Dilated floor functions and their commutators

Harry Richman

joint w/ Jeff Lagarias and Takumi Murayama University of Michigan

December 5, 2018

The floor function rounds a real number down to the nearest integer

$$[x]: \mathbb{R} \to \mathbb{Z}$$

The floor function rounds a real number down to the nearest integer

$$|x|: \mathbb{R} \to \mathbb{Z}$$

- **1** [20.18] =
- **②** [1.99] =
- **3** [-1.2] =
- **④** [5] =

The floor function rounds a real number down to the nearest integer

$$|x|: \mathbb{R} \to \mathbb{Z}$$

- **2** [1.99] =
- **3** [-1.2] =
- **④** [5] =

The floor function rounds a real number down to the nearest integer

$$|x|: \mathbb{R} \to \mathbb{Z}$$

- [1.99] = 1
- **3** [-1.2] =
- **4** [5] =

The floor function rounds a real number down to the nearest integer

$$|x|: \mathbb{R} \to \mathbb{Z}$$

- [1.99] = 1
- |-1.2| = -2
- **4** [5] =

The **floor function** rounds a real number down to the nearest integer

$$|x|: \mathbb{R} \to \mathbb{Z}$$

- **1** |20.18| = 20
- [1.99] = 1
- [-1.2] = -2
- **4** [5] = 5

The floor function rounds a real number down to the nearest integer

$$|x|: \mathbb{R} \to \mathbb{Z}$$

Examples:

- **2** |1.99| = 1
- |-1.2| = -2
- **4** [5] = 5

 $\lfloor x \rfloor$ is also known as the "greatest integer function":

$$\lfloor x \rfloor = \max\{n \in \mathbb{Z} : n \le x\}$$

The floor function rounds a real number down to the nearest integer

$$\lfloor x \rfloor : \mathbb{R} \to \mathbb{Z}$$

Figure: Graph of $f(x) = \lfloor x \rfloor$

A dilated floor function rounds down after rescaling by parameter $\boldsymbol{\alpha}$

$$f_{\alpha}(x) := \lfloor \alpha x \rfloor : \mathbb{R} \to \mathbb{Z}$$

A dilated floor function rounds down after rescaling by parameter α

$$f_{\alpha}(x) := \lfloor \alpha x \rfloor : \mathbb{R} \to \mathbb{Z}$$

Figure: Graph of $f_{\varphi}(x) = \lfloor \varphi x \rfloor$, where $\varphi = \frac{1+\sqrt{5}}{2}$

A **dilated floor function** rounds down after rescaling by parameter α

$$f_{\alpha}(x) := \lfloor \alpha x \rfloor : \mathbb{R} \to \mathbb{Z}$$

 $\leadsto f_{\alpha}$ discretizes \mathbb{R} "at length scale α^{-1} "

Figure: Graph of $f_{\varphi}(x) = \lfloor \varphi x \rfloor$, where $\varphi = \frac{1+\sqrt{5}}{2}$

Elementary number theory:

$$\operatorname{val}_p(n!) = \left\lfloor \frac{1}{p} n \right\rfloor + \left\lfloor \frac{1}{p^2} n \right\rfloor + \left\lfloor \frac{1}{p^3} n \right\rfloor + \cdots$$

Elementary number theory:

$$\operatorname{val}_p(n!) = \left\lfloor \frac{1}{p} n \right\rfloor + \left\lfloor \frac{1}{p^2} n \right\rfloor + \left\lfloor \frac{1}{p^3} n \right\rfloor + \cdots$$

Note: $val_p(M) = largest exponent e such that <math>p^e$ divides M

Elementary number theory:

$$\operatorname{\mathsf{val}}_p(n!) = \left\lfloor \frac{1}{p} n \right\rfloor + \left\lfloor \frac{1}{p^2} n \right\rfloor + \left\lfloor \frac{1}{p^3} n \right\rfloor + \cdots$$

Riemann zeta function:

$$\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s}$$
 satisfies $\int_0^\infty \lfloor x \rfloor \, x^{-s} \frac{dx}{x} = \frac{1}{s} \zeta(s)$

Elementary number theory:

$$\operatorname{\mathsf{val}}_p(n!) = \left\lfloor \frac{1}{p} n \right\rfloor + \left\lfloor \frac{1}{p^2} n \right\rfloor + \left\lfloor \frac{1}{p^3} n \right\rfloor + \cdots$$

Riemann zeta function:

$$\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s}$$
 satisfies $\int_0^\infty \lfloor \alpha x \rfloor x^{-s} \frac{dx}{x} = \frac{\alpha^s}{s} \zeta(s)$

Elementary number theory:

$$\operatorname{val}_p(n!) = \left\lfloor \frac{1}{p} n \right\rfloor + \left\lfloor \frac{1}{p^2} n \right\rfloor + \left\lfloor \frac{1}{p^3} n \right\rfloor + \cdots$$

Riemann zeta function:

$$\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s}$$
 satisfies $\int_0^\infty \lfloor \alpha x \rfloor \, x^{-s} \frac{dx}{x} = \frac{\alpha^s}{s} \zeta(s)$

i.e. $-\frac{\alpha^{-s}}{s}\zeta(-s)$ is the Mellin transform of $f_{\alpha}(x)=\lfloor \alpha x\rfloor$

Elementary number theory:

$$\operatorname{val}_p(n!) = \left\lfloor \frac{1}{p} n \right\rfloor + \left\lfloor \frac{1}{p^2} n \right\rfloor + \left\lfloor \frac{1}{p^3} n \right\rfloor + \cdots$$

Riemann zeta function:

$$\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s}$$
 satisfies $\int_0^\infty \lfloor \alpha x \rfloor x^{-s} \frac{dx}{x} = \frac{\alpha^s}{s} \zeta(s)$

i.e.
$$-\frac{\alpha^{-s}}{s}\zeta(-s)$$
 is the Mellin transform of $f_{\alpha}(x)=\lfloor \alpha x\rfloor$

Algebraic geometry: measuring singularities, minimal model program...

Elementary number theory:

$$\operatorname{val}_{p}(n!) = \left\lfloor \frac{1}{p} n \right\rfloor + \left\lfloor \frac{1}{p^{2}} n \right\rfloor + \left\lfloor \frac{1}{p^{3}} n \right\rfloor + \cdots$$

$$\frac{?}{=} \left\lfloor \frac{1}{p} n \right\rfloor + \left\lfloor \frac{1}{p} \left\lfloor \frac{1}{p} n \right\rfloor \right\rfloor + \left\lfloor \frac{1}{p} \left\lfloor \frac{1}{p} \left\lfloor \frac{1}{p} n \right\rfloor \right\rfloor \right\rfloor + \cdots$$

Riemann zeta function:

$$\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s}$$
 satisfies $\int_0^\infty \lfloor \alpha x \rfloor \, x^{-s} \frac{dx}{x} = \frac{\alpha^s}{s} \zeta(s)$

i.e. $-\frac{\alpha^{-s}}{s}\zeta(-s)$ is the Mellin transform of $f_{\alpha}(x)=\lfloor \alpha x\rfloor$

Algebraic geometry: measuring singularities, minimal model program...


```
Economics: currency exchange one US dollar = 0.80 UK pound (approximately) = 1.33 \text{ Can. dollar} = 0.88 \text{ Eur. euro}
```

```
Economics: currency exchange one US dollar = \frac{4}{5} UK pound (approximately) = \frac{4}{3} Can. dollar = \frac{8}{9} Eur. euro
```

Economics: currency exchange one US dollar = $\frac{4}{5}$ UK pound (approximately) = $\frac{4}{3}$ Can. dollar = $\frac{8}{9}$ Eur. euro

To exchange money from US to UK

$$x \mapsto \left\lfloor \frac{4}{5}x \right\rfloor$$

(bank does not give back change)

Economics: currency exchange

one US dollar = $\frac{4}{5}$ UK pound (approximately)

 $=\frac{4}{3}$ Can. dollar

 $=\frac{8}{9}$ Eur. euro

Economics: currency exchange

Economics: currency exchange

Problem: Would you rather exchange money through Canada or Europe?

Economics: currency exchange

Problem: Would you rather exchange money through Canada or Europe?

$$\left\lfloor \frac{3}{5} \left\lfloor \frac{4}{3} x \right\rfloor \right\rfloor$$
 vs. $\left\lfloor \frac{9}{10} \left\lfloor \frac{8}{9} x \right\rfloor \right\rfloor$?

Vague Question

What happens when we compose f_{α} and f_{β} ?

Vague Question

What happens when we compose f_{α} and f_{β} ?

Figure: Graph of $f_1 \circ f_{\varphi} = \lfloor \lfloor \varphi x \rfloor \rfloor$ where $\varphi = \frac{1+\sqrt{5}}{2}$

Vague Question

What happens when we compose f_{α} and f_{β} ?

Figure: Graph of $f_{\varphi} \circ f_1 = \lfloor \varphi \lfloor x \rfloor \rfloor$ where $\varphi = \frac{1+\sqrt{5}}{2}$

Vague Question

What happens when we compose f_{α} and f_{β} ?

 $\underline{\mathsf{Example}} : \quad f_1 \circ f_\varphi \ \mathsf{vs} \ f_\varphi \circ f_1$

Vague Question

What happens when we compose f_{α} and f_{β} ?

Example: $f_1 \circ f_{\varphi}$ vs $f_{\varphi} \circ f_1$

Vague Question

What happens when we compose f_{α} and f_{β} ?

Example: $f_1 \circ f_{\varphi}$ vs $f_{\varphi} \circ f_1$

•
$$f_1 \circ f_{\varphi} \neq f_{\varphi} \circ f_1$$

Vague Question

What happens when we compose f_{α} and f_{β} ?

Example: $f_1 \circ f_{\varphi}$ vs $f_{\varphi} \circ f_1$

•
$$f_1 \circ f_{\varphi} \neq f_{\varphi} \circ f_1$$

•
$$f_1 \circ f_{\varphi} \geq f_{\varphi} \circ f_1$$

Example: $f_1 \circ f_{\varphi}$ vs $f_{\varphi} \circ f_1$

Observations:

•
$$f_1 \circ f_{\varphi} \neq f_{\varphi} \circ f_1$$

•
$$f_1 \circ f_{\varphi} \geq f_{\varphi} \circ f_1$$

Problem A

For which (α, β) do we have

$$f_{\alpha} \circ f_{\beta} = f_{\beta} \circ f_{\alpha}$$
?

Example: $f_1 \circ f_{\varphi}$ vs $f_{\varphi} \circ f_1$

Observations:

•
$$f_1 \circ f_{\varphi} \neq f_{\varphi} \circ f_1$$

$$\bullet \ \mathit{f}_{1} \circ \mathit{f}_{\varphi} \geq \mathit{f}_{\varphi} \circ \mathit{f}_{1}$$

Problem A

For which (α, β) do we have

$$f_{\alpha} \circ f_{\beta} = f_{\beta} \circ f_{\alpha}$$
?

Problem B

For which (α, β) do we have

$$f_{\alpha} \circ f_{\beta} \geq f_{\beta} \circ f_{\alpha}$$
?

Composing floor functions: results

Problem A

For which (α, β) do we have $f_{\alpha} \circ f_{\beta}$

$$f_{\alpha} \circ f_{\beta} = f_{\beta} \circ f_{\alpha}$$
?

Problem A

For which (α, β) do we have $\lfloor \alpha \lfloor \beta x \rfloor \rfloor = \lfloor \beta \lfloor \alpha x \rfloor \rfloor$?

Problem A

For which (α, β) do we have

$$\left[\alpha \left\lfloor \beta x \right\rfloor\right] = \left[\beta \left\lfloor \alpha x \right\rfloor\right]?$$

Theorem (Lagarias–Murayama–R)

All solutions to (A) are:

Problem A

For which (α, β) do we have

$$\left[\alpha \left[\beta x\right]\right] = \left[\beta \left[\alpha x\right]\right]?$$

Theorem (Lagarias–Murayama–R)

All solutions to (A) are:

In fact: $\left\lfloor \frac{1}{m} \left\lfloor \frac{1}{n} x \right\rfloor \right\rfloor = \left\lfloor \frac{1}{mn} x \right\rfloor$

Problem A

For which (α, β) do we have

$$\left[\alpha \left\lfloor \beta x \right\rfloor\right] = \left\lfloor\beta \left\lfloor\alpha x \right\rfloor\right]?$$

Theorem (Lagarias–Murayama–R)

All solutions to (A) are:

In fact:
$$\left\lfloor \frac{1}{m} \left\lfloor \frac{1}{n} x \right\rfloor \right\rfloor = \left\lfloor \frac{1}{mn} x \right\rfloor$$

$$\left\lfloor \frac{1}{p^2} n \right\rfloor = \left\lfloor \frac{1}{p} \left\lfloor \frac{1}{p} n \right\rfloor \right\rfloor !$$

Problem B

For which (α, β) do we have $f_{\alpha} \circ f_{\beta} \geq f_{\beta} \circ f_{\alpha}$?

Problem B

For which (α, β) do we have $\lfloor \alpha \lfloor \beta x \rfloor \rfloor \geq \lfloor \beta \lfloor \alpha x \rfloor \rfloor$?

Problem B

For which (α, β) do we have

 $\left\lfloor \alpha \left\lfloor \beta x \right\rfloor \right\rfloor \ge \left\lfloor \beta \left\lfloor \alpha x \right\rfloor \right\rfloor?$

Theorem (Lagarias-R)

All solutions to (B) are:

$\lfloor \alpha \lfloor \beta x \rfloor \rfloor \geq \lfloor \beta \lfloor \alpha x \rfloor \rfloor$: positive-dilation results

Theorem (Lagarias-R)

All positive solutions to (B) are:

$\lfloor \alpha \lfloor \beta x \rfloor \rfloor \geq \lfloor \beta \lfloor \alpha x \rfloor \rfloor$: positive-dilation results

Coordinate change:

$[\alpha \lfloor \beta x \rfloor] \ge \lfloor \beta \lfloor \alpha x \rfloor \rfloor$: positive-dilation results

Coordinate change:

$$\mu = \frac{1}{\alpha}, \ \nu = \frac{\beta}{\alpha}$$

$[\alpha \lfloor \beta x \rfloor] \ge [\beta \lfloor \alpha x \rfloor]$: positive-dilation results

Coordinate change:

$$\mu = \frac{1}{\alpha}, \ \nu = \frac{\beta}{\alpha}$$

Symmetries:

$|\alpha|\beta x|| \ge |\beta|\alpha x||$: positive-dilation results

Coordinate change:

$$\mu = \frac{1}{\alpha}, \ \nu = \frac{\beta}{\alpha}$$

Symmetries:

$\lfloor \alpha \lfloor \beta x \rfloor \rfloor \geq \lfloor \beta \lfloor \alpha x \rfloor \rfloor$: positive-dilation results

Where do green solution curves come from?

Parameter $\mu \geq 1$,

$$\mathcal{B}(\mu) = \{ \lfloor \mu \rfloor, \lfloor 2\mu \rfloor, \lfloor 3\mu \rfloor, \ldots \} \subset \mathbb{N}$$

Parameter $\mu \geq 1$,

$$\mathcal{B}(\mu) = \{ \lfloor \mu \rfloor, \lfloor 2\mu \rfloor, \lfloor 3\mu \rfloor, \ldots \} \subset \mathbb{N}$$

Note:

$$\mathcal{B}(\mu) = \text{ output values of } f_{\mu} \circ f_{1}(x) = \lfloor \mu \lfloor x \rfloor \rfloor$$

Parameter $\mu \geq 1$,

$$\mathcal{B}(\mu) = \{ \lfloor \mu \rfloor, \lfloor 2\mu \rfloor, \lfloor 3\mu \rfloor, \ldots \} \subset \mathbb{N}$$

Note:

$$\mathcal{B}(\mu) = \text{ output values of } f_{\mu} \circ f_{1}(x) = \lfloor \mu \lfloor x \rfloor \rfloor$$

Example:
$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$$
, $\mathcal{B}(\varphi) = \{1, 3, 4, 6, 8, 9, 11, 12, \ldots\}$

Parameter $\mu \geq 1$,

$$\mathcal{B}(\mu) = \{ \lfloor \mu \rfloor, \lfloor 2\mu \rfloor, \lfloor 3\mu \rfloor, \ldots \} \subset \mathbb{N}$$

Note:

$$\mathcal{B}(\mu) = \text{ output values of } f_{\mu} \circ f_{1}(x) = \lfloor \mu \lfloor x \rfloor \rfloor$$

Example:
$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$$
, $\mathcal{B}(\varphi) = \{1, 3, 4, 6, 8, 9, 11, 12, \ldots\}$
 $\varphi^2 = \frac{3+\sqrt{5}}{2} \approx 2.618$, $\mathcal{B}(\varphi^2) = \{2, 5, 7, 10, 13, 15, 18, \ldots\}$

Parameter $\mu \geq 1$,

$$\mathcal{B}(\mu) = \{ \lfloor \mu \rfloor, \lfloor 2\mu \rfloor, \lfloor 3\mu \rfloor, \ldots \} \subset \mathbb{N}$$

Note:

$$\mathcal{B}(\mu) = \text{ output values of } f_{\mu} \circ f_{1}(x) = \lfloor \mu \lfloor x \rfloor \rfloor$$

Example:
$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$$
, $\mathcal{B}(\varphi) = \{1, 3, 4, 6, 8, 9, 11, 12, \ldots\}$ $\varphi^2 = \frac{3+\sqrt{5}}{2} \approx 2.618$, $\mathcal{B}(\varphi^2) = \{2, 5, 7, 10, 13, 15, 18, \ldots\}$

What is "special" about $\mathcal{B}(\varphi)$ and $\mathcal{B}(\varphi^2)$?

Parameter $\mu \geq 1$,

$$\mathcal{B}(\mu) = \{ \lfloor \mu \rfloor, \lfloor 2\mu \rfloor, \lfloor 3\mu \rfloor, \ldots \} \subset \mathbb{N}$$

Note:

$$\mathcal{B}(\mu) = \text{ output values of } f_{\mu} \circ f_{1}(x) = \lfloor \mu \lfloor x \rfloor \rfloor$$

Example:
$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$$
, $\mathcal{B}(\varphi) = \{1, 3, 4, 6, 8, 9, 11, 12, \ldots\}$
 $\varphi^2 = \frac{3+\sqrt{5}}{2} \approx 2.618$, $\mathcal{B}(\varphi^2) = \{2, 5, 7, 10, 13, 15, 18, \ldots\}$

Theorem ("Beatty's Theorem," Ostrowski, Hyslop, Aitken, ..)

If μ and ν are irrational and satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$, then

$$\mathcal{B}(\mu) \cap \mathcal{B}(\nu) = \emptyset$$
 and $\mathcal{B}(\mu) \cup \mathcal{B}(\nu) = \mathbb{N}$

i.e. their Beatty sequences partition \mathbb{N} .

Theorem ("Beatty's Theorem" 1926)

Beatty sequences $\mathcal{B}(\mu)$, $\mathcal{B}(\nu)$ partition \mathbb{N} , i.e.

$$\mathcal{B}(\mu) \cap \mathcal{B}(\nu) = \emptyset$$
 and $\mathcal{B}(\mu) \cup \mathcal{B}(\nu) = \mathbb{N}$

iff μ and ν are irrational and satsify $\frac{1}{\mu} + \frac{1}{\nu} = 1$.

Theorem ("Beatty's Theorem" 1926)

Beatty sequences $\mathcal{B}(\mu)$, $\mathcal{B}(\nu)$ partition \mathbb{N} , i.e.

$$\mathcal{B}(\mu) \cap \mathcal{B}(\nu) = \emptyset$$
 and $\mathcal{B}(\mu) \cup \mathcal{B}(\nu) = \mathbb{N}$

iff μ and ν are irrational and satsify $\frac{1}{\mu} + \frac{1}{\nu} = 1$.

Theorem ("Beatty's Theorem" 1926)

Beatty sequences $\mathcal{B}(\mu)$, $\mathcal{B}(\nu)$ partition \mathbb{N} , i.e.

$$\mathcal{B}(\mu) \cap \mathcal{B}(\nu) = \emptyset$$
 and $\mathcal{B}(\mu) \cup \mathcal{B}(\nu) = \mathbb{N}$

iff μ and ν are irrational and satsify $\frac{1}{\mu} + \frac{1}{\nu} = 1$.

Proposition 1 (Lagarias-R)

Modified* Beatty sequences $\mathcal{B}(\mu)$, $\mathcal{B}^{<}(\nu)$ partition \mathbb{N} , i.e.

$$\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu) = \emptyset$$
 and $\mathcal{B}(\mu) \cup \mathcal{B}^{<}(\nu) = \mathbb{N}$

iff μ and ν satsify $\frac{1}{\mu} + \frac{1}{\nu} = 1$.

Theorem ("Beatty's Theorem" 1926)

Beatty sequences $\mathcal{B}(\mu)$, $\mathcal{B}(\nu)$ partition \mathbb{N} , i.e.

$$\mathcal{B}(\mu) \cap \mathcal{B}(\nu) = \emptyset$$
 and $\mathcal{B}(\mu) \cup \mathcal{B}(\nu) = \mathbb{N}$

iff μ and ν are irrational and satsify $\frac{1}{\mu} + \frac{1}{\nu} = 1$.

Proposition 1 (Lagarias-R)

Modified* Beatty sequences $\mathcal{B}(\mu)$, $\mathcal{B}^{<}(\nu)$ partition \mathbb{N} , i.e.

$$\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu) = \emptyset$$
 and $\mathcal{B}(\mu) \cup \mathcal{B}^{<}(\nu) = \mathbb{N}$

iff μ and ν satsify $\frac{1}{\mu} + \frac{1}{\nu} = 1$.

Idea: "break ties" between $\mu\mathbb{N}$ and $\nu\mathbb{N}$

Theorem ("Beatty's Theorem" 1926)

Beatty sequences $\mathcal{B}(\mu)$, $\mathcal{B}(\nu)$ partition \mathbb{N} , i.e.

$$\mathcal{B}(\mu) \cap \mathcal{B}(\nu) = \emptyset$$
 and $\mathcal{B}(\mu) \cup \mathcal{B}(\nu) = \mathbb{N}$

iff μ and ν are irrational and satsify $\frac{1}{\mu} + \frac{1}{\nu} = 1$.

Proposition 1 (Lagarias-R)

Modified* Beatty sequences $\mathcal{B}(\mu)$, $\mathcal{B}^{<}(\nu)$ partition \mathbb{Z} , i.e.

$$\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu) = \emptyset$$
 and $\mathcal{B}(\mu) \cup \mathcal{B}^{<}(\nu) = \mathbb{Z}$

iff μ and ν satsify $\frac{1}{\mu} + \frac{1}{\nu} = 1$.

Idea: "break ties" between $\mu \mathbb{Z}$ and $\nu \mathbb{Z}$

Proposition 1 (Lagarias–R)

Modified* Beatty sequences $\mathcal{B}(\mu)$, $\mathcal{B}^{<}(\nu)$ partition \mathbb{N} , i.e.

$$\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu) = \emptyset$$
 and $\mathcal{B}(\mu) \cup \mathcal{B}^{<}(\nu) = \mathbb{N}$

iff μ and ν satsify $\frac{1}{\mu} + \frac{1}{\nu} = 1$.

Idea: "break ties" between $\mu\mathbb{N}$ and $\nu\mathbb{N}$

Proposition 1 (Lagarias-R)

Modified* Beatty sequences $\mathcal{B}(\mu)$, $\mathcal{B}^{<}(\nu)$ partition \mathbb{N} , i.e.

$$\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu) = \emptyset$$
 and $\mathcal{B}(\mu) \cup \mathcal{B}^{<}(\nu) = \mathbb{N}$

iff μ and ν satsify $\frac{1}{\mu} + \frac{1}{\nu} = 1$.

Idea: "break ties" between $\mu\mathbb{N}$ and $\nu\mathbb{N}$

Proposition 2 (Lagarias-R)

For parameters $(\alpha, \beta) > 0$,

$$f_{\alpha} \circ f_{\beta} \geq f_{\beta} \circ f_{\alpha}$$
 iff $\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu) = \emptyset$

where $\mu = \frac{1}{\alpha}$ and $\nu = \frac{\beta}{\alpha}$.

Proposition 1 (Lagarias-R)

Modified* Beatty sequences $\mathcal{B}(\mu)$, $\mathcal{B}^{<}(\nu)$ partition \mathbb{N} , i.e.

$$\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu) = \emptyset$$
 and $\mathcal{B}(\mu) \cup \mathcal{B}^{<}(\nu) = \mathbb{N}$

iff μ and ν satsify $\frac{1}{\mu} + \frac{1}{\nu} = 1$.

Idea: "break ties" between $\mu\mathbb{N}$ and $\nu\mathbb{N}$

Proposition 2 (Lagarias-R)

For parameters $(\alpha, \beta) > 0$,

$$f_{\alpha} \circ f_{\beta} \geq f_{\beta} \circ f_{\alpha}$$
 iff $\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu) = \emptyset$

where $\mu = \frac{1}{\alpha}$ and $\nu = \frac{\beta}{\alpha}$.

How do we know there are **no more** solutions?

Torus surface $\mathbb{T}=\mathbb{R}^2/\mathbb{Z}^2$ A point $(\sigma,\tau)\in\mathbb{T}$ generates a **cyclic subgroup** of \mathbb{T}

Torus surface $\mathbb{T}=\mathbb{R}^2/\mathbb{Z}^2$ A point $(\sigma,\tau)\in\mathbb{T}$ generates a **cyclic subgroup** of \mathbb{T} Example:

Torus surface $\mathbb{T}=\mathbb{R}^2/\mathbb{Z}^2$ A point $(\sigma,\tau)\in\mathbb{T}$ generates a **cyclic subgroup** of \mathbb{T} Example:

Vague Question

Torus surface $\mathbb{T}=\mathbb{R}^2/\mathbb{Z}^2$ A point $(\sigma,\tau)\in\mathbb{T}$ generates a **cyclic subgroup** of \mathbb{T} Example:

Vague Question

Torus surface $\mathbb{T}=\mathbb{R}^2/\mathbb{Z}^2$ A point $(\sigma,\tau)\in\mathbb{T}$ generates a **cyclic subgroup** of \mathbb{T} Def. (σ,τ) is **weakly minimal** if

Vague Question

Torus surface $\mathbb{T}=\mathbb{R}^2/\mathbb{Z}^2$ A point $(\sigma,\tau)\in\mathbb{T}$ generates a **cyclic subgroup** of \mathbb{T} Def. (σ,τ) is **strongly minimal** if

Vague Question

Proof ingredient: Torus subgroups

Vague Question

When is $(\sigma, \tau) \in \mathbb{T}$ a "minimal" generator for its subgroup?

Proof ingredient: Torus subgroups

Vague Question

When is $(\sigma, \tau) \in \mathbb{T}$ a "minimal" generator for its subgroup?

Proposition 3 (Lagarias–R)

If (σ, τ) is a weakly minimal generator, it is also strongly minimal.

Proof ingredient: Torus subgroups

Proposition 3 (Lagarias-R)

If (σ, τ) is a weakly minimal generator, it is also strongly minimal.

All minimal generators of cyclic subgroups, in \mathbb{T} :

(Recall: P.N.T. says
$$\pi(x) = \#\{\text{prime } p \le x\} \approx \frac{x}{\log x}$$
)

Riemann hypothesis:
$$\Pi(x) := \sum_{p \le x} \log p$$

R. H.
$$\Leftrightarrow$$
 $\Pi(x) = x + O(x^{1/2 + \epsilon})$

(Recall: P.N.T. says
$$\pi(x) = \#\{\text{prime } p \leq x\} \approx \frac{x}{\log x}$$
)

Riemann hypothesis: $\Pi(x) := \sum_{p \le x} \log p$

R. H.
$$\Leftrightarrow$$
 $\Pi(x) = x + O(x^{1/2 + \epsilon})$

Mertens function:

$$M(x) := \sum_{n \le x} \mu(x)$$
 where $\mu(x) \in \{\pm 1, 0\}$ is the Möbius function

R. H.
$$\Leftrightarrow$$
 $M(x) = O(x^{1/2+\epsilon})$

(Recall: P.N.T. says
$$\pi(x) = \#\{\text{prime } p \leq x\} \approx \frac{x}{\log x}$$
)

Riemann hypothesis: $\Pi(x) := \sum_{p \le x} \log p$

R. H.
$$\Leftrightarrow$$
 $\Pi(x) = x + O(x^{1/2 + \epsilon})$

Mertens function:

$$M(x) := \sum_{n \le x} \mu(x)$$
 where $\mu(x) \in \{\pm 1, 0\}$ is the Möbius function

R. H.
$$\Leftrightarrow$$
 $M(x) = O(x^{1/2+\epsilon})$

Jean-Paul Cardinal (2010) defined a "2-dimensional analogue" of the Mertens function

Let $\{d_i\} = \{n, \lfloor \frac{1}{2}n \rfloor, \lfloor \frac{1}{3}n \rfloor, \lfloor \frac{1}{4}n \rfloor, \ldots, 1\}$ be the "almost divisors" of n.

In Cardinal's matrix \mathcal{M}_n , the entry in position i, j is

$$\mathcal{M}_n(i,j) = M\left(\left\lfloor \frac{1}{d_i d_j} n \right\rfloor\right) = M\left(\left\lfloor \frac{1}{d_i} \left\lfloor \frac{1}{d_j} n \right\rfloor \right\rfloor\right) = M\left(\left\lfloor \frac{1}{d_j} \left\lfloor \frac{1}{d_i} n \right\rfloor \right\rfloor\right)$$

Theorem (Cardinal 2010)

Riemann hypothesis is equivalent to

$$\|\mathcal{M}_n\| = O(n^{1/2+\epsilon})$$
 as $n \to \infty$.

Let $\{d_i\} = \{n, \lfloor \frac{1}{2}n \rfloor, \lfloor \frac{1}{3}n \rfloor, \lfloor \frac{1}{4}n \rfloor, \ldots, 1\}$ be the "almost divisors" of n.

In Cardinal's matrix \mathcal{M}_n , the entry in position i, j is

$$\mathcal{M}_n(i,j) = M\left(\left\lfloor \frac{1}{d_i d_j} n \right\rfloor\right) = M\left(\left\lfloor \frac{1}{d_i} \left\lfloor \frac{1}{d_j} n \right\rfloor \right\rfloor\right) = M\left(\left\lfloor \frac{1}{d_j} \left\lfloor \frac{1}{d_i} n \right\rfloor \right\rfloor\right)$$

Theorem (Cardinal 2010)

Riemann hypothesis is equivalent to

$$\|\mathcal{M}_n\| = O(n^{1/2+\epsilon})$$
 as $n \to \infty$.

Computational evidence suggests that $\|\mathcal{M}_n\|$ is better behaved than Mertens function M(n) as $n\to\infty$...

Let $\{d_i\} = \{n, \left\lfloor \frac{1}{2}n \right\rfloor, \left\lfloor \frac{1}{3}n \right\rfloor, \left\lfloor \frac{1}{4}n \right\rfloor, \dots, 1\}$ be the "almost divisors" of n.

In Cardinal's matrix \mathcal{M}_n , the entry in position i, j is

$$\mathcal{M}_n(i,j) = M\left(\left\lfloor \frac{1}{d_i d_j} n \right\rfloor\right) = M\left(\left\lfloor \frac{1}{d_i} \left\lfloor \frac{1}{d_j} n \right\rfloor \right\rfloor\right) = M\left(\left\lfloor \frac{1}{d_j} \left\lfloor \frac{1}{d_i} n \right\rfloor \right\rfloor\right)$$

(Note: "almost divisors of almost divisors are almost divisors"!)

Theorem (Cardinal 2010)

Riemann hypothesis is equivalent to

$$\|\mathcal{M}_n\| = O(n^{1/2+\epsilon})$$
 as $n \to \infty$.

Computational evidence suggests that $\|\mathcal{M}_n\|$ is better behaved than Mertens function M(n) as $n \to \infty$...

References

S. Beatty (1926)

Problem 3173

Amer. Math. Monthly 33(3) 159.

J.-P. Cardinal (2010)

Symmetric matrices related to the Mertens function *Lin. Alg. Appl.* **432**(1), 161–172.

J. C. Lagarias, T. Murayama, D. H. Richman (2016)

Dilated floor functions that commute

Amer. Math. Monthly 163(10), arXiv:1611.05513.

J. C. Lagarias and D. H. Richman (2018)

Dilated floor functions with nonnegative commutator I to appear in *Acta Arith.*, arXiv:1806.00579.

Dilated floor function commutators

Thank you!