Build a Personalized Online Course Recommender System with Machine Learning

Marco Boccenti 03/07/23

Outline

- Introduction and Background
- Exploratory Data Analysis
- Content-based Recommender System using Unsupervised Learning
- Collaborative-filtering based Recommender System using Supervised learning
- Conclusion
- Appendix

Introduction

Project background and context

In Al Training Room, learners from all over the world can learn various technologies such as Machine Learning, Al, Data Science, Cloud, and App development. The company's rapid growth has increased the number of courses and learners, which makes it harder for learners to find new interesting courses and create a personalized learning path. Thus, this project aims to build a recommender system that helps learners discover new courses that match their interests and better pave their learning paths.

Problem states and hypotheses

The main problem addressed in this project is the difficulty for learners to discover new courses that fit their interests and to create a personalized learning path due to the increasing number of courses and learners. Our hypothesis is that building a personalized recommender system based on course content and learners' previous interactions with courses can help learners discover new courses of interest and facilitate their learning paths. We will explore and compare various unsupervised and supervised machine learning models to find the best performing model for this task.

Exploratory Data Analysis

Course counts per genre

Genre	Count
BackendDev	78
MachineLearning	69
Database	60
DataAnalysis	56
DataScience	38
CloudComputing	37
BigData	36
Python	28
FrontendDev	19
Containers	17
R	17
ComputerVision	10
Chatbot	4
Blockchain	4

Course enrollment distribution

- We have 233306 enrollments
- The histogram shows the enrolment distributions, e.g., how many users rated just 1 item or how many rated 10 items, etc.

20 most popular courses

Used Pandas groupby() and size() methods on the item column to aggregate the rating count for each item, then use the sort_values() method to sort the course enrollment count, and use the slice method to get the top 20 courses.

TITLE	ENROLLS	ID
data privacy fundamentals	3624	DS0301EN
mapreduce and yarn	3670	BD0115EN
sql and relational databases 101	3697	DB0101EN
docker essentials a developer introduction	4480	CO0101EN
introduction to cloud	4983	CC0101EN
statistics 101	5015	ST0101EN
r for data science	5237	RP0101EN
build your own chatbot	5512	CB0103EN
deep learning 101	6323	ML0115EN
data visualization with python	6709	DV0101EN
blockchain essentials	6719	BC0101EN
data science hands on with open source tools	7199	DS0105EN
spark fundamentals	7551	BD0211EN
machine learning with python	7644	ML0101ENv3
data science methodology	7719	DS0103EN
data analysis with python	8303	DA0101EN
hadoop 101	10599	BD0111EN
big data 101	13291	BD0101EN
introduction to data science	14477	DS0101EN
python for data science	14936	PY0101EN

Word cloud of course titles

Content-based Recommender System using Unsupervised Learning

Flowchart of content-based recommender system using user profile and course genres

Enrolled courses of user1

Couse1

Couse2

Evaluation results of user profile-based recommender system

The threshold can be fine-tuned to adjust the size of generated recommendations score_threshold = 10.0

On average, 61 courses have been recommended per user

Top-10 commonly recommended courses across all users

Course	Times recommended
TA0106EN	608
GPXX0IBEN	548
excourse22	547
excourse21	547
ML0122EN	544
excourse04	533
GPXX0TY1EN	533
excourse06	533
excourse31	524
excourse73	516

Flowchart of content-based recommender system using course similarity

Course 1: "Machine Learning for Everyone"

	machine	learning	for	everyone	beginners
course1	1	1	1	1	0

Course 2: "Machine Learning for Beginners"

	machine	learning	for	everyone	beginners
course2	1	1	1	0	1

Evaluation results of course similarity based recommender system

```
In [27]: N res dict = {}
             users, courses, sim scores = generate recommendations for all()
             res dict['USER'] = users
             res dict['COURSE ID'] = courses
             res dict['SCORE'] = sim scores
             res df = pd.DataFrame(res dict, columns=['USER', 'COURSE ID', 'SCORE'])
             # Save the dataframe
             res df.to csv("profile rs results course similarities.csv", index=False)
In [28]: M res_df.head()
   Out[28]:
                 USER COURSE ID SCORE
              0 37465
                        excourse67 0.708214
              1 37465
                       excourse72 0.652535
              2 37465
                       excourse74 0.650071
              3 37465
                        BD0145EN 0.623544
              4 37465
                       excourse68 0.616759
```

Flowchart of clustering-based recommender system

Clustering on User Profiles

Evaluation results of clustering-based recommender system

```
user in cluster 0 will be sugessted 3 courses as ['PY0101EN' 'CB0103EN' 'DA0101EN']
user in cluster 1 will be sugessted 3 courses as ['DS0101EN' 'BD0101EN' 'PY0101EN']
user in cluster 2 will be sugessted 3 courses as ['COO301EN' 'COO201EN' 'BCO101EN']
user in cluster 3 will be sugessted 3 courses as ['PYO101EN' 'MLO101ENv3' 'MLO115EN']
user in cluster 4 will be suggested 3 courses as ['BD0111EN' 'BD0141EN' 'BD0115EN']
user in cluster 5 will be suggested 3 courses as ['CBO103EN' 'DSO101EN' 'BDO101EN']
user in cluster 6 will be sugessted 3 courses as ['COO101EN' 'COO201EN' 'COO301EN']
user in cluster 7 will be sugessted 3 courses as []
user in cluster 8 will be sugessted 3 courses as ['COO101EN' 'PYO101EN' 'CCO101EN']
user in cluster 9 will be sugessted 3 courses as ['DS0101EN' 'RP0101EN' 'DS0103EN']
user in cluster 10 will be sugessted 3 courses as ['COO101EN' 'LBO101ENv1' 'COO401EN']
user in cluster 11 will be sugessted 3 courses as ['RPO101EN' 'DSO101EN' 'DSO103EN']
```

Collaborative-filtering Recommender System using Supervised Learning

Flowchart of KNN based recommender system

User-Item interaction matrix

		Machine Learning With Python	Machine Learning 101	Machine Learning Capstone	SQL with Python	Python 101
		***	A			
1	user2	3.0	3.0	3.0	3.0	3.0
	user3	2.0	3.0	3.0	2.0	
imilar users	user4	3.0	3.0	2.0	2.0	3.0
	user5	2.0	3.0	3.0		
1	user6	3.0	3.0	?		3.0
			***	***	***	

Predict the rating of user *user6* to item *Machine Learning Capstone*

Flowchart of NMF based recommender system

Non-negative Matrix Factorization

User-item interaction matrix: A 10000 x 100

	item1		item100
user1			
user2	3.0	3.0	3.0
user3	2.0	2.0	-
user4	3.0	2.0	3.0
user5	2.0	-	-
user6	3.0	-	3.0

User matrix: **U** 10000 x 16

	feature1		feature16
user1			
user2	•••		
user3		:	
user4		:	
:	:	:	
user6			

Item matrix: I 16 x 100

	item1	 item100
feature1		
feature2		
feature16		

Χ

Flowchart of Neural Network Embedding based recommender system

Explicit User and Item Feature Engineering

Compare the performance of collaborative-filtering models

Visualization of the performance metric (such as RMSE) of different collaborative-filtering models built so far

Optional: Build a course recommender system app with Streamlit

Conclusions

THE CONSTRUCTION OF A RECOMMENDER SYSTEM THAT UTILIZES COLLABORATIVE FILTERING AND SUPERVISED LEARNING TECHNIQUES.

BUILDING RECOMMENDER SYSTEM BASED ON COLLABORATIVE FILTERING AND SUPERVISED LEARNING

WE CAN ATTRACT MORE STUDENTS AND IMPROVE THEIR LEARNING EXPERIENCE BY FACILITATING THE DISCOVERY OF NEW, CAPTIVATING COURSES AND OPTIMIZING THEIR LEARNING PATHS.

THE INCREASED USAGE OF MY RECOMMENDER SYSTEMS BY STUDENTS TO ENGAGE WITH A WIDER RANGE OF COURSES WILL RESULT IN A RISE IN REVENUE FOR COURSERA.

Appendix

- IBM Machine Learning Professional Certificate
 https://www.coursera.org/professional-certificates/ibm-machine-learning
- My Github
 https://github.com/mboccenti/Recommender system project