Аналитическая модель конвективного теплообмена

Для описания конвективной теплоотдачи используется формула:

$$q_{cT} = a(T_0 - T_{cT}), (1)$$

где qcт — плотность теплового потока на поверхности, вт/м2; а — коэффициент теплоотдачи, вт/(м2·°C); Т0 и Тст — температуры среды (жидкости или газа) и поверхности соответственно. Величину Т0 — Тст часто обозначают DT и называется температурным напором.

1. get_convection_from_temperature

Из уравнения (1) следует что коэффициент теплоотдачи равен

$$a = \frac{q_{cT}}{(T_0 - T_{cT})}, (2)$$

2. get_temperature_from_convection

Из уравнения (1) следует что температурный напор temperature_head равен:

$$(T_0 - T_{ct}) = \frac{q_{ct}}{a}, (3)$$

In [1]: from batterysection import *

Секция-154.

Расчёт коэффициента теплоотдачи, вт/(м2·°C)

Дано:

- секция с внутренним диаметром 154 мм,
- мощность рассения $P_{diss} = 15 \mathrm{BT}$,
- температурный напор $(T_0 T_{cr}) = 30^{\circ}C$

Найти: коэффициент теплоотдачи $a, \frac{\operatorname{Br}}{(\mathsf{M}^{2,\circ}\mathbb{C})}$

$$a = \frac{q_{cr}}{(T_0 - T_{cr})}$$

Out[2]: Секция-154:

- мощность рассеяния = 15 Вт,
- коэффициент конвективного теплообмена = $1.565 \, \text{BT/(M}^2 \cdot ^{\circ}\text{C)}$,
- температурный напор = 30.0°C.

In [3]: convection_coefficient_calculated = bs154.convection_coefficient

Расчёт температуры поверхности аккумуляторных секций

Расчёт температурного напора (T_0 — T_{c_T}), °C

Дано:

- секция с внутренним диаметром 220 мм,
- мощность рассения $P_{diss} = 15 \mathrm{Br}$,

• коэффициент теплоотдачи $a=1.565 rac{\mathrm{Br}}{\mathrm{(M^{2} \cdot ^{\circ}\mathrm{C})}}$

Найти: температурный напор $(T_0 - T_{c_T}), {^{\circ}C}$

$$(\mathsf{T}_0 - \mathsf{T}_{\mathsf{c}\mathsf{T}}) = \frac{q_{c\mathsf{T}}}{a}$$

In [4]: # load input parameters for battery sections

import pandas as pd

df = load_section_parameters('section_parameters.xlsx');df

Out[4]:

	name	length, m	inner_diameter, m	radial_wall_thickness, m	axial_wall_thickness, m
0	154	0.412	0.154	0.016	0.032
1	220	0.800	0.220	0.018	0.034

In [5]: # Create instances of battery sections and calculate its temperature head (TO-Tcm)
batary_sections = get_instances_from_input_data(df, convection_coefficient_calculated)
Print data for each batary section
print_surfase_temperature(batary_sections)

Секция-154:

- мощность рассеяния: Pdis=15.0 °C, - температурный напор: (Т0-Тст)=30.0 °C,

- коэффицинт теплоотдачи: a=1.56 BT/(м²·°C),

Секция-220:

- мощность рассеяния: Pdis=15.0 °C, - температурный напор: (Т0-Тст)=12.1 °C, - коэффицинт теплоотдачи: a=1.56 BT/(м²⋅°C),