

seaborn简介

- seabron是基于matplotlib的python可视化库。
 - 安装seabron: pip install seaborn
 - seaborn 依赖于 scipy,因此,也需要安装scipy

1.seaborn简介

● seabron初接触

matplotlib库是seaborn 的依赖库,基本都需要 导入

{darkgrid, whitegrid, dark, white, ticks}

语法与matplotlib ◀ 略有不同

代码

```
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(4,3))
x=[1,2,3,4,5]
y=[10,20,30,40,50]
#plt.bar(x,y)
#plt.show()
sns.set_style('darkgrid')
sns.barplot(x=x,y=y)
plt.show()
```


seaborn 绘图

- seaborn图表基本设置
- 背景风格
 - sns.axes_style sns.set_style
 - darkgrid,
 - whitegrid,
 - dark,
 - white,
 - ticks}

- 边框设置
 - sns.despine(fig=None, ax=None, top=True,
 right=Ture,left=True,top=True,bottom=Flase,offset=None)

sns. despine ()

sns. despine (offset=10, trim=True)

sms. despine (left=True, right=False)

- 折线绘制
 - sns.relplot()

```
sns. set_style('darkgrid')
plt. rcParams['font. sans-serif']=['SimHei'] #解决中文乱码
df1=pd. read_excel('data. xls') #导入Excel文件
#绘制折线图
sns. relplot(x=range(0, 12, 1), y="英语", kind="line", data=df1)
plt. show() # 显示
```


尝试

sns. relplot(data=df1. iloc[:, 2:], kind='line')

观察excel表格,把学 号或者姓名作为x坐标 ticks

学号	姓名	语文	数学	英语
1	高猿员	145	110	138
2	钱多多	120	105	142
3	张山	103	86	135
4	李思	110	74	144
5	理想	100	80	132
6	元芳	85	141	121
7	小艾	98	112	136
8	潘多拉	113	99	97
9	艾莎	105	100	100
23	蜘蛛侠	108	102	78
11	钢铁侠	123	105	89
25	蝙蝠侠	132	103	115

- 直方图绘制
 - sns.distplot()

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid')
plt.rcParams['font.sans-serif']=['SimHei'] #解决中文乱码
df1=pd.read_excel('data2.xls')
data=df1[['得分']]
#sns.distplot(data,bins = 3, hist = True, rug=True,kde= True)
sns.distplot(data,rug=True,kde= True) #直方图,显示观测的小细条
plt.show()#显示
```


- 直方图绘制
 - sns.barplot()

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns. set_style('darkgrid')
plt.rcParams['font.sans-serif']=['SimHei'] #解决中文乱码
df1=pd.read_excel('data.xls',sheet_name='sheet2')
sns.barplot(x='学号',y='得分',hue='学科',data=df1)
plt.show()#显示
```


- 箱型绘制
 - sns. boxplot()

```
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
sns. set_style('darkgrid')
#读取数据集tips
tips=pd.read_csv('tips.csv')
#绘制箱形图
sns.boxplot(x='day', y='total_bill', hue='time', data=tips)
plt.show()#显示图表
```


2.seaborn绘图

- 小提琴图绘制
 - sns. vilionplot()

代码

```
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
#读取数据集tips
tips =pd.read_csv('tips.csv')
sns.violinplot(x='total_bill',y='day',hue='time',data=tips)
plt.show()
```


- 线性回归模型绘制
 - sns. Implot()

```
import matplotlib.pyplot as plt import seaborn as sns import pandas as pd sns. set_style('darkgrid')
#读取数据集tips
tips=pd.read_csv('tips.csv')
#绘制回归模型,描述线性关系
sns.lmplot(x='total_bill', y='tip', data=tips)
plt.show()#显示
```

: 1	A /	B /	С	D	E	
1	total_bill	tip 📥	sex	smoker	day	tin
2	16.99	1.01	Female	No	Sun	Di
3	10.34	1.66	Male	No	Sun	Di
4	21.01	3.5	Male	No	Sun	Di
5	23.68	3.31	Male	No	Sun	Di
6	24.59	3.61	Female	No	Sun	Di
7	25.29	4.71	Male	No	Sun	Di
8	8.77	2	Male	No	Sun	Di
9	26.88	3.12	Male	No	Sun	Di
10	15.04	1.96	Male	No	Sun	Di
11	14 78	3 23	Male	No	Sun	Di

