제10회 EDISON 전산의학 SW 활용 경진대회

항체의약품 TMDD 모델링을 위한 Edison 앱의 활용

TMDD Modeling of antibody drugs using Edison Science App

박마리아, <u>한성필</u> (팀 CMC-TMDD) 가톨릭대학교

2020-08-11 Pharmacology, College of Medicine, The Catholic Univ. of Korea

Clinical Pharmacology & Therapeutics, Seoul St. Mary's Hospital

shan@catholic.ac.kr

항체의약품 연구자 혹은 학생 입장에서 질문

• 항체의약품의 약동학을 모델링 하고 싶은데 어디서부터 시작해야 할까요?

유료 모델링 소프트웨어를 사용하지 않고 할 수 있는 방법이 있을까요?

• 인터넷 상에서 간단하게 모델링해 볼 수 있을까요?

항체의약품

- 정의
 - 면역세포 신호전달체계에 관여하는 단백질 **항원이나 암세포 표면에서** 발현되는 표지인자를 표적으로 하는 단일클론항체(monoclonal antibody)로 인체 적용 시 부작용을 최소화할 수 있도록 단백질을 개량해 질병의 개선 및 치료효과를 발휘하는 재조합단백질의약품

항체의약품

바이오코리아 2019, 면역항암제·항체의약품 개발 집중 조명

BIO KOREA 2019 컨퍼런스, 4월 17일부터 3일간 코엑스에서 개최

김용주 기자ㅣyjkim@yakup.com

▶ 기자가 쓴 다른기사 보기

제약

항체의약품 시장 맹위, 8000억대 진입 아바스틴 1000억 돌파...허셉틴 • 큐미라 800억

발행 2019.03.04 12:27:13

- 개발이 가속화 / 치료 대상 질병이 **다양화** / 제약회사의 주된 개발 대상
- 항체의약품 약동학(PK)
 - 저분자 화합물과 <u>다른 접근법이 필요</u>
 - 항원을 표적으로 **높은 친화도로 결합**

표적 매개 약물 배치 (target-mediated drug disposition)

• PK 특성에 영향을 미치는 정도로 약물이 약리학적 표적 부위(수용체)에 높은 친화력으로 결합하는 현상 (Levy, 1994 | Mager, Jusko, 2001) - "비선형 약동학" 유빌

Pharmacologic target-mediated drug disposition

Gerhard Levy, PharmD Amherst, N.Y.

본 연구의 동기: 모델링 장애물

상용 소프트웨어 사용 시 라이선스 비용 지불

수백\$~수천\$

무료 소프트웨어 있지만 설치 과정 까다로움

> R, Rtools, Python 및 관련 패키지 설치

웹기반 실행 불가능

에디슨 사이언스앱

EDI50N

TMDD:

Antibody PK Modeling

- 상용 소프트웨:
 NONMEM (\$), Monolix
 (\$\$), 혹은 Phoenix
 NLME (\$\$\$)
- nlmixr 위 소프트웨어와 유사한 수준의 비선형 회귀 분석 방법(Nonlinear regression) 기능을 가진 공개, 무료 R 패키지
- 저자들은 nlmixr을 TMDD 모델링을 위한 에디슨 사이언스 앱으로 변환

에디슨 사이언스앱

Value

Variable Name

- 현재는 초기값(initial value)과 estimation method (FO, SAEM, FOCE, FOCEi)만 입력 가능하게 되어 있음
- 향후 업데이트 시 nlmixr에서 지원하는 다양한 기능 및 TMDD 모델 구조를 삽입 예정

항체의약품 TMDD 모델링 Edison 앱의 활용

Descri

nlmixr의 설치

- 초심자가 수행하기에 다소 어렵고 운영체제의 영향을 받으며, 시뮬레이션에 사용되는 RxODE 패키지를 포함한 많은 R 패키지(gridExtra, data.table, ggplot2, xpose, xpose.nlmixr, shinyMixR) 등의 설치가 필요
- 버전의 조율이 비교적 정교하게 이루어져야 함.
- 저자들은 컨테이너 소프트웨어인 singlularity를 사용하여, (KISTI 전인호 박사님 도움) 모든 필요파일을 묶어 Edison 개발 환경에 업로드

S

항체의약품 TMDD 모델링 Edison 앱의 활용

singularity exec --bind \$PWD:/mnt /SYSTEM_BULB/Singularity/images/nlmixr.sif
Rscript -e 'source("./runscript.r", keep.source=TRUE, echo=TRUE)'

• Edison Science App: 소스 파일은 <u>깃허브 저장소</u> github.com/pipetcpt/Edison-nlmixr

자료의 준비 (Nimotuzumab)

		/	/	//		7				
	(A	B	С	D	E	F	G	Н	I	J
1	(ID	TIME	AMT	RATE	DV	TAD	OCC	FLAG	MDV	EVID
2	1	0	50	39.06	0	0		0	1	\
3	1	1.28	0	0	4.1288	1.28	1	/ 0	0	0
4	1	23.16	0	0	4.0413	23.16	1	Q	0	0
5	1	46.91	0	0	3.6723	46.91	1	0	0	0
6	1	95.2⁄1	0	0	3.5626	95.21	1	0	0	0
7	1	144,13	0	0	3.6878	144.13	1	0	0	0
8	1	167.16	0	0	3.8654	167.16	1	9	0	0
9	1	167.2	50	24.75	0	0	2	(2	1	1
10	1	169.02	0	0	4.2847	1.82	2	2	0	0
11	1	333.9	0	0	3.6895	166.7	2	2	0	0
12	1	334	50	86.2	0	0	3	2	/ 1	1
13	1	334.58	0	0	3.7171	0.58	3	2	/ 0	0
14	1	502.68	0	0	3.5049	168.68	3	2	0	0
15	1	503	50	18.38	0	0	4	2	1	1
16	1	505.72	0	0	3.8206	2.72		2	0	0
17	1	672.22	0	0	3.6771	169.22	4	2	0	0
18	1	672.3	50	86.2	0	0	5	2	1	1
19	1	672.88	0	0	3.9199	0.58	/ 5	2	0	0
20	1	840.72	0	0	1.8254	168.42	5	2	0	0
21	1	840.8	50	86.2	0	0	6	2	1	1

- 이 자료는 에디슨 사이언스 앱에 내장 되어 있으나 본인의 자료를 위해 앱 실행 화면 혹은 github.com/pipetcpt/ediso n-nlmixr 에서 다운로드 받아 활용할 수 있음.
 - nimoData.xlsx

TMDD model selection

- Full TMDD model
- Quasi-steady-state approximation
- Rapid-binding or quasi-equilibrium approximation
- Michaelis-Menten approximation

 ${}^{\mathrm{a}}K_{\mathrm{ss}} = (k_{\mathrm{off}} + k_{\mathrm{int}})/k_{\mathrm{on}}$ ${}^{\mathrm{b}}K_{\mathrm{D}} = k_{\mathrm{off}}/k_{\mathrm{on}}$

 ${}^{c}R_{tot}K_{D}/(K_{D}+C)^{2}\ll 1$

 $^{\mathrm{d}}V_{\mathrm{max}} = k_{\mathrm{int}} * R_{\mathrm{tot}}, k_{\mathrm{M}} = (k_{\mathrm{off}} + k_{\mathrm{int}})/k_{\mathrm{on}}$

Model (TMD Quasi steady-state approximation (QSS))

```
nimo <- (function()){</pre>
                                                cl k- exp(tcl + eta.cl)
        tcl < -log(0.001)

√1 <- exp(tv1 + eta.v1)</pre>
         tv1 < -log(1.45)
                                                Q \leftarrow exp(tQ)
         tQ \leftarrow log(0.004)
                                                v2 \leftarrow exp(tv2)
        tv2 < -log(44)
                                                kss <- exp(tkss + eta.kss)
        tkss \leftarrow log(12)
                                                kint <- exp(tkint)
        tkint \leftarrow \log(0.3)
                                                ksyn <- exp(tksyn)
        tksyn < -log(1)
                                                kdeg <- exp(tkdeg)</pre>
        tkdeg \leftarrow \log(7)
                                                k \leftarrow cl/v1
         eta.cl ~ 2
                                                k12 \leftarrow Q/v1
         eta.v1 ~ 2
                                                k21 < - Q/v2
         eta.kss ~ 2
         add.err <- 10
    })
        eff(0) <- ksyn/kdeg</pre>
        conc = 0.5*(central/v1-eff-kss)+0.5*sqrt((central/v1-eff-kss)**2+4*kss*central/v1)
        d/dt(central) = -(k+k12)*conc*v1+k21*peripheral-kint*eff*conc*v1/(kss+conc)
        d/dt(peripheral) = k12*conc*v1-k21*peripheral
        d/dt(eff) = ksyn - kdeg*eff - (kint-kdeg)*conc*eff/(kss+conc)
        IPRED=log(conc)
        IPRED ~ add(add.err)
    })
```

- ini 부분은 초기값 설정,
 - \$THETA, \$ETA\$OMEGA
- model 부분
 - *SUBROUTINE, \$PK, \$ERROR 에 대응
 - 현재는 사이언스앱에서 변경 불가

니모투주맙 TMDD 약동학 모델의 DV vs PRED/IPRED

개인별 적합 자료

니모투주맙 TMDD 약동학 모델의 용량별 시각적 예측 점검

Edison 사이언스앱에서 계산된 니모투주맙 약동학 파라미터 추정치_

Parameters (단위)	값	평균 (95 % 신뢰구간 부트 스트랩 결과)				
PK Parameters						
CL (L \cdot h $^{-1}$)	0.000703	0.00043 (0.0000868 – 0.00139)				
V _C (L)	1.43	1.38 (1.09 – 1.81)				
V_{t} (L)	18.5	21.47 (7.91 – 209.10)				
$CL_D(L \cdot h^{-1})$	0.00322	0.0033 (0.0021 - 0.0051)				
K_{SS} (μg / $m\ell$)	6.96	7.40 (1.04 – 150.40)				
k_{int} (h $^{-1}$)	0.148	0.226 (0.017 – 2.664)				
k syn (μ g / mL) · h $^{-1}$	1.43	1.46 (0.71 ~ 3.29)				
K (h ⁻¹)	5.50	7.33 (2.05 – 74.21)				
$t_{1/2\beta}$ (h)	483.71	_				
Variability						
BPV _{CL} (%)	11.31	10.82 (0.64 – 33.54)				
BPV _{Vc} (%)	50.00	51.03 (19.70 – 75.61)				
BPV Kss (%)	87.86	83.42 (39 – 131)				
Residual Error						
Additive error (%)	48.00	47.98 (33.09 – 69.92)				
Shrinkage						
η – shrinkage (%)	9.55					
ε – shrinkage (%)	3.53					

• 로컬 컴퓨터에서 실행한 것과 완전히 동일한 결과 (no surprise)

요약

- 본 연구에서 nlmixr을 사용한 높은 수준의 집단 약동약력학 분석 (TMDD 모델링)이 가능한 Edison 사이언스앱이 개발
- 이를 사용하여 TMDD 특성을 보이는 니모투주맙 (Nimotuzumab) 의 알려진 PK/PD 모델을 이 사이언스 앱을 실행하여 동일한 파라미터 값을 얻을 수 있는지 확인

한계

- TMD 모델 중 quasi steady-state approx만 지원
- 다양한 옵션 추가 필요 🗸
- 공개된 자료 뿐만 아니라 독자적으로 생성된 임상시험 자료로 검증 필요

결론

• 항체의약품을 연구/개발하는데 필수적인 약동학 지식을 학생, 연구원 대상으로 교육하는데 본 연구를 통한 무료, 공개, 무설치, 웹기반 모델링 도구가 큰 도움이 될 것

항체의약품 TMDD 모델링을 위한 Edison 앱의 활용

TMDD Modeling of antibody drugs using Edison Science App

감사합니다.

질문과 의견 주시면 개발에 적극 참고하겠습니다. <u>박마리아, 한성필</u> (팀 CMC-TMDD) 가톨릭대학교

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단 첨단 사이언스·교육 허브 개발 사업의 지원을 받아 수행된 연구임(NRF-2011-0020576)
Nlmixr 의 singularity컨테이너를 만드는데 KISTI 전인호 박사님의 도움을 얻었으며 이에 감사합니다.