

AD-A083 967

MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF CHEMISTRY F/0 7/3
GEM-DIFLUOROALLITHIUM: IMPROVED SYNTHESIS BRINGS IMPROVED APPLI--ETC(U)
APR 80 D SEYFERTH, R M SIMON, D J SEPELAK N00014-76-C-0637

UNCLASSIFIED

TR-10

NL

END
DATE
FILED
6-80
DTIC

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		
1. REPORT NUMBER 10	2. GOVT ACCESSION NO. AD-A083967	4. DRAFT INSTRUCTION BEFORE GOV'T PUBLISHING DPM LEVEL
5. TITLE (and subtitle) gem-Difluoroallithium: Improved Synthesis Brings Improved Applicability		
7. AUTHOR(s) Dietmar Seyferth, Robert M. Simon, Dennis J. Sepelak, Helmut A. Klein	8. TYPE OF REPORT & PERIOD COVERED Technical Report Interim	9. PERFORMING ORG. REPORT NUMBER 15
10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 053-618	11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Department of the Navy Arlington, VA 22217	12. REPORT DATE 11/15 April 1980
13. NUMBER OF PAGES 5	14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) (9) Intraun Technical rept.	15. SECURITY CLASS. (of this report) Unclassified
16. DISTRIBUTION STATEMENT (of this Report) Approval for Public Release, Distribution Unlimited (14) TR-10	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	18. DECLASSIFICATION/DOWNGRADING SCHEDULE DTIC ELECTE S MAY 1 1980 D A
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) <i>yield</i>	20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The action of n-butyllithium in hexane on $\text{CF}_3\text{BrCH}=\text{CH}_2/\text{CF}_2=\text{CH}-\text{CH}_2\text{Br}$ (5:2 + 20:1 mixture) in 5:1:1 THF/ Et_2O /pentane at -95°C generates gem-difluoroallyllithium which may be trapped, generally in good yield, by the <i>in situ</i> procedure using triorganochlorosilanes ($\text{+ R}_3\text{SiCF}_2\text{CH}=\text{CH}_2$) and aldehydes and ketones ($\text{+ RR}'\text{C}(\text{OH})\text{CF}_2\text{CH}=\text{CH}_2$).	

DD FORM 1 JAN 73 1473

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

80 4 30 019

220007

DDC FILE COPY

OFFICE OF NAVAL RESEARCH

CONTRACT N00014-76-C-0837

Task No. NR 053-618

TECHNICAL REPORT NO. 10

GEM-DIFLUOROALLYLLITHIUM: IMPROVED SYNTHESIS

BRINGS IMPROVED APPLICABILITY

by

Dietmar Seyferth, Robert M. Simon,
Dennis J. Sepelak, and Helmut A. Klein

Prepared for Publication
in the
Journal of Organic Chemistry

Massachusetts Institute of Technology
Department of Chemistry, 18-411
Cambridge, Massachusetts 02139

April 15, 1980

Accession For	
NTIS	GRANT
DDC TAB	<input checked="" type="checkbox"/>
Unclassified	<input type="checkbox"/>
Justification _____	
By _____	
Distribution _____	
Availability Codes _____	
Dist	Avail and/or special
A	

Reproduction in whole or in part is permitted for any purpose
of the United States Government.

This document has been approved for public release and sale;
its distribution is unlimited.

80 4 30 019

GEM-DIFLUOROALLYLLITHIUM: IMPROVED SYNTHESIS

BRINGS IMPROVED APPLICABILITY

Sir:

gem-Difluoroallyllithium, I, is of interest as a reagent which allows the introduction of a functional fluorinated substituent into organic and organometallic compounds. We have generated this reagent at low temperature by the transmetalation procedure (eq. 1).¹ The reagent is not stable in solution even at

-95°C and cannot be preformed prior to its reaction with the desired substrate. Its reactions with chlorosilanes were carried out by the in situ procedure: slow addition of n-C₄H₉Li solution to a mixture of Me₃SnCH₂CH=CF₂ and the chlorosilane, so that the reagent is trapped as it is formed. The addition of Li[CF₂CHCH₂] to the C=O of 3-pentanone by the in situ procedure was not successful since the rate of n-butyllithium addition to the ketone is faster than its rate of displacement of the difluoroallyl substituent from tin. Addition of Li[CF₂CHCH₂] to the C=O bond of 3-pentanone to give (C₂H₅)₂-C(OH)CF₂CH=CH₂ (75% yield) was achieved by the method of alternate, incremental additions.¹ However, this procedure is tedious and cumbersome and not well adapted to larger scale application.

In view of these difficulties with Li[CF₂CHCH₂]/carbonyl reactions and also because of the difficult, multi-step preparative route to Me₃SnCH₂CH=CF₂, the Li[CF₂CHCH₂] precursor,¹ we sought an alternative method of generating gem-difluoroallyllithium.

The benzoyl peroxide-induced addition of dibromodifluoromethane to ethylene in an autoclave at 80°C was reported by Tarrant and Lovelace² to give $\text{CF}_2\text{BrCH}_2\text{CH}_2\text{Br}$. The single example of this reaction which was described² involved a runaway exotherm with consequent loss of most of the contents of the autoclave through the rupture disk, but we have used this reaction repeatedly without mishap. In a typical example, the yield of $\text{CF}_2\text{BrCH}_2\text{CH}_2\text{Br}$ was 76%, based on unrecovered CF_2Br_2 , which had been used in excess. Treatment of $\text{CF}_2\text{BrCH}_2\text{CH}_2\text{Br}$ with aqueous KOH at 95-98°C gave a 5:2 mixture (by NMR) of $\text{CF}_2\text{BrCH=CH}_2$ and $\text{CF}_2=\text{CHCH}_2\text{Br}$ in 74% yield. Slow distillation of this product mixture gave a distillate with an isomer ratio which had been increased to ca. 20:1. Either isomer mixture serves well as a precursor for gem-difluoroallyllithium (eq. 2)³. In situ

reactions with chlorosilanes gave moderate-to-good yields of 1,1-difluoroallylsilanes. In one such reaction, when 15 mmol of n-butyllithium in hexane was added slowly to a mixture of 19 mmol of 20:1 $\text{CF}_2\text{BrCH=CH}_2/\text{CF}_2=\text{CHCH}_2\text{Br}$ and 30 mmol of PhMe_2SiCl in 5:1:1 (by volume) THF/Et₂O/pentane at -95°C (under nitrogen, with stirring for 60 min. at -95°C), $\text{PhMe}_2\text{SiCF}_2\text{CH=CH}_2$ ¹ was produced in 71% yield. Also prepared in this manner were $\text{Et}_3\text{SiCF}_2\text{CH=CH}_2$ (51%), n-Pr₃Si-CF₂CH=CH₂ (50%) and Me₃SiCF₂CH=CH₂ (89%). In the case of the latter, separation from the n-butyl bromide formed in the Li/Br exchange reaction could not be effected by distillation. However, ethyllithium may be used in place of n-butyllithium to form $\text{Li}[\text{CF}_2\text{CHCH}_2]$ and the ethyl bromide formed in the exchange is much more volatile and does

not interfere in product isolation.

The real utility of this new procedure for $\text{Li}[\text{CF}_2\text{CHCH}_2]$ lies in its applicability to aldehyde and ketone difluoroallylation. In the $\text{Me}_3\text{SnCH}_2\text{CH}=\text{CF}_2/\underline{n\text{-C}_4\text{H}_9}\text{Li}$ route to $\text{Li}[\text{CF}_2\text{CHCH}_2]$ it is a matter of nucleophilic displacement of $[\text{CF}_2\text{CHCH}_2]^-$ from tin by $\underline{n\text{-butyl-}}$ lithium. This polar process is relatively slow at low temperature and cannot compete with the more rapid addition of the lithium reagent to the C=O bond. On the other hand, the lithium/halogen exchange reaction, especially when polyhalomethanes are involved, is an electron-transfer process⁴, and, as such, is rapid even at low temperature in ether solvents. Therefore, one might expect that the $\text{CF}_2\text{BrCH}=\text{CH}_2/\underline{n\text{-C}_4\text{H}_9}\text{Li}$ reaction would proceed at a rate comparable to, or even faster than, $\underline{n\text{-butyllithium}}$ addition to the carbonyl compound. Such was found to be the case. In situ reactions in which $\text{CF}_2\text{Br}-\text{CH}=\text{CH}_2/\text{CF}_2=\text{CHCH}_2\text{Br}$ and the aldehyde or ketone in 5:1:1 THF/Et₂O/pentane solvent at -95°C (under nitrogen, with stirring for 90 min.), with subsequent slow warming to room temperature and hydrolysis, gave alcohols of type $\text{RR}'\text{C}(\text{OH})\text{CF}_2\text{CH}=\text{CH}_2$ in good yield (by GLC). Thus prepared were $\text{Me}_2\text{C}(\text{OH})\text{CF}_2\text{CH}=\text{CH}_2$ (41%), $\text{Et}_2\text{C}(\text{OH})\text{CF}_2\text{CH}=\text{CH}_2$ (70%), cyclo- $\text{C}_6\text{H}_{10}(\text{OH})\text{CF}_2\text{CH}=\text{CH}_2$ (59%), $\text{PhMeC}(\text{OH})\text{CF}_2\text{CH}=\text{CH}_2$ (73%), $\underline{n\text{-C}_4\text{H}_9}\text{CH}(\text{OH})-\text{CF}_2\text{CH}=\text{CH}_2$ (87%) and $\text{Me}_3\text{CCH}(\text{OH})\text{CF}_2\text{CH}=\text{CH}_2$ (95%).⁵

One object of our study of the reactions of gem-difluoroallyl-lithium with carbonyl compounds was to see if its α/γ regiosel ectivity in C=O additions was the same as or different from that of gem-dichloroallyllithium, a reagent which we had prepared and investigated in an earlier study.⁶ As in the case of $\text{Li}[\text{CCl}_2\text{CHCH}_2]$, the reactions of gem-difluoroallyllithium with aliphatic ketones resulted in C-C bond formation at the halogenated terminus of the re-

agent. However, in contrast to the results obtained in reactions of gem-dichloroallyllithium with aliphatic aldehydes and with aceto-phenone (mixtures of alcohols, $RR'C(OH)CCl_2CH=CH_2$ and $RR'C(OH)CH_2CH=CCl_2$, in which the former predominated), such reactions of gem-difluoroallyl-lithium gave only a single product of type $RR'C(OH)CF_2CH=CH_2$. Further work will be aimed at a more detailed comparison of the reactions of $Li[CF_2CHCH_2]$ and $Li[CCl_2CHCH_2]$ using a wider selection of carbonyl substrates.

The $Me_3SnCH_2CH=CF_2/n-C_4H_9Li$ in situ procedure for gem-difluoro-allyllithium also failed to give the desired result in the attempted difluoroallylation of dimethyldichlorosilane to $Me_2Si(CF_2CH=CH_2)_2$. Apparently the substitution of the first chlorine by n-butyllithium is faster than its transmetalation with the tin precursor, and $Me_2(n-C_4H_9)SiCF_2CH=CH_2$ was the product which was isolated.¹ In contrast, the rate of the $CF_2BrCH=CH_2/n-C_4H_9Li$ reaction is faster than that of n-butyllithium with dimethyldichlorosilane under the conditions of our experiment, and $Me_2Si(CF_2CH=CH_2)_2$ was obtained in moderate yield.

Using this new and improved route for its generation, we are investigating further aspects of the chemistry of gem-difluoroallyl-lithium.

Acknowledgments. This work was supported in part by the Office of Naval Research. H. A. K. is grateful to the University of Kiel for a leave of absence and to the Max Kade Foundation for the award of a postdoctoral fellowship.

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dietmar Seyferth
Robert M. Simon
Dennis J. Sepelak
Helmut A. Klein

REFERENCES

1. D. Seyferth and K. R. Wursthorn, J. Organometal. Chem., 182, 455 (1979).
2. P. Tarrant and A. M. Lovelace, J. Am. Chem. Soc., 76, 3466 (1954).
3. In writing eq. 2 we have assumed that it is $\text{CF}_2\text{BrCH}=\text{CH}_2$, not its isomer, which leads to $\text{Li}[\text{CF}_2\text{CHCH}_2]$, in analogy to RLi/poly-halomethane vs. RLi/allylic halide reactions. This question, however, will be investigated in future experiments.
4. (a) H. R. Ward, R. G. Lawler and H. Y. Loken, J. Am. Chem. Soc., 90, 7359 (1968); (b) H. R. Ward, R. G. Lawler and R. A. Cooper, J. Am. Chem. Soc., 91, 746 (1969); (c) A. R. Lepley and R. L. Landau, J. Am. Chem. Soc., 91, 748 (1969); (d) A. R. Lepley, Chem. Commun., 64 (1969).
5. All new compounds were characterized by combustion analysis and nmr and ir spectroscopy. The key feature in the proton nmr spectra of these alcohols is the 3-proton multiplet in the vinyl region at about δ 5.2-6.5 ppm and the absence of allylic proton resonances expected between δ 2 and 3 ppm.
6. D. Seyferth, G. J. Murphy and B. Mauze, J. Am. Chem. Soc., 99, 5317 (1977).

Nov. 1979

list

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<u>No.</u>	<u>Copies</u>	<u>No.</u>	<u>Copies</u>
Office of Naval Research Attn: Code 472 800 North Quincy Street Arlington, Virginia 22217	2	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 1211 Research Triangle Park, N.C. 27709	1
ONR Branch Office Attn: Dr. George Sandoz 536 S. Clark Street Chicago, Illinois 60605	1	Naval Ocean Systems Center Attn: Mr. Joe McCartney San Diego, California 92152	1
ONR Branch Office Attn: Scientific Dept. 715 Broadway New York, New York 10003	1	Naval Weapons Center Attn: Dr. A. B. Amster, Chemistry Division China Lake, California 93555	1
ONR Branch Office 1030 East Green Street Pasadena, California 91106	1	Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401	1
ONR Branch Office Attn: Dr. L. H. Peebles Building 114, Section D 666 Summer Street Boston, Massachusetts 02210	1	Department of Physics & Chemistry Naval Postgraduate School Monterey, California 93940	1
Director, Naval Research Laboratory Attn: Code 6100 Washington, D.C. 20390	1	Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380	1
The Assistant Secretary of the Navy (R,E&S) Department of the Navy Room 4E736, Pentagon Washington, D.C. 20350	1	Office of Naval Research Attn: Dr. Richard S. Miller 800 N. Quincy Street Arlington, Virginia 22217	1
Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Department of the Navy Washington, D.C. 20360	1	Naval Ship Research and Development Center Attn: Dr. G. Bosmajian, Applied Chemistry Division Annapolis, Maryland 21401	1
Defense Documentation Center Building 5, Cameron Station Alexandria, Virginia 22314	12	Naval Ocean Systems Center Attn: Dr. S. Yamamoto, Marine Sciences Division San Diego, California 91232	1
Dr. Fred Saalfeld Chemistry Division Naval Research Laboratory Washington, D.C. 20375	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	<u>No.</u> <u>Copies</u>
Dr. Rudolph J. Marcus Office of Naval Research Scientific Liaison Group American Embassy APO San Francisco 96503	1
Mr. James Kelley DTNSRDC Code 2803 Annapolis, Maryland 21402	1

TECHNICAL REPORT DISTRIBUTION LIST, 053

<u>No.</u>	<u>Copies</u>	<u>No.</u>	<u>Copies</u>
Dr. R. N. Grimes University of Virginia Department of Chemistry Charlottesville, Virginia 22901	1	Dr. M. H. Chisholm Department of Chemistry Indiana University Bloomington, Indiana 47401	1
Dr. M. Tsutsui Texas A&M University Department of Chemistry College Station, Texas 77843	1	Dr. B. Foxman Brandeis University Department of Chemistry Waltham, Massachusetts 02154	1
Dr. M. F. Hawthorne University of California Department of Chemistry Los Angeles, California 90024	1	Dr. T. Marks Northwestern University Department of Chemistry Evanston, Illinois 60201	1
Dr. D. B. Brown University of Vermont Department of Chemistry Burlington, Vermont 05401	1	Dr. G. Geoffrey Pennsylvania State University Department of Chemistry University Park, Pennsylvania 16802	1
Dr. W. B. Fox Naval Research Laboratory Chemistry Division Code 6130 Washington, D.C. 20375	1	Dr. J. Zuckerman University of Oklahoma Department of Chemistry Norman, Oklahoma 73019	1
Dr. J. Adcock University of Tennessee Department of Chemistry Knoxville, Tennessee 37916	1	Professor O. T. Beachley Department of Chemistry State University of New York Buffalo, New York 14214	1
Dr. A. Cowley University of Texas Department of Chemistry Austin, Texas 78712	1	Professor P. S. Skell Department of Chemistry The Pennsylvania State University University Park, Pennsylvania 16802	1
Dr. W. Hatfield University of North Carolina Department of Chemistry Chapel Hill, North Carolina 27514	1	Professor K. M. Nicholas Department of Chemistry Boston College Chestnut Hill, Massachusetts 02167	1
Professor H. Abrahamson University of Oklahoma Department of Chemistry Norman, Oklahoma 73019	1	Professor R. Neilson Department of Chemistry Texas Christian University Fort Worth, Texas 76129	1
		Professor M. Newcomb Texas A&M University Department of Chemistry College Station, Texas 77843	1