1 Syntax der Prädikatenlogik

1.1 Terme

Variablen $X, Y, Z \text{ oder } X_1, X_2, X_3, \dots$ Konstanten $a, b, c \text{ oder } a_1, a_2, a_3, \dots$

 $f, g, h \text{ oder } f_1, f_2, f_3, \dots$ Funktionssymbole

Sind t_1, \ldots, t_n Terme, dann auch $f(t_1, \ldots, t_n)$.

1.2Formeln

P, Q, R oder bspw. P_1, Q_2, R_5, \ldots Prädikatensymbole

Sind t_1, \ldots, t_n Terme, dann ist auch $P(t_1, \ldots, t_n)$ eine atomare Formel.

Beispiele: $(F \wedge G)$, $(F \vee G)$, $\forall xF$, $\exists xF$, $\neg F$

$\mathbf{2}$ Semantik der Prädikatenlogik

Struktur 2.1

 $\mathcal{A}(\mathcal{U}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}})$

 $\mathcal{U}_{\mathcal{A}}$ nichtleere Menge (Universum)

 $\mathcal{I}_{\mathcal{A}}$ eine Abbildung die

- jedem Prädikatensymbol ein Prädikat
- jedem Funktionssymbol eine Funktion
- \bullet jeder Variablen X ein Element der Grundmenge $\mathcal{U}_{\mathcal{A}}$

zuordnet.

Falls $\mathcal{I}_{\mathcal{A}}$ für alle Symbole in F definiert ist so "passt" \mathcal{A} zu F. Ist F eine Formel und \mathcal{A} passt zu F dann sei

1. Falls F die Form $F = P(t_1, \ldots, t_k)$ mit Termen t_1, \ldots, t_k , so ist

$$\mathcal{A}(F) = \begin{cases} 1 & \text{falls } ((\mathcal{A}(t_1), \dots, \mathcal{A}(t_k)) \in P^{\mathcal{A}}) \\ 0 & \text{sonst} \end{cases}$$

2. Falls " $F = \neg G$ " hat, so ist

$$\mathcal{A}(F) = \begin{cases} 1 & \text{falls } \mathcal{A}(G) = 0 \\ 0 & \text{sonst} \end{cases}$$

3. Falls $F = (G \cap H)$ so ist

$$\mathcal{A}(F) = \begin{cases} 1 & \text{falls } \mathcal{A}(G) = 1 \text{ und oder } \\ 0 & \text{sonst} \end{cases} \mathcal{A}(H) = 1$$

4. Falls " $F = \forall xG$ " so ist

$$\mathcal{A}(F) = \begin{cases} 1 & \text{falls für alle } d \in \mathcal{U}_{\mathcal{A}} \text{ gilt } \mathcal{A}_{[x/d]}(G) = 1 \\ 0 & \text{sonst} \end{cases}$$

5. Falls " $F = \exists xG$ " so ist

$$\mathcal{A}(F) = \begin{cases} 1 & \text{falls es ein } d \in \mathcal{U}_{\mathcal{A}} \text{ gibt, mit } \mathcal{A}_{[x/d]}(G) = 1 \\ 0 & \text{sonst} \end{cases}$$

3 O-Kalkül Vereinbarungen

Zugelassen sind nur asymptotisch monoton wachsende Funktionen.

(Hinweis: Polynome besitzen eine endliche Anzahl an Nullstellen, sind also ab einem n_0 monoton)

Dann gilt: O(f) * O(g) = O(f * g) und O(f + c) = O(f).