International Institute of Information Technology, Hyderabad Chemical kinetics and Reaction Dynamics - Monsoon 2023 Quiz: Oct 2023

Time: 45 mins Max. marks=25

Evaluation will be based on brief explanation accompanying correct answers.

Answer each question coherently in one place - do not scatter the answer to disjoint sheets.

1. A laser is used to create a bright spot on a screen. The number of photons arriving on the spot follows zeroth order rate law. Show that the average number of photons that have arrived at a time t is what we get from macroscopic kinetics. Show that the average is the same as the variance.

Hints: Probability for number of photons arrived at time t is $P_n(t)$. Then $P_0(0) = ?$ and $P_{n\neq 0}(0) = ?$

From n photons at time t, transition probability for (n+1)th photon arriving in time Δt , $W_{n,n+1} = ?$ for zeroth order kinetics.

Formulate a master equation and solve it for n = 0, 1, 2. Generalise to any n.

To obtain the average, note that for positive integers n and m: $\sum_{n=0}^{\infty} \frac{f(n)}{(n-m)!} = \sum_{p=n-m=0}^{\infty} \frac{f(p)}{p!}$

Obtain the solution for rate law for zeroth order kinetics. Compare.

To obtain the variance, write $n^2 = n(n-1) + 1$

5

2. The rate constants for a gaseous reaction $A \to P$ are 3.40×10^{-3} s⁻¹ and 4.40×10^{-4} s⁻¹ at $[A] = 4.37 \times 10^{-4}$ mol dm⁻³ and 1.00×10^{-5} mol dm⁻³, respectively. Use Lindemann–Hinshelwood mechanism to calculate rate constant for the activation step.

3. A long polypeptide chain undergoes a transition from a helical conformation to a random coil. Consider a mechanism for a helix-coil transition that begins in the middle of the chain: hhhh... = hchh...; hchh... = cccc ... where h and c label an amino acid in a helical or coil part of the chain respectively. (a) Set up the rate equations for this mechanism. (b) Apply the steady-state approximation and show that, under these circumstances, the mechanism is equivalent to hhhh ... = cccc...

A. For the consecutive elementary reactions: A $\stackrel{k_a}{\rightarrow}$ I $\stackrel{k_b}{\rightarrow}$ P, (a) DERIVE a GENERAL expression for the concentration of the intermediate as a function of time and the initial concentration of A (method of solution of differential equation required).

5. Fill up the blanks in the following:

In nitrogen at 25°C and 1.0 bar, when $[N_2]\approx 40$ mol m⁻³, with $\sigma=0.43$ nm² and $m_{N_2}=28.02$ m_u the collision density is

$$= (4.3 \times \cdots \text{m}^2) \times \sqrt{\frac{\cdots \times (1.381 \times 10^{-23} \text{JK}^{-1}) \times 298 \text{K}}{\cdots \times 28.02 \times (1.661 \times 10^{-27} \text{kg})}}} \times (\cdots \text{mol}^{-1})^2 \times (\cdots \text{mol}^{-3})^2 = 8.4 \times 10^{34} \cdots$$
(units)

6. In the plot below explain what the x- and y-axes are and write an algebraic expression for the curve :

