積體電路設計導論

Laker Tutorial

Date: 2022/10/04

Presenter: Andrew Lee, Yu-Cheng Hong

Outline

- What is Laker?
- □ File Requirement
- Environment Setting
- Hot Key
- □ Process v.s. Layout
- Multiply the Width
- Calibre DRC Flow
- Calibre LVS Flow
- Export / Import Design

What is Laker?

□ **Laker** is a tool which enable user to generate layout results so that we can ask the Fab (Ex: TSMC) to make a Custom IC.

File Requirement

File Requirement

- □ Netlist: *.spi
- The *.spi file you want to transfer to layout
- Technology file : laker.tf
- The process information (EX: 0.18u, 65nm, 28nm ...)
- DRC file : rule.drc
- To check if the layout violates fabrication rule
- LVS file : Rule.lvs
- To check whether layout and schematic are the same

Environment Setting

Laker - Initialize

- source /usr/cadtool/user_setup/08-laker.csh
- Create a layout directory by "mkdir"
- Type the command "laker &" in terminal
- Main Window

Laker – Create New Library

Laker – Create New Cell

Laker – Open Cell

Laker – Editor

- Window → Layer Table → Attach Left
 - Don't select "Hide Created ToolBar"

Laker – Editor

- Selectable and Visible
 - Visible: You can see those materials
 - Selectable: You can use those materials

Laker – Grid

- Change Resolution
 - Check at "Option → Change Grid"
 - Min Resolution = 0.01

Hot Key

Laker – Hot Key Table

Hot Keys	Attitude	Hot Keys	Attitude
R	Rectangular	Р	Path
S	Stretch	Z	Zoom area
M	Move	ctrl/shift+z	zoom in/out
С	Сору	D	Distance
Del	Delete	K/shift+K	Marker / Remove all Markers
Q	Quality	I	Instance
Esc	Release attitudes	Α	Align
u/shift+u	Undo / redo		

Laker – (R)ectangular

- Draw Rectangular (R)
 - Choose a material → Press r → point ref. → point dest.

Laker – (S)tretch

- □ Stretch (s)
 - Press s → select edge → point ref. → point dest.

dg METAL

Y: 0.55

Laker – (M)ove

- □ Move (m)
 - Press m → select figure → point ref. → point dest.

Laker – (C)opy

- Copy (c)
 - Press c → select figure → point ref. → point dest.

Laker – (Del)ete

- Delete (Del)
 - Select figure → press Del

Laker – (Q)uality

- Quality (Q)
 - Select figure → press Q → Edit

Laker – (Esc)ape

- Release from Attitude (Esc)
 - Press after every operation (Good habit)

Laker – (U)ndo

Laker – (P)ath

Path(p)

 Choose a material → Press p → point to turn → double click to dest.

Laker – (Z)oom (1/3)

- \square Zoom in (ctrl + z)
- □ Zoom out (shift + z)
- □ Fit to screen (f)
- Zoom to area (z + mouse left click)
 - Press $z \rightarrow point ref. \rightarrow point dest.$
- Zoom to area (mouse right drag)
 - Right click at ref. → drag to dest.

Laker – (Z)oom (2/3)

- Zoom to area (z + mouse left click)
 - Press $z \rightarrow point ref. \rightarrow point dest.$

Laker – (Z)oom (3/3)

- Zoom to area (mouse right drag)
 - Right click at ref. → drag to dest.

Laker – (D)istance

- Measure Distance (d)
 - Press d → point ref. → stop the mouse at dest.

Laker – Mar(K)er

- Marker (k) /Remove all Markers(shift + k)
 - Press $k \rightarrow point ref. \rightarrow point dest.$

Laker – (I)nstance (1/2)

- Call an Instance (I)
 - Press I → select the cell → place the cell

Laker – (I)nstance (2/2)

Min/Max View Level (ctrl/shift+f)

→ After add an instance, we can choose the view level we want.

Laker – (A)lign

- □ Align (a)
 - Press a → point ref. → point dest.

Practice – Align (Part A)

□ Part A: Please try the Align function with different ref. and dest. position, and write down the results :

Reference point	Destination point	
 Middle point of edge Vertex 	 Middle point of edge Edge Vertex 	

Practice – Align (Part B)

Part B: Please try the Align function with only select the edge, and repeat part A.

Fig1. Select the whole block

Fig2. Only select the edge

Advanced hot key

If you want to learn more advanced hot key or get more detailed information, please refer to Laker User Guide and Tutorial.

Laker User Guide and Tutorial

Laker Custom IC Design Solutions

Synopsys, Inc.

Process & Layout

Process

Cross Section View of NMOS & PMOS

Example – PMOS

□ Draw a PMOS with L=0.18um W=1um

Process v.s. Layout

NWELL

Process v.s. Layout

Cell View Create

DIFF

5. Contacts

CONT

5. Metal lines

ME1

6. Metal vias/lines

VIA1

6. Metal vias/lines

METAL2

✓ VisAli ✓ SelAli

DesignSet -

dg DIFF

dg NW

dg PIMP

dg NIMP

dg CONT

🐰 dg PO1

dg ME1

dg VIA1

dg ME2

Practice – Inverter

- □ Please Draw an Inverter with
 - $(W_n/L_n = 1 \text{um}/0.18 \text{um})$
 - $(W_p/L_p = 2um/0.18um)$

Multiply the Width

Multiply the Width

- If we have a MOS with multiple of unit sizes, it's impractical to draw it directly. We can use the following 2 method to make it easily to implement.
- Connect with Cell Boundary
- 2. Fold the MOS

□ EX: MM1 VD VG VDD VDD p_18 W=2u L=0.18um=2

If we encounter this condition, we can apply the above 2 methods or just draw a MOS with Width=4u Length=0.18u.

Connect with Cell Boundary (1/6)

■ New Cell

Connect with Cell Boundary (2/6)

- □ Add Instance (i)
 - Press i → choose the instance → press Hide → point dest.

Connect with Cell Boundary (3/6)

■ Smash

Connect with Cell Boundary (4/6)

Add the cell boundary

Connect with Cell Boundary (5/6)

Add Instance (i)

Connect with Cell Boundary (6/6)

□ Fail case: If without the Cell Boundary...

Folded MOS

Another way to multiple the width, folded MOS.

Calibre DRC Flow

DRC

Design Rule Check

To check if the layout violates fabrication rule

DRC

DRC - Rules

DRC - Run

□ Run DRC

DRC – Results

Calibre LVS Flow

LVS

- Layout v.s. Schematic
 - To check whether layout and schematic are the same

LVS – PIN (1/2)

Create the pin

3. Names of I/O or VDD or GND

LVS - PIN (2/2)

Put the pin on the corresponding position

This sign must touch that kind of metal

Netlist File

- The netlist has to be in SUBCKT type
- Change PM to P_18, NM to N_18

```
Primary Cell Name
                                 Pin (pn layer)
   .SUBCKT inv Vdd in out Vss
   *.PININFO Vin:1 Vout:0 Vdd:B Vss:B
   MM1 out in Vdd Vdd PM W=2u L=0.18u m=1
  MM0 out in Vss Vss NM W=1u L=0.18u m=1
   .ends
                               .SUBCKT inv Vdd in out Vss
                                .PININFO Vin:1 Vout:0 Vdd:B Vss:B
                              MM1 out in Vdd Vdd p 18 W=2u L=0.18u m=1
                              MM0 out in Vss Vss n_18 W=1u L=0.18u m=1
                               ends.
```

LVS

□ Verify → Calibre → Run LVS

LVS - Rules

LVS – Inputs

LVS - Run

LVS - Results

Result

If your layout is different with subckt, you will get a big X

LVS - Results

Result

• If your layout is the same as subckt, you will get a smile

Export / Import Design

Laker – Output Design

- Stream Out
- File → Export → Stream
- → Choose Library
- → Choose Cell
- → Output File Name(Ex: inv.gds)
- \rightarrow OK

GDS : A file used to store the position of your layout.

Laker – Import Design

- □ Stream In
- File → Import → Stream

(It'll create a new Library)

- → Browse .gds file
- → New Library name
- → Technology file (*.tf)
- \rightarrow OK

