集合操作

• $a = (a_1, a_2)$ 是A的元素: $a \in A$

a不是A的元素: a ∉ A

空集: Ø

• 全集:*U*

• A是B的子集:A ⊆ B

• 集合A和B的并集: $A \cup B$

• 集合A和B的交集: $A \cap B$

• 集合A和B互斥: $A \cap B = \emptyset$

治用于二值图象 他鱼生好取了来 进行宴台操作

集合操作

- 集合A的补集: $A^c = \{w | w \notin A\} = U A$
- 集合A和B的差:

$$A - B = \{w | w \in A, w \notin B\} = A \cap B^c$$

灰度图像的集合操作

- 灰度图像集合A
- 元素为三元组(x, y, z)
 - x和y是空间坐标 , z是灰度
- 集合A的补集(大小不变),指於 強大人 $A^c = \{(x, y, K^{A-z}) | (x, y, z) \in A\}$
 - $K = 2^k 1$, 其中k为比特数
- ·集合A和B的并集 网络图像和内相同位置恢复取max

$$A \cup B = \left\{ \max_{z} (a, b) \ a \in A, b \in B \right\}$$

举例

原图

补集操作 得到的负像

与常数图像 的并集

逻辑操作

- 二值图像
 - 前景(1值)、背景(0值)
- OR、AND、NOT逻辑操作
 - 集合的并、交和求补操作

逻辑操作

- 属于A不属于B操作
- XOR操作

- 功能完备操作
 - AND、OR和NOT

空间操作

• 直接在图像像素上进行的操作

1. 单像素操作

2. 邻域操作

3. 几何空间变换

单像素操作

• 以灰度为基础改变单个像素的值

$$s = T(z)$$

● z是原像素的灰度, s是处理后的灰度

8比特灰度图像的负图像

邻域操作

- S_{xy} 表示像素(x,y)邻域像素点的集合
- 使用 S_{xy} 中的所有像素计算一个输出

举例

• 图像模糊

主动脉造影图像

局部平均操作

几何空间变换

- 改变图像中像素间的空间关系
- 橡皮膜操作
 - 在橡皮膜上印刷一幅图像
 - 然后按照某规则拉伸橡皮膜

- 1. 坐标的空间变换
- 2. 灰度内插
 - 对变换后的像素赋灰度值

几何空间变换

• 坐标的空间变换

$$(x, y) = T\{(v, w)\}$$

• (v,w)是原坐标 ,(x,y)为新的坐标

灰度内插 是必要的

举例

• 图像放大

$$(x,y) = (2v, 2w)$$

仿射变换

• 包括了旋转、伸缩、平移、倾斜等变换

$$x = t_{11}v + t_{21}w + t_{31}$$

$$y = t_{12}v + t_{22}w + t_{32}$$

$$t = t_{12}v + t_{32}w + t_{32}$$

- t_{31} 和 t_{32} 刻画了平移量
- t_{11} 和 t_{22} 刻画了伸缩比例
- t_{12} 和 t_{21} 刻画了倾斜程度

仿射变换

• 包括了旋转、伸缩、平移、倾斜等变换

$$x = t_{11}v + t_{21}w + t_{31}$$
$$y = t_{12}v + t_{22}w + t_{32}$$

- 保持共线性(co-linearity)
 - 共线的点变换后依然共线
- 保持距离比例 (ratios of distance)
 - 线的中心变换后依然是线的中心

恒等变换

$$x = v$$

$$y = w$$

伸缩变换

$$x = c_x v$$
$$y = c_y w$$

旋转变换

$$x = v \cos \theta - w \sin \theta$$
$$y = v \sin \theta + w \cos \theta$$

平移变换

$$x = v + t_x$$
$$y = w + t_y$$

(垂直)倾斜变换

$$x = v + s_v w$$
$$y = w$$

(水平)倾斜变换

$$x = v$$
$$y = s_h v + w$$

仿射变换

• 变换公式

$$x = t_{11}v + t_{21}w + t_{31}$$
$$y = t_{12}v + t_{22}w + t_{32}$$

• 矩阵形式

$$[x \ y \ 1] = [v \ w \ 1] \ \mathbf{T} = [v \ w \ 1] \begin{bmatrix} t_{11} & t_{12} & 0 \\ t_{21} & t_{22} & 0 \\ t_{31} & t_{32} & 1 \end{bmatrix}$$

仿射变换

恒等变换

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = v$$

 $y = w$

伸缩变换

$$\begin{bmatrix} c_x & 0 & 0 \\ 0 & c_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = c_x v$$
$$y = c_y w$$

旋转变换

$$\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = v \cos \theta - w \sin \theta$$
$$y = v \sin \theta + w \cos \theta$$

平移变换

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_x & t_y & 1 \end{bmatrix}$$

$$x = v + t_x$$
$$y = w + t_y$$

(垂直)倾斜变换

$$\begin{bmatrix} 1 & 0 & 0 \\ s_v & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = v + s_v w$$
$$y = w$$

(水平)倾斜变换

$$\begin{bmatrix} 1 & s_h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = v$$
$$y = s_h v + w$$

复杂仿射变换

- 通过一系列仿射变换操作完成
 - 因为仿射变换的组合还是仿射变换
- 矩阵形式

$$[x \ y \ 1] = [v \ w \ 1] \underbrace{T_1 T_2 \cdots}_{T}$$

- T_i 是基本放射变换
- 逆仿射变换
 - 假设仿射变换是可逆的 $T = T_1T_2T_3$
 - 逆变换矩阵为 $T^{-1} = T_3^{-1}T_2^{-1}T_1^{-1}$
 - 基本变换矩阵都是可逆矩阵

仿射变换的实现

- 前向影射
 - 根据输入(v,w), 计算输出 $(x,y) = T\{(v,w)\}$
 - 多个输入对应一个输出、空白输出

• 反向映射

- 根据输出(x,y), 寻找输入 $(v,w) = T^{-1}\{(v,w)\}$
- 更加有效

灰度内插

- 前向映射
 - 根据输入(v,w), 计算输出(x,y) = $T\{(v,w)\}$
 - 利用映射后的像素灰度值,计算输出 图像像素的灰度值

灰度内插

- 反向映射
 - 根据输出(x,y), 寻找输入 $(v,w) = T^{-1}\{(v,w)\}$
 - 利用原图像内的像素灰度值,计算逆映射位置处的灰度值

计算B处内括 即变换后A 外灰度值

示例

● 图像旋转21°、反向映射

最近邻内插

双线性内插

双三次内插

