Introduction to Artificial Intelligence Project 3 - Classification

Jianmin Li & Minlie Huang

Spring 2018

Classification

Training with MNIST

0	۵	0	٥	0
1	B		1	t
2	2	2_	2	2.
3	3	3	3	3
4	4	4	4	4
5	5	5	5	5
6	6	6	6	6
1 1 3 1 5 6 7 8 8	-2334 PS 4	3 4 5 9 7 8 9	013456 78 8	0123456789
8	8	8	3	8
9	9	9	9	9

Pre-requirements

- At least 400MB disk space and 800MB memory
- Python package that you should be familiar with
 - numpy
 - sklearn
- Python packages that should be installed:
 - numpy
 - skimage
 - sklearn
 - Anaconda is recommended

Basic Tasks

- KNN (4 points)
 - Implement KNNClassifier.classify method in classifiers.py
 - python dataClassifier.py-c knn-n 5
- Softmax Regression (6 points)
 - Implement *PerceptronClassifier.train* in *classifiers.py*(5 points)
 - python dataClassifier.py -c perceptron
 - Visualize the weights (1 points)
 - Answer the question answers.py in the method q3, returning either 'a' or 'b'
- sklearn MUST NOT BE USED in the above two tasks, OR you will not pass the autograder.

Basic Tasks

- Training SVM with sklearn (3 points)
 - Implement SVMClassifier.train, SVMClassifier.classify using package sklearn, in classifiers.py.
 - You should be familiar with some sklearn API
- Obtaining better classification results (2 points+ 1 point bonus)
 - Implement BetterClassifier.train,
 BetterClassifier.classify in classifiers.py.
 - Try to obtain good accuracy as much as you can.
 - l point extra credit for the leading classification accuracy

Submission

- A 2-3 pages report (either Chinese or English)
 - Some analysis on the q3 in the report is useful for better grading
 - Some analysis on different algorithms/feature extractor techniques is useful for better grading
- Zip the files as the following structure
 - student id.zip (e.g. 20090112xx.zip)
 - student_id.pdf
 - classifiers.py
 - answer.py

Due

- 2018/5/22 23:59:59
- Correctness of algorithms (80%)
- Report (20%)

