Phase Transition of a Non-Linear Opinion Dynamics with Noisy Interactions

Francesco d'Amore

Joint work with:

- Andrea Clementi: Università di Roma "Tor Vergata"
- Emanuele Natale: Inria, Cnrs, I3S, Université Côte d'Azur

SIROCCO 2020

- $\Sigma = \{1, 2, \dots, k\}$ set of opinions/colors
- $\mathsf{MAS} \ \{ \ ^\bullet \ \text{system of} \ n \ \mathsf{agents/nodes} \ \mathsf{initially} \ \mathsf{colored} \ \mathsf{with} \ \mathsf{colors} \ \mathsf{in} \ \Sigma \\ \bullet \ \mathsf{communication} \ \mathsf{network} \ \mathsf{for} \ \mathsf{interactions}$

 - agents may change color upon message exchange

- $\Sigma = \{1, 2, \dots, k\}$ set of opinions/colors
- $\mathsf{MAS} \ \{ \ ^\bullet \ \text{system of} \ n \ \mathsf{agents/nodes} \ \mathsf{initially} \ \mathsf{colored} \ \mathsf{with} \ \mathsf{colors} \ \mathsf{in} \ \Sigma \\ \bullet \ \mathsf{communication} \ \mathsf{network} \ \mathsf{for} \ \mathsf{interactions}$

 - agents may change color upon message exchange

time
$$t = 0$$

- $\Sigma = \{1, 2, \dots, k\}$ set of opinions/colors
- $\mathsf{MAS} \ \{ \ ^\bullet \ \text{system of} \ n \ \mathsf{agents/nodes} \ \mathsf{initially} \ \mathsf{colored} \ \mathsf{with} \ \mathsf{colors} \ \mathsf{in} \ \Sigma \\ \bullet \ \mathsf{communication} \ \mathsf{network} \ \mathsf{for} \ \mathsf{interactions}$

 - agents may change color upon message exchange

time
$$t = 0$$
 time $t = 1$

- $\Sigma = \{1, 2, \dots, k\}$ set of opinions/colors
- $\mathsf{MAS} \ \{ \ ^\bullet \ \text{system of} \ n \ \mathsf{agents/nodes} \ \mathsf{initially} \ \mathsf{colored} \ \mathsf{with} \ \mathsf{colors} \ \mathsf{in} \ \Sigma \\ \bullet \ \mathsf{communication} \ \mathsf{network} \ \mathsf{for} \ \mathsf{interactions}$

 - agents may change color upon message exchange

time
$$t=0$$
 — time $t=2$

Task: designing a protocol which brings the system in finite time to a configuration such that

- 1. all agents support the same color (AGREEMENT)
- 2. the final color is among the initial ones (VALIDITY)
- 3. the agreement keeps on unless external events occur (STABILITY)

Task: designing a protocol which brings the system in finite time to a configuration such that

- 1. all agents support the same color (AGREEMENT)
- 2. the final color is among the initial ones (VALIDITY)
- 3. the agreement keeps on unless external events occur (STABILITY)

valid consensus

Task: designing a protocol which brings the system in finite time to a configuration such that

- 1. all agents support the same color (AGREEMENT)
- 2. the final color is among the initial ones (VALIDITY)
- 3. the agreement keeps on unless external events occur (STABILITY)

Task: designing a protocol which brings the system in finite time to a configuration such that

- 1. all agents support the same color (AGREEMENT)
- 2. the final color is among the initial ones (VALIDITY)
- 3. the agreement keeps on unless external events occur (STABILITY)

- 1. AGREEMENT
- 2. VALIDITY
- 3. STABILITY

- 1. AGREEMENT
- 2. VALIBITY
- 3. STABILITY

```
 AGREEMENT
 VALIDITY
 MAJORITY
 STABILITY
 AGREEMENT
 MAJORITY
 STABILITY
```

2. MAJORITY property: the final color is the initial majority one

- AGREEMENT
 VALIDITY
 MAJORITY
 STABILITY
 AGREEMENT
 MAJORITY
 STABILITY
- 2. MAJORITY property: the final color is the initial majority one

Lot of interest in many application domains:

- social networks [Mossel and Tamuz '17]
- biological systems [Feinerman et al. '17]
- sensor networks [Angluin et al. '08]
- chemical reaction networks [Condon et al. '19]

Lot of interest in many application domains:

- social networks [Mossel and Tamuz '17]
- biological systems [Feinerman et al. '17]
- sensor networks [Angluin et al. '08]
- chemical reaction networks [Condon et al. '19]

Investigation of opinion dynamics in chaotic systems

mathematical models of how (decentralized) MAS reach consensus

• simple and lightweight: subject to memory and communication

constraints

efficient and resilient

(majority) consensus is required (w.h.p.)

Some Literature

Largely studied opinion dynamycs:

- Voter Model [Hassin and Peleg '01]
- 3-Majority [Becchetti et al. '16]
- 2-Choices [Berenbrink et al. '17]

Some Literature

Largely studied opinion dynamycs:

- Voter Model [Hassin and Peleg '01]
- 3-Majority [Becchetti et al. '16]
- 2-Choices [Berenbrink et al. '17]

Voter Model:

- linear dynamics
- slow convergence (polynomial even in K_n)
- ullet does not guarantee high probability to reach majority consensus even with inital majority of 3n/4

Some Literature

Largely studied opinion dynamycs:

- Voter Model [Hassin and Peleg '01]
- 3-Majority [Becchetti et al. '16]
- 2-Choices [Berenbrink et al. '17]

Voter Model:

- linear dynamics
- slow convergence (polynomial even in K_n)
- \bullet does not guarantee high probability to reach majority consensus even with inital majority of 3n/4

3-Majority and 2-Choices:

- non-linear dynamics
- fast convergence (polylogarithmic even in sparse graphs with good expansion)
- guarantee majority consensus w.h.p.
- at least 2 bits of per-round communication complexity for each node

- randomized, non-linear opinion dynamics for the (Majority) Consensus Problem [Angluin et al. '08], [Perron et al. '09]
- biologically inspired [Reina et al. '17], [Condon et al. '19]

- randomized, non-linear opinion dynamics for the (Majority) Consensus Problem [Angluin et al. '08], [Perron et al. '09]
- biologically inspired [Reina et al. '17], [Condon et al. '19]

Modification to the (majority) consensus **task**:

• the final configuration is reached in finite time, with high probability

- randomized, non-linear opinion dynamics for the (Majority) Consensus Problem [Angluin et al. '08], [Perron et al. '09]
- biologically inspired [Reina et al. '17], [Condon et al. '19]

Modification to the (majority) consensus **task**:

• the final configuration is reached in finite time, with high probability

Definition (w.h.p.): an event E depending on a parameter $n \in \mathbb{N}$ holds with high probability w.r.t. n if

One extra state, i.e. the undecided state

One extra state, i.e. the undecided state

At each round, each agent u

- 1. chooses a neighbor v u.a.r.
- 2. pulls v's color
- 3. updates its state according to the following table

$u \backslash v$	$color\;i$	$color\; j$	undecided
color i	i	undecided	i
$color\; j$	undecided	j	j
undecided	i	j	undecided

One extra state, i.e. the undecided state

At each round, each agent u

- 1. chooses a neighbor v u.a.r.
- 2. pulls v's color
- 3. updates its state according to the following table

$u \setminus v$	color i	$color\; j$	undecided
color i	i	undecided	i
$color\; j$	undecided	j	j
undecided	i	j	undecided

The U-Dynamics: Motivations

It can be derived from the **best nest site selection process** in honeybees [Reina et al. '17] by

- discretizing the dynamics equation
- accurately setting the parameters

The U-Dynamics: Motivations

It can be derived from the **best nest site selection process** in honeybees [Reina et al. '17] by

- discretizing the dynamics equation
- accurately setting the parameters

Simple, lightweight and efficient non-linear dynamics for the (Majority) Consensus Problem

- agent memory = $\log |\Sigma| + 1$
- n exchanged messages each round
- time-homogeneus

[Becchetti et al. '15] analyzes the case of k = o(n) colors in K_n

- \bullet assumes initial majority size to be at least $(1+\epsilon)$ times any other community size
- proves the convergence to majority consensus within time $\mathcal{O}\left(k\log n\right)$, w.h.p.

[Becchetti et al. '15] analyzes the case of k = o(n) colors in K_n

- ullet assumes initial majority size to be at least $(1+\epsilon)$ times any other community size
- proves the convergence to majority consensus within time $\mathcal{O}\left(k\log n\right)$, w.h.p.

Definition (bias 2-colors): in the case of 2 colors, the bias of a configuration is (majority size - minority size)

Definition (bias 2-colors): in the case of 2 colors, the bias of a configuration is (majority size - minority size)

[Clementi et al. '18] analyzes the case of 2 colors in K_n and proves that

- 1. from any initial configuration with bias $\Omega\left(\sqrt{n\log n}\right)$, majority consensus is reached within $\mathcal{O}\left(\log n\right)$ rounds, w.h.p.
- 2. from any balanced initial configuration, symmetry is broken, i.e. bias $\Omega\left(\sqrt{n\log n}\right)$ is reached, within $\mathcal{O}\left(\log n\right)$ rounds, w.h.p.
- 3. from any initial configuration with bias $\mathcal{O}(\sqrt{n})$, the majority color switches in one round, with constant probability

Definition (bias 2-colors): in the case of 2 colors, the bias of a configuration is (majority size - minority size)

[Clementi et al. '18] analyzes the case of 2 colors in K_n and proves that

- 1. from any initial configuration with bias $\Omega\left(\sqrt{n\log n}\right)$, majority consensus is reached within $\mathcal{O}\left(\log n\right)$ rounds, w.h.p.
- 2. from any balanced initial configuration, symmetry is broken, i.e. bias $\Omega\left(\sqrt{n\log n}\right)$ is reached, within $\mathcal{O}\left(\log n\right)$ rounds, w.h.p.
- 3. from any initial configuration with bias $\mathcal{O}(\sqrt{n})$, the majority color switches in one round, with constant probability

Some Considerations

Natural question: what if communication is subject to noise?

- realistic scenario in biology
- only forms of meta-stable consensus can be reached (binary case):

Some Considerations

Natural question: what if communication is subject to noise?

- realistic scenario in biology
- only forms of meta-stable consensus can be reached (binary case):
 - 1. ALMOST-AGREEMENT: the bias towards some majority (valid) color is at least $\Theta(n)$, w.h.p.
 - 2. ALMOST-STABILITY the almost-agreement lasts for a polynomial number of rounds, w.h.p.

Some Considerations

Natural question: what if communication is subject to noise?

- realistic scenario in biology
- only forms of meta-stable consensus can be reached (binary case):
 - 1. ALMOST-AGREEMENT: the bias towards some majority (valid) color is at least $\Theta(n)$, w.h.p.
 - 2. ALMOST-STABILITY the almost-agreement lasts for a polynomial number of rounds, w.h.p.

w.h.p. in finite time w.h.p. for poly(n) rounds

Our Work

U-dynamics in K_n with two colors ($\Sigma = \{\text{red}, \text{blue}\}$)

Introduction of noise

- biologically plausible from interaction with the environment
- still derived from best nest site selection process in honeybees [Reina et al. '17]

Our Work

U-dynamics in K_n with two colors ($\Sigma = \{\text{red}, \text{blue}\}$)

Introduction of noise

- biologically plausible from interaction with the environment
- still derived from best nest site selection process in honeybees [Reina et al. '17]

Introduction of Noise

Inspired by [Feinerman et al. '17], [Freignaud and Natale '18]

Let $p \in (0, 1/3)$ be a constant

Let u pull v's state x

- a) with probability 1 3p, u sees x
- b) with probability 3p, u sees y where y is chosen u.a.r. in $\Sigma \cup \{ \text{undecided} \}$

Introduction of Noise

Inspired by [Feinerman et al. '17], [Freignaud and Natale '18]

Let $p \in (0, 1/3)$ be a constant

Let u pull v's state x

- a) with probability 1 3p, $u \sec x$
- b) with probability 3p, u sees y where y is chosen u.a.r. in $\Sigma \cup \{ \text{undecided} \}$

Idea from [Yildiz et al. '13]

Definition (stubborn): a stubborn agent never changes color

- Let \bullet $p_{\mathsf{noise}} = 3p$
 - $n_{\mathsf{stub}} = \frac{p_{\mathsf{noise}}}{1 p_{\mathsf{noise}}} n$

Idea from [Yildiz et al. '13]

Definition (stubborn): a stubborn agent never changes color

- Let \bullet $p_{\mathsf{noise}} = 3p$
 - $n_{\mathsf{stub}} = \frac{p_{\mathsf{noise}}}{1 p_{\mathsf{noise}}} n$

Consider $K_{n+n_{\text{stub}}}$ such that

- $n_{\text{stub}}/3$ nodes are stubborn red agents
- $n_{\text{stub}}/3$ nodes are stubborn blue agents
- $n_{\text{stub}}/3$ nodes are stubborn undecided agents

Idea from [Yildiz et al. '13]

Definition (stubborn): a stubborn agent never changes color

- Let \bullet $p_{\mathsf{noise}} = 3p$
 - $n_{\mathsf{stub}} = \frac{p_{\mathsf{noise}}}{1 p_{\mathsf{noise}}} n$

Consider $K_{n+n_{\text{stub}}}$ such that

- $n_{\text{stub}}/3$ nodes are stubborn red agents
- $n_{\text{stub}}/3$ nodes are stubborn blue agents
- $n_{\text{stub}}/3$ nodes are stubborn undecided agents

Coupling:

- former U-process over $K_{n+n_{\text{stub}}}$
- noisy U-process over K_n

Coupling:

- former U-process over $K_{n+n_{\mathsf{stub}}}$
- noisy U-process over K_n

Coupling:

- former U-process over $K_{n+n_{\text{stub}}}$
- noisy U-process over K_n

Fact: each result stated for the noisy U-process in K_n has an analogous statement for the former U-process in $K_{n+n_{\rm stub}}$, and vice versa

Let • p < 1/6 be a constant

 \bullet 3p be the noise probability

- Let p < 1/6 be a constant
 - 3p be the noise probability

- 1. any balanced configuration, i.e. having bias $\mathcal{O}(\sqrt{n \log n})$, the system reaches bias $\Omega\left(\sqrt{n\log n}\right)$ within $\mathcal{O}\left(\log n\right)$ rounds, w.h.p.
- 2. any configuration with bias $\Omega\left(\sqrt{n\log n}\right)$, the system

- Let p < 1/6 be a constant
 - 3p be the noise probability

- 1. any balanced configuration, i.e. having bias $\mathcal{O}(\sqrt{n \log n})$, the system reaches bias $\Omega\left(\sqrt{n\log n}\right)$ within $\mathcal{O}\left(\log n\right)$ rounds, w.h.p.
- 2. any configuration with bias $\Omega\left(\sqrt{n\log n}\right)$, the system
 - reaches bias $\Theta(n)$ towards the majority color within $\mathcal{O}(\log n)$ rounds, w.h.p.
 - enters a meta-stable phase of length poly(n) rounds, in which the bias keeps $\Theta(n)$ towards the majority color, w.h.p.

- Let p < 1/6 be a constant
 - 3p be the noise probability

- 1. any balanced configuration, i.e. having bias $\mathcal{O}(\sqrt{n \log n})$, the system reaches bias $\Omega\left(\sqrt{n\log n}\right)$ within $\mathcal{O}\left(\log n\right)$ rounds, w.h.p.
- 2. any configuration with bias $\Omega\left(\sqrt{n\log n}\right)$, the system
 - reaches bias $\Theta(n)$ towards the majority color within $\mathcal{O}(\log n)$ rounds, w.h.p.
 - enters a meta-stable phase of length poly(n) rounds, in which the bias keeps $\Theta(n)$ towards the majority color,

- Let p < 1/6 be a constant
 - 3p be the noise probability

- 1. any balanced configuration, i.e. having bias $\mathcal{O}(\sqrt{n \log n})$, the system reaches bias $\Omega\left(\sqrt{n\log n}\right)$ within $\mathcal{O}\left(\log n\right)$ rounds, w.h.p.
- 2. any configuration with bias $\Omega\left(\sqrt{n\log n}\right)$, the system
 - reaches bias $\Theta(n)$ towards the majority color within $\mathcal{O}(\log n)$ rounds, w.h.p.
 - enters a meta-stable phase of length poly(n) rounds, in which the bias keeps $\Theta(n)$ towards the majority color,

- Let p < 1/6 be a constant
 - 3p be the noise probability

- 1. any balanced configuration, i.e. having bias $\mathcal{O}(\sqrt{n \log n})$, the system reaches bias $\Omega\left(\sqrt{n\log n}\right)$ within $\mathcal{O}\left(\log n\right)$ rounds, w.h.p.
- 2. any configuration with bias $\Omega\left(\sqrt{n\log n}\right)$, the system
 - reaches bias $\Theta(n)$ towards the majority color within $\mathcal{O}(\log n)$ rounds, w.h.p.
 - enters a meta-stable phase of length poly(n) rounds, in which the bias keeps $\Theta(n)$ towards the majority color,

Let • p > 1/6 be a constant

• 3p be the noise probability

- Let p > 1/6 be a constant
 - 3p be the noise probability

We **prove** that starting from any configuration (even monochromatic), the system

- 1. reaches bias $\mathcal{O}\left(\sqrt{n\log n}\right)$ within $\mathcal{O}\left(\log n\right)$ rounds, w.h.p.
- 2. enters a meta-stable phase of length poly(n) rounds, in which the bias keeps bounded by $\mathcal{O}(\sqrt{n \log n})$, w.h.p.

- Let p > 1/6 be a constant
 - 3p be the noise probability

We **prove** that starting from any configuration (even monochromatic), the system

- 1. reaches bias $\mathcal{O}\left(\sqrt{n\log n}\right)$ within $\mathcal{O}\left(\log n\right)$ rounds, w.h.p.
- 2. enters a meta-stable phase of length poly(n) rounds, in which the bias keeps bounded by $\mathcal{O}(\sqrt{n \log n})$, w.h.p.

- Let p > 1/6 be a constant
 - 3p be the noise probability

We **prove** that starting from any configuration (even monochromatic), the system

- 1. reaches bias $\mathcal{O}\left(\sqrt{n\log n}\right)$ within $\mathcal{O}\left(\log n\right)$ rounds, w.h.p.
- 2. enters a meta-stable phase of length poly(n) rounds, in which the bias keeps bounded by $\mathcal{O}(\sqrt{n \log n})$, w.h.p.

For p < 1/6, just the majority consensus

Let

- \bullet S_t be the r.v. yielding the bias of the configuration at time t
 - $S_0 = \Omega\left(\sqrt{n\log n}\right)$
 - ullet Q_t be the r.v. yielding number of undecided nodes at time t

For p < 1/6, just the majority consensus

- Let S_t be the r.v. yielding the bias of the configuration at time t
 - $S_0 = \Omega\left(\sqrt{n\log n}\right)$
 - \bullet Q_t be the r.v. yielding number of undecided nodes at time t

The behaviour of S_t and that of Q_t are strictly linked

- when S_t is low, we expect Q_{t+1} to be high
- when S_t is high, we expect Q_{t+1} to be low

For p < 1/6, just the majority consensus

- Let S_t be the r.v. yielding the bias of the configuration at time t
 - $S_0 = \Omega\left(\sqrt{n\log n}\right)$
 - \bullet Q_t be the r.v. yielding number of undecided nodes at time t

The behaviour of S_t and that of Q_t are strictly linked

- when S_t is low, we expect Q_{t+1} to be high
- when S_t is high, we expect Q_{t+1} to be low

From zero bias we get almost n/2 undecided nodes

For p < 1/6, just the majority consensus

Let

- ullet S_t be the r.v. yielding the bias of the configuration at time t
- $S_0 = \Omega\left(\sqrt{n\log n}\right)$

n/2 undecided nodes

ullet Q_t be the r.v. yielding number of undecided nodes at time t

The behaviour of S_t and that of Q_t are strictly linked

- when S_t is low, we expect Q_{t+1} to be high
- when S_t is high, we expect Q_{t+1} to be low

constant factor of undecided nodes

$$Q_t \text{ large} + S_t = \Omega\left(\sqrt{n\log n}\right) \implies \text{drift towards the majority color}$$

$$Q_t \text{ large} + S_t = \Omega\left(\sqrt{n \log n}\right) \implies \text{drift towards the majority color}$$

$$Q_t$$
 large $+ S_t = \Omega\left(\sqrt{n \log n}\right) \implies$ drift towards the majority color

We identify these treshold quantities and concentrate with Chernoff bounds

For some $0<\beta,c<1$, some small enough $\epsilon>0$, and some $\delta>0$, we **prove** that

- a) if $S_t = \Omega\left(\sqrt{n\log n}\right)$, then $S_{t+1} \ge (1-\epsilon)S_t$, w.h.p.
- b) if $\Omega\left(\sqrt{n\log n}\right) = S_t < \beta n$ and $Q_t > cn$, then $S_{t+1} \ge (1+\delta)S_t$, w.h.p.
- c) if $S_t < \beta n$, then $Q_{t+1} > cn$, w.h.p.

For some $0 < \beta, c < 1$, some small enough $\epsilon > 0$, and some $\delta > 0$, we **prove** that

- a) if $S_t = \Omega\left(\sqrt{n \log n}\right)$, then $S_{t+1} \ge (1 \epsilon)S_t$, w.h.p.
- b) if $\Omega\left(\sqrt{n\log n}\right) = S_t < \beta n \text{ and } Q_t > cn$, then $S_{t+1} \geq (1+\delta)S_t$, w.h.p.
- c) if $S_t < \beta n$, then $Q_{t+1} > cn$, w.h.p.

By combining (a) + (b) + (c) we get that the system

- reaches bias $\Theta(n)$ within $\mathcal{O}(\log n)$ rounds, w.h.p.
- enters a meta-stable phase of length poly(n) rounds in which the bias keeps $\Theta\left(n\right)$, w.h.p.

Conclusions

- first step towards investigation of noise in non-linear opinion dynamics
- better comprehension of plausible models for biological systems

Honey bee

Conclusions

- first step towards investigation of noise in non-linear opinion dynamics
- better comprehension of plausible models for biological systems

Honey bee

Questions

- what about sparser topologies (e.g., expanders)?
- what about other non-linear opinion dynamics?

THANK YOU FOR YOUR ATTENTION

https://hal.archives-ouvertes.fr/hal-02487650