Prova tipo D

P2 de Álgebra Linear I – 2004.2 Data: 8 de outubro de 2004.

Gabarito

- 1) Decida se cada afirmação a seguir é verdadeira ou falsa.
- 1.a) Existe uma única transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$T(1,0,1) = (2,1,1), \quad T(0,1,1) = (3,1,1), \quad T(2,2,4) = (10,4,4).$$

1.b) Considere o vetor (1, 1, 1) e a transformação

$$T: \mathbb{R}^3 \to \mathbb{R}^3, \quad T(v) = v \times (1, 1, 1) + v \times v.$$

A transformação T é linear.

1.c) Considere os vetores de \mathbb{R}^3

$$v_1 = (1, 0, 1), \quad v_2 = (2, 1, a), \quad v_3 = (3, 1, a).$$

Os vetores v_1 , v_2 e v_3 são sempre linearmente independentes, independentemente do valor de $a \in \mathbb{R}$.

1.d) Seja $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação afim

$$T \colon \mathbb{R}^2 \to \mathbb{R}^2, \quad T(v) = L(v) + b,$$

onde L é uma transformação linear inversível, $L\colon \mathbb{R}^2 \to \mathbb{R}^2$, e b é um vetor de \mathbb{R}^2 .

Então T é inversível e sua inversa é

$$T^{-1} = L^{-1} - b.$$

1.e) Seja M uma matriz quadrada 2×2 tal que

$$M^2 = M \circ M = M$$
.

Então, pelas propriedades dos determinantes

$$\det(M^2) = \det(M \circ M) = \det(M) \det(M) = \det(M),$$

onde det(M) denota o determinante de uma matriz quadrada M. Simplificando, (dividindo por det(M)),

$$\det(M) = 1 \neq 0,$$

portanto M tem inversa.

Itens	\mathbf{V}	\mathbf{F}	N
1.a		X	
1.b	X		
1.c	X		
1.d		X	
1.e		X	

2)

(a) Considere a base β de \mathbb{R}^3

$$\beta = \{(0,1,1); (1,1,0); (1,0,1)\}$$

Determine as coordenadas $(v)_{\beta}$ do vetor v = (4, 4, 2) na base β .

(b) Seja $\alpha = \{u_1, u_2, u_3\}$ uma base de \mathbb{R}^3 . Considere a nova base de \mathbb{R}^3

$$\delta = \{u_1 + u_3, u_1 + u_2, u_2 + u_3\}.$$

Sabendo que as coordenadas do vetor w na base α são

$$(w)_{\alpha} = (3, 3, 4),$$

determine as coordenadas $(w)_{\delta}$ de w na base δ .

(c) Determine k para que os vetores

$$\{(2,1,1);(1,k,2);(k,3,k)\}$$

não formem uma base de \mathbb{R}^3 .

- a) $(v)_{\beta} = (1, 3, 1).$
- **b)** $(w)_{\delta} = (2, 1, 2).$
- $\mathbf{c)} \qquad k = \frac{-1 \pm \sqrt{37}}{2}.$

3) Considere o vetor (2,1,3) e a transformação linear

$$T \colon \mathbb{R}^3 \to \mathbb{R}^3, \quad T(v) = v \times (2, 1, 3).$$

(a) Determine a matriz [T] da transformação linear T na base canônica.

(b) Determine (explicitamente) dois vetores não nulos e diferentes u e w de \mathbb{R}^3 tais que

$$T(u) = T(w) \neq \bar{0}.$$

(c) Determine a equação cartesiana da imagem de T (denotada $\operatorname{im}(T)$). Lembre que

 $\operatorname{im}(T) = \{ u \in \mathbb{R}^3 \text{ tal que existe } w \in \mathbb{R}^3 \text{ tal que } T(w) = u \}.$

- a) $[T] = \begin{pmatrix} 0 & 3 & -1 \\ -3 & 0 & 2 \\ 1 & -2 & 0 \end{pmatrix}.$
- b) $u = \text{não paralelo a } (2, 1, 3) \text{ e } u \neq \bar{0} \text{ e } w = u + t(2, 1, 3), t \neq 0.$
- c) im(T): 2x + y + 3z = 0.

4)

(a) Determine a inversa da matriz

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{array}\right).$$

(b) Sejam $B = A^2$ e C a matriz inversa de B, (isto é $C = B^{-1}$). Suponha que

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,1} & c_{3,2} & c_{3,3} \end{pmatrix}.$$

Determine o coeficiente $c_{3,1}$ da matriz C.

Resposta:

$$A^{-1} = \begin{pmatrix} -1/2 & 1/2 & 1/2 \\ 1 & -1 & 0 \\ -1/2 & 3/2 & -1/2 \end{pmatrix}.$$

$$c_{3,1} = 2.$$

(5) Considere a reta r de \mathbb{R}^2 de equação cartesiana

$$r: y = 2x + 1$$

e o vetor v = (1, 1).

Considere a transformação afim T projeção na reta r na direção do vetor v, que associa ao vetor $w = \overline{OP}$ o vetor $T(w) = \overline{OQ}$, onde Q é a interseção da reta r e da reta s que contém o ponto P e é paralela ao vetor v = (1, 1).

- (a) Determine a parte linear L_T de T.
- (b) Determine a forma matricial de T.

Resposta:

$$\mathbf{a})$$

$$[L_T] = \left(\begin{array}{cc} -1 & 1 \\ -2 & 2 \end{array}\right).$$

$$[T] \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} -1 & 1 \\ -2 & 2 \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} -1 \\ -1 \end{array} \right).$$