3) Объект исследования. Воздух

- Метод экспериментального исследования.
 Статический
- 5) Рабочие формулы и исходные данные.

$$\begin{split} pV &= \frac{m}{\mu} RT \text{ [Па*м³]} \quad \mathbf{v} = \left(m_{\mathbf{u}} + m_{\mathbf{x}} \right) / \mu \text{ [моль]} \\ \mathbf{v} &= \frac{pV_{\mathbf{u}}}{R(t-t_*)} + \frac{pV_{\mathbf{x}}}{R(t_{\mathbf{x}}-t_*)} \text{ [моль]} \\ V_{\mathbf{u}} &= \frac{\mathbf{v}R(t-t_*)}{p} - \frac{V_{\mathbf{x}}(t-t_*)}{(t_{\mathbf{x}}-t_*)} \text{ [м³]} \\ K &= \mathbf{v}R(t-t_*) \\ p &= \frac{\mathbf{v}R(t-t_*)}{V_{\mathbf{u}}\left(1+x(t)\right)} \approx \frac{\mathbf{v}R(t-t_*)}{V_{\mathbf{u}}} \left(1-x(t)\right) \text{ [Па]} \\ t_* &= \lim_{t \to \infty} \tilde{t}_* \text{ [°C]} \\ p_0\left(\Pi \mathbf{a}\right) &= p_0\left(\text{MM. pt. ct.}\right) \cdot 10^{-3} \frac{\mathbf{M}}{\text{MM}} \cdot \mathbf{p} \cdot \mathbf{g} \\ p &= p_0 + \frac{\Delta p_1 + \Delta p_2}{2} \text{ [Па]} \\ \Delta t_* &= t_* \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta C}{C}\right)^2} \text{ [°C]} \qquad \tilde{t}_* = -\frac{c}{a} \text{ [°C]} \end{split}$$

6-7) Измерительные приборы и схема установки.

Рис.3. Состав лабораторной установки:

- цилиндр с поршнем;
 опорная площадка цилиндра;
- 3. термостат;
- 4. щуп с датчиком температуры;
- 5. манометрический датчик;
- стенд;
- 7. преобразователь сигналов;
- 8. цифровой измерительный прибор ПКЦ-3;
- кружка;
- 10. поддон;
- 11. лопатка.

8) Результаты прямых измерений и их обработки (таблицы, примеры расчётов).

t₁=17.8°C

Nº	V , мл	Δр1, кПа	Δр2 , кПа	р,кПа	1/р,кПа
1	50	-9.4	-9.5	94.15	0.0106
2	60	-25.5	-25.4	78.15	0.0128
3	70	-35.8	-35.8	67.80	0.0147
4	80	-43.4	-43.6	60.10	0.0166
5	90	-50.9	-50.9	52.70	0.0190
6	100	-55.9	-55.8	47.75	0.0209
7	110	-59.3	-59.1	44.40	0.0225
8	120	-62.9	-62.6	40.85	0.0245

 $t_2 = 27.6$ °C

Nº	V , мл	Δр1, кПа	Δр2 , кПа	р,кПа	1/р,кПа
1	50	-8.4	-8.4	95.20	0.0105
2	60	-22.2	-21.9	81.55	0.0123
3	70	-33.9	-33.4	69.95	0.0143
4	80	-42.3	-41.8	61.55	0.0162
5	90	-48.8	-48.6	54.90	0.0182
6	100	-54.3	-54	49.45	0.0202
7	110	-58.6	-58.6	45.00	0.0222
8	120	-62.3	-62.3	41.30	0.0242

t₃=35.6°C

Nº	V , мл	Δр1, кПа	Δр2 , кПа	р,кПа	1/р,кПа
1	50	-4.3	-4.3	99.30	0.0101
2	60	-20.3	-19.1	83.90	0.0119
3	70	-32.1	-31.1	72.00	0.0139
4	80	-40.7	-39.6	63.45	0.0158
5	90	-47.3	-46.7	56.60	0.0177
6	100	-53.3	-53.1	50.40	0.0198
7	110	-57.8	-58.1	45.65	0.0219
8	120	-61.8	-61.8	41.80	0.0239

t₄=41.4°C

Nº	V , мл	Δр1, кПа	Δр2 , кПа	р,кПа	1/р,кПа
1	50	-5.6	-5.6	98.00	0.0102
2	60	-18.6	-19.9	84.35	0.0119
3	70	-30.8	-31	72.70	0.0138
4	80	-39.6	-39.3	64.15	0.0156
5	90	-46.6	-46.6	57.00	0.0175
6	100	-52.8	-52.4	51.00	0.0196
7	110	-56.7	-56.8	46.85	0.0213
8	120	-60.8	-60.8	42.80	0.0234

t₅=46.7°C

Nº	V , мл	Δр1, кПа	Δр2 , кПа	р,кПа	1/р,кПа
1	50	-5.1	-5.1	98.50	0.0102
2	60	-17.4	-17.4	86.20	0.0116
3	70	-29.3	-28.6	74.65	0.0134
4	80	-38.5	-38.6	65.05	0.0154
5	90	-46.2	-45.4	57.80	0.0173
6	100	-51.8	-52	51.70	0.0193
7	110	-56.5	-56.7	47.00	0.0213
8	120	-60.5	-60.5	43.10	0.0232

График зависимости $V_{\iota}(1/p)$

Таблица 2.1

Nº	t, C	К, кДж		
1	17.8	5036.522		
2	27.6	5074.331		
3	35.6	5037.167		
4	41.4	5277.529		
5	46.7	5259.068		

$$A = \frac{\sum_{i=1}^{5} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{5} (X_i - \bar{X})^2}; \quad C = \bar{Y} - A\bar{X}$$

A=8.545; C=4847.93

$$t_* = -\frac{C}{A} = -\frac{4847.93}{8.545} = -567.3411$$

Расчёт погрешностей:

$$\Delta A = \sqrt{\frac{\sum_{i=1}^{5} (Y_i - AX_i - C)^2}{3\sum_{i=1}^{5} (X_i - \bar{X})^2}}; \quad \Delta C = \sqrt{(\frac{1}{5} + \frac{\bar{X}^2}{\sum_{i=1}^{5} (X_i - \bar{X})^2}) \sum_{i=1}^{5} (Y_i - AX_i - C)^2}$$

$$\Delta A = 3.6217; \quad \Delta C = 127.952 \qquad \Delta t_* = t_* \sqrt{(\frac{\Delta A}{A})^2 + (\frac{\Delta C}{C})^2}$$

$$\Delta t_* = -567.3411 \sqrt{(\frac{3.6217}{8.545})^2 + (\frac{127.952}{4847.93})^2} = -240.9255$$

Таблица 2.2

V _ц , мл	50	60	70	80	90	100	110	120
t, C	р, кПа							
17.8	94.15	78.15	67.80	60.10	52.70	47.75	44.40	40.85
27.6	95.20	81.55	69.95	61.55	54.90	49.45	45.00	41.30
35.6	99.30	83.90	72.00	63.45	56.60	50.40	45.65	41.80
41.4	98.00	84.35	72.70	64.15	57.00	51.00	46.85	42.80
46.7	98.50	86.20	74.65	65.05	57.80	51.70	47.00	43.10
1/V _ц , мл ⁻¹	0.0200	0.0167	0.0143	0.0125	0.0111	0.0100	0.0091	0.0083
$\widetilde{t_*}$, C	-542.579	-275.442	-278.137	-325.083	-284.283	-341.23	-438.7666719	-479.671678

A'=-0.2346; C'=-344.29

$$t_* = C' = -408.29$$
 [°C]

$$\Delta C' = \Delta t_* = \sqrt{\left(\frac{1}{8} + \frac{0.0127^2}{0.00011347}\right) 12270.761} = 138.23746$$

$$t_* = (-408.29 \pm 138.23746) \text{K}$$

Вывод:

Итак, в процессе данной лабораторной работы двумя способами была определена температура абсолютного нуля по шкале Цельсия:

1)
$$t_* = (-408.29 \pm 138.23746)$$
K

2) $t_* = (-567.3411 \pm 240.926)$ К, а также экспериментально проверено уравнение состояния идеального газа - График зависимости $V_u(1/p)$ для всех пяти случаев представлял собой прямую с небольшими искривлениями, обоснованными погрешностью.

Действительное значение абсолютного нуля равен -273.15 градусов по Цельсию, что входит в значение погрешности измерений. Неточности обусловлены округлением, неточностью измерительных приборов, а также человеческим фактором при получении данных.