CSCI 4022 Fall 2021 PageRank Computation

Example: Perform 2 steps of power iteration on our YAM graph.

Intuition: Which node or nodes should hold the most importance?

The **column-stochastic** matrix for the graph was:

Announcement and Reminders you may use a non-graphing

1. Study for the exam! Content through A-priori

- 2. The exam is closed book, closed note, but you may construct your own full page (front and back) review and formula sheet for use on the exam. I'll leave a spot on the exam for you to submit the sheet you used for our records.
- 3. Exam 1 (Gradescope) opens on Wednesday October 6 at 6pm. You get 2 hours once you start, and must be completely submitted by Thursday October 6 at 6pm.
- 4. I'll be active on Piazza from 6p-8p tonight, so if you do the exam in that interval and have questions, I should usually respond within 10-15m.

Upcoming:

1. HW5 posted, due Oct 18 (item-basket stuff). In the meantime...

PageRank

The idea:

- ▶ Each link's vote is proportional to the importance of its source page
- lacktriangle If page j with importance r_j has d_j out-links (out-degree), then each link get r_j/d_j votes
- Page j's own importance is the sum of the votes on its in-links (in-degree). This leads to the **Definition**: The **rank** (in *Pagerank* for **page** j is given by

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

where d_i is the *out-degree* of node i and the sum is over all the nodes i that link to j.

Typically we *could* solve this by taking the $n \times n$ matrix representation of the r = Mr system:

$$Mr - r = 0 \implies (M - I)r = 0$$

which represents a solvable linear system... but it **also** represents an equation of the form

3/27

PageRank: Power Iteration

The idea: We want the eigenvector with eigenvalue of 1 of the matrix M. Then Mr = r is solved by eigenvalue-eigenvector pair (1, r).

The bonus: column-stochastic matrices always have *largest* eigenvalue of 1.

The resulting algorithm is known as power iteration.

- 1. Suppose that there are N total web pages to rank.
- 2. Initialize: $r^{(0)} = [1/N, 1/N, \dots 1/N]$
- 3. Iterate: $r^{(t+1)} = Mr^{(t)}$
- 4. Stop if: $d(r^{(t+1)},r^{(t)})$ is small. A typical stop would be $d(r^{(t+1)},r^{(t)})<\varepsilon$ under appropriate norm (like L_1 , so $d(r^{(t+1)},r^{(t)})=\sum_{i=1}^N|r_i^{(t+1)}-r_i^{(t)}|$ for some small ε

$$Mr = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

1.	Init:	$r^{(0)}$	=	$[1/N, \dots$.1/N]
----	-------	-----------	---	---------------	-------

2. Iterate: $r^{(t+1)} = Mr^{(t)}$

3. Stop if: $d(r^{(t+1)}, r^{(t)}) < tol$.

$t = \dots$	0	1	2	 15
$r_y^{(t)}$	1/3			
$r_a^{(t)}$	1/3			
$r_m^{(t)}$	1/3			

$$Mr = \begin{bmatrix} Y & A & M \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

- 1. Init: $r^{(0)} = [1/N, \dots 1/N]$ 2. Iterate: $r^{(t+1)} = Mr^{(t)}$
- 3. Stop if: $d(r^{(t+1)}, r^{(t)}) < tol$.

$t = \dots$	0	1	2	 15
$r_y^{(t)}$		$1/2 \cdot 1/3 + 1/2 \cdot 1/3 = 1/3$		
$r_a^{(t)}$		$1/2 \cdot 1/3 + 1 \cdot 1/3 = 1/2$		
$r_m^{(t)}$		$1/2 \cdot 1/3 = 1/6$		

$$Mr = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/2 \\ 1/6 \end{bmatrix}$$

1. Init: $r^{(0)} = [1/N, \dots 1/n]$	N
---------------------------------------	---

2. Iterate: $r^{(t+1)} = Mr^{(t)}$

3. Stop if:
$$d(r^{(t+1)}, r^{(t)}) < tol.$$

$$Mr = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} r_y^{(14)} \\ r_a^{(14)} \\ r_m^{(14)} \end{bmatrix}$$

- 1. Init: $r^{(0)} = [1/N, \dots 1/N]$ 2. Iterate: $r^{(t+1)} = Mr^{(t)}$
- 3. Stop if: $d(r^{(t+1)}, r^{(t)}) < tol$.

$t = \dots$	0	1	2	 15
$r_y^{(t)}$	1/3	1/3		 .398
$r_a^{(t)}$	1/3	1/2		 .404
$r_m^{(t)}$	1/3	1/6		 .197

Idea: We are handing out/initializing equal amounts

of importance to all web pages, then letting the importance diffuse along the links between pages. Eventually, importance gets redistributed appropriately

As a Random Walk

Imagine a tiny person walking on the web...

- 1. At any time t, walker is on some page i
- 2. At time t+1, the walker follows a link from i, chosen uniformly random, and ends up on some page j, linked from i
- 3. ... then the process repeats indefinitely
- 4. If we define p(t):= a probability vector whose ith coordinate is the probability that the walker is at page i at time t
- 5. **Then:** p(t) is a probability distribution over the set of pages
- 6. **And:** That final probability distribution is the *PageRank* for each page!

On Random Walks

Let p(t) := a probability vector whose ith coordinate is the probability that the walker is at page i at time t

So p(t) is a probability distribution over the set of pages...

So at time t+1, we can use M to update the probability vector:

$$p(t+1) = Mp(t)$$

Suppose the random walker reaches a state eventually where:

$$p(t+1) = Mp(t) = p(t)$$

Definition: Then p(t) is a *stationary distribution* of the random walk. Recall that our original rank vector r satisfies r = Mr... so

Result: r can be thought of as a stationary distribution for this random walk!

Markov Theory

Suppose the random walker reaches a state eventually where:

$$p(t+1) = Mp(t) = p(t)$$

Then r = p(t) can be thought is a stationary distribution for this random walk!

This type of model where the state at time t+1 the probability vector (p(t+1)) depends on the transition matrix M and the state at time t (p(t)) is a first-order Markov model.

Definition: A First-order Markov process includes the following two assumptions:

- 1. Past and future are independent of one another, given the present.
- 2. The state at time t+1 depends only on the state at time t (first order). This is also called the *Markov Property* and such a system is referred to as "memoryless."

Math tells us that under certain conditions the stationary distribution is unique and will be reached eventually, *no matter* the initial rank vector guess.

Stationarity and Existence

On very small problems, we might find the stationary distribution via setting up **flow** equations and looking for a solution. On larger problems, we iterate with power iteration. These don't always work!

► One issue is *disconnected* states. '

Another is periodic systems.

Definition: The transition probability distribution given by M is called *ergodic* if every node is reachable from every other state, and there are no strictly periodic cycles.

Proposition: If a Markov chain is *ergodic*, then there exists a **unique** stationary distribution for any given set of transition probabilities.

Proper Convergence

Definition: The transition probability distribution given by M is called *ergodic* if every node is *reachable* from every other state, and there are no strictly periodic cycles.

There are two main issues we must be concerned with for PageRank.

- 1. **Definition:** A *dead end* is a page without any outlinks. It is a subcase of a...
- 2. **Definition:** A *spider trap* is a region of the graph where all out-links are contained within that subgraph.

Proper Convergence

Definition: The transition probability distribution given by M is called *ergodic* if every node is *reachable* from every other state, and there are no strictly periodic cycles.

There are two main issues we must be concerned with for PageRank.

1. **Definition:** A *dead end* is a page without any outlinks. It is a subcase of a...

Result: Random walker has nowhere to go! Importance that enters the node is *lost* and leaks out of the system.

2. **Definition:** A *spider trap* is a region of the graph where all out-links are contained within that subgraph.

Result: Random walker stuck in the trap! Importance that enters the trap just accumulates there, absorbs all importance from the in-links.

Example: Take a few steps of power iteration on the modified spider-trap YAM graph below.

$$M = \begin{array}{cccc} Y & A & M \\ Y & 1/2 & 1/2 & 0 \\ A & 1/2 & 0 & 0 \\ M & 1/2 & 1 \end{array}$$

- 1. Init: $r^{(0)} = [1/N, \dots 1/N]$
- 2. Iterate: $r^{(t+1)} = Mr^{(t)}$
- 3. Stop if: $d(r^{(t+1)}, r^{(t)}) < tol$.

Example: Take a few steps of power iteration on the modified spider-trap YAM graph below.

$$Mr = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 1/2 & 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

1. Init:
$$r^{(0)} = [1/N, \dots 1/N]$$

2. Iterate: $r^{(t+1)} = Mr^{(t)}$

2. Iterate:
$$r^{(t+1)} = Mr^{(t)}$$

3. Stop if:
$$d(r^{(t+1)}, r^{(t)}) < tol$$
.

$t = \dots$	0	1	2
$r_y^{(t)}$	1/3		
$r_a^{(t)}$	1/3		
$r_m^{(t)}$	1/3		

Example: Take a few steps of power iteration on the modified spider-trap YAM graph below.

$$Mr = \begin{bmatrix} Y & A & M \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

1. Init: $r^{(0)} = [1/N, \dots 1/N]$	1.	Init:	$r^{(0)} =$	= [1/N,	$\dots 1/N$
---------------------------------------	----	-------	-------------	---------	-------------

2. Iterate:
$$r^{(t+1)} = Mr^{(t)}$$

3. Stop if:
$$d(r^{(t+1)}, r^{(t)}) < tol$$
.

$t = \dots$	0	1	2
$r_y^{(t)}$		$1/2 \cdot 1/3 + 1/2 \cdot 1/3 = 1/3$	
$r_a^{(t)}$		$1/2 \cdot 1/3 = 1/6$	
$r_m^{(t)}$		$1/2 \cdot 1/3 + 1 \cdot 1/3 = 1/2$	

... eventually this will approach [0,0,1]!

11/27

Example: Take a few steps of power iteration on the modified spider-trap YAM graph below.

$$Mr = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/6 \\ 1/2 \end{bmatrix}$$

1. Init:
$$r^{(0)} = [1/N, \dots 1/N]$$

2. Iterate: $r^{(t+1)} = Mr^{(t)}$

2. Iterate:
$$r^{(t+1)} = Mr^{(t)}$$

3. Stop if:
$$d(r^{(t+1)}, r^{(t)}) < tol$$
.

$t = \dots$	0	1	2
$r_y^{(t)}$	1/3	1/3	
$r_a^{(t)}$	1/3	1/6	
$r_m^{(t)}$	1/3	1/2	

Example: Take a few steps of power iteration on the modified spider-trap YAM graph below.

$$M = \begin{array}{ccc} & Y & A & M \\ Y & \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ M & 0 & 1/2 & 1 \end{array} \end{bmatrix}$$

1. Init:
$$r^{(0)} = [1/N, \dots 1/N]$$

2. Iterate: $r^{(t+1)} = Mr^{(t)}$

2. Iterate:
$$r^{(t+1)} = Mr^{(t+1)}$$

3. Stop if:
$$d(r^{(t+1)}, r^{(t)}) < tol$$
.

$t = \dots$	0	1	2
$r_y^{(t)}$	1/3	1/3	1/4
$r_a^{(t)}$	1/3	1/6	1/6
$r_m^{(t)}$	1/3	1/2	7/12

Example: Take a few steps of power iteration on the modified spider-trap YAM graph below.

$$M = \begin{array}{ccc} & Y & A & M \\ Y & \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ M & 0 & 1/2 & 1 \end{array} \right]$$

	У	а	m
0	0.333	0.333	0.333
1	0.333	0.167	0.500
2	0.250	0.167	0.583
3	0.208	0.125	0.667
4	0.167	0.104	0.729
5	0.135	0.083	0.781
6	0.109	0.068	0.823
7	0.089	0.055	0.857
8	0.072	0.044	0.884
9	0.058	0.036	0.906
10	0.047	0.029	0,924

Activating your Trap Card:

The Google solution: at each time step, the random walker has two options:

- 1. With probability β , follow a real link at random.
- 2. With probability $1-\beta$, teleport or jump to any random page, equally likely
- 3. Common values for β : 0.8-0.9

Counting Result: Suppose we fall into a spider trap. If we choose $\beta = 0.85$, after how many steps are we more likely than not to have escaped?

120 Comme - steps to escape.

Activating your Trap Card:

The Google solution: at each time step, the random walker has two options:

- 1. With probability β , follow a real link at random.
- 2. With probability $1-\beta$, teleport or jump to any random page, equally likely
- 3. Common values for β : 0.8-0.9

Counting Result: Suppose we fall into a spider trap. If we choose $\beta = 0.85$, after how many steps are we more likely than not to have escaped?

Solution: $P(\text{still stuck after k steps}) \approx P(\text{no teleports in k steps}) = \beta^k$.

Goal: find the k so that $\beta^k < 0.5$.

Activating your Trap Card:

The Google solution: at each time step, the random walker has two options:

- 1. With probability β , follow a real link at random.
- 2. With probability $1-\beta$, teleport or jump to any random page, equally likely
- 3. Common values for β : 0.8-0.9

Counting Result: Suppose we fall into a spider trap. If we choose $\beta = 0.85$, after how many steps are we more likely than not to have escaped?

Solution: $P(\text{still stuck after k steps}) \approx P(\text{no teleports in k steps}) = \beta^k$.

Goal: find the k so that $\beta^k < 0.5$.

 $B^k < .5 \implies \log \beta^k < \log 0.5 \implies k \log \beta < -\log 2$. Then: $k > \frac{-\log 2}{\log \beta} = \frac{-\log 2}{\log 0.85} = 4.26$. So with a little under a 1/6 chance (16.6%) to teleport, we're typically out by 5 iterations.

What about Dead Ends?

Example: Take a step of power iteration on the modified dead end YAM graph below.

- 1. Init: $r^{(0)} = [1/N, \dots 1/N]$ 2. Iterate: $r^{(t+1)} = Mr^{(t)}$
- 3. Stop if: $d(r^{(t+1)}, r^{(t)}) < tol$.

0	1	2		
3	1/3			
13	1/6			
3	1/6	,		
	~.C	<u>,</u>	ta	2/
	0/3/3	0 1 1/3 1/6 1/6 1/6	3 1/6	0 1 2 1/3 1/6 1/6 5-1/5 to

What about Dead Ends?

Example: Take a step of power iteration on the modified dead end YAM graph below.

$$Mr = \begin{bmatrix} Y & A & M \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

1. Init:
$$r^{(0)} = [1/N, \dots 1/N]$$

2. Iterate: $r^{(t+1)} = Mr^{(t)}$

- 3. Stop if: $d(r^{(t+1)}, r^{(t)}) < tol$.

What about Dead Ends?

Example: Take a step of power iteration on the modified dead end YAM graph below.

$$Mr = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

- 1. Init: $r^{(0)} = [1/N, \dots 1/N]$ 2. Iterate: $r^{(t+1)} = Mr^{(t)}$
- 3. Stop if: $d(r^{(t+1)}, r^{(t)}) < tol$.

$t = \dots$	0	1
$r_y^{(t)}$		1/3
$r_a^{(t)}$		1/6
$r_m^{(t)}$		1/6

We're in trouble! This vector doesn't sum to 1!

The Dead End

Example: Take a few steps of power iteration on the modified Dead End YAM graph below.

$$M = \begin{array}{ccc} & Y & A & M \\ Y & \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ M & 0 & 1/2 & 0 \end{array} \right]$$

	У	a	m
0	0.333	0.333	0.333
1	0.333	0.167	0.167
2	0.250	0.167	0.083
3	0.208	0.125	0.083
4	0.167	0.104	0.062
5	0.135	0.083	0.052
6	0.109	0.068	0.042
7	0.089	0.055	0.034
8	0.072	0.044	0.027
9	0.058	0.036	0.022
10	0.047	0.029	0.018

Dead End Teleports:

A solution: when at a dead end, follow a random teleport link with probability 1.

1. This represents adjusting the adjacency matrix to require every column sum to 1!

2

$$M = \begin{array}{ccc} & Y & A & M \\ Y & \begin{bmatrix} 1/2 & 1/2 & 1/3 \\ 1/2 & 0 & 1/3 \\ M & 0 & 1/2 & 1/3 \end{bmatrix}$$

Full PageRank:

The Google solution: a blend of the the solution to spider traps and dead ends.

- 1. With probability β , follow a real link at random.
- 2. With probability 1β , teleport or jump to any random page, equally likely
- 3. Common values for β : 0.8-0.9
- Brin-Page, 1998 (with tens of thousands of citations!) gives the rest of times updates PageRank formula: M

$$r_{j} = \sum_{i \to j} \beta \frac{r_{i}}{d_{i}} + \sqrt{(1-\beta)} \frac{1}{N}$$

The resulting transition matrix is given by

every entry is 1/N $A = \beta M + (1 - \beta)$

Brin-Page Rank in action

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

For this spider-trap example, we would have

$$A = 0.8 \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} + 0.2 \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

$$= \begin{bmatrix} 7/15 & 7/15 & 1/15 \\ 7/15 & 1/15 & 1/15 \\ 1/15 & 7/15 & 13/15 \end{bmatrix}$$

$$= \begin{bmatrix} 7/15 & 7/15 & 1/15 \\ 1/15 & 7/15 & 13/15 \\ 1/15 & 7/15 & 13/15 \end{bmatrix}$$

$$= \begin{bmatrix} 7/15 & 7/15 & 1/15 \\ 1/15 & 7/15 & 13/15 \\ 1/15 & 7/15 & 13/15 \end{bmatrix}$$

$$= \begin{bmatrix} 7/15 & 1/15 & 1/15 \\ 1/15 & 7/15 & 13$$


```
0.333
       0.333
0.200
       0.467
0.200
       0.520
0.179
       0.563
0.170
       0.588
```

Brin-Page Rank in action

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$
 For this spider-trap example, we would have

$$A \neq 0.8 \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} + 0.2 \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

$$= \begin{bmatrix} 7/15 & 7/15 & 1/15 \\ 7/15 & 1/15 & 1/15 \\ 1/15 & 7/15 & 13/15 \end{bmatrix}$$

$$= \begin{bmatrix} 7/15 & 7/15 & 1/15 \\ 1/15 & 7/15 & 13/15 \end{bmatrix}$$

$$0 & 0.333$$

$$1 & 0.333$$

$$2 & 0.280$$

$$3 & 0.259$$

$$4 & 0.242$$

$$5 & 0.231$$

$$6 & 0.225$$

$$7 & 0.220$$

$$8 & 0.217$$

$$9 & 0.215$$

$$10 & 0.214$$

0.467 0.200 0.520 0.1790.563 0.170 0.588 0.163 0.605 0.159 0.616 0.220 0.156 0.623 0.155 0.628 0.154 0.631 0.214 0.153 0.633

Looks all good, right? ... but this is not column-stochastic in the case of a dead-end. The columns in this case each sum to "0.8 times the M matrix's columns plus 0.2." So we still needed column-stochastic M!

Brin-Page Rank

PageRank Recap

| b. llow | both A Pene }

The final step: In our matrix-vector multiplication ${m r}^{new}=A{m r}^{old}$, we can also normalize r to ensure it sums to 1.

So let's talk about implementation. How big are these things?

Say there are about $N=10^9$ or 1 billion web pages/nodes in the graph. 999999995 Then if we need 4 bytes for each entry in A and r...

- A has $N^2 = 10^{18}$ entries, so 4 times that in bytes...
- we need a billion GB. No thanks!
- So lets save some memory!

Goal: For $A=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N\times N}$, compute $r^{new}=Ar^{old}$ quickly.

Point 1: Denote the elements $A_{ji} = \beta M_{ji} + \frac{1-\beta}{N}$

Goal: For $A=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N\times N}$ compute $\boldsymbol{r}^{new}=A\boldsymbol{r}^{old}$ quickly. Point 1: Denote the elements $A_{ji}=\beta M_{ji}+\frac{1-\beta}{N}$

Point 2: To get r_j^{new} , we take the jth row of A and multiply it by r^{old} .

That's a dot product or a sum.

Mullen: PageRank Computation

Goal: For $A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$, compute $r^{new} = A r^{old}$ quickly.

Point 1: Denote the elements $A_{ji} = \beta M_{ji} + \frac{1-\beta}{N}$

Point 2: To get r_i^{new} , we take the *j*th row of A and multiply it by r^{old} .

That's a dot product or a sum.

In other words,

$$m{r}_{j}^{new} = \sum_{i=1}^{N} A_{ji} m{r}_{i}^{old}$$

Goal: For $A=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N\times N}$, compute $\boldsymbol{r}^{new}=A\boldsymbol{r}^{old}$ quickly. Point 1: Denote the elements $A_{jj}=\beta M_{ji}+\frac{1-\beta}{N}$

In other words.

$$m{r}_{j}^{new} = \sum_{i=1}^{N} A_{ji} m{r}_{i}^{old}$$

We can rewrite and simplify:
$$r_j^{new} = \sum_{i=1}^N \left(\beta M_{ji} + \frac{1-\beta}{N}\right) r_i^{old}$$
, or $r_j^{new} = \sum_{i=1}^N \beta M_{ji} r_i^{old} + \sum_{i=1}^N \frac{1-\beta}{N} r_i^{old}$

Goal: For $A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$, compute $r^{new} = Ar^{old}$ quickly.

Point 1: Denote the elements $A_{ji} = \beta M_{ji} + \frac{1-\beta}{N}$ In other words.

$$m{r}_{j}^{new} = \sum_{i=1}^{N} A_{ji} m{r}_{i}^{old}$$

We can rewrite and simplify: $\boldsymbol{r}_{j}^{new} = \sum_{i=1}^{N} \left(\beta M_{ji} + \frac{1-\beta}{N}\right) \boldsymbol{r}_{i}^{old}$, or $\boldsymbol{r}_{j}^{new} = \sum_{i=1}^{N} \beta M_{ji} \boldsymbol{r}_{i}^{old} + \sum_{i=1}^{N} \frac{1-\beta}{N} \boldsymbol{r}_{i}^{old}$

Point 3: If we've managed to make $\sum_{i=1}^{N} r_i^{old} = 1$, this simplifies more! The second sum is just $\frac{1-\beta}{N}$. Result:

Goal: For $A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$, compute $r^{new} = Ar^{old}$.

The effect of teleports simplified to adding a constant vector: $\mathbf{r} = \beta M \mathbf{r} + \left[\frac{1-\beta}{N}\right]_{N \times 1}$... what's the payoff?

- 1. M is a sparse matrix. Assume each node has 10 links, we only have 10N non-zero entries instead of N^2 !
- 2. So only 40 GB to hold if $N=10^9!$ This is likely not doable in main memory, but is at least able to be stored.

Iteration:

- 1. Compute $m{r}^{new} = M m{r}^{old}$
- 2. Add a constant $(1-\beta)/N$ to every entry in r^{new}
- 3. Renormalize r^{new} so that is sums to 1. **Must** be done if M has dead ends, but can also help with floating point precision in general.

Algorithm: with a couple of short-cuts...

- **Input:** a convergence tolerance ε , graph G, and parameter β .
- Output: PageRank vector r

Initialize: $r_{old} = 1/N$ for # of nodes N. **Iterate:**

- 1. Let the link economy spread out importance. For all i: $r_i^{new,*} = \sum_{i \to i} \beta r_i^{old} / d_i$ (for all in-links, sum importance/degree of in-link).
- 2. Then Re-insert the "leaked" or "taxed" PageRank from teleports. **For all** j: $r_i^{new,*} = r_i^{new,*} + \frac{1-S}{N}$. Where we keep a running tally of $S = \sum_i r_i^{new,*}$ in the prior step. This handles $oldsymbol{both}$ normalization and including teleports: take whatever $oldsymbol{r}_i^{new,*}$ currently sums to, then add what's needed to make it sum to 1... divided equally over all N entries.
- 3. Check convergence with some norm, e.g. **break** if $d(\mathbf{r}_{old}, \mathbf{r}_{new}) < \varepsilon$.
- 4. Update $r_{old} = r_{new}$

22 / 27

Sparse Mat-Vec

Assuming r^{new} fits into main memory, we can run this by accessing r^{old} and M from disk.

One step of power iteration becomes:

- 1. Initialize all entries of $r^{new} = \frac{1-\beta}{N}$
- 2. For each page i with out-degree d_i ...
 - 2a. Read into memory row i from M, so we get $(i, d_i, \{j_1, j_2, \dots j_{d_i}\})$
 - 2b. For j in $\{j_1, j_2, \dots, j_{d_i}\}$, the destinations of i...:

$$m{r}_{j}^{new}+=etam{r}_{i}^{old}/d_{i}$$

Sparse Mat-Vec

You may be asking... where did M go? We're trying to not save it into memory by reverting back to the original thought process: importance only flows out along links $i \to j$ and flows out relative to the number outlinks of a node d_i .

So those things are all that we want to save and use. We encode only the non-zero entries of M by keeping our links as a list of lists or a dictionary:

Source node	Degree	Destination nodes
0	6	2, 9, 19, 88, 2019, 3031
1	4	4, 19, 28, 1991
2	2	0, 42

Sparse Mat-Vec

We can even tweak the algorithm if we don't want to have to load all of M or r into memory at once. This is known as **block** updating. To not load r into memory:

- 1. Break r^{new} into k blocks or chunks, and then
- 2. update one chunk at a time by scanning through M and r_{old} once per block

rnew

	^	r
=	0	
	1	

3

5

Source node	Degree	Destination nodes
0	4	0, 1, 3, 8
1	5	0, 4, 6, 7, 9
2	3	1, 8, 15
3	1	7
4	3	2, 3, 5

١

	rold
i = 0	Lord
1	
2	
3	
4	
5	

Block-Stripe

The absolute best-case for a huge M is that certain regions of M only link to themselves or one another. For those regions, we could save additional time by breaking M into k stripes, that correspond to the blocks of r where destination nodes are needed.

This is called block-stripe updating, and allows us to not read M repeatedly. Instead it ends up somewhat divided into topic areas!

i = 0 1	rnew
2	
4 5	

Source node	Degree	Destination nodes
0	4	0, 1
1	5	0
2	3	1
0	4	3
4	3	2, 3
1	5	4
4	3	5
Mullen: PageRank Computation		

М

Acknowledgments

Next time: More on Graphs, and fixing cheaters: link spam and topic-specific variants of PageRank!

Some material is adapted/adopted from Mining of Massive Data Sets, by Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University) http://www.mmds.org

Special thanks to Tony Wong for sharing his original adaptation and adoption of slide material.