

Compilers

Dataflow Analysis

Recall the simple basic-block optimizations

- Constant propagationDead code elimination

$$X := 3$$

 $Y := Z * W$
 $Q := X + Y$
 $X := 3$
 $Y := Z * W$
 $Q := 3 + Y$

These optimizations can be extended to an entire control-flow graph

 How do we know it is OK to globally propagate constants?

To replace a use of x by a constant k we must know:

On every path to the use of x, the last assignment to x is $\underline{x := k}$

The correctness condition is not trivial to check

 "All paths" includes paths around loops and through branches of conditionals

- Checking the condition requires <u>global dataflow</u> analysis
 - An analysis of the entire control-flow graph

Global optimization tasks share several traits:

- The optimization depends on knowing a property X at a particular point in program execution
- Proving X at any point requires knowledge of the entire program
- It is OK to be conservative. If the optimization requires X to be true, then want to know either

 - X is definitely true
 Don't know if X is true
 - It is always safe to say "don't know"

• Global dataflow analysis is a standard technique for solving problems with these characteristics

Global constant propagation is one example of an optimization that requires global dataflow analysis