Chapter 5

Reserves Recitation.

5.1

Another sorting algorithms, that it's correctness isn't so obivoius.

Claim 5.1.1. After the *i*th iteration, $A_1 \leq A_2 \leq A_3 ... \leq A_i$ and A_i is the maximum of the whole array.

Proof. By induction on the iteration number i.

- 1. Base. For i=1, it is clear that when j reaches the position of the maximal element, an exchange will occur and A_1 will be set to be the maximal element. Thus, the condition on line (3) will not be satisfied until the end of the inner loop and indeed, we have that A_1 at the end of the first iteration is the maximum.
- 2. Assumption. Assume the correctness of the claim for any i' < i.
- 3. Step. Consider the ith iteration. And observes that if $A_i = A_{i-1}$ then A_i is also the maximal elemennt in A, namely no exchange will be made in ith iteration, yet $A_1 \leq A_2 \leq ... \leq A_{i-1}$ by the induction assumption, thus $A_1 \leq A_2 \leq ... \leq A_{i-1} \leq A_i$ and A_i is the maximal element, so the claim holds in the end of the iteration. If $A_i < A_{i-1}$ then there exists $k \in [1, i-1]$ such $A_k > A_i$. Set k to be the minimal position for which the inequality holds. For Convinet denote by $A^{(j)}$ the array in the begging of the jth iteration of the inner loop. And let's split to cases according to j value.

- (a) j < k By definition of k, for any j < k, $A_j^{(1)} < A_i^{(1)}$, Hence in the first k-1 iteration no exchange will be made and we can conclude that $A_l^{(j)} = A_l^{(1)}$ for any $l \in [n]$ and $j \le k$.
- (b) $j \ge k$ and j < i + 1, We claim that for each such j an exhange will always occuer.

Claim 5.1.2. For any $j \in [k, i]$ we have that in the end of the jth iteration:

- $A_i^{(j+1)} = A_i^{(j)}$.
- $A_i^{(j+1)} = A_i^{(j)} = A_i^{(1)}$.
- For any l > j and $l \neq i$ we have $A_l^{(j+1)} = A_l^{(1)}$.

Proof. Observes that the thired section holds trivally by the defination of the algorithm, it doesn't toach any position greater than j in the first j iterations (inner loop) except the ith position. So have to prove only the first two bullrts, And again we are going to prove them by induction.

- i. Base. $A_k^{(1)}$ is greater than A_i , and be the previews case we have that at the begging of the k iteration $A_k^{(k)} = A_k^{(1)}$, $A_i^{(k)} = A_k^{(1)}$. Therefore the condition on line (3) is satisfied, exchange is been made, and $A_k^{(k+1)} = A_i^{(k)} = A_i^{(0)}$ and $A_i^{(k+1)} = A_k^{(k)}$. Now So $A_{k+1}^{(k+1)} = A_{k+1}^{(k)} = A_{k+1}^{(0)}$
- ii. Assumption. Assume the correctness of the claim for any $k \ge j' < j \le i$.
- iii. Step. Consider the $j \in (k,i]$ iteration, By the induction assumption we have that $A_{j-1}^{(j)} = A_i^{(j-1)}$ and $A_i^{(j)} = A_{j-1}^{(j-1)} = A_{j-1}^{(1)}$. On the otherhand, by the induction assumption of Claim 5.1.1, $j-1 < i \Rightarrow A_{j-1}^{(1)} \le A_j^{(1)}$. Combining the thired bullet we obtain that:

$$A_j^{(j)} = A_j^{(1)} \ge A_{j-1}^{(1)} = A_i^{(j)}$$

And therefore, either there is inequality and exhange be made or there is equality, in both cases after the ith iteration we have $A_j^{(j+1)} = A_i^{(j)}$ and $A_i^{(j+1)} = A_j^{(j)} = A_j^{(1)}$.

(c) j = i - 1

5.1.

```
Result: returns the multiplication x \cdot y where x, y \in \mathbb{F}_2^n
 2 if x,y \in \mathbb{F}_2 then
 \mathbf{3} return x \cdot y
 4 end
 5
 6 else
         define x_l, x_r \leftarrow x and y_l, y_r \leftarrow x
                                                               //O(n).
 7
 8
         calculate z_0 \leftarrow \text{Karatsuba}\left(x_l, y_l\right)
                    z_2 \leftarrow \operatorname{Karatsuba}\left(x_r, y_r\right)
10
                    z_1 \leftarrow \text{Karatsuba}\left(x_r + x_l, y_l + y_r\right) - z_0 - z_2
11
12
         return z_0 + 2^{\frac{n}{2}} z_1 + 2^n z_2 // O(n).
14 end
```