

- □ 제 7장. 로지스틱회귀모형(3)
 - □ 모형선택의 전략
 - 2 모형진단 방법
 - 3 로지스틱 회귀분석의 무한대 추정값
 - 4 베이지안 추론, 벌점가능도 추정법

宣言州Ω 및 목표

이번 강의는 로지스틱회귀모형의 적용과 관련한 모형선택, 모형진단 방법에 대해서 공부하고, 표본크기가 충분하게 크지 않은 경우에 발생하는 희박한 자료(Sparse Data)와 관련한 문제에 대해서 살펴보겠습니다.

- 로지스틱회귀모형 적합도 검증과 모형 선택을 설명할 수 있다.
- 2 로지스틱회귀모형 모형 진단과 잔차 분석을 설명할 수 있다.
- ③ 희박 자료의 의미와 추정에 미치는 영향을 설명할 수 있다.

정대7망. 로디스틱회귀모형(3)

- □ 모형선택의 전략
- 2 모형진단 방법
- 3 로지스틱 회귀분석의 무한대 추정값
- 베이지안 추론, 벌점가능도 추정법

01 제 7장. 로지스틱회귀모형(3)

모형선택의 전략

1. 모형 선택 고려나항

■ 모형의 선택 과정에서 고려사항

- 자료에 대한 적합성
 - : 모형이 복잡해질수록 유리
- 적합된 모형의 해석의 용이성
 - : 모형이 간단할수록 유리

확증적 (Confirmatory) 연구와 탐색적 (Exploratory) 연구

2. 얼마나 많은 예측변수를 사용할 수 있는가?

- ☑ **가이드라인:** P.Peduzzi 등, *J. Clin. Epidemiol.*, 49: 1373-1379, (1996)
 - The data set should contain at least 10 outcomes of each type for every explanatory variable.

예

- ① n = 1000, Y = 1인 경우 30, Y = 0인 경우 970이라면
 - → 모형에 포함되는 예측변수는 3개 이하가 바람직함
- ② n = 173 참게, Y = 1인 경우 111건, Y = 0인 경우 62건
 - → 6개 이하의 예측변수를 사용하는 것이 바람직함

2. 얼마나 많은 예측변수를 사용할 수 있는가?

- ☑ **가이드라인:** P.Peduzzi 등, *J. Clin. Epidemiol.*, 49: 1373-1379, (1996)
 - 이와 같은 가이드라인은 다소 보수적이어서 이 조건을 만족하지 않더라도 모형적합 결과를 얻을 수 있음
 - 이 가이드라인을 과도하게 위배하는 경우는 효과에 대한 ML 추정값은 매우 편향되고 표준오차의 추정값도 매우 클 수 있음
 - 여러 개의 예측변수를 갖는 모형은 다중공선성(multi-collinearity)의 문제가 발생할 수 있음

3. 예제: 암참게의 부수체 자료 재분석

- Y= 암 참게가 부수체를 갖고 있는지 여부 (1 = yes, 0 = no)
- 예측변수
 - 무게(Weight)
 - 너비(Width)
 - 색깔(ML, M, MD, D), c_2, c_3, c_4 의 가변수로 나타냄
 - 등뼈 상태(3개 범주), s_2 , s_3 의 가변수로 나타냄

3. 예제: 암참게의 부수체 자료 재분석

$$\log it[P(Y=1)] = \alpha + \beta_1 weight + \beta_2 width + \beta_3 c_2 + \beta_4 c_3 + \beta_5 c_4 + \beta_6 s_2 + \beta_7 s_3$$

• $H_0: \beta_1 = \beta_2 = \cdots = \beta_7 = 0$ 에 대한 가능도비 검정 결과 $-2(L_0 - L_1) =$ 이탈도의 차이 = 225.8 - 185.2 = 40.6

$$df = 7$$
, $P - 武 < 0.0001$

적어도 하나의 예측변수는 효과가 있다는 강한 증거

3. 예제: 암참게의 부수체 자료 대분석

```
> Crabs <- read.table("http://www.stat.ufl.edu/~aa/cat/data/Crabs.dat",
                       header=TRUE)
> fit <- glm(y ~ weight + width + factor(color) + factor(spine),
             family=binomial, data=Crabs)
> summary(fit)
               Estimate Std. Error z value Pr(>|z|)
(Intercept)
               -8.06501
                            3.92855
                                    -2.053
                                              0.0401
weight
                0.82578
                            0.70383
                                    1.173
                                              0.2407
width
                0.26313
                            0.19530
                                              0.1779
                                    1.347
factor(color)2 -0.10290
                            0.78259
                                    -0.131
                                              0.8954
factor(color)3 -0.48886
                            0.85312
                                     -0.573
                                              0.5666
factor(color)4 -1.60867
                            0.93553
                                     -1.720
                                              0.0855 .
factor(spine)2 -0.09598
                            0.70337 -0.136
                                              0.8915
factor(spine)3 0.40029
                            0.50270
                                      0.796
                                              0.4259
    Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 185.20 on 165 degrees of freedom
AIC: 201.2
> 1 - pchisq(225.76-185.20, 172-165) # P-value for test that all beta's = 0
[1] 9.83292e-07
> library(car)
> Anova(fit) # likelihood-ratio tests for individual explanatory variables
             LR Chisq Df Pr(>Chisq)
weight
             1.4099 1
                             0.23507
width
               1.7968 1
                             0.18010
factor(color) 7.5958 3
                             0.05515 .
factor(spine) 1.0091 2
                              0.60377
```

3. 예제: 암참게의 부수체 자료 재분석

■ 참게 자료의 주 효과 모형에 대한 모수 추정값

> summary(fit)

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-8.06501	3.92855	-2.053	0.0401
weight	0.82578	0.70383	1.173	0.2407
width	0.26313	0.19530	1.347	0.1779
factor(color)2	-0.10290	0.78259	-0.131	0.8954
factor(color)3	-0.48886	0.85312	-0.573	0.5666
factor(color)4	-1.60867	0.93553	-1.720	0.0855 .
factor(spine)2	-0.09598	0.70337	-0.136	0.8915
factor(spine)3	0.40029	0.50270	0.796	0.4259

3. 예제: 암참게의 부수체 자료 개분석

■ 각 예측변수의 효과에 대한 Wald 검정 결과를 보면 거의 유의하지 않은 것으로 분석됨

예측변수간의 강한 상관성으로 인한 다중공선성(Multicollinearity)으로 인해서 각 모수에 대한 유의성이 없는 것처럼 분석된 것으로 보임 (Weight 와 Width의 상관계수 = 0.89)

→ Weight 와 Width를 모두 예측변수로 사용할 필요는 없고, 앞으로 Width만 예측변수로 사용함

4. 단계적 변수 선택법

전진선택법 (Forward Selection Procedure)

더 이상 적합이 개선되지 않을 때까지 항(예측변수)을 추가해 모형을 적합하는 방법

후진제거법 (Backward Elimination Procedure)

복잡한 모형에서 시작해서 항을 제거하면서 모형을 적합하는 방법

※ 범주형 예측변수에 대해서는 전체 지시변수(가변수)를 함께 모형에 포함하거나 빼야 함

5. 목적에 따른 설명변수이 선택

- 예측변수를 선택할 때 연구 목표, 상대적 통계적 유의성, 다중공선성 및 잠재적 교란요인 등의 문제를 고려해서 변수 선택 전략을 정함
- Hosmer 등(2013, 4장)에서 제안한 변수 선택 과정
- 1. 초기 주효과 모형 적합: 잘 알려진 중요 변수, 단일 예측변수 모형에서 어느 정도 연관성(예: P값<0.2)이 있는 변수 이용
- 2. 후진제거법 수행: 더 엄격한 유의수준에서 유의한 변수, 교락변수 남김
- 3. 1단계 모형에 포함되지 않았지만, 2단계 이후 유의해진 변수 추가
- 4. 3단계 모형의 변수들간의 교호작용 여부 확인
- 5. 후속적인 모형 진단 작업 진행

6. 예제: 참게 자료에서의 변수 선택

☑ 참게 자료에 후진제거법의 적용

- 예측변수로 W = width, C = 색깔, S = 등뼈 상태 등을 고려함
- 교호작용을 포함하는 복잡한 모형을 적합함
- 가장 높은 차수의 항 중에서
 "가장 덜 유의한"(P-값이 가장 큰) 예측 변수를 제외하고
 다시 모형을 적합
- 남은 예측변수가 모두 유의할 때까지 위의 과정을 계속함

6. 예제: 참게 자료에서의 변수 선택

■ 참게 자료에 대한 여러 로지스틱회귀모형 적합 결과

Table 5.1 Results of fitting several logistic regression models to predict horseshoe crab satellites.

Model	Explanatory Variables	Deviance	df	AIC	Models Compared	Deviance Difference
1	None	225.8	172	227.8		*
2	C	212.1	169	220.1	(2) - (1)	13.7 (df = 3)
3	S	223.2	170	229.2	(3) - (1)	2.5 (df = 2)
4	W	194.5	171	198.5	(4) - (1)	31.3 (df = 1)
5	C+W	187.5	168	197.5	(5) - (2)	24.6 (df = 1)
					(5) - (4)	7.0 (df = 3)
6	C + W + S	186.6	166	200.6	(6) - (5)	0.9 (df = 2)
7	C + W + C*W	183.1	165	199.1	(7) - (5)	4.4 (df = 3)

Note: C = color, S = spine condition, W = width.

→ 최종 모형은 너비와 색깔의 주효과만을 갖는 모형

모든 모형은 정확한 모형이라기 보다는 "실제 현상을 단순화시킨 것일 뿐임"

7. AIC와 편향/분산 간의 절충

- ■모형 선택: 편향과 분산 사이에 근본적인 절충 문제 발생
- Parsimony (Simplicity) is good
- ■모형선택에서 기준(AIC, Akaike Information Criterion)을 이용 할 수 있음 : AIC 값이 최소인 모형을 선택함
- AIC = -2(로그가능도) +2(모형에 있는 모수 개수)
 BIC = -2(로그가능도) +log(n)×(모형에 있는 모수 개수)
 BIC (Bayes Information Criterion), 표본크기가 큰 경우에 유용함(통계적 유의성, 실질적 유의성)
- 탐색적 연구라면 후진제거법과 같은 자동화 방법을 사용 가능
- 각 예측변수에 대하여 반응변수의 각 수준에서 적어도 10개의 관측치가 있는 것이 바람직함

7. AIC와 편향/분산 간의 절충

- AIC를 이용하여 단계적으로 모형선택을 할 수 있음
 - → AIC를 이용하여 후진제거법으로 모형을 선택하는 예

```
> fit <- glm(y ~ weight + width + factor(color) + factor(spine),
            family=binomial, data=Crabs)
> library(MASS)
> stepAIC(fit) # stepwise backward selection using AIC
Start: AIC=201.2
y ~ weight + width + factor(color) + factor(spine)
Step: AIC=198.21
y ~ weight + width + factor(color)
Step: AIC=197.46
y ~ width + factor(color) # AIC now increases if width or color removed
```

 02
 제 7장. 로지스틱회귀모형(3)

 모형진단 방법

- ☑ 이탈도 통계량을 이용한 모형비교?
 - 해당 모형과 더 복잡한 모형을 비교하는
 가능도비 검정을 통해서 적합결여 여부를 검증하는 방법

더 복잡한 모형을 적합하더라도 현재 고려하고 있는 모형과 비교하여 적합 정도가 개선되지 않는다면 이미 선택된 모형이 적합하다고 할 수 있음

☑ 예제 : 참게자료 사례

- $\log it[\pi(x)] = \alpha + \beta x$, x 너비
- $logit[\pi(x)] = \alpha + \beta_1 x + \beta_2 x^2$

- ullet 귀무가설 $H_0:eta_2=0$ 을 검정하는 가능도비
- 검정 통계량은 0.83이고, df=1 임
 따라서 P- 값 =0.36

ullet M: 현재 고려하고 있는 모형

포화모형

각각의 관측치에 대해 개별적인 모수를 갖는 모형

- ullet모형M의 적합도 검정(Goodness of fit test)
 - 포화모형에는 포함되어 있지만 모형 M에는 포함되지 않는 모든 모수가 "0"인지 검정하는 것

- GLM에서 적합도 검정을 위한 가능도비 통계량
 - ① 이탈도(Deviance) = $-2[L_M-L_S]$
 - ② 대표본의 경우 근사적으로 카이제곱분포를 따름
 - ③ 검정통계량 값이 크고,
 P-값이 작을수록 모형의 적합결여에 대한
 강한 증거가 됨

☑ 예측변수가 모두 범주형 변수인 경우

• 전체 Data는 예측변수들의 / 번째 조합에 대해 분할표 도수로 요약됨

예

	1	0	계
:			:
i	O_{1i}	O_{2i}	n_i
:			:

[적합값(Fitted Value)]

- "1"의 개수 = $n_i \cdot \hat{\pi_i}$
- "0"의 개수 = $n_i \cdot (1 \hat{\pi_i})$

- $G^2(M) = 2\sum$ 관찰값 $[\log (관찰값/적합값)]$
- $X^2(M) = \sum (관찰값-적합값)^2/적합값$
- 모든 적합도수가 5 이상일 때, $G^2(M)$ 와 $X^2(M)$ 은 근사적으로 카이제곱분포를 따름

자유도 = (포화모형에서의 모수의 수) - (해당 모수의 수)

• $X^{2}(M)$ 값과 $G^{2}(M)$ 값이 클수록 적합이 결여된 것을 의미함

2. 예제: 마리화나 사용 조사

□ 마리화나 사용 자료

Data

이조(٧)	서벼/7\	마리화나 사용(Y)		
인종(X)	성별(Z)	예(1)	아니오(0)	
백인	여자	420	620	
	남자	483	579	
다른 인종	여자	25	55	
	남자	32	62	

■ 로지스틱회귀모형 적합

 $logit(\hat{\pi}) = -0.8303 + 0.2026 \times GENDER + 0.4437 \times RACE$

2. 예제: 마리화나 사용 조사

```
> Marijuana
  race gender yes no
1 white female 420 620
2 white male 483 579
3 other female 25 55
4 other male 32 62
> fit <- glm(yes/(yes+no) ~ gender + race, weights=yes+no, family=binomial,
            data=Marijuana)
> fit$deviance; fit$df.residual
[1] 0.05798 # residual deviance goodness-of-fit statistic
[1] 1
            # residual df
> 1 - pchisq(fit$deviance, fit$df.residual)
[1] 0.80972 # P-value for deviance goodness-of-fit test
> fitted(fit)
     1
           2
                      3
0.40453 0.45413 0.30357 0.34802 # estimated prob's of marijuana use
> fit.yes <- n*fitted(fit); fit.no <- n*(1 - fitted(fit))
> attach(Marijuana)
> data.frame(race, gender, yes, fit.yes, no, fit.no)
  race gender yes
                    fit.yes no
1 white female 420 420.71429 620 619.28571
         male 483 482.28571 579 579.71429
2 white
3 other female 25 24.28571 55 55.71429
4 other
          male 32 32.71429 62 61.28571
```

- □ 그룹화·비그룹화된 자료와 연속성 예측변수
 - 예측변수가 범주형인 경우 자료 파일의 구분

그룹화된 자료

각 예측변수의 조합에서 관측된 성공과 실패의 총합자료(분할표 형식으로 요약된 경우)

비그룹화된 자료

0과 1로 표현된 관측값으로 분할표 등으로 요약되기 전의 원자료

■ 그룹화·비그룹화된 자료와 연속성 예측변수

모수의 ML추정값

위의 두 가지 형태의 자료에 대해서 동일함

적합도 검정

그룹화된 자료의 경우에만 적용할 수 있음

■ *G*²과 *X*²는 적합도수가 5 이상인 분할표에 대해서 적용

- 그룹화·비그룹화된 자료와 연속성 예측변수
 - 연속형 또는 연속형에 가까운 예측변수를 갖는 경우의 로지스틱회귀 모형의 적합도 검정 방법

검정방법

- ① 각 예측변수를 범주화하여(예: 사분위수를 이용하여 4개의 범주로 구분) 그룹화된 자료의 관찰도수와 적합 도수에 대해 G^2 과 X^2 를 적용함
- ② 예측된 확률 $(\hat{\pi_i})$ 을 크기 순에 따라 나열하고, 자료를 그룹화하여 관찰값과 적합값을 구하여 검정하는 방법 : Hosmer-Lemeshow 검정
 - lacktriangle 설명변수의 모든 가능한 조합의 수 J가 전체 표본 크기 n과 같거나 유사한 경우로 가정

- □ 그룹화·비그룹화된 자료와 연속성 예측변수
 - 연속형 또는 연속형에 가까운 예측변수를 갖는 경우의 로지스틱회귀 모형의 적합도 검정 방법

검정방법

- ② 예측된 확률 $(\widehat{\pi_i})$ 을 크기 순에 따라 나열하고, 자료를 그룹화하여 관찰값과 적합값을 구하여 검정하는 방법 : Hosmer-Lemeshow 검정
 - ➡ Hosmer-Lemeshow 검정통계량

$$\hat{c} = \sum_{k=1}^g \frac{(O_k - n_k \overline{\pi}_k)^2}{n_k \overline{\pi}_k (1 - \overline{\pi}_k)}$$

- lacktriangle $\stackrel{\frown}{c}$ 는 자유도 g-2 인 카이제곱분포로 근사됨
- lacktriangle c 값이 클수록 적합결여에 대한 강한 증거임
 - □ PROC LOGISTIC:

MODEL y=width / lackfit :

4. 로지스틱 모형의 잔차, 표준화 잔차, 이탈도 잔차

- 범주형 예측변수에 대해서,
 관측도수와 적합도수를 비교하기 위하여 잔차를 사용함
- Pearson 잔차

•
$$e_i = \frac{y_i - n_i \pi_i}{\sqrt{n_i \hat{\pi_i} (1 - \hat{\pi_i})}}$$
 (SAS GENMOD에서 Reschi 로 표현)

- ullet y_i : "성공"한 도수
- n_i : 전체 시행횟수
- ullet π_i : 적합된 모형으로부터 구한

$$\pi_i$$
의 예측값

$$e_i \sim N(0, v), v < 1$$

- * 포아송 GLM에서 Pearson 잔차: $e_i = \frac{y_i \hat{\mu}_i}{\sqrt{\hat{\mu}_i}}$
- 잔차의 제곱합 = 적합도 카이제곱 통계량
 → 이탈도 잔차의 제곱합으로 분해

4. 로지스틱 모형의 잔차, 표준화 잔차, 이탈도 잔차

■ 표준화 잔차(Standardized Pearson Residual)

•
$$r_i = \frac{y_i - n_i \hat{\pi_i}}{SE} = \frac{e_i}{\sqrt{1 - h_i}}$$
 (StReschi로 표시)

 $m{h}_i$: 관측값의 레버리지(Leverage)를 나타내며 첫 행렬(Hat Matrix)의 대각원소임

- 관측값의 레버리지가 클수록,
 모형적합에 미치는 잠재적인 영향력이 커짐
 - 근사적으로 $r_i \sim N(0,1)$
 - $|r_i| > 2$ or 3 이면 모형의 적합결여를 시사함

5. 로지스틱 모형에서 영향점 진단

- 로지스틱 회귀분석의 영향 측도들은 그룹화된 자료 파일의 관측값들에 대해서 유용하게 사용됨
- 영향력을 측정하기 위한 측도: 대개 전체 자료에서 한 관측값을 제거했을 때에 추정에 미치는 효과를 나타냄
 - 표준화잔차 및 이를 기반하는 측도들(예: Cook의 거리)
 - 모형의 각 모수에 대해서 한 관측값을 제거했을 때, 모수의 추정값에 발생하는 변화량,(예: Dfbeta(변화량을 표준오차로 나눈 값))
 - 관측값을 제거했을 때의 이탈도 감소량

6. 예제: 심장병과 혈압

Table 5.3 Diagnostic measures for logistic regression model fitted to heart disease data.

Blood Pressure	Sample Size	Observed Disease	Fitted Disease	Standardized Residual	Dfbeta	Deviance Decrease
111.5	156	3	5.2	-1.11	0.49	1.39
121.5	252	17	10.6	2.37	-1.14	5.04
131.5	284	12	15.1	-0.95	0.33	0.94
141.5	271	16	18.1	-0.57	0.08	0.34
151.5	139	12	11.6	0.13	0.01	0.02
161.5	85	8	8.9	-0.33	-0.07	0.11
176.5	99	16	14.2	0.65	0.40	0.42
191.5	43	8	8.4	-0.18	-0.12	0.03

Source: J. Cornfield, Fed. Proc. 21, Suppl. 11: 58-61 (1962). Data are in HeartBP data file at text website.

Figure 5.1 Observed proportion (x) and fitted probability of heart disease (curve) for the linear logistic model.

1. 완전과 준완전 분리: 완전한 분류

☑ 양적 예측변수에서 무한대 효과의 추정

- y = 0 for x < 50 and y = 1 for x > 50 (완전한 판별식의 경우)
- $\log it[P(Y=1)] = \alpha + \beta x$ $\hat{\beta} = \infty$
- GLM에서 모수 적합은 Fisher의 스코어 알고리즘을 사용하면 대개 잘 수렴함. 하지만 성공이 완전히 판별되는 경우, 성공이나 실패 중 하나만 관찰된 경우는 ML 추정값이 무한대 또는 존재하지 않을 수 있음

2. 희박한 자료 (Sparse Data)

- 희박한 자료(Sparse Data)란?
 - 작은 도수를 갖는 칸들이 많은 분할표의 경우를 말함
 - 예측변수가 많거나
 다수의 수준으로 분류된 분할표에서 흔히 발생함
 - 표집영(Sampling Zero)

이론상으로 그 칸에 속한 관측값이 가능함 But 현재 Data 상으로는 해당 칸의 도수가 0인 경우 (표본의 크기가 충분히 커지면 양의 도수를 가질 수 있음)

2. 희박한 자료 (Sparse Data)

■ 표집영 (Sampling Zero)

모형에 따라 표집영은 모형의 모수에 대한
 ML추정값이 무한대가 되는 원인이 될 수 있음

	4	V	1	П
			ı	
n	_	4	ı	
		C	0	여

- 모형
$$\log[\frac{P(S)}{P(F)}] = \log[\frac{\pi}{1-\pi}] = \alpha + \beta x$$

•
$$e^{\hat{\beta}} = odds \ ratio = \frac{8 \times 0}{2 \times 10} = 0$$

 $\hat{\beta} = \log^{[odds \ ratio]} = -\infty$

3. 从刮

☑ 희박한 자료를 가진 임상시험 자료

센터	5131	반응변수		분할표	
	처리	성공	실패	성공	실패
1	Active drug	0	5	0	14
ı	Placebo	0	9		
2	Active drug	1	12	1	22
2	Placebo	0	10		22
2	Active drug	0	7	0	12
3	Placebo	0	5		
	Active drug	6	3	- 8	9
4	Placebo	2	6		
г	Active drug	5	9	7	24
5	Placebo	2	12	7	21
XY	Active drug	12	36		
분할표	Placebo	4	12		

3. 从祖

■ 희박한 자료를 가진 임상시험 자료

- $\log it [P(Y=1)] = \alpha + \beta x + \beta_k^z$
- 센터 1과 3에서 성공한 경우가 없음
 - $\rightarrow \beta_1^z$ 와 β_3^z 의 ML추정값은 $-\infty$ 가 됨

참고

- 성공이나 실패가 한 번도 없는 센터들은
 모비율의 차이와 같은 모수를 추정하는 데는 유용함
- 로지스틱회귀모형에서 오즈비를 추정하거나 처리효과가 있는지 여부를 알아보고자 할 때는 도움이 되지 않음

04 제 7장. 로지스틱회귀모형(3)

베이지안 추론, 벌점가능도 추정법

1. 베이지안 모형화: 사전분포 명시

- ML 추정값이 무한대일 때 편향성이 적고, 유한한 추정값을 구할 수 있는 수정된 가능도 기반의 방법 중 하나
- 로지스틱 회귀분석에서 베이지안 추론은 보통 $\{\beta_j\}$ 를 평균이 0이고, 서로 독립인 정규분포의 확률변수로 취급하여 추론함
- 보통 정규분포의 표준편차 값을 아주 크게 하여 사전분포가 결과적으로 추정 결과에 거의 영향을 미치지 않도록

Table 5.5 Results of Bayesian and frequentist fitting of models to the endometrial cancer data-set of Table 5.4.

Analysis	$\hat{\beta}_1$ (SD)	Interval ^a	$\hat{\beta}_2 (SD)$	$\hat{\beta}_3 (SD)$
ML	∞ (—)	$(1.3, \infty)$	-0.42 (0.44)	-1.92 (0.56)
Bayes, $\sigma = 10$	9.12 (5.10)	(2.1, 21.3)	-0.47(0.45)	-2.14(0.59)
Bayes, $\sigma = 1$	1.65 (0.69)	(0.3, 3.0)	-0.22(0.33)	-1.77(0.43)

^aProfile-likelihood interval for ML and equal-tail posterior interval for Bayes.

2. 로지스틱 모형에서 벌점가능도(penalized likelihood)

- 매우 희박한 분할표와 같이 잠재적으로 추정이 불안정한 상황에서 ML 방법을 수정하여 합리적인 추정을 하는 방법
- 모형의 모수 β 에 대한 로그 가능도 함수 $L(\beta)$ 가 있는 모형에 대해서 다음 식을 최대로 하는 추정값을 찾는 방법.

$$L^*(\beta) = L(\beta) - s(\beta)$$

여기서, $s(\cdot)$ 는 β 가 더 평활해(smoother)질수록 $s(\beta)$ 가 감소하는 함수

"이 평활화 방법은 ML 추정값을 0으로 축소시킴.

ML 추정값이 무한대 값을 갖거나 다중공선성이 있는 경우

좀더 안정적인 추정결과를 제공함"

2. 로지스틱 모형에서 벌점가능도(penalized likelihood)

자궁내막암의 위험인자 분석 사례

```
> fit <- glm(HG ~ NV + PI + EH, family=binomial, data=Endo)
> summary(fit)
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.305
                        1.637
                               2.629
                                       0.0086
                    1715.751 0.011 0.9915 # true estimate = infinity
NV
            18.186
            -0.042
PI
                        0.044 -0.952
                                       0.3413
            -2.903 0.846 -3.433 0.0006
EH
    Null deviance: 104.903 on 78 degrees of freedom
Residual deviance: 55.393 on 75 degrees of freedom
```

Firth's 방법 : Jeffery's prior를 s(.)로 이용하는 방법

```
> library(logistf) # can implement Firth's penalized likelihood method
> fit.penalized <- logistf(HG ~ NV2 + PI2 + EH2, family=binomial, data=Endo)
> summary(fit.penalized)
Confidence intervals and p-values by Profile Likelihood
             coef se(coef) lower 0.95 upper 0.95 Chisq
(Intercept) 0.3080
                     0.8006
                               -0.9755
                                                  0.169 6.810e-01
                                          2.7888
NV2
            2.9293
                    1.5508 0.6097
                                                  6.798 9.124e-03
                                          7.8546
                               -1.2443 0.4045
PI2
           -0.3474
                    0.3957
                                                  0.747 3.875e-01
          -1.7243
EH2
                    0.5138
                               -2.8903
                                         -0.8162 17.759 2.507e-05
```


