信号处理原理

双音频按键识别

实验目标

使用 MATLAB 实现 Goertzel 算法,对 DTMF 进行识别。

使用的 DTMF 音源来自 https://www.mediacollege.com/audio/tone/files/dtmf.zip, 用 ffmpeg 转换为 wav 后用于 MATLAB 程序使用。

实验过程

首先参考 MATLAB 上的文档对 "0" 这个音进行了 FFT:

```
1  [sound, Fs] = audioread('dtmf-0.wav');
2  y = transpose(sound(:, 1)); % left
3
4  len = size(y);
5  len = len(2);
6  freq = fft(y);
7  t = Fs*(0:len-1)/len;
8  plot(t, abs(freq));
```

它的功能就是读出音频文件中的数据,得到两个声道的声音和采样频率,简单期间直接取了左声道。进行 FFT 后,把数字频率转换回模拟频率进行画图,得到了以下的图片:

可以看到,在九百多和一千三百多有两个峰,与理论上的 941Hz 和 1336 Hz 是吻合的。

接着,参考了<u>维基百科</u>上进行实现,主要的公式如下:

The first stage calculates an intermediate sequence, s[n]:

$$s[n] = x[n] + 2\cos(\omega_0)s[n-1] - s[n-2].$$

The last two mathematical operations are simplified by combining them algebraically:

$$egin{align} y[N] &= s[N] - e^{-j2\pirac{k}{N}} s[N-1] \ &= (2\cos(\omega_0)s[N-1] - s[N-2]) - e^{-j2\pirac{k}{N}} s[N-1] \ &= e^{j2\pirac{k}{N}} s[N-1] - s[N-2]. \end{split}$$

与课件 PPT 上基本是一致的,然后我基本按照算法直接翻译为了 MATLAB 代码(见my_goertzel.m):

```
1 function res = my_goertzel(data, Fs, freq)
2    omega = freq / Fs * 2 * pi;
3    vk2 = 0;
4    vk1 = 0;
5    vk = 0;
```

其中 vk, vk1, vk2, y 分别对应课件中对应的表示,只有最后的 res 赋值是按照维基百科的写法。

接着,简单地对所有可能的频率都调用一次 my_goertzel 函数,然后排序得到最大的两个频率就是结果了:

```
1  f = [697, 770, 852, 941, 1209, 1336, 1477, 1633];
2  res = [];
3  for i = 1:length(f)
4     val = my_goertzel(y, Fs, f(i));
5     res = [res; [val, f(i)]];
6  end
7
8  res = sortrows(res, 1, 'descend');
9  ans1 = res(1,2)
10  ans2 = res(2,2)
```

结果截图(在 dtmf-1.wav 上运行):

```
>> dtmf
ans1 =
697
ans2 =
1209
```

和理论是符合的。其他数字的声音也验证过,没有出现问题。

另一种方法是直接用内置的 FFT,然后取模拟频率对应的点上 DFT 的值,然后找到最大两个值对应的模拟频率就是我们要找的。也是用类似的方法,取出数据然后排序,得到结果:

```
1  res2 = [];
2  for i = 1:length(f)
3     val = freq(round(f(i)/Fs*len));
4     res2 = [res2; [val, f(i)]];
5  end
6  res2 = sortrows(res2, 1, 'descend');
7  ans_fft1 = res2(1,2)
8  ans_fft2 = res2(2,2)
```

还是对 dtmf-1.wav 计算,可以看到两种方法得到的结果是一样的:

```
>> dtmf
ans_go1 =
   697
ans_go2 =
        1209
ans_fft1 =
        1209
ans_fft2 = [
   697
```

接下来对上面的代码进行计时,分别运行 100 次,得到总时间(cpu time):

可见自己写的代码还是没有自带的 fft 快。MATLAB 有自带的 goertzel 算法的实现,肯定比自己写的更快,所以没有做更多的测试。

卷积计算性能比较

复杂度分析

一共有四个线卷积的算法:

- 1. 直接按公式计算,显然是 O(nm)
- 2. FFT 圆卷积计算,两次 FFT,一次 IFFT,和一次点乘,复杂度是 O((n+m)log(n+m))
- 3. Overlap Add, 按块 FFT, 块大小为 L, 一共 n/L 块, 所以复杂度是 O(n/L* (L+m)log(L+m))=O((n+m/L)log(L+m))
- 4. Overlap Save, 按块 FFT, 块大小为 N, 一共 n/(N-m) 块, 复杂度是 O(n/(N-m)*(N+m)log(N+m))

分别实现在 direct.m conv_fft.m overlap_add.m 和 overlap_save.m 中。其中 Overlap Add 基本按照维基百科上的伪代码实现, Overlap Save 则对维基百科上的伪代码进行了一些改动,按照 PPT 的图片实现以满足我们的要求。接着,我们对它进行性能测试,代码在 time.m 中。

性能测试时,采用的是同样的数据,先运行一次 assert 保证数据是正确的,然后用自带的 timeit 函数来衡量运行一次需要的时间。

n	m	direct	fft	o_a L=n	o_a L=n/16	o_a L=n/256	o_a L=n/4096	o_s N=m	o_s N=m*2	o_s N=m*3	o_s N=m*4
8192	8192	0.2245	0.0032	0.0034	0.0239	0.4373	5.1577	2.9264	0.0009	0.0008	0.0011
4096	8192	0.1129	0.0028	0.0029	0.0286	0.4060	0.9240	2.2239	0.0009	0.0008	0.0010
4096	4096	0.0566	0.0016	0.0018	0.0117	0.2138	0.4362	0.7226	0.0005	0.0004	0.0005
4096	2048	0.0283	0.0017	0.0018	0.0025	0.1049	0.2329	0.2796	0.0003	0.0004	0.0003

4096	1024	0.0142	0.0014	0.0015	0.0037	0.0489	0.1368	0.1407	0.0003	0.0003	0.0002
4096	512	0.0071	0.0010	0.0010	0.0010	0.0097	0.0865	0.0819	0.0003	0.0003	0.0002

针对 n=4096,m=4096 情况下各个算法画了下面的图:

由上图可见,direct 是比较慢的,因为复杂度比较高;FFT , Overlap Add 和 Overlap Save 在采用合适的参数时都很快,但当 Overlap Add 中 L 太小(每次 FFT 只计算很少的几个数)和 Overlap Save 中 M 太小(每次 FFT 只取结果里的一个数)的时候,会出现退化的情况,块数过多,反而比 direct 还 慢,做的 FFT 次数过多。但在参数选取地比较好的时候,例如 Overlap Save 在 M=[2m,4m]时,性能会比直接 fft 还要好。

针对 direct 算法,从数据中可以明显地看出符合 O(mn) 的时间关系:

对于 Overlap Add 算法,一个合适的 L 大小比较重要,我们对比了 L=n L=n/16 L=n/256 和 L=n/4096 的情况,在 m 比较大的时候,更大的 L 会带来更好的复杂度,因为 m/L 这一项比较小, $\log(L+m)$ 也不会很大,而 m 比较小的时候这个差别就不大了,这个趋势也在下面的图里得到了反映。

但实际上,当 L=n 的时候,会退化为直接用 FFT 的第二种算法,所以这种方法可能只有在 m 比较大的时候才能体现出它相当于 FFT 的优势。

对于 Overlap Save 算法,一个合适的 N 也很重要。Wikipedia 上写的推荐 N 区间是 [2m, 4m],这个和实验数据也是比较符合的。当 N=m 时,每个 overlap 区间退化成了只有一个数是正确的结果,所以变成了最慢的一种。当 N 取 2m 3m 和 4m 的时候,跑得都非常快,比其他算法都快。这一点在 m 比较小的时候更有优势,因为 log(N+m) 会比 log(n+m) 小,前面的系数 (N+m)/(N-m) 也会更小。

总体结论: direct 复杂度高,比较慢,不要使用;FFT 比较快,并且是内置函数,使用方便;Overlap Add 需要选取合适的 L 值,在 L 值合适的时候和 FFT 速度差不多;Overlap Save 需要选取合适的 N 值,在 N 值合适的时候可能比 FFT 速度更快。

频分复用

数据沿用了 DTMF 中的 dtmf-0.wav 到 dtmf-3.wav,它满足采样率相同,时长相同的特点,首先对 dtmf-0.wav 频谱画出来:

可以看到,采样频率是 44100,可以看到明显的 DTMF 的尖峰。然后用 MATLAB 内置的 upsample 函数,上采样 4 倍后再画出来(此时采样频率是 44100*4):

可以看到频谱中出现了四个周期,接下来用四个 FIR 滤波器分别把四个周期滤出来,分别对应 [0, 22050], [22050, 44100], [44100, 66150], [66150, 88200] 这四个区间进行带通滤波器的设计。

滤波器采用自带的 fir1 函数计算:

```
1 filter1 = fir1(order, 0.25);
2 filter2 = fir1(order, [0.25 0.5]);
3 filter3 = fir1(order, [0.5 0.75]);
4 filter4 = fir1(order, 0.75, 'high');
```

分别提取所需的四个"周期",对应新的采样频率下就是 [0, pi/4], [pi/4, pi/2], [pi/2, 3pi/4], [3pi/4, pi]。可以用 fvtool 命令查看滤波器的幅度响应:

order = 30:

order = 8064:

是一个 [pi/4, pi/2] 的带通滤波器。考虑到实际使用的时候 order 不会比较高,所以采用了 order=30。接着,把滤波器和对应的原信号进行卷积,用 plot_freq 函数画图:

最后线性地求和, 再看频谱:

这时候就是四个信号的频谱同时出现的结果。

解码的过程也类似:对于结果,采用同样的滤波器,然后进行下采样,这样就会恢复到原来的采样频率:

```
1 rec1 = filter(filter1, 1, res);
2 rec1_down = downsample(rec1, L)*L;
```

此时 rec1_down 长度和原数据 y1 长度相同,频谱也相似:

放大可以找到两个尖峰依然是 941Hz 和 1336Hz 左右。

类似地也可以用 filter2 取第二段的结果:

此时左边的两个尖峰: 697Hz 和 1209Hz 与原信号是相符合的,但旁边出现了下一段音频 1336Hz 泄露过来的分量。如果增加 FIR 的 order,这个现象可以得到改善(order=3000):

所以失真的程度取决于滤波器的项数,如果项数多,失真自然比较少;反之失真比较严重。