Analysing Vote Choice Data

Final assignment

Jacob Edenhofer*

19 May 2023

Preliminaries

```
# load relevant packages
library(tidyverse)
library(haven)
library(modelsummary)
library(survey)
library(here)
library(geffects)
library(gageffects)
library(margins)

# import data
gles <- read_dta(pasteO(here(), "/Data/german_longitudinal_election_study_cross_section_post_election20
gles1 <- read_dta(pasteO(here(), "/Data/gles_panel_wave20.dta"))</pre>
```

Next, we will create some new variables:

^{*}jacob.edenhofer@some.ox.ac.uk

```
levels = c(1, 2),
              labels = c("male", "female")),
year_born1 = as.numeric(as.character(year_born)),
age = 2021 - as.numeric(as.character(year_born)),
spd_21 = ifelse(btw21_zweitstimme == 4, 1, 0),
union_21 = ifelse(btw21_zweitstimme == 1, 1, 0),
gruene_21 = ifelse(btw21_zweitstimme == 6, 1, 0),
fdp_21 = ifelse(btw21_zweitstimme == 5, 1, 0),
afd_21 = ifelse(btw21_zweitstimme == 322, 1, 0),
linke_21 = ifelse(btw21_zweitstimme == 7, 1, 0),
spd to switch = ifelse(btw21 zweitstimme == 4 & btw17 zweitstimme != 4, 1, 0),
afd_away_switch = ifelse(btw17_zweitstimme == 322 & btw21_zweitstimme != 322, 1, 0),
constituency_centric_rep = ifelse(q63a < 0, NA, q63a),</pre>
party_centric_rep = ifelse(q63c < 0, NA, q63c),</pre>
household_income = ifelse(d63 < 0, NA, d63),</pre>
household_income_factor = as.factor(household_income),
bachelor_dummy = ifelse(d8j1 < 0, NA, d8j1),</pre>
school = ifelse(d7 < 0, NA, d7),</pre>
abitur = ifelse(d7 == 5, 1, 0),
abitur_factor = ifelse(abitur == 1, "abitur", "no_abitur"),
urban rural = ifelse(wum6 < 0, NA, wum6),</pre>
urban_rural_factor = as.factor(urban_rural),
subjective_class = ifelse(d38 < 0, NA, d38),</pre>
left_right_self = ifelse(q37 < 0, NA, q37),</pre>
left_right_self_factor = as.factor(left_right_self),
left_right_cdu = ifelse(q35b < 0, NA, q35b),</pre>
left_right_cdu_factor = as.factor(left_right_cdu),
distance_cdu = (left_right_cdu-left_right_self)^2,
left_right_csu = ifelse(q35c < 0, NA, q35c),</pre>
left_right_csu_factor = as.factor(left_right_csu),
distance_csu = (left_right_csu-left_right_self)^2,
left_right_spd = ifelse(q35d < 0, NA, q35d),</pre>
left_right_spd_factor = as.factor(left_right_spd),
distance_spd = (left_right_spd-left_right_self)^2,
left_right_afd = ifelse(q35h < 0, NA, q35h),</pre>
left_right_afd_factor = as.factor(left_right_afd),
distance_afd = (left_right_afd-left_right_self)^2,
left right fdp = ifelse(q35e < 0, NA, q35e),</pre>
left_right_fdp_factor = as.factor(left_right_fdp),
distance_fdp = (left_right_fdp-left_right_self)^2,
left_right_green = ifelse(q35f < 0, NA, q35f),</pre>
left_right_green_factor = as.factor(left_right_green),
distance_green = (left_right_green-left_right_self)^2,
```

```
left_right_linke = ifelse(q35g < 0, NA, q35g),</pre>
left_right_linke_factor = as.factor(left_right_linke),
distance_linke = (left_right_linke-left_right_self)^2,
scholz_love = ifelse(q18b < 0, NA, q18b),</pre>
scholz_love_factor = as.factor(scholz_love),
finzanz_abgehangt_subjektiv = ifelse(q46a < 0, NA, q46a),</pre>
finzanz_abgehangt_subjektiv_factor = as.factor(finzanz_abgehangt_subjektiv),
arbeit_abgehant_subjektiv = ifelse(q46b < 0, NA, q46b),</pre>
arbeit_abgehant_subjektiv_factor = as.factor(arbeit_abgehant_subjektiv),
cancel_culture_subjektiv = ifelse(q46d < 0, NA, q46d),</pre>
cancel culture subjektiv factor = as.factor(cancel culture subjektiv),
infrastruktur_subjektiv = ifelse(q46c < 0, NA, q46c),</pre>
infrastruktur_subjektiv_factor = as.factor(infrastruktur_subjektiv),
unemployed_last10_yrs = ifelse(d17a < 0, NA, d17a),</pre>
unemployed_last10yrs_months = ifelse(d17b < 0, NA, d17b),</pre>
unemployed_last10yrs_weeks = ifelse(d17c < 0, NA, d17c),</pre>
unemployed_dummy = ifelse(unemployed_last10_yrs != 0, 1, 0),
unemployed_dummy_factor = as.factor(unemployed_dummy),
trust_in_politicians = ifelse(q79d < 0, NA, q79d),</pre>
trust_in_politicians_factor = as.factor(trust_in_politicians),
trust_in_parliament = ifelse(q79b < 0, NA, q79b),</pre>
trust_in_parliament_factor = as.factor(trust_in_parliament),
trust_in_parties = ifelse(q79c < 0, NA, q79c),</pre>
trust_in_parties_factor = as.factor(trust_in_parties),
trust_in_public_broadcast = ifelse(q79i < 0, NA, q79i),</pre>
trust_in_public_broadcast_factor = as.factor(trust_in_public_broadcast),
trust_general = ifelse(q78 < 0, NA, q78),</pre>
trust_general_factor = as.factor(trust_general),
out_group_minorities_assim = ifelse(q125a < 0, NA, q125a),</pre>
out_group_minorities_assim_factor = as.factor(out_group_minorities_assim),
out_group_majority_will = ifelse(q125b < 0, NA, q125b),</pre>
out group majority will factor = as.factor(out group majority will),
out_group_immig_econ_good = ifelse(q125c < 0, NA, q125c),</pre>
out_group_immig_econ_good_factor = as.factor(out_group_immig_econ_good),
out group immig culture threat = ifelse(q125d < 0, NA, q125d),
out_group_immig_culture_threat_factor = as.factor(out_group_immig_culture_threat),
out_group_immig_crime = ifelse(q125e < 0, NA, q125e),</pre>
out group immig crime factor = as.factor(out group immig crime),
scale_pol_lasceht = ifelse(q18a < 0, NA, q18a),</pre>
scale_pol_scholz = ifelse(q18b < 0, NA, q18b),</pre>
scale_pol_baerbock = ifelse(q18c < 0, NA, q18c),</pre>
econ_current_eval_general = ifelse(q23 < 0, NA, q23),</pre>
econ_current_eval_general_factor = as.factor(econ_current_eval_general),
```

```
econ_current_personal = ifelse(q13 < 0, NA, q13),
econ_current_personal_factor = factor(econ_current_personal),
econ_personal_gov_resp = ifelse(q15 < 0, NA, q15),
gender_too_far = ifelse(q27g < 0, NA, q27g),
gender_too_far_factor = factor(gender_too_far))</pre>
```

Some tentative analysis

SPD

Socio-Demographic Correlates

Relationship between household income and SPD voting

```
spd_income <- glm(spd_21 ~ household_income + age + abitur_factor + sex1 + urban_rural_factor + ostwest</pre>
                  family = binomial(link = "logit"),
                  data = gles_mod)
# plot
cplot(spd_income, x = "household_income",
      xvals = seq(1, 13, 1), draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Net Monthly Household Income",
                     breaks = seq(1, 13, 1),
                     labels = c("<500€", "[500-750€)",
                                "[750-1000€)", "[1000-1250€)",
                                "[1250-1500€)", "[1500-2000€)",
                                "[2000-2500€)", "[2500-3000€)",
                                "[3000-4000€)", "[4000-5000€)",
                                "[5000-7000€)", "[7000-10000€)",
                                ">10000€")) +
  labs(y = "Predicted Probability of SPD Voting",
       caption = "Covariates include: age, education, gender and rurality of place of residence.") +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 15, hjust = 1))
```


Covariates include: age, education, gender and rurality of place of residence.

There is no robust relationship between net monthly household income and voting for the SPD.

Relationship between subjective class and SPD voting

```
spd_sclass <- glm(spd_21 ~ subjective_class + age + abitur_factor + sex1 + urban_rural_factor + ostwest
                  family = binomial(link = "logit"),
                  data = gles_mod)
# plot
cplot(spd_sclass, x = "subjective_class",
      xvals = seq(1, 6, 1), draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Subjective Class",
                     breaks = seq(1, 6, 1),
                     labels = c("Unterschicht", "Arbeiterschicht",
                                "Untere Mittelschicht", "mittlere Mittelschicht",
                                "obere Mittelschicht", "Oberschicht")) +
  labs(y = "Predicted Probability of Voting SPD",
       caption = "Covariates include: age, education, gender and rurality of place of residence.") +
  ylim(c(0.1, 0.5)) +
```


Covariates include: age, education, gender and rurality of place of residence.

What is the relationship between left-right self-placement and SPD voting?

```
spd_left_right_self <- glm(spd_21 ~ left_right_self + I(left_right_self^2) + household_income + age + according to the self to the se
```


Relationship between age and SPD voting

Relationship between sex and SPD voting

```
cplot(spd_income, x = "sex1", draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  ylim(c(0.2, 0.4)) +
  scale_x_discrete("Sex", labels = c("Female", "Male")) +
  labs(y = "Predicted Probability of Voting SPD") +
  theme_bw()
```


Relationship between education and SPD

```
cplot(spd_income, x = "abitur_factor", draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_discrete("Education", labels = c("At Least Abitur", "No Abitur")) +
  ylim(c(0.2, 0.4)) +
  labs(y = "Predicted Probability of SPD Voting") +
  theme_bw()
```



```
cplot(spd_income, x = "ostwest_factor", draw = F) %>%
    as_tibble() %>%
    ggplot(aes(x = xvals)) +
    geom_point(aes(y = yvals)) +
    geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
    scale_x_discrete("Ost-West Dummy", labels = c("Ost", "West")) +
    ylim(c(0.2, 0.4)) +
    labs(y = "Predicted Probability of Voting SPD") +
    theme_bw()
```


Attiudinal Correlates

```
# none of the other abgehaengt variables is significant
spd_cancel_culture <- glm(spd_21 ~ cancel_culture_subjektiv + household_income + age + abitur_factor +</pre>
# plot
cplot(spd_cancel_culture, x = "cancel_culture_subjektiv",
      xvals = seq(1, 5, 1), draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Subjektiv: Keine freie Meinungsaeusserung moeglich",
                   breaks = seq(1, 5, 1),
                   labels = c("Stimme voll zu", "Stimme eher zu",
                              "teils/teils", "Stimme eher nicht zu",
                              "Stimme ueberhaupt nicht zu")) +
  labs(y = "Predicted Probability of Voting SPD") +
  ylim(c(0.1, 0.4)) +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 15, hjust = 1))
```


Subjektiv: Keine freie Meinungsaeusserung moeglich

```
# general trust is not significant
# trust in parliament is significant
spd_trust_parliament <- glm(spd_21 ~ trust_in_parliament + I(trust_in_parliament^2) + household_income</pre>
# plot
cplot(spd_trust_parliament, x = "trust_in_parliament",
      xvals = seq(1, 11, 1), draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Vertrauen: Bundestag",
                     breaks = seq(1, 11, 1)) +
 labs(y = "Predicted Probability of Voting SPD",
       caption = "'1' indicates 'no trust', while 11 indicates 'full trust'.") +
  ylim(c(0, 0.4)) +
  theme_bw()
```


'1' indicates 'no trust', while 11 indicates 'full trust'.

'1' indicates 'no trust', while 11 indicates 'full trust'.

'1' indicates 'no trust', while 11 indicates 'full trust'.

```
# immigrants bring crime is significant
spd_immig_crime <- glm(spd_21 ~ out_group_immig_crime + household_income + age + abitur_factor + sex1 +</pre>
# plot
cplot(spd_immig_crime, x = "out_group_immig_crime",
      xvals = seq(1, 5, 1), draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Immigration erhoeht Kriminalitaet in BRD",
                     breaks = seq(1, 5, 1),
                     labels = c("Stimme voll und ganz zu", "Stimme eher zu",
                                "Teils/Teils", "Lehne eher ab",
                                "Lehne voll und ganz ab")) +
  labs(y = "Predicted Probability of Voting SPD") +
  ylim(c(0.1, 0.4)) +
 theme_bw()
```



```
# immigrants pose cultural threat is not significant at 5% level
# immigrants are good for economics is not significant at 5% level
# majority will is paramount is not significant
# outgroups should assimilate not significant
```

Gruene

##

Min

1Q

Median

Spatial distance

```
gruene_space <- glm(gruene_21 ~ distance_green + household_income + age + abitur_factor + sex1 + urban_s
summary(gruene_space)

##

## Call:
## glm(formula = gruene_21 ~ distance_green + household_income +

## age + abitur_factor + sex1 + urban_rural_factor + ostwest_factor,
## family = binomial(link = "logit"), data = gles_mod)

##

## Deviance Residuals:</pre>
```

Max

ЗQ

```
## -1.5342 -0.7083 -0.3949 -0.0132
                                     4.0312
##
## Coefficients:
                         Estimate Std. Error z value Pr(>|z|)
##
                                  0.333388
## (Intercept)
                         0.163515
                                             0.490
                                                      0.6238
## distance_green
                        -0.218754   0.021620   -10.118   < 2e-16 ***
## household income
                                              1.717
                                                      0.0860 .
                         0.045328 0.026401
                        -0.021889 0.003562 -6.145 7.98e-10 ***
## age
## sex1female
                         0.296052
                                   0.115518 2.563
                                                      0.0104 *
## urban_rural_factor2
                        -0.195854
                                   0.182306 -1.074
                                                      0.2827
                                   0.151903 -2.152 0.0314 *
## urban_rural_factor3
                        -0.326921
## urban_rural_factor4
                        -0.395278
                                    0.162413 -2.434
                                                      0.0149 *
## urban_rural_factor5
                         0.158309
                                  0.576306 0.275
                                                      0.7835
## ostwest factorwest
                         0.596282
                                    0.138086
                                              4.318 1.57e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 2334.8 on 2243 degrees of freedom
## Residual deviance: 1848.4 on 2233 degrees of freedom
     (1180 observations deleted due to missingness)
## AIC: 1870.4
##
## Number of Fisher Scoring iterations: 7
# placement of greens
gles mod %>%
 select(left_right_green_factor, left_right_self_factor) %>%
 filter(!is.na(left_right_green_factor) & !is.na(left_right_self_factor)) %>%
 pivot longer(cols = everything(), names to = "type", values to = "value") %>%
 count(type, value) %>%
 group_by(type) %>%
 mutate(share = 100*(n/sum(n))) \%\%
 ggplot(aes(x = value, y = share, fill = type)) +
 geom_col(position = "dodge") +
 geom_text(aes(label = round(share, 1)), vjust = -0.2, size = 2.7,
           position = position_dodge(width = 0.8)) +
 scale_y_continuous("Share of respondents", labels = scales::label_percent(scale = 1)) +
 scale_fill_brewer("",
                  labels = c("left_right_green_factor" = "L-R placement of Greens",
                             "left_right_self_factor" = "Self L-R placement")) +
 expand_limits(y = 30) +
```

```
labs(x = "") +
theme_bw() +
theme(legend.position = "bottom")
```


Socio-demographic Correlates

```
">10000€")) +
labs(y = "Predicted Probability of Voting Green") +
ylim(c(0, 0.2)) +
theme_bw() +
theme(axis.text.x = element_text(angle = 15, hjust = 1))
```


"Untere Mittelschicht", "mittlere Mittelschicht", "obere Mittelschicht"

labs(y = "Predicted Probability of Voting Green") +

ylim(c(0, 0.25)) +

```
theme_bw() +
theme(axis.text.x = element_text(angle = 15, hjust = 1))
```


Urban-Rural

Covariates include: age, household income, sex, rurality of place of residence and an east-west dummy.

```
cplot(gruene_income, x = "ostwest_factor", draw = F) %>%
   as_tibble() %>%
   ggplot(aes(x = xvals)) +
   geom_point(aes(y = yvals)) +
   geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
   scale_x_discrete("Ost-West Dummy", labels = c("Ost", "West")) +
   ylim(c(0, 0.2)) +
   labs(y = "Predicted Probability of Voting Gruene") +
   theme_bw()
```


Attiudinal Correlates

```
gruene_cancel <- glm(gruene_21 ~ cancel_culture_subjektiv + household_income + age + abitur_factor + se
# plot
cplot(gruene_cancel, x = "cancel_culture_subjektiv",
      xvals = seq(1, 5, 1), draw = F) %>%
 as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Subjektiv: Keine freie Meinungsaeusserung moeglich",
                   breaks = seq(1, 5, 1),
                   labels = c("Stimme voll zu", "Stimme eher zu",
                              "Teils/Teils", "Stimme eher nicht zu",
                              "Stimme ueberhaupt nicht zu")) +
  labs(y = "Predicted Probability of Voting Green") +
  ylim(c(0, 0.3)) +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 15, hjust = 1))
```


Subjektiv: Keine freie Meinungsaeusserung moeglich

'1' indicates 'no trust', while 11 indicates 'full trust'.

'1' indicates 'no trust', while 11 indicates 'full trust'.

'1' indicates 'no trust', while 11 indicates 'full trust'.


```
gruene_immig_crime <- glm(gruene_21 ~ out_group_immig_crime + I(out_group_immig_crime^2) + household_in</pre>
# plot
cplot(gruene_immig_crime, x = "out_group_immig_crime",
      xvals = seq(1, 5, 1), draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Immigration erhoeht Kriminalitaet in BRD",
                     breaks = seq(1, 5, 1),
                     labels = c("Stimme voll und ganz zu", "Stimme eher zu",
                                "Teils/Teils", "Lehne eher ab",
                                "Lehne voll und ganz ab")) +
  labs(y = "Predicted Probability of Voting Green") +
  ylim(c(0, 0.4)) +
  theme_bw()
```


Further analysis

Valence -> motivation: Baerbock's campaign

How can we measure valence vs spatial distance?

Who punished the Greens because of Baerbock? Who punished the CDU/CSU because of Laschet? (Lachet and so on) -> Those who are struggling / hard times.

-> egoistic vs sociotropic motivations/evaluations? -> egoistic evaluations matter more when one is ideologically closer to a candidate/party; spell this out -> sociotropic evaluations matter more when one thinks highly of a candidate

```
ego_socio_model4 <- glm(union_21 ~ distance_cdu*econ_current_personal + econ_current_eval_general*scale
                       family = binomial(link = "logit"),
                       data = gles_mod)
ego_socio_model5 <- glm(union_21 ~ distance_cdu*econ_current_personal*scale_pol_lasceht + econ_current_
                       family = binomial(link = "logit"),
                       data = gles_mod)
ego_socio_model6 <- glm(union_21 ~ distance_cdu + econ_current_eval_general*econ_current_personal*scale
                       family = binomial(link = "logit"),
                       data = gles_mod)
# modelsummary
modelsummary(list(ego_socio_model1, ego_socio_model2, ego_socio_model3,
                  ego_socio_model4, ego_socio_model5),
             estimate = "{estimate}{stars}")
ego_socio_model11 <- glm(union_21 ~ distance_cdu*scale_pol_lasceht + sex + household_income + urban_rur
                       family = binomial(link = "logit"),
                       data = gles_mod)
ego_socio_model12 <- glm(spd_21 ~ distance_spd*scale_pol_scholz + sex + household_income + urban_rural
                       family = binomial(link = "logit"),
                       data = gles_mod)
ego_socio_model13 <- glm(gruene_21 ~ distance_green*scale_pol_baerbock + sex + household_income + urban
                       family = binomial(link = "logit"),
                       data = gles_mod)
ego_socio_model14 <- glm(afd_21 ~ distance_afd + sex + household_income + urban_rural + ostwest_factor
                       family = binomial(link = "logit"),
                       data = gles_mod)
ego_socio_model15 <- glm(fdp_21 ~ econ_current_personal*econ_current_eval_general,
                       family = binomial(link = "logit"),
                       data = gles_mod)
# modelsummar<
modelsummary(list(ego_socio_model11, ego_socio_model12, ego_socio_model13, ego_socio_model14),
             estimate = "{estimate}{stars}",
             output = "kableExtra") %>%
 kableExtra::kable_styling(latex_options = "scale_down")
afd_gender1 <- glm(afd_21 ~ gender_too_far_factor + age + abitur_factor + sex1 + urban_rural_factor + o
                 family = binomial(link = "logit"),
                  data = gles_mod)
afd_gender2 <- glm(afd_21 ~ gender_too_far_factor*sex1 + age + abitur_factor + urban_rural_factor + os
                  family = binomial(link = "logit"),
                  data = gles_mod)
afd_gender3 <- glm(afd_21 ~ gender_too_far_factor*sex1 + age + abitur_factor + urban_rural_factor + os
```

family = binomial(link = "logit"),

	(1)	(2)	(0)	(4)
(Intercept)	-2.121*	-4.105**	-3.769***	-4.012***
	(1.067)	(1.396)	(0.697)	(0.713)
econ_current_personal	-0.110	0.097	-0.084	-0.088
	(0.457)	(0.582)	(0.106)	(0.106)
econ_current_eval_general	-0.304	0.166	-0.014	-0.027
	(0.406)	(0.495)	(0.177)	(0.179)
scale_pol_lasceht	0.363 +	0.490*	0.410***	0.403***
	(0.189)	(0.228)	(0.081)	(0.082)
$econ_current_personal \times econ_current_eval_general$	0.034	-0.055		
	(0.159)	(0.201)		
$econ_current_personal \times scale_pol_lasceht$	0.013	-0.027		
	(0.082)	(0.100)		
$econ_current_eval_general \times scale_pol_lasceht$	-0.004	-0.102	-0.054+	-0.050
	(0.074)	(0.089)	(0.032)	(0.032)
$econ_current_personal \times econ_current_eval_general \times scale_pol_lasceht$	-0.006	0.017		
	(0.029)	(0.036)		
distance_cdu		-0.138***	-0.213***	-0.210***
		(0.015)	(0.038)	(0.038)
household_income		0.062*	0.076*	0.072*
		(0.031)	(0.032)	(0.032)
age		0.022***	0.019***	0.019***
		(0.004)	(0.004)	(0.004)
abitur_factorno_abitur		,	0.386**	0.351*
			(0.139)	(0.141)
sex1female			-0.090	-0.077
boxtromato			(0.123)	(0.124)
distance_cdu × econ_current_personal			0.035*	0.034*
listance_cdu × econ_current_personal			(0.014)	(0.014)
urban_rural_factor2			(0.011)	0.262
				(0.210)
urban_rural_factor3				0.313+
urban_rurar_ractoro				(0.182)
urban_rural_factor4				0.331+
urban_rurar_ractor+				(0.188)
urban_rural_factor5				0.1634
urvaii_rurai_tactoro				(0.484)
activest featenwest				
ostwest_factorwest				0.082
$distance_cdu \times scale_pol_lasceht$				(0.139)
$scale_pol_lasceht \times econ_current_eval_general$				
distance_cdu × econ_current_personal × scale_pol_lasceht				
Num.Obs.	2792	2225	2221	2211
AIC	2473.1	1732.5	1718.2	1715.3
BIC	2520.5	1792.3 1795.3	1718.2 1780.9	1806.6
Log.Lik.	-1228.528	-855.242	-848.079	-841.671
RMSE	-1228.328 0.37	-855.242 0.35	-848.079 0.35	-841.671 0.35
TOTATION TO THE PERSON AND THE PERSO	0.57	0.50	0.50	0.55

(1)

(2)

(3)

(4)

	(1)	(2)	(3)	(4)
(Intercept)	-4.012***	-6.204***	-4.509***	1.651*
	(0.491)	(0.524)	(0.538)	(0.737)
distance_cdu	-0.138***			
	(0.030)			
scale_pol_lasceht	0.287***			
	(0.027)			
sex	-0.119	-0.126	0.215 +	-0.269
	(0.121)	(0.113)	(0.128)	(0.229)
household_income	0.060*	-0.041	0.065*	-0.179***
	(0.028)	(0.025)	(0.028)	(0.045)
urban_rural	0.111*	0.015	-0.047	0.172 +
	(0.055)	(0.049)	(0.056)	(0.100)
ostwest_factorwest	0.092	0.112	0.503**	-1.011***
	(0.137)	(0.124)	(0.153)	(0.216)
age	0.022***	0.009**	-0.030***	0.001
	(0.004)	(0.003)	(0.004)	(0.007)
$distance_cdu \times scale_pol_lasceht$	0.000			
	(0.006)			
distance_spd		0.012		
		(0.031)		
scale_pol_scholz		0.678***		
		(0.043)		
$distance_spd \times scale_pol_scholz$		-0.007*		
		(0.004)		
distance_green			-0.106	
			(0.074)	
scale_pol_baerbock			0.564***	
			(0.043)	
distance_green × scale_pol_baerbock			-0.005	
			(0.010)	
distance_afd				-0.183***
				(0.016)
Num.Obs.	2239	2233	2224	2225
AIC	1754.9	1974.2	1539.0	596.6
BIC	1806.3	2025.6	1590.4	636.5
Log.Lik.	-868.431	-978.124	-760.511	-291.289
RMSE	0.35	0.38	0.33	0.20

AfD

Hypotheses?

Distinguish between voting for and having switched to.

Socio-demographic Correlates

Relationship between household income and AfD voting

```
afd_income <- glm(afd_21 ~ household_income + age + abitur_factor + sex1 + urban_rural_factor + ostwest
cplot(afd_income, x = "household_income",
      xvals = seq(1, 13, 1), draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Net Monthly Household Income",
                     breaks = seq(1, 13, 1),
                     labels = c("<500€", "[500-750€)",
                                "[750-1000€)", "[1000-1250€)",
                                "[1250-1500€)", "[1500-2000€)",
                                "[2000-2500€)", "[2500-3000€)",
                                "[3000-4000€)", "[4000-5000€)",
                                "[5000-7000€)", "[7000-10000€)",
                                ">10000€")) +
  labs(y = "Predicted Probability of Voting for the AfD") +
  ylim(c(0, 0.3)) +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 15, hjust = 1))
```

	(1)	(2)	(3)	(4)
Intercept)	-0.510	-0.511	-0.584	-0.175
-	(0.439)	(0.469)	(0.481)	(0.968)
gender_too_far_factor3	-0.997**	-0.929*	-0.968*	-1.446
	(0.343)	(0.410)	(0.411)	(1.135)
	-1.498***	-1.548***	-1.601***	-2.611*
	(0.318)	(0.377)	(0.378)	(1.071)
gender_too_far_factor4	-2.380***	-2.243***	-2.312***	-4.777***
gender_too_far_factor5	(0.329)	(0.390)	(0.392)	(1.163)
	-2.887***	-3.493***	-3.766***	-5.305**
age abitur_factorno_abitur	(0.372)	(0.565)	(0.608)	(1.668)
	-0.004	-0.004	-0.003	-0.001
	(0.005)	(0.005)	(0.005)	(0.005)
	0.922***	0.925***	0.889***	0.713**
sex1female	(0.213)	(0.213)	(0.217)	(0.218)
	-0.373*	-0.418	-0.507	-1.647
1	(0.171)	(0.641)	(0.638)	(1.969)
urban_rural_factor2 urban_rural_factor3 urban_rural_factor4	0.243	0.258	0.303	0.261
	(0.294)	(0.295)	(0.301)	(0.302)
	0.200	0.212	0.205	0.218
	(0.250)	(0.251)	(0.259)	(0.257)
	0.420	0.433+	0.484+	0.404
urban_rural_factor5	(0.257)	(0.257)	(0.264)	(0.263)
	1.301*	1.366*	0.855	1.368*
ostwest_factorwest gender_too_far_factor2 × sex1female	(0.552)	(0.558)	(0.652)	(0.565)
	-1.311***	-1.319***	-1.255***	-1.305***
	(0.167)	(0.167)	(0.172)	(0.172)
		-0.179	-0.124	-2.211
gender_too_far_factor3 × sex1female gender_too_far_factor4 × sex1female		(0.757)	(0.760)	(2.441)
		0.161	0.239	-0.834
		(0.702)	(0.705)	(2.229)
		-0.373	-0.314	0.669
gender_too_far_factor5 × sex1female		(0.728)	(0.730)	(2.330)
		0.974	1.172	0.057
		(0.831)	(0.866)	(2.619)
nemployed_dummy_factor1			0.665**	
			(0.257)	0.110
econ_current_personal				-0.148
				(0.361)
gender_too_far_factor2 × econ_current_personal				0.233
				(0.451)
gender_too_far_factor3 × econ_current_personal				0.454
				(0.422) $1.040*$
gender_too_far_factor4 × econ_current_personal				
mandan taa fan fastant y asan aumant nanganal				(0.446)
gender_too_far_factor5 × econ_current_personal				0.764
sex1female × econ_current_personal				(0.626)
sex Hemaie x econ_current_personal				0.465
				(0.677)
gender_too_far_factor2 × sex1female × econ_current_personal				0.724
				(0.836)
gender_too_far_factor3 × sex1female × econ_current_personal				0.384
tondon too for footon)				(0.772)
render_too_far_factor4 × sex1female × econ_current_personal				-0.458
render_too_far_factor5 × sex1female × econ_current_personal				(0.797)
				0.176
				(0.896)
Tum.Obs.	2703	2703	2581	2701
IC	1145.5	1148.1	1081.3	1099.9
IC 37	1222.3	1248.4	1186.7	1259.3
og.Lik.	-559.768	-557.047	-522.647	-522.957
og.Lik.				

Relationship between subjective class and AfD voting

```
# model
afd_class <- glm(afd_21 ~ subjective_class + age + abitur_factor + sex1 + urban_rural_factor + ostwest_
# plot
cplot(afd_class, x = "subjective_class",
      xvals = seq(1, 6, 1), draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Subjective Class",
                    breaks = seq(1, 6, 1),
                     labels = c("Unterschicht", "Arbeiterschicht",
                                "Untere Mittelschicht", "mittlere Mittelschicht", "obere Mittelschicht"
  labs(y = "Predicted Probability of Voting AfD") +
  expand_limits(y = 0.4) +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 15, hjust = 1))
```


What is the relationship between left-right self-placement and AfD voting?

ndicates respondents who locate themselves on the left of the ideological spectrum, while '11' indicates the opposite.

Relationship between age and AfD voting

```
afd_age <- glm(afd_21 ~ age + I(age^2) + household_income + abitur_factor + sex1 + urban_rural_factor +
# plot

cplot(afd_age, x = "age", draw = F) %>%
    as_tibble() %>%
    ggplot(aes(x = xvals)) +
    geom_line(aes(y = yvals)) +
    geom_ribbon(aes(ymin = lower, ymax = upper), alpha = 0.2) +
    scale_x_continuous("Age", breaks = seq(20, 90, 10)) +
    labs(y = "Predicted Probability of Voting AfD") +
    ylim(c(0, 0.15)) +
    theme_bw()
```


Relationship between sex and AfD

```
cplot(afd_income, x = "sex1", draw = F) %>%
    as_tibble() %>%
    ggplot(aes(x = xvals)) +
    geom_point(aes(y = yvals)) +
    geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
    scale_x_discrete("Sex", labels = c("Female", "Male")) +
    ylim(c(0, 0.15)) +
    labs(y = "Predicted Probability of Voting AfD",
        caption = "Covariates include: age, household income, education and rurality of place of resident theme_bw()
```


Covariates include: age, household income, education and rurality of place of residence.

Relationship between education and AfD voting

Covariates include: age, household income, sex and rurality of place of residence.

Urban-Rural

```
cplot(afd_income, x = "ostwest_factor", draw = F) %>%
    as_tibble() %>%
    ggplot(aes(x = xvals)) +
    geom_point(aes(y = yvals)) +
    geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
    scale_x_discrete("Ost-West Dummy", labels = c("Ost", "West")) +
    ylim(c(0, 0.25)) +
    labs(y = "Predicted Probability of Voting AfD") +
    theme_bw()
```


Attiudinal Correlates

```
afd_cancel_culture <- glm(afd_21 ~ cancel_culture_subjektiv + household_income + age + abitur_factor +
# plot
cplot(afd_cancel_culture, x = "cancel_culture_subjektiv",
     xvals = seq(1, 5, 1), draw = F) %>%
 as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Subjektiv: Keine freie Meinungsaeusserung moeglich",
                   breaks = seq(1, 5, 1),
                   labels = c("Stimme voll zu", "Stimme eher zu",
                              "Teils/Teils", "Stimme eher nicht zu",
                              "Stimme ueberhaupt nicht zu")) +
  labs(y = "Predicted Probability of Voting AfD") +
  ylim(c(0, 0.5)) +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 15, hjust = 1))
```


Subjektiv: Keine freie Meinungsaeusserung moeglich

'1' indicates 'no trust', while 11 indicates 'full trust'.

'1' indicates 'no trust', while 11 indicates 'full trust'.

'1' indicates 'no trust', while 11 indicates 'full trust'.

```
afd_immig_culture_threat <- glm(afd_21 ~ out_group_immig_culture_threat + household_income + age + abit
# plot
cplot(afd_immig_culture_threat, x = "out_group_immig_culture_threat",
      xvals = seq(1, 5, 1), draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Deutsche Kultur durch Immigration bedroht",
                     breaks = seq(1, 5, 1),
                     labels = c("Stimme voll und ganz zu", "Stimme eher zu",
                                "Teils/Teils", "Lehne eher ab",
                                "Lehne voll und ganz ab")) +
  labs(y = "Predicted Probability of Voting AfD") +
  ylim(0, 0.5) +
  theme_bw()
```



```
afd_immig_crime <- glm(afd_21 ~ out_group_immig_crime + household_income + age + abitur_factor + sex1 +
# plot
cplot(afd_immig_crime, x = "out_group_immig_crime",
      xvals = seq(1, 5, 1), draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Immigration erhoeht Kriminalitaet in BRD",
                     breaks = seq(1, 5, 1),
                     labels = c("Stimme voll und ganz zu", "Stimme eher zu",
                                "Teils/Teils", "Lehne eher ab",
                                "Lehne voll und ganz ab")) +
  labs(y = "Predicted Probability of Voting AfD") +
  ylim(c(0, 0.4)) +
  theme_bw()
```



```
afd_majority_will <- glm(afd_21 ~ out_group_majority_will + household_income + age + abitur_factor + se
# plot
cplot(afd_majority_will, x = "out_group_majority_will",
      xvals = seq(1, 5, 1), draw = F) %>%
  as_tibble() %>%
  ggplot(aes(x = xvals)) +
  geom_point(aes(y = yvals)) +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2) +
  scale_x_continuous("Wille der Mehrheit hat Vorrang",
                     breaks = seq(1, 5, 1),
                     labels = c("Stimme voll und ganz zu", "Stimme eher zu",
                                "Teils/Teils", "Lehne eher ab",
                                "Lehne voll und ganz ab")) +
 ylim(c(0, 0.2)) +
  labs(y = "Predicted Probability of Voting AfD") +
  theme_bw()
```

