Finansteori (SFB30820), Høsten 2021

Obligatorisk arbeidskrav

- Versjon 1.1
- Leveres ut: 28.09.2021 (Canvas)
- Leveres inn: 26.10.2021 (Canvas)
 - Del I: kan lastes opp som dokument-fil eller pdf.
 - Del II: som regneark (merk: svarene på tekstspørsmålene kan her føres rett inn i regnearket)

Del I: Generelle forståelse og tradisjonelle oppgaver

Oppgave 1: Generell forståelse (forsøk å svar så kortfattet og presist som mulig)

- 1. Forklare forskjellen mellom nåverdiutrykkene som benyttes for med og uten usikkerhet.
- 2. Hva er forskjellen mellom forventet og realiserte verdi av en kontantstrøm?
- 3. Ved vurdering av nye investeringprosjekter, forklar hvorfor det lett kan oppstå konflikt mellom forskjellige eiere i et selskap.
- 4. Hva menes med prosjektets eller aksjens beta?
- 5. Gi en forklaring om mekanismene som ligger til grunn for Tofondsresultatet.
- 6. Forklar hvordan KVM er knyttet sammen med porteføljeteorien.
- 7. Gitt at KVM skal virke i praksis, er det da nødvendig at alle investorene tror på modellens forutsetninger (begrunn svaret)?
- 8. Hva menes med et finansielt instrument, og kan du gi noen eksemplar på bruken av dette?
- 9. Hvordan kan teknisk et selskap øke forholdet mellom gjeld og egenkapital (kapitalstrukturen)?

Oppgave 2: Porteføljeteori to selskaper

For din portefølje har du mulighet til å investere et beløp på 10.000,- i selskap A og B. Avkastningen og sannsynligheten for de tre ulike tilstandene er gitt ved følgende tabell

TilstandSannsynlighetAvkastning AAvkastning B					
1	1	0.5	-0.1	0.2	
2	2	0.2	0.5	-0.3	
3	3	0.3	0.2	0.1	

- 1. Finn forventet avkastning, variansen og standardavviket til hvert enkelt av de to selskapene.
- 2. Med utgangspunkt i at 4000,- av investeringsbeløpet investeres i selsap B, finn forventet avkastning, varians og standardavvik til porteføljen for de to selskapene.

Oppgave 3: Porteføljeteorimodellen

I utgangspunktet har vi følgende opplysninger fra markedet som vi har analysert

		Forventet avkastnii	ngStandardavik
1Markedsporteføljen		0.07	0.03
2	Risikofri rente	0.04	0

- 1. Ole Spetalen er en risikosøkende investor som ønsk
- 2. Lise Sparegris ønsker med god margin å sikre pensjonen sin.
- 3. Hvilken forutsetning må være oppfylt for at risklower kan gjenomføre sin strategi, og er det helt sikkert at han vil klare det?

Oppgave 4: Kapitalverdimodellen og justert-nåverdi

Frøken Bryn **eksempel 3.4** i læreboka om Tomra (eksempel fra virkeligheten) er aksjens beta, basert på tre år med data, estimert slik at $\beta_E=0.83$, mens gjeldsbetaen er beregnet slik at $\beta_G=0.1$. Den nominelle risikofrie renten er på 3 prosent, mens markedets risikopremie anslås til 5 prosent og Tomras skattesats er lik 5 prosent.

Totalt sett har Tomra 200 aksjer utestående (pålydende 1,- per aksje) med markedspris lik 85,50 den 02.02.2016. Det gir en markedsverdi på egenkapital lik $=148020078\cdot85.50=12$ 654 mill.

Fra årsapporten har vi videre at:

1 Innskutt egenkapital 1066 2Opptjent egenkapital 2879 3 Minoritetsinteresser 160 4 Gjeld 3212 5 Totalt 7317

- 1. Basert på disse opplysningene, finn totalkapitalkostnaden til selskapet
- Nåverdi
- 3. Dagens markedsverdi på aksjen

Oppgave 5: Statsobligasjoner, terminrenter og rentens terminstruktur

Obligasjoner

- 1. Beregn prisen for en ordinær obligasjon
- 2. Beregn prisen for null-kupong rente obligasjonen

Renten terminstruktur

Eksempel 5.2: Vi har tre statsobligasjoner med pålydende 1000 og årlig kupongrente på 60 kroner. Videre har vi

LøpetidPålydendeMarkedsprisEffektiv rente					
1	1	1000	1019.23	4	
2	2	1000	1018.59	5	
3	3	1000	1013.49	5.5	

1. Hvilken forutsetninger ligger til grunn for denne likevektsbetingelsej Hvilken forutsetninger ligger til grunn for denne likevektsbetingelsej

- 2. Beregn terminpremien for 2,3
- 3. Vis i figur rentens terminstruktur (yield-kurven)
- 4. Gi en tolkning av denne

Del II: Porteføljeutregninger ved bruk av regnearket

Basert på vedlagte regnearket *cryptos_nyse.xlsx* som viser utviklingen for to ulike kryptovalutaer Bitcoin (BTC), Etherium (ETH) og utviklingen på New York børsen (NYSE), blir du bedt om å utføre følgende beregninger

Enkeltinvesteringer

Deskriptiv statistikk

- 1. Lag en tidsserie som viser avkastningen for de to kryptovalutaene og New York børsen (NYSE).
- 2. For hver enkelt tidsserie beregn:
 - 1. Gjennomsnittlig avkastning
 - 2. Varians
 - 3. Standardavvik
 - 4. Høyeste og laveste verdi

Grafisk visning

1. For hver enkelt tidsserie lag et scatterplot (x-aksen dager, y-aksen avkastning i prosent)

Økonomisk tolkning

Klarer du knytte noen økonomisk forklaringer tilhørende noen av mest ekstreme observasjoner du finner i tidsserien?

Porteføljesammensetninger

Deskriptiv statistikk

- 1. Opprett et datasett som inneholder data kun over de tidsperiodene hvor det er registrert observasjoner for *alle* de tre tidsseriene
- 2. Basert på dette datasettet beregn:
 - 1. Gjennomsnittlig avkastning
 - 2. Varians
 - 3. Standardavvik
 - 4. Korrelasjonskoeffisienten mellom de tre investeringsobjektene

Grafisk visning

1. Lag et scatterplot for hver ulike kombiversjonen av de tre investeringsobjektene (x-akse avkastning det ene objektet, y-aksen avkastning det andre objektet). Forsøk også få inn regresjonslinjen som oppsummerer graden av samvariasjon mellom de to objektene.

Porteføljeanalyse

 Basert på at brukeren selv kan justere porteføljevektene, lag en tabell i regnearket som viser utregningene av

Sammensetning av porteføljenPorteføljens variansPorteføljens standardavvik

Sammensetning av porteføljenPorteføljens variansPorteføljens standardavvik					
ВТС	Beregn	Beregn			
ETH	Beregn	Beregn			
NSE	Beregn	Beregn			
BTC og ETH	Beregn	Beregn			
BTC og NSE	Beregn	Beregn			
BTC, ETH og NSE	Beregn	Beregn			

- 1. Ved flere investeringsobjekter har du lært i dette kurset at porteføljerisikoen kan forklares av to komponenter: (1) usystematisk-risiko (2) for systematisk-risiko. Førstnevnte vil vanligvis reduseres når antall objekter som inngår i porteføljen øker.
 - 1. Hvordan stemmer dette resultat overens med de beregningene som du har utført her?
 - 2. Hvilke sentrale faktorer tror du kan være utslagsgivende for de resultatene du har kommet fram til?
- Oppdater forelesningsnotater 0
- · Kill row-indeks