Chapter 17 End-of-Chapter Problems Halliday & Resnick, 10th Edition

Donald Aingworth IV

Hit me where it Matters

Where needed in the problems, use speed of sound in air = 343 m/s and density of air = 1.21 kg/m³ unless otherwise specified.

Two spectators at a soccer game see, and a moment later hear, the ball being kicked on the playing field. The time delay for spectator A is 0.23 s, and for spectator B it is 0.12 s. Sight lines from the two spectators to the player kicking the ball meet at an angle of 90°. How far are (a) spectator A and (b) spectator B from the player? (c) How far are the spectators from each other?

1.1 Solution (a)

This is a simple question to answer. The distance traveled to A would be equal to the speed of sound times the time taken to travel the distance.

$$x = vt = (343 \,\mathrm{m/s})(0.23 \,\mathrm{s}) = \boxed{78.89 \,\mathrm{m}}$$
 (1)

1.2 Solution (b)

The is calculatable the same way.

$$y = vt = (343 \,\mathrm{m/s})(0.12 \,\mathrm{s}) = \boxed{41.16 \,\mathrm{m}}$$
 (2)

1.3 Solution (c)

The 90 degree angle of their sight lines makes the triange of the two spectators and the ball a right triangle, so we can use the Pythagorean theorem to find the distance between the spectators.

$$h = \sqrt{x^2 + y^2} = \sqrt{(78.89 \,\mathrm{m})^2 + (41.16 \,\mathrm{m})^2} = \boxed{88.98 \,\mathrm{m}}$$
 (3)

When the door of the Chapel of the Mausoleum in Hamilton, Scotland, is slammed shut, the last echo heard by someone standing just inside the door reportedly comes 15 s later. (a) If that echo were due to a single reflection off a wall opposite the door, how far from the door is the wall? (b) If, instead, the wall is 25.7 m away, how many reflections (back and forth) occur?

2.1 Solution (a)

Use the speed and the time taken to calculate the distance covered.

$$\Delta s = vt = (343 \,\mathrm{m/s})(15 \,\mathrm{s}) = 5145 \,\mathrm{m}$$
 (4)

This is twice the length of the church, so if we divide this by two, we will get the length of the church.

$$L = \frac{\Delta s}{2} = \frac{5145 \,\mathrm{m}}{2} = \boxed{2572.5 \,\mathrm{m}} \tag{5}$$

2.2 Solution (b)

We can divide the total distance covered by the length of the church to find the number of reflections.

$$n = \frac{5145 \,\mathrm{m}}{25.7 \,\mathrm{m}} = 200.19 \tag{6}$$

$$\lfloor n \rfloor = \boxed{200} \tag{7}$$

Earthquakes generate sound waves inside Earth. Unlike a gas, Earth can experience both transverse (S) and longitudinal (P) sound waves. Typically, the speed of S waves is about 4.5 km/s, and that of P waves 8.0 km/s. A seismograph records P and S waves from an earthquake. The first P waves arrive 3.0 min before the first S waves. If the waves travel in a straight line, how far away did the earthquake occur?

A stone is dropped into a well. The splash is heard $3.00~\mathrm{s}$ later. What is the depth of the well?

Diagnostic ultrasound of frequency $4.50~\mathrm{MHz}$ is used to examine tumors in soft tissue. (a) What is the wavelength in air of such a sound wave? (b) If the speed of sound in tissue is $1500~\mathrm{m/s}$, what is the wavelength of this wave in tissue?

- 6 Problem 15
- 6.1 Solution

- 8 Problem 19
- 8.1 Solution

- 9 Problem 20
- 9.1 Solution

Contents

1		blem 1																													2
	1.1	Solution																													2
	1.2	Solution	` /																												2
	1.3	Solution	(c)	٠	•	•	•	•		•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
2	Pro	blem 3																													3
	2.1	Solution	(a)																												3
	2.2	Solution	(b)										•																		3
3	Problem 5															4															
•		Solution																													4
4		blem 7																													5
	4.1	Solution		•	•	٠	•	•		•	٠	٠	•	٠	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	٠	5
5	Pro	blem 11																													6
	5.1	Solution																													6
6	Dno	blem 15																													7
U	6.1	Solution																													7
	0.1	Solution	• •	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,
7	Pro	blem 17																													8
	7.1	Solution											•	•																	8
8	Pro	blem 19																													9
		Solution																													9
0	D	1.1 00																													10
9	9.1	blem 20 Solution																													10 10
	9.1	Solution		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
10	Pro	blem 25																													11
	10.1	Solution						•					•																		11
11	Pro	blem 27																													12
		Solution Solution																													12
		blem 29																													13

13	Problem 35 13.1 Solution										•				•			•			•			14 14
14	Problem 39 14.1 Solution				•	•	•						•										•	15 15
15	Problem 41 15.1 Solution	•			•		•	·	•	•	•		·						•					16
16	Problem 47 16.1 Solution						•							•			•							17 17
17	Problem 49 17.1 Solution			•			•							•			•							18
18	Problem 51 18.1 Solution				•																			19
19	Problem 53 19.1 Solution	•			•																			20 20
20	Problem 55 20.1 Solution	•			•	·	•	•	•	•			•	•			•		•					21 21
21	Problem 57 21.1 Solution	•			•		•						•	•			•							22 22
22	Problem 61 22.1 Solution	•			•		•						•	•		•	•							23 23
23	Problem 63 23.1 Solution						•							•			•							24 24
24	Problem 71 24.1 Solution	•			•	•	•	•					•						•					25 25
25	Problem 81 25.1 Solution																							26

26	Problem 87 26.1 Solution	27 27
27	Problem 99 27.1 Solution	28 28
	Problem 107	29