Q1	(10	占)
$\alpha_{\rm T}$	(TO	\overline{m}

ID: text03/page02/001

IEEE754(単精度) 形式において、符号部が1、指数部が全て0、仮数部が全て0 時の値を選択肢 $a\sim d$ の中から1つ選びなさい。

(a)

-0

(b)

+Infinity

(c)

Nan

(d)

+0

$\mathbf{Q2}$	(10	占
$\mathbf{Q}_{\mathbf{Z}}$	(τυ	m

ID: text03/page02/002

IEEE754(単精度) 形式において、符号部が1、指数部が全て1、仮数部が全て0 時の値を選択肢 $a\sim d$ の中から1つ選びなさい。

(a)

-0

(b)

+Infinity

(c)

+0

(d)

-Infinity

Q3 (10 点)

ID: text03/page02/003

IEEE754(単精度) 形式で +0 を表す符号部・指数部・仮数部の組み合わせを選択肢 $a\sim d$ の中から 1 つ選びなさい。

(a)

符号部が 1、指数部が全て 1、 仮数部が全て 1 (b)

符号部が 0、指数部が全て 0、 仮数部が全て 0

(c)

符号部が 1、指数部が全て 0、 仮数部が全て 0 (d)

符号部が 0、指数部が全て 1、 仮数部が全て 1

Q4	(10	点)
Ψ	(+ 0	/111 <i>/</i>

ID: text03/page02/004

IEEE754(単精度) 形式で -0 を表す 2 進数を選択肢 a~d の中から 1 つ選びなさい。

(a)

0b 1 11111111 111111111111111111111 (b)

(c)

 (d)

Q5 ((10 点)	

IEEE754(単精度) 形式で +Infinity(+無限大) を表す 2 進数を選択肢 $a\sim d$ の中から 1 つ選びなさい。

(a)

0b 1 00000000 1111111111111111111111 (b)

ID: text03/page02/005

(c)

 (d)

0b 1 11111111 111111111111111111111

Q6 (10 点)

ID: text03/page02/006

IEEE754(単精度) 形式で -0 を表す符号部・指数部・仮数部の組み合わせを選択肢 a~d の中から 1 つ選びなさい。

(a)

符号部が 1、指数部が全て 1、 仮数部が全て 1 (b)

符号部が 0、指数部が全て 0、 仮数部が全て 0

(c)

符号部が 1、指数部が全て 0、 仮数部が全て 0 (d)

符号部が 0、指数部が全て 1、 仮数部が全て 1

$\mathbf{Q7}$	(10 点)	ID: $text03/page02/007$
~ ·	(7111)	· · · · · · · · · / F · · · · · · / · · · ·

IEEE754(単精度) 形式において、以下の 2 進数が示している値を選択肢 $a\sim d$ の中から 1 つ選びなさい。

(c)		
	NaN	

Q8 (10 点)

ID: text03/page02/008

IEEE754(単精度) 形式で -Infinity(-無限大) を表す 2 進数を選択肢 a~d の中から 1 つ選びなさい。

(a)

0b 1 00000000 1111111111111111111111 (b)

0b 1 00000000 000000000000000000000000

(c)

0b 0 11111111 0000000000000000000000000 (d)