CPU의 명령어 세트 설계 과정에서

- >>> 명령어들의 종류와 비트 패턴을 정의하고,
- >>> 명령어들의 실행에 필요한 하드웨어를 설계하고,
- >>> 각 명령어 실행을 위한 다양한 마이크로서브루틴을 작성한 후,
- >>> 마이크로프로그램 코드들을 제어 기억장치에 저장한다.

○ 제어기억장치

- CPU 마다 종류가 매우 다양하다.
- ROM으로 구성된다.
- ROM의 사이즈는 마이크로명령어 형식에 따라 마이크로프로그램 크기로 결정된다.

○ 제어기억장치

예) 명령어 길이: 16 bits; op-code(4), 간접(1), 즉치 혹은 주소(11) 제어기억장치(ROM): 2⁷*17 bits

마이크로명령어 길이: 17 bits; 연산1(3), 연산2(3), 조건(2),

분기(2), ADF(7)

•	
0	인출 마이크로서브루틴
•	간접 마이크로서브루틴
•	•
	•
	•
•	•
: 63	•
64	실행 마이크로서브루틴 1
:	실행 마이크로서브루틴 2
	•
•	•
•	•
•	:
127	

1) 마이크로명령어 형식

2) 마이크로명령어의 2진 코드와 기호

○ 연산1 필드에 위치할 마이크로-연산

코드	마이크로-연산	기호
000	None	NONE
001	MAR ← PC	PCTAR
010	MAR ← IR(addr)	IRTAR
011	AC ← AC+MDR	ADD
100	MDR ← M[MAR]	READ
101	AC ← MDR	DRTAC
110	IR ← MDR	DRTIR
111	M[MAR] ← MDR	WRITE

2) 마이크로명령어의 2진 코드와 기호

○ 연산2 필드에 위치할 마이크로-연산

코드	마이크로-연산	기호
000	None	NONE
001	PC ← PC+1	INCPC
010	MDR ← AC	ACTDR
011	MDR ← PC	PCTDR
100	PC ← MDR	DRTPC
101	MAR ← SP	SPTAR
110	AC ← AC-MDR	SUB
111	PC ← IR(addr)	IRTPC

2) 마이크로명령어의 2진 코드와 기호

○ 조건 필드에 위치할 마이크로-연산

● U: 무조건 분기

● I: 'l=1'이면 간접 사이클 루틴을 호출

S: 누산기에 저장된 데이터의 부호가 '1'이면 분기

● Z: 누산기에 저장된 데이터가 '0'이면 분기

코드	조건	기호	설명
00	1	U	무조건 분기
01	ᅵ비트	I	간접 주소 지정
10	AC(S)	S	누산기(AC)에 저장된 데이터의 부호
11	AC=0	Z	AC에 저장된 데이터=0

2) 마이크로명령어의 2진 코드와 기호

○ 분기 필드에 위치할 마이크로-연산

JUMP

 조건에 따라 CAR의 내용을 주소필드(ADF)의 값 혹은 CAR +1 의 값으로 저장한다.

CALL

 조건에 따라 CAR의 내용을 주소필드(ADF)의 값 혹은 CAR +1 의 값으로 저장한다. 여기서, 주소필드의 값으로 저장할 때는 복귀 할 주소 값을 SBR에 저장한다.

RET

마이크로서브루틴으로부터 복귀 (SBR에 저장된 내용을 CAR로 적재)

MAP

사상방식(mapping)에 의하여 분기 목적지 주소 결정

2) 마이크로명령어의 2진 코드와 기호

○ 분기 필드에 위치할 마이크로-연산

코드	기호	설명
00	JMP	'조건=1'이면 CAR ← ADF '조건=0'이면 CAR ← CAR+1
01	CALL	'조건=1'이면 CAR ← ADF, SBR ← CAR+1 '조건=0'이면 CAR ← CAR+1
10	RET	CAR ← SBR(서브루틴으로부터의 복귀)
11	MAP	$CAR_6 \leftarrow "1"$, $CAR_{52} \leftarrow IR(op\text{-code})$, $CAR_{1,0} \leftarrow "0"$

3) 마이크로프로그램

○ 인출 사이클의 마이크로서브루틴

ORG 0

FETCH: PCTAR NONE U JMP NEXT; MAR ← PC

READ INCPC U JMP NEXT; MDR \leftarrow M[MAR], PC \leftarrow PC+1

DRTIR NONE U MAP ; IR ← MDR

Addr	μ-ОР1	μ-ОР2	CD	BR	ADF
000000	001	000	00	00	0000001
000001	100	001	00	00	0000010
0000010	110	000	00	11	0000000

3) 마이크로프로그램

○ 간접 사이클의 마이크로서브루틴

ORG 4

INDRT: IRTAR NONE U JMP NEXT; MAR ← IR(addr)

READ NONE U JMP NEXT; MDR ← M[MAR]

DRTIR NONE U RET; IR(addr) ← MDR

Addr	μ-OP1	μ-OP2	CD	BR	ADF
0000100	010	000	00	00	0000101
0000101	100	000	00	00	0000110
0000110	110	000	00	10	0000000

3) 마이크로프로그램

- 실행 사이클의 마이크로서브루틴을 찾기 위한 사상(Mapping)방법
 - 명령어 내의 op-code 가 지정하는 연산을 실행하기 위하여 제어기억장치 내에 실행 사이클의 마이크로서브루틴이 프로그램 되어있는 시작 주소를 찿아가는 방법이다.
 - 명령어 op-code의 비트를 사상함수의 특정 비트 패턴과 조합하는 방법이다.

3) 마이크로프로그램

○ 실행 사이클의 마이크로서브루틴을 찾기 위한 사상(Mapping)방법

사상방법

3) 마이크로프로그램

○ 사상(Mapping)방법에 따른 실행 사이클의 마이크로서브루틴 주소

Instruction	op-code	마이크로서브루틴의 시작 주소
NOP	0000	f (0 0 0 0) = 1 0 0 0 0 0 0 = 64 ₁₀
LOAD(I)	0001	f (0 0 0 1) = 1 0 0 0 1 0 0 = 68 ₁₀
STORE(I)	0010	f (0 0 1 0) = 1 0 0 1 0 0 0 = 72 ₁₀
ADD	0011	f (0 0 1 1) = 1 0 0 1 1 0 0 = 76 ₁₀
SUB	0100	f (0 1 0 0) = 1 0 1 0 0 0 0 = 80 ₁₀
JUMP	0101	f (0 1 0 1) = 1 0 1 0 1 0 0 = 84 ₁₀

3) 마이크로프로그램

○ NOP 명령어 - 실행 사이클의 마이크로서브루틴

ORG 64

NOP: NONE INCPC U JMP FETCH; PC ← PC+1

Addr	μ-ОР1	μ-ОР2	CD	BR	ADF
100000	000	001	00	00	0000000

3) 마이크로프로그램

○ LOAD 명령어 - 실행 사이클의 마이크로서브루틴

ORG 68

LOAD: NONE NONE I CALL INDRT;

IRTAR NONE U JMP NEXT; MAR ← IR(addr)

READ NONE U JMP NEXT; MDR ← M[MAR]

DRTAC NONE U JMP FETCH; AC ← MDR

Addr	μ-ОР1	μ-ОР2	CD	BR	ADF
1000100	000	000	01	01	0000100
1000101	010	000	00	00	1000110
1000110	100	000	00	00	1000111
1000111	101	000	00	00	000000

3) 마이크로프로그램

WRITE NONE

○ STORE 명령어 - 실행 사이클의 마이크로서브루틴

ORG 72

STORE: NONE NONE I CALL INDRT;

IRTAR NONE U JMP NEXT; MAR ← IR(addr)

NONE ACTOR U JMP NEXT; MDR ← AC

U JMP FETCH; M[MAR] ← MDR

Addr	μ-ОР1	μ-ОР2	CD	BR	ADF
1001000	000	000	01	01	0000100
1001001	010	000	00	00	1001010
1001010	000	010	00	00	1001011
1001011	111	000	00	00	0000000

3) 마이크로프로그램

○ ADD 명령어 - 실행 사이클의 마이크로서브루틴

ORG 76

ADD: IRTAR NONE U JMP NEXT; MAR ← IR(addr)

READ NONE U JMP NEXT; MDR ← M[MAR]

ADD NONE U JMP FETCH; AC ← AC + MDR

Addr	μ-OP1	μ-ОР2	CD	BR	ADF
1001100	010	000	00	00	1001101
1001101	100	000	00	00	1001110
1001110	011	000	00	00	000000

3) 마이크로프로그램

○ SUB 명령어 - 실행 사이클의 마이크로서브루틴

	ORG 80								
SUB:	IRTAR	NONE	U	JMP	NEXT ; MAR ← IR(addr)				
	READ	NONE	U	JMP	NEXT ; MDR ← M[MAR]				
	NONE	SUB	U	JMP	FETCH; AC ← AC - MDR				

Addr	μ-ОР1	μ-ОР2	CD	BR	ADF
1010000	010	000	00	00	1010001
1010001	100	000	00	00	1010010
1010010	000	110	00	00	0000000

3) 마이크로프로그램

○ JUMP 명령어 - 실행 사이클의 마이크로서브루틴

ORG 84

JUMP: NONE IRTPC U JMP FETCH; PC ← IR(addr)

Addr	μ-ОР1	μ-ОР2	CD	BR	ADF
1010100	000	111	00	00	0000000