

Distributional Semantics

Natural Language Processing: Jordan Boyd-Graber

University of Maryland

From Distributional to Distributed Semantics

The new kid on the block

- Deep learning / neural networks
- "Distributed" word representations
 - Feed text into neural-net. Get back "word embeddings".
 - Each word is represented as a low-dimensional vector.
 - Vectors capture "semantics"
- word2vec (Mikolov et al)

From Distributional to Distributed Semantics

This part of the talk

- word2vec as a black box
- a peek inside the black box
- relation between word-embeddings and the distributional representation
- tailoring word embeddings to your needs using word2vec

word2vec

word2vec

word2vec

dog

cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler, mixed-breed, doberman, pig

sheep

cattle, goats, cows, chickens, sheeps, hogs, donkeys, herds, shorthorn, livestock

november

 october, december, april, june, february, july, september, january, august, march

jerusalem

□ tiberias, jaffa, haifa, israel, palestine, nablus, damascus katamon, ramla, safed

teva

pfizer, schering-plough, novartis, astrazeneca, glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme, pharmacia

Word Similarity

Similarity is calculated using cosine similarity:

$$sim(\vec{dog}, \vec{cat}) = \frac{\vec{dog} \cdot \vec{cat}}{||\vec{dog}|| \, ||\vec{cat}||}$$

• For normalized vectors (||x|| = 1), this is equivalent to a dot product:

$$sim(\vec{dog}, \vec{cat}) = \vec{dog} \cdot \vec{cat}$$

Normalize the vectors when loading them.

Finding the most similar words to \overrightarrow{dog}

• Compute the similarity from word \vec{v} to all other words.

Finding the most similar words to \vec{dog}

- Compute the similarity from word \vec{v} to all other words.
- This is a single matrix-vector product: $W \cdot \vec{v}^{\top}$

Finding the most similar words to \vec{dog}

- Compute the similarity from word \vec{v} to all other words.
- This is a single matrix-vector product: $W \cdot \vec{v}^{T}$

- Result is a |V| sized vector of similarities.
- Take the indices of the *k*-highest values.

Finding the most similar words to dog

- Compute the similarity from word \vec{v} to all other words.
- This is a single matrix-vector product: $W \cdot \vec{v}^{\top}$

- Result is a |V| sized vector of similarities.
- Take the indices of the k-highest values.
- FAST! for 180k words, d=300: \sim 30ms

Most Similar Words, in python+numpy code

```
W, words = load_and_norm_vectors("vecs.txt")
# W and words are numpy arrays.
w2i = {w:i for i,w in enumerate(words)}
dog = W[w2i['dog']] # get the dog vector
sims = W.dot(dog) # compute similarities
most similar ids = sims.argsort()[-1:-10:-1]
sim words = words[most similar ids]
```

Similarity to a group of words

- "Find me words most similar to cat, dog and cow".
- Calculate the pairwise similarities and sum them:

$$W \cdot \vec{cat} + W \cdot \vec{dog} + W \cdot \vec{cow}$$

Now find the indices of the highest values as before.

Similarity to a group of words

- "Find me words most similar to cat, dog and cow".
- Calculate the pairwise similarities and sum them:

$$W \cdot \vec{cat} + W \cdot \vec{dog} + W \cdot \vec{cow}$$

- Now find the indices of the highest values as before.
- Matrix-vector products are wasteful. **Better option:**

$$W \cdot (\vec{cat} + \vec{dog} + \vec{cow})$$

Working with dense word vectors can be very efficient.

But where do these vectors come from?

word2vec implements several different algorithms:

Two training methods

- **Negative Sampling**
- Hierarchical Softmax

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

word2vec implements several different algorithms:

Two training methods

- Negative Sampling
- Hierarchical Softmax

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

We'll focus on skip-grams with negative sampling

intuitions apply for other models as well

- Represent each word as a *d* dimensional vector.
- Represent each context as a d dimensional vector.
- Initalize all vectors to random weights.
- Arrange vectors in two matrices, W and C.

While more text:

Extract a word window:

```
A springer is [ a cow or heifer close to calving ].
                       c_2
                   C_1
                             c_3
                                             C_{\Delta}
                                                   C_5
                                                           c_6
```

- w is the focus word vector (row in W).
- c_i are the context word vectors (rows in C).

While more text:

Extract a word window:

A springer is[a cow or **heifer** close to calving].
$$c_1 \quad c_2 \quad c_3 \quad w \quad c_4 \quad c_5 \quad c_6$$

Try setting the vector values such that:

$$\sigma(w\cdot c_1) + \sigma(w\cdot c_2) + \sigma(w\cdot c_3) + \sigma(w\cdot c_4) + \sigma(w\cdot c_5) + \sigma(w\cdot c_6)$$
 is **high**

While more text:

Extract a word window:

A springer is[a cow or **heifer** close to calving].
$$c_1 \quad c_2 \quad c_3 \quad w \quad c_4 \quad c_5 \quad c_6$$

Try setting the vector values such that:

$$\sigma(w \cdot c_1) + \sigma(w \cdot c_2) + \sigma(w \cdot c_3) + \sigma(w \cdot c_4) + \sigma(w \cdot c_5) + \sigma(w \cdot c_6)$$
 is **high**

Create a corrupt example by choosing a random word w'

a cow or **comet** close to calving]
$$c_1$$
 c_2 c_3 w' c_4 c_5 c_6

Try setting the vector values such that:

$$\sigma(\textit{w}' \cdot \textit{c}_1) + \sigma(\textit{w}' \cdot \textit{c}_2) + \sigma(\textit{w}' \cdot \textit{c}_3) + \sigma(\textit{w}' \cdot \textit{c}_4) + \sigma(\textit{w}' \cdot \textit{c}_5) + \sigma(\textit{w}' \cdot \textit{c}_6)$$

is low

The training procedure results in:

- $w \cdot c$ for **good** word-context pairs is **high**
- w ⋅ c for bad word-context pairs is low
- $w \cdot c$ for **ok-ish** word-context pairs is **neither high nor low**

As a result:

- Words that share many contexts get close to each other.
- Contexts that share many words get close to each other.

At the end, word2vec throws away C and returns W.

Imagine we didn't throw away C. Consider the product WC^{\top}

Imagine we didn't throw away C. Consider the product WC^{\top}

The result is a matrix M in which:

- Each row corresponds to a word.
- Each column corresponds to a context.
- Each cell: w · c, association between word and context.

Does this remind you of something?

Does this remind you of something?

Very similar to SVD over distributional representation:

Relation between SVD and word2vec

SVD

- Begin with a word-context matrix.
- Approximate it with a product of low rank (thin) matrices.
- Use thin matrix as word representation.

word2vec (skip-grams, negative sampling)

- Learn thin word and context matrices.
- These matrices can be thought of as approximating an implicit word-context matrix.
 - Levy and Goldberg (NIPS 2014) show that this implicit matrix is related to the well-known PPMI matrix.

Relation between SVD and word2vec

word2vec is a dimensionality reduction technique over an (implicit) word-context matrix.

Just like SVD.

With few tricks (Levy, Goldberg and Dagan, TACL 2015) we can get SVD to perform just as well as word2vec.

Relation between SVD and word2vec

word2vec is a dimensionality reduction technique over an (implicit) word-context matrix.

Just like SVD.

With few tricks (Levy, Goldberg and Dagan, TACL 2015) we can get SVD to perform just as well as word2vec.

However, word2vec...

- ...works without building / storing the actual matrix in memory.
- ... is very fast to train, can use multiple threads.
- ...can easily scale to huge data and very large word and context vocabularies.