Machine Learning from Data Assignment 8

Greg Stewart

October 29, 2018

Exercise 4.3

Deterministic noise depends on H, as some models approximate f better than others.

- (a) Assume H fixed and the complexity of f increased. Will deterministic noise in general go up or down? Is there a higher or lower tendency to overfit?
 - Deterministic noise will go up as the final hypothesis from H is able to model less of the target function f. Likewise, the tendency to overfit increases.
- (b) Assume f fixed and complexity of H increased. Will deterministic noise go up or down? Is there a higher or lower tendency to overfit?
 - Decreasing the complexity of H will also increase deterministic noise as the simpler hypothesis cannot model f as well. However, overfitting will decrease.

Exercise 4.5

A more general soft constraint is the Tikhonov regularization constraint

$$\mathbf{w}^T \mathbf{\Gamma}^T \mathbf{\Gamma} \mathbf{w} \leq C$$

which captures the relationship between the w_i —the matrix Γ is the Tikhonov regularizer.

- (a) What should Γ be to obtain the constraint $\sum_{q=0}^{Q} w_q^2 \leq C$?
 - $\Gamma = I$, the identity matrix, to get this constraint.
- (b) What should Γ be to obtain the constraint $(\sum_{q=0}^{Q} w_q)^2 \leq C$.

 Γ can simply be a row of ones in this case.

Exercise 4.6

We've seen both hard-order constraint and soft-order constraint. Which do you expect to be more useful for binary classification using the perceptron model?

The soft order constraint holds the potential to obtain a good fit for classification with the additional benefit of lower out-of-sample error, so I would expect it to be more useful.

Exercise 4.7

Fix g^- , learned from D_{train} , and define $\sigma_{val}^2 = Var_{D_{val}}[E_{val}(g^-)]$. We consider how σ_{val}^2 depends on K. Let

$$\sigma^2(g^-) = Var_{\mathbf{x}}[e(g^-(\mathbf{x}), y)]$$

be the pointwise variance in the out-of- sample error of g^- .

(a) Show $\sigma_{val}^2 = \frac{1}{K}\sigma^2(g^-)$.

 $E_{val}(g^-)$ is defined as the sum over D_{val} of $e(g^-(\mathbf{x}), y)$. There are K points in the validation data set, and for each \mathbf{x} we have the variance given in the problem description. Thus for the validation set we have

$$\sigma_{val} = \frac{1}{K} Var_{\mathbf{x}}[e(g^{-}(\mathbf{x}), y)] \quad \text{for } x \in D_{val}$$
$$= \frac{1}{K} \sigma^{2}(g^{-})$$

(b) In classification problem, where $e(g^{-}(\mathbf{x}), y) = [g^{-}(\mathbf{x}) \neq y]$, express σ_{val}^{2} in terms of $\mathbb{P}[g^{-}(\mathbf{x}) \neq y]$. Let $\mathbb{P}[g^{-}(\mathbf{x}) \neq y] = p$ From the definition shown in (a), we have in this case that

$$\sigma_{val}^2 = \frac{1}{K} Var_{\mathbf{x}} \llbracket g^-(\mathbf{x} \neq y \rrbracket).$$

To calculate this we need $\mathbb{E}[E_{val}]$ and $\mathbb{E}[E_{val}^2]$.

$$\mathbb{E}[E_{val}] = \mathbb{E}\left[\frac{1}{K} \sum_{k=0}^{K} [g^{-}(\mathbf{x}_k) \neq y_k]\right]$$
$$= \mathbb{P}[g^{-}(\mathbf{x}) \neq y]$$
$$= p$$

$$\mathbb{E}[E_{val}^2] = \mathbb{E}\left[\frac{1}{K} \sum_{k=0}^K [g^-(\mathbf{x}_k) \neq y_k]^2\right]$$
$$= p$$

because the pointwise error is either 0 or 1, both of which are unchanged when squared. So, for variance, we get

$$\sigma_{val}^2 = \frac{1}{K} \left(\mathbb{E}[E_{val}^2] - \mathbb{E}[E_{val}]^2 \right)$$

$$= \frac{1}{K} \left(p - p^2 \right)$$

$$= \frac{1}{K} (\mathbb{P}[g^-(\mathbf{x}) \neq y] - \mathbb{P}[g^-(\mathbf{x}) \neq y]^2)$$

(c) Show that for any g^- in a classification problem, $\sigma_{val}^2 \leq \frac{1}{4K}$.

The maximum possible value for $\mathbb{P}[g^-(\mathbf{x}) \neq y]$ is $\frac{1}{2}$. Plugging in this value to the result in (b) gets us

$$\sigma_{val}^2 = \frac{1}{K} \left[\frac{1}{2} - \left(\frac{1}{2} \right)^2 \right] = \frac{1}{4K}$$

As this is an upper bound, it means we must have that

$$\sigma_{val}^2 \le \frac{1}{4K}.$$

- (d) Is there a uniform upper bound for $Var[E_{val}(g^-)]$ similar to (c) in the case of regression with squared error $e(g^-(\mathbf{x}), y) = (g^-(\mathbf{x}) y)^2$?
 - No, no upper bound exists for squared error.
- (e) For regression with squared error, if we train using fewer points (smaller N-K) to get g^- , do you expect $\sigma^2(g^-)$ to be higher or lower?
 - Training with fewer points, I'd expect $\sigma^2(g-)$ to be **higher**.
- (f) Conclude that increasing the size of the validation set can result in a better or worse estimate of E_{out} . For the most part, increasing the size of the validation set only makes the estimate for E_{out} worse—there is no upper bound for squared error, which is by and large a more useful metric. Thus error will likely increase as the validation set is increased in size and the training set decreases in size.

Exercise 4.8

Is E_m an unbiased estimate for the out of sample error $E_{out}(g_m^-)$? Yes, it's unbiased because no g_m^- has been picked yet.