1차시: 파생 개요

서론

파생상품(Derivatives)

기초자산의 가격 움직임에 의해 가치가 결정되는 금융상품

A derivative is an instrument whose value depends on (or is derived from) the value of another asset.

▼ Underlying Asset(Spot): 파생상품의 가치를 결정 stock, bond, interest rate, commodity, currencies, insurance payouts ...

Contract의 형태로, 각 상품마다 계약에 따른 의무가 있음

파생상품의 종류

1. 선도계약(Forward Contract)

특정가격으로 미래 특정시점에서 자산을 사거나 팔기로 약속한 계약 표준화되지 않은 계약: 장외시장 거래

▼ positions

Long 약속된 시점에 약속된 가격으로 자산을 매수 할 의무 Short 약속된 시점에 약속된 가격으로 자산을 매도할 의무

2. 선물계약(Futures Contract)

특정가격으로 미래 특정시점에서 자산을 사거나 팔기로 약속한 계약 표준화 된 계약: 거래소 거래

3. 스왑계약(Swap Contract)

미래에 서로 다른 현금흐름을 교환하기로 약속한 두 기업 간의 장외계약 선도계약의 series

- 4. 옵션계약(Option Contract)
 - ▼ 콜/풋

Call Option 특정가격으로 미래 특정시점에 자산을 살 수 있는 권리 부여 Put Option 특정가격으로 미래 특정시점에 자산을 팔 수 있는 권리 부여

▼ 아메리칸/유러피안

American Option 만기일까지 언제든 옵션 행사 가능 European Option 만기일 당시에만 옵션 행사 가능

▼ positions

Long 본인에게 유리한 경우 옵션을 행사 (굳이 행사하지 않아도 됨) Short 매입자가 옵션 행사 시 이에 응해야 할 의무가 있음

Obligation

<u>Aa</u> Obligation	를 태그
Bilateral Obligation	계약의 양 당사자 간의 쌍방의무
(Forward Commitments)	Forward, Futures, Swap
<u>제목 없음</u>	
Unilateral Obligation	옵션을 매도한 사람이 일방의무를 지님
(Contingent Claims)	옵션을 매수한 사람은 의무가 아닌 권리(right) 행사

파생상품 시장

- 1. 거래소시장(Exchange)
 - ▼ 파생상품(Exchange-Traded Derivatives)의 계약을 표준화 기초자산, 계약단위, 만기일, 결제방식, 거래시간 ...

청산소(Clearing House)를 통해 거래 상의 위험 관리

- ▼ 파산위험(Default Risk): 거래 상대방이 파산하여 계약 의무를 이행하지 않을 위험 이 경우, Counterparty Risk로 불리기도 함
- ▼ 파생상품 매입자는 청산소에서 매입 계약을 체결, 매도자는 청산소에서 매도 계약을 체결 매입자와 매도자는 거래를 보장받을 수 있음

선물계약과 일부의 옵션 계약 체결

- 2. 장외시장(OTC: Over-The-Counter)
 - ▼ 파생상품(OTC Derivatives)의 계약 당사자 간의 사적 거래

계약 조건을 customizing

미결거래가 종결될 수 있는 상황, 계약이 종결되었을 때의 지불금총액, 담보...

▼ 개인보다는 은행, 증권사 펀드매니저, 기업 등 기관투자자가 주로 거래

Banks acted as market makers quoting bid and offer prices.

매입호가와 매도호가를 제시할 준비

장외시장 거래는 기본적으로 거래상대방위험(Counterparty Risk)이 있지만, 장외거래를 중앙청산소(Central Counterparty)로 가져가 위험을 줄일 수 있음

신용위기 이후 장외시장 거래에 대한 규제 증가

목적

- 1. OTC 시장의 투명성(Transparency)제고
- 2. Systemic risk 감소
 - ▼ 잔물결효과(Ripple Effect) 하나의 금융기관이 위기를 맞이하면 금융시장 전체의 위기로 이어지는 것

규제

1. 미국의 표준화된 OTC 파생상품은 가능하다면 SEFs를 통해 거래되어야 한다.

- ▼ Swap Execution Facilities
 - 스왑거래 플랫폼으로 거래소와 유사
- 2. 장외파생상품의 대부분은 Central CounterParty를 통해 이루어 진다.
- 3. 모든 거래는 중앙보관소(Central Repository)에 보고되어야 한다.

거래자 유형

1. 헷저(Hedger)

전통적인 금융자산이 가지고 있는 price risk를 hedge

• 선도계약을 이용한 헷징

달러/파운드 환율

<u>Aa</u> 구분	# 매입가 (Bid)	# 매도가 (Offer)
<u>Spot</u>	1.4542	1.4546
1-month forward	1.4544	1.4548
3-month forward	1.4547	1.4551
6-month forward	1.4556	1.4561

▼ 매수전략

미국의 기업이 3개월 후 영국 기업에 1000만 파운드 지급 예정 3개월 후 환율?

파운드 당 \$1.4551의 선도계약을 체결하여 영국 기업에 지급할 금액을 고정

▼ 매도전략

미국의 기업이 3개월 후 영국 기업으로부터 3000만 파운드 수취 예정 3개월 후 환율?

파운드 당 \$1.4547의 선도계약을 체결하여 수입 고정

3

▼ 헷징의 손실 가능성 3개월 뒤 spot price가 \$1.4551보다 낮아진다면?

3개월 뒤 spot price가 \$1.4547보다 높아진다면?

- 옵션계약을 이용한 헷징
 - ▼ 주식을 매입하면 미래에 주가가 하락할 위험이 있음 현재 주당 \$28인 주식 1000개 보유 (주가가 \$28를 하회하는 순간 손해)

▼ 풋 옵션을 매입함으로써 주가가 하락해도 제한적인 손실만 부담 만기일에 100주를 주당 \$27.5에 매도할 수 있는 풋옵션 매입 (1계약에 \$100) (매입비용 \$100×10계약 = \$1,000)

- 주가가 \$27.5를 하회하면 옵션 행사
 포지션 가치 \$27.5 x 1000주 = \$27500
 옵션 매입 비용 \$1000 (비용차감 후의 포지션의 가치는 \$26500)
- 2. \$27.5를 상회하면 옵션 소멸주가가 \$27.5보다 크기 때문에, 포지션의 가치도 \$27500 이상옵션 매입 비용 \$1000을 차감하면 \$26500이상

2. 투기자(Speculator)

파생상품 거래 시, 레버리지 효과를 얻을 수 있음

• 선물을 이용한 투기

미래에 특정 자산의 가격이 오를 것이라 예상할 때 영국 파운드화의 강세를 예상하여 25만 파운드 거래 선물 1계약 = 5만 파운드, 증거금 10%

▼ 현물 매입 매입비용 필요 \$1.447x25만 = \$361,750

▼ 선물계약

증거금 필요

계약 당 증거금 \$5,000 x 5계약 = \$25,000

현물매입과 선물계약 비교 (이자 미포함)

<u>Aa</u> .	■ 현물 매입 (파운드 당 \$1.447)	■ 선물 매입 (파운드 당 \$1.441)
<u>투자금액</u>	\$361,750	\$25,000
2개월 뒤 현물가격 \$1.5일 때 이익	\$13,250	\$14,750
2개월 뒤 현물가격 \$1.4일 때 이익	\$(-11,750)	\$(-10,250)

▼ 파운드화가 강세를 보이면 선물 매입자가 더 큰 이익

현물 매입: 1 파운드 당 달러화의 변화 \$(1.5-1.447)x25만 = \$13,250

선물 매입: 1 파운드 당 달러화의 변화 \$(1.5-1.441)x25만 = \$14,750

▼ 파운드화가 약세를 보이면 현물 매입자가 더 큰 손실

예시에서는 이자를 고려하지 않음

현물 매입: 1 파운드 당 달러화의 변화 \$(1.4-1.447)x25만 = \$(-11,750)

선물 매입: 1 파운드 당 달러화의 변화 \$(1.4-1.441)x25만 = \$(-10,250)

선물 매입자는 현물 매입자에 비해 적은 비용으로 큰 투기 포지션을 취할 수 있다!

• 옵션을 이용한 투기

주가가 상승할 것으로 예상

현재 주가는 \$20, 총 \$2000달러 투자예정

▼ 주식 매입

2,000/20 = 총 100주 매입 가능

▼ 콜옵션 매입

행사가가 \$22.50이고 1계약에 \$1인 2,000개의 콜옵션 매입 가능

현물매입과 옵션계약 비교

<u>Aa</u> .	■ 주가 상승(\$27)	■ 주가 하락(\$15)
<u>주식 100주 매입</u>	\$700	\$(-500)
<u>콜옵션 2,000계약 매입</u>	\$7,000	\$(-2,000)

▼ 주가가 상승하면 콜옵션 매입자가 큰 이익

현물 매입: \$(27-20)x100 = \$700

선물 매입: \$(27-22.5)x2,000 - 콜옵션 비용 \$2,000 = \$7,000

▼ 주가가 하락하면 콜옵션 매입자가 큰 손실

현물 매입: \$(15-20)x100 = \$(-500)

선물 매입: 옵션 행사 안함 \$0 - 콜옵션 비용 \$2,000 = \$(-2,000)

3. 차익거래자(Arbitrageur)

Arbitrage: 추가위험을 부담하지 않으면서 이익을 얻고자 하는 거래

▼ 일물일가의 법칙(The Law of One Price)

두 자산이 동일한 가치(동일한 현금흐름 + 동일한 위험)를 가지고 있다면 동일한 가격이어야 함

▼ 일물일가의 법칙이 일시적으로 붕괴되었을 때 차익거래 실현 가능

어떤 주식의 가격이 뉴욕에서 \$140, 런던에서 £100 (= \$143)라면, 해당 주식을 뉴욕에서 100주 매입한 후 런던에서 100주 매도하여 차익실현

\$(143-140)x100 = \$300

▼ 차익거래가 이루어지면 수요공급법칙에 의해 균형 달성 (일물일가 성립) 차익거래를 하고자 미국에서 주식을 사려는 사람이 많아지면, 미국 내 주식 가격이 상승

런던에서 주식을 파는 사람이 많아지면, 공급증가로 영국 내 주식 가격이 하락

파생상품의 위험성

▼ 파생상품의 용도는 다양하기 때문에, 투자의 본질이 변질되지 않도록 주의해야 한다.

헷저나 차익거래자가 갑자기 투기자로 변질된다면?

기존에 정해두었던 위험 한도를 초과할 수 있음

위험한도를 준수하더라도, 위험이 제거되는 것이 아니기 때문에 파생상품 시장에서 거래인들은 가능한 모든 위험에 대해 생각해 보아야 한다.

이자율

이자율의 종류

1. 국채이자율 (Treasury Rate)

▼ 정부가 자국통화로 발행하는 채권

자사주는 Treasury Stock

정부가 발행하기 때문에 default risk가 거의 없음

만기 기간에 따른 국채 분류

1. T-Bill 1년 미만

2. T-Note 1-10년

3. T-Bond 10년 이상

2. LIBOR (London InterBank Offer Rate)

▼ 런던 은행 간 대출금리 AA등급의 은행 간 무담보 대출금리

▼ 매일 오전11시 18개의 주요 은행으로부터 자료 조사

5개 통화로 표시: 달러, 유로, 엔, 파운드, 프랑

7개의 만기기간: 1일, 7일, 1개월, 2개월, 3개월, 6개월, 12개월

기준일: 2021년06월11일 [전일 영국 런던시장 GMT +11:00 기준 금리임] 조회시각: 2021년06월12일 04시34분43초

통화코드	7일	1개월	2개월	3개월	6개월	12개월
USD	0,05788	0.07263	0.10463	0.11900	0,14825	0, 23925
EUR	-0.57771	-0.57743	-0.55629	-0.54900	-0,53029	-0,49214
JPY	-0.09183	-0.07917	-0.04750	-0.09717	-0.06517	0.04817
GBP	0.04413	0.05200	0,06263	0.08375	0.10450	0, 16588
CHF	-0.82140	-0,80280	-0.77960	-0.74780	-0.70740	-0.59180

▼ 객관성 유지의 어려움

각 은행에 가능한 대출 금리를 직접 물어보기 때문에 조작의 가능성이 높음 2012년 트레이더-금리 담당자, 금리 담당자-타은행 금리 담당자 간의 담합이 발각

- ▼ 2023년까지 LIBOR금리의 단계적 폐지
 - ▼ FED에서는 SOFR로 대체

Secured Overnight Financing Rate: 은행들의 대출, 자산을 담보로 발행되는 유가증권에 대해 투자자들이 제시하는 수익률

▼ 우리나라에서는 RP금리로 대체 예정 환매채(RePurchase agreement): 채권 발행자가 일정기간 후 금리를 더해 다시 채권을 매입

- 3. 콜금리 (Federal Funds Rate or Overnight Rate)
 - ▼ 자금이 부족한 은행이 잉여자금이 있는 타은행으로부터 대출을 받을 때 적용되는 금리 대출을 중개하는 중개인 존재

중개된 거래의 규모를 가중치로 설정하여 금리의 가중평균을 구하면, 실효연방준비율(Effective Federal Reserve Rate)

중앙은행이 금리 조절을 위해 직접 거래에 참여하기도 함

- 4. 환매이자율 (Repo Rate, RP Rate)
 - ▼ 금융기관이 환매를 통해 얻은 이자율 증권을 매도한 후, 더 높은 가격에 다시 증권을 매입 매도가격과 환매가격의 차이가 이자율 결정
 - ▼ 증권 자체가 담보로, 신용위험이 낮음 무담보 대출금리인 LIBOR와 콜금리보다 낮은 금리
 - ▼ 대부분 overnight repo 기간이 길어지면 term repo

무위험이자율(Risk-free rate)

무위험 포트폴리오의 수익률인 무위험 수익률을 이용하여 파생상품의 수익률을 평가할 수 있음

 $r_f \neq \text{Treasury Rate}$

- ▼ 국채이자율을 인위적으로 낮추는 요인 존재
 - 1. 국채에 투자하기 위해서는 자본을 보유하지 않아도 되지만, 다른 저위험자산에 투자하기 위해서는 자본을 보유하고 있어야 한다.
 - 2. 미국에서는 주 단위의 지방채(Municipal Bond)에 한해 세금이 면제되기 때문에 다른 자산에 비해 국채는 세금 혜택이 있다고 본다.

연속복리 계산

- · Time Value of Money
 - ▼ 연간 10%의 이자율로 \$100를 예금 했다면?

현재 \$100

1년 후 \$100 + \$(100 x 0.1) = \$110

2년 후 \$100 x (1+0.1)² = \$121

*n*년 후 \$100 x (1+0.1)ⁿ

lacktriangleright 미래가치 $FV=PV(1+i)^n$

PV; Present Value

FV; Future Value

i; Interest rate

n; Number of years

▼ 예시 (이자율 연10%, \$100예금)

n년 후 미래가치 $FV = \$100(1+0.1)^n$

FV \$100
$$$100(1+0.1)^1$$
 $$100(1+0.1)^2$ $$100(1+0.1)^n$
Year 0 1 2 ... n

▼ n년 후 \$100를 받기로 약속했다면?

미래의 \$100는 현재 어느 정도의 가치를 가지고 있을까?

lacktriangle 현재가치 $PV = FV/(1+i)^n$

$$n = 0$$
 \$100

$$n = 1$$
 \$100/ $(1 + 0.1)^1$ =\$90.9090

$$n = 2$$
 \$100/(1 + 0.1)²=\$82.6446

$$n = 3$$
 \$100/ $(1 + 0.1)^3$ =\$75.1315

....

▼ 유동성 선호현상

 n 이 커질수록 현재가치 PV는 작아짐

▼ "현재의 \$1와 미래의 \$1는 가치가 다르다!"

- 1. 시차선호: 미래보다는 현재의 소비를 선호
- 2. 투자기회: 현재의 현금을 투자해 추가 이익 실현
- 3. 인플레이션: 미래의 현금은 구매력이 약함
- 4. 불확실성: 미래에 현금을 지급받지 못할 가능성

▼ 시간가치를 이용한 valuation

$$P_0 = \sum_{t=1}^n \frac{CF}{(1+i)^t}$$

▼ *CF*; 현금흐름(Cash Flow)

지급받게 될 이자, 배당, 매도가, 원금 등 내가 받게될 현금흐름을 의미

▼ Stock

▼ Generalized Dividend Valuation Model

 D_t ; t시점의 배당 k_e ; 주식의 요구수익률 ($required\ return\ on\ equity$)

$$P_0 = \frac{D_1}{(1+k_e)^1} + \frac{D_2}{(1+k_e)^2} + \frac{D_3}{(1+k_e)^3} + \dots + \frac{D_n}{(1+k_e)^n} + \frac{P_n}{(1+k_e)^n}$$

 $n o \infty$ 라면, $P_n/(1+k_e)^n o P_n/\infty$ 이기 때문에 P_n 은 P_0 에 영향을 미치지 않게 됨

$$P_0 = \sum_{t=1}^\infty rac{D_t}{(1+k_e)^t}$$

▼ Gordon Growth Model

- 1. 주식의 배당인 D_t 는 매 해 g의 성장률로 일정하게 성장
- 2. 성장률은 주식의 요구수익률인 k_e 보다 작음

$$P_0 = rac{D_0(1+g)}{(1+k_e)^1} + rac{D_0(1+g)^2}{(1+k_e)^2} + rac{D_0(1+g)^3}{(1+k_e)^3} + \cdots + rac{D_0(1+g)^n}{(1+k_e)^n} + rac{P_n}{(1+k_e)^n}$$

 $n o \infty$ (무한등비급수)

$$P_0 = \sum_{t=1}^{\infty} rac{D_0 (1+g)^t}{(1+k_e)^t} = rac{D_1}{(k_e-g)}$$

▼ Bond

C; 지급받을 이자 (coupon) FV; 액면가 ($Face\ Value$)

$$P = rac{C}{(1+i)^1} + rac{C}{(1+i)^2} + rac{C}{(1+i)^3} + \cdots + rac{C}{(1+i)^n} + rac{FV}{(1+i)^n}$$

▼ Consol

 $n o \infty$ (perpetuity)

$$P_0 = \sum_{t=1}^{\infty} \frac{C}{(1+i)^t} = \frac{C}{i_c}$$

• 이자율 측정

원금 A를 매년 R의 이자율로 n년 간 투자

$$FV = A(1+R)^n$$

동일한 조건에 복리빈도가 m회

$$FV = A(1 + \frac{R}{m})^{mn}$$

lacktriangle 이자율은 연간으로 표시되기 때문에 연간 복리빈도m으로 이자율을 나눠야 함

1. m = 1

Annually compounded (R/1)

동등 연간이자율(Equivalent Annual Interest Rate)

2. m = 2

Semi-annually compounded (R/2)

3. m = 4

Quarterly compounded $\left(R/4\right)$

ullet 예시 (A=\$100, R=0.1, n=1)

복리빈도 m	FV
Annually $(m = 1)$	\$110
Semi-annually (m=2)	\$110.25
Quarterly(m=4)	\$110.38
Monthly(m = 12)	\$110.47 (계산)
Weekly(m = 52)	\$110.51
Daily (m = 365)	\$110.52 (계산)

• 연속복리

lacktriangle 이산복리식에서 mn을 m/R imes Rn으로 분해

$$A(1+\frac{R}{m})^{mn} = A(1+\frac{R}{m})^{\frac{m}{R}-Rn}$$

복리빈도 <i>m</i>	$(1+\frac{R}{m})^{\frac{m}{R}}$
Annually $(m = 1)$	2.5937424601
Semi-annually (m = 2)	2.65329770514442
Quarterly $(m = 4)$	2.68506383838997
Monthly (m = 12)	2.70704149086224
Weekly (m = 52)	2.71567269503084
Daily $(m = 365)$	2.71790955457697

- ullet 연간 복리빈도 m이 커질수록, 자연상수 e에 가까워짐 epprox 2.718281828459045
- $lacktriangleright m
 ightarrow \infty$ 일 때, 연속복리 계산

$$\lim_{m\to\infty}\left(1+\frac{R}{m}\right)^{\frac{m}{R}}=e$$

$$\because e = \lim_{n o \infty} \left(1 + rac{1}{n}
ight)^n$$

 $lacktriangleright m
ightarrow \infty$ 일 때, 미래가치 FV계산

$$\lim_{m\to\infty}A(1+\frac{R}{m})^{\frac{m}{R}\cdot Rn}=Ae^{Rn}$$

ullet 예시 (A=\$100, R=0.1, n=1) $100e^{0.1}pprox 110.52$

• 연속복리와 동등한 이자율

 R_c ; 연속복리

 R_m ; R_c 와 동등한 미래가치를 만드는 이산복리(복리빈도 m)

▼ 동등한 미래가치

$$FV = Ae^{R_c n} = A(1 + rac{R_m}{m})^{mn}$$

$$\sqrt[n]{FV/A}=e^{R_c}=(1+rac{R_m}{m})^m$$

 $\blacksquare ln$

 $ullet \, \ln e^{R_c} = R_c$

$$egin{aligned} ullet & \ln(1+rac{R_m}{m})^m = m\ln(1+rac{R_m}{m}) \ \Longrightarrow R_c = m\ln(1+rac{R_m}{m}) \end{aligned}$$

 $\blacktriangledown root m$

$$ullet \sqrt[m]{e^{R_c}} = e^{R_C/m}$$

$$\bullet \sqrt[m]{(1+\frac{R_m}{m})^m} = 1 + \frac{R_m}{m}$$

$$\Longrightarrow R_m = m(e^{R_c/m}-1)$$

$$R_c = m \ln (1 + rac{R_m}{m}) \;\; or \;\; R_m = m (e^{R_c/m} - 1)$$

▼ 예시 (반년복리 연 10%의 이자율)

$$R_m=0.1, m=2(semi-annual)$$

$$R_c = 2ln(1 + 0.1/2) \approx 0.0976$$

▼ 예시 (연속복리 기준 연 8%로 대출, 차입자는 분기별로 이자지급)

$$R_c = 0.08, m = 4(quarter)$$

$$R_m = 4(e^{0.08/4} - 1) pprox 0.0808$$

채권과 이자율

1. 채권수익률 (Yield)

채권에서 발생하는 현금흐름의 현재가치와 채권의 시장가치를 동일하게 만드는 할인율

▼ 채권의 시장가치

▼ 이산복리로 표기하는 경우가 많지만, 교재에서는 연속복리를 이용할 예정

$$P = \sum_{t=1}^n rac{C}{(1+i)^t} + rac{FV}{(1+i)^n}$$

- ▼ 각 시점의 현금흐름을 해당 시점의 무이표 이자율로 할인 무이표이자율(zero rate): n년간의 투자로부터 얻는 이자율
 - 모든 원리금은 n년도 말에 실현, 이자 지급은 없음
 - n년만기 현물이자율(Spot Rate)
- ▼ 예시 (2년만기, 액면가 \$100, 반년복리기준 액면이자율 6%)

FV = \$100, c(couponrate)=3%, C = \$3

Spot Rate				
만기(year) 연속복리 무이표이자율				
0.5	0.05			
1	0.058			
1.5	0.064			
2	0.068			

$$P = 3e^{-0.05 \times 0.5} + 3e^{-0.058 \times 1.0} + 3e^{-0.064 \times 1.5} + 103e^{-0.068 \times 2.0} \approx 98.39$$

lacktriangle 채권수익률 y
eq i

이자율로 채권의 가격을 계산한 후, 가격을 이용하여 수익률을 추정

 \blacktriangledown 예시 ($P\approx98.39$)

$$98.39 \approx 3e^{-y\times0.5} + 3e^{-y\times1.0} + 3e^{-y\times1.5} + 103e^{-y\times2.0}$$

시행착오법을 통해 위의 식을 만족시키는 y 추정 (6.76%)

액면가수익률 (Par Yield)

▼ 채권의 가격과 액면가를 동일하게 만드는 할인율

할인율; coupon rate

$$\frac{c}{2}e^{-0.05\times0.5} \ + \ \frac{c}{2}e^{-0.058\times1} \ + \ \frac{c}{2}e^{-0.064\times1.5} \ + \ (\frac{c}{2}+100)e^{-0.068\times2} \quad = \quad 100$$

위의 식을 만족시키는 c 구하기

cpprox 6.87

▼ 일반화

d; 채권 만기일에 받는 \$1의 현재가치

A; 매 이자지급일에 받는 \$1의 현재가치

m; 연간 이자지급 횟수

$$100 = A\frac{c}{m} + 100d$$

$$\frac{c}{2}(e^{-0.05\times0.5} + e^{-0.058\times1} + e^{-0.064\times1.5} + e^{-0.068\times2}) + 100e^{-0.068\times2} = 100$$

- m = 2
- $A \approx 3.70027$
- $d \approx 0.87284$
- 2. 듀레이션 (Macaulay Duration)
 - ▼ 채권 소유자가 원리금을 지급받기까지 걸리는 기간 만기가 n년인 무이표채(zero-coupon)는 n년의 듀레이션
 - lacktriangle 이자가 지급되는 이표채의 듀레이션은 n년보다 짧을 것 B; bondprice

$$B = \sum_{t=1}^n CF_t e^{-yt}$$

듀레이션 D는 현금흐름 CF_t 의 현재가치를 가중치로 설정한 시간의 가중평균 (B는 모든 CF_t 의 현재가치의 합)

$$D = \sum_{t=1}^{n} \frac{CF_t e^{-yt}}{B} \cdot t$$

수정 듀레이션 (Modified Duration)

lacktriangle 수익률 y와 채권가격 B의 관계

$$\frac{\Delta B}{B} = -D \cdot \Delta y$$

▼ B를 y로 편미분

$$rac{\Delta B}{\Delta y} = -\sum_{t=1}^n t \cdot C F_t e^{-yt}$$

$$\frac{\Delta B}{B \cdot \Delta y} = -\frac{\sum_{t=1}^{n} t \cdot CF_t e^{-yt}}{B} = -D$$

▼ 이산복리로 표현

$$B = \sum_{t=1}^{n} \frac{CF_t}{(1+y)^t} = \sum_{t=1}^{n} CF_t \cdot (1+y)^{-t}$$

$$\Delta B = -\frac{B \cdot D \cdot \Delta y}{1 + y}$$

수정 듀레이션 $D^* = D/(1+y)$ 라고 한다면, (y는 연간 기준)

$$\frac{\Delta B}{B} = -D^* \cdot \Delta y$$

▼ 채권 가격의 민감도

수익률 y가 변할 때 채권의 가격은 몇 % 움직이는지?

$$\frac{\Delta B/B}{\Delta y} = -D^*$$

[채권의 가격-수익률] 그래프의 기울기

Duration

□ The concept of duration is based on the *slope* of the price-yield relationship:

□ What does slope of a curve tell us?

- How much the y-axis changes for a small change in the x-axis.
- Slope = dP/dy
- <u>Duration</u>—tells us how much bond price changes for a given change in yield.
- Note: there are different types of duration.

볼록성(Convexity)

▼ 듀레이션은 채권의 가격과 수익률의 곡선의 기울기 실제 채권가격의 움직임은 곡선, 듀레이션은 직선이기에 오차 존재

동일한 듀레이션을 가지고 있는 두 채권도, 각자 다른 볼록성을 지니고 있을 수 있음

▼ 볼록성은 채권의 가격을 수익률로 두번 편미분한 2계도함수 이용

$$C = rac{1}{B} \cdot rac{d^2B}{dy^2} = rac{\sum_{t=1}^n CF_t \cdot t^2 \cdot e^{-yt}}{B}$$

선도계약과이자율

lacktriangle 두 개의 다른 만기기간 T_1,T_2 동안에 적용되는 무이표 이자율 R_1,R_2 를 이용하여 추정한 선도이자율 R_F

$$R_F = rac{R_2 T_2 - R_1 T_1}{T_2 - T_1}$$

lacktriangle 예시 (n=4의 선도이자율)

n	n년 동안의 무이표이자율 (연간 %)	n번째 연도의 선도이자율 (연간 %)
1	3.0	
2	4.0	5.0
3	4.6	5.8
4	5.0	?
5	5.3	6.5

$$R_F = (5.0 \times 4 - 4.6 \times 3)/(4 - 3) = 6.2$$

▼ 순간선도이자율(Instantaneous Forward Rate)

$$\begin{split} R_F &= \frac{R_2 T_2 + \frac{R_2 T_1 - R_2 T_1 - R_1 T_1}{T_2 - T_1}}{T_2 - T_1} \\ &= \frac{R_2 T_2 - \frac{R_2 T_1 + R_2 T_1 - R_1 T_1}{T_2 - T_1}}{T_2 - T_1} \\ &= R_2 + T_1 \frac{R_2 - R_1}{T_2 - T_1} \end{split}$$

만기시점T의 순간선도이자율 R_F

- 선도금리계약(Forward Rate Agreement)
 - ▼ 미래 일정 구간 동안에 적용할 금리를 미리 약정하는 계약 기초자산이 선도금리인 선도계약 LIBOR금리를 주로 사용
 - **▼** Positions
 - 1. FRA Long Position

30일 후에 90일 간 자금을 차입할 계획

- 금리가 상승할 위험을 hedge하기 위해 금리를 고정시킬 필요가 있음
- 30일 후에 3-month LIBOR금리를 매입
- lacktriangle 이자수익: $L(R_k-R_m)(T_2-T_1)$ L;원금, $R_k;FRA$ 에서합의한이자율, $R_m;$ 관찰된선도이자율

Borrow with 3 – month LIBO
$$t = 0 t = 30 t = 120$$

2. FRA Short Position

30일 후에 90일 간 자금을 대출해 줄 계획

- 금리가 하락할 위험을 hedge하기 위해 30일 후에 3-month LIBOR금리 매도
- 이자수익: $L(R_m-R_k)(T_2-T_1)$

▼ 가치평가는 각 포지션에서 얻게 될 이자수익의 현재가치로 평가

- 1. 선도이자율이 실현된다는 가정 ($R_m=R_F$)하에 이자수익 계산
- 2. 무위험이자율로 할인
- **▼** Long

$$L(R_k-R_F)(T_1-T_2)e^{-R_2T_2}$$

▼ Short

$$L(R_F - R_k)(T_1 - T_2)e^{-R_2T_2}$$

▼ 예시

1.5년 시점부터 2년까지의 미래에 선도 LIBOR금리가 반년복리 5%이고, 한 기업이 원금\$1억에 대해 반년 복리 5.8%의 이자를 받고 LIBOR를 지급하는 계약을 했다. 2년 무위험이자율은 4%이다.

•
$$R_F = 0.05, R_k = 0.058$$

•
$$T_1 = 1.5, T_2 = 2$$

•
$$R_2 = 0.04$$

$$V_{FRA} = 100,000,000(0.058 - 0.05)(2 - 1.5)e^{-0.04 \times 2} = 369,247$$

스왑과 이자율

금리스왑: 고정금리와 변동금리의 교환

▼ LIBOR

스왑계약 시 가장 흔히 사용하는 금리로 LIBOR를 금리로 사용

▼ Interest Rate Swap = Series of FRA
고정금리를 지급하고 LIBOR 금리를 받는 스왑
미래의 LIBOR 금리를 기초자산으로 하는 선도계약 매입 포지션

	Swap			Forward	
Tenor	Pay Fixed	Receive Floating	Expiration	Underlying Asset	Forward Price
1Q	Swap Fixed Rate	3-month LIBOR	T = 1Q	3-month LIBOR	Swap Fixed Rate
2Q	Swap Fixed Rate	3-month LIBOR	T = 2Q	3-month LIBOR	Swap Fixed Rate
3Q	Swap Fixed Rate	3-month LIBOR	T = 3Q	3-month LIBOR	Swap Fixed Rate
4Q	Swap Fixed Rate	3-month LIBOR	T = 4Q	3-month LIBOR	Swap Fixed Rate

▼ Overnight Interest Swap

LIBOR와 마찬가지로 고정금리를 교환하지만, 고정금리를 일정 기간의 overnight rate을 기하평균하여 정한다.

▼ 예시 (원금 \$1억인 3개월 오버나이트스왑)

고정금리 연 3% 와 오버나이트금리 3개월간 연 2.8%

고정금리 납입자가 변동금리 납입자에게 지급의무

$$100,000,000 imes rac{1}{4} imes (0.03 - 0.028) = 50,000$$

이자율의 기간구조 이론

- ▼ 이자율의 특징
 - 1. 각각 다른 만기일을 가진 채권의 이자율들은 모두 같은 방향으로 움직인다.
 - 2. 단기 이자율이 낮을 땐 수익률이 상향곡선을 그리고, 단기 이자율이 높을 땐 수익률이 하향곡선을 그린다.
 - ▼ 상향/하향
 - 1. 상향: 만기가 길 수록 높은 이자율

2. 하향: 만기가 길 수록 낮은 이자율

- 3. 수익률곡선은 대부분 상향곡선을 그린다.
- 1. 기대이론(Expectations Theory)
 - ▼ 다른 만기일을 가진 채권들은 서로 완벽하게 대체가능 장기 이자율은 단기 이자율들의 평균으로 설명 t시점의 만기 n년의 이자율은 t시점부터 t+(n-1)까지의 만기 1년의 이자율들의 평균 i^e ; 이자율의 예측치, 기댓값뿐만 아니라 사람들의 예상도 반영됨

$$i_{nt} = rac{i_t + i_{t+1}^e + i_{t+2}^e + \cdots + i_{t+(n-1)}^e}{n}$$

이자율의 1&2번 특징 설명

- 2. 시장분할이론(Market Segment Theory)
 - ▼ 다른 만기일을 가진 채권들은 더이상 서로를 대체하지 못함
 - 채권의 이자율이 평균이 아닌 수요공급 법칙에 의해 결정되기 때문
 - 사람들이 선호하는 만기가 있을 것
 - 유동성 선호현상에 의해 만기가 짧은 채권을 선호

이자율의 3번 특징 설명

- 3. 유동성선호이론(Liquidity Preference Theory)
 - ▼ 다른 만기일을 가진 채권들은 부분적으로 서로를 대체할 수 있음 이자율은 단기 이자율들의 평균으로 예측 가능하지만, 유동성 선호현상에 의해 유동성 프리미엄에 더해짐

$$i_{nt} = rac{i_t + i_{t+1}^e + i_{t+2}^e + \cdots + i_{t+(n-1)}^e}{n} + l_{nt}$$

- ▼ 유동성 프리미엄 Preferred Habitat Theory

 사람들은 대부분 risk-averse이기 때문에 interest risk가 큰 장기 채권을 선호하지 않음

 단, 수익을 높일 수 있는 높은 프리미엄이 더해지면 장기 채권에 투자 가능
- ▼ 이자율의 모든 특징 설명 가능
 - 1. 이자율들의 평균으로 설명되기 때문에 만기가 다른 이자율들은 비슷한 방향으로 움직임
 - 2. 단기이자율에 따라 미래 이자율에 대한 전망이 달라짐

3. 평균 이자율에 프리미엄이 붙기 때문에 대부분 우상향

