HOMEWORK 9 MATH H54

Yu-Wei's Office Hours: Sunday 1-2:30pm and Friday 12-1:30pm (PST)

Michael's Office Hours: Monday 12-3pm (PST)

Some ground rules:

- You have to submit your solutions via **Gradescope**, to the assignment **HW9**.
- The submission should be a **single PDF** file.
- Make sure the writing in your submission is clear enough! Answers which are illegible for the reader won't be given credit.
- Write your argument as clear as possible. Mastering mathematical writing is one of the goals of this course.
- Late homework will not be accepted under any circumstances.
- You are encouraged to discuss the problems with your classmates, but you must write your solutions on your own.
- You're allowed to use any result that is proved in the lecture. But if you'd like to use other results, you have to prove it first before using it.

Problems: (mostly taken from the textbook)

You have to write down your computations, not just the final answers.

- (1) Find general solutions to the following differential equations:
 - (a) 6y'' + y' 2y = 0.
 - (b) 4y'' + 20y' + 25y = 0.
 - (c) y'' + 4y' + 8y = 0.
 - (d) $y''(t) + 4y(t) = \sin t \cos t$.
 - (e) $y''(t) 2y'(t) + y(t) = t^{-1}e^t$.
 - (f) $y''(t) + 16y(t) = \sec(4t)$.
- (2) Solve the following initial value problems:
 - (a) y'' 4y' 5y = 0; y(-1) = 3 and y'(-1) = 9.
 - (b) y'' + 2y' + 2y = 0; y(0) = 2 and y'(0) = 1.
 - (c) $y''(t) + y'(t) 12y(t) = e^t + e^{2t} 1$; y(0) = 1 and y'(0) = 3.
- (3) When the values of a solution to a differential equation are specified at *two different* points, these conditions are called *boundary conditions*. The purpose of this problem is to show that for boundary value problems there is no existence-uniqueness theorem.
 - (a) Find general solutions to the differential equation:

$$y'' + y = 0.$$

(b) Show that there is a unique solution to (*) that satisfies the boundary conditions y(0) = 2 and $y(\pi/2) = 0$.

1

- (c) Show that there is no solution to (*) that satisfies y(0) = 2 and $y(\pi) = 0$.
- (d) Show that there are infinitely many solutions to (*) that satisfy y(0) = 2 and $y(\pi) = -2$.
- (4) One way to define the *hyperbolic functions* is by means of differential equations. Consider the differential equation:

$$(**) y'' - y = 0.$$

The hyperbolic cosine, denoted $\cosh t$, is defined as the solution of (**) subject to the initial values: y(0) = 1 and y'(0) = 0. The hyperbolic sine, denoted $\sinh t$, is defined as the solution of (**) subject to the initial values: y(0) = 0 and y'(0) = 1.

- (a) Solve these two initial value problems to derive explicit formulas for $\cosh t$ and $\sinh t$. Also, show that $(\cosh t)' = \sinh t$ and $(\sinh t)' = \cosh t$.
- (b) Prove that a general solution of (**) is given by $y(t) = c_1 \cosh t + c_2 \sinh t$.
- (5) To see the effect of changing the coefficient b in the initial value problem

$$y'' + by' + 4y = 0$$
; $y(0) = 1$, $y'(0) = 0$,

solve the problem for b = 5, b = 4, and b = 2, and sketch the solutions.

- (6) Prove the sum of angles formula for the sine function by following these steps. Fix $x \in \mathbb{R}$.
 - (a) Let $f(t) = \sin(x+t)$. Verify that f''(t) + f(t) = 0, $f(0) = \sin x$, and $f'(0) = \cos x$.
 - (b) Solve the initial value problem: y'' + y = 0; $y(0) = \sin x$ and $y'(0) = \cos x$.
 - (c) By uniqueness, the solution in Part (b) is the same as f(t) from Part (a). Write this equality; this should be the standard sum of angles formula for $\sin(x+t)$.
- (7) All that is known concerning a mysterious second-order constant-coefficient differential equation y'' + by' + cy = f(t) is that $t^2 + 1 + e^t \cos t$, $t^2 + 1 + e^t \sin t$, and $t^2 + 1 + e^t \cos t + e^t \sin t$ are solutions.
 - (a) Determine two linearly independent solutions to the corresponding homogeneous equation y'' + by' + cy = 0.
 - (b) Find a suitable choice of $b, c \in \mathbb{R}$ and function f(t) that enables these solutions.
- (8) Use the method of variation of parameters to show that

$$y(t) = c_1 \cos t + c_2 \sin t + \int_0^t f(s) \sin(t-s) ds$$

is a general solution to the differential equation y'' + y = f(t).

(9) Suppose the auxiliary equation $r^2 + br + c = 0$ of the differential equation y'' + by' + cy = 0 have two real roots. Prove that a nonzero solution to the differential equation can take the value 0 at most once, i.e. if y(t) is a nonzero solution, then there is at most one point $t_0 \in \mathbb{R}$ such that $y(t_0) = 0$.