Math 279 Lecture 14 Notes

Daniel Raban

October 12, 2021

1 Coherence and Hairer's Reconstruction Theorem

1.1 Examples of coherence

Last time, we discussed C_{loc}^{α} for $\alpha \in (0,1)$ that can be characterized by (if $u \in C_{loc}^{\alpha}$ and K is compact)

$$\sup_{x\in K}\sup_{\delta\in(0,1]}\sup_{\varphi\in\mathcal{D}_0}\frac{|\langle u-u(x),\varphi_x^\delta\rangle|}{\delta^\alpha}=:[u]_{\mathcal{C}^\alpha,K}<\infty.$$

Also, if $\alpha \geq 1$, then we set

$$P_x(y) = P_x^u(y) = \sum_{|k| \le \alpha} (\partial^k u)(x) \frac{(y-x)^k}{k!},$$

and $u \in \mathcal{C}^{\alpha}_{loc}$ means that for K compact,

$$\sup_{x \in K} \sup_{\delta \in (0,1]} \sup_{\varphi \in \mathcal{D}_0} \frac{|\langle u - P_x, \varphi_x^{\delta} \rangle|}{\delta^{\alpha}} =: [u]_{\mathcal{C}^{\alpha}, K} < \infty.$$

For example, if $\alpha \in (1,2)$, then

$$u(y) - P_x(y) = \underbrace{u(y) - u(x)}_{[u(ty + (1-t)x)]_0^1} - Du(x) \cdot (y-x)$$
$$= \int_0^1 (Du(ty + (1-t)x) - Du(x)) \cdot (y-x) dt.$$

to assert that if $u \in C^1$ and $Du \in \mathcal{C}^{\alpha-1}$, then

$$|u(y) - P_x(y)| \le c|x - y|^{\alpha}$$

locally uniformly. Then we can show that the above norm is finite. However, we may use our polynomial approximation expression for our definition of $\mathcal{C}^{\alpha}_{loc}$.

Here, we have an example of a function u that is well-approximated by a so-called germ $(P_x : x \in \mathbb{R}^d)$. Indeed, this family enjoys a regularity that we now explore. To find such a regularity, observe

$$P_a(x) = \sum_{|k| < \alpha} \partial^k u(a) \frac{(x-a)^k}{k!},$$

$$P_b(x) = \sum_{|k| < \alpha} \partial^k u(b) \frac{(x-b)^k}{k!}$$

$$= \sum_{|k| < \alpha} \left[\sum_{|r| < \alpha - |k|} \partial^{k+r} u(a) \frac{(b-a)^r}{r!} + R_k(a,b) \right] \frac{(x-b)^k}{k!},$$

where the error

$$|R_k(a,b)| \leq |b-a|^{\alpha-k}$$
.

From now on, $f \lesssim g$ mean $f \leq cg$ for a constant c. Hence,

$$P_b(x) = \sum_{|m| < \alpha} \frac{\partial^m u(a)}{m!} \underbrace{\left(\sum_{k+r=m} \frac{(b-a)^r}{r!} \frac{(x-b)^k}{k!} m!\right)}_{(x-a)^m} + \sum_{|k| < \alpha} R_k(a,b) \frac{(x-b)^k}{k!}$$

From this, we learn that

$$P_b(x) - P_a(x) = \sum_{|k| < \alpha} R_k(a, b) \frac{(x - b)^k}{k!},$$

and hence

$$|\langle P_b - P_a, \varphi_b^{\delta} \rangle| \lesssim \sum_{|k| < \alpha} |b - a|^{\alpha - |k|} \delta^{|k|}$$

$$\lesssim (\delta + |b - a|)^{\alpha}.$$

Here, we have an example of a germ, namely $(P_x : x \in \mathbb{R}^d)$ that is α -coherent (which will be defined later).

Let us have another example, namely what we had before in Gubinelli's version (the sewing lemma) of Lyons and Victoire's result: Imagine that we have A(s,t) with

$$|A(s,t) + A(u,t) - A(s,t)| \lesssim |t-s|^{\alpha+\beta}, \qquad s < u < t, \alpha+\beta > 1.$$

Then by the sewing lemma, we can find h such that

$$|h(t) - h(s) - A(s,t)| \lesssim |t - s|^{\alpha + \beta}$$
.

For example, we may have A(s,t) = f(s)(g(t) - g(s)) with $f \in \mathcal{C}^{\alpha}$ and $g \in \mathcal{C}^{\beta}$. As we stated before, we may consider the germ $(F_s : s \in \mathbb{R})$, where $F_s = f(s)g'$; what the condition A means is this: Observe that $A(s,t) = \langle F_s, \mathbb{1}_{[s,t]} \rangle$. Hence

$$\langle F_u - F_s, \mathbb{1}_{[s,t]} \rangle \lesssim |t - s|^{\alpha + \beta}.$$

If $\varphi = 1_{[0,1]}$,

$$|\langle F_u - F_s, \varphi_s^{\delta} \rangle| \lesssim \delta^{-1} (|u - s| + \delta)^{\alpha + \beta} = \delta^{-1} (|u - s| + \delta)^{\gamma + 1},$$

where $\gamma = \alpha + \beta - 1 > 0$. In summary, we have an example of a germ that is γ -coherent, or more specifically $(-1, \gamma)$ -coherent.

Motivated by these two examples, we formulate some definitions.

Definition 1.1. By a **germ**, we mean a measurable map $F: \mathbb{R}^d \to \mathcal{D}'$ sending $x \mapsto F_x$.

Definition 1.2. We call a germ $(-\tau, \gamma)$ -coherent with $\tau = \tau_K$ only depending on a compact set K and with respect to a test function $\phi \in \mathcal{D}$, $\int \varphi \neq 0$, if the following condition is true:

$$\langle F_x - F_y, \varphi_y^{\delta} \rangle \lesssim \delta^{-\tau_K} (|x - y| + \delta)^{\gamma + \tau_K}$$

uniformly for $x, y \in K$. Here, we assume that $\tau_K \geq 0$ and $\gamma + \tau_K \geq 0$.

We say γ -coherent when we mean $(-\tau, \gamma)$ -coherent for some τ which does not matter.

1.2 Martin Hairer's reconstruction theorem

Theorem 1.1 (Martin Hairer's reconstruction theorem). Assume that F is a γ -coherent germ F with respect to some $\varphi \in \mathcal{D}$. Then there exists $u \in \mathcal{D}'$ such that

$$|\langle i - F_x, \psi_x^{\delta} \rangle| \lesssim \begin{cases} \delta^{\gamma} & \gamma \neq 0\\ 1 + |\log \delta| & \gamma = 0. \end{cases}$$

uniformly for $x \in K$ and ψ such that supp $\psi \subseteq B_1(0)$ and $\|\psi\|_{C^r} \le 1$ with $r = r_K$.

Remark 1.1. If $\gamma > 0$ is positive, then the u in the theorem is unique.

Proof. If u and u' satisfy the same inequality, and T = u - u', then $|T(\psi_x^{\delta})| \lesssim \delta^{\gamma}$. Let us take $f \in L^1_{loc}$ and consider $\zeta \in \mathcal{D}$ and consider $f * \zeta$. Here,

$$(f * \zeta)(x) = \int \zeta(x - y)f(y) dy = \int (\tau_y \zeta)(x) f(y) dy.$$

We claim that

$$T(f * \zeta) = T\left(\int T_y \zeta f(y) dy\right) = \int T(\tau_y \zeta) f(y) dy.$$

This can be done by Riemann approximation of the integral. Now

$$T(\zeta) = \lim_{\delta \to 0} T(\zeta * \psi^{\delta}) = \lim_{\delta \to 0} \int T(\tau_y \psi^{\delta}) \zeta(y) \, dy = 0,$$

as
$$|T(\psi^{\delta})| \lesssim \delta^{\gamma}$$
.