hypergraph kernel magic notes

February 3, 2016

1 Hypergraph orientations

Let H = (V, E) be a hypergraph. An orientation of H is a function q that assigns to each $e \in E$, a subset of e, that is $q(e) \subseteq e$. Given an orientation q of H, the out-degree of $v \in V$ is $d_q^+(v) := |\{e \in E : v \in q(e)\}|$. We say that and orientation q of H is kernel-perfect if for all induced subhypergraphs H' = (V', E') of H, there is $S \subseteq V'$ such that S is independent and for each $v \in V' \setminus S$, there is $e \in E'$ with $e \cap S \neq \emptyset$ and $v \in q(e)$. Such an S is a kernel.

Lemma 1.1. Let H = (V, E) be a hypergraph and $f: V \to \mathbb{N}$. If H has a kernel-perfect orientation q such that $f(v) > d_q^+(v)$ for all $v \in V$, then H is f-paintable.

Proof. Suppose not and choose a counterexample H = (V, E) with f so as to minimize |V|. Let q be a kernel-perfect orientation of H such that $f(v) > d_q^+(v)$ for all $v \in V$. Since H is not f-paintable, Lister has a winning move, say he chooses $A \subseteq V$ as the vertices that have blue available. Painter should pick a kernel $S \subseteq A$ and color all vertices in S blue. Define a function f' on H - S by f'(v) = f(v) for $v \in V \setminus A$ and f'(v) = f(v) - 1 for all $v \in S \setminus A$. Since S is a kernel, the out-degree of each vertex in $S \setminus A$ went down by at least one. Now Painter can win on H - S with f' by minimality of |V|, contradicting our choice of A. \square

Lemma 1.2. Let H = (V, E) be a hypergraph and $S \subseteq V$ an independent set. If q is an orientation of H such that $q(e) \ge 1$ for all $e \in E$ and $q(e) \ge 2$ for all $e \subseteq E \setminus S$, then q is kernel-perfect.

Proof. Suppose not and choose a counterexample H = (V, E) with q so as to minimize |V|. Then every proper induced subhypergraph of H has a kernel by minimality of |V|. So, it must be that H has no kernel. In particular, S is not a kernel of H with q. So, there is $v \in V \setminus S$ such that $v \notin q(e)$ for every $e \in E$ with $v \in e$ and $e \cap S \neq \emptyset$. Since $q(e) \geq 1$ for all $e \in E$ and $q(e) \geq 2$ for all $e \subseteq E \setminus S$, for each $e \in E$ with $v \in e$, we can choose $x_e \in q(e) \setminus \{v\}$. Let $H' = H - (\{v\} \cup \{x_e : e \in E \text{ with } v \in e\})$. Then H' has a kernel A' by minimality of |V|. We claim that $A := A' \cup \{v\}$ is a kernel in A'. If A' was not independent, then there would be A' with A' in independent. So, A' is a kernel since A' which is impossible since A' is not in A'. So, A' in independent. So, A' is a kernel since A' which is contradiction completes the proof.