Exercises (14) May 21, 2024

1. (10 points) Assume that $f \geq 0$ on $E \subseteq \mathbb{R}^n$. For M > 0, let

$$f_M(x) = \begin{cases} f(x) & \text{if } f(x) \leq M, \\ M & \text{if } f(x) > M. \end{cases}$$

Prove that

 $\{x \in E : f \text{ is discontinuous at } x\} = \bigcup_{M \in \mathbb{N}} \{x \in E : f_M \text{ is discontinuous at } x\}.$

- 2. (10 points) Suppose that f is Riemann integrable, $f:[0,1] \to \mathbb{R}$, $|f(x)| \le M$ for all $x \in [0,1]$, and $\int_0^1 f(x) dx \ge \alpha > 0$. Show that $E = \{x \in [0,1] : f(x) \ge \alpha/2\}$ contains a finite union of intervals of total length $\ell \ge \alpha/(4M)$. (Hint: let P be a partition of [0,1] such that $0 \le \int_0^1 f(x) dx L(f,P) \le \alpha/4$.)
- 3. (10 points) Suppose that E is a Jordan region in \mathbb{R}^n , and that $f: E \to [0, \infty)$ is integrable. If $\int_E f(x)dx = 0$, show that $\{x \in E : f(x) \neq 0\}$ is measure zero.