DD2476: Search Engines and Information Retrieval Systems

Johan Boye*
KTH
Lecture 2

^{*} Many slides inspired by Manning, Raghavan and Schütze

Indexing pipeline

Documents

Byte stream

Token stream

Term stream

Inverted index

Friends, romans, and countrymen

Friends romans countrymen

friend roman countryman

Basic text processing

- Text comes in many different formats (html, text, Word, Excel, PDF, PostScript, ...), languages and character sets
- It might need to be
 - separated from images and other non-textual content
 - stripped of markup in HTML or XML
- Most NLP tools require plain text (sometimes with markup)

Character formats

- Text encodings
 - ASCII (de-facto standard from 1968), 7-bit (=128 chars, 94 printable). Most common on the www until Dec 2007.
 - Latin-1 (ISO-8859-1), 8-bit, ASCII + 128 extra chars
 - Unicode (109 000 code points)
 - UTF-8 (variable-length encoding of Unicode)

Tokenization

How many tokens are there in this text?

- Look, harry@hp.com, that's Harry's mail address at Hewlett-Packard. Boy, does that guy know Microsoft Word! He's really working with the state-of-the-art in computers. And yesterday he told me my IP number is 131.67.238.92. :-)

Tokenization

- A token is a meaningful minimal unit of text.
- Usually, spaces and punctuation delimit tokens
- Is that always the case?
 - San Francisco, Richard III, et cetera, ...
 - J.P. Morgan & co
 - http://www.kth.se, jboye@nada.kth.se
 - **-** :-)
- The exact definition is application-dependent:
 - Sometimes it's important to include punctuation among the tokens (e.g. language modeling)
 - Sometimes it's better not to (e.g. search engines)

Some tricky tokenization issues

- Apostrophes
 - Finland's → Finland's? Finlands? Finland? Finland s?
 - don't → don't? don t? do not? don t?
- Hyphens
 - state-of-the-art → state-of-the-art? state of the art?
 - Hewlett-Packard
 - the San Francisco-Los Angeles flight
- Numbers
 - Can contain spaces or punctuation: 123 456.7 or 123,456.7 or 123 456,7
 - **+46 (8) 790 60 00**
 - **131.169.25.10**
 - My PGP key is **324a3df234cb23e**

So how do we do it?

- In assignment 1.1:
 - In the general case, assume that space and punctuation (except apostrophes and hyphens) separate tokens
 - Specify special cases with regular expressions

Normalization

- After tokenization, we sometimes need to "normalize" tokens
 - Abbreviations: U.S., US \rightarrow U.S.
 - Case folding: Window, window → window
 - Diacritica: a, å, ä, à, á, â \rightarrow a, c, ç, č \rightarrow c, n, ñ \rightarrow n, l, ł, \rightarrow l, ...
 - Umlaut: Tübingen → Tuebingen, Österreich → Oesterriech
- Need for normalization is highly dependent on application
 - Is it always a good idea to lowercase Apple and Windows?
 - Should we remove diacritica?
 - When should we regard run and runs as the same word?

Morphemes

- Words are built from smaller meaningful units called morphemes.
- A morpheme belongs to one of two classes:
 - stem: the core meaning-bearing unit
 - affix: small units glued to the stem to signal various grammatical functions
- An affix can in its turn be classified as a
 - prefix (un-)
 - suffix (-s, -ed, -ly)
 - infix (Swedish korru-m-pera)
 - circumfix (German ge-sag-t)

Word formation

- Words can be inflected to signal grammatical information:
 - play, plays, played, playing
 - cat, cats, cat's, cats'
- Words can also be derived from other words:
 - friend → friendly → friendliness
- Words can be compound:
 - smart + phone → smartphone
 - anti + missile → anti-missile
- Clitics
 - Le + hôtel \rightarrow L'hôtel, Ce + est \rightarrow c'est
 - She is \rightarrow she's, She has \rightarrow she's

Language variation

English morphology is exceptionally simple!

Language variation

Parler

The verb parler "to speak", in French orthography and IPA transcription

	Indicative				Subjunctive		Conditional	Imperative
	Present	Simple past	Imperfect	Simple future	Present	Imperfect	Present	Present
je	/barl/	/barle/	/parls/	/parleral	/barl/	part-asse /partas/	/parlerais	
tu	/parl/	/parla/ parl-as	/parls/	/parl-eras	/parl-es	/parlasses	parl-erais /paʁləʁɛ/	/parl/
11	/parl/	/barla/ baul-a	/paule/	parl-era /paslesa/	/parl/	/parld/	/barlers/	
nous	/parl5/	/parlam/	parl-ions /parlj5/	parl-erons /pasles5/	parl-ions /parlj5/	parl-assions /parlasj5/	parl-erions /paslesj5/	/parl5/
vous	/parle/	/parlot/	/parlje/	parl-erez /paslase/	/parlje/	parl-assiez /parlasje/	/parleriez	part-ez /paste/
lls	/parl/	/parle:r/	/paule/	parl-eront /pasles5/	parl-ent /parl/	parl-assent /paulas/	parl-eraient /paulaus/	

Some non-English words

- German: Lebensversicherungsgesellschaftsangestellter
 - "Life insurance company employee"
- Greenlandic: iglukpisuktunga
 - iglu = house, kpi = build, suk = (I) want, tu = myself, nga = me
- Finnish: järjestelmättömyydellänsäkäänköhän
 - "not even with its lack of order"

Lemmatization

- Map inflected form to its lemma (=base form)
- "The boys' cars are different colours" → "The boy car be different color"
- Requires language-specific linguistic analysis
 - part-of-speech tagging
 - morphological analysis
- Particularity useful in morphologically rich languages, like Finnish, Turkish, Hungarian

Stemming

- Don't do morphological or syntactic analysis, just chop off the suffixes
 - No need to know that "foxes" is plural of "fox"
- Much less expensive than lemmatization, but can be very wrong sometimes
 - stocks \rightarrow stock, stockings \rightarrow stock
- Stemming usually improves recall but lowers precision

Porter's algorithm

- Rule-based stemming for English
 - ATIONAL \rightarrow ATE
 - SSES \rightarrow SS
 - $ING \rightarrow \epsilon$
- Some context-sensitivity
- (W>1) EMENT $\rightarrow \epsilon$
 - REPLACEMENT → REPLAC
 - CEMENT → CEMENT

Compound splitting

Can be achieved with finite-state techniques.

Compound splitting

- In Swedish: försäkringsbolag (insurance company)
 - bolag is the head
 - försäkring is a modifier
 - the s is an infix
- This process can be recursive:
 - försäkringsbolagslagen (the insurance company law)
 - en is a suffix indicating definite form
 - lag is the head
 - the s is an infix
 - försäkringsbolag is the modifier

Stop words

- Can we exclude the most common words?
 - In English: the, a, and, to, for, be, ...
 - Little semantic content
 - ~30% of postings for top 30 words
- However:
 - "Let it be", "To be or not to be", "The Who"
 - "King of Denmark"
 - "Flights to London" vs "Flights from London"
 - Trend is to keep stop words: compression techniques means that space requirements are small

Language-specific issues

- Chinese and Japanese have no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - Not always guaranteed a unique tokenization
- Japanese have several alphabets
 - Katakana and Hiragana (syllabic)
 - Kanji (Chinese characters)
 - Romaji (Western characters)
 - All of these may be intermingled in the same sentence

Chinese tokenization

我喜欢新西兰花

Chinese tokenization

我喜欢新西兰花

我 | 喜欢 | 新西兰 | 花 "I like New Zealand flowers"

我 | 喜欢 | 新 | 西兰花 "I like fresh broccoli"

Chinese tokenization

The greedy matching algorithm:

- 1. Put a pointer in the beginning of the string
- 2. Find the longest prefix of the string that matches a word in the dictionary
- 3. Move the pointer over that prefix
- 4. Go to 2

我喜欢新西兰花

我 | 喜欢 | 新西兰 | 花 "I like New Zealand flowers" 我 | 喜欢 | 新 | 西兰花 "I like fresh broccoli"

Greedy matching

Thecatinthehat → The cat in the hat

The table down there \rightarrow ?

- Wouldn't work so well for English
- But works very well for Chinese

Sum-up

- Reading, tokenizing and normalizing contents of documents
 - File types and character encodings
 - Tokenization issues: punctuation, compound words, word order, stop words
 - Normalization issues: diacritica, case folding, lemmatization, stemming
- We're ready for indexing

Indexing and search

Recap:

- We want to quickly find the most relevant documents satisfying our information need.
- The user gives a search query.
- The engine searches through the index, retrieves the matching documents, and possibly ranks them.

The index

Conceptually: the term-document matrix

One-word queries

denmark

• Return all the documents in which 'denmark' appears. (Task 1.2)

Multi-word queries

copenhagen denmark

- Intersection query (Task 1.3)
- Phrase query (Task 1.4)
- Union query (Assignment 2)

Practical indexing

- We need a sparse matrix representation.
- In the computer assignments we use:
 - a hashtable for the dictionary
 - sorted arraylists for the rows
- Rows are called postings lists.

Intersection

Walk through two postings lists simultaneously

- Runs in O(n+m), where n,m are the lengths of the lists
- We can do better (if index isn't changing too fast)

Skip pointers

Add skip pointers at indexing time

 By using skip pointers, we don't have to compare 41 to 17 or 21

Skip pointers: Where?

Tradeoff:

- More skips → shorter skip spans ⇒ more likely to skip.
 But lots of comparisons to skip pointers.
- Fewer skips → few pointer comparison, but then long skip spans ⇒ few successful skips.
- Heuristic: for length L, use \sqrt{L} evenly spaced skip pointers

Phrase queries

- E.g. "Barack Obama"
- Should not match "President Obama"
 - The concept of phrase queries has proven easily understood by users; one of the few "advanced search" ideas that works
 - Many more queries are implicit phrase queries
- For this, it no longer suffices to store only
 <term : docs> entries

First attempt: Biword index

- "Friends, Romans, Countrymen" generates the biwords
 - friends romans
 - romans countrymen
- Each of these biwords is now a dictionary term
- Two-word phrase query-processing is now immediate.
- Longer phrases: friends romans countrymen
- Intersect friends romans and romans countrymen?

Biword index: disadvantages

False positives

- Requires post-processing to avoid
- Index blowup due to bigger dictionary
 - Infeasible for more than biwords, big even for them

Positional indexes

 For each term and doc, store the positions where (tokens of) the term appears

```
<br/>
**<br/>
**I: 7, 18, 33, 72, 86, 231;<br/>
**2: 3, 149;<br/>
**4: 17, 191, 291, 430, 434;<br/>
**5: 363, 367, ...>
```

Intersection needs to deal with more than equality

Processing phrase queries

- Extract inverted index entries for each distinct term:
 to, be, or, not.
- Intersect their doc:position lists to enumerate all positions with "to be or not to be".
 - *to*:
 - 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...
 - *− be:*
 - 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...
- Same general method for proximity searches

Exercise

Which docs match the query "fools rush in"?

```
fools: 2: 1,17,74,222;
4: 78,108,458;
7: 3,13,23,193;
in: 2: 3,37,76,444,851;
4: 10,20,110,470,500;
7: 5,15,25,195;
```

rush: 2: 2,75,194,321,702; 4: 9,69,149,429,569; 7: 4,14,404;

Positional index size

- Need an entry for each occurrence, not just once per document
- Consider a term with frequency 0.1%
 - Doc contain 1000 tokens \rightarrow 1 occurrence
 - $-100\,000$ tokens $\rightarrow 100$ occurrences
- Rule of thumb: is 2–4 as large as a non-positional index
- Positional index size 35–50% of volume of original text
- Caveat: all of this holds for "English-like" languages

Dictionary structures

- How do we store terms in the dictionary?
- Hash tables:
 - Lookup in constant time O(1)
 - No wildcard queries
 - Occasionally we need to rehash everything as the vocabulary grows. This is expensive.
- Trees:
 - Lookup in logarithmic time (if tree is balanced)
 - Allows for wildcard queries
 - Requires standard (alphabetical) order of terms

Binary tree

B-tree

Every internal node has a number of children in the interval [a,b] where a, b are appropriate natural numbers, e.g., [2,4].

Large indexes (Task 1.7)

- The web is big:
 - 1998: 26 million unique web pages
 - 2008: **1 000 000 000 000** (1 trillion) unique web pages!
- What if the index is too large to fit in main memory?
 - Dictionary in main memory, postings on disk
 - Dictionary (partially) on disk, postings on disk
 - Index on several disks (cluster)

Large indexes (Task 1.7)

- Task 1.7 requires you to implement an index which is wholly or partly stored on disk.
 - Your program should **NOT** hold the entire index in main memory during query execution
 - Query execution should have sub-linear time complexity
 - You can use any class in the Java SE library, but don't use third-party libraries or systems. Specifically: **Don't** use a database!

Mixed MM and disk storage

Tree: Nodes below a certain depth stored on disk

- Hashtable: All postings put on disk, hash keys in MM
- A distributed hash table allows keys and postings to be distributed of a large number of computers

Hardware basics

- Access to data in memory is much faster than access to data on disk.
- **Disk seeks**: No data is transferred from disk while the disk head is being positioned.
 - Therefore: Transferring one large chunk of data from disk to memory is faster than transferring many small chunks.
 - Disk I/O is block-based: Reading and writing of entire blocks (as opposed to smaller chunks).
 - Block sizes: 8KB to 256 KB.

Hardware assumptions

• In the book:

statistic	value
average seek time	$5 \text{ ms} = 5 \times 10^{-3} \text{ s}$
transfer time per byte	$0.02 \mu s = 2 \times 10^{-8} s$
processor's clock rate	$10^9 s^{-1} (1 \text{GHz})$
low-level operation	$0.01 \mu s = 10^{-8} s$
(e.g., compare & swap a word)	
size of main memory	several GB
size of disk space	1 TB or more

Basic indexing

 Term-document pairs are collected when documents are parsed

Doc 1

I did enact Julius Caesar I was killed i' the Capitol; Brutus killed me. Doc 2

So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious Term Doc# did enact julius caesar was killed the capitol brutus killed me SO let it be with caesar the noble brutus hath told **vou** caesar was ambitious

Sorting step

- The list of term-doc pairs is sorted
- This must be done on disk for large lists
- Goal: Minimize the number of disk seeks

Term	Doc#	Term	Doc#
I	1	ambitious	2
did	1	be	2
enact	1	brutus	1
julius	1	brutus	2
caesar	1	capitol	1
L	1	caesar	1
was	1	caesar	2
killed	1	caesar	2
i'	1	did	1
the	1	enact	1
capitol	1	hath	1
brutus	1	1	1
killed	1	1	1
me	1	i'	1
so	2	it	2
let	2	julius	1
it	2	killed	1
be	2	killed	1
with	2	let	2
caesar	2	me	1
the	2	noble	2
noble	2	so	2
brutus	2	the	1
hath	2	the	2
told	2	told	2
you	2	you	2
caesar	2	was	1
was	2	was	2
ambitious	2	with	2

A bottleneck

- Say we want to sort 100,000,000 term-doc-pairs.
- A list can be sorted by N log₂ N comparison operations.
 - How much time does that take? (assume 10⁻⁸ s/operation)
- Suppose that each comparison additionally took 2 disk seeks
 - How much time? (assuming 5×10^{-3} /disk seek)

Scaling index construction

- In-memory index construction does not scale.
- We need to store intermediate results on disk

Blocked sort-based indexing

- (term-doc) records
 - Define a <u>Block</u> ~ 10M of such records
 - Accumulate postings for each block, sort, write to disk.
 - Then merge the blocks into one long sorted order.

Sorting 10 blocks of 10M records

- First, read each block and sort within:
 - Quicksort takes N In N expected steps
 - In our case (10M) In (10M) steps
- Exercise: estimate total time to read each block from disk and and quicksort it.
 - assuming transfer time 2 x 10⁻⁸ s per byte
- 10 times this estimate gives us 10 sorted <u>runs</u> of 10M records each.

Blocked sort-based indexing

```
BSBINDEXCONSTRUCTION()
   n \leftarrow 0
   while (all documents have not been processed)
3 do n \leftarrow n + 1
        block \leftarrow ParseNextBlock()
        BSBI-INVERT(block)
5
        WRITEBLOCKTODISK(block, f_n)
6
   MERGEBLOCKS(f_1, \ldots, f_n; f_{\mathsf{merged}})
```

From BSBI to SPIMI

- BSBI requires that the dictionary can be kept in main memory
- Alternative approach: Construct several separate indexes and merge them
 - Generate separate dictionaries for each block
 - No need to keep dictionary in main memory
 - Accumulate postings directly in postings list (as in assignment 1).
- This is called SPIMI Single-Pass In-Memory Index construction (Figure 4.4)

SPIMI-invert

```
SPIMI-INVERT(token_stream)
     output\_file = NewFile()
     dictionary = NewHash()
     while (free memory available)
     do token \leftarrow next(token\_stream)
        if term(token) ∉ dictionary
 5
           then postings\_list = ADDToDictionary(dictionary, term(token))
 6
           else postings\_list = GetPostingsList(dictionary, term(token))
        if full(postings_list)
 8
           then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))
 9
        ADDToPostingsList(postings_list, doclD(token))
10
     sorted\_terms \leftarrow SortTerms(dictionary)
11
     WRITEBLOCKTODISK(sorted_terms, dictionary, output_file)
12
13
     return output_file
```

Dynamic indexing

- Up to now, we have assumed that collections are static.
- They rarely are:
 - Documents come in over time and need to be inserted.
 - Documents are deleted and modified.
- This means that the dictionary and postings lists have to be modified:
 - Postings updates for terms already in dictionary
 - New terms added to dictionary

Simplest approach

- Maintain "big" main index
- New docs go into "small" auxiliary index
- Search across both, merge results
- Deletions
 - Invalidation bit-vector for deleted docs
 - Filter docs output on a search result by this invalidation bit-vector
- Periodically, re-index into one main index

Logarithmic merge

- Maintain a series of indexes, each twice as large as the previous one.
- Keep smallest (Z₀) in memory
- Larger ones (I₀, I₁, ...) on disk
- If Z₀ gets too big (> n), write to disk as I₀
 - or merge with I_0 (if I_0 already exists) as Z_1
- Either write merge Z₁ to disk as I₁ (if no I₁)
 - or merge with I₁ to form Z₂
- etc.

Dynamic indexing at search engines

- All the large search engines now do dynamic indexing
- Their indices have frequent incremental changes
 - News items, blogs, new topical web pages
- But (sometimes/typically) they also periodically reconstruct the index from scratch
 - Query processing is then switched to the new index, and the old index is then deleted

Wildcard queries

- care*: find all docs containing any word beginning "care".
- Easy with binary tree (or B-tree) lexicon: retrieve all words in range: care ≤ w < carf
- *less: find words ending in "less": harder
 - Maintain an additional B-tree for terms backwards.

Can retrieve all words in range: *ssel ≤ w < ssem*.

Query processing

- At this point, we have an enumeration of all terms in the dictionary that match the wild-card query.
- We still have to look up the postings for each enumerated term.
- E.g., consider the query:

se*ate AND fil*er

This may result in the execution of many Boolean *AND* queries.

* in the middle of a query

- How can we handle the query pro*cent?
- We could look up pro* AND *cent in a B-tree and intersect the two term sets
 - Expensive
- The solution: transform wild-card queries so that the
 *'s occur at the end
- Two solutions: Permuterm Index, and Bigram index (see the textbook)

Spelling correction

- Two principal uses
 - Correcting document(s) being indexed
 - Correcting user queries to retrieve "right" answers
 - Usually documents are left intact, but queries spell-checked
- Two main flavors:
 - Isolated word
 - Will not catch typos resulting in correctly spelled words,
 e.g., from → form
 - Context-sensitive, e.g. I flew form Heathrow to Narita.

Spelling correction

- Fundamental premise there is a lexicon from which the correct spellings come
- Two basic choices for this
 - A standard lexicon such as
 - Webster's English Dictionary
 - An "industry-specific" lexicon hand-maintained
 - The lexicon of the indexed corpus
 - E.g., all words on the web
 - All names, acronyms etc.
 - (Including the mis-spellings)

Spelling correction

- Methods:
 - Edit distance
 - Weighted edit distance
 - n-gram overlap

Edit distance

What is dist(intention, execution)?

```
intention

ntention

etention

etention

etention

exention

exention

← delete i

← substitute n by e

← substitute t by x

exenution

← substitute t by x

← substitute n by c
```

- Cost 1+2+2+1+2 = 8
- Can be efficiently computed with dynamic programming

Weighted edit distances

- As above, but the weight of an operation depends on the character(s) involved
 - Meant to capture OCR or keyboard errors, e.g. m
 more likely to be mis-typed as n than as q
 - Therefore, replacing m by n is a smaller edit distance than by q
 - This may be formulated as a probability model
- Requires weight matrix as input
- Modify dynamic programming to handle weights

Using edit distances

- Given query, enumerate all strings within a preset (weighted) edit distance (e.g., 2)
- Intersect this set with list of "correct" words
 - Show terms you found to user as suggestions, or
 - Look up all possible corrections in our inverted index and return all docs ... slow, or
 - Run with a single most likely correction

Using edit distances

- Given a query, do we compute its edit distance to every dictionary term?
 - Expensive and slow
- How do we find the candidate dictionary terms?
 - One alternative: n-gram overlap
 - Can also be used by itself for spelling correction

n-gram overlap

- Enumerate all the n-grams in the query string as well as in the lexicon
 - november, trigrams nov, ove, vem, emb, mbe, ber
 - december, trigrams dec, ece, cem emb, mbe, ber
 - overlap 3/9 unique trigrams
 - the Jacquard coefficient = 3/9 = 0.33
 - generally, $\dfrac{\mid X \cap Y \mid}{\mid X \cup Y \mid}$ where X,Y are sets

Matching *n*-grams

- Find matching bigrams for *lord*
- We assume we have a bigram index

• Return postings with J.C. (or other measure) over certain threshold

Context-sensitive correction

- Flight <u>form</u> London
- Like to respond "Did you mean flight from London?"
- Try to correct one word using the methods described:
 - Bright form London
 - Flight from London
 - Flight form Boston
- Suggest the alternative with lots of hits

General issues in spell correction

- We enumerate several possible alternatives to misspelled queries – which ones should we present to the user?
- Use heuristics:
 - The alternative matching most documents
 - Query log analysis what have others been searching for?
 What has this user been searching for?
- Spell checking is expensive
 - Run only on queries that matched few docs