Mathématiques - révisions

Décembre 2023

- 1. Calcule les 5 premiers éléments des suites suivantes :
 - (a) $u_n = 2n^2 1$
 - (b) $u_n = u_{n-1}^2$; $u_0 = 2$
 - (c) $u_n = -4n^3 + 2n + 1$
- 2. Pour chacune des suites u, exprime le terme général u_n en fonction de n:
 - (a) $1, -2, 3, -4, 5, -6, \dots$
 - (b) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$
 - (c) $1, 3, 7, 15, 31, 63, \dots$
- 3. Les suites suivantes sont-elles croissantes ?
 - (a) $u_n = 3n^2 6$
 - (b) $u_n = -6n^3$
 - (c) $u_n = u_{n-1} + 1$; $u_0 = 0$
 - (d) $u_n = 4u_{n-1}$; $u_0 = 3$
- 4. Pour quelles valeurs de u_0 la suite récurrente $u_n=(u_{n-1})^2$ est-elle croissante ?
- 5. Démontre que la suite $u_n = 4n 3$ est strictement croissante.
- 6. Soit u une suite croissante.
 - (a) Est-ce qu'il y a un élément maximal à cette suite ?
 - (b) Quel est le plus petit élément de la suite?
- 7. Soit la suite arithmétique définie par $u_0=4$ et r=5. Calcule u_{267} .

- 8. Soit u une suite arithmétique. Exprime u_{12} en fonction de u_{11} et u_{13} . Combien vaut u_{12} si $u_{11}=15$ et $u_{13}=11$?
- 9. Soit u une suite arithmétique. Si $u_{24} = 50$ et $u_{28} = 70$, combien vaut u_0 ?
- 10. La somme des 152 premiers éléments d'une suite arithmétique de raison r=4 vaut 1312. Quel est le premier élément de cette suite ?
- 11. Vérifie que a, 2a-b et 3a-2b sont trois termes consécutifs d'une progression arithmétique.
- 12. Calcule la somme des 100 premiers nombres dont l'écriture se termine par 3 ou 8.
- 13. Soit la suite géométrique u définie par $u_0 = 3$ et q = -2. Calcule u_{224} .
- 14. Soit u une suite géométrique. Comment calculer u_{24} en connaissant u_{23} et u_{25} ?
- 15. Les nombres -5, a, -45 sont trois termes consécutifs d'une progression géométrique. Calcule a.
- 16. Un pendule a été lâché à 20 cm de sa position d'équilibre. On exprime l'amplitude des mouvements par des nombres positifs à droite et des nombres négatifs à gauche de cette position d'équilibre. A cause des forces de frottement, l'amplitude de chaque mouvement vaut, en valeur absolue, 80% de celle du mouvement précédent.
 - (a) Ecris les amplitudes a_0, \ldots, a_4 des 5 premiers mouvements.
 - (b) Donner la formule de récurrence qui exprime a_{n+1} en fonctione de a_n .
 - (c) Déduis la valeur de a_n en fonction de a_0 .