# HR Analytics

- HR Data를 활용한 퇴사 예측 모델 구현 -

멋쟁이 사자처럼 AI SCHOOL 8기 7조 죽어도 못 보내 김조은, 임승민, 조세연, 차은서

## 목차

- 팀원 소개
- 주제 선정
- 데이터 개요
- 데이터 분석
- 활용방안

### 팀원소개



김조은

깃헙관리 머신러닝 고도화 코드취합



임승민

머신러닝 고도화 설문지 제작



**₩** 조세연

PM 태블로 대시보드 제작 발표자



차은서

태블로 대시보드 제작 PPT 제작 설문지 제작

공통 역할: 도메인 조사, 전처리, EDA, 발표 자료 제작

01 주제선정

## 프로젝트 배경

♥이직을 RESPECT, MZ를 중심으로 대퇴사 시대

## "평생 직장? 옛말이죠" 퇴사 결심하는 20·30세대



### 프로젝트 배경

교직원 1명 당 채용비용 1300만원, 교육비용 6000만원





https://www.saramin.co.kr/zf\_user/help/live/view?idx=108748&listType=news

https://post.naver.com/viewer/postView.nhn?memberNo=24090434&volumeNo=6470527

### 프로젝트 배경

- ♥HR Analytics: HR 문제, 데이터로 해결
  - → 퇴사 예측 인공지능과 HR 시각화 대시보드

#### [HR테크의 진화] 회사 그만둘 직원, 95% 정확도로 예측

입력 2019-04-22 06:01

배준호 기자 baejh94@etoday.co.kr

퇴사 예측해 대체 인력 선제적 고용…IBM, 3400억 비용 절감



▲지니 로메티 IBM 최고경영자(CEO). 그는 최근 미국 CNBC방송이 개최한 행사에서 인공지 능(AI)으로 퇴사할 직원의 95%를 미리 예측할 수 있다고 강조했다. AP뉴시스

https://www.etoday.co.kr/news/view/1747355



https://www.simplesheets.co/hr-metrics-dashboard

### 프로젝트 목표

- ✔ 탐색적 데이터 분석(EDA)을 통해 퇴사 여부 예측 머신러닝 모델 구축
- ✔ 퇴사 원인을 탐색적으로 파악할 수 있는 시각화 대시보드 제작
  - => HR 부서의 인력 계획 의사결정을 위한 인사이트를 제공하자!

02 데이터 개요

## 데이터 개요

# IBM HR Analytics Employee Attrition & Performance

Predict attrition of your valuable employees

https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset

| 구분    | 설명                              |
|-------|---------------------------------|
| 소개    | IBM에서 만든 가상의 HR Data            |
| 형식    | CSV                             |
| 개수    | 1개                              |
| shape | (1470, 34)                      |
| 전처리   | 불필요한 컬럼 제거,<br>연령대 및 연차 파생변수 생성 |

03 데이터 분석

## 데이터 분석 개요

EDA

주요 피처 선정

머신러닝 시각화 대시보드 설문지

전체 데이터 확인



범주형 변수

수치형 변수 (만족도 변수 포함)





#### 연령대 별 직원 수 순위

1위: **30대** 

2위: 40대

3위: **20대** 

#### 연령대 별 퇴사비율 순위

1위: 10대

2위: **20대** 

3위: **30대** 

→ 가장 직원수가 많고 퇴사율도 높은 나이대인 20~30대를 중심으로 분석

#### 〈2030세대만 포함한 데이터 기준〉

#### 퇴사 여부에 따른 수치형 변수 분포



#### 각 요소별 퇴직 비율(범주형 변수)



#### 퇴직자 중 각 요소 비율(범주형 변수)



#### 〈2030세대만 포함한 데이터 기준〉

#### 퇴사 여부에 따른 수치형 변수 분포



#### 각 요소별 퇴직 비율(범주형 변수)



#### 퇴직자 중 각 요소 비율(범주형 변수)



#### 2030의 특이점을 나타내는 3가지 그래프를 중심으로 집중 분석







☆ 2030 퇴직자는현재 직무로 일한 기간이왜 짧을까?

☆ 2030 퇴직자는현 회사에서 근무한기간이 왜 짧을까?

☆ 2030 퇴사율이 높은 직무들은 왜 퇴사율이 높을까?

01) 현재 직무로 일한 기간이 짧은 사람들이 퇴직을 많이 한다.



2030, 현 직무 3년 이하, 퇴직자들의 업무 기여도



3년 이하로 일한 사람들, 업무 기여도가 높은데 많이 퇴사하는 이유?

df\_2030\_3yinrole = df\_2030[df\_2030['YearsInCurrentRole']<4]

1. 직무가 만족스럽지 못하다: 기술, 판매직



#### 2. 회사를 쉽게 옮기는 사회 초년생





☆ 회사에 소속감을 잘 못 느끼는 2030의 특징

0.200 0.211

02) 퇴직자가 재직자보다 근속연수가 짧은 이유



직무 변동에 적응을 못한 것이 원인?



최근에 직무 이동을 하고 곧바로 퇴사한 것으로 추정됨. 직무 이동 후 적응을 돕는 조치 필요

02) 퇴직자가 재직자보다 근속연수가 짧은 이유



♪ 2030 퇴직자의 TotalWorkingYears는 완만하게 분포된 것에 비해 YearsAtCompany는 왼쪽으로 치우쳐져 있음
 ♪ 무경력 신입 뿐만 아니라 경력자의 조기 퇴사 문제도 주목해야 함
 ♪ 경력직 2030이 전문적인 커리어를 쌓을 수 있도록 개선 필요

02) 퇴직자가 재직자보다 근속연수가 짧은 이유 - (이상치: 근속연수가 오래되었음에도 퇴사를 한 이유)



```
# 2030 연령대 & 퇴사자 & 근속연수 13.5년 이상인 직원들의 첫 입사 나이 추정
df_2030_yac_over['Age'] - df_2030_yac_over['YearsAtCompany']
EmployeeNumber
291
      18
      20
967
      23
970
1042
      19
1127
       21
      19
1489
dtype: int64
```

☆ 분석 타겟 직원들은 10대 후반, 20대 초반에 입사해 이 회사에 10년 넘게 다닌 사람들

02) 퇴직자가 재직자보다 근속연수가 짧은 이유 - (이상치: 근속연수가 오래되었음에도 퇴사를 한 이유)



☆ 근속연수가 낮은 사람들보다 높은 사람들이 작년대비 연봉상승률이 낮았음

**-->** 연봉상승률에 불만족해서 퇴사?



☆ 근속연수가 낮은 사람들보다 높은 사람들이 승진을 한지 오래됨

→ 승진을 못해서 퇴사?

#### 3) 퇴사율 Top3 부서의 퇴사 이유





🖒 Sales Representative, Human Resources, Laboratory Technician 🏠

1. 잦은 출장

Sales Representative

 화 퇴사자들의 출장비율을 볼 때, 퇴사율 Top3 직무 모두 Travel Frequently 비율이 높음.

Human Resource

**Laboratory Technician** 









재직자







#### 4점

#### 2. 결혼여부와 직무만족도



### 2. 주요 피처 선정

통계 분석: attrition과 상관관계가 강한 변수를 찾으려 함

✔ 수치형 변수와 attrition : t-test(attrition이 이진 변수이므로) 검정

✔ 범주형 변수와 attrition : 언더샘플링/오버샘플링 후 카이제곱 검정

PCA도 추가로 진행

|                            | t-test (df_raw)                                                                                                                    | t-test (df_under)                                                                                                                                  | t-test (df_over)                                                                                                                                                                    | PCA (df_raw)                                                                                                                                                                                             |                                | chi-square (df_raw)                                                                                                                                                      | chi-<br>square( <u>df</u> _under)                                                                                                                              | chi-square (df_over)                                                                                                                                                                                                                     | PCA (df_raw)          |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| p-value 0.05 이하<br>유의미한 변수 | Age , MonthlyIncome , TotalWorkingYear s , TrainingTimesLastY ear, YearsAtCompany , YesrsInCurrentRol e , YesrswithCurrentM anager | Age , DistanceFromHo me, MonthlyIncome , TotalWorkingYear s , TrainingTimesLast Year, YearsAtCompany , YearsInCurrentRo le , YearsWithCurrMan ager | Age DistanceFromHom  @ MonthlyIncome PercentSalaryHike TotalWorkingYear  s TrainingTimesLast Year YearsAtCompany YearsInCurrentRol e YearsSinceLastPro motion YearsWithCurrMana ger | PC1: TotalWorkingYears (0.396864), YearsAtCompany, JobLevel, MonthlyIncome, YearsInCurrentRole, YearsWithCurrManager, Age, YearsSinceLastP PC2: PercentSalaryHike, PerformanceRating, NumCompaniesWorked | p-value 0.05 이<br>하<br>유의미한 변수 | EnvironmentSatisfa ction JobInvolvement Jobleve JobSatisfaction StockOptionLevel WorkLifeBalance BusinessTravel Department EducationField JobRole MaritalStatus Overtime | EnvironmentSatisfa ction JobInvolvement Joblevel JobSatisfaction StockOptionLevel WorkLifeBalance BusinessTravel EducationField JobRole MaritalStatus Overtime | Education  EnvironmentSatisfa ction JobInvolvement Joblevel JobSatisfaction PerformanceRating RelationshipSatisfaction StockOptionalLevel WorkLifeBalance BusinessTravel Department EducationField Gender JobRole MaritalStatus OverTime | PerformanceRati<br>ng |

퇴사자 예측 ML 모델 만들기

데이터 전처리

모델링

파생변수 생성 & 컬럼 제거

standard-scaling(수치형 피처)

one-hot-encoding(범주형 피처)

데이터 병합 및 train-test set 분리

ADASYN 오버샘플링(train set)



데이터 문제: 데이터 불균형



#### 모델 선정 & 평가지표 선정

| SMOTE 적용 결과<br>정확도 : 0.69, 정밀도 : 0.23, 재현율 : 0.56<br>fl-score : 0.32, auc : 0.63 |        |              |              |              |            |  |  |
|----------------------------------------------------------------------------------|--------|--------------|--------------|--------------|------------|--|--|
|                                                                                  | prec   | ision        | recall       | fl-score     | support    |  |  |
|                                                                                  | 0<br>1 | 0.91<br>0.23 | 0.71<br>0.56 | 0.80         | 255<br>39  |  |  |
| accura                                                                           | -      |              | 2 62         | 0.69         | 294        |  |  |
| macro a<br>weighted a                                                            | •      | 0.57<br>0.82 | 0.63<br>0.69 | 0.56<br>0.73 | 294<br>294 |  |  |

| ADASYN 적용 결과<br>정확도 : 0.70, 정밀도 : 0.25, 재현율 : 0.62<br>fl-score : 0.36, auc : 0.67 |          |        |          |         |  |  |
|-----------------------------------------------------------------------------------|----------|--------|----------|---------|--|--|
| p                                                                                 | recision | recall | f1-score | support |  |  |
| 0                                                                                 | 0.92     | 0.72   | 0.81     | 255     |  |  |
| 1                                                                                 | 0.25     | 0.62   | 0.36     | 39      |  |  |
| accuracy                                                                          |          |        | 0.70     | 294     |  |  |
| macro avg                                                                         | 0.59     | 0.67   | 0.58     | 294     |  |  |
| weighted avg                                                                      | 0.83     | 0.70   | 0.75     | 294     |  |  |

#### 오버샘플링 기법

#### ADASYN(Adaptive Synthetic Sampling)

- SMOTE의 업그레이드 버전
- ADASYN은 소수 클래스 데이터 포인트의 밀도를 기준으로 가상 데이터 포인트를 생성하기 때문에, SMOTE보다 데이터 분포의 차이를 보다 잘 보완 가능
- 따라서, 더 자연스러운 데이터 분포를 생성하고 모델이 학습하는
   특성을 보다 실제 데이터에 가깝게 만들어 줌

#### 성능 확인

- 기본 피처(df\_raw) + 로지스틱 기본 모델 사용
- 성능 확인 결과, ADASYN에서 성능이 조금 향상됨을 볼 수 있음

퇴사자 예측 ML 모델 만들기

데이터 전처리

파생변수 생성 & 컬럼 제거

standard-scaling(수치형 피처)

one-hot-encoding(범주형 피처)

데이터 병합 및 train-test set 분리

ADASYN 오버샘플링(train set)

모델링



모델별 성능 비교

| model                                                  | Over Sampling |          |  |  |
|--------------------------------------------------------|---------------|----------|--|--|
| modei                                                  | Accuracy      | f1_score |  |  |
| Logistic Regression                                    | 0.76          | 0.40     |  |  |
| XGBoost Classifier                                     | 0.89          | 0.48     |  |  |
| AdaBoost Classifier                                    | 0.85          | 0.47     |  |  |
| Accuracy와 f1_score를 성능 지표로 사용한 이유<br>: 분류 문제 + 불균형 데이터 |               |          |  |  |

최종 선정 모델

**XGBoost** 



https://images.app.goo.gl/eyQd81GW2FdCWybE7

| Hyper Parameter  |      |  |  |  |
|------------------|------|--|--|--|
| n_estimators     | 500  |  |  |  |
| Learning_rate    | 0.01 |  |  |  |
| Max_depth        | 8    |  |  |  |
| colsample_bytree | 0.9  |  |  |  |
| reg_alpha        | 0.01 |  |  |  |
| random_state     | 42   |  |  |  |

데이터분석 ML 최종 모델

| Final_<br>model       | Accuracy | f1_score |
|-----------------------|----------|----------|
| XGBoost<br>Classifier | 0.88     | 0.55     |

데이터 불균형으로 인해 퇴사자에 대한 특성 학습 부족



☆ 최종적으로 선택된 모델의 중요변수는

OverTime, JobRole, StockOption, JobLevel, BusinessTravel 이다.

### 추가적인 HR Analytics 방법



https://public.tableau.com/app/profile/seyeon.cho/viz/Final\_HR\_Analytics\_0505/DashBoard

### 추가적인 HR Analytics 방법

#### 설문지





(예시) 조사방법

- 주기 : 분기별 1회 (연 4회)

- 일시 : 목요일 11시 or 14시

- 데이터 수집 방법 : 사내 메신저& 사내 메일

https://docs.google.com/forms/d/e/1FAlpQLScIUBOkG7sNrp7EBjQRe6S4A9YeK0lknzuhUDwhiVAv-2SsJQ/viewform.

https://docs.google.com/forms/d/e/1FAIpQLSfiy6s-XkdqybmeljLIXF5OUzxfir31tkYqMa0J9SeTqAvjyw/viewform

05 활용 방안

### 프로젝트 활용방안 제시

- ☆ HR Analytics의 'HR 데이터 수집 데이터 분석 퇴사여부 예측' 프로세스를 제공
- ✔ HR Analytics에 특화된 설문지 항목과 최적의 설문 방법으로 양질의 HR 데이터를 수집 가능
- ✔ 탐색적 데이터 분석(EDA)과 태블로 대시보드를 활용하여 사내 직원들의 니즈와 컴플레인을 파악 및 개선
- ✔ 머신러닝 모델을 활용해 퇴사 여부를 예측하여 인재 유출을 방지 가능

# 감사합니다

멋쟁이 사자처럼 AI SCHOOL 8기

7조 죽어도 못 보내

김조은, 임승민, 조세연, 차은서