Hoja 1

Introducción al Cálculo de Probabilidades

Curso de Probabilidad (UCM) - 2017/2018

Ej. 1. Dados el conjunto $B \subset \Omega$ y las sucesiones $\{A_n : n \geq 1\} \subset \mathcal{P}(\Omega)$ y $\{B_n : n \geq 1\} \subset \mathcal{P}(\Omega)$, se pide:

- (a) Demostrar la igualdad lím sup $A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$.
- (b) Si $A_n \downarrow$, demostrar que existe $\lim_{n\to\infty} A_n$ y que $\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$.
- (c) Demostrar que lím sup $A_n = \limsup A_{2n} \cup \limsup A_{2n-1} y$ lím inf $A_n = \liminf A_{2n} \cap \liminf A_{2n-1}$.
- (d) Demostrar que lím $\sup(B-A_n) = B-\lim\inf A_n y \lim\inf (B-A_n) = B-\lim\sup A_n$.
- (e) Demostrar que (lím sup A_n)^c = lím inf A_n^c y (lím inf A_n)^c = lím sup A_n^c .
- (f) Demostrar que lím $\sup(A_n \cup B_n) = \limsup A_n \cup \limsup B_n y \liminf (A_n \cap B_n) = \liminf A_n \cap \liminf B_n$.
- (a) Demostramos la igualdad recurriendo al método de probar el doble contenido. Para ello definimos los conjuntos auxiliares $\sigma_k := \bigcup_{n=k}^{\infty} A_n, \forall k \geq 1$.

 \subset : Sea $\omega \in \text{lím sup } A_n$. Por definición, ω pertenece a infinitos conjuntos A_n . Si existiera $k_0 \geq 1$ tal que $\omega \notin \sigma_{k_0}$, entonces ω a lo sumo estaría en los primeros A_1, \ldots, A_{k_0-1} conjuntos (juna cantidad finita!), por lo que se tiene que $\forall k \geq 1$, $\omega \in \sigma_k$. De esta forma, $\omega \in \bigcap_{k=1}^{\infty} \sigma_k = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$.

 \supset : Sea $\omega \in \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$. Entonces $\omega \in \bigcap_{k=1}^{\infty} \sigma_k$ y se tiene que $\forall k \geq 1, \ \omega \in \sigma_k$. Si ω estuviera a lo sumo en una cantidad finita de conjuntos A_n , entonces $\exists k_0 \geq 1$ tal que $\forall k \geq k_0, \ \omega \notin A_k$ y en particular $\omega \notin \sigma_{k_0}$ (¡contradicción!), por lo que necesariamente ω pertenece a infinitos conjuntos A_n . De esta forma, $\omega \in \text{lím sup } A_n$.

(b) Definimos los conjuntos auxiliares $\delta_k := \bigcap_{n=k}^{\infty} A_n$ y $\sigma_k := \bigcup_{n=k}^{\infty} A_n$, $\forall k \geq 1$. Fijado $k \geq 1$, como $A_n \downarrow$, entonces $\forall n > k$, $A_k \supset A_n$ y podemos deducir que $\sigma_k = \bigcup_{n=k}^{\infty} A_n = A_k$. Por tanto:

$$\limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n = \bigcap_{k=1}^{\infty} \sigma_k = \bigcap_{k=1}^{\infty} A_k$$

Por otra parte, fijado $k \geq 1$, como $A_n \downarrow$, entonces $\forall n < k, A_k \subset A_n$ y podemos deducir que $\delta_k = \bigcap_{n=k}^{\infty} A_n = \bigcap_{n=1}^{\infty} A_n$. Por tanto:

$$\liminf A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n = \bigcup_{k=1}^{\infty} \delta_k = \bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

Se tiene entonces que lím sup $A_n = \liminf A_n$, por lo que existe $\lim_{n\to\infty} A_n$ y éste adopta el valor de los límites inferior y superior, es decir, $\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$.

(c) $\limsup A_n = \limsup A_{2n} \cup \limsup A_{2n-1}$:

$$\omega \in \limsup A_n \iff \omega \text{ está en infinitos } A_n$$

$$\iff \delta \left\{ \begin{array}{l} \omega \text{ está en infinitos } A_{2n} \\ \omega \text{ está en infinitos } A_{2n-1} \end{array} \right.$$

$$\iff \delta \left\{ \begin{array}{l} \omega \in \limsup A_{2n} \\ \omega \in \limsup A_{2n-1} \end{array} \right.$$

$$\iff \omega \in \limsup A_{2n} \cup \limsup A_{2n-1}$$

$$\iff \omega \in \limsup A_{2n} \cup \liminf A_{2n-1}$$

 $\liminf A_n = \liminf A_{2n} \cap \liminf A_{2n-1}:$

$$\omega \in \liminf A_n \iff \omega \text{ está en todo } A_n, \text{ menos un n° finito}$$

$$\iff y \begin{cases} \omega \text{ está en todo } A_{2n}, \text{ menos un n° finito} \\ \omega \text{ está en todo } A_{2n-1}, \text{ menos un n° finito} \end{cases}$$

$$\iff y \begin{cases} \omega \in \liminf A_{2n}, \text{ menos un n° finito} \\ \omega \in \liminf A_{2n-1}, \text{ menos un n° finito} \end{cases}$$

$$\iff \omega \in \liminf A_{2n-1}$$

$$\iff \omega \in \liminf A_{2n-1}$$

Este resultado puedo extenderse fácilmente para $k \geq 1$ como:

$$\limsup A_n = \limsup A_{kn} \cup \limsup A_{kn-1} \cup \ldots \cup \limsup A_{kn-(k-1)}$$

$$\liminf A_n = \liminf A_{kn} \cap \liminf A_{kn-1} \cap \ldots \cap \liminf A_{kn-(k-1)}$$

(d) Basta recordar las leyes de De Morgan para conjuntos:

$$(A \cup B)^c = A^c \cap B^c, \qquad (A \cap B)^c = A^c \cup B^c$$

Entonces:

$$\lim \sup (B - A_n) = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} (B - A_n) = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} (B \cap A_n^c) = \\
= \bigcap_{k=1}^{\infty} (B \cap \bigcup_{n=k}^{\infty} A_n^c) = \bigcap_{k=1}^{\infty} (B \cap (\bigcap_{n=k}^{\infty} A_n)^c) = \\
= B \cap \bigcap_{k=1}^{\infty} (\bigcap_{n=k}^{\infty} A_n)^c = B \cap (\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n)^c = \\
= B - \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n = B - \lim \inf A_n$$

Y análogamente:

$$\lim\inf (B - A_n) = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} (B - A_n) = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} (B \cap A_n^c) =
= \bigcup_{k=1}^{\infty} (B \cap \bigcap_{n=k}^{\infty} A_n^c) = \bigcup_{k=1}^{\infty} (B \cap (\bigcup_{n=k}^{\infty} A_n)^c) =
= B \cap \bigcup_{k=1}^{\infty} (\bigcup_{n=k}^{\infty} A_n)^c = B \cap (\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n)^c =
= B - \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n = B - \lim\sup A_n$$

(e) Recurriendo de nuevo a las leyes de De Morgan:

$$(\limsup A_n)^c = \left(\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n\right)^c = \bigcup_{k=1}^{\infty} \left(\bigcup_{n=k}^{\infty} A_n\right)^c =$$
$$= \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} \left(A_n\right)^c = \liminf A_n^c$$

Y análogamente:

$$(\liminf A_n)^c = \left(\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n\right)^c = \bigcap_{k=1}^{\infty} \left(\bigcap_{n=k}^{\infty} A_n\right)^c =$$
$$= \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} \left(A_n\right)^c = \limsup A_n^c$$

(f) $\limsup (A_n \cup B_n) = \limsup A_n \cup \limsup B_n$:

$$\omega \in \limsup(A_n \cup B_n) \iff \omega \text{ está en infinitos } A_n \cup B_n$$

$$\iff \circ \left\{ \begin{array}{l} \omega \text{ está en infinitos } A_n \\ \omega \text{ está en infinitos } B_n \end{array} \right.$$

$$\iff \circ \left\{ \begin{array}{l} \omega \in \limsup A_n \\ \omega \in \limsup B_n \end{array} \right.$$

$$\iff \omega \in \limsup A_n \cup \limsup B_n$$

 $\liminf (A_n \cap B_n) = \liminf A_n \cap \liminf B_n:$

$$\omega \in \liminf(A_n \cap B_n) \iff \omega \text{ está en todo } A_n \cap B_n, \text{ menos un n}^o \text{ finito}$$

$$\iff y \begin{cases} \omega \text{ está en todo } A_n, \text{ menos un n}^o \text{ finito} \\ \omega \text{ está en todo } B_n, \text{ menos un n}^o \text{ finito} \end{cases}$$

$$\iff y \begin{cases} \omega \in \liminf A_n \\ \omega \in \liminf B_n \end{cases}$$

$$\iff \omega \in \liminf A_n \cap \liminf B_n$$

Ej. 2. Determinar los límites inferiores y superiores de $\{A_n : n \geq 1\}$ cuando:

(a)
$$A_{2n-1} = \mathbb{Q} \cap \left[\frac{1}{n}, \frac{5n}{2n+2}\right] \ y \ A_{2n} = (\mathbb{R} - \mathbb{Q}) \cap \left(-\frac{2}{n}, \frac{7n+3}{9n}\right].$$

(b)
$$A_{3n-2} = (\frac{n-1}{5n+3}, \frac{2n-1}{n}], A_{3n-1} = (\frac{3n}{5n+1}, \frac{3n+2}{n}) \ y \ A_{3n} = [1, \frac{2n^2+1}{n+2}).$$

(c)
$$A_n = \{x \in \mathbb{R} : \frac{1}{n} \le x \le 3 - \frac{1}{n} \}.$$

(a) Podemos hacer uso del resultado probado en (1c). De esta forma simplificaremos el problema estudiando por separado cada una de las subsucesiones indicadas.

 A_{2n-1} : Démonos cuenta de que $\{A_{2n-1}: n \geq 1\}$ es una sucesión monótona creciente, es decir, $A_{2n-1} \uparrow$. Por tanto, la sucesión tiene límite y se verifica:

$$\lim_{n \to \infty} A_{2n-1} = \bigcup_{n=1}^{\infty} A_{2n-1} = \bigcup_{n=1}^{\infty} (\mathbb{Q} \cap [\frac{1}{n}, \frac{5n}{2n+2}]) = \mathbb{Q} \cap (0, \frac{5}{2})$$

 A_{2n} : Démonos cuenta de que $\{A_{2n} : n \geq 1\}$ es una sucesión monótona decreciente, es decir, $A_{2n} \downarrow$. Por tanto, la sucesión tiene límite y se verifica:

$$\lim_{n \to \infty} A_{2n} = \bigcap_{n=1}^{\infty} A_{2n} = \bigcap_{n=1}^{\infty} ((\mathbb{R} - \mathbb{Q}) \cap (-\frac{2}{n}, \frac{7n+3}{9n}]) = (\mathbb{R} - \mathbb{Q}) \cap [0, \frac{7}{9}]$$

Aplicando (1c):

$$\lim \sup A_n = \lim \sup A_{2n} \cup \lim \sup A_{2n-1} = \\
= \left((\mathbb{R} - \mathbb{Q}) \cap [0, \frac{7}{9}] \right) \cup \left(\mathbb{Q} \cap (0, \frac{5}{2}) \right) = (0, \frac{7}{9}] \cup \left(\mathbb{Q} \cap (\frac{7}{9}, \frac{5}{2}) \right) \\
\lim \inf A_n = \lim \inf A_{2n} \cap \lim \inf A_{2n-1} = \\
= \left((\mathbb{R} - \mathbb{Q}) \cap [0, \frac{7}{9}] \right) \cap \left(\mathbb{Q} \cap (0, \frac{5}{2}) \right) = \emptyset$$

(b) Nuevamente, podemos recurrir al resultado demostrado en (1c) para simplificar el problema.

 A_{3n-2} : A diferencia de las del apartado (a), esta sucesión no es monótona y debemos calcular sus límites superior e inferior. Así:

$$\limsup A_{3n-2} = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_{3n-2} = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} \left(\frac{n-1}{5n+3}, \frac{2n-1}{n}\right] = \bigcap_{k=1}^{\infty} \left(\frac{k-1}{5k+3}, 2\right) = \left[\frac{1}{5}, 2\right)$$

$$\lim\inf A_{3n-2} = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_{3n-2} = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} \left(\frac{n-1}{5n+3}, \frac{2n-1}{n}\right] = \bigcup_{k=1}^{\infty} \left[\frac{1}{5}, \frac{2k-1}{k}\right] = \left[\frac{1}{5}, 2\right)$$

Dado que los límites superior e inferior coinciden, la sucesión es convergente y $\lim_{n\to\infty} A_{3n-2} = \left[\frac{1}{5},2\right)$.

 A_{3n-1} : Démonos cuenta de que $\{A_{3n-1}: n \geq 1\}$ es una sucesión monótona decreciente, es decir, $A_{3n-1} \downarrow$. Por tanto, la sucesión tiene límite y se verifica:

$$\lim_{n \to \infty} A_{3n-1} = \bigcap_{n=1}^{\infty} A_{3n-1} = \bigcap_{n=1}^{\infty} \left(\frac{3n}{5n+1}, \frac{3n+2}{n}\right) = \left[\frac{3}{5}, 3\right]$$

 A_{3n} : Démonos cuenta de que $\{A_{3n}: n \geq 1\}$ es una sucesión monótona creciente, es decir, $A_{3n} \uparrow$. Por tanto, la sucesión tiene límite y se verifica:

$$\lim_{n \to \infty} A_{3n} = \bigcup_{n=1}^{\infty} A_{3n} = \bigcup_{n=1}^{\infty} \left[1, \frac{2n^2 + 1}{n + 2}\right) = \left[1, \infty\right)$$

Aplicando (1c):

$$\begin{split} & \limsup A_n = \limsup A_{3n} \, \cup \, \limsup A_{3n-1} \, \cup \, \limsup A_{3n-2} = \\ & = [1,\infty) \, \cup \, \left[\frac{3}{5},3\right] \, \cup \, \left[\frac{1}{5},2\right) = \left[\frac{1}{5},\infty\right) \\ & \limsup A_{3n-2} = \\ & = [1,\infty) \, \cap \, \left[\frac{3}{5},3\right] \, \cap \, \left[\frac{1}{5},2\right) = [1,2) \end{split}$$

(c) Démonos cuenta de que $A_n = \left\{x \in \mathbb{R} : \frac{1}{n} \le x \le 3 - \frac{1}{n}\right\} = \left[\frac{1}{n}, 3 - \frac{1}{n}\right]$ es una sucesión monótona creciente, es decir, $A_n \uparrow$. Por tanto, la sucesión tiene límite y se verifica:

$$\lim_{n \to \infty} A_n = \limsup A_n = \liminf A_n = \bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} [\frac{1}{n}, 3 - \frac{1}{n}] = (0,3)$$

Ej. 3. Supongamos $\Omega = \mathbb{R}^2$. Calcular los conjuntos $\lim_{n\to\infty} E_n$, $\lim_{n\to\infty} E_n^c$, $\lim_{n\to\infty} F_n$, $\lim_{n\to\infty} F_n^c$ y $\lim_{n\to\infty} (E_n \cap F_n^c)$, donde $E_n = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1 + \frac{1}{n}\}$ y $F_n = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le \frac{n}{n+1}\}$.

Atendiendo a su interpretación geométrica, E_n comprende el círculo de radio $\sqrt{1+\frac{1}{n}}$ excluyendo el borde y F_n el de radio $\sqrt{1-\frac{1}{n+1}}$ incluído el borde. Con esto en mente, es sencillo comprobar que la sucesión E_n es monótona decreciente $(E_n\downarrow)$ mientras que F_n es monótona creciente $(F_n\uparrow)$. Por tanto, tiene sentido hablar de sus límites. Atendiendo a su monotonía:

$$\lim_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} E_n = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1 \}$$
$$\lim_{n \to \infty} F_n = \bigcup_{n=1}^{\infty} F_n = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \}$$

Para calcular el límite de sus sucesiones complementarias, hacemos uso del resultado en (1e):

$$\lim_{n \to \infty} E_n^c = (\lim_{n \to \infty} E_n)^c = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > 1\}$$

$$\lim_{n\to\infty}F_n^c=(\lim_{n\to\infty}F_n)^c=\{(x,y)\in\mathbb{R}^2:x^2+y^2\geq 1\}$$

Finalmente, para calcular el de $(E_n \cap F_n^c)$, recurrimos al apartado (1f):

$$\lim_{n \to \infty} (E_n \cap F_n^c) = \lim_{n \to \infty} E_n \cap \lim_{n \to \infty} F_n^c = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

Ej. 4. Calcular $\lim_{n\to\infty} A_n$ en los siguientes casos:

(a)
$$A_n = \{(x,y) \in \mathbb{R}^2 : \frac{1}{n} \le x^2 + y^2 \le 4 - \frac{1}{n}\}.$$

(b)
$$A_n = \{(x, y) \in \mathbb{R}^2 : 0 \le x^2 + y^2 \le \frac{1}{n}\}.$$

(a) Geométricamente, A_n consiste en la corona entre las circunferencias de radio $\sqrt{\frac{1}{n}}$ y $\sqrt{4-\frac{1}{n}}$ incluídos los bordes. Con esta intuición, es fácil comprobar que la sucesión A_n es monótona creciente $(A_n \uparrow)$. Por tanto converge y su límite es:

$$\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n = \{(x, y) \in \mathbb{R}^2 : 0 < x^2 + y^2 < 4\}$$

(b) Geométricamente, A_n es el círculo de radio $\sqrt{\frac{1}{n}}$ incluído el borde. Sabiendo esto, se comprueba rápidamente que la sucesión A_n es monótona decreciente $(A_n \downarrow)$. Por tanto converge y su límite es:

$$\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n = \{(x, y) \in \mathbb{R}^2 : 0 \le x^2 + y^2 \le 0\} = \{(0, 0)\}$$

Ej. 5. Estudiar la convergencia de la sucesión $\{A_n : n \geq 1\} \subset \mathcal{P}(\Omega)$ en los siguientes casos:

- (a) $A_n = (-\frac{1}{n}, 1]$ si n es par y $(-1, \frac{1}{n}]$ si n es impar.
- (b) $A_n = (0,1-\frac{1}{n}]$ si n es impar y $[\frac{1}{n},1)$ si n es par.
- (a) Hacemos uso del resultado en (1c), simplificando el problema.

 A_{2n} : Démonos cuenta de que $\{A_n : n \text{ es par}\} = (-\frac{1}{n}, 1]$ es una sucesión monótona decreciente $(A_{2n} \downarrow)$. Por tanto, la sucesión tiene límite y se verifica:

$$\lim_{n \to \infty} A_{2n} = \bigcap_{n=1}^{\infty} A_{2n} = \bigcap_{n=1}^{\infty} (-\frac{1}{n}, 1] = [0, 1]$$

 A_{2n-1} : Démonos cuenta de que $\{A_n : n \text{ es impar}\} = (-1, \frac{1}{n}]$ es una sucesión monótona decreciente $(A_{2n-1} \downarrow)$. Por tanto, la sucesión tiene límite y se verifica:

$$\lim_{n \to \infty} A_{2n-1} = \bigcap_{n=1}^{\infty} A_{2n-1} = \bigcap_{n=1}^{\infty} (-1, \frac{1}{n}] = (-1, 0]$$

Aplicando (1c):

$$\limsup A_n = \limsup A_{2n} \cup \limsup A_{2n-1} = [0,1] \cup (-1,0] = (-1,1]$$

$$\liminf A_n = \liminf A_{2n} \cap \liminf A_{2n-1} = [0,1] \cap (-1,0] = \{0\}$$

Como lím sup $A_n \neq$ lím inf A_n , la serie diverge y no tiene límite.

(b) Una vez más recurrimos al resultado de (1c) para simplificar el problema.

 A_{2n-1} : Démonos cuenta de que $\{A_n: n \text{ es impar}\} = (0,1-\frac{1}{n}]$ es una sucesión monótona creciente $(A_{2n-1}\uparrow)$. Por tanto, la sucesión tiene límite y se verifica:

$$\lim_{n \to \infty} A_{2n-1} = \bigcup_{n=1}^{\infty} A_{2n-1} = \bigcup_{n=1}^{\infty} (0, 1 - \frac{1}{n}] = (0, 1)$$

 A_{2n} : Démonos cuenta de que $\{A_n : n \text{ es par}\} = [\frac{1}{n}, 1)$ es una sucesión monótona creciente $(A_{2n} \uparrow)$. Por tanto, la sucesión tiene límite y se verifica:

$$\lim_{n \to \infty} A_{2n-1} = \bigcup_{n=1}^{\infty} A_{2n-1} = \bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1\right) = (0, 1)$$

Aplicando (1c):

lím sup
$$A_n =$$
 lím sup $A_{2n} \cup$ lím sup $A_{2n-1} = (0,1) \cup (0,1) = (0,1)$

$$\liminf A_n = \liminf A_{2n} \cap \liminf A_{2n-1} = (0,1) \cap (0,1) = (0,1)$$

Como lím sup $A_n =$ lím inf A_n , la serie converge y su límite es (0,1).