Supplementary Material for "A Disjunctive Convex Hull Relaxation Formulation for Battery Operation without Binary Variables and Charge-Discharge Complementarity Constraints"

Chao Lei, Student Member, IEEE, Siqi Bu, Senior Member, IEEE, Qifan Chen, Qianggang Wang, Senior Member, IEEE, Qin Wang, Senior Member, IEEE and Dipti Srinivasan, Fellow, IEEE

I. Proof of Lemma 1

Suppose that there exists $\eta_c P_c^t \Delta T + \frac{1}{\eta_d} P_d^t \Delta T > 0$ such that $\lambda_d^t = 1$ at time t, then we have $\lambda_c^t = 0$ and $P_c^t = 0$ according to (1b). This induces $\frac{1}{\eta_d} P_d^t \Delta T < 0$, which contradicts $\eta_c P_c^t \Delta T + \frac{1}{\eta_d} P_d^t \Delta T > 0$ as the initial assumption. Thereby, $\lambda_d^t = 1$ enables $\frac{1}{\eta_d} P_d^t \Delta T < 0$. Similarly, this theorem can be also proven for which $\eta_c P_c^t \Delta T > 0$ is consistent with $\lambda_c^t = 1$. Besides, if this battery device is in an idle mode, then $P_d^t = P_c^t = 0$, which (1a) and (1b) still stand.

II. PROOF OF TIGHTENED FEASIBILITY SPACE

In terms of DCHR, the upper and lower bounds of e^t are denoted as $\mathcal{L}_1^{upper} = \lambda_c^t \overline{E} - \eta_c P_c^t (t-1) \Delta T$ and $\mathcal{L}_1^{lower} = \lambda_d^t \underline{E} + \frac{1}{\eta_d} P_d^t (t-1) \Delta T$, respectively. However, according to HCH-LP method, we express the upper and lower bounds of e^t by $\mathcal{L}_2^{upper} = \overline{E} - \eta_c P_c^t (t-1) \Delta T$ and $\mathcal{L}_2^{lower} = \underline{E} + \frac{1}{\eta_d} P_d^t (t-1) \Delta T$, respectively. Hence, we achieve the difference in algebra $\mathcal{L}_1^{upper} - \mathcal{L}_2^{upperr} = (\lambda_c^t - 1) \overline{E}$. Since $\lambda_c^t \in [0,1]$, this clearly renders $\mathcal{L}_1^{upper} \leqslant \mathcal{L}_2^{upper}$. Similarly, we can also achieve the lower bound subject to $\mathcal{L}_1^{lower} \geqslant \mathcal{L}_2^{lower}$. We have proved that DCHR has tighter relaxation lower and upper bounds than those by HCH-LP for Ω_{id} .

III. PROOF OF LEMMA 2

Suppose λ_c^{t*} and λ_d^{t*} are optimal solutions. Since $(\lambda_c^{t*} + \lambda_d^{t*})^2 = 1$ holds, we derive $2\lambda_c^{t*}\lambda_d^{t*} = 0$ according to $(\lambda_c^{t*})^2 + (\lambda_d^{t*})^2 = 1$ in this Lemma. In other words, $\lambda_c^{t*}, \lambda_d^{t*}$ simply equals to either 0 or 1, which proves this lemma.

IV. PROOF OF THEOREM

Suppose the optimal solution for the MIQP-based BDO model is $(e^{t*}, P_c^{t*}, P_d^{t*}, \lambda_c^{t*}, \lambda_d^{t*})$. First, we show that $(\lambda_c^{t*}, \lambda_d^{t*})$ can be optimal for the SOCP-based BDO model. By substituting (2) into \widetilde{z}^t , we can obtain $\widetilde{z}^t = 1 + (\lambda_{c,0}^t)^2 - (\lambda_{d,0}^t)^2 - 2(\lambda_{c,0}^t - \lambda_{d,0}^t) \lambda_c^t$. This \widetilde{z}^t is a linear expression only with respect to λ_c^t . If $\exists \lambda_{c,0}^t \neq \lambda_{d,0}^t$, the minimal $||s^t||_2$ can be achieved at an optimal charging indicator $\lambda_c^{t*} = 1$ if $\lambda_{c,0}^t - \lambda_{d,0}^t > 0$, or an optimal charging indicator $\lambda_c^{t*} = 0$ if $\lambda_{c,0}^t - \lambda_{d,0}^t < 0$. It is clear that such optimal charging indicator $\lambda_c^{t*} = 0$ or 1 can satisfy indicator-related constraints (2), (8) and $(\lambda_c^t)^2 + (\lambda_d^t)^2 \leqslant 1$. This demonstrates that $(\lambda_c^{t*}, \lambda_d^{t*})$ is valid for achiaveing the smallest $||s^t||_2$ in the objective function F of the SOCP-based BDO model.

Next, we show that $(e^{t*},P_c^{t*},P_d^{t*})$ can be the optimal solution for the SOCP-based BDO model. Recall that $(e^{t*},P_c^{t*},P_d^{t*})$ =argmin $||P_c^t+P_d^t-p_{sig}^t||_2$ s.t. $\Omega_{id}\cup\Omega_{op}$ under $(\lambda_c^{t*},\lambda_d^{t*})$ for the MIQP-based BDO model. Thus, $(e^{t*},P_c^{t*},P_d^{t*})$ can enable to achieve the smallest $||P_c^t+P_d^t-p_{sig}^t||_2$ over $\mathcal X$ for the SOCP-based BDO model, which suggests that $(e^{t*},P_c^{t*},P_d^{t*})$ is optimal.

Based on the above, this original MIQP-based BDO model can be theoretically equivalent to this SOCP-based BDO model with the same optimal solution $(e^{t*}, P_c^{t*}, P_d^{t*}, \lambda_c^{t*}, \lambda_d^{t*})$, which proves this Theorem.

1