CHAPTER 3: Guidelines, Principles, and Theories

Designing the User Interface: Strategies for Effective Human-Computer Interaction

Sixth Edition

Ben Shneiderman, Catherine Plaisant, Maxine S. Cohen, Steven M. Jacobs, and Niklas Elmqvist

in collaboration with Nicholas Diakopoulos

Addison Wesley is an imprint of

Theories

- Beyond the specifics of guidelines
- Principles are used to develop theories
- Some theories are descriptive
 - Explanatory
 - Prescriptive
 - Predictive
- Some theories are based on human capacity
 - Motor task
 - Perceptual
 - Cognitive

Explanatory and predictive theories

Explanatory theories:

- Observing behavior
- Describing activity
- Conceiving of designs
- Comparing high-level concepts of two designs
- Training

Predictive theories:

 Enable designers to compare proposed designs for execution time or error rates

Perceptual, cognitive, and motor tasks

- Perceptual or cognitive subtasks theories
 - Predicting reading times for free text, lists, or formatted displays
- Motor-task performance times theories:
 - Predicting keystroking or pointing times

Taxonomy (explanatory theory)

- -Order on a complex set of phenomena
- Facilitate useful comparisons
- Organize a topic for newcomers
- Guide designers
- Indicate opportunities for novel products

Conceptual, semantic, syntactic, and lexical model

- Foley and van Dam* four-level approach
 - Conceptual level:
 - User's mental model of the interactive system
 - Semantic level:
 - Describes the meanings conveyed by the user's command input and by the computer's output display
 - Syntactic level:
 - Defines how the units (words) that convey semantics are assembled into a complete sentence that instructs the computer to perform a certain task
 - Lexical level:
 - Deals with device dependencies and with the precise mechanisms by which a user specifies the syntax
- Approach is convenient for designers
 - Top-down nature is easy to explain
 - Matches the software architecture
 - Allows for useful modularity during design

^{*}Computer Graphics: Principles and Practice, Third Edition

Stages of action models

- Norman's seven stages of action
 - 1. Forming the goal
 - 2. Forming the intention
 - 3. Specifying the action
 - 4. Executing the action
 - 5. Perceiving the system state
 - 6. Interpreting the system state
 - 7. Evaluating the outcome
- Norman's contributions
 - Context of cycles of action and evaluation.
 - Gulf of execution: Mismatch between the user's intentions and the allowable actions
 - Gulf of evaluation: Mismatch between the system's representation and the user's expectations

Stages of action models (concluded)

- Four principles of good design
 - State and the action alternatives should be visible
 - Should be a good conceptual model with a consistent system image
 - Interface should include good mappings that reveal the relationships between stages
 - User should receive continuous feedback
- Four critical points where user failures can occur
 - Users can form an inadequate goal
 - Might not find the correct interface object because of an incomprehensible label or icon
 - May not know how to specify or execute a desired action
 - May receive inappropriate or misleading feedback

Consistency through grammars

Consistent user interface goal

- Definition is elusive multiple levels sometimes in conflict
- Sometimes advantageous to be inconsistent

Consistent

delete/insert character delete/insert word delete/insert line delete/insert paragraph kill/birth paragraph

Inconsistent A

delete/insert character remove/bring word destroy/create line

Inconsistent B

delete/insert character remove/insert word delete/insert line delete/insert paragraph

Inconsistent action verbs

Take longer to learn, cause more errors, slow down users, and are harder for users to remember

Contextual theories

Micro-HCI Theories

- Focus on measurable performance (such as speed and errors) on multiple standard tasks taking seconds or minutes in laboratory environments
 - Design-by-levels
 - Stages of action
 - Consistency

Macro-HCI Theories

- Focus on case studies of user experience over weeks and months, in realistic usage contexts with rich social engagement
 - Contextual
 - Dynamic

Contextual theories (concluded)

- User actions are situated by time and place
 - You may not have time to deal with shortcuts or device dependent syntax (such as on mobile devices) when hurried
 - Physical space is important in ubiquitous, pervasive and embedded devices, e.g. a museum guide stating information about a nearby painting
- A taxonomy for mobile device application development could include:
 - Monitor and provide alerts, e.g. patient monitoring systems
 - Gather information
 - Participate in group collaboration
 - Locate and identify nearby object or site
 - Capture information about the object and share that information