Package 'Bessel'

July 29, 2024
Title Computations and Approximations for Bessel Functions
Version 0.6-1
VersionNote Last CRAN: 0.6-0, packaged 2019-04-25, published 2019-05-02
Date 2024-07-29
Description Computations for Bessel function for complex, real and partly 'mpfr' (arbitrary precision) numbers; notably interfacing TOMS 644; approximations for large arguments, experiments, etc.
Maintainer Martin Maechler <maechler@stat.math.ethz.ch></maechler@stat.math.ethz.ch>
Imports methods, Rmpfr
Suggests gsl, sfsmisc
SuggestsNote 'gsl' may be used in code; the others are for examples & vignettes.
License GPL (>= 2)
Encoding UTF-8
<pre>URL https://specfun.r-forge.r-project.org/</pre>
NeedsCompilation yes
Author Martin Maechler [aut, cre] (https://orcid.org/0000-0002-8685-9910)
Repository CRAN
Date/Publication 2024-07-29 17:00:06 UTC
Contents
Airy 2 Bessel 4 BesselH 5 besselI.nuAsym 5 besselIasym 5 besselJs 10 bI 1
Index 14

Airy Functions (and Their First Derivative)

Airy

Description

Compute the Airy functions Ai or Bi or their first derivatives, $\frac{d}{dz}Ai(z)$ and $\frac{d}{dz}Bi(z)$.

The Airy functions are solutions of the differential equation

$$w'' = zw$$

for w(z), and are related to each other and to the (modified) Bessel functions via (many identities, see https://dlmf.nist.gov/9.6), e.g., if $\zeta := \frac{2}{3}z\sqrt{z} = \frac{2}{3}z^{\frac{3}{2}}$,

$$Ai(z) = \pi^{-1} \sqrt{z/3} K_{1/3}(\zeta) = \frac{1}{3} \sqrt{z} \left(I_{-1/3}(\zeta) - I_{1/3}(\zeta) \right),$$

and

$$Bi(z) = \sqrt{z/3} \left(I_{-1/3}(\zeta) + I_{1/3}(\zeta) \right).$$

Usage

```
AiryA(z, deriv = 0, expon.scaled = FALSE, verbose = 0)
AiryB(z, deriv = 0, expon.scaled = FALSE, verbose = 0)
```

Arguments

z complex or numeric vector.

deriv order of derivative; must be 0 or 1.

expon.scaled logical indicating if the result should be scaled by an exponential factor (typi-

cally to avoid under- or over-flow).

verbose integer defaulting to 0, indicating the level of verbosity notably from C code.

Details

By default, when expon.scaled is false, AiryA() computes the complex Airy function Ai(z) or its derivative $\frac{d}{dz}Ai(z)$ on deriv=0 or deriv=1 respectively.

When expon. scaled is true, it returns $\exp(\zeta)Ai(z)$ or $\exp(\zeta)\frac{d}{dz}Ai(z)$, effectively removing the exponential decay in $-\pi/3 < \arg(z) < \pi/3$ and the exponential growth in $\pi/3 < |\arg(z)| < \pi$, where $\zeta = \frac{2}{3}z\sqrt{z}$, and $\arg(z) = \operatorname{Arg}(z)$.

While the Airy functions Ai(z) and d/dzAi(z) are analytic in the whole z plane, the corresponding scaled functions (for expon. scaled=TRUE) have a cut along the negative real axis.

By default, when expon.scaled is false, AiryB() computes the complex Airy function Bi(z) or its derivative $\frac{d}{dz}Bi(z)$ on deriv=0 or deriv=1 respectively.

When expon. scaled is true, it returns $exp(-|\Re(\zeta)|)Bi(z)$ or $exp(-|\Re(\zeta)|)\frac{d}{dz}Bi(z)$, to remove the exponential behavior in both the left and right half planes where, as above, $\zeta=\frac{2}{3}\cdot z\sqrt{z}$.

Airy 3

Value

a complex or numeric vector of the same length (and class) as z.

Author(s)

Donald E. Amos, Sandia National Laboratories, wrote the original fortran code. Martin Maechler did the R interface.

References

```
see BesselJ; notably for many results the
```

Digital Library of Mathematical Functions (DLMF), Chapter 9 Airy and Related Functions at https://dlmf.nist.gov/9.

See Also

BesselI etc; the Hankel functions Hankel.

The CRAN package **Rmpfr** has Ai(x) for arbitrary precise "mpfr"-numbers x.

```
## The AiryA() := Ai() function -----
curve(AiryA, -20, 100, n=1001)
curve(AiryA, -1, 100, n=1011, log="y") -> Aix
curve(AiryA(x, expon.scaled=TRUE), -1, 50, n=1001)
## Numerically "proving" the 1st identity above :
z \leftarrow Aix$x; i \leftarrow z > 0; head(z \leftarrow z[i \leftarrow z > 0])
Aix <- Aixy[i]; zeta <- 2/3*z*sqrt(z)
stopifnot(all.equal(Aix, 1/pi * sqrt(z/3)* BesselK(zeta, nu = 1/3),
                    tol = 4e-15)) # 64b Lnx: 7.9e-16; 32b Win: 1.8e-15
## This gives many warnings (248 on nb-mm4, F24) about lost accuracy, but on Windows takes ~ 4 sec:
curve(AiryA(x, expon.scaled=TRUE), 1, 10000, n=1001, log="xy")
## The AiryB() := Bi() function ------
curve(AiryB, -20, 2, n=1001); abline(h=0,v=0, col="gray",lty=2)
curve(AiryB, -1, 20, n=1001, log = "y") # exponential growth (x > 0)
curve(AiryB(x,expon.scaled=TRUE), -1, 20,
curve(AiryB(x,expon.scaled=TRUE), 1, 10000, n=1001, log="x")
```

4 Bessel

Bessel Functions of Complex Arguments I(), J(), K(), and Y()

Description

Compute the Bessel functions I(), J(), K(), and Y(), of complex arguments z and real nu,

Usage

```
BesselI(z, nu, expon.scaled = FALSE, nSeq = 1, verbose = 0)
BesselJ(z, nu, expon.scaled = FALSE, nSeq = 1, verbose = 0)
BesselK(z, nu, expon.scaled = FALSE, nSeq = 1, verbose = 0)
BesselY(z, nu, expon.scaled = FALSE, nSeq = 1, verbose = 0)
```

Arguments

z complex or numeric vector.

nu numeric (scalar).

expon.scaled logical indicating if the result should be scaled by an exponential factor, typically to avoid under- or over-flow. See the 'Details' about the specific scaling.

nSeq positive integer; if > 1, computes the result for a whole sequence of nu values; if nu >= 0,nu, nu+1, ..., nu+nSeq-1, if nu < 0, nu, nu-1, ..., nu-nSeq+1.

verbose integer defaulting to 0, indicating the level of verbosity notably from C code.

Details

The case nu < 0 is handled by using simple formula from Abramowitz and Stegun, see details in besselI().

The scaling activated by expon. scaled = TRUE depends on the function and the scaled versions are

```
J(): BesselJ(z, nu, expo=TRUE):= \exp(-|\Im(z)|)J_{\nu}(z)

Y(): BesselY(z, nu, expo=TRUE):= \exp(-|\Im(z)|)Y_{\nu}(z)

I(): BesselI(z, nu, expo=TRUE):= \exp(-|\Re(z)|)I_{\nu}(z)

K(): BesselK(z, nu, expo=TRUE):= \exp(z)K_{\nu}(z)
```

Value

a complex or numeric vector (or matrix with nSeq columns if nSeq > 1) of the same length (or nrow when nSeq > 1) and mode as z.

Author(s)

Donald E. Amos, Sandia National Laboratories, wrote the original fortran code. Martin Maechler did the translation to C, and partial cleanup (replacing goto's), in addition to the R interface.

BesselH 5

References

Abramowitz, M., and Stegun, I. A. (1964, etc). *Handbook of mathematical functions* (NBS AMS series 55, U.S. Dept. of Commerce), https://personal.math.ubc.ca/~cbm/aands/

Wikipedia (20nn). Bessel Function, https://en.wikipedia.org/wiki/Bessel_function

- D. E. Amos (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order; *ACM Trans. Math. Software* **12**, 3, 265–273.
- D. E. Amos (1983) Computation of Bessel Functions of Complex Argument; Sand83-0083.
- D. E. Amos (1983) Computation of Bessel Functions of Complex Argument and Large Order; Sand83-0643.
- D. E. Amos (1985) A subroutine package for Bessel functions of a complex argument and nonnegative order; Sand85-1018.

Olver, F.W.J. (1974). Asymptotics and Special Functions; Academic Press, N.Y., p.420

See Also

The base R functions besselI(), besselK(), etc.

The Hankel functions (of first and second kind), $H_{\nu}^{(1)}(z)$ and $H_{\nu}^{(2)}(z)$: Hankel.

The Airy functions Ai() and Bi() and their first derivatives, Airy.

For large x and/or nu arguments, algorithm AS~644 is not good enough, and the results may overflow to Inf or underflow to zero, such that direct computation of $\log(I_{\nu}(x))$ and $\log(K_{\nu}(x))$ are desirable. For this, we provide besselI.nuAsym(), besselIasym() and besselK.nuAsym(*, log=*), based on asymptotic expansions.

6 BesselH

Description

Compute the Hankel functions H(1,*) and H(2,*), also called 'H-Bessel' function (of the third kind), of complex arguments. They are defined as

$$H(1,\nu,z) := H_{\nu}^{(1)}(z) = J_{\nu}(z) + iY_{\nu}(z),$$

$$H(2, \nu, z) := H_{\nu}^{(2)}(z) = J_{\nu}(z) - iY_{\nu}(z),$$

where $J_{\nu}(z)$ and $Y_{\nu}(z)$ are the Bessel functions of the first and second kind, see Bessel J, etc.

Usage

BesselH(m, z, nu, expon.scaled = FALSE, nSeq = 1, verbose = 0)

Arguments

m integer, either 1 or 2, indicating the kind of Hankel function.

z complex or numeric vector of values **different from 0**.

nu numeric, must currently be non-negative.

expon.scaled logical indicating if the result should be scaled by an exponential factor (typi-

cally to avoid under- or over-flow).

nSeq positive integer; if > 1, computes the result for a whole *sequence* of nu values

of length nSeq, see 'Details' below.

verbose integer defaulting to 0, indicating the level of verbosity notably from C code.

Details

By default (when expon. scaled is false), the resulting sequence (of length nSeq) is for m=1,2,

$$y_i = H(m, \nu + j - 1, z),$$

computed for j = 1, ..., nSeq.

If expon. scaled is true, the sequence is for m = 1, 2

$$y_j = \exp(-\tilde{m}zi) \cdot H(m, \nu + j - 1, z),$$

where $\tilde{m} = 3 - 2m$ (and $i^2 = -1$), for $j = 1, \dots, nSeq$.

Value

a complex or numeric vector (or matrix if nSeq > 1) of the same length and mode as z.

Author(s)

Donald E. Amos, Sandia National Laboratories, wrote the original fortran code. Martin Maechler did the R interface.

References

see BesselI.

besselI.nuAsym 7

See Also

BesselI etc; the Airy function Airy.

Examples

besselI.nuAsym

Asymptotic Expansion of Bessel I(x,nu) and K(x,nu) for Large nu (and x)

Description

Compute Bessel functions $I_{\nu}(x)$ and $K_{\nu}(x)$ for large ν and possibly large x, using asymptotic expansions in Debye polynomials.

Usage

```
besselI.nuAsym(x, nu, k.max, expon.scaled = FALSE, log = FALSE)
besselK.nuAsym(x, nu, k.max, expon.scaled = FALSE, log = FALSE)
```

Arguments

```
numeric or complex, with real part \geq 0.

numeric; The order (maybe fractional!) of the corresponding Bessel function.

k.max integer number of terms in the expansion. Must be in 0:5, currently.

expon.scaled logical; if TRUE, the results are exponentially scaled, the same as in the corresponding BesselI() and BesselK() functions in order to avoid overflow (I_{\nu}) or underflow (K_{\nu}), respectively.

logical; if TRUE, \log(f(.)) is returned instead of f.
```

8 besselIasym

Details

Abramowitz & Stegun , page 378, has formula 9.7.7 and 9.7.8 for the asymptotic expansions of $I_{\nu}(x)$ and $K_{\nu}(x)$, respectively, also saying When $\nu \to +\infty$, these expansions (of $I_{\nu}(\nu z)$ and $K_{\nu}(\nu z)$) hold uniformly with respect to z in the sector $|argz| \leq \frac{1}{2}\pi - \epsilon$, where ϵ iw qn arbitrary positive number. and for this reason, we require $\Re(x) \geq 0$.

The Debye polynomials $u_k(x)$ are defined in 9.3.9 and 9.3.10 (page 366).

Value

a numeric vector of the same length as the long of x and nu. (usual argument recycling is applied implicitly.)

Author(s)

Martin Maechler

References

Abramowitz, M., and Stegun, I. A. (1964, etc). *Handbook of mathematical functions*, pp. 366, 378.

See Also

From this package **Bessel**: BesselI(); further, besselIasym() for the case when x is large and ν is small or moderate.

Further, from base: besselI, etc.

besselIasym 9

Description

Compute Bessel function $I_{\nu}(x)$ and $K_{\nu}(x)$ for large x and small or moderate ν , using the asymptotic expansions (9.7.1) and (9.7.2), p.377-8 of Abramowitz & Stegun, for $x \to \infty$, even valid for complex x,

$$I_a(x) = exp(x)/\sqrt{2\pi x} \cdot f(x, a),$$

where

$$f(x,a) = 1 - \frac{\mu - 1}{8x} + \frac{(\mu - 1)(\mu - 9)}{2!(8x)^2} - \dots,$$

and $\mu = 4a^2$ and $|arg(x)| < \pi/2$.

Whereas besselIasym(x,a) computes a possibly exponentially scaled and/or logged version of $I_a(x)$, besselI.ftrms returns the corresponding *terms* in the series expansion of f(x,a) above.

Usage

```
besselIasym (x, nu, k.max = 10, expon.scaled = FALSE, log = FALSE) besselKasym (x, nu, k.max = 10, expon.scaled = FALSE, log = FALSE) besselI.ftrms(x, nu, K = 20)
```

Arguments

x numeric or complex (with real part) ≥ 0 .

nu numeric; the *order* (maybe fractional!) of the corresponding Bessel function.

k.max, K integer number of terms in the expansion.

expon. scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow.

log logical; if TRUE, $\log(f(.))$ is returned instead of f.

Details

Even though the reference (A. & S.) requires $|\arg z| < \pi/2$ for I() and $|\arg z| < 3\pi/2$ for K(), where $\arg(z) := \text{Arg}(z)$, the zero-th order term seems correct also for negative (real) numbers.

Value

a numeric (or complex) vector of the same length as x.

Author(s)

Martin Maechler

References

Abramowitz, M., and Stegun, I. A. (1964, etc). *Handbook of mathematical functions* (NBS AMS series 55, U.S. Dept. of Commerce).

See Also

From this package **Bessel**() BesselI(); further, besselI.nuAsym() which is useful when ν is large (as well); further **base** besselI, etc

10 besselJs

Examples

besselJs

Bessel J() function Simple Series Representation

Description

Computes the modified Bessel J function, using one of its basic definitions as an infinite series, e.g. A. & S., p.360, (9.1.10). The implementation is pure R, working for numeric, complex, but also e.g., for objects of class "mpfr" from package **Rmpfr**.

Usage

Arguments

X	numeric or complex vector, or of another class for which arithmetic methods are defined, notably objects of class mpfr.
nu	non-negative numeric (scalar).
nterm	integer indicating the number of terms to be used. Should be in the order of $abs(x)$, but can be smaller for large x . A warning is given, when nterm was $possibly$ too small. (Currently, many of these warnings are wrong, as
log	logical indicating if the logarithm $log J.()$ is required.
Ceps	a relative error tolerance for checking if nterm has been sufficient. The default is "correct" for double precision and also for multiprecision objects.

Value

```
a "numeric" (or complex or "mpfr") vector of the same class and length as x.
```

Author(s)

Martin Maechler

bI 11

References

Abramowitz, M., and Stegun, I. A. (1964–1972). *Handbook of mathematical functions* (NBS AMS series 55, U.S. Dept. of Commerce). https://personal.math.ubc.ca/~cbm/aands/page_360.htm

See Also

This package BesselJ(), base besselJ(), etc

```
stopifnot(all.equal(besselJs(1:10, 1), # our R code \rightarrow 4 warnings, for x = 4:7
                    besselJ (1:10, 1)))# internal C code w/ different algorithm
## Large 'nu' ...
x < -(0:20)/4
if(interactive()) op <- options(nwarnings = 999)</pre>
(bx <- besselJ(x, nu=200))# base R's -- gives 19 (mostly wrong) warnings about precision lost
## Visualize:
bj <- curve(besselJ(1, x), 1, 2^10, log="xy", n=1001,
            main=quote(J[nu](1)), xlab = quote(nu), xaxt="n", yaxt="n") # 50+ warnings
eaxis <- if(!requireNamespace("sfsmisc")) axis else sfsmisc::eaxis</pre>
eaxis(1, sub10 = 3); eaxis(2)
bj6 <- curve(besselJ(6, x), add=TRUE, n=1001, col=adjustcolor(2, 1/2), lwd=2)</pre>
plot(y~x, as.data.frame(bj6), log="x", type="l", col=2, lwd=2,
     main = quote(J[nu](6)), xlab = quote(nu), xaxt="n")
eaxis(1, sub10=3); abline(h=0, lty=3)
if(require("Rmpfr")) { ## Use high precision, notably large exponent range, numbers:
  Bx <- besselJs(mpfr(x, 64), nu=200)
  all.equal(Bx, bx, tol = 1e-15)# TRUE -- warnings were mostly wrong; specifically:
  cbind(bx, Bx)
  signif(asNumeric(1 - (bx/Bx)[19:21]), 4) # only [19] had lost accuracy
  ## With*out* mpfr numbers -- using log -- is accurate (here)
  lbx <- besselJs(</pre>
                       Х,
                               nu=200, log=TRUE)
  1Bx <- besselJs(mpfr(x, 64), nu=200, log=TRUE)</pre>
  cbind(x, lbx, lBx)
  stopifnot(all.equal(asNumeric(log(Bx)), lbx, tol=1e-15),
    all.equal(lBx, lbx, tol=4e-16))
} # Rmpfr
if(interactive()) options(op) # reset 'nwarnings'
```

12 bI

Description

Computes the modified Bessel *I* function, using one of its basic definitions as an infinite series. The implementation is pure R, working for numeric, complex, but also e.g., for objects of class "mpfr" from package **Rmpfr**.

Usage

Arguments

X	numeric or complex vector, or of another class for which arithmetic methods are defined, notably objects of class mpfr (package Rmpfr).
nu	non-negative numeric (scalar).
nterm	integer indicating the number of terms to be used. Should be in the order of $abs(x)$, but can be smaller for large x . A warning is given, when nterm was chosen too small.
expon.scaled	logical indicating if the result should be scaled by $exp(-abs(x))$.
log	logical indicating if the logarithm $logI.()$ is required. This allows even more precision than expon.scaled=TRUE in some cases.
Ceps	a relative error tolerance for checking if nterm has been sufficient. The default

a relative error tolerance for checking if nterm has been sufficient. The default is "correct" for double precision and also for multiprecision objects.

Value

a "numeric" (or complex or "mpfr") vector of the same class and length as x.

Author(s)

Martin Maechler

References

Abramowitz, M., and Stegun, I. A. (1964,.., 1972). *Handbook of mathematical functions* (NBS AMS series 55, U.S. Dept. of Commerce).

See Also

```
This package BesselI, base besselI, etc
```

bI 13

```
sapply(nus, function(nu)
  all.equal(besselIs(1:10, nu, expon.scale=TRUE), # our R code
             BesselI (1:10, nu, expon.scale=TRUE)) # TOMS644 code
  )
 ## complex argument [gives warnings 'nterm=800' may be too small]
 sapply(nus, function(nu)
  all.equal(besselIs((1:10)*(1+1i), nu, expon.scale=TRUE), # our R code
             BesselI ((1:10)*(1+1i), nu, expon.scale=TRUE)) # TOMS644 code
  )
)
## Large 'nu' ...
x < -(0:20)/4
(bx <- besselI(x, nu=200))# base R's -- gives (mostly wrong) warnings
if(require("Rmpfr")) \ \{ \ \textit{## Use high precision (notably large exponent range) numbers: }
 Bx \leftarrow bessells(mpfr(x, 64), nu=200)
 all.equal(Bx, bx, tol = 1e-15)# TRUE -- warning were mostly wrong; specifically:
 cbind(bx, Bx)
 signif(asNumeric(1 - (bx/Bx)[19:21]), 4) # only [19] had lost accuracy
 ## With*out* mpfr numbers -- using log -- is accurate (here)
 (lbx <- besselIs( x,</pre>
                              nu=200, log=TRUE))
 1Bx \leftarrow besselIs(mpfr(x, 64), nu=200, log=TRUE)
 stopifnot(all.equal(asNumeric(log(Bx)), lbx, tol=1e-15),
   all.equal(lBx, lbx, tol=4e-16))
} # Rmpfr
```

Index

```
* math
                                                   Hankel (BesselH), 5
    Airy, 2
                                                   log, 9
    Bessel, 4
    BesselH, 5
                                                   matrix, 4, 6
    besselI.nuAsym, 7
                                                   mode, 4, 6
    besselIasym, 8
                                                   mpfr, 10, 12
    besselJs, 10
    bI, 11
                                                   nrow, 4
                                                   numeric, 10, 12
Ai, 3
Airy, 2, 5, 7
AiryA (Airy), 2
AiryB (Airy), 2
Arg, 2, 9
Bessel, 4
BesselH, 5
BesselI, 3, 6–9, 12
BesselI (Bessel), 4
besselI, 4, 5, 8, 9, 12
besselI.ftrms(besselIasym), 8
besselI.nuAsym, 5, 7, 9
besselIasym, 5, 8, 8
besselIs (bI), 11
BesselJ, 3, 6, 11
BesselJ (Bessel), 4
besselJ, 11
besselJs, 10
BesselK (Bessel), 4
besselK, 5
besselK.nuAsym, 5
besselK.nuAsym (besselI.nuAsym), 7
besselKasym (besselIasym), 8
BesselY (Bessel), 4
bI, 11
class, 10, 12
complex, 7, 9, 10, 12
Hankel, 3, 5
```