147-20.

PEERLESS UNIT VENTILATION COMPANY
I N C O R P O R A T E D

PEERVENT

Heating and Ventilating Units

for Schools, Libraries, Hospitals, Churches, Club Rooms, Dormitories, Theaters, Banks, Factories, Offices, Auditoriums, and other Buildings

December 1st, 1925

PEERLESS UNIT VENTILATION CO., INC.

Skillman Avenue and Hulst Street Long Island City, N. Y.

PeerVent Heating and Ventilating Unit

Modern Schoolroom Heating and Ventilating

Note: While this booklet deals especially with the heating and ventilation of schools, it should be borne in mind that the PeerVent Unit System is equally suitable for use in hospitals, libraries, churches, dormitories, club rooms, theaters, banks, offices, auditoriums, and other buildings where many people congregate

HE intelligent cooperation of school superintendents, school boards, architects, and engineers, as well as building contractors and manufacturers of equipment, has led to big improvements

in school construction during the past few

years.

Of these improvements none were more needed than adequate methods of heating and ventilating. School ventilation is especially important because the children attend for many years, for several hours every day, during the formative periods of their lives. The subject should be considered—and nowadays, as a rule, it is—in the light of the most recent research, supplemented by the teachings of experience.

Dullness, sluggishness, and lassitude, both mental and physical, are the well-known direct and quickly noticeable effects of bad ventilation, and both teachers and children suffering from it are especially susceptible to colds, sore throats, tonsilitis, bronchitis, and even tuberculosis. Such ailments cause incalculable losses in time and school work, losses which may have far-reaching effects in many lives.

Aside from all other considerations, efficient schoolroom heating and ventilating pays big dividends in more effective teaching effort and increased ability to think and study on the part of pupils.

It is obvious that the unit system of heating and ventilating, whereby each room is heated and ventilated separately and exactly as needed, offers great advantages in economy, flexibility, and convenience. These advantages have been demonstrated time and again under actual operating conditions. The economy of the unit system is especially important. Each room gets exactly the desirable volume of air—at exactly the right temperature—and when the room is unoccupied both heating and ventilating can be suspended in a second.

The PeerVent Heating and Ventilating Unit, described and illustrated on the following pages, fully meets the requirements of the various state codes for ventilation of school buildings. It has

Operation of the PeerVent Heating and Ventilating Unit

TCHOOLROOM heating and ventilation naturally go together in a climate having great variations of temperature, with cold weather during a large part of the school year. The PeerVent Unit, therefore, is designed to heat as well as ventilate, and a separate unit of suitable capacity is provided for each room.

Operation of the PeerVent Unit is extremely simple. Pure fresh air from outof-doors is drawn into the unit by two multi-blade fans through an opening provided in the side wall of the building, usually directly beneath a window. This opening is protected by stationary louvres which keep out rain and snow, and by a grille which keeps out birds, leaves, and coarse foreign matter.

The fans, driven by a direct-connected slow-speed noiseless motor, drive the fresh air first through a filter and then

through a radiator of special design which heats the air to required temperature. At times part or all of the incoming air is by-passed around the radiator, the proportions heated and by-passed being controlled by a mixing damper. This damper can be operated by hand or automatically by a thermostat. It permits a wide range of temperature regulation, from the point at which all incoming air passes through the radiator to the other extreme when all of the incoming air is driven through the by-pass.

At all intermediate settings of the airmixing damper the heated and unheated air currents are thoroughly mixed in the unit before being discharged vertically to the room. The air is discharged with sufficient velocity to insure thorough dif-

fusion.

It is possible to shut off entirely the flow of air from out-of-doors and at the same time to start a recirculation of air within the room. This recirculation is effected by means of interconnected dampers, one damper shutting off the opening to the outer air while the other damper opens a passage at the bottom (front) of the unit. These dampers can be operated by hand by means of a key, or by pneumatic switch control from a remote point.

When the room is unoccupied the fresh air inlet damper can be closed (thereby opening the recirculating damper) and the radiator in the unit used for such limited heating as is then desirable. The motor and fans need not be operated during the periods of vacancy, or until just before the pupils arrive, when the room tem-perature can be brought up to normal quickly by starting the fans and recirculating the air in the room. As soon as the pupils arrive the unit dampers are set to operate normally and to deliver the re-

quired cubic feet per minute of heated fresh air.

The steam valve of the PeerVent radiator is kept open constantly and should be of the lock shield type, with key, to prevent tampering. Manipulation of these valves is neither necessary nor desirable, as all control of the room temperature is effected by the air-mixing damper. With the damper in the cold position and outside air between 60° and 70° F., the

cold weather or when for any other reason the heating capacity of the PeerVent Units is insufficient to take care of an unusual condition.

While PeerVent Units can be furnished for operation by hand, automatic control of the mixing damper and pneumatic control of the fresh air and recirculation dampers is rapidly gaining favor. The automatic control is secured by a compound thermostat, which controls the

PeerVent Unit with front plate removed. In this view the mixing damper is in position to pass all incoming air through the radiator.

PeerVent Unit will by-pass all the air around the radiator and discharge it at a temperature increase not exceeding two degrees.

PeerVent Units are commonly used in addition to ordinary radiators. This is known as the "split" system and is recommended. Under all ordinary operating conditions the PeerVent Units will supply sufficient heat, and the direct radiation is employed only in extremely

mixing damper of the unit by graduated action and the direct radiators by positive action. When a room becomes too cold, the mixing damper is set to pass all incoming air through the radiator in the unit and the compound thermostat automatically opens the valves controlling the direct radiation, the latter remaining open only long enough to bring the room temperature up to normal.

Mechanical Features of the PeerVent Heating and Ventilating Unit

PeerVent Unit with front plate and mixing damper removed. The other easily removable parts, beginning at the top, are (1) the radiator, (2) air filter, (3) motor and fan unit, and (4) the base assembly, which includes the fresh air and recirculating dampers and the pneumatic device by which the janitor can operate these dampers from the basement.

HE PeerVent Unit is remarkably compact. It is only 36 inches high, designed to fit under a window in most cases, without obstructing light or interfering with the use of the window. As it is only 14 inches deep, it also occu-

pies very little floor space.

The various parts which make up a PeerVent Unit are standardized, interchangeable, and very easily removable. No tools are required to take the unit apart and the work can be done in a very few moments, First, the complete front cover is removed, then the mixing damper, next, the complete fan assembly, including

motor, then the base assembly, which supports the connected recirculating and fresh air dampers, and finally the radiator itself. The whole job can be done very quickly, even by one who is inexperienced, and reassembling is just as easy and just as quickly accomplished. Parts for units of the same capacity are perfectly interchangeable.

Semi-concealed-type PeerVent Units can be furnished when required, as shown in various illustrations in this booklet. In this construction the entire unit is set into the wall of the room, so that the front of the unit is flush with the wall, and the

unit occupies no space whatever in the room. The outlet into the room from this type of Unit is placed about eight feet above the floor. See details on page 25.

The Peerfin radiator, one of the features which make the compact PeerVent Unit possible, is without doubt the most efficient radiator that has been developed for use in ventilating units. It consists of seamless copper tubing around which is wound and fastened a helical extended surface of copper fins. The number of tubes can vary in units of different capacities from 21 to 49. The tubes are mechanically fastened into brass headers. The helical fins serve to increase the radiating surface of the tubes, at the same time causing air passing through the radiator to circulate across the tops and bottoms of the tube surfaces, as well as past the sides. This construction increases the efficiency of the radiator fully 12 per cent. The steam and return headers are supported from the sides of the casing in a rigid manner, so that the fitter who connects up the unit to the steam lines cannot twist the radiator or the unit out of shape. The Peerfin Radiator is assembled in the Company's own factory, subject to rigid inspections

Four standard types of control are available for the PeerVent Unit System, as follows:

Control A. All dampers hand operated.

Control B. Mixing damper hand and pneumatically operated. Fresh air and recirculating dampers hand operated only.

Control C. All dampers hand and pneumatically operated.

Control D. Fresh air and recirculating damper pneumatic and hand operated and the mixing damper hand operated only.

Galvanized iron wall boxes, for the air passages leading from out-of-doors to the PeerVent Units, are furnished as standard equipment with stationary louvres and stamped steel grilles. Copper wall boxes and bronze grilles, either cast or stamped, can be furnished if specified.

The PeerVent cabinet is constructed of 14-gauge stretcher-leveled resquared metal furniture stock, full pickled, and the standard finish is a handsome olive-green baked enamel. Other colors can be furnished to match interior finishes if required. Inside as well as outside surfaces are enameled, including mixing damper, fan housing, etc.

Remarkable quietness of operation is achieved in the PeerVent Unit as the result of many years experience in the manufacture of such units, and by the use of motors designed especially for this purpose and adopted only after exhaustive tests under actual operating conditions.

Extreme care is exercised in the manufacture of PeerVent Units to insure dependable operation and long service without expert care. The simplicity and accessibility of the PeerVent design also make for trouble-free and uniformly satisfactory service.

PeerVent motor and fan assembly. Like all other Peer-Vent parts, can be removed from the unit in a moment, without tools. Various sizes of fans are furnished, depending on the capacity of the unit. See pictures on pages 7 and 15.

The picture at the left shows the Peer Vent mixing damper. The lower part swings back and forth (under hand or automatic control). In the position shown here (see also page 7) the mixing damper causes all the incoming air to pass through the radiator. If the damper is swung downward some air is allowed to bypass around the radiator, and if swung back as far as it will go the damper causes all incoming air to be bypassed and there is no appreciable heating effect.

At the right is the base assembly of the PeerVent Unit, including the fresh air and recirculating dampers and the pneumatic device by which the janitor can operate these dampers from the basement.

Advantages of the PeerVent Unit System of Heating and Ventilating

Independent service for each room at a cost proportioned exactly upon the useful work done: The PeerVent System provides for each room a unit exactly proportioned to the needs of that room, with ample flexibility to meet the demands of changing weather conditions. The heating and ventilating effect is absolutely positive, and it is produced as perfectly in a room that is seldom used as in one that is in continuous use. One room may be naturally colder than another. The PeerVent System of Units makes it possible to properly ventilate any room and at the same time to maintain the right temperature in each room regardless of its exposure.

> Each PeerVent Unit is entirely independent and the operating expense is per room and proportional to the demands of that room per unit of time.

This is the ideal ventilating and heating condition. All expense for ventilating unoccupied rooms is eliminated, without in any way interfering with conditions in the used portions of the building. The cost of operation is the smallest of any system of mechanical ventilation, and the efficiency throughout is not dependent upon guesswork in the original design.

Thorough ventilation without drafts: Although the volume of air discharged by a PeerVent Unit is large and ample, and the velocity through the unit high enough to insure proper results, the air is so directed vertically into the room that only imperceptible currents are created—harmless but effective. A desk can be placed close to a PeerVent Unit without discomfort or risk to the occupant from the incoming fresh air.

Noiseless operation: The motor and fans are wholly enclosed and the steel platform on which they are mounted is insulated with sound-absorbing felt cushions.

Always in working order: Nothing in the PeerVent Unit is subject to wear except the motor bearings. These are of high grade phosphor-bronze, practically frictionless, and fitted with ring lubrication which needs attention only occasionally. All internal parts are easy of access, although the duty on the mechanism is so light that wear is negligible.

No user has yet encountered mechanical difficulties with PeerVent units.

Effects big space and cost savings in new buildings: The PeerVent Units occupy little more space than ordinary radiators, and less direct radiation is required with PeerVent Units than with any other mechanical system. In fact, direct radiators in the rooms with Peer-Vent Units need be turned on only under extreme conditions. No large expensive apparatus room and fan are required, and the necessity for a deep boiler pit is eliminated, all of which means more basement space for valuable uses. Additional Peer-Vent Units can be installed from time to time, where for lack of funds the building is only partially equipped at the start. Such flexibility is obtainable only with a unit system.

No special provision for ventilation need be made in the building design, except the small air inlet openings. The PeerVent System requires no built-in or sheet metal ducts, flues, or warm-air passages. The entire absence of such construction not only saves much expense but also

eliminates big heating losses between the heating chamber and the rooms to be ventilated. In addition to saving in building construction and materials, space, and fuel, the absence of ducts also eliminates a most objectionable lodging place for dust, dirt, germs, and vermin, and reduces fire and panic risk by doing away with passages through which smoke and fire in the basement can get into the upper rooms.

Ideal for old buildings: No remodeling is necessary to produce the same efficiency as obtainable in a new building. If an existing system fails in some particular room, a PeerVent Unit can be added to make good the shortcomings, or the entire existing system can be supplanted by PeerVent Units at minimum expense. When sections or wings are added to a building, the ventilating and heating of the new rooms merely require the installation of more PeerVent Units, without over-drain or impairment of the efficiency of the ventilation system in the older parts of the building. Only with the unit system is such flexibility obtainable.

The electric motor control of each PeerVent Unit, as well as the freshair and recirculating dampers, can be connected with remote control electric and pneumatic systems, so that every unit in the building can be operated from switches at a single central station located in the basement. The advantages of this arrangement are obvious. All the attendant has to do is start and stop the units. He is neither responsible for nor able to impair the correctness of their operation. The control is exact and insures room temperatures always at the required degree and without varying the quantity of air for ventilation.

Advantages of the Unit System Over the Central Fan System

THERE are no unsightly ducts to take up space, waste heat, and collect dust when not in use.

An open window in one room cannot change the quantity and temperature of air delivered to every other room. Each room is heated and ventilated independently of all others.

There are no volume dampers to adjust; instead, a unit of known factory-tested capacity is selected to suit the particular room to be served.

The amount of fresh air supplied to the whole building cannot be affected by such a detail as the speed of a single motor. If trouble of any kind occurs in a central system, the ventilation of the whole building is affected, whereas if trouble should occur in a PeerVent Unit (no user has ever had mechanical trouble) it obviously could not affect any room except the one in which the unit is located.

Rooms with unusually cold exposure, or subject temporarily to unusually cold winds, can be given extra warmth without effect on other rooms less exposed.

Each unit can be automatically controlled to maintain a certain temperature

in the one room where it is located and need not be disturbed by hand operation.

Cost of operation is based entirely on useful work done in each particular room. The unit can be shut off instantly when

the room is unoccupied, thus saving coal.

The cost of electric current for operating a number of PeerVent Units is far less than for operating a single large fan and duct system.

Semi-Concealed PeerVent Unit with fresh-air grille about eight feet above the floor (see drawing on page 25). The front plate of the unit is flush with the wall.

The picture at the left shows a semi-concealed type of Peer-Vent Unit with front plate removed. The mechanism is practically the same as in the standard unit (page 7). Note that in this view the mixing damper is set to bypass all incoming fresh air around the radiator.

In this picture (right) the mixing damper has been removed to show the radiator. All of the parts in the Semi-Concealed PeerVent are quickly removable, without the use of tools, like those in the Standard Unit. Various sizes of fans and radiators can be furnished, depending on the capacity of the unit.

Facts Concerning Installation of PeerVent Units

Quantity of ventilating air: The quantity of ventilating air to be furnished is limited more by practical considerations than by theoretical requirements. As much fresh air as possible should be supplied, keeping in mind that the circulation should not be so strong as to constitute a draft and that the greater the supply the greater the cost of providing it.

The standard which has been adopted as a fairly adequate supply is 30 cubic feet of air per capita per minute. This standard was first determined by the State of Massachusetts and is now generally recognized throughout the country as minimum for

school ventilation.

Automatic control of schoolroom heating and ventilating has many advocates. Their claims in general are that more perfect uniformity can be maintained with automatic control, as it is not subject to the whims, carelessness, and ignorance of

any chance operator.

Both effectiveness and efficiency are apt to suffer in a hand-controlled heating system, it is claimed, the waste of fuel is always greater, and there is more trouble in maintaining perfect running condition. An automatic system permits thorough tests to be conducted by an expert to determine the best operating conditions, and then suitable setting to produce such conditions continuously.

Automatic heating and ventilating control devices have been developed to a degree of mechanical excellence that assures in practice all the theoretical advantages that favor their adoption. These devices usually consist of thermostats located in each room and actuating, through compressed air, diaphram motors which control the mixing dampers of the heating and ventilating units and diaphram valves controlling the direct radiation.

The installation cost of an automatic regulating system amounts to such a small percentage of the cost of the heating and ventilating system that more and more engineers are recommending the additional expenditure on the grounds that it is well repaid by increased effectiveness of the en-

tire system.

Shipment and erecting: Each PeerVent Unit is shipped completely assembled. Our service men erect the units in place complete, ready for steam and electric connections, which assures satisfactory installation.

Engineering service: Every installation of the PeerVent Unit System of Heating and Ventilating is made the subject of individual engineering attention, in order

Fans used in various sizes of PeerVent Units.

that all requirements will be met to best advantage and with lowest subsequent operating expense.

Our engineers are always ready to cooperate with the architect or engineer in furnishing data for the compilation of specifications, and our service men are sent to the job to make the installation and assist the operating attendant in becoming familiar with the apparatus.

Information required with inquiries: To aid in determining the most serviceable apparatus and in submitting estimate of cost, blue print sections and elevations of the building should if possible be sent to us, together with statement of the kind of steam heating system to be used, whether direct or alternating current is available, also voltage, cycles, and phase, and the maximum number of occupants expected in each room to be ventilated. Where plan and elevation drawings are not available, the dimensions of rooms, including height of ceiling and the location and size of doors, windows, shafts, and stairways, should be given.

The standard floor type of unit is the most efficient, but where slight sacrifice of efficiency is secondary to architectural conditions or the desire to hide the heating and ventilating apparatus, concealed or semiconcealed units can be used. Installation of

these types costs somewhat more because of additional grille work, art sheet metal, special fittings, etc.

With a view to insuring quietness, it is recommended that only direct current or two or three-phase alternating current should be used for ventilating unit motors. The magnetic hum of single-phase motors makes them undesirable for this purpose.

Where local current is single-phase alternating, it is advisable to install a motorgenerator outfit in the basement to supply direct current to the ventilating units.

PeerVent Unit installation is flexible and can as a rule be adapted to special architectural requirements.

An important feature of the Peer Vent System is its ready adaptability to old buildings. Typical installations of this kind are shown on pages 18 to 21. It is only necessary to provide an opening for the air intake and to make the steam and electric connections.

PeerVent Units are adaptable to all steam conditions and give perfect results in connection with any low-pressure, vapor, vacuum, gravity, or modulation steam heating system.

Various air filters can be used in connection with PeerVent Heating and Ventilating Units, although they are not included as standard equipment and should be covered by specifications.

Architects: Lappley and Hornbostel, Harrisburg, Pa. Contractors: Herre Brothers, Harrisburg, Pa.

John Harris High School, Harrisburg, Pa.

Directions for Laying Out the PeerVent Unit System of Heating and Ventilating

FIRST determine the amount of air required for ventilation, figuring on 30 cubic feet per minute per pupil in the classrooms, and from four to six changes per hour for the assembly hall, gymnasium, etc. The latter rooms usually require more than one PeerVent Unit.

The size of units having been determined from the above information and the data on page 22, the location of units and the direct radiation required, compute radiation in the usual way (pages 35 to 40) and then deduct the amount shown on page 22 for the PeerVent Unit chosen. The remainder is the amount that must be added in direct radiation.

A room can be heated by the PeerVent Unit alone, but the practice of omitting direct radiation is not recommended, because if for any reason the electric current

Three of the various sizes of radiators used in PeerVent Units.

method of making the fresh air inlet should have next consideration. Naturally, the unit should be placed where the greatest heat losses occur, which is usually at a window, because of infiltration of air through cracks and heat transmission through the glass. If more than one PeerVent Unit is needed in a given room, the radiation in each should be proportioned to the space served.

Radiation: To determine the amount of

is shut off and the fan kept out of operation the room cannot be heated properly.

No unit on the market contains enough radiation to heat the average size class room when the fans are inoperative without the aid of some direct radiation. Experience has shown that PeerVent Units with their fans inactive have the heating usefulness indicated in the table on page 22, and no more than the amount of direct radiation given in the table should be omitted for each PeerVent Unit.

Vent flues and grilles: It is evident that if a ventilating unit introduces a certain amount of air into a room, some provision must be made to remove that same amount of vitiated air. Three ways of do-

ing this are:

I. Venting through an independent flue, located in the cloak room. This is the most satisfactory way of venting class rooms. Air from the class room passes into the cloak room through a grille in the lower panel of the door between the rooms and out into a flue to a point above the roof (see page 30). This method dries and removes the offensive odor of wet clothing in the coat room on rainy days, and ventilates and heats the cloak room without necessity of placing any radiation there.

2. Venting through independent flues in the class rooms. This procedure is desirable only for rooms that do not have independent coat rooms.

3. Venting through the corridor and into a main vent flue located in the corridor. This method is used only in old buildings that have no provision for ventilation and in some states does not meet legal requirements.

The following sizes of grilles and flues are recommended for class rooms:

No. of pupils	Cubic feet of air per minute	Total area of grille in square feet	Sectional area of flue in square feet
30	900	3	2
40	1200	4	3
50	1500	. 5	4

See tables of vent flues, page 49. All vent flues should have dampers near the roof and controlled by chains or pneumatic

John Porter School, Easton, Pa.—an old building equipped recently with PeerVent Heating and Ventilating Units.

motor, the controls where possible extending to the basement.

Hoods and louvres should be provided over the flue outlets to keep out rain and snow. The vent flues in buildings containing attics can terminate in the attic, which can be vented by means of any reliable make of roof ventilator.

Motor-Generator: In schools and other buildings where noiseless operation is essential, direct current or polyphase alter-

can be used with the PeerVent Unit System of Heating and Ventilating. The table on page 23 will assist in determining the size required.

Guarantees: Every Peer Vent Unit is guaranteed to be free from material and workmanship defects, and further guaranteed, when installed and operated as directed, to heat the room or space served to a temperature of 70 F. in zero weather. With the motor in operation, the Unit is guaranteed

One of the rooms in the John Porter School, Easton, Pa., equipped with a PeerVent Heating and Ventilating Unit. The PeerVent System can be installed as easily in old buildings as in new.

nating current motors are used to drive the unit fans. In localities where no direct or polyphase current is available, a motorgenerator set is installed to furnish direct current to the unit motors. The motorgenerator is located at some point in the basement where free from ashes, dust, dirt, and tampering by pupils.

Any reliable make of motor-generator

to furnish 30 cubic feet of air per minute for each occupant of the room when the latter is filled to its intended capacity, and in every way to meet the heating and ventilating requirements of the State and Local Boards of Education. The Company is responsible, backed by years of successful experience and by a large number of satisfactory installations.

Typical Endorsement of the Unit System

T a meeting held in May, 1923, in the office of the Board of Education of New York City, that body unanimously voted to depart from the existing Central Supply Split System and adopt the Unit System of Heating and Ventilation for future school buildings of the city.

The reasons which prompted the City Architect, the Committee on Buildings and Sites, and the Superintendent of Schools to recommend the change in heating and ventilating methods were:

"To eliminate large and expensive apparatus which at times is idle. The installation of the Unit System will effect a saving of from 5 to 10 per cent, which represents approximately from \$3,000 to \$7,000 per building, depending on the size and type.

"The Unit System would obviate large apparatus rooms, underground ducts, and deep basements, thus effecting a saving of not less than 8 per cent, which on a 48 classroom building would amount to approximately \$50,000 to \$60,000.

"To eliminate heavy heat losses between central heating chambers and rooms.

"To reduce fire and panic risks, by doing away with passages for smoke through ducts, should fire occur in basement.

"A room may be ventilated only when occupied; thus each room becomes an individual system.

"To allow rooms for after-hour use to be ventilated separately, whereas in a central system it becomes necessary to operate entire plant to serve individual rooms.

"To allow for quick heating by recirculation.

"The unit becomes a direct radiator for night use by closing out-door damper and opening recirculating damper.

"To eliminate expense of ventilating un-

occupied rooms.

"Direct radiators in same rooms with units become operative only in extremely cold weather.

"To decrease motor horse-power for volume discharged, eliminating loss due to duct resistance.

Public School, Catawassa, Pa., another old building equipped recently with the PeerVent Unit System of Heating and Ventilating.

"A room can be ventilated or recirculated at will, with the psychological effect of seeing the source which makes possible the bringing of fresh air directly into the room."

The recommendations in favor of the Unit System of Heating and Ventilating were made after inspection and investiga-

tion by City Officials of unit systems in operation in neighboring cities and states.

Also private practicing architects and engineers who are experts on school buildings and architects connected with Boards of Education in various cities were consulted and a large majority of these endorsed the Unit System.

A room in the Catawassa, Pa., School, showing how the PeerVent Unit was installed without disturbing existing direct radiation.

Another room in the Catawassa, Pa., Public School.

Engineering Data PeerVent Heating and Ventilating Units

т +20°	Omit- ted Direct Radia- tion in sq. ft.	41 45 88 132 174 202	76 74 132 183 227 260	97 93 165 228 279 338
Entering Air at	Condensate in lbs.	48 55 72 91 108 118	88 91 109 126 140 152	112 114 136 156 173 197
ENTERL	Final Outlet Tem- pera- ture	85 84 94 102 108 112	85 84 94 102 108 112	85 84 94 102 108 112
т +10°	Omitted Direct Radiation in sq. ft.	25 26 66 107 156 178	45 42 100 149 203 229	58 124 185 185 250 297
ENTERING AIR AT	Con- densate in Ibs. per hr.	52 60 78 97 118	95 98 117 135 153 165	121 124 147 168 188 213
ENTERI	Final Outlet Tem- pera- ture	79 78 88 96 104 107	79 78 88 88 96 104	79 78 88 96 104 107
AT -0°	Omitted Direct Radiation in sq. ft.	8 6 44 87 123 149	15 10 66 120 161 192	19 13 83 149 198 249
NG AIR	Condensate in 1bs.	56 65 83 105 124 136	103 106 126 145 145 161 175	131 134 158 180 199 226
ENTERING	Final Outlet Tem- pera- ture	73 72 82 91 97	73 72 82 90 97 101	73 72 82 90 97 101
т —10°	Omit- ted Direct Radia- tion in sq. ft.	22 22 58 96 125	33 80 135 161	41 100 154 209
TERING AIR AT	Condensate in lbs.	63 73 90 111 133 146	115 121 134 154 172 188	147 152 169 191 212 244
ENTERI	Final Outlet Tem- pera- ture	70 76 84 91 96	70 70 76 84 91	70 76 84 91 96
Mossi	mum Cu. Ft. per Minute	600 700 800 900 1000 1050	1100 1150 1200 1250 1300 1350	1450 1450 1500 1550 1600 1750
Me.:	Mumber of Pupils	333 330 333 333 333 333	388 988 114 125 144 154	53 53 58 53 53
	UNIT No.	46271 46272 46273 46274 46274 46275	46361 46362 46363 46364 46365 46366	46451 46452 46453 46454 46454 46455
		4221		

PeerVent Heating and Ventilating Units Engineering Data

	IIT	ı Size	Vacuum	System	34"	3/11	3,4	4,80	/4	34"	34"	34"	4.0	4.84	3/11	3/11	3/11	3/11	4,80	34"
	514" FROM BACK OF UNIT	Return Size	Gravity	System	1,,,	1//	1,,	1,,		1,,	1,,	1,,	1,,	1,,	1//	1,,	1,,	1,,	1,,	1,,
ATA	4" FROM B	Size	Vacuum	System	114"	11/11	11/2"	11/2"	1	11/2"	11/2"	11/2"	7,7	2,,	3,,,	2"	2"	2,,	2,,	2,,,
PIPING DATA		Steam	Gravity	System	11/2"	11/2"	2",2	2,,	1	2,,	2,,	2,,		2,,	2",	2,,	2"	2,,	2,,	2,,,
	STEAM AND RETURN—	Height from Floor	Return		263,",	263,811	24"	24"		263,8"	2638"	263,8"	24.	23"	263,"	263,6"	263,6"	24"	24"	23"
	STE	Height fr	Steam		281/2" 281/5"	281,2"	2812"	28127	7/01	281/2"	2812"	2812	2012	28127	281,6"	281,5"	281,5"	2815"	2812"	281/2"
	Power	Consumed in	Watts		81	94	107	120		06	111	120	138	147	172	183	192	201	210	243
	Approx- imate	Shipping Weight	Unit	Lbs.	275	290	295	300		310	310	320	340	350	375	375	385	395	400	410
IMENSIONS	36"	Fresh Air	Intake 8½" x B	В	271/2"	271/2"	271/2"	2712,	1	3612"	3612"	3612"	361/2	3612"	451,6"	4512"	4512"	451/2"	4512"	451/2"
DIME	Height		Length	T	33"	33"	33"	337		42"	47,	177	42"	42"	51"	51"	51"	51"	51"	51"
	Maxi- mum	Cu. Ft.	Minute		009	800	006	1000		1100	1300	1200	1300	1350	1400	1450	1500	1550	1600	1750
	Maxi- mum	Number	Pupils		20	26	30	3.33		36	200	40	43	45	46	48	50	51	53	28
		UNIT No.			46271	46273	46274	46275		46361	46362	40303	46365	46366	46451	46452	46453	46454	46455	46456

Standard location of outlet box

of outlet box

of outlet box

of outlet box

PLAN

NOTE.—Electric outlet box will be located on details as shown for standard. When optional location is required, same must be specified on order.

CROSS SECTION

Details showing semi-concealed type unit Front of unit exposed

Adaptable to inside room requiring ventilation Fresh air taken from roof

55½" 1 55½" 54"

FRONT ELEVATION
PeerVent Adaptation No. 2
Where PeerVent is located below window sill

SECTION

ELEVATION
PeerVent Adaptation No. 3
Where PeerVent is Concealed

A typical elevation of an Auditorium that is heated and ventilated by concealed PeerVent Units

PeerVent Adaptation No. 4

SECTION ON LINE AA

ELEVATION
PeerVent Adaptation No. 5

PLAN
PeerVent Installation Adapted to Low Window Height

ELEVATION

PLAN PeerVent Adaptation No. 9

Inlet grille

Stationary louvres

Discharge grille

Peerfin radiator

Removable front for access to motor, fans and radiator

36"

Mixing damper

Motor driven fans

Recirculating

grille

Fresh-air intake, damper and recirculating damper control SECTION

Return 23" 6" Steam

Cutlet box

ELEVATION

PeerVent Adaptation No. 10

Architects: McLaughlin & Burr, Boston. Engineers: Bolles & Dwyer, Boston.
Rumford School, Woburn, Mass.

Architects: Wm. D. Johnson Company, Hartford, Conn. Holcomb Street School, Hartford, Conn.

Architects: Whiton & McMahon, Hartford, Conn.
St. James' Parochial School, South Manchester, Conn.

Architects: Rasmussen & Wayland, New York. Contractors: Oak Ridge Company, New York. Public School, Mountain Lakes, N. J.

Architects Guilbert & Betelle, Newark N. J. Engineers: Runyon & Carey, Newark N. J.

Marshall School, South Orange, N. J.

Architect: Wm. T. Marchant, Hartford, Conn. James Talcot School, West Hartford, Conn.

Architects Maynicke & Franke, New York Consulting Engineer: Werner Nygren, New York Children's Building, New York City

B.t.u. (British Thermal Unit) Method of Computing Heat Losses

THERE is only one way to figure heat losses accurately, and that is by the B.t.u. method. This method is not as complicated as it may appear.

If a room is to be maintained at a certain temperature at all times, it is plain that the radiation for that room must be capable of equaling the total of heat losses in the coldest weather.

Heat losses are expressed in B.t.u. (British Thermal Units). These losses are determined by totaling the transmission through exposed walls and glass surfaces, plus the loss due to air changes for ventilation (see following tables), based on the number of B.t.u. required per hour per degree difference between outside and inside temperatures.

To obtain the B.t.u. loss per square foot of wall or glass surface, find in the tables the type and thickness of material used, and multiply the factor or coefficient given, which is for I degree temperature difference, by the number of degrees difference between the desired inside temperature and the coldest outside temperature likely to be encountered.

To the losses thus obtained must be added the losses caused by air changes provided for ventilation.

To raise the temperature of one cubic foot of air 1 degree requires .02056 B.t.u. Thus the number of cubic feet in the room, multiplied by the number of air changes per hour, multiplied by .02056, gives the heat loss for one degree difference between inside and outside temperatures.

It is essential also to consider the exposure of the room to be heated. Rooms with a north or west exposure usually require 10% additional radiation. Rooms which are heated intermittently will require up to 30% additional radiation as compared with constantly-heated rooms.

By adding the losses through walls and glass, and the losses due to air changes, you have the total B.t.u. loss for the room figured. The total B.t.u. calculated is the amount of heat units that must be supplied per hour to maintain the desired room temperature.

In order to provide for B.t.u. losses, it is necessary to determine not only the coldest outside temperature likely to be met but also the desirable inside temperature for each particular type of room. As to the former, knowledge of local climatic conditions is essential. As to the latter, opinions differ on desirable inside temperatures, but the following figures may be taken as near enough to average requirements to meet all practical purposes:

Hospitals

Wards	 										750	F	
Private Rooms											80°	F	
Operating Room.											98°	F	
Sun Rooms											70°	F.	
Reception Rooms.											70°	F	
Dressing Rooms	 										80°	F.	
Offices	. ,										70°	F.	
Bath Rooms											80°	F.	

Schools and Churches

Class Rooms70°	F.
Library70°	F.
Wardrobe60°	F.
Manual Training65°	F.
Laboratories	F.
Offices	F.
Auditorium65°	F.
Gymnasium55°.	F.
Dressing Rooms	F.
Swimming Pool Room	F.
Toilets	F.
Swimming Pool Room. 75° Toilets. 65° Stair Wells. 60°	F.
Vestibules	F.
Corridors 60°	F.
Kitchens 60°	
Dining Rooms65°	F.

How to Use the Tables

Multiply the number of square feet of wall surface by the factor (for 1 degree difference in temperature) given in the tables for the particular type of wall and material being used; then multiply the result by the number of degrees difference between desired inside temperature and probable coldest outside temperature. This gives you the total B.t.u. losses per hour through wall surface. Add ten per cent for northern exposure or for

unusual exposure due to wind.

Add ten per cent for a room that is heated only in daytime; 20 per cent if badly exposed and heated only in daytime.

Add thirty per cent if building is heated intermittently.

It is usually considered desirable to figure double-thick glass same as single, as in practice the double glass is often omitted in construction or broken in service and substituted with single-thick glass. Therefore, by taking the number of square feet of glass surface and multiplying by

the 1° factor for single glass and then by the temperature difference, you have the total B.t.u.

per hour for glass.

To the total B.t.u. losses thus obtained must be added the losses due to air changes provided for ventilation. If a PeerVent Unit is to be used, its output in cubic feet of air per hour multiplied by .02056 gives the heat loss for one degree temperature rise. Multiply this figure by the number of degrees difference between desired inside temperature and coldest outside temperature.

Now add the B.t.u. losses due to wall surface, plus the losses for glass surface, plus the losses due to air changes, and you have the total B.t.u. required per hour to be provided by a PeerVent

Unit and direct radiation.

The total B.t.u. per hour delivered by any

PeerVent Unit can be determined by consulting the table on page 22.

Tables showing the various sizes of standard cast iron radiators, which will transmit approximately 250 B.t.u. per square foot per hour, and giving the number of square feet of heating surface, will be found on page 40.

Direct radiators are used only as an auxiliary in split systems including a heating and ventilating unit of the proper C.F.M. capacity. The unit should operate all of the time during which the building is being heated, and the direct radiation should be used only intermittently to compensate for any extreme condition which would affect the B.t.u. delivery of the unit, and then only for a period sufficient to take care of this temporary condition.

B.t.u. Losses

per Square Foot per Hour per Degree Difference in Temperature through Various

Materials and Types of Exposed Building Construction

	B.t.u. Transmitted per sq. ft. of Surface											
Kind of Material and	Thick-	Difference in Temperature										
Construction	mess of Ma- terial	1°	50°	55°	60°	65°	70°	75°	80°			
Brick—Not Furred	4"	. 59	30	32	35	38	41	44	47			
or Plastered	81/2"	. 42	21	23	25	27	29	32	34			
	13"	.32	16	18	19	21	22	24	26			
	171/2"	. 26	13	14	16	17	18	20	21			
	22"	. 22	11	12	13	14	15	17	18			
	261/2"	. 19	10	10	11	12	13	14	15			
	31''	.16	8	9	10	10	11	12	13			
Brick—Plastered	4''	.56	28	31	34	36	39	42	4.			
One Side	81/2"	. 40	20	22	24	26	28	30	32			
	13"	.30	15	17	18	20	21	23	24			
	171/2"	. 24	12	13	14	16	17	18	19			
	22"	. 20	10	11	12	13	14	15	16			
	261/2"	.18	9	10	11	12	13	14	14			
	31''	. 15	8	8	9	10	11	11	12			
Brick—Air Space and	81/2"	. 26	13	14	16	17	18	20	21			
Plaster One Side	13''	. 22	11	12	13	14		17	18			
	171/2"	. 19	10	10	11	12	13	14	13			
	22"	.16			1			12	1.			
	26½"	. 14							1			
	31''	. 12	6	7	. 7	8	8	9	10			
Brick-Furred and	4"	. 34		19	20	22	24	26				
Plastered	81/2"	. 27		15			19	20				
	13''	. 22			1		1					
	171/2"	. 19										
	22"	. 16						12				
	26½"	. 14							1			
	31"	. 12	6	7	7	8	8	9	10			

		B.t.u. T	ran	smit	ted	per s	q. ft	t. of	Sur	face			
V. 1 (M-+-:	-1 J	Thick-	Difference in Temperature										
Kind of Materi Constructio		mess of Ma- terial	1°	50°	55°	60°	65°	70°	75°	80°			
Stone and Plas	ter	12"	.48	24	26	29	31	34	36	38			
		16"	. 43	22	24	26	28	30	32	3			
		20"	.38	19	21	23	25	27	29	30			
		24"	.35	18	19	21	23	25	26	2			
		28"	.31	16	17	19	20	22	23	2			
		32"	. 28	14	15	17	18	20	21	2			
		36"	. 25	13	14	15	16	18	19	21			
Concrete and Plaster	Plaster	8"	. 50	25	28	30	33	35	38	4			
		12"	. 44	22	24	26	29	31	33	3			
		16"	.37	19	20	22	24	26	28	3			
		20"	.33	17	18	20	21	23	25	2			
		24"	.31	16	17	19	20	22	23	2			
Brick Facing o	n Con-	4''	. 50	25	28	30	33	35	38	4			
crete and Pl		8"	.43	22	24	26	28	30	32	3			
		12"	.39	20	21	23	25	27	29	3			
		16"	.35	18	19	21	23	25	26	2			
		20"	.31	16	17	19	20	22	23	2			
		24''	. 27	14	15	16	18	19	20	2			
Brick Facing o	n Hol-	4''	. 23	12	13	14	15	16	17	1			
low Tile and	Plaster	6"	.21	11	12	13	14	15	16	1			
		8"	.18	9	10	11	12	13	14	1			
		10"	.16	8	9	10	10	11	12	1			
		12''	. 14	7	8	8	9	10	1 33 5 28 8 25 2 23 5 38 7 29 7 29 20 20 20 11 11 12 17 18 4 15 2 13	1			
Terra Cotta		C- 4"B	. 24	12	13	14	16	17	18	1			
Facing on	4"TC	C- 8"B	. 20	10	11	12	13	14	15	1			
Brick and	8"TC	C- 8"B	.17	9	9	10	11	12	13	1			
Plaster	8"TC	C-12"B	. 14	7	8	8	9	10	11	1			
	12"TC	C- 8"B	. 10	5	6	6	7	7	8				

B.t.u. Losses

per Square Foot per Hour per Degree Difference in Temperature through Various Materials and Types of Exposed Building Construction

	B.t.u. Tran	smit	tted	per	sq. f	t. of	Sur	face
Kind of Material and	П	Diffe	renc	e in	Ten	nper	atui	e
Construction	1°	50°	55°	60°	65°	70°	75°	80°
Ordinary Overlapping Clapboard Siding	. 45	23	25	27	29	31	34	36
Same with Paper Lining	. 32	16	18	19	21	22	24	26
Same with Sheathing	. 29	15	16	17	19	20	22	23
Same with Sheathing and Paper	. 24	12	13	14	16	17	18	19
Brick Veneer and Sheathing	. 21	11	12	13	14	15	16	17
Stucco, Wire Lath, Air Space and Sheathing	. 23	12	13	14	15	16	17	18

Kind of Material and			.t.u. Sq.					
Construction	Di	ffere	ence	in	Ten	nper	atuı	e
	1°	50°	55°	60°	65°	70°	75°	80°
PORTABLE WALLS								
Cor'gtd Iron on 1/2" Board	.48	24	26	29	31	34	36	38
Cor'gtd Iron on 1" Board	.38	19	21	23	25	27	29	30
Cor'gtd Iron on 11/2" Board	.32	16	18	19	21	22	24	26
Cor'gtd Iron on 2" Board		14	15	16	18	19	20	22
Cor'gtd Iron on 21/2" Board	. 24	12	13	14	16	17	18	19
Cor'gtd Iron Only	1.2	60	66	72	78	84	90	96
GLASS								
Plate	.74	37	41	44	48	52	56	59
Single		53	52	63	68	74	79	84
Double		25	27	29	32	34	37	39
Single Skylight	1.13	57	62	68	73	79	85	90
Double Skylight	.55	28	30	33	36	39	41	44
Steel Sash Wire Mesh	1.22	61	67	73	79	85	92	98
Monitor	1.31	66	72	79	85	92	98	105
Side Walk Prism	1.45	73	80	87	94	102	109	116

B.t.u. Required for Heating Air

Multiply the cubical contents of the room by the factor given in this table. The result is the B.t.u. loss which must be supplied by the radiators

External				Temp	perature o	f Air in R	Coom			
Temper- ature Deg. Fahr.	40	50	60	70	80	90	100	110	120	130
$ \begin{array}{r} -40 \\ -30 \\ -20 \\ -10 \\ 0 \end{array} $	1.802 1.540 1.290 1.051 .822	2.027 1.760 1.505 1.262 1.028	2.252 1.980 1.720 1.473 1.234	2.479 2.200 1.935 1.684 1.439	2.703 2.420 2.150 1.892 1.645	2.928 2.640 2.365 2.102 1.851	3.154 2.860 2.580 2.311 2.056	3.379 3.080 2.795 2.522 2.262	3.604 3.300 3.010 2.732 2.467	3.829 3.520 3.229 2.940 2.670
10 20 30 40 50	.604 .393 .192	.805 .590 .385 .188	1.007 .787 .578 .376 .184	1.208 .984 .770 .564 .367	1.409 1.181 .963 .752 .551	1.611 1.378 1.155 .940 .735	1.812 1.575 1.345 1.128 .918	2.013 1.771 1.540 1.316 1.102	2.215 1.968 1.735 1.504 1.286	2.416 2.16 1.92 1.69 1.47
60 70				.179	.359	.538	.718 .525	. 897 . 700	1.077	1.25

Measurements of Rooms

Square Feet of Wall Surface

Running					C	Ceiling He	eights—F	eet				
Feet of Wall	8	81/2	9	91/2	10	10½	11	11½	12	13	14	15
6	48	51	54	57	60	63	66	69	72	78	84	90
	52	55	59	62	65	68	72	75	78	85	91	98
	56	60	63	67	70	74	77	81	84	91	98	105
	60	64	68	72	75	79	83	86	90	98	105	113
8	64	68	72	76	80	84	88	92	96	104	112	120
	68	72	77	81	85	89	94	98	102	111	119	128
	72	76	81	86	90	94	99	104	108	117	126	135
	76	81	86	90	95	100	105	109	114	124	133	143
10	80	85	90	95	100	105	110	115	120	130	140	150
	84	89	95	100	105	110	116	121	126	137	147	158
	88	94	99	105	110	116	121	127	132	143	154	165
	92	98	104	109	115	121	127	132	138	150	161	173
12	96	102	108	114	120	126	132	138	144	156	168	180
12½	100	106	113	119	125	131	138	144	150	163	175	188
13	104	111	117	123	130	137	143	150	156	169	182	195
13½	108	115	122	129	135	142	149	155	162	176	189	203
14	112	119	126	133	140	147	154	161	168	182	196	210
	116	123	131	138	145	152	160	167	174	189	203	218
	120	128	135	143	150	158	165	173	180	195	210	225
	124	132	140	147	155	163	171	178	186	202	217	233
16	128	136	144	152	160	168	176	184	192	208	224	240
	132	140	149	157	165	173	182	190	198	215	231	248
	136	145	153	162	170	179	187	196	204	221	238	255
	140	149	158	166	175	184	193	201	210	228	245	263
18.	144	153	162	171	180	189	198	207	216	234	252	270
19.	152	162	171	181	190	200	209	219	228	247	266	285
20.	160	170	180	190	200	210	220	230	240	260	280	300
21.	168	179	189	200	210	221	231	242	252	273	294	315
22.	176	187	198	209	220	231	242	253	264	286	308	330
23.	184	196	207	218	230	242	253	264	276	299	322	345
24.	192	204	216	228	240	252	264	276	288	312	336	360
25.	200	213	225	238	250	263	275	288	300	325	350	375
26	208	221	234	247	260	273	286	299	312	338	364	390
	216	230	243	257	270	284	297	311	324	351	378	405
	224	238	252	266	280	294	308	322	336	364	392	420
	232	247	261	276	290	305	319	334	348	377	406	435
30	240	255	270	285	300	315	330	345	360	390	420	450
	248	264	279	295	310	326	341	357	372	403	434	465
	256	272	288	304	320	336	352	368	384	416	448	480

To simplify calculations, dimensions less than 3 inches have been omitted; that is, 9 inches should be extended to next even foot, and 3 inches over a foot should be dropped to nearest even foot. Where, for example, a room is

Full Area of Two-Pane Windows

Giving the Total Area of Two-Pane Windows, Including the Sash

WIDTH	WIDTH	HEIGHT GLASS	18"	20"	22''	24''	26"	28"	30′′	32"	34"	36"	38"	40′′	42"	44"	46"	48"	50"	52''	54"
GLASS	OF	HEIGHT	3'-	3'-	4'-	4'-	4'-	5'-	5'-	5'-	6'-	6'-	6'-	7'-	7'-	7'-	8'-	8'-	8'-	9'-	9'-
INCHES	OPENING	OPENING	6"	10"	2"	6"	10''	2"	6"	10"	2"	6"	10"	2"	6"	10''	2"	6"	10''	2"	6''
16	1'- 8"		5.8	6.4	7.0	7.5	8.0	8.6	9.2	9.7	10.3	10.8	11.4	11.9	12.5	13.0	13.6	14.2	14.7	15.2	15.8
18	1'-10''			7.0	7.6	8.2	8.9	9.5	10.1	10.7	11.3	11.9	12.5	13.1	13.7	14.3	15.0	15.6	16.2	16.8	17.4
20	2'- 0		7.0	7.7	8.3	9.0	9.7	10.3	11.0	11.7	12.3	13.0	13.6	14.3	15.0	15.6	16.3	17.0	17.7	18.3	19.0
22	2'- 2"		7.6	8.3	9.0	9.7	10.5	11.2	11.9	12.6	13.4	14.0	14.7	15.5	16.2	17.0	17.7	18.4	19.2	19.8	20.6
24	2'- 4"		8.2	8.9	9.7	10.5	11.3	12.0	12.8	13.6	14.4	15.1	15.9	16.7	17.4	18.2	19.0	19.8	20.6	21.4	22.2
26	2'- 6"	NS A	8.7	9.6	10.4	11.2	12.0	12.8	13.7	14.6	15.4	16.2	17.1	17.9	18.7	19.5	20.4	21.2	22.0	23.0	23.8
28	2'- 8"	dov	9.3	10.2	11.1	12.0	12.9	13.8	14.7	15.5	16.4	17.3	18.2	19.1	20.0	20.8	21.8	22.6	23.5	24.4	25.3
30	2'-10"	/in	10.0	10.8	11.8	12.8	13.7	14.6	15.6	16.5	17.5	18.4	19.3	20.3	21.2	22.2	23.2	24.0	25.0	26.0	27.0
32	3'- 0"	t W		11.5																	
34	3'- 2"	Ligh	11.0	12.1	13.2	14.3	15.3	16.4	17.4	18.5	19.5	20.6	21.6	22.6	23.7	24.8	25.8	27.0	28.0	29.0	30.0
36	3'- 4"	Standard Sizes of Two-Light Windows	11.7	12.8	13.9	15.0	16.1	17.2	18.3	19.5	20.5	21.6	22.8	23.8	25.0	26.1	27.2	28.3	29.4	30.5	31.7
38	3'- 6"	f T	12.2	13.4	14.6	15.8	16.9	18.0	19.2	20.4	21.6	22.7	24.0	25.0	26.2	27.4	28.6	29.8	31.0	32.1	33.2
40	3'- 8"	o s		14.0																	
42	3'-10"	ize	13.4	14.7	16.0	17.3	18.5	19.8	21.0	22.4	23.6	24.9	26.2	27.4	28.6	30.0	31.3	32.6	33.8	35.0	36.4
44	4'- 0''	S pu	14.0	15.3	16.7	18.0	19.3	20.7	22.0	23.4	24.6	26.0	27.3	28.6	30.0	31.3	32.6	34.0	35.3	36.5	38.0
46	4'- 2"	anda	14.6	16.0	17.4	18.8	20.1	21.5	23.0	24.4	25.6	27.1	28.4	29.8	31.2	32.6	34.0	35.5	36.8	38.2	39.6
48	4'- 4"	St		16.6																	
50	4'- 6"		15.7	17.2	18.7	20.3	21.8	23.2	24.8	26.2	27.7	29.2	30.7	32.2	33.7	35.2	36.7	38.2	39.7	41.2	42.6
52	4'- 8"			17.9																	
54	4'-10''		16.9	18.5	20.1	21.8	23.4	25.0	26.6	28.2	29.8	31.4	32.9	34.6	36.2	37.8	39.5	41.0	42.7	44.3	46.0
56	5'- 0"		17.5	19.3	20.8	22.5	24.2	25.8	27.5	29.0	30.8	32.5	34.0	35.8	37.5	39.8	40.8	42.5	44.2	46.0	47.5

Heating Surface in Square Feet Standard Cast Iron Direct Radiation

			SING	LE C	OLUM	IN		TWO	O COI	LUMN			THR	EE CO	DLUM	N		FOU	R CO	LUMN	I	Wi	ndow		
No. of Sections	Length 21/2" per Section	3 sq. ft.	2½ sq. ft.	2 sq. ft.	12% sq. ft.	1½ sq. ft.	4 sq. ft.	3½ sq. ft.	2% sq. ft.	21/3 sq. ft.	2 sq. ft.	5 sq. ft.	4½ sq. ft.	334 sq. ft.	3 sq. ft.	2¼ sq. ft. per Section	8 sq. ft.	6½ sq. ft.	5 sq. ft.	4 sq. ft.	3 sq. ft.	434 sq. ft.	4 sq. ft.	Length 2 1/2"	per pertion
		38"	32"	26''	23''	20''	38"	32"	26"	23"	20"	38"	32"	26"	22"	18"	38"	32"	26"	22"	18"	28"	24"		
2 3	5 7½	6 9	5 7	4 6	3 3	3 4	8 12	$6\frac{2}{3}$ 10	5 ¹ / ₃	$\frac{4^{\frac{2}{3}}}{7}$	4 6	10 15	9 13½	$7\frac{1}{2}$ $11\frac{1}{4}$	6 9	$4\frac{1}{2}$ $6\frac{3}{4}$	16 24	13 19½	10	8 12	6	$9\frac{1}{2}$ $14\frac{1}{4}$		5 7½	2 3
5 6	10 $12\frac{1}{2}$ 15	12 15 18	10 12½ 15	8 10 12	63 81 10		16 20 24	$13\frac{1}{3}$ $16\frac{2}{3}$	$10\frac{2}{3}$ $13\frac{1}{3}$	$9\frac{1}{3}$ $11\frac{2}{3}$	8 10	20 25	18 22½	15 18 ³ / ₄	12 15	9 11 ¹ / ₄	32 40	26 32½	20 25	16 20	12 15	-	16	$10^{\frac{7}{2}}$ $12\frac{1}{2}$	4
7	17½	21	171		10^{-10}			20	16	14	12	30	27	22½	18	13½	48	39	30	24	18	28½	24	15	6
8 9	$\frac{17\frac{1}{2}}{20}$ $\frac{20}{22\frac{1}{2}}$	24 27	20 22 ¹ / ₂	16 18	$11\frac{1}{3}$ $13\frac{1}{3}$ 15	-	32	$\begin{array}{c} 23\frac{1}{3} \\ 26\frac{2}{3} \\ 30 \end{array}$	$ \begin{array}{r} 18\frac{2}{3} \\ 21\frac{1}{3} \\ 24 \end{array} $	$16\frac{1}{3}$ $18\frac{2}{3}$ 21	14 16 18	35 40	31½ 36	$26\frac{1}{4}$ 30	21 24	$15\frac{3}{4}$ 18	56 64	$45\frac{1}{2}$ 52	40	28 32	21 24	33½ 38	28 32	$17\frac{1}{2}$ 20	8
10	25 27½	30 33	25 27 ¹ / ₂	20 22	$16\frac{2}{3}$ $18\frac{1}{3}$	15_{2} 15 $16_{\frac{1}{2}}$	40 44	$33\frac{1}{3}$ $36\frac{2}{3}$	$26\frac{2}{3}$ $29\frac{1}{3}$	$\begin{array}{c} 21 \\ 23\frac{1}{3} \\ 25\frac{2}{3} \end{array}$	20 22	45 50 55	$40\frac{1}{2}$ 45 $49\frac{1}{2}$	$33\frac{3}{4}$ $37\frac{1}{2}$ $41\frac{1}{4}$	27 30 33	$ \begin{array}{c c} 20\frac{1}{4} \\ 22\frac{1}{2} \\ 24\frac{3}{4} \end{array} $	72 80 88	$58\frac{1}{2}$ 65 $71\frac{1}{2}$	45 50 55	36 40	27 30	$42\frac{3}{4}$ $47\frac{1}{2}$	40	22½ 25	9 10
12	30	36	30	24	20	18	48	40	32	28	24	60	54	45	36	27	96	71½ 78	60	44	33	52½ 57	48	27½ 30	11
13	$32\frac{1}{2}$ 35	39	32½ 35	26 28	$21\frac{2}{3} \\ 23\frac{1}{3}$	$19\frac{1}{2}$ 21	52 56	$43\frac{1}{3}$ $46\frac{2}{3}$	$34\frac{2}{3}$ $37\frac{1}{3}$	$30\frac{1}{3}$ $32\frac{2}{3}$	26 28	65 70	58½ 63	$48\frac{3}{4}$ $52\frac{1}{2}$	39 42	$29\frac{1}{4}$ $31\frac{1}{2}$	104 112	$84\frac{1}{2}$ 91	65 70	52 56	39	$61\frac{3}{4}$ $66\frac{1}{2}$	52	321/2	
15	37½ 40	45 48	37½ 40	30 32	25 $26\frac{2}{3}$	$22\frac{1}{2}$ 24	60 64	50 53 ¹ / ₃	$\frac{40}{42\frac{2}{3}}$	35 37 ¹ / ₃	30 32	75 80	$67\frac{1}{2}$ 72	56½ 60	45 48	33 ³ / ₄ 36	120 128	$97\frac{1}{2}$ 104	75 80	60 64	45	$71\frac{1}{4}$	60	$37\frac{1}{2}$	15 16
7 8	42½ 45	51 54	42½ 45	34 36	28 ¹ / ₃	$25\frac{1}{2}$ 27	68 72	$56\frac{2}{3}$ 60	45 ¹ / ₃	$39\frac{2}{3}$	34	85	76½	$63\frac{3}{4}$	51	*		$110\frac{1}{2}$	85	68		803		421	
9	47½ 50	57 60	$47\frac{1}{2}$ 50	38	$31\frac{2}{3}$ $33\frac{1}{3}$	$28\frac{1}{2}$ 30	76 80	$63\frac{1}{3}$ $66\frac{2}{3}$	$ \begin{array}{c c} 48 \\ 50\frac{2}{3} \\ 53\frac{1}{3} \end{array} $	$\frac{42}{44\frac{1}{3}}$	36 38	90 95	$81 \\ 85\frac{1}{2}$	$67\frac{1}{2}$ $71\frac{1}{4}$	54 57	4234	152	$ \begin{array}{c c} 117 \\ 123\frac{1}{2} \end{array} $	90 95	72 76		85½ 90¼		45 47½	18 19
1	52½	63	52½	42	35	$31\frac{1}{2}$	84	70	56	$46\frac{2}{3}$ 49	40 42	100	$90 \\ 94\frac{1}{2}$	75 $78\frac{3}{4}$	60 63			$130 \\ 136\frac{1}{2}$	100 105	80 84	60 63	95 8	80		20
2 3	55 57½	66 69	55 57½	44 46	$36\frac{2}{3}$ $38\frac{1}{3}$	33 34½	88 92	$73\frac{1}{3}$ $76\frac{2}{3}$	$58\frac{2}{3}$ $61\frac{1}{3}$	$51\frac{1}{3}$ $53\frac{2}{3}$	44 46	110 115	99 103½	82½ 86¼	66	- 11			110	88	66				22
4 5	60 62½	72 75	60 62½	48 50	40 $41\frac{2}{3}$	36 37½	96 100	80 83 ¹ / ₃	64 $66\frac{2}{3}$	56 58 ¹ / ₃	48 50	120	$103\frac{1}{2}$ 108 $112\frac{1}{2}$	90 93 ³ / ₄	69 72 75	54	192		120		69 72			2	23
6	65	78	65	52	$43\frac{1}{3}$	39	104	862/3	$69\frac{1}{3}$	$60\frac{2}{3}$			$\frac{112\overline{2}}{117}$	$95\frac{1}{4}$ $97\frac{1}{2}$	78	*		$162\frac{1}{2}$ 169 1			75 . 78 .				25

Square Feet of Surface per Lineal Foot of Pipe on All Lengths Over 1 Foot Fractions Less than Tenths are Added To or Dropped

		Truc	tions Le	35 CHAII	Tenens		F PIPE	or Dropp	sed			
Length of Pipe	3/4 .275	1 .346	1¼ .434	1½ .494	2 .622	2½ .753	3 .916	4 1.175	5 1.455	6 1.739	7 1.996	8 2.257
2	.5 .8 1.1 1.4 1.6 1.9 2.2 2.5 2.7 3.	.7 1. 1.4 1.7 2.1 2.4 2.8 3.1 3.5 3.8	.9 1.3 1.7 2.2 2.6 3. 3.5 3.9 4.3 4.8	1. 1.5 2.4 2.9 3.4 3.9 4.4 4.9 5.4	1.2 1.9 2.5 3.1 3.7 4.4 5. 5.6 6.2 6.8	1.5 2.3 3.8 4.5 5.3 6.8 7.5 8.3	1.8 2.7 3.6 4.6 5.5 6.4 7.3 8.2 9.1	2.4 3.5 4.7 5.8 7. 8.2 9.4 10.6 11.8 12.9	2.9 4.4 5.8 7.3 8.7 10.2 11.6 13.1 14.6	3.5 5.2 7. 7.7 10.5 12.1 13.9 15.7 17.4 19.1	4. 6. 8. 10. 12. 14. 16. 18. 20. 22.	4.5 6.8 9. 11.3 13.5 15.8 18. 20.3 22.6 24.9
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	3.3 3.6 3.8 4.1 4.4 4.7 5.2 5.5 5.8 6.3 6.6 6.9 7.1 7.7 8.3 8.3	4.1 4.5 4.8 5.2 5.5 5.9 6.2 6.6 6.9 7.3 7.6 8. 8.3 8.6 9.4 9.7 10.4 10.7	5.2 5.6 6.1 6.5 6.9 7.4 7.8 8.3 8.7 9.1 9.6 10. 10.4 10.9 11.3 11.7 12.2 12.6 13.	5.9 6.4 6.9 7.4 7.9 8.4 8.9 9.4 9.9 10.4 10.9 11.3 11.9 12.3 13.8 14.3 14.8 15.3	7.5 8.1 8.7 9.3 10. 10.6 11.2 11.8 12.5 13. 14.3 14.9 15.6 16.2 16.8 17.4 18. 19.3	9.8 10.5 11.3 12. 12.8 13.5 14.3 15. 15.8 16.5 17.3 18. 18.8 19.5 20.3 21. 21.8 22.5 23.3	11. 11.9 12.8 13.7 14.6 15.5 16.5 17.4 18.3 19.2 20.2 21.1 22.9 23.8 24.7 25.6 26.6 27.5 28.4	14.1 15.3 16.5 17.6 18.8 20. 21.2 22.3 23.5 24.7 25.9 27. 28.2 29.3 30.5 31.7 32.9 34.1 35.3 36.4	17.4 18.9 20.3 21.8 23.2 24.7 26.2 27.6 29.1 30.5 32. 33.5 34.9 36.3 37.8 39.3 40.7 42.2 43.6 45.1	20.9 22.6 24.3 26.1 27.8 29.5 31.3 33.1 34.8 36.5 38.3 40. 41.7 43.5 45.2 47. 48.7 50.4 52.1 53.9	24. 26. 28. 30. 32. 34. 36. 38. 40. 42. 44. 46. 50. 52. 54. 56. 58. 60. 62.	27.1 29.4 31.6 33.9 36.1 38.4 40.6 42.9 45.2 47.4 49.7 52. 54.2 56.4 58.6 61. 63.2 65.5 67.7 70.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	8.8 9.1 9.4 9.6 9.9 10.2 10.5 10.7 11. 11.3 11.5 11.8 12.1 12.4 12.7 12.9 13.2 13.5 13.8	11.1 11.4 11.7 12.1 12.5 12.8 13.2 13.5 13.8 14.2 14.5 14.9 15.2 15.6 15.9 16.3 16.6 17.	13.9 14.3 14.7 15.2 15.6 16.1 16.5 16.9 17.4 17.8 18.2 18.7 19.1 19.5 20. 20.4 20.8 21.3 21.7	15.8 16.3 16.8 17.3 17.8 18.3 18.8 19.3 20.3 20.8 21.3 21.8 22.2 22.7 23.2 23.7 24.2 24.7	19.9 20.5 21.2 21.8 22.4 23.7 24.3 24.9 25.5 26.1 26.8 27.4 28. 29.2 29.9 30.5 31.1	24.1 24.8 25.6 26.3 27.8 28.5 29.3 30.1 30.8 31.6 32.3 33.1 33.8 34.6 35.3 36.1 36.8 37.6	29.3 30.2 31.1 32. 33.9 34.8 35.7 36.6 37.6 38.5 39.4 40.3 41.2 42.2 43. 43.9 44.8 45.8	37.6 38.8 40. 41.1 42.3 43.5 44.6 45.8 47. 48.2 49.4 50.6 51.7 52.9 54. 55.2 56.4 57.6 58.7	46.5 48. 49.5 50.9 52.4 53.8 55.2 56.7 58.2 59.6 61.1 62.5 64. 65.5 67. 68.4 69.8 71.2 72.7	55.6 57.4 59.1 60.8 62.6 64.3 66. 67.8 69.5 71.3 74.8 76.5 78.2 80. 81.7 83.5 85.1 87.	64. 66. 68. 70. 72. 74. 76. 78. 80. 82. 84. 86. 90. 92. 94. 96. 98. 100.	72.2 74.4 76.7 79. 81.3 83.5 85.8 88. 90.2 92.5 94.8 97. 99.3 101.6 103.8 106. 108.4 110.5 112.8

Standard Dimensions of Wrought Iron Welded Steam, Gas and Water Pipe

D	IAMETER				MFER-	TRAN	SVERSE	AREAS		of Pipe . Ft. of	Length	Nomi-		
Nominal Internal	Actual Exter- nal	Actual Inter- nal	Thick- ness	Exter- nal	Inter- nal	Exter-	Inter-	Metal	Exter- nal Surface	Inter- nal Surface	of Pipe Contain- ing One Cu. Ft.	nal Weight per Foot	No. of Threads per Inch of Screw	Tap Dril
Inches	Inches	Inches	Inches	Inches	Inches	Sq. In.	Sq. In.	Sq. In.	Feet	Feet	Feet	Lbs.		
1/8	0.405	0.27	0.068	1.272	0.848	0.129	0.0573	0.0717	9.44	14.15	2513.	0.241	27	11/2
1/4	0.54	0.364	0.088	1.696	1.144	0.229	0.1041	0.1249	7.075	10.49	1383.3	0.42	18	1/16
3/8	0.675	0.494	0.091	2.121	1.552	0.358	0.1917	0.1663	5.657	7.73	751.2	0.559	18	9/16
1/2	0.84	0.623	0.109	2.639	1.957	0.554	0.3048	0.2492	4.547	6.13	472.4	0.837	14	11/1
3/4	1.05	0.824	0.113	3.299	2.589	0.866	0.5333	0.3327	3.637	4.635	270.	1.115	14	15/
1	1.315	1.048	0.134	4.131	3.292	1.358	0.8626	0.4954	2.904	3.645	166.9	1.668	111/2	13/16
11/4	1.66	1.38	0.14	5.215	4.335	2.164	1.496	0.668	2.301	2.768	97.25	2.244	111/2	11/1
11/2	1.9	1.611	0.145	5.969	5.061	2.835	2.038	0.797	2.01	2.371	70.66	2.678	111/2	13/
2	2.375	2.067	0.154	7.461	6.494	4.43	3.356	1.074	1.608	1.848	42.91	3.609	111/2	21/2
21/2	2.875	2.468	0.204	9.032	7.753	6.492		1.708	1.328	1.547	30.1	5.739	8	211/
3	3.5	3.067	0.217	10.996	9.636	9.621	7.388	2.243	1.091	1.245	19.5	7.536	8	35/1
31/2	4.	3.548	0.226	12.566	11.146			2.679	0.955	1.077	14.57	9.001	8	313
4	4.5	4.026	0.237	14.137	12.648	15.904	12 73	3.174	0.849	0.949	11.31	10.665	8	45/
41/2	5.	4.508	0.246	15.708	14.162	19.635		3.674	0.764	0.949	9.02	12.34	8	4%
5	5.563	5.045	0.259	17.477	15.849	24.306		4.316	0.687	0.757	7.2		8	
6	6.625	6.065	0.28	20.813	19.054	34.472		5.584	0.577	0.63	4.98	14.502 18.762	8	
7	7.625	7.023	0.301	23.955	22.063	45.664	20 720	6.926	0.501	0.544	2.72	22 27		
8	8.625	7.982	0.322	27.096	25.076			8.386	0.501	0.544	3.72	23.271	8	
9	9.625	8.937		30.238	28.076	72.76		10.03	0.443	0.478	2.88	28.177	8	
10	10.75	10.019	0.366					11.924	0.397	0.427	2.29	33.701	8	
			3.300	33.112	31.7//	0.703	10.039	11.924	0.355	0.382	1.82	40.065	8	

Table Showing Expansion of Wrought Iron Pipe

Initial			In	crease in Le	ength per 1	100 Feet w	hen Heate	d to		
Temperature	160°	180°	200°	212°	228°	240°	250°	259°	267°	274°
Zero—inches	1.28 1.02 0.77	1.44 1.18 0.93	1.60 1.34 1.09	1.69 1.43 1.18	1.82 1.56 1.31	1.92 1.66 1.41	2.00 1.74 1.49	2.07 1.81 1.56	2.13 1.87 1.61	2.20 1.94 1.69
	Н	OT WATE	R	WATER BOILS	5 lb.	10 lb.	15 lb.	20 lb.	25 lb.	30 lb.

Wrought iron pipe expands, in inches per 100 ft., % of the increase in temperature of the steam or water it is subjected to, over the temperature at the time of installation, divided by see Example.—Temperature when installed, 32°, 10 lb. pressure = 240°, difference 208°, % of which equals 1.66 in. expansion per 100 ft. the time of installation, divided by 100.

Capacities of Mains and Risers

As Applied to Vapor Systems of Steam Circulation

Size of Supply,	Size of Return,]	ength of sup Allowance Pipe capacit risers based	for elbows a	and valves in	nust be add ect cast iror	ed to measu n radiation g	red distance	e. ch length.	
Inches	Inches	100	200	300	400	500	750	1000	1250	1500
1 11/4	1 1	87 161	64 114	50 94	44 81	38	30 59	27 51	25 45	20 42
11/2	1	267	189	149	129	118	97	84	76	70
2	11/4	589	436	363	314	285	242	203	179	169
2 1/2 3	11/4	1026	702	583	502	465	388	330	290	266
	11/2	1862	1308	1023	910	816	671	606	580	483
31/2	11/2	2662	1905	1524	1316	1212	968	871	740	702
4	2	3725	2630	2152	1848	1669	1383	1212	1066	992
4 1/2 5	2	4993	3512	2866	2468	2230	1814	1598	1450	1330
	21/2	6620	4698	3845	3305	2992	2420	2152	1936	1766
6	3	10658	7527	6033	5304	4692	3896	3486	3100	2810
7	31/2	15500	11150	9029	7713	6883	5616	4936	4550	4040
8	4	21783	15500	12433	10850	9680	7850	6583	6100	5813
9	41/2	29066	21300	16466	14533	13083	10333	9100	8133	7550
10	5	38733	28100	22550	19366	17433	14116	12316	11150	10166
12	6	61900	43600	35542	30772	27533	22266	19116	17516	16266
14	7	82333	58133	45900	39700	35316	28550	24966	22750	20700
15	7	96806	68133	55166	47283	42083	36016	29516	26783	24683
16	8	115333	82325	67825	58583	52266	41733	36683	33100	30033

Capacities of Mains and Risers

As Applied to the Vacuum System of Steam Circulation

ONE QUARTER POUND PRESSURE LOSS

Size of Supply,	Supply rise	Allowa Pipe cap	nce for elbow	s and valves are feet of di	in feet from must be adde rect cast iron on riser, 3/4" u	ed to measure radiation are	d distance.		to 2400 sq.ft.
Inches	200	300	400	500	750	1000	1250	1500	2000
1 11/4	66 118	52 97	46 84	40 75	31 61	29 53	26 47	43	38
$\frac{11}{2}$	195	154	133	123	101	87	79	72	62
	450	375	325	295	250	210	185	175	150
$\frac{21}{2}$	725	600	525	480	400	340	300	275	245
	1350	1100	940	850	700	625	600	500	430
$\frac{31}{2}$	1950	1575	1360	1250	1000	900	800	725	625
	2725	2225	1910	1725	1400	1250	1100	1025	875
4½	3625	2960	2550	2300	1875	1650	1500	1375	1175
5	4850	3975	3410	3090	2500	2225	2000	1825	1600
6 7	7775	6400	5475	4850	4025	3600	3200	2900	2540
	11500	9325	7960	7100	5800	5100	4700	4175	3660
8 9	16000	13000	11200	10000	8100	6800	6300	6000	5100
	22000	17000	15000	13500	11000	9400	8400	7800	6850
10	29000	23300	20000	18000	14600	12700	11500	10500	9120
12	45000	36750	31810	28400	23000	19700	18100	16800	16200
14	60000	47400	41000	36500	29500	25800	23500	21400	18600
15	70000	57000	49100	43500	35500	30500	27700	25500	22000
16	85000	70000	60500	54000	43600	37900	34200	31000	27000

Heating and Ventilating Unit

Capacities of Mains and Risers As Applied to the Vacuum System of Steam Circulation ONE HALF POUND PRESSURE LOSS

Size of Supply	Supply risers	Allowance f Pipe capacitie	or elbows and es in square fee	piping in feet a valves must be et of direct cast r, Return riser,	added to measure iron radiation	sured distance.	each length.	″ to 2400 sq.ft.
Inches	200	300	400	500	750	1000	1250	1500
1	92	72	64	56	44	40	36	
11/4	166	136	118	100	86	74	66	60
$1\frac{1}{2}$	274	216	188	172	142	122	110	102
2	632	528	456	414	350	294	260	246
$2\frac{1}{2}$	1020	850	720	676	564	480	420	386
3	1900	1420	1320	1174	964	880	840	700
$3\frac{1}{2}$	2740	2200	1910	1760	1404	1264	1120	1020
4	3800	3120	2680	2420	1970	1760	1550	1440
$4\frac{1}{2}$	5100	4160	3580	3240	2630	2320	2100	1930
5	6820	5580	4800	4340	3510	3120	2810	2560
6	10920	9000	7700	6800	5650	5060	4500	4080
7	16200	13100	11200	10000	8150	7160	6600	5860
8	22500	18300	15700	14040	11400	9550	8850	8440
9	30900	23900	21100	19000	14500	13200	11800	10950
10	40800	32700	28100	25300	20500	17900	16200	14750
12	63200	51500	44600	40000	32300	27800	25400	23600
14	84400	66600	57600	51200	41400	36200	33000	30000
15	98800	80000	68200	61000	49800	42800	38800	35800
16	119500	98500	85000	75800	59800	53200	48000	43600

Capacities of Mains and Risers As Applied to the Vacuum System of Steam Circulation

THREE QUARTER POUND PRESSURE LOSS

Size of Supply	Supply ris	Allowa Pipe cap	ance for elbow pacities in squ	vs and valves are feet of di	must be add	source of supped to measure radiation are p to 800 sq. f	ed distance.	ch length	to 2400 sq.fr
Inches	200	300	400	500	750	1000	1250	1500	2000
1 11/4 11/2 2 21/2 3 31/2 4 41/2 5 6 7	101 184 305 690 1156 2083 3046 4299 5670 7660 12383 18376 25726	83 156 251 593 1012 1720 2565 3648 4846 6533 10612 15592 21910	75 138 221 522 880 1543 2273 3206 4313 5766 9380 13746 19449	67 123 204 476 814 1398 2093 2915 3908 5255 8395 12426 17563	52 105 173 409 693 1179 1731 2440 3268 4400 7143 10146 14721	50 92 152 354 605 1069 1573 2203 2943 3986 6453 9392 12772	46 83 139 320 546 1020 1430 1993 2726 3670 5873 8763 11926	40 76 128 298 500 876 1302 1839 2493 3328 5113 7876 11187	35 70 120 280 485 830 1240 1745 2350 3200 4780 7300 10500
9 10 12	35023 46283 72356	28815 39085	26006 34653	23678 31558	19659 26573	17599 23715	16130 21913	14843 20030	14000 19000
14 15 16	102200 119800 144750	61925 80700 97000 119250	55293 75300 85200 103000	50202 68372 74000 91900	42292 57935 60400 73500	37447 52048 58775 64500	34893 48436 53318 58200	32256 44280 48540 52800	32000 42000 44000 48000

Capacities of Mains and Risers

As Applied to the Vacuum System of Steam Circulation

ONE POUND PRESSURE LOSS

Size of Supply	Supply rise	Length of supply and return piping in feet from source of supply to farthest radiator. Allowance for elbows and valves must be added to measured distance. Pipe capacities in square feet of direct cast iron radiation are given for each length. Supply risers are based on length of supply, Return riser, 34" up to 800 sq. ft.; 1" to 1500 sq. ft.; 114" to 2400 sq. ft.														
Inches	200	300	400	500	750	1000	1250	1500	2000							
$ \begin{array}{c} 1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 2 \\ 2\frac{1}{2} \end{array} $	132 236 390 900 1450	104 194 308 750 1200	92 168 266 650 1050	80 150 246 590 960	62 122 202 500 800	58 106 174 420 680	52 94 158 370 600	86 144 350 550	76 124 300 490							
3	2700	2200	1880	1700	1400	1250	1200	1000	860							
31/2	3900	3150	2720	2500	2000	1800	1600	1450	1250							
4	5450	4450	3820	3450	2800	2500	2200	2050	1750							
41/2	7250	5920	5100	4600	3750	3300	3000	2750	2350							
5	9700	7950	6820	6180	5000	4450	4000	3650	3200							
6	15550	12800	10950	9700	8050	7200	6400	5800	5080							
7	23000	18650	15920	14200	11600	10200	9400	8350	7320							
8	32000	26000	22400	20000	16200	13600	12600	12000	10200							
9	44000	34000	30000	27000	22000	18800	16800	15600	13700							
10	58000	46600	40000	36000	29200	25400	23000	21000	18240							
12	90000	73500	63600	56800	46000	39400	36200	33600	32400							
14	120000	94800	82000	73000	59000	51600	47000	42800	37200							
15	140000	114000	98200	87000	71000	61000	55400	51000	44000							
16	170000	140000	121000	108000	87200	75800	68400	62000	54400							

Capacities of Return Mains

As Applied to Vacuum Systems of Steam Circulation

Size of Return		Pir	Allowand e capacit	return p ce for elbo cies in squ one thir	ows and lare feet	ifts must of direct	be added	l to meas radiation	ured dist	ance. r each len	gth.	
	100	200	300	400	500	600	700	800	900	1000	1250	1500
1	1500	1450	1400	1200						,		
$1\frac{1}{4}$	3200	3150	3100	2500	2500		2000	2000				
$1\frac{1}{2}$	5000	4500	4000	3500	3250			2800				
2	8000	7000	6250	5775	5000				4100			
$2\frac{1}{2}$	11000	10500	9500	9000	8000	7250	6950	6250	6000	5000	4900	4500
3	19000	18000	16500	15000	14000	13000	12000	11500	10900	10500	9750	8500
$3\frac{1}{2}$	28000	26000	24500	23000	22000	20700	19900	18000	17500	17000	16000	15000
4	40000	38000	36000	34500	32700	31200	30000	28700	28000	27000	25200	24500
$4\frac{1}{2}$	54500	51700	49500	47000	45000	43500	41700	40000	39000	37500	35000	33750
5	71000	67500	64000	61000	58000	55000	52700	50700	49000	47500	44000	41700
6	91000	87000	83000	80000	76500	73500		68500	66500		60500	57700
7	115500	111500		104000					90000			78500
8	146000	141500	137000	133000	129500	126000	122500	119500	116500	114000	107500	102000

Heating and Ventilating Unit

Flow of Steam in Pipes

Pressure Drop in Ounces	87 V Drop 100	Inside Diameter Pipe, Inches	$\sqrt{\frac{D^5}{1 + \frac{3.6}{D}}}$	Steam Pressure	√Density	Length Pipe in Inches	√ 100 Length
1 2 3 4 5	2.175 3.076 3.767 4.350 4.863	$ \begin{array}{c} 1 \\ 1 \frac{1}{4} \\ 1 \frac{1}{2} \\ 2 \\ 2 \frac{1}{2} \end{array} $.522 1.177 1.828 3.709 6.109	0 .3 1.3 2.3 5.3	. 193 . 195 . 201 . 207 . 223	20 40 60 80 100	2.240 1.580 1.290 1.120 1.000
6 7 8 10 12	5.328 5.754 6.152 6.878 7.534	3 3 ¹ / ₂ 4 4 ¹ / ₂ 5	11.183 16.705 23.630 32.098 43.719	10.3 15.3 20.3 30.3 40.3	.248 .270 .290 .326 .358	120 140 160 180 200	.912 .841 .793 .741 .710
14 16 20 24 28	8.138 8.700 9.727 10.655 11.509	6 7 8 9 10	69.718 105.35 150.33 205.37 271.16	50.3 60.3 75.3 100.3 125.3	.388 .415 .452 .507 .557	250 300 350 400 450	.632 .578 .538 .500 .477
32 40 48 80 160	12.290 13.756 15.069 19.454 27.512	12 14 16	437.51 733.90 925.19	150.3 175.3 200.3	.603 .645 .648	500 600 700 800 900	.447 .407 .378 .354 .333
320 480	38.863 47.652					1000 1400	.316 .267

 $A \times B \times C \times D = lbs$. steam per minute will flow through a pipe for a given condition. Example.—

4.35 × 11.183 × 223 × 1.00 = 10.84 lbs. per minute— $10.84 \times 60 = 650.4$ lbs. per hour.

p = drop in pressure in lbs.
d = inside diameter pipe in inches
L = length of pipe in feet
D = density of steam per cu. ft.
W = lbs. of steam per minute

$$W = \sqrt{\frac{PDd^{\delta}}{\left(1 + \frac{3.6}{d}\right) L}}$$

 $P = .000131 \left(1 + \frac{3.6}{d}\right) \frac{W_2L}{Dd^5}$

Properties of Saturated Steam

-						
Vacuum						
in Inches	Absolute		Total He	at Above	Latent	Volume
of	Pressure	Temper-		fahr.	Heat of	in cu. ft.
Mercury	in lbs.	ture in			the Steam	of 1 lb.
or Gage	per sq. in.	Degrees			in B.t.u.	of
Pressure in		Fahr.	B.t.u. in	B.t.u. in		Steam
Pounds			the Water	the Steam		
27.88	1.	101.83	69.8	1104.4	1034.6	333.0
25.85	2.	126.15	94.0	1115.0	1021.0	173.5
23.81	3.	141.52	109.4	1121.6	1012.3	118.5
21.78	4.	153.01	120.9	1126.5		90.5
					1005.7	
19.74	5.	162.28	130.1	1130.5	1000.3	73.33
17.70	6.	170.06	137.9	1133.7	995.8	61.89
15.67	7.	176.85	144.7	1136.5	991.8	53.56
13.63	8.	182.86	150.8	1139.0	988.2	47.27
11.60	9.	188.27	156.2	1141.1	985.0	42.36
9.56	10.	193.22	161.1	1143.1	982.0	38.38
7.50	10.	173.22	101.1	1143.1	902.0	30.30
7.52	11.	197.75	165.7	1144 0	070.2	25 10
5.49	12.	201.96		1144.9	979.2	35.10
			169.9	1146.5	976.6	32.36
3.45	13.	205.87	173.8	1148.0	974.2	30.03
1.42	14.	209.55	177.5	1149.4	971.9	28.02
0.00	14.70	212.00	180.0	1150.4	970.4	26.79
0.3	15.	213.00	181.0	1150.7	969.7	26.27
1.3	16.	216.3	184.4	1152.0	967.6	24.79
2.3	17.	219.4	187.5	1153.1	965.6	23.38
3.3	18.	222.4				
			190.5	1154:2	963.7	22.16
4.3	19.	225.2	193.4	1155.2	961.8	21.07
5.3	20.	228.0	196.1	1156.2	0000	20.08
					960.0	
6.3	21.	230.6	198.8	1157.1	958.3	19.18
7.3	22.	233.1	201.3	1158.0	956.7	18.37
8.3	23.	235.5	203.8	1158.8	955.1	17.62
9.3	24.	237.8	206.1	1159.6	953.5	16.93
10.3	25.	240.1	208.4	1160.4	952.0	16.30
15.3	30.	250.3	218.8	1163.9	945.1	13.74
20.3	35.	259.3	227.3	1166.8	938.9	11.89
25.3	40.	267.3	236.1			
				1169.4	933.3	10.49
31.3	46.	275.8	244.8	1172.0	927.2	9.20
35.3	50.	281.0	250.1	1173 6	022 5	8 51
41.3				1173.6	923.5	8.51
	56.	288.2	257.5	1175.7	918.2	7.65
45.3	60.	292.7	262.1	1177.0	914.9	7.17
51.3	66.	299.0	268.5	1178.8	910.2	6.56
61.3	76.	308.5	278.3	1181.4	903.0	5.74
71.3	86.	317.1	287.2	1183.6	896.4	5.10
81.3	96.	324.9	295.3	1185.6	890.3	4.60
90.3	105.	331.4	302.0	1187.2	885.2	4.23
100.3	115.	338.1				
125.3			309.0	1188.8	879.8	3.88
123.3	140.	353.1	324.6	1192.2	867.6	3.219
140.3	155.	361.1	332.9	1194.0	861.0	2 920
						2.920
150.3	165.	366.1	338.2	1195.0	856.8	2.753
165.3	180.	373.1	345.6	1196.4	850.8	2.533
175.3	190.	377.6	350.4	1197.3	846.9	2.406
200.3	215.	388.0	361.4	1199.2	837.9	2.138

Diameter or Side of Chimney

(in Inches) Required for Varying Amounts of Direct Steam Radiating Surface

HEIGHT OF								
CHIMNEY	20	30	40	50	60	80	100	120
IN FEET	20	30	10	30	00	00	100	120
SQUARE								
FEET OF								
DIRECT	DIME	ENSION	S GIVE	N ARE	INSIDE	MEASU	JREME	NTS
STEAM								
RADIATION								
250	7.4	7.0	6.7	6.4	6.2	6.0	6.0	6.
500		9.2	8.8	8.2	8.0	6.6	7.3	7.
750		10.8	10.2	9.6	9.3	8.8	8.5	8.
1000		12.0	11.4	10.8	10.5	10.0	9.5	9.
1500		14.4	13.4	12.8	12.4	11.5	11.2	10.
2000		16.3	15.2	14.5	14.0	13.2	12.6	12.
3000		18.5	18.2	17.2	16.6	15.8	15.0	14.
4000		22.2	20.8	19.6	19.0	17.8	17.0	16.
5000		24.6	23.0	21.6	21.0	19.4	18.6	18.
6000		26.8	25.0	23.4	22.8	21.2	20.2	19.
7000		28.8	27.0	25.5	24.4	23.0	21.6	20.
8000		30.6	28.6	26.8	26.0	24.2	23.4	22.
9000		32.4	30.4	28.4	27.4	25.6	24.4	23.
10000		34.0	32.0	30.0	28.6	27.0	25.4	24.
15000			38.4	36.2	35.0	33.0	31.0	29.
20000			43.0	42.0	41.0	37.0	35.0	34.
				50.0	48.0	46.0	43.0	41.

Storage of Fuel per Thousand Pounds Prepared Stove Size

Hard Coal	
Soft Coal	
Coke	34 Cubic Feet
Cord Wood	38 Cubic Feet
Oil	18 Cubic Feet

Chimney Capacities in Horse Power

Horse Power = 3.33 (A $-0.6 \text{ } \sqrt{\text{A}}$) $\sqrt{\text{H}}$

ches		VA VA						Неіснт	of Ch	IMNEY I	N FEET						Sq.
Diam. in inches	Area-A in Sq. Ft.	Effective Area E=A-6/A Sq. Ft.	50	60	70	80	90	100	110	125	150	175	200	225	250	300	Equivalent S
Diam	bq. 1 t.	Effec E=					Con	MERCIA	L Hors	E Powr	ER OF B	OILER					Equ
18	1.77	0.97	23	25	27	29											
21	2.41	1.47	35	38	41	44											1
24	3.14	2.08	49	54	58	62	66										
27	3.98	2.78	65	72	78	83	88										
80	4.91	3.58	84	92	100	107	113	119									
3	5.94	4.48	115	115	125	133	141	149	156								
6	7.07	5.47		141	152	163	173	182	191	204							
9	8.30	6.57			183	196	208	219	229	245	268						
2	9.62	7.76			216	231	245	258	271	289	316	342					
8	12.57	10.44				311	330	348	365	389	426	460	492				
4	15.90	13.51					427	449	472	503	551	595	636	675			
0	19.64	16.98					536	565	593	632	692	748	800	848	894		
6	23.76	20.83						694	728	776	849	918	981	1040	1097	1201	
2	28.27	25.08						835	876	934	1023	1105	1181	1253	1320	1447	
8	33.18								1038	1107	1212	1310	1400	1485	1565	1715	
4	38.48	34.76							1214	1294	1418	1531	1637	1736	1830	2005	
)	44.18	40.19								1496	1639	1770	1893	2008	2116	2318	
6	50.27									1712	1876	2027	2167	2298	2423	2654	
2	56.75	52.23								1944	2130	2300	2459	2609	2750	3012	
3	63.62	58.83								2090	2399	2592	2771	2939	3098	3393	
1	70.88	65.83									26.85	2900	3100	3288	3466	3797	
0	78.54	73.22									2986	3226	3448	3657	3855	4223	
2	95.03	89.18									3637	3929	4200	4455	4696	5144	
4	113.10	106.72									4352	4701	5026	5331	5618	6155	

Practical Heights of Chimneys

Using Free Burning Bituminous Coal 75 feet
A - 1 1 () () () () ()
Anthracite of Medium and Large Size 100 feet
Clarry Dunning Div.
Slow Burning Bituminous Coal120 feet
1
Anthracite Pea Coal
1 1
Anthracite Buckwheat
The state of the s
Plants 700 H D and O 1
Plants 700 H.P. and Over not less than150 feet

Flue Diameters

CU. FT. OF AIR PER MINUTE	500	600	700	800	900	1000	1200	1500	1800	2000	2200	2500	2800	3000	3500	4000
200 300 400 500 600	9 11 13 14 15	8 10 11 13 14	8 9 11 12 13	7 9 10 11 12	7 8 9 11 11	7 8 9 10 11	6 7 8 9 10	6 7 8 8 9	6 6 7 8 8	6 6 7 7 8	6 6 6 7 8	6 6 6 7 7	6 6 6 6 7	6 6 6 6 7	6 6 6 6	6 6 6
700. 800. 900. 1000.	16 18 19 20 21	15 16 17 18 19	14 15 16 16 18	13 14 15 16 16	12 13 14 15 16	12 13 13 14 15	11 12 12 13 13	10 10 11 12 12	9 9 10 10 11	9 9 10 10 11	8 9 9 10 10	8 8 9 9	7 8 8 9	7 8 8 8 9	7 7 8 8 8	6 7 7 7 8
1200 . 1300 . 1400 . 1500 .	23 24	20 20 21 22 23	18 19 20 20 21	17 18 18 19 20	16 17 17 18 18	15 16 16 17 18	14 15 15 16 16	13 13 14 14 15	11 12 12 13 13	11 11 12 12 13	10 11 11 12 12	10 10 11 11 11	9 10 10 10 11	9 10 10 10 11	9 9 9 9 10	8 8 9 9
1700	26 27 28	24 24 24 25 26	21 22 23 23 24	20 21 21 22 22	19 20 20 21 21	18 19 19 20 20	17 17 18 18 18	15 15 16 16 16	14 14 14 15 15	13 13 14 14 14	12 13 13 13 14	12 12 12 13 13	11 11 12 12 12	11 11 11 12 12	10 10 10 11 11	9 10 10 10 10
2200	30 30 31	27 27 28 28 28 29	24 25 25 26 27	23 23 24 24 24 25	22 22 23 23 23	21 21 21 22 22	19 19 20 20 20	17 17 18 18 18	15 16 16 16 17	15 15 15 16 16	14 15 15 15 15	13 13 14 14 15	12 13 13 13 14	12 12 13 13 13	11 11 12 12 12	11 11 11 11 11
2700 2800 2900 3000 3100	33 33 34	29 30 30 31 31	27 28 28 29 29	25 26 26 27 27	24 24 25 25 26	23 23 24 24 24 24	21 21 22 22 22 22	19 19 19 20 20	17 18 18 18 18	16 16 17 17 17	15 16 16 16 17	15 15 15 15 15	14 14 14 15 15	13 14 14 14 14 14	12 13 13 13 13	12 12 12 12 12
3200 3300 3400 3500 3600	35 36 36	32 32 33 33 34	30 30 30 31 31	28 28 28 29 29	26 26 27 27 27 28	25 25 25 26 26	23 23 23 24 24	20 21 21 21 21	19 19 19 19 20	18 18 18 18 19	17 17 17 18 18	15 16 16 16 16	15 15 15 16 16	15 15 15 15 15	13 14 14 15 15	13 13 13 14 14
3700 3800 3900 4000 4100	. 38 . 38 . 39	34 35 35 35 36	32 32 32 33 33	30 30 30 31 31	28	27 27 27 28 28	24 25 25 25 26	22 22 22 22 22 23	20 21 21 21 21	19 19 19 20 20	18 18 19 19	17 17 17 18 18	16 16 16 17 17	16 16 16 16 16	14 15 15 15 15	14 14 14 14 14
4200. 4300. 4400. 4500. 4600.	40 40 41 41 42	36 37 37 38 38	34 34 34 35 35	32 32 33	30 31	28 29 29 29 30	26 26 26 27 27	23 23 24 24 24 24	21 21 22 22 22 22	20 20 21 21 21	19 19 20 20 20	18 18 18 19 19	17 17 17 18 18	16 17 17 17 17	15 15 16 16 16	

Flue Diameters

CU. FT. OF AIR PER MINUTE	500	600	700	800	900	1000	1200	1500	1800	2000	2200	2500	2800	3000	3500	4000
4700 4800 4900 5000 5100	42 43	38 39 39 40 40	36 36 36 37 37	34 34 34 34 35	31 32 32 32 32 33	30 30 30 31 31	27 28 28 28 28	24 25 25 25 25 25	22 22 23 23 23	21 21 22 22 22 22	20 20 21 21 21 21	19 19 19 20 20	18 18 18 19 19	17 18 18 18 18	16 16 16 17 17	15 15 16 16 16
5200. 5300. 5400. 5500. 5600.	45	40 41 41 41 41	37 38 38 38 39	35 35 35 36 36	33 33 33 34 34	31 32 32 32 33	29 29 29 29 30	25 26 26 26 27	24 24 24 24 24 24	22 23 23 23 23 23	21 22 22 22 22 22	20 20 21 21 21	19 19 19 19 20	18 18 18 18 19	17 17 18 18 18	16 16 16 16 17
5700. 5800. 5900. 6000.	46 46 46 47 47	42 42 42 43 43	39 39 40 40 40	37 37 37 38 38	34 35 36 36 36	33 33 33 34 34	30 30 30 31 31	27 27 27 28 28	24 25 25 25 25 25	23 24 24 24 24 24	22 22 22 23 23	21 21 21 21 21 21	20 20 20 20 20 20	19 19 19 20 20	18 18 18 18 18	17 17 17 17 17
6200. 6300. 6400. 6500.	48 48 48 49 50	43 44 44 44 45	41 41 41 41 42	38 38 39 39 39	36 36 37 37 37	34 34 35 36 36	31 31 32 32 32 32	28 28 28 29 29	25 25 26 26 26 26	24 24 25 25 25 25	23 23 24 24 24 24	21 22 22 22 22 22	21 21 21 21 21 21	20 20 20 20 20 21	18 18 19 19	17 17 18 18 18
6700 6800 6900 7000 7100	50 50 50 51 51	45 46 46 46 46	42 43 43 43 44	40 40 40 40 41	37 38 38 38 38	36 36 36 36 37	32 33 33 33 33	29 29 30 30 30	27 27 27 27 27 27	25 25 25 26 26	24 24 24 24 25	22 23 23 23 23 23	21 21 21 22 22	21 21 21 21 21	19 19 19 20 20	18 18 18 19
7200 7300 7400 7500 7600	52 53 53 53 53	47 47 48 48 48	44 44 44 45 45	41 41 41 42 42	39 39 39 40 40	37 37 37 38 38	34 34 34 34 34	30 30 30 31 31	28 28 28 28 28	26 26 27 27 27	25 25 25 25 25 25	23 24 24 24 24 24	22 22 22 22 22 23	21 21 21 21 21 22	20 20 20 20 20 20	19 19 19 19 19
7700	53 54 54 54 55	49 49 49 49 50	45 46 46 46 46	42 43 43 43 43	40 40 40 41 41	38 38 39 39 39	35 36 36 36 36	31 31 31 32 32	28 29 29 29 29	27 27 27 28 28	26 26 26 26 26 26	24 24 24 25 25	23 23 23 24 24	22 22 22 22 22 23	21 21 21 21 21 21	19 19 19 20 20
8200	55 55 56 56 56	50 50 51 51 51	46 47 47 47 48	43 43 44 44 44	41 41 41 41 42	39 40 40 40 40 40		32 32 33 33 33	29 30 30 30 30 30	28 28 28 28 29	27 27 27 27 27 27	25 25 25	24 24	23 23 23 23 23 23	21 21 21 21 21 21	20 20 20 20 20 20
8700. 8800. 8900. 9000.	56 57 57 57 58	52 52 52 52 52 53	48 48 48 49 49	45 45 45	42 42 43 43 43	41 41 41	37 37 38	33 33 34	30 30 30 31 31	29 29 29 29 29	28 28	26 26 26	24 24 25	24 24 24 24 24 24	21 22 22 22 22 22	20 21 21 21 21

Flue Diameters

CU. FT. OF AIR																
PER MINUTE	500	600	700	800		1000								_		
9200. 9300. 9400. 9500. 9600.	58 58 59 59 59	53 53 53 54 54	49 49 50 50 50	46 46 46 47 47	43 44 44 44 44	41 42 42 42 42 42	38 38 38 39 39	34 34 34 34 35	31 31 31 31 32	30 30 30 30 30	28 28 28 29 29	26 27 27 27 27 27	25 25 25 25 25 25	24 24 24 24 25	22 22 22 23 23	21 21 21 21 21
9700. 9800. 9900. 10000.	60 60 60 61 61	54 55 55 55 57	51 51 51 52 53	47 47 48 48 49	45 45 45 45 46	43 43 43 43 44	39 39 39 40 41	35 36 36 36 36	32 32 32 32 32 32	30 30 30 31 31	29 29 29 29 30	27 27 27 28 28	25 26 26 26 27	25 25 25 25 26	23 23 23 23 24	21 21 21 22 22
11000 11500 12000 12500 13000	62 62 63 64 65	58 59 60 61 62	54 55 56 57 58	50 51 52 53 54	47 48 49 50 51	45 46 47 48 49	41 42 43 44 45	37 37 39 40 40	33 34 35 36 37	31 32 34 34 35	31 31 32 33 33	29 30 30 31 31	27 28 28 30 30	26 27 28 28 29	24 25 25 26 27	23 23 24 24 25
13500 14000 14500 15000	70 72 73 74 75	64 65 66 68 69	59 61 61 62 64	56 57 57 59 59	52 53 54 56 56	50 51 52 53 54	46 47 47 48 49	41 42 42 43 44	38 38 39 40 40	35 36 37 38 38	34 34 35 36 36	32 33 33 34 35	30 31 31 32 32	29 30 30 31 31	27 28 28 28 28 29	25 26 26 27 27
16000 16500 17000 17500 18000	77 78 79 80 81	70 71 73 73 74	65 65 66 68 68	60 61 62 64 64	59 59 59 59 60	55 56 56 57 58	50 51 51 52 53	45 45 46 47 47	41 41 42 43 43	39 39 40 40 41	37 38 38 39 39	35 36 36 37 37	33 33 34 34 35	32 32 33 33 34	29 30 30 31 31	28 28 28 29 29
18500 19000 19500 20000 20500	82 83 85 86 87	75 75 77 78 79	70 70 72 73 73	65 65 67 68 68	60 62 62 64 64	59 60 60 61 62	54 54 55 56 56	48 49 49 50 50	44 44 45 46 46	42 42 43 43 44	40 40 41 41 42	38 38 39 39 39	35 35 36 37 37	34 34 35 35 36	31 32 32 33 33	30 30 30 31 31
21000 21500 22000 22500 23000	89 90	80 81 81 82 83	74 74 75 77 78	69 70 70 72 73	65 66 66 68 68	63 63 64 65 65	57 58 58 59 60	51 52 52 53 53	47 47 48 48 49	44 45 45 46 46	42 43 43 44 44	40 40 41 41 42	38 38 38 39 39	36 37 37 38 38	34 34 34 35 35	31 32 32 33 33
23500 24000 24500 25000 25500	94 95 96	85 86 87 87 88	79 79 80 80 81	73 74 74 75 77	69 69 71 72 72	66 67 68 68 69	60 61 62 62 63	54 55 55 56 56	49 50 50 51 51	47 47 48 48 49	45 45 45 46 46	42 42 43 43 44	40 40 40 41 41	38 39 39 40 40	35 36 36 37 37	33 34 34 34 34 34
26000 26500 27000 27500 28000	99 100 101	89 90 91 92 92	82 83 83 85 86	77 78 79 79 80	73 73 74 74 75	70 70 71 72 72	63 64 65 65 66	57 57 58 58 59	52 52 53 53 54	49 50 50 51 51	47 47 48 48 49	44 45 45 45 45 46	42 42 42 43 43	40 41 41 41 41 42	38 38 38 38 39	35 35 36 36 36

Flue Diameters

Required for the Passage of Given Volumes of Air at Various Standard Velocities

CU. FT. OF AIR	500	600	700	800	900	1000	1200	1500	1800	2000	2200	2500	2800	3000	3500	1000
28500	103 104 105 106	93 94 95 96 97	87 87 88 89 89	80 81 82 82 83	76 77 77 78 79	73 73 74 75 75	66 67 68 68 69	60 60 60 61 62	54 55 55 56 56	52 52 52 53 53	49 50 50 50 51	46 47 47 47 48	44 44 44 45 45	42 42 43 43 44	39 39 40 40 40	37 37 37 38 38 38
31000 31500 32000 32500 33000	108 109 110	97 98 99 100 101	90 91 91 92 93	85 85 86 86 87	79 80 80 81 81	76 76 77 78 78	69 70 70 71 72	62 63 63 63 64	57 57 57 58 58	54 54 55 55 56	51 52 52 52 52 53	48 49 49 49 50	45 46 46 47 47	44 44 45 45 45	41 41 41 42 42	38 39 39 39 39
33500 34000 34500 35000 35500	112 113 114	102 102 103 104 105	94 94 95 96 96	88 88 89 90	82 83 85 85 86	79 79 80 81 81	72 73 73 74 74	64 65 65 66 66	59 59 60 60 61	56 56 57 57 57	53 54 54 54 55	50 50 51 51 52	47 48 48 48 49	46 46 46 47 47	42 43 43 43 44	40 40 40 40 41
37000	116 117 118	106 106 107 107 108	97 98 99 100 101	91 91 92 93 93	86 87 87 88 88	82 82 83 83 84	75 75 76 76 77	67 67 68 68 69	61 61 62 62 63	58 58 59 59 60	55 56 56 56 57	52 52 52 53 53	49 49 50 50 50	47 48 48 48 49	44 44 44 45 45	41 41 42 42 42
38500 39000 39500 40000 40500	120 121 122	109 110 110 110 111	102 102 103 103 104	94 95 95 96 96	89 89 90 90 91	85 85 86 86 87	77 78 78 79 79	69 70 70 71 71	63 63 64 64 65	60 60 61 61 61	57 57 58 58 59	54 54 54 55 55	51 51 51 52 52	49 49 50 50 50	45 46 46 46 46	42 43 43 43 44
41000 41500 42000 42500 43000	124 125 125	112 113 114 115 115	104 105 105 106 106	97 98 98 99 99	91 92 92 93 93	88 88 88 89	79 80 81 81 82	71 72 72 73 73	65 65 66 66 66	62 62 63 63 63	59 59 60 60 60	55 56 56 56 57	52 52 53 53 53	50 50 51 51 51	47 47 47 48 48	44 44 44 44 44
43500 44000 44500 45000 45500	127 128 129	116 116 117 118 119	107 108 108 109 110	100 101 101 102 102	94 95 95 96 96	90 90 91 91 92	82 82 83 83 84	73 74 74 75 75	67 67 68 68 68	63 64 64 65 65	61 61 62 62	57 57 58 58 58	53 54 54 55 55	51 52 52 53 53	48 48 49 49	45 45 46 46 46
46000 46500 47000 47500 48000	131 132 132	120 120 121	110 111 112	103 103 104 104 105	97 97 98 99 100	93 93 93 94 95	84 85 85 86 86	75 76 76 77 77	69 69 70 70 70	65 66 66 66 67	62 63 63 63 64	59 59 59 60 60	55 56 56 56 56	53 54 54 54 55	50 50 50 50 50	46 47 47 47 47
48500 49000 49500 50000 50500			114 114 115	106 107 107	100 100 101 101 101 102	95 95 96 96 97	87 87 87 88 88	77 78 78 79 79	71 71 72 72 72 72	67 68 68 68 68	64 64 65 65 65	60 60 61 61 61	57 57 57 58 58	55 55 56 56 56	51 51 51 51 51 52	47 48 48 48 49

Flue Diameters

CU. FT. OF AIR PER MINUTE	500	600	700	800	900	1000	1200	1500	1800	2000	2200	2500	2800	3000	3500	4000
51000			115 116 117 118 118	108 109 110 110 110	102 103 103 104 104	97 98 98 99 99	89 89 90 90	79 80 80 81 81	73 73 73 74 74	69 69 70 70 70	66 66 66 67 67	62 62 62 63 63	58 58 59 59 59	56 56 57 57 57	52 52 53 53 53	49 49 49 50 50
53500				111 111 112 113 113	104 105 105 106 106	99 100 100 101 101	91 91 92 92 93	81 82 82 82 83	74 75 75 75 76	70 71 71 72 72	67 68 68 68 68	63 63 64 64 64	60 60 60 61	58 58 58 58 59	53 54 54 54 54	50 50 50 51 51
56000				114 114 115 115 116	107 107 108 109 109	102 102 103 103 104	93 93 94 94 95	83 84 84 84 85	76 76 77 77 77	72 72 73 73 73	69 69 69 70 70	65 65 65 65 66	61 62 62 62	59 59 60 60 60	55 55 55 55 56	51 51 52 52 52
58500 59000 59500 60000 60500				116 117 117 118 118	110 110 110 110 111	104 104 105 105 106	95 95 96 96 97	85 85 86 86	78 78 78 79 79	74 74 74 75 75	70 71 71 71 71 72	66 66 67 67 67	62 63 63 63 63	60 60 61 61 61	56 56 56 57 57	52 52 53 53 53
61000				119 120	111 112 113 113 114	106 107 107 108 108	97 97 98 98 98	87 87 88 88 88	79 80 80 80 80	75 76 76 76 76	72 72 72 73 73	67 68 68 68 68	64 64 64 65	62 62 62 62 63	57 57 57 58 58	53 53 54 54 54
63500 64000 64500 65000 65500					111	109 109 110 110 110	99 99 100 100 101	89 89 89 90 90	80 81 81 81 82	77 77 77 78 78	73 73 74 74 74 74	69 69 69 70 70	65 65 65 66 66	63 63 63 64 64	58 58 58 59 59	54 55 55 55 55

Flue Diameters

					0										
Cu. Ft. Air per Min.	2000	2200	2500	2800	3000	3500	4000	Cu. Ft. Air per Min.	2000	2200	2500	2800	3000	3500	4000
66000 66500 67000 67500 68000	78 79 79 79 79	75 75 75 75 76	70 70 71 71 71	66 66 67 67 67	64 64 64 65 65	59 60 60 60 60	56 56 56 56 56	83500 84000 84500 85000 85500	88 88 88 89 89	84 84 84 85 85	79 79 79 79 79 80	74 75 75 75 75	72 72 72 73 73	67 67 67 67 67	62 63 63 63 63
68500 69000 69500 70000 70500	80 80 80 81 81	76 76 76 77 77	71 71 72 72 72 72	67 68 68 68 68	65 65 66 66 66	60 61 61 61 61	57 57 57 57 57	86000 86500 87000 87500 88000	89 89 90 90	85 85 86 86 86	80 80 80 81 81	76 76 76 76 76	73 73 74 74 74	68 68 68 68	63 63 64 64 64
71000 71500 72000 72500 73000	81 81 82 82 82	77 78 78 78 78	73 73 73 73 74	69 69 69 69 70	66 67 67 67	61 62 62 62 62	57 58 58 58 58	88500 89000 89500 90000 90500	91 91 91 91 92	86 87 87 87	81 81 82 82 82	77 77 77 77 77	74 74 74 75 75	68 69 69 69	64 64 64 65 65
73500 74000 74500 75000 75500	82 83 83 83 84	79 79 79 79 80	74 74 74 75 75	70 70 70 71 71	68 68 68 68	63 63 63 63	58 59 59 59	91000 91500 92000 92500 93000	92 92 92 93 93	88 88 88 88	82 82 83 83 83	78 78 78 79 79	75 75 75 76 76	70 70 70 70 70	65 65 65 66 66
76000 76500 77000 77500 78000	84 84 85 85 85	80 80 81 81 81	75 75 76 76 76	71 71 72 72 72 72	69 69 69 69 70	64 64 64 64 64	60 60 60 60	93500 94000 94500 95000 95500	93 93 94 94 94	89 89 89 89	83 84 84 84 84	79 79 79 79 80	76 76 76 77 77	70 71 71 71 71	66 66 66 66 67
78500 79000 79500 80000 80500	85 86 86 86 86	81 82 82 82 82 82	76 77 77 77 77	72 72 73 73 73	70 70 70 70 70 71	65 65 65 65	60 61 61 61 61	96000 96500 97000 97500 98000	94 95 95 95 95	90 90 90 90 91	84 84 85 85 85	80 80 80 80 81	77 77 77 78 78	71 72 72 72 72 72	67 67 67 67 68
81000 81500 82000 82500 83000	87 87 87 87 88	83 83 83 83 84	78 78 78 78 78 79	73 74 74 74 74 74	71 71 71 72 72	66 66 66 66	61 62 62 62 62	98500 99000 99500 100000	95 96 96 96	91 91 92 92	85 86 86 86	81 81 81 81	78 78 78 79	62 72 73 73	68 68 68 68

Sizes of Round and Rectangular Flues

Required for the Passage of Given Volumes of Air at Given Velocities

Feet Per				C	ивіс Геет	OF AIR PE	R MINUTE				
Minute		100	200	300	400	500	1000	1500	2000	2500	3000
	AREA	46.1	82.3	124	165	206	411	617	823	1028	1234
350	DIAM.	8	10	13	15	16	23	28	33	37	40
	RECT.	6 x 8	8 x 12	12 x 12	12 x 14	12 x 18	18 x 24	22 x 28	24 x 36	28 x 38	28 x 4
	AREA	36	72	108	144	180	360	540	720	900	1080
400	DIAM.	7	10	12	14	16	22	27	31	34	37
	RECT.	6 x 6	8 x 10	10 x 12	12 x 12	12 x 16	18 x 20	20 x 28	24 x 30	28 x 32	28 x 4
	AREA	32	64	96	128	160	320	480	640	800	960
450	DIAM.	7	10	12	13	15	20	25	29	32	35
	RECT.	6 x 6	8 x 8	8 x 12	12 x 12	12 x 14	16 x 20	20 x 24	24 x 28	28 x 30	28 x 3
	AREA	29	58	87	116	144	290	434	580	724	870
500	DIAM.	7	9	11	13	14	20	24	28	31	34
	RECT.	6 x 6	8 x 8	8 x 12	10 x 12	12 x 12	16 x 18	20 x 22	24 x 24	26 x 28	28 x 3
	AREA	26	52	79	105	131	262	393	524	655	786
550	DIAM.	6	9	10	12	13	19	22	26	29	32
	RECT.	6 x 6	8 x 8	8 x 10	10 x 12	10 x 14	16 x 18	20 x 20	22 x 24	24 x 28	28 x 2
	AREA	24	48	72	96	120	240	360	480	600	720
600	DIAM.	6	8	10	11	13	18	22	25	28	31
	RECT.	4 x 6	6 x 8	6 x 12	8 x 12	10 x 12	16 x 16	18 x 20	20 x 24	24 x 26	26 x 2
	AREA	22	44	67	89	112	222	333	442	564	664
650	DIAM.	6	8	10	11	12	17	21	24	27	29
	RECT.	4 x 6	6 x 8	6 x 12	8 x 12	10 x 12	14 x 16	18 x 18	20 x 22	24 x 24	26 x 2
	AREA	21	42	63	83	103	206	309	410	513	618
700	DIAM.	6	8	9	11	12	16	20	23	26	28
	RECT.	4 x 6	6 x 8	6 x 10	8 x 12	10 x 10	14 x 16	16 x 20	20 x 22	22 x 24	24 x 2
	AREA	19	39	57	77	96	192	228	384	480	576
750	DIAM.	5	8	9	10	11	16	19	22	25	27
	RECT.	4 x 6	6 x 8	6 x 10	8 x 10	10 x 10	14 x 14	16 x 18	20 x 20	22 x 22	24 x 2
	AREA	18	36	54	72	90	180	270	360	450	540
800	DIAM.	5	7	9	10	11	16	19	22	24	27
	RECT.	4 x 6	6 x 6	6 x 10	8 x 10	8 x 12	14 x 14	16 x 18	18 x 20	22 x 22	24 x 2
	AREA	17	34	51	68	85	170	225	340	425	510
850	DIAM.	5	7	9	10	11	15	18	21	24	20
	RECT.	4 x 6	6 x 6	6 x 10	8 x 10	8 x 12	14 x 14	16 x 16	18 x 18	20 x 22	22 x 3
	AREA	16	32	48	64	80	160	240	320	400	480
900	DIAM.	5	7	8	9	11	15	18	21	23	2.
	RECT.	4 x 4	6 x 6	6 x 8	8 x 8	8 x 10	12 x 14	16 x 16	18 x 18	20 x 20	22 x
	AREA	16	31	46	61	76	152	228	304	380	450
950	DIAM.	5	7	8	9	10	14	17	20	22	24
	RECT.	4 x 4	6 x 6	6 x 6	8 x 8	8 x 10	12 x 14	14 x 16	18 x 18	20 x 20	22 x

Sizes of Round and Rectangular Flues

Required for the Passage of Given Volumes of Air at Given Velocities

Feet				Сивіс	FEET OF A	AIR PER M	INUTE				
Per Minute		100	200	300	400	500	1000	1500	2000	2500	3000
	AREA	15	29	44	58	72	144	216	288	360	432
1000	DIAM.	5	7	8	9	10	14	17	20	22	24
	RECT.	4 x 4	6 x 6	6 x 8	8 x 8	8 x 10	12 x 12	14 x 16	16 x 18	18 x 20	20 x 22
	AREA	14	28	42	56	69	138	207	276	345	414
1050	DIAM.	5	6	8	9	10	14	17	19	21	23
	RECT.	4 x 4	6 x 6	6 x 8	8 x 8	8 x 10	12 x 12	14 x 16	16 x 18	18 x 20	20 x 22
	AREA	13	26	40	53	66	130	195	260	325	390
1100	DIAM.	5	6	8	9	10	13	16	19	21	23
	RECT.	4 x 4	6 x 6	6 x 8	8 x 8	8 x 10	12 x 12	14 x 14	16 x 18	18 x 18	20 x 20
	Area	13	25	38	50	62	126	189	251	314	377
1150	DIAM.	5	6	7	8	9	13	16	18	20	22
	RECT.	4 x 4	6 x 6	6 x 8	8 x 8	8 x 8	12 x 12	14 x 14	16 x 16	18 x 18	20 x 20
	Area	12	24	36	48	60	120	180	240	300	360
1200	DIAM.	4	6	7	8	9	13	16	18	20	22
	RECT.	4 x 4	4 x 6	6 x 6	6 x 8	8 x 8	10 x 12	12 x 16	16 x 16	18 x 18	18 x 20
	AREA	12	23	36	46	58	115	173	231	289	347
1250	DIAM.	4	6	7	8	9	13	15	18	20	21
	RECT.	4 x 4	4 x 6	6 x 6	6 x 8	8 x 8	10 x 12	12 x 14	14 x 16	16 x 20	16 x 22

Feet Per	CUBIC FEET OF AIR PER MINUTE													
Minute		3500	4000	4500	5000	5500	6000	6500	7000	7500	8000			
350	Area	1439	1646	1850	2056	2261	2467	2672	2880	3083	3291			
	Diam.	43	46	49	52	54	56	59	61	63	65			
	Rect.	28 x 52	36 x 46	36 x 52	36 x 58	46 x 50	48 x 52	48 x 56	48 x 60	48 x 66	48 x 70			
400	Area	1260	1440	1620	1800	1980	2160	2340	2520	2700	2880			
	Diam.	40	43	46	48	51	53	55	57	59	61			
	Rect.	28 x 46	30 x 48	36 x 46	36 x 50	42 x 48	42 x 52	42 x 56	48 x 54	48 x 58	48 x 60			
450	Area	1120	1280	1440	1600	1760	1920	2080	2240	2400	2560			
	Diam.	38	41	43	46	48	50	52	54	56	57			
	Rect.	28 x 40	30 x 44	36 x 43	36 x 46	42 x 42	42 x 46	42 x 50	42 x 54	42 x 58	42 x 62			
500	Area	1014	1160	1324	1450	1594	1740	1884	2030	2160	2304			
	Diam.	36	39	41	43	45	47	49	51	53	55			
	Rect.	30 x 34	30 x 40	34 x 40	36 x 42	38 x 42	42 x 42	42 x 46	42 x 50	42 x 52	42 x 56			
550	Area	917	1048	1179	1310	1441	1572	1703	1834	1965	2096			
	Diam.	35	37	39	41	43	45	47	49	50	52			
	Rect.	28 x 34	28 x 38	34 x 36	36 x 38	36 x 40	36 x 44	42 x 42	42 x 44	42 x 48	42 x 50			

Sizes of Round and Rectangular Flues

Required for the Passage of Given Volumes of Air at Given Velocities

Feet Per				(Сивіс Геет	of Air Pi	ER MINUTE				
Minute Minute		3500	4000	4500	5000	5500	6000	6500	7000	7500	8000
600	Area	840	960	1080	1200	1320	1440	1560	1680	1800	1920
	Diam.	33	35	38	400	41	43	45	47	48	50
	Rect.	28 x 30	28 x 34	32 x 34	34 x 36	36 x 38	36 x 40	36 x 44	36 x 48	36 x 50	42 x 4
650	Area	774	885	996	1106	1217	1330	1441	1554	1665	1776
	Diam.	33	34	36	38	40	42	43	45	46	48
	Rect.	28 x 28	28 x 32	28 x 36	30 x 36	34 x 36	36 x 38	36 x 40	36 x 44	36 x 46	42 x 4
700	Area	721	824	927	1030	1133	1236	1339	1440	1547	1650
	Diam.	31	33	35	37	38	40	41	43	45	46
	Rect.	26 x 28	28 x 30	28 x 34	30 x 36	30 x 38	30 x 42	36 x 38	36 x 40	36 x 44	36 x 4
750	Area	672	768	864	960	1056	1152	1248	1344	1440	1536
	Diam.	30	32	34	35	37	39	40	42	43	45
	Rect.	24 x 28	28 x 28	28 x 32	30 x 32	32 x 34	34 x 34	36 x 36	36 x 38	36 x 40	36 x 4
800	Area	630	720	810	900	990	1080	1170	1260	1350	1440
	Diam.	29	31	33	34	36	38	39	40	42	43
	Rect.	24 x 26	26 x 28	28 x 30	30 x 30	30 x 34	32 x 34	34 x 36	36 x 36	36 x 38	36 x 4
850	Area	595	680	765	850	935	1020	1105	1190	1275	1360
	Diam.	28	30	32	33	35	36	38	39	41	42
	Rect.	24 x 26	26 x 26	28 x 28	30 x 30	30 x 32	30 x 34	34 x 34	34 x 36	36 x 36	36 x 3
900	Area	560	640	720	800	880	960	1040	1120	1200	1280
	Diam.	27	29	31	32	34	35	37	38	40	41
	Rect.	24 x 24	24 x 26	26 x 28	28 x 30	30 x 30	30 x 32	30 x 36	30 x 38	30 x 40	36 x 3
950	Area	532	608	684	760	836	912	988	1064	1140	1216
	Diam.	26	28	30	31	33	34	36	37	38	40
	Rect.	22 x 24	24 x 26	24 x 30	24 x 32	24 x 36	24 x 38	24 x 42	30 x 36	30 x 38	30 x 4
1000	Area	504	576	648	720	792	864	936	1008	1080	1150
	Diam.	26	28	29	31	32	34	36	36	38	39
	Rect.	22 x 24	22 x 26	24 x 28	24 x 30	24 x 34	24 x 36	24 x 40	30 x 34	30 x 38	30 x 4
1050	Area	483	552	621	690	759	828	897	966	1035	1104
	Diam.	25	27	29	30	31	33	34	35	37	38
	Rect.	20 x 24	22 x 26	24 x 26	24 x 30	24 x 32	24 x 36	24 x 38	24 x 40	24 x 44	30 x 3
1100	Area	455	520	585	650	715	780	845	910	975	1040
	Diam.	24	26	28	29	31	32	33	34	36	37
	Rect.	20 x 24	22 x 24	24 x 26	24 x 28	24 x 30	24 x 34	24 x 36	24 x 38	24 x 42	24 x 4
1150	Area	440	503	566	629	692	755	814	877	940	1003
	Diam.	24	26	27	29	30	31	32	34	35	36
	Rect.	20 x 22	22 x 22	24 x 24	24 x 26	24 x 30	24 x 32	24 x 34	24 x 38	24 x 40	24 x 4
1200	Area	420	480	540	600	660	720	780	840	900	960
	Diam.	24	25	27	28	29	31	32	33	34	36
	Rect.	20 x 22	22 x 22	24 x 24	24 x 26	24 x 28	24 x 30	24 x 34	24 x 36	24 x 38	24 x 4

Standard Data Measurements of Circles

			Mea	surements o	Circles			
Diameter	Circum- ference	Area	Diameter	Circum- ference	Area	Diameter	Circum- ference	Area
1/8 1/4 3/8 1/2 5/8 3/4 7/8	.3927 .7854 1.1781 1.5708 1.9635 2.3562 2.7489	0.0123 0.0491 0.1104 0.1963 0.3067 0.4417 0.6013	16 17 17 18 18 19	50.265 51.836 53.407 54.978 56.549 58.119 59.690	201.06 213.82 226.98 240.52 254.46 268.80 283.52	54 55 56 57 58 59 60	169.646 172.788 175.929 179.071 182.212 185.354 188.496	2290.2 2375.8 2463.0 2551.7 2642.0 2733.9 2827.4
1 1/8 1/4 3/8 1/2 5/8 3/4 7/8	3.1416 3.5343 3.9270 4.3197 4.7124 5.1051 5.4978 5.8905	0.7854 0.9940 1.227 1.484 1.767 2.073 2.405 2.761	$ \begin{array}{c} 1/2 \\ 20 \\ 1/2 \\ 21 \\ 1/2 \\ 22 \\ 23 \\ 1/2 \\ 24 \end{array} $	61.261 62.832 64.403 65.973 67.544 69.115 70.686 72.257 73.827 75.398	298.64 314.16 330.06 346.36 363.05 380.13 397.60 415.47 433.73 452.39	61 62 63 64 65 66 67 68 69 70	191.637 194.779 197.920 201.062 204.204 207.345 210.487 213.628 216.770 219.911	2922.4 3019.0 3117.2 3216.9 3318.3 3421.2 3525.6 3631.6 3739.2 3848.4
2 1/4 1/2 3/4 3	6.2832 7.0686 7.8540 8.6394	3.141 3.976 4.908 5.939	25 26 27 28	76.969 78.540 81.681 84.823 87.965	471.43 490.87 530.93 572.55 615.75	71 72 73 74 75	223.053 226.195 229.336 232.478 235.619	3959.2 4071.5 4185.3 4300.8 4417.8
1/4 1/2 3/4	10.210 10.996 11.781	8.295 9.621 11.044	29 30 31	91.106 94.248 97.389	660.52 706.86 754.76	76 77 78	238.761 241.903 245.044	4536.4 4656.0 4778.3
4 1/2 5	12.566 14.137 15.708 17.279	12.566 15.904 19.635 23.758	32 33 34 35 36	100.531 103.673 106.814 109.956 113.097	804.24 855.30 907.92 962.11	79 80 81 82	248.186 251.327 254.469 257.611	4901.6 5026.5 5153.0 5281.0
1/2 6 1/2 7 1/2 8	18.850 20.420 21.991 23.562 25.133	28.274 33.183 38.484 44.178 50.265	37 38 39 40 41	116.239 119.381 122.522 125.664 128.805	1017.8 1075.2 1134.1 1194.5 1256.6 1320.2	83 84 85 86 87 88	260.752 263.894 267.035 270.177 273.319 276.460	5410.6 5541.7 5674.5 5808.8 5944.6 6082.1
9 1/2 10 1/2 11 1/2 11 1/2	26.704 28.274 29.845 31.416 32.987 34.558 36.128	56.745 63.617 70.882 78.54 86.59 95.03 103.86	42 43 44 45 46	131.947 135.088 138.230 141.372 144.513	1385.4 1452.2 1520.5 1590.4 1661.9	89 90 91 92 93	279.602 282.743 285.885 289.027 292.168	6221.1 6361.7 6503.8 6647.6 6792.9
12 1/2 1/2 13 1/2 14 1/2 14	37.699 39.270 40.841 42.412 43.982 45.553	113.09 122.71 132.73 143.13 153.93 165.13	47 48 49 50 51	147.655 150.796 153.938 157.080 160.221	1734.9 1809.5 1885.7 1963.5 2042.8	94 95 96 97 98	295.310 298.451 301.593 304.734 307.876	6939.7 7088.2 7238.2 7389.8 7542.9
15 1/2	47.124 48.695	176.71 188.69	52 53	163.363 166.504	2123.7 2206.1	99	311.018	7697.7

Standard Data Decimal Equivalents of Fractions

Fraction	Equivalent	Fraction	Equivalent	Fraction	Equivalent	Fraction	Equivalent
1-64	0.015625	17-64	0.265625	33-64	0.515625	49-64	0.765625
1-32	0.031250	9-32	0.281250	17-32	0.531250	25-32	0.781250
3-64	0.046875	19-64	0.296875	35-64	0.546875	51-64	0.796875
1-16	0.062500	5-16	0.312500	9-16	0.562500	13-16	0.812500
5-64	0.078125	21-64	0.328125	37-64	0.578125	53-64	0.828125
3-32	0.093750	11-32	0.343750	19-32	0.593750	27-32	0.843750
7-64	0.109375	23-64	0.359375	39-64	0.609375	55-64	0.859375
1-8	0.125000	3-8	0.375000	5-8	0.625000	7-8	0.875000
9-64	0.140625	25-64	0.390625	41-64	0.640625	57-64	0.890625
5-32	0.156250	13-32	0.406250	21-32	0.656250	29-32	0.906250
11-64	0.171875	27-64	0.421875	43-64	0.671875	59-64	0.921875
3-16	0.187500	7-16	0.437500	11-16	0.687500	15-16	0.937500
13-64	0.203125	29-64	0.453125	45-64	0.703125	61-64	0.953125
7-32	0.218750	15-32	0.468750	23-32	0.718750	31-32	0.968750
15-64	0.234375	31-64	0.484375	47-64	0.734375	63-64	0.984375
1-4	0.250000	1-2	0.500000	3-4	0.750000	1-	1.000000

Miscellaneous Equivalents

Diameter × 3.1416	= Circumference	Square yards× .0002066	= Acres
Circumference. × .3183	= Diameter	Cubic inches× .00058	= Cubic feet
	= Area of circle	Cubic feet× .03704	= Cubic yards
Area of Circle × 1.2732	= Area of circumscribed	Cubic inches× .004329	= U. S. gallons
Area of Circle × 1.2/32	square	Cubic feet× 7.4805	= U. S. gallons
Area of Circle × .63662	= Area of inscribed square	Cubic inches× .000466	= U. S. bushels
Diameter of	- Area of inscribed square	Cubic feet× .8036	= U. S. bushels
Circle× .88623	= Side of equal square	U. S. bushels× 2150.42	= Cubic inches
Diameter of	- Blue of equal square	U. S. bushels × 1.242	= Cubic feet
	= Side of inscribed square	U. S. bushels× .046	= Cubic yards
Circumference	- Blue of inscribed square	U. S. gallons× 231.	= Cubic inches
	= Perimeter of equal square	U. S. gallons× .13368	= Cubic feet
Side of square= 1.4142	= Diameter of circumscribed	Cubic inches	B 1 / 1 1 1
side of square = 1.4142	circle	water× .36127	= Pounds (avoirdupois)
Side of square× 1.1284	= Diameter of equal circle	Cubic feet water × 62.4283	= Pounds (avoirdupois)
Perimeter of		U. S. gallons water ÷ 268.8	= Tons
square× .88623	= Circumference of equal	Column of water 1"	- 10113
	circle	diameter x 12" high	= .34 lb. (avoirdupois)
Diameter ² \times 3.1416	= Surface of sphere	Cubic inches× .263	= Lb. Av. Cast Iron
Diameter ³ × .5236	= Volume of sphere	Cubic inches× .281	= Lb. Av. Wrought Iron
Diameter of		Cubic inches× .283	= Lb. Av. Cast Steel
sphere× .806	= Dimensions of equal cube	Cubic inches× .3225	= Lb. Av. Copper
Diameter of		Cubic inches× .3037	= Lb. Av. Brass
sphere× .6667	= Length of equal cylinder	Cubic inches× .26	= Lb. Av. Zinc
Area of base × 1/3 height	= Volume of pyramid or cone	Cubic inches× .4103	= Lb. Av. Lead
Base × ½ height	= Area of triangle	Cubic inches× .2636	= Lb. Av. Tin
Radius× 1.1547	= Side of inscribed cube	Cubic inches× .4908	= Lb. Av. Mercury
Square inches × 1.2732	= Circular inches	12 × weight of pine pattern	= Iron casting
Square inches × .00695	= Square feet	13 × weight of pine pattern	= Brass casting
Square feet× .111	= Square yard	14 × weight of pine pattern	= Lead casting
	*	0.1	

Heating and Ventilating Unit

Standard Data

Miscellaneous Equivalents

1 calorie = 3.968 B.t.u. 1 B.t.u. = 0.252 calorie 1 lb. per sq. in = 703.08 kilogrammes per m² 1 kilogramme per m² = 0.00142 lbs. per sq. in. 1 calorie per m² = 0.3687 B.t.u. per sq. ft. 1 lb.t.u. per sq. ft = 2.712 calories per m² 1 calorie per m² per deg. difference cent = 0.2048 B.t.u. per sq. ft. 1 lb.t.u. per sq. ft. per deg. difference fahr. = 0.2048 B.t.u. per sq. ft. 1 lb.t.u. per sq. ft. per deg. difference fahr. = 0.556 calories per m² per deg. deg. difference cent. 1 lb.t.u. per lb. = 0.556 calories per kilog. 1 calorie per kilog. = 1.8 B.t.u. per lb. 1 lb. of coke at 26.3 lb. per cu. ft. = 0.93 lbs. 1 lb. of coke at 26.3 per cu. ft. = 0.93 lbs. Water expands in bulk from 40 deg. to 212 deg. = 1/23 1 cu. in. of Cast Iron. weighs. 0.260 lb. 1 cu. in. of Wrought Iron weighs. 0.280 lb.	1 cu. in of Water weighs 0.036 lb. 1 U. S. gal weighs 8.330 lb. 1 Imperial gal weighs 10. lb. 1 U. S. gal = 231. cu. in. 1 Imperial gal = 277.274 cu. in. 1 cu. ft. of Water = 7.480 U. S. gal. 1 lb. of Steam = 27.222 cu. ft. 1 lb. of Air = 13.817 cu. ft. SURVEYORS MEASURE 7.92 in 1 link 25 links 1 rod; 4 rods 1 chain 10 sq. chains or 160 sq. rods 1 acre 640 acres 1 sq. mile 36 sq. miles (6 miles sq.) 1 township CUBIC MEASURE 1728 cu. in 1 cu. ft 128 cu. ft 1 cord (wood) 27 cu. ft 1 cu. yd 40 c. f 1 ton (shpg) 2150.42 cu. in 1 standard bu. 231 cu. in 1 U. S. standard gal. 1 cu. ft about 4/5 of a bu.
Metric and En	olish Measures

		asures				
	MEASURES OF LENGT	H		MEASURES OF	CAPACITY	
.3048		28 ft. ft. 3937 in.	1	$ litre = \\ cubic decimeter = \begin{cases} \\ \\ \end{aligned} $	61.023 .0353 .2202 2.202	cu. in. cu. ft. gal. (Imperial) lb. of water at
2.54	centimeters = 1 millimeter = 1	in. 03937 in. (1/25 in., nearly)	28.317	litres=	1	62 deg. fahr. cu. ft. (6.25 Imperial gal.)
25.4	millimeters = 1 kilometer = 1093.	in.	4.543 3.785	litres= litres=	1	gal. (Imperial) gal.(American)
	MEASURES OF SURFAC	CE				
1	sq. meter = 10.	764 sq. ft.		MEASURES OF	WEIGHT	
.0929 1 6.452 1 645.2	sq. meter 1 sq. centimeter sq. centimeters 1	sq. ft. 155 sq. in. sq. in. sq. in. 00155 sq. in. sq. in.	28.35 1 .4536 1 1000	grammes = kilogramme = kilogramme = metric ton } = {	1 2.2046 1 .9842 19.68	oz. avoirdupois lb. lb. tonof2240lb.,or cwts. or 2204.6 lb.
-	neter0.	*	1.016 1016	metric tons } =		1 ton of 2240 lb.
1 are		954 sq. rods	1 gram		0.03527	ounce
1 hectare.		47 acres				
1 sq. kilom	eter0.	386 sq. m.		n		
1 sq. in	6.	452 sq. centimeters				
1 sq. ft	9.:	2903 sq. decimeters				
1 sq. yd		8361 sq. m'r		on		
1 sq. rd	0.	2529 are				
	0.			MISCELLAN	FOLIA	
1 sq. m		59 sq. kilometers	,		EOUS	
	MEASURES OF VOLUM	Œ	1	gramme per sq. millimeter=	1.422	lb. per sq. in.
1 .02832	cu. meter = 35. cu. meter = 1	314 cu. ft. cu. ft.	1	kilogramme per sq. millimeter= kilogramme per	1422.32	lb. per sq. in.
1	cu. decimeter = \ 61.			sq. centimeter. =	14.233	lb. per sq. in.
28.32	cu. decimeters = 1	0353 cu. ft.	1.0335	kg. per sq.		
16.387	cu. centimeters = 1	cu. ft.		centimeter = 1 atmosphere.	14.7	lb. per sq. in.
1	cu. centimeter = $\begin{cases} 1 \end{cases}$	millimeter 061 cu. in.	0.070308	kilogramme per sq. centimeter=	1	lb. per sq. in.

Standard Data

Miscellaneous

MEACHBEC	OF PRESSI	DE AND WELCOM		
MEASURES OF PRESS		lb. per sq. ft.	WEIGHT OF ONE CUBIC FOOT OF PURE WATER	
	2.0355 in. at mercury of 32 deg.		At 32 deg. fahr. (freezing point)	
1 lb. per sq. in =	fahr.		At 62 deg. fahr. (standard temperature)	
	2.0416 in. of mercury at 62 deg.		At 212 deg. fahr. (boiling point, under 1 atmos-	
	2.309 ft. of water at 62 deg.		phere)	
	27.71	fahr. in. of water at 62 deg.	fahr	10 lb
	27.71	fahr.	American gal. = 231 cu. in. of	water at 62 deg.
	2116.2		fahr = 8.3356 lb.	
1 Atmosphere (14.7lb. per sq.in.) =	2116.3	lb. per sq. ft. ft. of water at 62 deg.	BOILING POINTS	S OF VARIOUS FLUIDS
	33.717	fahr.	Degrees Fahr.	Degrees Fahr.
	30	in. of mercury at 62 deg.	Water, Atmospheric Pressure. 212	Refined Petroleum 316 Turpentine 315
	29.922	fahr. in. of mercury at 32 deg.	Alcohol 173	Sulphur
		fahr.	Sulphuric Acid 240	Linseed Oil
	760	millimetres of mercury at	MELTING POINTS OF DIFFERENT METALS	
		32 deg. fahr.	Degrees Fahr.	
1 ft. of Water at 62 deg. fahr	0.433	lb. per sq. in.	Aluminum	Degrees Fahr. Iron (cast)2450
	62.355	lb. per sq. ft.	Antimony	Iron (wrought)
1 in. of Mercury at	0.491	lb. or 7.86 oz. per sq. in.	Brass 1900	Lead
	1.132	ft. of water at 62 deg.	Bronze	Silver (pure)
62 deg. fahr=	12 50	fahr. in. of water at 62 deg.	Copper1996	Steel
	13.30	fahr.	Glass	Tin
			Gord (pare)2370	Zinc
W				
			d Measures	
TROY WEIGHT			2 pints	
24 grains			8 quarts	4 pecks
			- quartoni	50 Dusticis Citatuton
12 oz			LIQUID MEASURE	
escu for weighing gold, silver and jewels.		4 gills 1 pint	31½ gallons1 barrel	
			2 pints	2 barrels1 hogshead
	THECARIES		r quarts ganon	
20 grains		LONG MEASURE		
3 scruples 1 dram		12 inches	40 rods 1 furlong	
8 drams1 ounce		3 feet	8 furlongs 1 sta. mile 3 miles 1 league	
12 ounces		5½ yards rod	3 miles I league	
Ounce and pound are the same as in Troy Weight.			CLOTH M	IEASURE
		2½ inches1 nail	4 quarters1 yard	
AVOIRDUPOIS WEIGHT			4 nails 1 quarter	
2711/32 grains 1 d	ram 4 c	quarters1 cwt.		
16 drams1 o	unce 2,0	000 lb 1 short ton	SQUARE N	
16 ounces	ound 2,2	40 lb long ton	9 sq. feet 1 sq. foot	40 sq. rods1 rood
25 pounds1 q	uarter		301/4 sq. yd 1 sq. rod	640 acres1 sq. mile

INDEX

Modern Schoolroom Heating and Ventilating
Operation of the PeerVent Heating and Ventilating Unit 6
Mechanical Features of PeerVent Units
Advantages of the PeerVent Unit System of Heating and Ventilating
Advantages Over the Central Fan System
Semi-Concealed PeerVent Units
Facts Concerning Installation of PeerVent Units
Directions for Laying Out the PeerVent Unit System of Heating and Ventilating 17
PeerVent Units Installed in Old School Buildings
Engineering Data
Details of Standard PeerVent Unit
Details of Semi-Concealed PeerVent Unit
Details of Special PeerVent Adaptations
B.t.u. Method of Computing Heat Losses
B.t.u. Losses through Various Building Materials
B.t.u. Required for Heating Air
Measurements of Rooms
Full Area of Two-Pane Windows
Heating Surface in Square Feet of Standard Cast Iron Direct Radiation 40
Square Feet of Surface per Lineal Foot of Pipe
Wrought Iron Welded Pipe—Standard Dimensions
Expansion of Wrought Iron Pipe
Capacities of Mains and Risers
Capacities of Return Mains
Flow of Steam in Pipes
Properties of Saturated Steam
Sizes of Chimneys
Storage Space Required for Fuel
Chimney Capacities in Horsepower
Practical Heights of Chimneys
Flue Diameters for Given Volumes and Velocities of Air 49-54
Sizes of Round and Rectangular Flues for Given Volumes and Velocities of Air 55-57
Measurements of Circles
Decimal Equivalents of Fractions
Miscellaneous Equivalents
Metric and English Measures
Miscellaneous Standard Data

Architects: Tilton & Githens, New York; Burrowes & Eurich, Detroit McGregor Library, Highland Park, Mich.

