December 2018 TEXAS The University of Texas at Austin **Grasping Affordance Maxwell Gray** Ty Trusty
Allen Wang
Mike Griffin

Introduction

- Shape2Pose studies affordances of human bodies interacting with objects
- Affordances help understand semantics and function of novel objects
- Essentially, we want understand how an object is used
- We extend this work to grasp affordances along with more modern approaches

Existing Approaches

- Treated as an optimization problem over an energy function with geometric/prior knowledge of objects/poses
- Shape2Pose's energy function:
 - Feature compatibility using a random forest
 - Pose prior represented with mixtures of Gaussians over joint angles
 - (no deep learning)

Our Approach

- Dataset: Columbia Grasp Database
- Similar energy function formulation
- Pose prior and feature compatibility replaced with deep learning techniques

Formulation

$$E(q) = w_{\text{pose}} E_{\text{pose}}(q) + w_{\text{feat}} E_{\text{feat}}(q) + w_{\text{dist}} E_{\text{dist}}(q)$$

q: Hand configuration

 E_{pose} : Pose Prior

 $E_{\rm feat}$: Feature compatibility

 $E_{\rm dist}$: Distance

Pose Prior

- Represented with EBGAN
- EBGAN
 - GAN with the discriminator treated as an energy
 - Discriminator represented with autoencoder
 - Autoencoder reconstruction loss is the energy
 - Real samples = low energy, fake samples = high energy

$$\mathcal{L}_D(x,z) = D(x) + [m - D(G(z))]^+$$

$$\mathcal{L}_G(z) = D(G(z))$$

Pose Prior results

Feature Compatibility

- Parameterized by PointNet++
- Goal: predict the log probability that each point on the mesh is the nearest point to each joint/end effector on the hand

Feature Compatibility Results

- Note that the side is more likely to have contact points
- However many contact points are equally valid since you can hold shapes in many different orientations (which is expressed in the dataset)

Distance

$$E_{\text{dist}}(\mathbf{q}) = \max_{1 \le i \le k} ||\mathbf{p}_i - x_i(\mathbf{q})||_2^2$$
 (3)

where
$$\mathbf{p}_i = \arg\min_{\mathbf{p}' \in \text{Object}} ||\mathbf{p}' - x_i(\mathbf{q})||_2^2$$
 (4)

Energy will assign higher scores to configurations near the object

Optimization

Evolution strategies

Algorithm 1 Evolution Strategies

- 1: **Input:** Learning rate α , noise standard deviation σ , initial policy parameters θ_0
- 2: **for** $t = 0, 1, 2, \dots$ **do**
- 3: Sample $\epsilon_1, \ldots \epsilon_n \sim \mathcal{N}(0, I)$
- 4: Compute returns $F_i = F(\theta_t + \sigma \epsilon_i)$ for i = 1, ..., n
- 5: Set $\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{i=1}^{n} F_i \epsilon_i$
- 6: end for

Results

- Some good grasps
- Ideas for improvement

Questions?