

编译原理 Complier Principles

Lecture 4 Syntax Analysis: Top-Down

赵帅

计算机学院 中山大学

Mind Map[思维导图]

Mind Map[思维导图]

- Most compilers use either Top-Down or Bottom-Up parsers.
- Bottom-up parsing [自底向上分析]
 - ◆ Begin at the leaves (the bottom) and working up towards the root (the top).
 - ◆Tries to reduce[规约] the input string to the start symbol.
 - ◆ Finds reverse order of the rightmost derivation[<u>最右推导</u>的逆过程即<u>最左规约</u>] 规范推导 规范规约
 - ◆ Parser code structure nothing like grammar.
 - □ Very difficult to implement manually.
 - □ Automated tools exist to convert to code (e.g., Yacc, Bison).

- Top-Down parsing [自顶向下分析]
 - ◆Starting from the root (*top*) and create the leaves (*down*) of the parse tree in a pre-defined order (depth-first) [深度优先,先根次序/前序].
 - ◆Top-down parsing can be viewed as **finding a leftmost derivation**[寻求最左推导] for an input string. **Why not rightmost or arbitrary derivation?**
 - ◆ Review: *In each step of derivation*, the following choices need to be made:
 - □ Choice of the non-terminal to be replaced. [替换哪个非终结符] Leftmost!
 - □ Choice of the production to be applied for a non-terminal. [使用文法中哪个规则来替换] Key Problem!
 - ◆ Question: At each step of a top-down parse, What is the key problem?

- Top-Down parsing [自顶向下分析]
 - ◆Once a production is chosen, we try to match the terminal symbols in the production body with the input string.
 - ◆ Parser code structure closely mimics grammar.
 - Manually implementation is feasible.
 - Automated tools exist to convert to code. (e.g. ANTLR)
- Top-Down vs. Bottom-Up [对比]
 - ◆ Top-down: easier to understand and implement manually. (E.g. ANTLR)
 - ◆ Bottom-up: more powerful, can be implemented automatically. (E.g. YACC/Bison)

◆Example

- ♦ Grammar G(S): S \rightarrow AB ; A \rightarrow aA | a ; B \rightarrow bB | b ;
- Language? L(G)={ambn|m,n≥1}
- ◆ Sentence: aabb;

```
S \Rightarrow AB (5) B reduce to S.

\Rightarrow AbB (4) bB reduce to B.

\Rightarrow Abb (3) 2^{nd} b reduce to B.

\Rightarrow aAbb (2) aA reduce to A.

\Rightarrow aabb (1) 2^{nd} a reduce to A.
```


Reverse of rightmost derivation!

◆Example

- ♦ Grammar G(S): S \rightarrow AB; A \rightarrow aA | a; B \rightarrow bB | b;
- ◆ Sentence: aabb;

$$S \Rightarrow AB$$
 (1)
 $\Rightarrow aAB$ (2)
 $\Rightarrow aaB$ (3)
 $\Rightarrow aabB$ (4)
 $\Rightarrow aabb$ (5)

 $S \Rightarrow AB$ (5) B reduce to S.

 \Rightarrow AbB (4) bB reduce to B.

 \Rightarrow Abb (3) 2nd b reduce to B.

 \Rightarrow aAbb (2) aA reduce to A.

 \Rightarrow aabb (1) 2^{nd} a reduce to A.

Leftmost derivation

Top-Down

Leftmost reduction

Bottom-Up

Mind Map[思维导图]

Top-down Parsing[自顶向下分析]

- Recursive-descent parsing[RDP, 递归下降语法分析]
 - ◆A general form[通用形式] of top-down parsing.
 - ◆ A recursive-descent parsing program consists of a set of *procedures*, one for each non-terminal.
 - ◆ Execution begins with the procedure for the start symbol, which halts and announces success if its procedure body scans the entire input string.

```
void A()
                                                          How to choose A-production?
           Choose an A-production, A \to X_1 X_2 \cdots X_k;
1)
                                                          It's not specified, so the pseudocode
2)
           for (i = 1 \text{ to } k) {
3)
                 if (X_i \text{ is a nonterminal})
                                                          is nondeterministic[伪代码是不确定的].
                        call procedure X_i();
5)
                  else if (X_i equals the current input symbol a)
                        advance the input to the next symbol;
                  else /* an error has occurred */;
                                                                                                  11
```

RDP with backtracking[回溯]

- RDP may require backtracking.
- Approach: for a non-terminal in the derivation, productions are tried in some order until
 - ◆A production is found that generates a portion of the input, or
 - ◆ No production is found that generates a portion of the input, in which case backtrack to previous non-terminal.
- Terminals of the derivation are compared against input
 - ◆ Match: advance input, continue parsing
 - ◆ Mismatch: backtrack, or fail
- Parsing fails if no derivation generates the entire input.

RDP with backtracking[回溯]

- In the analysis process, when a non-terminal is successfully matched with an alternative, the match may be temporary.
- If a mismatch occurs, backtracking[回溯] will be performed.
- G[S]: S \rightarrow xAy; A \rightarrow ** | *, whether the input string **x** * **y** is its sentence?

Left Recursion Problem[左递归问题]

- A grammar is **left recursive**[左递归] if it has a non-terminal **A** such that there is a derivation $\mathbf{A} \stackrel{+}{\Rightarrow} \mathbf{A} \alpha$.
- Sentence can grow infinitely without consuming input.(Into an infinite loop!)
- Top-down parsing methods cannot handle left-recursive problems.[自顶向下语法分析方法不能处理左递归的文法]

Left Recursion Problem[左递归问题]

- Immediate left recursion [直接/立即左递归]
 - ♦ There is a production $A \rightarrow A\alpha$.
- Non-immediate left recursion [间接/非立即左递归]
 - ◆ Left recursion involving derivation of 2+ step.
 - $A \rightarrow B\beta$; $B \rightarrow A\alpha$.
- A transformation is needed to <u>eliminate left recursion</u>. [需要一个转 换方法来消除左递归]
- Rewrite the grammar so that it is right recursive. [改为右递归]

- Immediate left recursion[直接左递归的消除]
 - ♦ Grammar: A → Aα | β ($\alpha \neq \beta$, β doesn't start with A)
 - ◆ rewrite the rule of A as the following form equivalently:
 - ♦ Grammar: A → β A'; A' → α A' | ε (right recursion)

$G[A]: A \rightarrow A\alpha \mid \beta$

 $A \Rightarrow A\alpha$

 \Rightarrow A $\alpha\alpha$

 \Rightarrow A $\alpha\alpha$

.....

 $\Rightarrow A\alpha...\alpha$

 $\Rightarrow \beta \alpha ... \alpha$

Remove Left Recursion

```
G[A]: A \rightarrow \beta A'
 A' \rightarrow \alpha A' \mid \epsilon
```

 $A \Rightarrow \beta A'$

 $\Rightarrow \beta \alpha A'$

 $\Rightarrow \beta \alpha \alpha A'$

.....

 $\Rightarrow \beta \alpha ... \alpha A'$

 $\Rightarrow \beta \alpha ... \alpha$

想办法把" $A\alpha\alpha$.."变成" $\alpha\alpha$..A"

 $A \rightarrow A\alpha$; $A \rightarrow \beta$ => $A\alpha$ => $A\alpha\alpha\alpha$... => $\beta\alpha\alpha\alpha$...

- 1. 避免对A的左递归 A -> βx, where x-> ααα..
- 2. $\exists \mid \lambda$ bridging production $A' \rightarrow \alpha A' \mid \epsilon$ => $\alpha A' \Rightarrow \alpha \alpha ... A' \Rightarrow \alpha \alpha ... \alpha$
- 3. 连接两个productions A -> β A'; A' -> α A' | ϵ => β A' => β α α ...A' => β α α .. α

- Immediate left recursion can be eliminated by the following technique, which works for any number of A-productions.
 - ◆ First, group the productions as

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid ... \mid A\alpha_m \mid \beta_1 \mid \beta_2 ... \mid \beta_n$$
 where no β_i begins with an A.

◆Then, replace the A-productions by

$$A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A' \quad AND \quad A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \epsilon$$

• Exercise-Remove Immediate left recursion.

$$\bullet G_1[E]: E \to E+T \mid T; \qquad T \to T*F \mid F; \qquad F \to (E) \mid i.$$

$$\bullet$$
 G₂[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | i.

- Non-Immediate left recursion[非直接左递归的消除]
 - ♦ Grammar: $S \rightarrow Qc \mid c; Q \rightarrow Rb \mid b; R \rightarrow Sa \mid a.$
 - ◆ Although there is no immediate left recursion, S, Q and R are all left recursion.

$$S \rightarrow Qc \mid c$$

 $Q \rightarrow Rb \mid b$
 $R \rightarrow Sa \mid a$

$$S \rightarrow Qc \mid c$$

 $Q \rightarrow Sab \mid ab \mid b$
 $R \rightarrow Sa \mid a$

Left Recursion!

$$S \rightarrow Sabc \mid abc \mid bc \mid c$$

 $Q \rightarrow Sab \mid ab \mid b$
 $R \rightarrow Sa \mid a$

- The following algorithm systematically eliminates left recursion from a grammar[直接/间接]. It is guaranteed to work if:
 - ♦ the grammar has no cycles (derivations of the form $A \stackrel{+}{\Rightarrow} A$)
 - \bullet the grammar has no ϵ -productions (productions of the form A \rightarrow ϵ).
 - ◆ These two can be eliminated systematically from a grammar.
- Algorithm: Eliminating left recursion.
 - **INPUT:** Grammar G with no cycles or ε -productions.
 - ◆ OUTPUT: An equivalent grammar with no left recursion.
 - METHOD: Apply the following 3 steps to G. Note that the resulting non-left-recursive grammar may have ε -productions.

- ♦ Step 1: Arrange all non-terminals of grammar G in some order A_1 , A_2 ,..., A_n ;
- ◆ **Step 2**: Execute in order obtained in Step 1:

```
FOR i:=1 TO n DO

FOR j:=1 TO i-1 DO
```

Replace each production of the form $A_i \to A_j \gamma$ by the productions $A_i \to \delta_1 \gamma \mid \delta_2 \gamma \mid ... \delta_k \gamma$, where $A_j \to \delta_1 \mid \delta_2 \mid ... \delta_k$ are all current A_j -productions; [间接左递归问题 转换为 直接左递归问题]

eliminate the immediate left recursion among the A_i-productions;

END

END

[解决直接左递归问题]

 $A \rightarrow A\alpha \mid \beta$

 $A \rightarrow \beta A'$; $A' \rightarrow \alpha A' \mid \epsilon$

◆Step 3 : Simplify the grammar obtained from Step 2 --- remove the production rules of non-terminal that can never be reached from the start symbol.

• Example: Consider Grammar G(S): (ILR = immediate left recursion)

$$R \rightarrow Sa \mid a$$

$$Q \rightarrow Rb \mid b$$

$$S \rightarrow Qc \mid c$$

• Step 2: (i=1) For R, there is no ILR;

(i=2,j=1) Replace production
$$Q \rightarrow Rb$$
 by the productions R [A_i=Q, A_j=R]

$$\rightarrow$$
 Sa | a, which generates Q \rightarrow Sab | ab | b; **not ILR**

$$(i=3,j=1)$$
 No operations.

$$[A_i=S, A_j=R]$$

(i=3,j=2) Replace production
$$S \rightarrow Qc$$
 by the productions $Q \rightarrow Sab \mid [A_i=S, A_j=Q]$
ab | b, which generates $S \rightarrow Sabc \mid abc \mid bc \mid c$; contain ILR;
(continue...)


```
(continue...) (\alpha) (\beta) (i=3,j=2) S \rightarrow Sabc \mid abc \mid bc \mid c contains ILR. 

Eliminate ILR about S: S \rightarrow abcS' \mid bcS' \mid cS' S' \rightarrow abcS' \mid \epsilon Q \rightarrow Sab \mid ab \mid b R \rightarrow Sa \mid a
```

• Step 3: Simplify the grammar and get Final Grammar:

S
$$\rightarrow$$
 abcS' | bcS' | cS' S' \rightarrow abcS' | ϵ $R \rightarrow Sa \mid a$ $Q \rightarrow Rb \mid b$ (Q&R's production is included by S) $S \rightarrow Qc \mid c$

- Question: What will happen if the order in step 1 is different
- Again, consider $G(S): S \rightarrow Qc \mid c \mid Q \rightarrow Rb \mid b \mid R \rightarrow Sa \mid a$
- Exercise: If the order in step 1 is S,Q,R, the final grammar without ILR is? (was R, Q, S in the previous example)

• Different order in Step1 may cause the final grammar different in form[可能在形式上不同], but it is not difficult to prove that they are equivalent.

Recursive-descent parsing[递归下降语法分析]

- Recursive-descent parsing [RDP, 递归下降语法分析]
 - ◆ A general form of top-down parsing.
 - ◆ RDP is a simple and general parsing strategy.
 - Left-recursion must be eliminated first.(Can be eliminated automatically using some algorithm)
 - ◆ However, it is not popular because of backtracking.
 - Backtracking requires <u>re-parsing</u> the same string.
 - □Tried to solve problem <u>in any possible ways</u>[穷尽一切可能的试探法] which is inefficient.(can take exponential time)
 - □ Also removing already added nodes in parse tree is troublesome.

Mind Map[思维导图]

Predictive Parsing[预测分析]

- Predictive Parsing[预测分析法]
 - ◆A special case of recursive-descent parsing without backtracking[无回溯].
 - ◆ Predictive parsing chooses the correct production by looking ahead at the input a fixed number of symbols, typically we may look only at one. (that is, the next input symbol)
 - ◆ Need Restrictions on the grammar to avoid backtracking. [LL(k)]

Predictive Parsing[预测分析]

- A parser with no backtracking [无回溯]: select the correct alternative through given next input terminal(s)[下一个输入符号/终结符]
- A predictive parser chooses the production to apply solely on the basis of [选取产生式的依据]
 - ◆ Next input symbol(s).
 - ◆ Current non-terminal being processed.

```
G(S): S \rightarrow aBD | bBB; B \rightarrow c | bce; D \rightarrow d parsing input "abced" requires no backtracking
```

Given input terminal(s) a, cannot choose between two rules.

Common Prefix[共同前缀]

• Given G[S]: S \rightarrow xAy; A \rightarrow ** | *, if the current input symbol is *, A $\rightarrow \alpha_1 \mid \alpha_2 \mid ... \mid \alpha_n$. How to choose the right A-production?

- 1. If there is a unique α_i with * as the head, replace using this unique α_i .
- 2. If there are multiple α_i with * as the head, the substitution is not unique[替换是不唯一的], **backtracking** may happen.
- Left factoring[提取左公因子]: Rewrite the productions to <u>defer the</u> <u>decision</u> until enough of the input has been seen that we can make the right choice. [推后决定直至可选择]

Left factoring[提取公共左因子]

- For each non-terminal A, find the longest common prefix α to two or more of its alternatives.
 - Change A-productions $A \to \alpha\beta_1 \mid \alpha\beta_2 \mid ... \mid \alpha\beta_n \mid \gamma$, where γ represents all alternatives that do not begin with α , to $A \to \alpha A' \mid \gamma$; $A' \to \beta_1 \mid \beta_2 \mid ... \mid \beta_n$.
- Repeatedly apply this transformation until no two alternatives for have a common prefix.
- Example: $G[S]: S \rightarrow abc \mid abd \mid ae;$
 - ◆**Step1:** S \rightarrow aA'; A' \rightarrow bc |bd | e;
 - ◆Step2: S \rightarrow aA'; A' \rightarrow bB' | e; B' \rightarrow c | d;

Predictive Parsing[预测分析]

- Patterns in grammars that prevent predictive parsing [并非总是能预测分析]:
 - ◆Left Recursion Problem[左递归问题]
 - □ Lookahead symbol changes only when a terminal is matched.
 - □ Q: How to solve? A: Remove Left Recursion.
 - ◆ Common Prefix[共同前缀] Cause Backtracking Problem.
 - □ Q: How to solve? A: Left factoring.
 - ◆ Question: After left factoring, Can we <u>completely</u> avoid the backtracking and enable prediction? What if $S \rightarrow EBD \mid FBB$; $E \rightarrow a$; $F \rightarrow a$

G(S): S \rightarrow aBD | bBB; B \rightarrow c | bce; D \rightarrow d parsing input "abced" requires no backtracking

FIRST && FOLLOW!

FIRST[终结首符集]

31

- During top-down parsing, FIRST and FOLLOW allow us to choose which production to apply, based on the next input symbol.
- FIRST(α) [终结首符集] (α is *any string* of grammar symbols)
 - \bullet FIRST(α) is the set of terminals that are the beginning strings derived from α . FIRST(α) = {a | $\alpha \stackrel{*}{\Rightarrow} a..., a \in V_T$ } [串的终结首符的集合]
 - \bullet AND if $\alpha \stackrel{*}{\Rightarrow} \epsilon$, then ϵ is also in FIRST(α).
 - Consider two A-productions A $\rightarrow \alpha \mid \beta$, where FIRST(α) and FIRST(β) are disjoint sets [不相交的集合].
 - We can then choose between these A-productions by looking at the next input symbol a, which exists either FIRST(α) and FIRST(β), not both.

FOLLOW[后继终结符号集]

- Question: for an input symbol a and the non-terminal A ($A \rightarrow \alpha_1 \mid \alpha_2 \mid ... \mid \alpha_n$), $a \notin FIRST(\alpha_i)$, in this case, how to choose α_i , or draw a conclusion of grammatical errors?
- FOLLOW(A): For a <u>nonterminal</u> A, the set of terminals a that can appear immediately to the right of A is FOLLOW(A) = {a | S
 - $\stackrel{*}{\Rightarrow}$...Aa..., a \in V_T }.[紧跟在A右边的终结符号的集合]
 - ◆If A is the rightmost symbol in some sentential forms, then \$ is in FOLLOW(A); recall that \$ is a special "endmarker" symbol[结束标记] that is assumed not to be a symbol of any grammar.

FOLLOW[后继终结符号集]

33

- Question: for an input symbol α and the non-terminal A ($A \rightarrow \alpha_1$ $\mid \alpha_2 \mid ... \mid \alpha_n$), $\alpha \notin FIRST(\alpha_i)$, in this case, how to choose α_i , or draw a conclusion of grammatical errors?
- Answer: if $\varepsilon \in FIRST(\alpha_i)$, then when $\alpha \in FOLLOW(A)$, select $A \rightarrow \alpha_i$, otherwise, report grammatical error.
- Example: G(S): S \rightarrow aA | d; A \rightarrow bAS | ϵ . String: abd.

S abd	$FIRST(aA) = \{a\}$	$FOLLOW(A) = {\$,a,d}$
\Rightarrow aA abd	$FIRST(d) = \{d\}$	
⇒ abAS abd	FIRST(bAS)= {b}	
⇒ abS abd	FIRST(A) = $\{b, \epsilon\}$	HOW TO compute
\Rightarrow abd	$FIRST(S) = \{a, d\}$	FIRST & FOLLOW?

- To compute FIRST(X) for a grammar symbol X, apply the following rules until no more terminals or ε can be added to any FIRST set:
 - ◆ **Rule1:** If X∈V_T, then FIRST(X) = {X}. [x是终结符]
 - ◆ Rule2: If X∈V_N and X → ϵ exists, then FIRST(X) = FIRST(X) U ϵ . [非终结符,空式]
 - ◆ Rule3: If X∈ V_N and X→ $Y_1Y_2Y_3...Y_k$, then [非终结符,非空式]
 - □ If for some Y_i and a terminal a:
 - 1. $\epsilon \in FIRST(Y_1)$,..., $FIRST(Y_{i-1})$, i.e., $Y_1...Y_{i-1} \stackrel{*}{\Rightarrow} \epsilon$
 - 2. $a \in FIRST(Y_i) \setminus \{\epsilon\}$
 - \Box Then, we have FIRST(X) = FIRST(X) \cup a.
 - □ If $\varepsilon \in FIRST(Y_i)$ for i=1,...,k, $FIRST(X) = FIRST(X) \cup \varepsilon$.

Starting from Y₁

- Everything in FIRST(Y_1) \ { ϵ } is surely in FIRST(X).
- If Y₁ doesn't derive ε, then we add nothing more.
- But if $Y_1 \stackrel{*}{\Rightarrow} \varepsilon$, then we add FIRST $(Y_2) \setminus \{\varepsilon\}$, and so on...

- Next, we can compute FIRST for any string $\alpha = X_1X_2...X_n$ [符号串]
 - \bullet Add all non- ϵ symbols of FIRST(X₁) to FIRST(α).
 - ♦ If FIRST(X_1), ..., FIRST(X_{i-1}) all contain ε[前k-1个都包含空串], add non-ε symbols of FIRST(X_i), $2 \le i \le n$, to FIRST(α).
 - \bullet If FIRST(X₁), ..., FIRST(X_n) all contain ε , Add ε to FIRST(α).

• Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.

```
◆ FIRST(E):{
```

- **♦** FIRST(T):{
- ♦ FIRST(E'):{ +, ε
- ♦ FIRST(T'):{ * , ε
- ◆ FIRST(F):{ (, id

Apply rules for the first time:

```
E 
ightharpoonup TE': FIRST(T) add to FIRST(E), FIRST(T) doesn't contain \varepsilon
E' 
ightharpoonup + TE': FIRST(+) add to FIRST(E'), FIRST(+) doesn't contain \varepsilon
E' 
ightharpoonup \varepsilon: \varepsilon add to FIRST(E')

T 
ightharpoonup T': FIRST(F) add to FIRST(T), FIRST(F) doesn't contain \varepsilon
T' 
ightharpoonup T': \varepsilon add to FIRST(T'), FIRST(*) doesn't contain \varepsilon
T' 
ightharpoonup \varepsilon: \varepsilon add to FIRST(T')

F 
ightharpoonup T: FIRST('(') add to FIRST(F), FIRST('(') doesn't contain \varepsilon
F 
ightharpoonup T: FIRST(T) add to FIRST(F)
```


- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.
 - ◆ FIRST(E):{
 - ◆ FIRST(T):{ (, id
 - ♦ FIRST(E'):{ +, ε
 - ♦ FIRST(T'):{ *, ε
 - ◆ FIRST(F):{ (, id

It is necessary to determine whether the FIRST set has changed after each rule application. first time YES!

Apply rules for the second time:

 $E \rightarrow TE'$: FIRST(T) add to FIRST(E), FIRST(T) doesn't contain ε

 $E' \rightarrow +TE'$: FIRST(+) add to FIRST(E'), FIRST(+) doesn't contain ε

 $E' \rightarrow \epsilon$: ϵ add to FIRST(E')

 $T \rightarrow FT'$: FIRST(F) add to FIRST(T), FIRST(F) doesn't contain ε

 $T' \rightarrow *FT'$: FIRST(*) add to FIRST(T'), FIRST(*) doesn't contain ε

 $T' \rightarrow \varepsilon$: ε add to FIRST(T')

 $F \rightarrow (E)$: FIRST('(') add to FIRST(F), FIRST('(') doesn't contain ε

 $F \rightarrow id$: FIRST(id) add to FIRST(F)

Compute FIRST[计算FIRST集合的方法]

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.
 - ◆ FIRST(E):{ (, id
 - ◆ FIRST(T):{ (, id
 - ♦ FIRST(E'):{ +, ε
 - ♦ FIRST(T'):{ *, ε
 - ◆ FIRST(F):{ (, id

It is necessary to determine whether the FIRST set has changed after each rule application. second time YES!

Apply rules for the third time:

 $E \rightarrow TE'$: FIRST(T) add to FIRST(E), FIRST(T) doesn't contain ε

 $E' \rightarrow +TE'$: FIRST(+) add to FIRST(E'), FIRST(+) doesn't contain ε

 $E' \rightarrow \varepsilon$: ε add to FIRST(E')

 $T \rightarrow FT'$: FIRST(F) add to FIRST(T), FIRST(F) doesn't contain ε

 $T' \rightarrow *FT'$: FIRST(*) add to FIRST(T'), FIRST(*) doesn't contain ε

 $T' \rightarrow \varepsilon$: ε add to FIRST(T')

 $F \rightarrow (E)$: FIRST('(') add to FIRST(F), FIRST('(') doesn't contain ε

 $F \rightarrow id$: FIRST(id) add to FIRST(F)

Compute FIRST[计算FIRST集合的方法]

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.
 - ◆ FIRST(E):{ (, id }
 - ◆ FIRST(T):{ (, id }
 - ♦ FIRST(E'):{ +, ε }
 - ♦ FIRST(T'):{ *, ε}
 - ◆ FIRST(F):{ (, id }

It is necessary to determine whether the FIRST set has changed after each rule application. third time YES!

Apply rules for the 4th time:

 $E \rightarrow TE'$: FIRST(T) add to FIRST(E), FIRST(T) doesn't contain ε

 $E' \rightarrow +TE'$: FIRST(+) add to FIRST(E'), FIRST(+) doesn't contain ε

 $E' \rightarrow \varepsilon$: ε add to FIRST(E')

 $T \rightarrow FT'$: FIRST(F) add to FIRST(T), FIRST(F) doesn't contain ε $T' \rightarrow *FT'$: FIRST(*) add to FIRST(T'), FIRST(*) doesn't contain ε

 $T' \rightarrow \epsilon$: ϵ add to FIRST(T')

 $F \rightarrow (E)$: FIRST('(') add to FIRST(F), FIRST('(') doesn't contain ε

 $F \rightarrow id$: FIRST(id) add to FIRST(F)

It is necessary to determine whether the FIRST set has changed after each rule application. 4th time NO!

- To compute FOLLOW(A) for all non-terminals A, apply the following rules until nothing can be added to any FOLLOW set.
 - ◆ Rule1: Place \$ in FOLLOW(S), where S is the start symbol.
 - Rule2: If there is a production $A \to \alpha B\beta$, then everything in FIRST(β) except ϵ is placed in FOLLOW(B).
 - ♦ Rule3: If there is a production A → αB, or a production A → αBβ, where FIRST(β) contains ε, then everything in FOLLOW(A) is placed in FOLLOW(B).
 - \Box for example, in bigger context "abc($A \rightarrow \alpha B$)abc"

- G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | **id**; ◆ FIRST(E):{ (, id } Apply rules for the first time: ◆FIRST(T):{ (, id }; Place \$ in FOLLOW(E), since E is the start symbol. ◆FIRST(E'):{ +, ε }; \bullet E \rightarrow TE' ♦ FIRST(T'):{ *, ε};
 - \blacksquare FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E) is in FOLLOW(E').
 - Since FIRST(E') contains ε , then everything in FOLLOW(E) is in FOLLOW(T).
 - \bullet E' \rightarrow +TE' | ϵ
 - FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E') is in FOLLOW(E').
 - Since FIRST(E') contains ε , then everything in FOLLOW(E') is in FOLLOW(T).

◆ FOLLOW(E):{ \$

◆ FIRST(F):{ (, **id** }.

- ◆ FOLLOW(T):{+,\$
- ◆ FOLLOW(E'):{\$
- ◆ FOLLOW(T'):{
- ◆ FOLLOW(F):{

• G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | **id**; ◆ FIRST(E):{ (, id } ◆FIRST(T):{ (, id }; ◆FIRST(E'):{ +, ε }; ◆FIRST(T'):{ *, ε}; **♦** FIRST(F):{ (, **id** }. ◆ FOLLOW(E):{\$ ◆ FOLLOW(T):{ +, \$ ◆ FOLLOW(E'):{ \$ ◆ FOLLOW(T'):{+,\$

◆ FOLLOW(F):{ *, +, \$

Apply rules for the first time:

- \bullet T \rightarrow FT'
 - \square FIRST(T') except ε is in FOLLOW(F).
 - Everything in FOLLOW(T) is in FOLLOW(T').
 - \Box Since FIRST(T') contains ε , then everything in FOLLOW(T) is in FOLLOW(F).
- \bullet T' \rightarrow *FT' | ϵ
 - \Box FIRST(T') except ε is in FOLLOW(F).
 - Everything in FOLLOW(T') is in FOLLOW(T').
 - Since FIRST(T') contains ε , then everything in FOLLOW(T') is in FOLLOW(F).

- G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | **id**; ◆ FIRST(E):{ (, id } ◆FIRST(T):{ (, id }; ◆FIRST(E'):{ +, ε }; ◆FIRST(T'):{ *, ε}; **♦** FIRST(F):{ (, **id** }.
 - ◆ FOLLOW(E):{ \$, }
 - ◆ FOLLOW(T):{ +, \$,)
 - ◆ FOLLOW(E'):{\$,}
 - ◆ FOLLOW(T'):{ +, \$
 - ◆ FOLLOW(F):{ *, +, \$

Apply rules for the first time:

- \bullet F \rightarrow (E) | id
 - \square FIRST(')') except ε is in FOLLOW(E).

Since FOLLOW sets has changed at the first time,

Apply rules for the second time:

- \bullet E \rightarrow TE'
 - \Box FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E) is in FOLLOW(E').
 - Since FIRST(E') contains ε , then everything in FOLLOW(E) is in FOLLOW(T).

• G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | **id**; ◆ FIRST(E):{ (, id } ◆FIRST(T):{ (, id }; ◆FIRST(E'):{ +, ε }; ♦ FIRST(T'):{ *, ε}; ◆ FIRST(F):{ (, **id** }. ◆ FOLLOW(E):{ \$, } ◆ FOLLOW(T):{ +, \$,) ◆ FOLLOW(E'):{ \$, }

◆ FOLLOW(T'):{ +, \$, }

◆ FOLLOW(F):{ *, +, \$, }

- \bullet E' \rightarrow +TE' | ϵ
 - \Box FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E') is in FOLLOW(E').
 - Since FIRST(E') contains ε , then everything in FOLLOW(E') is in FOLLOW(T).
- \bullet T \rightarrow FT'
 - FIRST(T') except ε is in FOLLOW(F).
 - Everything in FOLLOW(T) is in FOLLOW(T').
 - Since FIRST(T') contains ε , then everything in FOLLOW(T) is in FOLLOW(F).

- G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | **id**; ◆ FIRST(E):{ (, id } ◆FIRST(T):{ (, id }; ◆FIRST(E'):{ +, ε }; ◆FIRST(T'):{ *, ε}; ◆ FIRST(F):{ (, **id** }. ◆ FOLLOW(E):{\$, } } ◆ FOLLOW(T):{ +, \$,) } ◆ FOLLOW(E'):{\$,)} ◆ FOLLOW(T'):{ +, \$,) } ◆ FOLLOW(F):{ *, +, \$,)}
 - \bullet T' \rightarrow *FT' | ϵ
 - \Box FIRST(T') except ε is in FOLLOW(F).
 - Everything in FOLLOW(T') is in FOLLOW(T').
 - \Box Since FIRST(T') contains ε , then everything in FOLLOW(T') is in FOLLOW(F).
 - \bullet F \rightarrow (E) | id
 - \Box FIRST(')') except ε is in FOLLOW(E).

Since FOLLOW sets has changed at the second time,

Apply rules for the third time:

- EXERCISE!
- Ans: no FOLLOW set will be changed.

LL(1) Grammar[LL(1)文法]

- <u>Predictive parsers</u>, that is, recursive-descent parsers needing no backtracking, can be constructed for a class of grammars called LL(1).
- **Definition:** A grammar G is LL(1) **if and only if** each productions of G, $A \rightarrow \alpha \mid \beta$, meet the following conditions:
 - \bullet For no terminal a do both α and β derive strings beginning with a.
 - \bullet At most one of α and β can derive the empty string.
 - If $\beta \stackrel{*}{\Rightarrow} \epsilon$, then α does not derive any string beginning with a terminal in FOLLOW(A). Likewise, if $\alpha \stackrel{*}{\Rightarrow} \epsilon$, then β does not derive any string beginning with a terminal in FOLLOW(A).

LL(1) Grammar[LL(1)文法]

- The first two conditions are equivalent to the statement that $FIRST(\alpha)$ and $FIRST(\beta)$ are disjoint sets [不相交的集合]. $FIRST(\alpha) \cap FIRST(\beta) = \emptyset$.
- The third condition is equivalent to stating that if ϵ is in FIRST(β), then FIRST(α) and FOLLOW(A) must be disjoint sets, and likewise if ϵ is in FIRST(α).

 If $\beta \stackrel{*}{\Rightarrow} \epsilon$, then FIRST(α) \cap FOLLOW(A) = \emptyset .

 Otherwise, we cannot choose α or β .

 (A $\Rightarrow \alpha \mid \beta$)
- LL(1) Grammar does not contain left recursion. [LL(1)文法不含左递归]
- LL(1) Grammar is not ambiguous. [LL(1)文法不是二义的]

LL(1)/LL(k) Grammar[LL(1)/LL(k)文法]

- LL (1) grammar.
 - **◆ L:** The first "L" in LL(1) stands for scanning the input from <u>left to right</u>.
 - **◆ L:** The second "L" for producing a leftmost derivation.
 - ◆1: The "1" for using one input symbol of <u>lookahead</u> at each step to make parsing action decisions.
- LL (k) grammar.
 - ♦ k: using k input symbols of lookahead at each step to make parsing action decisions.
- Is LL(0) useful at all?
 - ◆ Grammar where rules can be predicted with no lookahead.
 - ◆ Meaning there can only be one rule per non-terminal.
 - ◆ Meaning this language can have only one string.

LL(1) Parser Implementation[实现]

- Recursive LL(1) parser for G[S]: $S \rightarrow A \mid B$; $A \rightarrow a$; $B \rightarrow b$.
 - ◆maintaining a stack implicitly. [隐式维护栈]

• Is there a way to express above code more concisely? [简洁]

- ◆Non-recursive LL(1) parsers
 - ◆Use a predictive parsing table. [预测分析表]
 - ◆ maintaining a stack explicitly. [显式维护栈]
 - ◆Table-driven parser. [表驱动]

```
void S(){
    token = Next(); // lookahead
    if(token == a) // 'A' starts with 'a'
        A(); // call procedure A()
    else if (token == b) // 'B' starts with 'b'
        B(); // call procedure B()
    else
        return; // error, reject.
}
```

Non-recursive LL(1) Parser [非递归]

- Input buffer: contains the string to be parsed, followed by the endmarker \$.
- Stack: holds a sequence of grammar symbols and the symbol \$ to mark the bottom of the stack. The stack may contain:
 - ◆ Terminals that have yet to be matched against the input symbol.
 - ◆ Non-terminals that have yet to be expanded.

- Parsing Table M[A,a]: an entry containing production "A→..." or error.
- Predictive Parsing Program: Execute the action according to <stack top, current input symbol>

LL(1) Parse Table [预测分析表]

G[E]:
E o TE'
$E' \rightarrow +TE' \mid \epsilon$
T o FT'
$T' \rightarrow *FT' \mid \epsilon$
$F \rightarrow (E) \mid id$

	id	+	*	()	\$
Е	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		E' → +TE'			$E' \rightarrow \epsilon$	E′ → ε
Т	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		T′ → ε	T' → *FT'		T′ → ε	T′ → ε
F	$F \rightarrow id$			F → (E)		

Input symbol, lists all possible terminals and \$

all non-terminals in the grammar

One action for each <non-terminal, next input>, it "predicts" the correct action based on one lookahead

- Reject on reaching error state
- Accept on end of input & empty stack

LL(1) Parsing Algorithm [非递归算法]

- Initial state [初始态]
 - ◆Input: A string w and a parsing table M for grammar G. Input Buffer: w\$.
 - ◆ Stack: start symbol followed by '\$' at bottom.
 - ◆ Assume X: symbol at the top of the stack, a: current input symbol.
- General idea [总体思路]: repeat one of two actions
 - ◆ Expand symbol at top of stack by applying a production
 - ◆ Match terminal symbol at top of stack with input token

LL(1) Parsing Algorithm [非递归算法]

- Algorithm Step-by-Step based on <X, a>:
 - ◆X: symbol at the top of the stack
 - ◆a: current input token
 - ◆ If X ∈ V_T, [栈顶符号为终结符] and
 - $\square X == a == \$$, declare **SUCCESS**, stop parsing.
 - X == a != \$, **pop X from stack** and move the current input symbol forward one.
 - □ X!= a, declare **ERROR**, input is rejected, stop parsing.
 - ◆If X ∈ V_N, [栈顶符号为非终结符] and
 - □ M[X, a] has a production about X, pop X and push right side of production to stack.
 - \square M[X, a] == empty, declare **ERROR**, input is rejected, stop parsing.

Reverse Order [逆序入栈]

Only pop and push nothing

- When using parse table for predictive parsers, if the grammar does not conform to the specification of LL (1) grammar:
 - ◆ the grammar should be rewritten into LL (1) grammar by removing left recursion and backtracking, then the parse table should be constructed.

• LL(1) parser example: consider G[E] to recognize "id + id * id"

G[E]: $E \rightarrow TE'$ $E' \rightarrow +TE' \mid \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \epsilon$ $F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	E → TE′			$E \rightarrow TE'$		
E'		E' → +TE'			$E' \rightarrow \epsilon$	E' → ε
Т	T → FT'			$T \rightarrow FT'$		
T'		T′ → ε	T' → *FT'		T′ → ε	T′ → ε
F	$F \rightarrow id$			F → (E)		

Matched	Stack	Input	Action
	E\$	id + id * id\$	E → TE′
	TE'\$	id + id * id\$	T → FT'
	FT'E'\$	id + id * id\$	F ightarrow id
	idT'E'\$	id + id * id\$	match id
id	T'E'\$	+ id * id\$	T′ → ε
id	E'\$	+ id * id\$	E' → +TE'
id	+TE'\$	+ id * id\$	match +
id +	TE'\$	id * id\$	$T \rightarrow FT'$
id +	FT' E'\$	id * id\$	F o id
id +	idT' E'\$	id * id\$	match id
id + id	T' E'\$	* id \$	T' → *FT'
id + id	*FT'E'\$	* i d \$	match *

Matched	Stack	Input	Action
id + id *	FT'E'\$	i d \$	F ightarrow id
id + id *	id T'E'\$	i d \$	match id
id + id * id	T'E'\$	\$	T′ → ε
id + id * id	E'\$	\$	E' → ε
id + id * id	\$	\$	ACCEPT

The parser mimics a leftmost derivation.

How to construct LL(1) Parse Table?

- Use FIRST and FOLLOW sets for a predictive parsing table M[A,a],
 and the algorithm is based on the following idea:
 - \bullet The production $A \rightarrow \alpha$ is chosen if the next input symbol α is in FIRST (α).
 - ♦ The only complication occurs when $\alpha = \epsilon$ or, more generally, $\alpha \stackrel{*}{\Rightarrow} \epsilon$:
 - we should again choose $A \rightarrow \alpha$, if (1) a is in FOLLOW(A) or (2) the \$ on the input has been reached and \$ is in FOLLOW (A).

- **Algorithm**: For each production $A \rightarrow \alpha$ of the grammar:
 - ♦ For each terminal $\alpha \in FIRST(\alpha)$, add A → α to M[A, a].

$$G[E] \colon \xrightarrow{E} \to TE' \quad \xrightarrow{E'} \to +TE' \mid \epsilon \quad \xrightarrow{T} \to FT' \quad \xrightarrow{T'} \to *FT' \mid \epsilon \quad \xrightarrow{F} \to (E) \mid id$$

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		E' → +TE'				
Т	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'			$T' \rightarrow *FT'$			
F	$F \rightarrow id$			F → (E)		

Production	$FIRST(\alpha)$
$E \rightarrow TE'$	(<i>,</i> id
$E' \rightarrow +TE'$	+
$T \rightarrow FT'$	(, id
$T' \rightarrow *FT'$	*
$F \rightarrow (E)$	(
F ightarrow id	id
$E' \rightarrow \epsilon$	FOLLOW
$T' \rightarrow \epsilon$	FOLLOW

- **Algorithm**: For each production $A \rightarrow \alpha$ of the grammar:
 - If $\varepsilon \in FIRST(\alpha)$, then for each terminal b in FOLLOW(A), add $A \to \alpha$ to M[A,b]. If $\varepsilon \in FIRST(\alpha)$ and $\varphi \in FOLLOW(A)$, add $A \to \alpha$ to M[A, $\varphi \in FIRST(\alpha)$] as well.

G[E]: E →	IE' E'-) +1Ε′ ε	→	′ I ′ → '	*FΙ΄ ε	F → (E) I
	id	+	*	()	\$
Е	E → TE′			$E \rightarrow TE'$		
E'		E' → +TE'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
Т	T → FT'			$T \rightarrow FT'$		
T'		$T' \rightarrow \epsilon$	T' → *FT'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

Production	$FIRST(\alpha)$
$E' \rightarrow \epsilon$	FOLLOW
$T' \rightarrow \epsilon$	FOLLOW
Symbol	FOLLOW(A)
E'	\$,)
Т'	+, \$,)

G[E]: $E \rightarrow TE'$ $E' \rightarrow +TE' \mid \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \epsilon$

 $F \rightarrow (E) \mid id$

Symbol	FIRST	FOLLOW
E	(, i	\$,)
E '	+, ε	\$,)
Т	(, i	+, \$,)
T'	*, ε	+, \$,)
F	(, i	*, +, \$,)

	id	+	*	()	\$
Е	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		E' → +TE'			E' → ε	E' → ε
Т	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		T′ → ε	T' → *FT'		T′ → ε	T′ → ε
F	$F \rightarrow id$			F → (E)		

Production	FIRST(α)
$E \rightarrow TE'$	(, i
E' → +TE'	+
$T \rightarrow FT'$	(, i
T' → *FT'	*
F → (E)	(
$ extsf{F} ightarrow extsf{id}$	id
E' → ε	FOLLOW
T' → ε	FOLLOW

Determine If Grammar is LL(1)[判断LL(1)文法]

- Observation [直观依据]
 - ◆ If a grammar is LL(1), each of its LL(1) table entry contains at most one rule.
 - ◆Otherwise, it is not LL(1).

	id	+	*	()	\$
Ε	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			E' → ε	$E' \rightarrow \epsilon$
Т	$T\toFT'$			$T\toFT'$		
T'		T′ → ε	T' → *FT'		T′ → ε	T′ → ε
F	$F \rightarrow id$			F → (E)		

- Two methods to determine if a grammar is LL(1) or not
 - ◆ Construct LL(1) table, and check if there is a multi-rule entry.
 - Check each rule as if the table is getting constructed, grammar G is LL(1) if and only if for any two distinct productions $A \rightarrow \alpha \mid \beta$:
 - \bullet FIRST(α) \cap FIRST(β) = φ
 - \bullet If $\varepsilon \in FIRST(\beta)$, $FIRST(\alpha) \cap FOLLOW(A) = \phi$ (Mentioned before)

Non-LL(1) Grammar [非LL(1)文法]

- Assume that a grammar is not LL(1). How to solve?
 - ◆ Case1- the language may still be LL(1)
 - □ Try to rewrite grammar to LL(1) grammar [remove left-recursion & left-factoring]
 - □ Try to remove ambiguity in grammar.
 - ◆ Case2- If Case-1 fails, language may not be LL(1)
 - □ It's impossible to resolve conflict at the grammar level.
 - □ Programmer chooses which rule to use for conflicting entry (if choosing that rule is always semantically correct)
 - □ Otherwise, use a more powerful parser (e.g. LL(k), LR(1))

LL(1) Time and Space Complexity[复杂度]

- Linear time and space relative to the length of input.
- Time: each input symbol is consumed within a constant number of steps.
 - ◆ If symbol at top of stack is a terminal: Matched immediately in one step.
 - ◆ If symbol at top of stack is a non-terminal:
 - □ Matched in at most N steps, where N = number of rules.
 - □ Since LL(1) is not left-recursive, we do not apply same rule twice without consuming input.

LL(1) Time and Space Complexity[复杂度]

- Space: smaller than input (after removing $X \rightarrow \varepsilon$)
 - ◆ Right side of production is always longer or equal to left side of production
 - Derivation string expands monotonically.
 - □ Derivation string is always shorter than final input string.
 - ◆ Stack is a subset of derivation string (unmatched portion)
- LL(k)'s size of parse table = O(|N|*|T|^k)[prevent LL(2) ... LL(k)
 from wide usage]
 - ◆ N = number of non-terminals, T = number of terminals

Summary

- Top-down Parsing; RDP with backtracking, predictive parsing.
- (Immediate / Non-immediate) Left Recursion and how to resolve
- Left-factoring.
- FIRST, FOLLOW.
- LL(1)/LL(k) Grammar.
- Recursive / Non-recursive LL(1) parser implementation.
- The use of LL(1) Parse Table.
- The construction of LL(1) Parse Table.

Summary [自顶向下分析]

- RDP [递归下降分析]
 - left recursion [左递归]
 - Remove Left Recursion [消除直接/间接左递归]
 - Backtracking [回溯]
 - left factoring [提取左公因子]
- Predictive Parsing [预测分析]
 - FIRST & FOLLOW [终结首符集 & 后继终结符号集]
 - Definition of LL(1)/LL(k) [LL(1)/LL(k)文法的定义]
 - LL(1) Parse Table [LL(1)的分析表]
 - The use of the Parse Table [分析表的使用]
 - The Construction of the Parse Table [分析表的构建]
 - Table-driven LL(1) Parser Implementation [分析表驱动的LL(1)语法分析实现]
 - Complexity of LL(1) [LL(1)的时间与空间复杂度]

Mind Map[思维导图]

Further Reading

Dragon Book

- ◆Comprehensive Reading:
 - □ Section 4.1.2 and 4.4.1 for the introduction to top-down parsing.

regular expressions.

