### 1 Yoneda Lemma

**Lemma 1.0.1** ( $H_A$  or  $\mathcal{A}(\_, A)$ ). For any category  $\mathcal{A}$ , fixing an object,  $A \in \mathcal{A}$ , there's a functor,  $H_A : \mathcal{A}^{op} \to Set$  defined as:

- i For object  $B \in \mathcal{A}$ , F(B) := Hom(B, A)
- ii For any morphism in  $\mathcal{A}$ ,  $g: X \to Y$ ,

$$H_A(g): \mathcal{A}(Y,A) \to \mathcal{A}(X,A)$$
 , as,  $\forall p \in \mathcal{A}(Y,A)$  ,  $p \mapsto p \circ g$  i.e.  $\Big(H_A(g)\Big)(p) := p \circ g$ 

**Theorem 1.1. Yoneda** If A is a locally small category, for any object  $A \in A$  and  $X \in [A^{op}, Set]$ , there's exists a natural isomorphism:

$$[\mathcal{A}^{op}, Set](H_A, X) \cong X(A)$$
 naturally in  $A \in \mathcal{A}$ 

#### **Explaination:**

First, fix any category, A. Now, choose two things (independent of each other):

i an object, A from the category  $\mathcal{A} = \mathcal{A}^{op}$ 

ii an object,  $X \in [\mathcal{A}^{op}, Set]$ , the presheaf category i.e. a functor  $X: A^{op} \to Set$ 

Here,  $[\mathcal{A}^{op}, Set](H_A, X)$  denotes morphisms  $H_A \to X$  in  $[\mathcal{A}^{op}, Set]$ , i.e. natural transformations,  $\alpha: A^{op}$ 



Each of these natural transformations is a collection of, morphisms in Set, hence each of their components is exactly a function. i.e.  $\forall \alpha \in [\mathcal{A}^{op}, Set](H_A, X), \forall K \in \mathcal{A}, \alpha_K$  is a function  $:H_A(K) \to X(K)$ 

X(A) is precisely a set, because X(A) is the image of (our chosen object,) A, under (our chosen functor,) X.

The key idea is that the choice of A and X completely determines all possible maps (i.e. natural transformations) from functor  $H_A$  to functor X.

Moreover, that this isomorphism is *natural* in A and X. Meaning that  $[\mathcal{A}^{op}, Set](H_A, X)$  and X(A) are functorial in both A and X

#### Notation:

- Denoting the category of all presheaves on  $\mathcal{A}$  by  $\mathcal{C}$ , i.e.  $\mathcal{C} := [\mathcal{A}^{op}, Set]$
- using  $\hat{a}$  as a map i.e.  $\hat{a} = b$  stands for  $a \to b$
- using  $\tilde{a}$  as a map i.e.  $\hat{a} = b$  stands for  $a \to b$

To prove the theorem, first, going to show that  $[A^{op}, Set](H_A, X)$  is isomorphic to X(A). And then that this isomorphism is natural.

*Proof.* Let a locally small category,  $\mathcal{A}$  be given. Let  $A \in \mathcal{A}$  and  $X \in [\mathcal{A}^{op}, Set]$ 

**Showing isomorphism,** Define  $\phi$  (on natural transformations) as the A-component (of that natural transformation) at the identity of A. i.e. for  $\alpha \in \mathcal{C}(H_A, X), \phi(\alpha) := \alpha_A(1_A)$ 

Define  $\psi$  on an object,  $x \in X(A)$ , by defining it's K-component for any  $K \in A$ :

$$(\psi(x))_K: H_A(K) \to X(K)$$
 as, for each  $p \in Hom_A(K,A), p \mapsto (X(p))(x)$ 

That is to say that the K-component maps any arrow  $p: K \to A$  to the image of x under the map X(p).

# 2 Cayley's Theorem

Definiton 2.1 (Symmetric group on a set).

**Theorem 2.1.** Cayley's Theorem Every group, (G, .) is isomorphic to a subgroup of symmetric group on G.

## 3 Embedding of a category in Presheaf category

**Definiton 3.1** (Embedding of a category). A category,  $\mathcal{A}$  is said to be embedded in a category,  $\mathcal{B}$  if there exists a functor  $F: \mathcal{A} \to \mathcal{B}$  such that F is full, faithful and injective (on objects).

*Proof.* Prove that  $H_A$  is indeed a functor

4 Quasi-Paper