FYSIKA

Nya Fysikalia

Tabell- och formelsamling i fysik

Elektronisk version, EJ tillåten på tentan

Physics Handbook med tillägg gäller ej längre på tentan, nu måste du köpa Fysika på kårexp:en för 50 kr.

Upplaga 5

Reviderad 21 augusti 2018 Redaktör: Erik Elfgren

Förord

Fysika bygger på formler och data från formelsamlingen Fysikalia, vilken utvecklades på fysikavdelningen vid Luleå tekniska universitet under 1990-talet. Formler och data har överförts till sitt nuvarande format av Niklas Lehto och Erik Elfgren.

Ändringar i upplaga 2: kortare namn, ny nuklidtabell, nytt elläraavsnitt, bättre struktur och bilder. Ändringar i upplaga 3: Rättelser (bar, densitet vatten, $C_v \to C_V$, sönderfall), justeringar (eV, pc, lå, Au), tillägg (hydromekanik, molmassa, $\sum Q_i = 0$, isegenskaper, resistorer).

Ändringar i upplaga 4: Förtydligande (termodynamik), rättelse (trigonometri), korrigering (smältpunkt för vatten, sekunder på ett dygn), tillägg (ellipsegenskaper).

Ändringar i upplaga 5: Rättelse Heisenbergs osäkerhetsrelation. Några tillägg till

d. Små justeringar:

i j, Tk4.

Erik Elfgren, 21 augusti 2018.

	In	nehå	ill
F	Formler	1 1	Tabeller 10
Fa	Termodynamik Fa1 Temperatur och värme Fa2 Medieegenskaper Fa3 System Fa4 Andra huvudsatsen Fa5 Kretsprocesser	1 1 1 1	a SI-systemet 10 Ta1 Grundenheter och dimensioner 10 Ta2 Supplementenheter 10 Ta3 Härledda enheter 10 Ta4 Kompletteringsenheter 10 Ta5 Prefix 10
Fb	Mekanik	2 2 1 1b	b Andra enheter 10
	Fb1 Newtons lagar Fb2 Kinematik (rörelse oavsett krafter) Fb3 Kinetik & Dynamik (rörelse pga krafter) Fb4 Plan rörelse Fb5 Mekaniska energisatsen (ME) Fb6 Hydromekanik Fb7 Stötar Fb8 Partikelsystem Fb9 Stela kroppar Fb10 Masströghetsmoment Fb11 Vibrationer och svängningar	2 2 2 2 2 2 2 3 3 3 3 Td	c Omvandling mellan enheter 1 Tc1 Kraft 1 Tc2 Energi, Arbete 1 Tc3 Effekt 1 Tc4 Tryck, Mekanisk spänning 1 d Fysikaliska storheter och enheter 1 e Fysikaliska konstanter 1
Fc	Vågrörelselära	4 T f	f Mekanik 1
	Fc1VågorFc2Mekaniska vågorFc3Elektromagnetiska vågor	4 4	Tf1 Homogena kroppar
	Fc4InterferensFc5FraunhoferdiffraktionFc6Geometrisk optikFc7Optiska instrument	5 5	g Mekaniska och termiska egenskaper Ig1 Grundämnen
Fd	Modern fysik Fd1 Relativitetsteori Fd2 Kärnfysik Fd3 Kvantmekanik Fd4 Temperaturstrålning	6 6 6 T h	■ g4
Fe	Ellära Fe1 Laddningar	7 7	Th2 Data för luft 1 Th3 Ångtryck för några ämnen 1 Th4 Densitet och tryck för mättad vattenånga 1 Th5 Emissionstal/absorptionstal 1
	Fe4 Kapacitans	7 Ti i	i Vågrörelselära 18 Ti1 Brytningsindex 18 Ti2 Våglängdsområden 18
Ff	Ff1Grekiska alfabetetFf2Trigonometriska sambandFf3AlgebraFf4DerivatorFf5TaylorserierFf6IntegralerFf7Bestämda integraler	8 8 8 8 8 8 7 9	j Astrofysik och geofysik 19 Tj1 Solsystemet, översikt 19 Tj2 Solen 19 Tj3 Jorden 19 k Modern fysik 19 Tk1 Elektronbindningsenergier 19 Tk2 Viktiga elementarpartiklar 19
	Ff8 Speciella koordinatsystem	U	Ik3 Periodiska systemet

DEL F

FORMLER

Termodynamik

0:e huvudsatsen

Två kroppar som var för sig är i termisk jämvikt med en tredje kropp, står även i termisk jämvikt med varandra.

1:a huvudsatsen

Energi kan inte förintas eller skapas; den kan bara omvandlas mellan olika

2:a huvudsatsen

Ingen cyklisk process ger som enda resultat att..

Clausius: ...värme överförs från en kallare till en varmare kropp.
Kelvin-Planck: ...värme från en enda värmekälla helt omvandlas till mekaniskt arbete.

3:e huvudsatsen (Nernsts värmeteorem)

Entropin för en ren kristallin substans är noll vid absoluta nollpunk-

Fa1

Temperatur och värme

Termisk expansion

Längdutvidgning

$$\Delta L = \alpha L_0 \Delta T$$

 $\alpha = \text{längdutvidgningskoeffici}$ ent, se $\overline{\mathbf{1}}$ g.

Volymsutvidgning

$$\Delta V = \beta V_0 \Delta T$$

Värmeöverföring

Konvektion (allmänt)

Newtons värmeöverföringslag

$$H = \alpha A (T - T_{\text{omgivning}})$$

 $\alpha = v$ ärmeövergångstalet.

Strålning

$$H = \sigma e A (T^4 - T_{\text{omgivning}}^4)$$

 $e = \text{emissionstalet}; \ \sigma, \ \text{se} \ \mathsf{Te}.$

Ledning

$$H = -kA\frac{dT}{dx}$$

k = värmeledningförmågan, se I g.

$$H = kA \frac{T_H - T_C}{L} = \frac{A\Delta T}{R}$$

Termisk resistivitet

$$R = \frac{L}{k}$$

Seriekoppling

$$R = \sum R_i = \sum L_i / k_i$$

Parallellkoppling

$$R^{-1} = \sum R_i^{-1} = \sum k_i / L_i$$

Fa2 Medieegenskaper

Molära egenskaper

Molmassa (g/mol) = mo-

lekylmassa (u/molekyl)

$$M = m/n = m/N$$
 (Tg3)

m = massa, n = antal mol,N =antal molekyler.

Molär värmekapacitet

$$C = c \cdot M$$

c = specifik värmekapacitet,se $\mathbf{I}\mathbf{g}$.

Värmemängd

$$Q = mc\Delta T$$

$$Q = nC\Delta T$$

Konstant tryck

$$Q = mc_p \Delta T = nC_p \Delta T$$

Konstant volym

$$Q = mc_V \Delta T = nC_V \Delta T$$

Fasomvandling

$$Q = \pm mL$$

Ideala gaser

Ideala/allmänna gaslagen

Fa2c

$$pV = nRT = mR^*T$$

 $R^* = R/M = \text{ämnesspecifik}$ gaskonstant, se \mathbf{T} g3.

Molär värmekapacitet

$$C_p = C_V + R$$

 $C_V = \frac{3}{2}R$ monoatomär gas

$$C_V = \frac{5}{2}R$$
 diatomär gas

Kinetisk gasteori

RMS-fart

$$v_{\rm rms} = \sqrt{3kT/m_{\rm molekyl}}$$

Fa2d

Fri medelväglängd

$$\lambda = \frac{kT}{4\pi\sqrt{2}pr_{\text{molekyl}}^2}$$

Medeltranslationsenergi

$$K_{\text{molekyl}} = \frac{3}{2}kT$$

Fa3 System

Första huvudsatsen

$$Q = \Delta U + W \Leftrightarrow$$

$$\Delta U = Q - W$$

Ideala gaser

$$\Delta U = nC_V \Delta T = mc_V \Delta T$$

Isolerade system

$$\sum Q_i = 0$$

Volymändringsarbete (reversibla processer)

$$W_{12} = \int_{V_1}^{V_2} p dV$$

Isokor process,
$$\Delta V = 0$$

 $W_{12} = 0$

Isobar process,
$$\Delta p = 0$$

 $W_{12} = p\Delta V = p(V_2 - V_1)$

Isoterm process, $\Delta T = 0$

$$W_{12} = nRT \ln (V_2/V_1)$$

$$\Delta U_{12} = 0 \qquad \text{(idea)}$$

Adiabatisk process,
$$Q = 0$$

Adiabatisk process,
$$Q=0$$

 $\gamma = C_n/C_V = c_n/c_V \; (\text{Tg3})$

$$\gamma = C_p/C_V = c_p/c_V \ (\text{Tg3})$$

$$W_{12} = \frac{1}{\gamma - 1} (p_1 V_1 - p_2 V_2)$$

Poisson's lag (då Q = 0):

$$T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$$

$$p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$$

Andra huvudsatsen

Generellt

$$dS_{\text{system}} + dS_{\text{omgivning}} \ge 0$$

$$\Delta S = S_2 - S_1$$

Kretsprocesser

Reversibla processer: dS = 0Irreversibla processer: dS > 0

Reversibla processer

$$dS = dQ/T$$

$$\Delta S = \int_{1}^{2} \frac{dQ}{T}$$

Fasta eller flytande medier utan fasövergång:

$$\Delta S = mc \ln \frac{T_2}{T_1}$$

Kretsprocesser

$$\sum Q_i = \sum W_i$$

Verkningsgrad

$$e = \frac{W}{Q_{
m H}} = 1 + \frac{Q_{
m C}}{Q_{
m H}} = 1 - \left| \frac{Q_{
m C}}{Q_{
m H}} \right|$$

$$\begin{aligned} & \textbf{Carnotprocess} \\ & e_{\text{Carnot}} = \frac{T_{\text{H}} - T_{\text{C}}}{T_{\text{H}}} = 1 - \frac{T_{\text{C}}}{T_{\text{H}}} \end{aligned}$$

Köldfaktor

$$K_{
m R} = \left| rac{Q_{
m C}}{W}
ight| = rac{|Q_{
m C}|}{|Q_{
m H}| - |Q_{
m C}|}$$

Värmefaktor

$$K_{\mathrm{HP}} = \left|\frac{Q_{\mathrm{H}}}{W}\right| = \frac{|Q_{\mathrm{H}}|}{|Q_{\mathrm{H}}| - |Q_{\mathrm{C}}|}$$

Fb Mekanik

Vektorer anges med överstreckad symbol, t.ex. \vec{F} ; Derivata med avseende på tiden skrivs med prick ovanför, t.ex. $\dot{x} = dx/dt$.

Newtons lagar

NI: Tröghetslagen

En kropp förblir i vila eller likformig rätlinjig rörelse så länge den inte av yttre krafter tvingas ändra det.

$$\underline{\text{Jämvikt: }} \sum \vec{F} = 0 \quad \Rightarrow \quad \begin{cases} \sum F_x &= 0 \\ \sum F_y &= 0 \\ \sum \tau &= 0 \end{cases} \quad \sum \vec{F} = m \cdot \vec{a} \quad \Rightarrow \quad \begin{cases} \sum F_x = ma_x \\ \sum F_y = ma_y \end{cases}$$

NII: Kraftlagen

Accelerationen för en partikel är proportionell mot den resulterande kraften och har samma riktning som denna.

$$\sum \vec{F} = m \cdot \vec{a} \quad \Rightarrow \quad \begin{cases} \sum F_x = m a_x \\ \sum F_y = m a_y \end{cases}$$

NIII: Lagen om verkan och motverkan

Två kroppar som verkar på varandra med krafter utsätter varandra för lika stora men motsatt riktade krafter.

Kinematik (rörelse oavsett krafter)

	Allmänt	Konstant acceleration	
Rätlinjig	$v = \frac{\mathrm{d}s}{\mathrm{d}t} \mid a = \frac{\mathrm{d}v}{\mathrm{d}t} \mid a \mathrm{d}s = v \mathrm{d}v$	$s = s_0 + v_0 t + \frac{1}{2} a t^2 v = v_0 + a t v^2 = v_0^2 + 2a(s - v_0^2) + 2a(s - v_0^2$	$s_0)$
	Allmänt	Konstant vinkelacceleration	Båglängd:
Rotation	$\left \omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} \right \alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t} \left \alpha \mathrm{d}\theta = \omega \mathrm{d}\omega \right $	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \left \omega = \omega_0 + \alpha t \right \omega^2 = \omega_0^2 + 2\alpha (\theta - \omega_0^2)$	$s = r \cdot \theta$

Kinetik & Dynamik (rörelse pga krafter)

	rimetin & Bynamin (1010ise pga marter)						
Rätlinjig	Massa	Rörelsemängd	Kraft	Kraftekv.	Arbete	Kinetisk energi	
	m	$ \vec{p} = m\vec{v} $	$ec{F}$	$\sum \vec{F} = m\vec{a}$	$W = \int \vec{F} \cdot d\vec{r}$	$K = \frac{1}{2}mv^2$	$P = \frac{\mathrm{d}W}{\mathrm{d}t} = \vec{F} \cdot \vec{v}$
Rotation	Masströghets-	Rörelsemängds-	Kraftmoment	Momentekv.	Arbete	Kinetisk energi	Effekt
	moment			(z, se Fb9)			
	I_{zz} (stel kropp)	$L_z = I_{zz}\omega$	$\tau = rF_{\perp} = r_{\perp}F$	$\sum \tau_z = I_{zz}\alpha$	$W = \int \tau d\theta$	$K = \frac{1}{2}I_{zz}\omega^2$	$P = \frac{\mathrm{d}W}{\mathrm{d}t} = \vec{\tau} \cdot \vec{\omega}$

Plan rörelse

Koordinatsystem		K	Kinetik (NII)			
Cartesiska (x, y) (rätlinjig rörelse)	$v_x = \frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x}$	$v_y = \frac{\mathrm{d}y}{\mathrm{d}t} = \dot{y}$	$a_x = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \ddot{x}$	$a_y = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \ddot{y}$	$\sum F_x = ma_x$	$\sum F_y = ma_y$
Naturliga (n, t) (rotationsrörelse)	$v_n = 0$	$v_t = r\dot{\theta} = r\omega$	$a_n = \frac{v_t^2}{r} = r\omega^2$	$a_t = \frac{\mathrm{d}v_t}{\mathrm{d}t} = r\alpha = \dot{v_t}$	$\sum F_n = ma_n$	$\sum F_t = ma_t$
Polära (r, θ)	$v_r = \dot{r}$	$v_{\theta} = r\dot{\theta} = r\omega$	$a_r = \ddot{r} - r\dot{\theta}^2$	$a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta}$	$\sum F_r = ma_r$	$\sum F_{\theta} = ma_{\theta}$

- **F**b5 -Mekaniska energisatsen (ME)

Energisatsen $K_1 + U_{g1} + U_{e1} + W_{\text{övr}} =$ $K_2 + U_{g2} + U_{e2}$

Används när 2 lägen jämförs. Figur krävs och $U_{\rm g} = 0$ ska anges.

Övrigt arbete

$$W_{\text{övr}} = \int \vec{F}_{\text{övr}} \cdot d\vec{r}$$
$$= \int F_{\text{övr}} ds$$

Friktion

$$W_{\text{övr}} = \int \vec{F}_{\text{övr}} \cdot d\vec{r}$$
 $f = \mu_k N$ (glidning)
 $f \leq \mu_s N$ (i vila)
Fullt utbildad friktion:

$$f = \mu_{\rm s} N$$

Lägesenergi

 $U_{\rm g} = mgh$ Allmänt:

$$U_{\rm g} = -G \frac{m_1 m_2}{r}$$

Newtons gravitations-

$$F = G \frac{m_1 m_2}{r^2}$$

G = Newtons gravitationskonstant, se \mathbf{T} e.

Elastisk energi

$$U_{\rm e} = \frac{1}{2}kx^2$$

Hooke's lag:

$$F = k \cdot x$$

Fb6 Hydromekanik

Vätsketryck

$$p = \frac{F_{\perp}}{A} = p_0 + \rho g h$$

kraft, som är lika stor som

Fb7b

Stötar

Fb7a

Rörelsemängd

 $\vec{p} = m\vec{v}$

Impulslagen

$$\vec{J} = \int_{t_1}^{t_2} \sum \vec{F} \, dt = \vec{p_2} - \vec{p_1}$$

Stöttal: Rak, central stöt

$$e = \left| \frac{v_{\rm B2} - v_{\rm A2}}{v_{\rm A1} - v_{\rm B1}} \right| = \frac{{
m Rel. hastighet efter st\"ot}}{{
m Rel. hastighet f\"ore st\"ot}}$$

Elastisk stöt, e = 1: Rel. hast. efter = Rel. hast. före stöt.

Rörelsemängdsmoment kring fix axel O

$$\vec{L}_O = \vec{r} \times \vec{p} \quad \Rightarrow \quad L_O = r \cdot p_{\perp} = r_{\perp} \cdot p$$
 (för partikel)

Impulsmomentlagen för partikel och stel kropp

$$\int_{t_1}^{t_2} \sum_{t_1} \tau_O \, dt = L_{O2} - L_{O1}$$

där O även kan vara masscentrum.

Partikelsystem

Kinetisk energi

$$K = \frac{1}{2}mv_{\rm cm}^2 + \frac{1}{2}m_i |\vec{v}_i|^2$$

där \vec{v}_i är partikel i:s hastighet relativt masscentrum cm.

Rörelsemängd

$$\vec{p} = \sum \vec{p_i} = \sum m_i \vec{v_i} = m \vec{v}_{\rm cm}$$

Rörelsemängdsmoment

$$\vec{L}_O = \sum (\vec{r}_i \times \vec{p}_i)$$

Masscentrum, enstaka kroppar

$$x_{\rm cm} = \frac{\int x_c \, \mathrm{d}m}{\int \mathrm{d}m}$$

$$y_{\rm cm} = \frac{\int y_c}{\int dr}$$

$$x_{\rm cm} = \frac{\int x_c \, dm}{\int dm}$$
 $y_{\rm cm} = \frac{\int y_c \, dm}{\int dm}$ $z_{cm} = \frac{\int z_c \, dm}{\int dm}$

 x_c, y_c, z_c är masscentrumskoordinaterna för masselement dm. x_i, y_i, z_i är koordinaterna för delkropp i:s masscentrum.

Rörelseekvationer

 $\sum \vec{F} = \dot{\vec{p}} = m\vec{a}_{\rm cm}$ $=\sum m_i \ddot{\vec{r}}_i$ Rotation runt fix punkt O

$$\sum \vec{ au}_O = \vec{L}_O$$

 $\sum \vec{ au}_{
m cm} = \dot{\vec{L}}_{
m cm}$

Masscentrum, sammansatta kroppar

$$x_{\rm cm} = \frac{\sum m_i x_i}{\sum m_i}$$
 $y_{\rm cm} = \frac{\sum m_i y_i}{\sum m_i}$ $z_{cm} = \frac{\sum m_i z_i}{\sum m_i}$

Stela kroppar

Kinetik

Rotation runt fix axel, O

$$\sum F_n = mr_{\rm cm}w^2$$
$$\sum F_t = mr_{\rm cm}\alpha$$
$$\sum \tau_O = I_O\alpha$$

Allmän plan rörelse

$$\sum F_x = ma_{\text{cm},x}$$
$$\sum F_y = ma_{\text{cm},y}$$
$$\sum \tau_{\text{cm}} = I_{\text{cm}}\alpha$$

Kinetisk energi

Rotation och translation

$$K = \frac{1}{2}mv_{\mathrm{cm}}^2 + \frac{1}{2}I_{\mathrm{cm}}\omega^2$$

Rullvillkoret (rullning utan glidning)

$$s = r\theta$$
$$v_{\rm cm} = r\omega$$

$a_{\rm cm} = r\alpha$

Rörelsemängdsmoment

Ren rotation $L_O = I_O \omega$

punkten O.

kring rotationsaxeln O (då Oär en symmetriaxel).

Rotation och translation $L_O = mv_{\rm cm}d + I_{\rm cm}\omega$

där d är "momentarmen" för $v_{\rm cm}$ med avseende på den fixa Momentancentrum, C

Hastighet m.a.p.
$$C$$

$$v_A = r_A \omega$$

 $r_A = \text{avstånd från A till C}.$

Momentekvation kring C $\sum \tau_C = I_C \alpha$

då masscentrum = geometriskt centrum.

Kinetisk energi kring C $K = \frac{1}{2}I_C\omega^2$

Masströghetsmoment

Fb10a Allmänt

$$I_O = \int r_{\perp}^2 dm \quad \text{(definition)}$$

$$I_O = \sum r_i^2 m_i \quad \text{(partiklar)}$$

Tröghetsradie,
$$k_O$$

$$I_O = mk_O^2$$

Svängningstiden

 $\mathbf{Fj\ddot{a}der}\,+\,\mathbf{massa}\,\,m$

k = fjäderkonstant.

Små svängningsvinklar:

Partikelpendel, längd L

Konisk pendel, vinkel $\alpha \bowtie$

Stel kropp runt axel O

 $T = 2\pi \sqrt{L\cos\alpha/g}$

 $T = 2\pi \sqrt{m/k}$

 $T = 2\pi \sqrt{L/q}$

 $T = 2\pi/\omega$

Tunn skiva i x-y-plan

$\overline{I_{zz} = I_{xx}} + I_{yy}$

Steiners sats

$$I_O = I_{\rm cm} + md^2$$

d = avtåndet från O till cm.

Fb10d

Vibrationer och svängningar

Fri odämpad

Svängningsekvationen

$$\ddot{x} + \omega^2 x = 0$$

$$\omega^2 \ddot{a}r \text{ termon from$$

 ω^2 är termen framför x. $\omega = \text{vinkelfrekvens}.$

Pendelsvängning, små θ $\ddot{\theta} + \omega^2 \theta = 0$

Utslaget (
$$x$$
 eller θ)
 $x = A\cos(\omega t + \phi)$

Total mekanisk energi
$$E = K + U$$

Horisontell fjäder

$$E = K + U_e = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

Pendel runt axel
$$O$$
, små θ
 $E = K + U_g = \frac{1}{2}I_O\dot{\theta}^2 + mgr_{cm}\theta$

$$E = K + U_e = \frac{1}{2}mx + \frac{1}{2}kx$$

Pendel runt axel O , små θ

$$r_{\rm cm} = {\rm avst ånd, \ cm \ till \ } O.$$

Fri dämpad

Svängningsekvationen

$$\ddot{x} + 2\gamma\dot{x} + \omega^2 x = 0$$

Dämpningsfrekvens

$$\omega_e = \sqrt{|\omega^2 - \gamma^2|}$$

Underdämpat,
$$\gamma < \omega$$

 $x = Ae^{-\gamma t}\cos(\omega_e t + \phi)$

$$K_d = Ke^{-2\gamma t}$$

Kritiskt dämpat,
$$\gamma = \omega$$

 $x = e^{-\gamma t}(A_1 + A_2 t)$

Tvungen dämpad

Svängningsekvationen

$$\ddot{x} + 2\gamma \dot{x} + \omega^2 x = \frac{F_{\text{max}}}{m} \cos \omega_d t$$

Kvarstående amplitud

$$A = \frac{F_{\text{max}}/m}{\sqrt{(\omega^2 - \omega_d^2)^2 + (2\gamma\omega_d)^2}}$$

Resonans (då
$$\omega_d = \omega_r$$
)

$$\omega_r = \sqrt{\omega^2 - 2\gamma^2}$$

Liten dämpning
$$(\gamma \ll \omega)$$
:

$$\omega_r \approx \omega, \qquad A_r = \frac{F_{\text{max}}}{2m\gamma\omega}$$

Fc Vågrörelselära

Vågekvationen i 1D

$$\frac{\partial^2 s}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 s}{\partial t^2}$$

$$s = f(x - vt) + g(x + vt)$$

Propagerande harmonisk våg i en dimension

$$s = a\cos(\omega t \pm kx + \delta)$$

På komplex form

$$S = Ae^{i(\omega t \pm kx)}, \quad A = ae^{i\delta}$$

Sfärisk våg

$$s = \frac{a_s}{r}\cos\left(\omega t - kr + \delta\right)$$

Vågtal

$$k = 2\pi/\lambda$$
 ($\lambda = \text{våglängd}$)

Vinkelfrekvens

$$\omega = 2\pi f$$
 ($f = \text{frekvens}$)

Periodtid

$$T = 1/f$$

${\bf Fashastighet/utbrednings-hastighet}$

$$v = f \cdot \lambda = \omega/k$$

${\bf Partikel hastighet}$

$$v_{\rm p} = \mathrm{d}s/\,\mathrm{d}t$$

Grupphastighet

$$v_{\rm g} = \frac{\mathrm{d}\omega}{\mathrm{d}k}$$

c1a -

Superposition av vågor

${\bf Superposition sprincipen}$

Den resluterande störningen i en punkt där två eller fler vågor interfererar är summan av de enskilda vågornas påverkan. Exempel: Två vågor med samma frekvens

$$a^2 = a_1^2 + a_2^2 + 2a_1a_2\cos\Delta\phi$$

 $\Delta\phi$ är fasskillnaden i interferenspunkten.

Svävningsfrekvens

$$f_{\text{sv\"{a}vning}} = |f_1 - f_2|$$

Stående våg i en dimension

$$s = f(x) \cdot g(t)$$

$$= (a \sin kx + b \cos kx) \cdot \sin(\omega t - \delta)$$

Mekaniska vågor

Intensitet

på avstånd r.

$$I = \frac{1}{2}\rho v\omega^2 a^2 = P/(4\pi r^2)$$

P = effekten för sfärisk våg

Ljudintensitetsnivå (i db) $L_I = 10 \log(I/I_0)$

$$I_0 = 1.0 \cdot 10^{-12} \,\mathrm{W/m^2}$$

Akustisk impedans $Z = \rho \cdot v$

Reflektion av akustiska vågor (vinkelrätt infall)

$$R = \frac{I_r}{I_i} = \left(\frac{Z_1 - Z_2}{Z_1 + Z_2}\right)^2$$

Dopplereffekten hos ljud

$$f_m = f_s \frac{v - v_{\rm m}}{v - v_{\rm s}}$$

 $v_{\rm m}$ är positiv om mottagaren rör sig $\mathit{från}$ källan och $v_{\rm s}$ är positiv om källan rör sig mot mottagaren.

Utbredningshastighet

Longitudinella vågor fast kropp

$$v_l = \sqrt{E/\rho}$$

E =elasticitetsmodulen.

Transversella vågor i fast kropp

$$v_t = \sqrt{G/\rho}$$

G = skjuvmodulen.

Transversella vågor sträng

$$v_l = \sqrt{F/\rho_l}$$

F= spännkraften i strängen, $\rho_l=$ längddensiteten.

Longitudinella vågor vätska och gas

$$v_l = \sqrt{B/\rho}$$

B = bulkmodulen.

Longitudinella vågor i ideal gas

$$v_l = \sqrt{(c_p/c_V)RT/M}$$

R = allmänna gaskonstanten, M = molmassan.

Elektromagnetiska vågor

Intensitet (Irradians)

För en plan våg:

Brytningsindex

$$E = E_{\text{max}} \sin\left(kx - \omega t\right)$$

 $(E = \text{elektriskt f\"{a}lt})$ blir irradiansen:

$$I = \frac{1}{2}nc\varepsilon_0 E_{\text{max}}^2 \ (\varepsilon_0, \text{ se } \square e)$$

c = ljushastigheten i vakuum,

v = ljushastigheten i mediet.

Optisk väglängd

$$L = \int n \, dx$$

Dispersion

$$D = \partial n / \partial \lambda$$

Cauchys dispersionsformel

$$n = a + b/\lambda^2$$

Reflekterad intensitet

$$I_i = I_{i//} + I_{i\perp}$$

$$I_r = R_{//}I_{i//} + R_{\perp}I_{i\perp}$$

Brewstervinkeln θ_p (polarisationsvinkeln)

$$\tan \theta_p = n_2/n_1$$

$$I = I_0 \cos^2 \theta$$

Fresnels formler för reflekterat ljus

$$R_{//} = \frac{I_{r//}}{I_{i//}} = \frac{\tan^2(i-b)}{\tan^2(i+b)}$$

$$R_{\perp} = \frac{I_{r\perp}}{I_{i\perp}} = \frac{\sin^2(i-b)}{\sin^2(i+b)}$$

Om i är mycket liten (vinkelrätt infall):

$$R = \frac{I_r}{I_i} = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

Interferens

Intensitet

Interferens mellan två vågor

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\Delta \phi),$$

Fc4a

 $\Delta\phi$ är fasskillnaden i interferenspunkten.

Visibiliteten

$$V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

$$I = I_0 \left(\frac{\sin(N \ \Delta \phi/2)}{\sin(\Delta \phi/2)} \right)^2$$

$$\Delta \phi = \frac{2\pi}{\lambda} d\sin\theta + \delta.$$

 δ är fasskillnaden mellan vågorna från närliggande sändare (antages konstant).

 $\delta=0$ ger huvudmax då

$$d\sin\theta = m\lambda, \quad m = 0, \pm 1...$$

och minima då

$$Nd\sin\theta = m'\lambda$$

$$m' = \text{heltal}$$

$$m' \neq 0, \pm N, \pm 2N, ...$$

Gitterekvationen

$$d\sin\theta = p\lambda$$
 $(p = \text{heltal})$

Fraunhoferdiffraktion

Enkelspalt

$$I = I_0 \frac{\sin^2(\beta/2)}{(\beta/2)^2}$$

$$\beta = kb\sin\theta$$

Villkor för intensitetsminima

$$b\sin\theta = m\lambda, \ m = \pm 1, \pm 2...$$

Dubbelspalt

$$I = I_0 \cos^2\left(\frac{kd\sin\theta}{2}\right) \frac{4\sin^2(\beta/2)}{(\beta/2)^2}$$

N spalter

$$I = I_0 \frac{\sin^2(\beta/2)}{(\beta/2)^2} \cdot \frac{\sin^2(N \cdot \Delta \phi/2)}{\sin^2(\Delta \phi/2)}$$

$$\Delta \phi = kd \sin \theta, \quad \beta = kb \sin \theta$$

Vinkelrätt infall ger interferensmaxima då

$$d\sin\theta = m\lambda, \quad m = 0, \pm 1...$$

och diffraktionsminima då

$$b\sin\theta = m\lambda, \ m = \pm 1, \pm 2...$$

Cirkulär öppning med diametern D

1:a min: $D \sin \theta = 1,22\lambda$ 2:a min: $D \sin \theta = 2,23\lambda$

2:a min: $D \sin \theta = 2{,}23\lambda$ Upplösningsgränsen er

ligt Rayleigh Cirkulär öppning:

$$\alpha_{\rm g} = 1.22 \lambda/D$$

Spaltöppning, bredd b:

$$\alpha_{\rm g} = \lambda/b$$

Geometrisk optik

Brytningslagen

Fc6a

 $n_1 \sin i = n_2 \sin b$

Frekvensen är densamma före och efter brytning: $f_1 = f_2$.

Minimideviation i

$$n = \frac{\sin\frac{1}{2}(\delta_{\min} + \theta)}{\sin\frac{1}{2}\theta}$$

Brytning i sfärisk yta

$$\frac{n}{a} + \frac{n'}{b} = \frac{n' - n}{r}$$

Teckenregler vid brytning

i sf	färisk yta	v
	Objektrymd	Bildrymd
a	+	_
b	_	+

Tunna linser

Newtons linsformel

$$x_1 x_2 = f^2$$

Gauss' linsformel

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b}$$

$a \stackrel{n}{\longrightarrow} b$ Brännvidden för en tunn lins

$$\frac{1}{f} = \left(\frac{n'}{n} - 1\right) \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

 $r_1, r_2 > 0$ ut
åt konvexa ytor $r_1, r_2 < 0$ ut
åt konkava ytor

Dioptritalet D

$$D = \frac{1}{f}$$

Optiska instrument

Vinkelförstoring

$$G = \frac{\beta}{\alpha}$$
 $\beta = \text{synvinkel med instrument}$
 $\alpha = \text{synvinkel utan instrument}$

Linjär förstoring

$$M = \frac{h'}{h}$$
 $h' =$ bildens storlek $h =$ föremålets storlek

Luppens förstoring

Bilden i o
ändligheten
$$G = \frac{s}{f}$$
 s = betrakningsavståndet för tydligt seende (0,25 m)

Kikarens förstoring

$$G = -\frac{f_1}{f_2} = -\frac{D}{d}$$

$$f_1 = \text{objektivbrännvidd}$$

$$f_2 = \text{okularbrännvidd}$$

$$D = \text{objektivdiameter}$$

$$d = \text{utträdespupillens diameter}$$

Mikroskopets förstoring

$$G = -\frac{ls}{f_1 f_2} = M_{\text{objektiv}} \cdot G_{\text{okular}},$$
 $l = \text{inre brännpunkts-avstånd}$

Modern fysik

Fd1 Relativitetsteori

Lorentzfaktorn

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

Relativistisk rörelsemängd $\vec{p} = m\vec{v}\gamma$

Relativistiska krafter

$$F_{\perp} = \gamma ma$$

$$F_{||} = \gamma^3 ma$$

Relativistisk kinetisk energi

$$K = mc^2(\gamma - 1)$$

Total energi

$$E_{\text{tot}} = mc^2 \gamma = K + E_0$$

Viloenergi

$$E_0 = mc^2$$

Tidsdilatation

$$\Delta t = \frac{\Delta t_0}{\sqrt{1 - u^2/c^2}} = \Delta t_0 \gamma$$

Längdkontraktion

$$l = l_0 \sqrt{1 - u^2/c^2} = l_0/\gamma$$

Dopplereffekt för elektromagnetiska vågor

$$f = f_0 \sqrt{\frac{c - u}{c + u}}$$

då sändaren rör sig från observatören med hastigheten $u. f = c/\lambda.$

Kärnfysik

Kärnprocesser

Frigjord energi i reaktion $A + B \rightarrow C + D + ...$

$$Q = \Delta mc^2 =$$

$$(M_{\rm A} + M_{\rm B} - M_{\rm C} - M_{\rm D} - ...)c^2$$

M = nuklidmassa

Tröskelenergi för reaktion

$$K = \frac{m+M}{M}Q$$

m slår in i stillastående M.

Sönderfall

Sönderfallslagen

$$N = N_0 e^{-\lambda t}$$

Aktivitetslagen

$$A = \lambda N$$

Halveringstid

$$T_{1/2} = \frac{\ln 2}{\lambda}$$

Bindningsenergi, nuklid

$$E_{\rm B} = (ZM_{\rm H} + Nm_{\rm n} - M)c^2$$

 $M_{\rm H} = {\rm massa, \ v\"ate-1.}$

$\alpha: {}_{Z}^{A}X \to {}_{Z-2}^{A-4}Y^{2-} + {}_{2}^{4}He^{2+}$

$$\beta^-: {}_Z^A X \to {}_{Z+1}^A Y^+ + e^- + \bar{\nu}_e$$

$$\beta^{+}: {}_{Z}^{A}X \to {}_{Z-1}^{A}Y^{-} + e^{+} + \nu_{e}$$

$$\gamma \colon {}_{Z}^{A}X^{*} \to {}_{Z}^{A}X + \gamma$$

$$\gamma: \quad \stackrel{\cdot \cdot \cdot}{Z} X \rightarrow \stackrel{\cdot \cdot \cdot}{Z} X + \gamma$$

$$\mathrm{K:}\ e^- + {}_Z^A \mathrm{X}^+ \to {}_{Z-1}^A \mathrm{Y} + \nu_e$$

K = elektroninfångning, X = moderkärna, Y = dotterkärna, A = masstal, Z =atomnummer, se \mathbf{T} k3.

Strålning

Gammastrålningsintensitet $I = I_0 e^{-\mu x}$

Fd2c

Halvvärdestjocklek

$$X_{1/2} = \frac{\ln 2}{\mu}$$

Ekvivalent dos

$$H = RBE \cdot D$$

D = absorberad dos, RBE =Relativ Biologisk Effekt:

Fd3 -

Kvantmekanik

Tunneleffekt

För partikel med energi E_p och massa m_p genom en barriär med höjden U_0 och vidden L är tunnelsannolikheten

$$T = Ge^{-2\kappa L}$$

$$G = 16 \frac{E_{\mathrm{p}}}{U_0} \left(1 - \frac{E_{\mathrm{p}}}{U_0} \right)$$

$$\kappa = \frac{\sqrt{2m_{\rm p}(U_0 - E_{\rm p})}}{\hbar}$$

Fri partikel i endimensionell låda med storlek a

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

$$\psi_n(x) = \sqrt{2/a} \cdot \sin\left(n\pi x/a\right)$$

Energinivåer för väte och väteliknande system

$$E_n = -E_{\rm H} \frac{Z^2}{n^2} \ (E_{\rm H}, {\rm se} \ \text{Te})$$

Banradie i bana n för väte och väteliknande system

$$r_n = \frac{h^2 \varepsilon_0}{\pi m_e e^2} \frac{n^2}{Z} = a_0 \frac{n^2}{Z}$$

 $(a_0, se \mathbf{T}e)$

Comptonspridning

$$\lambda' - \lambda = \frac{h}{mc} (1 - \cos \theta)$$

$$\sqrt{\lambda} \sqrt{\frac{\lambda}{\lambda}} = \frac{1}{100}$$

Fotoelektriska effekten

$$K_{\text{max}} = hf - \Phi$$

$$\Phi = \text{utträdesarbetet}$$

Gränsvåglängd för kontinuerlig röntgenstrålning

$$\lambda_{\min} = \frac{hc}{eU}$$

$$U = \text{spänningen}, eU = K_{\text{max}}$$

Moseleys lag (våglängden

$$\lambda^{-1} = a(Z-1)^2$$

$$a = 8,23 \cdot 10^6 \text{ m}^{-1}$$

De Broglie-våglängden

$$\lambda = h/p = h/\sqrt{2mK}$$

Fotonenergi

$$E = hf = hc/\lambda$$
 (h, se Te)

Heisenbergs osäkerhetsrelation

$$\Delta p_x \cdot \Delta x \ge h/4\pi$$

$$\Delta E \cdot \Delta t \geq h/4\pi$$

Pauliprincipen

Två elektroner i en atom kan inte ha samma uppsättning kvanttal (n, l, m, s).

Kvanttal

<u> Huvudkvanttal:</u>

$$n = 1 \ 2 \ 3 \ 4 \ 5 \dots$$

Skal: K L M N O ...

Azimutalt kvanttal: $l = 0 \ 1 \ 2 \ 3 \ 4 \dots \ n-1$

Symbol: s p d f g ...

Magnetiskt kvanttal: m -l, -(l-1), ... -1, 0, 1, ..., (l-1), l.

Spinnkvanttal: $s = \pm \frac{1}{2}$

Temperaturstrålning

Plancks strålningslag

Delemittansen för våglängden λ för en ideal svart kropp:

$$I(\lambda, T) = \frac{c_1}{\lambda^5 \left(e^{c_2/\lambda T} - 1\right)} \qquad (c_1, c_2, \text{ se } \mathbf{T}e)$$

Wiens förskjutningslag

$$\frac{\mathrm{d}I(\lambda, T)}{\mathrm{d}\lambda} = 0 \quad \Rightarrow \quad \lambda_m T = b \qquad (b = 2,8978 \cdot 10^{-3} \text{ m·K})$$

 λ_m är den våglängd för vilken delemittansen har maximum.

Stefan-Boltzmanns lag

$$I(T) = \int_0^\infty I(\lambda, T) \, d\lambda = \sigma T^4 \qquad (\sigma, \text{ se } \mathbf{T}e)$$

I(T) är emittansen för en fullständigt svart kropp med temperaturen T.

Fe Ellära

$\stackrel{----}{\operatorname{Laddningar}}$

Coulombs lag

$$\begin{split} F &= k \cdot \frac{Q_1 \cdot Q_2}{r^2} \\ k &= \frac{1}{4\pi\varepsilon_0} \approx 8,988 \cdot 10^9 \, \frac{\mathrm{N} \, \mathrm{m}^2}{\mathrm{A}^2 \, \mathrm{s}^2} \\ &\qquad \qquad (\varepsilon_0, \, \mathrm{se} \, \textcolor{red}{\blacksquare} \mathrm{e}) \end{split}$$

Spänning och arbete, W_{ab}

$$U = U_{ab} = W_{ab}/Q$$

Ström och laddning QI = Q/t

Elektrisk fältstyrka

$$\vec{E} = \vec{F}/Q$$

Mellan 2 parallella skivor E=U/d

Effekt och energi

Effekt

$$P = U \cdot I = R \cdot I^2 = U^2/R$$

Energi

$$W = P \cdot t$$

Kirchhoffs lagar

Kirchhoffs spänningslag

$$\sum U_i = 0 \quad \text{(sluten slinga)}$$

Kirchhoffs strömlag

$$\sum I_i = 0 \qquad \text{(i knutpunkt)}$$

$\stackrel{---}{\operatorname{Kapacitans}}$

$$C = Q/U$$

Plattkondensorn $C = \varepsilon \cdot A/d$

Seriekoppling

$$C^{-1} = C_1^{-1} + C_2^{-1} + \dots$$

Parallellkoppling $C = C_1 + C_2 + \dots$

Kondensatorenergi

$$W = \frac{1}{2} \cdot C \cdot U$$

$\overline{\mathrm{Resistans}}$

 $\begin{array}{c}
\hline{\mathbf{Ohms lag}} \\
U = R \cdot I
\end{array}$

Fe1a

Seriekoppling

$$R = R_1 + R_2 + \dots$$

Parallellkoppling

$$R^{-1} = R_1^{-1} + R_2^{-1} + \dots$$

Spänningskälla med inre resistans

$$U_{\rm emk} = R_{\rm i} \cdot I + R_{\rm y} \cdot I$$

Polspänning: $R_{y} \cdot I$.

Resistivitet, ρ $R = \rho \cdot l/A$

2 parallella resistorer

$$R_{tot} = \frac{R_1 R_2}{R_1 + R_2}$$

$$I_1 = \frac{R_2}{R_1 + R_2} \cdot (I_1 + I_2)$$

2 seriekopplade resistorer

$$U_1 = \frac{R_1}{R_1 + R_2} \cdot (U_1 + U_2)$$

$\overline{\text{Magnetism}}$

Fe6a

Flödestäthet

Kring en oändligt lång, rak ledare

$$B = \frac{\mu_0}{4\pi} \cdot \frac{2 \cdot I}{d}$$

I medelpunkten av en flat cirkulär spole

$$B = \frac{\mu_0}{2} \cdot \frac{N \cdot I}{d}$$

I en toroid eller i en lång, smal spole (solenoid)

$$B = \mu_0 \cdot \frac{N \cdot I}{l}$$

Konstant flödestäthet $\Phi = B_{\perp} \cdot A$

Kraftverkan

$$F = B \cdot I \cdot l_{\perp}$$

$$F = Q \cdot v_{\perp} \cdot B$$

Induktion Fe6b

 $e = - d\Phi / dt$

Spole med N varv

$$e = -N \cdot d\Phi / dt$$

$$e = l \cdot v_{\perp} \cdot B$$

Självinduktion

$$e = -L \cdot di/dt$$

Magnetisk energi i spole

$$W = \frac{1}{2} \cdot L \cdot I$$

ullet Fe7 ullet Växelström

Momentan- och effektivvärden (= rms-värden)

$$i = \hat{i} \sin \omega t$$
 $\Rightarrow I = \frac{\hat{i}}{\sqrt{2}}$

$$u = \hat{u}\sin\omega t + \phi \implies U = \frac{\hat{u}}{\sqrt{2}}$$

$$i = dQ/dt$$

Ren belastning

Kapacitiv,
$$\phi = -\pi/2$$

$$\hat{u} = \hat{i} \cdot X_C \qquad X_C = \frac{1}{\omega C}$$

Induktiv,
$$\phi = \pi/2$$

$$\hat{u} = \hat{i} \cdot X_L \qquad X_L = \omega \cdot L$$

Resistiv,
$$\phi = 0$$

$$\hat{u} = \hat{i} \cdot R$$
 $U = R \cdot I$

Fe7b

Impedans

$$Z = \hat{u}/\hat{i} = U/I \Leftrightarrow U = ZI$$

Medeleffekt

$$P = U \cdot I \cdot \cos \phi$$

 $T = C \cdot T \cdot \cos \varphi$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
$$\tan \phi = (X_L - X_C)/R$$

$$Z^{-1} = \sqrt{R^{-2} + (X_L - X_C)^{-2}}$$

$$\tan \phi = (X_L - X_C) \cdot R$$

Matematik

хi

omikron

ypsilon

Grekiska alfabetet

$$A \alpha B \beta \Gamma \gamma \Delta \delta E \epsilon \epsilon Z \zeta H \eta \Theta \theta \vartheta I \iota K \kappa \Lambda \lambda M \mu$$
 alfa beta gamma delta epsilon zeta eta teta jota kappa lambda my $N \nu \Xi \xi O \sigma \Pi \pi P \rho \varrho \Sigma \sigma T \tau \Upsilon v \Phi \phi \varphi X \chi \Psi \psi \Omega \omega$

 $_{
m tau}$

sigma

Trigonometriska samband

$$\cos\frac{\pi}{4} = \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}, \ \cos\frac{\pi}{6} = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}, \ \cos\frac{\pi}{3} = \sin\frac{\pi}{6} = \frac{1}{2}$$

$$\cos\left(\frac{\pi}{2} \pm \alpha\right) = \mp \sin\alpha \qquad \sin(-\alpha) = -\sin\alpha$$

$$\sin(\pi - \alpha) = \sin\alpha \qquad \cos(-\alpha) = \cos\alpha$$

$$\tan\left(\frac{\pi}{2} - \alpha\right) = \frac{1}{\tan\alpha} \qquad \tan(-\alpha) = -\tan\alpha$$

$$\sin\alpha = \frac{1}{2i}\left(e^{i\alpha} - e^{-i\alpha}\right) \qquad \cos\alpha = \frac{1}{2}\left(e^{i\alpha} + e^{-i\alpha}\right)$$

$$\cos^2\alpha + \sin^2\alpha = 1$$

$$\cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha$$

$$\sin 2\alpha = 2\cos\alpha\sin\alpha$$

$$\sin^2\alpha = \frac{1 - \cos 2\alpha}{2}, \qquad \cos^2\alpha = \frac{1 + \cos 2\alpha}{2}$$

$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

psi

omega

Algebra

Räta linjens ekvation

$$y = kx + m$$
 \Leftrightarrow $y - y_0 = k \cdot (x - x_0)$

Andragradsekvationen

$$ax^2 + bx + c = 0$$
 \Rightarrow $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Konjugatregeln

$$a^2 - b^2 = (a+b)(a-b)$$

Komplexa tal

$$i^{2} = -1, \quad z = x + iy = r(\cos\phi + i\sin\phi) = re^{i\phi}, \quad z^{*} = x - iy$$

$$|z| = \sqrt{x^{2} + y^{2}}, \quad \phi = \arctan\frac{y}{x} + n \, 2\pi, \quad |z_{1} \cdot z_{2}| = |z_{1}| \cdot |z_{2}|$$

$$t_{i} = t_{1}k^{i-1}s_{n} = t_{1}\sum_{i=0}^{n-1}k^{i} = \frac{t_{1}(1 - k^{n})}{1 - k}$$

Logaritmer och potenser

$$\ln a \cdot b = \ln a + \ln b, \quad \ln a/b = \ln a - \ln b, \quad \ln a^b = b \cdot \ln a$$
$$x^{a+b} = x^a \cdot x^b, \qquad x^{a-b} = x^a/x^b, \qquad x^{ab} = (x^a)^b$$

Aritmetisk serie

$$t_i = t_1 + (i-1)ds_n = \sum_{i=1}^n t_i = n\frac{t_1 + t_n}{2}$$

Geometrisk serie

$$t_i = t_1 k^{i-1} s_n = t_1 \sum_{i=0}^{n-1} k^i = \frac{t_1 (1 - k^n)}{1 - k}$$

$$\vec{r} = (x, y, z) = x\hat{x} + y\hat{y} + z\hat{z}$$
 $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$

$$|\vec{u} \times \vec{v}| = |\vec{u}| \cdot |\vec{v}| \sin \theta \qquad \vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cos \theta = u_x v_x + u_y v_y + u_z v_z$$

Derivator

$$f = u + v \Rightarrow f' = u' + v' \qquad \left| \begin{array}{c} f = u \cdot v \Rightarrow f' = u' \cdot v + u \cdot v' \\ \frac{dx}{dx} = n x^{n-1} \end{array} \right| \frac{d(\ln x)}{dx} = x^{-1} \qquad \left| \begin{array}{c} \frac{d(a^x)}{dx} = a^x \ln a \end{array} \right| \frac{d(\sin x)}{dx} = \cos x \qquad \left| \begin{array}{c} \frac{d(\cos x)}{dx} = -\sin x \end{array} \right| \frac{d(\tan x)}{dx} = 1 + \tan^2 x$$

Taylorserier

Allmänt

$$f(x) = f(a) + \frac{1}{1!}f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + \dots$$

Maclaurinserier
$$(a = 0)$$

 $e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots$

$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \dots$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \dots$$

$$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \dots \qquad |x| < \pi/2$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots \qquad |x| < 1$$

$$(1+x)^k = 1 + kx + \frac{k(k-1)}{2!}x^2 + \dots \qquad |x| < 1$$

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 \dots \qquad |x| \le 1$$

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 \dots \qquad |x| \le 1$$

Ff9a

$\frac{}{\text{Integraler}}$

Funktion Primitiv funktion

$\frac{1}{x}$	$\ln x $	$x \neq 0$
$\frac{f'(x)}{f(x)}$	$\ln f(x)$	
e^x	e^x	
a^x	$\frac{a^x}{\ln a}$	$a>0, a\neq 1$
$\frac{1}{x-a}$	$\ln x-a $	$x \neq a$
$\frac{1}{x^2 + a^2}$	$\frac{1}{a} \arctan \frac{x}{a}$	

Funktion Primitiv funktion

$$\frac{x}{x^2+b} = \frac{1}{2} \ln(x^2+b)$$

$$\sqrt{x^2+a^2} = \frac{x}{2} \sqrt{x^2+a^2} + \frac{a^2}{2} \ln(x+\sqrt{x^2+a^2})$$

$$\sqrt{a^2-x^2} = \frac{x}{2} \sqrt{a^2-x^2} + \frac{a^2}{2} \arcsin \frac{x}{2} \qquad a>0$$

$$\frac{1}{\sqrt{x^2+b}} = \ln|x+\sqrt{x^2+b}|$$

$$\frac{1}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a} \qquad a>0$$

$$\ln x \qquad x \ln x - x$$

$$x^n \qquad x^{n+1}/(n+1)$$

Bestämda integraler

$$\int_0^a \sqrt{a^2 - x^2} \, \mathrm{d}x = \frac{a^2 \pi}{4}$$

$$\int_0^\infty e^{-ax^2} \, \mathrm{d}x = \frac{1}{2} \sqrt{\frac{\pi}{a}} \, \, \mathrm{d}\mathring{a} \, \, a > 0$$

$$\int_0^{\pi} \sin mx \sin nx \, dx = \begin{cases} 0 & \text{då} & m, n \text{ heltal och } m \neq n \\ \pi/2 & \text{då} & m, n \text{ heltal och } m = n \end{cases}$$

$$\int_0^{\pi} \cos mx \cos nx \, dx = \begin{cases} 0 & \text{då} & m, n \text{ heltal och } m \neq n \\ \pi/2 & \text{då} & m, n \text{ heltal och } m = n \end{cases}$$

$$\int_0^\pi \sin mx \cos nx \, dx = \begin{cases} 0 \\ 2m/(m^2 - n^2) \end{cases}$$

då m, n heltal och m + n jämnt då m, n heltal och m + n udda

Speciella koordinatsystem

Cylindriska (polära) koordinater

$$x = r \cos \phi$$
 $y = r \sin \phi$ $z = z$
 $dV = r dr d\phi dz$

Sfäriska koordinater
$$x = r \sin \theta \cos \phi$$
 $y =$

$$x = r \sin \theta \cos \phi$$
 $y = r \sin \theta \sin \phi$ $z = r \cos \theta$
 $dV = r^2 \sin \theta dr d\theta d\phi$

$\mathbf{u}\mathbf{v} = i \mathbf{u}i \mathbf{u}\phi \mathbf{u}z$

Linjära differentialekvationer

$$y' + g(x)y = h(x)$$
$$y = e^{-G(x)} \left[\int h(x)e^{G(x)} dx + C \right]$$
$$\frac{d}{dx}G(x) = g(x)$$

Separabla differentialekvationer: g(y)y' = f(x)

$$G[y(x)] = F(x) + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}G(y) = g(y) \qquad \frac{\mathrm{d}}{\mathrm{d}x}F(x) = f(x)$$

2:a ordningens linjära differentialekvationer

$$\begin{split} y'' + ay' + by &= f(x) \quad (1) \\ y &= y_{\rm h} + y_{\rm p} \quad \text{där } y_{\rm h} \text{ är allmän lösning till } y'' + ay' + by = 0 \\ r_1 \text{ och } r_2 \text{ är lösningar till } r^2 + ar + b &= 0 \\ y_{\rm h} &= Ae^{r_1x} + Be^{r_2x} \text{ om } r_1 \neq r2 \text{ och } r_1, \, r_2 \text{ reella} \\ y_{\rm h} &= (Ax + B)e^{rx} \text{ om } r_1 = r_2 = r \\ y_{\rm h} &= e^{\alpha x} (A\cos\beta x + B\sin\beta x) \text{ om } r_{1,2} = \alpha \pm i\beta, \beta \neq 0 \\ y_{\rm p} \text{ är en partikulärlösning till } (1). \end{split}$$

f(x)	Villkor	$y_{ m p}$
$a_n x^n + a_0$	$b \neq 0 \\ b = 0, a \neq 0$	$ \begin{array}{c} b_n x^n + \dots b_0 \\ x(b_n x^n + \dots b_0) \end{array} $
$ \begin{array}{c c} \sin \beta x \\ \cos \beta x \end{array} $	$i\beta$ ej rot till $r^2 + ar + b = 0$	$c\sin\beta x + d\cos\beta x$
$c_1 \sin \beta x + c_2 \cos \beta x$	$i\beta$ rot till $r^2 + ar + b = 0$	$x(c\sin\beta x + d\cos\beta x)$

DEL T

TABELLER

Ta SI-systemet

Grundenheter och dimensioner

L: 1 meter = 1 m Den väg som tillryggalägges i tomma rymden av plana elektromagnetiska vågor på 1/|c| sekund. |c| = 299 792 458 m/s, ljushastigheten i tomma rymden.

M: 1 kilogram = 1 kg Massan av den internationella kilogram-prototypen i Paris.

T: 1 sekund = 1 s Tiden för 9 192 631 770 perioder av den strålning som motsvarar en övergång mellan två energinivåer i grundtillståndet av isotopen cesium-131.

I: 1 ampere = 1 A Styrkan av en konstant elektrisk ström som, när den genomflyter två raka oändligt långa parallella ledare, placerade i vakuum på avståndet 1 m från varandra, för varje meter av ledaren åstadkommer en kraftverkan mellan ledarna av $2 \cdot 10^{-7}$ newton.

 $\Theta{:}~1~kelvin=1~K$ Termodynamisk temperatur utgörande 1/273,16 av den termodynamiska temperaturen för vattnets trippel-punkt (0,01 °C, 611,73 Pa).

J: 1 candela = 1 cd Ljusstyrkan i en given riktning från en källa som utsänder monokromatisk strålning med frekvensen $540 \cdot 10^{12}$ hertz och vars strålningsstyrka i denna riktning är 1/683 watt per steradian.

N: 1 mol = 1 mol Materiemängden i ett system som innehåller lika många elementarenheter som det finns atomer i 0,012 kilogram kol 12. När man använder mol bör elementarenheterna specificeras; de kan vara atomer, molekyler, joner, elektroner, andra partiklar eller specificerade grupper av sådana partiklar.

$\overline{}$ Supplementenheter

1 radian = 1 rad Den plana vinkeln mellan två radier i en cirkel, vilka på periferin skär av en båge som är lika lång som radien.

1 steradian = 1 sr Rymdvinkeln i en kon som med sin spets i centrum av en sfär skär av en yta på sfären med en area som är lika med arean av en kvadrat vars sidors längd är lika med sfärens radie.

Härledda enheter

Enhet	Definition	Kvantitet
Bq becquerel C grad celsius C coulomb F farad Gy gray H henry Hz hertz	$\begin{array}{l} { m s} \ 1 \ { m ^{\circ}C} = 1 \ { m K} \\ { m 1} \ { m C} = 1 \ { m A \cdot s} \\ { m 1} \ { m F} = 1 \ { m A \cdot s / V} \\ { m 1} \ { m Gy} = 1 \ { m J/kg} \\ { m 1} \ { m H} = 1 \ { m V \cdot s / A} \\ { m 1} \ { m Hz} = 1 \ { m s}^{-1} \end{array}$	aktivitet hos radioaktivt material celciustemperatur (0 $^{\circ}\mathrm{C}=273{,}15\mathrm{K})$ elektrisk laddning elektrisk kapacitans absorberad dos joniserande strålning induktans frekvens
J joule lm lumen	$1 J = 1 Nm$ $1 lm = 1 cd \cdot sr$	energi av alla former ljusflöde
lx lux N newton Pa pascal	$1 \text{ lx} = 1 \text{ lm/m}^2$ $1 \text{ N} = 1 \text{ kg·m/s}^2$ $1 \text{ Pa} = 1 \text{ N/m}^2$	belysning (illuminans) kraft tryck och mekanisk spänning
S siemens Sv sievert	1 S = 1 A/V 1 Sv = 1 J/kg	elektrisk konduktans dosekvivalent
T tesla V volt W watt	$1 T = 1 Wb/m^{2}$ 1 V = 1 W/A 1 W = 1 J/s	magnetisk flödestäthet elektrisk spänning och potential effekt
W watt Ω ohm Wb weber	$ \begin{array}{l} 1 \text{ W} - 1 \text{ J/s} \\ 1 \Omega = 1 \text{ V/A} \\ 1 \text{ Wb} = 1 \text{ V·s} \end{array} $	elektrisk resistans magnetiskt flöde

Kompletteringsenheter

Beteckning	Benämning	Definition	Kvantitet
l,L	liter	$1\ l = 0{,}001\ \mathrm{m^3} = \!\!1\ \mathrm{dm^3}$	volym
min h d a,å	minut timme dygn vetenskapligt år	1 min = 60 s 1 h = 60 min = 3600 s 1 d = 24 h = 86 400 s 1 a = 365,25 d	tid tid tid tid
t	ton	$1~\mathrm{t}=1000~\mathrm{kg}$	volym
° ' '	grad minut sekund	$1^{\circ} = \frac{\pi}{180} \text{ rad}$ $1' = \frac{1}{60}$ $1'' = \frac{1'}{60}$	plan vinkel plan vinkel plan vinkel
bar	bar	$1~{\rm bar}=10^5~{\rm Pa}$	tryck

$-rac{ extsf{T}_{ ext{a}5}}{ ext{Prefix}}$

Talfaktor	Benämning	g Prefix	Ursprung
10^{24}	yotta	Y	gr. okto - åtta
10^{21}	zetta	\mathbf{Z}	la. septem - sju
10^{18}	exa	E	gr. ex - sex
10^{15}	peta	P	gr. pente - fem
10^{12}	tera	${ m T}$	gr. teras - monster
10^{9}	giga	G	gr. gigas - je
10^{6}	mega	M	gr. megas - stort
10^{3}	kilo	k	gr. chilioi - tusen
10^{2}	hekto	h	gr. hekaton - hundra
10^{1}	deka	da	gr. deka - tio

Talfaktor	Benämning	Prefix	Ursprung
10^{-1}	deci	d	la. decem - tio
10^{-2}	centi	\mathbf{c}	la. centum - hundra
10^{-3}	milli	m	la. mille - tusen
10^{-6}	mikro	μ	gr. mikros - liten
10^{-9}	nano	n	gr. nanos - dv
10^{-12}	piko	p	sp. piko - liten bit
10^{-15}	femto	f	nord. femten - femton
10^{-18}	atto	a	nord. atten - arton
10^{-21}	zepto	\mathbf{Z}	la. septem - sju
10^{-24}	yokto	У	gr. okto - åtta

$\mathsf{T}\mathbf{b}$ Andra enheter

Benämning	Beteckning	g Definition/samband
Längd		
ångström	Å	$1 \text{ Å} = 10^{-10} \text{ m} = 0.1 \text{ nm}$
astronomisk enhet	au	$1 \text{ au} = 1,49597870700 \cdot 10^{11} \text{ m}$
parsek	pc	$1 \text{ pc} = 3,085677581 \cdot 10^{16} \text{ m}$
ljusår	ly	$1 \text{ ly} = 9,4607304725808 \cdot 10^{15} \text{ m}$
mile (engelsk)	mile	1 mile = 5280 ft = 1609,344 m
yard (engelsk)	yard	1 yard = 1609,344 m
engelsk tum (inch)	in	1 in = 25.4 mm
engelsk fot (foot)	ft	1 ft = 12 in = 0.3048 m
yard	yd	1 yd = 3 ft = 36 in = 0.9144 m
tum (svensk)	tum	1 tum = 29,69 mm
fot (svensk)	fot	$1 \text{ fot} = 0.2969 \mathrm{m} = 10 \mathrm{tum}$
sjömil	sjö m il	$1 \text{ sj\"omil} = 1852 \text{m}$

Benämning	Beteckning	Definition/samband
Area		
barn	b	$1 \text{ b} = 10^{-28} \text{ m}^2$
tunnland		$1 \text{ tunnland} = 4936 \text{ m}^2$
hektar	ha	$1 \text{ ha} = 10000 \text{m}^2$
Volym		
liter	l	$1 l = dm^3$
gallon (UK)	gal	$1 \text{ gal}(UK) = 4,546092\text{dm}^3$
gallon (US)	gal	$1 \text{ gal(US)} = 3,785412 \mathrm{dm}^3$
pint (UK)	pt	$1 \text{ pt(UK)} = 0.56826125 \mathrm{dm}^3$
liquid pint (US)	lq pt	$1 \text{lq pt(US)} = 0.473 176 5 \text{dm}^3$
fluid ounce	fl oz	$1 \text{ fl oz}(UK) = 28,413 \text{cm}^3$
fluid ounce	fl oz	$1 \text{ fl oz(US)} = 29,57353 \text{ cm}^3$
fat	fat (barrel)	$1 \text{ fat} = 158,987294958\mathrm{dm}^3$

Benämning	Beteckni	ng Definition/samband
Tid		
minut	\min	$1 \min = 60 \mathrm{s}$
timme	h	1 h = 60 min = 3600 s
dygn (medelsoldygn)	d	1 d = 24 h = 86400 s
stjärndygn	-	$1 \operatorname{stjärndygn} = 23 \operatorname{h} 56 \min 4.1 \operatorname{s}$
vetenskapligt år	a	1 a = 365,25 d = 31557600 s
år (tropiskt)	-	1 a = 365,2422 d
anomalistiskt år	-	1 a = 365,2596 d
förmörkelser	-	1 a = 346,6200 d
sideriskt år	-	1 a = 365,2564 d
Hastighet		
kilometer per timme	$\mathrm{km/h}$	$1 \text{ km/h} = \frac{1}{3.6} \text{ m/s}$
mile per hour	mph	1 mph = 1,609344 km/h
knop	knop	1 knop = 1.852 km/h
Massa		·
ton	\mathbf{t}	1 t = 1000 kg
universella massenhe	ten u, se ta	abell Te.
pound	lb	1 lb = 0.45359237 kg
ounce	oz	$1 \text{ oz} = \frac{1}{16} \text{ lb} = 28,34952 \text{ g}$
Kraft		10
pond	р	1 p = 9.80665 mN
kilopond	kp	1 kp = 9,80665 N
dyn	dyn	$1 \text{ dyn} = 1 \text{ g cm/s}^2 = 10^{-5} \text{ N}$
Tryck		3 - 7
bar	bar	$1 \text{ bar} = 10^5 \text{ N/m}^2$
normalatmosfär	atm	$1 \text{ atm} = 101325 \text{ N/m}^2$
teknisk atmosfär	atin	$1 \text{ at} = 1 \text{ kp/cm}^2$
torr	torr	$1 \text{ torr} = \frac{1}{760} \text{ atm}$
millimeter kvicksilve		$1 \text{ mm Hg} = \frac{760}{1} \text{ torr}$

(23)		Omvandling melian enneter
Benämning	Beteckning	g Definition/samband
Energi		
wattsekund	Ws	1 Ws = 1 J
(arbete) kilowattimme	e kWh	$1 \text{ kWh} = 3.6 \cdot 10^6 \text{ J}$
(entalpi) kilokalori	kcal	$1 \text{ kcal} = 4,1868 \cdot 10^3 \text{ J}$
elektronvolt	eV	$1 \text{ eV} = 1,6021766208 \cdot 10^{-19} \text{ J}$
rydberg	Ry	$13,60569253\mathrm{eV}$
Effekt		
(metrisk) hästkraft	hk	1 hk = 75 kpm/s = 735,49875 W
engelsk hästkraft	hp	1 hp = 745.7 W
Kinematisk visko	ositet	
stok	St	$1 \text{ St} = 10^{-4} \text{ m}^2/\text{s}$
Dynamisk viskos	itet	, , ,
pois	P	$1 P = 0.1 Ns/m^2$
Magnetisk flödes	täthet	
gauss	G	$1 \text{ G} = 10^{-4} \text{ T} = 10^{-4} \text{ Vs/m}^2$
Radioaktivitet		
curie	Ci	$1 \text{ Ci} = 3.7 \cdot 10^{10} \text{ Bq}$
Stråldos		
rad	rad	1 rad = 0.01 Gy
Jondos (exponer	ing av jon	iserande strålning)
röntgen	R	$1 \text{ R} = 2.58 \cdot 10^{-4} \text{ C/kg luft}$
Dosekvivalent		
rem	rem	1 rem = 0.01 Sv

Tc Omvandling mellan enheter

		Kraft
N	dyn	kp
1	10^{5}	0,101972
10^{-5}	1	$1,01972 \cdot 10^{-6}$
9,80665	$0,980665 \cdot 10^6$	1

$egin{array}{c} oldsymbol{\overline{C}} & oldsymbol{C$							
J, Nm, Ws	kWh	eV (elektronvolt)	kcal				
	$\begin{array}{c} 277,778 \cdot 10^{-9} \\ 1 \\ 44,50491 \cdot 10^{-27} \\ 1,163 \cdot 10^{-3} \end{array}$	$22,46943\cdot10^{24}$	$38,26733\cdot 10^{-24}$				

– <mark>∎</mark> ∘₃ – Effekt						
W, Nm/s, J/s	kpm/s	kcal/s	kcal/h			
$ \begin{array}{c} 1 \\ 9,80665 \\ 4,1868 \cdot 10^3 \\ 1,163 \end{array} $	0,101972 1 426,935 0,118593	$0,238846 \cdot 10^{-3} 2,34228 \cdot 10^{-3} 1 0,277778 \cdot 10^{-3}$	$0,859845 \\ 8,43220 \\ 3,6\cdot 10^3 \\ 1$			
Tryck, Mekanisk spänning						

Pa, N/m^2	bar	torr	atm
$ \begin{array}{c} 1 \\ 100 \cdot 10^3 \\ 98,0665 \cdot 10^3 \\ 133,322 \end{array} $	$ \begin{array}{c} 10 \cdot 10^{-6} \\ 1 \\ 0,980665 \\ 1,33322 \cdot 10^{-3} \end{array} $	$7,50062 \cdot 10^{-3}$ $750,062$ $735,559$ 1	$\begin{array}{c} 9,86923\cdot 10^{-6} \\ 0,986923 \\ 0,967841 \\ 1,31579\cdot 10^{-3} \end{array}$
$101,325\cdot10^3$	1,01325	760	1

Td	Fysikaliska	storheter	och	enheter
----	-------------	-----------	-----	---------

Storhet	Symbol	Enhet	Dimension
Geometri			
plan vinkel	a, φ	rad	1
rymdvinkel	Ω, ω	sr	1
längd, väg	l, s	m	L
area	A	m^2	L^2
volym	V	m^3	L^3
Svängningar			
tid	t	\mathbf{s}	T
frekvens	f, ν	Hz	T^{-1}
vinkelfrekvens	ω	rad/s	T^{-1}
resonansfrekvens	ω_r	Hz	
Rörelse			
hastighet (fart)	v	m/s	LT^{-1}
acceleration	a	m/s^2	LT^{-2}
tyngdacceleration	g	m/s^2	
			m-1
vinkelhastighet	ω	rad/s	T^{-1}
vinkelacceleration	α	$rad/s^2 T^{-2}$	
Mekanik			
kraft	F	N	MLT^{-2}
massa	m	kg	M
rörelsemängd	p	kgm/s	
impuls	J	Ns	
kraftmoment	M, τ	Nm	
(mass)tröghetsmoment	$I^{'}$	kgm^2	
yttröghetsmoment	I	$ \widetilde{\mathrm{m}}^{4} $	
rörelsemängdsmoment	L	$kgm^2/s = Js$	
avstånd till rotationsaxel	$r_{\rm cm}, r_{\perp}$	m	
arbete	W	J	
potentiell energi	U	J	
potentien energi	U	J	
densitet	ho	kg/m^3	${ m ML^{-3}}$
ytdensitet	σ	kg/m^2	$\mathrm{ML^{-2}}$
längddensitet	$ ho_l$	kg/m	ML^{-1}
fjäderkonstant	k	N/m	
elasticitetsmodul	E	N/m^2	$\mathrm{ML^{-1}T^{-2}}$
skjuvmodul (torsionsmodul)		N/m^2	$\mathrm{ML^{-1}T^{-2}}$
kompressionsmodul	K	N/m^2	
kompressibilitet	κ	m^2/N	
stöttal	e	-	
kinetisk friktionskoefficient	$\mu_{ m k}$	-	
statisk friktionskoefficient	$\mu_{ m s}$	-	
Hydromekanik			
tryck	p	Pa	$\mathrm{ML}^{-1}\mathrm{T}^{-2}$
viskositet, kinematisk	ν	m^2/s	L^2T^{-1}
viskositet, dynamisk	μ,η	Ns/m^2	$\mathrm{ML}^{-1}\mathrm{T}^{-1}$
Värmelära			
energi (arbete)	W	J	$\rm ML^2T^{-2}$
effekt	P	W	$\mathrm{ML^{2}T^{-3}}$
verkningsgrad	η,e	-	1
värmemängd	Q	J	
absolut temperatur	T	K	Θ
längdutvidgningskoefficient	α	K^{-1}	Ŭ
specifik värmekapacitet	c	J/(kg·K)	
(molär) värmekapacitet	C	J/(mol·K)	NIT 2m=2 0 -1
entropi	S	J/K	$ML^{2}T^{-2}\Theta^{-1}$
värmekonduktivitet	k, λ	$W/(m \cdot K)$	$MLT^{-3}\Theta^{-1}$ $MT^{-3}\Theta^{-1}$
värmeövergångstal	α	$W/(m^2 \cdot K)$	MI T A

Storhet	Symbol	Enhet	Dimension
Ellära (effektiv) elektrisk ström	I	A	I
momentan ström		A	1
strömamplitud	$i \ \hat{i}$	A	
strömtäthet	i, S	A/m^2	
elmängd (laddning)	Q	C	IT
elektriskt flöde elektrisk flödestäthet	Ψ	$_{\mathrm{C/m^2}}^{\mathrm{C}}$	
elektrisk nodestatnet	D	C/m	
elektrisk potential	V	V	$\mathrm{ML^2T^{-3}I}$
(effektiv) elektrisk spänning	U	V	
(potential differens)	<i>T</i> -	3.7	
elektromotorisk kraft (spänning) [emk (ems)]	E, e	V	
elektrisk fältstyrka	E(K)	V/m	$\mathrm{MLT^{-3}I}$
kapacitivitet	ε	C/Vm	
kapacitans	C	F	$M^{-1}L^2T^{-2}$
magnatial: fläda	Φ	Wb	
magnetisk flöde magnetisk flödestäthet	B	T	$\mathrm{MT^{-2}I}$
magnetiserande fältstyrka	H	A/m	IVI I
magnetmotorisk kraft	M	$\mathbf{A}^{'}$	
magnetiskt moment	m	Am^2	
permeabilitet	μ	Vs/Am	
resistans	R	Ω	$\mathrm{ML^{2}T^{-3}}$
reaktans	X	Ω	9 9
induktans	L_{Z}	H	ML^2T^{-2}
impedans	Z	Ω	
konduktans aktiv effekt	G P	Ω^{-1} W	
reaktiv effekt	$\stackrel{r}{Q}$	VA_r	
komplex effekt	\tilde{S} , P_s	W	
skenbar effekt	$ S , P_s $		
resistivitet	ρ	$\Omega \mathrm{m}$	
konduktivitet	γ, σ	$\Omega^{-1}\mathrm{m}^{-1}$	
(el. ledningsförmåga)			
Elektromagnetism			
våglängd	λ	m	
frekvens	f, ν	Hz	
emittans	I	W/m^2	MT^{-3}
ljusstyrka	I_v	cd	J
luminans	$L \Phi$	$\rm cd/m^2$	JL^{-2}
ljusflöde ljusmängd	$\stackrel{\Psi}{Q}$	lm lm·s	
belysning	$\stackrel{\mathcal{C}}{E}$	lx	
· C			
Akustik	т	ID.	
ljudintensitetsnivå ljudtrycksnivå (ljudnivå)	L_p	dB dB	
ijudiiyeksiiiva (ijudiiiva)	L_p	uБ	
Kärnfysik			
antal atomkärnor	N	st	
frigjord energi i reaktion	Q	eV (eller J)	
aktivitet	A	Bq	
halveringstid sönderfallskonstant	$T_{1/2}$ λ	s s^{-1}	
absorberad dos	$\stackrel{\lambda}{D}$	Gy = J/kg	
dosekvivalent	H	Sy = J/Kg Sv	
exposition	X	C/kg	
Kvantmekanik			
utträdesarbete	Φ	J	
Relativitetsteori	-	** / ** **	
viloenergi	E_0	eV (eller J)	
egentid ogonlängd	t_0	S	
egenlängd	l_0	m	

Te Fysikaliska konstanter

Mer information och aktuella värden finns på http://physics.nist.gov/cuu/Constants.

Storhet	Symbol	Relation	Värde	Enhet
Fria rymden Ljushastigheten i vakuum Permeabiliteten för fria rymden	$c \ \mu_0$		299792458 $4\pi \cdot 10^{-7}$ $1,256637061 \cdot 10^{-6}$	m/s Vs/Am Vs/Am
Kapacitiviteten för fria rymden Elektriska elementarladdningen	$rac{arepsilon_0}{e}$	$1/\mu_0 c^2$	$8,854187818\cdot 10^{-12}$ $1,6021766208\cdot 10^{-19}\text{As}$	As/Vm
Gravitation Newtons gravitationskonstant Tyngdaccelerationens normalvärde Tyngdaccelerationen i Luleå	$G \ g_0 \ g$		$6,67408 \cdot 10^{-11}$ $9,80665$ $9,823$	$\begin{array}{c} Nm^2/kg^2 \\ m/s^2 \\ m/s^2 \end{array}$
Substansmängd Allmänna gaskonstanten	R		8,314 459 8 8314,4598	J/mol·K J/kmol·K
Avogadros tal	$N_{ m A}$		$6,022 \ 140 \ 857 \cdot 10^{23} $ $6,022 \ 140 \ 857 \cdot 10^{26}$	$ m mol^{-1} \ kmol^{-1}$
Molvolymen av ideal gas (0°, 1 atm) Boltzmanns konstant	$V_0 \ k$	$k = R/N_A$	$2,2413962\cdot10^{-2}$ $1,38064852\cdot10^{-23}$ $8,6173303\cdot10^{-5}$	$_{ m J/K}^{ m 3/mol}$ $_{ m eV/K}$
Partikelmassor Universella massenheten (för atommassa)	u		$1,660539040\cdot10^{-27} \\ 931,4940954$	$ m kg MeV/c^2$
Elektronens vilomassa	$m_{ m e}$		$9,10938356\cdot10^{-31}\ 5,485799110\cdot10^{-4}\ 0,5109989461$	$ m kg$ $ m u$ $ m MeV/c^2$
Protonens vilomassa	$m_{ m p}$		$1,672621898 \cdot 10^{-27}$ 1,007276466879 938,2720813	kg u MeV/c^2
Neutronens vilomassa	$m_{ m n}$		$1,674927417\cdot10^{-27}\ 1,00866491588\ 939,5654133$	kg u MeV/c^2
Kvoten mellan Elektronens laddning och massa Protonens och elektronens massa	$-e/m_{ m e} \ m_{ m p}/m_{ m e}$		$-1,758820024\cdot10^{11}\\1836,15267389$	As/kg
Kvantfysik Plancks konstant	h		$6,626070040\cdot10^{-34}$	$_{ ext{J}\cdot ext{s}}$
1 failcas kollstalit	\hbar	$=h/2\pi$	$4,135667662\cdot10^{-15}$ $1,054571800\cdot10^{-34}$ $6,582119541\cdot10^{-16}$	$eV \cdot s$ $J \cdot s$ $eV \cdot s$
	$egin{array}{c} hc \ \hbar c \end{array}$		$1,239841793 \cdot 10^{-6}$ $1,973269788 \cdot 10^{-7}$	eV·s eV·m eV·m
Comptonvåglängd Elektronens comptonvåglängd Protonens comptonvåglängd Rydbergskonstanten Rydbergskonstanten för väte Bohrradien (för väte)	$egin{array}{l} \lambda_{ m C} \ \lambda_{ m C,p} \ R_{\infty} \ R_{ m H} \ a_0 \end{array}$	$= h/(m_{e}c)$ $= h/(m_{p}c)$ $= \frac{m_{e}e^{4}}{8\varepsilon_{0}^{2}h^{3}c}$ $= h^{2}\varepsilon_{0}/(\pi m_{e}e^{2})$	$2,4263102367\cdot10^{-12} \\ 1,32140985396\cdot10^{-15} \\ 10973731,568508 \\ 10967761,590121 \\ 5,2917721067\cdot10^{-11}$	m m m ⁻¹ m ⁻¹
Väteenergi i grundtillstånd Plancks strålningslag: första konstanten andra konstanten Stefan-Boltzmanns konstant	$E_{ m H}$ c_1 c_2 σ	$= e^2/(8\pi\varepsilon_0 a_0)$ $= 2\pi h c^2$ $= hc/k$ $= \pi^2 k^4/60\hbar^3 c^2$	$13,60569253$ $3,741771790\cdot10^{-16}$ $1,438777\cdot10^{-2}$ $5,670367\cdot10^{-8}$	eV $\begin{aligned} & W \cdot m^2 \\ & m \cdot K \\ & W/m^2 K^4 \end{aligned}$

f Mekanik

Homogena kroppar

$$I_{xx} = \frac{1}{4}Mr^2 + \frac{1}{12}Ml^2$$

$$I_{x_1x_1} = \frac{1}{4}Mr^2 + \frac{1}{3}Ml^2$$

$$I_{zz} = \frac{1}{2}Mr^2$$

$$V = \pi lr^2$$

$$I_{xx} = \frac{Mr^2}{2} + \frac{1}{12}Ml^2$$

$$I_{x_1x_1} = \frac{1}{2}Mr^2 + \frac{1}{3}Ml^2$$

$$I_{zz} = Mr^2$$

Koniskt skal

 $I_{xx} = I_{yy} = \frac{1}{2}Mr^2 + \frac{1}{12}Ml^2$ $I_{\text{cm }z} = \left(1 - \frac{4}{\pi^2}\right) Mr^2$ $x_{\text{cm}} = \frac{2r}{\pi}$

Halvt koniskt skal

$$\begin{split} I_{xx} &= I_{yy} = \frac{1}{2}Mr^2 + \frac{1}{12}Ml^2 \\ I_{x_1x_1} &= I_{y_1y_1} = \frac{1}{2}Mr^2 + \frac{1}{3}Ml^2 \\ I_{z_2} &= Mr^2 \\ I_{\text{cm } z} &= \left(1 - \frac{4}{\pi^2}\right)Mr^2 \\ I_{\text{cm } z} &= \frac{2r}{\pi} \end{split} \qquad \begin{split} I_{xx} &= I_{yy} = \frac{1}{4}Mr^2 + \frac{1}{12}Ml^2 \\ I_{x_1x_1} &= I_{y_1y_1} = \frac{1}{4}Mr^2 + \frac{1}{3}Ml^2 \\ I_{zz} &= \frac{1}{2}Mr^2 \\ I_{\text{cm } z} &= \left(\frac{1}{2} - \frac{16}{9\pi^2}\right)Mr^2 \\ x_{\text{cm}} &= \frac{4r}{3\pi} \end{split}$$

Kon h \hat{y}_2

Tf1e

$$I_{\text{cm }y} = \frac{3}{20}Mr^2 + \frac{3}{80}Mh^2$$

$$I_{y_1y_1} = \frac{3}{20}Mr^2 + \frac{1}{10}Mh^2$$

$$I_{zz} = \frac{3}{10}Mr^2$$

$$z_{\text{cm}-y_2} = \frac{3h}{4}$$
 $V = \frac{\pi}{3}r^2h$

 $I_{\text{cm }y} = \frac{1}{4}Mr^2 + \frac{1}{18}Mh^2$ $I_{y_1y_1} = \frac{1}{4}Mr^2 + \frac{1}{6}Mh^2$ $I_{zz} = \frac{1}{2}Mr^2$

$$I_{\text{cm }y} = \frac{1}{4}Mr^2 + \frac{1}{18}Mh^2$$

$$I_{y_1y_1} = \frac{1}{4}Mr^2 + \frac{1}{6}Mh^2$$

$$I_{zz} = \frac{1}{2}Mr^2$$

 $z_{\text{cm}-y_2} = \frac{2h}{3}$

Tf1g

 $I_{xx} = I_{yy} = \frac{1}{4}Mr^2 + \frac{1}{2}Mh^2$ $I_{\text{cm }z} = \left(\frac{1}{2} - \frac{16}{9\pi^2}\right) Mr^2$ $x_{\text{cm}-y} = \frac{4r}{3\pi} \qquad z_{\text{cm}-y} = \frac{2h}{3}$

$$\begin{split} I_{xx} &= I_{yy} = \frac{1}{4}Mr^2 + \frac{1}{2}Mh^2 \\ I_{x_1x_1} &= I_{y_1y_1} = \frac{1}{4}Mr^2 + \frac{1}{6}Mh^2 \\ I_{z_2} &= \frac{1}{2}Mr^2 \\ I_{\text{cm}} &z = \left(\frac{1}{2} - \frac{16}{9\pi^2}\right)Mr^2 \\ x_{\text{cm}-y} &= \frac{4r}{3\pi} \quad z_{\text{cm}-y} = \frac{2h}{3} \end{split} \qquad \begin{aligned} I_{xx} &= I_{yy} = \frac{3}{20}Mr^2 + \frac{3}{5}Mh^2 \\ I_{x_1x_1} &= I_{y_1y_1} = \frac{3}{20}Mr^2 + \frac{1}{10}Mh^2 \\ I_{zz} &= \frac{3}{10}Mr^2 \\ I_{\text{cm}} &z = \left(\frac{3}{10} - \frac{1}{\pi^2}\right)Mr^2 \\ x_{\text{cm}-y_2} &= \frac{r}{\pi} \quad z_{\text{cm}-y_2} = \frac{3h}{4} \end{aligned}$$

$$I_{zz} = \frac{2}{5}Mr^2$$

$$A = 4\pi r^2$$

$$V = \frac{4}{3}\pi r^3$$

Tf1j

$$I_{zz} = \frac{2}{3}Mr^2$$

$$I_{xx} = I_{yy} = I_{zz} = \frac{2}{3}Mr^2$$

 $I_{\text{cm }x} = I_{\text{cm }y} = \frac{5}{12}Mr^2$
 $x_{\text{cm}} = \frac{1}{2}r$

Tf1m

$$I_{zz} = \frac{2}{5}Mr^2$$

$$I_{xx} = \frac{2}{5}Mr^2$$

$$x_{cm} = \frac{3}{8}r$$

Halvsfär

Rätblock

$$I_{xx} = \frac{M(a^2 + l^2)}{12}$$

$$I_{yy} = \frac{M(b^2 + l^2)}{12}$$

$$I_{zz} = \frac{M(a^2 + b^2)}{12}$$

$$I_{y_1y_1} = \frac{M(b^2 + 4l^2)}{12}$$

$$I_{yy} = Ml^2/12$$

 $I_{y_1y_1} = Ml^2/3$

Tg Mekaniska och termiska egenskaper

—— _{Tg1} —— Grundämnen

Ämne Symbol Densitet E-modul Ljud-G-modul Längdutv Spec Värme-Smält-Smält- Kok- Ångbild- Resis-(300K)hastighet koeffic. värmelednings. punkt värme punkt ningstivitet (tunn stav) kapacitet förmåga värme $10^3 \text{ kgm}^{-3} 10^{10} \text{ Pa}$ $J \text{ kg}^{-1} \text{K}^{-}$ $\mathrm{Wm^{-1}K^{-}}$ 10^{10} Pa 10^{-6} K^{-1} $10^3 \mathrm{J/kg}$ K $10^6 \mathrm{J/kg}$ $n\Omega m$ m/s2,702 238 933 10,9 Aluminium Αl 5110 2,6 23,2903 397 272026,5 Sb 6,684 7,73400 2,1 11,0 207 904 1650 390 Antimon 18 163 1,56 Bervllium Be 1,85 30 12870 11.5 1825 230 1551 1384 3240 32.6 40 14 35 Pb 11,35 16 1200 0,54 28,9 130 601 2024 0,932 206 Bly 24.7Germanium Ge5,35 3910 5,7 322 60 1211 3100 46.10^{7} 8,1 3,1 480 4,6 19,3 7,92000 14,1129 311 1336 3090 1,65 23,5 Guld Au 2.7 66 148 2680 4400 Iridium $_{
m Ir}$ 22,42 52 20 6,5133 144 3.90 53 $13 \cdot 10^{15}$ 4,93 87 387 0,173 Jod 215 62 457,5 7,86 Fe 21 5130 11,7 82 1808 276 3160 6,80 97,1Järn 8.4 449 98 2,0 0,8 Ca1,54 22,3 6581115228 3.75 39,1 Kalcium Si 2,33 2200 3,3 2,6 707 150 165 3173 $\sim 10^{6}$ Kisel 10 1687 10,6 C Kol 509 1000 diamant 3,51 1,1 >3800 170005100 50 $13,75 \cdot 10^3$ grafit 2,25 8,8 711 150 subl 3900 5100 50 Koppar Cu8,92 12 3800 4,6 16,8 385 400 1356 205 2855 4.75 16.7 Cr 7,2 280 2,5 448 87 2915 Krom 8,5 2160 6,15 129 Magnesium Mg 1,74 4,4 5070 1,7 25,6 1024 150 924 368 1390 5,42 44,5 Molybden 5400 5,0 140 2880 5830 Mo 10,1 13 248 253 6,83 52 Na 0,971 69,61230 135 371 1156 3,90 61,5 Natrium 113 Ni 8,90 20 4970 8 6,47 Nickel 12,7 444 90 1726 310311068,4Platina Pt21,45 16 2820 6,1 8,9 138 69 2042113 41002,67 106 Ag 10,50 7,8 2790 2,8 7 19,2 236 418 1234 2466 2,31 15,9 Silver 105 3400 3269 170 5700 124.5 Tantal Ta. 16.6 18 6,5 141 54 8,1 2,1 Tenn (tetrag) Sn 7,29 22 67 505 5,5 220 59 110 Titan Ti 4,54 11 5080 4 8,5 522 19 1948 400 3530 8,9 420 3070 7,2 116 4600 1,73 Uran U 18,9 18 13,5 25 1405 53 300 Volfram W 19,3 4620 15 4,5 170 192 5800 56,5 38 133 3653 8,8 120 Zink Zn7,139,8 3600 4 29,7 389 693 117 1181 1,76 59 2,5 Zirkonium Zr6,53 7,0 5,4 275 21 2125220 4650 6,4 400

Legeringar och andra material

Data gäller vid 300 K och trycket 1,00 bar. Längdutvidgningskoefficient i intervallet 273-373 K.

Legering	Densitet	E-modul	Ljud-	G-modul	Längdutv	Spec	Värme-	Smält-	Smält-	Kok-	Ångbild-	Resis-
	(300K)		hastighet		koeffic.	värme-	lednings-	punkt	värme	punkt	nings-	tivitet
			(tunn stav)			kapacitet					värme	
	10^{3} kgm^{-3}	10^{10} Pa	m/s	10^{10} Pa	$10^{-6} \ \mathrm{K}^{-1}$	$ m J \ kg^{-1} K^{-1}$	${ m Wm^{-1}K^{-1}}$	K	$10^3 \mathrm{J/kg}$	K	$10^6 \mathrm{J/kg}$	$n\Omega m$
Mässing (Cu 62,7% Zn 37,3%)	8,4	10,5	~ 3500	3,5	21	380	79	1188				
Duralum	2,8	7,2	5150		24	930	160	925				
Invar (Fe 64% Ni 36%)	8,1	14,5			2,0	500	16	1723				
Gjutjärn (<4% C)	7,3	10			11	500	30 - 45	1475				
Stål (0,85% C)	7,8	20	5180	8,1	11,5	460	45	1625				
Smidesjärn (0,04-0,4% C)	7,6	22					60					
Nysilver (Cu 60%, Zn 22%, Ni 18%)	8,7	12 - 15			17	400	230	1375				
Glas	2,4-2,8	50-90	3962	26,2	4-9	840	1,05					

Vätskors och gasers viktigaste data

v = vätska, g = gas. För vätskor ges densitet och specifik värmekapacitet vid temperaturen 300 K och trycket 1,00 bar, för gaser vid temperaturen 273 K och trycket 1,013 bar. Dynamisk viskositet ges vid 291 K för vätskor och vid 273 K för gaser. Molmassa, även i Tk3.

emperature		ocn tr	ycket 1,013	par. Dyr	iamisk v		ges vi		or vatsk	or och vic					
Ämne	Kemisk formel	Densitet ρ kg m ⁻³	Volym- utvidgnings- koefficient (vätskor) 10^{-3} K $^{-1}$ (20- 100° C)	Dynamisk viskositet 10 ⁻⁶ Ns/m ²	Specifik värme- kapacitet c_p kJ/(kg·K)	$egin{array}{c} ext{V\"arme-} \\ ext{konduk-} \\ ext{tivitet} \\ ext{} \\ ext{} \\ ext{Wm}^{-1} ext{K}^{-1} \\ ext{} \\ ext{(\sim300K)} \end{array}$	Gaser c_p/c_V	Smält- punkt K (1 bar)	$\begin{array}{c} \textbf{Smält-}\\ \textbf{värme}\\ L_f\\ \textbf{10}^3 \textbf{J/kg} \end{array}$	Kokpunkt K (1 bar)	$ m \mathring{A}ngbild- \ nings- \ \mathring{varme} \ $	Kritisk temp. K	Kristiskt tryck 10 ⁶ Pa	Ämnes- specifik gaskonstant R^* J/kg·K	Mol- massa g/mol
Acetylen	C_2H_2	1,17	g	10	1,68	0,019	1,23	191	150	190	670	310	6,3	319,8	26,038
Ammoniak	NH_3	0,77	g	9,1	2,05	0,022	1,31	196	332	240		406	11,3	488,2	17,03
Argon	Ar	1,784	g	20,8	0,52	0,016	1,67	84,0	29	87,29	158	150,7	4,86	208,1	39,948
Etanol	C_2H_5OH	784	1,10	1230	2,43	0,182	v	156	102	352	841	516	6,4	180,5	46,07
Fluor	F_2	1,72	g		0,75	0,016	1,18	77	120	169	483	283	5,12	437,6	37,997
Helium	$^4\mathrm{He}$	0,178	g	18,2	5,2	0,142	1,66		5,2	4,215	25	5,2	0,229	2076,9	4,003
Klor	Cl_2	3,214	g	12	0,50	0,0076	1,35	172,2	90	239	282	417	7,7	117,3	70,905
Koldioxid	CO_2	1,98	g	13,6	0,82	0,015	1,30	216,6 (0,52 MPa)	189	194,7 (subl)	573	304,2	7,4	188,9	44,01
Kolmonoxid	CO	1,25	g	15,9	1,04	0,22	1,40	68	30	81	215	133	3,5	296,8	44,01
Krypton	Kr	3,74	g	22,9	,	0,0087	1,68	116,6	19,5	119,8	108	209,4	5,5	99,21	83,80
Kvicksilver	Hg	13590	0.1819	1540	0,14	10,3	v	234,3	11,7	629,9	296		v		200,59
Kväve	N_2	1,250	g	16,5	1,04	0.027	1.404	63.3	25.7	77,34	200	126.3	3.4	296,8	28,013
Kvävemonoxid		1,340	g	17,7	1,00	0.023	1,40	109	- / -	121.4		366	7,3	277,1	30,006
Kväveoxidul	N_2O	1,98	g	13,4	0,89	0,015	1,28	171		184,7		312	10	188,9	48,013
Luft		1,276	g	17,1	1,005	0,0242	1,40			80	210	130	3,8	287,0	28,97
Metanol	CH ₃ OH	786	1,20	584	2,50	0,212	v	175	91,8	338	1100	513	7.95	259,5	32,042
Neon	Ne	0.900	g g	29,7	1,03	0.046	1.64	24,2	16.7	27,10	86	54,4	2,72	411,9	20,180
Svaveldioxid	SO_2	2,93	g	11,5	0,61	0.009	1,29	200	10,1	263	397	431	7.88	129,8	96.13
Svavelsvra	H_2SO_4	1840	0,56	27500	1,38	0,000	v		109	599	511		v	,-	98.079
Svavelväte	H_2S	1,54	g	11,6	1,05	0,013	1,32	190		212	550	373	8,9	244,0	66,148
Syre	O_2	1,429	g	19,2	0,92	0.027	1,401	54,8	13,8	90,188	213	154,8	5,08	259,8	31,999
Vatten	H_2O	997	0,18	1057	4,18	0,610	v	273,15	333	373,12	2260	647	22,1	461,5	34,015
1 7::4 -	D_2O	1100	_	0.4	14.0	0.10	V 1 41	277	318	374,6	$2070 \\ 446$	644	21,8	415,2	36,027
Väte Xenon	$_{ m Xe}^{ m H_2}$	0,0899 $5,89$	g	$^{8,4}_{22,2}$	14,2	$0,19 \\ 0,005$	1,41 $1,66$	13,8 $161,3$	$\frac{58}{17.5}$	20,28 $165,1$	$\frac{446}{102}$	33,23 $289,74$	$^{1,30}_{5,88}$	4124,2 $63,32$	2,016 131,29
леноп	ле	5,69	g	42,2		0,005	1,00	101,5	17,0	100,1	102	209,14	5,00	05,52	131,29

$\overline{}_{\mathrm{g4}}^{\mathrm{g4}}$

_		<i>i</i> 00		
Material	Densitet	Genomsnittlig värmelednin	gs- Fuktkvot	Praktiskt tillämpbar
	(torrt material)	förmåga (torrt material)		värmeledningsförmåga
	ρ	k	\mathbf{u}_{n}	$k_{ m n}$
	$kg m^{-3}$	$\mathbf{W}/\mathbf{m}^{\circ}\mathbf{C}$	%	$\mathbf{W/m}^{\circ}\mathbf{C}$
Natursten	9	,		,
granit, gnejs	2700			3,5
Betong	2300	0,9	2	1,7
Lättklinkerbetong	1600	0.75	3	0,8
Lattkillikerbetorig	1400	0,60	3	0,65
	1200	0,46	3	0,50
	1000	0,35	3	0,40
Lättklinkerplattor	1000	0,33	3	0,40
utvändig isolering				
ovan mark	650	0,16	4	0,20
	650	0,16	4	0,20
utvändig isolering	GEO.	0.16	10	0.22
under mark	650	0,16	10	0,23
Tegel massivtegel, 6-håls	1700	0.60	1	0,70
	1700	0,00	1	0,70
Asfalt	2100			0.8
gjutasfalt				0,8
Fönsterglas	2600			0,8
Trä (värmeströmmen				
vinkelrät mot fibrerna)		0.10	1.0	0.14
furu, gran	500	0,12	16	0,14
bok, ek	700	0,14	18	0,16
Träspånskivor	600	0,13	10	0,14
m	400	0,11	10	$0,\!12$
Träfiberskivor				
hårda	1000	0,12	8	0,13
halvhårda	600	0,075	9	0,080
porösa	300	0,045	10	0,050
asfaltimpregnerade	400	0,055	10	0,065
Korkplattor, expanderade	200	0,040	3	0,046
	140	0,035	3	0,040
Mineralfiberskivor	400	0,040	1	0,050
Mineralull	15-200		0,5	0,055
Styrencellplast	12-40		2	0,055
Uretancellplast	30-50			0,040
Fyllning				
sand	1700		0,5	0,40
skifferaska	1000		2	0,25
koksaska	700		3	$0,\!25$
Granulerad masugnsslagg	250		0,5	0,12
Sågspån, löst utfylld	120		12	0,12
packad	200		12	0,08
Kutterspån, löst utfylld	80		12	0,14
packad	120		12	0,08
Polystyrencellplast,				
packade kulor på bjälklag	g 10-20			

Ljudhastigheten i några vätskor och gaser

(Vätskor ges vid 298 K, gaser vid 273 K)

Ämne	Ljudhastighet (m/s)	Ämne	Ljudhastighet (m/s)	Ämne	Ljudhastighet (m/s)
Vatten (dest)	1497	Metanol	1103	Kväve	334
Vatten (havs)	1531	Argon	319	Luft (torr)	331,5
Etanol	1207	Helium	965	Neon`	435
Kvicksilver	1450	Koldioxid	259	Syre	316
				Väte	1285

Värmelära

Data för vatten/is

Data från www.engineeringtoolbox.com. Gäller vid trycket p = 1,013 bar.

emp C	Isobar specifik värmekapacitet \mathbf{c}_p $\mathbf{J}/\mathbf{kg}.\mathbf{K}$	Densitet $\frac{\rho}{\mathrm{kg/m^3}}$	Värmekon- duktivitet k W/m·K	viskositet		$\begin{array}{c} \textbf{V\"{a}rmediffu-sivitet} \\ \textbf{10}^{-9} \ \textbf{m}^2/\textbf{s} \end{array}$	$Pr = \frac{\nu}{a}$	$\mathbf{Gr} \cdot \mathbf{Pr} \cdot 10^{-12}$ $\mathbf{vid} \ l = 1 \mathbf{m}$ $\mathbf{och} \ T = 1 \ ^{\circ}\mathbf{C}$
0	1882	920,0	2,50					
:5	1913	919,6	2,45					
0	1943	919,4	2,39					
.5	1972	919,4	2,34					
.0	2000	918,9	2,30					
,	2027	917,5	2,25					
(is)	2050	916,2	2,22					
01	4217	999,8	0,559	1780	1,792	132	13,67	~ 0.2
	4202	1000	0,568	1519	1,548	135	11,57	7,1
)	4192	999,8	0,577	1308	1,304	138	9,47	49,4
)	4182	998,3	0,597	1005	1,004	143	7,01	143,3
)	4178	995,7	0,615	798	0,802	148	5,43	251
)	4179	992,3	0,633	653	0,658	153	4,34	373
)	4182	988	0,647	547	0,553	157	3,56	509
)	4185	983	0,659	467	0,474	161	2,99	664
)	4191	978	0,668	404	0,413	163	2,56	852
)	4198	972	0,674	355	0,365	165	2,23	1052
)	4208	965	0,678	314	0,326	167	1,96	1277
00	4219	958	0,682	281	0,295	169	1,75	1500

Data för luft

Data från www.engineeringtoolbox.com. Torr luft, vid trycket $p=1,013\,\mathrm{bar}$.

Temp	Isobar specifik värmekapacitet	Densitet	${f duktivitet}$	viskositet	viskositet	${f sivitet}$	$\mathbf{Pr} = \frac{\nu}{a}$	$\mathbf{Gr} \cdot \mathbf{Pr} \cdot 10^{-12}$ $\mathbf{vid} \ \mathbf{l} = 1 \ \mathbf{m}$
$^{\circ}\mathbf{C}$	$\mathbf{J}/\mathbf{kg}\mathbf{\cdot K}$	$\frac{ ho}{\mathrm{kg/m^3}}$	${f mW/m \cdot K}$	10 ^{−6} Pa·s	$10^{-6} \text{ m}^2/\text{s}$	$10^{-6} \text{ m}^2/\text{s}$		och $T = 1$ °C
-150	1026	2,793	11,6	8,2	3,08	4,0	0,76	_
-100	1009	1,980	16,0	11,4	5,95	7,18	0,74	14,0
-40	1005	1,475	21,2	15,0	10,3	13,9	0,72	3,1
-20	1005	1,357	22,7	16,0	11,5	16,4	0,72	2,08
0	1005	1,293	24,3	17,1	13,3	18,9	0,72	1,33
+20	1005	1,205	25,7	18,1	15,1	21,3	0,71	1,03
40	1005	1,127	27,1	19,1	17,0	24,0	0,71	0,72
60	1009	1,067	28,5	20,0	18,9	26,5	0,71	0,58
80	1009	1,000	29,9	20,9	20,9	29,6	0,71	0,44
100	1010	0,946	31,4	21,8	23,1	32,8	0,70	0,36
200	1027	0,746	38,6	25,8	32,3	50,6	0,69	0,117
300	1045	0,616	45,4	29,5	47,9	70,5	0,69	0,050
400	1070	0,524	51,5	32,9	62,5	92,0	0,69	0,025
500	1093	0,450	57,0	35,9	79,8	114	0,70	0,014
600	1115	0,399	62,3	38,8	97	138	0,70	0,0084
700	1135	0,358	66,8	41,5	115	162	0,71	0,0054
800	1152	0,324	70,7	44,0	135	186	0,72	0,0036
900	1168	0,297	74,2	46,5	155	210	0,74	0,0026
1000	1184	0,273	77,0	48,8	179	237	0,74	0,0019

Ångtryck för några ämnen

Temp K	223	273	293	333	373	473
Aceton (kPa)	30	890	2470	8170	37140	283700
Etanol (kPa)	2	160	590	2960	22700	296000
Kvicksilver (kPa)		0,003	0,013	0,17	3,64	230
Metanol (kPa)		400	1270	5440	34940	355970

Densitet och tryck för mättad vattenånga

Ånginnehåll i luft mättad med ånga. Värdena under 0° C gäller över is. p = vattenångans tryck i mbar resp bar. x = relativ mängd vattenånga i g/kg torr luft vid totaltrycket 1 bar.

$ \begin{array}{ccc} \mathbf{Temp} & p & x \\ ^{\circ}\mathbf{C} & \mathbf{mbar} & \mathbf{g/kg} \end{array} $	$ \begin{array}{c cccc} \hline \mathbf{Temp} & p & x \\ & ^{\circ}\mathbf{C} & \mathbf{mbar} & \mathbf{g/kg} \end{array} $	$ \begin{array}{ccc} \mathbf{Temp} & p & x \\ & ^{\circ}\mathbf{C} & \mathbf{mbar} & \mathbf{g/kg} \end{array} $	$ \begin{array}{c cccc} \hline \mathbf{Temp} & p & x \\ & ^{\circ}\mathbf{C} & \mathbf{mbar} & \mathbf{g/kg} \end{array} $	$ \begin{array}{c cccc} \hline \mathbf{Temp} & p & x \\ & ^{\circ}\mathbf{C} & \mathbf{mbar} & \mathbf{g/kg} \end{array} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+11 13,12 8,27 +12 14,03 8,85 +13 14,97 9,45 +14 15,99 10,10 +15 17,04 10,79 +16 18,17 11,50 +17 19,37 12,30 +18 20,64 13,12 +19 21,97 14,00 +20 23,37 14,88 +22 26,44 16,89 +24 29,84 19,13 +26 33,61 21,63 +28 37,8 24,44 +30 42,42 27,55 +32 47,54 31,06 +34 53,19 34,94 +36 59,41 39,27	+38 66,25 44,13 +40 73,75 49,52 +42 82,0 55,5 +44 91,1 62,4 +46 100,9 69,7 +48 111,6 78,6 +50 123,3 87,5 +52 136,1 98,1 +54 150,0 110 +56 165,1 123 +58 181,4 138 +60 199,2 155 +62 218,4 174 +64 239,0 195 +66 261,4 210 +68 285,6 248 +70 311,6 282 +72 339,4 319	+74 369,6 365 +76 401,8 417 +78 436,4 480 +80 473,6 564 +82 513,1 654 +84 555,7 778 +86 601,1 937 +88 649,4 1150 +90 701,1 1460 +92 756,1 1910 +94 814,5 2730 +96 876,7 4420 +98 943,0 10 300
		1		l

<mark>⊺</mark>i1b

Tilc -

- $\overline{}_{h5}$ - $\overline{}_{Emissionstal/absorptionstal}$

-	Våglängd och medeltemperatur									
Material	$9.3~\mu\mathrm{m}$	$5.4~\mu\mathrm{m}$	$3,6~\mu\mathrm{m}$	$1.8~\mu\mathrm{m}$	$0.6 \; \mu {\rm m}$					
	$40^{\circ}\mathrm{C}$	$250^{\circ}\mathrm{C}$	$500^{\circ}\mathrm{C}$	$1400^{\circ}\mathrm{C}$	Solen					
Aluminium										
Polerad	0,04	0,05	0,08	0,19	~ 0.3					
Oxiderad	0,11	0,12	0,18							
Mässing										
Polerad	0,10	0,10								
Oxiderad	0,61									
Koppar										
Polerad	0,04	0,05	0,18	0,17						
$_{\perp}Oxiderad$	0,87	0,83	0,77							
Järn	0.00	0.00	0.10	0.05	0.45					
Polerad	0,06	0,08	0,13	0,25	0,45					
Galvaniserad, ny	0,23			0,42	0,66					
"- ,smutsig	0,28			0,90	0,89					
Silver	0.01	0.00	0.00		0.11					
Polerad Asfalt	$_{0,93}^{0,01}$	0,02	$_{0.90}^{0.03}$		$_{0,93}^{0,11}$					
Tegel	0,93		0,90		$0.93 \\ 0.7$					
Papper, vitt	$0.9 \\ 0.95$		0.82	0.25	0,28					
Färger	- /		- / -	- / -	- / -					
$Svartlack f\"{a}rg$	0,96	0,98			0,95					
Röd "-	0,96				0.74					
Gul "-	0,95		0,5		0,30					
Vit "-	0,95	0.95	,		0,20					
Oljefärg, alla kulörer	~ 0.94	~ 0.9			-, -					
Is	~ 0.97	- / -								
Vatten	~ 0.96				0.05					
Trä	~ 0.93				0,35 Låg					
Glas	0,90				Lag					

Ti Vågrörelselära

$\frac{\mathsf{T}^{i1}}{\mathrm{Brytningsindex}}$

Vätskor och optiska material										
n vid rui	mstempe	eratur.								
	436	546	589	644	761					
C_2H_5OH	1,3700	1,3633	1,3617	1,3602	1,3579					
C_6H_6	1,52319	1,50550	1,50140	1,49740	1,4913					
CS_2	1,6742	1,63608	1,62774	1,61966	1,6088					
$\rm H_2O$	1,34021	1,33447	1,33299	1,33146	1,3289					
CaF_2	1,4395	1,4350	1,4338	1,4327	1,4309					
LiF	1,3970	1,3929	1,3917	1,3906	1,3892					
NaCl	1,5606	1,5474	1,5443	1,5412	1,5366					
BK7	1,52623	1,51824	1,51625	1,51421	1,5109					
F3	1.63430	1,61685	1,61279	1,60880	1.6027					
SF4	1,79127	1,76167	1,75496	1,74850	1,7388					
SFS1	1,98223	1,93322	1,92250	1,91210	1,8973					
	r vid run C_2H_5OH C_6H_6 CS_2 H_2O CaF_2 LiF $NaCl$ $BK7$ $F3$ $SF4$	$\begin{array}{c cccc} n \ vid \ rumstempe \\ \hline & 436 \\ \hline C_2H_5OH \ 1,3700 \\ C_6H_6 & 1,52319 \\ CS_2 & 1,6742 \\ \hline H_2O & 1,34021 \\ \hline CaF_2 & 1,4395 \\ LiF & 1,3970 \\ NaCl & 1,5606 \\ \hline BK7 & 1,52623 \\ F3 & 1,63430 \\ SF4 & 1,79127 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Brytningsindex n för luft vid 15°C och 0,1 MPa.

λ (nm)	n	λ (nm)	n
400	1,0002827	600	1,0002770
450	1,0002805	650	1,0002763
500	1,0002790	700	1,0002758
550	1,0002778	750	1,0002754

${\bf Dubbel brytande\ material}$

Brytningsindex	n	tor	nagra	dubbelbrytande	material	vid	rumstemperatur.

	n y tillingsilli	dex 11 101	i nagra (aubbeibi	ytanac	materiai	via run	istempe	iauui.	
λ (nm)	394	434	436	508	546	589	644	668	691	768
Kalkspat	o 1,68374 eo 1,49810	,	,	,	,	,	,			1,64974 1,48259
Kvarts	o 1,55846 eo 1,56805	,	,	,	,	,	,			$\substack{1,53903\\1,54794}$
Titandioxid (Rutile)	o eo		$2,853 \\ 3,216$		2,652 $2,958$				$2,555 \\ 2,836$	
Rubin	o eo		$1,78115 \\ 1,77276$		$1,77071 \\ 1,76258$			1,76445 1,75641		

Våglängdsområden

λ_{\min} (m) Strålning	$\lambda_{\rm max} \ ({\rm m})$
Gammastrålning	10^{-10}
10^{-12} Röntgenstrålning	10^{-9}
10^{-9} Ultraviolett	10^{-7}
$400\cdot 10^{-9}$ Synligt ljus (violett, blått, grönt, gult, orange, r	5 tt) $780 \cdot 10^{-9}$
10^{-6} Infrarött	10^{-3}
10^{-3} Mikrovågor	10^{-1}
10^{-1} Ultrakortvågor	10^{1}
10^1 Kortvågor	10^{2}
10^2 Mellanvågor	10^{3}
10^3 Radiovågor	

 $^{^{1}{\}rm Vid}$ överslagsberäkning, sätt $n=1{,}33$ $^{2}{\rm Vid}$ överslagsberäkning, sätt $n=1{,}5$

 $5778\,\mathrm{K}$

Astrofysik och geofysik

089·10 ³⁰ 049·10 ²² 002·10 ²³ 068·10 ²⁴	radie (m) $6,96 \cdot 10^8$ $1,74 \cdot 10^6$ $2,44 \cdot 10^6$	Banradie (m) 2 (Halv storaxel) - 3,84·10 ⁸ 5,79·10 ¹⁰	Periodtid - 27,3 d 87,97 d
$349 \cdot 10^{22}$ $302 \cdot 10^{23}$	$1,74 \cdot 10^6 \\ 2,44 \cdot 10^6$	$5,79 \cdot 10^{10}$,
$802 \cdot 10^{23}$	$2,44 \cdot 10^{6}$	$5,79 \cdot 10^{10}$,
	,		87,97 d
68.10^{24}	0 0 2 4 0 6		
000.10	$6,05 \cdot 10^6$	$1,08 \cdot 10^{11}$	224,7 d
$972 \cdot 10^{24}$	$6,37 \cdot 10^6$	$1,50 \cdot 10^{11}$	$365,26 \ d$
$19 \cdot 10^{23}$	$3,39 \cdot 10^6$	$2,28 \cdot 10^{11}$	687,0 d
$399 \cdot 10^{27}$	$6,99 \cdot 10^7$	$7,78 \cdot 10^{11}$	11,86 y
$85 \cdot 10^{26}$	$5.82 \cdot 10^7$	$1,43 \cdot 10^{12}$	29,46 y
$81 \cdot 10^{25}$	$2,54 \cdot 10^7$	$2,87 \cdot 10^{12}$	84,02 y
$024 \cdot 10^{26}$	$2,46 \cdot 10^7$	$4,50 \cdot 10^{12}$	164,8 y
3	$19 \cdot 10^{23}$ $399 \cdot 10^{27}$ $385 \cdot 10^{26}$ $381 \cdot 10^{25}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Effektiv temperatur vid ytan $3{,}846\!\cdot\!10^{26}\:\mathrm{W}$ Totalt utstrålad effekt $1,368 \cdot 10^3 \, \text{W/m}^2$ Solarkonstanten¹

 $^1{\rm Solarkonstanten}$ är ett mått på den totala strålningseffekten per ytenhet från solen mätt utanför jordatmosfären och på jordens medelavstånd från

Jorden	
Medelavstånd från solen	$1,496 \cdot 10^{11} \text{ m}$
Ekvatorsradie	$6378,16\mathrm{km}$
Polarradie	$6356,78 \mathrm{\ km}$
Area	$5,10\cdot10^{14}~{\rm m}^2$
Volym	$1,083 \cdot 10^{21} \text{ m}^3$
Massa	$5,97219 \cdot 10^{24} \text{ kg}$
Medeldensitet	$5.514 \cdot 10^3 \text{kg/m}^3$
Flykthastighet	$11{,}186{\rm km/s}$
Rotationshastighet, ekvator	465,11 m/s
Ålder	$4,54 \cdot 10^9 \text{år}$

Tyngdaccelerationen g ges av sambandet

 $g = 9,78049(1 + 0,0052884 \sin^2 \varphi - 0,0000059 \sin^2 2\varphi) \text{ m/s}^2$

vid havsytans nivå och latituden φ .

Tyngdaccelerationens normalvärde är $g_0 = 9,80665 \text{ m/s}^2$.

Modern fysik $\mathbf{T}\mathbf{k}$

Elektronbindningsenergier

Elektronbindningsenergier (i eV) för de underskal mellan vilka elektronövergångar ger upphov till K_{α_1} - resp L_{α_1} -strålning samt våglängden för K_{α_1} -strålningen.

${f Z}$	K	${f L}$	\mathbf{M}	$\lambda_{K_{lpha_1}}(\mathbf{pm})$
13 Al	1560	73		835,4
26 Fe	7112	709		193,8
27 Co	7709	779		179,0
28 Ni	8333	855		165,9
29 Cu	8979	932		154,2
30 Zn	9659	1021		143,6
$40 \mathrm{Zr}$	17998	2223	180	$78,\!65$
41 Nb	18986	2371	205	$74,\!67$
$42 \mathrm{Mo}$	19999	2520	227	70,98
46 Pd	24350	3173	334	58,58
47 Ag	25514	3351	367	55,98
48 Cd	26711	3537	404	53,54
49 In	27940	3730	443	51,24
50 Sn	29200	3929	485	49,09
55 Cs	35985	5012	727	40,06
56 Ba	37441	5247	781	38,51
$74~\mathrm{W}$	69524	10204	1807	20,91
77 Ir	76113	11215	2041	19,12
78 Pt	78395	11564	2121	18,56
79 Au	80724	11919	2207	18,03
82 Pb	88006	13036	2479	$16,\!55$
92 U	115603	17167	3552	12,60
40 Zr 41 Nb 42 Mo 46 Pd 47 Ag 48 Cd 49 In 50 Sn 55 Cs 56 Ba 74 W 77 Ir 78 Pt 79 Au 82 Pb	17998 18986 19999 24350 25514 26711 27940 29200 35985 37441 69524 76113 78395 80724 88006	2223 2371 2520 3173 3351 3537 3730 3929 5012 5247 10204 11215 11564 11919 13036	205 227 334 367 404 443 485 727 781 1807 2041 2121 2207 2479	143,6 78,65 74,67 70,98 58,58 55,98 53,54 51,24 49,09 40,06 38,51 20,91 19,12 18,56 18,03 16,55

T k2Viktiga elementarpartiklar

Partikelgrupp	Namn	Symbol	Viloenergi (MeV)	Laddning (antal e)	Anti- partikel
	Higgsboson	Н	125	0	Н
Leptoner	elektron	e^{-}	0,511	-1	$\mathrm{e^{+}}$
	myon	μ^-	105,7	-1	μ^+
	tau	$ au^-$	1777	-1	$ au^+$
	e-neutrino	$ u_{ m e}$	≈ 0	0	$ar{ u}_{ m e}$
	μ -neutrino	$ u_{\mu}$	≈ 0	0	$ar{ u}_{\mu}$
	τ -neutrino	$ u_{ au}$	≈ 0	0	$\bar{ u}_{ au}$
Baryoner	proton	р	938,256	+1	$\bar{\mathrm{p}}$
*	neutron	n	939,550	0	$\bar{\mathrm{n}}$
	Λ -hyperon	Λ	1115,68	0	$ar{\Lambda}$
	Σ -hyperoner	Σ^+	1189,37	+1	$ar{\Sigma}^-$
	<i>J</i> 1	Σ^0	1192,64	0	$ar{\Sigma}^0$
		Σ^-	1197,45	-1	$\bar{\Sigma}^+$
	Ξ-hyperoner	Ξ^0	1314,8	0	<u>=</u> 0
	—, p	Ξ-	1321,3	-1	$\begin{array}{c} \bar{\Sigma}^{-} \\ \bar{\Sigma}^{0} \\ \bar{\Sigma}^{+} \\ \bar{\Xi}^{0} \\ \bar{\Xi}^{+} \\ \bar{\Omega}^{+} \end{array}$
	$\Omega\text{-hyperon}$	Ω_{-}	1672,5	-1	$\bar{\Omega}^+$
Mesoner	π -mesoner	π^+	139,57	+1	π^-
		π^0	134,98	0	π^0
		π^-	139,57	-1	π^+
	K-mesoner	K^{+}	493,68		K^{-}
		K^0	497,61		$ar{\mathrm{K}}^{0}$
	$\eta ext{-meson}$	η	547,86	0	η
Kraftpartiklar	foton	γ	0	0	γ
P	gluon	g	0	0	g
	intermediära	W^{+}	80 385	+1	W^-
	vektorbosoner	Z^0	91 188	0	Z^0
		$\overline{\mathrm{W}}^-$	80 385	-1	$\overline{\mathrm{W}^{+}}$

 \blacksquare Modern fysik 20 (23)

Periodiska systemet								
1 2 3 4 5 6 7 8 9								

1	2		3	4	5	6	7	8	9		
H 1 Väte 1s ¹ HEX 1,00794 3,75 1,73											
	Be 4 Beryllium 1s ² 2s ² HEX 9,012182 2,29 3,92 24,2		$\begin{array}{c c} \text{Symbol} & \text{Mg 12} \\ \text{Magnesium} \\ 3s^2 \\ \text{HEX} \\ 24,3050 \\ \text{Gitterkonstant, } a \text{ (Å)} \\ \text{Utträdesarbete (eV)} & 3,70 \\ \end{array} \begin{array}{c c} \text{Atomnummer} = Z = \text{antal protoner} \\ \text{Namn} \\ \text{Elektronkonfiguration} \\ \text{Kristallstruktur} \\ \text{Atomvikt} = \text{molmassa, naturlig blandning (g/mol = u/atom)} \\ c/a \text{ för HEX} \\ \text{Fri elektronkoncentration } (10^{28} \text{m}^{-3}) \end{array}$								
	Mg 12 Magnesium 3s ² HEX 24,3050 3,21 1,62 3,70 8,60										
K 19 Kalium 4s ¹ BCC 39,0983 5,23 2,25 1,33	Ca 20 Kalcium 4s ² FCC 40,078 5,58 3,20 4,60		$\begin{array}{c} \text{Sc 21} \\ \text{Skandium} \\ \text{3d}^1 \text{4s}^2 \\ \text{HEX} \\ 44,955910 \\ 3,31 \\ 1,59 \end{array}$	Ti 22 Titan 3d ² 4s ² HEX 47,867 2,95 1,59 3.87	V 23 Vanadin 3d ³ 4s ² BCC 50,9415 3,02 4,11	Cr 24 Krom 3d ⁵ 4s ¹ BCC 51,9961 2,88 4,45	Mn 25 Mangan 3d ⁵ 4s ² CUB 54,93805 8,89 4.10	Fe 26 Järn 3d ⁶ 4s ² BCC 55,845 2,87 4.63	Co 27 Kobolt 3d ⁷ 4s ² HEX 58,93320 2,51 1,62		
Rb 37 Rubidium 5s ¹ BCC 85,4678 5,72 2,13 1,08	Sr 38 Strontium 5s ² FCC 87,62 6,08 2,74 3,56		Y 39 Yttrium 4d ¹ 5s ² HEX 88,90585 3,65 1,57	Zr 40 Zirkonium 4d ² 5s ² HEX 91,224 3,23 1,59 3,69	Nb 41 Niob 4d ⁴ 5s ¹ BCC 92,90638 3,30 3,99	Mo 42 Molybden 4d ⁵ 5s ¹ BCC 95,94 3,15 4,19	Tc 43 Teknetium 4d ⁵ 5s ² HEX (98) 2,74 1,60	Ru 44 Rutenium 4d ⁷ 5s ¹ HEX 101,07 2,70 1,58 4,52	Rh 45 Rodium 4d ⁸ 5s ¹ FCC 102,90550 3,80 5,03		
	Ba 56 Barium 6s ² BCC 137,327 5,02 2,52 3,20	57 - 70 *	Lu 71 Lutetium 4f ¹⁴ 5d ¹ 6s ² - 174,967	Hf 72 Hafnium 4f ¹⁴ 5d ² 6s ² HEX 178,49 3,20 3,53 1,58	4,13	W 74 Volfram 4f ¹⁴ 5d ⁴ 6s ² BCC 183,84 3,16 4,57	4,97	4,55	Ir 77 Iridium 4f ¹⁴ 5d ⁷ 6s ² FCC 192,217 3,84 4,57		
Fr 87 Francium 7s ¹ (223)	Ra 88 Radium 7s ² (226)	89 - 102 **	Lr 103 Lawrencium 5f ¹⁴ 7s ² 7p ¹ (262)	Rf 104 Rutherfordium $5f^{14}6d^{2}7s^{2}$ (261)	$\begin{array}{c} \text{Db 105} \\ \text{Dubnium} \\ (5f^{14}6d^37s^2) \\ \hline \\ (262) \end{array}$	Sg 106 Seaborgium (5f ¹⁴ 6d ⁴ 7s ²) - (263)	Bh 107 Bohrium $(5f^{14}6d^57s^2)$ (262)	Hs 108 Hassium (5f ¹⁴ 6d ⁶ 7s ²) (265)	Mt 109 Meitnerium (5f ¹⁴ 6d ⁷ 7s ²) - (266)		

*Lantanider

**Aktinider

La 57 Lantan 5d ¹ 6s ² HEX 138,9055 3,75 1,62 3,3	$\begin{array}{c} \text{Ce 58} \\ \text{Cerium} \\ 4f^25d^06s^2 \\ \text{FCC} \\ 140,115 \\ 5,16 \end{array}$	Pr 59 Praseodym (4f ³ 5d ⁰ 6s ² HEX 140,90765 3,67 1,61	$\begin{array}{c} {\rm Nd}\ 60 \\ {\rm Neodym} \\ 4{\rm f}^4{\rm 5d}^0{\rm 6s}^2 \\ {\rm HEX} \\ 144,24 \\ 3,66 \end{array}$	Pm 61 Prometium 4f ⁵ 5d ⁰ 6s ² (145)	$\begin{array}{c} Sm\ 62 \\ Samarium \\ 4f^65d^06s^2 \\ RHL \\ 150,36 \\ 9,00 \end{array}$	Eu 63 Europium $4f^{7}5d^{0}6s^{2}$ BCC $151,965$ $4,61$
Ac 89 Aktatium 6d ¹ 7s ² FCC (227) 5,31	Th 90 Torium 6d ² 7s ² FCC (232,0381) 5,08 3,47	Pa 91 Protaktinium 5f ² 6d ¹ 7s ² TET (231,03588) 3,92	U 92 Uran 5f ³ 6d ¹ 7s ² ORC (238,0289) 2,85 3,45	$\begin{array}{c} { m Np~93} \\ { m Neptunium} \\ { m 5f}^5 { m 6d}^0 { m 7s}^2 \\ { m ORC} \\ { m (237)} \\ { m 4,72} \end{array}$	Pu 94 Plutonium 5f ⁶ 6d ⁰ 7s ² MCL (239) 9,00	Am 95 Americium $5f^{7}6d^{0}7s^{2}$ BCC (243) 4,61

Kristallstruktur: SC

Atomer/cell:

10	11	12	13	14	15	16	17	18
								He 2 Helium 1s ² HEX 4,002602 3,57 1,63
			$\begin{array}{c} \text{B 5} \\ \text{Bor} \\ 1\text{s}^2 2\text{s}^2 2\text{p}^1 \\ \text{TET} \\ 10,811 \\ 8,73 \end{array}$	$\begin{array}{c} C \ 6 \\ Kol \\ 1s^2 2s^2 2p^2 \\ DIA \\ 12,011 \\ 3,57 \end{array}$	$\begin{array}{c} N \ 7 \\ \text{Kväve} \\ 1 \text{s}^2 2 \text{s}^2 2 \text{p}^3 \\ \text{HEX} \\ 14,00674 \\ 4,04 \\ 1,65 \end{array}$	O 8 Syre 1s ² 2s ² 2p ⁴ CUB 15,9994 6,83	F 9 Fluor 1s ² 2s ² 2p ⁵ MCL 18,9984032 5,35	$\begin{array}{c} \text{Ne 10} \\ \text{Neon} \\ \text{1s}^2 \text{2s}^2 \text{2p}^6 \\ \text{FCC} \\ \text{20,1797} \\ 4,43 \end{array}$
			$\begin{array}{c} \text{Al 13} \\ \text{Aluminium} \\ \text{3s}^2 \text{3p}^1 \\ \text{FCC} \\ 26,981539 \\ 4,05 \\ 4,20 \\ 18,06 \end{array}$	Si 14 Kisel 3s ² 3p ² DIA 28,0855 5,43	P 15 Fosfor 3s ² 3p ³ CUB 30,973762 7,17	S 16 Svavel 3s ² 3p ⁴ ORC 32,066 10,5	Cl 17 Klor (Ne)3s ² 3p ⁵ ORC 35,4527 6,24	Ar 18 Argon (Ne)3s ² 3p ⁶ FCC 39,948 5,26
Ni 28 Nickel 3d ⁸ 4s ² FCC 58,6934 3,52 5,09	Cu 29 Koppar 3d ¹⁰ 4s ¹ FCC 63,546 3,61 4,84 8,45	$\begin{array}{c} Zn\ 30 \\ Zink \\ 3d^{10}4s^2 \\ HEX \\ 65,39 \\ 2,66 \\ 4,34 \\ 13,10 \end{array}$	$\begin{array}{c} Ga~31\\ Gallium\\ 3d^{10}4s^24p^1\\ ORC\\ 69,723\\ 4,51\\ 4,45\\ 15,30\\ \end{array}$	Ge 32 Germanium 3d ¹⁰ 4s ² 4p ² DIA 72,61 5,66	$\begin{array}{c} \text{As } 33 \\ \text{Arsenik} \\ 3\text{d}^{10}4\text{s}^{2}4\text{p}^{3} \\ \text{RHL} \\ 74,92159 \\ 4,13 \end{array}$	Se 34 Selen 3d ¹⁰ 4s ² 4p ⁴ HEX 78,96 4,36 1,14	Br 35 Brom 3d ¹⁰ 4s ² 4p ⁵ ORC 79,904 6,67	Kr 36 Krypton 3d ¹⁰ 4s ² 4p ⁶ FCC 83,80 5,72
Pd 46 Palladium 4d ¹⁰ 5s ⁰ FCC 106,42 3,89 5,40	$\begin{array}{c} \text{Ag 47} \\ \text{Silver} \\ 4\text{d}^{10}5\text{s}^{1} \\ \text{FCC} \\ 107,8682 \\ 4,09 \end{array}$	Cd 48 Kadmium 4d ¹⁰ 5s ² HEX 112,411 2,98 1,89	$\begin{array}{c} \text{In 49} \\ \text{Indium} \\ \text{4d}^{10}5\text{s}^{2}5\text{p}^{1} \\ \text{TET} \\ 114,818 \\ 4,59 \\ 4,08 \\ 11,49 \end{array}$	Sn 50 Tenn 4d ¹⁰ 5s ² 5p ² TET 118,710 5,82 4,31 4,48	Sb 51 Antimon 4d ¹⁰ 5s ² 5p ³ RHL 121,760 4,51 4,60	$\begin{array}{c} {\rm Te\ 52} \\ {\rm Tellur} \\ {\rm 4d^{10}5s^25p^4} \\ {\rm HEX} \\ {\rm 127,60} \\ {\rm 4,45} \end{array}$	$\begin{array}{c} \text{I 53} \\ \text{Jod} \\ \text{4d}^{10} \text{5s}^2 \text{5p}^5 \\ \text{ORC} \\ 126,90447 \\ 7,27 \end{array}$	Xe 54 Xenon 4d ¹⁰ 5s ² 5p ⁶ FCC 131,29 6,20
Pt 78 Platina 4f ¹⁴ 5d ¹⁰ 6s ⁰ FCC 195,08 3,92 5,66	$\begin{array}{c} \text{Au 79} \\ \text{Guld} \\ 4\text{f}^{14}\text{5d}^{10}\text{6s}^{1} \\ \text{FCC} \\ 196,96654 \\ 4,08 \end{array}$	Hg 80 Kvicksilver 4f ¹⁴ 5d ¹⁰ 6s ² RHL 200,59 2,99 4,53	Tl 81 Tallium (Hg)6p ¹ HEX 204,3833 3,46 1,59	Pb 82 Bly (Hg)6p ² FCC 207,2	Bi 83 Vismut (Hg)6p ³ RHL 208,98037 4,75	Po 84 Polonium (Hg)6p ⁴ SC (209) 3,35	At 85 Astat (Hg)6p ⁵ ? (210)	Rn 86 Radon (Hg)6p ⁶ FCC (222)
Ds 110 Darmstadtium (5f ¹⁴ 6d ⁹ 7s ¹) - (272)	Rg 111 Roentgenium (5f ¹⁴ 6d ⁹ 7s ²)	Cn 112 Copernicium (5f ¹⁴ 6d ¹⁰ 7s ²)	Nh 113 Nihonium	Fl 114 Flerovium	Mc 115 Moscovium (5f ¹⁴ 6d ¹⁰ 7s ² 7p ³)	Lv 116 Livermorium (5f ¹⁴ 6d ¹⁰ 7s ² 7p ⁴)	Ts 117 Tennessine (5f ¹⁴ 6d ¹⁰ 7s ² 7p ⁵) - (293)	Og 118 Oganesson (5f ¹⁴ 6d ¹⁰ 7s ² 7p ⁶)
-	- (2.2)	-	- (200)	- (200)	-	- (200)	- (200)	-

Gd 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	Yb 70
$\frac{\text{Gadolinium}}{4\text{f}^75\text{d}^16\text{s}^2}$	$^{\mathrm{Terbium}}_{\mathrm{4f}^{9}5\mathrm{d}^{0}6\mathrm{s}^{2}}$	Dysprosium $4f^{10}5d^06s^2$	$\frac{\text{Holmium}}{4\text{f}^{11}5\text{d}^{0}6\text{s}^{2}}$	Erbium $4f^{12}5d^06s^2$	$\begin{array}{c} \text{Tulium} \\ 4\text{f}^{13}5\text{d}^{0}6\text{s}^{2} \end{array}$	$\frac{\text{Ytterbium}}{4\text{f}145\text{d}^06\text{s}^2}$
HEX	HEX	HEX	HEX	HEX	HEX	FCC
157,25	158,92534	162,50	164,93032	167,26	168,93421	173,04
3,64 1,59	3,60 1,58	3,59 $1,57$	3,58 1,57	3,56 1,57	3,54 1,57	5,49
	D1 0=	04.00		- 100	3.5.3.4.0.4	37 400
Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102
Curium	Berkelium	Californium	Einsteinium	Fermium	Mandelevium	Nobelium
$5f^{7}6d^{1}7s^{2}$	$5f^{7}6d^{2}7s^{2}$	$5f^{9}6d^{1}7s^{2}$	$5f^{11}6d^{0}7s^{2}$	$5f^{12}6d^{0}7s^{2}$	$5f^{13}6d^{0}7s^{2}$	$5f^{14}6d^{0}7s^{2}$
HEX	HEX	HEX	-	HEX	HEX	FCC
(247)	(247)	(251)	(252)	(257)	(258)	(259)
3,64 1,59	3,60 1,58	3,59 \ 1,57	3,58 \ 1,57	3,56 \ 1,57	3,54 \ 1,57	5,49

sönde	rfallet är angivet. T			ändig. I	Källa: Chines		36 (201	2) 1157-1286, 1603-	·2014. Mer info	o: atom.k	aeri.re	.kr, www.ni	ndc.bnl.gov.
		Sönderfall			Massa	Sönderfall		Andel Massa	Sönderfall				Sönderfall
	(%) (u)	$T_{1/2}$		(%)	(u)	$T_{1/2}$		(%) (u)	$T_{1/2}$	l	(%)	(u)	$T_{1/2}$
n	1,008664916		S-35		34,9690323	$\beta^{-}87,37\mathrm{d}$		26,223 59,930786		Zr-94		93,906311	
	99,989 1,007825032		S-36	0,01	35,9670807			1,1399 60,931056		Zr-95		94,908039	$\beta^{-}64,03\mathrm{d}$
	0,0115 2,014101778	1	S-37		36,9711255			3,6346 61,928345	0=101.0	Zr-96 Zr-97	,	95,908271	$2\beta^{-}\ 20 \mathrm{Ey}$ $\beta^{-}\ 16.75 \mathrm{h}$
H-3	3,016049278 1,34e-4 3,016029320		S-38 Cl-32		37,97116 31,985685	$\beta^{-170,3} \mathrm{m}$ $\beta^{+298} \mathrm{ms}$	Ni-63	62,929670 0,9255 63,927967	$\beta^{-101,2} y$	Nb-93		96,910951 92,906373	B 10,75 H
He-4	100 4,002603254		Cl-32		31,983083 $32,977452$	$\beta^{+2,511}$ s	Ni-65		$\beta^{-}2,518 \mathrm{h}$	Nb-94		93,907279	$\beta^{-}20,3 \text{ky}$
He-6	6,0188859	$\beta^{-806,9} \text{ms}$	Cl-33		33,9737625	$\beta^{+}1,527 s$	Cu-63	1 /	p 2,010 ii	Nb-95		94,906832	$\beta^{-}34,99 \mathrm{d}$
Li-6	7,59 6,015122887	<i>p</i> . ,	Cl-35	75.76	34,9688527	β 1,0215	Cu-64	63,929764	$\beta^{+}12,70 h$	Nb-97		96,908096	$\beta^{-}72.1 \text{ m}$
Li-7	92,41 7,01600344		Cl-36	10,10	35,9683068	$\beta^{-}301,3 \text{ ky}$	Cu-65		p 12,1011	Mo-92		91,906808	, =,= ==
Li-8	8,0224862	$\beta^{-}839.4 \text{ms}$	Cl-37	24,24	36,9659026	, ,	Cu-66	1 ' 1 '	$\beta^{-}5,120 \mathrm{m}$	Mo-93	,	92,906810	K 4 ky
Li-9	9,0267902	$\beta^{-}178,3 \text{ms}$	Cl-38	, i	37,9680104	$\beta^{-}37,24 \text{ m}$	Zn-64	49,17 63,929142	,	Mo-94	9,15	93,905085	
Be-7	7,0169287	K 53,22 d	Cl-39		38,968008	$\beta^{-}56,2 \mathrm{m}$	Zn-65	64,929241	$\beta^{+}243,9 d$	Mo-95		94,905839	
Be-8	8,0053051	α 81,9 as	Cl-40		39,9704	$\beta^{-}1,35 \mathrm{m}$	Zn-66			Mo-96	,	95,904676	
Be-9	100 9,0121831		Ar-35		34,975258	$\beta^{+}1,776 \mathrm{s}$	Zn-67			Mo-97		96,906018	
Be-10	l '	$\beta^{-}1,51 \text{My}$		0,3336	35,96754511		Zn-68	1 ' 1 '		Mo-98		97,905405	,
Be-11	11,0216611	$\beta^{-}13,76 \mathrm{s}$	Ar-37		36,9667763	K 35,01 d	Zn-69		$\beta^{-}56,4 \text{ m}$	Mo-99		98,907709	β-65,98 h
B-8	8,024607	$\beta^{+}770 \text{ms}$		0,0629	37,9627321	0=260	Zn-70		0=0.45	Mo-100 Mo-101			$2\beta^{-}$ 7,3 Ey β^{-} 14,61 m
B-10	19,9 10,012937		Ar-39	00 604	38,96431	$\beta^{-}269 y$	Zn-71	70,927720	$\beta^{-2,45} \text{ m}$ $\beta^{+9,304} \text{ h}$	Tc-97		96,90637	K 4,21 My
B-11 B-12	80,1 11,009305 12,014353	$\beta^{-20,20} \mathrm{ms}$	Ar-40 Ar-41	99,004	39,96238312 40,964501	$\beta^{-109,6} \mathrm{m}$	Ga-66 Ga-67	65,93159 66,928203	K 3,262 d	Tc-98		97,90721	$\beta^{-4,21}$ My
B-12	13,017780	β^{-} 17,33 ms	Ar-42		41,96305	$\beta^{-109,0 \text{ m}}$		60,108 68,925574	K 3,202 d	Tc-99		98,906251	$\beta^{-1,21,1}$ ky
C-10	10,016853	$\beta^{+}19,31 s$	K-37		36,9733759	$\beta^{+}1,225 s$	Ga-70	1 ' 1 '	$\beta^{-}21,14 \mathrm{m}$	Ru-96		95,907590	p ===,===
C-11	11,011434	$\beta^{+}20,36 \mathrm{m}$	K-38		37,9690811	$\beta^{+}7,636 \mathrm{m}$		39,892 70,924703	β ==,====	Ru-97		96,907547	$\beta^{+}2,837 \mathrm{d}$
C-12	98,93 12 (exakt)		K-39	93,258	38,96370649	p	Ga-72	71,926367	$\beta^{-}14,10 h$	Ru-98	1,87	97,90529	,
C-13	1,07 13,00335484		K-40	0,0117	39,9639982	$\beta^{-}1,248 \text{Gy}$	Ge-70	20,57 69,924249	,	Ru-99	12,76	98,905934	
C-14	1e-10 14,00324199	$\beta^{-}5,70 \text{ky}$		6,7302	40,96182526		Ge-71	70,924952	K 11,43 d	Ru-100		99,904214	
C-15	15,010599	$\beta^{-}2,449 \mathrm{s}$	K-42		41,9624023	$\beta^{-}12,36 \mathrm{h}$	Ge-72	' '		Ru-101	,	100,905577	
N-12	12,018613	$\beta^+ 11 \mathrm{ms}$	K-43		42,960735	$\beta^{-}22,3 h$	Ge-73	1 ' 1 '		Ru-102		101,904344	
N-13	13,0057386	$\beta^{+}9,965 \mathrm{m}$	Ca-39		38,970711	$\beta^{+}860,3 \mathrm{ms}$	Ge-74			Ru-103		102,906319	r. ,
	99,636 14,00307400 0,364 15,00010890		Ca-40	96,94	39,96259086		Ge-75	1 /	$\beta^-82,78 \text{ m}$	Ru-104 Ru-105		103,905427 104,907748	
N-15 N-16	16,006102	$\beta^{-7,13}$ s	Ca-41 Ca-42	0.647	40,9622779 41,9586178	K 99,4 ky	Ge-76 Ge-77	7,73 75,92140273 76,9235498	$\beta^{-11,21} h$	Rh-103		104,907748	
N-10 N-17	17,00845	$\beta^{-1,13}$ s	Ca-42		42,9587664		As-73	72,92383	K 80,30 d	Rh-103		101,90034 $102,905498$	
O-14	l /	$\beta^{+70,62}$ s	Ca-43		43,955482		As-74	73,923929	$\beta^{+}17,77 \mathrm{d}$	Rh-104		103,906649	
O-15	15,003066	$\beta^{+}122.2 s$	Ca-45	_,00	44,956186	$\beta^{-}162,6 d$	As-75	100 74,921595	ρ 11,,α	Rh-105		104,905689	
	99,757 15,99491462	<i>p</i> . ,	Ca-46	4e-3	45,953689	β,	As-76	1 '	$\beta^{-}1,078 d$	Pd-102		101,905602	
O-17	0,038 16,99913176		Ca-47		46,954542	$\beta^{-}4,536 d$	As-77	76,920648	$\beta^{-}38,79 h$	Pd-103		102,906081	K 16,99 d
O-18	0,205 17,99915961		Ca-48	0,187	47,9525228	$2\beta^{-}$ 53 Ey	Se-74	0,89 73,92247593	3	Pd-104	11,14	103,904031	
O-19	19,003578	$\beta^{-}26,46 \mathrm{s}$	Ca-49		48,9556627	$\beta^{-}8,718 \mathrm{m}$	Se-75	74,9225229	K 119,8 d	Pd-105	,	104,905080	
F-17	17,0020952	$\beta^{+}64,49 \mathrm{s}$	Sc-44		43,959403	$\beta^{+}3,97 h$	Se-76	1 ' 1 '	O	Pd-106	,	105,903480	!
F-18	18,000937	$\beta^{+}109,8 \mathrm{m}$	Sc-45	100	44,955908	,	Se-77	7,63 76,9199142		Pd-107		106,905128	
F-19	100 18,99840316		Sc-46		45,955168	$\beta^{-}83,79 \mathrm{d}$	Se-78	1 ' 1 '	- 0051	Pd-108		107,903892	
F-20	19,99998125		Sc-47		46,952404	$\beta^{-3,349} d$	Se-79	1 '	$\beta^-335 \mathrm{ky}$	Pd-109 Pd-110		108,905950 109,905172	
Ne-18 Ne-19	18,005709 19,0018809	$\beta^{+}1,666 \text{ s}$ $\beta^{+}17,26 \text{ s}$	Sc-48 Ti-44		47,95222 43,959690	$\beta^{-}43,67 \mathrm{h}$ K 59,1 y	Se-80 Se-81	49,61 79,916522 80,917993	$\beta^{-}18,45 \mathrm{m}$			106,905092	
Ne-19 Ne-20	90,48 19,99244018	/	Ti-44	8 25	45,952628	K 55,1 y	Se-81	1 '	$^{\beta}_{2\beta}$ 97 Ev	Ag-108			$\beta_{\beta^{-}2,382\mathrm{m}}$
Ne-21	0,27 20,9938467		Ti-47		46,951759		Se-83		$\beta^{-}22,3 \text{ m}$			108,904755	
Ne-22	9,25 21,99138511		Ti-48		47,947942		Br-79	1 '	β ==,σ ==	Ag-110		109,906110	!
Ne-23	· · · · · ·	$\beta^{-}37,14 s$	Ti-49	5,41	48,947866		Br-80	79,918530	$\beta^{-}17,68 \mathrm{m}$	Ag-111		110,905296	$\beta^{-}7,45 d$
Ne-24	23,993611	$\beta^{-}3,38 \mathrm{m}$	Ti-50		49,944787			49,31 80,916290	ľ	Ag-112		111,907049	$\beta^{-}3,130 h$
Na-20	20,007354	$\beta^{+}447,9 \text{ms}$	Ti-51		50,946611	$\beta^{-}5,76 \mathrm{m}$	Br-82		$\beta^{-}35,28 h$	Ag-113		112,90657	$\beta^{-}5,37 \text{ h}$
Na-21	20,9976547	$\beta^{+}22,49 \mathrm{s}$	V-48		47,952252	$\beta^{+}15,97 d$	Br-83		β^{-} 2,40 h	Ag-114		113,90882	$\beta^{-}4.6 s$
Na-22	21,9944374	$\beta^{+}2,603 \mathrm{y}$	V-49		48,948512	K 330 d	Br-84	1 '	$\beta^{-}31,76 \text{ m}$	Ag-115			$\beta^-20\mathrm{m}$
Na-23	100 22,98976928		V-50		49,947156	$\beta^{+}150 \text{Py}$	Kr-78		0+05.041	Cd-106		105,906460	
Na-24	23,9909630	$\beta^{-}15 \text{ h}$	V-51 V-52	99,750	50,943957	0=9.749 ***	Kr-79 Kr-80	1 '	$\beta^{+}35,04 \mathrm{h}$	Cd-107 Cd-108		106,906612 107,904183	
Na-25 Mg-23	24,989954 $22,994124$	$\beta^{-}59,1 s$ $\beta^{+}11,32 s$	Cr-49		51,944773 48,951333	$\beta^{-3,743} \mathrm{m}$ $\beta^{+42,3} \mathrm{m}$	Kr-81	80,916591	K 229 ky	Cd-108		107,904183 $108,904987$	
Mg-24		<i>jr.</i> ,	Cr-50	4.345	49,946042	p 42,5 m		11,593 81,913483	1 225 Ky	Cd-110		109,903007	
Mg-25	10 24,9858370		Cr-51	-,	50,944765	K 27,70 d		11,500 82,9141272		Cd-111	,	110,904183	
Mg-26	l /			83,789	51,940506	,	Kr-84	56,987 83,91149773	3	Cd-112	24,13	111,902763	;
Mg-27	26,9843406	$\beta^{-}9,458 \mathrm{m}$	Cr-53		52,940648	1	Kr-85		$\beta^{-}10,78 \mathrm{y}$	Cd-113			$\beta^{-}8,04 \text{Py}$
Mg-28	27,983877	$\beta^{-}20,91 h$	Cr-54		53,938879			17,279 85,91061063	1	Cd-114		113,903365	
Al-24	23,999949	$\beta^{+}2,053 \mathrm{s}$	Cr-55	!	54,940838	$\beta^{-}3,497 \mathrm{m}$	Kr-87		$\beta^{-76,3} \mathrm{m}$	Cd-115			$\beta^{-}53,46 \mathrm{h}$
Al-25	24,990428	$\beta^{+}7,183 \mathrm{s}$	Mn-52		51,945564	$\beta^{+}5,591 \mathrm{d}$	Rb-85			Cd-116 Cd-117		115,904763 116,907226	
Al-26	25,9868919	$\beta^+717 \mathrm{ky}$	Mn-53 Mn-54		52,941289 53,940358	K 3,7 My	Rb-86 Rb-87	1 /	r ,	In-113		110,907220 $112,904062$	
Al-27 Al-28	100 26,9815385 27,9819102	$\beta^{-2,241} \mathrm{m}$	Mn-55	100	54,938044	K 312,1 d	Rb-88	87,9113156	$\beta = 17,77 \text{ m}$	In-114		113,904918	
Al-29	28,980456	$\beta^{-2,241}$ m $\beta^{-6,56}$ m	Mn-56	100	55,938904	$\beta^{-}2,579 h$	Sr-84		p 11,11111	In-115	95,71	114,903879	$\beta^{-441} \mathrm{Ty}$
Si-27		$\beta^{+}4,15 s$	Fe-53		52,945306	β^{+} 8,51 m	Sr-85	84,912932	K 64,85 d	In-116		115,905260	
	92,223 27,97692653	<i>f</i> :	Fe-54	5,845	53,939609	,	Sr-86	9,86 85,909261	1	In-117		116,90452	$\beta^{-}43,2 \text{ m}$
Si-29			Fe-55		54,938292	K 2,744 y	Sr-87	7 86,908878	1	Sn-112	0,97	111,904824	
Si-30	3,092 29,97377014	:			55,934936		Sr-88	1 ' 1 '		Sn-113		112,905176	r. ,
Si-31	30,9753632	$\beta^{-}157,3 \mathrm{m}$	Fe-57		56,935393		Sr-89		$\beta^{-}50,53 d$	Sn-114	,	113,902783	!
Si-32	31,9741515	$\beta^{-}153 y$	Fe-58	0,282	57,933274		Sr-90	1 '	$\beta^{-}28,79 \text{ y}$	Sn-115		114,903345	
P-28	27,992327	$\beta^{+}270.3 \mathrm{ms}$	Fe-59		58,934874	$\beta^-44,49 \mathrm{d}$	Sr-91	90,91020	β-9,63 h	Sn-116		115,901743	
P-29	28,981801	$\beta^{+}4,142 \text{ s}$	Co-55 Co-56		54,941997	$\beta^{+}17,53 \mathrm{h}$	Sr-92 Y-88		$\beta^{-2,66} \mathrm{h}$ $\beta^{+106,6} \mathrm{d}$	Sn-117 Sn-118	,	116,902954 117,901607	!
P-30 P-31	29,978314 100 30,97376200	$\beta^{+}2,498 \mathrm{m}$	Co-56		55,939839 56,936291	$\beta^{+}77,24 d$ K 271,7 d	Y-89	1 '	p 100,0 d	Sn-119	,	118,903311	!
P-31 P-32	31,9739076	$\beta^{-}14,26\mathrm{d}$	Co-58		56,936291 $57,935752$	$\beta^{+}70,86 \mathrm{d}$	Y-90	1 '	$\beta^{-}64 h$	Sn-119		119,902202	
P-33	32,971726	$\beta^{-14,20}d$ $\beta^{-25,35}d$	Co-59	100	58,933194	.0,004	Y-91	90,907297	$\beta^{-}58,51 d$	Sn-121		120,904243	
P-34	33,973646	$\beta^{-}12,43 \mathrm{s}$	Co-60	-00	59,933816	$\beta^{-}5,271 \mathrm{y}$	Y-92		$\beta^{-3,54} h$	Sn-122		121,903444	
S-31		$\beta^{+2,572} s$	Co-61		60,932477	$\beta^{-1,650 h}$	Zr-90	51,45 89,904698		Sn-123		122,905725	
S-32			Ni-57		56,939792	$\beta^{+}35,60 h$	Zr-91			Sn-124		123,905277	ľ
S-33					57,935342	Ι.	Zr-92	1 ' 1 '	1 .	Sn-125		124,907786	r. ,
S-34	4,25 33,9678670		Ni-59		58,934346	β^+ 101 ky	Zr-93	92,906470	$\beta^{-}1,61 \text{My}$	Sb-121	57,21	120,903812	1

Andel Massa Sönderfall	Andel Massa Sönderfall	Andel Massa Sönderfall	Andel Massa Sönderfall
(%) (u) $T_{1/2}$	(%) (u) $T_{1/2}$	(%) (u) $T_{1/2}$	(%) (u) $T_{1/2}$
Sb-122 $ 121,905170 \beta^{-2},724 d$	Nd-150 5,638 149,920902 $2\beta^-$ 6,7 Ey	Hf-179 13,62 178,945823	Po-210 209,982874 α 138,4 d
Sb-123 42,79 122,904213	Nd-151 $ 150,923840 \beta^-12,44 \text{ m} $	Hf-180 35,08 179,946557	Po-211 210,986654 α 516 ms
Sb-124 $ 123,905935 _{\beta}$ = 60,20 d	Pm-145 144,912756 K 17,7 y	Hf-181 $ 180,949108 \beta^-42,39 \mathrm{d}$	Po-212 $ 211,988868 \alpha 299 \text{ ns}$
Sb-125 $ 124,905253 _{\beta}^{\beta} = 2,759 \text{ y}$	Pm-146 145,91470 K 5,53 y	Ta-180 179,947465 K 8,154 h	Po-213 212,992858 α 3,72 μs
Te-120 0.09 119,90406	Pm-147 $146,915145$ $\beta^{-2},623$ y	Ta-181 99,988 180,947996	Po-214 213,995202 α 164,3 μs
Te-121 $ 120,90494 _{\beta^+ 19,17 d}$	$ Pm-148 $ $ 147,91748 $ $ \beta-5,368 $ d		Po-215 214,999420 α 1,781 ms
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			l
Te-122 2,55 121,903043	Pm-149 148,918342 β = 53,08 h	W-180 $0.12 179.946711 \alpha 1.8 \text{ Ey}$	Po-216 216,001915 α 145 ms
Te-123 0,89 122,904270	Sm-144 3,07 143,912006	W-181 180,94820 K 121,2 d	Po-217 217,00632 α 1,514 s
Te-124 4,74 123,902817	Sm-145 144,913417 K 340 d	W-182 26,50 181,948204	Po-218 $ 218,008974 \alpha = 3,098 \text{ m}$
Te-125 7,07 124,904430	Sm-146 145,91305 α 68 My	W-183 14,31 182,950223	At-210 209,98715 β + 8,1 h
Te-126 18,84 125,903311	$ \text{Sm-147} 14,99 146,914904 \alpha 106,6 \text{ Gy} $	W-184 30,64 183,950931	At-211 210,987497 K 7,214 h
Te-127 $ 126,905226 _{\beta}$ = 9,35 h	Sm-148 11,24 147,914829 α 7 Py	W-185 $ 184,953419 _{\beta}$ 75,1 d	At-212 211,990738 α 314 ms
Te-128 31,74 127,904461 $2\beta^-$ 2,2 Yy	Sm-149 13,82 148,917192	W-186 28,43 185,954363	At-213 212,99294 α 125 ns
Te-129 $ 128,906596 \beta^-69,6 \text{ m}$	Sm-150 7,38 149,917283	W-187 $ 186,957159 _{\beta}^{-24} \text{h}$	At-214 213,99637 α 558 ns
Te-130 34,08 129,906223 $2\beta^-$ 790 Ey	$ Sm-151 $ $ 150,919940 _{\beta}-90 \text{ y}$	Re-185 37,40 184,952954	At-215 214,99865 α 100 μs
Te-131 $ 130,908522 _{\beta}^{2} = 25 \text{ m}$	Sm-152 26,75 151,919740	Re-186 $ 185,954986 _{\beta}^{-3,718} d$	At-216 216,00242 α 300 μs
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ Sm^{-152} $ $ Sm^{-153} $	Re-187 62,60 186,955750 β -43,3 Gy	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
I-125 124,904629 K 59,41 d	Sm-154 22,75 153,922217 40,28 II		Rn-211 $\begin{vmatrix} 217,00472 \\ 210,99060 \end{vmatrix}$ $\begin{vmatrix} \alpha & 32,3 \text{ h/s} \\ \beta^+14,6 \text{ h} \end{vmatrix}$
1 / 1==, /			I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1	Sm-155 154,924648 β^- 22,3 m	Re-189 188,95923 $\beta^-24,3 \text{ h}$	Rn-219 219,009480 α 3,96 s
I-127 100 126,90447	Eu-151 47,81 150,919858	Os-184 0,02 183,952489	Rn-220 220,011394 α 55,6 s
I-128 127,90581 β^- 24,99 m	Eu-152 $ 151,921752 \beta^+13,54 \text{ y}$	Os-185 184,954042 K 92,95 d	Rn-221 221,01554 β^- 25,7 m
I-129 128,90498 β^- 15,7 My	Eu-153 52,19 152,921238	Os-186 1,59 185,953835 α 2 Py	Rn-222 222,017578 α 3,824 d
I-130 129,90667 β - 12,36 h	Eu-154 $ 153,922987 \beta^-8,601 \text{ y}$	Os-187 1,96 186,955747	Fr-221 221,01426 α 4,777 m
I-131 $ 130,906126 \beta^-8,025 d$	Eu-155 $ 154,922901 \beta^-4,753 \text{ y}$	Os-188 13,24 187,955835	Fr-223 223,019736 β - 22 m
Xe-124 0,0952 123,905892	Eu-156 $ 155,92476 $ $ \beta^-15,19 d $	Os-189 16,15 188,958144	Ra-223 223,018502 α 11,43 d
Xe-125 $ 124,906394 \beta + 16,9 \text{ h}$	Gd-152 $0,20$ 151,919799 α 108 Ty	Os-190 26,26 189,958444	Ra-224 224,020212 α 3,66 d
Xe-126 0,0890 125,90430	Gd-153 152,921758 K 240,4 d	Os-191 $ 190,960926 _{\beta}$ $-14,99 d$	Ra-225 225,023612 β 14,9 d
Xe-127 126,90518 K 36,35 d	Gd-154 2,18 153,920874	Os-192 40,78 191,961477	Ra-226 226,025410 α 1,600 ky
Xe-128 1,9102 127,903531	Gd-155 14,80 154,922630	Os-193 $ 192,964148 _{\beta}$ $ 29,83 _{\beta}$	Ra-228 $228,031071 \beta^{-5},75 y$
Xe-129 26,401 128,904781	Gd-156 20,47 155,922131	Ir-191 37,3 190,960589	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Xe-129 20,401 123,304781 Xe-130 4,0710 129,903509	Gd-150 20,47 155,922151 Gd-157 15,65 156,923969	Ir-191 37.3 190.900389 191.962600 $\beta^-73.83$ d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Xe-130 4,0710 129,903309 Xe-131 21,232 130,905084	Gd-157 15,65 156,925969 Gd-158 24,84 157,924112	Ir-192 191,902000 3 73,83 d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Xe-132 26,909 131,904155	Gd-159 158,926397 β^- 18,48 h	Ir-194 193,965074 β - 19,28 h	Th-227 227,027704 α 18,68 d
Xe-133 $ 32,905911 \beta^-5,247 d$	Gd-160 21,86 159,927062	Pt-190 0,012 189,95993 α 650 Gy	Th-228 228,028741 α 1,912 y
Xe-134 10,436 133,905395	Tb-157 156,924033 K 71 y	Pt-192 0,782 191,961039	Th-229 229,031763 α 7,932 ky
Xe-135 134,90723 β^- 9,14 h	Tb-158 $ 157,925421 \beta^{+}180 \text{ y}$	Pt-193 192,962982 K 50 y	Th-230 230,033134 α 75,4 ky
Xe-136 8,8573 135,907214	Tb-159 100 158,925355	Pt-194 32,86 193,962681	Th-231 231,036305 β^- 25,52 h
$ 136,911558 \beta^{-3},818 \text{ m}$	Tb-160 $ 159,927176 \beta^{-}72,3 d$	Pt-195 33,78 194,964792	Th-232 $100 232,038056 \alpha 14\mathrm{Gy}$
Cs-131 130,90546 K 9,689 d	Tb-161 $ 160,927578 _{\beta}$ = 6,89 d	Pt-196 25,21 195,964952	Th-233 233,041582 β = 21,83 m
Cs-132 $ 131,906434 \beta^{+}6,480 d$	Dv-156 0,056 155,924285	Pt-197 $196,967341 \beta^{-}19,89 h$	Th-234 234,04360 β 24,10 d
Cs-133 100 132,905452	Dy-157 156,92547 β +8,14 h	Pt-198 7,36 197,967895	Pa-231 231,035884 \(\alpha \) 32,76 ky
Cs-134 $ 133,906719 _{\beta}^{-2,065}$ y	Dy-158 0,095 157,924416	Pt-199 $ 198,970595 _{\beta}$ $-30,80 \mathrm{m}$	Pa-232 232,03859 $\beta^-1,32 \mathrm{d}$
Cs-135 $ 134,905977 \beta^{-2},3 \text{ My} $	Dy-159 158,925747 K 144,4 d	Au-195 194,965035 K 186,1 d	Pa-233 $\begin{vmatrix} 262,06667 & \beta & 1,524 \\ 233,040247 & \beta & 26,984 \end{vmatrix}$
Cs-136 $ 135,907311 \beta^- 13,16 d $	Dy-160 2,329 159,925205	Au-196 $ 194,905035 K 180,14 195,966570 \beta^+6,167 d $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dy-160 2,329 139,925205 Dy-161 18,889 160,926940		I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 1 1 1 1 1 1	Au-197 100 196,966569	l / / / / *
Cs-138 137,91102 β^- 33,41 m	Dy-162 25,475 161,926806	Au-198 197,968242 β^- 2,695 d	U-234 5,4e-3 234,040952 α 245,5 ky
Ba-130 0,106 129,906321	Dy-163 24,896 162,928738	Au-199 198,968765 β^- 3,139 d	U-235 0.7204 235,043930 α 704 My
Ba-131 $ 130,906941 \beta^+11,52 d$	Dy-164 28,260 163,929182	Hg-196 0,15 195,965833	U-236 $ 236,045568 \alpha 23,42 \mathrm{My}$
Ba-132 0,101 131,905061	Dy-165 $ 164,931710 \beta^{-2},334 \mathrm{h}$	Hg-197 196,96721 K 64,94 h	U-237 $ 237,048730 \beta^{-}6,752 d$
Ba-133 132,906007 K 10,55 y	Dy-166 $ 165,932814 \beta^-81,6 \text{ h}$	Hg-198 9,97 197,966769	U-238 99,274 238,050788 α 4,468 Gy
Ba-134 2,417 133,904508	Ho-165 100 164,930329	Hg-199 16,87 198,968281	U-239 $ 239,054293 \beta^{-}23,45 \text{ m}$
Ba-135 6,592 134,905688	Ho-166 $ 165,932291 \beta^{-26,82} h$	Hg-200 23,10 199,968327	U-240 240,05659 β = 14,1 h
Ba-136 7,854 135,904576	Ho-167 166,93314 β^- 3,1 h	Hg-201 13,18 200,970303	Np-235 235,044063 K 396,1 d
Ba-137 11,232 136,905827	Er-162 0,139 161,928788	Hg-202 29,86 201,970643	Np-236 236,0466 K 153 ky
Ba-138 71,698 137,905247	Er-163 $ 162,93004 \beta^{+}75 \text{ m} $	$ H_{g}-203 $ $ 202,972873 _{\beta}-46,59 d$	N_{p} -237 237,048174 α 2,144 My
Ba-139 $ 138,908841 \beta^-83,25 \mathrm{m} $	Er-164 1,601 163,929209	Hg-204 6,87 203,973494	Np-238 238,050947 β^- 2,117 d
Ba-140 $\begin{vmatrix} 139,91061 \\ \beta - 12,75 \end{vmatrix}$ d	Er-165 164,930734 K 10,36 h	Hg-205 $ 204,97607 _{\beta^-5,14 \text{ m}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
La-138 0,0888 137,90711 β + 102 Gy	Er-166 33,503 165,930300	Tl-202 201,97210 K 12,31 d	Pu-238 238,049560 \(\alpha \) 87,7 y
La-139 99,911 138,906356	Er-167 22,869 166,932055	Tl-203 29,52 202,972345	Pu-239 239,052164 \alpha 24,11 ky
La-140 139,909481 β-40,28 h	Er-167 22,869 100,932033 Er-168 26,978 167,932377	Tl-204 29,52 202,972545 Tl-204 203,973864 β - 3,783 y	Pu-240 259,052164 α 24,11 ky 240,053814 α 6,561 ky
La-140 $ 139,909481 \beta = 40,2811 140,91097 \beta = 3,92 h$	$\frac{\text{Er-108}}{\text{Er-169}}$ $\frac{20,978}{168,934597}$ $\frac{107,932377}{\beta^-9,392}$ d	Tl-205 70,48 204,974428	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
La-141 $ 140,91097 \beta = 3,9211 $ La-142 $ 141,91409 \beta = 91,1 \text{ m}$			l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Er-170 14,910 169,935470	Tl-206 205,976111 β-4,202 m	Pu-242 242,058743 α 375 ky
	Er-171 170,938036 β^- 7,516 h	TI-207 $206,97742$ $\beta^-4,77$ m	Pu-243 243,06200 β ⁻ 4,956 h
Ce-137 $\begin{vmatrix} 136,907762 \\ 6-138 \end{vmatrix}$ β^+9 h	Tm-169 100 168,934218	Tl-208 207,982019 β-3,053 m	Pu-244 244,06421 α 80 My
Ce-138 0,251 137,90599	Tm-170 169,935806 β = 128,6 d	Tl-210 209,99007 β^- 1,30 m	Am-242 $242,059549$ $\beta^-16,02$ h
Ce-139 138,90666 K 137,6 d	Yb-168 0,123 167,933890	Pb-204 1,4 203,973044	Am-243 243,061381 α 7,37 ky
Ce-140 88,450 139,905443	Yb-169 168,935183 K 32,02 d	Pb-205 204,974482 K 17,3 My	Cm-246 246,067224 α 4,706 ky
Ce-141 $ 140,908281 \beta^{-}32,51 d$	Yb-170 2,982 169,934766	Pb-206 24,1 205,974466	Cm-247 $247,07035$ α 15,6 My
Ce-142 11,114 141,909250	Yb-171 14,09 170,936330	Pb-207 22,1 206,975897	Bk-246 246,0687 β^+ 1,80 d
Ce-143 $ 142,912392 \beta^-33,04 \text{ h}$	Yb-172 21,68 171,936386	Pb-208 52,4 207,976652	Bk-247 247,07031 α 1,38 ky
Ce-144 143,91365 β^- 284,9 d	Yb-173 16,103 172,938215	Pb-209 $208,981090 \beta^{-3},253 h$	Cf-251 $251,07959$ α 900 y
Ce-145 $ 144,9173 \beta^{-3},01 \text{ m}$	Yb-174 32,026 173,938866	Pb-210 $209,984189 \beta^{-22,20} y$	Es-252 252,0830 α 471,7 d
Pr-141 100 140,907658	Yb-175 $ 174,941281 \beta^-4,185 d$	Pb-211 $ 210,988737 _{\beta}^{-36,1 \text{ m}}$	Fm-257 $257,09511 \alpha 100,5 d$
Pr-142 $ 141,910050 $ $\beta^-19,12$ h	Yb-176 12,996 175,942576	Pb-212 $211,991898 \beta^{-1}0,64 h$	Md-258 258,09843 α 51,5 d
Pr-143 $ 142,910823 _{\beta} = 13,57 \mathrm{d}$	Yb-177 176,945266 β - 1,911 h	Pb-214 $213,999806 \beta^{-2}6,8 \text{ m}$	No-259 $259,1010$ α 58 m
Pr-144 $ 143,913311 _{\beta}^{-17,28 \text{ m}}$	Lu-173 172,938934 K 1,37 y	Bi-206 $205,97850$ $\beta^{+}6,243$ d	$\frac{1}{260,1055}$ $\frac{1}{260,1055}$ $\frac{1}{260,1055}$ $\frac{1}{260,1055}$ $\frac{1}{260,1055}$ $\frac{1}{260,1055}$
Pr-145 144,91452 β^- 5,984 h	Lu-174 173,940341 \(\beta^{+}3,31\) y	Bi-207 $206,978471 \beta + 31,55 y$	Rf-261 261,1088 SF 2,2 s
Nd-142 27,152 141,907729	Lu-175 97,401 174,940775	Bi-207 200,378471 β · 31,33 y 207,979743 β + 368 ky	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Nd-143 12,174 142,909820	Lu-176 2,599 175,942690 β-37,6 Gy	Bi-208 $207,979743 \beta^{+} 308 \text{ ky}$ Bi-209 $100 208,980399 \alpha$ $19,9 \text{ Ey}$	l ! ! ' !
Nd-144 23,798 143,910093 α 2,29 Py			l 9 / /-
		Bi-210 209,984121 β = 5,012 d	Bh-262 262,1230 α 84 ms
Nd-145 8,293 144,912579	Hf-174 0,16 173,940046 \alpha 2 Py	Bi-211 210,98727 α 2,14 m	Hs-267 267,1317 α 55 ms
Nd-146 17,189 145,913123	Hf-175 174,941509 K 70 d	Bi-212 $ 211,991286 \beta^-60,55 \text{ m}$	Mt-268 268,1386 α 27 ms
Nd-147 146,916106 β - 10,98 d	Hf-176 5,26 175,941408	Bi-213 212,99439 $\beta^-45,59 \mathrm{m}$	
Nd-148 5,756 147,916899	Hf-177 18,60 176,943228	Bi-214 213,99871 β^- 19,9 m	
Nd-149 $ 148,920155 \beta^-1,728 h$	Hf-178 27,28 177,943706	$ Po-209 $ $ 208,982431 \alpha$ $102 y$	İ