Flip-Flop 1

$ar{\eta}$ table	$ar{\eta}_{\mathrm{same}}$	$ar{\eta}_{ m diff}^{ m close}$	$ar{\eta}_{ m diff}^{ m far}$
$ \pm 1\rangle$ basis	$\frac{2}{3\sqrt{3}} = 0.3849$	0.6507	0.8328
$ +/-\rangle$ basis (no correlations)	0.7110	0.6828	0.6828
$ +/-\rangle$ basis (full correlations)	$\frac{4}{3\sqrt{3}} = 0.7698$	0.6951	0.6951

Degeneracy formulae:

- no degeneracies : $\bar{\eta} = \frac{1}{4}\bar{\eta}_{\text{same}}$
- $1x2x1 / \{1,1,0\}$ planes : $\bar{\eta} = \frac{1}{4}\bar{\eta}_{same} + \frac{1}{4}\bar{\eta}_{diff}^{far}$
- 2x2 / {1,0,0} planes : $\bar{\eta} = \frac{1}{4}\bar{\eta}_{\text{same}} + \frac{1}{4}\bar{\eta}_{\text{diff}}^{\text{close}}$
- $3x1 / \langle 1, 1, 1 \rangle$ directions : $\bar{\eta} = \frac{1}{4} \bar{\eta}_{\text{same}} + \frac{2}{4} \bar{\eta}_{\text{diff}}^{\text{far}}$
- 4x0 / $\langle 1,0,0 \rangle$ directions : $\bar{\eta} = \frac{1}{4} \bar{\eta}_{\text{same}} + \frac{2}{4} \bar{\eta}_{\text{diff}}^{\text{close}} + \frac{1}{4} \bar{\eta}_{\text{diff}}^{\text{far}}$

Numerical Values:

- $\begin{array}{l} -\text{ no degeneracies}: \bar{\eta}^2 = 9.259 \cdot 10^{-3} = \bar{\eta}_0^2 \\ -1\text{x2x1}: \bar{\eta}^2 = 9.267 \cdot 10^{-2} = 10.0 \cdot \bar{\eta}_0^2 \\ -2\text{x2}: \bar{\eta}^2 = 6.703 \cdot 10^{-2} = 7.24 \cdot \bar{\eta}_0^2 \\ -3\text{x1}: \bar{\eta}^2 = 0.2628 = 28.4 \cdot \bar{\eta}_0^2 \\ -4\text{x0} \mid \pm 1 \rangle \text{ basis}: \bar{\eta}^2 = 0.3966 = 42.8 \cdot \bar{\eta}_0^2 \\ -4\text{x0} \mid +/- \rangle \text{ basis (no correlations)}: \bar{\eta}^2 = 0.4759 = 51.4 \cdot \bar{\eta}_0^2 \\ -4\text{x0} \mid +/- \rangle \text{ basis (full correlations)}: \bar{\eta}^2 = 0.5094 = 55.0 \cdot \bar{\eta}_0^2 \end{array}$

Double quantum 2

$ar{\eta}$ table	$\bar{\eta}_{\mathrm{same}}$	$ar{\eta}_{ m diff}^{ m close}$	$ar{\eta}_{ m diff}^{ m far}$
$ \pm 1\rangle$ basis	1	0.8328	0.6507
$ +/-\rangle$ basis (no correlations)	0.7110	0.6828	0.6828
$ +/-\rangle$ basis (full correlations)	0.6366	0.6705	0.6705

Numerical Values:

- $\begin{array}{ll} -- \ 4 \text{x0} \ |\pm 1\rangle \ \text{basis} : \bar{\eta}^2 = 0.6874 = 74.2 \cdot \bar{\eta}_0^2 \\ -- \ 4 \text{x0} \ |+/-\rangle \ \text{basis} \ (\text{no correlations}) : \bar{\eta}^2 = 0.4759 = 51.4 \cdot \bar{\eta}_0^2 \\ -- \ 4 \text{x0} \ |+/-\rangle \ \text{basis} \ (\text{full correlations}) : \bar{\eta}^2 = 0.4383 = 47.3 \cdot \bar{\eta}_0^2 \end{array}$