Vorlesungsmitschrift SS 2011

DISKRETE MATHEMATIK

von Steve Göring Christian Koob

email: stg7@gmx.de

Inhaltsverzeichnis

1 AI	Abzählungen			
1.	l Eleme	ntare Abzählprinzipien		
	1.1.1	Satz		
	1.1.2	Satz -Verallgemeinerte Gleichheitsregel		
	1.1.3	Regel vom doppelten Abzählen		
	1.1.4	Handshak Lemma		
1.5	2 Wört	er, Funktionen und geordnete Auswahlen 5		
	1.2.1	Satz:		
	1.2.2	Satz		
	1.2.3	Satz		
1.3	3 Teilme	engen und ungeordnete Auswahlen		
	1.3.1	Satz		
	1.3.2	Satz: Binominalrekursion		
	1.3.3	Satz: Symetrie		
	1.3.4	Satz: Anzahl der Multimengen		
1.4	4 Binon	nialkoeffizienten		
	1.4.1	Satz		
	1.4.2	Satz		
	1.4.3	Satz		
	1.4.4	Satz: (Summation über Spalten)		
	1.4.5	Satz: (Summation über Diagonalen)		
	1.4.6	Korollar		
	1.4.7	Negation von Binomialkoeffizienten		
	1.4.8	Korollar		
	1.4.9	Vandermonde Idendität		
	1.4.10			
	1.4.11	Satz		
1.5		ionen		
	1.5.1	Satz		
	1.5.2	Satz		
	1.5.3	Satz		
	1.5.4	Satz		
	1.5.5	Satz		
1.0		ntationen		
	1.6.1	Satz		
	1.6.2	Satz: Rekursive Definition von $s_{n,k}$ (Stirlingzahlen erster Art) 21		

Inhaltsverzeichnis

		1.6.3	Satz	23				
		1.6.4	Satz: Multinomialkoeffizienten	24				
		1.6.5	Satz: Multinomialsatz	25				
1.7		Prinzip der Inklusion und Exlusion						
		1.7.1	Satz: Inklusion und Exklusion	26				
		1.7.2	Korollar	26				
		1.7.3	Satz: Derangements	27				
		1.7.4	Korollar	27				
	1.8	Rekur	sionen und erzeugende Funktionen	27				
		1.8.1	Satz: Derangementzahlen genügen der Rekursion	28				
		1.8.2	Satz	28				
		1.8.3	Satz	33				
		1.8.4	Satz	33				
		1.8.5	Satz	34				
2	Stru	Struktur und Symetrie 37						
	2.1	Endlic	Endliche projektive Ebenen und lateinische Quadrate					
		2.1.1	Lemma	40				
		2.1.2	Satz	40				
		2.1.3	Satz (Bruch,Ryser):	42				
		2.1.4	Satz	43				
		2.1.5	Satz	43				
		2.1.6	Satz	45				
		2.1.7	Satz: Maximale Anzahl paarweiser orthogonaler LQs der Ordnung n	46				
		2.1.8	Satz	46				
3	Kon	ombinatorische Spiele 4						
	3.1	•						
	3.2		1	49				
	3.3	Satz v	von Zermelo 1912	51				
		3.3.1	Methode zur Bestimmung von Gewinnstrategien	52				
	3.4	Satz		53				

Hinweise

Im Script werden für Zahlenbereiche keine doppelschrafierten Buchstaben verwendet, $\operatorname{d.h.:}$

$$\mathbb{N}=N, \mathbb{R}=R, \mathbb{C}=C$$

1 Abzählungen

Vorlesung 1

1.1 Elementare Abzählprinzipien

Schubfachprinzip

(engl. pigeon-hole prinziple)

Wenn m Objekte auf n Schubfächer verteilt werden und m > n, dann existierst mindestens ein Schubfach mit mehr als einem Objekt

Verallgemeinertes Schubfachprinzip

Wenn m
 Obkjekte auf n Schubfächer verteilt werden, dann exisitiert mindestens ein Schubfach mit mindesten
s $\lceil \frac{m}{n} \rceil$ Objekten

- $\lceil x \rceil$ ist die kleinste ganze Zahl $\geq x$
- |x| ist die größte Zahl $\leq x$
- $[n] := \{1, 2, 3, ..., n\}$

Beispiel 1

```
Sei A \subseteq [2n] mit |A| \ge n+1 für n \ge 1, dann existieren Zahlen x \ne y \in A mit ggt(x,y)=1 Schubfächer S_1,...,S_n Zuordnungsvorschrift: x \in A \mapsto S_{\lceil \frac{x}{2} \rceil} Nach Schubfachprinzip existiert S_i mit mindestens 2 Elementen 2_{i-1} und 2_i \to ggt(2_{i-1},2_i)=1
```

Beispiel 2

```
Sei A\subseteq [2n] und |A|\geq n+1 für n\geq 1, dann existieren x\neq y mit x|y \{n+1,n+2,....,2n\} betrachte Quotient \frac{y}{x}<2 Schubfächer S_1,S_3,S_5...,S_{2n-1} Zuordnungsvorschrift: x=2^k\cdot u, k\geq 0, u ungerade x=2^k\cdot u\to S_u x,y\in S_u\Rightarrow x=2^k\cdot u, y=2^l\cdot u für l>k gilt: \frac{x}{y}=2^{l-k},
```

Summenregel

Seien A,B Mengen mit $A\cap B=\emptyset$, dann ist $|A\cup B|=|A|+|B|.$ (falls $A\cap B\neq\emptyset$: $|A\cup B|=|A|+|B|-|A\cap B|$) Seien $A_1,...,A_n$ Mengen mit $A_i\cap A_j=\emptyset$ für $i\neq j$ dann ist: $|\bigcup_{i=0}^n A_i|=\sum_{i=0}^n |A_i|$

Produktregel

Seien A,B Mengen, dann ist $|A \times B| = |A| \cdot |B|$. Seien $A_1, ..., A_n$ Mengen, dann ist: $|A_1 \times ... \times A_n| = \prod_{i=1}^n |A_i|$

$$f: X \mapsto Y$$

injektiv Jedes Element aus Y hat höchstens ein Urbild

surjektiv Jedes Element aus Y hat ein Urbild

bijektiv injektiv und surjektiv (jedes element aus Y hat genau ein Urbild)

Gleichheitsregel

Seien A,B Mengen, dann ist

|A| = |B| (gleichmächtig) \Leftrightarrow bijektive Abbildung $f: A \to B$ exisitiert. Es gilt $P \subseteq N \subseteq Q$ aber |P| = |N| = |Q| (P: Menge der Primzahlen, N ohne 0)

 $|A| \leq |B|$ falls injektive Abbildung $f: A \mapsto B$ existiert.

Es gilt: Falls $|A| \leq |B|$ un $|B| \leq |A|$, dann existiert bijektive Abbildung $f: A \mapsto B$, also |A| = |B|.

$$|A| < |B| :\Leftrightarrow |A| \le |B| \text{ und } |A| \ne |B|$$

1.1.1 Satz

Sei M Menge, dann ist |M| < |R(M)| mit $R(M) = \{A | A \subseteq M\}$

$$R(\emptyset) = \{\emptyset\}$$

$$|\emptyset| = 0 < |R(\emptyset) = 1|$$

Beweis: Angenommen es gibt Bijektion $f: M \to R(M)$

gesucht: $A \subseteq M$ mit $f^{-1}(A) = \emptyset$

$$A:=\{x\in M|x\not\in f(x)\}$$
 Dann gilt $f(x)\neq A$ für alle $x\in M$ denn genau eine der Mengen $f(x),A$ enthält $x\to \text{Widerspruch}\Rightarrow |M|\neq |R(M)|$ Da injektive Abbildung $g:M\mapsto R(M)$ existiert mit $g(x)=\{x\}$ ist $|M|\leq |R(M)|$ und $|M|\neq |R(M)|$ also:
$$|M|<|R(M)|\text{ q.e.d}$$

1.1.2 Satz -Verallgemeinerte Gleichheitsregel

Sei $f:A\to B$ Abbildung mit $|f^{-1}(b)|=k$ für alle $b\in B$ dann ist: $|A|=k\cdot |B|$ Beweis folgt später!

charakteristische Funktion/Vektor

Für
$$S \subseteq M$$
 ist $\chi_s : M \to \{0,1\}$ mit
$$\chi_s(x) := \begin{cases} 1 & \text{falls } x \in S \\ 0 & \text{sonst} \end{cases}$$
 die charakteristische Funktion von S. Für $M = [n]$ betrachte Bijektion
$$\beta : R([n]) \to \{0,1\} \times \ldots \times \{0,1\} = \{0,1\}^n$$

$$\beta(S) = \{\chi_s(1), \chi_s(2), \ldots, \chi_s(n)\}$$

$$\beta(S)$$
 heißt der charackteristische Vektor von S

Beispiel

$$\begin{split} n &= 10 \\ S &= \{1,3,4,7\} \\ \beta(S) &= (1,0,1,1,0,0,0,1,0,0,0) \\ \Rightarrow |R([n])| &=_{\text{Gleichheitsregel}} |\{0,1\}^n| =_{Produktregel} |\{0,1\}|^n = 2^n \end{split}$$

Inzidenzsystem (A,B,I)

$$\begin{split} I &\subseteq A \times B \\ (a,b) &\in I \leftrightarrow aIb \\ \\ r(a) &:= |\{b \in B \mid aIb\}| \\ \\ r(b) &:= |\{a \in A \mid aIb\}| \end{split}$$

Vorlesung 2

Inzidenzrelation

Ein Inzidenzsystem (A,B,I), $I \subseteq A \times B$ mit I Inzidenzrelation

Beispiel:
$$A = B = [4], (a, b) \in I \leftrightarrow a|b; (a, b) \in I \leftrightarrow aIb$$

$$r(a) := |\{b \in B | aIb\}|$$

$$r(b) := |\{a \in A | aIb\}|$$

$$A = \{a_1, ..., a_n\}$$
 endliche Menge

$$B = \{b_1, ..., b_k\}$$
 endliche Menge

Inzidenzmatrix $M = (M_{ij}); 1 \le i \le n; 1 \le j \le k$

$$m_{ij} := \{ \begin{pmatrix} 1 & falls(a_i, b_j) \in I \\ 0 & sonst \end{pmatrix})$$

ite Zeile : charakteristischer Vektor der $r(a_i)$ bestimmenden Menge

jte Spalte: charakteristischer Vektor der $r(b_i)$ bestimmenden Menge

$$\mathbf{z.B.:} \ M = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

1.1.3 Regel vom doppelten Abzählen

Seien A,B endliche Mengen und (A,B,I) ein Inzidenzsystem, dann ist $\sum r(a) = |I| = \sum r(b)$

Beweis:

 $\sum r(a)$ ist die Summe über die Zeilen der Matrix M $\sum r(b)$ ist die Summe über die Spalten von M ${\rm q.e.d.}$

Produktregel

$$I = A \times B$$

Es gilt:

$$|A| \cdot |B| = |A \times B| = |B| \cdot |A|$$

1.1.4 Handshak Lemma

Die Anzahl derer, die am Ender einer Party ungerade vielen Gästen die Hand geschüttelt haben, ist gerade.

Beweis:

Moddelierung als Inzidenzsystem (P,H,I)

P: Partygäste

H: Handschüttelvorgänge

 \mathbf{p} \mathbf{l} \mathbf{h} \Leftrightarrow \mathbf{p} am Handschüttelvorgang \mathbf{h} beteiligt

Keine wiederholten Handschüttelvorgänge.

H Teilmenge der 2 - Elementigen Teilmenge von P

Nach Regel vom Doppelten Abzählen ist:

$$\sum_{p \in P} r(p) = \sum_{h \in H} r(h) = 2 \cdot |H|$$

Denn an Jedem Handschüttelvorgang sind genau 2 Gäste beteiligt.

$$P = P_0 \cup P_1$$

 P_0 Menge der Partgäste, die an gerade vielen h's beteiligt sind

 P_1 Menge der Partgäste, die an ungerade vielen h's beteiligt sind

$$\sum_{p \in P} r(p) = \sum_{p \in P_0} r(p) + \sum_{p \in P_1} r(p)$$

$$\Rightarrow \sum_{p \in P_1} = 2 \cdot |H| - \sum_{p \in P_0} r(p)$$

Anzahl der Summanden Links ist gerade, also ist $|P_1|$ gerade

Beweis der Gleichheitsregel 1.1.2

Sei $f: A \to B$ Abbildung mit $|f^{-1}(b)| = k$ für alle $b \in B$ dann ist: $|A| = k \cdot |B|$

Beweis:

Bilde Inzidenzssystem auf $A \times B$ mit $(a, b) \in I \leftrightarrow f(a) = b$

Regel vom doppelten Abzählen liefert:

$$\sum_{a \in A} r(a) = |A| = \sum_{binB} r(b) = k \cdot |B|$$

1.2 Wörter, Funktionen und geordnete Auswahlen

Beispiel: Wieviele 8 - Buchstabige Wörter über $\{A, B, ..., Z\}$ existieren

Äquivalentes Problem Wieviele Funktionen $f:[8] \to \{A,B,..,Z\}$ existieren Bijektion $f \leftrightarrow f(1), f(2), f(3)...f(8)$

1.2.1 Satz:

Seien X,Y endliche Mengen mit |X|=k, |Y|=n Dann gibt es n^k verschiedene Funktionen $f:X\to Y$

Beweis: Sei $X = \{x_1, ..., x_k\}$ betrachte Bijektion $f \leftrightarrow (f(x_1, f(x_2)..., f(x_k))$

Nach Gleichheitsregel ist die Anzahl der Funktionen gleich der Anzahl der k-Tupel über Y, also gleich

$$\underbrace{|Y\times\ldots\times Y|}_k=|Y|^k=n^k\text{ q.e.d.}$$

injektive Abbildungen: $f: X \to Y, |X| = k, |Y| = n$

fallende Faktorielle: $n^{\underline{k}} := n \cdot (n-1) \cdot ... \cdot (n-k+1)$

steigende Faktorielle: $n^{\bar{k}} := n \cdot (n+1) \cdot \ldots \cdot (n+k-1)$

$$n^{\underline{0}} = n^{\bar{0}} = 1$$

1.2.2 Satz

Es gibt $n^{\underline{k}}$ injektive Abbildungen $f: X \to Y$

Beweis mit Induktion über k:

Für k = 0 ist die Abbildung $f : \emptyset \to Y$ injektiv

Sei $k \ge 1$ und $X = \{x_1, ..., x_k\}$

für jedes $y \in Y$ betrachte Injektion mit

$$f(x_k) = y$$

Dann gibt es genau so viele Injektive Abbildungen $f: X \setminus \{x_k\} \to Y \setminus \{y\}$, also $(n-1)^{k-1}$

Da Jedes der n möglichen Bilder $f(x_k)$ verschiedene Injektionen generiert, erhalten wir $n \cdot (n-1)^{\underline{k-1}} = n^{\underline{k}}$ q.e.d.

|X| = k = |Y| = n, Bijektion $f: X \to X$ heißt Permutation.

1.2.3 Satz

Die Anzahl der bijektiven Abbildungen $f: X \to Y$ ist n!

Beweis:

Eine Bijektive Abbildung ist Injektiv und Exisiteirt, falls k = n. Damit gibt es nach Satz 1.2.2 $n^{\underline{k}}=n^{\underline{n}}=n!$ viele Bijjektionen

1.3 Teilmengen und ungeordnete Auswahlen

Binomialkoeffizient:

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n^k}{k!}$$

1.3.1 Satz

Anzahl der k
 Elementigen Teilmengen einer n Elementigen Menge ist $\binom{n}{k}$

Beweis

Sei X eine Menge mit |X|=n betrachte Injektionen $f:[k]\to X$ Für Jedes f ist S=Bild(f) eine k-elementige Teilmenge von X. Wieviele Injektive f mit Bild(f)=S gibt es? Genau soviele , wie Bijektionen $g:[k]\to S$ also k! viele Damit ist die Anzahl k-Elemtngier Teilmengen gleich $\frac{n^k}{k!}=\binom{n}{k}$

Definition

 $\binom{n}{k}$ Menge der k-lementigen Teilmengen von X

Vorlesung 3

- Charakteristischer Vektor einer k-Teilmenge ist ein Vektor der Länge n mit genau k Einsen.
- $\binom{n}{k}$ ist die Anzahl der $\{0,1\}$ Wörter der Länge n mit genau k Einsen
- $\binom{n}{k}$ Anzahl der k-fachen ungeordneten Auswahlen aus n-Menge

Idenditäten für Binomialkoeffizienten

1.3.2 Satz: Binominalrekursion

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Beweis

Sei X Menge mit |X| = n, dann ist:

$$\bullet \ \binom{n}{k} = |\binom{X}{k}| = |\{S \in \binom{X}{k} : x \notin S\}| + |\{S \subseteq \binom{X}{k} : x \in S\}|$$

$$\bullet = |\binom{X \setminus \{x\}}{k}| = |\binom{X \setminus \{x\}}{k}| + |\binom{X \setminus \{x\}}{k-1}|$$

$$\bullet = |\binom{n-1}{k}| + |\binom{n-1}{k-1}|$$

• oder alternativer Beweis:

$$\bullet \ \binom{n-1}{k} + \binom{n-1}{k-1}$$

$$\bullet = \frac{(n-1)^k}{k!} + \frac{(n-1)^{k-1}}{(k-1)!}$$

$$\bullet = \frac{(n-1)^{\underline{k}} + k(n-1)^{\underline{k}-1}}{k!}$$

$$\bullet = \frac{n^{\underline{k}}}{k!} = \binom{n}{k}$$

1.3.3 Satz: Symetrie

$$\binom{n}{k} = \binom{n}{n-k}$$

Beweis

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n!}{(n-k)! \cdot k!} = \binom{n}{n-k}$$

Ungeordnete Auswahlen mit Wiederholung und Multimengen

Cantor um 1890: Menge ist Zusammenfassung wohlunterschiedener Objekte unserer Anschauung oder unserers Denkens

Multimenge lässt gleiche Elemente zu:

Bsp: $\{1, 1, 2, 2, 3\}$ über Grundmenge $\{1, 2, 3, 4\}$

1 und 2 mit Vielfachheit (Multiplizität) 2

3 hat Vielfachheit 1

4 hat Vielfachheit 0

1.3.4 Satz: Anzahl der Multimengen

Anzahl der k-Elementigen Multimengen über einer n-Menge für $n \geq 1$ ist:

$$\binom{n+k-1}{k}$$

Beweis:

Sei
$$X = \{x_1, x_2, ..., x_k\}$$
 Grundmenge

Konstruiere Bijektionen zwischen k-Multimengen und $\{0,1\}$ -Wörter der Länge n+k-1 mit genau k Einsen

$$f(M) = \underbrace{1...1}_{m_1} \underbrace{01...1}_{m_2} \underbrace{0....0}_{m_n} \underbrace{1...1}_{m_n}$$

 m_i : Multiplizität von $x_i \in M$

Nach Gleihheitsregel gibt es genau so viele k-Multimengen von X wie Wörter über $\{0,1\}$ der Länge n+k-1 mit genau k Einsen, also:

$$\binom{n+k-1}{k}$$
 viele.

Anzahl der Auswahl von k Objekten aus n-Menge

- mit Wiederholdung:
 - geordnet n^k
 - ungeordnet $\binom{n+k-1}{k}$
- Ohne Wiederholung
 - geordnet $n^{\underline{k}}$
 - ungeordnet $\binom{n}{k}$

1.4 Binomialkoeffizienten

Binomialsatz

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

1.4.1 Satz

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

Beweis

Binomialsatz mit x = y = 1

1.4.2 Satz

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

Beweis

Binomialsatz x = -1, y = 1

pascalsches Dreieck

Verallgemeinerter Binomialsatz

$$(x+y)^z = \sum_{k=0}^{\infty} {z \choose k} x^k y^{z-k}$$
$$(1+x)^z = \sum_{k=0}^{\infty} {z \choose k} x^k$$

1.4.3 Satz

Für alle
$$z \in C$$
 ist
$$\binom{z}{k} = \binom{z-1}{k} + \binom{z-1}{k-1}$$

Beweis

- 1. Fall $k \le 0$ - k = 0 : 1 = 1 + 0- k < 0 : 0 = 0 + 0
- 2. Fall k > 0Betrachte Polynom $P(x) = \binom{x}{k} - \left[\binom{x-1}{k} + \binom{x-1}{k-1} \right]$

P(x) hat Grad $\leq k$ aber unendlich viele Nullstellen (nach 1.3.2). Da nach Fundamentalsatz der Algebra jedes Polynom vom Grad $k \geq 0$ genau k Nullstellen über C hat, ist P(x) Nullpolynom

1.4.4 Satz: (Summation über Spalten)

Für ganze Zahlen
$$n, k \ge 0$$
 gilt:
$$\sum_{m=0}^{n} {m \choose k} = {n+1 \choose k+1}$$

Beweis: Induktion nach n:

IA
$$(n = 0)$$
: $\binom{m}{k} = \binom{0}{k} = \binom{1}{k+1} = \begin{cases} 1 & k = 0 \\ 0 & k > 0 \end{cases}$

IS
$$(n > 0)$$
: $\sum_{m=0}^{n} {m \choose k} = \sum_{m=0}^{n-1} {m \choose k} + {n \choose k} =_{IV} {n \choose k+1} + {n \choose k} =_{1.3.2} {n+1 \choose k+1}$

1.4.5 Satz: (Summation über Diagonalen)

Für ganze Zahlen $m, n \geq 0$ gilt:

$$\sum_{k=0}^{n} {m+k \choose k} = {m+n+1 \choose n}$$

$$\sum_{k=0}^{n} {m+k \choose k} =_{1.3.3} \sum_{k=0}^{n} {m+k \choose m} = \sum_{k=-m}^{n} {m+k \choose m} = \sum_{i=0}^{n+m} {i \choose m} =_{1.4.4} {n+m+1 \choose m+1} =_{1.3.3}$$

$${m+n+1 \choose m}$$
Vorlesung 4

1.4.6 Korollar

Für
$$z \in C$$
 und $n \in N_0$ gilt:

$$\sum_{k=0}^{n} {z+k \choose k} = {z+n+1 \choose n}$$

$$(-z)^{\underline{k}} = (-z) \cdot (-z-1) \cdot \dots \cdot (-z-k+1) = (-1)^k \cdot (z) \cdot (z+1) \cdot \dots = (-1)^k \cdot z^{\overline{k}}$$

1.4.7 Negation von Binomialkoeffizienten

$$\binom{-z}{k} = (-1)^k \binom{z+k-1}{k}$$

Beweis:

$$z^{\bar{k}} = z(z+1)...(z+k-1) = (z+k-1)^{\underline{k}}$$

$$\binom{-z}{k} = \frac{(-z)^{\underline{k}}}{k!} = \frac{(-1)^k \cdot z^{\bar{k}}}{k!} = \frac{(-1)^k (z+k-1)^{\underline{k}}}{k!} = (-1)^k \binom{z+k-1}{k}$$

1.4.8 Korollar

Falls $z \in C$, dann ist:

$$\sum_{k=0}^{n} (-1)^k \binom{z}{k} = (-1)^n \binom{z-1}{n}$$

Beweis:

$$\sum_{k=0}^{n} (-1^{k}) \binom{z}{k} =_{1.4.7} \sum_{k=0}^{n} \binom{k-z-1}{k} =_{1.4.6} \binom{n-z}{n} =_{1.4.7} (-1)^{n} \binom{z-n+n-1}{n}$$

1.4.9 Vandermonde Idendität

Beweis:

zunächst für $z_1, z_2 \in N_0$, für C in Übung:

Seien S_1,S_2 disjunkte Mengen mit $|S_1|=z_1,|S_2|=z_2$

Betrachte n-Teilmengen
$$A \subseteq S_1 \cup S_2$$
 (gibt $\binom{z_1+z_2}{n}$ viele)

klassifiziere Teilmengen nach $k := |A \cap S_1|$

Aus der Disjunktheit folgt: $|A \cap S_2| = n - k$

Es gibt
$$\binom{z_1}{k}\binom{z_2}{n-k}$$
 viele m-Mengen A mit $|A\cap S_1|=k$

$$\Rightarrow \binom{z_1+z_2}{n} = |\binom{S_1 \cup S_2}{n}| = \sum_{k=0}^n \binom{z_1}{k} \binom{z_2}{n-k}$$

Abschätzungen für Binomialkoeffizienten

$$\binom{n}{k} = \frac{n}{k} \cdot \frac{n-1}{k-1} \dots \dots \frac{n-k+1}{1} \underbrace{\geq}_{\text{da } \frac{n}{k} \text{ kleinster Faktor}} (\frac{n}{k})^k$$

1.4.10 Abschätzung der Fakultät

$$e(\frac{n}{e})^n \le n! \le en(\frac{n}{e})^n, n \ge 1$$

Genauer ist die Stirlingformel:

$$n! \approx (1 + o(1))\sqrt{2\pi n} (\frac{n}{e})^n$$

Beweis: Induktion nach n

IA: n = 1: 1 = 1 = 1 Induktionsanfang gesichert.

IS: $n \ge 1$:

$$n! = n(n-1)! \underbrace{\leq}_{Ind.} n \cdot e(n-1) (\frac{n-1}{e})^{n-1} = n \cdot e(1 - \frac{1}{n})^n n^n (\frac{1}{e})^{n-1} \underbrace{\leq}_{1 + x \leq e^x} en(e^{-\frac{1}{n}})^n n^n (\frac{1}{e})^{n-1} = en(\frac{n}{e})^n$$

Untere Schranke: siehe Übung

1.4.11 Satz

$$\binom{n}{k} \le (\frac{en}{k})^k$$

Beweis:

Der Binomialsatz liefert:

$$\sum_{i=0}^{k} \binom{n}{i} x^i \le (1+x)^n \le e^{xn}$$

Teile Ungleichung durch x^k und setze $x=\frac{k}{n}\geq 0$

$$\binom{n}{k} \le \sum_{i=0}^k \binom{n}{k} \le \frac{1}{x^k} \sum_{i=0}^k \binom{n}{i} x^i \le \frac{e^{xn}}{x^k} \underbrace{= \frac{k}{n}}_{x = \frac{k}{n}} (\frac{ne}{k})^k \text{ q.e.d.}$$

1.5 Partitionen

Mengenpartitionen

Eine Partition Einer Menge X ist Menge $\{X_i|i\in I\}$ von Teilmengen $\emptyset\neq X_i\subseteq X$, so dass:

(a)
$$\bigcup_{i \in I} X_i = X$$

(b)
$$X_i \cap X_j = \emptyset$$
 für $i \neq j$

Wählen oft $I = [k], X_i$ heißen <u>Teile</u>

1.5.1 Satz

 $\mathrm{Sei}S_{n,k}$ Anzahl der Partitionen einer
n-Menge in k
 Teile, dann gilt:

$$S_{0,0} = 1$$

(a)
$$S_{n,0} = 0 = S_{0,k}; S_{n,1} = 1 = S_{n,n}$$

(b)
$$S_{n,k} = S_{n-1,k-1} + k \cdot S_{n-1,k}$$
 (Stirlingrekursion 2.ter Art)

(c)
$$S_{n,2} = 2^{n-1} - 1$$

(d)
$$S_{n,n-1} = \binom{n}{2}$$

 $S_{n,k}$ heißen Stirlingzahlen 2.ter Art

Beweis:

- (a) Klar nach Definition
- **(b)** Sei $\rho_{n,k}$ Menge der Partitionen von [n] in k Teile. Für $x \in [n]$ zerlege $\rho_{n,k} = T_1 \cup T_2, T_1 \cap T_2 = \emptyset$, wobei T_1 aus den Partitionen besteht, die $\{x\}$ als Teil enthält, und die restlichen Partitionen T_2 .

Es gilt $|T_1| = S_{n-1,k-1}$, denn aus jeder Partition von T_1 ensteht durch Löschen des Teils $\{x\}$ Partition aus $\rho_{n-1,k-1}$, die durch Hinzufügen von $\{x\}$ rekonstruierbar ist (Bijektion $T_1 \leftrightarrow \rho_{n-1,k-1}$)

Betrachte Partitionen aus T_2 . Ordne sie der Partition aus $\rho_{n-1,k}$ zu, die durch Löschen von x aus seinen Teil entsteht.

Bsp:
$$n = 7, x = 7$$
 Partition: $\{\{1, 3, 5\}\{2, 6\}\{4, 7\}\} \rightarrow \{\{1, 3, 5\}\{2, 6\}\{4\}\}$

beachte, dass das Teil von x nicht leer wird.

Dann werden jeder Partition $P \in \rho_{n-1,k}$ genau k Partitionen aus T_2 zugeordnet

Zuordnung ist Abbildung mit $f^{-1}(P) = k \forall P \in \rho_{n-1,k}$

mit verallgemeinerter Gleicheitsregel folgt:

$$S_{n,k} = |T_1| + |T_2| = S_{n-1,k-1} + k \cdot S_{n-1,k}$$

Vorlesung 5

Beispiel

$$X = \{1, 2, 3, 4\}$$

 $k =$

•
$$\{\{1,2,3,4\}\} \to 1 \text{ Teil} = S_{4,1}$$

•
$$\{\{1\}, \{2, 3, 4\}\}.... \to 4 \text{ Teile}$$

 $\{\{1, 2\}, \{3, 4\}\}.... \to 3 \text{ Teile} = S_{4,2} = 7$

- $\{\{1,2\},\{3\},\{4\}\}\dots \to 6 \text{ Teile} = S_{4,3}$
- $\{\{1\}, \{2\}, \{3\}, \{4\}\} \to 1 \text{ Teil} = S_{4.4}$

Beweis zu Satz 1.5.1

(c) Partition von [n] in genau 2 Teile haben die Form $\{A, [n] \setminus A\}$.

Da es 2^n Teilmengen $A \subseteq X$ gibt, gibt es nur 2^{n-1} 2. elementige Mengen $\{A, [n] \setminus A\}$, von dennen alle außer $\{\emptyset, [n]\}$ zulässig sind.

(d) Sobald der einzige 2 elementige Teil festgelegt ist, sind die restlichen Teile eindeutig bestimmt. $S_{n,n-1} = \binom{n}{2}$

q.e.d

Stirling Dreieck zweiter Art

2 n|k0 1 3 4 5 1 0 0 0 0 0 0 1 0 1 0 0 0 0 2 0 1 1 0 0 3 0 1 3 1 0 0 4 0 1 7 6 1 5 0 1 15 2510 1

Rückblick

$$\begin{aligned} |X| &= k, |Y| = n \\ |Abb(X,Y)| &= n^k \\ |INJ(X,Y)| &= n^{\underline{k}} \\ |Surj(X,Y)| &= n! \cdot S_{k,n} \end{aligned}$$

Urbildfunktionen $f^{-1}(y_i)$ heißen Partition von X in genau k nichtleere Teile.

Umgekehrt wird jede Partition von X durch k! viele surjektive Abbildungen erzeugt, denn die Bilder können beliebig permutiert werden.

1.5.2 Satz

Für |X| = n, |Y| = k gibt es $k! \cdot S_{n,k}$ surjektive Abbildungen $f: X \to Y$.

1.5.3 Satz

Für
$$r, n \in N_0$$
 ist
$$r^n = \sum_{k=0}^n S_{n,k} \cdot r^k$$

Beweis:

Seien R, X Mengen mit |R| = r, |X| = n.

Dann ist

$$r^{n} = |Abb(X, R)|$$

$$= \sum_{Y \subseteq R} |SURJ(X, Y)|$$

$$= \sum_{k=0}^{r} \sum_{|Y|=k} |SURJ(X, Y)|$$

$$= \sum_{k=0}^{r} {r \choose k} k! S_{n,k}$$
$$= \sum_{k=0}^{r} r^{\underline{k}} S_{n,k}$$
$$= \sum_{k=0}^{n} S_{n,k} r^{\underline{k}}$$

Polynommethode liefert Aussage auch für beliebige $r \in C, n \in N_0$

Zahlpartitionen

Wieviele Lösungen $x_1 + x_2 + ... + x_k = n$ mit positiven ganzen Zahlen gibt es?

Wieviele Möglichkeiten gibt es, 10c Wechselgeld rauszugeben?

Zahlpartitionen von $n \in N_0$:

Darstellung
$$n = n_1 + ... + n_k$$
 mit $n_1 \ge n_2 \ge ... \ge n_k \ge 1$

Partitionszahlen $P_{n,k}$: Anzahl der Darstellungen von
n mit genau k nichtnegativen Summanden

- $P_{0,0} = 1$
- $P_{n,0} = 0$
- $P_{n,k} = 0$ für k > n
- $P_{n,1} = P_{n,n} = 1$

Beispiel

$$6 = n_1 + n_2 + n_3$$

 $6 = 4 + 1 + 1 = 3 + 2 + 1 = 2 + 2 + 2$

1.5.4 Satz

Für
$$1 < k < n$$
 ist
$$P_{n,k} = \sum_{i=1}^{k} P_{n-k,i}$$

Beweis:

$$n=n_1+..+n_k$$
mit $n_1\geq ..\geq n_k$
$$n-k=(n_1-1)+(n_2-1)+...+(n_k-1) \mbox{ (enthällt Summanden}=0 \mbox{)}$$

Jede Darstellung von
n mit k Summanden liefert Darstellung von
n-k mit \leq k Summanden

Wenn k bekannt ist ursprüngliche Darstellung von n eindeutig rekonstruierbar.

$$P_{n,k} = \sum_{i=1}^{k} P_{n-k,i}$$

Partitionsdreieck

n|k 0 1 2 3 4 5 6 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 2 0 1 1 0 0 0 0 0 3 0 1 1 1 0 0 0 4 0 1 2 1 1 0 0 5 0 1 2 2 1 1 0 6 0 1 3 3 2 1 1

Darstellung von Zahlpartition

Ferrers Diagramm

 $[\]Leftrightarrow_{\text{Spiegelung an Diagonale}}$

Duales Diagramm

1.5.5 Satz

 $\mathcal{P}_{n,k}$ ist gleich die Anzahl der Zahlpartitionen von
n mit größtem Summanden k.

Beweis:

Betrachte für Partition mit k Summanden das duale Ferrers Diagramm. (q.e.d)

$$p(n) = \sum_{k=0}^{n} P_{n,k} \approx \frac{1}{4n\sqrt{3}} e^{\pi \sqrt{2n/3}}$$

Vorlesung 6

1.6 Permutationen

Permutation: bijektive Abbildung $\pi: X \to X$

andere Sichtweise: Umordnung von X bezüglich anderer Anordnung

 Γ, π Permutation von X: Komposition:

 $\Gamma \circ \pi : x \in X \mapsto \Gamma(\pi(x))$ (Permutation von X)

Darstellung von Permutationen: für endliche X $\pi=\begin{pmatrix}1&2&3&4&5&6&7\\3&5&1&4&6&2&7\end{pmatrix}$

wenn Anordnung von X festgelegt: $\pi = (3, 5, 1, 4, 6, 2, 7)$

Zyklendarstellung(*): $\pi^k = \underbrace{\pi \circ \pi \circ ... \circ \pi}_{\text{k-mal}}$

Beispiel: $\pi(2) = 5$

$$\pi(2)^2 = 6$$

$$\pi(2)^3 = 2$$

 $\pi(2)^4 = 5$

$$\pi(2)^4 = 5$$

Durch Iteration von π ineinander überführbar, ist eine Äquivalenzrelation auf X

Beispiel Äquivalenzklassen $\{2, 5, 6\}, \{1, 3\}, \{4\}, \{7\}$

$$t(\pi) = 1^2 \cdot 2^1 \cdot 3^1 (\cdot 4^0 \cdot 5^0 \cdot 6^0)$$

 $\rightarrow *$ Wähle Repräsentanten i_k aus jeder Äquivalenzklasse. Sei $j_k > 0$ kleinster Exponent ,sodass:

$$\pi^{j_k}(i_k) = i_k$$

$$(i_1, \pi(i_1), ..., \pi^{j_1-1}(i_1)), ..., (i_k, \pi(i_k), ..., \pi^{j_k-1}(i_k))$$

Beispiel (1,3), (2,5,6), (4)

Zykel der Länge 1 heißen Fixpunkt

Permutation von [3]:

- $\pi_1 = (1, 2, 3)$
- $\pi_2 = (1, 3, 2)$
- $\pi_3 = (2, 1, 3)$

- $\pi_4 = (2, 3, 1)$
- $\pi_5 = (3, 1, 2)$
- $\pi_6 = (3, 2, 1)$

Darstellung als Zykel:

- $\pi_1 = (1), (2), (3)$
- $\pi_2 = (1), (2,3)$
- $\pi_3 = (1,2),(3)$
- $\pi_4 = (1, 2, 3)$
- $\pi_5 = (1, 3, 2)$
- $\pi_6 = (1,3),(2)$

Zyklendarstellung eindeutig, bis auf:

- (a) Wahl des Repräsentanten der Äquivalenzklasse
- (b) Anordnung der Zykel

Beispiel: (a) $(1), (2,3) = \pi_2 = (1), (3,2)$

(b)
$$(1), (2,3) = \pi_2 = (2,3), (1)$$

Kanonische Zykeldarstellung für Permutationen von [n]

- (a) Repräsentant ist kleinstes Element des Zykels
- (b) Anordnung der Zykel nach größe des Repräsentanten

Typ von π

Multimenge der Zyklenlängen:

geschrieben:

$$t(\pi) = 1^{b_1(\pi)} \cdot 2^{b_2(\pi)} \cdot \dots \cdot n^{b_n(\pi)}$$

mit $b_i(\pi)$ Anzahl der Zyklen der Länge i von π

Wieviele Typen von Permutationen von [n] mit genau k Zyklen?

$$\sum\limits_{i=1}^n b_i(\pi) = k$$
 (Anzahl der Zyklen)

$$\sum_{i=1}^{n} i \cdot b_i(\pi) = n$$

Wieviele Permutationen vom Typ $t = 1^{b_1} \cdot 2^{b_2} ... \cdot n^{b_n}$

Abstrakte Zyklendarstellung:

$$\underbrace{()...()}_{b_1}\underbrace{(,)...(,)}_{b_2}\underbrace{(,,)...(,,)}_{b_3}...$$

Schreibe alle Permutationen $\pi \in S_n$ als Wort in die abstrakte Zyklendarstellung, liefert Zyklendarstellung einer anderen Permutation vom Typ t

$$\pi_2 \circ \pi_5 = (1,2)(3) = \pi_3$$

$$\pi_2^{-1} = \pi_2$$

$$\pi_5^{-1} = \pi_4$$

→zu jeder Permutation existiert eine inverse Permutation

 $\pi_1 = id$ (neutrales Element)

Beispiel: • (3, 5, 1, 4, 6, 2, 7)

- $\bullet \ t = 1^2 \cdot 2^1 \cdot 3^1$
- ()()(,)(,,) (abstrakte Zyklendarstellung)
- (3)(5)(1,4)(6,2,7)

Wieviele Permutationen (als Wort eingetragen) liefern gleiche Permutationen in Zyklendarstellung?

Permutation in Zyklendarstellung ändert sich nicht:

- beim Vertauschen von Zyklen gleicher Länge: $b_1! \cdot b_2! \cdot \ldots \cdot b_n!$ Möglichkeiten
- bei Wahl eines anderen Repräsentanten im Zykel: $1^{b_1} \cdot 2^{b_2} \cdot \dots \cdot n^{b_n}$ Möglichkeiten

1.6.1 Satz

Es gibt: $\frac{n!}{b_1! \cdot b_2! \cdot \dots \cdot b_n! \cdot 1^{b_1} \cdot 2^{b_2} \cdot \dots \cdot n^{b_n}}$ viele Permutationen von [n] vom Typ $t = 1^{b_1} \cdot 2^{b_2} \cdot \dots \cdot n^{b_b}$

Wieviele Permutationen mit genau k Zyklen gibt es?

$$s_{n,k} = \sum_{(b_1,b_2,\dots,b_n)} \frac{n!}{b_1! \cdot b_2! \cdot \dots \cdot b_n! \cdot 1^{b_1} \cdot 2^{b_2} \cdot \dots \cdot n^{b_n}} \text{ mit } \sum_i b_i = k \text{ und } \sum_i i \cdot b_i = n$$

1.6.2 Satz: Rekursive Definition von $s_{n,k}$ (Stirlingzahlen erster Art)

Die Anzahl $s_{n,k}$ der Permutationen von [n] mit genau k Zyklen erfüllt $s_{n,0} = 0$ für n > 0, $s_{n,n} = 1$ und die Rekursion:

$$s_{n,k} = s_{n-1,k-1} + (n-1) \cdot s_{n-1,k}$$
 für $0 < k < n$ (Stirlingrekursion erster Art)

Beweis

Die Identität ist die einzige Permutation von [n] mit genau n Zyklen $\Rightarrow s_{n,n}=1$

Für $n \geq 1$ exisitiert keine Permutation mit genau 0 Zyklen $\Rightarrow s_{n,0} = 0$

Sei 0 < k < n. Partitioniere die Permutationen von [n] mit genau k Zyklen in jene, wo n als Zykel der Länge ≥ 2 auftritt

Von der ersten Sorte gibt es genau $s_{n-1,k-1}$ viele.

Im 2. Fall: lösche
n aus seinem Zykel \rightarrow liefert Permutation von
 [n-1]mit genau k
 Zykel

In einem Zykel der Länge i kann n an i Stellen gelöscht worden sein. D.h. in Permutation von [n-1] kann n an n-1 Positionen gelöscht worden sein $\Rightarrow (n-1) \cdot s_{n-1,k}$ Permutationen von [n] mit k Zyklen und n kein Fixpunkt

$$\Rightarrow s_{n,k} = s_{n-1,k-1} + (n-1) \cdot s_{n-1,k}$$
 q.e.d

Stirling Dreieck erster Art

- n|k 0 1 2 3 4 5
- $0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
- $1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0$
- $2 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0$
- $3 \quad 0 \quad 2 \quad 3 \quad 1 \quad 0 \quad 0$
- 4 0 6 11 6 1 0
- 5 0 24 50 35 10 1

man erkennt:

$$s_{n,1} = (n-1)!$$

$$s_{n,n-1} = \binom{n}{2}$$

Stirling Zahlen erster Art

$$s_{n,n} = 1 \ s_{n,0} = 0 \ \text{für } n \ge 1$$

$$s_{n,k} = s_{n-1,k-1} + (n-1) \cdot s_{n-1,k} \ (0 < k < n)$$

$$s_{n,n-1} = \binom{n}{2} = S_{n,n-1}$$

$$s_{n,1} = (n-1)!$$

$$s_{n,2} = (n-1)! \cdot H_{n-1}$$

Beweis IA: $s_{2,2} = 1 = 1! \cdot H_{n-1}$

IS:
$$(n \ge 3)$$
 $s_{n,2} = s_{n-1,1} + (n-1) \cdot s_{n-1,2}$
= $(n-2)! + (n-1) \cdot H_{n-2}$
= $(n-1)! \cdot (\underbrace{\frac{1}{n-1} + H_{n-2}}_{=H_{n-1}})$ q.e.d

Satz 1.5.3 (Rückblick)

$$x^n = \sum_{k=0}^n S_{n,k} x^k$$

1.6.3 Satz

Für
$$x \in C$$
 gilt: $x^{\underline{n}} = \sum_{k=0}^{n} (-1)^{n-k} \cdot s_{n,k} \cdot x^k$

Beweis: Induktion nach n

IA: (n=0) $x^{\underline{0}} = 1 = (-1)^{0-0} \cdot s_{0,0} \cdot x^0 = 1$

IA:
$$(n=1)$$
 $x^{\underline{1}} = x = \underbrace{(-1)^{1-0} \cdot s_{1,0} \cdot x^0}_{=0} + \underbrace{(-1)^{1-1} \cdot s_{1,1} \cdot x}_{=x} = x$

IS:
$$(n \ge 2)$$
 $x^{\underline{n}} = x^{\underline{n-1}} \cdot (x-n+1) =_{IV} \sum_{k=0}^{n-1} (-1)^{n-1-k} \cdot s_{n-1,k} \cdot x^k \cdot (x-n+1)$

$$= \sum_{k=0}^{n-1} (-1)^{n-1-k} \cdot s_{n-1,k} \cdot x^{k+1} + \sum_{k=0}^{n-1} (-1)^{n-1-k} \cdot s_{n-1,k} \cdot x^k (-n+1)$$

$$= \sum_{k=0}^{n-1} (-1)^{n-1-k} \cdot s_{n-1,k} \cdot x^{k+1} + \underbrace{\sum_{k=0}^{n-1} (-1)^{n-k} \cdot s_{n-1,k} \cdot x^k (n-1)}_{\text{da } s_{n-1,n} = 0}$$

$$= \underbrace{\sum_{k=0}^{n-1} (-1)^{n-1-k} \cdot s_{n-1,k} \cdot x^{k+1}}_{\text{Indexverschiebung}} + \sum_{k=0}^{n} (-1)^{n-k} \cdot s_{n-1,k} \cdot x^{k} (n-1)$$

$$= \underbrace{\sum_{k=1}^{n} (-1)^{n-k} \cdot s_{n-1,k-1} \cdot x^{k}}_{\text{da } s_{n-1,0} \forall n > 1=0} + \sum_{k=0}^{n} (-1)^{n-k} \cdot s_{n-1,k} \cdot x^{k} (n-1)$$

$$= \sum_{k=0}^{n} (-1)^{n-k} \cdot s_{n-1,k-1} \cdot x^k + \sum_{k=0}^{n} (-1)^{n-k} \cdot s_{n-1,k} \cdot x^k (n-1)$$

kann diesen satz nicht wirklich entziffern

$$= \sum_{k=0}^{n} (-1)^{n-k} \cdot x^{k} \cdot \underbrace{(s_{n-1,k-1} + s_{n-1,k} \cdot (n-1))}_{\text{Stirlingrekursion 1. Art} = s_{n,k}}$$

$$= \sum_{k=0}^{n} (-1)^{n-k} \cdot x^{k} \cdot s_{n,k}$$
q.e.d

Allgemein gilt: (Stirlinginversion)

Seien (u_i) $i \in N_0, (v_i), i \in N_0$ Folge komplexer Zahlen, dann gilt: $v_n = \sum_{k=0}^n S_{n,k} u_k \ (\forall n) \Leftrightarrow u_n = \sum_{k=0}^n (-1)^{n-k} s_{n,k} v_k \ (\forall n)$

Multinomialkoeffizienten

Problem: Anzahl der Verteilungen bei Bridge und Skat. Verteilung darstellbar durch:

$$\begin{split} f:[52] &\to [4] \text{ mit } |f^{-1}(i)| = 13 \text{ (Bridge)} \\ g:[32] &\to [4] \text{ mit } |g^{-1}(i)| = \left\{ \begin{array}{ll} 10 & \text{für } 1 \leq i \leq 3 \\ 2 & \text{für } i = 5 \text{ Skat} \end{array} \right. \\ h:[n] &\to [2] \text{ mit } |h^{-1}(i)| = \left\{ \begin{array}{ll} k & \text{für } i = 1 \\ n+k & \text{für } i = 2 \end{array} \right. \\ & \Rightarrow \text{Anzahl der Verteilungen } \binom{n}{k} = \binom{n}{n-k} \end{split}$$

Sei $n=n_1+\ldots+n_k$ mit $n_i\geq 0$ und $Y=\{y_1,\ldots,y_k\}$. Der Multinominalkoeffizient $\binom{n}{n_1,\ldots,n_k}$ ist die Anzahl der Abbildungen: $f:[n]\to Y$ mit $|f^{-1}(y_i)|=n_i$ für $1\leq i\leq k$ Für k=2 folgt der klassische Binomialkoeffizient.

1.6.4 Satz: Multinomialkoeffizienten

Sei
$$n = n_1 + \dots + n_k$$

Dann ist: $\binom{n}{n_1, \dots, n_k} = \frac{n!}{n_1! \dots n_k!}$

Beweis

Zu jeder Permutation von [n] als Wort geschrieben, definiere Abbildunge $f:[n] \to Y$, indem:

ersten n_1 Elemente auf y_1 abbilden

nächsten n_2 Elemente auf y_2 abbilden

letzen n_k Elemente auf y_k abbilden

Beispiel:
$$n_1=2, n_2=3, n_3=0, n_4=2 \Rightarrow \underbrace{(3,6,\underbrace{1,4,2}_{y_1},\underbrace{5,7}_{y_4})}$$

Wir erhalten Abbildung: $g:S_n\to F_n$

 S_n symetrische Gruppe

Für Abbildung $f:[n] \to Y$

Jedes Element f des Wertebereiches F_n hat genau $n_1! \cdot ... \cdot n_k!$ Urbilder

$$\Rightarrow_{1.1.2} \binom{n}{n_1,\dots,n_k} = \frac{n!}{n_1!\dots n_k!} \text{ w.z.b.w.}$$

Beispiele:

- $\frac{52!}{(13!)^4} \approx 5 \cdot 10^{38}$
- $\frac{32!}{(10!)^3 \cdot 2} \approx 3 \cdot 10^{15}$

1.6.5 Satz: Multinomialsatz

$$(x_1+\ldots+x_k)^n=\sum_{n_1+\ldots+n_k=n}\binom{n}{n_1,\ldots,n_k}\cdot x_1^{n_1}\cdot\ldots\cdot x_k^{n_k}\ ,\ \text{wobei die Summation "über alle Tupel}$$
 Tupel (n_1,\ldots,n_k) mit $\sum\limits_{i=1}^k n_i=n$ läuft

Beispiel

$$(x_1 + x_2 + x_3)^3 = \dots$$

Beweis

Nach der Definition des Produkts von Summen ist:

$$(x_1 + \dots + x_k)^n = \sum_{f:[n] \to \{x_1,\dots,x_k\}} \prod_{i=0}^n f(i)$$

 $(x_1 + \dots + x_k)^n = \sum_{f:[n] \to \{x_1, \dots, x_k\}} \prod_{i=0}^n f(i)$ Ein Summand $x_1^{n_1} \cdot \dots \cdot x_k^{n_k}$ tritt genau dann auf, wenn $|f^{-1}(i)|n_i$ für alle i, also:

$$\binom{n}{n_1, ..., n_k}$$
 mal. q.e.d.

kann man ja selbst einsetzen und ausrechnen

1.7 Prinzip der Inklusion und Exlusion

- $|A \cup B| = |A| + |B| |A \cap B|$
- $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cup C| + |A \cap B \cap C|$

Beispiel:

Beispiel abstrakt

Ges: zu 30 teilerfremde Zahlen $\leq n$

- 30 = 3 * 2 * 5
- ...

1.7.1 Satz: Inklusion und Exklusion

$$A_1,...,A_n$$
endliche Mengen. Dann ist :
$$|\bigcup_{i=1}^n A_i| = \sum_{k=1}^n (-1)^{k-1} \sum_{I \subseteq \binom{[n]}{k}} |\bigcap_{j \in I} A_j| = \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|-1} |\bigcap_{j \in I} A_j|$$

Beweis

Wenn $x \notin \bigcup_{i=1}^n A_i$ dann hat x links und rechts Beitrag 0. Sei $x \in \bigcup_{i=1}^n A_i$. Dann hat xlinks Beitrag 1. Beitrag von x rechts?

Sei $J \subseteq [n]$ Indexmenge der Mengen A_i mit $x \in A_i$. Dann hat x Beitrag 1 zu $|\bigcap_{i \in I} A_i| \Leftrightarrow$

wenn
$$I \subseteq J$$
 und 0 sonst. Sei $l = |J|$. Dann ist Beitrag zu $\sum_{I \subseteq \binom{[n]}{k}} |\bigcap A_i|$ gleich $\binom{l}{k}$

Beitrag zur rechten Seite von x:

$$\begin{split} l - \binom{l}{2} + \binom{l}{3} - \ldots + (-1)^{l-1} \binom{l}{l} &= 1, \text{ denn} \\ l - \ldots + (-1)^l \binom{l}{l} &= 0 \text{ nach Binomialsatz mit } x = -1, y = 1 \\ \text{Oft hängt } |\bigcap_{i \in I} A_i| \text{ nur von } |I| \text{ ab:} \\ |\bigcap_{i \in I} A_i| &= N_{|I|} \end{split}$$

1.7.2 Korollar

$$|\bigcup_{i=1}^{n} A_i| = \sum_{k=1}^{n} (-1)^{k-1} \cdot \binom{n}{k} \cdot N_k$$

Derangements

Synonym für fixpunktfreie Permutationen.

 D_n : Anzahl der fixpunktfreien Permutationen von [n] (Derangementzahlen)

1.7.3 Satz: Derangements

$$D_n = n! \cdot \sum_{k=0}^n \frac{(-1)^k}{k!}$$

Beweis

Betrachte 'böse' Permutationen von [n], die mit Fixpunkt. Sei A_i Permutation mit Fixpunkt (FP_i) i. Dann ist $|A_i| = (n-1)!$ und $|\bigcap_{i \in I} A_i| = (n-|I|)!$ mit Korollar 1.7.2

$$\Rightarrow D_n = n! - |\bigcup_{i \in I} A_i| = n! + \sum_{k=1}^n (-1)^k \binom{n}{k} \cdot (n-k)! = \sum_{k=0}^n (-1)^k \cdot \binom{n}{k} \cdot (n-k)! = n! \cdot \sum_{k=0}^n \frac{(-1)^k}{k!} \cdot (n-k)! = n! \cdot \sum_{k=0}^n$$

w.z.b.w.

Erinnerung: $\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$

 $P[\pi \in S_n \text{ fixpunktfrei}] \to^{n \to \infty} e^{-1} = \frac{1}{e} \approx 0.37$

1.7.4 Korollar

Für jedes $n \ge 1$ ist:

$$D_n = \left\lfloor \frac{n!}{e} + \frac{1}{2} \right\rfloor$$

Beweis

Nach 1 7 3:

$$|D_n - \frac{n!}{e}| = n! \cdot |\sum_{k_0}^n \frac{(-1)^k}{k!} - \sum_{k=0}^\infty \frac{(-1)^k}{k!}| = n! \cdot |\sum_{k=n+1}^\infty \frac{(-1)^k}{k!}| \le n! \cdot \frac{1}{(n+1)!} = \frac{1}{n+1} < \frac{1}{2} \text{ q.e.d.}$$

1.8 Rekursionen und erzeugende Funktionen

rekursive Folge: spätere Folgeglieder hängen von früheren Folgegliedern ab

k-Term-Rekursion: $a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$ mit k Startwerten $a_0, ..., a_{k-1}$

einfaches Beispiel:

$$a_n = 2 \cdot a_{n-1}, a_0 = 1 \rightarrow a_n = 2^n$$

2-Term-Rekursion: $F_n = F_{n-1} + F_{n-2}$

1.8.1 Satz: Derangementzahlen genügen der Rekursion

Die Derangementzahlen genügen der Rekursion: $D_0=1, D_1=0$ und $D_n=(n-1)\cdot (D_{n-1}+D_{n-2})$

Beweis

Klassifiziere fixpunktfreie Permutationen in jene:

- (I) wo n in 2 Zykel auftritt und in jene
- (II) wo n in Zykel der Länge ≥ 3 auftritt
- (I) Sei (x, n) 2 Zykel von n. Dann gibt es D_{n-2} fixpunktfreie Permutationen von [n-1] $\{x\}$ für jedes $x \in [n-1]$ $(n-1)D_{n-2}$ viele.
- (II) Lösche n aus seinem Zykel, liefert fixpunktfreie Permutation von [n-1]. Jede FP-freie Permutation von [n-1] hat genau n-1 Urbilder $\Rightarrow (n-1) \cdot D_{n-1}$ viele q.e.d

$$D_{n} = (n-1) \cdot (D_{n-1} + D_{n-2}) \Rightarrow D_{n} - n \cdot D_{n-1} = -D_{n-1} + (n-1) \cdot D_{n-2} = (-1)(D_{n-1} - (n-1)D_{n-2}) = (-1)^{2}(D_{n-2} - (n-2)D_{n-3}) = (-1)^{3}(D_{n-3} - (n-3)D_{n-4}) = \dots$$

$$(-1)^{n-1}(D_{1} - 1 \cdot D_{0}) = (-1)^{n}$$

1.8.2 Satz

 $D_n = n \cdot D_{n-1} + (-1)^n$ Beweis: einsetzen bis D_0 umformen und man erhält die Definition von D_n w.z.b.w.

Vorlesung 9

Erzeugende Funktionen

Zu einer Folge $(a_0, a_1, ...,)$ heißt die Potzenreihe: $A(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 ...$ die erzeugende Funktion.

Auf wie viele Arten kann man 9ct Wechselgeld in 1ct, 2ct, 5ct Stücken rausgeben? gesucht: erzeugende Funktion A(x)

$$\begin{split} A(x) &= (\sum_{i=0}^{\infty} x^i) \cdot (\sum_{j=0}^{\infty} x^{2j}) \cdot (\sum_{K=0}^{\infty} x^{5k}) \\ &= (1 + x + x^2 + \ldots) \cdot (1 + x^2 + x^4 + \ldots) \cdot (1 + x^5 + x^{10} + \ldots) \end{split}$$

Koeffizient von x^9 : 8 Anzahl der Möglichkeiten, 9ct Wechselgeld herauszugeben.

vorhandenes Wechselgeld: $5\times$ 1
ct , $3\times$ 2
ct ,2×5ct

erzeugende Funktion:
$$A(x) = (1 + x + x^2 + x^3 + x^4 + x^5)(1 + x^2 + x^4 + x^6)(1 + x^5 + x^{10})$$

Koeffizient von x^9 : 5 Anzahl der Möglichkeiten, 9ct Wechselgeld herauszugeben.

bekannte erzeugende Funktionen:

•
$$(1+x)^z = \sum_{n=0}^{\infty} {z \choose n} x^n \leftrightarrow {z \choose 0}, {z \choose 1}, {z \choose 2}, \dots$$

•
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \leftrightarrow (1, 1, \frac{1}{2}, \frac{1}{6}, \dots)$$

neue erzeugende Funktionen aus bekannten erzeugenden Funktionen:

•
$$A(x) = \sum_{n=0}^{\infty} a_n x^n$$
, $B(x) = \sum_{n=0}^{\infty} b_n x^n$

•
$$A(x) \pm B(x) = \sum_{n=0}^{\infty} (a_n + b_n) x^n \leftrightarrow (a_n \pm b_n)$$
 Folge $n \in N_0$

•
$$c \cdot A(x) = \sum_{n=0}^{\infty} c \cdot a_n x^n \leftrightarrow (c \cdot a_n)$$
 Folge $n \in N_0$

•
$$A(x) \cdot B(x) = \sum_{n=0}^{\infty} (\sum_{k=0}^{\infty} a_k b_{k-n}) x^n$$
 Cauchy-Produkt oder diskrete Konvolution

•
$$xA(x) = \sum_{n=0}^{\infty} a_n x^{n+1} = \sum_{n=1}^{\infty} a_{n-1} x^n \leftrightarrow (0, a_0, a_1, a_2, ...)$$

Substitution f(x) für x:

Beispiel: Substitution von x^k für x

Spreize Folge a_n auf und füge zwischen je zwei Koeffizienten k-1 Nullen ein.

$$A(x) = \sum_{n=0}^{\infty} a_n x^n \leftrightarrow (a_0, a_1, a_2, ...)$$

$$A(x^1) = \sum_{n=0}^{\infty} a_n x^{n^2} \leftrightarrow (a_0, 0, a_1, 0, a_2, 0, ...)$$

Beispiel: Binominalreihe mit z = -1 Substitution -x für x

$$\frac{1}{1-x} = (1-x)^{-1} = \sum_{n=0}^{\infty} {\binom{-1}{n}} (-x)^n = \sum_{n=0}^{\infty} (-1)^n (-x)^n = \sum_{n=0}^{\infty} x^n$$

Differentiation:

$$A'(x) = \sum_{n=1}^{\infty} n \cdot a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$$

Folge:
$$(1a_1, 2a_2, 3a_3, 4a_4, ...) = ((n+1) \cdot a_{n+1})n \in N_0$$

Integration:

$$\int A(x)dx = \sum_{n=0}^{\infty} \int a_n x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} = \sum_{n=1}^{\infty} \frac{a_{n-1}}{n} x^n$$

Folge: $(0, \frac{a_0}{1}, \frac{a_1}{2}, \frac{a_2}{3}, \frac{a_3}{4}, ...)$

Gesucht: erzeugende Funktion von (1, 1, 2, 2, 3, 3, 4, 4, 5, ...)

Erzeugende Funktion von:

- $(1,2,3,4,...) \leftrightarrow A(x) = (\frac{1}{1-x})' = \frac{1}{(1-x)^2}$
- $(1, 1, 1, 1, ...) \leftrightarrow A(x) = \frac{1}{1-x}$
- $(1,0,2,0,3,0,4,0,...) \leftrightarrow A(x) = \frac{1}{(1-x^2)^2}$
- $(0,1,0,2,0,3,0,4,0,...) \leftrightarrow A(x) = \frac{x}{(1-x^2)^2}$
- $(1,1,2,2,3,3,4,4,...) \leftrightarrow A(x) = \frac{1+x}{(1-x^2)^2}$

Homogene lineare Rekursion

Rekursionen der Form $u_n = a_{k-1}u_{n-1} + a_{k-2}u_{n-2} + ... + a_0u_{n-k}$ $a_i \in C$ mit Anfangswerten $u_0, u_1, ... u_{k-1}$

Homogene lineare k-Term Rekursion

Gesuchte Funktion U(x) (erzeugende Funktion der Homogene lineare Rekursion (HLR))

$$U(x) - a_{k_1}xU(x) - a_{k-2}x^2U(x) - \dots - a_0x^kU(x)$$

$$= u_0 + (u_1 - a_{k-1}u_0)x + (u_2 - a_{k-1}u_1 - a_{k-2}u_0)x^2 + \dots + (u_k - a_{k-1}u_{k-2} - \dots - a_1u_0)x^{k-1} + \underbrace{(u_k - a_{k-1}u_{k-1} - \dots - a_0u_0)}_{=0} + \underbrace{\dots}_{=0}$$

 $\Rightarrow U(x) = \frac{u_0 + (u_1 - a_{k-1}u_0)x + (u_2 - a_{k-1}u_1 - a_{k-2}u_0)x^2 + \dots + (u_k - a_{k-1}u_{k-2} - \dots - a_1u_0)x^{k-1}}{1 - a_{k-1}x - a_{k-2}x^2 - \dots - a_0x^k}$

Beispiel: Fibonacci Folge:

$$F_n = \underbrace{F_{n-1}}_{q_1=1} + \underbrace{F_{n-2}}_{q_0=1}, F_0 = 0, F_1 = 1$$

erzeugende Funktion: $F(x) = \frac{0 + (1 - 1 \cdot 0)x}{1 - x - x^2} = \frac{x}{1 - x - x^2}$

$$F(x) = \frac{A}{1-ax} + \frac{B}{1-bx} = A \sum_{n=0}^{\infty} a^n x^n + b \sum_{n=0}^{\infty} b^n x^n$$

$$= \sum_{n=0}^{\infty} (Aa^n + Bb^n)x^n$$

Homogene lineare Rekursion

 $\begin{aligned} u_n &= a_{k-1}u_{n-1} + a_{k-2}u_{n-2} + \ldots + a_0u_{n-k} \\ \text{homogene lineare k-Term Rekursion:} \\ F_0 &= 0, F_1 = 1 \text{ und } F_n = F_{n-1} + F_{n-2} \text{ für } n \geq 2 \\ \text{homogene lineare 2-Term Rekursion } a_0 = a_1 = 1 \end{aligned}$

- Gesucht: erzeugende Funktion $F(x) = \sum_{n=0}^{\infty} F_n x^n$
- $F_n F_{n-1} F_{n-2} = 0$ für $n \ge 2$
- $\bullet \Rightarrow F(x) xF(x) x^2F(x) = F_0 + (F_1 F_0)x = x$
- $\bullet \Rightarrow F(x) = \frac{x}{1-x-x^2}$
- $1 x x^2 = (1 Qx)(1 Wx)$
- W + Q = 1
- $\bullet \ W \cdot Q = -1$
- Lösungen von $x^2 x 1 = 0$
- $W = \frac{1+\sqrt{5}}{2} \approx 1.618 \ Q = \frac{1-\sqrt{5}}{2} \approx -0.618$

Satz zur Partialbruchzerlegung

Es existieren Konstanten A, B, so dass:

- $\bullet \ \frac{x}{1-x-x^2} = \frac{A}{1-Wx} \frac{B}{1-Qx}$
- $\bullet \Rightarrow x = A(1 Wx) + B(1 Qx)$
- Wähle $x = \frac{1}{W}$
- $\Rightarrow \frac{1}{W} = B(1 \frac{Q}{W}) \Rightarrow B = \frac{1}{W Q} = -\frac{1}{\sqrt{5}}$
- Wähle $x = \frac{1}{Q}$
- $\bullet \Rightarrow A = \frac{1}{\sqrt{5}}$
- $F(x) = \frac{1}{\sqrt{5}} \frac{1}{1 Wx} \frac{1}{\sqrt{5}} \frac{1}{1 Qx} = \frac{1}{\sqrt{5}} (\frac{1}{1 Wx} \frac{1}{1 Qx})$

• =_{geometrische Reihe}
$$\frac{1}{\sqrt{5}} \cdot (\sum_{k=0}^{\infty} W^n x^n - \sum_{k=0}^{\infty} Q^n x^n)$$

$$\bullet = \frac{1}{\sqrt{5}} \cdot \sum_{k=0}^{\infty} (W^n - Q^n) x^n$$

•
$$\Rightarrow F_n = \frac{1}{\sqrt{5}}(W^n - Q^n) = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n - \underbrace{(\frac{1-\sqrt{5}}{2})^n}_{gegen0})$$

•
$$F_n \approx \frac{1}{\sqrt{5}} \cdot W^n \approx 1.618^n$$

Gesucht: letzte Vorkommastelle und erste Nachkommastelle von $(\sqrt{2}+\sqrt{3})^{2012}$

•
$$(\sqrt{2} + \sqrt{3})^2 = 5 + 2\sqrt{6} \approx 9.88 \Rightarrow$$
erste Nachkommastelle 9

•
$$(\sqrt{2} + \sqrt{3})^{2012} = (5 + 2\sqrt{6})^{1006} + \underbrace{(5 - 2\sqrt{6})^{1006} - (5 - 2\sqrt{6})^{1006}}_{=0}$$

• ...

Exponentielle erzeugende Funktionen

$$\hat{A}(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$$
 ist exponentiell erzeugende Funktion der Folge $(a_n), n \in N_0$

 $\Rightarrow a_n$ hat erzeugende Funktion $A(x) = \sum_{n=0}^{\infty} a_n x^n$ und

exponentiell erzeugende Funktion $\hat{A}(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$

Umgekehrt: Funktion A(x) erzeugende Funktion von a_n und exponentiell erzeugende Funktion von $n!a_n$

Verbindung zwischen:

- ungeordneten (erzeugende Funktion A(x)) und
- geordneten Auswahlen (exponentiell erzeugende Funktion $\hat{A}(x)$

Beispiel
$$A(x)=(1+x)^n=\sum\limits_{n=0}^{\infty}\binom{n}{k}x^k=\sum\limits_{n=0}^{\infty}n^k\frac{x^k}{n!}$$

Funktion der Binomialkoeffizienten $\binom{n}{k}$

(k-Teilmengen einer n-Menge \leftrightarrow ungeordnete Auswahl aus einer n-Meng8e)

exponentiell erzeugende Funktion der fallenden Faktoriellen $n^{\underline{k}}$ (injektive Abbildungen $f:[k]\to [n]\leftrightarrow \text{geord}$ nete Auswahlen aus n-Menge)

Konstruktion einer sinnlosen erzeugenden Fnkt, Jay 40 **Beispiel** Wie viele 5 buchstabige Wörter können aus der Multimenge $\{E, E, O, O, P, P, P, U\}$ gebildet werden?

gesucht: exponentiell erzeugende Funktion

Quark den ich nicht verstehe Jay: 42

1.8.3 Satz

Die exponentiell erzeugende Funktion der Anzahl a_k der Abbildungen von einer k-Menge in eine n-Menge ist:

$$\hat{A}(x) = \sum_{k=0}^{\infty} a_k \cdot \frac{x^k}{k!} = (\sum_{i=0}^{\infty} \frac{x^i}{i!})^n = e^{xn}$$
$$= \sum_{k=0}^{\infty} n^k \frac{x^k}{k!} \text{ , also ist } a_k = n^k$$

Exponentielle erzeugende Funktionen der surjektiven Funktionen von einer k-Menge in eine n-Menge:

Aufzählen der Wörter der Länge k, die jeden Buchstaben mindestens einmal nutzen:

$$\sum_{k} s_k \frac{x^k}{k!} = \hat{S}(x) = (\sum_{i=1}^{\infty})^n = (e^x - 1)^n$$
$$s_k = k! \cdot S_{n,k}$$

1.8.4 Satz

Für $n \ge 0$ ist:

$$\sum_{k=0}^{\infty} S_{n,k} x^k = \hat{S}(x) (e^x - 1)^n = \sum_{j=0}^{\infty} (-1)^{n-j} \binom{n}{j} e^{jk}$$

insbesondere ist:
$$S_{n,k} = \frac{1}{k!} \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} j^k$$

Beweis

zu zeigen: k-ter Koeffizient hat die Form:
$$S_{n,k} = \frac{1}{k!} \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} j^k$$

es gilt:
$$e^{jx} = \sum_{k=0}^{\infty} \frac{j^k x^k}{k!}$$

einsetzen liefert:
$$\sum_{k=0}^{\infty} S_{n,k} x^k = \sum_{j=0}^{\infty} (-1)^{n-j} \binom{n}{j} \sum_{k=0}^{\infty} \frac{j^k x^k}{k!} = \sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot \sum_{j=0}^{\infty} (-1)^{n-j} \binom{n}{j} j^k$$
q.e.d

Bell-Zahlen

$$B_n = \sum_{k=0}^{n} S_{n,k} = \underbrace{e^{-1} \sum_{i=0}^{n} \frac{i^n}{i!}}_{\text{Formel von Dobinski}}$$

1.8.5 Satz

Die exponentiell erzeugende Funktion der Bell-Zahlen ist: $\hat{B}(x) = e^{e^x - 1} = exp(exp(x) - 1)$

Beweis

$$\hat{B}(x) = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!} = \sum_{i=0}^{\infty} e^{-1} \sum_{n=0}^{\infty} \frac{i^n}{i!} \cdot \frac{x^n}{n!}$$

$$= e^{-1} \cdot \sum_{i=0}^{\infty} \sum_{n=0}^{\infty} \frac{i^n}{i!} \frac{x^n}{n!} = e^{-1} \sum_{i=0}^{\infty} \frac{1}{i!} \sum_{n=0}^{\infty} \frac{(ix)^n}{n!}$$

$$= e^{-1} \cdot \sum_{i=0}^{\infty} \frac{1}{i!} e^{ix} = e^{-1} \cdot \sum_{i=0}^{\infty} \frac{(e^x)^i}{i!} = e^{-1} \cdot e^{e^x} = e^{e^x - 1} \text{ q.e.d}$$

$$\hat{A}(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$$

$$\hat{A}'(x) = \sum_{n=1}^{\infty} a_n \frac{x^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} a_{n-1} \frac{x^n}{n!}$$

$$\Rightarrow \text{Folge } (a_1, a_2, a_3, ...,)$$

$$\int \hat{A}(x) dx = c + \sum_{n=0}^{\infty} \frac{a_n}{(n+1)} \frac{x^{n-1}}{n!} = c + \sum_{n=0}^{\infty} a_{n-1} \frac{x^n}{n!}$$

$$\Rightarrow \text{Folge } (c, a_0, a_1, a_2, a_3, ...,)$$

Exponentielle erzeugende Funktion der Fibonaccizahlen

$$\hat{F}(x) = \sum_{n=0}^{\infty} F_n \frac{x^n}{n!}$$

$$\hat{F}'(x) = \sum_{n=0}^{\infty} F_{n+1} \frac{x^n}{n!}$$

$$\hat{F}''(x) = \sum_{n=0}^{\infty} F_{n+2} \frac{x^n}{n!}$$

Fibonacci-Zahlen:

$$F_{n+2} - F_{n+1} - F_n = 0 \text{ für alle } n \ge 0$$

$$\hat{F}''(x) - \hat{F}'(x) - \hat{F}(x) = 0$$

Euleransatz:
$$\hat{F}(x) = e^{\lambda x}, \hat{F}'(x) = \lambda e^{\lambda x}, \hat{F}''(x) = \lambda^2 e^{\lambda x}$$

einsetzen:
$$\lambda^2 e^{\lambda x} - \lambda e^{\lambda x} - e^{\lambda x} = 0$$

$$\lambda^{2} - \lambda - 1 = 0$$
$$\lambda_{1,2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1}$$
$$\lambda_{1} = W, \lambda_{2} = Q$$

Lösungen der DGL $c_1e^{Wx}+c_1e^{Qx}, c_1, c_2 \in R$

$$c_1 e^{Wx} + c_1 e^{Qx} = \sum_{n=0}^{\infty} (c_1 \cdot W^n + c_2 \cdot Q^n) \cdot \frac{x^n}{n!}$$

$$F_0 = 0 = c_1 + c_2$$

$$F_1 = 1 = c_1 W + c_2 Q$$

$$\Rightarrow c_1 = \frac{1}{\sqrt{5}}, c_2 = -\frac{1}{\sqrt{5}}$$

$$\hat{F}(x) = \sum_{n=0}^{\infty} \underbrace{\frac{1}{\sqrt{5}} (W^n - Q^n)}_{F_n} \underbrace{\frac{x^n}{n!}}_{n!} = \frac{1}{\sqrt{5}} (e^{Wx} - e^{Qx})$$

$$\hat{B}(x) = \sum_{n=0}^{\infty} b_n \frac{x^n}{n!}$$

$$\hat{A}(x) \cdot \hat{B}(x) = \sum_{n=0}^{\infty} (\sum_{i=0}^{n} \frac{a_i}{i!} \cdot \frac{b_{n-i}}{(n-i)!}) x^n$$

$$=\sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad \sum_{i=0}^{n} \binom{n}{i} a_i b_{n-i}$$

Koeffizienten des Produktes $\sum_{n=0}^{\infty} c_n \frac{x^n}{n!}$ Binominalkonvolution

Beispiel $((a+b)^n)n \in N_0$ exponentiell erzeugende Funktion $e^{(a+b)x} = e^{ax} \cdot e^{bx}$

$$e^{ax} = \sum_{n=0}^{\infty} \frac{a^n}{n!}$$

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}$$
 (Binomialsatz)

$$\sum_{k=0}^{\infty} \binom{n}{k} x^k = (1+x^n) = \sum_{k=0}^{\infty} n^{\frac{k}{k}} \frac{x^k}{k!}$$

$$\sum_{n=0}^{\infty} \underbrace{\binom{a+b}{n}} x^n = (1+x)^{a+b} = (1+x)^a \cdot (1+x)^b$$
$$= \sum_{i=0}^{n} \binom{a}{i} \binom{b}{n-i}$$

$$= \sum_{n=0}^{\infty} \frac{x^n}{n!} \sum_{i=0}^n \binom{n}{i} a^{\underline{i}} b^{\underline{n-i}}$$

$$= \sum_{n=0}^{\infty} x^n \sum_{i=0}^n \frac{a^{\underline{i}}}{i!} \frac{b^{\underline{n-i}}}{(n-i)!}$$

$$= \sum_{n=0}^{\infty} x^n \sum_{i=0}^n \binom{a}{i} \binom{b}{n-i}$$

2.1 Endliche projektive Ebenen und lateinische Quadrate

Lateinische Quadrate(LQ)

Ein LQ der Ordnung n ist eine $(n \times n)$ -Matrix $A = (a_{ij})$ mit $a_{ij} \in \{1, 2, 3, ..., n\}$, so dass in jeder Zeile und in jeder Spalte alle Zahlen 1, 2, ..., n genau einmal auftreten.

Sudoku ist LQ der Ordnung 9 mit Zusatzeigenschaft: Für jedes Paar $(k,l) \in \{1,2,3\}^2$ ist $\{a_{(3k-p)(3l-q)}|0 \le p,q \le 2\} = \{1,2,...,9\}$

Zwei LQ der Ordnung n heißen <u>orthogonal</u>, wenn $\{(a_{ij}, b_{ij} | 1 \le i, j \le n\} = \{1, ..., n\}^2$ (alle sind verschieden)

Beispiel

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}, \text{ Paare} = \begin{pmatrix} 11 & 22 & 33 \\ 23 & 31 & 12 \\ 32 & 13 & 21 \end{pmatrix}$$

Problem: Konstruiere zwei orthogonale LQ der Ordnung n=6 bzw. n=10?

Projektive Geometrie

Scenario: Maler hinter durchsichtiger Leinwand (unendlich groß) - perspektivisch korrekt

Identifizieren Punkt durch Leinwand (LW) mit Geraden durch Ursprung es fehlen die zur Leinwand parallelen Geraden (für jedes Richtungspaar eine Gerade)

Menge der Punkte in der projektiven Ebene: Menge der Geraden durch den Ursprung

'Umhäkeln' die unendliche Leinwand halb mit Punkten im Unendlichen

zu jedem Winkel ϕ mit $0 \leq \phi < \pi$ ein unendlicher Punkt

Gerade in projektiver Ebene entspricht einer Ebene durch den Ursprung (parallele Ebene durch Ursprung fehlt)

Menge der projektiven Geraden: Menge der Ebenen durch den Ursprung (unendliche Gerade \leftrightarrow zur Leinwand paralelle Ebene geht genau durch alle unendlichen Punkte

Eigenschaften projektiver Ebenen:

- je zwei verschiedene Ebenen durch Ursprung schneiden sich in genau einer Geraden
- je zwei projektive Geraden scheiden sich in einem projektiven Punkt (zwei auf Leinwand parallele geraden schreiden sich in unendlichen Punkt gemäß der Richtung)
- je zwei verschiedene Geraden durch Ursprung spannen genau eine Ebene durch Ursprung auf
- je zwei projektive Punkte liegen genau auf einer projektiven Gerade

Endliche projektive Ebene

Inzidenzsystem (P, G, I)

P: Menge der Punkte (endlich)

G: Menge der Geraden (endlich)

 $I \subseteq P \times G$ Inzidenz
relation

 $(p,g) \in I \Leftrightarrow \text{Punkt } p \text{ liegt auf Geraden } g$

- (P,G,I) heißt projektive Ebene falls folgene Axiome gelten:
 - (P1) Je zwei verschiedene Punkte liegen auf genau einer Gerade
 - (P2) Je zwei Geraden scheiden sich genau in einem Punkt
 - (P3) Es gibt 4 Punkte in allgemeiner Lage (d.h. keine 3 auf einer Geraden)

Beispiele:

Erinnerung

- $r(p) = |\{g \in G \mid (p,g) \in I\}|$ Anzahl der Geraden durch p
- $r(g) = |\{p \in P \mid (p,g) \in I\}|$ Anzahl Punkte auf g

2.1.1 Lemma

- (a) Für jedes Paar $(p, g) \notin I$ gilt: r(p) = r(g)
- (b) Für $g, g' \in G$ gilt r(g) = r(g')

Beweis

(a) Jedes Paar (p,q) mit $q \in g$ bestimmt genau eine Gerade g_q durch p und q (P1).

Wegen (P1) sind g_q und $g_{q'}$ verschieden, für $q \neq q' \in g$. Da jede Gerade durch p nach (P2) auch g schneidet ist: r(p) = r(g)

(b) Seien g, g' Geraden. Falls p existiert mit $(p, g), (p, g') \in I$, dann ist wegen (a) r(g) = r(p) = r(g').

Bleibt zu zeigen, dass ein solcher Punkt p existiert.

Sei $F = \{a, b, c, d\}$ Menge von 4 Punkten in allgemeiner Lage (P3). Falls ein Punkt nicht auf g' oder g liegt, wähle diesen als p.

O.B.d.A. seien $a, b \in g$ und $c, d \in g'$.

Betrachte Gerade $h = \overline{ac}, h' = \overline{bd}$:

- (P1) h und h' schneiden sich in Punkt p (P2)
 - Es gilt $p \notin g$, da h und g sich in a schneiden und $p \in g'$, da h und g' sich in c schneiden.
 - Also ist p gesuchter Punkt q.e.d

2.1.2 Satz

Sei (P, G, I) endliche projektive Ebene, dann existiert $n \geq 2$, so dass:

(a) jede Gerade hat genau n+1 Punkte,

- **(b)** jeder Punkt liegt genau auf n+1 Geraden
- (c) es gibt genau $n^2 + n + 1$ Punkte
- (d) es gibt genau $n^2 + n + 1$ Geraden

n heißt Ordnung der endlichen projektiven Ebene. (Punkt-Geraden-Dualität)

Beweis

- (a) Wegen (P3) und (P2) existiert Gerade mit $n+1 \ge 3$ Punkten. Wegen 2.1.1 (b) haben alle Geraden n+1 Punkte.
- (b) Zu p existieren nach (P3) 3 Punkte $a,b,c\neq p$ die nicht auf einer Geraden liegen. Dann liegt p auf höchstens einer Geraden $\overline{ab},\overline{ac},\overline{bc}$. Also existiert Gerade g mit $p\notin g$. Betrachte $(p,g)\notin I$. Nach 2.1.1(a) ist r(p)=r(g)=n+1
- (c) Betrachte die n+1 Geraden, die sich in p schneiden. Jeder Punkt $\neq p$ liegt wegen (P1) auf genau einer Geraden. Jede Gerade hat p und n weitere Punkte $\Rightarrow |P|=1+(n+1)\cdot n=n^2+n+1$
- (d) Betrachte Geraden, die Gerade g schneiden. Jede Gerade $g' \neq g$ schneidet g in genau einem Punkt $\Rightarrow |G| = (n+1) \cdot n + 1 = n^2 + n + 1$ q.e.d.

Wenn P, G endlich:

- $|P| = n^2 + n + 1, n > 2$
- $|G| = n^2 + n + 1$

- |y| = n + 1
- \bullet Anzahl der mit pinzidenten Geraden ist n+1
- n Ordnung von IP

Welche Ordnungen sind möglich?

2.1.3 Satz (Bruch, Ryser):

Falls $n \equiv 1, 2 \pmod{4}$ und projektive Ebene der Ordnung n existiert, dann in $n = x^2 + y^2$ $(x, y \in R)$ (ohne Beweis, zu aufwändig)

Nichtexistenzsatz

Keine projektiven Ebenen der Ordnungen n=6,14,21,22,30,33

Affinie Ebene

$$A = (P, G, I)$$

- (A1) Je zwei Punkte $p \neq p' \in P$ liegen auf genau einer Geraden.
- **(A2)** Zu jeden Paar (p,g) mit $p \notin g$ existiert genau ein $h \in G$ mit $p \in h$ und $h \parallel g$.
- (A3) Es gibt 3 Punkte in allgemeiner Lage.

Parallelität $g \parallel h \Leftrightarrow g \cap h \neq \emptyset$ oder g = h

Äquivalenzrelation

Äquivalenzklassen heißen Parallelscharen

Beispiel

2.1.4 Satz

Sei A endliche affinie Ebene. Dann existiert $n \geq 2$, so dass:

- (a) auf jeder Geraden liegen n Punkte
- (b) in jedem Punkt schneiden sich n+1 Geraden
- (c) $|P| = n^2$
- (d) $|G| = n^2 + n$

Beweis: siehe Übung.

Ordnung der affinen Ebene n.

2.1.5 Satz

Es existiert projektive Ebene der Ordnung $n \Leftrightarrow$ es existiert affine Ebene der Ordnung n.

Beweis (konstruktiv)

'⇒' Sei R = (P, G, I) projektive Ebene der Ordnung n. Zeichne eine Gerade $g_{\infty} \in G$ aus. Dann ist A = (P', G', I | P', G') mit $P' = P \setminus g_{\infty}$, $G' = G \setminus \{g_{\infty}\}$ affine Ebene der Ordnung n. $|P'| = n^2$, $|G'| = n^2 + n$ wegen (P2) ist |g| = n + 1 - 1 = n. Sei $p \in P$, dann sind alle Geraden durch p in R auch in G' enthalten.

 \Rightarrow in p schneiden sich n+1 Geraden.

Es gelten:

- (A1) $p \neq p' \in P$ liegen nach (P1) auch in A auf genau einer gemeinsamen Geraden
- (A2) Sei $(p,g) \in P' \times G'$ mit $p \notin g$. Sei $q = g \cap g_{\infty}$ eindeutiger Schnittpunkt in R. Wegen (P1) gibt es genau eine Gerade h durch p,q in R, $h \parallel g$ in A, sei h' weitere Parallele durch p zu g $\Rightarrow h' \cap g = q \in g_{\infty} \Rightarrow$ in R haben h und h' zwei gemeinsame Schnittpunkte \to

Wiederspruch zu (P2)

(A3) Da $n^2 > n$ für $n \ge 2$ liegen nicht alle Punkte auf einer Gerade \Rightarrow (A3)

' \Leftarrow ' Sei A=(P,G,I) affine Ebene der Ordnung n. Füge für jede Parallelenschar einen neuen Schnittpunkt hinzu und verbinde neue Schnittpunkte durch ('unendliche') Gerade g_{∞} .

Liefert Inzidenzsystem R = (P', G', I') mit $P' = P \cup g_{\infty}, G' = G \cup \{g_{\infty}\}$. Es gelten:

- $|P'| = n^2 + (n+1)$
- $|G'| = (n^2 + n) + 1$
- |g| = n + 1

• und in jedem $p \in P'$ schneiden sich n+1 Geraden, klar für $p \in P'$ in $p \in g_{infty}$ schneiden sich n Geraden von Parallelenschar und g_{∞}

Axiome:

- (P1) Gilt nach (A1) für Punkte in P. Sei $p \in P$, $q \in g_{\infty}$, p liegt auf genau einer Geraden der Parallelenschar, die sich in q schneiden $p, q \in g_{\infty}$
- (P2) $g \in G$ und g_{∞} schneiden sich in dem Punkt, in dem sich Parallelenschar zu g schneidet. $g \neq h \in G$ schneiden sich entweder in p oder $g \parallel h$, dann ist $g \cap h = \{g\} \subseteq g_{\infty}$
- (P3) Seien p,q,r Punkte in allgemeiner Lage (A3). Auf Geraden $\overline{pq},\overline{pr},\overline{qr}$ liegen genau 3n-3 Punkte. Da $3n-3< n^2$ für $n\geq 2$ existieren Punkt $s\in A$, der auf keiner der Geraden $\overline{pq},\overline{pr},\overline{qr}$ liegt. Schon A hat 4 Punkte in allgemeiner Lage und damit auch R. q.e.d

Lateinische Quadrate(LQ) der Ordnung n

 $n \times n$ Matrix (a_{ij}) mit Einträgen $a_{ij} \in \{1, 2, ..., n\}$, so dass in jeder Zeile und in jeder Spalte alle Einträge $\{1, ..., n\}$ genau einmal auftreten $\Leftrightarrow a_{ij} \neq a_{i'j}$ und $a_{ij} \neq a_{ij'}$ für $i \neq i', j \neq j'$

Alternativdefinition

 $L: \{1,...,n\} \times \{1,...,n\} \to \{1,...,n\} \text{ mit } L(i,j) \neq L(i',j) \text{ und} L(i,j) \neq L(i,j') \text{ für } i \neq i', j \neq j'$ Zwei LQ's L_1, L_2 heißen orthogonal, falls $(L_1(i,j), L_2(i,j))$ alle verschieden sind, d.h. $\{(L_1(i,j), L_2(i,j)) \mid i,j \in \{1,...,n\}\} = \{1,...,n\}^2$

Beispiel:

$$L_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix} \text{ und } L_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} (1,1) & (2,2) & (3,3) \\ (2,3) & (3,1) & (1,2) \\ (3,2) & (1,3) & (2,1) \end{pmatrix} L_{1} \text{ und } L_{2} \text{ sind Orthogonal}$$

Menge von n-1 orthogonalen LQ's der Ordnung n

Sei
$$GF(n)$$
 Körper mit n Elementen (existiert $\Leftrightarrow n=p^k, p \in prim)$ $0 \neq a \in GF(n)$ $L_a=i(a_{i+j})$

Beispiel

•
$$GF(2^2) = \{0, 1, 2, x, x+1\}$$

• Multiplikation: Reduzieren modulo: irreduzibel: $x^2 + x + 1$ nicht irreduzibel:

$$-x^{2} = x \cdot x$$

$$-x^{2} + 1 = (x+1)(x+1)(mod 2)$$

$$-x^{2} + x = (x+1)x(mod 2)$$

• Additionstafel:

	0	1	x	x+1
0	0	1	x	x+1
1	1	0	x + 1	x
x	x	x + 1	0	1
x+1	x+1	x	1	0

• Multiplikationstafeln:

und schon haben wir 3 paarweise orthogonale Quadrate gefunden.

2.1.6 Satz

Wenn $n = p^k$, p Primzahl, dann existieren n-1 paarweise orthogonale LQ's der Ordnung n.

2.1.7 Satz: Maximale Anzahl paarweiser orthogonaler LQs der Ordnung n

Es gibt höchstens n-1 paarweise orthogonale LQ's der Ordnung n.

Beweis:

Seien $L_1, ..., L_k$ paarweise orth. LQs der Ordnung n über $\{1, ..., n\}$.

Permutation $\pi : \{1, ..., n\} \to \{1, ..., n\}$

$$L = (L(i, j)), L^{\pi} = (\pi(L(i, j)))$$

Beobachtung: L
 orthogonal L' $\leftrightarrow L^{\pi}$ orthogonal L'

Wähle für $1 \leq l \leq k$ Permutation π_l , so dass $L_l^{\pi_l}(1,j) = j$ und $L_l^{\pi_l} = \begin{pmatrix} 1 & 2 & \dots & n \\ * & & & \end{pmatrix}$

Dann sind LQ $L_1^{\pi_1},...,L_k^{\pi_k}$ immer noch paarweise orthogonal

$$L_l^{\pi_l}(2,1) \in \{2,3,..,n\} \text{ und } L_l^{\pi_l}(2,1) \neq L_{l'}^{\pi_{l'}}(2,1), l \neq l' \Rightarrow k \leq n-1$$

2.1.8 Satz

Die Folgenden Aussagen sind Äquivalent:

- (1) es existieren projektive Ebenen der Ordnung n
- (2) es existieren affine Ebenen der Ordnung n
- (3) es existieren $M = \{L_1, ..., L_{n-1}\}$ paarweise orthogonale LQs

Beweis:

Es genügt $(2) \leftrightarrow (3)$ zu zeigen

⇐:

Seien $L_1, ..., L_{n-1}$ paarweise orthogonale LQ's über $\{1, 2, ..., n\}$. Bilde Inzidenzsystem A = (P,G,I) mit $P = \{1, ..., n\}^2$. Die Geradenmenge $G = G_z \cup G_s \cup G_1 \cup ... \cup G_{n-1}$ wobei:

$$G_z = \{g_{zi} | i \in \{1, ..., n\}\}\$$
$$g_{zi} = \{(i, j) | j \in \{1, ..., n\}\}\$$

$$G_s = \{g_{sj} | j \in \{1, ..., n\}\}$$

$$g_{zi} = \{(i, j) | i \in \{1, ..., n\}\}$$

$$G_k = \{g_{kl} | l \in \{1, ..., n\}\}$$

$$g_{kl} = \{(i, j) | L_k(i, j) = l\}$$

 n^2 Punkte

(n+1)n Geraden

Axiome: (A3) klar

- (A2) jede Parallelenschar G_s, G_z, G_k enthält alle Punkte (i,j) genau einmal
- **(A1)** Punkte $(i, j) \neq (i', j')$

i=i': Gerade g_{zi} verbindet Punkte

 $j=j'\!\!:$ Gerade g_{sj} verbindet Punkte

 $i \neq i', j \neq j'$:
es existiert genau ein kmit $L_k(i,j) = L(i',j'))$ wegen Orthogonalität

Beispiel

affine Ebene der Ordnung 4 aus L_1, L_x, L_{x+1}

Beweis \Rightarrow

Gegeben affine Ebene der Ordnung nA = (P, G, I).

Zeichne 2 Parallelenscharen von A als Zeilen bzw. Spalten aus.

Aus jeder weiteren Parallelenschar \mathcal{G}_k bezeichne Geraden mit 1,...,n

 $L_k(i,j) = l \Leftrightarrow \text{Geraden } g_{kl} \cap g_{zi} \cap g_{sj} \neq 0$

$$L_{1} = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \text{ (grün)}$$

$$L_{1} = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \text{ (blau)}$$

Orthogonal: ... q.e.d

N(n): maximale Anzahl paarweise orthogonaler LQ's der Ordnung n

3 Kombinatorische Spiele

3.1 kombinatorische Spiele

2 Spieler

abwechselnde Züge

- 3 Spielausgänge
 - 1 gewinnt
 - 2 gewinnt
 - unentschieden

kein Zufall

keine verdeckten Züge

Beispiele

- Schach
- Dame
- Nim-Spiele
- Hex

keine kombinatorischen Spiele

- Offizierskat
- Poker

3.2 Modell

Ein kombinatorisches Spiel ist ein Tupel:

$$\Gamma = (V, E_1, E_2, v_0, P_0, g_1, g_2)$$

V = Spielposition

 $E_1, E_2 \subseteq V^2$ geordnete Paare von Spielpositionen

3 Kombinatorische Spiele

 v_0 Startposition

 p_0 Startspieler

 $T_1, T_2 \subseteq V, u \in T_i \leftrightarrow \text{ existiert kein } v \in V \text{ mit } (uv) \in E_i \text{ Endpositionen}$

 $g_1:T_1\to\{0,1,2\}$

 $g_2: T_2 \to \{0, 1, 2\}$

Spielverlauf

- Spieler p_0 startet in Posotion v_0
- Ist Spieler i am Zug in Position $v \in V$, so wählt er $(v, w) \in E_i$, danach ist Spieler 3 i in Position w am Zug
- existiert kein Gültiger Zug, d.h. $v \in T_i$ ist der Spielausgang $g_i(V)$
 - -0 = unentschieden
 - -1 =Spieler 1 gewinnt
 - -2 =Spieler 2 gewinnt
- Spielgraph:

- Wir betrachten nur endliche Spiele. d.h.
 - 1. Positionszahl ist endlich
 - 2. einmal erreiche Positionen kann nicht nochmal erreicht werden

Strategie in einem Spiel

$$s_i: V \setminus T_i \to E_i \text{ mit } s_i(v) = (v, w) \text{ für ein } (v, w) \in E_i$$

Strategie für Spieler i: Beobachtungen:

 \bullet s_1 und s_2 bestimmen eindeutig den Ausgang des Spiels

(Spieler i in Position v wählt immer Zug $s_i(v)$) Ausgang des Spiels: $w(s_1, s_2) = 0, 1$ oder 2

- $\bullet \ s_1$ heißt Gewinnsrategie für Spieler
 $1 \Leftrightarrow w(s_1,s_2) = 1$ für alle möglichen s_2
- $\bullet \ s_1$ heißt Verlustvermeidungsstrategie für Spieler $1 \Leftrightarrow w(s_1,s_2) \neq 2$ für alle s_2
- Analog Gewinn/Verluststrategie für Spieler 2

3.3 Satz von Zermelo 1912

In jedem kombinatorischen Spiel gilt genau einer der folgenden Fälle

- (1) Spieler 1 hat eine Gewinnstrategie
- (2) Spieler 2 hat eine Gewinnstrategie
- (3) Beide Spieler haben eine Verlusvermeidungsstrategie

Beweis:

Idee: Induktion nach maximaler Spielzugzahl

Aus Beweis folgt unpraktikabler Algorithmus zur Bestimmung von GS, VVS bekannt ist:

- (1) 4 gewinnt, Hex (Nimm Spiele)
- (2) Hex mit Tauschregel
- (3) Mühle, dameähnliches Spiel

unbekannt: Schach, Go, ...

Definition:

Neutralität Ein Spiel heißt neutral , wenn $E_1=E_2=E$

Normalität Ein Spiel heißt normal, wenn der Spieler verliert, der keinen gültigen Zug mehr hat $(g_i(T_i) = 3 - i)$

- normale Spiele gehen nie unentschieden aus
- $\bullet \Rightarrow$ es gibt immer eine Gewinnstrategie
- Ein neutrales, normales Spiel ist bestimmt durch den Spielgraphen G = (V, E) und Startposition v_0 , Startspieler p_o

Beispiel

- Nim-Spiel:
- 10 Streichhölzer, jeder Spieler darf 1 oder 2 Hölzer entfernen, wer letztes entfernt hat gewonnen
- 3 Haufen von Hölzern, Spieler darf beliebig viele Hölzer von einem entfernen
- Streichholzpyramide: Zug= Wähle Reihe, entferne 1 oder 2 Hölzer
- Hackenbusch: Zug: Wähle einen Ast und Säge den ab

3.3.1 Methode zur Bestimmung von Gewinnstrategien

Definition

Sei G=(V,E) ein gerichteter Graph. Eine Teilmenge $\mathbf{K}\subseteq V$ heißt Kern des Graphen wenn gilt:

- (1) $\forall x \in V K \ \exists y \in K \ \text{mit} \ (x, y) \in E, N(x) \cap K \neq \emptyset$
- (2) $\forall x \in K : \forall y \text{ mit } (x, y) \in E \text{ gilt: } y \notin K$

Wenn G der Spielgraph ist, Spieler 1 beginnt in Position $v_0 \in K \Rightarrow$ Spieler 1 hat Gewinnstrategie.

Gewinnstrategie:

- wähle Zug der in den Kern führt
- 1. Fall Spieler 2 ohne gültigen Zug (wegen (1)) \Rightarrow Spieler 1 gewinnt
- 2. Fall Spieler kann ziehen \Rightarrow Spieler 1 ist in Position $w \in V - K$ dran (folgt aus (2))

Beispiel: Nimm Spiel mit 10 Hölzern

- Spielgraph:

- Kern/Verlustpositionen
- -V-K Gewinnpositionen

Beispiel2: Nim-Spiel mit n Hölzern:

Behauptung: $K = \{3i \mid i \in N_0\}$

Beweis: Eigenschaft 1:

- sei $m \notin K \Rightarrow m = 3i + 1$ oder m = 3i + 2 für ein $i \in N_0$
- in beiden Fällen ist $y = 3i \in N(m), y = 3i \in K$

Eigenschaft 2:

- sei $m=3i\in K$
- mögliche Züge sind 1 Holz oder 2 Hölzer $\Rightarrow N(m) \subseteq \{3i-1, 3i-2\}$

3.4 Satz

Jeder gerichtete Graph ohne gerichtete Kreise, besitzt genau einen Kern.

Beweisidee:

1) Existenz mit vollständiger Induktion nach Knotenzahl n

IA:
$$n = 2 \Rightarrow V = \{x\}K = \{x\}$$
 erfüllt Eigenschaft

IS: Sei G gerichteter Graph ohne gerichtete Kreise mit n Knoten n>1 x sei Quelle von G, G-x besitzt Kern K nach IV

1.Fall
$$N(x) \cap K \neq \emptyset \Rightarrow K' = K$$

3 Kombinatorische Spiele

2.Fall
$$N(x) \cap K = \emptyset \Rightarrow K' = K \cup \{x\}$$
 K' ist Kern von G

2) Eindeutigkeit

Angenommen
$$G$$
 hat 2 Kerne K_1, K_2 mit $K_1 \neq K_2$ sei $x \in K_1 \setminus K_2$ wegen Eigenschaft 1 für K_2 muss $y_1 \in K_2$ mit $x_1y_2 \in E$ $y_1 \notin K_1$ wegen Eigenschaft 2 für K_1 analog folgt für $y_1 \exists x_2$ mit $y_2x_1 \in E$ $x_2 \in K_1 \setminus K_2$

Da G keine gerichteten Kreise enthält, folgt unendliche Kantenfolge $x_1,y_1,y_2,y_2,...$ Widerspruch zur endlichkeit des Graphen