Definición: Una función f(x) es absolutamente integrable en I si

$$\int_{I} |f(x)| dx < \infty$$

Definición: Sea f continua a pedazos en ${\bf R}$ y absolutamente integrable en ${\bf R}$, la transformada completa de Fourier $F(\omega)$ de la función f(x) está dada por

$$\mathscr{F}(f(x)) = F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{i\omega x} dx$$

Definición: La transformada inversa de Fourier f(x) de $F(\omega)$ está dada por

$$\mathscr{F}^{-1}(F(\omega)) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(\omega) e^{-i\omega x} d\omega$$

Definición: Sea f y g absolutamente integrables en ${\bf R}$, la convolución f*g está definida por

$$(f * g)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x - w)g(w)dw$$

 $\mathsf{Con} - \infty < x < \infty.$

Teorema: Propiedades útiles de la transformada de Fourier para resolver una EDP.

- 1. \mathscr{F} y \mathscr{F}^{-1} son operadores lineales.
- 2. Si u=u(x,t), $u(x,t) \to 0$ cuando $x \to \pm \infty$ y $\mathscr{F}(u(x,t)) = U(\omega,t)$ entonces

$$\mathscr{F}(u_x(x,t)) = -i\omega U(\omega,t)$$

Si además $u_x(x,t) \to 0$ cuando $x \to \pm \infty$ entonces

$$\mathscr{F}(u_{xx}(x,t)) = -\omega^2 U(\omega,t)$$

3.

$$\mathscr{F}(u_t(x,t)) = \frac{\partial}{\partial t} \left[\mathscr{F}(u(x,t)) \right] = \frac{\partial}{\partial t} \left[U(\omega,t) \right]$$

4.

$$\mathscr{F}(f * g) = \mathscr{F}(f)\mathscr{F}(g)$$

5. Por lo general $\mathscr{F}(fg) \neq \mathscr{F}(f)\mathscr{F}(g)$

Definición: Sea f continua a pedazos en $(0, +\infty)$ y absolutamente integrable en $(0, +\infty)$, entonces la transformada de Fourier seno y coseno están respectivamente definidas por

$$\mathscr{F}_S(f(x)) = F(\omega) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(x) \sin(\omega x) dx$$

$$\mathscr{F}_C(f(x)) = F(\omega) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(x) \cos(\omega x) dx$$

La transformada inersa de Fourier seno y coseno están respectivamente definidas por

$$\mathscr{F}_{S}^{-1}(F(\omega)) = f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} F(\omega) \sin(\omega x) dx$$
$$\mathscr{F}_{C}^{-1}(F(\omega)) = f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} F(\omega) \cos(\omega x) dx$$

Teorema: Propiedades útiles de la transformada de Fourier seno y coseno para resolver una EDP.

- 1. \mathscr{F}_S , \mathscr{F}_S^{-1} , \mathscr{F}_C y \mathscr{F}_C^{-1} son operadores lineales.
- 2. Si u=u(x,t), $u(x,t)\to 0$ cuando $x\to +\infty$ entonces

$$\mathscr{F}_S(u_x(x,t)) = -\omega \mathscr{F}_C(u(x,t))$$

$$\mathscr{F}_C(u_x(x,t)) = -\sqrt{\frac{2}{\pi}}u(0,t) + \omega\mathscr{F}_S(u(x,t))$$

Si además $u_x(x,t) \to 0$ cuando $x \to +\infty$ entonces

$$\mathscr{F}_S(u_{xx}(x,t)) = \sqrt{\frac{2}{\pi}}\omega u(0,t) - \omega^2 \mathscr{F}_S(u(x,t))$$

$$\mathscr{F}_C(u_{xx}(x,t)) = -\sqrt{\frac{2}{\pi}}u_x(0,t) - \omega^2 \mathscr{F}_C(u(x,t))$$

3.

$$\mathscr{F}_S(u_t(x,t)) = \frac{\partial}{\partial t} \left[\mathscr{F}_S(u(x,t)) \right]$$

$$\mathscr{F}_C(u_t(x,t)) = \frac{\partial}{\partial t} \left[\mathscr{F}_C(u(x,t)) \right]$$