CS 33

Virtual Memory

The Address-Space Concept

- Protect processes from one another
- Protect the OS from user processes
- Provide efficient management of available storage

Memory Fence

Base and Bounds Registers

Swapping

Overlays

Memory Maps

Page Tables

Quiz 1

How many 2¹²-byte pages fit in a 32-bit address space?

- a) a little over a 1000
- b) a little over a million
- c) a little over a billion
- d) none of the above

VM is Your Friend ...

- Not everything has to be in memory at once
 - pages brought in (and pushed out) when needed
 - unallocated parts of the address space consume no memory
 - » e.g., hole between stack and dynamic areas
- What's mine is not yours (and vice versa)
 - address spaces are disjoint
- Sharing is ok though ...
 - address spaces don't have to be disjoint
 - » a single page frame may be mapped into multiple processes
- I don't trust you (or me)
 - access to individual pages can be restricted
 - » read, write, execute, or any combination

Page-Table Size

- Consider a full 2³²-byte address space
 - assume 4096-byte (2¹²-byte) pages
 - 4 bytes per page-table entry
 - the page table would consist of $2^{32}/2^{12}$ (= 2^{20}) entries
 - its size would be 2²² bytes (or 4 megabytes)
 - » at \$100/gigabyte
 - around \$0.40
- For a 2⁶⁴-byte address space
 - assume 4096-byte (212-byte) pages
 - 8 bytes per page-table entry
 - the page table would consist of $2^{64}/2^{12}$ (= 2^{52}) entries
 - its size would be 2⁵⁵ bytes (or 32 petabytes)
 - » at \$1/gigabyte
 - over \$33 million

IA32 Paging

Quiz 2

Can a page start at a virtual address that's not divisible by the page size?

- a) yes
- b) no

Linux Intel IA32 VM Layout

x86-64 Virtual Address Format 1

x86-64 Virtual Address Format 2

Why Multiple Page Sizes?

- Fragmentation
 - for region composed of 4KB pages, average internal fragmentation is 2KB
 - for region composed of 1GB pages, average internal fragmentation is 512MB
- Page-table overhead
 - larger page sizes have fewer page tables
 - » less overhead in representing mappings

x86-64 Address Space

Performance

- Page table resides in real memory (DRAM)
- A 32-bit virtual-to-real translation requires two accesses to page tables, plus the access to the ultimate real address
 - three real accesses for each virtual access
 - 3X slowdown!
- A 64-bit virtual-to-real translation requires four accesses to page tables, plus the access to the ultimate real address
 - 5X slowdown!

Translation Lookaside Buffers

Quiz 3

Recall that there is a 5x slowdown on memory references via virtual memory on the x86-64. If all references are translated via the TLB, the slowdown will be

- a) 1x
- b) 2x
- c) 3x
- d) 4x

OS Role in Virtual Memory

- Memory is like a cache
 - quick access if what's wanted is mapped via page table
 - slow if not OS assistance required
- · OS
 - make sure what's needed is mapped in
 - make sure what's no longer needed is not mapped in

Mechanism

- Program references memory
 - if reference is mapped, access is quick
 - » even quicker if translation in TLB and referent in onchip cache
 - if not, page-translation fault occurs and OS is invoked
 - » determines desired page
 - » maps it in, if legal reference

The "Pageout Daemon"

Managing Page Frames

Clock Algorithm

Why is virtual memory used?

More VM than RM

Isolation

Sharing

File I/O

Buffer
User Process

Multi-Buffered I/O

Traditional I/O

User Process 1

Mapped File I/O

Multi-Process Mapped File I/O

