1 - Introduksjon og case

Espen Sirnes

2025-08-10

Table of contents

1	Introduksjon 1.1 Caset	2 2 3
2	Forelesning 2: Forventning, nytte og risiko	3
3	Forelesning 3: Porteføljeteori og matriser 3.1 Porteføljefronten	5 5 5 10
4	Forelesning 4: Faktorer	11
5	Forelesning 5: VaR	13
GE CO	Fondsoversist Endown Videokurs potensiell avkastning blir blåst opp, mens de reelle kostnadene og den faktiske risklonuserra vikastningen blir tilsfort. Han forklarer at det filmes to aktastningen blir tilsfort. Han forklarer at det filmes to aktastningen blir tilsfort. - Det koster næsten ingenting å ele passive fond og rentefond. Forskningen er tydelig på at gang på gang gjør fond med lave kostnader det bedre enn dyre fond på sikt.	

Disse fondene får terningkast seks akkurat nå

1 Introduksjon

1.1 Caset

Hver gruppe får tildelt tre aksjer

- 1. Bruk historisk avkastning frem til 1. januar 2025 og tilgjengelig offentlig informasjon da, slik som års-/kvartalrapporter, og lage en portefølje for to typer investorer:
 - a) Risikoavers
 - b) Risikosøkende
- 2. Lag en graf med normalfordelingen og frekvensene til hver av aksjene, og kommenter.
- 3. Tegn opp i samme diagram
 - a) porteføljefronten
 - b) hver av de tre aksjene
 - c) faktorene
 - d) den optimale tilpasningen.
- 4. Regn ut den optimale porteføljen, og forklar hvorfor du bruker eller ikke bruker disse vektene.
- 5. Bruk forskjellige VaR-modell på de historiske datane, kjør en tilbaketest på den (backtesting) og gi din vurdering av modellene.
- 6. Hent nye data på aksjene og bruk den til å:
 - a) Evaluer faktisk avkastning
 - b) Tegn opp ny porteføljefront med aksjer og faktorer
 - c) Evaluer VaR-modellene.
- 7. Forklar funnene.
 - a) Var det ventet eller uventet?
 - b) Fungerte VaR?
 - c) Gav porteføljen god avkastning?
 - d) Hva kunne vært gjort anderledes?
- 8. Faktorene ligger "utfor" (til venstre) for porteføljefronten i forelesningsnotat 4 og antakeligvis i din besvarelse. Hvorder er dette uventet, og hva kan være årsaken?

All kode må legges ved og være kjørbar. Kjører ikke koden er ikke oppgaven besvart. Før du leverer bør dere åpne filene dere skal legge ved besvarelsen på en maskin som ikke har kjørt koden før, for å sjekke at koden fungerer utenfor miljøet der den er utvikliet. (Dette gjelder også for mikroopgaven).

1.2 I denne forelesningen

Korte om kursets tema: * Forelesning 2: Forventning, nytte og risiko * Forelesning 3: Porteføljeteori og matriser * Forelesning 4: Faktorer * Forelesning 5: Value at Risk (VaR)

2 Forelesning 2: Forventning, nytte og risiko

Nyttefunksjonen:

```
import numpy as np
import matplotlib.pyplot as plt
# Logarithmic utility function
def u func(x):
    return np.log(x)
def x func(u):
    return np.exp(u)
# Values for wealth and utility
x_{vals} = np.linspace(0.1, 2, 100)
u x = u func(x vals)
# Gamble outcomes
x \text{ gamble} = [0.5, 1.5] \# \text{Outcomes of the gamble}
p gamble = [0.5, 0.5] # Probabilities
# Certain outcome
x certain = 1
# Expected utility of the gamble
expected utility = np.sum(np.array(p gamble) * u func(np.array(x gamble))
# Plotting the utility function
plt.figure(figsize=(10, 6))
plt.plot(x vals, u x, label=r'Utility Function: u(x) = \ln(x), col
# Plotting the certain outcome
```

```
plt.axvline(x=x_certain, color='black', linestyle='--')
plt.text(x certain, u func(x certain) + 0.1, "$1$", horizontalalignm
# Plotting the gamble outcomes
plt.axvline(x=x gamble[0], color='black', linestyle='--')
plt.axvline(x=x gamble[1], color='black', linestyle='--')
plt.text(x gamble[0], u func(x gamble[0]) - 0.3, "$0.5$", horizontal
plt.text(x gamble[1], u func(x gamble[1]) - 0.3, "$1.5$", horizontal
# Plotting the expected utility
plt.axhline(y=expected utility, color='gray', linestyle='--', label=
plt.text(0.15, expected utility, '$EU(X)$', verticalalignment='cente
# Risk premium - distance between expected utility and utility of ce
risk premium = u func(x certain) - expected utility
certainty equivalence = x func(expected utility)
plt.annotate('', xy=(1, expected utility), xytext=(certainty equival
             arrowprops=dict(facecolor='black', arrowstyle='<->'))
\# Separate annotation for the label (\pi) without the arrow
plt.annotate(r'^{\circ})pi^{\circ}', xy=(0.9, expected utility -0.1), fontsize=12)
# Labels and title
plt.title('Utility Function Demonstrating Risk Aversion')
plt.xlabel('Wealth (W)')
plt.ylabel('Utility (U)')
plt.legend()
plt.grid(True)
```


3 Forelesning 3: Porteføljeteori og matriser

Her bruker vi titlondatabasen:

```
from IPython.display import IFrame

# Embed the web page using an iframe
IFrame("https://titlon.uit.no/", width=700, height=200)
```

<IPython.lib.display.IFrame at 0x1eb23a091d0>

Vi bruker scriptmuligheten i Titlon for å hente data

3.1 Porteføljefronten

3.2 Utregninger

Reduserer utvalget:

```
import numpy as np
import pandas as pd
```

```
df = pd.read pickle('data/stocks.df')
# Defining annual risk free rate.
rf = df['NOWA DayLnrate'].mean()*7
isin with first date = df[df['Date'] == df['Date'].min()]['ISIN'].un
isin with last date = df[df['Date'] == df['Date'].max()]['ISIN'].uni
valid isins = set(isin with first date).intersection(isin with last
df = df[df['ISIN'].isin(valid isins)]
df['Name (ISIN)'] =df['Name'].str.upper().str.strip() + '(' + df['IS
# keeping only the most traded shares
res = (
        df.groupby(['Name (ISIN)'])
        .agg({'Turnover': 'sum'})
        .sort values(by='Turnover', ascending=False)
df = df.merge(res.head(4), on=['Name (ISIN)'],
                                how='inner')
res.head(4)
```

Name (ISIN)	Turnover
EQUINOR(NO0010096985) NORSK HYDRO(NO0005052605)	$ \begin{array}{r} 1.812403e + 12 \\ 6.472283e + 11 \end{array} $
TELENOR(NO0010063308) YARA INTERNATIONAL(NO0010208051)	5.601747e+11 5.466033e+11

Lager avkastningsmatrisen:

Symbol Date	EQNR	NHY	TEL	YAR
2016-01-10 2016-01-17 2016-01-24 2016-01-31 2016-02-07	-0.118288 -0.060966 0.060966 0.074498 0.027490	-0.137636 -0.054818 0.023505 0.024710 0.065780	-0.008125 -0.085838 0.049143 -0.007077 -0.029552	-0.058065 -0.047905 0.001741 -0.053584 0.024170
 2025-08-24 2025-08-31 2025-09-07 2025-09-14 2025-09-21	 0.028829 -0.021953 -0.034486 0.008734 0.007426	 0.002129 -0.010075 0.024550 0.000299 -0.008718	0.003018 0.010195 0.005949 0.010619 -0.026161	 -0.016429 -0.023244 -0.015987 0.029027 -0.022657

Finner gjennomsnittsvektoren og varians-kovarians-matrisen:

```
# Converting X to a numpy array:
X = np.array(X_df)

# Calculating the covariance
cov_matrix = np.cov(X, rowvar=False)
```

```
# Calculating the means vector, and reshaping it to a
# column vector.

means = np.mean(X, axis=0).reshape((X.shape[1],1))
```

Definerer porteføljefrontfunksjonen:

Plotter porteføljefronten:

```
#plot settings:
ax.set_xlim([0, np.max(sigma_values*plot_scale**0.5)])
ax.set_ylim([0, (np.max(rp_values)+rf)*plot_scale])
ax.set_xlabel('Sigma (Risk)')
ax.set_ylabel('Rp (Return)')
ax.set_title('Efficient Frontier')
ax.legend()
```


Legger til punkte for den optimale porteføljen:

3.3 Porteføljefronten med optimal portefølje og tangeringslinje

4 Forelesning 4: Faktorer

Finner volatilitet og avkastning til faktorene:

```
import pandas as pd
df = pd.read pickle('data/factors.df')
df['Date'] = pd.to datetime(df['Date'])
df = df.set index('Date')
df weekly = df.resample('W').sum()
df_weekly = df_weekly[['SMB', 'HML', 'LIQ', 'MOM']].dropna()
df = df[['SMB', 'HML', 'LIQ', 'MOM']].dropna()
means = df weekly.mean()*52
std = df weekly.std()*52**0.5
print(std)
print(means)
df weekly
SMB
       0.140683
HML
       0.180303
       0.152365
LIQ
```

MOM 0.210811 dtype: float64 SMB 0.049518 HML 0.143938 LIQ 0.010761 MOM 0.172016 dtype: float64

	SMB	HML	LIQ	MOM
Date				
2016-01-10	0.040139	-0.038205	0.065538	0.039485
2016-01-17	-0.004794	-0.053537	0.044127	0.013392
2016-01-24	0.016701	0.025072	-0.006152	-0.014409
2016-01-31	0.002747	-0.001928	-0.017278	-0.024070
2016-02-07	-0.008014	-0.029920	0.001621	-0.008874
•••	•••	•••	•••	
2025-08-24	-0.002866	0.000000	0.002491	0.025593
2025-08-31	-0.001207	0.000000	-0.006485	0.011409
2025-09-07	0.001087	0.000000	0.001918	-0.006445
2025-09-14	0.008998	0.000000	0.012702	0.020961
2025-09-21	-0.005925	0.000000	-0.012856	0.032795

Plotter punktene i grafen fra forrige kapittel:

5 Forelesning 5: VaR

5.0.0.1 Utregninger

```
import numpy as np
def generate_backtest(f, df, name, estimation_win_size):
    # Initialize lists to store calculated values
    datelist = []
    sigmalist = []
    d95list = []
    d99list = []
    ret = []

# Iterate over returns to calculate and store VaR and volatility
for t in range(estimation_win_size, len(df)):

# Record date and current return
    datelist.append(df.index[t].date())
    ret.append(df[name].iloc[t])

# Extract data from the estimation window (t-estimation win
```

```
x = df[name].iloc[t-estimation win size:t-1]
        # Apply the provided VaR estimation function using the histo
        d95, d99, sigma = f(x, sigmalist)
        # Append the estimates to their respective lists
        sigmalist.append(sigma)
        d95list.append(d95)
        d99list.append(d99)
    # Return the results as numpy arrays for ease of analysis
    return (np.array(d95list),
            np.array(d99list),
            np.array(sigmalist),
            np.array(datelist),
            np.array(ret))
import matplotlib.pyplot as plt
def evaluate(plt, d95, d99, ret, dates, heading):
    # Clear the plot area to avoid overlapping plots
   plt.cla()
   # Plot the 95% VaR, 99% VaR, and actual returns
   plt.plot(dates, d95, label='95% Confidence Level')
   plt.plot(dates, d99, label='99% Confidence Level')
   plt.plot(dates, ret, label='Actual Return')
   # Highlight instances where returns breach the 95% VaR
   maxret = max(ret)
   breaches 95 = [maxret if d > r else 0 for d, r in zip(d95, ret)]
   plt.bar(dates, breaches 95, color='gray', alpha=0.5, width=0.5,
   # Set labels and title
   plt.ylabel('VaR')
   plt.xlabel('Date')
   plt.title(heading)
   plt.xticks(rotation=90)
   plt.legend(loc="lower right")
   plt.subplots adjust(bottom=0.15)
```

```
plt.show()
    # Calculate and print the breach percentage for each confidence
    backtest results = [np.round(sum(d > ret) / len(ret) * 100, 1) for the sum (d > ret) / len(ret) * 100, 1)
    for i, level in enumerate([95, 99]):
        breaches = sum([d95, d99][i] > ret)
        print(f"{heading} with {level}% confidence interval:\n"
              f"Breaches: {breaches} \n"
              f"Backtesting (Realized VaR - % breaches): {backtest r
PVALS = [0.05, 0.01] # Confidence intervals (95% and 99%)
from scipy.stats import norm
def normal est(x, sigmalist):
    z = norm.ppf(PVALS) # Z-scores for the specified confidence lev
    sigma = np.std(x, ddof=1) # Sample standard deviation
    return z[0] * sigma, z[1] * sigma, sigma
def historical est(x, sigmalist):
    q95 = abs(np.quantile(x, PVALS[0])) # 95th percentile of histor
    q99 = abs(np.quantile(x, PVALS[1])) # 99th percentile of histor
    return -q95, -q99, None # VaR values are negative to indicate po
def last volat(x, sigmalist):
    x = np.array(x)
    z = norm.ppf(PVALS)
    if not sigmalist: # If sigmalist is empty, use initial standard
        sigma = np.std(x, ddof=1)
    else: # Update sigma based on past volatility and recent error
        sigma = (0.1 * (x[0] - np.mean(x))**2 + 0.9 * sigmalist[-1]*
    return z[0] * sigma, z[1] * sigma, sigma
5.0.0.2 Evaluaring
NAME = 'EONR'
```

ESTIMATION WINSIZE = 52

df = pd.read pickle('data/X.df')

VaR Estimation Using the Normal Distribution Method with 95% confide Breaches: 25
Backtesting (Realized VaR - % breaches): 5.5%

VaR Estimation Using the Normal Distribution Method with 99% confide Breaches: 10

Backtesting (Realized VaR - % breaches): 2.2%