

Interpretable Convolutional Neural Networks

Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu University of California, Los Angeles

Outline

- Background
- Motivation & Goal
- Analysis
- Proposed Method
- Experiments
- Conclusion

Background

Motivation & Goal

Motivation:

Without any additional human supervision, can we modify a CNN to make its convlayers obtain interpretable knowledge representations?

Goal:

- 1. We slightly revise a CNN to improve its interpretability, which can be broadly applied to CNNs with different structures.
- 2. We learn interpretable filters for a CNN without any additional annotations of object parts or textures for supervision. Training samples are the same as the original CNN.
- 3. We do not hope the network interpretability greatly affects the discrimination power.

Analysis

Filters in low conv-layers usually describe simple textures.

Analysis

Filters in high conv-layers are more likely to represent object parts.

This paper proposes a simple yet effective loss to push a filter in a specific conv-layer of a CNN towards the representation of an object part.

Figure 3. Templates of T_{μ_i} . Each template T_{μ_i} matches to a feature map x when the target part mainly triggers the i-th unit in x. In fact, the algorithm also supports a round template based on the L-2 norm distance. Here, we use the L-1 norm distance instead to speed up the computation.

Figure 4. Given an input image I, from the left to the right, we consequently show the feature map of a filter after the ReLU layer x, the assigned mask $T_{\hat{\mu}}$, the masked feature map x^{masked} , and the image-resolution RF of activations in x^{masked} computed by [40].

Filter Loss Function:

$$\mathbf{Loss}_{f} = -MI(\mathbf{X}; \mathbf{T}) = -\sum_{T} p(T) \sum_{x} p(x|T) \log \frac{p(x|T)}{p(x)}$$

$$MI(\cdot) \text{ denotes the mutual information}$$

$$\forall T \in \mathbf{T}, \qquad p(x|T) = \frac{1}{Z_{T}} \exp \left[tr(x \cdot T)\right]$$

$$Z_{T} = \sum_{x \in \mathbf{X}} \exp(tr(x \cdot T))$$

$$tr(x \cdot T) = \sum_{ij} x_{ij} t_{ij}. \ p(x) = \sum_{T} p(T) p(x|T)$$

$$p(x) = \sum_{T} p(T) p(x|T)$$

注:最大化mutual information,因此loss function前面有负号
Mutual Information https://www.wikiwand.com/en/Mutual information

Average part interpretability

	bird	cat	cow	dog	horse	sheep	Avg.
AlexNet	0.332	0.363	0.340	0.374	0.308	0.373	0.348
AlexNet, interpretable	0.770	0.565	0.618	0.571	0.729	0.669	0.654
VGG-16 VGG-16, interpretable	0.519	0.458	0.479	0.534	0.440	0.542	0.495
	0.818	0.653	0.683	0.900	0.795	0.772	0.770
VGG-M VGG-M, interpretable	0.357	0.365	0.347	0.368	0.331	0.373	0.357
	0.821	0.632	0.634	0.669	0.736	0.756	0.708
VGG-S	0.251	0.269	0.235	0.275	0.223	0.287	0.257
VGG-S, interpretable	0.526	0.366	0.291	0.432	0.478	0.251	0.390

Table 1. Part interpretability of filters in CNNs for single-category classification based on the Pascal VOC Part dataset [3].

Network	Logistic log loss ⁴	Softmax log loss		
VGG-16	0.710	0.723		
VGG-16, interpretable	0.938	0.897		
VGG-M	0.478	0.502		
VGG-M, interpretable	0.770	0.734		
VGG-S	0.479	0.435		
VGG-S, interpretable	0.572	0.601		

Table 2. Part interpretability of filters in CNNs that are trained for multi-category classification based on the VOC Part dataset [3]. Filters in our interpretable CNNs exhibited significantly better part interpretability than ordinary CNNs in all comparisons.

Location instability

	bird	cat	cow	dog	horse	sheep	Avg.
AlexNet	0.153	0.131	0.141	0.128	0.145	0.140	0.140
AlexNet, interpretable	0.090	0.089	0.090	0.088	0.087	0.088	0.088
VGG-16	0.145	0.133	0.146	0.127	0.143	0.143	0.139
VGG-16, interpretable	0.101	0.098	0.105	0.074	0.097	0.100	0.096
VGG-M VGG-M, interpretable	0.152	0.132	0.143	0.130	0.145	0.141	0.141
	0.086	0.094	0.090	0.087	0.084	0.084	0.088
VGG-S	0.152	0.131	0.141	0.128	0.144	0.141	0.139
VGG-S, interpretable	0.089	0.092	0.092	0.087	0.086	0.088	0.089

Table 4. Location instability of filters ($\mathbf{E}_{f,k}[D_{f,k}]$) in CNNs that are trained for single-category classification using the Pascal VOC Part dataset [3]. Filters in our interpretable CNNs exhibited significantly lower localization instability than ordinary CNNs.

Network	Avg. location instability		
AlexNet	0.150		
AlexNet, interpretable	0.070		
VGG-16	0.137		
VGG-16, interpretable	0.076		
VGG-M	0.148		
VGG-M, interpretable	0.065		
VGG-S	0.148		
VGG-S, interpretable	0.073		

Table 5. Location instability of filters ($\mathbf{E}_{f,k}[D_{f,k}]$) in CNNs for single-category classification using the CUB200-2011 dataset.

Classification Accuracy

	mult	i-catego	single-category				
	ILSVRC Part	VOC	Part	ILSVRC Part VOC Part CUB200			
	logistic*	logistic4	softmax				
AlexNet	_	_	<u> </u>	96.28	95.40	95.59	
interpretable	3.7	-	 -1	95.38	93.93	95.35	
VGG-M	96.73	93.88	81.93	97.34	96.82	97.34	
interpretable	97.99	96.19	88.03	95.77	94.17	96.03	
VGG-S	96.98	94.05	78.15	97.62	97.74	97.24	
interpretable	98.72	96.78	86.13	95.64	95.47	95.82	
VGG-16	_	97.97	89.71	98.58	98.66	98.91	
interpretable	_	98.50	91.60	96.67	95.39	96.51	

Table 7. Classification accuracy based on different datasets. In single-category classification, ordinary CNNs performed better, while in multi-category classification, interpretable CNNs exhibited superior performance.

Performances

Conclusion

- 1. This paper proposes a general method to enhance feature interpretability of CNNs.
- 2. We design a loss to push a filter in high conv-layers towards the representation of an object part during the learning process without any part annotations.