What are FPGAs?

Mahmut Taylan Kandemir

CSE 531

FPGA Architecture

Field Programmable Gate Array (FPGA)

- Millions of logic elements
- Thousands of embedded memory blocks
- Thousands of DSP blocks
- Programmable interconnect
- High speed transceivers
- Various built-in hardened IP
- Soft cores

Used to create **Custom Hardware!**

FPGA Architecture: Basic Elements

FPGA Architecture: Flexible Interconnect

FPGA Architecture: Flexible Interconnect

FPGA Architecture: Custom Operations Using Basic Elements

FPGA Architecture: Memory Blocks

FPGA Architecture: Memory Blocks

FPGA Architecture: Floating Point Multiplier/Adder Blocks

DSP Blocks

Thousands Digital Signal Processing (DSP) Blocks in Modern FPGAs

- Configurable to support multiple features
 - Variable precision fixed-point multipliers
 - Adders with accumulation register
 - Internal coefficient register bank
 - Rounding
 - Pre-adder to form tap-delay line for filters
 - Single precision floating point multiplication, addition, accumulation

FPGA Architecture: Configurable Routing

Blocks are connected into a custom data-path that matches your application.

FPGA Architecture: Configurable IO

The Custom data-path can be connected directly to custom or standard IO interfaces for inline data processing

FPGA I/Os and Interfaces

Hardened Memory Controllers

 Available interfaces to off-chip memory such as HBM, HMC, DDR SDRAM, QDR SRAM, etc.

High-Speed Transceivers

Provide any variety of protocols for moving data in and out of the FPGA

Hard IP for PCI Express standard

Phase Lock Loops (PLLs)

Mapping a Simple Program to an FPGA

Mem[100] += 42 * Mem[101]

CPU instructions

 $R0 \leftarrow Load Mem[100]$

 $R1 \leftarrow Load Mem[101]$

R2 ← Load #42

R2 ← Mul R1, R2

R0 ← Add R2, R0

Store R0 \rightarrow Mem[100]

First let's take a look at execution on a simple CPU

Fixed and general architecture:

- General "cover-all-cases" data-paths
- Fixed data-widths
- Fixed operations

Looking at a Single Instruction

Very inefficient use of hardware!

Sequential Architecture vs. Dataflow Architecture

FPGA Dataflow Architecture

Custom Data-Path on the FPGA Matches Your Algorithm!

High-level code

Mem[100] += 42 * Mem[101]

Custom data-path

Build exactly what you need:

Operations

Data widths

Memory size & configuration

Efficiency:

Throughput / Latency / Power

Advantages of Custom Hardware with FPGAs

- Custom hardware!
- Efficient processing
- Fine-grained parallelism
- Low power
- Flexible silicon
- Ability to reconfigure
- Fast time-to-market
- Many available I/O standards

Why FPGAs for DL Inference

FPGAs Provide Flexibility to Control the Datapath

Why FPGAs for Machine Learning?

Convolutional Neural Networks are Compute Intensive

Feature	Benefit
Highly parallel architecture	Facilitates efficient low-batch video stream processing and reduces latency
Configurable Distributed Floating Point DSP Blocks	FP32 9Tflops, FP16, FP11 Accelerates computation by tuning compute performance
Tightly coupled high-bandwidth memory	>50TB/s on chip SRAM bandwidth, random access, reduces latency, minimizes external memory access
Programmable Data Path	Reduces unnecessary data movement, improving latency and efficiency
Configurability	Support for variable precision (trade-off throughput and accuracy). Future proof designs, and system connectivity

Deterministic Latency Matters for Inference

Automotive example:

- Latency impacts response time and distance
- Factors that impact latency batch size / IO latency
- Need to perform better than human

R-CNN 20s / 1760 feet

Fast R-CNN 2s / 176 feet

Human 0.25s / 21feet

Faster R-CNN 0.14s / 12feet

SSD 0.02s / 1.7feet

FPGAs Provide Deterministic System Latency

FPGAs leverages parallelism across the entire chip to reduce compute latency

FPGAs has flexible and customizable IOs with low & deterministic I/O latency

System Latency = I/O Latency + Compute Latency

FPGA Flexibility Supports Arbitrary Architectures

Many efforts to improve efficiency in network development around limitations of GPU

- Batching
- Reduce bit width
- Sparse weights
- Sparse activations
- Weight sharing
- Compact network

ResNet

XNORNet

CNN Inference Implementation Requirements

High throughput, feed forward data flow

Many floating point multiplies and accumulate operations

>e.g. 8 TFLOP performance in Stratix 10

High bandwidth local storage for filter data and partial sums

>e.g. 58 TB/s internal memory bandwidth in Stratix 10

Flexibility for different topologies and different problems

Summary

Deep Learning (DL) is a type of machine learning for extracting patterns from data using neural networks

DL neural networks are built and trained using frameworks and combining various layers

FPGAs are made up of a variety of building blocks

Through FPGA development tools, one can translate code into custom hardware

FPGAs provide a flexible, deterministic low-latency, high-throughput, and energy-efficient solution for accelerating the constantly changing networks and precisions for DL inference