2ή Εργαστηριακή Άσκηση

ΣΧΕΔΙΑΣΗ ΒΑΣΙΚΩΝ ΒΑΘΜΙΔΩΝ ΤΟΥ DATAPATH ΕΝΟΣ ΑΠΛΟΥ ΕΠΕΞΕΡΓΑΣΤΗ

11/03/2018

Ομάδα LAB31235515

ΧΡΗΣΤΟΣ ΖΗΣΚΑΣ 2014030191 ΑΝΤΩΝΗΣ ΑΝΤΩΝΑΚΑΚΗΣ 2014030160

Σκοπός εργαστηριακής άσκησης

Είναι η εντριβή με τη γλώσσα για τον ορισμό της αρχιτεκτονικής εντολών ως αντικείμενο μελέτης. Παράλληλα , ακολουθεί η σχεδίαση των βαθμίδων που συντελούν κομμάτια ενός απλού επεξεργαστή και αφορούν βαθμίδες για τις παρακάτω λειτουργίες:

- Ανάκληση εντολών
- Αποκωδικοποίηση εντολών
- Εκτέλεση εντολών
- Πρόσβαση μνήμης

Η υλοποίηση ολόκληρης της σχεδίασης διαθέτει το αρχείο καταχωρητών και την υπολογιστική μονάδα (ALU) σε συνδυασμό με επιπρόσθετα στοιχεία μνήμης καθώς και συνδυαστική λογική

Προεργασία

Παρουσιάζονται οι συσχετίσεις που αφορά την αρχιτεκτονική συνόλου εντολών ενός non-pipelined επεξεργαστή βασισμένου σε υποσύνολο αρχιτεκτονικής συνόλου εντολών CHARIS-4.

Η αρχιτεκτονική συνόλου εντολών αποτελείται:

- 32 καταχωρητές των 32 bits. Ο καταχωρητής R0 είναι πάντα μηδέν.
- 32 bit πλάτος εντολών με μμέγεθος και θέση πεδίων που περιγράφονται παρακάτω.
- Εντολές αριθμητικών και λογικών πράξεων: add, sub, and, not, or, shr, shl, sla, rol, ror, li, addi, andi, ori.
- Εντολές διακλάδωσης: b, beq, bneq.
- Εντολές μνήμης: lb, sb, lw, sw.

Οι παραπάνω εντολές έχουν δύο τύπους format:

6-bits	5-bits	5-bits	5-bits	5-bits	6-bits
Opcode	rs	rd	rt	not-used	func

6-bits	5-bits	5-bits	16-bits
Opcode	rs	rd	Immediate

Παράλληλα, παρουσιάζονται σχηματικά διαγράμματα των βαθμίδων ξεχωριστά, για την απεικόνιση της λειτουργικότητας τους η οποία συνεισφέρει στη μερική υλοποίηση του datapath ενώ ολοκληρώνεται σε συνδυασμό με αντικείμενα συνδυαστικής λογικής.

Κωδικοποίηση των εντολών

Opcode	FUNC	ENΤΟΛΗ	ПРАЕН
100000	110000	add	$RF[rd] \leftarrow RF[rs] + RF[rt]$
100000	110001	sub	$RF[rd] \leftarrow RF[rs] - RF[rt]$
100000	110010	nand	$RF[rd] \leftarrow RF[rs] NAND RF[rt]$
100000	110100	not	$RF[rd] \leftarrow ! RF[rs]$
100000	110011	or	$RF[rd] \leftarrow RF[rs] \mid RF[rt]$
100000	111000	sra	$RF[rd] \leftarrow RF[rs] >>1$
100000	111001	sll	RF[rd] ← RF[rs] <<1 (Logical, zero fill LSB)
100000	111010	srl	RF[rd] ← RF[rs] >>1 (Logical, zero fill MSB)
100000	111100	rol	$RF[rd] \leftarrow Rotate left(RF[rs])$
100000	111101	ror	RF[rd] ← Rotate right(RF[rs])
111000	-	li	RF[rd] ← SignExtend(Imm)
111001	-	lui	RF[rd] ← Imm << 16 (zero-fill)
110000	-	addi	$RF[rd] \leftarrow RF[rs] + SignExtend(Imm)$
110010	-	nandi	$RF[rd] \leftarrow RF[rs] NAND ZeroFill(Imm)$

110011	-	ori	$RF[rd] \leftarrow RF[rs] \mid ZeroFill(Imm)$
111111	-	b	PC ← PC + 4 + (SignExtend(Imm) << 2)
000000	-	beq	if (RF[rs] == RF[rd]) $PC \leftarrow PC + 4 + (SignExtend(Imm) << 2)$ else $PC \leftarrow PC + 4$
000001	-	bne	<pre>if (RF[rs] != RF[rd]) PC ← PC + 4 + (SignExtend(Imm) << 2) else PC ← PC + 4</pre>
000011	-	lb	RF[rd] ← ZeroFill(31 downto 8) & MEM[RF[rs] + SignExtend(Imm)](7 downto 0)
000111	-	sb	MEM[RF[rs] + SignExtend(Imm)] ← ZeroFill(31 downto 8) & RF[rd] (7 downto 0)
001111	-	lw	$RF[rd] \leftarrow MEM[RF[rs] + SignExtend(Imm)]$
011111	-	SW	$MEM[RF[rs] + SignExtend(Imm)] \leftarrow RF[rd]$

Βαθμίδα ανάκλησης εντολών (ΙΕ)

<u>Βαθμίδα αποκωδικοποίησης εντολών (DECODE)</u>

<u>Βαθμίδα Εκτέλεσης Εντολών (ALU)</u>

Βαθμίδα Πρόσβασης Μνήμη (ΜΕΜ)

Συνολική Βαθμίδα (Datapath)

Περιγραφή

Το ζήτημα της αρχιτεκτονικής εντολών αφορά την κωδικοποίηση του CHARIS , παρατηρώντας την ομαδοποίηση τους για την όσο το δυνατόν ευκολότερη αποκωδικοποίηση τους για την παραγωγή των σημάτων ελέγχου του ολοκληρωμένου συστήματος.

Όσον αφορά τη βαθμίδα IF συνεισφέρει στην οργάνωση της μνήμης σύμφωνα με τις εντολές CHARIS ενώ παράλληλα διευθετεί τις εντολές branch. Αποτελείται από τον καταχωρητή program counter , αθροιστές και ένα πολυπλέκτη που στις εντολές branch καθοδηγεί την μνήμη σύμφωνα με την τιμή που αποδίδεται στο Immidiate. Η τιμή του Immidiate υφίσταται ολίσθηση σε αυτές τις εντολές για σωστή διαχείριση της μνήμης . Δ ιαφορετικά η διεύθυνση της μνήμης αυξάνεται κατά μια θέση και η οποία ενημερώνει τον καταχωρητή(+4 bits = 1 θέση στη μνήμη).

Ακολούθως, η βαθμίδα DECODE διαχειρίζεται από ένα αρχείο καταχωρητών, πολυπλέκτες και μια μονάδα που μετατρέπει το immidiate στη κατάλληλη κωδικοποίηση του για την περάτωση των εντολών της αρχιτεκτονικής. Ο πολυπλέκτης εισόδου δεδομένων αφορά εντολές είτε store και παίρνει δεδομένα από τη μνήμη και τα ενημερώνει για εγγραφή, είτε οποιεσδήποτε άλλες εντολές τις οποίες εισέρχονται από την έξοδο της ALU. Οι διευθύνσεις εγγραφείς εξαρτώνται από τις εκάστοτε εντολές που εκτελούνται και διαμορφώνονται από τα format των εντολών(ενεργοποιούνται/απενεργοποιούνται τα control των πολυπλεκτών). Για R-type εντολές το control του πολυπλέκτη στην είσοδο του register file απενεργοποιείτε ώστε οι τιμές των καταχωρητών rs,rt να αλληλεπιδρούν και να αποθηκεύονται στον rd. Η κωδικοποίηση του immidiate πραγματοποιείται σύμφωνα με την αρχιτεκτονική των εντολών.

Επιπλέον, σύμφωνα με τη βαθμίδα ALU που διαθέτει την μονάδα υπολογισμών ALU καθώς και ένα πολυπλέκτη εξέρχονται τα αποτελέσματα που διευθετεί η ALU. Το control της ALU επηρεάζει τους υπολογισμούς (shift,logic,arithmetic) ενώ το control του πολυπλέκτη επηρεάζει την είσοδο και αφορά την εισροή του immidiate στο αποτέλεσμα λόγω της εκάστοτε εντολή (προέρχεται από την μονάδα κωδικοποίηση του immidiate)

Η σχεδίαση ολοκληρώνεται με την βαθμίδα ΜΕΜ .Η πραγματική διεύθυνση που φτάνει στη μνήμη είναι το εξερχόμενο από την ΑLU προστιθέμενη 0x400- η βαθμίδα ΜΕΜ το δέχεται ως διεύθυνση. Τα δεδομένα της μνήμης εισέρχονται από τη βαθμίδα ΜΕΜ και κατευθύνονται στη μνήμη RAM . Εξυπηρετεί ουσιαστικά σαν ενδιάμεσο βήμα ώστε τα δεδομένα να οδηγούνται στη RAM

Κυματομορφές-Προσομοίωση

Παρουσιάζονται οι κυματομορφές των ποικίλων βαθμίδων

Βαθμίδα ανάκλησης εντολών (Μονάδα ΙΕ)

Η είσοδος που δέχεται η βαθμίδα ΙF επιδέχεται την λειτουργικότητα της σχεδίασης .Η μνήμη ξεκινάει από την μηδενική θέση και το σύστημα περιμένει να απενεργοποιηθεί το σήμα reset . Mε reset & enable το σύστημα μένει αδρανές. Το reset "πέφτει" και η μνήμη διευθύνεται . Κάθε φορά που εκτελείται μια εντολή εκτός branch , η μνήμη παρατείνεται κατά μια θέση (+4 bits). Κατά την εκτέλεση εντολών branch η μνήμη αυξάνεται επιπρόσθετα σύμφωνα με την διεύθυνση του immidiate .Απενεργοποιείται το enable και η βαθμίδα αδρανοποιείται.

Ενεργοποιείται το enable και συνεχίζεται η λειτουργία του κυκλώματος θεωρώντας ότι δεχόμαστε εντολές branch και η τιμή της μνήμη μεγαλώνει κατά την τιμή του Immidiate-ολισθαίνοντας το κατά 2 θέσεις ώστε να αναφερόμαστε σε θέσεις μνήμης- αναφερόμενοι πάντα για word addresable μνήμη. Η κατάληξη λοιπόν της σχεδίασης φτάνει στο να διαβάζει ολόκληρο το αρχείο εισόδου χωρίς και με διακλάδωση στη μνήμη.

Βαθμίδα αποκωδικοποίησης εντολών (Μοναδα DEC)

lame	Val	10 ns	11111	100 ns		200 ns	Li cin	300 ns	Linin	400 ns	500 ns	600 ns	700 ns	800 ns	900 ns
- 👹 instr[31:0]	100	(100000)	100000	100000000	1000011	111000	(111000)	111001	(110000	(110011)		00000010001	111110111011111000000	1	
1 rf_wren	1											1			
■ ■ alu_out[31:0	1		1	X	15	6	3	255	1023	(40	95		
mem_out[31	125	3	12582915	(O)	12582915	12583167	12582915	323380	X			377067931			
To rf_wrdata_si	1														
Te rf_b_sel	0														
Un clk	0		\mathbf{n}		nnnn		mm	\mathbf{n}	uuuu						
· 🌃 immed[31:0]	000	000000	0000000000	0000000000	000000	000000	(000000	001101	(111111	011101		00000000000	00001110111100000010	0	
rf_a[31:0]	0	(0)	0	12582	2915	15	12582915	U	323380			37706	79311		
rf_b[31:0]	0	(0	0	U		12582915	63	63	U	K .		3233	08399		
la clk_period	100									100	0 ps				

Αυτό το κομμάτι της σχεδίασης αποκωδικοποιεί την εντολή που εξάγεται από τη μνήμη. Χωρίζεται η εντολή σε κομμάτι ανάγνωσης & εγγραφής ,Opcode , Immidiate και τα δεδομένα εισόδου τίθενται προς εγγραφή στο αρχείο καταχωρητών.

Name	Val	and the con-	20 ns	40 ns	1111	60 ns	80 ns	100 ns	120 ns	140 ns	1000	160 ns	180 ns	200 ns	220 ns
▶ 🎇 instr[31:0]	100	10000000000	00000000000100000	00001	1000	00000000000100000	0100000000001	X	10000000	01000011	00001100	00000001		1110000001100001	00010100000000
16 rf_wren	1														
alu_out[31:0	1					1						15		63	
▶ 🌃 mem_out[31	125		3			12582915		x	0			12582915		12583	167
In rf_wrdata_s	1														
le rf_b_sel	0														
Un cik	0														
▶ 🌃 immed[31:0]	000						000000000000000000000000000000000000000	000000000000000000000000000000000000000						000000000000000000000000000000000000000	00010100000000
▶ 🌃 rf_a(31:0)	0	X	0			0		×		1258	2915			15	
f_b[31:0]	0	X	0			0		*		U				12582	915
le clk_period	100							100	00 ps						

Οι αρχικές διευθύνσεις ανάγνωσης αφορούν το μηδενικό καταχωρητή στον οποίο είναι αδύνατο να υπάρξει εγγραφή . Ως παραγόμενο εμφανίζεται μηδενική έξοδος ενώ το Immidiate εξαρτάται από τον τύπο των εντολών που υλοποιούνται (Rtype, Itype , Store, branch, Load). Για R-type το Immidiate είναι μηδέν. Διαφοροποιείται μόνο η διεύθυνση εγγραφής οπότε στον καταχωρητή 2 εγγράφεται η τιμή που προέρχεται από την ΜΕΜ. Εξαρτάται από τον έλεγχο του πολυπλέκτη της εισόδου δεδομένων. Για 0 το αποτέλεσμα προέρχεται από την ΑLU αλλιώς από την μνήμη. Ως συνέχεια γίνεται ανάγνωση στο καταχωρητή 2 και 1 ενώ γράφεται ο καταχωρητής 3. Απενεργοποιείται το enable οπότε δεν υπάρχει εγγραφή. Ενεργοποιείται και συνεχίζεται . Ως είσοδο ανάγνωσης μπαίνει η προηγούμενη διεύθυνση και επαληθεύεται η εγγραφή.

Συνεχίζεται το τεστ για εντολές τύπου Ι. Το immidiate δέχεται sign extend ενω η εγγραφή προέρχεται από την μνήμην. Οι εγγραφές συνεχίζουν και επαληθεύονται προοδευτικά ενώ παρουσιάζονται και οι μετατροπές του immidiate σύμφωνα με το opcode που εμφανίζει η εντολή. Επαληθεύεται ο καταχωρητής 3 και γράφεται ο καταχωρητής 6 από την ALU. Το control του πολυπλέκτη εισόδου όταν είναι ενεργό βοηθάει στο να περνάει η διεύθυνση εγγραφής και ανάγνωσης#2. Αποθηκεύονται τιμές στους διάφορους καταχωρητές ενώ παράλληλα ελέγχονται και οι τιμές που λαμβάνει το immidiate

Opcode	Instr-16bit	Immidiate-32 bit
111000 (SignExtend)	0000110000000001	0000000000000000000110000000001
111001 (Imm<<16(zerofill))	0011011000000001	001101100000001000000000000000000000000
110000 (SignExtend(Imm))	1111011100000001	1111111111111111111111011100000001
110011 (ZeroFill(Imm))	0111011110000001	00000000000000001110111110000001
000000SignExtend(Imm)<<2	0111011110000001	0000000000000011101111000000100
100000	Х	000000000000000000000000000000000000000

Value	0 ns	100 ns	200 ns	300 ns	400 ns	500 ns	1600 ns	700 ns	800 ns 900 r
0000000000000000				000	000000000000000000000000000000000000000	0000011			
0000000000000000				000	000000000000000000000000000000000000000	00001100			
000000000000000				000	000000000000000000000000000000000000000	1100000			
0							E.		
0000	00	00	00	01	0010	00	11	0100	1101
000000000000000	(00000000000000000000000000000000000000	(00000000000000000000)	(11111111111111111111111111111111111111	11111111111111111111	111111111111111111111	000000000000000000000000000000000000000	000000000000000000000000000000000000000	111111111111111111111111111111111111111	100000000000000000000000000000000000000

Η βαθμίδα ALU ειδικεύεται στην αναγνώριση των πράξεων και επιπλέον διαμορφώνει την επιλογή των τελεστέων εξετάζοντας τα ανάλογα σήματα (Alu_Bin_Sel). Για Alu_bin_sel = 0,οι τελεστέοι είναι οι έξοδοι από τα rf ενώ για τιμή 1 ο δεύτερος τελεστέος διαμορφώνεται από το immidiate. Η ALU εκτελεί την λειτουργικότητα της σύμφωνα με τα control που διαθέτει και επιπλέον πραγματοποιεί τις πράξεις σύμφωνα με τα func.

Παρατηρείται ότι αρχικά προστίθενται οι έξοδοι από το rf και στη συνέχεια γίνεται η πρόσθεση του rfa με το Immidiate. Ακολούθως πραγματοποιείται η πράξη της αφαίρεσης με όμοια ακολουθία.

Επαληθεύεται η συνολική σχεδίαση εφαρμόζωντας τη λογικές και ολισθητικές πράξεις.

Value	400 ns	450 ns	500 ns	550 ns	6	600 ns	650 ns	700 ns	750 ns	800 ns	850 ns	900 ns
000000000000000							000000000000000000000000000000000000000	0000000000000011				
0000000000000000						(000000000000000000000000000000000000000	000000000001100				
0000000000000000						0	000000000000000000000000000000000000000	000000001100000				
0						3						
0011	× 00	10			001	1		01	00		11	1
0000000000000000	111111111111111111	111111111111111111111111111111111111111	000000000000000000000000000000000000000	0000	0001111	000000000000000000000000000000000000000	0000000001100011	111111111111111111111111111111111111111	111111111111111100		10000000000000000	00000000000000001
								2.0				

0001	000011001100	111111111111111111111111111111111111111
0010	000011 NAND001100	111111111111111111111111111111111111111
0011	000011 OR001100	<u>001111</u>
0100	000000000000000000000000000000000000000	111111111111111111111111111111111111111
<u>1101</u>	0000000000000000000000000000000000000011	100000000000000000000000000000000000000
0000	000011+001100	<u>001111</u>

Βαθμίδα πρόσβασης μνήμης (Μονάδα ΜΕΜ)

Η βαθμίδα MEM συμπεριφέρεται ως ενδιάμεσο μέσο αποθήκευσης. Για enable η είσοδος των δεδομένων διαπερνά τη βαθμίδα ώστε να καταχωρηθούν στη ram τα δεδομένα

0 ns	100 ns		200 ns	300 ns	400 ns	500 ns	600 ns	700 ns	800 ns	900 ns
m	MMM	w								
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000	000000000000000000000000000000000000000			000000	000000000000000000000000000000000000000	001100		
(00000000000000000000000000000000000000	000000000	000000	000000000000000000000000000000000000000			000000	000000000000000000000000000000000000000	100000		
000000000000000000000000000000000000000	0000000000000	00001	X			UUUUUUUUUUUUU		,		
OUUUUUUUUUUUU	UUUUUUUUU	UUUUU	000000000000000000000000000000000000000	000000000000000000000000000000000000000	Х		000000000000000000000000000000000000000	00000000000100000		
000000000000000000000000000000000000000	0000000000000	00001	XX 00000000000	000000000000000000000000000000000000000	DXX		0000000000000	0000000000000100000	,	
UUUUU	JUUUUU		1000	000001	X		10000	000011		
					1000	0 ps				

Και η διεύθυνση εξόδου να τεθεί ως εξαγόμενο. Για απενεργοποίηση-ενεργοποίηση του enable η μνήμη επαναλαμβάνει εγγραφή δεδομένων.

Συμπεράσματα/Προβλήματα

Η εργαστηριακή άσκηση καταλήγει σε σημαντικά αποτελέσματα καθώς συνεχίζεται η πρόοδος της υλοποίηση του επεξεργαστή με την ανάλυση σε βαθμίδες επεξεργασίας εντολών ενώ εξετάζεται η κατάτμησή και η διαχείριση της μνήμης για datapath ενός κύκλου