

SAML

Medical Research

STROKE RESEARCH

ANGELAPACATTE

Data Analyst, Communications Director

KELSEY CORCORAN

Data Analyst, Machine Learning Engineer

KATIE HOPKINS

Data Analyst, Chief Marketing Officer

JACK BAUER

Data Analyst, Chief Information Officer

BOWENWILDER

Data Analyst, Project Manager

SAML

01

02

03

INTRODUCTION

- What is a Stroke?
- Symptoms of a Stroke

PURPOSE

- Why Choose This Topic?
- Questions to Answer...

STROKE DATASET

- The Dataset
- Personal Indicators
- Medical Indicators
- EDA Findings

04

05

06

ML MODEL

- Data Preprocessing
- Analysis

TOOLS

- Project Framework
- Tableau Dashboard

CONCLUSIONS

- ML Model Analysis
- What We Would Have Done Differently

O1 INTRODUCTION

What is a stroke? How do you detect a stroke?

SYMPTOMS OF A STROKE

02

PURPOSE

Why is predicting strokes important? What do we hope to conclude?

WHY CHOOSE THIS TOPIC?

QUESTIONS TO ANSWER...

SUCCESS

Can our Machine Learning model be used to predict stroke risk?

ACCURACY

Which aspect is more accurate to predict risk:

Medical or Personal data?

O3 STROKE DATA

What does the dataset include? What were our initial findings?

STROKE DATASET

ID# ▽	Gender ▽	Age 🔽	Hypertension √	Heart_ ▽	Avg_Glucose_	BMI ▽	Ever_Married	Work_Type	Residence_ 7	Smoker	Stroke ▽
int	str	int	int	Dise int	LvI float	float	str	str	Type str	str	int
1	Male	67	0	1	228.69	36.6	Yes	Private	Urban	Former	1
3	Male	80	0	1	105.92	32.5	Yes	Private	Rural	Never	1
4	Female	49	0	0	171.23	34.4	Yes	Private	Urban	Current	1
5	Female	79	1	0	174.12	24.0	Yes	Self-employed	Rural	Never	1
6	Male	81	0	0	186.21	29.0	Yes	Private	Urban	Former	1
7	Male	74	1	1	70.09	27.4	Yes	Private	Rural	Never	1
8	Female	69	0	0	94.39	22.8	No	Private	Urban	Never	1
10	Female	78	0	0	58.57	24.2	Yes	Private	Urban	Unknown	1
11	Female	81	1	0	80.43	29.7	Yes	Private	Rural	Never	1
12	Female	61	0	1	120.46	36.8	Yes	Govt_job	Rural	Current	1

Shape (5,109, 12)

Features

Categorical: 8 Numerical: 3 Missing Values 201 NaNs in "BMI" column

All Criteria				
Medical Criteria				
Personal Criteria				

PERSONAL CRITERIA

AGE

From birth to 82 years of age

GENDER

Male or Female

EVER MARRIED

Yes or No

WORK TYPE

Government, Private, Self-Employed, & Raise Children

RESIDENCE TYPE

Rural or Urban

SMOKING STATUS

Current, Former, Never, & Unknown

MEDICAL CRITERIA

AGE

From birth to 82 years of age

GENDER

Male or Female

HYPERTENSION

Yes or No

HEART DISEASE

Yes or No

AVG GLUCOSE LVL

From 55 to 268

BMI

From 10 to 98

DEMOGRAPHIC ANALYSIS

(AGE)

DEMOGRAPHIC ANALYSIS

(GENDER)

(EVER MARRIED)

(WORK TYPE)

(RESIDENCE TYPE)

(SMOKING STATUS)

MEDICAL ANALYSIS

(BMI)

MEDICAL ANALYSIS

(AVG GLUCOSE)

MEDICAL ANALYSIS (HYPERTENSION)

MEDICAL ANALYSIS

(HEART DISEASE)

EDA SUMMARY

Demographics

Stroke risk increases among patients that:

- Are greater in "Age"
- * Stroke risk between "Genders" is undetermined from the dataset

Personal

Stroke risk increases among patients that:

- Are or were married at one point in time
- Are "Self-Employed", "Private" and "Government" employed workers
- Were "Current" or "Former" smokers
- * Stroke risk between "Residence Types" is undetermined from the dataset

Medical

Stroke risk increases among patients that:

- Are "Overweight" or "Obese"
- Have "Diabetes"
- Have "Hypertension"
- Have "Heart Disease"

O4 ML MODEL

What does the dataset include? What were our initial findings?

DATA PREPROCESSING

ANALYSIS

05 TOOLS

What applications were needed? How can we sufficiently display our findings?

PROJECT FRAMEWORK

TABLEAU DASHBOARD

06

CONCLUSIONS

Which model was most suited to predicting stroke risk? What changes could have increased the project's utility?

ML MODEL ANALYSIS

WHAT WOULD WE HAVE DONE DIFFERENTLY?

- Larger Dataset
- More ML Models
- Deeper Correlations
- Supervised ML
- Deep Learning
- Javascript

THANKS!

DO YOU HAVE ANY QUESTIONS?

info@SAML.com +1 512 555 SAML SAML Medical Research (Github)

END OF PRESENTATION

PROJECT OUTLINE

PROJECT OUTLINE

TECHNOLOGIES

TECHNOLOGIES

CLIs

IDEs

Presentation/

Dashboard

JUPYTER NOTEBOOK

COLOR& FONTS

Fonts & colors used

This presentation has been made using the following fonts:

Spartan

(https://fonts.google.com/specimen/Spartan)

Cabin

(https://fonts.google.com/specimen/Cabin)

#434343

#f3f3f3

#ff5b5b

#666666