Prof. Jong-Han Kim 2018.4.12.

EE363 Automatic Control: Homework #3

1) Diagonalization. We have a linear dynamical system described by

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

with $x \in \mathbb{R}^n$. Also we assume that A has n real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, and their associated eigenvectors $v_1, v_2, \dots, v_n \in \mathbb{R}^n$ are linearly independent.

a) Let an $n \times n$ diagonal matrix Λ be

$$\Lambda = egin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix}$$

and $V \in \mathbb{R}^{n \times n}$ be

$$V = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$

Check yourself if the following holds.

$$AV = V\Lambda$$

b) Show that there exists a state space realization with a new coordinate \tilde{x}

$$\dot{\tilde{x}} = \tilde{A}\tilde{x} + \tilde{B}u$$

$$u = \tilde{C}\tilde{x} + \tilde{D}u$$

where \tilde{A} is real diagonal. Explicitly state $\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}$ in terms of A, B, C, D, V, and Λ .

2) This is not a linear algebra class. In this problem, we will show that the eigenvalues of a block triangular matrix are the eigenvalues of each diagonal blocks. Suppose we have a block triangular matrix A, and without loss of generality we assume that A is block lower triangular.

$$A = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix}$$

We want to show that $\{\lambda_1 \mid A_{11}v_1 = \lambda_1v_1, \ v_1 \neq 0\} \cup \{\lambda_2 \mid A_{22}v_2 = \lambda_2v_2, \ v_2 \neq 0\} = \{\lambda \mid Av = \lambda v, \ v \neq 0\}.$

a) Suppose that $A_{22}v_2 = \lambda_2 v_2$ for some $v_2 \neq 0$. Find x_2 such that

$$\begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_2 \\ v_2 \end{bmatrix} = \lambda_2 \begin{bmatrix} x_2 \\ v_2 \end{bmatrix}$$

This will prove that λ_2 is an eigenvalue of A. What is the eigenvector of A associated with λ_2 ?

b) Suppose that $A_{11}v_1 = \lambda_1v_1$ for some $v_1 \neq 0$ and $A_{22}v_2 \neq \lambda_1v_2$ for any $v_2 \neq 0$. Find x_1 such that

$$\begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ x_1 \end{bmatrix} = \lambda_1 \begin{bmatrix} v_1 \\ x_1 \end{bmatrix}$$

This will prove that λ_1 is an eigenvalue of A. What is the eigenvector of A associated with λ_1 ?

Prof. Jong-Han Kim 2018.4.12.

3) State space realization. Find a state space realization of the following transfer function matrices, i.e., find $G(s): \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$. Note: try to reduce the dimension of A as small as possible.

a)
$$G(s) = 1/s$$

b) $G(s) = (s-1)/(s+1)$
c) $G(s) = \begin{bmatrix} 1/s & 1/s \\ 1/s & 1/s \end{bmatrix}$
d) $G(s) = \begin{bmatrix} (s+1)/s & (2s+1)/s \\ (3s+1)/s & (4s+1)/s \end{bmatrix}$
e) $G(s) = \begin{bmatrix} (s+1)/s & (2s+1)/s \\ 0 & (4s+1)/s \end{bmatrix}$

4) Poor control designer × Badly chosen actuator. We consider a simple roll control systems for a sounding rocket. A simple roll dynamics, which describes the rotation of the rocket around its axisymmetric axis, is shown below

$$\dot{p} = L_p p + L_\delta \delta$$

$$\dot{\phi} = p$$

where the state variables, ϕ and p, are the roll angle and the roll rate, respectively, and the input to the system, δ is the fin deflection angle. The coeffcient $L_p < 0$ is called the aerodynamic damping which originates from the aerodynamic friction that tends to stop the rotation, and L_{δ} can be interpreted as the control effectiveness of the control fin.

- a) Present the transfer function and a state space description of G(s), the dynamic system from δ to ϕ .
- b) Hereafter, let $L_p = -1$ and $L_{\delta} = 1$. Briefly explain what happens to the rocket, *i.e.*, p and ϕ , if someone threw a stone and it hit the rocket's control fin.

The above block diagram depicts the control system that we will work on. Your constant gain controller, K, computes the control command δ_c by using the roll tracking error which is the difference between the reference roll command ϕ_c and the actual roll angle ϕ . The computed control command δ_c is sent to the actuator $G_{\rm act}(s)$ which finally generates the control fin angle δ . The ideal actuator will immediately generate the commanded fin angle, *i.e.*, $G_{\rm act}(s) = 1$, however this does not happen in the real world.

- c) Assume the ideal actuator, i.e., $G_{\rm act}(s)=1$. A poor control designer ignorantly chose a K that resulted in the closed loop damping of $\zeta=0.5/\sqrt{3}$. What was his/her K?
- d) It turned out that the actuator is far slower than expected, with its dynamics being described by $G_{\rm act}(s) = 2/(s+2)$. Briefly explain the characteristics of the closed loop system (with the K obtained above) under the new actuator model.
- e) Can you come up with a better K?