- Q1 a) (i) A permutation of a set X is a bijection $\sigma: X \to X$.
 - (ii) A cycle is a permutation of satisfying: There exist an are such that

 $\sigma(a_1) = a_2$, $\sigma(a_2) = a_3$, ..., $\sigma(a_k) = a_1$ and $\sigma(x) = x$ for all $x \notin \{a_1, ..., a_k\}$.

- (iii) A transposition is a cycle of length 2.
- b) An even permutation is a permutation that can be written as aix even product of an even number of transpositions.
- c) Consider the elements $(1,2)(3,4) \in A_n$ for $n \ge 4$ and $(2,3)(1,3) \in A_n$ $(n \ge 4)$. We compute:
 - (2,3)(1,3)(1,2)(3,4) = (1,3,4) and
 - (1,2)(3,4)(2,3)(1,3) = (2,3,4), they do not commute. So that A_n , $n \ge 4$, is not abelian, since $A_4 \subseteq A_n$ for all $n \ge 4$.

- QZ: a) If H=G 13 a subgroup, then tgeG
 gH={gh | heH} 15 a left coset, and
 Hg={hg | heH} 15 a right coset.
 - b) The cosets of D_n all have size $|D_n| = 2n$, and they partition S_n . Therefore there are $|S_n| = \frac{n!}{|D_n|} = \frac{n!}{2n}$ cosets.
 - c) A subgroup NCG 13 normal in G if gN=Ng for all gEG.
- d) Suppose that Ni and N2 are normal. Then gNig"= Ni for i=1,2. Therefore
 - g(N, n N2) = gN, g'ngN2g' = N, nN2 so that N, nN2 is normal. One can check
 - that $g(N_1 \cap N_2)g' = gN_1 g' \cap gN_2 g'$ by writing them in full: $g(N_1 \cap N_2)g' = \{ghg' \mid h \in N_1 \cap N_2\}$
 - gN,g'ngN2g' = {ghg'| heN,}n {ghg'| heN2}.

Q3 Suppose that $G = \langle g \rangle$, and left $fH \in G/H$ be given. Since G is cyclic, $\exists k \in \mathbb{Z}$ such that f = gk. But then $fH = gkH = (gH)^k$ so that every element in G/H is a generator of gH, thus G/H is cyclic.

Q4 a) Define a map
$$\phi: \mathbb{R}/H \longrightarrow G_1$$
 by $\phi(\Theta+H) = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix}$.

b) Suppose that $\alpha + H = \beta + H$. Then $\alpha = \beta + 2\pi k$ for some $k \in \mathbb{Z}$. Therefore

$$\phi(\alpha + H) = \begin{bmatrix} \cos \alpha - \sin \alpha \end{bmatrix} = \begin{bmatrix} \cos(\beta + 2\pi k) & -\sin(\beta + 2\pi k) \end{bmatrix}$$

$$\begin{bmatrix} \sin(\beta + 2\pi k) & \cos(\beta + 2\pi k) \end{bmatrix}$$

So \$ 13 well-defined.

c) β is clearly surjective. To see it is injective, suppose $\beta(\alpha+H)=\beta(\beta+H)$. Then

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$$

So $cos(\alpha) = cos(\beta)$ and $sin(\alpha) = sin(\beta)$. To solve this, observe that this gives

$$\cos(\alpha)\cos(\beta)+\sin(\alpha)\sin(\beta)=\cos^2\alpha+\sin^2\alpha=1$$

 $\Rightarrow \cos(\alpha-\beta)=1$, so $\alpha-\beta=2k\pi t$
 $\Rightarrow \alpha=\beta+2k\pi t$.
Therefore $\alpha+H=\beta+H$.

d) To see that & respects the group speration,

$$\phi(\alpha + H) \cdot \phi(\beta + H) = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

=
$$\left[\cos \alpha \cos \beta - \sin \alpha \sin \beta - \cos \alpha \sin \beta - \sin \alpha \cos \beta \right]$$

 $= \left[\cos \beta \sin \alpha + \cos \alpha \sin \beta - \cos \alpha \cos \beta - \sin \alpha \sin \beta \right]$
 $= \left[\cos (\alpha + \beta) - \sin (\alpha + \beta) \right]$
 $= \left[\sin (\alpha + \beta) \cos (\alpha + \beta) \right]$

$$= \begin{bmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{bmatrix}$$

while

while
$$\phi((\alpha+H)+(\beta+H))=\phi((\alpha+\beta)+H)=[\cos(\alpha+\beta)-\sin(\alpha+\beta)]$$

 $\sin(\alpha+\beta)=\cos(\alpha+\beta)$.