- 1. Write SQL statements for the database schema shown in the following figure: (4 points)
 - (a) Retrieve the names of senior students (class=4) majoring in CS (computer science).
 - (b) Retrieve the names of all courses taught by Prof. King in 2007 and 2008.
 - (c) For each section taught by Prof. King, retrieve the course number, semester, year and number of students who took section.
 - (d) Retrieve the names and transcript of each senior student (class=4) majoring in CS. A transcript includes the course name, course number, credit hours, semester, year and grade for each course completed by the student.

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	cs

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade B	
17	112		
17	1.19	С	
8	: 85	Α	
8	92	А	
8	102	В	
8	135	Α	

2. Write a view in SQL on the following database schemas. A view that has the project name, controlling department name, number of employees and total hours worked per week on the project for each project. (1 point)

```
EMPLOYEE
```

 $(\underline{SSN}\ , First_Name, Last_Name, \ , BDate, Address, Sex, Salary, Supervisor_SSN, Department_NO\)$ DEPARTMENT

(Department NO, Department Name, Manager SSN, Manager Start Date)

PROJECT

(Project_NO, Project_Name, Location, Department_NO)

WORKS ON

(Employee_SSN, Project_NO, Hours)

3. Consider the following schema (the data type of each attribute is given following the attribute names and the primary keys are underlined): (2.5 points)

Suppliers (\underline{sid} : integer, sname: string, address: string)

Parts (<u>pid</u>: integer, pname: string, color: string)
Catalog (<u>sid</u>: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers. Write the following queries in SQL:

- (a) List the pnames of parts for which there is some supplier. (0.5 points)
- (b) Find the pnames of parts supplied by Acme Widget Suppliers and no one else (hint: Use "No exists" with a subquery) (See https://www.tutorialgateway.org/sql-not-exists-operator/) (1 point)
- (c) For every supplier that only supplies green parts, show the name of the supplier and the total number of parts that she supplies. (1 point)
- 4. Which one of the following is NOT a part of the ACID properties of database transactions? (0.5 point)
 - (A) Atomicity
 - (B) Consistency
 - (C) Isolation
 - (D) Deadlock-freedom