Numerical Computations

GPU Programming

Present By:

Armin Ahmadzadeh

Hamid Sarbazi-Azad &
Samira Hossein Ghorban
Department of Computer Engineering
Sharif University of Technology (SUT)
Tehran, Iran

Outline

- GPU Short History
 - Massively Parallel Processina
- □ GPU Architecture
- □ GPU programming mo
 - Memory Model
 - Processing Model
- CUDA Programming
- GPU and AI

INTRODUCTION TO GPU & CUDA

GPU Architecture

Graphic Cards/ History

5

- > 1980's No GPUs. Just VGA controller
- > 1990's Add more function into VGA controller

> 1997 - 3D acceleration functions:

> Hardware for triangle setup and rasterization

- > Texture mapping
- Shading

- > 2000 A single chip graphics processor
 - beginning of GPU term
- 2005 Massively parallel programmable processors
- > 2007 CUDA (Compute Unified Device Architecture)
 - Nvidia initiated
 - C/C++ extention
- > 2008 OpenCL
 - Apple initiated
 - Based on C99 standard

CPU vs. GPU

CPU vs. GPU (continued)

CPU vs. GPU (continued)

CPU

- Latency oriented Cores
- > Large caches
 - Lessen latency
- > Sophisticated control
 - Branch prediction
 - Data forwarding
- Powerful ALUs
 - Reduce Latency

> GPU

- > Throughput Oriented Cores
- Small caches
 - > To boost memory throughput
- > Simple control
 - > No branch prediction
 - No data forwarding

CPU vs. GPU (continued)

10

- > CPU
 - Sequential parts where latency matters
 - > 10+X faster than GPU for sequential codes

> GPU

- > Heavily piplined
- Require massive number of threads to tolerate latencies

Case Study

11

- > CPU
 - > Intel Core i7:960
 - > 4-core, 3.2 GHz
 - > 2-way multi-threading
 - > 4-way SIMD
 - L1 32KB, L2 256KB, L3 3MB
 - > 32 GB/sec

> GPU

- > NVIDIA GTX 280
 - > 30 core, 1.3GHz
 - > 1024-way multi-threading
 - > 8-way SIMD
 - > 16KB software managed cache (shared memory)
 - > 141 GB/sec

Number of Cores

- > It is all about the core complexity:
 - > The common goal: Improving pipeline efficiency
 - > CPU goal: Single-thread performance
 - Exploiting ILP
 - > Sophisticated branch predictor
 - Multiple issue logics
 - > GPU goal: Throughput
 - > Interleaving hundreds of threads

Cache Size

- CPU goal: reducing memory latency
 - > Programmer-transparent data caching
 - > Increasing the cache size to capture the working set
 - Prefetching (HW/SW)
- GPU goal: hiding memory latency
 - > Interleave the execution of hundreds of threads to hide the latency of each other
- Notice:
 - > CPU uses multi-threading for latency hiding
 - > GPU uses software controlled caching (shared memory) for reducing memory latency

Streaming Multiprocessor (SM)

14

Pipeline deep-multithreaded SIMD processor

- Multiple SIMD groups
- Resources shared among threads
 - > Shared memory
 - > Register file
 - > L1Cache

Compute Capability (Nvidia)

15

Denotes the Capability of the GPU

- > Major . Minor
- > 1.0 and 1.1
- > 1.2
 - Atomic operation on shared memory
- ➤ 1.3
 - Double-precision operations
- \geq 2.x and 3.x
 - Informative __syncthreads
 - > 64-bit atomic
 - > 3D grid
 - Tensor Cores
 - Mix Lib (Curand, CuFFT, ..)

GPU Programming Model

What Is CUDA

- Compute Unified Device Architecture
- □ Based on industry-standard C
- A handful of language extensions to allow heterogeneous programs
- Straightforward APIs to manage devices, memory, etc

Why CUDA?

- Massive parallel computing power
- Maximize throughput of all threads
- Using hundreds of ALU inside a GPU

CUDA Programming Model

- Heterogeneous Programming
 - program separated into serial regions (run on CPU) & parallel regions (run on GPU)

CUDA Programming Model

- Parallel regions consist of many calculations that can be executed independently
 - Data Parallelism (e.g. vector addition)


```
Int main() {
// Allocate memory for array on host
// Allocate memory for array on device
// Fill array on host
// copy data from host array to device array
// Do something on device (e.g. vector addition)
// Copy data from device array to host array
// Check data for correctness
// Free Host Memory
// Free Device Memory }
```



```
Int main() {
// Allocate memory for array on host
// Allocate memory for array on device
// Fill array on host
// Copy data from host array to device array
// Do something on device (e.g. vector addition)
// Copy data from device array to host array
// Check data for correctness
// Free Host Memory
// Free Device Memory }
```



```
Int main() {
// Allocate memory for array on host
// Allocate memory for array on device
// Fill array on host
// Copy data from host array to device array
// Do something on device (e.g. vector addition)
// Copy data from device array to host array
// Check data for correctness
// Free Host Memory
// Free Device Memory }
```



```
Int main() {
// Allocate memory for array on host
// Allocate memory for array on device
// Fill array on host
// Copy data from host array to device array
// Do something on device (e.g. vector addition)
// Copy data from device array to host array
// Check data for correctness
// Free Host Memory
// Free Device Memory }
```



```
Int main() {
// Allocate memory for array on host
// Allocate memory for array on device
// Fill array on host
// Copy data from host array to device array
// Do something on device (e.g. vector addition)
// Copy data from device array to host array
// Check data for correctness
// Free Host Memory
// Free Device Memory }
```



```
Int main() {
// Allocate memory for array on host
// Allocate memory for array on device
// Fill array on host
// Copy data from host array to device array
// Do something on device (e.g. vector addition)
// Copy data from device array to host array
// Check data for correctness
// Free Host Memory
// Free Device Memory }
```



```
Int main() {
// Allocate memory for array on host
// Allocate memory for array on device
// Fill array on host
// Copy data from host array to device array
// Do something on device (e.g. vector addition)
// Copy data from device array to host array
// Check data for correctness
// Free Host Memory
// Free Device Memory }
```



```
Int main() {
// Allocate memory for array on host
// Allocate memory for array on device
// Fill array on host
// Copy data from host array to device array
// Do something on device (e.g. vector addition)
// Copy data from device array to host array
// Check data for correctness
// Free Host Memory
// Free Device Memory }
```



```
Int main() {
// Allocate memory for array on host
// Allocate memory for array on device
// Fill array on host
// Copy data from host array to device array
// Do something on device (e.g. vector addition)
// Copy data from device array to host array
// Check data for correctness
// Free Host Memory
// Free Device Memory }
```



```
Int main() {
// Allocate memory for array on host
// Allocate memory for array on device
// Fill array on host
// Copy data from host array to device array
// Do something on device (e.g. vector addition)
// Copy data from device array to host array
// Check data for correctness
// Free Host Memory
// Free Device Memory }
```



```
Int main() {
   // Allocate memory for array on host
    size_t bytes = N*sizeof(int);
     int *A = (int*) malloc(bytes);
     int *B = (int*)malloc(bytes);
     int *C = (int*)malloc(bytes);
```



```
Int main() {
 // Allocate memory for array on device
  int *d_A, *d_B, *d_C;
  cudaMalloc(&d_A, bytes);
  cudaMalloc(&d_B, bytes);
  cudaMalloc(&d_C, bytes);
```



```
Int main() {
 // Fill array on host
  for(int i=0; i<N; i++)
           A[i] = 1;
           B[i] = 2;
           C[i] = 0;
```



```
Int main() {
  // Copy data from host array to device array
  cudaMemcpy(d_A, A, bytes,
               cudaMemcpyHostToDevice);
  cudaMemcpy(d_B, B, bytes,
               cudaMemcpyHostToDevice);
```



```
Int main() {
 // Do something on device (e.g. vector addition)
 // We'll come back to this soon
```



```
Int main() {
// Copy data from device array to host array
 cudaMemcpy(C, d C, bytes,
              cudaMemcpyDeviceToHost);
```


A Basic CUDA Program Outline

```
Int main() {
    // Check data for correctness
    for (int i=0; i<N; i++)
      if(C[i] != 3)
       // Error – value of C[i] is not correct!
```


A Basic CUDA Program Outline

```
Int main() {
  // Free Host Memory
  free(A);
  free(B);
  free(C);
```


A Basic CUDA Program Outline

```
Int main() {
   // Free Device Memory
   cudaFree(d_A);
   cudaFree(d_B);
   cudaFree(d_C);
```


CUDA Kernels

40

What is difference between serial and parallel implementation?

```
Serial – CPU

for (int i=0; i<N; i++){
    C[i] = A[i] + B[i];
}
```

```
Parallel - GPU
```

```
C[i] = A[i] + B[i];
```

- A kernel is a function executed on the GPU as an array of threads in parallel
- Same code is executed by all threads
 - Single-Program Multiple-Data (SPMD)
- Each thread has:
 - thread ID
 - inputs, and output results

CUDA Kernels

11

- Threads are grouped into blocks
- Blocks are grouped into a grid

Kernel is executed as a grid of blocks of threads

Built-in Variables

42

□ gridDim: Grid dimension

□ blockDim: Block dimension

□ blockldx: Block index

□ threadIdx: Thread index

Execution Configuration

43

□ 1D grid / 1D blocks

```
gridDim.x = 1024 blockDim.x = 64
gridDim.y = 1 blockDim.y = 1
blockDim.z = 1
```

dim3 gd(1024) dim3 bd(64) akernel<<<gd, bd>>>(...)

□ 2D grid / 3D blocks
gridDim.x = 4 blockDim.x = 64
gridDim.y = 128 blockDim.y = 16
blockDim.z = 4

dim3 gd(4, 128) dim3 bd(64, 16, 4) akernel<<<gd, bd>>>(...)

CUDA Function Declarations

Functions	Executed on the:	Only callable from the:
device float DeviceFunc()	device	device
global void KernelFunc()	device	host
host float HostFunc()	host	host

- global defines a kernel function
 - Must return void
 - Can only call <u>device</u> functions

Device code

```
vector_addition (int *a, int *b, int *c
              global
               int i = blockIdx.x;
               c[i] = a[i] + b[i];
                                                  N blocks
☐ Host code
                                                  Each block has one thread
            Int main(){
            vector_addition \langle\langle N, 1\rangle\rangle\rangle (d_A, d_B, d_C);
```

46

Device code

☐ Host code

One block with N threads

```
Int main(){
...
vector_addition <<<1, N >>> (d_A, d_B, d_C);
}
```

47

```
_global___ vector_addition (int *a, int *b, int *c )
                                                   Blocks;
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i<N)
        c[i] = a[i] + b[i];
```

48

```
_global___ vector_addition (int *a, int *b, int *c )
int i = blockDim.x * blockIdx.x + threadIdx.x;
                                                  Threads
 if (i<N)
         c[i] = a[i] + b[i];
This defines a unique thread id among all
threads in a grid
```

49

50

```
_global___ vector_addition (int *a, int *b, int *c )
           (4)
                          (2)
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i<N)
        c[i] = a[i] + b[i];
  block 0
                   block 1
                                   block 2
                                                    block 3
```


51

Device code

Number of threads in the grid might be larger than number of elements in array

52

Device code

Local variables are private to each thread.

The loop was replaced by a grid of threads

Memory Model

Shared Memory

- Very fast on-chip memory
- Allocated per thread block
 - Allows data sharing between threads in the same block
 - Declared with <u>__shared</u> specifier
- Limited amount
- Must take care to avoid race conditions. For example...
 - Say, each thread writes the value 1 to one element of an array element
 - Then one thread sums up the elements of the array
 - Synchronize with __syncthreads()

55

Partition data into subsets that fit into shared memory

56

□ Handle each data subset with one thread block

57

 Load the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism

58

Perform the computation on the subset from shared

59

Using Shared Memory

Copy the result from shared memory back to global memory

Reduction Operations

60

Multiple values are reduced into a single valueADD, MUL, AND, OR,

- Useful primitive in parallel computing
 - Many tasks generating intermediate results
 - Reduction must be done to combine the intermediate results into final results
- Easy enough to allow us to focus on optimization techniques

Sequential Reduction

```
sum = array[0];
for (k = 1; k < N; k++) {
   sum += array[i];
}</pre>
```

- Start with the first two elements --> partial result
- Process the next element
- □ O(N)

Parallel Reduction

 $log_2(N)$, where N is the number of elements

Trees with Larger Degrees

 $log_4(N)$, where N is the number of elements

Single Thread Block

```
global__ void
reduce(float *g_idata, float *g_odata, int n)
    int tid = threadIdx.x;
  // copy input data into output data
    g_odata[tid] = g_idata[tid];
    for (int s = 1; s < blockDim.x; s *= 2) {
    if ((tid \% (2*s)) == 0) {
       g_odata[tid] += g_odata[tid + s];
       syncthreads();
                           Why do we need this?
```

```
_global___ void
reduce(float *g_idata, float *g_odata, int n)
                                                              Shared memory
     int tid = threadIdx.x;
    shared__ float s_data[BLOCK_DIM];
   // copy input data into output data
     s_data[tid] = g_idata[tid];
     __syncthreads();
     for (int s = 1; s < blockDim.x; s *= 2) {
    if ((tid \% (2*s)) == 0) {
       s_{data[tid]} += s_{data[tid + s]};
      _syncthreads();
     g_odata[tid] = s_data[tid]; }
```

Reduction Steps

How about Multiple Thread Blocks

67 □ How do we communicate results across blocks? Time thread block 2 thread block 1 thread block 0 thread block 3 The key problem is synchronization: ■ How do we know that each block has finished?

Global Synchronization

68

□ **IF** there was such a thing: **Time** thread block 0 thread block 1 thread block 2 thread block 3 sync sync sync sync **Synchronization** achieved

70

atomics

The Problem

- □ How do you do global communication?
- □ Finish a grid and start a new one

Global Communication

- □ Finish a kernel and start a new one
- All writes from all threads complete before a kernel finishes

```
step1<<<grid1,blk1>>>(...);
// The system ensures that all
// writes from step1 complete.
step2<<<grid2,blk2>>>(...);
```

Global Communication

73

 Would need to decompose kernels into before and after parts

- Or, write to a predefined memory location
 - Race condition! Updates can be lost

- What is the value of a in thread 0?
- What is the value of a in thread 1917?

- Thread 0 could have finished execution before
 1917 started
- Or the other way around
- Or both are executing at the same time

77

Answer: not defined by the programming model,
 can be arbitrary

Atomics

78

 CUDA provides atomic operations to deal with this problem

Atomics

- An atomic operation guarantees that only a single thread has access to a piece of memory while an operation completes
- The name atomic comes from the fact that it is uninterruptable
- No dropped data, but ordering is still arbitrary
- Different types of atomic instructions
- atomic{Add, Sub, Exch, Min, Max,
 Inc, Dec, CAS, And, Or, Xor}
- More types in fermi

Example: Histogram

```
// Determine frequency of colors in a picture
// colors have already been converted into ints
// Each thread looks at one pixel and increments
// a counter atomically
 global void histogram(int* color,
                            int* buckets)
  int i = threadIdx.x
        + blockDim.x * blockIdx.x;
  int c = colors[i];
  atomicAdd(&buckets[c], 1);
```

Example: Workqueue

```
// For algorithms where the amount of work per item
// is highly non-uniform, it often makes sense for
// to continuously grab work from a queue
  global
void workq(int* work q, int* q counter,
            int* output, int queue max)
  int i = threadIdx.x
        + blockDim.x * blockIdx.x;
  int q index =
    atomicInc(q counter, queue max);
  int result = do work(work q[q index]);
  output[i] = result;
```

Atomics

- Atomics are slower than normal load/store
- You can have the whole machine queuing on a single location in memory
- Atomics unavailable on G80!

Example: Global Min/Max (Naive)

```
// If you require the maximum across all threads
// in a grid, you could do it with a single global
// maximum value, but it will be VERY slow
global
void global max(int* values, int* gl max)
  int i = threadIdx.x
        + blockDim.x * blockIdx.x;
  int val = values[i];
  atomicMax(gl max, val);
```

Example: Global Min/Max (Better)

```
// introduce intermediate maximum results, so that
// most threads do not try to update the global max
global
void global max(int* values, int* max,
                  int *regional maxes,
                  int num regions)
  // i and val as before ...
  int region = i % num regions;
  if (atomicMax(&reg max[region], val) < val)</pre>
    atomicMax (max, val);
```

Global Min/Max

- □ Single value causes serial bottleneck
- Create hierarchy of values for more parallelism
- □ Performance will still be slow, so use judiciously
- See next lecture for even better version!

Summary

86

 Can't use normal load/store for inter-thread communication because of race conditions

- Use atomic instructions for sparse and/or unpredictable global communication
 - See next lectures for shared memory and scan for other communication patterns
- Decompose data (very limited use of single global sum/max/min/etc.) for more parallelism

Questions?

88

SM Execution & Divergence

How an SM executes threads

- □ Overview of how a Stream Multiprocessor works
- □ SIMT Execution
- □ Divergence

Scheduling Blocks onto SMs

Warps

- A warp = 32 threads launched together
 - Usually, execute together as well

Mapping of Thread Blocks

92

- Each thread block is mapped to one or more warps
- □ The hardware schedules each warp independently

Thread Block N (128 threads)

TB N W1

TB N W2

TB N W3

TB N W4

THREAD SCHEDULING EXAMPLE

- SM implements zero-overhead warp scheduling
 - At any time, only one of the warps is executed by SM *
 - Warps whose next instruction has its inputs ready for consumption are eligible for execution
 - Eligible Warps are selected for execution on a prioritized scheduling policy
 - All threads in a warp execute the same instruction when selected

94

What happens if you have the following code?

```
if (foo(threadIdx.x))
{
    do_A();
}
else
{
    do_B();
}
```


96

Nested branches are handled as well

```
if (foo(threadIdx.x))
  if (bar (threadIdx.x))
    do A();
  else
    do B();
else
  do C();
```


- You don't have to worry about divergence for correctness (*)
- You might have to think about it for performance
 - Depends on your branch conditions

99

Performance drops off with the degree of divergence

```
switch(threadIdx.x % N)
{
   case 0:
        ...
   case 1:
        ...
}
```

Divergence

Atomics

- atomicAdd returns the previous value at a certain address
- Useful for grabbing variable amounts of data from a list

102

GPU Performance

But First!

- Always measure where your time is going!
 - Even if you think you know where it is going

- Keep in mind Amdahl's Law when optimizing any part of your code
 - Don't continue to optimize once a part is only a small fraction of overall execution time

Performance Considerations

- □ Memory Coalescing
- □ Shared Memory Bank Conflicts
- □ Control-Flow Divergence
- □ Occupancy
- □ Kernel Launch Overheads

Memory Coalescing

Memory Coalescing

- Off-chip memory is accessed in chunks
 - Even if you read only a single word
 - □ If you don't use whole chunk, bandwidth is wasted
- Chunks are aligned to multiples of 32/64/128
 bytes
 - Unaligned accesses will cost more

Threads 0-15 access 4-byte words at addresses 116-176

- □ Thread 0 is lowest active, accesses address 116
- □ 128-byte segment: 0-127

Threads 0-15 access 4-byte words at addresses 116-176

- Thread 0 is lowest active, accesses address 116
- □ 128-byte segment: 0-127 (reduce to 64B)

Threads 0-15 access 4-byte words at addresses 116-176

- □ Thread 0 is lowest active, accesses address 116
- □ 128-byte segment: 0-127 (reduce to 32B)

Threads 0-15 access 4-byte words at addresses 116-176

- □ Thread 3 is lowest active, accesses address 128
- □ 128-byte segment: 128-255

Threads 0-15 access 4-byte words at addresses 116-176

- □ Thread 3 is lowest active, accesses address 128
- □ 128-byte segment: 128-255 (reduce to 64B)

Consider the stride of your accesses

```
global void foo(int* input,
                  float3* input2)
int i = blockDim.x * blockIdx.x
      + threadIdx.x;
// Stride 1
int a = input[i];
// Stride 2, half the bandwidth is wasted
int b = input[2*i];
// Stride 3, 2/3 of the bandwidth wasted
float c = input2[i].x;
```

Example: Array of Structures (AoS)

```
113
 struct record
   int key;
   int value;
   int flag;
 record *d records;
 cudaMalloc((void**)&d records, ...);
```

Example: Structure of Arrays (SoA)

```
114
  struct SoA
    int * keys;
    int * values;
    int * flags;
  SoA d SoA data;
  cudaMalloc((void**)&d SoA data.keys, ...);
  cudaMalloc((void**)&d SoA data.values, ...);
  cudaMalloc((void**)&d SoA data.flags, ...);
```

Example: SoA vs. AoS

```
115
   global void bar (record *AoS data,
                      SoA SoA data)
   int i = blockDim.x * blockIdx.x
         + threadIdx.x;
   // AoS wastes bandwidth
   int key = AoS data[i].key;
   // SoA efficient use of bandwidth
  int key better = SoA data.keys[i];
```

Memory Coalescing

- Structure of array is often better than array of structures
 - Very clear win on regular, stride 1 access patterns
 - Unpredictable or irregular access patterns are caseby-case

Shared memory Bank Conflicts

Shared Memory

118

- Shared memory is banked
 - Only matters for threads within a warp
 - Full performance with some restrictions
 - Threads can each access different banks
 - Or can all access the same value

Consecutive words are in different banks

 If two or more threads access the same bank but different value, get bank conflicts

Bank Addressing Examples

Bank Addressing Examples

Trick to Assess Impact On Performance

- Change all SMEM reads to the same value
 - All broadcasts = no conflicts
 - Will show how much performance could be improved by eliminating bank conflicts
- □ The same doesn't work for SMEM writes
 - So, replace SMEM array indices with threadIdx.x
 - □ Can also be done to the reads

Additional "memories"

- texture and constant
- □ Read-only
- Data resides in global memory
- □ Different read path:
 - includes specialized caches

Constant Memory

- Data stored in global memory, read through a constant-cache path
 - constant qualifier in declarations
 - Can only be read by GPU kernels
 - □ Limited to 64KB
- To be used when all threads in a warp read the same address
 - Serializes otherwise
- Throughput:
 - 32 bits per warp per clock per multiprocessor

124

Control Flow divergence

Control Flow

- Instructions are issued per 32 threads (warp)
- Divergent branches:
 - Threads within a single warp take different paths
 - ■if-else,...
 - Different execution paths within a warp are serialized
- Different warps can execute different code with no impact on performance

Control Flow

126

- Avoid diverging within a warp
 - **■** Example with divergence:

```
if (threadIdx.x > 2) {...}
else {...}
```

Branch granularity < warp size

■ Example without divergence:

```
if (threadIdx.x / WARP_SIZE > 2)
{...}
else {...}
```

Branch granularity is a whole multiple of warp size

Example: Divergent Iteration

```
global void per thread sum(int *indices,
                               float *data,
                               float *sums)
// number of loop iterations is data
// dependent
for(int j=indices[i]; j<indices[i+1]; j++)</pre>
  sum += data[j];
sums[i] = sum;
```

Iteration Divergence

128

 A single thread can drag a whole warp with it for a long time

Know your data patterns

If data is unpredictable, try to flatten peaks by letting threads work on multiple data items 129

Occupancy

Reminder: Thread Scheduling

- SM implements zero-overhead warp scheduling
 - At any time, only one of the warps is executed by SM *
 - Warps whose next instruction has its inputs ready for consumption are eligible for execution
 - Eligible Warps are selected for execution on a prioritized scheduling policy
 - All threads in a warp execute the same instruction when selected

Thread Scheduling

- □ What happens if all warps are stalled?
 - No instruction issued → performance lost
- Most common reason for stalling?
 - Waiting on global memory
- If your code reads global memory every couple of instructions
 - You should try to maximize occupancy

(c) H Sarbazi-Azad, S Hossein Ghorban, TA: A Ahmadzadeh

132

Register usage per thread & shared memory per thread block

Resource Limits (1)

Resource Limits (2)

134

- Can only have 8 thread blocks per SM
 - If they're too small, can't fill up the SM
 - Need 128 threads / TB (gt200), 192 thread/ TB (gf100)

Higher occupancy has diminishing returns for hiding latency

Hiding Latency with more threads

How do you know what you're using?

- Use nvcc -Xptxas -v to get register and shared memory usage
- Plug those numbers into CUDA Occupancy
 Calculator

137

How to influence how many registers you use

□ Pass option -maxrregcount=X to nvcc

□ This isn't magic, won't get occupancy for free

 Use this very carefully when you are right on the edge 138

Kernel Launch Overhead

Kernel Launch Overhead

- Kernel launches aren't free
 - A null kernel launch will take non-trivial time
 - Actual number changes with HW generations and driver software, so I can't give you one number
- Independent kernel launches are cheaper than dependent kernel launches
 - Dependent launch: Some readback to the cpu
- If you are launching lots of small grids you will lose substantial performance due to this effect

Kernel Launch Overheads

- If you are reading back data to the cpu for control decisions, consider doing it on the GPU
- Even though the GPU is slow at serial tasks, can do surprising amounts of work before you used up kernel launch overhead

Performance Considerations

- □ Measure, measure, then measure some more!
- Once you identify bottlenecks, apply judicious tuning
 - What is most important depends on your program
 - You'll often have a series of bottlenecks, where each optimization gives a smaller boost than expected

GPU Performance

GPU Model	Memory	Core	Performance (TFLOPS)	Price (\$)
GTX 980 Ti	6 GB	2816	5.6	230
GTX 1080 Ti	11 GB	3584	11	700
P100	16GB	3584	9	1000
RTX 2080 Ti	11 GB	4352	11.7	1000
V100	32GB	5120	14	3900
RTX 3080 TI	12 GB	10240	28	1200
RTX 3090	24 GB	10496	29.2	1500
A100	40 GB	6912	19.5	23000
H100	80 GB	14592	48	36000

GPU Performance

GPU Performance

Questions?

GPU High-level Design

Bandwidth difference

- Bandwidth versus latency
- > CPU goal: single thread performance
 - > Workloads do not demand for many memory accesses
 - > Bring the data as soon as possible
- GPU goal: throughput
 - > There are lots of memory accesses, provide the good bandwidth
 - > No matter the latency, core will hide it!