# Zaawansowane procedury syntezy logicznej



## Dekompozycja funkcjonalna



Niestety metoda dekompozycji polegająca na zastosowaniu twierdzenia Curtisa jest absolutnie nieprzydatna w automatycznych obliczeniach komputerowych



Znacznie skuteczniejsza jest metoda dekompozycji, w której obliczenia są wykonywane przy pomocy tzw. rachunku podziałów

# Algorytmy dekompozycji

Dekompozycję funkcjonalną nazywać będziemy szeregową, dla odróżnienia od równoległej



### Twierdzenie o dekompozycji

#### ... w ujęciu rachunku podziałów

U, V są rozłącznymi podzbiorami X oraz  $W \subset U$ 



Funkcję  $F: \mathbf{B}^n \rightarrow \{0,1\}^m$  można zrealizować w strukturze:

$$F = H(U, G(V, W))$$

wtedy i tylko wtedy, gdy istnieje podział  $\Pi_G \ge P_{V \cup W}$  taki, że:

$$P_U \cdot \Pi_G \leq P_F$$

#### Elementy rachunku podziałów

**Podziałem** na zbiorze S jest system zbiorów  $P = \{B_i\}$ , którego bloki są rozłączne, czyli

$$B_i \cap B_j = \emptyset$$
, jeśli tylko  $i \neq j$ .

Dla  $S = \{1,2,3,4,5,6\}, P = \{\{1,2\}, \{3,5\}, \{4,6\}\} \}$  jest podziałem na S.

$$P = (\overline{1,2}; \overline{3,5}; \overline{4,6})$$

Iloczyn podziałów oraz relacja ≤.

### Elementy rachunku podziałów...

Powiemy, że podział  $P_a$  jest *nie większy* od  $P_b$  (co oznaczamy:  $P_a \le P_b$ ), jeśli każdy blok z  $P_a$  jest zawarty w pewnym bloku z  $P_b$ .

Iloczynem podziałów  $P_a \cdot P_b$  nazywamy największy (względem relacji  $\leq$ ) podział, który jest nie większy od  $P_a$  oraz  $P_b$ .

$$P_{\rm a} = (\overline{1,2,4}; \overline{3,5,6})$$
  $P_{\rm b} = (\overline{1,4}; \overline{2,6}; \overline{3,5})$   $P_{\rm c} = (\overline{1,2}; \overline{4}; \overline{6}; \overline{3,5})$ 

$$P_{\rm c} \leq P_{\rm a}$$
 Tak

$$P_a \cdot P_b = (\overline{1,4}; \overline{2}; \overline{6}; \overline{3,5})$$

#### I T P W

**ZPT** 

## Elementy rachunku podziałów...

#### Podział ilorazowy

Niech  $P_a$  i  $P_b$  są podziałami na S oraz  $P_a \ge P_b$ . Podział  $P_a \mid P_b$  jest podziałem ilorazowym  $P_a$  i  $P_b$ , jeżeli jego elementy są blokami  $P_b$ , a bloki są blokami  $P_a$ . Na przykład:

$$P_{a} = \overline{1,6,7}; \overline{2,3,8}; \overline{4,5}$$

$$P_{b} = \overline{1}; \overline{2,8}; \overline{3}; \overline{4,5}; \overline{6,7}$$

$$P_{a}|P_{b} = \overline{(1)(6,7)}; \overline{(3)(2,8)}; \overline{(4,5)}$$

#### **Przykład**

#### Synteza układów logicznych str. 197

Można wykazać, że funkcja ta jest zależna od

#### 7 argumentów!

$$X = \{x_3, x_5, x_6, x_7, x_8, x_9, x_{10}\}$$

.e

### Specyfikacja funkcji – podziałami

$$\begin{array}{l} \mathsf{P}_3 = \overline{3,5,6,8,9,11,12,13,14,20,25}; \ \overline{1,2,4,7,10,15,16,17,18,19,21,22,23,24} \\ \mathsf{P}_5 = \overline{\{2,3,5,6,9,11,14,15,16,19,21,24\}}; \ \overline{1,4,7,8,10,12,13,17,18,20,22,23,25} \\ \mathsf{P}_6 = \overline{\{4,7,9,13,15,17,19,20,21,22,24\}}; \overline{1,2,3,5,6,8,10,11,12,14,16,18,23,25} \\ \mathsf{P}_7 = \overline{\{2,5,6,7,8,9,11,12,13,15,16,19,20,22,24\}}; \overline{1,3,4,10,14,17,18,21,23,25} \\ \mathsf{P}_8 = \overline{\{1,4,5,8,9,10,12,13,16,17,19,22,25\}}; \overline{2,3,6,7,11,14,15,18,20,21,23,24} \\ \mathsf{P}_9 = \overline{\{2,8,11,13,16,17,19,23,25\}}; \overline{1,3,4,5,6,7,9,10,12,14,15,18,20,21,22,24\}} \\ \mathsf{P}_{10} = \overline{\{1,2,...,9\}}; \overline{10,...,25\}} \\ \\ \mathsf{P}_6 = \overline{\{1,2,...,9\}}; \overline{10,...,25} \\ \end{array}$$

#### Ustalenie zbiorów U i V

$$X = \{x_3, x_5, x_6, x_7, x_8, x_9, x_{10}\}$$

Przyjmujemy arbitralnie...

$$U = \{x_7, x_8, x_9\}$$

$$V = \{x_3, x_5, x_6, x_{10}\}$$



I T P W

### Obliczenie podziałów P<sub>U</sub>, P<sub>V</sub>

$$P_{U} = P_{7} \cdot P_{8} \cdot P_{9}$$



$$P_U = (\overline{1,4,10}; \overline{2,11}; \overline{3,14,18,21}; \overline{5,9,12,22}; \overline{6,7,15,20,24}; \overline{8,13,16,19}; \overline{17,25}; \overline{23})$$

$$P_{\sqrt{}} = (\overline{1}; \overline{2}; \overline{3,6,11}; \overline{4,17}; \overline{5,14}; \overline{7,22}; \overline{8,25}; \overline{9}; \overline{10,18,23}; \overline{12}; \overline{13}; \overline{15,19,24}; \overline{16}; \overline{20}; \overline{21})$$



Względem poprzedniej definicji: P<sub>u</sub>|P<sub>u</sub>·P<sub>F</sub>

### Podział ilorazowy

$$P_U = (\overline{1,4,10}; \overline{2,11}; \overline{3,14,18,21}; \overline{5,9,12,22}; \overline{6,7,15,20,24}; \overline{8,13,16,19}; \overline{17,25}; \overline{23})$$

$$P_f = \{\overline{1,2,...,9}; \overline{10,...,25}\}$$

$$P_u|P_F = ((1,4)(10); (2)(11); (3)(14,18,21); (5,9)(12,22)$$
  
(6,7)(15,20,24); (8)(13,16,19); (17,25); (23))

# Jak wyznaczyć Π<sub>G</sub>???

#### Przypomnijmy twierdzenie o dekompozycji:

F = H(U,G(V)) wtedy i tylko wtedy, gdy istnieje podział  $\Pi_G \ge P_V$  taki, że:

$$P_U \cdot \Pi_G \leq P_F$$



Podział  $\Pi_G$  tworzymy z bloków  $P_V$  zgodnie z podziałem ilorazowym  $P_u|P_F$ 

#### Obliczenie Π<sub>G</sub>

$$P_{u}|P_{F} = ((1,4)(10) ; (2)(11) ; (3)(14,18,21) ; (5,9)(12,22) ;$$

$$(6,7)(15,20,24) ; (8)(13,16,19) ; (17,25) ; (23))$$

$$P_{V} = (\overline{1}; \overline{2}; \overline{3,6,11}; \overline{4,17}; \overline{5,14}; \overline{7,22}; \overline{8,25}; \overline{9}; \overline{10,18,23}; \overline{12}; \overline{13}; \overline{15,19,24}; \overline{16}; \overline{20}; \overline{21})$$

 $\Pi_g = (1, 3, 4, 6, 7, 8,\ 11, 12, 17, 22, 25\,;\, 2, 5, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24)$ 

T P W

### Jak było ...



Teraz wiemy, skoro  $\Pi_G$  jest dwublokowy

### Co dalej ...



Zawartość bloków G i H, czyli tablice prawdy funkcji G i H

I T P W

### Funkcja G

```
\begin{split} & \Pi_{g} = (\overline{1,3,4,6,7,8,11,12,17,22,25}; \overline{2,5,9,10,13,14,15,16,18,19,20,21,23,24}) \\ & P_{3} = \{\overline{3,5,6,8,9,11,12,13,14,20,25}; \overline{1,2,4,7,10.15,16,17,18,19,21,22,23,24}\} \\ & P_{5} = \{\overline{2,3,5,6,9,11,14,15,16,19,21,24}; \overline{1,4,7,8,10,12,13,17,18,20,22,23,25}\} \\ & P_{6} = \{\overline{4,7,9,13,15,17,19,20,21,22,24}; \overline{1,2,3,5,6,8,10,11,12,14,16,18,23,25}\} \\ & P_{10} = \{\overline{1,2,3,6,7,8,9,11,13,15,19,22,24,25}; \overline{4,5,10,12,14,16,17,18,20,21,23}\} \end{split}
```

 $P_{V} = (\bar{1}; \bar{2}; \bar{3}, 6, 11; \bar{4}, 17; \bar{5}, 14; \bar{7}, 22; \bar{8}, 25; \bar{9}; \bar{10}, 18, 23; \bar{12}; \bar{13}; \bar{15}, 19, 24; \bar{16}; \bar{20}; \bar{21})$ 



### Funkcja H

 $P_7 = \overline{\{2,5,6,7,8,9,11,12,13,15,16,19,20,22,24\}}; \overline{1,3,4,10,14,17,18,21,23,25\}}$   $P_8 = \overline{\{1,4,5,8,9,10,12,13,16,17,19,22,25\}}; \overline{2,3,6,7,11,14,15,18,20,21,23,24\}}$   $P_9 = \overline{\{2,8,11,13,16,17,19,23,25\}}; \overline{1,3,4,5,6,7,9,10,12,14,15,18,20,21,22,24\}}$ 

 $\Pi_g = (\overline{1,3,4,6,7,8,\ 11,12,17,22,25}\ ; \overline{2,5,9,10,13,14,15,16,18,19,20,21,23,24})$ 



T P W

# Praktyczny wynik dekompozycji funkcji z przykładu





Tylko 2 komórki

#### Dekompozycja zespołu funkcji

Twierdzenie w ujęciu rachunku podziałów jest ogólne, obliczenia są niezależne od liczby wyjść funkcji F.



#### Przykład dekompozycji zespołu funkcji (SUL Tabl. 8.3)

| - 1 De 200 - 1 | REAL PRODUCTION OF THE PARTY AND AND THE PARTY AND THE PAR | ALD HER BUSINESS OF                          |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| AT             | $\boldsymbol{x}_1  \boldsymbol{x}_2  \boldsymbol{x}_3  \boldsymbol{x}_4  \boldsymbol{x}_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $y_1 y_2 y_3$                                |
| 1              | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 0                                        |
| 2              | 0 0 0 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 1 0                                        |
| 3              | 00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                          |
| 4              | 0 1 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 1 1                                        |
| 5              | 01101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 1                                        |
| 6              | 01110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1 0                                        |
| 7              | 0 1 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0 1                                        |
| 8              | 11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 1                                        |
| 9              | 11010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 0                                        |
| 10             | 11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                          |
| 11             | 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1 1                                        |
| 12             | 11110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1 0                                        |
| 13             | 10001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 1                                        |
| 14             | 10011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 0                                        |
| 15             | 10010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                          |
|                | IL FOR AN AND AND ANY ACTION WHEN THE ANY AND  | OF THE PROPERTY OF THE PARTY OF THE PARTY OF |

| $P_1 = (\overline{1,2,3,4,5,6,7}; \overline{8,9,10,11,12,13,14,15})$ |
|----------------------------------------------------------------------|
| $P_2 = (\overline{1,2,3,13,14,15}; \overline{4,5,6,7,8,9,10,11,12})$ |
| $P_3 = (\overline{1,2,3,7,8,9,13,14,15}; \overline{4,5,6,10,11,12})$ |
| $P = (\overline{1,4,5,7,8,10,13}; \overline{2,3,6,9,11,12,14,15})$   |
| $P_5 = (\overline{1,3,4,6,7,8,9,10,12,15}; \overline{2,5,11,13,14})$ |
|                                                                      |
| $P_F = (1,9,14;5,7,8,13;2,6,12;4,11;3,10,15)$                        |
|                                                                      |

# Przykład...

Dla U = 
$$\{x_3, x_4\}$$
 oraz V =  $\{x_1, x_2, x_5\}$ .

Podział 
$$P_U = P_3P_4$$
 ( $P_i = P(x_i)$ ), a więc:

$$P_{IJ} = \overline{1,7,8,13}; \overline{2,3,9,14,15}; \overline{4,5,10}; \overline{6,11,12}$$

$$P_F = \overline{1,9,14;5,7,8,13;2,6,12;4,11;3,10,15}$$

$$P_{\cup}|P_{F}=\overline{(1)(7,8,13)};\overline{(2)(9,14)(3,15)};\overline{(4)(5)(10)};\overline{(11)(6,12)}$$

$$P_V = \overline{1,3}; \ \overline{2}; \overline{4,6,7}; \overline{5}; \overline{8,9,10,12}; \overline{11}; \overline{13,14}; \overline{15}$$

gdzie bloki P<sub>V</sub> są oznaczone kolejno B<sub>1</sub>, B<sub>2</sub>, ... B<sub>8</sub>.

#### Jak wyznaczyć $\Pi_{G}$ ???

### Przykład c.d.

$$P_U = 1,7,8,13; 2,3,9,14,15; 4,5,10; 6,11,12$$

$$P_F = 1,9,14;5,7,8,13;2,6,12;4,11;3,10,15$$

$$P_V = \overline{1,3}; \ \overline{2}; \overline{4,6,7}; \overline{5}; \overline{8,9,10,12}; \overline{11}; \overline{13,14}; \overline{15}$$

$$P_{\cup}|P_{F}=\overline{(1)(7,8,13)};\overline{(2)(9,14)(3,15)};\overline{(4)(5)(10)};\overline{(11)(6,12)}$$

| (2)           | (9,14)       | (3,15)                      |
|---------------|--------------|-----------------------------|
| $\frac{1}{2}$ | 8 ,9 ,10 ,12 | $\frac{\overline{1,3}}{15}$ |
| 4,6,7         |              | 5 5                         |
|               | 还是火火         | (//) 11                     |

 $\Pi_G = 2,4,6,7; 8,9,10,12,13,14; 1,3,5,11,15$ 

#### Przykład c.d.

Dla U =  $\{x_3, x_4\}$  oraz V =  $\{x_1, x_2, x_5\}$ .

$$P_U = \overline{1,7,8,13}; \overline{2,3,9,14,15}; \overline{4,5,10}; \overline{6,11,12}$$

$$P_V = \begin{pmatrix} 000 & 001 & 010 & 011 & 110 & 111 & 101 & 100 \\ \hline 1,3; & \overline{2}; & \overline{4,6,7}; & \overline{5}; & \overline{8,9,10,12}; & \overline{11}; & \overline{13,14}; & \overline{15} \end{pmatrix}$$

#### Należy zakodować bloki Π<sub>G</sub>

$$\Pi_G = \overline{2,4,6,7}$$
;  $\overline{8,9,10,12, 13,14}$ ;  $\overline{1,3,5,11,15}$ 

$$P_U \bullet \Pi_G \leq P_F$$

# Tablice prawdy G i H

G:

|               | $X_1 X_2 X_5$ | $g_1 g_2$ |
|---------------|---------------|-----------|
| 1,3           | 0 0 0         | 0 0       |
| $\frac{1}{2}$ | 0 0 1         | 0 1       |
| 4 , 6 , 7     | 0 1 0         | 0 1       |
| 5             | 0 1 1         | 0 0       |
|               |               |           |

| $P_1 = (1,2,3,4,5,6,7;8,9,10,11,12,13,14,15)$                        |
|----------------------------------------------------------------------|
| $P_2 = (\overline{1,2,3,13,14,15}; \overline{4,5,6,7,8,9,10,11,12})$ |
| $P_3 = (\overline{1,2,3,7,8,9,13,14,15}; \overline{4,5,6,10,11,12})$ |
| $P = (\overline{1,4,5,7,8,10,13}; \overline{2,3,6,9,11,12,14,15})$   |
| $P_5 = (\overline{1,3,4,6,7,8,9,10,12,15}; \overline{2,5,11,13,14})$ |

 $\Pi_G = 2,4,6,7$ ; 10 00 8,9,10,12, 13,14; 1,3,5,11,15

H:

W

|                | NOTE AND S            | U Heri                |       | They be a | 771L) | historica      |                       | 15.75(1)              | 115-57 |
|----------------|-----------------------|-----------------------|-------|-----------|-------|----------------|-----------------------|-----------------------|--------|
|                | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | $g_1$ | $g_2$     |       | y <sub>1</sub> | <b>y</b> <sub>2</sub> | <b>y</b> <sub>3</sub> |        |
| <u></u>        | 0                     | 0                     | 0     | 0         |       | 0              | 0                     | 0                     |        |
| $\overline{7}$ | 0                     | 0                     | 0     | 1         |       | 0              | 0                     | 1                     |        |
| 8 ,13          | 0                     | 0                     | 1     | 0         |       | 0              | 0                     | 1                     |        |
| 3 ,15          | 0                     | 1                     | 0     | 0         |       | 1              | 0                     | 0                     |        |
| 坐台河            |                       |                       | \$ .  |           |       |                | 14                    |                       |        |

### Co uzyskaliśmy...

Funkcje g i h można obliczyć jawnie...z tablic prawdy można uzyskać realizacje na bramkach.



Ale dla struktur FPGA wystarczy schemat dekompozycji i tablice prawdy.

Proces minimalizacji jest niepotrzebny!!!

### Przyczyna wad systemów komercyjnych

#### **Library of gates**



#### Komórka LUT struktur FPGA



$$y = f(x_1, x_2, x_3, x_4) !!!$$

#### Przykład z Synteza układów logicznych



#### **Demain**



#### Demain 2 komórki LUT

Szczegółowy opis w książce *Synteza układów logicznych*, przykład 9.5, str. 257

Amerykański System MAX+PLUSII

23 komórki LUT

.e

### Zagadka





?? kom. (FLEX)

lub ?? kom. (Stratix)!!!

T P W