Ασκήσεις προς επίλυση

(1) Δίδεται το γράφημα G

Να ορισθούν:

- ί) Μια διαδρομή μήκους 8 από το v_1 στο v_3 .
- ii) Ένας δρόμος μήκους 5 από το v₃ στο v₈.
- iii) Ένα μονοπάτι μήκους 4 από το v_2 στο v_3 .
- ίν) Μια κλειστή διαδρομή μήκους 6 (που να μην είναι δρόμος).
- ν) Ένας κλειστός δρόμος μήκους 6 (που να μην είναι κύκλος).
- νί) Ένας κύκλος μήκους 5.
- vii) Ένα άκυκλο υπογράφημά του H με V(H) = V(G).
- νίιι) Να ευρεθούν (αν υπάρχουν) οι κλειδώσεις και οι ισθμοί του.
 - ίχ) Να ευρεθούν τα μπλοκ του.
- (2) Δίδεται το γράφημα G

- ί) Να εξετασθεί αν είναι μη διαχωρίσιμο.
- ιί) Να ευφεθεί ένα σύνολο κλειδώσεών του.
- (3) Να υπολογισθεί μια διαμέριση των κορυφών του επόμενου γραφήματος σε δύο κλάσεις S, T, έτσι ώστε η κανονικοποιημένη τομή τους να είναι μικρότερη από 1/2.

- (4) Για καθένα από τα παρακάτω γραφήματα, να εξετασθεί:
 - i) Αν υπάρχει δρόμος Euler.
 - ii) Αν είναι γράφημα Euler.

Στην περίπτωση όπου υπάρχει (κλειστός) δρόμος Euler να βρεθεί ένας τέτοιος (κλειστός) δρόμος.

(5) Να βρεθεί ένας κύκλος Hamilton για τα παρακάτω γραφήματα:

(6) (*) Να δειχθεί ότι το παρακάτω γράφημα δεν είναι γράφημα Hamilton.

Υποδείξεις:

(1ος τρόπος) Οι κορυφές βαθμού 2 μπορούν να συμμετέχουν στον κύκλο με μοναδικό τρόπο.

(2ος τρόπος) Το γράφημα είναι διμερές (βλ. σελ. 53), άρα σε κάθε βήμα του κύκλου εναλλάσονται τα σύνολα της διαμέρισης.

- (7) (*) Εστω G ένα κανονικό γράφημα με άρτιο αριθμό κορυφών. Να δειχθεί ότι ένα τουλάχιστον από τα G, G^c είναι γράφημα Hamilton.
- (8) Να εξετασθεί αν υπάρχουν γραφήματα με τις παρακάτω ακολουθίες βαθμών α) (3,3,3,3,3,3,3,3,3)
 - $\beta)\ (5,5,5,5,5,5,5,5,2,2,2)$
- (9) (*) Να κατασκευασθεί ένα 3-συνεκτικό γράφημα με 8 κορυφές και 12 δεσμούς.

37