浯陽科技

MIAT_C3X25 實驗板

使用手册

手冊版本: 1.00

發行日期: 2010年10月

目 錄

1.	實驗板簡介	3
2.	硬體配置與設定說明	4
2	2.1. 實驗板電源需求	4
2	2.2. I/O Banks 邏輯電壓調整	5
2	2.3. LED 與按鈕開關	7
2	2.4. SRAM、Flash 與 SDRAM 之接腳配置	8
2	2.5. 石英晶體振盪器	11
3.	實驗板之硬體與 USB 介面驅動程式安裝	11
4.	I/O 範例實驗	13
5.	可進行的實驗課程	20
6.	文件訂正紀錄	21

1. 實驗板簡介

MIAT_C3X25 實驗板是以 Altera 公司的 EP3C25F256 為主要核心晶片,結合了電源、外部 SRAM、Flash Memory、SDRAM 與 I/O 測試元件等等,以 2.54mm 間距排針拉出所有外部擴充所需要的信號,所有 I/O 接腳邏輯電位均為可調(1.2V, 1.8V, 2.5V, 2.8V, 3.3V) ,讓使用者可以很有彈性的連接實驗週邊電路,MIAT_C3X25 實驗板的照片與元件配置標示如下圖,標明了 FPGA、各種連接器、按鈕開關與 LED 等等的位置。

(a)實驗板之正面。

(b) 實驗板之反面。

圖 1.1 MIAT_C3X25 實驗板照片與元件配置標示圖。

實驗板提供之硬體資源:

● FPGA 編號 Altera Cyclone III EP3C25F256, 包裝規格 FBGA 256 硬體特性:

- 24,624 Logic Elements
- 594(66x9) Kbits Memory
- 66 Multipliers
 - 4 PLLs
 - 20 Global Clock Networks
 - 156 I/O Pin Counts
 - Support Memory Types: DDR, DDR2, SDRAM Data Rates up to 400 Mbps
 - 50Mhz Oscillator
 - 核心晶片之 I/O 接腳以 2.54mm 間距的排針連接,可彈性擴充週邊。
 - I/O 接腳邏輯電位可調(1.2V, 1.8V, 2.5V, 2.8V, 3.3V)。
- 外部記憶體
 - 4Mx16bits SDRAM
 - 2Mbyte Flash Memory
 - 256Kx16bits SRAM
- 可由 USB 介面燒錄電路
- 4個使用者測試 LED
- 4個使用者測試按鈕開關
- 電源 DC6V-12V
- 尺寸:150x110mm

2. 硬體配置與設定說明

2.1. 實驗板電源需求

本實驗板需連接 6V 直流電源,當按下電源開關時,POWER LED 被點亮。

圖 2.1 電源座、電源開關與電源指示 LED 位置圖。

2.2. I/O Banks 邏輯電壓調整

本實驗板可彈性調整 I/O 的邏輯電位,可選擇 $1.2V \times 1.5V \times 2.5V \times 2.8V$ 與 3.3V,擴充連接不同 邏輯電位之周邊,VCCIO 設定之位置標示於圖 2.2,實驗板之 FPGA 晶片有 8 Bank 的 I/O 分成四組 調整:VCCIO1,2 (Bank 1 與 Bank2 之 I/O 電源)、VCCIO3,4、VCCIO5,6、VCCIO7,8。

圖 2.2 VCCIO 之位置標示與設定範例。

每個 Bank 的 I/O 分配至 JP1~JP5 之 2.54 排針座,當 FPGA 核心晶片為 EP3C5/C10 使用 JP1~JP4 之 I/O,FPGA 核心晶片為 EP3C16/C25 時,由於 JP3 許多接腳轉為電源專用接腳,剩下部分可用的接腳則分配至 JP5,因此只能使用 JP1, JP2, JP4 與 JP5。

圖 2.3 I/O Bank 與 JP1~JP5 之對照圖。

2.3. LED 與按鈕開關

本實驗板提供 4 個使用者測試 LED 與 4 個使用者測試按鈕開關,其電路與 FPGA Pin 腳對應表如圖 2.4。

圖 2.4 LED、按鈕開關電路圖與腳位配置名稱。

2.4. SRAM、Flash 與 SDRAM 之接腳配置

關於 SRAM、Flash 與 SDRAM 等元件之詳細資料可參考光碟內所附之 DataSheet,本實驗板採用的 SRAM 的容量大小為 256Kx16 bits,電路圖於圖 2.5,FPGA 與 SRAM 的接腳對應表如表 2.1 所示,有部分接腳與 JP2 共用,SRAM 的/CE 可控制其 IO0~IO15 是否為高阻抗(High-Z)。

圖 2.5 SRAM 電路圖。

表 2.1 FPGA與SRAM之接腳對應表。

No.	Signal Name	FPGA Pin	Bank No.	No.	Signal Name	FPGA Pin	Bank No.
1	SRAM_addr1(JP2.3)	N16	B5	21	SRAM_DQ1(JP2.24)	L8	B3
2	SRAM_addr2(JP2.4)	N15	B5	22	SRAM_DQ2(JP2.25)	M6	B3
3	SRAM_addr3(JP2.5)	L16	B5	23	SRAM_DQ3(JP2.26)	T2	B3
4	SRAM_addr4(JP2.6)	L15	B5	24	SRAM_DQ4(JP2.27)	M8	B3
5	SRAM_addr5(JP2.7)	K16	B5	25	SRAM_DQ5(JP2.28)	N5	B3
6	SRAM_addr6(JP2.8)	K15	B5	26	SRAM_DQ6(JP2.31)	N6	B3
7	SRAM_addr7(JP2.9)	J16	B5	27	SRAM_DQ7(JP2.32)	N8	B3
8	SRAM_addr8(JP2.10)	J15	B5	28	SRAM_DQ8(JP2.33)	P3	B3
9	SRAM_addr9(JP2.13)	J14	B5	29	SRAM_DQ9(JP2.34)	P8	B3
10	SRAM_addr10(JP2.14)	H16	B6	30	SRAM_DQ10(JP2.35)	R3	B3
11	SRAM_addr11(JP2.15)	H15	B6	31	SRAM_DQ11(JP2.36)	R5	B3
12	SRAM_addr12(JP2.16)	G16	B6	32	SRAM_DQ12(JP2.37)	R6	B3
13	SRAM_addr13(JP2.17)	G15	B6	33	SRAM_DQ13(JP2.38)	R7	B3
14	SRAM_addr14(JP2.18)	F16	B6	34	SRAM_DQ14(JP2.39)	T7	B3
15	SRAM_addr15(JP2.19)	F15	B6	35	SRAM_DQ15(JP2.40)	M7	B3
16	SRAM_addr16(JP2.20)	D16	B6	36	SRAM_CE_n	N3	B3
17	SRAM_addr17(JP2.21)	D15	B6	37	SRAM_WE_n	T3	B3
18	SRAM_addr18(JP2.22)	C16	B6	38	SRAM_OE_n	T5	B3
19	SRAM_addr19	C15	B6	39	SRAM_UB_n	T6	B3
20	SRAM_QD0(JP2.23)	L7	B3	40	SRAM_LB_n	P6	B3

FLASH Memory 的容量大小為 1M x16 bits, 電路圖於圖 2.6, FPGA 與 FLASH Memory 的接腳對應表如表 2.2 所示,有部分接腳與 JP2 共用,FLASH Memory 的/RESET 接腳可控制其 IO0~IO15 是否為高阻抗(High-Z)。

圖 2.6 FLASH Memory 電路圖。

表 2.2 FPGA與FLASH Memory之接腳對應表。

No.	Signal Name	FPGA Pin	Bank No.	No.	Signal Name	FPGA Pin	Bank No.
1	FLASH_A0(JP2.1)	P16	B5	23	FLASH_DQ0(JP2.23)	L7	B3
2	FLASH A1(JP2.2)	R16	B5	24	FLASH DQ1(JP2.24)	L8	B3
3	FLASH_A2(JP2.3)	N16	B5	25	FLASH_DQ2(JP2.25)	M6	В3
4	FLASH_A3(JP2.4)	N15	B5	26	FLASH_DQ3(JP2.26)	T2	В3
5	FLASH_A4(JP2.5)	L16	B5	27	FLASH_DQ4(JP2.27)	M8	В3
6	FLASH_A5(JP2.6)	L15	B5	28	FLASH_DQ5(JP2.28)	N5	В3
7	FLASH_A6(JP2.7)	K16	B5	29	FLASH_DQ6(JP2.31)	N6	B3
8	FLASH_A7(JP2.8)	K15	B5	30	FLASH_DQ7(JP2.32)	N8	B3
9	FLASH_A8(JP2.9)	J16	B5	31	FLASH_DQ8(JP2.33)	P3	В3
10	FLASH_A9(JP2.10)	J15	B5	32	FLASH_DQ9(JP2.34)	P8	В3
11	FLASH_A10(JP2.13)	J14	B5	33	FLASH_DQ10(JP2.35)	R3	В3
12	FLASH_A11(JP2.14)	H16	B6	34	FLASH_DQ11(JP2.36)	R5	B3
13	FLASH_A12(JP2.15)	H15	B6	35	FLASH_DQ12(JP2.37)	R6	B3
14	FLASH_A13(JP2.16)	G16	B6	36	FLASH_DQ13(JP2.38)	R7	B3
15	FLASH_A14(JP2.17)	G15	B6	37	FLASH_DQ14(JP2.39)	T7	B3
16	FLASH_A15(JP2.18)	F16	B6	38	FLASH_DQ15(JP2.40)	M7	B3
17	FLASH_A16(JP2.19)	F15	B6	39	FLASH_OE_n	T14	B4
18	FLASH_A17(JP2.20)	D16	B6	40	FLASH_RESET_n	T13	B4
19	FLASH_A18(JP2.21)	D15	B6	41	FLASH_WE_n	T15	B4
20	FLASH_A19(JP2.22)	C16	B6	42	FLASH_CE_n	T11	B4
21	FLASH_A20	C15	B6	43	FLASH_WP_n	T12	B4
22	FLASH_A21	F13	B6	44	FLASH_BYTE_n	R13	B4

SDRAM 的容量大小為 4M x16 bits,電路圖於圖 2.7,FPGA 與 FLASH Memory 的接腳對應表如表 2.3 所示,有部分接腳與 JP4 共用,SDRAM 的 DQM 接腳可控制其 DQ0~DQ15 是否為高阻抗 (High-Z)。

圖 2.7 SDRAM 電路圖。

表 2.3 FPGA 與 SDRAM 之接腳對應表。

	农 2.311 GA 與 BDRAW 之按例 到 愿农						
No.	Signal Name	FPGA Pin	Bank No.	No.	Signal Name	FPGA Pin	Bank No.
1	DDR_A0(JP4.1)	P16	B8	21	DDR_DQ7(JP4.25)	C9	В7
2	DDR_A1(JP4.2)	R16	B8	22	DDR_DQ8(JP4.26)	A15	В7
3	DDR_A2(JP4.3)	N16	B8	23	DDR_DQ9(JP4.27)	E9	В7
4	DDR_A3(JP4.4)	N15	B8	24	DDR_DQ10(JP4.28)	C14	B7
5	DDR_A4(JP4.5)	L16	B8	25	DDR_DQ11(JP4.31)	B14	B7
6	DDR_A5(JP4.6)	L15	B8	26	DDR_DQ12(JP4.32)	B12	В7
7	DDR_A6(JP4.7)	K16	B8	27	DDR_DQ13(JP4.33)	E11	B7
8	DDR_A7(JP4.8)	K15	B8	28	DDR_DQ14(JP4.34)	E10	B7
9	DDR_A8(JP4.9)	J16	B8	29	DDR_DQ15(JP4.35)	F9	B7
10	DDR_A9(JP4.10)	J15	B8	30	DDR_CLK	A14	В7
11	DDR_A10(JP4.13)	J14	B8	31	DDR_CKE(JP4.40)	B6	B8
12	DDR_A11(JP4.14)	H16	B6	32	DDR_WE_n	C8	B8
13	DDR_A12(JP4.15)	H15	B6	33	DDR_CAS_n	D5	B8
14	DDR_DQ0(JP4.16)	A10	B7	34	DDR_RAS_n	A4	B8
15	DDR_DQ1(JP4.17)	A11	B7	35	DDR_CS_n	A2	B8
16	DDR_DQ2(JP4.18)	A12	B7	36	DDR_DM0(JP4.36)	D14	В7
17	DDR_DQ3(JP4.20)	B10	B7	37	DDR_DM1(JP4.37)	D9	B7
18	DDR_DQ4(JP4.22)	B11	B7	38	DDR_BA0(JP4.38)	D11	B7
19	DDR_DQ5(JP4.23)	B12	B7	39	DDR_BA1(JP4.39)	A13	В7
20	DDR_DQ6(JP4.24)	B13	B7	40			

2.5. 石英晶體振盪器

本實驗板之 50MHz 時脈(clock)連接 FPGA 晶片 Pin Name 為 E16 其 Pin Function 為 CLK5,可由晶片內部之 PLL 電路再產生 4 個不同頻率的 clock 出來。

表 2.4 FPGA 與 50MHz 時脈之接腳對應表。

Signal Name	FPGA Pin Name	Bank No.
50MHz	E16	B6

圖 2.8 50MHz 石英晶體振盪器電路與 FPGA 連接之電路圖。

3. 實驗板之硬體與 USB 介面驅動程式安裝

步驟一、將實驗板連接 PC,如下圖:

圖 3.1 實驗板安裝。

步驟二、驅動程式安裝,當實驗板第一次連接 PC 時,需安裝 USB Blaster 驅動程式,驅動程式目錄為 C:\altera\10.0\quartus\drivers\usb-blaster。

(b)

(a)

圖 3.2 驅動程式安裝。

圖 3.3 驅動程式安裝(續)。

4. I/O 範例實驗

假設使用者已安裝 QuartusII 軟體工具,在此以 TESTIO1 為範例,目錄於 CDROM\MIAT C3X EVB Demonstrations\TESTIO1,設定步驟如下:

步驟一、 在\D:建立專案目錄並複製 MIATC3XTOP.vhd 檔案,如下圖

圖 4.1 複製 MIATC3XTOP.vhd 檔案。

步驟二、執行 Quartus II

圖 4.2 執行 Quartus II。

步驟三、建立專案檔(1/6)

圖 4.3 建立專案。

步驟三、建立專案檔(2/6)

圖 4.4 填入專案名稱。

圖 4.5 填入專案目錄名稱。

步驟三、建立專案檔(4/6)

圖 4.6 加入 VHDL 設計檔。

步驟三、建立專案檔(5/6)

圖 4.7 選擇 FPGA 晶片編號。

步驟三、建立專案檔(6/6)

圖 4.8 EDA 工具選擇。

步驟四、執行 Analysis & Elaboration

圖 4.9 Analysis & Elaboration。

步驟五、執行 Pin Planner(1/2)

圖 4.10 FPGA Pin 腳設定。

步驟五、執行 Pin Planner(2/2)

圖 4.11 FPGA Pin 腳設定。

步驟六、執行 Start Compilation

圖 4.12 Start Compilation。

(a)

圖 4.13 電路燒錄。

步驟八、測試實驗板之 Button 與 LED 動作是否正確,當開關 Button 按下時相對應的 LED 被點亮,反之 LED 熄滅。

圖 4.14 Button 與 LED 操作測試。

5. 可進行的實驗課程

本實驗板除了可配合 MIAT_IOB 實驗板以外,可配合 MIAT_IOB 實驗板進行進階的實驗,如下列項目:

數位系統實驗:

- 1. FPGA 軟硬體開發環境
- 2.VHDL 電路設計與 FPGA 燒錄
- 3.基本輸入/輸出 (開闢 /LED 實驗
- 4.組合邏輯電路-編解碼器實驗
- 5.組合邏輯電路—多工器實驗
- 6.組合邏輯電路—加法器實驗
- 7.組合邏輯電路—ALU實驗
- 8.組合邏輯電路-移位器實驗
- 9. 合邏輯電路—乘法器實驗
- 10.循序電路 —Latch 和正反器實驗
- 11.循序電路 —Counter 實驗
- 12.循序電路 Mealy FSM 實驗
- 13.循序電路 MooreFSM 實驗
- 14.紅綠燈控制器電路實驗
- 15.跑馬燈電路實驗
- 16.計時器電路實驗

微處理機及 SOPC 實驗:

- 1.SOPC 開發流程(NIOS II 使用教學)
- 2.SOPC 輸入/輸出實驗(LED 控制)
- 3. Avalon 匯流排實驗
- 4.NIOS II 硬體週邊 UART 控制實驗
- 5.NIOS II 硬體週邊 I2C 控制實驗
- 6.NIOS II 硬體週邊 SPI 控制實驗
- 7.文字型 LCD 顯示實驗
- 8.LCD 圖形顯示實驗
- 9.PS2 鍵盤實驗
- 10.外部記憶體控制實驗
- 11.RTOS uC/OS II 移植實驗
- 12.CMOS 影像感測取像控制實驗
- 13.RF 無線通訊實驗
- 14.感測器軟硬體整合實驗
- 15.馬達控制軟硬體整合實驗
- 16.機器人 SOPC 整合應用實驗

嵌入式硬體/IP 設計實驗:

1.記憶體控制器 IP 設計與應用 (SRAM, SDRAM, Flash memory controller)

2. 串列通訊協定硬體 IP 設計

(UART, I2C, SPI)

3.PWM/SVPWM IP 設計與應用

(PWM 波形產生器, 蜂鳴器控制, 馬達控制)

4.Display 控制 IP 設計

(VGA Controller, 文字型 LCD 顯示控制)

5.嵌入式影像處理

(取像控制, 色彩轉換, DCT, DWT, 形態學影像處理器硬體 IP 設計)

6.糾錯編碼

(CRC, Hamming, R-S Code)

7.加解密

(DES, Tri-DES, AES)

6. 文件訂正紀錄

表 6.1 文件訂正紀錄表

日期	版本	修改說明
2010-10-09	1.00	初版