### Lecture 10: Multiple Testing

#### Goals

Define the multiple testing problem and related concepts

Methods for addressing multiple testing (FWER and FDR)

Correcting for multiple testing in R

#### Type I and II Errors

#### **Actual Situation "Truth"**

| Decision                        | H <sub>o</sub> True                      | H <sub>o</sub> False Incorrect Decision Type II Error |  |
|---------------------------------|------------------------------------------|-------------------------------------------------------|--|
| Do Not<br>Reject H <sub>0</sub> | Correct Decision $1 - \alpha$            |                                                       |  |
| Rejct H <sub>o</sub>            | Incorrect Decision Type I Error $\alpha$ | Correct Decision<br>1 - β                             |  |

 $\alpha = P(Type\ I\ Error)$   $\beta = P(Type\ II\ Error)$ 

#### Why Multiple Testing Matters

#### **Genomics = Lots of Data = Lots of Hypothesis Tests**

A typical microarray experiment might result in performing 10000 separate hypothesis tests. If we use a standard p-value cut-off of 0.05, we'd expect **500** genes to be deemed "significant" by chance.

#### Why Multiple Testing Matters

• In general, if we perform m hypothesis tests, what is the probability of at least 1 false positive?

P(Making an error) =  $\alpha$ 

P(Not making an error) = 1 -  $\alpha$ 

P(Not making an error in m tests) =  $(1 - \alpha)^m$ 

P(Making at least 1 error in m tests) = 1 -  $(1 - \alpha)^m$ 

#### Probability of At Least 1 False Positive



### **Counting Errors**

Assume we are testing  $H^1, H^2, ..., H^m$ 

 $m_0 = \#$  of true hypotheses R = # of rejected hypotheses

|                           | Null<br>True | Alternative<br>True     | Total |
|---------------------------|--------------|-------------------------|-------|
| Not Called<br>Significant | U            | 7                       | m - R |
| Called<br>Significant     | V            | S                       | R     |
|                           | $m_0$        | <i>m-m</i> <sub>0</sub> | m     |

V = # Type I errors [false positives]

# What Does Correcting for Multiple Testing Mean?

- When people say "adjusting p-values for the number of hypothesis tests performed" what they mean is controlling the Type I error rate
- Very active area of statistics many different methods have been described

 Although these varied approaches have the same goal, they go about it in fundamentally different ways

#### Different Approaches To Control Type I Errors

• **Per comparison error rate** (PCER): the expected value of the number of Type I errors over the number of hypotheses,

$$PCER = E(V)/m$$

- Per-family error rate (PFER): the expected number of Type I errors,
   PFE = E(V).
- Family-wise error rate: the probability of at least one type I error FEWR =  $P(V \ge 1)$
- **False discovery rate** (FDR) is the expected proportion of Type I errors among the rejected hypotheses

$$FDR = E(V/R \mid R>0)P(R>0)$$

• **Positive false discovery** rate (pFDR): the rate that discoveries are false

$$pFDR = E(V/R \mid R > 0)$$

#### Digression: p-values

 Implicit in all multiple testing procedures is the assumption that the distribution of p-values is "correct"

 This assumption often is not valid for genomics data where p-values are obtained by asymptotic theory

 Thus, resampling methods are often used to calculate calculate p-values

#### **Permutations**

- 1. Analyze the problem: think carefully about the null and alternative hypotheses
- Choose a test statistic
- 3. Calculate the test statistic for the original labeling of the observations
- 4. Permute the labels and recalculate the test statistic
  - Do all permutations: Exact Test
  - Randomly selected subset: Monte Carlo Test
- 5. Calculate p-value by comparing where the observed test statistic value lies in the permuted distributed of test statistics

### Example: What to Permute?

 Gene expression matrix of m genes measured in 4 cases and 4 controls

| Gene | Case 1          | Case 2          | Case 3          | Case 4          | Control 1       | Control 2       | Control 3       | Control 4       |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1    | $X_{11}$        | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> | X <sub>17</sub> | X <sub>18</sub> |
| 2    | $X_{21}$        | $X_{22}$        | $X_{23}$        | $X_{24}$        | X <sub>25</sub> | X <sub>26</sub> | X <sub>27</sub> | X <sub>28</sub> |
| 3    | $X_{31}$        | $X_{32}$        | $X_{33}$        | $X_{34}$        | X <sub>35</sub> | X <sub>36</sub> | X <sub>37</sub> | X <sub>38</sub> |
| 4    | $X_{41}$        | $X_{42}$        | $X_{43}$        | $X_{44}$        | X <sub>45</sub> | X <sub>46</sub> | X <sub>47</sub> | X <sub>48</sub> |
| •    | •               | •               | •               | •               |                 | •               | •               | •               |
| •    | •               | •               | •               | •               | :               | •               | :               | •               |
| m    | X <sub>m1</sub> | $X_{m2}$        | X <sub>m3</sub> | $X_{m4}$        | X <sub>m5</sub> | $X_{m6}$        | $X_{m7}$        | X <sub>m8</sub> |

### Back To Multiple Testing: FWER

 Many procedures have been developed to control the Family Wise Error Rate (the probability of at least one type I error):

$$P(V \ge 1)$$

- Two general types of FWER corrections:
  - Single step: equivalent adjustments made to each p-value
  - 2. Sequential: adaptive adjustment made to each p-value

#### Single Step Approach: Bonferroni

• Very simple method for ensuring that the overall Type I error rate of  $\alpha$  is maintained when performing m independent hypothesis tests

• Rejects any hypothesis with p-value  $\leq \alpha/m$ :

$$\tilde{p}_{j} = \min[mp_{j}, 1]$$

• For example, if we want to have an experiment wide Type I error rate of 0.05 when we perform 10,000 hypothesis tests, we'd need a p-value of  $0.05/10000 = 5 \times 10^{-6}$  to declare significance

# Philosophical Objections to Bonferroni Corrections

- "Bonferroni adjustments are, at best, unnecessary and, at worst, deleterious to sound statistical inference" Perneger (1998)
- Counter-intuitive: interpretation of finding depends on the number of other tests performed
- The general null hypothesis (that all the null hypotheses are true) is rarely of interest
- High probability of type 2 errors, i.e. of not rejecting the general null hypothesis when important effects exist

#### FWER: Sequential Adjustments

- Simplest sequential method is Holm's Method
  - $\triangleright$  Order the unadjusted p-values such that  $p_1 \le p_2 \le ... \le p_m$
  - For control of the FWER at level  $\alpha$ , the step-down Holm adjusted p-values are

$$\tilde{p}_j = \min[(m-j+1) \cdot p_j, 1]$$

- $\triangleright$  The point here is that we don't multiply every  $p_i$  by the same factor m
- For example, when m = 10000:

$$\tilde{p}_1 = 10000 \bullet p_1, \, \tilde{p}_2 = 9999 \bullet p_2, ..., \, \tilde{p}_m = 1 \bullet p_m$$

# Who Cares About Not Making ANY Type I Errors?

 FWER is appropriate when you want to guard against ANY false positives

 However, in many cases (particularly in genomics) we can live with a certain number of false positives

 In these cases, the more relevant quantity to control is the false discovery rate (FDR)

#### False Discovery Rate

|                           | Null Alternative |                         |       |  |
|---------------------------|------------------|-------------------------|-------|--|
|                           | True             | True                    | Total |  |
| Not Called<br>Significant | U                | <b>T</b>                | m - R |  |
| Called<br>Significant     | V                | R                       |       |  |
|                           | $m_0$            | <i>m-m</i> <sub>0</sub> | m     |  |

V = # Type I errors [false positives]

• False discovery rate (FDR) is designed to control the proportion of false positives **among the set of rejected hypotheses** (R)

#### FDR vs FPR

|                           | Null  | <b>Alternative</b>      |       |
|---------------------------|-------|-------------------------|-------|
|                           | True  | True                    | Total |
| Not Called<br>Significant | U     | <i>T</i>                | m - R |
| Called<br>Significant     | V     | S                       | R     |
|                           | $m_0$ | <i>m-m</i> <sub>0</sub> | m     |

$$FDR = \frac{V}{R} \qquad FPR = \frac{V}{m_0}$$

#### Benjamini and Hochberg FDR

- To control FDR at level  $\delta$ :
  - 1. Order the unadjusted p-values:  $p_1 \le p_2 \le ... \le p_m$
  - 2. Then find the test with the highest rank, j, for which the p value,  $p_i$ , is less than or equal to (j/m) x  $\delta$
  - 3. Declare the tests of rank 1, 2, ..., j as significant

$$p(j) \le \delta \frac{j}{m}$$

#### **B&H FDR Example**

#### Controlling the FDR at $\delta$ = 0.05

| Rank (j) | P-value | (j/m)× δ | Reject H <sub>0</sub> ? |
|----------|---------|----------|-------------------------|
| 1        | 0.0008  | 0.005    | 1                       |
| 2        | 0.009   | 0.010    | 1                       |
| 3        | 0.165   | 0.015    | 0                       |
| 4        | 0.205   | 0.020    | 0                       |
| 5        | 0.396   | 0.025    | 0                       |
| 6        | 0.450   | 0.030    | 0                       |
| 7        | 0.641   | 0.035    | 0                       |
| 8        | 0.781   | 0.040    | 0                       |
| 9        | 0.900   | 0.045    | 0                       |
| 10       | 0.993   | 0.050    | 0                       |

#### Storey's positive FDR (pFDR)

BH: 
$$FDR = E\left[\frac{V}{R} \mid R > 0\right]P(R > 0)$$

Storey: 
$$pFDR = E\left[\frac{V}{R} \mid R > 0\right]$$

- Since P(R > 0) is ~ 1 in most genomics experiments FDR and pFDR are very similar
- Omitting P(R > 0) facilitated development of a measure of significance in terms of the FDR for each hypothesis

#### What's a q-value?

- q-value is defined as the minimum FDR that can be attained when calling that "feature" significant (i.e., expected proportion of false positives incurred when calling that feature significant)
- The estimated q-value is a function of the p-value for that test and the distribution of the entire set of p-values from the family of tests being considered (Storey and Tibshiriani 2003)

• Thus, in an array study testing for differential expression, if gene X has a q-value of 0.013 it means that 1.3% of genes that show p-values at least as small as gene X are false positives

 Under the null hypothesis p-values are expected to be uniformly distributed between 0 and 1



• Under the alternative hypothesis p-values are skewed towards 0



 Combined distribution is a mixture of p-values from the null and alternative hypotheses



• For p-values greater than say 0.5, we can assume they mostly represent observations from the null hypothesis



#### Definition of $\pi_0$

•  $\hat{\pi}_0$  is the proportion of truly null tests:

$$\hat{\pi}_0(\lambda) = \frac{\#\{p_i > \lambda; i = 1, 2, ..., m\}}{m(1 - \lambda)}$$



• 1 -  $\hat{\pi}_0$  is the proportion of truly alternative tests (very useful!)