Data Science – Maths – Part - 7

7. Maths - Statistics - PART - 7

Contents

1. Correlation	
2. Regression	3
3. Regression line	
3.1. Example: Regression line	
4.1. Regression line formula	
5. R – SOUARED	

7. Maths - Statistics - PART - 7

✓ In this chapter we will discuss about Regression and R-Squared

- REGRESSION
- R-SQUARED

1. Correlation

✓ Correlation explains about how we measure the direction and strength of linear relationship in between quantitative variables

2. Regression

- ✓ Regression explains about how we can draw line in between the points
- ✓ This line represents about the pattern of the data
- ✓ This line is called as regression line

3. Regression line

- ✓ Regression line predicts the change in Y when X increases by one unit
- √ Here change in Y can be increase/decrease

REGRESSION LINE

PREDICTS THE CHANGE IN "Y" WHEN "X" INCREASES BY ONE UNIT

REGRESSION LINE

PREDICTS THE INCREASE IN "Y" WHEN "X" INCREASES BY ONE UNIT

REGRESSION LINE

PREDICTS THE DECREASE IN "Y" WHEN "X" INCREASES BY ONE UNIT

3.1. Example: Regression line

- ✓ If we study time (hours) on X axis and grade on Y axis then we should access some positive relationship in between these two variables.
- ✓ Generally speaking the more you study then we will get good grade ☺️

✓ Instead of studying if we spend more time on Facebook then we will get negative relationship

4.1. Regression line formula

REGRESSION LINE

$$\widehat{y} = b_0 + b_1 x$$

$$\widehat{y} = b_0 + b_1 x$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

$$\hat{y} = b_0 + b_1 x$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

$$b_1 = r \frac{s_y}{s_x}$$

Scenario

SUPPOSE A RESEARCHER WANTS TO PREDICT A STUDENT'S GPAFROM THE AMOUNT OF TIME THEY STUDY EACH WEEK

✓ Let's use scatter plot to plot this data

THE LINE OF LEAST SQUARES REGRESSION

$$\widehat{y} = b_0 + b_1 x$$

THE SLOPE OF A REGRESSION LINE PREDICTS THE CHANGE IN "Y" WHEN "X" INCREASES BY ONE UNIT

5. R - SQUARED

R-SQUARED

$$R-SQUARED = r^2$$

$$R-SQUARED = r^2 \\
= r \times r$$

Case 1: r squared value is high

- ✓ A high value of r square value explains the actual values and predicted values are close together
- ✓ We can clear see the actual values are predicted values having very less distance in between them

Case 2: r squared value is low

- ✓ A low value of r square value explains the regression line which the data points are does not fit the well
- ✓ We can clear see the actual values are predicted values having large distance in between them

Case 3: r squared value is equals to one

 \checkmark This means that we can predict value of y for any given value of x

