

# **Hierarchical Modeling**

# CS 432 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science



# **Objectives**

- Examine the limitations of linear modeling
  - Symbols and instances
- Introduce hierarchical models
  - Articulated models
  - Robots
- Introduce Tree and DAG models



#### **Instance Transformation**

- Start with a prototype object (a symbol)
- Each appearance of the object in the model is an *instance*
  - Must scale, orient, position
  - Defines instance transformation





# **Symbol-Instance Table**

# Can store a model by assigning a number to each symbol and storing the parameters for the instance transformation

| Symbol | Scale                 | Rotate                                | Translate             |
|--------|-----------------------|---------------------------------------|-----------------------|
| 1      | $s_{x'} s_{y'} s_{z}$ | $\theta_{x'} \theta_{y'} \theta_{z}$  | $d_{x}, d_{y}, d_{z}$ |
| 2      |                       | · · · · · · · · · · · · · · · · · · · |                       |
| 3      |                       |                                       |                       |
| 1      |                       |                                       |                       |
| 1      |                       |                                       |                       |
|        |                       |                                       |                       |
|        |                       |                                       |                       |
|        |                       |                                       |                       |



# Relationships in Car Model

- Symbol-instance table does not show relationships between parts of model
- Consider model of car
  - Chassis + 4 identical wheels
  - Two symbols



 Rate of forward motion determined by rotational speed of wheels



# Structure Through Function Calls

```
car(speed)
{
    chassis()
    wheel(right_front);
    wheel(left_front);
    wheel(right_rear);
    wheel(left_rear);
}
```

- Fails to show relationships well
- Look at problem using a graph



### **Graphs**

- Set of nodes and edges (links)
- Edge connects a pair of nodes
  - Directed or undirected
- Cycle: directed path that is a loop





#### **Tree**

- Graph in which each node (except the root) has exactly one parent node
  - May have multiple children
  - Leaf or terminal node: no children





#### **Tree Model of Car**





#### **DAG Model**

- If we use the fact that all the wheels are identical, we get a directed acyclic graph
  - Not much different than dealing with a tree





### **Modeling with Trees**

- Must decide what information to place in nodes and what to put in edges
- Nodes
  - What to draw
  - Pointers to children
- Edges
  - May have information on incremental changes to transformation matrices (can also store in nodes)



# Transformations to Change Coordinate Systems

- Issue: the world has many different relative frames of reference
- How do we transform among them?
- Example: CAD Assemblies & Animation Models







# Transformations to Change Coordinate Systems

4 coordinate systems1 point P

$$M_{1 \leftarrow 2} = T(4,2)$$
  
 $M_{2 \leftarrow 3} = T(2,3) \cdot S(0.5,0.5)$   
 $M_{3 \leftarrow 4} = T(6.7,1.8) \cdot R(45^{\circ})$ 



$$M_{i \leftarrow k} = M_{i \leftarrow j} \cdot M_{j \leftarrow k}$$



# Coordinate System Example (1)

 Translate the House to the origin

$$M_{1 \leftarrow 2} = T(x_1, y_1)$$
 $M_{2 \leftarrow 1} = (M_{1 \leftarrow 2})^{-1}$ 
 $= T(-x_1, -y_1)$ 



The matrix  $M_{ij}$  that maps points from coordinate system j to i is the inverse of the matrix  $M_{ji}$  that maps points from coordinate system j to coordinate system i.



# Coordinate System Example (2)

TransformationComposition:

$$M_{5\leftarrow 1} = M_{5\leftarrow 4} \bullet M_{4\leftarrow 3} \bullet M_{3\leftarrow 2} \bullet M_{2\leftarrow 1}$$





# World Coordinates and Local Coordinates

- To move the tricycle, we need to know how all of its parts relate to the WCS
- Example: front wheel rotates on the ground wrt the front wheel's z

wrt the front wheel's z axis: 
$$P^{(wo)} = T(\alpha r, 0, 0) \cdot R_z(\alpha) \cdot P^{(wh)}$$

Coordinates of *P* in wheel coordinate

system: 
$$P^{(wh)} = R_z(\alpha) \cdot P^{(wh)}$$

Tricvcle-coordinate

system



#### **Robot Arm**



robot arm

parts in their own coodinate systems



#### **Articulated Models**

Robot arm is an example of an articulated model

- Parts connected at joints

- Can specify state of model by giving all joint angles





#### Relationships in Robot Arm

- Base rotates independently
  - Single angle determines position
- Lower arm attached to base
  - Its position depends on rotation of base
  - Must also translate relative to base and rotate about connecting joint
- Upper arm attached to lower arm
  - Its position depends on both base and lower arm
  - Must translate relative to lower arm and rotate about joint connecting to lower arm



# **Required Matrices**

- Rotation of base: R<sub>b</sub>
  - Apply  $\mathbf{M} = \mathbf{R}_{b}$  to base
- ullet Translate lower arm <u>relative</u> to base:  $oldsymbol{T}_{lu}$
- Rotate lower arm around joint:  $\mathbf{R}_{lu}$ 
  - Apply  $\mathbf{M} = \mathbf{R}_{b} \mathbf{T}_{lu} \mathbf{R}_{lu}$  to lower arm
- Translate upper arm  $\underline{\text{relative}}$  to upper arm:  $\mathbf{T}_{uu}$
- Rotate upper arm around joint:  $\mathbf{R}_{uu}$ 
  - Apply  $\mathbf{M} = \mathbf{R}_b \mathbf{T}_{lu} \mathbf{R}_{lu} \mathbf{T}_{uu} \mathbf{R}_{uu}$  to upper arm





# **OpenGL Code for Robot**

```
mat4 ctm; // current transformation matrix
robot arm()
    ctm = RotateY(theta);
    base();
    ctm *= Translate(0.0, h1, 0.0);
    ctm *= RotateZ(phi);
    lower arm();
    ctm *= Translate(0.0, h2, 0.0);
    ctm *= RotateZ(psi);
    upper arm();
```



### **OpenGL Code for Robot**

- At each level of hierarchy, calculate ctm matrix in application.
- Send matrix to shaders
- Draw geometry for one level of hierarchy
- Apply ctm matrix in shader



#### **Tree Model of Robot**

- Note code shows relationships between parts of model
  - Can change "look" of parts easily without altering relationships
- Simple example of tree model
- Want a general node structure for nodes





#### **Possible Node Structure**



matrix relating node to parent



#### **Generalizations**

- Need to deal with multiple children
  - How do we represent a more general tree?
  - How do we traverse such a data structure?
- Animation
  - How to use dynamically?
  - Can we create and delete nodes during execution?



### **Objectives**

- Build a tree-structured model of a humanoid figure
- Examine various traversal strategies
- Build a generalized tree-model structure that is independent of the particular model



# **Humanoid Figure**





### **Building the Model**

- Can build a simple implementation using quadrics: ellipsoids and cylinders
- Access parts through functions

```
-torso()
```

```
-left_upper_arm()
```

- Matrices describe position of node with respect to its parent
  - $\mathbf{M}_{lla}$  positions left lower arm with respect to left upper arm



#### **Tree with Matrices**





# **Display and Traversal**

- The position of the figure is determined by 11 joint angles (two for the head and one for each other part)
- Display of the tree requires a graph traversal
  - Visit each node once
  - Display function at each node that describes the part associated with the node, applying the correct transformation matrix for position and orientation



#### **Transformation Matrices**

- There are 10 relevant matrices
  - M positions and orients entire figure through the torso which is the root node
  - M<sub>h</sub> positions head with respect to torso
  - $M_{lua}$ ,  $M_{rua}$ ,  $M_{lul}$ ,  $M_{rul}$  position arms and legs with respect to torso
  - $\mathbf{M}_{lla}$ ,  $\mathbf{M}_{rla}$ ,  $\mathbf{M}_{rll}$ ,  $\mathbf{M}_{rll}$  position lower parts of limbs with respect to corresponding upper limbs



#### Stack-based Traversal

- Set model-view matrix to M and draw torso
- Set model-view matrix to MM<sub>h</sub> and draw head
- For left-upper arm need MM<sub>lua</sub> and so on
- Rather than recomputing MM<sub>lua</sub> from scratch or using an inverse matrix, we can use the matrix stack to store M and other matrices as we traverse the tree



#### **Traversal Code**

```
figure() {
                        save present currents xform matrix
   PushMatrix()
   torso();
                         update ctm for head
   Rotate (...);
   head();
                         recover original ctm
   PopMatrix();
                               save it again
   PushMatrix();
   Translate(...);
                            update ctm for left upper arm
   Rotate (...);
   left upper arm();
                            recover and save original
   PopMatrix();
                            ctm again
   PushMatrix();
                                rest of code
```



# **Analysis**

- The code describes a particular tree and a particular traversal strategy
  - Can we develop a more general approach?
- Note that the sample code does not include state changes, such as changes to colors
  - May also want to use a PushAttrib and PopAttrib to protect against unexpected state changes affecting later parts of the code



#### **General Tree Data Structure**

- Need a data structure to represent tree and an algorithm to traverse the tree
- We will use a left-child right sibling structure
  - Uses linked lists
  - Each node in data structure is two pointers
  - Left: linked list of children
  - Right: next node (i.e. siblings)



# Left-Child Right-Sibling Tree





### **Tree node Structure**

- At each node we need to store
  - Pointer to sibling
  - Pointer to child
  - Pointer to a function that draws the object represented by the node
  - Homogeneous coordinate matrix to multiply on the right of the current model-view matrix
    - Represents changes going from parent to node
    - In OpenGL this matrix is a 1D array storing matrix by columns



#### C Definition of treenode

```
typedef struct treenode
{
    mat4 m;
    void (*f)();
    struct treenode *sibling;
    struct treenode *child;
} treenode;
```



#### torso and head nodes

```
treenode torso node, head node, lua node, ...;
torso node.m = RotateY(theta[0]);
torso node.f = torso;
torso node.sibling = NULL;
torso node.child = &head node;
head node.m = translate(0.0, TORSO HEIGHT
 +0.5*HEAD HEIGHT, 0.0)*RotateX(theta[1])
 *RotateY(theta[2]);
head node.f = head;
head node.sibling = &lua_node;
head node.child = NULL;
 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
```



### **Notes**

- The position of figure is determined by 11 joint angles stored in theta[11]
- Animate by changing the angles and redisplaying
- We form the required matrices using Rotate
   and Translate
  - Because the matrix is formed using the modelview matrix, we may want to first push original model-view matrix on matrix stack



#### **Preorder Traversal**

```
void traverse(treenode* root)
   if(root==NULL) return;
   mvstack.push(ctm);
   ctm = ctm*root->m;
   root->f();
   if(root->child!=NULL) traverse(root->child);
   ctm = mvstack.pop();
   if (root->sibling!=NULL)
                         traverse(root->sibling);
```



#### **Traversal Code & Matrices**

```
• figure () called with CTM set
                                             Stack
                                                    CTM
                                                    M_{fig}

    M<sub>fig</sub> defines figure's place in world

                                                    CTM
                                             Stack
  figure() {
                                                    M_{fig}
                                             M_{fig}
       PushMatrix()
       torso();
                                             Stack CTM
                                             M_{\rm fig}
                                                    M_{fig}M_{h}
       Rotate (...);
       head();
                                                    CTM
                                             Stack
       PopMatrix();
                                                    M_{fig}
       PushMatrix();
                                                    CTM
                                             Stack
                                                    M_{\rm fig}
                                             M_{\mathrm{fig}}
       Translate(...);
       Rotate (...);
                                             Stack
                                                    CTM
                                                    M_{fig}M_{lua}
                                             M_{fig}
       left upper arm();
```



## **Traversal Code & Matrices**

| <pre>PushMatrix()</pre>      | <u>Stack</u>                                                | CTM                                                   |
|------------------------------|-------------------------------------------------------------|-------------------------------------------------------|
| Translate();                 | $M_{ m fig}M_{ m lua}$                                      | $ m M_{fig}M_{lua}$                                   |
| Rotate();                    | M <sub>fig</sub>                                            | CTM                                                   |
| <pre>left_lower_arm();</pre> | $rac{	ext{Stack}}{	ext{M}_{	ext{fig}}	ext{M}_{	ext{lua}}}$ | $\frac{\mathrm{CTM}}{\mathrm{M_{fig}M_{lua}M_{lla}}}$ |
| <pre>PopMatrix();</pre>      | $ m M_{fig}$                                                | iigiuaiia                                             |
| <pre>PopMatrix();</pre>      | <u>Stack</u>                                                | <u>CTM</u>                                            |
| <pre>PushMatrix()</pre>      | $ m M_{fig}$                                                | ${ m M_{fig}M_{lua}}$                                 |
| Translate();                 | <u>Stack</u>                                                | <u>CTM</u>                                            |
| Rotate();                    |                                                             | $ m M_{fig}$                                          |
| right_upper_arm();           | Stack                                                       | <u>CTM</u>                                            |
| •••                          | $ m M_{fig}$                                                | $ m M_{fig}$                                          |
| •••                          | <u>Stack</u>                                                | <u>CTM</u>                                            |
|                              | $ m M_{ m fig}$                                             | $M_{\mathrm{fig}}M_{\mathrm{rua}}$                    |



### **Notes**

- We must save current transformation matrix before multiplying it by node matrix
  - Updated matrix applies to children of node but not to siblings which contain their own matrices
- The traversal program applies to any leftchild right-sibling tree
  - The particular tree is encoded in the definition of the individual nodes
- The order of traversal matters because of possible state changes in the functions



## **Dynamic Trees**

• If we use pointers, the structure can be dynamic

```
typedef treenode *tree_ptr;
tree_ptr torso_ptr;
torso_ptr = malloc(sizeof(treenode));
```

 Definition of nodes and traversal are essentially the same as before but we can add and delete nodes during execution



## Solids and Solid Modeling

- Solid modeling introduces a mathematical theory of solid shape
  - Domain of objects
  - Set of operations on the domain of objects
  - Representation that is
    - Unambiguous
    - Accurate
    - Unique
    - Compact
    - Efficient



## **Solid Objects and Operations**

- Solids are point sets
  - Boundary and interior
- Point sets can be operated on with boolean algebra (union, intersect, etc)





# Constructive Solid Geometry (CSG)

- A tree structure combining primitives via regularized boolean operations
- Primitives can be solids or half spaces





# A Sequence of Boolean Operations

- Boolean operations
- Rigid transformations





## The Induced CSG Tree





### The Induced CSG Tree

 Can also be represented as a directed acyclic graph (DAG)





# Issues with Constructive Solid Geometry

- Non-uniqueness
- Choice of primitives
- How to handle more complex modeling?
  - Sculpted surfaces? Deformable objects?



# Issues with Constructive Solid Geometry

#### Non-Uniqueness

- There is more than one way to model the same artifact
- Hard to tell if A and B are identical





### **Issues with CSG**

- Minor changes in primitive objects greatly affect outcomes
- Shift up top solid face





# Uses of Constructive Solid Geometry

- Found (basically) in every CAD system
- Elegant, conceptually and algorithmically appealing
- Good for
  - Rendering, ray tracing, simulation
  - BRL CAD

