Mathematics

Robin Adams

March~8,~2024

Contents

Ι	Ca	tegory Theory	5					
1	Four	Foundations						
2	Cate	Categories						
	2.1	Preorders	10					
	2.2	Monomorphisms and Epimorphisms	10					
	2.3	Sections and Retractions	12					
	2.4	Isomorphisms	13					
	2.5	Initial and Terminal Objects	13					
3	Fun	Functors						
	3.1	Comma Categories	15					
II	\mathbf{G}	roup Theory	17					
4	Gro	Groups						
	4.1	Order of an Element	22					
	4.2	Generators	24					
5	Gro	up Homomorphisms	27					
	5.1	Subgroups	29					
	5.2	Kernel	31					
	5.3	Inner Automorphisms	32					
	5.4	Direct Products	32					
	5.5	Free Groups	32					
	5.6	Normal Subgroups	35					
	5.7	Quotient Groups	36					
	5.8	Cosets	39					
	5.9	Congruence	43					
	5.10	Cyclic Groups	43					
	5.11	Euler's ϕ -function	43					
		Commutator Subgroup	45					
		Presentations	45					

4		CONTENTS

5.15	Index of a Subgroup
	elian Groups
6.1	The Category of Abelian Groups
6.2	Free Abelian Groups
6.3	Cokernels

Part I Category Theory

Chapter 1

Foundations

This is a placeholder — I am not sure what foundation I want to use for this project yet. I will try to work in a way which is foundation-independent. What I do could be formalized in ZFC, ETCS, or some other system. I will assume the usual set theoretic constructions as needed. Sets will be defined up to bijection only.

Chapter 2

Categories

Definition 2.1 (Category). A category C consists of:

- A class $|\mathcal{C}|$ of *objects*. We write $A \in \mathcal{C}$ for $A \in |\mathcal{C}|$.
- For any objects A, B, a set C[A, B] of morphisms from A to B. We write $f: A \to B$ for $f \in C[A, B]$.
- For any object A, a morphism $id_A : A \to A$, the *identity* morphism on A.
- For any morphisms $f: A \to B$ and $g: B \to C$, a morphism $g \circ f: A \to C$, the *composite* of f and g.

such that:

Associativity Given $f: A \to B$, $g: B \to C$ and $h: C \to D$, we have $h \circ (g \circ f) = (h \circ g) \circ f$

Left Unit Law For any morphism $f: A \to B$, we have $id_B \circ f = f$.

Right Unit Law For any morphism $f: A \to B$, we have $f \circ id_A = f$.

Proposition 2.2. The identity morphism on an object is unique.

PROOF: If i and j are identity morphisms on A then $i = i \circ j = j$. \square

Example 2.3 (Category of Sets). The *category of sets* **Set** has objects all sets and morphisms all functions.

Definition 2.4 (Endomorphism). In a category \mathcal{C} , an *endomorphism* on an object A is a morphism $A \to A$. We write $\operatorname{End}_{\mathcal{C}}(A)$ for $\mathcal{C}[A, A]$.

Definition 2.5 (Opposite Category). For any category C, the *opposite* category C^{op} is the category with the same objects as C and

$$\mathcal{C}^{\mathrm{op}}[A,B] = \mathcal{C}[B,A]$$

2.1 Preorders

Definition 2.6 (Preorder). A *preorder* on a set A is a relation \leq on A that is reflexive and transitive.

A preordered set is a pair (A, \leq) such that \leq is a preorder on A. We usually write A for the preordered set (A, \leq) .

We identify any preordered set A with the category whose objects are the elements of A, with one morphism $a \to b$ iff $a \le b$, and no morphism $a \to b$ otherwise.

Example 2.7. For any ordinal α , let α be the preorder $\{\beta : \beta < \alpha\}$ under \leq .

Definition 2.8 (Discrete Preorder). We identify any set A with the *discrete* preorder (A, =).

2.2 Monomorphisms and Epimorphisms

Definition 2.9 (Monomorphism). In a category, let $f: A \to B$. Then f is a monomorphism or monic iff, for every object X and morphism $x, y: X \to A$, if fx = fy then x = y.

Definition 2.10 (Epimorphism). In a category, let $f: A \to B$. Then f is a *epimorphism* or *epi* iff, for every object X and morphism $x, y: B \to X$, if xf = yf then x = y.

Proposition 2.11. The composite of two monomorphism is monic.

```
Proof:
```

```
\begin{array}{ll} \langle 1 \rangle 1. & \text{Let: } f: A \rightarrowtail B \text{ and } g: B \rightarrowtail C \text{ be monic.} \\ \langle 1 \rangle 2. & \text{Let: } x,y: X \to A \\ \langle 1 \rangle 3. & \text{Assume: } g \circ f \circ x = g \circ f \circ y \\ \langle 1 \rangle 4. & f \circ x = f \circ y \\ \langle 1 \rangle 5. & x = y \\ \end{array}
```

Proposition 2.12. The composite of two epimorphisms is epi.

Proof: Dual. \square

Proposition 2.13. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is monic then f is monic.

PROOF: If $f \circ x = f \circ y$ then gfx = gfy and so x = y. \square

Proposition 2.14. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is epi then g is epi.

Proof: Dual.

Proposition 2.15. A function is a monomorphism in **Set** iff it is injective.

```
Proof:
\langle 1 \rangle 1. Let: f: A \to B
\langle 1 \rangle 2. If f is monic then f is injective.
   \langle 2 \rangle 1. Assume: f is monic.
   \langle 2 \rangle 2. Let: x, y \in A
   \langle 2 \rangle 3. Assume: f(x) = f(y)
   \langle 2 \rangle 4. Let: \overline{x}, \overline{y}: 1 \to A be the functions such that \overline{x}(*) = x and \overline{y}(*) = y
   \langle 2 \rangle 5. \ f \circ \overline{x} = f \circ \overline{y}
   \langle 2 \rangle 6. \ \overline{x} = \overline{y}
       Proof: By \langle 2 \rangle 1.
   \langle 2 \rangle 7. x = y
\langle 1 \rangle 3. If f is injective then f is monic.
   \langle 2 \rangle 1. Assume: f is injective.
   \langle 2 \rangle 2. Let: X be a set and x, y : X \to A.
   \langle 2 \rangle 3. Assume: f \circ x = f \circ y
            Prove: x = y
   \langle 2 \rangle 4. Let: t \in X
            PROVE: x(t) = y(t)
   \langle 2 \rangle 5. f(x(t)) = f(y(t))
   \langle 2 \rangle 6. \ x(t) = y(t)
       Proof: By \langle 2 \rangle 1.
Proposition 2.16. A function is an epimorphism in Set iff it is surjective.
Proof:
\langle 1 \rangle 1. Let: f: A \to B
\langle 1 \rangle 2. If f is an epimorphism then f is surjective.
   \langle 2 \rangle 1. Assume: f is an epimorphism.
   \langle 2 \rangle 2. Let: b \in B
   \langle 2 \rangle 3. Let: x,y:B\to 2 be defined by x(b)=1 and x(t)=0 for all other
                     t \in B, y(t) = 0 for all t \in B.
   \langle 2 \rangle 4. \ x \neq y
   \langle 2 \rangle 5. x \circ f \neq y \circ f
   \langle 2 \rangle 6. There exists a \in A such that f(a) = b.
\langle 1 \rangle 3. If f is surjective then f is an epimorphism.
   \langle 2 \rangle 1. Assume: f is surjective.
   \langle 2 \rangle 2. Let: x, y : B \to X
   \langle 2 \rangle 3. Assume: x \circ f = y \circ f
            PROVE: x = y
   \langle 2 \rangle 4. Let: b \in B
            PROVE: x(b) = y(b)
   \langle 2 \rangle5. PICK a \in A such that f(a) = b
   \langle 2 \rangle 6. \ x(f(a)) = y(f(a))
   \langle 2 \rangle 7. \ x(b) = y(b)
```

Proposition 2.17. In a preorder, every morphism is monic and epi.

PROOF: Immediate from definitions. \square

2.3 Sections and Retractions

Definition 2.18 (Section, Retraction). In a category, let $r: A \to B$ and $s: B \to A$. Then r is a retraction of s, and s is a section of r, iff $r \circ s = \mathrm{id}_B$.

Proposition 2.19. Every identity morphism is a section and retraction of itself.

PROOF: Immediate from definitions. \square

Proposition 2.20. Let $r, r': A \to B$ and $s: B \to A$. If r is a retraction of s and r' is a section of s then r = r'.

Proof:

$$r = r \circ id_A$$

 $= r \circ s \circ r'$
 $= id_B \circ r'$
 $= r'$

Proposition 2.21. Let $r_1: A \to B$, $r_2: B \to C$, $s_1: B \to A$ and $s_2: C \to B$. If r_1 is a retraction of s_1 and r_2 is a retraction of s_2 then $r_2 \circ r_1$ is a retraction of $s_1 \circ s_2$.

Proof:

$$r_2 \circ r_1 \circ s_1 \circ s_2 = r_2 \circ \mathrm{id}_B \circ s_2$$

= $r_2 \circ s_2$
= id_C

Proposition 2.22. Every section is monic.

Proof:

- $\langle 1 \rangle 1$. Let: $s: A \to B$ be a section of $r: B \to A$. $\langle 1 \rangle 2$. Let: $x, y: X \to A$ satisfy sx = sy.
- $\langle 1 \rangle 3$. rsx = rsy
- $\langle 1 \rangle 4. \ x = y$

Proposition 2.23. Every retraction is epi.

Proof: Dual.

Proposition 2.24. In Set, every epimorphism has a retraction.

PROOF: By the Axiom of Choice. \Box

Example 2.25. It is not true in general that every monomorphism in any category has a section. nor that every epimorphism in any category has a retraction.

In the category 2, the morphism $0 \le 1$ is monic and epi but has no retraction or section.

2.4 **Isomorphisms**

Definition 2.26 (Isomorphism). In a category C, a morphism $f: A \to B$ is an isomorphism, denoted $f: A \cong B$, iff there exists a morphism $f^{-1}: B \to A$, the inverse of f, such that $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$.

An automorphism on an object A is an isomorphism between A and itself. We write $Aut_{\mathcal{C}}(A)$ for the set of all automorphisms on A.

Objects A and B are isomorphic, $A \cong B$, iff there exists an isomorphism between them.

Proposition 2.27. The inverse of an isomorphism is unique.

Proof: Proposition 2.20. \square

Proposition 2.28. For any object A we have $id_A : A \cong A$ and $id_A^{-1} = id_A$.

PROOF: Since $id_A \circ id_A = id_A$ by the Unit Laws. \square

Proposition 2.29. If $f : A \cong B$ then $f^{-1} : B \cong A$ and $(f^{-1})^{-1} = f$.

Proof: Immediate from definitions.

Proposition 2.30. If $f:A\cong B$ and $g:B\cong C$ then $g\circ f:A\cong C$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof: From Proposition 2.21. \square

Definition 2.31 (Groupoid). A *groupoid* is a category in which every morphism is an isomorphism.

2.5 **Initial and Terminal Objects**

Definition 2.32 (Initial Object). An object I in a category is *initial* iff, for any object X, there is exactly one morphism $I \to X$.

Example 2.33. The empty set is the initial object in **Set**.

Definition 2.34 (Terminal Object). An object T in a category is terminal iff, for any object X, there is exactly one morphism $X \to T$.

Example 2.35. Every singleton is terminal in **Set**.

Proposition 2.36. If I and J are initial in a category, then there exists a unique isomorphism $I \cong J$.

Proof:

- $\langle 1 \rangle 1$. Let: i be the unique morphism $I \to J$.
- $\langle 1 \rangle 2$. Let: i^{-1} be the unique morphism $J \to I$. $\langle 1 \rangle 3$. $i \circ i^{-1} = \operatorname{id}_J$

PROOF: Since there is only one morphism $J \to J$.

 $\langle 1 \rangle 4$. $i^{-1} \circ i = \mathrm{id}_I$

Proof: Since there is only one morphism $I \to I$.
Proposition 2.37. If S and T are terminal in a category, then there exists a unique isomorphism $S \cong T$.
Proof: Dual.

Chapter 3

Functors

Definition 3.1 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $F:\mathcal{C}\to\mathcal{D}$ consists of:

- for every object $A \in \mathcal{C}$, an object $FA \in \mathcal{D}$
- for any morphism $f: A \to B: \mathcal{C}$, a morphism $Ff: FA \to FB: \mathcal{D}$

such that:

- $Fid_A = id_{FA}$
- $F(g \circ f) = Fg \circ Ff$

Definition 3.2 (Identity Functor). For any category C, the *identity functor* $1_C: C \to C$ is defined by

$$1_{\mathcal{C}}A = A$$
$$1_{\mathcal{C}}f = f$$

Definition 3.3 (Constant Functor). Given categories \mathcal{C} , \mathcal{D} and an object $D \in \mathcal{D}$, the constant functor $K^{\mathcal{C}}D : \mathcal{C} \to \mathcal{D}$ is the functor defined by

$$K^{\mathcal{C}}DC = D$$
$$K^{\mathcal{C}}Df = \mathrm{id}_{D}$$

3.1 Comma Categories

Definition 3.4 (Comma Category). Let $F: \mathcal{C} \to \mathcal{E}$ and $G: \mathcal{D} \to \mathcal{E}$ be functors. The *comma category* $F \downarrow G$ is the category with:

• objects all pairs (C, D, f) where $C \in \mathcal{C}, D \in \mathcal{D}$ and $f : FC \to GD : \mathcal{E}$

• morphisms $(u,v):(C,D,f)\to (C',D',g)$ all pairs $u:C\to C':\mathcal{C}$ and $v:D\to D':\mathcal{D}$ such that the following diagram commutes:

$$FC \xrightarrow{f} GD$$

$$\downarrow_{Fu} \qquad \downarrow_{Gv}$$

$$FC' \xrightarrow{g} GD'$$

Definition 3.5 (Slice Category). Let \mathcal{C} be a category and $A \in \mathcal{C}$. The *slice category* over A, denoted \mathcal{C}/A , is the comma category $1_{\mathcal{C}} \downarrow K^{\mathbf{1}}A$.

Definition 3.6 (Coslice Category). Let C be a category and $A \in C$. The *coslice category* over A, denoted $C \setminus A$, is the comma category $K^1A \downarrow 1_C$.

Definition 3.7 (Pointed Sets). The *category of pointed sets* \mathbf{Set}_* is the coslice category $\mathbf{Set} \setminus 1$.

Part II Group Theory

Chapter 4

Groups

Definition 4.1 (Group). A group G consists of a set G and a binary operation $\cdot: G^2 \to G$ such that \cdot is associative, and there exists $e \in G$, the *identity* element of the group, such that:

- For all $x \in G$ we have xe = ex = x
- For all $x \in G$, there exists $x^{-1} \in G$, the *inverse* of x, such that $xx^{-1} = x^{-1}x = e$.

We identify a group G with the category G with one object and morphisms the elements of G, with composition given by \cdot .

The *order* of a group G, denoted |G|, is the number of elements in G if G is finite; otherwise we write $|G| = \infty$.

Proposition 4.2. The identity in a group is unique.

Proof: Proposition 2.2.

Proposition 4.3. The inverse of an element is unique.

PROOF: If i and j are inverses of x then i = ixj = j. \square

Example 4.4. • The *trivial* group is $\{e\}$ under ee = e.

- \mathbb{Z} is a group under addition
- \mathbb{Q} is a group under addition
- $\mathbb{Q} \{0\}$ is a group under multiplication
- \mathbb{R} is a group under addition
- $\mathbb{R} \{0\}$ is a group under multiplication
- \bullet $\mathbb C$ is a group under addition
- $\mathbb{C} \{0\}$ is a group under multiplication

- $\{-1,1\}$ is a group under multiplication
- The set of 2 × 2 real matrices with non-zero determinant is a group under matrix multiplication.
- For any category C and object $A \in C$, we have $\operatorname{Aut}_{C}(A)$ is a group under $gf = f \circ g$.

For A a set, we call $S_A = \operatorname{Aut}_{\mathbf{Set}}(A)$ the symmetric group or group of permutations of A.

- For $n \geq 3$, the dihedral group D_{2n} consists of the set of rigid motions that map the regular n-gon onto itself under composition.
- Let $SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad bc = 1 \right\}$ under matrix multiplication.

Example 4.5. • The only group of order 1 is the trivial group.

- The only group of order 2 is \mathbb{Z}_2 .
- The only group of order 3 is \mathbb{Z}_3 .
- There are exactly two groups of order 4: \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ under (a, b)(c, d) = (ac, bd).

Proposition 4.6 (Cancellation). Let G be a group. Let $a, g, h \in G$. If ag = ah or ga = ha then g = h.

PROOF: If ag = ah then $g = a^{-1}ag = a^{-1}ah = h$. Similarly if ga = ha. \square

Proposition 4.7. Let G be a group and $g, h \in G$. Then $(gh)^{-1} = h^{-1}g^{-1}$.

PROOF: Since $qhh^{-1}q^{-1} = e$.

Definition 4.8. Let G be a group. Let $g \in G$. We define $g^n \in G$ for all $n \in \mathbb{Z}$ as follows:

$$g^{0} = e$$

 $g^{n+1} = g^{n}g$ $(n \ge 0)$
 $g^{-n} = (g^{-1})^{n}$ $(n > 0)$

Proposition 4.9. Let G be a group. Let $g \in G$ and $m, n \in \mathbb{Z}$. Then

$$g^{m+n} = g^m g^n .$$

Proof:

 $\langle 1 \rangle 1$. For all $k \in \mathbb{Z}$ we have $g^{k+1} = g^k g$ $\langle 2 \rangle 1$. For all $k \geq 0$ we have $g^{k+1} = g^k g$

PROOF: Immediate from definition.

$$\langle 2 \rangle 2. \ g^{-1+1} = g^{-1}g$$

Proof: Both are equal to e.

 $\langle 2 \rangle 3$. For all k > 1 we have $g^{-k+1} = g^{-k}g$

Proof:

$$g^{-k+1} = (g^{-1})^{k-1}$$

$$= (g^{-1})^{k-1}g^{-1}g$$

$$= (g^{-1})^kg$$

$$= g^{-k}g$$

 $\langle 1 \rangle 2$. For all $k \in \mathbb{Z}$ we have $g^{k-1} = g^k g^{-1}$

PROOF: Substitute k = k - 1 above and multiply by g^{-1} .

$$\langle 1 \rangle 3. \ g^{m+0} = g^m g^0$$

PROOF: Since $g^m g^0 = g^m e = g^m$.

 $\langle 1 \rangle 4$. If $g^{m+n} = g^m g^n$ then $g^{m+n+1} = g^m g^{n+1}$

Proof:

$$g^{m+n+1} = g^{m+n}g \qquad (\langle 1 \rangle 1)$$

$$= g^m g^n g$$

$$= g^m g^{n+1} \qquad (\langle 1 \rangle 1)$$

$$=g^{m}g^{n+1} \qquad (\langle$$

 $=g^mg^{n+1} \\ \langle 1\rangle 5. \text{ If } g^{m+n}=g^mg^n \text{ then } g^{m+n-1}=g^mg^{n-1}$

Proof:

$$g^{m+n-1}g = g^{m+n} \qquad (\langle 1 \rangle 1)$$
$$= g^m g^n$$

$$= g^m g^n$$

$$\therefore g^{m+n-1} = g^m g^n g^{-1}$$

$$= g^m g^{n-1} \qquad (\langle 1 \rangle 2)$$

Proposition 4.10. Let G be a group. Let $g \in G$ and $m, n \in \mathbb{Z}$. Then

$$(g^m)^n = g^{mn} .$$

Proof:

$$\langle 1 \rangle 1$$
. $(g^m)^0 = g^0$

PROOF: Both sides are equal to e.

 $\langle 1 \rangle 2$. If $(g^m)^n = g^{mn}$ then $(g^m)^{n+1} = g^{m(n+1)}$.

Proof:

$$(g^m)^{n+1} = (g^m)^n g^m$$
 (Proposition 4.9)
= $g^{mn} g^m$
= g^{mn+m} (Proposition 4.9)

 $\langle 1 \rangle 3$. If $(g^m)^n = g^{mn}$ then $(g^m)^{n-1} = g^{m(n-1)}$.

Proof:

$$(g^{m})^{n} = g^{mn}$$

$$\therefore (g^{m})^{n-1}g^{m} = g^{mn-m}g^{m} \qquad (Proposition 4.9)$$

$$\therefore (g^{m})^{n-1} = g^{mn-m} \qquad (Cancellation)$$

П

Definition 4.11 (Commute). Let G be a group and $q, h \in G$. We say q and h commute iff qh = hq.

Definition 4.12. Let G be a group. Given $g \in G$ and $A \subseteq G$, we define

$$gA = \{ga : a \in A\}, \qquad Ag = \{ag : a \in A\}.$$

Given sets $A, B \subseteq G$, we define

$$AB = \{ab : a \in A, b \in B\} .$$

Order of an Element 4.1

Definition 4.13 (Order). Let G be a group. Let $g \in G$. Then g has finite order iff there exists a positive integer n such that $g^n = e$. In this case, the order of g, denoted |g|, is the least positive integer n such that $g^n = e$.

If g does not have finite order, we write $|g| = \infty$.

Proposition 4.14. Let G be a group. Let $g \in G$ and n be a positive integer. If $g^n = e \ then \ |g| \mid n$.

Proof:

 $\langle 1 \rangle 1$. Let: n = q|g| + d where $0 \le d < |g|$

PROOF: Division Algorithm.

 $\langle 1 \rangle 2. \ g^d = e$

Proof:

$$e = g^n$$

 $= g^{q|g|+d}$
 $= (g^{|g|})^q g^d$ (Propositions 4.9, 4.10)
 $= e^q g^d$
 $= g^d$

 $\langle 1 \rangle 3.$ d=0

PROOF: By minimality of |g|.

$$\langle 1 \rangle 4. \ n = q|g|$$

Corollary 4.14.1. Let G be a group. Let $g \in G$ have finite order and $n \in \mathbb{Z}$. Then $g^n = e$ if and only if |g| | n.

Proposition 4.15. Let G be a group and $g \in G$. Then $|g| \leq |G|$.

Proof:

- $\langle 1 \rangle 1$. Assume: w.l.o.g. G is finite.
- $\langle 1 \rangle 2$. Pick i, j with $0 \le i < j \le |G|$ such that $g^i = g^j$. Proof: Otherwise $g^0, g^1, \ldots, g^{|G|}$ would be |G|+1 distinct elements of G.

 $\langle 1 \rangle 3. \ q^{j-i} = e$

 $\langle 1 \rangle 4$. g has finite order and $|g| \leq |G|$

PROOF: Since $|g| \le j - i \le j \le |G|$.

Proposition 4.16. Let G be a group. Let $g \in G$ have finite order. Let $m \in \mathbb{N}$.

$$|g^m| = \frac{\operatorname{lcm}(m,|g|)}{m} = \frac{|g|}{\gcd(m,|g|)}$$

PROOF: Since for any integer d we have

$$g^{md} = e \Leftrightarrow |g| \mid md \qquad \text{(Corollary 4.14.1)}$$

$$\Leftrightarrow \operatorname{lcm}(m, |g|) \mid md$$

$$\Leftrightarrow \frac{\operatorname{lcm}(m, |g|)}{m} \mid d$$

and so $|g^m| = \frac{\text{lcm}(m,|g|)}{m}$ by Corollary 4.14.1. \square

Corollary 4.16.1. If g has odd order then $|g^2| = |g|$.

Proposition 4.17. Let G be a group. Let $g, h \in G$ have finite order. Assume gh = hg. Then |gh| has finite order and

$$|gh| \mid \operatorname{lcm}(|g|, |h|)$$

PROOF: Since $(qh)^{\operatorname{lcm}(|g|,|h|)} = q^{\operatorname{lcm}(|g|,|h|)} h^{\operatorname{lcm}(|g|,|h|)} = e$.

Example 4.18. This example shows that we cannot remove the hypothesis that gh = hg.

In $GL_2(\mathbb{R})$, take

$$g = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right), \qquad h = \left(\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array} \right) \ .$$

Then |g| = 4, |h| = 3 and $|gh| = \infty$.

Proposition 4.19. Let G be a group and $g, h \in G$ have finite order. If gh = hgand gcd(|g|, |h|) = 1 then |gh| = |g||h|.

Proof:

$$\langle 1 \rangle 1$$
. Let: $N = |gh|$

$$\langle 1 \rangle 2. \ g^N = (h^{-1})^N$$

$$\langle 1 \rangle 3. \ g^{N|g|} = e$$

$$\langle 1 \rangle 3. \ a^{N|g|} = \epsilon$$

$$\langle 1 \rangle 5. \ h^{-N|h|} = e$$

$$\langle 1 \rangle 6. |g^N| |h|$$

$$\langle 1 \rangle 7. |g^N| = 1$$

PROOF: Since gcd(|g|, |h|) = 1.

$$\langle 1 \rangle 8. \ g^N = e$$

$$\langle 1 \rangle 9$$
. $|g| | N$

$$\begin{array}{ll} \langle 1 \rangle 10. & h^{-N} = e \\ \langle 1 \rangle 11. & |h| \mid N \\ \langle 1 \rangle 12. & N = |g| |h| \\ & \text{PROOF: Using Proposition 4.17.} \\ \square \end{array}$$

Proposition 4.20. Let G be a finite group. Assume there is exactly one element $f \in G$ of order 2. Then the product of all the elements of G is f.

PROOF: Let the elements of G be g_1, g_2, \ldots, g_n . Apart from e and f, every element and its inverse are distinct elements of the list. Hence the product of the list is ef = f. \square

Proposition 4.21. Let G be a finite group of order n. Let m be the number of elements of G of order 2. Then n-m is odd.

PROOF: In the list of all elements that are not of order 2, every element and its inverse are distinct except for e. Hence the list has odd length. \square

Corollary 4.21.1. If a finite group has even order, then it contains an element of order 2.

Proposition 4.22. Let G be a group and $a, g \in G$. Then $|aga^{-1}| = |g|$.

Proof: Since

$$(aga^{-1})^n = e \Leftrightarrow ag^n a^{-1} = e$$
$$\Leftrightarrow g^n = e \qquad \Box$$

Proposition 4.23. Let G be a group and $g, h \in G$. Then |gh| = |hg|.

PROOF: Since $|gh| = |ghgg^{-1}| = |hg|$. \square

Proposition 4.24. Let G be a group of order n. Let k be relatively prime to n. Then every element in G has the form x^k for some x.

- $\langle 1 \rangle 1$. PICK integers a and b such that an + bk = 1.
- $\langle 1 \rangle 2$. Let: $g \in G$
- $\langle 1 \rangle 3. \ g = (g^b)^k$

Proof:

$$g = g.(g^n)^{-a}$$

$$= g^{1-an}$$

$$= g^{bk}$$

4.2 Generators

Definition 4.25 (Generator). Let G be a group and $a \in G$. We say a generates the group iff, for all $x \in G$, there exists an integer n such that $x^n = a$.

Example 4.26. $SL_2(\mathbb{Z})$ is generated by

$$s = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \qquad t = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Proof:

 $\langle 1 \rangle 1$. Let: $H = \langle s, t \rangle$

 $\langle 1 \rangle 2$. For all $q \in \mathbb{Z}$ we have $\begin{pmatrix} 1 & q \\ 0 & 1 \end{pmatrix} \in H$.

PROOF: It is t^q .

 $\langle 1 \rangle 3$. For all $q \in \mathbb{Z}$ we have $\begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix} \in H$.

Proof:

$$st^{-q}s^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -q \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -1 \\ 1 & -q \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix}$$

 $\langle 1 \rangle 4$.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & q \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} a & qa+b \\ c & qc+d \end{array}\right)$$

 $\langle 1 \rangle 5$.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ q & 1 \end{array}\right) = \left(\begin{array}{cc} a+qb & b \\ c+qd & d \end{array}\right)$$

 $\langle 1 \rangle$ 6. For any $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$, if c and d are both nonzero, then there exists $N \in H$ such that the bottom row of MN has one entry the same as M and one entry with smaller absolute value.

PROOF: From $\langle 1 \rangle 4$ and $\langle 1 \rangle 5$ taking q = -1.

 $\langle 1 \rangle$ 7. For any $M \in \mathrm{SL}_2(\mathbb{Z})$, there exists $N \in H$ such that MN has a zero on the bottom row.

PROOF: Apply $\langle 1 \rangle 6$ repeatedly.

 $\langle 1 \rangle 8$. Any matrix in $SL_2(\mathbb{Z})$ with a zero on the bottom row is in H.

$$\langle 2 \rangle 1. \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in H$$
PROOF: $\langle 1 \rangle 2$

$$\langle 2 \rangle 2. \begin{pmatrix} -1 & b \\ 0 & -1 \end{pmatrix} \in H$$

PROOF: It is
$$s^2 \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$
 since $s^2 = -I$.

$$\langle 2 \rangle 3. \left(\begin{array}{cc} a & 1 \\ -1 & 0 \end{array} \right) \in H$$

PROOF: It is
$$\begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} s$$
.

$$\langle 2 \rangle 4$$
. $\begin{pmatrix} a & -1 \\ 1 & 0 \end{pmatrix} \in H$

PROOF: It is $s^2 \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} s$.

 $\langle 1 \rangle 9$. Every matrix in $\operatorname{SL}_2(\mathbb{Z})$ is in H .

Chapter 5

Group Homomorphisms

Definition 5.1 (Homomorphism). Let G and H be groups. A (group) homomorphism $\phi: G \to H$ is a function such that, for all $x, y \in G$,

$$\phi(xy) = \phi(x)\phi(y) .$$

Proposition 5.2. Let G and H be groups with identities e_G and e_H . Let $\phi: G \to H$ be a group homomorphism. Then $\phi(e_G) = e_H$.

PROOF: Since $\phi(e_G) = \phi(e_G e_G) = \phi(e_G) \phi(e_G)$ and so $\phi(e_G) = e_H$ by Cancellation. \square

Proposition 5.3. Let $\phi: G \to H$ be a group homomorphism. For all $x \in G$ we have $\phi(x^{-1}) = \phi(x)^{-1}$.

PROOF: Since $\phi(x)\phi(x^{-1}) = \phi(xx^{-1}) = \phi(e_G) = e_H$.

Proposition 5.4. Let G, H and K be groups. If $\phi: G \to H$ and $\psi: H \to K$ are homomorphisms then $\psi \circ \phi: G \to K$ is a homomorphism.

PROOF: For $x, y \in G$ we have $\psi(\phi(xy)) = \psi(\phi(x)\phi(y)) = \psi(\phi(x))\psi(\phi(y)) \ .$

Proposition 5.5. Let G be a group. Then $id_G: G \to G$ is a group homomorphism.

PROOF: For $x, y \in G$ we have $id_G(xy) = xy = id_G(x)id_G(y)$. \square

Proposition 5.6. Let $\phi: G \to H$ be a group homomorphism. Let $g \in G$ have finite order. Then $|\phi(g)|$ divides |g|.

PROOF: Since $\phi(g)^{|g|} = \phi(g^{|g|}) = e$. \square

Definition 5.7 (Category of Groups). Let **Grp** be the category of groups and group homomorphisms.

Example 5.8. There are 49487365402 groups of order 1024 up to isomorphism.

Proposition 5.9. A group homomorphism $\phi: G \to H$ is an isomorphism in **Grp** if and only if it is bijective.

Proof:

 $\langle 1 \rangle 1$. Assume: ϕ is bijective.

PROVE: ϕ^{-1} is a group homomorphism.

 $\langle 1 \rangle 2$. Let: $h, h' \in H$

$$\langle 1 \rangle 3. \ \phi(\phi^{-1}(hh')) = \phi(\phi^{-1}(h)\phi^{-1}(h'))$$

PROOF: Both are equal to hh'.

$$\langle 1 \rangle 4. \ \phi^{-1}(hh') = \phi^{-1}(h)\phi^{-1}(h')$$

Corollary 5.9.1.

$$D_6 \cong C_3$$

PROOF: The canonical homomorphism $D_6 \to C_3$ is bijective. \square

Corollary 5.9.2.

$$(\mathbb{R},+)\cong (\{x\in\mathbb{R}:x>0\},\cdot)$$

PROOF: The function that maps x to e^x is a bijective homomorphism. \square

Proposition 5.10. The trivial group is the zero object in Grp.

PROOF: For any group G, the unique function $G \to \{e\}$ is a group homomorphism, and the only group homomorphism $\{e\} \to G$ maps e to e_G . \sqcup

Proposition 5.11. For any groups G and H, the set $G \times H$ under (g,h)(g',h') =(gg', hh') is the product of G and H in **Grp**.

Proof:

- $\langle 1 \rangle 1$. $G \times H$ is a group.
 - $\langle 2 \rangle 1$. The multiplication is associative.

PROOF: Since $(g_1, h_1)((g_2, h_2)(g_3, h_3)) = ((g_1, h_1)(g_2, h_2))(g_3, h_3) = (g_1g_2g_3, h_1h_2h_3).$

 $\langle 2 \rangle 2$. (e_G, e_H) is the identity.

PROOF: Since $(g, h)(e_G, e_H) = (e_G, e_H)(g, h) = (g, h)$.

(2)3. The inverse of (g,h) is (g^{-1},h^{-1}) . PROOF: Since $(g,h)(g^{-1},h^{-1})=(g^{-1},h^{-1})(g,h)=(e_G,e_H)$.

 $\langle 1 \rangle 2$. $\pi_1 : G \times H \to G$ is a group homomorphism.

Proof: Immediate from definitions.

 $\langle 1 \rangle 3$. $\pi_2 : G \times H \to H$ is a group homomorphism.

PROOF: Immediate from definitions.

 $\langle 1 \rangle 4$. For any group homomorphism $\phi: K \to G$ and $\psi: K \to H$, the function $\langle \phi, \psi \rangle : K \to G \times H$ where $\langle \phi, \psi \rangle (k) = (\phi(k), \psi(k))$ is a group homomorphism.

Proof:

$$\begin{split} \langle \phi, \psi \rangle (kk') &= (\phi(kk'), \psi(kk')) \\ &= (\phi(k)\phi(k'), \psi(k)\psi(k')) \\ &= (\phi(k), \psi(k))(\phi(k'), \psi(k')) \\ &= \langle \phi, \psi \rangle (k) \langle \phi, \psi \rangle (k') \end{split}$$

5.1. SUBGROUPS

29

Proposition 5.12.

$$|\operatorname{Aut}_{\mathbf{Grp}}(C_n)| = \phi(n)$$

PROOF: An automorphism α is determined by $\alpha(1)$ which is any element of order n, and g has order n iff $\gcd(g,n)=1$. \square

Example 5.13.

$$\operatorname{Aut}_{\mathbf{Grp}}(\mathbb{Z}) \cong C_2$$

PROOF: The only automorphisms are the identity and multiplication by -1. \square

5.1 Subgroups

Definition 5.14 (Subgroup). Let (G,\cdot) and (H,*) be groups such that H is a subset of G. Then H is a subgroup of G iff the inclusion $i:H\hookrightarrow G$ is a group homomorphism.

Proposition 5.15. If (H, *) is a subgroup of (G, \cdot) then * is the restriction of \cdot to H.

PROOF: Given $x, y \in H$ we have

$$x * y = i(x * y) = i(x) \cdot i(y) = x \cdot y$$
.

Example 5.16. For any group G we have $\{e\}$ is a subgroup of G.

Proposition 5.17. Let G be a group. Let H be a subset of G. Then H is a subgroup of G iff H is nonempty and, for all $x, y \in H$, we have $xy^{-1} \in H$.

Proof:

 $\langle 1 \rangle 1$. If H is a subgroup of G then H is nonempty.

PROOF: Since every group has an identity element and so is nonempty.

- $\langle 1 \rangle 2$. If H is a subgroup of G then, for all $x, y \in H$, we have $xy^{-1} \in H$. PROOF: Easy.
- $\langle 1 \rangle 3$. If H is nonempty and, for all $x, y \in H$, we have $xy^{-1} \in H$, then H is a subgroup of G.
 - $\langle 2 \rangle 1$. Assume: *H* is nonempty.
 - $\langle 2 \rangle 2$. Assume: $\forall x, y \in H.xy^{-1} \in H$
 - $\langle 2 \rangle 3. \ e \in H$

PROOF: Pick $x \in H$. We have $e = xx^{-1} \in H$.

 $\langle 2 \rangle 4. \ \forall x \in H.x^{-1} \in H$

PROOF: Given $x \in H$ we have $x^{-1} = ex^{-1} \in H$.

 $\langle 2 \rangle$ 5. H is closed under the restriction of \cdot

PROOF: Given $x, y \in H$ we have $xy = x(y^{-1})^{-1} \in H$.

 $\langle 2 \rangle 6$. H is a group under the restriction of \cdot

PROOF: Associativity is inherited from G and the existence of an identity element and inverses follows from $\langle 2 \rangle 3$ and $\langle 2 \rangle 4$.

 $\langle 2 \rangle$ 7. The inclusion $H \hookrightarrow G$ is a group homomorphism. PROOF: For $x,y \in H$ we have i(xy) = i(x)i(y) = xy.

Corollary 5.17.1. The intersection of a set of subgroups of G is a subgroup of G.

Corollary 5.17.2. Let $\phi: G \to H$ be a group homomorphism. Let K be a subgroup of H. Then $\phi^{-1}(K)$ is a subgroup of G.

Proof:

 $\langle 1 \rangle 1. \ \phi^{-1}(K)$ is nonempty.

PROOF: Since $e \in \phi^{-1}(K)$.

- $\langle 1 \rangle 2$. Let: $x, y \in \phi^{-1}(K)$
- $\langle 1 \rangle 3. \ \phi(x), \phi(y) \in K$
- $\langle 1 \rangle 4. \ \phi(x)\phi(y)^{-1} \in K$
- $\langle 1 \rangle 5. \ \phi(xy^{-1}) \in K$
- $\langle 1 \rangle 6. \ xy^{-1} \in \phi^{-1}(K)$

Corollary 5.17.3. Let $\phi: G \to H$ be a group homomorphism. Let K be a subgroup of G. Then $\phi(K)$ is a subgroup of H.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in \phi(K)$
- $\langle 1 \rangle 2$. PICK $a, b \in K$ such that $x = \phi(a)$ and $y = \phi(b)$
- $\langle 1 \rangle 3. \ xy^{-1} = \phi(ab^{-1})$
- $\langle 1 \rangle 4. \ xy^{-1} \in \phi(K)$

Proposition 5.18. Let G be a subgroup of \mathbb{Z} . Then there exists $d \geq 0$ such that $G = d\mathbb{Z}$.

Proof:

 $\langle 1 \rangle 1$. Assume: w.l.o.g. $G \neq \{0\}$

PROOF: Since $\{0\} = 0\mathbb{Z}$.

 $\langle 1 \rangle 2$. Let: d be the least positive element of G.

Prove: $G = d\mathbb{Z}$

PROOF: If $n \in G$ then $-n \in G$ so G must contain a positive element.

- $\langle 1 \rangle 3. \ G \subseteq d\mathbb{Z}$
 - $\langle 2 \rangle 1$. Let: $n \in G$
 - $\langle 2 \rangle 2$. Let: q and r be the integers such that n = qd + r and $0 \le r < d$.
 - $\langle 2 \rangle 3. \ r \in G$

PROOF: Since r = n - qd.

 $\langle 2 \rangle 4$. r = 0

PROOF: By minimality of d.

 $\langle 2 \rangle 5. \ n = qd \in d\mathbb{Z}$

$$\langle 1 \rangle 4. \ d\mathbb{Z} \subseteq G$$

5.2. KERNEL 31

Kernel 5.2

Definition 5.19 (Kernel). Let $\phi: G \to H$ be a group homomorphism. The kernel of ϕ is

$$\ker \phi = \{ g \in G : \phi(g) = e \} .$$

Proposition 5.20. Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi$ is a subgroup of G.

Proof: Corollary 5.17.2.

Proposition 5.21. Let $\phi: G \to H$ be a group homomorphism. Then the inclusion i : ker $\phi \hookrightarrow G$ is terminal in the category of pairs $(K, \alpha : K \to G)$ such that $\phi \circ \alpha = 0$.

Proof:

- $\langle 1 \rangle 1. \ \phi \circ i = 0$
- $\langle 1 \rangle 2$. For any group K and homomorphism $\alpha : K \to G$ such that $\phi \circ \alpha = 0$, there exists a unique homomorphism $\beta: K \to \ker \phi$ such that $i \circ \beta = \alpha$.

Proposition 5.22. Let $\phi: G \to H$ be a group homomorphism. Then the following are equivalent:

- 1. ϕ is monic.
- 2. $\ker \phi = \{e\}$
- 3. ϕ is injective.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: ϕ is monic.
 - $\langle 2 \rangle 2$. Let: $i : \ker \phi \hookrightarrow G$, $j : \{e\} \hookrightarrow \ker \phi \hookrightarrow G$ be the inclusions.
 - $\langle 2 \rangle 3. \ \phi \circ i = \phi \circ j$
 - $\langle 2 \rangle 4$. i = j
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: $\ker \phi = \{e\}$
 - $\langle 2 \rangle 2$. Let: $x, y \in G$
 - $\langle 2 \rangle 3$. Assume: $\phi(x) = \phi(y)$

 - $\langle 2 \rangle 4. \quad \phi(xy^{-1}) = e$ $\langle 2 \rangle 5. \quad xy^{-1} \in \ker \phi$ $\langle 2 \rangle 6. \quad xy^{-1} = e$
- $\langle 2 \rangle 7$. x = y $\langle 1 \rangle 3. \ 3 \Rightarrow 1$

Proof: Easy.

Proposition 5.23. A group homomorphism is an epimorphism if and only if it is surjective.

5.3 Inner Automorphisms

Proposition 5.24. Let G be a group and $g \in G$. The function $\gamma_g : G \to G$ defined by $\gamma_g(a) = gag^{-1}$ is an automorphism on G.

PROOF

 $\langle 1 \rangle 1$. γ_g is a homomorphism.

Proof:

$$\gamma_g(ab) = gabg^{-1}$$

$$= gag^{-1}gbg^{-1}$$

$$= \gamma_g(a)\gamma_g(b)$$

 $\langle 1 \rangle 2$. γ_g is injective.

PROOF: By Cancellation.

 $\langle 1 \rangle 3$. γ_q is surjective.

PROOF: Given $b \in G$, we have $\gamma_g(g^{-1}bg) = b$.

Definition 5.25 (Inner Automorphism). Let G be a group. An *inner automorphism* on G is a function of the form $\gamma_g(a) = gag^{-1}$ for some $g \in G$. We write Inn(G) for the set of inner automorphisms of G.

Proposition 5.26. Let G be a group. The function $\gamma: G \to \operatorname{Aut}_{\mathbf{Grp}}(G)$ that maps g to γ_g is a group homomorphism.

PROOF: Since $\gamma_{gh}(a) = ghah^{-1}g^{-1} = \gamma_g(\gamma_h(a))$. \square

Corollary 5.26.1. Inn(G) is a subgroup of $Aut_{Grp}(G)$.

5.4 Direct Products

Definition 5.27 (Direct Product). The *direct product* of groups G and H is their product in Grp.

5.5 Free Groups

Proposition 5.28. Let A be a set. Let \mathcal{F}^A be the category whose objects are pairs (G,j) where G is a group and j is a function $A \to G$, with morphisms $f:(G,j)\to (H,k)$ the group homomorphisms $f:G\to H$ such that $f\circ j=k$. Then \mathcal{F}^A has an initial object.

Proof:

- $\langle 1 \rangle 1$. Let: W(A) be the set of words in the alphabet whose elements are the elements of A together with $\{a^{-1}: a \in A\}$.
- $\langle 1 \rangle$ 2. Let: $r: W(A) \to W(A)$ be the function that, given a word w, removes the first pair of letters of the form aa^{-1} or $a^{-1}a$; if there is no such pair, then r(w) = w.

- $\langle 1 \rangle 3$. Let us say that a word w is a reduced word iff r(w) = w.
- $\langle 1 \rangle 4$. For any word w of length n, we have $r^{\lceil \frac{n}{2} \rceil}(w)$ is a reduced word.

PROOF: Since we cannot remove more than n/2 pairs of letters from w.

- $\langle 1 \rangle 5$. Let: $R: W(A) \to W(A)$ be the function $R(w) = r^{\lceil \frac{n}{2} \rceil}(w)$, where n is the length of w.
- $\langle 1 \rangle 6$. Let: F(A) be the set of reduced words.
- $\langle 1 \rangle 7$. Define $\cdot : F(A)^2 \to F(A)$ by $w \cdot w' = R(ww')$
- $\langle 1 \rangle 8$. · is associative.

PROOF: Both $w_1 \cdot (w_2 \cdot w_3)$ and $(w_1 \cdot w_2) \cdot w_3$ are equal to $R(w_1 w_2 w_3)$.

- $\langle 1 \rangle 9$. The empty word is the identity element in F(A)
- $\langle 1 \rangle 10$. The inverse of $a_1^{\pm 1} a_2^{\pm 1} \cdots a_n^{\pm 1}$ is $a_n^{\mp 1} \cdots a_2^{\mp 1} a_1^{\mp 1}$. $\langle 1 \rangle 11$. Let: $j: A \to F(A)$ be the function that maps a to the word a of length
- $\langle 1 \rangle 12$. Let: G be any group and $k: A \to G$ any function.
- $\langle 1 \rangle 13$. The only morphism $f: (F(A), j) \to (G, k)$ in \mathcal{F}^A is $f(a_1^{\pm 1} a_2^{\pm 1} \cdots a_n^{\pm 1}) = k(a_1)^{\pm 1} k(a_2)^{\pm 1} \cdots k(a_n)^{\pm 1}$.

Definition 5.29 (Free Group). For any set A, the free group on A is the initial object (F(A), i) in \mathcal{F}^A .

Proposition 5.30. $i: A \to F(A)$ is injective.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in A$
- $\langle 1 \rangle 2$. Assume: $x \neq y$

PROVE: $i(x) \neq i(y)$

- $\langle 1 \rangle 3$. Let: $f: A \to C_2$ be the function that maps x to 0 and all other elements of A to 1.
- $\langle 1 \rangle 4$. Let: $\phi : F(A) \to C_2$ be the group homomorphism such that $f = \phi \circ i$.
- $\langle 1 \rangle 5. \ f(x) \neq f(y)$
- $\langle 1 \rangle 6. \ \phi(i(x)) \neq \phi(i(y))$
- $\langle 1 \rangle 7. \ i(x) \neq i(y)$

Proposition 5.31.

$$F(0)\cong\{e\}$$

PROOF: For any set A, the unique group homomorphism $\{e\} \to A$ makes the following diagram commute.

Proposition 5.32. The free group on 1 is \mathbb{Z} with the injection mapping 0 to 1.

PROOF: Given any group G and function $a:1\to G$, the required unique homomorphism $\phi: \mathbb{Z} \to G$ is defined by $\phi(n) = a(0)^n$. \square

Proposition 5.33. For any sets A and B, we have that F(A + B) is the coproduct of F(A) and F(B) in **Grp**.

$$F(A) \xrightarrow{f} G \downarrow g$$

$$F(A) \xrightarrow{\kappa_1} F(A+B) \leftarrow \kappa_2 F(B)$$

$$i_A \uparrow \qquad j \uparrow \qquad i_B \uparrow$$

$$A \xrightarrow{k_1} A + B \leftarrow \kappa_2 B$$

Proof:

- $\langle 1 \rangle 1$. Let: $i_A: A \to F(A), i_B: B \to F(B), j: A+B \to F(A+B)$ be the canonical injections.
- $\langle 1 \rangle 2$. Let: κ_1 , κ_2 be the unique group homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 3.$ Let: G be any group and $f: F(A) \to G, \ g: F(B) \to G$ any group homomorphisms.
- $\langle 1 \rangle 4$. Let: $h: A+B \to G$ be the unique function such that $h \circ k_1 = f \circ i_A$ and $h \circ k_2 = g \circ i_B$.
- $\langle 1 \rangle$ 5. Let: $k: F(A+B) \to G$ be the unique group homomorphism such that $k \circ j = h$.
- $\langle 1 \rangle$ 6. k is the unique group homomorphism such that $k \circ \kappa_1 \circ i_A = f \circ i_A$ and $k \circ \kappa_2 \circ i_B = g \circ i_B$.
- $\langle 1 \rangle 7$. k is the unique group homomorphism such that $k \circ \kappa_1 = f$ and $k \circ \kappa_2 = g$.

Definition 5.34 (Subgroup Generated by a Group). Let G be a group and A a subset of G. Let $\phi: F(A) \to G$ be the unique group homomorphism such that $\phi(a) = a$ for all $a \in A$. The subgroup generated by A is

$$\langle A \rangle := \operatorname{im} \phi$$

Proposition 5.35. Let G be a group and A a subset of G. Then $\langle A \rangle$ is the set of all elements of the form $a_1^{\pm 1} a_2^{\pm 1} \cdots a_n^{\pm 1}$ (where $n \geq 0$) such that $a_1, \ldots, a_n \in A$.

PROOF: Immediate from definitions. \square

Corollary 5.35.1. Let G be a group and $g \in G$. Then

$$\langle q \rangle = \{ q^n : n \in \mathbb{Z} \}$$
.

Proposition 5.36. Let G be a group and A a subset of G. Then $\langle A \rangle$ is the intersection of all the subgroups of G that include A.

Proof: Easy.

Definition 5.37 (Finitely Generated). Let G be a group. Then G is *finitely generated* iff there exists a finite subset A of G such that $G = \langle A \rangle$.

Proposition 5.38. Every subgroup of a finitely generated free group is free.

PROOF: TODO.

Proposition 5.39. F(2) includes subgroups isomorphic to the free group on arbitrarily many generators.

PROOF: TODO

Proposition 5.40.

$$[F(2), F(2)] \cong F(\mathbb{Z})$$

PROOF: TODO

5.6 Normal Subgroups

Definition 5.41 (Normal Subgroup). A subgroup N of G is *normal* iff, for all $g \in G$ and $n \in N$, we have $gng^{-1} \in N$.

Proposition 5.42. Let G be a group and N a subgroup of G. Then the following are equivalent.

- 1. N is normal.
- 2. $\forall g \in G.gNg^{-1} \subseteq N$
- 3. $\forall q \in G.qNq^{-1} = N$
- 4. $\forall g \in G.gN \subseteq Ng$
- 5. $\forall g \in G.gN = Ng$

Proof:

 $\langle 1 \rangle 1$. $1 \Leftrightarrow 2$

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2$. $2 \Rightarrow 3$

PROOF: If 2 holds then we have $gNg^{-1} \subseteq N$ and $g^{-1}Ng \subseteq N$ hence $N = gNg^{-1}$.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 2$

PROOF: Trivial.

 $\langle 1 \rangle 4$. $2 \Leftrightarrow 4$

PROOF: Easy.

 $\langle 1 \rangle 5. \ 3 \Leftrightarrow 5$

PROOF: Easy.

Proposition 5.43. Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi$ is a normal subgroup of G.

PROOF: Given $g \in G$ and $n \in \ker \phi$ we have

$$\phi(gng^{-1}) = \phi(g)\phi(n)\phi(g)^{-1}$$
$$= \phi(g)\phi(g)^{-1}$$
$$= e$$

and so $gng^{-1} \in \ker \phi$. \square

5.7 Quotient Groups

Definition 5.44. Let G be a group. Let \sim be an equivalence relation on G. Then we say that \sim is *compatible* with the group operation on G iff, for all $a, a', g \in G$, if $a \sim a'$ then $ga \sim ga'$ and $ag \sim a'g$.

Proposition 5.45. Let G be a group. Let \sim be an equivalence relation on G. Then there exists an operation $\cdot : (G/\sim)^2 \to G/\sin$ such that

$$\forall a, b \in G.[a][b] = [ab]$$

iff \sim is compatible with the group operation on G. In this case, G/\sim is a group under \cdot and the canonical function $\pi: G \to G/\sim$ is a group homomorphism, and is universal with respect to group homomorphisms $\phi: G \to G'$ such that if $a \sim a'$ then $\phi(a) = \phi(a')$.

Proof: Easy. \square

Definition 5.46 (Quotient Group). Let G be a group. Let \sim be an equivalence relation on G that is compatible with the group operation on G. Then G/\sim is the quotient group of G by \sim under [a][b]=[ab].

Proposition 5.47. Let G be a group and H a subgroup of G. Then H is normal if and only if there exists a group K and homomorphism $\phi: G \to K$ such that $H = \ker \phi$.

PROOF: One direction is given by Proposition 5.43. For the other direction, take K = G/H and ϕ to be the canonical map $G \to G/H$. \square

Definition 5.48 (Modular Group). The modular group $PSL_2(\mathbb{Z})$ is $SL_2(\mathbb{Z})/\{I, -I\}$.

Proposition 5.49.
$$\operatorname{PSL}_2(\mathbb{Z})$$
 is generated by $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$.

Proof: By Example 4.26.

37

Theorem 5.50. Every group homomorphism $\phi: G \to H$ may be decomposed as

$$G \longrightarrow G/\ker \phi \stackrel{\cong}{\longrightarrow} \operatorname{im} \phi \longrightarrow H$$

Proof: Easy.

Corollary 5.50.1 (First Isomorphism Theorem). Let $\phi: G \to H$ be a surjective group homomorphism. Then $H \cong G/\ker \phi$.

Proposition 5.51. Let H_1 be a normal subgroup of G_1 and H_2 a normal subgroup of G_2 . Then $H_1 \times H_2$ is a normal subgroup of $G_1 \times G_2$, and

$$\frac{G_1 \times G_2}{H_1 \times H_2} \cong \frac{G_1}{H_1} \times \frac{G_2}{H_2} \ .$$

PROOF: $\pi \times \pi: G_1 \times G_2 \twoheadrightarrow G_1/H_1 \times G_2/H_2$ is a surjective homomorphism with kernel $H_1 \times H_2$. \square

Example 5.52.

$$\mathbb{R}/\mathbb{Z} \cong S^1$$

PROOF: Map a real number r to $(\cos r, \sin r)$. The result is a surjective group homomorphism with kernel \mathbb{Z} . \square

Proposition 5.53. Let H be a normal subgroup of a group G. For every subgroup K of G that includes H, we have H is a normal subgroup of K, and K/H is a subgroup of G/H. The mapping

$$u: \{subgroups \ of \ G \ including \ H\} \rightarrow \{subgroups \ of \ G/H\}$$

with u(K) = K/H is a poset isomorphism.

PROOF:

- $\langle 1 \rangle 1$. If K is a subgroup of G that includes H then H is normal in K.
- $\langle 1 \rangle 2$. If K is a subgroup of G that includes H then K/H is a subgroup of G/H.
- $\langle 1 \rangle 3$. If $H \subseteq K_1 \subseteq K_2$ then $K_1/H \subseteq K_2/H$.
- $\langle 1 \rangle 4$. If $K_1/H = K_2/H$ then $K_1 = K_2$
 - $\langle 2 \rangle 1$. Assume: $K_1/H = K_2/H$
 - $\langle 2 \rangle 2$. $K_1 \subseteq K_2$
 - $\langle 3 \rangle 1$. Let: $k \in K_1$
 - $\langle 3 \rangle 2$. $kH \in K_2/H$
 - $\langle 3 \rangle 3$. Pick $k' \in K_2$ such that kH = k'H
 - $\langle 3 \rangle 4. \ kk'^{-1} \in H$
 - $\langle 3 \rangle 5. k k'^{-1} \in K_2$
 - $\langle 3 \rangle 6. \ k \in K_2$
 - $\langle 2 \rangle 3. \ K_2 \subseteq K_1$

PROOF: Similar.

 $\langle 1 \rangle$ 5. For any subgroup L of G/H, there exists a subgroup K of G that includes H such that L = K/H.

- $\langle 2 \rangle 1$. Let: L be a subgroup of G/H.
- $\langle 2 \rangle 2$. Let: $K = \{k \in G : kH \in L\}$
- $\langle 2 \rangle 3$. K is a subgroup of G.

PROOF: Given $k, k' \in K$ we have $kH, k'H \in L$ hence $kk'^{-1}H \in L$ and so $kk'^{-1} \in K$.

 $\langle 2 \rangle 4$. $H \subseteq K$

PROOF: For all $h \in H$ we have $hH = H \in L$.

 $\langle 2 \rangle 5$. L = K/H

PROOF: By definition.

Proposition 5.54 (Third Isomorphism Theorem). Let H be a normal subgroup of a group G. Let N be a subgroup of G that includes H. Then N/H is normal in G/H if and only if N is normal in G, in which case

$$\frac{G/H}{N/H}\cong \frac{G}{N}$$

PROOF:

- $\langle 1 \rangle 1$. If N/H is normal in G/H then N is normal in G.
 - $\langle 2 \rangle 1$. Assume: N/H is normal in G/H.
 - $\langle 2 \rangle 2$. Let: $g \in G$ and $n \in N$.
 - $\langle 2 \rangle 3$. $gng^{-1}H \in N/H$
 - $\langle 2 \rangle 4$. PICK $n' \in N$ such that $gng^{-1}H = n'H$
 - $\langle 2 \rangle 5$. $gng^{-1}n'^{-1} \in H$
 - $\langle 2 \rangle 6. \ gng^{-1}n'^{-1} \in N$
 - $\langle 2 \rangle 7$. $gng^{-1} \in N$
- $\langle 1 \rangle 2$. If N is normal in G then N/H is normal in G/H and $(G/H)/(N/H) \cong G/N$.
 - $\langle 2 \rangle 1$. Assume: N is normal in G.
 - $\langle 2 \rangle 2$. Let: $\phi: G/H \to G/N$ be the homomorphism $\phi(gH) = gN$
 - $\langle 3 \rangle 1$. If gH = g'H then gN = g'N

PROOF: If $gg'^{-1} \in H$ then $gg'^{-1} \in N$.

 $\langle 3 \rangle 2. \ \phi((gH)(g'H)) = \phi(gH)\phi(g'H)$

PROOF: Both are gg'N.

- $\langle 2 \rangle 3$. ϕ is surjective.
- $\langle 2 \rangle 4$. ker $\phi = N/H$
- $\langle 2 \rangle 5. \ (G/H)/(N/H) \cong G/N$

PROOF: By the First Isomorphism Theorem.

Proposition 5.55 (Second Isomorphism Theorem). Let H and K be subgroups of a group G. Assume that H is normal in G. Then:

- 1. HK is a subgroup of G, and H is normal in HK.
- 2. $H \cap K$ is normal in K, and

$$\frac{HK}{H} \cong \frac{K}{H \cap K} \ .$$

5.8. COSETS 39

```
PROOF:
```

 $\langle 1 \rangle 1$. HK is a subgroup of G.

PROOF: Since $hkh'k' = hh'(h'^{-1}kh')k' \in HK$.

 $\langle 1 \rangle 2$. H is normal in HK.

 $\langle 1 \rangle 3$. $H \cap K$ is normal in K and $HK/H \cong K/(H \cap K)$

PROOF: The function that maps k to kH is a surjective homomorphism K woheadrightarrow HK/H with kernel $H \cap K$. Surjectivity follows because $hkH = hkh^{-1}H$.

See also Proposition 5.70 for a result that holds even if H is not normal.

5.8 Cosets

Proposition 5.56. Let G be a group. Let \sim be an equivalence relation on G such that, for all $a,b,g\in G$, if $a\sim b$ then $ga\sim gb$. Let $H=\{h\in G:h\sim e\}$. Then H is a subgroup of G and, for all $a,b\in G$, we have

$$a \sim b \Leftrightarrow a^{-1}b \in H \Leftrightarrow aH = bH$$
.

```
Proof:
```

```
\langle 1 \rangle 1. \ e \in H
```

 $\langle 1 \rangle 2$. For all $x, y \in H$ we have $xy^{-1} \in H$.

 $\langle 2 \rangle 1$. Assume: $x \sim e$ and $y \sim e$.

 $\langle 2 \rangle 2$. $e \sim y^{-1}$

PROOF: Since $yy^{-1} \sim ey^{-1}$.

 $\langle 2 \rangle 3. \ xy^{-1} \sim e$

PROOF: Since $xy^{-1} \sim ey^{-1} \sim e$.

 $\langle 1 \rangle 3$. If $a \sim b$ then $a^{-1}b \in H$.

PROOF: If $a \sim b$ then $a^{-1}b \sim a^{-1}a = e$.

 $\langle 1 \rangle 4$. If $a^{-1}b \in H$ then aH = bH.

 $\langle 2 \rangle 1$. Assume: $a^{-1}b \in H$

 $\langle 2 \rangle 2$. $bH \subseteq aH$

PROOF: For any $h \in H$ we have $bh = aa^{-1}bh \in aH$.

 $\langle 2 \rangle 3$. $aH \subseteq bH$

PROOF: Similar since $b^{-1}a \in H$.

 $\langle 1 \rangle 5$. If aH = bH then $a \sim b$.

 $\langle 2 \rangle 1$. Assume: aH = bH

 $\langle 2 \rangle 2$. Pick $h \in H$ such that a = bh.

 $\langle 2 \rangle 3. \ b^{-1}a = h$

 $\langle 2 \rangle 4. \ b^{-1}a \in H$

 $\langle 2 \rangle 5.$ $b^{-1}a \sim e$

 $\langle 2 \rangle 6$. $a \sim b$

PROOF: $a = bb^{-1}a \sim be = b$.

Definition 5.57 (Coset). Let G be a group and H a subgroup of G. A *left coset* of H is a set of the form aH for $a \in G$. A *right coset* of H is a set of the

form Ha for some $a \in G$.

We write G/H for the set of all left cosets of H, and $G\backslash H$ for the set of all right cosets of H.

Proposition 5.58.

$$G/H \cong G \backslash H$$

PROOF: The function that maps aH to Ha^{-1} is a bijection. \square

Proposition 5.59. Let G be a group and H a subgroup of G. Define \sim_H on G by: $a \sim b$ iff $a^{-1}b \in H$. This defines a one-to-one correspondence between the subgroups of G and the equivalence relations \sim on G such that, for all $a,b,g \in G$, if $a \sim b$, then $ga \sim gb$. The equivalence class of a is aH.

Proof:

- $\langle 1 \rangle 1$. For any subgroup H, we have \sim_H is an equivalence relation on G.
 - $\langle 2 \rangle 1. \sim \text{ is reflexive.}$

PROOF: For any $a \in G$ we have $a^{-1}a = e \in H$.

 $\langle 2 \rangle 2$. \sim is symmetric.

PROOF: If $a^{-1}b \in H$ then $b^{-1}a \in H$.

 $\langle 2 \rangle 3$. \sim is transitive.

PROOF: If $a^{-1}b \in H$ and $b^{-1}c \in H$ then $a^{-1}c = (a^{-1}b)(b^{-1}c) \in H$.

 $\langle 1 \rangle 2$. If $a \sim_H b$ then $ga \sim_H gb$.

PROOF: If $a^{-1}b \in H$ then $(ga)^{-1}(gb) = a^{-1}g^{-1}gb = a^{-1}b \in H$.

 $\langle 1 \rangle 3$. For any equivalence relation \sim on G such that, whenever $a \sim b$, then $ga \sim gb$, there exists a subgroup H such that $\sim = \sim_H$.

Proof: Proposition 5.56.

 $\langle 1 \rangle 4$. The \sim_H -equivalence class of a is aH.

Proof:

$$a \sim b \Leftrightarrow a^{-1}b \in H$$

 $\Leftrightarrow \exists h \in H.a^{-1}b = h$
 $\Leftrightarrow \exists h \in H.b = aH$
 $\Leftrightarrow b \in aH$

П

Proposition 5.60. Let G be a group and H a subgroup of G. Define \sim_H on G by: $a \sim b$ iff $ab^{-1} \in H$. This defines a one-to-one correspondence between the subgroups of G and the equivalence relations \sim on G such that, for all $a, b, g \in G$, if $a \sim b$, then $ag \sim bg$. The equivalence class of a is Ha.

Proof: Similar. \square

Proposition 5.61. Let G be a group and H be a subgroup of G. Define \sim_L and \sim_R on G by:

$$a \sim_L b \Leftrightarrow a^{-1}b \in H, \qquad a \sim_R b \Leftrightarrow ab^{-1} \in H.$$

Then $\sim_L = \sim_R$ if and only if H is normal.

5.8. COSETS 41

Proof:

```
\langle 1 \rangle 1. If \sim_L = \sim_R then H is normal.
```

- $\langle 2 \rangle 1$. Assume: $\sim_L = \sim_R$
- $\langle 2 \rangle 2$. Let: $h \in H$ and $g \in G$
- $\langle 2 \rangle 3.$ $g \sim_L gh^{-1}$
- $\langle 2 \rangle 4$. $g \sim_R gh^{-1}h$
- $\langle 2 \rangle 5. \ ghg^{-1} \in H$
- $\langle 1 \rangle 2$. If H is normal then $\sim_L = \sim_R$.
 - $\langle 2 \rangle 1$. Assume: *H* is normal.
 - $\langle 2 \rangle 2$. If $a \sim_L b$ then $a \sim_R b$.
 - $\langle 3 \rangle 1$. Assume: $a \sim_L b$
 - $\langle 3 \rangle 2. \ a^{-1}b \in H$
 - $\langle 3 \rangle 3$. $aa^{-1}ba^{-1} \in H$
 - $\langle 3 \rangle 4. \ ba^{-1} \in H$
 - $\langle 3 \rangle 5$. $a \sim_R b$
 - $\langle 2 \rangle 3$. If $a \sim_R b$ then $a \sim_L b$.

PROOF: Similar.

Corollary 5.61.1. Let G be a group and H be a normal subgroup of G. Define \sim on G by $a \sim b$ iff $a^{-1}b \in H$. Then G/\sim is a group under [a][b]=[ab].

Definition 5.62 (Quotient Group). Let G be a group and H be a normal subgroup of G. The quotient group G/H is G/\sim where $a\sim b$ iff $a^{-1}b\in H$, under [a][b]=[ab] or (aH)(bH)=abH.

Corollary 5.62.1. Let H be a normal subgroup of a group G. For every group homomorphism $\phi: G \to G'$ such that $H \subseteq \ker \phi$, there exists a unique group homomorphism $\overline{\phi}: G/H \to G'$ such that the following diagram commutes.

Proposition 5.63. $\mathbb{Z}/n\mathbb{Z}$ has exactly n elements.

PROOF: Every integer is congruent to one of 0, 1, ..., n-1 by the division algorithm, and no two of them are conguent to one another, since if $0 \le i < j < n$ then 0 < j - i < n. \square

Proposition 5.64. Let m and n be integers with n > 0. The order of m in $\mathbb{Z}/n\mathbb{Z}$ is $\frac{n}{\gcd(m,n)}$.

PROOF: By Proposition 4.16 since the order of 1 is n. \square

Proposition 5.65. The integer m generates $\mathbb{Z}/n\mathbb{Z}$ if and only if gcd(m,n) = 1.

Proof: By Proposition 5.64. \square

Corollary 5.65.1. If p is prime then every non-zero element in $\mathbb{Z}/p\mathbb{Z}$ is a generator.

Proposition 5.66.

$$\operatorname{Aut}_{\mathbf{Grp}}(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})\cong S_3$$

Proof: Every permutation of $\{(1,0),(0,1),(1,1)\}$ gives an automorphism of $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$. \square

Example 5.67. Not all monomorphisms split in Grp.

Define $\phi: \mathbb{Z}/3\mathbb{Z} \to S_3$ by

$$\phi(0) = id_3, \qquad \phi(1) = (1 \ 3 \ 2), \qquad \phi(2) = (1 \ 2 \ 3).$$

Then ϕ is monic but has no retraction.

For if $r: S_3 \to \mathbb{Z}/3\mathbb{Z}$ is a retraction, then we would have

$$r(1\ 2) + r(2\ 3) = 1,$$
 $r(2\ 3) + r(1\ 2) = 2$

which is impossible.

Proposition 5.68. Let G be a group, H a subgroup of G, and $g \in G$. The function that maps h to gh is a bijection $H \cong gH$.

PROOF: By Cancellation. \square

Proposition 5.69. Let G be a group, H a subgroup of G, and $g \in G$. The function that maps h to hg is a bijection $H \cong Hg$.

PROOF: By Cancellation. \square

Proposition 5.70. Let H and K be finite subgroups of a group G. Then

$$|HK| = \frac{|H||K|}{|H \cap K|} .$$

Proof:

- $\langle 1 \rangle 1$. Let: $f: \{hK: h \in H\} \to H/(H \cap K)$ be the function $f(hK) = h(H \cap K)$ Proof: This is well-defined because if hK = h'K then $h^{-1}h' \in H \cap K$ so $h(H \cap K) = h'(H \cap K)$.
- $\langle 1 \rangle 2$. f is injective.

PROOF: If $h(H \cap K) = h'(H \cap K)$ then hK = h'K.

 $\langle 1 \rangle 3$. f is surjective.

PROOF: Clear.

 $\langle 1 \rangle 4$.

$$\frac{|HK|}{|K|} = \frac{|H|}{|H \cap K|}$$

5.9 Congruence

Definition 5.71 (Congruence). Given integers a, b, n with n positive, we say a is congruent to b modulo n, and write $a \equiv b \pmod{n}$, iff $a + n\mathbb{Z} = b + n\mathbb{Z}$ in $\mathbb{Z}/n\mathbb{Z}$.

Proposition 5.72. Given integers a, b, n with n positive, we have $a \equiv b \pmod{n}$ iff $n \mid a - b$.

Proof: By Proposition 5.56. \square

Proposition 5.73. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then $a + b \equiv a' + b' \mod n$.

PROOF: If $n \mid a' - a$ and $n \mid b' - b$ then $n \mid (a' + b') - (a + b)$. \square

Proposition 5.74. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then $ab \equiv a'b' \mod n$.

PROOF: If $n \mid a' - a$ and $n \mid b' - b$ then $n \mid a'b' - ab = a'(b' - b) + (a' - a)b$. \square

5.10 Cyclic Groups

Definition 5.75 (Cyclic Group). The *cyclic* groups are \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ for positive integers n.

Proposition 5.76. If m and n are positive integers with gcd(m,n) = 1 then $C_{mn} \cong C_m \times C_n$.

PROOF: The function that maps x to $(x \mod m, x \mod n)$ is an isomorphism. \square

Proposition 5.77. Let G be a group and $g \in G$. Then $\langle g \rangle$ is cyclic.

PROOF: If g has finite order then $\langle g \rangle \cong C_{|g|}$, otherwise $\langle g \rangle \cong \mathbb{Z}$. \square

Proposition 5.78. Every finitely generated subgroup of \mathbb{Q} is cyclic.

Proof:

```
\langle 1 \rangle 1. Let: G = \langle a_1/b, \ldots, a_n/b \rangle where a_1, \ldots, a_n, b are integers with b > 0 \langle 1 \rangle 2. Let: a = \gcd(a_1, \ldots, a_n) \langle 1 \rangle 3. G = \langle a/b \rangle
```

Corollary 5.78.1. \mathbb{Q} is not finitely generated.

5.11 Euler's ϕ -function

Definition 5.79. For n a positive integer, let $(\mathbb{Z}/n\mathbb{Z})^* = \{m \in \mathbb{Z}/n\mathbb{Z} : \gcd(m,n) = 1\}.$

PROOF: We prove this is well-defined.

 $\langle 1 \rangle 1$. If $m \equiv m' \mod n$ and $\gcd(m, n) = 1$ then $\gcd(m', n) = 1$.

- $\langle 2 \rangle 1$. Pick integers a, b such that am + bn = 1
- $\langle 2 \rangle 2$. PICK an integer c such that m' m = cn
- $\langle 2 \rangle 3$. am' + (b ac)n = 1

П

Example 5.80. For any positive integer n, the set

$$(\mathbb{Z}/n\mathbb{Z})^* = \{ m \in \mathbb{Z}/n\mathbb{Z} : \gcd(m, n) = 1 \}$$

is a group under multiplication.

Proof:

- $\langle 1 \rangle 1$. If $gcd(m_1, n) = gcd(m_2, n) = 1$ then $gcd(m_1m_2, n) = 1$
 - $\langle 2 \rangle 1$. Pick integers a, b, c, d such that $am_1 + bn = cm_2 + dn = 1$
 - $\langle 2 \rangle 2$. $acm_1m_2 + (bcm_2 + d)n = !$
- $\langle 1 \rangle 2$. Multiplication is associative.
- $\langle 1 \rangle 3$. 1 is the identity element.
- $\langle 1 \rangle 4$. Every element has an inverse.
 - $\langle 2 \rangle 1$. Let: $a \in (\mathbb{Z}/n\mathbb{Z})^*$
 - $\langle 2 \rangle 2$. PICK integers b, c such that ab + cn = 1
- $\langle 2 \rangle 3. \ ab = 1 \text{ in } (\mathbb{Z}/n\mathbb{Z})^*$

П

Definition 5.81. For n a positive integer, let $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|$.

Proposition 5.82. If n is an odd positive integer then $\phi(2n) = \phi(n)$.

Proof:

- $\langle 1 \rangle 1$. Let: n be an odd positive integer.
- $\langle 1 \rangle$ 2. For any integer m, if $\gcd(m,n)=1$ then $\gcd(2m+n,2n)=1$ PROOF: For p a prime, if $p \mid 2m+n$ and $p \mid 2n$ then $p \neq 2$ (since 2m+n is odd) so $p \mid n$ and hence $p \mid m$, which is a contradiction.
- $\langle 1 \rangle 3$. For any integer r, if $\gcd(r, 2n) = 1$ then $\gcd(\frac{r+n}{2}, n) = 1$

PROOF: If $p \mid n$ and $p \mid \frac{r+n}{2}$ then $p \mid r+n$ so $p \mid r$ which is a contradiction.

 $\langle 1 \rangle 4$. The function that maps m to 2m+n is a bijection between $(\mathbb{Z}/n\mathbb{Z})^*$ and $(\mathbb{Z}/2n\mathbb{Z})^*$.

Theorem 5.83. For any positive integer n we have

$$\sum_{m>0,m|n}\phi(m)=n \ .$$

Proof:

- $\langle 1 \rangle 1$. Define $\chi : \{0, 1, \dots, n-1\} \to \{(m, d) : m > 0, m \mid n, d \text{ generates } \langle n/m \rangle \}$ by: $\chi(x) = (\gcd(x, n), x)$.
- $\langle 1 \rangle 2$. χ is injective.
- $\langle 1 \rangle 3$. χ is surjective.

PROOF: Given (m, d) such that d generates $\langle n/m \rangle$ we have $\chi(d) = (m, d)$.

$$\langle 1 \rangle 4.$$
 $n=\sum_{m>0,m|n}\phi(m)$ Proof: Since $\langle n/m \rangle \cong C_m$ and so has $\phi(m)$ generators. \Box

Proposition 5.84. For any positive integers a and n, we have $n \mid \phi(a^n - 1)$.

PROOF: Since the order of a is n in $(\mathbb{Z}/(a^n-1)\mathbb{Z})^*$. \square

Theorem 5.85 (Euler's Theorem). For any coprime integers a and n we have $a^{\phi(n)} \equiv a \pmod{n}$.

PROOF: Immediate from Lagrange's Theorem.

5.12 Commutator Subgroup

Definition 5.86 (Commutator Subgroup). Let G be a group. The *commutator* subgroup [G, G] is the subgroup generated by the elements of the form $aba^{-1}b^{-1}$.

Proposition 5.87. The commutator subgroup is normal.

PROOF: Since
$$ga_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}\cdots a_nb_na_n^{-1}b_n^{-1}g^{-1}$$

= $(ga_1g^{-1})(gb_1g^{-1})(ga_1g^{-1})^{-1}(gb_1g^{-1})^{-1}\cdots (ga_ng^{-1})(gb_ng^{-1})(ga_ng^{-1})^{-1}(gb_ng^{-1})^{-1}$.

5.13 Presentations

Definition 5.88 (Presentation). A presentation of a group G is a pair (A, R) where A is a set and $R \subseteq F(A)$ is a set of words such that

$$G \cong F(A)/N(R)$$

where N(R) is the smallest normal subgroup of F(A) that includes R.

Example 5.89. The free group on a set A is presented by (A, \emptyset) .

Example 5.90. S_3 is presented by $(x, y|x^2, y^3, xyxy)$.

Example 5.91. $(a, b \mid a^2, b^2, (ab)^n)$ is a presentation of D_{2n} .

Proposition 5.92 (Word Problem). Let (A, R) be a presentation of the group G. Let $w_1, w_2 \in F(A)$ be two words. Then it is undecidable in general if $w_1N(R) = w_2N(R)$ in G.

Definition 5.93 (Finitely Presented). A group is *finitely presented* iff it has a presentation (A, R) where both A and R are finite.

Proposition 5.94. Let (A|R) be a presentation of G and (A'|R') a presentation of H. Assume w.l.o.g. A and A' are disjoint. Then the group G * G' presented by $(A \cup A'|R \cup R')$ is the coproduct of G and G' in Grp.

Proof:

- $\langle 1 \rangle 1$. Let: $\kappa_1 : G \to G * G'$ and $\kappa_2 : G' \to G * G'$ be the unique homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 2$. Let: $\phi: G \to H$ and $\psi: G' \to H$ be any homomorphisms.
- $\langle 1 \rangle 3$. Let: $[\phi, \psi] : F(A \cup A') \to H$ be the unique homomorphism such that ...
- $\langle 1 \rangle 4. \ R \cup R' \subseteq \ker[\phi, \psi]$
- $\langle 1 \rangle$ 5. $[\phi, \psi]$ factors uniquely through the morphism $F(A \cup A') \to G * G'$

5.14 Index of a Subgroup

Definition 5.95 (Index). Let G be a group and H a subgroup of G. The *index* of H in G, denoted |G:H|, is the number of left cosets of H in G if this is finite, otherwise ∞ .

Theorem 5.96 (Lagrange's Theorem). Let G be a finite group and H a subgroup of G. Then

$$|G| = |G:H||H|.$$

PROOF: G/H is a partition of G into |G:H| subsets, each of size |H|. \square

Corollary 5.96.1. For p a prime number, the only group of order p is C_p .

PROOF: Let G be a group of order p and $g \in G$ with $g \neq e$. Then $|\langle g \rangle|$ divides p and is not 1, hence is p, that is, $G = \langle g \rangle$. \square

Corollary 5.96.2 (Fermat's Little Theorem). Let p be a prime number and a any integer. Then $a^p \equiv a \pmod{p}$.

PROOF: If $p \mid a$ then $a^p \equiv a \equiv 0 \pmod{p}$. Otherwise, we have $a^{p-1} \equiv 1 \pmod{p}$ by applying Lagrange's Theorem to $(\mathbb{Z}/p\mathbb{Z})^*$. \square

Example 5.97. It is not true that, if $n \mid |G|$, then G has a subgroup of order n. The group A_4 has order 12 but no subgroup of order 6.

Theorem 5.98 (Cauchy's Theorem). Let G be a finite group. If p is prime and $p \mid |G|$ then G has a subgroup of order p.

Proposition 5.99. Let G be a group. Let K be a subgroup of G and H a subgroup of K. If |G:H|, |G:K| and |K:H| are all finite then

$$|G:H| = |G:K||K:H|$$
.

```
Proof:
\langle 1 \rangle 1. Let: G/K = \{g_1 K, g_2 K, \dots, g_m K\}
\langle 1 \rangle 2. Let: K/H = \{k_1 H, k_2 H, \dots, k_n H\}
\langle 1 \rangle 3. \ G/H = \{ g_i k_j H : 1 \le i \le m, 1 \le j \le n \}
    \langle 2 \rangle 1. Let: g \in G
    \langle 2 \rangle 2. Pick i such that gK = g_i K
    \langle 2 \rangle 3. \ g^{-1}g_i \in K
    \langle 2 \rangle 4. PICK j such that g^{-1}g_iH = k_jH
    \langle 2 \rangle 5. \ g^{-1} g_i k_j \in H
    \langle 2 \rangle 6. \ gH = g_i k_j H
\langle 1 \rangle 4. If g_i k_j H = g_{i'} k_{j'} H then i = i' and j = j'.
    \langle 2 \rangle 1. Assume: g_i k_j H = g_{i'} k_{j'} H
    \langle 2 \rangle 2. g_i K = g_{i'} K
    \langle 2 \rangle 3. \ i = i'
    \langle 2 \rangle 4. \ k_i H = k_{i'} H
    \langle 2 \rangle 5. \ j = j'
П
```

Proposition 5.100. A subgroup of index 2 is normal.

PROOF: If |G:H|=2 then, for all $g \in G$ we have gH=Hg=H if $g \in H$ and gH=Hg=G-H if $g \notin H$. \square

5.15 Cokernels

Proposition 5.101. Let $\phi: G \to H$ be a homomorphism between groups. Then there exists a group K and homomorphism $\pi: H \to K$ that is initial with respect to all homomorphism $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Proof:

- $\langle 1 \rangle 1.$ Let: N be the intersection of all the normal subgroups of H that include im $\phi.$
- $\langle 1 \rangle 2$. Let: K = H/N and π be the canonical homomorphism.
- $\langle 1 \rangle 3$. Let: $\pi \circ \phi = 0$
- $\langle 1 \rangle 4$. Let: $\alpha : H \to L$ satisfy $\alpha \circ \phi = 0$
- $\langle 1 \rangle 5$. im $\phi \subseteq \ker \alpha$
- $\langle 1 \rangle 6$. $N \subseteq \ker \alpha$
- $\langle 1 \rangle 7.$ There exists a unique $\overline{\alpha}: H/\operatorname{im} \phi \to L$ such that $\overline{\alpha} \circ \pi = \alpha$ \sqcap

Definition 5.102 (Cokernel). For any homomorphism $\phi: G \to H$ in **Grp**, the *cokernel* of ϕ is the group coker ϕ and homomorphism $\pi: H \to \operatorname{coker} \phi$ that is initial among homomorphisms $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Example 5.103. It is not true that a homomorphism with trivial cokernel is epi. The inclusion $\langle (1\ 2) \rangle \hookrightarrow S_3$ has trivial cokernel but is not epi.

5.16 Cayley Graphs

Definition 5.104 (Cayley Graph). Let G be a finitely generated group. Let A be a finite set of generators for G. The Cayley graph of G with respect to A is the directed graph whose vertices are the elements of G, with an edge $g_1 \to g_2$ labelled by $a \in A$ iff $g_2 = g_1 a$.

Proposition 5.105. G is the free group on A iff the Cayley graph with respect to A is a tree.

PROOF: Both are equivalent to saying that the product of two different strings of elements of A and/or their inverses are not equal. \square

Chapter 6

Abelian Groups

Definition 6.1 (Abelian Group). A group is *Abelian* iff any two elements commute.

In an Abelian group G, we often denote the group operation by +, the identity element by 0 and the inverse of an element g by -g. We write ng for g^n ($g \in G$, $n \in \mathbb{Z}$).

Example 6.2. Every group of order ≤ 4 is Abelian.

Example 6.3. For any positive integer n, we have $\mathbb{Z}/n\mathbb{Z}$ is an Abelian group under addition.

Example 6.4. S_n is not Abelian for $n \geq 3$. If $x = \begin{pmatrix} 1 & 2 \end{pmatrix}$ and $y = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$ then $xy = \begin{pmatrix} 2 & 3 \end{pmatrix}$ and $yx = \begin{pmatrix} 1 & 3 \end{pmatrix}$.

Example 6.5. There are 42 Abelian groups of order 1024 up to isomorphism.

Proposition 6.6. Let G be a group. If $g^2 = e$ for all $g \in G$ then G is Abelian.

PROOF: For any $g, h \in G$ we have

$$ghgh = e$$
∴ $hgh = g$ (multiplying on the left by g)
∴ $hg = gh$ (multiplying on the right by h)

Proposition 6.7. Let G be a group. Then G is Abelian if and only if the function that maps g to g^{-1} is a group homomorphism.

Proof

 $\langle 1 \rangle 1.$ If G is Abelian then the function that maps g to g^{-1} is a group homomorphism.

PROOF: Since $(gh)^{-1} = h^{-1}g^{-1} = g^{-1}h^{-1}$.

 $\langle 1 \rangle 2$. If the function that maps g to g^{-1} is a group homomorphism then G is Abelian.

PROOF: Since $gh = (g^{-1})^{-1}(h^{-1})^{-1} = (g^{-1}h^{-1})^{-1} = hg$.

Proposition 6.8. Let G be a group. Then G is Abelian if and only if the function that maps g to g^2 is a group homomorphism.

Proof:

 $\langle 1 \rangle 1$. If G is Abelian then the function that maps g to g^2 is a group homomorphism.

PROOF: Since $(qh)^2 = q^2h^2$.

 $\langle 1 \rangle 2$. If the function that maps g to g^2 is a group homomorphism then G is

PROOF: Since we have $(gh)^2 = ghgh = g^2h^2$ and so hg = gh.

Proposition 6.9. Let G be a group. Then G is Abelian if and only if the homomorphism $\gamma: G \to \operatorname{Aut}_{\mathbf{Grp}}(G)$ is the trivial homomorphism.

PROOF:

 $\langle 1 \rangle 1$. If G is Abelian then γ is trivial.

PROOF: Since $\gamma_q(a) = gag^{-1} = a$.

 $\langle 1 \rangle 2$. If γ is trivial then G is Abelian.

PROOF: If $\gamma_q(a) = gag^{-1} = a$ for all g and a then ga = ag for all g, a.

Proposition 6.10. Let G be an Abelian group. Let $g, h \in G$. If g has maximal finite order in G, and h has finite order, then |h| |g|.

- $\langle 1 \rangle 1$. Assume: for a contradiction $|h| \nmid |g|$.
- $\langle 1 \rangle 2$. PICK a prime p such that $|g| = p^m r$, $|h| = p^n s$ where $p \nmid r$, $p \nmid s$ and m < n.

 $\langle 1 \rangle 3. |g^{p^m} h^s| = p^n r$

PROOF: Proposition 4.19.

- $\langle 1 \rangle 4$. $|g| < |g^{p^m} h^s|$
- $\langle 1 \rangle 5$. Q.E.D.

PROOF: This contradicts the maximality of |g|.

Proposition 6.11. If p is prime then $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic.

- $\langle 1 \rangle 1$. Let: q be an element of maximal order in $(\mathbb{Z}/p\mathbb{Z})^*$.
- $\langle 1 \rangle 2$. For all $h \in (\mathbb{Z}/p\mathbb{Z})^*$ we have $h^{|g|} = 1$. Proof: Proposition 6.10.

- $\langle 1 \rangle 3$. There are at most |g| elements x such that $x^{|g|} = 1$ in $\mathbb{Z}/p\mathbb{Z}$
- $\langle 1 \rangle 4. \ p-1 \leq |g|$
- $\langle 1 \rangle 5. |q| = p 1$
- $\langle 1 \rangle 6$. g generates $(\mathbb{Z}/p\mathbb{Z})^*$.

Example 6.12. $(\mathbb{Z}/12\mathbb{Z})^*$ is not cyclic. Its elements are 1, 5, 7 and 11 with orders 1, 2, 2 and 2.

Theorem 6.13 (Wilson's Theorem). A positive integer p is prime if and only if $(p-1)! \equiv 1 \pmod{p}$.

```
\begin{split} \langle 1 \rangle 1. & \text{ If } p \text{ is prime then } (p-1)! \equiv 1 (\text{mod } p). \\ \langle 2 \rangle 1. & \text{ Assume: } p \text{ is prime.} \\ \langle 2 \rangle 2. & (p-1)! \text{ is the product of all the elements of } (\mathbb{Z}/p\mathbb{Z})^* \\ \langle 2 \rangle 3. & \text{ The only element of } (\mathbb{Z}/p\mathbb{Z})^* \text{ with order 2 is } -1. \\ \langle 2 \rangle 4. & (p-1)! \equiv -1 (\text{mod } p) \\ & \text{ Proof: Proposition 4.20.} \\ \langle 1 \rangle 2. & \text{ If } (p-1)! \equiv -1 (\text{mod } p) \text{ then } p \text{ is prime.} \\ \langle 2 \rangle 1. & \text{ Assume: } (\\ & (p-1)! \equiv -1 (\text{mod } p)) \\ \langle 2 \rangle 2. & \text{ Let: } d \text{ be a proper divisor of } p. \\ & \text{ Prove: } d=1 \\ \langle 2 \rangle 3. & d \mid (p-1)! \\ \langle 2 \rangle 4. & d \mid 1 \\ & \text{ Proof: Since } d \mid p \mid (p-1)! + 1. \\ \langle 2 \rangle 5. & d=1 \end{split}
```

Proposition 6.14. If p and q are distinct odd primes then $(\mathbb{Z}/pq\mathbb{Z})^*$ is not cyclic.

```
Proof:
```

Proposition 6.15. For any prime p, we have $\operatorname{Aut}_{\mathbf{Grp}}(C_p) \cong C_{p-1}$.

Proof:

```
\langle 1 \rangle 1. Let: \phi : \operatorname{Aut}_{\mathbf{Grp}}(C_p) \to (\mathbb{Z}/p\mathbb{Z})^* be the function \phi(\alpha) = \alpha(1). Proof: \alpha(1) has order p in C_p and so is coprime with p. \langle 1 \rangle 2. \phi is a homomorphism. Proof: \phi(\alpha \circ \beta) = \alpha(\beta(1)) = \alpha(\beta(1)1) = \beta(1)\alpha(1) = \phi(\alpha)\phi(\beta) \langle 1 \rangle 3. \phi is injective. Proof: If \phi(\alpha) = \phi(\beta) then for any n we have \alpha(n) = n\alpha(1) = n\phi(\alpha) = n\phi(\beta) = n\beta(1) = \beta(n).
```

 $\langle 1 \rangle 4$. ϕ is surjective. PROOF: For any $r \in (\mathbb{Z}/p\mathbb{Z})^*$ we have $r = \phi(\alpha)$ where $\alpha(n) = nr \mod p$. $\langle 1 \rangle 5$. $(\mathbb{Z}/p\mathbb{Z})^* \cong C_{p-1}$

Proposition 6.16. Given a set A and an Abelian group H, the set H^A is an Abelian group under

$$(\phi + \psi)(a) = \phi(a) + \psi(a) \qquad (\phi, \psi \in H^A, a \in A) .$$

Proof:

- $\langle 1 \rangle 1. \ \phi + (\psi + \chi) = (\phi + \psi) + \chi$
- $\langle 1 \rangle 2. \ \phi + \psi = \psi + \phi$
- $\langle 1 \rangle 3$. Let: $0: A \to H$ be the function 0(a) = 0.
- $\langle 1 \rangle 4. \ \phi + 0 = 0 + \phi = \phi$
- (1)5. Given $\phi: A \to H$, define $-\phi: A \to H$ by $(-\phi)(a) = -(\phi(a))$.
- $(1)6. \ \phi + (-\phi) = (-\phi) + \phi = 0$

Proposition 6.17. Given a group G and an Abelian group H, the set Grp[G, H] is a subgroup of H^G .

Proof:

 $\langle 1 \rangle 1.$ Given $\phi, \psi: G \to H$ group homomorphisms, we have $\phi - \psi$ is a group homomorphism.

Proof:

$$(\phi - \psi)(g + g') = \phi(g + g') - \psi(g + g')$$

$$= \phi(g) + \phi(g') - \psi(g) - \psi(g')$$

$$= \phi(g) - \psi(g) + \phi(g') - \psi(g')$$

$$= (\phi - \psi)(g) + (\phi - \psi)(g')$$

Proposition 6.18. Let G be a group. The following are equivalent.

- 1. Inn(G) is cyclic.
- 2. Inn(G) is trivial.
- 3. G is Abelian.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: $Inn(G) = \langle \gamma_a \rangle$
 - $\langle 2 \rangle 2$. g commutes with every element of G
 - $\langle 3 \rangle 1$. Let: $x \in G$
 - $\langle 3 \rangle 2$. PICK $n \in \mathbb{Z}$ such that $\gamma_x = \gamma_q^n$
 - $\langle 3 \rangle 3. \ \forall y \in G.xyx^{-1} = g^n yg^{-n}$
 - $\langle 3 \rangle 4$. $xgx^{-1} = g$

```
\begin{array}{l} \langle 2 \rangle 3. \ \gamma_g = \operatorname{id}_G \\ \langle 1 \rangle 2. \ 2 \Rightarrow 3 \\ \langle 2 \rangle 1. \ \operatorname{Assume:} \ \forall g \in G. \gamma_g = \operatorname{id}_G \\ \langle 2 \rangle 2. \ \operatorname{Let:} \ x, y \in G \\ \langle 2 \rangle 3. \ \gamma_x(y) = y \\ \langle 2 \rangle 4. \ xyx^{-1} = y \\ \langle 2 \rangle 5. \ xy = yx \\ \langle 1 \rangle 3. \ 3 \Rightarrow 2 \\ \operatorname{Proof:} \ \operatorname{If} \ xy = yx \ \operatorname{for \ all} \ x, y \ \operatorname{then} \ \gamma_x(y) = y \ \operatorname{for \ all} \ x, y. \\ \langle 1 \rangle 4. \ 2 \Rightarrow 1 \\ \operatorname{Proof:} \ \operatorname{Easy.} \\ \end{array}
```

Corollary 6.18.1. If $Aut_{Grp}(G)$ is cyclic then G is Abelian.

Proposition 6.19. Every subgroup of an Abelian group is normal.

PROOF: Let G be an Abelian group and N a subgroup of G. Given $g \in G$ and $n \in N$ we have $gng^{-1} = n \in N$. \square

Proposition 6.20. For any group G, the group G/[G,G] is Abelian.

PROOF: For any
$$g,h\in G$$
 we have
$$gh(hg)^{-1}\in [G,G]$$

$$\therefore gh[G,G]=hg[G,G]$$

Proposition 6.21. Let G be a finite Abelian group. Let p be a prime divisor of |G|. Then G has an element of order p.

PROOF

- $\langle 1 \rangle 1.$ Assume: as induction hypothesis the result holds for all groups smaller than G.
- $\langle 1 \rangle 2$. Pick $g \in G \{0\}$.
- $\langle 1 \rangle 3$. Pick an element $h \in \langle g \rangle$ with prime order q.
- $\langle 1 \rangle 4$. Case: q = p

PROOF: h is the required element.

- $\langle 1 \rangle$ 5. Case: $q \neq p$
 - $\langle 2 \rangle 1$. PICK $r \in G$ such that $r + \langle h \rangle$ has order p in $G/\langle h \rangle$.

PROOF: By induction hypothesis since $|G/\langle h \rangle| = |G|/q$.

- $\langle 2 \rangle 2$. $pr \in \langle h \rangle$
- $\langle 2 \rangle 3$. Pick k such that pr = kh
- $\langle 2 \rangle 4$. pqr = e
- $\langle 2 \rangle 5$. qr has order p.

Corollary 6.21.1. For n an odd integer, any Abelian group of order 2n has exactly one element of order 2.

PROOF: If x and y are distinct elements of order 2 then $\langle x,y\rangle=\{e,x,y,xy\}$ has size 4 and so 4 | 2n which is a contradiction. \square

Example 6.22. It is not true that, if G is a finite group and $d \mid |G|$, then G has an element of order d. The quaternion group has no element of order 4.

Proposition 6.23. If G is a finite Abelian group and $d \mid |G|$ then G has a subgroup of size d.

Proof:

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the result is true for all d' < d.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. $d \neq 1$.
- $\langle 1 \rangle 3$. PICK a prime p such that $p \mid d$.
- $\langle 1 \rangle 4$. PICK an element $g \in G$ of order p.
- $\langle 1 \rangle 5. \ d/p \mid |G/\langle g \rangle|$
- $\langle 1 \rangle 6$. PICK a subgrop H of $G/\langle g \rangle$ of size d/p.
- $\langle 1 \rangle 7$. $\pi^{-1}(H)$ is a subgroup of G of size d.

6.1 The Category of Abelian Groups

Definition 6.24 (Category of Abelian Groups). Let **Ab** be the full subcategory of **Grp** whose objects are the Abelian groups.

Definition 6.25 (Direct Sum). Given Abelian groups G and H, we also call the direct product of G and H the *direct sum* and denote it $G \oplus H$.

Proposition 6.26. Given Abelian groups G and H, the direct sum $G \oplus H$ is the coproduct of G and H in Ab.

PROOF

- $\langle 1 \rangle 1$. Let: $\kappa_1 : G \to G \oplus H$ be the group homomorphism $\kappa_1(g) = (g, e_H)$.
- $\langle 1 \rangle 2$. Let: $\kappa_2 : H \to G \oplus H$ be the group homomorphism $\kappa_2(h) = (e_G, h)$.
- $\langle 1 \rangle$ 3. Given group homomorphism $\phi : G \to K$ and $\psi : H \to K$, define $[\phi, \psi] : G \oplus H \to K$ by $[\phi, \psi](g, h) = \phi(g) + \psi(h)$.
- $\langle 1 \rangle 4$. $[\phi, \psi]$ is a group homomorphism.

PROOF:

$$\begin{split} [\phi, \psi]((g, h) + (g', h')) &= [\phi, \psi](g + g', h + h') \\ &= \phi(g + g') + \psi(h + h') \\ &= \phi(g) + \phi(g') + \psi(h) + \psi(h') \\ &= \phi(g) + \psi(h) + \phi(g') + \psi(h') \\ &= [\phi, \psi](g, h) + [\phi, \psi](g', h') \end{split}$$

 $\langle 1 \rangle 5. \ [\phi, \psi] \circ \kappa_1 = \phi$ PROOF:

$$[\phi, \psi](\kappa_1(g)) = [\phi, \psi](g, e_h)$$
$$= \phi(g) + \psi(e_H)$$
$$= \phi(g) + e_K$$
$$= \phi(g)$$

 $\langle 1 \rangle 6. \ [\phi, \psi] \circ \kappa_2 = \psi$

PROOF: Similar.

 $\langle 1 \rangle$ 7. If $f: G \oplus H \to K$ is a group homomorphism with $f \circ \kappa_1 = \phi$ and $f \circ \kappa_2 = \psi$ then $f = [\phi, \psi]$.

Proof:

$$f(g,h) = f((g,e_H) + (e_G,h))$$
$$= f(\kappa_1(g)) + f(\kappa_2(h))$$
$$= \phi(g) + \psi(h)$$

Theorem 6.27. Every finitely generated Abelian group is a direct sum of cyclic groups.

PROOF: TODO

6.2 Free Abelian Groups

Proposition 6.28. Let A be a set. Let \mathcal{F}^A be the category whose objects are pairs (G,j) where G is an Abelian group and j is a function $A \to G$, with morphisms $f:(G,j)\to(H,k)$ the group homomorphisms $f:G\to H$ such that $f\circ j=k$. Then \mathcal{F}^A has an initial object.

Proof:

 $\langle 1 \rangle 1$. Let: $\mathbb{Z}^{\oplus A}$ be the subgroup of \mathbb{Z}^A consisting of all functions $\alpha : A \to \mathbb{Z}$ such that $\alpha(a) = 0$ for only finitely many $a \in A$.

 $\langle 1 \rangle 2$. Let: $i: A \to \mathbb{Z}^{\oplus A}$ be the function such that i(a)(b) = 1 if a = b and 0 if $a \neq b$.

 $\langle 1 \rangle 3$. Let: G be any Abelian group and $j: A \to G$ any function.

 $\langle 1 \rangle 4$. The unique homomorphism $\phi : \mathbb{Z}^{\oplus A} \to G$ required is defined by $\phi(\alpha) = \sum_{a \in A} \alpha(a) j(a)$

П

Definition 6.29 (Free Abelian Group). For any set A, the *free Abelian group* on A is the initial object $(F^{ab}(A), i)$ in \mathcal{F}^A .

Proposition 6.30. For any sets A and B, we have that $F^{ab}(A + B)$ is the coproduct of $F^{ab}(A)$ and $F^{ab}(B)$ in **Grp**.

Proof:

- $\langle 1 \rangle 1$. Let: $i_A: A \to F^{ab}(A), i_B: B \to F^{ab}(B), j: A+B \to F^{ab}(A+B)$ be the canonical injections.
- $\langle 1 \rangle$ 2. Let: κ_1 , κ_2 be the unique group homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 3.$ Let: G be any group and $f: F^{ab}(A) \to G, \ g: F^{ab}(B) \to G$ any group homomorphisms.
- (1)4. Let: $h: A+B \to G$ be the unique function such that $h \circ k_1 = f \circ i_A$ and $h \circ k_2 = g \circ i_B$.
- $\langle 1 \rangle$ 5. Let: $k: F^{ab}(A+B) \to G$ be the unique group homomorphism such that $k \circ j = h$.
- (1)6. k is the unique group homomorphism such that $k \circ \kappa_1 \circ i_A = f \circ i_A$ and $k \circ \kappa_2 \circ i_B = g \circ i_B$.
- $\langle 1 \rangle 7$. k is the unique group homomorphism such that $k \circ \kappa_1 = f$ and $k \circ \kappa_2 = g$.

Proposition 6.31. For A and B finite sets, if $F^{ab}(A) \cong F^{ab}(B)$ then $A \cong B$.

Proof:

- $\langle 1 \rangle 1$. For any set C, define \sim on $F^{ab}(C)$ by: $f \sim f'$ iff there exists $g \in F^{ab}(C)$ such that f f' = 2g.
- $\langle 1 \rangle 2$. For any set C, \sim is an equivalence relation on $F^{ab}(C)$.
- $\langle 1 \rangle 3$. For any set C, we have $F^{ab}(C) / \sim$ is finite if and only if C is finite, in which case $|F^{ab}(C)| / \sim |=2^{|C|}$.

PROOF: There is a bijection between $F^{ab}(C) / \sim$ and the finite subsets of C, which maps f to $\{c \in C : f(c) \text{ is odd}\}.$

 $\langle 1 \rangle 4$. If $F^{ab}(A) \cong F^{ab}(B)$ then $A \cong B$.

PROOF: If $|F^{ab}(A)| \sim |= |F^{ab}(B)| \sim |$ then $2^{|A|} = 2^{|B|}$ and so |A| = |B|.

Proposition 6.32. Let G be an Abelian group. Then G is finitely generated if and only if there exists a surjective homomorphism $\mathbb{Z}^{\oplus n} \to G$ for some n.

Proof:

 $\langle 1 \rangle 1$. If G is finitely generated then there exists a surjective homomorphism $\mathbb{Z}^{\oplus n} \twoheadrightarrow G$ for some n.

PROOF: Let $G = \langle a_1, \dots, a_n \rangle$. Define $\phi : \mathbb{Z}^{\oplus n} \twoheadrightarrow G$ by $\phi(i_1, \dots, i_n) = i_1 \cdot a_1 + \dots + i_n \cdot a_n$.

 $\langle 1 \rangle 2$. If there exists a surjective homomorphism $\phi : \mathbb{Z}^{\oplus n} \twoheadrightarrow G$ for some n then G is finitely generated.

PROOF: G is generated by $\phi(1,0,\ldots,0),\ \phi(0,1,0,\ldots,0),\ \ldots,\ \phi(0,\ldots,0,1).$

Proposition 6.33. Let A be a set. Let $i: A \hookrightarrow F(A)$ be the free group on A. Then $\pi \circ i: A \to F(A)/[F(A), F(A)]$ is the free Abelian group on A.

6.3. COKERNELS 57

Proof:

- $\langle 1 \rangle 1$. Let: G be an Abelian group and $f: A \to G$ a function.
- $\langle 1 \rangle 2$. Let: $g: F(A) \to G$ be the unique group homomorphism such that $g \circ i = f$.
- $\langle 1 \rangle 3. \ [F(A), F(A)] \subseteq \ker g$

PROOF: For all $x, y \in F(A)$ we have $g(xyx^{-1}y^{-1}) = g(x) + g(y) - g(x) - g(y) = 0$

- $\langle 1 \rangle 4$. Let: h: F(A)/[F(A),F(A)] be the unique group homomorphism such that $h \circ \pi = g$.
- $\langle 1 \rangle 5. \ h$ is the unique group homomorphism such that $h \circ \pi \circ i = f.$ \Box

Corollary 6.33.1. Let A and B be sets. Let F(A) and F(B) be the free groups on A and B respectively. If $F(A) \cong F(B)$ then $A \cong B$.

Proof: Proposition 6.31. \square

6.3 Cokernels

Proposition 6.34. Let $\phi: G \to H$ be a homomorphism between Abelian groups. Then there exists an Abelian group K and homomorphism $\pi: H \to K$ that is initial with respect to all homomorphism $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Proof:

- $\langle 1 \rangle 1$. Let: $K = H/\operatorname{im} \phi$ and π be the canonical homomorphism.
- $\langle 1 \rangle 2$. Let: $\pi \circ \phi = 0$
- $\langle 1 \rangle 3$. Let: $\alpha : H \to L$ satisfy $\alpha \circ \phi = 0$
- $\langle 1 \rangle 4$. im $\phi \subseteq \ker \alpha$
- $\langle 1 \rangle$ 5. There exists a unique $\overline{\alpha}: H/\operatorname{im} \phi \to L$ such that $\overline{\alpha} \circ \pi = \alpha$

Definition 6.35 (Cokernel). For any homomorphism $\phi: G \to H$ in **Ab**, the cokernel of ϕ is the Abelian group coker ϕ and homomorphism $\pi: H \to \operatorname{coker} \phi$ that is initial among homomorphisms $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Proposition 6.36. $\pi: H \to \operatorname{coker} \phi$ is initial among functions $f: H \to X$ such that, for all $x, y \in H$, if $x + \operatorname{im} \phi = y + \operatorname{im} \phi$ then f(x) = f(y).

Proof: Easy. \square

Proposition 6.37. Let $\phi: G \to H$ be a homomorphism of Abelian groups. Then the following are equivalent.

- ϕ is an epimorphism.
- $\operatorname{coker} \phi$ is trivial.
- \bullet ϕ is surjective.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: ϕ is epi.
 - $\langle 2 \rangle 2$. Let: $\pi: H \to \operatorname{coker} \phi$ be the canonical homomorphism.
 - $\langle 2 \rangle 3. \ \pi \circ \phi = 0 \circ \phi$
 - $\langle 2 \rangle 4$. $\pi = 0$
 - $\langle 2 \rangle$ 5. coker $\phi = \operatorname{im} \pi$ is trivial.
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$

PROOF: If $\operatorname{coker} \phi = H/\operatorname{im} \phi$ is trivial then $\operatorname{im} \phi = H$.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 1$

PROOF: If it is surjective then it is epi in **Set**.

Chapter 7

Group Actions

7.1 Group Actions

Definition 7.1 (Action). Let G be a group. Let A be an object of a category \mathcal{C} . An *action* of G on A is a group homomorphism $G \to \operatorname{Aut}_{\mathcal{C}}(A)$.

Part III Linear Algebra

Definition 7.2. Let $GL_n(\mathbb{R})$ be the group of invertible $n \times n$ real matrices.

Definition 7.3. Let $GL_n(\mathbb{C})$ be the group of invertible $n \times n$ complex matrices.

Definition 7.4. Let $SL_n(\mathbb{R}) = \{ M \in GL_n(\mathbb{R}) : \det M = 1 \}.$

Proposition 7.5. $\mathrm{SL}_n(\mathbb{R})$ is a normal subgroup of $\mathrm{GL}_n(\mathbb{R})$.

PROOF: If det M = 1 then $\det(AMA^{-1}) = (\det A)(\det M)(\det A)^{-1} = 1$.

Proposition 7.6.

$$\operatorname{GL}_n(\mathbb{R})/\operatorname{SL}_n(\mathbb{R}) \cong \mathbb{R}^*$$

Definition 7.7. Let $\mathrm{SL}_n(\mathbb{C}) = \{ M \in \mathrm{GL}_n(\mathbb{C}) : \det M = 1 \}.$

Definition 7.8. Let $O_n(\mathbb{R}) = \{ M \in GL_n(\mathbb{R}) : MM^T = M^TM = I_n \}.$

Definition 7.9. Let $SO_n(\mathbb{R}) = \{ M \in O_n(\mathbb{R}) : \det M = 1 \}.$

Definition 7.10. Let $U_n(\mathbb{C}) = \{ M \in GL_n(\mathbb{C}) : MM^{\dagger} = M^{\dagger}M = I_n \}.$

Definition 7.11. Let $SU_n(\mathbb{C}) = \{ M \in U_n(\mathbb{C}) : \det M = 1 \}.$

Proposition 7.12. Every matrix in $SU_2(\mathbb{C})$ can be written in the form

$$\left(\begin{array}{cc}
a+bi & c+di \\
-c+di & a-bi
\end{array}\right)$$

for some $a, b, c, d \in \mathbb{R}$ with $a^2 + b^2 + c^2 + d^2 = 1$.

$$\langle 1 \rangle 1$$
. Let: $M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SU_2(\mathbb{C})$

$$(1)^2 M^{-1} = M^{\dagger}$$

$$\langle 1 \rangle 2. \ M^{-1} = M^{\dagger}$$

$$\langle 1 \rangle 3. \ \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} \overline{\alpha} & \overline{\gamma} \\ \overline{\beta} & \overline{\delta} \end{pmatrix}$$

$$\langle 1 \rangle 4. \text{ Lett: } \alpha = a + bi \text{ and } \beta = c + bi$$

- $\langle 1 \rangle 4$. Let: $\alpha = a + bi$ and $\beta = c + di$.
- $\langle 1 \rangle 5. \ \delta = \overline{\alpha} = a bi$

$$\begin{array}{l} \langle 1 \rangle 6. \quad \gamma = -\overline{\beta} = -c + di \\ \langle 1 \rangle 7. \quad \det M = a^2 + b^2 + c^2 + d^2 = 1 \\ \square \end{array}$$

Corollary 7.12.1. $SU_2(\mathbb{C})$ is simply connected.

Corollary 7.12.2.

$$SO_3(\mathbb{R}) \cong SU_2(\mathbb{C})/\{I, -I\}$$

PROOF: The function that maps
$$\begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}$$
 to $\begin{pmatrix} a^2+b^2-c^2-d^2 & 2(bc-ad) & 2(ac+bd) \\ 2(ad+bc) & a^2-b^2+c^2-d^2 & 2(cd-ab) \\ 2(bd-ac) & 2(ab+cd) & a^2-b^2-c^2+d^2 \end{pmatrix}$ is a surjective homomorphism with kernel $\{I,-I\}$. \square

Corollary 7.12.3. The fundamental group of $SO_3(\mathbb{R})$ is C_2 .