Important Learning Algorithms in ML

Learning goals

- General idea of important ML algorithms
- Overview of strengths and weaknesses

CONTENTS

- 1 k-Nearest Neighbors (k-NN)
- 2 Generalized Linear Models (GLM)
- **3** Generalized Additive Models (GAM)
- 4 Classification & Regression Trees (CART)
- 5 Random Forests
- 6 Gradient Boosting
- 7 Linear Support Vector Machines (SVM)
- 8 Nonlinear Support Vector Machines
- 9 Gaussian Processes (GP)
- 10 Neural Networks (NN)

K-NN – METHOD SUMMARY

REGRESSION

CLASSIFICATION

NONPARAMETRIC

WHITE-BOX

General idea

- similarity in feature space (w.r.t. certain distance metric $d(\mathbf{x}^{(i)}, \mathbf{x})) \rightsquigarrow$ similarity in target space
- Prediction for x: construct k-neighborhood $N_k(\mathbf{x})$ from k points closest to x in \mathcal{X} , then predict

• (weighted) mean target for **regression**:
$$\hat{y} = \frac{1}{\sum\limits_{i:\mathbf{x}^{(i)} \in N_k(\mathbf{x})} w_i} \sum\limits_{i:\mathbf{x}^{(i)} \in N_k(\mathbf{x})} w_i y^{(i)}$$
 with $w_i = \frac{1}{d(\mathbf{x}^{(i)},\mathbf{x})}$

- \rightarrow optional: higher weights w_i for close neighbors
- most frequent class for **classification**: $\hat{y} = \underset{\ell \in \{1, ..., g\}}{\arg \max} \sum_{i, \mathbf{x}^{(i)} \in N_{\ell}(\mathbf{x})} \mathbb{I}(y^{(i)} = \ell)$

$$\Rightarrow$$
 Estimating posterior probabilities as $\hat{\pi}_{\ell}(\mathbf{x}^{(i)}) = \frac{1}{k} \sum_{i:\mathbf{x}^{(i)} \in N_{\ell}(\mathbf{x})} \mathbb{I}(y^{(i)} = \ell)$

- Nonparametric behavior: parameters = training data; no compression of information
- Not immediately interpretable, but inspection of neighborhoods can be revealing

K-NN – METHOD SUMMARY

Hyperparameters Neighborhood **size** *k* (locality), **distance** metric (next page)

Classification

Left: Neighborhood for exemplary observation in iris, k=50 Middle: Prediction surface for k=1 Right: Prediction surface for k=50

Regression

Left: Prediction surface for k=3Middle: Prediction surface for k=7Right: Prediction surface for k=15

- Small $k \Rightarrow$ very local, "wiggly" decision boundaries
- Large $k \Rightarrow$ rather global, smooth decision boundaries

K-NN - METHOD SUMMARY

Popular distance metrics

• Numerical feature space:

$$\Rightarrow$$
 Typically, **Minkowski** distances $d(\mathbf{x}, \widetilde{\mathbf{x}}) = \|\mathbf{x} - \widetilde{\mathbf{x}}\|_q = \left(\sum_j |x_j - \widetilde{x}_j|^q\right)^{\frac{1}{q}}$

•
$$q=1$$
: Manhattan distance $\to d(\mathbf{x}, \tilde{\mathbf{x}}) = \sum_{i} |x_i - \tilde{x_i}|$

•
$$q=2$$
: Euclidean distance $\to d(\mathbf{x}, \tilde{\mathbf{x}}) = \sqrt{\sum_{j} (x_j - \tilde{x_j})^2}$

• Visualization: Manhattan (red, blue, yellow) vs. Euclidean (green)

- Mixed feature space:
 - Gower distance can handle numerical and categorical features, and missing data:

- numerical:
$$d(x_i, x_j) = \frac{|x_i - x_j|}{\max(x) - \min(x)}$$

- categorical:
$$d(x_i, x_j) = \begin{cases} 1, & \text{if } x_i \neq x_j \\ 0, & \text{if } x_i = x_j \end{cases}$$

- Gower distance as average over individual scores
- Optional weighting to account for beliefs about varying feature importance

Figure Source: https://es.m.wikipedia.org/wiki/Archivo:Manhattan_distance.svg

K-NN – IMPLEMENTATION & PRACTICAL HINTS

Preprocessing Features should be standardized or normalized

Implementation

- R: mlr3 learners (calling kknn::kknn())
 - Classification:
 - LearnerClassifKKNN
 - fnn::knn()
 - Regression:
 - LearnerRegrKKNN
 - -fnn::knn.reg()
 - Nearest Neighbour Search in $\mathcal{O}(N \log N)$: RANN::nn2()
- Python: From package sklearn.neighbors
 - Classification:
 - KNeighborsClassifier()
 - RadiusNeighborsClassifier() as alternative if data not uniformly sampled
 - Regression:
 - KNeighborsRegressor()
 - RadiusNeighborsRegressor() as alternative if data not uniformly sampled

K-NN - PROS & CONS

Advantages

- + Algorithm **easy** to explain and implement
- + No distributional or functional **assumptions** \rightarrow able to model data of **arbitrary complexity**
- + No training or optimization required
- + local model o nonlinear decision boundaries
- + Easy to tune (few hyperparameters)
 → number of neighbors k, distance metric
 - **Custom** distance metrics can often be easily designed to incorporate domain knowledge

Disadvantages

- Sensitivity w.r.t. noisy or irrelevant features and outliers due to dependency on distance measure
- Heavily affected by curse of dimensionality
- Bad performance when feature scales are not consistent with feature relevance
- Poor handling of data **imbalances** (worse for more global model, i.e., large k)

GENERALIZED LINEAR MODELS – METHOD SUMMARY

REGRESSION

CLASSIFICATION

PARAMETRIC

WHITE-BOX

FEATURE SELECTION

General idea Represent target as function of linear predictor $\theta^{\top} \mathbf{x}$ (weighted sum of features) \rightarrow Interpretation: if feature x_i increases by 1 unit, the linear predictor changes by θ_i units

Hypothesis space $\mathcal{H} = \{ f : \mathcal{X} \to \mathbb{R} \mid f(\mathbf{x}) = \phi(\boldsymbol{\theta}^{\top}\mathbf{x}) \}$, with suitable transformation $\phi(\cdot)$, e.g.,

• Linear Regression: $\mathcal{Y} = \mathbb{R}$, ϕ identity

• Logistic Regression: $\mathcal{Y} = \{0, 1\}$, logistic sigmoid $\phi(\boldsymbol{\theta}^{\top} \mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^{\top} \mathbf{x})} =: \pi(\mathbf{x} \mid \boldsymbol{\theta})$ \Rightarrow Decision rule: Linear hyperplane

Linear regression hyperplane

Logistic function for bivariate input and loss-minimal $oldsymbol{ heta}$

Corresponding separating hyperplane

GENERALIZED LINEAR MODELS – METHOD SUMMARY

Loss functions

- Lin. Regr.:
 - Typically, based on quadratic loss (OLS estimation):

$$L(y,f)=(y-f)^2$$

- Log. Regr.: Based on bernoulli / log / cross-entropy loss
 - Loss based on scores

$$L(y, f) = \ln(1 + \exp(-y \cdot f)) \text{ for } y \in \{-1, +1\}$$

 $L(y, f) = -y \cdot f + \log(1 + \exp(f)) \text{ for } y \in \{0, 1\}$

• Loss based on probabilities:

$$L(y,\pi) = \ln(1 + \exp(-y \cdot \log(\pi))) \text{ for } y \in \{-1, +1\}$$

$$L(y,\pi) = -y \log(\pi) - (1-y) \log(1-\pi) \text{ for } y \in \{0, 1\}$$

GENERALIZED LINEAR MODELS – METHOD SUMMARY

Optimization

- Minimization of the empirical risk
- ullet For **OLS**: analytical solution $\hat{oldsymbol{ heta}} = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y}$
- For other loss functions:
 - Log. Regr.: Convex problem, solvable via second-order optimization methods (e.g. BFGS)
 - Else: Numerical optimization

Multi-class extension of logistic regression

- Estimate class-wise scoring functions: $\Rightarrow \pi : \mathcal{X} \rightarrow [0,1]^g, \ \pi(\mathbf{x}) = (\pi_1(\mathbf{x}), \dots, \pi_g(\mathbf{x})), \ \sum_{k=1}^g \pi_k(\mathbf{x}) = 1$
- Achieved through **softmax** transformation: $\pi_k(\mathbf{x} \mid \boldsymbol{\theta}) = \exp(\boldsymbol{\theta}_k^{\top} \mathbf{x}) / \sum_{i=1}^g \exp(\boldsymbol{\theta}_i^{\top} \mathbf{x})$
- ullet Multi-class log-loss: $L(y,\pi(\mathbf{x})) = -\sum\limits_{k=1}^g \mathbb{I}_{\{y=k\}} \log(\pi_k(\mathbf{x}))$
- Predict class with maximum score (or use thresholding variant)

GENERALIZED LINEAR MODELS – REGULARIZATION

General idea

- Unregularized LM: risk of **overfitting** in high-dimensional space with only few observations
- Goal: avoidance of overfitting by adding penalty term

Regularized empirical risk

- Empirical risk function **plus complexity penalty** $J(\theta)$, controlled by shrinkage parameter $\lambda > 0$: $\mathcal{R}_{\text{reg}}(\theta) := \mathcal{R}_{\text{emp}}(\theta) + \lambda \cdot J(\theta)$
- Ridge regression: L2 penalty $J(\theta) = \|\theta\|_2^2$
- ullet LASSO regression: L1 penalty $J(oldsymbol{ heta}) = \|oldsymbol{ heta}\|_1$

Optimization under regularization

- Ridge: analytically with $\hat{\theta}_{\text{Ridge}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}$
- LASSO: numerically with, e.g., (sub-)gradient descent

Choice of regularization parameter

- Standard hyperparameter optimization problem
- E.a., choose λ with minimum mean cross-validated error

GENERALIZED LINEAR MODELS – REGULARIZATION

Ridge vs. LASSO

Ridge

- ullet Global shrinkage \Rightarrow overall smaller but still dense $oldsymbol{ heta}$
- Applicable with large number of influential features, handling correlated variables by shrinking their coefficients by equal amount

LASSO

- Actual variable selection by shrinking coefficients for irrelevant features all the way to zero
- Suitable for sparse problems, ineffective with correlated features (randomly selecting one)
- Neither overall better ⇒ compromise: elastic net
 - Weighted combination of Ridge and LASSO
 - Introducing additional penalization coefficient:

$$\mathcal{R}_{\text{reg}}(\theta) = \mathcal{R}_{\text{emp}}(\theta) + \lambda \cdot P_{\alpha}(\theta), \text{ with } P_{\alpha}(\theta) = [\alpha \cdot \|\theta\|_{1} + (1 - \alpha) \cdot \frac{1}{2} \cdot \|\theta\|_{2}^{2}]$$

Ridge performs better for correlated features: **Lasso** performs better for uncorrelated features:

GENERALIZED LINEAR MODELS – IMPLEMENTATION

Implementation

- R:
 - Unregularized: mlr3 learner LearnerRegrLM, calling stats::lm() / mlr3 learner
 LearnerClassifLogReg, calling stats::glm()
 - Regularized / ElasticNet: mlr3 learners LearnerClassifGlmnet / LearnerRegrGlmnet, calling glmnet::glmnet()
 - For large classification data: mlr3 learner LearnerClassifLiblineaR, calling LiblineaR::LiblineaR() uses fast coordinate descent
- Python: From package sklearn.linear_model
 - Unregularized:
 - LinearRegression()
 - -LogisticRegression(penalty = None)
 - Regularized:
 - Linear regression: Lasso(), Ridge(), ElasticNet()
 - Logistic regression: Logistic Regression (penalty = {'11', '12', 'elasticnet'})
 - Package for advanced statistical models: statsmodels.api

GENERALIZED LINEAR MODELS – PROS & CONS

Advantages

- + Simple and fast implementation
- + Analytical solution for L2 loss
- Applicable for any dataset size, as long as number of observations ≫ number of features
- Flexibility beyond linearity with polynomials, trigonometric transformations, interaction terms etc.
- Intuitive interpretability via feature effects
- + Statistical hypothesis **tests** for effects available

Disadvantages

- Nonlinearity of many real-world problems
- Further restrictive assumptions: linearly independent features, homoskedastic residuals, normality of conditional response
- Sensitivity w.r.t. outliers and noisy data (especially with L2 loss)
- Also a LM can overfit (e.g., many features and few observations)
- Feature interactions must be handcrafted
 - ightarrow practically infeasible for higher orders

GENERALIZED ADDITIVE MODELS – METHOD SUMMARY

REGRESSION

CLASSIFICATION

NON)PARAMETRIC

WHITE-BOX

FEATURE SELECTION

General idea

- Same as GLM, but introduce **flexibility** through **nonlinear (smooth)** effects $f_j(x_j)$
- Typically, combination of linear & smooth effects
- Smooth effects also conceivable for feature interactions

Hypothesis space
$$\mathcal{H} = \left\{ f : \mathcal{X} \to \mathbb{R} \mid f(\mathbf{x}) = \phi\left(\theta_0 + \sum_{j=1}^p f_j(x_j)\right) \right\}$$
, with suitable transformation $\phi(\cdot)$, intercept term θ_0 , and smooth functions $f_j(\cdot)$

Prediction of bike rentals from smooth term of humidity (left: partial effect) and linear term of temperature (right: bivariate prediction).

GENERALIZED ADDITIVE MODELS – METHOD SUMMARY

Smooth functions

- Nonparametric/semiparametric/parametric approaches conceivable
- Frequently: express f_i as weighted sum of basis functions ~> model linear in weight coefficients again
 - Use fixed basis of functions b_1, \ldots, b_K and estimate associated coefficients $\gamma_1, \ldots, \gamma_K$ $f_i(x_i) = \sum_{k=1}^{K_j} \gamma_{i,k} b_k(x_i)$
 - Popular types of basis functions
 - Polynomial → smoothing/TP-/B-splines
 - Radial ~ Kriging
 - Trigonometric → Fourier/wavelet forms
- Alternatives: local regression (LOESS), other kernel-smoothing approaches, . . .

Left: B-spline basis with 9 basis functions. Middle: BFs weighted with coefficients estimated for humidity. Right: sum of weighted BFs in black (= partial effect).

GENERALIZED ADDITIVE MODELS – METHOD SUMMARY

Regularization

- Smooth functions possibly very flexible → regularization vital to prevent overfitting
- Control smoothness
 - Basis-function approaches: control number; impose penalty on coefficients (e.g., magnitude or differences between coefficients of neighboring components) & control associated hyperparameter
 - Local smoothers: control width of smoothing window (larger → smoother)

Prediction surfaces for bike rentals with 9 (left) and 500 (right) basis functions in smooth humidity term. Higher number of basis functions yields more local, less smooth model.

Loss functions Same as in GLM → essentially: use negative log-likelihood

Optimization

- Coefficients (of smooth + linear terms): penalized MLE, Bayesian inference
- Smoothing hyperparameters: typically, generalized cross-validation

GENERALIZED ADDITIVE MODELS – IMPLEMENTATION

Implementation

- R: mlr3 learner LearnerRegrGam, calling mgcv::gam()
 - Smooth terms: s(..., bs="<basis>") or te(...) for multivariate (tensorproduct) effects
 - Link functions: family={Gamma, Binomial, ...}
- Python: GLMGam from package statsmodels; package pygam

Advantages

- + Simple and fast implementation
- + Applicable for any dataset size, as long as number of observations ≫ number of features
- + High **flexibility** via smooth effects
- + Easy to **combine** linear & nonlinear effects
- Intuitive interpretability via feature effects (though not quite as straightforward as in GLM)
- $+\;$ Statistical hypothesis **tests** for effects available

Disadvantages

- Sensitivity w.r.t. outliers and noisy data
- Feature interactions must be handcrafted
 - ightarrow practically infeasible for higher orders
- Harder to optimize than GLM
- Additional hyperparameters (type of smooth functions, smoothness degree, ...)

CART – METHOD SUMMARY

REGRESSION

CLASSIFICATION

NONPARAMETRIC

WHITE-BOX

FEATURE SELECTION

General idea (CART – Classification and Regression Trees)

- Start at root node containing all data
- Perform repeated **axis-parallel binary splits** in feature space to obtain **rectangular partitions** at terminal nodes Q_1, \ldots, Q_M
- Splits based on reduction of node impurity
 → empirical risk minimization (ERM)
- In each step:
 - Find optimal split (feature-threshold combination)
 → greedy search
 - Assign constant prediction c_m to all obs. in Q_m
 - ightarrow Regression: c_m is average of y
 - ightarrow Classif.: c_m is majority class (or class proportions)
 - Stop when a pre-defined criterion is reached
 - \rightarrow See Complexity control

Hypothesis space
$$\mathcal{H} = \left\{ f(\mathbf{x}) : f(\mathbf{x}) = \sum_{m=1}^{M} c_m \mathbb{I}(\mathbf{x} \in Q_m) \right\}$$

CART – METHOD SUMMARY

Empirical risk

• Splitting **feature** x_j **at split point** t divides a parent node $\mathcal N$ into two child nodes:

$$\mathcal{N}_1 = \{(\mathbf{x}, y) \in \mathcal{N} : x_j \leq t\} \text{ and } \mathcal{N}_2 = \{(\mathbf{x}, y) \in \mathcal{N} : x_j > t\}$$

• Compute empirical risks in child nodes and minimize their sum to find best split (impurity reduction):

$$\mathop{\mathsf{arg\,min}}_{j,t} \mathcal{R}(\mathcal{N},j,t) = \mathop{\mathsf{arg\,min}}_{j,t} \mathcal{R}(\mathcal{N}_1) + \mathcal{R}(\mathcal{N}_2)$$

Note: If \mathcal{R} is the average instead of the sum of loss functions, we need to reweight: $\frac{|\mathcal{N}_t|}{|\mathcal{N}|} \mathcal{R}(\mathcal{N}_t)$

- In general, compatible with arbitrary losses typical choices:
 - *g*-way classification:

Optimization

- Exhaustive search over all split candidates, choice of risk-minimal split
- In practice: reduce number of split candidates (e.g., using quantiles instead of all observed values)

CART – IMPLEMENTATION & PRACTICAL HINTS

Hyperparameters and complexity control

- Unless interrupted, splitting continues until we have pure leaf nodes (costly + overfitting)
- Hyperparameters: Complexity (i.e., number of terminal nodes) controlled via tree depth, minimum number of observations per node, maximum number of leaves, minimum risk reduction per split, ...
- Limit tree growth / complexity via
 - Early stopping: stop growth prematurely
 - → hard to determine good stopping point before actually trying all combinations
 - **Pruning:** grow deep trees and cut back in risk-optimal manner afterwards

Implementations

- R:
 - CART: mlr3 learners LearnerClassifRpart / LearnerRegrRpart, calling rpart::rpart()
 - Conditional inference trees: partykit::ctree()
 mitigates overfitting by controlling tree size via p-value-based splitting
 - Model-based recursive partitioning: partykit::mob()
 fits a linear model within each terminal node of the decision tree
 - Rule-based models: Cubist::cubist() for regression and C50::C5.0() for classification; more flexible frameworks for fitting various types of models (e.g., GLMs) within a tree's terminal nodes
- Python: DecisionTreeClassifier / DecisionTreeRegressor from package scikit-learn

CART – PROS & CONS

Dual purpose of CART

- Exploration purpose to obtain interpretable decision rules (here: performance/tuning is secondary)
- Prediction model: CART as base learner in ensembles (bagging, random forest, boosting) can improve stability and performance (if tuned properly), but becomes less interpretable

Advantages

- + **Easy** to understand & visualize (**interpretable**)
- + Built-in feature selection
 - ightarrow e.g., when features are not used for splitting
- + Applicable to categorical features
 - \rightarrow e.g., 2^m possible binary splits for m categories \rightarrow trick for regr. with L2-loss and binary classif.:
 - categories can be sorted $\Rightarrow m-1$ binary splits
- Handling of missings possible via surrogate splits
- + Models **interactions**, even of higher order
- + Fast computation and good scalability
- High flexibility with custom split criteria or leaf-node prediction rules

Disadvantages

- Rather poor generalization
- High variance/instability: model can change a lot when training data is minimally changed
- Can overfit if tree is grown too deep
- Not well-suited to model linear relationships
- Bias toward features with many unique values or categories

RANDOM FORESTS – METHOD SUMMARY

REGRESSION

CLASSIFICATION

NONPARAMETRIC

LACK-BOX

FEATURE SELECTION

General idea

- Bagging ensemble of *M* tree base learners fitted on bootstrap data samples
 - ⇒ Reduce **variance** by ensembling while slightly increasing **bias** by bootstrapping
 - Use unstable, **high-variance** base learners by letting trees grow to full size
 - Promoting decorrelation by random subset of candidate features for each split
- Predict via averaging (regression) or majority vote (classification) of base learners

Hypothesis space
$$\mathcal{H} = \left\{ f(\mathbf{x}) : f(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \sum_{t=1}^{T^{[m]}} c_t^{[m]} \mathbb{I}(\mathbf{x} \in Q_t^{[m]}) \right\}$$

Prediction surface for iris data with 500-tree ensemble

RANDOM FORESTS – METHOD SUMMARY

Empirical risk & Optimization

Just like tree base learners

Out-of-bag (OOB) error

- Ensemble prediction for obs. outside individual trees' bootstrap training sample ⇒ unseen test sample
- Use resulting loss as unbiased estimate of generalization error
- Mainly useful for tuning and less for model comparison as we usually compare all models uniformly by CV

Feature importance

- Based on improvement in split criterion: aggregate improvements by all splits using j-th feature
- Based on permutation: permute j-th feature in OOB observations and compute impact on OOB error

Hyperparameters

- Ensemble size, i.e., number of trees
- Complexity of base learners, e.g., tree depth, min-split, min-leaf-size
- Number of split candidates, i.e., number of features to be considered at each split
 - \Rightarrow frequently used heuristics with total of p features: $\lfloor \sqrt{p} \rfloor$ for classification, $\lfloor p/3 \rfloor$ for regression

RANDOM FORESTS – IMPLEMENTATION & PRACTICAL HINTS

Extremely Randomized Trees

- Variance of trees can be further increased by randomizing split points instead of using the optimal one
- Alternatively consider k random splits and pick the best one according to impurity

Tuning

- While default values for number of split points is often good, tuning it can still improve performance
- Tuning the minimum samples in leafs and minimum samples for splitting can be benificial but no huge performance increases are to be expected

Implementation

- R: mlr3 learners LearnerClassifRanger / LearnerRegrRanger, calling ranger::ranger() as a highly efficient and flexible implementation
- Python: RandomForestClassifier / RandomForestRegressor from package scikit-learn

RANDOM FORESTS – PROS & CONS

Advantages

- + Retains most of **trees**' advantages (e.g., feature selection, feature interactions)
- Fairly good predictor: mitigating base learners' variance through bagging
- + Quite **robust** w.r.t. small changes in data
- + Good with **high-dimensional** data, even in presence of noisy features
- + Easy to parallelize
- + Robust to its hyperparameter configuration
- + Intuitive measures of **feature importance**

Disadvantages

- Loss of individual trees' interpretability
- Can be suboptimal for **regression** when extrapolation is needed
- Bias toward selecting features with many categories (same as CART)
- Rather large model size and slow inference time for large ensembles
- Typically inferior in **performance** to tuned gradient tree boosting.

GRADIENT BOOSTING – METHOD SUMMARY

REGRESSION

CLASSIFICATION

NON)PARAMETRIC

BLACK-BOX

FEATURE SELECTION

General idea

• Sequential ensemble of M base learners by greedy forward stagewise additive modeling

10.0

- In each iteration a base learner is fitted to current pseudo residuals ⇒ one boosting iteration is one approximate gradient step in function space
- Base learners are typically trees, linear regressions or splines

7.5

• Predict via (weighted) sum of base learners

Hypothesis space
$$\mathcal{H} = \left\{ f(\mathbf{x}) : f(\mathbf{x}) = \sum_{m=1}^{M} \beta^{[m]} b(\mathbf{x}, \boldsymbol{\theta}^{[m]}) \right\}$$

5.0

Boosting prediction function with GAM base learners for univariate regression problem after 10 iterations

Boosting prediction surface with tree base learners for iris data after 100 iterations (right: contour lines of discriminant functions)

GRADIENT BOOSTING – METHOD SUMMARY

Empirical risk

- In general, compatible with any differentiable loss
- Base learner in iteration *m* is fitted on **Pseudo residuals**:

$$\tilde{r}^{(i)} = -\frac{\partial L(\mathbf{y}^{(i)}, f(\mathbf{x}^{(i)}))}{\partial t(\mathbf{x}^{(i)})}$$
 by minimizing the **L2-loss**: $\sum_{i=1}^{n} (\tilde{r}^{(i)} - b(\mathbf{x}^{(i)}, \boldsymbol{\theta}))^2$

Optimization

- Same optimization procedure as base learner, while keeping the current ensemble f̂^[m-1] fixed
 ⇒ Efficient and generally applicable since *inner* loss is always L2
- $\beta^{[m]}$ is found via **line search** or fixed to a **small constant value** and combined with the leaf values $c_i^{[m]}$ for tree base learners: $\tilde{c}_i^{[m]} = \beta^{[m]} \cdot c_i^{[m]}$

Hyperparameters

- Ensemble size, i.e., number of base learners
- Complexity of base learners (depending on type used)
- Learning rate β , i.e., impact of next base learner

GRADIENT BOOSTING – PRACTICAL HINTS

Scalable Gradient Boosting

- Feature and data subsampling for each base learner fit
- Parallelization and approximate split finding for tree base learners
- GPU accelaration

Explainable / Componentwise Gradient Boosting

- Base learners of simple linear regression models or splines, selecting a single feature in each iteration
- Allows feature selection and creates an interpretable model since uni- and bivariate effects can be visualized directly.
- Feature interactions can be learned via ranking techniques (e.g., GA²M FAST)

Tuning

- Use early-stopping to determine ensemble size
- Various regularization parameters, e.g., L1/L2, number of leaves, ... that need to be carefully tuned
- Tune learning rate and base learner complexity hyperparameters on log-scale

GRADIENT BOOSTING – IMPLEMENTATION

Gradient Tree Boosting

- R: mlr3 learners LearnerClassifXgboost / LearnerRegrXgboost, LearnerClassifLightGBM / LearnerRegrLightGBM
- Python: GradientBoostingClassifier / GradientBoostingRegressor from package scikit-learn, XGBClassifier / XGBRegressor from package xgboost, lgb.train from package lightgbm
- \Rightarrow LightGBM current state-of-the-art but slightly more complicated to use than xgboost

Componentwise Gradient Boosting

- R: mboost from package mboost, boostLinear / boostSplines from package compboost
- Python: /
- ⇒ mboost very flexible but slow while compboost is much faster with limited features

GRADIENT BOOSTING – PROS & CONS

Advantages

- + Retains of most of **base learners**' advantages
- Very good predictor due to aggressive loss minimization, typically only outperformed by heterogenous stacking ensembles
- + High **flexibility** via custom loss functions and choice of base learner
- Highly efficient implementations exist (lightgbm / xgboost) that work well on large (distributed) data sets
- Componentwise boosting: Good combination of

 (a) high performance (b) interpretable model and
 (c) feature selection

Disadvantages

- Loss of base learners' potential interpretability
- Many hyperparameters to be carefully tuned
- Hard to parallelize (→ solved by efficient implementation)

LINEAR SVM – METHOD SUMMARY

CLASSIFICATION

REGRESSION

PARAMETRIC

WHITE-BOX

General idea (Soft-margin SVM)

- Find linear decision boundary (separating hyperplane) that
 - maximizes distance (margin γ) to closest points (support vectors, SVs) on each side of decision boundary
 - while minimizing margin violations (points either on wrong side of hyperplane or between dashed margin line and hyperplane)
- 3 types of training points
 - non-SVs with no impact on decision boundary
 - SVs that are margin violators and affect decision boundary
 - SVs located exactly on dashed margin lines and affect decision boundary

Hypothesis space (primal)
$$\mathcal{H} = \{f(\mathbf{x}) : f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} + \theta_0\}$$

Soft-margin SVM with margin violations

LINEAR SVM – METHOD SUMMARY

Empirical risk Soft-margin SVM as L2-regularized ERM:

$$\frac{1}{2}\|\boldsymbol{\theta}\|_{2}^{2}+C\sum_{i=1}^{n}L\left(\boldsymbol{y}^{(i)},f\left(\mathbf{x}^{(i)}\right)\right)$$

- $\|\boldsymbol{\theta}\| = 1/\gamma$ ($\hat{=}$ maximizing margin)
- ullet C > 0: penalization for margin violations
- Loss aims at minimizing margin violations

$$\rightarrow$$
 Classif. (**hinge** loss): $L(y, f) = \max(1 - yf, 0)$

$$ightarrow$$
 Regr. (ϵ -insensitive loss): $L\left(y,f
ight)=\max(|y-f|-\epsilon,0)$

Dual problem SVMs as a constraint optimization (primal) problem (maximize margin s.t. constraints on obs. to limit margin violations) can be formulated as a Lagrangian dual problem with Lagrange multipliers $\alpha_i \ge 0$:

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle \quad \text{s.t.} \quad 0 \le \alpha_i \le C \quad \forall i \in \{1, \dots, n\} \text{ and } \sum_{i=1}^n \alpha_i y^{(i)} = 0$$

Solution Non-SVs have $\alpha_i = 0$ as they do not affect the hyperplane

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y^{(i)} \langle \mathbf{x}^{(i)}, \mathbf{x} \rangle + \theta_0$$

LINEAR SVM – METHOD SUMMARY

Optimization

- Typically, tackling dual problem (though feasible in corresponding primal) via quadratic programming
- Popular: sequential minimal optimization

 iterative algorithm based on breaking down objective into bivariate quadratic problems with analytical solutions

Hyperparameters Cost parameter C to control maximization of the margin vs. minimizing margin violations

Hard-margin SVM: margin is maximized by boundary on the right

Soft-margin SVM: large margin and few margin violations on the right (best trade-off)

LINEAR SVM – IMPLEMENTATION & PRACTICAL HINTS

Preprocessing Features should be scaled before applying SVMs (applies generally to regularized models)

Tuning

- Tuning of cost parameter C advisable
 ⇒ strong influence on resulting hyperplane
- C it is often tuned on a log-scale grid for optimal and space-filling search space

Implementation

- R: mlr3 learners LearnerClassifSVM / LearnerRegrSVM, calling e1071::svm() with linear kernel (libSVM interface). Further implementations in mlr3extralearners based on
 - kernlab::ksvm() allowing custom kernels
 - LiblineaR::LiblineaR() for a fast implementation with linear kernel
- Python: sklearn.svm.SVC from package scikit-learn / package libSVM

NONLINEAR SVM – METHOD SUMMARY

CLASSIFICATION

REGRESSION

NONPARAMETRIC

BLACK-BOX

General idea

- Move beyond linearity by mapping data to transformed space where they are linearly separable
- Kernel trick
 - No need for explicit construction of feature maps
 - Replace inner product of feature map $\phi : \mathcal{X} \to \Phi$ by **kernel**: $\langle \phi(\mathbf{x}), \phi(\tilde{\mathbf{x}}) \rangle = k(\mathbf{x}, \tilde{\mathbf{x}})$

Hypothesis space

$$\mathcal{H} = \{ f(\mathbf{x}) : f(\mathbf{x}) = \text{sign} (\boldsymbol{\theta}^{\top} \phi(\mathbf{x}) + \theta_0) \}$$
 (primal)

$$\mathcal{H} = \left\{ f(\mathbf{x}) : f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y^{(i)} k(\mathbf{x}^{(i)}, \mathbf{x}) + \theta_0\right) \mid \alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i y^{(i)} = 0 \right\} \text{ (dual)}$$

Nonlinear problem in original space

Mapping to 3D space and subsequent linear separation - implicitly handled by kernel in nonlinear SVM

NONLINEAR SVM – METHOD SUMMARY

Dual problem Kernelize dual (soft-margin) SVM problem, replacing all inner products by kernels:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}), \text{ s.t. } 0 \leq \alpha_{i} \leq C, \sum_{i=1}^{n} \alpha_{i} y^{(i)} = 0.$$

Hyperparameters Cost C of margin violations, kernel hyperparameters (e.g., width of RBF kernel)

Interpretation as basis function approach

- Representer theorem: solution of dual soft-margin SVM problem is $\theta = \sum_{i=1}^{n} \beta_{i} \phi(\mathbf{x}^{(i)})$
- Sparse, weighted sum of **basis functions** $\rightarrow \beta_i = 0$ for non-SVs
- Result: local model with smoothness depending on kernel

RBF kernel as mixture of Gaussian basis functions, forming bumpy, nonlinear decision surface to discern red and green points

NONLINEAR SVM – IMPLEMENTATION & PRACTICAL HINTS

Common kernels

- Linear kernel: dot product of given observations $\Rightarrow k(\mathbf{x}, \tilde{\mathbf{x}}) = \mathbf{x}^{\top} \tilde{\mathbf{x}} \Rightarrow \text{linear SVM}$
- **Polynomial** kernel of degree $d \in \mathbb{N}$: monomials (i.e., feature interactions) up to d-th order $\Rightarrow k(\mathbf{x}, \tilde{\mathbf{x}}) = (\mathbf{x}^{\top} \tilde{\mathbf{x}} + b)^d$, $b \ge 0$
- Radial basis function (RBF) kernel: infinite-dimensional feature space, allowing for perfect separation of all finite datasets $\Rightarrow k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(-\gamma \|\mathbf{x} \tilde{\mathbf{x}}\|_2^2\right)$ with bandwidth parameter $\gamma > 0$

Tuning

- ◆ High sensitivity w.r.t. hyperparameters, especially those of kernel ⇒ tuning very important
- For RBF kernels, use **RBF sigma heuristic** to determine bandwidth

Implementation

- R: mlr3 learners LearnerClassifSVM / LearnerRegrSVM, calling e1071::svm() with nonlinear kernel (libSVM interface), kernlab::ksvm() allowing custom kernels
- Python: sklearn.svm.SVC from package scikit-learn / package libSVM

SVM - PRO'S & CON'S

Advantages

- + Often **sparse** solution (w.r.t. observations)
- + Robust against overfitting (**regularized**); especially in high-dimensional space
- $+\,\,$ Stable solutions (w.r.t. changes in train data)
 - \rightarrow Non-SV do not affect decision boundary
- + Convex optimization problem
 - ightarrow local minimum $\hat{=}$ global minimum

Advantages (nonlinear SVM)

- + Can learn nonlinear decision boundaries
- Very flexible due to custom kernels
 - → RBF kernel yields local model
 - \rightarrow kernel for time series, strings etc.

Disadvantages

- **Long** training times $\rightarrow O(n^2p + n^3)$
- Confined to linear model
- Restricted to continuous features
- Optimization can also fail or get stuck

Disadvantages (nonlinear SVM)

- Poor interpretability due to complex kernel
- Not easy tunable as it is highly important to choose the right kernel (which also introduces further hyperparameters)

GAUSSIAN PROCESSES (GP) – METHOD SUMMARY

REGRESSION

CLASSIFICATION

NONPARAMETRIC

PROBABILISTIC

General idea

- GPs model a distribution over potential functions f that fit the observed data
- Assumptions:
 - *n*-observations follow a *n*-dimensional Normal distribution
 - The closer observations are, the higher they are correlated
- A **kernel** function $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ quantifies the similarity between two observations and induces the covariance matrix of the distribution.
- Predict via the maximum a-posteriori (MAP) estimate.

$$\text{Hypothesis space} \quad \mathcal{H} = \left\{ \textbf{\textit{f}} = \left[f\left(\textbf{\textit{x}}^{(1)}\right), \ldots, f\left(\textbf{\textit{x}}^{(n)}\right) \right] \sim \mathcal{N}\left(\textbf{\textit{m}}, \textbf{\textit{K}}\right) \mid \textbf{\textit{m}} \in \mathbb{R}^{n}, \textbf{\textit{K}} \in \mathbb{R}^{n \times n} \right\}$$

GAUSSIAN PROCESSES (GP) – METHOD SUMMARY

Empirical risk

- The risk is estimated by using the posterior of a conditional Normal distribution
- Most kernels have length scale parameters that need to be estimated

Optimization

- The kernel parameters can be learned using **maximum likelihood** estimation
- This requires inverting the $n \times n$ -covariance matrix

Hyperparameters

- The most important hyperparameter is the choice of the kernel function $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$
- Common kernel choices for "standard" data are:
 - Linear or polyomial
 - Squared-exponential (infinitely differentiable)
 - Matérn (further generalization of the Squared-exponential kernel)
- Special kernels for all kind of data situation exist, e.g., a Exp-Sine-Squared kernel for periodic data
- Kernels can be composed by multiplying or addition to create more expressive structures

GP – IMPLEMENTATION & PRACTICAL HINTS

Scalable GPs for larger data

- Low-rank approximations of the covariance by using only a representative subset of inducing points
- Using a kernel that creates a sparse coviariance matrix

Noisy GPs

- Having an interpolator might not be suitable if the data is noisy
- A noisy GP adds a **nugget** effect to the kernel $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) + \sigma \delta_{ij}$, creating a Gaussian process regression model

Implementation

- R:mlr3 learners LearnerClassifGausspr / LearnerRegrGausspr, calling kernlab::gausspr()
- Python: GaussianProcessClassifier / GaussianProcessRegressor from package scikit-learn, gpytorch for a modular, scalable, efficient and GPU accelerated implementation built on torch

GAUSSIAN PROCESSES (GP) – PROS & CONS

Advantages

- GPs allow to quantify prediction uncertainty induced by both intrinsic noise in the problem and errors in the parameter estimation process
- A GP is a function interpolator and will predict the exact value of a training point
- + The choice of kernel function allows considerable flexibility for problem specific characteristics
- + Automatic relevance determination (ARD) determines the importance of features

Disadvantages

- GPs are **not sparse**, i.e., they require the full training data for prediction
- GP training requires $\mathcal{O}(n^3)$, i.e., it scales cubically in the number of observations
- GPs cannot handle categorical features.
- GPs are not particularly easy to understand conceptually

REGRESSION

CLASSIFICATION

(NON)PARAMETRIC

BLACK-BOX

General idea

- Learn composite function through series of nonlinear feature transformations, represented as neurons, organized hierarchically in layers
 - Basic neuron operation: 1) affine transformation ϕ (weighted sum of inputs), 2) nonlinear activation σ
 - Combinations of simple building blocks to create a complex model
- Optimize via mini-batch stochastic gradient descent (SGD) variants:
 - Gradient of each weight can be infered from the computational graph of the network
 → Automatic Differentiation (AutoDiff)
 - Algorithm to compute weight updates based on the loss is called **Backpropagation**

$$\text{Hypothesis space} \quad \mathcal{H} = \left\{ f(\mathbf{x}) : f(\mathbf{x}) = \tau \circ \phi \circ \sigma^{(h)} \circ \phi^{(h)} \circ \sigma^{(h-1)} \circ \phi^{(h-1)} \circ \dots \circ \sigma^{(1)} \circ \phi^{(1)}(\mathbf{x}) \right\}$$

Architecture

- Input layer: original features x
- Hidden layers: nonlinear transformation of previous layer $\phi^{(h)} = \sigma^{(h-1)}(\phi^{(h-1)})$
- ullet Output layer: number of output neurons and activation depends on problem $au(\phi)$
 - Regression: one output neuron, $\tau = \text{identity}$
 - Binary classification: one output neuron, $\tau = \frac{1}{1 + \exp(-\theta^T \mathbf{x})}$ (logistic sigmoid)
 - Multiclass Classification: g output neurons, $\tau_j = \frac{\exp(f_j)}{\sum_{j=1}^g \exp(f_j)}$ (softmax)

Empirical risk In general, compatible with any differentiable loss

Optimization

- Variety of different optimizers, mostly based on some form of stochastic gradient descent (SGD)
- Improvements:
 - (1) Accumulation of previous gradients → Momentum
 - (2) Weight specific scaling based on previous squared gradients $\to \mathbf{RMSProb}$
 - \Rightarrow **ADAM** combines (1) and (2)
 - (3) Learning rate schedules, e.g., decaying or cyclical learning rates
- Training progress is measured in full passes over the full training data, called epochs
- Batch size is a hyperparameter and limited by input data dimension

Network types Large variety of architectures for different data modelities

- Feedforward NNs / multi-layer perceptrons (MLPs): sequence of fully-connected layers ⇒ tabular data
- Convolutional NNs (CNNs): sequence of feature map extractors with spatial awareness ⇒ images, time series
- Recurrent NNs (RNNs): handling of sequential, variable-length information ⇒ times series, text, audio
- Transformers: Learning invariances from data, handling multiple/any data modalities

Hyperparameters

Architecture:

- Lots of design choices ⇒ tuning problem of its own.
- Typically: hierachical optimization of components (cells) and macro structure of network
 - → Neural Architecture Search (NAS)
- Many predifined (well working) architectures exist for standard tasks

Training:

- Initial learning rate and various regularization parameters
- Number of epochs is determined by early-stopping
- Data-augmentation, e.g., applying random rotations to input images

Foundation models

- Enormous models trained on vast amounts of (general) data, e.g., all of wikipedia, in self-supervised
 fashion
- Used as starting point (pre-trained) and fine-tuned via transfer or few-shot learning for other tasks requiring little data
- Examples: GPT-3 for language, CLIP for vision-language, . . .

NEURAL NETWORKS – IMPLEMENTATION & PRACTICAL HINTS

General hints

- Instead of NAS, use a standard architecture and tune training hyperparameters
- Training pipeline (data-augmentation, training schedules, ...) is more crucial than the specific architecture
- While NNets are state-of-the-art for computer vision (CV) and natural language processing (NLP), we
 recommend not to use them for tabular data because alternatives perform better
- Computational efforts for training (and inference) can be very high, requiring specific hardware.
 - ightarrow Using a service (esp. for foundation models) can be more cost efficient

Implementation

- R: Use python libraries (below) via reticulate, but not really recommended except for toy applications.
- Python libraries:
 - keras for simple high level API
 - PyTorch for flexible design with a focus on research
 - TensorFlow for flexible design with a focus on deployment / industry
 - huggingface for pre-trained / foundation models

NEURAL NETWORKS – PROS & CONS

Advantages

- + Applicable to **complex, nonlinear** problems
- Very versatile w.r.t. architectures
- + State-of-the-art for CV and NLP
- + Strong **performance** if done right
- + Built-in **feature extraction**, obtained by intermediate representations
- + Easy handling of **high-dimensional** data
- + **Parallelizable** training

Disadvantages

- Typically, high computational cost
- High demand for training data
- Strong tendency to overfit
- Requiring lots of tuning expertise
- Black-box model hard to interpret or explain