Enumerative Combinatories

Interesting problems: formula for IXAL recurrence for IX. algorithms for going through all elts of Xn hav to sample "at random" from X. Enumerating permutations: # permutations of cycle type a, ... an is #: a:! (a: = # cycles of length:) Proof: we are calculating the size of a anjugacy class: it suffices to check that the stabiliser (under anjugation) of a permutation of this type has size Each i gole has i powers which commute with it - the products of those give Tia: permutations. After this, we can also permute the i-cycles amongst themselves for each fixed i this explain the factor Tail (Here we assume a, ... a is a valid cycle type -ie that Sia:=n) Define the cook was of oes, to be the function We can write this as a sum over cycle types instead of over S_n : $f_n(x_1, \dots, x_n) = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)} = \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \alpha_1 \dots \alpha_n}} \widehat{f_n(x_1, \dots, x_n)}$ Polya's theorem: $\sum_{i=1}^{\infty} t^i f_i = \prod_{i=1}^{\infty} e^{\frac{t^i}{2}x_i}$ Proof: $\prod_{i=1}^{\infty} e^{\frac{t^i}{2}x_i} = \prod_{i=1}^{\infty} \left(\sum_{a_i=0}^{\infty} \frac{(t^i x_i)^{a_i}}{a_i!}\right)$ (regarding LHS as formal power series) coefficient of t is then $\frac{\infty}{11} \sum_{i=1}^{\infty} \frac{\pi_i^{a_i}}{a_i \sum_{i=1}^{n} a_i} \sum_{i=1}^{n} \frac{\pi_i^{a_i}}{a_i^{a_i}}$ (we see $i \le n$ as $\sum_{i=1}^{n} a_i = n$) $a_i \in \mathbb{Z}$, and $a_i = 0$ term $u_i^{a_i}$)

Define d_n to be the number of derangements of S_n (permutations without fixed points) is the number of permutations with a = 0This is the anstant term in $n! f_n(a_1, a_1, \dots, b) = \sum_{n=0}^{\infty} a_n(n)$ is we need $n! f_n(0, 1, \dots, b)$.

Now $\sum t^n f_n(0, 1, \dots, b) = \prod_{i=0}^{\infty} e^{\frac{t^i}{2}t^i} = e^{\frac{t^i}{2}t^i} = e^{-\frac{t^i}{2}t^i} = e^$

Using series expansions: $\sum t^{i} f_{n}(0,1,1,\dots) = \sum_{i=0}^{n} \frac{(-1)^{i}}{i!} \sum_{j=0}^{n} t^{j} = \sum_{i=0}^{n} \frac{(-1)^{i}}{i!} t^{i+j}$ so $d_{n} = n! f_{n}(0,1,\dots) = \sum_{i=0}^{n} \frac{(-1)^{i}}{i!}$, a result usually proved by inclusion-exclusion.

Define C(n,k) to be the number of permutations in S_n with exactly k cycles, the signless Sterling number of the first kind. This is the coefficient of x^k in $n!f_n(x,x,...x) = \sum_{\sigma \in S_n} \sum_{\alpha \in S_n}$

so (fixing n) $\sum_{k} C(n,k) x^{k} = x(x+1) \cdots (x+n-1)$

Put the uniform distribution on S_n (is each permutation has probability $\frac{1}{n!}$)

The probability generating hinclien for the number of hird points (view this as a random variable) is $\sum_{n} \frac{1}{n!} = \hat{f}_n(x,1,1,...1)$ As before, we find this by booking at $\sum_{n} \hat{f}_n(x,1,1,...1) = \frac{1}{n-1} = \frac{1}{n-1} = \sum_{n} \frac{1}{n!} \sum_{n} \hat{f}_n(x,1,...1) = \sum_{n=0}^{\infty} \frac{1}{n!} = e^{n-1}$, which is the probability generating function of

a Poisson distribution of parameter !.

In particular, the first n moments of #-fixed-pts = first n numerity of a Poisson-1 distributed random variable in $\mathbb{E}(\#fixed\ pts) = 1$ Var $(\#fixed\ pts) = 1$

 $\sigma \in S_n$ has a record value at i if $\sigma(i) > \sigma(j)$ $\forall j < i$ for this and the following two definitions, its probably easiest to $\sigma(i)$ view $\sigma(i)$ as a string $\sigma(i)$ $\sigma(2)$... $\sigma(n)$ Given any permutation, there is a unique way to write its cycle decomposition so each cycle starts with the largest number in that cycle, and the cycles are ordered so that these largest numbers are increasing.

e.g. (16)(2)(384)(57) becomes (2)(61)(75)(843)

Observe that, if we know a permutation is written in this form, the trackets are

redundant: their position is completely determined by the position of record values in that string, conversely, adding brackets in this way to a given string always produces a valid permutation.

this describes a bijection: $S_n \leftrightarrow string$ of $\{1,2,\cdots n\}$ in $S_n \leftrightarrow S_n$ if we regard the right hand side as $\sigma(1)\sigma(2)\cdots\sigma(n)$. This is the fundamental transformation, which turns questions about records into questions about cycles.

For example, # records = # yeles

consecutive records = # fixed points
largest period between records = length of largest gule
(above equalities mean the two random) variables have the same distribution)

We can study the fundamental transformation as an element of S. ..

The fundamental transformation has a group theoretic meaning, and can be extended to other reflection groups.

oes has an inversion at (i,j) if i=j and o(i) > o(j).

I(o), the number of inversions in o, is a measure of now "out-of-order" it is; it is the minimal number of painwise adjacent transpositions required to "sort" of in other words, I(o) is the length of or (in the usual reflection groups sense, where the generators are adjacent transpositions).

 $\lambda(\sigma,\tau) = I(\sigma^{\gamma}\tau)$ is the most widely used metric on S_n in statistics. This is the layley graph distance between σ and τ , which is left-invariant ($\lambda(\varepsilon,\tau) = \lambda(\eta\sigma,\eta\tau)$). We can study the distribution of I as a random variable, under various distributions on S_n . e.g. under the uniform distribution, the probability generating function is $\sum_{\sigma} \frac{1+2\sigma}{2\sigma} = \frac{1+2\sigma}{2\sigma} \frac{1+2\sigma}{2\sigma} = \frac{1+2\sigma}{2$

Proof: the right hand side = $\mathbb{H}_{r,q}$ = $\mathbb{H}_$

Think of the string of 10020... of being constructed by patting I in its place, then 2 is its place, then 3 etc., and let x; be the number of extra inversions obtained when inserting i+1. x; are then independent, with x; uniformly distributed on {0,1,... i}, as i+1 is equally likely to: be inserted in between any two unrently adjacent numbers.

The p.g.f. for the analogous variable in B-reflection groups (hyperoctahedral) has similar factorisation.

or has descent at i if $\sigma(i+i) = \sigma(i)$.

Fix n, and write $\beta(s)$ for the number of permutations with descent set s (is it has a descent at every point in s, but no descents elsewhere).

e.g. $\beta(\phi) = 1$ (the identity element) $\beta(\{1,2,\cdots n-1\}) = 1$ (the longest element, $\sigma(i) = n+1-i$, a reversal of the string)

Set $\alpha(s) = number$ of permutations with descent set $\alpha(s) = \sum_{i \in s} \beta(i)$ Using inclusion-exclusion, we deduce $\beta(s) = \sum_{T \in s} (-1)^{ts \times T} \alpha(T)$

Proposition: $(s_1, \dots, s_n) = (s_1, s_2, \dots, s_n + s_n) = \frac{n!}{s!(s_2, s_3)! \dots (s_n + s_n)!(s_2, s_n)!}$ Proof: To create a string with descents $= (s_1, \dots, s_n)$, first charge s_1 numbers and put them is increasing order at the start of the string.

Now charge $s_2 - s_1$ numbers and put these is increasing order next to the numbers already chosen, and continue. This may or may not produce descents at s_1, s_2, \dots, s_n , but it ensures there are no descents anywhere else.

Conversely, any string with descents $= (s_1, \dots, s_n)$ can be created this way.

We can study the descent algebra within the group algebra of S_n ; this is spanned by $\overline{D}(S) = \overline{\Sigma}_{\sigma}$: ascent set of $\sigma = S_{\sigma}$.
This is related to free Lie algebras.

A(n,k), the n,k^{th} Eulerian number, is the number of permutations in S_n with k-1 descents.

He generating function is the Eulerian polynomial: $A_n(x) = \sum_{k=1}^n A(n,k) \times^k = \sum_{n=1}^n A(n,k) \times$

 $A_{2} = x + x^{2}$ $A_{3} = x + 4x^{2} + x^{3}$

Theorem: Sin=o m x n = An(x)

Proof: we apply induction on n. The case n=0 is just the geometric series.

Now $\sum_{m=0}^{\infty} m^{n+1} x^m = x \frac{t}{dx} \left(\sum_{m=0}^{\infty} m^n x^m \right)$

 $= \frac{1}{x} \frac{d}{dx} \left(\frac{A_{n}(x)}{(1-x)^{n+1}} \right)$ by inductive hypothesis $= \frac{(1-x)x}{(1-x)^{n+2}} \frac{A_{n}(x)}{(1-x)^{n+2}}$

The numerator is $(1-x) \times \sum_{k=1}^{n} kA(n,k) \times^{k-1} + (n+1) \times \sum_{k=1}^{n} A(n,k) \times^{k}$ = $\sum_{k=1}^{n} \left[k, A(n,k) - (k+1)A(n,k-1) + (n+1) A(n,k-1) \right] \times^{k} + A(n,n) \times^{n+1}$

Now, all elements of Snow with k descents are made in exactly one of two ways:

take a string in Sn with k descents and insert not to the right of a

descent : there are k ways to do this.

· take a string in Sn with k-1 descents and insert n+1 to the right of a non-descent, or at the very left, to produce an extra descent: there are n-k ways to do this.

Hence the term in brackets above is A(n+1, K). Since A(n,n)=0, we're done.

The major index of $\sigma \in S_n$ is the sum of all positions of descent in σ . It turns out that *permutations in S_n with major index k = # permutations in S_n with k unersions

A permutation σ is alternating if $\sigma(1) > \sigma(2) < \sigma(3) > \cdots$ σ is reverse alternating if $\sigma(1) < \sigma(2) > \sigma(3) < \cdots$

Let E_n denote the number of alternating permutations in S_n , which is the same as the number of reverse alternating permutations: we get a dijection between the two-sets if we postcompose with $i \mapsto n+1-i$ book at the generating function $f(x) = \sum_n E_n = \frac{i}{n}$

Theorem: En En = tanx + secx

Proof: To produce an alternating permutation in Sn+1, choose an even k, an alternating permutation or in Sn and an alternating permutation t in Sn+1. Naw choose k elements

among $\{1,2,\cdots n\}$, arrange these according to σ , then append n+1, then arrange the remaining elements of $\{1,2,\cdots n\}$ according to τ .

We can make reverse-alternating permutations in S_{n+1} similarly, from odd k, a reverse-alternating permutation in S_{n} , an alternating permutation in S_{n+1} and a k-subset of $\{1,2,\cdots n\}$. All alternating permutations and all reverse-alternating permutations in S_{n+1} are created this way (for n > 1): $2E_{n+1} = \sum_{k=0}^{\infty} {k \choose k} E_k E_{n-k} \Rightarrow 2\frac{E_{n+1}}{n!} = \sum_{k=0}^{\infty} \frac{E_k}{k!} \frac{E_{n-k}}{(n-k)!}$ The left hand side is the \hat{x}^2 - are fricient of 2f'(x), the right hand side is the \hat{x}^2 - are fricient of $f(x)^2$.

Taking account of $E_n = 1$, we have 2f'(x) = f'(x) + 1, whose solution is tan x + sec x.

let DST- denote the (n+1) *(n+1) tridiagonal boubly stochastic matrices.

(These describe transition notes of a birth-death chain). Such a matrix only has non-zero entries in the invex main diagonals, and the entries in each now and each column sum to 1. It is in fact ampletely determined by its superdiagonal entries c., c2, ... c-1: c, in entry 1,2 forces entry 1,1 to be 1-c, which boxes entry 2,1 to be c, and entry 2,2 to be 1-c,-c2.

We obtain a symmetric matrix 1-c, c.

و, ا-در-د د د د

c, 1-4-43 43

cn-1 1-cn-1

So DST, is parametrised by the polyhedron 'ccizo, ci+cim's, and we can define a distribution on DST, by sampling uniformly from this region, and investigate the distribution of eigenvalues, or of the mixing time of this polyhedra are when the inequalities are tight—ie when ci's are 0 or 1 with no two consecutive 1s. The number of such sequences is a Fibonacci number: such sequences are either a length n-1 sequence (with this property) with 0 appended, or a length n sequence with 0,\ appended.

The conditions $\{c: >0, c_1+c_2, c_3 \le 1\}$ is the same as $0 \le c_2 \le 1$, $c_1 \le 1-c_2 \ge c_3 \le 1-c_4$. is alternating, Hence, as algorithm of sampling uniformly

from DST, is to pick n number from 60,17 uniformly and independently, order them according to a random atternating permutation, and set a 1-c2, c3, ... to be there values.

For this reason, it is useful to be able to randomly generate alternating permutations.

Currently, this is done inductively using the recurrence construction

e.g. suppose n=4, we chose k=2 and (1,4) as our k-element subset.

the only alternating permutation in S_=S, is 21

.....

the only exerce atternating permutation is So-x=S, is 12

these translate to 14 -> 41 and 23 -> 23 for our k-element subset and its complement

so this combination produces the alternating permutation 14523.

This construction is very slow. Here is an alternative, pased on the metropolity algorithm: start with any alternating permutation, and choose a random transposition. If composing with this transposition produces another alternating permutation, then repeat using this new permutation. Otherwise, repeat with the last alternating permutation. This is fast, but we do not know the rate of convergence (ie hav many times we need to repeat to obtain a uniform distribution). It is anjectured to be along a

Observe that an alternating permutation can also be characterised as one with descent set {1,3,5,...}.

For $S \subseteq [n-1]$, write a n-1-string putting b in the positions in S and a in other positions e.g. the string corresponding to $\{1,3,4,7\} \subseteq [7]$ is babbaab.

The a-b index $\Psi_n(a,b) = \sum_{\sigma \in S_n} string corresponding to descent set if <math>\sigma = \sum_{S \in [n-1]} B(S)$ string corresponding to S.

(view a,b as non-commutate variables. So \forall has 2^{-1} distinct summands) Set c=a+b, d=ab+ba.

Forth theorem: there is a polynomial ϕ_n with $\phi_n(c,d) = \psi_n(a,b)$, and the number of monomial terms in ϕ_n is Fibonacci in n (is grows slaver than that of $\psi_n(c,d)$ is called the c-d index.

e.g. $\psi_3(a,b) = aa + ba + ab + bb + ab + ba = (a+b)^2 + ab + ba = c^2 + d$.

The c-d index concept generalises to Eulerian posets; the paper "Flag enumeration" in polytopes, Eulerian partially ordered sets and loseter groups" by L. Billera (2010 ICM) demonstrates one application in mainstream mathematics.

(c, d) contains a lot of information about descents, but no formula is known. Even if we have a chosed form expression, hav do we extract the information from this?

If we allow a, b to commute, we get an Eulerian polynomial.

Theorem: juien $S \subseteq [n-1]$, set $\omega(S) = \{i : either i \in S \text{ or } i+1 \in S \} \cap [n-2]$.

then $\omega(S)$ strictly in $\omega(T)$ implies $\mathcal{B}(S) \subset \mathcal{B}(T)$.

Since $\omega(S)$ is [n-2] only when $S = \{1, 3, \cdots\}$ or $S = \{2, 4, \cdots\}$, the strength permutations maximise $\mathcal{B}(S)$ (ie $E_n \ge \mathcal{B}(S)$ $\forall S \subseteq [n-1]$).

(a direct proof of this neads 20 pages)

The proof of toutas theorem requires non-max trees: given a string a az -- an, not the tree at min{a;} or max{a;}, whichever comes earlier (lower value of i).

Call this value a; To the left, anstruct the tree of a, az -- az -- , to the right, construct the tree of a, az -- az -- , to the e.g. 5 10 4 6 7 2 12 1 2 11 9 3 creates the tree

The "Shickever comes earlier" condition means that nodes either lave no branches, a right branch only, or a left and a right branch.
We can reconstruct the string from the tree just by reading the numbers from left to right.

before an operation v_i on these trees which permute the node labels. v_i fixes the labels $a_i, a_2, \dots a_{i-1}$. If a_i is a min, then v_i changes this label to the max of the remaining labels, and all other labels are permutal, legging the

same relative order. If a is a max, then it is replaced by the min of the remaining labels, and again the remaining labels are permuted beeping the same relative order. e.a. 4 applied to the tree above gives the "same relative order" ensures that the resulting tree also somes from a string the 4:'s are involutions: 4: =: 1, and commute perevating an abelian group known as the Foata group. It is isomorphic to (1/22) * internal vertices. Define nq = 1+q+++q^-1 = q-1 $n_{q} = n_{q} (n-1)_{q} - 1_{q}$ $\binom{n}{k}_{q} = \frac{n!_{q}}{q^{n-1}} = (q^{n-1})(q^{n-1}) \cdots (q^{n-k+1})$ and similarly for multinomials. k! q, (n-k)!q $(q^{k-1})(q^{k-1}-1)\cdots(q-1)$ Observe that these have their usual meanings when q=1. Farlier, we saw that Zoes q = n!q. Proposition: the number of subspaces of dimension & in Fig. is (R) Proof: the number of ordered bases of length & is $(q^{n}-1)(q^{n}-q)(q^{n}-q^{2})\cdots(q^{n}-q^{k-1})$ picking such a basis is the same as picking a k-dimensional subspace and then a Auth basis of that. The number of ways to choose the latter is $(q^{k}-1)(q^{k}-q)(q^{k}-q^{2})\cdots(q^{k}-q^{k-1})$ so the required ratio is (h). The usual identities have q-analogues; e.g. (k) = (2) g+ q -k (2) This gives an inductive proof that Da is a polynomial in a lathough it is defined as

a rational hunction), with positive integral icethiciants.

The usual case can be thought of as working over the field of me elevent.

Given a partition of n $(2,+\lambda,+\cdots,\lambda,=n,\lambda,\geq\lambda,\geq\cdots\geq\lambda,)$, write α ; for the number of parts with size i.

Let P(n) denote the number of partitions of nLet P(k,j,n) denote the number of partitions of n which fit in a $k \times j$ tox

(ie each part is at most k, and there are at most j parts).

Theorem: $\sum_{i} F(k,j,n) q^i = \binom{k+j}{j} q$ Proof: set m=k+j. We wish to show that the number of j-dimensional subspaces in F_q^n is $\sum_{i} F(k,j,n) q^i$.

Given any basis of such a subspace, write these vectors as rows of a $j \times m$ matrix and perform row reduced exhelon form.

The uniqueness of this form gives a unique basis for the subspace. We have j pivot shumps and k free shumps.

Let $\lambda :=$ the number of free variables to the right of the i^{th} pivot i^{th} pi

So λ_i is a partition of at most j parte, with each part at most k. is we are remainly the pixet solumns and booking at the renaining unconstrained entries as a partition, with an element of Eq. assigned to each bex.

Conversely, every partition (with elements of Fq in each box) determines a unique matrix in now reduced exhelm form.

This is related to the cellular decomposition of Grassmarians in enumerative geometry.

A multiset is a set with repeated elements.

A permutation of the multiset $(2^{2} \times 2^{2} \times$

Proposition: $\sum_{i=1}^{n} a_{i} permutation of fixer. A parameter <math>q^{\tau(w)} = (a_{i}a_{2}...a_{k})_{q} \quad (n=a_{i}+a_{2}+...+a_{k})$ Proof: the idea is to reduce to the S_{n} case by standardisation.

There is a bijection (permutations of $a_{i}...a_{k}$) $\times S_{a_{i}} \times S_{a_{2}} + ... S_{a_{k}} \longrightarrow S_{a_{i}+a_{2}+...+a_{k}}$: $given (w, \sigma_{i}, \sigma_{i}, ... \sigma_{k})$, rename the ks in w as $1, 2, ... a_{i}$ according to σ_{i} ,

which is proportional to Ti-(1-q-i)q-ai if Zia:=n is proportional to (1-q" V-q") (1-q") q", independent of a So we are just take in independent geometric variables, discard them and my again if their sum is not n. To get a high probability of their sum being on, we should choose q=e to for some c>0. Euler's partition identities: $\frac{\pi}{11} = \sum_{k=0}^{\infty} \frac{\chi^k q^k}{11 - \chi q^k}$ $\frac{1}{\prod_{i=1}^{n} \left(1-2q^{i}\right)} = \sum_{k=0}^{n} \frac{1}{\prod_{i=1}^{n} \left(1-q^{i}\right)} \frac{1}{\prod_{i=1}^{n} \left(1-2q^{i}\right)}$ troof left hand side of the first equation = \(\sum_{n} * partitions of n into & parts = view this as Dx [Sair has & parts of # squares in 2] x = Ex [= 2: largest part of 2 has size & q # squares in 2] x Summing over χ with largest part $\leq k$ then subtracting χ with largest part $\leq k-1$, we see that the term in brackets is $\prod_{i=1}^{n} (1-q^{i})^{-1} \prod_{i=1}^{n} (1-q^{i})^{-1} = q^{k} \prod_{i=1}^{n} (1-q^{i})^{-1}$ for the second identity, define the rank of a partition to be the size of the Durfee square - that is, the largest square that hits in the diagram If we place this equare against the top me and first whem of 2, we are left with smaller partitions in and v, to the right and bottom of the square respectively. Then * parts is $\mu \leq rank(2)$ largest part of x = rank (2) and # squares in 2 = rank (2) + # squares in m + # squares in v # parts in 2 = rank(2) + # parts inv Given rank(2), pe and a catalying the inequalities above, we are build a unique 2 so left hard side of second identity is Z, x pate in 2 q + squares in 2 Now En # path in make q = 11 (1-q') as before, and

 $\sum_{v: \text{ largest part } d v \leq k} \underset{\sim}{\text{\times parts in v * squares in v}} = \prod_{v: \text{$(1-xq)^{-1}$}} (1-xq)^{-1}$ In the left hand side of the third identity, we have

\[
\sum_{\text{2.5} \text{2.5} \te from the second, 2 from the perutinate and I from the last part. This gives a partition with (2") fewer squares and at most k parts (though not necessarily So \(\tau \) and this map is hipertice

* part in \(\tau \) squares in \(\tau \)

=\(\sum \) \(\tau \)

=\(\sum \) \(\tau \) These identities help us investigate the distribution of the number of fixed points or lives and of the sizes of blocks in rational canonical form when we sample uniformly from GLotto), see K. Shiroda, Hertities of Euler and finite classical groups, and J. Fulmer, Random matrix theory over finite helde Trute erions of these identities give the q-binomial expansion formulas, e.g. $\prod_{i=0}^{j-1} (1+\chi q^i) = \sum_{k=0}^{j} \chi q^{k} (\frac{\chi}{2}) (\frac{1}{2}) (\frac{1}{2})$ Proof The defficient of x'a on the left hard side is the number of partitions of n into k distinct parts where each part is at most j-1 (one part may be o) "shift" the parts as is the proof of the third identity above: subtract k-1 from the largest part, k-2 from the next we end up with a partition of n-(2) with at most k parts, where each part is at most (j-1)-(k-1)=j-k conversely all such partitions some from "shifting" a partition of n with & distinct parts of at most j-1. So left hand side = Dik=0 I P(j-k, k, n-(2)) xq $= \sum_{k=0}^{j} \binom{k}{k} + \binom{k}{2}$ Numbers of the form (3k-1) are pentagonal numbers: Every pertagonal number thenen: II (1-q') = Z KEZ (-1) q K(3K-1) = 1+ Z KEN (-1) (q') + q Proof: the left hand side is In [Qelin-Q.(N)] of where Qelin, Qolin denote the number of partitions of n into an even or odd number of liekingt parts respectively

	It suffices to show that Q(W-Q(n) (-1 when n= 1/2 for odd k
All and the second seco	$= \sqrt{\frac{k(3k\pm 1)}{k}} \text{ for even } t$
	o for all other values of n
	We do this by constructing an almost-bijection between Quant Quant Quant
<u> </u>	Let 4(2) denote the bottom on of 2
<u> </u>	D(2) denote the "outer diagonal" of 2, ie 0/2)
May and En	if ILIA) < . D(A) 1, then add one square from 1/2 L(A)
	L(2) to each of the first 12(20) pairs (valid as there are = D(20 pairs)
	if L(2) > 10(2) then make 0(2) to a new row at the bottom.
	If U(2), O(2) we disjoint, then this operation result in a partition with
	distinct parts, and is an involution. Each $2 \in Q_e(n)$ (with 4(2), D(2) disjoint) is
	sent to an element of Qo(n), and vice versa.
	In most uses where L(A) nD(A) = \$\phi\$, we are also fine The two troublesome
	ases are:
	(L(A) 1=10(A)). Then all but the last row gain a square, and the last
	now has one square only, so applying this operation again does not give
	λ back. Setting $k = L(\lambda) = D(\lambda) $, we have $n = k + (k+1) + \cdots + (2k-1) = \frac{k(3k-1)}{2}$
<u> </u>	· 142) 1 = 1D(2)+1 The last square if 4(2) is remared as part of D(0),
	so the new raw and the perultimate raw with have 14(2)1-1 haves.
	Setting $k= D(\lambda) $, we have $n=(k+1)+(k+2)+\cdots+(2k)=\frac{k(3k+1)}{2}$
the Secretary Const.	Both these partitions have k parts, so are in Qolin) if k is odd, and
<u> </u>	Qe(n) if k is ever.
	and the state of t
	The pentagonal number theorem is a special use of a Weyl denominator
<u> </u>	formula see I. McDonald, Affire he algebras and modular forms
<u> </u>	ingrate at the publish on a tilling a section
	The pertinonal number theorem means $1 = (\sum_{i} f(x) q_{i})(\sum_{k \in Z} f(x) q_{i})$
	which gives a recurrence relation for P(a) - this is the fastest known way
	of computing P(n) but were is no related algorithm for generating random
	patitions, since the relation involves minus signs)
2000 (2000)	The state of the s
is albaha ik	Recall that c(n, k) = number of permutations of n with k eyeles
	and we saw $\sum_{k=1}^{n} c(r,k) x^{k} = x(x+1) \cdots (x+n-1)$
	· · · · · · · · · · · · · · · · · · ·

If we set t=-x: 2 (-1) c(n, k) + = (-1) t(t+1) ... (t-n+1) \$ (4) ch, Wt = t(t-1) (t-n+1) (-Dike(n,k) is usually written s(n,k), and is the Sterling number of the first kind. More shows they are the charge of basis wellicents from the tht-1). (t-n+1)-basis to the monomial basis. The reverse change of basic coefficients are given by Slock), the Stating number of the second kind, Shiel is delived to be the number of at partitions of the with k blacks The nth Bell number is the total number of set partitions of In] ie B(n = S S(n, k) eg the set partitions of [3] are 1/2/3, 12/3, 13/2, 23/1, 123 so S(3,3)=1, S(3,2)=3, S(3,1)=1, $B_2=5$ also deter are ladication from a ment of should be heart to be filled in which To create a cet position for [] with k parts, we either sinde [- 1] into k Hooks and then jut in in one of the blocks, or we divide [-1) into k-1 blocks and have in as its and block conversely every set partition of [0] is created like this so SON SON KSCHELK HASCHELK-1) 1 100 1 100 1 1000 1 1000 1 Write F. (2) for English sinks Then F. (2) = tile - 1 Proof: apply induction on k. By the recurrence, $F_k(x) = \sum_{n \geq k} k S(n-1, k) \frac{x^n}{n-1} + S(n-1, k-1) \frac{x^n}{n-1}$ so $F_k(x) = \sum_{n \geq k} k S(n-1, k) \frac{x^{n-1}}{n-1} + S(n-1, k-1) \frac{x^{n-1}}{n-1}$ make in the sea with a long of the three kt. Co + Fa-Co) by inductive hypothesis File) = kFile) + (e-1) (e-1) k-1 So de (ex File)) Fex (ex Ok-1) Comment of the second of the s Now & e-k2(e2-) = e-kx ke (e2-1)k-1+(-k)e-kx (e2-1)k 1 keka (ez-1) (ez-ezti) So F_(x) = tie (ex-1) + ce c=0 as F_(0) = 0 Hence $F_{k}(x) = \frac{1}{k!} \sum_{j=0}^{k} {k \choose j} e^{j\pi} (-1)^{k-j}$ = \(\frac{1}{2}\) \(\frac{1}{2 50 S(n,k) = k [] (k) 1 From the Josed form of F. (2), we can also decline \(\sigma_{n=0}^{\infty} B(n) \) = e 1006: In=0 B(n) == Z=0 Exen s(n, k) == e=-1

Taking derivatives of with sides: 500 B(n) = e e e so, taking the 2- welficient, we get a recursion for B(n): $B(n+1) = n! \sum_{i} \frac{1}{(n-i)!} B(i) \frac{1}{i!} = \sum_{i} \binom{n}{i} B(i)$ Observe s(n, k) is the number of ways we can put n labelled balls into k labelled bases with all boxes pon-empty. The total number of ways to put a labelled balls into it labelled boxes is I . If we write this as a sum over the number of non-empty boses: x = Zx S(nk) (x)(x=0--, (x=k+1)) 2 5 = (x x) 2 1 = (x x) 2 since there are (x)(x-1)... (x-k+1) ways of choosing k bases to be filled (in order) out of the a visailable. This proves our earlier claim that S(n, k) represents the inverse change of basis to slock). (These change of bases formula one connected to the colculus of finite differences) The Slo, K) change of basis is particularly useful for computing moments of random variables from sifferentiating the moment generating function. BU-ACAR FERRINGS LA COMPANION NO AND SOME COMPANION OF THE COMPANION OF TH The counting of the number of ways to put a balls in & box's is known as the twelvefold way since there are twelve cases. One can also view this as the counting of functions from an next to an x-set, up to some cont of symmetry lie we will impose different relations on the hinchions) As noted above, there are in ways without restrictions, and struct ways if we require supertisity If we require injectivity, then the first ball has a choice of x boxes, the second a choice of the remaining - 1 boxes, and so on, (1) (1) (2) (1) a there are x(x+1) = (x-n+1) mays Next, suppose the balk are industinguishable but the boxes are distinguishable. So the total number of ways of assigning the pulls is the number of ways one can put x-1 divisions in x+n-1 spaces (the number of halls being the number of

spaces between consecutive division This is (2 th-1)

-	
A. A.	If we restrict these assignments to be sujective, then this is the same as justing one ball in
	each box, and then accigning the remaining balls, which they are (x+(n-x)-1)=(x-1)
	ways of doing.
	If we restrict the assignment to be injective, then this is equivalent to choosing &
	bases out of n . there are (2) ways.
	The main is the fitting distributed in the force
	Now suppose the boxes are industriquedable but the balls are distinguishable.
	By definition, the number of sujective arrangements is $S(n,z)$
	So the number of all avangements is I'm slow, slow weight in the summation of
	boxes are indistinguishable) (sum over since of range)
	There is I injective arrangement of n = x; otherwise there are some
	The second of th
	Finally, consider boxes and bally both unlabelled
	Now the number of sujective anangements is P. (1), the number of partitions of n inth
	a parts.
	As above, the number of all arrangements is I = P(n) = P(n)
	And there is linjective arrangement if rex, and zero therwise
	where till out be cordine it bett ou in the Transmipping it we
	So the 12-bld way reads:
	balls labelled? boxes labelled? All injective surjective
	$\frac{1}{2} \frac{1}{2} \frac{1}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
χ - 4. χ	MAN (DE S(n,x) () (S(n,x))
	(8-1)X(1-) + X=-1/(2) = (2-1)R(1) /= 1/(2-2) P2(1)
	Care and Brain II
	For 2 a set partition of a, write nia for the number of blocks of size in 2.
	Define generality functions: Books (win w.) = Zan at partition of a with k blacks II, w:
	$B_{n}(u) = \sum_{k=1}^{n} B_{n,k}(u_{1}, u_{2}, \dots) u^{k}$ $B(t) = \sum_{k=0}^{n} B_{n}(u) \frac{t}{n}$ $Then B(t) = e^{\sum_{k=1}^{n} B_{n}(u) \frac{t}{n}}$ $\sum_{k=0}^{n} u_{k}(u_{1}, u_{2}, \dots) u^{k}$
	B(t) = 2(1=0 5 (4) 5 (7) 4 (1-) 5 (15)
- A Section of the se	Then $R(t) = e^{\sum_{i=1}^{n} \frac{1}{2}}$ Proof: (analogous to Polyas theorem) $e^{\sum_{i=1}^{n} \frac{1}{2}} = \prod_{j=1}^{n} \left(\sum_{a_j=0}^{n} \frac{ u_{u_j} }{ x_j ^2}\right)^{a_j} = \prod_{j=1}^{n} \left(\sum_{a_j=0}^{n} \frac{ u_{u_j} }{ x_j ^2}\right)^{a_j}$
<u> </u>	Proof: (analogous to Polyas theorem) e = [(Lay-a) ! +) a:)
<u>13 (44) 48) 31 -</u>	weefficient of the then $\sum_{i=1}^{n} \frac{u^{n_i}u^{n_i}}{(i)^{n_i}} = \sum_{i=1}^{n} \frac{u^{n_i}u^{n_i}}{(i)^{n_i}}$
	$a_j: \Sigma_j a_j = n$ $j=1$ $(j!)^{a_j} a_j!$ $a_j: \Sigma_j a_j = n$ $j=1$ $(j!)^{a_j} a_j!$
	as $a_i = 0 \forall j > n$.

Latinient of it in this is \$\frac{1}{9} \subseteq \in \subset \frac{1}{3} \subseteq \in \subseteq \frac{1}{3} \subseteq \in \subseteq \frac{1}{3} \subseteq \in \subseteq \frac{1}{3} \subseteq \in \subseteq \frac{1}{3} \s partition of [n] with block size (2: jaj is n! II [(j1)^ia,!] the secretarity the accounted to be injected that the apprehished to One are ask what the distribution of no (2) is if 2 is uniformly distributed (He meen is (00.), and the limiting distribution of the largest block Coughly e log n) the Silvetter, the number of new tire and personal at Stock S. the equality of all some provide in 200 Sec. 18 Sec. 18 Sec. 18 Sec. 18 ines me iditionabili (see car esa d'ana) The most basic version of inclusion exclusion is by finite sets and reads: | Ui Ai | = Zi | Ai | - Ziej | Ain Ai | + ... + (-1)^- | ni Ai | There is also the probability / function variant: P(U, A;) = 2; P(A;) - Zig P(A, nA;) + (+1) - P(0, A;) One application of inclusion-exclusion is to the coupon collector's reblem (1780, taplace): if we drop or balls randomly into a love, what is the chance that each box contains at least one ball? (Equivalently, if we buy a packets which each contain a partom and from a set of x what is the chance that we have a fall set?) let A denote the event box i is empty" So P(some box is empty) = \(\Sigma_i\mathbb{P}(A_i) - \Sigma_i\mathbb{P}(A_i \cap A_i) + \cdots (-1)^{-1} \mathbb{P}(n_i A_i) : P(no box empty) = 1-2: P(Az) + 2 == P(AznAz) - ... +(-1)^n P(nzAz) =1-x(1-立)+(之)(1-立) -···+(-1)(1-色)~~ec~ if n = x(logx+c). inclusion-exclusion can be viewed as a change of basis: Fix a und suppose we have for all subsets of man R Post: T and suppose we nave T and suppose of T and T and T are T and T and T are T are T and T are T are T are T and T are T and T are T are T are T and T are T == f(s) = the only term which contributes is when |y(s)=0.

By the same pool of £(T)= \(\int f(x), then f(s) = \(\frac{1}{2} \in (-1) \) f(T). From this version, we recover the basic statement by setting f(s) = [as A: \ ies A:] ie we let file went the objects in A. Nits and satisfie all other A: Then £(T) courts of (Postiles A.) As SET, i4T > i4S, so i4S. A: = i4TA; : SET (les A: VES A:) = QTA; Conversely, if 26 D-Ai, then let S= [i x + Ai] then x = [as Ai] ies Ai, and S and T' are disjoint, a SET Hence f(T) = 1 (1 + A=1) Let f(E) = 0, which doesn't affect f(T) for any proper subsets I of n. f([n]) is then proper subsets & of [n] is A is Ai which is Vi Ai. 5 0= f(ED) = ZIERO (D) (CA: 1+UZA: No) (Cuch) = Z s= [m] s+0 (m) [20A; [+V; A;] (S=[0])] Recall that we used this formula when we studied descents: B(s)=# permutations with devent set S = I res (1) x(T) and we found \(\lambda \left(\left(\frac{1}{2} \right) = \left(\frac{1}{2} \frac which is of the form 1 2 (-1) f(0,0,) f(1,0,2) ... f(1,1,2) with f(i,j) = (s;-s;) if it (set so=0, see = n) Fill k+1 x k+1 matrix with f(ij+1) is entry ij (0 sij < k), and 0s when i > j+1 (ie under the subdiagonal) and Is on the subdiagonal = j+1 (which correides with our flig) s) ensider the terms in the summation when we calculate the determinant of this matrix we pick an entry from raw O. Suppose this is from adumn in in we choose of (0, i.) dumn o only has nonzero entries in rows o and I we must pick the I from dumn o, raw to similarly summ I only has nonzero entries in rows 0, 1, 2, and the above choices force is to pick the I from Summ 1 row 2 this holds for all solumns to the left of solumn i. - 1. now we have shown ill entries from the first in miss and alimns. We repeat the above process for row i, picking in f(i,i) term (since the I hom row i, is in when i-1, from which we've already chosen in entry)

Agreed Age

so we end up chosing $f(o_i)$, $f(i_i,i_i)$..., $f(i_j,k+1)$, with associated sign $(-i)^{i_1-i_2-i_3-i_4}$. $(-i)^{i_1-i_3-i_4}$... $(-i)^{i_1-i_3-i_4}$... so β(s) is precisely n! Let [(s;=-so)!] This is Michann's Henen A D = CARTAGOR : SHEER SAN I WE MAN The idea of inclusion-exclusion is also useful for the study of point processes: for ies, each X; is 1 or O knowing the k-point amelations p(s) = P(x;=1 vies) determines the probability P(x:= &: Vi) for juen (+ 4(E3) = 0 which deant what £(0) for all was \$100 = 12:3 is A point process is determinental if there is a hunction klay) such that p(s) = det (k(2,y)) (an 151 x 151 matrix). Empirically, we know many point processes are determinental, but the reason is still unknown Really that we used this proceed when we decided describe Rock theory is the study of permutations with restricted positions Fix a set B=[n]×[n] of folloiden positions Set N = 1 (w: I (w) n B1 = ;] where I (w) in the graph of w (w = Sa) ie N is the number of permutation which hit; had gots, We're mainly interested in No, the permutations which avoid B altogether. Define N(x) = Z; N, x? let , be the number of ways of placing k non-attacking works on the bad set B. The rook phynomial is then Eszx and the addition has it as it allowed the same Proposition: N(x) = \(\sigma_{k=0} \cappa_k (n-k)! (x-1)^k. In particular, No = \(\sigma_{k=0} (-1)^k \cappa_k (n-k)! Proof define cx to be the number of pairs (w, C) E(S, subsets of B) where |C| = k and $|C| = \Gamma(\omega) n B$ me evaluate of in two ways for any jok, there are N; ways of choosing on in which hits just spots, and then (i) vays to charge a C from T(w) oB pick & non-attacking rock position is B, and complete Thu) in (n-k) ways who is the state of the state o Multiply both add by y'k and sum wer k: \(\Sigma_{\su} \Sigma_{\su} \mathbb{N}_{\su} \bige \Sigma_{\su} \Bige \Sigma_{\su} \mathbb{N}_{\su e.g. let $B = \{(k,k) : 0 < k \le n\}$. So No counts the permutations with no fixed points. Here, all positions are non-attacking $C_k = \{k\}$. So $N(x) = \sum_{k} (k) (n-k)! (x+1)^k$ as $\frac{1}{n!} \sum_{k} \frac{1}{n!} (x-1)^k$. this is the PGF of the number of hired points, as we worked out before The expression for No can be viewed as inclusion-exclusion: No = all pemutations = c+c (-1)c Here, f(S) = # permutations whose graph meets B at S, so f(s) = # permutations shore graph contains s, and No = f(d) The mergye problem oncems n ouples a, b, a, b, at a direr. How many ways are there of senting them at a circular table so the is and b's atternate and no a; site next to b; ? Suppose the ai's sit first there are 2 (n!) hoices of unanging them Now, renumber the ais clockwise (and the bis correspondingly), and number the remaining places clockwise also The bad positions for the anangement of bis is \((1,1), (2,2), ... (n,n)\)\(\omega((1,2),(2,3)... (n-1,n),(n,1)\) For this bad set, r= # ways of choosing k places on a circle of 2n places, where no two places are adjacent. One way of hirding such an anangement is to remove one of the 2n places, then choose k non-adjacent paces amongst a line of 2n-1 places. The second step is equivalent to injectively nierting & places into the 2n-k gaps (including ends) between the remaining 2n-k-1 places, of which there are (2n-k) ways. Since there are 2n chaires of the initial place to remove, this gives 2n (" ") mays But we have accounted each arrangement in-k times (as there are 2n-k unmarked places to charge to remove), so $r_k = \frac{2n}{2n-k} \binom{2n-k}{k}$ $: N(x) = \sum_{k=0}^{\infty} \frac{2n}{2n-k} \binom{2n-k}{k} \binom{2n-k}{k$ This problem is equivalent to country Kamiltonian cycles is a Cown graph, which is
the complete hipsortite graph Kn,n with a perfect matching removed. Rook them is used to calculate the skill-corning statistic, used to evaluate weather forcasters and psychics. In a simplified model, suppose they make successive

predictions which we either correct or wrong, and they we the feedback from previous predictions It would be hard to demand that they enced the optimal core attainable flor the shale sequence) by guessing, since a single non-optimal more would reduce the usefulness of the feedback they receive and hirder than in future moves so instead we compute Die ith quess = E(ith quess) feedback from previous guesses) and abulating the second term requires mak theory 16.0 1882 - Sandaline outer went need & 2 18. 2 18 2 -No can be expressed as the permanent = I was I A was where A is the matrix_ with Os is the bad positions and Is elsewhere let X be a finite set with X=X+11X-A signed indution is a map to X -> X such that t'=id and T(X+ fixed points of t) = X= As in our proof of the pentagonal number theorem, we can count the lived set: # fixed points of t = (x+1-1x-1) In other words, if each zex has weight I, and each zex has weight -1, then Znex weight of x = # fixed points of t For example, suppose X is M subsets of For, X* we the subsets of even size X the wheth of odd size Then, the map which removes a from subsets containing in, and adds in to about whout it is a signed involution without lived points The weight interpretation of this gives the identity Die (1)=0 (I n is odd, taking the implement would also be a signed involution). MONE ZILL (CERT) AND COLOR OF THE CRITICAL STREET A more complicated version goes like this construct agreed involutions $\tau: \times \to \times$, $\tau: \widetilde{\times} \to \widetilde{\times}$ and f a bijection: $\times \to \widetilde{\times}$ with $f(x^t) = \widetilde{\times}^+$, $f(x^-) = \widetilde{\times}^-$ (usually fix id) Then # fried points of $t = |X^{+}| - |X^{-}|$ $= |X^{+}| - |X^{-}| \quad \text{by applying } f$ = # fixed points of T.arasia no ny mateo again afficial all arasia and ance

A Garsia and S. Hilne (1981) used this technique to prove the Rogers Ramanaujan identity: # partitions of is into parts of size = 1 or 4 mod 5 = # partitions of n into distinct parts, where the difference between part sizes > 2 for example, when n=12, there is 10 of each: 11,1 9,13 6 6,4,1 6,16 43 43,14 4,18 12 11,1 10,2 9,3 8,4 8,3,1 7,5 7,4,1 6,4,2 The involutions actually metruct a lijection between the two fixed sets now a graph whose vertices are X and X, and join x to T(x), I to T(x), x to f(x). As I, I, f are bijections, each vertex has valency = 2 So each connected component is a upole or a path. I has no fixed points, so endpoints of paths are the T or T-hized points Suppose I start from a fixed point of t, and follow the path. After me step I land in X; if this is not T-fixed, I continue to X, and then to X, then back to X, and repeat I wrot stop at X or X is these contain no fixed points, and I can't stop at X' because the next step is applying of and I has no hised points As this is not a cycle, I'm forced to stop exentually, and this will be at a fixed point of I by the same orgument, any path starting at a fixed point of it ends at a fixed point of the paths - in terating fit on flx) with t(x)=x, with we reach a fixed point of T, is a bijection between the two hised cets. Proposition: # partitions of n into parts if odd size = A partitions of n into distinct parts Proof let P. denote the et of all partitions of k, and Rox the set of all partitions of n-k into ever distinct parts set X = D Px x Qax and let X+ be the elements whose second factor has an ever number of parts if 2, his a part smaller than for equal to the smallest even part of 2, let t mue this part to 2. Otherwise (if 2, has a smaller ever part than 2.), more this part to 2. Since this part is strictly less than the smallest part of 2, 2, still has distinct even parts t is an involution because & has distinct parts so once I maves a part of 2, to 2, the smallest even part is in 2, and gots moved back, I is signed as it charges by I the cumber of parts in he the above description fails if I, has only and parts and I = \$. let I hix these. next, write i for the smallest rejected part in 2, and 25 for the smallest part in 2, if it, I moves (i,i) from 2, to 2i in 2; if izy to moves 2; from 2, to (i,i) is 2,

again, the first use has a strict inequality, so after applying ? 2, still has distinct parts. Also, the distinct parts in 2, means that, once I has mared the smallest part to 2, a second application of \(\tau\) maves it back (as opposed to marry more to \(\lambda\).) so I is an involution, and change the number of parts in 2, by 1. 10 so it signed & 153 42 68 8 the above description of I faile if 2, her no repeated parte and 2 = 9 let I for there so, by the theorem, the two lived sets have the same vize, as derived We illustrate the bijection produced by t, T in the case n=5: 5 is both odd and his distinct parts, is corresponds to itself 3.1.1 is odd topply I to get 3:2 topply I to get 3,2: of which has distinct parts 15 is odd Apply I to get 13 2 Apply I to get 2,13; \$ Apply I to get 2,1:2. Apply I to get 2,1:0 Apply I to get 1:4. Apply I to get 4,1:4, which has distinct parts This is not the same as the Sylvester bijection, which is the usual bijective proof of this fact The most popular proof of this is perhaps the following, using generating huctions: Zn=0 # partitions of n into parts of odd size t = [(1-+2-1)] $= \prod_{i=1}^{\infty} (1-t^{2i})(1+t^{2i})$ $i=(1-t^{2i})(1-t^{2i-1})$ $= \tilde{\mathbb{I}}(1+t^{i}) \qquad \text{since } \tilde{\mathbb{I}}(1-t^{i}) = \tilde{\mathbb{I}}(1-t^{2i})(1-t^{2i-1})$ = In=0 # partitions of n into distinct parts + For more examples of fijective proof, see I. Pak, Partition Bijections, a survey; and the Nature of Partition Ejections I and I Consider lattice paths is R' which start at (0,0) and end at (20,0), many

at an angle of The or - The and changing direction only at lettice points. In

other words, unsider a sequence of 2n-steps either up or dawn, ending at the starting level. Such paths which stay above or on the x-axis are known is Dyck paths. Enumerating there is analogous to hinding the probability that, is an election that resulted in 50-50 one party was leading during the whole stereouting We adoute the number of such paths using the reflection principle. These paths are equivalent to lattice paths from (0,1) to (2n,1) which don't touch the x-axis. let X+ = all paths from (0, 1) to (2n, 1) X = all paths from (0,-1) to (2n,1) (these must all was the x-axis) Then $|X^+| = \binom{2n}{n}$, since there are a choices of when to go down (otherwise going up) 1×1=(2) since there are n-1 chances of when to go dawn Define T:X -> X to reflect (in the x-axis) the portion of the path until it first meets the x-axis and leave the rest of the path unchanged, let I fox the paths which don't meet the x-axis. Then I is a signed involution, whose fixed set is exactly what we want to court in number of such paths = $\binom{2n}{n} - \binom{2n}{n-1} = \binom{2n}{n} (1 - \frac{n}{n+1}) = \frac{1}{n+1} \binom{2n}{n}$ These are the Catalan number, which court many different nets Now, rotate our diagram so our lattice paths are horizontal or vertical, piecewise Fix k, and oca < ca, ocb, < cb, with biza; and N=0 Gessel-Viennet theorem: the number of choices of disjoint paths P. P. with each Picturing at (a:,1) and ending at (bi,N) is the determinant of the k-k matrix (N-1+b;-a:) Proof: let X= (6, P.,.., P.): OES, P. a path from (a) to (bow, N)? let X+ be the clements with sgn (o) =1 bt X be the elements with sgn(o) = -12 observe that the choice of a path from (a, 1) to (bow N) is the choice of Solver to find a signed involution whose bixed et is (id, P., ..., Pr.) : Pi non-intersecting] To construct I (o, P, P): find the smallest i such that P: contains an interection (this always occur of +id) let q be the first intersection pant on P; and let; be minimal with P; passing

let t swap the trajectories of Pi and P; after q; so it necessarily pecomposes o with (i) (and I fixed all Pis if they are disjoint) After applying t, P; remains the first path with an interrection, of remains the first intersection, and P; the first other path to me through a, to I is indeed an involution (the sign charge is clear) Here is a more complicated version. Give every horizontal elep at height; a weight of x; and let w(P) be the product of the weights over all horizontal steps in the path P. I I P from (a, 1) to (s, N) w (P) is dependent on b-a only (for fixed N), and is symmetric in x, an It is in fact home (2, 2), the kth homogeneous symmetric polynomial. Define the weight of a set of paths to be the sum of the weight of each path I as defined above preserves weights, so, by came argument, det (hs,-a: (x,...,xn)) = [w(P) where we sum over all non-intersecting arrangements of P., Pr., with P. starting at (a. 1) and ending at (b. N) This and the above give a combinatorial interpretation of the determinant. Now let 2 be a partition and set a = in bi= 2 km-iti, so there are 2 km i weights on Pi. The weights give a bijection between non intersecting paths Pi from (i,1) to (hun-i to, N) and semi standard tableaux of shape 2 tilled with [1,2,... N] (these may be repeted, or not used at all): write the weights of Px in the first row, the neights of the in the second on, . He weights can be arranged to be non becausing along raws, and the non-intersecting condition forces the chumn to be increasing. So let $\binom{N-1+\lambda_{n+1}+j-1}{\lambda_{n+1}+j-1}$ gives the number of such tableaux. A poset is a (finite) set with a partial ordering = x =x, f xey, yex then x=y if xey, yez then x = z Write x = y (y aver x) if x = y and there is no z will x < z < y When we draw posets, we usually only draw the over relations - these are alled Hasse diagrams

If Q is a subset of P, then the ordering on P induces an ordering on Q - this makes Q a subject of P. A chain in a poset P is a totally ordered subset, A chain is maximal if it is contained in a larger chain (in middle or at ends) A chain is saturated if all non-minimal elements over an element in the chain-ie we cannot add anything in between A poset is graded if all maximal chains have the same length (in particular, all chains with fixed endpoints must have the same length) This grading or park is defined by p(t) = 0 if t is minimal The rank generating function is then given by $\sum_{i=1}^{\infty} |\{t: p(t)=i\}|_{x}$ Our five examples above are all graded: in a p(t) = t-1; rank generating function = 1+x+...+x in Bo, p(s) = 151; rank generating function = (1+2) in Do, p(t) = # prime factors is to counted with multiplicity; rank generating function = (a,+1), (a,+1), (a,+1), where the prime factorisation of n is paper por (it is multiplicative on coprine factors, and is 1+ x+ 2 then n= pa) in To, p(S) = n-# blocks in S; ank generating function = \(\sum_{n=0}^{\gamma} \text{S(n,k)} \subsetext{x}^{-k} in Bq(n), p(V) = dim V; rank generating hunction = \(\sum_{k=0}^{\infty} \big(\sum_{k}^{\gamma} \) \times \(\text{k} \) they are the a satural net standar in the a difference of the The greatest lower bound, or neet, of steP is denoted ant, and satisfies sates, satet and if xet, xes then xesat. The dual notion is the least upper bound, or join, written <vt sesut, tesut and if xzt, xzs then xzsut If sat, sut exists for all steP, then P is a lattice. In a lattice, the operations n, we commutative, dempotent, and satisfy the absorption identities sn(svt) = s = sv(snt). We can expand these into a full list of axioms, and we there as a definition of a lattice Let P be a finite lattice. Then the following are equivalent:

Pis gaded by p with pls)+plt) > plsnt)+plsvt) VsteP. ii if s,t with over sat, then set was with s and to Proof: i=ii if st both ever sut, then pls)=plt)=plsit)+1 so the inequality implies p(svt) = p(s)+1=p(t)+1. bornes syt > s, so p(svt) > p(s) = p(svt) = p(s+1. cimilarly, p(svt) = p(t)+1 sort were and to Suppose for contradiction that P is not graded let [u,v] be an interval of minimal length that integrated the interval [u,v] consists of all chains from u to v, and its length is the maximal number of elements in a chain-1). By minimality, there exists s, s, evering a such that [s,v] [s,v] are graded every maximal chain S, to V has length l, every maximal chain s, to V has length l, where 1,71, But, by i, 5, vs. over both s, and s, so si concaterated to any maximal chain from s, vs. to v gives a maximal chain from s: to v, and the length of there is independent of i, a contradiction Suppose for contradiction that there is s,t with p(s)+p(t) < p(s nt)+p(s vt) choose such a pair with [sat, sut] of minimal length, and then with p(s)+p(t) minimal. If s, t both cover sat, then ii implies we have equality in i. So here, wlog & bes not cover ent Take s' with sate s'es. Then sint=snt, sivt = svt [sint, svt] is no longer than [snt, svt] As s'<s, p(s') < p(s) + p(t) < p(s) + p(t) · by minimality of s.t., we have p(s)+p(t) > p(s'nt)+p(svt) =p(snt)+p(svt) So pls)-plsvt) < plsnt)-plt) < plsi)-plsvt) p(s) + q(s'vt) < p(s') + p(svt)let S=s, T=s'vt then SvT=svt, SAT >s' (as s'ss, s'ss'vt) $so_{\rho}(s) + \rho(T) < \rho(s_{\Lambda}T) + \rho(s_{V}T)$ length of [SAT, SVT] = length of [s', svt] = length of [sAt, SVt],
contradicting minimality of s, t. A lattice satisfying shere equivalent conditions is semi-modular, If in addition, p(s)+p(t)=p(snt)+p(svt), then the lattice is modular (working in the dual, we see that this is equivalent to "if set covers sand t, then sand t ever set")

1 Ba, Da, Ba(q) we all modular. The modular equality in each case reads: $\leq + t = \min\{s,t\} + \max\{s,t\}$ |S|+(IT) = |SnT|+|SoI| And the same of the # prime factors in s + # prime factors in t = # prime factors in gcd(s,t) + # prime factors in lem(st) dim S + dim T = dim (SnT) + dim (SOT) The is semimodular but not modular 1234 cover 12/34 and 13/24, but neither of these over 12/34 x B/24 = 1/2/3/4 But if s, t wer u, then a divides one of the blacks in u, as does to Adding with these divisions to a creates syt, which cavers a and cavers t since it adds only me director to each of said to in a fig that the court is talk him a to a fit it The subgroups of a given group form a lattice. If we take normal subgroups only we get a modular lattice (second isomorphism theorem) A poset is bully finite if every interval has finite length leg I under total order, or I under divisibility) The incidence algebra for such a poset is the hinclions on internal, with pointwise addition and multiplication is convolution: f+g(s,t)= \(\subsect \f(s,u)\g(u,t) \) We can write these hinctions as matrices: give the paset a total ordering, and let entry s,t be f(s,t) if set, and o showing. This gives a pattern group of upper triangular matrices (ie the group of matrices with 0s in fixed places) Not all patterns give rise to a matrix group (the set night set be closed under multiplication), but all upper triangular pattern groups are incidence algebras for some posets. Condendado - Condendado -The matrix representation allows in to quickly see when a function is invertible: if and only if the biggoral is nonzero, in fls,s) +0 Ns. The incidence algebra of - is all apper triangular matrices. The incidence algebra of is the Heiserburg algebra, of matrices with nonzero entries in the diagonal, first now and last obtain only

	The reta function $J(s,t)=\{1\}$
	o stervice
	Then I'(s,t) = Zu scust I(s,u) I(u,t) = #u with s = u = t = [[s,t]] (condinatity of the internal
1.	Similarly, I'm counts the number of length & multichairs from s to t, that is, the chains
	were elements are allowed to repeat
	to the second and the
	The unit element of the incidence elebra satisfies f(s,t)= Sussenex 1(s,u) f(u,t)
	for all f, which forces 1(s,s) = 1 1(s,t) =0 for s #t
	5 (1-1)(3,t)=(1) s <t< th=""></t<>
	for all f , which forces $1(s,s)=1$, $1(s,t)=0$ for $s\neq t$. So $(5-1)(s,t)=\{1\}$ s <t <math="" above="" argument="" o="" shewise="" shows="" so="" the="">(5-1)^2 counts the number of (strict) k-client from s to t.</t>
	So the above argument shows (3-1) counts the number of (strict) k-ching from s to t.
v. i '	(2-5)(s,s)=2-1=1 2-5 is invertible in fact (2-5) (s,t) counts the number of all
	chains in [s,t]: ====================================
	(the convergence relies on the topology of the incidence algebra, which we won't discuss)
	0 89 - 100 E 0 0 E 0 E 0 80 7 60 E 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E 0 E 0 0 E 0 0 E 0 E 0 0 E 0
	The inverse of I is a Missius function u. (ie 3 n= pe 3 = 1)
	1= red(s,s) = 2 missues rels, a). I(u,s) = rels,s) I(s,s) = rels,s)
	0= m I(s,t)= Zwseast m(sw) I(a,t) = Zwseast m(s, w)
	so we compute uls, t) inductively from uls, t) = - Duissuit uls, w)
	e.g. in n, $\mu(i,i)=1$ $\mu(i,i+1)=-\mu(i,i)=-1$
	$\mu(i,i+k) = -\mu(i,i) - \mu(i,i+1) - \mu(i,i+2) - \dots - \mu(i,i+k-1) = 0$
	(by induction on k)
	To find u for B, view B, is the elements of F, under co-ordinate comparison
	(it coordinate indicates whether element is in the subset), and observe that
	$M_{p,p}((s,s'),(t,t')) = M_{p}(s,t)M_{p}(s',t')$
	since [(u,u'):(s,s') & (u,u') & (t,t') MP, (s,u) MP, (s,u') JP+P, ((u,u'), (t,t'))
	= Z, u,u', seriet, s'enset, Mp (s, w) up (s',u') Ip (u, t) Ip (u't') = 1p (s,t) 1p (s't')
<u>}</u> ,	So us $(S,T) = (u_s)^2 (S,T) = (-1)^{\#\{c: T_c = l, S_c = 0\}} = (-1)^{lTrS1}$
	So us (S,T) = (L) (S,T) = (-1) #{(::T:=1, S:=0]} = (-1) ITSI
<u> </u>	the state of the s
	The formulas $f(n) = \sum_{i=1}^{n} f(i) - \sum_{i=1}^{n} f(i)$; $f(s) = \sum_{r \in s} f(r) = \int_{r \in$
	Mobin inversion theorem fls) = I m(t,s) [= f(u)] for posets with the additional
	constraint (s: s=t) is frite 4t (e.g. N, but not 2).
	· · · · · · · · · · · · · · · · · · ·

letting the incidence algebra act on the right on function in the poset, by f. E(t) = Scat f(s) E(s,t), the Mobile inversion formula just says (f. I) n = f.1. the reaction of the control of the state of The product formula for u says that, is general, if [a,] = I' with wordinate-wise comparison, $\nu(\vec{a}, \vec{b}) = \pi \cdot 1_{\{s_i = a_i\}} (-1_{\{s_i = a_i + i\}})$ since [a] = b, -a,+1 × b_-a+1 × ... × b,-a+1 Similarly, Do = a+1 x a+1 x x a+1 | where n=p p po for distinct primes pi), so $\mu(s,t) = \pi$: I same parts of a divides s as to (-1 st has one more parts of p. than s) $= (-)^{\frac{1}{2}} \text{ prime factors in 4s} \quad \text{if 4s has distinct prime factors}$ $0 \quad \text{therwise}$ This is the Mibius function of number theory. Let P be a poset with a unique minimal element of and unique maximal element of let c; be the number of chains from 8 to 1 of length i Hall theorem wito, 1) = co - c, + c; - $(\hat{0},\hat{1}) = \tilde{1}(\hat{0},\hat{1}) = \frac{1}{1+(1-1)}(\hat{0},\hat{1}) = (1-(1-1)+(1-1)^2 - \cdots)(\hat{0},\hat{1})$ KANDANIA (K. L. KANDANIKA KANDANIA) suppose I have N folders, and I we folder i with probability we keep time I kinish using a folder, I put it back on top. This describes a Harkon chain on the n! possible orderings of the folders. The stationary distribution is $\pi(\sigma) = w_{\sigma(s)} w_{\sigma(s)} w_{\sigma(s)}$ The envergence rate to the stationary distribution is also known. This problem is known as Tsethir's library, and is applied to hyranic clorage 2000 and a of computer files). A hyperplace arrangement in R is a set [H, H2 - H.] of II- simencional hyperplanes in Rd. The interection of k halfspaces, one defined by each Hi, is a chamber The intersection of either a halfspace or the hyperplane itself for each H: is a bace We can define a metric on the chambers: L(C,C') = the number of hyperplanes separating C from C' Then, for each face F and chamber C, there is a unique chamber adjacent to F with minimal distance from C, denoted FC

the projection of C on F (choose FC so that, for all H: with F = H: FC and C lies on the same side of HD We can put probabilities on the faces, and define a Harkov chair on the chambers: pick a face according to this probability distribution, and project on it The Bodean arrangement consists of the coordinate hyperplanes H:= [x:=0] (k=d leve) There we 2 chamber corresponding to the otherts. We are label them by 1-strings of ± There are 3 faces, labelled by I-string of +, - or O. Markov chains on the Boolean arrangement can be used to model charges in opinion in a population leg. which of two political parties to they support), or the claiming of terntones between two sides. I lake landalled salah more The braid arrangement consists of the hyperplanes H; = {x;=x;} The chamber are indexed by inequalities x:<x; or x:>x; for each pair i; -in other words, by an ordering of the co-ordinates. Hence we can label the chambers by elements of So (and there we n' chambers) The faces are indexed by an ordering of the wordinates with some of them forced to be equal. This is in hijection with ordered set partitions put the coordinates that are equal in the same block, then order the blocks according to the ordering of the goodinates The number of faces is then Z k! S(n,k) The projection FC is given by ordering the wordinates within each block of F according to their order is a (and then combining with the block ordering of F) We recover the Teethin library as an associated Markov chair if we set $P(F) = \int w_i \quad iF = i /(f_i)(i)$ and P(F)= (1/2 of F hus 2 blocks o otherwise model the inverse of the GSR rifle shuffle Given a hyperplane arrangement, define its intercection lattice to be the intercection of hyperplanes, a poset under inclusion Theorem: the transition matrix of a Marker clain from a hyperplane arrangement is diagonalisable. Its eigenvalues we indexed by points in the interaction lettice: 2, = EP(F) has multiplicity july Rd)

A stationary distribution exists if and only if the publicities are separating: $\forall H$, there is F with F(F)>0, F, the are never forced to cross some H.). In this use the ate of convergence satisfies $\|Q^{+} - \pi\| = \sum_{i} \lambda_{i}$.

Given a post P, before its order employ $\triangle(F)$ to be a simplicial employ whose i-dim' faces are the i-hairs in P.

Then Hall's themen says that $\mu(\hat{O}, \hat{I}) = \mathcal{X}(\Delta(P))$, the Euler characteristic.

This allows us to calculate $\mu(\hat{O}, \hat{I})$ using algebraic topology—see

A. Björner, Topological Hethods (in the Hardbook of Combinatorics) and

D. Koslar, Combinatorial algebraic topology.

e.g. $\Delta(B_n)$ is a triangulation of the hypercube.

A biromial poset is a botally finite poset with unique minimal element ô and an infinite chain such that every interval is graded, and the number of maximal chains in any n-interval is independent of the endpoints of the interval — this number is written B(n). (The to grading, every maximal chain has length n) e.g. N. (B(n)=1 \forall n)

all finite subsets of some fixed white set (B(n)=n!)

all pairs (S, T) of finite subsets of some fixed infinite set, with

1S=1T1 (with order induced from the product poset) (B(n)=(n!))

The last example is a special case of a generic construction: if P. P. ... P. are binomial posets, their binomial product is the subposet of $P \times \cdots \times P_{\kappa}$ given by $\{(t, \dots, t_{\kappa}) \mid t \in P_{\kappa}, \text{ length of } \{\hat{O}_{i}, t \in T\}$ is equal for all i $\}$. B(n) for the binomial product is the product of B(n) for each $P_{i, \kappa}$ since the maximal chains in the binomial product are precisely the products of maximal chains in each factor.

The reduced incidence algebra of a linimizal poset is

R(P) = {fet(P) : f([s,t) dependent on length of (s,t] only}

Observe that R(P) is an algebra:

let ((?)) denote the number of elements of rank i where the lower endpoint in an n-interval to see that this is independent of the interval consider a maximal chair in an n-interval is a doice of element of mark i above the laver endpoint, a maximal chain from the laver endpoint to this midpoint, and a maximal chain from the midpoint to the upper endpoint, so $(\binom{n}{i}) B(i) B(n-i) = B(n).$ now, if [s,t] has length n, then $fg(s,t) = \sum_{n \in t} f(s,n)g(n,t)$ = Zi=o(i)) f(i-interval) g(n-i-interval) and this is independent of s.t. a the second of the second of the second of the second of the Verifice $\Phi: R(P) \to C[[X]]$, $\Phi(f) = \sum_{n=0}^{\infty} f(n-interval) \frac{X^n}{R(n)}$ This is an algebra isomorphism: bijecturity is clear, and by above, * (fg) = En=o Zi=o ((i)) f(i-interval) g(n-i-interval) XI = Zino f(i-interval) alis g(n-i-interval) stois = \$(1) \$(g). This partly answer what denominator we should for generating history. Corollary: if fer(P) is invertible in I(P), then fer(P) Proof f is mertible => f(s,s) + O Vs so the instart term of A(R) is nonzero. power ceres with nonzer constant term are investible live can she for the coefficients of the invene one-by-one) Example: (at f(s,t) = the number of elements in the interval $[s,t] = J^2(s,t)$. AS SER(P), YER(P) - & We see 5 B(n) = (ZB(n)) in N, f(h) = (n+1) : $\sum_{n=1}^{\infty} (n+1) x^n = (\sum_{n=1}^{\infty} x^n)^2 = (\frac{1}{1-x})^2$ (which is usually proved by differentiating Ziz = ==) in Boo = all finite subsets of N, 1/n)=2, so [=== = (2 =) = e2 Example: $J \in R(P) \Rightarrow \mu \in R(P)$ and $J = (\sum_{n=1}^{\infty})^{-1}$ $J \in R(P) \Rightarrow \mu \in R(P)$ and $J = (\sum_{n=1}^{\infty})^{-1}$ $J \in R(P) \Rightarrow \mu \in R(P)$ and $J = (\sum_{n=1}^{\infty})^{-1}$ $J \in R(P) \Rightarrow \mu \in R(P)$ and $J = (\sum_{n=1}^{\infty})^{-1}$ $J \in R(P) \Rightarrow \mu \in R(P)$ and $J = (\sum_{n=1}^{\infty})^{-1}$ $J \in R(P) \Rightarrow \mu \in R(P)$ and $J = (\sum_{n=1}^{\infty})^{-1}$ $J \in R(P) \Rightarrow \mu \in R(P)$ and $J = (\sum_{n=1}^{\infty})^{-1}$ $J \in R(P) \Rightarrow \mu \in R(P)$ and $J = (\sum_{n=1}^{\infty})^{-1}$ $J \in R(P) \Rightarrow \mu \in R(P)$ and $J = (\sum_{n=1}^{\infty})^{-1}$ Example: let a 15t) be the number of chains of length k in [st]. $c_{K} = (3-1)^{K}$, so $c_{K} \in R(P)$ $\sum c_{K}(n) \frac{2n}{8(n)} = \left(\sum \frac{2n}{8(n)} - 1\right)^{K}$

W. X	in N, a k-chain is an n-interval is a composition of n into	
	k parts (the ith part has size (the element of chair) - (i-1th	`
	element of chair)) so \(\(\z_{\chi}(n) \times^{\gamma} = \left(\frac{1}{1-\times} - 1\right)^{\gamma} \)	
Carrier S	Later May 2 - May the first of	
	$= x^{k} (1-x)^{-k}$ $= x^{k} \sum_{i=0}^{\infty} (-x)^{i} (-x)^{i}$	
	$= k \sum_{i=0}^{\infty} \frac{(k+i-1)!}{i! (k-1)!} \chi$	
	produced and otherwise with the first of war	
Carly Same	which is what we get by ansidering inserting k-1 divides into	
	n+k-1 spaces.	
	in Bo, a k chain in [S,T] is an ordered set partition of TS	
er versioner versioner en kulturen.	with L blocks, so cx(n) = K! S(n, K)	
	So S. k! S(n,k) = (ex-1) as we saw previously.	
	The theory of generating hunctions can be further explored using category theory	
	and speciel - see Bergeon, labelle, leroux, combinational species and tree-like	
and the state of t	structures.	-/
· · · · · · · · · · · · · · · · · · ·		
	Some more example: let fla) denote the number of non matrices with entries in	
· · · · · · · · · · · · · · · · · · · 	50,1,2,? whose raws and column each sum to n. Than	·
No Section	$\sum_{n=1}^{\infty} \frac{f(n)}{(n!)^2} = e^{\frac{\pi}{2}} (1-x)^{\frac{1}{2}}$	
	The state of the s	******************************
P 40 440 4 40 4 40 4 40 4 40 4 40 4 40	let f(n) denote the number of acyclic directed graphs with a vertices then	
	$\frac{\sum_{i=1}^{n} \frac{f(a)}{2^{(i)} a!} = \left(\sum_{i=1}^{n} (-1)^{n} \frac{x^{n}}{2^{(i)} a!}\right)^{-1}}{2^{(i)} a!}$	
	260, 260, 260, 260, 260, 260, 260, 260,	
,	Charles and Charles and the Control of the Control	
	let P le a poset of size p let w le a labelling of the elements:	
	$w: P \rightarrow \{1, 2, \dots p\}.$	
	A P-partition of n is a map or P-> N satisfying Z sols)=n and if set then ols) > o(t)	
T PALL FROM THE STATE OF THE STATE FROM THE STATE OF THE STATE STA	if set then $\sigma(s) \ge \sigma(t)$	
ermanininininining (Pikemeninining)	if $s < t$ and $w(s) > w(t)$ then $\sigma(s) > \sigma(t)$	(- :
**************************************	11/ 1. 6\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1	
	e.g.l.take a chain P=t,<+,< <tp>, with natural labelling w(t)=i.</tp>	· · · · · · · · · · · · · · · · · · ·
	so we never get set, wis > with. Hence a P-partition of n is just an	

ordinary partition (the its part having are o(i)) eq. 2 P=t, <t, < <t, again, but an label w(ti) with p+1-i. so wis) > with for all set, so o(s) > o(t) for all set. A P partition is now a partition into distinct partie e.g.3 P = p elements with no order relations then there are no restriction on o a P-partition is a composition Thus P-partitions are an interpolation between compositions and partitions. They are usful in physics, for calculating the probability of elections in action states. eg. 4: 123 Protetions we light with i= = k The associated generating function is $F_{p,n}(x_1, x_2) = \sum_{\sigma} a(p)$ pattern x_1 x_p .

The associated generating function is $F_{p,n}(x_1, x_2) = \sum_{\sigma} a(p)$ pattern x_1 x_p .

The associated generating function is $F_{p,n}(x_1, x_2) = \sum_{\sigma} a(p)$ pattern x_1 x_p .

The associated generating function is $F_{p,n}(x_1, x_2) = \sum_{\sigma} a(p)$ pattern x_1 x_2 .

The associated generating function is $F_{p,n}(x_1, x_2) = \sum_{\sigma} a(p)$ pattern x_1 x_2 .

The associated generating function is $F_{p,n}(x_1, x_2) = \sum_{\sigma} a(p)$ pattern x_1 x_2 .

The associated generating function is $F_{p,n}(x_1, x_2) = \sum_{\sigma} a(p)$ pattern x_1 x_2 .

The associated generating function is $F_{p,n}(x_1, x_2) = \sum_{\sigma} a(p)$ pattern x_1 x_2 .

The associated generating function is $F_{p,n}(x_1, x_2) = \sum_{\sigma} a(p)$ pattern x_1 x_2 x_3 x_4 x_4 The same of the sa (-x)(-x-1)-(-x-x) breg. 3, F(x,... zp) = [a,az,...ap x, xz ... xp = (1-x,)-1(1-xz)-...(1-xp)-1 If we set x = x = = = x in these examples, we recover the generating hincions for the number of partition, partitions with distinct parts, and compositions, respectively Theorem: Fp, (x,x,-x) = Exercent x (1x-1)--(1-x2) (1-x2) where maj(t) is the major index lie sum wer the descent set) and L(P,w) is the linear extension: the total orderings of the elements (dented by their likely) that extend the partial making read as a string = 5. eg. P= 3 2/1 h(P,w)= {231,213} eg. P= 314 L/P, w) = (3124, 1324, 1342, 3142, 1432) these have major index 1, 2, 3, 1+3, 2+3 50 Fpw (xxxxx) = (x+x2+x3+x4)(1-x)(1-x3)(1-x5)(1-x5)

 $L(P, \omega) = all permutations of (1,2, p-13) with perpended.$ We as show by induction that I Tes x may (5) = (1+x)(1+x+x) = (1+x+x) (postioning n auss a new descent at 1,2, - or no descent, all equally likely) So Fpw(x,x,...x)= (1+x)-(1++x+x+x) $(1-x)(1-x^2)-(1-x^2)$ This to partition of the marketing policies are recollered and interest FRW (x, x, x) = (1+x +1) (1+x +1 2 -1) (1-x)p-1 (1-xp) (1-xp+1)... (1-x2p) The second secon The poof of the theorem mobiles unsidering temporatible functions (TES,): f(t(x) > f(t(x)) > ... > f(t(x)) and f(t(i)) > f(t(i+1)) if t has a descent at i because it turns out that so: o a (P, w) partition? = 11 Teste, w) [o: o is T-competible] since any function fix compatible with a unique t Com a set partition of p so f is anclast on each block, now order the blocks in decreasing order of Ales and order the number within each black in the united order - now read this as a permutation in string form), and the condition that o is a (P, w) partition exactly translates to the associated t being a liner extension of G, w) Complete Com if we get with many in the way sty we same the wanter has been to the Given a function f(x)=y, we with to find f' such that f'(y)=x If I has a paver series expansion with no constant tem, we can use: lagrange inversion theorem: the wellight of is in f (x) is " the welficient of i in [f(2)] (n70) Proof suppose f (2)= 2 px (by setting x=0, we ree po=0. then x = f'(f(x)) = p.f(x) +p.f(x)+ differentiate both sides $1 = p(1/2) + 2p_2 f(2) f(2) + 3p_2 f(3)^2 f(2) + \cdots$ \mathcal{L} \mathcal{L} so the i'-wellicient of [flx) = 2 spi i-wellicient of flx) 5-1-nflx the key is that, when In A(x) If (x) is the derivative of f(x) and the derivative of a laurent series has no i-exeficient! so the i'- defficient of [flx) is no * + defficient of flw flx)

It settices to show that the x'-werkingt of flotal is 1. Write flx) = a,x +a, x2+ ... then 1/2) = a1+22x+3a3x2+... $\frac{a_1 + 2a_2 x + \cdots}{a_1 x} \left(\left[+ \left(\frac{a_2}{a_1} x + \cdots \right) + \left(\frac{a_2}{a_1} x + \cdots \right)^2 + \cdots \right) \right)$ a,x+a,x2+... $=\left(\frac{1}{2}+2\frac{a_1}{a_1}+\cdots\right)\left(1+\frac{a_2}{a_n}+\cdots\right)$ (alternatively, use the residue theorem)

By the same argument, the wellicient of in [f(b)] is to the wellicient of it in [Ab]

e.g. (a) $f(x) = xe^{-x} \Rightarrow [f(x)]^{-1} = [xe^{-nx}]^{-1} = xe^{-x} = \sum_{k=1}^{\infty} x^{-k} = \sum_{k=1}^{\infty} x^{-k}$ then $f'(x) = \sum_{n=1}^{\infty} \frac{n^{n-1}}{(n-1)!} \frac{x^n}{n} = \sum_{n=1}^{\infty} \frac{n^{n-1}}{n!}$

There are multivariable versions (with commuting or noncommuting variable) and quantificus of layrange inversion, and all have combinatorial proofs. Usually we use lagrange inversion to kind the coefficients of a generating function of when we man it satisfies some finitional equation H(g(2) - 2.

- e.g. let to be the number of rooted trees with a labelled vertices. If $g(x) = \sum_{n} f(x)^n$, then $g(x) = xe^{g(x)}$ is $ge^{-g} = x$, the previous example then have
- e.g. let Bn denote the number of binary trees with nectices lie a connected subset of the intinite noted binary tree, containing a solices including the root) e.g. B = 5: 1 () If we remove the root, we hid 2 trees with n-k-1 and k vertices respectively .. Bn = [K=0 Bk Bn-K-1 Let $B(x) = \sum B_n x^n$ then $B(x) = 1 + x(B)^n$, lagrange invocion requires a series with no constant som : work with C(x) = B(x)-1 :. C satisfies (2+1)== x ie H(C) = (C+1)2 [H(C)] = (C+1)2 whose C' term has coefficient (2n) ·· C(x)= Zn (27) =
- eg. Find the not of x-ax+1 as a huntion of a low fixed () a = = , which doesn't expand as a pormor series. · let y=/a = + = x(1-x+x+--) y" = (x+1) = [(?) x 12-1 which has z'-coefficient (-x) if = EN, and o therwise.

$$\frac{1}{i} \operatorname{root} = \sum_{i} {\binom{li+1}{i}} \frac{u^{li+1}}{\binom{li+1}{i}} = \sum_{i} {\binom{li+1}{i}} \frac{\alpha^{-li-1}}{\binom{li+1}{i}}.$$

The idea of intesion to find welficients of a pawer series dates back to Newton, who saw arcsin(x) = $\int_{i=0}^{x} \frac{1}{(-\frac{1}{2})^{1+\frac{1}{2}}} dt = \int_{i=0}^{x} \frac{(-\frac{1}{2})(-\frac{3}{2}) \cdots (-i+\frac{1}{2})}{i!} \frac{x^{2i+1}}{x^{2i+1}}$ and then shed $x = a_1(x + (-\frac{1}{2})\frac{x^3}{3} + (-\frac{1}{2})(-\frac{3}{2})(\frac{1}{21})\frac{x^5}{5} + \cdots) + a_2(x + (-\frac{1}{2})\frac{x^3}{3} + (-\frac{1}{2})(-\frac{3}{2})(\frac{1}{21})\frac{x^5}{5} + \cdots)^2 + a_3(\cdots)$ to find the error expansion for sinx. e.g. $1 = a_1$, $0 = a_2$, $0 = -\frac{a_1}{5} + a_3 = -\frac{1}{5} + a_3$

Consider walks in \mathbb{Z}^2 with no self intersection, where each step is in the east, wist or north direction. (I no self intersection just means no east and west steps in succession) let f(n) be the number of such walks with n steps. Such a walk can be produced by adding one north step to one such walk of n-1 steps not ending in west, or adding an east step to one such walk of n-1 steps not ending in east. is every n-1 steps walk of this sort can have two endings added, except those which end in north, and there are precisely f(n-2) of these, by this argument f(n) = 2f(n-1) + f(n-2) for f(n) = 1, f(n) = 3 ... $\sum f(n) = \frac{1+2}{1-2x-2}$. $(1+5)^{n-1}$ and $(1-5)^{n-1}$ one solutions to the ecurence; initial anditions force $f(n) = \frac{1}{2}(0+5)^{n-1}+(1-5)^{n-1}$

Many generating functions are rational functions, so its useful to have some techniques to analyse these.

Theorem: let f_n be a sequence in C and $q(x)=1+\alpha, x+\cdots+\alpha_n x^n$ with $\alpha_i \in C$. then the following are equivalent:

i) $\sum_{n} f_{n} x^{n} = \frac{p(x)}{q(x)}$ for a polynomial p with degree < d

ii) They t different deformation and for = 0

iii) $f(n) = \sum_{i=1}^{n} \frac{1}{2} \frac{1}$

We see all three characterisations in the example above.

Proof: let V, = the functions for which i holds V2 = {Extent 1 in holls for for V3 = { Znfn = \ in holds for for} V4= { ∑i=1 ∑i=1 bij (1-jix) 1 bij € €] these are all linear conditions : each Vi is a vector space. dim V, =d: p(x) is specified by its 1, 2, ..., x - webscients. dim 1/2=d: fln+d) is determine by fln+d-1), fln+d-2), fln), so all values of f are etermined by the initial values floo, flo, ... fld-1). each pi a specified by di coefficients is welficients is total. $\dim \bigvee_{3} \leq d$: there are I bij's in total : it suffices to show (1-yis) are independent over c. $\dim V_4 = d$ suppose for contradiction that \(\sigma_{ij} (1-ji2) = 0 with cij not all zero. fix I, I so that I is maximal with exs #0 for this I. when we dear denominators in Significant, we get can a multiple of 1-jex = ces =0, a contradiction.

...

Now it suffices to prove inclusions in one direction: $V_4 = V_3$: $(1-y_1 \times x)^{-1} = \sum_{n=0}^{\infty} (-1)(-y_1 \times x)^{-1} = \sum_{n=0}^{\infty} (-1)(-y_1 \times x)^{-1} = \sum_{n=0}^{\infty} \sum_{j=1}^{\infty} b_{ij} \frac{(j+n-1)(-y_1 + y_1 + y_2 + y_3 + y_4 +$

If $\sum_{n}f_{n}x^{n} = \frac{F_{n}(x)}{q(x)}$ with deg $p \ge \deg q$, then $\sum_{n}f_{n}x^{n}$ is a polynomial added to a (proper) rational function, so ii, iii will hold for sufficiently large n $(n \ge \deg p - \deg q)$

Define the Hadamard product of two power series to be $\sum f_n \hat{x}^n + \sum g_n \hat{x}^n = \sum f_n g_n \hat{x}^n$.

If $\sum f_n \hat{x}^n$, $\sum g_n \hat{x}^n$ are rational, then by characterisation in, their hadamard product is also rational.

Take a directed graph (multiple edges and boys are allawed). Give each edge a weight $\omega(e)$.

For a path T, set $\omega(T) = \Sigma \omega(e)$, summing over the edges in T.

Let $A_{ij}(n) = \Sigma \omega(T)$ over all paths of length n, starting at i and ending at j.

Write A for A(i), whose entries are $\Sigma \omega(e)$ over all edges from i to j.

By definition of matrix multiplication, $A(n) = A^n$.

Let $F_{ij}(x) = \sum_{n} A_{ij}(n)x^{n} = (\sum_{n} A^{n}x^{n})_{ij} = (I-xA)^{n}_{ij}$ $= (-1)^{i+j} \det(I-xA)$ with j^{th} row, i^{th} advant deleted) from the adjugate det (I-xA) from the adjugate

e.g. We count the elements of $\{1,2,3\}^n$ (is n-strings with entries 1,2,3) so

11, 23 don't appear.

These are precisely the paths on the graph

These are precisely the paths on the graph

The paths of $\{1,2,3\}^n$, which has adjacency instance $\{0,1\}^n$.

The paths of $\{1,2,3\}^n$ is $\{1,2,3\}^n$.

$$F_{ij}(x) = (I - xA)^{-1} = \begin{pmatrix} 1 - x - x \\ -x & 1 - x & 0 \\ -x & -x & 1 - x \end{pmatrix} = \frac{1}{(1 - x)^{2} - x^{2} - x^{2}} = \frac{1}{(1 - x)^{2} - x^{2}} = \frac{1}{$$

Ehrhart theory is the study of N-solutions to integral matrix equations, thenwise known as linear disphantine equations. One application is to calculate the number of contingency tables with given on sum and column sum—for small sample sizes , this gives a better text of correlation than χ^2 -test.

Let \overline{E} be an $n \times m$ be a matrix with integer entries. We study the special case of $E = \{\overline{x} \in \mathbb{N}^n, \overline{P} \overline{x} = 0\}$ and $E^+ = \{\overline{x} \in \{1,2,\cdots\}^n, \overline{P} \overline{x} = 0\}$ let $E(\overline{x}) = \sum_{\overline{x} \in \mathbb{R}^n} x_n^{\alpha} = \sum_{\overline{x} \in \mathbb$

 $E^{+}(\vec{x}) = \sum_{d_1 - d_2 = 0} x_1 x_2 = \sum_{i \ge 1} x_1 x_2 = \frac{x_1 x_2}{1 - x_1 x_2} = \frac{1}{x_1^{-1} x_2^{-1}}$ We can recover P-partition theory (with natural labelling-ie w(s) < w(t) whenever < < t) from Ehrhart theory: solve <-- <- t - 0 st = 0 for each pair s<-t, then set $\sigma(s)=\alpha_s$, $\sigma(t)=\alpha_t$ (α_{st} are slack variables, to ensure $\alpha_s>\alpha_t$) Than FRW (21, 12, 12) = E(21,22 ..., xp.1,1,...) is rational. So we might expect E(x) to be rational: the proof requires some geometric ideal: Caires a hyperplane H= {x | x u=0}, its associated habiquies are H= {x x y > 0} A convex phyhedral come is the intersection of a faithe number of halfspaces. Such a core is printed of it doesn't contain any lines (through the origin) H is a supporting hyperplane of a cone C of C=H+ or C=H-A face of Cis Colt for some supporting hiperplane H. a Fdinensimal face is walled an extreme ray a 1-volumensional face is called a facet A cone is simplicial if its dimension is the number of extreme rays lie if its cross section is a simplex) It's a fact that any pointed polyhedral cone has hintely many extreme rays - in other words, its cross-section is a polygon, and trangulating this polygon gives a triangulation of the cone: a selection of simplicial cones (o, oz, ... ox) such that Uoi = cone, faces of or are among the collection, and any two or next at one of their faces. The triangulation has a poset structure, under inclusion. Add in a maximal element ? Then we find that $\mu(\sigma,\tau) = \{ (-1)^{\dim \tau - \dim \sigma} \text{ if } \sigma \neq a \text{ facet of } C, \tau = 1 \}$ if os a facet of C, T=1.

The idea is that E consists of lattice points inside a core, and the triangulation reduces the case to a symplicial core, since $E(z) = -\sum_{\sigma \in E} \mu(\sigma, \hat{\Gamma}) E_{\sigma}(z)$ where $E_{\sigma} = \sigma \cap \mathbb{N}^m$.

The rigorous way to say that E_{σ} are the lattice points of a simplicial come is to define a simplicial monorid: a monorid F is simplicial if there are quasigenerations α_{i} , α_{i} experiments which are linearly independent and $F = \{y \in \mathbb{N}^{m} : n_{f} = a_{i} \times \dots + a_{K} \times x \text{ with } a_{i}, n \in \mathbb{N}, n > 0\}$

The Fo are simplicial, and we are take $\alpha := a$ vector in each extreme ray.

Set $D(F) = \{ y \in F : y = a, a + \dots + a, a \neq b \text{ for } 0 \leq a \}$. There are subsets of the interaction of a compact set with a direct set, and hence first.

Then $E_{\sigma}(x) = \sum_{\alpha \in D(E_{\sigma})} x^{\alpha} \frac{1}{1 - x^{\alpha}}$ (using multi-index notation)

We can analyse the denominator of E(x), when written in lowest terms. Such analysis shows that, when Ξ is the defining equations for weak magic squares (each row and plann sum to the same number), E(x, x), x > 1 in polynomial.

A de Bruijn sequence is a binary sequence of length 2 such that each length k-substring is distinct (including strings which wrap from the end to the start of the sequence) de Bruijn sequences exist H. To prove this, down the de Bruijn graph, whose vertices are k-1 binary strings, and x is joined to y if there is a k-string which starts with x and ends with y. Since every k-1 string can be continued in 2 ways and preceded in 2 ways, every vertex inceives two edges and sends two edges. So the deBruijn graph has an Eulerian circuit, which gives a deBruijn sequence.

The easiest way to construct such a sequence is to pardomly walk on the debruin graph, removing edges that have already been traversed. But we would like the sequence to have some structure to be this, we use a linear headback shift register:

Let $p(x) = a_0 + a_1 + \cdots + a_{k-1} + x^k$ be an ineducible phynomial, with $a_i \in \mathbb{F}_2$. Then, for any gives initial string $x_0, x_1, \cdots + x_{k-1}$, set $x_{i+k} = a_0 \times x_i + a_1 x_{i+1} + \cdots + a_{k-1} x_{i+k-1}$. If we write $\vec{x}_i = \begin{bmatrix} x_{i+1} \\ x_{i+k-1} \end{bmatrix}$, then the recurrence is given by $\vec{x}_i = \begin{bmatrix} x_{i+1} \\ a_0 & a_1 & \cdots & a_{k-1} \end{bmatrix} \vec{x}_{i-1}$.

Since $\vec{x}_i \in \vec{F}_2^*$ and \vec{F}_2^* is a finite set, the recurrence is periodic: $\vec{x}_{i+N} = \vec{x}_i$ for some i. N. Its the mutaix is invertible, $\vec{x}_N = \vec{x}_0$ (a priori, N may depend on \vec{x}_0 , but we can take the lavest common multiple of these Ns). ie $[a_0, a_1, \ldots, a_{n-1}]^n = id$.

 $\leq \times$ -1 is a multiple of the minimal polynomial of this matrix. This matrix has characteristic polynomial -q(z) which is inclucible, so the minimal polynomial is also -p(z).

From Gabris them, we know that the bast N for which p(z) divides x^2-1 is z^2-1 . Hence the shift register produces a sequence of largest z^2-1 with each k-substring distinct. In particular, p(z) = p(z) = p(z) distinct. In particular, p(z) = p(z) = p(z) description sequence.

The 3.E.S.T. theorem asserts that there are 2 to Bruin sequences of length 2th.

The point of a debruin sequence is that observing the sequence locally allows us to deduce our position is the sequence. This idea is being used in DNA sequencing and cryptography, and is the blaving telepathy magic trick:

Ask a deck of 2 to be cut at a random place, and the first fric cards drawn. Ask

the down of those 5 cards, and from this, beduce the values and suits of these five early.

One feedback polynomial that works well in this k=5 case is 2+2+1).

One can ask whether this trick can be performed by asking for the relative order of the five cards instead of their about. There is no known construction of such a sequence analogous to the linear feedback shift register, nor do we have extrinates for the number of such sequences.

Another generalisation is to ask for both the abouts and the relative order lbut of ferver than 5 cards). In we encode the position in a sequence by two properties of the sequence? And what if the early drawn are not associative? In we encode the position is a sequence by shering some subset that in a substring?

Finally, we an ask about higher dimensional versions. A two-dimensional variant is used on the paper for smart pers, which produce digital agrice of whats written.

A 2D example where every 202 square is distinct land all 16 possible 202 (100)

A 1D example where every 3-string is historict: