Analytic Geometry

George Ţurcaș

Maths & Comp. Sci., UBB Cluj-Napoca

November 22, 2020

Recap...relative positions of 2 planes

Let

$$\pi_1: a_1x + b_1y + c_1z + d_1 = 0, \qquad \overline{n}_1(a_1, b_1, c_1) \neq \overline{0}$$

and

$$\pi_2: a_2x + b_2y + c_2z + d_2 = 0, \qquad \overline{n}_2(a_2, b_2, c_2) \neq \overline{0}$$

be two planes, having the normal vectors \overline{n}_1 , respectively \overline{n}_2 .

 The intersection of these planes is given by the solution of the system of equations

$$\begin{cases} \pi_1 : a_1 x + b_1 y + c_1 z + d_1 = 0 \\ \pi_2 : a_2 x + b_2 y + c_2 z + d_2 = 0 \end{cases}$$
 (1)

- If rank $\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} = 2$, then the system (1) is compatible and the planes have a line in common. They are *incident*; $\pi_1 \cap \pi_2 = d$.
- If rank $\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} = 1$, then the rows of the matrix are proportional, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$, which means that the normal vectors of the planes are linearly dependent. There are two possible situations:

- If $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \neq \frac{d_1}{d_2}$, then the system (1) is not compatible, and the planes are *parallel*; $\pi_1 \parallel \pi_1$.
- If $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{d_1}{d_2}$, then the planes are identical; $\pi_1 = \pi_2$.

Bundle of planes

(Shaf)

Given a line d, the set of all the planes containing the line d is said to be the *bundle* of planes through d.

Let us suppose that d is determined as the intersection of two planes π_1 and π_2 , i.e.

$$d: \left\{ \begin{array}{l} \pi_1: a_1x + b_1y + c_1z + d_1 = 0 \\ \pi_2: a_2x + b_2y + c_2z + d_2 = 0 \end{array} \right.,$$

with rank $\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} = 2$.

The equation of the bundle is

$$\lambda_1(a_1x + b_1y + c_1z + d_1) + \lambda_2(a_2x + b_2y + c_2z + d_2) = 0,$$

where $(\lambda_1, \lambda_2) \in \mathbb{R}^2 \setminus \{(0,0)\}.$

• The above equation is sometimes written shortly as

$$\lambda_1 \pi_1 + \lambda_2 \pi_2 = 0, \qquad (\lambda_1, \lambda_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}. \tag{2}$$

• We remark that since not both λ_1 and λ_2 are zero at the same time, we may suppose that $\lambda_1 \neq 0$ and divide in (2) by λ_1 ; This gives the reduced equation of the bundle:

ndle:
$$\lambda = \frac{\lambda_2}{\lambda_1}$$
$$\lambda = 0, \qquad \lambda \in \mathbb{R}$$

which contains all the planes through d, except π_2 .

The relative positions between a line and a plane

Let

$$d: \left\{ \begin{array}{l} x = x_1 + pt \\ y = y_1 + qt \\ z = z_1 + rt \end{array} \right., \qquad p^2 + q^2 + r^2 > 0$$

be a line of director vector $\overline{v}(p,q,r)$ and

$$\pi: ax + by + cz + d = 0,$$
 $a^2 + b^2 + c^2 > 0$

be a plane of normal vector $\overline{n}(a, b, c)$.

The intersection between d and π is given by the solutions of the equation

$$a(x_1 + pt) + b(y_1 + qt) + c(z_1 + rt) + d = 0.$$
 (3)

• If (3) has a unique solution t_0 , then d and π have one intersection point P_0 , corresponding to the parameter t_0 . The line and the plane are *incident*; $d \cap \pi = \{P_0\}$.

• If (3) has infinitely many solutions, then d and π have the entire line d in common and d is contained into π ; $d \subset \pi$. In this case, the normal vector \overline{n} of π is orthogonal on the director vector \overline{v} of d (then $\overline{n} \cdot \overline{v} = 0$, or ap + bq + cr = 0) and any point of d is contained into π .

• If the equation $a(x_1 + pt) + b(y_1 + qt) + c(z_1 + rt) + d = 0$ has no solutions, then the line d is parallel to the plane π ; $d \parallel \pi$.

The angle determined by two lines in 3D

Let d_1 and d_2 be two lines on \mathcal{E}_3 , whose director vectors are \overline{v}_1 respectively \overline{v}_2 . The *angle* determined by d_1 and d_2 is considered to be the acute or right angle formed by d_1 and d_2 . It is denoted by $\widehat{(d_1,d_2)}$.

It is easy to see that the measure of the angle determined by d_1 and d_2 is given by

$$m(\widehat{d_1, d_2}) = \begin{cases} m(\widehat{\overline{v_1}, \overline{v_2}}), & \text{if } \overline{v_1} \cdot \overline{v_2} \ge 0 \\ \pi - m(\widehat{\overline{v_1}, \overline{v_2}}), & \text{if } \overline{v_1} \cdot \overline{v_2} < 0 \end{cases}$$
(4)

Written with respect to the dot product of two vectors, the relations in (4) become

$$\widehat{m(d_1, d_2)} = \begin{cases}
 \operatorname{arccos} \frac{\overline{v}_1 \cdot \overline{v}_2}{|\overline{v}_1| |\overline{v}_2|}, & \text{if } \overline{v}_1 \cdot \overline{v}_2 \ge 0 \\
 \pi - \arccos \frac{\overline{v}_1 \cdot \overline{v}_2}{|\overline{v}_1| |\overline{v}_2|}, & \text{if } \overline{v}_1 \cdot \overline{v}_2 < 0
\end{cases}$$
(5)

Remark: Two (concurrent or skew) lines d_1 and d_2 , having the director vectors $\overline{v}_1(p_1, q_1, r_1)$, respectively $\overline{v}_2(p_2, q_2, r_2)$, are orthogonal if their director vectors are orthogonal.

$$d_1 \perp d_2 \iff \overline{v}_1 \cdot \overline{v}_2 = 0 \iff p_1 p_2 + q_1 q_2 + r_1 r_2 = 0. \tag{6}$$

The angle determined by a line and a plane

Let d be a line of director vector $\overline{v}(p,q,r)$ and π be a plane of normal vector $\overline{n}(a,b,c)$. The *angle* determined by d and π , denoted by $\widehat{(d,\pi)}$, is the angle determined by d and the orthogonal projection d' of d on π .

The measure of the angle determined by the line d and the plane π is given by

$$m(\widehat{d}, \widehat{\pi}) = \begin{cases} \frac{\pi}{2} - m(\widehat{\overline{v}}, \overline{n}), & \text{if } \overline{v} \cdot \overline{n} \ge 0 \\ m(\widehat{v}, \overline{n}) - \frac{\pi}{2}, & \text{if } \overline{v} \cdot \overline{n} < 0 \end{cases}$$
(7)

Remarks

• The formula (7) has the alternative form

$$m(\widehat{d}, \widehat{\pi}) = \begin{cases} \frac{\pi}{2} - \arccos \frac{\overline{v} \cdot \overline{n}}{|\overline{v}||\overline{n}|}, & \text{if } \overline{v} \cdot \overline{n} \ge 0\\ \arccos \frac{\overline{v} \cdot \overline{n}}{|\overline{v}||\overline{n}|} - \frac{\pi}{2}, & \text{if } \overline{v} \cdot \overline{n} < 0 \end{cases}$$
(8)

• The line d is parallel to the plane π if the vector \overline{v} is orthogonal to \overline{n} , hence

$$d \parallel \pi \iff \overline{v} \cdot \overline{n} = 0 \iff pa + qb + rc = 0. \tag{9}$$

• The line d is orthogonal to the plane π if \overline{v} is parallel to \overline{n} . Then

$$d \perp \pi \iff \overline{\mathbf{v}} \parallel \overline{\mathbf{n}} \iff \exists \ \alpha \in \mathbb{R}^* : \overline{\mathbf{n}} = \alpha \overline{\mathbf{v}}. \tag{10}$$

The Angle determined by two planes

Let π_1 and π_2 be two planes of normal vectors $\overline{n}_1(a_1,b_1,c_1)$, respectively $\overline{n}_2(a_2,b_2,c_2)$. The angle determined by π_1 and π_2 , denoted by $(\widehat{\pi_1},\widehat{\pi_2})$, is the acute or right dihedral angle of π_1 and π_2 .

The measure of the angle determined by π_1 and π_2 is given by

$$m(\widehat{\pi_1, \pi_2}) = \begin{cases} m(\widehat{\overline{n}_1, \overline{n}_2}), & \text{if } \overline{n}_1 \cdot \overline{n}_2 \ge o \\ \pi - m(\widehat{\overline{n}_1, \overline{n}_2}), & \text{if } \overline{n}_1 \cdot \overline{n}_2 < o \end{cases}$$
(11)

The formula (11) can be written in the form

$$m(\widehat{\overline{\pi_{1}}, \overline{\pi_{2}}}) = \begin{cases} \operatorname{arccos} \frac{\overline{n_{1}} \cdot \overline{n_{2}}}{|\overline{n_{1}}||\overline{n_{2}}|}, & \text{if } \overline{n_{1}} \cdot \overline{n_{2}} \geq o \\ \overline{n_{1}} \cdot \overline{n_{2}}, & \text{if } \overline{n_{1}} \cdot \overline{n_{2}} < o \end{cases}$$

$$(12)$$

Remark: The planes π_1 and π_2 are orthogonal if and only if their normal vectors are orthogonal, hence

$$\pi_1 \perp \pi_2 \iff \overline{n}_1 \cdot \overline{n}_2 = 0 \iff a_1 a_2 + b_1 b_2 + c_1 c_2 = 0. \tag{13}$$

A diagram explaining the previous slide

Metric problems concerning distances. The distance between a point and a plane

Let $P_0(x_0, y_0, z_0)$ be a point and $\pi : ax + by + cz + d = 0$ (with $a^2 + b^2 + c^2 > 0$) be a plane in \mathcal{E}_3 .

Theorem

The distance from the point $P_0(x_0, y_0, z_0)$ to the plane $\pi: ax + by + cz + d = 0$ is given by

$$d(P_0,\pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$
 (14)

Broof: Let P. (9C1, M/2, 21) E T.

The distance between a point and a line

Given a point
$$P_0(x_0, y_0, z_0)$$
 and a line $d:$
$$\begin{cases} x = x_1 + pt \\ y = y_1 + qt \\ z = z_1 + rt \end{cases}$$
, $t \in \mathbb{R}$, with

 $p^2 + q^2 + r^2 > 0$, we present two ways to find the distance from P_0 to d.

• Let $\overline{v}(p,q,r)$ be the director vector of d and $P_1(x_1,y_1,z_2)$ be an arbitrary point on d. The distance from P_0 to d is the altitude of the parallelogram determined by \overline{v} and $\overline{P_1P_0}$.

This altitude can be expressed using the area of the parallelogram and one has

$$d(P_0, d) = \frac{|\overline{\mathbf{v}} \times P_1 P_0|}{|\overline{\mathbf{v}}|}.$$
 (15)

• Let π be the plane passing through P_0 and orthogonal on d. Its equation is

$$\pi: p(x-x_0)+q(y-y_0)+r(z-z_0)=0.$$

Let P_0' be the intersection point of π and d; $\{P_0'\} = d \cap \pi$.

The coordinates of the point P'_0 correspond to the parameter t_0 , solution of the equation

$$p(x_1 + pt - x_0) + q(y_1 + qt - y_0) + r(z_1 + rt - z_0) = 0.$$

Finally, $d(P_0, d) = d(P_0, P'_0)$.

The distance between two parallel planes

Let π_1 and π_2 be two parallel planes. Choose an arbitrary point $P_1 \in \pi_1$. Then

$$d(\pi_1,\pi_2)=d(P_1,\pi_2).$$

The distance between two lines

Let d_1 and d_2 be two lines in the 3-space.

- If the lines are identical or concurrent, then $d(d_1, d_2) = 0$.
- If the lines are parallel, it is enough to choose an arbitrary point $P_1 \in d_1$ and $d(d_1, d_2) = d(P_1, d_2)$.

• If d_1 and d_2 are skew, there exists a unique line which is orthogonal on both d_1 and d_2 and intersects both d_1 and d_2 . The length of the segment determined by these intersection points is the distance between the skew lines.

Suppose that

$$d_1: \left\{ \begin{array}{l} x = x_1 + p_1 t \\ y = y_1 + q_1 t \\ z = z_1 + r_1 t \end{array} \right., t \in \mathbb{R} \text{ and } d_2: \left\{ \begin{array}{l} x = x_2 + p_2 s \\ y = y_2 + q_2 s \\ z = z_2 + r_2 s \end{array} \right., s \in \mathbb{R}$$

are, respectively, the parametric equations of the lines of director vectors $\overline{v}_1(p_1,q_1,r_1)\neq \overline{0}$, respectively $\overline{v}_2(p_2,q_2,r_2)\neq \overline{0}$. One can determine the equations of two parallel planes $\pi_1\parallel\pi_2$, such that $d_1\subset\pi_1$ and $d_2\subset\pi_2$. The normal vector \overline{n} of these planes has to be orthogonal on both \overline{v}_1 and \overline{v}_2 , hence $\overline{n}=\overline{v}_1\times\overline{v}_2$.

Then
$$\overline{n}(A, B, C)$$
, with $A = \begin{vmatrix} q_1 & r_1 \\ q_2 & r_2 \end{vmatrix}$, $B = \begin{vmatrix} r_1 & p_1 \\ r_2 & p_2 \end{vmatrix}$ and $C = \begin{vmatrix} p_1 & q_1 \\ p_2 & q_2 \end{vmatrix}$.

The equations of the planes π_1 and π_2 are:

$$\pi_1 : A(x - x_1) + B(y - y_1) + C(z - z_1) = 0$$

 $\pi_2 : A(x - x_2) + B(y - y_2) + C(z - z_2) = 0.$

Now, the distance between d_1 and d_2 is the distance between the parallel planes π_1 and π_2 ; $d(d_1, d_2) = d(\pi_1, \pi_2)$, and one has the following theorem.

Theorem

The distance between two skew lines d_1 and d_2 is given by

$$d(d_1, d_2) = \frac{|A(x_1 - x_2) + B(y_1 - y_2) + C(z_1 - z_2)|}{\sqrt{A^2 + B^2 + C^2}}.$$
 (16)

The problem set for this week will be posted soon. Ideally you would think about it before the seminar on Friday.

Thank you very much for your attention!