

# Где Уолдо?

| Название проблемы      | где свальдо |
|------------------------|-------------|
| Ограничение по времени | 11 секунд   |
| Лимит памяти           | 1 гигабайт  |

Существует скрытая перестановка  $P_0, P_1, ..., P_{N-1}$  длины N, которая гарантированно равномерно генерируется случайным образом. Перестановка содержит числа 1, 2, 3, ..., N ровно по одному разу каждое в каком-то неизвестном порядке.

Вы можете выбрать позиции l и r и задать вопросы вида: «Какова сумма  $P_l + P_{l+1} + \cdots + P_r$ ?»

Ваша задача — найти положение 1 в P, используя как можно меньше вопросов. Вы будете оцениваться в зависимости от количества использованных вопросов.

## Взаимодействие

Ваша программа должна сначала прочитать два целых числа в одной строке, T и  $N.\,T$  — это количество раундов, на которых будет тестироваться ваша программа, а N — это длина P.

После этого идут T раунды:

Когда раунд начинается, вы можете начать задавать вопросы. Выведите строку с «? а b», чтобы узнать сумму чисел между позициями a и b включительно ( $0 \le a \le b \le N-1$ ).

После каждого вопроса ваша программа должна считывать целое число, сумму чисел в интервале.

Как только вы нашли позицию 1, выведите строку вида «! i, где i — индекс такой, что  $P_i=1$  . После того, как вы напечатаете это, начнется следующий раунд.

Обязательно сбросьте стандартный вывод после того, как зададите вопрос, иначе ваша программа может быть оценена как превышение лимита времени. В Python print() сбрасывается автоматически. В C++ cout << endl; также сбрасывает в дополнение к печати новой строки; если вы используете printf, используйте fflush(stdout).

### Ограничения и оценка

Ваша программа будет проверена на **одном тестовом примере с** N=T=1000. Перестановка в каждом тесте гарантированно будет **сгенерирована случайным образом**.

Если ваше решение окажется ошибочным в любом из раундов, ваша заявка будет оценена как *Неправильный ответ*.

В противном случае оценка будет рассчитываться следующим образом:

$$score = min \left( 220 - rac{M}{2500}, 100 
ight)$$
 пунктов ,

где M — общее количество вопросов, которые ваша программа задает за все T раундов.

Оценка будет округлена до ближайшего целого числа. Если оценка становится отрицательной, она будет считаться нулевой.

Таким образом, если вы используете более  $550\,000$  вопросов, вы получите 0 баллов, а если вы используете  $300\,000$  или меньше вопросов вы получите 100 баллов. Между ними ваш счет растет линейно.

#### Инструмент тестирования

Чтобы упростить тестирование вашего решения, мы предоставляем простой инструмент, который вы можете скачать. См. «вложения» внизу страницы с проблемами Каттиса. Инструмент является необязательным для использования, и вы можете изменить его. Обратите внимание, что официальная программа оценки на kattis отличается от инструмента тестирования.

Пример использования (с T=1000, N=10):

Для программ на Python скажем solution.py (обычно запускается как pypy3 solution.py):

```
python3 testing_tool.py pypy3 solution.py <<<"1000 10"</pre>
```

Для программ C++ сначала скомпилируйте их. (например, с помощью g++ -std=gnu++17 solution.cpp -o solution.out) а затем запустите:

```
python3 testing_tool.py ./solution.out <<<"1000 10"</pre>
```

## Пример

В тестовом примере T=2 и N=10. Скажем, для первого из этих двух раундов скрытая перестановка "6 10 8 7 9 1 2 4 5 3". Первый вопрос ? 0 9 запрашивает сумму всех чисел, которая действительно равна 55, а второй вопрос ? 0 4 просит 6+10+8+7+9=40.

| производительность грейдера | ваш результат |
|-----------------------------|---------------|
| 2 10                        |               |
|                             | ?09           |
| 55                          |               |
|                             | ?04           |
| 40                          |               |
|                             | ?55           |
| 1                           |               |
|                             | ! 5           |
|                             | ?00           |
| 1                           |               |
|                             | ! 0           |