Properties Bernouilli same for PDF Expected Value $\ln(mn) = \ln(m) + \ln(n)$ $I = rac{1}{p(1-p)} \ \hat{p}^{ ext{MLE}} = \overline{X_n}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ P(X = 1) = p $E[g(x)] = \sum_{x} g(x)p_X(x)$ $ig|_{p_{X\mid Y}(x\mid y)}=rac{p_{X,Y}(x,y)}{}$ $\ln\left(\frac{m}{n}\right) = \ln(m) - \ln(n)$ |E[X] = p $P(A \cup B) < P(A) + P(B)$ $E[g(x)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$ Conditional Var(X) = p(1-p) $\ln(m^r) = r \ln(m)$ $P(A \mid B) = rac{P(A \cap B)}{P(B)}$ Uniform DISCRETE Multiplication Rule Exponent $p_X(x) = rac{1}{b-a+1}$ Linearity of Expectations $p_{X,Y}(x,y) = p_Y(y)p_{X\mid Y}(x\mid y)$ $(ab)^x = a^x b^x$ E[aX+b]=aE[X]+b $P(A \cap B) = P(B)P(A \mid B)$ $p_{X,Y,Z}(x, y, z) = p_X(x)p_{Y|X}(y \mid x)p_{Z|X,Y}(z \mid x, y)$ $F_X(k) = rac{igllet b - a + 1}{igllet k igrtlet - a + 1}$ $E[X] = rac{a + b}{2}$ $(a^x)^y = a^{xy}$ E[X+Y] = E[X] + E[Y]Notal Prob Theorem A $p_{X,Y\mid Z}(x,y\mid z) = rac{p_{X,Y,Z}(x,y,z)}{p_{Z}(z)}$ Total Expectation Th. $P(B) = P(A_1 \cap B) + ... + P(A_n \cap B)$ $E[X] = \sum p_Y(y)E[X \mid Y = y]$ $= P(A_1)P(B \mid A_1) + ...$ $\sum_{i=1}^{n} ar^{i-1} = a \frac{1-r^n}{1-r}$ $Var(X) = \frac{(b-a+1)^2-1}{12}$ MULTIPLE VARS $E[X] = \int_{-\infty}^{\infty} f_Y(y) E[X \mid Y = y] dy$ $P(A \mid B) = \frac{P(A)P(B \mid A)}{P(B)}$ $\sum \sum p_{X,Y}(x,y) = 1$ $E[X] = \sum P(A_i)E[X \mid A_i]$ $\int \frac{1}{x} dx = \ln|x|$ Independence k successes in n trials $P((X,Y) \in B) = \int \int_{(x,y) \in B} f_{X,Y}(x,y) dx dy$ $P(A \mid B) = P(A)$ Cond. Expectation $\int e^{ax} dx = \frac{1}{a} e^{ax}$ $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$ $P(A \cap B) = P(A)P(B)$ $E[g(x) \mid Y = y] = \sum g(x)p_{X|Y}(x \mid y)$ $p_X(x) = \sum p_{X,Y}(x,y) = \sum p_Y(y) p_{X\mid Y}(x\mid y)$ CONT. DISTROS $\int a^x dx = \frac{a^x}{\ln(a)}$ Iterated Expectation Var(X) = np(1-p) $P(a \le x \le b) = \int_{a}^{b} f_X(x) dx$ $E[E[X \mid Y]] = E[X]$ (ex.) Geometric $f_X(x) = \int f_Y(y) f_{X\mid Y}(x\mid y) dy$ $\int \ln(x)dx = x\ln(x) - x$ number of trials until success INDEPENDENCE ranges: what values can Y take when X = $p_X(k) = (1-p)^{k-1}p$ $P(1 \le x \le 3 \text{ or } 4 \le x \le 5)$ If Indie $\int \cos(x)dx = \sin(x)$ $= P(1 \le x \le 3) + P(4 \le x \le 5)$ $F_{\mathbf{Y}}(k) = 1 - (1 - p)^k$ E[XY] = E[X]E[Y] $=\int f_{X,Y}(x,y)dy$ Properties Var(X + Y) = Var(X) + Var(Y) $\int \sin(x)dx = -\cos(x)$ $E[X] = \frac{1}{}$ $f(x) \geq 0$ and $\int^{\infty} f_X(x) dx = 1$ $p_{X,Y|Z}(x,y \mid z) = p_{X|Z}(x \mid z)p_{Y|Z}(y \mid z)$ Expected Value Rule Derivatives $Var(X) = \frac{1-p}{2}$ $E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$ $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ $(e^x)' = e^x$ CDF Properties $f_{X\mid Y}(x\mid y) = f_X(x)$ $(\ln(x))' = \frac{1}{x}$ $\cdot \to_{x \to \infty} 1$ and $\to_{x \to -\infty} 0$ $\int E[g(X,Y)] = \int E[g(x,y) \mid Y = y] f_Y(y) dy$ Cov(X,Y) = 0·increasing/monotonic how many occurrences k in au given rate $\sin(x) = \cos(x)$ ·right-continuous ___*--- $P(k, au) = rac{(\lambda au)^k e^{-\lambda au}}{k!}$ $E[g(X,Y) \mid Y=y] = \int g(x,y) f_{X\mid Y}(x\mid y) dy$ $\cos(x) = -\sin(x)$ Uniform CONT MIXED RV (fg)' = fg' + f'g $f_X(x) = \frac{1}{b-a}$ $\hat{b}^{ ext{MLE}} = ext{ max } (X_i)$ X = Y (discrete) w.p p $F_{X|Y}(x,y) = P(X \le x, Y \le y)$ Z (continuous) w.p (1-p) $Var(N_{ au}) = \lambda au$ $F_X(x) = \frac{x-a}{b-a}$ $F_X(x) = pF_Y(x) + (1-p)F_Z(x)$ $=\int^y \int_{-\infty}^x f_{X,Y}(s,t) ds dt$ (f(g(x)))' = f'(g(x))g'(x)E[X] = pE[Y] + (1-p)E[Z] $E[X] = \frac{a+b}{2}$ NORMALS $f_{\mathbf{Y}}(x)$ take CDF and derive for x $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $Var(X) = \frac{(b-a)^2}{12}$ VARIANCE Median $Var(X) = Eig[(X-\mu)^2ig]$ and $\sigma = \sqrt{Var(X)}$ $I(\mu,\sigma^2) = \begin{pmatrix} 1/\sigma^2 & 0 \\ 0 & 1/(2\sigma^4) \end{pmatrix}$ Law of Total Var distro, check up to where we have time to wait for something $Var(X) = E[Var(X \mid Y)] + Var(E[X \mid Y])$ p < 0.5 and then p > 0.5, the number we $Var(aX+b) = a^2 Var(X)$ Sample Variance have to add to cross threshold is Y=aX+b with $X\text{-}Nig(\mu,\sigma^2ig)$ $\widehat{\mu}^{\mathrm{MLE}}=\overline{X_n}$ $Y=Nig(a\mu+b,a^2\sigma^2ig)$ $\widehat{\sigma}^{\mathrm{2}}=S_n$ Indie Sum (sample var) $Var(X) = E[X^2] - (E[X])^2$ $P(X \ge a) = \int_{-\infty}^{\infty} \lambda e^{-\lambda x} dx = e^{-\lambda a}$ median (see here) $S_n = \frac{1}{N} \sum_{i=1}^{n} (X_i - \overline{X_n})^2$ Most likely value/appears most $E[S_n] = rac{n-1}{n} \sigma^2$ Unbiased Sample Variance $Var(X_1 + ... + X_n) = \sum_{i=1}^n Var(X_i) + \sum_{\{i,j\}: i \neq j} Cov(X_i, X_j)$ Z $\sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$ $\widetilde{S_n} = \frac{n}{-1} S_n$ $E[X^2] = \frac{2}{100}$ nb: $Z imes N(\mu_X-\mu_Y,\sigma_X^2+\sigma_Y^2)$ if $Z=N_1-N_2$ Var(X + Y) = Var(X - Y) = Var(X) + Var(Y)COUNTING $E\left[\widetilde{S_n}\right] = \sigma^2$ n choose k $Var(X) = \frac{1}{\sqrt{2}}$ $\Phi(-2) = P(Y < -2) = 1 - P(Y < 2) = 1 - \Phi(2)$ nb of combinations (anv order) STATISTICAL MODEL RANDOM NB OF RANDOM VARIABLES Standardising $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ $(E, (P_{\theta})_{\theta \in \Theta})$ N: nb of stores visited $X \sim N(\mu, \sigma^2)$ and $Y \sim N(0, 1)$ $f(x) = \frac{1}{h}x^{a-1}(1-x)^{b-1}\mathbf{1}\{x \in [0,1]\}$ X_i : money spent in store iE: sample space (X_1,\ldots) permutations $Y = rac{X - \mu}{\sigma} \;\; X = \mu + \sigma Y$ P: family of prob measures on E nb of ways of ordering n elements $k = \int_{-1}^{1} t^{a-1} (1-t)^{b-1} dt$ Θ : Param set (order matters) E[Y] = E[N]E[X]well specified if $heta^\star \in \Theta$ A sample space must not depend on $Var(Y) = E[N]var(X) + (E[X])^{2}var(N)$ subsets of n elements parameter A sample space must be the support for $3 \mu^3 + 3\mu\sigma^2$ partitions the distribution. i.e. $\left([0,\infty),\left\{N\left(\mu,\sigma^2\right) ight\} ight)$ $4 \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$ n objects into r groups is not valid because the sample space for 5 $\mu^5 + 10\mu^3\sigma^2 + 15\mu\sigma^4$ $n_1 ! n_2 ! ... n_r !$ a N is all R $6 \mu^6 + 15\mu^4\sigma^2 + 45\mu^2\sigma^4 + 15\sigma^6 15\sigma^6$

DISCRETE DISTROS

CONDITIONAL VARS

EXPECTATIONS

MISC

PROB BASTCS

	TESTS		MLE	t TEST	CATEGORICAL LIKELIHOOD	QQ PLOT (example $\underline{1}$, $\underline{2}$)
<pre> failing accepting </pre>	to reject H_0 d H_0	oes not mean	minimizes KL divergence	requires Gaussian samples is pivotal (q in tables)	i.e. are Zodiac signs uniformly	$F_n^{-1}\left(rac{i}{n} ight)=X_i$ (F_n is sample CDF)
Errors			$\hat{\boldsymbol{\theta}}_n^{MLE} = arg \max_{\boldsymbol{\theta} \in \Theta} \log(L)$	test is non-asymptotic	distributed? $p_0 = (-,)$	(")
test	H_0	H_1	△ MLE can be Biased △ function must be cont. diff. to	one sample two-sided	$L_n = p_1^N \ _1p_k^N \ _1$	points are $\left(F^{-1}\left(\frac{1}{n}\right),x_1\right),\left(F^{-1}\left(\frac{2}{n}\right),x_2\right)$
reality	110	111	use derivative to find extremums.	$H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$ $\overline{X_n} = \mu_0$	$N_j = \#\{X_i = a_j\}$	to find inverse $F^{-1}\colon$ "what input value
H_0		type 1 error	use a plot and think if not	$T_n = \frac{\sqrt{n}X_n}{\sigma} = \frac{\sqrt{n}\frac{2n^2 + n^2}{\sigma}}{\sigma} rt_m$	$\hat{p}^{\mathrm{MLE}} = \frac{N_j}{n}$ prob of obs. outcome j	gives output value t. we are looking for
110	•	(reject when shouldn't)	Consistency and Asym. Norm.	1 /0 /0	, , , ,	input value to F that gives $\frac{1}{n}$ "
	type 2 error	,	· param is identifiable	$\sqrt{\sigma^2}$	$oxed{p_j = P(X = a_j) = \prod_i rac{1}{a_i = a_j}}$	
H_1	(fail to reject	·		$\left \psi_{lpha}=1\Big\{ T_n >q_{rac{lpha}{2}}\Big\} ight.$	2	\int lighter tails $\sqrt{\exp(+)}$
level α	Whan choulds		I(heta) is invertible	2)	χ^2 TEST $H_0 \colon ec{p} = ec{p}^0$ vs. $H1 \colon ec{p} eq ec{p}^0$	than normal
	error rate		· more stuff	$ H_0: \mu \leq \mu_0 \text{ vs } H_1: \mu > \mu_0$		
nigher $\alpha \rightarrow$ power β	· more likely t	to reject H_0	then $\texttt{consistent:} \; \hat{\theta}_n^{MLE} \to \theta^\star$	$T_n = \frac{\sqrt{n}(\overline{X_n} - \mu_0)}{2} t_n$	$oxed{T_n = n\sum_{k} \left\lceil rac{\left(\hat{p}_j - p_j^0 ight)^2}{p_j^0} ight ceil} ight. ightarrow \chi_{k-1}^2}$	fatter tails exp(-)
$\pi_{\psi} = \inf_{ heta \in \Theta n}$	$ig(1-eta_{\psi}(heta)ig)$		consistent: $\theta_n \to \theta^{}$	$T_n = rac{\sqrt{n}(\overline{X_n} - \mu_0)}{\sqrt{\widetilde{S_n}}} \cdot t_{n-1}$	p_j^0	than normal
example 2			A.normal: $\sqrt{n} \Big(\hat{ heta}_n^{MLE} - heta^\star \Big) o N \Big(0, I(heta^\star)^{-1} \Big)$	$\left \psi_{lpha}=1\{T_{n}>q_{lpha}\} ight $	where k is nb of categories	MARKOV INEQUALITY
coin $H_0\!:\!p$ =	= $rac{1}{2}$ and $H_1\!:\!p eq$.	$\frac{1}{2}$	Process to find extremum	two sample	χ^2 TEST FOR FAMILY OF DIST	$X \geq 0$ and $a > 0$ $E[X]$
(]	· get l_n · find crits with $l_n{'}(heta)=0$	$\left \overline{X_n} \sim N\left(\Delta_d, \frac{\sigma_d^2}{n}\right)\right $ and $\overline{Y_m} \sim N\left(\Delta_c, \frac{\sigma_c^2}{m}\right)$	$H_0: p \in \{\operatorname{Bin}(k, heta)\}_{ heta \in \Theta} \ \ ext{vs} \ \ H_1: p otin \{\operatorname{Bin}(k, heta)\}_{ heta \in \Theta}$	$P(X \ge a) \le rac{E[X]}{a}$
$\psi = 1 \langle \sqrt{n} - $	$\left \overline{\frac{X_n - rac{1}{2} \Big }{rac{1}{2} \Big(1 - rac{1}{2} \Big)}} ight > q_{rac{lpha}{2}}$	ļ	. chock if crite are local min/may		9	CHEBYSHEV INEQUALITY (link)
/	$\frac{1}{2}\left(1-\frac{1}{2}\right)$		· check values at endpoints	$\frac{\overline{X_n} - \overline{Y_m} - (\Delta_d - \Delta_c)}{\sqrt{\frac{\tilde{\sigma}_d^2}{n} + \frac{\tilde{\sigma}_c^2}{m}}} - t_N$	$T_n = n \sum_{i=0}^k rac{\left(rac{N_j}{n} - f_{\hat{ heta}}(j) ight)^2}{f_{\hat{ au}}(j)} ightarrow \chi^2_{(k+1)-d-1}$	probability of estimate of mean deviating
` '	between X and	,	METHOD OF MOMENTS	$\sqrt{\frac{\tilde{\sigma}_d^2}{a} + \frac{\tilde{\sigma}_c^2}{m}}$		from true mean by more than C
) and $\overline{Y_n} \circ N(\mu_2, \sigma)$		$\widehat{m}_k = \overline{X_n^k} = rac{1}{n} \sum X_i^k$	$N = \frac{\sqrt{\frac{n}{n} + \frac{c}{m}}}{\frac{\tilde{\sigma}_d^4}{n^2(n-1)} + \frac{\tilde{\sigma}_c^4}{m^2(m-1)}} \geq \min{(n,m)}$	\mathbb{A} $k-d-1$ if we start at j=1	$P(X - \mu \ge c) \le \frac{\sigma^2}{c^2}$
	$\mathrm{nd}H_1\!:\!\mu_1 eq\mu_2$		LLN $\widehat{m}_k o m_k(heta) = E_{ heta}ig[X_1^kig]$	$\left(egin{array}{ccc} ilde{\sigma}_d^2 & ilde{\sigma}_c^2 \end{array} ight)^2$	$egin{aligned} \Theta \in \mathbb{R}^d \ f_{ heta} ext{ is PMF of } \operatorname{Bin}(k, heta) \end{aligned}$	C
$\sqrt{n}rac{\overline{X_n}-\overline{Y_n}}{\sqrt{\sigma_1^2\sigma_2^2}}$	$\sim N(0,1)$		ASYM NORM $\sqrt{n} \Big(\hat{ heta} - heta \Big) o N(0, \Gamma(heta))$	$\left(\frac{n}{n} + \frac{1}{m}\right)$	$\hat{ heta}$ is MLE here	CONTEDCENCE IN DECEMBER 1889
$\sqrt{\sigma_1^2\sigma_2^2}$, , ,		$\Gamma(\theta) = \left\lceil \frac{\delta M^{-1}}{\delta \theta} \right\rceil^T \Sigma(\theta) \left\lceil \frac{\delta M^{-1}}{\delta \theta} \right\rceil$	$N = \frac{1}{\tilde{\sigma}_d^4} \qquad \tilde{\sigma}_c^4 \geq \min \left(n, m \right)$	EMPIRICAL CDF	CONVERGENCE IN PROBABILITY a seq. converges to a in probability if:
single-sid			$\Gamma(\theta) = \left[\frac{\delta\theta}{\delta\theta}\right] \left[\frac{\Sigma(\theta)}{\delta\theta}\right]$	$\frac{1}{n^2(n-1)} + \frac{1}{m^2(m-1)}$	$F_n(t) = rac{1}{T} \sum 1\{X_i \leq t\}$	$\lim_{n o\infty} P(X_n-\mu \geq arepsilon)=0$
<pre></pre>	H_0 at boundar	y (<u>see part c</u>	finding $\hat{ heta}$		$ \begin{array}{c} \Gamma_n(i) - \frac{1}{n} \sum \Gamma(X_i \le i) \\ \text{it is discontinuous} \end{array} $	another way to show convergence in prob
$\overline{H_0\mu} \geq \sigma$ and			write $ heta$ as function $E[X],$ $Eig[X^2ig]\dots$	WALD'S TEST test is asymptotic	$\sqrt{n}(F_n(t)-F(t)) o N(0,F(t)(1-F(t)))$	is to determine expectation and variance. if $Var ightarrow 0$ then convergence
boundary i	s $\mu=\sigma$ for $g(heta)$	or θ	then sub for $\overline{X_n}$, $\overline{X_n^2}$	· not invariant to change in rep of	DONSKER'S TH.	properties
	TAL VARIATION I			H_0 only req est of unrestricted	if F cont:	· if g is continuous then $g(X_n) o g(a)$ · $X_n + Y_n o a + b$
<pre>max dist between two distros</pre>			M-ESTIMATION Lecture 12, tab 2	model, lower computation	$\sqrt{n} \max_{t \in \mathbb{R}} F_n(t) - F(t) ightarrow \max_{0 \leq t \leq 1} B(t) $	but $E[X_n]$ doesn't need to converge to a
	4		FISHER INFORMATION	△ MLE conditions must be satisfied	where B is Brownian bridge	
$I V(P_{\theta}, P_{\theta'}) =$	$=rac{1}{2}\sum_{x\in E} p_{ heta}(x)-p_{ heta'}(x) $	<i>w</i>)	∆ use <u>ONE</u> observation	$H_0\!:\! heta= heta_0$ vs $H_1\!:\! heta eq heta_0$ for $ heta\in\mathbb{R}^d$	KC MECH (everyle)	
$TV(P_{\theta}, P_{\theta'}) =$	$=rac{1}{2}\int_{-\infty}^{\infty} f_{ heta}(x)-f_{ heta'} $	(x) dx	not well defined if support depends on unknown (shifted exp)	$/_{\text{AMLE}}$ $/_{\text{AMLE}}$ $/_{\text{AMLE}}$	KS TEST ($\underline{\text{example}}$) X_i : real RV with unk CDF	
(0 , 0 ,	$2J_{-\infty}$. , ,	$\triangle l''(\theta)$ must exist		$H_0\colon\! F=F^0$ vs $H1\colon\! F eq F^0$	
Properties			$I(\theta) = Var(l'(\theta)) = -E[l''(\theta)]$	equivalently	$\left \delta_{lpha}^{ ext{KS}} = 1\{T_n > q_{lpha}\} ight $	ESTIMATE BINOMIAL WITH NORMAL
symmetric: positive:	$TV(P_{\theta}, P_{\theta'}) = TV$ 0 < TV < 1	$(P_{ heta'}, P_{ heta})$	A the E[] is of the observation X and not the unknown! $E[\theta X] = \theta E[X]$	$igg T_n = \left\ \sqrt{n}I(heta_0)^{rac{1}{2}}\left(\hat{ heta}^{ ext{MLE}} - heta_0 ight) ight\ ^2 ightarrow \chi_d^2$	$igg = 1igg\{ \max_{t \in \mathbb{R}} \sqrt{n} F_n(t) - F(t) > q_lpha igg\}$	PMF of # success in n trials w/p p
_	if $TV(P_{m{ heta}},P_{m{ heta'}})=0$) then $P_{ heta}=P_{ heta'}$			p-value $P(Z > T_n \mid T_n)$	approximates $N(np,np(1-p))$ with
triangle i		(D	χ^2 DISTRO	which gives test $\psi_{\alpha}=1\{T_n>q_{\alpha}\}$ where q_{α} is the $(1-\alpha)$ -quantile of χ^2_d	T_n	$P(X=19)'=P(18.5 \le X \le 19.5)$
$TV(P_{ heta},P_{ heta'}) \leq$ if disjoin	$\leq TV(P_{ heta},P_{ heta^{\prime\prime}})+TV$ t: $TV=1$	$(P_{\theta}^{\ \prime\ \prime},P_{\theta^{\prime}})$	distro of sum of $Z_i extstyle N(0,1)$ $E[V]=d$	14 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
if same: T			$egin{aligned} E[V] &= u \ Var(V) &= 2d \end{aligned}$	LIKELIHOOD RATIO TEST	$igg = \max_{1 \leq i \leq n} \left[\left. \max \left(\left F^0(X_i) - F_n(X_i) ight , \left F^0(X_i) - rac{i}{n} ight ight) ight]$	MOIVRE LAPLACE CORRECTION
	MAXIMIZATIO	ON	COCHRAN'S TH.	· how diff is likelihood from null	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	when estimating an integer R.V. with the
	remes on range			$X_i \text{ iid } \Theta \in \mathbb{R}^d$	$= \max_{1 \le i \le n} \left\lfloor \max \left(\left F^{0}(X_i) - F_n(X_i) \right , \left F^{0}(X_i) - \frac{e^{-x_i}}{n} \right \right) \right\rfloor$	CLT, can do the "1/2 correction": $P(S_n \leq 21) ightarrow P(S_n \leq 21.5)$
test criti min/max	cal points and	end points	$\frac{ nS_n }{\sigma^2} \sim \chi_{n-1}^2 \text{ or } nS_n \sim \frac{\sigma^2}{n} \chi_{n-1}^2$	$H_0: (\theta_{r+1},, \theta_d) = (\theta_{r+1}^{(0)},, \theta_d^{(0)})$	CDF OF SAMPLE IS UNIFORM	$F(S_n \leq 21) \rightarrow F(S_n \leq 21.5)$
h '' $(x) \leq 0 ightarrow$	concave, maxi		t DISTRO	$T_n = 2 \Big(l_n \Big(\hat{ heta}_n^{ ext{MLE}} \Big) - l_n \Big(heta_n^{(0)} \Big) \Big)$	$Y = F_X(x)$ $F_Y \circ Un \text{if} (0, 1)$	
	_	al max, h' decr	for small nb of Gaussian samples w/	△ same n for both likelihoods	Y 010 II (0, 1)	is estimator consistent?
$h^{-1}(x) \geq 0 ightarrow MV ext{ min/max}$	convexe, mini	mum, n' incr.	$Z{\sim}N(0,1)$ and $V{\sim}\chi_d^2$ and $\mathrm{SampleVar}=rac{V}{d}$	Wilk Th. assuming H_0 is true and MLE	KL TEST (<u>example</u>)	check lim as $n o \infty$ against estimator
	0 concave, max	[7	conditions. is asymptotic	is my data Gaussian? more likely to reject than KS test	is estimator asym. normal? start with CLT definition, then put in
+1 top dia	g: convexe, min		$\frac{Z}{\sqrt{V}}$ A Z and V must be indie	$T_n ightarrow \chi^2_{d-r}$	$\max_{t\in\mathbb{R}}\left F_{n}(t)-\Phi_{\widehat{\mu},\widehat{\sigma}^{2}}\left(t ight) ight $	the estimator. also get aVar like this.
		(? ?)	V d	$\psi_{lpha} = 1\{T_n > q_{lpha}\}$	$t\in\mathbb{R}$ μ,σ^{ω} /	see <u>examples</u> .

BAYESIAN STATS	BAYES ESTIMATOR	MV LINEAR REGRESSION (STATS)	WOLFRAM
$\pi(\theta \mid X_1X_n) = \frac{\pi(\theta)L_n(X_1X_n \mid \theta)}{\int_{\Gamma} \pi(\theta)L_n(X_1X_n \mid \theta)}$	mean of posterior	$ec{Y} = \mathbb{X} ec{eta}^\star + ec{arepsilon}$	Probability x>4.03, Chi Squared Distribution degrees of freedom 1
$\pi(heta \mid X_1X_n) = rac{\int_{\Theta} \pi(heta) L_n(X_1X_n \mid heta)}{}$	also known as TMC "conditional	$ec{eta} \in \mathbb{R}^p$, $ec{Y} \in \mathbb{R}^n$, $\mathbb{X} \in \mathbb{R}^{n imes p}$	CDF[NormalDistribution[2, 1], 0.65] \(\text{CDF uses } \) \(\text{STANDARD DEVIATION} \) Quantile[ChiSquareDistribution[1], 0.95]
$\propto \pi(heta) L_n(X_1X_n \mid heta)$	expectation" $E[\Theta \mid X = x]$	LSE (same as Bayes estimator)	Round[5.15517, 0.001]
conjugate prior if post. distro. same	A MUST USE ACTUAL POSTERIOR, not the	$\left \widehat{ec{eta}} ight = arg \min_{eta \in \mathbb{R}P} \left \left ec{Y} - \mathbb{X} ec{eta} ight ight ^2$	
as prior distro. improper prior i.e. $\pi(\theta)=1$, not a	prop. one if we carculate it like below,	pc.ne	1 PARAM CANON EXP FAMILY (\underline{ex}) $N(\mu, 1)$
valid distro	else we may also use mean of the distribution if i.e. Beta without having	$\widehat{ec{eta}} = \left(\mathbb{X}^T\mathbb{X} ight)^{-1}\mathbb{X}^TY$	$egin{aligned} f_{ heta}(y) &= \exp\left(rac{y heta - b(heta)}{\phi} + c(y, heta) ight) & \cdot & Poisson(\lambda) \ \cdot & Ber(p) \end{aligned}$
Jeffrey's prior	to calculate denominator	$Rank(\mathbb{X}) = p$ and need $n \geq p$ for this to work	Binomial(1000 n)
non-informative prior, not always improper. reflects no prior belief,		assumptions	$ heta$ is canon. param ϕ (dispersion), b and c known $Exp(\lambda)$
only stats model	$\hat{ heta}^{\pi} = \int_{\Omega} heta \pi(heta \mid X_1 X_n) d heta$	· » is deterministic, rank=b	b(heta) is log partition
(0) (1 + 7(0)	3 ⊕	$ec{arepsilon} \sim N(0, \sigma^2 I_n)$	$E[Y] = b'(\theta)$
v v	$ ext{aVar} = I^{-1}(heta)$ of distro sampled properties of LMS estimation error		$Var(Y) = b''(\theta)\phi$
we have Jeff prior for $ heta$, want $\eta=\Phi(heta)$		$\Rightarrow Y \text{-} N_n \Big(\mathbb{X} eta^\star, \sigma^2 I_n \Big)$	linear transformations of these are also canon.
· replace $ heta$ with $\Phi^{-1}(\eta)$	$E[\widetilde{\Theta} \mid X = x] = 0$	$\Rightarrow I(\beta) = \frac{1}{2} \mathbb{X}^T \mathbb{X}$	links $\mu(x)$ to canon param $ heta$:
\cdot multiply by $\dfrac{d heta}{d\eta}=\dfrac{1}{\Phi^{\prime}(heta)}$	L J	<i>θ</i> -	$g(\mu(x)) = \theta = (b')^{-1}(\mu(x))$
* * /	$cov\left(\widetilde{\Theta},\widehat{\Theta} ight)=0$	properties of LSE · LSE is MLE in homoscedatic case	if $\phi>0$ canon link is strictly increasing
confidence region $P(heta \in \mathbb{R} \mid X_1X_n) = 1 - lpha$	$Var(\Theta) = Varigl(\widetilde{\Theta}igr) + Varigl(\widetilde{\Theta}igr)$	(GLM MODEL
$A = \{0 \in \mathbb{R} \mid A_1 A_n\} - 1 - \alpha$	conditional MSE of LMS estimator	$\left \cdot \; \widehat{eta} \; \sim \; N_p \left(eta^\star, \sigma^2 \left(\mathbb{X}^T \mathbb{X} ight)^{-1} ight) ight.$	$ec{Y}=(Y_1,,Y_n)$ and $\mathbb{X}=(X_1,,_{X-n})$
BAYESIAN STATS - NORMALS	$E\Big[\Big(\Theta - \widehat{\Theta}\Big)^2 \mid X = x\Big] = Var(\Theta \mid X = x)$	$\ \cdot \ _{\mathcal{H}} = \ \ \hat{\beta} - \beta \ ^2 \ - \sigma^2 trace \left(\ \mathbb{X}^T \mathbb{X} \ ^{-1} \right)$	$\mu_i = E[Y_i \mid X_i]$ is related to canonical param $ heta_i$ via $\mu_i = b'(heta_i)$
$f_X(x) = c \exp igg(- ig(lpha x^2 + eta x + \gamma ig) igg)$	$E\left[\left(O-O\right)^{-1}A-x\right]=Var\left(O+A-x\right)$		μ_i depends linearly on the coavariates through link function g:
_		$\left\ \cdot ight.$ prediction error: $\left.E ight \left\ Y-\mathbb{X}\widehat{\widehat{eta}} ight\ ^{2} ight =\sigma^{2}(n-p)$	$g(\mu_i) = X_i^T eta$ using predictor
$\mu=-rac{eta}{2lpha}$ and $\sigma^2=rac{1}{2lpha}$	LLMS / LINEAR REGRESSION unknown Θ , observation X		use mean function in table below once we have \widehat{eta}
the peak is min. of exponent:	$\widehat{\Theta} = aX + b$	vunbiased estimator: $\sigma^2 = \frac{\left\ Y - X\widehat{\beta}\right\ ^2}{n-n} = \frac{1}{n-n}\sum \hat{\varepsilon}^2$	asymptotic normality
± ±	minimises $Eig[(\Theta-aX-b)^2ig]$	n-p $n-p$	\widehat{eta} is asym normal
*	minimises $E[(\Theta - aX - b)]$		finding β
$\widehat{\Theta}_{ ext{MAP}} = \widehat{\Theta}_{ ext{LMS}} = E[\Theta \mid X = x]$	$Cov(\Theta, X)$	$\left \cdot (n-p) \frac{\widehat{\sigma^2}}{\widehat{\sigma^2}} \right \sim \chi^2_{n-p}$	MLE/Gradient Descent
<pre>(in general this is true if posterior is unimodal and symmetric)</pre>	$a = rac{Cov(\Theta, X)}{Var(X)}$	\cdot \hat{B} and $\hat{\sigma^2}$ are orthogonal and indie	Link function Linear predictor CANON PARAMETER
is unimodal and symmetric)	$b = E[\Theta] - aE[X]$	B and B are orthogonal and indie	$\frac{\theta = a + bX = \mathbb{X}\beta = g(\mu)}{\text{here } \mu \text{ is the param of our}}$
MAP		BONFERRONI'S TEST (<u>ex.</u>)	Here μ is the param of our
$\hat{ heta}^{ ext{MAP}} = arg \max_{ heta} \pi(heta \mid X_1X_n)$	A if all vars normals then LMS=LLMS	test whether group of explanatory vars is	$g_i \sim 106801(\lambda_1)$
T (X7 X7 0) (0)	MSE	significant △ non asymptotic test	Probability distribution $\mu = g^{-1}(\theta)$
θ look at posterior PDF/PMF and ask	$\mathit{MSE}ig(\hat{ heta}ig) = Eigg[ig(\hat{ heta} - hetaig)^2igg] = Varig(\hat{ heta}ig) + ig(Biasig(\hat{ heta}ig)ig)^2$	$H_0:eta_i=0 \ orall j\in S$ where $S\subseteq\{1,,p\}$, - · · · ·
"which actual possible values of θ	Gaussian	$H_1\colon \exists j\in S$ where $eta_j eq 0$	
make this result most likely, i.e.	9	$R_{S,lpha} = igcup_{j \in S} R_{j,rac{lpha}{k}}$ (OR statement!)	
the mode	$MSE(\overline{X_n}) = E[(\overline{X_n} - \mu)^2] = \left(\frac{\sigma}{\sqrt{n}}\right)^2$	J	
i.e. is $ heta_1- heta$ $ > heta_2- heta$	(V ··)	where k is # in S, and $rac{lpha}{k}$ usually passed to a 2	
	$MSEig(\widetilde{S_n}ig) = rac{2}{n-1}\sigma^4$	sided test so that final quantile may be $q_{\underline{lpha}}$	
possible values find MAP continuous	$MSE(S_n) = \frac{2n-1}{n-2}\sigma^4$	$\frac{2k}{2}$	
take derivative, find critical	n^2	$\max\left(\left \widehat{eta}_{1}\right ,\left \widehat{eta}_{2}\right ,\right)$	
points, maximum	LINEAR REGRESSION FUNCTION	$ \psi = 1\langle \frac{}{} \rangle$	
LINEAR REGRESSION (STATS)	$E[Y\mid X=x] = \mu(x) = \int y h(y\mid x) dy = X^T eta$	$\left[\sqrt{Var(\widehat{eta}_j)} ight]^{2k}$	
this describes the practical model.	J		
LLMS in Prob describes theory.	SIGNIFICANCE TESTS	Distribution Support of Typical uses	Link name Link function, $\mathbf{X}\boldsymbol{\beta} = g(\mu)$ Mean function
▲ nb: stats and prob flip the a, b like theoretical model but assume	is j th explanatory variable significant	Normal real: $(-\infty, +\infty)$ Linear-response data	Identity $\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\mu}$ $\boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
some Gaussian noise	$H_0\!:\!eta_j=0$ $H_1\!:\!eta_j eq 0$ (ex. for $eta_1=eta_2$)	Exponential Exponential-response data sca	alo Nogativo
$Y_i = a^\star + b^\star X_i + arepsilon_i$	assume γ_j is j th diagonal coefficient of	Gamma real: (0,+∞) parameters	$\mathbf{X}\boldsymbol{\beta} = -\mu^{-1} \qquad \qquad \mu = -(\mathbf{X}\boldsymbol{\beta})^{-1}$
use least squares to find estimators	$\left(\mathbb{X}^T\mathbb{X} ight)^{-1} (\gamma_j>0)$	Inverse Gaussian real: (0,+∞)	Inverse squared $\mathbf{X}\boldsymbol{\beta} = \mu^{-2}$ $\mu = (\mathbf{X}\boldsymbol{\beta})^{-1/2}$
$\min \sum_{i} (Y_i - a - bX_i)^2$	· /	<u> </u>	
$\widehat{a} = \overline{Y} - \widehat{b}\overline{X}$	$\Rightarrow T_n = rac{\widehat{eta}_j - eta_j}{\sqrt{\widehat{\sigma}^2 - \gamma_j}} \sim t_{n-p}$	<pre>Poisson integer: 0,1,2, count of occurrences in fixed</pre>	$\underline{\text{Log}} \qquad \mathbf{X}\boldsymbol{\beta} = \ln(\mu) \qquad \qquad \mu = \exp(\mathbf{X}\boldsymbol{\beta})$
$\hat{b} = rac{\overline{XY} - \overline{X}\overline{Y}}{\overline{X^2} - (\overline{X})^2}$	$\sqrt{\widehat{\sigma}^2} - \gamma_j$	Bernoulli integer: {0,1} outcome of single yes/no occur	rrence $\mathbf{X}\boldsymbol{\beta} = \ln\left(\frac{\mu}{1-\mu}\right)$ $\exp(\mathbf{X}\boldsymbol{\beta})$ 1
$X^2-\left(\overline{X} ight)^2$	$\Rightarrow R_{j,lpha} = \left\{ \left T_n^{(j)} ight > q_{rac{lpha}{2}}(t_{n-p}) ight\}$	Disputed integer: count of # of "yes" occurrence	Logit $\mu = \frac{1}{2} $
	$\left\{\begin{array}{c c} -c_{J,\alpha} & \left(-\frac{\pi}{2} & -\frac{\pi}{2} & -\frac{\pi}{2} \end{array} \right)\right\}$	Binomial 0,1,,N of N yes/no occurrences	as out $ \mathbf{X}\boldsymbol{\beta} = \ln \left(\frac{\mu}{n-\mu} \right) \qquad 1 + \exp(\mathbf{X}\boldsymbol{\beta}) 1 + \exp(-\mathbf{X}\boldsymbol{\beta}) $
		<u>I</u>	