

APR 28, 2023

OPEN ACCESS

dx.doi.org/10.17504/protocol s.io.kqdg39ozeg25/v1

Protocol Citation: Frank Twum Aboagye, Maame Ekua Acquah 2023. Molecular Diagnosis of Viral Hepatitis B Infection. protocols.io https://dx.doi.org/10.17504/p rotocols.io.kqdg39ozeg25/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License. which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Apr 14, 2023

Last Modified: Apr 28, 2023

PROTOCOL integer ID: 80544

Keywords: Viral Hepatitis, Hepatitis B, RT-PCR, DNA Extraction, Infectious Diseases

Molecular Diagnosis of Viral Hepatitis B Infection

Frank Twum Aboagye¹, Maame Ekua Acquah²

¹Biomedical and Public Health Research Unit, CSIR - Water Research Institute:

²West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana

Frank Twum Aboagye

Biomedical and Public Health Research Unit, CSIR - Water Res...

DISCLAIMER

This is an optimized protocol for the quantitative detection of Hepatitis B using Zymo Quick-DNA Miniprep Kit (200 prep) and Bosphore HBV Quantitative Kit. The authors do not accept any liability for the collection and handling of both samples and reagents, results from the use of the protocol and its interpretation as well as any errors or omissions that may be made. The reader should make his/her own evaluation as to the appropriateness of the procedures described.

ABSTRACT

With over 400 million HBV infections, viral hepatitis B remains a global public health concern. Diagnosis is primarily based on an immunological assay approach, which utilizes the Hepatitis B surface antigen in detection amongst other markers. This method, however, has several limitations which include the inability to detect mutation in the viral genome resulting in diagnostic escape and low antigen titers in study samples. Using an alternative approach, which is the molecular diagnostic technique such as real-time polymerase chain reaction (RT-PCR) would circumvent the limitations of immune detection. This protocol, thus, provides a step-by-step process of HBV diagnosis using RT-PCR which is a sensitive tool for diagnosis. The steps involved include sample collection and preparation, nuclei acid isolation, HBV detection and quantification using RT-PCR as well as the interpretation of results.

This protocol combines the high nuclei acid yield from isolation using Zymo Quick DNA Mini-prep Kit and Bosphore HBV Quantitative Kit for amplification of HBV DNA. The Bosphore HBV Quantitative Kit has a low detection limit of 1×10¹ IU/ml and with a turn-around time of less than 4 hours when combined with Zymo Quick DNA Mini-prep Kit. The nucleic acid isolated in this protocol can be amplified using the Bosphore HBV Quantitative kit on several thermocyclers, which makes the protocol robust, cost-efficient, and cost-effective in resource-scarce areas.

IMAGE ATTRIBUTION

https://www.anatoliageneworks.com/en/diseases/hepatitis-b/

GUIDELINES

Reagent Preparation for Nucleic Acid Isolation Nucleic Acid Isolation Detection and Quantification of HBV Nucleic Acid Results and Interpretation Troubleshooting

MATERIALS

Consumables

- 1. Microcentrifuge tube (1.5 ml)
- 2. $100 1000 \mu l$ filtered tips
- 3. $20 200 \mu l$ filtered tips
- 4. $5 20 \mu l$ filtered tips
- 5. 96-well PCR plate or 8-well PCR strip
- 6. Permanent marker

Reagents

- 1. ZYMO Quick DNA Miniprep Kit
- 2. Bosphore HBV Quantitative Kit (Includes internal control, standards (4), PCR master mix, positive control and nuclease-free water)
- 3. Absolute Ethanol (Molecular Grade)
- 4. Proteinase K

Equipment

- 1. Thermocycler (Real-Time PCR)
- 2. Incubator
- 3. Vortex
- 4. Microcentrifuge

SAFETY WARNINGS

- 1. Handle all blood specimens and reagents as a potential biohazard.
- 2. Discard all waste materials in the appropriate receptacles.
- 3. β -mercaptoethanol has a pungent smell, it should be opened in a well-aerated space.
- 4. Ensure the use of the appropriate PPEs at all times

Sample Collection and Preparation

Aseptically collect venous blood from the antecubital vein of the forearm and dispense it into either a serum separator tube (SST), a plain tube (red top), or an EDTA tube (plasma).

Centrifuge the specimen at 3500 rpm for 10 minutes and transfer the serum or plasma into a sterile plain tube or a cryovial.

NB:

For samples collected into SST or plain tubes, allow the specimen to stand vertically undisturbed for at least 1 hour for the specimen to clot completely before centrifuging it to yield serum

Samples collected into EDTA tubes can be centrifuged immediately to yield plasma.

Care should be taken during sample collection and processing to avoid haemolysis of the specimen

Handling of PCR Reagents

Allow the PCR Master Mix and the other components of the Bosphore HBV Quantification kit to thaw completely at 4°C before use and avoid centrifuging to thaw.

- 4 Add \underline{A} 400 μ L of Genomic Lysis Buffer and \underline{A} 10 μ L of Proteinase K to the sample.
- Vortex and incubate the sample at 56 °C for 3 5 hours or Overnight.

5h

6 Vortex the sample at (5 3000 rpm for (5) 00:00:30

- 30s
- 7 Transfer the entire content of the 1.5 ml microcentrifuge tube into a Zymo-Spin IIC Column in a collection tube.
- 8 Centrifuge at 10000 rpm for 00:01:00 Discard the flow-through liquid.

1m

- **9** Transfer the Zymo-Spin IIC column into a new collection tube.
- Add Δ 200 μL of DNA Pre-Wash Buffer to the spin column and centrifuge 10000 rpm for 00:01:00 . Discard the flow-through liquid.
- 10. Add 🚨 500 µL of gDNA Wash Buffer to the spin column and centrifuge at for 00:01:00 . Discard the flow-through liquid.

13

12. Add of DNA Elution Buffer to the spin column and incubate at 30m

Room temperature for 👏 00:30:00

14 13. Centrifuge at 13000 rpm for 00:00:30 to elute the DNA.

30s

15 14. Store the Viral Nucleic acid at 3 -20 °C pending further analysis.

RT-PCR Detection and Quantification of HBV Nuclei Acid

16 The PCR is done in a \mathbb{Z} 25 μ L reaction as described below:

A	В
Reagent/Component	X1 (μL)
PCR Master mix	15
Test Nucleic acid/Standards/Negative Control/Positive Control	10
Total Reaction Volume	25 µL

Allow the PCR Master Mix and the other components of the Bosphore HBV Quantification kit to thaw completely at 4°C before use and avoid centrifuging to thaw.

17 The reaction is done under the following cycling conditions:

A	В	С	D	
Step	Temperature (°C)	Time (minutes)	Cycles	
Initial Denaturation	95	14:30	NA	
Denaturation	97	00:30	E0 ovolog	
Annealing and Synthesis (Data Collection)	54	01:30	50 cycles	
Hold	32	01:00	NA	

Select the appropriate fluorophore depending on the analyzer been used. For Bio-Rad CFX 1000 Series, select the **FAM dye for HBV** and **HEX for Internal Control** (IC).

D7	D8	D9	D10	D11	D12
FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX
E1	E2	E3	E4	E5	E6
FAM and HEX	FAM and HEX				
E7	E8	E9	E10	E11	E12
FAM and HEX	FAM and HEX				
F1	F2	F3	F4	F5	F6
FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX
F7	F8	F9	F10	F11	F12
FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX
G1	G2	G3	G4	G5	G6
FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX
G7	G8	G9	G10	G11	G12
FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX	
H1	H2	НЗ	H4	H5	H6
FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX	FAM and HEX
H7	H8	H9	H10	H11	H12
FAM and HEX					

19 Identify unknown samples (test samples), standards, positive control, and negative control on the plate as described below. Assign the right quantitative values to the standards

A1	A2	A3	A4	A5	A6
Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
A7	A8	A9	A10	A11	A12
Unknown	Unknown	Unknown	Unknown	Unknown	Negative Control
B1	B2	В3	B4	B5	B6
Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
B7	B8	B9	B10	B11	B12
Unknown	Unknown	Unknown	Unknown	Unknown	
C1	C2	C3	C4	C5	C6
Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
C7	C8	C9	C10	C11	C12
Unknown	Unknown	Unknown	Unknown	Unknown	Standard 1
D1	D2	D3	D4	D5	D6
Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
D7	D8	D9	D10	D11	D12
Unknown	Unknown	Unknown	Unknown	Unknown	Standard 2
E1	E2	E3	E4	E5	E6
Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
E7	E8	E9	E10	E11	E12
Unknown	Unknown	Unknown	Unknown	Unknown	Standard 3

20 Initiate the protocol

Results and Interpretation

21

Samples that cross the threshold in the FAM channel are displayed with their starting quantities and the corresponding Ct-values. Samples that do not cross the threshold are displayed as "No Ct" or "-"

22 Possible outcomes from the PCR:

A	В	С	D	
+	-	HBV Positive	The sample contains a high viral load of HBV and may suppress the amplification of the Internal Control. No need to check the HEX	
+	+ HBV Positive		The sample contains HBV Nucleic acid	
+	-	HBV Positive*	Caution: If the sample has a viral load <10 IU/ml and no Internal Control amplification, it indicates PCR inhibition which requires assay repetition (see troubleshooting)	
-	+	HBV Negative	No HBV Nucleic acid was detected. Internal control amplified indicating good DNA isolation and PCR procedures.	
-	-	Invalid**	Repeat the assay (see troubleshooting)	

^{*} and **: refer to the troubleshooting section

Troubleshooting

*If the sample has a viral load [M] <10 |U/ml and no Internal Control amplification, it requires that the assay is repeated once. Freeze-thaw[freeze the sample (temperature ≤ -10°C) for 20 minutes and defrost at room temperature for 10 minutes] the nucleic acid sample and dilute it with nuclease-free water in a ratio of 1:2. Use the diluted nucleic acid for repeating the assay

** Repeat the assay once taking into consideration possible pipetting errors in the first assay.

If both repeat as indicated above fail to yield the expected/better results, a new specimen should be collected from the patient and the process from nucleic acid isolation to amplification should be repeated with the new sample.