Integer Valued Sequences with 2-Level Autocorrelation from Iterative Decimation Hadamard Transform

Guang Gong

Department of Electrical and Computer Engineering
University of Waterloo
CANADA

<http://comsec.uwaterloo.ca/~ggong>

Joint work with Honggang Hu

Outline

- Iterative Decimation Hadamard Transform (DHT)
- Realizations from DHT and Known Binary 2-Level Autocorrelation Sequences
- New Integer Valued Sequences with 2-Level Autocorrelation Constructed from DHT
- New Ternary and Quaternary Sequences with 2-Level Autocorrelation
- Some Remarks on Sequences of DHT

Applications

Code Division Multiplexing Access (CDMA)

- Multiple users share a common channel simultaneously by using different codes
- Narrowband user information is spread into a much wider spectrum by the spreading code
- The signal from other users will be seen as a background noise: Multiple access interference (MAI)
- The limit of the maximum number of users in the system is determined by interference due to multiple access and multipath fading: Adding one user to CDMA system will only cause graceful degradation of quality

Theoretically, no fixed maximum number of users!

Code Division Multiplexing Access (CDMA) (Cont.)

The signal from other users will be seen as a background noise: Multiple access interference (MAI)

Spreading Sequences in CDMA Systems

 $H_n \times H_n^T = nI_n$

Walsh Codes: Basic spreading codes in CDMA systems

- > n different Walsh codes: each row of an nxn Hadamard matrix
- Mutually orthogonal: inner product of different Walsh codes are zero
- Synchronization of all users are required to maintain the orthogonality: Otherwise, produce multiple access interference (MAI)
- > Further, delayed copies received from a multipath fading are not orthogonal any more: Multipath fading interference

MAI and multipath interference are major factors to limit the capacity of CDMA systems!

Basic Concepts and Definitions on Sequences

- p, a prime; n, a positive integer; $q = p^n$.
- f(x), a polynomial function from \mathbb{F}_q to \mathbb{F}_p .
- $Tr(x) = x + x^p + \cdots + x^{p^{n-1}}$, the trace function from \mathbb{F}_q to \mathbb{F}_p .
- α , a primitive element in \mathbb{F}_q .
- A sequence $\mathbf{a} = \{a_i\}$ where $a_i = f(\alpha^i), i = 0, 1, \dots$, is a sequence over \mathbb{F}_p with period q 1 or dividing q 1.
- If $f(x) = Tr(x^t)$ where (t, q 1) = 1, then **a** is an **m-sequence** over \mathbb{F}_p , i.e.,
 - m-sequence \longleftrightarrow $Tr(x^t)$.

Decimation

$$b_i = a_{si}, i = 0, 1, \cdots,$$

is said to be an s-decimation of \mathbf{a} , denoted by $\mathbf{a}^{(s)}$.

$$\mathbf{a} \longleftrightarrow f(x)$$
$$\mathbf{a}^{(s)} \longleftrightarrow f(x^s)$$

E.g.,

$$\mathbf{a} = 1001011 \longleftrightarrow Tr(x)$$

 $\mathbf{a}^{(3)} = 1110100 \longleftrightarrow Tr(x^3)$

Autocorrelation

• Let $\omega = e^{2\pi i/p}$, a complex primitive *p*th root of unity. The canonical additive character χ of *F* is defined by

$$\chi(\mathbf{x}) = \omega^{\mathbf{x}}, \mathbf{x} \in \mathbb{F}_{p}.$$

The autocorrelation of a is defined by

$$C(\tau) = \sum_{i=0}^{N-1} \chi(a_{i+\tau}) \overline{\chi(a_i)}, \ 0 \le \tau \le N-1$$
 (1)

where $\overline{\chi}$ be the complex conjugate of χ .

2-level Autocorrelation and Orthogonal Functions

 The sequence a is said to have a 2-level autocorrelation function, if

$$C(au) = \left\{ egin{array}{ll} N & ext{if } au \equiv 0 mod N \ -1 & ext{if } au
otin 0 mod N. \end{array}
ight.$$

- If a is also balanced, then we say that a has an (ideal) 2-level autocorrelation function.
- When N = q 1 and $\mathbf{a} \leftrightarrow f(x)$, \mathbf{a} has 2-level autocorrelation if and only if

$$\sum_{x \in \mathbb{F}_q} \chi(f(\lambda x)) \overline{\chi(f(x))} = 0, \forall \lambda \in \mathbb{F}_q, \lambda \neq 1.$$

f(x) is called an **orthogonal** function from \mathbb{F}_q to \mathbb{F}_p .

Integer Sequences and Complex Valued Sequences

• Let \mathbb{C} be the complex field, $\mathbf{b} = \{b_i\}, b_i \in \mathbb{C}$ with period N. The autocorrelation of \mathbf{b} is defined as

$$C(\tau) = \sum_{i=0}^{N-1} b_{i+\tau} \overline{b_i}, \ 0 \le \tau \le N-1.$$
 (2)

b has 2-level autocorrelation if

$$C(au) = \left\{ egin{array}{ll} N & ext{if } au \equiv 0 mod N \ -1 & ext{if } au
otin 0 mod N. \end{array}
ight.$$

Hadamard Transform

• The Hadamard transform of f(x) is defined by

$$\widehat{f}(\lambda) = \sum_{\mathbf{x} \in \mathbb{F}_q} \chi(\operatorname{Tr}(\lambda \mathbf{x})) \overline{\chi(f(\mathbf{x}))} = \sum_{\mathbf{x} \in \mathbb{F}_q} \omega^{\operatorname{Tr}(\lambda \mathbf{x}) - f(\mathbf{x})}, \lambda \in \mathbb{F}_q.$$

The inverse formula is given by

$$\chi(f(\lambda)) = \frac{1}{q} \sum_{x \in \mathbb{F}_q} \chi(\operatorname{Tr}(\lambda x)) \overline{\widehat{f}(x)}, \lambda \in \mathbb{F}_q.$$

Parseval Formula

$$\sum_{x \in \mathbb{F}_q} \chi(f(\lambda x)) \overline{\chi(f(x))} = \sum_{x \in \mathbb{F}_q} \widehat{f}(\lambda x) \overline{\widehat{f}(x)}, \lambda \in \mathbb{F}_q.$$

Iterative Decimation Hadamard Transform (DHT) (Gong-Golomb, 2002)

- h(x), orthogonal; v, t, integer 0 < v, t < q 1, and $\lambda \in \mathbb{F}_q$.
- The first-order DHT

$$\widehat{f}_{h}(v)(\lambda) = \sum_{x \in \mathbb{F}_{q}} \chi(h(\lambda x)) \overline{\chi(f(x^{v}))}$$
$$= \sum_{x \in \mathbb{F}_{q}} \omega^{h(\lambda x) - f(x^{v})}.$$

The second-order DHT

$$\widehat{f_h}(v,t)(\lambda) = \sum_{y \in \mathbb{F}_q} \chi(h(\lambda y)) \overline{\widehat{f_h}(v)(y^t)} \\
= \sum_{x,y \in \mathbb{F}_q} \omega^{h(\lambda y) - h(y^t x) + f(x^v)}, \lambda \in \mathbb{F}_q$$

Realizations

- In general, for any integer pair (v, t), for $x \in \mathbb{F}_q$, a value of $\widehat{f}_h(v, t)(x)$ may be just a complex number.
- If

$$\widehat{f}_h(v,t)(x) \in \{q\omega^i \mid i=0,\cdots,p-1\}, \forall x \in \mathbb{F}_q,$$

then we can construct a function, say g(x), from \mathbb{F}_q to \mathbb{F}_p , whose elements are given by

$$\chi(g(x))=\frac{1}{q}\widehat{f}_h(v,t)(x), x\in \mathbb{F}_q.$$

In this case, we say that (v, t) is **realizable**, and g(x) is a **realization** of f(x).

• Hadamard Equivalence: If g(x) is realized by f(x), then g(x) and f(x) are Hadamard equivalent respect to h(x).

Important remark

For two functions which are Hadamard equivalent, if one of them has 2-level autocorrelation, so does the other.

Example

- Let p = 2, n = 4, h(x) = f(x) = Tr(x),
- \mathbb{F}_{2^4} be defined by $t(x) = x^4 + x + 1$, and α a root of t(x) in \mathbb{F}_{2^4} . Let

$$f(x) \leftrightarrow \mathbf{a} = 000100110101111.$$

• The first-order DHT of f(x) (or **a**)

$$\widehat{f}_h(v)(\lambda) = \sum_{x \in \mathbb{F}_{2^4}} (-1)^{Tr(\lambda x) + Tr(x^v)},$$

V	$\{\widehat{f}_h(\mathbf{v})(\alpha^i)\}, i=0,1,\cdots,s-1$	$s = \frac{15}{\gcd(v,15)}$
3	8,0,0,0,0	5
5	0,0,0	3
7	0, 0, 0, 4, 0, 8, 4, -4, 0, 4, 8, -4, 4, -4, -4	15

Example (cont.)

• The second-order DHT, $\widehat{f}_h(7,7)$ and $\widehat{f}_h(7,5)$, are given by

$$\widehat{f_h}(7,t)(\lambda) = \sum_{x,y \in \mathbb{F}_{2^4}} (-1)^{Tr(\lambda y) + Tr(y^t x) + Tr(x^7)}, \ t \in \{5,7\}$$

and

$$\{\widehat{f}_n(7,7)(\alpha^i)\} = -16, -16, -16, 16, -16, 24, 16, 8, -16, 16, 24, 8, 16, 8, 8$$

 $\{\widehat{f}_n(7,5)(\alpha^i)\} = 16, -16, -16.$

• Thus, (7,7) is not a realizable pair, while (7,5) is a realizable pair which realizes the sequence 011 of period 3.

Hadamard Equivalent Classes for Known 2-Level Autocorrelation Sequences

- Experimental results on the realizations of all the known p-ary sequences with 2-level autocorrelation of period $p^n 1$ have been done:
 - **Binary case**: for odd $n \le 17$ (Gong-Golomb, 2002), and even $n \le 16$ (Yu-Gong, 2005, 2009).
 - Ternary Case: for odd $n \le 15$ (Ludkovski-Gong, 2001, Gong-Helleseth, 2004).
 - p-ary: p > 3, some data.

Hadamard Equivalent Classes for Known 2-Level Autocorrelation Sequences (Cont.)

Experimental Results

New Integer Valued Sequences with 2-Level Autocorrelation Constructed from DHT

New Observation

Recall

$$\{s_i\} = \{\widehat{f_h}(7,7)(\alpha^i)\}\$$

= -16,-16,-16,16,-16,24,16,8,-16,16,24,8,16,8,8

• The sequence $\{s_i\}$ is not a realization, but it is an integer sequence with 2-level autocorrelation!

Construction of New Integer Valued Sequences

• For integers 0 < v, t < q - 1, we define the sequence $\mathbf{s}'(v,t) = \{s_i'\}$ by

$$s'_{i} = \widehat{f}_{h}(v, t)(\alpha^{i}), \ s_{i} = s'_{i}/q, i = 0, 1, 2, \cdots$$

- Then s'(v, t) is an integer valued sequence for p = 2 and a complex valued sequence for p > 2.
- s(v, t) is normalized from s'(v, t).

Theorem

If the sequence $\mathbf{a} \leftrightarrow f(x)$ has two-level autocorrelation, then the autocorrelation function $C_{\mathbf{s}(v,t)}(\tau)$ of $\mathbf{s}(v,t)$, the normalized version, satisfies

$$C_{\mathbf{s}(v,t)}(au) = \sum_{i=0}^{q-2} s_{i+ au} \overline{s_i}$$

$$= \begin{cases} q-1, & \text{if } au \equiv 0 \bmod (q-1); \\ -1, & \text{otherwise.} \end{cases}$$

for any (v, t) which co-prime with q - 1.

Question: For which (v, t), does the sequence $\mathbf{s}(v, t)$ have "nice" values?

Some Examples

•
$$p = 2$$
, $f(x) = h(x) = Tr(x)$.

Table: n = 5

(v,t)	$\widehat{T}r(v,t)(\lambda)/2^n$
(3, 11)	{-1,0,2}
(15, 3)	{-1,0,2}
(3, 7)	{-1,0,1,4}
(3, 15)	$\{-2,-1/2,0,1/2,1,3/2\}$
(5, 15)	$\{-7/2,-1,-1/2,0,1/2,3/2\}$
(15, 15)	$\{-1, -3/4, -1/4, 1/2, 3/2, 11/4\}$
maximum magnitude	4

Some Examples (Cont.)

Table: n = 6

(v,t)	$\widehat{\mathcal{I}}r(v,t)(\lambda)/2^n$
(5, 13)	{-1,0,1,4}
(5, 23)	{-1,0,1,3}
(5, 5)	$\{-2,-1,0,1,2\}$
(5, 31)	$\{-3/2,-1,-1/2,0,1/2,1,3\}$
(11, 23)	$\{-2,-1,-1/2,0,1/2,1,2\}$
(31, 31)	$\{-1, -7/8, -5/8, -1/4, 1/4, 7/8, 13/8, 5/2\}$
(11, 31)	$\{-7/2, -5/4, -1, -3/4, -1/2, -1/4, 1/4, 1/2, 1, 5/4, 3/2, 2\}$
maximum magnitude	4

Some Examples (Cont.)

Table: n = 7

$\widehat{Tr}(v,t)(\lambda)/2^n$
{-1,0,2}
{-1,0,2}
{-1,0,2}
{-1,0,1,2}
{-1,0,1,2}
{-1,0,1,2}
{-1,0,1,2}
{-1,0,1,2}
{-1,0,1,2}
{-1,0,1,2}
{-1,0,1,2}
{-1,0,1,2}
{-1,0,1,3}
{-1,0,1,3}
{-1,0,2,6}
6

Some Examples (Cont.)

Table: n = 8

	· · · · · · · · · · · · · · · · · · ·
(v, t)	$\widehat{Tr}(v,t)(\lambda)/2^n$
(11, 47)	{-1,0,1,3}
(13, 53)	{-1,0,1,3}
(11, 31)	{-1,0,1,2,3}
(23, 43)	{-1,0,1,2,3}
(13, 23)	{-1,0,1,2,9}
(7, 23)	{-1,0,1,2,3,5}
(7, 31)	$\{-1.5, -1, -0.5, 0, 0.5, 1, 1.5, 4\}$
(11, 61)	$\{-2, -1.5, -1, -0.5, 0, 0.5, 1, 2\}$
(11, 91)	$\{1, 0.5, -2.5, -0.5, 0, -1, 2, 2.5, -2\}$
(13, 31)	$\{1,0,0.5,-0.5,-1,2,-2,-1.5,1.5\}$
(23, 91)	$\{1, -0.5, 0.5, 1.5, 0, 2.5, -1, -1.5, 2\}$
(7, 19)	$\{5, 0.5, 1.5, -1, 1, -0.5, 0, -1.5, 3, -2\}$
(7, 47)	$\{-3, -0.5, 0, 2, -1, -1.5, 1, 0.5, 1.5, 3\}$
(11, 53)	$\{5, 0, -1.5, 0.5, -0.5, 2, -3, 1.5, 1, -1\}$
(13, 47)	$\{1, 0.5, -1.5, -1, 0, 3, -0.5, 1.5, -2.5, 2.5\}$
maximum magnitude	9

New Ternary Sequences with 2-Level Autocorrelation

Theorem

- Let p = 2, n be an odd integer, $1 \le k < n$ with gcd(k, n) = 1, and f(x) = h(x) = Tr(x). Let $v = 2^{n-1} 1$, and $t = 2^k + 1$. Then $\mathbf{s}(v, t)$ has two-level autocorrelation, and the s_i 's take three distinct values -1, 0, or 2.
- **2** Let N_{η} denote the number of η within one period of $\mathbf{s}(v,t)$, where $\eta=-1,0,$ or 2. Then

$$N_{-1} = (2^n + 1)/3, N_0 = 2^{n-1} - 1, \text{ and } N_2 = (2^{n-1} - 1)/3.$$

How to prove it?

In order to prove

$$\widehat{Tr}(\mathbf{v},t)(\alpha^i)/2^n = -1, 0, \text{ or } 2,$$

we need to prove the following lemma:

Lemma

Let n be an odd integer, and $1 \le k < n$ with gcd(k, n) = 1. Let $v = 2^{n-1} - 1$, and $t = 2^k + 1$. Then for any $\lambda \in \mathbb{F}_{2^n}^*$, we have

$$\sum_{x,y\in \mathbb{F}_{2^n}} (-1)^{\text{Tr}(\lambda y + y^t x + x^v)} = -2^n, 0, \text{ or } 2^{n+1}.$$

Variable Changes

We have the following variable change:

$$\sum_{x,y \in \mathbb{F}_{2^{n}}} (-1)^{Tr(\lambda y + y^{t}x + x^{v})} = \sum_{x \in \mathbb{F}_{2^{n}}^{*}, y \in \mathbb{F}_{2^{n}}} (-1)^{Tr(\lambda y + y^{t}x + x^{v})}$$

$$= \sum_{x \in \mathbb{F}_{2^{n}}^{*}, y \in \mathbb{F}_{2^{n}}} (-1)^{Tr(\lambda y + y^{t}x + 1/x)}$$

$$= \sum_{x \in \mathbb{F}_{2^{n}}^{*}, y \in \mathbb{F}_{2^{n}}} (-1)^{Tr(\lambda y + y^{t}/x + x)} \quad (x \leftarrow 1/x)$$

$$= \sum_{x_{1} \in \mathbb{F}_{2^{n}}^{*}, y \in \mathbb{F}_{2^{n}}} (-1)^{Tr(\lambda y + (y/x_{1})^{t} + x_{1}^{t})} \quad (x_{1}^{t} \leftarrow x)$$

$$= \sum_{x_{1} \in \mathbb{F}_{2^{n}}^{*}, z \in \mathbb{F}_{2^{n}}} (-1)^{Tr(\lambda z x_{1} + z^{t} + x_{1}^{t})} \quad (z \leftarrow y/x_{1})$$

$$= \sum_{x_{1}, z \in \mathbb{F}_{2^{n}}} (-1)^{Tr(z^{t} + x_{1}^{t} + \lambda z x_{1})}.$$

One New Lemma

Thus, we need to prove the lemma below:

Lemma

Let n be an odd integer, and $1 \le k < n$ with gcd(k, n) = 1. Then for any $\lambda \in \mathbb{F}_{2^n}^*$, we have

$$\sum_{x,y\in\mathbb{F}_{2^n}}(-1)^{Tr(x^{2^k+1}+y^{2^k+1}+\lambda xy)}=-2^n,0,\text{or }2^{n+1}.$$

Proof Sketch

• Set $L_{\lambda}(\omega) = \omega^{2^{2k}} + \lambda^{2^k} \omega^{2^k} + \omega + \lambda^{2^{k-1}}$. The we have

$$\sum_{x,y\in\mathbb{F}_{2^n}}(-1)^{Tr(x^{2^k+1}+y^{2^k+1}+\lambda xy)}=2^n\sum_{\omega:L_{\lambda}(\omega)=0}(-1)^{Tr(\omega^{2^k+1})}.$$

- Hence we need to study the roots of $L_{\lambda}(\omega) = 0$.
- Let $z = \omega \sqrt{\lambda}$, and $a = \frac{1}{\lambda^{2^{k-1}+1/2}}$. Then $L_{\lambda}(\omega) = 0$ if and only if

$$h_a(z) = a^{2^k} z^{2^{2^k}} + z^{2^k} + az + 1 = 0.$$

The proof can be divided into two cases.

Case 1: $a \neq \beta^{2^k+1} + \beta$ for any $\beta \in \mathbb{F}_{2^n}$.

- $h_a(z)=0$ has precisely one solution $z_0=R_{k,k'}(1/a)$, where $R_{k,k'}(\cdot)$ is Hans Dobbertin's polynomial. Then $L_\lambda(\omega)=0$ has precisely one solution $\omega_0=z_0/\sqrt{\lambda}$.
- We have $Tr(z_0) = 1$ because $x^{2^k+1} + x + a = 0$ has no solution in \mathbb{F}_{2^n} .
- According to Hans Dobbertin's result,

$$\omega_0^{2^k+1} = (z_0/\sqrt{\lambda})^{2^k+1} = az_0^{2^k+1} = \sum_{i=1}^{k'} z_0^{2^{ik}} + k' + 1,$$

Thus

$$Tr(\omega_0^{2^k+1}) = Tr\left(\sum_{i=1}^{k'} z_0^{2^{ik}}\right) + k' + 1 = k' \cdot Tr(z_0) + k' + 1 = 1.$$

It follows that

$$\sum_{\omega: L_{\lambda}(\omega)=0} (-1)^{Tr(\omega^{2^{k}+1})} = (-1)^{Tr(\omega_{0}^{2^{k}+1})} = -1.$$

Case 2: $a = \beta^{2^k+1} + \beta$ for some $\beta \in \mathbb{F}_{2^n}$.

• Set $Q(z) = az^{2^k} + \beta^2 z + \beta$, $\Gamma = \beta^{2^k-1} + 1/\beta$, and $\Delta = \Gamma^{-\frac{1}{2^k-1}}$. Then we have

$$h_a(z) = Q(z)^{2^k} + \Gamma Q(z) = Q(z)(Q(z)^{2^k-1} + \Delta^{-(2^k-1)}).$$

- $h_a(z) = 0$ if and only if Q(z) = 0 or $Q(z) + 1/\Delta = 0$.
- We can show that
 - Q(z) = 0 has none or precisely two solutions, and
 - $Q(z) + 1/\Delta = 0$ has **precisely two** solutions.

• If $h_a(z) = 0$ has **four solutions**, then we can show that

$$\sum_{\omega:L_{\lambda}(\omega)=0} (-1)^{Tr(\omega^{2^{k}+1})}$$

$$= (-1)^{Tr(\omega_{0}^{2^{k}+1})} + (-1)^{Tr(\omega_{1}^{2^{k}+1})} + (-1)^{Tr(\omega_{2}^{2^{k}+1})} + (-1)^{Tr(\omega_{3}^{2^{k}+1})}$$

$$= 2.$$

• If $h_a(z) = 0$ has **two solutions**, then we show that

$$\sum_{\omega: L_{\lambda}(\omega) = 0} (-1)^{\text{Tr}(\omega^{2^k + 1})} = (-1)^{\text{Tr}(\omega_0^{2^k + 1})} + (-1)^{\text{Tr}(\omega_1^{2^k + 1})} = 0.$$

Element Distribution

Using the following lemma, we can obtain the element distribution of $\mathbf{s}(v,t)$.

Property.

Let f(x) = h(x) = Tr(x), and two integers $0 < v, t < 2^n - 1$ satisfy gcd(vt, q - 1) = 1. Then we have

$$\sum_{\lambda \in \mathbb{F}_{2^n}} \widehat{f}(v,t)(\lambda) = 0$$

$$\sum_{\lambda \in \mathbb{F}_{2^n}} \widehat{f}(v,t)(\lambda)^2 = 2^{3n}.$$

New Quaternary Sequences with 2-Level Autocorrelation

• Construction: Let n be an integer, and $1 \le k < n$ with gcd(k, n) = d and n/d is odd. Let f(x) = h(x) = Tr(x), $v = 2^{n-1} - 1$, and $t = 2^k + 1$. Then s(v, t) has ideal two-level autocorrelation, and the s_i 's take at most four distinct values $-1, 0, 1, \text{ or } 2^d$.

• Distribution:

Element	Frequency
-1	$\frac{2^{(m+1)d}+2^d}{2(2^d+1)}$
0	$2^{(m-1)d}-1$
1	$\frac{(2^d-2)(2^{md}-1)}{2(2^d-1)}$
2 ^d	$\frac{2^{(m-1)d}-1}{2^{2d}-1}$

Some Remarks on Sequences of 2nd Order DHT

SIMILARITIES TO THE BINARY CASE

(v,t)	$\widehat{Tr}(v,t)(\lambda)/2^n$	Conditions	Comments
$(3,2^k+1)$	{-1,1}	gcd(k, n) = 1	Dillon-Dobbertin, 2004
$(-1,2^k+1)$	$\{-1,0,2\}$	$\gcd(k,n)=1$	Hu-Gong, 2009
$(-1,2^k+1)$	$\{-1,0,1,2^d\}$	gcd(k, n) = d	Hu-Gong, 2009
		n/d odd	

Note that $2^{n-1} - 1$ and -1 are in the same coset modulo $2^n - 1$.

New Hadamard Matrices with Entries −1, 0, 2

- The new ternary sequences yield new Hadamard matrixes with entries $\{-1,0,2\}$.
- Using the standard construction from binary 2-level autocorrelation sequences to Hadamard matrices, let

Then

$$AA^T = I$$

where A^T is the transpose of A and I is the identity matrix of q by q ($q = 2^n$).

• Similarly, we have new $2^n \times 2^n$ Hadamard matrixes with entries $\{-1,0,1,2\}$.

Example

• n = 5, v = 15, t = 3, and

$$s = s(15,3)$$

$$= -1 \quad 0 \quad 0 \quad 2 \quad 0 \quad 0 \quad 2 \quad -1 \quad 0 \quad 0$$

$$0 \quad 0 \quad 2 \quad 0 \quad -1 \quad -1 \quad 0 \quad 2 \quad 0 \quad -1$$

$$0 \quad 0 \quad 0 \quad -1 \quad 2 \quad -1 \quad 0 \quad -1 \quad -1 \quad -1$$

Let L be the left (cyclic) shift operator, and

$$A = \begin{bmatrix} 1 & 1 \cdots 1 \\ 1 & s \\ 1 & Ls \\ \vdots & & \\ 1 & L^{30}s \end{bmatrix} \implies AA^{T} = I_{32}$$

Reference

 H. Hu and G. Gong, New Ternary and Quaternary Sequences with Two-Level Autocorrelation, Technical Report, CACR 2009-16, 2009, University of Waterloo, Canada.

Open Problems

- How to prove the other ternary or quaternary sequences with two-level autocorrelation from the second order DHT of binary sequences (shown by experiments)?
- Are all the binary 2-level autocorrelation sequences from the second order DHT of binary sequences (at least the experimental results confirm it)?
- How to prove conjectured ternary 2-level autocorrelation sequences from the second order DHT of ternary sequences?
- How to determine analogue classes of p-ary 2-level autocorrelation sequences for p > 3?