Fonction de deux variables

Table des matières

1.	Introduction. 1.1. Rappels.	1 1
	1.2. Premières définitions.	1
2.	La topologie de la norme de \mathbb{R}^2	2 2 3
3.	Limites de suites.	4
4.	Points limites et adhérence d'un sous-ensemble.	4
5.	Limites de fonctions.	5
6.	Continuité.	6
7.	Différentielle.	7 7
8.	Dérivées partielles et directionnelles	8 8 9
9.	Dérivées partielles d'ordre supérieur.	9
10.	Développement limité.	10
11.	Extremums locaux.	10

1. Introduction.

1.1. Rappels.

Définition 1.1.1 (fonction d'une variable): Soit A, B deux ensembles. Une application f est la donnée d'un ensemble de départ A et d'un ensemble d'arrivée B et qui, à chaque $x \in A$ associe un unique $f(x) \in B$. On la note $f: A \to \mathbb{B}; x \mapsto f(x)$.

Définition 1.1.2 (Graphe d'une application): Soit $f:A\to B$ une application. On appelle graphe de f l'ensemble suivant $\operatorname{Graphe}(f)=\{(x,f(x))\mid x\in A\}\subset A\times B$

1.2. Premières définitions.

Définition 1.2.1 (fonction de deux variables): Soit A un sous ensemble de \mathbb{R}^2 et B un ensemble. Une application f de deux variables de A dans B est la donnée d'un ensemble de départ A et d'un ensemble d'arrivée B et qui, à chaque $(x,y) \in A$ associe un unique $f(x,y) \in B$. On la note $f:A \to B; x, y \mapsto f(x,y)$.

Définition 1.2.2 (Graphe d'une application): Soit $f: A \to B$ une application de deux variables. On appelle graphe de f l'ensemble suivant $\operatorname{Graphe}(f) = \{(x, y, f(x, y)) \in \mathbb{R}^3 \mid x, y \in \mathbb{R}\}$

Exemple: L'aire d'un rectangle : $f: \mathbb{R}^2 \to \mathbb{R}; (x,y) \mapsto xy$.

Soit a un réel fixé et $x, y \in \mathbb{R}$. l'équation associée est $a = xy \Leftrightarrow y = \frac{a}{x}$. On cherche le rectangle d'aire a de côté x, y.

2. La topologie de la norme de \mathbb{R}^2 .

2.1. Norme euclidienne.

Définition 2.1.1 (Norme Euclidienne): Soit $v=\binom{a}{b}\in\mathbb{R}^2$. La norme Euclidienne est la longueur du vecteur v. Elle est donnée par $\|v\|=\sqrt{a^2+b^2}$.

Proposition 2.1.1: Soit $v \in \mathbb{R}^2$, $\lambda \in \mathbb{R}$. Alors $\|\cdot\|$ vérifie: 1. $\|v\| \ge 0$ et $\|v\| = 0 \Leftrightarrow v = \binom{0}{0}$.

- 2. $\|\lambda v\| = |\lambda| \|v\|$ (homogénéïté).
- 3. $||v + u|| \le ||v|| + ||u||$ (inégalité triangulaire).

i.e la norme Euclidienne est une norme.

Démonstration:

1. Pour tout $x \in \mathbb{R}^2$, $x^2 \ge 0$ d'où $\forall u \in \mathbb{R}^2$, $\|u\| \ge 0$. 2. Soit $u = \binom{a}{b} \in \mathbb{R}^2$, $\lambda \in \mathbb{R}$. On a $\|\lambda u\| = \|(\lambda a, \lambda b)\| = \sqrt{(\lambda a)^2 + (\lambda b)^2} = \sqrt{\lambda^2 (a^2 + b^2)} = |\lambda| \|u\|$.

3.

Corollaire 2.1.1: Soit $v, u \in \mathbb{R}^2$. On a :

$$||v - u|| \ge |||v|| - ||u|||.$$

Démonstration: On a $\forall u, v \in \mathbb{R}^2$,

$$\begin{split} v &= (v-u) + u \\ \|v\| &= \|v-u+u\| \leq \|v-u\| + \|u\| \\ \Leftrightarrow \|v-u\| \geq \|v\| - \|u\| \end{split}$$

De même avec u, on obtient par ailleurs $||v-u|| \ge ||u|| - ||v||$ d'où $||v-u|| \ge |||v|| - ||u|||$.

Définition 2.1.2: Soient $u=(a,b), v=(x,y) \in \mathbb{R}^2$. On définit le produit scalaire par

$$u \cdot v = ax + by.$$

Proposition 2.1.2: Soient $u, v, w \in \mathbb{R}^2, \lambda \in \mathbb{R}$.

- 1. $u \cdot v = v \cdot u$ (symétrie).
- 2. $(w+v) \cdot u = w \cdot u + v \cdot u$ (bilinéarité).
- 3. $(v \cdot u)^2 \le \|u\|^2 \|v\|^2$ (inégalité de Cauchy-Schwartz).

Démonstration: Soient $u, v \in \mathbb{R}, t \in \mathbb{R}$. $\|v + tu\|^2 = (v + tu) \cdot (v + tu) = v \cdot v + 2t(v \cdot u) + (u \cdot u)t^2$.

On pose $f(t) = \|v\|^2 + 2(v \cdot u)t + \|u\|^2 t^2$. On peut supposer que $u \neq 0$ sinon l'égalité est évidente. \square

2.2. Disques ouverts/fermés et sous-ensembles ouverts/fermés.

Définition 2.2.1 (disque): Soient $u \in \mathbb{R}^2$, R > 0. On appelle **disque ouvert** de rayon R centré en u l'ensemble:

$$B(u,r) := \{ v \in \mathbb{R} \mid ||v - u|| < R \}.$$

On appelle **disque fermé** de rayon R centré en u l'ensemble:

$$\overline{B}(u,R)\coloneqq \{v\in\mathbb{R}^2\mid \|v-u\|\leq R\}.$$

Définition 2.2.2 (ouvert): Soit U un sous-ensemble de \mathbb{R}^2 . On dit que U est un **ouvert** de \mathbb{R}^2 si

$$\forall u \in U, \exists r_u > 0, B(u, r_u) \subset U.$$

Remarque: L'ensemble de ces sous-ensembles sont notés O_{norm} .

Proposition 2.2.1:

- 1. Les sous-ensembles \emptyset et \mathbb{R}^2 sont des ouverts.
- 2. Soit $\left\{H_i\right\}_{i\in I}\subset O_{\mathrm{norm}}.$ Alors leur réunion est un sous-ensemble ouvert de \mathbb{R}^2 i.e,

$$\forall {\{H_i\}}_{i \in I} \subset O_{\mathrm{norm}}, \bigcup_{i \in I} H_i \in O_{\mathrm{norm}}.$$

3. Soit $\{H_i\}_{i\in\{1,-,n\}}\subset O_{\mathrm{norm}}$ alors leur intersection est un sous-ensemble de \mathbb{R}^2 . i.e,

$$\forall \{H_i\}_{i \in \{1,-,n\}} \subset O_{\mathrm{norm}}, \bigcap_{i \in \{1,-,n\}} H_i \in O_{\mathrm{nom}}.$$

Démonstration:

1.

2. On peut supposer la réunion non-vide. Soit $v \in V = \bigcup_{i \in I} H_i$, alors $\exists i_0, v \in H_{i_0}$. D'où

$$\exists v_{i_0}, B\!\left(v, v_{i_0}\right) \subset H_{i_0} \subset \bigcup_{i \in I} H_i$$

Définition 2.2.3: La collection O_{norm} s'appelle la topologie de \mathbb{R}^2 associée avec la norme euclidienne. (ou la topologie de la norme de \mathbb{R}^2).

Définition 2.2.4 (voisinage): Soit $u \in \mathbb{R}^2$. On appelle **voisinage ouvert** de u tout sous-ensemble ouvert U de \mathbb{R}^2 qui contient u.

Définition 2.2.5 (fermé): Soit $F \subset \mathbb{R}^2$. On dit que F est un fermé si le complémentaire de F dans \mathbb{R}^2 est un ouvert de \mathbb{R}^2 , i.e, F est un fermé $\Leftrightarrow F^c \in O_{\text{norm}}$

Remarque: L'ensemble de ces sous-ensembles sont notés $F_{
m norm}$.

Proposition 2.2.2:

- 1. Les sous-ensembles \emptyset et \mathbb{R}^2 sont des fermés.
- 2. Soit $\{H_i\}_{i\in\{1,-,n\}}\subset F_{\mathrm{norm}}$. Alors leur réunion est un sous-ensemble fermé de \mathbb{R}^2 i.e,

$$\forall \{H_i\}_{i \in I} \subset F_{\text{norm}}, \bigcup_{i \in I} H_i \in F_{\text{norm}}.$$

3. Soit $\{H_i\}_{i\in I}\subset F_{\mathrm{norm}}$ alors leur intersection est un sous-ensemble de \mathbb{R}^2 . i.e,

$$\forall \{H_i\}_{i \in \{1,-,n\}} \subset F_{\mathrm{norm}}, \bigcap_{i \in \{1,-,n\}} H_i \in F_{\mathrm{nom}}.$$

3. Limites de suites.

Définition 3.1 (limite): Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points de \mathbb{R}^2 . On dit que $(x_n)_{n\in\mathbb{N}}$ admet une **limite** si

$$\exists L \in \mathbb{R}, \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \geq N \Rightarrow ||x_n - L|| \leq \varepsilon.$$

Dans ce cas on dit que la suite converge vers L. Sinon, on dit qu'elle diverge.

Proposition 3.1: Soit $x_n=\binom{a_n}{b_n}, n\in\mathbb{N}$ une suite dans \mathbb{R}^2 . Alors $L=\binom{a}{b}$ est la limite de x_n si et seulement si on a

$$\lim_{n\to +\infty} a_n = a \text{ et} \lim_{n\to +\infty} b_n = b.$$

4. Points limites et adhérence d'un sous-ensemble.

Définition 4.1 (point isolé): Soit $A \subset \mathbb{R}^2$ un ensemble, $a \in A$. On dit que a est un point isolé s'il existe un voisinage ouvert V_a dans \mathbb{R}^2 tel que $V_a \cap A = \{a\}$.

Définition 4.2 (point intérieur): Soit $A \subset \mathbb{R}^2$ un ensemble, $a \in A$. On dit que a est un point intérieur s'il existe un voisinage ouvert de V_a dans \mathbb{R}^2 tel que $V_a \subset A$.

Le sous-ensemble des points intérieurs de A est noté int(A) et on l'appelle l'intérieur de A.

$$int(A) := \{ u \in A \mid \exists r > 0, B(u, r) \subset A \}.$$

Proposition 4.1: Soit $A \subset \mathbb{R}^2$ un ensemble. Alors son intérieur est le plus grand sous-ensemble ouvert contenu dans A.

Remarque: L'intérieur d'un ensemble A est une approximation de A par un sous-ensemble ouvert.

Définition 4.3 (Point limite): Soit $A \subset \mathbb{R}^2$ un ensemble, $x \in \mathbb{R}^2$. On dit que x est un point limite de A s'il existe une suite inifie $\{a_n\}_n \in \mathbb{N}$ de points deux-à-deux distincts dans A telle que $a_n \underset{n \to +\infty}{\longrightarrow} x$.

Définition 4.4 (Adhérence): L'ensemble des points limites s'appelle l'adhérence de A et on la designe par \overline{A}

$$\overline{A} \coloneqq \{ u \in \mathbb{R}^2 \mid \forall r > 0, B(u, r) \cap A \neq \emptyset \}.$$

Proposition 4.2: Soit $A \subset \mathbb{R}^2$ un ensemble. Alors son adhérence est le plus petit sous-ensemble fermé qui contient A.

Remarque: Tout ouvert $A \subset \mathbb{R}^2$ est encadré de la manière suivante: $\operatorname{Int}(A) \subset A \subset \overline{A}$.

Définition 4.5 (Frontière): Soit $f: \mathbb{R}^2 \to \mathbb{R}$. On appelle frontière de f l'ensemble constitué des points limites de f.

5. Limites de fonctions.

Définition 5.1: Soit U un ouvert, $f: U \to \mathbb{R}$, $a \in \overline{U}$.

1. On dit que f admet l comme limite en a si et seulement si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in U, ||x - a|| \le \eta \Rightarrow |f(x) - l| < \varepsilon.$$

2. On dit que f admet $+\infty$ comme limite en a si et seulement si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in U, ||x - a|| \le \eta \Rightarrow f(x) \ge A.$$

3. On dit que f admet $-\infty$ comme limite si -f admet $+\infty$ pour limite en a.

Exemple:

$$\lim_{(x,y)\to (0,0)} \frac{(x+2y)^3}{x^2+y^2}.$$

On étudie la fonction $f: U = \{x^2 + y^2 \neq 0\} = \mathbb{R}^2 \setminus 0 \to \mathbb{R}^2$ On a $f(x,0) = \frac{x^3}{x^2} \xrightarrow[x \to 0]{} 0$ et $f(0,y) = \frac{(2y)^3}{y^2} \xrightarrow[y \to 0]{} 0$. Montrons que $\lim_{(x,y) \to (0,0)} f(x) = 0$.

Passons aux coordonnées polaires. On note $x = r\cos(\theta), y = r\sin(\theta)$. Ainsi,

$$f(x,y) = r^3 \frac{(\cos(\theta) + 2\sin(\theta))^3}{r^2} = r(\cos(\theta) + 2\sin(\theta))^3$$

De plus, $|\cos(\theta) + 2\sin(\theta)|^3 \le |\cos \theta| + 2|\sin \theta| \le 3^3 = 27$

Proposition 5.1: Soit U un ouvert, $f:U\to\mathbb{R},\,a\in\overline{U}$. Si f admet une limite, alors cette limite est unique.

6. Continuité.

Définition 6.1 (continue): Soit U un ouvert, $f:U\to\mathbb{R},$ $a\in\overline{U},$ et $x\in U.$ On dit que f est continue en x si

$$f(x) \xrightarrow[x \to a]{} f(a).$$

Définition 6.2: On dit que f est continue sur X si f est continue en tout point de X.

Proposition 6.1: Soit U un ouvert, $f,g:U\to\mathbb{R}$, des applications continues sur $U,\lambda\in\mathbb{R}$.

$$|f|, \lambda f, f + g, fg$$

sont continues sur U. Si $\forall x \in U, g(x) \neq 0$, alors $\frac{f}{g}$ est continue sur U.

Corollaire 6.1: Toute fonction polynomiale est continue sur \mathbb{R}^2 .

Proposition 6.2: Soit U,V deux ouverts, $f:U\to V,g:V\to\mathbb{R}$ des applications continues repsectivement sur U et V. Alors g(f(x)) est continue sur U.

Proposition 6.3: Soit $f:U\to\mathbb{R}$ une fonction continue, $I\subset\mathbb{R}$ un ouvert (resp. fermé). $f^{-1}(I)=\left\{ \begin{pmatrix} x \\ y \end{pmatrix}\in U\mid f(x,y)\in I \right\}$ est un sous-ensemble ouvert (resp. fermé).

Définition 6.3: Soit U un ouvert, $f:U\to\mathbb{R}$. Pour une valeur $c\in\mathbb{R}, f^{-1}(c)$ s'appelle l'ensemble de niveau c.

Corollaire 6.2: Soit $f:U\to\mathbb{R}$ une fonction continue sur U. Alors pour tout $a\in\mathbb{R}$, l'ensemble de niveau a est un sous-ensemble fermé dans U.

7. Différentielle.

Définition 7.1 (Différentielle): Soit $U \in \mathbb{R}^2$ un ouvert, $f: U \to \mathbb{R}$. On munit \mathbb{R}^2 d'une norme. Soit $a \in U$, on appelle la différentielle de f en u_0 l'application linéaire $L: \mathbb{R}^2 \to \mathbb{R}$ telle que

$$f(a+h) = f(a) + L(h) + o_{h \rightarrow 0}(h)$$

Proposition 7.1: Si la différentielle existe elle est unique.

Définition 7.2 (Différentiable): Soit $f:U\to\mathbb{R},\,u_0\in U.$ On dit que f est différentiable en u_0 (resp. sur U) si la différentiable df_{u_0} existe (resp. différentiable en tout point de U).

Proposition 7.2: Soit U un ouvert, $f,g:U\to\mathbb{R}$, des applications différentiables sur $U,\lambda\in\mathbb{R}$. $\lambda f,f+g,fg$ sont différentiables sur U. Si $\forall x\in U,g(x)\neq 0$, alors $\frac{f}{g}$ est différentiable sur U.

Proposition 7.3: Soit U un ouvert, $f,g:U\to\mathbb{R}$, des applications différentiables sur U, de différentielle $\mathrm{d} f_{u_0},\mathrm{d} g_{u_0}.$

$$\begin{split} &\operatorname{d}(f+g)_{u_0} = \operatorname{d} f_{u_0} + \operatorname{d} g_{u_0} \\ &\operatorname{d}(fg)_{u_0} = g(u_0) \operatorname{d} f_{u_0} + f(u_0) \operatorname{d} g_{u_0} \\ &\operatorname{d} \left(\frac{f}{g}\right)_{u_0} = \frac{g(u_0) \operatorname{d} f_{u_0} - f(u_0) \operatorname{d} g_{u_0}}{g^2(u_0)}, g(u_0) \neq 0 \end{split}$$

Proposition 7.4: Soit U, V deux ouverts, $f: U \to V, g: V \to \mathbb{R}$ des applications différentiables respectivement sur U et V. Alors g(f(x)) est différentiable sur U.

Proposition 7.5: Toute fonction polynomiale est différentiable sur \mathbb{R}^2 .

7.1. Courbe paramétrée

Proposition 7.1.1: Soit $I \subset \mathbb{R}$, $F: I \to \mathbb{R}^2$; $t \mapsto \begin{pmatrix} f_1(t) \\ f_2(t) \end{pmatrix}$. Alors F est différentiable en $u_0 \in \mathbb{R}$ de différentielle :

$$\mathrm{d}F_{u_0}(h) = h \begin{pmatrix} f_1'(u_0) \\ f_2'(u_0) \end{pmatrix}.$$

8. Dérivées partielles et directionnelles.

8.1. Premières définitions.

Définition 8.1.1: Soit $f:U\to\mathbb{R},\,u_0\in U,v\in\mathbb{R}^2.$ On appelle dérivée de f en u_0 de direction v la valeur

$$D_{u_0,v} f \coloneqq \lim_{t \to 0} \frac{f(u_0 + tv) - f(u_0)}{t}.$$

Remarque: En pratique, pour trouver la dérivée directionnelle $D_{u_0,v}f$, on cherche le développement limité à l'ordre 1 de $f(u_0+tv)$.

Exemples:

1. Soit $f:U o \mathbb{R}; (x,y)\mapsto 2x^2-y^2$ Calculons $D_{\binom{1}{-1},\binom{2}{1}}f$. On a $f(u_0)=2-1=1$ $f(u_0+tv)=2(1+2t)^2-(-1+t)^2=2+8t+8t^2-\left(1-2t+t^2\right)=1+10t+7t^2.$ Ainsi,

$$\frac{f(u_0 + tv) - f(u_0)}{t} = \frac{7t^2 + 10t}{t} = 7t + 10 \underset{t \to 0}{\longrightarrow} 10.$$

D'où $D_{\binom{1}{-1},\binom{2}{1}}f=10$. 2. Soit $f:U\to\mathbb{R}^2;(x,y)\mapsto xy^2,u_0=\binom{2}{-1},v=\binom{1}{1}$. $f(u_0)=1$ $f(u_0+tv)=f((2+t,-1+t))=(2+t)(t-1)^2=(2+t)(t^2-2t+1)=-3t+2$. Ainsi

$$\frac{f(u_0+tv)-f(u_0)}{t}=\frac{-3t+1}{t}\underset{t\to 0}{\longrightarrow} -3$$

D'où $D_{u_0,v}f = -3$.

Définition 8.1.2: Soit $f:U\to\mathbb{R},u_0\in U$, et $B=(e_1,e_2)$ une base de \mathbb{R}^2 . On appelle i-ème dérivée partielle de f en u_0 la valeur

$$D_{u_0,e_i}f = \lim_{t \to 0} \frac{f(u_0 + te_i) - f(u_0)}{t}.$$

Remarque: En pratique, on calcule la dérivée de f par rapport à x (resp. y) en considérant y (resp x) comme une constante.

Remarque (Notation): On note $d_{x/y}f(u_0)$ la dérivée de f en u_0 par rapport à la variable x/y.

Exemples:

$$\begin{array}{l} \text{1. Soit } f: U \to \mathbb{R}; (x,y) \mapsto 2x^2 - y^2, u_0 = (1,-1) \\ \mathrm{d}_x(u_0) = (4x)((1,-1)) = 4 \\ \mathrm{d}_y(u_0) = (-2y)((1,-1)) = 2. \\ \text{2. Soit } f: U \to \mathbb{R}^2; (x,y) \mapsto xy^2, u_0 = {2 \choose -1} \\ \mathrm{d}_x(u_0) = (y^2)((2,-1)) = 1 \\ \mathrm{d}_y(u_0) = (2xy)((2,-1)) = -4. \end{array}$$

8.2. Matrice Jacobienne.

Proposition 8.2.1: Soit $f:U\to\mathbb{R}$ une fonction différentiable à un point $u_0\in U$ de différentielle $\mathrm{d} f_{u_0}:\mathbb{R}^2\to\mathbb{R}$. Pour tout $v\in\mathbb{R}^2$, $D_{u_0,v}$ existe et est déterminée par $D_{u_0,v}f=\mathrm{d} f_{u_0}(v)$.

Corollaire 8.2.1: Soit $f:U\to\mathbb{R}$ une fonction différentiable à un point $u_0\in U$ de différentielle $\mathrm{d} f_{u_0}:\mathbb{R}^2\to\mathbb{R}. \text{ Pour tout } v\in\mathbb{R}^2, \mathrm{d}_x f \text{ et } \mathrm{d}_y f \text{ existe et sont déterminées par } \mathrm{d}_x f=\mathrm{d} f_{u_0}(1,0)),$ et $d_y f = df_{u_0}(0,1)$.

Définition 8.2.1: Soit $f:U\to\mathbb{R}$ une fonction. On appelle matrice Jacobienne notée $J(f)_{u_0}$ la matrice composée des dérivées partielles d'une fonction f.

8.3. Critère de différentiabilité.

Définition 8.3.1: Soit $f:U\to\mathbb{R}$ une fonction. On dit que f est C^1 sur U si ses dérivées partielles existent et sont continues en tout point de U.

Proposition 8.3.1: Soit $f:U\to\mathbb{R}$ une fonction C^1 sur U. Alors la différentielle $\mathrm{d} f_u$ existe en tout point de U et est donnée par

$$\partial f_u:\mathbb{R}^2\to\mathbb{R}; \begin{pmatrix} h_0\\h_1\end{pmatrix}\mapsto J(f)_{u_0}\begin{pmatrix} h_0\\h_1\end{pmatrix}.$$

9. Dérivées partielles d'ordre supérieur.

Définition 9.1: Soit $f: \mathbb{R}^2 \to \mathbb{R}$. On dit que f est de classe C^2 si f est C^1 et que $(x,y) \mapsto \frac{\partial f}{\partial x}$ et $(x,y)\mapsto \frac{\partial f}{\partial y}$ le sont aussi.

Remarque (notation): Soit $f:U\to\mathbb{R}$ une fonction C^2 . On note $\frac{\partial^2 f}{\partial x^2}$ la dérivée partielle d'ordre 2 par rapport à x et on note $\frac{\partial^2 f}{\partial x \partial y}$ la dérivée partielle d'ordre 2 par rapport à x puis à y.

Définition 9.2: Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^2 . On appelle matrice hessienne de f la matrice:

$$H(f) := \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}.$$

9

Exemple: $f(x) = x^3 + y^3 - 5xy$. $H(f) = \begin{pmatrix} 6x & -5 \\ -5 & 6y \end{pmatrix}$.

Théorème 9.1: Soit $U \subset \mathbb{R}^2$ un ouvert, $f: U \to \mathbb{R}$ une fonction de classe C^2 . La matrice hessienne de f est symétrique.

Démonstration: Montrer $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$.

Corollaire 9.1: Soit $f: U \to \mathbb{R}$ une fonction de classe C^2 . Pour tout $u \in U$, la matrice hessienne de f évalué en u est symétrique

10. Développement limité.

Théorème 10.1: Soit $U \subset \mathbb{R}^2$ un ouvert, $h \in U$ et $f: U \to \mathbb{R}$ une fonction de classe C^2 . Alors pour tout $u \in U$, f admet le développement :

$$f(u+h) = f(u) + J_f(u)h + \frac{1}{2}{}^t h h_f(u)h + o(\|h\|^2).$$

Exercice 1: TODO (page 43/44)

11. Extremums locaux.

Définition 11.1: Soit $U \subset \mathbb{R}^2$, $u_0 \in U$, $f: U \to \mathbb{R}$. On dit que f admet un $maximum\ local\ en\ u_0\ s'il$ existe un voisinage ouvert $V_{u_0} \subset U$ tel que $\forall u \in V_{u_0}, f(u_0) \geq f(u)$.

Définition 11.2: Soit $U \subset \mathbb{R}^2$, $u_0 \in U$, $f: U \to \mathbb{R}$. On dit que f admet un *minimum local* en u_0 s'il existe un voisinage ouvert $V_{u_0} \subset U$ tel que $\forall u \in V_{u_0}$, $f(u_0) \leq f(u)$.

Définition 11.3: Soit $U \subset \mathbb{R}^2$, $f: U \to \mathbb{R}$. On appelle *extremums locaux* de f les valeurs minimales et maximales de f.

Proposition 11.1: Soit $U \subset \mathbb{R}^2$, $f: U \to \mathbb{R}$, $u_0 \in U$ une fonction de classe C^1 . Si $f(u_0)$ est un extremum, alors $d_f(u_0) = 0$.

Remarque: C'est une condition nécessaire mais pas suffisante.

Définition 11.4: Soit $U \subset \mathbb{R}^2$, $f: U \to \mathbb{R}$ une fonction de classe C^1 . On appelle *point critique* de f les $u \in U$ tels que $d_f(u) = 0$.