Decision Making and Reinforcement Learning

Module 7: Temporal-Difference Learning

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Topics

Temporal difference prediction

Batch learning methods

SARSA (on-policy control)

Q-learning (off-policy control)

Learning Objectives

Implement TD prediction for a given policy

Apply TD methods in batch and/or offline

Implement the SARSA and Q-learning algorithms

 Compare and contrast properties and characteristics of on-policy vs off-policy TD learning

Review: Monte Carlo Prediction

- Prediction: Estimate state values for given policy π
- MC methods average observed utilities from multiple episodes

$$V^{\pi}(s) = \frac{1}{N} \sum_{i=1}^{N} G_i(s)$$

Review: Monte Carlo Prediction

- Prediction: Estimate state values for given policy π
- MC methods average observed utilities from multiple episodes

$$V^{\pi}(s) = \frac{1}{N} \sum_{i=1}^{N} G_i(s)$$

- In our implementation, we used a "moving average" calculation
- Suppose N(s) is the number of visits to state s prior to current episode

$$V^{\pi}(s) \leftarrow \frac{N(s)V^{\pi}(s) + G_i(s)}{N(s) + 1}$$

Let's rewrite the state value update expression...

$$V^{\pi}(s) \leftarrow \frac{N(s)V^{\pi}(s) + G_i(s)}{N(s) + 1} = V^{\pi}(s) + \frac{1}{N(s) + 1} \left(G_i(s) - V^{\pi}(s)\right)$$

"Old estimate" + "step size" × ("target" – "old estimate")

Let's rewrite the state value update expression...

$$V^{\pi}(s) \leftarrow \frac{N(s)V^{\pi}(s) + G_i(s)}{N(s) + 1} = V^{\pi}(s) + \frac{1}{N(s) + 1} \left(G_i(s) - V^{\pi}(s)\right)$$

"Old estimate" + "step size" × ("target" – "old estimate")

- We can also choose to give more weight to recent returns
- Constant- α MC exponentially decays the weights on past returns by learning rate α

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (G_i(s) - V^{\pi}(s))$$

Example: Constant- α MC

■ Suppose V(s) = 0; consider the reward sequence +3, -2, +1

Moving average MC:

•
$$V(s) = 0 + \frac{1}{1}(3 - 0) = 3$$

•
$$V(s) = 3 + \frac{1}{2}(-2 - 3) = \frac{1}{2}$$

•
$$V(s) = \frac{1}{2} + \frac{1}{3} \left(1 - \frac{1}{2} \right) = \frac{2}{3}$$

Example: Constant- α MC

■ Suppose V(s) = 0; consider the reward sequence +3, -2, +1

Moving average MC:

• Constant α MC, $\alpha = 0.5$:

•
$$V(s) = 0 + \frac{1}{1}(3 - 0) = 3$$

•
$$V(s) = 0 + \frac{1}{2}(3 - 0) = 1.5$$

•
$$V(s) = 3 + \frac{1}{2}(-2 - 3) = \frac{1}{2}$$

•
$$V(s) = 1.5 + \frac{1}{2}(-2 - 1.5) = -0.25$$

•
$$V(s) = \frac{1}{2} + \frac{1}{3} \left(1 - \frac{1}{2} \right) = \frac{2}{3}$$

•
$$V(s) = -0.25 + \frac{1}{2}(1 + 0.25) = 0.375$$

Temporal-Difference Learning

- MC requires episodic structure—what about infinite horizon problems?
- Recall from DP: $V^{\pi}(s)$ depends on values of successors of s

Temporal-Difference Learning

- MC requires episodic structure—what about infinite horizon problems?
- Recall from DP: $V^{\pi}(s)$ depends on values of successors of s

• One-step TD (TD(0)): Replace the *target* term with the sum of immediate reward with discounted successor state value!

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \left(r_{t+1} + \gamma V^{\pi}(s') - V^{\pi}(s) \right)$$
Target

■ Given: Policy π , learning rate α between 0 and 1

• Initialize $V^{\pi}(s) \leftarrow 0$

■ Given: Policy π , learning rate α between 0 and 1

- Initialize $V^{\pi}(s) \leftarrow 0$
- Loop:
 - Initialize starting state s if needed
 - **Generate** sequence $(s, \pi(s), r, s')$

- All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$
- Policy to evaluate: $\pi(s) = L$ for all states

- All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$
- Policy to evaluate: $\pi(s) = L$ for all states

Transition	
	0
	0

$$V^{\pi}(A) \leftarrow V^{\pi}(A) + \alpha (r + \gamma V^{\pi}(A) - V^{\pi}(A))$$
$$V^{\pi}(A) \leftarrow 0 + 0.5(3 + 0.8(0) - 0)$$

- All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$
- Policy to evaluate: $\pi(s) = L$ for all states

Transition		
	0	0
	0	0

$$V^{\pi}(A) \leftarrow V^{\pi}(A) + \alpha (r + \gamma V^{\pi}(B) - V^{\pi}(A))$$
$$V^{\pi}(A) \leftarrow 1.5 + 0.5(-2 + 0.8(0) - 1.5)$$

- All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$
- Policy to evaluate: $\pi(s) = L$ for all states

Transition			
	0	0	
	0	0	0

$$V^{\pi}(B) \leftarrow 0 + 0.5(1 + 0.8(0) - 0)$$

- All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$
- Policy to evaluate: $\pi(s) = L$ for all states

Transition				
	0	0		
	0	0	0	

- TD methods perform updates immediately with no episodic structure (MC)
- Useful if problems have long episodes or are continuing tasks

Offline Prediction

- We've presented constant- α MC and TD(0) as online, sample-based algorithms in contrast to dynamic programming
- It is also possible to use these as offline, sample-based algorithms

Offline Prediction

- We've presented constant- α MC and TD(0) as online, sample-based algorithms in contrast to dynamic programming
- It is also possible to use these as offline, sample-based algorithms

- Suppose we have a fixed set of samples in place of underlying model
- We can run TD(0) on the samples over and over until values converge

Offline Prediction

- We've presented constant- α MC and TD(0) as online, sample-based algorithms in contrast to dynamic programming
- It is also possible to use these as offline, sample-based algorithms

- Suppose we have a fixed set of samples in place of underlying model
- We can run TD(0) on the samples over and over until values converge

 We can perform batch updating, in which we make a single TD update based on the sum of all sample TD errors in sample set

Batch Updating

- Given: Training data s_0 , a_0 , r_1 , ..., s_{T-1} , a_{T-1} , r_T ; learning rate α
- Initialize $V^{\pi}(s) \leftarrow 0$

Batch Updating

- Given: Training data s_0 , a_0 , r_1 , ..., s_{T-1} , a_{T-1} , r_T ; learning rate α
- Initialize $V^{\pi}(s) \leftarrow 0$

- Loop until values converge:
 - $\delta(s) \leftarrow 0 \ \forall s$
 - For each state s_t in training data:
 - $\bullet \delta(s_t) \leftarrow \delta(s_t) + \left(r_{t+1} + \gamma V(s_{t+1}) V(s_t)\right)$

Batch Updating

- Given: Training data s_0 , a_0 , r_1 , ..., s_{T-1} , a_{T-1} , r_T ; learning rate α
- Initialize $V^{\pi}(s) \leftarrow 0$

- Loop until values converge:
 - $\delta(s) \leftarrow 0 \ \forall s$
 - For each state s_t in training data:

$$\bullet \delta(s_t) \leftarrow \delta(s_t) + \left(r_{t+1} + \gamma V(s_{t+1}) - V(s_t)\right)$$

- For each state s:
 - $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \delta(s)$

- All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$
- Policy to evaluate: $\pi(s) = L$ for all states

$$\delta(s_t) \leftarrow r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \delta(s_t)$$

- All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$
- Policy to evaluate: $\pi(s) = L$ for all states

$$\delta(s_t) \leftarrow r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \delta(s_t)$$

$$\delta(A) \leftarrow \left(3 + \gamma V(A) - V(A)\right) + \left(-2 + \gamma V(B) - V(A)\right)$$

$$V(A) \leftarrow V(A) + \alpha \delta(A)$$

- All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$
- Policy to evaluate: $\pi(s) = L$ for all states

$$\delta(s_t) \leftarrow r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \delta(s_t)$$

Iteration	

$$\delta(B) \leftarrow (1 + \gamma V(C) - V(B)) + (3 + \gamma V(A) - V(B))$$

$$V(B) \leftarrow V(B) + \alpha \delta(B)$$

- All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$
- Policy to evaluate: $\pi(s) = L$ for all states

$$\delta(s_t) \leftarrow r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \delta(s_t)$$

Itera	ition	

$$\delta(C) \leftarrow -2 + \gamma V(B) - V(C)$$
$$V(C) \leftarrow V(C) + \alpha \delta(C)$$

- All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$
- Policy to evaluate: $\pi(s) = L$ for all states

$$\delta(s_t) \leftarrow r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \delta(s_t)$$

Iteration			

- All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$
- Policy to evaluate: $\pi(s) = L$ for all states

$$\delta(s_t) \leftarrow r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \delta(s_t)$$

Iteration			

TD Learning for Control

- We can apply TD updates to Q values Q(s,a) rather than state values V(s)
- After each transition (s, a, r), we apply the TD update to Q(s, a)

$$Q(s,a) \leftarrow Q(s,a) + \alpha (r + \gamma Q(s',a') - Q(s,a))$$

TD Learning for Control

- We can apply TD updates to Q values Q(s,a) rather than state values V(s)
- After each transition (s, a, r), we apply the TD update to Q(s, a)

$$Q(s,a) \leftarrow Q(s,a) + \alpha (r + \gamma Q(s',a') - Q(s,a))$$

- Action a in state s has been chosen according to behavior policy
- May allow for exploration to learn about different actions

TD Learning for Control

- We can apply TD updates to Q values Q(s,a) rather than state values V(s)
- After each transition (s, a, r), we apply the TD update to Q(s, a)

$$Q(s,a) \leftarrow Q(s,a) + \alpha (r + \gamma Q(s',a') - Q(s,a))$$

- Action a in state s has been chosen according to behavior policy
- May allow for exploration to learn about different actions

- Which successor state Q value Q(s', a') to use?
- As with MC control, we need to consider on-policy vs off-policy learning

- Given: Step size α , exploration rate ϵ
- Initialize $Q(s,a) \leftarrow 0$, behavior policy π (e.g., ε -greedy)

- Given: Step size α , exploration rate ϵ
- Initialize $Q(s,a) \leftarrow 0$, behavior policy π (e.g., ε -greedy)

- Loop:
 - Initialize starting state s, action $a = \pi(s)$ if needed

- Given: Step size α , exploration rate ϵ
- Initialize $Q(s,a) \leftarrow 0$, behavior policy π (e.g., ε -greedy)

- Loop:
 - Initialize starting state s, action $a = \pi(s)$ if needed
 - Generate sequence $(s, a, r, s'), a' \leftarrow \pi(s')$

- Given: Step size α , exploration rate ϵ
- Initialize $Q(s,a) \leftarrow 0$, behavior policy π (e.g., ε -greedy)

- Loop:
 - Initialize starting state s, action $a = \pi(s)$ if needed
 - Generate sequence $(s, a, r, s'), a' \leftarrow \pi(s')$
 - $Q(s,a) \leftarrow Q(s,a) + \alpha (r + \gamma Q(s',a') Q(s,a))$

- Given: Step size α , exploration rate ϵ
- Initialize $Q(s,a) \leftarrow 0$, behavior policy π (e.g., ε -greedy)

- Loop:
 - Initialize starting state s, action $a = \pi(s)$ if needed
 - Generate sequence $(s, a, r, s'), a' \leftarrow \pi(s')$
 - $Q(s,a) \leftarrow Q(s,a) + \alpha (r + \gamma Q(s',a') Q(s,a))$
 - $s \leftarrow s', a \leftarrow a'$

- Given: Step size α , exploration rate ϵ
- Initialize $Q(s,a) \leftarrow 0$, behavior policy π (e.g., ε -greedy)

- Given: Step size α , exploration rate ϵ
- Initialize $Q(s,a) \leftarrow 0$, behavior policy π (e.g., ε -greedy)

- Loop:
 - Initialize starting state s if needed, action $a = \pi(s)$
 - Generate sequence (s, a, r, s')

- Given: Step size α , exploration rate ϵ
- Initialize $Q(s,a) \leftarrow 0$, behavior policy π (e.g., ε -greedy)

- Loop:
 - Initialize starting state s if needed, action $a = \pi(s)$
 - Generate sequence (s, a, r, s')

- Given: Step size α , exploration rate ϵ
- Initialize $Q(s,a) \leftarrow 0$, behavior policy π (e.g., ε -greedy)

- Loop:
 - Initialize starting state s if needed, action $a = \pi(s)$
 - **Generate** sequence (s, a, r, s')

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

$$\blacksquare s \leftarrow s'$$

Action a' selected according to target policy

- Suppose we currently have Q(A, L) = 1.5, Q(A, R) = 1
- Behavior policy is ε-greedy; $\alpha = 0.5$, $\gamma = 0.8$

- Suppose we currently have Q(A, L) = 1.5, Q(A, R) = 1
- Behavior policy is ε-greedy; $\alpha = 0.5$, $\gamma = 0.8$

- Observed (s, a, r, s') sequence: A, L, +3, A
- Suppose behavior policy generates a' = R (explore)

- Suppose we currently have Q(A, L) = 1.5, Q(A, R) = 1
- Behavior policy is ϵ -greedy; $\alpha = 0.5$, $\gamma = 0.8$

- Observed (s, a, r, s') sequence: A, L, +3, A
- Suppose behavior policy generates a' = R (explore)
- SARSA target: $r + \gamma Q(A, R) = 3 + 0.8(1) = 3.8$
- New Q-value: $Q(A, L) \leftarrow 1 + 0.5(3.8 1) = 2.4$

- Suppose we currently have Q(A, L) = 1.5, Q(A, R) = 1
- Behavior policy is ε-greedy; $\alpha = 0.5$, $\gamma = 0.8$

- Observed (s, a, r, s') sequence: A, L, +3, A
- Suppose behavior policy generates a' = R (explore)
- Q-learning target: $r + \gamma \max_{a} Q(A, a) = r + \gamma Q(A, L) = 3 + 0.8(1.5) = 4.2$
- New Q-value: $Q(A, L) \leftarrow 1 + 0.5(4.2 1) = 2.6$

SARSA vs Q-Learning

SARSA	Q-learning
 On-policy: learn values of behavior policy 	 Off-policy: learn values of target policy
	•

SARSA vs Q-Learning

SARSA	Q-learning
 On-policy: learn values of behavior policy 	 Off-policy: learn values of target policy
 Agents are more "cautious" as they worry about low rewards from exploration 	 Agents are more "optimistic" as only the best (greedy) actions at each state matter

SARSA vs Q-Learning

SARSA	Q-learning
 On-policy: learn values of behavior policy 	 Off-policy: learn values of target policy
 Agents are more "cautious" as they worry about low rewards from exploration 	 Agents are more "optimistic" as only the best (greedy) actions at each state matter

• SARSA and Q-learning are identical if behavior and target policy are the same, or if exploration is removed!

- Deterministic gridworld with one terminal (goal) state
- Living reward is -1 in all states except for "cliff", which rewards -100

- Deterministic gridworld with one terminal (goal) state
- Living reward is -1 in all states except for "cliff", which rewards -100

 Since transitions are deterministic, the optimal action at each state is to head in goal direction while ignoring the cliff

 We can use TD control to learn Q values and the corresponding policy

- Suppose we use SARSA (on-policy) with exploratory behavior policy
- States nearer cliff will have lower Q values than those further away!

- Suppose we use SARSA (on-policy) with exploratory behavior policy
- States nearer cliff will have lower Q values than those further away!

- Exploration introduces stochasticity into the problem
- Agent learns that it is more likely to "fall" into the cliff if closer to it

- Suppose we use SARSA (on-policy) with exploratory behavior policy
- States nearer cliff will have lower Q values than those further away!

- Exploration introduces stochasticity into the problem
- Agent learns that it is more likely to "fall" into the cliff if closer to it
- SARSA ends up learning the "safer path"
- Get to the goal but minimize risk of falling

- Suppose we use Q-learning (off-policy)
- Converged Q-values will not depend on proximity to cliff

- Suppose we use Q-learning (off-policy)
- Converged Q-values will not depend on proximity to cliff
- Even if behavior policy is exploratory, the Q-value update is "optimistic" and assumes that the agent acts greedily at all times

- Suppose we use Q-learning (off-policy)
- Converged Q-values will not depend on proximity to cliff
- Even if behavior policy is exploratory, the Q-value update is "optimistic" and assumes that the agent acts greedily at all times

- Learned Q-values will be optimal
- Shortest path will result from learned policy

MDP Method Comparison

https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf

Dynamic programming

MDP Method Comparison

https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf

Dynamic programming

MDP Method Comparison

Summary

- Temporal-difference methods update values after each transition
- Uses samples like MC, but bootstraps like DP

- Prediction: One-step (TD(0)) for online updates
- Batch updating can be done offline for fixed set of samples

- Control: On-policy (SARSA) vs off-policy (Q-learning)
- SARSA learns values of behavior policy, utilities reflect exploration
- Q-learning learns values of target policy, producing optimal policy