Chapter 8 Estimation of Manufacturing Costs

Chemical Engineering Department
West Virginia University

Estimation of Manufacturing Costs

Direct Costs

Vary with production rate but not necessarily directly proportional

Fixed Costs

 Do not vary with production rate but relate "directly" to production function

General Expenses

 Functions to which operations must contribute – overhead burden

Direct Costs

- Raw Materials
- Waste Treatment
- Utilities
- Operating Labor
- Supervisory and Clerical Labor

- Maintenance and Repairs
- Operating Supplies
- Laboratory Charges
- Patents and Royalties

Fixed Costs

- Depreciation cover as a separate topic in Chapter 9
- Local taxes and insurance
- Plant overhead costs

General Expenses

- Administration costs
- Distribution and selling costs
- Research and development

Manufacturing Costs

- Table 8.1
 - Description of items
- Table 8.2
 - Factors for estimating costs
- * We relate (historically) the relationship between items in Table 8.1 to direct costs A (RM), B (WT), C (UT), D (OL), and FCI of plant

Manufacturing Costs - examples

- Maintenance and repairs
 - -2-10% FCI
 - Proportional to size of plant
- Supervisory and clerical labor
 - $-10-25\% C_{OL}$
 - Proportional to op. lab
- Depreciation
 - some % of FCI

Use mid-point values from Table 8.2

Note: using the mid-point values from Table 8.2 is a non-biased way of estimating COM but actual COM may be quite different depending on the plant and industry sector

Manufacturing Costs

with depreciation as 10% FCI

$$COM = 0.280FCI + 2.73C_{OL} + 1.23(C_{UT} + C_{WT} + C_{RM})$$
 (8.1)

$$COM_d = 0.180FCI + 2.73C_{OL} + 1.23(C_{UT} + C_{WT} + C_{RM})$$
 (8.2)

_COM without depreciation – we use this since we calculate depreciation more accurately in Chapter 9

How Do We Get.....

• FCI – Chapter 7 C_{TM} or C_{GR}

Cost of Operating Labor

$$N_{OL} = (6.29 + 31.7P^2 + 0.23N_{np})^{0.5}$$

 N_{OL} = the number of operators per shift

P = particulate processing steps

 N_{np} = non-particulate processing steps – compression, heating/cooling, mixing, separation, and reaction

Important note – Above equation based on data from chemical plants and refineries where number of particle processing steps is low. For units with more than 2 solids processing steps ignore middle term and add 1 operator per solids step

Example - acetone process

Operating Labor – Acetone Facility

Equipment	Number of	N _{np}
Compressors	0	0
Exchangers	8	8
Fired Heaters	1	1
Pumps	5	-
Reactors	1	1
Towers	3	3
Vessels	4	-
Total		13

Operating Labor – Acetone Facility

- $N_{OL} = [6.29 + (31.7)(0)^2 + (0.23)(13)]^{0.5} = 3.05$
- Number of operators required for one operator per shift = 4.5

- = (49 wk/yr)(5 shifts/operator/wk)
- = 245 shifts/year/operator

Total shifts per year = (365)(3 shifts per day)

= 1095 shifts/year

1095 / 245 = 4.5 operators (for a single shift)

Operating Labor – Acetone Facility

Total Operators = $(3.05)(4.5) = 13.75 \Rightarrow 14$

Salary = \$59,580/y (2010 Gulf-Coast average)

$$C_{OL} = (59,580)(14) = $834K$$

Cost of Raw Materials, Utilities, and Waste Treatment

Flowrates

Get these from PFD – use stream factor

Costs

- Utilities and waste treatment Table 8.3 see
 Section 8.6 for utilities estimation
- Common chemicals Table 8.4, Chemical Market
 Reporter, http://www.icis.com/StaticPages/a-e.htm#top

Stream Factor

- Operating hours per year divided by total hours per year
 - Typical 8000 operating hours
 - -0.9 0.95 typical 8000/8760 = 0.913

* Flows on PFD are kmol/operating hour not kmol/hour – why?

Utilities – Fuel and Electricity

- Fuel for Fired Heaters
 - PFD gives process load (energy balance) but total flow is more due to efficiency – 70-90% from Table 11.11 – item 13.
 - Fuel costs may vary wildly Figure 8.1
- Electricity for pumps and compressors Figure 8.7
 - Shaft power fluid power/efficiency
 - Power to drive shaft power/drive efficiency
- * PFD usually gives shaft power but be careful!

Cost of Fuel – Utility costs

Figure 8.1 Changes in Fuel Prices from 1996 to 2009 (information taken from Energy Information Administration [6])

Utilities - Steam

- Pressure levels
 - Low (30 90 psi)
 - Medium (150 250 psi)
 - High (525 680 psi)
- Available saturated but sometimes superheated

Utilities - Steam

- Large chemical complexes generate highpressure steam and use excess pressure to generate electricity – Figure 8.6.
- Steam can be used as a drive medium for compressors and pumps
 - Thermodynamic efficiency Table 8.5
 - Drive efficiency Figure 8.7

Note: Modern supercritical power plants operate to give steam at 250 bar (3675 psi) and 1075°F (580°C)

Figure 6.6: Typical Steam Producing System for a Large Chemical Facility

Utilities - Condensate Return and Boiler Feed Water

Copyright - R.Turton and J. Shaeiwitz 2012

steam generating systems

If Steam Lost in Process

Steam Generated in Process

* just take credit for steam – unless steam is lost in process

Utilities - Cooling Water

Utilities - Cooling Water

- Make-up based on ΔT (40 30)!
- Should charge cw based on energy used
 - Table 8.3
- Does not matter (much) if cw returned at 40°C or 45°C same energy
- 45°C is absolute max due to fouling

Utilities - Refrigerated Water

- Same as previous slide in that energy costs are not ΔT dependent but cost based on 5°C supply temperature
- Figure 8.4 shows cost of refrigeration as a function of temperature

Utilities – Refrigerated Water

Figure 8.4 Ideal Work for Refrigeration Cycles as a Function of Refrigeration Temperature

Summary

- *FCI*
- C_{OL}
- C_{UT}
- C_{WT}
- C_{RM}

From these get COM_d