2. MODELLING OF DYNAMIC SYSTEMS

- The idea of using a mathematical model to describe a system we wish to control was introduced in Topic 1.
- This model describes the relationships between the variables of interest and is used to approximate the output of a system given the value(s) of its input(s).
- For a dynamic system, the usual case, differential equations can be used to model its dynamic behaviour.
- The complexity of the model should (normally) be the minimum necessary to represent the system.

2.1 Introduction

Mathematical systems can be linear or nonlinear and be time-variant or time-invariant.

Linear systems are those that are described by sets of linear equations. For example,

$$y = 4x + 7$$

is a linear model describing the relationship between the output, y, and the variable x.

However, the expression

$$y = x^3 + 2x^2 + 12$$

is a nonlinear model describing the relationship between y and x.

All linear systems must obey the principle of superposition.

• When a system at rest is subjected to an excitation x_1 , it produces a response y_1 .

• The same system will produce a response y_2 for an excitation x_2 .

• The principle of superposition states that if the system is subjected to the excitation $x_1 + x_2$ then the response will be equal to $y_1 + y_2$.

A system is said to be time-invariant where the coefficients are constant with respect to time. For example,

$$\alpha_1 \frac{d^2 y}{dx^2} + \alpha_2 \frac{dy}{dx} = c$$

is a time-invariant model as the coefficients of the equation, α_1 and α_2 are not dependent on time, t.

The system described by the equation

$$t^2 \frac{d^2 y}{dx^2} + y = x$$

where *t* is time, is time-variant as one of the coefficients changes with time.

Linear differential equations

An n^{th} order differential equation takes the form:

$$a_{n} \frac{d^{n}c(t)}{dt^{n}} + a_{n-1} \frac{d^{n-1}c(t)}{dt^{n-1}} + \dots + a_{1} \frac{dc(t)}{dt} + a_{0}c(t)$$

$$= b_{m} \frac{d^{m}r(t)}{dt^{m}} + b_{m-1} \frac{d^{m-1}r(t)}{dt^{m-1}} + \dots + b_{1} \frac{dr(t)}{dt} + b_{0}r(t)$$

where $a_n \neq 0$ or the order would be less than n.

The usual convention is to set a_n = 1 and without loss of generality the n^{th} order differential equation has the form

$$\frac{d^{n}c(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}c(t)}{dt^{n-1}} + \dots + a_{1}\frac{dc(t)}{dt} + a_{0}c(t)$$

$$= b_{m}\frac{d^{m}r(t)}{dt^{m}} + b_{m-1}\frac{d^{m-1}r(t)}{dt^{m-1}} + \dots + b_{1}\frac{dr(t)}{dt} + b_{0}r(t)$$

2.2 Electrical circuit example

Consider the RLC circuit

$$v_i = v_o + v_R + v_L$$

The voltage drop across individual components

$$v_R = iR$$
 $v_L = L\frac{di}{dt}$ $v_o = \frac{1}{C}\int idt$ $\left[i = C\frac{dv_o}{dt}\right]$

So
$$v_i = v_o + CR \frac{dv_o}{dt} + LC \frac{d^2v_o}{dt^2}$$
 or $\frac{d^2v_o}{dt^2} + \frac{R}{L} \frac{dv_o}{dt} + \frac{1}{LC} v_o(t) = \frac{1}{LC} v_i(t)$

Using the notation from the previous slide and n = 2 m = 0

2.3 Mechanical system example

- By Newton's law, $m\ddot{x}$ equals the resultant of all external forces on m (in the downward direction).
- As the spring is stretched, spring force kx is upwards and opposes downward acceleration.
- The mass also moves downwards so the damping force, cx, is upwards and both these terms have a minus sign.
- External force, f(t), helps downward acceleration and therefore has a plus sign.

- The net force applied to the mass is $= f(t) kx cv = f(t) kx c\frac{dx}{dt}$
- The net force applied to the mass is also equal to $= ma = m\ddot{x} = m\frac{d^2x}{dt^2}$

The force equation is therefore: $m\ddot{x} = -kx - c\dot{x} + f(t)$

Rearranging gives the usual form of the differential equation of motion:

$$m\ddot{x} + c\dot{x} + kx = f(t)$$
 or $m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = f(t)$

The effects of gravity do not appear and turning the system upside down does not affect the equation.

As x = 0 at the position of static equilibrium weight, mg, is counterbalanced by the spring force, kx.

2.4 Rotational systems - Armature-controlled dc motor

The motor load is assumed an inertia J and a damper with constant B.

shaft position, θ , and developed motor torque, T, are related by:

$$T(t) = J\ddot{\theta}(t) + B\dot{\theta}(t)$$

 $\int_{B\dot{\theta}}^{T} \int_{free\ body\ diagram}^{free\ body\ diagram}$

The armature loop is described by:

$$v_a = R_a i_a + L_a \dot{i}_a + v_m$$

counter emf is taken to be proportional to shaft speed:

 $v_m = K_e \dot{\theta}$

developed torque is proportional to current i_a

$$T = K_t i_a$$

circuit diagram

Using Newton's law combined with Kirchhoff's law:

$$J\ddot{\theta} + B\dot{\theta} = Ki$$

$$T(t) = J\ddot{\theta}(t) + B\dot{\theta}(t)$$

$$T = K_t i_a$$

$$L\frac{di}{dt} + Ri = v_a - K\dot{\theta}$$

$$v_a = R_a i_a + L_a \dot{i}_a + v_m$$

$$v_m = K_e \dot{\theta}$$

where the motor constant is equal to the torque/electromotive force constant of the motor:

$$K = K_t = K_e$$

2.5 Non-linear systems

A nonlinear system is one that is described by a nonlinear equation.

Examples of nonlinear systems are:

$$y = x^{2} \qquad \frac{d^{2}x}{dt^{2}} + \left[\frac{dx}{dt}\right]^{2} + Ax = B\sin(\omega t)$$

In reality ALL systems are nonlinear to some extent.

For example, an aircraft's pitch response changes significantly when the stall angle is approached.

Similarly a switch can only take the values on and off and a valve can only vary flow between 0 and 100%.

Examples of system nonlinearities

nonlinearities frequently occur in actuating components of systems

2.6 Linearization of nonlinear systems

It is normally possible to represent a nonlinear system using a linear (or small-signal) approximation.

If the variation of x about x_0 is small enough, the nonlinear curve can be approximated by its tangent at point 0.

Defining $\Delta x = x - x_0$ and $\Delta y = y - y_0$, the linearized model of f(x) about x_0 is

$$\Delta y = \left(\frac{df}{dx}\right)_{x_0} \Delta x \tag{2.1}$$

where $\left(\frac{df}{dx}\right)_{x_0}$ is the slope of the tangent at x_0 .

The model is then said to be linearized about a steady state operating point, $0(x_0)$.

Example: Linearization of a nonlinear spring

The differential equation that describes the position x(t) of the mass m in response to an external force f(t) is

$$m\ddot{x} + c\dot{x} + kx = f$$

Spring force may not change linearly with x and a nonlinear equation is possible, e.g.

$$m\ddot{x} + c\dot{x} + kx^3 = f + mg$$

where $h(x) = kx^3$ is a nonlinear spring force. Weight, mg, must also be added to the downward force f(t) and x = 0 at the point of zero spring force.

$$h_0 = h(x_0) = kx_0^3 = f_0 + mg$$
 or $x_0 = \left(\frac{f_0 + mg}{k}\right)^{1/3}$

 $k \longrightarrow c$ $f(t) \bigvee x(t)$

(Force due to spring = constant force + weight)

To perform linearisation of the spring equation for small variations $\Delta x = x - x_0$ and $\Delta h = h - h_0$ about an operational point:

$$h(x) = kx^3$$

we use Eq. (2.1), which in terms of the function h is $\Delta h = \left(\frac{dh}{dx}\right)_{x_0} \Delta x$, and obtain:

$$h(x) = h(x_0) + \Delta h = h(x_0) + \left(\frac{dh}{dx}\right)_{x_0} \Delta x = kx_0^3 + 3kx_0^2 \Delta x$$

Then as $(\Delta \dot{x}) = \dot{x}$ and $(\Delta \ddot{x}) = \ddot{x}$, the linear model of $m\ddot{x} + c\dot{x} + h(x) = f + mg$ is:

$$m(\ddot{\Delta x}) + c(\dot{\Delta x}) + kx_0^3 + 3kx_0^2 \Delta x = f_0 + \Delta f + mg$$

But since according to previous slide $kx_0^3 = f_0 + mg$, we obtain:

$$m(\ddot{\Delta x}) + c(\dot{\Delta x}) + 3kx_0^2 \Delta x = \Delta f$$

which is a linear equation expressed in terms of variations Δx and Δf about x_0 and f_0 . If the actual positions are needed, x_0 must be added to the solution of this differential equation.

Taylor series expansion, ignoring all terms of order 2 or higher, can also be used for nonlinear approximation:

$$f(x) = f(x_0) + \left(\frac{df}{dx}\right)_{x_0} \frac{x - x_0}{1!} + \left(\frac{d^2 f}{dx^2}\right)_{x_0} \frac{\left(x - x_0\right)^2}{2!} + \dots + \left(\frac{d^n f}{dx^n}\right)_{x_0} \frac{\left(x - x_0\right)^n}{n!}$$

Consider the pendulum on the left. The torque is $T = mgL \sin \theta$. Nonlinear part is $\sin \theta$, which approximated around the point $\theta = \theta_0$ is:

$$\sin \theta = \sin \theta_0 + \cos \theta_0 (\theta - \theta_0) + \cdots$$

Taking $\theta_0 = 0$ we obtain $\sin \theta \approx \theta$.

The pendulum dynamics are then modelled as $T = mgL\theta$.

- As the pendulum moves further from $\theta = 0$, the greater the error in the approximation.
- This is one reason why linearization is often associated with small signal responses.

2.7 Summary

- Dynamic systems can be modelled with differential equations.
- Linear differential equations can be used to describe the input-output properties of many simple systems
- The use of linear and time-invariant differential equations implies that the system is linear and, this is unlikely to be the case in practise.
- System linearization can be used to approximate the system dynamics about a specific operating point.

2.8 Problems

1. Classify the following differential equations as to whether they are time-varying or time-invariant:

a)
$$\frac{d^2y}{dt^2} + 7y = 0$$

b)
$$\frac{d}{dt}(t^2y) + y = 0$$

c)
$$\left(\frac{1}{t+1}\right)\frac{d^2y}{dt^2} + \left(\frac{1}{t+y}\right)\frac{dy}{dt} + \left(\frac{1}{t+1}\right)y = 0$$

d)
$$\frac{d^2y}{dt^2} + (\cos t)y = 0$$

2. Classify the following differential equations as to whether they are linear or non-linear.

a)
$$\frac{dy}{dt} + y = 0$$

$$b) \frac{d^2y}{dt^2} + y = 0$$

c)
$$\frac{dy}{dt} + y^2 = 0$$

d)
$$\cos y \frac{d^2 y}{dt^2} + \sin 2y = 0$$

e)
$$\cos x(t)\frac{d^2y}{dt^2} + \sin x(t) = 0$$

f)
$$\cos x(y) \frac{d^2y}{dt^2} + \sin 2x(y)t^2 = 0$$

3. Use the principle of superposition to determine the output of the following system:

4. Obtain mathematical models for the systems below and show that they are analogous (Hint: let i = dq/dt).

- 5. Write down the equations of motion for the system shown in Fig. 1 assuming that the bar AB is rigid, massless and constrained to remain horizontal.
- 6. Linearize the following nonlinear differential equation using Taylor series expansion

$$\frac{d^2y}{dx^2} + y\cos y = x \qquad \text{with } y = 0 \text{ when } x = 0$$

7. The nonlinear equation describing the pendulum in Fig. 2 below is $\frac{d^2\theta}{dt^2} + \frac{g}{L} \sin \theta = 0$. Linearize the system around the point $\theta = 0$.

