PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-363194

(43) Date of publication of application: 18.12.2002

(51)Int.Cl.

CO7F 9/6581 CO7F 9/6593 CO8G 79/02 CO8J 5/00 CO8K 5/5399 CO8L 85/02 C08L101/00 C09K 21/12 C09K 21/14

(21)Application number: 2001-170319

(71)Applicant:

CHEMIPROKASEI KAISHA LTD

(22)Date of filing:

05.06.2001

(72)Inventor:

YASUDA HEINOSUKE **NISHIMATSU MASAYUKI OMAE YOSHINORI**

FUKUOKA NAOHIKO

(54) CYCLIC PHOSPHAZENES, METHOD FOR PRODUCING THE SAME, FLAME RETARDANT USING THE SAME AS ACTIVE INGREDIENT AND RESIN COMPOSITION AND MOLDED ARTICLE INCLUDING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide cyclic phosphazenes having low content of linear phosphazenes without repeating purification, a new method for production of the same, a flame retardant using the same as an active ingredient, a resin composition and a molded article including the same.

SOLUTION: The cyclic phosphazenes are expressed by general formula (1), (Q is a halogen atom and/or an aryloxy group, m is an integer of 3 to 10), substantially free from linear phosphazenes expressed by general formula (2) (Q is a halogen atom and/or an aryloxy group, n is an integer of 1 to 20), and the invention includes the method of producing the same, the flame retardant using the same as the active ingredient, the resin composition and the molded article including the same.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-363194 (P2002-363194A)

(43)公開日 平成14年12月18日(2002.12.18)

兵庫県神戸市中央区東川崎町1丁目3番3

(外1名)

			(/ - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / - / - / / / / / / / / / / / -	1 742 2 3 2 2 7 3 2 7	- H (10011.12.10)	
(51) Int.Cl. ⁷	識別記号	ΡI			テーマコート*(参考)	
C 0 7 F 9/65	81	C 0 7 F	9/6581		4F071	
9/65	93		9/6593		4H028	
C 0 8 G 79/02		C 0 8 G	79/02		4H050	
C 0 8 J 5/00	CEZ	C 0 8 J	5/00	CEZ	4 J O O 2	
C 0 8 K . 5/53	99	C 0 8 K	5/5399		4 J O 3 O	
	審查	情求 未請求 請求	項の数6 0	L (全 14 頁)	最終頁に続く	
(21)出顯番号	特願2001-170319(P2001-170319	9) (71) 出顧人	394013644		· · · · · · · · · · · · · · · · · · ·	
			ケミプロ化	成株式会社		
(22)出夏日	平成13年6月5日(2001.6.5)		兵庫県神戸市中央区東川崎町1丁目3番3			
			号			
		(72)発明者	f 福岡 直彦	ŧ		
			兵庫県神戸	兵庫県神戸市中央区東川崎町1丁目3番3		
			号 ケミプロ化成株式会社内			
		(72)発明者	f 保田 平之	介		

最終頁に続く

(54) 【発明の名称】 環状ホスファゼン類、その製造方法、それを有効成分とする難燃剤およびそれを含む樹脂組成物 と成形品

(57)【要約】

【課題】 精製を繰り返すことなく鎖状のホスファゼン 含有量が低い環状ホスファゼン類、そのための新規な方法、それを有効成分とする難燃剤、樹脂組成物および成形品の提供。

【解決手段】 下記一般式(1)

【化1】

(式中、Qはハロゲンおよび/またはアリールオキシ 基、mは3~10の整数である。)で示され、かつ下記 一般式(2)

【化2】

(式中、Qはハロゲンおよび/またはアリールオキシ

基、nは1~20の整数である。)で示される鎖状ホスファゼン類を事実上含まないことを特徴とする環状ホスファゼン類、そのための新規な方法、それを有効成分とする難燃剤、樹脂組成物および成形品。

号 ケミプロ化成株式会社内

弁理士 友松 英爾

(74)代理人 100094466

【特許請求の範囲】

【請求項1】 下記一般式(1)

【化1】

(式中、Qはハロゲンおよび/またはアリールオキシ 基、mは3~10の整数である。)で示され、かつ下記 一般式(2)

【化2】

(式中、Qはハロゲンおよび/またはアリールオキシ基、nは1~20の整数である。)で示される鎖状ホスファゼン類を事実上含まないことを特徴とする環状ホスファゼン類。

【請求項2】 前記鎖状ホスファゼン類の含有量は5.0重量%以下である請求項1記載の環状ホスファゼン類。

【請求項3】 下記一般式(1)

【化3】

(式中、Qはハロゲンおよび/またはアリールオキシ基、mは3~10の整数である。)で示される環状ホスファゼン類、下記一般式(2)

【化4】

$$\begin{bmatrix}
Q \\
P \\
Q
\end{bmatrix}_{n}$$
(2)

(式中、Qはハロゲンおよび/またはアリールオキシ基、nは1~20の整数である。)で示される鎖状ホスファゼンとからなるホスファゼン組成物より前記一般式(1)で示される環状ホスファゼン類を晶析により分離 40精製することを特徴とする請求項1または2記載の環状ホスファゼン類を製造する方法。

【請求項4】 請求項1または2記載の環状ホスファゼン類を有効成分とする難燃剤。

【請求項5】 請求項1または2記載の環状ホスファゼン類を含有することを特徴とする樹脂組成物。

【請求項6】 請求項5記載の樹脂組成物よりなることを特徴とする成形品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、環状ホスファゼン類、その製造方法、それを有効成分とする難燃剤および それを含む樹脂組成物と成形品に関する。

[0002]

【従来の技術】従来の環状アリールオキシホスファゼンの製造法としては、例えば、横山〔日本化学雑誌第80巻第10号pll8(1959)〕にあるように、五塩化りんと塩化アンモニウムをモノクロロベンゼン中で反応させ、下記一般式(3)と

10 【化5】

(式中、mは3~10の整数である。) 下記一般式 (4)

【化6】

20

30

$$\begin{array}{c|c}
Cl \\
P \\
Cl \\
N \\
n
\end{array}$$
(4)

(式中、nは1~20の整数である。)で示される環状および鎖状のクロロホスファゼン混合物を得る。そして、このようにして得られた環状および鎖状のクロロホスファゼン混合物を石油エーテルなどで再結晶し、下記一般式(3)

【化7】

(式中、mは3~10の整数である。)で示されるクロロホスファゼン類を得、これをフェノール類と反応させ、環状のアリールオキシホスファゼンを得るものである。具体的には、横山〔日本化学雑誌第81巻第3号p481(1960)〕は、ピリジンを触媒とする塩化トリホスホニトリルとアルカリ金属フェノラート類の縮合反応について報告している。

【0003】本発明者らは、特開2001-2691号 公報において環状のハロゲン化ホスファゼンとアルカリ 金属フェノラート類を窒素含有鎖式または環式の有機化 合物を含む溶媒中で反応させる環状ホスファゼンの製造 法を開示している。

[0004]

【発明が解決しようとする課題】従来の環状アリールオキシホスファゼンの製造法は、単離した環状のクロロホスファゼンを原料とするが、環状および鎖状のクロロホスファゼン混合物から環状のクロロホスファゼン類をエ50 業的に大量に得ようとすると、大量のハロゲンガスが発

生し、著しく環境を汚染する可能性があることや、作業性が非常に悪いなどの問題がある。また、分離精製した環状のクロロホスファゼン類を使用してフェノール類と反応を行っても、反応中に環状のホスファゼン類が開裂して鎖状のホスファゼン類が生成したり、未置換の塩素を有するホスファゼンが残存したり後処理中に環状のホスファゼン類が加水分解を受け鎖状のホスファゼン類が生成するなど目的とする環状アリールオキシホスファゼンが得られない。

【0005】上記日本化学雑誌第81巻第3号p481 (1960)においても、得られるホスホニトリル酸フェニルエステルは、環状のホスファゼン類が開裂して生成した鎖状のホスファゼン類や未置換の塩素を有するホスファゼンを含有するため固体ではなく、黄色粘性液体である。

【0006】特開2001-2691号公報による製造方法では、従来の方法に比べハロゲン含有量が少ないホスファゼン類が得られるが、原料に環状のハロゲン化ホスファゼンを使用しているため、反応中にどうしても環状のホスファゼン類の一部が開裂して鎖状のホスファゼ 20ン類が生成してしまう。

【0007】このように前記一般式(1)で示されるホスファゼンはその構造式上では環状であるが、従来の製造方法では必ずしも前記一般式(1)の環状構造を維持できず、生成物の一部は鎖状化合物に変化した状態となる。

【0008】樹脂添加剤として難燃剤、紫外線吸収剤、酸化防止剤、可塑剤、核剤などがあるが、これらはそれ自体の効果はもちろん、成形加工時の安定性や金型を汚染しないこと、そして成形品の状態、特に樹脂表面に染 30 み出すブリードアウトがないことなどの様々な要素を満足しなければいけない。

【0009】特に最近では、電線やケーブル等に対し従来の難燃化に際してその主要物質であったハロゲン含有化合物を単独、あるいは酸化アンチモンなどのアンチモン化合物とを組み合わせて難燃剤とし、それを樹脂に配合した難燃性樹脂組成物が主として用いられているが、これが燃焼時または成形時等にハロゲン系ガスを発生することが問題化されている。さらに、これらガスの発生が電気的特性や電送特性を阻害する場合が多いとされて40いる。そのため、燃焼時または成形時等にこれらのハロゲン系ガスを発生しない難燃性樹脂組成物が要求されるようになってきている。

【0010】これらの要求に応ずるため近年、非ハロゲン系難燃剤として金属水和物やリン系難燃剤(リン酸エステル、ポリリン酸アンモニウム、ホスファゼン類など)が使用されている。水酸化アルミニウムや水酸化マグネシウムといった金属水和物は樹脂の燃焼温度におい (式中、Qはて脱水熱分解の吸熱反応が樹脂の熱分解、燃焼開始温度 基、mは3~と重複した温度領域で起こることで難燃化効果を増大し 50 一般式(2)

得るとして使用されている。しかしながら、金属水和物のみではその難燃性付与効果があまり強くないために多量に配合しなければならず、そのために得られる成形品の機械的強度に悪影響を与えるなどの欠点が生じている。

【0011】また、従来のリン系難燃剤は難燃効果はも とより、樹脂に添加することで可塑剤として働いたり酸 化防止剤として働くなどの優れた特性を持つ。しかしな がらトリフェニルホスフェート、トリクレジルホスフェ ート、クレジルジフェニルホスフェートといったトリア リールホスフェートは、沸点が低いため、成型時に揮発 し金型を汚染したり、樹脂の表面に染み出すブリードア ウトなどの欠点がある。縮合タイプのリン酸エステルは 上記の欠点を解決しているが、このリン酸エステル中に 製造時に使用した触媒が残存すると、成型時にリン酸エ ステルだけでなく樹脂も分解してしまい性能低下を引き 起こしたり、時にはゲル状となり生産性を著しく低下さ せることが知られている。ポリリン酸アンモニウムにお いては熱安定性が悪いため加工条件に制限があり、また リン含有率が低いことから多量に配合しなければならな いという欠点がある。

【0012】本発明の目的は、前記従来技術の欠点を解決し、精製を繰り返すことなく鎖状のホスファゼン含有量が低い環状ホスファゼン類、そのための新規な方法、それを有効成分とする難燃剤、樹脂組成物および成形品を提供する点にある。

[0013]

【課題を解決するための手段】そこで、本発明者らはホスファゼンの製造において生成物中に鎖状のホスファゼン類を事実上含まない反応条件や精製条件について鋭意研究した結果、環状および鎖状のハロゲン化ホスファゼン混合物とアルカリ金属フェノラートとを反応させ、環状および鎖状のアリールオキシホスファゼン混合物を得、これを晶析にて分離精製を行うことで鎖状のホスファゼン類の含有量が極めて低い環状ホスファゼン類が得られることを見出し、また鎖状のホスファゼンを含む環状ホスファゼン類は鎖状のホスファゼンを含む環状ホスファゼン混合物より難燃効果が大きいことを見出し、本発明を完成するに至ったものである。

【0014】すなわち、本発明の第1は、下記一般式 (1)

【化8】

(式中、Qはハロゲンおよび/またはアリールオキシ 基、mは3~10の整数である。)で示され、かつ下記 一般式(2)

(式中、Qはハロゲンおよび/またはアリールオキシ基、nは1~20の整数である。)で示される鎖状ホスファゼン類を事実上含まないことを特徴とする環状ホスファゼン類に関する。本発明の第2は、前記鎖状ホスファゼン類の含有量は5.0重量%以下である請求項1記載の環状ホスファゼン類に関する。本発明の第3は、下記一般式(1)

【化10】

(式中、Qはハロゲンおよび/またはアリールオキシ 基、mは3~10の整数である。)で示される環状ホス ファゼン類、下記一般式(2)

【化11】

$$\begin{array}{c|c}
Q \\
P \\
N \\
n
\end{array}$$
(2)

(式中、Qはハロゲンおよび/またはアリールオキシ基、nは1~20の整数である。)で示される鎖状ホスファゼンとからなるホスファゼン組成物より前記一般式(1)で示される環状ホスファゼン類を晶析により分離精製することを特徴とする請求項1または2記載の環状ホスファゼン類の製造方法に関する。本発明の第4は、請求項1または2記載の環状ホスファゼン類を有効成分とする難燃剤に関する。本発明の第5は、請求項1または2記載の環状ホスファゼン類を含有することを特徴とする樹脂組成物に関する。本発明の第6は、請求項5記載の樹脂組成物よりなることを特徴とする成形品に関する。

【0015】本発明で使用される環状および鎖状のアリールオキシホスファゼンの混合物は環状および鎖状のハ

ロゲン化ホスファゼンの混合物とフェノール類を公知の方法で反応させることで得られる。たとえばアルカリ金属フェノラートのスラリーに環状および鎖状のハロゲン化ホスファゼンの混合物溶液を滴下するかもしくは環状ハロゲン化ホスファゼン類の溶液を滴下し、反応させればよい。

【0016】本発明に使用される環状および鎖状のアリールオキシホスファゼンの混合物を製造する原料となる環状および鎖状のハロゲン化ホスファゼンの混合物は、10 一般式(3)で示される環状ハロゲン化ホスファゼン類の混合物であれば特に限定されるものではない。ここで得られる環状および鎖状のアリールオキシホスファゼンの混合物は原料である一般式(3)と一般式(4)の化合物におけるmとnにほぼ依存する。

【0017】本発明においては、環状および鎖状のアリールオキシホスファゼンの混合物を芳香族非極性溶媒を含む溶媒中で晶析することにより鎖状のアリールオキシホスファゼン類の含有量が極めて低い環状アリールオキ20 シホスファゼンが得られる。

【0018】前記アリールオキシ基としては、例えば、非置換またはハロゲン、メチル基、エチル基、ロープロピル基、isoープロピル基、tertーブチル基、tertーオクチル基、メトキシ基、エトキシ基、2,3ージメチル基、2,4ージメチル基、2,5ージメチル基、2,5ージメチル基、は5ープロポキシ基、エトキシ基、ロープロポキシ基、isoープロポキシ基、フェニル基等で置換されたフェニルオキシ基などを挙げることができる。

30 【0019】前記アルカリ金属フェノラート類は、1種のみを用いてもよいが2種以上を併用して用いても良い。2種併用した場合は生成物におけるアリールオキシ基が2種類になることは当然である。

【0020】一般式(1)で示される環状ホスファゼン類としてつぎのようなものが挙げられる。例えば、m=3の場合

【化12】

【化13】

【化14】

(19) O P O CI CH₃ CH₃

【0021】m=4、5の場合

【化15】

の分散剤やイオン交換樹脂を添加してもよい。分散剤と して、テトラメチルアンモニウムクロライド、テトラエ チルアンモニウムクロライド、テトラブチルアンモニウ ムプロマイド、テトラブチルアンモニウムハイドロオキ サイド、テトラブチルアンモニウムハイドロジェンサル フェート、トリラウリルメチルアンモニウムクロライ ド、ジ硬化牛脂アルキルジメチルアンモニウムアセテー トトリメチルフェニルアンモニウムクロライド、ベンジ ルトリメチルアンモニウムクロライド、セチルトリメチ ルアンモニウムクロライド、ステアリルトリメチルアン 50 類を混合して使用したり、他の難燃剤を併用することで

【0022】本発明のホスファゼンの晶析において慣用 40 モニウムクロライド、ジステアリルジメチルアンモニウ ムクロライドなどが挙げられる。イオン交換樹脂とし て、アンバーライト 1 R - 1 1 6、 1 R - 1 1 8 (H), IR-120B, IR-122, IR-124(商品名 オルガノ社製)およびアンバーリスト15、 A-26, A-27, A-21, 252, 2000, 200CT, IRC-50, IRC-84, IRC-718, IRA-401, IRA-402, IRA-400 (商品名 オルガノ社製)などが挙げられる。 【0023】本発明による難燃剤は、前記ホスファゼン

-8-

さらなる効果が期待できる。本発明による難燃剤に添加されても良い他の難燃剤として水酸化金属化合物、珪酸塩、有機珪素化合物、フッ素樹脂、無機系難燃剤、りん系難燃剤、ハロゲン系難燃剤および窒素系難燃剤が挙げられ、これらを併用しても良い。

【0024】本発明の難燃剤に添加されても良い水酸化 金属化合物の金属としては、元素周期表第2族、第13 族(新IUPACフォーマット1~18族のうちの2 族、13族であり、従来の元素周期表IIa、IIIb族に 相当)の金属および亜鉛が挙げられ、好ましくはマグネ 10 シウム、アルミニウムが挙げられる。これらの水酸化金 属化合物は、この水酸化金属化合物単独でもよいが、こ れを有機化合物、例えば、高級脂肪族カルボン酸、水素 添加油あるいは高級脂肪族カルボン酸の元素周期表第1 族、第2族、第12族または第13族(新IUPACフ オーマット1~18族のうちの1族、2族、12族また は13族であり、従来の元素周期表la、lla、llbま たはIIIb族に相当)の金属塩で被覆したものでも良 い。該水酸化金属化合物、特に水酸化マグネシウムは、 キスマー5A、5B、5E、5J(商品名 協和化学 製)、マグシーズN-3、N-1、水マグ200、1 O、10A、スターマグUM、M、L、S、C、CY (商品名 神島化学製)、FR-200 (商品名 プロ モケム・ファーイースト製)などとして市販されている から、これをそのまま使用しても良い。

【0025】本発明の難燃剤に添加されても良い珪酸塩としては例えば、珪酸ナトリウム、メタ珪酸ナトリウム、オルト珪酸ナトリウム、水ガラス、珪酸マグネシウム、珪酸カリウム、珪酸カリウム、珪酸カリウム、珪酸ジルコニウム、ケイ 30 モリブデン酸、苦土カンラン石、カンラン石など、環状・珪酸塩としてケイ灰石、緑柱石など、鎖状珪酸塩としてガン化輝石、リチウム輝石、角セン石類など、層状珪酸塩として雲母、粘土鉱物など、三次元珪酸塩として二酸化ケイ素、正長石、ゼオライトなどが挙げられる。

【0026】本発明の難燃剤に添加されても良い有機珪素化合物として、例えば、テトラメトキシシラン、テトラプロポキシシラン、トリメトキシシラン、トリエトキシシラン、トリエトキシシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリプロポキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシメチルフェニルシラン、ジメトキシー3ーメルカプトプロピルメチルシラン、3ーアミノプロピルジエトキシメチルシラン、3ー(2ーアミノエチルアミノプロピル)トリメトキシシラン、3ー(2ーアミノエチルアミノプロピルトリメトキシシラン、3ーメタクリロキシプロピルトリメトキシシラン、3ーメタクリロキシプロピルトリメトキシシラン、ジエトキシー3ーグリシドキシプロピルメチ 50

ルシランなどのアルコキシシラン化合物、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサンなどのポリシロキサン化合物およびアルキル、アミノ、エポキシ、カルボキシル、メルカプト、アルコール、アルキル高級アルコールエステル、ポリエーテル、アルキルアラルキル・ポリエーテル変性シリコーンが挙げられる。

【0027】本発明の難燃剤に添加されても良いフッ素 樹脂としては例えばポリテトラフルオロエチレン樹脂 (PTEF)、テトラフルオロエチレンーへキサフルオ ロプロピレン共重合樹脂(FEP)、テトラフルオロエ チレンーパーフルオロアルキルビニルエーテル共重合樹 脂(PFA)、テトラフルオロエチレンーエチレン共重 合樹脂(ETFE)、ポリトリフルオロ塩化エチレン樹 脂(CTFE)、ポリフッ化ビニリデン樹脂(PVD F)などが挙げられる。

【0028】本発明の難燃剤に添加されても良い無機系 難燃剤としては、例えば三酸化アンチモン、四酸化アン チモン、五酸化アンチモン、アンチモン酸ソーダ、ホウ 酸亜鉛、酸化マグネシウム、酸化カルシウムなどが挙げ られる。

【0029】本発明の難燃剤に添加されても良いりん系 難燃剤としては、例えば、赤りん、ポリリン酸アンモニ ウム、トリフェニルホスフェート、トリエチルホスフェ ート、トリメチルホスフェート、クレジルフェニル ホスフェート、トリス(3ーヒドロキシプロピル)ホス フィンオキサイド、グリシジルーαーメチルーβージブ トキシホスフィニルプロピオネート、ジブチルヒドロオ キシメチルホスフォネート、ジブトキシホスフィニルプロピルアミド、ジメチルメチルホスフォネート、ジブトキシホスフォネート、ジ リオキシエチレン)ーヒドロキシメチルホスフォネート、デ香族縮合リン酸エステルなどが挙げられる。

【0030】赤りんは単独でもよいし、また、適当な無機化合物あるいは有機化合物で被覆されたものでもよいし、さらには、非ハロゲン系有機高分子組成物で希釈されたものでもよい。該赤りんの市販品として、ノーバレッド120、120UF、120UFA、ノーバエクセルST、W、MG、RXシリーズ、ノーバパレット各種(商品名 燐化学製)、ヒシガードCP、CP-15、UR-15、TP-10、セーフTP-10(日本化学製)、RP-120(鈴裕化学製)などが市販されているから、これをそのまま使用できる。

【0031】本発明の難燃剤に添加されてもよいハロゲン系難燃剤としては、例えばトリス(クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、ビス(2,3ージプロモプロピル)ー2,3ージクロロプロピルホスフェート、トリス(2,3ージプロモプロピル)ホスフェート、ビス(クロロプロピル)モノオクチルホスフェート、ヘキサプロモベンゼン、ヘキサ

プロモビフェニルエーテル、トリプロモフェノール、テトラプロモビスフェノール A、テトラプロモ無水フタル酸、ヘキサプロモシクロドデカン、ビス(プロモエチルエーテル)テトラプロモビスフェノール A、エチレンビステトラブロモフタルイミド、臭素化エポキシオリゴマー、臭化ポリスチレン、デカプロモジフェニルエタン、臭素化芳香族トリアジン、テトラプロモエタン、オクタプロモトリメチルフェニルインダン、ポリジプロモフェニレンオキサイド、ペンタブロモベンジルアクリレート、ペンタブロモベンジルポリアクリレート、ビス(トリプロモフェノキシ)エタン、ジブロモクレジルグリシジルエーテル、ジブロモフェニルグリシジルエーテル、テトラプロモフタレートジオールテトラジプロモフタレートジオールテトラジプロモフタレートエステル、などが挙げられる。

【0032】本発明の難燃剤に添加されても良い窒素系 難燃剤としては、例えばスルファミン酸グアニジン、リ ン酸グアニジン、リン酸グアニール尿素、メラミンホス フェート、ジメラミンホスフェート、メラミンボレー ト、メラミンシアヌレートなどが挙げられる。

【0033】本発明による難燃剤は、例えば、慣用の添加剤をさらに含有しても良く、例えば、充填剤、プラスチック強化剤、滑剤などを含有しても良い。

【0034】本発明による難燃剤に添加されても良い充填剤としては、例えば、炭酸カルシウム、酸化チタン、クレー、焼成クレー、シラン改質クレー、タルク、マイカ、シリカ、ウォラストナイト、ベントナイト、珪藻土、珪砂、軽石粉、スレート粉、アルミナホワイト、硫酸アルミ、硫酸バリウム、リトポン、硫酸カルシウム、二硫化モリブデン、表面処理フィラー、再生ゴム、ゴム粉末、エボナイト粉末、セラックなどが挙げられる。 【0035】本発明による難燃剤に添加されても良いプラスチックなどが

【0035】本発明による難燃剤に添加されても良いプラスチック強化剤として、例えば、雲母粉、グラファイト、ガラス繊維、ガラス球、火山ガラス中空体、カーボン繊維、炭素中空体、無煙炭粉末、人造氷晶石、シリコン樹脂粉末、シリカ球状微粒子、ポリビニルアルコール繊維、アラミド繊維、アルミナ繊維、高強力ポリアクリレート繊維などが挙げられる。

【0036】本発明による難燃剤に添加されても良い滑剤として、例えば、パラフィンワックス、流動パラフィン、パラフィン系合成ワックス、ポリエチレンワックス、複合ワックス、モンタンワックス、シリコーンオイル、ステアリン酸、ステアリン酸リチウム、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸カリウム、ステアリン酸亜鉛、ヒドロキシステアリン酸カルシウム、12ーヒドロキシステアリン酸カルシウム、12ーヒドロキシステアリン酸がリウム、12ーヒドロキシステアリン酸がリウム、12ーヒドロキシステアリン酸がリウム、12ーヒドロキシステアリン酸がリウム、12ーヒドロキシステアリン酸がリウム、5ウリル酸亜鉛など、ヤシ油、パーム核油、ニシン油、ラウリル酸亜鉛など、ヤシ油、パーム核油、ニシン油、

タラ肝油、鯨油、パーム油、綿実油、オリーブ油、落花 生油、大豆油、アマニ油、ヒマシ油およびそれらの油を 水素添加した硬化油などが挙げられる。

18

【0037】本発明による樹脂組成物は、例えば、慣用の添加物をさらに含有しても良く、例えば、酸化防止剤、光安定剤、金属不活性剤を含有しても良く、また必要に応じて各種充填剤、導電性粉末などを含有しても良い。

【0038】本発明によるホスファゼン組成物のほかに 添加されても良い酸化防止剤としては、例えば、2.6 ージーtertーブチルー4ーメチルフェノール、2ー tertープチルー4,6ージメチルフェノール、2, 6ージーtertーブチルー4ーエチルフェノール、 2, 6-ジーtertープチルー4-nープチルフェノ ール、2,6-ジーtertープチルー4-イソプチル フェノール、2,6ージシクロペンチルー4ーメチルフ ェノール、2-(α-メチルシクロヘキシル)-4,6 ージメチルフェノール、2.6ージオクタデシルー4ー メチルフェノール、2,4,6ートリシクロヘキシルフ ェノール、2,6ージノニルー4ーメチルフェノール、 2,6ージーtertーブチルー4ーメトキシメチルフ ェノール、2,4ージメチルー6ー(1'ーメチルーウ ンデカー1′ーイル)ーフェノール、2,4ージメチル -6-(1'-メチルートリデカ-1'-イル)-フェ ノールおよびそれらの混合物、2、4ージーオクチルチ オメチルー6ーtertーブチルフェノール、2,4ー ジオクチルチオメチルー6ーメチルフェノール、2,4 ージオクチルチオメチルー6ーエチルフェノール、2. 6ージードデシルチオメチルー4ーノニルフェノールお 30 よびそれらの混合物、2,6-ジーtertーブチルー 4-メトキシフェノール、2, 5-ジーtertープチ ルハイドロキノン、2,5ージーtertーアミルハイ ドロキノン、2,6ージフェニルー4ーオクタデシルオ キシフェノール、2,6ージーtertーブチルハイド ロキノン、2、5ージーtertープチルー4ーヒドロ キシアニソール、3,5ージーtertーブチルー4ー ヒドロキシアニソール、3,5-ジーtertープチル ー4ーヒドロキシフェニルステアレート、ビス(3,5 ージーtertーブチルー4ーヒドロキシフェニル) ア 40 ジペートおよびそれらの混合物、2,4ービスーオクチ ルメルカプトー6ー(3,5ージーtertーブチルー **4ーヒドロキシアニリノ)-1.3.5ートリアジン、** 2ーオクチルメルカプトー4,6ービス(3,5ージー tertープチルー4ーヒドロキシアニリノ)ー1, 3,5ートリアジン、2ーオクチルメルカプトー4.6 ービス(3, 5ージーtertーブチルー4ーヒドロキ シフェノキシ) -1, 3, 5-トリアジン、2, 4, 6 ートリス(3.5ージーtertープチルー4ーヒドロ キシフェノキシ)-1,2,3-トリアジン、1,3, 50 5-トリス(3, 5-ジーtertーブチルー4ーヒド

ロキシベンジル)ーイソシアヌレート、1,3,5ート リス(4-tertープチルー3-ヒドロキシー2、6 ージメチルベンジル)ーイソシアヌレート、2,4,6 ートリス(3, 5ージーtertーブチルー4ーヒドロ キシフェニルエチル)-1,3,5-トリアジン、1, 3. 5ートリス (3, 5ージーtertーブチルー4ー ヒドロキシフェニルプロピオニル) - ヘキサヒドロー 1, 3, 5ートリアジン、1, 3, 5ートリス(3, 5 ージシクロヘキシルー4ーヒドロキシベンジル)ーイソ シアヌレート等および2, 2'ーメチレンピス(6-t 10 ertープチルー4ーメチルフェノール)、2,2'-メチレンピス(6ーtertーブチルー4ーエチルフェ ノール)、2, 2′ーエチリデンピス(4, 6ージー t ertープチルフェノール)、2,2'ーエチリデンビ ス(6-tertーブチルー4-イソブチルフェノー ル)、4,4'ーメチレンビス(2,6-ジーtert ープチルフェノール)、4,4′ーメチレンビス(6ー tertープチルー2ーメチルフェノール)、1,1-ビス(5-tertープチルー4ーヒドロキシー2ーメ チルフェニル)プタン、エチレングリコールビス〔3. 3'-ビス(3'-tert-プチルー4'-ヒドロキ シフェニル) ブチレート] 等ならびに、1,3,5ート リス(3, 5ージーtertープチルー4ーヒドロキシ ベンジル) -2, 4, 6-トリメチルベンゼン、1, 4 ービス(3,5ージーtertープチルー4ーヒドロキ シベンジル) - 2, 3, 5, 6-テトラメチルベンゼ ン、2, 4, 6ートリス(3, 5ージーtertーブチ ルー4ーヒドロキシベンジル)ーフェノール等を挙げる ことが出来る。

【0039】本発明によるホスファゼン組成物のほかに 30 添加されても良い光安定剤としては、たとえば、2-(2′ーヒドロキシー5′ーメチルフェニル) ベンゾト リアゾール、2-(3', 5'-ジ-tert-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(5'-tertープチルー2'-ヒドロキシフェニ ル) ベンゾトリアゾール、2-〔2'-ヒドロキシー 5'ー(1,1,3,3ーテトラメチルブチル)フェニ ル] ベンゾトリアゾール、2-(3', 5'-ジーte rtープチルー2'ーヒドロキシフェニル)ー5ークロ ロベンゾトリアゾール、2-(3'-tertーブチル 40 -2'ーヒドロキシー5'ーメチルフェニル)ー5ーク ロロベンゾトリアゾール、2-(2'-ヒドロキシー 4′ーオクトキシフェニル) ベンゾトリアゾール、2ー (3', 5'ージーtertーアミルー2'ーヒドロキ シフェニル) ベンゾトリアゾール、2-〔3′-ter **しーブチルー2'ーヒドロキシー5'ー(2'ーオクチ** ルオキシカルボニルエチルフェニル)] -5-クロロベ ンプトリアゾール等:4-ヒドロキシー、4-メトキシ ー、4ーオクトキシー、4ーデシルオキシー、4ードデ シルオキシー、4ーベンジルオキシー、4, 2', 4'

ートリヒドロキシー、2′ーヒドロキシー4, 4′ージ ーメトキシーまたは4-(2-エチルヘキシルオキシ) -2-ヒドロキシベンゾフェノン誘導体など:4-te r t ープチルフェニル サリシレート、フェニル サリ シレート、オクチルフェニル サリシレート、ジベンゾ イルレゾルシノール、ビス(4-tertーブチルベン ゾイルレゾルシノール)、2,4ージーtertーブチ ルフェニルレゾルシノール、3,5-ジーtertーブ チルー4ーヒドロキシベンゾエート、ヘキサデシルー 3, 5ージーtertーブチルー4ーヒドロキシベンゾ アクリレート、イソオクチル α -シアノ- β , β -ジ オフェニルアクリレート、メチル αーカルボメトキシ メトキシシンナメート等:ビス(2,2,6,6-テト ラメチルー4ーピペリジル)セバケート、ビス(2, 2, 6, 6ーテトラメチルー4ーピペリジル) サクシネ ート、ビス(1、2、2、6、6ーペンタメチルー4ー **ピペリジル)セバケート、ビス(1-オクチルオキシー** 20 2, 2, 6, 6ーテトラメチルー4ーピペリジル) セバ ケート、ビス(1, 2, 2, 6, 6ーペンタメチルー4 ーピペリジル)アジペート等:4,4'ージオクチルオ キシオキザニリド、2,2'-ジエトキシオキシオキザ ニリド、2, 2'ージオクチルオキシー5, 5'ージー tertープチルオキザニリド、2,2'ージドデシル オキシー5, 5'ージーtertープチルオキザニリ ド、2-エトキシー2'-エチルオキザニリド、N. N'ービス(3ージメチルアミノプロピル)オキザニリ ド、2-エトキシー5-tert-ブチルー2'-エト キシオキザニリド等: 2, 4, 6ートリス(2ーヒドロ キシー4ーオクチルオキシフェニル)-1,3,5ート リアジン、2-(2-ヒドロキシー4-オクチルオキシ フェニル) ー4, 6ービス(2, 4ージメチルフェニ ル) -1, 3, 5-トリアジン、2-(2, 4-ジヒド ロキシフェニル)ー4,6ービス(2,4ージメチルフ ェニル) -1, 3, 5-トリアジン、2, 4-ビス(2 ーヒドロキシー4ープロピルオキシフェニル) -6-(2, 4ージメチルフェニル)ー1,3,5ートリアジ ン、2-(2-ヒドロキシー4-ドデシルオキシフェニ ル) -4, 6-ビス(2, 4-ジメチルフェニル) -1,3,5ートリアジン等が挙げられる。

【0040】本発明におけるホスファゼン組成物のほかに添加されても良い金属不活性化剤としては、たとえば N, N'ージーフェニルシュウ酸ジアミド、NーサルチラルーN'ーサリチロイルヒドラジン、N, N'ービス (サリチロイル) ヒドラジン、N, N'ービス (3, 5ージーtertーブチルー4ーヒドロキシフェニルプロピオニル) ヒドラジン、3ーサリチロイルアミノー1, 2, 3ートリアゾール、ビス (ベンジリデン) シュウ酸 50 ヒドラジド、イソフタル酸ジヒドラジド、N, N'ージ

アセタールーアジピン酸ジヒドラジド、N, N'ービス サリチロイルシュウ酸ジヒドラジド、N, N'ービスサ リチロイルチオプロピオン酸ジヒドラジド等が挙げられ る。

【0041】本発明によるホスファゼン組成物を含有する樹脂組成物を構成する樹脂として、例えば、ポリエチレン、ポリプロピレン、エチレンープロピレン共重合体、ポリブチレン、ポリメチルペンテン、エチレン一酢酸ビニル共重合体、エチレンーアクリル酸メチル(エチル)共重合体、AS樹脂、ABS樹脂、PC樹脂、PC・ABSアロイ、ポリスチレン、PET、PC・PETアロイ、ポリフェニレンエーテル樹脂、ポリフェニレンサルファイド樹脂、ポリブタジエン樹脂、ポリブチレンテレフタレート樹脂、メタクリル樹脂、ポリアミド樹脂、エポキシ樹脂、ジアリルフタレート樹脂、シリコーン樹脂、不飽和ポリエステル、などを挙げることができる。

【0042】本発明の樹脂組成物は、各種成形品としての用途に供されるが、被膜、特に電線、ケーブル類、電気部品、機械部品、プラグ、マウント、ケーシング、カ 20バー、外装の防火保護被膜を製造するための材料として有用である。

[0043]

【実施例】以下、実施例により本発明を具体的に説明するが、本発明はこれらにより何ら限定されるものではない。

【0044】ホスファゼン組成物中の各ホスファゼン類の含有量はHPLCで絶対検量線法により求めた。

【0045】難燃性ポリオレフィン系樹脂組成物の製造および難燃性の評価

難燃性の評価は、サンプルサイズ60mm×150mm ×1mmのものを作成し、難燃性の度合いを示す酸素指 数により評価を行った。日本工業規格JISK7201 (酸素指数法による高分子材料の燃焼試験方法)に準 拠。

【0046】実施例1

撹拌機、温度計、水分測定用分留受器、還流冷却管を備えた1 Lのフラスコ中に48%NaOH 87.5g(1.05mol)、トルエン220mL、フェノール98.8g(1.05mol)を仕込み、撹拌下加熱し共沸脱水(回収水64mL)を行ないフラスコ内の水分を除去し、フェノールのNa塩化を行った。これを80℃に冷却し、N,Nージメチルホルムアミド25.0g(0.342mol)を仕込み、撹拌下80℃でヘキサクロロホスファゼンのトルエン溶液 {ヘキサクロロホスファゼンのトルエン溶液 {ヘキサクロロホスファゼンのトルエン275mL}を2時間かけて滴下し、同温度で撹拌反応を10時間行った。反応終了後、フラスコ内に水200mLを加え無機塩を溶解させた後、分液ロートにより有機層の分液を行った。

有機層を中和、水洗後、トルエンを常圧で、130℃まで回収した(このときの残存トルエンは54mLであった)。これを60℃まで冷却し、メタノール100mLを加え徐々に5℃まで冷却し、析出した結晶をろ過し目的物であるヘキサフェノキシホスファゼン類107.7gを得た。得られたヘキサフェノキシホスファゼン100.00重量%、鎖状のフェノキシホスファゼン100.00重量%、鎖状のフェノキシホスファゼン0.00重量%であった。

22

0 【0047】比較例1

実施例1と同様に反応を行い、反応終了後、フラスコ内に水200mLを加え無機塩を溶解させた後、分液ロートにより有機層の分液を行った。有機層を75%硫酸で中和し、水洗後、トルエンを留去し淡黄色結晶のヘキサフェノキシホスファゼン類113.4gを得た。得られたヘキサフェノキシホスファゼン類をHPLCで純度分析を行ったところ、ヘキサフェノキシホスファゼン94.44重量%、鎖状のフェノキシホスファゼン5.56重量%であった。この比較例1は、一般式(1)において、m=3、Qがハロゲンの環状の原料を使用して従来法によりフェノキシホスファゼン類を合成すると鎖状のフェノキシホスファゼンも生成してしまうことを示すものである。

【0048】実施例2

撹拌機、温度計、水分測定用分留受器、還流冷却管を備 えた1Lのフラスコ中に48%NaOH 87.5g (1.05mol)、トルエン220mL、フェノール 98.8g(1.05mol)を仕込み、撹拌下加熱し 共沸脱水(回収水64mL)を行ないフラスコ内の水分 30 を除去し、フェノールのNa塩化を行った。これを80 **℃に冷却し、N, Nージメチルホルムアミド25.0g** (0.342mol)を仕込み、撹拌下80℃でクロロ ホスファゼン混合物のトルエン溶液(クロロホスファゼ ン混合物 (一般式 (3) でm=3のもの 60.8%、 m=4のもの 21.2% m=5以上のもの 6.2 %、一般式(4)で示される鎖状ホスファゼン類 1 1. 8%) 58. 0g (0. 5unitmol) をトル エン275mLに溶解したもの を2時間かけて滴下 し、同温度で撹拌反応を10時間行った。反応終了後、 フラスコ内に水200mLを加えて無機塩を溶解させた 後、分液ロートにより有機層の分液を行った。有機層を 75%硫酸で中和し、水洗後、トルエンを留去し褐色ワ ックス状のフェノキシホスファゼン混合物 1 1 2. 9 g を得た。撹拌機、温度計、還流冷却管を備えた1Lのフ ラスコ中に得られたフェノキシホスファゼン混合物11 2. 9g、トルエン50mL、メタノール200mLを 仕込み65℃まで昇温して不溶分を熱濾過して取り除 き、このろ液をゆっくりと5℃まで冷却して晶析を行な い、環状フェノキシホスファゼン類95.8gを得た。 50 得られたフェノキシホスファゼン類をHPLCで純度分

析を行ったところ、ヘキサフェノキシホスファゼン7 2. 38重量%、オクタフェノキシホスファゼン24. 51 重量%、m=5 以上のフェノキシホスファゼン3. 10 重量%、鎖状のフェノキシホスファゼン0. 01 重量%であった。

【0049】実施例3

実施例2のクロロホスファゼン混合物 [一般式(3)でm=3のもの 60.8%、m=4のもの 21.2% m=5以上のもの 6.2%、一般式(4)で示される鎖状ホスファゼン類 11.8%]の代わりにクロロ 10ホスファゼン混合物 [一般式(3)でm=3のもの 55.4%、m=4のもの 14.6%m=5以上のもの

8. 2%、一般式(4)で示される鎖状ホスファゼン類 21. 8%〕を使用して実施例2と同様の条件で反応を行った。その結果、環状フェノキシホスファゼン類84. 1gを得た。得られたホスファゼン類をHPLCで純度分析を行ったところ、ヘキサフェノキシホスファゼン74. 03重量%、オクタフェノキシホスファゼン19. 04重量%、m=5以上のフェノキシホスファゼン6. 89重量%、鎖状のフェノキシホスファゼン6. 89重量%、鎖状のフェノキシホスファゼン0. 04重量%であった。

【0050】実施例4

実施例2のクロロホスファゼン混合物 [一般式(3)で m=3のもの 60.8%、m=4のもの 21.2% m=5以上のもの 6.2%、一般式(4)で示される鎖状ホスファゼン類 11.8%]の代わりにクロロホスファゼン混合物 [一般式(3)でm=3のもの 74.7%、m=4のもの 9.9% m=5以上のもの 11.8%、一般式(4)で示される鎖状ホスファゼン類 2.6%]を使用して実施例2と同様の条件で反 30 応を行った。その結果、環状フェノキシホスファゼン組成物108.6gを得た。得られたホスファゼンをHPLCで純度分析を行ったところ、ヘキサフェノキシホスファゼン81.30重量%、オクタフェノキシホスファゼン10.47重量%、m=5以上のフェノキシホスファゼン8.23重量%、鎖状のフェノキシホスファゼン8.23重量%、鎖状のフェノキシホスファゼン8.23重量%、鎖状のフェノキシホスファゼン8.00重量%であった。

【0051】実施例5

【0052】実施例6

実施例1で得られた環状フェノキシホスファゼン10. 0重量%、ポリオレフィン系樹脂としてポリプロピレン90.0重量%をミキサーに挿入し、180℃で混練した。得られた混合物を用いて圧縮成形機(185℃、3分間)で成形し得られたシートを使用して難燃性の評価を行った。その結果を表1に示す。

24

【0053】実施例7~10

実施例6と同様の操作で実施例1で得られたフェノキホスファゼンの代わりに実施例2~5で得られたホスファゼン組成物を使用し難燃性の評価を行った。その結果を表1に示す。

【0054】比較例2

実施例6と同様の操作で実施例1で得られたフェノキホスファゼンの代わりに比較例1で得られたホスファゼン組成物を使用し難燃性の評価を行った。その結果を表1に示す。

[0055]

【表1】

難燃性の評価結果

	酸素推	汉
実施例6	26.	5
実施例7	26.	1
実施例8	25.	8
実施例9	26.	3
実施例10	25.	7
比較例 2	22.	3

【0056】酸素指数とは、所定の試験条件下において、材料が燃焼を持続するのに必要な最低酸素濃度(容量%)の数値をいう。例えば酸素指数25.0というサンプルがあるとすると、これは酸素濃度が25.0%以上で着火されると燃焼し、25.0%以下では自己消火することを示す。大気中の酸素濃度が約20.9%であることを考えると、酸素指数が20.9を上廻るものは、自然環境下では自己消火することを意味するものであり、難燃効果が大きいことがよくわかる。

[0057]

【発明の効果】(1)精製を繰返すことなく、鎖状ホスファゼン類含有量が5.0重量%以下、好ましくは1.0重量%以下、とくに好ましくは0.1重量%以下の高純度環状ホスファゼン類を提供できた。

(2)鎖状のホスファゼン類を5.0重量%以上含有している環状ホスファゼン類を難燃剤として用いた場合と、本発明の難燃剤を用いた場合を対比すると、本発明のものの方が難燃効果がはるかに高かった。

フロントページの続き

(51) Int. CI	7	FI	テーマコード(参考)
C 0 8 L	85/02	C O 8 L 85/02	
	101/00	101/00	•
C 0 9 K	21/12	C O 9 K 21/12	•
	21/14	21/14	
(72)発明者	西松 雅之	F ターム(参考)	4F071 AA20 AA68 AE07 AF47 BA01
	兵庫県神戸市中央区東川崎町1丁目3番3		BB03 BC01
	号 ケミプロ化成株式会社内		4H028 AA38 AA39 AA40 AA42 BA06
(72)発明者	大前 吉則		4H050 AA01 AA02 AA03 AB84 AD15
	兵庫県神戸市中央区東川崎町1丁目3番3		4J002 BB031 BB061 BB071 BB121
	号 ケミプロ化成株式会社内		BB151 BC031 BC061 BF031
			BF051 BG001 BG101 BL011
			BN151 CD001 CF061 CF071
			CF211 CG001 CH071 CL001
			CN011 CP031 CQ012 FD132
			4J030 CA00 CB51 CB52 CB54 CB55
			CG22