Partie I

Soient λ et μ deux réels tels que $\mu \neq 0$ et $\lambda^2 - \mu < 0$. Pour tout entier naturel n, on pose :

$$I_n = \int_{-\infty}^{+\infty} \frac{dx}{(x^2 + 2\lambda x + \mu)^{n+1}}$$

- 1. Montrer qu'il existe deux réels α , β que l'on exprimera en fonction de λ et μ tels que pour tout réel $x: x^2 + 2\lambda x + \mu = \alpha(1 + \beta^2(x + \lambda)^2)$.
- 2. Pour tout $n \in \mathbb{N}$, étudier la convergence de l'intégrale I_n puis calculer I_0 .
- 3. Dans ce qui suit, on suppose que $\lambda = 0$ et $\mu = 1$.
 - (a) Montrer que pour tout entier naturel non nul $n, I_n = \frac{(2n-1)I_{n-1}}{2n}$
 - (b) Pour tout entier naturel n, exprimer I_n en fonction de l'entier n. On donnera la réponse à l'aide de factorielles.

Partie II

- 1. Soit x un réel tel que $|x| \leq \frac{1}{4}$. Exprimer, en fonction de x, les deux solutions X_1 et X_2 de l'équation d'inconnue X suivante : $X^2 X + x = 0$.
- 2. Donner le domaine de définition I_X de la fonction f qui à tout réel x de I_X associe :

$$\frac{1-\sqrt{1-4x}}{2}.$$

- 3. Pour tout réel $\alpha \in \mathbb{R} \setminus \mathbb{N}$, rappeler le développement en série entière de la fonction qui, à tout réel $x \in]-1;1[$, associe $(1+x)^{\alpha}$.
- 4. En déduire le développement en série entière de la fonction f, en l'écrivant sous la forme :

$$\forall x \in \mathscr{D}_S, f(x) = \sum_{n=0}^{+\infty} S_n x^n$$

où \mathcal{D}_S est un domaine de \mathbb{R} à préciser. On donnera la valeur de S_0 et on exprimera les coefficients S_n , $n \in \mathbb{N}^*$, en fonction de n sous forme de produit.

- 5. On propose de retrouver le résultat de la question précédente à l'aide d'une équation différentielle.
 - (a) Montrer que f est solution de l'équation différentielle :

$$\mathscr{E}: (1 - 4x)y' + 2y = 1.$$

(b) On suppose qu'il existe une fonction y solution de $\mathscr E$ et développable en série entière sur un intervalle]-r;r[. On note pour tout $x\in]-r;r[$, $y(x)=\sum_{n=0}^{+\infty}a_nx^n.$ Montrer que $a_1=1-2a_0$ et pour tout $n\geqslant 2$, $a_n=\frac{2(2n-3)}{n}a_{n-1}.$

- (c) En déduire que pour tout $n \in \mathbb{N}^*$, $a_n = \frac{1}{2} \frac{(2n)!}{(2n-1)(n!)^2} a_1$.
- (d) Déterminer le rayon de convergence de la série entières $\sum a_n x^n$.
- (e) Expliquer comment retrouver le développement en série entière $\sum_{n=0}^{+\infty} S_n x^n$ de la fonction f.
- 6. Rappeler la formule donnant le produit de Cauchy de deux séries entières. Que peut-on dire du rayon de convergence de la série produit?
- 7. À l'aide de la question 1. de cette Partie II, montrer que pour tout entier $n \ge 2$:

$$S_n = \sum_{k=1}^{n-1} S_k S_{n-k} \quad (*).$$

- 8. Montrer que pour tout entier $n \ge 2$: $S_n = \frac{1}{n} \binom{2n-2}{n-1}$.
- 9. Étudier la convergence de la série numérique $\sum S_n$.
- 10. On appelle **mot** de **Dyck** une chaîne de 2n caractères, $n \in \mathbb{N}^*$, formée de n lettres A et de n lettres B telle que lorsque l'on dénombre les lettres de gauche à droite, en s'arrêtant à une lettre du mot, le nombre de A soit toujours supérieur ou égal au nombre de B. Ainsi, le seul mot de Dyck de longueur 2 est : AB. Les mots de Dyck de longueur 4 sont AABB et ABAB. Les chaînes ABAABB et AAABBB sont des mots de Dyck alors que BA ou AABBBA n'en sont pas.

Pour tout entier $n \geqslant 1$, on désigne par C_n le nombre de mots de Dyck de 2n lettres.

- (a) Calculer C_1, C_2, C_3 .
- (b) On pose $C_0 = 1$ (on considère donc que le mot vide est un mot de Dyck). Justifier succinctement qu'un mot de Dyck de longueur 2n est de la forme AD_1BD_2 avec D_1, D_2 des mots de Dyck (éventuellement vides) de longueurs respectives 2k et 2(n-1-k) avec $k \in [0, n-1]$.
- (c) En déduire que pour tout $n \ge 1$, $C_n = \sum_{k=1}^n C_{k-1} C_{n-k}$.
- (d) Montrer que pour tout entier naturel n, $C_n = S_{n+1}$. En déduire, pour $n \in \mathbb{N}^*$, le nombre de mots de Dyck de longueur 2n.
- 11. Proposer une démarche permettant d'obtenir tous les mots de Dyck de longueur 2n à l'aide de Python.