Conceptes Bàsics

1 Propagació de l'error

 $\mathbf 1$ Per a calcular el punt mig de dos punts a i b a la recta real, podem utilitzar les dues expressions següents:

$$0.5(a+b)$$
 i $a+0.5(b-a)$

Calculeu les dues quan a=0.982 i b=0.987, amb una aritmètica de tres xifres bo i tallant. Repetiu els càlculs ara arrodonint. Comenteu els resultats obtinguts.

2 Calculeu:
$$\sum_{k=1}^{6} \frac{1}{3^k}$$
 i $\sum_{k=1}^{6} \frac{1}{3^{(7-k)}}$

- a) Fent ús de l'aritmètica de tres xifres arrodonint.
- b) Fent ús de l'aritmètica de quatre xifres arrodonint.
- c) Per què donen diferent? Calculeu en cada cas l'error relatiu percentual.
- 3 Calculeu $\frac{1}{(\sqrt{3}+2)^4}$ tenint accés al valor aproximat de 1.7321 per $\sqrt{3}$. Calculeu l'error comès si es fa el càlcul directe o avaluant l'expressió $97-56\sqrt{3}$.
- **4** Determineu l'error màxim en el càlcul de $y=\frac{x_1x_2^2}{\sqrt{x_3}}$ amb $x_1=2.0\pm0.1,\,x_2=3.0\pm0.2$ i $x_3=1.0\pm0.1.$ Quina de les dades contribueix més a l'error en y? Per què?

2 Algorismes

5 Avalueu les funcions

$$f(x) = \sqrt{x^2 + 1} - 1$$
, $g(x) = x^2 / \sqrt{x^2 + 1} + 1$

per a la successió de valors de $x_n = 8^{-n}$, $n \ge 1$. Encara que f(x) = g(x), l'ordinador dóna resultats diferents. Quins resultats són de fiar i quins no? Per què? Justifiqueu la vostra resposta.

- **6** Sigui p(x)=(x-1)(x-2)(x-3)...(x-10), el polinomi amb arrels els deu primers nombres naturals, definim el polinomi $q(x)=p(x)+\frac{1}{2^{13}}\,x^9$, modificant lleugerament el coeficient de x^9 respecte de p(x). Com haurien de ser les arrels del polinomi q(x)? Calculeu-les. Com són en realitat?
- 7 Resoleu el sistema

$$\begin{cases} 2x - 4y = 1 \\ -2.998x + 6.001y = 2 \end{cases}$$

per qualsevol mètode que conegeu. Compareu la solució amb la del sistema obtingut substituin la segona equació per -2.998x + 6y = 2. Com són les dues solucions? És un problema estable?

1

8 Per calcular les integrals $I_n = \int_0^1 x^n e^{x-1} dx$, $n \ge 1$, dispossem de dos mètodes iteratius diferents:

a)
$$I_{n-1} = \frac{1 - I_n}{n}$$
, $n \ge 2$ on $I_{50} = 0$,

b)
$$I_n = 1 - nI_{n-1}, n \ge 2$$
 on $I_1 = 1/e$.

Discutiu la estabilitat de la recurrència.

9 Definim el nombre e com $e = \sum_{k=0}^{\infty} \frac{1}{k!}$. Per calcular-ne una aproximació considerem el mètode iteratiu definit per

$$x_k = x_{k-1} + \frac{1}{k!}, \quad k \ge 1, \quad x_0 = 1$$

Calculeu els 20 primers termes de la recurrència, compareu els vostres resultats amb el valor exp(1) retornat per Matlab.

10 Escriviu una function que calculi e^x per a tot x a partir de la sèrie de Taylor en x=0 de la funció exponencial,

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Feu un joc de proves per a diferents valors de n i de x; compareu el vostre resultat amb el resultat que retorna la funció \exp de Matlab. (Feu un joc de proves).

- 11 Escriviu un script que calculi $e^{-5.5}$ amb almenys 12 decimals correctes (feu ús de la funció anterior).
- 12 Per calcular $\sin(x)$ a partir del seu desenvolupament en sèrie es considera la succesió de sumes parcials

$$S_k(x) = \sum_{n=1}^k \frac{(-1)^{n+1} x^{2n-1}}{(2n-1)!},$$

Feu una taula per $k=5,15,25,\ldots,85$ i $x=0,\pi,2\pi,8\pi$ i calculeu $S_k(x)$ (Joc de proves).

13 Escriviu un script per a resoldre les equacions de segon grau $ax^2 + bx + c = 0$, on a, b, c són nombres reals. Cal distingir els casos trivials i els casos a = 0, $b^2 - 4ac < 0$ i $b^2 - 4ac > 0$. Feu un joc de proves. Especialment ompliu la taula següent:

a	1	0	0	1	1	1	1	1	1	10^{-30}	10^{-25}
b	4	4	0	2	2	1	0	0	4	10^{30}	10^{32}
c	2	2.3	2.3	2.3	1	0	-1	1	3.99999999	10^{30}	10^{30}
x_1											
x_2											