```
from google.colab import drive
drive.mount('/content/drive')
```

→ Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

```
import matplotlib.pyplot as plt

x = [1,2,3,4,5]
y= [10,15,7,12,8]

# create a line plot

plt.plot(x,y, marker ='o', markersize = 8,color ='blue', linestyle='-.',linewidth='2')

# add labels and titles
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.ylabel('Y-axis')
plt.title('X versus Y')
plt.grid(True)

plt.show()
```



```
import pandas as pd
import matplotlib.pyplot as plt
# create a DataFrame
data = {
    'Year': [2010,2011,2012,2013,2014],
    'Sales':[500,800,1700,1500,2000]
}
df = pd.DataFrame(data)
# create a line plot
plt.plot(df['Year'], df['Sales'], marker='o')
plt.xlabel('Year')
plt.ylabel('Sales')
plt.title('Sales Over Years')
plt.grid(True)
# Set x-axis ticks at integer values
plt.xticks(df['Year'])
plt.show()
```



```
data = {
    'Category': ['A','B','C','D'],
    'Sales': [500,800,1200,1500]
}

df = pd.DataFrame(data)

# create a bar plot

plt.bar(df['Category'],df['Sales'], color='red')
plt.xlabel('Category')
plt.ylabel('Sales')
plt.title('Sales by Category')

plt.show()
```


Sales by Category 1400 1200 1000 800 400 200 A B C C D Category

```
import pandas as pd
import matplotlib.pyplot as plt

# create a DataFrame
data = {
    'Age': [25,30,22,35,28],
    'Income':[5000,60000,4500,70000,55000]}
```

```
df = pd.DataFrame(data)
# create a scatter plot

plt.scatter(df['Age'],df['Income'])
plt.xlabel('Age')
plt.ylabel('Income')
plt.title('Income vs Age')
plt.grid(True)

plt.show()
```



```
# creating data frame

data = {
    'Scores': [85,78,92,65,80,75,88,90,82]
}

df = pd.DataFrame(data)

# create a histogram of the data

plt.hist(df['Scores'], width = 1.5)
plt.xlabel('Scores')
plt.ylabel('Frequency')
plt.title('Distrubtion of Scores')
plt.grid(True)

plt.show()
```


Sample data

data = [10,15,20,25,30,35,40,45,50,55,60,65,70]

Create a box plot

plt.boxplot(data)
plt.show()

import seaborn as sns

sample data
data = sns.load_dataset('iris')

data.head()

_		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

sample data
data = sns.load_dataset('tips')
sns.barplot(data = data, x = 'day', y = 'total_bill', hue ='sex')


```
# sample data
data = sns.load_dataset('tips')
sns.barplot(data = data, x = 'day', y = 'total_bill', hue ='smoker')
plt.show()
```


data.describe().T

→		count	mean	std	min	25%	50%	75%	max
	total_bill	244.0	19.785943	8.902412	3.07	13.3475	17.795	24.1275	50.81
	tip	244.0	2.998279	1.383638	1.00	2.0000	2.900	3.5625	10.00
	size	244.0	2.569672	0.951100	1.00	2.0000	2.000	3.0000	6.00

sample data
data = sns.load_dataset('fmri')
data.head()

₹		subject	timepoint	event	region	signal
	0	s13	18	stim	parietal	-0.017552
	1	s5	14	stim	parietal	-0.080883
	2	s12	18	stim	parietal	-0.081033
	3	s11	18	stim	parietal	-0.046134
	4	s10	18	stim	parietal	-0.037970

sns.lineplot(data = data, x = 'timepoint', y = 'signal', hue = 'region') plt.show()


```
import seaborn as sns
import matplotlib.pyplot as plt

# sample data
data = sns.load_dataset('iris')

# create a histogram
sns.histplot(data = data, x ='sepal_length', kde=True)
plt.title('Histogram of Sepal Length')
plt.show()
```



```
import seaborn as sns
import matplotlib.pyplot as plt

# sample data
data = sns.load_dataset('tips')

# create a Box Plot
sns.boxplot(data = data, x ='day', y = 'total_bill', hue = 'sex')
plt.title('Box Plot of Total Bill by Day')
plt.show()
```

Box Plot of Total Bill by Day

import seaborn as sns
import matplotlib.pyplot as plt

sample data
data = sns.load_dataset('iris')

create a histogram
sns.pairplot(data = data, hue = 'species')
plt.title('Pair Plot of Iris Database')
plt.show()

species