

GEACC
Projeto POSCOMP 2021

Professor —

Não se aplica

Informações -

- Pré-requisitos: inglês e bom aproveitamento (por exemplo: mérito acadêmico ou índice de rendimento ≥ 8) em lógica, cálculo (I, II e III), álgebra linear, matemática discreta, estrutura de dados, algoritmos de pesquisa e ordenação, e programação (Java, C/C++ ou Python).
- A definir
- A definir
- A definir

Laboratório -

A definir

Monitores ——

Não se aplica

Sobre o GEACC

O *Grupo de Estudos Avançados em Ciência da Computação (GEACC)* é formado por alunos de Ciência da Computação (e cursos relacionados) da FAESA Centro Universitário.

Objetivo do Grupo de Estudos

Estudar tópicos avançados em Ciência da Computação, em especial:

- Matemática: álgebra linear, análise combinatória, geometria analítica, lógica matemática, matemática discreta, matemática concreta, probabilidade e estatística
- Fundamentos da Computação: algoritmos e estrutura de dados, análise de algoritmos, arquitetura e organização de computadores, circuitos digitais, linguagens de programação, linguagens formais, autômatos e computabilidade, organização de arquivos e dados, sistemas operacionais, técnicas de programação, teoria dos grafos
- Tecnologias da Computação: banco de dados, compiladores, computação gráfica, engenharia de software, inteligência artificial, processamento de imagens, redes de computadores, sistemas distribuídos

O objetivo específico é preparar os alunos participantes do grupo para alcançar nota ≥ 8.0 na prova POSCOMP de 2021 (o que corresponde a acertar pelo menos 56 das 70 questões da prova).

Limite de Participantes

O grupo será formado por, no máximo, 5 alunos. Isso é necessário para manter o padrão e o ritmo de estudos, bem como a qualidade das implementações em código dos algoritmos e programas criados. Quer participar? acesse a plataforma Piazza do GEACC para maiores informações (ver abaixo).

Permanência no Grupo

Para que um aluno permaneça no grupo, deve participar ativamente das atividades estabelecidas, ou seja: deve cumprir as leituras e tarefas no prazo indicado, implementar as estruturas de dados e algoritmos que estão sendo estudados, comparecer aos encontros presenciais e ajudar os outros participantes. Caso alguém não esteja participando ativamente será excluído e uma nova vaga será aberta para possíveis interessados.

Dinâmica/Funcionamento

O grupo estabelecerá um cronograma mensal de estudos que será o guia referencial de tudo o que precisa ser estudado no mês. Esse guia apontará os livros e os capítulos que precisam ser estudados e ter os exercícios resolvidos (o grupo decidirá quais exercícios fazer).

Serão realizadas reuniões semanais ou quinzenais, conforme a necessidade, para que os membros possam discutir sobre o que foi estudado, mostrar os exercícios realizados e tirar dúvidas.

Além dos encontros presenciais, leituras e estudos adicionais serão realizados de forma online na plataforma Piazza do grupo.

Plataformas Online: Piazza e GitHub

O GEACC conta com as seguintes plataformas online para auxílio ao estudo:

- *Piazza*: é o principal "ponto de encontro" online para discussões, dúvidas, exercícios e tarefas. Acesse em:
 - https://piazza.com/magister.pro.br/winter2019/geacc/home
- GitHub: contém os documentos e códigos do grupo. Acesse em: https://github.com/geacc

FAQs

- Para participar é preciso ter um alto Índice de Rendimento?
- Se você está se referindo ao Índice de Rendimento da FAESA, sim. Este programa de estudos é bem rigoroso e caso seu índice de rendimento esteja abaixo de 8, acreditamos que você terá muita dificuldade em manter os estudos em dia (lembre-se: você terá que estudar normalmente para a gradução E para o grupo).
- O cronograma é fixo?
- A princípio sim, mas pode ser alterado a qualquer momento para melhor atender às necessidades dos participantes.
- ? Eu trabalho/estagio, posso participar?
- A princípio sim, desde que você tenha um bom Índice de Rendimento.
- Como o grupo funcionará?
- Boa pergunta! Ainda estamos definindo isso em maiores detalhes.

Leituras Obrigatórias

Matemática

Stewart J. Calculus: Early Transcendentals. 8th ed. Cengage, 2016. ("Calc")

Graham RL, Knuth DE, Patashnik O. *Concrete Mathematics: a foundation for computer science*. 2nd ed. Addison-Wesley, 1994. ("MatCon")

Lehman E, Leighton FT, Meyer AR. *Mathematics for Computer Science*. 2018/06/06 ed. https://courses.csail.mit.edu/6.042/spring18/, 2019. ("MatDis")

Anton H, Rorres C. *Elementary Linear Algebra: applications version*. 10th ed. John Wiley & Sons, 2010. ("AlgLin")

Bergmann M, Moor J, Nelson J. *The Logic Book*. 6th ed. McGraw-Hill, 2014 ("LogMat")

Algoritmos

Cormen TH, Leiserson CE, Rivest RL, Stein C. *Introduction to Algorithms*. 3rd ed. The MIT Press, 2009. ("Alg1")

Sedgewick R, Wayne K. Algorithms. 4th ed. Addison-Wesley, 2011. ("Alg2")

Outros

(a definir)

Cronograma de estudos

Dez/2019		
	Functions and Models	Calc, capítulo 1.
	Limits and Derivatives	Calc, capítulo 2.
	Recurrent Problems	MatCon, capítulo 1.
	What is a Proof?	MatDis, capítulo 1.
	The Well Ordering Principle	MatDis, capítulo 2.
	Systems of Linear Equations and Matrices	AlgLin, capítulo 1.
Jan/2020	Differentiation Rules	Calc, capítulo 3.
	Applications of Differentiation	Calc, capítulo 4.
	Sums	MatCon, capítulo 2.
	Logical Formulas	MatDis, capítulo 3.
	Mathematical Data Types	MatDis, capítulo 4.
	Determinants	AlgLin, capítulo 2.
Fev/2020	Integrals	Calc, capítulo 5.
	Application of Integration	Calc, capítulo 6.
	Integer Functions	MatCon, capítulo 3.
	Induction	MatDis, capítulo 5.
	State Machines	MatDis, capítulo 6.
	Euclidean Vectos Spaces	AlgLin, capítulo 3.
Mar/2020	Techniques of Integration	Calc, capítulo 7.
	Further Applications of Integration	Calc, capítulo 8.
	Number Theory	MatCon, capítulo 4.
	Recursive Data Types	MatDis, capítulo 7.
:	Infinite Sets	MatDis, capítulo 8.
	General Vector Spaces	AlgLin, capítulo 4.
Abr/2020	Differential Equations	Calc, capítulo 9.
	Parametric Equations and Polar Coordinates	Calc, capítulo 10.
	Binomial Coefficients	MatCon, capítulo 5.
	Number Theory	MatDis, capítulo 9.
	Directed Graphs & Partial Orders	MatDis, capítulo 10.

Mai/2020	Infinite Sequences and Series	Calc, capítulo 11.
	Vectors and the Geometry of Space	Calc, capítulo 12.
	Special Numbers	MatCon, capítulo 6.
	Communication Networks	MatDis, capítulo 11.
	Simple Graphs	MatDis, capítulo 12.
	Inner Product Spaces	AlgLin, capítulo 6.
Jun/2020	Vector Functions	Calc, capítulo 13.
	Partial Derivaties	Calc, capítulo 14.
	Generating Functions	MatCon, capítulo 7.
	Planar Graphs	MatDis, capítulo 13.
	Sums and Asymptotics	MatDis, capítulo 14.
	Diagonalization and Quadratic Forms	AlgLin, capítulo 7.
Jul/2020	Multiple Integrals	Calc, capítulo 15.
	Vector Calculus	Calc, capítulo 16.
	Discrete Probability	MatCon, capítulo 8.
	Cardinality Rules	MatDis, capítulo 15.
	Generating Functions	MatDis, capítulo 16.
	Linear Transformations	AlgLin, capítulo 8.
Ago/2020	Second-Order Differential Equations	Calc, capítulo 17.
	Asymptotics	MatCon, capítulo 9.
	Events and Probability Spaces	MatDis, capítulo 17.
	Conditional Probability	MatDis, capítulo 18.
	Random Variables	MatDis, capítulo 19.
	Numerical Methods	AlgLin, capítulo 9.
Set/2020	Deviation from the Mean	MatDis, capítulo 20.
	Random Walks	MatDis, capítulo 21.
	Recurrences	MatDis, capítulo 22.
	Applications of Linear Algebra	AlgLin, capítulo 10.
MÓDULO	2: Algoritmos	
Nov/2020	The Role of Algorithms in Computing	Alg1, capítulo 1.
	Basic Programming Model	Alg2, capítulo 1.1.
	Data Abstraction	Alg2, capítulo 1.2.

Dez/2020	Bags, Queues, and Stacks	Alg2, capítulo 1.3.
	Elementary Data Structures	Alg1, capítulo 10.
	Growth of Functions	Alg1, capítulo 3.
	Analysis of Algorithms	Alg2, capítulo 1.4.
Fev/2021	Case Study: Union-Find	Alg2, capítulo 1.5.
	Elementary Sorts	Alg2, capítulo 2.1.
	Getting Started	Alg1, capítulo 2.
	Mergesort	Alg2, capítulo 2.2.
	Divide-and-Conquer	Alg1, capítulo 4.
Mar/2021	Quicksort	Alg1, capítulo 7.
	Quicksort	Alg2, capítulo 2.3.
	Heapsort	Alg1, capítulo 6.
	Priority Queues	Alg2, capítulo 2.4.
	Applications	Alg2, capítulo 2.5.
Abr/2021	Sorting in Linear Time	Alg1, capítulo 8.
	Symbol Tables	Alg2, capítulo 3.1.
	Hash Tables	Alg2, capítulo 3.4.
	Hash Tables	Alg1, capítulo 11.
	Priority Queues	Alg2, capítulo 2.4.
	Applications	Alg2, capítulo 2.5.
MODULE	3: There Goes the Neighborhood	
Week 14	Symbiotic Relationships	DOF Ch. 22, 492-497
	Behavior	DOF Ch. 23
Week 15	Ecology	DOF Ch. 25
	Conservation Efforts	DOF Ch. 26
Week 16	FINAL EXAM	Date & Time & Location

Lab Schedule

Week 2	Chondrichthyan Fishes	Students enjoy a two part lab: first, they examine specimens across the Chondrichthyan phylogeny; second, they dissect a small spiny dogfish shark.
Week 3	Harvard Natural History Museum	Students walk through the HMNH and the fossil collection, inspecting various fossil fishes.
Week 4	Basal Teleosts & Otocephalan Fishes	Students explore specimens across the basal Teleost phylogeny.
Week 5	Freshwater & Deep-Sea Fishes	Students explore specimens from a diverse group of fishes, and try to place each group in the broader phylogeny.
Week 6	Coral Reef & Pelagic Fishes	Students explore specimens from a diverse group of fishes, and try to place each group in the broader phylogeny.
Week 7	No Lab	
Week 8	Internal Systems	Students dissect fish specimens, probing and examing key internal systems.
Week 9	Jaw Dissections	Students again dissect their fish specimens, taking apart and visualizing the jaws of their fish.
Week 10	Sensory Systems & Buoyancy	Students again enjoy a two-part lab: first, examining a broad selection of specimens, comparing and contrasting sensory system apparatuses; and then conducting a series of small experiments to better understand the difficulties associated with buoyancy control in the water.
Week 11	Locomotion	Students dissect fish specimens, looking at muscular and structure of the body and fins. Students also participate in demonstrations designed to elucidate the concept of lift.
Week 12	Review Paper Projects	Students bring electronic devices and/or paper printouts of 2-3 paper choices, and will select peer reviewers. TAs will be available to assist students in choosing a paper and begin reviewing it.
Week 13	No Lab	
Week 14	No Lab	
Week 15	Final Exam Review Sessions	Review Paper Project Due