Přenosové prostředí a jeho veličiny

Opakování – Fyzická vrstva II – pojmy

Vlastnosti přenosových vedení jsou dány:

- Primárními parametry
- Sekundárními parametry

K popisu vlastnosti potřebujeme znát matematické a fyzikální nástroje:

- Symbolicko-komplexní metodu
- Vlastnosti elektromagnetického pole (vyjádřené nejlépe pomocí Maxwellových rovnic)

Symbolicko-komplexní metoda je založena na vyjádření střídavých veličin pomocí komplexních čísel. Například impedance a admitance:

Cívka s vlastní indukčností L v sérii s rezistorem

Název symbolu	Výpočet			
Napětí na ideálním rezistoru	$U_R = R.I$			
Napětí na ideální cívce	$U_L = jU_L = j\omega L.I = j2\pi fLI$			
Celkové napětí	$U = U_R + jU_L = R.I + j\omega L.I = I.(R + j\omega L)$			
Komplexní impedance obvodu	$Z = R + jX_L = R + j\omega L$			
Komplexní admitance obvodu	$Y = \frac{1}{Z} = \frac{1}{R + jX_L} = G - jB_L$			
Konduktance obvodu (činná vodivost)	$G = \frac{R}{Z^2}$			
Susceptance obvodu (jalová vodivost)	$B_{L} = \frac{X_{L}}{Z^{2}}$			
Absolutní hodnota impedance	$Z = \sqrt{R^2 + (\omega L)^2}$			
Absolutní hodnota napětí	$U = I.Z = I\sqrt{R^2 + (\omega L)^2}$			
Fázový posun	$tg\varphi = \frac{U_L}{U_R} = \frac{X_L}{R}, \cos\varphi = \frac{U_R}{U} = \frac{R}{Z}, \sin\varphi = \frac{U_L}{U} = \frac{X_L}{Z}$			

Název symbolu	Výpočet	
Napětí na ideálním rezistoru	$U_R = R.I$	
Napětí na ideálním kondenzátoru	$U_c = -jU_c = -j\frac{I}{\omega C}$	
Celkové napětí	$U = U_R + U_c = R.I - j\frac{I}{\omega C} = Z.I$	
Komplexní impedance	$Z = R - jX_{C}$	
Absolutní hodnota impedance	$Z = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$	
Absolutní hodnota napětí	$U = \sqrt{U_R^2 + U_C^2} = I\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$	
Fázový posun	$tgarphi = -rac{1}{R\omega C}$ (Fázový posun je záporný, napětí je zpožděno za proudem)	

Vlastnosti elektromagnetického pole. Vyjádření pomocí Maxwellových rovnic je obecný základ pro další odvození vlastností přenosového prostředí.

Maxwellovy rovnice jsou základní zákony v makroskopické teorii elektromagnetického pole, které zformuloval James Clerk Maxwell v roce 1865. Lze je zapsat buď v integrálním, nebo diferenciálním tvaru. V integrálním tvaru popisují elektromagnetické pole v jisté oblasti, kdežto v diferenciálním tvaru v určitém bodu této oblasti (Wikipedie). Dále jsou rovnice uvedeny v integrálním tvaru.

První Maxwellova rovnice (zákon celkového proudu, zobecněný Ampérův zákon)

$$\oint_{c} \mathbf{H} \cdot d\mathbf{l} = I + \frac{d\Psi}{dt}$$

Cirkulace vektoru intenzity magnetického pole **H** po libovolně orientované uzavřené křivce c je rovna součtu celkového vodivého proudu I a posuvného proudu $\frac{\mathrm{d}\Psi}{\mathrm{d}t}$

Druhá Maxwellova rovnice (Zákon elektromagnetické indukce, Faradayův indukční zákon)

$$\oint_{c} \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt}, \qquad \Phi \equiv \int_{S} \mathbf{B} \cdot d\mathbf{S}.$$

Cirkulace vektoru ${\bf E}$ po libovolně orientované uzavřené křivce c je rovna záporně vzaté časové derivaci magnetického indukčního toku spřaženého křivkou c.

Třetí Maxwellova rovnice (Gaussův zákon elektrostatiky)

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = Q,$$

Elektrický indukční tok libovolnou vně orientovanou plochou *S* je roven celkovému volnému náboji v prostorové oblasti *V* ohraničené plochou *S*.

Čtvrtá Maxwellova rovnice (Zákon spojitosti indukčního toku)

$$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0.$$

Magnetický indukční tok libovolnou uzavřenou orientovanou plochou S je roven nule.

Primární parametry přenosových vedení

Náhradní schéma vedení. Vedení má v každém místě určité primární parametry. U homogenního vedení se tyto parametry nemění po celé jeho délce. Pro daný typ vedení a danou frekvenci jsou konstantní.

Primární parametry vedení:

Co [F/m] měrná kapacita

L₀ [H/m] měrná indukčnost

 R_0 [Ω /m] podélný odpor

Go [S/m] příčná (svodová) vodivosti

V každém místě vedení platí:

$$\Delta U = I (R + j\omega L) \Delta x$$

$$\Delta I = U (G + j\omega C) \Delta x$$

Sekundární parametry vedení vyjadřují přenosové vlastnosti vedení.

Sekundární parametry vedení vyjadřují přenosové vlastnosti vedení. Poměr napětí U a proudu I v každém bodě homogenního vedení je stálý a nazývá se **charakteristická (vlnová) impedance** vedení **Z**_C vyjádřená komplexním číslem.

$$Z_C = \frac{U}{I} = \frac{\Delta U}{\Delta I} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} = |Z_C| \cdot e^{jq_C}$$

kde $/Z_{C}/$ je **modul vlnové impedance** neboli absolutní hodnota vlnové impedance, který udává poměr velikosti napěťové a proudové vlny v každém místě homogenního vedení a ϕ_{C} je **argument vlnové impedance**, který udává rozdíl mezi făzí napěťové a proudové vlny v každém místě homogenního vedení.

Relativní změna napětí a proudu v každém elementu vedení vztažená na jednotkovou délku vedení je také konstantní a nazývá se **měrná vlnová míra přenosu** a značí se gama.

$$\gamma = \frac{\Delta U}{U\Delta l} = \frac{\Delta I}{I\Delta l} = \sqrt{(R + j\omega L)(G + j\omega C)} = \alpha + j\beta$$

Měrná vlnová míra přenosu je opět komplexní veličina. Její reálná část α se nazývá **měrný** (vlnový) útlum (udává se obvykle v dB.km⁻¹a imaginární část β se nazývá **měrný fázový posuv** (udává se v rad.km⁻¹).

Měrný făzový posuv β udává zpoždění făze šířící se vlny na jednotku délky (užívá se jednotka km). Zpoždění făze o 360° (2π) nastane ve vzdálenosti jedné délky vlny λ , tj. β λ = 2π

a proto

$$\lambda = \frac{2\pi}{\beta}$$

Proto se měrný fázový posuv někdy nazývá **konstanta vlnové délky**. Její hodnota je závislá na typu a konkrétních parametrech vedení.

Rychlost, jakou se šíří fáze postupující harmonické vlny je dána tzv. **fázovou rychlostí šíření** $\mathbf{v_f}$, která se vypočte dle vztahu

$$v_f = \frac{\lambda}{T} = \lambda \cdot f = \frac{2\pi f}{\beta} = \frac{\omega}{\beta}$$

Parametry základních typů metalických vedení

	L ₀ [nH/cm]	C ₀ [pF/cm]	Z [Ω]	τ [ns/m]
samostatný vodič (vzdálený od země)	20	0,06	600	~ 4
vakuum	μ_0	ε ₀	370	3,3
kroucený dvoudrát	5 - 10	0,5 - 1	80 - 120	5
plochý kabel (prokládaný signál – zem)	5 - 10	0,5 - 1	80 - 120	5
koaxiální kabel	2,5	1,0	50	5
signál na plošném spoji	5 - 10	0,5 – 1,5	70 - 100	~ 5
sběrnicový signál na plošném spoji	5 - 10	10 - 30	20 - 40	10 - 20

Přenosové vedení a odraz signálu.

Činitel odrazu p udává míru impedančního přizpůsobení začátku a konce vedení. Příklad vyjádření činitele odrazu na konci vedení:

$$\frac{Z_2 - Z_v}{Z_2 + Z_v} = p_2$$

P₂ činitel odrazu na konci vedení

Z₂ impedance zakončující vedení

Z_v vlastní impedance vedení

Snahou je vedení na obou koncích přizpůsobit ($Zv=Z_1=Z_2$). Nedochází pak k odrazům na vedení a ke vzniku stojatých vln.

Extrémním případem nepřizpůsobení je vedení nakrátko nebo naprázdno (totální odraz vln).

Pozn.: Vlnové "reakce" na zkrat / rozpojené vedení je možné využít při jejich detekci tzv. reflektometrickým měřením (v podstatě radar). Lze zjistit zkrat / rozpojené vedení s přesností na m.

Měřené parametry TP kabeláže -2 cvičení

Nejčastější příčiny selhání kroucené dvoulinky:

- Vady montáže Správná propojeni při zachování párů a počtu krouceni na každém
 z nich. Vždy se snažte co nejvíce zachovat "originální krouceni" dvoulinky.
- Konektory, které nesplňují požadovanou úroveň kvality přenosu
- Nesprávné nastavení testeru
- Výrobní vada nebo mechanické poškození instalovaného kabelu
- Vadné propojovací kabely

Základní diagnostika (viz. cvičení)