제 4회 L.POINT Big Data Competition 구매 경향 별 세그먼트와 사용자 기반 협업필터링(CF)에 기반한 개인화 상품추천

팀명: 롯데이터

김동현 김선빈 류지승

1.1 공모전 개요

" 스마트 라이프 큐레이터 "

- 1) 고객의 성향 및 라이프 스타일 파악
- 2) 고객의 니즈와 취향에 맞는 상품 및 서비스 등 맞춤형 콘텐츠 제안

1.2 엘리베이터와 거울

엘리베이터 속 거울 이야기를 아시나요?

1

2

미국 내 고층 빌딩 열풍이 한참이던 1853년 오티스사는 세계 최초로 안전 장치가 부착된 엘리베이터를 개발했다.

하지만, 초기의 엘리베이터는 속도가 빠르지 않았고 그에 따라 이용객들의 불만이 쌓이기 시작했다.

1.2 엘리베이터와 거울

" 두 가지 접근 모두 올바른 해결책이다! "

1

연구를 통해 엘리베이터의 속도를 올리자

연구하기

엘리베이터에 거울을 부착해 지루함을 덜 느끼게 하자

공감하기

1.3 분석 방향성과 목표 제시

" 분석의 방향성과 목표 "

- 1) 개인화 추천 알고리즘의 정확도, 고도화 연구
- 2) 고객들은 어떤 상품/서비스를 제안 받고 싶을까?에 대한 고민
- 3) 현실화 가능한 추천서비스 구현

2.1 데이터설명 및 획득

- 1) 데이터 설명: 1년간 롯데그룹의 14개의 계열사에서 구매한 고객 ※ 2015년도 구매 고객 중 일부 발췌
- 2) 데이터 획득

2-1 롯데 제공데이터

- Demo: 고객ID, 성별, 연령대, 거주지 우편번호
- 쇼핑업종 상품 구매정보: 고객ID, 영수증번호, 업종, 상품소분류코드, 점포코드, 구매일자, 구매시간, 구매금액, 구매수량
- 쇼핑 외 업종 이용정보 : 고객ID, 업종, 이용월, 이용금액, 이용건수
- 쇼핑 업종 상품 분류 정보: 업종, 상품 소분류 코드, 소분류명, 중분류명, 대분류명

2-2 외부데이터

- 주소 : 거주지 우편번호, 시, 도
- 날씨 : 날짜, 온도, 강우량, 풍속, 거주지 우편번호
 - ※ 출처: 공공데이터 포털(주소), 기상청 데이터 포털(날씨)

2.2 데이터 통합

통합데이터 조인 프로세스(SPI)

2.3 데이터 탐색

SPI 데이터 탐색

데이터항목	변수명	변수설명	데이터항목	변수명	변수설명
고객D	ID		성별	GENDER	남자 : 1, 여자 : 2
년도	YR		나이	AGE_PRD	20대 ~ 60대
월	MON		거주지 우편번호	HOM_PST_NO	
날짜(일)	DE_DT		거주 시	Si	
날짜카운트	COUNT	날짜별 순차적 카운트	거주 구	Gu	
구매발생시간	DE_HR		평균온도	TEM	
소분류코드	PD_S_C		강우량	RAIN	
소분류코드명	PS_S_NM		풍속	WIND	
중분류코드명	PD_M_NM		요일	Day	날짜의 요일정보
대분류코드명	PD_H_NM		구매금액	BUY_AM	
영수증번호	RCT_NO		구매수량	BUY_CT	
점포코드	BR_C		1개 금액	BUY_AVG	BUY_AM/BUY_CT
업종	BIZ_UNIT	A01 ~ A05	시간블럭	ТВ	"아침","점심","저녁","새벽"

2.3 데이터 탐색

SPI 데이터로 알 수 있는 사실

SPI를 통해

Who 고객의 나이, 고객의 성별, 고객의 거주지역 When 구매 날짜, 시간, 요일, 그 날의 날씨 Where 구매 업종/구매점포에서 What 무엇을 샀는지, 무엇을 같이 샀는지 How 고객이 얼마나 구매했는지, 얼마나 금액을 썼는지

를 알 수 있다.

3.1 우리들의 궁금증

Q1 통합 데이터의 오류가 존재할까? 또는 추천에 적합하지 않는 상품이 존재할까?

Q2 각 고객의 어떤 업종/대분류 상품에 따른 구매경향성을 알 수 있을까?

고객의 최근 관심상품 = ex)골프용품, 아동 고객의 꾸준한 관심상품 = ex)식품, 채소, 의류.. 어떻게 추천알고리즘에 녹일 수 있을까?

3.2 데이터 클린징 (1/4)

02

통합 데이터의 오류가 존재할까? 또는 추천에 적합하지 않는 상품이 존재할까?

발견된 통합 데이터의 오류와 해결책

#1-1 날짜, 시간, 업종 ,소분류코드, 소분류명이 같은 경우 같은 상품으로 보고 구매금액과 구매수량을 합친다. #1-2 구매금액이 0인 경우 해당 데이터를 제거 다른 경우 다른 구매로 판단 영수증 번호 컬럼 재설정 #1-4 상품소분류코드가 다르지만 소분류명은 같은 경우 코드가 다르므로 다른 상품으로 판단 #1-5 주소데이터가 없는 고객 자주 가는 점포와 지역 매칭으로 해결

3.2 데이터 클린징 (2/4)

(D)

통합 데이터의 오류가 존재할까? 또는 추천에 적합하지 않는 상품이 존재할까?

추천에 적합하지 않는 상품과 해결책

#2-1 소분류명이 기타종류 상품, 담배, 식당가, 수면실
#2-2 가격이 0인 상품
#2-3 인기가 없는 상품
#2-4 대다수의 사람들이 구입을 하는 상품 ex)종량제봉투, 생수

상품 카테고리에서 추천과는 거리가 먼 상품들을 봤다. 담배, 종량제봉투가 그 예시다. 추가로 식당가, 수면실, 가격이 없는 상품, 인기가 없는 상품 등을 제거 했다. 인기가 없는 상품은 전체 구매에서 구매수량이 10개 이하인 상품들이다.

3.2 데이터 클린징 (3/4)

구매경향&업종별 방문목적에 맞도록 상품 대분류명을 재분류하였다.

3.2 데이터 클린징 (4/4)

구매경향&업종별 방문목적에 맞도록 상품 대분류명을 재분류

3.3 고객의 구매경향성 (1/7)

Q2

각 고객의 어떤 업종/대분류 상품에 따른 구매경향성을 알 수 있을까?

LOTTE
DEPARTMENT STORE

가전, 가정, 남성의류, 명품, 스포츠, 식품, 아동, 여성의류, 잡화

LOTTE Mart

가정, 과일,과자,남성, 문구, 미용, 생필품,수산,스포츠, 식품, 아동, 여성, 유아, 음료, 잡화, 주류, 채소, 축산, 취미

업종별 판매상품

Super

간식, 과일, 냉동/냉장, 생활잡화, 수산, 유아, 일반식품, 일상용품, 조리식품, 조미료류, 주류, 채소, 축산

가공식품, 간식, 간편식품, 문구/팬시, 미용/화장품, 생필품, 신선, 음료, 음주

가정, 기초, 색조, 식품, 잡화, 퍼스널, 헬스

3.3 고객의 구매경향성 (2/7)

자세히 보기

[업종별 대분류상품기준 구매 고객 수]

A01에서는 여성의류, A02에서는 식품, A03에서 간식, A04에서는 음료, A05에서는 퍼스널을 구매하기 위해 방문한 고객이 가장 많았다.

3.3 고객의 구매경향성 (3/7)

" 업종별로 방문하는 주된 목적이 다르다. "

3.3 고객의 구매경향성 (4/7)

업종간 구매는 상관관계를 가질까?

업종별 방문 횟수 matrix

ID	A01	A02	A03	A04	A05			
1	14	1	0	0	0			
2	2	37	0	0	0			
3	13	9	2	0	0			
4	32	42	0	2	0			
6	2	123 65 41		41	0			
•								
20000	1	0	0	0	0			

업종간의 상관성 히트맵 차트

고객 수: 18420명

업종간의 상관성 히트맵 차트에서 업종간의 상관성이 낮은 것을 알 수 있다. 그러므로 우리는 업종별로 추천 알고리즘을 나누기로 결정하였다.

3.3 고객의 구매경향성 (5/7)

더 들어가서! 개인으로 본다면?

고객 10397은 A03(슈퍼)에서 채소를 구매하는 경향이 있고 A01(백화점)에서 잡화, 스포츠를 구매하는 경향이 있다. 또 A03(슈퍼), A01(백화점)에서 오전부터 오후까지 구매시간이 다양하다.

) 데이터 전처리

3.3 고객의 구매경향성 (6/7)

더 들어가서! 개인으로 본다면?

고객 14876은 A05(롭스)에서 식품, 기초화장품을 구매하는 경향을 보이고, A04(편의점)에서는 음료, 간식을 구매하는 경향을 보인다. 또 A05(롭스)는 저녁에 구매하는 경향이 보이고, A04(편의점)에서는 점심에 구매하는 경향을 보인다.

3) 데이터 전처리

3.3 고객의 구매경향성 (7/7)

고객마다 선호하는 업종 다르고, 업종마다 구매경향도 다르다.

ex)	스포츠	<u>.</u> -	의류		식품	···)	군집	협업필터링 이웃
A ->	(1	,	1	,	0	···)	스포츠	A, C
B -> (0	,	1	,	0	···) →	이류	A, B, C
C ->	1	,	1	,	1	···)	식품	С

" 구매경향이 같은 군집 = 협업필터링(CF) 대상 "

고객에게 추천해줄 때, 업종별로 구매하는 경향이 같은 고객끼리 군집하자!

3.4 고객의 상품별 RFM (1/6)

Q3

고객의 최근 관심상품 = ex)골프용품, 아동 고객의 선호상품 = ex)식품, 채소, 의류..

상품별 RFM

- ·Recency 거래의 최근성 : 고객이 얼마나 최근에 구입했는가?
- ·Frequency 거래 빈도: 고객이 얼마나 빈번하게 우리 상품을 구입했나?
- ·Monetary 거래 규모 : 고객이 구입했던 총 금액은 어느 정도인가?
- 1) 최근에 구매했을 수록, 많이 살 수록, 많은 금액을 쓸 수록 점수상승!
- 2) 고객과 상품의 RFM스코어로 고객의 최근 관심상품, 꾸준한 관심상품을 점수화 한다.

3.4 고객의 상품별 RFM (2/6)

RFM_SCORE 계산 방법

·Recency - 거래의 최근성 : 고객이 얼마나 최근에 구입했는가?

3.4 고객의 상품별 RFM (3/6)

RFM_SCORE 계산 방법

·Frequency - 거래 빈도 : 고객이 얼마나 빈번하게 우리 상품을 구입했나?

3.4 고객의 상품별 RFM (4/6)

RFM_SCORE 계산 방법

·Monetary - 거래 규모 : 고객이 구입했던 총 금액은 어느 정도인가?

3.4 고객의 상품별 RFM (5/6)

RFM_SCORE 계산 방법

$$0.35 * R + 0.35 * F + 0.3 * M$$

= RFM_SCORE

고객과 상품별로 나온 R, F, M의 점수에 0.35, 0.35, 0.3을 곱하여 최종 RFM_SCORE를 구한다.

업종과 대분류상품(BIZ_UNIT, PD_H_NM)을 기준으로 고객별 소분류상품 RFM_SCORE의 합을 구한다.

57개의 구매경향

3.4 고객의 상품별 RFM (6/6)

가로는 업종(BIZ_UNIT), 상품 대분류(PD_H_NM) 58개의 구매경향에 따른 세로는 쇼핑내 업종에서 구매내역이 존재하는 18420명의 RFM_SCORE를 구했다.

4 데이터 모델링

4.1 추천서비스의 분류

개인화 추천에는 어떤 추천시스템이 맞을까?

1. 통계형 추천

2. 상품기준 추천

3. 사용자 기반 추천

이 사용자가 평소에 무얼 보고, 구매했는지를 보는 사용자 기반 추천을 선택했다!

4 데이터 모델링

4.2 사용자기반 추천시스템

개인화 추천에는 어떤 추천시스템이 맞을까?

최근에 생리대를 주기적으로 구매한다, 그럼 이 고객에게 생리대를 추천 해야 하나?

YES!

포인트를 공유하는 부부일 가능성이 있다

4.2 사용자기반 추천시스템

개인화 추천에는 어떤 추천시스템이 맞을까?

RULE1

고객의 과거 구매기록이 충분하다면

고객의 인구통계학적인 특징보다 구매사례기반의 추천 시스템이 더 적합

고객의 과거 구매기록이 충분하지 않다면

인구통계, 지리통계학적 추천

4.3 협업필터링(CF) (1/2)

협업필터링 소개

협업 필터링(collaborative filtering)은 많은 사용자들로부터 얻은 기호정보(taste information)에 따라 사용자들의 관심사들을 자동적으로 예측하게 해주는 방법이다.

협업필터링의 종류

1. UBCF : 사용자 기반 협업 필터링

2. IBCF: 아이템 기반 협업 필터링

유사도 측정 방법의 종류

1. 코사인 유사도

2. 피어슨 유사도

3. SVD

협업필터링은 사용자 기반, 아이템기반으로 나뉘며, 유사도 측정 방법으로는 코사인 유사도, 피어슨 유사도, SVD(singular-value decomposition) 3가지가 있다.

4.3 협업필터링(CF) (2/2)

협업 필터링 모델 종류와 유사도 측정방법 결정

위의 그래프는 유사도측정방법의 종류와 협업필터링의 종류에 따라 그려진 ROC커브이다. 평가 모델로는 UBCF_cos, UBCF_cor, IBCF_cos, ICBF_cor, RANDOM, POPULAR, SVD을 선택하였다. 여기서 POPULAR는 인기상품, RANDOM은 랜덤 추천이다. 모델은 POPULAR, UBCF_cos, UBCF_cor, IBCF_cos, ICBF_cor, SVD, RANDOM 순으로 평가 되었다. 우리는 인기상품 다음으로 평가가 좋은 사용자 기반 협업필터링(UBCF) 그리고 코사인 유사도로 유사도 측정을 하는 것으로 결정하였다.

4.4 고객의 구매경향 정의

Recency Frequency Monetary " 구매경향이 같은 군집 = 협업필터링(CF) 대상 " 고객의 구매경향에 대한 정의

고객	카테고리	RFM_SCORE		채택여부
철수	남성트랜디	0.89743590		0
철수	골프용품	0.34265981	-	0
철수	가공식품	0.04432656		X
영희	가공식품	0.89743590		0
영희	화장품	0.58974359		0
영희	차/커피	0.06410256		X
영희	아동	0.47692308		0

카테고리 별 상위 75% 대상

CUT-OFF

우리는 개인고객의 업종과 대분류별 RFM_SCORE가 상위 25%에 해당하면 해당 카테고리를 구매하는 경향이 있다라고 판단하고, 고객별 구매경향을 뽑아냈다.

4.4 고객의 구매경향 정의

업종과 대분류별 RFM_SCORE가 상위 25%에 해당하는 고객들을 뽑아내, 고객별 몇 개의 구매경향이 있는지 확인하였다. 아래의 업종 전체에서 구매경험이 있는 고객 중 구매경향을 나타내는 고객수와 구매경향 개수이다.

[업종 전체 구매경향 개수 비교]

마트와 슈퍼는 비교적 백화점, 편의점, 드러그스토어보다 더 많은 구매경향을 가진 고객을 가지고 있다.

4.5 고객의 협업필터링 이웃

업종과 대분류별 RFM_SCORE가 상위 25%에 해당하는 고객들을 뽑아내, 협업 필터링 대상 고객의 수를 표로 정리하였다.

LOTTE

DEPARTMENT STORE

대분류	가전	가정	남성의류	명품	스포츠	식품	아동	여성의류	잡화
협업필터링 대상의 수	808	1640	1846	935	2419	2970	1667	3041	2736

LOTTE Mart

대분류	가정	과일	과자	남성	문구	미용	생필품	수산	스포츠
협업필터링 대상의 수	1329	2140	2461	937	1067	1709	2440	1685	762
식품	아동	여성	유아	음료	잡화	주류	채소	축산	취미
2700	1182	1638	788	2557	735	1589	2253	1601	1101

4.5 고객의 협업필터링 이웃

업종과 대분류별 RFM_SCORE가 상위 25%에 해당하는 고객들을 뽑아내, 협업 필터링 대상 고객의 수를 표로 정리하였다.

Super

대분류	간식	과일	냉동/냉장	생활잡화	수산	유아	일반식품	일상용폼	조리식품	조미료류	주류	채소	축산
협업필터링 대상의 수	1715	1181	992	589	775	205	911	939	339	880	798	1267	809

대분류	가공식품	간식	간편식품	미용/화장품	생필품	신선	여성용품	음료	음주
협업필터링 대상의 수	464	1025	693	59	85	197	87	1144	501

LOHB®

대분류	가정	기초	색조	식품	잡화	퍼스널	헬스
협업필터링 대상의 수	54	329	179	295	146	371	30

- 1) 고객의 구매정보가 없다면, 인구통계학적 인기상품을 추천한다.
- 2) 고객의 구매정보가 있지만, 고객의 구매경향이 없다면, 인구통계학적 인기상품과 구매경험이 있는 상품의 인기상품(신제품)을 추천한다.
- 3) 고객의 구매정보와 구매경향이 있다면, 고객에게는 사용자 기반 협업 필터링으로 상품을 추천하고, 구매경향이 나타나는 선호상품에는 혜택을 주거나 신제품을 추천한다.

) 데이터 모델링

4.6 개인화 추천결과

1. [고객의 구매경향]

A. 롯데백화점: 여성의류, 스포츠, 잡화, 가정, 남성의류, 아동

B. 롯데 마트 : NA

C. 롯데 슈퍼: 채소, 간식, 과일, 축산, 수산, 냉동/냉장, 조미료, 일상용품, 주류, 일반식품

D. 세븐일레븐 : NA

E. 롬스: NA

2. [추천 알고리즘 결과]

A. 롯데백화점: 스트리트, 크로커다일 상품군, 블랙야크, 코오롱스포츠, 선글라스(특정),

수입주방, 크리스탈, 올젠상품군,헨리코튼상품군,유아복,유아용품

C. 롯데 슈퍼: 콩나물, 마, 국물봉지라면, 국수, 냉동망고, 국산돼지삼겹살,

국산돼지등심덧살, 오징어, 반건생선류, 어묵, 햄

B, D, E (구매경향이 나타나지 않는 업종): 50대 여성 인기상품 추천

상세한 정보는 [붙임파일] 3_User_Recommender_System.Rmd 에서 확인하실 수 있습니다.

4) 데이터 모델링

4.6 개인화 추천결과

1. [고객의 구매경향]

A. 롯데백화점 : 잡화 B. 롯데 마트 : NA C. 롯데 슈퍼 : NA

D. 세븐일레븐: 음료, 간식, 문구/팬시

E. 롭스: 식품, 기초, 퍼스널, 색조, 가정, 잡화, 헬스

2. [추천 알고리즘 결과]

A. 롯데백화점: 영트랜디, 핸드백, 기초 화장품, 4대 B/D, 네셔널, 무인양품, 패션갤러리움 금강그룹, 아울렛(화장품), 향수

C. 세븐일레븐: 과일향탄산(중), 냉장주스(대), 과자빵, 과일향캔디, 수첩메모, 축하카드녹차, 병커피, 구운과자, 어린이초코렛, 딸기우유, 에너지음료

E. 롭스: 일반스낵, 녹차/홍차, 그림/밤/오일, 샴푸, 탐폰, BB/파운데이션, 메이크업세트 차량용방향/제취제, 향초, 속눈썹/쌍꺼풀, 메탈미용소도구, 다이어트보조식품

B, C: (구매경향이 나타나지 않는 업종): 20대 여성 인기상품 추천

상세한 정보는 [붙임파일] 3_User_Recommender_System.Rmd 에서 확인하실 수 있습니다.

5.1 고객에 공감하자!

고객의 취향과 상황을 고려한 추천 로직 고객에게 공감하자!

- 2 상황에 맞는 상품을 추천 실시간, 지역 기반 비가온다 -> 우산 (지역) 미세먼지 -> 마스크 (지역)
- 4 위치에 맞는 추천 지역기반 단골 점포 혜택 증가

5.2 서비스 경로

모든 업종이 L.POINT아이디로 사용할 수 있는 모바일 어플리케이션이 있다.

LOTTE Mart

LOTTE Super

LOHB®

현재 모바일에서 다양한 할인정책과 쿠폰/서비스를 통해 매장방문을 유도한다. 본 팀도 해당 모바일 어플을 이용한다.

5.3 추천알고리즘의 활용방안1

모바일 어플리케이션 상품추천란에 동시에 노출시킨다

어? 이 상품 내가 좋아하는 상품인데..? 그 옆에 이 상품은 뭐지? 이 상품이 나한테 적합하다는데.. 한 번 사볼까..?

동시에 보여주기

H

제안

구매경향 세그멘테이션과 천상품 사용자 기반 협업필터링을 통한 추천상품

개인의 상품별 RFM_SCORE가 높은 추천상품

개인이 좋아하는 상품에는 **혜택**을 주고, 동시에 고객이 경험하지 못한 새로운 상품은 **제안**함으로써 고객으로 하여금, 제안된 **상품의 신뢰도**를 높이는 서비스이다.

5.3 추천알고리즘의 활용방안2

인공지능으로 바라본 당신의 취향 기획

- A. 추천 알고리즘대로 업종 별 선호상품, 추천상품을 랭킹 순으로 번갈아 보여줌.
- B. 고객에게 좋아, 싫어, 잘 모르겠어 3가지 선택지를 줌.
- C. 고객의 선택은 다시 알고리즘의 피드백으로 추천 알고리즘의 성능 개선.
- D. 추천을 받고 피드백을 해주신 고객에게는 리워드 보상.

인공지능으로 바라본 당신의취향

제 4회 L.POINT Big Data Competition

감사합니다.

팀명 : 롯데이터

김동현 김선빈 류지승