2.20 - Marine Hydrodynamics, Spring 2005 Lecture 13

2.20 - Marine Hydrodynamics Lecture 13

3.18 Unsteady Motion - Added Mass

D'Alembert: ideal, irrotational, unbounded, steady.

Example Force on a sphere accelerating (U = U(t), unsteady) in an unbounded fluid that is at at rest at infinity.

K.B.C on sphere:
$$\left. \frac{\partial \phi}{\partial r} \right|_{r=a} = U(t) \cos \theta$$

Solution: Simply a 3D dipole (no stream)

$$\phi = -U(t)\frac{a^3}{2r^2}\cos\theta$$

Check:
$$\left. \frac{\partial \phi}{\partial r} \right|_{r=a} = U(t) \cos \theta$$

Hydrodynamic force:

$$F_{x} = -\rho \iint_{B} \left(\frac{\partial \phi}{\partial t} + \frac{1}{2} |\nabla \phi|^{2} \right) n_{x} dS$$

On r = a,

$$\frac{\partial \phi}{\partial t}\Big|_{r=a} = -\dot{U}\frac{a^3}{2r^2}\cos\theta\Big|_{r=a} = -\frac{1}{2}\dot{U}a\cos\theta$$

$$\nabla\phi\Big|_{r=a} = \left(\frac{\partial\phi}{\partial r}, \frac{1}{r}\frac{\partial\phi}{\partial\theta}, \frac{1}{r\sin\theta}\frac{\partial\phi}{\partial\varphi}\right) = \left(U\cos\theta, \frac{1}{2}U\sin\theta, 0\right)$$

$$|\nabla\phi\Big|^2\Big|_{r=a} = U^2\cos^2\theta + \frac{1}{4}U^2\sin^2\theta; \hat{n} = -\hat{e}_r, n_x = -\cos\theta$$

$$\iint_B dS = \int_0^\pi (ad\theta) (2\pi a\sin\theta)$$

Finally,

$$F_x = (-\rho) \, 2\pi a^2 \int_0^\pi d\theta \, (\sin\theta) \left(\underbrace{-\cos\theta}_{n_x}\right) \left[\underbrace{-\frac{1}{2} \dot{U} a \cos\theta}_{n_x} + \frac{1}{2} \left(\underbrace{U^2 \cos^2\theta + \frac{1}{4} U^2 \sin^2\theta}_{|\nabla\phi|^2}\right)\right]$$

$$F_x = -\dot{U}(\rho a^3) \pi \int_0^\pi d\theta \sin\theta \cos^2\theta + (\rho U^2) \pi a^2 \int_0^\pi d\theta \sin\theta \cos\theta \left(\cos^2\theta + \frac{1}{4} \sin^2\theta\right)$$

$$\underbrace{F_x}_{\text{Hydrodynamic Force}} = -\underbrace{\dot{U}(t)}_{\text{Acceleration}} \left[\underbrace{\rho}_{\text{Fluid Density}} \underbrace{\frac{2}{3}\pi a^3}_{\text{Volume}} \right]$$

Thus the **Hydrodynamic Force** on a sphere of diameter a moving with velocity U(t) in an unbounded fluid of density ρ is given by

$$F_x = -\dot{U}(t) \left[\rho \frac{2}{3} \pi a^3 \right]$$

Comments:

- If $\dot{U} = 0 \rightarrow F_x = 0$, i.e., steady translation \rightarrow no force (D'Alembert's Condition ok).
- $F_x \propto \dot{U}$ with a (-) sign, i.e., the fluid tends to 'resist' the acceleration.
- $[\cdots]$ has the units of (fluid) mass $\equiv m_a$
- ullet Equation of Motion for a body of mass M that moves with velocity U:

$$\underbrace{M}_{\text{Body mass}} \dot{U} = \Sigma F = \underbrace{F_H}_{\text{Hydrodynamic force}} + \underbrace{F_B}_{\text{All other forces on body}} = \left(-\dot{U} \underbrace{m_a}_{\text{Fluid mass}}\right) + F_B \Leftrightarrow \underbrace{\left(M + m_a\right)\dot{U} = F_B}$$

i.e., the presence of fluid around the body acts as an added or virtual mass to the body.

3.19 General 6 Degrees of Freedom Motions

3.19.1 Notation Review

(3D) U_1, U_2, U_3 : Translational velocities $U_4 \equiv \Omega_1, U_5 \equiv \Omega_2, U_6 \equiv \Omega_3$: Rotational velocities

(2D) U_1 , U_2 : Translational velocities

 $U_6 \equiv \Omega_3$: Rotational velocity

 $U_3 = U_4 = U_5 = 0$

3.19.2 Added Mass Tensor (matrix)

$$m_{ij}$$
; $i, j = 1, 2, 3, 4, 5, 6$

 m_{ij} : associated with force on body in i direction due to unit acceleration in j direction. For example, for a sphere:

$$m_{11} = m_{22} = m_{33} = 1/2\rho \forall = (m_A)$$
 all other $m_{ij} = 0$

3.19.3 Added Masses of Simple 2D Geometries

 \bullet Circle

• Ellipse

• Plate

• Square

 $m_{11} = m_{22} \approx 4.754 \rho a^2$

A reasonable approximation to estimate the added mass of a 2D body is to use the displaced mass $(\rho \forall)$ of an 'equivalent cylinder' of the same lateral dimension or one that 'rounds off' the body. For example, consider a square and approximate with an

(a) inscribed circle: $m_A = \rho \pi a^2 = 3.14 \rho a^2$.

(b) circumscribed circle: $m_A = \rho \pi \left(\sqrt{2}a\right)^2 = 6.28 \rho a^2$.

Arithmetic mean of (a) + (b) $\approx 4.71\rho a^2$.

3.19.4 Generalized Forces and Moments

In this paragraph we are looking at the most general case where forces and moments are induced on rigid body moving with 6 DoF motions, in an unbounded fluid that is at rest at infinity.

Body fixed reference frame, i.e., $OX_1X_2X_3$ is fixed on the body.

$$\vec{U}(t) = (U_1, U_2, U_3)$$
, translational velocity
 $\vec{\Omega}(t) = (\Omega_1, \Omega_2, \Omega_3) \equiv (U_4, U_5, U_6)$, rotational velocity with respect to O

Consider a body with a 6 DoF motion $(\vec{U}, \vec{\Omega})$, and a fixed reference frame $OX_1X_2X_3$. Then the hydrodynamic forces and moments with respect to O are given by the following relations (JNN §4.13)

• Forces

$$F_j = -\dot{U}_i m_{ji} - E_{jkl} U_i \Omega_k m_{li}$$
 with $i = 1, 2, 3, 4, 5, 6$
and $j, k, l = 1, 2, 3$

• Moments

$$M_{j} = -\dot{U}_{i} m_{j+3,i} - E_{jkl} U_{i} \Omega_{k} m_{l+3,i} - E_{jkl} U_{k} U_{i} m_{li} \quad \text{with} \quad i = 1, 2, 3, 4, 5, 6$$
and
$$j, k, l = 1, 2, 3$$

Einstein's Σ notation applies.

$$E_{jkl} = \text{ `alternating tensor'} = \begin{cases} 0 & \text{if any } j,k,l \text{ are equal} \\ 1 & \text{if } j,k,l \text{ are in cyclic order, i.e.,} \\ & (1,2,3),(2,3,1), \text{ or } (3,1,2) \\ -1 & \text{if } j,k,l \text{ are not in cyclic order i.e.,} \\ & (1,3,2),(2,1,3),(3,2,1) \end{cases}$$

Note:

- (a) if $\Omega_k \equiv 0$, $F_j = -\dot{U}_i m_{ji}$ (as expected by definition of m_{ij}). Also if $\dot{U}_i \equiv 0$, then $F_j = 0$ for any U_i , no force in steady translation.
- (b) $B_l \sim U_i m_{li}$ 'added momentum' due to rotation of axes. Then all the terms marked as 2. are proportional to $\sim \vec{\Omega} \times \vec{B}$ where \vec{B} is linear momentum (momentum from i coordinate into new x_j direction).

(c) If
$$\Omega_k \equiv 0$$
: $M_j = -\dot{U}_i m_{j+3,i} m_{ij} - \underbrace{E_{jkl} U_k U_i m_{li}}_{\text{even with } \dot{U} = 0, \ M_j \neq 0 \text{ due to this term}}$.

Moment on a body due to pure steady translation – 'Munk' moment.

3.19.5 **Example** Generalized motions, forces and moments.

A certain body has non-zero added mass coefficients only on the diagonal, i.e. $m_{ij} = \delta_{ij}$. For a body motion given by $U_1 = t$, $U_2 = -t$, and all other U_i , $\Omega_i = 0$, the forces and moments on the body in terms of m_i are:

$$F_1 = \underline{\hspace{1cm}}, F_2 = \underline{\hspace{1cm}}, F_3 = \underline{\hspace{1cm}}, M_1 = \underline{\hspace{1cm}}, M_2 = \underline{\hspace{1cm}}, M_3 = \underline{\hspace{1cm}}$$

Solution:

$$m_{ij} = \delta_{ij}$$

$$U_1 = t \quad U_2 = -t \quad U_i = 0 \quad i = 3, 4, 5, 6 \quad \Omega_k = 0 \quad k = 1, 2, 3$$

$$\dot{U}_1 = 1 \quad \dot{U}_2 = -1 \quad \dot{U}_i = 0 \quad i = 3, 4, 5, 6$$

Use the relations from (JNN §4.13):

$$F_{j} = -\dot{U}_{i}m_{ij} - E_{jkl}U_{i}\Omega_{k}m_{il} \xrightarrow{\Omega_{k}=0}$$

$$F_{j} = -\dot{U}_{i}m_{ij}$$

$$M_{j} = -\dot{U}_{i}m_{i(j+3)} - E_{jkl}U_{i}\Omega_{k}m_{i(l+3)} - E_{jkl}U_{k}U_{i}m_{li} \xrightarrow{\Omega_{k}=0}$$

$$M_{j} = -\dot{U}_{i}m_{i(j+3)} - E_{jkl}U_{k}U_{i}m_{li}$$
where $i = 1, 2, 3, 4, 5, 6$ and $j, k, l = 1, 2, 3$

For F_1, F_2, F_3 use the previous relationship for F_j with j = 1, 2, 3 respectively:

For $M1, M_2, M_3$ use the previous relationship for M_j with j = 1, 2, 3 respectively:

$$\begin{array}{lll} M_1 & = & -\dot{U}_i m_{i(1+3)} - E_{1kl} U_k U_i m_{li} \\ & = & -\dot{U}_i m_{i4} - E_{1kl} U_k U_i m_{li} \\ & = & -\dot{U}_1 \underbrace{m_{14} - \dot{U}_2}_{=0} \underbrace{m_{24} - \dot{U}_3}_{=0} \underbrace{m_{34} - \underbrace{\dot{U}_4}_{=0}}_{=0} m_{44} - \dot{U}_5 \underbrace{m_{54} - \dot{U}_6}_{=0} \underbrace{m_{64}}_{=0} \\ & & - E_{123} U_2 \Big(U_1 \underbrace{m_{13} + U_2}_{=0} \underbrace{m_{23} + \underbrace{U_3}_{=0}}_{=0} \underbrace{m_{33} + U_4}_{=0} \underbrace{m_{43} + U_5}_{=0} \underbrace{m_{53} + U_6}_{=0} \underbrace{m_{63}}_{=0} \Big) \\ & & - E_{132} \underbrace{U_3}_{=0} \Big(U_1 \underbrace{m_{12} + \underbrace{U_2}_{=-1}}_{=0} m_{22} + U_3 \underbrace{m_{32}}_{=0} + U_4 \underbrace{m_{42} + U_5}_{=0} \underbrace{m_{52}}_{=0} + U_6 \underbrace{m_{62}}_{=0} \Big) \rightarrow \underbrace{M_1 = 0} \\ \\ M_2 & = & -\dot{U}_i m_{i5} - E_{2kl} U_k U_i m_{li} \\ & = & \dot{U}_5 m_{55} - E_{231} U_3 U_i m_{1i} - E_{213} U_1 U_i m_{3i} \\ & = & - E_{213} U_1 U_3 m_{33} \rightarrow \underbrace{M_2 = 0} \\ \\ M_3 & = & -\dot{U}_i m_{i6} - E_{3kl} U_k U_i m_{li} \\ & = & \dot{U}_6 m_{66} - \underbrace{E_{312}}_{=1} U_1 U_i m_{2i} - \underbrace{E_{321}}_{=2} U_2 U_i m_{1i} \\ & = & \dot{U}_5 \underbrace{u_1 + \underbrace{U_2}_{=1}}_{=1} \underbrace{u_1 + \underbrace{U_2}_{=1}}_{=1} \underbrace{u_1 + \underbrace{U_3}_{=1}}_{=1} \underbrace{u_1 +$$

3.19.6 Example Munk Moment on a 2D submarine in steady translation

$$U_1 = U\cos\theta$$
$$U_2 = -U\sin\theta$$

Consider steady translation motion: $\dot{U} = 0$; $\Omega_k = 0$. Then

$$M_3 = -E_{3kl}U_kU_im_{li}$$

For a 2D body, $m_{3i} = m_{i3} = 0$, also $U_3 = 0, i, k, l = 1, 2$. This implies that:

$$M_{3} = -\underbrace{E_{312}}_{=1} U_{1} \left(U_{1} m_{21} + U_{2} m_{22} \right) - \underbrace{E_{321}}_{=-1} U_{2} \left(U_{1} m_{11} + U_{2} m_{12} \right)$$

$$= -U_{1} U_{2} \left(m_{22} - m_{11} \right)$$

$$= U^{2} \sin \theta \cos \theta \left(\underbrace{m_{22} - m_{11}}_{>0} \right)$$

Therefore, $M_3 > 0$ for $0 < \theta < \pi/2$ ('Bow up'). Therefore, a submarine under forward motion is unstable in pitch (yaw). For example, a small bow-up tends to grow with time, and control surfaces are needed as shown in the following figure.

- Restoring moment $\approx (\rho g \forall H) \sin \theta$.
- critical speed U_{cr} given by:

$$(\rho g \forall) H \sin \theta \ge U_{cr}^2 \sin \theta \cos \theta (m_{22} - m_{11})$$

Usually $m_{22} >> m_{11}, m_{22} \approx \rho \forall$. For small $\theta, \cos \theta \approx 1$. So, $U_{cr}^2 \leq gH$ or $F_{cr} \equiv \frac{U_{cr}}{\sqrt{gH}} \leq 1$. Otherwise, control fins are required.