



Пояснение по применению платы для управления ТПЧ 400 1000Гц

## Входные аналоговые сигналы:

Вход пассивный и гальваноразвязанный.

Вход сконфигурирован как 4-20ма.

4ма и ниже соответствует 0 кВт

20ма и выше соответствует 400кВт

ТПЧ воспринимает только задание мощности.

Поэтому вход 1 (задание напряжения) тоже сконфигурирован как вход мощности.

Вход сконфигурирован как 4-20ма.

#### Выходные аналоговые сигналы:

Выходы пассивные и гальваноразвязанные- как нарисовано на схеме.

# Мощность(Х1)

4ма и ниже соответствует 0 кВт

20ма и выше соответствует 400кВт

# Выходное напряжение(Х2)

4ма и ниже соответствует 0 В

20ма и выше соответствует 800В

## Выходной ток(ХЗ)

4ма и ниже соответствует 0 А

20ма и выше соответствует 1000А

## Частота (Х4)

4ма и ниже соответствует 0 Гц

20ма и выше соответствует 1250Гц

## Входные дискретные сигналы

Вкл.силового питания Х13 1-2

Разрешает включение ТПЧ (готовность установки). Включать автомат в ТПЧ нужно вручную.

Если вход не используется нужно подать 1.

Вкл.нагрев Х13 3-4

Включает нагрев

Сброс ошибки Х13 5-6

Сброс ошибки ТПЧ.

## Выходные дискретные сигналы

Готовность Х5 1-2

Сигнал готовности от ТПЧ. (При пропадании связи не меняет своего состояния)

*Нагрев X5 3-4* 

Сигнал нагрев переданный от ТПЧ.(При пропадании связи обнуляется)

Ошибка X5 5-6

Сигнал ошибки от ТПЧ. (При пропадании связи будет выставлен)

Частота низкая Х5 7-8

В виду отсутствия кода ошибки от ТПЧ не используется

Частота высокая Х5 9-10

В виду отсутствия кода ошибки от ТПЧ не используется

*Heucnp ППЧ X5 11-12* 

Сигнал неисправности ТПЧ

*Неиспр.нагр Х5 13-14* 

В виду отсутствия кода ошибки от ТПЧ = Сигнал неипр. БК от ТПЧ  $\Pi$ ерегрев X5 15-16

В виду отсутствия кода ошибки от ТПЧ = Сигнал неисправности СО от ТПЧ

Для связи платы с АСУ используется физический интерфейс RS485, Скорость 38400 бит/сек, длина данных 8 бит, без контроля четности, один стоп бит. (8N1).

Протокол связи: MODBUS RTU. Адрес устройства ucSlaveAddress=11

Адреса будут указаны в соответствии с FreeModbus Libary: A portable Modbus implementation for Modbus ASCII/RTU. Copyright (c) 2006 Christian Walter. т.е. так, как они нумеруются в пакете MODBUS (без добавления каких либо смещений).

Управляющие параметры – в квадратных скобках адрес регистра:

#### **Coils:**

usRegCoilsBuf[16] Команда сброса ошибки ТПЧ usRegCoilsBuf[17] Команда готовности ТПЧ. usRegCoilsBuf[18] Команда включения нагрева ТПЧ usRegCoilsBuf[19];Блокировка таймаута — используется при наладке связи

#### **Holding:**

usRegHoldingBuf[16];Заданная мощность в сотнях Вт. Т.е. для задания 400кВт нужно выдать 4000 в регистр.Номинал 400кВт.

В рабочем режиме должна производиться запись либо чтение какого либо регистра хотябы 1 раз в сек. По истечению времени отключается нагрев. Для блокирования отключения нагрева необходимо выставить 1 в usReqCoilsBuf[19];

# Измеренные параметры— в квадратных скобках адрес регистра: Discrets:

usRegDiscBuf[16]*Ошибка ТПЧ* usRegDiscBuf[17]*Силовое питание подано* usRegDiscBuf[18]*Готовность ТПЧ* usRegDiscBuf[19]*Нагрев включен*.

# **Inputs:**

usRegInputBuf[16] Потребляемая мощность в сотнях Ватт- те при 400кВт в регистре будет 4000; Номинал 400кВт

usRegInputBuf[17] Выходное напряжение а В Номинал 800 В usRegInputBuf[18] Выходная частота в  $\Gamma$ ų Номинал 1000 $\Gamma$ ų usRegInputBuf[19] Выходной ток в A Номинал 1000A;

Исходный код находится здесь: <a href="https://github.com/cvy7/s">https://github.com/cvy7/s</a> controller ветвь **tpch\_400\_1**