

NTNU NORGES TEKNISK- VITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI

Faglig kontakt under eksamen:

Kjell Wiik; Tel.: 73594082/Mob. tel.: 922 65 039

Bokmål (Nynorsk tekst s. x-y)

EKSAMEN TMT4112 KJEMI

Tirsdag 18. desember, 2012 Tid: kl. 0900 – 1300 (4 timer)

LØSNINGSFORSLAG

Hjelpemidler: B2-Typegodkjent kalkulator med tomt minne, i henhold til utarbeidet liste. Aylward & Findlay: SI-Chemical Data. (referert til som "SI-CD" i teksten)

Sensur i uke 3 (2013).

Oppgave 1. (Elektrokjemi)

a) Følgende cellediagram beskriver en galvanisk celle:

 $Al(s)|Al(NO_3)_3 (aq, 1,0 M)|| Ni(NO_3)_2 (aq, 1,0 M)|Ni(s)$

i) Tegn den galvaniske cellen og angi hva som er anode og katode samt hvordan elektroner og ioner beveger seg. Oppgi også polaritet (+ eller -) på elektrodene.

ii) Skriv opp totalreaksjonen og beregn standard cellespenning ved 25°C.

$$2Al(s)=2Al^{3+}+6e^{-}, E^{o}(vs)=1,68V$$

 $3Ni^{2+}+6e^{-}=3Ni(s), E^{o}(hs)=-0,24V$

$$\overline{2Al(s)+3Ni^{2+}=2Al^{3+}+3Ni(s)}, E^{o}(celle)=1,44V$$

- **b)** Den galvaniske cellen leverer strøm og etter 2 dager (48 timer) er konsentrasjonen til nikkel i høyre halvcelle endret til 0,1M. Væskevolumene i både høyre og venstre halvcelle er 1 L hver og konstant.
 - i) Beregn den gjennomsnittlige strøm (enhet Ampere) som cellen leverer i løpet av 2 dager.

av 2 uagei.

```
Ni^{2+} + 2e^{-} = Ni(s), n_{Ni} = 1 - 0, 1 = 0, 9 \text{ mol}
q_{el} = It \rightarrow I = (0.92.96485)/(2.24.6060) = 1,0A
```

ii) Beregn hva cellepotensialet vil være etter 2 dager.

```
[Al^{3+}]_{t=2dager}=1+(2/3)\cdot 0,9=1,6M

[Ni^{2+}]_{t=2dager}=1-0,9=0,1M

E_{celle}=E^{o}_{celle}-(RT/nF)\ln Q=1,44-((8,314\cdot298/6\cdot96485)\cdot \ln((1,6)^{2}/(0,1)^{3}))

=1.44-0.034=1.406V
```

c) Vi går nå tilbake til utgangspunktet slik cellen er beskrevet i a) og bytter ut høyre halvcelle med en mettet vannløsning av $Ni(OH)_2$ (nikkelhydroksid). Ni(s) elektroden beholdes. Det målte cellepotensialet viser nå $E_{celle}=1,284V$. Beregn løselighetsproduktet til nikkelhydroksid basert på måling av cellepotensialet. Sammenlikn verdien med den du finner i SI-CD og kommenter (kort!).

```
\begin{split} E_{celle} &= E^{o}_{celle} - (RT/nF) \ln Q = E^{o}_{celle} - (RT/nF) \ln ([Al^{3+}]^{2}/[Ni^{2+}]^{3}) \\ & \Rightarrow \qquad [Ni^{2+}] = exp(-(nF(E^{o}_{celle} - E_{celle})/3RT)) \\ &= exp(-(6.96485(1,44-1,284)/3.8,314.298)) = 5,313.10^{-6} \\ & \Rightarrow \qquad K_{SP} = [Ni^{2+}][OH]^{2} = [Ni^{2+}](2[Ni^{2+}])^{2} = 4(5,313.10^{-6})^{3} = 6,0.10^{-16}, \\ Sammenfallende med verdi rapportert i SI-CD. \end{split}
```

Oppgave 2. (Termodynamikk)

a) Følgende reaksjon skal studeres (merk at vann foreligger som gass/vanndamp)

$$H_2O(g) = H_2(g) + 0.5O_2(g)$$

i) Beregn ΔH^0 og ΔS^0 for reaksjonen ved 25°C. ·-----

	$H_2O(g)$	$=H_2(g)$	$+1/2O_2(g)$	$\Delta H_{rx}/(kJ/mol)$	$\Delta S_{rx}/(J/Kmol)$
ΔH^{o}	-242	0	0	242	
ΔS^{o}	189	131	0,5.205		44,5

ii) Beregn likevektskonstanten ved 25°C. I hvilken retning er likevekten forskjøvet?

$$\Delta G^{o}$$
=- $RTlnK$ = ΔH^{o} - $T\Delta S^{o}$ $\Rightarrow lnK$ =-(242000-298,1544,5)/(8,314298,15)=-92,27 $\Rightarrow K$ =8,410⁻⁴¹, Dvs. likevekt sterkt forskjøvet mot venstre.

iii) Anta at du varmer opp ren H₂O(g) ved konstant trykk (1 bar) til en gitt temperatur T. Etter en viss tid er likevekt innstilt og det observeres at 2% av opprinnelig H₂O(g) er dissosiert (spaltet) til hydrogen og oksygen som angitt ved reaksjonen over. Beregn totaltrykket (2 desimaler) ved likevekt samt temperaturen T vanndampen ble varmet opp til. Du kan anta at reaksjonsentalpier og –entropier er uavhengig av temperaturen.

	$H_2O(g)$	$=H_2(g)$	$+1/2O_2(g)$
Før	$p_{H2O=1}$	0	0
Etter	p_{H2O} - p_{H2} = 1-0,02	$p_{H2} = 0.02$	$p_{O2}=0.5p_{H2}$ =0.5.0.02

$$p_{H2O}+p_{H2}+p_{O2}=(1-0.02)+0.02+(0.5\cdot0.02)=1.01\ bar$$

Ved likevekt: $K=(p_{H2}\cdot(0.5\cdot p_{H2})^{0.5})/(p_{H2O}-p_{H2})=(0.02\cdot(0.5\cdot0.02)^{0.5})/(1-0.02)=2.04\cdot10^{-3}$
 $\Delta G^{\circ}=-RT lnK=\Delta H^{\circ}-T\Delta S^{\circ}$ → $T=-\Delta H^{\circ}/(R(lnK-(\Delta S^{\circ}/R)))$
= $-242000/(8.314(ln2.04\cdot10^{-3}-(44.5/8.314)))=2521\ K=2248^{\circ}C$

b) Magnesiumkarbonat dekomponer i luft til karbondioksid og magnesiumoksid (magnesia) ved T>139°C:

$$MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$$

Beregn partialtrykket til CO₂ i atmosfæren (enhet bar). Du kan igjen anta at reaksjons-entalpier og –entropier er uavhengig av temperaturen.

	$MgCO_3(s)$	=MgO(s)	$+CO_2(g)$	$\Delta H_{rx}/(kJ/mol)$	$\Delta S_{rx}/(J/Kmol)$
ΔH^{o}	-1096	-602	-394	100	
ΔS^{o}	66	27	214		175

$$K=p_{CO2}$$

$$\Delta G^{o} = -RT lnK = \Delta H^{o} - T\Delta S^{o} \rightarrow lnK = -(1/R)((\Delta H^{o}/T) - \Delta S^{o})$$

= -(1/8,314)((100000/412,15)-175)=-8,13 \rightarrow p_{CO2}=2,910^{-4} bar

c) Ved beregninger hvor gasser inngår antar vi vanligvis at de oppfører seg ideelt og benytter den ideelle gasslov. Nevn 2 kriterier som må være oppfylt for at en gass skal oppføre seg ideelt.

- i) Ingen krefter mellom gassmolekylene/atomene
- ii) Antar at gassmolekylene/atomene ikke okkuperer noe volum

Oppgave 3. (Syrer/baser, titrering og buffere)

Figuren nedenfor viser et tradisjonelt oppsett for titrering med byrette (titrant) og erlenmeyerkolbe.

- a) Du skal titrere en sterk base med en sterk syre.
 - i) Angi hvilken reaksjon som beskriver titreringen.

 $H^{+}(aq)+OH_{-}(aq)=H_{2}O(l)$, antar likevekt kvantitativt forskjøvet mot høyre

ii) I byretten har du HCl(aq) med konsentrasjon 0,10M mens i erlenmeyerkolben har du en ukjent mengde NaOH(aq). Du måler pH kontinuerlig mens du tilsetter HCl (aq) dråpevis og ved pH=7,0 har du tilsatt nøyaktig 50 ml av den sterke syren. Beregn hvor mange mol NaOH(aq) det var i erlenmeyerkolben.

 $H^+(aq)+OH-(aq)=H_2O(l)$

Antar at all H^+ som tilsettes før ekvivalenspunktet omsettes til $H_2O(l)$

Dvs. ved ekvivalenspunktet har vi tilsatt like mange mol $H^+(n_{H+})$ som det var mol OH (n^o_{OH-}) i utgangspunktet

 $n^{o}_{OH} = [HCl(aq)] V_{HCl} = 0.1050 \, 10^{-3} = 0.0050 \, \text{mol}$

- **b)** I denne oppgaven skal en svak syre (Eddiksyre=HAc=CH₃COOH) titreres med en sterk base (NaOH(aq)). Utgangskonsentrasjonene er hhv. [HAc]=0,20 M og [NaOH]=0,10 M og volumet av den svake syren ved start er 25 ml.
 - i) Beregn pH i den svake syren før titreringen begynner

 $pK_{HAc}=4,76; HAc(aq)=H^{+}(aq)+Ac^{-}(aq), K_{HAc}=([H^{+}][Ac^{-}])/[HAc]=[H^{+}]^{2}/[HAc]$ $pH=-log[H^{+}]=-log([HAc]^{-}K_{HAc})^{0,5}=-log(0,2\cdot10^{-4,76})^{0,5}=2,7$

p11=-l0g[11]=-l0g ([11Ac] K_{HAc}) =-l0g (0,2 10) =2,7

ii) Hvor mange ml NaOH må tilsettes for at HAc skal få maks bufferkapasitet.

«Titrer reaksjonen»: $OH(aq) + HAc(aq) = H_2O(l) + Ac^*(aq)$, før ekvivalenspunktet går denne reaksjonen kvantitativt, dvs. at all OH tilsatt omsettes til H2O(l). Maks bufferkapasitet får vi når: $[HAc] = [Ac^*]$, dvs. halveis mellom «start» og ekvivalenspunktet: $n^o_{HAc} = 25 \cdot 10^{-3} \cdot 0.2 = 0.0050$ mol Konverterer halvparten $\Rightarrow n_{NaOH} = 0.0050/2 \Rightarrow V_{NaOH} = n_{NaOH}/C_{NaOH} = 0.0050/(2 \cdot 0.1) = 25 mL$

iii) Beregn pH i ekvivalenspunktet.

Ved ekvivalenspunktet er all HAc(aq) konvertert til $Ac^{-}(aq)$ (den korresponderende base) og pH blir da «diktert» av den svake basen: $Ac^{-}(aq)+H_2O(l)=HAc(aq)+OH(aq)$ Vi må derfor først finne [Ac] ved ekvivalenspunktet. Vi vet at antall mol $Ac^{-}(n_{Ac^{-}})$ er identisk med antal mol $HAc^{-}(n_{Ac^{-}})$ som vi startet med:

 $n_{Ac} = n^{o}_{HAc} = [HAc] V_{HAc} = 0.2025 \cdot 10^{-3} = 0.0050 \text{ mol}$

Siden [NaOH] er halvparten (0,10 M) av [HAc] (0,20M) må vi tilsette 2 ganger utgangsvolumet til den svake syren for å komme til ekvivalenspunktet:

 $V_{Ekv} = V_{HAc} + V_{NaOH} = 25 \cdot 10^{-3} + 2 \cdot 25 \cdot 10^{-3} = 75 \cdot 10^{-3} L$

Konsentrasjonen til [Ac] ved ekvivalenspunktet blir da:

 $[Ac^{-}] = n_{Ac} / V_{Ekv} = 0.0050/75 \cdot 10^{-3} = 0.0667 M$

$$pK_a+pK_b=14 \implies pK_b=pK_{Ac}$$
. 14-4,76=9,24
 $K_{Ac}=([OH][HAc])/[Ac]=[OH]^2/[Ac]$; $pOH=-log[OH]=-log(K_{Ac},[Ac])^{0.5}$
 $=-log(10^{-9.24},0.0667)^{0.5}$
 $=5,21 \implies pH=14-pOH=14-5,21=8,79$

Oppgave 4. (Kiemisk binding og organisk kiemi)

- a) Ta utgangspunkt i følgende molekyler: CF₄, PCl₃, H₂S, og besvar spørsmålene nedenfor
 - i) Tegn Lewisstrukturen for alle molekylene.

, , ,

ii) Benytt VSEPR-teorien og tegn molekylgeometrien (inkludert "lone pair") til alle molekylene inkludert navnsetting av strukturene.

 CF_4 tilsvarer tetrahedral (A=C), PCl_3 tilsvarer trigonal pyramid (A=P) mens H_2S tilsvarer V-shape bent (A=S)

iii) Ranger vinklene (<Cl-P-Cl, <H-S-H og <F-C-F) etter stigende tallverdi og grunngi rangeringen.

.....

<H-S-H(To <lone pair> gir markant reduksjon av den ideele tetraedervinkel: 92°), <Cl-P-Cl (Et "lone pair", den ideelle tetraedervinkel reduseres noe: 100°), <F-C-F (Ingen "lone pair" gir ideell tetraedervinkel: $109,5^{\circ}$)

b) Bindingsentalpien til et to atomig molekyl, XY(g), er definert ved reaksjonen: XY(g)→X(g) + Y(g). Jo større entalpi (positivt tall) dess sterkere X-Y-binding. Beregn bindingsentalpien pr. C-F binding i CF₄ basert på dannelsesentalpier tabulert i Tabell 5 i SI-CD (Tips: Hess' lov). Sammenlikn svaret med verdier tabulert i Tabell 11 i SI-CD og beregn eventuelt % avvik.

$$CF_4(g) \Rightarrow C(g) + 4F(g),$$
 $\Delta H_{bond} = 4 \cdot \Delta H_{C-F} = ?$
 $C(g) \Rightarrow C(s)$ $\Delta H_C = -717 \text{ kJ/mol}$
 $4F(g) \Rightarrow 2F_2(g),$ $\Delta H_F = 4 \cdot (-79) = -316 \text{ kJ/mol}$
 $CF_4(g) \Rightarrow C(s) + 2F_2(g),$ $-\Delta H_{f, CF4} = -(-933) = 933 \text{ kJ/mol}$

 $4^{\circ}\Delta H_{C-F} + \Delta H_C + \Delta H_F = -\Delta H_{f, CF4}$

 $\Delta H_{C-F}=1/4(-\Delta H_{f,\ CF4}-\Delta H_C-\Delta H_F)=1/4(933-(-717)-(-316))=492\ kJ/mol\ C-F\ bindinger$ Tabell 11: $\Delta H_{C-F}=492kJ/mol\ C-F\ bindinger$. 0% avvik, tyder på at bindingsentalpier er basert på dannelsesentalpier i Tab. 5.

c) Skisser molekylstrukturen til forbindelsene angitt nedenfor:

i) Butan og 2-metyl propan. Hva har disse to forbindelsene felles?

Begge molekylene har sammensetning C_4H_{10} , de er derfor isomere forbindelser

2-metyl-propar

ii) 4-metyl-trans-2-heksen og 5-etyl-3-heptyn

Hydrogen er lokalisert på hver sin side av dobbeltbindingen → trans.

.....

d) Skisser strukturformelen til hhv. polyetylen og teflon. Hva er årsaken til at teflon er vesentlig mer inert enn polyetylen?

Ethylene	H_2C — CH_2	Polyethylene	$-(CH_2-CH_2)_{\overline{n}}$
Tetrafluoro- ethylene	F_2C — CF_2	Teflon	$-(CF_2-CF_2)_{\overline{n}}$

Det er vesentlig større forskjell i elektronegativitet mellom C og F enn mellom C og H, C-F bindingen er derfor sterkere og teflon som sådan mer inert (dvs. reagerer ikke så lett med andre stoffer/komponenter).

FORMELSAMLING

Formel	Kommentar
$\overline{PV} = nRT$	Den ideelle gasslov
$P_i = n_i RT/V$; $P_i = X_i P_{tot}$; $P_{tot} = \sum P_i$	Partialtrykk av i; X _i er molbrøk av i.
$C_p = q / \Delta T; \ \Delta H = \int_{T}^{T_2} C_p dT$	C_p = varmekapasitet.
$\Delta E = q + w$	Pass på definisjon av fortegn for q og w.
H = E + PV	H = Entalpi.
$\Delta H = q$	q er her tilført varme.
$\Delta H^o = \Sigma \; \Delta_f H^o (produkter)$ - $\Sigma \; \Delta_f H^o (reaktanter)$	Husk støkiometriske faktorer.
$\Delta H^{o}_{T} \cong \Delta H^{o}_{298} + \Delta C^{o}_{p} \dot{\Delta} T$	Eksakt hvis ΔC_{p}^{o} er konstant.
$\ln K_1/K_2 = (-\Delta H/R) (1/T_1 - 1/T_2)$	van´t Hoff. ΔH og ΔS konstant.
$\ln P_1/P_2 = (-\Delta_{\text{vap}}H/R)(1/T_1 - 1/T_2)$	Clausius-Clapeyron for væskers damptrykk.
$dS = q_{rev}/T$	S = Entropi.
$\Delta S^{o}_{T} \cong \Delta S^{o}_{298} + \Delta C_{p}^{o} \Delta lnT$	Eksakt hvis ΔC_{p}^{o} er konstant.
$G = H - TS$; $\Delta G = \Delta H - T\Delta S$	Gibbs energi = - T $\Delta S_{univers}$
$\Delta G_T \cong \Delta H_{298}$ - $T\Delta S_{298}$	Eksakt hvis ΔH og ΔS er konstant.
$\Delta G = \Delta G^{o} + RTlnQ$	Q er reaksjonskvotienten.
$\Delta G^{o} = -RTlnK$	Fordi $\Delta G = 0$ ved likevekt.
$\Delta G = -nFE$	E = cellespenning.
$q_{el} = It$	Sammenheng mellom elektrisk strøm (I), tid (t) og elektrisk ladning (q _{el})
$E = E^{o} - (RT/nF) \ln Q; E = E^{o} - (0.0592/n) \log Q$	Nernst ligning; ved 25°C.
$[H^+] \cdot [OH^-] = K_w = 10^{-14}$	pH + pOH = 14.
$e^{(a+b)} = e^{a} \cdot e^{b}$; $\ln e^{a} = a$; $\ln(a/b) = \ln a - \ln b$	Regneregler for logaritmer og eksponenter