Системы алгебраических уравнений

М.Д. Малых, РУДН

1 декабря 2022 г.

Содержание

Системы алгебраических уравнений
 Исключение неизвестных
 Конечные многообразия
 Задания

1. Системы алгебраических уравнений

Пусть k — некоторое поле, напр., $\mathbb Q$ и пусть $f_1, \dots f_m - m$ многочленов из кольца $k[x_1, \dots, x_n]$. Эти многочлены задают систему алгебраических уравнений

$$f_1=0,\ldots,f_m=0$$

относительно неизвестных $x_1, \dots x_n$. Пусть k вложено в некоторое поле K.

Определение 1. Точка $(a_1,\ldots,a_n)\in K^n$ называется решением системы

$$f_1=0,\ldots,f_m=0,$$

если

$$f_1(a_1,\ldots,a_n)=0,\ldots,f_m(a_1,\ldots,a_n)=0.$$

Множество всех решений системы S из K^n будем называть алгебраическим многообразием (variety) и обозначать как Sol(S, K).

В теории линейных уравнений мы говорили, что две системы эквивалентны друг другу, если совпадают их множества решений. В случае нелинейных уравнений это соглашение кажется весьма неудобным, поскольку множества решений одной и той же системы S зависят от выбора K.

Пример 1.

$$S_1: \quad x^3 - x^2 + 4x - 4 = 0$$

И

$$S_1: x=1$$

имеют одно и то же множество решений над Q:

$$Sol(S_1, \mathbb{Q}) = Sol(S_2, \mathbb{Q}) = \{x = 1\},\$$

но различные множества над С:

$$\operatorname{Sol}(S_1, \mathbb{C}) \neq \operatorname{Sol}(S_2, \mathbb{C}) = \{x = 1\}.$$

Говорить, что S_1 и S_2 эквивалентны над $\mathbb Q$ не принято.

Чтобы отделить понятие эквивалентности от поля, в котором ищется решение, заметим следующее.

Теорема 1. Пусть J — идеал кольца $k[x_1,\ldots,x_n]$, порожденный многочленами f_1,\ldots,f_m системы S, и $a\in \mathrm{Sol}(S,K)$. Тогда для любого $g\in J$ верно

$$g(a) = 0.$$

Доказательство. Для любого $g \in J$ найдутся такие $g_i \in k[x_1, \ldots, x_n]$, что

$$g = g_1 f_1 + \dots + g_m f_m.$$

Поэтому на $a \in Sol(S, K)$ верно

$$g(a) = g_1(a)f_1(a) + \cdots + g_m(a)f_m(a) = 0.$$

Доказанная теорема позволяет считать многочлены идеала $J = (f_1, \ldots, f_m)$ — следствиями уравнений исходной системы S. Поэтому обычно говорят не о решении системы S, а об алгебраическим множестве, порожденном идеалом.

Определение 2. Пусть J-идеал кольца $k[x_1,\ldots,x_n]$ Алгебраическое многообразие Z(J,K) образовано точками $(a_1,\ldots,a_n)\in K^n$, которые являются нулями всех многочленов из J.

В идеал попадают не все следствия, поэтому вынужденно вводят понятие радикала идеала.

Пример 2. Рассмотрим уравнение

$$(x-1)^2 = 0$$

В идеал J, порожденный многочленом $(x-1)^2$, попадают не все многочлены, равные нулю в точке x=1, но только имеющие в этой точке кратность 2 и более.

Определение 3. Радикал \sqrt{J} из идеала J кольца A — это множество всех элементов кольца A, для каждого их которых, скажем, для f, можно найти такое натуральное число r, что

$$f^r \in J$$
.

В Sage имеется возможность вычислять радикалы из идеалов в кольце $\mathbb{Q}[x_1,\ldots,x_n]$. При этом используется весьма сложный алгоритм, обсуждение которого выходит за рамки настоящего курса.

Пример 3. sage: var("x,y")
(x, y)

sage: A=QQ[x,y]

sage: J=A*[(x+y)^2, (x-y)^3]

4

sage: J 5

Ideal ($x^2 + 2*x*y + y^2$, $x^3 - 3*x^2*y + 3*x*y^2 - 6$ y^3) of Multivariate Polynomial Ring in x, y over Rational Field

Ideal (y, x) of Multivariate Polynomial Ring in x, y 8 over Rational Field

Таким образом, вместо понятия следствия системы уравнений, мы будем говорить об идеале J, порожденной системой уравнений, и о его радикале \sqrt{J} .

2. Исключение неизвестных

Что значит найти x_i из системы алгебраических уравнений, порождающих идеал J кольца $\mathbb{Q}[x_1,\ldots,x_n]$? — Мы едва ли сможем найти явные выражения для возможных комплексных значений x_i , поскольку даже в одномерном случае нам это не удалось. Однако мы можем составить уравнение, которому удовлетворяет x_i .

Задача 1. Дан идеал J кольца $k[x_1,\ldots,x_n]$. Требуется найти множество

$$J \cap k[x_i].$$

Множество

$$J \cap k[x_i]$$

само является идеалом, его называют исключительным идеалом.

Определение 4. Пусть J — идеал кольца $k[x_1, \ldots, x_n]$, тогда множество

$$J \cap k[x_{i_1}, \dots, x_{x_s}]$$

называют исключительным идеалом (elimination ideal), полученным путем исключения x_j , где $j \neq i_1, \ldots, i_s$.

Для решения поставленной задачи нам нужно некоторое обобщение метода Гаусса на нелинейный случай. Таковое было предложено относительно недавно, в 1930-е годы, Грёбнером.

Определение 5. Конечное множество многочленов g_1, \ldots, g_p идеала J кольца $k[x_1, \ldots, x_n]$, называется базисом Гребнера этого идеала, если

- 1) $J = (g_1, \ldots, g_p),$
- 2) $lm(g_1) > lm(g_2) > \cdots > lm(g_p),$
- 3) для любого $f \in J$ найдется такое i, что lm(f) делится на $lm(g_i)$.

Алгоритм построения базисов Гребнера был предложен его учеником Бухбергером, его реализация открыла возможность решать системы нелинейных уравнений на компьютере.

Пример 4. sage: A=PolynomialRing(QQ,[x,y],order='lex')
sage: J=A*[x-y^2,x^2-y]
10
sage: J.groebner_basis()
11
[x - y^2, y^4 - y]
12
sage: J=A*[x-y^2,x^3+x*y-y,y*x]
13
sage: J.groebner_basis()
14
[x, y]

Теорема 2. Пусть (g_1,\ldots,g_p) — базис Гребнера идеала J кольца $k[x_1,\ldots,x_n]$, на мономах котором используется lex-порядок. Тогда или последний элемент базиса Гребнера принадлежит $k[x_n]$ и порождает исключительный идеал

$$J \cap k[x_n],$$

или этот идеал пуст.

Доказательство. При lex-порядке степень x_n всегда меньше любого монома, содержащего x_1, \ldots, x_{n-1} . Поэтому многочлен, старший член которого

является степенью x_n , принадлежит $k[x_n]$. Иными словами, lm(f) является степенью x_n тогда и только тогда, когда $f \in k[x_n]$.

Пусть g_p не принадлежит $k[x_n]$, тогда его старший моном не является степенью x_n , и тем более старшие мономы остальных базисных элементов. Допустим, что при этом

$$J \cap k[x_n] \neq \emptyset$$
.

Тогда имеется такой $g \in J$, что lm(g) является степенью x_n , которая не может делиться на старшие мономы базисных элементов, что противоречит п. 3. определения базиса Гребнера. Поэтому в этом случае пересечение пусто.

Пусть g_p принадлежит $k[x_n]$, тогда

$$g_p \in J \cap k[x_n],$$

поэтому исключительный идеал не пуст. Этот идеал — идеал кольца главных идеалов, поэтому имеется такой многочлен $h \in k[x_n]$, что

$$J \cap k[x_n] = (h).$$

Но из $g_p \in (h)$ следует, что g_p делится на h, а из Im(h) делится на $\text{Im}(g_i) > \text{Im}(g_p)$ следует, что степень h не меньше, чем степень g_p . Поэтому g_p и h отличаются лишь на константу из поля k и

$$J \cap k[x_n] = (g_p).$$

Пример 5. sage: $J=A*[x-y^2,x^3+x*y-y]$

$$[x - y^2, y^6 + y^3 - y]$$

Ideal (
$$y^6 + y^3 - y$$
) of Multivariate Polynomial 20 Ring in x, y over Rational Field

3. Конечные многообразия

Если уравнений достаточно много, то определяемое ими многообразие является конечным множеством. Исключая все переменные, кроме одной, мы можем отыскать все решения такой системы.

Пример 6. Рассмотрим систему

$$x - y^2 + 2 = 0$$
, $x^2y = 1$

```
sage: S=[x-y^2+2,x^2*y-1]

sage: J=A*S

sage: J.groebner_basis()

[x - y^2 + 2, y^5 - 4*y^3 + 4*y - 1]

sage: T=J.groebner_basis()

sage: yy=ZZ[y](T[1]).roots(QQbar)
21

22

23

24

25

26
```

Таким образом, y может принимать одно из 5 указанных значений. Переберем их по очереди. Для первого имеем:

```
sage: y0=yy[0][0]
                                                          27
sage: T[0].subs(y=y0)
                                                          28
x + 1.927561975482926?
                                                          29
sage: QQbar[x](T[0].subs(y=y0)).roots()
                                                          30
[(-1.927561975482926?, 1)]
                                                          31
sage: x0=QQbar[x](T[0].subs(y=y0)).roots()[0][0]
                                                          32
sage: x0
                                                          33
-1.927561975482926?
                                                          34
sage: [s.subs(x=x0).subs(y=y0) for s in S]
                                                          35
[0.?e-38, 0.?e-37]
                                                          36
```

Для второго:

```
sage: T[0].subs(y=y0)
                                                           38
x + 1.927561975482926?
                                                           39
sage: QQbar[x](T[0].subs(y=y1)).roots()
                                                           40
[(-1, 1)]
                                                           41
sage: x1=QQbar[x](T[0].subs(y=y1)).roots()[0][0]
                                                           42
sage: x1
                                                           43
-1
                                                           44
sage: [s.subs(x=x1).subs(y=y1) for s in S]
                                                           45
[0, 0]
                                                           46
```

Таким путем мы найдем 5 точек.

B Sage эта процедура автоматизирована при помощи метода variety(K), который применяется к идеалу.

Пример 7. Рассмотрим опять систему

$$x - y^2 + 2 = 0$$
, $x^2y = 1$

```
sage: S = [x - y^2 + 2, x^2 + y - 1]
                                                         47
sage: J=A*S
                                                         48
sage: J.variety(QQbar)
[\{y: 1, x: -1\}, \{y: 0.2691431301688280?, x:
                                                         50
  -1.927561975482926?}, {y: 1.665774328417699?, x:
  0.774804113215434?}, {y: -1.467458729293264? -
  0.2775899692806873?*I, x: 0.0763789311337458? +
  0.8147036471703865?*I, {y: -1.467458729293264? +
  0.2775899692806873?*I, x: 0.0763789311337458? -
  0.8147036471703865?*I}]
sage: J.variety(QQ)
                                                         51
[{y: 1, x: -1}]
                                                         52
```

Точки многообразия возвращаются в форме словаря (dictionary, стандартный питоновский тип):

4. Задания

Теоретические вопросы.

- 1) Дайте определение алгебраического многообразия.
- 2) Дайте определение радикала из идеала.
- 3) Дайте определение базиса Гребнера.
- 4) Как найти пересечение $J \cap k[x_1]$, если имеется возможность вычислить базис Гребнера идеала J?

Практические задания.

1) Дана система уравнений

$$x^{2} + y^{2} - z^{2} = 0$$
, $x - 2y^{2} - 3$, $z + x - y - 3 = 0$

Найдите все точки, удовлетворяющие системе уравнений, из а.) \mathbb{Q}^3 , b.) \mathbb{R}^3 и с.) \mathbb{C}^3 .

2) Вычислите радикал идеала

$$J = ((x+y)^2 + (x-z)^2 + 1, (x+y)^4 + (x-z)^4 + z, 2x + y - z)$$

Совпадают ли идеала J и \sqrt{J} ? Совпадают ли многообразия, порожденные J и \sqrt{J} ?

3) На плоскости \mathbb{R}^2 найдите координаты точек пересечения кривой

$$x^3 - y^3 = 2xy$$

и окружности $x^2 + y^2 = 1$. Ответ выразите в радикалах.

4) Составьте уравнение, которому удовлетворяют z-координаты точек многообразия

$$x^{2} + y^{2} = z^{3}$$
, $x - 2y^{2} = 3$, $z + x - y = 3$.

Является ли это уравнение простым в $\mathbb{Q}[z]$?

5) Найдите уравнение проекции линии

$$x^2 + y^2 + z^2 = 2$$
, $x^2 + z^2 = 1$

на плоскость xy.

6) Определите размерность многообразия

$$x^{2} - y^{2} + xz - yz = 0$$
, $x + y + z = 0$, $x = y$.

- 7) Укажите, сколько точек пересечения может иметь парабола $y = x^2$ и прямая y = kx + b при различных значениях k и b.
- 8) Опишите множество точек пересечения поверхности

$$x^2 + y^2 = z^2$$

и плоскости

$$(x-1) + (y-1) = \sqrt{2}(z - \sqrt{2}),$$

касающейся этой поверхности в точке $(1, 1, \sqrt{2})$.