XI: Numerical Methods

1: Newton-Raphson Methods

• To find the root of the function f(x) = 0, which is assumed as x = X.

- We start from x_0 , and find the derivate of $(x_0, f(x_0))$, which is f'(x), then we draw the tangent line of this point. This line across with x axis at x_1 .
- Repeat the operation of x_0 with x_1 , and then x_2 ... x_n and so on.
- From the right-angle triangle:

$$f'(x_0) = rac{f(x_0)}{x_0 - x_1} \ x_1 = x_0 - rac{f(x_0)}{f'(x_0)}$$

So that we can find the general formula:

$$x_{n+1}-x_n-rac{f(x_n)}{f'(x_n)}$$

This is the Newton-Rephson Method.

• We always choose 4 significant number of the results, and the answer will be same when n is increasing:

$f(x) = x^{2} \times -1 = 0$ 0 2 5 11 0.455	
Ty >10 = 2 / f(x) = 3x - 1 1 1.545 1.146 6.165 0.186	
$ \lambda = \lambda - \frac{1}{1} \lambda \le 1.5$ $ \lambda = \lambda - \frac{1}{1} \lambda \le 1.5$ $ \lambda = \lambda - \frac{1}{1} \lambda \le 1.5$ $ \lambda = \lambda - \frac{1}{1} \lambda = 1.5$	
7,525 0.000	
5 1.325 0.000 4.265 0.000	

2: Numerical integration

• Sometimes numerical integration is more convenient compared to calculus.

2.1: Trapezium rule

- A simple methods to replace the curve by several short lines and find the sum of the trapezium area.
- If we choose five points and find four trapezium areas as below:

The answer will be:

$$A = \int_a^b y \mathrm{d}x pprox T_4 = rac{h}{2} [y_1 + 2(y_2 + y_3 + y_4) + y_5]$$

• The section number depends on the points number, the middle sections (except first and last one) should times '2'.

2.2: Simpson's rule

- An improved method is to replace the curve by several short quadratic sections.
- We choose three points from one quadratic curve and another three points from one quadratic curve, (The middle one is same) and the do the sum. (4 sections)

• If we noted the y-position of the chosen points are f_1 , f_2 and f_3 :

$$\int_{-h}^{+h} y \mathrm{d}x = rac{h}{3} (f_1 + 4f_2 + f_3)$$

• This the formula can be used for any three points. It can also be remembered as $f_1+2f_2+2f_2+f_3$, four sections for three points.

2.3: Accuracy

The Trapezium Rule can be applied using any number of strips from one upward, and the
accuracy increasing as number of strips increasing. It is found that doubling the number of strips
divides the error by four approximately:

$$error \propto h^2$$
 $second-order$ $convergence$

• Simpson's rule can be used for any even number of strips from 2 upwards, with accuracy of:

$$error \propto h^4$$
 $fourth-order$ $convergence$

 Adaptive integration, is a kind of way to change the width of the strips using computer programs.

3: Eigenvalues and eigenvectors

- The method can be used to find the approximately solution of E-value and E-vector are demonstrated below.
- For an example matrix: A= $\begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}$, we can easily find that $\lambda_1=5, \, v_1=\begin{pmatrix} 2 \\ 1 \end{pmatrix}$; $\lambda_2=-1, \, \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
- Use this method, we can find the max magnitude E-value and its E-vector:

• If we plot the result, another E-value and E-vector can also be found by inverse matrix:

ower me	ethod													- 1
		Matr	du	0	- 1	2	3	4	5	6	7	0	9	2 to Value
88	bb	3	4 uu	1	3	17	83	417	2083	10417	52083	260417	1302083	Δ
cc	dd	2	1 vv	0	2	8	42 0		1042	5208	26042	130208	651042	> E- Value
etermina			Normalise	d 1.000	0.832	0.905	0.892	0.895	0.894	0.894	0.894	0.894	0.894	0010 60
-5			Eigenvecte		0.832	0.905	0.892	0.895	0.894	0.894	0.894	0.894	0.894	Carl
-5			Eigenvecti	0.000	0.555	0.420	0.452	0.440	0.447	0.447	0.447	0.447	0.447	
			Eigenvalu	e	3.000	5.667	4.882	5.024	4.995	5.001	5.000	5.000	5.000	calculated as
														colonalisters as
ote:														Calmino
3	4	has eigenva	lues 5 and -1, with	eigenvector	s (2,1) and (1	,-1)	(2,1) normal	ises to (0.89	4,0.447), (1,	-1) normalise	s to (0.707,-0	0.707)		
2	1	1	nverse has eigenv	alues 1/5 and	-1, with san	ne eigenvecto	ors							1, 1,
														77002
		Inverse r		0	1	2	3	4	5	6	7	8	9	32007
aa	bb	-0.2	0.8 uu	1	-0.2000	0.3600	-0.3280	0.3344	-0.3331	0.3334	-0.3333	0.3333	-0.3333	5.000
cc	dd	0.4	-0.6 vv	0	0.4000	-0.3200	0.3360	-0.3328	0.3334	-0.3333	0.3333	-0.3333	0.3333	1-417
			Normalise	4 4 000	0.447	0.747	0.500	0.700	0.707	0.707	0.707	0.707	0.707	- 10711
					-0.447	-0.664	-0.699	0.709	-0.707 0.707	0.707	-0.707	0.707	-0.707 0.707	
			Eigenvect	or 0.000	0.894	-0.664	0.716	-0.705	0.707	-0.707	0.707	-0.707	0.707	
			Eigenvalu	ie	-0.200	-1.800	-0.911	-1.020	-0.996	-1.001	-1.000	-1.000	-1.000	
			1	,		,		1	/	/	1	-	se-mo	
			7 /		1	10 1/11		10 1	o La	ucl	hu	11/11/PX	S - 110	

4: Solving differential equations - Euler's methods

- If we want to solve the equation like $rac{dy}{dx}=f(x,y)$, with initial condition $g(x_0)=y_0$.
- Over a short distance, we can use $\delta y pprox rac{dy}{dx} \delta x$. Instead we use h replace δx :

$$y_1 = y_0 + h rac{dy}{dx}(0) \ = y_0 + h f(x_0, y_0)$$

• Then we get a general formula:

$$y_{n+1} = y_n + hf(x_n, y_n)$$

• Using this method, we can get the approximate graph of the solution:

