On low-rank updates of matrix functions

Ana Šušnjara, Daniel Kressner

EPF Lausanne, MATHICSE, ANCHP

Delft, February 2, 2015

Introduction

2 The matrix exponential

Introduction

The matrix exponential

Motivation

Given $A \in \mathbb{C}^{n \times n}$ and a function f, compute low-rank update

$$f(A + BC^*) - f(A),$$

where $B, C \in \mathbb{C}^{n \times r}$, $r \ll n$.

Special cases

Sherman-Morrison-Woodbury formula

$$(A + \text{rank-}k)^{-1} - A^{-1} = \text{rank-}k.$$

Rank-1 update of a rational matrix function [Bernstein/van Loan]

$$r(A + \text{rank-}1) - r(A) = \text{rank-}k,$$

where r(z) = p(z)/q(z), $k = \max \{\deg p, \deg q\}$.

Krylov subspaces

Given a matrix $A \in \mathbb{C}^{n \times n}$, and a vector $b \in \mathbb{C}^n$

ullet the **polynomial Krylov subspace** of order k is defined as

$$\mathcal{K}_k(A,b) = \{ P(A)b : P \in \mathcal{P}_{k-1} \},\,$$

where \mathcal{P}_{k-1} denotes the space of polynomials of deg $\leq k-1$;

the rational Krylov subpace of order k is defined as

$$\mathcal{K}_k^{(d)}(A,b) = \{R(A)b : R \in \mathcal{P}_{k-1}/Q\},\$$

where Q is a fixed polynomial with d poles, $d \le k-1$, disjoint from the spectrum of A.

The **tensor Krylov subspace** for (A,b) and (A^*,c) is defined as

$$\mathcal{K}_{\mathcal{I}}^{\otimes} = \operatorname{span} \left\{ \mathcal{S}_{k_1}(A, b) \otimes \mathcal{S}_{k_2}(A^*, c) \right\},$$

where $\mathcal{I}=(k_1,k_2)\in\mathbb{N}\times\mathbb{N}$, $\mathcal{S}_{k_1}(A,b)$ and $\mathcal{S}_{k_2}(A^*,c)$ are either polynomial or rational Krylov subspaces for (A,b) and (A^*,c) .

Polynomial Krylov method for rank-1 matrix update

[Beckermann/Kressner]

Given $A \in \mathbb{C}^{n \times n}$ and a function f, compute low-rank update

$$f(A + bc^*) - f(A), \quad b, c \in \mathbb{C}^n.$$

- Use the Arnoldi algorithm to compute
 - orthonormal basis U_k of $\mathcal{K}_k(A,b)$.
 - orthonormal basis V_k of $\mathcal{K}_k(A^*,c)$.
- II. Compress $H_k = U_k^* A V_k$, $\tilde{b} = U_k^* b$ and $\tilde{c} = V_k^* c$.
- III. Compute the compressed problem $\tilde{D}_k = f(H_k + \tilde{b}\tilde{c}^*) f(H_k)$.
- IV. Return the approximate update $D_k = U_k^* \tilde{D}_k V_k$.

Introduction

2 The matrix exponential

Corrected approximation

Motivation: The Arnoldi algorithm computes k+1 vectors, but only the first k are used. How to exploit extra information to obtain

- a better approximation,
- an error estimate for

$$\exp(A+bb^*)-\exp(A)$$
?

Basic idea [Saad]: replace the standard Arnoldi approximation of $\exp(A)b$ with the corrected approximation using φ -functions.

Definition

The φ -functions are defined by the integral representation

$$\varphi_0(z) = e^z, \quad \varphi_l(z) = \frac{1}{l!} \int_0^1 e^{(1-t)z} t^{l-1} dt, \quad l \in \mathbb{N}, z \in \mathbb{C}.$$

Corrected approximation

Corrected approximation

$$\exp(A + bb^*) - \exp(A) \approx D_k + E_k$$

 E_k involves computation of φ_1 – function.

ullet E_k is an estimate for the approximation error

$$\exp(A + bb^*) - (\exp(A) + D_k).$$

- **Problem**: in the computation of E_k , a function evaluation of a large matrix is needed.
 - \Rightarrow use φ_2 function instead (\star)

Numerical experiment

- Adjacency matrix $A \in \mathbb{R}^{492 \times 492}$ in Erdös collaboration graph
- $A=\tilde{A}+bb^*,$ where bb^* is a rank-1 perturbation resulting from removal of an edge

Results for $\exp(A)$ using the polynomial Krylov method.

1 Introduction

2 The matrix exponential

Spectral projector

Definition

If $A=VDV^*$ is the spectral decomposition arranged so that $D=\mathrm{diag}(D_1,D_2)$, with $D_1\in\mathbb{C}^{p\times p}$, $\mathrm{diag}(D_1)\in\mathbb{C}^-$ and $D_2\in\mathbb{C}^{q\times q}$, $\mathrm{diag}(D_2)\in\mathbb{C}^+$, then $\mathrm{sign}(A)=V\begin{bmatrix} -I_p & 0 \\ 0 & I_q \end{bmatrix}V^*$.

Definition

Let the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A be ordered as

The **spectral projector** onto the invariant subspace associated with eigenvalues $\lambda_1, \ldots, \lambda_m$ is defined as

$$\Pi_{<\sigma}(A) = \frac{1}{2}(I - \operatorname{sign}(A - \sigma I)).$$

Divide-and-conquer method

Consider a sparse matrix $A \in \mathbb{C}^{n \times n}$ with a decomposition

$$A = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} + BB^*, \quad B \in \mathbb{C}^{n \times r}, \quad r \ll n.$$

 \Rightarrow divide-and-conquer method to approximate $\Pi_{<\sigma}(A)$

$$\Pi_{<\sigma}(A) \approx \begin{pmatrix} \Pi_{<\sigma}(A_{11}) & 0 \\ 0 & \Pi_{<\sigma}(A_{22}) \end{pmatrix} + D_k$$

Data-sparse representation

Idea: recursively apply one step of divide-and-conquer.

- By definition, $\operatorname{rank}(D_k) \leq kr \Longrightarrow D_k$ can be stored in a low-rank format.
- Data structure similar to \mathcal{H} -matrices.

Advantages: computational and storage demands significantly reduced.

A and A^2 based methods

Lets assume that A and $A + bb^*$ are

- invertible, and
- Hermitian.

Two approaches:

- I. Krylov subspaces associated with A, as before;
- II. Krylov subspaces associated with ${\cal A}^2$ and its rank-1 update.

Motivation: to avoid singularity we consider different representation of sign function. [Frommer et al.]

$$\begin{split} &\operatorname{sign}(A+bb^*) - \operatorname{sign}(A) \\ &= A \left[f \left((A+bb^*)^2 \right) - f \left(A^2 \right) \right] + bb^* f \left((A+bb^*)^2 \right), \end{split}$$

where $f(x) = x^{-1/2}$.

A^2 based approach

Two-step approach

$$\begin{split} f\left((A+bb^*)^2\right) - f\left(A^2\right) &= \underbrace{f\left(A^2+X\right) - f\left(A^2+aa^*\right)}_{\mathbb{I}} \\ &+ \underbrace{f\left(A^2+aa^*\right) - f\left(A^2\right)}_{\mathbb{I}}, \ X = aa^* - dd^*. \end{split}$$

To obtain the approximation, compute:

- $V_k^{\rm I}, H_k^{\rm I}$ corresponding to the Krylov subspace with respect to $A^2 + aa^*$ and d,
- $V_k^{\rm II}$, $H_k^{\rm II}$ corresponding to the Krylov subspace with respect to A^2 and a.

Convergence result for A^2 approach

Theorem

If
$$A = UDU^*$$
 and $H_k = \tilde{U}\tilde{D}\tilde{U}^*$, then

$$\left\| A \left[f \left(A^2 + a a^* \right) - f \left(A^2 \right) - V_k^{\text{II}} \left(f \left(H_k^{\text{II}} + \tilde{a} \tilde{a}^* \right) - f \left(H_k^{\text{II}} \right) \right) (V_k^{\text{II}})^* \right] \right\|_2 \le C \cdot \| r_k \|_2,$$

where r_k is residual in the k-th step of the CG method applied to the linear system $A^2x=a$ with initial iterate zero and $C=C(a,U,\tilde{U})$.

Numerical experiment

- $A \in \mathbb{R}^{500 \times 500}$ tridiagonal
- $\sigma(A) \subset [-10, -0.25] \cup [0.25, 10]$

Comparison of A and A^2 based approach

Summary

- Krylov method for low–rank updates
- Corrected approximation for exponential function
- Computation of spectral projector via DC method

Thanks!:)