Data Visualization and Pre-processing Assignment -2

Assignment Date	26 September 2022
Team ID	PNT2022TMID27796
Project Name	A NOVEL METHOD FOR HANDWRITTEN DIGIT
	RECOGNITION SYSTEM
Student Name	RAJAI SHANKAR P
Student Roll Number	311519104302
Maximum Marks	2 Marks

Question-1. Download dataset

Solution:

RowNumt Cu	ustomer Surname	CreditScor Geograph	Gender	Age	Tenure	Balance	NumOfPr(Ha	sCrCard IsA	ctiveM	Estimated Exit	ed
1 1	5634602 Hargrave	619 France	Female	42	2	0	1	1	1	101348.9	1
2 1	5647311 Hill	608 Spain	Female	41	1	83807.86	1	0	1	112542.6	0
3 1	5619304 Onio	502 France	Female	42	8	159660.8	3	1	0	113931.6	1
4 1	5701354 Boni	699 France	Female	39	1	0	2	0	0	93826.63	0
5 1	5737888 Mitchell	850 Spain	Female	43	2	125510.8	1	1	1	79084.1	0
6 1	5574012 Chu	645 Spain	Male	44	8	113755.8	2	1	0	149756.7	1
7 1	5592531 Bartlett	822 France	Male	50	7	0	2	1	1	10062.8	0
8 1	5656148 Obinna	376 Germany	Female	29	4	115046.7	4	1	0	119346.9	1
9 1	5792365 He	501 France	Male	44	4	142051.1	. 2	0	1	74940.5	0
10 1	5592389 H?	684 France	Male	27	2	134603.9	1	1	1	71725.73	0
11 1	5767821 Bearce	528 France	Male	31	6	102016.7	2	0	0	80181.12	0
12 1	5737173 Andrews	497 Spain	Male	24	3	0	2	1	0	76390.01	0
13 1	5632264 Kay	476 France	Female	34	10	0	2	1	0	26260.98	0
14 1	5691483 Chin	549 France	Female	25	5	0	2	0	0	190857.8	0
15 1	5600882 Scott	635 Spain	Female	35	7	0	2	1	1	65951.65	0
16 1	5643966 Goforth	616 Germany	Male	45	3	143129.4	. 2	0	1	64327.26	0
17 1	5737452 Romeo	653 Germany	Male	58	1	132602.9	1	1	0	5097.67	1
18 1	5788218 Henderso	549 Spain	Female	24	9	0	2	1	1	14406.41	0
19 1	5661507 Muldrow	587 Spain	Male	45	6	0	1	0	0	158684.8	0
20 1	5568982 Hao	726 France	Female	24	6	0	2	1	1	54724.03	0
21 1	5577657 McDonald	d 732 France	Male	41	8	0	2	1	1	170886.2	0
22 1	5597945 Dellucci	636 Spain	Female	32	8	0	2	1	0	138555.5	0
23 1	5699309 Gerasimo	510 Spain	Female	38	4	0	1	1	0	118913.5	1
24 1	5725737 Mosman	669 France	Male	46	3	0	2	0	1	8487.75	0
25 1	5625047 Yen	846 France	Female	38	5	0	1	1	1	187616.2	0
26 1	5738191 Maclean	577 France	Male	25	3	0	2	0	1	124508.3	0
27 1	5736816 Young	756 Germany	Male	36	2	136815.6	1	1	1	170042	0
28 1	5700772 Nebechi	571 France	Male	44	9	0	2	0	0	38433.35	0
29 1	5728693 McWillian	574 Germany	Female	43	3	141349.4	1	1	1	100187.4	0
30 1	5656300 Lucciano	411 France	Male	29	0	59697.17	2	1	1	53483.21	0
31 1	5589475 Azikiwe	591 Spain	Female	39	3	0	3	1	0	140469.4	1
32 1	5706552 Odinakac	533 France	Male	36	7	85311.7	1	0	1	156731.9	0
33 1	5750181 Sanderso	r 553 Germany	Male	41	9	110112.5	2	0	0	81898.81	0
34 1	5659428 Maggard	520 Spain	Female	42	6	0	2	1	1	34410.55	0
35 1	5732963 Clements	722 Spain	Female	29	9	0	2	1	1	142033.1	0
36 1	5794171 Lombardo	475 France	Female	45	0	134264	1	1	0	27822.99	1
37 1	5788448 Watson	490 Spain	Male	31	3	145260.2	1	0	1	114066.8	0
38 1	5729599 Lorenzo	804 Spain	Male	33	7	76548.6	1	0	1	98453.45	0
39 1	5717426 Armstron	§ 850 France	Male	36	7	0	1	1	1	40812.9	0
40 1	5585768 Cameron	582 Germany	Male	41	6	70349.48	2	0	1	178074	0

Question-2.Load the dataset

Solution:

import numpy as np
import pandas as pd
import seaborn as sns
importmatplotlib.pyplot as plt
import sklearn
data = pd.read_csv(r'Churn_Modelling.csv')
df.head

<bound< th=""><th>method</th><th>NDFrame.h</th><th>ead of Ro</th><th>owNumber Cu</th><th>stomerId</th><th>Surname</th><th>CreditScore</th><th>Geography</th><th>Gender</th><th>A</th></bound<>	method	NDFrame.h	ead of Ro	owNumber Cu	stomerId	Surname	CreditScore	Geography	Gender	A
0		1 1563	4602 Hargrave	e 6	19 Fran	ce Female	42			
1			7311 Hill			in Female				
2		3 1561	9304 Onio	5	02 Fran	ce Female	42			
3		4 1570	1354 Boni	i 6	99 Fran	ce Female	39			
4		5 1573	7888 Mitchell	L 8	50 Spa	in Female	43			
		**************************************		10.50 10.50	**************************************					
9995	99	96 1560	6229 Obijiaku	. 7	71 Fran	ce Male	39			
9996	99	97 1556	9892 Johnstone	≥ 5	16 Fran	ce Male	35			
9997	99	98 1558	4532 Liu	7 م	09 Fran	ce Female	36			
9998	99	99 1568	2355 Sabbatini	i 7	72 Germa	ny Male	42			
9999	100	00 1562	8319 Walker	7	92 Fran	ce Female	28			
9	Tenure	Balance	NumOfProducts	HasCrCard	IsActive	Member \				
0	2	0.00	1	1 1		1				
1	1	83807.86	1	1 0		1				
2	8	159660.80		3 1		0				
3	1	0.00	2	2 0		0				
4	2	125510.82	1	1 1		1				
9995	5	0.00		2 1		0				
9996		57369.61		1 1		1				
9997	7			1 0		1				
		75075.31		2 1		0				
9999	4	130142.79	1	1 1		0				
	Estimat	edSalary	Exited							
0	1	01348.88	1							
1	1	12542.58	0							
2	1	13931.57	1							
3		93826.63	0							
4		79084.10	0							
9995		96270.64	0							
9996	1	01699.77	0							
9997		42085.58	1							
9998		92888.52	1							
9999		38190.78	0							

Question-3. Perform Below Visualizations.

Univariate Analysis

Solution:

sns.displot(data['CreditScore'])

sns.histplot(data['CreditScore'])

sns.boxplot(x = data['CreditScore'])

sns.histplot(data['Age'])

sns.boxplot(data['Age'])

Bivariate Analysis

Solution:

```
plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')
```


plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')

plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')

plt.figure(figsize=(10,10))
sns.lineplot(data['Age'], data['EstimatedSalary'])

plt.figure(figsize=(17,17))

sns.barplot(data['Age'], data['EstimatedSalary'])

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

Multivariate Analysis

Solution:

sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

sns.scatterplot(data['Age'], data['[alance'], hue = data['Gender'])

sns.pairplot(data)

Question-4. Perform descriptive statistics on the dataset.

Solution:

data.mean(numeric_only = True)

RowNumber	5.000500e+03
CustomerId	1.569094e+07
CreditScore	6.505288e+02
Age	3.892180e+01
Tenure	5.012800e+00
Balance	7.648589e+04
NumOfProducts	1.530200e+00
HasCrCard	7.055000e-01
IsActiveMember	5.151000e-01
EstimatedSalary	1.000902e+05
Exited	2.037000e-01
dtype: float64	
dtype: float64	

data.median(numeric_only = True)

```
        RowNumber
        5.000500e+03

        CustomerId
        1.569074e+07

        CreditScore
        6.520000e+02

        Age
        3.700000e+01

        Tenure
        5.00000e+00

        Balance
        9.719854e+04

        NumOfProducts
        1.000000e+00

        HasCrCard
        1.000000e+00

        IsActiveMember
        1.000000e+00

        EstimatedSalary
        1.001939e+05

        Exited
        0.000000e+00

        dtype: float64
```

data['CreditScore'].mode()

```
0 850
dtype: int64
```

data['EstimatedSalary'].mode()

```
0 24924.92
dtype: float64
```

data['HasCrCard'].unique()

```
array([1, 0])
```

data['Tenure'].unique()

```
array([ 2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])
```

data.std(numeric_only=True)

RowNumber	2886.895680
CustomerId	71936.186123
CreditScore	96.653299
Age	10.487806
Tenure	2.892174
Balance	62397.405202
NumOfProducts	0.581654
HasCrCard	0.455840
IsActiveMember	0.499797
EstimatedSalary	57510.492818
Exited	0.402769
dtype: float64	

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

data['Tenure'].value_counts()

Name: Tenure, dtype: int64

Question-5. Handle the Missing values.

Solution:

data.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Question-6. Find the outliers and replace the outliers

Solution:

sns.boxplot(data['CreditScore'])#Outlier detection - box plot

fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot ax.scatter(data['Balance'], data['Exited'])

x-axis label
ax.set_xlabel('Balance')

y-axis label
ax.set_ylabel('Exited')
plt.show()

sns.boxplot(x=data['Balance'])

from scipy import stats #Outlier detection - zscore zscore = np.abs(stats.zscore(data['CreditScore'])) print(zscore)

print('No. of Outliers : ', np.shape(np.where(zscore>3)))

```
0
       0.332952
1
       0.447540
2
       1.551761
       0.500422
4
       2.073415
        . . .
9995
     1.250458
9996 1.405920
9997
      0.604594
9998 1.260876
9999 1.469219
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers : (1, 0)
```

q = data.quantile([0.75,0.25])

q

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0.75	7500.25	15753233.75	2238.25	718.0	1.0	1.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0
0.25	2500.75	15628528.25	773.75	584.0	0.0	0.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0

iqr = q.iloc[0] - q.iloc[1] iqr

RowNumber	4999.5000
CustomerId	124705.5000
Surname	1464.5000
CreditScore	134.0000
Geography	1.0000
Gender	1.0000
Age	12.0000
Tenure	4.0000
Balance	127644.2400
NumOfProducts	1.0000
HasCrCard	1.0000
IsActiveMember	1.0000
EstimatedSalary	98386.1375
Exited	0.0000
dtype: float64	

```
u = q.iloc[0] + (1.5*iqr)
RowNumber 1.499950e+04
CustomerId 1.594029e+07
Surname 4.435000e+03
CreditScore 9.190000e+02
Geography 2.500000e+00
Age 6.200000e+01
Tenure 1.300000e+01
Balance 3.191106e+05
NumOfProducts 3.500000e+00
HasCrCard 2.500000e+00
IsActiveMember 2.500000e+00
EstimatedSalary 2.969675e+05
EstimatedSalary 2.969675e+05
                        0.000000e+00
Exited
dtype: float64
I = q.iloc[1] - (1.5*iqr)
RowNumber -4.998500e+03
CustomerId 1.544147e+07
Surname -1.423000e+03
CreditScore 3.830000e+02
Geography -1.500000e+00
Gender -1.500000e+00
                        1.400000e+01
             -3.000000e+00
-1.914664e+05
 Tenure
 Balance
 NumOfProducts -5.000000e-01
                        -1.500000e+00
 HasCrCard
 IsActiveMember
                         -1.500000e+00
 EstimatedSalary -9.657710e+04
 Exited
                          0.0000000+00
 dtype: float64
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data['EstimatedSalary'].quantile(0.75)
iqr = Q3 - Q1
print(iqr)
upper=Q3 + 1.5 * igr
lower=Q1 - 1.5 * iqr
count = np.size(np.where(data['EstimatedSalary'] >upper))
count = count + np.size(np.where(data['EstimatedSalary'] <lower))</pre>
print('No. of outliers : ', count)
 98386.1375
No. of outliers: 0
data['CreditScore'] = np.where(np.logical_or(data['CreditScore']>900, data['CreditScore']<383), 65
0, data['CreditScore'])
sns.boxplot(data['CreditScore'])
```



```
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma
lower = data.Age.mean() - (3 * data.Age.std())
columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower ) ]
print('Upper range : ', upper)
print('Lower range : ', lower)
print('No. of Outliers : ', len(columns))

Upper range : 70.38521935511383
Lower range : 7.458380644886169
No. of Outliers : 133</pre>
```

columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditScore'] #After outlier removal

```
for i in columns:

Q1 = data[i].quantile(0.25)

Q3 = data[i].quantile(0.75)

iqr = Q3 - Q1

upper=Q3 + 1.5 * iqr

lower=Q1 - 1.5 * iqr

count = np.size(np.where(data[i] > upper))

count = count + np.size(np.where(data[i] < lower))

print('No. of outliers in ', i, ':', count)

No. of outliers in EstimatedSalary : 0

No. of outliers in Age : 0

No. of outliers in NumOfProducts : 0

No. of outliers in Tenure : 0

No. of outliers in Tenure : 0

No. of outliers in CreditScore : 0
```

Question-7. Check for Categorical columns and perform encoding

Solution:

from sklearn.preprocessing import LabelEncoder, OneHotEncoder le = LabelEncoder()
oneh = OneHotEncoder()
data['Surname'] = le.fit_transform(data['Surname'])
data['Gender'] = le.fit_transform(data['Gender'])
data['Geography'] = le.fit_transform(data['Geography'])
data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	0

Question-8. Split the data into dependent and independent variables split the data in X and Y

Solution:

x # independent values (inputs)

x = data.iloc[:, 0:13]

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10
•••	***	.511	***	77%	1000		978	1000	1777	200	***	550	
9995	9996	15606229	1999	771	0	1	39	5	0.00	2	1	0	96270.64
9996	9997	15569892	1336	516	0	1	35	10	57369.61	_1	1	1	101699.77
9997	9998	15584532	1570	709	0	0	36	7	0.00	1	0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	4	130142.79	1	1	0	38190.78

10000 rows x 13 columns

9996 0 9997 1 9998 1 9999 0

Name: Exited, Length: 10000, dtype: int64

Question-9. Scale the independent variables

Solution:

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = StandardScaler()
x_scaled = sc.fit_transform(x)
x_scaled
```

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167, 0.97024255, 0.02188649],
[-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[1.73118479, -1.47928179, 0.07353887, ..., -1.54776799, 0.97024255, -1.00864308],
[1.7315312, -0.11935577, 0.98943914, ..., 0.64609167, -1.03067011, -0.12523071],
[1.73187761, -0.87055909, 1.4692527, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question-10. Split x and y into Training and Testing

Solution:

```
from sklearn.model_selection import train_test_split 
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)
```

x_train

```
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167, 0.97024255, -0.77021814],
        [ 1.39655257, 0.71431365, -1.58808148, ..., 0.64609167, -1.03067011, -1.39576675],
        [-0.4532777, 0.96344969, -0.24082173, ..., -1.54776799, 0.97024255, -1.49965629],
        ...,
        [-0.60119484, -1.62052514, -0.36136603, ..., 0.64609167, -1.03067011, 1.41441489],
        [ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167, 0.97024255, 0.84614739],
        [-0.78548505, -1.36411841, 1.3829808, ..., 0.64609167, -1.03067011, 0.32630495]])
```

x_train.shape

(7000, 13)

x_test

```
array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167, 0.97024255, 1.61304597],
[-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167, -1.03067011, 0.49753166],
[-0.90118604, -0.7932923, 0.41271742, ..., 0.64609167, 0.97024255, -0.4235611],
...,
[ 1.49216178, -0.14646448, 0.6868966, ..., 0.64609167, 0.97024255, 1.17045451],
[ 1.1758893, -1.29228727, -1.38481071, ..., 0.64609167, 0.97024255, -0.50846777],
[ 0.08088677, -1.38538833, 1.11707427, ..., 0.64609167, 0.97024255, -1.15342685]])
```

x_test.shape

(3000, 13)

y_train

```
7681
      1
9031 0
3691 0
202
      1
5625 0
9225 0
4859
     0
3264
     0
9845
     0
2732
      1
Name: Exited, Length: 7000, dtype: int64
y_test
 9394 0
 898
      1
 2398 0
 5906
      0
 2343
      0
 4004
     0
 7375
      0
```

Name: Exited, Length: 3000, dtype: int64