

Università degli Studi di Perugia Tesi Magistrale in Informatica

L'instradamento degli octocopter alla luce delle condizioni del vento

Autore: Relatore:

Lorenzo Palazzetti Prof.ssa Maria Cristina Pinotti

Anno Accademico 2019/2020

Outline

- Introduzione
- 2 Delivery Context: Ammissibilità della missione
- 3 Algoritmi per MFP
- Data set e Simulazioni
- Sisultati

Outline

- Introduzione
- 2 Delivery Context: Ammissibilità della missione
- 3 Algoritmi per MFP
- Data set e Simulazioni
- Risultati

Classificazione dei droni

I droni possono essere classificati sulla base dei seguenti parametri:

- Proprietà di movimento
- Carico
- Durata del volo
- Connettività

Principali tipi di drone:

(a) Rotorcraft.

(b) Fixed-wing.

(c) Tail-Sitter.

(d) Convertplane.

Applicazioni in ambito civile

(e) Agricoltura.

(g) Sorveglianza.

(h) Film making.

Applicazioni in ambito civile

Outline

- Introduzione
- 2 Delivery Context: Ammissibilità della missione
- 3 Algoritmi per MFP
- 4 Data set e Simulazioni
- 6 Risultati

Problemi di consegna

- I problemi di consegna con mezzi tradizionali sono risolti riducendoli a problemi combinatorici classici come il travelling salesman problem e il vehicle routing problem
- Le restrizioni di carico imposte dall'octocopter rendono inappropriata una tale soluzione. Per i droni, si definisce invece uno schema di consegna di tipo end-to-end.
- Sia G = (V, E) la mappa di routing dove
 - ullet l'insieme dei vertici $V=\{v_{ ext{o}},v_{ ext{1}},...,v_{n}\}$ è la posizione degli end-customer
 - ullet l'insieme degli archi $E=\{e_0,e_1,...,e_m\}$ definisce le vie percorribili
 - la funzione costo $W: E \to \mathbb{R}^+$ definisce i consumi energetici in relazione alle condizioni di vento locali
- Dati
 - la sorgente $s \in V$ e la destinazione $d \in V$
 - $\bullet \ \ {\rm il} \ \ {\rm budget} \ B$
- Il problema di consegna End-to-End (EEP) richiede di trovare il ciclo C
 che inizia e termina in s passando per d di costo non superiore a B,
 considerando le variazioni di vento locale.

Definizione modello per i grafi

- Dati
 - ullet Uno spazio metrico X caratterizzato da una funzione distanza d
 - Un insieme di siti $S = \{s_0, s_1, ..., s_n\}$
 - Un insieme discreto di venti globali $\Omega = \{\omega_0, \omega_1, ..., \omega_n\}$
- Si ha che ogni punto $s_i \in \mathcal{S}$ è caratterizzato da un vento globale $\omega_i \in \Omega$ delimitato dai lati della **cella di Voronoi** R_i associata al sito s_i

Definizione: Diagramma di Voronoi

La cella di Voronoi, o regione di Voronoi, R_k , associata al sito s_k è l'insieme di tutti i punti in X le cui distanze da s_k non sono più grandi della loro distanza rispetto ad altri siti s_j , dove $j \neq k$.

Esempio di tassellazione di Voronoi su un insieme di siti

Definizione di vento relativo

- La funzione costo d_t dalla nozione di vento globale $\omega = (\omega_s, \omega_d)$
 - ullet ω_s è la velocità di ω
 - ullet ω_d è la direzione di ω

- Dati:
 - Un arco e = (u, v)
 - ullet La condizione di vento globale $\omega \in \Omega$
 - L'angolo relativo dell'arco (u, v), $\psi(e) = arctg(\frac{y_v}{x_v})$
- La direzione del vento relativo può essere definita come $\omega_d(e) = \omega_d \psi(e)$

Definizione di vento relativo

• La discretizzazione dei venti relativi si ottiene semplificando le occorrenze della direzione relativa del vento raggruppando i valori di $\omega_d(e)$ in 8 e 16 settori

(i) Raggruppamento in 8 settori.

(j) Raggruppamento in 16 settori.

Definizione dei consumi energetici

- Dati
 - m_p , la massa del carico trasportato
 - s_d , la velocità del drone
 - $\omega_d(e)$, la direzione del vento relativo
 - \bullet ω_s , la velocità del vento
- Il costo energetico di attraversamento dell'arco e all'istante t può essere definito come

$$\eta(e) = \mu(e)\lambda(e). \tag{1}$$

- Dove
 - $\mu(e)$ è il consumo energetico unitario
 - \bullet $\lambda(e)$ è la lunghezza dell'arco e

Esempio di consumi unitari

	$\omega_d = 0^{\circ}$	$\omega_d=45^\circ$	$\omega_d=135^\circ$	$\omega_d = 180^{\circ}$
$\omega_s = 0 \text{ m/s}$	0.22	0.22	0.22	0.22
$\omega_s = 5 \text{ m/s}$	0.15	0.17	0.32	0.36
$\omega_s = 10 \text{ m/s}$	0.12	0.18	0.50	0.55
$\omega_s=15~\mathrm{m/s}$	0.15	0.23	0.74	0.84

(k) Tabella consumi unitari(kJ) $m_p = 0 \mathrm{~kg}$ e $s_d = 10 \mathrm{~m/s}.$

	$\omega_d = 0^{\circ}$	$\omega_d = 45^{\circ}$	$\omega_d = 135^{\circ}$	$\omega_d = 180^{\circ}$
$\omega_s = 0 \text{ m/s}$	0.25	0.25	0.25	0.25
$\omega_s = 5 \text{ m/s}$	0.17	0.20	0.35	0.39
$\omega_s = 10 \text{ m/s}$	0.15	0.21	0.53	0.60
$\omega_s=15~\mathrm{m/s}$	0.17	0.26	0.78	0.89

(I) Tabella consumi unitari(kJ) $m_p=2\,\mathrm{kg}$ e $s_d=10\,\mathrm{m/s}.$

	$\omega_d = 0^{\circ}$	$\omega_d = 45^{\circ}$	$\omega_d = 135^{\circ}$	$\omega_d = 180^{\circ}$
$\omega_s = 0 \text{ m/s}$	0.33	0.33	0.33	0.33
$\omega_s = 5 \text{ m/s}$	0.25	0.28	0.44	0.47
$\omega_s = 10 \text{ m/s}$	0.23	0.29	0.62	0.70
$\omega_s = 15 \text{ m/s}$	0.25	0.34	0.88	1.00

(m) Tabella consumi unitari($\rm kJ)$ $m_{p}=7~\rm kg$ e $s_{d}=10~\rm m/s.$

Mission Feasibility Problem

- ullet Time-dependent cost delivery network graph $\mathcal{G} = \{\mathcal{G}_0,...,\mathcal{G}_t\}$
 - ullet E' definito da una serie di grafi o snapshot statici \mathcal{G}_t
 - Per ogni istanza $\mathcal{G}_i, i=0,1,...,n$ la funzione peso varia in riferimento alla nozione di *vento globale*
- Time-dependent $\mathcal{G}_t = (V, E; \eta_t)$
 - L'insieme dei vertici $V = \{v_0, v_1, ... v_n\}$
 - L'insieme degli archi $E = \{e_0, e_1, ...e_m\}$
 - $\eta_t: E \to \mathbb{R}^+$ è la funzione costo energetico all'instante di tempo $t \in \mathbb{N}$

Definizione: Mission Feasibility Problem (MFP)

Il *Mission-Feasibility Problem* è un problema decisionale che richiede di stabilire se EEP ammette soluzioni, dato \mathcal{G} , il budget B, il payload m_p , la velocità del drone s_d , la sorgente s, la destinazione d e l'orario di partenza i

Time-dependent cost delivery network graph ${\cal G}$

Figura: Grafo time-dependent che non ammette una soluzione fattibile da S a D. Qui, i costi degli archi per la sotto-sequenza dei grafi "pari" G_0 , G_2 , G_4 sono raffigurati in (a), mentre i costi per la sotto-sequenza dei grafi "dispari" G_1 , G_3 , G_5 sono raffigurati in (b). La sorgente del deposito s è raffigurata in blu, mentre la destinazione d è raffigurata in rosso.

Outline

- Introduzione
- 2 Delivery Context: Ammissibilità della missione
- 3 Algoritmi per MFP
- 4 Data set e Simulazioni
- 6 Risultati

Algoritmi per MFP

- Per risolvere e studiare il MFP sono stati definiti i seguenti algoritmi:
 - Offline Shortest Path (OSP)
 - Dynamic Shortest Path (DSP)
 - Greedy Shortest Path (GSP)
- Confrontando il consumo energetico ottenuto con il budget a disposizione viene restituito uno dei seguenti stati finali:
 - SUCCESS (S)
 - DELIVERED (D)
 - FAIL (F)
 - CANCELED (C)

Algoritmo di Offline Shortest Path (OSP)

- L'algoritmo OSP risolve il EEP valutando i costi all'instante t=0 e calcolando il ciclo C nel seguente modo:
 - lacktriangle Calcola il cammino minimo da s a d, $\pi_{s,d}$
 - 2 Calcola il cammino minimo da d a s, $\pi_{d,s}$
- I cammini minimi vengono computati utilizzando l'algoritmo di Dijkstra
- ullet Durante l'esecuzione, i costi energetici sono aggiornati usando ${\mathcal G}$
- Il costo computazionale complessivo di OSP è $\mathcal{O}(|E| + |V| \log |V|)$

Algoritmo di Dynamic Shortest Path (DSP)

- ullet L'algoritmo DSP risolve il EEP calcolando il ciclo C nel seguente modo:
 - **1** Calcola il cammino minimo da $s=u_0$ a d, $\pi_{s,d}$, valutando i costi in G_0 e aggiunge alla soluzione l'arco $e_0=(u_0,u_1)$
 - ② Per ogni nodo intermedio u_i valutando i costi in G_i ricalcola il cammino minimo $\pi_{u_i,d}$ e aggiunge l'arco $e_i=(u_i,u_{i+1})$ fintanto che non si raggiunge il nodo d
 - lacktriangledown Ripete il processo per trovare il cammino inverso $\pi_{d,s}$
- I cammini minimi vengono computati utilizzando l'algoritmo di Dijkstra
- Il costo computazionale complessivo di DSP è $\mathcal{O}(|C|(|E|+|V|\log|V|))$

Algoritmo di Greedy Shortest Path (GSP)

- \bullet L'algoritmo GSP risolve il EEP calcolando il ciclo C nel seguente modo:
 - Calcola il cammino da s a d, $\pi_{s,d}$, attraversando ad ogni passo l'arco $e = (u_i, u_{i+1})$ di costo minimo sul \mathcal{G}_i
 - ② Ripete lo stesso procedimento per trovare il cammino da d a $s,\pi_{d,s}$
- Il costo computazionale complessivo di GSP è $\mathcal{O}(|C|(\max_{v \in V}|Adj(v)|))$

Outline

- Introduzione
- 2 Delivery Context: Ammissibilità della missione
- 3 Algoritmi per MFP
- 4 Data set e Simulazioni
- 6 Risultati

Descrizione dei dati

Grafo Voronoi-oriented

- $S = \{s_0, s_1, ..., s_k\}$ l'insieme delle centraline
- - \bullet L'insieme degli archi di Voronoi è $E_{vor}=\{e_0,e_1,...,e_j\}$ con $j\leq 3k-6$
 - L'insieme dei *vertici di Voronoi* $V_{vor} = \{v_0, v_1, ..., v_j\}$ con $j \leq 2k-5$
- Si definisce inoltre $E_{cent} = \{(s, v) : s \in S, v \in Reg(s)\}$
- Il grafo Voronoi-oriented $G_{VO} = (V, E)$
 - $V = S \cup V_{vor}$, |V| = 34
 - $E = E_{cent} \cup E_{vor}, |E| = 42$
 - d(G) = 6

Grafo Voronoi-oriented

Figura: Illustrazione consumo energetico per archi che collegano il centro ai vertici di una cella di Voronoi.

Figura: Illustrazione consumo energetico per archi di confine fra due celle di Voronoi.

Grafo Delaunay-oriented

- $S = \{s_0, s_1, ..., s_k\}$ l'insieme delle centraline
- $DT(\mathcal{S})$ la triangolazione di Delaunay dei punti \mathcal{S} dove
 - L'insieme degli archi di Delaunay è $E_{dt} = \{e_0, e_1, ..., e_i\}$ con $i \leq 3k-3-z$ dove $z = |Hull(\mathcal{S})|$
 - Gli archi che giacioni in più di due celle di Voronoi sono $E_{ar{d}t} = \{ar{e}_{0}, ar{e}_{1}, ..., ar{e}_{j}\}$ con j < i
- $\begin{array}{lll} \bullet & \mathsf{Per} & \mathsf{ogni} & e = (s_i, s_j) \in E_{\bar{d}t} & \mathsf{si} & \mathsf{aggiunge} & \mathsf{un} & \mathsf{vertice} & \mathsf{di} & \mathsf{Voronoi} & v_k & \mathsf{e} & \mathsf{due} & \mathsf{archi} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$
- I vertici e gli archi aggiunti definiscono V_{vor}, E_{vor}
- Il grafo **Delaunay-oriented** $G_{DO} = (V, E)$
 - $V = \mathcal{S} \cup V_{vor}$, |V| = 19
 - $E = E_{dt} \cup E_{vor} \setminus E_{\bar{d}t}$, |E| = 25
 - d(G) = 7

Grafo Delaunay-oriented

Figura: Illustrazione consumo energetico per archi che attraversano esattamente due celle di Voronoi.

Figura: Illustrazione consumo energetico per archi che attraversano più di due celle di Voronoi.

Grafo ibrido

- Dato
 - II grafo Voronoi-oriented $G_{VO} = (V_{VO}, E_{VO})$
 - Il grafo Delaunay-oriented $G_{DO} = (V_{DO}, E_{DO})$
- Il grafo Ibrido $G_{HG} = (V, E)$

 - $\begin{array}{ll} \bullet \ V = V_{VO} \cup V_{DO}, & |V| = & 52 \\ \bullet \ E = E_{VO} \cup E_{DO}, & |E| = & 60 \\ \end{array}$
 - d(G) = 6
- Il grafo ibrido rappresenta la fusione della soluzione Voronoi-oriented e Delaunay-oriented

Outline

- Introduzione
- 2 Delivery Context: Ammissibilità della missione
- 3 Algoritmi per MFP
- 4 Data set e Simulazion
- Sisultati

Procedura di simulazione

- Per valutare come i venti influenzino il completamento di una missione di consegna end-to-end è stata implementata la procedura NTEST
- ullet Fissato un insieme di orari di inizio ${\cal H}$
 - **1** Scorre ogni $h \in \mathcal{H}, s \in \mathcal{S}, d \in \mathcal{S} \setminus \{s\}$
 - **②** Computando le procedure OSP,DSP e GSP passandogli i parametri (h,s,d)
 - 3 Calcolando infine per ogni algoritmo il numero medio di stati ottenuti
- Nelle simulazioni svolte $|\mathcal{H}| = 30$

Esempio di risultato

		OSP			DSP			GSP			
Sorgente	N. GRAY	S	F	D	С	S	D	F	S	D	F
Solenzara	11	8,23	0	0,2	2,57	8,53	2,47	0	0,03	3,7	7,27
Alistro	11	9,47	0	0,2	1,33	9,67	0,71	0	0,2	3,3	7,5
Corte	9	8,8	0	0,07	0,13	8,87	0,13	0	0,83	1,47	6,7
Calacuccia	9	8,47	0	0,13	0,4	8,53	0,47	0	0,47	2,1	6,43
Calvi	11	9,33	0	0,17	1,5	9,47	1,53	0	0,33	4,17	6,5
Ile Rousse	9	8,5	0	0,17	0,33	8,6	0,4	0	0,77	1,83	6,42
Pietralba	6	6	0	0	0	6	0	0	0,57	0,4	5,03
Bastia	11	10,73	0	0,1	0,17	10,8	0,2	0	0,7	2,97	7,33
San Pietro Tenda	8	7,97	0	0	0,03	7,97	0,03	0	0,8	0,93	6,27
Oletta	9	9	0	0	0	9	0	0	1,2	1,1	6,7
Cagnano	11	9,6	0	0,1	1,3	9,77	1,23	0	0,93	3,2	6,87
Cap Corse	11	8,43	0	0,43	2,13	8,7	2,3	0	0,27	2,6	8,13

Tabella: Voronoi-oriented, $B = 5000 \, \mathrm{kJ}, m_p = 2 \, \mathrm{kg}$ e 16 classi di vento.

Risultati conclusivi: confronto OSP, DSP, GSP

		OSP					DSP		GSP		
В	gray	С	S	D	F	S	D	F	S	D	F
8 wind classes											
100 ق	88	9	90	1	0	90	10	0	7	25	68
> 50	89	44	56	0	0	56	39	5	3	21	76
100 ق	80	7	92	1	0	93	7	0	13	36	51
□ 50	85	42	57	1	0	58	38	4	6	29	64
100 ئ	80	3	97	0	0	97	3	0	13	31	56
± 50	86	34	66	0	0	66	33	1	6	27	67
			1	6 wir	nd cla	asses					
100 ق	88	8	91	1	0	92	8	0	7	23	71
> 50	89	42	58	0	0	58	40	2	3	21	76
100 ق	80	3	96	1	0	97	3	0	19	38	44
□ 50	85	35	65	1	0	65	34	1	8	32	58
100 ق	80	2	98	0	0	98	2	0	18	30	52
± 50	86	25	75	0	0	75	25	0	8	26	66

¹I dati sono espressi in percentuale.

Commento dei risultati

- I risultati migliori sono ottenuti da DSP che ha una percentuale alta di SUCCESS ed recupera i CANCELED di OSP come DELIVERED
- L'algoritmo GSP basato sulla scelta locale ottima porta risultati fortemente negativi: alta percentuale di FAIL e bassa percentuale di SUCCESS. Inoltre complessità in tempo molto alta perchè $|C| \rightarrow |E|$.
- Il numero di classi di vento influenza soprattutto DSP che ottiene una percentuale maggiore di SUCCESS
- Dimezzando il budget energetico si dimezzano le prestazioni e si marcano maggiormente le peculiarità osservate dei tre algoritmi

Commento dei risultati rispetto ai tipi di grafo utilizzati

- I risultati sono leggermente peggiori per VG che ha gli archi più lunghi
- HG che possiede la maggior connettività e determina i migliori risultati

Grazie per l'attenzione

Sviluppi futuri

- Si potrebbero studiare soluzioni pre-calcolate che considerino i cambiamenti di vento più frequenti, evitando il calcolo online eseguito dal DSP
- Si potrebbe introdurre la possibilità che durante la missione il drone si fermi ed attenda le condizioni migliori di vento per raggiungere la destinazione ottimizzando il consumo energetico
- Studiare soluzioni che considerano punti di ricarica nel percorso, ottimizzando i tempi di consegna
- Definire grafi con rotte dinamiche che sfruttano il vento favorevole al momento