复变函数与积分变换笔记

Notes on Functions of Complex Variable and Integral Transforms

作者:数试82 裴兆辰

2020年4月9日

钱学森书院学业辅导中心

Qian Yuan Xue Fu

XI'AN JIAOTONG UNIVERSITY

作品信息

➤ 标题: 复变函数与积分变换笔记 - Notes on Functions of Complex Variable and Integral Transforms

▶作者:数试82 裴兆辰

► 校对排版: 钱院学辅排版组 ► 出品时间: 2020 年 4 月 9 日

▶ 总页数: 6

许可证说明

●① ● 知识共享 (Creative Commons) BY-NC-ND 4.0 协议

本作品采用 **CC 协议** 进行许可。使用者可以在给出作者署名及资料来源的前提下对本作品进行转载,但不得对本作品进行修改,亦不得基于本作品进行二次创作,不得将本作品运用于商业用途。

目录

第-	-章			•			•		•	•			•	•			•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	1
第二	章																			•	•					•	•	•				2
第三	章	柯	互积	分	公	た /	.及	应	用							•		•		•	•			 •	•	•		•				3
	§3.1	Ca	шс	hy	积	分	公	式	的-		些	重:	要	推	论																	3
	§3.2	最	大村	嫫』	京王	里.																										5
	§3.3	非	齐	欠	Са	ис	hy	积	分	公	式	*																				6

第二章

第三章 柯西积分公式及应用

§3.1 Cauchy 积分公式的一些重要推论

定理 3.1.1 (Liouville 定理). 有界整函数必为常数

证明. 设 f 为一有界整函数,其模的上界设为 M. 即 $\forall z \in \mathbb{C}$, 有 $|f(z)| \leq M$, 任 取 $a \in \mathbb{C}$, 在 $\partial B(a,R)$ 上由 Cauchy 不等式得 $|f(a)| \leq \frac{M}{R}$, $\forall R > 0$. 令 $R \to \infty$ 得 $|f'(a)| = 0 \Rightarrow f'(a) = 0 \forall a \in \mathbb{C}$ 故 f 为常数.

定理 3.1.2 (代数基本定理). 任意复系数多项式 $P(z)=a_0z^n+a_1z^{n-1}+\cdots+a_n$ $(a_0\neq 0)$ 在 $\mathbb C$ 中必有零点

证明. 略,见
$$chb$$
. 和史济怀 $(F(x) = \frac{1}{P_x})$

定理 3.1.3 (Morera). 若 f 是域 \mathbb{D} 上的连续函数,且沿 \mathbb{D} 内任意可求长闭曲线上的积分是 0,那么 f 在 \mathbb{D} 上解析

习题

eg. Liouville 定理的另一个证明

证明. 设f是有界整函数, z_1, z_2 是 B(0, r)中的任意两点,则:

$$\int_{|z|=r} \frac{f(z)}{(z-z_1)(z-z_2)} dz = \frac{1}{z_1 - z_2} \left(\int_{|z|=r} \frac{f(z)}{z-z_1} dz - \int_{|z|=r} \frac{f(z)}{z-z_2} dz \right)$$
$$= \frac{1}{z_2 - z_1} \left(f(z_1) - f(z_2) \right)$$

由于 f 有界. 故存在 M > 0, s.t $|f(z)| \le M$, $\forall z \in \mathbb{C}$ 故:

$$\left| \int_{|z|=r} \frac{f(z)dz}{(z-z_1)(z-z_2)} \right| \le \int_0^{2\pi} \left| \frac{f(z) \cdot zd\theta}{(z-z_1)(z-z_2)} \right|$$

$$\le \int_0^{2\pi} \frac{M \cdot r}{|z-z_1| \cdot |z-z_2|} d\theta$$

$$\to 0 \quad (r \to \infty)$$

故:
$$\int_{|z|=r} \frac{f(z)dz}{(z-z_1)(z-z_2)} = 0$$
. 故: $f(z_1) = f(z_2)$. 由于 r, z_1, z_2 的任意性,故 $f(z)$ 为常值函数.

eg. 设 f 为整函数, 若当 $z \to +\infty$ 时. $f(z) = 0(|z|^{\alpha})$ $\alpha \ge 0$. 证明 f 是次数不超过 $[\alpha]$ 的多项式

证明. 记.
$$k = [\alpha] + 1$$

$$\Rightarrow \lim_{z \to \infty} \frac{f(z)}{z^k} = 0. \text{ 由于 } f^{(k)}(z) = \frac{k!}{z\pi i} \int_{|z| = R} \frac{f(\xi)}{(\xi - z)^{k+1}} d\xi. \text{ 故 } \forall \epsilon > 0.\exists R, s.t \quad r > R \text{ } f$$

$$\left| \frac{f(z)}{z^k} \right| < \epsilon, z \in B(0, r). \quad (\diamondsuit r \to \infty)$$

$$\Rightarrow \left| f^{(k)}(z) \right| \le \frac{1}{2\pi} \int_{|z| = R} \frac{\left| \frac{f(\xi)}{(\xi - z)^{k+1}} \right| d\xi = r\epsilon. \text{ in } f^{(k)} \equiv 0.$$

eg. 设 f 为整函数,如果 $f(\mathbb{C}) \subset \{z \in \mathbb{C}; Im z > 0\}$,证明 f 为常值函数.

证明.
$$\Rightarrow \forall z \in \mathbb{C}, |f(z)+i| \geq 1$$
 令 $g(z) = \frac{1}{f(z)+i}$ 故 $g(z) \in H(\mathbb{C})$. 并且. $|g(z)| \leq 1$. 故 g 为常值函数,故 f 为常值函数

eg. 设 f 为整函数. 如果 $f(\mathbb{C}) \subset \mathbb{C} \setminus [0,1]$. 证明: f 为常值函数.

证明. 令
$$g(z) = \frac{f(z)}{1 - f(z)}$$
. 若 $g(z) = r \in \mathbb{R}^+$. 则 $f(z) = \frac{r}{r+1} \in [0,1]$. 矛盾 故 $g(z) \subset \mathbb{C} \setminus [0, +\infty)$. 设 $h(z) = \sqrt{g(z)}$. 显然 h 也为整函数. 故 $h(\mathbb{C}) \subset \{z \in \mathbb{C}; Im \ z > 0\}$. 故 h 为常值函数. 故 f 为常值函数

eg (更强形式的 Morera). 设 f 是域 \mathbb{D} 上的连续函数, 若对于任意边界和内部位于 \mathbb{D} 中三角形域 Δ , 总有 $\int_{\partial \wedge} f(z) dz = 0$. 证明 $f \in H(\mathbb{D})$.

证明. 思路同 Cauchy-Gousart. 此处省略

eg.
$$\int_{|z|=a} \frac{e^z}{z^2+a^2} . (a \in (\mathbb{R})^+).$$

解.

$$\int_{|z|=a} \frac{e^z}{z^2 + a^2}$$

$$= \int_{|z|=a} \frac{e^z}{(z+ai)(z-ai)} dz = \frac{1}{2ai} \int_{|z|=a} \left(\frac{e^z}{z-ai} - \frac{e^z}{z+ai} \right) dz$$

$$= \frac{2\pi i}{2ai} \left((e^z)|_{z=ai} - (e^z)|_{z=-ai} \right) = \frac{2\pi i}{a} \sin a$$

eg. 设 $f \in H(\{z: r < |z| < +\infty\})$. 且 $\lim_{z \to \infty} z \cdot f(z) = A$. 证明: $\int_{|z|=R} f(z) dz \to 2\pi i A$, $(R \to \infty)$.

证明. 由条件得. $\forall \epsilon > 0, \exists R_0 > r, s.t. |z| \ge R_0$ 时, 有 $|zf(z) - A| < \epsilon$. 故:

$$\begin{split} \left| \int_{|z|=R} f(z) dz - 2\pi i A \right| &= \left| \int_{|z|=R} f(z) dz - \int_{|z|=R} \frac{A}{z} dz \right| \\ &= \left| \int_{|z|=R} (f(z) - \frac{A}{z}) dz \right| \le \int_{|z|=R} \left| f(z) - \frac{A}{z} \right| dz \\ &\le \int_{|z|=R} \frac{\epsilon}{R} dz = 2\pi \epsilon \end{split}$$

eg. 无界区域的 Cauchy 积分公式:

设 γ 为 \mathbb{C} 中的有限的可求长闭曲线,设 γ 围成的区域为D.记 $\Omega = \mathbb{C}\setminus (D \cup \gamma)$ 设 $f \in C(\Omega \cup \gamma) \cap H(\Omega)$, 且 $\lim_{|z| \to \infty} f(z) = f(\infty) \in \mathbb{C}$. 则 $f(z) = f(\infty) - \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{f(\xi)}{\xi - z} d\xi$.

证明. 任取
$$z \in \Omega.\exists R > 0, s.t.$$
 $\gamma \cup \{z\} \subset B(0,R).$ 由 $f(z) = \frac{1}{2\pi i} \int_{|z|=R} \frac{f(\xi)}{\xi-z} d\xi - \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi-z} d\xi.$ 取 $\xi \in \{z: |z|=R\}.$ 令 $R \to +\infty$, $\frac{f(\xi)}{\xi-z} \cdot \xi \to f(\infty)$

由前例子可得
$$\frac{1}{2\pi i} \int_{|z|=R} \frac{f(\xi)}{\xi - z} d\xi \to f(\infty), R \to +\infty$$

故 $f(z) = f(\infty) - \frac{1}{2\pi i} \int_{\mathcal{X}} \frac{f(\xi)}{\xi - z} d\xi$

eg (Painlevé 原理). 设 D 为域, $\gamma_1, \gamma_2 ... \gamma_n$ 是 D 中的 n 条可求长闭曲线, $f \in C(D) \cap H(D \setminus \bigcup_{k=1}^{n} \gamma_k) \otimes f \in H(D).$

证明. 利用定理 3.2.4 及 Morera 定理即可,略

最大模原理 **§3.2**

定理 3.2.1 (平均值定理). 设 $f \in H(B(z_0,r)) \cap C(\overline{B(z_0,r)})$. 则: $f(z_0) = \frac{1}{2\pi} \int_{a}^{2\pi} f(z_0 + re^{i\theta}) d\theta$.

证明. 由 Cauchy 积分公式得
$$f(z_0) = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(\xi)}{\xi-z_0} d\xi$$

记 $\xi = z_0 + re^{i\theta} \Rightarrow d\xi = ire^{i\theta} d\theta = i(\xi-z_0) d\theta$
 $\Rightarrow f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$

定理 3.2.2 (最大模定理). 设 Ω 为区域 $f \in H(\Omega)$. 则 |f| 在 Ω 内有最大值当且仅 当 f 为常函数

QIAN YUAN XUE FU

证明. 此处给出利用区域连通性与平均值原理的证法,见 chb 笔记. 略具体可见方企勤《复变函数》

定理 **3.2.3.** 设 $D \subset \mathbb{C}$ 为有界域. 设 f 为非常值函数. $f \in H(D) \cap C(D)$. 则 f 的最大模在且只在 ∂D 上取到

证明. 由定理 3.6.2 可直接得到. 略

定理 3.2.4 (Schwarz 引理). 设 $f \in H(B(0,1))$, 且有 $\forall z \in B(0,1)$, $|f(z)| \le 1$, f(0) = 0. 则 $\forall z \in B(0,1)$ 有 $|f(z)| \le |z|$, $|f'(0)| \le 1$. 并且若存在 $z_0 \in B(0,1)$ $z_0 \ne 0$, 有 $|f(z_0)| = |z_0|$, 或 |f'(0)| = 1, 则 $\exists \theta \in \mathbb{R}$, s.t. $\forall z \in B(0,1)$ 有 $f(z) = e^{i\theta} \cdot z$

证明. 略. 见 chb 笔记以及方企勤《复变函数》

§3.3 非齐次 Cauchy 积分公式*

定理 **3.3.1.** 设 $\gamma_0, \gamma_1 ... \gamma_n$ 是 n+1 条可求长简单闭曲线, $\gamma_1, \gamma_2 ... \gamma_n$ 在 r_0 的内部. $\gamma_1, \gamma_2 ... \gamma_n$ 中的任一条均在其余的 n-1 条的外部. 设 D 是这 n+1 条曲线围成的 区域, 若 $f \in C^1(D)$. 则 $\forall z \in D$. 有: $f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\xi)}{\xi - z} d\xi + \frac{1}{2\pi i} \int_{D} \frac{\partial f(\xi)}{\partial \overline{\xi}} \frac{1}{\xi - z} d\xi \bigwedge d\overline{\xi}$

证明. 见史济怀《复变函数》

