Disease evolution

http://www.youtube.com/watch?v=Rpj0emEGShO

Brian O'Meara EEB464 Fall 2019

Learning objectives

Connect ideas about symbiosis and game theory to disease evolution

Understand natural history of disease

Virus A	Virus B	Virus C
Kills host in a	Kills host in a	Kills host in a
day	month	year

which disease will increase at the fastest rate?

Virus A	Virus B	Virus C	
Kills host in a day	Kills host in a month	Kills host in a year	which disease will
Each host infects 1 person on average	Each host infects 40 people on average	Each host infects 100 people on average	increase at the fastest rate?

Virus A	Virus B	Virus C	
Kills host in a day	Kills host in a month	Kills host in a year	
Each host infects 1 person on average	Each host infects 40 people on average	Each host infects 100 people on average	
1/1=1.0	40/30 = 1.3	100/365 = 0.3	

which disease will increase at the fastest rate?

Virulence: ability of an organism to cause disease

Virus A	Virus B	Virus C	
Kills host in a day	Kills host in a day month		
Each host infects 1 person on average	Each host infects 40 people on average	Each host infects 100 people on average	
1/1=1.0	40/30 = 1.3	100/365 = 0.3	

Why not just evolve to be less virulent?

Effect on virulence of: Change from horizontal to vertical transmission

HIV horizontal

Unprotected sex

HIV vertical

Effect on virulence of: Increased number of sexual partners

Each circle represents a student and lines connecting students represent romantic relations occurring within the 6 months preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else).

Effect on virulence of: Spatial structure

Effect on virulence of: Vaccination

Effect on virulence of: Vaccination

Figure 1 Schematic representation of the action of different types of host resistance at different stages of the pathogen's life cycle. r_1 , anti-infection resistance; r_2 , anti-growth-rate resistance; r_3 , transmission-blocking resistance. A fourth type of resistance—anti-toxin resistance, r_4 —is not shown because it only acts upon host death rates.

Effect on virulence of: Vaccination

Blue = anti-infection vaccine
Green = transmission-blocking vaccine
Red solid = anti-growth rate vaccine (slow parasite growth)
Red dashed = anti-toxin immunity (make parasite less harmful w/o affecting transmission and growth rates)

Effect on virulence of: Number of innocula

How do we then get pandemics?

http://www.christinatonges.com

SUMMARY TABLE 35.2 The Diversity of Viral Genomes

Key: ss = single stranded; ds = double stranded; (+) = positive sense (genome sequence is the same as viral mRNA);

(-) = negative sense (genome sequence is complementary to viral mRNA)

Genome	Example(s)	Host	Result of Infection	Notes
(+)ssRNA	+ TMV	Tobacco plants	Tobacco mosaic disease (leaf wilting)	TMV was the first RNA virus to be discovered.
(-)ssRNA	_ Influenza	Many mammal and bird species	Influenza	The negative-sense ssRNA viruses transcribe their genomes to mRNA via RNA replicase.
dsRNA	+ Phytovirus	Rice, corn, and other crop species	Dwarfing	Double-stranded RNA viruses are transmitted from plant to plant by insects. Many can also replicate in their insect hosts.
ssRNA that requires reverse transcription for replication	+ Rous sarcoma virus	Chickens	Sarcoma (cancer of connective tissue)	These are called retroviruses. Rous sarcoma virus was identified as a cancer-causing agent in 1911— decades before any virus was seen.
ssDNA—can be (+), (-), or (+) and (-) +	φX174	Bacteria	Death of host cell	The genome for $\phi X174$ is circular and was the first complete genome ever sequenced.
dsDNA that is replicated through an RNA intermediate	+ Hepatitis B virus	Humans	Hepatitis	These are called "reversiviruses."
dsDNA that is replicated by DNA polymerase	+ Baculovirus Smallpox Bacteriophage	Insects Humans Bacteria	Death Smallpox Death	These include the largest viruses in terms of genome size and overall size.

Origins of virus

Origins of a particular virus (SARS, HIV, flu)

Origins of viruses as a biological entity

Origins of viruses as a biological entity Three hypotheses

Virus-first

Reduction

Escape

Virus-first: Viruses evolve, use the prebiotic soup for replication, later parasitize cells

Not favored: requires ribosomes (protein synthesis for coats), other complex structures, need Darwinian evolution for that

Transposons

McGraw-Hill. https://www.youtube.com/watch?v=ul8BmgqN2YY (it's less than 2 minutes long. It feels longer, but it's worth it.

- Cows (Bovine spongiform encephalopathy, aka "mad cow")
- Sheep (Scrapie)
- Mink
- Cats
- Deer (chronic wasting disease)
- Humans (kuru; variant Creutzfeldt-Jakob Disease (vCJD))