USB 转 4 串口芯片 CH344

手册 版本: 1E <u>http://wch.cn</u>

1、概述

CH344 是一款 USB 总线的转接芯片,实现 USB 转四个异步串口 UARTO/1/2/3 功能,用于为计算机扩展异步串口,或者将普通的串口设备或者 MCU 直接升级到 USB 总线。

2、特点

- CH344Q 为 480Mbps 高速 USB 设备接口, CH344L 为 12Mbps 全速 USB 设备接口。
- 内置固件,仿真标准串口,用于升级原串口外围设备,或者通过 USB 增加额外串口。
- 计算机端 Windows 操作系统下的串口应用程序完全兼容,无需修改。
- 支持免安装的操作系统内置 CDC 类驱动程序或者多功能高速率的 VCP 厂商驱动程序。
- 硬件全双工串口,内置独立的收发缓冲区。
- CH344Q 支持通讯波特率 1200bps~6Mbps,CH344L 支持 1200bps~230400bps。
- 串口支持8个数据位,支持奇校验、偶校验以及无校验。
- 每个串口内置 1024 字节的接收 FIF0, 512 字节的发送 FIF0。
- 支持常用的 MODEM 联络信号。
- 支持 CTS 和 RTS 硬件自动流控。
- 支持半双工,提供串口正在发送状态指示 TNOW, 可用于控制 RS485 收发切换。
- 支持最多 16 路 GPIO 输入输出功能。
- 通过外加电平转换器件,支持 RS232、RS485、RS422 等接口。
- 内置 EEPROM, 可配置芯片 VID、PID、最大电流值、厂商和产品信息字符串等参数。
- 单一3.3V供电。
- 提供 LQFP48 无铅封装,兼容 RoHS。

3、封装

封装形式	塑体宽度	引脚间距		封装说明	订货型号
LQFP48	7*7mm	0.5mm 19.7mil		标准 LQFP48 脚贴片	CH344Q
LQFP48	7*7mm	0. 5mm	19.7mil	标准 LQFP48 脚贴片	CH344L

注: CH344 的 USB 收发器按 USB2. 0 全内置设计, UD+和 UD-引脚不能串接电阻, 否则影响信号质量。

CH344 手册 3

4、引脚

CH344Q 引脚号	CH344L 引脚号	引脚名称	类型	引脚说明		
9,24,36,	9、24、36、	VCC	电源	正电源输入端,需要外接退耦电容		
8、20、23、 35、47	8、20、23、 35、47	GND	电源	公共接地端,需要连接 USB 总线的地线		
7	7	RESET	输入	外部复位输入端,低电平有效,内置上拉电阻		
43	33	UD+	USB 信号	直接连到 USB 总线的 D+数据线,不能额外串接电阻		
42	32	UD-	USB 信号	直接连到 USB 总线的 D-数据线,不能额外串接电阻		
5	5	ΧI	输入	晶体振荡输入端		
6	6	X0	输出	晶体振荡反相输出端		
30	30	TXD0	输出	UARTO 的串行数据输出,空闲态为高电平		
31	31	RXD0	输入(FT)	UARTO 的串行数据输入,内置上拉电阻		
12	12	TXD1	输出	UART1 的串行数据输出,空闲态为高电平		
13	13	RXD1	输入	UART1 的串行数据输入,内置上拉电阻		
21	21	TXD2	输出	UART2 的串行数据输出,空闲态为高电平		
22	22	RXD2	输入(FT)	UART2 的串行数据输入,内置上拉电阻		
37	29	TXD3	输出	UART3 的串行数据输出,空闲态为高电平		
38	42	RXD3	输入(FT)	UART3 的串行数据输入,需外加上拉电阻		
39	39	DTRO/ TNOWO/ GPI08	输出 输入(FT)	UARTO 的 MODEM 输出信号,数据终端就绪,低有效; UARTO 的 RS485 发送和接收控制引脚; 通用 GP108,用于 10 口输入或输出。 CH344Q: 上电期间如果检测到该引脚外接了下拉电 阻则切换成 TNOW 功能,否则为 DTR 功能; CH344L: 上电期间如果检测到 CFG2 引脚外接了下拉 电阻则切换成 DTR 功能,否则为 TNOW 功能		
18	18	DTR1/ TNOW1/ GP109	输出 输入	UART1 的 MODEM 输出信号,数据终端就绪,低有效; UART1 的 RS485 发送和接收控制引脚; 通用 GP109,用于 10 口输入或输出。 CH344Q: 上电期间如果检测到该引脚外接了下拉电阻则切换成 TNOW 功能,否则为 DTR 功能; CH344L: 上电期间如果检测到 CFG2 引脚外接了下拉电阻则切换成 DTR 功能,否则为 TNOW 功能		
19	19	DTR2/ TNOW2/ GP1010	输出输入	UART2 的 MODEM 输出信号,数据终端就绪,低有效; UART2 的 RS485 发送和接收控制引脚; 通用 GP1010,用于 10 口输入或输出。 CH344Q: 上电期间如果检测到该引脚外接了下拉电 阻则切换成 TNOW 功能,否则为 DTR 功能; CH344L: 上电期间如果检测到 CFG2 引脚外接了下拉 电阻则切换成 DTR 功能,否则为 TNOW 功能		
34	43	DTR3/ TNOW3/ GPI011	输出 输入(FT)	UART3 的 MODEM 输出信号,数据终端就绪,低有效; UART3 的 RS485 发送和接收控制引脚; 通用 GP1011,用于 10 口输入或输出。 CH344Q: 上电期间如果检测到该引脚外接了下拉电		

CH344 手册 4

-			ı				
				阻则切换成 TNOW 功能, 否则为 DTR 功能;			
				CH344L: 上电期间如果检测到 CFG2 引脚外接了下拉			
				电阻则切换成 DTR 功能,否则为 TNOW 功能			
41	41	CTSO/	输入(FT)	UARTO 的 MODEM 输入信号,清除发送,低有效;			
	71	GP100	400/ (1 1/	通用 GP100,用于 10 口输入或输出			
				UARTO 的 MODEM 输出信号,请求发送,低有效;			
40	40	RTSO/	输出	通用 GP101,用于 10 口输入或输出。			
40	40	GP101	1811 144	上电期间如果检测到RTSO引脚外接了下拉电阻则禁			
				用内部EEPROM中配置参数,启用芯片自带默认参数			
10	10	CTS1/	输入	UART1 的 MODEM 输入信号,清除发送,低有效;			
10	10	GP102	4HU / \	通用 GP102,用于 10 口输入或输出			
11	11	RTS1/	输出	UART1 的 MODEM 输出信号,请求发送,低有效;			
11	11	GP103	相川山	通用 GP103,用于 10 口输入或输出			
26	26	CTS2/	输入(FT)	UART2 的 MODEM 输入信号,清除发送,低有效;			
20	20	GP104	相りくい「)	通用 GP104,用于 10 口输入或输出			
27	27	RTS2/	 输出	UART2 的 MODEM 输出信号,请求发送,低有效;			
	41	GP105	相川山	通用 GP105,用于 10 口输入或输出			
46	46	CTS3/	输入(FT)	UART3 的 MODEM 输入信号,清除发送,低有效;			
40	40	GP106	1HI / \ (1 /	通用 GP106,用于 10 口输入或输出			
				UART3 的 MODEM 输出信号,请求发送,低有效;			
	45			通用 GP107,用于 10 口输入或输出。			
45		RTS3/ GP107	 输出 	CH344Q: 上电期间如果 RTS3 引脚检测到外接了下拉			
45				电阻则将 PIN14(ACT/CFG) 切换成 DCD3 功能、			
				PIN15(TX_S)切换成 RI3 功能、PIN16(RX_S)切换成			
				DSR3 功能			
				CH344Q:功能 1: USB 配置完成状态输出,低电平有			
		ACT/CFG/		效,兼作硬件流控使能引脚,低电平有效,内置上			
14	14	DCD3	输出	拉电阻;功能 2: UART3 的 MODEM 输入信号,载波检			
		0003		测,低有效。			
				CH344L: USB 配置完成状态输出,低电平有效			
		TX_S/	输出	CH3440:功能 1: 串口数据发送状态输出;功能 2:			
15	15	R13	制	UART3 的 MODEM 输入信号,振铃指示,低有效。			
		11.13	י עומד	CH344L: 串口数据发送状态输出			
		RX_S/	输出	CH344Q:功能 1:串口数据发送状态输出;功能 2:			
16	16	DSR3	输入	UART3 的 MODEM 输入信号,数据装置就绪,低有效。			
		551.0	刊八	CH344L: 串口数据接收状态输出			
-	38	CFG	输入	硬件流控使能引脚,低电平有效,内置上拉电阻			
44	44	TEST	输入	内部测试引脚,建议对地接 1 个下拉电阻			
77	77	1201	1811 / \	(通常 4. 7ΚΩ)或直接接地			
				CH344L: TNOW 和 DTR 功能配置引脚,			
				可选统一配置或独立配置。			
				统一配置:上电期间,CFG2 引脚接高电平或悬空,			
	2			则所有 DTRx/TNOWx 引脚配置成 TNOW 功能; CFG2 引			
		CFG2	输入	脚接低电平,则所有 DTRx/TNOWx 引脚配置成 DTR 功			
		51 42	י עומד	能。			
				独立配置:上电期间,CFG2 引脚接低电平,需要配			
				置成 TNOW 功能的串口,则在对应串口的 DTRx/TNOWx			
				引脚上再对地接 1 个下拉电阻 (如 4. 7KΩ),未接下			
				拉电阻的引脚则配置成 DTR 功能。			

33	_	DCDO/	输入(FT)	UARTO 的 MODEM 输入信号,载波检测,低有效;		
33		GP1012	480 / C (1 1 /	通用 GP1012,用于 10 口输入或输出		
32		RIO/	输入(FT)	UARTO 的 MODEM 输入信号,振铃指示,低有效;		
32	_	GP1013		通用 GP1013,用于 10 口输入或输出		
29		DSRO/	<i>t</i> ♠) (□T)	UARTO 的 MODEM 输入信号,数据装置就绪,低有效;		
29	_	GP1014	输入(FT)	通用 GP1014,用于 10 口输入或输出		
20		DCD1/	<i>t</i> 会) (□T)	UART1 的 MODEM 输入信号,载波检测,低有效;		
28	_	GP1015	输入(FT)	通用 GP1015,用于 10 口输入或输出		
25	-	RI1	输入(FT)	UART1 的 MODEM 输入信号,振铃指示,低有效		
17	-	DSR1	输入	UART1 的 MODEM 输入信号,数据装置就绪,低有效		
4	-	DCD2	输入	UART2 的 MODEM 输入信号,载波检测,低有效		
3	-	RI2	输入	UART2 的 MODEM 输入信号,振铃指示,低有效		
2	-	DSR2	输入	UART2 的 MODEM 输入信号,数据装置就绪,低有效		
	1、3、4、					
1	17、25、28、	NC	空脚	禁止连接,必须悬空		
	34、37					
-	•		•			

注: CH344Q 芯片: FT 表示引脚作为输入时可以耐受 5V 电压。

5、功能说明

5.1. 一般说明

CH344 支持 3. 3V 电源电压,电源引脚应该分别对地外接容量为 0. 1uF 左右的电源退耦电容。

CH344 芯片内置了电源上电复位电路,芯片正常工作时需要外部向 XI 引脚提供 8MHz 时钟信号,时钟信号可通过 CH344 内置的反相器通过晶体稳频振荡产生。外围电路需要在 XI 和 X0 引脚之间连接一个 8MHz 晶体,XI 和 X0 引脚对地接 22pF 左右的振荡电容。

对于 CH344L 芯片,推荐使用外部晶体,如果芯片工作环境相对比较理想,可以不焊接外置晶体及振荡电容,芯片自动切换使用内置时钟。

CH344 芯片内置了 USB 总线所需要的所有外围电路,包括内嵌 USB 控制器和 USB-PHY、USB 信号线的串联匹配电阻、Device 设备所需的 1. 5K 上拉电阻等。UD+和 UD-引脚可以直接连接 PC 或其它 USB 主机,如果为了芯片安全而串接保险电阻或者电感或者 ESD 保护器件,那么交直流等效串联电阻应该在 5Ω 之内。

5.2. 串口说明

CH344 芯片提供 4 组异步串口 UARTO/1/2/3,每组串口包括 TXD、RXD、DTR、CTS 和 RTS 等引脚。CH344Q 芯片,还提供了 DCD、RI 和 DSR 等 MODEM 信号,可实现 3 线串口、5 线串口或 9 线串口通信。异步串口方式下 CH344 芯片的引脚包括:数据传输引脚、MODEM 联络信号引脚和辅助引脚。

数据传输引脚包括: TXD0、RXD0、TXD1、RXD1、TXD2、RXD2、TXD3 和 RXD3。串口输入空闲时, RXDx 为高电平, 串口输出空闲时, TXDx 为高电平。

MODEM 联络信号引脚包括: CTSO、RTSO、DTRO、DCDO、RIO、DSRO、CTS1、RTS1、DTR1、DCD1、RI1、DSR1、CTS2、RTS2、DTR2、DCD2、RI2、DSR2、CTS3、RTS3、DTR3、DCD3、RI3、DSR3。

辅助引脚包括: ACT、TX_S、RX_S、TNOWO、TNOW1、TNOW2、TNOW3、CFG 和 CFG2 等。ACT 为 USB 设备配置完成状态输出引脚,上电默认输出高电平,USB 主机对 CH344 芯片进行 USB 配置后则输出低电平。TX_S 为芯片串口发送数据状态输出引脚,任意串口有数据正在发送时,TX_S 引脚输出周期为 200mS 的脉冲电平。RX_S 为芯片串口接收数据状态输出引脚,任意串口有数据正在接收时,RX_S 引脚输出周期为 200mS 的脉冲电平。TNOWx 为对应串口的 RS485 发送和接收控制引脚。CH344Q 芯片的 ACT 引脚(CH344L 芯片的 CFG 引脚)为硬件自动流控配置引脚,芯片在上电时检测该引脚电平状态,悬空或输入高电平则不启用硬件流控;输入低电平则启用硬件流控。

CH344L 芯片的 CFG2 引脚为 TNOW 和 DTR 功能配置引脚,可选统一配置或独立配置。

统一配置: 上电期间,如果 CFG2 引脚接高电平或悬空,则所有 DTRx/TNOWx 引脚配置成 TNOW 功能;如果 CFG2 引脚接低电平,则所有 DTRx/TNOWx 引脚默认配置成 DTR 功能。

独立配置:上电期间,CFG2 引脚接低电平,需要配置成 TNOW 功能的串口,则在对应串口的 DTRx/TNOWx 引脚上再对地接 1 个下拉电阻(如 4. $7K\Omega$),未接下拉电阻的引脚则配置成 DTR 功能。

CH344Q 芯片的 RTS3 引脚为 UART3 部分 MODEM 信号使能引脚,上电期间如果检测到外接了下拉电阻则将 PIN14 (ACT/CFG) 切换成 DCD3 功能、PIN15 (TX_S) 切换成 RI3 功能、PIN16 (RX_S) 切换成 DSR3 功能。

CH344 芯片的各个串口内置了独立的收发缓冲区,支持单工、半双工或者全双工异步串行通讯。CH344Q 芯片基于 USB 高速 480Mbps,UARTO/1/2/3 的串行数据包括 1 个低电平起始位、8 个数据位、1 个/2 个高电平停止位,支持无校验/奇校验/偶校验。支持常用通讯波特率: 1200、1800、2400、3600、4800、9600、14400、19200、28800、33600、38400、56000、57600、76800、115200、128000、153600、230400、460800、921600、1M、1.5M、2M、3M、4M、5M、6M等。

CH344L 芯片基于 USB 全速 12Mbps, UARTO/1/2/3 的串行数据包括 1 个低电平起始位、8 个数据位、1 个/2 个高电平停止位,支持无校验/奇校验/偶校验。支持常用通讯波特率: 1200、1800、2400、3600、4800、9600、14400、19200、28800、33600、38400、56000、57600、76800、115200、128000、153600、230400等,如果设置更高波特率,那么可能不支持 4 个串口同时双向通讯。

CH344 芯片的 4 个异步串口均支持 CTSx 和 RTSx 硬件自动流控制,可以通过 ACT/CFG 引脚配置同时启用或同时不启用(默认),也可以通过 VCP 厂商驱动程序进行独立配置。如果启用,那么仅在检测到 CTSx 引脚输入有效(低电平有效)时串口才继续发送下一包数据,否则暂停串口发送;当接收缓冲区空时,串口会自动有效 RTSx 引脚(低电平有效),直到接收缓冲区的数据较满时,串口才自动无效 RTSx 引脚,并在缓冲区空时再次有效 RTSx 引脚。使用硬件自动速率控制,可以将己方的 CTSx 引脚接到对方的 RTSx 引脚,并将己方的 RTSx 引脚送到对方的 CTSx 引脚。

CH344 串口接收信号的允许波特率误差不大于 2%, 串口发送信号的波特率误差小于 1.5%。

在计算机端的 Windows 操作系统下,CH344 支持系统自带的 CDC 类驱动程序,也可安装高速率的 VCP 厂商驱动程序,能够仿真标准串口,所以绝大部分串口应用程序完全兼容,通常无需任何修改。在 VCP 厂商驱动程序模式下,支持最多 16 路 GP10 输入输出控制功能。

CH344 可以用于升级原串口外围设备,或者通过 USB 总线为计算机增加额外串口。通过外加电平转换器件,可以进一步提供 RS232、RS485、RS422 等接口。

5.3. 芯片参数配置

在较大批量应用时,CH344 的厂商识别码 VID 和产品识别码 PID 以及产品信息可以定制。

在少量应用时,可以使用内置的 EEPROM 进行参数配置。用户安装 VCP 厂商驱动程序后,可以通过芯片厂家提供的配置软件 CH34xSerCfg. exe,灵活配置芯片的厂商识别码 VID、产品识别码 PID、最大电流值、BCD 版本号、厂商信息和产品信息字符串描述符等参数。

6、参数

6.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	$^{\circ}$ C
TS	储存时的环境温度	-40	105	$^{\circ}$ C
VCC	电源电压(VCC 引脚供电,GND 引脚接地)	-0. 3	4. 0	٧
VUSB	USB 信号引脚上的电压	-0. 5	3. 8	٧
V105V	耐受 5V 的串口引脚上的电压	-0. 5	5. 6	٧
VUART	串口及其它引脚上的电压	-0. 5	VCC+0. 3	٧

6.2. 电气参数 (测试条件: TA=25℃, VCC=3.3V, 不含 USB 引脚)

名称	参数说明	最小值	典型值	最大值	单位	
VCC	电源电压(VCC 引脚供电,	3. 0	3. 3	3. 6	٧	
100	芯片正常工作时的	CH344Q	27	37	50	mA
ICC	电源电流	12	18	24	mA	
ISLP	USB 挂起时的	CH344Q	160	230	320	uA
TOLF	电源电流	CH344L	200	450	600	uA
VIL	低电平输入电	0		0.8	٧	
VIH	高电平输入电	2. 0		VCC	٧	
VIH5	耐受 5V 的引脚的高电	2. 0		5. 0	٧	
VOL	输出低电压,单个引脚。			0. 4	٧	
VOH	输出高电平,单个引脚车	VCC-0. 4			٧	
RPU	内置上拉的等效	30	40	60	$K\Omega$	
VP0R	上电/掉电复位的阈	1. 9	2. 2	2. 5	٧	
VECD	ESD静电耐受电压	CH344Q	4			KV
VESD	(人体模型,非接触式)	CH344L	2			KV

6.3. 时序参数 (测试条件: TA=25℃, VCC=3.3V)

名称	参数说	最小值	典型值	最大值	单位	
	CH344L	TA=0°C∼70°C	-1. 5	0.8	1.5	%
FD	内部时钟的误差 (同比影响波特率)	TA=-40°C∼85°C	-2	1. 5	2	%
TRSTD	电源上电或外部复位转	15	30	45	mS	
TSUSP	检测 USB 自动	3	5	9	mS	
TWAKE	芯片睡眠后唤醒	0. 3	0. 5	4	mS	

7、应用

7.1. USB 转四路 TTL 串口

下图是由 CH344Q 芯片实现的 USB 转四路 TTL 串口的参考电路图。图中的信号线可以只连接 RXDx、TXDx 以及公共地线,其它信号线 CTSx、RTSx、TNOWx 根据需要选用,不需要时都可以悬空。

P1 是 USB 端口, USB 总线包括一对 5V 电源线和一对数据信号线,通常,+5V 电源线是红色,接 地线是黑色,D+信号线是绿色,D-信号线是白色。USB 总线提供的电源电流可以达到 500mA。

P3、P4、P5 和 P6 为各路串口的 TTL 连接引脚,包括 VCC、GND、RXDx、TXDx、RTSx、CTSx 和 TNOWx 等引脚。可以外加电平转换器件,实现 TTL 转 RS232、RS485、RS422 等信号转换。

CH344Q 芯片支持 3. 3V 电源电压,每个电源引脚应外接容量为 0. 1uF 左右的电源退耦电容,如图中 C5、C6、C7 和 C8 即为电源退耦电容。R7 和 C11 为可选器件。

晶体 X1、电容 C9 和 C10 用于 CH344Q 的时钟振荡电路。X1 的频率为 $8MHz\pm0.4\%$,C9 和 C10 是容量约为 22pF 的独石或高频瓷片电容。对于 CH344L,根据需要可省晶体和电容,但波特率误差略大。

建议为 USB 信号线增加 ESD 保护器件,ESD 芯片寄生电容需小于 2pF,例如 CH412K。

建议串口外设与 CH344 使用同一电源, 否则需考虑分开供电时的 10 引脚倒灌电流问题。

在设计印刷线路板 PCB 时,需要注意: 退耦电容 C5、C6、C7 和 C8 尽量靠近 CH344Q 相连的电源引脚; USB 口的 D+和 D-信号线按高速 USB 规范贴近平行布线,保证特性阻抗,尽量在两侧提供地线或者覆铜,减少来自外界的信号干扰。

CH344 手册 8

