

FCC TEST REPORT FCC ID: 2AFCBLY-112

On Behalf of

Shenzhen Longzhiyuan Technology Co., Ltd.
Wire-Free Battery Camera
Model No.: LY-112

Prepared for : Shenzhen Longzhiyuan Technology Co., Ltd.

Address 5F Building B, Zhuangbian 2nd Industrial Park, Hezhou Industrial

District, Xixiang Town, Bao'an District, Shenzhen, China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address : Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

Shenzhen, Guangdong, China

Report Number : A1881106 05 Date of Receipt : October 29, 2018

Date of Test : October 29, 2018-February 21, 2019

Date of Report : February 21, 2019

Version Number : REV0

TABLE OF CONTENTS

<u>D</u> e	escrip	tion	<u> Page</u>
1.	Sum	mary of Standards And Results	6
	1.1.	Description of Standards and Results	
2.	Gen	eral Information	
	2.1.	Description of Device (EUT)	7
	2.2.	Accessories of Device (EUT)	8
	2.3.	Tested Supporting System Details	8
	2.4.	Block Diagram of connection between EUT and simulators	
	2.5.	Test Mode Description	9
	2.6.	Test Conditions	10
	2.7.	Test Facility	10
	2.8.	Measurement Uncertainty	
	2.9.	Test Equipment List	12
3.	Spui	rious Emission	13
	3.1.	Test Limits	13
	3.2.	Test Procedure	13
	3.3.	Test Setup	14
	3.4.	Test Results	15
4.	Pow	er line Conducted Emission	
	4.1.	Test Limits	22
	4.2.	Test Procedure	22
	4.3.	Test Setup	22
	4.4.	Test Results	
5.	Con	ducted Maximum Output Power	25
	5.1.	Test limits	_
	5.2.	Test Procedure	
	5.3.	Test Setup	25
	5.4.	Test Results	25
6.	Peal	k Power Spectral Density	
	6.1.	Test limits	27
	6.2.	Test Procedure	
	6.3.	Test Setup	27
	6.4.	Test Results	28
7.	Ban	dwidth	31
	7.1.	Test limits	
	7.2.	Test Procedure	31
	7.3.	Test Setup	31
	7.4.	Test Results	
8.	Ban	d Edge Check	35
	8.1.	Test limits	
	8.2.	Test Procedure	
	8.3.	Test Setup	
	8.4.	Test Results	35

9.	Ante	nna Requirement	42
		Standard Requirement	
		Antenna Connected Construction	
	9.3.	Results	42
10.	Test s	setup photo	43
		Photos of Radiated emission	
	10.2.	Photos of Conducted Emission test	44
11.	EUT	photo	45

TEST REPORT DECLARATION

Applicant : Shenzhen Longzhiyuan Technology Co., Ltd.

Address 5F Building B, Zhuangbian 2nd Industrial Park, Hezhou Industrial District, Xixiang

Town, Bao'an District, Shenzhen, China

Manufacturer : Shenzhen Longzhiyuan Technology Co., Ltd.

Address 5F Building B, Zhuangbian 2nd Industrial Park, Hezhou Industrial District, Xixiang

Town, Bao'an District, Shenzhen, China

EUT Description : Wire-Free Battery Camera

(A) Model No. : LY-112(B) Trademark : N/A

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2017,

ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Ella liang

Tested by (name + signature)..... Ella Liang
Project Engineer

Approved by (name + signature).....: Simple Guan Project Manager

Date of issue February 21, 2019

Revision History

Revision	Issue Date	Revisions	Revised By
00	February 21, 2019	Initial released Issue	Simple Guan

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Test Item	Test Requirement	Standards Paragraph	Result
Conducted Emission	FCC PART 15:2017	15.207	P
6dB Bandwidth	FCC PART 15:2017	15.247 (a)(2)	P
Output Power	FCC PART 15:2017	15.247 (b)(3)	P
Radiated Spurious Emission	FCC PART 15:2017	15.247 (c)	Р
Conducted Spurious & Band Edge Emission	FCC PART 15:2017	15.247 (d)	Р
Power Spectral Density	FCC PART 15:2017	15.247 (e)	Р
Radiated Band Edge Emission	FCC PART 15:2017	15.205	Р
Antenna Requirement	FCC PART 15:2017	15.203	P
Note:	1. P is an abbreviation for	or Pass.	
	2. F is an abbreviation f	or Fail.	
	3. N/A is an abbreviatio	n for Not Applicable.	

2.1.Description of Device (EUT)

Description : Wire-Free Battery Camera

2. GENERAL INFORMATION

Model Number : LY-112

Diff : N/A

Trademark : N/A

Test Voltage : DC 1.5V*4 by AA battery or DC 5V from USB port

Operation 2412MHz-2462MHz for IEEE 802.11 b, g.n/HT20,

frequency 2422MHz~2452MHz for IEEE802.11n/HT40

Channel No. 802.11b/802.11g /802.11n(HT20): 11CH

802.11(HT40): 7CH

IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)

Modulation type : IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)

IEEE 802.11n:OFDM(64QAM, 16QAM, QPSK, BPSK)

Antenna Type : Internal Antenna, Maximum Gain is 3dBi

Antenna

connector type : ipex connector

Software version : V1.0.3.26

Hardware version : Ver2.0

2.2.Accessories of Device (EUT)

Accessories 1 : /
Manufacturer : /
Model : /
Power supply : /

2.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or DOC
1	Notebook	ACER	ZQT	N/A	DOC

2.4.Block Diagram of connection between EUT and simulators

Middle: CH6

High: CH9

2437

2452

2.5.Test Mode Description

IEEE 802.11 n/HT40 with

2.4G

Duty cycle :100% Keeping T	X		
Mode	data rate (Mbps)(see Note)	Channel	Frequency (MHz)
	1	Low:CH1	2412
IEEE 802.11b	1	Middle: CH6	2437
	1	High: CH11	2462
	6	Low:CH1	2412
IEEE 802.11g	6	Middle: CH6	2437
	6	High: CH11	2462
IEEE 802.11 n/HT20 with	6.5	Low:CH1	2412
2.4G	6.5	Middle: CH6	2437
2.40	6.5	High: CH11	2462
IEEE 802 11 n/HT/10 with	13	Low :CH3	2422

Note: According exploratory test, EUT will have maximum output power in those data rate. so those data rate were used for all test.

13

13

Channel lis	Channel list:				
	For	IEEE 802.	11b, g, n/HT20 with 2.	4G	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
CH1	2412	CH5	2432	CH9	2452
CH2	2417	CH6	2437	CH10	2457
CH3	2422	CH7	2442	CH11	2462
CH4	2427	CH8	2447		
	F	For IEEE 80	2.11 n/HT40 with 2.40	3	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
CH1	2422	CH5	2442		
CH2	2427	CH6	2447		
CH3	2432	CH7	2452		
CH4	2437				

	Setting output power (Max)			
802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	
17dBm	22dBm	22dBm	23dBm	

2.6.Test Conditions

Items	Required	Actual
Temperature range:	15-35℃	27℃
Humidity range:	25-75%	56%
Pressure range:	86-106kPa	98kPa

2.7.Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

Registration Number: 293961

July 25, 2017 Certificated by IC Registration Number: 12135A

(95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	2.74dB
Uncertainty for Radiation Emission test in 3m chamber	2.13 dB(Polarize: V)
(below 30MHz)	2.57dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(30MHz to 1GHz)	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.16dB(Polarize: H)
(1GHz to 25GHz)	4.13dB(Polarize: V)
Uncertainty for radio frequency	5.4×10-8
Uncertainty for conducted RF Power	0.37dB
Uncertainty for temperature	0.2℃
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

2.9.Test Equipment List

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGRE N	N/A	SEL0017	2018.09.22	1Year
Spectrum analyzer	Agilent	E4407B	MY46185649	2018.09.22	1Year
Receiver	R&S	ESCI	1166.5950K03-1011	2018.09.22	1 Year
Receiver	R&S	ESCI	101202	2018.09.22	1 Year
Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168-438	2018.09.30	2Year
Horn Antenna	EMCO	3115	640201028-06	2018.09.30	2Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	2018.09.30	2Year
Cable	Resenberger	N/A	No.1	2018.09.22	1 Year
Cable	SCHWARZBEC K	N/A	No.2	2018.09.22	1Year
Cable	SCHWARZBEC K	N/A	No.3	2018.09.22	1Year
Pre-amplifier	Schwarzbeck	BBV9743	9743-019	2018.09.22	1 Year
Pre-amplifier	R&S	AFS33-18002650- 30-8P-44	SEL0080	2018.09.22	1 Year
Temperature controller	Terchy	MHQ	120	2018.09.22	1 Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2018.09.22	1Year
L.I.S.N.#2	ROHDE&SCHW ARZ	ENV216	101043	2018.09.22	1 Year
20db Attenuator	ICPROBING	IATS1	82347	2018.09.22	1 Year
18-40 Horn Antenna	18-40G antenna	Sas-574	571	2018.3.15	3 Year
Power Meter	Anritsu	ML2487A	6K00001491	2018.09.22	1 Year

3. SPURIOUS EMISSION

3.1.Test Limits

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

NOTE:

- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(Uv/m)

3.2. Test Procedure

The measuring distance of 3m shall be used for measurements at frequency below 1GHz and above 1GHz, The EUT was placed on a rotating 80cm above the ground plane inside a semi-anechoic chamber for below 1GHz and 150cm above the ground plane inside a semi-anechoic chamber for above 1GHz, The table was rotated 360 degrees to determine the position of the highest radiation.

The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set of make measurement.

The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significant Peaks are then marked. and then Qusia Peak Detector mode premeasured.

If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.

For the actual test configuration, please see the test setup photo.

3.3.Test Setup

Below 30MHz Test Setup

Above 30MHz Test Setup

Above 1GHz Test Setup

3.4. Test Results

Test Condition

Continual Transmitting in maximum power.

9KHz~150KHz	RBW200Hz	VBW1KHz
150KHz~30MHz	RBW9KHz	VBW 30KHz
30MHZ~1GHz	RBW120KHz	VBW 300KHz
Above1GHz	RBW1MHz	VBW 3MHz

We have scanned the 10th harmonic from 9 kHz to the EUT.

Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note:1.The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2.Only show the test data of the worst Channel in this report.

Test result for $802.11n\ HT40$ (High Channel), DC 1.5V*4 by AA battery Vertical

Radiated Emission Measurement

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	73.8756	17.15	10.45	27.60	40.00	-12.40	peak			
2		135.0319	16.52	13.53	30.05	43.50	-13.45	peak			
3		162.6106	13.69	14.37	28.06	43.50	-15.44	peak			
4		278.0668	16.54	12.94	29.48	46.00	-16.52	peak			
5		568.6127	12.19	19.07	31.26	46.00	-14.74	peak			
6		854.0247	10.45	22.58	33.03	46.00	-12.97	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Horizontal

Radiated Emission Measurement

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	72.8466	23.16	10.47	33.63	40.00	-6.37	peak			
2		143.3261	15.09	14.07	29.16	43.50	-14.34	peak			
3		210.0482	20.03	10.69	30.72	43.50	-12.78	peak			
4		283.9791	25.17	13.03	38.20	46.00	-7.80	QP			
5		446.4141	15.40	16.86	32.26	46.00	-13.74	peak			
6		675.2080	11.34	20.82	32.16	46.00	-13.84	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

From 1G-25GHz

Test Mo	Test Mode: IEEE 802.11b TX Low										
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark		
4824	45.63	V	33.95	10.18	34.26	55.50	74	18.50	PK		
4824	34.79	V	33.95	10.18	34.26	44.66	54	9.34	AV		
7236	/										
9648	/										
4824	42.72	H	33.95	10.18	34.26	52.59	74	21.41	PK		
4824	33.23	Н	33.95	10.18	34.26	43.10	54	10.90	AV		
7236											
9648											
Test Mo	ode: IEEE 8	02.11b T	X Mid								
4874	42.90	V	33.93	10.2	34.29	52.74	74	21.26	PK		
4874	34.02	V	33.93	10.2	34.29	43.86	54	10.14	AV		
7311	/										
9748	/										
4874	43.53	H	33.93	10.2	34.29	53.37	74	20.63	PK		
4874	33.50	Н	33.93	10.2	34.29	43.34	54	10.66	AV		
7311											
9748											
Test Mo	ode: IEEE 8	02.11b T	X High								
4924	42.56	V	33.98	10.22	34.25	52.51	74	21.49	PK		
4924	34.10	V	33.98	10.22	34.25	44.05	54	9.95	AV		
7386	/										
9848	/										
4924	43.87	Н	33.98	10.22	34.25	53.82	74	20.18	PK		
4924	32.32	Н	33.98	10.22	34.25	42.27	54	11.73	AV		
7386											
9848											

- 1, Result = Read level + Antenna factor + cable loss-Amp factor
- 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Test Mode: IEEE 802.11g TX Low										
Frea	Read Level (dBuV/m)	Polar	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
4824	44.58	V	33.95	10.18	34.26	54.45	74	19.55	PK	
4824	32.29	V	33.95	10.18	34.26	42.16	54	11.84	AV	
7236	/									
9648	/									
4824	44.11	Н	33.95	10.18	34.26	53.98	74	20.02	PK	
4824	35.85	Н	33.95	10.18	34.26	45.72	54	8.28	AV	
7236										
9648										
Test M	lode: IEEE	802.11	g TX Mid							
4874	42.03	V	33.93	10.2	34.29	51.87	74	22.13	PK	
4874	35.21	V	33.93	10.2	34.29	45.05	54	8.95	AV	
7311	/									
9748	/									
4874	42.36	Н	33.93	10.2	34.29	52.20	74	21.80	PK	
4874	33.28	Н	33.93	10.2	34.29	43.12	54	10.88	AV	
7311										
9748										
Test M	lode: IEEE	802.11	g TX High					<u> </u>		
4924	44.01	V	33.98	10.22	34.25	53.96	74	20.04	PK	
4924	34.89	V	33.98	10.22	34.25	44.84	54	9.16	AV	
7386	/									
9848	/									
4924	44.13	Н	33.98	10.22	34.25	54.08	74	19.92	PK	
4924	34.00	Н	33.98	10.22	34.25	43.95	54	10.05	AV	
7386										
9848										

- 1, Result = Read level + Antenna factor + cable loss-Amp factor
- 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

				_						
Test ModeIEEE 802.11n HT20 TX Low										
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
4824	47.06	V	33.95	10.18	34.26	56.93	74	17.07	PK	
4824	33.02	V	33.95	10.18	34.26	42.89	54	11.11	AV	
7236	/									
9648	/									
4824	44.40	Н	33.95	10.18	34.26	54.27	74	19.73	PK	
4824	34.49	Н	33.95	10.18	34.26	44.36	54	9.64	AV	
7236										
9648										
Test M	Mode:IEEE	802.111	n HT20 TX	Mid						
4874	42.15	V	33.93	10.2	34.29	51.99	74	22.01	PK	
4874	32.79	V	33.93	10.2	34.29	42.63	54	11.37	AV	
7311	/									
9748	/									
4874	41.91	Н	33.93	10.2	34.29	51.75	74	22.25	PK	
4874	34.21	Н	33.93	10.2	34.29	44.05	54	9.95	AV	
7311										
9748										
Test N	Iode:IEEE	802.111	n HT20 TX	High						
4924	42.89	V	33.98	10.22	34.25	52.84	74	21.16	PK	
4924	32.48	V	33.98	10.22	34.25	42.43	54	11.57	AV	
7386	/									
9848	/									
4924	42.57	Н	33.98	10.22	34.25	52.52	74	21.48	PK	
4924	33.02	Н	33.98	10.22	34.25	42.97	54	11.03	AV	
7386										
9848										

- 1, Result = Read level + Antenna factor + cable loss-Amp factor
- 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Test N	ModeIEEE 8	302.11n	HT40 TX	Low					
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4844	42.91	V	33.95	10.18	34.26	52.78	74	21.22	PK
4844	33.71	V	33.95	10.18	34.26	43.58	54	10.42	AV
7266	/								
9688	/								
4844	44.54	Н	33.95	10.18	34.26	54.41	74	19.59	PK
4844	33.99	Н	33.95	10.18	34.26	43.86	54	10.14	AV
7266									
9688									
Test N	Mode:IEEE	802.111	n HT40 TX	Mid					
4874	42.93	V	33.93	10.2	34.29	52.77	74	21.23	PK
4874	32.25	V	33.93	10.2	34.29	42.09	54	11.91	AV
7311	/								
9748	/								
4874	42.41	Н	33.93	10.2	34.29	52.25	74	21.75	PK
4874	32.99	Н	33.93	10.2	34.29	42.83	54	11.17	AV
7311									
9748									
Test M	Iode:IEEE	802.111	n HT40 TX	High					
4904	41.89	V	33.98	10.22	34.25	51.84	74	22.16	PK
4904	34.00	V	33.98	10.22	34.25	43.95	54	10.05	AV
7356	/								
9808	/								
4904	41.85	Н	33.98	10.22	34.25	51.80	74	22.20	PK
4904	34.26	Н	33.98	10.22	34.25	44.21	54	9.79	AV
7356									
9808									

- 1, Result = Read level + Antenna factor + cable loss-Amp factor
- 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

4. POWER LINE CONDUCTED EMISSION

4.1. Test Limits

Frequency	Limits dB(μV)					
MHz	Quasi-peak Level	Average Level				
0.15 -0.50	66 -56*	56 - 46*				
0.50 -5.00	56	46				
5.00 -30.00	60	50				

Notes: 1. *Decreasing linearly with logarithm of frequency.

- 2. The lower limit shall apply at the transition frequencies.
- 3.The limit decreases in line with the logarithm of the frequency in the rang of 0.15 to 0.50 MHz.

4.2. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10:2013 on Conducted Emission Measurement.

The bandwidth of test receiver is set at 9 kHz.

4.3. Test Setup

4.4.Test Results

Test result for $802.11\mbox{n}$ HT40 (High Channel), AC $120\mbox{V}/$ 60Hz Line:

No.	Mk.	Freq.	Level	Factor	ment	Limit	Margir	1		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1500	42.70	9.73	52.43	66.00	-13.57	peak		
2		0.2790	31.86	9.76	41.62	60.85	-19.23	peak		
3		0.3180	29.29	9.77	39.06	59.76	-20.70	peak	A	
4		2.7390	23.23	10.02	33.25	56.00	-22.75	peak		
5		4.6740	29.02	10.17	39.19	56.00	-16.81	peak		
6	-	22.8360	26.20	10.65	36.85	60.00	-23.15	peak		

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

^{*:}Maximum data x:Over limit !:over margin

Neutral:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	î.	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
*	0.1650	45.26	9.73	54.99	65.21	-10.22	QP	
	0.1650	29.42	9.73	39.15	55.21	-16.06	AVG	, —
	0.2760	31.27	9.76	41.03	60.94	-19.91	peak	
	0.3840	28.21	9.77	37.98	58.19	-20.21	peak	
	2.5530	21.67	10.00	31.67	56.00	-24.33	peak	
	4.7280	28.44	10.18	38.62	56.00	-17.38	peak	
	23.4960	27.83	10.68	38.51	60.00	-21.49	peak	
		* 0.1650 0.1650 0.2760 0.3840 2.5530	Mk. Freq. Level MHz dBuV * 0.1650 45.26 0.1650 29.42 0.2760 31.27 0.3840 28.21 2.5530 21.67 4.7280 28.44	Mk. Freq. Level Factor MHz dBuV dB * 0.1650 45.26 9.73 0.1650 29.42 9.73 0.2760 31.27 9.76 0.3840 28.21 9.77 2.5530 21.67 10.00 4.7280 28.44 10.18	Mk. Freq. Level Factor ment MHz dBuV dB dBuV * 0.1650 45.26 9.73 54.99 0.1650 29.42 9.73 39.15 0.2760 31.27 9.76 41.03 0.3840 28.21 9.77 37.98 2.5530 21.67 10.00 31.67 4.7280 28.44 10.18 38.62	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV dBuV * 0.1650 45.26 9.73 54.99 65.21 0.1650 29.42 9.73 39.15 55.21 0.2760 31.27 9.76 41.03 60.94 0.3840 28.21 9.77 37.98 58.19 2.5530 21.67 10.00 31.67 56.00 4.7280 28.44 10.18 38.62 56.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dBuV dBuV dBuV dB * 0.1650 45.26 9.73 54.99 65.21 -10.22 0.1650 29.42 9.73 39.15 55.21 -16.06 0.2760 31.27 9.76 41.03 60.94 -19.91 0.3840 28.21 9.77 37.98 58.19 -20.21 2.5530 21.67 10.00 31.67 56.00 -24.33 4.7280 28.44 10.18 38.62 56.00 -17.38	Mk. Freq. Level Factor ment Limit Margin * 0.1650 45.26 9.73 54.99 65.21 -10.22 QP 0.1650 29.42 9.73 39.15 55.21 -16.06 AVG 0.2760 31.27 9.76 41.03 60.94 -19.91 peak 0.3840 28.21 9.77 37.98 58.19 -20.21 peak 2.5530 21.67 10.00 31.67 56.00 -24.33 peak 4.7280 28.44 10.18 38.62 56.00 -17.38 peak

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

^{*:}Maximum data x:Over limit !:over margin

5. CONDUCTED MAXIMUM OUTPUT POWER

5.1.Test limits

Please refer section 15.247.

Regulation 15.247(b) The limit of Maximum Peak Output Power Measurement is 1 W(30dBm)

5.2. Test Procedure

Details see the KDB558074 D01 Meas Guidance V05

- 5.2.1 Place the EUT on the table and set it in transmitting mode.
- 5.2.2 Connected the EUT's antenna port to peak power meter by 20dB attenuator.
- 5.2.3 Measure out each mode and each bands peak output power of EUT.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.3.Test Setup

5.4. Test Results

PASS

Detailed information please see the following page.

6. PEAK POWER SPECTRAL DENSITY

6.1.Test limits

- 6.1.1 Please refer section 15.247.
- 6.1.2 For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 6.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

6.2. Test Procedure

Details see the KDB558074 D01 Meas Guidance V05

- 6.2.1 Place the EUT on the table and set it in transmitting mode.
- 6.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 6.2.3 Set the spectrum analyzer as RBW = 3kHz(Set the RBW to: $3kHz \le RBW \le 100$ kHz.), VBW = 10kHz(Set the VBW $\ge 3 \times RBW$), span= $1.5 \times DTS$ bandwidth., detail see the test plot.
- 6.2.4 Record the max reading.
- 6.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

6.3. Test Setup

6.4.Test Results

Test		Power S	Bm)	Limit	Result	
СН	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	(dBm/3kHz)	Kesuit
Lowest	-8.197	-9.289	-11.971	-13.060		
Middle	-8.277	-9.398	-11.554	-12.656	8.00	Pass
Highest	-8.093	-8.977	-11.630	-12.137		

Middle channel

Highest channel

802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7. BANDWIDTH

7.1.Test limits

Please refer section 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

7.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance V05

- a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b) The test receiver set RBW = 100kHz, VBW ≥ 3*RBW = 300kHz,, Peak Detector, Sweep time set auto, detail see the test plot.

7.3.Test Setup

7.4. Test Results

IEEE 80	IEEE 802.11b:										
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit (MHz)	Result						
Low	2412	9.120	10.643	0.5	PASS						
Mid	2437	9.133	10.671	0.5	PASS						
High	2462	9.116	10.823	0.5	PASS						
IEEE 802.	11g										
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit (MHz)	Result						
Low	2412	16.44	16.455	0.5	PASS						
Mid	2437	16.40	16.443	0.5	PASS						
High	2462	16.43	16.449	0.5	PASS						
IEEE 802.	11n/HT20										
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit (MHz)	Result						
Low	2412	17.73	17.625	0.5	PASS						
Mid	2437	17.72	17.609	0.5	PASS						
High	2462	17.79	17.636	0.5	PASS						
IEEE 802.	11n/HT40										
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit (MHz)	Result						
Low	2422	36.28	35.956	0.5	PASS						
Mid	2437	36.37	35.968	0.5	PASS						
High	2452	36.17	35.968	0.5	PASS						

IEEE 802.11b:

x dB Bandwidth

x dB

-6.00 dB

9.120 MHz

IEEE 802.11g:

Lowest channel

Middle channel

Highest channel

IEEE 802.11n/HT20

IEEE 802.11n/HT40

Report No.: A1881106 05

Lowest channel

Middle channel

Highest channel

8. BAND EDGE CHECK

8.1.Test limits

Please refer section 15.247

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz and 5725MHz to 5850MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

8.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance V05

- 8.2.1 Put the EUT on a 1.5m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission
- 8.2.2 Check the spurious emissions out of band.
- 8.2.3 RBW 1MHz, VBW 3MHz, peak detector for peak value, RBW 1MHz, VBW 10Hz, RMS detector for AV value.

8.3. Test Setup

Same as 5.2.2.

8.4. Test Results

PASS.

Detailed information please see the following page.

Test Mode: IEEE 802.11b-Low

Polarization: Horizontal 10.0 2310.000 2322.00 2334.00 2346.00 2358.00 2370.00 2382.00 Reading Correct Measure- Limit Margin Level Factor ment Antenna Table Height Degree 1 * 2413.440 106.16 -3.41 102.75 74.00 28.75 peak 2390.000 49.27 -3.40 45.87 74.00 -28.13 peak

Test Mode: IEEE 802.11b-High

	245	0.000 2460.00	2470.00	2480.00	2490.00	2500.00	2510.00	2520	.00 2530	.00	2558.00	MH
No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	7.7	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	٠	2462.900	102.25	-3.40	98.85	74.00	24.85	peak				
2	1	2483,500	46.79	-3.38	43.41	74.00	-30.59	peak	-			

Polarization: Horizontal

Test Mode: IEEE 802.11g-High

Polarization: Horizontal

Test Mode: IEEE 802.11n20-Low Polarization: Vertical

Polarization: Horizontal 2310,000 2322.00 2334.00 2346.00 2356.00 2378.00 2382.00 Reading Correct Measure- Limit Margin Level Factor ment Antenna Table Height Degree dB Detector cm degree Comment 1 2415.120 105.41 -3.41 102.00 74.00 28.00 peak 2390.000 49.42 -3.40 46.02 74.00 -27.98 peak

Test Mode: IEEE 802.11n20-High

Polarization: Vertical

Test Mode: IEEE 802.11n40-Low Polarization: Vertical Polarization: Horizontal 2352 00 2422 00 2450 00 1411 Margin Measure-Antenna Table Height Degree 2390.000 59.62 74.00 -14.38 peak

Test Mode: IEEE 802.11n40-High

-3.40 97.06

-3.40 46.64

2433.760 100.46

Polarization: Vertical

50.04

2390.000

74.00 23.06 peak

74.00 -27.36 peak

Polarization: Horizontal

53.36

-3.40 49.96

-3.40 103.82

2390.000

2433,760 107.22

54.00 -4.04 AVG

74.00 29.82 peak

Report No.: A1881106 05

Note: 1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Test mode: 802.11b

Lowest channel

Highest channel

Test mode: 802.11g

Lowest channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Highest channel

9. ANTENNA REQUIREMENT

9.1.Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2. Antenna Connected Construction

The antenna connector is unique antenna and no consideration of replacement. Please see EUT photo for details.

9.3.Results

The EUT antenna is internal Antenna. It complies with the standard requirement.

Antenna connector type: ipex connector.

Report No.: A1881106 05

10.TEST SETUP PHOTO

10.1.Photos of Radiated emission

10.2.Photos of Conducted Emission test

11.EUT PHOTO

