

Predictive Model Selection & Validation

UC Irvine - ISI BUDS 2022

Presented July 19, 2022

Daniel L. Gillen Chancellor's Professor and Chair Department of Statistics University of California, Irvine **Model Complexity**

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Model complexity

Model complexity

- In regression analyses, we can base model selection on a pre-specified set of predictor variables
 - variable selection which includes/excludes a particular variable ('best' subsets regression)
 - shrinkage methods which include all predictors but controls the size of the coefficients (one form of this is called ridge regression...more later!)
- Each approach employs a measure of 'complexity'
 - number of covariates
 - amount of control on the size of a coefficient
- Generically we will refer to this measure as a tuning parameter

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Model complexity

Model complexity

- Determining a specific value for the tuning parameter is part of the model selection process
- For best subsets regression the tuning parameter is fairly easy to conceptualize, mainly because we can think in terms of the interpretation of predictors and their associated coefficients
- Other classes of restricted estimators also have associated measures of complexity
 - polynomial transformations
 - piecewise polynomials
 - natural cubic splines
 - smoothing splines

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Model complexity

Model complexity

- Again, in each case we can still embed the choice of tuning parameter into the model selection process
 - in particular, we can view the determination of the level of complexity of our model as a model selection problem
- The selection process requires a means of assessing any given model
 - test or generalization error
 - error observed in an independent sample
- Our goal is to develop tools for the joint tasks of model assessment and selection

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Generalization performance

- We can formalize model assessment via a loss function and use expected prediction error, EPE, as a criterion for choosing a model
 - choose $f(\cdot)$ which minimizes EPE

$$f^*(\cdot) = \operatorname{argmin}_{f(\cdot)} E[L(Y, f(X))]$$

- Two examples of commonly considered loss functions are
 - 1. Squared error (L_2) loss: $E(Y f(X))^2$
 - 2. Absolute (L_1) loss: E|Y f(X)|

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Estimation of In-Sample Error

Generalization performance

- ▶ L_2 loss is commonly used for many reasons, and in this case the we have $f^*(\cdot) = E[Y|X = x]$, the conditional expectation or regression function
- In this case there are many ways we can estimate E[Y|X=x], and we would like a framework that can be used to assess, and order, competing choices.

Generalization performance

- For a specified outcome variable Y and vector of predictor variables X, suppose we have a prediction model $\hat{f}(X)$, the form of which has been determined on the basis of a training sample
- We measure errors between Y and $\hat{f}(X)$ by specifying a loss function $L(Y, \hat{f}(X))$
- ► The *test* or *generalization* error is the expected prediction error over an *independent* test sample

$$\mathsf{EPE} = \mathsf{E}_{X,Y} \left[L(Y, \hat{f}(X)) \right]$$

- the expectation is taken over the joint distribution of X and Y
- the average error, were the prediction model to be applied to an independent sample from the population

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Generalization performance

- If we knew the true joint distribution of (X, Y), we could evaluate this expression directly
 - feasible in a simulation study where we know the truth
- However, in real life situations we won't know this joint distribution and so, for a given $\hat{f}(X)$, we need to estimate EPE
- A tempting choice could be the *training error*

$$err = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}(x_i))$$

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

UCIrvine University of California, Irvine

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Estimation of In-Sample Error

Generalization performance

- Unfortunately the training error is not a good estimate of test error
 - the problem is that the estimate $\hat{y}_i = \hat{f}(x_i)$ uses y_i
 - the solution is specifically chosen because is does well in predicting the training data
- More specifically, the training error consistently decreases with model complexity
 - ▶ an extreme case is including a parameter for every observation (a *saturated* model), so that $\hat{f}(x_i) = y_i$ and there is zero training error!
- A model with zero training error can be viewed as an overfit to the training data and will typically generalize poorly
 - high sampling variability

Model assessment and selection

Model assessment and selection

- We've already identified two separate goals we might have in mind: model selection and model assessment
- Model selection deals with estimating the performance of competing models in order to choose the best one
 - estimate the test error distribution across these models
 - choose the model which corresponds to the minimum
- Model assessment deals with evaluating the generalization error when applying the final model to new data
 - the final model is still chosen on the basis of the training data
 - seek an honest assessment of generalization error

Model Complexity

Generalization Performance

Model Assessment

The Bias-Variance Decomposition

Assessing EPE

Model assessment and selection

Model assessment and selection

▶ In a data-rich situation, we could approach these goals jointly by splitting the data into three parts:

Training | Validation | Test data data

- Training data: fit the models
 - obtain point estimates for any given model under consideration
 - repeated use across models
- Validation data: choose between models
 - estimate the prediction error for model selection
 - repeated use across models
- Test data: estimate generalization error of the final model
 - one-time use, at the end of the analysis

Model Complexity

Generalization Performance

Model Assessment

The Bias-Variance Decomposition

Assessing EPE

Model assessment and selection

Model assessment and selection

- Typically, we are not in a position to split the data into three parts
- A compromise might be to split the data into two parts

Training data data

and approximate the validation step

- analytically: C_p, AIC and BIC
- efficiency sample re-use: cross-validation and the bootstrap
- Even still, it may not be that splitting into two parts is feasible
 - consider whether or not these methods can be used to obtain reasonable assessments of generalization error

Model Complexity

Generalization Performance

Model Assessment

The Bias-Variance Decomposition

Assessing EPE

The bias-variance decomposition

Squared error loss

For a continuous outcome, suppose the data arise from the model

$$Y = f(X) + \epsilon$$

- where $E[\epsilon] = 0$ and $Var[\epsilon] = \sigma^2$
- ▶ Under L_2 loss, the expected prediction error for an estimate $\hat{f}(\cdot)$ at $X = x_0$ can be decomposed as

$$\mathsf{EPE}(x_0) = \sigma^2 + \left\{ \mathsf{E}[\hat{f}(x_0)] - f(x_0) \right\}^2 + \mathsf{Var}[\hat{f}(x_0)]$$

▶ irreducible error + bias² + variance

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

The bias-variance decomposition

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Estimation of In-Sample Error

Squared error loss

- \triangleright This decomposition is specific to the L_2 loss but can be evaluated for any given estimator
- For linear regression we have

$$\mathsf{EPE}(x_0) = \sigma^2 + \left\{ f(x_0) - \mathsf{E}[\hat{f}(x_0)] \right\}^2 + ||\mathbf{h}(x_0)||^2 \sigma^2$$

• where $\mathbf{h}(x_0) = x_0(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$

Assessing EPE

Earlier, we noted that the training err

err =
$$\frac{1}{n}\sum_{i=1}^{n}L(y_i,\hat{f}(x_i))$$

would not typically be a good estimate of EPE

- In particular, we would expect err to be somewhat lower than the true EPE
 - that is, the estimate would be overly optimistic
- Part of the discrepancy is due to where the evaluation points occur
 - EPE refers to expected error on an independent sample
 - referred to as extra-sample error

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Assessing EPE

- Methods that directly estimate the extra-sample error include cross-validation and the bootstrap
 - both involve the clever use and re-use of the training data
- Towards an analytic treatment of understanding the nature of the optimism associated with using the training data to evaluate generalization error, we can consider the *in-sample* error

$$Err = \frac{1}{n} \sum_{i=1}^{n} E_{y} \left[E_{y} new \left[L(Y_{i}^{new}, \hat{f}(x_{i})) \right] \right]$$

► The notation Y^{new} indicates that we observe *n* new outcome values at each of the training points x_i , i = 1, ...,n

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Assessing EPE

- Each of the n components of the in-sample error averages over the randomness in two distributions
 - the randomness in the observed outcomes in the training data, y
 - ightharpoonup the randomness in the 'new' outcome observation, Y_i^{new}
- ► The *optimism* is defined as the expected difference between the in-sample error and the training error

op
$$\equiv Err - E_{y}[err]$$

expectation is taken with respect to the sampling distribution based on the training data, y

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Estimation of In-Sample Error

Assessing EPE

For squared error loss, a little algebra leads to

op =
$$\frac{2}{n}\sum_{i=1}^{n} \text{Cov}[\hat{y}_i, y_i]$$

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Estimation of In-Sample Error

Assessing EPE

This definition leads to the relation

$$\mathsf{Err} = \mathsf{E}_y\left[\mathsf{err}\right] + \frac{2}{n} \sum_{i=1}^n \mathsf{Cov}[\hat{y}_i, y_i]$$

So, the extent to which err is optimistic, as an estimator of Err, depends on how strongly y_i influences its own prediction

University of California, Irvine

Assessing EPE

▶ The expression simplifies if \hat{y}_i is linear in the y's

$$\hat{y}_i = \sum_{j=1}^n \pi_j y_j$$

so that

op =
$$\frac{2}{n} \sum_{i=1}^{n} E_{y} [(\hat{y}_{i} - E_{y}[\hat{y}_{i}])(y_{i} - E_{y}[y_{i}])]$$

= $\frac{2}{n} \sum_{i=1}^{n} \pi_{i} \text{Var}[y_{i}]$

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Estimation of In-Sample Error

Assessing EPE

For example, under the additive error model

$$Y = f(X) + \epsilon$$

with $E[\epsilon] = 0$ and $Var[\epsilon] = \sigma^2$, we obtain

$$Err = E_y [err] + \frac{2}{n} p \sigma^2$$

p is the number of parameters fit in the regression

Estimation of in-sample error

- While decision theory tells us that EPE is a natural criterion for model selection, the in-sample error can still be useful
 - having an analytic treatment makes the approach convenient
 - can be effective if we focus on relative differences in error. between model options, rather than the absolute error itself
- From the previous relation, the general form of an estimator for Err is

$$\widehat{\mathsf{Err}} = \mathsf{err} + \widehat{\mathsf{op}}$$

where op is an estimate of the optimism

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Mallow's C_p

For the linear model, squared error loss leads to Mallow's C_p statistic:

$$C_p = \operatorname{err} + \frac{2}{n}p\sigma^2$$

$$= \frac{1}{n} \left\{ \operatorname{RSS} + 2p\hat{\sigma}^2 \right\}$$

- ▶ The estimate $\hat{\sigma}^2$ is typically taken from a low-bias model
 - the most complex model under consideration
- \triangleright The C_p statistic penalizes the residual sum of squares by a factor proportional to the number of parameters being estimated
 - the more complex the model, the greater p will be and the greater the penalty

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Akaike information criterion; AIC

- The Akaike information criterion is a more general estimate of Err when a log-likelihood function is used as the loss function
 - for a model parameterized by θ , we take

$$L(Y, f_{\theta}(X)) = -2 \log \Pr_{\theta}(Y|X)$$

- sometimes referred to as cross-entropy loss or deviance
- multiplying by -2 and taking the log makes the loss for the Normal distribution match the squared error loss
- We use this loss function all the time as a means for choosing the 'best' model from our training data
 - minimizing the observed loss is maximum likelihood estimation

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Akaike information criterion; AIC

AIC relies on the following relationship

$$-2E_Y [\log Pr_{\hat{\theta}}(Y|X)] \approx -\frac{2}{n}E_y [\log like] + 2\frac{p}{n}$$

- this relationship holds asymptotically as $n \to \infty$
- $\hat{\theta}$ is the maximum likelihood estimate
- 'loglike' is the maximized log-likelihood

loglike =
$$\sum_{i=1}^{n} \log \Pr_{\hat{\theta}}(y_i | X)$$

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE

Akaike information criterion; AIC

For any general purpose likelihood AIC is defined as

AIC =
$$-\frac{2}{n}$$
loglike + $2\frac{p}{n}$

- for the Normal model, with $\hat{\sigma}^2$ known, this is equivalent to C_p
- The penalty imposed by AIC is similar to that imposed by C_p
 - proportional to the number of parameters being estimated
- In more general settings, when the estimator is linear

$$\hat{y} = Ly$$

we can replace p with the effective degrees of freedom df = tr(L) (eg. penalized regression methods)

Model Complexity

Generalization Performance

Model Assessment and Selection

The Bias-Variance Decomposition

Assessing EPE