

13281 U.S. PTO
042204

8 β -Vinyl-11 β -(ω -substituierte)alkyl-estra-1,3,5(10)-triene

This application claims the benefit of the filing date of U.S. Provisional Application Serial No. 60/464,630 filed April 23, 2003.

5

Die vorliegende Erfindung betrifft 8 β -Vinyl-11 β -(ω -substituierte)alkyl-estra-1,3,5(10)-triene mit ER β -antagonistischer Aktivität, Verfahren zu deren Herstellung, deren Zwischenprodukte, pharmazeutische Präparate enthaltend die erfindungsgemäßen Verbindungen, sowie deren Verwendung zur Herstellung von Arzneimitteln.

- 10 Bei den erfindungsgemäßen Verbindungen handelt es sich um solche steroidale gewebeselektive Estrogene, die *in vitro* eine höhere Affinität an Estrogenrezeptorpräparationen von Rattenprostata als an Estrogenrezeptorpräparationen von Rattenuterus aufweisen, und *in vivo* durch ihre präferentielle Wirkung am Ovar eine kontrazeptive Wirkung entfalten, und sich durch ein verbessertes physikochemisches
- 15 Profil auszeichnen.

Kontrazeptive Methoden mit chemischen Verbindungen sind weit verbreitet bei Frauen, die nicht schwanger werden möchten. Folgende chemische Methoden der weiblichen Kontrazeption stehen derzeit zur Verfügung:

- 20 1) Unterdrückung der Ovulation durch Hemmung der Gonadotropinfreisetzung und damit der Ovulation (das endokrine Prinzip);
- 2) Verhinderung der Aszension von Spermien durch den weiblichen Reproduktionstrakt zum Eileiter, wo die Befruchtung stattfindet;
- 25 3) Verhinderung der Implantation bzw. Nidation eines befruchteten Embryos in die Gebärmutter;
- 4) Spermicide;
- 5) Abortauslösende Mittel.

Orale Kontrazeptiva, die aus unterschiedlichsten Kombinationen von einem Östrogen mit einem Gestagen bestehen, sind die am häufigsten verwendeten Verhütungsmittel der Frau. Sie wirken nach dem endokrinen Prinzip. Obwohl derartige Verhütungsmittel sehr effektiv sind, so können unerwünschte Nebenwirkungen auftreten wie z.B: irreguläre Blutungen, Übelkeit, Erbrechen, Depressionen, Gewichtszunahme oder Kopfschmerzen. Gelegentlich werden auch schwerere Erkrankungen beobachtet wie Thromboembolien, Schlaganfall, Leberadenome, Gallenblasenerkrankungen oder Bluthochdruck. Diese unerwünschten Nebenwirkungen der heute verwendeten oralen

Kontrazeptiva machen den medizinischen Bedarf an einer neuen kontrazeptiven Methode ohne Nebenwirkungen deutlich.

- Eine ideale kontrazeptive Methode ist eine Methode, die direkt am ovariellen Follikel ansetzt, ohne die endokrine Hypothalamus-Hypophysen-Ovar-Achse zu beeinflussen. Diese könnte erzielt werden, mit einer chemischen Verbindung, die die
- 5 Follikulogenesebeeinträchtigt, beispielsweise durch Zerstörung einer parakrinen Interaktion zwischen der Eizelle und den Granulosazellen, und damit dafür sorgt, daß
- a) das Follikelprogramm nicht adäquat ablaufen kann, so daß eine inkompetente Eizelle heranreift, die zwar ovuliert wird aber nicht befruchtet werden kann, oder
- 10 b) das Follikelprogramm nicht adäquat ablaufen kann, so daß eine inkompetente Eizelle heranreift, die zwar ovuliert und befruchtet wird, aber zu keiner Präimplantationsentwicklung führt, oder
- c) die Follikulogenese nur eingeschränkt möglich ist, und es zu keiner Ovulation kommt.
- 15
- Follikelwachstum ist die Entwicklung eines ovariellen Follikels vom Primordialstadium bis hin zum großen antralen sprungreifen Follikel. Nur ein optimal aufgebauter antraler Follikel hat das Potential eine reife Eizelle zu ovulieren. Patientinnen mit ovarieller Infertilität, z.B. PCOS (=Polizystisches Ovar Syndrom) Patientinnen, haben eine
- 20 gestörte Follikulogenese assoziiert mit Hormon- und Ovulationsstörungen sowie insuffizient gereifte Eizellen (Franks et al., Mol. Cell. Endocrinol. 2000, 163, 49-52).
- Es gibt immer mehr Hinweise dafür, daß die frühen Stadien der Follikulogenese, d.h. die Entwicklungsschritte vom Primordialfollikel bis hin zum frühen antralen Follikel, Gonadotropin-unabhängig sind, jedoch ist noch nicht abschließend geklärt, welche der
- 25 identifizierten autokrinen oder parakrinen Faktoren (Elvin et al., Mol. Cell. Endocrinol. 1999, 13, 1035–1048; McNatty et al., J. Reprod. Fertil. Suppl. 1999, 54, 3–16) die wichtigsten bei der frühen Follikulogenese sind. Gonadotropine, wie z.B. das Follikel stimulierende Hormon (FSH) dagegen sind hauptsächlich in die späten Schritte der Follikulogenese, d.h. der Entwicklung vom frühen antralen zum großen, ovulatorischen
- 30 Follikel, involviert. Aber auch bei der späten Follikulogenese werden zusätzliche Modulatoren der Follikulogenese diskutiert (Elvin et al., Mol. Cell. Endocrinol. 1999, 13, 1035–1048).
- Kürzlich wurde der Estrogenrezeptor- β (ER β) als zweiter Subtyp des Estrogenrezeptors
- 35 entdeckt (Kuiper et al. , Proc. Natl. Acad. Sci. 1996, 93, 5925-5930; Mosselman, Dijkema, FEBS Letters 1996, 392, 49-53; Tremblay et al., Molecular Endocrinology 1997, 11, 353-365). Das Expressionsmuster von ER β unterscheidet sich von dem des ER α (Kuiper et al., Endocrinology 1996, 138, 863-870). Wogegen eine Expression von

ER α in nahezu allen untersuchten Organen nachweisbar war, fand sich die höchste Expression von ER β in weiblichen Tieren im Ovar, bei männlichen Tieren in der Prostata (Couse et al., Endocrinology 1997, 138, 4613-4621). Im Ovar zeigt sich eine deutliche ER β Expression in Follikeln nahezu aller Entwicklungsstadien. Während in den Follikeln ER α nur in den äußereren Follikelzellen (Thekazellen) exprimiert wird, ist in den Östradiol-produzierenden Granulosazellen eine starke Expression von ER β vorhanden. Aufgrund der verschiedenen Zellverteilung von ER α und ER β im ovariellen Follikel ist damit zu rechnen, daß die Interaktion eines Liganden mit ER α bzw. ER β zu unterschiedlichen zellulären Antworten führen wird. Daß ER α und ER β funktionell unterschiedlich sind, wurde kürzlich bestätigt durch die erfolgreiche Erzeugung von ER α und ER β knockout Mäusen (Couse et al., Endocrine Reviews 1999, 20, 358-417). Demzufolge ist ER α maßgeblich beteiligt in der Funktion des Uterus, der Brustdrüse, der Steuerung der sexual-endokrinen Achse, wogegen ER β überwiegend in die Vorgänge der ovariellen Physiologie einbezogen ist, insbesondere der Follikulogenese und der Ovulation.

Ein weiteres Organsystem mit hoher ER β -Expression ist der Testis (Mosselmann et al., FEBS Lett. 1996, 392, 49-53) einschließlich der Spermatiden (Shugrue et al., Steroids 1998, 63, 498-504). Daß ER β im männlichen Tier funktionell ist, ergibt sich auch durch Untersuchungen an ER α - (ERKO) bzw. ER β -(β ERKO)-Knockout-Mäusen: Männliche ERKO-Mäuse (R. A. Hess et al., Nature 1997, 390, 509-512) weisen deutliche Fertilitätsstörungen auf. Hierdurch wird die wichtige Funktion von Estrogenen hinsichtlich Aufrechterhaltung von Testisfunktion bezüglich der Fertilität belegt. ER α und ER β haben signifikant unterschiedliche Aminosäuresequenzen in ihrer Ligandenbindungs- und Transaktivierungs-Domäne. Dies legt nahe, daß

(1) ER Subtypen mit unterschiedlicher Affinität ihre Liganden binden, und
(2) Liganden unterschiedliches agonistisches und/oder antagonistisches Potential über die beiden Rezeptorsubtypen entfallen können.

Patentanmeldungen WO 00/47603, WO 00/63228, WO 01/32680, WO 01/77138, US 60/207,370 sowie Publikationen (Sun et al., Endocrinology 1999, 140, 800-804; Stauffer et al., J. Comb. Chem. 2000, 2, 318-329) zeigen, daß steroidale und nichtsteroidale Liganden mit hoher Affinität an ER α und ER β gefunden wurden. Einige Verbindungen waren beachtlich stärkere Agonisten/Antagonisten am ER α , wogegen andere Verbindungen stärkere Agonisten/Antagonisten am ER β waren.

In WO 00/31112 werden neue steroidale Verbindungen basierend auf dem Grundkörper des in 8-Position unsubstituierten Estradiols beschrieben, die in 11 β -Position einen Kohlenwasserstoffrest tragen, der eine einzelne lineare Kette mit einer Länge von 5 bis 9 Kohlenstoffatomen enthält. Diese Verbindungen haben ein ER α -

agonistisches/ER β -antagonistisches Wirkprofil. Aufgrund dieses gemischten Estrogenrezeptor-Profils sind diese Verbindungen als verbesserte Estrogene für die Behandlung von Estrogen-bedingten Störungen und zur Kontrazeption zusammen mit einem Gestagen geeignet.

- 5 In der WO 02/068548 werden zum ersten Mal *in vivo* Befunde gezeigt, aus denen deutlich wird, daß ER β -selective Agonisten zu einer Verbesserung der Follikulogenese führen, wogegen ER β -selektive Antagonisten die Fruchtbarkeit, d.h. die Ovulationsrate reduzieren.

- WO 01/77138 offenbart 11 β -n-Pentyl- und 11 β -n-Hexyl-8 β -substituierten Estr-10,13,5(10)-triene mit ER β -antagonistischer Wirkung. Die 11 β -n-Alkylsubstitution führt jedoch zur weiteren Verminderung der Polarität und damit auch zur schlechteren Wasserlöslichkeit solcher Verbindungen.

- Aufgabe der vorliegenden Erfindung ist es, Verbindungen mit verbesserten physikochemischen Eigenschaften bereitzustellen, die *in vitro* eine Dissoziation hinsichtlich der Bindung an Estrogenrezeptorpräparationen von Rattenprostatasex025 und Rattenuterus aufweisen und *in vivo* durch ihre präferentielle Wirkung am Ovar eine kontrazeptive Wirkung entfalten, ohne andere Östrogen-sensitiven Organe wie z.B. den Uterus oder die Leber zu beeinflussen. Ferner sollen diese Verbindungen verwendet werden zur Kontrazeption beim Mann sowie zur Behandlung von gutartigen oder bösartigen proliferativen Erkrankungen des Ovars.

Diese Aufgabe wird erfindungsgemäß durch die Bereitstellung der Verbindungen der allgemeinen Formel I gelöst.

25

Die vorliegende Erfindung betrifft Verbindungen der allgemeinen Formel I

30 worin

R³ eine Gruppe R¹⁹-O-, R²⁰SO₂-O-, -O-C(O)R²¹;

n 3, 4, 5:

X eine Gruppe der Formel II

II

worin

5

Z und W unabhängig voneinander R¹⁹,

oder

Z und W zusammen ein Sauerstoffatom,

10

Y -OR¹⁹, -CN, -SCN, ein Halogenatom, R²⁰, R²⁰SO₂-O-;

oder

Y R¹⁹ oder R²⁰, wenn Z und W zusammen ein Sauerstoffatom darstellen;

R¹⁷ und R^{17'} gemeinsam ein Sauerstoffatom, eine Gruppe =CR²³R²⁴,

15

worin

R²³ und R²⁴ unabhängig voneinander ein Wasserstoffatom oder ein Halogen;

oder

20

R¹⁷ Wasserstoff, -OR¹⁹ oder Halogen;

R^{17'} R¹⁹, -OR¹⁹, Halogen, R²⁰SO₂-O-, -C(O)R²¹ oder
-O-C(O)R²¹;

R¹⁹

ein Wasserstoffatom,

25

einen Rest der Formel C_pF_qH_r mit p = 1, 2, 3, 4, 5, 6, 7, 8, 9; q>1 und q+r = 2p+1;

eine unverzweigte C₁-C₈-Alkylgruppe oder verzweigte C₃-C₆-Alkylgruppe, eine gegebenenfalls mit einem Phenyl-Rest substituierte C₃-C₆-Cycloalkylgruppe, eine (C₃-C₆-Cycloalkyl)-C₁-C₄-alkylengruppe,

30

eine verzweigte oder unverzweigte C₂-C₅-Alkenylgruppe, eine C₂-C₅-Alkinylgruppe; oder eine unsubstituierte oder substituierte Aryl-, Heteroaryl-, Heterocycl-, Aryl-C₁-C₄-alkylen-, Heteroaryl-C₁-C₄-alkylen Gruppe;

R^{20} eine $R^{21}R^{22}N$ -Gruppe, eine Gruppe $-C(NOR^{19})H$, oder eine Gruppe der allgemeinen Formel III

5

worin

V $-\text{CH}_2-$, ein Sauerstoffatom oder ein Schwefelatom, oder $=\text{N}-R^{25}$;

m 0, 1, 2, 3, 4, 5, 6, 7 oder 8;

o 0, 1, 2, 3, 4, 5, 6, 7 oder 8,

10 wobei deren Summe

m + o 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ist;

 R^{21} und R^{22} unabhängig voneinander R^{19} ;15 R^{25} R^{19} , $R^{20}\text{SO}_2-$ oder eine Acylgruppe $-\text{C}(\text{O})R^{21}$

darstellen.

Die vorliegende Erfindung umfasst ebenfalls die pharmazeutisch verträglichen Salze

20 der erfindungsgemäßen Verbindungen der allgemeinen Formel I.

Bei den unverzweigten C₁–C₈-Alkylgruppen kann es sich beispielsweise um eine Methyl-, Ethyl-, *n*-Propyl-, *n*-Butyl-, *n*-Pentyl-, *n*-Hexyl-, *n*-Heptyl-, *n*-Octyl-; bei den verzweigten C₃–C₈-Alkylgruppen um eine *iso*-Propyl-, *iso*-Butyl-, *sec*-Butyl, *tert*-Butyl-, *iso*-Pentyl-, *neo*-Pentyl-, 2-Methylpentyl-, 2,2-Dimethylbutyl-, 2,3-Dimethylbutyl-, 2-Methylhexyl-, 2,2-Dimethylpentyl-, 2,2,3-Trimethylbutyl-, 2,3,3-Trimethylbutylgruppe handeln.

30 Bei den gegebenenfalls mit einem Phenyl-Rest substituierten C₃–C₆-Cycloalkylgruppen kann es sich durchweg um eine Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl-, bzw. Phenylcyclopropyl-, Phenylcyclobutyl-, Phenylcyclopentyl-, Phenylcyclohexylgruppe handeln.

- Bei den (C_3 – C_6 -Cycloalkyl)- C_1 – C_4 -alkylengruppen kann es sich beispielsweise um eine Cyclopropylmethyl-, Cyclobutylmethyl-, Cyclopentylmethyl-, Cyclohexylmethyl-, Cyclopropylethyl-, Cyclobutylethyl-, Cyclopentylethyl-, Cyclohexylethyl-, Cyclopropylpropyl-, Cyclobutylpropyl-, Cyclopentylpropyl-, Cyclohexylpropyl-,
- 5 Cyclopropylbutyl-, Cyclobutylbutyl, Cyclopentylbutyl- bzw. Cyclohexylbutylgruppe handeln.
- Bei den verzweigten oder unverzweigten C_2 – C_5 -Alkenylgruppen kann es sich beispielsweise um eine Vinyl-, Trifluorvinyl-, Allyl-, Homoallyl-, (E)-But-2-enyl-, (Z)-But-2-enyl-, (E)-But-1-enyl-, (Z)-But-1-enyl-, Pent-4-enyl-, (E)-Pent-3-enyl-, (Z)-Pent-3-enyl-, (E)-Pent-2-enyl-, (Z)-Pent-2-enyl-, (E)-Pent-1-enyl-, (Z)-Pent-1-enyl-, 2-Methylvinyl-, 3-Methylbut-3-enyl-, 2-Methylbut-3-enyl-, (E)-2-Methylbut-2-enyl-, (Z)-2-Methylbut-2-enyl-, 3-Methylbut-2-enyl-Gruppe handeln.
- 10 15 Bei den C_2 – C_5 -Alkinylgruppen kann es sich beispielsweise um eine Ethinyl-, Prop-1-inyl-, Prop-2-inyl-, But-1-inyl-, But-2-inyl-, But-3-inyl-, Pent-1-inyl-, Pent-2-inyl-, Pent-3-inyl-, Pent-4-inyl-, 1-Methylprop-2-inyl-, 1-Methylbut-3-inyl-, 1-Ethylprop-2-inyl-Gruppe handeln.
- 20 25 Entsprechend kann es sich bei den $R^{19}O$ -Gruppen beispielsweise um eine Methoxy-, Ethoxy-, *n*-Propoxy-, *iso*-Propoxy-, *n*-Butoxy-, *sec*-Butoxy-, *iso*-Butoxy-, *tert*-Butoxygruppe handeln.
- Bei den Arylgruppen kann es sich beispielsweise um eine Phenyl-, Naphthalin-1-yl-, Naphthalin-2-yl-, [1,1'-Biphenyl]-2-yl-, [1,1'-Biphenyl]-3-yl- oder eine [1,1'-Biphenyl]-4-yl-Gruppe handeln.
- 30 Bei den Heteroarylgruppen kann es sich um eine über eine der substituierbaren Stellen verknüpfte Pyridinyl-, Pyrimidinyl-, Chinolinyl-, Isochinolinyl-, Benzofuranyl-, Benzothienyl-, 1,3-Benzodioxolyl-, 2,1,3-Benzothiadiazolyl-, Indolyl-, Furanyl-, Thienyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl-, Pyrrolyl-, Pyrazolyl-, Pyrazinyl-, Pyridazinyl- oder eine Imidazolyl-Gruppe handeln.
- Bei den Heterocyclgruppen für die Reste Z und Z' kann es sich um eine über eine der substituierbaren Stellen verknüpfte Piperidinyl-, Morphinyl-, Thiomorpholinyl-, Piperezinyl-, Tetrahydrofuranyl-, Tetrahydrothienyl-, Imidazolidinyl- oder eine Pyrrolidinylgruppe handeln.

- Bei den Substituenten der Aryl-, Heteroaryl-, Heterocyclreste kann es sich u.a. um unverzweigte oder verzweigte C₁–C₄-Alkylgruppen (Methyl-, Ethyl-, *n*-Propyl-, *iso*-Propyl-, *n*-Butyl-, *sec*-Butyl-, *iso*-Butyl- sowie *tert*-Butyl-) und/oder
- 5 C₂–C₆-Alkenylgruppen (Vinyl-, Allyl-, Homoallyl-, (*E*)-But-2-enyl-, (*Z*)-But-2-enyl-, Pent-4-enyl-, (*E*)-Pent-3-enyl-, (*Z*)-Pent-3-enyl-, (*E*)-Pent-2-enyl-, (*Z*)-Pent-2-enyl-, 2-Methylvinyl-, 3-Methylbut-3-enyl-, 2-Methylbut-3-enyl-, (*E*)-2-Methylbut-2-enyl-, (*Z*)-2-Methylbut-2-enyl-, 2-Ethylprop-2-enyl-, Hex-5-enyl-, (*E*)-Hex-4-enyl-, (*Z*)-Hex-4-enyl-, (*E*)-Hex-3-enyl-, (*Z*)-Hex-3-enyl-, (*E*)-Hex-2-enyl-, (*Z*)-Hex-2-enyl-, 10 1-Methylpent-4-enyl-, (*E*)-1-Methylpent-3-enyl-, (*Z*)-1-Methylpent-3-enyl-, 1-Ethylbut-3-enyl-, (*E*)-1-Methylpent-2-enyl-, (*Z*)-1-Methylpent-2-enyl-) und/oder C₃–C₆-Cycloalkylgruppen (Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl-), und/oder Halogen (Fluor-, Chlor-, Brom-, Iod-),
- 15 und/oder –OH, –O–(C₁–C₄-Alkyl), Formyl-, –CO₂H, –CO₂(C₁–C₄-Alkyl), –NO₂, –N₃, –CN, C₁–C₈-Acyl-, C₁–C₈-Acyloxy-, Trifluormethyl-, Pentafluorethyl-, Methylthio-, Trifluormethylthio-, und/oder
- 20 Amino-, mono(C₁–C₈-Alkyl)amino- oder di(C₁–C₈-Alkyl)amino, wobei beide Alkylgruppen identisch oder verschieden sind, handeln.

- Bei den Aryl-C₁–C₄-alkylen-Gruppen für die Reste Z und Z' kann es sich um eine Kombination der zuvor definierten Aryl- und C₁–C₄-Alkylgruppen, beispielsweise: eine Phenylmethyl-, 1-Phenylethyl-, 2-Phenylethyl-, 1-Methyl-1-phenylethyl-, 3-Phenylpropyl-, 4-Phenylbutyl-, (Naphthalin-1-yl)methyl-, 1-(Naphthalin-1-yl)ethyl-, 2-(Naphthalin-1-yl)ethyl-, (Naphthalin-2-yl)methyl-, 1-(Naphthalin-2-yl)ethyl-, 2-(Naphthalin-2-yl)ethyl-, ([1,1'-Biphenyl]-2-yl)methyl-, ([1,1'-Biphenyl]-3-yl)methyl- oder eine ([1,1'-Biphenyl]-4-yl)methylgruppe handeln.

- Bei den Heteroaryl-C₁–C₄-alkylen-Gruppen für die Reste Z und Z' kann es sich um eine Kombination der zuvor definierten Heteroaryl- und C₁–C₄-Alkylengruppen, beispielsweise eine (Pyridin-2-yl)methyl-, (Pyridin-3-yl)methyl-, (Pyridin-4-yl)methyl-, (Furan-2-yl)methyl-, (Furan-3-yl)methyl-, (Thien-2-yl)methyl-, (Thien-3-yl)methyl-, 2-(Thien-2-yl)ethyl- oder eine 2-(Thien-3-yl)ethylgruppe handeln.

- Bei dem Rest der Formel $C_pF_qH_r$ mit $p = 1, 2, 3, 4, 5, 6, 7, 8, 9$; $q > 1$ und $q + r = 2p + 1$ kann es sich um eine Monofluormethyl-, Difluormethyl-, Trifluormethyl-, Pentafluorethyl-, Perfluorpropyl-, Perfluorbutyl-, 2,2,2-Trifluorethyl-, 5,5,5,4,4-Pentafluorpentyl-,
 5 6,6,6,5,5,4,4,3,3-Nonafluorhexyl-, 9,9,9,8,8-Pentafluornonyl-, oder 9,9,9,8,8,7,7-Heptafluornonylgruppe handeln.

Es handelt sich erfindungsgemäß beim Halogen um Fluor-, Chlor-, Brom- oder Iod.

- 10 Für die Bildung von pharmazeutisch verträglichen Salzen der erfindungsgemäßen Verbindungen der allgemeinen Formel I kommen, nach den dem Fachmann bekannten Methoden, als anorganische Säuren unter anderem Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure und Phosphorsäure, Salpetersäure, als Carbonsäuren unter anderem Essigsäure, Propionsäure, Hexansäure, Octansäure, Decansäure,
 15 Oleinsäure, Stearinsäure, Maleinsäure, Fumarsäure, Bernsteinsäure, Benzoësäure, Ascorbinsäure, Oxalsäure, Salicylsäure, Weinsäure, Zitronensäure, Milchsäure, Glykolsäure Äpfelsäure, Mandelsäure, Zimtsäure, Glutaminsäure, Asparaginsäure, als Sulfonsäuren unter anderem Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure sowie Naphthalinsulfonsäure in Betracht.

20

Bevorzugt gemäß vorliegender Erfindung sind solche Verbindungen der allgemeinen Formel I, worin

- Y -OH, -CN, -SCN, ein Halogenatom, R^{20} ;
 25 oder
 Y R^{20} , wenn Z und W zusammen ein Sauerstoffatom darstellen

bedeutet.

- 30 Besonders bevorzugt gemäß vorliegender Erfindung sind solche Verbindungen der allgemeinen Formel I, worin

- Y -OH, -CN, -SCN, ein Halogenatom, R^{20} ;
 oder

35

Y R²⁰, wenn Z und W zusammen ein Sauerstoffatom darstellen,

und

5

R¹⁷ und R^{17'} gemeinsam ein Sauerstoffatom,

oder

R¹⁷ Wasserstoff, -OH;

R^{17'} Wasserstoff, -OH, C₁-C₄-Alkylgruppe, C₂-C₅-Alkenylgruppe, eine C₂-C₅-

10

Alkinylgruppe, oder eine Trifluormethylgruppe

darstellen.

Die nachstehend genannten erfindungsgemäßen Verbindungen sind ganz besonders

15

bevorzugt. Im Falle der epimeren Alkohole sind beide möglichen Diastereomere ebenfalls ganz besonders bevorzugt.

11β-[(R) 6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17β-diol

(Diastereomer 1),

20

11β-[(S) 6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17β-diol

(Diastereomer 2),

11β-[7,7,7-Trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17β-diol

(Diastereomer 1),

11β-[7,7,7-Trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17β-diol

25

(Diastereomer 2),

11β-[8,8,8-Trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17β-diol,

(Diastereomer 1),

11β-[8,8,8-Trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17β-diol

(Diastereomer 2),

30

11β-[6,6,6-Trifluor-5-hydroxy-5-(trifluormethyl)hexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17β-diol,

11β-[7,7,7-Trifluor-6-hydroxy-6-(trifluormethyl)heptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17β-diol,

11β-[8,8,8-Trifluor-7-hydroxy-7-(trifluormethyl)octyl]-8-vinyl-estra-1,3,5(10)-trien-3,17β-

35

dioil,

- 11 β -[7,7,7,6,6-Pentafluor-5-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
11 β -[7,7,7,6,6-Pentafluor-5-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
5 (Diastereomer 2),
11 β -[8,8,8,7,7-Pentafluor-6-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
11 β -[8,8,8,7,7-Pentafluor-6-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
10 11 β -[9,9,9,8,8-Pentafluor-7-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
11 β -[9,9,9,8,8-Pentafluor-7-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
11 β -[8,8,8,7,7,6,6-Heptafluor-5-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
15 (Diastereomer 1),
11 β -[8,8,8,7,7,6,6-Heptafluor-5-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
11 β -[9,9,9,8,8,7,7-Heptafluor-6-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
20 11 β -[9,9,9,8,8,7,7-Heptafluor-6-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2)
11 β -[10,10,10,9,9,8,8-Heptafluor-7-hydroxydecyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
11 β -[10,10,10,9,9,8,8-Heptafluor-7-hydroxydecyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
25 (Diastereomer 2),
11 β -(5-Bromopentyl)-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
11 β -[5-(Methylamino)pentyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[5-(Dimethylamino)pentyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[5-(Pyrrolidin-1-yl)pentyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
30 11 β -[5-(1-Piperidyl)pentyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -(5-Morpholinopentyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -{5-[Methyl(9,9,9,8,8-pentafluornonyl)amino]pentyl}-8-vinylestra-1,3,5(10)-trien-
3,17 β -diol,
11 β -{5-[(9,9,9,8,8,7,7-Heptafluoronyl)methylamino]pentyl}-8-vinylestra-1,3,5(10)-trien-
35 3,17 β -diol,

- 11 β -{5-[Methyl(octanoyl)amino]pentyl}-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
11 β -(6-Chlorhexyl)-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
11 β -[6-(Methylamino)hexyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[6-(Dimethylamino)hexyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
- 5 11 β -[6-(Pyrrolidin-1-yl)hexyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[6-(1-Piperidyl)hexyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -(6-Morpholinohexyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -{6-[Methyl(9,9,9,8,8-pentafluoronyl)amino]hexyl}-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
- 10 11 β -{6-[(9,9,9,8,8,7,7-Heptafluoronyl)methylamino]hexyl}-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -{6-[Methyl(octanoyl)amino]hexyl}-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
11 β -(7-Bromheptyl)-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
11 β -[7-(Methylamino)heptyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
- 15 11 β -[7-(Dimethylamino)heptyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[7-(Pyrrolidin-1-yl)heptyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[7-(1-Piperidyl)heptyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -(7-Morpholinoheptyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -{7-[Methyl(9,9,9,8,8-pentafluoronyl)amino]heptyl}-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
- 20 11 β -{7-[(9,9,9,8,8,7,7-Heptafluoronyl)methylamino]heptyl}-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -{7-[Methyl(octanoyl)amino]heptyl}-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
N-nButyl-N-methyl-5-[3,17 β -dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]valeramid,
- 25 N-nButyl-N-methyl-6-[3,17 β -dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]capronamid,
N-nButyl-N-methyl-7-[3,17 β -dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]oenanthamid,
11 β -(5-Thiocyanatopentyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -(6-Thiocyanatohexyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,

- 11 β -(7-Thiocyanatoheptyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
6-[3,17 β -Dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]capronitril,
7-[3,17 β -Dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]oenanthnitril,
- 5 17 β -Hydroxy-11 β -[(R) 6,6,6-trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl - sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[(S) 6,6,6-trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl- sulfamat (Diastereomer 2),
17 β -Hydroxy-11 β -[7,7,7-trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl- sulfamat (Diastereomer 1),
10 sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[7,7,7-trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl- sulfamat (Diastereomer 2),
17 β -Hydroxy-11 β -[8,8,8-trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl- sulfamat, (Diastereomer 1),
15 17 β -Hydroxy-11 β -[8,8,8-trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl- sulfamat (Diastereomer 2),
17 β -Hydroxy-11 β -[6,6,6-trifluor-5-hydroxy-5-(trifluormethyl)hexyl]-8-vinyl-estra- 1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[7,7,7-trifluor-6-hydroxy-6-(trifluormethyl)heptyl]-8-vinyl-estra-
20 1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[8,8,8-trifluor-7-hydroxy-7-(trifluormethyl)octyl]-8-vinyl-estra-1,3,5(10)- trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[7,7,7,6,6-pentafluor-5-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3- yl-sulfamat (Diastereomer 1),
25 17 β -Hydroxy-11 β -[7,7,7,6,6-pentafluor-5-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3- yl-sulfamat (Diastereomer 2),
17 β -Hydroxy-11 β -[8,8,8,7,7-pentafluor-6-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl- sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[8,8,8,7,7-pentafluor-6-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-
30 sulfamat (Diastereomer 2),
17 β -Hydroxy-11 β -[9,9,9,8,8-pentafluor-7-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3- yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[9,9,9,8,8-pentafluor-7-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3- yl-sulfamat (Diastereomer 2),

- 11 β -[5-(Dimethylamino)pentyl]-17 β -hydroxy-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[5-(pyrrolidin-1-yl)pentyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[5-(1-piperidyl)pentyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
- 5 17 β -Hydroxy-11 β -[5-morpholinopentyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
11 β -[6-(Dimethylamino)hexyl]-17 β -hydroxy-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[6-(pyrrolidin-1-yl)hexyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[6-(1-piperidyl)hexyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[6-morpholinohexyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
- 10 11 β -[7-(Dimethylamino)heptyl]-17 β -hydroxy-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[7-(pyrrolidin-1-yl)heptyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[7-(1-piperidyl)heptyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[7-morpholinoheptyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
- 15 11 β -[7,7,6-Trifluor-5-hydroxyhept-6-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
11 β -[7,7,6-Trifluor-5-hydroxyhept-6-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
11 β -[8,8,7-Trifluor-6-hydroxyoct-7-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
- 20 (Diastereomer 1),
11 β -[8,8,7-Trifluor-6-hydroxyoct-7-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
11 β -[9,9,8-Trifluor-7-hydroxynon-8-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
- 25 11 β -[9,9,8-Trifluor-7-hydroxynon-8-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
11 β -[5-Hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 1),
11 β -[5-Hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 2),
11 β -[6-Hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 1),
- 30 30 11 β -[6-Hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 2),
11 β -[7-Hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 1),
11 β -[7-Hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 2),
11 β -[5-Methyl-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,

- 11 β -[6-Methyl-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
11 β -[7-Methyl-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
17 α -Methyl-11 β -[(R) 6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -
5 diol (Diastereomer 1),
17 α -Methyl-11 β -[(S) 6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -
diol (Diastereomer 2),
17 α -Methyl-11 β -[7,7,7-Trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
10 17 α -Methyl-11 β -[7,7,7-Trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
17 α -Methyl-11 β -[8,8,8-Trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
17 α -Methyl-11 β -[8,8,8-Trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
15 (Diastereomer 2),
17 β -Hydroxy-11 β -[8,8,8,7,7,6,6-heptafluor-5-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-
3-yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[8,8,8,7,7,6,6-heptafluor-5-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-
3-yl-sulfamat (Diastereomer 2),
20 17 β -Hydroxy-11 β -[9,9,9,8,8,7,7-heptafluor-6-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-
3-yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[9,9,9,8,8,7,7-heptafluor-6-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-
3-yl-sulfamat (Diastereomer 2),
25 17 β -Hydroxy-11 β -[10,10,10,9,9,8,8-heptafluor-7-hydroxydecyl]-8-vinyl-estra-1,3,5(10)-
trien-3-yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[10,10,10,9,9,8,8-heptafluor-7-hydroxydecyl]-8-vinyl-estra-1,3,5(10)-
trien-3-yl-sulfamat (Diastereomer 2),
17 β -Hydroxy-11 β -[7,7,6-trifluor-5-hydroxyhept-6-enyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-
sulfamat (Diastereomer 1),
30 17 β -Hydroxy-11 β -[7,7,6-trifluor-5-hydroxyhept-6-enyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-
sulfamat (Diastereomer 2),
17 β -Hydroxy-11 β -[8,8,7-trifluor-6-hydroxyoct-7-enyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-
sulfamat (Diastereomer 1),

- 17 β -Hydroxy-11 β -[8,8,7-trifluor-6-hydroxyoct-7-enyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
17 β -Hydroxy-11 β -[9,9,8-trifluor-7-hydroxynon-8-enyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[9,9,8-trifluor-7-hydroxynon-8-enyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
17 β -Hydroxy-17 α -methyl-11 β -[(R) 6,6,6-trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-17 α -methyl-11 β -[(S) 6,6,6-trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
17 β -Hydroxy-17 α -methyl-11 β -[7,7,7-trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-17 α -methyl-11 β -[7,7,7-trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
17 β -Hydroxy-17 α -methyl-11 β -[8,8,8-trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-17 α -methyl-11 β -[8,8,8-trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2).

20

Die erfindungsgemäßen Verbindungen sind zur Hemmung der Follikulogenese und der Ovulation, zur männlichen Kontrazeption und zur Behandlung von gutartigen und bösartigen proliferativen Erkrankungen des Ovars geeignet.

25 Anders als bei dem üblicherweise für die hormonelle Kontrazeption verwendeten Estrogen Ethinylestradiol oder auch bei den nach der WO 00/31112 für die Kontrazeption zu verwendenden Verbindungen können die erfindungsgemäßen Verbindungen der allgemeinen Formel I alleine, d. h. ohne die zusätzliche Gabe von Gestagenen zur Kontrazeption verwendet werden.

30

Die Esterderivate der erfindungsgemäßen Estratriene können als Prodrug Vorteile gegenüber den unveresterten Wirkstoffen hinsichtlich ihres Applikationsmodus, ihrer Wirkungsart, Wirkungsstärke und Wirkungsdauer aufweisen.

Pharmakokinetische und pharmakodynamische Vorteile weisen auch die Sulfamatderivate der erfindungsgemäßen Estratriene auf. Diesbezügliche Effekte wurden bereits bei anderen Steroid-Sulfamaten beschrieben (J. Steroid Biochem.

5 Molec. Biol. 1995, 55, 395 - 403; Exp. Opinion Invest. Drugs 1998, 7, 575 - 589).

Die vorliegende Erfindung beschreibt 8β -Vinyl- 11β -(α -substituierte)alkyl-estra-1,3,5(10)-triene, die *in vitro* Dissoziation hinsichtlich Bindung an Estrogenrezeptor-präparationen von Rattenprostata und Rattenuterus, und die in vivo vorzugsweise eine

10 Hemmung der Follikulogenese und der Ovulation aufweisen. Die erfindungsgemäßen Verbindungen wirken über einen breiten Dosisbereich kontrazeptiv, ohne andere Östrogen-sensitiven Organe wie z.B. den Uterus oder die Leber zu beeinflussen.

Darüber hinaus können diese Verbindungen zur männlichen Kontrazeption und zur Behandlung von gutartigen oder bösartigen proliferativen Erkrankungen des Ovars 15 eingesetzt werden.

Die vorliegende Erfindung betrifft daher pharmazeutische Präparate, die mindestens eine Verbindung der allgemeinen Formel I sowie deren physiologisch verträgliche Salze enthalten; die Verwendung der Verbindungen der allgemeinen Formel I zur Herstellung 20 eines Arzneimittels für die männliche und/oder weibliche Kontrazeption, für die Behandlung von gut- und bösartigen proliferativen Erkrankungen des Ovars.

Die erfindungsgemäßen Verbindungen können, sowohl nach oraler als auch parenteraler Gabe, für die folgenden Indikationen eingesetzt werden.

25

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können als Einzelkomponente in pharmazeutischen Zubereitungen oder in Kombination insbesondere mit GnRH-Antagonisten, Progesteronrezeptor-Antagonisten, Meso-progestinen, Gestagenen oder gewebeselektiver Gestagene (Wirkung über Typ A/B-Form) 30 eingesetzt werden.

Die erfindungsgemäßen Verbindungen und die sie enthaltenden Präparate sind besonders geeignet für die ovariale Kontrazeption, für die Behandlung von gutartigen oder bösartigen proliferativen Erkrankungen des Ovars, wie z.B. Ovarialcarcinome, 35 Granulosazelltumore.

Außerdem können die Verbindungen zur Behandlung männlicher Fertilitätsstörungen und prostaticher Erkrankungen Verwendung finden.

- Die zu verabreichende Menge einer Verbindung der allgemeinen Formel I schwankt innerhalb eines weiten Bereichs und kann jede wirksame Menge abdecken. In Abhängigkeit des zu behandelnden Zustands und der Art der Verabreichung kann die 5 Menge der verabreichten Verbindung 0,01 µg/kg–100 mg/kg Körpergewicht, vorzugsweise 0,04 µg/kg – 1 mg/kg Körpergewicht, pro Tag betragen.
- Beim Menschen entspricht dies einer Dosis von 0,8 µg bis 8 g, vorzugsweise 3,2 µg bis 10 80 mg, täglich.
- Eine Dosiseinheit enthält erfindungsgemäß 1,6 µg bis 2000 mg einer oder mehrerer 15 Verbindungen der allgemeinen Formel I.
- Die erfindungsgemäßen Verbindungen und deren Säureadditionssalze sind zur Herstellung pharmazeutischer Zusammensetzungen und Zubereitungen geeignet. Die pharmazeutischen Zusammensetzungen beziehungsweise Arzneimittel enthalten als 15 Wirkstoff einen oder mehrere der erfindungsgemäßen Verbindungen oder deren Säureadditionssalze, gegebenenfalls in Mischung mit anderen pharmakologisch beziehungsweise pharmazeutisch wirksamen Stoffen. Die Herstellung der Arzneimittel erfolgt in bekannter Weise, wobei die bekannten und üblichen pharmazeutischen Hilfsstoffe sowie sonstige übliche Träger- und Verdünnungsmittel verwendet werden 20 können.
- Als derartige Träger- und Hilfsstoffe kommen zum Beispiel solche in Frage, die in folgenden Literaturstellen als Hilfsstoffe für Pharmazie, Kosmetik und angrenzende Gebiete empfohlen beziehungsweise angegeben sind: Ullmans Encyklopädie der technischen Chemie, Band 4 (1953), Seite 1 bis 39; Journal of Pharmaceutical Sciences, Band 52 (1963), Seite 918 ff., H. v. Czetsch-Lindenwald, Hilfsstoffe für 25 Pharmazie und angrenzende Gebiete; Pharm. Ind., Heft 2, 1961, Seite 72 u. ff.: Dr. H. P. Fiedler, Lexikon der Hilfsstoffe für Pharmazie, Kosmetik und angrenzende Gebiete, Cantor KG. Aulendorf in Württemberg 1971.
- 30 Die erfindungsgemäßen Verbindungen können oral oder parenteral, beispielsweise intraperitoneal, intramuskulär, subkutan oder perkutan verabreicht werden, oder auch in das Gewebe implantiert werden.
- Zur oralen Verabreichung kommen Kapseln, Pillen, Tabletten, Dragees usw. in Frage. Die Dosierungseinheiten können neben dem Wirkstoff einen pharmazeutisch 35 verträglichen Träger, wie zum Beispiel Stärke, Zucker, Sorbit, Gelatine, Gleitmittel, Kieselsäure, Talkum etc, enthalten.

Zur parenteralen Verabreichung können die Wirkstoffe in einem physiologisch verträglichen Verdünnungsmittel gelöst oder suspendiert sein. Als Verdünnungsmittel werden sehr häufig Öle mit oder ohne Zusatz eines Lösungsvermittlers, eines oberflächenaktiven Mittels, eines Suspendier- oder Emulgiermittels verwendet. Beispiele für verwendete Öle sind Olivenöl, Erdnussöl, Baumwollsamenöl, Sojabohnenöl, Rizinusöl und Sesamöl.

Die Verbindungen lassen sich auch in Form einer Depotinjektion oder eines Implantatpräparats anwenden, die so formuliert sein können, daß eine verzögerte Wirkstoff-Freigabe ermöglicht wird.

Implantate können als inerte Materialien zum Beispiel biologisch abbaubare Polymere enthalten oder synthetische Silikone wie zum Beispiel Silikonkautschuk. Die Wirkstoffe können außerdem zur perkutanen Applikation zum Beispiel in ein Pflaster eingearbeitet werden.

15

Für die Herstellung von mit aktiven Verbindungen der allgemeinen Formel I beladenen Intravaginal- (z.B. Vaginalringe) oder Intrauterinsystemen (z.B. Pessare, Spiralen, IUSs) für die lokale Verabreichung eignen sich verschiedene Polymere wie zum Beispiel Silikonpolymere, Ethylenvinylacetat, Polyethylen oder Polypropylen.

20

Um eine bessere Bioverfügbarkeit des Wirkstoffes zu erreichen, können die Verbindungen auch als Cyclodextrinclathrate formuliert werden. Hierzu werden die Verbindungen mit α -, β - oder γ -Cyclodextrin oder Derivaten von diesen umgesetzt (PCT/EP95/02656).

25 Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können auch mit Liposomen verkapselt werden.

Pharmakologische Untersuchungen

5 Estrogenrezeptorbindungsstudien

Die Bindungsaaffinität der erfindungsgemäßen Verbindungen wurde in Kompetitionsexperimenten unter Verwendung von ^3H -Estradiol als Ligand an Estrogenrezeptorpräparationen von Rattenprostata und Rattenuterus getestet. Die Präparation des Prostatacytosols und der Estrogenrezeptortest mit dem Prostatacytosol wurde, wie von J. Testas et al. in Endocrinology 1981, 109, 1287-1289 beschrieben, durchgeführt.

Die Präparation von Rattenuteruscytosol, sowie der Rezeptortest mit dem ER-haltigen Cytosol wurden prinzipiell durchgeführt wie von Stack und Gorski in Endocrinology 1985, 117, 2024-2032, beschrieben mit einigen Modifikationen nach U. Fuhrmann et al. in Contraception 1995, 51, 45-52).

Die erfindungsgemäßen Verbindungen weisen höhere Bindungsaaffinität zu Estrogenrezeptor aus Rattenprostata als zu Estrogenrezeptor aus Rattenuterus auf (Tabellen 1 und 2). Dabei wird davon ausgegangen, daß $\text{ER}\beta$ gegenüber $\text{ER}\alpha$ in der Rattenprostata, in Rattenuterus $\text{ER}\alpha$ gegenüber $\text{ER}\beta$ überwiegt. Tabelle 1 zeigt, daß das Verhältnis der Bindung an Prostata- und Uterusrezeptor qualitativ mit dem Quotient der relativen Bindungsaaffinität (RBA) an humanen $\text{ER}\beta$ und $\text{ER}\alpha$ von Ratte (nach Kuiper et al. Endocrinology 1996, 138, 863-870) übereinstimmt (Tabelle 1).

Tabelle 1

Estrogen	HER α RBA	HER β RBA	ER β / ER α	Rat Uterus ER (RBA)	Rat Prostate ER (RBA)	Prost. ER/ Uterus ER
 Estradiol	100	100	1	100	100	1
 Estron	60	37	0.6	3	2	0.8
 17α-Estradiol	58	11	0.2	2.4	1.3	0.5
 Estriol	14	21	1.5	4	20	5
 5-Androstendiol	6	17	3	0.1	5	50

Tabelle 1 (Fortsetzung)

Estrogen	HER α RBA	HER β RBA	ER β / ER α	Rat Uterus ER (RBA)	Rat Prostate ER (RBA)	Prost. ER/ Uterus ER
 Genistein	5	36	7	0.1	10	100
 Coumestrol	94	185	2	1.3	24	18

*: zitiert aus : Kuiper et al., Endocrinology 1996, 138, 863-870

5

Transaktivierungstest für östrogene Agonisten und Antagonisten

Kultivierung der Zellen:

10

U-2 OS Zellen werden in *Dulbecco's Medium* (DMEM) ohne Phenolrot (Gibco BRL; #11880-028) + 5% foetalem Kälberserum (FKS) (Seromed; #S 0115) + 100 Units/ml Penicillin/ 100 μ g/ml Streptomycin (Seromed; #A 2213), 4mM L-Glutamin (Gibco BRL; #25030-024) (PSG) bei 37°C und 8,5% CO₂ kultiviert.

15

Zellen, die mindestens 24h in D-MEM mit 5% Aktivkohle-behandeltem FKS (CCS) + PSG gehalten wurden, werden mit PBS- *Dulbecco's* (Gibco BRL; #14190-094) gewaschen und trypsiniert (Trypsin/EDTA (0,05/0,02%); Seromed; #L 2153). Die Resuspendierung der Zellen erfolgt in 10ml D-MEM + 5% CCS + PSG.

Verdünnung von 8x10⁶ Zellen auf 80ml mit D-MEM + 5% CCS + PSG für acht 96 Well-

20

Platten (Packard; CulturePlate-96, #6005180). Aussäen von 100 μ l Zellsuspension (1x10⁴ Zellen) pro Well. 6h nach Aussaat erfolgt die Transfektion.

Transfektion mittels *FuGENE 6*:

- Das verwendete ER β -Expressionsplasmid (HEGO) in E. coli DH5 α (Fa. Invitrogen)
- 5 amplifiziert. Das verwendete ER β -Expressionsplasmid (ER β 0) wurde im Hause hergestellt und amplifiziert in E.coli DH5 α . Es wurde wie im Falle des ER α das Expressionsplasmid pSG5 verwendet. Als Reporterplasmid wurde der Vektor pBL-LUC $^+$ mit zwei Tandem-EREs (estrogen-responsive elements des Vitellogenin-Promoters) versehen und in E.coli (XL1-Blue; Fa. Stratagene) amplifiziert.
- 10 Plasmid-DNA wird präpariert mittels des *NucleoBond Plasmid Maxi Kit* (CLONTECH; #K3003-2) und *FuGENE 6*-Reagenz (Boehringer Mannheim; #1 814 443). Diese werden zunächst separat in einem geeigneten Volumen DMEM verdünnt und inkubiert, bevor die Lösungen vereinigt und wiederum inkubiert werden.

15 **Ansätze für 96-well-Platten:**

	DNA-Gemisch (A)	im 50ml- <i>BlueMax</i> (Falcon; #2070) -Röhrchen
20	<u>pSG5-ERα/β FL (Heg0/ERβ0)</u>	2ng/well (Östrogenrezeptor-Expressionsplasmid)

p(ERE) $_2$ -luc $^+$ 100ng/well (Luciferase-Reporterplasmid)

	Transfektionsreagenz (B):	im 14ml-Polypropylenröhren (Falcon; #2059)
25	<u>DMEM o. Serum</u> (vorlegen)	9,7 μ l/well

FuGENE 6 (direkt ins Medium) 0,3 μ l/well

Inkubation der Lösungen A und B für 5 min bei Raumtemperatur (RT).

- 30 Anschließend Lösung B zu Lösung A tropfenweise hinzufügen, mischen.
Inkubation von Lösung AB für 15 min bei RT.

- Verdünnung des Transfektionsgemisches AB für 4 Platten mit 22,5ml D-MEM + 5% CCS + PSG. 100 μ l dieser Verdünnung werden pro Well auf die Zellen gegeben und über Nacht (16 - 18h) bei 8,5% CO $_2$ und 37°C inkubiert. Es werden pro Platte nur 60 Wells transfiziert; die äußeren Wells erhalten nur Medium.

Hormonbehandlung:

- Für Dosis-Wirkungskurven werden in 96 Well-Platten (Costar; #3595), ausgehend von 5 in Dimethylsulfoxid (DMSO, Sigma; #D-2650) gelösten, 10^{-3} M Stammlösungen, Verdünnungsreihen für Referenz- und Testsubstanzen hergestellt. Die 10^{-3} M DMSO-Lösungen werden bei -20°C gelagert und müssen vor der Entnahme gut gelöst werden (15 min, 37°C).
- Die Verdünnungsstufen sind so gewählt, daß die Endkonzentrationen auf der Testplatte 10 für Agonismus im Bereich von 10^{-7} - 10^{-12} M (für E₂: 10^{-8} - 10^{-13} M) liegen.
- Alle Verdünnungsstufen enthalten somit 1% DMSO.
- Nach der Transfektion wird das Transfektionsmedium durch 180µl D-MEM + 5% CCS + PSG pro Well ersetzt.
- 15 Zum Test auf *Antagonismus* werden die Zellen zusätzlich mit Estradiol behandelt. Anschließend werden 20µl der Substanzverdünnungen hinzupipettiert. Die Negativkontrollen erhalten 20µl DMEM + 1% DMSO pro Well. Die finalen Testsubstanz-Konzentrationen betragen 3×10^{-11} M für ER α bzw. 3×10^{-10} M für ER β . Als 20 Referenzsubstanz wird das bekannte Antiöstrogen Fulvestrant (AstraZeneca) in den gleichen Konzentrationen verwendet (Tabelle 2). Die Inkubation erfolgt über Nacht (16 - 18h) bei 8,5% CO₂ und 37°C.

Lyse der Zellen und Bestimmung der Luciferase-Aktivität:

- 25 Nach dem Absaugen des Mediums werden jeweils 30µl *Lysis 1x Reagent* (Promega; #E1531) auf die Zellen gegeben und für ½-1h bei RT unter starkem Schütteln (IKA-VIBRAX-VXR, 600rpm) inkubiert.
- Anschließend werden die Lysate mit 30µl Luciferase Substrat A (PharMingen; #556867) und 30µl Luciferase Substrat B (PharMingen; #556869) versetzt. Die Messung der 30 Luciferase-Aktivität erfolgt 30 s nach Zugabe von Substrat B im Cycle Mode des Luminometer (DYNATECH; ML3000).
- Die Auswertung der Meßdaten erfolgt mittels vom Gerätehersteller beigegebener Software (*BioLinx*). Die Darstellung der Ergebnisse als Dosis-Wirkungskurven für Agonismus und Antagonismus erfolgt im *Sigma Plot*-Programm mit Mittelwerten (n=3) und Standardabweichung. Eine Berechnung der EC₅₀, der Efficacy und des EMR-Wertes für den Agonismus, bzw. der IC₅₀ und der Efficacy für den Antagonismus ist 35 mittels "MTS"-Software möglich (Tabelle 2).

Physikochemisches Profil:

Im Vergleich zu Verbindungen aus WO 01/77138 wird erfindungsgemäß eine
5 Verbesserung des physikochemischen Profils, hinsichtlich des Verteilungskoeffizienten
[logD (HPLC-Methode, pH: 7.0, 25°C)] und/ oder der Löslichkeit [Sw (Turbidimetry,
pH 7,4 bei 25°C)], der erfindungsgemäßen Verbindungen erzielt (Tabelle 2).

Überraschenderweise konnte darüber hinaus auch die Potenz am ER β (EMR-Wert)
10 und/ oder die Selektivität zugunsten des ER β gesteigert werden.

Tabelle 2

Verbindung	#	MW	EMR (EC_{50})[%]		Efficacy[%]		LogD	Sw [mg/l]
			ER α	ER β	ER α	ER β		
	Ref. ¹	606.78	100 (0.38 nM)	100 (0.49 nM)	100	100	5.31	< 1
	Ref. ²	370.57	0.3	3.1	80	98	---	---
	Ref. ²	382.58	0.5	18	63	93	5.7	< 1
	36	393.57	1.6	33	67	100	---	---
	35	425.63	0.7	33	93	95	---	---
	26b	451.69	12	52	66	93	4.2	37
	26a	437.66	7.9	56	85	100	4.0	>40
	25b	425.66	17	137	88	99	4.2	>40
	24b	411.63	8	60	85	99	4.0	>40

	22b D1/2	566.59	1.6	29	90	100	5.1	7
	18b	534.58	1.6	19	85	100	4.7	3
	15b D1/2	466.58	5.0	80	76	100	4.1	5
	15a D1/2	452.55	0.8	42	79	100	---	---
	15a D2	452.55	0.8	50	86	100	3.6	11
	45a D2	466.58	1.2	50	68	100	4.1	11

¹Vergleichsverbindung: Fulvestrant²WO 01/77138

Untersuchungsbeispiele zur kontrazeptiven Wirkung

Untersuchung der frühen Follikulogenese:

- 5 Immature weibliche Ratten werden von Tag 1 bis Tag 4 mit einer Kombination aus Cetrorelix und dem ER β -selektiven Östrogen 8 β -Vinylestra-1,3,5(10)-trien-3,17 β -diol (25 mg/kg, s.c.) behandelt. Zusätzlich wird von Tag 1 bis Tag 4 Vehikel oder die Wirksubstanz in verschiedenen Dosierungen (1; 3; 10; 30 mg/kg, s.c.) appliziert. Die Autopsie der Tiere erfolgt am Tag 5. Das Ovar wird entnommen und makroskopisch, 10 z.B. Organgewichte, und mikroskopisch, z.B. histologische Beurteilung der Follikel, sog. Follikelstaging, analysiert.

Untersuchung der späten Follikulogenese /Ovulation

- Immature weibliche Ratten werden hypophysektomiert. Dieser Tag wird als Tag 0 definiert. Von Tag 1 - Tag 4 erfolgt Behandlung, subcutan oder/und oral, mit der Wirksubstanz in Kombination mit 17 β -Östradiol. Am Tag 5 erfolgt eine subkutane Injektion mit PMSG (pregnant mare serum gonadotropin). Am Tag 7 wird hCG intraperitoneal zur Auslösung der Ovulation appliziert. Am Tag 8 wird das Ovar entnommen und makroskopisch (z.B. Ovargewichte) und/oder mikroskopisch (z.B. 15 histologische Beurteilung der Follikel, sogenanntes Follikelstaging) analysiert. Die Tuben werden gespült und auf die Anwesenheit von Eizellen untersucht.

Untersuchung der Ovulation

- Immature weibliche Ratten werden im Alter von 23 Tagen subkutan mit PMSG (pregnant mare serum gonadotropin) behandelt (Tag 1). Am selben Tag, sowie 24 und 25 48 Stunden später erhalten die Tiere die Wirksubstanz subkutan oder oral appliziert. 54 Stunden nach der PMSG Injektion erhalten die Tiere zur Auslösung der Ovulation eine intraperitoneale Injektion von hCG. Autopsie erfolgt 16 Stunden nach der hCG-Gabe. Die Tuben werden gespült und auf die Anwesenheit von Eizellen hin untersucht.

30

- Eine andere Möglichkeit, die dissozierte Estrogenwirkung der erfindungsgemäßen Substanzen *in vivo* nachzuweisen, besteht darin, nach Einmalapplikation der Substanzen bei Ratten Effekte auf die Expression von 5HT2a-Rezeptor- und Serotonin-35 transporter-Protein- und mRNA-Level in ER β -reichen Gehirnarealen zuvermessen. Vergleichend zum Effekt auf Serotoninrezeptor- und Transporterexpression wird der Effekt auf die LH-Sekretion gemessen. Substanzen mit höherer Bindung an den Rattenprosta- verglichen mit dem Rattenuterusestrogenrezeptor sind potenter hinsichtlich

Erhöhung der Expression von Serotoninrezeptor- und transporter, im Vergleich zu ihrem positiven Effekt auf die LH-Ausschüttung. Die Dichte von Serotoninrezeptor und -Transporter wird an Gehirnschnitten mittels radioaktiver Liganden, die entsprechende mRNA mittels *in situ* Hybridisierung bestimmt. Die Methode ist in der Literatur

- 5 beschrieben: G. Fink & B.E.H. Sumner 1996 Nature 383:306; B. E.H. Sumner et al. 1999 Molecular Brain Research, in press.

Herstellungsverfahren für die erfindungsgemäßen Verbindungen

Die vorliegende Erfindung betrifft auch die Zwischenprodukte der allgemeinen
 5 Formel VI

Zwischenprodukte der allgemeinen Formel VII

10

Zwischenprodukte der allgemeinen Formel VIII

15

sowie Zwischenprodukte der allgemeinen Formel IX

worin die Reste X, R³, R¹⁷, R^{17'} und n die gleiche Bedeutung haben wie in der
 20 allgemeinen Formel I.

Verbindungen der allgemeinen Formeln IV bis X finden als Zwischenprodukte in dem Herstellungsverfahren zu den Verbindungen der allgemeinen Formel I Verwendung:

- i) Trifluormethansulfonsäureanhydrid/ Pyridin
 - ii) Verbindung der allgemeinen Formel X, Palladium(II)-acetat/ Triphenylphosphin/
- 5 Kupfer(I)-iodid/ Piperidin/ 50°C
- iii) Palladium/Magnesiumcarbonat (10%)/ 1bar Wasserstoff/ Tetrahydrofuran/ Methanol
 - iv) Diisobutylaluminiumhydrid/ Toluol/ 0°C
 - v) Schutzgruppenmanipulation
 - vi) a) Schutzgruppenmanipulation,
- 10 b)Pd/C (10%)/ 100bar Wasserstoff/ Tetrahydrofuran/ Methanol
- vii) Wittig-Olefinierung mit $\text{Ph}_3\text{P}=\text{CH}$

Verbindungen der allgemeinen Formel IV sind dem Fachmann nach WO 01/77139 zugänglich, die Zwischenstufe der allgemeinen Formel V ist aus PCT/EP/02/11533
15 ebenfalls bekannt.

Die vorliegende Erfindung betrifft des weiteren auch Verfahren zur Herstellung der Verbindungen der allgemeinen Formel I, sowie jeweils Verfahren zur Herstellung der einzelnen Zwischenstufen VI bis IX.

20 Die erfindungsgemäßen Verbindungen der allgemeinen Formel I lassen sich wie in den Beispielen beschrieben hergestellt. Durch analoge Vorgehensweise unter Verwendung homologer Reagenzien zu den in den Beispielen beschriebenen Reagenzien lassen sich die weiteren Verbindungen der allgemeinen Formel I erhalten.

25 Veretherung und/oder Veresterung freier Hydroxygruppen erfolgt nach dem Fachmann gängigen Methoden.

30 Die erfindungsgemäßen Verbindungen können am Kohlenstoffatom 17 als α,β -Stereoisomere vorliegen. Bei der Herstellung der Verbindungen gemäß den beschriebenen Verfahren fallen die Verbindungen meist als Gemische der entsprechenden α,β -Isomeren an. Die Gemische lassen sich beispielsweise durch chromatographische Verfahren trennen.

Gemäß der allgemeinen Formel I mögliche Substituenten können bereits in der endgültigen Form oder in Form eines Vorläufers schon im Ausgangsprodukt, einem bereits dem gewünschten Endprodukt entsprechend substituierten Estron, vorhanden sein.

17-Substituenten werden, ebenfalls nach bekannten Verfahren, durch nukleophile Addition des gewünschten Substituenten oder eines reaktiven Vorläufers davon, eingeführt und gegebenenfalls weiter aufgebaut.

10 Die erfindungsgemäßen Estratrien-Carbonsäureester werden in Analogie zu ebenfalls bekannten Verfahren aus den entsprechenden Hydroxysteroiden hergestellt (siehe z.B. Pharmazeutische Wirkstoffe, Synthesen, Patente, Anwendungen; A. Kleemann, J. Engel', Georg Thieme Verlag Stuttgart 1978. Arzneimittel, Fortschritte 1972 bis 1985; A. Kleemann, E. Lindner, J. Engel, VCH 1987, S. 773-814).

15 Die erfindungsgemäßen Estratrien-Sulfamate sind in an sich bekannter Weise aus den entsprechenden Hydroxy-Steroiden durch Veresterung mit Sulfamoylchloriden in Gegenwart einer Base zugänglich (Z. Chem. 1975, 15, 270-272; Steroids 1996, 61, 710 - 717).

20 Nachfolgende Acylierung der Sulfamidgruppe führt zu den erfindungsgemäßen (N-Acyl)sulfamaten, für die bereits im Falle der Abwesenheit eines 8-Substituenten pharmakokinetische Vorteile nachgewiesen wurden (vgl. WO 97/14712).

25 Die regioselektive Veresterung von polyhydroxylierten Steroiden mit N-substituierten und N-unsubstituierten Sulfamoylchloriden erfolgt nach partiellem Schutz derjenigen Hydroxylgruppen, die unverestert bleiben sollen. Als Schutzgruppen mit hierfür geeigneter selektiver Reaktivität haben sich Silylether erwiesen, da diese unter den Bedingungen der Sulfamatbildung stabil sind und die Sulfamatgruppe intakt bleibt, wenn die Silylether zur Regenerierung der restlichen im Molekül noch enthaltenen 30 Hydroxylgruppe(n) wieder abgespalten werden (Steroids 1996, 61, 710 – 717).

Die Herstellung der erfindungsgemäßen Sulfamate mit einer oder mehreren zusätzlichen Hydroxylgruppen im Molekül ist auch dadurch möglich, daß man von geeigneten Hydroxy-Steroidketonen ausgeht. Zunächst werden, je nach Zielstellung, eine oder mehrere vorhandene Hydroxylgruppen einer Sulfamoylierung unterworfen.

Dann können die Sulfamatgruppen gegebenenfalls mit einem gewünschten Acylchlorid in Gegenwart einer Base in die betreffenden /N-Acyl)sulfamate überführt werden. Die nunmehr vorliegenden Oxosulfamate oder Oxo-(N-acyl)sulfamate werden durch Reduktion in die entsprechenden Hydroxysulfamate bzw. Hydroxy-(N-acyl)sulfamate 5 umgewandelt (Steroids 1996, 61, 710 – 717). Als geeignete Reduktionsmittel kommen Natriumborhydrid und der Boran-Dimethylsulfid-Komplex in Frage.

Substituenten gemäß der allgemeinen Formel I können aber auch auf der Stufe der bereits in 8-Stellung substituierten Estratriene eingeführt werden. Dies kann 10 insbesondere bei Mehrfachsubstitution der gewünschten Endverbindung sinnvoll bzw. erforderlich sein.

Die nachfolgenden Beispiele dienen der näheren Erläuterung der Erfindung.

- 15 Als Ausgangsmaterial für derartige Synthesen dienen 11-Keto-estratetraenderivate (US 3491089, Tetrahedron Letters, 1967, 37, 3603.), welche bei der Umsetzung mit Diethyl-aluminiumcyanid stereoselektiv in Position 8 β substituiert werden. Die Synthese von Verbindung (1) ist beschrieben (WO 01/77139). Durch Überführung in ein Δ -9,11-Enoltriflat und anschließende Sonogashira–Kupplung gelangt man zu 8 β -substituierten 20 11-Alkyl-estra-1,3,5(10),9(11)-tetraenen. Die 8 β -Cyanogruppierung lässt sich dann in den 8 β -Aldehyd überführen. Eine Funktionalisierung (z.B. durch Wittig-Reaktionen), nach erfolgter Hydrierung der C(9)-C(11)-Doppelbindung, führt zu den erfindungs-gemäßigen 8 β ,11 β -disubstituierten Steroiden (Schema 1).
- 25 Die bei dieser Sequenz zunächst erhaltenen 8 β -substituierten 11-Alkyl-estra-1,3,5(10),9(11)-tetraene lassen sich, wie auch die 8 β -substituierten 11 β -Alkyl-estra-1,3,5(10)-triene nach dem Fachmann bekannten Methoden weiter zu vielfältigen Substitutionsmustern am Steroid umsetzen.
- 30 Häufig verwendete Abkürzungen:
- THP = Tetrahydropyran-2-yl;
 - Me = Methyl;
 - Bn = Benzyl;
 - Tf = Trifluormethansulfonyl;
 - 35 TBS = tertButyldimethylsilyl;
 - TMS = Trimethylsilyl;
 - Äquiv. = Äquivalente

Synthese von 5-Benzylloxypent-1-in

5 Zu einer Suspension von 17.4 g Natriumhydrid (55%) in 200 ml DMF werden bei 0°C 15 ml 4-Pentin-1-ol getropft und es wird für 1 Stunde bei 0°C gerührt. Anschließend werden bei dieser Temperatur 30 ml Benzylbromid zugetropft und es wird für weitere 2 Stunden bei 0°C gerührt. Anschließend wird die Reaktion vorsichtig mit 1N Salzsäure neutralisiert. Die Phasentrennung erfolgt zwischen Diethylether und Wasser und die wässrige Phase wird mehrmals mit Diethylether extrahiert. Die vereinigten organischen Phasen werden mit Wasser, ges. Natriumhydrogencarbonat- und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird im Ölumpenvakuum destilliert und man erhält 22.7 g 5-Benzylloxypent-1-in als farbloses Öl.

15

Synthese des Aldehyds 9a (Schema 1)

3-Methoxy-17β-(tetrahydropyran-2-yloxy)-11-trifluormethansulfonyloxy-estra-1,3,5(10),9,(11)-tetraen-8-carbonitril (2)

20

Zu einer Lösung von 20 g des Ketons **1** in 490 ml Pyridin werden bei 0°C 16 ml Trifluormethansulfonsäureanhydrid getropft und es wird bis zur vollständigen Umsetzung bei Raumtemperatur gerührt. Pyridin wird mit Toluol als Co-Solvans abdestilliert, der Rückstand in Essigester aufgenommen, mit 1N Salzsäure, Wasser, ges. Natriumhydrogencarbonat- und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird über Kieselgel filtriert (Cyclohexan/Essigester) und ergibt 18.12 g Triflat **2** als hellgelben Schaum, der ohne weitere Reinigung in der nächsten Stufe eingesetzt wird.

30

11-[5-(Benzylxyloxy)-pent-1-ynyl]-3-methoxy-17β-(tetrahydropyran-2-yloxy)-estra-1,3,5(10),9(11)-tetraen-8-carbonitril (3)

35

Zu einer Lösung von 18.1 g Triflat **2** in 170 ml Piperidin werden nacheinander 0.75 g Palladium(II)-acetat (47%), 1.8 g Triphenylphosphin und 1.28 g Kupfer(I)-iodid gegeben und anschließend eine Lösung von 11,66 g 5-Benzylloxypent-1-in in 50 ml Piperidin zugetropft. Die Reaktionslösung wird auf 50°C erwärmt und bis zur vollständigen Umsetzung gerührt. Zur Aufarbeitung erfolgt eine Phasentrennung zwischen Diethylether/ Wasser und die wässrige Phase wird mehrmals mit Diethylether extrahiert.

Die vereinigten organischen Phasen werden mit 1N Salzsäure neutralisiert, mit ges. Natriumhydrogencarbonat- und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird säulenchromatographisch (Cyclohexan/Essigester) gereinigt und ergibt 15.26 g Alkin **3**

5 als hellbraunen Schaum [LC-MS: m/z theor.: 565, prakt.: 566 ($M+H^+$)].

11-[5-(Benzylxy)-pentyl]-3-methoxy-17 β -(tetrahydropyran-2-yloxy)-estra-1,3,5(10),9(11)-tetraen-8-carbonitril (4)

10 Eine Lösung von 15.26 g Alkin **3** in 300 ml Tetrahydrofuran/Methanol (3:1) wird mit 2.7 g Palladium (10% auf Magnesiumcarbonat) versetzt und unter einer Wasserstoffatmosphäre (1 bar) bis zur vollständigen Umsetzung bei Raumtemperatur gerührt. Zur Aufarbeitung wird über Celite filtriert und im Vakuum eingeengt. Es werden 15.4 g eines farblosen Schaumes **4** erhalten, der ohne weitere Reinigung in der 15 nächsten Stufe eingesetzt wird (GC-MS: m/z theor.: 569, prakt.: 569).

11-[5-(Benzylxy)pentyl]-17 β -hydroxy-3-methoxyestra-1,3,5(10),9(11)-tetraen-8-carbaldehyd (5)

20 Zu einer Lösung von 15.4 g Nitril **4** in 280 ml Toluol wird bei -10°C eine Lösung aus 28 ml Diisobutylaluminiumhydrid in 83 ml Toluol zugetropft. Die Reaktionslösung wird bis zur vollständigen Umsetzung bei 0°C gerührt, nacheinander mit 460 ml Toluol, 92 ml ges. Natriumhydrogencarbonat-Lösung und 9 ml 2-Propanol versetzt und für mehrere Stunden bei Raumtemperatur gerührt. Anschließend wird über Celite filtriert und das 25 Filtrat eingeengt. Der so erhaltene farblose Schaum wird in 280 ml Ethanol/Wasser (5:1) gelöst, 28.75 g p-Toluolsulfonsäure werden zugesetzt, die Reaktionslösung auf 60°C erwärmt und bis zur vollständigen Umsetzung gerührt. Anschließend wird ein Großteil des Ethans am Rotationsverdampfer entfernt, der Rückstand mit Essigester verdünnt, mit Wasser, ges. Natriumhydrogencarbonat- und ges. Natriumchlorid-Lösung 30 gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird säulenchromatographisch (Cyclohexan/Essigester) gereinigt und ergibt 12.49 g Aldehyd **5** als hellbraune zähe Masse (GC-MS: m/z theor.: 488, prakt.: 488).

11-[5-(Benzylxy)pentyl]-17 β -(tert-butyldimethylsilyloxy)-3-methoxyestra-1,3,5(10),9(11)-tetraen-8-carbaldehyd (6)

- 5 Zu einer Lösung von 12.49 g Alkohol **5** in 160 ml N,N-Dimethylformamid werden bei 0°C nacheinander 4.46 g Imidazol und 9.66 g tertButyldimethylsilylchlorid gegeben und bis zur vollständigen Umsetzung bei Raumtemperatur gerührt. Zur Aufarbeitung wird die wässrige Phase mit Wasser versetzt und mehrmals mit Diethylether extrahiert. Die vereinigten organischen Phasen werden mit Wasser und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird säulenchromatographisch (Cyclohexan/Essigester) gereinigt und ergibt 14.36 g Silylether **6** als gelbe zähe Masse (GC-MS: m/z theor.: 602, prakt.: 602).

15 **17 β -(tert.-Butyldimethylsilyloxy)-11 β -(5-hydroxypentyl)-3-methoxyestra-1,3,5(10)-trien-8-carbaldehyd (7)**

Eine Lösung von 14.36 g Tetraen **6** in 400 ml Tetrahydrofuran/Methanol (3:1) wird mit 2.8 g Palladium (10% auf Kohle) versetzt und unter einer Wasserstoffatmosphäre (100 bar) für zwei Tage bei Raumtemperatur gerührt. Diese Umsetzung wird zweimal wiederholt. Zur Aufarbeitung wird über Celite filtriert und im Vakuum eingeengt. Der Rückstand wird säulenchromatographisch (Cyclohexan/Essigester) gereinigt und ergibt 8.25 g **7** als farblosen Schaum (GC-MS: m/z theor.: 514, prakt.: 514).

25 **Allgemeine Arbeitsvorschrift zur Wittig Olefinierung von Estratrien-8-carbaldehyden**

Eine Suspension aus Natriumhydrid (80%, 15 Äquiv.) in Dimethylsulfoxid (0.5 ml/mmol) werden für 1 Stunde auf 70°C erwärmt. Anschließend wird bei Raumtemperatur eine Lösung des entsprechenden Alkytriphenylphosphoniumbromids (15 Äquiv.) in 30 Dimethylsulfoxid (2 ml/mmol) zugetropft. Die Reaktionslösung verfärbt sich gelbgrün und wird für eine weitere Stunde bei Raumtemperatur gerührt.

Eine Lösung des entsprechenden 8-Carbaldehydes in Dimethylsulfoxid (5 ml/mmol) wird bei Raumtemperatur zur Lösung des Ylids getropft. Die Reaktionslösung wird bis zur vollständigen Umsetzung bei 40°C gerührt, auf 0°C gekühlt und mit Wasser 35 versetzt. Anschließend wird mehrmals mit Diethylether extrahiert, die vereinigten organischen Phasen mit Wasser und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Säulenchromatographische Reinigung (Cyclohexan/ Essigester) ergibt die entsprechenden Olefine.

17 β -tert.-Butyldimethylsilyloxy-11 β -(5-hydroxypentyl)-3-methoxy-8-vinyl-estra-1,3,5(10)-trien (8)

5 4 g Aldehyd **7** ergeben in der Umsetzung mit Methyltriphenylphosphoniumbromid analog der allgemeinen Olefinierungsvorschrift 3.62 g Olefin **8** als farblosen Schaum (GC-MS: m/z theor.: 512, prakt.: 512).

5-[17 β -(tert.-Butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]valeraldehyd (9a)

10 1.24 g Pyridiniumchlorochromat werden in 9 ml Dichlormethan vorgelegt, eine Lösung von 1.5 g Alkohol **8** in 15 ml Dichlormethan zugetropft und anschließend 940 mg Celite zugegeben. Das Reaktionsgemisch wird bei Raumtemperatur bis zur vollständigen 15 Umsetzung gerührt, am Rotationsverdampfer eingeengt, anschließend in Diethylether aufgenommen und über Kieselgel filtriert. Dies ergibt 1.41 g Aldehyd **9a** als hellgelbe, zähe Masse (GC-MS: m/z theor.: 510, prakt.: 510), der ohne weitere Reinigung in den nachfolgenden Umsetzung verwendet wird.

20 Synthese des Aldehyd **9b** (Schema 2)

11 β -(5-Brompentyl)-17 β -tert.-butyldimethylsilyloxy-3-methoxy-8-vinyl-estra-1,3,5(10)-trien (10)

25 Zu einer Lösung von 2.11 g Alkohol **8** in 41 ml Dichlormethan werden nacheinander 1.62 g Triphenylphosphin und 420 mg Imidazol gegeben. Die Lösung wird auf 0°C gekühlt und 2.05 g Tetrabrommethan werden zugegeben. Das Reaktionsgemisch wird auf Raumtemperatur erwärmt und bis zur vollständigen Umsetzung gerührt. Zur Aufarbeitung wird mit Dichlormethan verdünnt, die organische Phase mit Wasser und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat trocknet und eingeengt. Säulenchromatographische Reinigung (Cyclohexan/ Essigester) ergibt 2.3 g Bromid **10** als farblose zähe Masse (GC-MS: m/z theor.: 574, prakt.: 574).

6-[17 β -(tert.-Butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]capronitril (11a)

- 5 Zu einer Lösung von 2.3 g Bromid **10** in 20 ml N,N-Dimethylformamid werden 295 mg Natriumcyanid und eine katalytische Menge Natriumiodid gegeben. Das Reaktionsgemisch wird bis zur vollständigen Umsetzung bei Raumtemperatur gerührt. Zur Aufarbeitung wird mit Diethylether verdünnt, die organische Phase mit Wasser und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und 10 eingeengt. Dies ergibt 1.97 g Cyanid **11a** als farblosen Schaum, der ohne weitere Reinigung in der nächsten Stufe eingesetzt wird (GC-MS: m/z theor.: 521, prakt.: 521).

6-[17 β -(tert.-Butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]capronaldehyd (9b)

- 15 Zu einer Lösung von 1.16 g Cyanid **11a** in 23 ml Toluol wird bei -10°C eine Lösung aus 1 ml Diisobutylaluminiumhydrid in 1 ml Toluol zugetropft. Die Reaktionslösung wird bis zur vollständigen Umsetzung bei -10°C gerührt, nacheinander mit 17 ml Toluol, 6 ml ges. Natriumhydrogencarbonat-Lösung und 0.7 ml 2-Propanol versetzt und für mehrere 20 Stunden bei Raumtemperatur gerührt. Anschließend wird über Celite filtriert und das Filtrat eingeengt. Säulenchromatographische Reinigung (Cyclohexan/ Essigester) ergibt 1.13 g Aldehyd **9b** als farblosen Schaum (GC-MS: m/z theor.: 524, prakt.: 524).

Synthese des Bromids **13** (Schema 2)

- 25 **17 β -tert.-Butyldimethylsilyloxy-11 β -(6-hydroxyhexyl)-3-methoxy-8-vinyl-estra-1,3,5(10)-trien (12)**

- Zu einer Lösung von 1.95 g Aldehyd **9b** in 37 ml Tetrahydrofuran/ Methanol (1:1) 30 werden bei 0°C 282 mg Natriumborhydrid gegeben. Die Reaktionslösung wird bis zur vollständigen Umsetzung bei Raumtemperatur gerührt. Zur Aufarbeitung wird mit Diethylether verdünnt, die organische Phase mit 1N Salzsäure, Wasser, ges. Natriumhydrogencarbonat- und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Säulenchromatographische Reinigung 35 (Cyclohexan/ Essigester) ergibt 1.06 g Alkohol **12** als farblose zähe Masse (GC-MS: m/z theor.: 526, prakt.: 526).

11 β -(6-Bromhexyl)-17 β -tert.-butyldimethylsilyloxy-3-methoxy-8-vinyl-estra-1,3,5(10)-trien (13)

5 Die Umsetzung von 930 mg Alkohol **12** erfolgt in analoger Weise zur Versuchsvorschrift für die Überführung von Alkohol **8** in Bromid **10**. Auf diese Weise werden 975 mg Bromid **13** als farbloses zähes Öl erhalten (GC-MS: m/z theor.: 588, prakt.: 588).
Synthese des Aldehyd **9c** (Schema 3)

10 **7-[17 β -(tert.-Butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]heptanitril (11b)**

Die Synthese von (Cyanomethyl)trimethylphosphoniumiodid erfolgt in völliger Analogie zu der in der Literatur [J. Org. Chem. 2001, 66, 2518-2521] beschriebenen
15 Vorgehensweise aus Trimethylphosphin und Iodacetonitril.

Zu einer Lösung von 1 g Alkohol **8** in 18 ml Propionitril werden 2.42 g (Cyanomethyl)trimethylphosphoniumiodid gegeben und anschließend 2.1 ml Diisopropylethylamin zugetropft. Das Reaktionsgemisch wird für 14 Stunden bei 97°C gerührt. Nach Abkühlung auf Raumtemperatur wird der Ansatz mit 10 ml Wasser und 1
20 ml konz. Salzsäure versetzt. Die Phasentrennung erfolgt zwischen Essigester/ Wasser. Die organische Phase wird mit Wasser und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Säulenchromatographische Reinigung (Cyclohexan/ Essigester) ergibt 480 mg Cyanid **11b** als farblosen Schaum (GC-MS: m/z theor.: 535, prakt.: 535).

25

7-[17 β -(tert.-Butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]heptanal (9c)

Zu einer Lösung von 480 mg Cyanid **11b** in 10 ml Toluol wird bei -10°C eine Lösung
30 aus 0.4 ml Diisobutylaluminiumhydrid in 0.4 ml Toluol zugetropft. Die Reaktionslösung wird bis zur vollständigen Umsetzung bei -10°C gerührt, nacheinander mit 8 ml Toluol, 3 ml ges. Natriumhydrogencarbonat-Lösung und 0.3 ml 2-Propanol versetzt und für mehrere Stunden bei Raumtemperatur gerührt. Anschließend wird über Celite filtriert und das Filtrat eingeengt. Säulenchromatographische Reinigung (Cyclohexan/
35 Essigester) ergibt 361 mg Aldehyd **9c** als farblosen Schaum (GC-MS: m/z theor.: 538, prakt.: 538). :

Beispiel 1

Allgemeine Arbeitsvorschrift zur Umsetzung der Aldehyde 9a-c mit (Perfluoralkyl)-trimethylsilanen und anschließende Spaltung des Trimethylsilylethers mit Tetrabutylammoniumfluorid-Trihydrat (Schemata 4-5)

Zu einer Lösung der entsprechenden Carbonylverbindung (1 Äquiv.) in Tetrahydrofuran
 10 (2 ml/mmol) wird eine katalytische Menge Tetrabutylammoniumfluorid-Trihydrat gegeben, die Lösung auf -20°C gekühlt und das (Perfluoralkyl)-trimethylsilan (15 Äquiv.) zugetropft. Das Kältebad wird entfernt und die Reaktionslösung bis zur vollständigen Umsetzung bei Raumtemperatur gerührt. Zur Aufarbeitung wird mit Diethylether verdünnt, die organische Phase mit Wasser und ges. Natriumchlorid-
 15 Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der so erhaltene Trimethylsilylether erweist sich bei nachfolgender säulenchromatographischer Reinigung teilweise als instabil und wird im Gemisch mit seinem korrespondierenden Alkohol umgesetzt. Dazu wird das Gemisch in Tetrahydrofuran (10ml/mmol) gelöst, bei Raumtemperatur mit Tetrabutylammoniumfluorid-Trihydrat (1.5 Äquiv.) versetzt und bis
 20 zur vollständigen Umsetzung bei Raumtemperatur gerührt. Zur Aufarbeitung wird mit Diethylether verdünnt, die organische Phase mit Wasser und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Säulenchromatographische Reinigung (Cyclohexan/ Essigester) ergibt die entsprechenden Perfluoralkyl-substituierten Alkohole als farblose Schäume.

25

17β-tert.-Butyldimethylsilyloxy-3-methoxy-11β-[(R/S)-6,6,6-trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien (14a)

900 mg Aldehyd **9a** ergeben in der Umsetzung mit (Trifluormethyl)-trimethylsilan analog
 30 Vorschrift 1.1 804 mg Alkohol **14a** als farblosen Schaum (GC-MS: m/z theor.: 580, prakt.: 580) und Gemisch seiner Diastereomere.

Allgemeine Arbeitsvorschrift zur gleichzeitigen Spaltung von tert-Butyldimethylsilyl- und Methylether mittels Bortrichlorid/Tetrabutylammoniumiodid (Schemata 2-8)

5

Zu einer auf -78°C gekühlten Lösung des entsprechenden Steroids und Tetrabutylammoniumiodid (1.5 Äquiv. je zu spaltenden Ether, ein zusätzliches Äquiv. für jede basische Gruppierung) in Dichlormethan (5 ml/mmol) wird eine entsprechende Menge Bortrichlorid (1.5 Äquiv. je zu spaltenden Ether, ein zusätzliches Äquiv. für jede 10 basische Gruppierung) getropft. Die Reaktionslösung wird langsam auf 0°C erwärmt und bis zur vollständigen Umsetzung gerührt. Zur Aufarbeitung wird der Ansatz mit Eiswasser versetzt und für ca. 30 Minuten nachgerührt, anschließend mit ges. Natriumhydrogencarbonat-Lösung versetzt und mehrmals mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden mit Magnesiumsulfat getrocknet und 15 eingeengt. Der erhaltene Rückstand wird säulenchromatographisch gereinigt und ergibt die entsprechenden Estradiole.

**11 β -[(R/S)-6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(15a D1/2)**

20

100 mg Steroid **14a** ergeben in der Umsetzung analog Vorschrift 1.2 78 mg einer leicht gelben zähen Masse die sich als 3-Methylether herausstellte. Daraufhin wird der 3-Methylether in 2.7 ml Toluol gelöst, die Lösung auf 0°C gekühlt und 0.5 ml Diisobutylaluminiumhydrid zugetropft. Die Reaktionslösung wird bis zur vollständigen 25 Umsetzung unter Rückfluss erhitzt. Zur Aufarbeitung wird die Lösung auf 0°C gekühlt und nacheinander Ethanol (1 ml), Ethanol/ Wasser (1:1, 2 ml), halbkonz. Salzsäure (2 ml) zugetropft. Die Phasentrennung erfolgt zwischen Diethylether/ Wasser und die wässrige Phase wird mehrmals mit Diethylether extrahiert. Die vereinigten organischen Phasen werden mit Wasser und ges. Natriumchlorid-Lösung gewaschen, über 30 Magnesiumsulfat getrocknet und eingeengt. Säulenchromatographische Reinigung (Cyclohexan/ Essigester) ergibt 62 mg Estratrienol **15a** als farblose zähe Masse (GC-MS: m/z theor.: 452, prakt.: 452) und Gemisch seiner Diastereomere D1/D2. Diastereomerentrennung erfolgt mittels präparativer HPLC (Chiralpak AD 250x10, n-Heptan/ 2-Propanol 9/1 v/v, 4.7 ml/min) und ergibt jeweils 16 mg der beiden 35 Diastereomere **15a D1** ($[\alpha]_D = 66^{\circ}$, Chloroform) und **15a D2** ($[\alpha]_D = 33^{\circ}$, Chloroform). Mittels Röntgenstrukturanalyse wurde dem Diastereomer **15aD1** die R-Konfiguration und Diastereomer **15aD2** die S-Konfiguration am epimeren Zentrum zugewiesen.

Beispiel 2

- 5 **17β -tert.-Butyldimethylsilyloxy-3-methoxy-11 β -[(R/S)-7,7,7-trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien (14b)**

10 500 mg Aldehyd **9b** ergeben in der Umsetzung mit (Trifluormethyl)-trimethylsilan analog Vorschrift 1.1 292 mg Alkohol **14b** als farblosen Schaum (GC-MS: m/z theor.: 594, prakt.: 594) und Gemisch seiner Diastereomere.

11β -[(R/S)-7,7,7-Trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3, 17β -diol (15b D1/2)

15 90 mg Steroid **14b** ergeben in der Umsetzung analog Vorschrift 1.2 56 mg Estratrieniol **15b** als farblosen Schaum (GC-MS: m/z theor.: 466, prakt.: 466) und Gemisch seiner Diastereomere D1/D2. Diastereomerentrennung erfolgt mittels präparativer HPLC (Chiralcel OD 250x51, n-Hexan/ 2-Propanol 9/1 v/v, 100 ml/min) und ergibt 9 mg Diastereomer **15b D1** und 7 mg Diastereomer **15b D2**.

20

Beispiel 3

- 25 **17β -tert.-Butyldimethylsilyloxy-3-methoxy-11 β -[(R/S)-8,8,8-trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien (14c)**

30 360 mg Aldehyd **9c** ergeben in der Umsetzung mit (Trifluormethyl)-trimethylsilan analog Vorschrift 1.1 370 mg Alkohol **14c** als farblosen Schaum (GC-MS: m/z theor.: 608, prakt.: 608) und Gemisch seiner Diastereomere.

35

11β -[(R/S)-8,8,8-Trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3, 17β -diol (15c D1/2)

35 90 mg Steroid **14c** ergeben in der Umsetzung analog Vorschrift 1.2 78 mg Estratrieniol **15c** als farblosen Schaum (GC-MS: m/z theor.: 466, prakt.: 466) und Gemisch seiner Diastereomere **D1/2**. Diastereomerentrennung erfolgt mittels präparativer HPLC (Chiralpak AD 250x60, n-Hexan/ Ethanol 95/5 v/v, 80 ml/min) und ergibt 23 mg Diastereomer **15c D1** und 17 mg Diastereomer **15c D2**.

Beispiel 4

Allgemeine Arbeitsvorschrift zur Oxidation der Trifluormethyl-substituierten Alkohole (Schema 4)

Zu einer Suspension aus Dess-Martin-Periodinan (6 Äquiv.) in Dichlormethan (5 ml/mmol) wird bei Raumtemperatur eine Lösung des entsprechenden Alkohols (1 Äquiv.) in Dichlormethan (15 ml/mmol) zugetropft und bis zur vollständigen Umsetzung 10 gerührt. Anschließend wird das Reaktionsgemisch mit Wasser versetzt und ca. 30 min nachgerührt. Die Phasentrennung erfolgt zwischen Diethylether/ Wasser und die wässrige Phase wird mehrmals mit Diethylether extrahiert. Die vereinigten organischen Phasen werden mit ges. Natriumthiosulfat-, ges. Natriumhydrogencarbonat-Lösung, Wasser und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet 15 und eingeengt. Säulenchromatographische Reinigung (Cyclohexan/ Essigester) ergibt die entsprechenden Ketone.

6-[17 β -(tert.-Butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]-1,1,1-trifluorhexan-2-on (16a)

20 312 mg Alkohol **14a** ergeben in der Umsetzung analog Vorschrift 4.1 252 mg Keton **16a** als gelbe zähe Masse (GC-MS: m/z theor.: 578, prakt.: 578).

17 β -tert.-Butyldimethylsilyloxy-3-methoxy-11 β -[6,6,6-trifluor-5-trifluormethyl-5-(trimethylsilyloxy)hexyl]-8-vinyl-estra-1,3,5(10)-trien (17a)

25 200 mg Alkohol **16a** ergeben in der Umsetzung mit (Trifluormethyl)-trimethylsilan analog Vorschrift 1.1 200 mg den säulenchromatographisch stabilen Trimethylsilylether **17a** als hellgelbe zähe Masse (GC-MS: m/z theor.: 720, prakt.: 720). Dieser wird, ohne 30 die Umsetzung mit Tetrabutylammoniumfluorid-Trihydrat durchzuführen, in der nächsten Stufe verwendet.

11 β -[6,6,6-Trifluor-5-hydroxy-5-(trifluormethyl)hexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (18a)

5 200 mg Steroid **17a** ergeben in der Umsetzung analog Vorschrift 1.2 19 mg Estratrieniol **18a** als farblosen Schaum (GC-MS: m/z theor.: 520, prakt.: 520) zusammen mit 46 mg des als Nebenprodukt anfallenden unumgesetzten Trimethylsilyethers, der mittels Umsetzung mit Tetrabutylammoniumfluorid-Trihydrat in Tetrahydrofuran (vgl. Vorschrift 1.1/ Trimethylsilyletherspaltung) in Verbindung **18a** (33 mg) überführt wird.

Beispiel 5

7-[17 β -(tert.-Butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]-1,1,1-trifluorheptan-2-on (16b)

182 mg Alkohol **14b** ergeben in der Umsetzung analog Vorschrift 4.1 131 mg Keton **16b** als gelbe zähe Masse (GC-MS: m/z theor.: 592, prakt.: 592).

20 **17 β -tert.-Butyldimethylsilyloxy-3-methoxy-11 β -[7,7,7-trifluor-6-trifluormethyl-6-(trimethylsilyloxy)heptyl]-8-vinyl-estra-1,3,5(10)-trien (17b)**

131 mg Alkohol **16b** ergeben in der Umsetzung mit (Trifluormethyl)-trimethylsilan analog Vorschrift 1.1 162 mg Trimethylsilylether **17b** als gelbe zähe Masse (GC-MS: 25 m/z theor.: 734, prakt.: 734). Dieser wird, ohne die Umsetzung mit Tetrabutylammoniumfluorid-Trihydrat durchzuführen, in der nächsten Stufe verwendet.

11 β -[7,7,7-Trifluor-6-hydroxy-6-(trifluormethyl)heptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (18b)

30 161 mg Steroid **17b** ergeben in der Umsetzung analog Vorschrift 1.2 57 mg des unumgesetzten Trimethylsilyethers. 37 mg des Trimethylsilylethers ergeben in der Umsetzung mit Tetrabutylammoniumfluorid-Trihydrat in Tetrahydrofuran (vgl. Vorschrift 1.1/ Trimethylsilyletherspaltung) 20 mg Estratrieniol **18b** als farblosen Schaum (GC-35 MS: m/z theor.: 534, prakt.: 534).

:

Beispiel 6

8-[17 β -(tert.-Butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]-5,1,1,1-trifluoroctan-2-on (16c)

200 mg Alkohol **14c** ergeben in der Umsetzung analog Vorschrift 4.1 138 mg Keton **16c** als gelbe zähe Masse (GC-MS: m/z theor.: 606, prakt.: 606).

10 17 β -tert.-Butyldimethylsilyloxy-3-methoxy-11 β -[8,8,8-trifluor-7-trifluormethyl-7-(trimethylsilyloxy)octyl]-8-vinyl-estra-1,3,5(10)-trien (17c)

135 mg Alkohol **16c** ergeben in der Umsetzung mit (Trifluormethyl)-trimethylsilan analog Vorschrift 1.1 159 mg Trimethylsilylether **17c** als gelbe zähe Masse (GC-MS:

15 m/z theor.: 748, prakt.: 748). Dieser wird, ohne die Umsetzung mit Tetrabutylammoniumfluorid-Trihydrat durchzuführen, in der nächsten Stufe verwendet.

11 β -[8,8,8-Trifluor-7-hydroxy-7-(trifluormethyl)octyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (18c)

20

155 mg Steroid **17c** ergeben in der Umsetzung analog Vorschrift 1.2 57 mg des unumgesetzten Trimethylsilylethers, der in der Umsetzung mit Tetrabutylammoniumfluorid-Trihydrat in Tetrahydrofuran (vgl. Vorschrift 1.1/ Trimethylsilyletherspaltung) 45 mg Estratrieniol **18c** als farblosen Schaum (GC-MS:

25 m/z theor.: 548, prakt.: 548).

Beispiel 7

Allgemeine Arbeitsvorschrift zur Umsetzung der Aldehyde 9a-b mit Pentafluorethyllithium (Schema 5)

Zu einer 1M Lösung von Pentafluorethyliodid (10 Äquiv. In Bezug auf Carbonylverbindung) in Tetrahydrofuran wird bei -78°C nButyllithium (1.6M in Hexan, 1 Äquiv.) zugetropft und die Lösung bei -78°C für 1 Stunde gerührt. Anschließend wird

35 bei dieser Temperatur eine Lösung der entsprechenden Carbonylverbindung in Tetrahydrofuran (5 ml/mmol) zugetropft. Die Reaktionslösung wird langsam erwärmt und bis zum vollständigen Umsatz gerührt. Zur Aufarbeitung wird die Reaktionslösung mit ges. Ammoniumchlorid-Lösung versetzt und mehrmals mit Diethylether extrahiert.

Die vereinigten organischen Phasen werden mit Wasser und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Säulenchromatographische Reinigung (Cyclohexan/ Essigester) ergibt die entsprechenden Pentafluorethyl-substituierten Alkohole.

5

17 β -tert.-Butyldimethylsilyloxy-3-methoxy-11 β -[(R/S)-7,7,7,6,6-pentafluor-5-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien (19a)

55 mg Aldehyd **9a** ergeben in der Umsetzung analog Vorschrift 7.1 61 mg Alkohol **19a** 10 als farblosen Schaum (GC-MS: m/z theor.: 630, prakt.: 630) und Gemisch seiner Diastereomere.

11 β -[(R/S)-7,7,7,6,6-Pentafluor-5-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (20a D1/2)

15

60 mg Steroid **19a** ergeben in der Umsetzung analog Vorschrift 1.2 26 mg Estratrieniol **20a D1/2** als farblosen Schaum (GC-MS: m/z theor.: 502, prakt.: 502) und Gemisch seiner Diastereomere.

20 Beispiel 8

17 β -tert.-Butyldimethylsilyloxy-3-methoxy-11 β -[(R/S)-8,8,8,7,7-pentafluor-6-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien (19b)

25 45 mg Aldehyd **9b** ergeben in der Umsetzung analog Vorschrift 7.1 47 mg Alkohol **19b** als farblosen Schaum (GC-MS: m/z theor.: 644, prakt.: 644) und Gemisch seiner Diastereomere.

11 β -[(R/S)-8,8,8,7,7-Pentafluor-6-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (20b D1/2)

30 45 mg Steroid **19b** ergeben in der Umsetzung analog Vorschrift 1.2 16 mg Estratrieniol **20b D1/2** als farblosen Schaum (GC-MS: m/z theor.: 516, prakt.: 516) und Gemisch seiner Diastereomere.

35

Beispiel 9

- 17 β -tert.-Butyldimethylsilyloxy-11 β -[(R/S)-8,8,8,7,7,6,6-heptafluor-5-trimethylsilyloxyoctyl]-3-methoxy-8-vinyl-estra-1,3,5(10)-trien (21a)**

60 mg Aldehyd **9a** ergeben in der Umsetzung mit (Heptafluorpropyl)-trimethylsilan analog Vorschrift 1.1 81 mg des stabilen Trimethylsilylethers **21a** als farblosen Schaum (GC-MS: m/z theor.: 752, prakt.: 752) und Gemisch seiner Diastereomere. Dieser wird, ohne die Umsetzung mit Tetrabutylammoniumfluorid-Trihydrat durchzuführen, in der nächsten Stufe verwendet.

- 11 β -[(R/S)-8,8,8,7,7,6,6-Heptafluor-5-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (22a D1/2)**

80 mg Steroid **21a** ergeben in der Umsetzung analog Vorschrift 1.2 27 mg Estratrieniol **22a D1/2** als farblosen Schaum (GC-MS: m/z theor.: 552, prakt.: 552) und Gemisch seiner Diastereomere.

20 Beispiel 10

- 17 β -tert.-Butyldimethylsilyloxy-11 β -[(R/S)-9,9,9,8,8,7,7-heptafluor-6-trimethylsilyloxynonyl]-3-methoxy-8-vinyl-estra-1,3,5(10)-trien (21b)**

25 70 mg Aldehyd **9b** ergeben in der Umsetzung mit (Heptafluorpropyl)-trimethylsilan analog Vorschrift 1.1 94 mg des stabilen Trimethylsilylethers **21b** als farblosen Schaum (GC-MS: m/z theor.: 766, prakt.: 766) und Gemisch seiner Diastereomere. Dieser wird, ohne die Umsetzung mit Tetrabutylammoniumfluorid-Trihydrat durchzuführen, in der nächsten Stufe verwendet.

30 **11 β -[(R/S)-9,9,9,8,8,7,7-Heptafluor-6-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (22b D1/2)**

35 94 mg Steroid **21b** ergeben in der Umsetzung analog Vorschrift 1.2 41 mg Estratrieniol **22b D1/2** als farblosen Schaum (GC-MS: m/z theor.: 566, prakt.: 566) und Gemisch seiner Diastereomere.

Beispiel 11

17 β -tert.-Butyldimethylsilyloxy-3-methoxy-11 β -[(R/S)-7,7,6-trifluor-5-trimethylsilyloxyhept-6-enyl]-8-vinyl-estra-1,3,5(10)-trien (23a)

Die Synthese von 1,1,2-Trifluor-2-trimethylsilylethylen erfolgt in völliger Analogie zu der in der Literatur [J. Fluorine Chem. 2003, 121, 75-77] beschriebenen Vorgehensweise aus 1-Brom-1,2,2-trifluorethen, Zink und Trimethylsilylchlorid.

- 10 60 mg Aldehyd **9a** ergeben in der Umsetzung mit 1,1,2-Trifluor-2-trimethylsilylethylen analog Vorschrift 1.1 77 mg des Trimethylsilylethers **23a** als farblosen Schaum (GC-MS: m/z theor.: 664, prakt.: 664) und Gemisch seiner Diastereomere. Dieser wird ohne weitere Reinigung in der nächsten Stufe verwendet.
- 15 **11 β -[(R/S)-7,7,6-Trifluor-5-hydroxyhept-6-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (24a D1/2)**

Zu einer Lösung von 77 mg Silylether **23a** in 4 ml Aceton werden bei Raumtemperatur 0.16 ml 10%ige Salzsäure gegeben. Die Reaktionslösung wird bis zur vollständigen 20 Umsetzung bei Raumtemperatur gerührt und mit ges. Natriumhydrogencarbonat-Lösung versetzt. Die Phasentrennung erfolgt zwischen Essigester/ Wasser. Die organische Phase wird mit ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der so erhaltene Rückstand wird über Kieselgel (Cyclohexan/ Essigester) filtriert und erneut eingeengt. Der erhaltene farblose 25 Schaum wird in 1 ml Toluol gelöst, bei 0°C 0.15 ml Diisobutylaluminiumhydrid zugetropft und die Reaktionslösung bis zum vollständigen Umsatz unter Rückfluss erhitzt. Nach Abkühlung auf 0°C wird das Reaktionsgemisch nacheinander mit 0.5 ml Ethanol, 0.5 ml Ethanol/ Wasser (1:1) und 0.5 ml halbkonz. Salzsäure versetzt und für ca. 30 Minuten nachgerührt. Die Phasentrennung erfolgt zwischen Diethylether/ 30 Wasser. Die organische Phase wird mit ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Säulenchromatographische Reinigung (Cyclohexan/ Essigester) ergibt 14 mg Estratrienol **24a D1/2** als farblosen Schaum (GC-MS: m/z theor.: 464, prakt.: 464) und Gemisch seiner Diastereomere.

Beispiel 12

- 17 β -tert.-Butyldimethylsilyloxy-3-methoxy-11 β -[(R/S)-8,8,7-trifluor-6-trimethylsilyloxyoct-7-enyl]-8-vinyl-estra-1,3,5(10)-trien (23b)**

80 mg Aldehyd **9b** ergeben in der Umsetzung mit 1,1,2,-Trifluor-2-trimethylsilylethylen analog Vorschrift 1.1 95 mg des Trimethylsilylethers **23b** als farblosen Schaum (GC-MS: m/z theor.: 678, prakt.: 678) und Gemisch seiner Diastereomere. Dieser wird ohne weitere Reinigung in der nächsten Stufe verwendet.

11 β -[(R/S)-8,8,7-Trifluor-6-hydroxyoct-7-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (24b D1/2)

95 mg Aldehyd **23b** ergeben in der Umsetzung analog Vorschrift 11.2 22 mg des Trimethylsilylethers **24b D1/2** als farblosen Schaum (GC-MS: m/z theor.: 478, prakt.: 478) und Gemisch seiner Diastereomere.

Beispiel 13

- 20 Allgemeine Arbeitsvorschrift zur Umsetzung eines Aldehyd bzw. Keton mit Methylolithium**

Zu einer auf -78°C gekühlten Lösung der entsprechenden Carbonylverbindung (1 Äquiv.) in Tetrahydrofuran (10 ml/mmol) wird ein Überschuss Methylolithium (5-10 Äquiv., 1.6M in Diethylether) zugetropft und die Reaktionslösung bis zur vollständigen Umsetzung bei dieser Temperatur gerührt. Zur Aufarbeitung wird die Reaktionslösung mit ges. Ammoniumchlorid-Lösung/ Wasser/ Diethylether versetzt, die organische Phase mit Wasser und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Säulenchromatographische Reinigung (Cyclohexan/Essigester) ergibt die entsprechenden Methyl-substituierten Alkohole als farblose Schäume.

35 17 β -tert.-Butyldimethylsilyloxy-11 β -[(R/S)-5-hydroxyhexyl]-3-methoxy-8-vinyl-estra-1,3,5(10)-trien (25a)

200 mg Aldehyd **9a** ergeben in der Umsetzung analog Vorschrift 13.1 120 mg Alkohol **25a** als farblosen Schaum (GC-MS: m/z theor.: 526, prakt.: 526) und Gemisch seiner Diastereomere.

11β -[(R/S)-5-Hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (26a D1/2)

- 5 25 mg Steroid **25a** ergeben in der Umsetzung analog Vorschrift 1.2 8 mg Estratrienol
26a D1/2 als farblosen Schaum (GC-MS: m/z theor.: 398, prakt.: 398) und Gemisch seiner Diastereomere.

Beispiel 14

- 10 **17β -tert.-Butyldimethylsilyloxy- 11β -[(R/S)-6-hydroxyheptyl]-3-methoxy-8-vinyl-estra-1,3,5(10)-trien (25b)**

- 15 155 mg Aldehyd **9b** ergeben in der Umsetzung analog Vorschrift 13.1 100 mg Alkohol
25b als farblosen Schaum (GC-MS: m/z theor.: 540, prakt.: 540) und Gemisch seiner Diastereomere.

 11β -[(R/S)-6-Hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (26b D1/2)

- 20 25 mg Steroid **25b** ergeben in der Umsetzung analog Vorschrift 1.2 10 mg Estratrienol
26b D1/2 als farblosen Schaum (GC-MS: m/z theor.: 412, prakt.: 412) und Gemisch seiner Diastereomere.

Beispiel 15

- 25 **6-[17β -(tert.-Butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien- 11β -yl]-hexan-2-on (27a)**

- 30 58 mg Pyridiniumchlorochromat und 58 mg Celite werden in 0.5 ml Dichlormethan vorgelegt, eine Lösung von 95 mg Alkohol **25a** in 0.9 ml Dichlormethan zugetropft und das Reaktionsgemisch bei Raumtemperatur bis zur vollständigen Umsetzung gerührt. Anschließend wird das Reaktionsgemisch über Celite und Kieselgel filtriert und das Filtrat eingeengt. Dies ergibt 81 mg Keton **27a** als hellgelbe, zähe Masse (GC-MS: m/z theor.: 524, prakt.: 524), das ohne weitere Reinigung in der nachfolgenden Umsetzung verwendet wird.

17 β -tert.-Butyldimethylsilyloxy-3-methoxy-11 β -[5-methyl-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien (28a)

- 5 75 mg Keton **27a** ergeben in der Umsetzung analog Vorschrift 13.1 45 mg Alkohol **28a** als farblosen Schaum (GC-MS: m/z theor.: 540, prakt.: 540).

11 β -[5-Methyl-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (29a)

- 10 40 mg Steroid **28a** ergeben in der Umsetzung analog Vorschrift 1.2 22 mg Estratrienol **29a** als farblosen Schaum (GC-MS: m/z theor.: 412, prakt.: 412).

Beispiel 16

- 15 **7-[17 β -(tert.-Butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]-heptan-2-on (27b)**

70 mg Alkohol **25b** ergeben in der Umsetzung analog Vorschrift 15.1 56 mg Keton **27b** als gelben Schaum (GC-MS: m/z theor.: 538, prakt.: 538), das ohne weitere Reinigung 20 in der nachfolgenden Umsetzung verwendet wird.

17 β -tert.-Butyldimethylsilyloxy-3-methoxy-11 β -[6-methyl-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien (28b)

- 25 53 mg Keton **27b** ergeben in der Umsetzung analog Vorschrift 13.1 30 mg Alkohol **28b** als farblosen Schaum (GC-MS: m/z theor.: 554, prakt.: 554).

11 β -[6-Methyl-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (29b)

- 30 26 mg Steroid **28b** ergeben in der Umsetzung analog Vorschrift 1.2 9 mg Estratrienol **29b** als farblosen Schaum (GC-MS: m/z theor.: 426, prakt.: 426).

Beispiel 17

- 35 **11 β -(5-Brompentyl)-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (30a)**

1.55 g Steroid **10** ergeben in der Umsetzung analog Vorschrift 1.2 836 mg Estratrienol **30a** als farblosen Schaum (GC-MS: m/z theor.: 446, prakt.: 446).

**Allgemeine Arbeitsvorschrift zur Einführung einer Aminogruppierung
(Schema 7)**

- 5 Eine entsprechende Menge Bromid wird in N,N-Dimethylformamid (5 ml/mmol) gelöst, mit einem Überschuss des entsprechenden Amins versetzt und bei Raumtemperatur (gegebenenfalls bei 40°C) bis zur vollständigen Umsetzung gerührt. Die Phasentrennung erfolgt zwischen Essigester/ Wasser und die wässrige Phase wird mehrmals mit Essigester extrahiert. Die organische Phase wird mit Wasser und ges.
- 10 Natriumchloridlösung gewaschen, mit Magnesiumsulfat getrocknet und eingeengt. Die säulenchromatographische Reinigung erfolgt an Kieselgel mit einem Essigester/Methanol-Gemisch als Eluenten und ergibt die entsprechenden Amine.

11 β -[5-(Methylamino)pentyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (31a)

- 15 258 mg Bromid **30a** ergeben in der Umsetzung mit Methylamin (40% in Wasser, 2 ml/mmol) analog Vorschrift 17.2 161 mg Amin **31a** als farblosen Feststoff (GC-MS: m/z theor.: 397, prakt.: 397).

20 Beispiel 18

11 β -[5-(Dimethylamino)pentyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (32a)

- 25 30 mg Bromid **30a** ergeben in der Umsetzung mit Dimethylamin (2M in Tetrahydrofuran, 10 Äquivalente) analog Vorschrift 17.2 12 mg Amin **32a** als farblosen Schaum (GC-MS: m/z theor.: 411, prakt.: 411).

Beispiel 19

30 **11 β -[5-(Pyrrolidin-1-yl)pentyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (33a)**

- 30 mg Bromid **30a** ergeben in der Umsetzung mit Pyrrolidin (10 Äquivalente) analog Vorschrift 17.2 23 mg Amin **33a** als farblosen Schaum (GC-MS: m/z theor.: 437, prakt.: 437).

Beispiel 20**11 β -[5-(1-Piperidyl)pentyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (34a)**

5

50 mg Bromid **30a** ergeben in der Umsetzung mit Piperidin (10 Äquivalente) analog Vorschrift 17.2 41 mg Amin **34a** als farblosen Schaum (GC-MS: m/z theor.: 451, prakt.: 451).

10 Beispiel 21**11 β -(5-Morpholinopentyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (35a)**

30 mg Bromid **30a** ergeben in der Umsetzung mit Morpholin (10 Äquivalente) analog Vorschrift 17.2 10 mg Amin **35a** als farblosen Schaum (GC-MS: m/z theor.: 453, prakt.: 453).

Beispiel 22**20 Allgemeine Arbeitsvorschrift zur Einführung einer polyfluorierten Alkylkette in die Amine 31a-b (Schema 7)**

Eine entsprechende Menge Amin wird in N,N-Dimethylformamid (5 ml/mmol) gelöst, eine Lösung des entsprechenden Tosylats (1.5 Äquivalente) in N,N-Dimethylformamid 25 (5 ml/mmol) zugetropft und 20 Äquivalente Natriumcarbonat zugegeben. Anschließend wird das Reaktionsgemisch für 8 Stunden bei 40°C gerührt. Zur Aufarbeitung erfolgt eine Phasentrennung zwischen Essigester/ Wasser und die wässrige Phase wird mehrmals mit Essigester extrahiert. Die organische Phase wird mit Wasser und ges. Natriumchloridlösung gewaschen, mit Magnesiumsulfat getrocknet und eingeengt. Die 30 säulenchromatographische Reinigung erfolgt an Kieselgel mit einem Chloroform/Methanol-Gemisch als Eluenten und ergibt neben unumgesetzten Startmaterial die entsprechenden tertiären Amine.

11 β -{5-[Methyl(8,8,9,9,9-pentafluornonyl)amino]pentyl}-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (36a)

- 5 32 mg Amin **31a** ergeben in der Umsetzung mit 8,8,9,9,9-Pentafluoronyltosylat analog Vorschrift 22.1 16 mg Amin **36a** als farblose Kristalle (GC-MS: m/z theor.: 613, prakt.: 613).

Beispiel 23

10

11 β -{5-[(7,7,8,8,9,9,9-Heptafluoronyl)methylamino]pentyl}-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (37a)

- 15 31 mg Amin **31a** ergeben in der Umsetzung mit 7,7,8,8,9,9,9-Heptafluoronyltosylat analog Vorschrift 22.1 22 mg Amin **37a** als farblose Kristalle (GC-MS: m/z theor.: 649, prakt.: 649).

Beispiel 24

20 **Allgemeine Vorschrift zur Acylierung der Amine 31a-b (Schema 7)**

- Eine entsprechende Menge Amin wird in Ethanol (5 ml/mmol) gelöst, eine Lösung des N-Succinimidesters der entsprechenden Carbonsäure (2 Äquivalente) in Ethanol (5 ml/mmol) zugetropft und 4 Äquivalente Natriumhydrogencarbonat zugegeben.
- 25 Anschließend wird das Reaktionsgemisch bis zum vollständigen Umsatz bei Raumtemperatur gerührt. Zur Aufarbeitung erfolgt eine Phasentrennung zwischen Essigester/ Wasser und die wässrige Phase wird mehrmals mit Essigester extrahiert. Die organische Phase wird mit Magnesiumsulfat getrocknet und eingeengt. Die säulenchromatographische Reinigung erfolgt an Kieselgel mit einem Cyclohexan/Essigester-Gemisch als Eluenten und ergibt die entsprechenden Amide.
- 30

11 β -{5-[Methyl(octanoyl)amino]pentyl}-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (38a)

- 9 mg Amin **31a** ergeben in der Umsetzung mit Octansäure-N-succinimidylester analog Vorschrift 24.1 10 mg Amin **38a** als farblose Kristalle [LC-MS: m/z theor.: 523, prakt.: 524 ($M+H$) $^+$].

Beispiel 25

11 β -(6-Chlorhexyl)-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (30b)

5

975 mg Steroid **13** ergeben in der Umsetzung analog Vorschrift 1.2 424 mg **30b** eines farblosen Schaumes, der neben der Chlorverbindung (GC-MS: 81%, m/z theor.: 416, prakt.: 416) die entsprechende Bromverbindung (GC-MS: 17%, m/z theor.: 460, prakt.: 460) enthält.

10

11 β -[6-(Methylamino)hexyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (31b)

15

155 mg Produktgemisch **30b** ergeben in der Umsetzung mit Methylamin (40% in Wasser, 3 ml/mmol) unter Zusatz von Natriumcarbonat analog Vorschrift 17.2 152 mg Amin **31b** als farblosen Feststoff (GC-MS: m/z theor.: 411, prakt.: 411).

Beispiel 26

11 β -[6-(Dimethylamino)hexyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (32b)

20

33 mg Gemisch **30b** ergeben in der Umsetzung mit Dimethylamin (2M in Tetrahydrofuran, 10 Äquivalente) unter Zusatz von Natriumcarbonat analog Vorschrift 17.2 30 mg Amin **32b** als farblosen Schaum (GC-MS: m/z theor.: 425, prakt.: 425).

25 Beispiel 27

11 β -[6-(Pyrrolidin-1-yl)hexyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (33b)

30

32 mg Gemisch **30b** ergeben in der Umsetzung mit Pyrrolidin (10 Äquivalente) unter Zusatz von Natriumcarbonat analog Vorschrift 17.2 33 mg Amin **33b** als farblosen Schaum (GC-MS: m/z theor.: 451, prakt.: 451).

Beispiel 28

11 β -[6-(1-Piperidyl)hexyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (34b)

5

34 mg Gemisch **30b** ergeben in der Umsetzung mit Piperidin (10 Äquivalente) unter Zusatz von Natriumcarbonat analog Vorschrift 17.2 40 mg Amin **34b** als farblosen Schaum (GC-MS: m/z theor.: 465, prakt.: 465).

10 **Beispiel 29**

11 β -(6-Morpholinohexyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (35b)

32 mg Gemisch **30b** ergeben in der Umsetzung mit Morpholin (10 Äquivalente) unter 15 Zusatz von Natriumcarbonat analog Vorschrift 17.2 32 mg Amin **35b** als farblosen Schaum (GC-MS: m/z theor.: 467, prakt.: 467).

Beispiel 30

20 **11 β -{6-[Methyl(8,8,9,9,9-pentafluoronyl)amino]hexyl}-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (36b)**

39 mg Amin **31b** ergeben in der Umsetzung mit 8,8,9,9,9-Pentafluoronyltosylat analog 25 Vorschrift 22.1 22 mg Amin **36b** als farblosen Schaum (GC-MS: m/z theor.: 627, prakt.: 627).

Beispiel 31

30 **11 β -{6-[(7,7,8,8,9,9,9-Heptafluoronyl)methylamino]hexyl}-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (37b)**

39 mg Amin **31b** ergeben in der Umsetzung mit 7,7,8,8,9,9,9-Heptafluoronyltosylat analog Vorschrift 22.1 21 mg Amin **37b** als farblosen Schaum (GC-MS: m/z theor.: 663, prakt.: 663).

35

Beispiel 32

 11β -{6-[Methyl(octanoyl)amino]hexyl}-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (38b)

5

10 mg Amin **31b** ergeben in der Umsetzung mit Octansäure-N-succinimidylester analog Vorschrift 24.1 10 mg Amin **38b** als farblose Kristalle [LC-MS: m/z theor.: 537, prakt.: 538 ($M+H$) $^+$].

10 Beispiel 33

Allgemeine Vorschrift zur Oxidation der Aldehyde 9a-b (Schema 8)

Eine entsprechende Menge Aldehyd wird in tertButanol (5 ml/mmol) gelöst.

15 Nacheinander werden 2-Methylbut-2-en (1 ml/mmol) sowie eine Lösung aus Natriumchlorit (1.1 Äquiv.) und Natriumdihydrogenphosphat Dihydrat (1.1 Äquiv.) in Wasser (1 ml/mmol) zugetropft. Anschließend wird das Reaktionsgemisch bis zum vollständigen Umsatz bei Raumtemperatur gerührt. Zur Aufarbeitung erfolgt eine Phasentrennung zwischen Diethylether/ Wasser, die wässrige Phase wird mit 5% 20 Salzsäure auf pH~ 2 eingestellt, mit Natriumchlorid gesättigt und mehrmals mit Diethylether extrahiert. Die organische Phase wird mit Wasser und ges. Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Die säulenchromatographische Reinigung erfolgt an Kieselgel mit einem Cyclohexan/Essigester-Gemisch als Eluenten und ergibt die entsprechenden Carbonsäuren.

25

5-[17 β -(tert.-Butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]valeriansäure (39a)

30 195 mg Aldehyd **9a** ergeben in der Umsetzung analog Vorschrift 33.1 136 mg Carbonsäure **39a** als farblose Kristalle [LC-MS: m/z theor.: 526, prakt.: 527 ($M+H$) $^+$].

Allgemeine Arbeitsvorschrift zur Überführung der Carbonsäuren 39a-b in die Amide 40a-b (Schema 8)

- 5 Eine entsprechende Menge Carbonsäure wird in Dichlormethan (10 ml/mmol) gelöst und auf -10°C gekühlt. Nacheinander werden N-Methylmorpholin (4 Äquiv.), Isobutylchloroformiat (4 Äquiv.) und nach weiteren 30 Minuten nButylmethylamin (6 Äquiv.) zugetropft. Anschließend wird das Reaktionsgemisch bis zum vollständigen Umsatz bei Raumtemperatur gerührt. Zur Aufarbeitung erfolgt eine Phasentrennung
 10 zwischen Dichlormethan/ ges. Natriumhydrogencarbonat-Lösung. Die wässrige Phase wird mehrmals mit Dichlormethan extrahiert, die vereinigten organischen Phasen mit ges. Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Die säulenchromatographische Reinigung erfolgt an Kieselgel mit einem Cyclohexan/ Essigester-Gemisch als Eluenten und ergibt die entsprechenden Amide.

15

N-nButyl-N-methyl-5-[17 β -(tert.-butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]valeramid (40a)

- 20 130 mg Carbonsäure **39a** ergeben in der Umsetzung analog Vorschrift 33.2 81 mg Amid **40a** als farblosen Schaum [LC-MS: m/z theor.: 595, prakt.: 596 (M+H)⁺].

N-nButyl-N-methyl-5-[3,17 β -dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]valeramid (41a)

- 25 80 mg Amid **40a** ergeben in der Umsetzung analog Vorschrift 1.2 31 mg Estratrienol **41a** als farblosen Schaum [LC-MS: m/z theor.: 467, prakt.: 468 (M+H)⁺].

Beispiel 34

- 30 **6-[17 β -(tert.-Butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]capronsäure (39b)**

150 mg Aldehyd **9b** ergeben in der Umsetzung analog Vorschrift 33.1 108 mg Carbonsäure **39b** als farblose Kristalle [LC-MS: m/z theor.: 540, prakt.: 541 (M+H)⁺].

35

N-nButyl-N-methyl-6-[17 β -(tert-butyldimethylsilyloxy)-3-methoxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]capronamid (40b)

5 105 mg Carbonsäure **39b** ergeben in der Umsetzung analog Vorschrift 33.2 63 mg Amid **40b** als farblosen Schaum [LC-MS: m/z theor.: 609, prakt.: 610 ($M+H$) $^+$].

N-nButyl-N-methyl-6-[3,17 β -dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]capronamid (41b)

10 60 mg Amid **40b** ergeben in der Umsetzung analog Vorschrift 1.2 28 mg Estratrienol **41b** als farblosen Schaum [LC-MS: m/z theor.: 481, prakt.: 482 ($M+H$) $^+$].

Beispiel 35

15 **11 β -(5-Thiocyanatopentyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol (42) (Schema 7)**

Zu einer Lösung von 13 mg Bromid **30a** in 0.3 ml N,N-Dimethylformamid werden nacheinander 8.4 mg Kaliumrhodanid und 32 mg Tetrabutylammoniumiodid gegeben
20 und die Reaktionslösung anschließend bis zur vollständigen Umsetzung gerührt. Zur Aufarbeitung erfolgt eine Phasentrennung mittels Essigester/ Wasser und die wässrige Phase wird mehrmals mit Essigester extrahiert. Die organische Phase wird mit Wasser und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird säulenchromatographisch (Cyclohexan/Essigester)
25 gereinigt und ergibt 9 mg Rhodanid **42** als farblosen Schaum [LC-MS: m/z theor.: 425, prakt.: 426 ($M+H$) $^+$].

Beispiel 36

30 **6-[3,17 β -Dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]capronitril (43a) (Schema 2)**

16 mg Steroid **11a** ergeben in der Umsetzung analog Vorschrift 1.2 7 mg Estratrienol **43a** als farblosen Schaum (GC-MS: m/z theor.: 393, prakt.: 393).

Beispiel 37

7-[3, 17 β -Dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl] heptanitril (43b)

5

22 mg Steroid **11b** ergeben in der Umsetzung analog Vorschrift 1.2 12 mg Estratrienol **43b** als farblosen Schaum (GC-MS: m/z theor.: 407, prakt.: 407).

Beispiel 38

10

Allgemeine Arbeitsvorschrift zur Oppenauer-Oxidation der 17 β -Hydroxygruppe

Zu einer Lösung des entsprechenden Alkohols (1 Äquiv.) in Toluol (20 ml/mmol) werden nacheinander Cyclohexanon (50 Äquiv.) und Aluminiumisopropylat (10 Äquiv.)

15

gegeben. Die Reaktionslösung wird anschließend bis zur vollständigen Umsetzung unter Rückfluss erhitzt. Zur Aufarbeitung wird die Reaktionslösung bei Raumtemperatur mit 1N Salzsäure angesäuert und die Phasen mittels Diethylether/ Wasser getrennt. Die organische Phase wird mit Wasser und ges. Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet, der Diethylether und das Toluol am

20

Vakuumrotationsverdampfer entfernt und die restliche Lösungsmittelmenge mit Wasser azeotrop abdestilliert. Der so erhaltene Rückstand wird säulenchromatographisch (Cyclohexan/ Essigester) gereinigt und man erhält die entsprechenden 17-Ketone.

3-Hydroxy-11 β -[(R)-6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-17-

25 **on (44a D1)**

50 mg Alkohol **15a D1** ergeben in der Umsetzung analog Vorschrift 38.1 40 mg Keton **44a D1** als farblosen Schaum (GC-MS: m/z theor.: 450, prakt.: 450).

30

17 α -Methyl-11 β -[(R)-6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (45a D1)

39 mg Keton **44a D1** ergeben in der Umsetzung analog Vorschrift 13.1 30 mg Alkohol

45a D1 als farblosen Schaum (GC-MS: m/z theor.: 466, prakt.: 466).

35

Beispiel 39

5 **3-Hydroxy-11 β -[(S)-6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-17-on (44a D2)**

10 mg Alkohol **15a D2** ergeben in der Umsetzung analog Vorschrift 38.1 42 mg Keton **44a D2** als farblosen Schaum (GC-MS: m/z theor.: 450, prakt.: 450).

15 **17 α -Methyl-11 β -[(S)-6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (45a D2)**

20 mg Keton **44a D2** ergeben in der Umsetzung analog Vorschrift 13.1 19 mg Alkohol **45a D2** als farblosen Schaum (GC-MS: m/z theor.: 466, prakt.: 466).

15 Beispiel 40

20 **3-Hydroxy-11 β -(7,7,7-Trifluor-6-hydroxyheptyl)-8-vinyl-estra-1,3,5(10)-trien-17-on (44b D1)**

25 mg Alkohol **15b D1** ergeben in der Umsetzung analog Vorschrift 38.1 27 mg Keton **44b D1** als farblosen Schaum (GC-MS: m/z theor.: 464, prakt.: 464).

25 **17 α -Methyl-11 β -(7,7,7-Trifluor-6-hydroxyheptyl)-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (45b D1)**

30 mg Keton **44b D1** ergeben in der Umsetzung analog Vorschrift 13.1 20 mg Alkohol **45b D1** als farblosen Schaum (GC-MS: m/z theor.: 480, prakt.: 480).

30 Beispiel 41

35 **3-Hydroxy-11 β -(7,7,7-Trifluor-6-hydroxyheptyl)-8-vinyl-estra-1,3,5(10)-trien-17-on (44b D2)**

35 mg Alkohol **15b D2** ergeben in der Umsetzung analog Vorschrift 38.1 25 mg Keton **44b D2** als farblosen Schaum (GC-MS: m/z theor.: 464, prakt.: 464).

40 **17 α -Methyl-11 β -(7,7,7-Trifluor-6-hydroxyheptyl)-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (45b D2)**

23 mg Keton **44b D2** ergeben in der Umsetzung analog Vorschrift 13.1 18 mg Alkohol **45b D2** als farblosen Schaum (GC-MS: m/z theor.: 480, prakt.: 480).

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The preceding preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way

5 whatsoever.

In the foregoing and in the examples, all temperatures are set forth uncorrected in degrees Celsius and, all parts and percentages are by weight, unless otherwise indicated.

The entire disclosures of all applications, patents and publications, cited herein
10 and of corresponding German application No. 10318896.7, filed April 22, 2003, and U.S. Provisional Application Serial No. 60/464,630, filed April 23, 2003, are incorporated by reference herein.

The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this
15 invention for those used in the preceding examples.

From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

20

Patentansprüche

5 1. Verbindungen der allgemeinen Formel I

worin

10

R^3 eine Gruppe R^{19} -O-, R^{20} SO₂-O-, -O-C(O)R²¹;
n 3, 4, 5

X eine Gruppe der Formel II

15

worin

Z und W unabhängig voneinander R^{19} ,
oder

20 Z und W zusammen ein Sauerstoffatom,

Y -OR¹⁹, -CN, -SCN, ein Halogenatom, R^{20} , R^{20} SO₂-O-;
oder

Y R^{19} oder R^{20} , wenn Z und W zusammen ein Sauerstoffatom darstellen;

25

R^{17} und R^{17}' gemeinsam ein Sauerstoffatom, eine Gruppe =CR²³R²⁴,

worin

R^{23} und R^{24} unabhängig voneinander ein Wasserstoffatom oder ein Halogen;

5 oder

R^{17} Wasserstoff, $-OR^{19}$ oder Halogen;

$R^{17'}$ R^{19} , $-OR^{19}$, Halogen, $R^{20}SO_2-O-$, $-C(O)R^{21}$ oder
 $-O-C(O)R^{21}$;

10 R^{19}

ein Wasserstoffatom,

einen Rest der Formel $C_pF_qH_r$ mit $p = 1, 2, 3, 4, 5, 6, 7, 8, 9$; $q > 1$ und $q+r = 2p+1$;

eine unverzweigte C_1-C_8 -Alkylgruppe oder verzweigte C_3-C_6 -Alkylgruppe, eine gegebenenfalls mit einem Phenyl-Rest substituierte

15 C_3-C_6 -Cycloalkylgruppe, eine $(C_3-C_6$ -Cycloalkyl)- C_1-C_4 -alkylengruppe, eine verzweigte oder unverzweigte C_2-C_5 -Alkenylgruppe, eine C_2-C_5 -Alkinylgruppe; oder eine unsubstituierte oder substituierte Aryl-, Heteroaryl-, Heterocycl-, Aryl- C_1-C_4 -alkylen-, Heteroaryl- C_1-C_4 -alkylen Gruppe;

20

R^{20} eine $R^{21}R^{22}N$ -Gruppe; eine Gruppe $-C(NOR^{19})H$, oder eine Gruppe der allgemeinen Formel III

25 worin

V $-CH_2-$, ein Sauerstoffatom oder ein Schwefelatom, oder $=N-R^{25}$,

m 0, 1, 2, 3, 4, 5, 6, 7 oder 8;

o 0, 1, 2, 3, 4, 5, 6, 7 oder 8,

wobei deren Summe

30 $m + o$ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ist;

R^{21} und R^{22} unabhängig voneinander R^{19} ;
 R^{25} R^{19} , $R^{20}SO_2-$ oder eine Acylgruppe $-C(O)R^{21}$

5 darstellen.

2. Verbindungen der allgemeinen Formel I nach Anspruch 1 dadurch gekennzeichnet, dass $Y = -OH$, $-CN$, $-SCN$, ein Halogen, oder R^{20} bedeutet.

10

3. Verbindungen der allgemeinen Formel I nach Anspruch 1 dadurch gekennzeichnet, dass $Y = R^{20}$, wenn Z und W zusammen ein Sauerstoffatom darstellen.

15

4. Verbindungen der allgemeinen Formel I nach Anspruch 1 dadurch gekennzeichnet, dass
 Y $-OH$, $-CN$, $-SCN$, ein Halogenatom, oder R^{20} ,

und

R^{17} und $R^{17'}$ gemeinsam ein Sauerstoffatom,

20 oder

R^{17} Wasserstoff, $-OH$;

$R^{17'}$ Wasserstoff, $-OH$, C_1-C_4 -Alkylgruppe, C_2-C_5 -Alkenylgruppe, eine C_2-C_5 -Alkinylgruppe, oder eine Trifluormethylgruppe

darstellen.

25

5. Verbindungen der allgemeinen Formel I nach Anspruch 1 dadurch gekennzeichnet, dass

Y R^{20} , wenn Z und W zusammen ein Sauerstoffatom darstellen,
und

30 R^{17} und $R^{17'}$ gemeinsam ein Sauerstoffatom,

oder

R^{17} Wasserstoff, $-OH$;

$R^{17'}$ Wasserstoff, $-OH$, C_1-C_4 -Alkylgruppe, C_2-C_5 -Alkenylgruppe, eine C_2-C_5 -Alkinylgruppe, oder eine Trifluormethylgruppe

35 darstellen.

6. Verbindungen nach Anspruch 1, nämlich

- 11 β -[(R) 6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
5 (Diastereomer 1),
11 β -[(S) 6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
11 β -[7,7,7-Trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
10 11 β -[7,7,7-Trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
11 β -[8,8,8-Trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
(Diastereomer 1),
11 β -[8,8,8-Trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
15 (Diastereomer 2),
11 β -[6,6,6-Trifluor-5-hydroxy-5-(trifluormethyl)hexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
11 β -[7,7,7-Trifluor-6-hydroxy-6-(trifluormethyl)heptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
20 11 β -[8,8,8-Trifluor-7-hydroxy-7-(trifluormethyl)octyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
11 β -[7,7,7,6,6-Pentafluor-5-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
11 β -[7,7,7,6,6-Pentafluor-5-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
25 (Diastereomer 2),
11 β -[8,8,8,7,7-Pentafluor-6-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
11 β -[8,8,8,7,7-Pentafluor-6-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
30 11 β -[9,9,9,8,8-Pentafluor-7-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
11 β -[9,9,9,8,8-Pentafluor-7-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),

- 11 β -[8,8,8,7,7,6,6-Heptafluor-5-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
11 β -[8,8,8,7,7,6,6-Heptafluor-5-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
5 (Diastereomer 2),
11 β -[9,9,9,8,8,7,7-Heptafluor-6-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
11 β -[9,9,9,8,8,7,7-Heptafluor-6-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2)
- 10 11 β -[10,10,10,9,9,8,8-Heptafluor-7-hydroxydecyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
11 β -[10,10,10,9,9,8,8-Heptafluor-7-hydroxydecyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
11 β -(5-Brompentyl)-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
15 11 β -[5-(Methylamino)pentyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[5-(Dimethylamino)pentyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[5-(Pyrrolidin-1-yl)pentyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[5-(1-Piperidyl)pentyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -(5-Morpholinopentyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
20 11 β -{5-[Methyl(9,9,9,8,8-pentafluornonyl)amino]pentyl}-8-vinylestra-1,3,5(10)-trien-
3,17 β -diol,
11 β -{5-[(9,9,9,8,8,7,7-Heptafluoronyl)methylamino]pentyl}-8-vinylestra-1,3,5(10)-trien-
3,17 β -diol,
11 β -{5-[Methyl(octanoyl)amino]pentyl}-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
25 11 β -(6-Chlorhexyl)-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
11 β -[6-(Methylamino)hexyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[6-(Dimethylamino)hexyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[6-(Pyrrolidin-1-yl)hexyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[6-(1-Piperidyl)hexyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
30 11 β -(6-Morpholinohexyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -{6-[Methyl(9,9,9,8,8-pentafluornonyl)amino]hexyl}-8-vinylestra-1,3,5(10)-trien-
3,17 β -diol,
11 β -{6-[(9,9,9,8,8,7,7-Heptafluoronyl)methylamino]hexyl}-8-vinylestra-1,3,5(10)-trien-
3,17 β -diol,

- 11 β -{6-[Methyl(octanoyl)amino]hexyl}-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
11 β -(7-Bromheptyl)-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
11 β -[7-(Methylamino)heptyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[7-(Dimethylamino)heptyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
- 5 11 β -[7-(Pyrrolidin-1-yl)heptyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -[7-(1-Piperidyl)heptyl]-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -(7-Morpholinoheptyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -{7-[Methyl(9,9,9,8,8-pentafluornonyl)amino]heptyl}-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
- 10 11 β -{7-[(9,9,9,8,8,7,7-Heptafluoronyl)methylamino]heptyl}-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -{7-[Methyl(octanoyl)amino]heptyl}-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
*N-n*Butyl-*N*-methyl-5-[3,17 β -dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]valeramid,
*N-n*Butyl-*N*-methyl-6-[3,17 β -dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]capronamid,
- 15 *N-n*Butyl-*N*-methyl-7-[3,17 β -dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]oenanthamid,
11 β -(5-Thiocyanatopentyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -(6-Thiocyanatohexyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
11 β -(7-Thiocyanatoheptyl)-8-vinylestra-1,3,5(10)-trien-3,17 β -diol,
6-[3,17 β -Dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]capronitril,
- 20 7-[3,17 β -Dihydroxy-8-vinylestra-1,3,5(10)-trien-11 β -yl]oenanthnitril,
17 β -Hydroxy-11 β -[(R) 6,6,6-trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl - sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[(S) 6,6,6-trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl- sulfamat (Diastereomer 2),
- 25 17 β -Hydroxy-11 β -[7,7,7-trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl- sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[7,7,7-trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl- sulfamat (Diastereomer 2),

- 17 β -Hydroxy-11 β -[8,8,8-trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[8,8,8-trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
17 β -Hydroxy-11 β -[6,6,6-trifluor-5-hydroxy-5-(trifluormethyl)hexyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[7,7,7-trifluor-6-hydroxy-6-(trifluormethyl)heptyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[8,8,8-trifluor-7-hydroxy-7-(trifluormethyl)octyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[7,7,7,6,6-pentafluor-5-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[7,7,7,6,6-pentafluor-5-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
17 β -Hydroxy-11 β -[8,8,8,7,7-pentafluor-6-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[8,8,8,7,7-pentafluor-6-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
17 β -Hydroxy-11 β -[9,9,9,8,8-pentafluor-7-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-11 β -[9,9,9,8,8-pentafluor-7-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
11 β -[5-(Dimethylamino)pentyl]-17 β -hydroxy-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[5-(pyrrolidin-1-yl)pentyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[5-(1-piperidyl)pentyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -(5-morpholinopentyl)-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
11 β -[6-(Dimethylamino)hexyl]-17 β -hydroxy-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[6-(pyrrolidin-1-yl)hexyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[6-(1-piperidyl)hexyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -(6-morpholinoethyl)-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
11 β -[7-(Dimethylamino)heptyl]-17 β -hydroxy-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[7-(pyrrolidin-1-yl)heptyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,
17 β -Hydroxy-11 β -[7-(1-piperidyl)heptyl]-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,

17 β -Hydroxy-11 β -(7-morpholinoheptyl)-8-vinylestra-1,3,5(10)-trien-3-yl-sulfamat,

- 11 β -[7,7,6-Trifluor-5-hydroxyhept-6-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
5 (Diastereomer 1),
11 β -[7,7,6-Trifluor-5-hydroxyhept-6-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
11 β -[8,8,7-Trifluor-6-hydroxyoct-7-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
10 11 β -[8,8,7-Trifluor-6-hydroxyoct-7-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
11 β -[9,9,8-Trifluor-7-hydroxynon-8-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
11 β -[9,9,8-Trifluor-7-hydroxynon-8-enyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
15 (Diastereomer 2),
11 β -[5-Hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 1),
11 β -[5-Hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 2),
11 β -[6-Hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 1),
20 11 β -[6-Hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 2),
11 β -[7-Hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 1),
11 β -[7-Hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 2),
11 β -[5-Methyl-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
25 11 β -[6-Methyl-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
11 β -[7-Methyl-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol,
17 α -Methyl-11 β -[(R) 6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
30 (Diastereomer 1),
17 α -Methyl-11 β -[(S) 6,6,6-Trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
17 α -Methyl-11 β -[7,7,7-Trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),
17 α -Methyl-11 β -[7,7,7-Trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 2),
17 α -Methyl-11 β -[8,8,8-Trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol
(Diastereomer 1),

- 17 α -Methyl-11 β -[8,8,8-Trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3,17 β -diol (Diastereomer 2).
- 17 β -Hydroxy-11 β -[8,8,8,7,7,6,6-heptafluor-5-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
- 17 β -Hydroxy-11 β -[8,8,8,7,7,6,6-heptafluor-5-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
- 17 β -Hydroxy-11 β -[9,9,9,8,8,7,7-heptafluor-6-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
- 10 17 β -Hydroxy-11 β -[9,9,9,8,8,7,7-heptafluor-6-hydroxynonyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
- 17 β -Hydroxy-11 β -[10,10,10,9,9,8,8-heptafluor-7-hydroxydecyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
- 17 β -Hydroxy-11 β -[10,10,10,9,9,8,8-heptafluor-7-hydroxydecyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
- 15 17 β -Hydroxy-11 β -[7,7,6-trifluor-5-hydroxyhept-6-enyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
- 17 β -Hydroxy-11 β -[7,7,6-trifluor-5-hydroxyhept-6-enyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
- 20 17 β -Hydroxy-11 β -[8,8,7-trifluor-6-hydroxyoct-7-enyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
- 17 β -Hydroxy-11 β -[8,8,7-trifluor-6-hydroxyoct-7-enyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
- 25 17 β -Hydroxy-11 β -[9,9,8-trifluor-7-hydroxynon-8-enyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
- 17 β -Hydroxy-11 β -[9,9,8-trifluor-7-hydroxynon-8-enyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
- 30 17 β -Hydroxy-17 α -methyl-11 β -[(R) 6,6,6-trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
- 17 β -Hydroxy-17 α -methyl-11 β -[(S) 6,6,6-trifluor-5-hydroxyhexyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),
- 35 17 β -Hydroxy-17 α -methyl-11 β -[7,7,7-trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
- 17 β -Hydroxy-17 α -methyl-11 β -[7,7,7-trifluor-6-hydroxyheptyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2),

- 17 β -Hydroxy-17 α -methyl-11 β -[8,8,8-trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 1),
17 β -Hydroxy-17 α -methyl-11 β -[8,8,8-trifluor-7-hydroxyoctyl]-8-vinyl-estra-1,3,5(10)-trien-3-yl-sulfamat (Diastereomer 2).
7. Pharmazeutische Zusammensetzungen, enthaltend mindestens eine Verbindung gemäß einem der vorherigen Ansprüche sowie einen pharmazeutisch verträglichen Hilfs- und/oder Trägerstoff.
- 10 8. Pharmazeutische Zusammensetzungen, enthaltend mindestens eine Verbindung nach einem der vorherigen Ansprüche, die neben mindestens einer Verbindung der allgemeinen Formel I gemäß Anspruch 1 mindestens eine Verbindung ausgewählt aus der Gruppe der GnRH-Antagonisten,
- 15 Progesteronrezeptorantagonisten, Mesoprogesterinen, Gestagenen oder gewebeselektiven Gestagenen enthalten.
- 20 9. Verwendung der Verbindungen der allgemeinen Formel 1 nach einem der Ansprüche 1 bis 6 zur Herstellung eines Arzneimittels.
10. Verwendung der Verbindungen der allgemeinen Formel 1 nach Anspruch 9 zur Kontrazeption bei der Frau.
- 25 11. Verwendung der Verbindungen der allgemeinen Formel 1 nach Anspruch 9 zur Kontrazeption beim Mann.
12. Verwendung der Verbindungen der allgemeinen Formel 1 nach Anspruch 9 zur Behandlung von gutartigen oder bösartigen proliferativen Erkrankungen des Ovars.
- 30 13. Verwendung nach Anspruch 12 zur Behandlung von Ovarialcarcinomen.
14. Verwendung nach Anspruch 12 zur Behandlung von Granulosazelltumoren.

15. Verwendung nach einem der Ansprüche 9 bis 14 dadurch gekennzeichnet, dass die Funktion anderer östrogensensitiver Organe wie Uterus, Leber nicht beeinträchtigt wird.

5

16. Zwischenprodukte der allgemeinen Formel VI

- 10 worin die Reste X, R³, R¹⁷, R^{17'} und n die gleiche Bedeutung haben wie die in der allgemeinen Formel I.

17. Zwischenprodukte der allgemeinen Formel VII

15

- worin die Reste X, R³, R¹⁷, R^{17'} und n die gleiche Bedeutung haben wie die in der allgemeinen Formel I.

20

18. Zwischenprodukte der allgemeinen Formel VIII

5

worin die Reste X, R³, R¹⁷, R^{17'} und n die gleiche Bedeutung haben wie die in der allgemeinen Formel I.

19. Zwischenprodukte der allgemeinen Formel IX

10

worin die Reste X, R³, R¹⁷, R^{17'} und n die gleiche Bedeutung haben wie die in der allgemeinen Formel I.

15

Zusammenfassung

- Die vorliegende Erfindung betrifft 8 β -Vinyl-11 β -(ω -substituierte)alkyl-estra-1,3,5(10)-triene der allgemeinen Formel I
- 5

- 10 mit ER β -antagonistischer Aktivität, Verfahren zu deren Herstellung, deren Zwischenprodukte, pharmazeutische Präparate enthaltend die erfindungsgemäßen Verbindungen, sowie deren Verwendung zur Herstellung von Arzneimitteln.
- 15 Die neuen Verbindungen sind zur Kontrazeption beim Mann und der Frau einsetzbar, ohne daß sie andere Östrogen-sensitive Organe wie den Uterus oder die Leber beeinflußen.
- Sie sind auch zur Behandlung von gutartigen oder bösartigen proliferativen Erkrankungen des Ovars, wie Ovarialcarcinomen und Granulosazelltumoren geeignet.