Apprentissage supervisé et systèmes de détection : une approche de bout-en-bout impliquant les experts en sécurité

Anaël Beaugnon anael.beaugnon@ssi.gouv.fr

Thèse de doctorat encadrée par Francis Bach et Pierre Chifflier

- 1 Contexte
- 2 Contributions
- 3 ILAB : un système d'apprentissage actif complet
- 4 Conclusion

Système de détection

Opérateurs de sécurité

Système de détection

Méthodes de détection et contraintes opérationnelles

Méthodes de détection

- Signatures
- Systèmes expert
- Détection d'anomalie
- Apprentissage supervisé

Méthodes de détection et contraintes opérationnelles

Contraintes opérationnelles

a_oa_o... a_oa_o

Système de détection

Administrateur de sécurité

Méthodes de détection

- Signatures
- Systèmes expert
- Détection d'anomalie
- Apprentissage supervisé

Contraintes opérationnelles

- Efficacité
- Transparence
- Robustesse

Rieck Computer security and machine learning: Worst enemies or best friends ?, 2011.

Sommer et al. Outside the closed world: on using machine learning for network intrusion detection, S&P'10.

Méthodes de détection et contraintes opérationnelles

Contraintes opérationnelles

a_oa_o···· a_oa_o

Système de détection

Administrateur de sécurité

Méthodes de détection

- Signatures
- Systèmes expert
- Détection d'anomalie
- Apprentissage supervisé

Contraintes opérationnelles

- Efficacité
- Transparence
- ► Robustesse

Rieck Computer security and machine learning: Worst enemies or best friends ?, 2011.

Sommer et al. Outside the closed world: on using machine learning for network intrusion detection, S&P'10.

Modèle de détection supervisé

Modèle de détection supervisé

Données brutes → **Données d'apprentissage**

Vecteurs numériques

Données brutes

Données d'apprentissage

- 1 Extraction d'attributs
- 2 Annotation

Apprentissage et validation du modèle

Chaîne de traitement de l'apprentissage supervisé

- 1 Extraction d'attributs
- 3 Classe de modèles ?

2 Annotation

4 Validation

PDF Smutz et al., Malicious PDF detection using metadata and structural features, ACSAC'12.

Android Gascon et al., Structural detection of Android malware using embedded call graphs, AISEC'13.

Flash Overveldt et al., Flashdetect: Actionscript 3 malware detection, RAID'12.

- 1 Contexte
- 2 Contributions
- 3 ILAB : un système d'apprentissage actif complet
- 4 Conclusion

Une approche de bout-en-bout

- 1 Extraction d'attributs
 - Annotation

- 3 Classe de modèles ?
- 4 Validation

Wagstaff Machine learning that matters, ICML'12.

I- Mettre en place un modèle de détection supervisé

- 3 Classe de modèles ?
- 4 Validation

Contributions

- ► Méthodologie
- ▶ DIADEM : apprentissage et validation de modèles

SSTIC'17 Le Machine Learning confronté aux contraintes opérationnelles des systèmes de détection

II- Annoter un jeu de données avec un effort réduit

Contributions

- Stratégie d'apprentissage actif
 RAID'17 ILAB: An Interactive Labelling Strategy for Intrusion Detection
- ➤ Système d'annotations
 AICS'18, IDEA'18 End-to-End Active Learning for Computer Security Experts

III- Générer des attributs automatiquement

Contributions

- Comparaison de 3 méthodes (Khiops, Featuretools et Hidost)
- Pistes d'amélioration

Khiops Boulle, Towards automatic feature construction for supervised classification, ECML'14.

Featuretools Kanter et al., Deep feature synthesis: towards automating data science endeavors, DSAA' 15.

Hidost Śrndić et al., Hidost: a static machine learning based detector of malicious files. EURASIP'16.

Une approche de bout-en-bout

- 1 Apprentissage et validation
- 2 Annotation
- 3 Extraction d'attributs

- 3 et 4
- 2
- (1)

Une approche de bout-en-bout

- 1 Apprentissage et validation
- 2 Annotation
- 3 Extraction d'attributs

- 3 et 4
- 2
- (1)

- 1 Contexte
- 2 Contributions
- 3 ILAB : un système d'apprentissage actif complet
- 4 Conclusion

Manque de données annotées

- Jeux de données publics
- Crowd-sourcing

Manque de données annotées

- Jeux de données publics
- Crowd-sourcing

Labels binaires ← Cible de détection

Familles malveillantes ← Taxonomie des alertes

Objectifs

- Maximiser la performance du modèle de détection
- Minimiser l'effort humain
 - Nombre d'annotations
 - Temps global

Objectifs

- Maximiser la performance du modèle de détection
- Minimiser l'effort humain
 - Nombre d'annotations
 - Temps global

Problématiques

- Quelles instances doivent être annotées ?
 - X Sélection aléatoire uniforme
- 2 Comment concevoir l'interface utilisateur ?

Système d'apprentissage actif complet

Stratégie d'apprentissage actif

Système d'annotations

Stratégie d'apprentissage actif

Sélectionne les instances à annoter intelligemment.

RAID'17 ILAB: An Interactive Labelling Strategy for Intrusion Detection

Système d'annotations

Adaptée aux besoins des experts en sécurité.

AICS'18, IDEA'18 End-to-End Active Learning for Computer Security Experts

- 1 Contexte
- 2 Contributions
- 3 ILAB : un système d'apprentissage actif complet
 - Stratégie d'apprentissage actif
 - Système d'annotations
- 4 Conclusion

Objectifs

Quelles instances doivent être annotées ?

Objectifs

Pour un budget d'annotations B:

- Maximiser la performance de détection
- ► Minimiser le temps d'attente

Settles Active learning literature survey, 2010.

Lewis et al. A sequential algorithm for training text classifiers, 1994.

Lewis et al. A sequential algorithm for training text classifiers, 1994.

Lewis et al. A sequential algorithm for training text classifiers, 1994.

Lewis et al. A sequential algorithm for training text classifiers, 1994.

Lewis et al. A sequential algorithm for training text classifiers, 1994.

Lewis et al. A sequential algorithm for training text classifiers, 1994.

Schütz et al. Performance thresholding in practical text classification, CIKM'06.

Biais d'échantillonnage

Les biais d'échantillonnage détériorent les performances de détection.

	Uncertainty Sampling
Maximiser la performance de détection	X
Minimiser le temps d'attente	✓

Biais d'échantillonnage

Les biais d'échantillonnage détériorent les performances de détection.

	Uncertainty Sampling
Maximiser la performance de détection	X
Minimiser le temps d'attente	✓

Comment éviter les biais d'échantillonnage sans augmenter le temps d'attente ?

Éviter les biais d'échantillonnage

Annotation: label binaire + famille

Éviter les biais d'échantillonnage

Annotation: label binaire + famille

1 Régression logistique binaire $P(y = 1 \mid x) = \frac{1}{1 + \exp(-(\mathbf{w}^T x + b))}$

Éviter les biais d'échantillonnage

Annotation: label binaire + famille

Régression logistique binaire $P(y = 1 \mid x) = \frac{1}{1 + \exp(-(\mathbf{w}^T x + b))}$

Éviter les biais d'échantillonnage

Annotation: label binaire + famille

- **1** Régression logistique binaire $P(y = 1 \mid x) = \frac{1}{1 + \exp(-(\mathbf{w}^T x + b))}$
- Uncertainty sampling

Éviter les biais d'échantillonnage

Annotation: label binaire + famille

- Régression logistique binaire $P(y = 1 \mid x) = \frac{1}{1 + \exp(-(\mathbf{w}^T x + b))}$
- Uncertainty sampling
- 3 Détection de catégories rares

Clusters = Familles définies par l'utilisateur

Éviter les biais d'échantillonnage

Annotation: label binaire + famille

- **1** Régression logistique binaire $P(y = 1 \mid x) = \frac{1}{1 + \exp(-(\mathbf{w}^T x + b))}$
- Uncertainty sampling
- 3 Détection de catégories rares

Clusters = Familles définies par l'utilisateur

Éviter les biais d'échantillonnage

Éviter les biais d'échantillonnage

1 Régression logistique multi-classes

Éviter les biais d'échantillonnage

- Régression logistique multi-classes
- 2 Mélange de gaussiennes :

$$p_{\mathcal{N}(\mu_f, \Sigma_f)}(x) \propto \exp\left(-\frac{1}{2} \left\| \Sigma_f^{-\frac{1}{2}}(x - \mu_f) \right\|^2\right)$$

Éviter les biais d'échantillonnage

- Régression logistique multi-classes
- Mélange de gaussiennes :

$$p_{\mathcal{N}(\mu_f, \Sigma_f)}(x) \propto \exp\left(-\frac{1}{2} \left\| \Sigma_f^{-\frac{1}{2}}(x - \mu_f) \right\|^2\right)$$

- 3 Demandes d'annotations
 - Détecter de nouvelles familles

$$\underset{x \in \mathcal{C}_f}{\operatorname{arg\,min}} \ p_{\mathcal{N}(\mu_f, \Sigma_f)}(x)$$

Éviter les biais d'échantillonnage

- Régression logistique multi-classes
- Mélange de gaussiennes :

$$p_{\mathcal{N}(\mu_f, \Sigma_f)}(x) \propto \exp\left(-\frac{1}{2} \left\| \Sigma_f^{-\frac{1}{2}}(x - \mu_f) \right\|^2\right)$$

- 3 Demandes d'annotations
 - ► Détecter de nouvelles familles

$$\underset{x \in \mathcal{C}_f}{\operatorname{arg\,min}} \ p_{\mathcal{N}(\mu_f, \Sigma_f)}(x)$$

Instances représentatives

$$\underset{x \in \mathcal{C}_f}{\operatorname{arg \, max}} \ p_{\mathcal{N}(\mu_f, \Sigma_f)}(x)$$

Éviter les biais d'échantillonnage

- Régression logistique multi-classes
- Mélange de gaussiennes :

$$p_{\mathcal{N}(\mu_f, \Sigma_f)}(x) \propto \exp\left(-\frac{1}{2} \left\| \Sigma_f^{-\frac{1}{2}}(x - \mu_f) \right\|^2 \right)$$

- 3 Demandes d'annotations
 - Détecter de nouvelles familles

$$\underset{x \in \mathcal{C}_f}{\operatorname{arg\,min}} \ p_{\mathcal{N}(\mu_f, \Sigma_f)}(x)$$

Instances représentatives

$$\underset{x \in \mathcal{C}_f}{\operatorname{arg\,max}} \ p_{\mathcal{N}(\mu_f, \Sigma_f)}(x)$$

Éviter les biais d'échantillonnage

- Régression logistique multi-classes
- Mélange de gaussiennes :

$$p_{\mathcal{N}(\mu_f, \Sigma_f)}(x) \propto \exp\left(-\frac{1}{2} \left\| \Sigma_f^{-\frac{1}{2}}(x - \mu_f) \right\|^2 \right)$$

- 3 Demandes d'annotations
 - Détecter de nouvelles familles

$$\underset{x \in \mathcal{C}_f}{\operatorname{arg\,min}} \ p_{\mathcal{N}(\mu_f, \Sigma_f)}(x)$$

Instances représentatives

$$\underset{x \in \mathcal{C}_f}{\operatorname{arg\,max}} \ p_{\mathcal{N}(\mu_f, \Sigma_f)}(x)$$

Réduire le temps d'attente

Diviser pour régner

- Réduction de la complexité
- Annotations pendant les calculs

Réduire le temps d'attente

Diviser pour régner

- Réduction de la complexité
- Annotations pendant les calculs

Choix de conception

Éviter les biais d'échantillonnage

Détection de catégories rares

Réduire le temps d'attente

Diviser pour régner

Simulations sur des jeux de données annotées

	#instances	#attributs
Contagio	10,000	113
NSL-KDD	74,826	122

Stratégies d'apprentissage actif

Uncertainty Almgren et al., Using Active Learning in Intrusion Detection, CSFW 2004.

Görnitz et al., Toward Supervised Anomaly Detection, JAIR 2013.

Aladin Stokes et al., Aladin: Active Learning of Anomalies to Detect Intrusions, 2008.

Éviter les biais d'échantillonnage

ILAB et Aladin détectent bien les différentes familles.

Uncertainty Almgren et al., Using Active Learning in Intrusion Detection, CSFW 2004.

Görnitz et al. Görnitz et al., Toward Supervised Anomaly Detection, JAIR 2013.

Aladin Stokes et al., Aladin: Active Learning of Anomalies to Detect Intrusions, 2008.

Réduire le temps d'attente

Temps d'attente réduit grâce à ILAB

Aladin Stokes et al., Aladin: Active Learning of Anomalies to Detect Intrusions, 2008.

ILAB évite les biais d'échantillonnage sans augmenter le temps d'attente.

	Uncertainty	Görnitz et al.	Aladin	ILAB
Pas de biais	Х	X	√	✓
Rapide	✓	X	X	✓

https://github.com/ANSSI-FR/SecuML

Uncertainty Almgren et al., Using Active Learning in Intrusion Detection, CSFW 2004.

Görnitz et al., Görnitz et al., Toward Supervised Anomaly Detection, JAIR 2013.

Aladin Stokes et al., Aladin: Active Learning of Anomalies to Detect Intrusions, 2008.

ILAB évite les biais d'échantillonnage sans augmenter le temps d'attente.

	Uncertainty	Görnitz et al.	Aladin	ILAB
Pas de biais	Х	X	√	√
Rapide	✓	X	X	√

https://github.com/ANSSI-FR/SecuML

Uncertainty Almgren et al., Using Active Learning in Intrusion Detection, CSFW 2004. Görnitz et al. Görnitz et al., Toward Supervised Anomaly Detection, JAIR 2013.

Aladin Stokes et al., Aladin: Active Learning of Anomalies to Detect Intrusions, 2008.

Aladin Stokes et al., Aladin: Active Learning of Anomalies to Detect Intrusions, 2008.

ILAB Beaugnon et al., ILAB: An Interactive Labelling Strategy for Intrusion Detection, RAID 2017.

Qu'en pensent les experts en sécurité ?

- 1 Contexte
- 2 Contributions
- 3 ILAB : un système d'apprentissage actif complet
 - Stratégie d'apprentissage actif
 - Système d'annotations
- 4 Conclusion

Comment concevoir l'interface utilisateur ?

Amershi et al. Power to the people: The role of humans in interactive machine learning, 2014.

Mac Aodha et al. Putting the scientist in the loop: accelerating scientific progress with interactive machine learning, ICPR:14

Objectifs

Interface d'annotations

- ► Afficher les demandes d'annotations et collecter les réponses
- Afficher tout type de données
 - ex : PDF, documents Office, traces réseau.

Objectifs

Interface d'annotations

- Afficher les demandes d'annotations et collecter les réponses
- Afficher tout type de données
 - ex : PDF, documents Office, traces réseau.

Autres fonctionnalités

► Montrer à l'utilisateur que ces annotations sont utiles

Interface d'annotations

- Afficher les demandes d'annotations et collecter les réponses
- Afficher tout type de données
 - ex : PDF, documents Office, traces réseau.

Autres fonctionnalités

- Montrer à l'utilisateur que ces annotations sont utiles
- Aider l'utilisateur à rester cohérent au cours des itérations
 - Délimitation de la cible de détection
 - Définition de la taxonomie des alertes

Ne pas oublier l'expert!

	Simulations	GUI	Exp. utilisateur
Uncertainty	1	Х	Х
Görnitz et al.	✓	X	Х
Aladin	✓	\sim	~
Nissim et al.	✓	X	X
Moskovitch et al.	✓	X	X

Aladin

- Aucune information sur l'interface graphique
- 1000 annotations par jour sans aucun retour!

Uncertainty Almgren et al., Using Active Learning in Intrusion Detection, CSFW 2004

Görnitz et al. Toward Supervised Anomaly Detection, JAIR 2013

Aladin Stokes et al., Aladin: Active Learning of Anomalies to Detect Intrusions, 2008

Nissim et al. ALPD: Active learning framework for enhancing the detection of malicious PDF files, 2014.

Moskovitch et al. Malicious code detection using active learning, 2009.

Une interface graphique répondant aux besoins des experts en sécurité.

Détection d'anomalies dans des données NetFlow

Quatre administrateurs de sécurité

Jeu	x de données			
•		Jour 1	Jour 2	
	Nb. flux	$1.2 \cdot 10^{8}$	$1.2 \cdot 10^8$	
	Nb. IP	463,913	507, 258	
	Nb. attributs	134	134	
_				_

Annotations initiales

- Données anormalesScans évidents
- Données normales
 Sélection uniforme

ILAB: système d'annotations

Interface d'annotations

ILAB: système d'annotations

Interface d'annotations

Afficher tout type de données

NetFlow

Afficher tout type de données

Journaux d'événements Windows

Afficher tout type de données

Journaux d'événements Windows

Aider l'utilisateur à rester cohérent

Éditeur de familles

- Changer le nom d'une famille
- Changer le label associé à une famille
- Fusionner des familles

Kulesza et al. Structured labeling for facilitating concept evolution in machine learning, CHI 2014.

Très utilisé au cours des expériences utilisateur

- Délimitation de la cible de détection
- Définition de la taxonomie des alertes

Vecteurs d'attributs

Les attributs extraits peuvent ne pas être suffisamment expressifs.

Attributs

Nb. octets envoyés/reçus :

- globalement
- ▶ sur le port 80
- sur le port 53
- ▶ sur le port 25

Annotation

- connexion TCP complète
- ▶ sur le port 22
- normale

Annotation

- connexion TCP complète
- ▶ sur le port 1258
- anormale

Solutions

Connaissance des attributs

► Niveau d'expressivité

Solutions

Connaissance des attributs

Niveau d'expressivité

Faire évoluer les attributs

- manuellement
- ou encore mieux, automatiquement

```
Khiops Boulle, Towards automatic feature construction for supervised classification, ECML'14.

Featuretools Kanter et al., Deep feature synthesis: towards automating data science endeavors, DSAA' 15.
```

Hidost Šrndić et al., Hidost: a static machine learning based detector of malicious files, EURASIP'16.

ILAB: Interactive LABelling

Un système d'apprentissage actif complet

Stratégie d'apprentissage actif

- Évite les biais d'échantillonnage
- ► Maintient un faible temps d'attente

RAID'17 ILAB: An Interactive Labelling Strategy for Intrusion Detection

Système d'annotations

- Interface générique d'annotations
- Éditeur de familles

AICS'18, IDEA'18 End-to-End Active Learning for Computer Security Experts

Expériences utilisateur

- Validation des choix de conception
- Pistes d'amélioration

- 1 Contexte
- 2 Contributions
- 3 ILAB : un système d'apprentissage actif comple
- 4 Conclusion

Une approche de bout-en-bout impliquant les experts en sécurité

- 1 Extraction d'attributs
- 2 Annotation
- 3 Classe de modèles ?
- 4 Validation

Une approche de bout-en-bout impliquant les experts en sécurité

Contributions

- 1 DIADEM : apprentissage et validation d'un modèle de détection SSTIC'17 Le Machine Learning confronté aux contraintes opérationnelles des systèmes de détection
- 2 ILAB: annotation d'un jeu de données avec un effort réduit
 RAID'17 ILAB: An Interactive Labelling Strategy for Intrusion Detection
 AICS'18, IDEA'18 End-to-End Active Learning for Computer Security Experts
- 3 Génération automatique d'attributs

https://github.com/ANSSI-FR/SecuML

Une approche de bout-en-bout impliquant les experts en sécurité

Contributions

- 1 DIADEM : apprentissage et validation d'un modèle de détection SSTIC'17 Le Machine Learning confronté aux contraintes opérationnelles des systèmes de détection
- 2 ILAB: annotation d'un jeu de données avec un effort réduit
 RAID'17 ILAB: An Interactive Labelling Strategy for Intrusion Detection
 AICS'18, IDEA'18 End-to-End Active Learning for Computer Security Experts
- 3 Génération automatique d'attributs

https://github.com/ANSSI-FR/SecuML

Pistes pour la suite

Améliorer la génération automatique d'attributs

Une approche de bout-en-bout impliquant les experts en sécurité

Contributions

- 1 DIADEM : apprentissage et validation d'un modèle de détection SSTIC'17 Le Machine Learning confronté aux contraintes opérationnelles des systèmes de détection
- 2 ILAB: annotation d'un jeu de données avec un effort réduit
 RAID'17 ILAB: An Interactive Labelling Strategy for Intrusion Detection
 AICS'18, IDEA'18 End-to-End Active Learning for Computer Security Experts
- 3 Génération automatique d'attributs

https://github.com/ANSSI-FR/SecuML

Pistes pour la suite

- Améliorer la génération automatique d'attributs
- ▶ Faire évoluer les attributs au cours des projets d'annotations

Une approche de bout-en-bout impliquant les experts en sécurité

Contributions

- 1 DIADEM : apprentissage et validation d'un modèle de détection SSTIC'17 Le Machine Learning confronté aux contraintes opérationnelles des systèmes de détection
- 2 ILAB: annotation d'un jeu de données avec un effort réduit
 RAID'17 ILAB: An Interactive Labelling Strategy for Intrusion Detection
 AICS'18, IDEA'18 End-to-End Active Learning for Computer Security Experts
- 3 Génération automatique d'attributs

https://github.com/ANSSI-FR/SecuML

Pistes pour la suite

- Améliorer la génération automatique d'attributs
- ▶ Faire évoluer les attributs au cours des projets d'annotations
- Rendre les modèles de détection plus robustes