Seismicity of an Area

Earthquake Engineering Research Centre, International Institute of Information Technology Hyderabad 500032, India

Faults in India

Earthquakes in India

Calculation of Seismicity

- Selection of city (Lat Long)
- 2. Consider all the earthquakes and faults in the radius of 300km from the city.

- 3. Assigning each earthquake to the fault by calculating the distance between earthquake and fault.
- 4. Defining number of earthquakes of each magnitude class for each fault.

Magnitude	Fault ID					
Magnitude Class	F1	F2	F3	F4	F5	
3.5	4	18	31	7	7	
4.5	2	7	17	2	3	
5.5	1	6	9	1	1	
6.5	1	5	5	1	1	

5. Get number of years.

Magnitudo	Fault ID					
Magnitude Class	F1	F2	F3	F4	F 5	
3.5	5	1	2	3	4	
4.5	2	5	1	5	5	
5.5	1	1	4	4	1	
6.5	1	3	2	1	2	

6. Mean annual rate of occurrence,
$$\lambda_{lk} = \frac{No.of\ Earthquakes}{No\ of\ Years}$$

Magnitude		Fault ID			
Class (M _k)	F1	F2	F3	F4	F 5
3.5	0.02	0.09	0.155	0.035	0.035
4.5	0.01	0.035	0.085	0.01	0.015
5.5	0.005	0.03	0.045	0.005	0.005
6.5	0.005	0.025	0.025	0.005	0.005

7. Seismicity variable 'a' and 'b' from Gutenberg and Richter (1942) relationship.

$$\log \lambda_{lk} = a_1 + b_1 M_k$$

• Get final **a** and **b** values based on regression analysis for each fault.

Seismicity	Fault ID				
variable	1	2	3	4	5
а	-1.02	-0.54	0.12	-0.60	-0.46
b	-0.21	-0.17	-0.27	-0.28	-0.30

- 8. Recalculate the mean annual rate of occurrence from \mathbf{a} , \mathbf{b} and $\mathbf{M}_{\mathbf{k}}$.
- 9. Return period, $T_{lk} = 1 / \lambda_{lk}$

Magnitude Class	Fault ID				
Class					
(M_k)	F1	F2	F3	F4	F5
3.5	38				
4.5	64				
5.5	136				
6.5	227				

10. Hazard rate

Non Uniform Probability

$$h_{lk}(t) = \frac{\Phi[X]}{(1 - \Phi[X])}$$

$$\phi[X] = \frac{1}{t \, \xi_{lk} \sqrt{2\pi}} e^{-\left(\frac{1}{2} \left(\frac{\ln t - \lambda_{lk}}{\xi_{lk}}\right)^2\right)}$$

Where,

 λ_{lk} = Mean

 ξ_{lk} = Standard Deviation of random variable = **0.2**

 $\phi[]$ = Standard normal density

 $\Phi[]$ = Cumulative distribution functions

11. Future Seismicity

$$n_{lk}(T_0 + Y|T_0) = \int_{T_0}^{T_0 + Y} h_{lk}(\tau) d\tau$$

