Marketing Campaign Analysis

Section 1: Getting the overview of the data

1. Create the ERD diagram with the help of given schema.

2.1. Check the cardinality of following columns: Different color segments (categories) provided by the company.

Ans: 5

2.2. Different Coupon Types that are offered.

Ans: 2

2.3. States where the company is currently delivering its products and services.

Ans: 21

2.4. Different Order Types.

Ans: 3

3.1. Identify total number of sales (transactions) happened by Yearly basis Ans:

SELECT YEAR(PurchaseDate) AS year, COUNT(Trans_Id) AS total_sales FROM CustomerTransactionData GROUP BY YEAR(PurchaseDate);

Query Snapshot:

year	total_sales
2019	62
2020	102
2021	67
2022	63
2023	6

3.2. Quarterly basis

Ans:

SELECT YEAR(PurchaseDate) AS year, CONCAT('Q', QUARTER(PurchaseDate)) AS quarter, COUNT(Trans_Id) AS total_sales FROM CustomerTransactionData GROUP BY YEAR(PurchaseDate), quarter;

Query Snapshot:

3.3. Yearly and Monthly basis

Ans:

SELECT YEAR(PurchaseDate) AS year,
MONTH(PurchaseDate) AS month,
COUNT(Trans_Id) AS total_sales
FROM CustomerTransactionData
GROUP BY YEAR(PurchaseDate), MONTH(PurchaseDate);

Query Snapshot:

Database: MySQL v5.7 ▼	팀 Save) Sign in Have any feedback?
Results		Copy as Markdown
Query #1 Execution time: 0ms		A
year	month	total_sales
2019	1	29
2019	3	2
2019	4	5
2019	6	2
2019	7	1
2019	8	1
2019	12	22
2020	1	5
2020	2	4
2020	3	2
2020	4	3
DB Fiddle – Crafted with ♥ by Status200 in the United Kingdom.		Terms of Use * Privacy / Cookie Policy * Status200 Ltd @ 2018

4.1. Identify the total purchase order by Product category

Ans:

SELECT Item_Category, sum(quantity) AS total_purchase_orders FROM CustomerTransactionData ctd join Item i on ctd.Item_Id = i.Item_Id GROUP BY Item_Category;

Query Snapshot:

Item_Category	total_purchase_orders
Anti-Corrosive Paint	7524
Emulsion Paint	6593
Enamel Paint	3155
Oil Paint	9026
Synthetic paint	4426

4.2. Yearly and Quarterly basis

Ans:

SELECT
YEAR(PurchaseDate) AS year,
QUARTER(PurchaseDate) AS quarter,
sum(quantity) AS total_orders
FROM
CustomerTransactionData
GROUP BY
YEAR(PurchaseDate),
QUARTER(PurchaseDate)
ORDER BY
YEAR(PurchaseDate),
QUARTER(PurchaseDate),
QUARTER(PurchaseDate)

Query Snapshot:

4.3. Order Type

Ans:

SELECT

OrderType,

SUM(quantity) AS total_orders

FROM

CustomerTransactionData

GROUP BY OrderType;

OrderType	total_orders
Government	10580
Household	11856
Industrial	8288

4.4. City Tier

Ans:

SELECT

CityTier,

SUM(quantity) AS total_orders

FROM

CustomerTransactionData ctd JOIN Customer cu ON ctd.Cust_ld = cu.Customer_ld JOIN City c ON cu.City_ld = c.City_ld

GROUP BY CityTier;

Query Snapshot:

CityTier	total_orders
1	8088
2	19297
3	3339

Section 2: Understanding lead conversions

1. 1. Identify the total number of transactions with campaign coupon vs total number of transactions without campaign coupon.

Ans:

SELECT

SUM(CASE WHEN campaign_id IS NOT NULL THEN 1 ELSE 0 END) AS Transactions_With_Campaign_Coupon,

SUM(CASE WHEN campaign_id IS NULL THEN 1 ELSE 0 END) AS

Transactions_Without_Campaign_Coupon

FROM CustomerTransactionData;

Query #1 Execution time: 1ms Transactions_With_Campaign_Coupon Transactions_Without_Campaign_Coupon 186 114

2. Identify the number of customers with first purchase done with or without campaign coupons.

```
Ans:
WITH Occurences AS
  SELECT
    ROW_NUMBER () OVER (PARTITION BY Cust_ld order by purchasedate ) AS
"Occurence"
  FROM CustomerTransactionData
SELECT
  Count (*) AS Count_Value,
  CASE
    WHEN coupon_id is Null
  THEN 'Cust_Without_Coupon'
  ELSE 'Cust_With_Coupon'
  END AS Count Type
FROM Occurences
WHERE Occurence = 1
Group By Count_Type
```

Query Snapshot:

3a. Identify the impact of campaigns on users.

Check the total number of unique users making purchases with or without campaign coupons.

Ans:

```
SELECT
Count ( distinct Cust_Id) AS Count_Value ,
CASE
WHEN coupon_id is Null
THEN 'Cust_Without_Coupon'
ELSE 'Cust_With_Coupon'
END AS Count_Type
```

FROM CustomerTransactionData Group By Count_Type

Query Snapshot:

3b. Identify the impact of campaigns on users.

Check the purchase amount with campaign coupons vs normal coupons vs no coupons.

Ans:

```
SELECT
SUM ( PurchasingAmt) AS Purchase_Value ,
CASE
WHEN coupon_id is Null and campaign_id is NULL
THEN 'No_Coupon'
WHEN coupon_id is NOT Null and campaign_id is NULL
THEN 'Normal_Coupon'
ELSE 'Campaign_Coupon'
END AS Count_Type
FROM CustomerTransactionData
Group By Count_Type
```

Query Snapshot:

Comment:

Section 3: Understanding company growth and decline

1a. Identify the total growth on an year by year basis excluding the current year Based on quantity of paint that is sold

Ans:

select Year(PurchaseDate), sum(quantity) as Total_Quantity from CustomerTransactionData where Year(PurchaseDate) != 2023

```
group by Year(PurchaseDate) order by Year(PurchaseDate);
```

Query Snapshot:

Year(PurchaseDate)	Total_Quantity
2019	4548
2020	9888
2021	9184
2022	6532

1b. Based on amount of paint that is sold

Ans:

```
select Year(PurchaseDate), sum(PurchasingAmt) as Total_Amount from CustomerTransactionData where Year(PurchaseDate)!= 2023 group by Year(PurchaseDate) order by Year(PurchaseDate);
```

Query Snapshot:

Year(PurchaseDate)	Total_Amount
2019	1671844.7001953125
2020	3533903.3505859375
2021	3159442.046875
2022	2182515.994140625

1c. Based on new customers that are acquired. (Hint: Get distinct new users every year before year by year analysis).

```
Ans:
with
t1 as
select distinct count(cust_id) as No_Of_New_Customers_2019 from
CustomerTransactionData where Year(PurchaseDate)=2019
),
t2 as
select distinct count(cust id) as No Of New Customers 2020 from
CustomerTransactionData where Year(PurchaseDate)=2020 and cust_id not in(
select distinct cust_id from CustomerTransactionData where Year(PurchaseDate)=2019)
t3 as
select distinct count(cust_id) as No_Of_New_Customers_2021 from
CustomerTransactionData where Year(PurchaseDate)=2021 and cust_id not in(
select distinct cust_id from CustomerTransactionData where Year(PurchaseDate)=2019 and
Year(PurchaseDate)= 2020)
),
```

```
t4 as (
select distinct count(cust_id) as No_Of_New_Customers_2022 from
CustomerTransactionData where Year(PurchaseDate)=2022 and cust_id not in(
select distinct cust_id from CustomerTransactionData where Year(PurchaseDate)=2019 and
Year(PurchaseDate)= 2020 and Year(PurchaseDate)= 2021)
)
select * from t1,t2,t3,t4;
```

Query Snapshot:

No_Of_New_Customers_2019	∨ No_Of_New_Customers_2020	 No_Of_New_Customers_2021 	∨ No_Of_New_Customers_2022
62	66	67	63

1c - i (subpart) . Segregate them By OrderType (Note: This is a new question, sub-part of 1c)

Ans:

Select Years, NumberOfCustomers, NumberOfCustomers - Lag(NumberOfCustomers) Over (partition by OrderType Order By Years) As YearByYear,OrderType From

(Select Year(PurchaseDate) As Years, Count(Distinct Cust_Id) As NumberOfCustomers,OrderType
From CustomerTransactionData
Where Year(PurchaseDate) <> Year(Now())
Group By OrderType, Year(PurchaseDate))T1
Order by Years

y Years	 NumberOfCustomers 	v YearByYear	OrderType ~
2,019	43		Household
2,019	8		Industrial
2,020	8		Government
2,020	49	6	Household
2,020	14	6	Industrial
2,021	12	4	Government
2,021	25	-24	Household
2,021	10	-4	Industrial
2,022	10	-2	Government
2,022	34	9	Household
2,022	11	1	Industrial

Comment:

2. Identify the total decline, if any, within the total sales amount on an year by year basis excluding the current year. Comment on whether we need to launch a campaign for the consumers based on the recent pattern. What campaign type will be more appropriate for this scenario out of all the predefined distinct campaign types? [Note: Unlike previous question, get all the results for different years in their own records]

Select Campaign_Id, Year(PurchaseDate) As Years, Lag(Sum(PurchasingAmt)) Over (Partition By Year(PurchaseDate)) As YearByYear From CustomerTransactionData Group By Campaign_Id,Years

Query Snapshot:

Campaign_Id ~	y Years	✓ YearByYear
CiD2	2,019	
CiD1	2,019	653,497.6
	2,019	811,693.1
CiD3	2,020	
	2,020	782,242.45
CiD4	2,020	1,596,563.15
CiD2	2,020	1,142,861.35
	2,021	
CiD5	2,021	2,635,026.4
CiD4	2,021	479,848.9
	2,022	
CiD6	2,022	1,340,125.14
CiD6	2,023	

Comment:

Section 4: Market basket analysis

1. Please identify the dates when the same customer has purchased some product from the company outlets. Transactions from same order types and different products are only valid transactions here. [Hint: A Special type of Joins is required on customer id and don't forget to exclude the exact same transactions.]

Ans:

SELECT c1.Cust_ld,c1.PurchaseDate as PurchaseDate1, c2.PurchaseDate as PurchaseDate2
FROM CustomerTransactionData as c1
JOIN CustomerTransactionData as c2
ON c1.Cust_ld = c2.Cust_ld
WHERE c1.OrderType = c2.OrderType AND
c1.item_id != c2.item_id AND
c1.Trans_ld != c2.Trans_ld

Query Snapshot:

2. Out of the above, please identify the same combination of products coming at least thrice sorted in descending order of their appearance.

Ans:

SELECT c1.Cust_ld, c1.item_id as ProductId1, c2.item_id as ProductId2, c3.item_id as ProductId3, COUNT(*) as AppearanceCount

FROM CustomerTransactionData as c1

JOIN CustomerTransactionData as c2

 $ON c1.Cust_Id = c2.Cust_Id$

JOIN CustomerTransactionData as c3

 $ON c1.Cust_Id = c3.Cust_Id$

WHERE c1.OrderType = c2.OrderType

AND c1.OrderType = c3.OrderType

AND c1.item_id != c2.item_id

AND c1.item_id != c3.item_id

AND c2.item_id != c3.item_id

GROUP BY c1.Cust_ld, c1.item_id, c2.item_id, c3.item_id

HAVING COUNT(*) >= 2

ORDER BY AppearanceCount DESC;

New gues	tion				Q Search	•
	rbwitherir5QL					(4)
Declin			· Productid ·	- AppenrosCourt		
C 63	Item 14 Nam_24	Item 35 Itum 35	Nam_1	2		
C,63	Item_14	Bern, 25 Born 35	Item,37 Item 68	2		
C,63	lun_14	Num ₂ 05	barr_4	2		
0.63	Item_14 Item 14	Bern, 25 Born 52	hen,26 hon 25	2		
C,63	har_14	lion_1	ban_35	2		
0.63	Item_14 Item_11	Ben_37 Bon 61	New, 25 Itom 25	2		
C_63	har_14	Sen, Si	lun_35	2		
C,63	hor,14 hor,25	Bon, St	hex,25 from,52	2		
C/0	her,35	See, 14	Nex_3 Nex_37	2 7		
Citi	hon,35	Itom, 94	how,65	2		
C40	liver,35	Stee, 54 Stee, 54	Nem_4 Nem_26	1 7		
C,63	Itom,35	Iton,52	Row,51	2		
0,62	liver,35 liver,35	llen,52 lten,57	Next,37	2 2		
C,63	lton,35	Iton,52	how,61	2		
C,63	Item,35 Item,35	Benu52 Benu52	hen_4 hee_36	2		
C,63	ltum_35	Iton,1	Rang#1	2		
0.63	Item,35 Item 35	Ben 1	New_52 New 37	2		
C,63	hands heres	Nort Next	handt hand	2		
0.63	tree: 35	Ben 1	them_4 them 36	2		
CHI	han,35 herr,35	Sun_07 Sen_37	Nam_S1 Nam_S2	2		
C 63	Itom 35	Itom 37	box 1	2		
C/R	loan,35 loan,35	Sen,37	Nampli Nampl	2		
0.60	Itom 35	Itom 07	box 36	2		
C,63	han,35 hen,35	llem,61 llem,61	Nem_54 Nem_52	2 7		
0.60	Itom, 35	Itom 61	box.1	2		
C,63	loan,35 loan,35	llam_61 llem_61	Next,57 Next,4	2 7		
0,61	Iton,35	Iton, 61	Item 36	2		
C,63	loan,35 loan,35	Sampl Stem, 4	lten_54 lten_52	2		
C(6)	horr,35 horr,35	lton/f	fore,1	2 2		
0,63	Item, 35	Ben,4	Item, 61	2		
C,63	loan_35 loan_35	Non-1 Nam-26	tom_56 tom_54	2 2		
0.63	Item 35	Ben 36	Pere 52	,		
C/83	han,35 her,35	Store, DE	form,57	2 2		
0.63	love 35	Item 36	less 61	,		
C,62	han,35 her,52	Sun, Si Sen, Si	basco Bescott	2 2		
C 63	Itset 52	Item 35	box 51	2		
C,63	han,52 hen,52	ltem, 35 ltem, 35	New,37	2		
C 63	hon 52 lum,52	Item 35 Item 35	bon 68 Nam,4	7		
0,63	Item, 12	Ben,35	hen,26	2		
C 63	Itom 52 Ioan,52	Item 1 Item 37	Itom 25 Itom 25	2 2		
0,63	Item, 12	Ben,41	hen,th	,		
C 63	Itom 52 Isan 52	Non-1 Nam-36	Itom 25 Item 25	2 2		
6,62	Item_1	Stem, 14	hee,th	2		
C,63	hore,1	Itom 35 Itam 25	from \$1 from \$2	2		
0,63	Item,1	Ben, Ti	New,27	,		
C83	hored hered	hon,03 han,25	how_ft.	2 2		
0.62	her,1	Bem,31 Bom,52	New, 26 Now, 25	,		
C_63	her_1	Sec., 37	tien,35	2		
0,62	her,1	Bren,61 Born,4	hee,25 hoe,25	, ,		
0,63	her,1	llen,36	Nen,25	2		
0.63	love 37 loan,37	ltem 14 ltem 35	lees 25 Rangist	2		
0,63	hen,37	llen,35	item_52	2		
C 63	Item 37 Isan, 37	Item 35 Item 35	hee 1 longit	2		
0,62	herr,37	Ben, St	berg4	2		
C 63	Itom 37 Isan_37	Item 35 Item 52	hon 36 hon 35	1		
C 63	Item_37 Item 37	Ben_1 Box 61	lten_tb box 25	2		
0,63	loan_27	Banch	bar_35	2		
E,63 C 20	her,37 hor 26	Ben,35 Box 42	hen,th from 25	2		
Q0	hun_20	ltum_95	ber_62	2		
C20	her,42 hor,42	Bern,70 Born,05	hen,25 hon,20	, ,		
C,63	har,61	lters,14	lien,35	1		
0.0	her,61	Bern, Si Itom, SS	Berr, 14 Box 52	7 2		
C,63	lors,61	llam,35	lien_1	2		
0,0	her,61 hor,61	ttem,35 Itom,35	hee,37 hoe,4	2		
C_63	lors_61	llam,35	lien_36	2		
0,0	hwe,61 loon,61	lten;sz lton;1	hee,35 loos,35	2		
0,63	her_61	llam, 37	tion_25	2		
0,63	hwe,61 hun,61	Ben,4 Box,36	New, 25 New, 25	2		
0,03	har,4	State, SE	tien_th	2		
C 63	Item 4 Isan_6	ttem 31 ltom_05	Nam 51 Nam 52	2		
C 63	Item_6 Item 4	Ben, Its Ben 33	Next,1 Next,27	2		
0.00	bar_6	ltum_05	low_65	2		
0.63	Item,6 Item 6	Ben, St. Bon SZ	Next,26 Next,25	,		
0,61	har,6	ltom, S	liver_25	1		
0,63 0.63	hen,4 hor 4	Ben;37 Bon 61	hen,35 hon 35	,		
C,63	bar,4	ltum, 96	lien,35	2		
C,62	hen,36 hon 36	Bern, 14 Book 35	ltem,2b ltom 51	,		
C,63	han,36	llam, 35	lien_52	2		
C,63	Item, 36 Item, 36	Bern, 25 Itom 35	Next, 1 Nove, 37	2		
C_63	har,36	llam, 25	ben_f1	2		
0,63	Item, 36 Item, 36	Bern, SS Born, SS	bas,4 box,35	2		
0,63	har_16	liam,1	ber_35	2		
0,63	hore, 36 hore, 36	Bem,37 Bom,61	ltext,35 flow,35	2		
C/63				2		
C/62 C/62	harc36 bree,35	Sen, 20	Next, IS	2		

3. Out of the above combinations (coming thrice), please check which of these combinations are popular in different sectors (household, industrial and government). Ans:

SELECT pc.*, c.OrderType
FROM (
SELECT c1.Cust_Id, c1.item_id as ProductId1, c2.item_id as ProductId2, c3.item_id as ProductId3, COUNT(*) as AppearanceCount
FROM CustomerTransactionData as c1
JOIN CustomerTransactionData as c2
ON c1.Cust_Id = c2.Cust_Id
JOIN CustomerTransactionData as c3
ON c1.Cust_Id = c3.Cust_Id
WHERE c1.OrderType = c2.OrderType
AND c1.item_id != c2.item_id
AND c1.item_id != c3.item_id

AND c1.item_id != c3.item_id

AND c2.item_id != c3.item_id

GROUP BY c1.Cust_ld, c1.item_id, c2.item_id, c3.item_id

HAVING COUNT(*) >= 2

) AS pc

JOIN CustomerTransactionData c ON pc.Cust_Id = c.Cust_Id WHERE c.item_id IN (pc.ProductId1, pc.ProductId2, pc.ProductId3) ORDER BY pc.AppearanceCount DESC, c.OrderType;

Query Snapshot:

Comment:

Section 5: Automating tasks

1a. Create Functions for the following: Get the total discount, if any.

Ans:

DELIMITER \$\$ CREATE FUNCTION Discount (Quantity int, Price float, PurchasingAmt float) **RETURNS INT DETERMINISTIC BEGIN** DECLARE discount INT; SET discount = Quantity * Price - PurchasingAmt; RETURN discount; END\$\$

DELIMITER;

SELECT Discount(5, 10.5, 45.0);

Query Snapshot:

Discount(5, 10.5, 45.0) 8

1b. Get the days/month/year elapsed since the last purchase of a customer depending on input from user. [Hint: Use If condition within the function]

Ans:

```
DELIMITER $$
CREATE FUNCTION Time_Elapsed (val VARCHAR(4), date_last_purchase DATE)
RETURNS INT
DETERMINISTIC
BEGIN
  DECLARE time_elapsed INT;
  SET time_elapsed = IF(val = 'day', DATEDIFF(NOW(), date_last_purchase),
YEAR(NOW()) - YEAR(date_last_purchase));
  RETURN time_elapsed;
END$$
DELIMITER;
SELECT Time_Elapsed('year', '2020-05-20');
```

Time Elapsed('year', '2020-05-20')

3

2a. Create Views (using above functions) for the following: Identify the top 10 customers along with their demographic details from each sector based on their total discount.

```
Ans:
DELIMITER $$
CREATE FUNCTION Discount
(Quantity int, Price float, PurchasingAmt float)
RETURNS INT
DETERMINISTIC
BEGIN
  DECLARE discount INT;
  SET discount = Quantity * Price - PurchasingAmt;
  RETURN discount;
END$$
DELIMITER;
(SELECT c.Cust_ld ,cu.Name,cu.City_ld,
ci.City_Name,
ci.State,
ci.CityTier,c.OrderType,
SUM(Discount(c.quantity,i.Price,c.PurchasingAmt)) as total discount
FROM City ci JOIN
Customer cu ON cu.City_ld = ci.City_ld
JOIN CustomerTransactionData as c
ON cu.Customer Id = c.Cust Id
INNER JOIN Item as i
ON c.Item Id = i.Item Id
GROUP BY c.Cust_ld, c.OrderType
HAVING c.OrderType = "Government"
ORDER BY c.OrderType,total_discount DESC
LIMIT 10)
UNION
(SELECT c.Cust_ld ,cu.Name,cu.City_ld,
ci.City_Name,
ci.State,
ci.CityTier,c.OrderType,
SUM(Discount(c.quantity,i.Price,c.PurchasingAmt)) as total_discount
FROM City ci JOIN
Customer cu ON cu.City Id = ci.City Id
JOIN CustomerTransactionData as c
```

```
ON cu.Customer_ld = c.Cust_ld
INNER JOIN Item as i
ON c.Item Id = i.Item Id
GROUP BY c.Cust_Id, c.OrderType
HAVING c.OrderType = "Household"
ORDER BY c.OrderType,total_discount DESC
LIMIT 10)
UNION
(SELECT c.Cust_ld ,cu.Name,cu.City_ld,
ci.City Name,
ci.State.
ci.CityTier,c.OrderType,
SUM(Discount(c.quantity,i.Price,c.PurchasingAmt)) as total_discount
FROM City ci JOIN
Customer cu ON cu.City Id = ci.City Id
JOIN CustomerTransactionData as c
ON cu.Customer Id = c.Cust Id
INNER JOIN Item as i
ON c.ltem_ld = i.ltem_ld
GROUP BY c.Cust_Id, c.OrderType
HAVING c.OrderType = "Industrial"
ORDER BY c.OrderType,total discount DESC
LIMIT 10)
```


2b. Identify the top 5 customers (from household and industrial sector) based on purchase amount and days elapsed in descending order. Do highlight if you think there is a data error.

Ans:

CREATE VIEW Top5Customers AS

SELECT

C.Customer_Id,C.Name,C.Gender,Cl.City_Name,Cl.State,T.OrderType,

T.PurchasingAmt,

DATEDIFF(NOW(), T.PurchaseDate) AS DaysElapsed

FROM Customer AS C

JOIN City AS CI ON C.City_Id = CI.City_Id

JOIN CustomerTransactionData AS T ON C.Customer_Id = T.Cust_Id

WHERE T.OrderType in ('Household','Industrial')

ORDER BY T.PurchasingAmt DESC,DaysElapsed DESC

LIMIT 5;

SELECT * FROM Top5Customers;

Query Snapshot:

2c. Identify the top 10 products that are sold last year based on sales amount along with the last 2 year details of the same.

Ans:

SELECT

C.item_id AS ProductId,

I.Item_Name AS ProductName,

SUM(CASE WHEN YEAR(C.PurchaseDate) = YEAR(NOW()) - 1 THEN C.PurchasingAmt ELSE 0 END) AS LastYear,

SUM(CASE WHEN YEAR(C.PurchaseDate) = YEAR(NOW()) - 2 THEN C.PurchasingAmt ELSE 0 END) AS PreviousYear

FROM CustomerTransactionData C

JOIN Item I ON C.item_id = I.Item_ld

WHERE YEAR(C.PurchaseDate) IN (YEAR(NOW()) - 1, YEAR(NOW()) - 2)

GROUP BY C.item id, I.Item Name

ORDER BY LastYear DESC

LIMIT 10;

2d. Create 3 different income groups for household sector people - 'high class', 'low class', 'middle class' - based on their percent rank (33% each) and identify the top 2 products that are bought within these income class.

Ans:

CREATE VIEW CLASS_CATEGORY_PURCHASE AS SELECT * FROM((select Customer_ld ,Name, PurchasingAmt, Item_ld,Class_Category from(

```
select
  Customer_Id,Name, Item_Id,PurchasingAmt,CASE
  WHEN ROUND(
  PERCENT_RANK()
  OVER (
    ORDER BY income bracket
  ),2) <= 0.33 THEN 'Low_Class'
  WHEN ROUND(
  PERCENT_RANK()
  OVER (
    ORDER BY income bracket
  ),2) > 0.33 AND ROUND(
  PERCENT_RANK()
  OVER (
    ORDER BY income_bracket
  ),2) <= 0.66 THEN 'Middle_Class'
  ELSE 'High Class'
END AS Class_Category
  from Customer c Join CustomerTransactionData ctd
  where c.Customer_id = ctd.Cust_ld
  )as T1 where Class_Category ="Low_Class" Order By PurchasingAmt desc Limit 2)
```

```
Union
```

```
(select Customer Id, Name, Purchasing Amt, Item Id, Class Category from (
select
  Customer_Id,Name, Item_Id,PurchasingAmt,CASE
  WHEN ROUND(
  PERCENT RANK()
  OVER (
    ORDER BY income_bracket
  ),2) <= 0.33 THEN 'Low_Class'
  WHEN ROUND(
  PERCENT RANK()
  OVER (
    ORDER BY income_bracket
  ),2) > 0.33 AND ROUND(
  PERCENT_RANK()
  OVER (
    ORDER BY income bracket
  ),2) <= 0.66 THEN 'Middle_Class'
  ELSE 'High_Class'
END AS Class_Category
  from Customer c Join CustomerTransactionData ctd
  where c.Customer_id = ctd.Cust_ld
  )as T1 where Class_Category ="Middle_Class" Order By PurchasingAmt desc Limit 2)
  UNION
  (select Customer_Id ,Name, PurchasingAmt, Item_Id,Class_Category from(
select
  Customer_Id,Name, Item_Id,PurchasingAmt,CASE
  WHEN ROUND(
  PERCENT RANK()
  OVER (
    ORDER BY income_bracket
  ),2) <= 0.33 THEN 'Low_Class'
  WHEN ROUND(
  PERCENT RANK()
  OVER (
    ORDER BY income_bracket
  ),2) > 0.33 AND ROUND(
  PERCENT_RANK()
  OVER (
    ORDER BY income_bracket
```

),2) <= 0.66 THEN 'Middle_Class' ELSE 'High_Class' **END AS Class Category**

from Customer c Join CustomerTransactionData ctd where c.Customer id = ctd.Cust Id

)as T1 where Class_Category ="High_Class" Order By PurchasingAmt desc Limit 2)) AS TT1;

SELECT * FROM CLASS CATEGORY PURCHASE:

Query Snapshot:

Customer_ld	Name	PurchasingAmt	Item_Id	Class_Category
C_103	Hiral Shamsher	214755	Item_49	Low_Class
C_103	Hiral Shamsher	167980	Item_60	Low_Class
C_104	Najma Bhaskar	286650	Item_22	Middle_Class
C_112	Ekata Mathrubootham	149728	Item_48	Middle_Class
C_88	Shrikrishna Malipeddi	122800	Item_23	High_Class
C_114	Nityapriya Venktesh	105435	Item_25	High_Class

3a. Create Stored Procedures for following data validation tasks:

Identify whether a particular transaction amount (purchase amount) is 'correct' or 'not correct'.

It is correct if price and quantity are used to calculate without a coupon. In case of a coupon, the coupon amount should be deducted from the original amount given the original amount is greater than equal to min purchase for a coupon; else you can simply calculate original amount based on quantity.

[Input will be transaction id] [Note: Look out for null coupon ids]

Ans:

DELIMITER \$\$

CREATE PROCEDURE ValidateAmount(IN Id1 VARCHAR(32), OUT result VARCHAR(50)) **BEGIN**

SELECT

IF(PurchasingAmt != totalamt, 'not correct', 'correct') as message

INTO result

FROM

(SELECT CT.PurchasingAmt,

IF(CT.coupon_id IS NOT NULL AND Quantity * Price >= Min_Purchase,

Quantity * Price =

IF(couponType != 'Flat',

Quantity * Price * Value*0.01, Value), Quantity * Price) AS totalamt

FROM Item as I

JOIN

CustomerTransactionData AS CT

ON I.Item_id = CT.Item_id

LEFT JOIN CouponMapping CM

ON CT.coupon_id=CM.coupon_id where CT.Trans_Id = Id1) as T;

END\$\$

DELIMITER:

CALL ValidateAmount('TID00026', @result); SELECT @result AS Result;

Query Snapshot:

3b. Check if there is any customer with age < 12. Print out the total such customers on-screen.

Ans:

DELIMITER &&

CREATE PROCEDURE Check_Age()

BEGIN

SELECT COUNT (*) as Count_Age_Below_12 FROM (

select Customer_Id,Name,YEAR(NOW())-YEAR(Birthdate) AS AGE from Customer) AS T1 WHERE AGE < 12;

END &&

DELIMITER;

Call Check_Age();

Query #1 Execution time: 1ms

There are no results to be displayed.

Query #2 Execution time: 1ms

Count_Age_Below_12

0