Opérations Arithmétiques binaires dans les ensembles N et Z et indicateurs Z, C, V, N

Opérations arithmétiques binaires dans les ensembles *N* et *Z* et indicateurs Z, C, V, N

Consigne:

- 1. <u>Identifier</u> les notions/définitions importantes et être capable de les <u>expliquer</u>.
- 2. Refaire les exemples illustrant ces notions.
- 3. les appliquer en faisant les exercices notés exercice à faire.

Contexte et objectifs:

Comment:

- Représenter les nombres (entiers naturels, entiers) dans un microprocesseur,
- coder en binaire et/ou en hexadécimal sur n bits des entiers naturels et signés,
- Effectuer des opérations d'addition en binaire et/ou en hexadécimal,
- Détecter les dépassements de capacité dans les entiers naturels et signé,
- Interpréter le résultat obtenu en fonction des indicateurs Z, N, C et V,
- Effectuer des opérations de multiplication ou division par une puissance de 2.

1. Système de numération dans une base b :

Tout entier naturel N peut être représenté par une suite de chiffres de la base b : $(a_n, a_{n-1}, ..., a_1, a_0)_b$ où les a_i sont les chiffres de la base $(0 < a_i < b)$. Ce nombre en notation étendue (ou positionnelle) a pour valeur :

N =
$$a_n b^n + a_{n-1} b^{n-1} + a_1 b^1 + a_0 b^0 = \sum_{i=0}^n a_i b^i$$

Avec $a_i \in \{0, 1, ..., b-1\}$ et $a_n \neq 0$.

 b^n est le poids attaché à la position du chiffre a_n .

Exemples:

b = 10 - système de numération décimal : les chiffres a_i € {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Le nombre décimal 245 est ainsi égal à 2 x10² + 4 x 10¹ + 5 x 10⁰.

b = 16 - système de numération hexadécimal : les chiffres $a_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$

Le nombre $(F5)_{16}$ est ainsi égal à F x 16^1 + 5x 16^0 . Ce nombre est aussi noté 0xF5 ou $(F5)_H$, pour indiquer qu'il est exprimé en hexadécimal.

b = 2 - système de numération binaire : les chiffres binaires (bit = **bi**nary digi**t**) $a_i \in \{0, 1\}$, Le nombre $(0101)_2$ est égal à $0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 4 + 1 = 5$.

Le tableau ci-dessous représente **le code binaire naturel** sur 4 bits et sa correspondance en hexadécimal et décimal :

Chiffres HEX.	Valeurs décimales	Équivalence en binaire 2322120			
0	0	0000			
1	1	0001			
2	2	0010			
3	3	0011			
4	4	0100			
5	5	0101			
6	6	0110 0111			
7	7				
8	8	1000 1001			
9	9				
Α	10	1010			
В	11	1011			
С	12	1100			
D	13	1101			
E	14	1110			
F	15	1111			

2. Entiers naturels:

Les valeurs représentables des entiers naturels codés sur n bits (Binary digit) sont :

Nombres positifs	Représentation sur n bits en base 2
0	0 0 00000000000000000000000000000000000
1	0 0 0 1
2	0 0 1 0
2 ⁿ⁻¹	1 0 0 0
2 ⁿ -1	1 1 11111111111111111111111111111111111

Exemple: soit un nombre entier naturel codé sur 8 bits (1 octet: n = 8):

Nombres positifs	Représentation sur 8 bits			
·	en base 2			
0 = valeur min	0000 0000			
1	0000 0001			
2	0000 0010			
2^{n-1} soit $2^{8-1} = 2^7 = 128$	1000 0000			
2 ⁿ -1 soit 2 ⁸ -1 =255 = valeur max	1111 1111			

En entiers naturels, sur n bits : on peut représenter des entiers $\in a [0,...,2^n-1]$.

3. Entiers signés:

par convention, on utilise la représentation en complément à 2.

Le bit de rang *n-1* est le bit de poids fort, il représente le bit de signe par convention. Dans la représentation en complément à 2, un nombre négatif est codé par le complément à 2 de sa valeur absolue :

Le complément à 2 (noté C2) :

$$\forall (b_{n-1} \dots b_0) \in \{0, 1\}^n, C2(b_{n-1} \dots b_0) = C1(b_{n-1} \dots b_0) + 1.$$

C1 est le complément à 1 (inversion bit à bit).

Une seule représentation pour 0,

Opérations arithmétiques plus simples (l'addition et la soustraction sont traitées de la même manière) (a - b = a + (-b) = a + C2(b)),

Le complément à 2 du complément à 2 d'un nombre N est le nombre lui-même : C2(C2(N)) = N.

pour un entier codé sur n bits :

Rostom Kachouri -- ESIEE Paris

Le bit de rang n-1 est appelé bit de signe, c'est le bit de poids fort : (2^{n-1})

Le bit de poids faible est le bit de rang 0 : (2°).

Les valeurs représentables en complément à 2, des entiers codés sur *n* bits sont :

	Valeur	Représentation binaire sur n bits
Valeur minimale	-(2 ⁿ⁻¹)	10000
	-1	11111
	0	0 0 0 0 0
Valeur maximale	2 ⁿ⁻¹ - 1	0 1 1 1 1

En complément à (la base) 2, sur n bits : on peut représenter des entiers ∈ à $[-2^{n-1},...,2^{n-1}-1]$

Ainsi pour n = 8 bits, les valeurs des entiers sont comprises entre $(-128)_{10}$ et $(127)_{10}$:

	Valeur	Représentation
		binaire sur 8 bits
Valeur minimale	$-(2^{n-1})$ soit $-(2^{8-1})=-2^7=$ -128	1000 0000
	-1	1111 1111
	0	0000 0000
Valeur maximale	2^{n-1} - 1soit 2^{8-1} -1 = 2^7 -1 = 127	0111 1111

Exemple: soit un nombre entier A codé sur 4 bits = 1001 ce nombre est négatif, le bit de poids fort = 1, c'est le bit de signe.

Le C2 permet de trouver sa valeur absolue :

C2(1001) = C1 (1001) +1 = 0110 +1 = 0111, ce qui signifie que
$$|A|$$
 = 7 donc A = -7.

Exemple: Pour représenter $(-6)_{10}$ en complément à 2 sur 4 bits (n = 4), la valeur absolue de $6 = 0 \ 1 \ 1 \ 0 = 0^2^3 + 1^2^2 + 1^2^1 + 0^2^0 = 4 + 2$

L'Inversion bit à bit donne : 1 0 0 1 ; On ajoute 1, on obtient : 1 0 1 0

⇒ 1 0 1 0 est la <u>représentation de (-6)₁₀ en complément à 2 sur 4 bits</u>.

Ainsi $(1111\ 1111)_2 = 0xFF = (-1)_{10}$. L'inversion bit à bit donne $(000\ 000)_2$. On ajoute 1, on obtient : $(000\ 0000)_2 + 1 = (0000\ 0001)_2$

Rostom Kachouri -- ESIEE Paris

Remarque : dans les microprocesseurs, la taille n est fixe et peut être égale à : 8, 16, 32, 64, 128 bits.

⇒ Extension du bit de signe

On peut représenter un nombre de taille n bits sur m bits (m>n), par extension du bit de signe sur (m-n) bits.

Exemple: le nombre entier (1001)₂ codé sur 8 bits est : (1111 1001)₂ obtenu par extension (duplication) sur bit de signe sur 4 bits (8-4). Ce nombre = 0xF7.

A ce stade vous êtes capable de :

- o Coder en binaire (et hexadécimal) un entier naturel ou un entier codé sur n bits.
- o Donner l'intervalle dans lequel un nombre x codé sur n bits est compris dans les cas : $x \in N$ (entiers naturels) et $x \in Z$ (entiers).
- o Représenter (trouver) un nombre entier codé sur n bits sur m bits (avec m > n).

4. Opérations sur les entiers naturels_Addition Binaire :

Soit à additionner 2 entiers naturels a et b codés sur n bits et représentés respectivement par les suites suivantes :

- $(a_{n-1}, \ldots, a_1, a_0)$; a_0 est le bit de poids faible (2^0) et a_{n-1} est le bit de poids fort (2^{n-1}) ,
- et $(b_{n-1}, \ldots, b_1, b_0)$; b_0 est le bit de poids faible (2^0) et b_{n-1} est le bit de poids fort (2^{n-1}) .

Principe de l'addition en base 2: on additionne les bits colonne par colonne en commençant par le bit de poids faible (bit de rang 0).

Remarque importante : Dans les microprocesseurs la valeur du report (retenue) est donnée par le bit C appelé indicateur de Carry (ou Flag en anglais), il est en général mémorisée dans un registre interne du microprocesseur, appelé registre d'état.

La somme s de a + b peut être supérieure à la valeur maximale représentable sur n bits, c'est-à-dire à 2^{n-1} et n'est donc pas nécessairement représentable sur n bits.

La partie représentable de la somme est s= (a+b) mod 2ⁿ, s est représentée en convention standard par la suite $(s_{n-1}, ..., s_1, s_0)$ sur n bits.

Les s_i sont obtenus à partir des a_i et b_i, en appliquant l'opération d'addition binaire bit à bit de droite à gauche en reportant (on dit aussi en propageant) les retenues éventuelles.

La retenue r_i prise en compte au rang i, est engendrée au rang (i-1) pour i > 0, la retenue initiale $r_0 = 0$.

La dernière retenue r_n codée sur un bit est engendrée au rang n - 1:

Cette retenue est appelé report, en anglais Carry et noté C.

Si la dernière retenue $r_n = 0$, la somme s est représentable sur n bits.

Si la dernière retenue $r_n = 1$, la somme s n'est représentable sur n bits on dit qu'il y a débordement.

Le débordement dans l'addition des entiers naturels est indiqué par l'indicateur C = 1. On a un dépassement de capacité sur les entiers naturels.

Exemple: Addition binaire sur 8 bits

<i>r</i> = report = retenue	1	10001110
а		11000101
b		11100011
a+b		10101000

 $r_n = 1$ (ici : n = 8) \rightarrow C = 1. Le résultat de l'addition précédente est s = a + b = 10101000 et C=1 dépassement de capacité sur les entiers naturels.

Exercice à faire : faire l'o	pération 0000 0001	+ 1111 1111, dor	nner le résultat er	n binaire et
sur 8 bits et l'état de l'indic	ateur C.			

Exemple: l'addition Hexadécimale (*cette représentation permet de condenser l'écriture en binaire*) sur 8 bits de (1100 0101)₂ + (1110 0011)₂, donne le résultat ci-dessous :

r	1	0x00
а		0xC5
b		0xE3
a+b		0xA8

La notation 0x indique que le nombre est codé en Hexadécimale.

On effectue l'opération comme suit :

5 + 3 = 8 (rang 16^{0}) et C + E (pour le rand 16^{1})

soit 12 + 14 = 26 = 16 + 10 ce que donne A en hexadécimal et la retenue C = 1.

Le résultat s= a +b = 0xA8 et C=1 dépassement de capacité sur les entiers naturels.

Soit $10 \times 16^1 + 8 \times 16^0 = 168$:

comme C=1, le résultat est $168 + 16^2 = 168 + 256 = 424$.

Vérification: En base 10:

a = 197, (c'est à dire $a = 2^0 + 2^2 + 2^6 + 2^7$), et b = 227, la somme s = a + b = 424.

Exercice à faire : Si on effectue la somme s = a + b avec a et b codés sur 16 bits. Quel est l'état de C ? Justifiez votre réponse.

5. Opérations sur les entiers_Addition en code complément à 2 (CC2) :

Soit 2 nombres a et b représentés en code complément à 2, le tableau ci-dessous donne les différents cas possibles de l'addition de 2 nombres entiers a et b en CC2 sur n bits et l'état de l'indicateur V (dépassement de capacité, oVerflow).

V = 1 si le résultat de la somme de a et b ne peut pas être représenté en CC2 sur n bits.

a, b sont	r _{n-1}	r _n	S _{n-1}	٧	Si le résultat de l'addition est :	
> 0	0	0	0	0	≥ 0 s est représentable sur n bits	
> 0	1	0	1	1	< 0 s est non représentable sur n bits	
Do Signo +	0	0	1	0	s est toujours représentable sur n bits	
De Signe ≠	1	1	0	0		
< 0	0	1	0	1	≥ 0 s est non représentable sur n bits	
< 0	1	1	1	0	< 0 s est présentable sur n bits	

r_{n-1}: est le report de l'addition des bits de rang n-2

r_n: est le dernier report, il représente le report de l'addition des bits de rang n-1

s_{n-1}: est le bit de poids fort de la somme, <u>c'est-à-dire le bit de signe de la somme.</u>

- Le débordement dans le cas de l'addition standard est indiqué par l'indicateur C(arry)=1.
- Le débordement dans le cas de l'addition en CC2 est indiqué par l'indicateur V=1 (oVerflow).

Remarque: C=1 n'implique pas que V soit égal à 1.

Exemple:

r = report	00001110	10001110		10001110	00001110
а	10000101	01000101		11000101	00000101
b	10100011	01100011		01100011	00100011
a+b	00101000	10101000		00101000	00101000
		V=1 et C=0			
	V=C=1	V=1 et C=0		V=0 et C=1	V=C=0
	V=C=1 débordement	V=1 et C=0 débordement		V=0 et C=1 correct	V=C=0 correct

Cet exemple vérifie que si r_n = r_n-1 alors il n'y a pas de débordement et la somme est représentable en CC2 sur 8 bits.

Exercice à faire : illustrer les cas précédents par des exemples d'opérations en binaire sur 16 bits.
Soustraction par addition en CC2 :
On peut calculer la soustraction de a - b en effectuant l'opération :
A + C1(b) + 1 = a + C2(b).

A ce stade vous êtes capable de :

A ce stade vous êtes capable de :

- poser et effectuer une opération d'addition en binaire ou en hexadécimal de 2 nombres x et y codés sur n bits. $x, y \in N$ (entiers naturels) et $x, y \in Z$ (entiers).
- o Donner le résultat sur n bits et l'état des indicateurs Z, N, C et V.
- Expliquer dans quels cas V = 1
- Trouver le résultat correct dans le cas d'un débordement C = 1 (entiers naturels)
- Trouver le résultat correct dans le cas d'un débordement sur les entiers, V = 1
- o Calculer la soustraction de a b en effectuant l'opération a + C2(b).

6. Multiplication par une puissance de 2 (2^k):

La multiplication d'un entier a codé sur n bits par la suite de bits $(a_{n-1}, ..., a_0)$ par 2^k (k > 0)est obtenue par un décalage de cette suite de bits de k positions vers la gauche.

Les k bits de plus faible poids sont remplacés par des 0.

Si le résultat n'est représentable, un débordement est généré.

Exemple : soit l'opération 10*4 = 40. Cette opération réalisée sur 8 bits donne :
$10 = 0000 \ 1010 \ ; 4 = 2^2$
0000 1010 décalé à gauche de 2 postions donne : 0010 1000 soit 2 ³ + 2 ⁵ = 8 + 32 = 40.
Exercice à faire : à quoi correspond l'opération 16*3.
7. Division par une puissance de 2 (2 ^k) :
La division d'un entier a codé sur $$ n bits par la suite de bits $(a_{n-1},,a_0)$ par 2^k $(k>0)$ est obtenu par un décalage de cette suite de bits de k positions vers la droite .
Cas 1 : le bit de signe a_{n-1} est recopié dans les k bits de poids fort. Ce type de décalage est dit arithmétique .
Cas 2 : Dans le décalage dit logique , les k positions de poids fort sont remplies de 0.
Exemple : soit à réaliser l'opération 20 / 2 = 10. On a 20 = 16 +4 = 0001 0100;
0001 0100 décalé à droite d'une position donne 0000 1010 soit 10.
Exercice à faire : à quoi correspond l'opération 30 / 2 = 15 :
A ce stade vous êtes capable de :
 Effectuer des multiplications ou divisions par puissance de 2 en appliquant des

Rostom Kachouri -- ESIEE Paris