

Hauptmerkmale

- ✓ Keine Programmierkenntnisse erforderlich
- ✓ Funktionen wie Auf-Punkt-Zentrieren, Einfügen, Führen per Hand oder Wegeaufzeichnung
- ✓ Präzise Präsenzerkennung
- Ausübung einer definierten, konstanten Kraft während der Roboterbewegung
- ✓ Verleiht Ihrem Roboter Fingerspitzengefühl
- ✓ Staub- und wasserbeständig (IP67¹)

TECHNISCHE DATEN

Sensortyp	Sechs-Achsen-Kraft-/Drehmoment-Sensor			
Abmessungen (Höhe x Durchmesser)	37,5 x 70 mm			
Gewicht (mit integrierten Adapterplatten)	245 g			
	Fxy	Fz	Тху	Tz
Nennleistung	200 N	200 N	10 Nm	6,5 Nm
Einzelachsenverformung bei Nennleistung (typisch)	± 1,7 mm	± 0,3 mm	± 2,5 °	±5°
Einzelachsenüberlast	500 %	500 %	500 %	500 %
Signalrauschen² (typisch)	0,035 N	0,15 N	0,002 Nm	0,001 Nm
Störungsfreie Auflösung (typisch)	0,2 N	0,8 N	0,010 Nm	0,002 Nm
Gesamte Nichtlinearität	< 2 %	< 2 %	< 2 %	< 2 %
Hysterese (gemessen auf Fz-Achse, typisch)	< 2 %	< 2 %	< 2 %	< 2 %
Übersprechen (typisch)	< 5 %	< 5 %	< 5 %	< 5 %
Arbeitstemperaturbereich		0°C/	+55 °C	
Energiebedarf	Gleichstromeir bereich 7-2	0 0 00	1	
Befestigungsschrauben		5 x M4 x 6 mm 12 mm (für Kabe	lhalter)	ISO14581

¹ Bei Arbeiten in Umgebungen mit korrosiven Flüssigkeiten ist ein Schutz erforderlich

² Signalrauschen ist definiert als die Standardabweichung (1 σ) eines typischen eine Sekunde langen Nicht-Last-Signals.

Version 1.2

Copyright © 2018 by OnRobot A/S. Alle Rechte vorbehalten

MECHANISCHE ABMESSUNGEN

KOMPLEXES LADEN

Während des Ein-Achsen-Ladens kann der Sensor bis zu seiner Nennkapazität betrieben werden. Oberhalb der Nennkapazität ist das Ergebnis nicht akkurat und ungültig.

Während des komplexen Ladens (wenn mehr als eine Achse geladen ist) reduzieren sich die Nennkapazitäten. Die folgenden Diagramme zeigen komplexe Ladeszenarien.

Der Sensor kann nicht außerhalb des normalen Betriebsbereichs betrieben werden.

HEX-E SENSOR 2.0 DATENBLATT

ADAPTEROPTIONEN

Adapter "A2"

Adapter "B2"

Adapter "C2"

Adapter "A2" Befestigungsschrauben: M6x8 BN20146 (x4)	Adapter "B2" Befestigungsschrauben: M5x8 BN20146 (x7)	Adapter "C2" Befestigungsschrauben: M6x8 BN20146 (x4)
Universal Robots UR3, UR5, UR10	KUKA KR 3 R540	KUKA KR 6
KUKA KR 16, KR 16 S, KR 16 R1610	KUKA KR 6 fivve, KR 6 sixx WP, KR 6 R1820, KR 6 R1820 HP	KUKA KR 16 L6
KUKA KR 20-3, KR 20-3 C, KR 20 R1810	KUKA KR10 fivve, KR 10 sixx WP, KR 10 R1420, KR 10 R1420 HP	ABB 140, 1410 *
KUKA KR 8 R2010	KUKA KR 8 R1620, KR 8 R1620 HP	ABB 1600 *
KUKA KR 12 R1810	ABB 120, 1200 *	
KUKA KR 22 R1610		
KUKA LBR iiwa 7 R800, LBR iiwa 14 R820		

^{*} Nur mechanische Kompatibilität

SCHNITTSTELLENTYPEN

USB	CAN	Ethernet - TCP/UDP	EtherCAT			
Maximale Abtastfrequenz 500 Hz						
Unterstützte Systeme: Windows; Linux; ROS, UR						

STECKVERBINDER-PINOUT

1:V+

2: CAN High

3 **:** V-

4: CAN Low