DS 598 Introduction to RL

Xuezhou Zhang

Chapter 5: Policy-based RL (continued)

The REINFORCE algorithm

- 1. Initialize θ_0
- 2. For iteration t = 0,...,T
 - 1) Run π_{θ_t} and collect trajectories τ_1, \dots, τ_n
 - 2) Estimate the PG by

$$g_t = \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_{i;h}|s_{i;h}) R(\tau_i) \right]$$

3) Do SGD update $\theta_{t+1} = \theta_t + \alpha_t g_t$

The REINFORCE algorithm $g_t = \frac{1}{n} \sum_{i=1}^n \left| \sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_{i;h}|s_{i;h}) R(\tau_i) \right|$

$$g_t = \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_{i;h}|s_{i;h}) R(\tau_i) \right]$$

A couple of techniques to improve PG estimation:

- Baseline: variance reduction
- Critic: off-policy learning of value function
- Importance Sampling: off-policy estimation of PG
- Deterministic PG: handles continuous and deterministic policy

- Numerical Optimization. Jorge Nocedal, Stephen J. Wright (2006)
- Highly recommended!
- Pillars of ML: statistics, calculus and linear algebra, numerical optimization.

Approximation-based Optimization

- 1. Starting at some x_0 .
- 2. For iteration k=0,2, ...
 - 1) Find a local approximation f_k that can be minimized with less effort than f itself.
 - 2) Set $x_{k+1} = \operatorname{argmin}_{x \in \mathcal{X}} \hat{f}_k(x)$.

Given a function f(x), find $\operatorname{argmin}_x f(x)$.

• Example 1:

$$\hat{f}_k(x) = f(x_k) + (x - x_k)^{\top} \cdot$$

$$\nabla f(x_k) + \frac{1}{2t_k} ||x - x_k||^2$$

 $\bullet \ x_{k+1} = x_k - t_k \nabla f(x_k).$

This is gradient descent!

Given a function f(x), find $\operatorname{argmin}_x f(x)$.

- Approximation-based Optimization
- 1. Starting at some x_0 .
- 2. For iteration k=0,2, ...
 - 1) Find a local approximation \hat{f}_k that can be minimized with less effort than f itself.
 - 2) Set $x_{k+1} = \operatorname{argmin}_{x \in \mathcal{X}} \hat{f}_k(x)$.

- Example 2:
- $\hat{f}_k(x) = f(x_k) + (x x_k)^{\top}$ · $\nabla f(x_k) + \frac{1}{2}(x x_k)^{\top} H_k(x x_k)$
- where H_k is the Hessian of f at x_k .
- $\bullet \ x_{k+1} = x_k H_k^{-1} \nabla f(x_k).$

This is the Newton's method!

Given a function f(x), find $\operatorname{argmin}_x f(x)$.

- Approximation-based Optimization
- 1. Starting at some x_0 .
- 2. For iteration k=0,2, ...
 - 1) Find a local approximation \hat{f}_k that can be minimized with less effort than f itself.
 - 2) Set $x_{k+1} = \operatorname{argmin}_{x \in \mathcal{X}} \hat{f}_k(x)$.

• Problem?

• \hat{f}_k will be a poor approximation of f far away from x_k .

• Solution: Sanity check on x_{k+1} before continue.

Given a function f(x), find $\operatorname{argmin}_x f(x)$.

Trust-region Method

- 1. Starting at some x_0 .
- 2. For iteration k=0,2,...
 - 1) Find a local approximation \hat{f}_k .
 - 2) Choose a trust region U_k containing x_k , e.g.

$$U_k = \left\{ x : \left| |x - x_k| \right|_k \le \Delta_k \right\}$$

- 3) Set $x_{k+1} = \operatorname{argmin}_{x \in U_k} \hat{f}_k(x)$.
- 4) Sanity check: if $f(x_{k+1}) f(x_k)$ is sufficiently large, continue; else, set $\Delta_k \leftarrow \epsilon_k \Delta_k$ and loop back to step 2.

• Example 1:

•
$$U_k = \left\{ x: \frac{1}{2} \left| |x - x_k| \right|_2^2 \le \delta^2 \right\}$$

•
$$x_{k+1} = x_k - \delta \frac{\nabla f(x_k)}{||\nabla f(x_k)||}$$
.

Normalized gradient descent.

Better distance metric?

Given a function f(x), find $\operatorname{argmin}_x f(x)$.

Trust-region Method

- 1. Starting at some x_0 .
- 2. For iteration k=0,2,...
 - 1) Find a local approximation \hat{f}_k .
 - 2) Choose a trust region U_k containing x_k , e.g.

$$U_k = \left\{ x : \left| |x - x_k| \right|_k \le \Delta_k \right\}$$

- 3) Set $x_{k+1} = \operatorname{argmin}_{x \in U_k} \hat{f}_k(x)$.
- 4) Sanity check: if $f(x_{k+1}) f(x_k)$ is sufficiently large, continue; else, set $\Delta_k \leftarrow \epsilon_k \Delta_k$ and loop back to step 2.

- Better distance metric?
- Linear model

•
$$U_k = \left\{ x : \frac{1}{2} (x - x_k)^{\mathsf{T}} F_k (x - x_k) \le \delta^2 \right\}$$

•
$$x_{k+1} = x_k - D_k \nabla f(x_k)$$
.

• where
$$D_k = \frac{\delta F^{-1}(x_k)}{\sqrt{\nabla f^{\mathsf{T}}(x_k)F^{-1}(x_k)\nabla f(x_k)}}$$
.

• Damped Newton's Method ($F_k = H_k$)

Given a function f(x), find $\operatorname{argmin}_x f(x)$.

Trust-region Method

- 1. Starting at some x_0 .
- 2. For iteration k=0,2,...
 - 1) Find a local approximation \hat{f}_k .
 - 2) Choose a trust region U_k containing x_k , e.g.

$$U_k = \left\{ x : \left| |x - x_k| \right|_k \le \Delta_k \right\}$$

- 3) Set $x_{k+1} = \operatorname{argmin}_{x \in U_k} \hat{f}_k(x)$.
- 4) Sanity check: if $f(x_{k+1}) f(x_k)$ is sufficiently large, continue; else, set $\Delta_k \leftarrow \epsilon_k \Delta_k$ and loop back to step 2.

- Design Choices:
- 1. What is \hat{f}_k ?
- 2. What is U_k ?
- 3. How to do sanity check?

Back to RL

•
$$f(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}}[\sum_{h=0}^{\infty} \gamma^h \, r(s_h, a_h)]$$

- Design Choices:
- 1. What is \hat{f}_k ?
- 2. What is U_k ?
- 3. How to do sanity check?

•
$$f(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}}[\sum_{h=0}^{\infty} \gamma^h \, r(s_h, a_h)]$$

- Design Choices:
- 1. What is \hat{f}_k ? How do we approximate $f(\pi_{\theta})$ with data from π_k ?
- Performance Difference Lemma:

$$f(\pi) - f(\pi') = \mathbb{E}_{s,a \sim d^{\pi}} [A^{\pi'}(s,a)]$$

•
$$f(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}}[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h)]$$

- Design Choices:
- 1. What is \hat{f}_k ? How do we approximate $f(\pi_{\theta})$ with data from π_k ?

$$f(\pi_{\theta}) = f(\pi_k) + \mathbb{E}_{s,a \sim d^{\pi}} [A^{\pi_k}(s,a)]$$

$$\approx f(\pi_k) + \mathbb{E}_{s,a \sim d^{\pi_k}} \left[\frac{\pi_{\theta}(a|s)}{\pi_k(a|s)} A^{\pi_k}(s,a) \right]$$

•
$$f(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}}[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h)]$$

- Design Choices:
- 1. What is \hat{f}_k ? How do we approximate $f(\pi_{\theta})$ with data from π_k ?

$$\hat{f}(\pi_{\theta}) = f(\pi_k) + \mathbb{E}_{s,a \sim d} \pi_k \left[\frac{\pi_{\theta}(a|s)}{\pi_k(a|s)} A^{\pi_k}(s,a) \right]$$

$$\hat{f}(\pi_{\theta})$$
 satisfies $\hat{f}(\pi_{k}) = f(\theta_{k})$ and

$$\nabla_{\theta} \hat{f}(\pi_k) = \nabla_{\theta} f(\pi_k) = \mathbb{E}_{s,a \sim d} \pi_k [\nabla_{\theta} \log \pi_k(a|s) \cdot A^{\pi_k}(s,a)]$$

•
$$f(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}}[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h)]$$

- Design Choices:
- 1. What is \hat{f}_k ? How do we approximate $f(\pi_{\theta})$ with data from π_k ?

$$\hat{f}(\pi_{\theta}) = f(\pi_k) + \mathbb{E}_{s,a \sim d} \pi_k \left[\frac{\pi_{\theta}(a|s)}{\pi_k(a|s)} A^{\pi_k}(s,a) \right]$$

First-order Taylor expansion at θ_k

$$\hat{f}_k \approx f(\pi_k) + (\theta - \theta_k)^{\mathsf{T}} \cdot \nabla_{\theta} f(\pi_{\theta_k})$$

•
$$f(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}}[\sum_{h=0}^{\infty} \gamma^h \, r(s_h, a_h)]$$

Can we make smarter choices?

Design Choices:

1. What is
$$\hat{f}_k$$
? $\hat{f}_k = f(\pi_k) + (\theta - \theta_k)^{\top} \cdot \nabla_{\theta} f(\pi_{\theta_k})$

2. What is
$$U_k$$
? $U_k = \{\theta : \frac{1}{2} | |\theta - \theta_k| |_2^2 \le \delta^2 \}$

- 3. How to do sanity check? No sanity check.
- Then, we get $\theta_{k+1} = \theta_k + \delta \frac{\nabla f(\theta_k)}{||\nabla f(\theta_k)||}$, which is exactly Vanilla PG!

•
$$f(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}}[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h)]$$

- Design Choices:
- 2. What is a better U_k ? Or rather, what metric should we use?
 - Policies $\pi_{\theta}(a|s)$ are probability distributions.
 - Different θ can map to the same policy.
 - A metric in the probability space?

Kullback-Leibler (KL) divergence

•
$$D_{KL}(p|q) = \mathbb{E}_{x \sim p} \log \left(\frac{p(x)}{q(x)}\right)$$
.

- In general, $D_{KL}(p|q) \neq D_{KL}(q|p)$, so it's not a metric.
- $D_{KL}(p|q) \geq 0$.
- $p = q \text{ iff } D_{KL}(p|q) = D_{KL}(q|p) = 0.$
- Example: If $p = \mathcal{N}(\mu_1, \sigma I)$, $q = \mathcal{N}(\mu_2, \sigma I)$,
- then $D_{KL}(p|q) = ||\mu_1 \mu_2||_2^2/\sigma^2$.

Kullback-Leibler (KL) divergence

•
$$D_{KL}(\pi_k|\pi_\theta) = \mathbb{E}_{x \sim \pi_k} \log \left(\frac{x \sim \pi_k(x)}{x \sim \pi_\theta(x)} \right)$$
.

• Fact:

The Fisher Information Matrix

- $\nabla_{\theta} D_{KL}(\pi_k | \pi_{\theta})|_{\theta = \theta_k} = 0$
- $H_p D_{KL}(\pi_k | \pi_\theta)|_{\theta = \theta_k} = \mathbb{E}_{x \sim \pi_k} [\nabla_\theta \log \pi_k(a|s) \nabla_\theta \log \pi_k(a|s)^\top] := F_k$
- Second-order Taylor expansion at θ_k :
- $D_{KL}(\pi_k|\pi_\theta) \approx (\theta \theta_k)^{\mathsf{T}} F_k(\theta \theta_k)$

Putting it together

- $\theta_{k+1} = \operatorname{argmax}_{\theta \in U_k} f(\pi_k) + (\theta \theta_k)^\top \cdot \nabla_{\theta} f(\pi_{\theta_k}),$
- where $U_k = \left\{\theta : \frac{1}{2}(\theta \theta_k)^{\mathsf{T}} F_k(\theta \theta_k) \le \delta^2\right\}$.
- This implies $\theta_{k+1} = \theta_k D_k \nabla_{\theta} f(\theta_k)$,
- where $D_k = \frac{\delta F^{-1}(x_k)}{\sqrt{\nabla f^{\mathsf{T}}(x_k)F^{-1}(x_k)\nabla f(x_k)}}$.
- Again, $F_k = \mathbb{E}_{x \sim \pi_k} [\nabla_{\theta} \log \pi_k(a|s) \nabla_{\theta} \log \pi_k(a|s)^{\top}].$
- This is the Trusted-region Policy Optimization (TRPO) algorithm.

Natural Policy Gradient

 An earlier appearance of an update rule similar to TRPO is called Natural Policy Gradient (NPG).

• TRPO:
$$\theta_{k+1} = \theta_k - D_k \nabla_{\theta} f(\theta_k)$$

• where
$$D_k = \frac{\delta F^{-1}(x_k)}{\sqrt{\nabla f^{\mathsf{T}}(x_k)F^{-1}(x_k)\nabla f(x_k)}}$$
.

• NPG:
$$\theta_{k+1} = \theta_k - \alpha F_k^{-1} \nabla_{\theta} f(\theta_k)$$

NPG makes a less careful choice on the step-size of the update.

•
$$\hat{f}(\pi_{\theta}) = f(\pi_k) + \mathbb{E}_{s,a \sim d^{\pi_k}} \left[\frac{\pi_{\theta}(a|s)}{\pi_k(a|s)} A^{\pi_k}(s,a) \right]$$

- An objective-specific U_k ?
- Idea: we don't want to overfit too much on \hat{f} .

Proximal Policy Optimization (PPO):

$$\operatorname{sign}\left(\left(\frac{\pi_{\theta}(a|S)}{\pi_{k}(a|S)} - 1\right)A^{\pi_{k}}(s,a)\right) \leq \epsilon$$

•
$$\hat{f}(\pi_{\theta}) = f(\pi_k) + \mathbb{E}_{s,a \sim d^{\pi_k}} \left[\frac{\pi_{\theta}(a|s)}{\pi_k(a|s)} A^{\pi_k}(s,a) \right]$$

• Proximal Policy Optimization (PPO):

$$\left(\frac{\pi_{\theta}(a|s)}{\pi_{k}(a|s)} - 1\right) \operatorname{sign}(A^{\pi_{k}}(s,a)) \le \epsilon$$

Instead of enforce it as a constraint, PPO modifies the objective as

$$\hat{f}(\pi_{\theta}) = f(\pi_k) + \mathbb{E}_{s,a \sim d^{\pi_k}} \left[\min \left(\frac{\pi_{\theta}(a|s)}{\pi_k(a|s)} A^{\pi_k}(s,a), \text{clip}_{\epsilon} \left(\frac{\pi_{\theta}(a|s)}{\pi_k(a|s)} \right) A^{\pi_k}(s,a) \right) \right]$$

Summary

• REINFORCE:

- 1st-order Taylor approximation of the objective.
- Trusted region with Euclidean distance.

• TRPO/NPG:

- 1st-order Taylor approximation of the objective.
- Trusted region with KL divergence.

• PPO:

- 1st-order Taylor approximation of the objective.
- Trusted region with improvement constraints in \hat{f} .