Improper Integrals

Exercise 1. Using the definition evaluate the improper integral of Type 1.

a)
$$\int_{2}^{\infty} \frac{\mathrm{d}x}{x^2 - x};$$

b)
$$\int_4^\infty \frac{\sqrt{x} \, \mathrm{d}x}{x+1}$$

c)
$$\int_{2\pi}^{\infty} x \cos dx;$$

a)
$$\int_{2}^{\infty} \frac{dx}{x^{2} - x};$$
 b)
$$\int_{4}^{\infty} \frac{\sqrt{x} dx}{x + 1};$$
 c)
$$\int_{2\pi}^{\infty} x \cos dx;$$
 d)
$$\int_{0}^{\infty} \frac{e^{-x} dx}{\sqrt{e^{-x} + 1}}$$

Exercise 2. Use the Comparison Theorem to determine whether the improper integral of Type 1 is convergent or divergent.

a)
$$\int_{1}^{\infty} \frac{dx}{x(\sqrt{x}+1)}$$
; b) $\int_{1}^{\infty} \frac{x(x+1) dx}{x^4+x+1}$; c) $\int_{0}^{\infty} \frac{(2^x+1) dx}{3^x+1}$; d) $\int_{\pi}^{\infty} \frac{(x+\sin x) dx}{x^3}$; e) $\int_{4}^{\infty} \frac{(3+\cos x) dx}{\sqrt{x}+2}$.

Exercise 3. Use the Limit Comparison Test to determine whether the improper integral of Type 1 is convergent or divergent.

$$\text{a)} \ \int_{1}^{\infty} \frac{(\sqrt{x}+1) \ \mathrm{d}x}{x(x+1)}; \quad \text{b)} \ \int_{5}^{\infty} \frac{x^2 \ \mathrm{d}x}{\sqrt{x^5-3}}; \quad \text{c)} \ \int_{2}^{\infty} (e^{1/x}-1) \ \mathrm{d}x; \quad \text{d)} \ \int_{1}^{\infty} \sin^2 \frac{1}{x} \ \mathrm{d}x; \quad \text{e)} \ \int_{1}^{\infty} \frac{x^2 \ \mathrm{d}x}{x^3-\sin x}.$$

Exercise 4. Using the definition evaluate the improper integral of Type 2.

a)
$$\int_0^1 \frac{dx}{\sqrt{x(x+1)}};$$
 b) $\int_0^e \frac{\ln x \, dx}{x};$ c) $\int_{\frac{\pi}{2}}^{\pi} \frac{dx}{\sin x};$ d) $\int_3^5 \frac{2^x \, dx}{\sqrt{2^x - 8}};$ e) $\int_{-1}^0 \frac{dx}{x(x+1)}.$

Exercise 5. Use the Comparison Theorem to determine whether the improper integral of Type 2 is convergent or divergent.

a)
$$\int_0^4 \frac{\arctan x \, dx}{x\sqrt{x}};$$

$$b) \qquad \int_0^2 \frac{e^x \, \mathrm{d}x}{x^3};$$

$$c) \qquad \int_0^4 \frac{\mathrm{d}x}{x^2 + \sqrt{x}}.$$

Exercise 6. Use the Limit Comparison Test to determine whether the improper integral of Type 2 is convergent or divergent.

a)
$$\int_0^1 \frac{(x^3+1) dx}{\sqrt{x}(x^2+1)};$$
 b) $\int_0^\pi \frac{\sin^3 x dx}{x^4};$

b)
$$\int_0^{\pi} \frac{\sin^3 x \, dx}{x^4};$$

c)
$$\int_0^1 \frac{(e^x - 1) dx}{\sqrt{x^3}}$$
.

Exercise 7. Find the Cauchy principal value of the integral.

a)
$$\int_{-\infty}^{\infty} \frac{x^3 \cos x \, dx}{x^2 + 4};$$

b)
$$\int_{-\infty}^{\infty} \frac{e^x \, \mathrm{d}x}{e^x + 1};$$

c)
$$\int_{-\infty}^{\infty} e^{-|x+5|} \, \mathrm{d}x.$$

Infinite series

Exercise 8. Find the sum of the series.

a)
$$\sum_{n=0}^{\infty} \left(\frac{5}{6}\right)^n;$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 3n + 2}$$

c)
$$\sum_{n=2}^{\infty} \frac{n-1}{n!};$$

a)
$$\sum_{n=0}^{\infty} \left(\frac{5}{6}\right)^n$$
; b) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 3n + 2}$; c) $\sum_{n=2}^{\infty} \frac{n-1}{n!}$; d) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}}$.

Exercise 9. Use the Integral Test to determine whether the series is convergent or divergent.

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 9}$$

$$b) \qquad \sum_{n=2}^{\infty} \frac{n-1}{n^2 + n^2}$$

c)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$$

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 9}$$
; b) $\sum_{n=2}^{\infty} \frac{n - 1}{n^2 + n}$; c) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$; d) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n + 1}}$; e) $\sum_{n=0}^{\infty} \frac{e^n}{e^{2n} + 1}$.

$$e) \qquad \sum_{n=0}^{\infty} \frac{e^n}{e^{2n} + 1}$$

Exercises taken from the books Analiza matematyczna 2 (Definicje, twierdzenia, wzory; Przykłady i zadania; Kolokwia i egzaminy) and Równania różniczkowe zwyczajne. Teoria, przykłady, zadania by M. Gewert, Z. Skoczylas

Exercise 10. Use the Comparison Test to determine whether the series is convergent or divergent.

a)
$$\sum_{n=1}^{\infty} \frac{3n+1}{n^3+2}$$
;

a)
$$\sum_{n=1}^{\infty} \frac{3n+1}{n^3+2}$$
; b) $\sum_{n=1}^{\infty} \frac{\sqrt{n^2+1}}{n^2+2}$; c) $\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$; d) $\sum_{n=0}^{\infty} \frac{2^n+e^n}{e^n+4^n}$.

c)
$$\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n};$$

d)
$$\sum_{n=0}^{\infty} \frac{2^n + e^n}{e^n + 4^n}$$
.

Exercise 11. Use the Limit Comparison Test to determine whether the series is convergent or divergent.

a)
$$\sum_{n=1}^{\infty} \frac{n^2 + 2}{\sqrt{2n^6 - 1}}$$

b)
$$\sum_{n=1}^{\infty} \frac{n^2+1}{n^4+1}$$
;

c)
$$\sum_{n=1}^{\infty} \frac{e^n - 1}{3^n - 1}$$
;

a)
$$\sum_{n=1}^{\infty} \frac{n^2 + 2}{\sqrt{2n^6 - 1}};$$
 b) $\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^4 + 1};$ c) $\sum_{n=1}^{\infty} \frac{e^n - 1}{3^n - 1};$ d) $\sum_{n=0}^{\infty} 4^n \ln(1 + 3^{-n});$ e) $\sum_{n=1}^{\infty} \frac{\sin(\pi/n)}{\sin(\pi/n^2)}$

$$\sum_{n=1}^{\infty} \frac{\sin(\pi/n)}{\sin(\pi/n^2)}.$$

Exercise 12. Use the Ratio Test to determine whether the series is convergent or divergent.

a)
$$\sum_{n=1}^{\infty} \frac{2016^n}{(2n)!}$$
;

b)
$$\sum_{n=1}^{\infty} \frac{5^n + 1}{n^4 + 1}$$
; c) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$; d) $\sum_{n=1}^{\infty} \frac{n^n}{\pi^n n!}$

c)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n};$$

$$d) \qquad \sum_{n=1}^{\infty} \frac{n^n}{\pi^n n!}$$

Exercise 13. Use the Root Test to determine whether the series is convergent or divergent

a)
$$\sum_{n=1}^{\infty} \frac{(2n+1)^{2n}}{(3n^2+1)^n};$$

b)
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{3^n + 5^n}$$

c)
$$\sum_{n=1}^{\infty} \frac{3^n n^{n^2}}{(n+1)^{n^2}};$$

a)
$$\sum_{n=1}^{\infty} \frac{(2n+1)^{2n}}{(3n^2+1)^n};$$
 b)
$$\sum_{n=1}^{\infty} \frac{2^n+3^n}{3^n+5^n};$$
 c)
$$\sum_{n=1}^{\infty} \frac{3^n n^{n^2}}{(n+1)^{n^2}};$$
 d)
$$\sum_{n=1}^{\infty} \arctan \frac{n}{n+1})^n.$$

Exercise 14. Using the appropriate series convergence test find the limits.

$$a) \qquad \lim_{n \to \infty} \frac{n^{2020}}{3^n};$$

b)
$$\lim_{n \to \infty} \frac{n^n}{(n!)^2};$$

c)
$$\lim_{n \to \infty} \frac{n^n}{n!}.$$

Exercise 15. Use the Alternating Series Test to determine whether the series is convergent or divergent.

a)
$$\sum_{n=0}^{\infty} (-1)^n (\sqrt{n^2 + 1} - n);$$
 b) $\sum_{n=0}^{\infty} (-1)^n \frac{2^n}{3^n + 4^n};$ c) $\sum_{n=0}^{\infty} \sin \frac{(-1)^n}{n};$ d) $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{3^n}{n!}.$

b)
$$\sum_{n=0}^{\infty} (-1)^n \frac{2^n}{3^n + 4^n}$$
;

c)
$$\sum_{n=4}^{\infty} \sin \frac{(-1)^n}{n};$$

d)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3^n}{n!}$$
.

Exercise 16. Find the radius of convergence and interval of convergence of the series.

a)
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{ne^n};$$

a)
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{ne^n}$$
; b) $\sum_{n=0}^{\infty} (4x-12)^n$; c) $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n!}$; d) $\sum_{n=0}^{\infty} \frac{(2x+6)^n}{3^n-2^n}$.

c)
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n!};$$

d)
$$\sum_{n=0}^{\infty} \frac{(2x+6)^n}{3^n - 2^n}$$

Exercise 17. Find the Maclaurin series of the function and and its radius of convergence.

a)
$$f(x) = \frac{4}{1 - 3x}$$
;

b)
$$f(x) = \sin \frac{x}{4}$$
;

c)
$$f(x) = x^2 e^{-x}$$

a)
$$f(x) = \frac{4}{1 - 3x}$$
; b) $f(x) = \sin \frac{x}{4}$; c) $f(x) = x^2 e^{-x}$; d) $f(x) = \frac{x^3}{16 + x^2}$; e) $f(x) = \sin^2 x$.

e)
$$f(x) = \sin^2 x$$
.

Exercise 18. Using the Differentiation Theorem and the Integration Theorem show that for $x \in (-1,1)$ we have

a)
$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2};$$

a)
$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2};$$
 b) $\sum_{n=1}^{\infty} n(n+1)x^n = \frac{2x}{(1-x)^3};$ c) $\sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x).$

c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x).$$

Exercise 19. Find the sum of the series.

a)
$$\sum_{n=0}^{\infty} \frac{1}{(n+1)3^n}$$
; b) $\sum_{n=2}^{\infty} \frac{2n-1}{2^n}$; c) $\sum_{n=1}^{\infty} \frac{n(n+1)}{5^n}$; d) $\sum_{n=1}^{\infty} \frac{n}{(n+1)4^n}$.

$$b) \sum_{n=2}^{\infty} \frac{2n-1}{2^n}$$

$$c) \sum_{n=1}^{\infty} \frac{n(n+1)}{5^n};$$

$$d) \sum_{n=1}^{\infty} \frac{n}{(n+1)4^n}$$

Functions of Two Variables

Exercise 20. Find and sketch the domain of the function.

a)
$$f(x,y) = \ln(y - \sin x)$$
; b) $f(x,y) = \sqrt{\frac{y-2}{x+1}}$; c) $f(x,y) = \frac{x^2y}{\sqrt{x^2-y}}$; d) $f(x,y) = \ln\frac{x^2+y^2-9}{16-x^2-y^2}$.

Partial Derivatives

Exercise 21. Find the first partial derivatives of the function.

a)
$$f(x,y) = \frac{x^2 + y^3}{xy^2}$$
; b) $f(x,y) = \arctan \frac{1 - xy}{x + y}$; c) $f(x,y) = e^{\cos \frac{x}{y}}$; d) $f(x,y) = y\sqrt{x^2 + y^2}$; e) $f(x,y) = \ln(\sqrt{x^2 + y^2} - x)$.

Exercise 22. Verify that the function is a solution of the given equation

a)
$$z = f(x^2 + y^2)$$
, $yz_x - xz_y = 0$;
b) $z = xf(\sin(x - y))$, $z_x + z_y = \frac{z}{x}$;
c) $z = x^n f\left(\frac{y}{x}\right)$, $xz_x + yz_y = nz$, $(n \in \mathbb{N})$.

Exercise 23. Find an equation of the tangent plane to the given surface at the specified point

a)
$$z = x^2 \sqrt{y+1}$$
, $(1,3,z_0)$;
b) $z = e^{x+2y}$, $(2,-1,z_0)$;
c) $z = \frac{\arcsin x}{\arccos y}$, $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}, z_0\right)$;
d) $z = (2+x-3y)^4$, point of intersection with z-axis;
e) $z = e^{x+y} - e^{4-y}$, point of intersection with x-axis.

Exercise 24. At what points on the surface $z = \arctan \frac{x}{y}$ are the tangent planes parallel to x + y - z = 5? **Exercise 25.** At what points on the surface $z = x^2 + y^2$ are the tangent planes perpendicular to the line $x = t, y = t, z = 2t, t \in \mathbb{R}$?

Exercise 26. Using the definition find the directional derivative of f at the given point in the direction of a vector v

a)
$$f(x, y) = \sqrt{x^2 + y^2}, (x_0, y_0) = (0, 0), v = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right);$$

b)
$$f(x, y) = \sqrt[3]{xy}, (x_0, y_0) = (1, 0), v = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$
.

Exercise 27. Find the gradient vector of the function at the given point

a)
$$f(x, y) = x^3 + xy^2 + 2, (1, -2);$$
 b) $f(x, y) = \ln(x + \ln y), (e, 1);$ c) $f(x, y) = (1 + xy)^y, (0, 0);$ d) $g(x, y) = x\sqrt{y} - e^x \ln y, (0, 1).$

Exercise 28. Find the directional derivative of the function $f(x,y) = y - x^2 + 2\ln(xy)$ at the point $\left(-\frac{1}{2},-1\right)$ in the direction of the vector v forming the angle α with the positive x-axis. At what angle the directional derivative is equal to 0?

Exercise 29. Find unit vectors v such that the directional derivative of the function $f(x,y) = \sqrt{e^x}(x+y^2)$ at the point (0,2) is equal to 0.

Maximum and Minimum Values

Exercise 30. Find the local maximum and minimum values

a)
$$f(x,y) = x^3 + 3xy^2 - 51x - 24y$$
;

b)
$$f(x,y) = xe^{-y} + \frac{1}{x} + e^y;$$

a)
$$f(x,y) = x^3 + 3xy^2 - 51x - 24y$$
; b) $f(x,y) = xe^{-y} + \frac{1}{x} + e^y$; c) $f(x,y) = xy^2(12 - x - y), (x, y > 0)$

d)
$$f(x,y) = y\sqrt{x} - y^2 - x + 6y$$
;

e)
$$f(x,y) = x^3 + y^3 - 3xy$$

d)
$$f(x,y) = y\sqrt{x} - y^2 - x + 6y;$$
 e) $f(x,y) = x^3 + y^3 - 3xy;$ f) $f(x,y) = \frac{8}{x} + \frac{x}{y} + y, (x, y > 0);$

g)
$$f(x, y) = xy + \ln y + x^2$$
:

h)
$$f(x,y) = e^{x-2y} + e^{y-x} + e^{6+y}$$
;

g)
$$f(x,y) = xy + \ln y + x^2$$
; h) $f(x,y) = e^{x-2y} + e^{y-x} + e^{6+y}$; i) $f(x,y) = e^{x^2-y}(5-2x+y)$.

Exercise 31. Find the maximum and minimum values of the function subject to the given constraint(s)

a)
$$f(x,y) = x^2 + y^2, 3x + 2y = 6$$

a)
$$f(x,y) = x^2 + y^2, 3x + 2y = 6;$$
 b) $f(x,y) = x^2 + y^2 - 8x + 10, x - y^2 + 1 = 0;$

c)
$$f(x,y) = x^2y + \ln x, 8x + 3y = 0;$$
 d) $f(x,y) = 2x + 3y, x^2 + y^2 = 1.$

d)
$$f(x,y) = 2x + 3y, x^2 + y^2 = 1$$
.

Exercise 32. Find the absolute maximum and minimum values of the function on the given set D

a)
$$f(x,y) = 2x^3 + 4x^2 + y^2 - 2xy, D = \{(x,y) \in \mathbb{R}^2 : x^2 \le y \le 4\};$$

b)
$$f(x, y) = \sqrt{y - x^2} + \sqrt{x - y^2}$$
:

c)
$$f(x, y) = \sqrt{1 - x^2} + \sqrt{4 - (x^2 + y^2)};$$

d)
$$f(x, y) = x^2 - y^2, D - a$$
 triangle with vertices $(0, 1), (0, 2), (1, 2)$;

e)
$$f(x, y) = x^4 + y^4, D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 9\}.$$

Exercise 33. In the triangle with vertices A=(-1,5), B=(1,4), C=(2,-3) find the point $M=(x_0,y_0)$, for which the sum of the squares of its distances from the vertices is the smallest.

Exercise 34. A metal open tube is to have a volume of 32000 cm³. Find the dimensions that minimize the amount of metal used.

Exercise 35. Find the distance between lines

$$k: \left\{ \begin{array}{l} x+y-1=0, \\ z+1=0, \end{array} \right.$$
 $l: \left\{ \begin{array}{l} x-y+3=0, \\ z-2=0. \end{array} \right.$

Exercise 36. Find the point on the parabola $y = \frac{x^2}{2}$ that is closest to the point P = (4, 1). **Exercise 37.** The rectangular warehouse is to have a volume of $V = 216 \text{ m}^3$. For the walls of the warehouse, slabs are used at a price of 30 PLN/m², for the construction of a floor - at 40 PLN/m², and the ceiling - at 20 PLN/m². Find the dimensions of the warehouse that minimize the cost of the materials.

Double Integrals

Exercise 38. Evaluate the double integral.

a)
$$\iint_R (x + xy - x^2 - 2y) \, dx \, dy, R = [0, 1] \times [0, 1],$$
 b) $\iint_R \frac{x \, dx \, dy}{y^2}, R = [1, 2] \times [2, 4],$

b)
$$\iint_R \frac{x \, dx \, dy}{y^2}, R = [1, 2] \times [2, 4]$$

c)
$$\iint_R (x \sin(xy)) dx dy, R = [0, 1] \times [\pi, 2\pi],$$

$$\mathrm{d}) \iint_R e^{2x-y} \, \mathrm{d}x \, \mathrm{d}y.$$

Exercise 39. Transform the integral $\iint_D f(x,y) dx dy$ to the iterated integrals if D is bounded by

a)
$$y = x^2, y = x + 2$$

b)
$$x^2 + y^2 = 4$$
, $y = 2x - x^2$, $x = 0$ $(x, y \ge 0)$,

a)
$$y = x^2, y = x + 2$$

c) $x^2 - 4x + y^2 + 6y - 51 = 0$,

d)
$$x^2 - y^2 = 1, x^2 + y^2 = 3$$
 ($x < 0$).

Exercise 40. Sketch the region of integration and change the order of integration.

a)
$$\int_{-1}^{1} \int_{-1}^{|x|} f(x, y) dy dx$$
,

b)
$$\int_{-1}^{1} dx \int_{-\sqrt{2-x^2}}^{0} f(x, y) dy dx$$
,

c)
$$\int_0^4 \int_{\sqrt{4x-x^2}}^{2\sqrt{x}} f(x, y) \, dy \, dx$$
,

d)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \int_{y^2-1}^{\frac{y^2}{2}} f(x, y) dx dy$$
.

Exercise 41. Evaluate the given integral by changing to polar coordinates

a)
$$\iint_D xy \, dx \, dy, D: x^2 + y^2 \le 1, \frac{x}{\sqrt{3}} \le y \le \sqrt{3}x,$$
 b) $\iint_D xy^2 \, dx \, dy, D: x \ge 0, 1 \le x^2 + y^2 \le 2,$

b)
$$\iint_D xy^2 dx dy, D: x \ge 0, 1 \le x^2 + y^2 \le 2,$$

c)
$$\iint_D y^2 e^{x^2 + y^2} dx dy$$
, $D: x \ge 0, y \ge 0, x^2 + y^2 \le 1$, d) $\iint_D x^2 dx dy$, $D: x^2 + y^2 \le 2y$,

d)
$$\iint_D x^2 \, \mathrm{d}x \, \mathrm{d}y, D : x^2 + y^2 \leqslant 2y$$

e)
$$\iint_{D} (x^2 + y^2) dx dy, D: y \ge 0, y \le x^2 + y^2 \le x,$$
 f) $\iint_{D} y dx dy, D: x^2 + y^2 \le 2x(y \le 0),$

f)
$$\iint_D y \, dx \, dy, D : x^2 + y^2 \le 2x(y \le 0),$$

g)
$$\iint_D \sin(x^2 + y^2) dx dy, D : x^2 + y^2 \le \pi^2$$
,

h)
$$\iint_D \ln(1+x^2+y^2) dx dy, D: 1 \le x^2+y^2 \le 9.$$

Exercise 42. Find the volume of the given solid.

a)
$$z = \sqrt{25 - (x^2 + y^2)}, z = x^2 + y^2 - 13,$$

b)
$$x^2 + y^2 + z^2 = 4, z = 1 \ (z \ge 1),$$

c)
$$x^2 + y^2 - 2y = 0, z = x^2 + y^2, z = 0,$$

d)
$$z = 5 - x^2 - y^2, z = 1, z = 4.$$

Laplace transform

Exercise 43. Determine the Laplace transform of each of the following functions.

a)
$$f(t) = 2t - 1;$$
 b) $f(t) = \sin 2t;$ c) $f(t) = t^2;$

b)
$$f(t) = \sin 2t$$
;

c)
$$f(t) = t^2$$
:

d)
$$f(t) = te^{-t}$$
;

e)
$$f(t) = e^{2t} \cos 2t$$
.

Exercise 44. Determine the inverse Laplace transform of each of the following functions.

a)
$$F(s) = \frac{1}{s+2}$$
;

b)
$$F(s) = \frac{s}{s^2 + 4s + 5}$$
;

c)
$$F(s) = \frac{1}{s^2 - 4s + 3}$$

a)
$$F(s) = \frac{1}{s+2}$$
; b) $F(s) = \frac{s}{s^2 + 4s + 5}$; c) $F(s) = \frac{1}{s^2 - 4s + 3}$; d) $F(s) = \frac{s+2}{(s+1)(s-2)(s^2 + 4)}$.

Exercise 45. Solve each of the following initial-value problems.

a)
$$y' - y = 1, y(0) = 1;$$

b)
$$y' - 2y = \sin t, y(0) = 0;$$

c)
$$y'' + y' = 0, y(0) = 1, y'(0) = 1;$$

d)
$$y'' + 3y' = e^{-3t}$$
, $y(0) = 0$, $y'(0) = -1$

e)
$$y'' - 2y' + 2y = \sin t, y(0) = 0, y'(0) = 1$$

f)
$$y'' + 4y + 4y = t^2$$
, $y(0) = 0$, $y'(0) = 0$

g)
$$y'' - 2y' + y = 1 + t, y(0) = 0, y'(0) = 0;$$

a)
$$y'' - y = 1$$
, $y(0) = 1$,
b) $y'' - 2y' = 3$ int, $y(0) = 0$,
c) $y'' + y' = 0$, $y(0) = 1$, $y'(0) = 1$;
d) $y'' + 3y' = e^{-3t}$, $y(0) = 0$, $y'(0) = -1$;
e) $y'' - 2y' + 2y = \sin t$, $y(0) = 0$, $y'(0) = 1$;
f) $y'' + 4y + 4y = t^2$, $y(0) = 0$, $y'(0) = 0$;
g) $y'' - 2y' + y = 1 + t$, $y(0) = 0$, $y'(0) = 0$;
h) $y'' + 4y' + 13y = te^{-t}$, $y(0) = 0$, $y'(0) = 2$.

Fourier transform

Exercise 46. Determine the Fourier transform of each of the following functions.

a)
$$f(t) = \begin{cases} \sin t, & |t| \leqslant \pi, \\ 0, & |t| > \pi; \end{cases}$$
 b) $f(t) = \begin{cases} \cos t, & |t| \leqslant \frac{\pi}{2}, \\ 0, & |t| > \frac{\pi}{2}; \end{cases}$ c) $f(t) = \begin{cases} t, & |t| \leqslant 1, \\ 0, & |t| > 1; \end{cases}$ d) $f(t) = \begin{cases} t^2, & |t| \leqslant 1, \\ 0, & |t| > 1; \end{cases}$ e) $f(t) = e^{-|t|}$.

$$f(t) = \begin{cases} \cos t, & |t| \leqslant \frac{\pi}{2} \\ 0, & |t| > \frac{\pi}{2} \end{cases}$$

c)
$$f(t) = \begin{cases} t, & |t| \le 1, \\ 0, & |t| > 1; \end{cases}$$

d)
$$f(t) = \begin{cases} t^2, & |t| \leq 1, \\ 0, & |t| > 1; \end{cases}$$

e)
$$f(t) = e^{-|t|}$$
.

Exercise 47. Determine the inverse Fourier transform of each of the following functions.

a)
$$\hat{f}(\xi) = \frac{1}{1 + 2i\xi};$$

b)
$$\hat{f}(\xi) = \frac{1}{4+\xi^2};$$

c)
$$\hat{f}(\xi) = \frac{e^{2i\xi}}{1 + i\xi};$$

d)
$$\hat{f}(\xi) = \frac{\sin \xi \cos \xi}{2\xi}$$
;

e)
$$\hat{f}(\xi) = \frac{1}{(1+\xi^2)(4+\xi^2)}$$
.