

Image Features & Matching

Sung Soo Hwang

What is an image feature?

- An image feature is a piece of information that is relevant for solving the computational task related to a certain application.
- Features may be specific structures in the image such as points, edges, or objects.
- Features may also be the result of a general neighborhood operation or feature detection applied to the image.

Why do we need to extract a feature?

What is a good feature?

- A good feature should be invariant to....
 - Illumination
 - Translation
 - Scale
 - Rotation
 - Perspective transform

What is a good feature?

- A good feature should be computationally inexpensive
- A good feature should be memory efficient

Several Images features

Widely used feature extractor & descriptor

명칭	detector	descriptor	
Harris Corner(1988)	0	х	
Shi & Tomasi(1994) (goodFeaturesToTrack)	o	х	
SIFT(1999)	0	0	
MSER(2004)	0	0	
SURF(2006)	0	0	
FAST(2006)	0	х	
ORB (FAST+BRISK)	o	0	
AGAST(2010)	0	0	
BRIEF(2012)	0	0	
AKAZE(2012) (KAZE)	0	0	

- oFast detector + r-BRIEF descriptor
 - FAST
 - Determines the corner by having more than N consecutive pixels whose intensities are higher(or lower)
 - 9 consecutive pixels when the radius is 3

- oFast detector + r-BRIEF descriptor
 - BRIEF
 - A bit string descriptor of an image patch constructed from a set of binary intensity tests

Where
$$\tau(p; x, y)$$
 is defined as:

$$\tau(p; x, y) = \begin{cases} 1 & : p(x) < p(y) \\ 0 & : p(x) \ge p(y) \end{cases}$$

$$p(x)$$
 is the intensity value at pixel x .

https://medium.com/data-breach/introduction-to-brief-binary-robust-independent-elementary-features-436f4a31a0e6

■ ORB is known to be fast and illumination/rotation-invariant

- Image matching by Feature matching
 - Process
 - 1. Find features in input images by the feature extractor
 - 2. Describe each feature-by-feature descriptor
 - 3. Compare the similarity between features in input images
 - 4. Extract good matchings
 - What is a good matching?
 - A matching between features A and B is good when only A and B are similar
 - Good matching can be estimated by Nearest-Neighbor-Distance Ration(NNDR)

NNDR(Nearest neighbor distance ratio)

 $= \frac{distance to best match}{distance to second best match}$

- The features that were explained before are called hand-crafted features because humans invented them
- Nowadays, features using convolutional neural network(CNN) are widely used

FEATURE LEARNING

CLASSIFICATION

Convolution

0	1	7	5	
5	5	6	6	
5	3	3	0	*
1	1	1	2	

Relu

- Relu is a kind of non-linear function, and it is widely used as an activation function in neural network
- It is to increase the non-linearity in images

https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-1b-relu-layer/

Pooling

7	5	0	3		
10	4	21	2	 10	
6	1	7	0		
5	0	8	4		

7	5	0	3		
10	4	21	2	 10	21
6	1	7	0	6	
5	0	8	4		

7	5	0	3		
10	4	21	2	10	21
6	1	7	0		
5	0	8	4		

7	5	0	3			
10	4	21	2		10	21
6	1	7	0		6	8
5	0	8	4			