Kapitola 2

Funkce, elementární funkce.

V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající. Seznámíme se s operacemi s funkcemi jako jsou součet, součin, podíl, skládání funkcí, operace s grafy. S jednotlivými druhy elementárních funkcí, kvadratické a mocninné, logaritmické a exponenciální, goniometrické a hyperbolické funkce, se seznámíme podrobněji v dalších kapitolách.

2.1 Vlastnosti funkcí.

Motivace - definiční obor a obor hodnot funkce

Mějme předpis $y=\sqrt{x-1}$, pro $x,y\in\mathbb{R}$. Tento říká, že reálnému číslu x přiřadíme reálné číslo y tak, že vypočteme druhou odmocninu z čísla x. Ovšem musíme si uvědomit, že druhou odmocninu, jejíž výsledek je reálný můžeme spočítat pouze pro čísla $x\geq 1$. Tím se nám objevilo omezení na výběr čísel x. Zároveň nám po dosazení čísel $x\geq 1$ vychází pouze taková čísla, pro která platí $y\geq 0$. Definiční obor je v tomto případě množina "všech přípustných čísel x" a oborem hodnot jsou všechna čísla y, která vyjdou po dosazení x. v našem případě jde o funkci v0, v1 s definičním oborem v2 oborem hodnot v3 oborem hodnot v4.

Funkce, definiční obor, obor hodnot, graf funkce, funkce sudá a lichá

Definice 2.1.1 (Funkce, definiční obor, obor hodnot). *Funkc*í f budeme rozumět zobrazení, které zobrazí body z podmnožiny $U \in \mathbb{R}$ do \mathbb{R} , píšeme $f: U \to \mathbb{R}$. *Definičním oborem Df* budeme rozumět množinu U a *oborem hodnot H f* množinu $\{y \in \mathbb{R} | y = f(x)\}$.

Připomeňme si, co musí být splněno, aby se dvě funkce rovnaly.

Definice 2.1.2. *Rovnost dvou funkcí f, g*: funkce *f, g* jsou totožné, jestliže se splní každá z podmínek:

- (1) Df = Dg,
- (2) Hf = Hg,
- (3) pro každé $x \in Df$ (tudíž také $x \in Dg$) je f(x) = g(x).

Poznamenejme, že prvky množiny Df, tedy vzory, se nazývají také nezávislými proměnnými, prvky množiny Hf se nazývají závislými proměnnými. Protože pro reálnou funkci množiny Df, Hf sestávají z reálných čísel, lze dále zavést pojem grafu reálné funkce:

Definice 2.1.3. *Grafem reálné funkce* f se nazývá množina všech bodů [x, y] v souřadnicové soustavě v rovině s vlastností $x \in Df$ a y = f(x).

Grafem reálné funkce může být křivka v rovině, ale v závislosti na definičním oboru a předpisu reálné funkce může graf sestávat také z izolovaných bodů. Graf funkce má vizuální hodnotu; graf funkce poskytuje informace obecně o vlastnostech dané funkce.

Definice 2.1.4 (Funkce sudá a lichá). Funkci f nazveme sudou, jestliže pro každé $x \in Df$ je také $-x \in Df$ a zároveň f(x) = f(-x). Funkci f nazveme lichou, jestliže pro každé $x \in Df$ je také $-x \in Df$ a zároveň f(x) = -f(x).

Příklady sudá a lichá funkce.

- 1. Zjistěte zda se jedná o funkci sudou (resp. lichou) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$. Protože platí $(-x)^2 = (-x)(-x) = x^2$, tedy f(x) = f(-x), je to funkce sudá.
- 2. Zjistěte zda se jedná o funkci sudou (resp. lichou) $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^3$. Protože platí $(-x)^3 = (-x)(-x)(-x) = -x^3$, tedy g(x) = -g(x), je to funkce lichá.
- 3. Zjistěte zda se jedná o funkci sudou (resp. lichou) $h: \mathbb{R} \to \mathbb{R}$, $h(x) = (x+1)^2$. Protože platí $(x+1)^2 = x^2 + 2x + 1$ a $(-x+1)^2 = x^2 2x + 1$, tedy $h(x) \neq -h(x)$ a zároveň $h(x) \neq h(-x)$, tedy funkce není ani lichá ani sudá.

Obrázek 2.1: Části grafů funkcí $f(x) = x^2$, $g(x) = x^3$, $h(x) = (x+1)^2$.

Všimněte si, že funkce $f(x) = x^2$ je sudá a je souměrná podle osy x, lichá funkce $g(x) = x^3$ je souměrná podle počátku. Funkce $h(x) = (x+1)^2$, která není ani sudá ani lichá, není souměrná ani podle počátku ani podle osy x.

Rostoucí a klesající funkce

Definice 2.1.5. Funkce *f* se nazývá

- (1) *rostoucí*, jestliže pro každé x_1 , x_2 takové, že $x_1 < x_2$, platí $f(x_1) < f(x_2)$.
- (2) klesající, jestliže pro každé x_1, x_2 takové, že $x_1 < x_2$, platí $f(x_1) > f(x_2)$.
- (3) neklesající, jestliže pro každé x_1, x_2 takové, že $x_1 \le x_2$, platí $f(x_1) \le f(x_2)$.
- (4) *nerostoucí*, jestliže pro každé x_1, x_2 takové, že $x_1 \le x_2$, platí $f(x_1) \ge f(x_2)$.

Pokud daná funkce f má na množině M některou z daných vlastností, označujeme ji jako funkci monotonní na této množině M.

Na následujícím obrázku jsou příklady funkce klesající a funkce rostoucí.

Obrázek 2.2: Části grafů funkce rostoucí $f(x) = x^3$ funkce klesající g(x) = -2x.

Definice 2.1.6. Předpokládejme, že pro funkci $f:\mathbb{R}\to\mathbb{R}$ pro množinu \mathbf{M} platí $\mathbf{M}\subset Df$. Funkce f se nazývá

- (1) shora omezená na množině \mathbf{M} , jestliže existuje takové reálné číslo K, že pro každé reálné číslo $x \in \mathbf{M}$ platí $f(x) \leq K$ (číslo K se nazývá horním omezením funkce f na dané množině);
- (2) zdola omezená na množině \mathbf{M} , jestliže existuje takové reálné číslo L, že pro každé reálné číslo $x \in \mathbf{M}$ platí $f(x) \ge L$ (číslo L se nazývá dolním omezením funkce f na dané množině);
 - (3) omezená na množině M, jestliže je na této množině omezená shora a současně zdola.

2.2 Prosté a složené zobrazení.

Prosté zobrazení.

Definice 2.2.1. Zobrazení $f: \mathbf{A} \to \mathbf{B}$ se nazývá *prosté zobrazení* množiny A do množiny B právě tehdy, když pro každé dva prvky $x_1, x_2 \in \mathbf{A}$ takové, že $x_1 \neq x_2$, se splní $f(x_1) \neq f(x_2)$ (slovy: prosté zobrazení zobrazí každé dva různé vzory na různé obrazy).

Ověření, zda je zobrazení prosté.

Příklad 2.2.1. Nechť $f: y=\frac{1}{2+x}$ je zobrazení definované na množině $Df=\mathbb{R}-\{-2\}$ (maximálním definičním oboru tohoto zobrazení). Zjistěme, zda toto zobrazení je prosté na Df.

Řešení: 2.2.1. Nechť $x_1, x_2 \in \mathbf{A}$ jsou libovolné dva prvky náležící definičnímu oboru Df takové, že $x_1 \neq x_2$. Máme dokázat, že pro tyto prvky (čísla) platí

$$f(x_1) \neq f(x_2)$$
.

Postupujme sporem: předpokládejme, že pro prvky $x_1, x_2 \in \mathbf{A}$ s vlastností $x_1 \neq x_2$ se současně splní

$$f(x_1) = f(x_2)$$

neboli

$$\frac{1}{2+x_1} = \frac{1}{2+x_2}.$$

Z rovnosti těchto dvou zlomků se stejným čitatelem plyne $2 + x_1 = 2 + x_2$, odtud vyplývá $x_1 = x_2$, to je ve sporu s předpokladem. Proto dané zobrazení je prosté na Df.

Složené zobrazení.

Definice 2.2.2. *Složené zobrazení:* Nechť $f: \mathbf{A} \to \mathbf{B}, g: \mathbf{C} \to \mathbf{D}$ jsou dvě zobrazení, nechť pro množiny H(f), C platí: $H(f) \cap C$ je neprázdná množina. Definujme pak pomocí zobrazení f, g další zobrazení h na množině $D(h) = \{x: x \in A \text{ a současně } f(x) \in C\}$ předpisem

$$h: x \to g(f(x)).$$

Pak zobrazení h se nazývá složeným zobrazením ze zobrazení f, g. Zapisujeme ho $h=g\circ f$ nebo h=g(f). Zobrazení f se nazývá vnitřním zobrazením při tvoření zobrazení $h=g\circ f$, zobrazení g je vnějším zobrazením.

Jestliže tedy obrazem prvku $x \in Df$ v zobrazení f je prvek y takový, že přitom prvek y = f(x) náleží do Dg, lze ho dál zobrazit v zobrazení g: označme proto jeho obraz z = g(y). Bylo však y = f(x), po této náhradě máme

$$z = g(y) = g(f(x))$$

Z definice složeného zobrazení plyne, že záleží na pořadí skládání zobrazení f, g. Jestliže zaměníme vnější za vnitřní, jejich záměna povede obecně k jinému složenému zobrazení, ovšem ne vždy bude toto zobrazení existovat.

Věta 2.2.1. Nechť $f: \mathbf{A} \to \mathbf{B}, \ g: \mathbf{B} \to \mathbf{C}$ jsou prostá zobrazení. Pak složené zobrazení $g \circ f: \mathbf{A} \to \mathbf{C}$ je rovněž prostým zobrazením.

2.3 Inverzní zobrazení

Definice

Definice 2.3.1. *Inverzní zobrazení:* Nechť $f: \mathbf{A} \to B$ je prosté zobrazení, nechť pro každé $x \in A$ platí $f(x) = y, y \in \mathbf{B}$. Inverzním zobrazením f^{-1} k zobrazení f nazýváme zobrazení

$$f^{-1}: \mathbf{B} \to \mathbf{A}$$

takové, že pro každé $y \in \mathbf{B}$ platí: $f^{-1}(y) = x$ právě když f(x) = y.

Poznámka 2.3.1. Označení inverzního zobrazení jako f^{-1} je konvencí a neznamená žádné "dělení" ani "převrácenou hodnotu" pro f.

Určení inverzního zobrazení

Příklad 2.3.1. Mějme zobrazení $f: \mathbb{R} \to \mathbb{R}$ určené předpisem f: y = 7x + 2. Určeme inverzní zobrazení k tomuto zobrazení.

Řešení: **2.3.1.** Zobrazení f je prostým zobrazením množiny všech reálných čísel \mathbb{R} na celou množinu \mathbb{R} . Proto inverzní zobrazení existuje a bude opět zobrazovat \mathbb{R} na \mathbb{R} . Najdeme ho tak, že ze vztahu

$$y = 7x + 2$$

vypočítáme $x = \frac{y-2}{7}$, přeznačíme x na y a obráceně a nakonec zapíšeme

$$f^{-1}: y = \frac{x-2}{7}.$$

Z definice inverzního zobrazení plyne následující tvrzení, ve kterém jsou vyjádřeny vlastnosti inverzního zobrazení (uvedeme ho bez důkazu):

Věta 2.3.1. *Nechť* $f: \mathbf{A} \to \mathbf{B}$ je prosté zobrazení množiny **A** na množinu **B**. *Pak platí:*

- (1) existuje právě jedno zobrazení $f^{-1}: \mathbf{B} \to \mathbf{A}$ inverzní k zobrazení f a platí $Df = Hf^{-1}$, $Df^{-1} = Hf$;
- (2) inverzní zobrazení $f^{-1}: \mathbf{B} \to \mathbf{A}$ je prostým zobrazením;
- (3) pro složená zobrazení $f^{-1} \circ f$, $f \circ f^{-1}$ platí:

 $f^{-1} \circ f = id$ neboli identické zobrazení množiny $\mathbf A$ na množinu $\mathbf A$, tj. $(f^{-1} \circ f)(x) = x$ pro libovolné $x \in \mathbf A$,

 $f \circ f^{-1} = id$ neboli identické zobrazení množiny $\mathbf B$ na množinu $\mathbf B$, tj. $(f \circ f^{-1})(x) = x$ pro libovolné $x \in \mathbf B$.

Poznámka 2.3.2. Vztah grafu funkce f a grafu funkce f^{-1} inverzní k této funkci. Předpokládejme, že jsme zakreslili graf nějaké funkce f, tj. sestrojili jsme množinu bodů [x, y] v rovině, pro které platí $x \in Df$ a y = f(x). Kvůli jednoduchosti předpokládejme, že grafem této funkce je oblouk nějaké křivky v rovině. Předpokládejme, že funkce f^{-1} je inverzní funkcí k dané funkci k. Lze nyní konstatovat následující vztahy:

- pro $x \in Df$ bod [x, y] náleží grafu funkce f právě když y = f(x);
- pro $y \in Df^{-1}$ bod [y, x] náleží grafu funkce f^{-1} právě když $x = f^{-1}(y)$.

Z definice inverzní funkce přitom platí: y = f(x) právě když $x = f^{-1}(y)$. Jinými slovy: bod [y, x] náleží grafu funkce f^{-1} právě když bod [x, y] náleží grafu funkce f.

Získali jsme velice významnou vlastnost grafů funkce a k ní inverzní funkce, která říká:

Graf inverzní funkce f^{-1} dostaneme z grafu dané funkce překlopením grafu f přes přímku o rovnici y=x, nebo ještě jinak: grafy dvojice funkcí f, f^{-1} jsou osově souměrné, a to podle přímky o rovnici y=x, osy 1. a 3. kvadrantu roviny.

2.4 Jak vznikají nové funkce z daných funkcí.

Existují postupy, jak vytvořit novou funkci ze zadaných funkcí. Uvedeme si, jak pracovat s reálnými funkcemi za pomocí aritmetických operací

Aritmetické operace s reálnými funkcemi.

Předpokládejme, že máme dvě reálné funkce $f : \mathbb{R} \to \mathbb{R}$, $g : \mathbb{R} \to \mathbb{R}$. *Definujeme*:

Definice 2.4.1. *Součet dvou funkcí* f+g je reálná funkce s vlastností: $f+g:x\to f(x)+g(x)$ pro každé $x\in Df\cap Dg$ (neboli pro hodnotu (f+g)(x) je (f+g)(x)=f(x)+g(x), pokud $x\in Df\cap Dg$.)

Definice 2.4.2. Rozdíl dvou funkcí f-g je reálná funkce s vlastností: $f-g:x\to f(x)-g(x)$ pro každé $x\in Df\cap Dg$ (neboli pro hodnotu (f-g)(x) je (f-g)(x)=f(x)-g(x), pokud $x\in Df\cap Dg$.)

Definice 2.4.3. *Součin dvou funkcí* $f \cdot g$ je reálná funkce s vlastností: $f \cdot g : x \to f(x) \cdot g(x)$ pro každé $x \in Df \cap Dg$ (neboli pro hodnotu $(f \cdot g)(x)$ je $(f \cdot g)(x) = f(x) \cdot g(x)$, pokud $x \in Df \cap Dg$.)

Definice 2.4.4. *Podíl dvou funkcí* $\frac{f}{g}$ je reálná funkce s vlastností: $\frac{f}{g}: x \to \frac{f(x)}{g(x)}$ pro každé $x \in Df \cap Dg$, $g(x) \neq 0$ (neboli pro hodnotu $\left(\frac{f}{g}\right)(x)$ je $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$, pokud $x \in Df \cap Dg$ a navíc $g(x) \neq 0$.)

Poznámka 2.4.1. Vzory a obrazy v reálných funkcích jsou reálná čísla, proto všechny uvedené operace jsou zavedeny korektně: aritmetické operace s reálnými funkcemi se tvoří "po bodech, po jednotlivých hodnotách", a to pomocí aritmetických operací s reálnými čísly. Tyto definice mají vliv na konstrukci grafů odpovídajících funkcí – můžeme je opět sestrojit "po bodech"(i když takový postup v obecném případě stěží poskytne úplnou informaci o grafu).

Definice 2.4.5. *Absolutní hodnota* |f| pro danou funkci f je reálná funkce s vlastností: $|f|: x \to |f(x)|$ pro každé $x \in Df$ (neboli pro hodnotu (|f|)(x) je (|f|)(x) = |f(x)| pro $x \in Df$.)

Definice 2.4.6. *Mocnina* f^g je reálná funkce s vlastností: $f^g: x \to f(x)^{g(x)}$ pro každé $x \in Dg$ s vlastností f(x) > 0 (neboli pro hodnotu $(f^g)(x)$ je $(f^g)(x) = f(x)^{g(x)}$, pokud $x \in Dg$ a f(x) > 0 pro takové x.)

Poznámka 2.4.2. Aritmetické operace s reálnými funkcemi mají důsledky např. pro definiční obory a obory hodnot nových funkcí a také na jejich další vlastnosti. Budeme je zkoumat v dalším výkladu, proto na tomto místě neuvádíme ani speciální příklady ani úlohy.

2.5 Operace s grafy

Je dobré uvědomit si, jaký účinek na grafy funkcí mají operace s proměnnými – nezávislou proměnnou x nebo závislou proměnnou y. Jestliže

- (1) it Horizontální posunutí. Pro reálné číslo a změníme $x \to (x-a)$, to značí posuneme argument nezávisle proměnnou x o a jednotek na ose o_x doprava pro a>0, resp. doleva pro a<0 (jde vlastně o posunutí začátku 0 na ose do čísla a)
- (2) it Vertikální posunutí. Pro reálné číslo a zvětšíme každou hodnotu y určenou jako y=f(x) o hodnotu a, tj. utvoříme závisle proměnnou y novým předpisem y=f(x)+a, pak grafem této funkce je stejná funkce, kterou dostaneme rovnoběžným vertikálním posunutím celého grafu funkce y=f(x) o a jednotek na ose o_y nahoru pro a>0, resp. dolů pro a<0.
- (3) it Změna "měřítka". pro kladné reálné číslo a zvětšíme každou hodnotu y určenou jako y=f(x) a-krát, tj. utvoříme závisle proměnnou y novým předpisem y=af(x), pak grafem této funkce je obdobná funkce a dostaneme ji "zrychlením" celého grafu funkce y=f(x) mírou a-krát, pokud a>1, nebo "zpomalením" mírou a-krát, pokud a<1.
- (4) it "Překlopení" grafu. U nezávislé proměnné x změníme znaménko, tj. změníme $x \to (-x)$, neboli změníme orientaci, uspořádání na ose o_x ; pak graf funkce f(-x) vznikne překlopením původního grafu f(x) z pravé poloroviny do levé a naopak.

Je dobré si uvědomit, že operace (1), (2), (3), (4) souvisí s vytvářením speciálních složených funkcí a že je lze použít také na konstrukci odvozených grafů jiných reálných funkcí.

Obrázek 2.3: Operace s grafy pro lineární funkce.