

Introduction to 8086

Introduction to 8086

- ▶ 8086 is a 16-bit processor, which implies that
 - → 16-bit data bus
 - → 16-bit ALU
 - → 16-bit registers
- ▶ 8086 has a 20-bit address bus can access up to 2²⁰ memory locations. (2²⁰=1048576 bytes =1 MB)
- ▶ It can support up to 64K I/O ports. (2¹⁶ I/O ports:2¹⁶=65536)
- ▶ 8086 has 256 vectored interrupt.
- ▶ 8086 contains powerful instruction set, that also supports multiply and divide operation.

Introduction to 8086

- ▶ 8086 can operate in two modes:
 - i. Minimum mode: A system with only one processor i.e.8086
 - ii. Maximum mode: A system with multiple processors.

```
e.g. 8086 + math co-processor(8087), 8086+ I/O processor (8089)
```

- ▶ 8086 uses memory segmentation. Segmentation means dividing memory into logical components.
- ▶ In 8086 memory is divided into 16 segments of capacity 2¹⁶ bytes each and used as code, stack, data and extra segment respectively.

8086 Architecture

Block Diagram

8086 Architecture

- In 8086 CPU is divided into two independent functional units:
 - 1.BIU (Bus Interface Unit)
 - 2.EU (Execution Unit)
- Dividing the work between these two units speeds up the processing.

Components: BIU(Bus Interface Unit)

Task of BIU

- 1. Fetch instructions from memory.
- 2. Read/write instructions to/from the memory.
- 3. Input/output of data to/from peripheral ports.
- 4. Address generation for memory reference.
- 5. Queuing instructions.

Thus, BIU handles all transfer of data and address.

Components: EU(Execution Unit)

Task of EU (Execution Unit)

- 1. Decodes the instruction.
- 2. Executes decoded instructions.
- 3. Tells BIU from where to fetch the instruction.
- 4. EU takes care of performing operation on the data.
- 5. EU is also known as **execution heart** of the processor.

Segment Register in 8086

Segment Register in 8086

- 1. Code Segment (CS): Stores executable program.
- 2. Data Segment (DS): Contains data used by a program. Data can be accessed from this by an offset address.
- 3. Stack Segment (SS): Defines an area of memory used for the stack.
- 4. Extra Segment (ES): ES an additional data segment.

Segmentation in 8086

Segmentation in 8086

What is Segment?

An area in memory.

What is Segmentation?

The process of dividing memory into segments of various sizes is called **Segmentation**.

What is need of segmentation in 8086?

What is the need of segmentation in 8086?

- Memory is huge collection of bytes.
- In order to organize these bytes in an efficient manner segmentation is used.

E.g. No. of segments =
$$\frac{\text{Total memory available}}{\text{size of each segment}}$$

No. of segments = $\frac{1 \text{ MB}}{64 \text{ KB}} = \frac{1024 \text{ KB}}{64 \text{ KB}} = 16 \text{ segments}$

▶ The 16-bit flag register of 8086 contains 9 active flags (6 conditional & 3 control flags), other 7 flags are undefined.

- ▶ Carry Flag (CF): Set(1) if arithmetic operation results in carry; otherwise reset(0).
- ▶ Auxiliary Flag (AF): If an operation performed in ALU generates a carry/barrow from lower nibble (i.e. $D_0 D_3$) to upper nibble (i.e. $D_4 D_7$), the AF flag is set i.e. carry given by D_3 bit to D_4 is AF flag. This is not a general-purpose flag, it is used internally by the processor to perform Binary to BCD conversion.
- ▶ Parity Flag (PF): This flag is used to indicate the parity of result. If lower order 8-bits of the result contains even number of 1's, the Parity Flag is set and for odd number of 1's, the Parity Flag is reset.
- ▶ Zero Flag (ZF): It is set(1), if the result of arithmetic or logical operation is zero else it is reset(0).
- ▶ Sign Flag (SF): In sign magnitude format the sign of number is indicated by MSB bit. If the result of operation is negative, sign flag is set(1).