Point Spread Function Estimation and Uncertainty Quantification

Kevin Joyce^{†*} advised by John Bardsley[†] and Aaron Luttman*

†The University of Montana *National Security Technologies LLC

May 5, 2016

This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy and supported by the Site-Directed Research and Development Program.

Outline

Modeling Imaging Systems

Convolution with a point spread function Estimating the PSF with calibration images

Radial Symmetry for Function Spaces

Sobolev Spaces Variable Transformation and the Pullback Operator Regularization and Discrete representation

Hierarchical Bayesian Model

The posterior density
Gibbs Sampling and Partial Collapse
Results

Outline

Modeling Imaging Systems

Convolution with a point spread function Estimating the PSF with calibration images

Radial Symmetry for Function Spaces

Sobolev Spaces
Variable Transformation and the Pullback Operator
Regularization and Discrete representation

Hierarchical Bayesian Model

The posterior density Gibbs Sampling and Partial Collapse Results

Imaging Model Assumptions

Point Spread Function Estimation

Point Spread Function Estimation

X-ray Edge Calibration Data

Radiographic data from the Cygnus Dual Beam Radiography Facility at the NNSS in North Las Vegas.

General Edge Blur Problem

$$b(x,y) = \iint_{\mathbb{R}^2} k(s,t)E(x-s)dtds + \varepsilon_{x,y}, \quad E(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0. \end{cases}$$

Radially Symmetric PSF

We distinguish the radial profile from the kernel by

$$k(s,t) = p\left(\sqrt{s^2 + t^2}\right)$$

$$b(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} k(s,t) E(x-s) dt ds + \varepsilon_{x,y}$$
$$= \int_{0}^{\infty} p(r) \cdot g(x,r) r dr + \varepsilon_{x,y}.$$

Observe that g is symmetric about x = 0.

Outline

Modeling Imaging Systems

Convolution with a point spread function Estimating the PSF with calibration images

Radial Symmetry for Function Spaces

Sobolev Spaces Variable Transformation and the Pullback Operator Regularization and Discrete representation

Hierarchical Bayesian Model

The posterior density
Gibbs Sampling and Partial Collapse
Results

Distributions and Sobolev spaces

- Let $\phi \in \mathscr{D}(\Omega)$ denote the space of compactly supported smooth functions defined on an open set $\Omega \subseteq \mathbb{R}^N$, called test functions.
- ► The space of continuous linear functionals, denoted $f \in \mathscr{D}^*(\Omega)$, are the distributions on Ω , where action of f on ϕ is expressed by $\langle f, \phi \rangle$.
- For functions, the action of the linear functional is $\langle f, g \rangle = \int fg \, dx$.
- ▶ Operations are expressed adjointly, e.g. differentiation is given by integration by parts $Df(\phi) \stackrel{\text{def}}{=} -\langle f, D\phi \rangle$.

Distributions and Sobolev spaces

▶ We define the L^2 inner-product for test functions as the sesquilinear form $(\cdot,\cdot)_{L^2(\Omega)}: \mathscr{D}(\Omega) \times \mathscr{D}(\Omega) \to \mathbb{C}$ by the Riemann integral

$$(\phi,\psi)_{L^2(\Omega)} \stackrel{\text{def}}{=} \int_{\Omega} \phi(x) \overline{\psi(x)} \, dx,$$

with a norm $\|\cdot\|_{L^2(\Omega)}$.

▶ We can construct L^2 from test functions with a completion argument. Idea: Equivalence classes of L^2 Cauchy sequences of test functions (ϕ_n) correspond to L^2 distributions.

Distributions and Sobolev spaces

- ▶ A Sobolev space of order n over an open set $\Omega \subseteq \mathbb{R}^k$ is $\mathscr{H}^n(\Omega) = \{ f \in L^2(\Omega) : \partial^{\alpha} f \in L^2(\Omega) \text{ whenever } |\alpha| \leq N \}.$
- They are endowed with the sum of semi-norms

$$(f,g)_{\Omega,n} = \sum_{0 \le |\alpha| \le n} (\partial^{\alpha} f, \partial^{\alpha} g)_{L^{2}(\Omega)}. \tag{1}$$

▶ Each of these form a sequence of linear subspaces $\mathscr{H}^n(\Omega) \subset \mathscr{H}^{n-1}(\Omega) \subset \cdots \subset \mathscr{H}^1(\Omega) \subset L^2(\Omega)$, however, the inclusion is strict and they are not closed with respect to the L^2 norm.

Variable Transformation and the Pullback Operator

- ▶ Idea: Extend the notion of $k(x,y) = p\left(\sqrt{x^2 + y^2}\right) = T^{\sharp}p$ to distributions "adjointly" as was done for derivatives: $\langle T^{\sharp}p, \phi \rangle \stackrel{\text{def}}{=} \langle p, T_{\sharp}\phi \rangle$
- ▶ Use change of variables so that one component is $r = \sqrt{x^2 + y^2}$, for topological reasons, this can only be done on a proper subset of \mathbb{R}^2 .

Radial Symmetry for Sobolev Spaces

- ▶ The pullback by T on $\mathscr{D}^*(\Omega_1)$ is a linear operator $T^\sharp: \mathscr{D}^*(\Omega_1) \to \mathscr{D}^*(\Omega_2)$ that is injective, continuous, and unique.
- ▶ **Definition** $k \in \mathcal{K}^n \subset \mathcal{H}^n(\Omega_2)$, the space of radially symmetric distributions, if there exists a sequence $(\rho_m) \subset \mathcal{D}(\Omega_1)$, so that $(T^\sharp \rho_m)$ is Cauchy with respect to $\|\cdot\|_{\mathcal{H}^k(\Omega_2)}$ and

$$\left\langle \mathbf{k},\phi\right\rangle _{\Omega_{2}}=\lim_{n\rightarrow\infty}\left\langle T^{\sharp}\rho_{n},\phi\right\rangle _{\Omega_{2}}=\lim_{m\rightarrow\infty}\left\langle \rho_{m},T_{\sharp}\phi\right\rangle _{\Omega_{1}},$$

▶ **Definition** The space of radial profiles corresponding to \mathcal{K}^n distributions is $\mathscr{P}^n = \{p \in \mathscr{D}^*(\Omega_1) : T^{\sharp}p \in \mathcal{K}^n\}.$

Radial Symmetry for Sobolev Spaces

The map T[#] induces the inner product

$$(\rho,\omega)_{\mathcal{T}(\Omega_1)} = \left(S_{1/2}(\rho), S_{1/2}(\omega)\right)_{L^2(\Omega_1)}$$

where $S(\omega)$ is the shift operator defined by $S(\omega) = \omega(r) \cdot (2\pi r)^{1/2}$.

When k is a function, the familiar radial transformation is given

$$\iint |k|^2 dxdy = \int |p|^2 \frac{2\pi r}{dr}.$$

▶ Moreover, if $\rho, \omega \in \mathscr{D}(\Omega_1)$, then the squared norm of the Laplacian is given by

$$(\nabla T^{\sharp} \rho, \nabla T^{\sharp} \omega)_{L^{2}(\Omega_{2})} = (\partial \rho, \partial \omega)_{T(\Omega_{1})}.$$

Radial L^2 and the Laplacian

For the two representations $k = T^{\sharp}p$

$$b = \mathcal{F}k \implies b = (\mathcal{F}T^{\sharp})p = \mathcal{G}p$$

▶ When k and p are smooth, real-valued functions, the Laplacian on \mathbb{R}^2 with the L^2 inner product translates to

$$\|\nabla k\|_{L^{2}(\Omega_{2})}^{2} = (\partial p, \partial p)_{T(\Omega_{1})} = \int_{0}^{\infty} \frac{d}{dr} p(r) \cdot \frac{d}{dr} p(r) r dr$$
$$= \int_{0}^{\infty} p \cdot \underbrace{\frac{1}{r} \frac{d}{dr} r \frac{d}{dr}}_{f} p(r) r dr$$

We solve the inverse problem on the radial profile p, with regularization on the radially symmetric function k.

Tikhonov Laplacian Regularization

For the two representations

$$b = \mathcal{G}p + \epsilon$$
 and $b = \mathcal{F}k + \epsilon$

 Minimizing the second order Tikhonov-Laplacian functional subject to k radially symmetric

$$\frac{\lambda}{2} \left\| b - \mathcal{G} \rho \right\|_{L^2}^2 + \frac{\delta}{2} \left\| \nabla^2 k \right\|_{L^2}^2$$

is equivalent to minimizing

$$\frac{\lambda}{2} \left\| b - \mathcal{G} \rho \right\|_{L^2}^2 + \frac{\delta}{2} \left\| \mathcal{L}^2 \rho \right\|_{rad}^2$$

The discrete problem

In order to carry out estimation on a computer, we discretize the integral operator using mid-point quadrature

$$b = \mathcal{G}p + \epsilon \implies b = Gp + \epsilon$$

Further, we discretize the regularization operator \mathcal{L} using finite differencing

$$\|\mathcal{L}p\|_{rad}^2 = \int \left[\frac{1}{r}\frac{d}{dr}\left(r\frac{d}{dr}\right)\right]^2 p(r)rdr \implies \mathbf{L}\mathbf{p} = \mathbf{r}^{-1/2}\odot\mathbf{D}(\mathbf{r}\odot\mathbf{D}\mathbf{p})$$

and midpoint quadrature for the inner products

$$\frac{\lambda}{2} \left\| b - \mathcal{G} p \right\|_{L^2}^2 \implies \underbrace{\frac{\lambda}{2m}}_{\lambda} \left\| b - G p \right\|_{\mathbb{R}^m}^2$$

and

$$\frac{\delta}{2} \left\| \nabla^2 k \right\|_{L^2} \implies \frac{\delta}{2} \left\| \mathcal{L} \rho \right\|_{rad}^2 \implies \underbrace{\frac{\delta}{2n}}_{\delta} \left\| \mathbf{L} \rho \right\|_{\mathbb{R}^n}^2$$

Outline

Modeling Imaging Systems

Convolution with a point spread function Estimating the PSF with calibration images

Radial Symmetry for Function Spaces

Sobolev Spaces Variable Transformation and the Pullback Operator Regularization and Discrete representation

Hierarchical Bayesian Model

The posterior density
Gibbs Sampling and Partial Collapse
Results

Hierarchical Model for PSF estimation

Let $\pi(\mathbf{x}) = \mathbb{P}(X = \mathbf{x})$ denote the probability density. For λ, δ and \mathbf{p} and

$$b = Gp + \epsilon$$

assume

- ▶ The likelihood $\pi(\boldsymbol{b}|\boldsymbol{p},\lambda,\delta) = \pi(\boldsymbol{b}|\boldsymbol{p},\lambda) \propto \lambda^{M/2} \exp\left(-\frac{\lambda}{2}\|\boldsymbol{b} \boldsymbol{G}\boldsymbol{p}\|^2\right)$ since ϵ is independent Gaussian noise.
- The prior $\pi(\boldsymbol{p}|\delta,\lambda) = \pi(\boldsymbol{p}|\delta) \propto \delta^{N/2} \exp\left(-\frac{\delta}{2}\|\boldsymbol{L}\boldsymbol{p}\|^2\right)$ since $k \sim \mathcal{N}(0,\nabla^{-2}) \implies \boldsymbol{p} \sim N(0,\mathcal{L}^{-2})$
- ► The hyperpriors $\pi(\lambda) \propto \exp\left(-10^{-4}\lambda\right)$ and $\pi(\delta) \propto \exp\left(-10^{-4}\delta\right)$ are independent "unobjective" Gamma distributions.

Bayesian Posterior

With $\pi(\boldsymbol{b}|\boldsymbol{p},\lambda,\delta),\pi(\boldsymbol{p}|\delta,\lambda)$, and $\pi(\lambda,\delta)$, use Bayes' "Theorem" to obtain

$$\pi_{\mathbf{b}}(\mathbf{p}, \lambda, \delta) \stackrel{\text{def}}{=} \pi(\mathbf{p}, \lambda, \delta | \mathbf{b}) = \pi(\mathbf{b}, \mathbf{p}, \lambda, \delta) / \pi(\mathbf{b})$$

$$\propto \lambda^{M/2} \delta^{N/2} \exp\left(-\frac{\lambda}{2} \left\| \mathbf{b} - \mathbf{G} \mathbf{p} \right\|_{\mathbb{R}^{m}} - \frac{\delta}{2} \left\| \mathbf{L} \mathbf{p} \right\|_{\mathbb{R}^{n}} - 10^{-4} (\lambda + \delta)\right)$$

- This is not a "common" probability density, hence simulations from a computer are not readily available.
- ▶ Bayes' "Theorem" will allow simulations from the full conditionals $\pi_{\mathbf{b}}(\lambda|\delta, \boldsymbol{p}), \pi_{\mathbf{b}}(\delta|\lambda, \boldsymbol{p})$ and $\pi_{\mathbf{b}}(\boldsymbol{p}|\lambda, \delta)$.
- Because each distribution is from the exponential family, they form a conjugacy such that the full conditionals are "shifts" of the priors.

Full conditional densities

The resulting expressions are

$$\pi(\lambda|\boldsymbol{b},\boldsymbol{p},\delta) \propto \lambda^{(2N+1)/2+\alpha-1} \exp\left(-\lambda\left(rac{1}{2}\|\boldsymbol{G}\boldsymbol{x}-\boldsymbol{b}\|^2-\beta
ight)\right),$$
 $\pi(\delta|\boldsymbol{b},\boldsymbol{p},\lambda) \propto \delta^{N/2+\alpha-1} \exp\left(-\delta\left(rac{1}{2}\langle\boldsymbol{p},\boldsymbol{L}\boldsymbol{p}\rangle-\beta
ight)\right),$
 $\pi(\boldsymbol{p}|\boldsymbol{b},\lambda,\delta) \propto \exp\left(-rac{1}{2}\left\langle(\boldsymbol{p}-\boldsymbol{m}_{\lambda,\delta}),\boldsymbol{J}_{\lambda,\delta}(\boldsymbol{p}-\boldsymbol{m}_{\lambda,\delta})\right\rangle\right)$

where

$$\boldsymbol{J}_{\lambda,\delta} \stackrel{\text{def}}{=} (\lambda \boldsymbol{G}^T \boldsymbol{G} + \delta \boldsymbol{L})$$
 and $\boldsymbol{m}_{\lambda,\delta} \stackrel{\text{def}}{=} \boldsymbol{J}_{\lambda,\delta}^{-1} \lambda \boldsymbol{G}^T \boldsymbol{b}$,

The matrix solves required for sampling can be efficiently computed using a Cholesky decomposition $\mathbf{R}_{\lambda,\delta}^T \mathbf{R}_{\lambda,\delta} \stackrel{\text{def}}{=} \mathbf{J}_{\lambda,\delta}$ in $O(N^3)$ flops.

Gibbs sampling

The Gibbs sampler [Geman and Geman 1984]: Given $(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1})$, simulate

1. Simulate
$$\lambda^{k+1} \sim \Gamma\left((2N+1)/2 + \alpha, \frac{1}{2}\|\boldsymbol{G}\boldsymbol{p}^k - \boldsymbol{b}\|^2 + \beta\right)$$
.

2. Simulate
$$\delta^{k+1} \sim \Gamma\left(N/2 + \alpha, \frac{1}{2} \left\langle \boldsymbol{p}^k, \boldsymbol{L} \boldsymbol{p}^k \right\rangle + \beta\right)$$
.

3. Compute $\mathbf{R}_{\lambda^{k+1},\delta^{k+1}}$, $\mathbf{m}_{\lambda^{k+1},\delta^{k+1}}$,

and set
$$m{p}^{k+1} = m{R}_{\lambda^{k+1}}^{-1} m{z} + m{m}_{\lambda^{k+1},\delta^{k+1}}$$
 where $m{z} \sim \mathcal{N}\left(\mathbf{0}, m{I}_{N \times N} \right)$.

Correlated δ chains

Literature on the Issue

- [Agapiou,Bardsley,Stuart,Papaspiliopoulos, 2014] explained this phenomena theoretically for a general class of Laplacian based Hierarchical samplers for inverse problems.
- ▶ The issue arises when the discretization of p closer approximates the continuum, the correlation in the δ component of the Markov Chain becomes more correlated.
- [VanDyke, Park 2008] provide a general method for removing the dependence of problematic components in the Gibbs sampler, called partial collapse.
- ► The idea has been independently derived in many places, however, if done carelessly [VanDyke, Park 2008] showed that the resulting Markov chain is no longer invariant, although invariance was not proved there.

Given
$$\left(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1}, \widetilde{\boldsymbol{p}}^{k-1}\right)$$
, simulate

- 1: $\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$
- 2: $(\delta^k, \widetilde{\boldsymbol{\rho}}^k) \sim \pi_{\mathbf{b}}(\delta, \widetilde{\boldsymbol{\rho}}|\lambda^k)$
- 3: $\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p}|\lambda^k, \delta^k)$

The associated Markov Chain is invariant with respect to $\widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}}) = \pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{p})\pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}}|\lambda, \delta)$:

$$\begin{split} [\mathcal{K}\widehat{\boldsymbol{\pi_b}}] &= \iiint \pi_{\mathbf{b}}(\boldsymbol{p}'|\lambda',\delta')\pi_{\mathbf{b}}(\delta',\widetilde{\boldsymbol{p}}'|\lambda')\pi_{\mathbf{b}}(\lambda',\boldsymbol{p}|\delta)\widetilde{\pi_{\mathbf{b}}}(\lambda,\delta,\boldsymbol{p},\widetilde{\boldsymbol{p}})d\lambda d\delta d\boldsymbol{p}d\widetilde{\boldsymbol{p}} \\ &= \pi_{\mathbf{b}}(\boldsymbol{p}'|\lambda',\delta')\pi_{\mathbf{b}}(\delta',\widetilde{\boldsymbol{p}}'|\lambda')\iint \pi_{\mathbf{b}}(\lambda'|\delta,\boldsymbol{p})\underbrace{\int \widetilde{\pi_{\mathbf{b}}}(\lambda,\delta,\boldsymbol{p},\widetilde{\boldsymbol{p}})d\widetilde{\boldsymbol{p}}d\lambda}_{\pi_{\mathbf{b}}(\delta,\mathbf{p})} d\delta d\boldsymbol{p} \\ &= \underbrace{\pi_{\mathbf{b}}(\boldsymbol{p}'|\lambda',\delta')}_{\pi_{\mathbf{b}}(\mathbf{p}',\delta',\lambda')/\pi_{\mathbf{b}}(\delta',\lambda')} \pi_{\mathbf{b}}(\delta',\widetilde{\boldsymbol{p}}'|\lambda')\underbrace{\iint \pi_{\mathbf{b}}(\lambda',\delta,\boldsymbol{p})d\delta d\boldsymbol{p}}_{\pi_{\mathbf{b}}(\lambda',\delta')/\pi_{\mathbf{b}}(\delta',\lambda')} \\ &= \pi_{\mathbf{b}}(\boldsymbol{p}',\lambda',\delta')\underbrace{\frac{\pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}}',\lambda',\delta')}{\pi_{\mathbf{b}}(\lambda',\delta')}}_{\pi_{\mathbf{b}}(\lambda',\delta')} \\ &= \underbrace{\pi_{\mathbf{b}}(\boldsymbol{p}',\lambda',\delta')\underbrace{\frac{\pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}}',\lambda',\delta')}{\pi_{\mathbf{b}}(\lambda',\delta')}}_{\pi_{\mathbf{b}}(\lambda',\delta')} \end{split}$$

Given
$$\left(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1}, \widetilde{\boldsymbol{p}}^{k-1}\right)$$
, simulate
1: $\lambda^k \sim \pi_h(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$

1:
$$\lambda^n \sim \pi_{\mathbf{b}}(\lambda | \delta^{n-1}, \boldsymbol{p}^{n-1})$$

2:
$$(\delta^k, \widetilde{\boldsymbol{p}}^k) \sim \pi_{\mathbf{b}}(\delta, \widetilde{\boldsymbol{p}}|\lambda^k)$$

3: $\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p}|\lambda^k, \delta^k)$

The associated Markov Chain is invariant with respect to
$$\widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}}) = \pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{p})\pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}}|\lambda, \delta)$$
:

$$\begin{split} [\mathcal{K}\widetilde{\pi_{\mathbf{b}}}] &= \iiint \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \pi_{\mathbf{b}}(\lambda', \mathbf{p}|\delta) \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\lambda d\delta d\mathbf{p} d\widetilde{\mathbf{p}} \\ &= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \iint \pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p}) \underbrace{\int \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\widetilde{\mathbf{p}} d\lambda}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})} \\ &= \underbrace{\pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta')}_{\pi_{\mathbf{b}}(\mathbf{p}', \delta', \lambda') / \pi_{\mathbf{b}}(\delta', \lambda')} \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \underbrace{\iint \pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p}) d\delta d\mathbf{p}}_{\pi_{\mathbf{b}}(\lambda')} \\ &= \pi_{\mathbf{b}}(\mathbf{p}', \lambda', \delta') \underbrace{\frac{\pi_{\mathbf{b}}(\widetilde{\mathbf{p}}', \lambda', \delta')}{\pi_{\mathbf{b}}(\lambda', \delta')}}_{\pi_{\mathbf{b}}(\lambda', \delta')} \\ &= \underbrace{\pi_{\mathbf{b}}(\mathbf{p}', \lambda', \delta') \underbrace{\frac{\pi_{\mathbf{b}}(\widetilde{\mathbf{p}}', \lambda', \delta')}{\pi_{\mathbf{b}}(\lambda', \delta')}}_{\pi_{\mathbf{b}}(\lambda', \delta')} \end{split}$$

Given
$$(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1}, \widetilde{\boldsymbol{p}}^{k-1})$$
, simulate

- 1: $\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$
- 2: $(\delta^k, \widetilde{\boldsymbol{\rho}}^k) \sim \pi_{\mathbf{b}}(\delta, \widetilde{\boldsymbol{\rho}}|\lambda^k)$
- 3: $\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p}|\lambda^k, \delta^k)$

The associated Markov Chain is invariant with respect to $\widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}}) = \pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{p})\pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}}|\lambda, \delta)$:

$$\begin{split} [\mathcal{K}\widetilde{\pi_{\mathbf{b}}}] &= \iiint \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \pi_{\mathbf{b}}(\lambda', \mathbf{p}|\delta) \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\lambda d\delta d\mathbf{p} d\widetilde{\mathbf{p}} \\ &= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \iint \pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p}) \underbrace{\int \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\widetilde{\mathbf{p}} d\lambda}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})} d\delta d\mathbf{p} \\ &= \underbrace{\pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta')}_{\pi_{\mathbf{b}}(\delta', \lambda')/\pi_{\mathbf{b}}(\delta', \lambda')} \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \underbrace{\int \pi_{\mathbf{b}}(\lambda', \delta, \mathbf{p}) d\delta d\mathbf{p}}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})} \end{split}$$

$$= \pi_{\mathbf{b}}(\boldsymbol{p}', \lambda', \delta') \frac{\pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}}', \lambda', \delta')}{\pi_{\mathbf{b}}(\lambda', \delta')}$$
$$= \widetilde{\pi_{\mathbf{b}}}(\lambda', \delta', \boldsymbol{p}', \widetilde{\boldsymbol{p}}')$$

Given
$$\left(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1}, \widetilde{\boldsymbol{p}}^{k-1}\right)$$
, simulate
1: $\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$
2: $(\delta^k, \widetilde{\boldsymbol{p}}^k) \sim \pi_{\mathbf{b}}(\delta, \widetilde{\boldsymbol{p}} | \lambda^k)$
3: $\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p} | \lambda^k, \delta^k)$
The associated Markov Chain is invariant with respect to $\widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}}) = \pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{p}) \pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}} | \lambda, \delta)$: $\left[\mathcal{K}\widetilde{\pi_{\mathbf{b}}}\right] = \iiint_{\mathbf{b}} \pi_{\mathbf{b}}(\boldsymbol{p}' | \lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\boldsymbol{p}}' | \lambda') \pi_{\mathbf{b}}(\lambda', \boldsymbol{p} | \delta) \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}}) d\lambda d\delta d\boldsymbol{p} d\widetilde{\boldsymbol{p}}$ $= \pi_{\mathbf{b}}(\boldsymbol{p}' | \lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\boldsymbol{p}}' | \lambda') \iint_{\mathbf{b}} \pi_{\mathbf{b}}(\lambda' | \delta, \boldsymbol{p}) \underbrace{\int_{\mathbf{b}} \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}}) d\widetilde{\boldsymbol{p}} d\lambda}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})}$ $= \underbrace{\pi_{\mathbf{b}}(\boldsymbol{p}' | \lambda', \delta')}_{\pi_{\mathbf{b}}(\delta', \lambda', \delta')} \pi_{\mathbf{b}}(\delta', \widetilde{\boldsymbol{p}}' | \lambda') \underbrace{\int_{\mathbf{b}} \pi_{\mathbf{b}}(\lambda', \delta, \boldsymbol{p}) d\delta d\boldsymbol{p}}_{\pi_{\mathbf{b}}(\lambda', \delta', \lambda')/\pi_{\mathbf{b}}(\delta', \lambda', \delta')}$ $= \pi_{\mathbf{b}}(\boldsymbol{p}', \lambda', \delta') \underbrace{\frac{\pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}}', \lambda', \delta')}{\pi_{\mathbf{b}}(\lambda', \delta')}}$

Given
$$\left(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1}, \widetilde{\boldsymbol{p}}^{k-1}\right)$$
, simulate
1: $\lambda^k \sim \pi_{\mathbf{b}}(\lambda|\delta^{k-1}, \boldsymbol{p}^{k-1})$
2: $(\delta^k, \widetilde{\boldsymbol{p}}^k) \sim \pi_{\mathbf{b}}(\delta, \widetilde{\boldsymbol{p}}|\lambda^k)$
3: $\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p}|\lambda^k, \delta^k)$
The associated Markov Chain is invariant with respect to $\widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}}) = \pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{p})\pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}}|\lambda, \delta)$: $[\mathcal{K}\widetilde{\pi_{\mathbf{b}}}] = \iiint_{\boldsymbol{\pi_{\mathbf{b}}}(\boldsymbol{p}'|\lambda', \delta')\pi_{\mathbf{b}}(\delta', \widetilde{\boldsymbol{p}}'|\lambda')\pi_{\mathbf{b}}(\lambda', \boldsymbol{p}|\delta)\widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}})d\lambda d\delta d\boldsymbol{p}d\widetilde{\boldsymbol{p}}$ $= \pi_{\mathbf{b}}(\boldsymbol{p}'|\lambda', \delta')\pi_{\mathbf{b}}(\delta', \widetilde{\boldsymbol{p}}'|\lambda')\iint_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda'|\delta, \boldsymbol{p})}\underbrace{\int_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}})d\widetilde{\boldsymbol{p}}d\lambda}_{\boldsymbol{\pi_{\mathbf{b}}}(\delta, \boldsymbol{p})}$ $= \underbrace{\pi_{\mathbf{b}}(\boldsymbol{p}'|\lambda', \delta')}_{\pi_{\mathbf{b}}(\delta', \lambda')} \underbrace{\int_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda', \delta, \boldsymbol{p})d\delta d\boldsymbol{p}}_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda', \delta')}$ $\underbrace{\int_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda', \delta, \boldsymbol{p})d\delta d\boldsymbol{p}}_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda', \delta')}$ $\underbrace{\int_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda', \delta', \boldsymbol{p})d\delta d\boldsymbol{p}}_{\boldsymbol{\pi_{\mathbf{b}}}(\lambda', \delta')}$

Given $(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1}, \widetilde{\boldsymbol{p}}^{k-1})$, simulate

1:
$$\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$$

2:
$$(\delta^k, \widetilde{\boldsymbol{\rho}}^k) \sim \pi_{\mathbf{b}}(\delta, \widetilde{\boldsymbol{\rho}}|\lambda^k)$$

3:
$$\boldsymbol{p}^k \sim \pi_{\mathbf{b}}(\boldsymbol{p}|\lambda^k, \delta^k)$$

The associated Markov Chain is invariant with respect to $\widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{p}, \widetilde{\boldsymbol{p}}) = \pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{p})\pi_{\mathbf{b}}(\widetilde{\boldsymbol{p}}|\lambda, \delta)$:

$$[\mathcal{K}\widetilde{\pi_{\mathbf{b}}}] = \iiint \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \pi_{\mathbf{b}}(\lambda', \mathbf{p}|\delta) \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\lambda d\delta d\mathbf{p} d\widetilde{\mathbf{p}}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta') \pi_{\mathbf{b}}(\delta', \widetilde{\mathbf{p}}'|\lambda') \iint \pi_{\mathbf{b}}(\lambda'|\delta, \mathbf{p}) \underbrace{\int \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\widetilde{\mathbf{p}} d\lambda}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})} d\delta d\mathbf{p}$$

$$= \underbrace{\pi_{\mathbf{b}}(\mathbf{p}'|\lambda', \delta')}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})} \underbrace{\int \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \mathbf{p}, \widetilde{\mathbf{p}}) d\widetilde{\mathbf{p}} d\lambda}_{\pi_{\mathbf{b}}(\delta, \mathbf{p})} d\delta d\mathbf{p}$$

$$=\underbrace{\pi_{\mathbf{b}}(\mathbf{p}'|\lambda',\delta')}_{\pi_{\mathbf{b}}(\mathbf{p}',\delta',\lambda')/\pi_{\mathbf{b}}(\delta',\lambda')}\pi_{\mathbf{b}}(\delta',\widetilde{\mathbf{p}}'|\lambda')\underbrace{\iint_{\pi_{\mathbf{b}}(\lambda',\delta,\mathbf{p})}\pi_{\mathbf{b}}(\lambda',\delta,\mathbf{p})d\delta d\mathbf{p}}_{\pi_{\mathbf{b}}(\lambda')}$$

$$= \pi_{\mathbf{b}}(\mathbf{p}', \lambda', \delta') \frac{\pi_{\mathbf{b}}(\widetilde{\mathbf{p}}', \lambda', \delta')}{\pi_{\mathbf{b}}(\lambda', \delta')}$$
$$= \widetilde{\pi_{\mathbf{b}}}(\lambda', \delta', \mathbf{p}', \widetilde{\mathbf{p}}')$$

Partially Collapsed Sampler

Given $(\lambda^{k-1}, \delta^{k-1}, \boldsymbol{p}^{k-1})$, simulate

- 1: $\lambda^k \sim \pi_{\mathbf{b}}(\lambda | \delta^{k-1}, \boldsymbol{p}^{k-1})$
- 2: $\delta^k \sim \pi_{\mathbf{b}}(\delta|\lambda^k)$ 3: $\mathbf{p}^k \sim \pi_{\mathbf{b}}(\mathbf{p}|\lambda^k, \delta^k)$

The associated Markov Chain is invariant with respect to $\int \widetilde{\pi_{\mathbf{b}}}(\lambda, \delta, \boldsymbol{\rho}, \widetilde{\boldsymbol{\rho}}) = \int \pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{\rho}) \pi_{\mathbf{b}}(\widetilde{\boldsymbol{\rho}}|\lambda, \delta) = \pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{\rho}).$

- The order of the chain matters in the previous arguments.
- Permuting steps 2 and 3 results in a chain that is no longer invariant with respect to π_h .
- Cyclically permuting results in a different sampler as well, however, this does not practically effect the overall chain, only the first and last steps, e.g. $(\mathcal{K}_1 \mathcal{K}_2 \mathcal{K}_2)^N = \mathcal{K}_1 (\mathcal{K}_3 \mathcal{K}_2 \mathcal{K}_1)^{N-1} \mathcal{K}_2 \mathcal{K}_3$

Marginalized Posterior Density

In order to sample $\pi_{\mathbf{b}}(\delta|\lambda)$, we complete the square of the quadratic form in $\pi_{\mathbf{b}}(\lambda, \delta, \boldsymbol{p})$ and integrate out λ , this results in

$$\pi_{f b}(\delta|\lambda) \propto \exp\left((n/2)\delta - \ln|\det {m J}_{\lambda,\delta}| - rac{\lambda}{2} \langle {m b}, {m H}_{\lambda,\delta} {m b}
angle - 10^{-4} \delta
ight),$$

where $\mathbf{J}_{\lambda,\delta} = \lambda \mathbf{G}^T \mathbf{G} + \delta \mathbf{L}$ and $\mathbf{H}_{\lambda,\delta} = \mathbf{I} - \lambda \mathbf{G} \mathbf{J}_{\lambda,\delta}^{-1} \mathbf{G}^T$.

- ➤ To draw from this density, we embed a Metropolis-Hastings algorithm within the Gibbs sampler.
- It can be shown that the resulting MCMC algorithm remains invariant.
- ▶ **Corrollary** Suppose $\mathcal{K} = \mathcal{K}_m \dots \mathcal{K}_1$ is the transition operator for the Gibbs sampler, and $\widetilde{\mathcal{K}}_i$ given $\mathbf{x}_{\widehat{i}}$ is an operator such that $\widetilde{\mathcal{K}}_i[\pi(\mathbf{x}_i|\mathbf{x}_{\widehat{i}})] = \pi(\mathbf{x}_1'|\mathbf{x}_{\widehat{i}})$, then $\mathcal{K}_m \dots \widetilde{\mathcal{K}}_i \mathcal{K}_{i-1} \dots \mathcal{K}$ is invariant with respect to π .

Metropolis-Hastings within Gibbs Sampling

- We use n_{MH} Metropolis-Hastings steps using a Gaussian proposal with variance γ.
- Due to numerical overflow issues, all computations are carried out on the log scale.
- ► The full implementation is:

```
1: Let \lambda_0, \delta_0, \boldsymbol{p} and \gamma be given.
```

2: Draw
$$\lambda_{k+1}$$
 from $\Gamma\left(n/2 + \alpha, \frac{1}{2} \|\mathbf{A}\mathbf{x}_k - \mathbf{b}\|^2 - \beta\right)$.

3: Set
$$j=1$$
, Compute $\mathbf{R}_0^T \mathbf{R}_0 = \mathbf{J}_{\lambda^k, \delta^{k-1}}$, then $\pi_0 = \log \pi_{\mathbf{b}}(\delta^{k-1} | \lambda^k)$.

4: for
$$1 < j < n_{MH}$$
 do

5: Draw
$$\widetilde{\delta}$$
 from $N(\widetilde{\delta}_{j-1}, \gamma)$.

6: Compute
$$\widetilde{\boldsymbol{R}}^T \widetilde{\boldsymbol{R}} = J_{\lambda^k, \widetilde{\delta}}$$
, then $\pi_j = \log p(\widetilde{\delta}_j | \boldsymbol{f} \lambda_k)$.

7: Set
$$\widetilde{\pi} = \pi_j$$
, $\mathbf{R}_j = \widetilde{\mathbf{R}}$ and $\delta_k = \widetilde{\delta}_j$ with probability $\widetilde{\pi}/\pi_j$

9: Draw
$$\boldsymbol{p}_k$$
 from $N(\boldsymbol{R}_k^{-1}\lambda_k \boldsymbol{A}^T \boldsymbol{b}, \boldsymbol{R}_k^{-1})$.

10: Set
$$k = k + 1$$
 and return to 2.

Marginalized δ chains

Integrated Autocorrelation

▶ The variance of the chain-mean estimator for the mean of the invariant density π is

$$\operatorname{Var}(\overline{X}_N) = \frac{1}{N^2} \sum_{k=1}^N \operatorname{Var}(X^k) + \frac{1}{N^2} \sum_{k \neq l}^N \operatorname{Cov}(X^l, X^k).$$

▶ When (X_k) are assumed to be nearly identically distributed via the ergodic theorem, then for large N, we can approximate

$$\operatorname{Var}(\overline{X}_N) \approx \frac{\sigma^2}{N} \sum_{k=-\infty}^{\infty} \rho(k) \text{ where } \rho(k) \stackrel{\text{def}}{=} \frac{\operatorname{Cov}(X^1, X^{|k|})}{\sigma^2}.$$

The function ρ is called the normalized auto-correlation function and the parameter $\tau_{\text{int}} \stackrel{\text{def}}{=} \sum_{k=-\infty}^{\infty} \rho(k)$ is the integrated auto-correlation time.

Comparing algorithms

•

Results

Algorithm	λ_{MCMC}	δ_{MCMC}	λ - p_{Geweke}	δ - p_{Geweke}	IACT	ESS	#Chol/ESS
	$(\times 10^4)$	$(\times 10^{-8})$					
Gibbs	1.102	6.132	0.998	0.850	36.2	138.0	72.4
PC Gibbs	1.102	5.611	0.992	0.943	7.9	633.0	31.6
$n_{mh} = 1$							
PC Gibbs	1.102	5.515	0.999	0.985	1.3	3799.6	15.8
$n_{mh} = 5$							

Results

Algorithm	λ_{MCMC}	δ_{MCMC}	λ - p_{Geweke}	δ - p_{Geweke}	IACT	ESS	#Chol/ESS
	$(\times 10^4)$	$(\times 10^{-10})$					
Gibbs	9.146	1.245	0.995	0.964	14.0	357.6	28.0
PC Gibbs	9.167	1.191	0.995	0.998	8.5	587.3	34.1
$n_{mh}=1$							
PC Gibbs	9.178	1.189	0.994	0.980	1.5	3278.5	18.3
$n_{mh} = 5$							
MTC	9.090	1.200	0.996	0.969	12.5	432.2	23.1

Summary and Future Work

- We introduced a novel Hierarchical Bayesian non-parametric model for estimating translation invariant and isotropic image blur with and edge.
- We developed the Partially Collapsed Gibbs sampler from the Gibbs sampler, and showed when partial collapse remained stationary.
- We then implemented the algorithm on a synthetic example using Metropolis with Partially Collapsed Gibbs, and showed that it improves the standard Gibbs sampler.
- Future: Develop the model and algorithm completely in infinite dimensions.
- Future: Adapt the strategies to other imaging models that incorporate radial geometry such as Abel and Radon transforms.

References

Sergios Agapiou, Johnathan M Bardsley, Omiros Papaspiliopoulos, and Andrew M Stuart.

Analysis of the Gibbs sampler for hierarchical inverse problems. SIAM/ASA Journal on Uncertainty Quantification, 2(1):511–544, 2014.

Johnathan M Bardsley.

MCMC-based image reconstruction with uncertainty quantification. SIAM Journal on Scientific Computing, 34(3):A1316–A1332, 2012.

Daniela Calvetti and Erkki Somersalo.

An Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing, volume 2.

Springer Science & Business Media, 2007.

A. M. Stuart.

Inverse problems: A Bayesian perspective.

Acta Numerica, 19:451-559, 2010.

David A Van Dyk and Taeyoung Park.

Partially collapsed Gibbs samplers: Theory and methods.

Journal of the American Statistical Association, 103(482):790–796, 2008.