

技术:应用场景下的数据基本分析流程和分析方法

夏菁

浙江大学CAD&CG国家重点实验室 可视化与可视分析小组

内容大纲

- 数据属性
- 数据质量
- 数据处理

基础

- 时序排名
- 数据清洗
- 统一数据平台

应用

基础

数据属性

- 也可以称为变量、维度、特征等
 - 风速: 大小(标量)和方向(多值矢量)
- 基本数据类型
 - 有序型
 - 时序、文本序列等
 - 类别型
 - 省
 - 数值型
 - 温度

数据质量

V	有效性	数据是否真实有效		
А	准确性	数据是否精确,有无误差		
В	可信性	数据来源和收集方式是否可信		
I	一致性	数据(格式、单位等)是否一致		
С	完整性	数据是否有缺失		
Т	时效性	数据保质期(相对分析任务)		

Kandel S, Heer J, Plaisant C, et al. Research directions in data wrangling: Visualizations and transformations for usable and credible data[J]. Information Visualization, 2011, 10(4): 271-288.

The Quartz 坏数据手册 http://djchina.org/2016/07/12/bad_data_guide/ http://djchina.org/2014/08/11/data_lie/

数据处理 —— 统计

方法

- 数据分布
 - 均值、方差、众数、分位数
- 回归方法
 - 线性回归
 - 逻辑回归
- 多元统计分析
 - 变量相关性

工具

- 软件类工具
 - SPSS
 - •
- 脚本类工具
 - MATLAB
 - R
 - Python

数据分布

- 均值
 - 平均值
- 方差 $\frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$

有序数列

3, 6, 7, 8, 8, 10, 13, 15, 16, 20

均值: 10.6

方差: 24.84

众数:8

四分位数: 3、7、9、15、20

- 众数
 - 个数最多的值
- 分位数
 - 有序数列的第1, ¼, ½, ¾个值和最后一个值

回归方法

• 线性回归

$$\mathbf{y} = \mathbf{X}\boldsymbol{eta} + oldsymbol{arepsilon}$$

$$\mathbf{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_n \end{array}
ight)$$

$$\mathbf{y} = egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix} \qquad \mathbf{X} = egin{pmatrix} \mathbf{x}_1^{\mathrm{T}} \ \mathbf{x}_2^{\mathrm{T}} \ dots \ \mathbf{x}_{n1} & \cdots & \mathbf{x}_{1p} \ x_{21} & \cdots & \mathbf{x}_{2p} \ dots \ x_{n1} & \cdots & \mathbf{x}_{np} \end{pmatrix} \qquad eta = egin{pmatrix} eta_1 \ eta_2 \ dots \ eta_p \end{pmatrix}, \quad oldsymbol{arepsilon} egin{pmatrix} arepsilon_1 \ eta_2 \ dots \ eta_p \end{pmatrix}$$

$$oldsymbol{eta} = egin{pmatrix} eta_1 \ eta_2 \ dots \ eta_p \end{pmatrix}\!, \quad oldsymbol{arepsilon} = egin{pmatrix} arepsilon_1 \ arepsilon_2 \ dots \ arepsilon_n \end{pmatrix}$$

• 逻辑回归

$$P(Y=1|X=x)=rac{e^{x'eta}}{1+e^{x'eta}}$$

多元统计分析

• 协方差 $\operatorname{cov}(X,Y) = \operatorname{E}((X-\mu)(Y-\nu))$

・相关系数 $ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$

变量独立 <=> 不相关 <=> 协方差为0 <=> 相关系数为0

・ 互信息
$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p(x) \, p(y)} \right)$$

数据处理 —— 降维(略)

降维的本质:

使数据在低维的距离尽量与在高维的距离保持一致

线性

PCA、MDS、NMF、......

非线性

• LLE \ Iso-map \ SOM \

数据处理 —— 相似度量

类别型

集合(杰卡德)相似度

海明距离

高维数值型

曼哈顿距离 (L1范数)

欧氏距离 (L2范数)

夹角余弦

有序型

皮尔逊相关 系数

动态时间扭 曲

最大公共子 序列

自定义距离

类别型相似性度量

- 集合(杰卡德)相似度
 - 两个集合内容的相似性
 - 交集/并集

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}$$

- 海明距离
 - 对应位置不同字符的个数

1011101 1001101

高维数值型相似性度量

• 曼哈顿距离(L1范数)

$$\sum_{i=1}^n |x_i-y_i|$$

• 欧式距离($\mathsf{L}2$ 范数) $\left(\sum_{i=1}^n |x_i-y_i|^2\right)^{1/2}$

• 夹角余弦

$$\cos(\theta) = \frac{\sum_{k=1}^{n} x_{1k} x_{2k}}{\sqrt{\sum_{k=1}^{n} x_{1k}^{2}} \sqrt{\sum_{k=1}^{n} x_{2k}^{2}}}$$

有序型相似性度量

• 斯皮尔曼相关系数

$$r_s =
ho_{ ext{rg}_X, ext{rg}_Y} = rac{ ext{cov}(ext{rg}_X, ext{rg}_Y)}{\sigma_{ ext{rg}_X}\sigma_{ ext{rg}_Y}}$$

• 动态时间扭曲

• 最大公共子序列

数据处理 —— 聚类

- K-均值家族
- •层次聚类
 - 自底向上
 - DBSCAN算法
 - 自顶向下
 - Graph-cut算法

K均值

K-means

- 随机定k个聚类中心
- 指定所有数据点类别
- 计算均值为新的聚类中心

K-medoids

- 聚类中心为数据点
- 适用于虚拟节点无法计算距离的情况

层次聚类

- 自底向上
 - DBSCAN
- 自顶向下
 - Graph-cut算法

DBSCAN

基于密度的带噪声空间聚类
 Density-based spatial clustering of applications with noise


```
DBSCAN(D, eps, MinPts) {
  C = 0
   for each point P in dataset D {
      if P is visited
         continue next point
     mark P as visited
      NeighborPts = regionQuery(P, eps)
      if sizeof(NeighborPts) < MinPts
         mark P as NOISE
      else {
         C = next cluster
        expandCluster(P, NeighborPts, C, eps, MinPts)
expandCluster(P, NeighborPts, C, eps, MinPts) {
   add P to cluster C
  for each point P' in NeighborPts {
      if P' is not visited {
        mark P' as visited
        NeighborPts' = regionQuery(P', eps)
         if sizeof(NeighborPts') >= MinPts
           NeighborPts = NeighborPts joined with NeighborPts'
      if P' is not yet member of any cluster
         add P' to cluster C
regionQuery(P, eps)
  return all points within P's eps-neighborhood (including P)
```


数据处理 —— 其它

数据分析流程

应用 2

免费数据清洗工具

- Trifacta (Data Wrangler)
- OpenRefine (Google Refine)

▼ Trifacta — 可视数据清洗工具

浙江大学可视化暑期学校,杭州,紫金港,2016

数据初探 —— DimScanner

- •数据
 - 西雅图911报警数据
- •任务
 - 初探数据维度相关性

预览树

辅助交互

辅助交互

数据分布

辅助交互

数据概括

维基百科热词的时序排名可视化

- 数据: 维基百科时序排名
- 数据属性
 - 时间
 - 排名
 - 关系
- 任务
 - 可视化topk页面的走势
 - 分析topk页面之间的关系

Rank	Article	Class	Views	Image
1	Pokémon Go	•	4, 778, 652	W
2	Theresa May	8	1, 738, 109	
3	Mike Pence	©	1,651,153	
4	Sultan (2016 film)	•	1, 220, 923	E MA
5	UFC 200	•	1, 139, 080	

数据分析流程

数据处理

数据初探 → 分析任务整理 数据收集 数据清洗 数据建模1

- 数据收集
 - 维基百科访问日志
 https://dumps.wikimedia.org/
- 数据清洗
 - 删除乱码数据
- 数据初探
 - 聚合页面点击率
- 数据清洗
 - 删除index等无效页面

- 分析任务整理
 - 可视化topk页面的走势
 - 分析topk页面之间的关系
- 数据整合
 - 取每日的top-1000页面
 - 调用维基百科API获取页面跳转 词,存储到数据库
- 数据建模
 - 基于DTW的时序排名相似性建模

数据收集

• 维基百科访问日志

https://dumps.wikimedia.org/other/pagecounts-raw/

Page view statistics for Wikimedia projects

(For up-to-date information (outages, ...) about this dataset, please consult the <u>dataset's wiki page</u>.)

Pagecount files per year

- <u>2007</u>
- <u>2008</u>
- <u>2009</u>
- <u>2010</u>
- <u>2011</u>
- 2012
- 2013
- 20142015
- 2016

Index of page view statistics for 2016-07

Pagecount files for 2016-07

Check the hashes after your download, to make sure your files arrived intact.

- pagecounts-20160701-000000.gz, size 72M
- pagecounts-20160701-010000.gz, size 84M
- pagecounts-20160701-020000.gz, size 90M
- pagecounts-20160701-030000.gz, size 85M

数据整合

每日top-1000页面

Neo4J

{"ns":0,"title":"Emmy Award"}

{"ns":0,"title":"Entertainment Weekly"}

{"ns":0,"title":"Euglossa bazinga"}

{"ns":0,"title":"Experimental physics"}

.

Pagelink关系页面

https://en.wikipedia.org/w/api.php?action =query&format=json&titles=The Big Ba ng Theory&prop=links&pllimit=max

数据建模

• 基于DTW的时序排名相似性建模

$$Dissim = \frac{w_{dtw} * f_{dtw} + w_{comp} * f_{comp} + w_{avgo} * f_{avgo}}{w_{dtw} + w_{comp} + w_{avgo}}$$

- 相似性是包括DTW因子(fdtw)、不连续排名损失因子(fcomp)和平均排名因子(favgo)的加权综合度量
- 某个页面的相关页面是以下页面的交集
 - 从top-1000中基于相似性查找得到的页面集合
 - 通过pagelink API找到的页面集合

时序排名——图元设计

DEMO

-站式数据工具

Dataiku

Dataiku —— 数据分析软件

- •功能
 - 数据整合
 - 数据清洗
 - 可视化分析
 - 机器学习
 - •产品发布
- •特点
 - 功能模块化
 - 界面统一

可视化 方法

数据清洗和数据初探对于数据分析是至关重要的步骤

可视化的辅助能够降低数据清洗和数据初探的成本

谢谢

夏菁

% summer_179279 /

jjane.summer@gmail.com

