Лекция 5

Ilya Yaroshevskiy

16 января 2021 г.

Содержание

	_	
1	Многообразия 1.1 Касательные пространства	1 1
2	Относительный экстремум	2
3	Функциональные последовательности и ряды 3.1 Равномерная сходимость последовательности функций	3
1	Многообразия	
en	емма 1. $\Phi: O \subset \mathbb{R}^k \to \mathbb{R}^m$ C^r -гладкое - парметризация мноогбразия $U(p) \cap M$, где $p \in M$, M надкое k -мерное многообразие, $\Phi(t^0) = p$ огда образ $\Phi'(t^0): \mathbb{R}^k \to \mathbb{R}^m$ есть k -мерное линейное подпространство в \mathbb{R}^m . Оно не зависит о	
Ξc	оказательство. rank $\Phi'(t^0)=k$ сли взять другую параметризацию $\Phi_1 \Phi=\Phi_1\circ \Psi$ $Y=\Phi_1'\cdot \Psi \Psi'(t^0)$ - невырожденный оператор	
1.	1 Касательные пространства	
Oı	пределение. $\Phi'(t^0)$ — касательное пространство к M в точке p	

Обозначение. T_pM

Пример.
$$M$$
 - окружность в \mathbb{R}^2 $\Phi: t\mapsto (\cos t, \sin t)^T$ $t^0=\frac{\pi}{4}$ $\Phi'(t^0)=(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})^T$ $h\in\mathbb{R}\mapsto\begin{pmatrix}-\frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2}\end{pmatrix}h$

 Πp имечание. $v\in T_pM$. Тогда \exists путь $\gamma_v:[-\varepsilon,\varepsilon]\to M$, такой что $\gamma(0)=p,\ \gamma'(0)=v$

Доказательство.
$$u := (\Phi'(t^0))^{-1}(v)$$

$$\tilde{\gamma}_v(s) := t^0 + s \cdot u, \quad s \in [-\varepsilon, \varepsilon]$$

$$\gamma_v(s) := \Phi(\tilde{\gamma}_v(s))$$

$$\gamma_v'(0) = \Phi'(\underbrace{\tilde{\gamma}_v(0)}_{t^0}) \cdot u = v$$

 Πp имечание. Пусть $\gamma: [-\varepsilon, \varepsilon] \to M, \ \gamma(0) = p$ - гладкий путь Тогда $\gamma'(0) \in T_pM$

Доказательство.
$$\gamma(s) = (\Phi \circ \Psi \circ L)(\gamma(s))$$
 $\gamma' = \Phi' \cdot \Psi' \cdot L' \cdot \gamma'(s) \in T_pM$

Примечание. Афинное подпространство $\{p+v,\ v\in T_pM\}$ - называется афинным касательным пространство

$$f:O\subset\mathbb{R}^m\to\mathbb{R}$$
 - гладкая, $y=f(x)$ - поверхность в \mathbb{R}^{m+1} (x,y)
Тогда (афииная) касательная плоскость в (a,b) задается уравнением $y-b=f'_{x_1}(a)(x_1-a_1)+f'_{x_2}(a)(x_2-a_2)+\cdots+f'_{x_m}(a)(x_m-a_m)$

Доказательство.
$$\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^{m+1}$$
 $\Phi(x) = (x, f(x))$

$$\Phi' = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ f'_{x_1} & f'_{x_2} & \dots & f'_{x_m} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \\ x_1 f'_{x_1} + \dots + x_m f'_{x_m} \end{pmatrix} \cdot \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_m \\ \beta \end{pmatrix}$$

$$\beta = \alpha_1 f'_{x_1} + \dots + \alpha_m f'_{x_m}$$

$$\Pi_{pume \ uahue.} \quad y = f(a) + f'_{x_1}(a)(x_1 - a_1) + \dots + f'_{x_m}(a)(x_m - a_m)$$

$$f(x) - y(x) = o(x - a)$$

$$\Pi_{pume \ uahue.} \quad \Phi(x_1, \dots, x_m) = 0 \quad \Phi: O \subset \mathbb{R}^m \to \mathbb{R} \quad \Phi(a) = 0$$

Уравнение касательной плоскости $\Phi'_{x_1}(a)(x_1-a_1)+\cdots+\Phi'_{x_m}(a)(x_m-a_m)=0$ γ - путь в M $\Phi(\gamma(s)) = 0$, $\Phi'(\gamma(s))\gamma'(s) = 0$ $\Phi'_{x_1} \cdot \gamma'_1 + \dots + \Phi'_{x_m} \cdot \gamma'_m = 0$

Определение дифференцируемости Φ в точке a

$$\Phi(x) = \Phi(a) + \Phi'_{x_1} \cdot (x_1 - a_1) + \dots + \Phi'_{x_m} \cdot (x_m - a_m) + o$$

2 Относительный экстремум

Пример. Найти наибольшее/наименьшее значение выражения f(x,y) = x+y, при условии $x^2+y^2=1$ f = const - линии уровня(прямые в данном случае)

B точке \max линии уровня $f = \max$

$$\Phi(x,y) = 0$$
 $\Phi'_x(x-a) + \Phi'_y(y-b) = 0$

 (Φ_x',Φ_y') - вектор нормали к касательной прямой

```
Определение. f: O \subset \mathbb{R}^{m+n} \to \mathbb{R} \quad \Phi: O \to \mathbb{R}^n
M_{\Phi} \subset O := \{x | \Phi(x) = 0\}
x_0 \in M_{\Phi}, r.e. \Phi(x_0) = 0
```

 x_0 - точка локального относительного $\max, \min,$ строгого $\max,$ строгого \min

Если $\exists U(x_0) \subset \mathbb{R}^{m+n}$

 $\forall x \in U \cap M_{\Phi}$ (т.е. $\Phi(x) = 0$) $f(x_0) \geq f(x)$ (для максимума)

т.е. x_0 - локальный экстремум $f|_{M_{\Phi}}$

Уравнения $\Phi(x) = 0$ - уравнения связи

Как можно решать эту задачу

Если $\operatorname{rank}\Phi'(x_0)=n$, выполнено условие теоремы о неявном отображении

Теорема 2.1 (Необходиое условие относительно экстремума). $f:O\subset\mathbb{R}^{m+n}\to\mathbb{R}$ $\Phi:O\to\mathbb{R}^n$ гладкое в O

 $a \in O \quad \Phi(a) = 0$ - точка относительного экстремума, $\mathrm{rank} \Phi'(a) = n$

Тогда $\exists \lambda = (\lambda_1 \ldots \lambda_n) \in \mathbb{R}^n$

$$\begin{cases} f'(a) - \lambda \cdot \Phi'(a) = 0 \\ \Phi(a) = 0 \end{cases} \in \mathbb{R}^{m+n}$$

В координатах:

$$\begin{cases} f'_{x_1}(a) - \lambda_1(\Phi_1)'_{x_1} - 2(\Phi_2)'_{x_1} - \dots - \lambda_m(\Phi_n)'_{x_1} = 0 \\ \vdots \\ f'_{x_{m+n}}(a) - \lambda_1(\Phi_1)'_{x_{m+n}} - 2(\Phi_2)'_{x_{m+n}} - \dots - \lambda_m(\Phi_n)'_{x_{m+n}} = 0 \\ \Phi_1(a) = 0 \\ \vdots \\ \Phi_n(a) = 0 \end{cases}$$

Доказательство. Пусть ранг реализуется на столбцах x_{m+1}, \ldots, x_{m+n} , обозначим $y_1 = x_{m+1}, \ldots, y_m =$

 $(x_1 \ldots x_{m+n}) \leftrightarrow (x,y) \quad a = (a_x, a_y)$

 $\det \frac{\partial \Phi}{\partial y}(a) = 0$ По теореме о неявном отображении $\exists U(a_x) \; \exists V(a_y)$

 $\exists \varphi : U(a_x) \to V(a_y) : \Phi(x, \varphi(x)) = 0$

отображение $x \mapsto (x, \varphi(x))$ есть параметризация $M_{\varphi} \cap (U(a_x) \times V(a_y))$

a - точка относительного локального экстремума $\Rightarrow a_x$ - точка локального экстремума функции $g(x) = f(x, \varphi(x))$

Необходимое условие экстремума:

$$(f_x' + f_y' \cdot \varphi_x')(a_x) = 0 \tag{1}$$

 $\Phi(x,\varphi(x)) = 0$

 $\Phi_x' + \Phi_y' \cdot \varphi_x' = 0$ - в точке (a_x, a_y)

$$\forall \lambda \in \mathbb{R}^m \quad \lambda \cdot \Phi_x' + \lambda \cdot \Phi_y' \varphi_x'(a_x) = 0 \tag{2}$$

(1) + (2):
$$f'_x + \lambda \Phi'_x + (f'_y + \lambda \Phi'_y)\varphi'_x = 0$$

Пусть
$$\lambda = -f'_{y}(\Phi'_{y}(a_{x}, a_{y}))^{-1}$$

(1) + (2):
$$f'_x + \lambda \Phi'_x + (f'_y + \lambda \Phi'_y) \varphi'_x = 0$$

Пусть $\lambda = -f'_y (\Phi'_y (a_x, a_y))^{-1}$
Тогда $f'_y + \lambda \Phi'_y = 0$ и $f'_x + \lambda \Phi'_x = 0$ (из (1) + (2))

Определение. $G:=f-\lambda_1\Phi_1-\lambda_2\Phi_2-\cdots-\lambda_n\Phi_n$ - Функция Лагранжа

 $\lambda_1,\ldots,\lambda_n$ - множители Лагранжа

$$\begin{cases} G'=0 \\ \Phi=0 \end{cases}$$
 - то что в теореме

 $\Pi pumep.$ $A=(a_{ij})$ - симметричная вещественная матрица

 $f(x) = \langle Ax, x \rangle, \quad x \in \mathbb{R}^m$ - квадратичная форма

Найти $\max f(x), x \in S^{m-1}$ - существует по теореме Вейрештрасса

$$G(x) = \sum_{i,j=1}^{m} a_{ij} x_i x_j - \lambda (\sum_{i=1}^{m} x_i^2 - 1)$$
 уравнение сферы $\Phi' = (2x_1, \ 2x_2, \ \dots, \ 2x_m)^T$, на сфере $\operatorname{rank} \Phi' = 1$

$$G'_{x_k} = \sum_{j=1}^{m} a_{kj} x_j - 2\lambda x_k$$
 $k = 1 \dots m$, T.e. $Ax = \lambda x$

 λ - собственное число A, x - собственный вектор

$$f(x) = \langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda |x|^2 = \lambda$$

Теорема 2.2. $A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$. Тогда $||A|| = \max\{\sqrt{\lambda}|\lambda - \text{собственное число оператора } A^T A\}$

 $\langle Ax, y \rangle = \langle x, A^T y \rangle$

$$\langle A^T Ax, x \rangle = \langle Ax, Ax \rangle \ge 0$$

Доказательство.
$$x \in S^{m-1}$$
 $|Ax|^2 = \langle Ax, Ax \rangle = \langle \underbrace{A^TA}_{\text{симм.}} x, x \rangle \qquad (A^TA)^T = A^TA$ $\max |Ax|^2 = \max \langle A^TAx, x \rangle = \lambda_{\max}$

3 Функциональные последовательности и ряды

Равномерная сходимость последовательности функций

Определение. Последовательность функций

$$\mathbb{N} \to \mathcal{F} \quad n \mapsto f_n$$

$$\mathcal{F}: \{f|X \to \mathbb{R}\}$$

Пусть $\stackrel{\scriptscriptstyle{\mathrm{M.п.}}}{E} \subset X$

Определение. Последовательность f_n сходится поточечно к f на множестве $E, \forall x \in E$ $f_n(x) \to$

 $\forall x \in E \ \forall \varepsilon > 0 \ \exists N \ \forall n > N \ |f_n(x) - f(x)| < \varepsilon$

Пример.
$$f_n: \mathbb{R}_+ \to \mathbb{R}$$
 $f_n(x) = \frac{x^n}{n}$

Тогда E=[0,1] $f_n(x) \rightarrow 0$

Если $E \cap (1, +\infty) \neq \emptyset$ то нет поточечной сходимости ни к какой функции

Пример.
$$f_n(x) = \frac{n^{\alpha}x}{1+n^2x^2}$$
 $x \in [0,1]$ $0 < \alpha < 2$ Ясно, что $\forall \alpha$ $f_n(x) \to \nvdash$ поточечно на $[0,1]$ $\max_{x \in [0,1]} \frac{n^{\alpha}x}{1+n^2x^2} = n^{\alpha} \cdot \max \frac{x}{1+n^2x^2} = n^{\alpha} \cdot \frac{1}{2n} = \frac{1}{2}n^{\alpha} - 1$

Определение. f_n равномерно сходится к f на $E\subset X$ если $M_n:=\sup_{x\in E}|f_n(x)-f(x)|\xrightarrow{n\to +\infty}0$ $\forall \varepsilon>0\ \exists N\ \forall n>N\ 0\leq M_n<\varepsilon,$ т.е. $\forall x\in E\ |f_n(x)-f(x)|<\varepsilon$

Обозначение. $f_n \underset{E}{\rightrightarrows} f$

Примечание. $x_0 \in E$ $f_n \rightrightarrows f$ Тогда $f_n(x_0) \to f(x_0)$ равномерная сходимость $\stackrel{E}{\Rightarrow}$ поточечная сходимость к тому же пределу

Примечание. $E_0 \subset E$ $f_n \underset{E}{\rightrightarrows} f \Rightarrow f_n \underset{E_0}{\rightrightarrows} f$

Пример.
$$f_n(x)=\frac{n^{\alpha}x}{1+n^2x^2}$$
 $E=[\frac{1}{10},1]$ Тогда $f_n\rightrightarrows {\mathcal V}$

Тогда
$$f_n \rightrightarrows \not\vdash f = 0$$
 $\sup_{x \in [\frac{1}{10}, 1]} \frac{n^{\alpha}x}{1 + n^2x^2} \le \frac{n^{\alpha}}{1 + \frac{1}{100}n^2} \to 0$

Примечание. $\mathcal{F} = \{f|X \to \mathbb{R} - \text{ограничены}\}$

Тогда $\rho_X(f_1,f_2):=\sup_{x\in X}|f_1(x)-f_2(x)|$ - метрика в $\mathcal{F}(\mbox{Чебышевское растояние})$

1.
$$\rho(f_1, f_2) \geq 0$$

2.
$$\rho(f_1, f_2) = 0 \Leftrightarrow f_1 = f_2$$

3.
$$\rho(f_1, f_2) = \rho(f_2, f_1)$$

4.
$$\rho(f_1, f_2) \le \rho(f_1, f_3) + \rho(f_3, f_2)$$

Доказательство. Берем
$$\varepsilon > 0 \; \exists x : \rho(f_1, f_2) - \varepsilon = \sup |f_1 - f_2| - \varepsilon < |f_1(x) - f_2(x)| \le |f_1(x) - f_3(x)| + |f_3(x) - f_2(x)| \le \rho(f_1, f_2) + \rho(f_3, f_2)$$

 $Примечание. \ f_n \underset{E}{\rightrightarrows} f \ f_n o f$ по метрике ho_E

Примечание. $E=E_1\cap E_2$ $f_n\underset{E_1}{\rightrightarrows} f$ и $f_n\underset{E_2}{\rightrightarrows} f\Rightarrow f_n\underset{E}{\rightrightarrows} f$

Доказательство.
$$M_n^{(1)} \to 0 \quad M_n^{(2)} \to 0$$
 $\max(M_n^{(1)}, M_n^{(2)}) \to 0$