HUBBLE'S LAW LAB

I. A BALLOON UNIVERSE

- 1. If the dots represent galaxies, do they get larger as the balloon expands? Why do think this is or is not the case?
 - Individual galaxies do not get larger. Only the space in between them does. On small scales, gravity is stronger than the expansion of the universe.
- 2. Given this example, do you think the Milky Way is expanding with the universe? *No, the Milky Way is not expanding. It is a sticker in our example.*

II. STANDARD RULERS AND REDSHIFT

3. Which of the two galaxies above is closer to us? How do you know? *B is closer because it looks bigger.*

TABLE 1: GALACTIC DISTANCES AND RECESSIONAL VELOCITIES

Galaxy	Apparent Size (a) kpc	Distance (<i>d</i>) Mpc	Measured Wavelength (λ _{measured}) Å	Redshift (Z)	Recessional Velocity (v) km/s
NGC 1357	8.7 x 10 ⁻⁴	25.3	6609.0	0.0070	2100
NGC 1832	7.4 x 10 ⁻⁴	29.7	6605.9	0.0066	1980
NGC 2775	9.8 x 10 ⁻⁴	22.4	6591.2	0.0043	1290
NGC 3034	2.7 x 10 ⁻³	8.1	6564.1	0.0002	60
NGC 3227	9.9 x 10 ⁻⁴	22.2	6587.3	0.0037	1110
NGC 3623	2.6 x 10 ⁻³	8.5	6599.7	0.0056	1680
NGC 3627	2.3 x 10 ⁻³	9.6	6578.0	0.0023	690
NGC 4775	6.0 x 10 ⁻⁴	36.7	6595.1	0.0049	1470
NGC 5548	3.8 x 10 ⁻⁴	57.9	6674.1	0.0170	5100
NGC 6764	6.1 x 10 ⁻⁴	36.1	6609.8	0.0071	2130

GRAPH 1: RELATIONSHIP BETWEEN GALACTIC DISTANCES AND RECESSIONAL VELOCITIES

III. INTERPRETING THE DATA

4. What happens to the recessional velocity of a galaxy as you go out to farther distances away from the Milky Way?

More distant galaxies have higher recessional velocities, so they're moving away from us faster.

- 5. Why did you best-fit line have to go through the origin (0,0)? What's at the origin? *We're at the origin (the Milky Way)!*
- 6. Now we're going to calculate what the Hubble constant H_0 is. Show your work below for your calculation of the slope.

I got 80. Should be between 40-110.

- 7. What are the units of your slope? km/s/Mpc
- 8. The currently accepted value for H_0 is about 68 km/s/Mpc. How close were you? *Answers will vary*

IV. THE AGE OF THE UNIVERSE

- 9. What is the inverse of H_0 ? (Use the accepted value) **0.0147**
- 10. Multiply the inverse $(1/H_0)$ by 3.09×10^{19} to cancel the distance units (the kilometer and megaparsec portions of the units). This will give you the age of the universe in seconds: **4.5** $\times 10^{17}$ seconds
- 11. Convert age in seconds to age in years:

14.4 billion years