Calcolabilità e linguaggi formali BBBBB

20 Dicembre 2013

Esercizio 1

(a) Dare una grammatica per ciascuno dei seguenti linguaggi:

$$\begin{split} L_1 &= \{0^n 0^m 1^k : n, m, k \geq 1\}; \\ L_2 &= \{1^n 0^m b^m a^k : n, m, k \geq 1\}. \end{split}$$

- (b) Determinare il tipo della grammatica data.
- (c) Determinare il tipo del linguaggio. Se il linguaggio è di tipo 3, dare un'espressione regolare o un automa finito corrispondente.

Soluzione

Il linguaggio $L_1 = \{0^n 1^k : k \ge 1, n \ge 2\}$ e' regolare perche' generato dalla seguente grammatica regolare:

 $S := 0S \mid 0A$

A :::= 0B

B::= 1B | 1

Il linguaggio L_1 corrisponde alla seguente espressione regolare: 000*11*.

Il linguaggio L_2 e' libero perche' generato dalla seguente grammatica libera dal contesto:

S ::= ABC

 $A :::= 1A \mid 1$

 $B := 0Bb \mid 0b$

 $C := aC \mid a$

Il linguaggio L_2 non e' regolare. Supponiamo per assurdo che esista un automa a stati finiti con n stati che riconosca L_2 . Allora la stringa $10^{n+1}b^{n+1}a \in L_2$ e' accettata dall'automa. Il numero di 0 consecutivi nella stringa supera il numero di stati. Quindi esiste una decomposizione della stringa $10^{n+1}b^{n+1}a = 10^k0^r0^sb^{n+1}a$ (con k+r+s=n+1 e $r \ge 1$) tale che (i) l'automa dopo aver letto la stringa 10^k si trova nello stato q; (ii) l'automa dopo aver letto la stringa 10^k0^r si trova nel medesimo stato q. Ne segue che la stringa $10^k0^sb^{n+1}a \notin L_2$ (k+s < n+1) e' anche riconosciuta dall'automa. Assurdo.

Esercizio 2

Siano R, S e U espressioni regolari. Semplificare la seguente espressione regolare, mostrando tutti i passaggi di semplificazione:

$$((RS + \emptyset)^* + U + (U + \epsilon + S)^*)^*$$

Soluzione

Ricordiamo che

$$(RS)^* = \bigcup_{n \ge 0} (RS)^n = \{\epsilon\} \cup RS \cup RSRS \cup RSRSRS \cup \dots$$

dove $(RS)^n = RSRS \dots RS$ (n-volte) e' la concatenazione del linguaggio RS con se stesso n volte, ed $(RS)^0 = \{\epsilon\}$. Ricordiamo che ϵ e' la stringa vuota (talvolta denotata anche con λ).

$$\begin{array}{lll} ((RS+\emptyset)^* + U + (U+\epsilon+S)^*)^* & = & ((RS)^* + U + (U+\epsilon+S)^*)^* & \text{da } RS + \emptyset = RS \\ & = & ((RS)^* + U + (U+S)^*)^* & \text{da } \epsilon \in (U+S)^*, \ \epsilon \text{ stringa vuota} \\ & = & ((RS)^* + (U+S)^*)^* & \text{da } U \subseteq (U+S)^* \\ & = & (RS+U+S)^* & \text{da } (A^* + B^*)^* = (A+B)^* \end{array}$$

Esercizio 3

Enunciare il secondo teorema di ricorsione e provare Rice1 con il secondo teorema di ricorsione.

Esercizio 4

Sia P l'insieme dei numeri primi e sia $I = \{x : P \subseteq dom(\phi_x)\}$. Applicare, se possibile, Rice 2 e Rice 3 ad I.

Soluzione

Rice2 non e' applicabile ad I: se f < g e $\{x : \phi_x = f\} \subseteq I$, allora $P \subseteq dom(f) \subseteq dom(g)$, da cui segue $\{x : \phi_x = g\} \subseteq I$. Rice3 e' applicabile ad I: Sia f la funzione identica. Allora $P \subseteq dom(f) = N$. Quindi $\{x : \phi_x = f\} \subseteq I$. Sia θ un'arbitraria funzione finita che approssima propriamente f, i.e., $\theta < f$. Dal fatto che $dom(\theta)$ e' finito e che P e' infinito, si ha che $P \not\subseteq dom(\theta)$. Ne segue che $\{x : \phi_x = \theta\} \subseteq \overline{I}$. Quindi I non e' semidecidibile.