Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

А.В.Пастор

Дискретная математика Глава 4. Разбиения чисел

А.В.Пастор

12.11.2024

Определение

- *Разбиением* натурального числа n на m слагаемых называется представление n в виде $n=x_1+x_2+\ldots+x_m$, где $x_1,x_2,\ldots,x_m\in\mathbb{N}$.
- Разбиения называются упорядоченными, если порядок слагаемых имеет значение, и неупорядоченными в противном случае.

Пример

Есть три упорядоченных разбиения числа 4 на три слагаемых:

$$4 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2$$
.

Но неупорядоченное разбиение только одно.

Замечание

- Строго говоря, упорядоченное разбиение это последовательность натуральных чисел (x_1, x_2, \dots, x_m) , сумма членов которой равна n.
- Неупорядоченное разбиение это класс эквивалентности, где эквивалентными считаются последовательности, отличающиеся лишь порядком членов.

математика. Глава 4. Разбиения чисел в сумму слагаемых.

Дискретная

Теорема

- 1. Количество упорядоченных разбиений числа n на m слагаемых равно C_{n-1}^{m-1} .
- 2. Количество упорядоченных разбиений числа n равно 2^{n-1} .

Доказательство.

- 1. Нужно найти количество натуральных решений уравнения $x_1 + x_2 + \ldots + x_m = n$.
 - ullet Выложим в ряд n шариков и расставим между ними m-1 перегородку.
 - Это можно сделать C_{n-1}^{m-1} способами.
 - ullet Шарики разобьются на m групп: пусть в i-й группе x_i шариков.
 - Получаем биекцию между решениями и расстановками перегородок.

2.
$$\sum_{m=1}^{n} C_{n-1}^{m-1} = 2^{n-1}.$$

Упорядоченные разбиения и числа Фибоначчи

Определение

Числа Фибоначчи — это последовательность F_n , задаваемая следующими условиями: $F_1 = F_2 = 1$ и $F_{n+1} = F_n + F_{n-1}$ при n > 1.

Теорема

Количество упорядоченных разбиений числа n на нечетные слагаемые равно F_n .

Доказательство. Индукция по n.

<u>База</u>: при n = 1 и n = 2 утверждение очевидно.

Переход $(n-1, n \to n+1)$: Пусть $n+1 = x_1 + \ldots + x_{m-1} + x_m$ — разбиение на нечетные слагаемые.

- ▶ Рассмотрим два случая: $x_m = 1$ и $x_m \ge 3$.
 - $1^{\circ} \;\; x_m = 1$. Тогда $n = x_1 + \ldots + x_{m-1}$. Таких разбиений F_n .
 - $2^{\circ} \;\; x_m \geq 3$. Тогда $n-1 = x_1 + \ldots + x_{m-1} + (x_m-2)$. Таких разбиений F_{n-1} .
- ▶ Итого, получаем $F_n + F_{n-1} = F_{n+1}$ разбиений.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Неупорядоченные разбиения и диаграммы Юнга

Определение

- $p_m(n)$ количество неупорядоченных разбиений числа n на m слагаемых;
- p(n) количество неупорядоченных разбиений числа n.

Стандартная форма записи

Слагаемые неупорядоченного разбиения обычно записывают в невозрастающем порядке:

$$n=x_1+\ldots+x_m,$$
 где $x_1\geq x_2\geq \ldots \geq x_m>0.$

Диаграммы Юнга

- Каждому разбиению числа n соответствует следующая диаграмма из n клеток.
- Столбцы диаграммы соответствуют слагаемым. Количество столбцов равно *m*.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема

- 1. Количество решений уравнения $t_1 + 2t_2 + 3t_3 + \ldots + nt_n = n$ (1) в целых неотрицательных числах равно p(n).
- 2. Количество решений уравнения (1), удовлетворяющих условию $t_1 + \ldots + t_n = m$, равно $p_m(n)$.

Доказательство. Пусть $n=x_1+\ldots+x_m$ — разбиение числа n.

- ullet Обозначим через t_k количество слагаемых в этом разбиении, равных k.
- Получим решение уравнения (1).
- Аналогично, каждому решению (t_1, t_2, \ldots, t_n) уравнения (1) соответствует разбиение n, в котором ровно t_k слагаемых, равных k.
- ullet При этом, количество слагаемых в разбиении будет равно $t_1+\ldots+t_n$. \square

Рекуррентная формула для числа разбиений

Теорема

$$p_m(n) = p_m(n-m) + p_{m-1}(n-m) + \ldots + p_1(n-m).$$

Доказательство.

- Рассмотрим диаграмму Юнга с n клетками и m столбцами.
- Удалим нижнюю строку.
- Получим диаграмму с n-m клетками и $k \le m$ столбцами.

Следствие 1

Количество неупорядоченных разбиений числа n-m на не более чем m слагаемых равно $p_m(n)$.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Рекуррентная формула для числа разбиений

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

А.В.Пастор

$$p_m(n) = p_m(n-m) + p_{m-1}(n-1).$$

Доказательство.

$$p_m(n) = p_m(n-m) + (p_{m-1}(n-m) + \ldots + p_1(n-m)) = p_m(n-m) + p_{m-1}(n-1).$$

Замечание

- Отметим, что $p_1(n) = 1$ при всех n.
- При помощи доказанных выше рекуррентных соотношений, можно получить явные формулы для $p_m(n)$ при малых m.
- Мы сделаем это для m = 2 и m = 3.

Определение

Пусть $x \in \mathbb{R}$.

- Через [x] обозначается целая часть числа x, т. е, наибольшее целое число, не превосходящее x.
- Через $\{x\}$ обозначается дробная часть числа x, т. е, $\{x\} \stackrel{\text{def}}{=} x [x]$.

Теорема (де Морган)

1.
$$p_2(n) = \left[\frac{n}{2}\right];$$

2.
$$p_3(n) = \left[\frac{n^2+3}{12}\right]$$
.

Доказательство. Индукция по n.

1. <u>База</u>: при n=1 и n=2 утверждение очевидно.

Переход
$$(n-2 \to n)$$
:
$$p_2(n) = p_2(n-2) + p_1(n-1) = \left\lceil \frac{n-2}{2} \right\rceil + 1 = \left\lceil \frac{n-2}{2} + 1 \right\rceil = \left\lceil \frac{n}{2} \right\rceil.$$

Явные формулы для малых m

2. <u>База</u>: при n = 1, n = 2 и n = 3 утверждение очевидно.

Переход
$$(n-3 \to n)$$
:
$$p_3(n) = p_3(n-3) + p_2(n-1) =$$

$$= \left[\frac{(n-3)^2+3}{12}\right] + \left[\frac{n-1}{2}\right] =$$

$$= \left[\frac{(n^2-6n+12)+(6n-6)}{12}\right] =$$

$$= \left[\frac{n^2+6}{12}\right] =$$

$$= \left[\frac{n^2+3}{12}\right].$$

- Нужно проверить подсвеченные красным равенства.
- Для проверки первого из них, нам понадобится следующая лемма.

Лемма $[x] + [y] = [x + y] \Leftrightarrow \{x\} + \{y\} < 1.$

Доказательство.

$$x + y = ([x] + \{x\}) + ([y] + \{y\}) = ([x] + [y]) + (\{x\} + \{y\}).$$

Разбиения чисел в сумму слагаемых.

Дискретная математика. Глава 4.

Вернемся к доказательству теоремы.

- Здесь мы будем пользоваться тем, что точный квадрат может быть сравним только с 0 или 1 по модулям 3 и 4.
- 2.1. $\left[\frac{(n-3)^2+3}{12}\right] + \left[\frac{n-1}{2}\right] = \left[\frac{(n^2-6n+12)+(6n-6)}{12}\right].$ Нужно доказать, что $\left\{\frac{(n-3)^2+3}{12}\right\} + \left\{\frac{n-1}{2}\right\} < 1.$
 - При $n \not | 2$: $\left\{ \frac{n-1}{2} \right\} = 0$ и $\left\{ \frac{(n-3)^2 + 3}{12} \right\} < 1$.
 - При $n \ \ \, : \ \ \, :$ пусть n=2k, тогда $\left\{\frac{n-1}{2}\right\}=\frac{1}{2}$ и $\left\{\frac{(n-3)^2+3}{12}\right\}=\left\{\frac{4k^2-12k+12}{12}\right\}=\left\{\frac{k^2}{3}\right\}\leq \frac{1}{3}.$
- 2.2. $\left[\frac{n^2+6}{12}\right] = \left[\frac{n^2+3}{12}\right]$.

Нужно доказать, что числа $\frac{n^2+4}{12}$, $\frac{n^2+5}{12}$, $\frac{n^2+6}{12}$ не целые.

- Ho $n^2 + 4 / 3$, т. к. $n^2 \not\equiv 2 \pmod{3}$;
- $n^2 + 5 / 4$, т. к. $n^2 \not\equiv 3 \pmod{4}$;
- $n^2 + 6 / 4$, т. к. $n^2 \not\equiv 2 \pmod{4}$.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема

- $p_m(n) = \frac{n^{m-1}}{(m-1)!m!} + c_{m-2}(m,n)n^{m-2} + \ldots + c_1(m,n)n + c_0(m,n)$, где коэффициенты $c_k(m,n)$ зависят только от класса вычетов n по модулю m!.
- В частности, если $n \equiv n_0 \pmod{m!}$ при фиксированном n_0 , то $p_m(n)$ является многочленом степени m-1 от переменной n. (6/д)

Замечание

- Вспомним, что количество упорядоченных разбиений числа n на m слагаемых равно C_{n-1}^{m-1} .
- При фиксированном m это также многочлен от n со старшим членом $\frac{n^{m-1}}{(m-1)!}$.
- Следовательно, $\lim_{n\to\infty}\frac{p_m(n)}{C_{n-1}^{m-1}}=\frac{1}{m!}.$
- Это означает, что "почти все" разбиения n на m слагаемых состоят из различных слагаемых.

Теорема

Количество разбиений числа n на m различных слагаемых равно $p_m \left(n - \frac{m(m-1)}{2} \right)$.

Доказательство.

- ullet Пусть $n=x_1+x_2+\ldots+x_m$, где $x_1>x_2>\ldots>x_m>0$.
- Рассмотрим числа $y_i = x_i m + i$.

$$y_i - y_{i+1} = (x_i - m + i) - (x_{i+1} - m + i + 1) = x_i - x_{i+1} - 1 \ge 0;$$

- ▶ следовательно, $y_1 \ge y_2 \ge ... \ge y_m = x_m > 0$;
- ▶ $y_1 + y_2 + ... + y_m =$ = $x_1 + x_2 + ... + x_m - ((m-1) + (m-2) + ... + 1) = n - \frac{m(m-1)}{2}$.
- Итак, каждому разбиению n на m различных слагаемых поставили в соответствие разбиение $n-\frac{m(m-1)}{2}$ на m слагаемых.
- Очевидно, что это биекция.

Теорема (пентагональная формула Эйлера)

Если число n не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{\mathrm{def}}{=}\max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{\mathrm{def}}{=}x_m$.
 - ▶ Если $k \ge \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число п не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m$.
 - lacktriangle Если $k \geq \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число п не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m$.
 - ▶ Если $k \ge \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число n не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{\mathrm{def}}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{\mathrm{def}}{=} x_m$.
 - ightharpoonup Если $k \geq \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число п не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m$.
 - ▶ Если $k \ge \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число п не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m.$
 - \blacktriangleright Если $k \geq \ell$, убираем x_m и увеличиваем x_1, \ldots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число n не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{\mathrm{def}}{=}\max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{\mathrm{def}}{=}x_m$.
 - ▶ Если $k \ge \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера) *Если имело в не представимо в виде* $\frac{1}{2}(3k^2 + k^2)$

Если число п не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m.$
 - ightharpoonup Если $k \geq \ell$, убираем x_m и увеличиваем x_1, \ldots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число п не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m.$
 - ▶ Если $k \ge \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число п не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m.$
 - lacktriangle Если $k \geq \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число п не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m.$
 - lacktriangle Если $k \geq \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число n не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- ullet Пусть $n=x_1+x_2+\ldots+x_m$, где $x_1>x_2>\ldots>x_m>0$.
- ullet Введем обозначения: $k\stackrel{\mathrm{def}}{=}\max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{\mathrm{def}}{=}x_m$.
 - ▶ Если $k \ge \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число п не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m$.
 - ▶ Если $k \ge \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число п не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m$.
 - ▶ Если $k \ge \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число n не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- Пусть $n = x_1 + x_2 + \ldots + x_m$, где $x_1 > x_2 > \ldots > x_m > 0$.
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m$.
 - lacktriangle Если $k \geq \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число п не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- ullet Пусть $n=x_1+x_2+\ldots+x_m$, где $x_1>x_2>\ldots>x_m>0.$
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m.$
 - lacktriangle Если $k \geq \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Теорема (пентагональная формула Эйлера)

Если число п не представимо в виде $\frac{1}{2}(3k^2 \pm k)$, где $k \in \mathbb{N}$, то оно имеет одинаковое количество разбиений на четное и на нечетное число различных слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.

- ullet Пусть $n=x_1+x_2+\ldots+x_m$, где $x_1>x_2>\ldots>x_m>0.$
- ullet Введем обозначения: $k\stackrel{
 m def}{=} \max\{i\mid x_i=x_1-i+1\}$ и $\ell\stackrel{
 m def}{=} x_m.$
 - ightharpoonup Если $k \geq \ell$, убираем x_m и увеличиваем x_1, \dots, x_ℓ на 1.
 - lacktriangle Если $k<\ell$, уменьшаем x_1,\ldots,x_k на 1 добавляем $x_{m+1}=k$.
- Проблема: $k = m = \ell$ или $k = m = \ell 1$. В этих случаях ни одно из указанных преобразований сделать невозможно.
 - ▶ При $k = m = \ell$ получаем $n = k^2 + \frac{k(k-1)}{2} = \frac{1}{2}(3k^2 k)$.
 - ▶ При $k = m = \ell 1$ получаем $n = k^2 + \frac{k(k+1)}{2} = \frac{1}{2}(3k^2 + k)$.
- В каждом из случаев есть ровно одна такая диаграмма.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

- Дело в том, что числа вида $\frac{1}{2}(3k^2-k)$ это так называемые пятиугольные числа.
- Формально, k-е пятиугольное число это сумма первых k членов арифметической прогрессии с первым членом 1 и разностью 3:

$$\frac{1}{2}(3k^2-k)=1+4+7+\ldots+(3k-2).$$

- Эти числа имеют геометрическое представление в виде числа точек в пятиугольнике.
- Числа вида $\frac{1}{2}(3k^2+k)$ получаются похожим образом: $\frac{1}{2}(3k^2+k)=2+5+8+\ldots+(3k-1)$, но для них нет столь красивого геометрического представления.
- Аналогично, n-угольные числа это суммы первых k членов арифметической прогрессии с первым членом 1 и разностью n-2.
- Наиболее известны треугольные числа: $\frac{k(k+1)}{2} = 1 + 2 + 3 + \ldots + k$.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

$$\frac{1}{2}(3\cdot 1^2 - 1) = 1.$$

О многоугольных числах

Почему предыдущая теорема называется пентагональная формула Эйлера?

- Дело в том, что числа вида $\frac{1}{2}(3k^2-k)$ это так называемые пятиугольные числа.
- Формально, k-е пятиугольное число это сумма первых k членов арифметической прогрессии с первым членом 1 и разностью 3:

$$\frac{1}{2}(3k^2-k)=1+4+7+\ldots+(3k-2).$$

- Эти числа имеют геометрическое представление в виде числа точек в пятиугольнике.
- Числа вида $\frac{1}{2}(3k^2+k)$ получаются похожим образом: $\frac{1}{2}(3k^2+k)=2+5+8+\ldots+(3k-1)$, но для них нет столь красивого геометрического представления.
- Аналогично, n-угольные числа это суммы первых k членов арифметической прогрессии с первым членом 1 и разностью n-2.
- Наиболее известны треугольные числа: $\frac{k(k+1)}{2} = 1 + 2 + 3 + \ldots + k$.

$$\frac{1}{2}(3\cdot 2^2-1)=1+4.$$

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

О многоугольных числах

Почему предыдущая теорема называется пентагональная формула Эйлера?

- Дело в том, что числа вида $\frac{1}{2}(3k^2-k)$ это так называемые пятиугольные числа.
- Формально, k-е пятиугольное число это сумма первых k членов арифметической прогрессии с первым членом 1 и разностью 3:

$$\frac{1}{2}(3k^2-k)=1+4+7+\ldots+(3k-2).$$

- Эти числа имеют геометрическое представление в виде числа точек в пятиугольнике.
- Числа вида $\frac{1}{2}(3k^2+k)$ получаются похожим образом: $\frac{1}{2}(3k^2+k)=2+5+8+\ldots+(3k-1)$, но для них нет столь красивого геометрического представления.
- Аналогично, n-угольные числа это суммы первых k членов арифметической прогрессии с первым членом 1 и разностью n-2.
- Наиболее известны треугольные числа: $\frac{k(k+1)}{2} = 1 + 2 + 3 + \ldots + k$.

$$\frac{1}{2}(3\cdot 3^2 - 1) = 1 + 4 + 7.$$

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Почему предыдущая теорема называется пентагональная формула Эйлера?

- Дело в том, что числа вида $\frac{1}{2}(3k^2-k)$ это так называемые пятиугольные числа.
- Формально, k-е пятиугольное число это сумма первых k членов арифметической прогрессии с первым членом 1 и разностью 3:

$$\frac{1}{2}(3k^2-k)=1+4+7+\ldots+(3k-2).$$

- Эти числа имеют геометрическое представление в виде числа точек в пятиугольнике.
- Числа вида $\frac{1}{2}(3k^2+k)$ получаются похожим образом: $\frac{1}{2}(3k^2+k)=2+5+8+\ldots+(3k-1)$, но для них нет столь красивого геометрического представления.
- Аналогично, n-угольные числа это суммы первых k членов арифметической прогрессии с первым членом 1 и разностью n-2.
- Наиболее известны треугольные числа: $\frac{k(k+1)}{2} = 1 + 2 + 3 + \ldots + k$.

$$\frac{1}{2}(3 \cdot 4^2 - 1) =$$
= 1 + 4 + 7 + 10.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

Почему предыдущая теорема называется пентагональная формула Эйлера?

- Дело в том, что числа вида $\frac{1}{2}(3k^2-k)$ это так называемые пятиугольные числа.
- Формально, k-е пятиугольное число это сумма первых k членов арифметической прогрессии с первым членом 1 и разностью 3:

$$\frac{1}{2}(3k^2-k)=1+4+7+\ldots+(3k-2).$$

- Эти числа имеют геометрическое представление в виде числа точек в пятиугольнике.
- Числа вида $\frac{1}{2}(3k^2+k)$ получаются похожим образом: $\frac{1}{2}(3k^2+k)=2+5+8+\ldots+(3k-1)$, но для них нет столь красивого геометрического представления.
- Аналогично, n-угольные числа это суммы первых k членов арифметической прогрессии с первым членом 1 и разностью n-2.
- Наиболее известны треугольные числа: $\frac{k(k+1)}{2} = 1 + 2 + 3 + \ldots + k$.

$$\frac{1}{2}(3 \cdot 5^2 - 1) = = 1 + 4 + 7 + 10 + 13.$$

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

О многоугольных числах

Почему предыдущая теорема называется пентагональная формула Эйлера?

- Дело в том, что числа вида $\frac{1}{2}(3k^2-k)$ это так называемые пятиугольные числа.
- Формально, k-е пятиугольное число это сумма первых k членов арифметической прогрессии с первым членом 1 и разностью 3:

$$\frac{1}{2}(3k^2-k)=1+4+7+\ldots+(3k-2).$$

- Эти числа имеют геометрическое представление в виде числа точек в пятиугольнике.
- Числа вида $\frac{1}{2}(3k^2+k)$ получаются похожим образом: $\frac{1}{2}(3k^2+k)=2+5+8+\ldots+(3k-1)$, но для них нет столь красивого геометрического представления.
- Аналогично, n-угольные числа это суммы первых k членов арифметической прогрессии с первым членом 1 и разностью n-2.
- Наиболее известны треугольные числа: $\frac{k(k+1)}{2} = 1 + 2 + 3 + \ldots + k$.

Дискретная математика. Глава 4. Разбиения чисел в сумму слагаемых.

$$\frac{1}{2}(3 \cdot 6^2 - 1) =$$
= 1 + 4 + 7 + 10 + 13 + 16.

Теорема (формула Харди—Рамануджана)
$$p(n) \sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{2/3}\sqrt{n}}$$
 (6/д).

Замечание

Есть и формулы, дающие более точное приближение числа p(n), чем теорема Харди-Рамануджана. Например, те же авторы доказали также следующую формулу:

$$p(n)=rac{1}{2\pi\sqrt{2}}rac{d}{dn}igg(rac{e^{C\lambda_n}}{\lambda_n}igg)+O(e^{D\sqrt{n}}),$$
 где $C=\pi\sqrt{2/3},\;\lambda_n=\sqrt{n-rac{1}{24}}$ и $D-$ любое число, большее $rac{1}{2}C$ (б/д).