8.2.7

EE25BTECH11043 - Nishid Khandagre

October 5, 2025

Question

Find the coordinates of the focus, vertex, eccentricity, axis of the conic section, the equation of the directrix and the length of the latus rectum.

$$16x^2 + y^2 = 16$$

We use an affine transformation to convert the conic equation to its standard form.

$$\mathbf{x}^{\mathsf{T}}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\mathsf{T}}\mathbf{x} + f = 0 \tag{1}$$

The symmetric matrix ${f V}$ is spectrally decomposed to align axes with eigenvectors.

$$\mathbf{V} = \mathbf{P} \mathbf{D} \mathbf{P}^{\mathsf{T}}, \ \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \ \mathbf{P}^{\mathsf{T}} \mathbf{P} = \mathbf{I}$$
 (2)

Substituting the decomposition into the conic equation.

$$\mathbf{x}^{\mathsf{T}}\mathbf{P}\mathbf{D}\mathbf{P}^{\mathsf{T}}\mathbf{x} + 2\mathbf{u}^{\mathsf{T}}\mathbf{x} + f = 0 \tag{3}$$

A rotation

$$\mathbf{x_r} = \mathbf{P}^{\top} \mathbf{x} \tag{4}$$

aligns the conic with the coordinate axes.

$$\mathbf{x} = \mathbf{P}\mathbf{x_r} \tag{5}$$

Applying the rotation to the conic equation.

$$(\mathbf{P}\mathbf{x}_{\mathbf{r}})^{\top} \mathbf{P} \mathbf{D} \mathbf{P}^{\top} (\mathbf{P}\mathbf{x}_{\mathbf{r}}) + 2\mathbf{u}^{\top} (\mathbf{P}\mathbf{x}_{\mathbf{r}}) + f = 0$$
 (6)

$$\mathbf{x_r}^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} \mathbf{P} \mathbf{D} \mathbf{P}^{\mathsf{T}} \mathbf{P} \mathbf{x_r} + 2 \left(\mathbf{P}^{\mathsf{T}} \mathbf{u} \right)^{\mathsf{T}} \mathbf{x_r} + f = 0$$
 (7)

$$\mathbf{x_r}^{\mathsf{T}} \mathbf{D} \mathbf{x_r} + 2 \mathbf{u_r}^{\mathsf{T}} \mathbf{x_r} + f = 0 \tag{8}$$

A translation

$$\mathbf{x_c} = \mathbf{x_r} + \mathbf{D}^{-1}\mathbf{u_r} \tag{9}$$

moves the conic's center to the origin.

$$f_c = f - \mathbf{u_r}^{\top} \mathbf{D}^{-1} \mathbf{u_r} \tag{10}$$

The center of the conic in the original coordinates is

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \tag{11}$$

$$\mathbf{c} = -\left(\mathbf{P}\mathbf{D}\mathbf{P}^{\top}\right)^{-1}\mathbf{u} = -\mathbf{P}\mathbf{D}^{-1}\mathbf{P}^{\top}\mathbf{u} = -\mathbf{P}\mathbf{D}^{-1}\mathbf{u}_{\mathsf{r}} \tag{12}$$

The complete transformation from original to centered coordinates is

$$\mathbf{x_c} = \mathbf{P}^{\top} \left(\mathbf{x} - \mathbf{c} \right) \tag{13}$$

$$\mathbf{x}_{\mathbf{c}} = \mathbf{P}^{\top} \mathbf{x} + \mathbf{D}^{-1} \mathbf{u}_{\mathbf{r}} = \mathbf{P}^{\top} \mathbf{x} - \mathbf{P}^{\top} \mathbf{c} = \mathbf{P}^{\top} (\mathbf{x} - \mathbf{c})$$
 (14)

$$\implies \mathbf{x} = \mathbf{P}\mathbf{x_c} + \mathbf{c} \tag{15}$$

The given conic equation

$$16x^2 + y^2 = 16 (16)$$

$$\frac{16x^2}{16} + \frac{y^2}{16} = \frac{16}{16} \tag{17}$$

$$\frac{x^2}{1} + \frac{y^2}{16} = 1 \tag{18}$$

This is an ellipse centered at (0,0) with major axis along the y-axis.

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{16} \end{pmatrix}, \ \mathbf{u} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ f = -1 \tag{19}$$

The major axis corresponds to smaller eigenvalue.

$$\lambda_1 = \frac{1}{16}, \ \lambda_2 = 1, \ \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \mathbf{c} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (20)

Applying the rotation to find the canonical coordinates.

$$\mathbf{x_c} = \mathbf{P}^{\top} \mathbf{x} \implies \begin{pmatrix} x_c \\ y_c \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$$
 (21)

The standard form of the ellipse in canonical coordinates.

$$\frac{x_c^2}{-f/\lambda_1} + \frac{y_c^2}{-f/\lambda_2} = 1 \tag{22}$$

From this, $a^2=-f/\lambda_1=-(-1)/(1/16)=16 \implies a=4$ (major semi-axis) and $b^2=-f/\lambda_2=-(-1)/1=1 \implies b=1$ (minor semi-axis).

Now we can calculate the properties:

$$e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{1}{16}} = \frac{\sqrt{15}}{4} \tag{23}$$

$$f_c = \pm aee_1$$
 (if major axis is x-axis) (24)

$$=\pm\sqrt{a^2-b^2}{f e_1}=\pm\sqrt{16-1}{f e_1}=\pm\sqrt{15}{f e_1}$$
 (along canonical y-axis) (25)

$$\mathbf{v_c} = \pm a\mathbf{e_1} = \pm 4\mathbf{e_1}$$
 (along canonical y-axis) (26)

$$\mathbf{d_c} : \mathbf{e_1}^{\top} \mathbf{x_c} = \pm \frac{a}{e} = \pm \frac{4}{\sqrt{15}/4} = \pm \frac{16}{\sqrt{15}}$$
 (27)

$$L = \frac{2b^2}{a} = \frac{2(1)^2}{4} = \frac{1}{2} \tag{28}$$

Transforming properties back to the original coordinate system using (15).

$$\mathbf{f} = \mathbf{P} \left(\pm \sqrt{15} \mathbf{e_1} \right) = \pm \sqrt{15} \mathbf{e_2} = \begin{pmatrix} 0 \\ \pm \sqrt{15} \end{pmatrix}$$
 (29)

$$\mathbf{v} = \mathbf{P} \left(\pm 4\mathbf{e}_1 \right) = \pm 4\mathbf{e}_2 = \begin{pmatrix} 0 \\ \pm 4 \end{pmatrix} \tag{30}$$

$$\mathbf{d} : \mathbf{e_2}^{\top} \mathbf{x} = \pm \frac{16}{\sqrt{15}} \implies \begin{pmatrix} 0 & 1 \end{pmatrix} \mathbf{x} = \pm \frac{16}{\sqrt{15}}$$
 (31)

Theoretical Solution Summary

Property	Value
Eccentricity	$\frac{\sqrt{15}}{4}$
Axis	x = 0 (Y-axis, major axis)
Vertices	$(0, \pm 4)$
Foci	$\left(0,\pm\sqrt{15} ight)$
Directrices	$y = \pm \frac{16}{\sqrt{15}}$
Latus Rectum	$\frac{1}{2}$

C Code

```
#include <math.h>
// Function to calculate ellipse properties and pass them back
    via pointers
void calculateEllipseProperties(
   double a val,
   double b val,
   double* focus_y_ptr,
   double* vertex_y_ptr,
   double* eccentricity_ptr,
   double* directrix_y_ptr,
   double* latus_rectum_ptr
```

C Code

```
double c_val = sqrt(a_val * a_val - b_val * b_val);

*focus_y_ptr = c_val;
  *vertex_y_ptr = a_val;
  *eccentricity_ptr = c_val / a_val;
  *directrix_y_ptr = a_val / (*eccentricity_ptr); // Use the calculated eccentricity
  *latus_rectum_ptr = (2 * b_val * b_val) / a_val;
}
```

```
import ctypes
import numpy as np
import matplotlib.pyplot as plt
# Load the shared library
lib_conic = ctypes.CDLL(./code14.so)
# Define the argument types and return type for the C function
lib_conic.calculateEllipseProperties.argtypes = [
   ctypes.c_double, # a_val
   ctypes.c double, # b val
   ctypes.POINTER(ctypes.c_double), # focus_y_ptr
   ctypes.POINTER(ctypes.c_double), # vertex_y_ptr
   ctypes.POINTER(ctypes.c_double), # eccentricity_ptr
   ctypes.POINTER(ctypes.c_double), # directrix_y_ptr
   ctypes.POINTER(ctypes.c_double) # latus_rectum_ptr
lib_conic.calculateEllipseProperties.restype = None
```

```
# --- Analyze the Ellipse: 16x^2 + y^2 = 16 ---
 # From 16x^2 + y^2 = 16, divide by 16: x^2/1 + y^2/16 = 1
 # This is an ellipse centered at (0,0) with major axis along y.
\# a^2 = 16 \Rightarrow a = 4 \text{ (major semi-axis)}
 | # b^2 = 1 \Rightarrow b = 1 \text{ (minor semi-axis)}
 a val = 4.0
 b \, val = 1.0
 center = np.array([0.0, 0.0]) # Center is (0,0)
 # Create ctypes doubles to hold the results from the C function
 focus y result = ctypes.c double()
 vertex y result = ctypes.c double()
 eccentricity result = ctypes.c double()
 directrix y result = ctypes.c double()
 latus rectum result = ctypes.c double()
```

```
# Call the C function to get the ellipse properties
lib conic.calculateEllipseProperties(
   a val, b val,
   ctypes.byref(focus y result),
   ctypes.byref(vertex y result),
   ctypes.byref(eccentricity result),
   ctypes.byref(directrix y result),
   ctypes.byref(latus_rectum_result)
# Extract the values from the ctypes doubles
focus_y = focus_y_result.value
vertex_y = vertex_y_result.value
eccentricity = eccentricity_result.value
directrix_y = directrix_y_result.value
latus_rectum = latus_rectum_result.value
```

```
# Calculate the other points needed for plotting and printing
 # Vertices (along major axis, y-axis)
 vertex1 = np.array([0.0, vertex_y])
 vertex2 = np.array([0.0, -vertex_y])
 # Foci (along major axis, y-axis)
 focus1 = np.array([0.0, focus_y])
 focus2 = np.array([0.0, -focus_y])
print(f--- Conic Section Properties (Ellipse: 16x^2 + y^2 = 16)
     ---)
 print(fCenter: ({center[0]:.0f}, {center[1]:.0f}))
 print(fVertices: ({vertex1[0]:.0f}, {vertex1[1]:.0f}) and ({
     vertex2[0]:.0f}, {vertex2[1]:.0f}))
print(fFoci: ({focus1[0]:.2f}, {focus1[1]:.2f}) and ({focus2
     [0]:.2f}, {focus2[1]:.2f}))
print(fEccentricity: {eccentricity:.4f})
```

```
print(fAxis of the conic section: y-axis (x=0) is the major axis)
 print(fEquation of Directrices: y = {directrix_y:.2f} and y = {-
     directrix v:.2f})
print(fLength of Latus Rectum: {latus rectum:.2f})
 # --- Plotting the Ellipse with improved aesthetics ---
 plt.figure(figsize=(10, 10))
 ax = plt.gca()
 # Generate points for the ellipse
 theta = np.linspace(0, 2 * np.pi, 200)
 x ellipse = b val * np.cos(theta)
 | y ellipse = a val * np.sin(theta)
plt.plot(x ellipse, y ellipse, blue, linewidth=2, label='Ellipse
     16x^2 + y^2 = 16
```

```
# Plot Center (Black dot)
 plt.scatter(0, 0, color='black', s=30, zorder=5, label='Center
     (0,0)'
 # Plot Vertices (Red dots)
 plt.scatter(0, vertex y, color='red', s=30, zorder=5, label=f'
     Vertices (0, $\\pm${vertex y:.0f})')
plt.scatter(0, -vertex y, color='red', s=30, zorder=5)
 # Annotations for vertices
 plt.annotate(f'(0, {vertex y:.0f})', (0, vertex y), textcoords=
     offset points, xytext=(5, 5), ha='left', color='red',
     fontsize=10)
 plt.annotate(f'(0, {-vertex_y:.0f})', (0, -vertex_y), textcoords=
     offset points, xytext=(5, 5), ha='left', color='red',
     fontsize=10)
```

```
# Plot Foci (Green dots)
 plt.scatter(0, focus_y, color='green', s=30, zorder=5, label=f'
     Foci (0, $\\pm${focus_y:.2f})')
plt.scatter(0, -focus_y, color='green', s=30, zorder=5)
 plt.annotate(f'(0, {focus_y:.2f})', (0, focus_y), textcoords=
     offset points, xytext=(5, -15), ha='left', color='green',
     fontsize=10)
 plt.annotate(f'(0, {-focus_y:.2f})', (0, -focus_y), textcoords=
     offset points, xytext=(5, 5), ha='left', color='green',
     fontsize=10)
 # Plot Directrices (Magenta dashed lines)
 x plot limits = np.array([-b val * 2.5, b val * 2.5]) # Set x
     limits for directrix lines
 plt.plot(x plot limits, [directrix y, directrix y], 'b--',
     linewidth=1.5, label=f'Directrices y = $\\pm${directrix_y:.2f
| |plt.plot(x_plot_limits, [-directrix_y, -directrix_y], 'b--',
     linewidth=1.5)
```

```
# Plot Latus Rectum (Cyan dotted lines)
 lr half = latus rectum / 2
 plt.plot([-lr_half, lr_half], [focus_y, focus_y], 'g-', linewidth
     =2, label=f'Latus Rectum Length={latus_rectum:.2f}')
 plt.plot([-lr_half, lr_half], [-focus_y, -focus_y], 'g-',
     linewidth=2)
 ax.set_aspect('equal', adjustable='box')
 plt.xlabel('X-axis')
 plt.ylabel('Y-axis')
plt.title('Properties of the Ellipse $16x^2 + y^2 = 16$')
 plt.grid(True)
```

```
# Set explicit plot limits
plt.xlim(-2.5, 2.5)
plt.ylim(-5, 5)
# Use tight_layout to adjust plot parameters, leaving space at
    the bottom for the legend
plt.tight_layout(rect=[0, 0.2, 1, 1])
# Save the figure
plt.savefig(fig1.png)
plt.show()
print(\nFigure saved as fig1.png)
```

```
import numpy as np
import matplotlib.pyplot as plt
# Function to generate points for a line segment
def line_gen_num(A, B, num_points):
   A = np.array(A).flatten()
   B = np.array(B).flatten()
   t = np.linspace(0, 1, num_points)
   points = np.array([(1-t) * A[0] + t * B[0], (1-t) * A[1] + t
       * B[1]])
   return points
# Function to generate points for an ellipse
def ellipse_gen(center, a, b, num_points=100):
   center = np.array(center).flatten()
   theta = np.linspace(0, 2*np.pi, num points)
   x = center[0] + b * np.cos(theta)
   y = center[1] + a * np.sin(theta)
   return np.array([x, y])
```

```
# --- Analyze the Ellipse: 16x^2 + y^2 = 16 ---
 # Standard form: x^2/b^2 + y^2/a^2 = 1
 # Divide by 16: x^2/1 + y^2/16 = 1
 a_val = 4.0 # Major semi-axis along y
 |b val = 1.0 # Minor semi-axis along x
 center = np.array([0.0, 0.0])
 # Calculate properties
 c_val = np.sqrt(a_val**2 - b_val**2) # Distance from center to
     focus
 eccentricity = c_val / a_val
 |latus_rectum_length = (2 * b_val**2) / a_val
 # Vertices (along major axis, y-axis)
 vertex1 = np.array([0.0, a_val])
 vertex2 = np.array([0.0, -a_val])
```

```
# Foci (along major axis, y-axis)
 focus1 = np.array([0.0, c_val])
 focus2 = np.array([0.0, -c_val])
 | # Directrices (equations are y = +/- a/e)
 directrix_y = a_val / eccentricity
print(f--- Conic Section Properties (Ellipse: 16x^2 + y^2 = 16)
     ---)
print(fCenter: ({center[0]:.0f}, {center[1]:.0f}))
 print(fVertices: ({vertex1[0]:.0f}, {vertex1[1]:.0f}) and ({
     vertex2[0]:.0f}, {vertex2[1]:.0f}))
print(fFoci: ({focus1[0]:.2f}, {focus1[1]:.2f}) and ({focus2
     [0]:.2f}, {focus2[1]:.2f}))
print(fEccentricity: {eccentricity:.4f})
 print(fAxis of the conic section: y-axis (x=0) is the major axis)
 print(fEquation of Directrices: y = {directrix y:.2f} and y = {-
     directrix y:.2f})
print(fLength of Latus Rectum: {latus rectum length:.2f})
```

```
# --- Plotting ---
 plt.figure(figsize=(12, 10)) # Increased width from 10 to 12
 ax = plt.gca()
 # Generate points for the ellipse
 x_ellipse = ellipse_gen(center, a_val, b_val)
 plt.plot(x_ellipse[0,:], x_ellipse[1,:], g-, linewidth=2, label='
     Ellipse 16x^2 + y^2 = 16')
 # Plot Center
 plt.scatter(center[0], center[1], color='green', s=50, zorder=5,
     label='Center (0.0)')
 # Plot Vertices
 plt.scatter(vertex1[0], vertex1[1], color='black', s=30, zorder
     =5, label=f'Vertices (0, $\\pm${a val:.0f})')
 plt.scatter(vertex2[0], vertex2[1], color='black', s=30, zorder
     =5)
 plt.annotate(f'(0, {vertex1[1]:.0f})', (vertex1[0], vertex1[1]),
     textcoords=offset points, xytext=(3, 0), ha='left', color='
     black', weight='bold') # Adjusted xytext
```

```
plt.annotate(f'(0, {vertex2[1]:.0f})', (vertex2[0], vertex2[1]),
    textcoords=offset points, xytext=(3, -4), ha='left', color='
    black', weight='bold') # Adjusted xytext
# Plot Foci
plt.scatter(focus1[0], focus1[1], color='blue', s=30, zorder=5,
    label=f'Foci (0, $\\pm${focus1[1]:.2f})')
plt.scatter(focus2[0], focus2[1], color='blue', s=30, zorder=5)
plt.annotate(f'(0, {focus1[1]:.2f})', (focus1[0], focus1[1]),
    textcoords=offset points, xytext=(0, -15), ha='left', color='
    blue', weight='bold') # Adjusted xytext
plt.annotate(f'(0, {focus2[1]:.2f})', (focus2[0], focus2[1]),
    textcoords=offset points, xytext=(0, 10), ha='left', color='
    blue', weight='bold') # Adjusted xytext
```

```
# Plot Directrices
 x_{lim} = np.array([-b_val * 2.5, b_val * 2.5]) # Adjust x-limits
     for directrix lines, slightly wider
 plt.plot(x_lim, [directrix_y, directrix_y], 'r', linewidth=1.5,
     label=f'Directrices y = $\\pm${directrix_y:.2f}')
plt.plot(x_lim, [-directrix_y, -directrix_y], 'r', linewidth=1.5)
 # Plot Latus Rectum
 lr_half = latus_rectum_length / 2
 plt.plot([-lr_half, lr_half], [focus1[1], focus1[1]], 'g-',
     linewidth=2, label=f'Latus Rectum Length={latus_rectum_length
     :.2f}')
 plt.plot([-lr half, lr half], [focus2[1], focus2[1]], 'g-',
     linewidth=2)
 ax.set aspect('equal', adjustable='box')
 plt.xlabel('X-axis')
 plt.ylabel('Y-axis')
plt.title('Properties of the Ellipse $16x^2 + y^2 = 16$')
 plt.grid(True)
```

```
# Place the legend outside the plot area
 plt.legend(loc='center left', bbox to anchor=(1.05, 0.5),
     fontsize='medium') # Moves legend to the right
 plt.axhline(0, color='gray', linewidth=0.5)
 plt.axvline(0, color='gray', linewidth=0.5)
 # Adjust plot limits if necessary to ensure all annotations and
     elements are visible
 plt.xlim(-2.5, 2.5) # Slightly wider X-axis to make space for
     annotations
plt.ylim(-5, 5) # Slightly taller Y-axis if needed
 plt.savefig(fig2.png)
 plt.show()
 print(\nFigure saved as fig2.png)
```

Plot by Python using shared output from C

Plot by Python only

