Semiring Algebraic Structure for Metarouting with Automatic Tunneling

Noureddine Mouhoub

Mohamed Lamine Lamali, and Damien Magoni

LaBRI - CNRS, University of Bordeaux, France

New IP and Beyond Workshop (IEEE ICNP)
October 30-November 2, 2022
Lexington, Kentucky, USA

Outline

- Motivation
- Network Model and Path Validity
- Algebraic Model and Properties
- Semiring with Tunnels
- 5 Algebra and Algorithm Convergence
- Conclusion and Future Work

Example of a network encompassing IPv4 and IPv6 protocols.

Example of a network encompassing IPv4 and IPv6 protocols.

• The top path (in green) is valid with a tunnel from U_1 to U_4 .

Example of a network encompassing IPv4 and IPv6 protocols.

- The top path (in green) is valid with a tunnel from U_1 to U_4 .
- The bottom path (in black) is invalid.

- The computation of paths (routing) in networks with tunnels is not yet fully automated. (e.g., Teredo, 6over4, 6to4, ISATAP, etc.)
- The path computation in multi-protocol networks with conversions and encapsulations, cannot be performed by using classical path computation algorithms. (e.g., Dijkstra, Bellman-Ford, etc.)
- There are a few path computation algorithms which take into account encapsulations and conversions. (e.g., Stack-Vector, etc.)
- The valid path problem under bandwidth constraints is NP-hard.

Metarouting

Metarouting is an algebraic model of routing protocols.
 (semiring, Sobrinho's algebra and algebra of endomorphisms.)

Metarouting

 Metarouting is an algebraic model of routing protocols. (semiring, Sobrinho's algebra and algebra of endomorphisms.)

Metarouting

Metarouting is an algebraic model of routing protocols.
 (semiring, Sobrinho's algebra and algebra of endomorphisms.)

- Separates the routing data and algorithm. (route exchange and route update.)
- Study the properties of routing protocols.
 (convergence and the set of optimal paths.)

Routing Algebras with Tunnels

 Most research work on routing algebras have been applied to routing protocols used in networks having a single addressing and forwarding protocol.

 There is no proof of convergence of the asynchronous distributed stack-vector algorithm.

Routing Algebras with Tunnels

 Most research work on routing algebras have been applied to routing protocols used in networks having a single addressing and forwarding protocol.

 There is no proof of convergence of the asynchronous distributed stack-vector algorithm.

Our contribution is to generalize the semiring structure for modeling the routing problem with automatic tunneling and to study some algebraic properties of convergence.

A multi-layer network ${\cal N}$ is modeled by:

9/24

A multi-layer network ${\cal N}$ is modeled by:

• A directed graph of size n, $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

A multi-layer network $\mathcal N$ is modeled by:

- A directed graph of size n, $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- A set of λ communication protocols, $\mathcal{A} = \{x, y, \dots\}$
 - The set of protocols that a node U can receive is In(U)
 - \bullet The set of protocols that a node U can send is Out(U)

A multi-layer network N is modeled by:

- A directed graph of size n, $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- A set of λ communication protocols, $\mathcal{A} = \{x, y, \dots\}$
 - $\bullet \ \, \hbox{The set of protocols that a node U can receive is $In(U)$ }$
 - ullet The set of protocols that a node U can send is Out(U)
- A set of adaptation functions, \mathcal{F} of type:
 - $(x \to x)$ is the retransmission of the protocol x
 - $(x \rightarrow y)$ is the conversion of the protocol x to y
 - $(x \to xy)$ is the encapsulation of the protocol x in y
 - $(\overline{x \to xy})$ is the decapsulation of the protocol x from y

A multi-layer network $\mathcal N$ is modeled by:

- A directed graph of size n, $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- A set of λ communication protocols, $\mathcal{A} = \{x, y, \dots\}$
 - The set of protocols that a node U can receive is In(U)
 - ullet The set of protocols that a node U can send is Out(U)
- A set of adaptation functions, \mathcal{F} of type:
 - $(x \to x)$ is the retransmission of the protocol x
 - $(x \to y)$ is the conversion of the protocol x to y
 - $(x \to xy)$ is the encapsulation of the protocol x in y
 - $(\overline{x \to xy})$ is the decapsulation of the protocol x from y
- A weight function, $\omega: \mathcal{V} \times \mathcal{F} \times \mathcal{V} \to \mathcal{R}^+$

Let f be an adaptation function and h a protocol stack (a sequence of encapsulated - nested protocols).

Let f be an adaptation function and h a protocol stack (a sequence of encapsulated - nested protocols).

- The valid application of f on h is f(h) = h'. Otherwise $f(h) = \phi$.
- The protocol at the top of the stack h is denoted by Top(h).

Let f be an adaptation function and h a protocol stack (a sequence of encapsulated - nested protocols).

- The valid application of f on h is f(h) = h'. Otherwise $f(h) = \phi$.
- The protocol at the top of the stack h is denoted by Top(h).

Let $f_i f_{i+1} \dots f_{j-1} f_j$ be a sequence of functions and h_i an initial stack.

Let f be an adaptation function and h a protocol stack (a sequence of encapsulated - nested protocols).

- The valid application of f on h is f(h) = h'. Otherwise $f(h) = \phi$.
- The protocol at the top of the stack h is denoted by Top(h).

Let $f_i f_{i+1} \dots f_{j-1} f_j$ be a sequence of functions and h_i an initial stack.

• The induced protocol stacks are defined recursively:

$$h_k = f_{k-1}(h_{k-1}), \quad i+1 \le k \le j+1$$

Let f be an adaptation function and h a protocol stack (a sequence of encapsulated - nested protocols).

- The valid application of f on h is f(h) = h'. Otherwise $f(h) = \phi$.
- The protocol at the top of the stack h is denoted by Top(h).

Let $f_i f_{i+1} \dots f_{j-1} f_j$ be a sequence of functions and h_i an initial stack.

• The induced protocol stacks are defined recursively:

$$h_k = f_{k-1}(h_{k-1}), \quad i+1 \le k \le j+1$$

Let $\mathcal{H} = \{\phi, x, y, xy, xyx, \dots\}$ be the set of all possible protocol stacks.

Let f be an adaptation function and h a protocol stack (a sequence of encapsulated - nested protocols).

- The valid application of f on h is f(h) = h'. Otherwise $f(h) = \phi$.
- The protocol at the top of the stack h is denoted by Top(h).

Let $f_i f_{i+1} \dots f_{j-1} f_j$ be a sequence of functions and h_i an initial stack.

• The induced protocol stacks are defined recursively:

$$h_k = f_{k-1}(h_{k-1}), \quad i+1 \le k \le j+1$$

Let $\mathcal{H} = \{\phi, x, y, xy, xyx, \dots\}$ be the set of all possible protocol stacks.

- The set of all stacks starting with the sub-stack xy is $H_{xy} \in \mathcal{H}$.
- An adaptation function $f = (x \to xy)$ is defined as $f : H_x \to H_{xy}$.

• The composition of two functions $f: H_a \to H_b$ and $f': H'_a \to H'_b$ is the new function, $f'' = f' \odot f$, where:

• The composition of two functions $f: H_a \to H_b$ and $f': H'_a \to H'_b$ is the new function, $f'' = f' \odot f$, where:

$$f'' = \left\{ \begin{array}{ll} H_a'' \to H_b'' & \text{ if } (H_a'' \neq \emptyset) \wedge (H_b'' \neq \emptyset) \\ \{\phi\} \to \{\phi\} & \text{ otherwise} \end{array} \right.$$

And

$$H_a'' = \left\{ h \in H_a \mid f(h) \in H_a' \right\} \qquad H_b'' = \left\{ f'(h) \mid h \in (H_b \cap H_a') \right\}$$

• The composition of two functions $f: H_a \to H_b$ and $f': H'_a \to H'_b$ is the new function, $f'' = f' \odot f$, where:

$$f'' = \left\{ \begin{array}{ll} H_a'' \to H_b'' & \text{ if } (H_a'' \neq \emptyset) \wedge (H_b'' \neq \emptyset) \\ \{\phi\} \to \{\phi\} & \text{ otherwise} \end{array} \right.$$

And

$$H_a'' = \left\{ h \in H_a \mid f(h) \in H_a' \right\} \qquad H_b'' = \left\{ f'(h) \mid h \in (H_b \cap H_a') \right\}$$

The set of all adaptation functions close under composition is:

$$\hat{\mathcal{F}} = \left\{ \phi \to \phi, x \to x, x \to y, x \to xxx, xyx \to x, \dots \right\}$$

• The composition of two functions $f: H_a \to H_b$ and $f': H'_a \to H'_b$ is the new function, $f'' = f' \odot f$, where:

$$f'' = \left\{ \begin{array}{ll} H_a'' \to H_b'' & \text{ if } (H_a'' \neq \emptyset) \wedge (H_b'' \neq \emptyset) \\ \{\phi\} \to \{\phi\} & \text{ otherwise} \end{array} \right.$$

And

$$H''_a = \left\{ h \in H_a \mid f(h) \in H'_a \right\} \qquad H''_b = \left\{ f'(h) \mid h \in (H_b \cap H'_a) \right\}$$

The set of all adaptation functions close under composition is:

$$\hat{\mathcal{F}} = \left\{ \phi \to \phi, x \to x, x \to y, x \to xxx, xyx \to x, \dots \right\}$$

The set of all identity functions (classical retransmission) is:

$$\mathcal{F}_{id} = \left\{ x \to x, y \to y, \dots \right\}$$

• A path $p = h_i v_i f_i v_{i+1} f_{i+1} \dots v_{j-1} f_{j-1} h_j v_j$ from v_i to v_j is a mixed sequence of nodes and adaptation functions and it is valid iff:

- A path $p = h_i v_i f_i v_{i+1} f_{i+1} \dots v_{j-1} f_{j-1} h_j v_j$ from v_i to v_j is a mixed sequence of nodes and adaptation functions and it is valid iff:
 - The starting stack, $h_i \neq \phi$ and $Top(h_i) \in In(v_i)$
 - The ending stack, $h_j \neq \phi$ and $Top(h_j) \in In(v_j)$

- A path $p = h_i v_i f_i v_{i+1} f_{i+1} \dots v_{j-1} f_{j-1} h_j v_j$ from v_i to v_j is a mixed sequence of nodes and adaptation functions and it is valid iff:
 - The starting stack, $h_i \neq \phi$ and $Top(h_i) \in In(v_i)$
 - The ending stack, $h_j \neq \phi$ and $Top(h_j) \in In(v_j)$
 - ullet The sequence $v_i v_{i+1} \dots v_{j-1} v_j$ is a classical path in ${\mathcal G}$

- A path $p = h_i v_i f_i v_{i+1} f_{i+1} \dots v_{j-1} f_{j-1} h_j v_j$ from v_i to v_j is a mixed sequence of nodes and adaptation functions and it is valid iff:
 - The starting stack, $h_i \neq \phi$ and $Top(h_i) \in In(v_i)$
 - The ending stack, $h_j \neq \phi$ and $Top(h_j) \in In(v_j)$
 - ullet The sequence $v_i v_{i+1} \dots v_{j-1} v_j$ is a classical path in ${\mathcal G}$
 - The sequence $f_i f_{i+1} \dots f_{j-1}$ induces the protocol stack, $h_j = f_{j-1} \Big(f_{j-2} \Big(\dots f_{i+1} \Big(f_i(h_i) \Big) \Big)$

- A path $p = h_i v_i f_i v_{i+1} f_{i+1} \dots v_{j-1} f_{j-1} h_j v_j$ from v_i to v_j is a mixed sequence of nodes and adaptation functions and it is valid iff:
 - The starting stack, $h_i \neq \phi$ and $Top(h_i) \in In(v_i)$
 - The ending stack, $h_j \neq \phi$ and $Top(h_j) \in In(v_j)$
 - ullet The sequence $v_iv_{i+1}\dots v_{j-1}v_j$ is a classical path in ${\mathcal G}$
 - The sequence $f_if_{i+1}\dots f_{j-1}$ induces the protocol stack, $h_j=f_{j-1}\Big(f_{j-2}\big(\dots f_{i+1}\big(f_i(h_i)\big)\Big)$

Note that a valid path $p = h_i v_i f_i \dots v_{j-1} f_{j-1} h_j v_j$ can be represented by the composition $f_{j-1} \odot \cdots \odot f_{i+1} \odot f_i$

- A path $p = h_i v_i f_i v_{i+1} f_{i+1} \dots v_{j-1} f_{j-1} h_j v_j$ from v_i to v_j is a mixed sequence of nodes and adaptation functions and it is valid iff:
 - The starting stack, $h_i \neq \phi$ and $Top(h_i) \in In(v_i)$
 - The ending stack, $h_j \neq \phi$ and $Top(h_j) \in In(v_j)$
 - ullet The sequence $v_i v_{i+1} \dots v_{j-1} v_j$ is a classical path in ${\mathcal G}$
 - The sequence $f_if_{i+1}\dots f_{j-1}$ induces the protocol stack, $h_j=f_{j-1}\Big(f_{j-2}\big(\dots f_{i+1}\big(f_i(h_i)\big)\Big)$

Note that a valid path $p = h_i v_i f_i \dots v_{j-1} f_{j-1} h_j v_j$ can be represented by the composition $f_{j-1} \odot \cdots \odot f_{i+1} \odot f_i$

• The weight of a valid path p from v_i to v_j is the sum of the weights of its links and its adaptation functions,

$$\omega(p) \stackrel{def}{=} \sum_{k=i}^{j-1} \omega(v_k, f_i, v_{k+1})$$

- ullet \oplus and \otimes are associative binary operations over S
- ⊕ is commutative

- ullet and \otimes are associative binary operations over S
- ⊕ is commutative
- ullet $\overline{0}$ is an identity element for \oplus and an annihilator for \otimes
- ullet $\overline{1}$ is an identity for \otimes

- ullet and \otimes are associative binary operations over S
- ⊕ is commutative
- ullet $\overline{0}$ is an identity element for \oplus and an annihilator for \otimes
- ullet $\overline{1}$ is an identity for \otimes
- ullet \otimes is left and right distributive on \oplus

Semiring and Properties

A semiring is a structure $SM = (S, \oplus, \otimes, \overline{0}, \overline{1})$ where:

- ullet \oplus and \otimes are associative binary operations over S
- ⊕ is commutative
- ullet $\overline{0}$ is an identity element for \oplus and an annihilator for \otimes
- ullet $\overline{1}$ is an identity for \otimes
- ullet \otimes is left and right distributive on \oplus

Problem	S	\oplus	\otimes	$\overline{0}$	1
shortest paths (SM_{sp})	\mathbb{N}_{∞}	min	+	$+\infty$	0
widest paths	\mathbb{N}_{∞}	max	min	0	$+\infty$
most reliable paths	[0, 1]	max	×	0	1
accessible paths	$\{0,1\}$	max	min	0	1

Semiring and Properties

A semiring is a structure $SM = (S, \oplus, \otimes, \overline{0}, \overline{1})$ where:

- ullet and \otimes are associative binary operations over S
- ⊕ is commutative
- ullet $\overline{0}$ is an identity element for \oplus and an annihilator for \otimes
- ullet $\overline{1}$ is an identity for \otimes
- ullet \otimes is left and right distributive on \oplus

Semiring and Properties

A semiring is a structure $SM = (S, \oplus, \otimes, \overline{0}, \overline{1})$ where:

- ullet and \otimes are associative binary operations over S
- ⊕ is commutative
- ullet $\overline{0}$ is an identity element for \oplus and an annihilator for \otimes
- \bullet $\overline{1}$ is an identity for \otimes
- ullet \otimes is left and right distributive on \oplus

If \oplus is idempotent then the relation \leq_{\oplus} is a partial order over S:

$$(a \leq_{\oplus} b) \equiv (a = a \oplus b)$$
$$(a <_{\oplus} b) \equiv (a = a \oplus b \neq b)$$

Note that this order is total when the operation \oplus is selective

Matrix Semirings

Given a semiring $(S, \oplus, \otimes, \overline{0}, \overline{1})$, the semiring of $n \times n$ matrix is $(\mathbf{M}_n(S), \oplus, \otimes, \mathbf{N}, \mathbf{I})$, where:

- $\mathbf{N}_{i,j} = \overline{0}$
- $\mathbf{I}_{i,j} = \left\{ \begin{array}{ll} \overline{1} & \text{if } (i=j) \\ \overline{0} & \text{otherwise} \end{array} \right.$

Matrix Semirings

Given a semiring $(S,\oplus,\otimes,\overline{0},\overline{1})$, the semiring of $n\times n$ matrix is $\left(\mathbf{M}_n(S),\oplus,\otimes,\mathbf{N},\mathbf{I}\right)$, where:

- $\mathbf{N}_{i,j} = \overline{0}$
- $\bullet \ \, \mathbf{I}_{i,j} = \left\{ \begin{array}{ll} \overline{1} & \text{if } (i=j) \\ \overline{0} & \text{otherwise} \end{array} \right.$

And for any two matrices $X, Y \in \mathbf{M}_n(S)$, the two operations \oplus and \otimes are defined as follow:

- $\bullet (\mathbf{X} \oplus \mathbf{Y})_{i,j} = \mathbf{X}_{i,j} \oplus \mathbf{Y}_{i,j}$
- $\bullet \ (\mathbf{X} \otimes \mathbf{Y})_{i,j} = \bigoplus_{k=1}^{n} \mathbf{X}_{i,k} \otimes \mathbf{Y}_{k,j}$

Given a semiring $(S,\oplus,\otimes,\overline{0},\overline{1})$, a directed graph of n nodes $\mathcal{G}=(\mathcal{V},\mathcal{E})$ and a weight function $\omega:\mathcal{E}\to S$

Given a semiring $(S,\oplus,\otimes,\overline{0},\overline{1})$, a directed graph of n nodes $\mathcal{G}=(\mathcal{V},\mathcal{E})$ and a weight function $\omega:\mathcal{E}\to S$

• The weight of a path $p=v_0,v_1,v_2,...,v_{k-1},v_k$ is:

$$\omega(p) = \omega_{0,1} \otimes \omega_{1,2} \otimes \ldots \otimes \omega_{k-1,k} = \bigotimes_{i=0}^{k-1} \omega_{i,i+1}$$

Given a semiring $(S,\oplus,\otimes,\overline{0},\overline{1})$, a directed graph of n nodes $\mathcal{G}=(\mathcal{V},\mathcal{E})$ and a weight function $\omega:\mathcal{E}\to S$

 \bullet The weight of a path $p=v_0,v_1,v_2,...,v_{k-1},v_k$ is:

$$\omega(p) \ = \ \omega_{0,1} \otimes \omega_{1,2} \otimes \ldots \otimes \omega_{k-1,k} \ = \ \bigotimes_{i=0}^{k-1} \ \omega_{i,i+1}$$

• The weighted adjacency matrix $A \in M_n(S)$ of the graph \mathcal{G} is:

$$\mathbf{A}_{i,j} = \left\{ egin{array}{ll} \omega_{i,j} & ext{if } e_{i,j} \in \mathcal{E} \ \hline 0 & ext{otherwise} \end{array}
ight.$$

Given a semiring $(S, \oplus, \otimes, \overline{0}, \overline{1})$, a directed graph of n nodes $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and a weight function $\omega: \mathcal{E} \to S$

• The weight of a path $p = v_0, v_1, v_2, ..., v_{k-1}, v_k$ is:

$$\omega(p) \ = \ \omega_{0,1} \otimes \omega_{1,2} \otimes \ldots \otimes \omega_{k-1,k} \ = \ \bigotimes_{i=0}^{k-1} \ \omega_{i,i+1}$$

• The weighted adjacency matrix $A \in M_n(S)$ of the graph \mathcal{G} is:

$$\mathbf{A}_{i,j} = \left\{ \begin{array}{ll} \omega_{i,j} & \text{if } e_{i,j} \in \mathcal{E} \\ \overline{0} & \text{otherwise} \end{array} \right.$$

• The power of a matrix $A \in M_n(S)$ is:

$$\mathbf{A}^{\mathbf{k}} = \left\{ egin{array}{ll} \mathbf{I} & ext{if } k = 0 \\ \mathbf{A} \otimes \mathbf{A}^{\mathbf{k} - 1} & ext{otherwise} \end{array}
ight.$$

Let $\mathcal{P}_{i,j}^k$ be the set of all paths from node v_i to node v_j of size k Let $\mathcal{P}_{i,j}^{(k)}$ be the set of all paths from v_i to v_j of size at most k.

Let $\mathcal{P}^k_{i,j}$ be the set of all paths from node v_i to node v_j of size k Let $\mathcal{P}^{(k)}_{i,j}$ be the set of all paths from v_i to v_j of size at most k.

• The weight of an optimal path from v_i to v_j of size k is:

$$\mathbf{A}_{i,j}^k = \omega_{i,j}^k = \bigoplus_{p \in \mathcal{P}_{i,j}^k} \omega(p)$$

Let $\mathcal{P}^k_{i,j}$ be the set of all paths from node v_i to node v_j of size k Let $\mathcal{P}^{(k)}_{i,j}$ be the set of all paths from v_i to v_j of size at most k.

• The weight of an optimal path from v_i to v_j of size k is:

$$\mathbf{A}_{i,j}^k = \omega_{i,j}^k = \bigoplus_{p \in \mathcal{P}_{i,j}^k} \omega(p)$$

• The weight of an optimal path from v_i to v_j of size at most k is:

$$\mathbf{A}_{i,j}^{(k)} = \omega_{i,j}^{(k)} = \bigoplus_{p \in \mathcal{P}_{i,j}^{(k)}} \omega(p)$$

Let $\mathcal{P}_{i,j}^k$ be the set of all paths from node v_i to node v_j of size k Let $\mathcal{P}_{i,j}^{(k)}$ be the set of all paths from v_i to v_j of size at most k.

• The weight of an optimal path from v_i to v_j of size k is:

$$\mathbf{A}_{i,j}^k = \omega_{i,j}^k = \bigoplus_{p \in \mathcal{P}_{i,j}^k} \omega(p)$$

• The weight of an optimal path from v_i to v_j of size at most k is:

$$\mathbf{A}_{i,j}^{(k)} = \omega_{i,j}^{(k)} = \bigoplus_{p \in \mathcal{P}_{i,j}^{(k)}} \omega(p)$$

 The global optimal solution for the generalized path computation problem consists in finding (if it exists) the matrix A*,

$$\mathbf{A}^* = \bigoplus_{k \ge 0} A^{(k)} = \bigoplus_{p \in \mathcal{P}^{(k)}} \omega(p)$$

Main idea: Construct a semiring that enumerates the set of all valid shortest paths between each pair of nodes:

Main idea: Construct a semiring that enumerates the set of all valid shortest paths between each pair of nodes:

$$SM_{sp} = \left(\mathbb{N}^{\infty}, min, +, +\infty, 0\right)$$
 (shortest paths semiring)
$$SM_{vp} = \left(\mathcal{P}(\hat{\mathcal{F}}), \cup, \odot, \emptyset, \mathcal{F}_{id}\right)$$
 (valid paths semiring)

Main idea: Construct a semiring that enumerates the set of all valid shortest paths between each pair of nodes:

$$SM_{sp} = \left(\mathbb{N}^{\infty}, min, +, +\infty, 0\right)$$
 (shortest paths semiring)
$$SM_{vp} = \left(\mathcal{P}(\hat{\mathcal{F}}), \cup, \odot, \emptyset, \mathcal{F}_{id}\right)$$
 (valid paths semiring)

Where:

- $\mathcal{P}(\hat{\mathcal{F}})$ is the power set of all functions closed under compositions.
- \odot is the composition operation of subsets in $\mathcal{P}(\hat{\mathcal{F}})$:

$$\hat{F}_1\odot\hat{F}_2=\left\{\hat{f}_1\odot\hat{f}_2\,|\,\hat{f}_1\in\hat{F}_1 ext{ and }\hat{f}_2\in\hat{F}_2
ight\}$$

• \mathcal{F}_{id} is the set of identity adaptation functions $\{x \to x, y \to y, \dots\}$.

• The valid shortest paths semiring is the semi-directed product:

$$SM_{vsp} = SM_{vp} \rtimes SM_{sp} = \left(\mathcal{P}(\hat{\mathcal{F}} \times \mathbb{N}^{\infty}), \bigcup_{min}, (\odot \times +), \emptyset, (\mathcal{F}_{id} \times 0)\right)$$

• The valid shortest paths semiring is the semi-directed product:

$$SM_{vsp} = SM_{vp} \times SM_{sp} = \left(\mathcal{P}(\hat{\mathcal{F}} \times \mathbb{N}^{\infty}), \bigcup_{min}, (\odot \times +), \emptyset, (\mathcal{F}_{id} \times 0)\right)$$

- The extension operator $(\odot \times +)$ is a direct product.
- ullet The selection operator $(igcup_{min})$ is an union-min product:

$$S_1 \underset{min}{\cup} S_2 = \left\{ (\hat{f}, \omega_{\hat{f}}) \mid (1) \ \lor \ (2) \right\} \qquad \forall S_1, S_2 \in \mathcal{P} \big(\hat{\mathcal{F}} \times \mathbb{N}^\infty \big)$$

$$(\hat{f}, \omega_{\hat{f}}) \in S_1 \land \forall \, (\hat{g}, \omega_{\hat{g}}) \in S_2, \, (\hat{f} = \hat{g}) \Rightarrow \omega_{\hat{f}} = min[\omega_{\hat{f}}, \omega_{\hat{g}}] \tag{1}$$

$$(\hat{f}, \omega_{\hat{f}}) \in S_2 \land \forall \, (\hat{g}, \omega_{\hat{g}}) \in S_1, \, (\hat{f} = \hat{g}) \Rightarrow \omega_{\hat{f}} = min[\omega_{\hat{f}}, \omega_{\hat{g}}]$$
 (2)

• The valid shortest paths semiring is the semi-directed product:

$$SM_{vsp} = SM_{vp} \times SM_{sp} = \left(\mathcal{P}(\hat{\mathcal{F}} \times \mathbb{N}^{\infty}), \bigcup_{min}, (\odot \times +), \emptyset, (\mathcal{F}_{id} \times 0)\right)$$

- The extension operator $(\odot \times +)$ is a direct product.
- \bullet The selection operator $(\underset{min}{\cup})$ is an union-min product:

$$S_1 \underset{min}{\cup} S_2 = \left\{ (\hat{f}, \omega_{\hat{f}}) \mid (1) \lor (2) \right\} \qquad \forall S_1, S_2 \in \mathcal{P}(\hat{\mathcal{F}} \times \mathbb{N}^{\infty})$$

$$(\hat{f}, \omega_{\hat{f}}) \in S_1 \land \forall (\hat{g}, \omega_{\hat{g}}) \in S_2, (\hat{f} = \hat{g}) \Rightarrow \omega_{\hat{f}} = min[\omega_{\hat{f}}, \omega_{\hat{g}}]$$
 (1)

$$(\hat{f}, \omega_{\hat{f}}) \in S_2 \land \forall (\hat{g}, \omega_{\hat{g}}) \in S_1, (\hat{f} = \hat{g}) \Rightarrow \omega_{\hat{f}} = min[\omega_{\hat{f}}, \omega_{\hat{g}}]$$
 (2)

• The partial order relation over elements of $\mathcal{P}(\hat{\mathcal{F}} \times \mathbb{N}^{\infty})$:

$$S_1 \subseteq S_2 \equiv \forall (\hat{f}, \omega_{\hat{f}}) \in S_1 \Rightarrow \exists (\hat{g}, \omega_{\hat{g}}) \in S_2, (\hat{f} = \hat{g}) \land (\omega_{\hat{f}} \le \omega_{\hat{g}})$$

 The convergence of routing protocols, e.g., distance-vector and path-vector protocols, is based on two algebraic properties:

 The convergence of routing protocols, e.g., distance-vector and path-vector protocols, is based on two algebraic properties:

$$a \leq_{\oplus} a \otimes b \equiv a = a \oplus (a \otimes b)$$
 $\forall a, b \in S$ (monotonicity)
 $a \leq_{\oplus} b \implies a \otimes c \leq_{\oplus} b \otimes c$ $\forall a, b, c \in S$ (isotonicity)

 The convergence of routing protocols, e.g., distance-vector and path-vector protocols, is based on two algebraic properties:

$$\begin{split} a \leq_{\oplus} a \otimes b \equiv a = a \oplus (a \otimes b) & \forall \ a,b \in S \qquad (monotonicity) \\ a \leq_{\oplus} b \implies a \otimes c \leq_{\oplus} b \otimes c & \forall \ a,b,c \in S \qquad (isotonicity) \end{split}$$

- The monotonicity guarantees that the routing protocol converges in any network, but not necessarily to a global optimal solution.
- The isotonicity guarantees that the routing protocol converges to a global optimal solution.

 The convergence of routing protocols, e.g., distance-vector and path-vector protocols, is based on two algebraic properties:

$$\begin{split} a \leq_{\oplus} a \otimes b \equiv a = a \oplus (a \otimes b) & \forall \ a,b \in S \qquad (monotonicity) \\ a \leq_{\oplus} b \implies a \otimes c \leq_{\oplus} b \otimes c & \forall \ a,b,c \in S \qquad (isotonicity) \end{split}$$

- The monotonicity guarantees that the routing protocol converges in any network, but not necessarily to a global optimal solution.
- The isotonicity guarantees that the routing protocol converges to a global optimal solution.

Proposition

The direct product operator $(\odot \times +)$ over the power set $\mathcal{P}(\hat{\mathcal{F}} \times \mathbb{N}^{\infty})$ is isotonic and not monotonic.

Theorem [B. A. Carré, 71]

$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A} \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$

Theorem [B. A. Carré, 71]

$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A} \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$

- A multilayer circuit is a valid path $p = h_i v_i f_i \dots f_{j-1} h_j v_j$ where:
 - The node v_i is the same node v_j , i.e., $v_i = v_j$
 - The starting and the ending stacks are the same, i.e., $h_i = h_j$

Theorem [B. A. Carré, 71]

$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A} \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$

- A multilayer circuit is a valid path $p = h_i v_i f_i \dots f_{j-1} h_j v_j$ where:
 - The node v_i is the same node v_j , i.e., $v_i = v_j$
 - The starting and the ending stacks are the same, i.e., $h_i = h_j$
- A multilayer elementary path is a valid path in which its circuits (if it exists) are non multilayer circuits.

Theorem [B. A. Carré, 71]

$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A} \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$

- A multilayer circuit is a valid path $p = h_i v_i f_i \dots f_{j-1} h_j v_j$ where:
 - The node v_i is the same node v_j , i.e., $v_i = v_j$
 - The starting and the ending stacks are the same, i.e., $h_i = h_j$
- A multilayer elementary path is a valid path in which its circuits (if it exists) are non multilayer circuits.
- A free multilayer network is a network in which all of its multilayer circuits have positive weights.

Theorem

In a free multilayer network \mathcal{N} we have:

$$\mathbf{A}^* = \mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A} \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

Where k is the maximum length of the multilayer elementary paths in \mathcal{N} , and it is equal to $2^{(\lambda+1)\lambda^2n^2}-1$.

Theorem

In a free multilayer network N we have:

$$\mathbf{A}^* = \mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A} \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

Where k is the maximum length of the multilayer elementary paths in \mathcal{N} , and it is equal to $2^{(\lambda+1)\lambda^2n^2}-1$.

Proposition [M. L. Lamali, S. Lassourreuille, S. Kunne, and J. Cohen, 19]

For any multilayer network \mathcal{N} , the valid shortest path (if any) between two nodes is upper bounded by $2^{(\lambda+1)\lambda^2n^2}$.

Conclusion and Future Work

- New routing algebra based on semirings for path computation with automatic tunneling: an isotonic and non-monotonic algebra with a partial order.
- A generalization of the iterative convergence theorem for the optimal solution of the valid shortest paths problem.

Conclusion and Future Work

- New routing algebra based on semirings for path computation with automatic tunneling: an isotonic and non-monotonic algebra with a partial order.
- A generalization of the iterative convergence theorem for the optimal solution of the valid shortest paths problem.
- The adaptation of the other existing algebraic structures (algebra
 of endomorphisms and Sobrinho's algebra) to the valid shortest
 paths problem.
- The generalization of the asynchronous convergence theorem for the stack-vector protocol.

References

Mehrvar Mohri.

Semiring frameworks and algorithms for shortest-distance problems.

J. Autom. Lang. Comb., 7(3):321-350, 2002.

Timothy G. Griffin and João Luís Sobrinho.

Metarouting.

In Proc. of ACM SIGCOMM, pages 1-12, 2005.

Matthew L. Daggitt, Alexander J. T. Gurney, and Timothy G. Griffin.

Asynchronous convergence of policy-rich distributed bellman-ford routing protocols.

In Proc. of ACM SIGCOMM, pages 103-116, 2018.

Fernando Kuipers and Freek Dijkstra.

Path selection in multi-layer networks.

Comput. Commun., 32(1):78-85, 2009.

Mohamed Lamine Lamali, Hélia Pouyllau, and Dominique Barth.

Path computation in multi-layer multi-domain networks: A language theoretic approach.

Computer Communications, 36(5):589-599, 2013.

M. L. Lamali, S. Lassourreuille, S. Kunne, and J. Cohen.

A stack-vector routing protocol for automatic tunneling.

In IEEE INFOCOM, pages 1675-1683, 2019.

Noureddine Mouhoub, Mohamed Lamine Lamali, and Damien Magoni.

A highly parallelizable algorithm for routing with automatic tunneling. In 2022 IFIP Networking Conference (IFIP Networking), pages 1-9, 2022.

4 D > 4 AB > 4 B > 4 B >