

TEKNIK DASAR HIDROPONIK

Dr. Ir. Tatang Sopandi., MP

PROGRAM STUDI BIOLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM SURABAYA, 11 MARET 2018

APA ITU HIDROPONIK

Hidroponik berasal dari bahasa Latin yang artinya pekerja air.

```
"hydro" = air (water)

"ponos" = pekerjaan (labor).
```

Hidroponik = budidaya tanaman tanpa tanah!

KEBUTUHAN TANAMAN

Apa yang dibutuhkan tanaman untuk hidup?

- 1. Air
- 2. Cahaya
- 3. Udara
- 4. Nutrisi (umumnya dari tanah)
- 5. Sistem perakaran (anchorage)

MENGAPA HIDROPONIK

- 1. Tidak semua tanaman dapat tumbuh pada jenis tanah tertentu
- 2. Lahan untuk budidaya tanaman semakin sedikit
- 3. Pertumbuhan tanaman lebih cepat
- 4. Penggunaan lahan lebih efisien
- 5. Budidaya tanaman hidroponik tidak tergantung kondisi agroklimat
- 6. Kualitas hasil panen sayuran dan buah lebih tinggi
- 7. Pertumbuhan gulma sedikit

KELEMAHAN HIDROPONIK

- 1. Biaya investasi awal tinggi
- 2. Manajemen, modal dan tenaga kerja intensif
- 3. Dibutuhkan pengalaman dan keahliaan tinggi
- 4. Perhatian sangat tinggi
- 5. Dibutuhkan nutrisi (pupuk) dengan formulasi tertentu
- 6. Resiko serangan hama dan penyakit masih tinggi dan dapat menyebar dalam sistem sirkulasi
- Persaingan dengan produk sejenis dari pertanian tradisional dengan harga lebih murah

SISTEM HIDROPONIK

- Sistem pasif : sangat baik untuk pemula, sederhana dan murah
- Sistem aktif : pompa dan beberapa alat berfungi mengalirkan nutrisi kepada akar tanaman

TEKNIK WICK

- Teknik hidroponik yang menggunakan sumbu (kapiler) untuk mengalirkan nutrisi pada akar tanaman
- 2. Teknik ini tanpa pompa dan pengatur waktu

TEKNIK FLOOD DAN DRAIN

- Teknik rendam dan kuras
- Paling serbaguna, air yang berisi nutrisi dari bak penempung air dialirkan ke nampan tempat tumbuh tanaman
- Akar diberi nutrisi segar, ketika nutrisi mengalir kembali ke bak penampung serta udara segar ditarik melalui sistem akar dan oksigen disuplai ke akar.

TEKNIK RAKIT TERAPUNG (FLOATING PLATFORM)

- Tempat tanaman biasanya styrofoam mengapung langsung di atas air berisi nutrisi
- Pompa udara memasok oksigen ke akar dan menggelembung air nutrisi

TEKNIK DRIP (TETES)

- Air yang mengandung nutrisi diteteskan pada dasar tanaman dan akan diserap akar
- Teknik dilengkapi pompa dan pengatur waktu
- Kelebihan nutrisi akan dikumpulkan pada bak penampung

N)utrient (F)ilm (T)echnique

- Air yang berisi nutrisi dipompa ke nampan (talang, pipa pralon) tempat tumbuh tanaman dan mengalir di atas akar tanaman, kemudian mengalir kembali ke bak penampung air
- Tanaman berada dalam netpot dengan akar menggantung ke dalam nutrisi

AEROPONIK

- Akar menggantung di udara dan disemprot air setiap beberapa menit.
- Sistem aeroponik membutuhkan pengatur waktu dengan durasi singkat yang menjalankan pompa

MEDIA ORGANIK

 Contoh: arang sekam, serbuk gergaji, sabut kelapa, akar pakis, vermikulit, gambut dll

Kelebihan Organik Media

- Kemampuan menyimpan air dan nutrisi tinggi
- Baik untuk perkembangan mikroorganisme bermanfaat (mikroriza dll)
- Aerasi optimal (porus)
- Kemampuan menyangga pH tinggi
- Sangat cocok bagi perkembangan perakaran
- Digunakan pada tipe hidroponik drip
- Lebih ringan

Kekurangan Organik Media

- Kelembaban media cukup tinggi, rentan tehd tumbuh jamur, bakteri, serta virus penyebab penyakit tanaman
- Sterilitas media rendah
- Tidak permanen, hanya dapat digunakan beberapa kali saja, secara rutin harus diganti

Media Non-Organik

 Contoh: perlit, rockwool, clay granular, sand, gravel, batu apung, batu bata, batu karang, dll

Kelebihan Non-Organik Media

- Permanen, dapat dipakai dalam jangka waktu yang lama
- Porus, aerasi optimal
- Cepat mengatuskan air, media tidak terlalu lembab
- Sterilitasnya lebih terjamin
- Jarang digunakan sebagai inang bagi jamur, bakteri, dan virus

Kekurangan Non-Organik Media

- Bukan media yang baik bagi perkembangan organisme bermanfaat seperti Mikoriza
- Media lebih berat, karena umumnya berupa batuan
- Terlalu cepat mengatuskan air, nutrisi yang diberikan sering terlindi
- Kurang baik untuk perkembangan sistem perakaran

TIPE TANAMAN

- Golongan tanaman hortikultura
- Meliputi : tanaman sayur, tanaman buah, tanaman hias, pertamanan, dan tanaman obat-obatan
- Pada hakekatnya berlaku untuk semua jenis tanaman baik tahunan, biennial, maupun annual
- Pada umumnya merupakan tanaman annual (semusim)

JENIS TANAMAN

- Sayuran: selada, sawi, pakchoi, tomat, wortel, asparagus, brokoli, cabai, seledri, bawang merah, bawang putih, bawang daun, terong dll
- Buah : melon, tomat, mentimun, semangka, strawberi, paprika dll
- Tanaman hias : krisan, gerberra, anggrek, kaladium, kaktus dll

NUTRISI TANAMAN

- Semua tanaman memerlukan elemen dasar
- Kekurangan nutrisi menyebabkan pertumbuhan terhambat
- Tanaman lebih banyak membutuhkan unsur (makro nutrient) tertentu
- Mineral yang diperlukan dalam jumlah sedikit sering terdapat dalam air PAM

MAKRO ELEMEN DALAM CAIRAN NUTRISI

- Ca kalcium
- K Kalium (Potassium)
- N Nitrogen
- P Phosphorous
- Mg Magnesium

MIKRO ELEMEN

- Mn Mangan
- Cu tembaga (Copper)
- Zn Zinc

- S belerang (Sulfur)
- **B** boron Fe Iron
- Mo Molybdenum

FORMULASI NUTRISI UNTUK PERTUMBUHAN VEGETATIF

- 19 air
- 6.00 gr Calcium Nitrate Ca(NO₃)₂
- 2.09 gr Potassium Nitrate KNO3
- 0.46 gr Sulfate of Potash K2SO4
- 1.39 gr Monopotassium Phophate KH2PO4
- 2.42 gr Magnesium Sulfate MgSO4 * 7H2O
- 0.40 gr 7% Fe Chelated yang terdiri atas

CHELATED TRACE ELEMENT MIX

7.00% **Iron – Fe**

0.40% **Zinc – Zn**

1.30% **Boron - B**

2.00% Manganese - Mn

0.10% Copper - Cu

0.06% Molybdenum - Mo

FORMULASI NUTRISI UNTUK PEMBUNGAAN

- 19 air
- 4.10 gr Calcium Nitrate Ca(NO₃)₂
- 2.80 gr Potassium Nitrate KNO₃
- 0.46 gr Sulfate of Potash K2SO4
- 1.39 gr Monopotassium Phophate KH2PO4
- 2.40 gr Magnesium Sulfate MgSO4 * 7H2O
- 0.40 gr 7% Fe Chelated Trace Elements

CHELATED TRACE ELEMENT MIX

7.00% **Iron – Fe**

0.40% **Zinc – Zn**

1.30% **Boron - B**

2.00% Manganese - Mn

0.10% Copper - Cu

0.06% Molybdenum - Mo

FORMULASI NUTRISI UNTUK PEMBUAHAN

- 19 air
- 8.00 gr Calcium Nitrate Ca(NO₃)₂
- 2.80 gr Potassium Nitrate KNO₃
- 1.70 gr Sulfate of Potash K2SO4
- 1.39 gr Monopotassium Phophate KH2PO4
- 2.40 gr Magnesium Sulfate MgSO4 * 7H2O
- 0.40 gr 7% Fe Chelated Trace Elements

CHELATED TRACE ELEMENT MIX

7.00% **Iron – Fe**

0.40% **Zinc – Zn**

1.30% **Boron - B**

2.00% Manganese - Mn

0.10% Copper - Cu

0.06% Molybdenum - Mo

CARA MEMBUAT NUTRISI

- Drum bersih ukuran 25 l diisi 19 l air hangat
- pH air dikur dengan pH meter atau kertas lakmus
- Komponen nutrisi dimasukan dan diaduk
- Biarkan selama 2 jam
- pH air diukur ulang
- Cairan nutrisi siap diaplikasikan

PENYEMAIAN BENIH TANAMAN

- Pemilihan benih yang bersertifikat
- Pemeliharaan kebersihan dan sterilisasi tempat (kebun/greehuse dll) hidroponik
- Faktor yang mempengaruhi pertumbuhan benih hidroponik (oksigen, air, cahaya, dan suhu)
- Rockwool dipotong berbentuk kubus ukuran 2 x 2 cm atau 3 x 3 cm (sesuai ukuran netpot
- Potongan rockwool dimasukan ke dalam wadah (tray semai)
- Rockwool diberi lubang dengan kedalaman 1 2
 sentimeter menggunakan pinset

- Rockwool diberi lubang dan direndam selama 1 jam dalam air bersih
- Sekitar 2-4 biji benih dimasukan ke dalam lubang rockwool
- Letakan kubus dalam ruang gelap selama 3-5 hari sampai benih trubus
- Benih disiram setiap hari 2 kali yaitu pagi dan sore hari untuk menjaga rockwool tidak kering
- Setelah penyemaian 2-4 hari muncul tunas.

- Rockwool yang sudah berisi benih bertunas dipindahkan tempat teduh
- Biarkan selama 2-4 minggu (tergantung jenis tanaman) atau muncul daun 5-7 helai
- Rockwool berisi benih dimasukan ke dalam netpot dan dipindahkan ke ke sistem hidroponik

RANCANGAN HIDROPONIK NFT

- Bahan dan alat: paralon (1.5 dim) /talang air, bor listrik, penyambung paralon, penutup paralon, lem paralon, gergaji pemotong paralon, selang, pompa aquarium, solder, netpot
- Pralon atau tutup talang dilubangi sesuai diameter net pot
- Jarak antar lubang 20 cm agar ketika tanaman tumbuh besar tidak berhimpitan dengan tanaman sebelahnya.

- Setelah paralon dilubangi dan panjang disamakan panjangnya, satu lubang setiap sisi pralon ditutup dengan penutup paralon
- Penutup pralon dilubangi dan dipasangi penyambung paralon.
- Selanjutnya disusun sesuai dengan ranngan yang ddinginkan
- Bak penampung diisi cairan nutrisi
- Pasang pompa air dan aerasi di bak penampung cairan nutrisi dan dicoba dijalankan

RANCANGAN HIDROPONIK WICK

- Bahan ember, bekas cat, botol, atau wadah lainnya, sumbu kompor, kain flanel, dan atau kain yang menyerap air lainnya
- Media tanam: sekam, serabut kelapa, arang, pecahan bata, rockwool, kerikil, busa bekas kursi atau kapas
- Tutup wadah dilubangi sesuai ukuran net pot
- Sumbu yang terhubung ke pot dimasukan ke dalam wadah

RANCANGAN HIDROPONIK RAKIT APUNG

- Bahan: bak plastik ukuran 50 x 30 cm, tinggi 20 cm untuk menampung adanya larutan nutrisi; rockwool, netpot, styrofoam ukuran 50 x 30 cm; cutter, aluminium foil
- Permukaan styrofoam dilubangi sesuai diameter netpot dan jarak antar lubang 20 cm
- Bak penampung diisi dengan cairan nutrisi
- Styrofoam diletakan di atas bak penampung, secara terapung
- Net pot yang berisi tanaman masukan ke dalam lubang styrofoam

HAL KHUSUS DIPERHATIKAN

- Pemeriksaan/pemantauan sistem drainase/ sirkulasi air yang tepat sebelum, selama, dan setelah pertumbuhan tanaman
- Pemeriksaan/pemantauan pH air selama pertumbuhan tanaman, pH yang baik untuk pertumbuhan sayuran hidroponik 5.5-6.0.
- Pemeriksaan sistem cahaya dan suhu
- Pemeriksaan sistem nutrisi yang sesuai selama pertumbuhan tanaman

