Package 'moveNT'

July 3, 2018

Title An R package for the analysis of movement data using network theory				
Version 0.0.0.9000				
Description This package provides a series of functions to analyse movement data using network theory. Depends R (>= 3.3.2), raster, sp, adehabitatLT				
License GPL (>=3)				
Encoding UTF-8				
LazyData true				
RoxygenNote 6.0.1.9000				
Imports igraph, mclust, moveHMM, uuid				
R topics documented:				
adj2stack clustnet dot graphmet interpolation loop mosaic_network quant sim_mov traj2adj val				
adj2stack Calculation of network metrics				
Description Transform an adjancency matrix to a series of network metrics at the node-level (weight, degree betweenness, transitivity, eccenctricity) and graph level (diameter, transitivity, density, and modularity)				

2 clustnet

Usage

```
adj2stack(adjmov, grph = T, mode = "directed", weighted = T, ...)
```

Arguments

adjmov Adjacency matrix, need to be an object produced by function traj2adj

grph Whether node level metrics are to be plotted

mode Whether the graph should be "directed" or "undirected. Default="directed". See

"graph_from_adjacency_matrix" from package "igraph"

weighted Whether the graph should be weighted (=TRUE) or unweighted (= NULL). De-

fault is weighted. See "graph_from_adjacency_matrix" from package "igraph"

Value

A raster stack object

Examples

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=100), grph=T)</pre>
```

clustnet

Normal mixture model for clustering of node level metrics

Description

Apply a normal mixture model to a node-level metric

Usage

```
clustnet(stack, id = 2, nclust = 2, grph = T)
```

Arguments

stack An object produce by the function adj2stack

id Metric to be used (2=Weight, 3=Degree, 4=Betweenness, 5=Transitivity, 6=Ec-

centricity)

grph Whether resulting classification should be plotted

Value

A list object containing a Mclust object and a raster object

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=100), grph=T)
cl<-clustnet(stck, id=2, nclust=2, grph=T)
summary(cl[[1]])</pre>
```

dot 3

dot dot product

Description

dot product

Usage

```
dot(x, ...)
```

graphmet

Summarize graph-level metrics

Description

Summarize graph-level metrics from an object generated by adj2stack

Usage

```
graphmet(grid)
```

Arguments

grid An object generated by the function adj2stack

id Metric to be used (2=Weight, 3=Degree, 4=Betweenness, 5=Transitivity, 6=Eccentricity)

Value

A vector

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=quant(traj1)), grph=T)
graphmet(stck)</pre>
```

4 interpolation

			_			
in	tρ	rnc	าไล	۱t :	i on	

Interpolation based on movement steps for all individuals

Description

Use movement steps to interpolate raster. User can extract the mean or max when multiple steps overlap in a single pixel. Function need to be applied followign the loop function. This process is very slow

Usage

```
interpolation(traj, ls, wei = mean, deg = mean, bet = max,
  spe = mean, dt = dot)
```

Arguments

traj	An object produce by the function adj2stack
ls	An object produced by the loop
wei	Whether mean or max should be used for weight (default = mean)
deg	Whether mean or max should be used for degree (default = mean)
bet	Whether mean or max should be used for betweeness (default = max)
spe	Whether mean or max should be used for speed (default = mean)
dt	Whether mean, max, or dot produc should be used for turning angle (default = dot)

Value

A list object containing a raster stack object for each individual

```
data(puechabonsp)
locs <- puechabonsp$relocs
xy <- coordinates(locs)
df <- as.data.frame(locs)
da <- as.character(df$Date)
da <- as.POSIXct(strptime(as.character(df$Date),"%y%m%d", tz="Europe/Paris"))
litr <- as.ltraj(xy, da, id = id)
out1<-loop(litr)
out2<-interpolation(litr, out1)</pre>
```

loop 5

|--|

Description

Extract adjancency matrix and calculate network metrics for all individuals in a trajectory object. Also calculate mean speed, mean direction, and dot product.

Usage

```
loop(traj, res = 100)
```

Arguments

traj An object produce by the function adj2stack

res Grid size

Value

A list object containing a raster stack object for each individual

Examples

```
data(puechabonsp)
locs <- puechabonsp$relocs
xy <- coordinates(locs)
df <- as.data.frame(locs)
da <- as.character(df$Date)
da <- as.POSIXct(strptime(as.character(df$Date),"%y%m%d", tz="Europe/Paris"))
litr <- as.ltraj(xy, da, id = id)
out1<-loop(litr)</pre>
```

 ${\tt mosaic_network}$

Mosaic individuals together for a given variable

Description

Use output of loop or interpolation and combine all individuals (mosaic) together using the mean or max values.

Usage

```
mosaic_network(ls, index = 2, sc = T, fun = mean)
```

Arguments

ls	An object produced by the loop or interpolate functions
index	Index indicating which layer to take in the stack
sc	Whether to scale all individual rasters (default = TRUE)
fun	Whether mean or max should be used as the mosaic function (default = mean)

6 quant

Value

A list object containing a raster stack object for each individual

Examples

```
data(puechabonsp)
locs <- puechabonsp$relocs
xy <- coordinates(locs)
df <- as.data.frame(locs)
da <- as.character(df$Date)
da <- as.POSIXct(strptime(as.character(df$Date),"%y%m%d", tz="Europe/Paris"))
litr <- as.ltraj(xy, da, id = id)
out1<-loop(litr)
mean_weight<-mosaic_network(out1, index=2, sc=T, fun=mean) #Perform mean weight (not-interpolated)
plot(mean_weight)</pre>
```

quant

Sample quantile of distance for ltraj object

Description

Wrapper function that extract the sample quantile of distance

Usage

```
quant(x, p = 0.5)
```

Arguments

```
x A ltraj object
```

p Probability, default=0.5 (median)

Value

A vector of length p

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=quant(traj1)), grph=T)</pre>
```

sim_mov 7

sim_mov	Simulation of patch-based movement trajectory

Description

Simulate a movement trajectory with user defined number of patches and interpatch movement

Usage

```
sim_mov(type = c("2states", "OU"), npatches = 5, ratio = 5,
  nswitch = 150, ncore = 200, spacecore = 200,
  seq_visit = sample(1:npatches, nswitch, replace = T),
  stepDist = "gamma", angleDist = "vm", stepPar = c(0.5, 3, 1, 5),
  anglePar = c(pi, 0, 0.5, 2), s = diag(40, 2), grph = F)
```

Arguments

type	whether movement within patches should be based on a 2states process (from package moveHMM) or a Bivariate Ornstein-Uhlenbeck process (OU) (from package adehabitatLT)
npatches	Number of patches, default=5
ratio	Ratio (in percent) of locations associated to interpatch movement, default=5
nswitch	Number of switch/depart from patches, default=150
ncore	Number of locations within a patch per visit, default=200
spacecore	Minimum distance between center of patches, default=200
seq_visit	Specify the sequence of visit among patches, default is random sequence
stepDist	Distribution for step length if 2states specified in type, see simData of moveHMM package
angleDist	Distribution for turn angle if 2states specified in type, see simData of moveHMM package
stepPar	Parameters for step length distribution if 2states specified in type, see simData of moveHMM package
anglePar	Parameters for turn angle distribution if 2states specified in type, see simData of moveHMM package
S	Parameters for the OU process, see simm.mou of adehabitatLT package
grph	Whether a graph of the trajectory should be produced, default=F

Value

A ltraj (adehabitatLT) object

```
traj1<-sim_mov(type="OU", npatches=3, grph=T)
traj2<-sim_mov(type="2states", npatches=2, grph=T)</pre>
```

8 val

4	i2adi
Trai	ızanı

Generation of adjacency matrix from movement data

Description

Transform an Itraj object to an adjacency matrix using a user-specified grid size

Usage

```
traj2adj(mov, res = 100, grid = NULL)
```

Arguments

mov Movement trajectory, need to be a ltraj object

res Grid size

grid User specified grid (a raster), needs to have a larger extent than the movement

trajectory

Value

A list of object containing the adjacency matrix, the grid use, and patch/corridor identification (only useful if sim_mov was used)

Examples

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
adj<-traj2adj(traj1, res=100)</pre>
```

val

Extract occupied cells in a raster object

Description

Extract only occupied cells in a raster object,

Usage

```
val(grid, id)
```

Arguments

grid An object generated by the function adj2stack

id Metric to be used (2=Weight, 3=Degree, 4=Betweenness, 5=Transitivity, 6=Ec-

centricity)

Value

A vector

val 9

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=quant(traj1)), grph=T)
mean(val(stck, 2))</pre>
```

Index

```
*Topic Mclust
    clustnet, 2
*Topic adj2stack
    clustnet, 2
    graphmet, 3
    interpolation, \\ 4
    100p, 5
    {\tt mosaic\_network}, {\tt 5}
    sim_mov, 7
    traj2adj, 8
    val, 8
*Topic loop
    interpolation, 4
    mosaic_network, 5
*Topic ltraj
    quant, 6
*Topic traj2adj
    adj2stack, 1
    clustnet, 2
    interpolation, 4
    100p, 5
    \verb|mosaic_network|, 5
    sim_mov, 7
adj2stack, 1
clustnet, 2
dot, 3
graphmet, 3
interpolation, 4
100p, 5
mosaic_network, 5
quant, 6
sim_{mov}, 7
traj2adj, 8
val, 8
```