$Formel sammlung\ Mathematik$

Mario Felder Michi Fallegger

16. Januar 2014

Inhaltsverzeichnis

1	Rep	petition	1						
2	Par 2.1	Partielle Ableitung 1 Änderungsrate / Ableitung							
3	Difl	ferential Funktionen	5						
	3.1	Tangentialebene, Linearisierung, totales Differential	5						
	3.2	Implizit Ableiten							
	3.3	Kettenregel	6						
	3.4	Extremalwert ohne Nebenbedingungen	6						
	3.5	Extremalwert mit Nebenbedingungen	6						
4	Inte	egrale	9						
	4.1	Doppelintegrale	9						
	4.2		10						
		4.2.1 Schwerpunkt einer Fläche	10						
		4.2.2 Flächenträgheitsmoment	11						
	4.3	Volumenintegrale	11						
	4.4	Allgemeine Volumenintegrale	12						
		4.4.1 Schwerpunkt eines homogenen Körpers	12						
		4.4.2 Massenträgheitsmoment	13						
5	Vek	ctorgeometrie	15						
	5.1	Parameterform	15						
	5.2	Geschwindigkeit, Beschleunigung	15						
	5.3	Bogenlänge	16						
	5.4	Vektorfeld	16						

INHALTSVERZEICHNIS

	5.5	Wegin	tegrale, Kurvenintegrale	16				
	5.6	Gradie	ent eines Skalarfeldes	17				
	5.7	Konser	rvative Felder, Potentialfelder	17				
		5.7.1	Konservativ	18				
		5.7.2	Richtungsableitung	18				
6 Fe	Feh	nlerfortpflanzung						
	6.1	Fehler	rechnung	21				

Repetition

Kreisgleichung

Der Mittelpunkt des Kreises wird mit x_0 und y_0 angegeben.

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

Rotation um die z-Achse

$$z = f(x,y) = g(\sqrt{x^2 + y^2})$$

Schnittwinkel zweier Normalvektoren:

$$\cos\varphi = \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{n_1 \cdot n_2}$$

Extremwertstellen

$$y''=f''(0)>0$$
 Linkskrümmung \rightarrow Minimum
$$y''=f''(0)<0$$
 Rechtskrümmung \rightarrow Maximum

Definitionsbereiche

$$\sqrt{x+y} \to \mathbb{D} = \{(x,y)|x+y \ge 0\}$$
$$\frac{1}{x} \to \mathbb{D} = \{x|x \ne 0\}$$
$$\ln x \to \mathbb{D} = \{x|x > 0\}$$

Partielle Ableitung

2.1 Änderungsrate / Ableitung

Die partielle Ableitung nach x im Punkt (x_0, y_0) lautet:

$$\frac{\partial f(x_0, y_0)}{\partial x} = f_{x}(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

Die partielle Ableitung nach y im Punkt (x_0, y_0) lautet:

$$\frac{\partial f(x_0, y_0)}{\partial y} = f_{y}(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0 y_0)}{\Delta y}$$

Satz von Schwarz:

Bei stetigen Funktionen, deren Ableitungen auch stetig sind (und existieren) kommt es nicht auf die Reihenfolge der Ableitungen an.

Bsp: $f_{'xxy} = f_{'xyx}$

Differential Funktionen

3.1 Tangentialebene, Linearisierung, totales Differential

Die Gleichung der **Tangentialebene** an die Fläche z=f(x,y) im Punkt $(x_0,y_0,z_0), z_0=f(x_0,y_0)$ lautet:

$$z = f(x_0, y_0) + f_{'x}(x_0, y_0)(x - x_0) + f_{'y}(x_0, y_0)(y - y_0)$$

Linearisierte Gleichung entspricht der Tangentialebene mit eingesetzten x_0 und y_0 Werten.

Der Funktionswert ändert sich linearisiert um das totale Differential von f(x,y)

$$dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = f_{x}(x_0, y_0) \cdot dx + f_{y}(x_0, y_0) \cdot dy$$

Es wird $dx = \Delta x$ und $dy = \Delta y$ gesetzt.

3.2 Implizit Ableiten

Neue Methode um Funktionen einfacher implizit Ableiten. Durch F(x,y) = 0 werde implizit eine Funktion y = f(x) definiert. Dann gilt für die Ableitung von f an der Stelle (x,y) des Graphen:

$$y' = -\frac{F_{\prime_x}(x,y)}{F_{\prime_x}(x,y)}$$

3.3 Kettenregel

Mit Hilfe der Kettenregel kann eine verschachtelte Funktion wie z(t) = f(x(t), y(t)) nach t abgeleitet werden.

$$\frac{\mathrm{d}z}{\mathrm{d}t} = f_{'x}(x(t), y(t)) \cdot \frac{\mathrm{d}x}{\mathrm{d}t} + f_{'y}(x(t), y(t)) \cdot \frac{\mathrm{d}y}{\mathrm{d}t}$$

3.4 Extremalwert ohne Nebenbedingungen

Der Punkt (x_0, y_0) ist eine Extremstelle von z = f(x, y), falls:

$$f_{'x}(x_0, y_0) = 0$$
 und $f_{'y}(x_0, y_0) = 0$

und zusätzlich:

$$\Delta = f_{'xx}(x_0, y_0) \cdot f_{'yy}(x_0, y_0) - f_{'xy}(x_0, y_0)^2$$

$$\Delta > 0 \text{ und } f_{'xx} < 0 \rightarrow \text{Maximum}$$

$$\Delta > 0 \text{ und } f_{'xx} > 0 \rightarrow \text{Minimum}$$

$$\Delta < 0 \rightarrow \text{Sattelpunkt}$$

Falls $\Delta = 0$ ist, so kann man nicht entscheiden.

3.5 Extremalwert mit Nebenbedingungen

Gesucht ist die Extremstelle von z = f(x, y) unter der Nebenbedingung $\varphi(x, y) = 0$.

Lagrange:

Ist (x_0,y_0) eine Extremstelle, so erfüllt (x_0,y_0) das Gleichungssystem:

$$\begin{vmatrix} L_{'x}(x, y, \lambda) = 0 \\ L_{'y}(x, y, \lambda) = 0 \\ L_{'\lambda}(x, y, \lambda) = 0 \end{vmatrix}$$

mit:

$$L(x, y, \lambda) = f(x, y) + \lambda \cdot \varphi(x, y)$$

 $f(x, y) = \text{Zielfunktion}$

 $\varphi(x,y) = \text{Nebenbedignung}$

Die Lagrange Methode kann für mehrere Variablen und beliebig vielen Nebenbedignungen angepasst werden.

Zielfunktion: $f(x_1, x_2, x_3, ..)$

Nebenbedingungen:

$$\varphi_1(x_1, y_1) = 0, \qquad \qquad \varphi_2(x_2, y_2) = 0$$

$$L(x_1, x_2, x_3, ..., \lambda, \mu, ..) = f(x_1, x_2, x_3) + \lambda \cdot \varphi_1(x_1, x_2, x_3) + \mu \cdot \varphi_2(x_1, x_2, x_3)$$

$$L_{'x1} = 0$$

$$L_{'x2} = 0$$

$$L_{'x3} = 0$$

$$L_{\lambda} = 0$$

$$L_{\prime\mu}=0$$

Integrale

4.1 Doppelintegrale

Kartesische Koordinaten

$$\iint_{A} f(x,y) dA = \int_{x=a}^{b} \int_{y=f_{u}(x)}^{f_{o}(x)} f(x,y) dy dx$$

$$\underbrace{\underbrace{\int_{y=f_{u}(x)}^{f_{o}(x)} f(x,y) dy}_{inneresIntegral}}_{\ddot{a}usseresIntegral}$$

 $Integrations reihenfolge\ vertauschen:$

$$\iint_A f(x,y) dA = \int_{y=a}^b \int_{x=g_l(y)}^{g_r(y)} f(x,y) dxdy$$

Polarkoordinaten:

$$x = r \cdot \cos \varphi \qquad \qquad y = r \cdot \sin \varphi$$

$$\int_{\varphi=\varphi_1}^{\varphi_2} \left(\int_{r=r_i(\varphi)}^{r_a(\varphi)} f(r \cdot \cos \varphi, r \cdot \sin \varphi) \cdot r \cdot dr \right) d\varphi$$

4.2 Allgemeine Flächenintegrale

Kartesische Koordinaten:

Polarkoordinaten:

$$A = \iint_A 1 \, \mathrm{d}A$$

$$A = \iint\limits_A r \, \mathrm{d}A$$

4.2.1 Schwerpunkt einer Fläche

Kartesische Koordinaten:

$$s_x = \frac{1}{A} \iint_A x dA \qquad s_y = \frac{1}{A} \iint_A y dA$$

Polarkoordinaten:

$$s_x = \frac{1}{A} \iint_A r^2 \cdot \cos(\varphi) dA \qquad s_y = \frac{1}{A} \iint_A r^2 \cdot \sin(\varphi) dA$$

4.2.2 Flächenträgheitsmoment

Kartesische Koordinaten:

Polarkoordinaten:

$$I_x = \iint_A y^2 dA$$

$$I_y = \iint_A x^2 dA$$

$$I_p = \iint_A (x^2 + y^2) dA$$

$$I_x = \iint_A r^3 \cdot \sin^2(\varphi) dA$$
$$I_y = \iint_A r^3 \cdot \cos^2(\varphi) dA$$
$$I_p = \iint_A r^3 dA$$

4.3 Volumenintegrale

Beim Volumenintegral wird über die Projektionsfläche A integriert.

Kartesische Koordinaten:

$$\iiint_{V} f(x, y, z) dV = \int_{x=a}^{b} \int_{y=f_{u}(x)}^{f_{o}(x)} \int_{z=z_{u}(x, y)}^{z_{o}(x, y)} f(x, y, z) dz dy dx$$

Bei Rotationskörper gilt für die Grenzen von z:

$$z = f(x) = f(\sqrt{x^2 + y^2})$$

Zylinderkoordinaten:

$$\iiint\limits_V f(x,y,z)\mathrm{d}V = \iiint\limits_V f(r\cdot\cos\varphi,r\cdot\sin\varphi,z)\cdot r\;\mathrm{d}z\;\mathrm{d}r\;\mathrm{d}\varphi$$

Kugelkoordinaten:

$$\iiint\limits_V f(x,y,z)\mathrm{d}V = \iiint\limits_V f\left(\begin{matrix} r\cdot\sin\vartheta\cdot\cos\varphi\\ r\cdot\sin\vartheta\cdot\sin\varphi\\ r\cdot\cos\vartheta\end{matrix}\right)\cdot r^2\sin\vartheta\ \mathrm{d}r\ \mathrm{d}\vartheta\ \mathrm{d}\varphi$$

4.4 Allgemeine Volumenintegrale

Kartesische Koordinaten:

Rotationskörper:

$$V = \iiint_V 1 \, \mathrm{d}V$$

$$V = \iiint\limits_V r \; \mathrm{d}V$$

4.4.1 Schwerpunkt eines homogenen Körpers

Kartesische Koordinaten:

$$s_x = \frac{1}{V} \iiint\limits_V x \, dV$$
 $s_y = \frac{1}{V} \iiint\limits_V y \, dV$ $s_z = \frac{1}{V} \iiint\limits_V z \, dV$

Rotationskörper:

$$s_x = 0$$
 $s_y = 0$ $s_z = \frac{1}{V} \iiint_V zr \, dV$

4.4.2 Massenträgheitsmoment

Kartesische Koordinaten:

Rotationskörper:

$$I = \rho \cdot \iiint_{V} (x^2 + y^2) dV$$

$$I = \rho \cdot \iiint_V r^3 \, \mathrm{d}V$$

Vektorgeometrie

5.1 Parameterform

$$\overrightarrow{r(t)} = \begin{pmatrix} x_{Start} \\ y_{Start} \\ z_{Start} \end{pmatrix} + t \cdot \begin{pmatrix} x_{Ziel} - x_{Start} \\ y_{Ziel} - y_{Start} \\ z_{Ziel} - z_{Start} \end{pmatrix}$$

 $t \in [0, 1]$

5.2 Geschwindigkeit, Beschleunigung

Geschwindigkeit (Tangentialvektor):

Es sei
$$\overrightarrow{r(t)} = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$
 eine Bewegung. Dann beträgt die Geschwindigkeit: $\overrightarrow{v(t)} = \dot{\overrightarrow{r(t)}} \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \\ \dot{z}(t) \end{pmatrix}$ und die Beschleunigung: $\overrightarrow{a(t)} = \dot{\overrightarrow{v(t)}} = \dot{\overrightarrow{v(t)}} = \dot{\overrightarrow{v(t)}}$

$$\xrightarrow{r(t)} \left(\begin{array}{c} \ddot{x}(t) \\ \ddot{y}(t) \\ \ddot{z}(t) \end{array} \right)$$

5.3 Bogenlänge

$$s = \int_{t_1}^{t_2} v(t) dt = \int_{t_1}^{t_2} \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} dt$$

5.4 Vektorfeld

Ebenes Vektorfeld:

$$\vec{F} = F_x(x,y) \cdot \vec{e}_x + F_y(x,y) \cdot \vec{e}_y = \begin{pmatrix} F_x(x,y) \\ F_y(x,y) \end{pmatrix}$$

 F_x, F_y : Skalare Komponenten des Vektorfeldes $\vec{F}(x, y)$

5.5 Wegintegrale, Kurvenintegrale

Um das Wegintegral zu berechnen verwendet man das newtonische Gesetz: $W = F \cdot s$

$$W = \int_{C} \overrightarrow{F} d\overrightarrow{r} = \int_{t_{1}}^{t_{2}} \overrightarrow{F} \cdot \overrightarrow{r} dt = \int_{t_{1}}^{t_{2}} (F_{x} \cdot \dot{x} + F_{y} \cdot \dot{y}) dt$$

 $\vec{F} = \vec{F}(x,y)$: ebenes Fektorfeld $\vec{r} = \vec{r}(t)$: Ortsvektor der Kurve C

Für die Arbeit:

$$A = \int_{P_1}^{P_2} \overrightarrow{v} \, \mathrm{d}r = \int_{t_1}^{t_2} \overrightarrow{v} \, \dot{\overrightarrow{r}} \, \mathrm{d}t$$

5.6 Gradient eines Skalarfeldes

$$\operatorname{grad} \varphi = \frac{\partial \varphi}{\partial x} \cdot \vec{e}_x + \frac{\partial \varphi}{\partial y} \cdot \vec{e}_y + \frac{\partial \varphi}{\partial z} \cdot \vec{e}_z = \begin{pmatrix} \frac{\partial \varphi}{\partial x} \\ \frac{\partial \varphi}{\partial y} \\ \frac{\partial \varphi}{\partial z} \end{pmatrix}$$

 $\varphi=\varphi(x,y,z)$: Räumliches Skalarfeld

5.7 Konservative Felder, Potentialfelder

Ein Vektorfeld \vec{F} heisst konservatives Feld oder Potentialfeld, wenn es eine Funktion $\varphi(x, y, z)$ so gibt dass:

$$\vec{F} = \operatorname{grad} \varphi$$

$$\begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} = \begin{pmatrix} \frac{\partial \varphi}{\partial x} \\ \frac{\partial \varphi}{\partial y} \\ \frac{\partial \varphi}{\partial z} \end{pmatrix}$$

 φ : heisst Potential.

In einem Potentialfeld (ohne Loch) sind die Wegintegrale wegunabhängig und es gilt:

$$W = \int \overrightarrow{F} d\overrightarrow{r} = \phi(B) - \phi(A)$$

Merke: Geschlossener Weg in einem Potentialfeld = 0:

$$W = \int \overrightarrow{F} \ \mathrm{d}\overrightarrow{r'} = \oint \overrightarrow{F} \ \mathrm{d}\overrightarrow{r'} = 0$$

Konservativ 5.7.1

Nach Satz von Schwarz muss gelten:

$$\begin{split} \varphi_{'xy} &= \varphi_{'yx} \to \frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x} \\ \varphi_{'xz} &= \varphi_{'zx} \to \frac{\partial F_x}{\partial z} = \frac{\partial F_z}{\partial x} \\ \varphi_{'yz} &= \varphi_{'zy} \to \frac{\partial F_y}{\partial z} = \frac{\partial F_z}{\partial y} \end{split} \right\} \begin{array}{l} \text{Integrabilitätsbedingung,} \\ \text{falls erfüllt existiert ein Potential} \\ \text{und } \vec{F} \text{ ist konservativ.} \end{split}$$

Um φ zu berechnen geht man von folgender Bedingung aus:

$$\begin{pmatrix} \varphi_{'x} \\ \varphi_{'y} \\ \varphi_{'z} \end{pmatrix} = \begin{pmatrix} F_{x(x,y,z)} \\ F_{y(x,y,z)} \\ F_{z(x,y,z)} \end{pmatrix}$$

Somit lautet das Lösungssystem:

$$\varphi_{'x} = F_{x(x,y,z)} \rightarrow \varphi_x = \int F_{x(x,y,z)} dx + h(y,z)$$

$$\varphi_{'y} = F_{y(x,y,z)} \rightarrow \varphi_y = \int F_{y(x,y,z)} dy + h(x,z)$$

$$\varphi_{'z} = F_{z(x,y,z)} \rightarrow \varphi_z = \int F_{z(x,y,z)} dz + h(x,y)$$

Aus diesen 3 Gleichungen setzt man $\varphi(x,y,z)$ zusammen. Überschneiden sich Funktion, werden sie nicht hinzugefügt.

z.B.:
$$\varphi_x = x^2y$$
 und $\varphi_y = x^2y + 2y$ ergeben: $\varphi(x,y) = x^2y + 2y + C$.

5.7.2Richtungsableitung

Richtungsableitung:

$$\frac{\partial f}{\partial \vec{a}} = \operatorname{grad} f \cdot \vec{e}_a = \frac{\operatorname{grad} f \cdot \vec{a}}{|\vec{a}|} = \tan \alpha$$

$$\vec{t} = \dot{\vec{r}} = \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \\ \dot{z}(t) \end{pmatrix} = \frac{\mathrm{d}z}{\mathrm{d}t} = f_{'x}\dot{x} + f_{'y}\dot{y} = \operatorname{grad}f \cdot \frac{\dot{\vec{r}}}{\left|\dot{\vec{r}}\right|} = \underbrace{\begin{pmatrix} f_{'x} \\ f_{'y} \end{pmatrix}}_{\mathrm{grad}f} \cdot \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}$$

$$\vec{t} = \begin{pmatrix} a_x \\ a_y \\ \operatorname{grad} f \cdot \vec{a} \end{pmatrix}$$

Wenn der Winkel zur x-Achse gegeben ist für die Richtung:

$$\vec{e_a} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$$

Der Gradient steht im jeweiligen Punkt senkrecht zur Höhenlinie. Er zeigt in Richtung grössten Anstieg.

Die Falllinie zeigt in Richtung $-\operatorname{grad} f$.

Verschiedene Zusammenhänge mit grad f:

$$\operatorname{grad} f \cdot \operatorname{grad} f = f_{'x}^{2} + f_{'y}^{2}$$
$$\operatorname{grad} f \cdot \frac{\operatorname{grad} f}{|\operatorname{grad} f|} = |\operatorname{grad} f|$$
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \varphi$$

Fehlerfortpflanzung

6.1 Fehlerrechnung

Fehlerfortplanzung bei Funktionen mit <u>1 Variablen</u>

$$y = f(x) \to \Delta y = |f'(x)| \Delta x$$

Fehlerrechnung bei Funktionen mit 2 Variablen.

Fehlerfortpflanzungsgesetz: Ändert x um Δx und y um Δy so ändert der Funktionswert z um:

$$\Delta z = \frac{\partial f(x,y)}{\partial x} \cdot \Delta x + \frac{\partial f(x,y)}{\partial y} \cdot \Delta y$$

Der maximale Fehler von z = f(x, y) lautet:

$$\Delta z = |f_{x}(x_0, y_0)| \cdot \Delta x + |f_{y}(x_0, y_0)| \cdot \Delta y$$

 $\Delta x \geqslant 0, \Delta y \geqslant 0$

Relativer Fehler: $\frac{\Delta z}{z} = \%$ Absoluter Fehler: $\Delta z = \% \cdot z$