Obliczenia Naukowe - Labolatoria 1

Krzysztof Zając

October 23, 2025

1 Zadanie 1 - rozpoznanie arytmetyki

1.1 Opis problemu

W arytmetyce zmiennoprzecinkowej próbujemy przedstawić liczbę rzeczywistą w komputerze, przez próbę zapisania jej w skończonej liczbie bitów istnieją poniższe ograniczenia: najmniejsza możliwa liczba dodatnia (MIN_{NOR}) , największa możliwa liczba (MAX_{NOR}) i epsilon maszynowy (ϵ) , czyli miara precyzji, pokazująca zagęszczenie liczb wokół jedynki.

 MIN_{NOR} to najmniejsza liczba, którą można zapisać z pełną, standardową precyzją mantysy, dzięki niejawnemu bitowi '1', tzw. liczba znormalizowana . Poniżej tej wartości istnieje jednak "luka" do zera, którą wypełniają liczby zdenormalizowane (subnormalne, takie, dla których wykładnik to same zera), aby uniknąć gwałtownego zaokrąglenia do zera. MIN_{SUB} jest najmniejszą z tych liczb zdenormalizowanych i jednocześnie absolutnie najmniejszą dodatnią liczbą, jaką można zapisać w danym formacie.

Chcemy sprawdzić wartości MIN_{SUB} (zwanym w treści eta), MAX_{NOR} i ϵ metodą iteracyjną.

1.2 Rozwiązanie

Można sprawdzić wartości poszególnych wartości przez odpowiednie iteracyjne mnożenie przez 2 lub $\frac{1}{2}$.

1.3 Wyniki

Table 1: Porównanie Epsilona Maszynowego (ϵ)

Тур	Wartość iteracyjna (ϵ)	Wartość wbudowana $(eps())$
Float32	0.000977 1.1920929e-7 2.220446049250313e-16	0.000977 1.1920929e-7 2.220446049250313e-16

Table 2: Porównanie najmniejszej liczby dodatniej $(\eta/MIN \ sub)$

Typ	Wartość iteracyjna (η)	Wartość wbudowana (nextfloat (0.0))
Float16	6.0e-8	6.0e-8
Float32	1.0e-45	1.0e-45
Float64	5.0e-324	5.0e-324

Table 3: Porównanie maksymalnej liczby (MAX)

Тур	Wartość iteracyjna (MAX)	Wartość wbudowana (float $\max()$)
	6.55e4 3.4028235e38 1.7976931348623157e308	6.55e4 3.4028235e38 1.7976931348623157e308

Tablice wygenerowane przez Gemini Pro, na podstawie danych zwróconych przez program ex1.jl.

1.4 Wnioski

Nasza metoda iteracyjna jest poprawna i osiąga te same wartości, które mamy w Julii i w C.

- 1. Liczba macheps (ϵ_m) jest miarą precyzji arytmetyki (ϵ) , ponieważ określa największy błąd względny zaokrąglenia i jest to najmniejsza dodatnia liczba zmiennoprzecinkowa x taka, że fl(1+x)>1.
- 2. Liczba **eta** (η) jest **synonimem** (innym oznaczeniem) dla liczby **MINsub**, która jest najmniejszą dodatnią (zdenormalizowaną) liczbą zmiennoprzecinkową możliwą do zapisania w danym formacie.
- 3. Funkcje float $\min(\text{Float}32)$ i float $\min(\text{Float}64)$ zwracają odpowiednio MINnor $_{32}$ (2^{-126}) i MINnor $_{64}$ (2^{-1022}), czyli **najmniejsze dodatnie znormalizowane liczby maszynowe** (MINnor) w danym formacie.

2 Zadanie 2 - wzór Kahan'a

2.1 Opis problemu

Kahan postawił tezę, że można sprawdzić wartość macheps za pomocą wzoru: $3*(\frac{4}{3}-1)-1$. Chcemy to sprawdzić ekperymentalnie dla typów Float16, Float32 i Float64.

2.2 Rozwiązanie

Obliczono wartość wyrażenia $3 \times (\frac{4}{3} - 1) - 1$ dla każdego z typów. Działanie $\frac{4}{3}$ jest operacją, która w systemie binarnym ma nieskończone rozwinięcie, co wymusza zaokrąglenie.

2.3 Wyniki

Table 4: Wyniki wzoru Kahana

Тур	Wartość wzoru Kahana	Wartość eps(T)
Float16	0.0009766	0.0009766
Float32	1.1920929e-7	1.1920929e-7
Float64	$2.220446049250313\mathrm{e}\text{-}16$	$2.220446049250313\mathrm{e}\text{-}16$

2.4 Wnioski

Wzór Kahana jest poprawny i zwraca wartość epsilona maszynowego dla badanych typów.

3 Zadanie 3 - gęstość liczb

3.1 Opis problemu

Eksperymentalne sprawdzenie rozmieszczenia liczb Float64 w przedziałach [1,2], $[\frac{1}{2},1]$ oraz [2,4]. Weryfikacja tezy o stałym kroku $\delta=2^{-52}$ w [1,2].

3.2 Rozwiązanie

Krok δ (odstęp) zależy od wykładnika E jako $\delta = 2^{-52} \times 2^{E-1023}$. W przedziałach $[2^n, 2^{n+1})$ wykładnik jest stały, a więc krok δ też jest stały. Do weryfikacji użyto funkcji eps(x) (zwracającej δ dla przedziału, do którego należy x) oraz bitstring(x) do obserwacji wykładnika.

3.3 Wyniki

- **Przedział [1, 2]**: Wykładnik E 1023 = 0. Krok $\delta = \exp(1.0) = 2^{-52} \times 2^0 = 2^{-52}$. Reprezentacja: $x_k = 1 + k \cdot 2^{-52}$.
- **Przedział [0.5, 1]**: Wykładnik E 1023 = -1. Krok $\delta' = \text{eps}(0.5) = 2^{-52} \times 2^{-1} = 2^{-53}$. Reprezentacja: $x_k = 0.5 + k \cdot 2^{-53}$.
- **Przedział [2, 4]**: Wykładnik E 1023 = 1. Krok $\delta'' = \text{eps}(2.0) = 2^{-52} \times 2^1 = 2^{-51}$. Reprezentacja: $x_k = 2 + k \cdot 2^{-51}$.

Wartości eps () były zgodne z teoretycznymi 2^{-52} , 2^{-53} i 2^{-51} . Analiza bitstring potwierdziła stałość wykładników wewnątrz przedziałów (odp. 1023, 1022, 1024).

3.4 Wnioski

Liczby są rozmieszczone równomiernie tylko w obrębie przedziałów o stałym wykładniku $[2^n, 2^{n+1})$. Krok (odstęp) podwaja się przy każdym przekroczeniu potęgi dwójki. W [0.5, 1] gęstość jest 2x większa niż w [1, 2], a w [2, 4] jest 2x mniejsza.

4 Zadanie 4 - błąd odwrotności

4.1 Opis problemu

Znalezienie liczby $x \in (1,2)$ w Float64 takiej, że $fl(x \times fl(1/x)) \neq 1$, oraz znalezienie najmniejszej takiej liczby.

4.2 Rozwiązanie

Iterowano po liczbach x = nextfloat(1.0) w górę, sprawdzając warunek $x \times (1/x) \neq 1.0$.

4.3 Wyniki

Najmniejszą liczbą Float64 w przedziale (1,2) niespełniającą warunku jest x= nextfloat $(1.0)=1.0+2^{-52}$. Dla tej wartości x, fl(1/x) jest obliczane z błędem zaokrąglenia, a następnie $fl(x\times fl(1/x))$ wprowadza kolejny błąd zaokrąglenia. Wynik to prevfloat $(1.0)=1.0-2^{-53}$.

4.4 Wnioski

Operacja 1/x dla $x=1.0+2^{-52}$ nie jest dokładnie reprezentowalna i jej zaokrąglenie, a następnie ponowne pomnożenie przez x i kolejne zaokrąglenie, prowadzi do utraty dokładności, uniemożliwiając powrót do wartości 1.0.

5 Zadanie 5 - iloczyn skalarny

5.1 Opis problemu

Obliczenie iloczynu skalarnego $S = \sum x_i y_i$ dla n = 5 na cztery sposoby (w przód, w tył, sortowanie dodatnich/ujemnych od najw. do najmn., sortowanie od najmn. do najw.) dla typów Float32 i Float64. Porównanie z dokładną wartością $S_{dokl} = -1.00657107 \times 10^{-11}$.

5.2 Rozwiązanie

Zaimplementowano cztery algorytmy sumowania iloczynów $x_i y_i$ dla podanych wektorów i obu precyzji.

5.3 Wyniki

Wartości iloczynów $x_i y_i$ mają bardzo różne rzędy wielkości. Dwie wartości są duże i przeciwnego znaku $(x_2 y_2 \approx -2.7 \times 10^6 \text{ i } x_4 y_4 \approx +2.7 \times 10^6)$, co stwarza ryzyko katastrofalnej redukcji cyfr.

Table 5. Wymki obnezen noczynu skararnego				
Metoda (dla $n = 5$)	Wynik Float32	Wynik Float64		
(a) "w przód"	-0.4999443	$1.0251881368296672 \times 10^{-10}$		
(b) "w tył"	-0.4543457	$-1.5643308870494366 \times 10^{-10}$		
(c) Sort (najw. \rightarrow najmn.)	-0.5	0.0		
(d) Sort (najmn. \rightarrow najw.)	-0.5	0.0		
Wartość dokładna	$-1.00657107 \times 10^{-11}$			

Table 5: Wyniki obliczeń iloczynu skalarnego

5.4 Wnioski

- 1. Float32: Precyzja jest całkowicie niewystarczająca. Żaden wynik nie jest nawet bliski poprawnemu. Różne wyniki dla metody (a) i (b) wyraźnie pokazują, że dodawanie zmiennoprzecinkowe nie jest łączne (asocjatywne).
- 2. **Float64**: Pomimo znacznie wyższej precyzji, **każda** z metod dała błędny wynik. Jest to spowodowane odejmowaniem dwóch bardzo bliskich sobie (co do modułu) liczb x_2y_2 i x_4y_4 .
- 3. Metody (a) i (b) (w przód / w tył) dają różne błędne wyniki, ponownie pokazując brak łączności.
- 4. Metody (c) i (d) (sortowanie) doprowadziły do całkowitego wyzerowania wyniku. W tym przypadku algorytm sumowania (prawdopodobnie sum() w Julii) lub kolejność operacji spowodowały, że duże liczby o przeciwnych znakach zredukowały się do zera, gubiąc całkowicie mniejsze składniki (w tym ten, który niósł poprawny wynik 10⁻¹¹).
- 5. Jest to klasyczny przykład **katastrofalnej redukcji cyfr (anulowania)** i niestabilności numerycznej algorytmu sumowania. Żadna ze standardowych metod nie poradziła sobie z tym konkretnym zestawem danych.

6 Zadanie 6 - błąd odejmowania

6.1 Opis problemu

Porównanie wyników obliczeń dwóch matematycznie równoważnych funkcji $f(x)=\sqrt{x^2+1}-1$ i $g(x)=\frac{x^2}{\sqrt{x^2+1}+1}$ dla $x=8^{-n},\ n=1,2,\ldots$ w arytmetyce Float64.

6.2 Rozwiązanie

Obliczono wartości f(x) i g(x) dla malejących $x \to 0$.

6.3 Wyniki

Dla n = 1 do n = 8, obie funkcje dają niemal identyczne wyniki.

- Dla n = 8 $(x \approx 5.96 \times 10^{-8})$: $f(x) \approx 1.7763... \times 10^{-15}$ i $g(x) \approx 1.7763... \times 10^{-15}$.
- Dla n = 9 $(x \approx 7.45 \times 10^{-9})$: f(x) = 0.0, natomiast $g(x) \approx 2.7755... \times 10^{-17}$.
- \bullet Dla $n \geq 9$: f(x)zwraca 0.0, podczas gdy g(x)nadal zwraca poprawne, malejące, niezerowe wartości.

6.4 Wnioski

Wzór f(x) cierpi na katastrofalną redukcję cyfr (błąd anulowania). Gdy $x \to 0$, $\sqrt{x^2+1}$ jest bardzo bliskie 1. Dla $n=9,\ x^2\approx 5.55\times 10^{-17}$. Ta wartość jest mniejsza niż epsilon maszynowy ($\epsilon\approx 2.22\times 10^{-16}$). W rezultacie fl (x^2+1) zwraca 1.0, co prowadzi do $\sqrt{1.0}-1=0$. Wzór g(x) (uzyskany przez przekształcenie f(x) z użyciem sprzężenia) jest numerycznie stabilny, ponieważ zastępuje problematyczne odejmowanie stabilnym dodawaniem w mianowniku.

7 Zadanie 7 - błąd pochodnej

7.1 Opis problemu

Obliczenie przybliżonej pochodnej $f(x) = \sin(x) + \cos(3x)$ w $x_0 = 1$ za pomocą ilorazu różnicowego $\tilde{f}'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$ dla $h = 2^{-n}$ (n = 0, ..., 54). Analiza błędu $\left| f'(1) - \tilde{f}'(1) \right|$.

7.2 Rozwiązanie

Dokładna pochodna $f'(x) = \cos(x) - 3\sin(3x)$, co dla $x_0 = 1$ daje $f'(1) \approx 0.11694228168853815$. Obliczono $\tilde{f}'(1)$ i błąd dla kolejnych n.

7.3 Wyniki

- Dla $n \approx 0$ do $n \approx 27$: Błąd maleje proporcjonalnie do h (o $\approx 1/2$ co krok). Dominuje błąd obcięcia (błąd metody) $\mathcal{O}(h)$.
- Dla $n=28~(h\approx 3.72\times 10^{-9})$: Osiągnięto minimalny błąd rzędu $\approx 4.80\times 10^{-9}$.
- Dla n > 28 (małe h): Błąd zaczyna gwałtownie rosnąć (oscylując). Dominuje błąd zaokrąglenia. W liczniku $f(x_0 + h) f(x_0)$ dochodzi do katastrofalnej redukcji cyfr (odejmowanie liczb bliskich sobie).
- Dla $n \ge 53$ ($h \le 1.11 \times 10^{-16}$): Krok h staje się mniejszy niż epsilon maszynowy dla $x_0 = 1$, co powoduje fl(1.0 + h) = 1.0. W efekcie $f(x_0 + h) = f(x_0)$, licznik staje się 0.0, a całe przybliżenie pochodnej wynosi 0.0, generując maksymalny błąd ≈ 0.1169 .

7.4 Wnioski

Zmniejszanie kroku h w metodach różnicowych nie poprawia wyniku w nieskończoność. Istnieje optymalna wartość h (tutaj dla n=28), gdzie błąd obcięcia metody i błąd zaokrąglenia arytmetyki równoważą się. Poniżej tej wartości błędy zaokrąglenia (wynikające z odejmowania bliskich liczb) zaczynają dominować i niszczą dokładność wyniku.