Ecole Nationale d'Ingénieurs de Carthage

Analyse Numérique 2

Feuille d'exercices n°2

Intégration Numérique

Classes : $1^{\text{ère}}$ année ING-INF 2019/2020

Exercice 1 Soit f une fonction de classe C^2 sur [-1,1]. On considère la formule de quadrature de type interpolation à deux points suivante :

$$\int_{-1}^{1} f(x)dx = \lambda_0 f(-1) + \lambda_1 f(1) + E_1(f)$$

- 1. Calculer λ_0 et λ_1 par deux méthodes.
- 2. Chercher $E_1(f)$.

Exercice 2 On considère la formule de quadrature de type interpolation suivante :

$$\int_0^1 f(x)dx = \lambda_0 f(0) + \lambda_1 f(\frac{1}{2}) + \lambda_2 f(1) + E_2(f)$$
(1)

- 1. Calculer les poids λ_0, λ_1 et λ_2 de la formule (1).
- 2. Quel est le degré de précision de cette formule.

Exercice 3 soit g une fonction réelle, continue et dérivable sur [-1,1] et α, β deux réels donnés tel que $-1 \le \alpha < 0 < \beta \le 1$. Considérons la formule de quadrature suivante :

$$\int_{-1}^{1} g(t)dt = \lambda_1 g(\alpha) + \lambda_2 g(0) + \lambda_3 g(\beta) + E(g)$$
(2)

E(q) désigne le terme d'erreur.

- 1. (a) Calculer les poids λ_1, λ_2 et λ_3 en fonction de α et β tels que la formule (2) soit au moins de degré de précision 2.
 - (b) Déterminer une relation entre α et β pour que cette formule de quadrature soit exacte pour les polynômes de degré inférieur ou égal à 3.
 - (c) Trouver ensuite les valeurs de α et β pour que cette formule reste exacte pour les polynômes de degré 4.
 - (d) En déduire alors la formule de quadrature correspondante et son degré de précision.

Dans toute la suite $\alpha, \beta, \lambda_1, \lambda_2$ et λ_3 désignent les coefficients ainsi trouvés.

- 2. Quelle serait l'erreur d'approximation si l'on utilisait la formule (2) pour évaluer $J = \int_0^3 (5x^5 + 3x^2 + x + 1) dx$
- 3. (a) Calculer, à l'aide de la formule (2), une valeur approchée de $I = \int_0^{\frac{\pi}{2}} \sin(x) dx$ (Indication: utiliser le changement de variable $x = \frac{\pi}{4}(t+1)$).
 - (b) Calculer, à l'aide de la formule du trapèze, une valeur approchée de I.
 - (c) Calculer, à l'aide de la formule de Simpson, une valeur approchée de I.
 - (d) Laquelle des trois méthodes donne une meilleure approximation de I?

Exercice 4 Soit α un nombre réel donné tel que $0 < \alpha < 1$. Soit $x_0 = -1$, $x_1 = -\alpha$, $x_2 = \alpha$, $x_3 = 1$ et soit ω_0 , ω_1 , ω_2 et ω_3 4 nombres réels. On considère la formule de quadrature :

$$J(f) \approx \sum_{i=0}^{3} \omega_i f(x_i) \tag{3}$$

- 1. Trouver ω_0 , ω_1 , ω_2 et ω_3 en fonction de α pour que la formule (3) soit exacte pour les polynômes de degré inférieur ou égal à 3.
- 2. Déterminer α pour que la formule (3) soit exacte pour les polynômes de degré inférieur ou égal à 4.
- 3. En déduire alors les valeurs des poids ω_0 , ω_1 , ω_2 , ω_3 et le degré de précision de (3).

Exercice 5 soit $f:[0,1]\to\mathbb{R}$ une fonction de classe \mathcal{C}^4 et soit P le polynôme d'interpolation d'Hermite de f vérifiant :

$$P(0) = f(0)$$
, $P'(0) = f'(0)$ $P''(0) = f''(0)$ et $P(1) = f(1)$

1. Déterminer les coefficients α_1 , α_2 , α_3 et α_4 pour que la formule de quadrature

$$\int_0^1 f(x)dx = \alpha_1 f(0) + \alpha_2 f'(0) + \alpha_3 f''(0) + \alpha_4 f(1) + E(f)$$
(4)

soit exacte sur $\mathbb{R}_3[X]$. (E(f) désigne le terme d'erreur)

Dans toute la suite α_1 , α_2 , α_3 et α_4 désignent les coefficients ainsi trouvés.

- 2. Déterminer le degré de précision de la formule de quadrature (4).
- 3. (a) Montrer que le terme d'erreur E(f) vérifie : $E(f) = \int_0^1 (f(x) P(x)) dx$.
 - (b) En déduire qu'il existe $\eta \in [0,1]$ tel que $E(f) = -\frac{1}{480}f^{(4)}(\eta)$.
- 4. Soit a < b deux réels donnés et $g : [a, b] \to \mathbb{R}$ une fonction de classe \mathcal{C}^4 .
 - (a) Déduire de la formule (4) une formule de quadrature pour approcher $\int_a^b g(t)dt$, ainsi qu'une expression du terme d'erreur correspondant qu'on notera E(g).
 - (b) Utilisier le résultat au point précédent pour calculer une valeur approchée de $\int_{-1}^{1} \cos(\frac{\pi}{2}t) dt$, ainsi qu'un encadrement de l'erreur commise.

Exercice 6 : On considère $I = \int_0^1 e^{-x^2} dx$ et $J = \int_0^{\frac{\pi}{2}} \sin(x) dx$

- 1. Calculer, a l'aide de la formule composite des trapèzes à 3 points, une valeur approchée de I et une valeur approchée de J.
- 2. Calculer, a l'aide de la formule composite des trapèzes à 5 points, une valeur approchée de I et une valeur approchée de J.
- 3. Traiter de nouveaux ces deux questions en utilisant la formule composite de Simpson.

Exercice 7 : On veut déterminer une valeur approchée de π en utilisant les outils d'intégration numérique. On considère $I = \int_0^1 \frac{dx}{1+x^2}$

- 1. Donner la valeur exacte de I.
- 2. (a) Donner la formule composite des rectangles à m+1 points pour le calcul de I.
 - (b) Déterminer une valeur approhée de $\frac{\pi}{4}$ en prenant m=10 et en arrondissant les résultats à 10^{-4} .
 - (c) Donner une majoration de l'erreur commise dans ce cas.
- 3. (a) Donner la formule composite des trapèzes à m+1 points pour le calcul de I.
 - (b) Trouver le nombre minimal m de sous-intervalles afin que l'erreur commise par cette formule soit $< 10^{-2}$
 - (c) En déduire, dans ce cas, une valeur approchée de $\frac{\pi}{4}$.

Exercice 8 (Examen Mai 2019) soit $f: [-1,1] \to \mathbb{R}$ une fonction de classe \mathcal{C}^3 et soit P le polynôme d'interpolation d'Hermite de f aux points -1 et 1 vérifiant :

$$P(-1) = f(-1)$$
 , $P'(-1) = f'(-1)$ et $P(1) = f(1)$

1. Calculer les polynômes w_1 , w_2 et w_3 de degré 2 définis par :

$$\begin{cases} w_1(-1) = w'_1(-1) = 0 & et \quad w_1(1) = 1 \\ w_2(-1) = w_2(1) = 0 & et \quad w'_2(-1) = 1 \\ w_3(1) = w'_3(-1) = 0 & et \quad w_3(-1) = 1 \end{cases}$$

- 2. Montrer que la famille $\{w_1, w_2, w_3\}$ forme une base de $\mathbb{R}_2[X]$ (espace des polynômes de degré inférieur ou égal à 2)
- 3. Donner l'expression du polynôme P dans la base $\{w_1, w_2, w_3\}$.
- 4. Donner, en fonction des dérivées de f, l'expression de l'erreur E(x) = f(x) P(x).
- 5. Déterminer les coefficients α_1 , α_2 et α_3 pour que la fomule de quadrature

$$\int_{-1}^{1} f(x)dx = \alpha_1 f(-1) + \alpha_2 f'(-1) + \alpha_3 f(1) + E(f)$$
 (5)

soit exacte sur $\mathbb{R}_2[X]$. (E(f) désigne le terme d'erreur).

Dans toute la suite α_1 , α_2 et α_3 désignent les coefficients ainsi trouvés.

- 6. Déterminer le degré de précision de la formule de quadrature (5).
- 7. (a) Montrer que le terme d'erreur E(f) vérifie : $E(f) = \int_{-1}^{1} (f(x) P(x)) dx$.
 - (b) En déduire qu'il existe $\eta \in [-1, 1]$ tel que $E(f) = -\frac{2}{9}f^{(3)}(\eta)$.
- 8. Soit a < b deux réels donnés et $g : [a, b] \to \mathbb{R}$ une fonction de classe \mathcal{C}^3 . On découpe l'intervalle [a, b] en m sous-intervalles $[x_i, x_{i+1}]$ à pas constant $H = \frac{b-a}{m}$, où $x_i = a+iH$, pour $0 \le i \le m$,
 - (a) Déduire de la formule (5) une formule de quadrature élémentaire pour approcher $\int_{x_i}^{x_{i+1}} g(t)dt$, ainsi qu'une expression du terme d'erreur correspondant qu'on notera $E_i(g)$. (Indication: Effectuer le changement de variable affine $t = \frac{H}{2}(x+1) + x_i$)
 - (b) En utilisant le résultat au point précédent, construire une formule de quadrature composite pour approcher $I(g)=\int_a^b g(t)dt$, et donner une majoration du terme d'erreur correspondant.