**BC-1308 Biofísica** 

# Aula 1 Organização da disciplina Introdução à disciplina Centrifugação

Jiří Borecký CCNH 2014



## Características da Disciplina

**BC-1308 Biofísica** 

Introdução

#### Disciplina

- Livre Créditos: 4-0-4
- Salas: Bloco A, Torre 3 (CCNH)
- Horário turma diurna:
  - Segunda-feira das 8 h às 10 h, sala 304-3
  - Quarta-feira das 10 h às 12 h, sala 304-3
- Horário turma noturna:
  - Segunda-feira das 19 h às 21 h, sala 304-3
  - Quarta-feira das 21 h às 23 h, sala 304-3
- Lançamento de Conceitos e Faltas: 8 a 18 de setembro
- Conclusão do quadrimestre : 13 de setembro



# Características da Disciplina

**BC-1308 Biofísica** 

Introdução

#### **Professor**

Jiri Borecky

Sala: SA, Bloco B, 10° andar, sala 1008

Fone: 011-4996-0158

E-mail: jiri.borecky@ufabc.edu.br

#### Tidia:

- Nome do site: BC1308-Biofisica
- Link: https://tidia-ae.ufabc.edu.br/portal/site/16aa61b9-af95-4537-9a79-24e6e859e3a3



## Calendário

**BC-1308 Biofísica** 

| Jun/14     | 23-Segunda                                                       | 25-Quarta                                                                                                                             |                    |
|------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| CONTEÚDO   | -                                                                | Apresentação da disciplina.<br>Métodos de separação: Centrifugação                                                                    | Semana<br>1        |
| Jun-Jul/14 | 30-Segunda                                                       | 02-Quarta                                                                                                                             |                    |
| CONTEÚDO   | Biofísica da água. Soluções e coloides.<br>Sol e gel. Dispersões | Difusão. Osmose. Turgor.<br>Fluxos citoplasmáticos e sistêmicos                                                                       | Semana<br>2        |
| Jul/14     | 07-Segunda                                                       | 09-Quarta                                                                                                                             |                    |
| CONTEÚDO   | Biofísica das membranas. Micelas e<br>lipossomos                 | Data Magna do Estado de São Paulo<br>(Revolução Constitucionalista de 1932)<br>Feriado Civil – Lei Estadual no 9497 de<br>05/03/1997. | Semana<br><b>3</b> |
| Jul/14     | 14-Segunda                                                       | 16-Quarta                                                                                                                             |                    |
| CONTEÚDO   | Fenômenos de Superfície. Tensão lateral                          | Potencial eletroquímico. Canais iônicos.  Voltage-clamp e patch-clamp                                                                 | Semana<br>4        |
| Jul/14     | 21-Segunda                                                       | 23-Quarta                                                                                                                             |                    |
| CONTEÚDO   | Potencial de repouso e de ação.<br>Sinapses.                     | Sistema nervoso, neuro-muscular e cardiovascular. Contração muscular                                                                  | Semana<br><b>5</b> |



## Calendário

**BC-1308 Biofísica** 

| Jul/14   | 28-Segunda                                  | 30-Quarta                                          |                     |
|----------|---------------------------------------------|----------------------------------------------------|---------------------|
| CONTEÚDO | AVALIAÇÃO 1                                 | Biofísica da Respiração.<br>Biofísica de olfato    | Semana<br><b>6</b>  |
| Ago/14   | 04-Segunda                                  | 06-Quarta                                          |                     |
| CONTEÚDO | Biofísica da visão.<br>Biofísica da audição | Métodos de separação: Cromatografia e eletroforese | Semana<br><b>7</b>  |
| Ago/14   | 11-Segunda                                  | 13-Quarta                                          |                     |
| CONTEÚDO | Métodos potenciométricos                    | Radiações eletromagnéticas                         | Semana<br><b>8</b>  |
| Ago/14   | 18-Segunda                                  | 20-Quarta                                          |                     |
| CONTEÚDO | Espectroscopia e Fotometria                 | Ressonância Nuclear Magnética                      | Semana<br><b>9</b>  |
| Ago/14   | 25-Segunda                                  | 27-Quarta                                          |                     |
| CONTEÚDO | Ressonância Paramagnética Eletrônica        | Calorimetria                                       | Semana<br><b>10</b> |



#### Calendário

**BC-1308 Biofísica** 

Introdução

| Set/14   | 01-Segunda                           | 03-Quarta                                |                     |  |
|----------|--------------------------------------|------------------------------------------|---------------------|--|
| CONTEÚDO | Cristalografia e modelagem molecular | REVISÃO                                  | Semana<br><b>11</b> |  |
| Set/14   | 08-Segunda                           | 10-Quarta                                |                     |  |
| CONTEÚDO | AVALIAÇÃO 2                          | PROVA SUBSTITUTIVA/<br>/Revisão de notas | Semana<br>12        |  |
| Set/14   | 15-Segunda                           | 18-Quarta                                |                     |  |
| CONTEÚDO | EXAME/Revisão de notas               | Lançamento de notas                      | Semana<br>13        |  |

Conclusão do quadrimestre : 13 de setembro!!!



#### Cálculo da nota

**BC-1308 Biofísica** 

Introdução

Nota Final

$$NF = (P1 + P2)/2$$

➤ Sub – exemplo para Sub da P2

$$NF = 0.8 \times (P1+S)/2$$

Exame

$$NFC = [(P1 + P2)/2 + E]/2$$

#### Conceito

**BC-1308 Biofísica** 

Introdução

Base de cálculo de Conceitos

$$A \sim 10,0 - 8,5$$

$$B \sim 8,4 - 7,0$$

$$C \sim 6.9 - 5.5$$

$$D \sim 5.4 - 5.0$$

$$F \sim 4.9 - 0.0$$

O = 0,0 (reprovação por falta)

Conceito final também depende da progressão das notas, atividade do aluno nas aulas etc.



# Bibliografia

**BC-1308 Biofísica** 

- Heneine, I.F. (2000) Biofísica Básica, 2ª. Ed., Livraria Atheneu, SP.
- Duran, J.E.R., Biofísica: Fundamentos e Aplicações, Prentice Hall, São Paulo, 2003 (PDF disponível)
- Haynie, D. T. (2008) Biological thermodynamics, Cambridge University Press
- Glaser, R. Biophysics. Springer-Verlag, 2001
- Gomes, R.A. e Leitão, A.C. (1994) Radiobiologia e Fotobiologia, UFRJ (apostila).
- ➤ GARCIA, E.A.C. (2002) Biofísica. 1ª ed., 2ª reimpressão, Sarvier. São Paulo.
- ➤ Cotterill, R. (2002) Biophysics an introduction. John Wiley & Sons
- Alberts, B., Johnson, A., Walter, P. et al. (2004) Biologia Molecular da Célula - 4/ed., Artes Médicas, Porto Alegre.



# Bibliografia

**BC-1308 Biofísica** 

- ➤ Berne, R.M.; Levy, M.N.; Koeppen, B.M.; Stanton, B.A. (2004). Fisiologia. 5<sup>a</sup>. Ed, Elsevier, Rio de Janeiro.
- Volkenstein, M. V. (1995) Biophysics. AIP.
- Van Holde, K.E. Bioquímica Física, (1975) São Paulo, Edgard Blucher.
- Cameron, J.R.; Skofronick, J.G. & Grant, R.M. (1999) Physics of the Body, Medical Physics Publishing, Madison, Wisconsin,
- Weiss, T. F. (1996) Cellular Biophysics (volume I and II), Cambridge, MA: MIT Press.
- A.L. Lehninger Nelson, D.L. & Cox, M.M. (2002) Lehninger: Princípios de Bioquímica. 3ª. Edição, Sarvier, SP.
- D. Voet e J.G. Voet Biochemistry, 3<sup>a</sup> ed. Editora J. Wiley & Sons, 2004.
- D. Voet e J. G. Voet. C.W. Pratt Fundamentos de Bioquimica, Editora Artmed, 2002.
- Daune, M., Duffin, W. J. and Blow, D. Molecular Biophysics: Structures in Motion. Oxford University Press, 1999
- Hobbie, R. K. (1997) Intermediate Physics for Medicine and Biology. New York Springer



**BC-1308 Biofísica** 

# Introdução à disciplina

Jiří Borecký CCNH 2014 BC-1308 Biofísica

Introdução

# "Qualquer um que pretenda entender a vida, precisa entender primeiro os átomos e as moléculas."

Linus Pauling (1901-1994)

Nobel de Química 1954

Nobel da Paz 1962



#### **Biofísica**

**BC-1308 Biofísica** 

Introdução

# > A Biofísica tem com principais assuntos:

- Estruturas e superestruturas das biomoléculas
- Interação entre as biomoléculas
- Cinética dos processos biológicos (fluxos de matéria/energia)
- Transformações da energia na célula
- Mecanismos da sinalização intra- e intercelular
- Percepção sensorial
- Biomecânica (contração muscular, locomoção)
- Eletrofisiologia
- Interação de seres vivos com radiações



#### Organização dos seres vivos

**BC-1308 Biofísica** 

- Do indivíduo às moléculas:
- Cada nível da organização tem seus aspectos físicos





#### **Tamanho**

**BC-1308 Biofísica** 

#### Introdução

Do planeta aos átomos





#### Elementos químicos da vida

**BC-1308 Biofísica** 

Introdução

#### Table 1-1 Most Abundant Elements in the Human Body<sup>a</sup>

| Element | Dry Weight (%) |  |
|---------|----------------|--|
| С       | 61.7           |  |
| N       | 11.0           |  |
| 0       | 9.3            |  |
| H       | 5.7            |  |
| Ca      | 5.0            |  |
| P       | 3.3            |  |
| K       | 1.3            |  |
| S       | 1.0            |  |
| Cl      | 0.7            |  |
| Na      | 0.7            |  |
| Mg      | 0.3            |  |

<sup>&</sup>lt;sup>a</sup>Calculated from Frieden, E., Sci. Am. 227(1), 54–55 (1972).

Table 1-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

# Corpo Humano

- 70% H<sub>2</sub>O
- 95% da matéria seca é formada por C, H, O, N, P, Ca e S



#### Experimentos de Miller-Urey

**BC-1308 Biofísica** 

- A atmosfera da terra continha compostos simples como H<sub>2</sub>O, N<sub>2</sub> CO<sub>2</sub>, NH<sub>3</sub> e CH<sub>4</sub>
- Em 1953, S. Miller e H. Urey mostraram que aminoácidos podem ser gerados quando uma mistura de H<sub>2</sub>O, CO<sub>2</sub>, NH<sub>3</sub>, H<sub>2</sub> e CH<sub>4</sub> é submetida a uma descarga elétrica por uma semana





#### Estruturas celulares

**BC-1308 Biofísica** 

Introdução





Tomograma da célula: TomogramaCelular.mov



#### Estruturas das proteínas

**BC-1308 Biofísica** 





### Enzima monomérica

**BC-1308 Biofísica** 





# Tensão superficial

**BC-1308 Biofísica** 

Introdução

Tensão superficial é uma propriedade bastante utilizada na natureza











# Uso de energia elétrica na sinalização pelo neurônio

**BC-1308 Biofísica** 

Introdução

Despolarização local direcionada da membrana plasmática dos neurônios causa o potencial de ação





# Transformação de energia química em mecânica

**BC-1308 Biofísica** 

Introdução

Mudanças
conformacionais
provocadas por
trabalho da
ATPase da
cabeça S1 da
miosina são
essenciais para
trabalho
mecânico dos
músculos





#### Métodos biofísicos

**BC-1308 Biofísica** 

Introdução

Métodos baseados na fotometria podem monitorar movimentos de células circulantes in vivo



**BC-1308 Biofísica** 

# Métodos de separação: Centrifugação

Jiří Borecký CCNH 2014



# Métodos de separação: Centrifugação

**BC-1308 Biofísica** 

Introdução

# Centrifugação:

- Processo de separação a força centrífuga relativa gerada pela rotação da amostra é usada para:
  - sedimentar sólidos em líquidos
  - líquidos imiscíveis de diferentes densidades

# Princípio físico:

- Uma partícula forçada a descrever uma trajetória circular (tem uma velocidade angular; v) é submetida a uma força que a obrigaria continuar na trajetória retilínea (1ª lei de Newton)
- Essa força centrífuga relativa (FCR) é proporcional:
  - Ao quadrado da velocidade angular (rotação por secundo; n)
  - Ao raio da circunferência (R)
  - À massa da partícula (m)

$$FCR = m v^2 R = 4 \pi^2 m n^2 R$$



**BC-1308 Biofísica** 

Introdução

# Cálculo prático de FCR:

R = raio em mm

• N = velocidade de centrifugação em rotações por minuto (rpm)  $FCR = 0.0001118 \times R \times N^2$ 

$$N = 94,5756 \times \sqrt{\frac{FCR}{R}}$$

#### ➤ Unidades:

- A unidade de medida da força centrífuga relativa correta é o "g" que é equivalente à aceleração da gravidade na superfície da terra.
- Comumente mede-se a velocidade de centrifugação em rotações por minuto (rpm), apesar de tratar-se de uma informação indireta da eficiência da centrifugação que não considera o raio de centrifugação



**BC-1308 Biofísica** 

Introdução

> Centrífugas:



















**BC-1308 Biofísica** 

Introdução

# Centrífugas:

- Rotor:
  - Ângulo fixo
  - "Swing-out"
  - Zonal
- Tubos













**BC-1308 Biofísica** 

Introdução

- Rotor preparativo
- Rotor para ultracentrífuga







Rotor para exames médicos



**BC-1308 Biofísica** 

Introdução

#### > Tubos:

- Microtubos
- **Tubos preparativos**
- Tubos para medicina/biologia molecular/cultura
- Frascos
- Material:
  - Polyallomer
  - Policarbonato
  - Polietileno
  - Vidro
  - Aço











# Coeficiente de sedimentação

**BC-1308 Biofísica** 

- Definição: razão da velocidade de sedimentação de partícula e a aceleração aplicada a ela (que causa a sedimentação)
  - v₁ = velocidade terminal de sedimentação
  - a = aceleração (FCR)

- $s = \frac{v_t}{a}$
- Velocidade terminal é constante porque a força centrífuga é contrabalanceada pela resistência por viscosidade (arrasto)
- Unidades: svedbergs (S). 1 svedberg é igual a exatamente 10<sup>-13</sup> s
- As velocidades de sedimentação não são proporcionais ao peso da partícula: ribossomo bacteriano tem 70 S e é composto de subunidade menor de 30 S e subunidade maior de 50 S