

## UNIVERSITY OF COLOMBO, SRI LANKA





# UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

**BACHELOR OF SCIENCE IN COMPUTER SCIENCE** 

Second Year Examination - Semester II - 2020/2021

SCS2211 - Laboratory II - (Part A)

TWO (2) HOURS (For Parts A and B)

| To be completed by the | candidate |
|------------------------|-----------|
| Examination Index No:  | ·         |

### **Important Instructions to candidates:**

- 1. The medium of instruction and question is **English**.
- 2. Write your answers in English.
- 3. If a page or a part of this question paper is not printed, please inform the supervisor immediately.
- 4. Note that questions appear on both sides of the paper. If a page is not printed, please inform the supervisor immediately.
- 5. Write your index number on each and every page of the Question paper.
- 6. This part has **02** questions on **09** pages.
- 7. Answer **ALL** questions. All questions carry equal (25) marks.
- 8. This paper consists of two parts, Part A (Question No 1 and Question No 2) and Part B (Question No 3 and Question No 4) which need to be submitted separately.
- Any electronic device capable of storing and retrieving text including electronic dictionaries and mobile phones are **not** allowed.
- 10. Non-Programmable calculators are allowed.

| only           |       |  |  |  |  |  |  |  |  |  |
|----------------|-------|--|--|--|--|--|--|--|--|--|
| Question<br>No | Marks |  |  |  |  |  |  |  |  |  |
| 1              |       |  |  |  |  |  |  |  |  |  |
| 2              |       |  |  |  |  |  |  |  |  |  |
|                |       |  |  |  |  |  |  |  |  |  |
|                |       |  |  |  |  |  |  |  |  |  |
| Total          |       |  |  |  |  |  |  |  |  |  |

| IndexNo: |  | ••••• |
|----------|--|-------|
|----------|--|-------|

# Part A

#### Question 1

a) Use the provided spaces to answer each sub part of question a).

i) Write the output of the following code fragment.

```
myNewVariable = 37+11*i; size(myNewVariable)
11
```

[1 mark]

ii) Use an Octave built-in **command** to generate the vector, in the comment, from the vector Vc.

```
Vc = [ -1-i; -1; 0; 1; 1+i]; %result:[-1 - 1i, -1, 0, 1, 1 + 1i];

mat2str(vc)
```

[1 mark]

iii) To convert the text in variable quote to the commented one, fill the two blanks.

```
quote = "the quick brown fox jumped over the lazy dog";
% the quick br8wn f8x jumped 8ver the lazy d8g
quote(quote == "o") = '8'
```

[2 marks]

iv) Write down the expected output of executing the following Octave codes.

```
a = [1 -2 3];b = [-1;2;-3;]; a.*b

-1 2-3
2-46
3-69
a = [1 -2 3];b = [-1;2;-3;]; [a; b'](5)
3
%1 mark
```

[5 marks]

IndexNo:....

b) A two dimensional object on an Octave plot (see Figure 1) can be transformed to a scaled up (or down) object by a linear transformation. To scale an object by a factor of k the following matrix Tz can be used.  $Tz = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$ . Complete the code in the Code Listing 1 to dilate the given triangle by a factor of 2.



Figure 1: Dilation of triangle

## **Code Listing 1: Scale operation**

[8 marks]

| Ind | lexi | Vo: |  |  |  |  |  | ٠. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----|------|-----|--|--|--|--|--|----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
|-----|------|-----|--|--|--|--|--|----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

c) Following recursive Octave function (Code Listing 2) takes a positive number vector as the input and finds the numbers occurring at 50%, 25% and 75%, length positions respectively. If the number of elements are even the average is taken from two numbers closest to the mid-point. Fill the indicated blanks in the code. Hint: The function mod(A,B) returns the remainder when A is divided by B, for positive integers A and B.

Code Listing 2: Calculating the 3 points

```
function [mid,q1,q3] = stat(vector,call=0)
  sv = sort(vector); % Sort the vector
  call = call+1;
  1 = length
                                            %Length of the vector - 1 mark
  if(\frac{\text{mod}(I,2)}{I}) == 0) %If the length of the vector is even - 2 marks
    m1 = \frac{(1/2)+1}{;}; %Position before the mid-point - 0.5 marks m2 = \frac{(1/2)-1}{;}; %Position after the mid-point - 0.5 marks
    mid = (sv(1, m^1) + sv(1, m^2))/2; %Average of the numbers - 1 mark
                         % Length is odd
  else
    m1=m2 = \frac{SV}{(1/2)};%Smallest integer not less than 1/2 - 1 mark
    mid = sv(1, m1);
  end
  if(call < 2)
    q1 = stat(sv(1, _1 : _m), call); % Call recursively, - 1 mark
    q3 = stat(sv(1, __: m2), call); % on partial vectors - 1 mark
  else
    return;
  end
end % of the function
```

[8 marks]

| IndexNo: |
|----------|
|----------|

#### Question 2

a) Write answers in the given spaces. For calculations in parts (ii) & (iii) show your steps to obtain full marks.

i) Complete the mid-point based numerical integration code shown in the following listing. **k** is the lower limit, **l** is the upper limit and **n** is the number of sub-intervals.

[4 marks]

ii) Figure 2 shows a graphical view of a pulsating electric current. When the pulses are smoothened the resulting current is represented by a series of + symbols which is a rough horizontal line to the time axis. Using 5 equal intervals evaluate the area under a pulse in the interval  $[0, \pi]$ . (Some formulae to calculate the result are already given)

| IndexNo:  |     | <br> | <br>• • • • | ••••• |
|-----------|-----|------|-------------|-------|
| THE WATER | • • | <br> | <br>        |       |

result = sum\*dx %0.5 marks

[4 marks]



Figure 2: Sine like pulse and smooth current

| iii) | The relationship between the <b>sine like</b> pluses and the <b>smoothened</b> current is that the area under           |
|------|-------------------------------------------------------------------------------------------------------------------------|
|      | each pulse shall be same as the area under the line, of a width of one pulse. For a pulsating current                   |
|      | represented by $V_1 = V_p * sin(t)$ , the average voltage of a pulse is given by $V_a = V_p * C_a$ , where $V_1$ is the |
|      | pulse voltage, $V_p$ is the peak voltage and $C_a$ is a constant which is approximately 0.63. Using your                |
|      | result of the part (ii) show how the value for C <sub>a</sub> can be estimated. (Octave syntax is not required).        |
|      |                                                                                                                         |

[2 marks]

| Index | Vo: | <br> | <br> | <br> | <br> |  |
|-------|-----|------|------|------|------|--|
|       |     |      |      |      |      |  |

b) In the following Code Listing 3, random numbers in a matrix are processed using two different methods to obtain the same result, first using a "for loop" and next via vector operations. Fill the remaining code sections to complete the non-looped version.

Code Listing 3: Looped and non-looped code

```
vR = rand(10,10); count1 = 0;
for r=1:100
                                                %Start looped version
  t = vR(r);
  if(t \ge 0.9 | | t \le 0.1)
    count1 = count1 + 1;
  end
end
                                               %End of looped version
% Start of non-looped version
f1 = ( >= 0.9);
                                                           % 1.5 marks
f2 = \underline{\qquad} (\underline{\qquad} <= 0.1);
                                                           % 1.5 marks
count2 = ____(f1) + ____(f2);
                                                              % 1 mark
% End of non-looped version
```

[4 marks]

IndexNo:....

c) Code Listing 4 Use the Figure 3 as an aid to complete the Code Listing 4. Assume the quadratic function plot is "dragged" in the Z-axis to generate a 3D surface resembling a "valley".



Figure 3: 2D view of the 3D object

**Code Listing 4: 3D surface generator** 

```
function threedobject(shift = 6, points = 25)
r = sqrt(shift);
                       %Find r such that surface just cuts y = 0
x = linspace (-r, r, shift + points); %Make vector x - 1 mark
y = x.^2 - shift;
yz = \frac{\text{meshgrid}}{\text{meshgrid}} (y); %Replicate y in z axis - 1 mark
   colormap
                winter %Coloring with winter theme - 1 mark
   surf
                                        %Draw the surface - 1 mark
          (yz);
strShift = int2str
                  ____(shift); %Convert shift to a string - 1 mark
lg = \underline{cstrcat} ('X^2-', strShift);
                                            %Concatenate - 1 mark
   legend
__(lg);
                            %Add label to the graphic - 1 mark
end % end of the function
```

[7 marks]

| T | ndex | No | • | <br>_ | <br> | _ | <br> | <br> | <br> |  |
|---|------|----|---|-------|------|---|------|------|------|--|
|   |      |    |   |       |      |   |      |      |      |  |

d) Use the Octave **struct** definition syntax to answer the following question. Create two struct type variables called **customer1** and **customer2**. **customer1** has **name** as "Saman" and **dob** as "89-07-23" (string) while **customer2** has **name** as "Kumara" and **id** as 9007240 (number).

```
customer1 = struct;
custmer2 = struct;

customer2.name = "kumara";customer2.id=9007240
customer1.name = "saman";customer1.dob="1985"
```

[2 marks]

e) Write the expected output of executing the following code.

```
cel{1,1} = "Name";
cel{1,2} = "Kamal";
cel{2,1} = "RegDate";
cel{2,2} = clock()(1:3);
cel{3,1} = "ID";
cel{3,2} = 98273;
size(cel) 32 % 1 mark
cel{4,3} = [1 2 3];
size(cel) 43 % 1 mark
```

[2 marks]

\*\*\*\*\*\*\*