TD 23 : corrigé de certains exercices

Exercice 22.13:

1°) E = Im(f) + Im(g), donc $n = dim(E) = rg(f) + rg(g) - dim(Im(f) \cap Im(g))$.

De même, $n = dim(E) = dim(Ker(f)) + dim(Ker(g)) - dim(Ker(f)) \cap Ker(g)$.

Sommons ces deux relations en utilisant la formule du rang:

 $2n = 2n - dim(Im(f) \cap Im(g)) - dim(Ker(f) \cap Ker(g)).$

Ainsi, $dim(Im(f) \cap Im(g)) + dim(Ker(f) \cap Ker(g)) = 0$, ce qui permet de conclure.

 2°) C'est faux en dimension infinie : il suffit de prendre $E = \mathbb{K}[X]$, et pour tout $P \in \mathbb{K}[X], f(P) = P' \text{ et } g(P) = 0.$

$$Im(f) + Im(g) = Im(f) = E$$
 et $Ker(f) + Ker(g) = Ker(f) + E = E$.

Exercice 22.16:

Soit $\lambda \in \mathbb{R}$. Pour $P \in \mathbb{R}[X]$,

$$u(P) = \lambda P \Longleftrightarrow \forall x \in]0, 1[, \ x(x-1)P'(x) = (\lambda - b - ax)P(x).$$

 $u(P) = \lambda P \iff \forall x \in]0, 1[, \ x(x-1)P'(x) = (\lambda - b - ax)P(x).$ Par décomposition en éléments simples, $\frac{\lambda - b - ax}{x(x-1)} = \frac{b - \lambda}{x} + \frac{\lambda - b - a}{x-1}, \text{ donc}$ $u(P) = \lambda P \iff \exists C \in \mathbb{R} \ P(x) = Ce^{(b-\lambda)\ln x + (\lambda - b - a)\ln(1-x)} = Cx^{b-\lambda}(1-x)^{\lambda - b - a}.$

$$u(P) = \lambda P \iff \exists C \in \mathbb{R} \ P(x) = Ce^{(b-\lambda)\ln x + (\lambda - b - a)\ln(1 - x)} = Cx^{b-\lambda}(1 - x)^{\lambda - b - a}$$

Supposons que $f: x \mapsto x^{b-\lambda}(1-x)^{\lambda-b-a}$ est une application polynomiale. Au voisinage de $0, f(x) \sim x^{b-\lambda}, \text{ donc } b - \lambda \in \mathbb{N}.$

De même, au voisinage de 1, $f(x) \sim (1-x)^{\lambda-b-a}$, donc $\lambda - b - a \in \mathbb{N}$.

Dans ce cas, $-a = (b - \lambda) + (\lambda - b - a) \in \mathbb{N}$.

Ainsi, lorsque $-a \notin \mathbb{N}$, le spectre de u est vide.

Supposons maintenant que $-a \in \mathbb{N}$. Soit $\lambda \in \mathbb{R}$. Alors

 $\lambda \in \operatorname{Sp}(u) \iff (b-\lambda, \lambda-b-a) \in \mathbb{N}^2 \iff \exists k \in \mathbb{N}, \ \lambda = b-k \text{ et } -k-a \in \mathbb{N}, \text{ donc}$ $\lambda \in \operatorname{Sp}(u) \iff \exists k \in \{0, \dots, -a\}, \ \lambda = b - k.$

Ainsi, lorsque $-a \in \mathbb{N}$, on dispose de -a+1 valeurs propres et pour chaque valeur propre λ , le sous-espace propre associé est la droite vectorielle engendrée par le polynôme $x \longmapsto x^{b-\lambda}(1-x)^{\lambda-b-a}$.

Exercice 22.18:

$$\begin{array}{ll} \mathbf{1}^{\circ}) & \mathrm{Soit} \ g \in L(F, E). \\ g \in V & \iff [\forall x \in E \ f \circ g[f(x)] = 0] \\ & \iff [\forall y \in Im(f) \ f \circ g(y) = 0] \\ & \iff [\forall y \in Im(f) \ g(y) \in Ker(f)] \\ & \iff g(Im(f)) \subset Ker(f). \end{array}$$

2°) [Pour cet exercice, on peut construire les matrices des éléments de V, dans des bases bien choisies.

Soient (b_1,\ldots,b_r) une base de Im(f) que l'on complète en une base $b=(b_1,\ldots,b_p)$ de F et $a=(a_1,\ldots,a_{n-r})$ une base de Ker(f), que l'on complète en une base $a = (a_1, \ldots, a_n) de E$.

D'après la première question, $g \in V$ si et seulement s'il existe $A \in \mathcal{M}_{n-r,r}$,

 $B \in \mathcal{M}_{n-r,p-r}$ et $C \in \mathcal{M}_{r,p-r}$ telles que la matrice de g dans les bases b et a se décompose en blocs sous la forme suivante : $Mat(g, b, a) = \begin{pmatrix} A & B \\ 0_{rr} & C \end{pmatrix}$.

On notera W <u>l'ensemble</u> de ces matrices.

Notons $\varphi: L(F,E) \longrightarrow \mathcal{M}_{n,p}$ $u \longmapsto Mat(u,b,a)$. D'après le cours, φ est un isomorphisme,

donc $dim(V) = dim(\varphi(V)) = dim(\widetilde{W})$, or $\mathcal{M}_{n-r,r} \times \mathcal{M}_{n-r,p-r} \times \mathcal{M}_{r,p-r} \longrightarrow W$

$$(A, B, C) \longmapsto \begin{pmatrix} A & B \\ 0_{r,r} & C \end{pmatrix} \text{ est un isomorphisme, donc}$$

$$\dim(V) = \dim(\mathcal{M}_{n-r,r} \times \mathcal{M}_{n-r,p-r} \times \mathcal{M}_{r,p-r}) = r(n-r) + (n-r)(p-r) + r(p-r).$$

On en déduit que $dim(V) = np - r^2$.

Exercice 22.20:

• [Si A est semblable à J, rg(A) = rg(J) = 1, donc Ker(A) est de dimension 2.

Il serait bon d'établir ce résultat intermédiaire. En effet, en prenant ensuite une base (e_2, e_3) de Ker(A)et en la complétant par un vecteur e_1 correctement choisi on parviendra à conclure.]

- $A^2 = 0$, donc $Im(A) \subset Ker(A)$. On en déduit que $rg(A) \leq dim(Ker(A))$, or, d'après la formule du rang, dim(Ker(A)) = 3 - rg(A), donc $2rg(A) \leq 3$. Mais $rg(A) \in \mathbb{N}$, donc $rg(A) \in \{0,1\}$. De plus, $rg(A) \neq 0$ car $A \neq 0$. Ainsi, rg(A) = 1 et dim(Ker(A)) = 2.
- \diamond Notons u l'endomorphisme canoniquement associé à A.

Pour obtenir la première colonne de J, il faut choisir $e_1 \in \mathbb{R}^3$ tel que $u(e_1) = e_2$. Il suffit pour cela de prendre e_2 dans Im(u), ce qui est possible car $Im(u) \subset Ker(u)$.

Notons e_2 un vecteur directeur de la droite vectorielle Im(u) et complétons (e_2) en une base (e_2, e_3) de Ker(u).

 $e_2 \in Im(u)$, donc il existe $e_1 \in \mathbb{R}^3$ tel que $u(e_1) = e_2$.

 $e_1 \notin Ker(u)$ car $u(e_1) = e_2 \neq 0$, donc $e = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 .

Ainsi mat(u, e) = J, ce qui prouve que A et J sont semblables.

• Il existe $P \in GL_3(\mathbb{R})$ telle que $A = PJP^{-1}$.

Notons $E^A = \{X \in \mathcal{M}_3(\mathbb{R}) / AX + XA = 0\}$ et $E^J = \{X \in \mathcal{M}_3(\mathbb{R}) / JX + XJ = 0\}.$

 \diamond E^A est le noyau de l'application linéaire $\mathcal{M}_3(\mathbb{R}) \xrightarrow{\mathcal{M}_3(\mathbb{R})} \mathcal{M}_3(\mathbb{R})$, donc c'est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. Ainsi, on peut s'intéresser à sa dimension. Il en est de même pour E^J .

 \diamond Soit $X \in \mathcal{M}_3(\mathbb{R})$.

$$X \in E^A \iff PJP^{-1}X + XPJP^{-1} = 0 \iff JP^{-1}XP + P^{-1}XPJ = 0,$$

 φ est correctement définie car, d'après (1), $X\in E^A\Longrightarrow P^{-1}XP\in E^J,$ et ψ est définie, car, toujours d'après (1), $PYP^{-1} \in E^A \iff Y \in E^J$.

De plus, on vérifie que φ et ψ sont linéaires, que $\varphi \circ \psi = Id_{E^J}$ et que $\psi \circ \varphi = Id_{E^A}$. On en déduit que E^A et E^J sont isomorphes, donc que $dim(E^A) = dim(E^J)$.

On a bien ainsi ramené le problème portant initialement sur la matrice A en le même problème, mais portant maintenant sur la matrice réduite J.]

 \diamond Soit $X = (x_{i,j}) \in \mathcal{M}_3(\mathbb{R})$. En interprétant le produit XJ comme une matrice dont les colonnes sont des combinaisons linéaires des colonnes de X, on obtient que

$$XJ = \begin{pmatrix} x_{1,2} & 0 & 0 \\ x_{2,2} & 0 & 0 \\ x_{3,2} & 0 & 0 \end{pmatrix}$$
, et en interprétant le produit JX comme une matrice dont les

$$JX = \begin{pmatrix} 0 & 0 & 0 \\ x_{1,1} & x_{1,2} & x_{1,3} \\ 0 & 0 & 0 \end{pmatrix}.$$

lignes sont des combinaisons linéaires des lignes de
$$X$$
, on obtient que $JX = \begin{pmatrix} 0 & 0 & 0 \\ x_{1,1} & x_{1,2} & x_{1,3} \\ 0 & 0 & 0 \end{pmatrix}$.

Ainsi, $X \in E^J \iff x_{1,2} = x_{3,2} = x_{1,3} = x_{2,2} + x_{1,1} = 0$.

On en déduit que $E^J = \{ \begin{pmatrix} a & 0 & 0 \\ b & -a & c \\ d & 0 & e \end{pmatrix} / (a, b, c, d, e) \in \mathbb{R}^5 \}$.

$$\mathbb{R}^{5} \longrightarrow E^{J}$$

$$(a, b, c, d, e) \longmapsto \begin{pmatrix} a & 0 & e \\ b & -a & c \\ d & 0 & e \end{pmatrix} \text{ est un isomorphisme, donc } dim(E^{J}) = 5.$$
En conclusion, on a montré que $dim(E^{A}) = 5$

En conclusion, on a montré que $|dim(E^A)|$

Exercice 22.24:

1°) Soit $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{R})$, dont les coefficients sont dans \mathbb{R}_+^* .

Notons
$$e = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^n$$
. Pour tout $i \in \mathbb{N}_n$, la $i^{\text{ème}}$ composante de Me vaut $\sum_{j=1} m_{i,j} = 1$,

Mais e est non nul, donc si $M \in \mathcal{E}$ alors 1 est une valeur propre de M.

2°) Soit $(M, N) \in \mathcal{E}^2$. Pour tout $(i, j) \in \{1, \dots, n\}$, le (i, j)ème coefficient de MN vaut $\sum_{k=1}^{k} m_{i,k} n_{k,j}, \text{ donc les coefficients de } MN \text{ sont strictement positifs.}$ $MNe = M(Ne) = Me = e, \text{ donc } MN \in \mathcal{E}.$

3°) Soient $M = (m_{i,j}) \in \mathcal{E}$ et $\lambda \in Sp_{\mathbb{C}}(M)$.

Il existe
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{C}^n \setminus \{0\}$$
 tel que $MX = \lambda X$.

Soit $i \in \mathbb{N}_n$. Egalons les $i^{\text{èmes}}$ composantes dans la relation précédente : $\sum_{i=1}^n m_{i,j} x_j = 1$

D'après l'inégalité triangulaire, en tenant compte du fait que les coefficients de M sont

dans
$$\mathbb{R}_+$$
, (1) : $|\lambda||x_i| \le \sum_{j=1}^n m_{i,j}|x_j|$

dans \mathbb{R}_+ , (1) : $|\lambda||x_i| \leq \sum_{j=1}^n m_{i,j}|x_j|$. Posons $x = \max_{1 \leq i \leq n} |x_i|$. Il existe $i_0 \in \mathbb{N}_n$ tel que $x = |x_{i_0}|$.

L'inégalité (1) pour $i = i_0$ implique $|\lambda| x \le x \sum_{i=1}^n m_{i,j} = x$, or x > 0 car $X \ne 0$, donc $|\lambda| \leq 1$.

4°) Soit $M = (m_{i,j}) \in \mathcal{E}$. Soit $\lambda \in Sp(M)$ telle que $|\lambda| = 1$. Il existe $X \in \mathbb{R}^n \setminus \{0\}$ tel que $MX = \lambda X$. Il existe $i_0 \in \mathbb{N}_n$ tel que $|x_{i_0}| = \max_{1 \le i \le n} |x_i|$.

Alors,
$$|x_{i_0}| = |\lambda x_{i_0}| = \left| \sum_{j=1}^n M_{i_0,j} x_j \right| \stackrel{(1)}{\leq} \sum_{j=1}^n M_{i_0,j} |x_j| \stackrel{(2)}{\leq} |x_{i_0}| \sum_{j=1}^n M_{i_0,j} = |x_{i_0}|$$
. On re-

trouve la même quantité $|x_{i_0}|$ à gauche et à droite de cette succession d'inégalités, donc toutes ces inégalités sont des égalités.

Ainsi, d'après (2), pour tout $j \in \mathbb{N}_n$, $|x_i| = |x_{i_0}|$, ainsi le module de x_i ne dépend pas

Et d'après (1), on est dans le cas d'égalité de l'inégalité triangulaire, donc il existe $\theta_0 \in \mathbb{R}$ tel que, pour tout $j \in \mathbb{N}_n$, $M_{i_0,j}x_j \in \mathbb{R}_+e^{i\theta_0}$, donc l'argument de x_j ne dépend pas de j.

On en déduit que X est colinéaire à $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$, donc que $\lambda = 1$.

Ceci démontre en outre que $E_1^M = \text{Vect}\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$, donc si l'on suppose de plus que Mest diagonalisable, alors M est semblable à $D = \text{diag}(1, \lambda_2, \dots, \lambda_n)$, avec $|\lambda_i| < 1$ pour tout $i \geq 2$, donc M^p tend lorsque p tend vers $+\infty$ vers une matrice semblable à $D = \operatorname{diag}(1, 0, \dots, 0).$