СОДЕРЖАНИЕ 1

Содержание

9.	Teo	Теория меры		
	9.1	Система множеств	2	
	9.2	Объем и мера	7	
	9.3	Продолжение меры	12	

9. Теория меры

9. Теория меры

9.1 Система множеств

Обозначение:

Дизъюнктные множества:

1.
$$A \sqcup B := A \cup B$$
 и $A \cap B = \emptyset$

2.
$$\bigsqcup_{k=1}^n A_k := \bigcup_{k=1}^n A_k$$
 и $A_i \cap A_j = \emptyset$

Определение 9.1.1. $\{E_{\alpha}\}_{{\alpha}\in I}$ – разбиение множества E, если $E=\bigsqcup_{{\alpha}\in I}E_{\alpha}$

Напоминание:

$$X\setminus\bigcup_{\alpha\in I}E_\alpha=\bigcap_{\alpha\in I}(X\setminus E_\alpha)\ \text{и}\ X\setminus\bigcup_{\alpha\in I}E_\alpha=\bigcap_{\alpha\in I}(X\setminus E_\alpha)$$

Определение 9.1.2. A – система подмножеств X:

 δ_0 . Если $A, B \in \mathcal{A}$, то $A \cap B \in \mathcal{A}$.

 σ_0 . Если $A, B \in \mathcal{A}$, то $A \cup B \in \mathcal{A}$.

$$\delta$$
. Если $A_1, A_2, \ldots \in \mathcal{A}$, то $\bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$.

$$\sigma$$
. Если $A_1, A_2, \ldots \in \mathcal{A}$, то $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

Замечание. Из δ следует δ_0 и из σ следует σ_0 (так как δ и σ подразумевают более сильные ограничения на структуру).

Определение 9.1.3. Система множества *симметрична*, если $A \in \mathcal{A} \Rightarrow X \setminus A \in \mathcal{A}$.

Определение 9.1.4. Система множества \mathcal{A} – *алгебра*, если она симметрична, $\varnothing \in \mathcal{A}$, есть свойства δ_0 и σ_0 .

Определение 9.1.5. Система множества \mathcal{A} – σ -алгебра, если она симметрична, $\varnothing \in \mathcal{A}$, есть свойства δ и σ .

Утверждение 9.1.1. Если \mathcal{A} симметричная система, то $\sigma_0 \Leftrightarrow \delta_0$ и $\sigma \Leftrightarrow \delta$.

Доказательство.
$$X \setminus (\underbrace{(X \setminus A) \cup (X \setminus B)}_{X \setminus (A \cap B)}) = A \cap B$$
 и $X \setminus (\underbrace{(X \setminus A) \cap (X \setminus B)}_{X \setminus (A \cup B)}) = A \cup B$ \square

3амечание. Если $\mathcal{A}-\sigma$ -алгебра, то $\mathcal{A}-$ алгебра.

Свойства алгебры множеств:

- 1. $\varnothing, X \in \mathcal{A}$.
- 2. Если $A, B \in \mathcal{A}$, то $\underbrace{A \setminus B}_{A \cap (X \setminus B)} \in \mathcal{A}$.
- 3. Если $A_1, A_2, ..., A_n \in \mathcal{A}$, то $\bigcup_{k=1}^n A_k$ и $\bigcap_{k=1}^n A_k \in \mathcal{A}$ (по индукции).

Пример.

1. $X = \mathbb{R}^2$, $\mathcal{A} = \{$ все огранич. мн-ва и их дополнения $\}$

(пустое есть, для любого множества есть дополнение, пересечение двух ограниченных ограниченно, пересечение ограниченного с каким-то ограничено и пересечение дополнений – это дополнение объединений, а объединение ограниченных ограничено)

 \mathcal{A} – алгебра, но не σ -алгебра.

- 2. $2^{X} \sigma$ -алгебра
- 3. $Y \subset X$, A алгебра (σ -алгебра) подмножеств X, тогда:

$$\mathcal{B}:=\{A\cap Y\mid A\in\mathcal{A}\}$$
 – алгебра (σ -алгебра) – индуцированная алгебра

Доказательство.
$$Y \setminus (A \cap Y) = Y \cap (X \setminus A)$$

Проверили, что взяли какую-то алгберу и пересекли с конкретным множеством, то структура сохранится.

4. Пусть \mathcal{A}_{α} – алгебры (σ -алгебры). Тогда $\bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$ – алгебра (σ -алгебра).

Доказательство. Пустое лежало везде, поэтому оно осталось в пересечении. Само пересечение, очевидно, тоже есть.

Если
$$A, B \in \bigcap_{\alpha \in I} A_{\alpha}$$
, то $A, B \in \mathcal{A}_{\alpha} \ \forall \alpha \in I \Rightarrow A \cup B \in \mathcal{A}_{\alpha} \ \forall \alpha \in I \Rightarrow \bigcap_{\alpha \in I} A_{\alpha}$

5. Пусть есть $A, B \subset X$.

Bonpoc: из чего состоит наименьшая алебра, содержащая A и B?

Omsem:
$$\varnothing$$
, X , A , B , $A \cap B$, $A \cup B$, $X \setminus A$, $X \setminus B$, $X \setminus (A \cap B)$, $X \setminus (A \cup B)$, $A \setminus B$,

Теорема 9.1.1. Пусть \mathcal{E} – система подмножеств X. Тогда существует наименьшая по включению σ -алгебра \mathcal{A} , содержащая \mathcal{E} .

Доказательство. $2^X - \sigma$ -алгебра, содержащая \mathcal{E} .

Пусть \mathcal{A}_{α} – всевозможные σ -алгебры, содержащие \mathcal{E} .

$$\mathcal{B}:=\bigcap_{\alpha\in I}\mathcal{A}_{\alpha}$$
 – σ -алгебра, $\mathcal{B}\supset\mathcal{E}$ и $\mathcal{A}_{\alpha}\supset\mathcal{E}$ $\forall \alpha.$

Доказали сущестование.

Определение 9.1.6. Такая σ -алгебра – *борелевская оболочка* \mathcal{E} . Обозначается как $\mathcal{B}(\mathcal{E})$.

Определение 9.1.7. Пусть $X = \mathbb{R}^m$, \mathcal{E} — всевозможные открытые множества. *Борелевская* σ -алгебра $\mathcal{B}^m := \mathcal{B}(\mathcal{E})$.

3амечание. $\mathcal{B}^m \neq 2^{\mathbb{R}^m}$ (имеют разные мощности: \mathcal{B}^m – континуум, $2^{\mathbb{R}^m}$ – больше континуума)

Определение 9.1.8. \mathcal{R} – кольцо подмножеств X, если $A, B \in \mathcal{R} \Rightarrow A \cap B, A \cup B, A \setminus B \in \mathcal{R}$

3амечание. Если \mathcal{R} – кольцо и $X \in \mathcal{R}$, то \mathcal{R} – алгебра.

Определение 9.1.9. \mathcal{P} – *полукольцо подмножеств* X, если:

- 1. $\varnothing \in \mathcal{P}$
- 2. $A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$
- 3. $A, B \in \mathcal{P} \Rightarrow$ существуют $Q_1, Q_2, ..., Q_n \in \mathcal{P}$ т.ч. $A \setminus B = \bigsqcup_{k=1}^n Q_k$

Пример. $X = \mathbb{R}, \, \mathcal{P} := \{(a,b] \mid a,b \in \mathbb{R}\}$ – полукольцо

Лемма 9.1.1. $\bigcup A_k = \bigcup (A_k \setminus \bigcup_{j=1}^{k-1} A_j)$

Доказательство. Проверяем «Э»: $B_k := A_k \setminus \bigcup_{j=1}^{k-1} A_j \subset A_k \Rightarrow \bigcup A_k \supset \bigcup B_k$ Проверяем, что B_k дизъюнктны: $B_n \subset A_n \setminus \underbrace{A_k}_{\supset B_k}$ при $n > k \Rightarrow B_n \cup B_k = \varnothing$

Проверяем «С»: берем
$$x \in \bigcup A_k$$
, $n := \min\{j \mid x \in A_j\} \Rightarrow x \in B_n = \underbrace{A_n}_{x \in A_j} \setminus \underbrace{\bigcup_{j=1}^{n-1} A_j}_{x \notin A_j} \Rightarrow x \in \bigcup B_k$. \square

Теорема 9.1.2. Свойства полукольца:

Пусть $P, P_1, P_2, ... \in \mathcal{P}$, где \mathcal{P} – полукольцо. Тогда:

1.
$$P \setminus \bigcup_{k=1}^n P_k = \coprod_{j=1}^m Q_j$$
 для некоторых $Q_j \in \mathcal{P}$.

2.
$$\bigcup_{k=1}^n P_k = \coprod_{k=1}^n \coprod_{j=1}^{m_k} Q_{kj}$$
 для некоторых $Q_{kj} \in \mathcal{P}$, т.ч. $Q_{kj} \subset P_k$.

3. Во 2 пункте можно вместо n написать ∞ .

Доказательство.

1. Индукция по n. База – определение. Переход $n-1 \to n$

$$P \setminus \bigcup_{k=1}^n P_k = \left(\underbrace{P \setminus \bigcup_{k=1}^{n-1} P_k}_{\text{инд.пр.}= \bigsqcup_{j=1}^m Q_j} \right) \setminus P_n = \bigsqcup_{j=1}^m Q_j \setminus P_n = \bigsqcup_{j=1}^m \bigsqcup_{i=1}^{m_j} Q_{ji}$$

2.
$$\bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{n} (P_k \setminus \bigcup_{j=1}^{k-1} P_j) \stackrel{\text{IIO}}{=} \bigcup_{k=1}^{n} \bigsqcup_{j=1}^{m_k} Q_{kj} \Rightarrow Q_{kj} \subset P_k$$

Теорема 9.1.3. Декартово произведение полуколец

Пусть \mathcal{P} – полукольцо подмножеств мн-ва X, \mathcal{Q} – полукольцо подмножеств мн-ва Y. Тогда конструкция $\mathcal{P} \times \mathcal{Q} := \{P \times Q \mid P \in \mathcal{P}, Q \in \mathcal{Q}\}$ – полукольцо подмножеств $X \times Y$.

Доказательство. Пусть
$$P_1 \times Q_1$$
 и $P_2 \times Q_2 \in \mathcal{P} \times \mathcal{Q} \Rightarrow (P_1 \times Q_1) \cap (P_2 \times Q_2) = (P_1 \cap P_2) \times (Q_1 \cap Q_2) \in \mathcal{Q}$ $(P_1 \times Q_1) \setminus (P_2 \times Q_2) = (P_1 \setminus P_2) \times (Q_1 \cap P_2) \times (Q_1 \cap P_2) \times (Q_1 \setminus Q_2) \in \mathcal{Q}$ диз. об. эл-в \mathcal{Q}

3амечание. Полукольцо – это структура, которая сохраняется при взятии декартового произведения (в отличие от алгебры и σ -алгебры).

Определение 9.1.10. Открытый парамлеленипед $(a,b), a,b \in \mathbb{R}^m$ $(a,b) := (a_1,b_1) \times (a_2,b_2) \times ... \times (a_m,b_m)$

Определение 9.1.11. Замкнутый параллелепипед $[a,b], a,b \in \mathbb{R}^m$

$$[a,b] := [a_1,b_1] \times [a_2,b_2] \times ... \times [a_m,b_m]$$

Определение 9.1.12. Ячейка $(a, b], a, b \in \mathbb{R}^m$

$$(a,b] := (a_1,b_1] \times (a_2,b_2] \times ... \times (a_m,b_m]$$

Замечание. $(a,b) \subset (a,b] \subset [a,b]$

Утверждение 9.1.2. Непустая ячейка – пересечение убывающей последовательности открытых параллелепипедов и объединение возрастающих последовательностей замкнутых параллелепипедов.

Доказательство. $(a, b] = (a_1, b_1] \times (a_2, b_2] \times ... \times (a_m, b_m]$

Рассмотрим открытые параллеленинеды $P_n := (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \times ... \times (a_m, b_m + \frac{1}{n})$

$$P_{n+1} \subset P_n, P_n \supset (a, b] \text{ if } \bigcap_{n=1}^{\infty} P_n = (a, b]$$

Рассмотрим закрытые параллелепипеды $A_n := [a_1 - \frac{1}{n}, b_1] \times [a_2 - \frac{1}{n}, b_2] \times ... \times [a_m - \frac{1}{n}, b_m]$

$$A_{n+1} \supset A_n \subset (a, b], \bigcup A_n = (a, b]$$

Обозначение:

- 1. \mathcal{P}^m семейство ячеек в \mathbb{R}^m (в т.ч. и пустое множество).
- 2. $\mathcal{P}^m_{\mathbb{O}}$ семейство ячеек в \mathbb{R}^m , у которых все координаты вершин рациональны.

Теорема 9.1.4. Всякое непустое открытое множество $G \subset \mathbb{R}^m$ представляется в виде дизъюнктного объединения счетного числа ячеек, замыкания которых $\subset G$. Более того, можно считать, что координаты всех вершин всех ячеек рациональны.

Доказательство. $x \in G \stackrel{G \text{ откр.}}{\Rightarrow} x \in \overline{B}_r(x) \subset G$

Найдется ячейка R_x , т.ч. $x \in R_x$, координаты R_x рациональны и $\operatorname{Cl} R_x \subset G$ (Cl содержится в $\overline{\operatorname{B}}_r(x)$, которое содержится в G).

Выкинем все повторы и получим счетное число ячеек, объединение которых (не дизъюнктное) равно G. По свойству полукольца можно это объединение сделать дизъюнктным.

9.2 Объем и мера

Замечание. Явный алгоритм.

Нарезаем на сетку. Те ячейки, которые попали – берем, иначе – половинем и снова смотрим, какие из ячеек попали, а какие нет.

Следствие.
$$\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})\stackrel{1)\subset}{=}\mathcal{B}(\mathcal{P}^m)\stackrel{2)\subset}{=}\mathcal{B}^m\stackrel{3)\subset}{=}$$

Доказательство.

1)
$$\mathcal{P}^m \supset \mathcal{P}^m_{\mathbb{Q}} \Rightarrow \mathcal{B}(\mathcal{P}^m) \supset \mathcal{P}^m_{\mathbb{Q}} \overset{\sigma\text{-a,ire6pa}}{\Rightarrow} \mathcal{B}(\mathcal{P}^m) \supset \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$$

2)
$$\mathcal{P}^m \subset \mathcal{B}^m \Rightarrow \mathcal{B}(\mathcal{P}^m) \subset \mathcal{B}^m$$

Ячейка – счетное пересечение открытых параллелепипедов, т.е. открытых множеств. Они лежат в \mathcal{B}^m , но \mathcal{B}^m – σ -алгебра \Rightarrow там есть и счетное пересечение.

3) G – открытое множество $\Rightarrow G \in \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$, т.к. по теореме G – счетное объединение элементов из $\mathcal{P}^m_{\mathbb{Q}} \Rightarrow \mathcal{B}^m \subset \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$

9.2 Объем и мера

Определение 9.2.1. Пусть \mathcal{P} – полукольцо подмножеств $X, \, \mu : \mathcal{P} \to [0, +\infty]$. Тогда μ – объем, если:

1. $\mu\emptyset = 0$

2. Если
$$A_1, ..., A_n \in \mathcal{P}$$
, то $\mu(\bigsqcup_{k=1}^n A_k) = \sum_{k=1}^n \mu A_k$

Определение 9.2.2. Пусть \mathcal{P} – полукольцо подмножеств $X, \, \mu : \mathcal{P} \to [0, +\infty].$ μ – mepa, если:

1.
$$\mu\varnothing=0$$

2. Если
$$A_1,A_2,...\in\mathcal{P},$$
 то $\mu(\bigsqcup_{k=1}^\infty A_k)=\sum_{k=1}^\infty \mu A_k$

3амечание. Если μ – мера, то μ – объем.

Упражнение. Если мера $\mu \neq +\infty$, то $\mu\varnothing = 0$ из п. 2.

Пример. Объемы:

- 1. Длина ячейки в \mathbb{R} .
- 2. Пусть g неубывающая функция : $\mathbb{R} \to \mathbb{R}, \ \nu_g((a,b]) := g(b) g(a), \ (a,b] \subset \mathbb{R}$
- 3. Классический объем ячейки в \mathbb{R}^m (докажем позже)

$$\lambda_m(a,b] = (b_m - a_m)...(b_2 - a_2)(b_1 - a_1)$$

4.
$$x_0 \in X$$
, $a > 0$, $\mu A = \begin{cases} a, & \text{если } x_0 \in A \\ 0, & \text{иначе} \end{cases}$

5. \mathcal{A} – огранич. подмн-ва \mathbb{R} и их дополнения.

Если
$$A\in\mathcal{A},$$
 то $\mu A=\left\{ egin{array}{ll} 0, & \text{если }A-\text{огр. мн-во} \\ 1, & \text{иначe} \end{array} \right.$

Это объем, но не мера.

Теорема 9.2.1. Пусть μ – объем на полукольце \mathcal{P} . Тогда:

- 1. Если $P' \subset P \ (P, P' \in \mathcal{P}), \ mo \ \mu P' \leq \mu P.$ (монотонность объема)
- 2. Если $\bigsqcup_{k=1}^{n} P_k \subset P$, то $\sum_{k=1}^{n} \mu P_k \leq \mu P$. (усиленная монотонность)
- 2'. Если $\prod_{k=1}^{\infty} P_k \subset P_{\mathcal{P}}$, то $\sum_{k=1}^{\infty} \mu P_k \leq \mu P$.
- 3. Если $P \subset \bigcup_{k=1}^n P_k$, то $\mu P \leq \sum_{k=1}^n \mu P_k$ (полуаддитивность)

Доказательство.

2.
$$P \setminus \bigsqcup_{k=1}^{n} P_k = \bigsqcup_{j=1}^{m} Q_j$$
, где $Q_j \in \mathcal{P} \Rightarrow P = \bigsqcup_{k=1}^{n} P_k \sqcup \bigsqcup_{j=1}^{m} Q_j \Rightarrow \mu P = \sum_{k=1}^{n} \mu P_k + \sum_{j=1}^{m} \mu Q_j \geq \sum_{k=1}^{n} \mu P_k$

2'.
$$\bigsqcup_{k=1}^{n} P_k \subset \bigsqcup_{k=1}^{\infty} P_k \subset P \Rightarrow \mu P \geq \sum_{k=1}^{n} \mu P_k \rightarrow \sum_{k=1}^{\infty} \mu P_k$$

3.
$$P'_k := P_k \cap P \in \mathcal{P} \Rightarrow P = \bigcup_{k=1}^n P'_k \Rightarrow P = \bigcup_{k=1}^n \bigcup_{j=1}^{m_k} Q_{kj}, \ Q_{kj} \in \mathcal{P}, \ Q_{kj} \subset P'_k \subset P_k$$

$$\bigsqcup_{j=1}^{m_k} Q_{kj} \subset P_k \stackrel{2)}{\Rightarrow} \sum_{j=1}^{m_k} \mu Q_{kj} \le \mu P_k$$

$$\mu P = \sum_{k=1}^{n} \sum_{j=1}^{m_k} \mu Q_{kj} \le \sum_{k=1}^{n} \mu P_k$$

9.2 Объем и мера

Замечание.

1. Если \mathcal{P} – кольцо, $A,B\in\mathcal{P},\,A\subset B$ и $\mu A<+\infty,$ то $\mu(B\setminus A)=\mu B-\mu A.$ $B=\mathop{A}_{\in\mathcal{P}}\sqcup(\mathop{B}_{\subset\mathcal{D}}\setminus A)$

2. Объем с полукольца можно продолжить на кольцо, состоящее из всевозможных дизъюнктных объединений.

Теорема 9.2.2. Пусть \mathcal{P} – полукольцо подмножеств X, μ – объем на \mathcal{P} , \mathcal{Q} – полукольцо подмножеств Y, ν – объем на \mathcal{Q} .

$$\lambda: \mathcal{P} \times \mathcal{Q} \to [0, +\infty].$$

$$\lambda(\mathcal{P} \times \mathcal{Q}) = \mu \mathcal{P} \cdot \nu \mathcal{Q}$$
 (считаем, что $0 \cdot +\infty = +\infty \cdot 0 = 0$).

Tогда λ – объем.

Доказательство. Если
$$P = \bigsqcup_{k=1}^{n} P_k$$
 и $Q = \bigsqcup_{j=1}^{m} Q_j$, то $P \times Q = \bigsqcup_{k=1}^{n} \bigsqcup_{j=1}^{m} P_k \times Q_j$ $\lambda(P \times Q) = \mu P \cdot \nu Q = \sum_{k=1}^{n} \mu P_k \cdot \sum_{j=1}^{m} \nu Q_j = \sum_{k=1}^{n} \sum_{j=1}^{m} \underbrace{\mu P_k \nu O_j}_{=\lambda(P_k \times Q_j)}$ Противный случай: $P \times Q = \bigsqcup_{k=1}^{n} P_k \times Q_k$

Следствие. λ_m – объем.

 \square Доказательство. λ_1 – объем, λ_m – декартово произведение λ_1 .

Пример. Меры.

- 1. Классический объём λ_m (потом докажем)
- 2. $g: \mathbb{R} \to \mathbb{R}$ неубывающая, непрерывная справа во всех точках

$$\nu_a(a,b] := g(b) - g(a)$$

Упражнение. Доказать, что непрерывность справа – необходимое условие для того, чтобы ν_q была мерой.

- 3. $x_0 \in X$, a > 0, $\mu A = \begin{cases} a, & \text{если } x_0 \in A \\ 0, & \text{иначе} \end{cases}$
- 4. Считающая мера $\mu A =$ количество элементов в множестве A.
- 5. $T=\{t_1,t_2,...\}\subset X,\,\{w_1,w_2,...\}$ неотрицательные числа, $\mu A:=\sum_{i:t_i\in A}w_i$

9.2 Объем и мера

Доказательство. Нужно проверить, что если $A = \bigsqcup_{j=1}^{\infty} A_j$, то $\mu A = \sum_{j=1}^{\infty} \mu A_j$.

$$\mu A_j = \sum_{k=1}^{\infty} a_{jk}, \ \mu A = \sum a_{jk}$$
 в каком-то порядке $\stackrel{?}{=} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk}$

$$\geq: \sum_{j=1}^{n} \sum_{k=1}^{\infty} a_{jk} = \sum_{k=1}^{\infty} \sum_{j=1}^{n} a_{jk} \leq \mu A$$

$$\stackrel{n \to \infty}{\to} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk}$$

 \leq : Рассмотрим частичную сумму для $\sum_{j=1}^{n} a_{jk}$. $Y:=\max j,\ K:=\max k$.

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} \ge \sum_{j=1}^{Y} \sum_{k=1}^{\infty} a_{jk} \ge \sum_{j=1}^{Y} \sum_{k=1}^{K} a_{jk}$$

Теорема 9.2.3. Пусть $\mu: \mathcal{P} \to [0, +\infty]$ – объем на полукольце.

Тогда μ – мера \Leftrightarrow (счетная полуаддитивность) Если $P, P_n \in \mathcal{P}, P \subset \bigcup_{n=1}^{\infty} P_n$, то $\mu P \leq \sum_{n=1}^{\infty} \mu P_n$.

Доказательство.

$$\Leftarrow$$
. Если $P = \bigsqcup_{n=1}^{\infty} P_n$

- (a) счетная полуаддитивность $\Rightarrow \mu P \leq \sum_{n=1}^{\infty} \mu P_n$
- (b) усиленная монотонность $\Rightarrow \mu P \ge \sum_{n=1}^{\infty} \mu P_n$

$$\Rightarrow$$
. $P'_n:=P\cap P_n\in\mathcal{P}\Rightarrow P=igcup_{n=1}^\infty P'_n\Rightarrow P=igcup_{n=1}^\infty igcup_{n=1}^{m_k}Q_{nk},$ где $Q_{nk}\in\mathcal{P},$ $Q_{nk}\subset P'_n\subset P_n$ $\mu P=\sum\limits_{k=1}^\infty \sum\limits_{k=1}^{m_k}\mu Q_{nk}\leq \sum\limits_{n=1}^\infty \mu P_n$ $igcup_{k=1}^\infty Q_{nk}\subset P_n\stackrel{\mathrm{ychj.\ Mohot.}}\Rightarrow \sum\limits_{k=1}^{m_k}\mu Q_{nk}\leq \mu P_n$

Следствие. Если μ – мера, заданная на σ -алгебре, то счетное объединение множеств нулевой меры – множество нулевой меры.

Доказательство.
$$\mu_n = 0, A = \coprod_{n=1}^{\infty} A_n \overset{\text{счет. полуад.}}{\Rightarrow} \mu A_n \le \sum_{n=1}^{\infty} \mu A_n = 0 \Rightarrow \mu A = 0$$

Теорема 9.2.4. Пусть μ – объем, заданный на σ -алгебре \mathcal{A} .

Тогда μ – мера \Leftrightarrow (непрерывность снизу) Если $A_1 \subset A_2 \subset, A_n \in \mathcal{A}, \ mo \ \mu(\bigcup_{n=1}^{\infty} A_n) = \lim \mu A_n.$

Доказательство.

$$\Rightarrow$$
. $B_k := A_k \setminus A_{k-1}$ (считаем, что $A_0 = \varnothing$)

$$A := \bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n \ (B_n \subset A_n)$$

 \subset : если $x \in A$, то возьмем m – наименьший индекс, для которого $x \in A_m \Rightarrow x \in B_m$.

(счет. ад.)
$$\mu A = \sum_{n=1}^{\infty} \mu B_n = \sum_{n=1}^{\infty} (\mu A_n - \mu A_{n-1})$$

Если все
$$\mu A_n$$
 конечны, то $\sum_{k=1}^n \mu B_k = \sum_{k=1}^n (\mu A_k - \mu A_{k-1}) = \mu A_n \Rightarrow \mu A_n \to \mu A$ $\to \sum_{k=1}^\infty \mu B_k = \mu A$

Если $\mu A_n = +\infty$ при больших n, то $\mu A = +\infty$ и все очевидно.

$$\Leftarrow$$
. Пусть $A = \bigsqcup_{n=1}^{\infty} C_n, \ A_n := \bigsqcup_{k=1}^n C_k, \ A_1 \subset A_2 \subset \dots$ и $\bigcup_{n=1}^{\infty} A_n = A$

непр. снизу
$$\Rightarrow \mu A_n \\ = \mu(\bigsqcup_{k=1}^n C_k) = \sum_{k=1}^n \mu C_k$$
 $\to \mu A \Rightarrow \mu A = \sum_{k=1}^\infty \mu C_k$

Теорема 9.2.5. Пусть μ – объем, заданный на σ -алгебре \mathcal{A} и $\mu X < +\infty$, тогда следующие условия равносильны:

- 1. $\mu Mepa$.
- 2. μ непрерывно сверху, m.e. если $A_1 \supset A_2 \supset \dots \ u \bigcap_{n=1}^{\infty} A_n =: A, \ mo \ \mu A_n \to \mu A.$
- 3. μ непрерывна сверху на пустом множестве, т.е. если $A_1 \supset A_2 \supset ...$ $u \bigcap_{n=1}^{\infty} A_n = \emptyset$, то $\mu A_n \to 0$.

Доказательство.

 $2. \Rightarrow 3.$ Очевидно.

$$1. \Rightarrow 2. \ B_n := A_1 \setminus A_n, B_1 \subset B_2 \subset B_3 \subset \dots$$

$$\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} (A_1 \setminus A_n) = A_1 \setminus \bigcap_{n=1}^{\infty} A_n = A_1 \setminus A \Rightarrow \mu B_n \\ = \mu(A_1 \setminus A_n) = \mu A_1 - \mu A$$

3.
$$\Rightarrow$$
 1. Пусть $A = \bigsqcup_{n=1}^{\infty} C_n$, $A_n := \bigsqcup_{k=n+1}^{\infty} C_k$, $A_1 \supset A_2 \supset \dots$

$$\bigcap_{n=1}^{\infty}A_n=\varnothing,\ A=A_n\sqcup \bigsqcup_{k=1}^nC_k\stackrel{\mu-\text{obdem}}{\Rightarrow}\mu A=\mu A_n+\sum_{k=1}^n\mu C_k\Rightarrow \mu A=\sum_{k=1}^{\infty}\mu C_k\\ \to \sum_{k=1}^{\infty}\mu C_k$$

Следствие. Если $A_1 \supset A_2 \supset \dots \ u \ \mu A_n < +\infty \ \partial$ ля некоторого n, то $\mu A_k \to \mu (\bigcap_{n=1}^{\infty} A_n)$.

Замечание. Конечность меры существенна.

$$A_n = [n, +\infty), \ \mu A_n = +\infty, \ \bigcap_{n=1}^{\infty} A_n = \varnothing.$$

9.3 Продолжение меры

Определение 9.3.1. $\nu: 2^X \to [0, +\infty)$ – *субмера*, если:

- 1. $\nu\varnothing=0$
- 2. $A \subset B \Rightarrow \nu A \leq \nu B$ (монотонность)
- 3. $\mu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \nu A_n$ (счетная полуаддитивность)

Определение 9.3.2. $\mu:\mathcal{A}\to [0,+\infty)$ – *полная мера*, если $A\subset B\in\mathcal{A}$ и $\mu B=0$, то $A\in\mathcal{A}$.

Замечание. Если μ – полная мера, $A \subset B$ и $\mu B = 0$, то $\mu A = 0$.

Определение 9.3.3. Пусть ν – субмера. Множество E назовем измеримым относительно ν , если $\forall A \subset X, \ \nu A = \nu (A \cap E) + \nu (A \setminus E)$.

Замечание.

- 1. Достаточно писать « \leq », т.к. счетная полуаддитивность \Rightarrow $\nu(A\cap E) + \nu(A\setminus E) \leq \nu((A\cap E) \cup (A\setminus E)).$
- 2. Если $E_1, E_2, ..., E_n$ ν -измеримые, то $\nu \underbrace{(A \cap \bigsqcup_{k=1}^n E_k)}_{\prod_{k=1}^n (A \cap E_k) =: B} = \sum_{k=1}^n \nu(A \cap E_k)$

$$\nu B = \nu (B \cap E_1) + \nu (B \setminus E_1)$$

$$= \bigsqcup_{k=2}^{n} (A \cap E_k)$$

Теорема 9.3.1. *Теорема Каратеодори*

Пусть ν – субмера. Тогда ν -измеримые множества образуют σ -алгебру u сужение ν на эту σ -алгебру – полная мера.

Доказательство. \mathcal{A} – семейство ν -измеримых множеств E

1. Если $\nu E = 0$, то $E \in \mathcal{A}$. $\nu A \stackrel{\text{полуад.}}{\leq} \nu (A \cap E) + \nu (A \setminus E) \stackrel{\subset E}{\leq} \nu E + \nu A = \nu A$

$2. \mathcal{A}$ – симметрично.

Пусть
$$E \in \mathcal{A} \Rightarrow \nu A = \nu (\underset{=A \setminus (X \setminus E)}{A \cap E}) + \nu (\underset{=A \cap (X \setminus E)}{A \setminus E}) = \nu (A \setminus (X \setminus E)) + \nu (A \cap (X \setminus E)) \Rightarrow X \setminus E \in \mathcal{A}$$

3. Если E и $F \in \mathcal{A}$, то $E \cap F \in \mathcal{A}$

$$\nu A = \nu(A \cap E) + \nu(A \setminus E) = \nu(A \cap E) + \nu((A \setminus E) \cap F) + \nu((A \setminus E) \setminus F) \overset{\text{ечет. полуад.}}{\geq} \nu(A \cap (E \cup F)) + \nu(A \setminus (E \cup F))$$

4. A – алгебра.

5. Если
$$E_n \in \mathcal{A}$$
, то $\bigsqcup_{n=1}^{=:E} E_n \in \mathcal{A}$.

$$\nu A = \nu(A \cap \bigsqcup_{k=1}^{n} E_k) + \nu(A \setminus \bigsqcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} \nu(A \cap E_k) + \nu(A \setminus E_k) \ge \sum_{k=1}^{n} \nu(A \cap E_k) + \nu(A \setminus E) \to \sum_{k=1}^{\infty} \nu(A \cap E_k) + \nu(A \setminus E) \stackrel{\text{chet. Hodyags.}}{\ge} \nu(A \cap E) + \nu(A \setminus E)$$

6. Если
$$E_n \in \mathcal{A}$$
, то $\bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$.

Переделаем в дизъюнктное объединение.

7. $A - \sigma$ -алгебра.

Из 4 и 5.

8. ν – объем.

$$\nu(\bigsqcup_{k=1}^{n} (A \cap E_k)) = \sum_{k=1}^{n} \nu(A \cap E_k)$$

Если A – любое и $E_k \in \mathcal{A}$, берем A = X и получаем определение объема.

9. Объем + счетная полуаддитивность \Rightarrow мера.

Определение 9.3.4. Пусть μ – мера на полукольце \mathcal{P} . Внешней мерой, порожденной μ , назовем $\mu^*A:=\inf\{\sum_{k=1}^\infty \mu A_k\mid A_k\in\mathcal{P}$ и $A\subset\bigcup_{k=1}^\infty A_k\}.$

Если такого покрытия не существует, то $\mu^* A = +\infty$.

Замечание.

1. Можем рассматривать только дизъюнктные множества:

$$\bigcup_{k=1}^{\infty} A_k = \bigsqcup_{n=1}^{\infty} \bigsqcup_{k=1}^{m_k} B_k, \, B_k \in \mathcal{P} \text{ и } \bigsqcup_{k=1}^{m_k} B_k \subset A_k \overset{\text{усил. монот.}}{\Rightarrow} \mu A_k \geq \sum_{k=1}^{m_k} \mu B_k$$

2. Если μ задана на σ -алгебре \mathcal{A} , то:

$$\mu^*A := \inf\{\mu B \mid A \subset B$$
 и $B \in \mathcal{A}\}$

Теорема 9.3.2. μ^* – субмера, совпадающая с μ на \mathcal{P} .

Доказательство.

- 1. Пусть $A \in \mathcal{P}$. Тогда можно взять такие покрытия: $A_1 = A, A_2 = A_3 = ... = \varnothing \Rightarrow \mu^* A \leq \mu A$ Счетная полуаддитивность \Rightarrow если $A \subset \bigcup_{n=1}^{\infty} A_n$, то $\mu A \leq \sum_{n=1}^{\infty} \mu A_n \Rightarrow \mu A \leq \mu^* A$ т.е. $\mu^* = \mu$ на \mathcal{P}
- 2. μ^* субмера

Монотонность:

Если есть
$$A\subset B$$
 и покрытие $B\subset\bigcup_{n=1}^\infty B_n$, то $A\subset\bigcup_{n=1}^\infty B_n\Rightarrow \mu^*A$ inf от большего мн-ва $\leq \mu^*B$

Счетная полуаддитивность μ^* :

$$\mu^*$$
: $\mu^* (\bigcup_{n=1}^{\infty} B_n) \le \sum_{n=1}^{\infty} \mu^* B_n$

Если справа есть $+\infty$, то очевидно, считаем, что там все конечно:

$$\mu^*B = \inf\{\sum_{k=1}^\infty \mu A_k \mid P_k \in \mathcal{P} \text{ и } B_n \subset \bigcup_{k=1}^\infty P_k\}$$

Выберем такие множества
$$C_{nk}$$
, что $\bigcup_{k=1}^{\infty} C_{nk} \supset B_n$ и $\sum_{k=1}^{\infty} \mu C_{nk} \le \mu^* B_n + \frac{\varepsilon}{2^n}$

$$\bigcup_{n=1}^{\infty} B_n \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} C_{nk} \Rightarrow \mu^*(\bigcup_{n=1}^{\infty} B_n) \leq \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \mu C_{nk} \leq \sum_{n=1}^{\infty} (\mu^* B_n + \frac{\varepsilon}{2^n}) = \sum_{n=1}^{\infty} \mu^* B_n + \varepsilon$$
 и устремим ε к нулю.

Определение 9.3.5. Стандартное продолжение меры μ_0 с полукольца \mathcal{P} .

Берем μ_0^* – ее внешняя мера и μ – сужение μ_0^* на μ_0^* -измеримые множества. Получается полная мера, заданная на σ -алгебре.

Теорема 9.3.3. Это действительно продолжение, то есть множества из \mathcal{P} будут μ -измеримыми.

Доказательство. Надо доказать, что если $E \in \mathcal{P}$, то $\forall A \subset X \ \mu_0^* A \ge \mu_0^* (A \cap E) + \mu_0^* (A \setminus E)$

1. Если
$$A \in \mathcal{P}$$
, то $A \setminus E = \bigsqcup_{k=1}^{n} Q_k$, где $Q_k \in \mathcal{P}$. Тогда т.к. $A = (A \cap E) \sqcup \bigsqcup_{k=1}^{n} Q_k$:
$$\mu_0^* A = \mu_0 A \stackrel{\text{адд.}}{=} \mu_0 (A \cap E) + \sum_{k=1}^{n} \mu_0 Q_k = \mu_0^* (A \cap E) + \sum_{k=1}^{n} \mu_0^* Q_k \stackrel{\text{полуадд.}}{\geq} \mu_0^* (A \cap E) + \mu_0^* (\bigsqcup_{k=1}^{n} Q_k) = \mu_0^* (A \cap E) + \mu_0^* (A \setminus E)$$

2. Если $A \notin \mathcal{P}$. Когда $\mu_0^*A = +\infty$ все очевидно, поэтому будем считать, что $\mu_0^*A < +\infty$.

$$\mu^*A:=\inf\{\sum_{k=1}^\infty \mu_0 P_k\mid P_k\in\mathcal{P}_n$$
 и $A\subset\bigcup_{k=1}^\infty P_k\}$

Берем конкретное покрытие $A\subset \bigcup\limits_{k=1}^{\infty}P_k$, для которого $\sum\limits_{k=1}^{\infty}\mu_0P_k<\mu_0^*A+arepsilon$

$$\mu_0 P_k = \mu_0^* P_k \ge (P_k \cap E) + \mu_0^* (P_k \setminus E)$$

$$\varepsilon + \mu_0^* A \ge \sum_{k=1}^{\infty} \mu_0 P_k \ge \sum_{k=1}^{\infty} \mu_0^* (P_k \cap E) + \sum_{k=1}^{\infty} \mu_0^* (P_k \setminus E) \ge \mu_0^* (A \cap E) + \mu_0^* (A \setminus E)$$

$$\ge \mu_0^* (A \cap E)$$

$$\ge \mu_0^* (A \cap E)$$

$$\bigcup_{k=1}^{\infty} (P_k \cap E) \supset A \cap E, \ \bigcup_{k=1}^{\infty} (P_k \setminus E) \supset A \setminus E$$

Замечание.

1. Дальше и старая мера, и новая обозначается μ .

$$\mu A := \inf\{\sum_{k=1}^{\infty} \mu A_k \mid A_k \in \mathcal{P} \text{ и } A \subset \bigcup_{k=1}^{\infty} A_k\}.$$

2. Применение стандартного продолжения к стандартному продолжению не дает ничего нового.

Упраженение. Доказать это. Указание: μ_0 – стандартная мера, μ – стандартное продолжение μ_0^* . Доказать, что μ_0 и μ_0^* совпадают.

3. Можно ли продолжить на более широкую σ -алгебру, чем дает стандартное продолжение? Часто да, но возникает неоднозначность.

Определение 9.3.6. σ – конечная мера, если $X = \bigcup_{n=1}^{\infty} P_n$, где $P_n \in \mathcal{P}$ и $\mu P_n < +\infty$ (можно считать, что P_n дизъюнктны).

- 4. Можно ли по-другому продолжить на σ -алгебру μ -измеримых множеств?
- 5. Пусть ν полная мера на σ -алгебре $\mathcal{A} \subset \mathcal{P}$ и на $\mathcal{P} \ \mu = \nu$. Верно ли, что \mathcal{A} содержит все μ -измеримые множества?

Если σ – конечная мера, то да.

Если $\mu - \sigma$ -конечная мера, то нельзя.

Теорема 9.3.4. Пусть \mathcal{P} – полукольцо, μ – стандартное с \mathcal{P} , μ^* – соответствующая внешняя мера. Если $\mu^*A < +\infty$, то существует $B_{nk} \in \mathcal{P}$, т.ч. $C_n := \bigcup_{k=1}^{\infty} B_{nk}$ и $C := \bigcap_{n=1}^{\infty} C_n$, $C \supset A$ и $\mu C = \mu^* A$.

 \mathcal{A} оказательство. $\mu^*A:=\inf\{\sum\limits_{k=1}^\infty \mu P_k\mid P_k\in\mathcal{P}\ \text{и}\ A\subset\bigcup\limits_{k=1}^\infty P_k\}.$ Берем такое покрытие $\bigcup\limits_{k=1}^\infty B_{nk}\supset A,\ B_{nk}\in\mathcal{P}\ \text{и}\ \sum\limits_{k=1}^\infty \mu B_{nk}<\mu^*A+\frac{1}{n}$

$$\mu C_n \leq \sum_{k=1}^{\infty} \mu B_{nk} < \mu^* A + \frac{1}{n}, \ C \subset C_n \Rightarrow \mu C \leq \mu C_n < \mu^* A + \frac{1}{n} \Rightarrow \mu C \leq \mu^* A$$
 и $C \supset A \Rightarrow$
$$\Rightarrow \mu^* C \geq \mu^* A$$

$$= \mu C = \mu C$$

Следствие. Пусть P – полукольцо, μ – стандартное продолжение с P. Если A – μ -измеримо $u \mu A < +\infty$, mo $A = B \sqcup e$, $\epsilon \partial e B \in \mathcal{B}(\mathcal{P})$ $u \mu e = 0$.

Доказательство. Берем C из теоремы, $C \in \mathcal{B}(\mathcal{P})$, $\mu C = \mu A$ и $C \supset A$.

 $C \setminus A =: e_1, \mu e_1 = 0$. Берем множество из теоремы для e_1 , назовем его e_2 .

$$e_2 \supset e_1, e_2 \in \mathcal{B}(\mathcal{P})$$
 и $\mu e_1 = \mu e_2 = 0 \Rightarrow B := C \setminus e_2 \in \mathcal{B}(\mathcal{P})$
 $e = A \setminus B \subset C \setminus B \subset e_2, \mu e_2 = 0 \Rightarrow \mu e = 0$

Теорема 9.3.5. Единственность продолжения

Пусть \mathcal{P} – полукольцо, μ – стандартное продолжение на σ -алгебру, ν – другая мера на \mathcal{A} , m.ч. $\mu E = \nu E$ npu $E \in \mathcal{P}$. Eсли $\mu - \sigma$ -конечная мера, mo $\mu A = \nu A$ npu $A \in \mathcal{A}$.

Доказательство. Пусть $A \subset \bigcup_{k=1}^{\infty} P_k$, где $P_k \in \mathcal{P}$

 $\nu A \leq \sum\limits_{k=1}^{\infty} \nu P_k = \sum\limits_{k=1}^{\infty} \mu P_k$. Напишем inf в правой части: $\nu A \leq \mu A$.

Если
$$P \in \mathcal{P}$$
, то $\mu P = \nu P = \nu (\stackrel{\leq \mu(P \cap A)}{P \cap A}) + \nu (\stackrel{Q}{P} \setminus A) \leq \mu(P \cap A) + \mu(P \setminus A) = \mu P$
Когда $\mu P < +\infty$ неравенства обращаются в равенство $\Rightarrow \mu(P \cap A) = \nu(P \cap A)$

$$\mu$$
 – σ -конечная $\Rightarrow X = \bigsqcup_{n=1}^{\infty} P_n, \ \mu P_n < +\infty \Rightarrow \mu(P_n \cap A) = \nu(P_n \cap A) \Rightarrow \nu A = \sum_{n=1}^{\infty} \nu(P_n \cap A) = \nu(P_n$

$$\sum_{n=1}^{\infty} \mu(P_n \cap A) = \mu A$$

$$A = \bigsqcup_{n=1}^{\infty} (A \cap P_n)$$