- **1.** Высота дерева $h = log_4 n, T(N) = 3T(\frac{n}{4} + C \Rightarrow a = 3, b = 4 \Rightarrow d = log_4 3)$ $f(n) = \Theta(n^{\log_4 3})$ $C = O(n^{\log_4 3 - \varepsilon}) \Rightarrow T(n) = \Theta(n^{\log_4 3})$
- **2.** Пусть сумма всех записанных на доске чисел изначально равна S. Поскольку на каждом шаге мы берем два числа a и b (a > b) и вычитаем из ab, то сумма S = S - b(a-b), то есть S(n) – монотонно убывающая функция. Т.к. S монотонно убывает и ограничена снизу (т.к. все числа на доске положительны), то, очевидно, процесс когданибудь остановится, т.к. S обязательно достигнет значения S_{min} .

Оставшиеся числа будут равны $d = HO \square(x_{1n})$, т.к. разность любых двух чисел кратна d и сами числа кратны d.

- **3.** 1) Складываем два числа сложность O(n)
 - 2) Возводим результат в квадрат сложнеть O(m+n) = O(2n) = O(n)
 - 3) Находим квадраты первого и второго чисел сложность O(m) и O(n) = O(n)
 - 4) Вычитаем из (2) квадраты сложность O(m+n) = O(n)
 - 5) Делим результат на 2 сложность O(n)
 - В итоге получаем сложность O(n)
- **4.** Самый простой способ нахождения НОК через НОД с помощью формулы: HOK(a, b) $= \frac{a \cdot b}{\text{HOД}(a,b)}.$

Для получения НОД существует алгоритм Евклида, который работает за $\Theta(n^2)$ (за счет операции деления с остатком).

Далее нам остается произвести операции умножения и деления, которые также совершаются за $\Theta(n^2)$.

Таким образом, суммарная сложность алгоритма – $\Theta(n^2)$.

5. Еще из школы мы знаем формулу $(a_1 + a_2 + \cdots + a_n)^2 = a_1^2 + a_2^2 + \cdots + a_n^2$ и плюс все попарные произведения.

Запишем алгоритм:

- 1) Вычисляем сумму всех чисел O(n)
- 2) Вычисляем сумму квадратов всех чисел O(n)
- 3) Вычисляем квадрат суммы всех чисел O(1)
- 4) Вычисляем полуразность (3) и (2) O(1)

Полученный результат будет равен искомой сумме. Таким образом, мы нашли значение необходимой суммы за O(n).

6. В этой задаче, очевидно, стоит использовать *master* теорему.

a)
$$a = 36, b = 6 \Rightarrow log_b a = 2 \Rightarrow F(n) = \Theta(n^2)$$

 $f(n) = n^2 = \Theta(n^2)$

В таком случае получаем ответ $T(n) = \Theta(n^2 log n)$

б)
$$log_b a = 1 \Rightarrow F(n) = \Theta(n)$$

$$f(n) = n^2 = \Omega(n^{\log_b a + \varepsilon})$$

B таком случае $T(n) = \Theta(n^2)$

B)
$$log_b a = 2 \Rightarrow F(n) = \Theta(n)$$

 $f(n) = \frac{n}{logn} = O(n^{log_b a - \varepsilon})$

$$f(n) = \frac{n}{\log n} = O(n^{\log_b a - \varepsilon})$$

B таком случае $T(n) = \Theta(n^2)$

- 7. По сути нам достаточно просто применить к массиву сортировку слиянием, считая каждую перестановку. (Соответственно если мы переставили сразу несколько элементов, то мы прибавляем к счетчику число этих элементов) $\sum 1kn_i$ (где k количество перестановок, а n_i количество элементов которые переставляют в i-той перестановке) будет равна искомому количеству инверсий.
- 8. Воспользуемся мастер-теооремой. Здесь будет 3 случая:
 - 1) Начнем с того, что $aT_1\frac{n}{b} = \Theta(n^{log_b a}) = aT_2\frac{n}{b}$
 - 2) Из (1) и из $f(n) = \Theta(g(n)) \Rightarrow T_1(n) = \Theta(T_2(n))$.

Задачу можно решать считая, что их нет, т.е. считать, что на вход T(n) могут подаваться дробные параметры. Это облегчит задачу. Однако для того, чтобы лучше разобраться в теме, рекомендуем решать задачи с учётом округлений.

9. Найдите Θ -асимптотику рекуррентной последовательности T(n), считая что T(n) ограничено константой при достаточно малых n:

В этой задаче везде используется master-теорема, так что высказывания о том, что я использую ее, я, пожалуй, опущу

a)
$$T(n) = 3T(\lfloor n/4 \rfloor) + T(\lceil n/6 \rceil) + n;$$

 $T(n) = \Theta(n^{\log_4 3}) + \Theta(n^{\log_6 1}) + \Omega(n^{\log_4 3 + \varepsilon}) = \Theta(f(n)) = \Theta(n)$

6)
$$T(n) = T(|\alpha n|) + T(|(1 - \alpha)n|) + \Theta(n) \quad (0 < \alpha < 1);$$

В силу симметрии и коммутативности суммы можем считать $\alpha < \frac{1}{2}$

В таком случае длина самой короткой ветви будет равна $log_{\alpha}n$. Длина самой длиной ветви $-log_{1-\alpha}n$.

Тогда справедливы неравенства $\log_{\alpha} n \cdot \Theta(n) \leqslant T(n) \leqslant log_{1-\alpha} n \cdot \Theta(n)$, т.е. $T(n) = \Theta(nlogn)$

в)
$$T(n) = T(\lfloor n/2 \rfloor) + 2 \cdot T(\lfloor n/4 \rfloor) + \Theta(n);$$
 Для $T(\frac{n}{2})$ сложность $O(n^{log_2 1})$. Для $2T(\frac{n}{4})$ сложность $O(n^{log_4 2})$. Т.к. $f(n) = \Theta(n) = \Omega(n^{log_4 2 + \varepsilon_1} = \Omega(n^{log_2 1 + \varepsilon_2}))$, то $T(n) = \Theta(nlog n)$.

г)
$$T(n)=27T(\frac{n}{3})+\frac{n^3}{\log^2 n}.$$
 Для $27T(\frac{n}{3})$ имеем $n^{\log_3 27}=n^3.$ Т.к. $f(n)=O(n^{3-\varepsilon}),$ то $T(n)=\Theta(n^3).$

- **10.** На вход подаются натуральные числа n, p, n < p, p простое. Предложите алгоритм, который за $O(n + \log p)$ арифметических операций вычисляет массив длины n (i пробегает значение от 1 до n):
- a) invfac[i] = $(i!)^{-1} \pmod{p}$;
- 6^*) inv[i] = $(i)^{-1} \pmod{p}$.
- **11*** Оцените трудоемкость рекурсивного алгоритма, разбивающего исходную задачу размера n на n задач размеров $\lceil \frac{n}{2} \rceil$ каждая, используя для этого $\Theta(n)$ операций.
- 1. Можно считать n степенью двойки.

Здесь мы имеем $T(n) = nT(\frac{n}{2})$.

Высота дерева равна log_2n .

Количество вызовов на i-том уровне: $n(\frac{n}{2})^i$

В итоге имеем
$$n \cdot \sum_{0}^{log_2 n} (\frac{n}{2})^i = \Theta(n \cdot \frac{n^{log_2 n}}{2^{log_2 n}}) = \Theta(n^{log_2 n}).$$

2. Решите для произвольного n.

Аналогично предыдущему пункту, но при делении на 2 просто всегда округляем вверх.