

Annotation is not like annotation

Structural annotation:

The process of identifying genes, their intron-exon structures and for transcriptomes their isoforms. Recently also ncRNA like tRNAs, µRNAs, retroposons, line elements and so forth.

Annotation is not like annotation

Structural annotation:

The process of identifying genes, their intron-exon structures and for transcriptomes their isoforms. Recently also ncRNA like tRNAs, µRNAs, retroposons, line elements and so forth.

Functional annotation:

The process of attaching meta-data such as gene names, gene family, gene ontology terms to structural annotations.

Annotation is not like annotation

Structural annotation:

The process of identifying genes, their intron-exon structures and for transcriptomes their isoforms. Recently also ncRNA like tRNAs, µRNAs, Retroposons, Line elements and so forth.

Functional annotation:

The process of attaching meta-data such as gene names, gene family, gene ontology terms to structural annotations.

Only minimaly necessary for phylogenomics (as off here)
Orthology determination

Most important

Most important shutterstock · 135644633 Fotolia

Most important

Quality of assembly

Most important

Quality of assembly Depends on purpose

contigs & scaffolds total bp shortest & longest contigs | scaffolds average length of contigs | scaffolds GC%

contigs & scaffolds total bp shortest & longest contigs | scaffolds average length of contigs | scaffolds GC%

Fig. 1.—Aggregate properties (coverage and GC content) of contigs obtained by Celera 7.0 as (a) scatter plot and (b) heat map. Colored areas in (a) illustrate the aggressive cleaning strategy adopted in this study, that is, the removal of putative nontarget contigs of coverage <40× (red; putative host contamination) and GC content >50% (blue; putative bacterial contamination) (see supplementary file S1, Section A for details, Supplementary Material online).

contigs & scaffolds total bp shortest & longest contigs | scaffolds average length of contigs | scaffolds GC%

or % non-ACTG % gaps in scaffolds

contigs & scaffolds total bp shortest & longest contigs | scaffolds average length of contigs | scaffolds GC%

or % non-ACTG % gaps in scaffolds

coverage → total sequenced bp/known genome size genome coverage → total bp/known genome size gene coverage → # genes found/# genes tested

contigs & scaffolds total bp shortest & longest contigs | scaffolds average length of contigs | scaffolds GC%

or % non-ACTG % gaps in scaffolds

coverage → total sequenced bp/known genome size genome coverage → total bp/known genome size gene coverage → # genes found/# genes tested CEGMA → screening set of universal, singlecopy genes

Unsorted contigs

Total contig length= 200K + 140K + 110K + 70K + 65K + 50K + 35K + 18K + 12K + 3K= 703K

50% total contig length= 703K x 50%= 351.5K

 $200K + 140K + 110K > 351.5K \rightarrow N50 = 110K$

Total contig length= 200K + 140K + 110K + 70K + 65K + 50K + 35K + 18K + 12K + 3K = 703K

50% total contig length= 703K x 50%= 351.5K

 $200K + 140K + 110K > 351.5K \rightarrow N50 = 110K$

50% total contig length= 703K x 50%= 351.5K

 $200K + 140K + 110K > 351.5K \rightarrow N50 = 110K$

L50 = # contigs accounting for more than 50% of the assembly

Total contig length= 200K + 140K + 110K + 70K + 65K + 50K + 35K + 18K + 12K + 3K= 703K

50% total contig length= 703K x 50%= 351.5K

 $200K + 140K + 110K > 351.5K \rightarrow N50 = 110K$

L50 = # contigs accounting for more than 50% of the assembly L50 = 3

50% total contig length= 703K x 50%= 351.5K

 $200K + 140K + 110K > 351.5K \rightarrow N50 = 110K$

L50 = # contigs accounting for more than 50% of the assembly L50 = 3Same principals apply to scaffolds

While there are correlations in assembly statistics...

Table 1 Metric trends and consis	stency				
Metric	Trend by	Consistent over	Trend by	Consistent over	Fully consistent
	sequencing depth	sequencing depths	read length	read lengths	metric
Contig count		✓		✓	X
% of reads used in contigs		✓	7	✓	✓
BP in contigs	7	✓	7	✓	✓
% BP in contigs	7	✓	7	✓	✓
Average contig coverage	7	×	7	×	×
Average unigene coverage	7	✓	7	✓	✓
Contig read count COV		✓		✓	×
Unigene read count COV		✓		✓	Х
Average contig length	7	×	7	×	Х
Average unigene length	7	✓	7	✓	✓
Contig N50 length		×	7	×	Х

O'Neil & Emrich (2013) BMC Genomics

Metrics are considered consistent if they consistently ranked perfectly assemblies as better; fully consistent metrics are consistent metrics with similar monotonic trends by sequencing depth and read length for perfect assemblies.

...what represents a "good" assembly is debatable

(what is "truth" when it's unknown to start with?)

Hunt et al. Genome Biology 2013, 14:R47 http://genomebiology.com/2013/14/5/R47

SOFTWARE

Open Access

REAPR: a universal tool for genome assembly evaluation

BIOINFORMATICS APPLICATIONS NOTE

Vol. 29 no. 8 2013, pages 1072–1075 doi:10.1093/bioinformatics/btt086

Martin Hunt¹, Taisei Kikuchi^{1,2}, Mandy Sanders¹, Chris Newbol

Genome analysis

Advance Access publication February 19, 2013

QUAST: quality assessment tool for genome assemblies

Alexey Gurevich^{1,*}, Vladislav Saveliev¹, Nikolay Vyahhi¹ and Glenn Tesler²

O'Neil and Emrich BMC Genomics 2013, 14:465 http://www.biomedcentral.com/1471-2164/14/465

Academic University, Russian Academy of Sciences, St. Petersburg s, University of California, San Diego, La Jolla, CA 92093-0112, USA

RESEARCH ARTICLE

Open Access

Assessing *De Novo* transcriptome assembly metrics for consistency and utility

Bradnam et al. GigaScie

Bradnam et al. GigaScience 2013, **2**:10 http://www.qiqasciencejournal.com/content/2/1/10 (GIGA)ⁿ SCIENCE

Shawn T O'Neil^{1,2} and Scott J Emrich^{2*}

RESEARCH Open Access

Assemblathon 2: evaluating *de novo* methods of genome assembly in three vertebrate species

EBP standard based on vertebrate genomes

- Species with sufficient DNA and tissue:
 Minimum reference standard of 6.C.Q40
 N50 contig > 1 Mb
 N50 scaffolding chromosomal scal
 - N50 scaffolding = chromosomal scale error rate < 1/10,000 (i.e., Q40)
 - Additional criteria:
 - < 5% false duplications
 - > 90% kmer completeness
 - > 90% sequence assigned to candidate chromosomal sequences
 - > 90% single copy conserved genes (e.g. BUSCO)
 - > 90% transcripts from the same organism mappable
- 2) Challenging species with limited DNA or material (<~100ng DNA) Minimum reference standard of **4.5.Q40**

N50 contig > 10kb

N50 scaffold > 100kb

error rate < 1/10,000 (i.e., Q40)

BLAST

Target specific contigs & "fish" them out

- BLAST and its variants (Altschul et al. (1990) J. Mol. Biol.)
- Cited 50K+ times

BLAST

Target specific contigs & "fish" them out

- BLAST and its variants (Altschul et al. (1990) J. Mol. Biol.)
- Cited 50K+ times

Query/Queries

- What is being compared to the DB sequences
 - Nucleotides or amino acids coming from assemblies

Subject/Subjects

- DB sequences being compared to
 - Nucleotides or amino acids potentially coming from other sources

BLAST – how it works **Query Sequence**

Query Sequence

"words" (sub-sequences of the query sequence)

The BLAST Search Algorithm

The BLAST Search Algorithm

+LA++L+ TP G R++ +W+ P+ D

Sbjct: 290 TLASVLDCTVTPMGSRMLKRWLHMPVRDTRVLLERQQTIGA 330

High-scoring Segment Pair (HSP)

BLAST – on the command line

Tools in the BLAST+ CLI suite

Basic BLAST

Choose a BLAST program to run.

nucleotide blast

Search a **nucleotide** database using a **nucleotide** query Algorithms: blastn, megablast, discontiguous megablast

protein blast

Search **protein** database using a **protein** query Algorithms: blastp, psi-blast, phi-blast, delta-blast

<u>blastx</u>

Search protein database using a translated nucleotide query

tblastn

Search translated nucleotide database using a protein query

<u>tblastx</u>

Search translated nucleotide database using a translated nucleotide query

BLAST – on the command line

Tools in the BLAST+ CLI suite

Basic BLAST

Choose a BLAST program to run.

nucleotide blast

Search a **nucleotide** database using a **nucleotide** query Algorithms: blastn, megablast, discontiguous megablast

protein blast

Search **protein** database using a **protein** query *Algorithms:* blastp, psi-blast, phi-blast, delta-blast

<u>blastx</u>

Search protein database using a translated nucleotide query

tblastn

Search translated nucleotide database using a protein query

<u>tblastx</u>

Search translated nucleotide database using a translated nucleotide query

makeblastdb = to make BLAST DBs from subject sequences