1 Проверка статистических гипотез

 $X=(X_1,\ldots,X_n)$ имеет плотность вероятности $p(X,\theta)$ по мере $\mu,\ \theta\in\Theta\subseteq\mathbb{R}^1$

Опр. 1. Предположение вида $H_0: \theta \in \Theta_0$, где $\Theta_0 \in \Theta$, называется параметрической гипотезой. Альтернатива $H_1: \theta \in \Theta_1$, где $\Theta_1 \in \Theta \setminus \Theta_0$

Опр. 2. Если $\Theta_0(\Theta_1)$ состоит из одной точи, то гипотеза H_0 (альтернатива H_1) называется простой. В противном случае $H_0(H_1)$ - сложная

Постановка задачи:

Необходимо построить правило (статистический критерий), который позволяет заключить, согласуется ли наблюдение X с H_0 или нет.

Правило.

Выберем в множестве значений x вектора X (у нас либо $x = \mathbb{R}^n$, либо $x = N_p \subseteq \mathbb{R}^n$) подмножество S. Если $X \in S$, то H_0 отвергается и принимается H_1 . Если $X \in \overline{S} = x \backslash S$, то H_0 принимается.

Опр. 3. Множество S называется критическим множеством или критерием, \overline{S} - область принятия гипотезы.

Возможны ошибки.

Ошибка 1-го рода - принять H_1 , когда верна H_0 . Вероятность ошибки 1-го рода $\alpha = P(H_1|H_0)$ (это условная запись, а не условная вероятность)

Ошибка 2-го рода - принять H_0 , когда верна H_1 . Вероятность ошибки 2-го рода $\beta = \mathrm{P}(\overline{H_0|H_1}).$

Опр. 4. Мощность критерия S называется функция $W(S, \theta) = W(\theta) := P_{\theta}(X \in S)$ (вероятность отвергнуть H_0 , когда значение параметра есть θ).

Тогда

$$\alpha = \alpha(\theta) = W(\theta), \ \theta \in \Theta_0 \tag{1}$$

$$\beta = \beta(\theta) = 1 - W(\theta), \ \theta \in \Theta_1 \tag{2}$$

Обычно H_0 более важна. Поэтому рассматривают критерии такие, что

$$\alpha_0 = W(\theta) = P_{\theta}(X \in S) \le \alpha \ \forall \theta \in \Theta_0$$

Число α называют уровнем значимости критерия. Пишут S_{α} - критерий уровня α . Обычно α - маленькое число, которое мы задаем сами.

Опр. 5. Если критерий $S_{\alpha}^* \in \{S_{\alpha}\}$ и $\forall \theta \in \Theta_1$ и $\forall S_{\alpha} \ W(S_{\alpha}^*, \theta) \geq W(S_{\alpha}, \theta)$, то критерий S_{α}^* называется РНМ-критерием (равномерно наиболее мощным).

Если $H_0: \theta=\theta_0,\ H_1: \theta=\theta_1$ (то есть H_0 и H_1 - простые), то задача отыскания РНМ-критерия заданного уровня α имеет вид:

$$P_{\theta_0}(X \in S_{\alpha}^*) \le \alpha, \ P_{\theta_1}(X \in S_{\alpha}^*) \ge P_{\theta_1}(X \in S_{\alpha}) \ \forall S_{\alpha}$$

Положим для краткости: $p_0(x) := p(x, \theta_0)$, $E_0 = E_{\theta_0}$, $p_1(x) = p(x, \theta_1)$, $E_1 = E_{\theta_1}$ Введем множество

$$S(\lambda) = \{x : p_1(x) - \lambda p_0(x) > 0\}, \lambda > 0$$

Теорема 1 (Лемма Неймана-Пирсона).

Пусть для некоторого $\lambda > 0$ и критерия R (когда X попадает в R, то H_0 отвергается) выполнено:

1. $P_0(X \in R) \le P_0(X \in S(\lambda))$ $Tor \partial a$:

2.
$$P_1(X \in R) \leq P_1(X \in S(\lambda))$$

3.
$$P_1(X \in S(\lambda)) \ge P_0(X \in S(\lambda))$$

Замечание.

 $X \in S(\lambda) \Leftrightarrow \frac{p_1(x)}{p_0(x)} > \lambda$. Так как $p_1(X)$ и $p_0(X)$ - правдоподобие, то критерий называется критерием отношения правдоподобия Неймана-Пирсона.

Замечание.

Утверждение 3 для $S(\lambda)$ означает, что

$$P(H_1|H_1) \ge P(H_1|H_0) \Leftrightarrow W(S(\lambda), \theta_1) \ge W(S(\lambda), \theta_0)$$

Это свойство назывется несмещенностью критерия $S(\lambda)$

Доказательство. Дальше для краткости $S(\lambda)=S.$ Пусть $I_R(x)=\begin{cases} 1, x\in R\\ 0, x\in \end{cases}$

$$E_0 I_R(x) \le E_0 I_S(x) \tag{3}$$

Докажем пункт 2

Верно неравенство

$$I_R(x)[p_1(x) - \lambda p_0(x)] \le I_S(x)[p_1(x) - \lambda p_0(x)]$$

Действительно, если $(p_1(x) - \lambda p_0(x)) > 0$, то $I_S(x) = 1$ и 2 очевидно.

Если же $(p_1(x) - \lambda p_0(x)) \le 0$, то правая часть 2 есть ноль, а левая \le нуля.

<u>Итак, 2 верно</u>:

Интегрируем 2 по $x \in \mathbb{R}^n$:

$$E_{1}I_{R}(X) - \lambda E_{0}I_{R}(X) \leq E_{1}I_{S}(X) - \lambda E_{0}I_{S}(X)$$

$$E_{1}I_{S}(X) - E_{1}I_{R}(X) \geq \lambda \underbrace{\left[E_{0}I_{S}(X) - E_{0}I_{R}(X)\right]}_{>0}$$

$$(4)$$

Докажем пункт 3

Пусть $\lambda \ge 1$.

Из определения $S \ p_1(x) > p_0(x) \ \forall x \in S$. Отсюда

$$P_0(X \in S) = \int_{\mathbb{R}^n} I_S(X) p_0(x) \mu(dx) \le \int_{\mathbb{R}^n} I_S(X) p_1(x) \mu(dx) = P_1(X \in S)$$

То есть $P(H_1|H_0) \leq P(H_1|H_1)$

Пусть $\lambda < 1$

Рассмотрим $\overline{S}-\{x:p_1(x)\leq \lambda p_0*x()\}$. При $\lambda<1$ $p_1(x)< p_0(x)$ при $x\in \overline{S}$. Отсюда

$$P_1(X \in \overline{S}) = \int_{\mathbb{R}^n} I_{\overline{S}}(X) p_0(x) \mu(dx) \le \int_{\mathbb{R}^n} I_{\overline{S}}(X) p_1(x) \mu(dx) = P_1(X \in \overline{S})$$

Откуда
$$P_1(X \in S) \ge P_0(X \in S)$$

Пример 1.

 $X = (X_1, \dots, X_n), \{X_i\}$ - н.о.р., $X_1 \sim N(\theta, \sigma^2)$, дисперсия σ^2 известна. Построим наиболее мощный критерий для проверки $H_0: \theta = \theta_0$ против $H_1: \theta = \theta_1$ (в случае $\theta_1 > \theta_0$). Уровень значимости возьмем α .

1. Имеем
$$p_0 = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \theta_0)^2\right), \ p_1 = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \theta_1)^2\right)$$

$$S(\lambda) = \{x : p_1(x) - \lambda p_0(x) > 0\} \Leftrightarrow \exp$$

$$*******$$

$$(\theta_0 - \theta_1) \sum_{i=1}^n x_i \le \lambda_2 \Leftrightarrow \sum_{i=1}^n x_i > \widetilde{\lambda}, \ \widetilde{\lambda}(\lambda)$$

2. Определим $\widetilde{\lambda} = \widetilde{\lambda}_{\alpha}$ из уравнения

$$\alpha = P_{\theta_0}(X \in S(\widetilde{\lambda}_{\alpha})) = P_{\theta_0}(\sum_{i=1}^n X_i > \widetilde{\lambda}_{\alpha})$$

Тогда

$$\alpha = P_{\theta_0} \left(\frac{1}{\sqrt{\pi}\sigma} \sum_{i=1}^n (X_i - \theta_0) \right) > \frac{\widetilde{\lambda}_{\alpha} - n\theta_0}{\sqrt{\pi}\sigma} \right) = 1 - \Phi(\frac{\widetilde{\lambda}_{\alpha} - n\theta_0}{\sqrt{\pi}\sigma})$$

 $ma\kappa \ \kappa a\kappa \ \frac{1}{\sqrt{\pi}\sigma} \sum (X_i - \theta_0) \sim N(0,1) \ npu \ H_0.$

Значит $\Phi(\frac{\widetilde{\lambda}_{\alpha}-n\theta_{0}}{\sqrt{\pi}\sigma})=1-\alpha, \ \Phi(\frac{\widetilde{\lambda}_{\alpha}-n\theta_{0}}{\sqrt{\pi}\sigma})=\xi_{1-\alpha}\ \xi_{1-\alpha}$ - квантиль станд. норм. закона уровня $1-\alpha$. Окончательно, $\widetilde{\lambda}_{\alpha}=n\theta_{0}+\sqrt{\pi}\sigma\xi_{1-\alpha}$

3. Положим $S_{\alpha}^* = \{x : \sum_{i=1}^n x_i > \widetilde{\lambda}_{\alpha} \}$ *****

Так как S_{α}^* не зависит от θ_1 , то S_{α}^* - РНМ-критерий для $H_0: \theta = \theta_0$ против $H_1^+: \theta > \theta_1$ Мощность критерия S_{α}^* для H_0 при альт. H_1^+

$$W(\theta, S_{\alpha}^{*}) = P_{\theta} \left(\sum_{i} X_{i} > n\theta_{0} + \sqrt{n}\sigma \xi_{1-\alpha} \right) =$$

$$= P_{\theta} \left(\frac{1}{\sqrt{n}\sigma} \sum_{i} (X_{i} - \theta) > \frac{\sqrt{n}(\theta_{0} - \theta)}{\sigma} + \xi_{1-\alpha} \right) = 1 - \Phi \left(\xi_{1-\alpha} + \frac{\sqrt{n}(\theta - \theta_{0})}{\sigma} \right)$$