

Data Collection and Preprocessing Phase

Section	Description						
Data Preprocessing Code Sc reenshots							
Data Overview	output1 output2 requirements shape_predictor.dat	05-11-2024 11:47 05-11-2024 11:47 04-11-2024 12:45 03-11-2024 14:37	MP3 File MP3 File Text Document DAT File	53 KB 46 KB 1 KB 97,358 KB			

print("[INFO] loading facial landmark predictor...") detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(args['shape_predictor']) #predictor =dlib.shape_predictor(args['shape_predictor']) #predictor = dlib.shape-predictor(args['shape_predictor']) #predictor = dlib.shape-predictor(args['shape-predictor']) print(type(predictor), predictor) (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"] (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]

Date	15 September 2024	
Team ID	739698	
Project Title	Strain analysis based on eye blinking	
Maximum Marks	6 Marks	

Preprocessing Template

The images will be preprocessed by resizing, normalizing, augmenting, denoising, adjusting contrast, detecting edges, converting color space, cropping, batch normalizing, and whitening data. These steps will enhance data quality, promote model generalization, and improve convergence during neural network training, ensuring robust and efficient performance across various computer vision tasks.

