WHAT IS CLAIMED IS

- 1. A method for calibrating the phase of a microwave source, in which:
- a calibration circuit is closed, the calibration circuit comprising an injection channel connected to a measurement channel via the source to be calibrated;
- a test signal is injected through the source to be calibrated, the test signal being injected on the injection channel,
 - the phase ϕ_m of the signal having passed through the source to be calibrated is measured, the phase of the signal being measured on the measurement channel, characterized in that:
- the amplitude A_m of the signal having passed through the source to be calibrated is measured, the amplitude of the signal being measured on the measurement channel;
 - the calibration circuit is opened at the source to be calibrated;
 - the test signal is injected on the injection channel;
- 15 the phase ϕ_f and the amplitude A_f of the signal present on the measurement channel is measured;
 - a corrected phase value ϕ_c is determined, this corrected phase being the phase of a complex number U_c , calculated from two complex numbers U_m and U_f , where:

20

$$U_m = A_m \cdot \exp(i \cdot \varphi_m)$$

$$U_f = A_f \cdot \exp(i \cdot \varphi_f)$$

25 2. The method as claimed in claim 1, in which the complex number U_c is given by the following equation:

$$U_c = U_m - \alpha \cdot U_f$$

where α is a complex coefficient correcting for the fluctuations over time in ϕ_f and A_f between the measurements of ϕ_m and A_m , on the one hand, and of ϕ_f and A_f , on the other, this coefficient being equal to 1 in the absence of the correction.

- 3. The method as claimed in any one of the preceding claims, in which a value of the corrected amplitude A_c is determined, this corrected amplitude being the amplitude of the complex number U_c.
- 5 4. The method as claimed in claim 2, in which the complex coefficient α is given by the following equation:

$$\alpha = \frac{U_r(t_1)}{U_r(t_0)}$$

where U_r represents a measurement of the phase and of the amplitude of a reference signal, the measurement $U_r(t_1)$ being concomitant with the measurement of U_m , and the measurement $U_r(t_0)$ being concomitant with the measurement of U_f .