#### In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

## In [2]:

```
from sklearn.datasets import load_boston
boston_datasets=load_boston()
```

### In [4]:

```
print(boston_datasets.keys())
```

```
dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])
```

#### In [5]:

```
boston_datasets.DESCR
```

### Out[5]:

```
".. boston dataset:\n\nBoston house prices dataset\n-------------
----\n\n**Data Set Characteristics:** \n\n :Number of Instances: 506
        :Number of Attributes: 13 numeric/categorical predictive. Median V
                                                 :Attribute Information
alue (attribute 14) is usually the target.\n\n
(in order):\n
                     - CRIM
                                per capita crime rate by town\n
N
        proportion of residential land zoned for lots over 25,000 sq.ft.\n
- INDUS
           proportion of non-retail business acres per town\n
S
     Charles River dummy variable (= 1 if tract bounds river; 0 otherwis
                      nitric oxides concentration (parts per 10 million)
e)\n
            - NOX
          - RM
                     average number of rooms per dwelling\n
                                                                   - AGE
proportion of owner-occupied units built prior to 1940\n
                                                                - DIS
weighted distances to five Boston employment centres\n
                                                              - RAD
ndex of accessibility to radial highways\n
                                                  - TAX
                                                             full-value pr
operty-tax rate per $10,000\n
                                     - PTRATIO pupil-teacher ratio by tow
                      1000(Bk - 0.63)^2 where Bk is the proportion of blac
           - B
n\n
                    - LSTAT
                              % lower status of the population\n
ks by town\n
MEDV
        Median value of owner-occupied homes in $1000's\n\n
                                                                :Missing A
                             :Creator: Harrison, D. and Rubinfeld, D.L.\n
ttribute Values: None\n\n
\nThis is a copy of UCI ML housing dataset.\nhttps://archive.ics.uci.edu/m
l/machine-learning-databases/housing/\n\nThis dataset was taken from the
StatLib library which is maintained at Carnegie Mellon University.\n\nThe
Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\npric
es and the demand for clean air', J. Environ. Economics & Management,\nvo
                    Used in Belsley, Kuh & Welsch, 'Regression diagnostic
1.5, 81-102, 1978.
s\n...', Wiley, 1980.
                       N.B. Various transformations are used in the table
on\npages 244-261 of the latter.\n\nThe Boston house-price data has been u
sed in many machine learning papers that address regression\nproblems.
\n
       \n.. topic:: References\n\n
                                    - Belsley, Kuh & Welsch, 'Regression
diagnostics: Identifying Influential Data and Sources of Collinearity', Wi
ley, 1980. 244-261.\n - Quinlan,R. (1993). Combining Instance-Based and
Model-Based Learning. In Proceedings on the Tenth International Conference
of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan
Kaufmann.\n"
```

# In [8]:

boston=pd.DataFrame(boston\_datasets.data,columns=boston\_datasets.feature\_names)
boston

# Out[8]:

|     | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TAX   | PTRATIO | В      |
|-----|---------|------|-------|------|-------|-------|------|--------|-----|-------|---------|--------|
| 0   | 0.00632 | 18.0 | 2.31  | 0.0  | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3    | 396.90 |
| 1   | 0.02731 | 0.0  | 7.07  | 0.0  | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8    | 396.90 |
| 2   | 0.02729 | 0.0  | 7.07  | 0.0  | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8    | 392.83 |
| 3   | 0.03237 | 0.0  | 2.18  | 0.0  | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7    | 394.63 |
| 4   | 0.06905 | 0.0  | 2.18  | 0.0  | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7    | 396.90 |
|     |         |      |       |      |       |       |      |        |     |       |         |        |
| 501 | 0.06263 | 0.0  | 11.93 | 0.0  | 0.573 | 6.593 | 69.1 | 2.4786 | 1.0 | 273.0 | 21.0    | 391.99 |
| 502 | 0.04527 | 0.0  | 11.93 | 0.0  | 0.573 | 6.120 | 76.7 | 2.2875 | 1.0 | 273.0 | 21.0    | 396.90 |
| 503 | 0.06076 | 0.0  | 11.93 | 0.0  | 0.573 | 6.976 | 91.0 | 2.1675 | 1.0 | 273.0 | 21.0    | 396.90 |
| 504 | 0.10959 | 0.0  | 11.93 | 0.0  | 0.573 | 6.794 | 89.3 | 2.3889 | 1.0 | 273.0 | 21.0    | 393.45 |
| 505 | 0.04741 | 0.0  | 11.93 | 0.0  | 0.573 | 6.030 | 80.8 | 2.5050 | 1.0 | 273.0 | 21.0    | 396.90 |

506 rows × 13 columns

In [11]:

 $boston \hbox{\tt ['MEDV']} = boston\_datasets.target\\boston$ 

# Out[11]:

|     | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TAX   | PTRATIO | Е      |
|-----|---------|------|-------|------|-------|-------|------|--------|-----|-------|---------|--------|
| 0   | 0.00632 | 18.0 | 2.31  | 0.0  | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3    | 396.90 |
| 1   | 0.02731 | 0.0  | 7.07  | 0.0  | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8    | 396.90 |
| 2   | 0.02729 | 0.0  | 7.07  | 0.0  | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8    | 392.83 |
| 3   | 0.03237 | 0.0  | 2.18  | 0.0  | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7    | 394.63 |
| 4   | 0.06905 | 0.0  | 2.18  | 0.0  | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7    | 396.90 |
|     |         |      |       |      |       |       |      |        |     |       |         |        |
| 501 | 0.06263 | 0.0  | 11.93 | 0.0  | 0.573 | 6.593 | 69.1 | 2.4786 | 1.0 | 273.0 | 21.0    | 391.99 |
| 502 | 0.04527 | 0.0  | 11.93 | 0.0  | 0.573 | 6.120 | 76.7 | 2.2875 | 1.0 | 273.0 | 21.0    | 396.90 |
| 503 | 0.06076 | 0.0  | 11.93 | 0.0  | 0.573 | 6.976 | 91.0 | 2.1675 | 1.0 | 273.0 | 21.0    | 396.90 |
| 504 | 0.10959 | 0.0  | 11.93 | 0.0  | 0.573 | 6.794 | 89.3 | 2.3889 | 1.0 | 273.0 | 21.0    | 393.45 |
| 505 | 0.04741 | 0.0  | 11.93 | 0.0  | 0.573 | 6.030 | 80.8 | 2.5050 | 1.0 | 273.0 | 21.0    | 396.90 |

506 rows × 14 columns

## In [12]:

```
boston.isnull().sum()
```

## Out[12]:

CRIM 0 ZN0 **INDUS** 0 CHAS 0 0 NOX RM0 AGE 0 DIS 0 RAD 0 TAX 0 **PTRATIO** 0 0 В **LSTAT** MEDV 0 dtype: int64

# In [14]:

```
sns.set(rc={'figure.figsize':(11.7,8.27)})
sns.distplot(boston['MEDV'],bins=30)
plt.show()
```



### In [15]:

```
correlation_matrix=boston.corr().round(2)
sns.heatmap(data=correlation_matrix,annot=True)
```

## Out[15]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x20b3046a408>



### In [16]:

```
plt.figure(figsize=(20,5))
features=['LSTAT','RM']
target=boston['MEDV']
```

<Figure size 1440x360 with 0 Axes>

# In [17]:

```
for i,col in enumerate(features):
    plt.subplot(1,len(features),i+1)
    x=boston[col]
    y=target
    plt.scatter(x,y,marker='o')
    plt.title(col)
    plt.xlabel(col)
    plt.ylabel('MEDV')
```



## In [21]:

```
X=pd.DataFrame(np.c_[boston['LSTAT'],boston['RM']],columns=['LSTAT','RM'])
Y=boston['MEDV']
```

```
In [22]:
```

```
from sklearn.model selection import train test split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=5)
print(X train.shape)
print(X test.shape)
print(Y_train.shape)
print(Y_test.shape)
(404, 2)
(102, 2)
(404,)
(102,)
In [28]:
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean squared error
lin_model=LinearRegression()
lin model.fit(X train, Y train)
Out[28]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=F
alse)
In [37]:
from sklearn.metrics import r2 score
y_train_predict=lin_model.predict(X_train)
rmse=(np.sqrt(mean_squared_error(Y_train,y_train_predict)))
r2=r2_score(Y_train,y_train_predict)
print("the model performance for training set")
print('RMSE is {}'.format(rmse))
print('R2 score is {}'.format(r2))
print("\n")
y_test_predict=lin_model.predict(X_test)
rmse=(np.sqrt(mean_squared_error(Y_test,y_test_predict)))
r2=r2 score(Y test,y test predict)
print("the model performance for testing set")
print('RMSE is {}'.format(rmse))
print('R2 score is {}'.format(r2))
print("\n")
the model performance for training set
RMSE is 5.6371293350711955
R2 score is 0.6300745149331701
the model performance for testing set
RMSE is 5.137400784702911
R2 score is 0.6628996975186953
In [ ]:
```