

2017 级

《物联网数据存储与管理》课程

实验报告

姓 名 <u>胡晗_____</u>

学 号 <u>U201714518</u>

班 号 物联网 1701 班

日期 2020.06.01

目 录

— 、	实验目的	1
<u>_</u> ,	实验背景	1
三、	实验环境	1
四、	实验内容	1
	4.1 对象存储技术实践	2
	4.2 对象存储性能分析	2
五、	实验过程	2
六、	实验总结1	4
参考	f文献1	5

一、实验目的

1. 熟悉对象存储技术,代表性系统及其特性;

2. 实践对象存储系统, 部署实验环境, 进行初步测试:

3. 基于对象存储系统,架设实际应用,示范主要功能。

二、实验背景

物联网应用随着移动互联网的兴起而蓬勃发展, 快速增长的物联网数据带来

了存储挑战:

1. 庞大:以几何级数不断增长的数据量,对存储和处理带来挑战。

2. 复杂:数据内容多样性带来的数据异构,使得数据结构越来越复杂。

因此,需要一个高可用、可扩展的海量数据存储系统来满足物联网存储需求。

面向对象存储技术提供了一种解决方案。对象存储同兼具 SAN 高速直接访问磁盘

特点及 NAS 的分布式共享特点。将数据通路(数据读或写)和控制通路(元数据)

分离,并且基于对象存储设备构建存储系统,每个对象存储设备具有一定的智能,

能够自动管理其上的数据分布。

三、实验环境

CPU: Intel® Core™ i5-6200U CPU @ 2.30GHz × 4

内存: 7.7 GiB

硬盘: HDD 170GB

操作系统: ubuntu 16.04 LTS

Go: go1.14.2 linux/amd64

四、实验内容

根据实验给出的教程,选择对象存储服务端、对象存储客户端、对象存储评测工具。

4.1 对象存储技术实践

- 1. 搭建对象存储服务端,选择使用 Minio 和 mock-s3。
- 2. 搭建对象存储客户端,选择使用 osm。
- 3. 测试对象存储基本功能是否正常。

4.2 对象存储性能分析

- 1. 搭建对象评测工具环境,选择 S3 Bench,作为 Go 的一个模块进行安装。
- 2. 调整对象存储评测参数,包括客户端数量、对象数量、对象大小,观察数据存储性能。
- 3. 编写 shell 脚本实现批量测试,重定向 bash 终端输出结果到文本文件,以便进一步分析。
 - 4. 整理和分析不同参数下存储性能数据。

五、实验过程

5.1 搭建对象存储服务端

1. Minio 服务端是拆箱即用的,只需下载二进制可执行文件到本地后修改执行 权限即可,执行运行脚本,以指定的访问密钥和安全密钥运行服务端。

图 1 运行 minio 服务端

2. mock-s3 服务端是基于 Python 的,搭建好 Python 环境后,在 mock-s3 的程序包内运行 setup.py 即可成功安装。由于 mock-s3 是没有访问密钥的,所以只要指定服务端口,运行执行脚本,启动服务。

图 2 运行 mock-s3 服务端

5.2 搭建对象存储客户端

- 1. osm 作为一个 Go 模块加载,需要从 github 获取到代码包,放到 GOPATH 目录下的 src/github.com 文件夹中,之后使用 go install 命令进行模块安装。
 - 2. 安装完成后在 GOPATH 目录的 bin 目录下会出现 osm 的可执行文件。
 - 3. 运行 config-osm.sh 脚本配置 osm 参数。
 - 4. 输入 osm -h 测试是否安装配置成功。

图 3 检查 osm 安装配置情况

5.3 测试对象存储功能

1. 运行 minio 服务端,在浏览器打开图形管理界面,访问 127.0.0.1:9000,输入密钥,即可查看服务端情况。

图 4 minio 服务端图形界面

2. 利用 osm 上传文件到 minio 服务端。

图 5 osm 上传文件

图 6 上传文件成功

3. 运行 mock-s3 服务端, 在网页访问 127.0.0.1:9000.

图 7 mock-s3 服务端

5.4 对象存储性能分析

- 1. S3 Bench 作为 GO 模块加载,下载 aws-sdk-go 和 go-jmespath 依赖包进行安装,再安装 s3bench,安装完成在 GOPATH 的 bin 目录下会出现 s3bench 可执行文件。
- 2. S3 Bench 没有批量测试和输出数据为文件的功能,编写 shell 脚本进行批量测试,将 bash 的输出重定向到文件,测试脚本如下:
- ①对象存储大小从 1KB 增加到 1MB, 并发客户端数量为 1, 对象数量为 100, 观察对象大小对存储性能的影响。

my-s3bench1.sh

```
#!/bin/bash
    #test shell-script 1 for NumClient=1 NumSample=100 ObjectSize=[1KB,1MB]
    # Locate s3bench
    s3bench=~/gopath/bin/s3bench
    if [ -n "$GOPATH" ]; then
        s3bench=$GOPATH/bin/s3bench
    fi
    # minio on port 9000
    # mock-s3 on port 9000
    endpoint="http://127.0.0.1:9000"
    # endpoint="http://127.0.0.1:9000"
    bucket="loadgen"
    ObjectNamePrefix="loadgen"
    AccessKey="hust"
    AccessSecret="hust obs"
    filepath="minio_server_1.txt"
    # filepath="mock s3 server 1.txt"
    declare -a NumClient
    declare -a NumSample
    declare -a ObjectSize
    NumClient=(1
                           1
                                              1
                                                                              1)
    NumSample=(100 100 100 100
                                        100
                                               100
                                                      100
                                                              100
                                                                      100
                                                                               100)
    ObjectSize=(1024 2048 4096 10240 20480 40960 102400 204800 409600 1048576)
    #display run progress
    progress=9
    for(( i=0;i<${#NumClient[@]};i++))
    do
        # run sh
                                              -accessSecret=$AccessSecret -bucket=$bucket
        $s3bench
                    -accessKey=$AccessKey
-endpoint=$endpoint \
        -numClients=${NumClient[i]}
                                                            -numSamples=${NumSample[i]}
-objectNamePrefix=$ObjectNamePrefix -objectSize=${ObjectSize[i]} >> $filepath
        echo -e "=
```

②并发客户端从 1 增加到 100,对象数量为 100,对象大小为 1KB,观察并发客户端数量对存储性能的影响。脚本其他部分与测试 1 相同,具体见附件。

my-s3bench2.sh

```
#!/bin/bash
#test shell-script 2 for NumClient=[1,100] NumSample=100 ObjectSize=1KB
filepath="minio_server_2.txt"
# filepath="mock_s3_server_2.txt"
NumClient=(1
                         32
                                            100)
                  8
                      16
                             64
                                 70
                                    80
                                        90
100)
#display run progress
progress=10
```

③并发客户端从 1 增加到 100,对象数量为 100,对象大小为 100KB,与测试 2 内容做对比。

my-s3bench3.sh

```
#!/bin/bash
    #test shell-script 3 for NumClient=[1,100] NumSample=100 ObjectSize=100KB
    . . . . . .
    filepath="minio server 3.txt"
    # filepath="mock_s3_server_3.txt"
    NumClient=(1
                                      8
                                                    32
                                                                  70
                                                                               90
                                                                                      100)
                                             16
                                                           64
                                                                        80
    NumSample=( 100
                       100
                              100
                                     100
                                            100
                                                     100
                                                            100
                                                                   100
                                                                          100
                                                                                 100
                                                                                        100)
    ObjectSize=(102400 102400 102400 102400 102400 102400 102400 102400 102400 102400 102400
102400)
    #display run progress
    progress=10
```

.....

④并发客户端数量为 1,对象数量从 5 增加到 1280,对象大小为 1KB,观察对象数量对存储性能的影响。

my-s3bench4.sh

3. 执行测试脚本,输出重定向文件,文件内容如图所示。

```
### Times | The color of the
```

图 8 重定向文件内容

4. 整理数据

#	Clients-Samples-Size	W_Throughput(MB/s)	W_Duration(s)	W_99th(s)	W_90th(s)	R_Throughput(MB/s)	R_Duration(s)	R_99th(s)	R_90th(s)
	1-100-0.0010MB	0.01	7.559	0.259	0.126	0.76	0.129	0.008	0.002
	1-100-0.0020MB	0.03	7.678	0.138	0.116	1.33	0.146	0.005	0.004
	1-100-0.0039MB	0.05	7.412	0.182	0.127	3.06	0.127	0.005	0.003
	1-100-0.0098MB	0.12	8.158	0.198	0.127	7.42	0.132	0.009	0.003
1	1-100-0.0195MB	0.23	8.585	0.186	0.160	15.08	0.130	0.005	0.004
1	1-100-0.0391MB	0.56	7.031	0.138	0.125	27.83	0.140	0.006	0.004
	1-100-0.0977MB	1.59	6.136	0.137	0.061	76.33	0.128	0.005	0.004
	1-100-0.1953MB	3.19	6.116	0.118	0.061	137.73	0.142	0.005	0.004
	1-100-0.3906MB	5.65	6.908	0.160	0.074	257.23	0.152	0.006	0.004
	1-100-1.0000MB	12.21	8.190	0.181	0.083	561.38	0.178	0.007	0.003
	1-100-0.0010MB	0.02	6.278	0.138	0.061	0.70	0.140	0.008	0.003
	2-100-0.0010MB	0.02	4.976	0.180	0.099	1.08	0.091	0.006	0.005
	4-100-0.0010MB	0.04	2.544	0.169	0.100	0.71	0.138	0.026	0.011
	8-100-0.0010MB	0.07	1.317	0.142	0.107	0.78	0.125	0.040	0.210
	16-100-0.0010MB	0.14	0.695	0.138	0.113	0.62	0.159	0.143	0.078
2	32-100-0.0010MB	0.21	0.469	0.193	0.167	0.66	0.148	0.120	0.088
	64-100-0.0010MB	0.39	0.252	0.158	0.151	1.59	0.061	0.057	0.051
	70-100-0.0010MB	0.38	0.255	0.181	0.171	1.72	0.057	0.053	0.051
	80-100-0.0010MB	0.32	0.305	0.221	0.207	0.91	0.108	0.089	0.069
	90-100-0.0010MB	0.39	0.251	0.187	0.170	0.72	0.136	0.114	0.111
	100-100-0.0010MB	0.29	0.339	0.331	0.314	0.96	0.102	0.087	0.076
	1-100-0.0977MB	1.16	8.437	0.240	0.160	67.81	0.144	0.006	0.004
	2-100-0.0977MB	1.33	7.349	0.372	0.199	85.38	0.114	0.008	0.005
	4-100-0.0977MB	2.05	4.758	0.349	0.265	71.58	0.136	0.017	0.011
	8-100-0.0977MB	3.38	2.893	0.375	0.261	76.04	0.128	0.046	0.027
	16-100-0.0977MB	6.22	1.570	0.331	0.312	63.04	0.155	0.109	0.052
3	32-100-0.0977MB	9.51	1.027	0.500	0.457	64.66	0.151	0.139	0.103
	64-100-0.0977MB	14.86	0.657	0.446	0.440	70.00	0.140	0.128	0.124
	70-100-0.0977MB	17.03	0.573	0.350	0.335	66.17	0.148	0.144	0.133
	80-100-0.0977MB	15.40	0.634	0.547	0.532	63.42	0.154	0.144	0.128
	90-100-0.0977MB	20.29	0.481	0.342	0.311	62.56	0.156	0.144	0.129
	100-100-0.0977MB	29.09	0.336	0.331	0.312	74.14	0.132	0.123	0.111
	1-5-0.0010MB	0.01	0.626	0.209	0.209	0.21	0.023	0.005	0.005
	1-10-0.0010MB	0.01	0.793	0.160	0.160	0.22	0.045	0.005	0.005
	1-20-0.0010MB	0.01	1.762	0.160	0.156	0.28	0.069	0.005	0.005
	1-40-0.0010MB	0.01	3.152	0.163	0.158	0.43	0.090	0.009	0.006
4	1-80-0.0010MB	0.01	6.137	0.166	0.127	0.59	0.133	0.005	0.004
	1-160-0.0010MB	0.01	11.456	0.154	0.138	0.89	0.176	0.010	0.006
	1-320-0.0010MB	0.02	19.808	0.152	0.110	0.91	0.342	0.004	0.001
	1-640-0.0010MB	0.02	39.981	0.141	0.061	0.96	0.653	0.004	0.001
	1-1280-0.0010MB	0.01	88.724	0.249	0.072	1.06	1.181	0.003	0.001

图 9 minio 性能评测数据

#	Clients-Samples-Size	W_Throughput(MB/s)	W_Duration(s)	W_99th(s)	W_90th(s)	R_Throughput(MB/s)	R_Duration(s)	R_99th(s)	R_90th(s)
	1-100-0.0010MB	0.34	0.290	0.042	0.005	0.91	0.107	0.011	0.001
	1-100-0.0020MB	1.76	0.111	0.002	0.001	1.89	0.103	0.004	0.001
	1-100-0.0039MB	3.42	0.114	0.003	0.001	3.75	0.104	0.005	0.001
	1-100-0.0098MB	8.20	0.119	0.003	0.001	9.33	0.105	0.003	0.001
	1-100-0.0195MB	13.91	0.140	0.018	0.002	18.66	0.105	0.005	0.001
1	1-100-0.0391MB	26.90	0.145	0.005	0.002	36.35	0.107	0.003	0.001
	1-100-0.0977MB	56.36	0.173	0.004	0.002	85.83	0.114	0.002	0.001
	1-100-0.1953MB	75.40	0.259	0.005	0.003	161.47	0.121	0.002	0.001
	1-100-0.3906MB	77.86	0.502	0.063	0.005	291.13	0.134	0.002	0.002
	1-100-1.0000MB	82.52	1.212	0.157	0.022	549.01	0.182	0.003	0.002
	1-100-0.0010MB	0.32	0.307	0.157	0.003	0.96	0.102	0.004	0.001
	2-100-0.0010MB	0.98	0.099	0.004	0.002	1.04	0.094	0.003	0.002
	4-100-0.0010MB	0.91	0.107	0.007	0.005	0.86	0.113	0.010	0.006
	8-100-0.0010MB	0.34	0.288	0.057	0.035	0.10	1.023	1.023	0.015
	16-100-0.0010MB	0.09	1.081	1.032	0.066	0.08	1.240	1.237	1.027
2	32-100-0.0010MB	0.07	1.264	1.251	1.034	0.08	1.280	1.278	1.065
	64-100-0.0010MB	0.05	1.244	1.226	1.055	0.03	3.301	3.296	3.107
	70-100-0.0010MB	0.05	1.299	1.286	1.222	0.01	7.822	7.812	4.348
	80-100-0.0010MB	0.03	1.259	1.236	1.041	0.01	6.789	6.777	4.358
	90-100-0.0010MB	0.03	1.276	1.239	1.053	0.02	4.485	4.474	3.287
	100-100-0.0010MB	0.03	1.251	1.236	1.050	0.01	19.355	19.346	10.891
	1-100-0.0977MB	53.32	0.183	0.009	0.002	85.03	0.115	0.005	0.001
	2-100-0.0977MB	75.59	0.129	0.005	0.003	94.49	0.103	0.004	0.003
	4-100-0.0977MB	41.01	0.238	0.062	0.021	42.60	0.229	0.045	0.020
	8-100-0.0977MB	9.66	1.011	1.011	0.016	9.51	1.027	1.025	0.043
	16-100-0.0977MB	8.32	1.174	1.060	0.069	8.52	1.146	1.047	0.076
3	32-100-0.0977MB	7.69	1.270	1.245	1.060	7.64	1.279	1.274	1.233
	64-100-0.0977MB	2.68	3.347	3.264	2.121	5.12	1.907	1.884	1.508
	70-100-0.0977MB	4.51	2.166	2.124	1.258	2.98	3.278	3.244	2.681
	80-100-0.0977MB	3.11	3.140	3.087	2.231	1.23	7.970	7.962	2.775
	90-100-0.0977MB	4.16	2.347	2.328	2.108	3.48	2.805	2.782	1.951
	100-100-0.0977MB	2.10	3.350	3.137	3.118	2.21	4.416	4.402	2.784
	1-5-0.0010MB	0.57	0.009	0.003	0.003	0.65	0.007	0.003	0.003
	1-10-0.0010MB	0.87	0.011	0.002	0.002	0.95	0.010	0.001	0.001
	1-20-0.0010MB	0.80	0.024	0.003	0.002	0.72	0.027	0.004	0.003
	1-40-0.0010MB	0.88	0.044	0.002	0.002	0.94	0.041	0.002	0.001
4	1-80-0.0010MB	0.33	0.236	0.046	0.005	0.98	0.080	0.001	0.001
	1-160-0.0010MB	0.49	0.319	0.034	0.004	0.73	0.215	0.003	0.002
	1-320-0.0010MB	0.39	0.811	0.016	0.005	0.73	0.429	0.005	0.002
	1-640-0.0010MB	0.43	1.437	0.006	0.004	0.59	1.062	0.004	0.002
	1-1280-0.0010MB	0.73	1.708	0.004	0.002	0.98	1.274	0.002	0.001

图 10 mock-s3 性能评测数据

5. 分析结果

(1)对象大小对性能的影响

1) minio

如图 9 中编号 1 的测试用例。并发终端数为 1,对象数为 100,对象大小从 1KB 增长到 1MB。随着对象大小的增大,吞吐率也增大。将百分位延迟用散点图表示。从图中可以观察到读取延迟无较大变化,写入延迟随对象大小增大呈现先增大再减小再增大的变化。

根据上述分析,可知对象大小越大,吞吐率越大,延迟在对象较小和较大时比较高。

图 11 minio 改变对象大小

@mock-s3

图 10 中编号 1 的测试用例显示,随对象大小的增大,吞吐率在增大。作出百分位延迟散点图。观察图像可知,读取延迟无较大变化,写入延迟随对象大小增大先减小、后增大。

根据以上分析,随对象大小增大,mock-s3 吞吐率增大,写入延迟在对象较小和较大时较大,读取延迟无较大变化。对比 minio,mock-s3 的写入延迟和读取延迟更小,吞吐量更大,性能更好。

图 12 mock-s3 改变对象大小

③对于熟悉的某类应用,根据其数据访问特性,怎样适配对象存储最合适?

根据以上分析,在使用要求低延迟的应用时,例如搜索引擎,可以选择 mock-s3 且工作的对象大小应控制较小。在使用追求吞吐率和访问速度的应用时,例如网盘,选择 mock-s3 且工作在对象大小较大时。

(2)并发客户端数对性能的影响

1 minio

如图 9 中编号 2 的测试用例。并发终端数从 1 增加到 100,对象数为 100,对象大小 1KB。编号 3 的测试用例,仅仅将对象大小改为 100KB,其他条件一致。可以观察到两种条件下,随着并发客户端增加,吞吐率在增加,且相比 1KB 大小的测试对象,100KB 大小的测试对象有更大的吞吐率。将延迟折线图画出。

图 13 并发客户端数量影响性能-1KB

图 14 并发客户端数量影响性能-100KB

可以观察到,随着并发客户端增加,延迟也呈现增加的趋势。总结下来,minio 在并发客户端增加的情况下,吞吐率在提高,但延迟也提高了,因此总体性能是 在下降的。

②mock-s3

在图 10 中,编号 2、3 的测试用例中标红的部分,写入发生错误,可以观察 到错误均发生在 32 个并发客户端之后,说明在 32 个并发客户端后 mock-s3 的并 发数量达到上限,继续增加会发生丢失数据的严重问题。

③综合上述分析,并发数量增加时,吞吐率增大,延迟增大,当达到并发极限时,可能出现丢失数据问题。minio 的并发负载能力比 mock-s3 更好。

(3) 对象数量对性能影响

观察图 9 和图 10,在并发客户端数量为 1,对象数量从 5 增加到 1280,对象大小为 1KB 的条件下,minio 和 mock-s3 的吞吐率和延迟变化不大,因为此时只有一个客户端,所以数据是串行到达,对象数量只是影响处理时间,对吞吐率和延迟无作用。

(4) I/O 延迟背后的关键影响要素

根据以上三个测试,可知 I/O 延迟主要的影响因素:

- ①对象大小,对象大小越大,延迟越大。是因为对象越大需要从磁盘读取的数据越大,耗时越长。
- ②并发数,并发客户端越多,延迟越大。是因为过多的连接请求产生拥塞,需要排队处理请求,而超过负荷的请求会造成请求失败,数据丢失。

六、实验总结

本次实验是一次比较新颖和有趣的实验,通过实验接触了面向对象存储这一新兴的存储技术,虽然实验内容不算难,但是能够从中学习到较多的技能,由于之前已经学习过 Git、Python、Java,所以开始搭建环境的时候比较轻松,因为之前已经具备了对应的开发环境,由于想尝试新的技术,所以选择了 Go 语言实现的客户端 osm 和评测工具 S3 Bench,搭建 Go 环境时,对环境变量的设置有所疑问,上网查资料后知道了应该怎么设置环境变量。由于无法连接到外网,所以安装 Go模块成了一个问题,老师教了一个从 Gitee 上查找镜像库 clone 到本地进行加载的办法,还有一个办法是更换 get 的源,这个方法还没有尝试过,因为安装较大的模块时,比如本次用到的依赖 aws-sdk-go,有 100 多 MB,采用离线到本地进行加载的方式更加合适。

在配置服务端、客户端和评测工具时,老师给的脚本节省了很多学习的时间, 而且直接阅读脚本内容,也能进一步理解是怎么配置的,具体涉及到哪些参数, 参数具体作用是什么。由于 S3 Bench 没有批量测试和输出结果文件功能,所以利 用 shell 脚本实现了批量测试和终端输出的重定向。

实验过程中老师和同学对我的疑问和困难进行了解答,同时也参考了往届学长的实验,实验过程中虽有挫折,但是收获满满。

参考文献

- [1] ARNOLD J. OpenStack Swift[M]. O' Reilly Media, 2014.
- [2] ZHENG Q, CHEN H, WANG Y等. COSBench: A Benchmark Tool for Cloud Object Storage Services[C]//2012 IEEE Fifth International Conference on Cloud Computing. 2012: 998–999.
- [3] WEIL S A, BRANDT S A, MILLER E L 等. Ceph: A Scalable, High-per formance Distributed File System[C]//Proceedings of the 7th Symposiu m on Operating Systems Design and Implementation. Berkeley, CA, U SA: USENIX Association, 2006: 307–320.
- [4] URL: https://gitee.com/shi_zhan/obs-tutorial
- [5] URL: https://github.com/cs-course/iot-storage-experiment-assignmen t-2019