

The Jones Polynomial

* Requisite knot theory

def A link L is a smooth/PL 1-dim'l closed submfld of S^3 , up to (ambient) isotopy of S^3 — a smooth map $f: (0,1] \times S^3 \rightarrow S^3$ such that $f_t: S^3 \rightarrow S^3$ is a diffeomorphism for each t, with $f_o = id$ and $f_+(L) = L'$.

A knot is a 1-component link.

det A knot/link diagram D is a 4-regular graph embedded in 5^2 whose vertices are marked like X, representing

a generic projection of a link.

Reidemeister moves:

RI) /> ~)(RII // ~ //

knots/links up to isotopy -> diagrams up to RI, RII, RIII

det A framed knot/link is a link along with a trivialization of its normal bundle, up to a suitable notion of isotopy

Only need a section, and represent as embedding of $L\times\{0,1]$, with $L\times\{0\}$ the link and $L\times\{1\}$ the pushoff.

2	
	Diagram:
	or: "blackboard framing"
	framed knots/links and diagrams up to RII, RIII, and up to isotopy
	Framing is a Accomponents - torsor. RI') 6 ~ "regular "regular" isotopy"
	Thm There is a distinguished 0-framing of every component of an <u>oriented link</u> . Pf Let Σ be a Seifert surface of L ($\partial \Sigma = L$, with induced orientation). This is Princaré dual to $\alpha \in H^1(S^3 - L)$ such that $\alpha(\mu) = 1$
	with μ , for all such μ . Take a regular neighborhood of Lin Ξ t
	has framing +1 (b.b. framing) (b.b. framing) (with respect to 0-framing)
	det Let D be an oriented diagram, and L the corresponding framed oriented link, from the blackboard framing.
	The writhe $\omega(0) = \sum$ framings of $L \in \mathbb{Z}$.
	thm $\rightarrow +1$ $\rightarrow -1$ to compute $\omega(D)$

thm For knots, writhe is invariant under ori, reversal.

(3)

Let The Jones polynomial of an oriented link L with an oriented diagram D is $V_L(t) = (-A^{-3})^{w(D)} \langle D \rangle S^{-1}$ with $A = t^{-1/4}$ Same as adding twists to zero-out framings $(L \neq \emptyset)$ for this normalization

$$ex V(O)(t) = (-A^{-3})^3 (-A^5 - A^{-3} + A^{-7})$$

= $t + t^3 - t^4$

- $V_L(t) \in \mathbb{Z}[t^{\pm 1/2}]$, and for knots $\in \mathbb{Z}[t^{\pm 1}]$
- · V(L, 11 Lz) = 6-1 V(L,) V(Lz)
- · V(R) = V(R) V(R2)
- deg V_L(t) & crossing number = min #crossings ... used to resolve a Tait conj. ...