CORSO DI OTTIMIZZAZIONE

Prova scritta del 29 Luglio 2013

Tempo a disposizione: ore 2:30.

Si ricorda che:

- Per quanto possibile, occorre scrivere in bella calligrafia (il testo illeggibile non verrà preso in considerazione).
- Su tutti i fogli che vi abbiamo consegnato occorre riportare cognome, nome e numero di matricola.
- Occorre riportare in modo chiaro tutti i passi che portano alla determinazione del risultato.
- Il numero dell'esercizio che si sta svolgendo va sempre riportato in modo chiaro.
- Non è consentita la consultazione di appunti, libri, etc.
- Non è consentito l'uso di calcolatrici, telefoni cellulari, etc.
- Non è concesso chiedere alcunché ai docenti e agli altri studenti.
- Occorre consegnare anche la brutta copia ai docenti.

Esercizio 1. (Punti 8)

Un'insegnante di informatica ha a sua disposizione 3 personal computers e deve tramite essi compilare i progetti presentati dai suoi 7 studenti. In ciascun PC è istallato il software necessario a compilare ciascun progetto. L'insegnante conosce già i tempi necessari alla compilazione dei progetti, che sono rispettivamente di 3, 4, 4, 5, 5, 6 e 9 minuti. Si formuli il problema di allocare i progetti sulle tre macchine in modo da minimizzare il tempo necessario a completare la compilazione degli 8 progetti, usando la PLI. Si tenga ovviamente conto del fatto che i 3 PC possono compilare i progetti in parallelo.

Esercizio 2. (Punti 8)

Un'azienda deve strutturare una rete di comunicazione in modo da garantire una banda di 10 Mbps tra una macchina A e una macchina B, che si trovano in due sedi diverse dell'azienda. Per mettere in comunicazione A e B, l'azienda può far passare i dati attraverso i router R_1, R_2, R_3, R_4 e alcune linee dati esistenti tra di essi, che però devono essere affittate. A si può supporre adiacente a R_1 , mentre B è adiacente a R_4 Le capacità (in Mbps) u_{ij} e i costi di affitto (in Euro al Mbps) c_{ij} di ciascuna linea dati monodirezionale fra il router i e il router j (dove $i, j \in \{1, 2, 3, 4\}$) sono riassunti di seguito:

$$u_{12} = 70$$
 $u_{13} = 80$ $u_{14} = 40$ $u_{32} = 70$ $u_{24} = 40$ $u_{34} = 50$ $c_{12} = 10$ $c_{13} = 20$ $c_{14} = 15$ $c_{32} = 8$ $c_{24} = 12$ $c_{34} = 10$

Si formuli in PLI il problema di minimizzare il costo complessivo di affitto delle linee di comunicazione.

Esercizio 3. (Punti 8)

Si risolva tramite l'algoritmo del simplesso primale, il seguente problema di programmazione lineare:

$$\min 2x_1 + x_2$$

$$x_1 \ge -1$$

$$x_2 \ge -1$$

$$x_2 \le 2$$

$$2x_2 \le 2 - x_1$$

$$x_2 + 3 \ge 2x_1$$

Si parta dalla base ammissimile $B = \{4, 5\}.$

Esercizio 4. (Punti 3, la risposta occupi al massimo 15 righe)

Come definiamo il duale di un dato problema di programmazione lineare? Si spieghi brevemente perché la dualità è un concetto importante nella geometria della programmazione lineare.

Esercizio 5. (Punti 3, la risposta occupi al massimo 15 righe)

Si considerino i problemi di flusso massimo e di flusso di costo minimo in un grafo. Ve n'è uno più generale dell'altro. Quale? Perché?