

KAUNO TECHNOLOGIJOS UNIVERSITETAS ELEKTROS IR ELEKTRONIKOS FAKULTETAS

BENAS SKIRIUS

Studijų modulio

P160B131 Programavimas duomenų tvarkymui ir vizualizavimui

2 laboratorinio darbo ataskaita

Kaunas, 2023

1

TURINYS

	DAR	BO TIKSLAS	.3
1.	UŽD	UOTIS	.3
	1.1.	PROGRAMOS KODAS	.3
	2.2.	REZULTATAI IR IŠVADOS	.3
2.	UŽD	UOTIS	.4
	2.1.	PROGRAMOS KODAS	.4
	2.2.	REZULTATAI IR IŠVADOS	.4
3.	UŽD	UOTIS	.4
	3.1.	PROGRAMOS KODAS	.4
	4.2.	REZULTATAI IR IŠVADOS	.5
5.	UŽD	UOTIS	.5
	5.1.	PROGRAMOS KODAS	.5
	5.2.	REZULTATAI IR IŠVADOS	.5
	Litera	กรบัวรา	8

DARBO TIKSLAS

Pasitikrinti žinias, įgytas šio modulio metu

1. UŽDUOTIS

Importuoti duomenis ir juos išfiltruoti.

1.1. R PROGRAMOS KODAS

```
library(tidyverse)
library(dplyr)
library(ggplot2)
lab<-read.csv("D:/Downloads/lab sodra.csv")</pre>
#Isrenkami tik reikiami duomenys
filtered df \leftarrow subset(lab, lab[,5] == 452000)
#Isimami stulpeliai su daugiau nei 50% trukstamu reiksmiu
remove columns with many nas <- function(df, threshold = 0.5) {
 max nas <- nrow(df) * threshold</pre>
  df filtered <- df[, colSums(is.na(df)) <= max nas]</pre>
  return(df filtered)
df filtered <- remove columns with many nas(filtered df, threshold = 0.5)
#awgWage stulpelyje trukstamos vertes uzpildomos vidutinemis vertemis pagal
df filtered <- df filtered %>%
 group by (name) %>%
  filter(!all(is.na(avgWage)))
 mutate(avgWage = ifelse(is.na(avgWage), mean(avgWage, na.rm = TRUE),
avgWage)) %>%
  ungroup()
#tax stulpelyje trukstamos vertes uzpildomos vidutinemis vertemis pagal imone
df filtered <- df filtered %>%
  group by (name) %>%
  filter(!all(is.na(tax)))
 mutate(tax = ifelse(is.na(tax), mean(tax, na.rm = TRUE), tax)) %>%
  ungroup()
  filter(!all(is.na(tax)))
  lab <- df filtered
```

2.2. REZULTATAI IR IŠVADOS

Importuojami duomenis. Iš duomenų atrenkame duomenis su ecoActCode 452000. Išimame stulpelius su daugiau, nei 50% trūkstamų verčių, o stulpelius turinčius mažiau, nei 50% trūkstamų verčių užpildome vidutinėmis vertėmis. Imanes, kurios neturi duomenų bet kuriame stulpelyje išimame.

2. UŽDUOTIS.

Nubrėžkite histogramą vidutiniam atlyginimui.

2.1. R PROGRAMOS KODAS

```
alga <- subset(lab, lab[,3] == "UŽDAROJI AKCINĖ BENDROVĖ STOP SERVIS")

my_bar<-barplot(table(alga[,8]),xlab="AvgWage",ylab="Count")
title(main = "UŽDAROJI AKCINĖ BENDROVĖ STOP SERVIS Vidutinių atligynimų
historama")</pre>
```

2.2. REZULTATAI IR IŠVADOS

UŽDAROJI AKCINĖ BENDROVĖ STOP SERVIS Vidutinių atligynimų historama

3. UŽDUOTIS

Išrinkite 5 įmones, kurių vidutinio darbo užmokestis buvo didžiausias pagal nurodytą veiklos sritį. Atvaizduokite šių įmonių vidutinio atlyginimo kitimo dinamika metų eigoje.

3.1. R PROGRAMOS KODAS

```
company_avg_wages <- lab %>%
group_by(name) %>%
summarize(AverageAvgWage = mean(avgWage, na.rm = TRUE)) %>%
ungroup() %>%
arrange(desc(AverageAvgWage))

top_5_companies <- head(company_avg_wages, 5)
filtered_df <- lab %>%
  filter(name %in% top_5_companies$name)

ggplot(filtered_df, aes(x = month, y = avgWage, color = name)) +
  geom_line() +
  labs(title = "5 didžiausią darbo užmokestį turinčių kompanijų darbo
užmokestis metų eigoje
".
```

```
x = "Month",
y = "Average Wage") +
theme minimal()
```

3.2. REZULTATAI IR IŠVADOS

4. UŽDUOTIS.

Iš anksčiau išrinktų 5 įmonių, išrinkite maksimalų apdraustų darbuotojų skaičių per šiuos metus. Atvaizduokite stulpelinėje diagrama mažėjimo tvarka.

4.1. R PROGRAMOS KODAS

4.2.REZULTATAI IR IŠVADOS

5. UŽDUOTIS.

Sukurti web aplikacija pagla nurodytą veiklos sritį.

Aplikacijos tikslas – vizualizuoti atlyginimų dinamiką (plotOutput), įvedus įmonės kodą.

5.1. R PROGRAMOS KODAS

```
library(shiny)
library(tidyverse)

ui <- fluidPage(
    sidebarLayout(
        sidebarPanel(
            selectizeInput(inputId = "imones_kodas", label = "Imones Kodas",
choices = NULL, selected = NULL)
     ),
     mainPanel(tabsetPanel(
            tabPanel("grafikas", plotOutput("plot")),
            tabPanel("lentele", tableOutput("table"))
     )
     )
}</pre>
```

```
)
)
server <- function(input, output, session) {</pre>
  data <- lab
  updateSelectizeInput(session, "imones kodas", choices = data$code, server =
TRUE)
  output$table <- renderTable(</pre>
    data %>%
      filter(code == input$imones_kodas) , digits = 0
  )
  output$plot <- renderPlot(</pre>
    data %>%
      filter(code == input$imones kodas) %>%
      ggplot(aes(x = month, y = avgWage)) +
      geom line()
  )
}
shinyApp(ui, server)
```

5.2.REZULTATAI IR IŠVADOS

1 pav. Shiny aplikacija veikianti R lange.

2 pav. Shiny aplikacija veikianti naršyklėje.

LITERATŪRA

- 1. Paskaitų skaidrės.
- 2. R dokumentacija.