Tarea-examen 1

Conjuntos y lógica

FACULTAD DE CIENCIAS, UNAM

Fecha de entrega: 28 de febrero de 2023

Lógica proposicional

Ejercicio 1

Sea $e: Prop \rightarrow 2$, prueba que las siguientes fórmulas son equivalencias lógicas.

- a) $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$
- b) $\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$)
- c) $(\alpha \land \beta) \land \gamma \equiv \alpha \land (\beta \land \gamma)$
- d) $(\alpha \lor \beta) \lor \gamma \equiv \alpha \lor (\beta \lor \gamma)$
- e) $\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\beta \wedge \alpha)$
- f) $\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \beta)$

Ejercicio 2

- a) Define los símbolos \lor , \land $y \leftrightarrow$ en términos de \rightarrow $y \neg$.
- b) Muestra que $P \longleftrightarrow (\neg(\neg P))$ es tautología.
- c) Muestra que $(P \land Q) \rightarrow P \Vdash P \rightarrow (P \lor Q)$.
- d) $P \Vdash P \lor Q$
- e) $P \wedge Q \Vdash Q$
- f) $P \Vdash (Q \rightarrow P) \lor Q$

Teoría de Conjuntos

Ejercicio 3

Prueba los siguientes enunciados

- a) si $b \in A$ entonces $b \subseteq \bigcup A$ y $\bigcap A \subseteq b$
- b) si $A \subseteq B$ entonces $\bigcup A \subseteq \bigcup B$ y $\bigcap B \subseteq \bigcap A$
- c) $A \subseteq B$ si y solo si $P(A) \subseteq P(B)$
- d) si $a \in B$ entonces $P(a) \in P(P(\lfloor \rfloor B))$
- e) $P(A) \cap P(B) = P(A \cap B)$
- f) $P(A) \cup P(B) \subseteq P(A \cup B)$, mostrar un ejemplo donde no se da la igualdad

Ejercicio 4

Decimos que un conjunto z es transitivo sí

$$\forall x \forall y (x \in y \land y \in z \rightarrow x \in z)$$

Muestra que los siguientes enunciados son equivalentes

- a) z es transitivo
- b) $\forall y (y \in z \rightarrow y \subseteq z)$
- c) $\bigcup z \subseteq z$
- d) $z \subseteq P(z)$
- e) $\bigcup P(z) \subseteq P(z)$
- f) $\forall x \forall y (x \in y \land y \subseteq z \rightarrow x \subseteq z)$
- g) $z \in P(P(z))$

Ejercicio 5

Demuestra los siguientes enunciados, r es una relación en un conjunto A

- a) r es una relación transitiva y antisimétrica sii r está incluida en la relación diagonal o identidad
- b) r es una relación de equivalencia sii r^{-1} es una relación de equivalencia
- c) *r* es una relación de equivalencia sii *r* es reflexiva y euclidiana

Sean $F: A \rightarrow B y G: B \rightarrow C$ funciones:

- a) si $G \circ F : A \to C$ es biyectivo entonces F es inyectiva y G suprayectiva
- b) dar un ejemplo donde $G \circ F : A \to C$ sea biyectiva pero F no suprayectiva y G no inyectiva
- c) Dar un ejemplo donde F sea inyectiva y G suprayectiva pero $G \circ F$ sea no inyectiva y no suprayectiva