

Universidad Nacional de Ingeniería

FACULTAD DE CIENCIAS

ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN

Métodos de optimización de la gradiente de descenso en una red neuronal convolucional

SEMINARIO DE TESIS 1

Autor: Víctor Jesús Sotelo Chico

Asesor: Víctor Melchor Espinoza

Junio, 2018

Resumen

En las ultimas décadas el campo de la inteligencia artificial se ha desarrollado rápidamente. Temas como el reconocimiento de imágenes han sido estudiado por mucho tiempo. Actualmente este campo requiere realizar un gran números de cálculos para entrenar redes neuronales que sean capaces de distinguir y clasificar distintos objetos contenidos en imágenes. Incluso este proceso puede tardar más dependiendo del tamaño del dataset. Por lo cual surge la necesidad de encontrar métodos que permitan acelerar el proceso de entrenamiento de las redes neuronales.

Por tal motivo presente seminario buscar lograr un mayor entendimiento de métodos para acelerar el proceso de entrenamiento de una red neuronal convolucional, basándonos en la teoría de redes neuronales y usando como herramienta la librería tensorflow, esta nos permite un uso controlado de las métodos de optimización.

Índice general

Re	sum	en		III
1.	Intr	oducció	ón	2
	1.1.	Motiv	ación	2
	1.2.	Objeti	vos	3
	1.3.	Estruc	tura del Seminario	4
2.	Esta	do del	Arte	6
	2.1.	GPU c	computing	6
		2.1.1.	The GPU computing Era	6
	2.2.	Apren	dizaje Automático	7
		2.2.1.	Uso de redes neuronales para encontrar el rendimiento	
			de una GPU	7
	2.3.	Apren	dizaje Profundo	7
		2.3.1.	Deep Machine Learning - A New Frontier in Artificial	
			Intelligence	8
	2.4.	Métodos de optimización		
		2.4.1.	Neural Network Optimization Algorithms: A	
			comparison study based on TensorFlow	8
		2.4.2.	On Optimization Methods for Deep Learning	9
		2.4.3.	ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION	9
		2.4.4.	INCORPORATING NESTEROV MOMENTUM INTO	
			ADAM	9
	2.5.	Concl	usiones	10
3.	Apr	endizaj	e automático y Redes Neuronales	11

	3.1.	Apren	dizaje Automático	11
		3.1.1.	Aprendizaje Supervizado	12
		3.1.2.	Aprendizaje No Supervizado	22
		3.1.3.	Aprendizaje por refuerzo	23
	3.2.	Redes	Neuronales	24
		3.2.1.	Neuronas	24
			Funciones de Activación	25
		3.2.2.	Redes Neuronales Artificiales	26
			Redes Neuronales Prealimentadas	27
			Algoritmo de propagación hacia atrás	28
			Conjunto de datos para una red neuronal	29
1	Ont	المحاجما	oues mane le cue diente de dessence en une Ded Neuronal	
4.	_	ımızadı volucio	ores para la gradiente de descenso en una Red Neuronal	22
				32
	4.1.		Neuronales Convolucionales	32
		4.1.1.	Estructura de una imagen	33
		4.1.2.	Capas de una CNN	34
			Input layer	34
			Convolutional layers	34
			Pooling layers	36
			Fully Connected Layers	37
		4.1.3.	Arquitecturas conocidas	37
	4.2.	Métod	los de optimización	38
		4.2.1.	Gradiente de descenso	38
			Batch gradient descent	39
			Stochastic gradient descent	40
			Mini-batch gradient descent	40
		4.2.2.	Optimizadores	41
			Momentum	41
			Nesterov accelerated gradient	42
			Adagrad	43

	RMSprop	44
	Adam	45
5.	Resultados	47
	5.1. Precisión	47
	5.2. Función de costo	48
6.	Conclusiones y Trabajo Futuro	50
	6.1. Conclusiones	50
	6.2. Trabajo Futuro	51
A.	Datos Obtenidos	55
	A.1. Precisión de entrenamiento	56
	A 2 Función de Costo	59

Índice de figuras

3.1.	Regresión y clasificación Fuente: https://medium.com/	13
3.2.	Regresión Lineal Fuente: www.forexmt4indicators.com/	14
3.3.	Regresión Logística Fuente: www.analyticsvidhya.com	16
3.4.	knn Fuente: www.medium.com/	17
3.5.	transformación con la función kernel Fuente: www.statsoft.com	18
3.6.	transformación para un problema de regresión Fuente:	
	www.saedsayad.com	20
3.7.	Clustering Fuente: https://medium.com/	22
3.8.	k means clustering Fuente: www.saedsayad.com	23
3.9.	Esquema de aprendizaje por refuerzo Fuente: Fuente Propia	24
3.10.	Funciones de activación Fuente: https://ujjwalkarn.me	26
3.11.	Redes neuronales biológicas y artificiales Fuente:	
	https://medium.com	26
3.12.	Esquema de Redes Neuronales Prealimentadas Fuente:	
	https://ujjwalkarn.me	27
3.13.	Propagación hacia atrás Fuente: https://ujjwalkarn.me	29
3.14.	División del dataset Fuente: http://magizbox.com	30
4.1.	Estructura de la imagen de entrada Fuente: Deep Learning by	
	Adam Gibson, Josh Patterson	33
4.2.	Operacion de convolución Fuente: www.openresearch.ai	35
4.3.	Estructura de la imagen de entrada Fuente:	
	https://blog.paperspace.com/	39
4.4.	Función costo en SGD Fuente: www.doc.ic.ac.uk	40
4.5.	Actualización sin momentum Fuente: www.doc.ic.ac.uk	41
4.6.	Actualización con momentum Fuente: www.doc.ic.ac.uk	42

4.7.	Convergencia Nesterov Fuente: www.doc.ic.ac.uk	43
A.1.	optmizadores 5000 epochs Fuente : Fuente Propia	56
A.2.	Estructura de la imagen de entrada Fuente: Fuente Propia	56
A.3.	optmizadores 10000 epochs Fuente: Fuente Propia	57
A.4.	Comparación de optimizadores para 5000 epochs Fuente: Fuente	
	Propia	58
A.5.	Comparación de optimizadores para 10000 epochs Fuente:	
	Fuente Propia	58
A.6.	función de costo de optimizadores Fuente: Fuente Propia	59
A.7.	Comparación de las funciones de costo rango 0-50 Fuente: Fuente	
	Propia	60
A.8.	Comparación de las funciones de costo rango 0-500 Fuente:	
	Fuente Propia	60

Índice de Acrónimos

k-nn k- nearest neighbors

SVM Super Vector Machine

SVC Super Vector Regression

SVR Super Vector Classification

SGD Stochastic gradient descent

DNN Deep Neural Network

CNN Convolutional Neural Network

ETC Etcétera

Agradecimientos

Agradezco a mis padres por todo el apoyo incondicional en estos años de estudio, a mis compañeros de clase por el apoyo brindado durante el tiempo de estudio y a mi asesor por ayudarme en este seminario.

Capítulo 1

Introducción

En el campo de la inteligencia artificial las redes neuronales profundas tienen un papel muy importante, debido a que estas son el camino para que las computadoras realicen tareas que nuestros cerebros realizan de manera natural, tareas como el reconocimiento de voz, imágenes y patrones. En la actualidad empresas importantes utilizan las redes neuronales profundas, un ejemplo de esto es Google con el reconocimiento de voz e imágenes. Una característica de las redes neuronales profundas es que están compuestas por una gran cantidad de capas, lo cual dificulta el entrenamiento en computadoras que solo usan el CPU. Una manera de resolver este problema es mediante el uso de las GPU's debido que las tareas de entrenamiento son paralelizables. Además, se pueden utilizar GPU'S para acelerar el proceso de entrenamientos de nuestra red neuronal profunda. Por otro lado se necesitan métodos de optimización que junto a la fortaleza de las GPU's nos permitan obtener un mejor rendimiento.

1.1. Motivación

La inteligencia artificial constituye una base muy importante en el campo de la computación, mezcla un conjunto de disciplinas como la estadística y ciencia de la computación con el objetivo de construir modelos que puedan permitir a las computadoras realizar tareas que hace algunos años hubiesen sido considerada imposibles.

Actualmente las computadoras son capaces de reconocer objetos y clasificarlo. Esto ha permitido que la industria de la robótica se desarrolle de manera acelerada en las últimas décadas. Además hoy en día existen muchas herramientas que nos permiten desarrollar este tema y profundizarlo, pero a medida que aumenta la complejidad del problema, el costo computacional se incrementa, lo cual se convierte en un problema importante.

Una de la soluciones que surgió fue el uso de la GPU's para acelerar procesos como el entrenamiento de una red neuronal con muchas capas ocultas, las GPU's representan una solución muy eficaz debido a que en el campo de la inteligencia artificial existen muchas tareas que son paralelizables.

Actualmente el mercado de GPU's evoluciona muy rápido debido a su gran demanda en la industria de los videojuegos, este mercado se encuentra dominado por NVIDIA y AMD, esta competencia y la alta demanda permite que las GPU's tengan mejor rendimiento lo cual puede ser usado para obtener mejores resultados en el campo del Aprendizaje Automático.

Por otro lado, la optimización no solo se basa en el uso de hardwares más potentes, sino también depende de la elección de métodos adecuados para nuestros modelos, esta elección dependerá mucho del problema a tratar. Uno de los métodos más usado en el campo del Aprendizaje Automático es la gradiente de descenso estocástica pero este métodos por sí solo no es muy óptimo.

Actualmente existe la problemática de hallar métodos más eficientes de optimización que obtengan un mejor rendimiento, el presente seminario se centra en la búsqueda y comparación de estos métodos con el fin de encontrar aquellos que sean más rápidos y eficientes. Además, adquirir el conocimiento y entender cómo es que estos funcionan.

1.2. Objetivos

El objetivo de este seminario es el de mostrar las ventajas del uso de distintos métodos de optimización para acelerar el entrenamiento de una red neuronal convolucional en una tarea de clasificación.

Específicamente, los objetivos de este trabajo con respecto al sistema son:

• Entender el funcionamiento de las redes neuronales profundas.

- Estudiar métodos de optimización en Aprendizaje Automático.
- Conocer las ventajas y desventajas de diferentes métodos de optimización.
- Mostrar los resultados de distintos métodos de optimización en el entrenamiento de una red neuronal convolucional para tareas de clasificación.

Y los objetivos con respecto a las competencias académicas desplegadas en el trabajo son:

- Desarrollar un mejor entendimiento de las redes neuronales y sus aplicaciones, para así poder lograr afrontar problemas en el campo de la inteligencia artificial.
- Obtener la capacidad de discriminar entre los distintos métodos de optimización y elegir el adecuado para un problema de aprendizaje profundo.
- Obtener un conocimiento de las herramientas y recursos que existen actualmente para abordar problemas de aprendizaje profundo, además de poder analizar que herramientas son adecuadas para algunos problemas.

1.3. Estructura del Seminario

Introducción:

En este capítulo introductorio se comenta sobre el tema a tratar, las motivaciones, intereses, objetivos con los cuales se planteo el presente seminario.

■ Estado del Arte:

Este capítulo muestra los trabajos e investigaciones ya realizadas, además de algunas aplicaciones que motivaron al presente seminario y además las investigaciones mostrarán el interés del problema planteado.

Aprendizaje automático y Redes Neuronales:

En este capítulo daremos una introducción general al Aprendizaje automático y distinguiremos los tipos de aprendizajes que existen, Además veremos los tipos de problema en esta área. Luego trataremos el tema de las Redes neuronales como una introducción al capítulo 4.

Optimizadores para la gradiente de descenso en una Red Neuronal Convolucional:

En este capítulo conoceremos más de un tipo específico de redes neuronal, las redes neuronales convolucionales. Detallares las principales diferencias con las redes tradicionales y describiremos sus principales hiperparámetros. Luego de eso nos enfocaremos en los optimizadores de la gradiente de descenso.

Resultados:

Se mostrarán los resultados obtenidos en las pruebas de los optimizadores además de describir los resultados.

Conclusiones y Trabajo Futuro:

En este capítulo se plantean las conclusiones y se detalla algunos inconvenientes encontrados durante el trabajo. Además que se comprueba la teoría descrita en el capítulo 4.

Capítulo 2

Estado del Arte

En este capítulo se describirán las investigaciones anteriores con relación al Aprendizaje Automático, además de sus aplicaciones. También se verán algunas investigaciones GPU como una manera de obtener un mejor rendimiento y nos enfocaremos principalmente en los estudios de los métodos de optimización.

Este trabajo también presentará investigaciones referentes a Aprendizaje Profundo, exclusivamente nos enfocaremos a la Redes Neuronales Convolucionales(CNN) ya que son parte del tema de estudio en la presente investigación.

2.1. GPU computing

Actualmente, el uso de GPU's permitió lograr aplicaciones que antes se podrían creer imposibles debido a su largo tiempo de ejecución. Hoy en día las GPU's son altamente usadas ya que cuentan con cientos de núcleos de procesadores en paralelo que permiten resolver rápidamente los problemas que son altamente paralelizables.

2.1.1. The GPU computing Era

El artículo se enfoca principalmente en describir la evolución que sufrieron las arquitecturas de GPU's, además de mostrar la importancia del uso de las GPU's para un mayor rendimiento y eficiencia que antes hubiesen sido

consideradas imposibles debido al alto tiempo de ejecución que requerían. Además nos muestra que la escalabilidad es la principal característica que ha permito que las GPU's aumenten su paralelismo y rendimiento.

2.2. Aprendizaje Automático

El uso de machine learning representa una gran ventaja para empresas que manejan gran cantidad de datos debido a que permiten descubrir patrones y analizar los datos.

2.2.1. Uso de redes neuronales para encontrar el rendimiento de una GPU

Un equipo conformado por investigadores de AMD y The University of Texas at Austin, fueron quienes propusieron el uso de redes neuronales para predecir el rendimiento. En la actualidad existen empresas dedicadas a la creación de GPU's, en el proceso, una parte fundamental es la verificación del rendimiento de las GPU's. Actualmente existen simuladores conocidos como GPGPU-SIM que permiten realizar estimaciones precisas pero estos presentan algunas dificultades como el tiempo empleado en configurarlos en base al hardware real, no obstante, este proceso se encuentra propenso a errores.

2.3. Aprendizaje Profundo

Dentro del área de Aprendizaje Automático encontramos Deep Learning o Aprendizaje Profundo el cual consiste en un conjunto de algoritmos que modela abstracciones de alto nivel.

2.3.1. Deep Machine Learning - A New Frontier in Artificial Intelligence

Este trabajo de investigación fue realizado por investigadores del Oak Ridge National Laboratory y University of Tennessee, el objetivo principal de este trabajo fue presentarnos el aprendizaje profundo como un camino para la imitación del cerebro humano y sus principales cualidades como el reconocimientos de objetos, rostros, etc.

Además de mostrarnos las aplicaciones del aprendizaje profundo, como: análisis de documentos, detección de voz, rostro, procesamiento natural del lenguaje, etc.

Actualmente existen algunas empresas privadas que apoyan el campo de deep learning con el objetivo de buscar sus aplicaciones comerciales, entre estas empresas tenemos: Numenta y Binatix.

2.4. Métodos de optimización

El campo de machine learning continuamente evoluciona y con esta evolución surgen nuevas necesidades. Al trabajar con grandes conjuntos de datos se buscan cada vez obtener buenos resultados sin afectar el rendimiento. Una forma de lograr esto es mediante el uso de algoritmos de optimización.

2.4.1. Neural Network Optimization Algorithms: A comparison study based on TensorFlow

Vadim Smolyakov[1] realizo un estudio comparativo de diversos optimizadores entre los cuales se encuentran el método de gradiente de descenso estocástica, Nesterov Momentum, RMSProp y Adam. Se realizo una prueba comparativa con una arquitectura simple de CNN usando el conjunto de datos del MNIST. "Se comparó diferentes optimizadores y se obtuvo que SGD con Nesterov y Adam producen mejores resultados en el entrenamiento de una CNN simple usando tensorflow para el dataset MNIST. "[1]

2.4.2. On Optimization Methods for Deep Learning

Un equipo de la Universidad de Standford realizó unas pruebas con el objetivo de encontrar métodos adecuados para un entrenamiento en aprendizaje profundo. El equipo se percato de lo común que resulta el uso de gradiente de descenso estocástica (SGD por sus siglas en inglés) en aprendizaje profundo . Se realizaron pruebas con otros métodos de optimización como la gradiente conjugada y Limited memmory BFGS(L-BFGS) los cuales permitieron acelerar el proceso de entrenamiento de algoritmos de deep learning mostrando en su mayoría mejores resultados que el SGD. "Usando L-BFGS el modelo CNN alcanza el 0.69 % en el estandar del MNIST dataset."[2]

2.4.3. ADAM : A METHOD FOR STOCHASTIC OPTIMIZATION

Esta investigación fue la primera en plantear el método Adam para acelerar la gradiente de descenso. Fue propuesto por Diederik P. Kingma de la Universidad de Amsterdam y Jimmy Lei Ba de la Universidad de Toronto. Ellos describen el método Adam como un método sencillo de implementar, además que este método utiliza pocos requisitos de memoria. "Nuestro método esta dirigido a problemas con grandes conjunto de datos y espacio de parámetros de alta dimensión. El método combina ventajas de otros métodos de optimización, la capacidad de Adagrad para manejar gradientes dispersos y la capacidad de RMSProp para tratar con objetivos no estacionarios"[3]

2.4.4. INCORPORATING NESTEROV MOMENTUM INTO ADAM

Este trabajo fue realizado por Timothy Dozat de la universidad de stanford, en este papers se propone una mejora al método Adam modificando su componente de momento, de esta manera se obtiene una convergencia más rápida.

"Esencialmente la investigación muestra cómo combinar el momento clásico con una taza de aprendizaje adaptativa. Este trabajo lleva un enfoque más allá de la investigación y mejora uno de los componentes principales sin aumentar la complejidad del algoritmo"[4]

2.5. Conclusiones

A medida que tratamos muchos problemas vemos la necesidad de encontrar optimizadores adecuados para los tipos de problemas. En el área de Aprendizaje Profundo comúnmente se trabaja en el campo de reconocimiento de imágenes. A pesar de las mejoras mediante el uso de GPU's este tipo de problemas necesitan métodos óptimos para obtener un mejor rendimiento. Métodos como Nesterov Momemtum, RMSProp y Adam surgen como principales opciones para realizar optimizaciones de la gradiente de descenso.

Capítulo 3

Aprendizaje automático y Redes Neuronales

En este capítulo trataremos los principales conocimientos de Aprendizaje automático como su clasificación y su importancia dentro del campo de la inteligencia artificial, además exploraremos algunos modelos importantes. En este seminario se dará énfasis en los algoritmos de clasificación. Luego nos enfocaremos en las redes neuronales para tratar más a fondo los problemas de clasificación.

3.1. Aprendizaje Automático

Machine Learning o Aprendizaje Automático es una rama de la inteligencia artificial que empezó a cobrar cobrar importancia en los años 80's, en esta rama se diseñan sistemas que aprenden a identificar patrones en un conjunto de datos. A medida que se realice este aprendizaje la máquina podrá ser capaz de realizar una predicción o tomar decisiones sin haber estado programada explícitamente para realizar esta tarea.

El aprendizaje automático se puede clasificar en 3 tipos: Supervizado, No supervisado, Aprendizaje con refuerzo.[5]

3.1.1. Aprendizaje Supervizado

Este tipo de aprendizaje toma un conjuto de datos etiquetados, es decir datos cuyos resultados o clases son conocidos estos datos serán usados como entrada al sistema. Primero se entrena el modelo con los datos de entrada y luego se trata de predecir una salida de acuerdo a sus etiquetas.

"El aprendizaje supervisado trata de modelar la relación entre el resultado de la predicción y las características de las entradas de manera que se pueda predecir nuevos valores para un nuevo conjunto de datos "[6]

Tipos de problemas

Dentro del aprendizaje supervisado podemos dividir los problemas en 2 tipos:

Problemas de Regresión Lineal

Los problemas de regresión lineal son muy conocidos en el ámbito de aprendizaje automático y la estadística

Problemas de Clasificación

"En este tipo de problemas se predice una respuesta del tipo categórica de manera que se puedan separar los datos mediante clases. "[5]

"El objetivo de los problemas de clasificación es asignar las observaciones en categorías discretas en lugar de estimar valores continuos. "[6]

FIGURA 3.1: Regresión y clasificación Fuente: https://medium.com/

Algoritmos de Aprendizaje Supervizado

Regresión Lineal

"El algoritmo de regresión lineal asume que existe una relación entre las variables de entrada $x=(x_1,...,x_n)$ y una salida simple y. Cuando se tiene solo una variable simple x el método se conoce como simple linear regression y cuando se tienen múltiples entradas se le conoce como multiple linear regression. "[7] .Es comúnmente usado para estimar valores reales en base a variables continuas. La figura 3.2 muestra una regresión lineal simple.

$$y = b_0 + b_1 * x_1 + b_2 * x_2 + \dots + b_n * x_n$$
(3.1)

En esta ecuación:

- y: Variable dependiente
- x_i : Variable independiente i
- *b*₀: Intercepción
- *b*₁: Coeficiente para la primera característica
- b_n : Coeficiente para la primera característica

El objetivo del algoritmo de regresión lineal es obtener valores adecuados para b_0 y b_1 de manera que se reduzca la siguiente función de costo.

$$J = \frac{1}{n} \sum_{i=1}^{n} (pred_i - y_i)^2$$
 (3.2)

- *predi*: predicción de la i-esima variable
- y_i : Valor real asociado a la i-esima variable
- n: Número de datos para el entrenamiento

Un método muy importante es la gradiente de descenso que se usa para actualizar los valores de los b_i de manera que se reduzca la función de costo J de la ecuación 3.2.

FIGURA 3.2: Regresión Lineal Fuente: www.forexmt4indicators.com/

Regresión Logística

A diferencia de la regresión Lineal, la regresión Logística es usado para predecir el resultado de un variable de tipo categórica es decir variables que pueden ser descritas por un número finito de categorías.

La regresión Logística es usado para problemas de clasificación lo cual realiza mediante la predicción de que una salida Y sea dicótoma, es decir, que solo tenga 2 posibles valores. la regresión produce una curva la cual produce valores entre 0 y 1. "Matemáticamente podemos como que las salidas están modeladas como una combinación de los predictores lineales."[8]

$$odds = p/(1-p)$$

$$ln(odds) = ln(p/(1-p))$$

$$logit(p) = ln(p/(1-p)) = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 \dots + b_k X_k$$
(3.3)

- p : probabilidad de presencia de una característica de interés.
- odds: probabilidad de éxito.
- logit: función logit

Despejando p de las ecuaciones anteriores de 3.2 podemos obtener que:

$$p = \frac{1}{1 + e^{b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 \dots + b_k X_k}}$$

$$Y_{pre} = \frac{1}{1 + e^{f(X)}}$$
(3.4)

En la ecuación 3.3, Y define la función logística que se muestra en la figura 3.3. Esta forma también se puede conocer como la función sigmoidal en el perceptron. El algoritmo usa SGD para hallar los valores adecuados de b_i de manera que el $erro = Y_{pre} - Y$ sea mínimo. El valor de la predicción es 1 si $Y_{pred} > 0.5$ y 0 en caso contrario. De esta forma se determina el objeto con características X si pertenece o no a una clase.

FIGURA 3.3: Regresión Logística Fuente: www.analyticsvidhya.com

Nearest Neighbor

Es un algoritmo de clasificación que almacena los conjuntos de entrenamiento de manera que dado un nuevo ejemplo x lo clasifica buscando la distancia más cercana a un ejemplo de entrenamiento (x_i, y_i) de manera que identifica la clase $y = y_i$ a la que corresponde.

Comúnmente se usa el algoritmo k-nn para clasificar una entrada x en los k más cercanos conjuntos de entrenamiento y asigna el objeto a la clase de más frecuencia.

$$x^{i} = (x_{1}^{i}, x_{2}^{i}, ..., x_{n}^{i})$$

$$d_{E}(x^{i}, x^{j})$$
(3.5)

• x^i : objeto con n características.

Definimos d_E como la función distancia entre los vectores x_i y y_i están función distancia pueden una de las siguientes clasificaciones:

- lacksquare distancia euclideana: $(\sum_{i=1}^k (x_i-y_i)^2)^{\frac{1}{2}}$
- distancia Manhattan: $\sum_{i=1}^{k} |x_i y_i|$
- distancia Minkowski: $(\sum_{i=1}^{k} (|x_i y_i|)^p)^{\frac{1}{p}}$

Los 3 definiciones anteriores de distancia son usadas para variables continuas. Para el caso de variables categóricas debería usarse la distancia de Hamming cuya definición se muestra en la ecuación 3.6

$$D_{H} = \sum_{i=1}^{k} |x_{i} - y_{i}||$$

$$x = y \Longrightarrow D = 0$$

$$x \neq y \Longrightarrow D = 1$$

$$(3.6)$$

"La elección de un valor óptimo de k se logra mejor por la inspección de los datos. En general un valor grande de k es más preciso ya que reduce el ruido pero no hay garantías de que sea un valor correcto, una mejor manera de calcular el valor de k es mediante el uso de la validación cruzada. "[9]

En la figurar 3.4 muestra el algoritmo de k-nn dado un nuevo ejemplo(círculo verde) este será clasificado de acuerdo al k seleccionado. Para k=1 el nuevo ejemplo será clasificado en la clase 1 y k=3 será clasificado en la clase 2.

FIGURA 3.4: knn Fuente: www.medium.com/

Máquinas de soporte Vectorial(SVM)

Las Maquinas de soporte vectorial fueron creadas por Vladimir Vapnik y constituyen un método para realizar tareas de clasificación y regresión.

Las SVM usan el concepto de planos de decisión. Un plano de decisión separa un conjunto de objetos que tienes diferentes etiquetas de clases. Las SVM no están restringidas a los problemas lineales debido a las *funciones Kernel*.

Funciones Kernels

Las SVM pueden tener distintos tipos de kernels que tienen como objetivo tomar la data y transforma una forma requerida algunas de estas funciones son:

- Lineal: $\ker(x_i, x_j) = x_i \cdot x_j$
- Polinomial: $\ker(x_i, x_j) = (\gamma x_i \cdot x_j + C)^d$
- Radial: $\ker(x_i, x_j) = e^{(\gamma|x_i x_j|)}$
- Sigmoidal: $ker(x_i, x_j) = tanh(\gamma x_i \cdot x_j + C)$

En la figura 3.5 muestra el efecto de las funciones kernels en un conjunto de datos para que este sea linealmente separable sin necesidad de construir curvas complejas.

FIGURA 3.5: transformación con la función kernel Fuente: www.statsoft.com

Podemos dividir SVM en 2 categoríasas:

Super Vector Classificacion

Los SVC realizan la tarea de clasificación encontrando un hiperplano que maximeze el margen entre 2 clases.Los vectores que definen el hiperplano son llamados *support vector*.

Para la clasificación es necesaria mapear los datos a un espacio de características de mayor dimensión donde resulte más fácil la separación lineal. La imagen de la Figura 3.5 muestra de manera gráfica que cambio de espacio nos permite separar clases de manera más sencilla.

Super Vector Regression

La idea de SVR trata de mapear los datos de entrenamiento $x \in X$, a un espacio de mayor dimensión mediante una mapeo no lineal $\varphi: X \to F$.

Las SVR son parecidas a las máquinas de soporte Vectorial para la clasificación pero con la diferencia de que la salida es un número real que es difícil de predecir con la información que se posee además de que tiene infinitas posibilidades. Para los problemas de regresión se usan los kernels Radial y polinomial. La figura 3.6 muestra un ejemplo de problema de regresión para un caso no lineal, mediante la mapeo φ se cambia el espacio.

$$\bullet$$
 caso lineal: $y = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \langle x_i, x \rangle + b$

• caso no lineal:
$$y = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \ker(x_i, x) + b$$

FIGURA 3.6: transformación para un problema de regresión Fuente: www.saedsayad.com

Naive Bayes

Esta basado en el teorema de bayes donde se asume la independencia entre los predictores. "El modelo Naive Bayes es fácil de construir, debido a que no tiene que estimar los parámetros iterativamente lo cual lo hace particularmente util para un gran conjunto de datos "[10].

Como la técnica de clasificación esta basada en el teorema de bayes supone que las características de una clase no esta relacionada con otras características.

Podemos ilustrar mejor lo dicho mediante el siguiente ejemplo "una fruta puede considerarse una manzana si es roja, redonda y de aproximadamente 3 pulgadas de diámetro. Incluso si estas características dependen unas de otras o de la existencia de otras características, todas estas propiedades contribuyen de forma independiente a la probabilidad de que esta fruta sea una manzana y es por eso que se la conoce como **naives** "[11]

$$P(c|x) = \frac{P(x|c)P(c)}{P(x)}$$

$$P(c|X) = P(x_1|c) \times P(x_2|c) \times \dots \times P(x_n|c) \times P(c)$$
(3.7)

- $lackbox{ } P(c|x)$: probabilidad condicional de una clase(target) dado un predictor(atributo)
- P(c): probabilidad de la clase

- P(x|c) :es la probabilidad condicional de la clase dada por el predictor.
- P(x): probabilidad del predictor.

Arboles de decisión

Los arboles de decisión son modelos usados para tareas de regresión y clasificación utilizando la estructura de un árbol. La idea se basa en dividir el conjunto de datos en subconjuntos cada vez más pequeños a su vez se desarrolla un árbol de decisión. El resultado final será un árbol con nodos de decisión y nodos hojas.

Los nodos de decisión tienen 2 o más ramas y los nodos hojas representa una clasificación o decisión. La raiz corresponde al mejor predictor. Un árbol de decisión puede ser usado para manejar datos categóricos o numéricos.

Árbol de decisión para clasificación.

El algoritmo principal para construir de decisión es el ID3 que fue desarrollado por J. R. Quinlan.

"ID3 realiza una algoritmo greeady para realizar un búsqueda de arriba hacia abajo a través del espacio de posibles ramas . ID3 usa entropía e información ganada para construir el árbol de decisión ".

A diferencia de Naives bayes en los arboles de decisión es importante asumir la dependencia de los predictores.

- Entropía: Para el algoritmo ID3 es importante tener la entropía para calcular la homogeneidad de la muestra.
- Información ganada: se basa en la disminución de la entropía después que un conjunto de datos se divide en atributos.

Árbol de decisión para regresión.

Al igual que el caso de clasificación, se usa el algoritmo ID3 con la diferencia que la información ganada por la desviación standard de reducción. Este tipo

de desviación se basa en la disminución de la desviación standard cuando el conjunto de datos se divide en un atributo.

Neural Networks

Los modelos de redes neuronales fue inspirado de las redes neuronales biológicas y realizan tareas complejas como reconocimiento de imágenes El tema de Neural Network será tratado con más detenimiento en la siguiente sección.

3.1.2. Aprendizaje No Supervizado

Mientras que el aprendizaje supervizado aprende de un conjunto de datos de entrenamiento con respuestas o etiquetas correctas. En el aprendizaje no supervizado los datos de entrenamiento no poseen ninguno tipo de etiqueta, el sistema debe de interpretar los datos por si mismo. El aprendizaje no supervizado es usado principalmente para el reconocimiento de patrones y modelado descriptivo.

Clustering

Clustering se refiere a agrupar objetos con características similares es decir se busca la relación entre ellos sin necesidad de que exista un conocimiento a priori de esos grupos.

FIGURA 3.7: Clustering Fuente: https://medium.com/

K-means Clustering

El algoritmo intenta particionar N objetos en k clusters en los cuales cada objeto pertenece al cluster que posee la media más cercana. Este método produce k clústeres con la mayor distinción posible. El k adecuado no se conoce a priori por lo cual debe calcularse a partir de datos. El objetivo de k-means es minimizar la función de error al cuadrado mostrada en la ecuación 3.8.

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n} ||x_i^j - c_j||^2$$
(3.8)

- *J*: función de error cuadrado
- *k* : número de cluster
- *n* : número de casos.
- x_i^j : caso i
- c_j : centroide del cluster j

FIGURA 3.8: k means clustering Fuente: www.saedsayad.com

3.1.3. Aprendizaje por refuerzo

Este tipo de aprendizaje fue inspirado por la psicología conductista, este tipo busca determinar que tipo de acciones tomar en un entorno dado. "El objetivo

del método es recopilar la interacción con el entorno para tomar acciones que maximicen el beneficio o minimicen el riesgo. "[6]

FIGURA 3.9: Esquema de aprendizaje por refuerzo Fuente: *Fuente Propia*

3.2. Redes Neuronales

3.2.1. Neuronas

En la biología la neurona es conocida como la unidad fundamental del cerebro humano, el cual está compuesto por millones de neuronas interconectadas entre si(sinapsis). El trabajo de las neuronas consiste en recibir información, procesarla y enviarla a otras células.

Este modelo fue copiado en 1943 por Warren S. McCulloch y Walter H. Pitts para poder diseñar un neurona artificial que análogamente con las neuronas del cerebro humano, la neurona artificial tomará una cantidad n de entradas $x_1, x_2, x_3, ..., x_n$ estas entradas serán multiplicadas por pesos $w_1, w_2, w_3, ..., w_n$

además se puede añadir una constante que llamaremos bias(b) para producir un salida.

La entrada a de la neurona será la suma total de los productos $\mathbf{z} = \sum_{i=1}^n w_i x_i + b$, el valor de z será la entrada a la neurona la cual la evaluará con una función f de tal forma que nuestra salida sea y = f(z).

En la ecuación 3.9 observamos la misma salida expresada en forma vectorial para nuestros vectores $x = [x_1x_2x_3...x_n]$ y $w = [w_1w_2w_3...w_n]$

$$y = f(x \cdot w + b) \tag{3.9}$$

Funciones de Activación

La función f anteriormente mencionada es una función no lineal, conocida como función de activación.

La tarea principal de la función de activación es introducir no linealidad a la salida de una neurona. Esto es importante debido a que la vida real no trabajamos con data no lineal y de esta forma la neurona puede aprender representaciones no lineales.

Entre funciones de activación tenemos algunas comúnmente usada como:

■ **Sigmoid**: Toma un valor real, y lo transforma en una valor en el rango de 0 a 1.

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

■ tanh: Toma por entrada un valor real y lo transfroma a un número en le rango de -1 a 1.

$$\tanh(x) = \frac{2}{1 + e^{-x}} - 1$$

■ **ReLu**: o Unidad lineal rectificada es una función que para valores menores que 0 asigna 0 y para valores mayores

$$f(x) = \begin{cases} 0 & x < 0 \\ \mathbf{x} & x \ge 0 \end{cases}$$

FIGURA 3.10: Funciones de activación Fuente: https://ujjwalkarn.me

3.2.2. Redes Neuronales Artificiales

Las redes neuronales artificiales(ANN)toman de ejemplo la arquitectura del cerebro como inspiración para la construcción de sistemas inteligente. Actualmente son la base para el desarrollo de la inteligencia artificial. Las redes neuronales están constituidas de las uniones de las neuronas.

En la figura 3.10 podemos ver la comparación entre una neurona biológica y un artificial etiquetas con A y B respectivamente. Además observamos que las redes neuronales artificiales (etiqueta D) imitan el la unión biológicas de las neuronas o sinapsis(Etiqueta C).

FIGURA 3.11: Redes neuronales biológicas y artificiales Fuente: https://medium.com

Redes Neuronales Prealimentadas

Fue uno de los primeros y más simples tipos de redes neuronales que se desarrollaron. Contiene múltiples neuronas (nodos) ordenadas en capas de modo que los nodos en capas adyacentes se conectan. Cada una de estas conexiones poseen un peso asociado a dicha conexión.

En la figura 3.12 mostramos el esquema de Redes prealimentadas con sus distintas capas(layer).

FIGURA 3.12: Esquema de Redes Neuronales Prealimentadas Fuente: https://ujjwalkarn.me

- Nodo de entrada(Input Node): Proveen información a la red. En conjunto representan la capa de entrada, ningún calculo es realizado en esta capa solo se transfiere la información a la capa oculta.
- Nodo Oculto(Hidden Node): El trabajo de los nodos ocultos es calcular y transferir la información hacia a el nodo de salida. Una Red prealimentada tiene solo una capa de entrada y una salida pero puede tener múltiples capas ocultas.

 Output Node:Su tarea principal es realizar cálculos y transferir la información fuera de la red.

En las redes neuronales prealimentadas la información solo se propaga en una dirección hacia adelante desde los nodos de entradas pasando por los nodos ocultos hacia los nodos de salida. No existen ciclos en este tipo de red.

Dentro de las redes neuronales prealimentadas tenemos algunos ejemplos:

- Perceptron Simple: Es un red prealimentada simple que no posee capa oculta. Solo puede aprender de funciones lineales.
- Perceptron Multicapas: Esta red posee una o más capas ocultas. Este perceptron puede aprender de funciones no lineales.
- Redes neuronales de convolución: Este tipo de redes neuronal será explica con más detalle en el capítulo 4 sección 1.

Algoritmo de propagación hacia atrás

La propagación hacia atrás trata de aprender de los errores, como ya hemos visto en el aprendizaje supervizado los conjuntos de entrenamiento se encuentran etiquetados. Por lo cual podemos saber cual es la salida esperada. El algoritmos se aplica de la siguiente forma:

- 1. Se toma un ejemplo y se asignan pesos aleatorios a todas las conexiones de la red. Luego por medio de las conexiones y las funciones de activación se calcula la salida en las capas ocultas y de salida.
- 2. Se calcula el error total y se propagan estos errores hacia atrás a través de la red y se calcula la gradiente, luego se usan métodos como gradientes de descenso para ajustar los pesos y reducir el error en la capa de salida. La técnica de gradiente de descenso será explicada con más detalle en el siguiente capítulo.
- 3. Se repite el proceso con los otros ejemplos

FIGURA 3.13: Propagación hacia atrás Fuente: https://ujjwalkarn.me

Conjunto de datos para una red neuronal

Para alimentar nuestra red es importante tener información que le permita aprender. Esta información es llamada conjunto de datos o dataset, el cual nos permite entrenar a nuestra red y testear.

Una tarea principal para construir nuestro modelo es separar este dataset en 3 categorías.

- **Datos de entrenamiento:** Permite entrar nuestro modelo.
- Datos de Validación: Permite evaluar y actualizar los parámetros de entrenamiento
- Datos de testeo: Permite testear el funcionamiento del modelo al ingresar datos nuevos.

FIGURA 3.14: División del dataset Fuente: http://magizbox.com

Capítulo 4

Optimizadores para la gradiente de descenso en una Red Neuronal Convolucional

En este capítulo se detallarán los algoritmos de optimización de Aprendizaje automático y principalmente se enfocará en aquellos aplicados a las redes neuronales convolucionales por lo cual al inicio de este capítulo veremos una introducción a este tipo de redes de prealimentación.

4.1. Redes Neuronales Convolucionales

Las CNN son un tipo de redes neuronales especiales para procesar datos como imágenes las cuales son más difíciles de procesar en una red neuronal tradicional como es el caso del perceptron multicapas.

El termino convolucional hace referencia a la operación lineal matemática usada. Las redes neuronales convolucionales usan esta operación para aprender de las características de mayor orden en la data. La primera CNN fue creada por Yann LeCun. Entre sus usos más comunes tenemos el reconocimiento de imágenes y lenguaje natural.

Las redes neuronales convolucionales fueron inspiradas en la corteza visuales de los animales. Las células de la corteza visual principalmente se activan para realizar tareas como el reconocimiento de patrones.

4.1.1. Estructura de una imagen

Debido a que las redes neuronales convolucionales trabajan principalmente con imágenes, es importante conocer cual es la estructura de una imagen y como la computadora comprende y utiliza esta información.

Las imágenes están constituidas por la sucesión de píxeles, podemos entender el pixel como la menor unidad homogénea en color de una imagen digital. Teniendo este concepto la información de una imagen puede dividirse de la siguiente forma:

- Width: El ancho de la imagen medido en pixeles
- **Height**: El alto de la imagen medida en pixeles.
- Canales RGB: Estos canales contiene la información de los colores y profundidad de una imagen. Este canal guarda la información en tres canales Red, Green y Blue.

FIGURA 4.1: Estructura de la imagen de entrada Fuente: *Deep Learning by Adam Gibson, Josh Patterson*

Teniendo en cuenta esta forma de guardar una podemos resaltar la ventaja de usar Redes convolucionales en lugar de usar una red neuronal multicapas. Las redes multicapas toman un vector de una dimensión como entrada si quisiéramos entrenar un perceptron multicapas con imágenes de 32x32 píxeles y con 3 canales RGB necesitaríamos crear 3072 pesos (w_i) para una sola neurona en la capa oculta. La creación hace que la tarea resulte complicada usando redes multicapas.

4.1.2. Capas de una CNN

Input layer

Esta capa es donde se carga y almacena la información de las imágenes para procesarlas en la red. Esta información contiene detalles de ancho, alto y número de canales de imagen. Esta entrada corresponde a la figura 4.1.

Convolutional layers

Son una capa importante en el diseño de las CNN's, las capas convolucionales transformarán la entrada de la data usando las conexiones de las neuronas de las capas anteriores. La capa calculará el producto punto entre la región de la neurona de la capa de entrada y los pesos a los que están colocados localmente en la capa de salida. Esta salida tendrá la misma dimensión de espacios o una dimensión menor.

Para entender más a fondo debemos definir la operación de *convolución*. La *convolución* es una operación matematica que describe una regla de como fusionar 2 conjuntos de información. "Esta operación tiene importancia en campos como la matematica y la física debido que permite definir un puente entre el domino del espacio/tiempo y el dominio de la frecuencias a través del uso de transformada de fourier. Toma la entrada un entrada, aplica un kernel de convolución y nos da un mapa de características como salida "[12] .

Las convoluciones son usadas principalmente como un detector de características cuyas entradas principalmente son la capa de entrada u otra convolución. En la figura 4.1 observamos la operación de convolución que por medio del uso de un kernel o filtro de convolución extrae características de

la data por ejemplo detalles como bordes de una imagen. Haciendo analogía con los pesos en las redes neuronales convencionales, las redes poseen el filtro o kernel lo cual es beneficioso ya que no se debe definir un peso para cada neurona. En la figura 4.2 vemos como se aplica el kernel para producir datos de característica, este kernel será desplazado a lo largo de las dimensiones espaciales. Este kernel se multiplica por los datos de entrada dentro de su limite, produciendo una sola salida al mapa de características.

FIGURA 4.2: Operacion de convolución Fuente: www.openresearch.ai

Las capas convolucionales aplican transformaciones o funciones de activación al conjunto de entrada. El mapa de activación se apila a lo largo de dimensión de profundidad para construir el volumen de salida.

Componentes de la capa de convolución.

Las capas convolucionales poseen paramétros e hiperparametros. La gradiente de descenso se usa principalmente para entrenar los parametros de modo que las clases sean consistentes con las etiquetas en el conjunto de entrenamiento. Entre estos parámetros tenemos: **Filtros**

Los filtros son una función que posee ancho(width) y alto (height) más pequeños que la entrada. Los filtros son aplicados a través de del ancho y alto de la entrada. También pueden ser aplicados a la profundidad.

Hiperparámetros de una capa de convolución.

A continuación veremos algunos hiperparámetros que determinan la disposición espacial y tamaño del volumen de salida de una capa convolucional.

- Filter size: Cada filtro es pequeño con respecto al ancho(width) y alto(height). Por ejemplo podemos tener un filtro de tamaño [5x5x3], lo representa 5 de ancho x 5 de alto x 3 de los canales RGB.
- Output depth: Este hiperparámetro controla el número de neuronas en la capa convolucional que están conectadas a la misma del volumen de entrada. Este parámetro puede ser elegido manualmente.
- Stride: Se encarga de configurar el tamaño de desplazamiento de la ventana de filtro. Cada filtro aplicado a la columna de entrada asignará más profundidad en el volumen de salida. Un stride grande creará un volumen de salida más grande y uno valor pequeño obtendrá un volumen menor.
- **Zero-padding:** Con este parámetro se puede controlar el volumen de salida. Puede ser usado para mantener el tamaño espacial de entrada en la salida.

Pooling layers

Este tipo de capas se encuentran entre las capas convolucionales. Se encarga de reducir el tamaño espacial(ancho,alto) de los datos de representación. Esta capa reduce la representación de los datos progresivamente a través de la red y ayuda a controlar el overfitting.

Esta capa utiliza la operación max() para cambiar el tamaño de los datos de entrada espacialmente. A esta operación se le conoce como max pooling. La operación funciona de siguiente forma toma un filtro de nxn, la operación max el mayor de los números en el área de filtro.

Por ejemplo en caso tener una imagen de entrada 32×32 píxeles y se aplica un

filtro de 2×2 nuestra salida sería de 16×16 píxeles. Esto reduce cada segmento de profundidad en el volumen de entrada por un factor de 2.

Fully Connected Layers

Esta capa es usada para calcular el puntaje de la clase que usaremos como salida de red. Las dimensiones del volumen de la salida son [1x1xN], donde el valor de N corresponde al número de clases de salida que se están evaluando. En el caso del MNIST (dataset para reconocimiento de dígitos), el valor de N es igual a 10, número que corresponde a los 10 dígitos distintos que posee el dataset(0, ..., 9).

Esta capa tiene conexión entre todas sus neuronas y las neuronas de la capa anterior. Esta capa realiza las transformaciones del volumen de datos de entrada. Estas transformaciones son funciones de activación en el volumen de entrada y los parámetros (pesos y bias de las neuronas).

4.1.3. Arquitecturas conocidas

Actualmente existen algunas arquitecturas de CNN ya diseñadas que son aplicadas para el trabajo de reconocimiento de imágenes. El proyecto ImageNet, posee una gran base de datos de imágenes. Este proyecto realiza una competición *ImageNet Large Scale Visual Recognition Challenge (ILSVRC)* donde compiten programas de software para detectar y clasificar objetos.

A continuación mostraremos algunas de las arquitecturas más importante de esta competencia:

- LeNet-5 (1998) "Arquitectura propuesta por LeCun, consiste 2 capas de convolución, activación y capas pooling seguidas por a fully conected layer"[13]
- AlexNet (2012) Fue propuesta por Alex Krizhevsky, esta arquitectura posee 5 capas de convolución seguida por 3 fully connected layers.

■ VGGNet (2014) Fue desarrollada para Sigmoyan y Zisserman para la competición ILSVRC. "VGG consta de 16 capas convolucionales y es muy atractivo debido a su arquitectura uniforme. Consta de convoluciones de 3x3 y utiliza múltiples filtros "[14]

4.2. Métodos de optimización

En el campo de aprendizaje profundo es recomendable la elección de un buen algoritmo de optimización, debido a que este algoritmo puede representar la diferencia entre minutos,horas , etc. La tarea principal de este algoritmo es reducir un función objetivo, en nuestro caso nuestra función objetivo será la función de perdida $J(\theta)$.

4.2.1. Gradiente de descenso

La gradiente de descenso es un algoritmo más común para optimizar redes neuronales. La gradiente de descenso es una forma de minimizar la función de costo $J(\theta)$ parametrizada por los parámetros $\theta \in \Re^d$. Esta función nos permitirá determinar que tan precisa es el rendimiento de nuestra red. La gradiente actualiza los parámetros en la dirección opuesta a la gradiente de la función objetivo en este caso a nuestra función de costo $\nabla_{\theta}J(\theta)$.

En la figura 4.3 observamos una función de costo con solo 2 parámetros, la tarea de la gradiente de descenso es encontrar valores particulares de θ que nos permitan llegar de el punto A al punto B donde la función alcanza un valor mínimo.

FIGURA 4.3: Estructura de la imagen de entrada Fuente: https://blog.paperspace.com/

Dentro de la gradiente de descenso podemos diferenciar 3 variantes de acuerdo al la cantidad de datos que se usan para calcular la gradiente de la función objetivo entre estas variantes tenemos a:

Batch gradient descent

Esta variante calcula la gradiente de descenso de la función de costo con respecto a un parámetro θ , para todo el conjunto de datos. En la ecuación 4.1 podemos observar la actualización que se dará para cada ejecución. η representa la taza o tamaño de los pasos para encontrar el mínimo local.

$$\theta = \theta - \eta \nabla_{\theta} J(\theta) \tag{4.1}$$

La ecuación 4.1 asegura la convergencia para mínimo global en una supercifie convexa y mínimo local para una supercifie no convexa. Entre las dificultades de este método tenemos que puede llegar a ser lento y que esta limitado por la cantidad de datos ya que esta puede superar a la memoria del computador.

Stochastic gradient descent

A diferencia del método anterior las actualización se realizan para cada ejemplo de entrenamiento de (x^i,y^i) de esta manera se evitan problemas como la generación de redundancia debido a que se realiza una actualización por ejemplo de entrenamiento.

$$\theta = \theta - \eta \nabla_{\theta} J(\theta, x^i, y^i) \tag{4.2}$$

En la figura 4.4 vemos que la función de costo en SGD fluctúa demasiado esto podría representar un problema pero por el contrario, esta figura representa que el método SGD es capaz de saltar de un mínimo local a otro con lo cual puede encontrar mínimos locales potencialmente mejores.

FIGURA 4.4: Función costo en SGD Fuente: www.doc.ic.ac.uk

Mini-batch gradient descent

Este método pude verse como una mezcla de los 2 métodos anteriores, en lugar de aplicarlo para un conjunto entero de datos, los datos se particionan en pequeños conjuntos o mini batches, estos conjunto alimentan nuestro modelo para el entrenamiento. Este método nos permite reducir la varianza de las actualizaciones de los parámetros lo cual nos permite una convergencia más

estable. El tamaño de los mini-batches oscilan entre 50-250 y varían de acuerdo a su aplicación.

$$\theta = \theta - \eta \nabla_{\theta} J(\theta, x^{i:i+n}, y^{i:i+n}) \tag{4.3}$$

Mini-batch gradient descent es necesario elegir un ∇ adecuado. Debido que uno pequeño puede ocasionar una convergencia lenta y una grande puede ocasionar que la fluctué entre los valores mínimos y no converga.

Una de las ventajas principales es que aprovechan el rendimiento de las GPU's para realizar cálculos más rápidos, esto se debe a que la información se guarda como tensores(Matrices de gran dimensión) y las GPU's realizan cálculos de operaciones de matrices más rápidos que una CPU.

4.2.2. Optimizadores

En la siguiente sección analizaremos algunos optimizadores que acelerarán el proceso de gradiente de descenso.

Momentum

Las SGD tienen problemas para desplazarse en áreas con donde la superficie se curva más en una dimensión que en otra, estos lugares son los alrededores de los óptimos locales. En este escenario la SGD oscilará en la curvatura y descenderá lentamente hacia el óptimo como se muestra en la figura 4.5.

FIGURA 4.5: Actualización sin momentum Fuente: www.doc.ic.ac.uk

El momentum es un método que ayuda a la SGD a acelerar en la dirección correcta, mientras evitas las oscilaciones. El momentum lográ esto añadiendo

una fracción γ del vector de actualización pasado al vector presente tal como se muestra en las ecuaciones 4.4.

Un valor comunmente elegido de $\gamma=0.9$, en las actualización el valor del momentum aumenta para dimensiones cuyos gradientes apuntan en la misma dirección y disminuye para dimensional en la que la gradiente cambia de dirección. Esto nos asegura que tendremos una convergencia más rápida con una oscilación reducida. En la figura 4.6 se observa gráficamente la aceleración de la convergencia en la SGD.

$$\nu_t = \gamma \nu_{t-1} + \eta \nabla_{\theta} J(\theta)$$

$$\theta = \theta - \nu_t$$
(4.4)

FIGURA 4.6: Actualización con momentum Fuente: www.doc.ic.ac.uk

Nesterov accelerated gradient

Este método en el que nuestro descenso sea más controlado ya que reduce la velocidad antes de volver a subir una pendiente. En momentum usamos el término $\gamma \nu_{t-1}$ para mover los parámetros de θ . Al calcular el valor de $\theta - \gamma \nu_{t-1}$ nos da una aproximación de donde se encontrá la siguiente posición de los parámetros. De esta forma no calculamos la gradiente en el parámetro θ actual sino que se calcula en una posición futura aproximada.

$$\nu_{t} = \gamma \nu_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma \nu_{t-1})$$

$$\theta = \theta - \nu_{t}$$
(4.5)

En la figura 4.5 observamos el proceso. Primero el momentum calcula la gradiente actual(vector azul pequeño) y luego da un gran salto en la dirección

de la gradiente actualizada acumulada (gran vector azul), el NAG primero realiza un gran salto en dirección del gradiente acumulado previo(vector marron) luego realiza un correción(vector rojo), esto nos da como resultado la actualización completa de NAG(vector verde). Esta actualización anticipada es muy importante debido a que nos impide ir demasiado rápido y mejora la capacidad de respuesta lo cual aumenta el rendimiento de las CNN.

FIGURA 4.7: Convergencia Nesterov Fuente: www.doc.ic.ac.uk

Adagrad

Es una algoritmo optimización basada en la gradiente de descenso, el algoritmo adapta la tasa de aprendizaje realizando actualizaciones más pequeñas para parámetros con carácteristicas que se repiten con más frencuencia y una tasa alta para parámetros con carácteriscticas pocas frencuentes. Adagrad mejora en gran manera a la SGD, este método es usado para entrenar redes neuronales a gran escala.

En métodos anteriores se usaba la actualización de todos los parámetros θ al mismo tiempo esto debido a que se usaba la misma tasa de aprendizaje η . Adagrad usa una tasa de aprendizaje diferente para cada parámetro θ_i en cada paso de tiempo t. En la ecuación 4.6

$$g_{t,i} = \nabla_{\theta} J(\theta_{t,i})$$

$$\theta_{t+1,i} = \theta_{t,i} - \eta \cdot g_{t,i}$$
(4.6)

El termino $g_{t,i}$ representa el valor de la gradiente en el paso de tiempo t, el cual es la derivada de la función objetivo con respecto al termino θ_i .

Adagrad modifica la idea de utilizar una tasa *eta* fija, podemos observar el la ecuación 4.7 es una variante de la ecuación 4.6. En donde se modifica la tasa

de aprendizaje en cada paso de tiempo t para todos los parámetros θ_i basadas en los valores de las gradientes pasadas que fueron calculas para θ_i

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i} \tag{4.7}$$

- $G_{t,ii}$: representa la suma de los cuadrados de las gradientes pasadas con respecto a θ_i
- ϵ es un término pequeño para evitar la división por 0. ϵ encuentra en el orden de 10^{-8} .

Como $G_t \in \Re^{dxd}$ contiene la suma de los cuadrados de las gradientes pasados con respecto a todos los parámetros de θ a lo largo de su diagonal. A lo largo de su diagonal por lo cual se puede realizar ahora el producto matriz- vector.

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_t + \epsilon}} \odot g_{t,i} \tag{4.8}$$

El método adagrap en palabras de los autores: "Informalmente nuestros procedimientos dan a las características más frecuentes tazas de aprendizaje bajas y para características poco frecuentes, Por lo tanto, la adaptación permite identificar características predictivas pero comparativamente raras. '[15] Lo cual también representa problemas en caso

De esta afirmación notamos que el principal beneficio de Adagrad es que nos evita el hecho de trabajar con una taza fija por otro lado su principal desventaja se basa en el la suma de los gradientes al cuadrado aumentará en cada iteración lo cual provocará que su taza sea cada vez más pequeña.

RMSprop

Es un método de aprendizaje por adaptación de la taza que fue propuesto por Geoff Hinton Este modelo se desarrollo con el objetivo resolver el problema de disminuir radicalmente la tasa de aprendizaje en Adagrad.

RMSprop divide la taza de aprendizaje mediante el decaimiento del promedio

de la suma de las gradientes cuadradas.

$$E[g^{2}]_{t} = \gamma E[g^{2}]_{t-1} + (1 - \gamma)g_{t}^{2}$$

$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E[g^{2}]_{t} + \epsilon}}g_{t}$$
(4.9)

- $E[g^2]$: Promedio de la raíz de la gradiente para cada peso.
- γ : Parámetro de decaimiento
- η : tasa de aprendizaje

Divide la gradiente g_t por la raíz $\sqrt{E[g^2]_t + \epsilon}$ hace que el aprendizaje trabaje mucho mejor.

Adam

Adam es un algoritmo de optimización que desarrollado por Diederik Kingma y Jimmy ba. Adaptative moment estimation o Adam, calcula una taza de aprendizaje adaptativo para cada parámetro. Este método mantiene un decaimiento exponencial del promedio de las gradientes anteriores. El método adam prefiere los mínimos en las superficies de error. En la ecuación 4.10 mostramos el calculo de promedio de decaimiento de las gradientes pasadas m_t y el cuadrado de las gradientes pasadas v_t

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$
(4.10)

- m_t : Primer momento (media)
- v_t : Segundo momento de la gradiente
- β_1 : Taza de decaimiento del primer momento.
- β_2 : Taza de decaimiento del segundo momento.

En la ecuación 4.11 mostramos la forma de calcular estimado de la primer y segundo momento.

$$\hat{m_t} = \frac{m_t}{1 - \beta_1^t}$$

$$\hat{v_t} = \frac{v_t}{1 - \beta_2^t}$$
(4.11)

- \hat{m}_t : Estimación del Primer momento (media)
- $\hat{v_t}$: Estimación del Segundo momento de la gradiente.

La ecuación 4.12 muestra la regla de actualización en Adam. Se utiliza el ϵ para prevenir una división por cero.

$$\theta_{t+1} = \theta_{t+1} - \frac{\eta}{\sqrt{\hat{v_t}} + \epsilon} \hat{m_t} \tag{4.12}$$

Capítulo 5

Resultados

En este capítulo se discutirán los resultados obtenidos durante el uso de los optimizadores mencionados en el capítulo anterior para acelerar el proceso de entrenamiento de red neuronal convolucional usando el dataset CIFAR10 y utilizando una computadora con tarjeta gráfica NVIDIA GTX950M con un total de 640 núcleos y una memoria de 4GB.

Estos ejemplos fueron obtenidos al trabajar con una red neuronal convolucional.

5.1. Precisión

En esta sección se muestran los resultados de precisión para la tarea de clasificación, ver apéndice A.1.

En la tabla 5.1 podemos ver la precisión para distintos optimizadores, en el cuadro observamos que el método Nesterov al ser una mejora de momentum obtiene una mejor precisión.

Además se observa que los métodos Adam y RMSprop obtienen los mejores resultados(ver Figura A.4 del apéndice)

Método	Precisión(%)	Tiempo de ejecución(s)
Momemtum	52.78	273.75
Nesterov	54.09	271.50
Adagrad	43.70	273.55
RMSprop	69.77	284.40
Adam	69.26	338.00

CUADRO 5.1: Precisión para 5000 epochs

En el cuadro 5.2 se realizaron 10000 iteraciones en proceso de entrenamiento de nuestra red.

El método de RMSprop continuó obteniendo mejores resultados, pero también se pudo observar que el método Adam produjo un resultado cercano al RMSprop en un menor tiempo de ejecución.

Método	Precisión(%)	Tiempo de ejecución(s)
Momemtum	59.50	459.58
Nesterov	61.12	468.56
Adagrad	47.20	471.60
RMSprop	69.48	494.21
Adam	68.79	483.99

CUADRO 5.2: Precisión para 10000 epochs

5.2. Función de costo

El objetivo principal de utilizar estos métodos fue el de optimizar la gradiente de descenso para así reducir la función de costo o perdida. En el programa de utilizo *the cross entropy* como función de pérdida. El cuadro 5.2 nos muestra los resultados de la reducción de la función de costo. En la figura A.7 del apéndice A, podemos observar mejor el comportamiento de la reducción de la función de costo en 50 iteraciones o epochs.

La figura A.8 muestra la tendencia final de los métodos de optimización, mostrando que los mejores métodos continúan siendo Adam y RMSprop.

CUADRO 5.3: Función costo para 5000 epochs

Método	Función de costo			
Momemtum	1.48			
Nesterov	0.54			
Adagrad	0.43			
RMSprop	0.27			
Adam	0.37			

Capítulo 6

Conclusiones y Trabajo Futuro

En este capítulo se describirán las conclusiones generales que se encontraron al probar y estudiar los distintos métodos de optimización utilizados para el proceso de acelerar el proceso de entrenamiento de la red neuronal convolución.

Además, se propondrán algunas mejoras para que el trabajo obtenga mejores resultados.

6.1. Conclusiones

- Los métodos de optimización Adam y RMSprop obtuvieron los mejores resultados de precisión en ambas pruebas.
- A pesar de que el método de optimización Adam fue propuesto a partir del RMSprop. Adam fue superado en las pruebas realizadas.
- El método Adagrad fue el que menor precisión obtuvo en las pruebas, esto se debió a su dificultad de trabajar con la suma de las gradientes al cuadrado lo cual poco a poco redujo su taza de aprendizaje.
- El RMSprop como una mejora del Adagrad, obtuvo mejores resultados que el adagrad. Esto debido a que trabajo con el promedio de la raíz de la gradiente anterior y tasas de decaimiento para controlar el problema de la disminución de la tasa de aprendizaje del Adagrad

6.2. Trabajo Futuro

El propósito general de este seminario I fue adquirir el conocimiento y experiencia necesaria para poder trabajar con redes neuronales profundas. Los métodos de optimización fueron una manera de introducirme al área de las redes convolucionales y comprender las ventajas y desventajas de algunos métodos.

Los temas de aprendizaje automático y en particular del aprendizaje profundo son muy amplios y en este seminario se trato de acoplar los temas pero no se realizó un análisis más detallado debido a la amplitud del área.

En el Seminario II se trabajará con más detalle el campo de redes neuronales convolucionales, además se tratará de diseñar un red neuronal convolucional y comparar este modelo con algunos actualmente usados. Además de realizar un implementación más interactiva .

Este seminario fue limitado debido a la capacidad de la tarjeta gráfica usada ya que en algunos ensayos la memoria era insuficiente para el futuro seminario se planea realizar las pruebas en mejores equipos como por ejemplo contratar servicios de máquinas virtuales de Amazon u otro proveedor.

Bibliografía

- [1] Vadim Smolyakov. Neural network optimization algorithms a comparison study based on tensorflow. https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5, Ene 2017. Accessed on 2018-06-11.
- [2] Adam Coates Abhik Lahiri Bobby Prochnow Quoc V. Le, Jiquan Ngiam and Andrew Y. Ng. On optimization methods for deep learning. *International Conference on Machine Learning* 2010, pages 1–8, 2010.
- [3] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. *ICLR*, pages 1–15, 2015.
- [4] Timothy Dozat. Incorporating nesterov momentum into adam. *ICLR*, pages 1–3, 2016.
- [5] Machine learning 101 | supervised, unsupervised, reinforcement and beyond. https://medium.com/deep-math-machine-learning-ai/different-types-of-machine-learning-and-their-types-34760b9128a2, Sep 2017. Accessed on 2018-05-11.
- [6] David Fumo. Types of machine learning algorithms you should know. https://towardsdatascience.com/types-of-machinelearning-algorithms-you-should-know-953a08248861, Jun 2017. Accessed on 2012-05-11.
- [7] Jason Brownlee. Linear regression for machine learning. https://medium.com/deep-math-machine-learning-ai/different-types-of-machine-learning-and-their-types-34760b9128a2, Mar 2016. Accessed on 2018-05-12.

BIBLIOGRAFÍA 53

[8] Essentials of machine learning algorithms (with python and r codes). https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/, Sep 2017. Accessed on 2018-05-14.

- [9] K nearest neighbors classification). http://www.saedsayad.com/k_nearest_neighbors.htm. Accessed on 2018-05-15.
- [10] Naive bayesian). http://www.saedsayad.com/naive_bayesian. htm. Accessed on 2018-05-15.
- [11] Sunil Ray. 6 easy steps to learn naive bayes algorithm (with codes in python and r). https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/, Sep 2017. Accessed on 2018-05-13.
- [12] Josh Patterson and Adam Gibson. Major architectures of deep networks. In *Deep Learning A Practitioner's Approach*, pages 132–135. O'Reilly Media, 2017.
- [13] Adrian Rosebrock. Lenet convolutional neural network in python. https://www.pyimagesearch.com/2016/08/01/lenet-convolutional-neural-network-in-python, Ago 2016. Accessed on 2018-06-15.
- [14] Siddharth Das. Cnn architectures: Lenet, alexnet, vgg, googlenet, resnet and more.... https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5, Nov 2017. Accessed on 2018-06-15.
- [15] Elad Hazan John Duchi and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of Machine Learning Research* 12, pages 1–2, 2011.

Apéndice A

Datos Obtenidos

A.1. Precisión de entrenamiento

FIGURA A.1: optmizadores 5000 epochs Fuente : Fuente Propia

FIGURA A.3: optmizadores 10000 epochs Fuente: *Fuente Propia*

FIGURA A.4: Comparación de optimizadores para 5000 epochs Fuente: *Fuente Propia*

FIGURA A.5: Comparación de optimizadores para 10000 epochs Fuente: *Fuente Propia*

A.2. Función de Costo

FIGURA A.6: función de costo de optimizadores Fuente: *Fuente Propia*

FIGURA A.7: Comparación de las funciones de costo rango 0-50 Fuente: *Fuente Propia*

FIGURA A.8: Comparación de las funciones de costo rango 0-500 Fuente: *Fuente Propia*