	(b)	Write short notes on the following (any two	(o):
		(i) Cement moduli	
		(ii) Cement additives	
		(iii) Fly ash as a cementing material.	6
		OR	
6.	(a)	Draw a labelled diagram of rotary kiln. Des	scribe
		the process of manufacture of portland ce	ment
		by wet process. State the various thermoche	
		changes occur during the process.	6
	(b)	Attempt any two of the following:	
		(i) Rapid hardening cement	
		(ii) High alumina cement	
		(iii) Soundness of cement	
		(iv) Ready mix concrete.	4
7.	(a)	Give the significance of green chemistry.	State
		the basic principles of green chemistry.	3
	(b)	Discuss super critical CO ₂ as a green solv	ent.
			3
	(c)	Define energy density and power density.	2
		OR	
8.	(a)	Discuss construction, working and application	on of
		Ni-Cd battery.	4
	(b)	Write notes on (any two):	
		(i) Carbon credit	
		(ii) Biocatalysis	
		(iii) Primary battery.	4
MVM—470		7049 4 1	15100

NTK/KW/15/7286

Faculty of Engineering & Technology First Semester B.E. (C.B.S.) Examination **ENGINEERING CHEMISTRY**

Time: Two Hours] [Maximum Marks: 40

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Solve FOUR questions as follows: Question No. 1 OR Question No. 2

Question No. 3 OR Question No. 4

Question No. 5 OR Question No. 6

Question No. 7 OR Question No. 8

- (3) Due credit will be given to neatness and adequate dimensions.
- (4) Assume suitable data wherever necessary.
- (5) Diagrams and chemical equations should be given wherever necessary.
- (6) Illustrate your answers wherever necessary with the help of neat sketches.
- (7) Discuss the reaction, mechanism wherever necessary.
- (8) Use of non-programmable calculator is permitted.

MVM-47049 (Contd.)

7.

$$Mg(HCO_3)_2 = 73$$
, Dissolved $CO_2 = 20$.

Calculate the amount of lime (85% pure) and soda (95% pure) require for the softening of 2,50,000 litres of water using sodium aluminate as a coagulant at the rate of 16.4 ppm.

(b) Explain desalination by Electro-dialysis process.

4

OR

- (a) A zeolite softener was completely exhausted by 2. passing 20,000 litres of water sample through it. If the zeolite requires 150 litres of 5.5% NaCl solution for complete regeneration, calculate the hardness of the water sample. 3
 - (b) Write notes on (any three):
 - (i) Break point chlorination and its significance.
 - (ii) Tertiary treatment of waste water to reduce water pollution.
 - (iii) Causes and disadvantages of scale formation in boiler.
 - (iv) Carbonate and phosphate conditioning. 9

MVM-47049 2 (Contd.)

- (a) How corrosion can be prevented with proper material selection and design?
 - (b) Explain the following (any two):
 - (i) Cathodic protection by impressed current method.
 - (ii) How rate of corrosion is depend upon nature of environment?
 - (iii) Pilling-Bedworth Rule.

OR

(a) Discuss the mechanism of electrochemical corrosion by O₂ absorption and H₂ liberation.

(b) Explain why (any *three*):

(i) Anodic area should be larger than cathodic area.

(ii) Copper equipment should not possess a small steel bolt.

6

- - (iii) Pitting corrosion is auto-catalytic and self stimulating.
 - (iv) A pure metal rod, half immersed vertically in water starts corroding at the bottom.

6

(a) How does ordinary portland cement set-in and harden on mixing with water? Justify the answer with chemical equations.

MVM-47049

(Contd.)