Network Coding: An Overview

Raymond W. Yeung

institute of Network Coding &

Department of Information Engineering

The Chinese University of Hong Kong (CUHK)

Outline

- Introduction and Examples
- Single-Source Network Coding
- Recent DevelopmentsConcluding Remarks

A Network Coding Example

The Butterfly Network

A Network Coding Example

Satellite/Wireless Application

NASA project proposal (2008)

Two Themes of Network Coding

- When there is 1 source to be multicast in a network, store-and-forward may fail to optimize bandwidth
- When there are 2 or more independent sources to be transmitted in a network (even for unicast), store-and-forward may fail to optimize bandwidth

Single Source vs. Multiple Sources

Single-source network coding

Multi-source network coding

- Explicit characterization by Max-flow Min-Cut
 Theorem for information flow (graph-theoretic)
- Numerous applications are emerging
- Implicit characterization in terms of achievable entropy functions (Yan, Yeung, Zhang, 2007)
- entropy functions (Yan, Yeung, Zhang, 2007)

Max-Flow Min-Cut: Commodity Flow

- Elias, Feinstein, and Shannon (1956)
- Ford and Fulkerson (1956)

Maximum flow = Minimum cu

Max-Flow Min-Cut: Information Flow

Ahlswede, Cai, Li, and Yeung (1998/2000)

```
by means of network cod
```

 $xflow(s,t_i) \ge k$ i = 1, 2, ..., m

Linear Network Coding

- · Linear network coding suffices
 - Vector space approach: Li, Yeung and Cai (1999/2003)
 - Matrix approach: Koetter and Medard (2002/03)

 A sufficiently large finite field chosen as the base field

Example: Butterfly Network

Random Linear Network Coding Ho, Koetter, Medard, Karger, Effros (2003/06)

· Random coefficients for linear network coding Can decode w.p.≈ 1 provided that the base

field is sufficiently large Subspace coding: Koetter and Kschischang

· Enables network coding in unknown network

Publications & Conferences

- > 2,000 citations (Google Scholar)
- > 600 citations for past 12 months
 4 books
- ~ 8 special journal issues related to NC
- ~ 8 journal & conference paper awards
 2 appual conferences: NetCod (since 2005)
- 2 annual conferences: NetCod (since 2005), WiNC (since 2008)

Major Research Projects

- USA: IT-MANET, CB-MANET (DARPA)
- Europe: N-CRAVE (European Commission)
 Hong Kong: Institute of Network Coding (HK
 - Funded for 8 years
 - Conduct research in different aspects of NC
 - Ocativing and implemention

Network Coding Roadmap

Network Error Correction

- Cai and Yeung (2002/2006)
- Use network coding for error correction
 Generalizes classical algebraic coding to
 - networks:

 Bounds: Hamming, Gilbert-Varshamov, Singleton
 - Network Singleton bound achievable
- Can correct random errors and neutralize

Secure Network Coding

- Cai and Yeung (2002/2007)
- Uses network coding against wiretapping
- Subsumes secret sharing in cryptography
 Information-theoretic bounds achievable for some important special cases

Signal-Level Network Coding

- Allows wireless signals to add up physically
 Can further improve the efficiency of wireless
- network coding
- Physical-Layer NC: Zhang, Liew, and Lam (2006)
 Analog NC: Katti, Gollakota, and Katabi (2007)

Illustration of PNC/ANC

PNC

- Estimates A+B

ANC

- Amplify and forward

- For decades, network communication has been based on point-to-point solutions + routing
 Network coding fundamentally changes the concept of
- network communications

 Can apply to any communication system that can be modeled as a network
- Researchers are investigating and re-investigating different aspects of network communications
 A new information infrastructure for transmission, storage,
- security, etc, is underway

 Network coding will continue to interact with different

