

Fórmulas Generales

Masa

VVolumen

Altura

Energia por unidad de masa $\left[\frac{J}{kq}\right]$

Tiempo

Aceleración de la gravedad

 δ_{H_2O} Densidad del agua $(997\frac{kg}{m^3})$

Trabajo por unidad de masa

Densidad $\delta = \frac{m}{V}$

Caudal volumentrico $Q_v = \frac{V}{t}$

Volumen especifico $v_e = \frac{V}{m}$

Presión hidrostática $P_h = \delta gh$

Caudal masico $Q_m = \frac{m}{t} = \frac{Q_v}{v_e}$

Densidad especifica $\delta_e = \frac{\delta}{\delta_{H_2O}}$

Potencia $N = Q_m W \left[\frac{J}{h} = W \right]$

Potencia $N = WQ_m$

Temperaturas $\frac{{}^{\circ}C}{100} = \frac{{}^{\circ}F - 32}{180} = \frac{k - 273}{100}$

Primer Principio

QCalor [J = N.m]

Energia interna [J]

Calor especifico a volumen cte c_v

TTemperatura [k] WTrabajo [J]

por unidad de masa $\left[\frac{J}{ka}\right]$

Calor especifico a presion cte c_p

c Calor especifico

Calor $\delta Q = du + \delta W$

Ciclo cerrado $| \phi \delta Q = \phi \delta W$

Proceso a P: cte $| Q = mc_n \Delta T$

Proceso a V: cte | $Q = mc_v \Delta T$

Razon calores esp. $k = \frac{c_p}{c_m}$

Trabajo $\mid W = \int p \, dV$

Energia interna $\mid \Delta U = mC_v \Delta T$

Proceso a P: cte (p.109) | $W = p\Delta V = mR\Delta T$

Entalpia $\mid H = U + pV$

Gas Ideal $\mid H = mc_pT$

Gases ideales

mMasa Presion

VVolumen TTemperatura

 $\overline{R} = RM$ Constante universal

M Masa molar $\left[\frac{g}{mol} = \frac{Kg}{kmol}\right]$

Ley Universal pV = mRT

Numero de moles $n = \frac{m}{M}$

Para n mol presentes $pV = n\overline{R}T$

Para cada gas $R = \frac{\overline{R}}{M} = cte$

Ley de Boyle (T = cte) | pV = cte Ley de Charles (p = cte) $| \frac{V}{T} = cte$

Mezcla de gases

 M_m Masa molar mezcla M_i Masa molar del elemento i

 n_t Numero de moles total n_i N° de moles del elemento i

 m_t Masa total m_i Masa del elemento i

 p_t Presion total p_i Presion del elemento i

 V_T Volumen total V_i Volumen del elemento i

$$n_t = \frac{m_t}{M_t} \mid m_t = \sum m_i = \sum M_i n_i$$
 comp. gravimetrica $\mid g_i = \frac{m_i}{m_t}$

Fraccion molar $\chi_i = \frac{n_i}{n_i} = \frac{p_i}{n_i} = \frac{V_i}{V_i}$ Const. mezcla $R_m = \sum g_i R_i$

Analisis volumentrico $|V_i = V_t \chi_i$ Calor esp. mezcla $|C_v| = \sum g_i C_{v_i}$

Analisis barometrico $| p_i = p_t \chi_i$ Calor esp. mezcla $| C_p = \sum g_i C_{p_i}$

Energia int, mecla $\mid u = \sum g_i u_i$ Entalpia mezcla $\mid h = \sum g_i h_i$

Ley de Dalton $|(p_1+p_2)V = (n_1+n_2)\overline{R}T$

Ley de amagat $p(V_1 + V_2) = (n_1 + n_2)\overline{R}T$

Gases reales

 p_c Presion critica V_c volumen critico

 T_c Temperatura critica b Volumen de moleculas

 p_i Presion interna termodinamica $p_i = a\delta_i^2 = a\frac{1}{V^2}$

Z Coeficiente de compresibilidad

Van der Waals
$$| (p+p_i)(V-b) = mRT \rightarrow (p+\frac{a}{V^2})(V-b) = mRT$$

Constante $a = 3p_cV_c^2$ Constante $b = \frac{V_c}{3}$

Constante $R = \frac{8}{3} \frac{p_c V_c}{T_c}$ con coeficiente Z PV = ZnRT

Battie-Bridgeman $P = \frac{\overline{R}T}{\overline{v}^2}(\overline{v} + B) - \frac{A}{\overline{v}^2}$ $A = A_0(1 - \frac{a}{\overline{v}})$

 $A = A_0(1 - \frac{a}{\overline{v}}) \qquad \qquad e = \frac{C}{\overline{v}T^3}$

UTN-Frrq Termodinamica

Transformaciones de gases

■ Transformacion Isobárica (p = Cte.):

Calor
$$\mid Q = \Delta U + W$$
 Trabajo $\mid W = \int p \, dv = p \Delta V$ Calor $\mid Q = C_p \Delta T$ Energia int. $\mid \Delta U = C_v \Delta T$ Ec. de Mayer $\mid C_p = C_v + R$ Trabajo $\mid W = p \Delta V = mR\Delta T$

■ Transformacion Isométrica (V = Cte.):

Calor
$$\mid Q = C_p \Delta T$$
 Trabajo $\mid W = 0$ Ec. de Mayer $\mid C_p = C_v + R$

■ Transformacion Isotérmica (T = Cte.):

Energia int.
$$\Delta U=0$$
 Trabajo $W=RT\log_e\frac{V_2}{V_1}$ Calor $Q=RT\log_e\frac{V_2}{V_1}$ Relacion por T=cte $P_1=\frac{V_2}{P_2}$

 \bullet Transformacion adiabatica Q=0:

Relacion
$$T \mid V^{(k-1)}T = cte$$
 Relacion $PV \mid V^kP = cte$ Relacion $TP \mid TP^{(\frac{1}{k}-1)} = cte$
$$k = \frac{C_p}{C_v} \mid (k-1) = \frac{R}{C_v}$$

• Transformacion Politropica C = cte.:

Relacion
$$T\mid V^{(m-1)}T=cte$$
 Relacion $PV\mid V^mP=cte$ Relacion $TP\mid TP^{(\frac{1}{m}-1)}=cte$ $m=\frac{C_p-C}{C_v-C}\mid$

$$W = \frac{RT_1}{m-1} \left(1 - \frac{T_2}{T_1} \right)$$

$$W = \frac{RT_1}{m-1} \left[1 - \left(\frac{v_1}{v_2} \right)^{m-1} \right]$$

$$W = \frac{RT_1}{m-1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{m-1}{m}} \right]$$

 ${\bf nota:}$ estas mismas ecuaciones se pueden utilizar para la transformación adiabatica pero cambiando el coeficiente m por k

UTN-Frrq Termodinamica

Proceso	Índice	Calor	$\int_{1}^{2} p.dv$	Relaciones	Calor específico
	n	agregado	$\int_{1}^{\infty} p.uv$	$_{ m p,v,T}$	c
Presión Constante	n=0	$c_p.(T_2-T_1)$	$p.(v_2-v_1)$	$\frac{T_2}{T_1} = \frac{v_2}{v_1}$	c_p
Volumen Constante	$n=\infty$	$c_v.(T_2-T_1)$	0	$\frac{T_1}{T_2} = \frac{p_1}{p_2}$	c_v
Temperatura Constante	n=1	$p_1.v_2.\log_e \frac{v_2}{v_1}$	$p_1.v_2.\log_e \frac{v_2}{v_1}$	$p_1.v_1 = p_2.v_2$	∞
Adiabático reversible	$n=\gamma, k$	0	$\frac{p_1.v_1 - p_2.v_2}{\gamma - 1}$	$p_1.v_1^{\gamma} = p_2.v_2^{\gamma}$ $\frac{T_2}{T_1} = (\frac{v_1}{v_2})^{\gamma - 1}$ $\frac{T_2}{T_1} = (\frac{p_2}{p_1})^{\gamma}$	0
Politrópico	n=n, m	$c_n.(T_2 - T_1)$ $= c_v.(\frac{\gamma - n}{1 - n}).(T_2 - T_1)$ $= (\frac{\gamma - n}{1 - n}).\mathcal{W}_{sin\ flujo}$		$p_1.v_1'' = p_2.v_2''$	

Sistemas abiertos

Velocidad

Altura

Aceleracion gravesadad

 ω velocidad z Artura U Energia interna g Aceleracion graves $w_1 = P_1 V_1$ Trabajo de ingreso $w_2 = P_2 V_2$ Trabajo de egreso

Primer principio | $Q = \Delta E + W_T$

Energia cinetica $e_c = \frac{\omega^2}{2}$

 W_T Energia total $\mid E = E_c + E_p + U$ Energia potencial $\mid e_p = gz$

Trabajo total | $W_t = W_2 - W_1 + W_c$ Trabajo de circulación | $W_c = \int -v \, dp$

Calor $| Q = \Delta U + \Delta E_c + \Delta E_p + W_t$

Entalpia | h = u + PV

Calor entonces $| Q = \Delta h + W_c$

Nota: la ultima definicion de calor es considerando $e_c=0$ y $e_p=0$

Ecuacion de continuidad

Velocidad

A Seccion

Longitud

V = AL Volumen

Caudal volumetrico
$$Q_v = \frac{V}{t} = \frac{Al}{t} = A\omega$$

Continuidad |
$$Q_1 = Q_2 \rightarrow A_1 \omega_1 = A_2 \omega_2$$

Caudal masico
$$Q_m = \frac{m}{t} = \frac{Q_v}{v_o}$$

UTN-Frrq Termodinamica

Segundo Principio

Q Calor T Temperatura

los ciclos reversibles, se puede poner el rendimiento en funcion de las temperaturas de las fuentes.

21

Entropia

Q Calor T Temperatura Se toma un estado de referencia en el cual $s_0=0$ para $T_0\,v_0\,p_0$

Entropia
$$\begin{vmatrix} ds = \frac{\delta Q}{T} \end{vmatrix}$$

Para $s_0 \begin{vmatrix} s = C_v \ln \frac{T}{T_0} + R \ln \frac{v}{v_0} = C_p \ln \frac{T}{T_0} - R \ln \frac{p}{p_0} \end{vmatrix}$
 $v = cte \begin{vmatrix} s = s_0 + R \ln \frac{v}{v_0} \end{vmatrix}$ Temperatura $\begin{vmatrix} T = T_0 e^{\frac{s_0}{c_v}} \end{vmatrix}$
 $p = cte \begin{vmatrix} s = s_0 - R \ln \frac{p}{p_0} \end{vmatrix}$ Temperatura $d = T_0 e^{\frac{s_0}{c_p}}$