

KG Refinement by Knowledge Intensive Crowdsourcing

Xin Lin

CS@Ecnu

xlin@cs.encu.edu.cn

KG Refinement

- Imperfect Data-driven KG Construction
 - Accuracy is not high enough
 - Recall is not high enough
- KG Refinement
 - Auto reasoning
 - Conflict resolution
 - Crowdsourcing

Human Brain and Al

Human brains may help Al

Knowledge-Intensive Crowdsourcing (KIC)

A branch of crowdsourcing

 To achieve some knowledge-intensive task

 To bridge the gap between AI and human brain

Knowledge-Intensive Crowdsourcing

Successful applications

CAPTCHAs

ImageNet Labeling

Issues on KIC

- What
 - to crowdsource?
- Whom
 - to crowdsource?
- How
 - to devise question?
 - to incentivize worker?
 - to control quality?
 - to utilize the crowdsourcing result

What

- Task selection
 - To save monetary and time cost
 - Select the most important task
 - Select the task the human is good at but the computer is not
- Existing work
 - Entity resolution[SIGMOD13] [ICDE15]
 - Schema matching[VLDB13]

Entity Resolution [SIGMOD13]

ID	Object	
o_1	iPhone 2nd Gen	
<i>o</i> ₂	iPhone Two	
0 ₃	iPhone 2	
04	iPad Two	
<i>O</i> ₅	iPad 2	
0 ₆	iPad 3rd Gen	

ID	Object Pairs	Likelihood
p_1	(o_2, o_3)	0.85
p ₂	(o_1, o_2)	0.75
p ₃	(o_1, o_6)	0.72
p_4	(o_1, o_3)	0.65
p_5	(o_4, o_5)	0.55
p_6	(o_4, o_6)	0.48
p ₇	(o_2, o_4)	0.45
p_8	(o_5, o_6)	0.42

Schema Matching [VLDB13]

probability
.75
.7
1
.75
.25

```
Possible Matchings probability m_1 = \{ < (Professor)Name, Prof.name >, < Position, Position >, < Gender, Sex >, < (Department) Name, Department > \}  .45 m_2 = \{ < (Professor)Name, Prof.name >, < Gender, Sex >, < (Department) Name, Department > \}  .3 m_3 = \{ ((Department)Name, Prof.name), (Position, Position)  (Gender, Sex) \} .25
```


What—Our work (1): Graph Cleaning

Open IE / RE

Internet Documents

- Incomplete docs
- Conflict sources
- Imprecise NLP

----- Uncertain Relationship

X.Lin, et.al, *Human-Powered Data Cleaning for Probabilistic Reachability Queries on Uncertain Graphs*, TKDE, 2017.

What—Our work (1): Graph Cleaning

X.Lin, et.al, Human-Powered Data Cleaning for Probabilistic Reachability Queries on Uncertain Graphs, TKDE, 2017.

What—Our work(2): Pairwise Top-k cleaning

X.Lin, et.al, Reducing Uncertainty of Probabilistic Top-k Ranking via Pairwise Crowdsourcing, TKDE, 2017.

Summaries of issue "what"

Local refinement will promote the global quality

Quantifying the influence is the key issue

Task independent

Issues on KIC

- What
 - to crowdsource?
- Whom
 - to crowdsource?
- How
 - to devise question?
 - to incentivize worker?
 - to control quality?
 - to utilize the crowdsourcing result

Whom

- Passive crowdsourcing
 - All tasks are picked up by the workers
 - Workers are qualified by some golden tasks.
- Active crowdsourcing

User Modeling

Task Modeling

Whom: Active crowdsourcing

- User Modeling
 - Task-history-based modeling
 - Cold start problem
 - Golden task
 - Transfer learning [KDD13b]
- Matching
 - Keyword based
 - Tree based [WWW 16]
 - Vector based [VLDB 16]

Whom: Active crowdsourcing

Task Assignment

- Randomly selected
- Consider other factors (time, worker's quality,etc)
 - Assign the k most uncertain tasks[ICDE 12]
 - Choose the k highest quality workers[SIGMOD 15a]
 - Choose the highest improvement in quality [SIGMOD 15a]
 - •

Transfer Learning in Worker Modeling [KDD2013]

0.5

Domain-based matching [VLDB2016]

0

Tree-based matching [WWW16]

Whom—Our work: Graph+Tree-based

Issues on KIC

- What
 - to crowdsource?
- Whom
 - to crowdsource?
- How
 - to devise question?
 - to incentivize worker?
 - to control quality?
 - to utilize the crowdsourcing result

How to devise question?

Explicit crowdsourcing

Implicit crowdsourcing

Devise questions

- Explicit crowdsourcing
 - Traditional guidelines:
 - 1. Small piece of task is preferred
 - 2. Yes-or-No > Choice >Blank filling
 - 3. Less cooperation is preferred
 - 4. Good UI is preferred
 - New research points:
 - Should tradeoff the cost and accuracy
 - Mix multi-choice and Yes-or-no [SIGMOD 17]
 - Should devise the workflow of Crowdsourcing

Devise questions

- Implicit crowdsourcing
 - Gamification
 - Common sense knowledge acquisition[CHI06]
 - Spatial Positions[AIIDE 14]
 - Collecting Secretly
 - CAPTCHAS
 - Auto Image Annotation [MTA 14]
 - Visual Focus [TMM14]
 - Make Use of Psychological Characteristic
 - Curiosity[CHI16]
 - Micro-diversions[CSCW 15]

Common knowledge acquisition

Templates:

- ___ is a kind of ____.
- ____ is used for ____.
- ____ is typically near/in/on
- ___ is the opposite of ____/
 is related to

Touch Saliency & Visual Focus

Implicit crowdsourcing

- Guidance of implicit crowdsourcing
 - Provide the task unconsciously
 - Workers are Users
 - First purpose should match user's demands, while second purpose should match the crowdsourced task.
 - First purpose is always the most important.
 - Motivate the crowds with Curiosity

Issues on KIC

- What
 - to crowdsource?
- Whom
 - to crowdsource?
- How
 - to devise question?
 - to incentivize workers?
 - to control quality?
 - to utilize the crowdsourcing result

Taxonomy of incentives

Taxonomy of incentives

Taxonomy of incentives

Social Influence

Strong connection

Our works

- 1. Weak connection performance better than strong connection for short-term tasks
- 2. Hybrid incentive in different phrases

Issues on KIC

- What
 - to crowdsource?
- Whom
 - to crowdsource?
- How
 - to devise question?
 - to incentivize workers?
 - to control quality?
 - to utilize the crowdsourcing result

Quality Control

Overview

- Task Design
- Worker Organization Model
- Result aggregation

Quality Control

- Task design
 - Anti-malicious strategy [CHI15]
 - Add feedback mechanism[CSCW14]
- User management
 - Similar to the company management model

Quality Control

- Result Aggregation
 - Golden standard datasets
 - Dynamically insert golden tasks
 - Using golden tasks to test users
 - Redundancy-based strategy
 - Basic Majority Voting
 - Weighted Voting
 - Two-Stage strategy [KDD13a]

Our Work

Difficulty-based task assignment [Group 2018]

Issues on KIC

- What
 - to crowdsource?
- Whom
 - to crowdsource?
- How
 - to devise question?
 - to incentivize workers?
 - to control quality?
 - to utilize the crowdsourcing result

Our work (1): Finding unknown unknowns

Our work (1): Finding unknown unknowns

Our work: Crafting KG via QA FeedBacks

Thank you!

References

- [SIGMOD13] J. Wang, et.al. Leveraging Transitive Relations for Crowdsourced Joins.
- [ICDE15] V. Verroios, et.al. Entity resolution with crowd errors.
- [VLDB15] C. Zhang, et.al. Reducing uncertainty of schema matching via crowdsourcing.
- [VLDB11] A. Marcus, et.al. Human-powered sorts and joins.
- [WWW16] P. Mavridis, et.al. Using Hierarchical Skills for Optimized Task Assignment in Knowledge-Intensive Crowdsourcing.
- [VLDB16] Y. Zheng, et.al. DOCS: Domain-Aware Crowdsourcing System.
- [KDD13a] Y. Baba. Statistical Quality Estimation for General Crowdsourcing Tasks.
- [KDD13b] K.Mo. Cross-task Crowdsroucing.

References

- [ICDE12] R. Boim, et.al. Asking the right questions in crowd data sourcing.
- [SIGMOD15a] J. Fan. ICrowd: An adaptive crowdsourcing framework.
- [SIGMOD15b] Y. Zheng, et.al. Qasca: A quality-aware task assignment system for crowdsourcing applications.
- [WWW14] G. Goel, et.al. Allocating tasks to workers with matching constraints: truthful mechanisms for crowdsourcing markets.
- [SIGMOD17] V. Verroios, et.al. Waldo: An Adaptive Human Interface for Crowd Entity Resolution.
- [TMM14] B. Ni,et al. Touch Saliency: Characteristics and Prediction[J]. IEEE Transactions on Multimedia, 2014, 16(6):1779-1791.
- [AIIDE 14] R. Hodhod, et.al. Toward Generating 3D Games with the Help of Commonsense Knowledge and the Crowd.
- [MTA 14] K. Ntalianis, et al. Automatic annotation of image databases based on implicit crowdsourcing, visual concept modeling and evolution[J]. Multimedia Tools and Applications, 2014, 69(2):397-421.

References

- [CHI06] L. Ahn, et.al. Verbosity: A Game for Collecting Common-Sense Facts.
- [CHI16] E. Law, et al. Curiosity Killed the Cat, but Makes Crowdwork Better.
- [CSCW 15] P. Dai, et al. And Now for Something Completely Different: Improving Crowdsourcing Workflows with Micro-Diversions.
- [CSCW 14]L. Yu, et.al. A Comparison of Social, Learning, and Financial Strategies on Crowd Engagement and Output Quality.
- [CHI 15] U.Gadiraju, et.al, Understanding Malicious Behavior in Crowdsourcing Platforms: The Case of Online Surveys.