Differentially Private Medians and Interior Points for Non-Pathological Data

Maryam Aliakbarpour, Rose Silver, Thomas Steinke, Jonathan Ullman

The Interior Point Problem

Isn't this trivial? Just return any sample X_i .

Interior Point Problem:

• Given n i.i.d. samples $X_1, ..., X_n \sim P$, return a point y s.t. inf support(P) $\leq y \leq \sup \operatorname{support}(P)$.

The Interior Point Problem

Private Interior Point Problem:

• Given n i.i.d. samples $X_1, ..., X_n \sim P$, privately return a point y s.t. inf support(P) $\leq y \leq \sup \operatorname{support}(P)$.

Differential Privacy (DMNS '06)

Differential Privacy (DMNS '06)

An algorithm A is (ϵ, δ) -Differentially Private if

- for all pairs of "neighboring" datasets D, D'
- for all events $E \subseteq \text{Range}(A)$

$$\Pr[A(D) \in E] \le e^{\epsilon} \Pr[A(D') \in E] + \delta$$

A Surprising Impossibility Result (BNSV '15)

Theorem (BNSV'15). Any (ϵ, δ) -differentially private algorithm that solves the interior point problem must use at least n samples, where

$$n = \Omega(\log^* | \text{domain of } P |)$$

Immediate Corollary: When *P* is continuous, the problem is intractable!

Related Work: Bypassing the Impossibility Result

	Distributional Assumption
[KV18]	Assume data is Gaussian
[DL09, TVGZ20, BAM20, AD20]	Assume probability density is lower bounded at every point in some fixed-sized interval around the median
[HRS20]	Assume a smoothness property everywhere

Takeaway: Bun et al's lower bound seems to apply only to very "unusual" distributions.

Theorem 1 (**Informal**). Assume P satisfies C-bounded normalized variance. Then there is an (ϵ, δ) -DP algorithm that:

- 1. returns an interior point of P and
- 2. uses $n = \text{poly}(Ce^{-1} \log \delta^{-1})$ samples.

We define this distributional assumption next!

What is a *C*-bounded distribution?

Examples include:
Uniform, Gaussian, Exponential,
Laplace, Binomial, Poisson, etc.

Definition:

• A distribution P with mean μ satisfies C-bounded normalized variance if

$$\sqrt{\mathbb{E}_{X \leftarrow P}[|X - \mu|^2]} \le C \cdot \mathbb{E}_{X \leftarrow P}[|X - \mu|]$$
standard deviation expected absolute deviation

Intuition:

• Distributions with O(1)-bounded normalized variance are those for which the standard deviation serves as a constant-factor proxy for the expected absolute deviation $\mathbb{E}[|X - \mu|]$.

Theorem 1 (**Informal**). Assume P satisfies C-bounded normalized variance. Then there is an (ϵ, δ) -DP algorithm that:

- 1. returns an interior point of P and
- 2. uses $n = \text{poly}(Ce^{-1} \log \delta^{-1})$ samples.

High-Level Algorithm Overview

Step 1: Place points into histogram bins

- The domain of P is partitioned into contiguous bins B of a fixed width
- Each bin counts the number of samples $X_1, ..., X_n$ that land in the bin

Step 2: Add truncated Laplacian noise to each bin

- Each bin receives a random amount of noise sampled from a truncated Laplace distribution
- The Laplace noise ensures differential privacy

Step 3: Find two bins with sufficiently large loads, and return any point between them.

- Intuitively, any point in-between two very full bins must be an interior point
- We are not required to know where the samples are in these two full bins, which is convenient for privacy

How C-Boundedness Helps

Problem 1:

• The samples could be too spread out, so that there are no large bins

Key Idea:

- By Chebyshev's Inequality, a large fraction of mass is concentrated within a constant number of standard deviations
- By C-boundedness, a large fraction of mass thus is concentrated within a constant number of bins

How C-Boundedness Helps

Problem 2:

• The samples could be too concentrated, so that there is only one large bin

Key Idea:

- C-boundedness tells us that outliers are not what determines std dev
- Suppose that the points are very concentrated in one bin
- Then the std dev is smaller than the size of a bin
- But this contradicts the definition of the bin size!

Theorem 1 (**Informal**). Assume P satisfies C-bounded normalized variance. Then there is an (ϵ, δ) -DP algorithm that:

- 1. returns an interior point of P and
- 2. uses $n = \text{poly}(Ce^{-1} \log \delta^{-1})$ samples.

The Private Approximate Median Problem

Private α -Approximate Median Problem:

• Given n i.i.d. samples $X_1, ..., X_n \sim P$, privately return a point y between the $0.5 - \alpha$ and $0.5 + \alpha$ quantiles of the distribution

Theorem 2 (Informal). Assume P satisfies C-bounded normalized variance around the median. Then there is an (ϵ, δ) -DP algorithm that:

- 1. returns an α -approximate median of P and
- 2. uses $n = \text{poly}(C\alpha^{-1}\epsilon^{-1}\log\delta^{-1})$ samples.

Theorem 1 (**Informal**). Assume *P* satisfies *C*-bounded normalized variance. Then there is an (ϵ, δ) -DP algorithm that:

- 1. returns an interior point of P and
- 2. uses $n = \text{poly}(Ce^{-1} \log \delta^{-1})$ samples.

Conclusion

- Differential Privacy makes even the simplest problems challenging
- A single framework formalizing the intuition that the lower bound applies only to pathological distributions
- Algorithms for interior point problem and approximate medians

Thank you!