DEVELOPMENT OF A 10 Ah, PRISMATIC, LITHIUM-ION CELL FOR NASA/GSFC

Brian J. Stein, John W. Baker, Douglas S. George,

Nathan D. Isaacs, and Pinakin M. Shah

Mine Safety Appliances Company, Sparks, MD

+ + +

Gopalakrishna M. Rao

NASA/Goddard Space Flight Center, Greenbelt, MD

NASA/GSFC Test Plan

Summary of Results

♥ Conclusions

Introduction

Alternative to the Currently Used Ni - Cd and Ni - H₂ Battery ▶ Li-lon Battery Technology Has Become a Promising technologies

	ŏ	Cell Chemistry	try
Characteristic	Li-lon	Ni-Cd	Ni-H ₂
Specific Energy (Wh/kg)	130	30	45
Energy Density (Wh/L)	200	85	100
Voltage (V)	3.6	1.2	1.25
# Cells for a 28 V Battery	8	22	22
Charge Retention	poob	fair	fair
Gas Gene ration	ou	yes	yes
Environmentally Friendly	yes	OU	yes

Cell Design

- ➤ Prismatic, Stacked Electrode
 Design, Footprint of 7 Ah Ni-Cd
 Cell (height & width)
- ➤ Hermetically Sealed Type 316L Stainless Steel Hardware
- ➤ Ziegler Compression Seals With Copper & Aluminum Terminal Posts
- ➤ Rupture Disk With 175 psid Burst Pressure Rating

Electrochemical Design

▼ Positive Electrode

Lithiated Cobalt Dioxide, Pure 20 µm Al Foil Collector

➤ Negative Electrode

- MCMB Carbon, Pure 18 µm Cu Foil Collector
- Larger than Positive Electrode, All Around

▼ Electrolyte

LiPF₆ Salt in Mixed Organic Carbonate Solvents

▼ Separator

Celgard[®] 2300 Microporous Flat Sheet Tri-Layer Membrane

➤ Capacity Ratings

Design - 10 Ah, Nameplate

Mechanical Design

- ➤ Equal Tab Length for All Electrodes
- ▼ Four Electrode Substacks
 With 22 Pairs Each
- ➤ Substacks Are Joined With Ultrasonically Welded Interconnect Tabs
- ▼ Tabs Are Ultrasonically
 Welded to Tab Adapters
- ➤ Tab Adapters Are Bolted to Terminal Posts (To Be Converted to a Welded Joint)

Weight & Volume Analysis

> Design Can Be Improved in Highlighted Areas

	Weight %	Weight % Volume %
Hardware	30	10
Positive Electrodes	27	11
Negative Electrodes	21	16
Electrolyte	16	34
Misc.	9	12
Free Volume	0	11
Total Units	464 g	183 mL

Void & Electrolyte Volume Analysis

> Electrolyte & Free Volume Can Be Optimized **For Performance**

Slide 9

MUN

NASA/GSFC Test Plan

- Stabilization Cycles
- ▶ Discharge Capacity
- ➤ Charge Efficiency
- **▼ Self Discharge**
- **▼ Pulse Testing**
- ▼ Vibration Testing

MSM

Slide 10

Stabilization Cycles

Capacity at Different Discharge Rates and Temperatures

➤ Cells Deliver > 10 Ah Between -10 °C & 40 °C

Charge Efficiency

Self Discharge

- ➤ Less Than 8% Capacity Loss After 3 Months Storage Even at 35 °C
- > Calculated Activation Energy for the Self-Discharge Reaction: $E_a = 4.85 \text{ kcal/mol}$

Slide 13

Pulse Testing

➤ Data Exhibits High Stability and Acceptable Endof- Discharge Voltages

Vibration Testing

▼ Resonance Search

- Acceleration Level of 1 g Peak
- 5 2000 Hz, 4 Octaves/min.
- Y = none; X = 1,717 Hz; Z = 1,479 Hz

▼ Sine Dwell

- Acceleration Level of 12 g Peak @ 1/3
 Fundamental Frequency for 3 min.
- Tested With Cell Under C/2 Load

Z-axis

▼ Sine Sweep

- 1.5 Octaves/min., 5 50 Hz, ±3 g max.
- Tested With Cell Under C/2 Load

∇andom

- 14.1 g rms, 20 2000 Hz, 2 Minutes Each Axis
- Tested With Cell Under C/2 Load

Vibration Testing

∨ Vibration Had No Effect on Load Voltage

> A Destructive Physical Analysis Revealed No Damage to the Electrode Stack or Tabs

LEO Cycling Data

> Technology Developments Continue to Improve Performance

ASAM

Safety Testing

Tests in Progress:

(the data will be available prior to the meeting) **Short Circuit**

Overcharge

Conclusions

- ➤ MSA's 10 Ah Li-Ion Cell Is a Rugged Design Suitable for the Stringent Requirements of Aerospace **Applications**
- ▶ 18 Cells Demonstrate Consistent Cycling Performance Over a Wide Range of Rates & Temperatures
- ➤ The Cell Passes Qualification Requirements for Vibration Survivability
- ➤ Technology Improvements at MSA Continue to Enhance Cell Performance
- ➤ (Based on Safety Test data)

Acknowledgements

- **▽ NASA/GSFC for Funding**
- > George Methlie for his technical advice and Encouragement

