Quantum factorization simulation as a benchmark for HPC

Santiago I Betelu

UNT Mathematics Department (adjunct)

Data Vortex Technologies (chief scientist)

Why quantum factorization as a benchmark

- Quantum factorization a widely known & relevant problem, it is known to be hard to simulate
- The goal if to quantify the ability of a computer to simulate ideal quantum circuits
- The output is reproducible, easy to validate and understand
- Each additional qubit doubles RAM usage, CPU power and internode communication: good to test large machines
- Runs in a reasonable time: 1/2-3 hours
- Minimal portable code with ~300 lines of C and MPI
- It just runs: no input or special knowledge from user

Summary of the benchmark

- Simulates a quantum computer with state $|\psi\rangle = \sum_{\chi=0}^{(2^Q-1)} c_\chi |\chi\rangle$
- The test consists on running a simplified Shor's algorithm* with increasing number of Q qubits until resources are exhausted.
- Only timing of Fourier Transform AQFT, not the modular exponentiation
- For each Q run the simplified Shor's algorithm to factorize an integer n

$$n = p \cdot q$$

• p and q are chosen to maximize the Euler's totient function

$$\varphi = (p-1) \cdot (q-1)$$

with the constraint $n^2 \le 2^Q < 2n^2$

• Then verify that the total probability under peaks is larger than 1/2

$$P = \sum_{neaks} |c_{x}|^{2} > \frac{1}{2}$$

• Peaks located at $x = \frac{2^Q}{(p-1)(q-1)} \times \text{integer}$

^{*} PW Shor, "Polynomial-Time algorithms for prime Factorization and Discrete Logarithms on a Quantum Computer", SIAM J. Comp 1997

Santiago I Betelu UNT DV

Use deferred measurement principle to save qubits

This measurement is inconvenient in a benchmark

With deferred measurement principle

This benchmark saves log_2n qubits, only AQFT is timed

Verify location of peaks for each $n = p \cdot q$

List of factorizations used in the test

 $n=p\cdot q$ chosen to maximize $(p-1)\cdot (q-1),$ $n^2\leq 2^Q<2n^2$ p< q, this way the period of $2^x \mod n$ is maximized

Q	$p \times q$			
9	3 × 7			
10	3 × 7			
11	3 × 13			
12	5 × 11			
13	7 × 11			
14	7 × 71			
15	7 × 23			
16	11 × 23			
17	11 × 31			
18	17 × 29			
19	23 × 31			
20	19 × 53			
21	23 × 61			

Q	$p \times q$
22	23 × 89
23	43 × 67
24	61 × 67
25	53 × 109
26	79 × 103
27	71 × 163
28	83 × 197
29	101 × 229
30	137 × 239
31	149 × 311
32	233 × 281
33	211 × 439
34	283 × 463

Q	$p \times q$
35	241 × 769
36	503 × 521
37	389 × 953
38	557 × 941
39	859 × 863
40	911 × 1151
41	1039 × 1427
42	1399 × 1499
43	1669 × 1777
44	1787 × 2347
45	2039 × 2909
46	2357 × 3559
47	2609 × 4547

Q	$p \times q$
48	4093 × 4099
49	3709 × 6397
50	5471 × 6133
51	5503 × 8623
52	8011 × 8377
53	8537 × 11117
54	11119 × 12071
55	12757 × 14879
56	12941 × 20743
57	17837 × 21283
58	22717 × 23633
59	24847 × 30557
60	28579 × 37571

Use AQFT* because it is faster than QFT

- For each H gate we compute $1 + log_2Q$ controlled phase gates
- Phase gates computed with one memory access per state
- Complexity AQFT is $O(Q \log Q)$ versus $O(Q^2)$ for QFT

Results in the approximation $f_y \cong \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} c_x e^{2\pi i x y/N}$

^{*} D Coppersmith, An Approximate Fourier Transform Useful in Quantum Factoring, IBM report 1994 A Barenco et al, Approximate Quantum Fourier Transform and Decoherence, 1996

AQFT uses 3 types of gates

Controlled phase

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \end{array} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \begin{array}{c} \\ \\ \end{array}$$
 Swap qubits

- The essentially heavy part of computation is the Approximate Fourier Transform, computed simulating gates
- Modular exponentiation $a^x \mod n$ is not implemented gate-by-gate and it is not timed. We compute directly in C, and the computation time is negligible.
- Exponentiation could be implemented with stabilizer-group gates, thus simulated efficiently, not in this benchmark

How are the coefficients distributed between nodes

- The state of the quantum registers $|\psi\rangle = \sum_{x=0}^{(2^Q-1)} c_x |x\rangle$ is distributed among nodes
- A basis state is described in binary as

$$|x\rangle = |b_Q b_{Q-1} \dots b_{Q-M+1}\rangle \otimes |b_L b_{L-1} \dots b_2 b_1\rangle$$

- The black digits denote indices of amplitudes within each node.
- The blue digits denote node index.
- The number of nodes is $p = 2^M$ Q = L + M
- For example the Hadamard gate at qubit q combines the amplitudes c_x and c_y where x and y differ only in bit q.
- Depending on the value of q, we may be combining data between nodes or within node

† H(4): Inter node †

How to use the benchmark (MPI version)

This is system dependent. In computers with mpicc and slurm, first prepare a batch file with number of nodes and number of tasks equal to a power of 2 and then launch

```
#SBATCH -o output-8nodesx64cores
#SBATCH --nodes=8  # 8 nodes
#SBATCH -n 256  # 64 cores per node
#SBATCH -p normal  # for KNL processors
#SBATCH -t 02:00:00  # usually less than 2 hours
ibrun ./quansimbench
```

- > mpicc -Ofast quansimbench.c -o quansimbench -lm -Wall
- > sbatch quansimbench.batch

May need to add processor specific options such as

```
-xCORE-AVX512 for SKX
-xMIC-AVX512 for KNL
```

and may use OpenMP as well.

Typical output

- 32768 KNL cores
- 512 nodes
- memory limited
- less than 1h run

Memory exhausted Qubits=42 States/s=1.2124e12

	Quansimbench version 1.0 Main metrics Ranks: 32768								
Kā	inks:	52/68				1	-		
Qu	ubits	Factors	Probability	Time	States/s	States/s/rank	Pass		
	15	7*23	0.727522	1.5009e-01	1.5719e+07	4.7971e+02	yes		
	16	11*23	0.760696	2.3128e-03	2.5219e+09	7.6962e+04	yes		
	17	11*31	0.675652	1.1153e-03	1.1165e+10	3.4072e+05	yes		
	18	17*29	0.756086	4.6819e-04	5.7110e+10	1.7429e+06	yes		
	19	23*31	0.749676	1.3307e-03	4.2551e+10	1.2986e+06	yes		
	20	19*53	0.765709	5.7523e-04	2.0963e+11	6.3974e+06	yes		
	21	23*61	0.765677	7.7942e-04	3.2557e+11	9.9355e+06	yes		
	22	23*89	0.678047	1.3810e-03	3.8876e+11	1.1864e+07	yes		
	23	43*67	0.763136	1.3978e-03	8.0418e+11	2.4541e+07	yes		
	24	61*67	0.763811	2.5894e-03	9.1358e+11	2.7880e+07	yes		
	25	53*109	0.763169	4.9684e-03	9.9277e+11	3.0297e+07	yes		
	26	79*103	0.761923	9.3256e-03	1.1082e+12	3.3820e+07	yes		
	27	71*163	0.762637	1.8255e-02	1.1764e+12	3.5900e+07	yes		
	28	83*197	0.762689	4.9026e-02	9.1439e+11	2.7905e+07	yes		
	29	101*229	0.762295	8.3367e-02	1.1141e+12	3.4000e+07	yes		
	30	137*239	0.760210	1.5135e-01	1.2770e+12	3.8971e+07	yes		
	31	149*311	0.760909	3.1232e-01	1.2789e+12	3.9029e+07	yes		
	32	233*281	0.770465	6.9549e-01	1.3524e+12	4.1273e+07	yes		
	33	211*439	0.770119	1.5432e+00	1.2580e+12	3.8392e+07	yes		
	34	283*463	0.769982	2.9051e+00	1.3838e+12	4.2230e+07	yes		
	35	241*769	0.785465	5.8528e+00	1.4148e+12	4.3177e+07	yes		
	36	503*521	0.770013	1.3677e+01	1.2511e+12	3.8180e+07	yes		
	37	389*953	0.769878	2.9071e+01	1.2103e+12	3.6935e+07	yes		
	38	557*941	0.769711	5.1814e+01	1.4005e+12	4.2741e+07	yes		
	39	859*863	0.769253	1.0714e+02	1.3905e+12	4.2436e+07	yes		
	40	911*1151	0.769082	2.3201e+02	1.3222e+12	4.0350e+07	yes		
	41	1039*1427	0.768945	4.7427e+02	1.3261e+12	4.0469e+07	yes		
	42	1399*1499	0.768789	1.0665e+03	1.2124e+12	3.7000e+07	yes		
Er	Ending due to allocation error								

Normalized performance

Number of basis states each core can process in a second

$$States/(s\ core) = \frac{gates \times 2^{Q}}{Rawtime \times cores}$$

- In an ideal computer that should be a constant
- In reality it will vary due to the network and memory access
- Useful to compare cores
- Raw time useful to compare whole systems

One node SKX Xeon 8160 and different core numbers, the metric is nearly constant.

A typical comparison in TACC's Stampede 2

- Compare KNL Xeon Phi 7250 vs. SKX Xeon 8160 nodes
- From 1 to 512 nodes
- Graph shows memory/switch slowdown in per core basis
- Exponential growth of

Acknowledgments

- Scott Pakin (LANL)
- Texas Advanced Computing Center (TACC)
- UNT High Performance Computing
- Coke Reed
- John Lockman