Causal Inference

MIXTAPE SESSION

Roadmap

Twoway fixed effects estimator
Introduction
Two Estimators
Empirical exercise

Twoway fixed effects

- When working with panel data, the so-called "twoway fixed effects" (TWFE) estimator is the workhorse estimator
- It's easy to run, a version of OLS, and many people are just interested in mean effects anyway
- It's the most common model for estimating treatment effects in a difference-in-differences, and so for all these reasons, we need to spend some time understanding what it is

Panel Data

- Panel data: we observe the same units (individuals, firms, countries, schools, etc.) over several time periods
- Often our outcome variable depends on unobserved factors which are also correlated with our explanatory variable of interest
- If these omitted variables are constant over time, we can use panel data estimators to consistently estimate the effect of our explanatory variable

What I will cover

- I will cover pooled OLS and twoway fixed effects
- But I won't be covering random effects, Arrelano and Bond and any number of important panel estimators because the purpose here is to present the modal regression model used in difference-in-differences

Sorry - drawing the DAG for a simple panel model is somewhat messy!

When to use this

- Traditionally, this was used for estimating constant treatment effects with unobserved time-invariant heterogeneity recall the c_i was constant across all time periods
- It's a linear model, so you'll be estimating conditional mean treatment effects – if you want the median, you can't use this
- Once you enter into a world with dynamic treatment effects and differential timing, this loses all value

Problems that fixed effects cannot solve

- Reverse causality: Becker predicted police reduce crime, but when you regress crime onto police, it's usually positive
 - $ightarrow \ \widehat{eta}_{FE}$ inconsistent unless strict exogeneity conditional on c_i holds
 - $\blacksquare E[\varepsilon_{it}|x_{i1}, x_{i2}, \dots, x_{iT}, c_i] = 0; t = 1, 2, \dots, T$
 - lacktriangle implies ε_{it} uncorrelated with past, current and future regressors
- Time-varying unobserved heterogeneity
 - → It's the time-varying unobservables you have to worry about in fixed effects
 - Can include time-varying controls, but as always, don't condition on a collider

Formal panel notation

- Let y and $x \equiv (x_1, x_2, \dots, x_k)$ be observable random variables and c be an unobservable random variable
- We are interested in the partial effects of variable x_j in the population regression function

$$E[y|x_1, x_2, \dots, x_k, c]$$

Formal panel notation cont.

- We observe a sample of $i=1,2,\ldots,N$ cross-sectional units for $t=1,2,\ldots,T$ time periods (a balanced panel)
 - \rightarrow For each unit i, we denote the observable variables for all time periods as $\{(y_{it}, x_{it}) : t = 1, 2, ..., T\}$
 - $\rightarrow x_{it} \equiv (x_{it1}, x_{it2}, \dots, x_{itk})$ is a $1 \times K$ vector
- Typically assume that cross-sectional units are i.i.d. draws from the population: $\{y_i, x_i, c_i\}_{i=1}^N \sim i.i.d.$ (cross-sectional independence)
 - $y_i \equiv (y_{i1}, y_{i2}, \dots, y_{iT})'$ and $x_i \equiv (x_{i1}, x_{i2}, \dots, x_{iT})$
 - \rightarrow Consider asymptotic properties with T fixed and $N \rightarrow \infty$

Formal panel notation

Single unit:

$$y_{i} = \begin{pmatrix} y_{i1} \\ \vdots \\ y_{it} \\ \vdots \\ y_{iT} \end{pmatrix}_{T \times 1} X_{i} = \begin{pmatrix} X_{i,1,1} & X_{i,1,2} & X_{i,1,j} & \dots & X_{i,1,K} \\ \vdots & \vdots & \vdots & & \vdots \\ X_{i,t,1} & X_{i,t,2} & X_{i,t,j} & \dots & X_{i,t,K} \\ \vdots & \vdots & \vdots & & \vdots \\ X_{i,T,1} & X_{i,T,2} & X_{i,T,j} & \dots & X_{i,T,K} \end{pmatrix}_{T \times K}$$

Panel with all units:

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_N \end{pmatrix} X = \begin{pmatrix} X_1 \\ \vdots \\ X_i \\ \vdots \\ X_N \end{pmatrix}_{N \in \mathcal{N}} X$$

Unobserved heterogeneity

For a randomly drawn cross-sectional unit i, the model is given by

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}, \ t = 1, 2, \dots, T$$

- $\rightarrow y_{it}$: log wages i in year t
- $\rightarrow x_{it}: 1 \times K$ vector of variable events for person i in year t, such as education, marriage, etc. plus an intercept
- $\rightarrow \beta: K \times 1$ vector of marginal effects of events
- $\rightarrow c_i$: sum of all time-invariant inputs known to people i (but unobserved for the researcher), e.g., ability, beauty, grit, etc., often called unobserved heterogeneity or fixed effect
- $ightarrow arepsilon_{it}$: time-varying unobserved factors, such as a recession, unknown to the farmer at the time the decision on the events x_{it} are made, sometimes called idiosyncratic error

Pooled OLS

• When we ignore the panel structure and regress y_{it} on x_{it} we get

$$y_{it} = x_{it}\beta + v_{it}; \ t = 1, 2, \dots, T$$

with composite error $v_{it} \equiv c_i + \varepsilon_{it}$

- What happens when we regress y_{it} on x_{it} if x is correlated with c_i ?
- Then x ends up correlated with v, the composite error term.
- Somehow we need to eliminate this bias, but how?

Pooled OLS

- Main assumption to obtain consistent estimates for β is:
 - $\rightarrow E[v_{it}|x_{i1}, x_{i2}, \dots, x_{iT}] = E[v_{it}|x_{it}] = 0 \text{ for } t = 1, 2, \dots, T$
 - \blacksquare x_{it} are strictly exogenous: the composite error v_{it} in each time period is uncorrelated with the past, current and future regressors
 - But: education x_{it} likely depends on grit and ability c_i and so we have omitted variable bias and $\widehat{\beta}$ is not consistent
 - \rightarrow No correlation between x_{it} and v_{it} implies no correlation between unobserved effect c_i and x_{it} for all t
 - Violations are common: whenever we omit a time-constant variable that is correlated with the regressors (heterogeneity bias)
 - \rightarrow Additional problem: v_{it} are serially correlated for same i since c_i is present in each t and thus pooled OLS standard errors are invalid

Pooled OLS

- Always ask: is there a time-constant unobserved variable (c_i) that is correlated with the regressors?
- If yes, then pooled OLS is problematic
- This is how we motivate a fixed effects model: because we believe unobserved heterogeneity is the main driving force making the treatment variable endogenous

Fixed effect regression

Our unobserved effects model is:

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}; t = 1, 2, \dots, T$$

- If we have data on multiple time periods, we can think of c_i as **fixed** effects to be estimated
- OLS estimation with fixed effects yields

$$(\widehat{\beta}, \widehat{c}_1, \dots, \widehat{c}_N) = \underset{b, m_1, \dots, m_N}{\operatorname{argmin}} \sum_{i=1}^N \sum_{t=1}^T (y_{it} - x_{it}b - m_i)^2$$

this amounts to including N individual dummies in regression of y_{it} on x_{it}

Derivation: fixed effects regression

$$(\widehat{\beta}, \widehat{c}_1, \dots, \widehat{c}_N) = \underset{b, m_1, \dots, m_N}{\operatorname{argmin}} \sum_{i=1}^N \sum_{t=1}^T (y_{it} - x_{it}b - m_i)^2$$

The first-order conditions (FOC) for this minimization problem are:

$$\sum_{i=1}^{N} \sum_{t=1}^{T} x'_{it} (y_{it} - x_{it} \hat{\beta} - \hat{c}_i) = 0$$

and

$$\sum_{t=1}^{T} (y_{it} - x_{it}\widehat{\beta} - \widehat{c}_i) = 0$$

for $i = 1, \dots, N$.

Derivation: fixed effects regression

Therefore, for $i = 1, \dots, N$,

$$\widehat{c}_i = \frac{1}{T} \sum_{t=1}^{T} (y_{it} - x_{it}\widehat{\beta}) = \overline{y}_i - \overline{x}_i\widehat{\beta},$$

where

$$\bar{x}_i \equiv \frac{1}{T} \sum_{t=1}^T x_{it}; \bar{y}_i \equiv \frac{1}{T} \sum_{t=1}^T y_{it}$$

Plug this result into the first FOC to obtain:

$$\widehat{\beta} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \bar{x}_i)'(x_{it} - \bar{x}_i)\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \bar{x}_i)'(y_{it} - \bar{y})\right)$$

$$\widehat{\beta} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{x}'_{it} \ddot{x}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{x}'_{it} \ddot{y}_{it}\right)$$

with time-demeaned variables $\ddot{x}_{it} \equiv x_{it} - \bar{x}, \ddot{y}_{it} \equiv y_{it} - \bar{y}_{it}$

Fixed effects regression

Running a regression with the time-demeaned variables $\ddot{y}_{it} \equiv y_{it} - \bar{y}_i$ and $\ddot{x}_{it} \equiv x_{it} - \bar{x}$ is numerically equivalent to a regression of y_{it} on x_{it} and unit specific dummy variables.

Even better, the regression with the time demeaned variables is consistent for β even when $Cov[x_{it},c_i]\neq 0$ because time-demeaning eliminates the unobserved effects

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}$$
$$\bar{y}_i = \bar{x}_i\beta + c_i + \bar{\varepsilon}_i$$

$$(y_{it} - \bar{y}_i) = (x_{it} - \bar{x})\beta + (c_i - c_i) + (\varepsilon_{it} - \bar{\varepsilon}_i)$$

$$\ddot{y}_{it} = \ddot{x}_{it}\beta + \ddot{\varepsilon}_{it}$$

Fixed effects regression: main results

- Identification assumptions:
 - 1. $E[\varepsilon_{it}|x_{i1}, x+i2, \dots, x_{iT}, c_i] = 0; t = 1, 2, \dots, T$
 - regressors are strictly exogenous conditional on the unobserved effect
 - lacksquare allows x_{it} to be arbitrarily related to c_i

2.
$$rank\left(\sum_{t=1}^{T} E[\ddot{x}'_{it}\ddot{x}_{it}]\right) = K$$

- \blacksquare regressors vary over time for at least some i and not collinear
- Fixed effects estimator
 - 1. Demean and regress \ddot{y}_{it} on \ddot{x}_{it} (need to correct degrees of freedom)
 - 2. Regress y_{it} on x_{it} and unit dummies (dummy variable regression)
 - 3. Regress y_{it} on x_{it} with canned fixed effects routine
 - Stata: xtreg y x, fe i(PanelID)

FE main results

- Properties (under assumptions 1-2):
 - $\rightarrow \widehat{\beta}_{FE}$ is consistent: $\underset{N \rightarrow \infty}{plim} \widehat{\beta}_{FE,N} = \beta$
 - $ightarrow \ \widehat{eta}_{FE}$ is unbiased conditional on **X**

Fixed effects regression: main issues

- Inference:
 - \rightarrow Standard errors have to be "clustered" by panel unit (e.g., farm) to allow correlation in the ε_{it} 's for the same i.
 - → Yields valid inference as long as number of clusters is reasonably large
- Typically we care about β , but unit fixed effects c_i could be of interest
 - ightarrow \widehat{c}_i from dummy variable regression is unbiased but not consistent for c_i (based on fixed T and $N
 ightarrow \infty$)

Application: SASP

- From 2008-2009, I fielded a survey of Internet sex workers (685 respondents, 5% response rate)
- I asked two types of questions: static provider-specific information (e.g., age, weight) and dynamic session information over last 5 sessions
- Let's look at the panel aspect of this analysis together

Risk premium equation

$$Y_{is} = \beta_i X_i + \delta D_{is} + \gamma_{is} Z_{is} + u_i + \varepsilon_{is}$$

$$\ddot{Y}_{is} = \gamma_{is} \ddot{Z}_{is} + \ddot{\eta}_{is}$$

where Y is log price, D is unprotected sex with a client in a session, X are client and session characteristics, Z is unobserved heterogeneity, and u_i is both unobserved and correlated with Z_{is} .

Table: POLS, FE and Demeaned OLS Estimates of the Determinants of Log Hourly Price for a Panel of Sex Workers

Depvar:	POLS	FE	Demeaned OLS
Unprotected sex with client of any kind	0.013	0.051*	0.051*
,	(0.028)	(0.028)	(0.026)
Ln(Length)	-0.308***	-0.435***	-0.435***
, ,	(0.028)	(0.024)	(0.019)
Client was a Regular	-0.047*	-0.037**	-0.037**
•	(0.028)	(0.019)	(0.017)
Age of Client	-0.001	0.002	0.002
-	(0.009)	(0.007)	(0.006)
Age of Client Squared	0.000	-0.000	-0.000
,	(0.000)	(0.000)	(0.000)
Client Attractiveness (Scale of 1 to 10)	0.020***	0.006	0.006
	(0.007)	(0.006)	(0.005)
Second Provider Involved	0.055	0.113*	0.113*
	(0.067)	(0.060)	(0.048)
Asian Client	-0.014	-0.010	-0.010
	(0.049)	(0.034)	(0.030)
Black Client	0.092	0.027	0.027
	(0.073)	(0.042)	(0.037)
Hispanic Client	0.052	-0.062	-0.062
	(0.080)	(0.052)	(0.045)
Other Ethnicity Client	0.156**	0.142***	0.142***
	(0.068)	(0.049)	(0.045)
Met Client in Hotel	0.133***	0.052*	0.052*
	(0.029)	(0.027)	(0.024)
Gave Client a Massage	-0.134***	-0.001	-0.001
	(0.029)	(0.028)	(0.024)
Age of provider	0.003	0.000	0.000
	(0.012)	(.)	(.)

Table: POLS, FE and Demeaned OLS Estimates of the Determinants of Log Hourly Price for a Panel of Sex Workers

Depvar:	POLS	FE	Demeaned OLS
Body Mass Index	-0.022***	0.000	0.000
	(0.002)	(.)	(.)
Hispanic	-0.226***	0.000	0.000
	(0.082)	(.)	(.)
Black	0.028	0.000	0.000
	(0.064)	(.)	(.)
Other	-0.112	0.000	0.000
	(0.077)	(.)	(.)
Asian	0.086	0.000	0.000
	(0.158)	(.)	(.)
Imputed Years of Schooling	0.020**	0.000	0.000
	(0.010)	(.)	(.)
Cohabitating (living with a partner) but unmarried	-0.054	0.000	0.000
	(0.036)	(.)	(.)
Currently married and living with your spouse	0.005	0.000	0.000
	(0.043)	(.)	(.)
Divorced and not remarried	-0.021	0.000	0.000
	(0.038)	(.)	(.)
Married but not currently living with your spouse	-0.056	0.000	0.000
	(0.059)	(.)	(.)
N	1,028	1,028	1,028
Mean of dependent variable	5.57	5.57	0.00

Heteroskedastic robust standard errors in parenthesis clustered at the provider level. * p < 0.10, ** p < 0.05, *** p < 0.01

Unit specific time trends often eliminate "results"

Table: Demeaned OLS Estimates of the Determinants of Log Hourly Price for a Panel of Sex Workers with provider specific trends

Depvar:	FE w/provider trends		
Unprotected sex with client of any kind	0.004		
Ln(Length)	(0.046) -0.450***		
Client was a Regular	(0.020) -0.071**		
Age of Client	(0.023) 0.008		
Age of Client Squared	(0.005) -0.000		
Client Attractiveness (Scale of 1 to 10)	(0.000) 0.003		
Second Provider Involved	(0.003) 0.126*		
Asian Client	(0.055) -0.048***		
Black Client	(0.007) 0.017		
Hispanic Client	(0.043) -0.015		
Other Ethnicity Client	(0.022) 0.135***		
Met Client in Hotel	(0.031) 0.073***		
Wiet official firmoter	0.070		

Concluding remarks

- This is not a review of panel econometrics; for that see Wooldridge and other excellent options
- We reviewed POLS and TWFE because they are commonly used with individual level panel data and difference-in-differences
- Their main value is how they control for unobserved heterogeneity through a simple demeaning
- Now let's discuss difference-in-differences which will at various times use the TWFE model