Counting structures on the $n \times k$ grid graph

Peter Kagey

University of Southern California

Graduate Student Combinatorics Conference
April 2019

Commodore 64 (1/3)

Commodore 64 (2/3)

Commodore 64 (3/3)

Javascript

Javascript

Counting grids

Figure 1: An illustration of the bijection between tiles with diagonal markings and tiles with quarter circles in opposite corners.

A295229: Number of tilings of the $n \times n$ grid, using diagonal lines to connect the grid points.

Figure 2: An example of the a(2)=6 different ways to fill the 2×2 grid with diagonal tiles up to dihedral action of the square.

$$a(n) = \begin{cases} \frac{1}{8}(2^{n^2} + 2 \cdot 2^{n(n+1)/2} + 3 \cdot 2^{n^2/2} + 2 \cdot 2^{n^2/4}) & n \text{ even} \\ \frac{1}{8}(2^{n^2} + 2 \cdot 2^{n(n+1)/2} + 2^{(n^2+1)/2}) & n \text{ odd} \end{cases}$$

Other tiles

Figure 3: Eleven box-drawing characters placed on an 15×8 grid

Baby's first corollary

Corollary (of Burnside's Lemma)

Let

- ▶ t be the number of tiles.
- ightharpoonup q be the number of tiles symmetric under a 90° rotation,
- ▶ h be the number of tiles symmetric under a 180° rotation,
- d be the number of tiles symmetric under a diagonal reflection, and
- ▶ v be the number of tiles symmetric under a vertical reflection.

Then the number of tilings up to symmetries of the square is

$$a(n) = \begin{cases} \frac{1}{8} \left(t^{n^2} + 2qt^{\frac{n^2-1}{4}} + ht^{\frac{n^2-1}{2}} + (v^n + d^n)t^{\frac{n^2-n}{2}} \right) & n \text{ odd} \\ \\ \frac{1}{8} \left(t^{n^2} + 3t^{\frac{n^2}{2}} + 2t^{\frac{n^2}{4}} + 2d^nt^{\frac{n^2-n}{2}} \right) & n \text{ even} \end{cases}$$

Pipe Mania

Leaf Free Grids

Figure 4: One of the $a_4(12) = 42650154782713601$ grids on the 12×4 grid.

The $n \times 2$ grid, obeys the recurrence

$$a_2(1) = 1, \ a_2(2) = 2$$

 $a_2(n) = 5a(n-1) - 5a(n-2).$

Leaf Free subgraphs: The System of Recurrences

Figure 5: An example of a leaf-free subgraph with its states labeled

Figure 6: Two examples of transitions from states to their children

Example: A System of Recurrences

The 1×2 grid has initial conditions

$$a_{00}(1) = a_{11}(1) = 1$$

 $a_{10}(1) = a_{01}(1) = a_{12}(1) = a_{21}(1) = a_{22}(1) = 0,$

and satisfies the system of first order homogeneous difference relations

$$\begin{split} a_{00}(n+1) &= a_{00}(n) + a_{22}(n) \\ a_{01}(n+1) &= a_{01}(n) + a_{21}(n) + a_{22}(n) \\ a_{10}(n+1) &= a_{10}(n) + a_{12}(n) + a_{22}(n) \\ a_{11}(n+1) &= a_{00}(n) + a_{11}(n) + a_{12}(n) + a_{21}(n) + 2a_{22}(n) \\ a_{12}(n+1) &= a_{01}(n) + a_{21}(n) + a_{22}(n) \\ a_{21}(n+1) &= a_{10}(n) + a_{12}(n) + a_{22}(n) \\ a_{22}(n+1) &= a_{11}(n) + a_{12}(n) + a_{21}(n) + a_{22}(n). \end{split}$$

A single recurrence from a system of recurrences

Theorem (Corollary of Cayley-Hamilton theorem)

In a system of first order homogeneous linear difference equations,

$$a^{(1)}(n+1) = \alpha_{11}a^{(1)}(n) + \dots + \alpha_{1k}a^{(k)}(n)$$

$$\vdots = \vdots$$

$$a^{(k)}(n+1) = \alpha_{k1}a^{(1)}(n) + \dots + \alpha_{kk}a^{(k)}(n)$$

each equation satisfies the recurrence

$$a^{(i)}(n) = -\beta_{k-1}a^{(i)}(n-1) - \dots - \beta_1a^{(i)}(n-k-1) - \beta_0a^{(i)}(n-k)$$

for n > k where $A = \{\alpha_{ij}\}_{i,j=1}^k$ is the coefficient matrix and

$$m_A(x) = x^k + \beta_{k-1}x^{k-1} + \dots + \beta_1x + \beta_0$$

is the minimal polynomial of A.

A single recurrence from a system of recurrences

$$\underbrace{\begin{bmatrix} a_{00}(n) \\ a_{01}(n) \\ a_{10}(n) \\ a_{11}(n) \\ a_{21}(n) \\ a_{22}(n) \end{bmatrix}}_{\vec{a}(n)} = \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}^{n-1}}_{\vec{a}(1)}$$

Let $x^k + \beta_{k-1}x^{k-1} + \ldots + \beta_1x + \beta_0$ be the minimal polynomial of A. Then

$$A^{k} = -\beta_{k-1}A^{k-1} - \dots - \beta_{1}A - \beta_{0}$$

$$A^{n-1}\vec{a}(1) = -\beta_{k-1}A^{n-2}\vec{a}(1) - \dots - \beta_{1}A^{n-k}\vec{a}(1) - \beta_{0}A^{n-k-1}\vec{a}(1)$$

$$\vec{a}(n) = -\beta_{k-1}\vec{a}(n-1) - \dots - \beta_{1}\vec{a}(n-k+1) - \beta_{0}\vec{a}(n-k)$$

Some conjectural recurrences

For k=3,4,5, $a_k(n)$ the number of leaf-free subgraphs of the $n\times k$ grid graph is conjectured to satisfy

$$a_3(n) = 12a_3(n-1) - 6a_3(n-2) - 20a_3(n-3) - 5a_3(n-4)$$

$$a_4(n) = 36a_4(n-1)$$
 $-7a_4(n-2)$ $-201a_4(n-3)$
 $+49a_4(n-4)$ $+20a_4(n-5)$ $-5a_4(n-6)$

$$a_5(n) = 103a_5(n-1) + 1063a_5(n-2) - 1873a_5(n-3)$$
$$-20274a_5(n-4) + 44071a_5(n-5) - 10365a_5(n-6)$$
$$-20208a_5(n-7) + 5959a_5(n-8) + 2300a_5(n-9)$$
$$-500a_5(n-10)$$

For k=6, this is the conjectured to be an 18-order recurrence.

Graphs which satisfy linear recurrences

Theorem (Faase, 1994)

Let G be an arbitrary finite graph and let H_n denote either the path graph P_n or the cycle graph C_n on n vertices, and let s(n) count the number of subgraphs S of the Cartesian product $G \square H_n$ subject to any combination of the following properties:

- 1. Restrictions on degree
- 2. Connectivity
- 3. Acyclicity

Then s(n) satisfies some linear recurrence.

Graphs which satisfy linear recurrences

Corollary

Let G be an arbitrary finite graph with some notion of horizontal and vertical symmetry. Then let s(n) count the number of subsets of $G \square P_n$ subject to any combination of the following properties:

- 1. Exactly m_1, m_2, \ldots, m_k vertices of degree d_1, d_2, \ldots, d_k respectively.
- 2. Exactly ℓ connected components.
- 3. Reflection symmetry (horizontal)
- 4. Reflection symmetry (vertical)

Then s(n) satisfies some linear recurrence.

Linear recurrences for graphs which are symmetric

Theorem

Let G be an arbitrary finite graph with vertex set $V=\{v_1,v_2,\ldots,v_m\}$, and let P_n denote the path graph on n vertices. Then let H_n be the graph Cartesian product $G\square P_n$ together with a choice of adding edges between the first row and the last row. (i.e. some $E\in V\times V$ such that $\{((1,v_i),(n,v_j)):(v_i,v_j)\in E\})$ is added to the edge set.) Next let s(n) count the number of subgraphs $S\subset H_n$ subject to any combination of the following properties:

- 1. Restrictions on degree
- 2. Connectivity
- 3. Acyclicity

Then s(n) satisfies some linear recurrence.

Note that $E = \{(v_1, v_1), (v_2, v_2), \dots, (v_m, v_m)\}$ recovers $G \square C_n$ and $E = \emptyset$ recovers $G \square C_n$.

Up to horizontal/vertical reflection

The number of no-leaf subgraphs of the $2 \times n$ grid satisfies the two term recurrence

$$a_2(n) = 5a_2(n-1) - 5a_2(n-2).$$

The number of no-leaf subgraphs of the $2\times n$ grid up to horizontal/vertical reflection is conjectured to satisfy the eight term recurrence

$$s(n) = 8s(n-1) - 16s(n-2) - 20s(n-3) + 95s(n-4)$$
$$-60s(n-5) - 80s(n-6) + 100s(n-7) - 25s(n-8)$$

Mazes and Spanning Trees

Generalizations

can't do

- 1. Can't count $k \times n$ for k > 7.
- 2. It's faster to do, e.g. Kirchhoff's matrix tree theorem than count spanning trees this way.
- 3. (?) Can't count, say, acyclic orientations of G.
- 4. (?) Chromatic number exactly 2 on $G \square P_n$?
- 5. Global properties: (e.g. no connected component is a shift of another connected component.)
- 6. Figure out how long a particular recurrence is.