Step-1

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
Given that

The characteristic equation of this matrix is $|A - \lambda I| = 0$

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 \\ 0 & 3 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(3 - \lambda)$$
$$= 3 - \lambda - 3\lambda + \lambda^2$$
$$= \lambda^2 - 4\lambda + 3$$

$$\Rightarrow (\lambda - 1)(\lambda - 3) = 0$$

 $\Rightarrow \lambda_1 = 1, \lambda_2 = 3$ are the eigen values of A.

Step-2

For $\lambda_1 = 1$, suppose x_1 is the vector such that $(A - \lambda_1 I)x_1 = 0$

$$\Rightarrow \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = 0$$

Using the operation $R_2 \to R_2 - R_1$, we get $\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = 0$

Rewriting the homogeneous equations, we get $2t_2 = 0$

So,
$$t_2 = 0$$

But any value of t_1 satisfies the system.

So, putting $t_1 = k$ a parameter and conveniently putting k = 1, the eigen vector corresponding to $\lambda_1 = 1$ is $x_1 = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Step-3

For $\lambda_2 = 3$, suppose x_2 is the vector such that $(A - \lambda_2 I)x_2 = 0$

$$\Rightarrow \begin{bmatrix} -2 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = 0$$

Using the operation $R_1 / -2$, we get $\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = 0$

Rewriting the homogeneous equations, we get $t_1 - t_2 = 0$

So, $t_2 = t_1$

Putting $t_1 = 1$, the eigen vector corresponding to $\lambda_2 = 3$ is $x_2 = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Step-4

Using the eigen vectors as the columns of *S*, we get $S = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and so, $S^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$

Consequently, $A = S\Lambda S^{-1}$

 $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$

Step-5

Given that $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$

The characteristic equation of this matrix is $|A - \lambda I| = 0$

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 \\ 2 & 2 - \lambda \end{vmatrix}$$

$$\Rightarrow \lambda^2 - 3\lambda = 0$$

 $\Rightarrow \lambda_1 = 0, \lambda_2 = 3$ are the eigen values of A.

Step-6

For $\lambda_1 = 0$, suppose x_1 is the vector such that $(A - \lambda_1 I)x_1 = 0$

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = 0$$

Using the operation $R_2 \to R_2 - 2R_1$, we get $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = 0$

Rewriting the homogeneous equations, we get $t_1 + t_2 = 0$

Putting $t_1 = 1$, the eigen vector corresponding to $\lambda_1 = 0$ is $\begin{bmatrix} x_1 = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Step-7

For $\lambda_2 = 3$, suppose x_2 is the vector such that $(A - \lambda_2 I)x_2 = 0$

$$\Rightarrow \begin{bmatrix} -2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = 0$$

Using the operation $R_2 \to R_2 + R_1$, we get $\begin{bmatrix} -2 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = 0$

Rewriting the homogeneous equations, we get $2t_1 - t_2 = 0$

So, $t_2 = 2t_1$

Putting $t_1 = 1$, the eigen vector corresponding to $\lambda_2 = 3$ is $x_2 = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Step-8

Using the eigen vectors as the columns of S, we get $S = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$ and so, $S^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$

Consequently, $A = S\Lambda S^{-1}$

 $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$ i.e.,