CMPE 310 Systems Design and Programming

L4: Chapter 9 – 8086/8088 Hardware Specifications

L4 Objectives

- * Describe the pin-outs of the x86/88
- Understand the difference between MN/MX mode of operation
- * Understand the DC Characteristics of the 86/88
- * Understand the function of the clock generator
- * Diagram a fully demultiplex the AD bus

Microprocessor interfacing

* What information/signals should a processor take as input?

* What information/signals should a processor send as output?

8086/88 Device Specifications Both are packaged in 40-pin DIP (Dual In-Line Packages) 8086: 16-bit microprocessor with a 16-bit data bus 8088: 16-bit microprocessor with an 8-bit data bus GND 40 Vcc 38 A16/S3 36 A18/S5 35 A19/S6 34 18 33 MN/! HX 32 RD <-> ADS 11 30 !RQ/!GT1, HOLD <-> 29 ILOCK, IWR <-> AD4 12 <-> AD3 13 <-> AD2 27 |S1,DT/!R <-> AD1 15 26 180, IDEN <-> ADO 16 25 030, ALE --> NHI 17 24 QS1, ! INTA --> INTR 18 23 !TEST --> CLK 19 22 READY

Power Supply Requirements for 8086/88

- Voltage: 5V (i.e. V_{DD} is 5V)
 - * Power Supply Current:
 - * 8086/88: TTL Version 360/340 mA, with temp spec 32 to 180 °F
 - * 8oC86/8oC88: CMOS Version 10 mA, with temp spec -40 to 225 °F
- * DC Characteristics: Input/Output current levels:

INPUT Logic level	Voltage	Current	OUTPUT Logic level	Voltage	Current
0	0.8V max	+/- 10uA max	0	0.45V max	+2mA max
1	2.0V min	+/- 10uA max	1	2.4V min	- 400uA max

- Output Logic o is not compatible with standard devices → reduced noise immunity
- Yields a 350mV noise immunity for logic o. This limits the loading on the outputs.

- * AD15-AD0.
 - * Multiplexed address(ALE=1)/data bus(ALE=0).
- * A19/S6-A16/S3 (multiplexed).
 - * High order 4 bits of the 20-bit address $(A_{19}-A_{16})$ OR status bits S_6-S_3 .
- * M/IO.
 - * Indicates if address is a Memory or IO address.
- * RD
 - * When o, data bus is receptive to data from either memory or I/O device.
- * WR
 - * A strobe pin to indicate that μP is outputting data to memory or an I/O device. When o, data bus contains valid data for memory or I/O.
- * ALE (Address latch enable)
 - * When 1, address/data bus contains a memory address or I/O port number.
- * DT/R (Data Transmit/Receive)
 - * Data bus is transmitting/receiving data from external bus.
- * DEN (Data bus Enable)
 - * Activates external data bus buffers.

8086/88 Device Specifications

8086/88 Pin-outs

- * \$7, \$6, \$5, \$4, \$3, \$2, \$1, \$0
 - * **57:** Logic 1, S6: Logic 0.
 - * S5: Indicates condition of IF flag bits.
 - * **S4-S3:** Indicate which segment is accessed during current bus cycle:

0 0		Function			
		Extra segment			
0	1	Stack segment			
1	0	Code or no segment			
1	1	Data segment			

 $\overline{S_2}$, $\overline{S_1}$, $\overline{S_0}$: Indicate function of current bus cycle (decoded by 8288).

$\overline{S2}$	SI	50	Function	S2	$\overline{S1}$	S0	Function
0	0	0	Interrupt Ack	1	0	0	Opcode Fetch
0	0	1	I/O Read	1	0	1	Memory Read
0	1	0	I/O Write	1	1	0	Memory Write
0	1	1	Halt	1	1	1	Passive

* INTR

* When 1 and IF=1, μ P prepares to service interrupt. INTA becomes active after current instruction completes.

* INTA

* Interrupt Acknowledge generated by the μP in response to INTR.

* NMI

 Non-maskable interrupt. Similar to INTR except IF flag bit is not verified and interrupt is vector 2 (causes INT 2).

* CI K

* Provides the basic timing signal to μP, clock input must have a duty cycle of 33%

* VCC/GND

Power supply (+ 5.0 V + 10%) and GND (oV)

* MN/MX

* Min/max mode, select minimum (5V) or maximum mode (oV) of operation.

8086/88 Device Specifications

BHE/S7

 Bus High Enable. Enables the most significant data bus bits (D15-D8) during a read or write operation

* READY

* Used to insert wait states (controlled by memory and IO for reads/writes) into the μP .

* DESET

* μP resets if this pin is held high for 4 clock periods.

* TEST

- * An input that is tested by the WAIT instruction
- If TEST = 0, WAIT instruction becomes a NOP; TEST=1, μP enters into wait state till TEST = 0. Commonly connected to the 8087 coprocessor.

∗ HOLD

* Requests a direct memory access (DMA). When 1, μ P stops and places address, data and control bus in high-impedance state; when 0, μ P execute software normally.

* HLDA (Hold Acknowledge)

* Indicates that the $\mu P\,$ has entered the hold state.

* RQ/GT1 and RQ/GT0

 Request/grant pins request/grant direct memory accesses (DMA) during maximum mode operation.

* LOCK

* Lock output is used to lock peripherals off the system. Activated by using the LOCK: prefix on any instruction.

* QS₁ and QS₀

* The queue status bits show status of internal instruction queue.

System clock

- * Used to synchronize both internal and external operations
- * Generated by external oscillator
- * Specified in terms of frequency or cycle time
 - * Cycle time = 1 / frequency
 - * E.g. 20 MHz clock \rightarrow cycle time = 1 / 20x10⁶ = 50 ns
- * x86 specifics
 - * 86/88 \rightarrow 5 MHz (Internal clock: $\frac{1}{3}$ frequency of CLK)
 - * 386 → Valid internal frequencies 16, 20, 25, 33 MHz (½ frequency of CLK)
 - * One (internal) cycle: 1 "T state"

8284A Clock Generator

- * 8284A is an ancillary component to 8086/88
 - Clock generation
 - * RESET synchronization
 - * READY synchronization
 - * TTL-level Peripheral clock signal

Connection of the 8284 and the 8086.

8284A Clock Generator Pin Description

- * AEN1 and AEN2
 - Address enable these signals are provided to qualify the RDY1 and RDY2 signals
- RDY1 and RDY2
 - Bus ready these signals along with address enable signals control the insertion of wait states
- ASYNC
 - * Ready Synchronization Selects either one or two stages of synchronization for RDY1 and RDY2.
- * X1 and X2 (crystal in)
 - * _Crystal Oscillator for connection to an external crystal oscillator
- * F/C
 - * Frequency/Crystal Select chooses the clocking source for 8284A
 - * If this pin is held high, an external clock is provided to EFI input pin
- * EFI
 - * External frequency input auxiliary source of external clock/timing

8284A Clock Generator Pin Description

- * CLK
 - Clock Output pin provides clock to x86 processors. CLK freq. is 1/3 of crystal (or EFI) and has 33% duty cycle
- * PCLK
- * Peripheral Clock 1/6 of the crystal (or EFI) freq and has 50% duty cycle
- * OSC
- * Oscillator output A TTL level signal to be used as EFI for another 8284A
- * RES
 - Reset input Active low. Typically connected to an RC network for power-on reset
- * RFSFT
 - * Reset Output connected to x86 μP reset input pin
- * CSYNC
 - * Clock Synchronization pin used with **EFI** to have a synchronous clocking mechanism. If internal crystal is used, this pin & **F/C** must be grounded

Clock generation

- Crystal is connected to X1 and X2.
- XTAL OSC generates square wave signal at crystal's frequency which feeds:
 - * An inverting buffer that provides the OSC output signal which is used to drive the EFI input of other 8284As.
- * 2-to-1 MUX
 - * F/C selects XTAL or EFI external input.
 - * The MUX drives a divide-by-3 counter (15MHz to 5MHz).
 - * This drives:
 - * The READY flipflop (READY synchronization).
 - * A second divide-by-2 counter (2.5MHz clk for peripheral components).
 - * The **RESET flipflop**.
 - * CLK which drives the 8086 CLK input.

RESET Operation

* Negative edge-triggered flip-flop applies the RESET signal to the 8086 on the falling edge.

* The 8086 samples the **RESET pin on the rising edge of the clock.**

* Correct reset timing requires that the **RESET input to the microprocessor becomes a logic 1** in 4 clocks after power up and stay high for at least 50 µs.

BUS Buffering and Latching

- Before connecting to any peripheral or memory, the x86 buses need to be demultiplexed
 - * If there are a number of components in the system, the buses should be buffered
 - * Memory and I/O require that the address remain valid and stable throughout the read or write cycle
 - * If buses are **multiplexed**, the address changes at memory or I/O, will cause them to **read or write data** in the wrong locations

BUS Buffering and Latching

- * X86 systems have three buses
 - * Address
 - * Data
 - * Control
- * The Address and Data bus are multiplexed due to pin limitations on the 8086.
 - * The ALE pin is used to control a set of latches.
- * All signals MUST be buffered
 - * Buffered Latches for A₀-A₁₅.
 - * Control ('244) and $A_{\overline{16}}$ - $\overline{A_{19}}$ + BHE ('373) are buffered separately.
 - * Data bus buffers must be bi-directional buffers.
- * In a 8086 system, the memory is designed with two banks
 - * High bank contains the higher order 8-bits and low bank the lower order 8-bits
 - * Data can be transferred as 8 bits from either bank or 16-bits from both
 - * BHE pin selects the high-order memory bank

