ОСНОВЫ ПРОГРАММИРОВАНИЯ СИСТЕМ УПРАВЛЕНИЯ

Переменные.

Переменные представляют собой участки памяти, предназначенные для хранения данных определенного приложения. В среде Automation Studio переменные объявляются в файле .var.

Типы данных.

Типы данных описывают такие свойства переменной, как например, диапазон или точность числа, содержащегося в переменной, или какие операции могут выполняться с ней.

Типы данных.

Туре	Channel width (bytes)	Value range
BOOL	1	TRUE (1) and FALSE (0)
SINT	1	-128 +127
INT	2	-32768 +32767
DINT	4	-2147483648 +2147483647
USINT	1	o 255
UINT	2	o 65535
UDINT	4	o 4294967295
REAL	4	-3.4E ₃ 8 +3.4E ₃ 8
LREAL	8	-1.79769313486231E308 +1.79769313486231E308
TIME	4	T#-24d_20h_31m_23s_648ms T#24d_20h_31m_23s_647ms
DATE	4	D#1970-01-01 D#2106-02-07
TIME_OF_DAY or TOD	4	TOD#00:00:00.000 TOD#23:59:59.999
DATE_AND_TIME or DT	4	DT#1970-01-01-00:00:00 DT#2106-02-07-06:28:15
STRING	1 per character	
ВҮТЕ	1	Bit sequence with a length of 8
WORD	2	Bit sequence with a length of 16
DWORD	4	Bit sequence with a length of 32
WSTRING	2 per character	

Глобальные и локальные переменные.

Область видимости и свойства переменной определяют ее поведение во время запуска и исполнения.

Локальные переменные:

Локальные переменные имеют локальную область видимости в пределах определенной программы и не могут использоваться в других программах.

Локальная переменная описывается файлом .var на том же уровне, что и программа.

Глобальные переменные.

Глобальные переменные отображаются на верхнем уровне панели Logical View и могут использоваться в любом месте проекта Automation Studio.

Глобальная переменная описывается на самом высоком уровне в файле Global.var. Для улучшения структурированности проекта могут быть созданы дополнительные файлы .var.

Глобальные переменные уровня пакета, которые объявлены в пакете, видны только в пределах этого пакета и всех подчиненных пакетов.

Инициализация области памяти для хранения переменной

По умолчанию во время инициализации переменным присваиваются значения «о».

При необходимости в файле объявления переменной могут быть указаны иные значения, которые должны быть присвоены при инициализации.

iCnt	UDINT		0	
udStartValue	UDINT		344	
udEndValue	UDINT		120	
value	UDINT		0	

Реманентные и перманентные переменные.

Реманентные и **перманентные** переменные (Retain) **сохраняются** в энергонезависимой памяти (SRAM).

Перманентные переменные защищены от холодного перезапуска (Cold Restart).

Холодная перезагрузка происходит в следующих случаях:

- Перезагрузка после замены карты памяти CompactFlash
- Перезагрузка после очистки памяти UserROM
- Выполнение холодной перезагрузки из среды Automation Studio
- Перезагрузка в случае неисправности батареи автономного питания памяти для хранения переменных типа Retain.

Реманентные переменные.

Условия для хранения переменных в энергонезависимой (remanent) памяти:

- Наличие в целевой системе статического ОЗУ (SRAM) с автономным питанием от батареи
- Для переменных должен быть указан тип Retain

Реманентные переменные.

Примеры данных, которые могут храниться в статическом ОЗУ (SRAM):

- Счетчики рабочего времени
- Количество производственных сбоев
- Идентификационные коды изделий
- Типы счетчиков
- Прочая информация

Перезапуск происходит при возникновении следующих событий:

- Включение питания
- Загрузка измененной конфигурации в целевую систему
- Выполнение горячей перезагрузки из среды Automation Studio (аналогично включению питания)

Перманентные переменные.

Примеры:

Счетчики рабочего времени

Особенности:

- В качестве перманентных могут использоваться только глобальные переменные типа Retain.
- Память, предназначенная для хранения перманентных переменных, не может быть отформатирована или перезаписана системой. За управление значениями переменных полностью отвечает пользователь.

Инициализация программы.

В каждой программе может содержаться блок инициализации.

В нем решаются следующие задачи:

- инициализация переменных,
- считывание данных с ПЛК,
- считывание данных о текущей системной конфигурации.

Перед запуском первой циклической программы однократно выполняются подпрограммы инициализации всех задач в порядке, указанном в конфигурации программного обеспечения.

Циклические программы.

В конфигурации программного обеспечения программе назначается определенное время выполнения или класс задач.

Программы в конфигурации программного обеспечения называются задачами.

Smart Edit.

Автозаполнение

Для автоматического завершения кода используется клавиша **<TAB>** .

Данная функция поддерживается следующими элементами:

- Имена переменных и элементы структур
- Имя функции
- Языковые конструкции (IF THEN, CASE, FOR)

Code snippets

<CTRL> + <q>, <k> быструю вставку фрагментов кода.

Части готового исходного кода настраиваются в диспетчере фрагментов кода.

Горячие клавиши.

Функция	Сочетание клавиш		
Закрытие фрагментов кода	<tab></tab>		
Автозаполнение имен переменных и функций	<ctrl> + <space></space></ctrl>		
Активация окна выбора фрагмента кода	<ctrl> + <q>, <k></k></q></ctrl>		
Включение и отключение выделения всех парных скобок	<ctrl> + <q>, <l></l></q></ctrl>		
Включение и отключение выделения текущих парных скобок	<ctrl> + <q>, <m></m></q></ctrl>		
Переход к объявлению переменной	<ctrl> + <d></d></ctrl>		
Переход к указанию типа данных для переменной	<ctrl> + <t></t></ctrl>		
Переход к реализации функции или функционального блока	<ctrl> + <i></i></ctrl>		

Automation studio. Logical view.

Automation studio. Physical view.

Решаемые задачи:

- Добавление и конфигурирование модулей ввода/вывода
- Назначение переменным точек ввода/вывода данных
- Конфигурирование модули полевой шины и интерфейсов в сети
- Добавление и конфигурирование аппаратных модулей (например, терминалов, устройств полевой шины)
- Просмотр конфигурации программного обеспечения

Automation studio. System designer.

Компонент System Designer обеспечивает графическое изображение конфигурации в Physical view.

Automation studio. Configuration view.

В окне **Configuration View**, осуществляется переключение и управление различными типами систем.

Конфигурация включает в себя аппаратные и программные компоненты.

Только одна конфигурация может быть активной (Active) в каждый момент времени.

Automation studio. Software Configuration.

Два способа назначить элемент ПО соответствующей конфигурации:

- "Автоматическое назначение при создании программы"
- "Добавление имеющихся программ вручную"

Доступ к Software configuration.

Добавление имеющихся программ вручную.

Настройка сетевых интерфейсов.

Условия для подключения к контроллеру по сети:

- ПК и контроллер находятся в одной и той же сети
- Известны разрешенные и назначенные IP адреса

Установка соединения.

Два способа установки соединения:

- Поиск устройств в сети
- Ручная настройка

Для настройки параметров подключения контроллера необходимо выбать из главного меню **<Online** - **Settings>**.

Поиск сетевых устройств.

- 1. Поиск сетевых устройств, выполняется нажатием на пиктограмму Browse на панели инструментов, результаты выводятся в правой части рабочей области.
- 2. Из контекстного меню выбирается Connect

Ручная настройка соединения.

- 1. Добавьте новое соединение, нажав на пиктограмму на панели инструментов
- 2. Введите параметры соединения (ІР-адрес, номер узла)
- 3. Активируйте онлайн соединение в контекстном меню нового соединения

Языки программирования.

Язык программирования	Примечания
Язык лестничных диаграмм (LD)	Графический
Язык диаграмм функциональных блоков (FBD)	Графический
Язык непрерывных функциональных диаграмм (CFC)	Графический
Язык последовательных функциональных диаграмм (SFC)	Графический и текстовый
Язык списка инструкций (IL)	Текстовый
Язык структурированного текста (ST)	Текстовый
ANSI C и C++	Текстовый

Языки программирования.

```
% I 1.0 % M 1.2 % I 3.7 % Q 2.5 

% TM4 Q % M 17 

% TM4 Q % M 17 

% MW4 < 50 

% I 3.10 % Q 4.3 % M 2.7 % M T 0 % M 25 % MWO:X OPERATE 

MODE: TON TB: 1 mn TMP: 9999 MODIF: Y SR1 

(C)
```


Ladder diagram

Function Block Diagram.

Языки программирования.

(Continuous Flow Chart)

Sequential Function Chart

Части программы.

Инициализация задачи

Циклическая часть

Завершение задачи

