Lexical Normalization for Neural Network Parsing

Rob van der Goot, Gertjan van Noord University of Groningen r.van.der.goot@rug.nl

26-01-2018

Last Year (CLIN27)

This Year

- Use normalization to adapt neural network dependency parsers
- Evaluate the effect of normalization versus externally trained word embeddings and character level models
- See if we can exploit top-n candidates
- New treebank to evaluate domain adaptation

Why?

- Manually corrected train data
- Gold normalization available
- Data should be non-canonical
- UD format

- Pre-filtered to contain non-standard words
- Data from Li and Liu (2015): Owoputi and LexNorm
- 600 Tweets / 10,000 words
- UD2.1 format

Experimental setup:

• Train: English Web Treebank

• Dev: Owoputi

• Test: Lexnorm

Neural Network parser

Configuration:

Neural Network parser

UUparser (de Lhoneux et al., 2017)

- Performs well
- Relatively easy to adapt
- No POS tags
- ullet Characters + external embeddings

Neural Network parser

new pix comming tomorroe

new		pix		comming		tomoroe	
new	0.9466	pix	0.7944	coming	0.5684	tomorrow	0.5451
news	0.0315	selfies	0.0882	comming	0.4314	tomoroe	0.3946
knew	0.0111	pictures	0.0559	combing	0.0002	tomorrow's	0.0191
now	0.0063	photos	0.0449	comping	< 0.0001	Tagore	0.0174
newt	0.0045	pic	0.0165	common	< 0.0001	tomorrows	0.0173

$$\vec{w}_i = \sum_{j=0}^n P_{ij} * \vec{n}_{ij}$$

$$\vec{w}_1 = (\vec{new} * 0.9466) + (\vec{new} * 0.0315) + (\vec{knew} * 0.0111) + (\vec{now} * 0.0063) + (\vec{new} * 0.0045)$$

But what about in-domain performance?

Test data:

Model	UAS	LAS
raw	70.47	60.16
normalization-		
direct	71.03*	61.83*
integrated	71.15	62.30*
gold	71.45	63.16*

Table: *indicates statistical significance compared to previous entry.

Conclusions:

- Normalization is still helpful on top of character and external embeddings
- Integrating normalization leads to a small but consistent/significant improvement
- Performance +-60% from using gold normalization
- New dataset will be made available, provides a nice benchmark for domain adaptation

Next CLIN

- Effect of different categories of normalization replacements
- Get closer to gold normalization

Bibliography

- Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu Kiperwasser, Sara Stymne, Yoav Goldberg, and Joakim Nivre. From raw text to universal dependencies look, no tags! In *Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*, pages 207–217, Vancouver, Canada, August 2017. Association for Computational Linguistics.
- Eliyahu Kiperwasser and Yoav Goldberg. Simple and accurate dependency parsing using bidirectional LSTM feature representations. *TACL*, 4:313–327, 2016.
- Chen Li and Yang Liu. Joint POS tagging and text normalization for informal text. In *Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015*, pages 1263–1269, 2015.

- Foster: not noisy, constituency
- Denoised Web Treebank: no train
- Tweebank: no train
- Foreebank: not noisy