Probabilistic Reasoning CS 470 Introduction To Artificial Intelligence

Daqing Yi

Department of Computer Science Brigham Young University

Bayosian Network

Outline

- Probabilistic Logic
 - Noisy OR
- 2 Naive Bayes
 - Bayesian inference
 - Naive Bayes
- Bayesian Network
 - Bayesian network
 - Interpretation
 - Application

Outline

- Probabilistic Logic
 - Noisy OR
- 2 Naive Bayes
 - Bayesian inference
 - Naive Bayes
- Bayesian Network
 - Bayesian network
 - Interpretation
 - Application

Probabilistic logic

deductive logic

+

uncertainty

- Failure probability q_i
- $\neg X_i$ does not have any influence on Y
- Independence of failure probability q_i

$$P(Y \mid X_1 \cdots X_n) = 1 - \prod_{i:X_i = true} q$$

$$q_{cold} = P(\neg fever \mid cold, \neg flu, \neg malaria) = 0.6$$
 $q_{flu} = P(\neg fever \mid \neg cold, flu, \neg malaria) = 0.2$
 $q_{malaria} = P(\neg fever \mid \neg cold, \neg flu, malaria) = 0.1$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F		
F	F	Т		0.1
F	Т	F		0.2
F	Т	Т		
Т	F	F		0.6
Т	F	Т		
Т	Т	F		
Т	Т	Т		

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Naive Bayes

Outline

- Probabilistic Logic
 - Noisy OR
- Naive Bayes
 - Bayesian inference
 - Naive Bayes
- Bayesian Network
 - Bayesian network
 - Interpretation
 - Application

MAP estimation

$$P(x \mid e_1, \cdots, e_n) \propto P(e_1, \cdots, e_n \mid x)P(x)$$

Assumption

Simplification \longrightarrow ?

Naive Bayes

Different evidences are conditionally independent given the hypothesis

$$P(e_1,\cdots,e_n\mid x)=\prod_{i=1}^n P(e_i\mid x)$$

Naive Bayes

Bayesian inference

- Posterior $P(x \mid e_1 \cdots e_n)$
- MAP estimation

$$x^* = \arg \max_{x} P(x \mid e_1, \cdots, e_n) \propto P(x) \prod_{i=1}^{n} P(e_i \mid x)$$

Bayosian Network

Naive Bayes

Application: spam filter

- Naive Bayes Classifier
- Label a message as spam if $P(spam \mid message) > P(\neg spam \mid message)$
- bag of wods
 - a set of words $\{w_1, \cdots, w_n\}$
 - Conditional independence of words given (spam or ¬spam)

Naive Bayes

Application: spam filter

 $P(spam \mid message)$ vs $P(\neg spam \mid message)$

- $P(spam \mid message) \propto P(spam) \prod_{i=1}^{n} P(w_i \mid spam)$
- $P(\neg spam \mid message) \propto P(\neg spam) \prod_{i=1}^{n} P(w_i \mid \neg spam)$
- likelihood $P(w_i \mid spam), P(w_i \mid \neg spam)$
- priors $P(spam), P(\neg spam)$

How to calculate?

Naive Bayes

Application: spam filter

 \bullet The probability of seeing w_i in a spam message

$$P(w_i \mid spam) = \frac{COUNT(w_i \text{ occurrences in spam messages})}{COUNT(\text{all words in spam messages})}$$

• The probability of a message is spam

$$P(spam) = \frac{COUNT(spam messages)}{COUNT(all messages)}$$

Outline

- Probabilistic Logic
 - Noisy OR
- 2 Naive Bayes
 - Bayesian inference
 - Naive Bayes
- Bayesian Network
 - Bayesian network
 - Interpretation
 - Application

Bayesian networks

- a type of graphical model
- a network of random variables
- represent a full joint distribution
- conditional independence between random variables

Bayesian Network BYU 155

Bayesian networks

- Directed Acyclic Graph
- Node: random variable
 - observed node
 - unobserved node
- Edge: dependence
- Probability:
 - discrete: probability mass function or conditional probability table
 - continuous : probability density function

Coin flip

Naive Bayes

Burglar Alarm

Joint probability

Represent the joint probability distribution

- Chain rule
- Conditional independence

•

$$P(x_1, \dots, x_n) = \prod_{i=1}^{N} P(x_i \mid parents(x_i))$$

Compactness and order

- size of <u>conditional</u> probability table
- locally structured system

Markov blanket

- parent
- child
- parent of child

Find conditional independence $P(A \mid MB(A), B) = P(A \mid MB(A))$

problem

- Query variables X
- Evidence variables E
- Unobserved variables Y

solution

- Margin out Y
- $P(X \mid E)$

Car inspection

Car insurance

