MATHÉMATIQUES II

On se propose dans ce problème d'étudier une méthode de calcul approché des valeurs propres d'une matrice symétrique réelle.

Notations : On désigne par $\mathrm{Mat}(n,\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients réels, par $S_n(\mathbb{R})$ le sous-espace des matrices symétriques, par $O_n(\mathbb{R})$ le groupe des matrices orthogonales d'ordre n et par $O_n^+(\mathbb{R})$ le groupe des matrices orthogonales directes (i.e. dont le déterminant vaut 1).

On désigne par $diag(\alpha_1,...,\alpha_n)$ la matrice diagonale d'ordre n:

$$\begin{bmatrix} \alpha_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \alpha_n \end{bmatrix}$$

La notation $A=(a_{i,\,j})$ signifie que la matrice A de $\mathrm{Mat}(n,\,\mathrm{I\!R})$ a pour coefficient $a_{i,\,j}$ en i-ème ligne et j-ème colonne. Dans ce cas, la transposée de A sera notée tA et la trace de A définie par $Tr(A)=\sum_{j=1}^n a_{i,j}$.

Liens entre les parties du problème : La partie I sert dans tout le problème. La partie II traite d'un cas particulier que l'on aura intérêt à traiter soigneusement avant de poursuivre. La partie IV est indépendante de ce qui précède et sert dans V.D - .

Partie I - Une norme sur $Mat(n, \mathbb{R})$

- **I.A** Montrer que pour tout couple de matrices carrées (A, B), (Tr(AB)) = Tr(BA).
- I.B Montrer que l'application
 - $\phi: Mat(n, \mathbb{R}) \times Mat(n, \mathbb{R}) \to \mathbb{R}$, définie par : $\phi(A, B) = Tr(A^t B)$

Filière MP

est un produit scalaire ; calculer en particulier $\phi(A, A)$. On note $\| \|$ la norme associée à ϕ . Exprimer $\|A\|^2$ en fonction des $(a_{i,j})$.

I.C - Montrer que pour toute matrice $A = (a_{i,j})_{i,j}$ de $Mat(n, \mathbb{R})$, on a :

$$\left(\sum_{i=1}^{n} a_{i,i}\right)^{2} \le n \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2}$$

En déduire la norme de l'application $Tr: Mat(n, \mathbb{R}) \to \mathbb{R}$ (norme subordonnée à la norme $\| \| \|$).

I.D - Soit Ω un élément de $O_n(\mathbb{R})$. Montrer que pour toute matrice A, $\|\Omega A\| = \|A\|$. Prouver que si A est une matrice symétrique, la matrice $B = {}^t\Omega A\Omega$ est elle-même symétrique et que l'on a, en notant $(b_{i,j})$ les coefficients de B:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i,j}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2}.$$

Partie II - Diagonalisation pour n = 2

Soient A une matrice de $S_2(\mathbb{R})$, et Ω une matrice de $O_2^+(\mathbb{R})$ définies par :

$$A = \begin{bmatrix} a_{1,1} \ a_{1,2} \\ a_{1,2} \ a_{2,2} \end{bmatrix}, \ \Omega = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}.$$

On pose $B = {}^{t}\Omega A\Omega = (b_{i,j})$.

II.A - Calculer les termes de la matrice B.

II.B - Montrer que

$$\sum_{i=1}^{2} b_{i,i}^{2} + 2b_{2,1}^{2} = \sum_{i=1}^{2} a_{i,i}^{2} + 2a_{2,1}^{2}.$$

II.C - On suppose ici que $a_{1,\,2} \neq 0$. Montrer qu'il existe un réel θ appartenant à $]-\frac{\pi}{4},\ 0 [\,\cup\,]\,0,\frac{\pi}{4}\,]$, et un seul, tel que $b_{2,\,1}=0$ (penser à distinguer deux cas).

Définir la fonction F qui, à une matrice symétrique non diagonale de $S_2(\mathbb{R})$, associe le réel θ ainsi défini.

II.D - Montrer que pour ce choix de θ , la matrice B est diagonale et que $b_{1,1}$ et $b_{2,2}$ sont les valeurs propres de A.

II.E - On donne

$$A = \frac{1}{5} \begin{bmatrix} 1 & 12 \\ 12 & -6 \end{bmatrix}.$$

Calculer $\theta = F(A)$ puis la matrice B. En déduire les éléments propres de A.

Partie III - Quelques résultats généraux

On définit, pour θ réel, p et q entiers donnés (avec p < q), une matrice $\Omega = (\omega_{i,j})$ de $Mat(\mathbb{R},n)$ en posant :

$$\Omega = \begin{bmatrix} 1 & 0 & \dots & 0 & & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots & & \dots & \vdots \\ 0 & 0 & \dots & \cos(\theta) & \dots & \sin(\theta) & \dots & 0 \\ \vdots & \vdots & & \ddots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & -\sin(\theta) & \dots & \cos(\theta) & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots & \ddots \\ 0 & 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{bmatrix}$$

où $\omega_{p,\,p}=\omega_{q,\,q}=\cos(\theta)$, $\omega_{p,\,q}=\sin(\theta)$ et $\omega_{q,\,p}=-\sin(\theta)$. On considère $A=(a_{i,\,j})$ une matrice de $S_n({\rm I\!R})$ et $B={}^t\Omega A\Omega$.

III.A - Justifier que $B = (b_{i,j})$ est symétrique et que

$$\sum_{i=1}^{n} \sum_{i=1}^{n} b_{i,j}^{2} = \sum_{i=1}^{n} \sum_{i=1}^{n} a_{i,j}^{2}.$$

III.B - Calcul des coefficients de B

III.B.1) Soit $M=(m_{i,\,j})=A\Omega$. Exprimer, en fonction de θ et des coefficients de A, les coefficients $m_{i,\,j}$, $m_{i,\,p}$ et $m_{i,\,q}$ lorsque j est un élément de [1,n] distinct de p et de q, i est quelconque dans [1,n].

III.B.2) Exprimer, en fonction des coefficients de A et de θ les coefficients $b_{i,\,j}$, puis $b_{i,\,p}$, $b_{i,\,q}$ pour i, j tous deux différents de p et de q, ainsi que $b_{p,\,q}$, $b_{p,\,p}$ et $b_{q,\,q}$.

III.B.3) Donner une relation simple entre les matrices.

$$\begin{bmatrix} b_{p,\,p} \ b_{p,\,q} \\ b_{q,\,p} \ b_{q,\,q} \end{bmatrix} \text{ et } \begin{bmatrix} a_{p,\,p} \ a_{p,\,q} \\ a_{q,\,p} \ a_{q,\,q} \end{bmatrix}.$$

En déduire que

$$b_{p,p}^2 + b_{q,q}^2 + 2b_{p,q}^2 = a_{p,p}^2 + a_{q,q}^2 + 2a_{p,q}^2$$
.

III.B.4) On suppose que $a_{p,q}$ est non nul, montrer qu'il existe un réel $\theta_{p,q}$ appartenant à $]-\frac{\pi}{4}$, $0[\,\cup\,]\,0,\frac{\pi}{4}\,]$ et un seul, tel que $b_{p,q}=0$.

Partie IV - Suites dans espace vectoriel normé de dimension finie

Soit E un espace vectoriel normé, de dimension finie, dont la norme est notée $\| \|$.

IV.A - On se propose de montrer le résultat suivant : une suite $(x_n)_{n\in\mathbb{N}}$ de l'espace normé $(E,\|\ \|)$ telle que :

$$(x_n)_{n \in \mathbb{N}}$$
 est bornée, (1)

$$(x_n)_{n \in \mathbb{I} \mathbb{N}}$$
 admet un nombre fini de valeurs d'adhérences, (2)

$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0, \tag{3}$$

est convergente.

On considère donc $(x_n)_{n\in \mathbb{N}}$ qui vérifie les propriétés (1),(2) et (3) et M un entier strictement supérieur à 1; on note a_μ pour $1 \le \mu \le M$, les valeurs d'adhérence de $(x_n)_{n\in \mathbb{N}}$.

IV.A.1) Montrer, en raisonnant par l'absurde, que :

$$\forall \varepsilon > 0$$
, $\exists n_{\varepsilon} \in \mathbb{N}$, $\forall k \in \mathbb{N}$, $k \ge n_{\varepsilon} \Rightarrow x_k \in \bigcup_{\mu=1}^{M} B(a_{\mu}, \varepsilon)$,

où $B(a_{\mu},\epsilon)$ est la boule ouverte de centre a_{μ} et de rayon ϵ .

IV.A.2) En déduire, par un choix judicieux de ε , qu'il existe $\mu \in [1, M]$ et un entier n_0 tels que : $k \ge n_0 \Rightarrow x_k \in B(a_{\mu}, \varepsilon)$, et conclure.

Partie V - Méthode de Jacobi : une suite de matrices convergeant vers une diagonalisée de A

Soit A un élément de $S_n(\mathbb{R})$. On note $(\lambda_1,\ldots,\lambda_n)$ ses valeurs propres, éventuellement répétées avec leur multiplicité.

On définit par récurrence une suite de matrices $A_k=(a_{i,j}^{(k)})$ en posant $A_0=A$, et $A_{k+1}={}^t\Omega_kA_k\Omega_k$ où Ω_k est construite de la façon suivante :

si A_k est diagonale, Ω_k est la matrice unité,

sinon la matrice Ω_k est définie comme dans la partie III, en choisissant :

(1) deux entiers
$$p$$
 et q tels que $p < q$ et $a_{p,q}^{(k)} = \sup_{i \neq j} \left| a_{i,j}^{(k)} \right|$

$$(2) \ \theta = \theta_k \ , \ \text{dans} \] -\frac{\pi}{4}, \ 0 \ [\ \cup \] \ 0, \frac{\pi}{4} \] \ \ \text{tel que } \cot (2\theta_k) = \frac{a_{q,\,q}^{(k)} - a_{p,\,p}^{(k)}}{2a_{p,\,q}^{(k)}} \ .$$

On observera que p et q dépendent de k et on pourra noter, si le besoin s'en fait sentir, $p = p_k$ et $q = q_k$.

V.A - Donner une conséquence du choix de θ_k pour la matrice A_{k+1} .

V.B - On pose $A_k = D_k + B_k$ avec $D_k = diag(a_{i,i}^k)$ et $\varepsilon_k = \|B_k\|^2$, la norme étant définie comme dans la partie I.

- V.B.1) Montrer que $\varepsilon_k \le n(n-1) |a_{n,\alpha}^{(k)}|^2$.
- V.B.2) Montrer, en utilisant la question III.B.3, que $\varepsilon_{k+1} = \varepsilon_k 2 \left| a_{p,a}^{(k)} \right|^2$.
- V.B.3) En déduire que

$$\varepsilon_{k+1} \le \left(1 - \frac{2}{n(n-1)}\right) \varepsilon_k$$
, puis que $\lim_{k \to \infty} \varepsilon_k = 0$.

Que peut-on dire de la suite $(B_k)_{k \in \mathbb{N}}$ dans l'espace normé $(Mat(\mathbb{R}, n), || ||)$?

- **V.C** On veut montrer que la suite des matrices diagonales $(D_k)_{k\in {\rm I\! N}}$ admet un nombre fini de valeurs d'adhérence dans $E=(Mat({\rm I\! R},n),\parallel\,\parallel)$, qui sont toutes des matrices de la forme $diag(\lambda_{\sigma_1},...,\lambda_{\sigma_n})$ où la suite finie $(\lambda_{\sigma_1},...,\lambda_{\sigma_n})$ est obtenue par permutation des valeurs propres de A. Pour cela considérons une suite extraite que nous noterons $(D_{k_l})_{l\in {\rm I\! N}}$ convergeant vers une matrice Δ dans l'espace E $((k_l)_{l\in {\rm I\! N}})$ désigne une suite d'entiers naturels strictement croissante).
- V.C.1) Montrer que la limite Δ est une matrice diagonale.
- V.C.2) Montrer que A et Δ ont le même polynôme caractéristique.
- V.C.3) Conclure.

V.D - Convergence de la méthode

- V.D.1) Montrer que la suite (D_k) est bornée et que $\lim_{k \to \infty} (D_{k+1} D_k) = 0$.
- V.D.2) Montrer que les suites (D_k) et (A_k) convergent dans $(Mat(\mathbb{R},n),\parallel\,\parallel)$ et dire en quoi l'algorithme ainsi défini permet d'obtenir une valeur approchée des valeurs propres de A.

Partie VI - Étude d'un exemple pour n = 3

On donne ici

$$A = \begin{bmatrix} 15 & 4 & 3 \\ 4 & 6 & 12 \\ 3 & 12 & -1 \end{bmatrix}$$
, et on définit la suite A_k comme dans V - .

VI.A - Déterminer θ_0 puis Ω_0 . Donner les valeurs rationnelles des coefficients $(a_{i,j}^{(1)})$.

VI.B - Calculer de la même façon θ_1 , Ω_1 et les coefficients $(a_{i,j}^{(2)})$ de A_2 .

VI.C - Calculer le polynôme caractéristique et les valeurs propres de *A* . Observation ?

••• FIN •••