IBPSA-Project 1 – WP1.2: Uncertainty Emulator

Expert meeting online | 13/10/2020

MEETING AGENDA

- Brief summary of the activity
 - Autoregressive model
 - ECDF
- Proposal of approach to follow and next steps
- Some discussion points

OBJECTIVE:

Develop an emulator of the weather forecast uncertainty to be implemented as part of the *BOPTEST*

- Approches:
 - Autoregressive model
 - ECDF QQ mapping
- Weather prediction data and real on-site measurements
 - Berkeley (USA) Lawrence Berkeley National Laboratory
 - Oslo (Norway) Norwegian Meteorological Institute
 - Leuven (Belgium) Vliet Building in KU Leuven

AUTOREGRESSIVE MODEL

- Literature review → Autoregressive models widely used (weather predictions for buildings)
- Selected model:

$$e_{j+1} = Fe_j + Kw_j$$
 w_k : N(0,1)
 F, K : calibration parameters

Krzysztof Arendt's model → very similar

User defined inputs:

- Controllable autocorrelation
- Controllable mean absolute error
- Error dimension

Technical limitation → convergence for some combinations of parameters

Variables to study: outdoor temperature, solar radiation, wind speed, relative humidity

AUTOREGRESSIVE MODEL

MAIN CONCLUSIONS

Berkeley

AUTOREGRESSIVE MODEL

MAIN CONCLUSIONS

Norway

AUTOREGRESSIVE MODEL

MAIN CONCLUSIONS

- Possible causes for the differences:
 - Data distribution is slightly deviated from normal distribution

Berkeley

Norway

AUTOREGRESSIVE MODEL

MAIN CONCLUSIONS

TECHNICAL LIMITATIONS

- Selected data based model → Initialization (first error calculation)
 - An initial error model generated from the data and predictions
 - The initialization error is dependant on the location and the predicted temperature
- Preliminary results for other variables:
 - Solar radiation → the tendency, if an offset is considered, match
 - Wind speed, humidity → the tendency did not match. Few data available. Great variability in the case of the wind speed
 - Further research is required for these variables

ECDF – QQ mapping

- Proposed by a company working on this field. It is used to correct the bias in the weather predictions
- Some related literature, no previous cases found for weather predictions uses in buildings applications

ECDF – build a new ECDF of the predicted variable by including a bias/error in the ECDF built with

historic data

Studied variables: outdoor temperature

ECDF – QQ mapping

MAIN CONCLUSIONS

 The model works well with the intermediate data, but presents great errors in the extremes of the ECDF

• The tendency of the error with respect to the **time at which the prediction** → has the same

tendency as the real data

Greater complexity to find something consistent

2. Proposal of approach

Short term (until February)

- Follow the autoregressive model approach.
- Have a first working version for February.
- Next steps:
 - Find a more robust solution (address the encountered technical limitations and optimize the code)
 - Integration of the solution in the BOPTEST and coordination between them

Long term (from February on)

Continue the study on the ECDF – QQ mapping approach.

3. Some discussion points

- How should the uncertainties be defined? How much freedom is given to the MPC-tester to modify them?
 - Define different scenarios and the user can choose one (scenario without uncertainties, scenario with high uncertainty, with low uncertainty...)
 - Other possibilities?