects can be evaluated by many means known to those skilled in the art, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features, e.g., tube or blood vessel formation, measurement of changes in RNA or protein levels for angiogenesis-associated sequences, measurement of RNA stability, identification of downstream or 25 reporter gene expression (CAT, luciferase, β -gal, GFP and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

“Inhibitors”, “activators”, and “modulators” of angiogenic polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules 30 identified using *in vitro* and *in vivo* assays of angiogenic polynucleotide and polypeptide sequences. Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of angiogenesis proteins, e.g., antagonists. “Activators” are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate

angiogenesis protein activity. Inhibitors, activators, or modulators also include genetically modified versions of angiogenesis proteins, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g., expressing the 5 angiogenic protein *in vitro*, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of angiogenesis can also be identified by incubating angiogenic cells with the test compound and determining increases or decreases in the expression of 1 or more angiogenesis proteins, e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 or more angiogenesis 10 proteins, such as angiogenesis proteins comprising the sequences set out in Table 2.

Samples or assays comprising angiogenesis proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition 15 of a polypeptide is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25-0%. Activation of an angiogenesis polypeptide is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably 1000-3000% higher.

20 “Antibody” refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as 25 gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively. Typically, the antigen-binding region of an antibody will be most critical in specificity and affinity of binding.

An exemplary immunoglobulin (antibody) structural unit comprises a 30 tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kD) and one “heavy” chain (about 50-70 kD). The NH_2 -terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

PCT/US97/03525

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, for example, pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab')₂, a dimer of Fab which itself is a light chain joined to V_H-C_{H1} by a disulfide bond. The F(ab')₂ 5 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab')₂ dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (see *Fundamental Immunology* (Paul ed., 3d ed. 1993). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized *de novo* either 10 chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized *de novo* using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty *et al.*, *Nature* 348:552-554 (1990))

For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many technique known in the art can be used (see, e.g., Kohler & Milstein, *Nature* 256:495-497 (1975); Kozbor *et al.*, *Immunology Today* 4: 72 (1983); Cole *et al.*, pp. 77-96 in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc. (1985); Coligan, *Current Protocols in Immunology* (1991); Harlow & Lane, *Antibodies, A Laboratory Manual* 20 (1988); and Goding, *Monoclonal Antibodies: Principles and Practice* (2d ed. 1986)). Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric 25 Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty *et al.*, *Nature* 348:552-554 (1990); Marks *et al.*, *Biotechnology* 10:779-783 (1992)).

A "chimeric antibody" is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function 30 and/or species; or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.

The present application may be related to USSN 09/437,702, filed Nov. 10, 1999; USSN 09/437,528, filed Nov. 10, 1999; USSN 09/434,197, filed Nov. 4, 1999; USSN 60/183,926, filed Feb. 22, 2000; USSN 09/440,493, filed Nov. 15, 1999; USSN 09/520,478, filed Mar. 8, 2000; USSN 09/440,369, filed Nov. 12, 1999; Attorney Docket number
5 A68928, filed Dec. 15, 2000; Attorney Docket number A69789, filed Jan. 22, 2001; and Attorney Docket number A69806, filed Dec. 15, 2000.

The detailed description of the invention includes discussion of the following aspects of the invention:

Expression of angiogenesis-associated sequences

Informatics

Angiogenesis-associated sequences

Detection of angiogenesis sequence for diagnostic and therapeutic applications

- Modulators of angiogenesis

Methods of identifying variant angiogenesis-associated sequences

Administration of pharmaceutical and vaccine/compositions

Kits for use in diagnostic and/or prognostic applications.

Expression of angiogenesis-associated sequences

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is unique to the state of the cell. That is, normal tissue may be distinguished from AD tissue.
25 By comparing expression profiles of tissue in known different angiogenesis states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. The identification of sequences that are differentially expressed in angiogenic versus non-angiogenic tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated: does a chemotherapeutic drug act to down-regulate angiogenesis, and thus tumor growth or recurrence, in a particular patient. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Angiogenic tissue can also be analyzed to determine the stage of angiogenesis in the tissue. Furthermore, these gene expression profiles (or individual genes) allow screening of drug

10
15
20
25
30

candidates with an eye to mimicking or altering a particular expression profile; for example, screening can be done for drugs that suppress the angiogenic expression profile. This may be done by making biochips comprising sets of the important angiogenesis genes, which can then be used in these screens. These methods can also be done on the protein basis; that is,
5 protein expression levels of the angiogenic proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the angiogenic nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense nucleic acids, or the angiogenic proteins (including antibodies and other modulators thereof) administered as therapeutic drugs.

Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in angiogenesis, herein termed "angiogenesis sequences". As outlined below, angiogenesis sequences include those that are up-regulated (i.e. expressed at a higher level) in disorders associated with angiogenesis, as well as those that are down-regulated (i.e. expressed at a lower level). In a preferred embodiment, the angiogenesis sequences are from humans; however, as will be appreciated by those in the art, angiogenesis sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other angiogenesis sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc). Angiogenesis sequences from other organisms may be obtained using the techniques outlined below.
10
15
20

Angiogenesis sequences can include both nucleic acid and amino acid sequences. In a preferred embodiment, the angiogenesis sequences are recombinant nucleic acids. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed *in vitro*, in general, by the manipulation of nucleic acid *e.g.*, using polymerases and endonucleases, in a form not normally found in nature. Thus an isolated nucleic acid, in a linear form, or an expression vector formed *in vitro* by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, *i.e.* using the *in vivo* cellular machinery of the host cell rather than *in vitro* manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered recombinant for the purposes of the invention.
25
30

Similarly, a "recombinant protein" is a protein made using recombinant techniques, *i.e.* through the expression of a recombinant nucleic acid as depicted above. A

recombinant protein is distinguished from naturally occurring protein by at least one or more characteristics. For example, the protein may be isolated or purified away from some or all of the proteins and compounds with which it is normally associated in its wild type host, and thus may be substantially pure. For example, an isolated protein is unaccompanied by at least 5 some of the material with which it is normally associated in its natural state, preferably constituting at least about 0.5%, more preferably at least about 5% by weight of the total protein in a given sample. A substantially pure protein comprises at least about 75% by weight of the total protein, with at least about 80% being preferred, and at least about 90% being particularly preferred. The definition includes the production of an angiogenesis protein 10 from one organism in a different organism or host cell. Alternatively, the protein may be made at a significantly higher concentration than is normally seen, through the use of an inducible promoter or high expression promoter, such that the protein is made at increased concentration levels. Alternatively, the protein may be in a form not normally found in nature, as in the addition of an epitope tag or amino acid substitutions, insertions and 15 deletions, as discussed below.

In a preferred embodiment, the angiogenesis sequences are nucleic acids. As will be appreciated by those in the art and is more fully outlined below, angiogenesis sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; for example, 20 biochips comprising nucleic acid probes to the angiogenesis sequences can be generated. In the broadest sense, then, by "nucleic acid" or "oligonucleotide" or grammatical equivalents herein means at least two nucleotides covalently linked together. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have alternate backbones, comprising, for 25 example, phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphosphoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press); and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, 30 * and Chapters 6 and 7, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, for

example to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip.

As will be appreciated by those in the art, nucleic acid analogs may find use in the present invention. In addition, mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids.

This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (T_m) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4°C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9°C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary strand; thus the sequences described herein also provide the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus for example the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

An angiogenesis sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the angiogenesis sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.

For identifying angiogenesis-associated sequences, the angiogenesis screen typically includes comparing genes identified in a modification of an *in vitro* model of angiogenesis as described in Hiraoka, Cell 95:365 (1998) with genes identified in controls. Samples of normal tissue and tissue undergoing angiogenesis are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated as is known in the art for the preparation of mRNA. Suitable biochips are commercially available, for example from Affymetrix. Gene expression profiles as described herein are generated and the data analyzed.

In a preferred embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, including, but not limited to lung, heart, brain, liver, breast, kidney, muscle, prostate, small intestine, large intestine, spleen, bone and placenta. In a preferred embodiment, those genes identified during the angiogenesis screen that are expressed in any significant amount in other tissues are removed from the profile, although in some embodiments, this is not necessary. That is, when screening for drugs, it is usually preferable that the target be disease specific, to minimize possible side effects.

In a preferred embodiment, angiogenesis sequences are those that are up-regulated in angiogenesis disorders; that is, the expression of these genes is higher in the disease tissue as compared to normal tissue. "Up-regulation" as used herein means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred. All accession numbers herein are for the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, DA, et al., Nucleic Acids Research 26:1-7 (1998) and <http://www.ncbi.nlm.nih.gov/>. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ). In addition, most preferred genes were found to be expressed in a limited amount or not at all in heart, brain, lung, liver, breast, kidney, prostate, small intestine and spleen.

In another preferred embodiment, angiogenesis sequences are those that are down-regulated in the angiogenesis disorder; that is, the expression of these genes is lower in angiogenic tissue as compared to normal tissue. "Down-regulation" as used herein means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred.

Angiogenesis sequences according to the invention may be classified into discrete clusters of sequences based on common expression profiles of the sequences. Expression levels of angiogenesis sequences may increase or decrease as a function of time in a manner that correlates with the induction of angiogenesis. Alternatively, expression levels 5 of angiogenesis sequences may both increase and decrease as a function of time. For example, expression levels of some angiogenesis sequences are temporarily induced or diminished during the switch to the angiogenesis phenotype, followed by a return to baseline expression levels. Table 1 provides genes, the mRNA expression of which varies as a function of time in angiogenesis tissue when compared to normal tissue.

10 Table 2 provides protein sequences corresponding to the coding regions of the sequences that undergo changes in expression as a function of time in tissue undergoing angiogenesis.

15 In a particularly preferred embodiment, angiogenesis sequences are those that are induced for a period of time, typically by positive angiogenic factors, followed by a return to the baseline levels. Sequences that are temporarily induced provide a means to target angiogenesis tissue, for example neovascularized tumors, at a particular stage of angiogenesis, while avoiding rapidly growing tissue that require perpetual vascularization. Such positive angiogenic factors include α FGF, β FGF, VEGF, angiogenin and the like.

20 Induced angiogenesis sequences also are further categorized with respect to the timing of induction. For example, some angiogenesis genes may be induced at an early time period, such as within 10 minutes of the induction of angiogenesis. Others may be induced later, such as between 5 and 60 minutes, while yet others may be induced for a time period of about two hours or more followed by a return to baseline expression levels.

25 In another preferred embodiment are angiogenesis sequences that are inhibited or reduced as a function of time followed by a return to "normal" expression levels. Inhibitors of angiogenesis are examples of molecules that have this expression profile. These sequences also can be further divided into groups depending on the timing of diminished expression. For example, some molecules may display reduced expression within 10 minutes of the induction of angiogenesis. Others may be diminished later, such as between 5 and 60 30 minutes, while others may be diminished for a time period of about two hours or more followed by a return to baseline. Examples of such negative angiogenic factors include thrombospondin and endostatin to name a few.

In yet another preferred embodiment are angiogenesis sequences that are induced for prolonged periods. These sequences are typically associated with induction of angiogenesis and may participate in induction and/or maintenance of the angiogenesis phenotype.

5 In another preferred embodiment are angiogenesis sequences, the expression of which is reduced or diminished for prolonged periods in angiogenic tissue. These sequences are typically angiogenesis inhibitors and their diminution is correlated with an increase in angiogenesis.

10 **Informatics**

The ability to identify genes that undergo changes in expression with time during angiogenesis can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, biosensor development, and other related areas. For example, the expression profiles can be used in diagnostic or prognostic evaluation of patients with angiogenesis-associated disease. Or as another example, subcellular toxicological information can be generated to better direct drug structure and activity correlation (*see*, Anderson, L., "Pharmaceutical Proteomics: Targets, Mechanism, and Function," paper presented at the IBC Proteomics conference, Coronado, CA (June 11-12, 1998)). Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable exposure thresholds (*see*, U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

25 Thus, in another embodiment, the present invention provides a database that includes at least one set of data assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in substantially any form in which data can be maintained and transmitted, but is preferably an electronic database. The electronic database of the invention can be maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

30 The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases can be assembled for any assay data acquired using an assay of the invention.

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample undergoing angiogenesis, *i.e.*, the identification of angiogenesis-associated sequences described herein, provide an abundance of information, which can be correlated with pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, gene-disease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, prior data processing using high-speed computers is utilized.

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multi-dimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, *e.g.*, with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, e.g., a neoplastic lesion or another tissue specimen to be analyzed for angiogenesis. In another 5 variation, the assay records cross-tabulate one or more of the following parameters for each target species in a sample: (1) a unique identification code, which can include, e.g., a target molecular structure and/or characteristic separation coordinate (e.g., electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

10 The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment, 15 the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

20 When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The 25 comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

The invention also preferably provides a magnetic disk, such as an IBM-30 compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format (e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (*e.g.*, computer, disk array, *etc.*) comprises a pattern of 5 magnetic domains (*e.g.*, magnetic disk) and/or charge domains (*e.g.*, an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results. Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (*e.g.*, DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (*e.g.*, binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor can be a conventional computer (*e.g.*, Intel Pentium, PowerPC, Alpha, PA-8000, SPARC, MIPS 4400, MIPS 10000, VAX, *etc.*); a program can be a commercial or public domain molecular biology software package (*e.g.*, UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (*e.g.*, DRAM, SRAM, SGRAM, SDRAM, EPROM, bubble memory, flash memory, *etc.*); an I/O device can be a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a

collection of peptide sequence specificity records obtained by the methods of the invention, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

5

Angiogenesis-associated sequences

Angiogenesis proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the angiogenesis protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such proteins often results in unregulated or disregulated cellular processes (see, e.g., Molecular Biology of the Cell, 3rd Edition, Alberts, Ed., Garland Pub., 1994). For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2 domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of primary sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate.

In another embodiment, the angiogenesis sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular

domains of such proteins may have a number of functions including those already described for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine 5 kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor 10 guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane 15 domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 20 consecutive hydrophobic amino acids that may be followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the localization and number of transmembrane domains within the protein may be predicted (see, e.g. PSORT web site <http://psort.nibb.ac.jp/>).

The extracellular domains of transmembrane proteins are diverse; however, 20 conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. 25 For example, growth factors such as EGF, FGF and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules. In this respect, they mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell for example via a glycosylphosphatidylinositol 30 (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Angiogenesis proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful

in imaging modalities. Antibodies may be used to label such readily accessible proteins *in situ*. Alternatively, antibodies can also label intracellular proteins, in which case samples are typically permeabilized to provide access to intracellular proteins.

It will also be appreciated by those in the art that a transmembrane protein can 5 be made soluble by removing transmembrane sequences, for example through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the angiogenesis proteins are secreted proteins; the 10 secretion of which can be either constitutive or regulated. These proteins have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; by virtue of their circulating nature, they serve to transmit signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor) or an endocrine manner (acting on cells at a distance). Thus secreted molecules find use in modulating or altering numerous 15 aspects of physiology. Angiogenesis proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, e.g., for blood or serum tests.

An angiogenesis sequence is initially identified by substantial nucleic acid 20 and/or amino acid sequence homology or linkage to the angiogenesis sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

As detailed in the definitions, percent identity can be determined using an 25 algorithm such as BLAST. A preferred method utilizes the BLASTN module of WU-BLAST-2 set to the default parameters, with overlap span and overlap fraction set to 1 and 0.125, respectively. The alignment may include the introduction of gaps in the sequences to be aligned. In addition, for sequences which contain either more or fewer nucleotides than 30 those of the nucleic acids of the figure, it is understood that the percentage of homology will be determined based on the number of homologous nucleosides in relation to the total number of nucleosides. Thus, for example, homology of sequences shorter than those of the sequences identified herein and as discussed below, will be determined using the number of nucleosides in the shorter sequence.

In one embodiment, the nucleic acid homology is determined through hybridization studies. Thus, *e.g.*, nucleic acids which hybridize under high stringency to a nucleic acid of Table 1, or its complement, or is also found on naturally occurring mRNAs is considered an angiogenesis sequence. In another embodiment, less stringent hybridization conditions are used; for example, moderate or low stringency conditions may be used, as are known in the art; see Ausubel, *supra*, and Tijssen, *supra*.

In addition, the angiogenesis nucleic acid sequences of the invention, *e.g.*, the sequence in Table 1, are fragments of larger genes, *i.e.* they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the angiogenesis genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, *et al.*, *supra*. Much can be done by informatics and many sequences can be clustered to include multiple sequences, *e.g.*, systems such as UniGene (see, <http://www.ncbi.nlm.nih.gov/UniGene/>).

Once the angiogenesis nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire angiogenesis nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, *e.g.*, contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant angiogenesis nucleic acid can be further-used as a probe to identify and isolate other angiogenesis nucleic acids, for example extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant angiogenesis nucleic acids and proteins.

The angiogenesis nucleic acids of the present invention are used in several ways. In a first embodiment, nucleic acid probes to the angiogenesis nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, for example for gene therapy, vaccine, and/or antisense applications. Alternatively, the angiogenesis nucleic acids that include coding regions of angiogenesis proteins can be put into expression vectors for the expression of angiogenesis proteins, again for screening purposes or for administration to a patient.

In a preferred embodiment, nucleic acid probes to angiogenesis nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the angiogenesis nucleic acids, *i.e.* the target sequence (either the target

sequence of the sample or to other probe sequences, for example in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions, as outlined herein.

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally whole genes are not used. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a particular target. The probes can be overlapping (*i.e.* have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is meant one or more of electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be

formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

In general, the probes are attached to the biochip in a wide variety of ways, as
5 will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonJ, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluoresce. A preferred substrate is described in copending application entitled Reusable Low Fluorescent Plastic Biochip, U.S. Application Serial No. 09/270,214, filed March 15, 20 1999, herein incorporated by reference in its entirety.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, for example, the biochip is derivatized with a chemical functional group including, but not limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, for example using linkers as are known in the art; for example, homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200, incorporated

herein by reference). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.

5 In this embodiment, oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5' or 3' terminus may be attached to the solid support, or attachment may be via an internal nucleoside.

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

10 Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized *in situ*, using well known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affymetrix GeneChip™ technology.

Often, amplification-based assays are performed to measure the expression level of angiogenesis-associated sequences. These assays are typically performed in conjunction with reverse transcription. In such assays, an angiogenesis-associated nucleic acid sequence acts as a template in an amplification reaction (*e.g.*, Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of angiogenesis-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for 20 quantitative PCR are provided, *e.g.*, in Innis *et al.* (1990) *PCR Protocols, A Guide to Methods and Applications*, Academic Press, Inc. N.Y.).

30 In some embodiments, a TaqMan based assay is used to measure expression. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, *e.g.*, AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of

amplification (see, for example, literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com).

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see, Wu and Wallace (1989) *Genomics* 4: 560, Landegren *et al.* (1988) *Science* 241: 1077, and Barringer *et al.* (1990) *Gene* 89: 117), transcription amplification (Kwoh *et al.* (1989) *Proc. Natl. Acad. Sci. USA* 86: 1173), self-sustained sequence replication (Guatelli *et al.* (1990) *Proc. Natl. Acad. Sci. USA* 87: 1874), dot PCR, and linker adapter PCR, etc.

In a preferred embodiment, angiogenesis nucleic acids, e.g., encoding

angiogenesis proteins are used to make a variety of expression vectors to express angiogenesis proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known to those of skill in the art (see, e.g., Ausubel, *supra*, and Gene Expression Systems, Fernandez & Hoeffler, Eds, Academic Press, 1999) and are used to express proteins. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the angiogenesis protein. The term "control sequences" refers to DNA sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the angiogenesis

protein; for example, transcriptional and translational regulatory nucleic acid sequences from *Bacillus* are preferably used to express the angiogenesis protein in *Bacillus*. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

5 In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

10 Promoter sequences encode either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

15 In addition, an expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, for example in mammalian or insect cells for expression and in a prokaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct.

20 The integrating vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art (e.g., Fernandez & Hoeffler, *supra*).

25 In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

The angiogenesis proteins of the present invention are produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding an angiogenesis protein, under the appropriate conditions to induce or cause expression of the angiogenesis protein. Conditions appropriate for angiogenesis protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest

is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

Appropriate host cells include yeast, bacteria, archaeabacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are *Saccharomyces cerevisiae* and other yeasts, *E. coli*, *Bacillus subtilis*, Sf9 cells, C129 cells, 293 cells, *Neurospora*, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the angiogenesis proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include retroviral and adenoviral systems. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter (see, e.g., Fernandez & Hoeffler, *supra*). Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenylation signals include those derived from SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used. Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

In a preferred embodiment, angiogenesis proteins are expressed in bacterial systems. Bacterial expression systems are well known in the art. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; for example, the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the angiogenesis protein in bacteria. The protein is either

secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for *Bacillus subtilis*, *E. coli*, *Streptococcus cremoris*, and *Streptococcus lividans*, among others (e.g., Fernandez & Hoeffler, *supra*). The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

In one embodiment, angiogenesis proteins are produced in insect cells.

Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.

In a preferred embodiment, angiogenesis protein is produced in yeast cells.

Yeast expression systems are well known in the art, and include expression vectors for *Saccharomyces cerevisiae*, *Candida albicans* and *C. maltosa*, *Hansenula polymorpha*, *Kluyveromyces fragilis* and *K. lactis*, *Pichia guillermondii* and *P. pastoris*, *Schizosaccharomyces pombe*, and *Yarrowia lipolytica*.

The angiogenesis protein may also be made as a fusion protein, using techniques well known in the art. Thus, for example, for the creation of monoclonal antibodies, if the desired epitope is small, the angiogenesis protein may be fused to a carrier protein to form an immunogen. Alternatively, the angiogenesis protein may be made as a fusion protein to increase expression, or for other reasons. For example, when the angiogenesis protein is an angiogenesis peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.

In one embodiment, the angiogenesis nucleic acids, proteins and antibodies of the invention are labeled. By "labeled" herein is meant that a compound has at least one element, isotope or chemical compound attached to enable the detection of the compound. In general, labels fall into three classes: a) isotopic labels, which may be radioactive or heavy isotopes; b) immune labels, which may be antibodies or antigens; and c) colored or fluorescent dyes. The labels may be incorporated into the angiogenesis nucleic acids, proteins and antibodies at any position. For example, the label should be capable of

producing, either directly or indirectly, a detectable signal. The detectable moiety may be a radioisotope, such as ^3H , ^{14}C , ^{32}P , ^{35}S , or ^{125}I , a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin, or an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase. Any method known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter et al., *Nature*, 144:945 (1962); David et al., *Biochemistry*, 13:1014 (1974); Pain et al., *J. Immunol. Meth.*, 40:219 (1981); and Nygren, *J. Histochem. and Cytochem.*, 30:407 (1982).

Accordingly, the present invention also provides angiogenesis protein sequences. An angiogenesis protein of the present invention may be identified in several ways. "Protein" in this sense includes proteins, polypeptides, and peptides. As will be appreciated by those in the art, the nucleic acid sequences of the invention can be used to generate protein sequences. There are a variety of ways to do this, including cloning the entire gene and verifying its frame and amino acid sequence, or by comparing it to known sequences to search for homology to provide a frame, assuming the angiogenesis protein has an identifiable motif or homology to some protein in the database being used. Generally, the nucleic acid sequences are input into a program that will search all three frames for homology. This is done in a preferred embodiment using the following NCBI Advanced BLAST parameters. The program is blastx or blastn. The database is nr. The input data is as "Sequence in FASTA format". The organism list is "none". The "expect" is 10; the filter is default. The "descriptions" is 500, the "alignments" is 500, and the "alignment view" is pairwise. The "Query Genetic Codes" is standard (1). The matrix is BLOSUM62; gap existence cost is 11, per residue gap cost is 1; and the lambda ratio is .85 default. This results in the generation of a putative protein sequence.

Also included within one embodiment of angiogenesis proteins are amino acid variants of the naturally occurring sequences, as determined herein. Preferably, the variants are preferably greater than about 75% homologous to the wild-type sequence, more preferably greater than about 80%, even more preferably greater than about 85% and most preferably greater than 90%. In some embodiments the homology will be as high as about 93 to 95 or 98%. As for nucleic acids, homology in this context means sequence similarity or identity, with identity being preferred. This homology will be determined using standard techniques well known in the art as are outlined above for the nucleic acid homologies.

Angiogenesis proteins of the present invention may be shorter or longer than the wild type amino acid sequences. Thus, in a preferred embodiment, included within the

definition of angiogenesis proteins are portions or fragments of the wild type sequences. herein. In addition, as outlined above, the angiogenesis nucleic acids of the invention may be used to obtain additional coding regions, and thus additional protein sequence, using techniques known in the art.

5 In a preferred embodiment, the angiogenesis proteins are derivative or variant angiogenesis proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative angiogenesis peptide will often contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at any residue within the

10 angiogenesis peptide.

Also included within one embodiment of angiogenesis proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the angiogenesis protein, using cassette or PCR mutagenesis or other techniques well known in the art, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant angiogenesis protein fragments having up to about 100-150 residues may be prepared by in vitro synthesis using established techniques. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the angiogenesis protein amino acid sequence. The variants typically exhibit the same qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

25 While the site or region for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed angiogenesis variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, for example, M13 30 primer mutagenesis and PCR mutagenesis. Screening of the mutants is done using assays of angiogenesis protein activities.

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger

insertions may be tolerated. Deletions range from about 1 to about 20 residues, although in some cases deletions may be much larger.

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. However, larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of the angiogenesis protein are desired, substitutions are generally made in accordance with the amino acid substitution chart provided in the definition section.

Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those provided in the definition of "conservative substitution". For example, substitutions may be made which more significantly affect: the structure of the polypeptide backbone in the area of the alteration, for example the alpha-helical or beta-sheet structure; the charge or hydrophobicity of the molecule at the target site; or the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in the polypeptide's properties are those in which (a) a hydrophilic residue, e.g. seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g. lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g. glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g. phenylalanine, is substituted for (or by) one not having a side chain, e.g. glycine.

The variants typically exhibit the same qualitative biological activity and will elicit the same immune response as the naturally-occurring analog, although variants also are selected to modify the characteristics of the angiogenesis proteins as needed. Alternatively, the variant may be designed such that the biological activity of the angiogenesis protein is altered. For example, glycosylation sites may be altered or removed.

Covalent modifications of angiogenesis polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of an angiogenesis polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of an angiogenesis polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking angiogenesis polypeptides to a water-insoluble support matrix or surface for use in the method for purifying anti-angiogenesis polypeptide antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, e.g., 1,1-

bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate.

5 Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl, threonyl or tyrosyl residues, methylation of the γ -amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

10 Another type of covalent modification of the angiogenesis polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence angiogenesis polypeptide, and/or adding one or more glycosylation sites that are not present in the native sequence angiogenesis polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express angiogenesis-associated sequences can result in different glycosylation patterns.

15 20 Addition of glycosylation sites to angiogenesis polypeptides may also be accomplished by altering the amino acid sequence thereof. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence angiogenesis polypeptide (for O-linked glycosylation sites). The angiogenesis amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the angiogenesis polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

25 30 Another means of increasing the number of carbohydrate moieties on the angiogenesis polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published September 1987, and in Aplin and Wriston, CRC Crit. Rev. Bioc. & Chem., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the angiogenesis polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical

deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo-and exo-glycosidases as described by Thotakura et al., Meth.

5 Enzymol., 138:350 (1987).

Another type of covalent modification of angiogenesis comprises linking the angiogenesis polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

10 Angiogenesis polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising an angiogenesis polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of an angiogenesis polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino-or carboxyl-terminus of the angiogenesis polypeptide. The presence of such epitope-tagged forms of an angiogenesis polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the angiogenesis polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of an angiogenesis polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

25 Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; HIS6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide 30 [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)].

Also included with an embodiment of angiogenesis protein are other angiogenesis proteins of the angiogenesis family, and angiogenesis proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related

5 angiogenesis proteins from humans or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include the unique areas of the angiogenesis nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. The conditions for the PCR reaction are well

10 known in the art (*e.g.*, Innis, PCR Protocols, *supra*).

In addition, as is outlined herein, angiogenesis proteins can be made that are longer than those encoded by the nucleic acids of the figures, *e.g.*, by the elucidation of extended sequences, the addition of epitope or purification tags, the addition of other fusion sequences, etc.

Angiogenesis proteins may also be identified as being encoded by angiogenesis nucleic acids. Thus, angiogenesis proteins are encoded by nucleic acids that will hybridize to the sequences of the sequence listings, or their complements, as outlined herein.

In a preferred embodiment, when the angiogenesis protein is to be used to generate antibodies, *e.g.*, for immunotherapy or immunodiagnosis, the angiogenesis protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller angiogenesis protein will be able to bind to the full-length protein, particularly linear epitopes. In a preferred embodiment, the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity. In a preferred embodiment, the epitope is selected from a protein sequence set out in Table 2.

Methods of preparing polyclonal antibodies are known to the skilled artisan (*e.g.*, Coligan, *supra*; and Harlow & Lane, *supra*). Polyclonal antibodies can be raised in a mammal, *e.g.*, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of the figures or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in

SEARCHED
INDEXED
FILED
15

20

25

30

the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.

The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, *Nature*, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of Table 1, or fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, *Monoclonal Antibodies: Principles and Practice*, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens or that have binding specificities for two epitopes on the same antigen. In one embodiment, one of the binding specificities is for a protein encoded by a nucleic acid Table 1 or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent reagents.

In a preferred embodiment, the antibodies to angiogenesis protein are capable of reducing or eliminating a biological function of an angiogenesis protein, as is described below. That is, the addition of anti-angiogenesis protein antibodies (either polyclonal or preferably monoclonal) to angiogenic tissue (or cells containing angiogenesis) may reduce or eliminate the angiogenesis activity. Generally, at least a 25% decrease in activity is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.

In a preferred embodiment the antibodies to the angiogenesis proteins are humanized antibodies (*e.g.*, Xenerex Biosciences, Mederex, Inc., Abgenix, Inc., Protein Design Labs, Inc.) Humanized forms of non-human (*e.g.*, murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues form a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [*Jones et al., Nature*, 321:522-525 (1986); *Riechmann et al., Nature*, 332:323-329 (1988); and *Presta, Curr. Op. Struct. Biol.*, 2:593-596 (1992)].

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co-workers [*Jones et al., Nature*, 321:522-525 (1986); *Riechmann et al., Nature*, 332:323-327 (1988); *Verhoeyen et al., Science*, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the

corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, *J. Mol. Biol.*, 227:381 (1991); Marks et al., *J. Mol. Biol.*, 222:581 (1991)]. The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, p. 77 (1985) and Boerner et al., *J. Immunol.*, 147(1):86-95 (1991)]. Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., *Bio/Technology* 10, 779-783 (1992); Lonberg et al., *Nature* 368 856-859 (1994); Morrison, *Nature* 368, 812-13 (1994); Fishwild et al., *Nature Biotechnology* 14, 845-51 (1996); Neuberger, *Nature Biotechnology* 14, 826 (1996); Lonberg and Huszar, *Intern. Rev. Immunol.* 13 65-93 (1995).

By immunotherapy is meant treatment of angiogenesis with an antibody raised against angiogenesis proteins. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. As appreciated by one of ordinary skill in the art, the antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

In a preferred embodiment the angiogenesis proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory,

antibodies used for treatment, bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted angiogenesis protein.

In another preferred embodiment, the angiogenesis protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment, bind the extracellular domain of the angiogenesis protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The antibody may cause down-regulation of the transmembrane angiogenesis protein. As will be appreciated by one of ordinary skill in the art, the antibody may be a competitive, non-competitive or uncompetitive inhibitor of protein binding to the extracellular domain of the angiogenesis protein. The antibody is also an antagonist of the angiogenesis protein.

Further, the antibody prevents activation of the transmembrane angiogenesis protein. In one aspect, when the antibody prevents the binding of other molecules to the angiogenesis protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF- α , TNF- β , IL-1, INF- γ and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody belongs to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, angiogenesis is treated by administering to a patient antibodies directed against the transmembrane angiogenesis protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated to an effector moiety. The effector moiety can be any number of molecules, including labelling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of the angiogenesis protein. In another aspect the therapeutic moiety modulates the activity of molecules associated with or in close proximity to the angiogenesis protein. The therapeutic moiety may inhibit enzymatic activity such as protease or collagenase activity associated with angiogenesis.

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to angiogenesis tissue or cells, results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with angiogenesis. Cytotoxic agents are numerous and varied and include, but are not limited to,

cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against angiogenesis proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane angiogenesis proteins not only serves to increase the local concentration of therapeutic moiety in the angiogenesis afflicted area, but also serves to reduce deleterious side effects that may be associated with the therapeutic moiety.

In another preferred embodiment, the angiogenesis protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the angiogenesis protein can be targeted within a cell, i.e., the nucleus, an antibody thereto contains a signal for that target localization, i.e., a nuclear localization signal.

The angiogenesis antibodies of the invention specifically bind to angiogenesis proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 μM , preferably at least about 0.1 μM or better, and most preferably, 0.01 μM or better. Selectivity of binding is also important.

In a preferred embodiment, the angiogenesis protein is purified or isolated after expression. Angiogenesis proteins may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the angiogenesis protein may be purified using a standard anti-angiogenesis protein antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes, R., Protein Purification, Springer-Verlag, NY (1982). The degree of purification necessary will vary depending on the use of the angiogenesis protein. In some instances no purification will be necessary.

Once expressed and purified if necessary, the angiogenesis proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, etc.

5 *Detection of angiogenesis sequence for diagnostic and therapeutic applications*

In one aspect, the RNA expression levels of genes are determined for different cellular states in the angiogenesis phenotype. Expression levels of genes in normal tissue (*i.e.*, not undergoing angiogenesis) and in angiogenesis tissue (and in some cases, for varying severities of angiogenesis that relate to prognosis, as outlined below) are evaluated to provide expression profiles. An expression profile of a particular cell state or point of development is essentially a “fingerprint” of the state. While two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or angiogenic tissue. This will provide for molecular diagnosis of related conditions.

“Differential expression,” or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, *in, e.g.,* normal versus angiogenic tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, *e.g.,* in that expression is increased or decreased; *i.e.*, gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip™ expression arrays, Lockhart, Nature Biotechnology, 14:1675-1680 (1996), hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, Northern analysis and RNase protection. As outlined

above, preferably the change in expression (*i.e.*, upregulation or downregulation) is at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from 300 to at least 1000% being especially preferred.

Evaluation may be at the gene transcript, or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the DNA or RNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, *e.g.*, with antibodies to the angiogenesis protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to angiogenesis genes, *i.e.*, those identified as being important in an angiogenesis phenotype, can be evaluated in an angiogenesis diagnostic test.

In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes. Multiple protein expression monitoring can be performed as well. Similarly, these assays may be performed on an individual basis as well.

In this embodiment, the angiogenesis nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of angiogenesis sequences in a particular cell. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity.

In a preferred embodiment nucleic acids encoding the angiogenesis protein are detected. Although DNA or RNA encoding the angiogenesis protein may be detected, of particular interest are methods wherein an mRNA encoding an angiogenesis protein is detected. Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed *in situ*. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxigenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding an angiogenesis protein is detected by binding the digoxigenin with an anti-digoxigenin

secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The angiogenesis proteins, antibodies, nucleic acids, modified proteins and cells containing angiogenesis sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding

10 polypeptides.

As described and defined herein, angiogenesis proteins, including intracellular, transmembrane or secreted proteins, find use as markers of angiogenesis. Detection of these proteins in putative angiogenesis tissue allows for detection or diagnosis of angiogenesis. In one embodiment, antibodies are used to detect angiogenesis proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the angiogenesis protein is detected, e.g., by immunoblotting with antibodies raised against the angiogenesis protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

In another preferred method, antibodies to the angiogenesis protein find use in *in situ* imaging techniques, e.g., in histology (e.g., *Methods in Cell Biology: Antibodies in Cell Biology*, volume 37 (Asai, ed. 1993)). In this method cells are contacted with from one to many antibodies to the angiogenesis protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label. In another method the primary antibody to the angiogenesis protein(s) contains a detectable label, for example an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of angiogenesis proteins. As will be appreciated by one of ordinary skill in the art, many other histological imaging techniques are also provided by the invention.

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

In another preferred embodiment, antibodies find use in diagnosing angiogenesis from blood samples. As previously described, certain angiogenesis proteins are secreted/circulating molecules. Blood samples, therefore, are useful as samples to be probed or tested for the presence of secreted angiogenesis proteins. Antibodies can be used to detect an angiogenesis protein by previously described immunoassay techniques including ELISA, immunoblotting (Western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous angiogenesis protein.

In a preferred embodiment, *in situ* hybridization of labeled angiogenesis nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including angiogenesis tissue and/or normal tissue, are made. *In situ* hybridization (see, e.g., Ausubel, *supra*) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of outcomes.

In a preferred embodiment, the angiogenesis proteins, antibodies, nucleic acids, modified proteins and cells containing angiogenesis sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to angiogenesis severity, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. As above, angiogenesis probes may be attached to biochips for the detection and quantification of angiogenesis sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more sensitive and accurate quantification.

In a preferred embodiment members of the three classes of proteins as described herein are used in drug screening assays. The angiogenesis proteins, antibodies, nucleic acids, modified proteins and cells containing angiogenesis sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Zlokarnik, et al., *Science* 279, 84-8 (1998); Heid, *Genome Res* 6:986-94, 1996).

In a preferred embodiment, the angiogenesis proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified angiogenesis proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the angiogenesis phenotype or an identified physiological function of an angiogenesis protein. As above, this can be done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, *supra*.

Having identified the differentially expressed genes herein, a variety of assays may be executed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene as up regulated in angiogenesis, test compounds can be screened for the ability to modulate gene expression or for binding to the angiogenic protein. "Modulation" thus includes both an increase and a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing angiogenesis, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in angiogenic tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in angiogenic tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, e.g., through the use of antibodies to the angiogenesis protein and standard immunoassays. Proteomics and separation techniques may also allow quantification of expression.

In a preferred embodiment, gene expression or protein monitoring of a number of entities, i.e., an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein..

In this embodiment, the angiogenesis nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of angiogenesis sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, e.g., of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Modulators of angiogenesis

Expression monitoring can be performed to identify compounds that modify the expression of one or more angiogenesis-associated sequences, *e.g.*, a polynucleotide sequence set out in Table 1. Generally, in a preferred embodiment, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate angiogenesis, modulate angiogenesis proteins, bind to an angiogenesis protein, or interfere with the binding of an angiogenesis protein and an antibody or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes any molecule, *e.g.*, protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, *etc.*, to be tested for the capacity to directly or indirectly alter the angiogenesis phenotype or the expression of an angiogenesis sequence, *e.g.*, a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses an angiogenesis phenotype, for example to a normal tissue fingerprint. In another embodiment, a modulator induced an angiogenesis phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, *i.e.*, at zero concentration or below the level of detection.

In one aspect, a modulator will neutralize the effect of an angiogenesis protein. By "neutralize" is meant that activity of a protein is inhibited or blocked and thereby has substantially no effect on a cell.

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to an angiogenesis polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, *e.g.*, inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more

assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical
5 compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical
10 compounds can be synthesized through such combinatorial mixing of chemical building blocks (Gallop *et al.* (1994) *J. Med. Chem.* 37(9): 1233-1251).

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka (1991) *Int. J. Pept. Prot. Res.*, 37: 487-493, Houghton *et al.* (1991) *Nature*, 354: 84-88), peptoids (PCT Publication No WO 91/19735, 26 Dec. 1991), encoded peptides (PCT Publication WO 93/20242, 14 Oct. 1993), random bio-oligomers (PCT Publication WO 92/00091, 9 Jan. 1992), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs *et al.*, (1993) *Proc. Nat. Acad. Sci. USA* 90: 6909-6913), vinylogous polypeptides (Hagihara *et al.* (1992) *J. Amer. Chem. Soc.* 114: 6568), nonpeptidal peptidomimetics with a Beta-D-
20 Glucose scaffolding (Hirschmann *et al.*, (1992) *J. Amer. Chem. Soc.* 114: 9217-9218), analogous organic syntheses of small compound libraries (Chen *et al.* (1994) *J. Amer. Chem. Soc.* 116: 2661), oligocarbamates (Cho, et al., (1993) *Science* 261:1303), and/or peptidyl phosphonates (Campbell *et al.*, (1994) *J. Org. Chem.* 59: 658). See, generally, Gordon *et al.*,
25 (1994) *J. Med. Chem.* 37:1385, nucleic acid libraries (see, e.g., Strategene, Corp.), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn *et al.* (1996) *Nature Biotechnology*, 14(3): 309-314), and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang *et al.*, (1996) *Science*, 274: 1520-1522, and U.S. Patent No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum (1993)
30 C&EN, Jan 18, page 15; isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506,337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA).

5 A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, RU, Tripos, Inc., St. Louis, MO, ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

10 The assays to identify modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of angiogenesis gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of 15 polypeptide activity.

20 High throughput assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, for example, U.S. Patent No. 5,559,410 discloses high throughput screening methods for 25 proteins, U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (*i.e.*, in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

30 In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide

SEARCHED
INDEXED
15
SERIALIZED
FILED

detailed protocols for various high throughput systems. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

In one embodiment, modulators are proteins, often naturally occurring 5 proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes or ligands and receptors.

In a preferred embodiment, modulators are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. By 10 "randomized" or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally 15 these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or amino acid at any position. The synthetic process can be 20 designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, the library is fully randomized, with no sequence 25 preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or 30 amino acid residues are randomized within a defined class, for example, of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.

Modulators of angiogenesis can also be nucleic acids, as defined above.

As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids.

For example, digests of prokaryotic or eucaryotic genomes may be used as is outlined above for proteins.

In a preferred embodiment, the candidate compounds are organic chemical moieties, a wide variety of which are available in the literature.

5 After the candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence to be analyzed is added to the biochip. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an *in vitro* transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

10 In a preferred embodiment, the target sequence is labeled with, for example, a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the 15 streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

20 As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5,681,702, 5,597,909, 5,545,730, 25 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

30 " A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allows formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to,

temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, *e.g.* albumin, detergents, *etc.* which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, *etc.*, may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

Screens are performed to identify modulators of the angiogenesis phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, *e.g.*, for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.

In addition screens can be done for genes that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress an angiogenesis expression pattern leading to a normal expression pattern, or to modulate a single angiogenesis gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated angiogenesis tissue reveals genes that are not expressed in normal tissue or angiogenesis tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for angiogenesis

genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the agent induced proteins and used to target novel therapeutics to the treated angiogenesis tissue sample.

5 Thus, in one embodiment, a test compound is administered to a population of angiogenic cells, that have an associated angiogenesis expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (*i.e.*, a peptide) may be put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, *e.g.*, PCT US97/01019. Regulatable gene therapy systems can also be used.

10 Once the test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

15 Thus, for example, angiogenesis tissue may be screened for agents that modulate, *e.g.*, induce or suppress the angiogenesis phenotype. A change in at least one 20 gene, preferably many, of the expression profile indicates that the agent has an effect on angiogenesis activity. By defining such a signature for the angiogenesis phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

25 Measure of angiogenesis polypeptide activity, or of angiogenesis or the angiogenic phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the angiogenesis polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention. 30 When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of angiogenesis associated with tumors, tumor growth, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (*e.g.*, northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In

the assays of the invention, mammalian angiogenesis polypeptide is typically used, e.g., mouse, preferably human.

A variety of angiogenesis assays are known to those of skill in the art. Various models have been employed to evaluate angiogenesis (e.g., Croix *et al.*, *Science* 289:1197-1202, 2000 and Kahn *et al.*, *Amer. J. Pathol.* 156:1887-1900). Assessment of angiogenesis in the presence of a potential modulator of angiogenesis can be performed using cell-culture-based angiogenesis assays, e.g., endothelial cell tube formation assays, as well as other bioassays such as the chick CAM assay, the mouse corneal assay, and assays measuring the effect of administering potential modulators on implanted tumors. The chick CAM assay is described by O'Reilly, *et al.* *Cell* 79: 315-328, 1994. Briefly, 3 day old chicken embryos with intact yolks are separated from the egg and placed in a petri dish. After 3 days of incubation, a methylcellulose disc containing the protein to be tested is applied to the CAM of individual embryos. After about 48 hours of incubation, the embryos and CAMs are observed to determine whether endothelial growth has been inhibited. The mouse corneal assay involves implanting a growth factor-containing pellet, along with another pellet containing the suspected endothelial growth inhibitor, in the cornea of a mouse and observing the pattern of capillaries that are elaborated in the cornea. Angiogenesis can also be measured by determining the extent of neovascularization of a tumor. For example, carcinoma cells can be subcutaneously inoculated into athymic nude mice and tumor growth then monitored. The cancer cells are treated with an angiogenesis inhibitor, such as an antibody, or other compound that is exogenously administered, or can be transfected prior to inoculation with a polynucleotide inhibitor of angiogenesis. Immunoassays using endothelial cell-specific antibodies are typically used to stain for vascularization of tumor and the number of vessels in the tumor.

Assays to identify compounds with modulating activity can be performed *in vitro*. For example, an angiogenesis polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the angiogenesis polypeptide levels are determined *in vitro* by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the angiogenesis polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNase protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled

40
50
60
70
80
90
100
110
120
130
140
150

detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

Alternatively, a reporter gene system can be devised using the angiogenesis protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "angiogenesis proteins". In preferred embodiments the angiogenesis protein comprises a sequence shown in Table 2. The angiogenesis protein may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

Preferably, the angiogenesis protein is a fragment of approximately 14 to 24 amino acids long. More preferably the fragment is a soluble fragment. In one embodiment an angiogenesis protein is conjugated to an immunogenic agent or BSA.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the angiogenesis proteins can be used in the assays.

30 These, in a preferred embodiment, the methods comprise combining an angiogenesis protein and a candidate compound, and determining the binding of the compound to the angiogenesis protein. Preferred embodiments utilize the human angiogenesis protein, although other mammalian proteins may also be used, for example for

40
45
50
55
60
65
70
75
80
85

the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative angiogenesis proteins may be used.

Generally, in a preferred embodiment of the methods herein, the angiogenesis protein or the candidate agent is non-diffusably bound to an insoluble support having isolated sample receiving areas (e.g. a microtiter plate, an array, etc.). The insoluble supports may be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of any convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflon™, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusible. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

In a preferred embodiment, the angiogenesis protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the angiogenesis protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the angiogenesis protein may be done in a number of ways. In a preferred embodiment, the compound is labelled, and binding determined directly, e.g., by attaching all or a portion of the angiogenesis protein to a solid support, adding a labelled candidate agent (e.g., a

10
15
20
25

fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

By "labeled" herein is meant that the compound is either directly or indirectly labeled with a label which provides a detectable signal, *e.g.* radioisotope, fluorescers, 5 enzyme, antibodies, particles such as magnetic particles, chemiluminescers, or specific binding molecules, etc. Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin, etc. For the specific binding members, the complementary member would normally be labeled with a molecule which provides for detection, in accordance with known procedures, as outlined above. The label can directly or indirectly provide a detectable signal.

In some embodiments, only one of the components is labeled, *e.g.*, the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one component can be labeled with different labels, *e.g.*, ^{125}I for the proteins and a fluorophor for the compound. Proximity reagents, *e.g.*, quenching or energy transfer reagents are also useful.

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor is a binding moiety known to bind to the target molecule (*i.e.* an angiogenesis protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound 20 and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically between 4 and 40°C. Incubation periods are typically optimized, *e.g.*, to facilitate rapid high throughput 25 screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

In a preferred embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding 30 to the angiogenesis protein and thus is capable of binding to, and potentially modulating, the activity of the angiogenesis protein. In this embodiment, either component can be labeled. Thus, for example, if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the angiogenesis protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the angiogenesis protein.

In a preferred embodiment, the methods comprise differential screening to identify agents that are capable of modulating the activity of the angiogenesis proteins. In this embodiment, the methods comprise combining an angiogenesis protein and a competitor in a first sample. A second sample comprises a test compound, an angiogenesis protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the angiogenesis protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the angiogenesis protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native angiogenesis protein, but cannot bind to modified angiogenesis proteins. The structure of the angiogenesis protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of an angiogenesis protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of an angiogenesis protein. The methods comprise adding a test compound, as defined above, to a cell comprising angiogenesis proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes an angiogenesis protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, for example hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (*i.e.* cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate angiogenesis agents are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the angiogenesis protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting angiogenic cell division is provided. The method comprises administration of an angiogenesis inhibitor. In another embodiment, a method of inhibiting angiogenesis is provided. The method comprises administration of an angiogenesis inhibitor. In a further embodiment, methods of treating cells or individuals with angiogenesis are provided. The method comprises administration of an angiogenesis inhibitor.

In one embodiment, an angiogenesis inhibitor is an antibody as discussed above. In another embodiment, the angiogenesis inhibitor is an antisense molecule.

25 Polynucleotide modulators of angiogenesis

Antisense Polynucleotides

In certain embodiments, the activity of an angiogenesis-associated protein is downregulated, or entirely inhibited, by the use of antisense polynucleotide, *i.e.*, a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, *e.g.*, an angiogenesis protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring

subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the angiogenesis protein 5 mRNA. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized *in vitro*. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense

oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for angiogenesis molecules. A preferred antisense molecule is for an angiogenesis sequences in Table 1, or for a ligand or activator thereof. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (Cancer Res. 48:2659, 1988) and van der Krol et al. (BioTechniques 6:958, 1988).

Ribozymes

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of angiogenesis-associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto *et al.* (1994) *Adv. in Pharmacology* 25: 289-317 for a general review of the properties of different ribozymes).

The general features of hairpin ribozymes are described, e.g., in Hampel *et al.* (1990) *Nucl. Acids Res.* 18: 299-304; Hampel *et al.* (1990) European Patent Publication No. 0 360 257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., Wong-Staal *et al.*, WO 94/26877; Ojwang *et al.* (1993) *Proc. Natl. Acad. Sci. USA* 90: 6340-6344; Yamada *et al.* (1994) *Human Gene Therapy* 1: 39-45; Leavitt *et al.*

(1995) *Proc. Natl. Acad. Sci. USA* 92: 699-703; Leavitt *et al.* (1994) *Human Gene Therapy* 5: 1151-120; and Yamada *et al.* (1994) *Virology* 205: 121-126).

Polynucleotide modulators of angiogenesis may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of angiogenesis may be introduced into a cell containing the target nucleic acid sequence, *e.g.*, by formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

Thus, in one embodiment, methods of modulating angiogenesis in cells or organisms are provided. In one embodiment, the methods comprise administering to a cell an anti-angiogenesis antibody that reduces or eliminates the biological activity of an endogeneous angiogenesis protein. Alternatively, the methods comprise administering to a cell or organism a recombinant nucleic acid encoding an angiogenesis protein. This may be accomplished in any number of ways. In a preferred embodiment, for example when the angiogenesis sequence is down-regulated in angiogenesis, such state may be reversed by increasing the amount of angiogenesis gene product in the cell. This can be accomplished, *e.g.*, by overexpressing the endogeneous angiogenesis gene or administering a gene encoding the angiogenesis sequence, using known gene-therapy techniques, for example. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), for example as described in PCT/US93/03868, hereby incorporated by reference in its entirety. Alternatively, for example when the angiogenesis sequence is up-regulated in angiogenesis, the activity of the endogeneous angiogenesis gene is decreased, for example by the administration of a angiogenesis antisense nucleic acid.

In one embodiment, the angiogenesis proteins of the present invention may be used to generate polyclonal and monoclonal antibodies to angiogenesis proteins. Similarly, the angiogenesis proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify angiogenesis

antibodies useful for production, diagnostic, or therapeutic purposes. In a preferred embodiment, the antibodies are generated to epitopes unique to a angiogenesis protein; that is, the antibodies show little or no cross-reactivity to other proteins. The angiogenesis antibodies may be coupled to standard affinity chromatography columns and used to purify 5 angiogenesis proteins. The antibodies may also be used as blocking polypeptides, as outlined above, since they will specifically bind to the angiogenesis protein.

Methods of identifying variant angiogenesis-associated sequences

Without being bound by theory, expression of various angiogenesis sequences 10 is correlated with angiogenesis. Accordingly, disorders based on mutant or variant angiogenesis genes may be determined. In one embodiment, the invention provides methods for identifying cells containing variant angiogenesis genes, e.g., determining all or part of the sequence of at least one endogenous angiogenesis genes in a cell. This may be accomplished using any number of sequencing techniques. In a preferred embodiment, the invention provides methods of identifying the angiogenesis genotype of an individual, e.g., determining all or part of the sequence of at least one angiogenesis gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation 15 of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced angiogenesis gene to a known angiogenesis gene, 20 i.e., a wild-type gene.

The sequence of all or part of the angiogenesis gene can then be compared to the sequence of a known angiogenesis gene to determine if any differences exist. This can be done using any number of known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the angiogenesis gene of 25 the patient and the known angiogenesis gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the angiogenesis genes are used as probes to determine the number of copies of the angiogenesis gene in the genome.

In another preferred embodiment, the angiogenesis genes are used as probes to 30 determine the chromosomal localization of the angiogenesis genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the angiogenesis gene locus.

Administration of pharmaceutical and vaccine compositions

In one embodiment, a therapeutically effective dose of an angiogenesis protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will depend
5 on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (e.g., Ansel *et al.*, Pharmaceutical Dosage Forms and Drug Delivery, Lippincott, Williams & Wilkins Publishers, ISBN:0683305727; Lieberman (1992) Pharmaceutical Dosage Forms (vols. 1-3), Dekker, ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd (1999) The Art, Science and Technology of Pharmaceutical
10 Compounding, Amer. Pharmaceutical Assn, ISBN 0917330889; and Pickar (1999) Dosage Calculations, Delmar Pub, ISBN 0766805042). As is known in the art, adjustments for angiogenesis degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration, drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art.
15

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

20 The administration of the angiogenesis proteins and modulators thereof of the present invention can be done in a variety of ways as discussed above, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, for example, in the treatment of wounds and inflammation, the angiogenesis
25 proteins and modulators may be directly applied as a solution or spray.

The pharmaceutical compositions of the present invention comprise an angiogenesis protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base
30 addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic

acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose, lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that angiogenesis protein modulators (*e.g.*, antibodies, antisense constructs, ribozymes, small organic molecules, *etc.*) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise an angiogenesis protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, *e.g.*, buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the

patient's needs (e.g., *Remington's Pharmaceutical Science*, 15th ed., Mack Publishing Company, Easton, Pennsylvania (1980) and Goodman and Gillman, *The Pharmacological Basis of Therapeutics*, (Hardman, J.G, Limbird, L.E, Molinoff, P.B., Rudden, R.W, and Gilman, A.G., eds) The McGraw-Hill Companies, Inc., 1996).

5 Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art, e.g., *Remington's Pharmaceutical Science* and Goodman and Gillman, *The Pharmacological Basis of Therapeutics, supra.*

10 The compositions containing modulators of angiogenesis proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered
20 depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical
25 condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer.

30 It will be appreciated that the present angiogenesis protein-modulating compounds can be administered alone or in combination with additional angiogenesis modulating compounds or with other therapeutic agent, e.g., other anti-cancer agents or treatments.

In numerous embodiments, one or more nucleic acids, e.g., polynucleotides comprising nucleic acid sequences set forth in Table 1, such as antisense polynucleotides or ribozymes, will be introduced into cells, *in vitro* or *in vivo*. The present invention provides methods, reagents, vectors, and cells useful for expression of angiogenesis-associated 5 polypeptides and nucleic acids using *in vitro* (cell-free), *ex vivo* or *in vivo* (cell or organism-based) recombinant expression systems.

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Berger and Kimmel, *Guide to Molecular Cloning Techniques, Methods in Enzymology* volume 152 Academic Press, Inc., San Diego, CA (Berger), F.M. Ausubel *et al.*, eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 1999), and Sambrook *et al.*, *Molecular Cloning - A Laboratory Manual* (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989.

In a preferred embodiment, angiogenesis proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, angiogenesis genes (including both the full-length sequence, partial sequences, or regulatory sequences of the angiogenesis coding regions) can be administered in a gene therapy application. These angiogenesis genes can include antisense applications, either as gene therapy (i.e. for incorporation into the genome) or as antisense compositions, as will be appreciated by those in the art.

Angiogenesis polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL and antibody responses.. Such vaccine compositions can include, for example, lipidated peptides (e.g., Vitiello, A. *et al.*, *J. Clin. Invest.* 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, *et al.*, *Mol. Immunol.* 28:287-294, 1991; Alonso *et al.*, *Vaccine* 12:299-306, 1994; Jones *et al.*, *Vaccine* 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi *et al.*, *Nature* 344:873-875, 1990; Hu *et al.*, *Clin Exp Immunol.* 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., *Proc. Natl. Acad. Sci. U.S.A.* 85:5409-

TOP SECRET//NOFORN

5 5413, 1988; Tam, J.P., *J. Immunol. Methods* 196:17-32, 1996), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, M. E. et al., In: *Concepts in vaccine development*, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. et al., *Nature* 320:535, 1986; Hu, S. L. et al., *Nature* 320:537, 1986; Kieny, M.-P. et al., *AIDS Bio/Technology* 4:790, 1986; Top, F. H. et al., *J. Infect. Dis.* 124:148, 1971; Chanda, P. K. et al., *Virology* 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. et al., *J. Immunol. Methods* 192:25, 1996; Eldridge, J. H. et al., *Sem. Hematol.* 30:16, 1993; Falo, L. D., Jr. et al., *Nature Med.* 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. *Annu. Rev. Immunol.* 4:369, 1986; Gupta, R. K. et al., *Vaccine* 11:293, 1993), liposomes (Reddy, R. et al., *J. Immunol.* 148:1585, 1992; Rock, K. L., *Immunol. Today* 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. et al., *Science* 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., *Vaccine* 11:957, 1993; Shiver, J. W. et al., In: *Concepts in vaccine development*, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., *Annu. Rev. Immunol.* 12:923, 1994 and Eldridge, J. H. et al., *Sem. Hematol.* 30:16, 1993).
10 Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.
15

20 Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bordetella pertussis* or *Mycobacterium tuberculosis* derived proteins. Certain adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel
25 (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.
30

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. This approach is described, for instance, in Wolff et. al., *Science* 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies

include "naked DNA", facilitated (bupivacaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, the peptides of the invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, for example, as a vector to express nucleotide sequences that encode angiogenic polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover *et al.*, *Nature* 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization e.g. adeno and adeno-associated virus vectors, retroviral vectors, *Salmonella typhi* vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein (see, e.g., Shata *et al.* (2000) Mol Med Today, 6: 66-71; Shedlock *et al.*, *J Leukoc Biol* 68,:793-806, 2000; Hipp *et al.*, *In Vivo* 14:571-85, 2000).

Methods for the use of genes as DNA vaccines are well known, and include placing an angiogenesis gene or portion of an angiogenesis gene under the control of a regulatable promoter or a tissue-specific promoter for expression in an angiogenesis patient. The angiogenesis gene used for DNA vaccines can encode full-length angiogenesis proteins, but more preferably encodes portions of the angiogenesis proteins including peptides derived from the angiogenesis protein. In one embodiment, a patient is immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from an angiogenesis gene.

For example, angiogenesis-associated genes or sequence encoding subfragments of an angiogenesis protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present antigen, including intracellular epitopes.

In a preferred embodiment, the DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the angiogenesis polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

In another preferred embodiment angiogenesis genes find use in generating animal models of angiogenesis. When the angiogenesis gene identified is repressed or diminished in angiogenic tissue, gene therapy technology, e.g., wherein antisense RNA directed to the angiogenesis gene will also diminish or repress expression of the gene.

- 5 Animal models of angiogenesis find use in screening for modulators of an angiogenesis-
associated sequence or modulators of angiogenesis. Similarly, transgenic animal technology
including gene knockout technology, for example as a result of homologous recombination
with an appropriate gene targeting vector, will result in the absence or increased expression
of the angiogenesis protein. When desired, tissue-specific expression or knockout of the
10 angiogenesis protein may be necessary.

It is also possible that the angiogenesis protein is overexpressed in angiogenesis. As such, transgenic animals can be generated that overexpress the angiogenesis protein. Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene. Animals generated by such methods find use as animal models of angiogenesis and are additionally useful in screening for modulators to treat angiogenesis.

Kits for Use in Diagnostic and/or Prognostic Applications

- 20 For use in diagnostic, research, and therapeutic applications suggested above,
kits are also provided by the invention. In the diagnostic and research applications such kits
may include any or all of the following: assay reagents, buffers, angiogenesis-specific nucleic
acids or antibodies, hybridization probes and/or primers, antisense polynucleotides,
ribozymes, dominant negative angiogenesis polypeptides or polynucleotides, small molecules
25 inhibitors of angiogenesis-associated sequences *etc.* A therapeutic product may include
sterile saline or another pharmaceutically acceptable emulsion and suspension base.

In addition, the kits may include instructional materials containing directions (*i.e.*, protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (*e.g.*, magnetic discs, tapes, cartridges, chips), optical media (*e.g.*, CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.

The present invention also provides for kits for screening for modulators of angiogenesis-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: an angiogenesis-associated polypeptide or polynucleotide, reaction tubes, and instructions for testing angiogenic-associated activity. Optionally, the kit contains biologically active angiogenesis protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

EXAMPLES

Example 1: Tissue Preparation, Labeling Chips, and Fingerprints

Purify total RNA from tissue using TRIzol Reagent

Homogenize tissue samples in 1ml of TRIzol per 50mg of tissue using a Polytron 3100 homogenizer. The generator/probe used depends upon the tissue size. A generator that is too large for the amount of tissue to be homogenized will cause a loss of sample and lower RNA yield. TRIzol is added directly to frozen tissue, which is then homogenized. Following homogenization, insoluble material is removed by centrifugation at 7500 x g for 15 min in a Sorvall superspeed or 12,000 x g for 10 min. in an Eppendorf centrifuge at 4°C. The clear homogenate is transferred to a new tube for use. The samples may be frozen now at -60° to -70°C (and kept for at least one month). The homogenate is mixed with 0.2ml of chloroform per 1ml of TRIzol reagent used in the original homogenization and incubated at room temp. for 2-3 minutes. The aqueous phase is then separated by centrifugation and transferred to a fresh tube and the RNA precipitated using isopropyl alcohol. The pellet is isolated by centrifugation, washed, air-dried, resuspended in an appropriate volume of DEPC H₂O, and the absorbance measured.

Purification of poly A+ mRNA from total RNA is performed as follows. Heat an oligotex suspension to 37°C and mixing immediately before adding to RNA. The Elution Buffer is heated at 70°C. Warm up 2 x Binding Buffer at 65°C if there is precipitate in the buffer. Mix total RNA with DEPC-treated water, 2 x Binding Buffer, and Oligotex according to Table 2 on page 16 of the Oligotex Handbook. Incubate for 3 minutes at 65°C.

5 Incubate for 10 minutes at room temperature. Centrifuge for 2 minutes at 14,000 to 18,000 g. Remove supernatant without disturbing Oligotex pellet. A little bit of solution can be left behind to reduce the loss of Oligotex. Gently resuspend in Wash Buffer OW2 and pipet onto spin column. Centrifuge the spin column at full speed for 1 minute. Transfer spin column to a new collection tube and gently resuspend in Wash Buffer OW2 and centrifuge as described herein. Transfer spin column to a new tube and elute with 20 to 100 ul of preheated (70°C) Elution Buffer. Gently resuspend Oligotex resin by pipetting up and down. Centrifuge as above. Repeat elution with fresh elution buffer or use first eluate to keep the elution volume low. Read absorbance, using diluted Elution Buffer as the blank. Before proceeding with cDNA synthesis, precipitate the mRNA as follows: add 0.4 vol. of 7.5 M NH₄OAc + 2.5 vol. of cold 100% ethanol. Precipitate at -20°C 1 hour to overnight (or 20-30 min. at -70°C). Centrifuge at 14,000-16,000 x g for 30 minutes at 4°C. Wash pellet with 0.5ml of 80%ethanol (-20°C) then centrifuge at 14,000-16,000 x g for 5 minutes at room temperature. Repeat 80% ethanol wash. Air dry the ethanol from the pellet in the hood.. Suspend pellet in

10 20 DEPC H₂O at 1ug/ml concentration.

To further Clean up total RNA using Qiagen's RNeasy kit, add no more than 100ug to an RNeasy column. Adjust sample to a volume of 100ul with RNase-free water. Add 350ul Buffer RLT then 250ul ethanol (100%) to the sample. Mix by pipetting (do not centrifuge) then apply sample to an RNeasy mini spin column. Centrifuge for 15 sec at >10,000rpm. Transfer column to a new 2-ml collection tube. Add 500ul Buffer RPE and centrifuge for 15 sec at >10,000rpm. Discard flowthrough. Add 500ul Buffer RPE and centrifuge for 15 sec at >10,000rpm. Discard flowthrough then centrifuge for 2 min at maximum speed to dry column membrane. Transfer column to a new 1.5-ml collection tube and apply 30-50ul of RNase-free water directly onto column membrane. Centrifuge 1 min at >10,000rpm. Repeat elution. and read absorbance.

cDNA synthesis using Gibco's "SuperScript Choice System for cDNA Synthesis" kit

First Strand cDNA synthesis is performed as follows. Use 5ug of total RNA or 1ug of polyA+ mRNA as starting material. For total RNA, use 2ul of SuperScript RT. For

polyA+ mRNA, use 1ul of SuperScript RT. Final volume of first strand synthesis mix is 20ul. RNA must be in a volume no greater than 10ul. Incubate RNA with 1ul of 100pmol T7-T24 oligo for 10 min at 70C. On ice, add 7 ul of: 4ul 5X 1st Strand Buffer, 2ul of 0.1M DTT, and 1 ul of 10mM dNTP mix. Incubate at 37C for 2 min then add SuperScript RT.

5 Incubate at 37C for 1 hour.

For the second strand synthesis, place 1st strand reactions on ice and add: 91ul DEPC H₂O; 30ul 5X 2nd Strand Buffer; 3ul 10mM dNTP mix; 1ul 10U/ul E.coli DNA Ligase; 4ul 10U/ul E.coli DNA Polymerase; and 1ul 2U/ul RNase H. Mix and incubate 2 hours at 16C. Add 2ul T4 DNA Polymerase. Incubate 5 min at 16C. Add 10ul of 0.5M EDTA. A further clean-up of DNA is performed using phenol:chloroform:isoamyl Alcohol (25:24:1) purification.

In vitro Transcription (IVT) and labeling with biotin is performed as follows:

Pipet 1.5ul of cDNA into a thin-wall PCR tube. Make NTP labeling mix by combining 2ul T7 10xATP (75mM) (Ambion); 2ul T7 10xGTP (75mM) (Ambion); 1.5ul T7 10xCTP (75mM) (Ambion); 1.5ul T7 10xUTP (75mM) (Ambion); 3.75ul 10mM Bio-11-UTP (Boehringer-Mannheim/Roche or Enzo); 3.75ul 10mM Bio-16-CTP (Enzo); 2ul 10x T7 transcription buffer (Ambion); and 2ul 10x T7 enzyme mix (Ambion). The final volume is 20ul. Incubate 6 hours at 37°C in a PCR machine. The RNA can be furthered cleaned.

Fragmentation is performed as follows. 15 ug of labeled RNA is usually fragmented. Try to minimize the fragmentation reaction volume; a 10 ul volume is recommended but 20 ul is all right. Do not go higher than 20 ul because the magnesium in the fragmentation buffer contributes to precipitation in the hybridization buffer. Fragment RNA by incubation at 94 C for 35 minutes in 1 x Fragmentation buffer (5 x Fragmentation buffer is 200 mM Tris-acetate, pH 8.1; 500 mM KOAc; 150 mM MgOAc). The labeled RNA transcript can be analyzed before and after fragmentation. Samples can be heated to 65°C for 15 minutes and electrophoresed on 1% agarose/TBE gels to get an approximate idea of the transcript size range

For hybridization, 200 ul (10ug cRNA) of a hybridization mix is put on the chip. If multiple hybridizations are to be done (such as cycling through a 5 chip set), then it is recommended that an initial hybridization mix of 300 ul or more be made. The hybridization mix is: fragment labeled RNA (50ng/ul final conc.); 50 pM 948-b control oligo; 1.5 pM BioB; 5 pM BioC; 25 pM BioD; 100 pM CRE; 0.1mg/ml herring sperm DNA; 0.5mg/ml acetylated BSA; and 300 ul with 1xMES hyb buffer.

Labeling is performed as follows: The hybridization reaction includes non-biotinylated IVT (purified by RNeasy columns); IVT antisense RNA 4 μ g: μ l; random Hexamers (1 μ g/ μ l) 4 μ l and water to 14 μ l. The reaciton is incubated at 70°C, 10 min. Reverse transcription is performed in the following reaction: 5X First Strand (BRL) buffer, 6 μ l; 0.1 M DTT, 3 μ l; 50X dNTP mix, 0.6 μ l; H₂O, 2.4 μ l; Cy3 or Cy5 dUTP (1mM), 3 μ l; SS RT II (BRL), 1 μ l in a final volume of 16 μ l. Add to hybridization reaction. Incubate 30 min., 42°C. Add 1 μ l SSII and incubate another hour. Put on ice. 50X dNTP mix (25mM of cold dATP, dCTP, and dGTP, 10mM of dTTP: 25 μ l each of 100mM dATP, dCTP, and dGTP; 10 μ l of 100mM dTTP to 15 μ l H₂O. dNTPs from Pharmacia)

RNA degradation is performed as follows. Add 86 μ l H₂O, 1.5 μ l 1M NaOH/2mM EDTA and incubate at 65°C, 10 min.. For U-Con 30, 500 μ l TE/sample spin at 7000g for 10 min, save flow through for purification. For Qiagen purification, suspend u-con recovered material in 500 μ l buffer PB and proceed using Qiagen protocol. For DNase digestion, add 1 μ l of 1/100 dil of DNase/30ul Rx and incubate at 37°C for 15 min. Incubate at 5 min 95°C to denature the DNase/

For sample preparation, add Cot-1 DNA, 10 μ l; 50X dNTPs, 1 μ l; 20X SSC, 2.3 μ l; Na pyro phosphate, 7.5 μ l; 10mg/ml Herring sperm DNA; 1ul of 1/10 dilution to 21.8 final vol. Dry in speed vac. Resuspend in 15 μ l H₂O. Add 0.38 μ l 10% SDS. Heat 95°C, 2 min and slow cool at room temp. for 20 min. Put on slide and hybridize overnight at 64°C.

Washing after the hybridization: 3X SSC/0.03% SDS: 2 min., 37.5 mls 20X SSC+0.75mls 10% SDS in 250mls H₂O; 1X SSC: 5 min., 12.5 mls 20X SSC in 250mls H₂O; 0.2X SSC: 5 min., 2.5 mls 20X SSC in 250mls H₂O. Dry slides and scan at appropiate PMT's and channels.

Example 2. A model of angiogenesis is used to determine expression in angiogenesis

In the model of angiogenesis used to determine expression of angiogenesis-associated sequences, human umbilical vein endothelial cells (HUVEC) were obtained, e.g., as passage 1 (p1) frozen cells from Cascade Biologics (Oregon) and grown in maintenance medium: Medium 199 (Life Technologies) supplemented with 20% pooled human serum, 100 mg/ml heparin and 75 mg/ml endothelial cell growth supplements (Sigma) and gentamicin (Life Technologies). An *in vitro* cell system model was used in which 2x10⁵ HUVECs were cultured in 0.5 ml 3 mgs/ml plasminogen-depleted fibrinogen (Calbiochem, San Diego, CA) that was polymerized by the addition of 1 unit of maintenance medium

supplemented with 100 ng/ml VEGF and HGF and 10 ng/ml TGF-a (R&D Systems, Minneapolis, MN) added (growth medium). The growth medium was replaced every 2 days. Samples for RNA were collected, *e.g.*, at 0, 2, 6, 15, 24, 48, and 96 hours of culture. The fibrin clots were placed in Trizol (Life Technologies) and disrupted using a Tissuemizer.

- 5 Thereafter standard procedures were used for extracting the RNA (*e.g.*, Example 1).

Angiogenesis associated sequences thus identified are shown in Table 1. As indicated, some of the Accession numbers include expression sequence tags (ESTs). Thus, in one embodiment herein, genes within an expression profile, also termed expression profile genes, include ESTs and are not necessarily full length.

DOCUMENT E2006.CP1

Table 1

~~AAA4 DNA sequence~~~~Gene name: CGI-100 protein~~~~Unigene number: Hs.275253~~~~Probeset Accession #: AA089688~~~~Nucleic Acid Accession #: NM_016040 cluster~~~~Coding sequence: 142-891 (predicted start/stop codons underlined)~~

5	GTTCGCCGCC	GCCGGCGCCG	CCACCTGGAG	TTTTTCAGA	CTCCAGATT	CCCTGTCAAC	60
10	CACGAGGAGT	CCAGAGAGGA	AACCGGGAGC	GGAGACAAACA	GTACCTGACG	CCTCTTCAG	120
15	CCCCGGATCG	CCCCAGCAGG	GATGGGCAGC	AAGATCTGGC	TGCCCTTCCC	CGTGCTCCTT	180
20	CTGGCCGCTC	TGCTCCGGT	GCTGCTGCCT	GGGGCGGCCG	GCTTCACACC	TTCCCTCGAT	240
25	AGCGACTTCA	CCTTACCCCT	TCCCCGGCGC	CAGAAGGAGT	GCTTCTACCA	GCCCATGCC	300
30	CTGAAGGCCT	CGCTGGAGAT	CGAGTACCAA	GTTTAGATG	GAGCAGGATT	AGATATTGAT	360
35	TTCCATCTTG	CCTCTCCAGA	AGGCAAAACC	TTAGTTTTG	AACAAAGAAA	ATCAGATGGA	420
40	GTTCACACTG	TAGAGACTGA	AGTTGGTGT	TACATGTTCT	GCTTGACAA	TACATTCA	480
45	ACCATTTCTG	AGAAGGTGAT	TTTCTTTGAA	TTAACCTGG	ATAATATGGG	AGAACAGGCA	540
50	CAAGAACAAAG	AAGATTGAA	GAAATATATT	ACTGGCACAG	ATATATTGGA	TATGAAACTG	600
55	GAAGACATCC	TGGAATCCAT	CAACAGCAGTC	AAAGTCCAGAC	TAAGCAAAG	TGGGCACATA	660
60	CAAACCTCTG	TTAGAGCATT	TGAAGCTCGT	GATCGAAACA	TACAAGAAAG	CAACTTGAT	720
65	AGAGTCATT	TCTGGTCTAT	GGTTAATTAA	GTGGTCATGG	TGGTGGTGT	AGCCATTCAA	780
70	GTTTATATGC	TGAAGAGTCT	GTGGAGAT	AAGAGGAAAA	GTAGAACTTA	<u>AAACTCCAAA</u>	840
75	CTAGAGTACG	TAACATTGAA	AAATGAGGCA	AAAAATGCA	ATAAACTGTT	ACAGTCAGA	900
80	CCATTAATGG	TCTTCTCCAA	AATATTTGA	GATATAAAAG	TAGGAAACAG	GTATAATT	960
85	AATGTGAAAA	TTAAGTCTTC	ACTTTCTGTG	CAAGTAATCC	TGCTGATCCA	GTTGTACTTA	1020
90	AGTGTGTAAC	AGGAATATTT	TGCAGAATAT	AGGTTAACT	GAATGAAGCC	ATATTAATAA	1080
95	CTGCATTTTC	CTAACTTTGA	AAAATTTGC	AAATGTCTTA	GGTGATTAA	ATAAATGAGT	1140
100	ATTGGGCCTA	AA					

~~AAA7 DNA sequence~~~~Gene name: Endothelial differentiation, sphingolipid G-protein-coupled receptor, 1 (EDG1)~~~~Unigene number: Hs.154210~~~~Probeset Accession #: M31210~~~~Nucleic Acid Accession #: NM_001400 cluster~~~~Coding sequence: 251-1396 (predicted start/stop codons underlined)~~

40	TCTAAAGGTC	GGGGCGAGCA	GCAAGATGCG	AAGCGAGCCG	TACAGATCCC	GGGCTCTCCG	60
45	AACGCAACTT	CGCCCTGCTT	GAGCGAGGCT	GCGGTTCCG	AGGCCCTCTC	CAGCCAAGGA	120
50	AAAGCTACAC	AAAAAGCTG	GATCACTCAT	CGAACCAACCC	CTGAAGCCAG	TGAAGGCTCT	180
55	CTCGCCTCGC	CCTCTAGCGT	TCGTCTGGAG	TAGGCCACC	CCGGCTTCCT	GGGGACACAG	240
60	GGTTGGCACCC	<u>ATGGGGCCCA</u>	CCAGCGTCCC	GCTGGTCAAG	GCCCACCGCA	GCTCGGTCTC	300
65	TGACTACGTC	AACTATGATA	TCATCGTCCG	GCATTACAAC	TACACGGAA	AGCTGAATAT	360
70	CAGCGCGGAC	AAGGAGAAAC	GCATTAACACT	GACCTCGGTG	GTGTTCATTC	TCATCTGCTG	420
75	CTTTATCATC	CTGGAGAAC	TCTTGTCTT	GCTGACCATT	TGGAAAACCA	AGAAATTCCA	480
80	CCGACCCATG	TACTATTTA	TTGGCAATCT	GGCCCTCTCA	GACCTGTGG	CAGGAGTAGC	540
85	CTACACAGCT	AACCTGCTCT	TGTCTGGGGC	CACCACTAC	AAGCTCACTC	CCGCCAGTG	600
90	GTTCCTGCGG	GAAGGGAGTA	TGTTTGTGGC	CCTGTCAGCC	TCCGTTCA	GTCTCCTCGC	660
95	CATCGCCATT	GAGCGCTATA	TCACAATGCT	GAAAATGAA	CTCCACAAACG	GGAGCAATAA	720
100	CTTCCGCTC	TTCCCTGCTAA	TCAGCGCTCG	CTGGTCATCC	TCCCTCATCC	TGGGTGGCCT	780
105	GCCTATCATG	GGCTGGAAC	GCATCAGTGC	GCTGTCAGC	TGCTCCACCG	TGCTGCCGCT	840
110	CTACCACAAAG	CACTATATCC	TCTTCTGAC	CACGGCTTC	ACTCTGCTTC	TGCTCTCCAT	900
115	CGTCATTCTG	TACTGCAGAA	TCTACTCCCT	GGTCAGGACT	CGGAGCCGCC	GCCTGACGTT	960
120	CCGCAAGAAC	ATTTCCAAGG	CCAGCGCAG	CTCTGAGAAT	GTGGCGCTGC	TCAAGACCGT	1020
125	AATTATCGTC	CTGAGCGTCT	TCATCGCTG	CTGGCACCG	CTCTTCATCC	TGCTCTGCT	1080
130	GGATGTGGGC	TGCAAGGTGA	AGACCTGTGA	CATCCTCTTC	AGAGCGGAGT	ACTTCCTGGT	1140
135	GTTACCTGTG	CTCAACTCCG	GCACCAACCC	CATCATTAC	ACTCTGACCA	ACAAGGAGAT	1200
140	GCGTGGGCC	TTCATCCGGA	TCATGTCTG	CTGCAAGTGC	CCGAGCGGAG	ACTCTGCTGG	1260
145	CAAATTCAAG	CGACCCATCA	TCGCCGGCAT	GGAAATTCA	CCGAGCAAAT	CGGACAATT	1320
150	CTCCCACCC	CAGAAAGACG	AAGGGGACAA	CCCAGAGACC	ATTATGTCTT	CTGGAAACGT	1380
155	CAACTCTCT	<u>TCCTAGAACT</u>	GGAAGCTGTC	CACCCACCGG	AAGCGCTCTT	TACTTGGTCG	1440
160	CTGGCCACCC	CAGTGTGTTGG	AAAAAAATCT	CTGGGCTTCG	ACTGCTGCCA	GGGAGGAGCT	1500
165	GCTGCAAGCC	AGAGGGAGGA	AGGGGGAGAA	TACGAACAGC	CTGGTGGTGT	CGGGTGTG	1560
170	TGGGTAGAGT	TAGTCCCTGT	GAACAATGCA	CTGGGAAGGG	TGGAGATCAG	GTCCCGGCCT	1620
175	GGAATATATA	TTCTACCCCC	CTGGAGCTT	GATTTGCAC	TGAGCAAAG	GTCTAGCATT	1680
180	GTCAAGCTCC	TAAAGGGTTC	ATTTGGCC	TCCTCAAAGA	CTAATGTCCC	CATGTGAAAG	1740

CGTCTCTTGT TCTGGAGCTT TGAGGAGATG TTTCCCTCA CTTAGTTTC AAACCCAAGT 1800
 GAGTGTGTGC ACTTCTGCTT CTTTAGGGAT GCCCTGTACA TCCCACACCC CACCCCTCCCT 1860
 TCCCTTCATA CCCCTCTCA ACGTTCTTT ACTTTATACT TTAACTACCT GAGAGTTATC 1920
 AGAGCTGGGG TTGTGAATG ATCGATCATC TATAGCAAAT AGGCTATGTT GAGTACGTAG 1980
 5 GCTGTGGAA GATGAAGATG GTTGGAGGT GTAAAACAAT GTCCTCGCT GAGGCCAAG 2040
 TTTCCATGTA AGCGGATCC GTTTTTGGA ATTTGGTGA AGTCACTTTG ATTTCTTAA 2100
 AAAACATCTT TCATGAAA TGTGTTACCA TTTCATATCC ATTGAAGCCG AAATCTGCAT 2160
 AAGGAAGCCC ACTTTATCTA AATGATATTA GCCAGGATCC TTGGTGTCT AGGAGAAACA 2220
 GACAAGCAA ACAAAAGTGA ACCGAATGG ATTAACCTTT GCAAACCAAG GGAGATTCT 2280
 10 TAGCAAATGA GTCTAACAA TATGACATCC GTCTTCCCA CTTTGTTGA TGTTTATTTC 2340
 AGAATCTTGT GTGATTCAATT CAAGCAACA ACATGGTGA TTTTGGTGTG TAAAAGTAC 2400
 TTTTCTTGAT TTTGAAATGT ATTTGTTCA GGAAGAAGTC ATTTATGGA TTTTCTAAC 2460
 CCGTGTAAAC TTTCTAGAA TCCACCCCTCT TGTGCCCTTA AGCATTACTT TAACTGGTAG 2520
 GGAACGCCAG AACTTTAAG TCCAGCTT CATTAGATAG TAATTGAAGA TATGTATAAA 2580
 15 TATTACAAAG AATAAAAATA TATTACTGTC TCTTAGTAT GGTTTCAGT GCAATTAAAC 2640
 CGAGAGATGT CTTGTTTT TAAAAAGAAT AGTATTAAT AGGTTCTGA CTTTGTGGA 2700
 TCATTTGCA CATAGCTTA TCAACTTTA AACATTAATA AACTGATTT TTTAAAG

AAB3 DNA sequence

Gene name: Solute carrier family 20 (phosphate transporter), member 1, Human

leukaemia virus receptor 1 (GLWR1)

Unigene number: Hs.78452

Probeset Accession #: L20859

Nucleic Acid Accession #: NM_005415 cluster

Coding sequence: predicted 371-2410 (predicted start/stop codons underlined)

GAGCTGTCCC	CGGTGCCGCC	GACCCGGGCC	GTGCCGTGTG	CCCGTGGCTC	CAGCCGCTGC	60
CGCCTCGATC	TCCTCGTCTC	CCGCTCCGCC	CTCCCTTTTC	CCTGGATGAA	CTTGCCTCCT	120
TTCTCTTCTC	CGCCATGGAA	TTCTGCTCCG	TGCTTTAGC	CCTCCTGAGC	CAAAGAAACC	180
CCAGACAACA	GATGCCATA	CGCAGCGTAT	AGCAGTAACT	CCCCAGCTCG	TTTCTGTGC	240
CGTAGTTAC	AGTATTTAAT	TTTATATAAT	ATATATTATT	TATTATAGCA	TTTTGATAC	300
CTCATATTCT	GTTCACACAT	CTTGAAGGC	GCTCAGTAGT	TCTCTTAAC	AAACAACTACT	360
ACTCCAGAGA	ATGGCACACG	TGATTACCG	TACTACAGCT	GCTACCGCCG	TTCTGGTCC	420
TTGGTGGAC	TACCTATGGA	TGCTCATCCT	GGGCTTCATT	ATTGCATTTC	TCTTGGCATT	480
CTCCGTGGGA	GCCAATGATG	TAGCAAATTC	TTTGTTACA	GCTGTGGGCT	CAGGTGTTAGT	540
GACCTGTAGA	CAAGCTGCA	TCCTAGCTAG	CATCTTGAA	ACAGTGGGCT	CTGTCTTACT	600
GGGGGCCAAA	GTGAGCGAAA	CCATCCGGAA	GGGTTGATT	GACGTGGAGA	TGTACAACTC	660
GACTCAAGGG	CTACTGATGG	CCGGCTCAGT	CAGTGTATG	TTTGGTCTG	CTGTGTGGCA	720
40 ACTCGTGGCT	TCGTTTTGA	AGCTCCCTAT	TTCTGAAACC	CATTGTATTG	TTGGTGCAC	780
TATTGGTTTC	TCCCTCGTGG	CAAAGGGGCA	GGAGGGTGTG	AAAGTGGCTG	AACTGATAAA	840
AATTGTGATG	TCTTGGTTCG	TGTCCCCACT	GCTTCTGGA	ATTATGTCTG	GAATTTTATT	900
CTTCCTGGTT	CGTGCAATTCA	TCCTCCATAA	GGCAGATCCA	GTTCTTAATG	TTTGGCAGC	960
TTTGCAGTT	TTCTATGCT	GCACAGTTGG	AATAAACCTC	TTTCCATCA	TGTACTACTG	1020
45 AGCACCGTTG	CTGGGCTTTG	ACAAACCTTC	TCTGTGGGCT	ACCATCTCA	TCTCGGTGG	1080
ATGTGCAGTT	TTCTGTGCC	TTATCGTCTG	GTTCTTGTA	TGTCCCAGGA	TGAAGAGAAA	1140
AATTGAACGA	GAAATAAAAGT	GTAGTCCTTC	TGAAAGCCCC	TTAATGGAAA	AAAAGAATAG	1200
CTTGAAGAAA	GACCATGAAG	AAACAAAGTT	GTCTGTTGGT	GATATTGAAA	ACAAGCATCC	1260
TGTTTCTGAG	GTAGGGCCTG	CCACTGTGCC	CCTCCAGGCT	GTGGTGGAGG	AGAGAACAGT	1320
50 CTCATTCAA	CTTGGAGATT	TGGAGGAAGC	TCCAGAGAGA	GAGAGGCTTC	CCAGCGTGG	1380
CTTGAAGAG	GAAACCAGCA	TAGATAGCAC	CGTGAATGGT	GCAGTGCAGT	TGCCTAATGG	1440
GAACCTTGTC	CAGTCAGTC	AAAGCGTCAG	CAACCAAATA	AACCTCCAGT	GCCACTCCCC	1500
GTATCACACC	GTGCAATAAGG	ATTCGGGCCT	GTACAAAGAG	CTACTCCATA	AATTACATCT	1560
TGCCAAGGTG	GGAGATTGCA	TGGGAGACTC	CGGTGACAAA	CCCTTAAGGC	GCAATAATAG	1620
55 CTATACTTC	TATACCATGG	CAATATGTGG	CATGCCCTG	GATTCAATTCC	GTGCCAAAGA	1680
AGGTGAACAG	AAGGGCGAAG	AAATGGAGAA	GCTGACATGG	CCTAATGCAG	ACTCCAAGAA	1740
GCGAATTGCA	ATGGACAGTT	ACACCAAGTTA	CTGCAATGCT	GTGTCTGACC	TTCACTCAGC	1800
ATCTGAGATA	GACATGAGTG	TCAAGGCAGC	GATGGGTCTA	GGTGACAGAA	AAGGAAGTAA	1860
TGGCTCTCTA	GAAGAATGGT	ATGACCTAGGA	TAAGCCTGAA	GTCTCTCTCC	TCTTCCAGTT	1920
60 CCTGCAGATC	CTTACAGCCT	GCTTTCGGTC	ATTGCCCAT	GGTGGCAATG	ACGTAAGCAA	1980
TGCCATTGGG	CCTCTGGTTG	CTTTATATT	GGTTTATGAC	ACAGGAGATG	TTTCTCAA	2040
AGTGGCAACA	CCAATATGCC	TTCTACTCTA	TGGTGGTGTG	GGTATCTGTG	TTGGTCTGTG	2100
GGTTTGGGG	AGAAGAGTTA	TCCAGACCAT	GGGAAAGGAT	CTGACACCGA	TCACACCCCTC	2160
TAGTGGCTTC	AGTATTGAAAC	TGGCATCTGC	CCTCACTGTG	GTGATTGCT	CAAATATTGG	2220
65 CCTTCCCAC	AGTACAACAC	ATTGTAAGT	GGGCTCTGTT	GTGTCTGTTG	GCTGGCTCCG	2280
GTCCAAGAAG	GCTGTTGACT	GGCGTCTCTT	TCGTAACATT	TTTATGGCT	GGTTTGTAC	2340
AGTCCCCATT	TCTGGAGTTA	TCAGTGTG	CATCATGGCA	ATCTTCAGAT	ATGTCACTCCT	2400
CAGAATGTGA	AGCTGTTG	GATTAAAATT	TGTGTCATG	TTTGGGACCA	TCTTAGGTAT	2460

TCCTGCTCCC CTGAAGAATG ATTACAGTGT TAACAGAAGA CTGACAAGAG TCTTTTATT 2520
 TGGGAGCAGA GGAGGGAAGT GTTACTTGTG CTATAACTGC TTTTGTGCTA AATATGAATT 2580
 GTCTAAAT TAGCTGTGTA AAATAGCCCG GGTTCCACTG GCTCCTGCTG AGGTCCCTT 2640
 5 TCCTTCTGGG CTGTGAATTCTGTACATAT TTCTCTACTT TTTGTATCAG GCTTCATTC 2700
 CATTATGTT TAATGTTGTC TCTGAAGATG ACTTGTGATT TTTTTTCTT TTTTTAAAC 2760
 CATGAAGAGC CGTTTGACAG AGCATGCTCT GCGTTGTTGG TTTCACCAGC TTCTGCCCTC 2820
 ACATGCACAG GGATTTAACAA ACAAAAATAT AACTACAAC TCCCTTGAG TCTCTTATAT 2880
 AAGTAGAGTC CTTGGTACTC TGCCCTCTG TCAGTAGTGG CAGGATCTAT TGGCATATTC 2940
 10 GGGAGCTCT TAGAGGGATG AGGTTCTTG AACACAGTGA AAATTTAAAT TAGTAACCTT 3000
 TTTGCAAGCA GTTTATTGAC TGTTATTGCT AAGAAGAAGT AAGAAAGAAA AAGCTGTTG 3060
 GCAATCTTG TTATTCTTT AAGATTTCTG GCAGTGTGGG ATGGATGAAT GAAGTGGAAAT 3120
 GTGAACTTG GGCAAGTAA ATGGGACAGC CTTCCATGTT CATTGTCTA CCTCTTAAC 3180
 GAATAAAAAAA GCCTACAGTT TTTAGAAAAA ACCCGAATTC

AAB4 DNA sequence

Gene name: Matrix metalloproteinase 10 (stromelysin 2)

Unigene number: Hs.8258

Probeset Accession #: X07820

Nucleic Acid Accession #: NM_002425

Coding sequence: predicted 23-1453 (predicted start/stop codons underlined)

15 AAAGAAGGTA AGGGCAGTGA GAATGATGCA TCTTGCATTC CTTGTGCTGT TGTGTCTGCC 60
 AGTCTGCTCT GCCTATCCTC TGAGTGGGGC AGCAAAAGAG GAGGACTCCA ACAAGGATCT 120
 TGCCCAGCAA TACCTAGAAA AGTACTACAA CCTCGAAAAG GATGTGAAAC AGTTAGAAG 180
 25 AAAGGACAGT AATCTCATTG TTAAAAAAAT CCAAGGAATG CAGAAGTTCC TTGGGTTGGA 240
 GGTGACAGGG AAGCTAGACA CTGACACTCT GGAGGTGATG CGCAAGCCCA GGTGTGGAGT 300
 TCCTGACGTT GGTCACTTCA GCTCCTTCC TGGCATGCCG AAGTGGAGGA AAACCCACCT 360
 TACATACAGG ATTGTGAATT ATACACCAGA TTTGCCAAGA GATGCTGTTG ATTCTGCCAT 420
 30 TGAGAAAGCT CTGAAAGTCT GGGAGAGGT GACTCCACTC ACATTCTCCA GGCTGTATGA 480
 AGGAGAGGCT GATATAATGA TCTCTTCGC AGTTAAAGAA CATGGAGACT TTTACTCTTT 540
 TGATGGCCA GGACACAGTT TGGCTCATGC CTACCCACCT GGACCTGGGC TTTATGGAGA 600
 TATTCACTT GATGATGATG AAAATGGAC AGAAGATGCA TCAGGCACCA ATTTATTCCCT 660
 CGTTGCTGCT CATGAACTTG GCCACTCCCT GGGGCTCTT CACTCAGCCA ACACTGAAGC 720
 35 TTTGATGTA CCACTCTACA ACTCATTCA AGAGCTCGCC CAGTTCCGCC TTTCGCAAGA 780
 TGATGTGAAT GGCATTCACT CTCTCTACGG ACCTCCCCCT GCCTCTACTG AGGAACCCCT 840
 GGTGCCCACA AAATCTGTT CTTCGGGATC TGAGATGCCA GCCAAGTGTG ATCCTGCTTT 900
 GTCCTTCGAT GCCATCAGCA CTCTGAGGGG AGAATATCTG TTCTTAAAG ACAGATATTT 960
 TTGGCGAAGA TCCCCTGGA ACCCTGAACC TGAATTTCAT TTGATTTCTG CATTGGGCC 1020
 40 CTCTCTTCCA TCATATTGG ATGCTGCATA TGAAGTTAAC AGCAGGGACA CCGTTTTAT 1080
 TTTTAAAGGA AATGAGTTCT GGGCCATCAG AGGAAATGAG GTACAAGCAG GTTATCCAAG 1140
 AGGCATCCAT ACCCTGGTT TTCCTCCAAC CATAAGGAAA ATTGATGCACTG CTGTTCTGA 1200
 CAAGGAAAAG AAGAAAACAT ACTTCTTGC AGCGGACAAA TACTGGAGAT TTGATGAAAA 1260
 TAGCCAGTCC ATGGAGCAAG GCTTCCCTAG ACTAATAGCT GATGACTTTC CAGGAGTTGA 1320
 45 GCCTAAGGTT GATGCTGTAT TACAGGCATT TGGATTTTC TACTTCTTCA GTGGATCATC 1380
 ACAGTTGAG TTTGACCCCA ATGCCAGGAT GGTGACACAC ATATTAAAGA GTAACAGCTG 1440
 GTTACATTGC TAGGCGAGAT AGGGGAAGA CAGATATGGG TGTGTTAAAT AAATCTAATA 1500
 ATTATTTCATC TAATGTATTA TGAGCCAAA TGGTTAATT TTCCTGCATG TTCTGTGACT 1560
 50 GAAGAAGATG AGCCTTGCAG ATATCTGCAT GTGTGATGAA GAATGTTCT GGAATTCTTC 1620
 ACTTGCTTT GAATTGCACT GAACAGAATT AAGAAATACT CATGTGCAAT AGGTGAGAGA 1680
 ATGTATTTC ATAGATGTGT TATTACTTCC TCAATAAAAAA GTTTTATTTT GGGCTGTT
 CTT

AAB6 DNA sequence

Gene name: Podocalyxin-like

Unigene number: Hs.16426

Probeset Accession #: U97519

Nucleic Acid Accession #: NM_005397 cluster

Coding sequence: 251-1837 (predicted start/stop codons underlined)

55 AAACGCCGCC CAGGACGCAG CGGCCGCCCG CGCCGCTCCT CTGCCACTGG CTCTGCGCCC 60
 CAGCCCGGCT CTGCTGCAGC GGCAGGGAGG AAGAGCCGCC GCAGCGCGAC TCGGGAGGCC 120
 CGGGCCACAG CCTGGCTCC GGAGCCACCC ACAGGCCCTCC CCGGGCGGCC CCCACGCTCC 180
 TACCGCCCGG ACGCGCGGAT CCTCCGCCGG CACCGCAGCC ACCTGCTCCC GGCCAGAGG 240
 65 CGACGACACG ATGCGCTGCG CGCTGGCGCT CTCGGCGCTG CTGCTACTGT TGTCACGCC 300
 GCCGCTGCTG CCGTCGTCGC CGTCGCCGTC GCCGTCGCCGG TCGCCCTCCC AGAATGCAAC 360
 CCAGACTACT ACGGACTCAT CTAACAAAAC AGCACCGACT CCAGCATCCA GTGTACCAT 420

1000 900 800 700 600 500 400 300 200 100

	CATGGCTACA GATA CAGGCC AGCAGAGCAC AGTCCCCACT TCCAAGGCCA ACGAAATCTT	480
	GGCCTGGTC AAGGCAGCCA CCCTGGGT ATCCAGTGAC TCACCGGGGA CTACAACCCT	540
	GGCTCAGCAA GTCTCAGGCC CAGTCACAC TACCGTGGCT AGAGGAGGGG GCTCAGGCCA	600
	CCCTACTACC ACCATCGAGA GCCCCAAAGAG CACAAAAAGT GCAGACACCA CTACAGTTGC	660
5	AACCTCCACA GCCACAGCTA AACCTAACAC CACAAGCAGC CAGAATGGAG CAGAAGATAC	720
	AACAAACTCT GGGGGAAAAA GCAGCCACAG TGTGACCACA GACCTCACAT CCACTAAGGC	780
	AGAACATCTG ACGACCCCTC ACCCTACAAAG TCCACTTAGC CCCCAGACAAC CCACTTTGAC	840
	GCATCCTGTG GCCACCCCAA CAAGCTCGGG ACATGACCAT CTTATGAAA TTTCAAGCAG	900
	TTCAAGCACT GTGGCTATCC CTGGCTACAC CTTACAAGC CCGGGGATGA CCACCAACCT	960
10	ACCGTCATCG GTTATCTCGC AAAGAACTCA ACAGACCTCC AGTCAGATGC CAGCCAGCTC	1020
	TACGGCCCTT TCCTCCCAGG AGACAGTGCA GCCCCACGAGC CCGGCAACGG CATTGAGAAC	1080
	ACCTACCCCTG CCAGAGACCA TGAGCTCCAG CCCCACAGCA GCATCAACTA CCCACCGATA	1140
	CCCCAAACAA CCTTCTCCCA CTGTGGCTCA TGAGAGTAAC TGGGCAAAGT GTGAGGATCT	1200
	TGAGACACAG ACACAGAGTG AGAAGCAGT CGTCCTGAAC CTCACAGGAA ACACCCCTG	1260
15	TGCAGGGGGC GCTTCGGATG AGAAAATTGAT CTCACTGATA TGCCGAGCAG TCAAAGCCAC	1320
	CTTCACCCCG GCCCAAGATA AGTGGCGCAT ACGGGCTGGCA TCTGTTCCAG GAAGTCAGAC	1380
	CGTGGTCGTG AAAGAAATCA CTATTACAC TAAGCTCCCT GCCAAGGATG TGTACGAGCG	1440
	GCTGAAGGAC AAATGGGATG AACTAAAGGA GGCAGGGGTC AGTGCACATGA AGCTAGGGGA	1500
	CCAGGGGCCA CCGGAGGAGG CCGAGGACCG CTTCAGCATG CCCCTCATCA TCACCATCGT	1560
	CTGCATGGCG TCATTCTGC TTCTCGTGGC GGCCCTCTAT GGCTGCTGCC ACCAGCGCCT	1620
	CTCCCAGAGG AAGGACACAGC AGCGGCTAAC AGAGGAGCTG CAGACAGTGG AGAATGGTTA	1680
	CCATGACAAAC CCAACACTGG AAGTGTGGA GACCTCTTCT GAGATGCAGG AGAAGAAGGT	1740
	GGTCAGCCTC AACGGGGAGC TGGGGGACAG CTGGATCGTC CCTCTGGACA ACCTGACCAA	1800
	GGACGACCTG GATGAGGAGG AAGACACACA CCTCTAGTCC GGTCTGCCGG TGGCTCCAG	1860
	CAGCACCACA GAGCTCCAGA CCAACCACCC CAAGTGCCTG TTGGATGGGG AAGGGAAAGA	1920
20	CTGGGGAGGG AGAGTGAAC CCGAGGGGTG TCCCCCTCCA ATCCCCCAG GGCCTTAATT	1980
	TTTCCCTTT CAACCTGAAC AAATCACATT CTGTCAGAT TCCTCTTGTA AAATAACCCA	2040
	CTAGTGCCTG AGCTCAGTGC TGCTGGATGA TGAGGGAGAT CAAGAAAAG CCACGTAAGG	2100
	GACTTTATAG ATGAACATAGT GGAATCCCTT CATTCTGCAG TGAGATTGCC GAGACCTGAA	2160
	GAGGGTAAGT GACTGCCA AGGTCAGAGC CACTTGGTGA CAGAGCCAGG ATGAGAACAA	2220
	AGATTCCATT TGCACCATGC CACACTGCTG TGTTCACATG TGCCCTCCGT CCAGAGCAGT	2280
	CCCGGGCAGG GGTGAAACTC CAGCAGGTTG CTGGGCTGGA AAGGAGGGCA GGGCTACATC	2340
	CTGGCTCGGT GGGATCTGAC GACCTGAAAG TCCAGCTCCC AAGTTTCTC TCTCTACCC	2400
	CAGCCTCGTG TACCCATCTT CCCACCCCTC ATGTTCTTAC CCCTCCCTAC ACTCAGTGT	2460
25	TGTTCCCACT TACTCTGTCC TGGGGCCTCT GGGATAGCA CAGGTTATTC ATAACCTTGA	2520
	ACCCCTTGTG CTGGATTCGG ATTTCTCAC ATTTGCTCG TGAGATGGGG GCTTAACCCA	2580
	CACAGGTCTC CGTGGTGAAC CAGGCTGC TGAGGTATCTC AGGGCAGCTG ATGAGGGGTG AGCAGGAACA	2640
	AGGGGACACT CGAGTCCAGG CTGGTATCTC AGGGCAGCTG ATGAGGGGTG AGCAGGAACA	2700
	CTGGCCCAT GCCCCCTGGCA CCTCTTGCAAG AGGCCACCCCA CGATCTTCTT TGGGCTTCA	2760
30	TTTCCACCAAG GGACTAAAAT CTGCTGTAGC TAGTGAGAGC AGCGTGTTC TTTTGTGTT	2820
	CACTGCTCAG CTGATGGGAG TGATTCCCTG AGACCCAGTA TGAAAGAGCA GTGGCTGCAG	2880
	GAGAGGCCTT CCCGGGGCCC CCCATCAGCG ATGTTCTTC AGAGACAATC CATTAAGCA	2940
	GCCAGGAAGG ACAGGCTTTC CCCTGTATAT CATAGGAAAC TCAGGGACAT TTCAAGTGC	3000
	TGAGAGTTT GTTATAGTTG TTTCTAAC CAGCCCTCCA CTGCCAAAGG CCAAAAGCTC	3060
35	AGACAGITGG CAGACGTCCA GTTAGCTCAT CTCACTCACT CTGATTCTCC TGTGCCACAG	3120
	GAAAAGAGGG CCTGAAAGC GCAGTGCATG CTGGGTGCAT GAAGGGCAGC CTGGGGGACA	3180
	GACTGTTGTG GGAACGTCCC ACTGTCCTGG CCTGGAGCTA GGCCCTTGCTG TTCCTCTTCT	3240
	CTGTGAGCCT AGTGGGGCTG CTGCGTTCT CTTGAGTTT CTGGTGGCAT CTCAGGGGAA	3300
	CACAAAAGCT ATGTCATATT CCAAATATAG GACTTTATG GGCTCGGCAG TTAGCTGCCA	3360
40	TGTAGAAGGC TCCTAACGAG TGGGCATGGT GAGGTTCAT CTGATTGAGA AGGGGAATC	3420
	CTGTGTGGAA TGTTGAACCT TCGCCATGGT CTCCATCGTT CTGGGCGTAA ATTCCCTGGG	3480
	ATCAAGTAGG AAAATGGGCA GAACTGCTA GGGGAATGAA ATTGCCATT TTCGGGTGAA	3540
	ACGCCACACC TCCAGGGTCT TAAGAGTCAG GCTCCGGCTG TAGTAGCTCT GATGAAATAG	3600
	GCTATCCACT CGGGATGGCT TACTTTTAA AAGGGTAGGG GGAGGGGCTG GGGAAAGATCT	3660
45	GTCCTGCACC ATCTGCCAA TTCCCTCCCT ACAGTCTGTA GCCATCTGAT ATCCTAGGGG	3720
	GAAAAGGAAG GCCAGGGGTT CACATAGGGC CCCAGCGAGT TTCCCAGGAG TTAGAGGGAT	3780
	GCGAGGCTAA CAAGTCCAA AAACATCTGC CCCGATGCTC TAGTGTGTTGG AGGTGGCAG	3840
	GATGGAGAAC AGTGCCTGTT TGGGGAAA CAGGAAATCT TGTTAGGCTT GAGTGAGGTG	3900
	TTTGCTTCCT TCTTCCCAG CGCTGGGTCT TCTCCACCCA GTAGGTTTC TGTTGTGGTC	3960
50	CCGTGGGAGA GGCCAGACTG GATTATTCTC CCTTGCTGA TCCTGGGTCA CACTCACCA	4020
	GCCAGGGCTT TTGACGGAGA CAGCAAATAG GCCTCTGAA ATCAATCAA GGCTGCAACC	4080
	CTATGGCCTC TTGGAGACAG ATGATGACTG GCAAGGACTA GAGAGCAGGA GTGCCTGGCC	4140
	AGGTCGGTCC TGACTCTCCT GACTCTCCAT CGCTCTGTCC AAGGAGAACCG CGGAGAGGCT	4200
	CTGGGCTGAT TCAGAGGTTA CTGCTTTATA TTCGTCAAA CTGTGTTAGT CTAGGCTTAG	4260
55	GACAGCTTC GAATCTGACA CCTTGCTTG CTCTGCCAC CAGGACACCT ATGTCACACAG	4320
	GCCAAACAGC CATGCATCTA TAAAGGTCA CATCTCTGC CACCTTACT GGGTTCTAAA	4380
	TGCTCTCTGA TAATTCAAGAG AGCATTGGGT CTGGGAAGAG GTAAGAGGAA CACTAGAAC	4440
	TCAGCATGAC TAAACACAGT TGAGCAAAG ACAGTTTATC ATCAACTCTT TCAGTGGTAA	4500

	ACTGTGGTTT	CCCCAAGCTG	CACAGGAGGC	CAGAAACCAC	AAGTATGATG	ACTAGGAAGC	4560
	CTACTGTCAT	GAGAGTGGGG	AGACAGGCAG	CAAAGCTTAT	GAAGGAGGTA	CAGAATATTTC	4620
	TTTGCCTTGT	AAGACAGAAT	ACGGGTTAA	TCTAGTCTAG	GCRCAGATT	TTTTCCCGC	4680
5	TTGATAAGGA	AAGCTAGCAG	AAAGTTTATT	TAAACCACCT	CTTGAGCTTT	ATCTTTTTG	4740
	ACAATATACT	GGAGAAAACCT	TGAAGAACAA	GTTCAAACCTG	ATACATATAAC	ACATATTTT	4800
	TTGATAATGT	AAATACAGTG	ACCATGTTAA	CCTACCCCTGC	ACTGCTTTAA	GTGAACATAC	4860
	TTTAAAAAAG	CATTATGTTA	GCTGAGTGT	GGCCAAGTTT	TTTCTCTGGA	CAGGAATGTA	4920
	AATGTCTAC	TGGAAATGAC	AAGTTTTGC	TTGATTTTTT	TTTTAAACA	AAAAATGAAA	4980
	TATAACAAGA	CAAACCTATG	ATAAAAGTATT	TGTCTGTAG	ATCAGGTGTT	TTGTTTGTGTT	5040
10	TTTTTAATT	AAAATGCAA	CCCTGCC	CCCCCAGCAA	AGTCACAGCT	CCATTTCAGT	5100
	AAAGGTTGGA	GTCAATATGC	TCTGGTTGGC	AGGCAACCC	GTAGTCATGG	AGAAAGGTAT	5160
	TTCAAGATCT	AGTCAAATCT	TTTCTAGAG	AAAAAGATAA	TCTGAAGCTC	ACAAAGATGA	5220
	AGTGACTTCC	TCAAATCAC	ATGGTTCAAGG	ACAGAAACAA	GATTAAAACC	TGGATCCACA	5280
15	GACTGTGCGC	CTCAGAAGGA	ATAATCGGT	AATTAAGAA	TGCTACTCGA	AGGTGCCAGA	5340
	ATGACACAAA	GGACAGAATT	CCTTCCCAG	TTGTTACCC	AGCAAGGCTA	GGGAGGGCAT	5400
	GAACACAAAC	ATAAGAACTG	GTCTTCTCAC	ACTTTCTCTG	AATCATTTAG	TTTAAGATG	5460
	TAAGTGAACA	ATTCTTCTT	TCTGCCAAGA	AACAAAGTTT	TGGATGAGCT	TTTATATATG	5520
	GAACCTACTC	CAACAGGACT	GAGGGACCAA	GGAAACATGA	TGGGGGAGGC	AAGAGAGGGC	5580
20	AAAGAGTAAA	ACTGTAGCAT	AGCTTTGTC	ACGGTCACTA	GCTGATCCCT	CAGGTCTGCT	5640
	GCAAAACACAG	CATGGAGGAC	ACAGATGACT	CTTGGTGT	GGTCTTTTG	TCTGCAGTGA	5700
	ATGTTCAAA	GTTTCCCAG	GAACGTGGGG	ATCATATATG	TCTTAGTGG	CAGGGTCTG	5760
	AAGTACACTG	GAATTACTG	AGAAACCTGT	TTGTAACAC	TATAGTTAAT	AATTATTGCA	5820
	TTTTCTTACA	AAAATATATT	TTGGAAAATT	GTATACTGTC	AATTAAAGT		

AAB DNA sequence

Gene name: EGR-containing fibulin-like extracellular matrix protein 1
 Unigene number: Hs.76224
 Probeset Accession #: U03877
 Nucleic Acid Accession #: NM_004105 Transcript variant 1
 Coding sequence: 150-1631 (predicted start/stop codons underlined)

	CTAGTATTCT	ACTAGAACTG	GAAGATTGCT	CTCCGAGTTT	TTTTTTGTT	ATTTTGTAA	60
	AAAATAAAA	GCTTGAGCAG	CAATTCAAT	TACTGTCACA	GGTATTTTG	CTGTGCTGTG	120
	CAAGGTAAC	CTGCTAGCTA	AGATTCAACAA	TGTTGAAAGC	CCTTTCTTA	ACTATGCTGA	180
35	CTCTGGCGCT	GGTCAAGTCA	CAGGACACCG	AAGAAACCAT	CACGTACACG	CAATGCACTG	240
	ACGGATATGA	GTGGGATCCT	GTGAGACAGC	AATGCAAAGA	TATTGATGAA	TGTGACATTG	300
	TCCCGACGC	TTGTAAGG	GAATGAAAGT	GTGTCACCA	CTATGGAGGA	TACCTCTGCC	360
	TTCCGAAAC	AGCCAGGATT	ATTGTCATA	ATGAAACAGCC	TCAGCAGGAA	ACACAACCA	420
40	CAGAAGGAAC	CTCAGGGCA	ACCACGGGG	TTGTAAGCTGC	CAGCAGCATG	GCAACCAGTG	480
	GAGTGTGCG	CGGGGGGGT	TTTGTGCCA	GTGCTGCTGC	AGTCGCAGGC	CCTGAAATGC	540
	AGACTGGCCG	AAATAACTTT	GTCATCCGGC	GGAACCCAGC	TGACCCCTAG	CGCATTCCCT	600
	CCAACCCCTC	CCACCGTATC	CAGTGTGCA	CAGGCTACGA	GCAAAGTGA	CACAACTGT	660
45	GCCAAGACAT	AGACCGAGTGC	ACTGCAGGGA	CGCACAACTG	TAGAGCAGAC	CAAGTGTGCA	720
	TCAATTTCAG	GGGATCCTT	GCATGTCAGT	GCCCTCCTGG	ATATCAGAAG	CGAGGGGAGC	780
	AGTGCAGA	CATAGATGAA	TGTACCATCC	CTCCATATTG	CCACCAAAGA	TGCGTGAATA	840
	CACCAAGGCTC	ATTTTATTG	CAGTGCAGTC	CTGGGTTCA	ATTGGCAGCA	AACAACATA	900
	CCTGCGTAGA	TATAAATGAA	TGTGATGCCA	GCAATCAATG	TGCTCAGCAG	TGCTACAACA	960
50	TTCTTGGTTC	ATTCACTCTG	CAGTGCAC	AAGGATATGA	GCTAACAGT	GACAGGCTCA	1020
	ACTGTGAAGA	CATTGATGAA	TGCAGAACCT	CAAGCTACCT	GTGTCATAT	CAATGTGTCA	1080
	ATGAACCTGG	GAATTCTCA	TGTATGTGCC	CCCAGGGATA	CCAAGTGGTG	AGAAGTAGAA	1140
	CATGTCAAGA	TATAAATGAG	TGTGAGACCA	CAAATGAATG	CCGGGAGGAT	GAAATGTGTT	1200
	GGAATTATCA	TGGCGGCTTC	CGTTGTTATC	CACGAAATCC	TTGTCAGAT	CCCTACATTC	1260
55	TAACACCAGA	GAACCGATGT	TTTGCCCGAG	TCTCAAATGC	CATGTGCCGA	GAACGTCCCC	1320
	AGTCAATAGT	CTACAAATAC	ATGAGCATCC	GATCTGATAG	GTCTGTGCCA	TCAGACATCT	1380
	TCCAGATACA	GGCCACAACT	ATTATGCA	ACACCATCAA	TACTTTCCG	ATTAATCTG	1440
	GAAATGAAA	TGGAGAGTTC	TACCTACGAC	AAACAAAGTC	TGTAAGTGC	ATGCTTGTGC	1500
	TCGTGAAGTC	ATTATCAGGA	CCAAGGAAAC	ATATCGTGA	CCTGGAGATG	CTGACAGTCA	1560
60	GCAGTATAGG	GACCTTCCGC	ACAAGCTCTG	TGTTAAGATT	GACAATAATA	GTGGGGCCAT	1620
	TTTCATTTA	GCTTTCTA	AGAGTCAC	ACAGGCATT	AAGTCAGCCA	AAGAATATTG	1680
	TTACCTTAA	GCACATT	TTTATAGAT	ATATCTAGT	CATCTACATC	TCTATACTGT	1740
	ACACTCACCC	ATAACAAACAA	ATTACACCAT	GGTATAAAAGT	GGGCATTAA	TATGAAAGA	1800
	TTCAAAGTTT	GTCTTATT	CTATATGTA	ATTAGACATT	AATCCACTAA	ACTGGCTTC	1860
65	TTCAAGAGAG	CTAAGTATAC	ACTATCTGGT	GAAACTGG	TTCTTCC	TAAAAGTGGG	1920
	ACCAAGCAAT	GATGATCTTC	TGTGGTGT	AAGGAAACCT	ACTAGAGCTC	CACTAACAGT	1980
	CTCATAAGGA	GGCAGCCATC	ATAACCATG	AATAGCATGC	AAGGGTAAGA	ATGAGTTTT	2040
	AACTGCTTTG	TAAGAAAATG	GAAAAGGTCA	ATAAAAGATAT	ATTCTTTAG	AAAATGGGGA	2100
	TCTGCCATAT	TTGTGTTGGT	TTTTATTT	ATATCCAGCC	TAAAGGTGGT	TGTTTATTAT	2160

	ATAGTAATAA ATCATTGCTG TACAACATGC TGGTTCTGT AGGGTATTT TAATTTGTC	2220
	AGAAATTTA GATTGTAAT ATTTTGAAA AAACAGTAAG CAAAATTTG CAGAATTCCC	2280
	AAAATGAACC AGATACCCCC TAGAAAATTA TACTATTGAG AAATCTATGG GGAGGATATG	2340
5	AGAAAATAAA TTCCCTCTAA ACCACATTGG AACTGACCTG AAGAAGCAA CTCGAAAAT	2400
	ATAATAACAT CCCTGAATTG AGGCATTCAAC AAGATGCAGA ACAAAATGGA TAAAAGGTAT	2460
	TTCACTGGAG AAGTTTAAT TTCTAAGTAA AATTTAAATC CTAACACTTC ACTAATTTAT	2520
	AACTAAAATT TCTCATCTTC GTACTTGATG CTCACAGAGG AAGAAAATGA TGATGGTTT	2580
10	TATTCCCTGGC ATCCAGAGTG ACAGTGAAC TAAGCAAATT ACCCTCTAC CCAATTCTAT	2640
	GGAATATTT ATACGTCTCC TTGTTAAAAA TCTGACTGCT TTACTTGAT GTATCATATT	2700
	TTTAAATAAA AATAAATATT CCTTTAGAAG ATCACTCTAA AA	

AAB9 DNA sequence

Gene name: Melanoma adhesion molecule, MUC 18 glycoprotein

Unigene number: Hs.211579

Probeset Accession #: M28882

Nucleic Acid Accession #: NM_006500 cluster

Coding sequence: 27-1967 (predicted start/stop codons underlined)

20	ACTTGCCTCT CGCCCTCCGG CCAAG <u>CATGG</u> GGCTTCCCAG GCTGGTCTGC GCCTTCTTGC	60
	TCGCCGCCTG CTGCTGCTGT CCTCGCGTCG CGGGTGTGCC CGGAGAGGCT GAGCAGCCTG	120
	CGCCTGAGCT GGTGGAGGTG GAAGTGGGCA GCACAGCCCT TCTGAAGTGC GGCCTCTCCC	180
	AGTCCAAGG CAACCTCAGC CATGTCGACT GGTTTCTGT CCACAAGGAG AAGGGACGC	240
25	TCATCTTCCG TGTGCGCCAG GGCCAGGGCC AGAGCGAAC AGGGGAGTAC GAGCAGCGGC	300
	TCAGCCTCCA GGACAGAGGG GCT <u>ACTCTGG</u> CCCTGACTCA AGTCACCCCC CAAGACGAGC	360
	GCATCTTCTT GTGCCAGGGC AAGGCCCTC GGTCCCAGGA GTACCGCATC CAGCTCCGCG	420
	TCTACAAAGC TCCGGAGGAG CAAACATCC AGGTCAACCC CCTGGGCATC CCTGTGAACA	480
	GTAAGGAGCC TGAGGAGGTC GCTACCTGTG TAGGGAGGAA CGGGTACCCC ATTCTCAAG	540
30	TCATCTGGTA CAAGAATGGC CGGCCTCTGA AGGAGGAGAA GAACCGGGTC CACATTCAAGT	600
	CGTCCCAGAC TGTGGAGTCG AGTGGTTGT ACACCTTGCA GAGTATTCTG AAGGCACAGC	660
	TGGTTAAAGA AGACAAAGAT GCCCCAGTTT ACTGTGAGCT CAACTACCCG CTGCCAGTG	720
	GGAACACAT GAAGGAGTCC AGGGAAAGTC CCGTCCCTGT TTTCTACCCG ACAGAAAAAG	780
	TGTGGCTGGA AGTGGAGCCC GTGGGAATGC TGAAGGAAGG GGACCCGCTG GAAATCAGGT	840
35	GTTTGGCTGA TGGCAACCCCT CCACCACACT TCAGCATCAG CAAGCAGAAC CCCAGCACCA	900
	GGGAGGCAGA GGAAGAGACA ACCAACGACA ACGGGGTCCT GGTGCTGGAG CCTGCCCGGA	960
	AGGAACACAG TGGGGCCTAT GAATGTCAGG CCTGGAAACTT GGACACCATG ATATCGCTGC	1020
	TGAGTGAACC ACAGGAACAT CTGGTGAAC ATGTGCTCTGA CGTCCGAGTG AGTCCCAG	1080
40	CCCTGAGAG ACAGGAAGGC AGCAGCCTCA CCCTGACCTG TGAGGAGAG AGTAGCCAGG	1140
	ACCTCGAGT CCAGTGGCTG AGAGAAGAGA CAGACCAGGT GCTGGAAAGG GGGCCTGTGC	1200
	TTCAGTTGCA TGACCTGAAA CGGGAGGCAG GAGGGCGTA TCGCTCGTG GCGCTGTGC	1260
	CCAGCATACC CGGCCTGAAC CGCACACAGC TGGTCAAGCT GGCCATTTCG GGCCTCCCTT	1320
	GGATGGCAATT CAAGGAGAGG AAGGTGTGGG TGAAAGAGAA TATGGTGTG AATCTGTCTT	1380
	GTGAAGCGTC AGGGCACCCC CGGCCCAACA TCTCTGGAA CGTCAACGGC ACGGCAAGTG	1440
45	AACAAGACCA AGATCCACAG CGAGTCTGCA GCACCCCTGAA TGTCTCGTG ACCCCGGAGC	1500
	TGTTGGAGAC AGGTGTTGAA TGCACGGCCT CCAACGACCT GGGCAAAAC ACCAGCATCC	1560
	TCTTCCTGGA GCTGGTCAAT TAAACCACCC TCACACCAAGA CTCCAACACA ACCACTGGCC	1620
	TCAGCACTTC CACTGCCAGT CCTCATACCA GAGCCAACAG CACCTCCACA GAGAGAAAGC	1680
	TGCCGGAGCC GGAGAGCCGG GGCCTGGTCA TCGTGGCTGT GATTGTGTG ATCCCTGGTCC	1740
50	TGGCGGTGCT GGGCGCTGTC CTCTATTTC TCTATAAGAA GGGCAAGCTG CGTGCAGGC	1800
	GCTCAGGGAA GCAGGAGATC ACGCTGCCCT CGTCTCGTAA GACCGAACTT GTAGTTGAAG	1860
	TTAAGTCAGA TAAGCTCCCAGA GAAGAGATGG GCCTCCTGCA GGGCAGCAGC GGTGACAAGA	1920
	GGGCTCCGGG AGACCAGGG AAGAAATACA TCGATCTGAG GCATTAGCCC CGAACATCACTT	1980
	CAGCTCCCTT CCCTGCCCTGG ACCATTCCTCA GCTCCCTGCT CACTCTCTC TCAGGCAAAG	2040
55	CCTCCAAAGG GACTAGAGAG AAGCCTCCCTG CTCCCTCAGC CTGCACACCC CCTTTCAAGAG	2100
	GGCCACTGGG TTAGGACCTG AGGACCTCAC TTGGCCCTGC AAGCCGCTT TCAGGGACCA	2160
	GTCCACCAAC ATCTCTCTCA CGTTGAGTGA AGCTCATCCC AAGCAAGGGC CCCAGTCTC	2220
	CCGAGCGGGT AGGAGAGTTT CTTGCAGAAC GTGTTTTTC TTTACACACA TTATGGCTGT	2280
	AAATACCTGG CTCCGCCAG CAGCTGAGCT GGGTAGCCTC TCTGAGCTG TTTCTGCC	2340
60	CAAAGGCTGG CTTCCACCAT CCAGGTGCAC C <u>ATG</u> AAGTGC AGGACACACC GGAGCCAGGC	2400
	GCCTGCTCAT GTTGAAGTGC GCTGTTCACCA CG <u>CT</u> CCGG AGAGCACCCC AGCGGCATCC	2460
	AGAAGCAGCT GCAGTGTGTC TGCACCCACC CT <u>CT</u> GCTCG CCTCTTCAA GTCTCTGTG	2520
	ACATTTTTTC TTTGGTCAGA AGCCAGGAAC TGGTGTCTATT CCTTAAAGA TACGTGCCGG	2580
	GGCCAGGTGT GGTGGCTCAC GCCTGTAATC CCAGCACTT GGGAGGCCGA GGCGGGCGGA	2640
65	TCACAAAAGTC AGGACGAGAC CATCTGGCT AACACGGTGA AACCTGTCT CTACTAAAAA	2700
	TACAAAAAAA AATTAGCTAG GCGTAGTGGT TGGCACCTAT AGTCCCAGCT ACTCGGAAGG	2760
	CTGAAGCAGG AGAATGGTAT GAATCCAGGA GGTGGAGCTT GCAGTGAGCC GAGACCGTGC	2820
	CACTGCACTC CAGCTGGGC AACACAGCGA GACTCCGTCT CGAGGAAAAA AAAAGAAAAG	2880
	ACCGCTACTT CGGGTGAGGA AGCTGGCGC TGTTTCGAG TTCAGGTGAA TTAGCCTCAA	2940

TCCCCGTGTT CACTTGCTCC CATAGCCCTC TTGATGGATC ACGTAAAAC GAAAGGCAGC 3000
 GGGGAGCAGA CAAAGATGAG GTCTACACTG TCCTTCATGG GGATTAAAGC TATGGTTATA 3060
 TTAGCACCAA ACTTCTACAA ACCAAGCTCA GGGCCCAAC CCTAGAAGGG CCCAAATGAG 3120
 AGAATGGTAC TTAGGGATGG AAAACGGGGC CTGGCTAGAG CTTCGGGTGT GTGTGTCTGT 3180
 5 CTGTGTGTAT GCATACATAT GTGTGTATAT ATGGTTTGT CAGGTGTGTA AATTGCAA 3240
 TTGTTTCCCT TATATATGTA TGTATATATA TATATGAAA TATATATATA TATGAAAAAT 3300
 AAAGCTTAAT TGTCAGAAC AATCATACAT TGCTTTTTA TTCTACATGG GTACCACAGG 3360
 AACCTGGGGC CCTGTGAAAC TACAACCAA AGGCACACAA ACCGTTTC AGTTGGCAGC 3420
 AGAGATCAGG GGTTACCTCT GCTTCTGAGC AAATGGCTCA AGCTCTACCA GAGCAGACAG 3480
 10 CTACCTACT TTTCAGCAGC AAAACGTCCC GTATGACGCA GCACGAAGGG CCTGGCAGGC 3540
 TGTTAGCAGG AGCTATGTCC CTTCTATCG TTTCCGTCCA CTT

AAC1 DNA sequence

Gene name: Matrix metalloproteinase 1 (interstitial collagenase)

Unigene number: Hs.83169

Probeset Accession #: X54925

Nucleic Acid Accession #: NM_002421 cluster

Coding sequence: 69-1478 (predicted start/stop codons underlined)

H20
O2N
H25
O2D
H30
O2D
H35
O2D
H40
O2D
H45
O2D
H50

ATATTGGAGT AGCAAGAGGC TGGGAAGCCA TCACTTACCT TGCAGTGAGA AAGAAAGACAA	60
<u>AGGCCAGTAT</u> GCACAGCTTT CCTCCACTGC TGCTGCTGCT GTTCTGGGGT GTGGTGTCTC	120
ACAGCTTCCC AGCAGCTCTA GAAACACAAG AGCAAGATGT GGACTTAGTC CAGAAATACC	180
TGGAAAATA CTACAAACCTG AAGAATGATG GGAGGCAAGT TGAAAAGCGG AGAAATAGTG	240
GCCCAGTGGT TGAAAAATTG AAGCAATGCC AGGAATTCTT TGGGCTGAAA GTGACTGGGA	300
AACCAGATGC TGAAACCCCTG AAGGTGATGA AGCAGCCAG ATGTGGAGTG CCTGATGTGG	360
CTCAGTTGT CCTCACTGAG GGGAAACCTC GCTGGGAGCA AACACATCTG ACCTACAGGA	420
TTGAAAATTG CACGCCAGAT TTGCAAGAG CAGATGTGGA CCATGCCATT GAGAAAGCCT	480
TCCAACCTCTG GAGTAATGTC ACACCTCTGA CATTACCAA GGTCTCTGAG GGTCAAGCAG	540
ACATCATGAT ATCTTTGTC AGGGGAGATC ATCGGGACAA CTCTCCTTT GATGGACCTG	600
GAGGAAATCT TGCTCATGCT TTTCAACCAAG GCCCAGGTAT TGGAGGGAT GCTCATTTG	660
ATGAAGATGA AAGGTGGACC ACAAAATTCA GAGAGTACAA CTTACATCGT GTTGGGGCTC	720
ATGAACCTCGG CCATTCTCTT GGACTCTCCC ATTCTACTGA TATCGGGGT TTGATGTACC	780
CTAGCTACAC TTTCAGTGGT GATGTTCAAG TAGCTCAGGA TGACATTGAT GGCACTCCAAG	840
CCATATATGG ACGTCCCCA ATCCCTGTCC AGCCCCATCGG CCCACAAACCC CCAAAAGCAT	900
GTGACAGTAA GCTAACCTTT GATGCTATAA CTACGATTGAGGAGTGT ATGTTCTTTA	960
AAGACAGATT CTACATGCGC ACAAAATCCC TCTACCCGGA AGTTGAGCTC AATTTCATT	1020
CTGTTTCTG GCCACAACCTG CCAAATGGGC TTGAAGCTGC TTACGAATT GCGACAGAG	1080
ATGAAGTCCC GTTTTCAAA GGGAAATAGT ACTGGGCTGT TCAGGGACAG AATGTGCTAC	1140
40 ACGGATACCC CAAGGACATC TACAGCTCCT TTGGCTTCCC TAGAACTGTG AAGCATATCG	1200
ATGCTGCTCT TTCTGAGGAA AACACTGGAA AAACCTACTT CTTTGTGCT AACAAATACT	1260
GGAGGTATGA TGAATATAAA CGATCTATGG ATCCAGGTTA TCCCAAATG ATAGCACATG	1320
ACTTTCTGG AATTGCCAC AAAGTTGATG CAGTTTCAT GAAAGATGGA TTTTCTATT	1380
TCTTTCATGG ACAAAAGACAA TACAAATTG ATCCTAAAC GAAGAGAATT TTGACTCTCC	1440
45 AGAAAGCTAA TAGCTGGTTC AACTGCAGGA AAAATTGAAC ATTACTAATT TGAATGGAAA	1500
ACACATGGTG TGAGTCCAAA GAAGGTGTT TCCGTAAAGAA CTGTCTATT TCTCAGTCAT	1560
TTTTAACCTC TAGAGTCACT GATACACAGA ATATAATCTT ATTATACCT CAGTTGCAT	1620
ATTTTTTAC TATTAGAAT GTAGCCCTT TTGTACTGAT ATAATTTAGT TCCACAAATG	1680
GTGGGTACAA AAAGTCAGT TTGTGGCTTA TGGATTCTA TAGGCCAGAG TTGCAAAGAT	1740
50 CTTTCCAGA GTATGCAACT CTGACGTTGA TCCCAGAGAG CAGCTTCAGT GACAACATA	1800
TCCTTCAAG ACAGAAAGAG ACAGGAGACA TGAGTCTTTG CCGGAGGAAA AGCAGCTCAA	1860
GAACACATGT GCAGTCACTG GTGTCACCC GTGATAGGCAA GGGATAACTC TTCTAACACA	1920
AAATAAGTGT TTTATGTTG GAATAAAAGTC AACCTGTTT CTACTGTTT	

55

AAC3 DNA sequence

Gene name: Branched chain aminotransferase 1, cytosolic

Unigene number: Hs.157205

Probeset Accession #: AA423987

Nucleic Acid Accession #: NM_005584 cluster

Coding sequence: 1-1155 (predicted start/stop codons underlined)

65

ATGGATTGCA GTAACGGATC GGCAGAGTGT ACCGGAGAAG GAGGATCAA AGAGGTGGTG	60
GGGACTTTTA AGGCTAAAGA CCTAATAGTC ACACCAAGCTA CCATTTTAAA GGAAAAACCA	120
GACCCCAATA ATCTGGTTT TGGAACTGTG TTCACGGATC ATATGCTGAC GGTGGAGTGG	180
TCCTCAGAGT TTGGATGGGA GAAACCTCAT ATCAAGCCTC TTCAGAACCT GTCATTCAC	240
CCTGGCTCAT CAGTTTGCA CTATGCAGTG GAATTATTTG AAGGATTGAA GGCATTTCGA	300
GGAGTAGATA ATAAAATTG ACTGTTTCAG CAAACCTCA ACATGGATAG AATGTATCGC	360

5 TCTGCTGTGA GGGCAACTCT GCCGGTATTG GACAAAGAAG AGCTCTTAGA GTGTATTCAA 420
 CAGCTTGTGA AATTGGATCA AGAATGGTC CCATATTCAA CATCTGCTAG TCTGTATATT 480
 CGTCCTGCAT TCATTGGAAC TGAGCCTTCT CTTGGAGTCA AGAAGCCTAC CAAAGCCCTG 540
 CTCTTGTAC TCTTGAGCCC AGTGGGACCT TATTTTCAA GTGGAACCTT TAATCCAGTG 600
 TCCCCTGTGGG CCAATCCAA GTATGTAAGA GCCTGGAAAG GTGGAACCTGG GGACTGCAAG 660
 ATGGGAGGGA ATTACGGCTC ATCTCTTTT GCCCAATGTG AAGACGTAGA TAATGGGTGT 720
 CAGCAGGTCC TGTGGCTCTA TGGCAGAGAC CATCAGATCA CTGAAGTGGG AACTATGAAT 780
 CTTTTTCTTT ACTGGATAAA TGAAGATGGA GAAGAAGAAC TGGCAACTCC TCCACTAGAT 840
 GGCATCATTC TTCCAGGAGT GACAAGGCGG TGCAATTCTGG ACCTGGCACA TCAGTGGGGT 900
 10 GAATTAAAGG TGTCAGAGAG ATACCTCACCC ATGGATGACT TGACAACAGC CCTGGAGGGG 960
 AACAGAGTGA GAGAGATGTT TAGCTCTGGT ACAGCTGTG TTGTTGCC AGTTCTGAT 1020
 ATACTGTACA AAGGCAGAC AATACACATT CCAACTATGG AGAATGGTCC TAAGCTGGCA 1080
 AGCCGCATCT TGAGCAAATT AACTGATATC CAGTATGGAA GAGAAGAGAG CGACTGGACA 1140
 ATTGTGCTAT CCTGA

15

ACG4 DNA sequence:
 Gene name: Pentaxin-related gene, rapidly induced by IL-1 beta
 Unigene number: Hs.2050
 Probeset Accession #: M31166
 Nucleic Acid Accession #: NM_002852 cluster
 Coding sequence: 68-1213 (predicted start/stop codons underlined)

20 CTCAAACTCA GCTCACTTGA GAGTCTCCTC CCGCCAGCTG TGGAAAGAAC TTTGCGTCTC 60
 TCCAGCAATG CATCTCCTTG CGATTCTGTT TTGTGCTCTC TGGTCTGCAG TGTTGGCCGA 120
 GAACTCGGAT GATTATGATC TCATGTATGT GAATTGGAC AACGAAATAG ACAATGGACT 180
 CCATCCCACG GAGGACCCCCA CGCCGTGCCA CTGCGGTCAAG GAGCACTCGG AATGGGACAA 240
 GCTCTTCATC ATGCTGGAGA ACTCGCAGAT GAGAGAGCGC ATGCTGCTGC AAGCCACGGA 300
 CGACGTCCCTG CGGGGGCGAGC TGCAGAGGCT GCAGGGAGGAG CTGGGCCGGC TCGGGAAAG 360
 CCTGGCGAGG CGGTGCGCGC CGGGGGCTCC CGCAGAGGCC AGGCTGACCA GTGCTCTGGA 420
 CGAGCTGCTG CAGGGACCC GCGACGCGGG CGCAGGCTG GCGCGTATGG AGGGCGCGGA 480
 GGCGCAGCGC CGAGAGGAGG CGGGGCCCGC CCTGGGCCCGC GTGCTAGAGG AGCTCCGGCA 540
 GACGCGAGCC GACCTGCACG CGGTGCAGGG CTGGGCTGCC CGGAGCTGGC TGCCGGCAGG 600
 TTGTGAAACA GCTATTGTTAT TCCCAATGGC TTCCAAGAAC ATTTTGGAA GCGTGCATCC 660
 AGTGAGACCA ATGAGGCTTG AGTCTTTAG TGCGCTGCATT TGGTCAAAG CCACAGATGT 720
 ATTAAACAAA ACCATCCTGT TTCTCATGG CACAAAGAGG AATCCATATG AAATCCAGCT 780
 GTATCTCAGC TACCAATCCA TAGTGTGTTG GGTGGGTGGA GAGGAAACA AACTGGTTGC 840
 TGAAGGCATG GTTCCCTGG GAAGGTGGAC CCACCTGTGC GGCACCTGGA ATTCAAGAGGA 900
 AGGGCTCACCA TCCCTGTGGG TAAATGGTGA ACTGGCGGCT ACCACTGTTG AGATGGCCAC 960
 40 AGGTACACATT GTTCTGAGG GAGGAATCCT GCAAGATTGGC CAAGAAAAGA ATGGCTGCTG 1020
 TGTGGGTGGT GGCTTGATG AAACATTAGC CTTCTCTGGG AGACTCACAG GCTTCATAT 1080
 CTGGGATAGT GTTCTTAGCA ATGAAGAGAT AAGAGAGACC GGAGGAGCAG AGTCTGTCA 1140
 CATCCGGGGG AATATTGTTG GGTGGGAGT CACAGAGATC CAGCCACATG GAGGAGCTCA 1200
 GTATGTTCA TAAATGTTGT GAAACTCCAC TTGAAGCCAA AGAAAAGAAC TCACACTTAA 1260
 45 AACACATGCC AGTTGGGAAG GTCTGAAAAC TCAGTGCATA ATAGGAACAC TTGAGACTAA 1320
 TGAAAGAGAG AGTTGAGACC AATCTTATT TGTACTGGCC AAATACTGAA TAAACAGTTG 1380
 AAGGAAAGAC ATTGGAAAAAA GCTTTGAGG ATAATGTTAC TAGACTTTAT GCCATGGTGC 1440
 TTTCAGTTA ATGCTGTGTC TCTGTCAGAT AAACCTCTAA ATAATTAAAA AGGACTGTAT 1500
 TGTGAAACAG AGGGACAATT GTTTTACTTT TCTTTGGTTA ATTTTGTGTT GGCCAGAGAT 1560
 50 GAATTGTTACA TTGGAAAGAAT AACAAAATAA GATTGTTGT CCATTGTTCA TTGTTATTGG 1620
 TATGTACCTT ATTACAAAAA AAATGATGAA AACATATTAA TACTACAAGG TGACTTAACA 1680
 ACTATAAATG TAGTTATGTT GTTATAATCG AATGTCACGT TTTTGAGAAG ATAGTCATAT 1740
 AAGTTATATT GCAAAAGGGA TTGTTATTAA TTTAAGACTA TTTTGTAAGA GCTCTACTGT 1800
 AAATAAAATAA TTTTATAAAA CTAAAAAAA AAAAAAAA

55

ACG5 DNA sequence:
 Gene name: Von Willebrand factor, Coagulation factor VIII
 Unigene number: Hs.110802
 Probeset Accession #: M10321
 Nucleic Acid Accession #: NM_000552 cluster
 Coding sequence: 311-8752 (predicted start/stop codons underlined)

60

65 AGCTCACAGC TATTGTGGTG GGAAAGGGAG GGTGGTTGGT GGATGTCACA GCTTGGGCTT 60
 TATCTCCCCC AGCAGTGGGG ACTCCACAGC CCCTGGCTA CATAACAGCA AGACAGTCCG 120
 GAGCTGTAGC AGACCTGATT GAGCTTTCAG AGCAGCTGAG AGCATGGCTT AGGGTGGCG 180
 GCACCAATTGT CCAGCAGCTG AGTTTCCCAG GGACCTTGGA GATAGCCGCA GCCCTCATT 240
 CGAGGGGAAG GCACCAATTGT CCAGCAGCTG AGTTTCCCAG GGACCTTGGA GATAGCCGCA 300

HUMAN GENOME

	GCCCTCATT	ATGATTCTG	CCAGATTGC	CGGGGTGCTG	CTTGCTCTGG	CCCTCATT	360
	GCCAGGGACC	CTTTGTGCAG	AAGGAACTCG	CGGCAGGTCA	TCCACGGCCC	GATGCAGCCT	420
	TTTCGGAAGT	GACTTCGTCA	ACACCTTGAA	TGGGAGCATG	TACAGCTTTG	CGGGATACTG	480
	CAGTTACCTC	CTGGCAGGGG	GCTGCCAGAA	ACGCTCTTC	TCGATTATTG	GGGACTTCCA	540
5	GAATGGCAAG	AGAGTGAGCC	TCTCCGTGTA	TCTTGGGAA	TTTTTGACA	TCCATTGTT	600
	TGTCAATGGT	ACCGTGACAC	AGGGGGACCA	AAGAGTCTCC	ATGCCCTATG	CCTCCAAAGG	660
	GCTGTATCTA	AAAAGTGAGG	CTGGGTACTA	CAAGCTGTCC	GGTGAGGCCT	ATGGCTTGT	720
	GGCCAGGATC	GATGGCAGCG	GCAACTTTCA	AGTCCTGCTG	TCAGACAGAT	ACTTCAACAA	780
	GACCTGCGGG	CTGTGTGGCA	ACTTTAACAT	CTTGCTGAA	GATGACTTTA	TGACCCAAGA	840
10	AGGGACCTTG	ACCTCGGACC	CTTATGACTT	TGCCAACTCA	TGGGCTCTGA	GCAGTGGAGA	900
	ACAGTGGTGT	GAACGGGCAT	CTCCCTCCAG	CAGCTCATGC	ACATCTCC	CTGGGGAAAT	960
	GCAGAAGGGC	CTGTGGGAGC	AGTGCAGCT	TCTGAAGAGC	ACCTCGGTG	TTGCCCGCTG	1020
	CCACCCCTG	GTGGACCCCCG	AGCCTTTGT	GGCCCTGTG	GAGAAGACTT	TGTGTGAGTG	1080
	TGCTGGGGGG	CTGGAGTGC	CCTGCCCTG	CCTCCTGGAG	TACGCCCGGA	CCTGTGCCA	1140
15	GGAGGGAATG	GTGCTGTACG	GCTGGACCGA	CCACAGCGCG	TGCAGCCAG	TGTGCCCTG	1200
	TGGTATGGAG	TATAGGCAGT	GTGTGTCCC	TTGCGCCAGG	ACCTGCCAGA	GCCTGCACAT	1260
	CAATGAAATG	TGTCAGGAGC	GATGCCTGGA	TGGCTGCAGC	TGCCCTGAGG	GACAGCTCCT	1320
	GGATGAAGGC	CTCTGCGTGG	AGAGCACCGA	GTGTCCCTG	GTGCATTCCG	GAAGCGCTA	1380
	CCCTCCCGGC	ACCTCCCTCT	CTCGAGACTG	CAACACCTGC	ATTGCGCAA	ACAGCCAGTG	1440
	GATCTGCAGC	AATGAAGAAAT	GTCCAGGGG	GTGCCCTG	ACTGGTCAAT	CCCACTTCAA	1500
	GAGCTTGTAC	AACAGATACT	TCACCTTCAG	TGGGATCTG	CAGTACCTG	TGGCCCGGG	1560
	TTGCCAGGAG	CACTCCCTCT	CCATTGTCAT	TGAGACTG	CAGTGTG	ATGACCGCGA	1620
	CGCTGTGTG	ACCCGCTCG	TCACCGTCCG	GTCGCCCTG	CTGCACAAACA	GCCTTGTGAA	1680
	ACTGAAGCAT	GGGGCAGGAG	TTGCGATGGA	TGGCCAGGAC	ATCCAGCTCC	CCCTCCTGAA	1740
	AGGTGACCTC	CGCATCCAGC	ATACAGTGAC	GGCCTCCGTG	CGCCTCAGCT	ACGGGGAGGA	1800
	CCTGCAGATG	GAATGGGATG	GGCGCGGGAG	GTCGTGGTG	AAGCTGTCCC	CCGTCTACGC	1860
	CGGGAAAGACC	TGCGGCCCTG	GTGGGAAATTA	CAATGGCAAC	CAGGGCGACG	ACTTCCCTAC	1920
	CCCCTCTGGG	CTGGCAGAGC	CCCGGGTGGA	GGACTTCGGG	AACGCCCTGGA	AGCTGCACGG	1980
	GGACTGCCAG	GACCTGCAGA	AGCAGCACAG	CGATCCCTGC	GCCCTCAACC	CGCGCATGAC	2040
30	CAGGTTCTCC	GAGGAGGC	GGCGGGCTC	GACGTCCCCC	ACATTGAGG	CTGCCATCG	2100
	TGCGGTCA	CCGCTGCCCT	ACCTGCGGAA	CTGCCGCTAC	GACGTGTG	CCTGCTCGGA	2160
	CGGCCGCGAG	TGCGCTGTG	GGGCCCTG	CAGCTATGCC	GGGGCCTG	CGGGGAGAGG	2220
	CGTGCCTG	GGCGCGCG	AGCCAGGCCG	CTGTGAGCTG	AACTGCCGA	AAGGCCAGGT	2280
	GTACCTGCA	TGCGGGACCC	CCTGCAACCT	GACCTGCCG	TCTCTCTT	ACCCGGATGA	2340
	GGAAATGCA	GAGGCC	GGGAGGGCTG	CTTCTGCC	CCAGGGCT	ACATGGATGA	2400
	GAGGGGGGAC	TGCGT	GGGCCAGTG	CCCCTGTTAC	TATGACGG	AGATCTTCAA	2460
	GCCAGAAGAC	ATCTTCTCAG	ACCATCACAC	CATGTGCTAC	TGTGAGGATG	GCTTCATGCA	2520
	CTGTACCATG	AGTGGAGTCC	CCGGAAGCTT	GTCGCTGAC	GTCGCTCTCA	GCAGTCCCC	2580
	GTCTCATCG	AGCAAAAGGA	GCCTATCTG	TCGGGCCCC	ATGGTCAAG	TGGTGTG	2640
40	CGCTGACAAC	CTGCGGCTG	AAGGGCTCGA	GTGTACCAA	ACGTGCCAGA	ACTATGACCT	2700
	GGAGTGCATG	AGCATTGGCT	GTGTCTCTG	CTGCCCTG	CCCCGGGCA	TGGTCCGGCA	2760
	TGAGAACAGA	TGTGTG	GGGAAAGGTT	TCCCTGCTTC	CATCAGG	AGGAGTATGC	2820
	CCCTGGAGAA	ACAGTGAAGA	TGGGCTGCAA	CACTTGTG	TGTGGGAC	GGAAAGTGGAA	2880
	CTGCACAGAC	CATGTG	ATGCCACGTG	CTCCACG	GGCATGG	ACTACCTCAC	2940
45	CTTCGACGGG	CTCAAATACC	TGTTCCCCGG	GGAGTGCCAG	TACGTTCTG	TGCAAGGATTA	3000
	CTGCGGAGT	AAACCTGGG	CCTTCGGAT	CCTAGTGGG	ATAAGGGAT	GCAGCCACCC	3060
	CTCAGTGA	TGCAAGAAC	GGGTCA	CCTGGTGGAG	GGAGGAGAGA	TTGAGCTGTT	3120
	TGACGGGGAG	GTGAATGTG	AGAGGCCAT	GAAGGATGAG	ACTCACTTG	AGGTGGTGG	3180
	GTCTGGCCGG	TACATCATT	TGCTGCTG	CAAAGCC	TCCGTTG	GGGACCGCC	3240
50	CCTGAGCATC	TCCGTTG	TGAAGCAGAC	ATACCAGGAG	AAAGTGTG	GCCTGTG	3300
	GAATTTTGAT	GGCATCCAGA	ACAATGACCT	CACCAGCAGC	AACCTCCAAG	TGGAGGAAGA	3360
	CCCTGTGGAC	TTTGGGAACT	CCTGGAAAGT	GAGCTCG	TGTGCTG	CCAGAAAAGT	3420
	GCCTCTGGAC	TCATCCCCTG	CCACCTGCCA	TAACAAACATC	ATGAAGCAGA	CGATGGTGG	3480
	TTCCCTG	AGAATCCTTA	CCAGTGA	CTTCCAGGAC	TGCAACAAGC	TGGTGGACCC	3540
55	CGAGCCATAT	CTGGATG	GCATT	TACGA	CACCTG	TGTGAGT	3600
	CGCCCTG	TGCGACACCA	TTGCTGCC	TGCCCACG	TGTGCCCAGC	ATGGCAAGGT	3660
	GGTGA	CTGGGAGGCCA	CATTG	CCAGAGCTG	GAGGAGAGGA	ATCTCCGGG	3720
	GAACGGGTAT	GAGTGTGAGT	GGCGCTATAA	CAGCTG	TGCA	AAGTACG	3780
	TCAGCAC	GAGCCACTG	CTGCCC	GCACTG	GAGGGCTG	ATGCCACTG	3840
60	CCCTCCAGGG	AAAATCTG	ATGAGCTT	GCAGAC	CTTGAC	AAGACTG	3900
	AGTGTGAG	GTGGCTGG	GGCGTTT	CTCAGGAAAG	AAAGTCAC	TGAATCCCAG	3960
	TGACCC	CACTGCCAGA	TTTGC	TGATGTTG	AACCTCAC	GTGAAGCCTG	4020
	CCAGGAGCCG	GGAGGCC	TGGTGC	CACAGATG	CCGGTGAG	CCACCACTCT	4080
	GTATG	GACATCTCG	AACCGCC	GCACGATT	TACTG	GGCTACTG	4140
65	CCTGGT	CTGCTGG	GCTCC	GCTG	GCTGAGTT	AAGTGTG	4200
	GGCCTT	GTGGACATG	TGGAGCGG	GGCG	CAGAAGT	TCCGGTGG	4260
	CGTGGT	GGAG	TACCA	GACG	CTCAAGG	GGAAAGC	4320
	GTCAGAGCTG	CGGCC	CATTG	CGAGC	GGCAG	TGGCCTCCAC	4380

	CAGCGAGGTC TTGAAATACA CACTGTTCCA AATCTTCAGC AAGATCGACC GCCCTGAAGC	4440
	CTCCCGCATC GCCCCTGCTCC TGATGGCCAG CCAGGAGCCC CAACGGATGT CCCGGAACTT	4500
	TGTCCGCTAC GTCCAGGGCC TGAAGAAGAA GAAGGTCAATT GTGATCCCCG TGGGCATTGG	4560
	GCCCCATGCC AACCTCAAGC AGATCCGCCT CATCGAGAAG CAGGCCCTG AGAACAAAGC	4620
5	CTTCGTGCTG AGCAGTGTGG ATGAGCTGGA GCAGCAAAGG GACGAGATCG TTAGCTACCT	4680
	CTGTGACCTT GCCCCTGAAG CCCCTCCTCC TACTCTGCCC CCCCACATGG CACAAGTCAC	4740
	TGTGGGGCCCG GGGCTCTTGG GGGTTTCGAC CCTGGGGCCC AAGAGGAACCT CCATGGTTCT	4800
	GGATGTGGCG TTCGTCCTGG AAGGATCGGA AAAATTGGT GAAGCCGACT TCAACAGGAG	4860
	CAAGGAGTTC ATGGAGGAGG TGATTCAAGCG GATGGATGTG GGCCAGGACA GCATCCACGT	4920
10	CACGGTGCTG CAGTACTCCT ACATGGTGAC CGTGGAGTAC CCCTTCAGCG AGGCACAGTC	4980
	CAAAGGGGAC ATCCCTGCAGC GGGTGCAGAGA GATCCGCTAC CAGGGCGGCA ACAGGACCAA	5040
	CACTGGGCTG GCCCCTGCGGT ACCTCTCTGA CCACAGCTTC TTGGTCAGCC AGGGTGACCG	5100
	GGAGCAGGGC CCCAACCTGG TCTACATGGT CACCGGAAAT CCTGCCTCTG ATGAGATCAA	5160
	GAGGCTGCCCT GGAGACATCC AGGTGGTGG CATTGGAGTG GGCCCTTAATG CCAACGTGCA	5220
15	GGAGCTGGAG AGGATTGGCT GGGCCAATGC CCCTATCCTC ATCCAGGACT TTGAGACGCT	5280
	CCCCCGAGAG GCTCTTGACC TTGGTCTGCA GAGGTGCTGC TCCGGAGAGG GGCTGCAGAT	5340
	CCCCACCCCTC TCCCCTGCAC CTGACTGCAG CCAGCCCTG GACGTGATCC TTCTCCTGGA	5400
	TGGCTCCTCC AGTTTCCCAG CTTCTTATT TGATGAAATG AAGAGTTTCG CCAAGGTTT	5460
	CATTTCAAAA GCCAAATATAG GCCCTCGTCT CACTCAGGTG TCAGTGTGTC AGTATGGAAG	5520
	CATCACCAACC ATTGACGTGC CATGGAACGT GGTCCCGGAG AAAGCCCATT TGCTGAGCCT	5580
	TGTGGACGTC ATGCAGCGGG AGGGAGGCCC CAGCCAAATC GGGGATGCCT TGGGCTTTGC	5640
	TGTGCGATAC TTGACTTCAG AAATGCATGG TGCCAGGCCG GGAGCCTCAA AGGCGGTGGT	5700
20	CATCCTGGTC ACGGACGTCT CTGTGGATTG AGTGGATGCA GCAGCTGATG CCGCCAGGTC	5760
	CAACAGAGTG ACAGTGTTCCT CTATTGGAAT TGGAGATCGC TACGATGCAG CCCAGCTACG	5820
	GATCTTGGCA GGCCCAGCAG GCGACTCCAA CGTGGTGAAG CTCCAGCGAA TCGAAAGACCT	5880
	CCCTACCATG GTCACCTTGG GCAATTCTT CCTCCACAAA CTGTGCTCTG GATTGTTAG	5940
	GATTGCAATG GATGAGGATG GGAATGAGAA GAGGCCGGG GACGTCTGGA CCTTGCCAGA	6000
	CCAGTGCCAC ACCGTGACTT GCCAGCCAGA TGGCCAGACC TTGCTGAAGA GTCATCGGGT	6060
	CAACTGTGAC CGGGGGCTGA GCCCTTCGTG CCCTAACAGC CAGTCCCTG TTAAAGTGG	6120
25	AGAGACCTGT GGCTGCCGCT GGACCTGCCG CTGCGTGTGC ACAGGCAGCT CCACTCGGCA	6180
	CATCGTGACC TTTGATGGC AGAATTCAA GCTGACTGGC AGCTGTTCTT ATGTCCTATT	6240
	TCAAAACAAG GAGCAGGACC TGGAGGTGAT TCTCCATAAT GGTGCCTGCA GCCCCTGGAGC	6300
	AAGGCAGGGC TGCATGAAAT CCATCGAGGT GAAGCACAGT GCCCCTCTCG TCGAGCTGCA	6360
	CAGTGACATG GAGGTGACGG TGAATGGGAG ACTGGTCTCT GTTCTTACG TGGGTGGGAA	6420
30	CATGGAAGTC AACGTTTATG GTGCCATCAT GCATGAGGTC AGATTCAATC ACCTTGGTCA	6480
	CATCTTCACA TTCACTCCAC AAAACAATGA GTTCCAACTG CAGCTCAGCC CCAAGACTTT	6540
	TGCTTCAAAG ACGTATGGTC TGTTGGGAT CTGTGATGAG AACGGAGCCA ATGACTTCAT	6600
	GCTGAGGGAT GGCACAGTCA CCACAGACTG GAAAACACTT GTTCAGGAAT GGACTGTGCA	6660
	GCGGCCAGGG CAGACGTGCC AGCCCCATCTT GGAGGAGCAG TGTCTTGTCC CCGACAGCTC	6720
35	CCACTGCCAG GTCCCTCTCT TACCACTGTT TGCTGAATGC CACAAGGTCC TGGCTCCAGC	6780
	CACATTCTAT GCCATCTGCC AGCAGGACAG TTGCCACCAG GAGCAAGTGT GTGAGGTGAT	6840
	CGCCCTTTAT GCCCACCTCT GTCGGACCAA CGGGGCTCTGC GTTGACTGGA GGACACCTGA	6900
	TTTCTGTGCT ATGTCATGCC CACCATCTCT GGTCTACAAAC CACTGTGAGC ATGGCTGTCC	6960
	CCGGCACTGT GATGGCAACG TGAGCTCCTG TGGGGACCAT CCCTCCGAAG GCTGTTCTG	7020
40	CCCTCCAGAT AAAGTCATGT TGGAAAGGCAAG CTGTGCTCCCT GAAGAGGCCT GCACTCAGTG	7080
	CATTGGTGAG GATGGAGTCC AGCACCAGTT CCTGGAAGGCC TGGGTCCCCGG ACCACCAGCC	7140
	CTGTCAAGAT TGCACATGCC TCAGCGGGCG GAAGGTCAAC TGCACAAACG AGCCCTGCC	7200
	CACGGCCAAA GCTCCACAGT GTGGCCTGTG TGAAGTAGCC CGCCTCCGCC AGAATGCAGA	7260
	CCAGTGTGC CCCGAGTATG AGTGTGTGTG TGACCCAGTG AGCTGTGACC TGCCCCCAGT	7320
45	GCCTCACTGT GAACGTGGCC TCCAGCCAC ACTGACCAAC CTCGGCGAGT GCAGACCCAA	7380
	CTTCACCTGC GCCTGCAGGA AGGAGGAGTG CAAAAGAGTG TCCCCACCT CCTGCCCCCC	7440
	GCACCGTTG CCCACCTTC GGAAGACCCA GTGCTGTGAT GAGTATGAGT GTGCCCTGCAA	7500
	CTGTGTCAAC TCCACAGTGA GCTGCTCCCT TGGGTACTTG GCCTCAACCG CCACCAATGA	7560
	CTGTGGCTGT ACCACAACCA CTCGCTTCC CGACAAAGGTG TGTGTCCACC GAAGCACCAT	7620
50	CTACCCCTGT GGCCAGTTCT GGGAGGAGGG CGTGCATGTG TGACCTGTCA CGACATGGG	7680
	GGATCCCGTGT ATGGGCTTCC CGTGGCCCCA GTGCTCCCG AAGCCCTGTG AGGACAGCTG	7740
	TCGGTCGGGCTT TTCACCTACG TTCTGCAATGA AGGCAGTGTG TGTGGAAGGT GCCTGCCATC	7800
	TGCCCTGTGAG GTGGTGAATG GCTCACCGCG GGGGGACTCC CAGTCTTCTT GGAAGAGTGT	7860
	CGGCTCCCGAG TGGGCTTCCC CGGAGAACCC CTGCGTCTAC AATGAGTGTG TCCGAGTGA	7920
55	GGAGGAGGTC TTTATACAAC AAAGGAACGT CTCCCTGCCCT AGCTGGAGG TCCCTGTCTG	7980
	CCCCTCGGGC TTTCAGCTGA GCTGTAAGAC CTCAGCGTGC TGCCCAAGCT GTCGCTGTGA	8040
	GCGCATGGAG GCCTGCATGC TCAATGGCAC TGTCATTGGG CCCGGGAAGA CTGTGATGAT	8100
	CGATGTGTGC ACGACCTGCC GCTGCATGGT GCAGGTGGGG GTCATCTCTG GATTCAAGCT	8160
	GGAGTGCAGG AAGACCAACCT GCAACCCCTG CCCCCCTGGGT TACAAGGAAG AAAATAACAC	8220
60	AGGTGAATGT TGTGGGAGAT GTTGCCTAC GGCTTGCACC ATTCAAGCTAA GAGGAGGACA	8280
	GATCATGACA CTGAAGCGTG ATGAGACGCT CCAGGATGGC TGTGATACTC ACTTCTGCAA	8340
	GGTCAATGAG AGAGGAGAGT ACTTCTGGGA GAAGAGGGTC ACAGGCTGCC CACCCCTTGA	8400
	TGAACACAAG TGTCTGGCTG AGGGAGGTAA AATTATGAAA ATTCCAGGCA CCTGCTGTGA	8460

CACATGTGAG GAGCCTGAGT GCAACGACAT CACTGCCAGG CTGCAGTATG TCAAGGTGGG 8520
 AAGCTGTAAG TCTGAAGTAG AGGTGGATAT CCACTACTGC CAGGGCAAAT GTGCCAGCAA 8580
 AGCCATGTAC TCCATTGACA TCAACGATGT GCAGGACCAG TGCTCTGCT GCTCTCGAC 8640
 ACGGACGGAG CCCATGCAGG TGGCCCTGCA CTGCACCAAT GGCTCTGTT TGTACCATGA 8700
 5 GGTCTCAAT GCCATGGAGT GCAAATGTC CCCCAGGAAG TGCAGCAAGT GAGGCTGCTG 8760
 CAGCTGCATG GGTGCCGCT GCTGCCGCT TTGGCCGAT GGCCAGGCC GAGTGTGCC 8820
 AGTCCTCTGC ATGTTCTGCT CTGTGCCCT TCTGAGGCCA CAATAAAGGC TGAGCTCTTA 8880
 TCTTGCTGCA TTGTCTGCTC TTGTGCCCTT CTGAGGCCAC AAT

10 *Unpubl.*
 AAC7 DNA sequence
 Gene name: KIAA1294 protein
 Probeset Accession #: AA432248
 Nucleic Acid Accession #: AB037715
 Coding sequence: 370-3489 (predicted start/stop codons underlined)

10	GAACGCTCAC AGAACACAGGCA GTGCAATTCC ATGTTCTCT TAAGTATGTT AGCCCTACCG	60
15	GGAGCTGAGC TGGCCAGTCT ACTTGGAGAG GAAAAGTAGA TCTGGGAAG GTGGAAGGGT	120
20	CAGTTCTAA GTGACTTCCT CCTCGGGGAT GGTAAGGGCA TTTGCTGATC TCCAGTGACT	180
25	GCCTGGTGCCT CATGGTCAG ACTCGGCTGT CTCACTCCC GATATCTGAT TTTGCAAAAA	240
30	GGGACACACC TATCTGCAGC AAAGAAGACA CTGACCGAGAT TCGGAGCGGT GCTTTGGAT	300
35	GCTCTGTAGC CACCCGGGCG CCAGGAGGAC TGACTCGGCA GCAGGATTCG TGCA <u>TGGAA</u>	360
40	TCGGAGACCA <u>TGGCAGT</u> GCA GCTGGTGCCT GACTCAGCTC TCGGCCTGCT GATGATGACG	420
45	GAGGGCCGCC GATGTCAGT ACATCTTCTT GATGACAGGA AGCTGGAACCT CCTAGTACAG	480
50	CCCAAGCTGT TGGCCAAGGA GCTCTTGAC CTTGTGGCTT CTCACCTCAA TCTGAAGGAA	540
55	AAGGAGTACT TTGGAATAGC ATTACAGAT GAAACGGGAC ACTTAAACTG GCTTCAGCTA	600
60	GATCGAAGAG TATTGGAACA TGACTTCCCT AAAAAGTCAG GACCCGTGGT TTTATACTTT	660
65	TGTGTCAGGT TCTATATAGA AAGCATTTCAC TACCTGAAGG ATAATGCTAC CATTGAGCTT	720
70	TTCTTTCTGA ACGCGAAGTC CTGCATCTAC AAGGAGCTTA TTGACGTTGA CAGCGAAGTG	780
75	GTGTTTGAAT TAGCTTCCTA TATTTTACAG GAGGCAAAGG GAGATTTTC TAGCAATGAA	840
80	GTTGTGAGGA GTGACTTGAA GAAGCTGCCA GCCCTTCCC CCCAAGGCCCT GAAGGAGCAC	900
85	CCTTCCCTGG CCTACTGTGA AGACAGAGTC ATTGAGCACT ACAAGAAACT GAACGGTCAG	960
90	ACAAGAGGTC AAGCAATCGT AAACACATG AGCATCGTGG AGTCTCTCCC AACCTACGGG	1020
95	GTTCACTATT ATGCAAGTGA GGACAAGCG GGCATACCAT GGTGGCTGGG CCTGAGCTAC	1080
100	AAAGGGATCT TCCAGTATGA CTACCATGAT AAAGTGAAGC CAAGAAAAGAT ATTCCAATGG	1140
105	AGACAGTTGG AAAACCTGTA CTTCAGAGAA AAAAGTTTT CGTGGAAAGT TCATGACCCA	1200
110	CGCAGGGCTT CAGTGACAAG GAGGACGTTT GGGCACAGCG GCATTGAGT GCACACGTGG	1260
115	TATGCATGTC CGGCATTGAT CAAGTCCATC TGGGCTATGG CCATAAGCCA ACACCAAGTTC	1320
120	TATCTGGACA GAAAGCAGAG TAAGTCCAAA ATCCATGCG CACGCAGCCT GAGTGAGATC	1380
125	GCCATCGACC TGACGGAGAC GGGGACGCTG AAGACCTCGA AGCTGCCAA CATGGTAGC	1440
130	AAGGGGAAGA TCATCAGCGG CAGCAGCGGC AGCCTGCTGT CTTCAGGTTT TCAGGAATCA	1500
135	GATAGCTCGC AGTCGCCAA GAAGGACATG CTGGCTGCC TGAAGTCCAG GCAGGAAGCT	1560
140	CTGGAGGAAA CCCTGCGTC GAGGCTGGAG GAACTGAAGA AGCTGTGTCT CCGAGAAAGCT	1620
145	GAGCTCACGG GCAAGCTGCC AGTAGAATAT CCCCTGGATC CAGGGGAGGA ACCACCCATT	1680
150	GTTCGGAGAA GAATAGGAAC AGCCTTCAAA CTGGATGAAC AGAAAATCCT GCCCAAAGGA	1740
155	GAGGAAGCTG AGCTGGAACG CCTGGAACGA GAGTTGCCA TTCAGTCCC GATTACGGAG	1800
160	GCCGCCGCC GCCTAGCCAG TGACCCCAAC GTCAGAAAA AACTGAAGAA ACAAAAGGAAA	1860
165	ACCTCGTATC TGAATGCACT GAAGAAAATG CAGGAGATTG AAAATGCAAT CAATGAGAAC	1920
170	CGCATCAAGT CTGGGAAGAA ACCCACCCAG AGGGCTTCGC TGATCATAGA CGATGAAAC	1980
175	ATTGCCAGTG AAGACAGCTC CCTCTCAGAT GCCCTTGTTC TTGAGGATGA AGACTCTCAG	2040
180	GTTACCAGCA CAATATCCCC CCTACATTCT CCTCACAAGG GACTCCCTCC TCGGCCACCG	2100
185	TCGCACAACA GGCCTCTCC TCCCCAGTCC CTGGAGGGAC TCCGACAGAT GCACTATCAC	2160
190	CGCAACGACT ATGACAAGTC ACCCATCAAG CCCAAAATGT CGAGTGTAGTC CTCTTTAGAT	2220
195	GAACCCATAT AGAAGGTCAA GAAGCGCTCC TCTCACAGCC ATTCCAGCAG CCACAAGCGC	2280
200	TTCCCCAGCA CAGGAAGCTG TGCGGAAGCC GCGGGAGGA GCAACTCCTT GCAGAACAGC	2340
205	CCCATCCCGCA GCCTCCCGCA CTGGAACTCC CAGTCAGCA TGCCGCTCAC GCCAGACCTG	2400
210	CGGGTCCGGA GTCCCCACTA CGTCCATTCC ACGAGGTGG TGGACATCAG CCCAACCCGA	2460
215	CTGCACAGCC TCGCACTGCA CTTTAGGCAC CGGAGCTCCA GCCTGGAGTC CCAGGGCAAG	2520
220	CTCCTGGGCT CGGAAAAGCA CACCGGGAGC CCCGACTTCT ACACCCCGCG GACTCGTAGC	2580
225	AGCAACCGCT CAGACCCAT GGACGACTGC TCGTCGTGCA CCAGCCACTC GAGCTCGGAG	2640
230	CACTACTACC CGGCGCAGAT GAACGCCAAC TACTCCACGC TGGCCGAGGA CTCGCGCTCC	2700
235	AAGGCGCGCC AGAGGCAAG GCAAGCGGCAG CGGGCGGCGG CGCAGCTGGG CTCAGCCAGC	2760
240	TCGGGCAGCA TGCCCAACCT GCGGGCGCGC GGGGGTGCAG GGGGCGCGGG GGGCGCGGGG	2820
245	GGCGGTGTGT ACCTGCACAG CCAGAGGCCAG CCCAGCTCGC AGTACCGCAT CAAGGAGTAC	2880
250	CCGCTGTACA TCGAGGGCGG CGCCACGCC GTGGTGGTGC GCAGCCTGGA GAGCGACCGAG	2940
255	GAGTGCCACT ACAGCGTCAA GGCTCAGTTC AAGACGTCCA ACTCCTACAC GGCGGGCGGC	3000
260	CTGTTCAAGG AGAGCTGGCG CGCGGGCGGC GGCAGCAGGG CGCAGACGGG CGCCTGACG	3060
265	CCGTCGCGAT CGCAGATCCT CGGGACTCCG TCGCTGGGCC GCGAGGGCGC CCACGACAAG	3120

	GGCGCGGGCC	GTGCCGCCGT	CTCAGACGAG	CTGCCCAAGT	GGTACCAGCG	TTCCACCGCC	3180
	TCGCACAAGG	AGCACAGCCG	CCTGTCGAC	ACCAGCTCCA	CCTCTCGGA	CAGGGCTCG	3240
	CAGTACAGCA	CCTCCCTCCA	GAGCACCTTC	GTGGCGACA	GCAGGGTCAC	CAGGATGCC	3300
	CAGATGTGCA	AGGCCACGTC	AGCTGCCCTA	CCTCAAAGCC	AGAGAAGCTC	GACACCGTCA	3360
5	AGTGAATTG	GAGCCACCCC	CCCAAGCAGC	CCCCACCACA	TCCTAACCTG	GCAGACTGGA	3420
	GAAGCAACAG	AAAATCACC	CATTCTGGAT	GGGCTGAGT	CTCCACCTCA	CCAAAGTACT	3480
	GATGAATAGA	GGAGCTACAA	TGATAGCTGT	TTCCCTGGATT	CCTCCCTCTA	TCCAGAACTA	3540
	GCTGATGTCC	AGTGGTACGG	GCAGGAAAAAA	GCCAAGCCCG	GGACCCCTCGT	GTGAGCCAGC	3600
10	CCGGCCTAAT	CTGACCGCCT	AAACGCCATT	CTGAGATCAC	CTCACTGCT	CTCATTTGCC	3660
	TTACCCAGAC	GCACCGTCAC	CCTGCACCAAG	CTTTGGCCCT	CAGCACTTTT	TTTCTCTGT	3720
	CTCCGCATTC	CCTCCCCCTT	AAAAACCTGA	CTGAGGAGAC	ATTCTGGAAG	GTTCCGGTCC	3780
	CACTGTGTG	CCCCTGGCGC	TCTTGCCCAT	AGAGAGCCAG	ACACCAATCC	TCAATGGCAC	3840
	CTTGGTGGCT	TCCCTCTGCC	ATGACAGCCC	CTAGGCCAGG	AACCATCAGG	GGGGCCAGCC	3900
15	GGCATCCAAT	TCCTGCCGAT	AAAGTAGCGTT	GGGAGAGAAC	GGGAAGGGGG	ACTTGGGTTA	3960
	CAGGGTGACC	CAGAAAGACG	ATTCACTG	GTCCACGCCG	CCACCCATAC	GTAGGCCAAC	4020
	CAAGCACTC	ATGAAGAGGA	GGCCTCGTGG	CATATTCTAG	TTACACCTGA	AATATTCCCTT	4080
	GATGGGACAG	CTTGTGGGG	TGGCTATGGG	GGAAAGGGGAG	GTTGAGAAAG	GAAGTTCTCG	4140
	ACACCAAGAA	TGCATCGGAG	GACCACAAATC	AGTTCTATGC	TGCCAAAGAT	TAAAAATAAA	4200
	TAAAAACATA	AAAAATTAAG	AGGGGCCAAG	AGGAAGACAT	TCTTCTGCA	AGGAAATTTC	4260
20	TTTAAATTC	TGAACCTGCTA	CTACACACAA	GTGAAAGTCA	ACCCCTATGTA	AACTGGTGT	4320
	CTCTCTCTAG	CCCTCTCCCT	TACTGGCCA	CTTCTCTCTC	CGTAGAGAGC	CTGAAAAACT	4380
	CCCCCAATGC	CACGGTAAAG	GCGAGGAAGT	CTTGGCTGGC	GTTGCTGACT	CACAGTCGCC	4440
	ATCCATCTGG	ACACAAAGAG	AGACCTGTGG	GAGTCATAGA	GGGTAECTGTT	AGCCCCGGTC	4500
	CATGCAGGGG	GTCAGCCGA	GCCCAAGACT	CAAAGCTGCT	TTCCCTTCAG	GATTGTTAGT	4560
25	AACGTAAGGT	GATAATGGCC	AAAAGTGGTT	CTCTCTCATT	AAACCAACCA	GTAAAAGCGT	4620
	ATCCTATTTC	TTTGACATAAG	GTGTTTCATT	TTCGTTTTA	TGGGAAACCA	AGGGAAAAGC	4680
	ACATTGCGAT	CCATTCACTG	TTTAACCTGTC	GTGGCTCATT	TTCTGTTCGT	TAGCACTTGT	4740
	GTGACAAAAG	AGCTCAGATC	CGACTTCTCC	TATGTGTCAC	TTATTCCAAG	AACCCAAC	4800
	TGCCCTTAGG	TAGAAAGATT	TGACTCGTGT	GTCTACTAGC	CAACAGGAG	AGCAGGGTTG	4860
30	AAAAAAATAT	CAGCTCCCAA	AGGGCCCATG	TGTCTACATC	ATCAGTTACT	GTCATGCACC	4920
	ACATTGTTG	GCAGATACCA	AAAGAGGAGG	AAAGAAGAAA	AAAATTAATG	TGTGGGAGCT	4980
	GCACGTTTAC	ATGTTTGAG	CTATGCTTCA	AACACAACG	GAAGGCCATC	AATCTTCAA	5040
	GGCCTCAAAA	ATACTTTAT	AGTAACAAGT	GCACCACTT	AGTTGGGTTA	TTCAAGATGG	5100
	CACAAAAAAGG	TTTCCGAGA	GGTGGTATGC	TGTGCTTTG	GCGCAAGTGG	TGGGGGGATG	5160
35	GGGGTGGGGG	TGGAATTTTT	TTCTCACTC	AATGACTTCC	TATTGGAAG	GCATTGACAG	5220
	CCAGGGACAG	GAGCCAGGGT	GGGGTAGTT	TTGTGGGAA	GCAGAACTGA	AGTTAGCTT	5280
	AGCATAAAA	CAAAGAAAAA	TCTTCGCTT	TCATGTTATG	GGAAATCCAAG	AATAACCATA	5340
	GGCTCTACCA	GACCAGGAGG	GTAAAGGATGG	AACTAAATG	AAAACAAATA	CCAAGGTATT	5400
	CCTTCTGCTG	CAGCTGGAG	ACCAACGAGA	GTCGAGCTGG	GGCACACAC	ACCTGGCCG	5460
40	GGACCCGGCA	GGGACAAGGC	GGGCCGTGGC	CTCCTCCACC	AAAGTCTCT	AGACAATTCA	5520
	GGGCCTGCTT	CCCCCAGCTC	CATGCATGGC	TGGACTGGT	ATTCCAGGGT	GCAGAAGGGG	5580
	TTCATATTCC	CAGAACGCTT	TAAGTGTACA	CCTGAGGAT	AAAGAGATAC	CGGTTACATT	5640
	ATTAAATGAT	TCTAGGGATT	CACTGGGGGA	TATTTTTGTT	GCTTTTACTT	TCATGTTAG	5700
	AGCTACAAAG	AACAGTGATT	TTTTTTTTT	CTCCCTTCCC	CATTCAAGAAA	CATTATAACAT	5760
45	TGGGCCATT	TTCTTCTCC	CAAAGAAGAT	TCATGGATAG	TCAGACTGAA	CTGTGTGCAA	5820
	CAGGAAAAGT	CAAAGGGAA	AAGGCAGCTG	ATGAGGTTAC	ATGGTTACAT	GTTCTACATC	5880
	ATGCAGAGTA	GCTTGAATC	TAGTCTGGAG	AAAAGTGGAT	CAAGATTCTA	GCCCACGTGA	5940
	GTTGCAAGGA	ATGAGAGGCA	AAAATTCTAA	AGATTGGGT	TATATTCTCA	ACTTGGGGGA	6000
	CAGAGAGAAA	TGGAGAGCAG	GAATTACAGT	TCCAACAAAC	ATCATGATAG	TCTGGTAGTC	6060
50	AAGACAGAGA	TTAAGTAAA	CAGGTTTAC	TGTTTAGCTG	AGTTCACTT	ATACAAAATG	6120
	TACATAAAAC	GTAGTCCTT	TGAGACTGAC	ATGATTAATG	ATCAGTGTTG	TGGGAAATGA	6180
	TGTAGTTATT	GTACACAAGC	ACTTGCAAC	TCTTATCCC	TATTTCTTA	AAACAAAATA	6240
	AGGTGAAATA	CGAAAGTCCTT	GGTCTGATAT	AAAGCCCTA	TTGGATTCTT	CGGATGCGTA	6300
	AAAGAAATG	CCTGTTTCAG	CCAGAAGACT	GGTAAAACAA	CATACATCAG	ACTATGTTGT	6360
55	GAGCCAGGGT	GATTTTTAT	TTTATATAT	GCAGGTGAGT	GTTGAAACTG	TTAAAATTCC	6420
	ATTGTTTT	CATTCACTG	TAGTTTACTG	CTAAATATAG	AAAACCCAT	CCAGGTGCTA	6480
	TCAGATGACC	AGTTACTGCT	TAGTTAACTA	GGTGTAAAGT	TTTACATATA	CATTAATTTC	6540
	AATAGTTTAT	TACAAGTTGT	GTAAAATGGA	CTCTAGTTA	ATAATGGGGG	AAAAAAGATT	6600
	AGGTTGCTTCC	TGAAACTGAC	TGTAGAGCAT	GTAAAATGAT	TTTACTGGAT	TCTGTTAAC	6660
60	TGTAAT	AT GAAAAGATG	TACGTTGTAG	ACAAAGTTGC	AGAATTTAAA	AAAGAAATCT	6720
	GCTTTAATT	TATTCTTTT	GTATTAAGAA	TTTGTATAGT	ATCTTTACAT	TTTGCAAAAC	6780
	AGTGTGTC	ACACTTATTA	AAGCATTTC	AAAATG			

65 ACG8 DNA sequence
 Gene name: ubiquitin E3 ligase SMURF2
 UniGene number: Hs.21806 (3' UTR only)
 Probeset Accession #: AA398243

Cont.
a15
Nucleic Acid Accession #: AF301463 cluster
Coding sequence: 9-2255 (predicted start/stop codons underlined)

5	CCGGGGACAT <u>GTCTAACCCC</u> GGAGGCCGGA GGAACGGGCC CGTCAAGCTG CGCCTGACAG	60
	TACTCTGTGC <u>AAAAAAACCTG</u> GTGAAAAGG ATTTTTCCG ACTTCCTGAT CCATTGCTA	120
	AGGTGGTGGT TGATGGATCT GGGCAATGCC ATTCTACAGA TACTGTGAAG AATACGCTTG	180
	ATCCAAAGTG GAATCAGCAT TATGACCTGT ATATTGGAAA GTCTGATTCA GTTACGATCA	240
	GTGTATGGAA TCACAAGAAG ATCCATAAGA ACAAGGTGC TGGATTTCTC GGTTGTGTT	300
10	GTCTTCTTTC CAATGCCATC AACCGCCTCA AAGACACTGG TTATCAGAGG TTGGATTTAT	360
	GCAAACACTGG GCCAAATGAC AATGATACAG TTAGAGGACA GATAGTAGTA AGTCTTCAGT	420
	CCAGAGACCG AATAGGCACA GGAGGACAAG TTGTGACTG CAGTCGTTTA TTTGATAACG	480
	ATTTACCAGA CGGCTGGAA GAAAGGAGAA CGCCTCTGG AAGAATCCAG TATCTAAACC	540
	ATATAACAAG AACTACGCAA TGGGAGCGCC CAACACGACC GGCATCCGAA TATTCTAGCC	600
15	CTGGCAGACCT CTCTAGCTGC TTGTTGATG AGAACACTCC AATTAGTGGA ACAAAATGGTG	660
	CAACATGTGG ACAGTCTTCA GATCCCAGGC TGGCAGAGAG GAGAGTCAGG TCACAAACGAC	720
	ATAGAAATTAT CATGAGCAGA ACACATTAC ATACTCTCC AGACCTACCA GAAGGCTATG	780
	AACAGAGGAC AACGCAACAA GGCCAGGTGT ATTTCTTACA TACACAGACT GGTGTGAGCA	840
	CATGGCATGA TCCAAGAGTGC CCCAGGGATC TTAGAACAT CAATTGTGAA GAGCTTGGTC	900
	CGTTGCCTCC TGGATGGAG ATCCGTAATA CGGCAACAGG CAGAGTTAT TTCGTTGACC	960
20	ATAACAACAG AACAAACAAA TTTACAGATC CTCGGCTGTC TGCTAACTTG CATTAGTTT	1020
	TAAATCGGCA GAACCAATTG AAAGACCAAC AGCAACAGCA AGTGGTATCG TTATGCTCTG	1080
	ATGACACAGA ATGCCTGACA GTCCCAAGGT ACAAGCGAGA CCTGGTTCAAG AAACAAAAAA	1140
	TTTTGCGGCA AGAACTTTCC CAACAACAGC CTCAGGCAGG TCATTGCCGC ATTGAGGTTT	1200
	CCAGGGAAAGA GATTTTGAG GAATCATATC GACAGGTCAAT GAAAATGAGA CCAAAAGATC	1260
	TCTGGAAGCG ATTAATGATA AAATTCGTG GAGAAGAAGG CCTTGACTAT GGAGGCCTTG	1320
	CCAGGGAAATG GTTGTATCTC TTGTCACATG AAATGTTGAA TCCATACTAT GGCTCTTCC	1380
	AGTATTCAAG AGATGATATT TATACATTGC AGATCAATCC TGATTCTGCA GTTAATCCGG	1440
	AACATTATTC CTATTCCAC TTGTTGGAC GAATAATGGG AATGGCTGTG TTTCATGGAC	1500
	ATTATATTGA TGGTGGTTTC ACATTGCCTT TTTATAAGCA ATTGCTTGGG AAGTCAATTAA	1560
	CCTTGGATGA CATGGAGTTA GTAGATCCGG ATCTTCACAA CAGTTTAGTG TGGATACTTG	1620
25	AGAATGATAT TACAGGTGTT TTGGACCATA CCTTCTGTGT TGAACATAAT GCATATGGTG	1680
	AAATTATTCA GCATGAACCT AAACCAAATG GCAAAGTAT CCCTGTTAAAT GAAGAAAATA	1740
	AAAAAGAATA TGTCAGGCTC TATGTGAACG GGAGATTTT ACGAGGCATT GAGGCTCAAT	1800
	TCTTGGCTCT GCAGAAAGGA TTTAATGAAG TAATTCCACA ACATCTGCTG AAGACATTG	1860
30	ATGAGAAGGA GTTAGAGCTC ATTATTGTG GACTTGGAAA GATAGATGTT AATGACTGG	1920
	AGGTAAACAC CCGGTTAAAA CACTGTACAC CAGACAGCAA CATTGTCAAA TGTTCTGGA	1980
	AAGCTGTTGA GTTTTTGAT GAAGAGCGAC GAGCAAGATT GCTTCAGTT GTGACAGGAT	2040
	CCTCTCGAGT GCCTCTGCAG GGCTTCAAAG CATTGCAAGG TGCTGCAGGC CCGAGACTCT	2100
	TTACCATACA CCAGATTGAT GCCTGCACTA ACAACCTGCC GAAAGCCCCAC ACTTGTCTCA	2160
35	ATCGAATAGA CATTCCACCC TATGAAAGCT ATGAAAGCT ATATGAAAAG CTGCTAACAG	2220
	CCATTGAAGA AACATGTGGA TTGCTGTGG <u>AATGACAAGC</u> TTCAAGGATT TACCCAGGAC	

ACM1 DNA sequence

Gene name: EST

Unigene number: Hs.30089

Probeset Accession #: AA410480

CAT cluster #: 96816_1

Coding sequence: Partial sequence, possible frameshift. Predicted stop codon underlined.

45	CTCCACTATG GACAGAGCCT CCACTGAGCT GCTGCCTGCC CGCCACATAC CCAGCTGACA	60
	GGGGCCCCCGC AGAGCCATGC AGCTGTGCTG GGGTGTATCCT GGGCTCTC CTGTTCCGAG	120
	CCCACAACTC CCAGCCCCACA ATGACCCAGA CCTCTAGCTC TCAGGGAGGC CTTGGCGGT	180
	TAAGTCTGAC CACAGAGCCA GTTCTTCCA ACCCAGGATA CATCCCTTCC TCAGAGGCTA	240
	ACAGGCCAAG CCATCTGTCC AGCACTGGT CCCCCAGGCC AGGTGTCCCC AGCAGTGGAA	300
	GAGACGGAGG CACAAGCAGA GACACATTTC AAACTGTTCC CCCCATTCA ACCACCATGA	360
	GCCTGAGCAT GAGGGAGAT GCGACCATCC TGCCCAGCCC CACGTCAAGAG ACTGTGCTCA	420
50	CTGTGGCTGC ATTTGGTGTGTT ATCAGTTCA TTGTCATCCT GGTGGTTGTG GTGATCATCC	480
	TAGTTGGTGT GGTCAAGCCTG AGGTTCAGT GTCGAAAGAG CAAGGAGTCT GGAGATCCCC	540
	AGAAACCTGG AGAGCGGGAG GAGAAGGTGG GACATAGGAG GGAACCTAC CCCTGGAATT	600
	GACTTGGACT CTGGGTCTGG AAACGCAAGT TCAAATCTCA CCCATTGTT CCAGGAGGTT	660
	CTGGCTGATG AGGAAGACCC TTGTGGGAGG GGGGCCCTG CCCTCCAGTT AGCTCTTCTT	720
55	GGCTGTGCTG GGTTCCATGT TCTCATGCAG GGATGGAGTC GGGTGGAGAG CCCACTCTGG	780
	CTAGGGGGCG GCAGGCTGAG AGCTCACCTG TTCAGCAGAG AAGTGGAACT CACTTGCTC	840
	CTGGAGCCTC CCTACACAGT ACTTATCTGG GAAGGGAATG CCGGACTCTT GTTGGCCCT	900
	TTGTCCCCCCC GACTGGCCCC CTTCGCCG	

Chs 2
Am

ACJ2 DNA sequence

Gene name: Complement component C1q receptor

Unigene number: Hs.97199

Probeset Accession #: AA487558

Nucleic Acid Accession #: NM_012072

Coding sequence: 149-2107. Predicted start/stop codons underlined

10	AAAGCCCTCA GCCTTGTGT CCTTCTCTGC GCGGAGTGG CTGCAGCTCA CCCCTCAGCT CCCCTTGGGG CCCAGCTGGG AGCCGAGATA GAAGCTCTG TCGCCGCTGG GCTTCTGCC TCCCAGAG GGCCACACAG AGACCGGGAG GCCCACCTCC ATGGGCTGCT TGCTGCTGCT GCTGCTGCTC CTGACCAGC CCGGGGCGGG GACGGGAGCT GACACGGAGG CGGTGGTCTG CGTGGGACCC GCCTGCTACA CGGCCCCACTC GGGCAAGCTG AGCGCTGCC AGGCCCCAGAA CCACTGCAAC CAGAACGGGG GCAACCTGGC CACTGTGAAG AGCAAGGAGG AGGCCAGCA	60 120 180 240 300 360
15	CGTCCAGCGA GTACTGGCCC AGCTCCTGAG GCGGGAGGCA GCGCTGACGG CGAGGATGAG CAAGTTCTGG ATTGGGCTCC AGCGAGAGAA GGGCAAGTGC CTGGACCTCA GTCTGCCGCT GAAGGGCTTC AGCTGGGTGG GCGGGGGGGG GGACACGCT TACTCTAACT GGCACAAGGA GCTCCGGAAC TCCTGCTACT CCAAGCGCTG TGCTGCTCTG CTGCTGGACC TGTCCAGGCC GCTCCTTCCC ACCGCCTGC CCAAGTGGTC TGAGGGCCCC TGAGGGGAGCC CAGGCTCCCC CGGAAGTAAC ATTGAGGGCT TCGTGTGCAA GTTCAGCTTC AAAGGCATGT GCGGGCCTCT GGCCCTGGGG GGCCAGGTC AGGTGACCTA CACCACCCCC TTCCAGACCA CCAGTCCCTC CTTGGAGGCT GTGCCCTTG CCTCTGCGGC CAATGTAGCC TGAGGGGGAG GTGACAAGGA CGAGACTCAG AGTCATTATT TCCTGTGCAA GGAGAAGGCC CCCGATGTGT TCGACTGGGG CAGCTGGGG CCCCTCTGTG TCAGCCCCAA GTATGGCTGC AACTTCAACA ATGGGGGCTG CCACCAGGAC TGCTTGAAG GGGGGGATGG CTCTTCCCTC TGCGGCTGCC GACCAGGATT CCGGCTGCTG GATGACCTGG TGACCTGTGC CTCTGAAAC CTTGCAAGCT CCAGCCCAG TCGTGGGGGG GCCACGTGCG TCCTGGGACC CCATGGAAA AACTACACGT GCGCTGCC CCAAGGGTAC CAGCTGGACT CGAGTCAGCT GGACTGTGTG GACGTGGATG AATGCCAGGA CTCCCCCTGT GCCCCAGGAGT GTGTCAACAC CCCTGGGGC TTCCGCTGCC AATGCTGGGT TGGCTATGAG CGGGCGGTC CTGGAGAGGG GCGCTGTCA GATGTGGATG AGTGTGCTCT GGGTCGCTCG CCTTGCGCC ACCGCTGCAC CAACACAGAT GGCTCATTT ACTGCTCCTG TGAGGAGGGC TACGTCTGG CGGGGGAGGA CGGGACTCAG TGCCAGGACG TGGATGAGTG TGTGGGCCCG GGGGGCCCCC TCTGCGACAG CTTGCTGCTTC AACACACAGA GGTCTTCCA CTGTGGCTGC CTGCCAGGCT GGGTGTGGC CCAAATGGG GTCTCTGCA CCATGGGGCC TGTGTCTCTG GGACCAACAT CTGGGGCCCCC CGATGAGGAG GACAAAGGAG AGAAAAGAAG GAGCACCCTG CCCCCCGCTG CAACAGCCAG TCCCACAAAGG GGCCCCGAGG GCACCCCCAA GGCTACACCC ACCACAAGTA GACCTCGCT GTCATCTGAC GCCCCCATCA CATCTGCC ACTCAAGATG CTGGCCCCCA GTGGGTCTCTC AGGCGTCTGG AGGGAGCCCC GCATCCATCA CGCCACAGCT GCCTCTGGCC CCCAGGAGCC TGCAAGGTGGG GACTCCTCCG TGGCCACACA	420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600
40	AAACAACGAT GGCACTGACG GGCAAAAGCT GCTTTTATTAC TACATCCTAG GCACCGTGGT GCCATCCTA CTCTGCTGG CCCTGGCTCT GGGGCTACTG GTCTATCGCA AGCGGAGAGC GAAGAGGGAG GAGAAGAAGG AGAAGAAGCC CCAGAATGCG GCAGACAGTT ACTCCTGGGT TCCAGAGCGA GCTGAGAGCA GGGCCATGGA GAACCAAGTAC AGTCCGACAC CTGGGACAGA CTGCTGAAAG TGAGGTGGCC CTAGAGACAC TAGAGTCACC AGCCACCATC CTCAGAGCTT 45 TGAACCTCCC ATTCAAAGG GGCACCCACA TTTTTTGAA AGACTGGACT GGAATCTTAG CAAACAATTG TAAGTCTCT CCTTAAAGGC CCCTTGGAAC ATGCAGGTAT TTTCTACGGG TGTTTGATGT TCCTGAAGTG GAAGCTGTGT GTTGGCTGTC CACGGTGGGG ATTCGTGAC TCTATAATGA TTGTTACTCC CCTCTCCCTT TCAAATTCCA ATGTGACCAA TTCCGGATCA GGGTGTGAGG AGGCTGGGGC TAAGGGGCTC CCCTGAATAT CTTCTCTGCT CACTTCCACC 50 ATCTAAGAGG AAAAGGTGAG TTGCTCATGC TGATTAGGAT TGAAATGATT TGTTCTCTT CCTAGGATGA AAAACTAAATC ATTAATTAT TCAATTAGGT AAGAAGATCT GGTTTTTGG TCAAAGGGAA CATGTCGGA CTGGAAACAT TTCTTACAT TTGCAATTCTT CCATTTCGCC AGCACAAGTC TTGCTAAATG TGATACTGTT GACATCCTCC AAGATGGCCA GAAGTGC TAACCTCTTA GGTGGCAAGG AGGCAGGAAG TGCCTCTTA GTTCTTACAT TTCTAATAGC 55 CTTGGGTTA TTTGCAAAAGG AGGTGTGAA AATATGAGAA AGTTGCTTG AAGTGC CAGGTGTTT TGAAGTCACA TAATCTACGG GGCTAGGGCG AGAGAGGCCA GGGATTGTT CACAGATACT TGAATTAAATT CATCCAAATG TACTGAGGTT ACCACACACT TGACTACGG TGTGATCAAC ACTAACAAAGG AAACAAATTC AAGGACAACC TGTCTTGAG CCAGGGCAGG CCTCAGACAC CCTGCTGTG GCCCCGCCCTC CACTTCATCC TGCCCCGAAT GCCAGTGCTC 60 CGAGCTCAGA CAGAGGAAGC CCTGCAGAAA GTTCCATCAG GCTGTTTCT AAAGGATGTTG TGAACGGGAG ATGATGCACT GTGTTTGAA AGTTGTCATT TAAAGCAATT TTAGCACAGT TCATAGTCCA CAGTTGATGC AGCATCCTGA GATTTAAAT CCTGAAGTGT GGGTGGCGCA CACACCAAGT AGGGAGCTAG TCAGGCAGTT TGCTTAAGGA ACTTTGTTCT TCTGCTCTT TTCCTAAAAA TTGGGGTAA GGAGGGAGG AAGAGGGAAA GAGATGACTA ACTAAAATCA 65 TTTTACAGC AAAACTGCT CAAAGCCATT TAAATTATAT CCTCATTTA AAAGTTACAT TTGCAAATAT TTCTCCCTAT GATAATGCGAG TCGATAGTGT GCACTCTTTC TCTCTCTCTC TCTCTCTCAC ACACACACAC ACACACACAC ACACACACAC AGAGACACGG CACCATCTG CCTGGGCAC TGGAACACAT TCCTGGGGT CACCGATGGT CAGAGTCACT AGAAGTTACC	1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600

TGAGTATCTC TGGGAGGCCT CATGTCTCCT GTGGGCTTT TACCACCACT GTGCAGGAGA 3660
 ACAGACAGAG GAAATGTGC TCCCTCCAAG GCCCCAAAGC CTCAGAGAAA GGGTGTTC 3720
 GGTTTGCCCT TAGCAATGCA TCGGTCTCTG AGGTGACACT CTGGAGTGGT TGAAGGGCCA 3780
 CAAGGTGCAG GGTTAACTCT TTGCCAGTT TTGAAATATA GATGCTATGG TTCAGATTGT 3840
 5 TTTTAATAGA AAACTAAAGG GCAGGGAA GTGAAAGGA AGATGGAGGT TTTGTGCGGC 3900
 TCGATGGGGC ATTTGGAAC TCTTTTAAAC GTCATCTCAT GGTCTCCAGT TTTCAAGTGG 3960
 AACTCTGGTG TTAAACACTT AAGGGAGACA AAGGCTGTGT CCATTGGCA AAACCTCCTT 4020
 GCCCACGAGA CTCTAGGTGA TGTGTGAAGC TGGCAGTCT GTGGTGTGGA GAGCAGCCAT 4080
 CTGTCTGGCC ATTCAAGGAGA TTCTAAAGAC ATGGCTGGAT GCGCTGCTGA CCAACATCAG 4140
 10 CACTTAAATAA AATGCAAATG CAACATTTCT CCCTCTGGC CTTGAAAATC CTTGCCCTTA 4200
 TCATTTGGGG TGAAGGAGAC ATTTCTGTCC TTGGCTTCCC ACAGCCCCAA CGCAGTCTGT 4260
 GTATGATTCC TGGGATCCAA CGAGCCCTCC TATTTTCACA GTGTTCTGAT TGCTCTCACA 4320
 GCCCAGGCCCT ATCGCTCTGTT CTCTGAATGC AGCCCTGTT TCAACAACAG GGAGGTCAATG 4380
 GAACCCCTCT GTGGAACCCA CAAGGGGAGA ATGGGTGAT AAAGAATCCA GTTCCCTCAA 4440
 15 ACCTTCCCTG GCAGGGTGGG TCCCTCTCCT GCTGGGTGGT CTTTCTCTT GCACACCACT 4500
 CCCACCACGG GGGGAGAGCC AGCAACCCAA CCAGACAGCT CAGGGTGTGC ATCTGATGGA 4560
 ACCACTGGG CTCAAACACG TGCTTTATTTC TCCTGTTTAT TTTGCTGT ACTTTGAAGC 4620
 ATGGAAATTTC TTGTTGGGG GATCTTGGGG CTACAGTAGT GGGTAAACAA ATGCCAACCG 4680
 20 GCCAAGAGGC CATTAAACAA TCGTCCTGT CCTGAGGGGC CCCAGCTTGC TCGGGCGTGG 4740
 CACAGTGGGG AATCCAAGGG TCACAGTATG GGGAGAGGTG CACCCCTGCCA CCTGCTAACT 4800
 TCTCGCTAGA CACAGTGTTC CTGCCCAGGT GACCTGTTCA GCAGCAGAAC AAGCCAGGGC 4860
 CATGGGGACG GGGGAAGTT TCACTTGGAG ATGGACACCA AGACAATGAA GATTGTTGT 4920
 25 CCAAATAGGT CAATAATTCT GGGAGACTCT TGGAAAAAAC TGAATATATT CAGGACCAAC 4980
 TCTCTCCCTC CCCTCATCCC ACATCTCAA GCAGACAATG TAAAGAGAGA ACATCTCACA 5040
 CACCCAGCTC GCCATGCCA CTCATTCTG AATTTCAGGT GCCATCACTG CTCTTCTTT 5100
 CTTCTTGTGTC ATTGAGAAA GGATGCAGGA GGACAATTCC CACAGATAAT CTGAGGAATG 5160
 CAGAAAAAAC AGGGCAGGAC AGTTATCGAC ATGCTTGTG AACTTGGTGA GCATCTCTG 5220
 TAGAGGGACT CCACCCCTGC TCAACAGCTT GGCTTCCAGG CAAGACAAAC CACATCTGGT 5280
 CTCTGCCCTC GGTGGCCAC ACACCTAAGC GTCATCGTCA TTGCCATAGC ATCATGATGC 5340
 30 AACACATCTA CGTGTAGCAC TACGACGTTA TGTTGGGTG ATGTTGGGGAT GAACTGCATG 5400
 AGGCTGTGAT TAAGGATGTG GGGAGTGGG CTGCGGTAC TGTGGCCTT GCAAGGCCAC 5460
 CTGGAGGCCCT GTCTGTTAGC CAGTGGTGGG GGAGCAAGGC TTCAGGAAGG GCCAGCCACA 5520
 TGCCATCTTC CCTCGCATCA GGCAAAAAAG TGGAAATTAAA AAGTCAAACCC TTTATATGCA 5580
 TGTGTTATGTT CCATTGCA GGATGAACTG AGTTTAAAG AATTTTTTT TCTCTCAAG 5640
 35 TTGCTTGTGTC TTTCCATCC TCATCACAAG CCCTGTTTG AGTGTCTTAT CCCTGAGCAA 5700
 TCTTTGATG GATGGAGATG ATCATTAGGT ACTTTGTTT CAACCTTTAT TCCTGAAAT 5760
 ATTTCTGTGA AACTAGGGG AACAGAGATG AGATTGACA AAAAAAAATT GAATTAAGAA 5820
 TAACACAGTC TTTTAAAC TAACATAGGA AAGCCTTCC TATTATTCT CTTCTTAGCT 5880
 TCTCCATTGT CTAAATCAGG AAAACAGGAA AACACAGCTT TCTAGCAGCT GCAAATGGT 5940
 40 TTAATGCCCT CTACATATTT CCATCACCTT GAACAATAGC TTAGCTTGG GAATCTGAGA 6000
 TATGATCCCA GAAAACATCT GTCTCTACTT CGGCTGAAA ACCCATGGTT TAAATCTATA 6060
 TGGTTTGTGC ATTTCTCAA CTAAAAATAG AGATGATAAT CGAATTCTC CATATATTCA 6120
 CTAATCAAAG AACTATTTT CATACTAGAT TCCTGAGACA AATACTCACT GAAGGGCTTG 6180
 TTTAAAATA AATTGTGTTT TGGTCTGTT TGTTAGATAA TGCCCTTCTA TTTAGGTAG 6240
 45 AAGCTCTGGA ATCCCTTTAT TGTGCTGTG CTCTTATCTG CAAGGTGGCA AGCAGTTCTT 6300
 TTCAGCAGAT TTTGCCACT ATTCCTCTGA GCTGAAGTTC TTGCTATAGA TTGGCTTAA 6360
 GCTTGAATTA GATCCCTGCA AAGGCTTGCT CTGTGATGTC AGATGTAATT GTAAATGTCA 6420
 GTAATCACTT CATGAATGCT AATGAGAAAT GTAAGTATT TAAATGTGT GTATTCTAAA 6480
 TTTGTTTGAC TAATCTGGA ATTACAAGAT TTCTATGCA GATTACCTT CATCCTGTGC 6540
 50 ATGTTTCCA AACTGTGAGG AGGGAGGCT CAGAGATCGA GCTTCTCCTC TGAGTTCTAA 6600
 CAAAATGGTG CTTTGAGGGT CAGCCTTGT GAAGGTGAG CTTGTTGTC CTTTGAGCTT 6660
 TCTGTTATGTC GCCTATCCTA ATAAACTCTT AAACACATT

55 Yours
18
 ACJ3 DNA sequence
 Gene name FLT1 vascular endothelial growth factor receptor
 Unigene number: Hs.138671
 Probeset Accession #: AA047437
 Nucleic Acid Accession #: NM_002019
 Coding sequence: 250-4266 (predicted start/stop codons underlined)

60 GCGGACACTC CTCTCGGCTC CTCCCCGGCA GCGGCGGCGG CTCGGAGCGG GCTCCGGGGC 60
 TCGGGTGCAG CGGCCAGCGG GCCTGGCGC GAGGATTACC CGGGGAAGTG GTTGTCTCCT 120
 GGCTGGAGCC GCGAGACGGG CGCTCAGGGC GCGGGGCCGG CGCGGGCGAA CGAGAGGACG 180
 GACTCTGGCG GCCGGTCTGT TGGCGGGGG AGCGCGGGCA CGGGCGAGC AGGCCCGGTC 240
 GCGCTCACCA TGGTCAGCTA CTGGGACACC GGGGCTCTGC TGTGCGCCTG GCTCAGCTGT 300
 CTGCTTCTCA CAGGATCTAG TTCAGGTTCA AAATTTAAAG ATCCTGAAC GAGTTAAAAA 360
 65 GGCACCCAGC ACATCATGCA AGCAGGCCAG AACTGCACT TCCAATGCA GGGGAGCA 420

	GCCCCATAAAAT	GGTCTTTGCC	TGAAATGGTG	AGTAAGGAAA	GCGAAAGGCT	GAGCATAACT	480
	AAATCTGCCT	GTGGAAGAAA	TGGCAAACAA	TTCTGCAGTA	CTTTAACCTT	GAACACAGCT	540
	CAAGCAAACC	ACACTGGCTT	CTACAGCTGC	AAATATCTAG	CTGTACCTAC	TTCAAAGAAG	600
	AAGGAAACAG	AATCTGCAAT	CTATATATT	ATTAGTGATA	CAGGTAGACC	TTTCGTAGAG	660
5	ATGTACAGTG	AAATCCCCGA	AATTATACAC	ATGACTGAAG	GAAGGGAGCT	CGTCATTCCC	720
	TGCCGGGTTA	CGTCACCTAA	CATCACTGTT	ACTTTAAAAA	AGTTTCCACT	TGACACTTTG	780
	ATCCCTGATG	GAAAACGCAT	AATCTGGAC	AGTAGAAAGG	GCTTCATCAT	ATCAAATGCA	840
	ACGTACAAG	AAATAGGGCT	TCTGACCTGT	GAAGCAACAG	TCAATGGCA	TTTGATAAAG	900
10	ACAAACTATC	TCACACATCG	ACAAACCAAT	ACAATCATAG	ATGTCCAAT	AAGCACACCA	960
	CGCCCAGTCA	AATTACTTAG	AGGCCATACT	CTTGTCCCTCA	ATTGTACTGC	TACCACTCCC	1020
	TTGAACACGA	GAGTTCAAAT	GACCTGGAGT	TACCCCTGATG	AAAAAAATAA	GAGAGCTTCC	1080
	GTAAGGCGAC	GAATTGACCA	AAGCAATTCC	CATGCCAACAA	TATTCTACAG	TGTTCTTACT	1140
	ATTGACAAAAA	TGCAGAACAA	AGACAAAGGA	CTTATTAAC	GTCGTGTAAG	GAGTGGACCA	1200
15	TCATTCAAAT	CTGTTAACAC	CTCAGTGCAT	ATATATGATA	AAGCATTCTAT	CACTGTGAAA	1260
	CATCGAAAAC	AGCAGGTGCT	TGAAACCGTA	GCTGGCAAGC	GGTCTTACCG	GCTCTCTATG	1320
	AAAGTGAAGG	CATTTCCCTC	GCCGGAAGTT	GTATGGTTAA	AAGATGGGTT	ACCTGCGACT	1380
	GAGAAATCTG	CTCGCTATT	GACTCGTGGC	TACTCGTTAA	TTATCAAGGA	CGTAACTGAA	1440
	GAGGATGCGAG	GGAAATTATAC	AATCTTGCTG	AGCATAAAAC	AGTCAAATGT	GTTTAAAAC	1500
20	CTCACTGCCA	CTCTAATTGT	CAATGTGAAA	CCCCAGATT	ACGAAAAGGC	CGTGTCTCG	1560
	TTTCCAGACC	CGGCTCTCTA	CCCACTGGGC	AGCAGACAAA	TCCTGACTTG	TACCGCATAT	1620
	GGTATCCCTC	AACCTACAAT	CAAGTGGTTC	TGGCACCCCT	GTAACCATAA	TCATTCCGAA	1680
	GCAAGGTGTG	ACTTTGTTC	CAATAATGAA	GAGTCCTTTA	TCCTGGATGC	TGACAGCAAC	1740
	ATGGGAAACA	GAATTGAGAG	CATCACTCG	CGCATGGCAA	TAATAGAAGG	AAAGAATAAG	1800
	ATGGCTAGCA	CCTTGGTTGT	GGCTGACTCT	AGAATTCTG	GAATCTACAT	TTGCATAGCT	1860
25	TCCAATAAAAG	TTGGGACTGT	GGGAAAGAAC	ATAAGCTTT	ATATCACAGA	TGTGCCAAAT	1920
	GGGTTTCATG	TTAACCTGGA	AAAAATGCCG	ACGGAAGGAG	AGGACCTGAA	ACTGTCTTGC	1980
	ACAGTTAACAA	AGTTCTTATA	CAGAGACGTT	ACTTGGATT	TACTGCGGAC	AGTTAATAAC	2040
	AGAACAAATGC	ACTACAGTAT	TAGCAAGCAA	AAAATGGCCA	TCACTAAGGA	GCACTCCATC	2100
	ACTCTTAATC	TTACCATCAT	GAATGTTCC	CTGCAAGATT	CAGGCACCTA	TGCCTGCAGA	2160
30	GCCAGGAATG	TATACACAGG	GGAAAGAAATC	CTCCAGAAGA	AAGAAATTAC	AATCAGAGAT	2220
	CAGGAAGCAC	CATACTCCT	GCGAAACCTC	AGTGATCACA	CAGTGGCCAT	CAGCAGTTCC	2280
	ACCACTTTAG	ACTGTCTGC	TAATGGTGT	CCCGAGCCTC	AGATCACTTG	GTTTAAAAC	2340
	AACCACAAAAA	TACAACAAGA	GCCTGGAATT	ATTTAGGAC	CAGGAAGCAG	CACGCTGTTT	2400
	ATTGAAAGAG	TCACAGAAGA	GGATGAAGGT	GTCTATCCT	GCAAAGCCAC	CAACCGAGAAG	2460
35	GGCTCTGTGG	AAAGITCAGC	ATACCTCCT	GTTCAAGGAA	CCTCGGACAA	GCTCTATCTG	2520
	GAGCTGTATCA	CTCTAACATG	CACCTGTGT	GTCGCGACTC	TCTTCTGGT	CCTATTAAACC	2580
	CTCCTTATCC	GAAAATGAA	AAGGTCTTCT	TCTGAAATAA	AGACTGACTA	CCTATCAATT	2640
	ATAATGGACC	CAGATGAAGT	TCCTTGGAT	GAGCAGTGTG	AGCGGCTCCC	TTATGATGCC	2700
	AGCAAGTGGG	AGTTTGGCCG	GGAGAGACTT	AAACTGGCA	ATCACITGG	AAGAGGGCT	2760
40	TTTGGAAAAG	TGGTCAAGC	ATCAGCATTT	GGCATTAAAGA	AATCACCTAC	GTGCCGGACT	2820
	GTGGCTGTGA	AAATGCTGAA	AGAGGGGGCC	ACGGCCAGCG	AGTACAAAGC	TCTGATGACT	2880
	GAGCTAAAAAA	TCTTGACCCA	CATTGGCCAC	CATCTGAACG	TGGTTAACCT	GCTGGGAGCC	2940
	TGCACCAAGC	AAGGAGGGCC	TCTGATGGT	ATTGTTGAAT	ACTGCAAATA	TGGAAATCTC	3000
	TCCAAC TACC	TCAAGAGCAA	ACGTGACTTA	TTTTTCTCA	ACAAGGATGC	AGCACTACAC	3060
45	ATGGAGCCTA	AGAAAAGAAA	AATGGAGCCA	GGCCTGGAAC	AAGGCAAGAA	ACCAAGACTA	3120
	GATAGCGTCA	CCAGCAGCGA	AAGCTTGGC	AGCTCCGGCT	TTCAGGAAGA	AAAAGTCTG	3180
	AGTGTGTTG	AGGAAGAGGA	GGATTCTGAC	GGTTTCTACA	AGGAGCCAT	CACTATGGAA	3240
	GATCTGATT	CTTACAGTTT	TCAGTGGCC	AGAGGCATGG	AGTTCCCTGTC	TTCCAGAAAG	3300
	TGCATTCTATC	GGGACCTGGC	AGCGAGAAAC	ATTCTTTAT	CTGAGAACAA	CGTGGTGAAG	3360
50	ATTTGTGATT	TTGGCCTTGC	CGGGATATT	TATAAGAAC	CCGATTATGT	GAGAAAAGGA	3420
	GATACTCGAC	TTCCCTGTAA	ATGGATGGCT	CCCGAATCTA	TCTTGTACAA	AATCTACAGC	3480
	ACCAAGAGCG	ACGTGTGGTC	TTACGGAGTA	TTGCTGTGGG	AAATCTCTC	CTTAGGTGGG	3540
	TCTCCATACC	CAGGAGTACA	AATGGATGAG	GACTTTGCA	GTCGCCTGAG	GGAAAGGCATG	3600
	AGGATGAGAG	CTCCTGAGTA	CTCTACTCT	GAAATCTATC	AGATCATGCT	GGACTGCTGG	3660
55	CACAGAGACC	AAAAAGAAAAG	GCCAAGATT	GCAGAACTTG	TGGAAAAACT	AGGTGATTTG	3720
	CTTCAAGCAA	ATGTACAACA	GGATGGTAAA	GAATCATCT	CAATCAATGC	CATACTGACA	3780
	GGAAATAGTG	GGTTTACATA	CTCAACTCT	GCCTTCTCTG	AGGACTTCTT	CAAGGAAAGT	3840
	ATTCAGCTC	CGAAGTTAA	TTCAGGAAGC	TCTGATGATG	TCAGATATGT	AAATGCTTTC	3900
	AAGTTCATGA	GCCTGGAAG	AATCAAAC	TTTGAAGAAC	TTTTACCGAA	TGCCACCTCC	3960
60	ATGTTTGATG	ACTTCAGGG	CGACAGCAGC	ACTCTGTTGG	CCTCTCCCAT	GCTGAAGCGC	4020
	TTCACCTGGA	CTGACAGCAA	ACCCAAGGCC	TCGCTCAAGA	TTGACTTGAG	AGTAACCACT	4080
	AAAAGTAAGG	AGTGGGGGCT	GTCTGATGTC	AGCAGGCCA	TTTTCTGCCA	TTCCAGCTGT	4140
	GGGCACGTCA	GGGAAGGCAA	GCGCAGGTTG	ACCTACGACC	ACGCTGAGCT	GGAAAGGAAA	4200
	ATCGCGTGT	GCTCCCCGCC	CCCAGACTAC	AACTCGGTGG	TCCTGTACTC	CACCCACCC	4260
65	ATCTAGAGTT	TGACACGAAG	CCTTATTCT	AGAACGACAT	GTGTATTTAT	ACCCCCAGGA	4320
	AACTAGCTT	TGCCAGTATT	ATGCATATAT	AAGTTACAC	CTTTATCTT	CCATGGGAGC	4380
	CAGCTGTTT	TTGTGATTTT	TTAATAGTG	CTTTTTTTT	TTGACTAACAA	AGAATGTAAC	4440
	TCCAGATAGA	GAATAGTGAAGA	ACACTACTGC	TAATCCTCA	TGTTACTCG	4500	

	TGTTAGAGAA ATCCTTCCTA AACCCAATGA CTTCCCTGCT CCAACCCCCG CCACCTCAGG	4560
	GCACCGAGGA CCAGTTGAT TGAGGAGCTG CACTGATCAC CCAATGCATC ACGTACCCCA	4620
	CTGGGCCAGC CCTGCAGCCC AAAACCCAGG GCAACAAGCC CGTTAGCCCC AGGGGATCAC	4680
	TGGCTGGCCT GAGCAACATC TCGGGAGTCC TCTAGCAGGC CTAAGACATG TGAGGAGGAA	4740
5	AAGGAAAAAA AGCAAAAAGC AAGGGAGAAA AGAGAAACCG GGAGAAGGCA TGAGAAAGAA	4800
	TTTGAGACGC ACCATGTGGG CACGGAGGG GACGGGGCTC AGCAATGCCA TTTCAGTGGC	4860
	TTCCCAGCTC TGACCCCTCT ACATTGAGG GCCCAGCCAG GAGCAGATGG ACAGCGATGA	4920
	GGGGACATTG TCTGGATTCT GGGAGGCAAG AAAAGGACAA ATATCTTTTG TGGAACTAAA	4980
	GCAAATTTTA GACCTTAC TATGGAAGTG GTTCTATGTC CATTCTCATG CGTGGCATGT	5040
10	TTTGATTGT AGCACTGAGG GTGGCACTCA ACTCTGAGCC CATACTTTTG GCTCCCTCTAG	5100
	TAAGATGCAC TGAAAACCTTA GCCAGAGTTA GGTTGCTCC AGGCCATGAT GGCCTTACAC	5160
	TGAAAATGTC ACATTCTATT TTGGGTATTA ATATATAGTC CAGACACTTA ACTCAATTTC	5220
	TTGGTATTAT TCTGTTTGC ACAGTTAGTT GTGAAAGAAA GCTGAGAAGA ATGAAAATGC	5280
	AGTCTGAGG AGAGTTTCT CCATATCAA ACGAGGGCTG ATGGAGGAAA AAGGTCATA	5340
15	AGGTCAAGGG AAGACCCGT CTCTATACCA ACCAACCAA TTCACCAACA CAGTGGGAC	5400
	CAAAACACA GGAAGTCAGT CACGTTTCTT TTTCATTAA TGGGGATTCC ACTATCTCAC	5460
	ACTAATCTGA AAGGATGTGG AAGAGCATT GCTGGCGCAT ATTAAGCACT TTAAGCTCCT	5520
	TGAGTAAAAA GGTGGTATGT AATTATGCA AGGTATTCT CCAGTTGGGA CTCAGGATAT	5580
	TAGTTAATGA GCCATCACTA GAAGAAAAGC CCATTTCAA CTGCTTGAA ACTTGCCTGG	5640
20	GGTCTGAGCA TGATGGGAAT AGGGAGACAG GGTAGGAAAG GGCGCCTACT CTTCAAGGGTC	5700
	TAAAGATCAA GTGGGCCCTTG GATCGCTAAG CTGGCTCTGT TTGATGCTAT TTATGCAAGT	5760
	TAGGGTCTAT GTATTAGGA TGCGCCTACT CTTCAAGGGTC TAAAGATCAA GTGGGCCCTTG	5820
	GATCGCTAAG CTGGCTCTGT TTGATGCTAT TTATGCAAGT TAGGGTCTAT GTATTAGGA	5880
	TGTCTGCACC TTCTGCAGCC AGTCAGAAGC TGGAGAGGCA ACAGTGGATT GCTGCTTCCT	5940
25	GGGGAGAAGA GTATGCTTCC TTTTATCCAT GTAATTAAAC TGTAGAACCT GAGCTCTAAG	6000
	TAACCGAAGA ATGTATGCCT CTGTTCTTAT GTGCCACATC CTTGTTAAA GGCTCTCTG	6060
	ATGAAGAGAT GGGACCGTCA TCAGCACATT CCCTAGTGAG CCTACTGGCT CCTGGCAGCG	6120
	GCTTTGTGG AAGACTCACT AGCCAGAAGA GAGGAGTGGG ACAGTCCTCT CCACCAAGAT	6180
	CTAAATCCAA ACAAAAGCAG GCTAGAGCCA GAAGAGAGGA CAAATCTTG TTGTTCTCT	6240
30	TCTTTACACA TACGCAAACC ACCTGTGACA GCTGGCAATT TTATAATCA GGTAACTGGA	6300
	AGGAGGTTAA ACTCAGAAAAA AAGAAGACACT CAGTCATTC TCTACTTTT TTTTTTTTTT	6360
	TCCAAATCAG ATAATAGCCC AGCAAATAGT GATAACAAAT AAAACCTTAG CTGTTCATGT	6420
	CTTGATTTCA ATAATTAATT CTTAATCATT AAGAGACCAT ATAATTAACT CTTTTCAAG	6480
	AGAAAAGCAA AACCATTAGA ATTGTTACTC AGCTCCTTCA AACTCAGGTT TGTAGCATA	6540
35	ATGAGTCCAT CCATCAGTCA AAGAATGGTT CCATCTGGAG TCTTAAATGTA GAAAGAAAAA	6600
	TGGAGACTTG TAATAATGAG CTAGTTACAA AGTGCCTGTT CATTAAAATA GCACTGAAAAA	6660
	TTGAAACATG AATTAACTGA TAATATTCCA ATCATTGTC ATTATGACA AAAATGGTTG	6720
	GCACTAACAA AGAACAGAGCA CTTCTTCA GAGTTCTGA GATAATGTAC GTGGAACAGT	6780
	CTGGGTGGAA TGGGCTGAA ACCATGTGCA AGTCTGTGTC TTGTCAGTCC AAGAAGTGAC	6840
40	ACCGAGATGT TAATTTAGG GACCCGTGCC TTGTTCCCTA GCCCCACAAGA ATGCAAACAT	6900
	CAAACAGATA CTCGCTAGCC TCATTTAAAT TGATTAAGG AGGAGTCAT CTTGGCCGA	6960
	CAGTGGTGTG ACTGTGTGTG TGTGTGTGTG TGTGTGTGTG TGTGGGTGTG	7020
	GGTGTATGTG TGTTTGTGC ATAACTATT AAGGAAACTG GAATTTAAA GTTACTTTTA	7080
	TACAAACCAA GAATATATGC TACAGATATA AGACAGACAT GTTGGTCC TATATTCTA	7140
45	GTCATGATGA ATGTATTTG TATACCATCT TCATATAATA TACTTTAAA TATTTCTTAA	7200
	TTGGGATTTC TAATCGTACC AACTTAATTG ATAAACCTGG CAACTGCTT TATGTTCTGT	7260
	CTCCTCCAT AAATTTCAT AAATACTAAT TCAACAAAGA AAAAGCTCTT TTTTTCTA	7320
	AAATAAACTC AAATTATCC TTGTTTAGAG CAGAGAAAAA TTAAGAAAAA CTTTGAATG	7380
	GTCTCAAAA ATTGCTAAAT ATTTTCAATG GAAAACCTAA TGTTAGTTA GCTGATTGTA	7440
50	TGGGGTTTC GAACCTTCA CTTTTGTTT GTTTTACCTA TTTCACAAC GTGTAAATTG	7500
	CCAATAATTC CTGTCCATGA AAATGCAAT TATCCAGTGT AGATATATT GACCACCA	7560
	CTATGGATAT TGGCTAGTTT TGCCTTATT AAGCAAATTG ATTCAGCCT GAATGCTGC	7620
	CTATATATTG TCTGCTCTT GTATTCTCCT TTGAACCCGT TAAACATCC TGTGGCACTC	

55 AC59 DNA sequence

Gene name: Purine nucleoside phosphorylase

Unigene number: HS_75514

Probeset Accession #: K02574

Nucleic acid Accession #: X00737 cluster

Coding sequence: 110-979 (predicted start/stop codons underlined)

65	AACTGTGGCA ACCAGACCCG GCAGCCTTGC TCAGTTCAGC ATAGCGGAGC GGATCCGATC	60
	GGATCGGAGC ACACCGGAGC AGGCTCATCG AGAAGGCAGTC TGCGAGACCA TGGAGAACGG	120
	ATACACCTAT GAAGATTATA AGAACACTGC AGAATGGCTT CTGTCTCATC CTAAGCACCG	180
	ACCTCAAGTT GCAATAATCT GTGGTTCTGG ATTAGGAGGT CTGACTGATA AATTAACTCA	240
	GGCCCAAGATC TTTGACTACA GTGAAATCCC CAACTTCCT CGAAGTACAG TGCCAGGTCA	300
	TGCTGGCCGA CTGGTGTGTT GGTTCTGAA TGGCAGGGCC TGTGTGATGA TGCAGGGCAG	360

GTTCCACATG TATGAAGGGT ACCCACTCTG GAAGGTGACA TTCCCAGTGA GGGTTTCCA 420
 CCTTCTGGGT GTGGACACCC TGGTAGTCAC CAATGCAGCA GGAGGGCTGA ACCCCAAGTT 480
 TGAGGTTGGA GATATCATGC TGATCCGTGA CCATATCAAC CTACCTGGTT TCAGTGGTCA 540
 5 GAACCCTCTC AGAGGCCCA ATGATGAAAG GTTTGGAGAT CGTTTCCCTG CCATGTCTGA 600
 TGCCCTACGAC CGGACTATGA GGCAGAGGGC TCTCAGTACC TGAAACAAA TGGGGGAGCA 660
 ACGTGAGCTA CAGGAAGGC CCTATGTGAT GGTGGCAGGC CCCAGCTTG AGACTGTGGC 720
 AGAATGTCGT GTGTCGAGA AGCTGGGAGC AGACGCTGTT GCATGAGTA CAGTACAGA 780
 AGTTATCGTT GCACGGCACT GTGGACTTCG AGTCTTGGC TTCTCACTCA TCACTAACAA 840
 GGTCACTATG GATTATGAAA GCCTGGAGAA GGCAACCAT GAAGAAGT TAGCAGCTGG 900
 10 CAAACAAGCT GCACAGAAAT TCGAACAGTT TGTCTCCATT TTATGGCCA GCATTCAC 960
 CCTGTACAAA GCCAGTTGAC CTGCCTTGGA GTCGTCGAC ATCTCCCACA CAAGACCAA 1020
 GTAGCTGCTA CCTTCTTGG CCCCTGCTG GAGTCATGTC CCTCTGTCCT TAGTTGTAG 1080
 CAGAAAGGA AAGATTCCTG TCCCTCACCT TTCCCACCTT TTCTTACACAG ACCCTTCTGG 1140
 TGCCAGATCC TCTTCTCAAA GCTGGGATTA CAGGTGTGAG CATAGTGAGA CTTGGCGCT 1200
 15 ACAAAATAAA GCTGTTCTCA TTCTGTTCT TTCTTACACA AGAGCTGGAG CCCGTGCCCT 1260
 ACCACACATC TGTGGAGATG CCCAGGATTG GACTCGGGCC TTAGAACTTT GCATAGCAGC 1320
 TGCTACTAGC TCTTGGAGAT AATACATTCC GAGGGGCTCA GTTCTGCCCT ATCTAAATCA 1380
 CCAGAGACCA AACAAAGGACT AATCCAATAC CTCTTGGA

ACK4 DNA sequence

Gene name: EST

Unigene number: Hs.265499

Probeset Accession #: R68763

CAT cluster#: Cluster 46668_2

Sequence: Both the EST corresponding to the probeset accession and exon prediction; number and the CAT cluster align with the Homo sapiens BAC clone AC009414 RP11-490M8. Using FGENESH, 2 exons predicted on this BAC clone upstream of the probeset.

Predicted exon 1: bases 5808-5847 of BAC clone AC009414

520	AAAGTCTCGC CCAAACCTTG TTCGGCACAA CCAGGCCGA GGGGGCGGGC CAGGCCAGGT 60
525	GGGAGGGGGC CCGCAGCGGG CGGCCGTACC TTGCAAACG CCCGCTTCGT ACTCGGTGAG 120
530	GGAGTCGCCA TTGAGCGGGG GCGGGATGAC ACAACGCAGC CCCCGGTGCG AGGTTCCGTA 180
535	AATCCCGAAG GTGCCCGCCG AGCTCTCGTT CCTCTGGCTG GCGCACGTGT AGCAGCAGCC 240
540	GCAGACGCCG TGCACGATGC TCCCCGGGCA GTTCTGGGC TCCTCGCACT TGGACTCGTC 300
545	ACAGGGCAGG CAGACCGAGC CCCGGGTGCC GGAGCGCGCC AGCAGCAGCA GCAGCCCCAG 360
550	CAGCGAGACC AGGAGGTGCC CGCAGCCGGC CAACCCCTG TCCCCCGCCA CCAAGTACAT 420
555	CCTCCTGCGC CGCCGGCGCC TCCTCCTCGC AGCCGGGCCG GGAGCGGGC GGGCGCCCTC 480
560	CCCTGCGCGG GGCACACGCG CCGCCGCCG CGCACAGCA GCCCGCGGTC CTCACCGCCC 540
565	CTCTCGGGGC CCCCCGGGGC CGCCTCCCT CGCGGGCGCA GGCCCCCGCC CCTTCTGCGG 600
570	GCCGCGCCGA CCCCCAGCCC ACGAGCCTG GCGCCGGCG CAGCTTCCCC TCCTCCTCCT 660
575	CCTCCTCCTC CGGGGAGGGA GGGGAAAAAA AGAAAAAAAGT TTCTCCCGG CAGCTCCGGT 720
580	TCAACCCAAA TTCTGGCGC GGCGGCGGC GTGGCTGCTG CGCTCGGCTC CAGCCGGGC 780
585	CGGCGGGCGC TCCTCCCTC CCTCCTCCGA GTCGGGCGGC CCCGCAGCGG CGCAGCCTCC 840
590	GGGCGGGTCC CGGCCTCCCG AGCTGCCGAG TGGGCGCGGT GGCGCAGCAC AAGATCCGCG 900
595	GCGTCCGCTC CGCGCGCCCC GCTCGCTCA CCTCTGGCGC GCTCTCCCG GCGCTTGTGTT 960
600	ATGGCTGGAG CCTCAGCCGC TCGGGCTGCG CCCTCCCCCA CCTACCTCC TCCCCCAGAC 1020
605	CTTCCCCCCTA CCCCCACGCG CGCGCGCGC CTCACTGGCT GCCCCCCCTC CCCGGCCCGG 1080
610	CCGGCCCCCTA CGGCCTCCCC CTCCCCCTCT CGGGCGGCCG GGCCCTTCCT CCCTCCCTCA 1140
615	CACGCCCTCCA CCTCTCCCG ATCTCCTCC CCTCCGAGCCC GGCGCACCGA GCCGGCGCTG 1200
620	CCACCGAGCT CGGGCTCTGG CCCCCGGCGC GGCGGTGCCG TGCGGATGGG CTTGGGGCGC 1260
625	ACCCAGCGAG CAGCGAGAGT CGCGGTGTCC CGGGCGCTCG CTGGCACCGT GGCGCAGCG 1320
630	GGCGGCGCTGG GAGCCAGGAG GGCGAGGGGG CTGCACCTTC GGGGCCAGAT TGGAGTCGA 1380
635	AGAGTGGCGG GTACCCCAGA AGCTCGGGGC CGGGGGCGATG GTCAGCCTT CGGGGAGGTA 1440
640	TCGCGGATC GAACTCCGGG AAAGGGAAAGC AAAGGCATGG AACCTCCGCA CACTGGATGA

Predicted ACK4 gene seq (predicted start/stop codons underlined)

645	ATGCCCCCGG AACAGCATCA TCAGCCCAAC AAAGTCTCGC CCAAACCTTG TTGCACAA 60
650	CCAGGCCGA GGGGGCGGC CAGGCCAGGT GGGAGGGGGC CCGCAGCGGG CGGCCGTACC 120
655	TTGCAAACG CCCGCTTCGT ACTCGGTGAG GGAGTCGCCA TTGAGCGGGG GGCGGATGAC 180
660	ACAACGCAGC CCCCGGTGCG AGGTTCCGTA AATCCGAAG GTGCCCGCC AGCTCTCGTT 240
665	CCTCTGGCTG GCGCACGTGT AGCAGCAGCC GCAGACGCCG TGCACGATGC TCCCCGGCA 300
670	GTTCTGGGC TCCTCGCACT TGGACTCGTC ACAGGGCAGG CAGACCGAGC CCCGGGTGCC 360
675	GGAGCGCGCC AGCAGCAGCA GCAGCCCCAG CAGCGAGACC AGGAGGTGCC CGCAGCCGGC 420
680	CAACCCCTG TCCCCCGCCA CCAAGTACAT CCTCTGGCGC CGCCGGCCGCC TCCTCCTCGC 480
685	AGCCGGCGCG GGAGCGGGGC GGGCGCCCTC CCCTGCGCGG GGCACACGCG CGCCGGCCGC 540

	CGCACCCAGCA	GCCCCGGGTC	CTCACCGCCC	CTCTCGGGGC	CCCCGGGGCG	CGCCTCCCT	600
	CGCGGGGCGA	GGCCCCCGCC	CCTTCTGCGG	GCGCGCCGA	CCCCGAGCCC	ACGAGCCTTG	660
	GCAGCCGGCG	CAGCTTCCCC	TCCTCCCTCT	CCTCCTCCCT	CCGGGAGGGA	GGGGGAAAAA	720
5	AGAAAAAAAGT	TTCCTCCCGG	CAGCTCCGGT	TCAACCCAAA	CTTCTGGCGC	GGCGCGGGCG	780
	GTGGCTGCTG	CGCTCGGCTC	CAGCCCGGGC	CGGCGCGGCC	TCCTCCCTCT	CCTCCTCCGA	840
	GTCGGCCGGC	CCCGCAGCGG	CGCAGCCTCC	GGGCGGTCC	CCGCCTCCCG	AGCTGCCGAG	900
	TGGGCGCGGT	GGCGCAGCAC	AAGATCCCGG	GCGTCCGCTC	CGCGCGCCCC	GCTCGCCTCA	960
10	CTCCTGCGCC	GCTCCCTCCGG	GCGTTGTTT	ATGGCTGGAG	CCTCAGCCGC	TCGGGCTGCG	1020
	CCCTCCCCCA	TCCTACCTCC	TCCCCCAGAC	CTTCCCCCCTA	CCCCCACGCC	CCGCGCGCCG	1080
	CTCATGGCT	GCCCCCCCCTC	CCCGGCCCCG	CGGGCCCCCT	CCGCCTCCCC	CTCCCCCTCT	1140
	CGGGCGGCCG	GGCCCTTCCT	CCCTCCCTCA	CACGCTCTCA	CCTCTTCCCG	ATCTCCTCCT	1200
	CCCCGAGCCC	GGCGCACCGA	GCCGGCGGTG	CCACCGAGCT	GCGGCTCTGG	CCCCGGCGCC	1260
15	GCGGGTGCGC	TGCGGATGGG	CTTGGGGCGC	ACCCAGCGAG	CAGCGAGAGT	CGCGGTGTCC	1320
	CGGGCGCTCG	CTGGCACCGT	GGCCGCAGCG	GCCGGGCTGG	GAGCCAGGAG	GGCGAGGCCG	1380
	CTGCACCTTC	GGGGCCAGAT	TGGAGTTCGA	AGAGTGGCGG	GTACCCAGA	AGCTCGGGGC	1440
	GGGGCGATG	GCTGCAGCCT	CGGGAGGGTA	TCGCGGGATC	GAACTCCGGG	AAAGGAAGC	1500
	AAAGGCATGG	AACCTCCGCA	CACTGGATGA				

AAA8 DNA sequence

Gene name: ETL protein, with extended open reading frame

Unigene number: Hs.57958

Probeset Accession #: D58024

Nucleotide Accession #: AF192403

Coding sequence: 151-2135. Underlined sequences correspond to extended sequence not included in AF192403.

	ATGAAAACAG	CCGCACTCAC	TCCGCCGCGC	TCTCCGCCAC	CGCCACCACT	GCGGCCACCG	60
	CCAATGAAAC	GCCTCCCGCT	CCTAGTGGTT	TTTTCCACTT	TGTTGAATTG	TTCTATATACT	120
	<u>CAAAATTGCA</u>	CCAAGACACC	TTGTCTCCCA	AATGCAAAT	GTGAAATACG	CAATGGAATT	180
	GAAGCCTGCT	ATTGCAACAT	GGGATTTCA	GGAAATGGTG	TCACAATTG	TGAAGATGAT	240
	AATGAATGTG	GAAATTTAAC	TCAGTCCTGT	GGCGAAAATG	CTAATTGAC	TAACACAGAA	300
	GGAAGTTATT	ATTGTATGTG	TGTACCTGGC	TTCAGATCCA	GCAGTAACCA	AGACAGGTT	360
	ATCACTAATG	ATGGAACCGT	CTGTATAGAA	AATGTGAATG	CAAACGTCCA	TTTAGATAAT	420
	GTCTGTATAG	CTGCAAATAT	TAATAAAAAT	TTAACAAAAA	TCAGATCCAT	AAAAGAACCT	480
	GTGGCTTTGC	TACAAGAACG	CTATAGAACAT	TCTGTGACAG	ATCTTTCACC	AACAGATATA	540
	ATTACATATA	TAGAAATAT	AGCTGAATCA	TCTTCATTAC	TAGGTTACAA	GAACAACACT	600
	ATCTCAGCCA	AGGACACCCCT	TTCTAACTCA	ACTCTTACTG	ATTITGTAAA	AAACCGTGAAT	660
	AATTTTGTTC	AAAGGGATAC	ATTITGTAGTT	TGGGACAAGT	TATCTGTGAA	TCATAGGAGA	720
40	ACACATCTTA	CAAAACTCAT	GCACACTGTT	GAACAAGCTA	CTTTAAGGAT	ATCCCAGAGC	780
	TTCCAAAAGA	CCACAGAGTT	TGATACAAAT	TCAACGGATA	TAGCTCTCAA	AGTTTCTTT	840
	TTTGATTCAT	ATAACATGAA	ACATATTCTAT	CCTCATATGA	ATATGGATGG	AGACTACATA	900
	AATATATTTCA	CAAAGAGAAA	AGCTGCATAT	GATTCAAATG	GCAATGTTGC	AGTTGCATT	960
	TTATATTATA	AGAGTATTGG	TCCTTTGCTT	TCATCATCTG	ACAACCTCTT	ATTGAAACCT	1020
45	CAAAATTATG	ATAATTCTGA	AGAGGAGGAA	AGAGTCATAT	CTTCAGTAAT	TTCAGTCTCA	1080
	ATGAGCTCAA	ACCCACCCAC	ATTATATGAA	CTTGGAAAAAA	TAACATTTAC	ATTAAGTCAT	1140
	CGAAAGGTCA	CAGATAGGTA	TAGGAGTCTA	TGTGCATTTT	GGAATTACTC	ACCTGATACC	1200
	ATGAATGGCA	GCTGGCTTTC	AGAGGGCTGT	GAGCTGACAT	ACTCAAATGA	GACCCACACC	1260
	TCATGCCGCT	GTAATCACCT	GACACATT	GCAATT	TGTCCTCTGG	TCCTTCCATT	1320
50	GGTATTAAAG	ATTATAATAT	TCTTACAAGG	ATCACTCAAC	TAGGAATAAT	TATTCACTG	1380
	ATTTGTCTTG	CCATATGCAT	TTTTACCTTC	TGGTTCTTCA	GTGAAATTCA	AAGCACCAAGG	1440
	ACAACAATT	ACAAAAATCT	TTGCTGTAGC	CTATTCTCTG	CTGAACCTGTT	TTTTCTTGT	1500
	GGGATCAATA	CAAATACTAA	TAAGCTCCTT	TCTGTTCTAA	TCATTGCCGG	ACTGCTACAC	1560
	TACTTCTTT	TAGCTGCTTT	TGCATGGATG	TGCATTGAAG	GCATACATCT	CTATCTCATT	1620
55	GTTGTGGGTG	TCATCTACAA	CAAGGGATT	TTGCACAAGA	ATTTTTATAT	CTTTGGCTAT	1680
	CTAAGCCCCAG	CCGTGGTAGT	TGGATTTTCG	GCAGCACTAG	GATACAGATA	TTATGGCACA	1740
	ACAAAAGTAT	GTTGGCTTAG	ACCGAAACA	CACTTTATT	GGAGTTTTAT	AGGACCAGCA	1800
	TGCCTAATCA	TTCTTGTAA	TCTCTGGGT	TTTGGAGTCA	TCATATACAA	AGTTTTCTGT	1860
	CACACTGCA	GGTTGAAACC	AGAAGTTAGT	TGCTTTGAGA	ACATAAGGTC	TTGTGCAAGA	1920
60	GGAGCCCTCG	CTCTTCTGTT	CCTTCTCGGC	ACCACCTGGA	TCTTGGGGT	TCTCCATGTT	1980
	GTGCACGCAT	CACTGGTTAC	AGCTTACCTC	TTCACAGTC	GCAATGCTTT	CCAGGGGATG	2040
	TTCATTTTT	TATTCTCTGTG	TGTTTTATCT	AGAAAGATT	AAGAAGATA	TTACAGATTG	2100
	TCACAAAATG	TCCCCCTGTTG	TTTGGATGT	TTAAGGTAAA	CATAGAGAAT	GGTGGATAAT	2160
	TACAAACTGCA	CTAAAAATAA	AAATTCCAAG	CTGTGGATGA	CCAATGTATA	AAAATGACTC	2220
65	ATCAAATTAT	CCAATTATTA	ACTACTAGAC	AAAAAGTATT	TTAAATCAGT	TTTTCTGTTT	2280
	ATGCTATAGG	AACTGTAGAT	AATAAGGTAA	AATTATGTAT	CATATAGATA	TACTATGTTT	2340
	TTCTATGTGA	AATAGTTCTG	TCAAAAATAG	TATTGCAGAT	ATTGGAAAG	TAATTGGTTT	2400
	CTCAGGAGTG	ATATCACTGC	ACCCAAGGAA	AGATTTCCTT	TCTAACACGA	GAAGTATATG	2460

AATGTCCTGA	AGGAAACCAC	TGGCTTGATA	TTTCTGTGAC	TCGTGTTGCC	TTTGAACACTA	2520
GTCCCCTACC	ACCTCGGTAA	TGAGCTCCAT	TACAGAAAGT	GGAACATAAG	AGAATGAAGG	2580
GGCAGAAATAT	CAAACAGTGA	AAAGGGAATG	ATAAGATGTA	TTTGAAATGAA	ACTGTTTTT	2640
CTGTAGACTA	GCTGAGAAAT	TGTTGACATA	AAATAAAGAA	TTGAAGAAC	ACATTAAACC	2700
5	ATTTTGTGAA	TTGTTCTGAA	CTTAAATGTC	CACTAAAACA	ACTTAGACTT	2760
ATCTGTTTC	TTTTCTAAT	ATCTAAAAA	AAAAAAAAG	GTGTTMCCYCC	CAAATTGAAA	2820
AAAAAAGGGA	AAAAAAAATC	TGTTTCTAAG	GTTAGACTGA	GATATATACT	ATTCCTTAC	2880
TTATTTACACA	GATTGTGACT	TTGGATAGTT	AATCAGTAA	ATATAAAATGT	GTCGA	

10 AAC6 DNA sequence
 Gene name: Homo sapiens cDNA FLJ13465 fis, clone PLACE1003493, weakly similar to
 endothelial cell multimerin precursor
 UniGene number: Hs.134797
 Probeset Accession #: AA025351
 Nucleotide Accession #: AK023527
 Coding sequence: predicted 75-2921
 Extended sequence: 729-3465 (underlined sequence)

20	AAGACAAACGT	CACTAGCAGT	TTCTGGAGCT	ACTTGCCAAG	GCTGAGTGTG	AGCTGAGCCT	60
CCCCCACAC	CAAGATGATC	CTGAGCTTC	TGTTCAGCCT	TGGGGGCC	CTGGGCTGGG	120	
GGCTGCTGGG	GGCATGGGCC	CAGGCTTCCA	GTACTAGCCT	CTCTGATCTG	CAGAGCTCCA	180	
GGACACCTGG	GGTCTGGAAG	GCAGAGGCTG	AGGACACCA	CAAGGACCCC	GTTGGACGTA	240	
ACTGGTGC	CTACCCAATG	TCCAAGCTGG	TCACCTTACT	AGCTCTTGC	AAAACAGAGA	300	
AATTCCCTCAT	CCACTCGCAG	CAGCCGTGTC	CGCAGGGAGC	TCCAGACTGC	CAGAAAGTCA	360	
AAGTCATGTA	CCGCATGGCC	CACAAGCCAG	TGTACCAGGT	CAAGCAGAA	GTGCTGACCT	420	
CTTTGGCCTG	GAGGTGCTGC	CCTGGCTACA	CGGGCCCCAA	CTGGGAGCAC	CACGATTCCA	480	
TGGCAATCCC	TGAGCCTGCA	GATCCTGGT	ACAGCCACCA	GGAACCTCAG	GATGGACCA	540	
TCAGCTTCAA	ACCTGCCAC	CTTGTGTCAG	TGATCAATGA	GTTGAGGTG	CAACAGGAAC	600	
30	AGCAGGAACA	TCTGCTGGG	GATCTCCAGA	ATGATGTCA	CCGGGTGGCA	GACAGCCTGC	660
CAGGCCCTG	GAAAGCCTG	CCTGGTAACC	TCACAGCTGC	AGTGTGGAA	GCAAATCAA	720	
CAGGGCACGA	GTTCCCTGAT	AGATCCTTGG	AGCAGGTGCT	GCTACCCAC	GTGGACACCT	780	
TCCTACAAGT	GCATTCTAGC	CCCATCTGGA	GGAGCTTAA	CCAAAGCCTG	CACAGCTTA	840	
CCCAGGCCAT	AAGAAACCTG	TCTCTGACG	TGGAGGCCAA	CCGCCAGGCC	ATCTCAGAG	900	
TCCAGGACAG	TGCCGTGGCC	AGGGCTGACT	TCCAGGAGCT	TGGTGCCAAA	TTTGAGGCCA	960	
AGGTCCAGGA	GAACACTCAG	AGAGTGGTC	AGCTGCGACA	GGACGTGGAG	GACGCCCTGC	1020	
ACGCCCTAGCA	CTTTACCCCTG	CACCGCTCCA	TCTCAGAGCT	CCAAGCCGAT	GTGGACACCA	1080	
AATTGAAGAG	GCTGACAAG	GCTCAGGAGG	CCCCAGGGAC	CAATGGCAGT	CTGGTGTG	1140	
CAACGCCCTG	GGCTGGGGCA	AGGCCCTGAGC	CGGACAGCCT	GCAGGCCAGG	CTGGGCCAGC	1200	
40	TGCAGAGGAA	CCTCTCAGAG	CTGCACATGA	CCACGGCCCG	CAGGGAGGAG	GAGTTGCACT	1260
ACACCCCTGGA	GGACATGAGG	GCCACCCCTG	CCCGGCACGT	GGATGAGATC	AAGGAACCTG	1320	
ACTCCGAATC	GGACGAGACT	TTGATCAGA	TTAGCAAGGT	GGAGCGGGAG	GTGGAGGAGC	1380	
TGCAGGTGAA	CCACACGGCG	CTCCGTGAGC	TGCGCGTGAT	CCTGATGGAG	AAGTCTCTGA	1440	
TCATGGAGGA	GAACAAGGAG	GAGGTGGAGC	GGCAGCTCCT	GGAGCTCAA	CTCACGCTGC	1500	
45	AGCACCTGCA	GGGTGCCCAT	GGCGACCTCA	TCAAGTACGT	GAAGGACTGC	AATTGCCAGA	1560
AGCTCTATT	AGACCTGGAC	GTCATCCGGG	AGGGCCAGAG	GGACGCCACG	CGTGCCTGG	1620	
AGGAGACCCA	GGTGAGCCTG	GACGAGCCGC	GGCAGCTGGA	CGGCTCTCC	CTGCAGGCC	1680	
TGCAGAACGC	CGTGGACGCC	GTGTCGCTGG	CCGTGGACGC	GCACAAAGCG	GAGGGCGAGC	1740	
GGGCGCGGGC	GGCCACGTCG	CGGCTCCGGA	GCCAAGTGC	GGCGCTGGAT	GACGAGGTGG	1800	
50	GCAGCGCTGAA	GGCGGCCGCG	GGCGAGGCC	GCCACGAGGT	GGCCAGCTG	CACAGCGCCT	1860
TGCGCCGCCC	GCTGGAGGAC	GCGCTGCCG	ACGAGGCCGT	GCTGGCCGCG	CTCTCGGGG	1920	
AGGAGGTGCT	GGAGGAGATG	TCTGAGCAGA	CGGGGGGACC	GCTGCCCTG	AGCTACGAGC	1980	
AGATCCCGT	GGCCCTGAG	GACGCCGCTA	CGGGGCTGCA	GGAGCAGGGG	CTCGGCTGGG	2040	
55	ACGAGCTGGC	CGCCCCGAGT	ACGGCCCTGG	AGCAGGCC	GGAGCCCCCG	CGGCCGGCAG	2100
AGCACCTGGA	GCCCCAGCCAC	GACGCCGGCC	GCGAGGGAGC	CGCCACCA	GCCCTGGCCG	2160	
GGCTGGCGCG	GGAGCTCCAG	AGCCTGAGC	ACGACGTCAA	GAATGTCGGG	CGGTGCTGCG	2220	
AGGCGYAGGC	CGGGGCCGGG	GGCGCTCCC	TCAACGCC	CCTTGACGGC	CTCCACAAACG	2280	
CACTCTTCG	CACTCAGCGC	AGCTTGGAGC	AGCACCAGCG	GCTCTTCCAC	AGCCTCTT	2340	
60	GGAACTTCCA	AGGGCTCATG	GAAGCCAACG	TCAGCCTGGA	CCTGGGGAG	CTGCAGACCA	2400
TGCTGAGCAG	GAAGGGAA	AAGCAGCAGA	AAGACCTGGA	AGCTCCCCGG	AAGAGGGACA	2460	
AGAAGGAAGC	GGAGCCTT	GTGGACATAC	GGGTACAGG	GCCTGTGCCA	GGTGCCTTGG	2520	
65	GCGCGCGCT	CTGGGAGGCA	GRWTCCCCTG	TGGCCTTCTA	TGCCAGCTT	TCAGAAGGGA	2580
CGGCTGCCCT	GCAGACAGTG	AAAGTCACAA	CCACATACAT	CAACATTGGC	AGCAGCTACT	2640	
TCCCTGAACA	TGGCTACTTC	CGAGCCCCCTG	ACCGTGGTGT	CTACCTGTT	GCAGTGAGCG	2700	
TTGAATTGG	CCCAGGGCCA	GGCACCGGGC	AGCTGGTGT	TGGAGGTAC	CATCGGACTC	2760	
CAGTCGTAC	CACTGGCGAG	GGGAGTGGAA	GCACAGCAAC	GGTCTTGGCC	ATGGCTGAGC	2820	
TGCAGAAGGG	TGAGCGAGTA	TGGTTGAGT	TAACCCAGGG	ATCAATAACA	AAGAGAAGCC	2880	
TGTGGGAC	TGCATTGGG	GGCTTCTG	TGTTAAAGAC	CTGAACCCCA	GCCCCAATCT	2940	

	GATCAGACAT CATGGACTCG CCCAGCTCTC CTCGGCCTGG GGCTCTGGCC AAGGATGGC	3000
	TGGAGGTCA TCAGTTGGTC TGTCTCTTC CTGGAAACCT TCTGCAAAGA TGGTGTGGTG	3060
	TACGTGGCTT CCCTGTAACC ACATGGGGCT TGGCATTTC TCCATGATGA GAAGGACTGG	3120
5	AATGCTTCTC CGGGCAGGAC ATGGTCTTAG GAAGCTGAA CCTTGGCTTG GCATGCCITC	3180
	TCAGACAGCA CGGCCTGGC TCCAACCTT CACCACACCC TGTATTCTAC AACTCTTTG	3240
	GTGTTTGCT CCTCCTGTGG TTGGAAACTT CTGTACAACA CTTTAAACTT TTCTCTTGCT	3300
	TCCTCTCTC TTCTCCCTTA TCGTATGATA GAAAGACATT CTTCCCAGG AGGAATGTTT	3360
	AAAATGGAGG CAACATTTG GCCAACATTG GAAAGCACTG GAGGGCAATG GGATTAACCC	3420
10	AACCTGCTTG GTCTCTATTA GTCAGTAATG AAGACGACAG CCTGGCCAAC CAAGGGAAAG	3480
	GAAATTAGTA TCCTTAGTTT CAGTCATTCC TTGAGGATA TGGTTTAGCT GTGCCCCCAC	3540
	CTAAAATATC ATCTTGAATT GAAATCCCTA TAATCCCCAC ATCAAGGGAG AGATCAGGTG	3600
	GAGGTAATTG GATCTGGGG CGGGTCCCC CATGCTGTTG TTGTGATAGT TCTCACGAGA	3660
	TCTGATGATT TTATAAGTTT GATAGTTCTT CCTGTGTTCA TTCTCCTTC TGCCACCTTG	3720
15	TGAAGATGCC TTGGTCCCTC TTCACTGTCT GCCATGATTG TAAGTTCTT GAGGCCTCCC	3780
	CAGCCATGTG GAACAGTGA TCAATTAAAC CTCTTCCTT TATAAATT	

ACH7 DNA sequence

Gene name: ESTs

Unigene number: Hs.3807

Probeset Accession #: AA292694

BAC Accession #: AL161751

FGENESH predicted exons: FGENESH predicts 2 exons on the minus strand of AL161751 upstream of the ACH7 probeset.

FGENESH predicted exon 1:

25	ATGGGCAAAG ACTTCATGAC TAAAACACCA AAAGCATTG CAACAAAAGC CAAAATTGAC	60
	AAATGGGATC TAATTTAACT AAAGAGCTTC TGACAGCAGAA AAGAAACTAT CATCAGAGTG	120
	ACAGTCAAC CTACAGACTG GCAGAAAACT TTTGCAATCT ATCCATCTGA CAAAGGGGTA	180
	ATAGCCAGAA TCTACAAGGA GCTTGAACAA ATTTATAAGA AAAAAAAAC ACCAAAAAA	

FGENESH predicted exon 2:

30	CGCTCCGCAC ACATTTCTG TCGCGGCCCTA AGGGAAACTG TTGGCCGCTG GGCCCGCGGG	60
	GGGATTCTTG GCAGTTGGGG GGTCCGCTGG GAGCGAGGGC GGAGGGGAAG GGAGGGGGAA	120
	CCGGGTTGGG GAAGCCAGCT GTAGAGGGCG GTGACCGCGC TCCAGACACA GCTCTCGCTC	180
	CTCGAGCGGG ACAGATCCAA GTTGGGAGCA GCTCTGCGTG CCGGGCCCTCA GAGAATGAGG	240
	CCGGCGTTCG CCCTGTGCCT CCTCTGGCAG GCGCTCTGGC CCGGGCCGGG CGGCGCGAA	300
	CACCCCACTG CCGACCGTGC TGGCTGCTCG GCCTCGGGGG CCTGCTACAG CCTGCACCAC	360
	GCTACCATGAGA AGCGGCAGGC GGCGCAGGAG GCCTGCATCC TGCGAGGTGG GGCGCTCAGC	420
40	ACCGTGCCTG CGGGCGCCGA GTCGCGCGCT GTGCTCGCGC TCCTGCGGGC AGGCCAGGG	480
	CCCGGAGGGG GTCACAAAGA CCTGCTGTC TGGGTCGCAC TGGAGCGCAG GCGTCCCAC	540
	TGCACCCCTGG AGAACAGAGCC TTTGCGGGGT TTCTCCTGGC TGTCCCTCCGA CCCCCGGCGGT	600
	CTCGAAAGCG ACACGCTGCA GTGGGTGGAG GAGCCCCAAC GCTCCCTGCAC CGCGCGGAGA	660
	TGCGCGGTAC TCCAGGCCAC CGGTGGGTC GAGCCCGCAG CTGGAAGGAG ATGCCATGCC	720
45	ACCTGCGCGC CAACGGCTAC CTGTGCAAGT ACCAGTTGA GGTCTTGTT CTCAGCGCGC	780
	CCCCCGGGGC CGCCTCTAAC TTGAGCTATC GCGCCCCCTT CCAGCTGCAAC AGCGCCGCTC	840
	TGGACTTCAG TCCACCTGGG ACCGAGGTGA GTGCGCTCTG CCGGGGACAG CTCCCGATCT	900
	CAGTTACTTG CATCGCGGAC GAAATCGGGC CTCGCTGGGA CAAACTCTCG GGCGATGTGT	960
	TGTGTCCTCTG CCCCCGGAGG TACCTCCGTG CTGGCAAATG CGCAGAGCTC CCTAACTGCC	1020
50	TAGACGACTT GGGAGGCTTT GCCTGCGAAT GTGCTACGGG CTTCGAGCTG GGGAAAGGACG	1080
	GCCGCTCTTG TGTGACCGAT GGGGAAGGAC AGCCGACCCCT TGGGGGACCC GGGGTGCCA	1140
	CCAGGGCGCC GCGGGCAACT CAAACCGAGG CCGTGCCTGA GAGAACATGG CCAATCAGGG	1200
	TCGACGAGAA GCTGGGAGAG ACACCACTTG TCCCTGAACA AGACAATTCA GTAACATCTA	1260
	TTCCTGAGAT TCCTCGATGG GGATCACAGA GCACGATGTC TACCCCTCAA ATGTCCTTC	1320
55	AAGCCGAGTC AAAGGCCACT ATCACCCCAT CAGGGAGCGT GATTTCAGAAG TTTAATTCTA	1380
	CGACTTCCTC TGCCACTCCT CAGGCTTTCG ACTCCCTCTC TGCGCTGGTC TTCATATTTG	1440
	TGAGCACAGC AGTAGTAGTG TTGGTGATCT TGACCATGAC AGTACTGGGG CTTGTCAAGC	1500
	TCTGCTTCA CGAAAGCCCC TCTTCCCAGC CAAGGAAGGA GTCTATGGGC CGGCCGGGCC	1560
	TGGAGAGTGA TCCTGAGCCC GCTGCTTGG GCTCCAGTTC TGACATTCG ACAAAACAATG	1620
60	GGGTGAAAGT CGGGGACTGT GATCTGCAGGG ACAGAGCAGA GGTGCCTTG CTGGCGGAGT	1680
	CCCCCTCTTGG CTCTAGTGAT GCATAG	

ACH7 predicted coding seq (predicted start/stop codons underlined)

	ATGGGCAAAG ACTTCATGAC TAAAACACCA AAAGCATTG CAACAAAAGC CAAAATTGAC	60
	AAATGGGATC TAATTTAACT AAAGAGCTTC TGACAGCAGAA AAGAAACTAT CATCAGAGTG	120
	ACAGTCAAC CTACAGACTG GCAGAAAACT TTTGCAATCT ATCCATCTGA CAAAGGGGTA	180
	ATAGCCAGAA TCTACAAGGA GCTTGAACAA ATTTATAAGA AAAAAAAAC ACCAAAAACG	240
	CTCCGCACAC ATTTCCCTGTC CGGGCCTAAG GGAAACTGTT GGCGCTGGG CCCGGGGGG	300

GATTCTTGGC AGTTGGGGGG TCCGTCGGGA GCGAGGGCGG AGGGGAAGGG AGGGGAAACC 360
 GGGTTGGGGAG AGCCAGCTGT AGAGGGCGGT GACCGCGCTC CAGACACAGC TCTGCCTCCT 420
 CGAGCGGGAC AGATCCAAGT TGGGAGCAGC TCTGCCTGCG GGGCCTCAGA GAATGAGGCC 480
 5 GGCCTTCGCC CTGTGCCCTCC TCTGGCAGGC GCTCTGGCCC GGGCGGGCG GCGGCGAAC 540
 CCCCCACTGCC GACCGTGCTG GCTGCTCGGC CTCGGGGCC TGCTACAGGC TGACCAACGC 600
 TACCATGAAG CGGCAGGCAG CCGAGGAGGC CTGCATCCTG CGAGGTGGGG CGCTCAGCAC 660
 CGTGCCTGCC GGCGCCGAGC TGCGCGCTGT GCTCGCGCTC CTGCGGGCAG GCCCAGGGCC 720
 CGGAGGGGGC TCCAAAGACC TGCTGTTCTG GGTCGCACTG GAGCGCAGGC GTTCCCACGT 780
 CACCCCTGGAG AACGAGCCTT TGCGGGGTTT CTCCCTGGCTG TCCTCCGACC CGGGCGGTCT 840
 10 CGAAAGCGAC ACGCTGCAGT GGGTGGAGGA GCCCCAACGC TCCTGCACCG CGCGGAGATG 900
 CGCGGTACTC CAGGCACCG GTGGGGTCCA GCCCCCAGCT GGAAGGAGAT GCGATGCCAC 960
 CTGCGCGCCA ACGGCTACCT GTGCAAGTAC CAGTTGAGG TCTTGTGTC TGCGCCGCGC 1020
 CCCGGGGCCG CCTCTAACCT GAGCTATCGC GCGCCCTTCC AGCTGCACAG CGCCGCTCTG 1080
 15 GACTTCACTG CACCTGGAC CGAGGTGAGT GCGCTCTGCC GGGGACAGCT CCCGATCTCA 1140
 GTTACTTGCA TCGCGGACGA AATCGGGCCT CGCTGGGACA AACTCTCGG CGATGTGTTG 1200
 TGTCCCTGCC CCGGGAGGT A CCTCCGTGCT GGCAAATGCG CAGAGCTCCC TAATGCCCTA 1260
 GACGACTTGG GAGGCTTGC CTGCGAATGT GCTACGGGCT TCGAGCTGGG GAAGGACGGC 1320
 CGCTCTTGTG TGACCACTG GGAAGGACAG CGAACCCCTG GGGGGACCCGG GGTGCCACC 1380
 20 AGGCGCCCGC CGGCCACTGC AACCAAGCCCC GTGCCCGAGA GAACATGGCC AATCAGGGTC 1440
 GACGAGAAGC TGGGAGAGAC ACCACTTGTG CCTGAACAAG ACAATTCACT AACATCTATT 1500
 CCTGAGATTG CTCGATGGGG ATCACAGAGC ACGATGTCTA CCCTTCAAAT GTCCCTTCAA 1560
 GCCGAGTCAA AGGCCACTAT CACCCCATCA GGGAGCGTGA TTTCAAGTT TAATTCTACG 1620
 ACTTCCTCTG CCACTCCTCA GGCTTCGAC TCCTCCTCTG CGTGGTCTT CATATTGTG 1680
 AGCACAGCAG TAGTAGTGTG GGTGATCTT ACCATGACAG TACTGGGGCT TGTCAAGCTC 1740
 25 TGCTTTCACG AAAGCCCCCTC TTCAGGCCA AGGAAGGAGT CTATGGGCC CGCGGGCCTG 1800
 GAGAGTGATC CTGAGCCCCG TGCTTGGGC TCCAGTCTG CACATTGCAC AAACAATGGG 1860
 GTGAAAGTCG GGGACTGTGA TCTGCAGGAGG AGAGCAGAGG GTGCCTTGCT GGCGGAGTCC 1920
 CCTCTGGCT CTAGTGATGC ATAG

= 30

AAD3 DNA sequence

Gene name: ESTS

Unigene number: Hs.17404

Probeset Accession #: N39584

Nucleic Acid Accession #: M39584

Coding sequence: no identified ORF, possible frameshifts

40 AAATGGGATT GAGTTAAAAC TATTTTATT TAAATATACA TTTTAAAGCA GTTCTTTTTT 60
 TTTTTTTTTT TTTTATTATA CACACACTTC AAGAGAATAT GCACAGTCTA GGCGGGGCAC 120
 GGTGGCTCAC GCCTGTAATC CGACGACTT GGGAGGCCGA GGCATGTGGA TCACCTGAGG 180
 TCAGGAGTT GAGACCAGCC TAGACAACAT GGTGAAACCT TGTCTCTATG AAAAATACAA 240
 AATTGCTGG GAGTGGTGGT GCATGCCCTG AATCCCAGCT ACTTGGAAAGG CTGAGGCAGG 300
 AGAATGTCTT GAACCTAGGA GGTGGAGGTT GCAGTGAGCT GAGATTGCAC CATTGCACTC 360
 CAGCCTGTGC AACAAAAGTG AAACCTCATT TCAAGAAAAA AAAAAAAAAA AGAATATGCA 420
 45 CAGTCTGAAT GTATACCAAG AGTGTGAGAG ACACATGCCC ACTTCATGCA ACTCCTAAAC 480
 TCAAAGTCTA AATCAGATAT TTTTATTAAAC AATGACAAC TGTGCAAC TCCCTGTTTC 540
 TAATCACCAA AGACCCAGGG TACCTAAAAG GACTTTGCAA CCAAGCAAAG TCACTGTCTT 600
 CAAATCTGGA TACACACTT CCCTCTGTA GATTCAAAG GTGCTTCCTT CCCGGCTGTC 660
 TCCAGCTTCC TTACTCTCTT TTCTGGGATT TCTTTTCTT CTTCTTTCT GGCTCTTCCCT 720
 50 CCACTGGCTG AACTGGGTCC CTTAACTGAA ACAGCCCCCTG ACTTAGCCCA AGCATGCTTC 780
 CTTTAGCTGC TGTGAGAATT TTGTCTTCTT CACCAGCCAG GTCCCTCAAGG CAAAGTCCTC 840
 AGCCAGTGTCT TTAAGAGCAA CTTCCCGCAA ATCAGAAACT CACTGTGATT CCAAAAATGT 900
 TTCTGAGCCC TGGACCCCTG CCCCCAAAT ATTTCATCT TTCCCCCAA CCTCCCTTAA 960
 55 AGGAGCATGC ATAACAGTGT GCTGAAAGAC AGTTGTTGGT TTTTGATT TAGCATATTA 1020
 TTTCTCTGTAT GAAATATGTT TTATATAATC TCCTTATTATT TTTATCTTAT GTTTGTATT 1080
 GTTGATAAAAT CCCTTTTGT CTTCTAAAGA TGTTCTATTG TAAATCACT TATAAGGTAT 1140
 GATTACTCTT TATGCTATTA CTTTATATGC CATTGGGTA ATAAATAGTA AATGGTTGAT 1200
 GATATGATTG ACTGATGCGC AGTCCAGAGC ATGTATGAAT AATCTCATAA AACAGTATCA 1260
 CAGACATTAAC GCTAAACTGT TTCTGGGGGG TGAAAGAACAA ACTCATACTT TGGAACAGTT 1320
 60 GTCAATATTA ATTTGTTGCA AATATTTAAT TTAAATAAAC ATTTTGTAC CATGAAAAAA 1380
 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA

AAD4 DNA sequence

Gene name: ERG

Unigene number: Hs.279477 / Hs.45514

Probeset Accession #: R32894

Nucleic Acid Accession #: M17254

Coding sequence: 257-1645 (predicted start/stop codons underlined)

5	GTCCGCGCGT GTCCGCGCCC GCGTGTGCCA GCGCGCGTGC CTTGGCCGTG CGCGCCGAGC CGGGTCGAC TAACTCCCTC GGCGCCGACG GCGGCCGCTAA CCTCTCGGTT ATTCCAGGAT CTTGGAGAC CCGAGGAAAG CCGTGTGAC CAAAAGCAAG ACAAAATGACT CACAGAGAAA AAAGATGGCA GAACCAAGGG CAACTAAAGC CGTCAGGTTG TGAACAGCTG GTAGATGGC TGGCTTACTG AAGGAC <u>ATGA</u> TTCAGACTGT CCCGGACCCA GCAGCTCATA TCAAGGAAGC CTTATCAGTT GTGAGTGAGG ACCAGTCGTT GTTTGAGTGT GCCTACGGAA CGCCACACCT GGCTAAGACA GAGATGACCG CGTCCTCCCTC CAGCGACTAT GGACAGACTT CCAAGATGAG	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120
10	CCCACCGTC CCTCAGCAGG ATTGGCTGTC TCAACCCCCA GCCAGGGTCA CCATCAAAAT GGAATGTAAC CCTAGCCAGG TGAATGGCTC AAGGAACCTCT CCTGATGAAT GCAGTGTGGC CAAAGGCGGG AAGATGGTGG GCAGCCCAGA CACCCTGGG ATGAACACTACG GCAGCTACAT GGAGGAGAAG CACATGCCAC CCCCCAACAT GACCACGAAC GAGCGCAGAG TTATCGTGC AGCAGATCCT ACGCTATGGA GTACAGACCA TGTGGCGAG TGGCTGGAGT GGGCGGTGAA	480 540 600 660 720 780 840 900 960
15	AGAATATGGC CTTCCAGACG TCAACATCTT GTTATTCCAG AACATCGATG GGAAGGAAC GTGCAAGATG ACCAAGGAGC ACTTCCAGAG GCTCACCCCC AGCTACAACG CCGACATCCT TCTCTCACAT CTCCACTACC TCAGAGAGAC TCCTCTTCCA CATTGACTT CAGATGATGT TGATAAAGCC TTACAAAATC CTCCACGGTT AATGCATGCT AGAAACACAG ATTTACCAT TGAGCCCCCCC AGGAGATCAG CCTGGACGGG TCACGGCCAC CCCACGCCCC AGTCGAAAGC	1020 1080 1140 1200 1260 1320 1380 1440
20	TGCTCAACCA TCTCCTTCCA CAGTGCCCCA AACTGAAGAC CAGCGTCCTC AGTTAGATCC TTATCAGATT CTTGGACCAA CAAGTAGCCG CCTTGCAAAAT CCAGGCAGTG GCCAGATCCA GCTTTGGCAG TTCCCTCTGG AGCTCCCTGTC GGACAGCTCC AACTCCAGCT GCATCACCTG GGAAGGCACC AACGGGGAGT TCAAGATGAC GGATCCCGAC GAGGTGGCCC GGCGCTGGGG AGAGCGGAAG AGCAAACCCA ACATGAACTA CGATAAGCTC AGCCGCGCCC TCCGTTACTA	1500 1560 1620 1680 1740 1800 1860 1920 1980
25	CTATGACAAG AACATCATGTA CCAAGGTCCA TGGGAAGCGC TAGCCCTACA AGTTCGACTT CCACGGGATC GCCCAGGCCCC TCCAGCCCCA CCCCCCGGAG TCATCTCTGT ACAAGTACCC CTCAGACCTC CCGTACATGG GCTCCTATCA CGCCCACCCA CAGAAGATGA ACTTTGTGGC GCCCCACCCCT CCAGCCTCC CCGTGACATC TTCCAGTTTT TTTGCTGCC CAAACCCATA CTGGAATTCA CCAACTGGGG GTATATACCC CAACACTAGG CTCCCCACCA GCCATATGCC	2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120
30	TTCTCATCTG GGCACCTACT <u>ACTAAAGAC</u> TGGCGGAGGC TTTTCCCAC TGGCGTGCATT CACCAGCCCCA TCGCCACAAA CTCTATCGGA GAACATGAAT CAAAAGTGC TCAAGAGGAA TGAAAAAAGC TTTACTGGGG CTGGGGAAAGG AAGCCGGGA AGAGATCCAA AGACTCTTGG GAGGGAGTTA CTGAAGTCTT ACTACAGAAA TGAGGAGGAT GCTAAAAATG TCACGAATAT GGACATATCA TCTGTGGACT GACCTTGAA AAGACAGTGT ATGAGAAGC ATGAAGTCTT AAGGACAAAG TGCCAAAGAA AGTGGCTTA AGAAATGTAT AAACTTTGA GTAGAGTTTG AATCCCACTA ATGCAAACATG GGATGAAACT AAAGCAATAG AAACAACACA GTTTTGACCT AACATACCGT TTATAATGCC ATTTTAAGGA AAACATACCTG TATTTAAAAA TAGTTTCATA TCAAAACAA GAGAAAGAC ACGAGAGAGA CTGTGGCCCA TCAACAGACG TTGATATGCA ACTGCATGGC ATGTGCTGTT TTGGTTGAAA TCAAATACAT TCCGTTTGAT GGACAGCTGT	1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120
35	CAGCTTCTC AAACTGTGAA GATGACCCAA AGTTTCCAAC TCCTTTACAG TATTACCGGG ACTATGAAC TAAAGGTGGG ACTGAGGATG TGTATAGAGT GAGCGTGTGA TTGTAGACAG AGGGGTGAAG AAGGAGGAGG AAGAGGCAGA GAAGGAGGAG ACCAGGCTGG GAAAGAAACT TCTCAAGCAA TGAAGACTGG ACTCAGGACA TTTGGGACT GTGTACAATG AGTTATGGAG ACTCGAGGGT TCATGCAGTC AGTGTATAC CAAACCCAGT GTTAGGAGAA AGGACACAGC 40 GTAATGGAGA AAGGAAAGTA GTAGAATTCA GAAACAAAAA TGCGCATCTC TTTCTTGTGTT TGTCAAATGA AAATTTAAC TTGAAATTGTC TGATATTAA GAGAACATT CAGGACCTCA TCATTATGTG GGGGCTTGT TCTCCACAGG GTCAGGTAAG AGATGGCCTT CTTGGCTGCC ACAATCAGAA ATCACCGAGG CATTGGGGT AGGCGGCCCTC CAGTTTCCCT TTGAGTCGCG AACGCTGTGC GTTTGTCAAGA ATGAAGTATA CAAGTCATG TTTTCCCCC TTTTATATA 50 ATAATTATAT AACTTATGCA TTTATACACT ACGAGTTGAT CTCGGCCAGC CAAAGACACA CGACAAAAGA GACAATCGAT ATAATGTGGC CTTGAATTAA AACTCTGTAT GCTTAATGTT TACAATATGA AGTTATTAGT TCTTGAATG CAGAATGTAT GAAATAAAAT AAGCTTGGCC TAGCATGGCA AATCAGATTT ATACAGGAGT CTGCATTTGC ACTTTTTTA GTGACTAAAG TTGCTTAATG AAAACATGTG CTGAATGTG TGGATTTGT GTTATAATTT ACTTTGTCCA	2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120
55	GGAACCTGTG CAAGGGAGAG CCAAGGAAT AGGATGTTG GCACCC	

AADS DNA sequence

Gene name: activin A receptor type II-like 1 (ALK-1)

Unigenet number: Hs.8881 / Hs.172670

Probeset Accession #: T57112

Nucleic Acid Accession #: NM_000020

Coding sequence: 283-1794 (predicted start/stop codons underlined)

65	AGGAAACGGT TTATTAGGAG GGAGTGGTGG AGCTGGGCCA GGCAGGAAGA CGCTGGAATA AGAAACATTT TTGCTCCAGC CCCCATCCCA GTCCCGGGAG GCTGCGCGC CAGCTGCGCC GAGCGAGCCC CTCCCCGGCT CCAGCCCCGT CCGGGGCCGC GCCGGACCCC AGCCCGCCGT CCAGCGCTGG CGGTGCAACT CGGGCGCGC GGTGGAGGGG AGGTGGCCCG GGTCCGCGA	60 120 180 240
----	---	-------------------------

	AGGCTAGCGC	CCCGCCACCC	GCAGAGCGGG	CCCAGAGGGA	CCATGACCTT	GGGCTCCCCC	300
	AGGAAAGGCC	TTCTGATGCT	GCTGATGGCC	TTGGTGACCC	AGGGAGACCC	TGTGAAGCCG	360
	TCTCGGGGCC	CGCTGGTGC	CTGCACGTGT	GAGAGCCCAC	ATTGCAAGGG	GCCTACCTGC	420
	CGGGGGGCCCT	GGTGCACAGT	AGTGCTGGTG	CGGGAGGAGG	GGAGGCACCC	CCAGGAACAT	480
5	CGGGGCTGCG	GGAACTTGCA	CAGGGAGCTC	TGCAGGGGGC	GCCCCACCGA	GTTCGTCAAC	540
	CACTACTGCT	GCGACAGCCA	CCTCTGCAAC	CACAACGTGT	CCCTGGTGT	GGAGGCCACC	600
	CAACCTCCCT	CGGAGCAGCC	GGGAACAGAT	GGCCAGCTGG	CCCTGATCCT	GGGCCCCGTG	660
	CTGGCCTTGC	TGGCCCTGGT	GGCCCTGGGT	GTCCTGGGCC	TGTGGCATGT	CCGACGGAGG	720
	CAGGAGAACG	AGCGTGGCCT	GCACAGCGAG	CTGGGAGAGT	CCAGTCTCAT	CCTGAAAGCA	780
10	TCTGAGGAGG	GCGACACGAT	GTGGGGGAC	CTCCTGGACA	GTGACTGCAC	CACAGGGAGT	840
	GGCTCAGGGC	TCCCCCTCCT	GGTGCAGAGG	ACAGTGGCAC	GGCAGGTTGC	CTTGGTGGAG	900
	TGTGTGGGAA	AAGGCCGCTA	TGGCGAAGTG	TGGCGGGCT	TGTGGCACCG	TGAGAGTGTG	960
	GCCGTCAAGA	TCTTCTCCTC	GAGGGATGAA	CACTGCTGGT	TCCGGGAGAC	TGAGATCTAT	1020
	AACACAGTAT	TGCTCAGACA	CGACAACATC	CTAGGCTTCA	TCGCCTCAGA	CATGACCTCC	1080
15	CGCAACTCGA	GCACGCGACT	GTGGCTCATC	ACGCACTACC	ACGAGCACGG	CTCCCTCTAC	1140
	GACTTTCTGC	AGAGACAGAC	GCTGGAGCCC	CATCTGGCTC	TGAGGCTAGC	TGTGTCCCG	1200
	GCATGCGGCC	TGGCGCACCT	GCACGTGGAG	ATCTTGGTA	CACAGGGCAA	ACCAGCCATT	1260
	GCCCACCGCG	ACTTCAAGAG	CCGCAATGTG	CTGGTCAAGA	GCAACCTGCA	GTGTTGCATC	1320
	GGCGACCTGG	GCCTGGCTGT	GATGCACTCA	CAGGGCAGCG	ATTACCTGGA	CATCGGCAAC	1380
20	AACCCGAGAG	TGGGCACCAA	GGGGTACATG	GCACCCGAGG	TGCTGGACGA	GCAGATCCGC	1440
	ACGGACTGCT	TTGAGTCCTA	CAAGTGGACT	GACATCTGGG	CCTTGGCCT	GGTGTGTG	1500
	GAGATTGCC	GGCGGACCAT	CGTGAATGGC	ATCGTGGAGG	ACTATAGACC	ACCCTTCTAT	1560
	GATGTGGTGC	CCAATGACCC	CAGCTTGAG	GACATGAAGA	AGGTGGTGTG	TGTGGATCAG	1620
	CAGACCCCCA	CCATCCTAA	CCGGCTGGCT	GCAGACCCCG	TCCTCTCAGG	CCTAGCTCAG	1680
25	ATGATGCGGG	AGTGTGGTA	CCCAAACCCC	TCTGCCGAC	TCACCCGCGT	GCGGATCAAG	1740
	AAGACACTAC	AAAAAATTAG	CAACAGTCCA	GAGAAGCCTA	AAGTGTATTCA	ATAGCCCAGG	1800
	AGCACCTGAT	TCCTTCTGC	CTGCAGGGGG	CTGGGGGGGT	GGGGGGCAGT	GGATGGT	1860
	CTATCTGGGT	AGAGGTAGTG	TGAGTGTGGT	GTGTGCTGGG	GATGGGCGAGC	TGCGCCTG	1920
	TGCTCGGCC	CCAGCCCACC	CAGCCAAA	TACAGCTGGG	CTGAAACCTG	ATCCCCTGCT	1980
= 30	GTCTGGCCTG	CTCAAAGCGG	CAGGCTCCCT	GACGCC	TCTCTCCCCA	CCCCTATGGC	2040
	CAGCATGGTG	CACCCCTAC	ACTCCCCGGG	ACAGGATGCA	AAAGAGGCTC	CAGAGTCAGA	2100
	GTGCCAAGCC	AGGGAAATCCC	AGTCCCAGAC	TCAGAGCCCG	GGCCTGACT	TTGCCCCCTG	2160
	CCCTTGATCA	ACCCCACTGC	CCCACCGAGG	CTGCCAGGGT	GGCACAGGGC	CCTGTCCAGC	2220
	CCCTGGCACA	CACTTCCCTG	CCAGGCC	GCCTCTAGCA	TAAGCTCCAG	AGAGCCAGGG	2280
35	CCCATCAGTT	TCTCTCTGTG	GATTGTATC	TCAGCTCCAT	GATGCC	TG	2340
	TCCTCAACAA	GAGTGCAGCT	TGCTGAATGT	CAGCTGCC	AGAGAGCTG	GGCCTGACT	2400
	ACTAGGGCAT	TAAATCCTAA	GAGGTCTAC	TGAGGTGTGG	CAGGATCACA	GGCCAGTGG	2460
	AAAAGGGCAG	GTCAGATGGG	CAAGGCCAG	GACTTCAGA	TTAACTGAGA	GGATATCGAG	2520
	GCCAAGCATG	GCAGGGGGAA	GGTCAGTGGG	TGTCAAGAGA	CCCAGGTCTG	ACCCCGGATG	2580
40	TTTGTCCAT	GTGACAAAAG	CAGGCC	TCAGGACCTT	TTCTTTCTT	TTTCTCTT	2640
	TTTTTTTTT	GACACGGAGT	TTCGCTCTT	TTGTC	CAGG	TGGCATGATC	2700
	CCAGCTCACC	GCAACGTCTA	CCTCC	AGG	TCTCTG	AGACTCCC	2760
	GTAGCTGGG	TTACAGGCAC	ATGCC	ACCAT	GCCTGGCTAA	TTTTGTATAT	2820
	CAGGGTTCA	CCATGCTGGC	CATGCTGGT	CTCGA	ACTCC	TGACCTCAGG	2880
45	ACCTCAGCCT	CCCAAAGTGC	TGGGGTACA	GGTGTGAGC	ATCGCC	CTG	2940
	TTGTTCTTA	TCTACATATT	GGAAGATTG	GTCC	CTGATGT	CCTTGTAGG	3000
	CTAGTTCTCT	GACACTTCAG	CCTATATC	AGCTA	ACTTC	YTCAGTCTCA	3060
	ATGCTCCAGC	CCCTGGCAAT	TTGCTCAAG	ATGGGGTTT	GAAAATAACT	TTACCTGACT	3120
	CAAGGAGTGT	CTGGAGCACC	TCCTAGTCTA	AGTCTGCA	CTCCAGT	TG	3180
50	CATGCCAGTG	GCCACCC	GGCTCAGACA	GCTCTGGGCC	TTTGAC	AC	3240
	CTCGCCCTCT	CTG	GGCATA	GTCTTCTCTG	CCCCAGGACT	GCAGGGCGC	3300
	GCTTCC	AGG	CTCAAAGAA	ATTTGGCTC	ATCC	AGAAG	3360
	CCCTGGCTTC	AGG	CCCCACAC	CCCTGGGCA	GGSC	CAGAG	3420
	ATGGGCTCTA	GAGAGACACA	CAGAAAGTT	GGGC	ATT	GGRTGTATG	3480
55	TATGGYTCAC	GTATGGWGCA	GGTTGTCTG	GTCCYKGGG	GCAGGGA	AGT	3540
	GAAGTGGATT	GGAGGGGAGC	TTGAGGAATA	TAAGGAGC	GGG	CTGCAGG	3600
	GACAAGGACA	GGCCCAGGT	TGGGAAGACC	TGGCCTTAGT	CGT	TCAGGGCAGG	3660
	GCAGTGAAGA	AAGCTCTCCC	CGCTCCTGCT	GTAATGACCC	AGAGT	AGCAGCAGCT	3720
	GCATCTTATG	TGTGTCTTCC	ACCATCCTCA	TGGTGGCA	TTT	CTAGG	3780
60	CATTGTGCAA	GGCTCGGAAG	AGAACCA	AGTGA	AACTG	GGTGA	3840
	TGGATGGG	AGGTTCCCAG	ATCATTAG	CAGAGTTG	ACGT	CCTCTG	3900
	AATCCACCA	GCCCACGAAT	CATCTCC	TTTGAAGG	AGG	TACTGG	3960
	GGAAACAAACT	CCTGCTGAGA	CCCCACAGCC	AGAAACTGAA	AGCAG	CAGCT	4020
	TGGAAAATCC	CTAAGAGAAG	GCCTGGG	MAGGA	AKTGG	GACAGGTAGA	4080
65	GAGAAGGGGG	CCCAATGGCC	AGGGAGTGA	GGAGGTGGCG	TTG	CTGAGAG	4140
	ATGCTCTG	CTGAGTGCAG	GAAGGTG	TG	CGT	TCAC	4200
	AGACGCTGTT	TGTGGGAGCA	CTGGGCTCAT	GCCTGGCACA	CAATAGG	TCTGAC	4260
	ATGGTTAAAT	CCTGAAAAAA	AAAAA	AAAAA	AAAAA	AAAAA	

Ums
031

AAD8 DNA sequence

Gene name: ESTs

Unigene number: Hs.144953

Probeset Accession #: AA404418

Nucleic Acid Accession #: n/a

Coding sequence: no ORF identified; possible frameshifts

10	TATGTCCACC AAAGACACCT CGTTGGTCAT GTTCTATCAC CTCTTCGTC AATTGACATC	60
	AGGTCTAAC AGGTCACTTT CAAGATACAG AAGAGGCCAA TTTTGTGTTG AGACTTGGCC	120
	ATTCCTAGGG TCAGCAAAGT GTATTCCTGG CAGCCAGACC TTCAAGTCAC TATCAGGAAA	180
	TGCTTGACCT AAAGACAGAC AATTCTTCC CCAAACATTG CTGTTCTTT TTTGAGTCTT	240
	TGTTGAAAAA TTTCTTTAA AAGGCCTTCG TGTGAGAAGA TCACAGCAAC AAATCTGGCT	300
15	TGTTCTGTT TAGACTTAAC TCTTAACCTC TTGGCAGAA GAAATGAAT GAGATTGAA	360
	GACCTTGAT ACCTTGGTA GACAAAGCTT GCCTTGAAAC TAGAAATAAG ACGAAACTAG	420
	ATTTTAAGGG GAAAAAATTG GCTAGTGGTA ATATAATTGG TTTGTTCA TTTTTTATG	480
	AGTCTGAGGA GTTGACATTA AACGTTGGGA TGTTGCTTGT TTAATGAAGT CATTCAATT	540
	TTTGAACCTC TTAACATCTG CATGCTTCCA TAAACAGTGG GTTGGAACAA AAGAAAATGT	600
20	GACTAAGGGA TATTCTTAA ATTCTTTTTT ATGTTATGAG AGAGAATATT GGAATATAAA	660
	GAATGTTACT TTATCTGGTA ACCATCTCA TAGGCCAGAA GCACAAACAG TTTGAATGGT	720
	TGGCTTAAA AAAACGGGA GTCTTGAAT TTAAGCTTAT GTAAAATTAC TATGCAAATA	780
	TAGGTTATTA TTTATTTTA CAGTGAAT AAAACACTAT TGAAGTATAA ATGGAAAGAA	840
	AATAAAAGCA AAGCCTGTTT AATATAGAGA CATTAAATGTT GATATCACTG TACGAACAGT	900
25	CATAGCTTGC TGCTCACTGC CGTTAAAGGG TTGACATACA AACATTGTGG AAGAGATTTC	960
	AGTTTGAGGG CTAGTGTCTG AATTATGGAC TCCTTACCC ACTCCACAC TAAACACATT	1020
	TTAGAGACTT TTGTGAAATT AACAGGTCA ATAATTAAATA ATTGTTGTT TATGTACATT	1080
	TATTGAAAGG CCATATTGAG GCTCCATTGA TTTTTTTCC TGCATATTAA TCAGTATCGA	1140
	ATTAGAAAAT TGAACCTTCA GTGTTACTAG ATGGAAATCT ACCAAAAAGT AGCAAGGTTT	1200
30	ACGAATGGTG GGATTATTG GTGATTAAC ATTTTTTCC TGTATTTTAT AAGTTTCACA	1260
	TTACATTTAC AATGAGAAAA AAATGTAAT GTAGAATTAA AGTCTTGTAA ATATCGTAAT	1320
	TTGCCATTG CTGTACTAA AGAAGCTTCT ATAAAATGTA TCATTCTCAT CCTTAGATT	1380
	AGGGCAGAAA GTAACCTTCA GTGTTAGGTAA TTTGAAATAA TGCGCCCTGT CATATGACT	1440
	CTGGTTACCA GAATGAAAAA ACAAAAGAG ATACATACAT AGTAAGGAAA CATGAAATTG	1500
35	GAGGAATTGA TCCCCATGTG TATTGCAGCT TCATATACCA GTAGTCTCTA ATAAGTCATT	1560
	GCTTTAATAA AAAAAGGAAAT AGAAAATTAA AA	

Ums
032

ACA2 DNA sequence

Gene name: EST

Unigene number: Hs.16450

Probeset Accession #: AA478778

Nucleic Acid Accession #: AA478778

Coding sequence: no ORF identified; possible frameshifts

45	TATTTTTGTA CGTAAAATGA TTCTATTATG ACTGCCCTTG CATGTAGTAA TATGACAAAG	60
	TGATCCTTCA TTATCACGGT ACACTATTGT TTACTTTCA TCTGTAAAATG TTTTATTGTT	120
	ACTTTTTAA AATGAATTAA TTTAAAACAA TCTGCCATC ATCAAGGTGC TATAAGAGTT	180
	GTATAAAAGA TATTTTGCG ATTTCTAGGC AAGTATCAGC CAATAAGTAT GTTAGTGATA	240
50	TCACAGATG TACCAACTAT TAACATATGTT AAATAAGTAT TCAGTTCAT GTGATCTCG	300
	GGAAAAAAAT ATGCTGCCCT GGTGCTAATA TTGTATGTAT TAAATGATC ATCTGACTCA	360
	GAAATATAAA CACTTTAAT GAAAGGGAGG AACGGAAGGA CAATTCCAG TGCAACAGAAT	420
	CACTTGGATG AAATAAGACC AGCTCTTAC CCTTATTAAAT GGATATGCCT TTTTGGAAAG	480
55	AGACTTAGAC TTATCCTTA TTGTTGTTAG TGTTGTTAAAT ATTGTTGCT TCAGCCCACG	540
	GTGCCCTGGT CTCTCCACAA TCAAATGGAG GATCCCCAA GCAGCTTCAT TACAGAGTGA	600
	TATTGGAAA GTGAGATCCT CTCACCATTT TGCCAGATA CTCTAAAATG ACATCCAAGT	660
	TTACCACTAG AAAGACACAG GATGCACAGA ATGGGCATGA CCTTCAGCTC ACGAGCACAC	720
	CTGGAGAAAT TCAGAACCCAG GTTCTGAATC ATCACGATTG CCTTTGCTAT GAAAACATCG	780
60	GCTGGTGTAG TGACTTCTCT TCAGGCCATG AGCCTAACAY CCTGCCGGTT TTCATGCCCG	840
	CTGCAGTAAT GGACGTTGT GTGAAGAAAT GAACTGTGGA GTACAAAAA CTTTGAGTCT	900
	TTCCGATTGC TCATTAATTG ACTTTTTGT TACTCTTTC CAAAATGGAA GTGCTGAAGC	960
	CATGGTCTTT CTGCCCCCTCC AAGCTGATGA AGGGAAGCCT TTGCCAATGG CCCATGGAAG	1020
	ACACTTGGTT TGAGAAACCC TGCCCACTTC CAAAGACCAA AGAGATTAGG AAAAGCTGG	1080
	CAGTATTCTC CAACTCCAAA CAAGCTCTAG AGTGCCTCCAG GAAAAGTTAT ATTCACTATA	1140
65	TGAATAAGTG TTATTCTCCA TTATTAATGT GTTCTGAAAAA TATATTATGA ATAATACAT	1200
	CACCAACACCC AAAAAGGAAAT AAAAAGGAAAT AAAA	

John
Q35
ACA4 DNA sequence

Gene name: alpha satellite junction DNA sequence

Unigene number: Hs.247946

Probeset Accession #: M21305

Nucleic Acid Accession #: M21305

Coding sequence: 1-165 (predicted start/stop codons underlined)

ATGGAATGGA ATGGAATGCC ATGGAATCGT ATAAAAGTGG ATGGAATCAA CTCGAGTGGA 60
ATGGAATGGA ATGGAATGGA ATGGAATGCA GTACAATGCA ATAGAATGGA ATGGAATGAA 120
CTCGAGTTGA CTGGAATGGA ATGGAATGGA ATGCATTGATTGA

10

John
Q34
ACG6 DNA sequence

Gene name: intercellular adhesion molecule 2 (ICAM2)

Unigene number: Hs.83733

Probeset Accession #: M32334

Nucleic Acid Accession #: NM_000873

Coding sequence: 63-890 (predicted start/stop codons underlined)

20

CTAAAGATCT CCCTCCAGGC AGCCCTTGGC TGGTCCCTGC GAGCCCGTGG AGACTGCCAG 60
AGATGTCCCTC TTTCGGTTAC AGGACCCCTGA CTGTGGCCCT CTTCACCCCTG ATCTGCTGTC 120
CAGGATCGGA TGAGAAGGTA TTCGAGGTAC ACGTGAGGCC AAAGAACGCTG GCGGTTGAGC 180
CCAAAGGGTC CCTCGAGGTC AACTGCAGCA CCACCTGTAA CCAGCCTGAA GTGGGTGGTC 240
TGGAGACCTC TCTAAATAAG ATTCTGCTGG ACGAACAGGC TCAGTGGAAA CATTACTTGG 300
TCTCAAACAT CTCCCATGAC ACGGTCCCTC AATGCCACTT CACCTGCTCC GGGAACGAGG 360
AGTCAATGAA TTCCAACGTC AGCGTGTACC AGCCTCCAAG GCAGGTCTAC CTGACACTGC 420
AACCCACTTT GGTGGCTGTG GGCAAGTCTC TCACCATTTGA GTGCAGGGTG CCCACCGTGG 480
AGCCCCCTGGA CAGCCTCACC CTCTTCCCTG TCCGTGGCAA TGAGACTCTG CACTATGAGA 540
CCTTCGGGAA GGCAGCCCCCT GCTCCGAGG AGGCCACAGC CACATTCAAC AGCACGGCTG 600
30 ACAGAGAGGA TGGCCACCGC AACTTCTCTC GCCTGGCTGT GCTGGACTTG ATGTCTCGCG 660
GTGGCAACAT CTTTACACAA CACTCAGCCC CGAACATGTT CGAGATCTAT GAGCCTGTGT 720
CGGACAGCCA GATGGTCATC ATAGTCACGG TGGTGTGCGT GTTGTGTTCC CTGTTGTTGA 780
CATCTGTCTT GCTCTGCTTC ATCTTCGGG AGCACATTGCG CCAGCAGCGG ATGGCACCT 840
ACGGGGTGGG AGCGGCTTGG AGGAGGCTGC CCCAGGCCCTT CCGGCCATAG CAACCATGAG 900
35 TGGCATGGGC ACCACACGG TGGTCACTGG AACTCAGTGT GACTCCTCAG GGTTGAGGTC 960
CAGCCCTGGC TGAAGGACTG TGACAGGCCAG CAGAGACTTG GGACATTGCC TTTTCTAGCC 1020
CGAATACAAA CACCTGGACT T

40

John
Q35
ACG7 DNA sequence

Gene name: Cadherin 5, VE-Cadherin (CDH5)

Unigene number: Hs.76206

Probeset Accession #: X79981

Nucleic Acid Accession #: NM_001795

Coding sequence: 25-2379 (predicted start/stop codons underlined)

50

GCACGATCTG TTCCCTCCTGG GAAGATGCAG AGGCTCATGA TGCTCCTCGC CACATCGGGC 60
GCCTGCCCTGG GCCTGCTGGC AGTGGCAGCA GTGGCAGCAG CAGGTGCTAA CCCTGCCCAA 120
CGGGACACCC ACAGCGCTGCT GCCCACCCAC CGGGCCAAA AGAGAGATTG GATTGGAAC 180
CAGATGCACA TTGATGAAGA GAAAAAACACC TCACTTCCCC ATCATGTAGG CAAGATCAAG 240
TCAAGCGTGA GTCGCAAGAA TGCCAAAGTAC CTGCTCAAAG GAGAATATGT GGGCAAGGTC 300
TTCCGGGTGCG ATTCGAGAGAC AGGAGACGTTG TTGCCATTG AGAGGCTGGA CGGGGAGAAT 360
ATCTCAGAGT ACCACCTCAC TGCTGTCATT GTGGACAAGG ACACTGGTGA AAACCTGGAG 420
ACTCCTTCCA GCTTCACCAT CAAAGTTCAT GACGTGAACG ACAACTGGCC TGTGTTCACG 480
55 CATCGGTTGT TCAATGCGTC CGTGCCTGAG TCGTCGGCTG TGGGGACCTC AGTCATCTCT 540
GTGACAGCAG TGGATGCGA CGACCCCCACT GTGGGAGACC ACGCCTCTGT CATGTACCAA 600
ATCCTGAAAGG GGAAAGAGTA TTTGCCATC GATAATTCTG GACGTATTAT CACAATAACG 660
AAAAGCTTGG ACCGAGAGAA GCAGGCCAGG TATGAGATCG TGGTGGAAAGC GCGAGATGCC 720
CAGGGCCTCC GGGGGGACTC GGGCACGGCC ACCGTGCTGG TCACTCTGCA AGACATCAAT 780
60 GACAACCTCC CCTTCTTCAC CCAGACCAAG TACACATTG TCGTGCCTGA AGACACCCGT 840
GTGGGCACCT CTGTGGGCTC TCTGTTTGTG GAGGACCCAG ATGAGCCCCA GAACCGGATG 900
ACCAAGTACA GCATCTGCG GGGCAGTAC CAGGACGCTT TCACCATTGA GACAAACCCC 960
GCCACAAACG AGGGCAGTAC CAAGCCCCATG AAGCCTCTGG ATTATGAATA CATCCAGCAA 1020
TACAGCTTCA TCGTCGAGGC CACAGACCCC ACCATCGACC TCCGATACAT GAGCCCTCCC 1080
65 GCGGGAAACA GAGCCCAGGT CATTATCAAC ATCACAGATG TGGACGAGCC CCCCATTTTC 1140
CAGCAGCCTT TCTACCACTT CCAGCTGAAG GAAAACCAGA AGAAGCCTCT GATTGGCACA 1200
GTGCTGGCCA TGGACCCCTGA TGGCGCTAGG CATAGCATTG GATACTCCCAT CCGCAGGACC 1260
AGTGACAAGG GCCAGTCTT CCGAGTCACA AAAAAGGGG ACATTTACAA TGAGAAAGAA 1320

	CTGGACAGAG AAGTCTACCC CTGGTATAAC CTGACTGTGG AGGCCAAAGA ACTGGATTCC	1380
	ACTGGAACCC CCACAGGAAA AGAATCCATT GTGCAAGTCC ACATTGAAGT TTTGGATGAG	1440
	AATGACAATG CCCCGAGTT TGCCAAGCCC TACCAGCCC AAGTGTGTGA GAACGCTGTC	1500
	CATGGCCAGC TGGTCTGCA GATCTCCGCA ATAGACAAGG ACATAACACC ACGAAACGTG	1560
5	AAGTTCAAAT TCACCTTCAA TACTGAGAAC AACCTTACCC TCACGGATAA TCACGATAAC	1620
	ACGGCCAACA TCACAGTCAA GTATGGGCAG TTTGACCGGG AGCATACCAA GGTCCACTTC	1680
	CTACCCGTGG TCATCTCAGA CAATGGGATG CCAAGTCGCA CGGGCACCAAG CACGCTGACC	1740
	GTGGCCGTGT GCAAGTGCAA CGAGCAGGGC GAGTTCACCT TCTGCGAGGA TATGGCCGCC	1800
	CAGGTGGGCG TGAGCATCCA GGCAGTGGTA GCCATCTTAC TCTGCATCCCT CACCATCACA	1860
10	GTGATCACCC TGCTCATCTT CCTGCGGGCGG CGGCTCCGGA AGCAGGGCCC CGCGCACGGC	1920
	AAGAGCGTGC CGGAGATCCA CGAGCAGCTG GTCACCTACG ACGAGGGGG CGGCAGCGAG	1980
	ATGGACACCA CCAGCTACGA TGTGCTGGTG CTCAACTCGG TGCAGCCGGG CGGGGCCAACG	2040
	CCCCCGCGGC CGCGCTGGGA CGCCCGGGCCT TCCCTCTATG CGCAGGTGCA GAAGCCACCG	2100
	AGGCACGGCC CGTGGGCACA CGGAGGGCCC GGGGAGATGG CAGCCATGAT CGAGGTGAAG	2160
15	AAGGACGAGG CGGACACGA CGGCGACGGC CCCCCCTACG ACACGCTGCA CATCTACGGC	2220
	TACGAGGGCT CCGAGTCCAT AGCCGAGTCC CTCAGCTCCC TGGGCACCGA CTCATCCGAC	2280
	TCTGACGTGG ATTACGACTT CCTTAACGAC TGGGGACCCA GTTTTAAGAT GCTGGCTGAG	2340
	CTGTACGGCT CGGACCCCCG GGAGGAGCTG CTGTATTAGG CGGCGCAGGGT CACTCTGGC	2400
	CTGGGGACCC AAACCCCCCTG CAGCCAGGGC CAGTCAGACT CCAGGCACCA CAGCCTCCAA	2460
20	AAATGGCAGT GACTCCCCAG CCCAGCACCC CTTCTCGTG GGTCCCAGAG ACCTCATCAG	2520
	CCTTGGGATA GCAAACCTCA GGTTCTGAA ATATCCAGGA ATATATGTCA GTGATGACTA	2580
	TTCTCAAATG CTGGCAAATC CAGGCTGGTG TTCTGTCTGG GCTCAGACAT CCACATAACC	2640
	CTGTACCCCA CAGACCGCCG TCTAACTCAA AGACTTCCCTC TGGCTCCCCA AGGCTGCAA	2700
	GCAAAACAGA CTGTGTTAA CTGCTGCAGG GTCTTTTCT AGGGTCCCTG AACGCCCTGG	2760
25	TAAGGCTGGT GAGGTCTCTGG TGCCTATCTG CCTGGAGGCA AAGGCCTGGA CAGCTTGACT	2820
	TGTGGGGCAG GATTCTCTGC AGCCCATTCC CAAGGGAGAC TGACCATCAT GCCCTCTCTC	2880
	GGGAGCCCTA GCCCTGCTCC AACTCCATAC TCCACTCCAA GTGCCCCACCC ACTCCCCAAC	2940
	CCCTCTCCAG GCCTGTCAAG AGGGAGGAAG GGGCCCATG GCAGCTCCCTG ACCTTGGGTC	3000
	CTGAAGTGCAC CTCACTGGCC TGCCATGCCA GTAACTGTGC TGTACTGAGC ACTGAACCA	3060
30	ATTCAAGGAA ATGCTTATTA AACCTGAAAG CAACTGTGAA TTCATTCTGG AGGGGAGTG	3120
	GAGATCAGGA GTGACAGATC ACAGGGTAGG GGCCACCTCC ACACCCACCC CCTCTGGAGA	3180
	AGGCCTGGAA GAGCTGAGAC CTTGCTTTGA GACTCCCTCAG CACCCCTCCA GTTTTGCTG	3240
	AGAAGGGGCA GATGTTCCCG GAGATCAGAA GACGCTCTCC CTTCTCTGCC TCACCTGGTC	3300
	GCCAATCCAT GCTCTCTTTC TTTTCTCTGT CTACTCCTTA TCCCTTGGTT TAGAGGAACC	3360
35	CAAGATGTGG CCTTTAGCAA AACTGACAAT GTCCAAACCC ACTCATGACT GCATGACGGA	3420
	GCCGAGCATG TGTCTTACA CCTCGCTGTT GTCACATCTC AGGGAACTGA CCCTCAGGCA	3480
	CACCTTGCAAG AAGGAAGGCC CTGCCCTGCC CAACCTCTGT GGTCACCCAT GCATCATTCC	3540
	ACTGGAACGT TTCACTGCAA ACACACCTTG GAGAAAGTGGC ATCAGTCAC AGAGAGGGC	3600
	AGGGAAAGGAG ACACCAAGCT CACCCCTCGT CATGGACCGA GGTTCCCACT CTGGCAAAGC	3660
40	CCCTCACACT GCAAGGGATT GTAGATAACA CTGACTTGTGTT GTTTTAACC AATAACTAGC	3720
	TTCTTATAAT GATTTTTTA CTAATGATAC TTACAAGTTT CTAGCTCTCA CAGACATATA	3780
	GAATAAGGGT TTTTGATAA TAAGCAGGTT GTTATTAGG TTAACAATAT TAATTCAAGGT	3840
	TTTTTAGTTG GAAAAACAAT TCCTGTAAAC TTCTATTTTC TATAATTGTA GTAATTGCTC	3900
	TACAGATAAT GTCTATATAT TGGCCAAACT GGTGCATGAC AAGTACTGTA TTTTTTATAA	3960
45	CCTAAATAAA GAAAAATCTT TAGCCTGGGC AACAAAAAAA	

ACG9 DNA sequence

Gene name: lysyl oxidase-like 2 (LOXL2)

Unigene number: Hs.83384

Probeset Accession #: U89942

Nucleic Acid Accession #: NM_002318 cluster

Coding sequence: 248-2572 (predicted start/stop codons underlined)

55	ACTCCAGCGC GCGGCTACCT ACGCTTGGTG CTTGCTTTCT CCAGCCATCG GAGACCAGAG	60
	CCGCCCCCTC TGCTCGAGAA AGGGGCTCAG CGGCGCGGA AGCGGAGGGG GACCACCGTG	120
	GAGAGCGCGG TCCCAGCCCG GCCACTCGCG ATCCCTGAAA CAAAAAGCT CCTGCTGCTT	180
	CTGTACCCCG CCTGCTCCCTC CCAGCTCGCG AGGGCCCTT CGTGGGATCA TCAGCCGAA	240
	GACAGGGATG GAGAGGCCTC TGTGCTCCCA CCTCTGCAGC TGCTGGCTA TGCTGGCCCT	300
60	CCTGTCCCCC CTGAG <u>T</u> GG CACAGTATGA CAGCTGGCCC CATTACCCCG AGTACTTCCA	360
	GCAACCGGGCT CCTGAG <u>T</u> ATC ACCAGCCCCA GGCCCCCGCC AACGTGGCCA AGATTCACT	420
	GCGCCTGGCT GGGCAGAAGA GGAAGCACAG CGAGGGCCGG GTGGAGGTGT ACTATGATGG	480
	CCAGTGGGGC ACCGTGTGCG ATGACGACTT CTCCATCCAC GCTGCCACG TCGTCTGCCG	540
	GGAGCTGGGC TATGTGGAGG CCAAGTCCCTG GACTGCCAGC TCCTCCTACG GCAAGGGAGA	600
65	AGGGCCCATC TGGTTAGACA ATCTCCACTG TACTGGCAAC GAGGCGACCC TTGCAGCATG	660
	CACCTCCAAT GGCTGGGGCG TCACTGACTG CAAGCACACG GAGGATGTG TGTTGTTG	720
	CAGCGACAAA AGGATTCTGT GTTCAAAATT TGACAATTG TTGATCAACC AGATAGAGAA	780
	CCTGAATATC CAGGTGGAGG ACATTCGGAT TCGAGGCCATC CTCTCAACCT ACCGCAAGCG	840

	CACCCCAGTG	ATGGAGGGCT	ACGTGGAGGT	GAAGGAGGGC	AAGACCTGGA	AGCAGATCTG	900
	TGACAAGCAC	TGGACGGCCA	AGAATTCCCG	CGTGGCTGTC	GCGATGTTG	GCTTCCCTGG	960
	GGAGAGGACA	TACAATACCA	AAAGTGTACAA	AATGTTTGCC	TCACGGAGGA	AGCAGCGCTA	1020
	CTGGCCATTC	TCCATGGACT	GCACCGGCCAC	AGAGGCCAC	ATCTCCAGCT	GCAAGCTGGG	1080
5	CCCCCAGGTG	TCACTGGACC	CCATGAAGAA	TGTCACCTGTC	GAGAATGGGC	TGCCGGCCGT	1140
	GGTGAGTTGT	GTGCCCTGGG	AGGTCTTCAG	CCCTGACCGGA	CCCTCGAGAT	TCCGGAAAGC	1200
	ATACAAGCCA	GAGCAACCCC	TGGTGCAGACT	GAGAGGCCGT	GCCTACATCG	GGGAGGGCCG	1260
	CGTGGAGGTG	CTCAAAAATG	GAGAATGGGG	GACCGCTGTC	GACGACAAGT	GGGACCTGGT	1320
	GTCGGCCAGT	GTGGCTGCA	GAGAGCTGGG	CTTGGGAGT	GCCAAAGAGG	CAGTCACTGG	1380
10	CTCCCGACTG	GGGCAAGGGA	TCGGACCAT	CCACCTCAAC	GAGATCCAGT	GCACAGGCAA	1440
	TGAGAAGTCC	ATTATAGACT	GCAAGTTCAA	TGCCGAGTCT	CAGGGCTGCA	ACCACGAGGA	1500
	GGATGCTGGT	GTGAGATGCA	ACACCCCTGC	CATGGGCTTG	CAGAAGAACG	TGCGCCTGAA	1560
	CGGCGGCCGC	AATCCCTACG	AGGGCCGAGT	GGAGGTGCTG	GTGGAGAGAA	ACGGGTCCT	1620
	TGTGTGGGGG	ATGGTGTGTG	GCCAAAATG	GGGCATCGTG	GAGGCCATGG	TGGTCTGCCG	1680
15	CCAGCTGGGC	CTGGGATTGCG	CCAGCAACGC	CTTCCAGGAG	ACCTGGTATT	GGCACGGAGA	1740
	TGTCAACAGC	AACAAAGTGG	TCATGAGTGG	AGTGAAGTGC	TCGGGAACCG	AGCTGTCCT	1800
	GGCGCACTGC	CGCCACGACG	GGGAGGACGT	GGCCTGCC	CAGGGCGGAG	TGCACTACGG	1860
	GGCCGGAGTT	GCCTGCTCAG	AAACCGCCCC	TGACCTGGTC	CTCAATGCGG	AGATGGTGCA	1920
	GCAGACCACC	TACCTGGAGG	ACCGGCCAT	GTTCATGCTG	CAGTGTGCA	TGGAGGAGAA	1980
20	CTGCCTCTCG	GCCTCAGCCG	CGCAGACCGA	CCCCACACG	GGCTACCGCC	GGCTCCTGCC	2040
	CTTCTCTCC	CAGATCCACA	ACAATGGCA	GTCCGACTTC	CGGCCAAGA	ACGGCCGCCA	2100
	CGCGTGGATC	TGGCACGACT	GTCACAGGCA	CTACCACAGC	ATGGAGGTGT	TCACCCACTA	2160
	TGACCTGCTG	AACCTCAATG	GCACCAAGGT	GGCAGAGGGC	CACAAGGCCA	GCTTCTGCC	2220
	GGAGGACACA	GAATGTGAAG	GAGACATCCA	GAAGAATTAC	GAGTGTGCA	ACTTCGGCGA	2280
25	TCAGGGCAGTC	ACCATGGGCT	GCTGGGACAT	GTACCGCCAT	GACATCGACT	GCCAGTGGGT	2340
	TGACATCACT	GACGTGCC	CTGGAGACTA	CCTGTTCCAG	GTTGTTATA	ACCCCAACTT	2400
	CGAGGTTGCA	GAATCCGATT	ACTCCAACAA	CATCATGAAA	TGCAGGAGCC	GCTATGACGG	2460
	CCACCGCAGTC	TGGATGTACA	ACTGCCACAT	AGGTGTTCC	TTCAGCGAAG	AGACGGAAAA	2520
	AAAGTTTGAG	CACTTCAGCG	GGCTCTTAA	CAACCGCTG	TCCCCGAGT	<u>AAAGAAGCCT</u>	2580
30	GGGTGGTCAA	CTCCGTCTT	CAGGCCACAC	CACATCTTCC	ATGGGACTTC	CCCCCAACAA	2640
	CTGAGCTGA	ACGAATGCCA	CGTGCCCTCA	CCCAGCCCG	CCCCCACCT	GTCCAGACCC	2700
	CTACAGCTG	GTCTAAGCTC	AGGAGGAAAG	GGACCCCTCC	ATCATTCTATG	GGGGGCTGCT	2760
	ACCTGACCTT	TGGGGCCTGA	GAAGGCCTTG	GGGGGGTGGG	GTTTGTCCAC	AGAGCTGCTG	2820
	GAGCAGCACC	AAGAGCCAGT	CTTGACCGGG	ATGAGGCCA	CAGACAGGTT	GTCATCAGCT	2880
35	TGTCCCATTC	AAGCCACCGA	GTCACCCACA	GACACAGTGG	AGCCCGCGTC	TTCTCCAGTG	2940
	ACACGTGGAC	AAATGCCG	TCATCAGCCC	CCCCAGAGAG	GGTCAGGCCG	AACCCCATTT	3000
	CTCCTCTCT	TAGGTCAATT	TCAGCAAAC	TGAATATCTA	GACCTCTCTT	CCAATGAAAC	3060
	CCTCCAGTCT	ATTATAGTC	CATAGATAAT	GGTGCCACGT	GTTTTCTGAT	TTGGTGAGCT	3120
	CAGACTTGGT	GCTTCCCTCT	CCACAAACCC	CACCCCTTGT	TTTCAGAT	ACTATTATTA	3180
40	TATTTTCACA	GACTTTGAA	GCACAAATT	ATTGGCATT	AATATTGGAC	ATCTGGGCC	3240
	TTGGAAGTAC	AAATCTAAGG	AAAAACCAAC	CCACTGTGTA	AGTGACTCAT	CTTCCGTGTT	3300
	TTCCAATTCT	GTGGGTTTTT	GATTCAACGG	TGCTATAACC	AGGGTCCTGG	GTGACAGGGC	3360
	GCTCACTGAG	CACCATGTGT	CATCACAGAC	ACTTACACAT	ACTTGAAACT	TGGAATAAAA	3420
45	GAAAGATTAA	TG					

Gene sequence

Gene name: TIE tyrosine-protein kinase

Unigene number: Hs.78824

Probeset Accession #: X60957

Nucleic Acid Accession #: NM_005424 cluster

Coding sequence: 37-3452 (predicted start/stop codons underlined)

	CGCTCGTCT	GGCTGGCCTG	GGTCGGCCTC	TGGAGTATGG	TCTGGCGGGT	GCCCCCTTTC	60
55	TGCTCCCCA	TCCTCTTCTT	GGCTTCTCAT	GTGGGCGCGG	CGGTGGACCT	GACGCTGCTG	120
	GCCAACTCTG	GGCTCACGGA	CCCCCAGCGC	TTCTTCCCTGA	CTTGCCTGTC	TGGGGAGGCC	180
	GGGGCGGGGA	GGGGCTCGGA	CGCCTGGGGC	CCGCCCTCTGC	TGCTGGAGAA	GGACGACCGT	240
	ATCGTGCAGCA	CCCCGCCCGG	GCCACCCCTG	CGCCTGGCGC	GCAACGGTTC	GCACCAGGTC	300
	ACGCTTCGCG	GCTTCTCCAA	GCCCTCGGAC	CTCGTGGCG	TCTTCTCCTG	CGTGGCGGT	360
60	GCTGGGGCGC	GGCGCACGCG	CGTCATCTAC	GTGCA <u>AT</u> ACA	GCCCTGGAGC	CCACCTGCTT	420
	CCAGACAAGG	TCACACACAC	TGTGAACAAA	GGTGAC <u>CCG</u>	CTGTACTTTC	TGCACGTGTC	480
	CACAAGGAGA	AGCAGACAGA	CGTGATCTGG	AAGAC <u>CAACG</u>	GATCCTACTT	CTACACCCCTG	540
	GACTGGCATG	AAGCCCAGGA	TGGGCGGTT	CTGCTGCAGC	TCCCAAATGT	GCAGCCACCA	600
	TCGAGCGGCA	TCTACAGTGC	CACTTACCTG	GAAGCCAGCC	CCCTGGGCAG	CGCCTTCTTT	660
65	CGGCTCATCG	TGCGGGGTTG	TGGGGCTGG	CGCTGGGGC	CAGGCTGTG	CAAGGAGTGC	720
	CCAGGTTGCC	TACATGGAGG	TGTCTGCCAC	GACCATGACG	GCGAATGTGT	ATGCCCCCCT	780
	GGCTTCACTG	GCACCCGCTG	TGAACAGGCC	TGCAGAGAGG	GCCGTTTGG	GCAGAGCTGC	840
	CAGGAGCACT	GCCCCAGGCAT	ATCAGGCTGC	CGGGGCCTCA	CCTTCTGCT	CCCAGACCCC	900

	TATGGCTGCT	CTTGTGGATC	TGGCTGGAGA	GGAAGCCAGT	GCCAAGAACG	TTGTGCCCT	960
	GGTCATTG	GGGCTGATTG	CCGACTCCAG	TGCCAGTGTC	AGAATGGTG	CACTTGTGAC	1020
	CGGTCAGTG	GTTGTGCTG	CCCCTCTGGG	TGGCATGGAG	TGCACGTGTA	GAAGTCAGAC	1080
	CGGATCCCC	AGATCCTCAA	CATGGCCTCA	GAACCTGGAGT	TCAACTTAGA	GACGATGCC	1140
5	CGGATCAACT	GTGCAGCTGC	AGGGAACCCC	TTCCCCGTGC	GGGGCAGCAT	AGAGCTACGC	1200
	AAGCCAGACG	GCACGTGCT	CCTGTCCACC	AAGGCCATTG	TGGAGCCAGA	GAAGACCA	1260
	GCTGAGTTCG	AGGTGCCCCG	CTTGGTTCTT	GCGGACAGTG	GGTTCTGGGA	GTGCCGTG	1320
	TCCACATCTG	GCGGCCAAGA	CAGCGGGCGC	TTCAAGGTCA	ATGTGAAAGT	GCCCCCGTG	1380
10	CCCCGGCTG	CACCTCGGCT	CCTGACCAAG	CAGAGCCGCC	AGCTTGTGTT	CTCCCCGCTG	1440
	GTCTCGTTCT	CTGGGGATGG	ACCCATCTCC	ACTGTCCGCC	TGCACACTACCG	GCCCCAGGAC	1500
	AGTACCATGG	ACTGGTCGAC	CATTGTGGTG	GACCCCAGTG	AGAACGTGAC	GTAAATGAAC	1560
	CTGAGGCCAA	AGACAGGATA	CAGTGTTCGT	GTGCAGCTGA	GCCGGCCAGG	GAAGGGAGGA	1620
	GAGGGGGCCT	GGGGGCCCTCC	CACCCCTCATG	ACCACAGACT	GTCCCTGAGCC	TTTGTGCA	1680
15	CCGTGGTTGG	AGGGCTGGCA	TGTGGAAGGC	ACTGACCGGC	TGCGAGTGAG	CTGGTCCTTG	1740
	CCCTTGGTGC	CGGGGCCACT	GGTGGGCGAC	GGTTTCTGC	TGCGCCTGTG	GGACGGGACA	1800
	CGGGGGCAGG	AGCGGCCGGGA	GAACGTCCTA	TCCCCCAGG	CCCGCACTGC	CCTCCGTACG	1860
	GGACTCACGC	CTGGCACCCCA	CTACCAGCTG	GATGTGCAGC	TCTACCACTG	CACCCCTCTG	1920
20	GGCCCCGGCT	CGCCCCCTGC	ACACGTGCTT	CTGCCCCCCTA	GTGGGCCTCC	AGCCCCCCCAGA	1980
	CACCTCCACG	CCCAGGCCCT	CTCAGACTCC	GAGATCCAGC	TGACATGGAA	GCACCCGGAG	2040
	GCTCTGCCTG	GGCCAATATC	CAAGTACGTT	GTGGAGGTG	AGGTGGCTGG	GGGTGCAGGA	2100
	GACCCACTGT	GGATAGACGT	GGACAGGCCT	GAGGAGACAA	GCACCATCAT	CCGTGGCCTC	2160
	AACGCCAGCA	CGCGCTACCT	CTTCCGCATG	CGGGCCAGCA	TTCAGGGGCT	CGGGGACTGG	2220
25	AGCAACACAG	TAGAAAGAGTC	CACCCCTGGC	AACGGCTGC	AGGCTGAGGG	CCCAGTCCAA	2280
	GAGAGCCGGG	CAGCTGAAGA	GGGCCTGGAT	CAGCAGCTGA	TCCCTGGCGT	GGTGGGCTCC	2340
	GTGTCTGCA	CCTGCCTCAC	CATCCCTGGC	GCCCTTTAA	CCCTGGTGTG	CATCCGCGA	2400
	AGCTGCCTG	ATCGGAGACG	CACCTTCACC	TACCACTGAG	GCTCGGGCGA	GGAGACCATC	2460
	CTGCAGTTCA	GTCAGGGAC	CTTGACACTT	ACCCGGCGC	AAAAGTCA	GCCCCAGCCC	2520
	CTGAGCTACC	CAGTGTCTAGA	GTGGGAGGAC	ATCACCTTG	AGGACCTCAT	GGGGAGGGGG	2580
	AACTTCGGCC	AGGTCACTCG	GGCCATGTC	AAGAAGGACG	GGCTGAAGAT	GAACGCAGCC	2640
30	ATCAAAATGC	TGAAAGAGTA	TGCCTCTGAA	AATGACCATC	GTGACTTTGC	GGGAGAACTG	2700
	GAAGGTTCTGT	GCAAATGGGG	GCATCACCCCA	AAACATCATCA	ACCTCCTGGG	GGCCTGTAAG	2760
	AACCGAGGTT	ACTTGATAT	CGCTATTGAA	TATGCCCT	ACGGGAACCT	GCTAGATTTT	2820
	CTCGGGAAA	GCCGGGTCTC	AGAGACTGAC	CCAGCTTTG	CTCGAGAGCA	TGGGACAGCC	2880
	TCTACCTTA	GCTCCCGGCA	GCTGCTCGT	TTGCCAGTG	ATGCGGCCAA	TGGCATGCAG	2940
35	TACCTGAGTG	AGAACGAGTT	CATCCACAGG	GACCTGGCTG	CCCGGAATGT	GCTGGTCGGA	3000
	GAGAACCTAG	CCTCCAAGAT	TGCAGACTTC	GGCCTTCTC	GGGGAGAGGA	GGTTTATGTG	3060
	AAGAAGACGA	TGGGGCGTCT	CCCTGTGCGC	TGGATGGCCA	TTGAGTCCCT	GAACTACAGT	3120
	GTCCTATACCA	CCAAGAGTGA	TGTCTGGTCC	TTTGGAGTCC	TTCTTTGGGA	GATAGTGAGC	3180
	CTTGGAGGTA	CACCCCTACTG	TGGCATGACC	TGTGCCGAGC	TCTATGAAA	GCTGCCAG	3240
40	GGCTACCGCA	TGGAGCAGCC	TCGAAACTGT	GACGATGAAG	TGTACGAGCT	GATGCGTCAG	3300
	TGCTGGCGGG	ACCGCCCTA	TGAGCGACCC	CCCTTTGCC	AGATTGCGCT	ACAGCTAGGC	3360
	CGCATGCTGG	AAGCCAGGAA	GGCCTATGTG	AACATGTCGC	TGTTTGAGAA	CTTCACCTAC	3420
	GCGGGCATTG	ATGCCACAGC	TGAGGAGGCC	<u>TGAGCTGCCA</u>	TCCAGCCAGA	ACGTGGCTCT	3480
45	GCTGGCCGGA	GCAAACCTG	CTGTCTAAC	TGTGACCGT	CTGACCTTA	CAGCCTCTGA	3540
	CTTAAGCTGC	CTCAAGGAAT	TTTTTTAACT	TAAGGGAGAA	AAAAAGGGAT	CTGGGGATGG	3600
	GGTGGGCTTA	GGGGAACTGG	GTTCCTCATGC	TTTGTAGGTG	TCTCATAGCT	ATCCTGGGCA	3660
	TCCCTCTTTC	TAGTCAGCT	GCCCCACAGG	TGTGTTCCC	ATCCCCACTGC	TCCCCAACAA	3720
	CAAACCCCCA	CTCCAGCTCC	TTCGCTTAAG	CCAGCACTCA	CACCACTAAC	ATGCCCTGTT	3780
	CAGCTACTCC	CACTCCCGGC	CTGTCATTCA	AAAAAAAATA	AATGTTCTAA	TAAGCTCCAA	3840
50	AAAAA						

ACH3 DNA sequence

Gene name: placental growth factor (PGF; PLGF1; VEGF-related protein)

Unigene number: Hs_2894

Probeset Accession #: X54936

Nucleic Acid Accession #: NM_002632 cluster

Coding sequence: 322-768 (predicted start/stop codons underlined)

60	GGGATTCTGGG	CCGCCAGCT	ACGGGAGGAC	CTGGAGTGGC	ACTGGGCGCC	CGACGG	CA	60
	TCCCCGGGAC	CCGCTGCCC	CTCGGCGCC	CGCCCGCCG	GGCGCTCCC	CGTCGG	TC	120
	CCCAGCCACA	GCCTTACCTA	CGGGCTCCTG	ACTCCGCAAG	GCTTCCAGAA	GATGCTCGAA		180
	CCACCGGCCG	GGGCTCGGG	GCAGCAGTGA	GGGAGGCGTC	CAGCCCCC	CTCAGCTCTT		240
65	CTCCTCTGT	GCCAGGGCT	CCCCGGGG	TGAGCATGGT	GGTTTCCCT	CGGAGCCCC		300
	TGGCTCGGG	CGTCTGAGAA	<u>GATGCGGTC</u>	ATGAGGCTGT	TCCCTTGCTT	CCTGAGCTC		360
	CTGGCCGGC	TGGCGCTGCC	TGCTGTGCC	CCCCAGCAGT	GGGCCTTGTC	TGCTGGGAAC		420
	GGCTCGTCAG	AGGTGGAAGT	GGTACCCCTC	CAGGAAGTGT	GGGGCCGCGAG	CTACTGCCGG		480
	GCGCTGGAGA	GGCTGGTGGA	CGTCGTGTC	GAGTACCCCA	GCGAGGTTGGA	GCACATGTT		540

	AGCCCACATCCT	GTGTCTCCCT	GCTGCGCTGC	ACCGGCTGCT	GCGGCATGA	GAATCTGCAC	600
	TGTGTGCCGG	TGGAGACGGC	CAATGTCACC	ATGCAGCTCC	TAAAGATCG	TTCTGGGAC	660
	CGGCCCTCCT	ACGTGGAGCT	GACGTTCTCT	CAGCACGTT	GCTGCGAATG	CCGGCCTCTG	720
5	CGGGAGAAGA	TGAAGCCGGA	AAGGTGCGGC	GATGCTGTT	CCGGGAGGT <u>A</u>	ACCCACCCCT	780
	TGGAGGAGAG	AGACCCCGCA	CCGGCTCGT	GTATTATTAA	CCGTACACT	CTTCAGTGAC	840
	TCCTGCTGGT	ACCTGCCCTC	TATTTATTAG	CCAACATGTT	CCCTGCTGAA	TGCCTCGCTC	900
	CCTTCAAGAC	GAGGGCAGG	GAAGGACAGG	ACCCCTCAGGA	ATTCAAGTGC	TTCAACAACG	960
10	TGAGAGAAG	AGAGAACCCA	GCCACAGACC	CCTGGGAGCT	TCCGCTTTGA	AAGAACGAAAG	1020
	ACACGTGGCC	TGTTGAGGGG	CAAGCTAGGC	CCCAGAGGCC	CTGGGAGGTCT	CCAGGGGCCT	1080
	GCAGAAAGGAA	AGAACGGGGC	CTCTGCTACCT	GTTCTTGGGC	CTCAGGCTCT	GCACAGACAA	1140
	GCAGGCCCTTG	CTTTCGGAGC	TCCTGTCAA	AGTAGGGATG	CGGATTCTGC	TGGGGCCGCC	1200
	ACGGCCCTGGT	GGTGGGAAGG	CCGGCAGCGG	GCGGAGGGGA	TTCAGCCACT	TCCCCCTCTT	1260
15	CTTCTGAAGA	TCAGAACATT	CAGCTCTGGA	GAACAGTGGT	TGCCTGGGGG	CTTTGCCAC	1320
	TCCTTGTCCC	CCGTGATCTC	CCCTCACACT	TTGCCATTG	CTTGTACTGG	GACATTGTTTC	1380
	TTTCCGGCCG	AGGTGCCACC	ACCCCTCCCC	CACTAAGAGA	CACATACAGA	GTGGGCCCCG	1440
	GGCTGGAGAA	AGAGCTGCC	GGATGAGAAA	CAGCTCAGCC	AGTGGGGATG	AGGTCAACAG	1500
	GGGAGGAGCC	TGTGCGTCCC	AGCTGAAGGC	AGTGGCAGGG	GAGCAGGTTC	CCCAAGGGCC	1560
	CTGGCACCCC	CACAAGCTGT	CCCTGCAGGG	CCATCTGACT	GCCAAGCCAG	ATTCTCTTGA	1620
	ATAAAGTATT	CTAGTGTGGA	AACGC				

20

ACH4 DNA sequence
 Gene name: nidogen 2 (NID2)
 Unigene number: Hs.82733
 Probeset Accession #: D86425
 Nucleic Acid Accession #: NM_007361 cluster
 Coding sequence: 1-4131 (predicted start/stop codons underlined)

30	ATGGAGGGGG	ACCGGGTGGC	CGGGCGGCCG	GTGCTGTCGT	CGTTACCAAGT	GCTACTGCTG	60
	CTGCAGTTGC	TAATGTTGCG	GGCCGCGGGC	CTGCACCCAG	ACGAGCTCTT	CCCACACGGG	120
	GAGTCGTGGT	GGGACAGCT	CCTGCAGGAA	GGCGACGACG	TAAGCTCAG	CCGTGGTGAA	180
	GCTGGCGAAT	CCCCCTGCACT	TCTTACGAAG	CCCGATTCA	CAACCTCTAC	GTGGCACCA	240
	ACGGCATCAT	CTCCATCTAG	GACTTCCCCA	GGGAAACGCA	GTATGTGGAC	TATGATTTC	300
35	CCACCGACTT	CCCGGCCATC	GCCCCTTTTC	TGGGGACAT	CGACACGAGC	CACGGCAGAG	360
	GCCGAGTCT	GTACCGAGAG	GACACCTCCC	CCGCACTGCT	GGGCCTGGCC	GCCCCCTATG	420
	TGGCGCTGG	CTTCCCGCGC	TCTGCGCCT	TTTTACCCCC	ACCCACGCC	TCCTGGCCAC	480
	CTGGGAGCAG	GTAGGCGCTT	ACGAGGAGGT	CAAACGCGGG	CGCTGCCCTC	GGGAGAGCTG	540
	AACACTTTCC	AGGCAGTTT	GGCATCTGAT	GGGTCTGATA	GCTACGCCCT	CTTTCTTTAT	600
	CCTGCCAACG	GCCTGCAGTT	CCTTGGAACC	CGCCCCAAAG	AGTCTTACAA	TGTCCAGCTT	660
40	CAGCTTCCAG	CTCGGGTGGG	CTTCTGCCGA	GGGGAGGCTG	ATGATCTGAA	GTCAGAAGGA	720
	CCATATTTCA	GCTTCACTAG	CACTGAACAG	TCTGTAAAAA	ATCTCTATCA	ACTAAGCAAC	780
	CTGGGGATCC	CTGGAGTGTG	GGCTTTCCAT	ATCGGCAGCA	CTTCCCCGTT	GGACAATGTC	840
	AGGCCAGCTG	CAGTTGGAGA	CCTTTCGCT	GCCCACCTTT	CTGTTCCCT	GGGACGTTCC	900
45	TTCAGCCATG	CTACAGCCCT	GGAAAGTGAC	TATAATGAGG	ACAATTGGA	TTACTACGAT	960
	GTGAATGAGG	AGGAAGCTGA	ATACCTTCG	GGTGAACCAAG	AGGAGGCAATT	GAATGGCCAC	1020
	AGCAGCATTTG	ATGTTCCCTT	CCAATCCAAA	GTGGATACAA	AGCCTTTAGA	GGATCTTCC	1080
	ACCTTGGATC	CTCACACCAA	AGAAGGAACA	TCTCTGGAG	AGGTAGGGGG	CCCAGATTAA	1140
	AAAGGCCAAG	TTGAGGCCCTG	GGATGAGAGA	GAGACCAAGAA	GCCCACCTCC	ACCAGAGGTA	1200
50	GACAGAGATT	CACTGGCTCC	TTCTGGGAA	ACCCACAC	CGTACCCCGA	AAACGGAAGC	1260
	ATCCAGCCCT	ACCCAGATGG	AGGGCCAGTG	CCTTCGGAAA	TGGATGTTCC	CCCAGCTCAT	1320
	CCTGAAGAAG	AAATTGTTCT	TCGAAGTTAC	CCTGCTTCAG	GTCACACTAC	ACCCCTTAAGT	1380
	CGAGGGACGT	ATGAGGTGGG	ACTGGAAGAC	AACATAGGTT	CCAACACCGA	GGTCTTCACG	1440
	TATAATGCTG	CCAACAAGGA	AACCTGTGAA	CACAACACA	GACAATGTC	CCGGCATGCC	1500
55	TTCTGCACGG	ACTATGCCAC	TGGCTTCTGC	TGCAACTGCC	AATCCAAGTT	TTATGAAAT	1560
	GGGAAGCACT	GTCTGCCTGA	GGGGGCACCT	CACCGAGTGA	ATGGGAAAGT	GAGTGGCCAC	1620
	CTCCACGTGG	GCCATACACC	CGTGCACCTC	ACTGATGTGG	ACCTGCATGC	GTATATCGTG	1680
	GGCAATGATG	GCAGAGCCTA	CACGGCCATC	AGCCACATCC	CACAGCCAGC	AGCCCAGGCC	1740
	CTCCTCCCCC	TCACACCAAT	TGGAGGCCCTG	TTTGGCTGGC	TCTTTGCTTT	AGAAAAAACCT	1800
60	GGCTCTGAGA	ACGGCTTCAG	CCTCGCAGGT	GCTGCCCTTA	CCCATGACAT	GGAAGTTACA	1860
	TATACCCGG	GAGAGGAGAC	GGTTCGTATC	ACTCAAAC	CTGAGGGACT	TGACCCAGAG	1920
	AACTACCTGA	GCATTAAGAC	CAACATTCAA	GGCCAGGTGC	CTTACGTCCC	AGCAAATTTC	1980
	ACAGCCCACA	TCTCTCCCTA	CAAGGAGCTG	TACCAACT	CCGACTCCAC	TGTGACCTCT	2040
	ACAAGTTCCA	GAGACTACTC	TCTGACTTT	GGTGAATCA	ACCAAACATG	GTCCTACCGC	2100
65	ATCCACCAGA	ACATCACTTA	CCAGGTGTGC	AGGCACGCC	CCAGACACCC	GTCCTTCCCC	2160
	ACCAACCCAGC	AGCTGAACGT	GGACCGGGTC	TTTGCCTTGT	ATAATGATGA	AGAAAGAGTG	2220
	CTTAGATTG	CTGTGACCAA	TCAAATTGGC	CCGGTCAGGAA	AAGATTCA	CCCCACTCCG	2280
	GTGAATCCTT	GCTATGATGG	GAGCCACATG	TGTGACACAA	CAGCACGGTG	CCATCCAGGG	2340
	ACAGGTGTAG	ATTACACCTG	TGAGTGCAGCA	TCTGGGTACC	AGGGAGATGG	ACGGAACGT	2400

GTGGATGAAA ATGAATGTGC AACTGGCTTT CATCGCTGTG GCCCCAACTC TGTATGTATC 2460
 AACTTGCCTG GAAGCTACAG GTGTGAGTGC CGGAGTGGTT ATGAGTTTGC AGATGACCGG 2520
 CATACTTGCAC TCTTGATCAC CCCACCTGCC AACCCCTGTG AGGATGCCAG TCATAACCTGT 2580
 GCTCCTGCTG GGCAGGCCCG GTGTGTTCAC CATGGAGGCA GCACGTTCACTG CTGTGCCTGC 2640
 5 CTGCCTGGTT ATGCCGGCGA TGGGGACCAAG TGCACTGATG TAGATGAATG CTCAGAAAAC 2700
 AGATGTCACTC CTGCGACTAC CTGCTACAAAT ACTCCCTGGTT CCTTCTCCGT CCGTTGTCAA 2760
 CCCGGATATT ATGGGGATGG ATTTCACTGAC ATACCTGACT CCACCTCAAG CCTGACACCC 2820
 TGTGAACAAAC AGCAGCGCA TGCCCAGGGC CAGTATGCCT ACCCTGGGGC CCGGTTCCAC 2880
 ATCCCCCAAT GCGACGAGCA GGGCAACTTC CTGCCCCCTAC AGTGTATGG CAGCACTGGT 2940
 10 TTCTGCTGGT GCGTGGACCC TGATGGTCAT GAAGTTCTGT GTACCCAGAC TCCACCTGGC 3000
 TCCACCCCGC CTCACTGTGG ACCATCACCA GAGCCCACCC AGAGGCCCGC GACCACATGT 3060
 GAGCGCTGGA GGGAAAACCT GCTGGAGCAC TACGGTGGCA CCCCCCGAGA TGACCACTGAC 3120
 GTGCCCCAGT GCGATGACCT GGGCCACTTC ATCCCCCTGC AGTGCACCGG AAAGAGCGAC 3180
 TTCTGCTGGT GTGTGGACAA AGATGGCAGA GAGGTGCAGG GCACCCGCTC CCAGGCCAGGC 3240
 15 ACCACCCCTG CGTGTATACC CACCGTCGCT CCACCCATGG TCCGGCCAC GCCCCGGCCA 3300
 GATGTGACCC CTCCATCTGT GGGCACCTTC CTGCTCTATA CTCAGGGCCA GCAGATTGGC 3360
 TACTTACCCC TCAATGGCAC CAGGCTTCAG AAGGATGCAG CTAAGACCTT GCTGTCTCTG 3420
 CATGGCTCCA TAATCGTGGG ATTGATTAC GACTGCCGGG AGAGGATGGT GTACTGGACA 3480
 GATGTTGCTG GACGGACAAT CAGCGTGGC GGTCTGGAAC TGGGAGCAGA GCCTGAGACG 3540
 20 ATCGTGAATT CAGGTCTGAT AAGCCCTGAA GGACTTGCCA TAGACCACAT CCGCAGAAC 3600
 ATGTACTGGA CGGACAGTGT CTTGGATAAG ATAGAGAGCG CCCTGCTGGA TGGCTCTGAG 3660
 CGCAAGGTTCC TCTTCTACAC AGATCTGGT AATCCCCGTG CCATCGCTGT GGATCCAATC 3720
 CGAGGCAACT TGTACTGGAC AGACTGGAAT AGAGAACGCTC CTAAAATTGA AACGTCACT 3780
 TTAGATGGAG AAAACAGAAG ATTCTGATC AATACAGACA TTGGATTGCC CAATGGCTTA 3840
 25 ACCTTTGACC CTTTCTCTAA ACTGCTCTGC TGGGCAGATG CAGGAACCAA AAAACTGGAG 3900
 TGTACACTAC CTGATGGAAC TGGACGGCGT GTCATTCAAA ACAACCTCAA GTACCCCTTC 3960
 AGCATCGTAA GCTATGCAGA TCACTTCTAC CACACAGACT GGAGGAGGGA TGGTGTGTA 4020
 TCAGTAAATA AACATAGTGG CCAAGTTACT GATGAGTATC TCCCAGAAC ACGATCTCAC 4080
 CTCTACGGGA TAACTGCAGT CTACCCCTAC TGCCCAACAG GAAGAAAGTA AGTACAGTAA 4140
 30 TGTAAGGAA GACTTGGAGT TTACAATCAG AACCTGGACC CTAAGAACAA GTGACTGCAA 4200
 AGGCAAAGAA AGTAAAAAAG GAATTGGCA TTAGACGTTT CTGAGCATCC AAGATGAACA 4260
 TTTTGAGTG CAAAAAGACT TTTGTGAAAA GCTGATACCT CAATCTTAC TACTGTATTT 4320
 TTAAAAATGA AGGTTGTTAT TGCAAGTTA AAAAGGTAAC AGAATTTTAA CTGTTGCTTA 4380
 TTAAAGCAAC TTCTTGTAAA CATTATCAT TAATATTTAA AAGATCAAAT TCATTCAACT 4440
 35 AAGAATTAGA GTTTAAGACT CTAACACTGA TTTTGCCAT GGATTCCCTC TGGCCAAGAA 4500
 ATTAAAGCAC ATGTGATCAA TATAACAATA TAATCCTAAA CCTTGACAGT TGGAGAAGCC 4560
 AATGCAGAAC TGATGGGAAA GGACCAATT TTTATAGTTT CCAACAAAAA GTTCTAAGAT 4620
 TTTTACCTC TGCACTCAGTG CATTCTATT TATATCAAAA GGTGCTAAA TGATTCAATT 4680
 TGCATTTCTC GATCCTGTAG TGCCCTCTATA GAAGTACCCA CAGAAAGTAA AGTATCACAT 4740
 40 TTATAAAATAC CAAAGATGTA ACAATTAA AATTCTAG ATTACTCAA TAAAGTGT 4800
 TAAGTTAAA AAAAAAAA AAAAAAAA

ACH5 DNA sequence

Gene name: SNL (winged-like; sea urchin fascin homolog-like)
 Unigene number: Hs.118400
 Probeset Accession #: U03057
 Nucleic Acid Accession #: NM_003088
 Coding sequence: 112-1593 (predicted start/stop codons underlined)

45 GCGGAGGGTG CGTGGGGGCC CGGGCAGCCG AACAAAGGAG CAGGGGCCGCC GCCGCAGGG 60
 CCCGCCACCC ACCTCCCGGG CGCGCGCAGC GGCCTCTCGT CTACTGCCAC CATGACCGCC 120
 AACGGCACAG CCGAGGCGGT GCAGATCCAG TTCCGCTCA TCAACTGCCGG CAACAAAGTAC 180
 CTGACGGCCG AGGGCTTCGG GTTCAAGGTG AACCGTCCCG CCAGCAGCCT GAAGAAGAAG 240
 55 CAGATCTGGA CGCTGGAGCA GCCCCCTGAC GAGGGGGCA GCGCGGCCGT GTGCCCTGC 300
 AGCCACCTGG GCGCTACCT GGCGCGGAC AAGGACGGCA ACGTGACCTG CGAGCGCGAG 360
 GTGCCCGGTG CCGACTGCCG TTTCTCTATC GTGGCGACG ACGACGGTCG CTGGTCGCTG 420
 CAGTCGAGG CGCACCGGGC CTACTTCGGC GGCACCGAGG ACCGCCTGTC CTGCTTCGCG 480
 CAGACGGTGT CCCCCGCCGA GAAGTGGAGC GTGCACATCG CCATGCACCC TCAGGTCAAC 540
 60 ATCTACAGTG TCACCCGTAA GCATACCGCG CACCTGAGCG CGCGGCCGGC CGACGAGATC 600
 GCCGTGGACC GCGACGTGCC CTGGCGCTG GACTCGCTCA TCACCCCTCGC CTTCCAGGAC 660
 CAGCGCTACA GCGTGCAGAC CGCCGACAC CGCTTCCCTGC GCCACGACGG GCGCCTGGTG 720
 GCGCGCCCG AGCCGGCCAC TGGCTACACG CTGGAGTTCC GCTCCGGCAA GGTGGCCTTC 780
 CGCGACTGCG AGGGCCGTTA CCTGGCGCCG TCGGGGCCCA GCGGCACGCT CAAGGCGGGC 840
 65 AAGGCCACCA AGGTGGGCAA GGACGAGCTC TTTGCTCTGG AGCAGAGCTG CGCCCAAGTC 900
 GTGCTGCAGG CGGCCAACGA GAGGAACGTG TCCACCGCGCC AGGGTATGGA CCTGCTGCC 960
 AATCAGGACG AGGAGACCGA CCAGGAGACC TTCCAGCTGG AGATCGACCG CGACACCAA 1020
 AAGTGTGCCT TCCGTACCCA CACGGCAAG TACTGGACGC TGACGGCCAC CGGGGGCGTG 1080

CAGTCCACCG CCTCCAGCAA GAATGCCAGC TGCTACTTTG ACATCGAGTG GCGTGACCGG 1140
 CGCATCACAC TGAGGGCGTC CAATGGCAAG TTTGTGACCT CCAAGAAGAA TGGGCAGCTG 1200
 GCCGCCTCGG TGGAGACAGC AGGGGACTCA GAGCTCTCC TCATGAAGCT CATCAACCGC 1260
 CCCATCATCG TGTTCCGCGG GGAGCATGGC TTCACTCGGCT GCCGCAAGGT CACGGCACC 1320
 5 CTGGACGCCA ACCGCTCCAG CTATGACGTC TTCCAGCTGG AGTCAACCGA TGGGCCTAC 1380
 AACATCAAAG ACTCCACAGG CAAATACTGG ACGGTGGCA GTGACTCCCG GGTACCCAGC 1440
 AGCGGCGACA CTCCCTGTGGA CTTCTCTTC GAGTTCTGCG ACTATAACAA GGTGGCCATC 1500
 AAGGTGGCGG GCGCTACCT GAAGGGCGAC CACGCAGGCG TCTGAAGGC CTCGGCGGA 1560
 ACCGTGGACC CGGCCTCGCT CTGGGAGTAC TAGGGCCGGC CCGCCTTCC CCGCCCTGC 1620
 10 CCACATGGCG GCTCTGCCA ACCCTCCCTG CTAACCCCTT CTCCGGCAGG TGGGCCTCAG 1680
 GGCGGGAGGC AAGCCCCCTT GCCTTCAA CTGGAAACCC CAGAGAAAAC GGTGCCCGCA 1740
 CCTGTGCCCC CTATGACTC CCCACTCTCC CCTCCGCCCG GTTCCCTAC TCCCCTCGGG 1800
 TCAGCGGCTG CGGCCTGGCC CTGGGAGGGA TTTCAGATGC CCCTGCCCTC TTGTCTGCCA 1860
 CGGGCGAGT CTGGCACCTC TTTCTCTGA CCTCAGACGG CTCTGAGCCT TATTCTCTG 1920
 15 GAAGCGGCTA AGGGACGGTT GGGGGCTGG AGCCCTGGC GTGTAGTGT ACTGGAATCT 1980
 TTTGCCTCTC CCAGCCACCT CCTCCAGCC CCCCAGGAGA GCTGGGCACA TGTCCAAGC 2040
 CTGTCACTGG CCCTCCCTGG TGCACGTGTC CCGAAACCCC TGCTTGGGAA GGGAAAGCTGT 2100
 CGGGAGGGCT AGGACTGACC CTTGTGGTGT TTTTTGGGT GGTGGCTGGA AACAGCCCT 2160
 20 CTCCCACGTG GGAGAGGCTC AGCCTGGCTC CCTTCCCTGG AGCGGCAGGG CGTGACGGCC 2220
 ACAGGGTCTG CCCGCTGCAC GTTCTGCCA GGTGGTGGT GCGGGCGGG AGGGGTGTGG 2280
 GGGCGTCTT CCTCCTGTCT CTTCCCTTC ACCCTAGCCT GACTGGAAGC AGAAAATGAC 2340
 CAAATCAGTA TTTTTTTAA TGAAATATTA TTGCTGGAGG CGTCCCAGGC AAGCCTGGCT 2400
 GTAGTAGCGA GTGATCTGGC GGGGGCGTC TCAGCACCC CCCAGGGGG TGCACTCTCAG 2460
 25 CCCCTCTTT CGCTCCTTCC CGTCCAGCCC CAGCCCTGGG CCTGGCTGTC CGACACCTGG 2520
 GCCAGAGCCC CTGCTGTGAT TGGTGTCTCC TGGGCTCTCC GGGTGGATGA AGCCAGGC 2580
 CGCCCCCTCC GGGAGCCCTG GGGTGAAGCCG CGGGGGCCCC CCTGCTGCCA GCCTCCCCCG 2640
 TCCCCAACAT GCATCTCACT CTGGGTGTCT TGGTCTTTA TTTTTGTAA GTGTCAATTG 2700
 TATAACTCTA AACGCCATG ATAGTAGCTT CAAACTGGAA ATAGCGAAAT AAAATAACTC 2760
 AGTCTGC
 30

ACH6 DNA sequence

Gene name: endothelial protein C receptor (EPCR; PROCR)

Unigene number: Hs.82353

Probeset Accession #: L35545

Nucleic Acid Accession #: NM_006404

Coding sequence: 25-741 (predicted start/stop codons underlined)

CAGGTCCCGGA GCCTCAACTT CAGGATGTTG ACAACATTGC TGCCGATACT GCTGCTGTCT 60
 GGCTGGGCCT TTTGTAGCCA AGACGCTCA GATGGCCTCC AAAGACTTCA TATGCTCCAG 120
 ATCTCCTACT TCCGCGACCC CTATCACGTG TGGTACCAAGG GCAACGCGTC GCTGGGGGGA 180
 CACCTAACGCC ACGTGCTGGA AGGCCCAGAC ACCAACACCA CGATCATTCA GCTGCAGCCC 240
 TTGCAGGAGC CCGAGAGCTG GGCGCGCACG CAGAGTGGCC TGCAGTCCTA CCTGCTCCAG 300
 TTCCACGGCC TCCTGCGCCT GGTGCACCA GAGCGGACCT TGGCCTTCC TCTGACCATC 360
 40 CGCTGCTTCC TGGGCTGTGA GCTGCTCCC GAGGGCTCTA GAGCCCATGT CTTCTTCGAA 420
 GTGGCTGTGA ATGGGAGCTC CTTTGTGAGT TTCCGGCCGG AGAGAGCCTT GTGGCAGGCA 480
 GACACCCAGG TCACCTCCGG AGTGGTCACC TTCACCCCTGC AGCAGCTCAA TGCCTACAAC 540
 CGCACTCGGT ATGAACTGCG GGAATTCCCT GAGGACACCT GTGTGAGTA TGTGAGAAA 600
 45 CATATTCCCG CGGAAACAC GAAAGGGAGC CAAACAAAGCC GCTCCTACAC TTCGCTGGTC 660
 50 CTGGGCGTCT TGGTGGCGG TTTCATCATT GCTGGTGTGG CTGTAGGCAT CTTCTGTGC 720
 ACAGGTGGAC GGCAGATGTTA ATTACTCTCC AGCCCCGTCA GAAGGGGCTG GATTGATGGA 780
 GGCTGGCAAG GGAAAGTTTC AGCTCACTGT GAAGCCAGAC TCCCCAACTG AAACACCAGA 840
 AGGTTGGAG TGACAGCTCC TTTCTCTCC CACATCTGCC CACTGAAGAT TTGAGGGAGG 900
 GGAGATGGAG AGGAGAGGTG GACAAAGTAC TTGGTTTGCT AAGAACCTAA GAACGTGTAT 960
 55 GCTTTGCTGA ATTAGTCTGA TAAGTGAATG TTTATCTATC TTTGTGGAAA ACAGATAATG 1020
 GAGTTGGGGC AGGAAGCCTA TGCGCCATCC TCCAAAGACA GACAGAAATCA CCTGAGGC 1080
 TCAAAAGATA TAACCAAATA ACAAGTCAT CCACAATCAA AATACAACAT TCAATACTTC 1140
 CAGGTGTGTC AGACTTGGGA TGGGACGCTG ATATAATAGG GTAGAAAGAA GTAACACGAA 1200
 60 GAAGTGGTGG AAATGTAAAA TCCAAGTCAT ATGGCAGTGA TCAATTATTA ATCAATTAAAT 1260
 AATATTAATA AATTCTTAT ATTT

ACH8 DNA sequence

Gene name: melanoma adhesion molecule (MCAM; MUC18)

Unigene number: Hs.211579

Probeset Accession #: D51069

Nucleic Acid Accession #: NM_006500

Coding sequence: 27-1967 (predicted start and stop codons underlined)

	ACTTGCGTCT	CGCCCTCCGG	CCAAGC <u>ATGG</u>	GGCTTCCCAG	GCTGGTCTGC	GCCTTCTTGC	60
	TCGCCGCGCTG	CTGCTGCTGT	CCTCGCGTCG	CGGGTGTGCC	CGGAGAGGCT	GAGCAGCCTG	120
	CGCCTGAGCT	GGTGGAGGTG	GAAGTGGGCA	GCACAGCCCT	TCTGAAGTGC	GGCCTCTCCC	180
5	AGTCCCAGG	CAACCTCAGC	CATGTCGACT	GGTTTCTGT	CCACAAGGAG	AAGCGGACGC	240
	TCATCTTCCG	TGTGGCCAG	GGCCAGGGG	AGAGCGAAC	TGGGGAGTAC	GAGCAGCAGG	300
	TCAGCCTCCA	GGACAGAGGG	GCTACTCTGG	CCCTGACTCA	AGTCACCCCC	CAAGACGAGC	360
	GCATCTTCTT	GTGCCAGGGC	AAGCGCCCTC	GGTCCCAAGGA	GTACCGCATC	CAGCTCCGCG	420
10	TCTACAAAGC	TCCGGAGGAG	CAAACATCC	AGGTCAACCC	CCTGGGCATC	CCTGTGAACA	480
	GTAAGGAGCC	TGAGGGAGTC	GCTACCTGTG	TAGGGAGGAA	GGGGTACCCC	ATTCCCTCAAG	540
	TCATCTGGTA	CAAGAATGGC	CGGCCTCTGA	AGGAGGAGAA	GAACCGGGTC	CACATTCAAGT	600
	CGTCCCAGAC	TGTGGAGTCG	AGTGGTTGT	ACACCTTGCA	GAGTATTCTG	AAGGCACAGC	660
	TGGTTAAAGA	AGACAAAGAT	GCCCCAGTTT	ACTGTGAGCT	CAACTACCCG	CTGCCAGTG	720
15	GGAACCACAT	GAAGGAGTCC	AGGGAGTCA	CCGTCCCTGT	TTTCTACCCG	ACAGAAAAAG	780
	TGTGGCTGGA	AGTGGAGCCC	GTGGGAATGC	TGAAGGAAGG	GGACCGCGTG	GAAATCAGGT	840
	GTTTGGCTGA	TGGCAACCC	CCACCACACT	TCAGCATCAG	CAAGCAGAAC	CCCAGCACCA	900
	GGGAGGCAGA	GGAAAGAGACA	ACCAACGACA	ACGGGGTCCT	GGTGTGGAG	CCTGCCCGGA	960
	AGGAACACAG	TGGGCGCTAT	GAATGTCAAGG	CCTGGAACTT	GGACACCATG	ATATCGCTGC	1020
20	TGAGTGAACC	ACAGGAACTA	CTGGTGAACT	ATGTGTCTGA	CGTCCGAGTG	AGTCCCAGCAG	1080
	CCCCTGAGAG	ACAGGAAGGC	AGCAGCCTCA	CCCTGACCTG	TGAGGCAGAG	AGTAGCCAGG	1140
	ACCTCGAGTT	CCAGTGGCTG	AGAGAAGAGA	CAGACCAGGT	GCTGGAAAGG	GGGCCTGTGC	1200
	TTCAGTTGCA	TGACCTGAAA	CGGGAGGCAG	GAGGCCGGCTA	TCGCTGCGTG	GCGTCTGTGC	1260
25	CCAGCATAACC	CGGCCTGAAC	CGCACACAGC	TGGTCAAGCT	GGCCATTTTT	GGCCCCCCTT	1320
	GGATGGCATT	CAAGGAGAGG	AAGGTGTGGG	TGAAAGAGAA	TATGGTGTITG	AATCTGTCTT	1380
	GTGAAGCGTC	AGGGCACCCC	CGGCCCCACCA	TCTCCTGGAA	CGTCAACCGC	ACGGCAAGTG	1440
	AACAAGACCA	AGATCCACAG	CGAGTCTGCA	GCACCCCTGAA	TGTCTCTGTG	ACCCCGGAGC	1500
	TGTTGGAGAC	AGGTGTTGAA	TGCACGGCCT	CCAAACGACCT	GGGAAAAAAC	ACCAGCATCC	1560
30	TCTTCCTGGA	GCTGGTCAAT	TTAACACCC	TCACACCAGA	CTCCAACACAA	ACCACTGGCC	1620
	TCAGCACTTC	CACTGCCAGT	CTCATACCA	GAGCCAACAG	CACCTCCACCA	GAGAGAAAGC	1680
	TGCCGGAGCC	GGAGAGCCGG	GGCGTGGTCA	TCGTGGCTGT	GATTGTGTG	ATCCTGGTCC	1740
	TGGCGGTGCT	GGGCGCTGTC	CTCTATTTC	TCTATAAGAA	GGGCAAGCTG	CCGTGCAGGC	1800
35	GTCAGGGAA	GCAGGAGATC	ACGCTGCCCC	CGTCTCGTAA	GACCGAACTT	GTAGTTGAAG	1860
	TTAAGTCAGA	TAAGCTCCA	GAAGAGATGG	GCCTCCTGCA	GGGCAGCAGC	GGTGACAAAGA	1920
	GGGCTCCGGG	AGACCAGGG	GAGAAATACA	TCGATCTGAG	GCATTAGCCC	CGAATCACTT	1980
	CAGCTCCCTT	CCCTGCTGG	ACCATCCCC	GCTCCCTGCT	CACTCTTCTC	TCAGCCAAAG	2040
40	CCTCCAAAGG	GAATAGAGAG	AAGCCTCCTG	CTCCCCCTCAC	CTGCACACCC	CCTTCAGAG	2100
	GGCCACTGGG	TTAGGACCTG	AGGACCTCAC	TTGGCCCTGC	AAGCCGTTT	TCAGGGACCA	2160
	GTCCACCACC	ATCTCCTCCA	CGTTGAGTGA	AGCTCATCCC	AAGCAAGGAG	CCCCAGTCTC	2220
	CCGAGCGGGT	AGGAGAGTTT	CTTGAGAAC	GTGTTTTTC	TTTACACACA	TTATGGCTGT	2280
45	AAATACCTGG	CTCCTGCCAG	CAGCTGAGCT	GGGTAGCCTC	TCTGAGCTGG	TTTCTGCCCC	2340
	CAAAGGCTGG	CTTCCACCAT	CCAGGTGCAC	CACTGAAGTG	AGGACACACC	GGAGCCAGGC	2400
	GCCTGCTCAT	GTTGAAGTGC	GCTGTTACA	CCCGCTCCGG	AGAGCACCCC	AGCGGCATCC	2460
	AGAAGCAGCT	GCAGTGTGTC	TGCCACCACC	CTCCTGCTG	CCTCTCAAA	GTCTCTGTG	2520
	ACATTTTTC	TTTGGTCAGA	AGCCAGGAAC	TGGTGTCTT	CCTTAAAAGA	TACGTGCCGG	2580
50	GGCCAGGTGT	GGTGGCTCAC	GCCTGTAATC	CCAGCACTTT	GGGAGGCCGA	GGCGGGCGGA	2640
	TCACAAAGTC	AGGACGAGAC	CATCCTGGCT	AACACGGTGA	AACCTGTCT	CTACTAAAAA	2700
	TACAAAAAAA	AATTAGCTAG	GGCTAGTGT	TGGCACCTAT	AGTCCCAGT	ACTCGGAAGG	2760
	CTGAAGCAGG	AGAATGGTAT	GAATCCAGGA	GGTGGAGCTT	CGAGTGG	GAGACCGTGC	2820
	CACTGCACTC	CAGCCTGGGC	AAACACAGCGA	GACTCCGTCT	CGAGGAAAAAA	AAAAGAAAAG	2880
55	ACCGCTACCT	GCGGTGAGGA	AGCTGGCGC	TGTTTCGAG	TTCAGGTGAA	TTAGCCTCAA	2940
	TCCCCGTGTT	CACTTGTCC	CATAGCCCTC	TTGATGGATC	ACGTAAAAT	GAAAGGCAGC	3000
	GGGGAGCAGA	CAAAGATGAG	GTCTACACTG	TCCTTCATGG	GGATTAAAAGC	TATGGTTATA	3060
	TTAGCACCAA	ACTTCTACAA	ACCAAGCTCA	GGGCCCAAC	CCTAGAAGGG	CCCAAATGAG	3120
	AGAATGGTAC	TTAGGGATGG	AAAACGGGGC	CTGGCTAGAG	CTTCGGGTGT	GTGTGTCTGT	3180
60	CTGTGTGTAT	GCATACATAT	GTGTGTATAT	ATGGTTTG	CAGGTGTGTA	AATTGCAA	3240
	TTGTTTCCCTT	TATATATGTA	TGTATATATA	TATATGAAA	TATATATATA	TATGAAAAT	3300
	AAAGCTTAAT	TGTCCAGAA	AATCATACTAT	TGCTTTTTA	TTCTACATGG	GTACCAACAGG	3360
	AACCTGGGGG	CCTGTGAAAC	TACAACAAA	AGGCACACAA	AACCGTTTCC	AGTTGGCAGC	3420
	AGAGATCAGG	GGTTACCTCT	GCTTCTGAGC	AAATGGCTCA	AGCTCTACCA	GAGCAGACAG	3480
	CTACCTACT	TTTCAGCAGC	AAAACGTCCC	GTATGACGCA	GCACGAAGGG	CCTGGCAGGC	3540
	TGTTAGCAGG	AGCTATGTCC	CTTCCTATCG	TTTCCGTCCA	CTT		

ACH9 DNA sequence
 Gene name: endothelin 1 (EDN1)
 Unigene number: Hs.2271
 Probeset Accession #: J05068
 Nucleic Acid Accession #: NM_001955

Coding sequence: 337-975 (predicted start/stop codons underlined)

5	GGAGCTGTTT	ACCCCCACTC	TAATAGGGGT	TCAATATAAA	AAGCCGGCAG	AGAGCTGTCC	60
	AAGTCAGACG	CGCCTCTGCA	TCTGCGCCAG	GCGAACGGGT	CCTGCGCCCTC	CTGCAGTCCC	120
	AGCTCTCCAC	CACCGCCGCG	TGCGCCTGCA	GACGCTCCGC	TCGCTGCCCT	CTCTCTGGC	180
	AGGCGCTGCC	TTTTCTCCCC	GTAAAGGGC	ACTTGGGCTG	AAGGATCGCT	TTGAGATCTG	240
	AGGAACCCGC	AGCGCTTGA	GGGACCTGAA	GCTGTTTTTC	TTCGTTTTC	TTTGGGTTCA	300
	GTTTGAAACGG	GAGGTTTTG	ATCCCTTTT	TTCAAGAATGG	ATTATTTGCT	CATGATTTTC	360
10	TCTCTGCTGT	TTGTGGCTTG	CCAAGGAGCT	CCAGAACAG	CACTTCTAGG	CGCTGAGCTC	420
	AGCGCGGTGG	GTGAGAACGG	CGGGGAGAAA	CCCACATCCC	GTCCACCCCTG	GCGGCTCCGC	480
	CGGTCCAAGC	GCTGCTCCCTG	CTCGTCCCTG	ATGGATAAAG	AGTGTGTCTA	CTTCTGCCAC	540
	CTGGACATCA	TTTGGGTCAA	CACTCCCGAG	CACGTTGTT	CGTATGGACT	TGGAAGCCCT	600
	AGGTCCAAGA	GAGCCTTGGA	GAATTTACTT	CCCACAAAGG	CAACAGACCG	TGAGAATAGA	660
	TGCCAATGTG	CTAGCCAAA	AGACAAGAAG	TGCTGGAATT	TTTGCCAAGC	AGGAAAAGAA	720
15	CTCAGGGCTG	AAGACATTAT	GGAGAAAGAC	TGGAATAATC	ATAAGAAAGG	AAAAGACTGT	780
	TCCAAGCTTG	GGAAAAAGTG	TATTTATCAG	CAGTTAGTGA	GAGGAAGAAA	AATCAGAAGA	840
	AGTTCAGAGG	AACACCTAAG	ACAAACCAGG	TCGGAGACCA	TGAGAAACAG	CGTCAAATCA	900
	TCTTTCATG	ATCCCAAGCT	GAAAGGCAAG	CCCTCCAGAG	AGCGTTATGT	GACCCACAAAC	960
20	CGAGCACATT	GGTACAGAC	TCGGGGGCCT	GTCTGAAGCC	ATAGCCTCCA	CGGAGAGCCC	1020
	TGTGGCCGAC	TCTGCACTCT	CCACCCCTGGC	TGGGATCAGA	GCAGGAGCAT	CCTCTGCTGG	1080
	TTCCCTGACTG	GCAAAGGACC	AGCGTCTCG	TTCAAAACAT	TCCAAGAAAG	GTAAAGGAGT	1140
	TCCCCCAACC	ATCTTCACTG	GCTTCCATCA	GTGGTAAC TG	CTTGGTCTC	TTCTTTCATC	1200
	TGGGGATGAC	AATGGACCTC	TCAGCAGAAA	CACACAGTCA	CATTGAAATT	C	

ACJ1 DNA sequence

Gene name: BMX non-receptor tyrosine kinase

Unigene number: Hs.27372

Probeset Accession #: X83107

Nucleic Acid Accession #: NM_001721

Coding sequence: 34-2061 (predicted start/stop codons underlined)

35	GCAAGCACGG	AACAAGCTGA	GACGGATGAT	AATATGGATA	CAAAATCTAT	TCTAGAAGAAA	60
	CTTCTTCTCA	AAAGATCACA	GCAAAAGAAG	AAAATGTCAC	CAAATAATT	CAAAGAACGG	120
	CTTTTGTGTT	TGACCAAAAC	AAACCTTCC	TACTATGAAT	ATGACAAAAAT	AAAAAGGGC	180
	AGCAGAAAAG	GATCCATTGA	AATTAAGAAA	ATCAGATGTG	TGGAGAAAGT	AAATCTCGAG	240
	GAGCAGACGC	CTGTAGAGAG	ACAGTACCCA	TTTCAGATTG	TCTATAAAAGA	TGGGCTTCTC	300
	TATGTCTATG	CATCAAATGA	AGAGAGCCGA	AGTCAGTGGT	TGAAAGCATT	ACAAAAAAGAG	360
40	ATAAGGGGTA	ACCCCCACCT	GCTGGTCAAG	TACCATAGTG	GGTTCTTCGT	GGACGGGAAG	420
	TTCCCTGTGTT	GCCAGCAGAG	CTGTAAAGCA	GCCCCAGGAT	GTACCCCTCTG	GGAAGCATAT	480
	GCTAATCTGC	ATACTGCACT	CAATGAAGAG	AAACACAGAG	TTCCCACCTT	CCCAGACAGA	540
	GTGCTGAAGA	TACCTGGGGC	AGTTCCTGTT	CTCAAAATGG	ATGCACCATC	TTCAAGTACC	600
	ACTCTAGCCC	AATATGACAA	CGAATCAAAG	AAAAACTATG	GCTCCAGGCC	ACCATCTTC	660
45	AGTACCACTC	TAGCGAATA	TGACAGCAAC	TCAAAGAAAAA	TCTATGGCTC	CCAGCCAAAC	720
	TTCAACATGC	AGTATATTCC	AAGGGAAGAC	TTCCCTGACT	GGTGGCAAGT	AAGAAAATG	780
	AAAAGTAGCA	GCAGCAGTGA	AGATGTTGCA	AGCAGTAACC	AAAAAGAAAG	AAATGTGAAT	840
	CACACCACCT	CAAAGATTTC	ATGGGAATT	CCTGAGTCAA	GTTCATCTGA	AGAAGAGGAA	900
	AACCTGGATG	ATTATGACTG	GTGGTCTGGT	AACATCTCCA	GATCACAACT	TGAACAGTTA	960
50	CTCAGACAAA	AGGGAAAAGA	AGGAGCATT	ATGGGTAGAA	ATTCGAGCCA	AGTGGGAATG	1020
	TACACAGTGT	CCTTATTTAG	TAAGGCTGTG	AATGATAAAA	AAGGAACCTGT	CAAACATTAC	1080
	CACGTGCATA	CAAATGCTGA	GAACAAATT	TACCTGGCAG	AAAACTACTG	TTTTGATTCC	1140
	ATTCCAAGAG	TTATTCTTCA	TCATCAACAC	AATTCACTGAG	GCATGATCAC	ACGGCTCCGC	1200
	CACCCCTGTG	CAACAAAGGC	CAACAAGGTC	CCCGACTCTG	TGTCCCTGGG	AAATGGAATC	1260
	TGGGAACACTGA	AAAGAGAAGA	GATTACCTTG	TTGAAGGAGC	TGGGAAGTGG	CCAGTTTGGG	1320
55	GTGGTCCAGC	TGGGCAAGTG	GAAGGGGCAG	TATGATGTTG	CTGTTAAGAT	GATCAAGGAG	1380
	GGCTCCATGT	CAGAAGATGA	ATTCTTCAG	GAGGCCAGA	CTATGATGAA	ACTCAGCCAT	1440
	CCCAAGCTGG	TTAAATTCTA	TGGAGTGTG	TCAAAGGAAT	ACCCCATATA	CATAGTGACT	1500
	GAATATATAA	GCAATGGCTG	CTTGCTGAAT	TACCTGAGGA	GTCACGGAAA	AGGACTTGAA	1560
	CCTTCCCAGC	TCTTAGAAAT	GTGCTACGAT	GTCTGTGAA	GCATGGCCTT	CTTGGAGAGT	1620
60	CACCAATTG	TACACGGGA	CTTGGCTGCT	CGTAACCTGCT	TGGTGGACAG	AGATCTCTGT	1680
	GTGAAAGTA	CTGACTTTGG	AATGACAAGG	TATGTTCTTG	ATGACCAGTA	TGTCAGTTCA	1740
	GTCGGAAACAA	AGTTTCCAGT	CAAGTGGTCA	GCTCCAGAGG	TGTTTCATTA	CTTCAAATAC	1800
	AGCAGCAAGT	CAGACGTATG	GGCATTGGG	ATCCTGATGT	GGGAGGTGTT	CAGCCTGGGG	1860
	AAGCAGCCCT	ATGACTTGTA	TGACAACCTC	CAGGTGGTTC	TGAAGGTCTC	CCAGGGCCAC	1920
65	AGGCTTTACC	GGCCCCACCT	GCGATCGGAC	ACCATCTACC	AGATCATGTA	CAGCTGCTGG	1980
	CACGAGCTTC	CAGAAAGCG	TCCCACATT	CAGCAACTCC	TGTCTCCCAT	TGAACCACTT	2040
	CGGGAAAAAG	ACAAGCATTG	AAGAAGAAAT	TAGGAGTGT	GATAAGAATG	AATATAGATG	2100
	CTGGCCAGCA	TTTCATTCA	TTTTAAGGAA	AGTAGGAAGG	CATAAGTAAT	TTTAGCTAGT	2160

TTTTAATAGT GTTCTCTGTA TTGTCTATT A TTTAGAAATG ACAAGGCAG GAAACAAAAG 2220
 ATTCCCTTG A AATTAGATC AAATTAGTAA TTTTGT TTTA TGCTGCTCCT GATATAACAC 2280
 TTTCCAGCCT ATAGCAGAAG CACATTTCA GACTGCAATA TAGAGACTGT GTTCATGTGT 2340
 AAAGACTGAG CAGAACTGAA AAATTACTTA TTGGATATT ATTCTTTCT TTATATTGTC 2400
 ATTGTACAA CAATTAATA TACTACCAAG TACAGAAATG TGAAAAAAA AAACCG

5

ACJ4 DNA sequence

Gene name: prostaglandin G/H synthase 2 (COX-2; PGHS-2)

Unigene number: Hs.196384

Probeset Accession #: D28235

Nucleic Acid Accession #: NM_000963

Coding sequence: 135-1949 (predicted start/stop codons underlined)

15 CAATTGTCAT ACGACTTGCA GTGAGCGTCA GGAGCACGTC CAGGAACCTCC TCAGCAGCGC 60
 CTCCTTCAGC TCCACAGCCA GACGCCCTCA GACAGCAAAG CCTACCCCCG CGCCGCGCCC 120
 TGCCCGCCGC TCGGATGCTC GCCCGCGCCCG TGCTGCTGT CGCGGTCCCTG GCGCTCAGCC 180
 ATACAGCAA TCCCTGCTGT TCCCACCCAT GTCAAAACCG AGGTGTATGT ATGAGTGTGG 240
 GATTTGACCA GTATAAGTGC GATTGTACCC GGACAGGATT CTATGGAGAA AACTGCTCAA 300
 20 CACCGGAATT TTTGACAAGA ATAAAATTAT TTCTGAAACC CACTCCAAAC ACAGTGCAC 360
 ACATACTTAC CCACTTCAAG GGATTTGGA ACGTTGTGAA TAACATCCC TTCTTCGAA 420
 ATGCAATTAT GAGTTATGTC TTGACATCCA GATCACATT GATTGACAGT CCACCAACTT 480
 ACAATGCTGA CTATGGCTAC AAAAGCTGGG AAGCCTCTC TAACCTCTC TATTATACTA 540
 GAGCCCTTCC TCCCTGCGCT GAT6ATTGCC CGACTCCCTT GGGTGTCAAAG GTTAAAAAGC 600
 AGCTTCTGTA TTCAAATGAG ATTGTGGAAA ATTGTCTCT AAGAAGAAAG TTCATCCCTG 660
 ATCCCCAGGG CTCAAACATG ATGTTTGAT TCTTGGCCA GCACCTTCAGG CATCAGTTT 720
 TCAAGACAGA TCATAAGCGA GGGCCAGCTT TCACCAACGG GCTGGGCCAT GGGGGGACT 780
 TAAATCATAT TTACGGTGA ACTCTGGCTA GACAGCGTAA ACTGCGCCTT TTCAAGGATG 840
 GAAAAATGAA ATATCAGATA ATTGTGGAG AGATGTATCC TCCCACAGTC AAAGATACTC 900
 30 AGGCAGAGAT GATCTACCC CCTCAAGTCC CTGAGCATCT ACGGTTTGCT GTGGGGCAGG 960
 AGGTCTTTGG TCTGGTGCCT GGTCTGATGAA TGTATGCCAC AATCTGGCTG CGGGAACACA 1020
 ACAGAGTATG CGATGTGCTT AAACAGGAGC ATCCTGAATG GGGTGTGAG CAGTTGTTCC 1080
 AGACAAGCAG GCTAACTACTG ATAGGAGAGA CTATTAAGAT TGTGATTGAA GATTATGTGC 1140
 AACACTTGAG TGGCTATCAC TTCAAACCTGAA ATTGTGACCC AGAACTACTT TTCAACAAAC 1200
 35 AATTCCAGTA CCAAATCGT ATTGTGCTG AATTAAACAC CCTCTATCAC TGGCATCCCC 1260
 TTCTGCCTGA CACCTTTCAA ATTCAATGACC AGAAATACAA CTATCAACAG TTTATCTACA 1320
 ACAACTCTAT ATTGTGGAA CATGGAATT CCCAGTTGT TGAATCATTC ACCAGGCAAA 1380
 TTGCTGGCAG GGTTGCTGGT GGTAGGAATG TTCCACCCGC AGTACAGAAA GTATCACAGG 1440
 CTTCCATTGA CCAGAGCAGG CAGATGAAAT ACCAGTCTT TAATGAGTAC CGCAAACGCT 1500
 40 TTATGCTGAA GCCCTATGAA TCATTTGAA AACTTACAGG AGAAAAGGAA ATGTCCTGCAG 1560
 AGTTGGAAGC ACTCTATGGT GACATCGATG CTGTTGAGCT GTATCTGCG CTTCTGGTAG 1620
 AAAAGCCTCG GCCAGATGCC ATCTTTGGTG AAACCATGGT AGAAGTTGGA GCACCATTCT 1680
 CCTTGAAGG ACTTATGGGT ATTGTATAT GTTCTCTGC CTACTGGAAAG CCAAGCACCTT 1740
 TTGGTGGAGA AGTGGGTTT CAAATCATCA ACACTGCCTC AATTCACTCT CTCATCTGCA 1800
 45 ATAACGTGAA GGGCTGCTCC TTTACTTCAT TCAGTGTCTC AGATCCAGAG CTCATTAAC 1860
 CAGTCACCAT CAATGCAAGT TCTTCCCGCT CCGGACTAGA TGATATCAAT CCCACAGTAC 1920
 TACTAAAAGA ACGTTCGACT GAACTGTAGA AGTCTAATGA TCATATTTAT TTATTATAT 1980
 GAACCATGTC TATTAATTAA ATTATTTAAAT AATATTATA TAAACTCCT TATGTTACTT 2040
 AACATCTTCT GTAACAGAAG TCAGTACTCC TGTTGCGGAG AAAGGAGTCA TACTTGTGAA 2100
 50 GACTTTTATG TCACTACTCT AAAGATTTG CTGTTGCTGT TAAGTTGGA AAACAGTTT 2160
 TATTCTGTT TATAAACAG AGAGAAATGA GTTTTGACGT CTTTTACTT GAATTCAAC 2220
 TTATATTATA AGAACGAAAG TAAAGATGTT TGAATACTTA AACACTATCA CAAGATGGCA 2280
 AAATGCTGAA AGTTTTACA CTGTCGATGT TTCCAATGCA TCTTCCATGAA TGCATTAGAA 2340
 GTAACTAATG TTTGAAATT TAAAGTACTT TTGGTTATTT TTCTGTATC AAACAAAAAC 2400
 55 AGGTATCAGT GCATTATTAA ATGAATATT AAATTAGACA TTACCAAGTAA TTTCATGTCT 2460
 ACTTTTAAAT ATCAGCAATG AAACAATAAT TTGAAATTTC TAAATTCTATA GGGTAGAAC 2520
 ACCTGTAAAAA GCTTGTGTTGA TTTCTTAAAG TTATTAACCT TGTACATATA CAAAAAAAGAA 2580
 GCTGTCTTGG ATTTAAATCT GTAAAATCAG ATGAAATTAA ACTACAATTG CTTGTTAAAAA 2640
 TATTTTAAAT AA GTGATGTTCC TTTTCACCA AGAGTATAAA CCTTTTACT GTGACTGTTA 2700
 60 AAACCTCTTAA TAAATCAAA ATGCCAAATT TATTAAGTGT GTGGAGGCCAC TGCAGTGTAA 2760
 TCTCAAAATA AGAATATTAAAT GTTGAGATAT TCCAGAATTG GTTATATGG CTGGTAACAT 2820
 GTAAAATCTA TATCAGCAAA AGGGTCTACC TTTAAATAA GCAATAACAA AGAAGAAAAC 2880
 CAAATTATTG TTCAAATTAA GTTTAAACT TTTGAAGCAA ACTTTTTTTT ATCCTTGTGC 2940
 ACTGCAGGCC TGTTACTCAG ATTGTTGCTAT GAGGTTAAATG AAGTACCAAG CTGTGCTTGA 3000
 65 ATAACGATAT GTTTCTCAG ATTGTTGCTT GTACAGTTA ATTGAGCAGT CCATATCACA 3060
 TTGCAAAAGT AGCAATGACC TCATAAAATA CCTCTTCAAA ATGCTAAAT TCATTTCAAC 3120
 CATTAAATTAAAT ATCTCACTCT TGAAGCCAAT TCAGTAGGTG CATTGGAATC AAGCCTGGCT 3180
 ACCTGCATGC TGTTCTTTT CTTTCTTCTT TTAGGCCATT TTGCTAAGAG ACACAGTCTT 3240

CTCATCACTT CGTTTCTCCT ATTGTTTTT ACTAGTTTA AGATCAGAGT TCACTTTCTT 3300
 TGGACTCTGC CTATATTTC TTACCTGAAC TTTGCAAGT TTTCAGGTAA ACCTCAGCTC 3360
 AGGACTGCTA TTTAGCTCCT CTAAGAAGA TAAAAAGAGA AAAAAAAGG CCCTTTAAA 3420
 AATAGTATACT ACTTATTTA AGTAAAAGC AGAGAATTAA ATTATAGCT AATTTAGCT 3480
 5 ATCTGTAACC AAGATGGATG CAAAGAGGCT AGTGCCTCAG AGAGAAGTGT ACGGGGTTG 3540
 TGACTGGAAA AAGTACGTT CCCATTCTAA TTAATGCCCT TTCTTATTAA AAAACAAAAC 3600
 CAAATGATAT CTAAGTAGTT CTCAGCAATA ATAATAATGA CGATAAACT TCTTTCCAC 3660
 ATCTCATTGT CACTGACATT TAATGGTACT GTATATTACT TAATTTATTG AAGATTATTA 3720
 TTTATGTCTT ATTAGGACAC TATGGTTATA AACTGTGTTT AAGCCTACAA TCATTGATT 3780
 10 TTTTTGTTA TGTCACAATC AGTATATTAA CTTTGGGGTT ACCTCTCTGA ATATTATGTA 3840
 ACAATCCAA AGAAATGATT GTATTAAGAT TTGTGAATAA ATTTTTAGAA ATCTGATTGG 3900
 CATATTGAGA TATTAAGGT TGAATGTTG TCCTTAGGAT AGGCCTATGT GCTAGCCCAC 3960
 AAAGAATATT GTCTCATTAG CCTGAATGTG CCATAAGACT GACCTTTAA AATGTTTGA 4020
 GGGATCTGTG GATGCTTCGT TAATTTGTT AGCCACAATT TATTGAGAAA ATATTCTGTG 4080
 15 TCAAGCACTG TGGGTTTAA TATTTTAA TCAAACGCTG ATTACAGATA ATAGTATTAA 4140
 TATAAATAAT TGAAAAAAAT TTCTTTGG GAAGAGGGAG AAAATGAAAT AAATATCATT 4200
 AAAGATAACT CAGGAGAAC TCTTTACAA TTTTACGTTT AGAATGTTA AGGTTAAGAA 4260
 AGAAATAGTC AATATGTTG TATAAAACAC TGTCACTGT TTTTTTAA AAAAAAACCTT 4320
 GATTGTTAT TAACATTGAT CTGCTGACAA AACCTGGAA TTGGGTTGT GTATGCGAAT 4380
 20 GTTTCAGTGC CTCAGACAAA TGTGTATTAA ACTTATGTA AAGATAAGTC TGGAAATAAA 4440
 TGTCTGTTA TTTTGTTACT ATTTA

ACJ6 DNA sequence
 Gene name: SEC14-like-1
 Unigene number: Hs.75282
 Probeset Accession #: D67029
 Nucleic Acid Accession #: NM_003003
 Coding sequence: 304-2451 (predicted start/stop codons underlined)

25
 30
 35
 40
 45
 50
 55
 60
 65

CAAGTGGCGT	CGCCGCGCCC	CTTCCCCCTC	CCGCCCTCCC	GGCCCCCTCC	CCGGAACCGG	60
CGGTCGAGCT	ACGGTCGCGG	ACGAGTGGAA	CCGAGACTGC	CCCGCGGAGC	CGCCGGTATG	120
AGCGCCCCCTC	GCCACCCCGT	GTCCCAGGGC	CGGCCCTTCT	GACAAGAGCT	AGACTTCGGG	180
CTCCTTGAGG	ATATTCAAGTT	TTGTATGTTT	GAATATCCTC	TCACCATGTT	CAGCATAAAG	240
TACCAATTCTT	AATGATTATC	CTCAACAAGA	CAGGTGTGAG	AGGGTTGCTG	TTGCATTGCA	300
ATCATGGTGC	AAAAATACCA	GTCCCCAGTG	AGAGTGTACA	AATACCCCTT	TGAATTAATT	360
ATGGCTGCCT	ATGAAAGGAG	GTTCCCTACA	TGTCCTTGA	TTCCGATGTT	CGTGGCAGT	420
GACACTGTGA	GTGAATTCAA	GAGCGAAGAT	GGGGCTATTG	ATGTCATTGA	AAGGCCTGTC	480
AAGCTGGATG	TAGATGCACC	CAGACTGCTG	AAGAAGATTG	CAGGAGTTG	TTATGTTTAT	540
TTTGTCCAGA	AAAACCACT	GAATTCTCGG	GAACGTAATT	TGCACATTGA	GGCTTATAAT	600
GAAACGTTT	CCAATCGGGT	CATCATTAAT	GAGCATTGCT	GCTACACCGT	TCACCCCTGAA	660
AATGAAGATT	GGACCTGTTT	TGAACAGTCT	GCAAGTTAG	ATATTAAATC	TTTCTTTGGT	720
TTTGAAGTA	CAGTGGAAAA	AATTGCAATG	AAACAATATA	CCAGCAACAT	AAAAAAAGGA	780
AAGGAAATCA	TGAAATACTA	CCTTCGCCAA	TTAGAAGAAG	AAGGCATAAC	CTTTGTGCC	840
CGTTGGAGTC	CGCCTTCCAT	CACGCCCTCT	TCAGAGACAT	CTTCATCATC	CTCCAAGAAA	900
CAAGCAGCGT	CCATGGCCGT	CGTCATCCCA	GAAGCTGCC	TCAAGGAGGG	GCTGAGTGGT	960
GATGCCCTCA	GCAGCCCCAG	TGACACTGAG	CCCGTGGTGG	GCACCCCTGA	CGACAAACTA	1020
GATGCCGACC	ACATCAAGAG	ATACCTGGGC	GATTTGACTC	CGCTGCAGGA	GAGCTGCC	1080
ATTAGACTTC	GCCAGTGGCT	CCAGGAGACC	CACAAGGGCA	AAATTCCAAA	AGATGAGCAT	1140
ATTCTTCGGT	TCCTCCGTG	ACGGGATTAA	AATATTGACA	AAGCCAGAGA	GATCATGTGT	1200
CAGTCCTTGA	CGTGGAGAAA	CGAGCATCAG	GTAGACTACA	TTCTTGAAAC	CTGGACCCCT	1260
CCTCAGGTTCC	TTCAGGATTA	CTACCGGGGA	GGCTGGCATC	ATCACGACAA	AGATGGGCGG	1320
CCCCTCTACG	TGCTCAGGCT	GGGGCAGATG	GACACCAAAG	GCTTGGTGG	AGCGCTCGGG	1380
GAGGAAGCCC	TGCTGAGATA	CGTTCTCTCC	GTAAATGAAG	AACGGCTAAG	GCGATGCGAA	1440
GAGAATACAA	AACTTGG	TCGGCCTATC	AGCTCATGGA	CCTGCCTGGT	GGACTTGGAA	1500
GGGCTGAACA	TGCGCCACTT	GTGGAGACCT	GGTGTGAAAG	CGCTGCTGCG	GATCATCGAG	1560
GTGGTGGAGG	CCAACATACCC	TGAGACACTG	GGCCGCCCTC	TCATCCTGCG	GGCGCCCGAG	1620
GTATTTCTG	TGCTCTGGAC	GCTGGTTAGT	CCGTTCATG	ATGACAACAC	CAGAAGGAAG	1680
TTCCTCATTT	ATGCAGGAAA	TGACTACAG	GGTCTGGAG	GCCTGCTGGA	TTACATCGAC	1740
AAAGAGATTA	TTCCAGATT	CCTGAGTGG	GAGTCATGT	CGGAAGTGCC	AGAGGGTGG	1800
CTGGTCCCCA	AATCTCTGTA	CCGGACTGCA	GAGGAGCTGG	AGAACGAAAGA	CCTGAAGCTC	1860
TGGACTGAGA	CCATCTACCA	GTCTGCAAGC	GTCTCAAAG	GAGCCCCACA	TGAGATTCTC	1920
ATTCAAGATG	TGGATGCTC	GTCACTCATC	ACTTGGGATT	TCGACGTGTG	CAAAGGGGAC	1980
ATTGTGTTA	ACATCTATCA	CTCCAAAGGG	TCGCCACAAAC	CACCCAAAAA	GGACTCCCTG	2040
GGAGCCCCACA	GCATCACCTC	TCCGGGTGGG	AACAATGTGC	AGCTCATAGA	CAAAGTCTGG	2100
CAGCTGGGCC	CGCACTACAG	CATGGTGGAG	TCGCCCTCTGA	TCTGCAAAGA	AGGAGAAAGC	2160
GTGCAGGGTT	CCCATGTGAC	CAGGTGGCCG	GGCTTCTACA	TCCTGCAGTG	GAAATTCCAC	2220
AGCATGCCCTG	CGTGCGCCGC	CAGCAGCCTT	CCCCGGGTGG	ACGACGTGCT	TGCGTCCCTG	2280

PROBE DESIGN

	CAGGTCTCTT CGCACAAAGTG TAAAGTGATG TACTACACCG AGGTGATCGG CTCGGAGGAT	2340
	TTCAGAGGTT CCATGACGAG CCTGGAGTCC AGCCACAGCG GCTTCTCCA GCTGAGTGCC	2400
	GCCACCACCT CCTCCAGCCA GTCCCCTCC AGCTCCATGA TCTCCAGGT <u>A</u> GTGCCCGCCT	2460
	GCCTGCACCT AGTGTGCAGA GGGGACGGGC GCCCCCTCCTC GGACAGCAGC TGCACCCGCC	2520
5	CACCCAGCGG CGACATTGTA CAGACTCCCTC TCACCTCTAG ATAGCAAATA GCTCTCAGAT	2580
	GGTAAACGTA GTCGTTTGAT CCCAAA <u>A</u> CTTGGCAGG TAGTTTAAC TCTGATCCTA	2640
	ACTTAACTCA ATAGCCATAG ATTTTGATA CGTTGTGCAC AAAATCCAAC CAGAGCGCAA	2700
	GGGCTCTCTT GAAAGAAAAG TAGTTCTGT ACCAATTAAA GGATTGACGT GGTCTCAGAT	2760
	ATTGATGCAA AAAATTTC CAACGAAC <u>T</u> CGCATGTC ATTAGTGAAT GAATTCTGT	2820
10	GACATCCTCC AGAGATGGCC CCTCCTCACC TGGGACGGAA GCTGCCAGCT CGCTTCCCCC	2880
	AAGCTGCCCTC ATGGCCCGCA CGCCGCCCTCA CGGCCCCCAT GCTTCCCGCC AGTCAAGATG	2940
	GTCTGTGGAC TTAGGGCCAG CCCTTGAGGT CCTTATCCTC TGAGGATTCA GAGGTTGCCT	3000
	GCGGAGTACC TTGTCCCAGG GCCAGACACA CCCACACCAC CCACTGTCTG CAGTGGGGCC	3060
	GGGGGCTCAG GAGGGGCTCT CAGGGACTCC TGGTACTCC AGGAAAATGC TGCCATCGTT	3120
15	AAACATTACT TTCTCTTCTC TCCTTTCAA ATCTTTTGAT TACTTTTAG AGCAGGATT	3180
	TTCTGTATGT GAACCTGGGT GGGGGGGTTC TTCCCGTTTC CTTCCGTGCG TCGCCCCCTCT	3240
	CACCTGCACT CAGCTCCCAG CCCAGTGTAG GCCATCTCCT CTGTGCCCTC TGGAGGCTCA	3300
	TTGTCTCAGA GCCCCAGACAG TTCCAGCCAC TAGGAGGCCG TCTTGGAACC AGCAAGTCGC	3360
	ATTTGCCACT TGACACTGTC CATGGGGTTT TATTACTAGC TAAGCAGCAG CTCTCCGCATC	3420
20	CACTTCAGGG TGGCGTGTGG CATGTAGGAG TCCTGCTTCT TTGTACATGG GAATTGTGGA	3480
	CTCATGCGTG TGTGTGTGTG CATGTGCTGT GTGTGTCATG TGTCATGAGA CGGTGGGGGT	3540
	GCTGGGGGGA CGGGGTGAGT GGAAACCTTA TTTGAGTAAT GAAGGAATCT TCACAGAACG	3600
	AAATCAGAAT ATGGGATTIG TTTGCCTTTT ACATTGTT TAATTCTGA TTTAAAGCC	3660
	TGCTCTATCT GGTACAGGCC CTTATTTTT CAGCTTTTA TGGGAAAAGC AGGTTATTTG	3720
25	AGAATCTGTC CAGAAGTTGC ATAGGGGATG GCCTCCACGA TAAGGACATG CAACACGTGT	3780
	TTCTGTGTGC AGCAGAGGCC GTGTTTTCA TGCCAAACCC CACGCGGCTG TCAACTGTGT	3840
	GGGTGGTAGG CATGGAGATC CTGGTTGTG CGTCTCAGCT CCGCTCTGAA GGCACTGTGT	3900
	GGGTGCTGCG TGACTGGAGA GCTGTGTGGA GGCCATGTGT GCCCCGTGCA GGGATCAGGA	3960
	GGGCGGGGGGA GGGACCGAGC AGCCCTCTTG CCCGGTGGG TCAGCCCTAG TGGCTGCCTG	4020
30	CACACTGTAG ACGTCCCAGG GCCTGTGCTG TGATCACCTG CCTTTGGACC ACATTGTTGT	4080
	TTGCTCTTAG AGATCGAGCT CCTCACTGTT ACCTGAAGCC TTGCTCTCG GAAAGCGGG	4140
	TAGGGTTCGTT AGGTAGGGCT AGTAGGTTAGG GTTACTAGGT AGGGCTAGTA GGTAGGGCTA	4200
	GTAGGTAGGG TTAGTAGGTA GGGTCTGTAG TGAGGCTGTT TAGTAGGGT TAGTAGGTAG	4260
	GGCTAGTACGG TAGGGTCTGT AGGTAGGGCT AGTAGGTTAGG GTTACTAGGT AGGGCTAGTA	4320
35	GGTAGGGCTA GTAGGTAGGG TTAGTAGGTA GGGTCTGTAG TGAGGCTGTT TAGGTAGGGT	4380
	TAGTAGGTAGG GGCTAGTACGG TAGGGTCTGT AGGTAGGGCT AGTAGGTTAGG GTTACTAGGT	4440
	AGGGCTAGTA GGTAGGGCTA GTAGGTAGGG TTAGTAGGTA GGGTCTGTAG TGAGGCTGTT	4500
	TAGGTAGGG TAGTAGGTAGG GGCTAGTACGG TAGGGCTAGT AGGTAGGGCT AGTAGGTTAGG	4560
	TTAGTAGGT AGGGCTAGTA GGTAGGGCTA GTAGGTAGGG TTAGTAGGTA GGGTCTGTAG	4620
40	GTAGGGCTGG TAGGTAGGG TAGTAGGTAGG GGCTAGTACGG TAGGGCTAGT AGGTAGGGCT	4680
	AGTAGGTAGG GCTAGTAGGT AGGGCTAGTA GGTAGGGCTA GTAGGTAGGG CTAGTAGGT	4740
	GGGTTCTGTAG GTAGGGTTCG TAGGTAGGGT TCCTAGGTAGG GTTACTAGTC GCGTCTGTGC	4800
	TGCTTCCACC TGGTCTCTC TGTTCCAAA TCACAAAGGGC CTGAAGGTGG TCCCTGCTTT	4860
	CTCTTCTCTC TTCTCTGTGT CTCAGATGGC GATTTGCTG ACAGCTCCA AGAAAATGCT	4920
45	TCACTCAACA GTCCTCATGT GCCCAGAGAT GTTTATAGAA CTGTTTAAGT TGATTCTGGA GTGGCATTCT	4980
	CCCTGCCCCC TCCCAGGCTG AAGATCTGTT CTTTTAAGT TGATTCTGGA GTGGCATTCT	5040
	TTTATACCCA AAGACTGTAG TGCACTCTGA AGAGCTAAA GCACATGACC GCACAAATGC	5100
	TTACAGGGTT TCCTCCCGAG TAATCCAATC TCACCTCCCT TGTAAGGGAA TTCTGGGCA	5160
	GCTATGGTT GAGTATGCAG TTTGCATCGT GTTCTACCT TTAGTACCTT GCAACTCTTT	5220
50	TTAAACGCTG CTGTCTTTCC CAATTTCTA GTACTAATGA TTCTTTGATT CTCCCTCTAT	5280
	TATGTCTTAA TTCACTTTCC TTCTAAATT TGTTATTGTC ATATCAAATT CTGAAATGT	5340
	TTTGTAAACA TATTACCTCA CTTGGTAATA CAATACTGAT AGTCTTAAA AGATTTTTTT	5400
	ATTGTTATCA ATAATAAAATG TGAACATATT AAAG	

47
55 AJ8 DNA sequence

Gene name: intercellular adhesion molecule 1 (ICAM1; CD54)

Unigene number: Hs_168383

Probeset Accession #: M24283

Nucleic Acid Accession #: NM_000201

Coding sequence: 58-1656 (predicted start/stop codons underlined)

	GCGCCCCAGT CGACCGCTGAG CCTCTCTGCT ACTCAGAGTT GCAACCTCAG CCTCGCT <u>A</u> TG	60
	GCTCCCGAGCA GCCCCCGGCC CGCGCTGCC GCACCTCTGG TCCTGCTCGG GGCTCTGTTC	120
	CCAGGACCTG GCAATGCCCA GACATCTGTG TCCCCCTCAA AAGTCATCCT GCCCCGGGG	180
	GGCTCCGTGC TGGTACATG CAGCACCTCC TGTGACCAGC CCAAGTTGTT GGGCATAGAG	240
65	ACCCCGTTGC CAAAAAGGA GTTGCTCTG CCTGGAAACA ACCGGAAAGGT GTATGAAC	300
	AGCAATGTGC AAGAAGATAG CCAACCAATG TGCTATTCAA ACTGCCCTGA TGGCGAGTCA	360

ACAGCTAAAA CCTTCCTCAC CGTGTACTGG ACTCCAGAAC GGGTGGAAC GGCACCCCTC 420
 CCCTCTGGC AGCCAGTGGG CAAGAACCTT ACCCTACGCT GCCAGGTGGA GGGTGGGGCA 480
 CCCCGGGCCA ACCTCACCGT GTGCTGCTC CGTGGGAGA AGGAGCTGAA ACGGGAGCCA 540
 GCTGTGGGGG AGCCCCTGTA GGTCACGACC ACGGTGCTGG TGAGGAGAGA TCACCATGGA 600
 5 5 GCCAATTCT CGTCCGCAC TGAACCTGGAC CTGCGCCCC AAGGGCTGGA GCTGTTTGAG 660
 AACACCTCGG CCCCCATCCA GCTCCAGACC TTTGCTCTGC CAGCGACTCC CCCACAACCT 720
 GTCAGCCCCC GGGTCTAGA GTGGACAGC CAGGGACCG TGGTCTGTT CCTGGACGGG 780
 CTGTTCCAG TCTCGAGGC CCAGGTCCAC CTGGCACTGG GGGACAGAG GTTGAACCCC 840
 10 ACAGTCACCT ATGGCAACGA CTCCCTCTCG GCCAAGGCCT CAGTCAGTGT GACCGCAGAG 900
 GACGAGGGCA CCCAGGGCT GACGTGTGCA GTAATACTGG GGAACCCAGAG CCAGGAGACA 960
 CTGCAGACAG TGACCATCTA CAGCTTCCG CGGCCAACG TGATTCTGAC GAAGCCAGAG 1020
 GTCTCAGAAG GGACGGAGGT GACAGTGAAG TGTGAGGCC ACCCTAGAGC CAAGGTGACG 1080
 CTGAATGGGG TTCCAGGCC CGCACTGGC CCGAGGGCC AGCTCTGCT GAAGGCCACC 1140
 15 CCAGAGGACA ACGGGGCAG CTTCTCTCG TCTGCAACCC TGGAGGTTGCG CGGCCAGCTT 1200
 ATACACAAGA ACCAGACCCG GGAGCTTCGT GTCCTGTATG GCCCCCGACT GGACGAGAGG 1260
 GATTGTCCGG GAAACTGGAC GTGGCCAGAA AATTCCCAGC AGACTCCAAT GTGCCAGGCT 1320
 TGGGGGAACC CATTGCCGA GCTCAAGTGT CTAAAGGATG GCACCTTCCC ACTGCCCATC 1380
 GGGGAATCAG TGACTGTCA TCGAGATCTT GAGGGCACCT ACCTCTGTCG GGCCAGGAGC 1440
 ACTCAAGGGG AGGTCAACCG CGAGGTGACC GTGAATGTGC TCTCCCCCG GTATGAGATT 1500
 20 GTCATCATCA CTGTGGTAGC AGCCGCAGTC ATAATGGCA CTGCAGGCCT CAGCACGTAC 1560
 CTCTATAACC GCCAGGGAA GATCAAGAAA TACAGACTAC AACAGGCCA AAAAGGGACC 1620
 CCCATGAAAC CGAACACACA AGCCACGCC CCGTGAACCT ATCCCAGGAC AGGGCCTCTT 1680
 CCTCGGCCTT CCCATATTGG TGGCAGTGGT GCCACACTGA ACAGAGTGGA AGACATATGC 1740
 CATGCAGCTA CACCTACCGG CCCTGGGACG CCGGAGGACA GGGCATTGTC CTCAGTCAGA 1800
 TACAACAGCA TTTGGGCA TGGTACCTGC ACACCTAAAA CACTAGGCCA CGCATCTGAT 1860
 CTGTAGTCAC ATGACTAACG CAAGAGGAAG GAGCAAGACT CAAGACATGA TTGATGGATG 1920
 TTAAAGTCTA GCCTGATGAG AGGGGAAGTG GTGGGGAGA CATAGCCCCA CCATGAGGAC 1980
 ATACAACCTGG GAAATACTGA AACTTGTGC CTATTGGTA TGCTGAGGCC CACAGACTTA 2040
 CAGAAGAAGT GGCCCTCCAT AGACATGTGT AGCATCAAA CACAAAGGCC CACACTTCCT 2100
 30 GACGGATGCC AGCTTGGCA CTGCTGTCTA CTGACCCCAA CCCTTGATGA TATGTATTTA 2160
 TTCATTGTT ATTTTACCA GCTATTATTG AGTGTCTTT ATGTAGGCTA AATGAACATA 2220
 GGTCTCTGGC CTCACGGAGC TCCCAGTCCA TGTACATTC AAGGTCACCA GGTACAGTTG 2280
 TACAGGTTGT ACACTGCAGG AGAGTGCCTG GCAAAAGAT CAAATGGGG TGGAACCTCT 2340
 CATGGCCAA CCTGCCTTC CGCAGAAGGA GTGATTTTC TATCGGCACA AAAGCACTAT 2400
 35 ATGGACTGGT AATGGTCAC AGGTTCAAGAG ATTACCCAGT GAGGGCTTAT TCCTCCCTTC 2460
 CCCCCAAAC TGACACCTTT GTTAGCCACC TCCCCACCA CATACTTTT TGCCAGTGT 2520
 CACAATGACA CTCAGGGTC ATGTCTGGAC ATGAGTGCCTC AGGGAATATG CCCAAGCTAT 2580
 GCCTTGTCTC CTTGCTCTGT TTGCAATTCA CTGGGAGCTT GCACTATTGC AGCTCCAGTT 2640
 TCCTGCAGTG ATCAGGGTCC TGCAAGCAGT GGGGAAGGGG GCCAAGGTAT TGGAGGACTC 2700
 40 CCTCCCAGCT TTGGAAGGGT CATCCCGTG TGTGTGTGTG TGTATGTGTA GACAAGCTCT 2760
 CGCTCTGTCA CCCAGGCTGG AGTGCAGTGG TGCAATCATG GTTCACTGCA GTCTTGACCT 2820
 TTTGGGCTCA AGTGAATCCTC CCACCTCAGC CTCCCTGAGTA GCTGGGACCA TAGGCTCACA 2880
 ACACCAACACC TGGCAAATTG GATTTTTTTT TTTTTTTCA GAGACGGGGT CTCGCAACAT 2940
 TGCCCAGACT TCCTTGTGT TAGTTAATAA AGCTTCTCA ACTGCC

45 *Q48*
 ACK3 DNA sequence
 Gene name: angiopoietin 1 receptor (TIE-2; TEK)
 Unigene number: Hs.89540
 Probeset Accession #: E06139
 Nucleic Acid Accession #: NM_000459
 Coding sequence: 149-3523 (predicted start/stop codons underlined)

55 CTTCTGTGCT GTTCCTTCTT GCCTCTAACT TGTAACAAAG ACGTACTAGG ACGATGCTAA 60
 TGGAAAGTCA CAAACCGCTG GTTTTGAA AGGATCCTTG GGACCTCATG CACATTGTG 120
 GAAACTGGAT GGAGAGATTG GGGGAAGCAT GGACTCTTAA GCCAGCTTAG TTCTCTGTGG 180
 AGTCAGCTTG CTCCCTTCTG GAACTGTGGA AGGTGCCATG GACTTGATCT TGATCAATTG 240
 CCTACCTCTT GTATCTGATG CTGAAACATC TCTCACCTGC ATTGCCTCTG GGTGGCGCCC 300
 CCATGAGCCC ATCACCATAG GAAGGGACTT TGAAGCCTTA ATGAACCAGC ACCAGGATCC 360
 GCTGGAAGTT ACTCAAGATG TGACCAAGAGA ATGGGCTAAA AAAGTTGTG GGAAGAGAGA 420
 AAAGGCTAGT AAGATCAATG GTGCTTATTG CTGTGAAGGG CGAGTTCGAG GAGAGGCAAT 480
 CAGGATACCA ACCATGAAGA TCGCTCAACA AGCTTCTTC CTACCAAGCTA CTTTAACATAT 540
 GACTGTGGAC AAGGGAGATA ACGTGAACAT ATCTTCAAA AAGGTATTGA TTAAAGAAGA 600
 AGATGCAGTG ATTTACAAAA ATGGTCTCTT CATCCATTCA GTGCCCGGC ATGAAGTACC 660
 60 TGATATTCTA GAAGTACACC TGCCTCATGC TCAGCCCCAG GATGCTGGAG TGTACTCGGC 720
 CAGGTATATA GGAGGAAACC TCTTCACCTC GGCCTTCACC AGGCTGATAG TCCGGAGATG 780
 TGAAGCCAG AAGTGGGAC CTGAATGCAA CCATCTCTGT ACTGCTTGTG TGAACAAATGG 840
 TGTCTGCCAT GAAGATACTG GAGAATGCA TTGCCCTCCT GGGTTATGG GAAGGACGTG 900

	TGAGAAGGCT TGTGAAC TGC ACAC GTTTGG CAGAAC TTGT AAAGAAAGGT GCAGTGGACA	960
5	AGAGGGATGC AAGTCTTATG TGTTCTGTCT CCCTGACCCC TATGGGTGTT CCTGTGCCAC	1020
	AGGCTGGAAG GGTCTGCAGT GCAATGAAGC ATGCCACCCCT GGTTTTTACG GGCCAGATTG	1080
	TAAGCTTAGG TGCAGCTGCA ACAATGGGG AATGTGTGAT CGCTTCCAAG GATGTCTCTG	1140
	CTCTCCAGGA TGGCAGGGGC TCCAGTGTGA GAGAGAAGGC ATACCGAGGA TGACCCAAA	1200
	GATAGTGGAT TTGCCAGATC ATATAGAAGT AAACAGTGGT AAATTTAAC CCATTGCAA	1260
	AGCTTCTGGC TGGCCGCTAC CTACTAATGA AGAAATGACC CTGGTGAAGC CGGATGGGAC	1320
10	AGTGCTCCAT CCAAAGACT TTAACCATAAC GGATCATTTC TCAGTAGCCA TATTCAACAT	1380
	CCACCGGATC CTCCCCCTG ACTCAGGAGT TTGGGTCTGC AGTGTGAACA CAGTGGCTGG	1440
	GATGGTGGAA AAGCCCTCA ACATTTCTGT TAAAGTTCTT CCAAAGCCCC TGAATGCC	1500
	AAACGTGATT GACACTGGAC ATAACCTTG TGTCATCAAC ATCAGCTCTG AGCCTTACTT	1560
	TGGGGATGGA CCAATCAAAT CCAAGAAGCT TCTATACAAA CCCGTTAAC CACTATGAGG	1620
	TTGGCAACAT ATTCAAGTGA CAAATGAGAT TGTTACACTC AACTATTTGG AACCTCGGAC	1680
15	AGAATATGAA CTCTGTGTGC AACTGGTCCG TCGTGGAGAG GGTGGGAAG GGCATCCCTGG	1740
	ACCTGTGAGA CGCTTCACAA CAGCTTCTAT CGGACTCCCT CCTCCAAGAG GTCTAAATCT	1800
	CCTGCCTAA AGTCAGACCA CTCTAAATTG GACCTGGCAA CCAATATTTC CAAGCTCGGA	1860
	AGATGACTTT TATGTGAGAAG TGGAGAGAAG GTCTGTGCAA AAAAGTGTAC AGCAGAATAT	1920
	TAAAGTTCCA GGCAACTTGA CTTCGGTGTG ACTTACAAAC TTACATCCC GGGAGCAGTA	1980
	CGTGGTCCGA GCTAGAGTCA ACACCAAGGC CCAGGGGAA TGGAGTGAAG ATCTCACTGC	2040
20	TTGGACCCCTT AGTGACATTC TTCTCCTCA ACCAGAAAAC ATCAAGATT CCAACATTAC	2100
	ACACTCCTCG GCTGTGATTG CTGGACAAT ATTGGATGGC TATTCTATT CTTCTATTAC	2160
	TATCCGTTAC AAGGTCAAG GCAAGAATGA AGACCAAGCAC GTTGTGTTGA AGATAAAGAA	2220
	TGCCACCATC ATTCAAGTAC AGCTCAAGGG CCTAGAGCCT GAAACAGCAT ACCAGGTGGA	2280
	CATTTTGCA GAGAACAAACA TAGGGTCAAG CAACCCAGCC TTTTCTCATG AACTGGTGC	2340
25	CCTCCAGAA TCTCAAGCAC CAGCGGACCT CGGAGGGGG AAGATGTC TTATAGCCAT	2400
	CCTTGGCTCT GCTGGATGA CTCGCTGAC TGTGTGTTG GCCTTCTGA TCATATTGCA	2460
	ATTGAAGAGG GCAATGTGC AAAGGAGAA GGCCCAGGC TTCCAAAAC TGAGGGAAAGA	2520
	ACCAGCTGTG CAGTCAACT CAGGGACTCT GGCCCTAAAC AGGAAGGTCA AAAACAACCC	2580
	AGATCCTACA ATTATCCAG TGCTTGACTG GAATGACATC AAATTCAAAG ATGTGATTGG	2640
30	GGAGGGCAAT TTTGCCAAG TTCTTAAGGC GCGCATCAAG AAGGATGGGT TACGGATGGA	2700
	TGCTGCCATC AAAAGAATGA AAGAATATGC CTCCAAAGAT GATCACAGGG ACTTTGCAGG	2760
	AGAACTGGAA GTTCTTGTA AACTTGGACA CCATCCAAAC ATCATCAATC TCTTAGGAGC	2820
	ATGTGAACAT CGAGGCTACT TGTACCTGGC CATTGAGTAC GCGCCCCATG GAAACCTTCT	2880
	GGACTTCCTT CGCAAGAGCC GTGTGCTGGA GACGGACCCA GCATTTGCCA TTGCCAATAG	2940
35	CACCGCGTCC ACACGTCTT CCCAGCAGCT CCTTCACCTC GCTGCCGACG TGGCCGGGG	3000
	CATGGACTAC TTGAGCCAAA AACAGTTAT CCACAGGGAT CTGGCTGCCA GAAACATTTT	3060
	AGTTGGTGAAG AACTATGTGG CAAAAATAGC AGATTTGGA TTGTCCCCGAG GTCAAGAGGT	3120
	GTACGTGAAA AAGACAATGG GAAGGCTCCC AGTGCCTGG ATGGCCATCG AGTCACTGAA	3180
	TTACAGTGTG TACACAAACCA ACAGTGTATG ATGGTCTTAT GGTGTGTTAC TATGGGAGAT	3240
40	TGTTAGCTTA GGAGGCACAC CCTACTGGG GATGACTTGT GCAGAACTCT ACGAGAAGCT	3300
	GCCCCAGGGC TACAGACTGG AGAAGCCCT GAACTGTGAT GATGAGGTGT ATGATCTAAT	3360
	GAGACAATGC TGGCGGGAGA AGCCTTATGA GAGGCCATCA TTTGCCAGA TATTGGTGTG	3420
	CTTAAACAGA ATGTTAGAGG AGCAGGAAAGAC CTACGTGAAT ACCACGCTT ATGAGAAGTT	3480
	TACTTATGCA GGAATTGACT GTTCTGCTGA AGAAGCGGCC TAGGACAGAA CATCTGTATA	3540
45	CCCTCTGTTT CCCTTCACT GGCATGGGAG ACCCTTGACACTGCTGAGA AAACATGCCT	3600
	CTGCCAAAGG ATGTGATATA TAAGTGTACA TATGTGCTGG ATTCTAACAA AGTCATAGGT	3660
	TAATATTTAA GACACTGAAA ATCTAAGTG ATATAAATCA GATTCTTCTC TCTCATTTA	3720
	TCCCTCACCT GTAGCATGCC AGTCCCGTTT CATTAGTCA TGTGACCACT CTGTCTGTG	3780
	TTTCCACAGC CTGCAAGTTC AGTCCAGGAT GCTAACATCT AAAATAGAC TAAATCTCA	3840
50	TTGCTTACAA GCCTAAGAAT CTTAGAGAA GTATACATAA GTTGTAGGATA AAATAATGGG	3900
	ATTTTCTTTT CTTTCTCTG GTAATATTGA CTTGTATATT TTAAGAAATA ACAGAAAGCC	3960
	TGGGTGACAT TTGGGAGACA TGTGACATT ATATATTGAA TTAATATCCC TACATGTATT	4020
	GCACATTGTA AAAAGTTTTA GTTTGTGATGA GTTGTGAGTT TACCTGTAT ACTGTAGGCA	4080
55	CACTTGTGAC TGATATATCA TGAGTGAATA AATGTCTTGC CTACTCAAAA AAAAAAAA	

PZA6 DNA sequence

Gene name: prostate differentiation factor (PLAB; MIC-1)

Unigene number: Hs.116577

Probeset Accession #: AB000584

Nucleic Acid Accession #: NM_004864

Coding sequence: 26-952 (predicted start/stop codons underlined)

65	CGGAACGGAGG GCAACCTGCA CAGCCATGCC CGGGCAAGAA CTCAGGACGG TGAATGGCTC	60
	TCAGATGCTC CTGGTGTGTTGC TTGGTGTCTC GTGGCTGCCG CATGGGGCG CCCTGTCTCT	120
	GGCCGAGGGCG AGCCCGCGAA GTTTCCCGGG ACCCTCAGAG TTGCACTCCG AAGACTCCAG	180
	ATTCCGAGAG TTGCGGAAAC GCTACGAGGA CCTGCTAACCC AGGCTGCAGGG CCAACCAGAG	240
	CTGGGAAGAT TCGAACACCG ACCTCGTCCC GGCCCCCTGCA GTCCGGATAC TCACGCCAGA	300

	AGTGGGGCTG	GGATCCGGCG	GCCACCTGCA	CCTGCCTATC	TCTCGGGCCG	CCCTTCCCAGA	360
	GGGGCTCCCC	GAGGCCCTCCC	GCCTTCACCG	GGCTCTGTTC	CGGCTGTCCC	CGACGGCGTC	420
5	AAGGTCGTGG	GACGTGACAC	GACCGCTGCG	GCGTCAGCTC	AGCCTTGCAA	GACCCAAGC	480
	GCCCCGCGCTG	CACCTGCGAC	TGTCGCCGCG	GCCGTCGCG	TCGGACCAAC	TGCTGGCAGA	540
	ATCTTCGTCC	GCACGGCCCC	AGCTGGAGTT	GCACATTGCGG	CCGCAAGCCG	CCAGGGGGCG	600
	CCGCAGAGCG	CGTGGCGCA	ACGGGGACGA	CTGTCCGCTC	GGGCCGGGC	GTTGCTGCCG	660
	TCTGCACACG	GTCCGGCGGT	CGCTGGAAGA	CCTGGGCTGG	GCCGATTGGG	TGCTGTGCC	720
10	ACGGGAGGTG	CAAGTGACCA	TGTGCATCGG	CGCGTCCCG	AGCCAGTTCC	GGGCAGCAAA	780
	CATGCAACGG	CAGATCAAGA	CGAGCCTGCA	CCGCCTGAAG	CCGCACACGG	AGCCAGCGCC	840
15	CTGCTGCGTG	CCCGCCAGCT	ACAATCCCAT	GGTGCTCATT	AAAAGACCG	ACACGGGGT	900
	GTCGCTCCAG	ACCTATGATG	ACTTGTGTTAGC	CAAAGACTGC	CACTGCATAT	GAGCAGTCCT	960
	GGTCCTTCCA	CTGTGCACCT	GCGCGGGGG	GGCGACCTCA	GTTGCTCTGC	CCTGTGGAAT	1020
	GGGCTCAAGG	TTCTGAGAC	ACCCGATTCC	TGCCCAAACA	GCTGTATTAA	TATAAGTCTG	1080
	TTATTTATTA	TTAATTATT	GGGGTGACCT	TCTTGGGAC	TCGGGGGCTG	GTCTGATGGA	1140
	ACTGTGTATT	TATTTAAAC	TCTGGTGATA	AAAATAAACG	TGTCTGAAC	TTAAAAAAA	1200
	AAAA						

AAC8 DNA sequence

Gene name: none

Unigene number: Hs.6682

Probeset Accession #: AA227926

Nucleic Acid Accession #: none

Coding sequence: no ORF identified, possible frameshifts

20	AAGCTGCAGT	TAGCCAAGAT	CGCATCATTG	CACTCCAGCC	TAGGGGACAA	GAGCGCGAGA	60	
	CTTCATCTCA	AAGATTTTA	ATAAATAGCT	AAAGGTATGC	TCTCTAGGTC	ATCCTTAGTT	120	
	TATTAGTACT	GTACTAAAAA	ATTATTTTT	TAATAGTC	TTTGGGAGA	TAATTATTC	180	
25	TTTCCTTATA	TTTCCAATT	AGTTGGTGT	AAAAAATAAA	TGTTTTGTCT	AATTTAGAT	240	
	CAGGTATACA	TTCACAAAAG	CATAAATCAT	AGTCTCACAG	GAAATTCA	AATTTCCAT	300	
	ATGTCGTGAG	ATAACTGTCC	TTTCTACAA	CTCATAACAA	TGAATTATA	TAATTACCA	360	
	GATTTTCTTA	GTGTGAATCT	ACCCATTAGT	TTTATTTCT	TGGTAGTTAT	TTTTTCCCT	420	
30	CCTCTCTGTT	ACTATTGGCC	TTAAAATACA	CAGGAGGACG	GTTACAGTGT	CCTAATAGCT	480	
	GTTACATGTG	TGTGTTTCAG	CGTACTTGAA	TCAAGTGTAC	ATTTATAGTA	CCAATAACCG	540	
	CCTTTACAGC	TTTACAGTTA	ACAATTCTCT	CACAAACTG	TAGAGCATTA	GGCATCTGAG	600	
35	AGCCATAGAG	GGCCAAC	TTT	GTTCCAGAGT	GAACATGCTT	TTTTCCCTCA	ACATATACAC	660
	TACTGATTTT	TTTAAAGT	ATGACTTTCA	AGTGAATTAA	TGTATTGGTT	AGGAGAACTG	720	
	CTTGCTAAGT	CCTTATTACC	TCTTGTAAA	GCCTCAGAAG	GGCGTGTCA	AAGCCAGAGG	780	
40	GGAAAAAAAG	AGTAATGCAC	AGGTATCTC	TTGCACTG	TGACTGTAT	TTGAGTACCT	840	
	TGTGTGACAG	GGTATTATTA	CAGCATCTG	TGGGAAAC	TATTAGGCCT	TTGCATGTTA	900	
	AAGCTGTATA	ATTGTTGGG	TTGTGAGTGG	TCTGACTTAA	ATGTGTATTA	AAAATTTAG	960	
45	ACATCAAATT	TTCTACTAA	CTAACCTTAT	TAGATGCATA	CTTGGAAAGCA	CAGTCATATC	1020	
	ACACTGGGAG	GCAATGCAAT	GTGGTACCT	GGTCTTAGGT	TTGAACGTG	TTATTCAAA	1080	
	AGATTTCTGA	ATTAATTTT	CCCTAGAATT	TCTCCTTCAT	TCCAAAGTAC	AAACATACTT	1140	
50	TGAAGAATGA	AACAGATTGT	TCCCATGAAT	GTATGCTCAT	ACTCGACTAG	AAACGATCTA	1200	
	TGTTAAATGA	CTGTGTATAT	GAATTATTC	AGTACTACC	CCAAATAACT	TTCTTATTGC	1260	
	TCTGAAAGAA	AAAAGCAAT	GTAAATCACT	ATGATTATTG	CACAAACAAAC	CAGAATTCTC	1320	
	CAACAATT	AAAGTAACTG	ATCCTCTTCT	TGGAGAAAAT	TGTTACCTAA	TAGTTTTCC	1380	
55	TTATGAATGT	TATTACTACT	GGTATAAAATC	AAATTCTAT	AAATTCCTA	CTTAAAGTCT	1440	
	TAARAACCTG	GTTCTCCTT	TGATGTTATT	CATGTTCA	AAGGGAAACA	ACACTTTACT	1500	
	TTTTTAGGGA	CAATTCTAG	AATCTATAGT	AGTATCAGGA	TATATTTGC	TTTAAATAT	1560	
	ATTTTGGTTA	TTTGAAATAC	AGACATTGGC	TCCAAATT	CATCTTGCA	CAATAGTATG	1620	
60	ACTTTCACT	AGAACCTCTC	ACATTTGGG	AACTTTGCAA	ATATGAGCAT	CATATGTTG	1680	
	AAGGCTGTAT	CATTAAATGC	TATGAGATAC	ATTGTTTCT	CCCTATGCCA	AACAGGTGAA	1740	
	CAAACGTAGT	TGTTTTTAC	TGATACTAA	TGTTGGCTAC	CTGTGATTT	ATAGTATGCA	1800	
65	CATGTCAGAA	AAAGGCAAGA	CAAATGCC	CTTGACTG	ATACTTCGGC	AAACTTATTG	1860	
	GGGTCTTCAT	TTTCTGACAG	ACAGGATTG	ACTCAATATT	TGTAGAGCTT	CGCTAGGAAT	1920	
	GGGATTACAT	GGGTAGTGT	GCACGGTAG	GAAATGGTT	TTAGTTATTG	ACTCAGGAAT	1980	
	TCATCTCGG	ATGAATCTT	TATGCTTTT	TATTGTAAGG	CATATCTGGA	ATTACTTTA	2040	
	TAAAGGCGG	GTGTTAGGAA	GCTTGTCT	AAAAATTGGG	CCCCGGGGAT	GGGAACITCA	2100	
	TTTCAGTTG	CCAAGGGTA	AAAAATAAT	ATGTGTGTTG	TTATGTTAT	TTAACATAT	2160	
	TATTAGGTAC	TATCTATGAA	TGTATTAA	TATTTCTAT	ATTCTGTGAC	AAGCATTAT	2220	
	AATTTGCAAC	AAGTGGAGTC	CATTTAGCCC	AGTGGGAAAG	TCTTGGAACT	CAGGTTACCC	2280	
	TTGAAAGGATA	TGCTGGCAGC	CATCTCTTGT	ATCTGTGCTT	AAACTGTAAT	TTATAGACCA	2340	
70	GCTAAATCCC	TAACCTGGAT	CTGGAATGCA	TTACTTATGA	CCTTGTACCA	TTCCCAGAAT	2400	
	TTCAGGGGCA	TCGTGGGTTT	GGTCTAGTGA	TTGAAAACAC	AAGAACAGAG	AGATCCAGCT	2460	
	GAAAAGAGT	GATCCTCAAT	ATCCTAACTA	ACTGGCCTC	AACTCAAGCA	GAGTTCTTC	2520	
75	ACTCTGGCAC	TGTGATCATG	AAACTTAGTA	GAGGGGATTG	TGTGATT	ATACAAATT	2580	

AATACAATGT CTTACATTGA TAAAATTCTT AAAGAGCAAA ACTGCATTTT ATTTCTGCAT 2640
 CCACATTCCA ATCATATTAG AACTAAGATA TTTATCTATG AAGATATAAA TGGTGCAGAG 2700
 AGACTTCAT CTGTGGATTG CGTTGTTCT CTAGGGTTCC TCAGCCACTG ATGCCCGGCC 2760
 ACAAGCCATG TGATATGTGA ATAAGGAGG GATTCTTCCT ATAGCCTAAA TGAAGTTCCC 2820
 5 TCTGGGAGA GTTCTGGTAC TGCAATCACA ATGCCAGATG GTGTTATGG GCTATTGTG 2880
 TAAGTAAGTG GTAAGATGCT ATGAAGTAAG TGTGTTGTT TTCATCTTAT GGAAACTCTT 2940
 GATGCATGTG CTTTGTATG GAATAAAATT TGTTGCAATA TGATGTCATT CAACTTGCA 3000
 TTGAATTGAA TTTTGGTTGT ATTATACCTG TCACGCTTCT AGTTGCTTCA 3060
 ACCATTTAT AACCATTTT GTACATATT TACTTGAAAA TATTTAAAT GGAAATTAA 3120
 10 ATAAACATTT GATAGTTAC ATAAAAAAA AAAAAAAA A

a51
15 AAD2 DNA sequence

Gene name: Thrombospondin-1

Unigene number: Hs_07469

Probeset Accession #: AA232645

Nucleic Acid Accession #: NM_003246

Coding sequence: 112-3624 (predicted start/stop codons underlined)

20	GGACGCACAG GCATTCGGCG CGCCCCCTCCA GCCCTCGCCG CCCTCGCCAC CGCTCCCGGC 60
	CGCCCGCGCTC CGGTACACAC AGGATCCCTG CTGGGCACCA ACAGCTCCAC CATGGGGCTG 120
	GCCTGGGGAC TAGGCGTCCCT GTTCTGTATG CATGTGTGTG GCACCAACCG CATTCCAGAG 180
	TCTGGCGGAG ACAACAGCGT GTTTGACATC TTTGAACCTCA CCGGGGCCGC CCGCAAGGGG 240
	TCTGGCGGCC GACTGGTGAAG GGGCCCGAC CTTCCAGCC CAGCTTCCG CATCGAGGAT 300
	GCCAACCTGA TCCCCCTGT GCCTGATGAC AAGTCCAAG ACCTGGTGA TGCTGTGCGG 360
25	GCAGAAAAGG GTTCTCTCT TCTGGCATCC CTGAGGCAGA TGAAGAAGAC CCGGGGCACG 420
	CTGCTGGCCC TGGAGCGGAA AGACCACCTCT GGCCAGGTCT TCAGCGTGGT GTCCAATGGC 480
	AAGGCGGGCA CCCTGGACCT CAGCCTGACC GTCCAAGGAA AGCAGCACGT GGTGTCGTG 540
	GAAGAAGCTC TCCTGGCAAC CGGCCAGTGG AAGAGCATCA CCCTGTTGT GCAGGAAGAC 600
	AGGGCCCAGC TGTACATCGA CTGTGAAAAG ATGGAGAATG CTGAGTTGGA CGTCCCCATC 660
30	CAAAGCGTCT TCACCAAGAGA CCTGGCCAGC ATGCCAGAC TCCGCATCGC AAAGGGGGGC 720
	GTCAATGACA ATTTCCAGGG GGTGCTGCAG AATGTGAGGT TTGTCCTTGG AACACACCA 780
	GAAGACATCC TCAGGAACAA AGGCTGCTCC AGCTCTACCA GTGTCCTCT CACCCCTTGAC 840
	AACAACGTGG TGAATGGTTC CAGCCCTGCC ATCCGCACT ACTACATTGG CCACAAGACA 900
	AAGGACTTGC AAGCCATCTG CGGCATCTCC TGTGATGAGC TGTCCAGCAT GGTCTGGAA 960
35	CTCAGGGGCC TGGCACCAC TGTGACCAAG CTGCGGAGA GCATCCGCAA AGTGAATGAA 1020
	GAGAACAAAG AGTTGGCCAA TGAGCTGAGG CGGCCCTCCCC TATGCTATCA CAACGGAGTT 1080
	CACTACAGAG ATAACGAGGA ATGGACTGTT GATAGCTGCA CTGAGTGTCA CTGTCAGAAC 1140
	TCAGTTACCA TCTGCAAAAA GGTGCTCTGC CCCATCATGC CTCGCTCCAA TGCCACAGTT 1200
	CCTGATGGAG AATGCTGTCC TCGCTGTTGG CCCAGCGACT CTGCGGAGA TGGCTGGTCT 1260
40	CCATGGTCCG AGTGGACCTC CTGTTCTACG AGCTGTGGCA ATGGAATTCA GCAGCGGGC 1320
	CGCTCCTGGC ATAGCCTCAA CAACCGATGT GAGGGCTCCT CGGTCCAGAC ACGGACCTGC 1380
	CACATTCAAG AGTGTGACAA AAGATTAAA CAGGATGGTG GCTGGAGCCA CTGGTCCCCG 1440
	TGGTCATCTT GTTCTGTGAC ATGTGGTGAT GGTGATGATCA CAAGGATCCG GCTCTGCAAC 1500
	TCTCCCAGCC CCCAGATGAA TGGGAAACCC TGTGAAGGCG AAGCGCGGA GACCAAAGCC 1560
45	TGCAAGAAAG ACGCCTGCC CATCAATGGA GGCTGGGTC CTTGGTCACC ATGGGACATC 1620
	TGTTCTGTCA CCTGTGGAGG AGGGGTACAG AAACGTAGTC GTCTCTGCAA CAACCCCGCA 1680
	CCCCAGTTG GAGGCAAGGA CTGCGTGGT GATGTAACAG AAAACCAGAT CTGCAACAAG 1740
	CAGGACTGTC CAATTGATGG ATGCCTGTCC AATCCCTGCT TTGCCGGCGT GAAAGTGTACT 1800
	AGCTACCCCTG ATGGCAGCTG GAAATGTGGT GCTTGTCCCC CTGGTTACAG TGGAAATGGC 1860
50	ATCCAGTGC AAGATGTTGA TGAGTGCAGA GAAAGTGCCTG ATGCCCTGCTT CAACCCACAAT 1920
	GGAGAGCACC GGTGTCAGAGA CACGGACCCC GGCTACAACG GCCTGCCCTG CCCCCCACGC 1980
	TTCACCGGCT CACAGCCCTT CGGCCAGGGT GTCGAACATG CCACGGCCAA CAAACAGGTG 2040
	TGCAAGCCCC GTAACCCCTG CACGGATGGG ACCCCACGACT GCAACAAGAA CGCCAAAGTGC 2100
	AACTACCTGG GCCACTATAG CGACCCCATG TACCGCTGCG AGTGAAGGCC TGGCTACGCT 2160
55	GGCAATGGCA TCATCTGCGG GGAGGACACCA GACCTGGATG GCTGGCCCAA TGAGAACCTG 2220
	GTGTGGTGG CCAATTCGAC TTACCACTGC AAAAGGATA ATTGCCCCAA CCTTCCCAAC 2280
	TCAGGGCAGG AAGACTATGA CAAGGATGGA ATTGGTGATG CCTGTGATGA TGACGATGAC 2340
	AATGATAAAA TTCCAGATGA CAGGGACAAAC TGTCCATTCC ATTACAACCC AGTCAGTAT 2400
	GACTATGACA GAGATGATGT GGGAGACCG TGTGACAACG GTCCCTACAA CCACAACCCA 2460
60	GATCAGGCGAG ACACAGACAA CAATGGGAA GGAGACGCCT GTGCTGCAGA CATTGATGGA 2520
	GACGGTATCC TCAATGAAACG GGACAACCTGC CAGTACGTCT ACAATGTGGA CCAGAGAGAC 2580
	ACTGATATGG ATGGGGTTGG AGATCAGTGT GACAATTGCC CTTGGAAACA CAATCCGGAT 2640
	CAGCTGGACT CTGACTCAGA CCGCATTGGA GATACTGTG ACAACAAATCA GGATATTGAT 2700
	GAAGATGGCC ACCAGAACAA TCTGGACAAAC TGTCCCTATG TGCCCAATGC CAACCAGGCT 2760
65	GACCATGACA AAGATGGCAA GGGAGATGCC TGTGACCAAG ATGATGACAA CGATGGCATT 2820
	CCTGATGACA AGGACAACCTG CAGACTCGTG CCCAATCCCG ACCAGAAGGA CTCTGACGGC 2880
	GATGGTCGAG GTGATGCTG CAAAGATGAT TTTGACCATG ACAGTGTGCC AGACATCGAT 2940
	GACATCTGTC CTGAGAACATGT TGACATCACT GAGACCGATT TCCGGCGATT CCAGATGATT 3000

5 CTCCTGGACC CCAAAGGGAC ATCCCAAAAT GACCCTAACT GGGTTGTACG CCATCAGGGT 3060
 AAAGAACTCG TCCAGACTGT CAACTGTGAT CCTGGACTCG CTGTAGGTTA TGATGAGTTT 3120
 AATGCTGTGG ACTTCAGTGG CACCTTCTTC ATCAACACCG AAAGGGACCA TGACTATGCT 3180
 GGATTTGTCT TTGGCTACCA GTCCAGCAGC CGCTTTATG TTGTGATGTG GAAGCAAGTC 3240
 ACCCAGTCCT ACTGGGACAC CAACCCCACG AGGGCTCAGG GATACTCGGG CTTTCTGTG 3300
 AAAGTTGTAA ACTCCACAC AGGGCCTGGC GAGCACCTGC GGAACGCCCT GTGGCACACA 3360
 CGAAACACCC CTGGCCAGGT GCGCACCCCTG TGGCATGACC CTCGTCACAT AGGCTGGAAA 3420
 GATTTCACCG CCTACAGATG GCGTCTCAGC CACAGGCCAA AGACGGGTTT CATTAGAGTG 3480
 GTGATGTATG AAGGGAAGAA AATCATGGCT GACTCAGGAC CCATCTATGA TAAAACCTAT 3540
 10 GCTGGTGGTA GACTAGGGTT GTTGTCTTC TCTCAAGAAA TGGTGTCTT CTCTGACCTG 3600
 AAATAACGAAT GTAGAGATCC CTAATCATCA AATTGTTGAT TGAAAGACTG ATCATAAAC 3660
 AATGCTGGTA TTGCACCTTC TGGAACATATG GGCTTGAGAA AACCCCCAGG ATCACTTCTC 3720
 CTTGGCTTCC TTCTTTCTG TGCTTGACATC AGTGTGGACT CCTAGAACGT GCGACCTGCC 3780
 TCAAGAAAAT GCAGTTTCA AAAACAGACT CATCAGCATT CAGCCTCCAA TGAATAAGAC 3840
 15 ATCTTCCAAG CATATAAACAA ATTGCTTTGG TTTCCTTTG AAAAAGCATE TACTTGCTTC 3900
 AGTTGGGAAG GTGCCATTC CACTCTGCCT TTGTACAGA GCAGGGTGC ATTGTGAGGC 3960
 CATCTCTGAG CAGTGGACTC AAAAGCATT TCAGGCATGT CAGAGAAGGG AGGACTCACT 4020
 AGAATTAGCA AACAAACCA CCCTGACATC CTCCTCAGG AACACGGGA GCAGAGGCCA 4080
 AAGCACTAAG GGGAGGGCGC ATACCCGAGA CGATTGTATG AAGAAAATAT GGAGGAACATG 4140
 TTACATGTTC GGTACTAAGT CTTTCAGG GGATTGAAAG ACTATTGCTG GATTTCATGA 4200
 TGCTGACTGG CGTTAGCTGA TTAACCCATG TAAATAGGCA CTTAAATAGA AGCAGGAAAG 4260
 GGAGACAAAG ACTGGCTCT GGACTTCCTC CCTGATCCCC ACCCTTACTC ATCACCTTGC 4320
 AGTGGCCAGA ATTAGGAAAT CAGAATCAA CCAGTGTAAAG GCAGTGTGG CTGCCATTGC 4380
 CTGGTCACAT TGAAATTGGT GGCTTCATTC TAGATGTAGC TTGTGCAGAT GTAGCAGGAA 4440
 AATAGGAAAA CCTACCATCT CAGTGAGCAC CAGCTGCCTC CCAAAGGAGG GGCAGCCGTG 4500
 CTTATATTTT TATGGTTACA ATGGCACAAA ATTATTATCA ACCTAACTAA AACATTCCTT 4560
 TTCTCTTTT TCCGTATTAA CTAGGTAGTT TTCTAATTCT CTCTTTTGA AGTATGATT 4620
 TTTTAAAGTC TTTACGATGT AAAATATTAA TTTTTACTT ATTCTGGAAG ATCTGGCTGA 4680
 AGGATTATTTC ATGGAACAGG AAGAAGCGTA AAGACTATCC ATGTCACTT TGTTGAGAGT 4740
 CTTCGTGAATC GTAAGATTGT AAATACAGAT TATTATTAA CTCTGTTCTG CCTGGAAATT 4800
 TAGGCTTCAT ACGGAAAGTG TTTGAGAGCA AGTAGTTGAC ATTTATCAGC AAATCTTTG 4860
 CAAGAACAGC ACAAGGAAAA TCAGTCTAAAT AAGCTGCTCT GCCCCTTGTG CTCAGAGTGG 4920
 ATGTTATGGG ATTCCCTTTT TCTCTGTTT ATCTTTCAA GTGGAATTAG TTGGTTATCC 4980
 ATTTGCAAAT GTTTAAATT GCAAAGAAAG CCATGAGGTC TTCAAACTG TTTTACCCCA 5040
 TCCCTGTGC ATATTCCAG GGAGAAGGAA AGCATATACA CTTTTTCTT TCATTTTTCC 5100
 AAAAGAGAAA AAAATGACAA AAGGTGAAAC TTACATACAA ATATTACCTC ATTTGTTGTG 5160
 TGACTGAGTA AAGAATTTTT GGATCAACCG GAAAGAGTTT AAGTGTCTAA CAAACTTAAA 5220
 GCTACTGTAG TACCTAAAAA GTCACTGTTG TACATAGCAT AAAACTCTG CAGAGAAGTA 5280
 TTCCAATAA GGAAATAGCA TTGAAATGTT AAATACAATT TCTGAAAGTT ATGTTTTTTT 5340
 40 TCTATCATCT GGTATACCAT TGCTTTTATT TTATAAAATT TTCTCTCATT GCCATTGGAA 5400
 TAGAATATTTC AGATTGTGTA GATATGCTAT TTAAAAAATT TATCAGGAAA TACTGCCTGT 5460
 AGAGTTAGTA TTTCTATTAA TATATAATGT TTGCACACTG AATTGAAGAA TTGTTGGTTT 5520
 TTTCTTTTTT TTGTTTTTTT TTTTTTTTT TTTTTTTTG CTTTGACCT CCCATTTTA 5580
 CTATTGCCA ATACCTTTT CTAGGAATGT GCTTTTTTT GTACACATT TTATCCATT 5640
 45 TACATTCTAA AGCAGTGTAA GTTGTATATT ACTGTTCTT ATGTACAAGG AACACAATA 5700
 AATCATATGG AAATTATAT TT

AAD9 DNA sequence

Gene name: LIM homeobox protein cofactor (CLIM-1)

Unigene number: Hs_1980

Probeset Accession #: F13782

Nucleic Acid Accession #: AF047337

Coding sequence: 110-1231 (predicted start/stop codons underlined)

50 GTGAGCGTGT GTGCGTGGCGT CTACTTTGTA CTGGGAAGAA CACAGCCCAT GTGCTCTGCA 60
 TGGACGTTAC TGATACTCTG TTTAGCTTG A TTTTCGAAAA GCAGGCAAGA TGTCCAGCAC 120
 ACCACATGAC CCCTCTTATT CTCTCTCTT CCGCCCATTT TATAGGAGGC ATACACCATTA 180
 CATGGTACAG CCAGAGTACC GAATCTATGA GATGAACAAG AGACTGCA AT CTCGCACAGA 240
 GGATAGTGAC AACCTCTGGT GGGACGCCCT TGCCACTGAA TTTTTTG AG ATGACGCCAC 300
 ATTAACCCCT TCATTGTT TTGAAAGATGG ACCAAAGCGA TACACTAATCG GCAGGACCCCT 360
 CATCCCCCGT TACTTTAGCA CTGTGTTGA AGGAGGGGTG ACCGACCTGT ATTACATTCT 420
 CAAACACTCG AAAGAGTCAT ACCACAACTC ATCCATCACG GTGGACTGCG ACCAGTGTAC 480
 CATGGTCACC CAGCACGGGA AGCCCATGTT TACCAAGGTA TGTACAGAAG GCAGACTGAT 540
 60 CTTGGAGTTC ACCTTTGATG ATCTCATGAG AATCAAAACA TGGCACTTTA CCATTAGACA 600
 ATACCGAGAG TTAGTCCCGA GAAGCATCCT AGCCATGCAT GCACAAGATC CTCAGGTCCCT 660
 GGATCAGCTG TCCAAAAACA TCACCAGGAT GGGGCTAACAA AACTTCACCC TCAACTACCT 720
 CAGGTTGTGT GTAATATTGG AGCCAATGCA GGAACGTGATG TCGAGACATA AAACATTACAA 780

CCTCAGTCCC CGAGACTGCC TGAAGACCTG CTTGTTTCAG AAGTGGCAGA GGATGGTGGC 840
 TCCGCCAGCA GAACCCACAA GGCAACCAAC AACCAAACGG AGAAAAAGGA AAAATTCCAC 900
 CAGCAGCACT TCCAACAGCA GCGCTGGAA CAATGCAAAC AGCACTGGCA GCAAGAAGAA 960
 GACCACAGCT GCAAAACCTGA GTCTGTCCAG TCAGGTACCT GATGTGATGG TGGTAGGAGA 1020
 5 GCAACTCTG ATGGGAGGTG AGTTTGGGA CGAGGACGAA AGGCTAATCA CTAGATTAGA 1080
 AACACACGCAA TATGATGCGG CCAACGGCAT GGACGACGAG GAGGACTTCACA ACAATTCAAC 1140
 CGCGCTGGGG ACAAACAGCC CGTGGAACAG TAAACCTCCC GCCACTCAAG AGACCAAATC 1200
 AGAAAACCCC CCACCCCAAGG CTTCCCAATA AGATGATCGG CACCAGAATC CACTGTCAAT 1260
 AGGCCCGTGG GTGATCATTAA CAATTGCAA TCTTTACTTA CAGGAGAGGA AACAGAAGAG 1320
 10 ATAAAAACTT TTCCATGCAA ATATCTATTCTAAACACATA ATGATCTGAT TTTCTTCTT 1380
 CTTTCTTTTT TTCTAATTGA GAGGATTATT CCCAGTAAGC TTCCATGACC CTTTCTTGG 1440
 GCCCTTCACA GGTAATACAG ATACTGGCAC TGATTGTAAT TAAAATGAGA GAAAACCTCTA 1500
 GCGCATCTTC TGGCACGGTT TTAACAAACGTT GTTTGTGTTG AATTTCCTT TTATGCATCA 1560
 AACGAAGGCC ATATTGTC TAAATGCTCA GTGCTCAGGA TCTCATTAAAT ATGCCGAACC 1620
 15 TAACTACAGA TGACTTTTA ATATTGTAAT ATATTTCCTG CTTTTTGACT TGCACTCTGAG 1680
 AGTTTCTTGT TTCAGAAAA AAAGAAAAGA CAAAAAAATC AGCTTTGGAA AGTAATTAA 1740
 ATGTACCTTA TTTTTTTTT CTTTATGTT TCTTTCATTG GGCAACAGCT AAGAGGGCCC 1800
 AGCAAGGTAA TTTATGGTTG AGCTGATGTC AATTGGTTCT TGCTTGAGT CGACTCAATT 1860
 TAGCCCAAGT GCTGAAACAA GAAATGTCAT TTTTTTCATC AAAGACACCA GGGCAGATT 1920
 TTAAGTAAAG AAAGACAATT GGACCCCTAA GAATTGATGC ATTGTAAGG TTGCTGTTGA 1980
 TCCAAATATT TTCAAGCCAT GTAATCCAT GGTTTGTGG GCAGTTAAT AACCTGAAC 2040
 CTTTGTGTGT TTTCTAATTG TACCTGAGT GACCACCTT CTTTTTTATA GTATATTCT 2100
 TGTATGATAT TTTGTAAGC TCTCACCTGG TTCTTTATG GGGACTTTTC GTTTTGGGC 2160
 AACTCCAGTG TATTATGTA AAACTTATA AGAGAATTAA TTTTCCATT TGCAATTAA 2220
 20 TATGTTCCCTC CACACATGTA AAGGCACAGT GGCTCCGTGT GTTAAAAAAC AGCTGTATTT 2280
 TATGTATGCT TTACTGATAA GTGTGCCAAT AATAACTGT GTTAATGACC

AAE1 DNA sequence

Gene name: guanine nucleotide binding protein 11
 Unigene number: Hs.83381
 Probeset Accession #: U31384
 Nucleic Acid Accession #: NM_004126.1
 Coding sequence: 108-329 (predicted start/stop codons underlined)

30 GGCACGAGCT CGTGCAGGCC TTCAGTTGTT TCGGGACGCG CCGAGCTTCG CCGCTCTTCC 60
 AGCGGCTCCG CTGCCAGAGC TAGCCCGAGC CCGGTCTGG GCGAAAATG CCTGCCCTTC 120
 ACATCGAAGA TTTGCCAGAG AAGGAAAAC TGAAAATGGA AGTTGAGCAG CTTCGCAAAG 180
 AAGTGAAGTT GCAGAGACAA CAAGTGTCTA AATGTTCTGA AGAAATAAAAG AACTATATTG 240
 40 AAGAACGTT TCAGGAGGAT CCTCTAGTAA AGGGAATTCTC AGAAGACACA AACCCCTTTA 300
 AAGAAAAAGG CAGCTGTGTT ATTTCATAAA TAACCTGGGA GAAACTGCACT CCTAAAGTGG 360
 AGAACTAGTT TGTTTAGTT TCTCCAGATA AAACCAACAT GCTTTTTAAG GAAGGAAGAA 420
 TGAAATTAAA AGGAGACATT CTTAACGACC ATATAGATAG GTTATGAT AAAAGCATAT 480
 GTGCTACTCA TCTTGTCTCA CTATGCACTC TTTTTAAGA GAGCAGAGAG TATCAGATGT 540
 45 ACAATTATGG AAATAAGAAC ATTACTTGAG CATGACACTT CTTTCAGTATTGCTTGAT 600
 GCTTCAAATA AAGTTTGTC TT

AAE2 DNA sequence

Gene name: Transcription factor 4 (immunoglobulin transcription factor 2) (ITF-2)
 (SL3-3 Enhancer factor 2) (SEF-2)
 Unigene number: Hs.289068
 Probeset Accession #: M74719
 Nucleic Acid Accession #: NM_003199.1
 Coding sequence: 200-2203 (predicted start/stop codons underlined)

50 CGGGGGGATC TTGGCTGTGT GTCTGCGGAT CTGTAGTGGC GGCAGGGCG GCGGGCGCGG 60
 GGAGGCAGCA GGCAGGGGAG CGGGCGCAGG AGCAGGGCGG GCGGGTGGCG GCGGGCGTTA 120
 GACATGAACG CCGCTCTGGC GCCGGCGGTG CACGGAGAGC CCCTTCTCGC GCGGGGGCGG 180
 60 TTTGTGTGAT TTTGCTAAAAA TGCAATCACCA ACAGCGAATG GCTGCCCTAG GGACGGACAA 240
 AGAGCTGAGT GATTTACTGG ATTTCAGTGC GATGTTTCA CCTCTGTGA GCAGTGGAA 300
 AAATGGACCA ACTTCTTTGG CAAGTGGACA TTTTACTGGC TCAAATGAG AAGACAGAAG 360
 TAGCTCAGGG TCTCTGGGGAA ATGGAGGACA TCCAAAGCCCG TCCAGGAACAT ATGGAGATGG 420
 GACTCCCTAT GACCACATGA CCAGCAGGGA CCTTGGGTCA CATGACAAATC TCTCTCCACC 480
 65 TTTTGTCAAT TCCAGAATAC AAAGTAAAAC AGAAAGGGC TCATACTCAT CTTATGGAG 540
 AGAATCAAAC TTACAGGGTT GCCACCAAGCA GAGTCTCCCTT GGAGGTGACA TGGATATGGG 600
 CAACCCAGGA ACCCTTTCGC CCACCAAACCC TGGTTCCCAG TACTATCAGT ATTCTAGCAA 660
 TAATCCCCGA AGGAGGCCTC TTCACAGTAG TGCCATGGAG GTACAGACAA AGAAAGTTCG 720

AAAAGTTCCCT CCAGGTTTGC CATCTTCAGT CTATGCTCCA TCAGCAAGCA CTGCCGACTA 780
 CAATAGGGAC TCGCCAGGCT ATCCTTCCTC CAAACCAGCA ACCAGCACTT TCCCTAGCTC 840
 CTTCTTCATG CAAGATGGCC ATCACAGCAG TGACCCCTGG AGCTCCTCCA GTGGGATGAA 900
 TCAGCCTGGC TATGCAGGAA TGTTGGGCAA CTCTTCTCAT ATTCCACAGT CCAGCAGCTA 960
 5 CTGTAGCCTG CATCCACATG AACGTTTGAG CTATCCATCA CACTCCTCAG CAGACATCAA 1020
 TTCCAGTCTT CCTCCGATGT CCACTTCCA TCGTAGTGGT ACAAACATT ACAGCACCTC 1080
 TTCCCTGTACG CCTCCTGCCA ACGGGACAGA CAGTATAATG GCAAATAGAG GAAGCGGGGC 1140
 AGCCGGCAGC TCCCAGACTG GAGATGCTCT GGGGAAAGCA CTTGCTTCGA TCTATTCTCC 1200
 AGATCACACT AACAAACAGCT TTCATCAAA CCCTTCAACT CCTGTTGGCT CTCCTCCATC 1260
 10 TCTCTCAGCA GGCACAGCTG TTTGGTCTAG AAATGGAGGA CAGGCCTCAT CGTCTCCTAA 1320
 TTATGAAGGA CCCTTACACT CTTTGCAAAG CCGAATTGAA GATCGTTAG AAAGACTGGA 1380
 TGATGCTATT CATGTTCTCC GGAACCATGC AGTGGGCCA TCCACAGCTA TGCCCTGGTGG 1440
 TCATGGGGAC ATGCATGGAA TCATTGGACC TTCTCATAAT GGAGCCATGG GTGGTCTGGG 1500
 15 CTCAGGGTAT GGAACCGGCC TTCTTCAGC CAACAGACAT TCACTCATGG TGggGACCCA 1560
 TCGTGAAGAT GGCCTGGCCC TGAGAGGCAG CCATTCTCTT CTGCCAAACC AGGTTCCGGT 1620
 TCCACAGCTT CCTGTCAGT CTGCGACTCT CCCTGACCTG ACCCCACCC AGGACCCCTTA 1680
 CAGAGGCATG CCACCAAGGAC TACAGGGCA GAGTGTCTCC TCTGGCAGCT CTGAGATCAA 1740
 ATCCGATGAC GAGGGTGTAG AGAACCTGCA AGACACGAAA TCTTCCGAGG ACAAGAAATT 1800
 AGATGACGAC AAGAAGGATA TCAAACTAAT TACTAGCAAT AATGACGATG AGGACCTGAC 1860
 20 ACCAGAGCAG AAGGCAGAGC GTGAGAAGGA GCGGAGGATG GCCAACAAATG CCCGAGAGCG 1920
 TCTGCGGGTC CGTGCATCA ACGAGGCTTT CAAAGAGCTC GGCGCGATGG TGCAGCTCCA 1980
 CCTCAAGAGT GACAAGCCCC AGACCAAGCT CCTGATCCTC CACCAAGGCC TGCCCGTCAT 2040
 CCTCAGTCTG GAGCAGCAAG TCCGAGAAAG GAATCTGAAT CCGAAAGCTG CGTGTCTGAA 2100
 AAGAAGGGAG GAAGAGAAGG TGTCTCGGA GCCTCCCCCT CTCTCCTTGG CCGGCCCCACA 2160
 CCCTGGAATG GGAGACGCAT CGAACATCACAT GGGACAGATG TAAAAGGGTC CAAGTTGCCA 2220
 CATTGCTCA TTAAAACAAG AGACCAACTTC CTTAACAGCT GTATTATCTT AAACCCACAT 2280
 AACACTTCT CCTTAACCCC CATTGGTGA ATATAAGACA AGTCTGAGTA GTTATGAATC 2340
 GCAGACGCAA GAGGTTTCAG CATTCCCAAT TATCAAAAAA CAGAAAAACA AAAAAAAAGAA 2400
 AGAAAAAAAGT GCAACTTGAG GGACGACTTT CTTAACATA TCATTCAAGAA TGTGCAAAGC 2460
 = 30 AGTATGTACA GGCTGAGACA CAGCCAGAG ACTGAACGGC

AAE4 DNA sequence

Gene name: phosphatidylcholine 2-acylhydrolase
 UniGene number: HS_211587
 Probeset Accession #: M68874
 Nucleic Acid Accession #: M68874
 Coding sequence: 139-2388 (predicted start/stop codons underlined)

40 GAATTCTCCG GAGCTGAAAA AGGATCTGA CTGAAAGCTA GAGGCATTGA GGAGCCTGAA 60
 GATTCTCAGG TTTTAAAGAC GCTAGAGTGC CAAAGAAGAC TTTGAAGTGT GAAAACATT 120
 CCTGTAATTG AAACCAAAAT GTCATTTATA GATCCTTACG AGCACATTAT AGTGGAGCAC 180
 CAGTATTCCC ACAAGTTAC GGTAGTGGTG TTACGTGCCA CCAAAGTGAC AAAGGGGCC 240
 TTTGGTACA TGCTTGATAC TCCAGATCCC TATGTGGAAC TTTTATCTC TACAACCCCT 300
 45 GACAGCAGGA AGAGAACAAAG ACATTTCAAT AATGACATAA ACCCTGTGTG GAATGAGACC 360
 TTTGAATTCA TTTTGGATCC TAATCAGGAA AATGTTTGG AGATTACGTT AATGGATGCC 420
 AATTATGTCA TGGATGAAAC TCTAGGGACA GCAACATTAA CTGTATCTC TATGAAGGTG 480
 GGAGAAAAAGA AAGAAGTTCC TTTTATTTTC AACCAAGTCA CTGAAATGGT TCTAGAAATG 540
 TCTCTGAAAG TTTGCTCATG CCCAGACCTA CGATTAGTA TGGCTCTGTG TGATCAGGAG 600
 50 AAGACTTTCA GACAACAGAG AAAAGAACAC ATAAGGGAGA GCATGAAGAA ACTCTGGGT 660
 CCAAAGAATA GTGAAGGATT GCATTCTGCA CGTGTATGTGC CTGTGGTAGC CATATTGGGT 720
 TCAGGTGGGG GTTTCCGAGC CATGGTGGGA TTCTCTGGTG TGATGAAGGC ATTATACGAA 780
 TCAGGAATTG TGGATTGTGC TACCTACGTT GCTGGTCTTT CTGGCTCCAC CTGGTATATG 840
 TCAACCTTGT ATTCTCACCC TGATTTCCA GAGAAAGGGC CAGAGGAGAT TAATGAAGAA 900
 55 CTAATGAAAA ATGTTAGCCA CAATCCCCCT TTACTCTCA CACCAAGAGA AGTTAAAAGA 960
 TATGTTGAGT CTTTATGGAA GAAGAAAAGC TCTGACAAAC CTGTACCTT TACTGACATC 1020
 TTTGGGATGT TAATAGGAGA AACACTAATT CATAATAGAA TGAATACTAC TCTGAGCAGT 1080
 TTGAAGGAAA AAGTAAATAC TGCACAAATGC CTTTACCTC TTTTACCTG TCTTCATGTC 1140
 60 AACACCTGACG TTTCAGAGCT GATGTTTGCA GATTGGGTTG AATTAGTCC ATACGAAATT 1200
 GGCATGGCTA AATGGTAC TTTTATGGCT CCCGACTTAT TTGGAAGCAA ATTGTTTATG 1260
 GGAACAGTCG TTAAGAAGTA TGAAGAAAAC CCCTTGCATT TCTTAATGGG TGTCTGGGGC 1320
 AGTGCCTTT CCATATTGTT CAACAGAGTT TTGGCGTTT CTGGTTCACA AAGCAGAGGC 1380
 TCCACAATGG AGGAAGAATT AGAAAATATT ACCACAAAGC ATATTGTGAG TAATGATAGC 1440
 TCGGACAGTG ATGATGAATC ACACGAACCC AAAGGCAGT AAAATGAAGA TGCTGGAAGT 1500
 65 GACTATCAA GTGATAATCA AGCAAGTTGG ATTCACTGTA TGATAATGGC CTTGGTGGAGT 1560
 GATTCAAGCTT TATTCAATAC CAGAGAAGGA CGTGCCTGGGA AGGTACACAA CTTCATGCTG 1620
 GGCTTGAATC TCAATACATC TTATCCACTG TCTCCTTGA GTGACTTTGC CACACAGGAC 1680
 TCCTTTGATG ATGATGAACT GGATGCAGCT GTAGCAGATC CTGATGAATT TGAGCGAATA 1740

5 TATGAGCCTC TGGATGTCAA AAGTAAAAAG ATTCATGTAG TGGACAGTGG GCTCACATT 1800
 AACCTGCCGT ATCCCTTGAT ACTGAGACCT CAGAGAGGG TTGATCTCAT AATCTCCTTT 1860
 GACTTTCTG CAAGGCCAAG TGACTCTAGT CCTCCGTTCA AGGAACCTCT ACTTGAGAA 1920
 AAGTGGGCTA AAATGAACAA GCTCCCCTT CCAAAGATTG ATCCTTATGT GTTGATCGG 1980
 GAAGGGCTGA AGGAGTGCTA TGTCTTAAA CCCAAGAACATC CTGATATGGA GAAAGATTGC 2040
 CCAACCATCA TCCACTTGT TCTGGCCAAC ATCAACTTCA GAAAGTACAA GGCTCCAGGT 2100
 GTTCCAAGGG AAACTGAGGA AGAGAAAGAA ATCGCTGACT TTGATATTT TGATGACCCA 2160
 GAATCACCAT TTCAACCTT CAATTTCAA TATCCAATC AAGCATTCAA AAGACTACAT 2220
 GATCTTATGC ACTTCAATAC TCTGAACAAC ATTGATGTGA TAAAAGAAGC CATGGTTGAA 2280
 10 AGCATTGAAT ATAGAAGACA GAATCCATCT CGTTGCTCTG TTTCCCTTAG TAATGTTGAG 2340
 GCAAGAAGAT TTTTCAACAA GGAGTTTCTA AGTAAACCCA AAGCATAGTT CATGTACTGG 2400
 AAATGGCAGC AGTTCTGAT GCTGAGGCAG TTTGCAATCC CATGACAACT GGATTAAAAA 2460
 GTACAGTACA GATAGTCGTA CTGATCATGA GAGACTGGCT GATACTCAA GTTGCAGTTA 2520
 CTTAGCTGCA TGAGAATAAT ACTATTATAA GTTAGGTGAC AAATGATGTT GATTATGTA 2580
 15 GGATATACTT AGCTACATTT TCAGTCAGTA TGAACCTTCCT GATACAAATC TAGGGATATA 2640
 TACTGTATTT TTAAACATTT CTCACCAACT TTCTTATGTC TGTTCTTTT AAAAATTTT 2700
 TTTCTTTAA AATATTTAAC AGTTCAATCT CAATAAGACC TCGCATTATG TATGAATGTT 2760
 ATTCACTGAC TAGATTATT CATACCATGA GACAACACTA TTTTATTAA TATATGCATA 2820
 TATATACATA CATGAAATAA ATACATCAAT ATAAAAATAA AAAAAAACGG AATTG

ACA1 DNA sequence

Gene name: tissue factor pathway inhibitor 2 TFPI2, placental protein 5 (PP5)

Unigene number: Hs.78045

Probeset Accession #: D29992

Nucleic Acid Accession #: D29992.1

Coding sequence: 57-764 (predicted start/stop codons underlined)

20 GCCGCCAGCG GCTTCTCGG ACGCCTGCC CAGGGGCCG CCCGACCCCC TGCACCATGG 60
 ACCCGCTCG CCCCTGGGG CTGTCGATTC TGCTGCTTTT CCTGACGGAG GCTGCACTGG 120
 GCGATGCTGC TCAGGAGCCA ACAGGAAATA ACGCGGAGAT CTGTCCTCTG CCCCTAGACT 180
 ACGGACCTG CCGGGCCCTA CTTCTCCGTT ACTACTACGA CAGGTACACG CAGAGCTGCC 240
 GCCAGTTCCCT GTACGGGGC TGCGAGGGCA ACGCCAACAA TTTCTACACC TGGGAGGCTT 300
 GCGACGATGC TTGCTGGAGG ATAGAAAAG TTCCCAAAGT TTGCGGGCTG CAAGTGAGTG 360
 TGGACGACCA GTGTGAGGGG TCCACAGAAA AGTATTCTT TAATCTAAGT TCCATGACAT 420
 GTGAAAAATT CTTTCCGGT GGGTGTACC GGAACCGGAT TGAGAACAGG TTTCCAGATG 480
 AAGCTACTTG TATGGGCTTC TGCGCACCAA AGAAAATTCC ATCATTTGC TACAGTCCAA 540
 AAGATGAGGG ACTGTGCTCT GCCAATGTGA CTCGCTATTA TTTTAATCCA AGATACAGAA 600
 CCTGTGATGC TTTCACCTAT ACTGGCTGTG GAGGAATGA CAATAAC GTTACGG 660
 30 AGGATTGCAA ACGTCATGT GCAAAAGCTT TGAAAAGAA AAAGAACATG CCAAAGCTTC 720
 GCTTTGCCAG TAGAACCGG AAAATCGGA AGAACCAATT TAAACATTC TTAATATGTC 780
 ATCTTGTGTTG TCTTATGGC TTATTTGCT TTATGGTTGT ATCTGAAGAA TAATATGACA 840
 GCATGAGGAA ACAATCATT GGTGATTAT TCACCAGTTT TTATTAATAC AAGTCACTTT 900
 TTCAAAATT TGGATTTTT TATATATAAC TAGCTGCTAT TCAAATGTGA GTCTACCATT 960
 40 TTTAATTAT GGTCAACTG TTTGTGAGAC GAATTCTGC AATGCATAAG ATATAAAAGC 1020
 AAATATGACT CACTCATTTC TTGGGGTGTG ATTCTGATT TCAGAAGAGG ATCATAACTG 1080
 AAACAACATA AGACAATATA ATCATGTGCT TTTAACATAT TTGAGAATAA AAAGGACTAG 1140
 CC

ACB8 DNA sequence

Gene name: myosin X

Unigene number: Hs.61638

Probeset Accession #: N77151

Nucleic Acid Accession #: NM_012334

Coding sequence: 223-6399 (predicted start/stop codons underlined)

50 GAGACAAAGG CTGCCGTGG GACGGGCGAG TTAGGGACTT GGGTTTGGGC GAACAAAAGG 60
 TGAGAAGGGAC AAGAACGGAC CGGGCGATGG CAGCGGGG GCCCCGCGGG CGCGCGTCCT 120
 60 CGGGAGTGGC GCCGTGACAC GCATGGTTT CCAACCCG CGGCGGCGCT GACTTCCGCG 180
 AGTCGGAGGC GCACTCGGCG AGTCCGGGAC TGCGCTGGAA CAATGGATAA CTTCTTCACC 240
 GAGGGAACAC GGGTCTGGCT GAGAGAAAAT GGCCAGCATT TTCCAAGTAC TGTAATTCC 300
 TGTGCAGAAG GCATCGTCGT CTTCCGGACA GACTATGGTC AGGTATTAC CTTACAAGCAG 360
 AGCACAATTA CCCACCAGAA GGTGACTGCT ATGCACCCCA CGAACGAGGA GGGCGTGGAT 420
 GACATGGCGT CCTTGACAGA GCTCCATGGC GGCTCCATCA TGTATAACTT ATTCCAGCGG 480
 65 TATAAGAGAA ATCAAATATA TACCTACATC GGCTCCATCC TGGCCTCCGT GAACCCCTAC 540
 CAGCCCACATCG CCGGGCTGTA CGAGCCTGCC ACCATGGAGC AGTACAGCCG GCGCCACCTG 600
 GCGGAGCTGC CCCCGCACAT CTTCGCCATC GCCAACGAGT GCTACCGCTG CCTGTGGAAG 660

	CGCTACGACA	ACCAAGTGCAT	CCTCATCAGT	GGTGAAAGTG	GGGCAGGTAA	AACCGAAAGC	720
	ACTAAATTGA	TCCTCAAGTT	TCTGTCAGTC	ATCAGTCAAC	AGTCTTGGA	ATTGTCCTTA	780
	AAGGAGAAGA	CATCCTGTGT	TGAACGAGCT	ATTCTTGAAA	GCAGCCCCAT	CATGGAAGCT	840
	TTCGGCAATG	CGAAGACCGT	GTACAACAAAC	AACTCTAGTC	GCTTTGGGAA	TTTTGTTTAG	900
5	CTGAACATCT	GTCAGAAAGG	AAATATTCAAG	GGCGGGAGAA	TTGTAGATTA	TTTATTAGAA	960
	AAAAACCGAG	TAGTAAGGCA	AAATCCCAGG	GAAAGGAATT	ATCACATATT	TTATGCACTG	1020
	CTGGCAGGGC	TGGAACATGA	AGAAAGAGAA	GAATTTTATT	TATCTACGCC	AGAAAACATAC	1080
	CACTACTTGA	ATCAGTCTGG	ATGTGTAGAA	GACAAGACAA	TCAGTGACCA	GGAACTCCTT	1140
	AGGGAAAGTTA	TTACGGCAAT	GGACGTGATG	CAGTTCAGCA	AGGAGGAAGT	TCGGGAAGTG	1200
10	TCGAGGCTGC	TTGCTGGTAT	ACTGCATCTT	GGGAACATAG	AATTATCAG	TGCTGGTGGG	1260
	GCACAGGTTT	CCTTCAAAAC	AGCTTTGGGC	AGATCTGCGG	AGTTACTTGG	GCTGGACCCCA	1320
	ACACAGCTCA	CAGATGCTTT	GACCCAGAGA	TCAATGTTCC	TCAGGGGAGA	AGAGATCCTC	1380
	ACGCCTCTCA	ATGTTCAACA	GGCAGTAGAC	ACGAGGGACT	CCCTGGCCAT	GGCTCTGTAT	1440
	GCGTGCTGCT	TTGAGTGGGT	AATCAAGAAG	ATCAACAGCA	GGATCAAAGG	CAATGAGGAC	1500
15	TTCAAGTCTA	TTGGCATTCT	CGACATCTTT	GGATTGAAA	ACTTTGAGGT	TAATCACTTT	1560
	GAACAGITCA	ATATAAACTA	TGCAAACAGG	AAACTTCAGG	AGTACTTCAA	CAAGCATATT	1620
	TTTCTTTAG	AACAACATAGA	ATATAGCCGG	GAAGGATTAG	TGTGGGAGA	TATTGACTGG	1680
	ATAGACAATG	GAGAACTGCT	GGACTTGATT	GAGAGAACAC	TTGGCCTCTT	AGCCCTTATC	1740
	AATGAAGAAA	GCCATTTC	TCAAGCCACA	GACAGCACCT	TATTGGAGAA	GCTACACAGT	1800
20	CAGCATGCGA	ATAACCACTT	TTATGTGAAG	CCCAGAGTTG	CAGTAAACAA	TTTGAGTG	1860
	AAGCACTATG	CTGGAGAGGT	GCAATATGAT	GTCCGAGGTA	TCTTGGAGAA	GAACAGAGAT	1920
	ACATTCGAG	ATGACCTCT	CAATTTGCTA	AGAGAAAGCC	GATTGACTT	TATCTACGAT	1980
	CTTTTGAAAC	ATGTTCAAG	CCGCAACAAAC	CAGGATACCT	TGAAATGTGG	AAGCAAACAT	2040
	CGGCGGCCCTA	CAGTCAGCTC	ACAGTTCAAG	GACTCACTGC	ATTCCCTTAAT	GGCAACGCTA	2100
25	AGCTCCTCTA	ATCCTTCTT	TGTTCGCTGT	ATCAAGCCAA	ACATGCAGAA	GATGCCAGAC	2160
	CAGTTGACC	AGGCGGTTGT	GCTGAACCAAG	CTGCGTACT	CAGGGATGCT	GGAGACTGTG	2220
	AGAATCCGCA	AAGCTGGT	TGCGGTCCGA	AGACCCTTC	AGGACTTTA	CAAAAGGTAT	2280
	AAAGTGTGA	TGAGGAATCT	GGCTCTGCC	GAGGACGTCC	GAGGGAAGTG	CACGAGCCTG	2340
	CTGCAGCTCT	ATGATGCC	CAACAGCGAG	TGGCAGCTGG	GGAAGACCAA	GGTCTTTCTT	2400
30	CGAGAACATCT	TGGAACAGAA	ACTGGAGAAAG	CGGAGGGAAG	AGGAAGTGAG	CCACGCGGCC	2460
	ATGGTATT	GGGCCATGT	TTGGGCTTC	TTAGCACGAA	AACAATACAG	AAAGGTCTT	2520
	TATTGTGTGG	TGATAATACA	GAAGAATTAC	AGAGCATTCC	TTCTGAGGAG	GAGATTTTG	2580
	CACCTGAAA	AGGCAGCCAT	AGTTTCCAG	AAGCAACTCA	GAGGTCAGAT	TGCTCGGAGA	2640
	GTTTACAGAC	AATTGCTGGC	AGAGAAAAGG	GAGCAAGAAG	AAAAGAAGAA	ACAGGAAGAG	2700
	GAAGAAAAGA	AGAAACGGGA	GGAAGAAGAA	AGAGAAAGAG	AGAGAGAGCG	AAGAGAACCC	2760
	GAGCTCCGCG	CCCAGCAGGA	AGAAGAACAC	AGGAAGCAGC	AAGAACTTCGA	AGCCTTGCAG	2820
35	AAGAGCCAGA	AGGAAGCTGA	ACTGACCCGT	GAACCTGGAGA	AACAGAAGGA	AAATAAGCAG	2880
	GTGGAAGAGA	TCCTCCGCT	GGAGAAAAGA	ATCGAGGACC	TGCGCGCAT	GAAGGAGCAG	2940
	CAGGAGCTGT	CGCTGACCGA	GGCTTCCCTG	CAGAACGCTG	AGGAGGGCG	GGACCAAGGAG	3000
40	CTCCGCAGGC	TGGAGGAGGA	AGCGTGCAGG	GGGGCCCGAG	AGTTCCCTCGA	GTCCCTCAAT	3060
	TTCGACGAGA	TCGACGAGTG	TGTCCGGAAAT	ATCGAGCGGT	CCCTGCGGT	GGGAAGCGAA	3120
	TTTCCAGCG	AGCTGGCTGA	GAGCGCATGC	GAGGAGAAGC	CCAACCTCAA	CTTCAGCCAG	3180
	CCCTACCCAG	AGGAGGAGGT	CGATGAGGGC	TTCGAAGCCG	ACGACGACCC	CTTCAAGGAC	3240
	TCCCCCAACC	CCAGCGAGCA	CGGCCACTCA	GACCAGCGAA	CAAGTGGCAT	CCGGACCAGC	3300
45	GATGACTCTT	CAGAGGAGGA	CCCATACTG	AACGACACGG	TGGTGCCAC	CAGCCCCAGT	3360
	GCGGACAGCA	CGGTGCTGCT	CGCCCCATCA	GTGCAGGACT	CCGGGAGCCT	ACACAACCTCC	3420
	TCCAGCGGCC	AGTCCACCTA	CTGCATGCC	CAGAACGCTG	GGGACTTGCC	CTCCCCAGAC	3480
	GGCGACTACG	ACTACGACCA	GGATGACTAT	GAGGACGGTG	CCATCACTTC	CGGCAGCAGC	3540
	GTGACCTCT	CCAACCTCTA	CCGCAGCCAG	TGGTCCCCCG	ACTACCGCTG	CTCTGTGGGG	3600
50	ACCTACAACA	GCTCGGGTGC	CTACCGGTT	AGCTCTGAGG	GGGCGCAGTC	CTCGTTTGAA	3660
	GATAGTGAAG	AGGACTTTGA	TTCCAGGTTT	GATACAGATG	ATGAGCTTTC	ATACCGCGT	3720
	GACTCTGTGT	ACAGCTGTGT	CACTCTGCC	TATTCACACA	GCTTTCTGTA	CATGAAAGGT	3780
	GGCCTGATGA	ACTCTTGGAA	ACGCCGCTGG	TGCGTCTCTCA	AGGATGAAAC	CTTCTGTGG	3840
	TTCCGCTCCA	AGCAGGAGGC	CCTCAAGCAA	GGCTGGCTCC	ACAAAAAAAGG	GGGGGGCTCC	3900
55	TCCACGCTGT	CCAGGAGAAA	TTGGAAGAAG	CGCTGGTTTG	TCCTCCGCCA	GTCCAAGCTG	3960
	ATGTACTTTG	AAAAGACAG	CGAGGAGAAAG	CTCAAGGGCA	CCGTAGAAGT	GGGAACGGCA	4020
	AAAGAGATCA	TAGATAAACAC	CACCAAGGG	AATGGGATCG	ACATCATTAT	GGCCGATAGG	4080
	ACTTCCACC	TGATTGAGA	GTCCCCAGAA	GATGCCAGCC	AGTGGTTCA	CGTGTGAGT	4140
	CAGGTCCACG	CGTCCACCGA	CCAGGAGATC	CAGGAGATGC	ATGATGAGCA	GGGAAACCC	4200
60	CAGAATGCTG	TGGGCACCTT	GGATGTTGGG	CTGATGATT	CTGTGTGTC	CTCGACAGC	4260
	CCTGATAGAC	CCAACCTGTT	TGTGATCATC	ACGGCCAACC	GGGTGCTGCA	CTGCAACGCC	4320
	GACACGCCGG	AGGAGATGCA	CCACTGGATA	ACCCCTGCTGC	AGAGGTCCAA	AGGGGACACC	4380
	AGAGTGGAGG	GCCAGGAATT	CATCGTGAAGA	GGATGGTTGC	ACAAAGAGGT	GAAGAACAGT	4440
	CCGAAGATGT	CTTCACGTAA	ACTGAAGAAA	CGGTGGTTTG	TACTCACCCA	CAATTCCCTG	4500
65	GATTACTACA	AGAGTTCAGA	GAAGAACCGG	CTCAAACCTG	GGACCCCTGGT	CCTCAACAGC	4560
	CTCTGCTCTG	TCGTCCCCCCC	AGATGAGAAAG	ATATTCAAAG	AGACAGGCTA	CTGGAACGTC	4620
	ACCGTGTACG	GGCGCAAGCA	CTGTTACCGG	CTCTACACCA	AGCTGCTCAA	CGAGGCCACC	4680
	CGGTGGTCCA	GTGCCATTCA	AAACGTGACT	GACACCAAGG	CCCCGATCGA	CACCCCCACC	4740

CAGCAGCTGA TTCAAGATAT CAAGGAGAAC TGCCTGAAC CGGATGTGGT GGAACAGATT 4800
 TACAAGCGGA ACCCGATCCT TCGATAACACC CATCACCCCT TGCACCCCC GCTCCTGCC 4860
 CTTCCGTATG GGGACATAAA TCTCAACTTG CTCAAAGACA AAGGCTATAC CACCCCTTCAG 4920
 GATGAGGCCA TCAAGATATT CAATTCCCTG CAGCAACTGG AGTCCATGTC TGACCCAATT 4980
 5 CCAATAATCC AGGGCATCCT ACAGACAGGG CATGACCTGC GACCTCTGCG GGACGAGCTG 5040
 TACTGCCAGC TTATCAAACA GACCAACAAA GTGCCCAACC CCGGCAGTGT GGGCAACCTG 5100
 TACAGCTGGC AGATCCGTGAC ATGCCTGAGC TGCACCTTCC TGCCGAGTC AGGGATTCTC 5160
 AAGTATCTCA AGTTCATCT GAAAAGGATA CGGGAACAGT TTCCAGGAAC CGAGATGGAA 5220
 AAATACGCTC TCTTCACCTA CGAATCTCTT AAGAAAACCA AATGCCGAGA GTTTGTGCCT 5280
 10 TCCCAGATG AAATAGAAC TCTGATCCAC AGGCAGGAAA TGACATCCAC GGTCTATTGC 5340
 CATGGCGCG GCTCCTGCAA GATCACCAC AACTCCCACA CCACTGCTGG GGAGGTGGTG 5400
 GAGAAGCTGA TCCGAGGCCT GCCCATGGAG GACAGCAGGA ACATGTTGCG TTTGTTGAA 5460
 TACAACGGCC ACGTGACAA AGCCATTGAA ACTCGAACCG TCGTAGCTGA TGTCTTAGCC 5520
 AAGTTGAAA AGCTGGCTGC CACATCCGAG GTTGGGACC TGCCATGGAA ATTCTACTTC 5580
 15 AAACCTTACT GCTTCCTGGA CACAGACAAAC GTGCCAAAG ACAGTGTGGA GTTTGCATTT 5640
 ATGTTTGAAC AGGCCAACGA AGCGGTTTAC CATGGCCACC ATCCAGCCCC GGAAGAAAAC 5700
 CTCCAGGTTC TTGCTGCCCT GCGACTCCAG TATCTGCAGG GGGATTATAC TCTGCACGCT 5760
 GCCATCCCAC CTCTCGAAGA GTTTTATTCC CTGCAGAGAC TCAAGGCCCC CATCAGCCAG 5820
 TCAACAAAAA CCTTCACCCC TTGTGAACGG CTGGAGAAGA GGCGGACGAG CTTCTAGAG 5880
 20 GGGACCTGA GGCAGGAGCTT CCGGACAGGA TCCGTGGTCC GGCAGAAAGGT CGAGGAGGAG 5940
 CAGATGCTGG ACATGTGGAT TAAGGAAGAA GTCTCTCTG CTCGAGCCAG TATCATTGAC 6000
 AAGTGGAGGA AATTTCAGGG AATGAACCAAG GAACAGGCCA TGGCAAGTA CATGGCCTTG 6060
 ATCAAGGAGT GGCCTGGCTA TGGCTCGACG CTGTTGATG TGGAGTGCAA GGAAGGTGGC 6120
 TTCCCTCAGG AACTCTGGTT GGGTGTCAAGC GCGGACGCCG TCTCCGTCTA CAAGCGTGG 6180
 GAGGGAAAGAC CACTGGAAGT CTTCCAGTAT GAACACATCC TCTCTTTGG GGCACCCCTG 6240
 GCGAATACGT ATAAGATCGT GTCGATGAG AGGGAGCTGC TCTTGAACAC CAGTGAAGGTG 6300
 GTGGATGTGG CCAAGCTCAT GAAAGCCTAC ATCAGCATGA TCGTGAAGAA GCGCTACAGC 6360
 ACGACACGCT CCGCCAGCAG CCAGGGCAGC TCCAGGTGAA GGCGGGACAG AGCCCACCTG 6420
 TCTTGTAC CTGAACGCAC CACCCCTCTGG CCTAGGCTGG CTCCAGTGTG CCATGCCAG 6480
 30 CCAAAACAAA CACAGAGCTG CCCAGGCTT CTGGAAGCTT CTGGTCTGAG GGAGGTGTCT 6540
 CCGAGGATCC TTTTGCCTGC CGCCTTCATT GATCCTGTAT TAAGCTGTCA ACTTTAACAG 6600
 TCTGCACAGT TTCCAAAGCT TTACTACTCT TAGAGGACAC ATGCCTTAA AAAGGAGGGG 6660
 AGGAACCACG CTGCCACCAA AGCAGCCGGA AGTGCCTTAA CTTGTGGAA CAACACTAAT 6720
 CGACCGTAAC TGTGCTACTG AAGGAAACTG CCTTTCCCCC TTCTGGGGGA GACTTAACAG 6780
 35 AGCGTGGAAAG GGGGGCATTC TCTGTCATG ATGCACTAAC CTCCCAACCT GATTTCCCCG 6840
 AATCTGAGGG AAGGTGAGGG AGTGGGAAGG GGGATGGAGA GCTCGAGGGG ACAGTGTGTT 6900
 TGAGCTGGAG TGCTGGGGC AGCCTTCTC ATGGAATGAC ATGAATCAAC TTTTTCTTT 6960
 GTTTCATCTT TTAAGTGTAC GTGCTGCAT GTGTTCATAA ACTCAACACT 7020
 TTAATCATGG TTTCATGAGC ATTAAAAGC AAAGGAAAAA AGGATGTGTA ATGGTGTACA 7080
 40 CAGTCTGTAT ATTTAATAAA TCGAGAGCTA TAGTCTCAAT TGTTACTTTA TAAGGTGGTT 7140
 TTATTAACAA ACCCAAATCC TGGATTTCC TGTCTTGCT GTATTTGAA AAACACGTGT 7200
 TGACTCCATT GTTTTACATG TAGCAAAGTC TGCCATCTGT GTCTGCTGTA TTATAAACAG 7260
 ATAAGCAGCC TACAAGATAA CTGTATTTAT AAACCACTCT TCAACAGCTG GCTCCAGTGC 7320
 TGGTTTAGA ACAAGAATGA AGTCATTTG GAGTCTTCAG TGTCTAAAG ATTTAAGTTA 7380
 45 AAAACAAAGT GTTACTTGGA AGGTAGCTT CTATCATTCT GGATAGATTA CAGATATAAT 7440
 ACCATGTTG ACTATGGGGG AGAGACGCTG CATTCCAGAA ACGTCTTAAC ACTTGAGTGA 7500
 ATCTTCAAAG GACCTGACA TTAAATGCTG AGGCTTAAT ACACACATAT TTTATCCAA 7560
 CTTTATAATG GTGGCTGAA CAAGGCACCT GTAAATAAT CAGCATTAT GACCAGAAGA 7620
 AAAATAATCT GGTCTGGAC TTTTATTT TATATGGAAA AGTTTTAAGG ACTTGGGCCA 7680
 50 ACTAAGTCTA CCCACACGAA AAAAGAAATT TGCCTGTCC CTTTGTGTAC AACCATGCAA 7740
 AACTGTTGTG TGGCTCACAG AAGTTCTGAC AATAAAAGAT ACTAGCT

ACC3 DNA sequence

Gene name: calcitonin receptor-like (CALCR)

Unigene number: Hs.152175

Probeset Accession #: L76380

Nucleic Acid Accession #: NM_005795

Coding sequence: 555-1940 (predicted start/stop codons underlined)

55 GCACGAGGGA ACAACCTCTC TCTCTSCAGC AGAGAGTGTGTC ACCTCCTGCT TTAGGACCAT 60
 CAAGCTCTGC TAACTGAATC TCATCCTAAAT TGCAGGATCA CATTGCAAAG CTTTCACTCT 120
 TTCCCACCTT GCTTGTGGGT AAATCTCTC TGCGGAATCT CAGAAAGTAA AGTTCCATCC 180
 TGAGAATATT TCACAAAGAA TTCCTTAAG AGCTGGACTG GGTCTTGACC CCTGGAATT 240
 65 AAGAAATTCT TAAAGACAAT GTCAAATATG ATCCAAGAGA AAATGTGATT TGAGTCTGGA 300
 GACAATTGTG CATATCGTCT AATAATAAA ACCCATACTA GCCTATAGAA AACAAATATT 360
 GAATAATAAA AACCCATACT AGCCTATAGA AAACAATATT TGAAAGATTG CTACCACTAA 420
 AAAGAAAAC ACTACAACCTT GACAAGACTG CTGCAAACCTT CAATTGGTCA CCACAACTTG 480

5 ACAAGGTTGC TATAAAACAA GATTGCTACA ACTTCTAGTT TATGTTATAC AGCATATTTC 540
 ATTTGGGCTT AATGATGGAG AAAAAGTGT A CCTGTTATT TCTGGTTCTC TTGCCCTTTT 600
 TTATGATTCT TGTTACAGCA GAATTAGAAG AGAGTCCCTGA GGACTCAATT CAGTTGGAG 660
 TTACTAGAAA TAAAATCATG ACAGCTCAAT ATGAATGTTA CAAAAGATT ATGCAAGACC 720
 5 CCATTCAACA AGCAGAACGGC GTTACTGCA ACAGAACCTG GGATGGATGG CTCTGCTGGA 780
 ACGATGTTGC AGCAGGAACG GAATCAATGC AGCTCTGCC TGATTACTTT CAGGACTTTG 840
 ATCCATCAGA AAAAGTTACA AAGATCTGTG ACCAAGATGG AAACCTGGTT AGACATCCAG 900
 CAAGCAACAG AACATGGACA ATTATACCC AGTGTAAATGT TAACACCCAC GAGAAAGTGA 960
 AGACTGCACT AAATTGTTT TACCTGACCA TAATTGGACA CGGATTGTCT ATTGCATCAC 1020
 10 TGCTTATCTC GCTTGGCATA TTCTTTATT TCAAGAGCCT AAGTTGCCAA AGGATTACCT 1080
 TACACAAAAA TCTGTTCTTC TCATTTGTT GTAACTCTGT TGTAACAATC ATTACACCTCA 1140
 CTGCACTGGC CAACAAACAG GCCTTAGTAG CCACAAATCC TGTTAGTTC AAAGTGTCCC 1200
 AGTTCACTCA TCTTACCTG ATGGGCTGTA ATTACTTTG GATGCTCTGT GAAGGCATT 1260
 ACCTACACAC ACTCATTGTC GTGGCCGTTG TTGCAAGAGA GCAACATTAA ATGTTGTTATT 1320
 15 ATTTTCTTG CTGGGGATT CCACTGATTC CTGCTGTAT ACATGCCATT GCTAGAAAGCT 1380
 TATATTACAA TGACAATTG TGATCAGTT CTGATACCC TCTCTCTAC ATTATCCATG 1440
 GCCCAATTG TGCTGCTTTA CTGGTGAATC TTTTTCTT GTAAATATT GTACCGTTC 1500
 TCATCACCAA GTTAAAGTAC ACACACCAAG CGGAATCCAA TCTGTACATG AAAGCTGTGA 1560
 GAGCTACTCT TATCTGGTG CATTGCTTG GCATTGAATT TGTGCTGATT CCATGGCGAC 1620
 20 CTGAAGGAAA GATTGAGAG GAGGTATATG ACTACATCAT GCACATCCTT ATGCACTTCC 1680
 AGGGTCTTTT GGTCTCTACC ATTTCTGT TCTTTAATGG AGAGGTTCAA GCAATTCTGA 1740
 GAAGAAAATG GAATCAATAC AAAATCCAAT TTGAAACAG CTTTCAAC TCAGAAAGCTC 1800
 TTCGTAGTGC GTCTTACACA GTGCAACAA TCAGTGATGG TCCAGGTTAT AGTCATGACT 1860
 GTCCTAGTGA ACACTTAAAT GGAAAAGCA TCCATGATAT TGAAATGTT CTCTTAAAC 1920
 CAGAAAATT ATATAATTGA AAATAGAAGG ATGGTTGTCT CACTGTTGG TGCTTCTCCT 1980
 AACTCAAGGA CTTGGACCCA TGACTCTGTA GCCAGAAGAC TTCAATATTA AATGACTTTG 2040
 GGGAAATGTC TAAAGAAGAG CCTTCACATG AAATTAGTAG TGTGTTGATA AGAGTGTAAAC 2100
 ATCCAGCTCT ATGTGGAAA AAAGAAATCC TGGTTGTAA TGGTTGTCAAG TAAATACTCC 2160
 CACTATGCCT GATGTGACGC TACTAACCTG ACATCACCAA GTGTGAAATT GGAGAAAAGC 2220
 30 ACAATCAACT TTTCTGAGCT GGTGTAAGCC AGTTCCAGCA CACCATTGAT GAATTCAAAC 2280
 AAATGGCTGT AAAACTAAAC ATACATGTTG GGATGATT TACCCATTCS CCCCCAAGA 2340
 GACCTAGCTA AGGTCTATAA ACATGAAGGG AAAATTAGCT TTTAGTTTA AAACCTTTA 2400
 TCCCATCTTG ATTGGGGCAG TTGACTTTT TTTTTCCCA GAGTGCCTGA GTCCCTTTTG 2460
 TAACTACCT CTCAAATGGA CAATACCAGA AGTGAATTAT CCCTGCTGGC TTTCTTTCT 2520
 CTATGAAAAG CAACTGAGTA CAATTGTTAT GATCTACTCA TTTGCTGACA CATCAGTTAT 2580
 ATCTTGTGGC ATATCCATTG TGGAAACTGG ATGAACAGGA TGTATAATAT GCAATCTTAC 2640
 TTCTATATCA TTAGGAAAAC ATCTTAGTGTG ATGCTACAAA ACACCTTGTCA AACCTTCC 2700
 TGTCTTACCA AACAGTGGGA GGGAAATTCT AGCTGTAAT ATAAATTGTT CCCTTCCATT 2760
 TCTACTGTAT AAACAAATTG GCAATCATTT TATATAAGA AAATCAATGA AGGATTCTT 2820
 40 ATTTTCTTG AATTTGTAA AAAGAAATG TGAAATGTA GCTTGTAAAT ACTCCATTAT 2880
 TTTATTTTAT AGTCTCAAAT CAAATACATA CAACCTATGT AATTTTAAAG GCAATATAT 2940
 AATGCAACAA TGTGTTGATG TTAATATCTG ATACTGTATC TGGGCTGATT TTTAAATAA 3000
 AATAGAGTCT GGAATGCT

45 *Wmz ASG*
 ACC4 DNA sequence
 Gene name: Homo sapiens mRNA; cDNA DKFZL586E1624
 Unigene number: HS_94030
 Probeset Accession #: AA452000
 Nucleic Acid Accession #: AL110152.1
 Coding sequence: no ORF identified, possible frameshifts

55 ACGCGTCCGA AGACATTAAG TAAAAAATTG GAACTATGAT TTTCTTTGT CATTTTTAA 60
 AAAAGAATTAA TTTTATTAAC CTGCTGGCAT ATAATCTGGA GTTCTTTCA CAACCTTACT 120
 TTTCTGTATT TGCTTTATTG AATGATTGAA TACTCATTTC TTTCTAAAAA TATGTTGTA 180
 ATTCTCCCTT GGCAAGATTG CTCCCTATGA GGGTAGTTAT TATTGAGTC TGCCAAGTGG 240
 TTACCATGGG GCAAGGTGCC ATGATGTTATT CTTGGGTGCA TTGGTTTTT GCGCATTGTA 300
 AATTTAAGAC ACTTATAGTA AGTGGACTCA TTCTAGATG AGTTTCAGAA CCTTTTACGT 360
 TCTCGGTAGA GGCTTCTGTC GACAGGCAG AAGAGTGTAT TCCTCACTT TTTTTTGT 420
 60 TTCCTAAATTCC AGTAAGGCAT GCACTTTA AGAAATTAGA ATTTTCTAT CATCTATGCA 480
 AATGATATT ATGTTAATAT TAAATATCTT ATGTTACACT GGGAGTAATT TGAGGTGCAA 540
 TTATTTTAT TACTACTTTG AATAGAGGAC CATTATCCTT CTTTCTTCAG AAAACTAAGA 600
 AGTAAGTGTGTA ACTTTAAAG TAAGTATATA TCAGTGAGAG TAGGCTTGTG TTACAACAT 660
 TTCTAGGCCAG TGAGTTGTGT TTTCATGTCAT CAAAGAACAGA CAATACCACA TTGCATCATT 720
 65 TTACAAAATA TGTTGTCATT TTCAATTGAG TTGTAACATA GGAAATAGA TATTTCCTAG 780
 ATGATTTCTG AGTTCTTAC TGCAAAAGAAC AGTTATAAAAT TGGTATAACAT GTGCTCTGT 840
 AATAGGGATA ATATTGATAT ATCTGTTGCT ACATATTAA GAATCATTCT ATCTTATGTT 900
 GTCTTGAGGC CAAGATTAC CACGTTGCC CAGTGTATTG AATTGGTGGT AGAAGGTAGT 960

TCCATGTTCC ATTTGTAGAT CTTTAAGATT TTATCTTGAA TAACTTTAAT AGAATGTGGC 1020
 TCAGTTCTGG CCCTTCAGC CTGTATGGTT TGGATTTCA GTAGGGGACA GTTGATGTGG 1080
 AGTCAATCTC TTTGGTACAC AGGAAGCTTT ATAAAATTC ATTCAACGAAT CTCTTATTTT 1140
 GGGAAAGCTGT TTTGCATATG AGAAGAACAC TGTTGAAATA AGGAACATAA GCTTTATATA 1200
 5 TTGATCAAGG TGATTCTGAA AGTTTTAATT TTTAATGTTG TAATGTTATG TTATTGTTAA 1260
 TTGTACTTTA TTATGTTATC AATAGAAAAT CATGATTAT TAATAAAAGC TTAAATTCTC 1320
 ATCTAAAAAA AAAAAAAA A

Unb Q60

10 ACC5 DNA sequence

Gene name: Selectin E (endothelial adhesion molecule 1)

Unigene number: Hs.89546

Probeset Accession #: M24736

Nucleic Acid Accession #: NM_000450

Coding sequence: 117-1949 (predicted start/stop codons underlined)

10	CCTGAGACAG AGGCAGCACT GATACCCACC TGAGAGATCC TGTGTTGAA CAACTGCTTC	60
15	CCAAAACCGA AAGTATTCA AGCCTAAACC TTTGGGTGAA AAGAACTCTT GAAGTC <u>ATGA</u>	120
20	TTGCTTCACA GTTTCTCTCA GCTCTCACTT TGGTGTCTCT CATTAAAGAG AGTGGAGCCT	180
25	GGTCTTACAA CACCTCCACG GAAGCTATGA CTTATGATGA GGCCAGTGT TATTGTCAGC	240
30	AAAGGTACAC ACACCTGGTT GCAATTCAA ACAAAAGAAGA GATTGAGTAC CTAAACTCCA	300
35	TATTGAGCTA TTCACCAAGT TATTACTGGA TTGGAATCAG AAAAGTCAC AAC <u>TGTGTGGG</u>	360
40	TCTGGTAGG AACCCAGAAA CCTCTGACAG AAGAAGCCAA GAAC <u>TGGGCT</u> CCAGGTGAAC	420
45	CCAACAATAG GCAAAAGAT GAGGACTGCG TGGAGATCTA CATCAAGAGA GAAAAGATG	480
50	TGGGCATGTG GAATGATGAG AGGTGCAGCA AGAAGAAGCT TGCCCTATGC TACACAGCTG	540
55	CCTGTACCAA TACATCTGC AGTGGCCACG GTGAATGTGT AGAGACCAC AAC <u>TAATTACA</u>	600
60	CTTGCAGTG TGACCCCTGGC TTCAGTGGAC TCAAGTGTGA GCAAATTGTG AACTGTACAG	660
65	CCCTGGAAATC CCCTGAGCAT GGAAGCCTGG TTTGCACTA CCCACTGGGA AACTTCAGCT	720
70	ACAATTCTTC CTGCTCTATC AGCTGTGATA GGGTTACCT GCCAAGCAGC ATGGAGACCA	780
75	TGCAGTGTAT GTCCCTGTGAA GAATGGAGTG CTCCATTTC AGCCTGCAAT GTGGTTGAGT	840
80	GTGATGCTGT GACAAATCCA GCAATGGGT TCGTGGAAATG TTTCCAAAAC CCTGGAAGCT	900
85	TCCCATGGAA CACAACCTGT ACATTTGACT GTGAAGAAGG ATTTGAACCA ATGGGAGCCC	960
90	AGAGCCTTCA GTGTACCTCA TCTGGGAATT GGGACAACGA GAAGCCAACG TGAAAGCTG	1020
95	TGACATGCAAGGCCGTCAGCA ATGGCTCTGT GAGGTGCAGC CATTCCCCCTG	1080
100	CTGGAGAGTT CACCTTCAAA TCATCCTGCA ACTTCACCTG TGAGGAAGGC TTCATGTTGC	1140
105	AGGGGACCAAGC CCAGGTTGAA TGCACCACTC AAGGGCAGTG GACACAGCAA ATCCCAGTTT	1200
110	GTGAAGCTTT CCAGTGCACA GCCTTGTCGA ACCCCGAGCG AGGCTACATG AATTGTCCTC	1260
115	CTAGTGCCTC TGGCACTT CGTTATGGGT CCAGCTGTGA GTTCTCCTGT GAGCAGGGTT	1320
120	TTGTGTTGAA GGGATCCAAA AGGCTCCAAT GTGGCCCCAC AGGGGAGTGG GACAACGAGA	1380
125	AGCCCACATG TGAAGCTGTG AGATGCGATG CTGTCACCA GCCCCCGAAG GGTTGGTGA	1440
130	GGTGTGCTCA TTCCCTTATT GGAGAAATTCA CCTACAAGTC CTCTTGTGCG TTCAGCTGTG	1500
135	AGGAGGGATT TGAATTATAT GGATCAACTC AACTTGAGTG CACATCTCAG GGACAATGGA	1560
140	CAGAAGAGGT TCCCTCCTGC CAAGTGGTAA AATGTTCAAG CCTGGCAGTT CCGGGAAAAGA	1620
145	TCAACATGAG CTGCAGTGGG GAGCCCGTGT TTGGCACTGT GTGCAAGTTC GCCTGTCCTG	1680
150	AAGGATGGAC GCTCAATGGC TCTGCAGCTC GGACATGTGG AGCCACAGGA CACTGGTCTG	1740
155	GCCTGCTACC TACCTGTGAA GCTCCCACG AGTCCAACAT TCCCTGGTA GCTGGACTTT	1800
160	CTGCTGCTGG ACTCTCCCTC CTGACATTAG CACCAATTCT CCTCTGGCTT CGGAAATGCT	1860
165	TACGGAAAGC AAAGAAATTG GTTCTGCCA GCACCGTCCA AAGCCTGAA TCAGACGGAA	1920
170	GCTACCAAAA GCCTTCTTAC ATCCCTTAAG TTCAAAAGAA TCAGAAACAG GTGCATCTGG	1980
175	50 GGAACTAGAG GGATACACTG AAGTTAACAG AGACAGATAA CTCTCCTCGG GTCTCTGGCC	2040
180	CTTCTTGCC ACTATGCCAG ATGCCATTAT GGCTGAAACC GCAACACCCA TCACCACTTC	2100
185	AATAGATCAA AGTCCAGCAG GCAAGGACGG CCTTCACACTG AAAAGACTCA GTGTTCCCTT	2160
190	TCCTACTCTC AGGATCAAGA AAGTGTGTCG TAATGAAGGG AAAGGATATT TTCTTCCAAG	2220
195	CAAAGGTGAA GAGACCAAGA CTCTGAAATC TCAGAATTCC TTTCTAACT CTCCCTTGCT	2280
200	CGCTGTAAAAA TCTTGGCACA GAAACACAAT ATTTGTGGC TTCTTCTT TTGCCCCCTA	2340
205	CAGTGTTCG ACAGCTGATT ACACAGTTGC TGTCTACAGA ATGAATAATA ATTATCCAGA	2400
210	GTTTAGAGGA AAAAATGAC TAAAAATATT ATAACCTAAA AAAATGACAG ATGTTGAATG	2460
215	CCCACAGGCA AATGCATGGA GGGTTGTTAA TGGTGCACAT CCTACTGAAT GCTCTGTGCG	2520
220	AGGGTTACTA TGCACAAATT AATCACTTTC ATCCCTATGG GATTCACTGTC TTCTTAAAGA	2580
225	60 GTTCTTAAGG ATTGTGATAT TTTTACTTGC ATTGAATATA TATAATCTT CCATACTTCT	2640
230	TCATTCAATA CAAGTGTGGT AGGGACTTAA AAAACTTGTAA AATGCTGTCA ACTATGATAT	2700
235	GGTAAAAGT ACTTATTCTA GATTACCCCC TCATTGTTTA TTAACAAATT ATGTTACATC	2760
240	TGTTTAAAT TTATTCTAA AGGGAAACT ATTGTCCCCT AGCAAGGCAT GATGTTAAC	2820
245	AGAATAAAAGT TCTGAGTGT TTTACTACAG TTGTTTTTG AAAACATGGT AGAATTGGAG	2880
250	AGTAAAAACT GAATGGAAGG TTTGTATATT GTCAGATATT TTTTCAGAAA TATGTTGGTT	2940
255	CCACGATGAA AAACCTCCAT GAGGCCAAAC GTTTGAACT AATAAAAGCA TAAATGCAA	3000
260	CACACAAAGG TATAATTAA TGAATGTCTT TGTTGGAAAAA GAATACAGAA AGATGGATGT	3060
265	GCTTGTGATT CCTACAAAGA TGTTGTGAG ATGTGATATG TAAACATAAT TCTTGTATAT	3120

TATGGAAGAT TTTAAATTCA CAATAGAAAC TCACCATGTA AAAGAGTCAT CTGGTAGATT 3180
 TTTAACGAAT GAAGATGTCT AATAGTTATT CCCTATTGT TTTCTTCTGT ATGTTAGGGT 3240
 GCTCTGGAAG AGAGGAATGC CTGTGTGAGC AAGCATTAT GTTTATTAT AAGCAGATT 3300
 5 ACAATTCCA AAGGAATCTC CAGTTTCAG TTGATCACTG GCAATGAAA ATTCTCAGTC 3360
 AGTAATTGCC AAAGCTGCTC TAGCCTTGAG GAGTGTGAGA ATCAAAACTC TCCTACACTT 3420
 CCATTAACCT AGCATGTGTT GAAAAAAA GTTTCAGAGA AGTTCTGGT GAACACTGGC 3480
 AACGACAAAG CCAACAGTCA AACAGAGAT GTGATAAGGA TCAGAACAGC AGAGGTTCTT 3540
 10 TTAAAGGGC AGAAAAACTC TGGGAAATAA GAGAGAACAA CTACTGTGAT CAGGCTATGT 3600
 ATGGAATACA GTGTTATTGT CTTGAAATT GTTTAAGTGT TGTAATATT TATGAAACT 3660
 GCATTAGAAA TTAGCTGTGT GAAATACCAAG TGTGGTTGT GTTGAGTT TATTGAGAAT 3720
 TTTAAATTAT AACTAAAAT ATTTATAAT TTTAAAGTA TATATTATT TAAGCTTATG 3780
 TCAGACCTAT TTGACATAAC ACTATAAAGG TTGACAATAA ATGTGCTTAT GTTT

ACCB DNA sequence

Gene name: Chemokine (C-X-C motif), receptor 4 (fusin)

Unigene number: Hs.89414

ProbeSet Accession #: L06797

Nucleic Acid Accession #: NM_003467

Coding sequence: 89-1147 (predicted start/stop codons underlined)

15 GTTTGTGGC TCGGGCAGCA GGTAGCAAAG TGACGCCAG GGCCTGAGTG CTCCAGTAGC 60
 CACCGCATCT GGAGAACCGAG CGGTTACCAT GGAGGGGATC AGTATATACA CTTCAGATAA 120
 20 CTACACCGAG GAAATGGGCT CAGGGGACTA TGACTCCATG AAGGAACCTCT 180
 AGAAAATGCT AATTCAATA AAATCTTCTC GCCCACCATC TACTCCATCA TCTTCTTAAC 240
 TGGCATTGTG GGCAATGGAT TGGTCATCCT GGTCACTGGT TACCAAGAGA AACTGAGAAG 300
 CATGACGGAC AAGTACAGGC TGCACCTGTC AGTGGCCAG CTCCTCTTG TCATCACGCT 360
 TCCCTCTGG GCAGTTGATG CCGTGGAAA CTGGTACTTT GGGAACTTCC TATGCAAGGC 420
 AGTCCATGTC ATCTACACAG TCAACCTCTA CAGCAGTGTG CTCATCCTGG CCTTCATCAG 480
 TCTGGACCCG TACCTGGCCA TCGTCCACCG CACCAACAGT CAGAGGCAA GGAAGCTGTT 540
 GGCTGAAAAG GTGGCTATG TTGGCGCTG GATCCCTGCC CTCCCTGCTGA CTATTCCCAGA 600
 25 CTTCATCTT GCCAACGTC TGAGGGCAGA TGACAGATAT ATCTGTCAGC GCTTCTACCC 660
 CAATGACTG TGGGGGTTG TGGTCCAGT TCAGCACATC ATGGTTGGCC TTATCCTGCC 720
 TGGTATTGTC ATCCTGCTCT GCTATTGCA TATCATCTCC AAGCTGTCAAC ACTCCAAGGG 780
 30 CCACCAAGAG CGCAAGGGCC TCAAGACACAG AGTCATCCTC ATCCTGGCTT TCTTCGCTG 840
 TTGGCTGCTT TACTACATTG GGATCAGCAT CGACTCCTTC ATCCTCCCTGG AAATCATCAA 900
 GCAAGGGTGT GAGTTGAGA ACACTGTGCA CAAGTGGATT TCCATCACCG AGGCCTAGC 960
 TTTCTTCCAC TGGTGTCTGA ACCCCATCCT CTATGCTTTC CTTGGAGCCA AATTAAAAC 1020
 CTCTGCCAG CACGCACTCA CCTCTGTGAG CAGAGGGTCC AGCCTCAAGA TCCTCTCCAA 1080
 35 AGGAAAGCGA GGTGGACATT CATCTGTTT CACTGAGTCT GAGTCCTCAA GTTTCACTC 1140
 CAGCTAACAC AGATGAAAAA GACTTTTTT TATACGATAA ATAACTTTT TTTAAGTTAC 1200
 ACATTTTCA GATATAAAAG ACTGACCAAT ATTGTACAGT TTTTATTGCT TGGTGGATTT 1260
 TTGTCTTGTG TTTCTTAGT TTTGTGAAG TTTAATTGAC TTATTTATAT AAATTTTTTT 1320
 40 TGTTTCATAT TGATGTTGTG CTAGGCAGGA CCTGTGGCCA AGTTCTTAGT TGCTGTATGT 1380
 CTCGTGGTAG GACTGTAGAA AAGGAACTG AACATTCCAG AGCGTGTAGT GAATCACGTA 1440
 45 AAGCTAGAAA TGATCCCCAG CTGTTTATGC ATAGATAATC TCTCCATTCC CGTGAACGT 1500
 TTTCCCTGTT CTTAAGACGT GATTTGCTG TAGAAGATGG CACTTATAAC CAAAGCCCAA 1560
 AGTGGTATAG AAATGCTGGT TTTCAAGTGTG TCAGGAGTGG GTTGATTCA GCACCTACAG 1620
 TGTACAGTCT TGTATTAAGT TGTAAATAAA AGTACATGTT AAACCTACTT AGTGTATG

50

ACF2 DNA sequence

Gene name: Endothelial cell-specific molecule 1

Unigene number: Hs.41716

ProbeSet Accession #: X89426

Nucleic Acid Accession #: NM_007036

Coding sequence: 56-610 (predicted start/stop codons underlined)

55 CTTCCCACCA GCAAAGACCA CGACTGGAGA GCCGAGCCGG AGGCAGCTGG GAAACATGAA 60
 GAGCGCTCTG CTGCTGACCA CGCTCCTCGT GCCTGCACAC CTGGTGGCCG CCTGGAGCAA 120
 TAATTATGCG GTGGACTGCC CTCAACACTG TGACAGCAGT GAGTGCAAAA GCAGCCCGCG 180
 CTGCAAGAGG ACAGTGCTCG ACGACTGTGG CTGCTGCCGA GTGTGCGCTG CAGGGCGGGG 240
 AGAAAATTCG TACCCACAG TCTCAGGCAT GGATGGCATG AAGTGTGGCC CGGGCTGAG 300
 GTGTCAGCTCT TCTAATGGGG AGGATCCTT TGGTGAAGAG TTTGGTATCT GCAAAGACTG 360
 60 TCCCTACGGC ACCTTCGGGA TGGATTGCAAG AGAGACCTGC AACTGCCAGT CAGGCATCTG 420
 TGACAGGGGG ACGGGAAAAT GCCTGAAATT CCCCTCTTC CAATATTCAAG TAACCAAGTC 480
 TTCCAACAGA TTTGTTCTC TCACGGAGCA TGACATGGCA TCTGGAGATG GCAATATTGT 540
 GAGAGAAGAA GTTGTGAAAG AGAATGCTGC CGGGTCTCCC GTAATGAGGA AATGGTAAA 600

TCCACGCTGA TCCC GGCTGT GATTCTGAG AGAAGGCTCT ATTTCTGAG TTGTTCAACA 660
 CACAGCCAAC ATTTAGGAA CTTCTAGAT ATAGCATAAG TACATGTAAT TTTGAAGAT 720
 CCAAATTGTG ATGCATGGTG GATCCAGAAA ACAAAAAGTA GGATACCTAC AATCCATAAC 780
 ATCCATATGA CTGAACACTT GTATGTGTT GTAAATATT CGAATGCATG TAGATTTGTT 840
 5 AAATGTGTGT GTATAGTAAC ACTGAAGAAC TAAAAATGCA ATTTAGGTAAC TCTTACATGG 900
 AGACAGGTCA ACCAAAGAGG GAGCTAGGCA AAGCTGAAGA CGCAGTGAG TCAAATTAGT 960
 TCTTGTACT TGATGTACAT TAATGTTGGG ATATGGAATG AAGACTTAAG AGCAGGAGAA 1020
 GATGGGGAGG GGGTGGGAGT GGGAAATAAA ATATTAGCC CTTCTTGTT AGGTAGCTTC 1080
 TCTAGAATT AATTGTGCTT TTTTTTTTT TTTGGCTTTG GGAAAAGTC AATAAAAACA 1140
 10 ACCAGAAAAC CCCTGAAGGA AGTAAGATGT TTGAAGCTTA TGAAATTG AGTAACAAAC 1200
 AGCTTGAAAC TGAGAGCAAT TCACAAAGGC TGCTGATGTA GTCCCCGGGT TACCTGTATC 1260
 TGAAGGACGG TTCTGGGCA TAGGAAACAC ATACACCTTC ATAAATAGT TAAACGTATG 1320
 CCACCTCAGA GATAAACTCA AGAAGTATT TACCCACTGG TGGTTTGTGT GTGTATGAAG 1380
 GTAAATATT ATATATTAAAT ATAAATTTAT GTGTTAGTGC AAGTCATCTT CCCTACCCAT 1440
 15 ATTTATCATC CTCTTGAGGA AAGAAATCTA GTATTATTG TTGAAATGG TTAGAATAAA 1500
 AACCTATGAC TCTATAAGGT TTCAACAT CTGAGGCATG ATAAATTTAT TATCCATAAT 1560
 TATAGGAGTC ACTCTGGATT TCAAAAAATG TCAAAAAATG AGCAACAGAG GGACCTTATT 1620
 TAAACATAAG TGCTGTGACT TCGGTGAATT TTCAATTAA GGTATGAAAA TAAGTTTTA 1680
 GGAGGTTTGT AAAAGAAGAA TCAATTTCAGA GCAGAAAACA TGTCAACTT AAAATATAGG 1740
 20 TGGAAATTAGG AGTATATTG AAAGAATCTT AGCACAACAA GGACTGTGTT ACTAGATGTT 1800
 CTTAGGAAAT ATCTCAGAAG TATTTTATT GAAGTGAAGA ACTTATTAA GAATTATTTC 1860
 AGTATTACCG TGTATTTAT TCTTGAAGTT GGCAACAGA GTTGTGAATG TGTGTGGAAG 1920
 GCCTTGAAT GTAAAGCTGC ATAAGCTGTT AGGTTTGTGTT TTAAAAGGAC ATGTTTATTA 1980
 TTGTTCAATA AAAAGAACA AGATAC

ACF4 DNA sequence

Gene name: P53-responsive gene 2 similar to D.melanogaster peroxidasin (U11052)

Unigene number: Hs.118893

Probeset Accession #: D86983

Nucleic Acid Accession #: D86983

Coding sequence: 1-4491 (predicted stop codon underlined, sequence is open at 5' end)

35 AGCCGGCCGT GGTGGCTCCG TGGCTCCGAG CGTCCGTCCG CGCCGTCGGC CATGCCAAG 60
 CGCTCCAGGG GCCCCGGCG CCGCTGCTG TTGGCGCTCG TGCTGTTCTG CGCCTGGGG 120
 ACGCTGGCCG TGGTGGCCCA GAAGCCGGGC GCAGGGTGTG CGAGCCGCTG CCTGTGCTTC 180
 CGCACCAACCG TGCCTGTCAT GCATCTGCTG CTGGAGGCCG TGCCCGCCGT GGCGCCGCAG 240
 ACCTCCATCC TAGATCTTCG CTTAACAGA ATCAGAGAGA TCCAACCTGG GGCATTCAAGG 300
 40 CGGCTGAGGA ACTTGAACAC ATTGCTTCTC AATAATAATC AGATCAAGAG GATACCTAGT 360
 GGAGCATTG AAGACTTGGG AAATTTAAAAT TATCTCTATC TGTACAAGAA TGAGATCCAG 420
 TCAATTGACA GGCAAGCATT TAAGGGACTT GCCTCTCTAG AGCAACTATA CCTGCACTTT 480
 AATCAGATAG AAACCTTGGG CCCAGATTG TTCCAGCATC TCCCAGAGCT CGAGAGGCTA 540
 TTTTGACATA ACAACCGGAT TACACATTAA GTTCCAGGGG CATTAAATCA CTTGAAATCT 600
 45 ATGAAGAGAT TGCAGCTGGA CTCAAACACA CTTCACTGCG ACTGTGAAAT CCTGTGGTTG 660
 GCGGATTTCG TGAAAACCTA CGCGGAGTCG GGGAACCGC AGGCAGCGC CATCTGTGAA 720
 TATCCCAGAC GCATCCAGGG ACGCTCAGTG GCAACCATCA CCCCAGGAA GCTGAACGT 780
 GAAAGGCCCG GGATCACCTC CGAGCCCCAG GACGAGATG TGACCTCGGG GAACACCGTG 840
 TACTTCACCT GCAGAGCCGA AGGCAACCCC AAGCTTGAGA TCATCTGGCT GCGAAACAAT 900
 50 AATGAGCTGA GCATGAAGAC AGATTCGGC CTAAACTTGC TGGACGATGG GACCTGATG 960
 ATCCAGAACAA CACAGGAGAC AGACCAGGGT ATCTACCACT GATGGCAA GAACGTGGCC 1020
 GGAGAGGTGA AGACCCAAGA GTGACCCCTC AGGTACTTCG GGTCTCCAGC TCGACCCACT 1080
 TTTGTAATCC AGCCACAGAA TACAGAGGTG CTGGTGGGG AGAGCGTCAC GCTGGAGTGC 1140
 AGCGCCACAG GCCACCCCCC GCGCGGACAT TCTGGACGA GAGGTGACCG CACACCTTG 1200
 55 CCAGTTGACCC CGCGGGTGAA CATCACGCC TCTGGGGGC TTACATACA GAACGTGTA 1260
 CAGGGGGACCA CGCGGAGAGA TCGCTGCTC GCGACCAACA ACATTGACAG CGTCATGCC 1320
 ACCGCTTCA TCATCGTCCA GGCTCTTCTC CAGTCACG TGACGCCCA GGACAGAGTC 1380
 GTTATTGAGG GCCAGACCGT GGATTTCAG TGTGAAGCCA AGGGCAACCC GCGCCCCGTC 1440
 ATCGCCTGCA CCAAGGGAGG GAGCCAGCTC TCCGTGGACC GCGGGCACCT GGTCTGTCA 1500
 60 TCGGGAAATC TTAGAATCTC TGGTGGTGTGCG CTCCACGACC AGGGCCAGTA CGAATGCCAG 1560
 GCTGTCAACA TCATCGGCTC CCAGAAGGTG GTGGCCCAAC TGACTGTGCA GCCCAGAGTC 1620
 ACCCCAGTGT TTGCCAGCAT TCCCGCGAC ACAACAGTGG AGGTGGGCGC CAATGTGCA 1680
 CTCCCGTGCA GCTCCAGGG CGAGCCCCAG CCAGCCATCA CCTGGAAACAA GGATGGGTT 1740
 CAGGTGACAG AAAGTGGAAA ATTTCACATC AGCCCTGAAG GATTCTTGAC CATCAATGAC 1800
 65 GTTGGCCCTG CAGACGCAGG TCGCTATGAG TGTGTGGCCC GGAACACCAT TGGTGGGCC 1860
 TCGGTGAGCA TGGTGTCTAG TGTGAACGTT CCTGACGTCA GTCGAAATGG AGATCCGTTT 1920
 GTAGCTACCT CCATCGTGGAA AGCGATTGCG ACTGTTGACA GAGCTATAAA CTCAACCCGA 1980
 ACACATTGTTGTTGACAGCCG TCCTCGTCTC CCAAATGATT TGCTGGCCTT GTCCTGGTAT 2040

CCGAGGGATC CTTACACAGT TGAACAGGCA CGGGCGGGAG AAATCTTGA ACGGACATTG 2100
 CAGCTCATTC AGGAGCATGT ACAGCATGGC TTGATGGTCG ACCTCAACGG ACAAGTTAC 2160
 CACTACAACG ACCTGGTGTC TCCACAGTAC CTGAACCTCA TCGCAAACCT GTCGGGCTGT 2220
 ACCGCCACC GGCGCGTGAA CAACTGCTCG GACATGTGCT TCCACCAGAA GTACCGGACG 2280
 5 CACGACGGCA CCTGTAACAA CCTGCAGCAC CCCATGTGGG GGCCTCGCT GACCGCCTTC 2340
 GAGCGCTGC TGAAATCCGT GTACGAGAAT GGCTTCAACA CCCCTCGGGG CATCAACCCC 2400
 CACCGACTGT ACAACGGCA CGCCCTTCCC ATGCCGCGCC TGGTGTCCAC CACCTGATC 2460
 GGGACGGAGA CGTCACACC CGACGAGCAG TTCACCCACA TGCTGATGCA GTGGGGCCAG 2520
 TTCCCTGGACC ACGACCTCGA CTCCACGGTG GTGGCCCTGA GCCAGGCAAG CTTCTCCGAC 2580
 10 GGACAGCACT GCAGCACACGT GTGCAGCAAC GACCCCCCT GCTTCTCTGT CATGATCCCC 2640
 CCCAATGACT CCCGGGCCAG GAGCGGGGCC CGCTGCATGT TCTTCGTGCG CTCCAGCCCT 2700
 GTGTGCGGCA GCGGCATGAC TTGCTGCTC ATGAACCTCG TGTACCCCGG GGAGCAGATC 2760
 AACCAGCTCA CCTCCATAC CGACGCATCC AACGTGTACG GGAGCACCGA GCATGAGGCC 2820
 CGCAGCATCC GCGACCTGGC CAGGCCACCCG GGCCTGCTGC GGCAGGGCAT CGTGCAGCGG 2880
 15 TCCGGGAAGC CGCTGCTCCC TTGCTGCCACC GGGCCGCCA CGGAGTGCAT GCGGGACGAG 2940
 AACGAGAGCC CCATCCCTG TTGCTGGCC GGGGACCACC CGGCCAACGA GCAGCTGGGC 3000
 CTGACCAGCA TGCACACGCT GTGGTTCCGC GAGCACAAAC GCATTGCCAC GGAGCTGCTC 3060
 AAGCTGAACC CGCACTGGG CGGGCACACC ATCTACTATG AGACCAGGAA GATCGTGGGT 3120
 GCGGAGATCC AGCACATCAC CTACCAGCAC TGGCTCCGA AGATCCTGGG GGAGGTGGGC 3180
 20 ATGAGGACGC TGGGAGAGTA CAACGGCTAC GACCCGGCA TCAATGCTGG CATCTTCAAC 3240
 GCCTTCGCCA CCGGGCCCTT CAGGTTTGGC CACACGCTTG TCAACCCACT GCTTTACCGG 3300
 CTGGACGAGA ACTTCAGGCC CATTGACAAA GATCACCTCC CCCTTCACAA AGCTTTCTTC 3360
 TCTCCCTTCC GGATTGTGAA TGAGGGCGGC ATCGATCCGC TTCTCAGGGG GCTGTTGGG 3420
 GTGGCGGGGA AAATGCGTGT GCGCTCGCAG CTGCTGAACA CGGAGCTCAC GGAGCGGCTG 3480
 TTCTCCATGG CACACACGGT GGCTCTGGAC CTGGCGGCCA TCAACATCCA GCGGGGCCGG 3540
 GACCACGGGA TCCCACCCCTA CAACGACTAC AGGGTCTACT GCAATCTATC GGCAGCACAC 3600
 25 ACGTTCGAGG ACCTGAAAAA TGAGATTAAA AACCTGAGA TCCGGGAGAA ACTGAAAAGG 3660
 TTGTATGGCT CGACACTCAA CATCGACCTG TTTCCGGCAGC TCGTGGTGGA GGACCTGGTG 3720
 CCTGGCAGCC GGCTGGGCC CACCTGTATG TGTCTTCTCA GCACACAGTT CAAGCGCCTG 3780
 CGAGATGGGG ACAGGTTGTG GTATGAGAAC CCTGGGGTGT TCTCCCCGGC CCAGCTGACT 3840
 CAGATCAAGC AGACGTCGCT GGCCAGGATC CTATCGCAGA ACGCGGACAA CATCACCCGG 3900
 GTGCAGAGCG ACCTGTTCAAG GGTGGCGGAG TTCCCTCACG GCTACGGCAG CTGTGACGAG 3960
 ATCCCCAGGG TGGACCTCCG GGTGTGGCAG GACTGCTGTG AAGACTGTAG GACCAGGGGG 4020
 CAGTTCAATG CCTTTCTCA TCATTTCCGA GGCAGACGGT CTCTTGAGGT CAGCTACCAG 4080
 30 GAGGACAAGC CGACCAAGAA AACAGACCA CGGAAATAC CCAGTGTGG GAGACAGGGGG 4140
 GAACATCTCA GCAACAGCAC CTCAGCCTTC AGCACACGCT CAGATGCATC TGGGACAAAT 4200
 GACTTCAGAG AGTTTGTCT GGAAATGCAG AAGACCATCA CAGACCTCAG AACACAGATA 4260
 AAGAAACATTG AATCACGGCT CAGTACCAAC GAGTGCCTGG ATGCCGGGGG CGAATCTCAC 4320
 GCCAACAAACA CCAAGTGGAA AAAAGATGCA TGCACCATTT GTGAATGCAA AGACGGCAG 4380
 35 GTCACCTGCT TCGTGGAAAGC TTGCCCCCTT GCCACCTGTG CTGCCCCGT GAACATCCC 4440
 GGGGCTGCT GTCCAGTCTG CTTACAGAAAG AGGGCGGAGG AAAAGCCCTA GGCTCCTGGG 4500
 AGGCTCTCA GAGTTGTCT GCTGTGCCAT CGTGAGATCG GGTGGCCGAT GGCAGGGAGC 4560
 TGCGGACTGTC AGACCAAGGA ACACCCAGAA CTCGTGACAT TTGATGACAA CGTCCAGCTG 4620
 GTGCTGTTAC AGAAGGCAGT GCAGGAGGCT TCCAACCGA GCATCTCGGG AGAAGGAGGC 4680
 40 ACAGCAGGTG CCTGAAGGGG AGCAGGCAGG AGTCCTAGCT TCACGTTAGA CTTCTCAGGT 4740
 TTTTATTAA TTCTTTAAA ATGAAAAATT GGTGCTACTA TTAAATTGCA CAGTTGAATC 4800
 ATTTAGGCGC CTAAATTGGT TTGCTCCTCC AACACCATT CTTTTAAAT AAAGCAGGAT 4860
 ACCTCTATAT GTCAGCCTTG CTTGTTCAAG ATGCCAGGAG CCGGCAGACCC TGTCAACCGC 4920
 AGGTGGGGTG AGTCTCGGAG CTGCCAGAGG GGCTCACCGA ATCGGGGTT CCATCACAAG 4980
 45 50 CTATGTTAA AAAGAAAATT GGTGTTGGC AAACGGAACA GAACTTTGA TGAGAGCGTT 5040
 CACAGGGACA CTGTCGGGG GTGCAGTGCAG AGCCCCCGC CTCTCCCTG GGAACCTCTG 5100
 AACTCCTCCT TCCCTCGGGC TCTCTGTAAC ATTCACCAAC AGCTCAGCAT CTAATCCCAA 5160
 GACAAACATT CCCGCTGCTC GAAGCAGCTG TATAGCTGT GACTCTCCGT GTGTGAGCTC 5220
 CTTCCACACC TGATTAGAAC ATTCTACAAAGC CACATTAGA AACAGATTG CTTTCAGCTG 5280
 55 TCACTTGAC ACATACTGCC TAGTTGTGAA CCAAATGTGA AAAAACCTCC TTCATCCCCT 5340
 TGTGTATCTG ATACCTGCCG AGGGCTCAAGG GTGTGTGTTG ACAACGCCGC TCCCAGCCGG 5400
 CCCTGGTTGC GTCCACGTCC TGAACAAGAG CCGCTTCCGG ATGGCTCTTC CCAAGGGAGG 5460
 AGGAGCTCAA GTGTCGGAA CTGTCATACT TCAGGTTGTG TGAGTGCCTG

60 ACF5 DNA sequence

Gene name: Mitogen-activated protein kinase kinase kinase kinase 4

Unigene number: Hs.3628

Probeset Accession #: NS4067

Nucleic Acid Accession #: NM_004824

Coding sequence: 80-3577 (predicted start/stop codons underlined)

AATTCGAGGA TCCGGGTACC ATGGCACAGA GCGACAGAGA CATTATTGT TATTGTTT

60

	TTGGTGGCAA AAAGGGAAA TGGCGAACGA CTCCCCTGCA AAAAGTCTGG TGGACATCGA	120
	CCTCTCCTCC CTGCGGGATC CTGCTGGGAT TTTTGAGCTG GTGGAAGTGG TTGGAAATGG	180
	CACCTATGGA CAAGTCTATA AGGGTCGACA TGTTAAAACG GGTCACTTGG CAGCCATCAA	240
5	AGTTATGGAT GTCACTGAGG ATGAAGAGGA AGAAATCAA CTGGAGATAA ATATGCTAAA	300
	GAAATACTCT CATCACAGAA ACATTGCAAC ATATTATGGT GCTTTCATCA AAAAGAGCCC	360
	TCCAGGACAT GATGACCAAC TCTGGCTTG TATGGAGTTC TGTGGGGCTG GGTCCATTAC	420
	AGACCTTGTG AAGAACACCA AAGGGAACAC ACTCAAAGAA GACTGGATCG CTTACATCTC	480
	CAGAGAAATC CTGAGGGAC TGGCACATCT TCACATTCT CATGTGATTG ACCGGGATAT	540
10	CAAGGGCCAG AATGTGTTGC TGACTGAGAA TGCAGAGGTG AAACTTGTTG ACTTTGGTGT	600
	GAGTGCTCAG CTGGACAGGA CTGTGGGGCG GAGAAATAACG TTCATAGGCA CTCCCCTACTG	660
	GATGGCTCCT GAGGTCTATCG CCTGTGATGA GAACCCAGAT GCCACCTATC ATTACAGAAG	720
	TGATCTTCTG TCTTGTGGCA TTACAGCCAT TGAGATGGCA AAAGGTGCTG CCCCTCTCTG	780
	TGACATGCA CCAATGAGAG CACTGTTCT CATTCCCAGA AACCTCTCTC CCCGGCTGAA	840
15	GTCAAAAAAA TGGTCCAAGA AGTTTTTAGT TTTTATAGAA GGTTGCTTGG TGAAGAATTA	900
	CATGCAGCGG CCCTCTACAG AGCAGCTTTT GAAACATCCT TTTATAAGGG ATCAGCCAA	960
	TGAAAGGCAA GTTAAATCC AGCTTAAGGA TCATATAGAT CGTACCAAGA AGAAGAGAGG	1020
	CGAGAAAGAT GAAACTGAGT ATGAGTACAG TGGGAGTGAG GAAGAAGAGG AGGAAGTGCC	1080
	TGAACAGGAA GGAGAGCCAA GTTCCATTGT GAACTGCGCT GGTGAGTCTA CTCTTCGCCG	1140
20	AGATTTCTG AGACTGCAGC AGGAGAACAA GGAACGTTCC GAGGCTCTTC GGAGACAAACA	1200
	GTTACTACAG GAGCAACAGC TCCGGGGAGCA GGAAGAAATAT AAAAGGCAAC TGCTGGCAGA	1260
	GAGACAGAAG CGGATGAGC AGCAGAAAGA ACAGAGGCAGA CGGCTAGAAG AGCAACAAAG	1320
	GAGAGAGCGG GAGGCTAGAA GGCAGCAGGA ACGTGAACAG CGAAGGAGAG ACAAGAAGA	1380
	AAAGAGGGCGT CTAGAGGAGT TGGAGAGAA GCGCAAAAGAA GAAGAGGAGA GGAGACGGGC	1440
	AGAAGAAAGAA AAGAGGAGAG TTGAAAGAGA ACAGGAGTAT ATCAGGCAC AGCTAGAAGA	1500
25	GGAGCAGCGG CACTTGAAG TCCCTCAGCA GCAGCTGCTC CAGGAGCAGG CCATGTTACT	1560
	GCATGACCAT AGGAGGCCGC ACCCGCAGCA CTCGCAGCAG CGGCCACCAC CGCAGCAGGA	1620
	AAGGAGCAAG CCAAGCTTCC ATGCTCCCGA GCCCCAAAGCC CACTACGAGC CTGCTGACCG	1680
	AGCGCGAGAG GTTCTGTGA GAACAACATC TCGCTCCCT GTTCTGTCCC GTCGAGATT	1740
	CCCACTGCA GGCAGTGGGC AGCAGAAATAG CCAGGCAGGA CAGAGAAACT CCACCACTAT	1800
30	TGAGCCCAGG CTTCTGTGGG AGAGAGTGG AAGCTGGTGC CCCAGACCTG GCAGTGGCAG	1860
	CTCCTCAGGG TCCAGCAACT CAGGATCCCA GCCCCGGGTCT CACCCCTGGT CTCAGAGTGG	1920
	CTCCTGGGAA CGCTTCAGAG TGAGATCATC ATCCAAGTCT GAAGGCTCTC CATCTCAGCG	1980
	CCTGGAAAAT GCAGTGAAGA AACCTGAAGA TAAAAAGGAA GTTTTCAGAC CCCTCAAGCC	2040
	TGCTGGCGAA GTGGATCTGA CCGCACTGGC CAAAGAGCTT CGAGCAGTGG AAGATGTACG	2100
35	GCCACCTCG AAGAACCTCG ACTACTCCTC ATCCAGTGG AGCTCGGGGA CGACGGATGA	2160
	GGAGGACGAC GATGTGGAGC AGGAAGGGC TGACGAGTCC ACCTCAGGAC CAGAGGACAC	2220
	CAGAGCAGCG TCATCTCTGA ATTTGAGCAA TGGTGAAACG GAATCTGTGA AAACCATGAT	2280
	TGTCCATGAT GATGTAGAAA GTGAGCCGGC CATGACCCCA TCCAAGGAGG GCACTCTAAT	2340
	CGTCCGCCAG ACTCAGTCCG CTAGTAGCAC ACTCCAGAAA CACAAATCTT CCTCCCTCCTT	2400
40	TACACCTTT ATAGACCCCCA GATTACTACA GATTCTCCA TCTAGCGGAA CAACAGTGAC	2460
	ATCTGTGGTG GGATTTCTCT GTGATGGGAT GAGACCAGAA GCCATAAGGC AAGATCCTAC	2520
	CCGGAAAGGC TCAGTGGTCA ATGTGAATCC TACCAACACT AGGCCACAGA GTGACACCCC	2580
	GGAGATTCTG AAATACAAGA AGAGGTTAA CTCTGAGATT CTGTGTGCTG CCTTATGGGG	2640
45	AGTGAATTG CTAGTGGGTA CAGAGAGTGG CCTGTGCTG CTGGACAGAA GTGGCCAAGG	2700
	GAAGGTCTAT CCTCTTATCA ACCGAAGACG ATTTCAACAA ATGGACGTAC TTGAGGGCTT	2760
	GAATGTCTTGTG GTGACAATAT CTGGAAAAAA GGATAAGTTA CGTGTCTACT ATTTGTCTG	2820
	GTAAAGAAAT AAAATACTTC ACAATGATCC AGAAGTTGAG AAGAACGAGG GATGGACAAC	2880
	CGTAGGGGAT TTGGAAGGAT GTGTACATTA TAAAGTTGTA AAATATGAAA GAATCAAATT	2940
50	TCTGGTATT GCTTGTGAGA GTTCTGTGGA AGTCTATGCG TGGGCACCAA AGCCATATCA	3000
	CAAATTTATG GCCTTTAAGT CATTGGAGA ATTGGTACAT AAGCCATTAC TGGTGGATCT	3060
	CACTGTTGAG GAAGGCCAGA GTTGAAGT GATCTATGGA TCCTGTGCTG GATTCCATGC	3120
	TGTTGATGTG GATTCAAGGAT CAGTCTATGA CATTATCTA CCAACACATG TAAGAAAGAA	3180
	CCCACACTCT ATGATCCAGT GTAGCATCAA ACCCCATGCA ATCATCATCC TCCCCAATAC	3240
55	AGATGGAATG GAGCTTCTGG TGTGCTATGA AGATGAGGGG GTTATGTAA ACACATATGG	3300
	AAGGATCACCA AAGGATGTAG TTCTACAGTG GGGAGAGATG CCTACATCAG TAGCATATAT	3360
	TGGATCAAT CAGACAAATGG GCTGGGGAGA GAAGGCCATA GAGATCCGAT CTGTGAAAC	3420
	TGGTCACCTG GATGGTGTGT TCATGACAAA AAGGCTCAA AGACTAAAAT TCTGTGTGA	3480
	ACGCAATGAC AAGGTGTTCT TTGCTCTGTG TCGGTCTGGT GGCAGCAGTC AGGTTTATTT	3540
60	CATGACCTTA GGCAGGACTT CTCTTCTGAG CTGGTAGAAG CAGTGTGATC CAGGGATTAC	3600
	TGGCCTCCAG AGTCTCAAG ATCCTGAGAA CTTGGAATTG CTTGTAAC GAGCTCGGAG	3660
	CTGCACCGAG GGCAACCAGG ACAGCTGTGT GTGCAGACCT CATGTGTTG GTTCTCTCCC	3720
	CTCCTTCCTG TTCCCTTTAT ATACCAGTTT ATCCCCATTC TTTTTTTTT TCTTACTCCA	3780
	AAATAAAATCA AGGCTGCAAT GCAGCTGGTG CTGTTCAGAT TCCAAAAAAA AAAAAAAACC	3840
65	ATGGTACCCG GATCTCGAA TTCC	

ACF8 DNA sequence

Gene name: Phospholipase A2, group IVC (cytosolic, calcium-independent)

Ont
Abs

Unigene number: Hs.18856
 Probeset Accession #: AA054087
 Nucleic Acid Accession #: NM_003706
 Coding sequence: 310-1935 (predicted start/stop codons underlined)

5	CACGAGGCAG	GGGCCATT	TTT ACCTCCAGGT	TGGCCCTGCT	CAGGACCAGG	AGGAAACACC	60
	TCCAGCCCGC	GACCTCCTCC	CACAGGGGA	AAAGGAAAGC	AGGAGGACCA	CAGAAGCTT	120
	GGCACCGAGG	ATCCCCGAG	TCTTCACCCG	CGGAGATTCC	GGCTGAAGGA	GCTGTCAGC	180
10	GAATACACCG	CTAACGCGAG	GGAGCCCAAG	CCTCCGCACC	CGATTCCGGA	GCACAAGCTC	240
	CACCGCGCAT	GCGCACACGC	CCCAGACCCA	GGCTCAGGAG	GACTGAGAAT	TTTCTGACCG	300
	CAGTGCACCA	<u>TGGGAAGCTC</u>	TGAAGTTTC	ATAATTCTG	GGCTCCAGAA	AGAAGAAAAG	360
	GGGGCCGTGG	AGAGACGAAG	ACTTCATGTG	CTGAAAGCTC	TGAAGAAGCT	AAGGATTGAG	420
	GCTGATGAGG	CCCCAGTTGT	TGCTGTGCTG	GGCTCAGGCG	GAGGACTGCG	GGCTCACATT	480
15	GCCTGCCTTG	GGGTCTGAG	TGAGATGAA	GAACAGGGCC	TGTTGGATGC	CGTCACGTAC	540
	CTCGCAGGGG	TCTCTGGAT	CACTTGGCA	ATATCTCTC	TCTACACCAA	TGATGGTGC	600
	ATGGAAGCTC	TCGAGGCTGA	CCTGAAACAT	CGATTACCC	GACAGGAGTG	GGACTTGGCT	660
	AAGAGCCTAC	AGAAAACAT	CCAAGCAGCG	AGGTCTGAGA	ATTACTCTCT	GACCGACTTC	720
	TGGGCCTACA	TGGTTATCTC	TAAGCAAAC	AGAGAACTG	CGGAGTCTCA	TTTGTCCAAT	780
20	ATGGAAGAAGC	CCGTGAAAGA	AGGGACACTA	CCCTACCCAA	TATTTGCAGC	CATTGACAAT	840
	GACCTGCAAC	CTTCCTGGCA	GGAGGCAAGA	GCACCAAGAGA	CCTGGTTCGA	GTTCACCCCT	900
	CACCA CGCTG	GCTTCTCTGC	ACTGGGGGCC	TTTGTTC	TAACCCACTT	CGGAAGCAAA	960
	TTCAAGAAGG	GAAGACTGGT	CAGAACTC	CCTGAGAGAG	ACCTGACTTT	CCTGAGAGGT	1020
	TTATGGGGAA	GTGCTTTGG	TAACACTGAA	GTCATTAGGG	AATACATT	TGACCAGTTA	1080
	AGGAATCTGA	CCCTGAAAGG	TTTATGGAGA	AGGGCTGTTG	CTAATGCTAA	AAGCATTGGA	1140
	CACCTTATT	TTGCCGATT	ACTGAGGCTG	CAAGAAAGTT	CACAAGGGGA	ACATCCTCCC	1200
	CCAGAAGATG	AAGGGTGA	GCCTGAACAC	ACCTGGCTGA	CTGAGATGCT	CGAGAATTGG	1260
	ACCAGGACCT	CCCTGAAAAA	GCAGGAGCAG	CCCCATGAGG	ACCCCGAAAG	GAAAGGCTCA	1320
	CTCAGTA	TGATGGATT	TGTGAAGAAA	ACAGGCATT	GCGCTCAA	GTGGGAATGG	1380
	GGGACCACTC	ACAACCTCCT	GTACAAACAC	GGTGGCATCC	GGGACAAGAT	AATGAGCAGC	1440
30	CGGAAGCACC	TCCACCTGGT	GGATGCTGGT	TTAGCCATCA	ACACTCCCTT	CCCACTCGTG	1500
	CTGCCCCG	CGCGGGAGGT	TCACCTCATC	CTCTCCTCG	ACTTCAGTGC	CGGAGATCCT	1560
	TCGAGACCA	TCGGGCTAC	CACTGACTAC	TGCCCGGCC	ACAAGATCCC	CTTTCCCCAA	1620
	GTAGAAGAGG	CTGAGCTGG	TTTGTGTC	AAGGCCCCCG	CCAGCTGCTA	CATCCTGAAA	1680
	GGAGAAACTG	GACCAGTGGT	GATACTT	CCCCCTGTTCA	ACATAGATGC	CTGTGGAGGT	1740
	GATATTGAGG	CATGGAGTGA	CACATACGAC	ACATTCAAGC	TTGCTGACAC	CTACACTCTA	1800
	GATGTGGTGG	TGCTACTCTT	GGCATTAGCC	AAGAAGAATG	TCAGGGAAA	CAAGAAGAAG	1860
	ATCCTTAGAG	AGTTGATGAA	CGTGGCCGGG	CTCTACTACC	CGAAGGATAG	TGCCCCAAGT	1920
	TGCTGCTTG	<u>CATAGATGAG</u>	CCTCAGCTTC	CAGGGCACTG	TGGGCCTGTT	GGTCTACTAG	1980
	GGCCCTGAAG	TCCACCTGGC	CTTCTGTTC	TTCACTCCCT	TCAGCCACAC	GCTTCATGGC	2040
40	CTTGAGTTCA	CTTGGCTGT	CCTAACAGGG	CCAATCACCA	GTGACCAGCT	AGACTGTGAT	2100
	TTTGATAGCG	TCATTCA	GAAGGTGTCC	AAGGAGCTGA	AGGTGGTGA	ATTGTCCTG	2160
	CAGGTCCCTC	GGGAGATCCT	GGAGCTGGAG	CATGAGTGT	TGACAATCAG	AAGCATCATG	2220
	TCCAATGTCC	AGATGCCAG	AATGAATGT	ATAGTTCAGA	CCAATGCCTT	CCACTGCTCC	2280
	TTTATGACTG	CACTCTAGC	CAGTAGCTCT	GCACAAGTTA	GCTCTGTAGA	AGTAAGAACT	2340
45	TGGGCTTAAA	TCATGGGCTA	TCTCTCCACA	GCCAAGTGG	GCTCTGAGAA	TACAACAAGT	2400
	GCTCAATAAA	TGCTGCTGA	TTGACTGATG	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA	2460
	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA	AAAA			

Ont
Abs

50 ACG1 DNA sequence
 Gene name: Carbohydrate (chondroitin 6/keratan) sulfotransferase 1
 Unigene number: Hs.104576
 Probeset Accession #: AA868063
 Nucleic Acid Accession #: NM_003654
 Coding sequence: 367-1602 (predicted start/stop codons underlined)

55	GGGGAGGGCG	CGGGAGGCAG	AGGATGCCG	CGCGGCTGCT	GCGCCGCCG	CCACCCGCCG	60
	GTCCCCGGCG	ACCCCTACTCC	AGACCCGAGG	ATGGAGCCG	CGCTGGGCGC	TGCAGCTGCT	120
	CCCGCGCGT	CCCCGACCA	GTAGCTGGT	TCACTCGGT	GTGGTTGGAA	GAAGACTTTC	180
60	TCCCCAGCTG	CATTCCCGA	GGCGCCCTT	CGACCTGGAG	GCGGGCTCTG	CTGGCCACAG	240
	GGCTGCCGCA	CTGGCTGGGA	CTGCCAGCTG	GGCCTGGAGA	CGCTGGTGGC	TGTGGACTCC	300
	CCAGCTTGG	GCAGTCCCTC	TTTGACCTCA	CCCCTGGAG	AAGCAGCCC	ATGAAGGTGC	360
	CCAGCCATGC	AATGTTCC	GAAGGCCGTC	CTCCTCCCTG	CCCTGGCCTC	CATTGCCATC	420
	CAGTACACGG	CCATCCGCAC	CTTCACCGCC	AAGTCCTTTC	ACACCTGCCC	CGGGCTGGCA	480
65	GAGGCCGGC	TGGCCGAGCG	ACTGTGCGAG	GAGAGCCCCA	CCTTCGCTTA	CAACCTCTCC	540
	CGCAAGACCC	ACATCCTCAT	CCTGGCCACC	ACGCCAGCG	GCTCTCCCTT	CGTGGGCCAG	600
	CTCTTCAACC	AGCACCTGGA	CGTCTCTAC	CTGTTGAGC	CCCTCTACCA	CGTCCAGAAC	660
	ACGCTCATCC	CCCGCTTCAC	CAAGGGCAAG	AGCCCCGGCG	ACCGGGCGGT	CATGCTAGGC	720

	GCCAGCCGCG	ACCTCCTGCG	GAGCCTCTAC	GAUTGCGACC	TCTACTTCCT	GGAGAACTAC	780
	ATCAAGCCGC	CGCCGGTCAA	CCACACCACC	GACAGGATCT	TCCGCCGCGG	GGCCAGCCGG	840
	GTCCTCTGCT	CCCGGCTGT	GTGCGACCT	CCGGGGCCAG	CCGACCTGGT	CCTGGAGGAG	900
	GGGGACTGTG	TGCGCAAGTG	CGGGCTACTC	AACCTGACCG	TGGCGGCCGA	GGCGTGCCTGC	960
5	GAGCGCAGCC	ACGTGCCAT	CAAGACGGTG	CGCGTGCCTCG	AGGTGAACGA	CCTGCCTCGCC	1020
	CTGGTGGAAAG	ACCCCGGATT	AAACCTCAAG	GTCATCCAGC	TGGTCCGAGA	CCCCCGCGC	1080
	ATTCTGGCTT	CGCGCAGCGA	GACCTTCCG	GACACGTACC	GGCTCTGGG	GCTCTGGTAC	1140
	GGCACCGGGA	GGAAACCCCTA	CAACCTGGAC	GTGACCGAGC	TGACCACGGT	GTGCGAGGAC	1200
10	TTCTCCAATC	CCGTGTCCAC	CGGCCTCATG	CGGCCCTCGT	GGCTCAAGGG	CAAGTACATG	1260
	TTGGTGCCT	ACGAGGACCT	GGCTCGGAAC	CCTATGAAGA	AGACCGAGGA	GATCTACCGGG	1320
	TTCCTGGGCA	TCCCCTGGA	CAGCCACGTG	GCCCCGCTGG	TCCAGAACAA	CACGCGGGGC	1380
	GACCCCCACCC	TGGGAAAGCA	CAAATACGGC	ACCGTGCAGA	ACTCGCGGC	CACGGCCGAG	1440
	AAGTGGCGCT	TCCGCTCTC	CTACGACATC	GTGGCCTTTG	CCCAGAACGC	CTGCCAGCAG	1500
15	GTGCTGGGCC	AGCTGGCTA	CAAGATCGCC	GCCTCGGAGG	AGGAGCTGAA	GAACCCCTCG	1560
	GTCAGCCTGG	TGGAGGAGCG	GGACTTCCGC	CCCTTCTCGT	<u>GACCCGGGGC</u>	GTGCGGGTGG	1620
	GGGCGGGAGG	CGCAAGGTGT	CGGTTTTGAT	AAAATGGACC	GTTTTTAACT	GTGCGCTTAT	1680
	TAACCCCTCC	CTCTCCACC	TCATCTTCG	GTCCCTCTG	CCCCCAGCTC	ACCCCACCTCC	1740
	CTTCTGCCCC	TTTTTTGTCT	CTGAAATTG	CACTACGTCT	TGGACGGGAA	TCACTGGGGC	1800
20	AGAGGGCGCC	TGAAGTAGGG	TCCCGCCCCC	CCCACCCAT	TCAGACACAT	GGATGTTGGG	1860
	TCTCTGTGCG	GACGGTGACA	ATGTTTACAA	GCACCCACATT	TACACATCCA	CACACGCACA	1920
	CGGGCACTCG	CGAGGGCAGT	TCTCAAGCTT	TTGAATGGGT	GAGTGGTGG	GTATCTAGTT	1980
	TTTGCACTGT	CTTACTATTC	AAGGTAAGAG	GATAACAAACA	AGAGGACAC	TTGTCTCTAA	2040
	TTTATGAATG	GTGTCATCC	TTTCCCCATC	CTGCCTCTG	CCCCCTGACG	CCCATTCTCC	2100
	CCCTTAGAGC	AGCGAAACTG	CCCCCTCCTG	CCCGCCCTTG	CCTGTCGGT	AGGCAGGTTT	2160
25	TTACTGTGAG	GTGAACGTGG	ACCTGTTCT	GTTCAGTC	TGTGGTGATG	CTGTCTGTCT	2220
	GTCTGAGTCT	CGTGGCCGCC	CCTGGACCAAG	TGATGACTGA	TGAATCTTAT	GAGCTCTGA	2280
	TTGATCTCGG	GGTCATCTG	TGATATTCT	TTGTGCCAAA	AAGAAAAAAA	AAGAGTGGAT	2340
	CAGTTGCTA	AATGAACATT	GAAATTGAAA	TGCTTTATCT	GTGTTTCTG	AAATAAAAG	2400
	AGTGCAATAA	TCACC					

ACG5 DNA sequence

Gene name: Multimerin

Unigene number: Hs.268107

Probeset Accession #: U27109

Nucleic Acid Accession #: U27109.1

Coding sequence: 72-3758 (predicted start/stop codons underlined)

40	CTGCTATCAA	AAAGGCCATA	AGGATTTGT	CCCCAAATT	CACATGAGCT	ACCTTGCTTC	60
	AAACTACTGA	<u>GATGAAGGGG</u>	GCAAGATTAT	TTGTCCTTCT	TTCTAGTTA	TGGAGTGGGG	120
	GCATTGGGCT	TAACAAACAGT	AAGCATTCTT	GGACTATACC	TGAGGATGGG	AACTCTCAGA	180
	AGACTATGCC	TTCTGCTTCA	GTTCCTCAA	ATAAAATACA	AAGTTGCAA	ATACTGCCAA	240
	CCACTCGGGT	CATGTCGGCG	GAGATAGCTA	CAACTCCAGA	GGCAAGAACT	TCTGAAGACA	300
45	GTCTTCTTAA	ATCAAACACTG	CCTCCCTCAG	AAACAAGTGC	ACCTGCTGAG	GGTGTGAGAA	360
	ATCAAACACT	CACATCCACA	GAGAAAGCAG	AAGGAGTGGT	CAAGTTACAG	AATCTTACCC	420
	TCCCAACCAA	CGCTAGCATC	AGTTCAATC	CTGGAGCAGA	ATCAGTGGTC	CTTCCAATT	480
	CTACACTGAA	ATTCTTCAG	AGCTTTGCCA	AAAAGTCAAA	TGAACAAGCA	ACTTCTCTAA	540
	ACACAGTTGG	AGGCACTGGA	GCGATTGGAG	GCGTTGGAGG	CACTGGAGGC	GTGGGAAATC	600
50	GAGCCCCACG	GGAAACATAC	CTCAGCCGGG	GTGACAGCAG	TTCCAGCCAA	AGAACTGACT	660
	ACCAAAATC	AAATTTCGAA	ACAACCTAGAG	GAAAGAATTG	GTGTGCTTAT	GTACATACCA	720
	GTTTATCTCC	CACAGTGACA	TTGGACAACC	AGGTCACTTA	TGTCCCAGGT	GGGAAAGGAC	780
	CTTGTGGCTG	GACCGGTGGA	TCCGTCTCAT	AGAGATCTCA	GAAGATATCC	AATCTGTCT	840
	ATAGGATGCA	ACATAAAATT	GTCACTCTCAT	TGGATTGGAG	GTGCTGTCT	GGATACAGTG	900
55	GGCCGAAATG	TCAACTAAGA	GCCCAGGAAC	AGCAAAGTTT	GATACACACC	AACCAGGCTG	960
	AAAGTCATAC	AGCTGTTGGC	AGAGGAGTAG	CTGAGCAGCA	GCAGCAGCAA	GGCTGTGGTG	1020
	ACCCAGAAAGT	<u>GATGCAAAAA</u>	ATGACTGATC	AGGTGAAC	CCAGGCAATG	AAACTGACTC	1080
	TTCTGCAGAA	GAAGATTGAC	ATATTTCTT	TGACTGTGAA	TGATGTAAGG	AAACACTTACT	1140
	CCTCCCTAGA	AGGAAAAGTC	AGCGAAGATA	AAAGCAGAGA	ATTTCATCT	CTTCTAAAAG	1200
60	GTCTAAAATC	CAAAGCATT	ATGTACTGA	TAAGAGACAT	AGTAAGAGAA	CAATTAAAAA	1260
	TTTTCAAAA	TGAATGCAA	GAGACTGTAG	CACAGCTCTT	CAAGACTGTA	TCAAGTCTAT	1320
	CAGAGGACCT	CGAAAGCACC	AGGCAAATAA	TTCAAAAGT	TAATGAATCT	GTGGTTCAA	1380
	TAGCAGCCCA	GCAAAAGTTT	GTTTGGTGC	AAGAGAATCG	GCCCACCTTG	ACTGATATAG	1440
	TGGAACCTAAG	GAATCACATT	GTGAATGTAA	GGCAAGAAAT	GAETCTTACA	TGTGAGAAGC	1500
65	CTATTAAAGA	ACTAGAACGTA	AAGCAGACTC	ATTTAGAAGG	TGCTCTAGAA	CAGGAACACT	1560
	CAAGAACGAT	TCTGTATTAT	GAATCCCTCA	ATAAAACCT	TTCTAAATTG	AAGGAAGTAC	1620
	ATGAGGACGCT	TTTATCAACT	GAACAGGTAT	CAGACCAGAA	GAATGCTCCA	GCTGCTGAGT	1680
	CAGTTAGCAA	TAATGTCACT	GAGTACATGT	CTACTTTACA	TGAAAATATA	AAGAACGAGA	1740
	GTGGATGAT	GCTGCAAATG	TTTGAAGATT	TGCACATTCA	AGAAAGCAAG	ATTAACAATC	1800

TCACCGTCTC TTTGGAGATG GAGAAAGAGT CTCTCAGAGG TGAATGTGAA GACATGTTAT 1860
 CCAAATGCAG AAATGATTTT AAATTCACAC TTAAGGACAC AGAAGAGAAT TTACATGTGT 1920
 TAAATCAAC ATTGGCTGAA GTTCTCTTC CAATGGACAA TAAGATGGAC AAAATGAGTG 1980
 AGCAACTAAA TGATTGACT TATGATATGG AGATCCTCA ACCCTTGCTT GAGCAGGGAG 2040
 5 CATCACTCG ACAGACAATG ACATATGAAC AACCAAAGGA AGCAATAGTG ATAAGGAAAA 2100
 AGATAGAAAA TCTGACTAGT GCTGTCAATA GTCTAAATT TATTATCAA GAACCTACAA 2160
 AAAGACACAA CTTACTTAGA AATGAAGTAC AGGGTCGTGA TGATGCCMTA GAAAGACGTA 2220
 TCAATGAATA TGCCCTAGAA ATGGAAGATG GCCTCAATAA GACAATGACT ATTATAAATA 2280
 ATGCTATTGA TTTCATTCAA GATAACTATG CCCTAAAAGA GACTTTAAGT ACTATTAAGG 2340
 10 ATAATAGTGA GATCCATCAT AAATGTACCT CCGATATGGA AACTATTITG ACATTATTC 2400
 CTCAGTCCA CCGTCTGAAT GATTCTATTG AGACTTTGGT CAATGACAAT CAGAGATATA 2460
 ACTTTGTTT GCAAGTCGCC AAGACCCCTG CAGGTATTCC CAGAGATGAG AACTAAATC 2520
 AGTCCAACCT CCAAAAGATG TATCAAATGT TCAATGAAAC CACTTCCCAA GTGAGAAAAT 2580
 ACCAGCAAA TATGAGTCAT TTGGAAGAAA AACTACTCTT AACTACCAAG ATTCCAAAAA 2640
 15 ATTTTGAGAC TCGGTTGCAA GACATTGAGT CTAAAGTTAC CCAGACGCTC ATACCTTATT 2700
 ATATTCAGT TAAAAAAAGGC AGTGTAGTTA CAAATGAGAG AGATCAGGCT CTTCAACTGC 2760
 AAGTATTAAA TTCCAGATT AAGGCCTGG AAGCAAAATC TATCCATCTT TCAATTAAC 2820
 TCTTTTCGCT TAACAAAATC CTCCACGAAG TTTTACAAT GTGTCACAAT GCTTCTACAA 2880
 GTGTGTCAGA ACTGAATGCT ACCATCCCTA AGTGGATAAA ACATTCCCTG CCAGATATTG 2940
 20 AACTTCTTC AAAAGGTCTA ACAGAATTG TGGAACCAAT AATTCAAATA AAAACTCAAG 3000
 CTGCCCTATC TAATTCAACT TGTTGTATAG ATCGATCGTT GCCTGGTAGT CTGGCAAATG 3060
 TTGTCAAGTC TCAGAACGAA GTAAAATCAT TGCCAAAGAA AATTAACGCA CTTAAGAAC 3120
 CAACGGTAAA TCTTACCCACA GTCCCTGATAG GCCGGACTCA AAGAAACACG GACAACATAA 3180
 TATATCCTGA GGAGTATTCA AGCTGTAGTC GGCATCCGTG CCAAAATGGG GGCACGTGCA 3240
 TAAATGGAAG AACTAGCTTT ACCTGTGCCT GCAGACATCC TTTTACTGGT GACAACGTCA 3300
 25 CTATCAAGCT TGTGGAAGAA AATGCTTTAG CTCCAGATT TTCCAAAGGA TCTTACAGAT 3360
 ATGCACCCAT GGTGGCATT TTTGCATCTC ATACGTATGG AATGACTATA CCTGGCCTA 3420
 TCCTGTTAA TAACTGGAT GTCAATTATG GAGCTTCATA TACCCCAAGA ACTGGAAAAT 3480
 TTAGAATTCC GTATCTTGAA GTATATGTT TCAAGTACAC CATCGAGTC TTTAGTGCTC 3540
 30 ATATTTCTGG ATTTTAGTG GTTGTGGAA TAGACAAGCT TGCATTGAG TCTGAAAATA 3600
 TTAACAGTGA AATACACTGT GATAGGGTT TAACTGGGA TGCCATTATA GAATTAAATT 3660
 ATGGGCAGGA AGTCTGGTTA CGACTTGCAA AAGGAACAAT TCCAGCCAAG TTTCCCCCTG 3720
 TTACTACATT TAGTGGCTAT TTATTATATC GTACATAAGT TAGTATGAAA AACAGACTAT 3780
 CACCTTTATT GAGAACACGC CAGTGTTC ATTATCTTT GCTTGCACAT CTGCTCTGTT 3840
 35 TTGGTTTTTC TACAGGAAAT GAAATCAAA TTGTTTTT AATATGAGTA AACTGTATG 3900
 TCTATTTAT AAAATTTATTA GAATATTGTT TAATGCTGA ATATGAAAGA GTTCTTGATC 3960
 CTAAGAAAT TTAGTGGCAC AGAAAACAAA GTGAATTG TAGCATAATT ATTCTTATTC 4020
 TTATTTCTTC ATTAAAGTC ATTGCAATGG AAAGTAATAT TATAAAACGG TAATTACAAC 4080
 40 ATATTATCAG TCACAGTTT CTTTCCAATT AAACACTTAA CTTTGTAT CCCCTGTATA 4140
 TAAATATATA ACACACATT TCTAGATTCA CAAATTAAA TAAATTACTC AAAAAATG

ACC6 DNA sequence

Gene name: Homo sapiens cDNA FLJ11502 fis, clone HEMBA1002102, weakly similar to

ANKRYIN

Unigene number: Hs.213194

Probeset Accession #: AA107101

Nucleic Acid Accession #: AK021564

Coding sequence: 1-450 (predicted stop codon underlined, 5' end sequence is open)

45 GTGCCCGCGC GGCCGCCGGT GAGCCGCATG GAGCCCCGGG CGGGCGGACGG CTGCTTCCTG 60
 GGGCAGCTGG GTTTCTGGGT GGAGCGGACC CCTGTGCACG AGGCAGCCC GCGGGGTGAG 120
 AGCCTGCAGC TGCAACAGCT GATCGAGAGC GGCGCCTGCG TGAACCAGGT CACCGTGGAC 180
 50 TCCATCACGC CCCTGCACGC AGCCAGTCTG CAGGCCAGG CGCGGTGTGT GCAGCTGCTG 240
 CTGGCGGCTG GGGCCCAAGGT GGATGCTCGC AACATCGACG GCAGCACCCC GCTCTCGAT 300
 GCCTGGCCCT CGGGCAGCAT CGAGTGTGTG AAGCTCTTGC TGTCTTACGG GGCAAGGTC 360
 AACCCCTCCCC TGTACACAGC GTCCCCCTG CACGAGGCCA GCTTCTCCCC CCTCCTGAGC 420
 ACCCTGGCTT CGACGCCCTG GATCAACTGA GCCAGGTGGA ACTCCTGGGG GACATGGATC 480
 GCAATGAATT CGACCAAGTAT TTGAACACTC CTGG~~T~~ACCC AGACTCCGCC ACAGGGCCA 540
 60 TGGCCCTCAG TGGGCATGTT CCGGTCTCCC AGGT~~T~~CACC AACGGGTCCC ACAGAGACCA 600
 GCCTCATCTC CGTCTGGCT GATGCCACGG CCACGTACTA CAACAGCTAC AGTGTGTCA 660
 AGAGCTGGAG GCGCCCCGTC CGGTCAGCCC TCGGCCCTC TCCCTCTTGT GCCTTGAGTG 720
 GCAGAGGAGC CGTCCAGCCA CACCAGCTT CCTCCCACCG CTCAGGGCAG GGAGGTCTGA 780
 ACTGCGGCC CAGAGCCTT GGCCTAAGCT GGACTCTCCT TATCCGAGTG CCGCCTCTAT 840
 65 CCCCTTCCCC ACGTCCAGC CCCTGCAGCC CACATTAA GTATATTCT TCAAGTGAGT 900
 TTTCTCCAG CCCCTGAGAG TTGCTGTCTC CCAGTGGAAAT GTTCACTGAC GTCTTTCTT 960
 GGTAGGCCATC ATCGAAACTA ATGGGGGAC AGACTTGATA GCCAAGGTCC CTTCTGGTCC 1020
 AGTTTTCTGA TTAGGGTTC TCTCAAGATT AATAAGGAA GATGGGGAAA TTTGACTCAT 1080

	TAATGAGCTC GCTAACCTAC GATCTGGTGA TAATTTGTG TGCACAGCCC AAGGACCACG	1140
	AGGCTTCTG CACTTCTGC ACCCCCTTC AAAGTGACCA CAAAATTCA AAGGGACTCA	1200
	TACAATTGAGA GAAAAAACAG TCAACCTGAT TTGAGAAATT AACCACTATG GCTAACTATA	1260
5	TCACAGAAAA TGGGATTGAG TTAAAACATAT TTTATTTAA ATATACATT TAAAGCAGTT	1320
	CTTTTTTTTG TGTTAATTG TTTATTATAC ACACACTTCA AGAGAATATG CACAGTCTAG	1380
	GCCGGGCACG GTGGCTCACG CCTGTAATCC CAGCACTTG GGAGGCCAG GCATGTGGAT	1440
	CACCTGAGGT CAGGAGTTG AGACCAGCT AGACAACATG GTGAAACCTT GTCTCTATGA	1500
	AAAATACAAA ATTTGCTGGG AGTGGTGGTG CATGCTGTG ATCCCAGCTA CTTGGAAGGC	1560
10	TGAGGCAGGA GAATGTCTTG AACCTAGGAG GTGGAGGTTG CAGTGAGCTG AGATTGCACC	1620
	ATTGCACTCC AGCGTGTGCA ACAAGAGTGA AACTCCATT CAAG	

ACC7 DNA sequence

Gene name: Human RAL A gene

Unigene number: HS.6906

Probeset Accession #: AA083572

Nucleic Acid Accession #: contig of X15014.1 and AK026850

Coding sequence: 1-621 (predicted start/stop codons underlined)

20	<u>ATGGCTGCAA</u> ATAAGCCAA GGGTCAGAAT TCTTGGCTT TACACAAAGT CATCATGGT	60
	GGCAGTGGTG GCGTGGCAA GTCAGCTCTG ACTCTACAGT TCATGTACGA TGAGTTGTG	120
	GAGGACTATG AGCCTACCAA AGCAGACAGC TATCGGAAGA AGGTAGTGC AGATGGGAG	180
25	GAAGTCCAGA TCGATATCTT AGATACAGCT GGGCAGGAGG ACTACGCTGC AATTAGAGAC	240
	AACTACTTC GAAGTGGGGA GGGGTTCTC TGTGTTTCT CTATTACAGA AATGGAATCC	300
	TTTGCAGCTA CAGCTGACTT CAGGGAGCAG ATTTTAAGAG TAAAAGAAGA TGAGAATGTT	360
	CCATTCTAC TGGTTGGTAA CAAATCAGAT TTAGAAGATA AAAGACAGGT TTCTGTAGAA	420
	GAGGCAAAA ACAGAGCTGA GCAGTGGAAAT GTTAACATACG TGGAAACATC TGCTAAAACA	480
	CGAGCTAATG TTGACAAGGT ATTTTTGTAT TTAATGAGAG AAATTCGAGC GAGAAAGATG	540
	GAAGACAGCA AAGAAAAGA TGGAAGAAAG AAGAGGAAAA GTTAGCCAA GAGAACAGCA	600
30	GAAAGATGCT GCATTTTATA <u>ATCAAAAGCCC</u> AAACCTCTT CTTATCTGAA CCATACTAAT	660
	AAATATAATT TATAAGCATT GCCATTGAAAG GCTTAATTGAA CTGAAATTAC TTTAACATT	720
	TGGAAATTGT TGTATATCAC TAAAAGCATG AATTGGAAC GCAATGAAAG TCAAATTAC	780
	TTTAAAAGA ATTAATATG GCTTCACCAA GAAGCAAAGT TCAACTTT TCTATCTGAA	840
	CTACATTTAT CATGGCCTG AATGTAGCGT GTAAGCTTGT GTTCTTGGG CAGTCTTCT	900
35	TGAAATTGAA GAGGTGAAAT GGGGGTGGGG ACTGGGAGGA AAGGTGACTT CCTCTGGTGT	960
	TTATTATAAA GCTTAAATT TATATCATT TAAAATGTCT TGGTCTTCTA CTGCTTGAA	1020
	AAATGACAAT TGTGAACATG ATAGTTAAC TACCACTTT TTTAACCAATT ATTATGCAA	1080
	ATTTAGAAGA AAAGTTATTG GCATGGTTGT TGCAATATAGT TAAACTGAGA GTAATTTCATC	1140
	TGTGAATCTG CTTTAATTAC CTGGTGAGTA ACTTAGAAAA GTGGTGTAAA CTTGTACATG	1200
40	GAATTTTTG AATATGCCCTT AATTTAGAAA CTGAAAAATA TCCGGTTATA TCATTCTGGG	1260
	TGTGTTCTA CTGACACCAG GGGTCCGCTG CCCCCATGTGT CCTGGTGAGA AAATATATGC	1320
	CTGGCACAGC TTTGTATAG AAAATTCTG AGAAGTAAC GTCCGCTAGA AGTCTGTCCA	1380
	AATTAAAAT GTGTGCCATA TTCTGGTTCT TGAAAATAAG ATTCCAGAGC TCTTGATCG	1440
	CTTTTAATAA ACTGCAAGTT CATTAAATT GAAGGGCCAG CATATATACT TGCAAGATAA	1500
45	TTTCAGCTG CAAGGATTCA GCACCACTTA TGTTGAAATG AACCCCTCTT TTCTCTGAGA	1560
	TTCTGGTCCC TGGAAATCCC TTTCTGCTAG TGGTGAGCAT GTAAGTGTAA AGTTTTAAT	1620
	CTGGGAGCAG GGCATAGGAA GAAAATGTCAGA GTAGTGCTAA TGCATTTGC ACTAGAACGC	1680
	TTCGGGAAAA TATTCTATGCT TGCCATCTGT TCATTCTAA ATTATATATTCA ATAAAGTTAC	1740
	AGTTTGATAC AGGAATTATT AGGAGTAATT CTTTTCTGTT TCTGTTTATA ATGAAGAACAA	1800
50	CTGTAGCTAC ATTTTCAGAA GTTAACATCA AGCCATCAAA CCTGGGTATA GTGCAGAAGA	1860
	CGTGGCACAC ACTGACCCACA CATTAGGCTG TGTCACTTGT GTGTTGTTA CCTGCTGGAA	1920
	GAATTCTAGC ATGCTACTTG GGGACATAAT TTCAGTGGGA ATATGCCAC TGACCGATT	1980
	TTTTTTTTT CCTCTTGTCA GTGGGGCTAG GACAGTTGAT TCAACAAAGT ATTTTTTCT	2040
	TTTTCTCAG TCCTAATTGAGA GACAGGTCAA AGATGTGTTC AGGCATTCCA GGTAAACAGGT	2100
55	GTGTATGTAA AGTTAAAAAT AGGCTTTTA GGAACACTACT CTTTAGATAT TTACATCCAG	2160
	CTTCTCATGTT TAAATATTG TCCCTTAAAGG GTTGTGAGATG TACATCTTTC ATTTCTGATT	2220
	TCTCATAGGC TATGCCATGT CGGAAATTCAGT AGTTACCAAT GTAACACTGG CCAGCGGGCC	2280
	CAGCAATCTC CATGTGTACT TATTACAGTC TTATTAACC AGGGGTCTTA ACCACTAACAA	2340
	TTGTGACTTT GCTTGTGAGAC CTTTCCTCTC CTGGGTACTG AGGTGCTATG AAGCCACTG	2400
60	ACAAAGATGC ATCACGTGTC TTAGGCTGAT GCCACTACCC GATTTGTTA TTTGCAATT	2460
	GAGCCATTAA AAGACCAATA AACTCCCTT TTTAAAAAAA AAAAAAAA AAAAAAAA	2520

A

ACC9 DNA sequence

Gene name: KIAA0955 protein

Unigene number: HS.10031

Probeset Accession #: AA027168

Onit
A70

Nucleic Acid Accession #: AB023172

Coding sequence: 314-1609 (predicted start/stop codons underlined)

5	CTGGTTCTCA ACTTCTTTG AAATAATGTT CATAGAGAAG GAGGGCTGTC TGAGATTGCA GGGAAACAAG CTCTCAGGAC TTCCGGTCGC CATGATGGCT GTGGGCGGTA AACGCGGTTA GTGCAAGCAT CTGGGCCATC TTCAATGGTA AAAAAGATAC AGTAAAGACA TAAATACCAC ATTTGACAAA TGGAAAAAAA GGAGTGTCCA GAAAAGAGTA GCAGCAGTGA GGAAGAGCTG CCGAGACGGG TATACAGGG A CCTACCGCTGT GTTTCTGAGA CCCTTTGTGA CATCTCACAT TTTTCCAAG AAG <u>ATG</u> ATGA GACAGAGGCAG GAGCCATTAT TGTTCCGTGC TGTTCCGTGAG	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900
10	TGTCAACTAT CTGGGGGGGA CATTCCCAGG AGACATTGTC TCAGAAAGAGA ATCAAATAGT TTCCCTCTTAT GCTTCTAAAG TCTGTTTGAGA GATCGAAGAA GATTATAAAA ATCGTCAGTT TCTGGGGCCT GAAGGAAATG TGGATGTTGA GTTGATTGAT AAGAGCACAA ACAGATACAG CGTTGGTTC CCCACTGCTG GCTGGTATCT GTGGTCAGCC ACAGGGCTCG GCTTCTGGT AAGGGATGAG GTCACAGTGA CGATTGGTGTG TGTTCTCTGG AGTCAGCACC TGGCCTGG CCTGCAGCAC CATGAACAGT GGCTGGTGGG CGGCCCTTG TTTGATGTC CTGCAGAGCC AGAGGAGGCT GTCGCCAAA TCCACCTCCC CCACCTCATC TCCCTCCAAG GTGAGGTGGA CGTCTCCTGG TTTCTCGTTG CCCATTAA GAATGAAGGG ATGGTCTCTGG AGCATCCAGC CCGGGTGGAG CCTTCTATG CTGTCTCTGG AAGCCCCAGC TTCTCTCTGA TGGGCATCCT GCTGCGGATC GCCAGTGGG CTCGCCTCTC CATCCCCATC ACTTCCAACA CATTGATCTA TTATCACCCC CACCCGAAG ATATTAAGTT CCACTGTAC CTTGTCCTTCA GCGACGCCCT GCTAACAAAG GCGATAGATG ATGAGGAAGA TCGCTCCAT GTGTGCGGCC TGCAGACTTC GCCCCCAATG GAACCCCTGA ACTTTGGTTC CAGTTATATT GTGTCTAATT CTGCTAACCT GAAAGTAATG CCCAAGGAGT TGAAATTGTC CTACAGGAGC CCTGGAGAAA TTCAGCACTT CTCAAAATTCT TATGCTGGG AGATGAAGGA ACCCATTCAA CTTGAGATTA CTGAAAAAAG ACATGGGACT TTGGTGTGGG ATACTGAGGT GAAGCCAGTG GATCTCCAGC TTGTAGCTGC ATCAGCCCCCT CCTCCTTCT CAGGTGCAGC CTTTGTGAAG GAGAACCAACC GGCAACTCCA AGCCAGGATG GGGGACCTGA AAGGGGTGCT CGATGATCTC CAGGACAATG AGGTTCTTAC TGAGAATGAG AAGGAGCTGG TGGAGCAGGA AAAGACACGG CAGAGCAAGA ATGAGGCCCT GCTGAGCATG GTGGAGAAGA AAGGGGACCT GGCCCTGGAC GTGCTCTTC GAAGCATTAG TGAAAGGGAC CCTTACCTCG TGTCCTATCT TAGACAGCAG AATTGTAAA ATGAGTCAGT TAGGTAGTCT CGAAGAGAGA ATCCAGCGTT CTCATGGAA ATGGATAAAAC AGAAATGTGA TCATTGATTCT CAGTGTCAA GACAGAAGAA GACTGGTAA CATCTATCAC ACAGGCTTTC AGGACAGACT TGTAACTCTGG CATGTACCTA TTGACTGTAT CCTCATGCT TTTCTCAAG AATGTCTGAA GAAGGTAGTA ATATTCTTT TAAATTCTT CCAACCATTG CTTGATATAT CACTATTCTA TCCATTGACA TGATTCTGAGA AGACCCAGGA TAAAGGACAT CGGGATAGGT GTGTTATGAG AGGATGGGGC CTGGAAAGGC AACTTTCTT GATTAATGTC AAAATAATT CCTATGGACA CTCCGGTTGA AGTATCACCT TCTCATAACT AAAAGCAGAA AAGCTAACAA AAGCTTCTCA GCTGAGGACA CTCAGGCAT ACATGATGAC AGTCTTTTT TTTTGTAT GTTAGGACTT TAACACTTTA TCTATGGCTA CTGTTATTAG ACAATGTAAT ATGTATTG TGAAAGAGAG CACAAAATG GGAGAAAATG CAAACATGAG CAGAAAATAT TTTCCACTG GTGTGTAGCC TGCTACAAGG AGTTGTTGGG TTAAATGTTCA ATGGTCAACT CCAAGGAATA CTGAGATGAA ATGTGGTAA TCAACTCCAC AGAACCCACCA AAAAGAAAAT GAGGGTAATT CAGCTTATTG TGAGACAGAC ATTCCCTGGCA ATGTACCTA CAAAAAAATAA GCCAACTCTG ACATTTGGAT TCTACCATAG ACTCTGTCA TTTGTAGCCA TTTCAGCTGT CTTTGATTA ATGTTTCGTT GGCACACATA TTTCCATCTT TTTATGTTA ATCTGTTAA ACAAGTTCC TAGTAGACAC CATCTGGTTG AGTCAGTTT TTTTATGGTG TATTTGAAC CCATTCTGAT AGTCTCTTT AACTGGAAGA TTTCAATTAC TTACGTTAAT GTAATTATTA ATATGTTAGG ATTTATCCTC AGTCAGCCAG TTTGTATGT CTTTCTATT CTACTGTTAT CACATTGTA CCACTTAAAG TGGAACTCTAG GCACTTTATC ACCATTAGA TCCTATTACCC TTTTCTCATC TAGGATATAG TTATCTCTA CATAATCTT CTGTATCTTAA AAACCCATCA ATAAATTATT ATATATTCTC TACTTTAACT CACTCAGAAG ATTTAAAAAA CTCATGAGAA GAGTAATCTG TTATGTTTTT CCAGATATT ACCATTCTG TTGCTCTTCC TTCAATTATT TCCAAATTTC GTTCTGCAA TTTCCACTTC TTCTGATAGA CGTTTTTAG TTCTTTAGA GTGGTTCTGA TAGGTACAGA TTCTCTTATT TTTGCTTCC TCTGAGGACA TCTTTCTC ACCTTCATTC TCAGTGTGT TTTTGTGTT TAGTATTTT AGTTGACATT GTTTCTGTT CAGCAGTTTC CTTTTAGCTT CCGTATTCTC TGATGAGAAA TCTGCAGTC TTCAAATTGT TGTTCCCTG TATGTAGTGT GTCATTTTC TGTAGATT CAAGGTATT ATCTTTAGTT TTTAGCCATT TCATTATGTT GGGGATGAGT TTCTGTGTT TATTCCCTT GGAATTGCT CCAATTCTATA AA <u>TTG</u> CACTG TTTATGCTT TTACCAAAC TAGAGGTTT CAGCCTAATT TCTAAAATA 60 C1 TTTATTA GCCTGATTT CATCTTATA GGAAATAGTT TAAGTGTGATGA CAAGTTCCAA TAGCTTATAT GCCCAGAAGG CCTCTAAAT AAGAATTG AAAGAATACA GAAAACAAAC TTTATATCC TTCTCATGTC TTCTACTGTA AAATTCTAT GCTTGTCTAC TCTAACACCA GTTTGAATC AACAGTCTG AGAATAGATG AAAATTGTA TGAATAGTGG AATTCTTTA AATGGAAACC TCTTACATGT GATTTCCCTT GCCATCTAGA AATAAACCAT AGTATTATG TTGAATCAAT CAATATTATA TTTTGTGTTTT TTCTCTCT TCTGAGACTC TTATTGTGGA AATGTTAGAC TTTTATGTTT TCCTAAATGT CCCTGATATT CTACTTATT AGAACATCTT TTCATTTTTT CCATTATTCT GATTGGGTAATTTG TCTATTCTCA AATTGCTGG AGTGTTCACC TGTTGTTGTC TGTGTCGTC CACTGAGTGC ATTCAACCACCC TTTAAATT	
65		

TGGTCACTGT ATGTATCAGT TCTAAAATT CCATTTGTT CTCTATATT TAAATTCTT 3960
 GGCTTATATT CTATTTCTC GCAAATGTGT CAGCATTGTC TTGTTGAGC TTTTTTTTT 4020
 TCAAGACAGG GTCTCAACTC TGTTACCCAG GCTGGAGTGC AGTGGTGCAG TCTCAGCTCA 4080
 CTGCAACCTC TGCTCCTGG TTCAAGCGAT TATTGTCCT CAGCCTCCTG AGTAGCTGGG 4140
 5 ATTACAGGCA TGCACCACCA CAGCCCAGCT AATTTTTGT ATTTTTAGTA GAGACAGAGT 4200
 TTTGCTATGT TGGCCAGGCT GGTTTGAAAC TCCTGGCCTC AAGTGTACCA CCCACCTCAG 4260
 CCTCCCAAAG TGCTGGGATT ACAGGCCACT ACACCTGGCA CATTGAGTA TTTTTTTTT 4320
 TTTTTTTTT TTGAGATGGA GTCTCGCTCT GTCATCTAGG CTGGAGTGCAG GTGGTGTGAT 4380
 CTCAGCTCAC TGCAAGCTCT GTCTCCGGG CTCAAGCGAT TCTCTTGCCT CAGCCTCCTG 4440
 10 AGTAGCTAGG ACTACAGGTG CATGCCAACA CGCCCCGCTA ATTTTTTTAA AAAATATTT 4500
 TAGTAGAGAC AGGGTTTCAC CATTGGCAGG AGGATGGTCT CGATCTCCTG ACCTCATGAT 4560
 CCACCCGCCT CGGCCTTCCA AAGTGTGGG ATTACAGGCA TGAGCCACCG TGCCCTGGCCT 4620
 CATTGAGTA TTTTTATAAT GTCTCTTTA AAGTCTTGT CAGATAATT CACTGTACAT 4680
 GTTATTCACT GTTGGTGTG CACTGAGITG TCATTGCA GACAAGTGGG GATTTTGCA 4740
 15 GCTCATCCTT GTATTCTCAG TAGTTCCGAT ATGTACCTC GACATGTGAA TGTTATCTTA 4800
 TGAGACTCTG TTTTATTGT ATCCAACAGA AGATGTTAT TATTATTG GCTTTCTGTG 4860
 AACTGAGGTC TTAATATCAG CTCAATTAA AAGTCTTGC AGTGGTATTC GGATCTATCC 4920
 TGTTGTGCCC TATGAGATTG GGTGCAGTGT ATCCTGTTAG CTCCATTCTC AGGGCGTTT 4980
 20 AATGTGAATT AGGACCAAGCG CAATGAATGC TCAAGTTGGG GTTGGCGTT AGAATTCTATA 5040
 AAAGTCTTA TATGCTCAG

ACF6 DNA sequence

Gene name: Homo sapiens cDNA FLJ10669 fis, clone NT2RP2006275, weakly similar to
 Microtubule-associated protein 1B [CONTAINS: LIGHT CHAIN LC1]
 Unigene number: Hs.66048
 Probeset Accession #: AA609717
 Nucleic Acid Accession #: AK001531
 Coding sequence: 176-2194 (predicted start/stop codons underlined).

CATCTCCCCC AACCTGGGG TCGTGTCTT CAACGCCCTGC GAGGCCGCGT CGCGGCTGGC 60
 GCGCGGCGAG GATGAGGCGG AGCTGGCGCT GAGCCTCCTG GCGCAGCTGG GCATCACGCC 120
 TCTGCCACTC AGCCGCGGCC CGGTGCCAGC CAAACCCACC GTGCTCTTCAG AGAAGATGGG 180
 CGTGGGCCGG CTGGACATGT ATGTGTGCA CCCGCCCTCC GCCGGCGCCAG AGCGCACGCT 240
 GGCCTCTGTG TGCGCCCTGC TGGTGTGGCA CCCGCCGGC CCCGGCGAGA AGGTGGTGGC 300
 CGTGTGTTC CCCGGTTGCA CCCGCCCGCG CTGCTCTTCAG GACGGGCTGG TCCGCTTGCA 360
 GCACTTGAGG TTCCTGCGAG AGCCCCGTGGT GACGCCAGAGG GACCTGGAGG GGCCGGGGCG 420
 AGCCGAGAGG AAAGAGAGCG TGGGCTCCCC GGACAGCTCG AAGAGAGAGG GCCTCTGGC 480
 CACCCACCCCT AGACCTGGCC AGGAGCCCCC TGGGGTGGCC CGCAAGGAGC CAGCACGGGC 540
 40 TGAGGGCCCA CGCAAGACTG AGAAAAGAAC CAAAGACCCC CGGGAGTTGA AGAAAAGACCC 600
 CAAACCGAGT GTCTCCCGGA CCCAGCCGCG GGAGGTGCGC CGGGCAGCCT CTTCTGTGCC 660
 CAACCTCAAG AAGACAATG CCCAGGCCG ACCCAAGCCC CGCAAAGGCC CCAGCACGTC 720
 CCACTCTGGC TTCCCCCGGG TGGCAAATGG ACCCCGCAGC CGGCCAGGCC TCCGATGTGG 780
 AGAAGCCAGC CCCCCCAGTG CAGCCTGCCG CTCTCCGGCC TCCCAGCTGG TGGCCACGCC 840
 45 CAGCCTGGAG CTGGGGCCGA TCCCAGCCGG GGAGGAGAAC GCACTGGAGC TGCCCTTGGC 900
 CGCCAGCTCA ATCCCAGGG CACGCACACC CTCCCCCTGAG TCCCACCGGA GCCCCCGAGA 960
 GGGCAGCGAG CGGCTGTGCG TGAGCCCAGT CGGGGGCGGG GAGGCCGGGC CAGACGCCCTC 1020
 ACCCACAGTG ACCCACACCA CGGTGACCAC GCCCTCACTA CCCGCAGAGG TGGGCTCCCC 1080
 GCACTCGACC GAGGTGGACG AGTCCCTGTC GGTGTCTTT GAGCAGGTGC TGCCGCCATC 1140
 50 CGCCCCCACC AGTGAGGCTG GGCTGAGCCT CCCGCTGCCGT GGCCCCCGGG CGCGGCCGCTC 1200
 GGCTTCCCCA CACGATGTGG ACCTGTGCCCT GGTGTACCCC TGTGAATTG AGCATCGCAA 1260
 GGCCTGGCCA ATGGCACCGG CACCTGCCGT CCCCGGCAGC TCGAATGACA GCAGTGGCCG 1320
 GTCACAGGAA CGGGCAGGTG GGCTGGGGC CGAGGAGACG CCACCCACAT CGGTCAAGCGA 1380
 GTCCCTGCCCT ACCCTGTCTG ACTCGGATCC CGTGCCTCG GCCCCCGGT CGGCAGACTC 1440
 55 AGACGAAGAC ACAGAGGGCT TTGGAGTCCC TCGCACGAC CTTTGCCCTG ACCCCCTCAA 1500
 GGTCCCCCCC CCACTGCCGT ACCCTACCG CATCTGCATG GTGGGACCCCG AGATGCTGCC 1560
 CCCCCAAGACA GCACGGCAA CGGAGAACGT CAGCCGCACC CGGAAGCCCCC TGGCCCGCCC 1620
 CAACTCACCG GCTGCCGCC CAAAGGCCAC TCCAGTGGCT GTCGCCAAA CCAAGGGCT 1680
 TGCTGGTGGG GACCGTGCCTA GCGTACCACT CAGTGCCCGG AGTGAGCCCA GTGAGAAGGG 1740
 60 AGGCCCCGGCA CCCCTGTCCA GAGGTCTC AACCCCCAAG ACTGCCACTC GAGGCCCGTC 1800
 GGGGTCAAGG AGCAGCCGGC CGGGGGTGTG AGCCACCCC CCAAGTCCC CGGTCTACCT 1860
 GGACCTGGCC TACCTGCCA GCGGGAGCAG CGCCCACCTG GTGGATGAGG AGTTCTTCCA 1920
 GCGCGTGCAG CCGCTCTGCT ACGTCTACAG TGGCCAGGAC CAGCGCAAGG AGGAAGGCAT 1980
 GCGGGCCGTC CTGGACCGCG TACTGCCAG CAAGCAGCAT TGGGACCGTG ACCTGCAGGT 2040
 65 GACCCCTGATC CCCACTTTCG ACTCGGTGGC CATGCATACG TGGTACGCAG AGACGCACGC 2100
 CCGGCACCAAG GCGCTGGGCA TCACGGTGTG GGGCAGCAAC GGCATGGTGT CCATGCAGGA 2160
 TGACGCCCTC CGGGCCTGCA AGGTGGAGTT CTAGCCCCAT CGCCGACACG CCCCCCACTC 2220
 AGCCCCAGGCC GCCTGCCCT AGATTCAAGG ACATCAGAAA TAAACTGTGA CTACACTTG

TABLE 2

~~AAA4 Protein sequence:~~

Gene name: CGI-100 protein

Unigene number: Hs.275253

Probeset Accession #: AA089688

Protein Accession #: NP_057124

Signal sequence: predicted 1-23 (first underlined sequence)

Transmembrane Domain: predicted 201-217 (second underlined sequence)

emp24/gp25L/p24 domain: predicted 13-227

Summary: gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. Members of this family are implicated in bringing cargo forward from the ER and binding to coat proteins by their cytoplasmic domains.

MGDKIWLPPF	VLLLAALPPV	<u>LP</u> GAAGFTP	SLDSDFFTFL	PAGQKECFYQ	PMPLKASLEI	60
EYQVLDGAGL	DIDFH L ASPE	GKTLVFEQRK	SDGVHVT V ETE	VGDYMFCFDN	TFSTISEKVI	120
FFELILDNMG	EQAQE Q EDWK	KYITGTDILD	MKLEDILESI	NSIKSRLSKS	GHIQTLLRAF	180
EARDRNIQES	NFDRVNFWSM	<u>VNL</u> VMMVVVS	AIQVYMLKSL	FEDKRKSRT		

~~AAA7 Protein sequence:~~

Gene name: Endothelial differentiation, sphingolipid G-protein-coupled receptor, 1 (EDG1)

Unigene number: Hs.154210

Probeset Accession #: M31210

Protein Accession #: NP_001391

7 Transmembrane Domains: predicted 50-71, 92-110, 122-140, 160-177, 201-222, 251-269, 281-301 (underlined sequences)

Summary: Endothelial differentiation, sphingolipid G-protein-coupled receptor, 1 may regulate the differentiation of endothelial cells. It binds the sphingolipid metabolite, sphingosine-1-phosphate, which may function as a second messenger in cell proliferation and survival.

MGPTSVPLVK	AHRSSVSDYV	NYDIIVRHYN	YTGKLNISAD	KENSIKLT <u>S</u> V	<u>V</u> FILICC <u>I</u> I	60
<u>L</u> ENIFVLLTI	WTKKKFHRPM	YYFIGNLALS	<u>D</u> LLAGVAYTA	NLLLSGATT <u>Y</u>	KLTPAQWFLR	120
EGSMFVALSA	<u>S</u> VFSLLAIAI	ERYITMLKM	LHNGSNNFRL	<u>F</u> LLISACWVI	SLILGGPIM	180
GWNCISALSS	CSTVLPLYHK	<u>H</u> YILFCTTVF	TLLL S I V IL	YCRIYSLVRT	RSRRITFRKN	240
ISKASRSSEN	<u>V</u> ALLKTVIIV	LSVFIACWAP	LFILLLLDVG	CKVKTCDILF	RAEYFLV L A	300
LNSGTNPIIY	TLTNKEMRRA	FIRIMSCCKC	PSGDSAGKFK	RPIIAGMEFS	RSKSDNNSHP	360
QKDEGDNPET	IMSSGNVNSS	S				

~~AAB3 Protein sequence:~~

Gene name: Solute carrier family 20 (phosphate transporter), member 1. Human leukaemia virus receptor 1 (GLVR1)

Unigene number: Hs.78452

Probeset Accession #: L20859

Protein Accession #: NP_005406

Transmembrane domains: predicted 24-40, 62-78, 164-180, 198-214, 232-248, 513-529, 562-578, 604-620, 655-671

Cellular Localization: Likely a Type IIIa membrane protein (Ncyt Cexo)

55	MATLITSTTA	ATAASGPLVD	<u>Y</u> lwmlilgfi	iafvla f svg	andvansfgt	avgsgvv t lk	60
	QACILASIFE	TVGSVLLGAK	vsetirkgli	dve m ynstqg	llmagvsam	fgsawqlva	120
	SFLKLPISGT	HCIVGATIGF	slvakgqegv	kwselikivm	<u>s</u> wfvspllg	imggilfflv	180
	RAFILHKADP	VPNGLRALPV	<u>F</u> yactvginl	fsimytgapl	lgfdklplwg	<u>T</u> ilisvgcav	240
	<u>F</u> CALIVWFFV	CPRMKRKIER	eikcspsesp	lmekknslke	dheetklsvg	dienkhpvse	300
60	VGPATVPLQA	VVEERTVSFK	lgdleeaper	erlpsvdlke	etsidstvng	avqlpngnlv	360
	QFSQAVSNQI	NSSGHSQYHT	vhkds g lyke	llhkhlakv	gi mg dsdk	plrrnnnsts	420
	YTMAICGMPL	DSFRAKEGEQ	kgemekltw	pnadskkrir	ml yt sy c na	vsdlhsasei	480
	DMSVKAAMGL	GDRKG S NGSL	eewydqdkpe	<u>v</u> sllfof l qi	ltacfgsfah	ggndvsnaig	540
65	PLVALYLVYD	TGDVSSKVAT	<u>P</u> iwllyggv	gicvglvwg	rrviqtmgkd	ltpitpssgf	600
	SIELASALT	VIASNIGLPI	stthckvgsv	vsvgwrls k	fmawfvtvpi		660
	SGVISAIAIMA	ifryvilrm					

~~AAB4 Protein sequence:~~

Grt
G75

Gene name: Matrix metalloproteinase 10 (stromelysin 2)

Unigene number: Hs.2258

Probeset Accession #: X07820

Protein Accession #: NP_002416

Signal sequence: predicted 1-17 (underlined sequence)

Cellular Localization: predicted secreted

5	MMHLAFLVLL CLPVCSAYPL SGAAKEEDSN KDLAQYQYLEK YYNLEKDVKQ FRRKDSNLIV	60
10	KKIQGMQKFL GLEVTKLDT DTLEVMRKPR CGVPDVGHFS SFPGMPKWRK THLTYRIVNY	120
	TPDLPRAVD SAIEKALKVW EEVTPLTFSR LYEGEADIMI SFAVKEHGDF YSFDPGHS	180
	AHAYPPGPGL YGDIHFDDDE KWTEDASGTN LFLVAAHLEG HSLGLFHSAN TEALMYPLYN	240
	SFTELAQFRL SQDDVNGIQS LYGPPPASTE EPLVPTKSVP SGSEMPAKCD PALSFDAIST	300
	LRGEYLFFKD RYFWRSHWN PEPEFHLLISA FWPSLPSYLD AAYEVNSRDT VFIFKGNEFW	360
15	AIRGNEVQAG YPRGIHTLG PPTIRKIDAA VSDKEKKKY FFAADKYWRF DENQSMEQG	420
	FPRLIADDFFP GVEPKVDAVL QAFGFFYFFS GSSQFEFDPN ARMVTHILKS NSWLHC	

Vers
G10

AAB6 Protein sequence:

Gene name: Podocalyxin-like

Unigene number: Hs.16426

Probeset Accession #: U07510

Protein Accession #: NP_005388

Transmembrane domain: predicted 432-448 (underlined sequence)

Cellular Localization: predicted Type Ia membrane protein (Nexo)

20	MRCALALSAL LLLLSTPPPLL PSSPSPSPSP SPSQNATQTT TDSSNKTAAPT PASSVTIMAT	60
25	DTAQQSTVPT SKANEILASV KATTLGVSSD SPGTTLAQQ VSGPVNTTVA RGGGSGNPTT	120
30	TIESPKSTKS ADTTTVATST ATAKPNTTSS QNGAEDTTNS GGKSSHVSFT DLTSTKAELH	180
	TPPHPTSPLS PRQPTLTHPV ATPTSSGHDH LMKISSSSST VAIPGYTFTS PGMTTLPSS	240
	VISQRTQQTS SQMPASSTAP SSQETVQOPTS PATALRTPTL PETMSSSPTA ASTTHRYPKT	300
	PSPTVAHESN WAKCEDLETQ TQSEKQLVILN LTGNTLCAGG ASDEKLISLI CRAVKATFNP	360
	AQDKCGIRLA SVPGSQTVVV KEITIHTKLP AKDVYERLKWD KDELKEAGV SDMKLGDQGP	420
35	PEEAEDRFSM PLIITIVCMA SFLLLVAALY GCCHQRQLSQR KDQQLRTEEL QTVENGYHDN	480
	PTLEVMETSS EMQEKKVVS L NGELGDSWIV PLDNLTCKDL DEEEDTHL	

Vers
G11

AAB8 Protein sequence:

Gene name: EGF-containing fibulin-like extracellular matrix protein 1

Unigene number: Hs.76224

Probeset Accession #: U03877

Protein Accession #: NP_004096 Variant 1

Signal sequence: predicted 1-17 (underlined sequence)

Summary: This gene spans approximately 18 kb of genomic DNA and consists of 12 exons. Two transcripts with distinct 5' UTR have been described; the resulting proteins have distinct N-terminal amino acid sequences. Translation initiation from internal methionine residues was observed with *in vitro* translation. A signal peptide sequence is predicted for translation initiation sites 1, 2, and 4. The protein isoforms contain 5 or 6 calcium-binding EGF2 domains and 5 or 6 EGF2 domains. Mutations in this gene cause the retinal disease Malattia Leventinese.

Transcript Variant: This variant (1) has a distinct 5' UTR and N-terminal protein sequence as compared to variant 2.

40	MLKALFLTML TLALVKSQDT EETITYTQCT DGYEWDPVRQ QCKDIDECDI VPDACKGGMK	60
45	CVNHYGGYLC LPKTAQIIVN NEQPQQETQP AEGTSGATTG VVAASSMATS GVLPGGGFVA	120
50	SAAAAGAGEM QTGRNNFVIR RNPADPQRIP SNPSHRIQCA AGYEQSEHNV CQDIDECTAG	180
55	THNCRADQVC INLRGSFACQ CPPGYQKRGE QCVDIDECI PPYCHQRCVN TPGSFYCQCS	240
	PGFQLAANNY TCVDINECDA SNQCAQQCYN ILGSFICQCN QGYELSSDRL NCEDIDECRT	300
	SSYLCQYQCV NEPGKFSCMC PQGYQVVRSR TCQDINECET TNECREDEMC WNYHGGFRCY	360
60	PRNPCQDPYI LTPENRCVCP VSNAMELPS QSIVYKYSI RSDRSVPSDL FQIQATTIYA	420
	NTINTFRIKS GNENGFYLR QTSPVSAMLV LVKSLSGPRE HIVDLEMLTV SSIIGTFRSS	480
	VLRLTIIVGP FSF	

Vers
G12

AAB9 Protein sequence:

Gene name: Melanoma adhesion molecule, MUC 18 glycoprotein

Unigene number: Hs.211579

Probeset Accession #: M28882

Protein Accession #: NP_006491

G18
Signal sequence: predicted 1-19 (first underlined sequence)
Transmembrane domain: predicted 558-575 (second underlined sequence)
Cellular localization: predicted Type Ia membrane protein (Nexo)

5 MGLPRLVCAF LLAACCCPR VAGVPGEAEQ PAPELVEEV GSTALLKCGL SQSQGNLSHV 60
DWFSVHKEKR TLIFRVRQQ GQSEPGYE~~E~~Q RLSLQDRGAT LALTQVTPQD ERIFLCQGKR 120
PRSQEYRIQL RVYKAPEEPN IQVNPLGIPV NSKEPEEVAT CVGRNGYPIP QVIWYKNGRP 180
LKEEKNRVHI QSSQTVESSG LYTLQSILKA QLVKEDKDAQ FYCELNYRLP SGNHMKESRE 240
VTVPVFYPTE KWLEVEPVG MLKEGDRVEI RCLADGNPPP HFSISKQNPS TREAEEETTN 300
10 DNGVLVLEPA RKEHSGRYEC QAWNLDTMIS LLSEPQELLV NYVSDVRVSP AAPERQEGSS 360
LTLTCEAESS QDLEFQWLRE ETDQVLERGP VLQLHDLKRE AGGGYRCVAS VPSIPGLNRT 420
QLVKLAIFGP PWMAFKERKV WVKENMVLNL SCEASGHPRP TISWNVNNTA SEQDQDPQRV 480
LSTLNVLVTP ELLETGVECT ASNDLGKNTS ILFLELVNLT TLTPDSNTTT GLSTSTASPH 540
TRANSTSTER KLPEPESRGV VIVAVIVCIL VLAVLGAVLY FLYKKGKLP~~C~~ RRSGKQEITL 600
15 PPSRKTELVV EVKSDKLPEE MGLLQGSSGD KRAPGDQGEK YIDL~~RH~~

G19
AAS1 Protein sequence:
Gene name: Matrix metalloproteinase 1 (interstitial collagenase)
Unigene number: Hs.83169
Probeset Accession #: X54925
Protein Accession #: NP_002412
Signal sequence: predicted 1-19 (underlined sequence)
Cellular Localization: predicted secreted protein

20 MHSFPPLLLL LFWGUVSHSF PATLETQE~~Q~~D VDLVQKYLEK YYNLKNDGRQ VEKRRNSGPV 60
VEKLKQM~~Q~~EF FGLKVTKPD AETLKVMQP RCGVPDVAQF VLTEGNPRWE QTHLTYRIEN 120
YTPDLPRADV DHAIEKAFQL WSNVTPLTFT KVSEGQADIM ISFVRGDHRD NSPFDGPGGN 180
LAHAFAQPGPG IGGDAHFDED ERWTNNFREY NLHRAAAHEL GHSLGLSHST DIGALM~~P~~SY 240
TFSGDVQLAQ DDIDGIQAIY GRSQNPVQPI GPQTPKACDS KLTFDAITTI RGEVMFFKDR 300
FYMR~~T~~NPFYP EVELNFISVF WPQLPNGLEA AYEFADRDEV RFFKGNKYWA VQGQNVLHGY 360
PKDIYSSFGF PRTVKHIDAA LSEENTGKTY FFVANKYWR~~Y~~ DEYKRSM~~D~~PG YPKMIAHD~~F~~P 420
GIGHKVD~~A~~V MKDGFFYFFF GTRQYKFDPK TKRILTLQKA NSWFNCRKN

G19
AAC3 Protein sequence:
Gene name: Branched chain aminotransferase 1, cytosolic
Unigene number: HS.157205
Probeset Accession #: AA423987
Protein Accession #: NP_005495
Cellular Localization: cytosolic
Summary: The lack of the cytosolic enzyme branched-chain amino acid transaminase (BCT) causes cell growth inhibition. There may be at least 2 different clinical disorders due to a defect of branched-chain amino acid transamination: hypervalinemia and hyperleucine-isoleucinemia. Since there are 2 distinct BCATs, mitochondrial and cytosolic, it is possible that one is mutant in each of these 2 conditions.

25 MDCSNGSAEC TGEGGSKEVV GTFKAKDLIV TPATILKEKP DPNNLVFGTV FTDHMLTVEW 60
SSEFGWEKPH IKPLQNL~~S~~LH PGSSALHYAV ELFEGLKAFR GVDNKIRLFQ PNLMNDRM~~Y~~R 120
SAVRATLPVF DKEELLECIQ QLVKLDQEWV PYSTSASLYI RPAFIGTEPS LGVKKPTKAL 180
LFVLLSPVGP YFSSGT~~F~~NPV SLWANPKYVR AWKGGTG~~D~~C~~K~~ MGGNYGSSLF AQCEDVDNGC 240
QQVLWL~~Y~~GRD HQITEVGTMN LFLYWINE~~D~~G EEELATPP~~L~~D G~~I~~ILPGVTRR CILDLAHQWG 300
50 EFKVSER~~Y~~LT MDDLT~~T~~ALEG NRVREM~~F~~SSG TACVVC~~P~~VSD ILYKG~~E~~TI~~H~~ PTMENGPKLA 360
SRILSKLTDI QYGREESDWT IVLS

G19
ACG4 Protein sequence:
Gene name: Pentaxin-related gene, rapidly induced by IL-1 beta
Unigene number: Hs.2050
Probeset Accession #: M31166
Protein Accession #: NP_002843
Signal sequence: predicted 1-17 (underlined sequence)
Cellular localization: predicted secreted
Summary: TNF-inducible member of hyaluronate binding protein family, related to CD44

MHLLAILFCA LWSAVLAENS DDYDLMYVNL DNEIDNGLHP TEDPTPCDCG QE~~H~~SEWDKLF 60

IMLENSQMRE RMLLQATDDV LRGEQLRLRE ELGRLAESLA RPCAPGAPAE ARLTSALDEL 120
 LQATRDAGR LARMEGAEAQ RPEEAGRALA AVLEELRQTR ADLHAVQGWA ARSWLPAGE 180
 TAILFPMRSK KIFGSVHPVR PMRLESFSAC IWVKATDVLN KTILFSYGTK RNPYEIQLYL 240
 SYQSIVFVVG GEENKLVAEA MVSLGRWTHL CGTWNSEEGL TSLWVNGELA ATTVEMATGH 300
 5 IVPEGGILQI GQEKGCCVG GGFDETLAFLS GRLTGFNIWD SVLSNEEIRE TGGAESCHIR 360
 GNIVGVGVTE IQPHGGAQYV S

ACK5 Protein sequence:

Gene name: Von Willebrand factor; Coagulation factor VIII

Unigene number: Hs.110802

Probeset Accession #: M10321

Protein Accession #: NP_000543

Signal peptide: predicted 1-22 (underlined sequence)

15 Cellular localization: predicted secreted

<u>MIPARFAGVL</u>	LALALILPGT	LCAEGTRGRS	STARCSLFGS	DFVNTFDGSM	YSFAGYCSYL	60
LAGGCQKRSE	SIIGDFQNGK	RVSLSVYLGE	FFDIHLFVNG	TVTQGDQRVS	MPYASKGLYL	120
ETEAGYYKLS	GEAYGFVARI	DGSGNFQVLL	SDRYFNKTCG	LCGNFNIFAE	DDFMHQEGTL	180
20 TSDPYDFANS	WALSSGEQWC	ERASPPSSSC	NISSGEMQKG	LWEQCQLLKS	TSVFARCHPL	240
VDPEPFVALC	EKTLCCECAGG	LECACPALLE	YARTCAQEGM	VLYGWTDHSA	CSPVCPAGME	300
YRQCVSPCAR	TCQSLHINEM	CQERCVDGCS	CPEGQLLDEG	LCVESTECPC	VHSGKRYPPG	360
TSLSRDCNTC	ICRNSQWICS	NEECPGECLV	TGQSHFKSFD	NRYFTFSGIC	QYLLARDCDQ	420
HSFSIVIETV	QCADDRDAVC	TRSHTVRLPG	LHNSLVKLKH	GAGVAMDQD	IQLPLLKGDQ	480
RIQHTVTASV	RLSYGEDLQM	DWDGRGRLLV	KLSPVYAGKT	CGLCGNYNGN	QGDDFLTPSG	540
LAEPRVEDFG	NAWKHLGDCQ	DLQKQHSDPC	ALNPRMTRFS	EEACAVLTSP	TFEACHRAVS	600
PLPYLRNCRY	DVCSCSDGRE	CLCGALASYA	AACAGRGRV	AWREPGRCEL	NCPKGQVYLQ	660
CGTPCNLTCR	SLSYPDEECN	EACLEGCFCP	PGLYMDERGD	CVPKAQCPYC	YDGEIFQPED	720
IFSDDHHTMCY	CEDGFMHCTM	SGVPGSLLPD	AVLSSPLSHR	SKRSLSSCRPP	MVKLVCPADN	780
25 LRAEGLCTK	TCQNYDLECM	SMGCVSGCLC	PPGMVRHENR	CVALERCPCF	HQGKEYAPGE	840
TVKIGCNTV	CRDRKWNTD	HVCDATCSTI	GMAHYLTFDG	LKYLFPGECQ	YVLVQDYCGS	900
NPGTFRILVG	NKGCSHPSVK	CKKRVTILVE	GGEIELFDGE	VNVKRPKMD	THFEVVESGR	960
YI11LLGKAL	SVVKRDLHSI	SVVLKQTYQE	KVCGLCGNFD	GIQNNNDLTSS	NLQVEEDPVD	1020
FGNSWKVSSQ	CADTRKVPLD	SSPATCHNNI	MKQTMDSSC	RILTSDFVQD	CNKLVDPEPY	1080
LDVCIYDTCS	CESIGDACF	CDTIAAYAHV	CAQHGKVVTW	RTATLCPQSC	EERNLRENGY	1140
ECEWRYNSCA	PACQVTCQHP	EPLACPVQCV	EGCHAHCPPG	KILLELLQTC	VDPEDCPVCE	1200
VAGRRFASGK	KVTLNPSDPE	HCQICHCDVV	NLTCEACQEP	GLVVPPPTDA	PVSPTTLYVE	1260
DISEPPLHDF	YCSRLLDLVF	LLDGSSRLSE	AEEFVLKAFV	VDMMERLRIS	QKWRVAVVE	1320
YHDGSHAYIG	LKDRKRPSEL	RIIASQVKYA	GSQVASTSEV	LKYTLFQIFS	KIDRPEASRI	1380
40 ALLMASQEP	QRMSRNFVRY	VQGLKKKKVI	VIPVGIGPHA	NLKQIRLIEK	QAPENKAFVL	1440
SSVDELEQQR	DEIVSYLCDL	APEAPPPLP	PHMAQTVGP	GLLGVSTLGP	KRNSMVLDA	1500
FVLEGSDKIG	EADFNRSKEF	MEEVIQRMDV	QDSDIHVTVL	QYSYMTVEY	PFSEAQSKE	1560
ILQRVREIRY	QGGNRTNTGL	ALRYLSDHSF	LVSQGDREQA	PNLVYMVTCGN	PASDEIKRLP	1620
45 GDIQVVPIGV	GPNANQVELE	RIGWPNAPII	IQDFETLPRE	APDVLVQRC	SGEGLQIPTL	1680
SPAPDCSQPL	DVILLLDGSS	SFPASYFDEM	KSFAKAFISK	ANIGPRLTQV	SVLQYGSITT	1740
IDVPWNVVP	KAHLLSLVDV	MQREGGPSQI	GDALGFAVRY	LTSEMHGARP	GASKAVVILV	1800
TDVSVDSDVDA	AADAARSNRV	TVFPIGIGDR	YDAAQLRILA	GPAGDSNVVK	LQRIEDLPTM	1860
VTLGNSFLHK	LCSGFVRICM	DEDGNEKRP	DWWTLPDQCH	TVTCQPDGQ	LLKSHRVNCD	1920
RGLRPSCPNS	QSPVKVEETC	GCRWTCPCVC	TGSSTRHIVT	FDGQNFKLTG	SCSYVLFQNK	1980
50 EQDLEVILHN	GACSPGARQG	CMKSIEVKHS	ALSVELHSDM	EVTVNGLRVS	VPYVGGNMEV	2040
NVYGAIMHEV	RFNHLGHIFT	FTPQNNEFQL	QLSPKTFASK	TYGLCGICDE	NGANDFMLRD	2100
GTVTTDWKTL	VQEWTVQRPG	QTCQPILEEQ	CLVPDSSHQ	VLLLPLFAEC	HKVLAPATFY	2160
AICQQDSCHQ	EQVCEVIASY	AHLCRTNGVC	VDWRTPDFCA	MSCPPPSLVYN	HCEHGCPRHC	2220
55 DGNVSSCGDH	PSEGCFCPD	KVMLEGSCVP	EEACTQCIGE	DGVHQFLEA	WVPDHQPCQI	2280
CTCLSGRKVN	CTTQPCPTAK	APTGLCEVA	RLRQNADQCC	PEYECVCDPV	SCDLPVPHC	2340
ERGLQPTLTN	PGECPNFTC	ACRKEECKRV	SPPSCPPHRL	PTLRKTQCCD	EYECACNCVN	2400
STVSCPLGYL	ASTATNDCGC	TTTTCPLDKV	CVHRSTIYPV	GQFWEEGCDV	CTCTDMEDAV	2460
MGLRVAQCSQ	KPCEDCSRSG	FTYVLHEGEC	CGRCLPSACE	VVTGSPRGDS	QSSWKSVGSQ	2520
WASPENPCLI	NECVRVKEEV	FIQQRNVSCP	^LEVPVCPSG	FQLSCKTSAC	CPSCRCERME	2580
60 ACMLNGTVIG	PGKTVIMDVC	TTCRCMVQVG	ISGFKLECR	KTTCNPCPLG	YKEENNTGEC	2640
CCRCLPTACT	IQLRGQIIMT	LKRDETQDG	CDTHFCKVNE	RGEYFWEKRV	TGCPPFDEHK	2700
CLAEGGKIMK	IPGTCCDTCE	EPECNDITAR	LQYVKVGSC	SEVEVDIHYC	QGKCASKAMY	2760
SIDINDVQDQ	CSCCSPTRTE	PMQVALHCTN	GSVYVHEVNL	AMECKCSPRK	CSK	

AAC7 Protein sequence:

Gene name: KIAA1294 protein

Probeset Accession #: AA432248

cont
a 83
s
Protein Accession #: BAA92532

Cellular localization: predicted nuclear protein
PFAM prediction: 22-153 Band 41 domain (underlined seq). A number of cytoskeletal-associated proteins that associate with various proteins at the interface between the plasma membrane and the cytoskeleton contain a conserved N-terminal domain of about 150 amino-acid residues.

10	MAVQLVPDSA LGLLMMTEGR RCOVHLLDDR KLELLVOPKL LAKELLDLVA SHFNLLKEKEY <u>FGIAFTDETG</u> HLNWLOLDRR VLEHDFPKKS GPVVLYFCVR FYIESISYIK DNATIELFFL <u>NAKSCIYKEL</u> IDVDSEVVFE LASYILOEAK GDESSNEVVR SDLKKLPALP TQALKEHPSL	60 120 180
15	AYCEDRVIEH YKKLNGQTRG QAIVNYMSIV ESLPTYGVHY YAVKDKQGIP WWLGLSYKGI FQYDYHKVK PRKIFQWRQL ENLYFREKKF SVEVHDPERRA SVTRRTFGHS GIAVHTWYAC PALIKSIWAM AISQHQFYLD RKQSJKSIIHA ARSLSEIAID LTETGTLKTS KLANMGSKGK IISGSSGSLL SSGSQESDSS QSAKKDMLAA LKSRSQEALEE TLRQRLEELK KLCLREAEALT GKLPVEYPLD PGEEPPIVR RIGTAFKLDE QKILPKGEEA ELERLEREFA IQSQITEAAR	240 300 360 420 480
20	RLASDPNVSK KLKKQRKTSY LNALKLQEI ENAINENRIK SGKKPTQRAS LIIDDGNIAS EDSSLSDLALV LEDEDSQVTS TISPLHSPHK GLPPRPPSHN RPPPPQSLEG LRQMHYHRND YDKSPIKPKM WSESSLDEPY EKVKKRSSH HSSSHKRFPS TGSCAEAGGG SNSLQNNSPIR GLPHWNSQS MPSTPDLRVR SPHYVHSTRS VDISPTRLHS LALHFRHRSS SLESQGKLLG	540 600 660 720
25	SENDTGPDF YTPRTRSSNG SDPMDDCCSSC TSHSSSEHYY PAQMNANYST LAEDSPSKAR ORQRQRQRAA GALGSASSGS MPNLAARGGA GGAGGAGGGV YLHSQSQPSS QYRIKEYPLY IEGGATPVVV RSLESQECH YSVKAQFKTS NSYTAGGLFK ESWRGGGDE GDTGRLTPSR SQLILRTPSLG REGAHDKGAG RAAVSDELRO WYQRSTASHK EHSRLSHTSS TSSDSGSQYS	780 840 900 960
30	TSSQSTFVAH SRVTRMPQMC KATSAALPQS QRSSTPSSEI GATPPSSPHH ILTWQTGEAT ENSPILDGSE SPPHQSTDE	1020

83
a 83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

AC8 Protein sequence:
Gene name: EST
Unigene number: HS.30089
Probeset Accession #: AA410480
CAT cluster#: cluster_96816_1
Summary: predicted open reading frame

ACJ2 Protein sequence:
Gene name: Complement component C1q receptor
Unigene number: HS.97199
Probeset Accession #: AA487558

*Cont
086*

Protein Accession #: NP_036204
 Signal sequence: 1-17 (first underlined sequence)
 Transmembrane domain: 589-605 (second underlined sequence)
 Cellular localization: This gene encodes a predicted type I membrane protein.
 Summary: This protein acts as a receptor for complement protein Clq, mannose-binding lectin, and pulmonary surfactant protein A. This protein is a functional receptor involved in ligand-mediated enhancement of phagocytosis.

10	MATSMGLLLL LLLLLTOPGA GTGADTEAVV CVGTACYTAH SGKLSAAEAQ NHCNQNGGNL	60
	ATVKSKEEAQ HVQRVLAQQL RREAALTARM SKFWIGLQRE KGKCLDPSLP LKGFSWVGCG	120
	EDTPYSNWHK ELRNSCISKR CVSLLLDLSQ PLLPNRLPKW SEGPGCSPGS PGSNIEGFVC	180
	KFSFKGMCRP LALGGPGQVT YTTPFQTTSS SLEAVPFASA ANVACGEGDK DETQSHYFLC	240
	KEKAPDVFDW GSSGPLCVSP KYGCNFNNGG CHQDCFEGGD GSFLCGCRPG FRLLDDLVTC	300
15	ASRNPCSSSP CRGGATCVLG PHGKNYTCCR PQGYQLDSSQ LDCVDVDECQ DSPCAQECVN	360
	TPGGFRCECW VGYEPGGPGE GACQCDVDECA LGRSPCAQGC TNTDGFSFHCS CEEGYVLAGE	420
	DGTQCQDVDE CVGPGGPLCD SLCFNTQGSF HCGCLPGWVL APNGVSCTMG PVSLGPPSGP	480
	PDEEDKGKEKE GSTVPRRAATA SPTRGPETP KATPTTSRPS LSSDAPITSA PLKMLAPSWS	540
	SGVWRPEPSIH HATAASGPQE PAGGDSSVAT QNNDGTDGOK LLLFYILGTV VAI LL LALA	600
	<u>LGLLVYRKRR</u> AKREEKKEKK PQNAADSYSW VPERAESRAM ENQYSPTPGT DC	

*Den
087*

ACJ8 Protein sequence:
 Gene name: FLT1/vascular endothelial growth factor receptor
 Unigene number: Hs.138671
 Probeset Accession #: AA047437
 Transmembrane domain: predicted 764-780 (underlined sequence)
 Cellular Localization: predicted cell surface tyrosine kinase

= 30	MVSYWDTGVL LCALLSCLLL TGSSSGSKLK DPELSLKGTQ HIMQAGQTILH LQCRGEAAHK	60
	WSLPEMVSKE SERLSITKSA CGRNGKQFCG TLTLNTAQAN HTGFYSCKYL AVPTSKKKET	120
	ESAIYIFISD TGRPFVEMYS EIPEIIHMTE GRELVIPCRV TSPNITVTILK KFPLDTLIPD	180
	GKRIIWDSRK GFIISNATYK EIGLLTCEAT VNGLHYKTNY LTHRQTNNTII DVQISTPRPV	240
	KLLRGHTLVL NCTATTPLNT RVQMTWSYPD EKNKRASVRR RIDQSNSHAN IFYSVLTIDK	300
	MQNKDKGLYT CRVRSGPSFK SVNTSVHIYD KAFITVKHRK QQVLETVAGK RSYRLSMKVK	360
	AFPSPEVVWL KDGLPATEKS ARYLTRGYSI IIKDVTTEEDA GNYTILLSQ QSNVFKNLTA	420
	TLIVNVKPQI YEKAVSSFPD PALYPLGSRQ ILTCTAYGIP QPTIKWFHWP CNHNHSEARC	480
	DFCSNNEESF ILDADDSNMGN RIESITORMA IIEGKKNMAS TLVVAUDSRS GIYICIASNK	540
	VGTVGRNISF YITDVPNGFH VNLEKMPTEG EDLKLSTCVN KFLYRDVTWI LLRTVNNRTM	600
	HYSISKQKMA ITKEHSITLN LTIMNVSLQD SGTYACRARN VYTGEIELQK KEITIRDQEA	660
40	PYLLRNLSDH TVAISSTTLD CHANGVPEP QITWFKNNHK IQQEPEGIILG PGSSTLFIER	720
	VTEEDEGVYH CKATNQKGSV ESSAYLTVOQ TSOKSNLELI TLTCTCVAAT LFWLLLTLLI	780
	RKMKRSSSEI KTDYLSIIMD PDEVPLDEOC ERLPYDASKW EFARERLKLG KSLGRGAFGK	840
	VVQASAFGIK KSPTCRTVAV KMLKEGATAS EYKALMTELK ILTHIGHHLN VVNLLGACTK	900
	QGGPLMVIVE YCKYGNLSNY LKSKRDLFFL NKDAALHMEP KKEKMEPGL E QGKKPRLDHV	960
45	TSSESFASSG FQEDKSLSDV EEEEDSDGFY KEPITMEDLI SYSFQVARGM EFLSSRKCIH	1020
	RDLAARNILL SENNVVKICD FGLARDIYKN PDYVRKGDRTR LPLKWMAPES IFDKIYSTKS	1080
	DVWSYGVLLW EIFSLGGSPY PGVQMDDEF C SRREGMRMR APEYSTPEIY QIMLDCHWRD	1140
	PKERPRFAEL VEKLGDLLQA NVQQDGKD Y PINAILTGNS GFTYSTPAFS E DFFKESISA	1200
	PKFNSGSSDD VRVNAFKFM SLERIKTFEE LLPNATSMFD DYQGDSSTLL ASPMLKRFTW	1260
50	TDSKPKASLK IDLRVTSKSK EGGLSDVSRP SFCHSSCGHV SEGKRRFTYD HAELEKIA C	1320
	CSPPPDYNSV VLYSTPPI	

*Den
088*

ACJ9 Protein sequence:
 Gene name: Purine nucleoside phosphorylase
 Unigene number: Hs.75514
 Probeset Accession #: K02574
 Protein Accession #: CAA25320
 Cellular Localization: predicted cytoplasmic
 Summary: likely to catalyze the reversible phosphorolytic cleavage of purine ribonucleosides and 2'-deoxyribonucleosides

65	MENGYTYEDY KNTAEWLLSH TKHRPQVAAI CGSGLGG LTD KLTQAQIFDY SEIPNFP RST	60
	VPGHAGRLVF GFLNRACVM MQGRFHMYEG YPLWKVTFPV RVFHLLGVDT LVVTNAAGGL	120
	NPKFEVGDIM LIRDHINLPG FSGQNPLRGD NDERFGDRFP AMSDAYDRTM RQRALSTWKQ	180
	MGEQRELQEG TYVMVAGPSF ETVAECRVLQ KLGADAVGMS TVPEVIVARH CGLRVFGFSL	240
	ITNKVIMDYE SLEKANHEEV LAAGKQAAQK LEQFVSI LMA SIPLPDKAS	

Unr
A89
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
41354140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
45854590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
<u

QGSGSTATVF AMAELQKGER VWFELTOGSI TKRSLSGTAF GGFLMFKT

ACh7 Protein sequence:

Gene name: EST

Unigene number: Hs.3807

Probeset Accession #: AA292694

BAC Accession #: AL161751

FGENESH predicted aa seq: 1-647; based on BAC clone AL161751

10 MGKDFMTKTP KAFATKAKID KWDLIKLKSF CTAKETIIRV NSQPTDWQKT FAIYPSDKGV 60
IARIYKELEQ IYKKKKPTKT LRTHFLSRPK GNCWPLGPRG DSWQLGGPSG ARAEGKGGGT
GLGKPAVEGG DRAPDTALRP RAGQIQVGSS SACGASENEA GVRPVPPLAG ALARAGRRT
PHCRPCWLIG LGGLLQGPAPR YHEAAGGRGG LHPARWGAQH RACGRRAARC ARAPAGRPR
15 RRGLQRPAVL GRTGAQAFPL HPGERAFAFGF LLAVLRRPSS RKRHAAVGGG APTLLHRAEM 300
RGTPGHRWGR ARSWKEMRCH LRANGYLCKY QFEVLCPAPR PGAASNLNSYR APFQLHSAAL 360
DFSPPGTEVS ALCRGQLPIS VTCIADEIGA RWDKLSGDVL CPCPGRYLRA GKCAELPNCL
DDLGFFACEC ATGFELGKD RSCVTSGEGQ PTLGGTGVPT RRPPATATSP VPQRTWPIRV
20 DEKLGETPLV PEQDMSVTSI PEIPRWGSQS TMSTLQMSLQ AESKATITPS GSVISKFNST 420
TSSATPQAFD SSSAVVFIFV STAVVVVLVIL TMTVGLVKL CFHESPSSQP RKESMGPPGL 480
ESDPEPAALG SSSAHCTNNG VKVGDCDLRD RAEGALLAES PLGSSDA 540
600

AAD4 Protein sequence:

Gene name: ERG

Unigene number: Hs.45514

Probeset Accession #: R32894

Protein Accession #: AAAS2398

Signal sequence: none

Transmembrane domains: none

PFAM domains: predicted Ets-domain 294-373; SAM_PNT: 122-206
Summary: ERG2 is a sequence-specific DNA-binding protein.

35 MIQTVPDPAA HIKEALSVVS EDQSLFECAY GTPHLAKTEM TASSSSDYGQ TSKMSPRVPQ 60
QDWLSQPPAR VTIKMECNPS QVNCSRNSPD ECSVAKGGKM VGSPDTVGMN YGSYMEEKHM 120
PPPNTTTNER RVIVPADPTL WSTDHVRQWL EWAVKEYGLP DVNILLFQNI DGKELCKMTK 180
DDFQRLLTPSY NADILLSHLH YLRETPLPHL TSDDVDKALQ NSPRLMHARN TDLPYEPERR 240
SAWTGHGHPT PQSKAAQPSP STVPKTEDQR PQLDPYQILG PTSRSLANPG SCQIQLWQFL 300
LELLSDSSNS SCITWEGTNG EFKMTPDDEV ARRWERKSK PNMNYDKLSR ALRYYDKNI 360
40 MTKVHGKRYA YKFDFHGIAQ ALQPHPESS LYKYPSDLPY MGSYHAHPQK MNFVAPHPPA 420
LPVTSSSFNA APNPYWNNSPT GGIYPNTRLP TSHMPSHLGT YY 462

AAD5 Protein sequence:

Gene name: activin A receptor type II-like 1 (ALK-1)

Unigene number: Hs.172670

Probeset Accession #: T57112

Protein Accession #: NP_000011

Signal sequence: predicted 1-21

Transmembrane domain: predicted 119-135

PFAM domains: predicted kinase 204-489

Summary: Type Ia membrane protein; receptor tyrosine kinase

55 MTLGSPRKGL LMLLMALVTO GDPVKPSRGP LVTCTCESPH CKGPTCRGAW CTVVLVREEG 60
RHPQEHRGCG NLHRELCRGR PTEFVNHYCC DSHLCNHNVS LVLEATQPPS EQPGTDGQLA 120
LILGPVLALL ALVALGVGL WHVRRRQEKG RGLHSELGES SLILKASEQG DTMLGDLDS 180
DCTTGSGSGGL PFLVQRTVAR QVALVECVKG GRYGEVWRGL WHGESVAVKI FSSRDEQSWF 240
RETEIYNTVL LRHDNILGFI ASDMTSRNNS TQLWLITHYH EHGSILYDFLQ RQTLEPHLAL 300
RLAVSAACGL AHLHVEIFGT QGKPAIAHRS FKSRNVLVVS NLQCCIADLG LAVMHSQGSD 360
60 YLDIGNNPRV GTKRYMAPEV LDEQIRTDCE ESYKWTDA FGLVLWEIAR RTIVNGIVED 420
YRPPFYDVVP NDPSFEDMKK VVCVDQQTPT IPNRLAADFV LSGLAQMMRE CWYPNPSARL 480
TALRIKKTLQ KISNSPEKPK VIQ

AAD8 Protein sequence:

Gene name: ESTs

Unigene number: Hs.144953

Probeset Accession #: AA404418

*Cont
a25*

5 Protein Accession #: n/a
Signal sequence: n/a
Transmembrane domains: n/a
PFAM domains: n/a
Summary: no ORF identified, possible frameshifts. Nearby to PCTAIRE protein kinase 2 (PCTK2) on the genome (within 100 kb).

10 **ACA2 Protein sequence**

Gene name: EST
Unigene number: Hs.16450
Probeset Accession #: AA478778
Protein Accession #: n/a
Signal sequence: n/a
15 Transmembrane domains: n/a
PFAM domains: n/a
Summary: no ORF identified, possible frameshifts; although a match was found to the HTGS genomic sequence, the sequence does not extend far enough upstream to predict coding exons.

20 **ACA4 Protein sequence**

Gene name: alpha satellite junction DNA sequence
Unigene number: Hs.247946
Probeset Accession #: M21305
Protein Accession #: AAA88020
Signal sequence: none
Transmembrane domains: none
PFAM domains: none

25 MEWNGMAWRN IKWNGINSSG MEWNGMEWNA VQCNRMEWNE LELTGMEWNG MHLN

*Dm
096*

30 **ACG6 Protein sequence**

Gene name: intercellular adhesion molecule 2 (ICAM2)
Unigene number: Hs.83738
Probeset Accession #: M32334
Protein Accession #: NP_000864
Signal sequence: predicted 1-21
Transmembrane domain: predicted 224-248
PFAM domains: predicted 41-98, 127-197; immunoglobulin-like C₂-type domains
Summary: a predicted Type Ia membrane protein; it plays a role in cell adhesion and is the ligand for the LFA-1 protein. ICAM2 is also called CD102.

35 MSSFGYRTLT VALFTLICCP GSDEKVFEVH VRPKKLAVEP KGSLEVNCST TCNQPEVGGL 60
ETSLNKILLED EQAQWKHYLV SNISHDTVLQ CHFTCSGKQE SMNSNVSVYQ PPRQVILTLQ 120
PTLVAVGKSF TIECRVPTVE PLDSLTLFLF RGNETLHYET FGKAAPAPQE ATATFNSTAD 180
REDGHRNFSC LAVLDLMSRG GNIFHKHSAP KMLEIYEPVS DSQMVIIVTV VSULLSLFVT 240
SVLLCFIFGQ HLRQQRMGTY GVRAAWRRLP QAFRP

40 *997*

50 **ACG7 Protein sequence**

Gene name: Cadherin 5, VE-cadherin (CDH5)
Unigene number: Hs.76206
Probeset Accession #: X79981
Protein Accession #: NP_001786
Signal sequence: predicted 1-27
Transmembrane domain: predicted 604-620
PFAM domains: Cadherin domains predicted 58-141, 156-249, 263-364, 377-470, and 487-576
Summary: Likely a Type II membrane protein. Cadherins are calcium-dependent adhesive proteins that mediate cell-to-cell interaction. VE-cadherin is associated with intercellular junctions.

55 MQRLMMILLAT SGACLGLLAV AAVAAAGANP AQRDTHSLLP THRRQKRDWI WNQMHIDEEK 60
NTSLPHHVKG IKSSVRKNA KYLLKGEYVG KVFRVDAETG DVFAIERLDR ENISEYHLTA 120
VIVDKDTGEN LETPSSFTIK VHDVNDNPV FTHRLFNASV PESSAVGTSV ISVTAVDADD 180
PTVGDHASVM YQILKGKEYF AIDNSGRIIT ITKSLDREKQ ARYEIVVEAR DAQGLRGDSG 240
TATVLVTLQD INDNFPFFTQ TKYTFVVPED TRVGTSGSL FVEDPDEPQN RMTKYSILRG 300

DYQDAFTIET NPAHNEGIK PMKPLDYEYI QQYSFIVEAT DPTIDLRYMS PPAGNRAQVI 360
 INITDVEDEPP IFQQPFYHFQ LKENQKKPLI GTVLAMDPDA ARHSIGYSIR RTSDKGQFFR 420
 VTKKGDIYNE KELDREVYPW YNLTVAKEEL DSTGTPTGKE SIVQVHIEVL DENDNAPEFA 480
 5 KPYQPVKCEN AVHGQLVLQI SAIDKDITPR NVFKFTLNT ENNFTLTDNH DNTANITVKY 540
 GQFDREHTKV HFLPVVISDN GMPSRTGTST LTVAVCKCNE QGEFTFCEDM AAQVGVSQIA 600
 VVAILLCILT ITVITLLIFL RRRRLRKQARA HGKSVP EIHE QLVTYDEEGG GEMDTTSYDV 660
 SVLNSVRGG AKPPRPALDA RPSLYAQVQK PPRHAPGAHG GPGEMAAMIE VKKDEADHDG 720
 DGPPYDTLHI YGYEGSESEA ESLSSLGTDSDSDVDYDFL NDWGPRFKML AELYGSDPRE 780
 ELLY

10

ACG9 Protein sequence

Gene name: lysyl oxidase-like 2 (LOXL2)

Unigene number: Hs.83354

Probeset Accession #: U89942

Protein Accession #: NP_002309

Signal sequence: predicted 1-25

Transmembrane domains: none predicted

PFAM domains: scavenger receptor cysteine-rich domains predicted 68-159, 203-238, 336-425, 439-528; Lysyl oxidase predicted 548-749.

Summary: Likely a secreted protein. Lysyl oxidase is a copper-dependent amine oxidase that belongs to a heterogeneous family of enzymes that oxidize primary amine substrates to reactive aldehydes, acting on the extracellular matrix substrates, e.g., collagen and elastin.

15 MERPLCSHLCSCLAMLALLSPLSLAQYDSWPHYPEYFQQPAPPEYHQHQAPANVAKIQLRL 60
 AGQKRKHSEG RVEVYYDGQW GTCVCDDFSIAAHAVVCRELGYVEAKSWTA SSSYGKGE GP 120
 IWLDNLHCTG NEATLAACTS NGWGVTDCKH TEDVGVCSDKRIPGFKF DN SLINQIENLN 180
 IQVEDIRIRA ILSTYRKRTP VMEGYVEVKE GKTWKQICDK HWTAKNSRV CGMFGFPGER 240
 TYNTKVKYKMF ASRRKQRYWP FSMDCTGTEA HISSCKLGPQ VS LDPMKNVT CENG LPAVVS 300
 CVPGQVFSPD GPSRFRKAYK PEQPLVRLRG GAYIGEGRVE VLKNGEWGTV CDDKWDLVSA 360
 SVVCRELGFG SAKEAVTGSR LGQGIGPIHL NEIQCTGNEK SI IDCKFNAE SQGCNHEEDA 420
 GVRCCNTPAMG LQKKLRLNGG RNPYEGRVEV LVERNGSLV GMVCGQNWGI VEAMVVCRQL 480
 GLGFASNAFQ ETWYWHGDVN SNKVVMSGVK CSGTELSLAH CRHDGEDVAC PQGGVQYAG 540
 VACSETAPDL VLNAEMVQQT TYLEDRPMFM LQCA MEENCL SASAAQTDPT TGYRLLLRF S 600
 20 S QIHNNGQSD FRPKNGRHAW IWHDCCHRHYH SMEVFTHYDL LN LNGTKVAE GHKASF CLED 660
 TECEGDIQKN YECANFGDQG ITMGCWDMYR HDIDCQWVDI TDVPPGDYL F QVVINPNFEV 720
 AESDYSNNIM KCRSRYDGHRIWMYNCHIGGSFSEETEKKF EHFSGLNNQ LSPQ

25

30

35

40

45

50

55

60

65

ACH2 Protein sequence

Gene name: TIE tyrosine-protein kinase

Unigene number: Hs.78824

Probeset Accession #: K60957

Protein Accession #: NP_005415

Signal sequence: predicted 1-21

Transmembrane domain: predicted 710-786

PFAM domains: laminin-EGF predicted 234-267; FN3 predicted 460-520, 548-632, and 644-729; tyrosine_kinase predicted 839-1107

Summary: Likely a Type Ia membrane protein; TIE is a tyrosine-kinase receptor with an unknown ligand; its expression is likely necessary for normal blood vessel development.

40 MVWRVPPFLL PILFLASHVG AAVDLTLLAN LRLTDPQRFF LTCVSGEAGA GRGSDAWGPP 60
 LLLEKDDRIV RTPPGPPLRL ARNGSHQVTL RGFSKPSDLV GVFSCVGGAG ARRTRVIYVH 120
 NSPGAHLLPD KVHTVNKGDTAVLSARVHK EKQTDVIWKS NGSYFYTLDW HEAQDGRFLL 180
 QLPNVQPPSS GIYSATYLEA SPLGSAFFRL IVRGCAGRW GPGCTKECPG CLHGGVCHDH 240
 DGECCVCPGF TGTRCEQACR EGRFGQSCQE QCPCGISGCRG LTFCCLPDYVG CSCGSGWRGS 300
 QCQFICAPGH FGADCRLQCQ CQNGGTCDRF SGCVCPGWH GVHCEKSDRI PQILNMASEL 360
 EFNITMPRI NCAAAAGNPF VRGSIELRKP DGTVLLSTKA IVEPEKTTAE FEVPRLVLAD 420
 SGGWECRVST SGGQDSRRFK VNVKVPVPL AAPRLLTKQS RQLVVSPLVS FSGDGPISTV 480
 RLHYRPQDST MDWSTIVVDP SENVTLMNLR PKTGYSVRQ LSRPGE GGEG AWGPPTLMTT 540
 DCPEPLLQWP LEGWHVEGTD RL RVWSLPL VPGPLVGDGF LLRLWDGTRG QERRENVSSP 600
 QARTALLTGL TPGTHYQLDV QLYHCTLLGP ASPPAHVLLP PSGPPAPRHL HAQALSDSEI 660
 QLTWKHPEAL PGPISKYVVE VQVAGGAGDP LWIDVDRPEE TSTIIIRGLNA STRYLFRMRA 720
 45 SIQGLGDWSN TVEESTLGNG LQAEGPQVES RAAEEGLDQQ LILAVVGSVS ATCLTILAAL 780
 LTLVCIRRSC LHRRRTFTYQ SGSGEETILO FSSGTLTLTR RPKLQPEPLS YPVLEWEDIT 840
 FEDLIGEGNF GQVIRAMIKK DGLKMNAAIK MLKEYASEND HRDFAGELEV LCKLGHHHPNI 900

INLLGACKNR GYLYIAIEYA PYGNLLDFLR KSRVLETDPA FAREHGTAST LSSRQLLRFA 960
 SDAANGMQYL SEKQFIFHRDL AARNVLVGEN LASKIADFGL SRGEEVYVKK TMGRLPVRWM 1020
 AIESLNYSVY TTKSDVWSFG VLLWEIVSLG GTPYCGMTCA ELYEKLPQGY RMEQPRNCDD 1080
 EVYELMRQCW RDRPYERPPF AQIALQLGRM LEARKAYVNM SLFENFTYAG IDATAEEA

5

John

A/10

10

15

ACH3 Protein sequence
 Gene name: placental growth factor (PGF; PlGF1; VEGF-related protein)
 Unigene number: Hs.2894
 Probeset Accession #: X54936
 Protein Accession #: NP_002623
 Signal sequence: predicted 1-21
 Transmembrane domain: none predicted
 PFAM domains: PDGF predicted 52-199
 Summary: Likely a secreted protein; likely regulates angiogenesis by interacting with FLT1 and FLK1.

MPVMRLFFPCF LQLLAGLALP AVPPQQWALS AGNGSSEVEV VPFOEVWGRS YCRALERLVD 60
 VVSEYPSEVE HMFSPLCVSL LRCTGCCGDE NLHCVPVETA NVTMQLLKIR SGDRPSYVEL 120
 TFSQHVRCEC RPLREKMKE RCGDAVPRR

20

25

30

35

John

A/11

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260

265

270

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

350

355

360

365

370

375

380

385

390

395

400

405

410

415

420

425

430

435

440

445

450

455

460

465

470

475

480

485

490

495

500

505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

615

620

625

630

635

640

645

650

655

660

665

670

675

680

685

690

695

700

705

710

715

720

725

730

735

740

745

750

755

760

765

770

775

780

785

790

795

800

805

810

815

820

825

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

905

910

915

920

925

930

935

940

945

950

955

960

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

1140

1145

1150

1155

1160

1165

1170

1175

1180

1185

1190

1195

1200

1205

1210

1215

1220

1225

1230

1235

1240

1245

1250

1255

1260

1265

1270

1275

1280

1285

1290

1295

1300

1305

1310

1315

1320

1325

1330

1335

1340

1345

1350

1355

1360

1365

1370

1375

1380

1385

1390

1395

1400

1405

1410

1415

1420

1425

1430

1435

1440

1445

1450

1455

1460

1465

1470

1475

1480

1485

1490

1495

1500

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

1565

1570

1575

1580

1585

1590

1595

1600

1605

1610

1615

1620

1625

1630

1635

1640

1645

1650

1655

1660

1665

1670

1675

1680

1685

1690

1695

1700

1705

1710

1715

1720

1725

1730

1735

1740

1745

1750

1755

1760

1765

1770

1775

1780

1785

1790

1795

1800

1805

1810

1815

1820

1825

1830

1835

1840

1845

1850

1855

1860

1865

1870

1875

1880

1885

1890

1895

1900

1905

1910

1915

1920

1925

1930

1935

1940

1945

1950

1955

1960

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

2065

2070

2075

2080

2085

2090

2095

2100

2105

2110

2115

2120

2125

2130

2135

2140

2145

2150

2155

2160

2165

2170

2175

2180

2185

2190

2195

2200

2205

2210

2215

2220

2225

2230

2235

2240

2245

2250

2255

2260

2265

2270

2275

2280

2285

2290

2295

2300

2305

2310

2315

2320

2325

2330

2335

2340

2345

2350

2355

2360

2365

2370

2375

2380

2385

2390

2395

2400

2405

2410

2415

2420

2425

2430

2435

2440

2445

2450

2455

2460

2465

2470

2475

2480

2485

2490

2495

2500

2505

2510

2515

2520

2525

2530

2535

2540

2545

2550

2555

2560

2565

2570

2575

2580

2585

2590

2595

2600

2605

2610

2615

2620

2625

2630

2635

2640

2645

2650

2655

2660

2665

2670

2675

2680

2685

2690

2695

2700

2705

2710

2715

2720

2725

2730

2735

2740

2745

2750

2755

2760

2765

2770

2775

2780

2785

2790

2795

2800

2805

2810

2815

2820

2825

2830

2835

2840

2845

2850

2855

2860

2865

2870

2875

2880

2885

2890

2895

2900

2905

2910

2915

2920

2925

2930

2935

2940

2945

2950

2955

2960

2965

2970

2975

2980

2985

2990

2995

3000

3005

3010

3015

3020

3025

3030

3035

3040

3045

3050

3055

3060

3065

3070

3075

3080

3085

3090

3095

3100

3105

3110

3115

3120

3125

3130

3135

3140

3145

3150

3155

3160

3165

3170

3175

3180

3185

3190

3195

3200

3205

3210

3215

3220

3225

3230

3235

3240

3245

3250

3255

3260

3265

3270

3275

3280

3285

3290

3295

3300

3305

3310

3315

3320

3325

3330

3335

3340

3345

3350

3355

3360

3365

3370

3375

3380

3385

3390

3395

3400

3405

3410

3415

3420

3425

3430

3435

3440

3445

3450

3455

3460

3465

3470

3475

3480

3485

3490

3495

3500

3505

3510

3515

3520

3525

3530

3535

3540

3545

3550

3555

3560

3565

3570

3575

3580

3585

3590

3595

3600

3605

3610

3615

3620

3625

3630

3635

3640

3645

3650

3655

3660

3665

3670

3675

3680

3685

3690

3695

3700

3705

3710

3715

3720

3725

3730

3735

3740

3745

3750

3755

3760

3765

3770

3775

3780

3785

3790

3795

3800

3805

3810

3815

3820

3825

3830

3835

3840

3845

3850

3855

3860

3865

3870

3875

3880

3885

3890

3895

3900

3905

3910

3915

3920

3925

3930

3935

3940

3945

3950

3955

3960

3965

3970

3975

3980

3985

3990

3995

4000

4005

4010

4015

4020

4025

4030

4035

4040

4045

4050

4055

4060

4065

4070

4075

4080

4085

4090

4095

4100

4105

4110

4115

4120

4125

<p

Contd
Q102

~~Summary: a cytoplasmic, actin-bundling protein that is likely to be involved in the assembly of actin filament bundles present in microspikes, membrane ruffles, and stress fibers~~

5 MTANGTAEAV QIQFGLINCG NKYLTAEEAFG FKVNASASSL KKKQIWTLEQ PPDEAGSAAV 60
CLRSHLGRL AADKDGTVTC EREVPGPDCR FLIVAHDDGR WSLQSEAHRR YFGGTEDRLS 120
CFAQTVSPAEC KWSVHIAHMP QVNIYSVTRK RYAHLSARPA DEIAVDRDVP WGVDSSLITLA 180
FQDQRYSVQT ADHRFLRHG RLVARPEPAT GYTLEFRSGK VAFRDCEGRY LAPSGPSGTL 240
10 KAGKATKVKG DELFALEQSC AQVVLQAANE RNVSTRQGMD LSANQDEETD QETFQLEIDR 300
DTKKCAFRTA TGKYWLTAT GGVQSTASSK NASCYFDIEW RDRRITLRAS NGKFVTSKKN 360
GQLAASVETA GDSEFLMKL INRPIIVFRG EHGFIGCRKV TGTL DANRSS YDVFQLEFND 420
GAYNIKDSTG KYWTVGSDSA VTSSGDPVD FFFEFCDYNK VAIKVGGRYL KGDHAGVLKA 480
SAETVDPASL WEY

15 ACN6 Protein sequence
Gene name: endothelial protein C receptor (EPCR; PROCR)
Unigene number: Hs.82353
Probeset Accession #: L35545
Protein Accession #: NP_006395
Signal sequence: predicted 1-17
Transmembrane domain: predicted 211-227
PFAM domains: none identified
Summary: a Type Ia membrane protein, EPCR likely binds to [thrombin]-activated Protein C, a vitamin K-dependent serine protease zymogen necessary for blood coagulation.

20 MLTTLLPILL LSGWAFCSQD ASDGLQRLHM LQISYFRDPY HVWYQGNASL GGHLTHVLEG 60
PDTNTTIIQL QPLQEPESWA RTQSQLQSYL LQFHGLVRLV HQERTLAFPL TIRCLFGCEL 120
30 PPEGSRRAHVF FEVAVNGSSF VSFRPERALW QADTOVTSGV VTFTLQQLNA YNRTRYELRE 180
FLEDTCVQYV QKHISAENTK GSQTSRSYTS LVLGVLVGGF IIAGVAVGIF LCTGGRRC

25 ACH8 Protein sequence
Gene name: melanoma adhesion molecule (MCAM; MUC18)
Unigene number: Hs.21159
Probeset Accession #: D51069
Protein Accession #: NP_006491
Signal sequence: predicted 1-17
Transmembrane domain: predicted 559-575
PFAM domains: immunoglobulin domains predicted 264-324, and 356-410.
Summary: a Type Ia membrane protein, associated with tumor progression and the development of metastasis in human malignant melanoma, and may play a role in neural crest cells during embryonic development.

40 45 MGLPRLVCAF LLAACCCCPV VAGVPGEAEQ PAPELVEEV GSTALLKCGL SQSQGNLSHV 60
DWFSVHKEKR TLIFRVRQGQ GQSEPGEYEQ RLQLQDRGAT LALTQVTPQD ERIFLCQGKR 120
PRSQEYRIQL RVYKAPEEPQ IGVNPLGIPV NSKEPEEVAT CVGRNGYPIP QVIWYKNGRP 180
50 LKEEKNRVHI QSSQTVESSG LYTLQSIILKA QLVKEDKDAQ FYCELNRYRLP SGNHMKESRE 240
VTVPVFYPTA KWLEVEPVG MLKEGDRVEI RCLADGNPPP HFSISKQNPS TREAAEETTN 300
DNGVLVLEPA RKEHSGRYEC QAWNLDTMIS LLSEPQELLV NYVSDVRVSP AAPERQEGSS 360
LTLTCEAESS QDLEFQWLRE ETDQVLERGP VLQLHDLKRE AGGGYRCVAS VPSIPGLNRT 420
OLVKLAIFGP PWMAFKERKV WVKENMVLNL SCEASGHPRP TISWNVNGTA SEQDQDPQRV 480
55 LSTLNVLVTP ELLETGVECT ASNDLGKNTS ILFLEVNL TLPDSNTTT GLSTSTASPH 540
TRANSTSTER KLPEPESRGV VIVAVIVCIL VLAVLGAVLY FLYKKGKLP RRSGKQEITL 600
PPSRKTELVV EVKSDKLPEE MGLLQGSSGD KRAPGDQGEK YIDLH

60 65 ACH9 Protein sequence
Gene name: endothelin-1 (EDN1)
Unigene number: Hs.2271
Probeset Accession #: J05008
Protein Accession #: NP_001941
Signal sequence: predicted 1-17
Transmembrane domain: none predicted
PFAM domains: Endothelin domains predicted 59-73, and 108-129.

Act
a105

Summary: a secreted zymogen; the active protein is likely a 26-amino acid peptide with potent mammalian vasoconstrictor activity; it is necessary for normal vessel development.

5 MDYLLMIFSL LFVACQGAPE TAVLGAELSA VGENGGEKPT PPPPWRLRRS KRCSCSSLMD 60
KECVYFCHLD IIWVNTPHEV VPYGLGSPRS KRALENLLPT KATDRENRCQ CASQKDKKCW 120
NFCQAGKELR AEDIMEKDWN NHKKGKDCSK LGKKCIYQQL VRGRKIRRSS EEHLRQTRSE 180
TMRNSVKSSF HDPLKGKPS RERYVTHNRA HW

Unigene
G106

10 ACV1 Protein sequence
Gene name: BMX non-receptor tyrosine kinase
Unigene number: Hs.27372
Probeset Accession #: X83107
Protein Accession #: NP_001712
Signal sequence: none identified
Transmembrane domain: none identified
PFAM domains: plectrin homology domain predicted 6-111; SH2 domain predicted 294-383; protein kinase domain predicted 417-563
Summary: a cytoplasmic protein, it likely plays a role in the growth and differentiation of hematopoietic cells; it is known to also be expressed in endothelial cells.

20 MDTKSILEEL LLKRSQQKKK MSPNNYKERL FVLTKTNLSY YEYDKMKRGS RKGSIEIKKI 60
RCVEKVNLLEE QTPVERQYPF QIVYKDGLY VYASNEESRS QWLKALQKEI RGNPHLLVKY 120
HSGFFVDGKF LCCQQSCKAA PGCTLWEAYA NLHTAVNEEK HRVPTFPDRV LKIPRAVPVL 180
KMDAPSSSTT LAQYDNESKK NYGSQPPSSS TSLAQYDSNS KKIYGSQPNF NMQYIPREF 240
PDWWQVRKLK SSSSEDVAS SNQKERNVNH TTSKISWEFP ESSSSEEEN LDDYDWFAGN 300
ISRSQSEQQLL RQKGKEGAFM VRNSSQVGMY TVSLFSKAVN DKKGTVKHYH VHTNAENKLY 360
LAENYCFDSI PKLIHYHQHN SAGMITRLRH PVSTKANKVP DSVSLGNGIW ELKREEITLL 420
KELGSGQFGV VQLGKWKQY DVAVKMIKEG SMSEDEFFQE AQTMMKLSHP KLVKFYGVCS 480
KEYPIYIVTE YISNGCLLN YLSHGKGLEP SQQLEMCYDV CEGMAFLESH QFIHRDLAAR 540
NCLVDRDLCV KVSDFGMTRY VLDDQYVSSV GTKFPVKWSA PEVFHYFKYS SKSDVWAFGI 600
LMWEVFSLGK QPYDLYDNSQ VVLKVSQGHR LYRPHLASDT IYQIMYSCWH ELPEKRPTFQ 660
QLLSSIEPLR EKDKH

Unigene
G107

40 ACJ4 Protein sequence
Gene name: prostaglandin G/H synthase 2 (COX-2; PGHS-2)
Unigene number: Hs.196384
Probeset Accession #: D28235
Protein Accession #: NP_000954
Signal sequence: predicted 1-17
Transmembrane domain: none identified
PFAM domains: EGF-like domain predicted 18-55.
Summary: a microsomal enzyme; COX-2 is the therapeutic target of the nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin.

50 MLARALLLCA VLALSHTANP CCSHPCQNNG VCMCSVGFQY KCDCTRTGFY GENCSTPEFL 60
TRIKLFLKPT PNTVHYILTH FKGFVNVVNN IPFLRNAIMS YVLTSRSHLI DSPPTYNADY 120
GYKSWEAFSN LSYYTRALPP VPDDCPPTPLG VKGKKQLPDS NEIVEKLLR RKFIPDPQGS 180
NMMPFAFFAQH FTHQFFKTDH KRGPAAFTNGL GHGVLDNHIY GETLARQRKL RLFKDGMKY 240
QIIDGEMYPP TVKDTQAEMI YPPQVPEHLR FAVGQEVFGL VPGLMMYATI WLREHNRVCD 300
VLKQEHPEWG DEQLFQTSLR ILIGETIKIV IEDYVQHLSG YHFKLKFDPE LLFNKQFQYQ 360
55 NRIAAEFNTL YHWHPLLPDT FQIHDQKNY QQFIYNNNSL LEHGITQFVE SFTRQIAGR 420
AGGRNVPPAV QKVSQASIDQ SRQMKYQSFN EYRKRFMLKP YESFEELTGE KEMSAELEAL 480
YGDIDAVELY PALLVEKPRP DAIFGETMVE VGAPFSLKGL MGNVICSPAY WKPSTFGGEV 540
GFQIINTASI QSLICNNVKG CPFTSFSVPD PELIKTVTIN ASSSRSGLDD INPTVLLKER 600
STEL

Unigene
G108

60 ACN6 Protein sequence
Gene name: SEC14-like 1
Unigene number: Hs.75232
Probeset Accession #: D67029
Protein Accession #: NP_002994
Signal sequence: none identified
Transmembrane domain: none identified

*Cont
A108*
PFAM domains: none identified
Summary: a cytoplasmic protein

5	MVQKYQSPV R VYKYPFELIM AAYERRFPTC PLIPMFVGSD TVSEFKSEDG AIHVIERRCK LDVDAPRLLK KIAGVDYVF VQKNSLNSRE RTLHIEAYNE TFSNRVIINE HCCYTVHPEN	60 120
	EDWTCFEQSA SLDIKSFFGF ESTVEKIAMK QYTSNIKKKG EIIIEYYLRLQ EEEEGITFVPR	180
	WSPPSITPSS ETSSSSSSKKQ AASMAVVIPE AALKEGLSGD ALSSPSAEP VVGTTPDDKLD	240
	ADHIKRYLGD LTPLQESCLI RLRQWLQETH KGKIPKDEHI LRFLRARDFN IDKAREIMCQ	300
10	SLTWRKQHQV DYILETWTTP QVLQDYYAGG WHHHDKDGRP LYVLRLGQMD TKGLVRALGE EALLRYVLSV NEERLRRCEE NTKVFGRPI SWTCLVDLEG LNMRHLWRPG VKALLRIIEV	360 420
	VEANYPETLG RLLILRAPRV FPVLWTLVSP FIDDNTRRKF LIYAGNDYQG PGGLLDYIDK	480
	EIIPDFLSGE CMCEVPEGGL VPKSLYRTAE ELENEIDLKLW TETIYQSASV FKGAPHEILI	540
	QIVDASSVIT WDFDVCKGDI VFNIYHSKRS PQQPKDSDLG AHSITSPGGN NVQLIDKVWQ	600
15	LGRDYSMVES PLICKEGESV QGSHVTRWPG FYILQWKFHs MPACAASSLP RVDDVLASLQ VSSHKCKVMY YTEVIGSEDF RGSMTSLESS HSGFSQLSAA TTSSSQSHSS SMISR	660

ACJ3 Protein sequence

Gene name: intercellular adhesion molecule 1 (ICAM1; CD54)

Unigene number: Hs.168383

Probeset Accession #: M24283

Protein Accession #: NP_000192

Signal sequence: predicted 1-27

Transmembrane domain: predicted 481-497

PFAM domains: immunoglobulin_domains predicted 128-188, and 325-373.

Summary: a Type Ia membrane protein; ICAM1 is typically expressed on endothelial cells and cells of the immune system; ICAM1 binds to integrins of type CD11a/CD18, or CD11b/CD18; ICAM1 is also exploited by Rhinovirus as a receptor.

20	MAPSSPRPAL PALLVLLGAL FPGPGNAQTS VSPSKVILPR GGSVLVTCST SCDQPKLLGI ETPLPKKELL LPGNNRKVYE LSNVQEDSQP MCYSNCPDGQ STAKTFLTVY WTPERVELAP	60 120
	LPSWQPVGKN LTLRCQVEGG APRANLTVVL LRGEKELKRE PAVGEPAEVT TTVLVRRDH	180
	GANFSCRTEL DLRPQGLELF ENTSAPYQLQ TFVLPATPPQ LVSPRVLEVD TQGTVVCSLD	240
	GLFPVSEAQV HLALGDQRNL PTVTYGNDSF SAKASVSVTA EDEGTQRLTC AVILGNQSQE	300
	TLOQTVTIYSF PAPNVILTKP EVSEGTEVTV KCEAHPRAKV TLNGVPAQPL GPRAQLLLKA	360
	TPEDNGRSFS CSATLEVAGQ LIHKNQTREL RVLYGPRLLDE RDCPGNWTFWP ENSQOTPNCQ	420
30	AWGNPLPELK CLKDGTTFPLP IGESVTVTRD LEGTYLCRAR STQGEVTREV TVNVLSPRYE IVIITVVAAA VIMTAGLST YLYNRQRKIK KYRLQQAQKG TPMKPNTQAT PP	480

ACK3 Protein sequence

Gene name: angiopoietin I receptor (TIE-2; TEK)

Unigene number: Hs.89640

Probeset Accession #: L06139

Protein Accession #: NP_000450

Signal sequence: predicted 1-18

Transmembrane domain: predicted 746-770

PFAM domains: immunoglobulin_domains predicted 44-102, 370-424; EGF_like_domains predicted 210-292, 254-299, and 301-341; FN3_domains predicted 444-536, 541-634, and 638-732; protein_kinase_domain predicted 824-1096.

Summary: a Type Ia membrane protein; it is expressed almost exclusively in endothelial cells in mice, rats, and humans; the ligand for this receptor is angiopoietin-1; defects in TEK are associated with inherited venous malformations; the TEK signaling pathway appears to be critical for endothelial cell-smooth muscle cell communication in venous morphogenesis.

40	MDSLASLVLC GVSLLSGTV EGAMDYLILIN SLPLVSDAET SLTCIASGWR PHEPITIGRD FEALMNQHQD PLEVTDVTR EWAKKVVWKR EKASKINGAY FCEGRVRGEA IRIRTMKMRQ	60 120
45	QASFLPATLT MTVDKGDNVN ISFKKVLIKE EDAVIYKNGS FIHSVPRHEV PDILEVHLP AQPQDAGVYS RYIGGNLFT SAFTRLIVRR CEAQKWGPEC NHLCTACMNN GVCHEDTGE	180
50	ICPPGFMGRT CEKACELHTF GRTCKERCSC QEGCKSYVFC LPDPYGCSCA TGWKGLOCNE ACHPGFYGPD CKLRCSCNNG EMCDRFQGCL CSPGWQGLQC EREGIPRMTP KIVDLPDHIE	240
55	VNSGKFNPIC KASGWPLPTN EEMTUVKPDG TVLHPKDFNH TDHFSVAIFT IHRILPPDSG VVVCVNTVA GMVEKPFNIS KVVLKPPLNA PNVIDTGHNF AVINISSEPY FGDGPIKSKK	300
60	LLYKPVNHYE AWQHIQVTNE IVTLNYLEPR TEYELCVQLV RRGEGGEGHP GPVRRFTTAS IGLPPPRGLN LLPKSQTTLN LTWQPIFPSS EDDFYVEVER RSVQKSDQQN IKVPGNLTSV	360
65	LLNNLHPREQ YVVRARVNTK AQGEWSEDLT AWTLSIDLPP OPENIKISNI THSSAVISWT ILDGYSISSI TIRYKVQGKN EDQHVDVKIK NATIIQYQLK GLEPETAYQV DIFAENNIGS	420 480 540 600 660 720

5 SNPAFSELHV TLPESQAPAD LGGGKMLLIA ILGSAGMTCL TVLLAFLIIIL QLKCRANVQRR 780
 MAQAFQNVRE EPAVQFNSGT LALNRKVKNM PDPTIYPVLD WNDIKFQDVI GEGNFGQVLK 840
 ARIKKDGLRM DAAIKRMKEY ASKDDHRSRFA GELEVLCQLG HHPNIINLLG ACEHRYLYL 900
 AIEYAPHGNL LDFLRKSRVL ETDPAFIAAN STASTLSSQQ LLHFAADVAR GMDYLSQKOF 960
 IHRDLAARNI LVGENYVAKI ADFGLSRGQE VYVKKTMGRV PVRWMAIESL NYSVYTTNSD 1020
 VWSYGVLLWE IVSLGGTPYC GMTCAELYEK LPQGYRLEKP LNCDEVYDL MRQCWREKPY 1080
 ERPSFAQILV SLNRMLEERK TYVNTTLYEK FTYAGIDCSA EEA

10 PXA6 Protein sequence:

Gene name: prostate differentiation factor (PLAB; MIC-1)

Unigene number: Hs.116577

Probeset Accession #: AB000584

Protein Accession #: NP_004855

Signal sequence: predicted 1-29

Transmembrane domain: none identified

PFAM domains: TGF beta _domain predicted 211-308.

Summary: a secreted protein; its exact function is unclear; it inhibits proliferation of primitive hematopoietic progenitors; it inhibits activation of macrophages; it is highly expressed in placenta and in serum of pregnant women; it may promote fetal survival by suppressing the production of maternally-derived proinflammatory cytokines within the uterus.

20 MPGQELRTVN GSQMLLVLLV LSWLPHGGAL SLAEASRASF PGPSELHSED SRFRELKRY 60
 EDLLTRLRAN QSWEDSNTDL VPA~~P~~AVRILT PEVRLGSGGH LHLRISRAAL PEGLPEASRL 120
 HRALFRLSPT ASRSWDVTRP LRRQLSLARP QAPALHRLS PPPSQSDQLL AE~~S~~SSARPQL 180
 ELHLRPQAAR GRRRARARNG DDCPLPGPGRC CRLHTVRASL EDLGWADWVL SPREVQVTMC 240
 IGACPSQFRA ANMHAQIKTS LHRLKPDTEP APCCVPASYN PMVLIQKTD~~T~~ GVSLQTYDDL 300
 LAKDCHCI

AAD2 Protein sequence:

Gene name: Thrombospondin-1

Unigene number: Hs.87409

Probeset Accession #: AA232645

Protein Accession #: NP_003237.1

Signal sequence: predicted 1-18 (first underlined sequence)

Transmembrane Domain: none identified

Summary: Thrombospondin is a large modular glycoprotein component of the extracellular matrix and contains a variety of distinct domains, including three repeating subunits (types I, II, and III) that share homology to an assortment of other proteins.

40 MGLAWGLGVL FLMHVC~~G~~TNR IPESGGDNSV FDIFELTGAA RKGSGRRLVK GDPSSPAFR 60
 IEDANLIPPV PDDKFQDLVD AVRAEK~~G~~FLL LASLRQMKKT RTLLALERK DHSGQVFSVV 120
 SNGKAGTL~~D~~L SLTVQGKQHV VSVEEALLAT GQWKSITLFV QEDRAQLYID CEKMENAELD 180
 VPIQSVFTRD LASIARLRIA KGGVNDNFQG VLQNVR~~V~~FVG TPPEDILRNK GCSSSTSVLL 240
 TLDNNVVNGS SPAIRTYIG HKT~~K~~DLOQAIIC GISCDELSSM VLELRGLRTI VTTLQDSIRK 300
 VTEENKELAN ELRRPPLCYH NGVQYRNNEE WTVDSCTECH CQNSVTICKK VSCPIMPCSN 360
 50 ATVPDGECCP RCWP~~S~~DSADD GWSPWSEWT CSTSCNGIQ QRGRSCDSLN NRCEGSSVQT 420
 RTCHI~~Q~~ECDK RFKQDGGW~~H~~ WSPWSSCSV~~T~~ CGDG~~V~~ITRIR LCNSPSPQMN GKPCGEARE 480
 TKACKKDACP INGGWP~~W~~SP WDICS~~V~~T~~C~~GG GVQKRSRLCN NPAPQFGGKD CVGDVTENQI 540
 CNKQDCP~~I~~DG CLSNPCFAGV KCTSYPDGSW KCGACPPGYS GNGIQCTDVD ECKEV~~P~~DACF 600
 NHNGEHR~~C~~N TDPGYNCLPC PPRFTGSQPF GQGVEHATAN KQVCKPRN~~P~~ TDGTHDCNKN 660
 55 AKCNYLGHYS DPMYRCECKP YGAGNGIICG EDTDLDGWP~~N~~ ENLVCVANAT YHCKKDNC~~P~~N 720
 LPNSGQ~~E~~DY KDGIGDACDD DDDNDKIP~~D~~ RDNC~~P~~FHYNP AQYDYDRDDV GDRC~~D~~NC~~P~~YN 780
 HNP~~D~~QADTDN NGE~~G~~DA~~A~~AD IDGDGILNER DNCQYVYNVD QRDTDM~~D~~VG DQCDNC~~P~~LEH 840
 NPDQLDSDSD RIGDTC~~D~~NNQ DIDE~~D~~GHQNN LDNC~~P~~YVPNA NQADHD~~K~~D~~G~~K GDACDH~~DD~~DN 900
 60 DGIPDDKDNC R~~L~~V~~P~~NDQKD SDGDGRG~~D~~AC KDDFDHDSVP DIDDICPENV DISETDFRRF 960
 QMIPLDPKG~~T~~ SQNDPNWVVR HQGKELVQTV KDPGLAVGY DEFNAVDFSG TFFINTERDD 1020
 DYAGFVFGYQ SSSRFYVVMW KOVTQSYWDT MPTRAQGYSG LSVKVVNSTT GPGEHLRN~~A~~ 1080
 WHTGNTPGQV RTLWHDPRHI GWKDFTAYRW RL~~S~~HRPKTGF IRVVMYEGKK IMADSGPIYD 1140
 KTYAGGRLGL FVFSQEMVFF SDLKYECRDP

65 AAD9 protein sequence:

Gene name: LIM homeobox protein cofactor (CLIM-1)

Unigene number: Hs.4980

Q113
a/13
5 Probeset Accession #: F13782

Protein Accession #: AAC83552

Pfam: LIM bind

Transmembrane Domain: none identified

Summary: The LIM homeodomain (LIM-HD) proteins, which contain two tandem LIM domains followed by a homeodomain, are critical transcriptional regulators of embryonic development. The LIM domain is a conserved cysteine-rich zinc-binding motif found in LIM-HD proteins, cytoskeletal components, LIM kinases, and other proteins. LIM domains are protein-protein interaction motifs, can inhibit binding of LIM-HD proteins to DNA, and can negatively regulate LIM-HD protein function.

10 MSSTPHDPFY SSPFGPFYRR HTPYMVQPEY RIYEMNKRLQ SRTEDSDNLW WDAFATEFFE 60
DDATLTLSCF LEDGPKRYTI GRTLIPRYFS TVFEGGVTDL YYILKHSKES YHNSSITVDC 120
15 DQCTMVTQHG KPMFTKVCTE GRLILEFTFD DLMRIKTWHF TIRQYRELVP RSILAMHAQD 180
PQVLQDLSKN ITRMGLTNFT LNYLRLCIVL EPMQELMSRH KTYNLSPRDC LKTCLFQKWO 240
RMVAPPAEPT RQPTTKRRKR KNSTSSTSNS SAGNNANSTG SKKKTTAANL SLSSQVPDVM 300
VVGEPTLMMGG EFGDEDERLI TRLENTQYDA ANGMDDEEDF NNSPALGNNS PWNSKPPATQ 360
ETKSENPPPPQ ASQ

Q114
20 AAE1 protein sequence

Gene name: guanine nucleotide binding protein 11

Unigene number: Hs.83381

Probeset Accession #: U31384

Protein Accession #: NP_004117.1

Pfam: G-gamma, CAAX motif (farnesylation site) prediction underlined

Summary: The G gamma proteins are a component of the trimeric G-proteins that interact with cell surface receptors. The G protein beta and gamma subunits directly regulate the activities of various enzymes and ion channels after receptor ligation. Unlike most of the other known gamma subunits, gamma 11 is modified by a farnesyl group and is not capable of interacting with beta 2.

25 MPALHIEDLP EKEKLKMEVE QLRKEVKLQR QQVSKCSEEI KNYIEERSGE DPLVKGIPED 60
KNPFKEKGSC VIS

Q115
30 AAE2 protein sequence

Gene name: Transcription factor 4 (Immunoglobulin transcription factor 2) (ITF-2)

(ISL3-3 Enhancer factor 2) (SEF-2)

Unigene number: Hs.889068

Probeset Accession #: M74719

Protein Accession #: NP_003190.1

Pfam: HLH domain prediction underlined

Summary: Transcription factor 4 is a helix-loop-helix (HLH) protein which belongs to a family of nuclear proteins, designated ISL3-3 enhancer factors 2 (SEF2), that interact with an Eprussi box-like motif within the glucocorticoid response element in the enhancer of the murine leukemia virus SL3-3. Various cell types display differences both in the sets of SEF2-DNA complexes formed and in their amounts.

Molecular analysis of cDNA clones show the existence of multiple related mRNA species containing alternative coding regions, which are most probably a result of differential splicing.

35 MHHQQRMAAL GTDKELS DLL DFSAMFSPPV SSGKNGPTSL ASGHFTGSNV EDRSSSGSWG 60
NGGHPSPSRN YGDGTPYDHM TSRDLGSHDN LSPPFVNSRI QSKTERGSYS SYGRESNLQG 120
CHQQSLLGGD MDMGNPGTLS PTKPGSQYYQ YSSNNPRRRP LHSSAMEVQT KKVRKVPPGL 180
PSSVYAPSAS TADYNRDSPG YPSSKPATST FPSSFFMQDG HHSSDPWSSS SGMNQPGYAG 240
MLGNSSHIPQ SSSYCSLHPH ERLSYPSHSS ADINSSLPPM STFHRSGTNH YSTSSCTPPA 300
NGTDSIMANR GSGAAGSSQT GDALGKALAS IYSPDHTNNS FSSNPSTPVG S⁶PSLSSAGTA 360
40 VWSRNNGQAS SSPNYEGPLH SLQSRIEDRL ERLDDAIHVL RNHAVGPSTA M¹⁰GHGDMHG 420
IIGPSHNGAM GGLGSGYGTG LLSANRHSLM VGTHREDGVA LRGSHSLLPN QVPVPQLPVQ 480
50 SATSPDLNPP QDPYRGMPPG LQGQSVSSGS SEIKSDDEGD ENLODTKSSE DKKLDDDKKD 540
IKSITSNNDD EDLTPEOKAE REKERRMANN ARERLVRDI NEAFKELGRM VQLHLKSDKP 600
55 QTKLLILHQAVAVILSLEQQ VRERNLNPKA ACLKRREEEK VSSEPPPLSL AGPHPGMGDA 660
SNHMGQM

Q116
60 AAE4 protein sequence

Qnt
all
Gene name: phosphatidylcholine 2-acylhydrolase

Unigene number: Hs.211587

Probeset Accession #: M68874

Protein Accession #: AAA60105.1

Pfam: PLA2_B, C2 domain prediction underlined

Summary: Phospholipases A2 (PLA2s) play a key role in inflammatory processes

through production of precursors of eicosanoids and platelet-activating factor.

PLA2 is a 100 kd protein that contains a structural element homologous to the C2 region of protein kinase C.

10	MSFIDPYQHI IVEHQYSHKF TVVVLRATKV TKGAFGDMLD TPDPYVELFI STTPDSRKRT	60
	RHFNNNDINPV WNETFEFILED PNQENVLEIT LMDANYVMDE TLGTATFTVS SMKVGEKKEV	120
	PFIFNQVTEM VLEMSLEVCS CPDLRFSMAL CDQEKTFRQQ RKEHIRESMK KLLGPKNSEG	180
	LHSARDVPVV AILGSGGGFR AMVGFGSVMK ALYESGILDC ATYVAGLSGS TWYMSTLYSH	240
15	PDFPEKGPEE INEELMKNVS HNPLLLTPQ KVCRYVESLW KKKSSGQPVT FTDIFGMLIG	300
	ETLIHNRMNT TLSSLKEKVN TAQCPLPLFT CLHVKPDVSE LMFAWDWEVS PYEIGMAKYG	360
	TFMAPDLFGS KFFMGTVVKK YEENPLHFLM GWGSAFSIL FNRLGVSGS QSRGSTMEEE	420
	LENITTKHIV SNDSSSDSDE SHEPKGTENE DAGSDYQSDN QASWIHRMIM ALVSDSALFN	480
	TREGRAGKVKH NFMLGLNLNT SYPLSPLSDLF ATQDSFDDDE LDAAVADPDE FERIYEPLDV	540
20	KSKKIHVVD S GLTFNLPYPL ILRPQRGVDL IISFDFDSARP SDSSPPFKEL LLAEKWAKMN	600
	KLPFPKIDPY VFDREGLKEC YVFVCPKPNPM EKDCPTIIHF VLAININFRKY KAPGVPRETE	660
	EEKEIADF DI FDDPESPFST FNQYPNQAF KRLHDLMHFN TLNNIDVIKE AMVESIEYRR	720
	QNPSRCVSVL SNVEARRFFN KEFLSKPKA	

ACA1 protein sequence

Gene name: tissue factor pathway inhibitor 2 TFPI2, placental protein 5 (PP5)

Unigene number: Hs.78045

Probeset Accession #: D29992

Protein Accession #: BAA06272.1

Pfam: Kunitz BPTI

Signal sequence: underlined

Summary: ACA1 is a serine proteinase inhibitor that was originally purified from conditioned medium of the human glioblastoma cell line T98G. ACA1 is identical to placental protein 5 (PP5) and TFPI2, a placenta-derived glycoprotein with serine proteinase inhibitor activity. PP5 belongs to the Kunitz-type serine proteinase inhibitor family, having three putative Kunitz-type inhibitor domains.

40	MDPARPLGLS ILLLFLTEAA LGDAAQEPTG NNAEICLLPL BYGPCRALLL RYYYDRYTQS	60
	CRQFLYGGCE GNANNFYTWE ACDDACWRIE KVPKVCRLQV SVDDQCEGST EKYFFNLSSM	120
	TCEKFFSGGC HRNRIENRFP DEATCMGFCA PKKIPSFCYS PKDEGLCSAN VTRYYFNPRY	180
	RTCDFTAFTYTG CGGNDNNFVS REDCKRACAK ALKKKKKMPK LRFASRIRKI RKKQF	

ACB8 protein sequence

Gene name: myosin X

Unigene number: Hs.61638

Probeset Accession #: N77151

Protein Accession #: NP_036466

Pfam: myosin head, IQ (calmodulin binding motif), PH, MyTH4

Summary: Myosins are molecular motors that move along filamentous actin. Seven classes of myosin are expressed in vertebrates: conventional myosin, or myosin-II, as well as the 6 unconventional myosin classes-I, -V, -VI, -VII, -IX, and -X.

55	MDNFFTEGTR VWLRENGQHF PSTVNSCAEG IVVFRTDYQQ VFTYKQSTIT HQKVTAMHPT	60
	NEEGVDDMAS LTELHGGSIM YNLFQRYKRN QIYTYIGSIL ASVNPYQPIA GLYEPATMEQ	120
	YSRRHLGELP PHIFAIANEC YRCLWKRYDN QCILISGESG AGKTESTKLI LKFLSVISQQ	180
	SLELSLKEKT SCVERAILES SPIMEAFGNA KTVYNNNSSL FGKFWQLNIC QKGNIQGGRI	240
	VDTYLLEKNRV VRQNPGERNY HIFYALLAGL EHEEREELYL STPENYHYLN QSGCVEDKTI	300
	SDOESFREVI TAMDVMQFSK EEVREVSRLL AGILHGLNIE FITAGGAQVS FKTALGRSAE	360
	LLGLDPTQLT DALTRQSMFL RGEEILTPLN VQQAVDSRDS LAMALYACCF EWVIKKINSR	420
	IKGNEDFKSI GILDIFGFEN FEVNHFEQFN INYANEKLQE YFNKHIFSLE QLEYSREGLV	480
	WEDIDWIDNG ECCLDLIEKKL GLLALINEES HFPQATDSTL LEKLHSQHAN NHFYVKPRVA	540
	VNNFGVKHYA GEVQYDVRGI LEKNRDTFRD DLLNLLRESR FDFIYDLFEH VSSRNNQDTL	600
65	KCGSKHRRPT VSSQFKDSLH SLMATLSSSN PFFVRCIKPN MKKMPDQFDQ AVVLNQLRYS	660
	GMLETVRIRK AGYAVRPFQ DFYKRYKVLM RNLALPEDVR GKCTSLLQLY DASNSEWQLG	720
	KTKVFLRESL EQKLEKRREE EVSHAAMVIR AHVLGFLARK QYRKVLYCVV IIQKNYRAFL	780
	LLRRRFLHLKK AAIVFQKQLR GQIARRVYRQ LLAEKREQEE KKKQEEEKK KREEEERERE	840

RERREAEELRA QQEEETRKQQ ELEALQKSQK EAELTRELEK QKENKQVEEI LRLEKEIEDL 900
 QRMKEQQELS LTEASLQKLQ ERRDQEQLRL EEEACRAAQE FLESLNFDEI DECVRNIEERS 960
 LSVGSEFSSE LAESACEEKP NFNFSQPYPPE EEVDEGFEAD DDAFKDSPNP SEHGHSQRT 1020
 SGIRTSDDSS EEDPYMNDTV VPTSPSADST VLLAPSVQDS GSLHNSSSGE STYCMQPQAG 1080
 5 DLPSPDGDYD YDQDDYEDGA ITSGSSVTFS NSYGSQWSPD YRCGVGTYS SGAYRFSSEG 1140
 AQSSFEDSEE DFDSRFDTDD ELSYRRDSVY SCVTLPYFHS FLYMKGGLMN SWKRRWCVLK 1200
 DETFLWFRSK QEAULKQGWLH KKGGGSSTLS RRNWKRWFV LRQSKLMYFE NDSEEKLKGT 1260
 VEVRTAKEII DNNTKENGID IIMADRTFHL IAESPEDASQ WFSVLSQVHA STDQEIQEMH 1320
 DEQANPQNAV GTLDVGLIDS VCASDSPDRP NSFVIITANR VLHCNADTPE EMHHWITLLQ 1380
 10 RSKGDTRVEG QEFIVRGWLH KEVKNSPKMS SLKLKKRWFV LTHNSLDYYK SSEKNALKLG 1440
 TLVLNSLCSV VPPDEKIFKE TGYNWNVTVYG RKHCYRLYTK LLNEATRWSS AIQNVTDTKA 1500
 PIDTPHQQLI QDIKENCLNS DVVEQIYKRN PILRYTHHPL HSPLLPLPYG DINLNLLKDK 1560
 GYTTLQDEAI KIFNSLQGLE SMSDPPIIQ GILQTGHDLR PLRDELYCQL IKQTNKVPHP 1620
 15 GSVGNLYSWQ ILTCLSCTFL PSRGILKYLK FHLKRIREQF PGTEMEKYAL FTYESLKKT 1680
 CREFVPSRDE IEALIHRQEM TSTVYCHGGG SCKITINSHT TAGEVVEKLI RGLAMEDSRN 1740
 MFALFEYNGH VDKAIESRTV VADVLAKEK LAATSEVGDL PWKFYFKLYC FLDTDNVPKD 1800
 SVEFAFMFEQ AHEAVIHGHH PAPEENLQVL AALRLQYLQG DYTLHAAIPP LEEVYSLQRL 1860
 KARISQSTKT FTPCERLEKR RTSFLEGTLR RSFRGGSVVR QKVEEEQMLD MWIKEEVSSA 1920
 RASIIDKWRK FQGMNQEQQAM AKYMALIKEW PGYGSTLFDV ECKEGGFPQE LWLGVSADAV 1980
 20 SVYKRGEGRP LEVFQYEHIL SFGAPLANTY KIVVDERELL FETSEVVDVA KLMKAYISM 2040
 VKKRYSTTRS ASSQGSSR

ACC3 protein sequence

Gene name: calcitonin receptor-like (CALCRL)

Unigene number: Hs.152175

Probeset Accession #: L76380

Protein Accession #: NP_005786.1

Pfam: 7TM_2 (7 transmembrane receptor (Secretin family))

Transmembrane domains: predictions underlined

Signal sequence: first underlined region

Summary: Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse biological effects including potent vasodilator activity. The human CGRP1 receptor shares significant peptide sequence homology with the human calcitonin receptor, a member of the G-protein-coupled receptor superfamily. Stable expression in 293 (HEK 293) cells produces specific, high affinity binding sites for CGRP. Exposure of these cells to CGRP results in a 60-fold increase in cAMP production.

MEKKCTLYFL VLLPFFMILV TAELEESPED SIQLGVTRNK IMTAQYECYQ KIMQDPIQQA 60
 EGVCYCNRTWD GWLCWNDVAA GTESMQLCDP YFQDFDPSEK VTKICDQDGW WFRHPASNRT 120
 WTNYTQCNVN THEKVKTALN LFYLTIIGHG LSIASLLISL GIFFYFKSLS CQRITLHKNL 180
 FFSFVCNSVV TIIHLTAVAN NQALVATNPV SCKVSQFIHL YLMGCNYFWM LCEGIYLHTL 240
 IIVVAVFAEKQ HLMWYYFLGW GPLIPACIH AIARSLYYND NCWISSDTHL LYIIIHGPICA 300
 ALLVNLFFIL NIVRVLITKL KVTHQAESNL YMKAVERATLI LVPLLGIEFV LIPWRPEGKI 360
 45 AEEVYDYIMH ILMHFQGLLV STIFCFNNGE VQAILRRNNW QYKIQFGNSF SNSEALRSAS 420
 YTVSTISDGP GYSHDCPSEH LNGKSIHDIE NVLLKPENLY N

ACC5 protein sequence

Gene name: Selectin E (endothelial adhesion molecule 1)

Unigene number: Hs.89546

Probeset Accession #: M24736

Protein Accession #: NP_000441.1

Pfam: lectin_c, EGF like domain, sushi (SCR domain)

Signal sequence: first underlined region

Transmembrane domain: second underlined region

Summary: Focal adhesion of leukocytes to the blood vessel lining is a key step in inflammation and certain vascular disease processes. Endothelial leukocyte adhesion molecule-1 (ELAM-1), a cell surface glycoprotein expressed by cytokine-activated endothelial cells, mediates the adhesion of blood neutrophils. The primary sequence of ELAM-1 predicts an amino-terminal lectin-like domain, an EGF domain, and six tandem repetitive motifs (about 60 amino acids each) related to those found in complement regulatory proteins. A similar domain structure is also found in the MEL-14 lymphocyte cell surface homing receptor, and in granule-membrane protein 140, a membrane glycoprotein of platelet and endothelial secretory granules that can be rapidly mobilized (less than 5 minutes) to the cell surface by thrombin and other stimuli. Thus, ELAM-1 may be a member of a nascent gene family of cell

Cont'd
A120
surface molecules involved in the regulation of inflammatory and immunological events at the interface of vessel wall and blood.

5 MIASOFLSAL TLVLLIKESG AWSYNTSTEA MTYDEASAYC QQRYTHLVAI QNKEEIEYLN 60
SILSYSPSYW WIGIRKVNNV WWWVGQTQKPL TEEAKNWAPG EPNNRQKDDE CVEIYIKREK 120
DVGMWNDERC SKKKLALCYT AACTNTSCSG HGECEVETINN YTCKCDPGFS GLKCEQIVNC 180
TALESPEHGS LVCSHPLGNF SYNSSCSISC DRGYLPSSME TMQCMSSGEW SAPIPACNVV 240
ECDAVTNPAN GFVECFQNPG SFPWNTTCTF DCEEGFELMG AQSLQCTSSG NWDNEKPTCK 300
AVTCRAVRQP QNGSVRCSHS PAGEFTFKSS CNFTCEEFGM LQGPAQVECT TQGQWTQQIP 360
VCEAFQCTAL SNPERGYMNC LPSASGSFRY GSSCEFSCEQ GFVLKGSKRL QCGPTGEWDN 420
EKPTCEAVRC DAVHQPPKG VRCAHSPIGE FTYKSSCAFS CEEGFELYGS TQLECTSQGQ 480
WTEEVPSQCQV VKCSSLAVPG KINMCSGEP VFGTVCKFAC PEGWTLNGSA ARTCGATGHW 540
SGLLPTCEAP TESNIPLVAG LSAAGLSLLT LAPFLLWLRK CLRKAKKFVP ASSCQSLESD 600
GSYQKPSYIL

15

Uns
A121
ACC8 protein sequence

Gene name: Chemokine ($C\rightarrow X\rightarrow C$ motif), receptor 4 (fusin)
Unigene number: Hs.39414
Probeset Accession #: L06797
Protein Accession #: NP_003458.1
Pfam: 7TM 1 (7 transmembrane receptor (rhodopsin family))
Signal sequence: none identified
Transmembrane domains: predictions underlined
Summary: The chemokine receptor CXCR4 (also designated fusin and BSTR) is a cofactor for fusion and entry of T cell-tropic strains of HIV-1.

20 MEGISIYTSD NYTEEMGSGD YDSMKPCFR EENANFNKIF LPTIYSIIFL TGIVGNGLVI 60
LVMGYQKKLR SMTDKYRLHL SVADLLFVIT LPFWAVDAVA NWYFGNFLCK AVHVIYTVNL 120
YSSVLILAFI SLDRYLAIVH ATNSQRPRKL LAEKVVYVGW WIPALLLTIP DFIFANVSEA 180
DDRYICDRFY PNDLWVVFQ FQHIMVGLIL PGIVILSCYC IIISKLSHSK GHOKRKALKT 240
TVILILAFFA CWLPPYYIGIS IDSFILEII KQGCEFENTV HKWISITEAL AFFHCCLNPI 300
LYAFLGAKFK TSAQHALTSV SRGSSLKILS KGKRGGHSSV STESESSSFH SS

A122
ACF2 protein sequence

Gene name: Endothelial cell-specific molecule 1
Unigene number: Hs.41716
Probeset Accession #: X89426
Protein Accession #: NP_008967.1
Signal sequence: underlined
Pfam: IGFBR (Insulin-like growth factor binding proteins)
Summary: Human endothelial cell-specific molecule (called ESM-1) was cloned from a human umbilical vein endothelial cell (HUVEC) cDNA library. Constitutive ESM-1 gene expression is seen in HUVECs but not in the other human cell lines. The cDNA sequence contains an open reading frame of 552 nucleotides and a 398-nucleotide 3'-untranslated region including several domains involved in mRNA instability and five putative polyadenylation consensus sequences. The deduced 184-amino acid sequence defines a cysteine-rich protein with a functional NH₂-terminal hydrophobic signal sequence.

35 MKSVLTTL LVP AHLVAAW SNNYAVDCPQ HCDSSCKSS PRCKRTVLDD CGCCRVCAAG 60
RGETCYRTVS GMDGMKCGPG LRCQPSNGED PFGEFGICK DCPYGTFGMD CRETCNCQSG 120
ICDRGTGKCL KFPFFQYSVT KSSNRFVSLT EHDMASGDGN IVREEVVKEN AAGSPVMRKW 180
55 LNPR

A123
ACF4 protein sequence

Gene name: P53-responsive gene 2 similar to *D.melanogaster* peroxidasin(U11052)
Unigene number: Hs.118893
Probeset Accession #: D86983
Protein Accession #: BAA13210
Pfam: LRRNT (Leucine rich repeat N-terminal domain), LRR (Leucine Rich Repeat), LRRCT (Leucine rich repeat C-terminal domain), Ig (immunoglobulin domain), Peroxidase, VWC (von Willebrand factor type C domain)
Summary: ACF4 is a gene originally identified from KG-1 cell and brain cDNA libraries.

1 SRPWWLRASE RPSAPSAMAK RSRGPGRRCL LALVLFCAWG TLAVVAQKPG AGCPSRCLCF 60
 2 RTTVRCMHLL LEAVPAVAPQ TSILDRLFNR IREIQPGAFR RLRLNLNTLLL NNNQIKRIPS 120
 3 GAFEDLENLK YLYLYKNEIQ SIDRQAFKGL ASLEQLYLHF NQIETLDPDS FQHLPKLERL 180
 4 FLHNNRITHL VPGTFNHLES MKRLRLDSNT LHCDCIELWL ADLLKTYAES GNAQAAAICE 240
 5 YPRRIQGRSV ATITPEELNC ERPRITSEPO DADVTSGNTV YFTCRAEGNP KPEIIWLRNN 300
 6 NELSMKTDSR LNLLDDGTL IQNTQETDQG IYQCMAKNVA GEVKTQEVTI RYFGSPARPT 360
 7 FVIQPQNTEV LVGESVTLEC SATGHPPPRT SWTRGDRTPL PVDPRVNITP SGGLYIQNVV 420
 8 QGDGSHEYACS ATNNIDSVHA TAFIIVQALP QFTVTPQDRV VIEGQTVDQ CEAKGNNPPV 480
 9 IAWTKGGSQI SVDRRHLVLS SGTLRISGVA LHDQGQYECQ AVNIIGSQKV VAHLTQPRV 540
 10 TPVFASIPSD TTVEVGANVQ LPCSSQGEPE PAITWNKDGV QTESGKFHI SPEGFLTIND 600
 11 VGPADAGRYE CVARNTIGSA SVSMVLSVNV PDVSRRNGDPF VATSIVEAIA TVDRAINSTR 660
 12 THLFDUSRPRS PNDLLALFRY PRDPYTVEQA RAGEIFERTL QLIQEHVQHG LMVDLNGTSY 720
 13 HYNDLVSPQY LNLIANLSGC TAHRRVNNCS DMCFHQKYRT HDGTCNNLQH PMWGASLTAF 780
 14 ERLLKSVYEN GFNTPRGINP HRLYNGHALP MPRLVSTTLI GTETVTPDEQ FTHMLMQWQ 840
 15 FLDHDLDSTV VALSQAERFSD GQHCSNVCSN DPPCF SVMIP PNDSRARSGA RCMFFVRSSP 900
 16 VCGSGMTSLL MNSVYPREQI NQLTSYIDAS NVYGSTEHEA RSIRDLASHR GLLRQGIVQR 960
 17 SGKPLLPFAT GPPTECMRDE NESPIPCFLA GDHRANEQLG LTSMHTLWFR EHNRIATELL 1020
 18 KLNPHWDGDT IYYETRKIVG AEIQHITYQH WLPKILGEVG MRTLGEYHGY DPGINAGIFN 1080
 19 AFATAAFRFG HTLVPNPLLYR LDENFQPIAQ DHLPLHKAFF SPFRIVNEGG IDPLLRLGLFG 1140
 20 VAGKMRVPSQ LLNTELTERL FMSAHTVALD LAAINIQRGR DHGIPPYHDY RVYCNLSAAH 1200
 21 TFEDLKNEIK NPEIREKLKR LYGSTLNIDL FPALVVEDLV PGSRLGPTLM CLLSTQFKRL 1260
 22 RDGDRLWYEN PGVFSAPAQLT QIKQTSLARI LCDNADNITR VQSDVFRVAE FPHGYGSCDE 1320
 23 IPRVDLRVWQ DCCEDCRTRG QFNAFSYHFR GRRSLEFSYQ EDKPTKKTRP RKIPSVGRQG 1380
 24 EHLSNSTSAF STRSDASGTN DFREFVLEMQ KTITDLRTQI KKLESRLSTT ECVDAGGESH 1440
 25 ANNTKWKDA CTICECKDGQ VTCFVEACPP ATCAVPVNIP GACCPVCLQK RAEEKP

ACF5 protein sequence

Gene name: Mitogen-activated protein kinase kinase kinase 4

Unigene number: Hs.3628

Probeset Accession #: N54067

Protein Accession #: NP_004825.1

Pfam: pkinase (Eukaryotic protein kinase domain), CNH domain

Summary: The yeast serine/threonine kinase STE20 activates a signaling cascade that includes STE11 (mitogen-activated protein kinase kinase kinase), STE7 (mitogen-activated protein kinase kinase), and FUS3/KSS1 (mitogen-activated protein kinase) in response to signals from both Cdc42 and the heterotrimeric G proteins associated with transmembrane pheromone receptors. ACF5 is a human cDNA encoding a protein kinase homologous to STE20. This protein kinase, also designated HPK/GCK-like kinase (HGK), has nucleotide sequences that encode an open reading frame of 1165 amino acids with 11 kinase subdomains. HGK is a serine/threonine protein kinase that specifically activated the c-Jun N-terminal kinase (JNK) signaling pathway when transfected into 293T cells, but does not stimulate either the extracellular signal-regulated kinase or p38 kinase pathway. HGK also increased AP-1-mediated transcriptional activity in vivo. HGK may be a novel activator of the JNK pathway. The cascade may look like this: HGK -> TAK1 -> MKK4, MKK7 -> JNK kinase cascade, which may mediate the TNF-alpha signaling pathway.

50 MANDSPAQL VDIDLSSLRD PAGIFELVEV VGNGTYGVY KGRHVKTGQL AAIKVMDVTE 60
 51 DEEEEIKLEI NMLKKYSHHR NIATYYGAFI KKSPPGHDDQ LWLVMFECGA GSITDLVKNT 120
 52 KGNTLKDWI AYISREILRG LAHLHIIHHVI HRDIKGQNVL LTENAEVKLV DFGVSAQLDR 180
 53 TVGRRNFIG TPYWMAPEDI ACDENPDAT DYRSDLWSCG ITAIEMAEGA PPLCDMHPMR 240
 54 ALFLIPRNPP PRLKSKKWSK KFFSFIEGCL VKNYMQRPST EQLLKHPFIR DQPNERQVRI 300
 55 QLKDHIDRTK KKRGEKDTE YEYSGSEEEE EEVPEQEGER SSIVNVPGES TLRRDFLRLQ 360
 56 QENKERSEAL RRQQLLQEQQ LREQEYKQ LLAERQKRIE QKQEQRRLR EQQREREAR 420
 57 RQQEREQRRLR EQEEKRLEE LERRRKEEE RRRAEEKRR VEREQEYIRR QLEEEQRHLE 480
 58 VLQQQLLQEQQ AMLLHDHRRP HPQHSQQPPP PQQERSKPSF HAPEPKAHYE PADRAREPV 540
 59 RTTSRSPVLS RRDSPLQGSG QNNSQAGQRN STSIEPRLLW ERVEKLVPRP GSGSSGSSN 600
 60 SGSQPGSHPG SQSGSGERFR VRSSSKSEGS PSQRLENALK KPEDKKEVFR PLKPAGEV 660
 61 TALAKELRAV EDVRPPHKVT DYSSSSEESG TTDEEDDDVE QEGAESTSG PEDTRAASL 720
 62 NLSNGETESV KTMIVHDDVE SEPAMTPSKE GTLIVRQTQS ASSTLQKHKS SSSFTPFIDP 780
 63 RLLQISPSSG TTVTSVGFS CDGMRPEAIR QDPTRKGSSV NVNPTNTRPQ SDTPEIRKYK 840
 64 KRFNSEILCA ALWGVNLLVG TESGLMLDR SGQGKVYPLI NRRRFQQMDV LEGLNVLT 900
 65 SGKKDKLRVY YLSWLRNKIL HNDPEVEKQ GWTTVGLEG CVHYKVVKYE RIKFLVIALK 960
 66 SSVEVYAWAP KPYHKFMFK SFGEVHVKPL LVDLTVEEGQ RLKVIYGSVA GFHAVDVDSG 1020
 67 SVYDIYLPTH VRKNPHSMIQ CSIKPHAI III LPNTDGMELL VCYEDEGVYV NTYGRITKDV 1080
 68 VLQWGEMPTS VAYIRSNQTM GWGEKAIEIR SVETGHLDGV FMHKRAQRKLK FLCERNDKVF 1140

FASVRSGGSS QVYFMTLGRT SLLSW

ACF8 protein sequence

Gene name: Phospholipase A2, group IVC (cytosolic, calcium-independent)

Unigene number: Hs.18858

Probeset Accession #: AA054087

Protein Accession #: NP_003697.1

Pfam: none identified

Summary: ACF8 is a membrane-bound, calcium-independent PLA2 named cPLA2-gamma. The sequence encodes a 541-amino acid protein containing a domain with significant homology to the catalytic domain of the 85-kDa cPLA2 (cPLA2-alpha). cPLA2-gamma does not contain the regulatory calcium-dependent lipid binding (CalB) domain found in cPLA2-alpha. cPLA2-gamma does contain two consensus motifs for lipid modification, a prenylation motif (-C(=O)A) at the C terminus and a myristoylation site at the N terminus. cPLA2-gamma demonstrates a preference for arachidonic acid at the sn-2 position of phosphatidylcholine as compared with palmitic acid. cPLA2-gamma encodes a 3-kilobase message, which is highly expressed in heart and skeletal muscle, suggesting a specific role in these tissues.

MGSSEVSIIP GLQKEEKAAV ERRRLHVLKA LKKLRIEADE APVVAVLGSG GGLRAHIACL 60
GVLSSEMKEQG LLDAVTYLAG VSGSTWAISS LYTNNDGMEA LEADLKHRFT RQEWDLAKSL 120
QKTIQAAARSE NYSLTDFWAY MVISKQTREL PESHLNSMKK PVEEGTLPYP IFAAIDNDLQ 180
PSWQEAREAPE TWFEFTPHHA GFSALGAFVS ITHFGSKFKK GRLVRTHPER DLTFLRGLWG 240
SALGNTEVIR EYIFDQLRNL TLKGLWRRRAV ANAKSIGHLI FARLLRLQES SQGEHPPPED 300
EGGEPEHTWL TEMLENWTRT SLEKQEQPHE DPERKGSLSN LMDFVKKTGI CASKWEWGT 360
HNFLYKHGGI RDKIMSSRKH LHLVDAGLAI NTPFPVLVPP TREVHLILSF DFSAGDPFET 420
IRATTDYDCRR HKIPFPQVEE AELDLWSKAP ASCYILKGET GPVVIHFPLF NIDACGGDIE 480
AWSDTYDTFK LADTYTLDVV VLLLALAKKN VRENKKKILR ELMNVAGLYY PKDSARSCCL 540

A

AC61 protein sequence

Gene name: Carbohydrate (chondroitin 6/keratan) sulfotransferase 1

Unigene number: Hs.104376

Probeset Accession #: AA868063

Protein Accession #: NP_003645.1

Pfam: none identified

Summary: Chondroitin 6-sulfotransferase (C6ST) is the key enzyme in the biosynthesis of chondroitin 6-sulfate, a glycosaminoglycan implicated in chondrogenesis, neoplasia, atherosclerosis, and other processes. C6ST catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphate to carbon 6 of the N-acetyl galactosamine residues of chondroitin.

MQCSWKAVLL LALASIAIQW TAIRTFTAKS FHTCPGLAEA GLAERLCEES PTFAYNLSRK 60
THILILATTR SGSSFGQOLF NOHLDVFYLF EPLYHVQNTL IPRFTQGKSP ADRRVMLGAS 120
RDLLRSLYDC DLYFLENYIK PPPVNHTDR IFRRGASRVL CSRPVCDPPG PADLVLEEGD 180
CVRKCGLLNL TVAAEACRER SHVAIKTVRV PEVNDLRALV EDPRLNLKVQI QLVRDPRGIL 240
ASRSETFRDT YRLWRLWYGT GRKPYNLDVT QLTTVCEDFS NSVSTGLMRP PWLKGKYMLV 300
RYEDLARNPM KKTEEYIGFL GIPLDSHVAR WIQNNTRGDP TLGKHKYGTW RNAAATAEKW 360
RFRLSYDIVA FAQNACQQVLAQQLGYKIAAS EEELKNPSVS LVEERDFRPF S

ACG5 protein sequence

Gene name: Multimerin

Unigene number: Hs.268407

Probeset Accession #: U271Q9

Protein Accession #: AAC52065

Sign. sequence: prediction underlined

Pfam: EGF-like domain, C1q domain

Summary: Multimerin is a massive, soluble protein found in platelets and in the endothelium of blood vessels. Multimerin is composed of varying sized, disulfide-linked multimers, the smallest of which is a homotrimer. Multimerin is a factor V/Va-binding protein and may function as a carrier protein for platelet factor V. Northern analyses show a 4.7-kilobase transcript in cultured endothelial cells, a megakaryocytic cell line, platelets, and highly vascular tissues. The multimerin cDNA can encode a protein of 1228 amino acids with the probable signal peptide

Gmt
a121

cleavage site between amino acids 19 and 20. The protein is predicted to be hydrophilic and to contain 23 N-glycosylation sites. The adhesive motif RGDS (Arg-Gly-Asp-Ser) and an epidermal growth factor-like domain were identified. Multimerin contains a probable coiled-coil structures in the central portion of its sequence. Additionally, the carboxyl-terminal region of multimerin resembles the globular non-collagen-like, carboxyl-terminal domains of several other trimeric proteins, including complement C1q and collagens type VIII and X.

10	MKGARLFVLL SSLWSGGIGL NNSKHSWTIP EDGNSQKTM P SASVPPNKIQ SLQILPTTRV	60
	MSAEIATTPE ARTSEDSLK STLPPSETSA PAEGVRNQTL TSTEKAEGVV KLNLTLPN	120
	ASIKFNPAGE SVVLSNSTLK FLQSFARKSN EQATSLNTVG GTGGIGGVGG TGGVGNRAPR	180
	ETYLSRGDSS SSQRTDYQKS NFETTRGKNW CAYVHTRLSP TVTLDNQVTY VPGGKGPCGW	240
	TGGSCPQRSQ KISNPVYRMQ HKIVTSLDWR CCPGYSGPKC QLRAQEQQSL IHTNQAESHT	300
	AVGRGVAEQQ QQQCGCDPEV MKMKTMDQVNQ QAMKLTLQK KIDNISLTVN DVRNTYSSLE	360
15	GKVSEDKSRE FQSLLKGLKS KSINVLIRDI VREQFKIFQN DMQETVAQLF KTVSSLSEDL	420
	ESTRQIIQKV NESVVSIAAQ QKFVVLVQENR PTLTDIVELR NHIVNVRQEM TLTCEKPIKE	480
	LEVVKQTHLEG ALEQEHSRSI LYYESLNKTL SKLKEVHEQL LSTEQVSDQK NAPAAEVSN	540
	NVTEYIMSTLH ENIKKQSLMM LQMFEDELHIQ ESKINNLTVS LEMEKESLRG ECEDMLSKCR	600
20	NDFKFQLKDT EENLHVNLQT LAEVLFPMDN KMDKMSEQLN DLTYDMEILQ PLLEQGASLR	660
	QTMTYEQPKA AIVIRKKIEN LTSAVNSLNF IIKELTKRHN LLRNEVQGRD DALERRINEY	720
	ALEMEDGLNK TMTIINNAID FIQDNYALKE TLSTIKDNSE IHHKCTSDME TILTTFIPQFH	780
	RLNDSIQTLV NDNQRYNFVL QVAKTLAGIP RDEKLNQSNF QKMYQMFNET TSQVRKYQQN	840
	MSHLEEKLLL TTKISKNFET RLQDIESKVT QTLIPTYYISV KKGSVVTNER DQALQLQVNL	900
	SRFKALEAKS IHLSINFFSL NKTLHEVLT CHNASTSVSE LNATIPKWIK HSLPDIQQLQ	960
	KGLTEFVEPI IQIKTQAALS NSTCCIDRSL PGSLANVVKS QKQVKSLPKK INALKKPTVN	1020
	LTTVLIBRTO RNTDNNIYPE EYSSCSRHPC ONGGTCINGR TSFTCACRHP FTGDNCTIKL	1080
	VEENALAPDF SKGSYRYAPM VAFFASHTYG MTIPGPILFN NLDVNYGASY TPRTGKFRIPI	1140
	YLGVYVFKYT IESFSAHISG FLVVDGIDKL AFESENINSE IHCDRVLTD ALLELYNGQE	1200
30	VWLRLAKGTI PAKFPPVTTF SGALLYRT	

ACC6 protein sequence

Gene name: Homo sapiens cDNA FLJ11502 fis, clone HEMBA1002102, weakly similar to ANKRYXIN
 Unigene number: Hs.213194
 Probeset Accession #: AA187101
 Protein Accession #: none
 Pfam: ankyrin repeats

40	VAARPPVSRM EPRAADGCFL GDVGFWVERT PVHEAAQRGE SLQLQQLIES GACVNQVTVD	60
	SITPLHAASL QQQARCVQLL LAAGAQVDAR NIDGSTPLCD ACASGSIECV KLLSYGAKV	120
	NPPLYTASPL HEASFPRLLS TLASTPWIN	

ACC7 protein sequence

Gene name: Human RALA gene
 Unigene number: Hs.6906

Probeset Accession #: AA083572 cluster
 Protein Accession #: P11233
 Pfam: ras

Features: CAAAX motif is underlined

Summary: The RALA gene encodes a low-molecular mass ras-like GTP-binding protein that shares about 50% similarity with the ras proteins. GTP-binding proteins mediate the transmembrane signalling initiated by the occupancy of certain cell surface receptors. The RALA gene maps to p22-p15.

50	MAANKPKGQN SLALHKVIMV GSGGVGKSAI TLQFMYDEFV EDYEPTKADS YRKVVLDGE	60
	EVQIDILDIA GQEDYAAIRD NYFRSGEGFL CVFSITEMES FAATADFREQ ILRVKEDEVN	120
	PFLLVGNKSD LEDKRQVSVE EAKNRAEQWN VNYVETSAKT RANVDKVFFD LMREIRARKM	180
55	EDSKEKNGKK KRKSLAKRIR ERCC	

ACC9 protein sequence

Gene name: KIAA0956 protein
 Unigene number: Hs.10031

Probeset Accession #: AA027168
 Protein Accession #: BAA76799.1
 Pfam: CARD (Caspase recruitment domain)

Cont
G130
~~Summary: Gene was originally isolated as a brain cDNA. The coding region contains a CARD domain, suggesting involvement in apoptotic signaling pathways.~~

5 MMRQRQSHYC SVLFLSVNYL GGTFPGDICS EENQIVSSYA SKVCFEIEED YKNRQFLGPE 60
GNVDVELIDLK STNRYSVWFP TAGWYLWSAT GLGFLVRDEV TVTIAFGSWS QHLALDLQHH 120
EQWLVGGPLF DVTAEPEEAV AEIHLPHFIS LQGEVDVSWF LVAHFKNEGM VLEHPARVEP 180
FYAVLESPSF SLMGILLRIA SGTRLISIPIIT SNTLIYYHPH PEDIKFHLYL VPSDALLTKA 240
IDDEEDRFHG VRLQTSPPM ME PLNFGSSYIV SNSANLKVM P KELKLSYRSP GEIQHFSKFY 300
AGQMKEPIQL EITEKRHGTL VWDTEVKPVD IQLVAASAPP PFSGAAVFKE NHRQLQARMG 360
10 DLKGVLDDLQ DNEVLTENEK ELVEQEKT RQ SKNEALLSMV EKKGDLALDV LFRSISERDP 420
YLVSYLRQQN L

ACF6 Protein sequence

15 Gene name: Homo sapiens cDNA FLJ10669 fis, clone NT2RP2006275, weakly similar to
Microtubule-associated protein 1B [CONTAINS: LIGHT CHAIN LC1]

Unigene number: Hs.66048

ProbeSet Accession #: AA609717

Protein Accession #: BAA91743_1

pfam: none identified

20 Summary: The cDNA for FLJ10669 was originally isolated from NT2 neuronal precursor
cells (teratocarcinoma cell line) after 2-weeks of retinoic acid (RA) treatment.
The protein sequence has similarity to microtubule-associated protein 1B (MAP-1B),
suggesting a function for ACF6 in the regulating the cytoskeleton.

MGVGRLDMMV LHPPSAGAER TLASVCALLV WHPAGPGEKV VRVLFPGCTP PACLLDGLVR 60
LQHLRFLREP VVTPQDLEG P GRAESKESVG SRDSSKREGL LATHPRPGQE RPGVARKEPA 120
RAEAPRKTEK EAKTPRELKK DPKPVSRTQ PREVRRAASS VPNLKKTNAQ AAPKPRKAPS 180
TSHSGFPPVA NGPRSPPSL R CGEASPPSAA CGSPASQLVA TPSLELGPIP AGEEKALELP 240
LAASSIPRPR TPSPESHRSP AEGSERLSSL PLRGGEAGPD ASPTVTTPTV TTPSLPAEVG 300
SPHSTEVDLS LSVSFEQVLP PSAPTSEAGL SLPLRGPRAR RSASPHDVLD CLVSPCEFEH 360
RKAVPMAPAP ASPGSNDSS ARSQERAGGL GAEETPPTSV SESLPTLSDS DPVPLAPGAA 420
DSDEDTEGFG VPRHDPLPDP LKVPPPLPDP SSICMVDPEM LPPKTARQTE NVSRTRKPLA 480
RPNSRAAAPK ATPVAAAKTK GLAGGDRASR PLSARSEPSE KGGRAPLSRK SSTPKTATRG 540
PSGSASSRPG VSATPPKSPV YLDLAYLPNG SSAHLVDEEF FQRVRALCYV ISGQDQRKEE 600
GMRAVLDALL ASKQHWDRDL QVTLIPTFDS VAMHTWYAET HARHQALGIT VLGSNGMVSM 660
QDDAFPACKV EF