

Figure 1: youo

- 1 2D lid-driven cavity
- 1.1 Case A
- 1.2 Case B
- 1.3 Case C

1.4 Question 1

1.5 Question 2

The two stability conditions for a general 2D advection diffusion problem are stated in equations (1) and (2) and the combined condition includes equations (2) and (3).

Note: These equations were derived in lectures and part of the exam so the derivation has been omitted from this report.

Advection (CFL):
$$\sigma_x + \sigma_y \le 1$$
 (1)

Diffusion:
$$\beta_x + \beta_y \le \frac{1}{2}$$
 (2)

Combined:
$$\frac{\sigma_x^2}{\beta_x} + \frac{\sigma_y^2}{\beta_y} \le 2$$
 (3)

In the case of the non-linear Navier Stokes equations we take $a_x = \max |u|$ and $a_y = \max |v|$. Furthermore, by assuming $\Delta x = \Delta y = h$, equations (1) - (3) can be further simplified to equations (4) - (6). A final conservative assumption to equations (4) and (6) is that $\max |u| \approx \max |v| < U_{lid} = 1$.

CFL:
$$\Delta t \le \frac{h}{\max(|u|) + \max(|v|)} \approx \frac{h}{2}$$
 (4)

Viscous limit:
$$\Delta t \le \frac{h^2}{4} \text{Re}$$
 (5)

Combined:
$$\Delta t \le \frac{2}{\operatorname{Re}(\max(|u|)^2 + \max(|v|)^2)} \approx \frac{1}{Re}$$
 (6)

These conditions have been tabulated for cases A - C below:

	Re	h	$\max(u)$	$\max(v)$	CFL	Viscous	Combined
Case A	20	$\frac{1}{30}$	•	•	0.0167	0.0056	0.0500
Case B	200	$\frac{1}{50}$	•	•	0.0100	0.0200	0.0050
Case C	4000	100	•	•	0.0050	0.1000	0.0003

It can be seen that the energy equation takes a similar form to the momentum equation with the Peclet number replacing the Reynolds number. Hence we can assert the following analogous conditions to equations (5) and (6):

Viscous:
$$\Delta t_{energy} \le \frac{2}{\text{Pe}(\max(|u|)^2 + \max(|v|)^2)} \approx \frac{1}{Pe} = \frac{1}{Pr} \Delta t_{momentum}$$
 (7)

Combined:
$$\Delta t_{energy} \le \frac{h^2}{4} \text{Pe} = Pr \Delta t_{momentum}$$
 (8)

In the case that Pr = 0.71 < 1 then in the viscous limit (equation (8)) $\Delta t_{energy} < \Delta t_{momentum}$ is a stricter condition.

1.6 Question 3

Laplacian: (in 1D). $\frac{\partial p}{\partial x^2} \stackrel{?}{=} \frac{p_{i-1} - 2p_i + p_{i+1}}{\Delta x^2}$ at i=1 (boundary) $\rightarrow p_0 - 2p_1 + p_2 = p_2 - p_1$ Δx^2

- 1.7 Question 4
- 1.8 Question 5