Models de l'Optimització en l'Aprenentatge Automàtic (Machine Learning)

Dra Sundus Zafar

Introducció

Objectiu: Entendre com els mètodes d'optimització són utilitzats en l'aprenentatge automàtic per entrenar ajustar models, entrenar hiperparàmetres, i millorar el rendiment.

Aplicacions:

- Optimització de funcions de pèrdua.
- Ajust d'hiperparàmetres (per exemple, Gradient Descent, Grid Search, Random Search).
- Regularització per evitar sobreajustaments.

Problema General d'Optimització

Donat un conjunt de paràmetres $\theta \in \Theta$, trobem:

$$\theta^* = \arg\min_{\theta \in \Theta} f(\theta)$$

On:

- $ightharpoonup f(\theta)$: Funció objectiu (p. ex., funció de pèrdua).
- Θ: Espai de cerca (hiperparàmetres possibles).

Exemple: Minimitzar l'error quadràtic mitjà (MSE):

$$f(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Optimització en Aprenentatge Automàtic

En l'aprenentatge automàtic, el procés d'optimització és fonamental per:

- Augmentar el rendiment del model.
- Minimitzar la funció de pèrdua (error).

Els problemes d'optimització es poden classificar en dos tipus principals:

- Optimització per augmentar el rendiment: Com aconseguir que el model funcioni millor.
- Optimització per reduir la pèrdua: Com reduir l'error o la pèrdua en el model.

Optimització per Augmentar el Rendiment

Objectiu: Trobar els paràmetres del model que maximitzen la seva eficiència.

Exemple: Optimització de la precisió d'un model de classificació.

$$\mbox{Rendiment} = \mbox{Accuracy} = \frac{\mbox{Verdader Positius} + \mbox{Verdader Negatius}}{\mbox{Total Observacions}}$$

En aquest cas, volem augmentar la precisió del model ajustant els seus paràmetres d'entrenament (com la taxa d'aprenentatge, profunditat de l'arbre, etc.).

Optimització per Augmentar el Rendiment

Problema d'Optimització: Maximitzar la funció de rendiment subjecta a restriccions:

Maximitzar
$$f(\theta)$$
 subjecte a $g(\theta) \leq 0$

on $f(\theta)$ és una mesura de rendiment (per exemple, l'accuracy), i $g(\theta)$ és una restricció del model (per exemple, la complexitat).

Optimització per Reduir la Pèrdua

Objectiu: Minimitzar l'error del model per millorar les seves prediccions.

Exemple: Optimització de la funció de pèrdua en la regressió lineal.

Minimitzar:
$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

En aquest cas, la funció de pèrdua $L(\theta)$ mesura la diferència entre les prediccions \hat{y}_i i els valors reals y_i .

Optimització per Reduir la Pèrdua

Problema d'Optimització: Minimitzar la funció de pèrdua per ajustar els paràmetres θ :

$$\min_{\theta} L(\theta) \quad \text{on } \theta \in \mathbb{R}^d$$

on θ són els paràmetres del model, i $L(\theta)$ és la funció de pèrdua (per exemple, l'error quadràtic mitjà).

Exemple d'Optimització per Reduir la Pèrdua (Regressió Lineal)

Exemple: Minimització de la pèrdua en regressió lineal mitjançant Gradient Descent.

Funció de pèrdua:

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y}_i = X_i \cdot \theta$$

on X_i és el vector de característiques per a la i-èsima observació.

Comparació d'Optimització per Rendiment i Pèrdua

Diferències Clau:

- Optimització per augmentar el rendiment: Ens centra en obtenir el millor rendiment del model (per exemple, màxima precisió, recall, etc.).
- Optimització per reduir la pèrdua: Ens centra en ajustar els paràmetres del model per minimitzar l'error o la discrepància entre les prediccions i els valors reals.

Exemple:

- Rendiment: Millorar la precisió de classificació.
- Pèrdua: Minimitzar l'error quadràtic mitjà (MSE) en regressió.

Gradient Descent

Idea: Iterativament actualitzem els paràmetres en la direcció negativa del gradient per minimitzar la funció objectiu.

Actualització:

$$\theta^{t+1} = \theta^t - \eta \nabla f(\theta^t)$$

On:

- \triangleright η : Taxa d'aprenentatge.
- ▶ $\nabla f(\theta^t)$: Gradient de f a θ^t .

Exemple: Entrenament d'una regressió logística.

Grid Search

Definició: Cerca exhaustiva d'hiperparàmetres en una graella predefinida.

Procediment:

- 1. Definir una graella Θ_{grid} amb combinacions d'hiperparàmetres.
- 2. Per cada $\theta \in \Theta_{grid}$, calcular $f(\theta)$.
- 3. Escollir el millor:

$$\theta^* = \arg\min_{\theta \in \Theta_{\mathsf{grid}}} f(\theta)$$

Exemple:

- ► Model: SVM.
- ▶ Hiperparametres: $C \in \{0.1, 1, 10\}$, kernel $\in \{\text{lineal, RBF}\}$.

Random Search

Definició: Cerca d'hiperparàmetres mitjançant mostreig aleatori.

Procediment:

- 1. Definir l'espai de cerca Θ .
- 2. Seleccionar k mostres aleatòries de Θ .
- 3. Escollir el millor:

$$\theta^* = \arg\min_{\theta \in \{\theta_1, \dots, \theta_k\}} f(\theta)$$

Exemple:

- ▶ Model: Random Forest.
- ▶ Hiperparàmetres: Profunditat màxima, nombre d'arbres.

Bayesian Optimization

Definició: Modelització probabilística de $f(\theta)$ com un procés gaussià (GP).

Procediment:

- 1. Inicialitzar amb avaluacions aleatòries.
- 2. Modelitzar $f(\theta)$ amb un GP.
- Utilitzar una funció d'adquisició (p. ex., Expected Improvement):

$$\theta_{\mathsf{next}} = \arg\max_{\theta \in \Theta} a(\theta)$$

4. Actualitzar el model i repetir.

Exemple: Hiperparàmetres d'una xarxa neuronal (nombre de capes, taxa d'aprenentatge).

Conclusions

- L'optimització és central per l'aprenentatge automàtic.
- Diversos mètodes com Gradient Descent, Grid Search, Random Search, i Bayesian Optimization són essencials per ajustar models.
- La selecció del mètode depèn dels recursos computacionals i la complexitat del model.
- ► Cada algorisme d'optimització té avantatges i desavantatges.
- Gradient Descent és eficaç per entrenar models, mentre que Grid i Random Search són útils per ajustar hiperparàmetres.
- Bayesian Optimization és ideal per problemes costosos amb espais de cerca grans.

- La optimització en aprenentatge automàtic és clau per millorar el rendiment dels models.
- Els problemes d'optimització per reduir la pèrdua i per augmentar el rendiment tenen aproximacions similars però objectius diferents.
- ► Els algorismes d'optimització com Gradient Descent, Grid Search, Random Search, i Bayesian Optimization s'utilitzen per resoldre aquests problemes.

Passos següents: Experimentar amb els algorismes en diferents datasets.