12-107.

The snowmobile is traveling at 10 m/s when it leaves the embankment at A. Determine the time of flight from A to B and the range R of the trajectory.

SOLUTION

$$\left(\begin{array}{c} + \\ \longrightarrow \end{array}\right) \qquad s_B = s_A + v_A t$$

$$R = 0 + 10\cos 40^{\circ} t$$

$$(+\uparrow) \qquad s_B = s_A + v_A t + \frac{1}{2} a_c t^2$$

$$-R\left(\frac{3}{4}\right) = 0 + 10\sin 40^{\circ}t - \frac{1}{2}(9.81)t^{2}$$

Solving:

$$R = 19.0 \text{ m}$$

$$t = 2.48 \text{ s}$$

Ans.

Ans: R = 19.0 m t = 2.48 s

*17-36.

The trailer with its load has a mass of 150 kg and a center of mass at G. If it is subjected to a horizontal force of $P = 600 \,\mathrm{N}$, determine the trailer's acceleration and the normal force on the pair of wheels at A and at B. The wheels are free to roll and have negligible mass.

SOLUTION

Equations of Motion: Writing the force equation of motion along the x axis,

$$\stackrel{\pm}{\rightarrow} \Sigma F_x = m(a_G)_x$$
; $600 = 150a$

$$600 = 150a$$

$$a = 4 \text{ m/s}^2 \rightarrow$$

Using this result to write the moment equation about point A,

$$\zeta + \Sigma M_A = (M_k)_A$$
:

$$\zeta + \Sigma M_A = (M_k)_A;$$
 150(9.81)(1.25) - 600(0.5) - $N_B(2) = -150(4)(1.25)$

$$N_B = 1144.69 \text{ N} = 1.14 \text{ kN}$$

Ans.

Using this result to write the force equation of motion along the y axis,

$$+\uparrow \Sigma F_y = m(a_G)_y$$
; $N_A + 1144.69 - 150(9.81) = 150(0)$

$$N_A = 326.81 \text{ N} = 327 \text{ N}$$

Ans.

Ans: $a = 4 \text{ m/s}^2 \rightarrow$ $N_B = 1.14 \,\mathrm{kN}$ $N_A = 327 \,\mathrm{N}$

17-71.

A cord is wrapped around the outer surface of the 8-kg disk. If a force of $F = (\frac{1}{4}\theta^2)$ N, where θ is in radians, is applied to the cord, determine the disk's angular acceleration when it has turned 5 revolutions. The disk has an initial angular velocity of $\omega_0 = 1 \text{ rad/s}$.

SOLUTION

Equations of Motion. The mass moment inertia of the disk about O is $I_O = \frac{1}{2} mr^2 = \frac{1}{2} (8) (0.3^2) = 0.36 \text{ kg} \cdot \text{m}^2$. Referring to the FBD of the disk, Fig. a,

$$\zeta + \Sigma M_O = I_O \alpha; \qquad \left(\frac{1}{4}\theta^2\right)(0.3) = 0.36 \alpha$$

$$\alpha = (0.2083 \,\theta^2) \, \text{rad/s}^2$$

Kinematics. Using the result of α , integrate $\omega d\omega = \alpha d\theta$ with the initial condition $\omega = 0$ when $\theta = 0$,

$$\int_{1}^{\omega} \omega d\omega = \int_{0}^{5(2\pi)} 0.2083 \ \theta^2 \ d\theta$$

$$\left(\frac{1}{2}\right)(\omega_2 - 1) = 0.06944 \, \theta^3 \Big|_0^{5(2\pi)}$$

$$\omega = 65.63 \, \text{rad/s} = 65.6 \, \text{rad/s}$$

Ans.

Ans: $\omega = 65.6 \text{ rad/s}$

18–62. The 30 kg pendulum has its mass center at G and a radius of gyration about point G of $k_G = 300$ mm. If it is released from rest when $\theta = 0^{\circ}$, determine its angular velocity at the instant $\theta = 90^{\circ}$. Spring AB has a stiffness of k = 300 N/m and is unstretched when $\theta = 0^{\circ}$.

SOLUTION

Potential Energy: With reference to the datum in Fig. a, the gravitational potential energy of the pendulum at positions (1) and (2) is

$$(V_g)_1 = W(y_G)_1 = 30(9.81)(0) = 0$$

 $(V_g)_2 = -W(y_G)_2 = -30(9.81)(0.35) = -103.005 \text{ J}$

Since the spring is unstretched initially, $(V_e)_1 = 0$. When $\theta = 90^\circ$, the spring stretches $s = AB - A'B = \sqrt{0.45^2 + 0.6^2} - 0.15 = 0.6$ m. Thus,

$$(V_e)_2 = \frac{1}{2} ks^2 = \frac{1}{2} (300) (0.6^2) = 54 \text{ J}$$

and

$$V_1 = (V_g)_1 + (V_e)_1 = 0$$

 $V_2 = (V_g)_2 + (V_e)_2 = -103.005 + 54 = -49.005 \text{ J}$

Kinetic Energy: Since the pendulum rotates about a fixed axis, $v_G = \omega r_G = \omega(0.35)$. The mass moment of inertia of the pendulum about its mass center is $I_G = mk_G^2 = 30(0.3^2) = 2.7 \text{ kg} \cdot \text{m}^2$. Thus, the kinetic energy of the pendulum is

$$T = \frac{1}{2} m v_G^2 + \frac{1}{2} I_G \omega^2$$
$$= \frac{1}{2} (30) \left[\omega(0.35) \right]^2 + \frac{1}{2} (2.7) \omega^2 = 3.1875 \omega^2$$

Conservation of Energy:

$$T_1 + V_1 = T_2 + V_2$$

 $0 + 0 = 3.1875\omega^2 - 49.005$
 $\omega = 3.92 \text{ rad/s}$

Ans: $\omega = 3.92 \text{ rad/s}$

16-61.

The link AB has an angular velocity of 3 rad/s. Determine the velocity of block C and the angular velocity of link BC at the instant $\theta = 45^{\circ}$. Also, sketch the position of link BC when $\theta = 60^{\circ}$, 45° , and 30° to show its general plane motion.

SOLUTION

Rotation About Fixed Axis. For link AB, refer to Fig. a.

$$\mathbf{v}_B = \omega_{AB} \times \mathbf{r}_{AB}$$

$$= (3\mathbf{k}) \times (0.5 \cos 45^{\circ} \mathbf{i} + 0.5 \sin 45^{\circ} \mathbf{j})$$

$$= \{-1.0607 \mathbf{i} + 1.0607 \mathbf{j}\} \text{ m/s}$$

General Plane Motion. For link *BC*, refer to Fig. *b*. Applying the relative velocity equation,

$$\mathbf{v}_C = \mathbf{v}_B + \omega_{BC} \times \mathbf{r}_{C/B}$$

 $-v_C \mathbf{i} = (-1.0607 \mathbf{i} + 1.0607 \mathbf{j}) + (-\omega_{BC} \mathbf{k}) \times (1.5 \mathbf{i})$
 $-v_C \mathbf{i} = -1.0607 \mathbf{i} + (1.0607 - 1.5\omega_{BC}) \mathbf{j}$

Equating i and j components;

$$-v_C = -1.0607$$
 $v_C = 1.0607 \text{ m/s} = 1.06 \text{ m/s}$ **Ans.** $0 = 1.0607 - 1.5\omega_{BC}$ $\omega_{BC} = 0.7071 \text{ rad/s} = 0.707 \text{ rad/s}$ **Ans.**

The general plane motion of link *BC* is described by its orientation when $\theta = 30^{\circ}$, 45° and 60° shown in Fig. c.

Ans: