Effiziente Klassifikation und Ranking mit paarweisen Vergleichen Zwischenbericht

Sang-Hyeun Park

Betreuer: Prof. Fürnkranz Technische Universität Darmstadt Fachbereich Informatik Knowledge Engineering

13. Juli 2006

Gliederung

Einleitung

(Multi)klassifikation Binärisierung Round Robin

Effiziente Klassifizierung

Dekodierung
Quick Weighted Voting

Effizientes Ranking

Ranking Dekodierung

"Schweizer-System"

Ausblick

weitere Ansätze

Gliederung

Einleitung

(Multi)klassifikatior Binärisierung Round Robin

Effiziente Klassifizierung

Dekodierung
Quick Weighted Voting

Effizientes Ranking

напкіпд Dekodierung "Schweizer-Svstem"

Ausblick

weitere Ansätze

maschinelle Klassifikation

Beschreibung

Ein Vorgang oder eine Methode zur automatischen Einteilung von Objekten in Klassen oder Kategorien

Gegeben:

- ▶ Menge von Klassen $K = \{K_1, K_2, K_3, ..., K_n\}$
- ▶ Menge von Daten $T = \{t_1, t_2, t_3, \dots, t_p\}$
- ► Trainingsdaten sind durch Attribut-Wert Beziehungen beschrieben, $t_i = \{w_1, w_2, w_3, \dots, w_m\}, w_i \in A_i$

Gesucht:

Eine Funktion $f: T \to K$ (der Klassifkator), die jedem Objekt die korrekte Klasse zuordnet.

Schema der Klassifkation

Schema der Multiklassifikation

Trainingsphase mit Round Robin

Schema der Multiklassifikation

Klassifikationsphase mit Round Robin

Round Robin Binärisierung [Fürnkranz, 2002]

Vorteile

- Genauigkeit
 - nie gegen 1-vs-rest verloren
 - oft signifikant besser
- Effizienz
 - beweisbar schneller als 1-vs-rest, ECOC, boosting,...
 - higher gains for slower base algorithms
- Einfachheit/Verständniss
 - ▶ einfachere Klassifikatoren → Hilfe für Konzeptlernen
- Datenreduktion
 - wesentlich geringere Trainingsmenge für jedes Binärproblem als für das ursprüngliche Problem
 - Teilprobleme passen komplett ins Speicher, wohingegen das ursprüngliche P. nicht
- Parallelisierbarkeit
 - unabhängige Teilprobleme

Round Robin Binärisierung

Nachteile

Bei n Klassen

- ► Trainingsphase: $\frac{n(n-1)}{2}$ Klassifikatoren zu lernen
- Klassifikationsphase : auszuwerten

Der Gesamtaufwand in der **Trainingsphase** ist trotzdem kleiner als *n* Lernprobleme in der *1-vs-rest* Binärisierung.

Diplomarbeitsziel

Effiziente Klassifikationsphase (Dekodierung) mit RR für Multiklassifikation und Ranking

Gliederung

Einleitung

(Multi)klassifikation Binärisierung Bound Bobin

Effiziente Klassifizierung

Dekodierung
Quick Weighted Voting

Effizientes Ranking

Dekodierung

Ausblick

weitere Ansätze

Votingbasiert

Voting

- ▶ Jeder Klassifikator $K_{i,j}$ stimmt für eine Klasse.
- Die Klasse mit den meisten Stimmen "gewinnt".

Weighted Voting

- Gewichtung der Stimmen
- Gewichtung z.B. durch Fehlerabschätzung der Vorhersage

Bei beiden Voting-Arten werden alle Klassifikatoren $(\frac{n(n-1)}{2})$ ausgewertet.

andere Ansätze

Voting Variante: Vote Against [Cutzu, 2003]

- ▶ Neue Interpretation für $k_1 > k_2$: Stimme **gegen** k_2 , anstatt **für** k_1
- bei Auswertung aller Vergleiche : Ergebnis identisch
- bei Auswertung einer Teilmenge der Vergleiche: Ergebnis besser

Decision Directed Acyclic Graph [Platt et al., 2000]

- Anordnung der Vergleiche im azyklisch gerichteten Graphen
 - Blätter des Graphen sind die vorhergesagten Klassen.
 - Pfad von Wurzel bis zum Blatt vollständige Dekodierung
- ▶ nur n − 1 Vergleiche nötig

andere Ansätze

Weighted Voting

- intuitiv einfach
- gute Genauigkeit
- Standarddekodierungsmethode
- ▶ Jedoch $\frac{n(n-1)}{2}$ Vergleiche nötig (auf den ersten Blick)

Beobachtung: Es gibt Vergleiche, die unnötig für die **Klassifikation** sind.

- Eigenschaft uneinholbar
 - Klasse j mit bisher n − 2 Gewinnen kann gegen Klasse i mit bisher 3 Verlusten nicht verlieren → Klasse i kommt als top rank nicht mehr in Frage.
 - ▶ um oft diese Situation herzustellen → Reihenfolge der Vergleiche wichtig
- andere Sichtweise (rate und verifiziere)
 - Wenn max_{i∈K} (Voting_i) und rank_{top} = j gegeben, werden maximal n − 1 Vergleiche für die Verifikation benötigt.
 - Umformulierung als Suchproblem

Algorithmus

K sei die Menge der Klassen $K := \{k_1, k_2, k_3, \dots, k_n\}$ und limit(x) := played(x) - wins(x).

- Wähle Klasse k_i mit minimalen limit(k_i) und k_i ∈ K (Spieler₁)
- 2. Wähle Klasse k_j mit minimalen $limit(k_j)$, $k_j \in K \setminus k_i$ und die Paarung (k_i, k_j) wurde noch nicht gespielt (Spieler₂)
- 3.
- 3.1 Existiert keine Klasse, die die Bedingungen in Schritt 2 erfüllen → winner := k_i STOP
- 3.2 Ansonsten
 - 3.2.1 play(k_i, k_j)
 - 3.2.2 Aktualisiere Statistiken (limits,played,...)
 - 3.2.3 Gehe zu Schritt 1

Vereinfacht

- Spiele solange ungespielte Paarungen mit der aktuellen top rank Klasse (bester limit bisher)
 - bis zur Verifikation vom top rank (limit korrekt)
 - Eventuell wird nach einem Spiel eine neue top rank Klasse bestimmt.

Zum Algorithmus

- ▶ Reihenfolge wichtig → Heuristik mit Limit
- Neben Reihenfolge, basiert die Effizienz auf eine Annahme über die Ergebnisse des Weighted Voting
- ein worst-case: alle Vergleiche liefern einen "Gleichstand"
 - Ergebnis ist eine gleichmässige Verteilung der Stimmen
 - kein Vergleich kann ausgelassen werden
 - ► alle Klassen potentieller top rank

(Weighted) Voting Verteilungen

quick Weighted Voting Ergebnisse

Datensatz	n	$\frac{n(n-1)}{2}$	QWeighted	
vehicle	4	6	3,9844	
glass	6	15	9,7476	
image	8	28	8,7459	
yeast	10	45	15,8749	
vowel	11	55	17,4212	
soybean	19	171	27,6510	
letter	26	325	45,0053	

Tabelle: n ist die Anzahl der Klassen, $\frac{n(n-1)}{2}$ die Anzahl der Vergleiche von Weighted Voting und QWeighted die dursch. Anzahl der Vergleiche von Quick Weighted Voting (Ripper, 10CV)

quick Weighted Voting Ergebnisse

Datensatz	JRip	NaiveBayes	C4.5(J48)	SVM	
vehicle	3,9844	4,2660	3,9581	3,6442	6
glass	9,7476	9,5764	9,6896	9,9249	15
image	8,7459	9,0299	8,5472	8,2905	28
yeast	15,8749	15,8608	15,4774	15,5169	45
vowel	17,4212	17,0939	17,1253	15,2808	55
soybean	27,6510	27,6972	29,4460	28,3645	171
letter	45,0053	44,3960	47,7705	42,2618	325

Tabelle: Quick Weighted Voting unter verschiedenen Basis-Lerner

Eigenschaften

- Klassifikationsergebnis stimmt immer überein mit Weighted Voting (Bis auf mehrdeutige top ranks)
- Übernimmt somit die Eigenschaften (gute Genauigkeit, keine neuer empirischer Vergleich mit anderen Dekodierungsmethoden nötig)
- Reduzierung der Vergleiche nahezu unabhängig vom Basis-Lerner
- im worst-case Anzahl der Vergleiche identisch mit Weighted Voting
- ▶ im average-case nlog(n) und best-case n − 1
- ► Ähnlichkeit zum A* Algorithmus

Gliederung

Einleitung

(Multi)klassifikatior Binärisierung Round Robin

Effiziente Klassifizierung

Dekodierung
Quick Weighted Voting

Effizientes Ranking

Ranking Dekodierung "Schweizer-System"

Ausblick

weitere Ansätze

Ranking

Gegeben:

gleiche Ausgangsstellung wie bei Klassifikation

Gesucht:

Funktion, die jedem Testobjekt eine totale **Ordnung** der Klassen zuordnet

Verallgemeinerung der Klassifikation

- Votingbasiert
- SLATER-Optimal, Sortieralgorithmen (bei transitiven Vergleiche)
- ► Für Ranking grundsätzlich jede Klassifikationsdekodierung anwendbar (iterated choice [Hüllermeier et al., 2005]) mit:
 - bestimme top rank
 - entferne top rank und wiederhole mit restlichen Klassen

Ansatz der Diplomarbeit

Aufgrund der Analogie, Turniersysteme aus dem Sport, speziell das "Schweizer-System" beim Schach

Schweizer-System [FIDE]

- ist eine Turnierform, die bei Schach- und ähnlichen Sportarten benutzt wird
- entstand aus der Notwendigkeit, dass bei hoher
 Spieleranzahl unmöglich jeder gegen jeden spielen kann
- Idee:
 - ► Es spielen immer soweit möglich gleichstarke Spieler in jeder Runde. (P) Paarungen)
 - Rundenzahl ist begrenzt. (z.B. log(n))
- Dadurch Anzahl der Spiele drastisch reduziert
- Spiel wird interessant, da fast jedes Spiel ein direkter Platzierungskampf bedeutet
- Anders als bei Systemen mit KO-Runden komplettes Ranking möglich

Maßstab [Hüllermeier et al., 2005]

verschiedene Anwendungsgebiete der Rankings - verschiedene Semantik, mehrere Fehlerarten

Ranking Error

Position **jeder** Klasse relevant Differenz zwischen zwei Rankings τ und $\tilde{\tau}$:

$$D_R(\tau,\tilde{\tau}) := \sum_{i=1}^m (\tilde{\tau}(i) - \tau(i))^2$$

Position Error

Position **einer** Klasse k_l relevant Differenz zwischen zwei Rankings τ und $\tilde{\tau}$:

$$D_P(\tau, \tilde{\tau}) := |\tilde{\tau}(k_l) - \tau(k_l)|$$

Ranking Error zwischen Swiss System und Weighted Voting

Position Error zwischen Swiss System und Weighted Voting

Ranking Error mit verschiedenen Reihenfolgen (Data:Vowel,Lerner:Ripper, 10CV)

Swiss System
aufsteigende order
absteigende order
diagonal order
random order
best vs worst

- Ranking-Error
 - Schweizer System immer besser oder gleich zufälliger Reihenfolge
 - Vermutlich alle Vergleiche nötig für korrektes Ranking
 - Reduzierung der Vergleichszahl ohne akzeptabler Verlust an Genauigkeit fraglich
- Position-Error
 - nicht alle Vergleiche nötig für top rank Bestimmung
 - Je mehr Klassen desto größer die prozentuale Reduzierung der nötigen Vergleiche
 - obige Beobachtungen im Einklang mit QWeighted

Fazit

- ► Eine geschickte Reihenfolge verringert schneller den Ranking-Error
- Jedoch mit Schweizer-System allein keine akzeptable Reduzierung der Vergleiche möglich
- ➤ Zusätzlich zum Schweizer-System Votingmethodik erweitern (→ weitere Ansätze), die evt. nicht mehr identisch mit Weighted Voting Ergebniss sind, jedoch eine bessere Genauigkeit nach weniger Vergleichen liefert.

Gliederung

Einleitung

(Multi)klassifikation Binärisierung Round Robin

Effiziente Klassifizierung

Dekodierung
Quick Weighted Voting

Effizientes Ranking

Dekodierung "Schweizer-System"

Ausblick

weitere Ansätze

Vererbung

Annahme:

$$P(k_i >_{\tau} k_j | k_i \succ k_j) > 0.5$$

- also: die Vergleiche sind eher transitiv bzgl. des Ranking
- Algorithmus votingbasiert, zusätzlich zur gewichtete Stimme eine Art Bonus
- Bonus wird aus den bisherigen Stimmen von den verlorenen Gegnerklassen berechnet (Geerbt)

$$B_{k_j} = \sum_{k_i \in K, k_j > k_i} W_{k_i} * T(k_j, W_{k_j}, Played(k_j))$$

$$W_{k_j}^+ = W_{k_j} + B_{k_j}$$

Vererbung 2

- sollte folgende Eigenschaften besitzen:
 - Je mehr Siege eine Klasse, desto h\u00f6herer Bonus/ mehr geerbte Stimmen
 - Je mehr Spiele gespielt desto grösser der Transitivitätsfaktor
 - Jedoch Bonus/Transitivitätsfaktor so ausgelegt, dass keine falsche Dominanz ensteht
 - Eventuell bei voller Anzahl der Vergleiche, Ranking identisch mit dem Weighted Voting Ranking
- Sinnvoll in Situationen, in denen mehrere Klassen bisher gleiches Verhältnis zwischen Stimmen und Spielen haben
 - → Rankingposition mehrdeutig

Vererbung 3

→ Swiss System - mit Vererbung

weitere Schritte

- ► formale Komplexitätsanalyse von Quick Weighted Voting
- Vererbungsmethode testen
- Laufzeitanalysen

Literaturverzeichnis

J. Fürnkranz.

Round robin classification.

Journal of Machine Learning Research, 2:721-747, 2002.

J. C. Platt, N. Cristianini and J. Shawe-Taylor.

Large margin DAGs for multiclass classification.

Advances in Neural Information Processing Systems 12 (NIPS-99), pages 547-553. MIT Press, 2000.

World Chess Federation - Federation Internationale des Echecs.

FIDE Swiss Rules

FIDE Handbook, chapter C.04

http://www.fide.com/official/handbook.asp?level=C04;

E. Hüllermeier, J. Fürnkranz and J. Beringer.

On Position Error and Label Ranking through Iterated Choice.

LWA, pages 158-163. DFKI, 2005.

F. Cutzu.

Polychotomous Classification With Pairwise Classifiers: a new Voting Principle.

Multiple Classifier Systems, 4th International Workshop, MCS 2003, pages 115-124. Springer, 2003.

