A practical evaluation of recent methods in high-dimensional inference

Charles Zheng

Stanford University

May 5, 2015

Problem and motivation

- $x \in \mathbb{R}^p, y \in \mathbb{R}$ have a joint distribution P where $y|x \sim N(x^T\beta, \sigma^2)$
- Observe $X = (x_1, ..., x_n)^T$, $Y = (y_1, ..., y_n)$ iid
- Problem: test H_i : $\beta_0 = i$ for i = 1, ..., p
- Motivation: x are SNPs (mutations), y is phenotype

Methods

	Control	p > n	
Classical inference (Pearson 1930)	Marginal	No	
Covariance test (Lockhart et al. 2014)	FWER?	Yes	
Debiased lasso (Javanmard et al. 2014)	Marginal	Yes	
Knockoffs (Barber et al. 2014)	FDR	?	

The LASSO path

$$\hat{\beta}_{\lambda} = \operatorname{argmin}_{\beta} \frac{1}{2} ||X\beta - Y||^2 + \lambda ||\beta||_1$$

(Image credit: ??)

Covariance test

- (2014) Lockhart, Taylor, Tibshirani (x 2)
- Standard assumptions $Y \sim N(X\beta, \sigma^2 I) + \text{large } p$ asymptotics
- See also non-asymptotic exact test (Lee, Sun x 2, Taylor 2015)

Step	Predictor entered	Forward stepwise	Lasso	
1	lcavol	0.000	0.000	
2	lweight	0.000	0.052	
3	svi	0.041	0.174	
4	lbph	0.045	0.929	
5	pgg45	0.226	0.353	
6	age	0.191	0.650	
7	lcp	0.065	0.051	
8	gleason	0.883	0.978	

Debiased regularized M-estimators

- (2014) Javanmard and Montanari
- Standard assumptions + sparsity condition on β + large n and p asymptotics

Knockoff filter

- (2014) Barber and Candés
- Finite sample $Y \sim N(X\beta, \sigma^2 I)$, $n \leq p$, control FDR
- Extension to p > n, FWER control, etc. forthcoming...

lweight 22.5652 lcavol 20.5199 svi 4.4871 lbph 1.1865 age 0.0829 gleason 0.0387 lcp -0.2359 pgg45 -3.3742

Methods

But what's actually used in practice?

	Control	$p \leq n$	p > n
Classical inference (Pearson 1930)	Marginal	Yes	
Covariance test (Lockhart et al. 2014)	?	Yes	Yes
Debiased lasso (Javanmard et al. 2014)	Marginal		Yes
Knockoffs (Barber et al. 2014)	FDR	Yes	?
Marginal screening	?	Yes	Yes

Regression vs Marginal Screening

Testing H_i : $\beta_i = 0$ is better than testing H_i : $Cov(X_i, Y) = 0$ when you are looking for X_i directly linked to Y

(Adapted from Mourad 2012)

Practical Validation

- These procedures are derived under strong assumptions (and slightly different model, fixed X), how well do they work in real data?
- We could validate inference procedures in real data if only we knew the 'true' β , defined as

$$\beta = \mathbf{E}[xx^T]^{-1}\mathbf{E}[yx]$$

- Possibility: take a dataset with large n and large p (so we can estimate β easily using OLS) and test procedure on a subset $n_0 << n$ of the data
- Or...

Idea

I give you real data mixed in with noise variables

- Can you identify the original columns from the noise columns?
- I can test your procedure this way, because I know the ground truth!

• Given random vector $x \in \mathbb{R}^p$, define $\tilde{x} \in \mathbb{R}^{p+q}$ by by

$$\tilde{x} = \begin{pmatrix} I \\ \Gamma \end{pmatrix} x + e$$

where Γ is a fixed matrix and $e \perp x, y$.

• Given random vector $x \in \mathbb{R}^p$, define $\tilde{x} \in \mathbb{R}^{p+q}$ by by

$$\tilde{x} = \begin{pmatrix} I \\ \Gamma \end{pmatrix} x + e$$

where Γ is a fixed matrix and $e \perp x, y$.

Let

$$\boldsymbol{\beta} = \mathbf{E}[\mathbf{x}\mathbf{x}^T]^{-1}\mathbf{E}[\mathbf{y}\mathbf{x}], \quad \tilde{\boldsymbol{\beta}} = \mathbf{E}[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^T]^{-1}\mathbf{E}[\mathbf{y}\tilde{\mathbf{x}}]$$

• Given random vector $x \in \mathbb{R}^p$, define $\tilde{x} \in \mathbb{R}^{p+q}$ by by

$$\tilde{x} = \begin{pmatrix} I \\ \Gamma \end{pmatrix} x + e$$

where Γ is a fixed matrix and $e \perp x, y$.

Let

$$\boldsymbol{\beta} = \mathbf{E}[\mathbf{x}\mathbf{x}^T]^{-1}\mathbf{E}[\mathbf{y}\mathbf{x}], \quad \tilde{\boldsymbol{\beta}} = \mathbf{E}[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^T]^{-1}\mathbf{E}[\mathbf{y}\tilde{\mathbf{x}}]$$

Then

$$\forall i \in \{1, \dots, p\} : \beta_i = \tilde{\beta}_i$$
$$\forall i \in \{p+1, \dots, p+q\} : \tilde{\beta}_i = 0$$

• Given random vector $x \in \mathbb{R}^p$, define $\tilde{x} \in \mathbb{R}^{p+q}$ by by

$$\tilde{x} = \begin{pmatrix} I \\ \Gamma \end{pmatrix} x + e$$

where Γ is a fixed matrix and $e \perp x, y$.

Let

$$\boldsymbol{\beta} = \mathbf{E}[\mathbf{x}\mathbf{x}^T]^{-1}\mathbf{E}[\mathbf{y}\mathbf{x}], \quad \tilde{\boldsymbol{\beta}} = \mathbf{E}[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^T]^{-1}\mathbf{E}[\mathbf{y}\tilde{\mathbf{x}}]$$

Then

$$\forall i \in \{1, \dots, p\} : \beta_i = \tilde{\beta}_i$$

 $\forall i \in \{p+1, \dots, p+q\} : \tilde{\beta}_i = 0$

• Special case. X_{p+1}, \ldots, X_{p+q} are pure noise: this is when $\Gamma = 0$

Using SNCs to evaluate procedures

- Take low-dimensional real data mixed with SNCs (synthetic negative controls), apply inference procedure
- Proxy for Type I error: Rejected SNCs
- Proxy for Power: Rejected original variables
- If your original data is high-dimensional, apply variable selection to make it low dimensional before conducting this experiment

A step-by-step tutorial (in R)

1. Take the prostate data

```
> data(prostate)
> x <- prostate[, 1:8]
> y <- prostate[, 9]
> colnames(x)
[1] "lcavol" "lweight" "age" "lbph" "svi"
     "lcp" "gleason" "pgg45"
> dim(x)
[1] 97 8
```

2. Construct 20 synthetic negative controls

```
> GAMMA <- matrix(rnorm(8 * 20), 8, 20)
> E <- matrix(rnorm(97 * 20), 97, 20)
> sncs <- as.matrix(x) %*% GAMMA + 2 * E
> sncs <- data.frame(sncs)
> colnames(sncs)
  [1] "X1" "X2" "X3" "X4" "X5" "X6" ...
[19] "X19" "X20"
```

- 3. Create combined design matrix
- $> x2 \leftarrow cbind(x, sncs)$

3. Try marginal screening

```
4. Try covariance test
> library(covTest)
> covTest(lars(as.matrix(x2), y), as.matrix(x2), y)
$results
Predictor_Number Drop_in_covariance P-value
                              69.0292
                                       0.0000
                1
                5
                               1.5390 0.2219
                               6.8094 0.0020
               11
                               0.8559 0.4294
```

(Numbers 1, 5, 2 are original, 11 is a SNC)

```
5. Try debiased lasso (code at
http://web.stanford.edu/ montanar/sslasso/)
> res <- SSLasso(as.matrix(x2), y)
[1] "10% done"
...
[1] "90% done"
> rej <- (res$up < 0) | (res$low > 0)
> names(x2)[rej]
[1] "lcavol" "lweight" "svi"
```

More experiments

Data	n	p_1	Linear?	Gaussian?	Constant σ^2 ?
Galaxy	323	4	No	OK	No

- We add $n p_1$ synthetic negative controls
- X is scaled, Γ is a gaussian matrix, $Var(E) = Var(X\Gamma)$
- Multiple trials averaging over the randomness of generating SNCs

How could this be useful?

- Poor performance on benchmarks would tell us where our methods need improvement
 - Failure to control Type I error on benchmarks indicates a need for methods derived under weaker assumptions
 - Overly conservative Type I error control indicates a need for methods which are more adaptive to 'easy' cases
- Possible to run a Kaggle-style competition for inference rather than prediction
- Recognizing that different procedures can have differing strengths creates room for a diversity of approaches

Do we still need to validate on real data?

- SNCs can be used to get an idea of worst-case performance on the hypothesis testing problem in realistic settings
- However, how can we tell if the regression framework itself is appropriate for the real-world problem we are trying to solve?
- Validation on real data with scientific ground truth is still needed

Closing thoughts

"Both the client and the statistician... must base their thinking on a recognition that their assumptions will always require review and reappraisal..."

- John Tukey

References

- Barber, R., and Candes, E. (2014). Controlling the False Discovery Rate via Knockoffs. arXiv Preprint arXiv:1404.5609, 127. Retrieved from http://arxiv.org/abs/1404.5609
- Javanmard, A., and Montanari, A. (2014). Confidence intervals and hypothesis testing for high-dimensional regression. The Journal of Machine Learning Research, 15, 28692909. Retrieved from http://dl.acm.org/citation.cfm?id=2697057
- Lockhart, R., Taylor, J., Tibshirani, R. J., and Tibshirani, R. (2014).
 a Significance Test for the Lasso. Annals of Statistics, 42(2), 413468.
 doi:10.1214/13-AOS1175

Acknowledgements

Thanks to Will Fithian for useful discussions.