Trig. Toolbox

Right triangle definition

For this definition we assume that π

$$0 < \theta < \frac{\pi}{2} \text{ or } 0^{\circ} < \theta < 90^{\circ}.$$

$$\begin{aligned} & \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} & \csc(\theta) = \frac{\text{hypotenuse}}{\text{opposite}} \\ & \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} & \sec(\theta) = \frac{\text{hypotenuse}}{\text{adjacent}} \\ & \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} & \cot(\theta) = \frac{\text{adjacent}}{\text{opposite}} \end{aligned}$$

Law of Sines

$$\frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}$$

Law of Cosines

$$a^2 = b^2 + c^2 - 2bc\cos(\alpha)$$

$$b^2 = a^2 + c^2 - 2ac\cos(\beta)$$

$$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$$

• The radian measure of angle θ is defined as the length, a, of the arc that subtends the angle divided by the radius, r, of the circle: $\theta = \frac{a}{r}$.

- $2\pi \text{ rad} = 360^{\circ} \text{ or } \pi \text{ rad} = 180^{\circ}.$
- To convert degree measure to radian measure, multiply the degree measure by $\frac{\pi}{180}$ radians.
- To convert radian measure to degree measure, multiply the radian measure by $\left(\frac{180}{\pi}\right)^{\circ}$.

Range

The range is all possible values to get out of the function.

$$\begin{aligned} -1 & \leq \sin(\theta) \leq 1 & -1 & \leq \cos(\theta) \leq 1 \\ -\infty & < \tan(\theta) < \infty & -\infty & < \cot(\theta) < \infty \\ \sec(\theta) & \geq 1 \text{ and } \sec(\theta) \leq -1 & \csc(\theta) \geq 1 \text{ and } \csc(\theta) \leq -1 \end{aligned}$$

Domain

The domain is all the values of θ that can be plugged into the function.

 $sin(\theta)$, θ can be any angle

 $cos(\theta)$, θ can be any angle

$$\tan(\theta)$$
, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, \dots$

$$\csc(\theta)$$
, $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2, \ldots$

$$\sec(\theta),\, \theta
eq \left(n+\frac{1}{2}\right)\pi,\,\, n=0,\pm 1,\pm 2,\ldots$$

$$\cot(\theta), \ \theta \neq n\pi, \ n = 0, \pm 1, \pm 2, \dots$$

Unit Circle Definition

For this definition θ is any angle.

$$\begin{split} \sin(\theta) &= \frac{y}{1} = y & \csc(\theta) &= \frac{1}{y} \\ \cos(\theta) &= \frac{x}{1} = x & \sec(\theta) &= \frac{1}{x} \\ \tan(\theta) &= \frac{y}{x} & \cot(\theta) &= \frac{x}{y} \end{split}$$

Let θ be the acute angle, then by CAST Rule

In QII

$$\sin(\pi - \theta) = \sin\theta$$

 $\cos(\pi - \theta) = -\cos\theta$
 $\tan(\pi - \theta) = -\tan\theta$

In Q III

$$sin(\pi + \theta) = -sin\theta$$

 $cos(\pi + \theta) = -cos\theta$
 $tan(\pi + \theta) = tan\theta$

In Qiv

$$sin(2\pi - \theta) = -sin\theta
cos(2\pi - \theta) = cos\theta
tan(2\pi - \theta) = -tan\theta$$

In QI

$$\sin(2\pi + \theta) = \sin\theta$$

 $\cos(2\pi + \theta) = \cos\theta$
 $\tan(2\pi + \theta) = \tan\theta$

Reciprocal Identities $\csc A = \frac{1}{\sin A}$

Quotient Identities

Pythagorean Identity

Reflection Identities

$$\sin A \\ \sec (A) = \frac{1}{\cos(A)}$$

$$\tan(A) = \frac{\sin(A)}{\cos(A)}$$

$$\sin^2(A) + \cos^2(A) = 1$$

$$\sin(-A) = -\sin(A)$$
$$\cos(-A) = \cos(A)$$

$$\cot(A) = \frac{1}{\tan(A)}$$

$$\cot(A) = \frac{\cos(A)}{\sin(A)}$$

$$tan^{2}(A)+1=sec^{2}(A)$$

$$tan(-A) = -tan(A)$$

$$\tan(A) = \frac{1}{\cot(A)}$$

$$\cot(A) = \frac{1}{\tan(A)}$$

$$cot^{2}\left(A\right) +1=csc^{2}\left(A\right)$$

Co-Function Identities	
$\sin\left(\frac{\pi}{2} - x\right) =$	$\csc\left(\frac{\pi}{2} - x\right) =$
$\cos\left(\frac{\pi}{2} - x\right) =$	$\sec\left(\frac{\pi}{2} - x\right) =$
$\tan\left(\frac{\pi}{2} - x\right) =$	$\cot\left(\frac{\pi}{2} - x\right) =$

Other Co-Function Identities	
$\sin\left(\frac{\pi}{2} + x\right) =$	$\csc\left(\frac{\pi}{2} + x\right) =$
$\cos\left(\frac{\pi}{2} + x\right) =$	$\sec\left(\frac{\pi}{2} + x\right) =$
$\tan\left(\frac{\pi}{2} + x\right) =$	$\cot\left(\frac{\pi}{2} + x\right) =$

More Co-Function Identitie		
$\sin\left(\frac{3\pi}{2}-x\right) =$	$\csc\left(\frac{3\pi}{2} - x\right) =$	
$\cos\left(\frac{3\pi}{2} - x\right) =$	$\sec\left(\frac{3\pi}{2}-x\right)=$	
$\tan\left(\frac{3\pi}{2} - x\right) =$	$\cot\left(\frac{3\pi}{2} - x\right) =$	

More Co-Function Identities		
$\sin\left(\frac{3\pi}{2} + x\right) =$	$\csc\left(\frac{3\pi}{2} + x\right) =$	
$\cos\left(\frac{3\pi}{2} + x\right) =$	$\sec\left(\frac{3\pi}{2} + x\right) =$	
$\tan\left(\frac{3\pi}{2} + x\right) =$	$\cot\left(\frac{3\pi}{2} + x\right) =$	

Reflection Identities	
$\sin(-x) = -\sin(x)$	$\csc(-x) = -\csc(x)$
$\cos(-x) = \cos(x)$	$\sec(-x) = \sec(x)$
$\tan(-x) = -\tan(x)$	$\cot\left(-x\right) = -\cot\left(x\right)$

Compound Angel Identities

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$

$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$
 (*)

$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$$
 (*)

Double Angle Formula for Cosine

$$\cos(2A) = \cos^2(A) - \sin^2(A)$$

$$\cos(2A) = 2\cos^2(A) - 1$$

$$\cos(2A) = 1 - 2\sin^2(A)$$

Double Angle Formula for Tangen

$$\tan(2A) = \frac{2\tan(A)}{1-\tan^2(A)}$$

Double Angle Formula for Sine $\sin(2A) = 2\sin(A)\cos(A)$