Gravitational microlensing by dark matter subhalos and boson stars

SUSY 2021

Zihui Wang (New York University)

Based on 2007.12697
With Djuna Croon, David McKeen, Nirmal Raj

Primordial black hole dark matter

Stellar microlensing surveys:

Subaru/HSC (M31 Andromeda)

EROS (Large Magellanic Clouds)

...

Microlensing basics

Separation of images ~ Einstein radius

$$x = D_L/D_S$$

$$R_E = \sqrt{rac{4GMD_S}{c^2}}x(1-x)$$

Microlensing: small Einstein radius so individual images are not resolved

Image credit: Freddie Pagani

Microlensing basics

Microlensing basics

Extended dark matter structures

 PBHs are treated as point-like lenses. In general, many DM models predict spatially extended structures:

Axion miniclusters, ultracompact minihalos, axion stars, boson stars...

- WIMP subhalos minimum mass ~ 10^-6 Mo (free streaming length)
- Recasting microlensing limits on PBHs to constrain these extended structures is feasible, but not *obvious*.
 Fairbairn, Marsh, Quevillon, Rozier, 1707.03310
 Croon, Mckeen, Raj, 2002.08962
 Bai, Long, Lu, 2003.13182

In this talk: study lenses that have an NFW profile and a boson star profile.

Finite-size source effect

 Source size effect important for size ~ Einstein radius. Typically, larger source -> weaker brightness magnification

Witt, Mao, ApJ 430, 505 Montero-Camacho et al, 1906.05950

- Stars in M31 are large!
- Crucial question: the source-lens separation that produces a magnification of 1.34

The bigger the star, the more important finite-source-size effects!

Microlensing of a finite-size source by a finite-size lens

Step 1

For every point on the source, where are the images produced by it?

Lensing equation:

$$\bar{u}(\varphi) = t(\varphi) - \frac{m(t(\varphi))}{t(\varphi)}$$

t: position of the image from the lens *m*(*t*): projected lens mass within *t*

All length scales are in unit of Einstein radius

Microlensing of a finite-size source by a finite-size lens

Step 2

Total brightness:

$$\mu = \sum_i rac{1}{\pi r_{_{\mathrm{S}}}^2} |\int_0^{2\pi} darphi \; rac{1}{2} t_i^2(arphi)|$$

 $u_{1.34}$ is the value of u which solves $~\mu=1.34$

All length scales are in unit of Einstein radius

$u_{1.34}$ with finite-size source + finite-size lens

$u_{1.34}$ with finite-size source + finite-size lens

Lensing rate

Lensing rate of a lens M per unit time per x per source star with radius Rs

$$rac{d^2\Gamma}{dxdt}=f_{
m DM}\,arepsilon(t,R_S)rac{2D_S}{v_0^2M}
ho(x)v^4(x)e^{-v^2(x)/v_0^2}$$
 Abundance Detector fraction efficiency PM circular velocity \sim 220 km/s DM halo density Characteristic velocity of crossing the lensing tube

Integrate over x, t, Rs to obtain total expected number of events

Subaru/HSC constraints

Conclusions and outlook

- Present microlensing surveys can probe compact DM structures smaller than
 - ~ 100 solar radii. Increasing lens size → weaker constraint.

Geometric optics. Interference important for lighter lenses.

Inferring lens profile requires time domain analysis of light curves.

Thank you!