15

only minimal subvalued prime. Moreover $x = x_1x_2$ such that $(x_1, x_2) = 1$ and x_1 has q as its d x, then there exists a positive integer n such that d" x. (4) If X has q as one of its minimal subvalued primes and that d|d'n and d'|dn.

Proof. (1) Suppose that (d, ds) = 1 and that both d are a positive integer n such that did or ds | dn . (5) If $d = d_1 d_2$; d_1 non units (i = 1.2) then there exists

non units. Obviously (d., d.) = 1 in any localization of R

Since q is a prime dids = d & q, implies that d & q or (since R is an HCF domain).

S(h|b oa bns evode (S) wo n| ib.,b ablon (a) see al. of ni d_i is a unit in R_q , in other words at least one of d_i is not To eno fesst is (emirg beulavdus s at p) nismob noitsulsv if $(d_1, d_2) = 1$ in R, $(d_1, d_2) = 1$ in R_q and since R_q is a ds e q. We note that both of d cannot belong to q, because

is not the set of all the valued primes containing d). { Ag...., Pq } os ton li rol) { Ag...., Rq } lo teadus s ai that d_2 is a non unit the set { P_β \in { P_β \in { P_β } } Let ds & q then since ds | d and since we have assumed

contec not poth). a greater than a such that d = sd } thus if $(d_1, d_2) = 1$ then either of d_i is a unit (but of we had assumed $d_1 \not\in q$ we would conclude that d_1 is a unit. of a ring of Krull type and hence ds is a unit. Similarly if which should contain da, a contradiction to the definition there exists no valued prime in the defining family of R does not belong to P i.e. if (d1,d2) = 1 and d2 & q then but since $(d_1,d_2) = 1$ in R and $(d_1,d_2) = 1$ in R_{p_i} and thus d_2 Select a member P; of {P1,...,Pr } such that d1,d2 E P;

(S) Let x and d be as in the hypothesis and let