99P07357

CLAIMS

- 1. A piezoelectric ceramic composition comprising: a phase comprising, as a main component, lead zirconate titanate having a perovskite structure; and an Al-containing phase.
- 2. The piezoelectric ceramic composition according to claim
 1, wherein:
- said main component comprises Mn and Nb.
- 3. The piezoelectric ceramic composition according to claim 1, wherein:

said main component is represented by a composition formula of $Pb_{\alpha}[(Mn_{1/3}Nb_{2/3})_{x}Ti_{y}Zr_{z}]O_{3}$ (wherein 0.97 $\leq \alpha \leq$ 1.01, 0.04 \leq x \leq 0.16, 0.48 \leq y \leq 0.58, 0.32 \leq z \leq 0.41).

- 4. The piezoelectric ceramic composition according to claim 1, wherein:
 - said Al-containing phase comprises Al₂O₃.
- 5. The piezoelectric ceramic composition according to claim 1, wherein:

said piezoelectric ceramic composition is composed of a sintered body comprising grains and grain boundaries exist between said grains; and

 Al_2O_3 is contained in said grains and is precipitated in said grain boundaries.

6. The piezoelectric ceramic composition according to claim 1, wherein:

said piezoelectric ceramic composition comprises Al_2O_3 in an amount of 0.15 to 15.0 wt%.

7. The piezoelectric ceramic composition according to claim 1, wherein:

 $|\Delta F_0|$ which is the absolute value of the rate of change in oscillation frequency F_0 thereof, before and after application of a thermal shock, is 0.10% or less; and

the three-point flexural strength σ_{b3} thereof is 160 N/mm² or more.

8. A piezoelectric ceramic composition comprising:

a main component represented by the formula of $Pb_{\alpha}[(Mn_{1/3}Nb_{2/3})_{x}Ti_{y}Zr_{z}]O_{3}, \text{ wherein } \alpha, x, y \text{ and } z \text{ fall within }$ the ranges of 0.97 $\leq \alpha \leq$ 1.01, 0.04 $\leq x \leq$ 0.16, 0.48 $\leq y \leq$ 0.58 and 0.32 $\leq z \leq$ 0.41, respectively; and

as an additive, at least one element selected from the group consisting of Al, Ga, In, Ta and Sc in an amount of 0.01 to 15.0 wt% in terms of an oxide of each element.

9. The piezoelectric ceramic composition according to claim8, wherein:

said piezoelectric ceramic composition has α , x, y and z of said main component falling within the range of 0.98 \leq α < 1.00, 0.06 \leq x \leq 0.14, 0.49 \leq y \leq 0.57 and 0.33 \leq z \leq 0.40,

respectively.

10. The piezoelectric ceramic composition according to claim 8, wherein:

said piezoelectric ceramic composition has α , x, y and z of said main component falling within the range of 0.99 \leq α < 1.00, 0.07 \leq x \leq 0.11, 0.50 \leq y \leq 0.55 and 0.34 \leq z \leq 0.39, respectively.

11. The piezoelectric ceramic composition according to claim 8, wherein:

said piezoelectric ceramic composition comprises Al as said additive in an amount of 0.05 to 5.0 wt% in terms of Al_2O_3 .

12. The piezoelectric ceramic composition according to claim 8, wherein:

said piezoelectric ceramic composition comprises Al as said additive in an amount of 0.15 to 1.5 wt% in terms of Al_2O_3 .

13. The piezoelectric ceramic composition according to claim 8, wherein:

said piezoelectric ceramic composition comprises Si in an amount of 0.005 to 0.15 wt% in terms of SiO_2 .

14. The piezoelectric ceramic composition according to claim 8, wherein:

the electric property Q_{max} ($Q_{max} = tan\theta$: θ is a phase angle) thereof is 30 or more;

 $|\Delta k_{15}|$ which is the absolute value of the rate of change in electromechanical coupling factor k_{15} thereof, before and after application of a thermal shock, is 4% or less;

 $|\Delta$ F₀ (-40°C)| which is the absolute value of the rate of change in oscillation frequency F₀ thereof at -40°C, with reference to 20°C, is 0.4% or less; and

 $|\Delta$ F₀ (85°C)| which is the absolute value of the rate of change in oscillation frequency F₀ thereof at 85°C, with reference to 20°C, is 0.4% or less.

15. A piezoelectric ceramic composition comprising a sintered body comprising; as a main component, a perovskite compound having mainly Pb, Zr, Ti, Mn and Nb; and as an additive, at least one element selected from the group consisting of Al, Ga, In, Ta and Sc, wherein:

the electric property Q_{max} ($Q_{max} = tan\theta$: θ is a phase angle) thereof is 100 or more;

 $|\Delta k_{15}|$ which is the absolute value of the rate of change in electromechanical coupling factor k_{15} thereof, before and after application of a thermal shock, is 2% or less;

 $|\Delta$ F₀ (-40°C)| which is the absolute value of the rate of change in oscillation frequency F₀ at -40°C thereof, with reference to 20°C, is 0.2% or less; and

 $|\Delta$ F₀ (85°C)| which is the absolute value of the rate of change in oscillation frequency F₀ at 85°C thereof, with reference to 20°C, is 0.2% or less.

16. The piezoelectric ceramic composition according to claim

15, wherein:

said sintered body comprises Al₂O₃.

17. The piezoelectric ceramic composition according to claim 15, wherein:

said sintered body comprises a main component represented by the formula of $Pb_{\alpha}[(Mn_{1/3}Nb_{2/3})_{x}Ti_{y}Zr_{z}]O_{3}$, wherein α , x, y and z fall within the range of 0.99 $\leq \alpha <$ 1.00, 0.07 $\leq x \leq$ 0.14, 0.50 $\leq y \leq$ 0.55 and 0.34 $\leq z \leq$ 0.39, respectively.