

Modeling the cumulative incidence function of clustered competing risk data

Henrique Laureano

http://leg.ufpr.br/~henrique

Laboratório de Estatística e Geoinformação (LEG)
Programa de Pós-Graduação em Métodos Numéricos em Engenharia (PPGMNE)
Universidade Federal do Paraná (UFPR)

December/2020

Clustered competing risk data

Key terms:

- » Clustered: groups with a dependence structure (e.g. families);
- » Causes competing by something.

Something?

- » Failure of an industrial or electronic component;
- » Occurence or cure of a disease or some biological process;
- » Progress of a patient clinic state.

Independent of the application, always the same framework

Cluster	ID	Cause 1	Cause 2	Censorship	Time	Feature
1	1	Yes	No	No	10	Α
1	2	No	No	Yes	8	Α
2	1	No	No	Yes	7	В
2	2	No	Yes	No	5	Α

Data designs

Failure time process

Competing risk process

Multistate process

Data designs

Failure time process Competing risk process

Multistate process

Modeling framework

We have to choose which scale we model the **survival experience**. Usually, is the

hazard (failure rate) scale : $\lambda(t \mid \text{features}) = \lambda_0(t) \times c(\text{features})$.

In the competing risk setting ...

a more attractive possibility is to work on the probability scale, focusing on the cause-specific

i.e.

$$CIF = \mathbb{P}[\text{ failure time } \leq t, \text{ a given cause } | \text{ features }]$$

Main focus application: cancer incidence in twins

Clustered competing risks data

L Clusters? Families

Family studies

Twins data

Family studies ⇒ within-family dependence

That may reflect

- » Disease heritability;
- The impact of shared environmental effects:
 - » Parental effects:

Our contribution: a hierarchical approach

Thinking on two competing causes

... for the outcome y_{ijt} of a subject i, family j, in the time t, we have

$$\begin{aligned} y_{\textit{ijt}} \mid & \underbrace{\{u_{1j}, u_{2j}, \eta_{1j}, \eta_{2j}\}}_{\text{latent effects}} &\sim & \text{Multinomial}(p_{1\textit{ijt}}, p_{2\textit{ijt}}, p_{3\textit{ijt}}) \\ & \begin{bmatrix} u_{1j} \\ u_{2j} \\ \eta_{1j} \\ \eta_{2j} \end{bmatrix} &\sim & \text{Multivariate} \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{u_1}^2 & \sigma_{u_1, u_2} & \sigma_{u_1, \eta_1} & \sigma_{u_1, \eta_2} \\ \sigma_{u_2}^2 & \sigma_{u_2, \eta_1} & \sigma_{u_2, \eta_2} \\ \sigma_{\eta_1}^2 & \sigma_{\eta_1, \eta_2}^2 \end{bmatrix} \end{pmatrix} \\ & p_{\textit{kijt}} &= & \frac{\partial \text{CIF}}{\partial t} \\ & &= & \frac{\partial}{\partial t} \underbrace{\pi_{\textit{k}}(X, u_1, u_2 \mid \beta)} \underbrace{\Phi[w_{\textit{k}}g(t) - X^\top \gamma_{\textit{k}} - \eta_{\textit{k}}]}, \end{aligned}$$

cluster-specific

risk level

cluster-specific

failure time trajectory

6/8

Contributions & challenges

- » A clear and simpler modeling structure;
- » There is no free lunch Computational challenges overcame via an efficient implementation and estimation routines;
- The data is very simple, we just know the outcome (yes or no);
- » We have to be able to build the CIF curves;
- » And accommodate the within-family dependence properly, that can happen in different manners;
- >>

Thank you

Joint work with

Wagner H. Bonat

http://leg.ufpr.br/~wagner

Paulo Justiniano Ribeiro Jr.

http://leg.ufpr.br/~paulojus

@hap_laureano