Functional multi-armed bandit

И. М. Латыпов

Кафедра Интеллектуальных систем МФТИ

Научный руководитель: к.т.н. Дорн Юрий Владимирович 2025

Проблематика работы

Проблема

Существуют процессы принятия решений с применением экспертов, в которых эксперты улучшаются со временем. Необходимо предложить алгоритм, который будет это учитывать.

Цель

Предложить алгоритм, рассматривающий в качестве экспертов функцию с оптимизатором. Причем для пары функция оптимизатор известна скорость улучшения.

Решение

Алгоритм F-LCB – модификация UCB алгоритма, в ручках которой сидят оптимизаторы.

Пример

Агенты выбора рекламы: есть сайт, на нем показывается реклама.

Также есть несколько агентов для показа рекламы. Каждый из них показывает рекламу и учится на фидбеке от пользователя. Необходимо обеспечить и хороший показ рекламы, и обучение лучших экспертов.

Постановка задачи

Задан набор выпуклых функций $f_i: \mathbb{R}^{n_i} \to \mathbb{R}, i \in \overline{1,K}$. И выпуклые множества \mathcal{D}_i . Задано количество раундов \overline{T} . Необходимо на каждом раунде выбирать индекс $i_t \in \overline{1,K}$ и вектор $x^{t,i_t} \in \mathcal{D}_{i_t}$.

Алгоритм должен минимизировать регрет:

$$R_O(T) = \sum_{t=1}^{T} \left[f_{i_t}(x^{t,i_t}) - f^* \right]. \tag{1}$$

 $f^* = \min_{i \in \overline{1,K}} \min_{x \in D_i} f_i(x).$

Определение оптимизаторов

Definition

Алгоритм

$$x_{k+1} = \mathcal{A}(x_0, \mathcal{O}(x_0), \dots, x_k, \mathcal{O}(x_k))$$

называется $g(k,\delta)$ -ограничивающим, если для любого $k\in\mathbb{N}$ и $\delta>0$ выполняется неравенство

$$f(x_k) - f(x^*) \le g(k, \delta)$$

с вероятностью не менее $1-\delta$.

Если существует функция g(k) такая, что $f(x_k) - f(x^*) \le g(k)$, то говорят, что алгоритм $\mathcal A$ является g(k)-ограничивающим.

F-LCB

Algorithm 1 F-LCB algorithm

Require: number of functions K, $g_i(k,\delta)$ -bounded optimization method \mathcal{A}_i for $i=1,\ldots,K$, period T, initial estimates $x_0^{\mathcal{D}_1},\ldots,x_0^{\mathcal{P}_K}$, parameter δ ($\delta=0$ for deterministic setup).

- 1: Run \mathcal{A}_i for each function i $(i=1,\ldots,K)$ to compute $x_1^{\mathcal{P}_i} = \mathcal{A}_i(x_0^{\mathcal{P}_i},\mathcal{O}_{\mathcal{P}_i}(x_0^{\mathcal{P}_i}))$.
- 2: For each function i ($i=1,\ldots,K$) set $k_i=1$ and initialize $LCB_i(k_i,\delta)=f_i(x_1^{\mathcal{P}_i})-g_i(k_i,\delta)$.
- 3: **for** t = 1, ..., T **do**
- 4: Choose function $i_t = \underset{1 \le i \le K}{\operatorname{argmin}} LCB_i(k_i, \delta)$.
- 5: Compute

$$x_{k_{i_t}+1}^{\mathcal{P}_{i_t}} = \mathcal{A}_{i_t}(x_0^{\mathcal{P}_{i_t}}, \mathcal{O}_{\mathcal{P}_{i_t}}(x_0^{\mathcal{P}_{i_t}}), \dots, x_{k_{i_t}}^{\mathcal{P}_{i_t}}, \mathcal{O}_{\mathcal{P}_{i_t}}(x_{k_{i_t}}^{\mathcal{P}_{i_t}})).$$

6: Update LCB index of the played function and preserve others:

$$LCB_{i_{t}}(k_{i}+1,\delta) = \begin{cases} LCB_{i}(k_{i},\delta), & i \neq i_{t}, \\ f_{i_{t}}(x_{k_{i_{t}}+1}^{P_{i_{t}}}) - g_{i_{t}}(k_{i_{t}}+1,\delta), & i = i_{t}. \end{cases}$$

- 7: Increase iteration counter for the played arm: $k_{i_t} := k_{i_t} + 1$.
- 8: end for

Рис.: F-LCB алгоритм для выбора лучшей ручки.

Теоретические результаты

Theorem

Пусть \mathcal{A}_i $(i=1,\ldots,K)$ является $g_i(k)$ -ограничивающим алгоритмом. Тогда для алгоритма **F-LCB** для любого $\tau \in \overline{1,T}$ выполнено следующее:

$$R_O(\tau) \le \sum_{t=1}^{\tau} g_{i_t}(k_{i_t,t}) = \sum_{i=1}^{K} \sum_{k=1}^{k_{i,\tau}} g_i(k),$$
 (2)

Здесь k_{i,t} – количество выборов i-ой функции к моменту t.

Теоретические результаты

$$\mathcal{E}_{\mathsf{clean}} \triangleq \{ \forall i \in \{1, \dots, K\}, \forall t \in \{1, \dots, T\} : f_i(x_{i,t}) - f_i^* \leq g(k_{i,t}, \delta) \}.$$
(3)

Assumption

Функции f_i ограничены, т.е. $\max_{1 \le i \le K} \max_{x_i \in D_i} f_i(x_i) \le A$.

Theorem

Пусть \mathcal{A}_i является $g_i(k,\delta)$ -ограничивающим алгоритмом для задач $\min_{x\in\mathcal{D}_i} f_i(x)$ для всех $1\leq i\leq K$. Тогда для регрета $R_O(T)$ алгоритма **F-LCB** выполнено следующее неравенство:

$$\mathbb{E}\left[R_O(T)\right] \leq \mathbb{E}\left[\sum_{i=1}^K \sum_{t=1}^{k_{i,T}} g_i(t,\delta) \middle| \mathcal{E}_{clean}\right] + \delta K T^2 \cdot A, \tag{4}$$

где $A = \max_{1 \le i \le K} \max_{x_i \in D_i} f_i(x_i)$.

Оценки на регрет: детерминированный случай

Таблица: Сводка скоростей сходимости регрета R_O для задачи FMAB в детерминированной постановке. Предполагается, что функции f_i принадлежат одному и тому же классу, а базовые оптимизаторы \mathcal{A}_i одинаковы и указаны во втором столбце. PGD обозначает проекционный градиентный спуск, AGD — ускоренный градиентный спуск, а $\kappa = \frac{L}{\mu}$.

Функция	Базовый оптимизатор	g(k)	$R_O(T)$
Выпуклая М-липшицева	PGD	$\frac{RM}{\sqrt{k}}$	$O\left(\sqrt{T \cdot \sum_{i=1}^{K} M_i^2 R_i^2}\right)$
Выпуклая <i>L</i> -гладкая	AGD	$\frac{LR^2}{k^2}$	$O\left(\sum_{i=1}^{K} L_i R_i^2\right)$
μ -сильно выпуклая M -липшицева	PGD	$\frac{M^2}{\mu k}$	$O\left(\left(\sum_{i=1}^{K} \frac{M_i^2}{\mu_i}\right) \log T\right)$
μ-сильно выпуклая <i>L</i> -гладкая	AGD	$R^2 \exp\{-\frac{k}{\sqrt{\kappa}}\}$	$O\left(\sum_{i=1}^{K} \frac{R_i^2}{\exp\left\{\frac{1}{\sqrt{\kappa_i}}\right\} - 1}\right)$

Оценки на регрет: стохастика

Assumption

Алгоритм \mathcal{A}_i имеет доступ к несмещённому стохастическому градиентному оракулу, возвращающему $G_i(x,\xi)$. Существуют множество $D_i \subset \mathbb{R}^d$ и значения $\sigma \geq 0$, $\alpha \in (1,2]$ такие, что для всех $x \in D_i$ выполняется: $\mathbb{E}_{\xi}\left[\|G_i(x,\xi) - \nabla f_i(x)\|^{\alpha}\right] \leq \sigma^{\alpha}$.

Assumption

Для любого
$$x$$
 выполняется: $\mathbb{E} \exp\left\{\frac{\|G_i(x,\xi) - \nabla f_i(x)\|^2}{\sigma_i^2}\right\} \leq 1.$

Таблица: Оценки сожаления для задачи FMAB в стохастическом случае. Алгоритмы SSTM требуют Предположение 2 ($\alpha \in (1,2]$). AGD требует Предположения 2 ($\alpha = 2$) и 3.

Функция	Базовый оптимизатор	$R_O(T)$
Выпуклая <i>L</i> -гладкая	clipped-SSTM	$O\left(\max\left[KLR^2, \alpha\sigma RK^{1-\frac{1}{\alpha}}T^{\frac{1}{\alpha}}\log(AKT)\right]\right)$
μ -сильно выпуклая, \emph{L} -гладкая	R-clipped-SSTM	$O\left(\max\left[KLR^{2}, \alpha\sigma RK^{1-\frac{1}{\alpha}}T^{\frac{1}{\alpha}}\log(AKT)\right]\right)$ $O\left(\max\left[K\sqrt{\frac{L}{\mu}}, \frac{\sigma^{2}}{\mu}K^{2\frac{\alpha-1}{\alpha}}T^{\frac{2}{\alpha}-1}\log(AKT)\right]\right)$
μ -сильно выпуклая, \emph{M} -липшицева	AGD	$O\left(\sqrt{KT}\sigma R\log\left(AKT\right)\right)$

Эксперимент

Постановка: В качестве функций рассматриваются нейронки для классификаци на датасете CIFAR10. В качестве оценок на сходимость используются $g_i(k) = \frac{A_i}{\sqrt{k}}$.

Рис.: Процесс обучения моделей с использованием F-LCB.

Выносится на защиту

- 1. Поставлена задача функциональных многоруких бандитов.
- 2. Проанализирован алгоритм F-LCB и получены теоретические результаты.
- 3. Получены экспериментальные результаты, демонстрирующие работу алгоритма.

Работа подана на NIPS, ожидаются результаты.