Exercice 1

Soient A, B et C trois points non alignés.

- 1. Tracer le segment [AB].
- 2. Tracer la demi-droite [AC).
- 3. Tracer la droite (BC).
- 4. Placer le milieu K du segment [AB].
- 5. Placer un point M sur la droite (BC) tel que: $M \in [BC]$.
- 6. Placer un point N sur la droite (AC) tel que: $C \in [AN]$.

Solution de l'exercice

Exercice 2

On considère la figure suivante:

Compléter par le signe **♦**u ∉.

$$A......[BC]$$
 ;; $A......[BC)$;; $A......[BC)$ $B......[AC]$;; $B......[CA)$;; $B......[AC)$ $C.....[AB)$;; $C.....[AB)$

Solution de l'exercice

Exercice 3

Observer la figure et compléter par paralléles ou perpendiculaires ou sécantes ou confondues

- (d₃) sont
- \bullet (d_1) sont
 - (d_4) et (d_5) sont
- (d_2) et (d_4) sont
- (d_3) et (d_2) sont
- (AE) et (d_2) sont
- (d_6) et (d_3) sont
- (CE) et (AB) sont
- \bullet (FE) et (CE) sont
- (d_4) et (d_2) sont
- (d_5) et (d_6) sont
- (d_6) et (BF) sont
- (DC) et (d_4) sont

Solution de l'exercice

Exercice 4

Dans la figure suivante la droite (D) et (D') sont parallèles et M un point du plan.

- 1) Tracer la droite (Δ) perpendiculaire à (D) passant par le point M.
- 2) Tracer la droite (Δ') parallèle à (D) passant par le point M.
- 3) Que peut-on dire des droites (Δ) et (Δ') .

Solution de l'exercice

Exercice 5

On consdère deux segments [AB] et [FF] tels que AB = 7cm et EF = 3cm.

- 1) Déterminer le point M milieu du segment [AB].
- 2) Calculer la distance MB.
- 3) Déterminer le point N tel que le point F est le milieu du segment [EN].
- 4) Calculer la distance EN.

Solution de l'exercice

Exercice 6

Placer les points alignés suivantes A, B, C et D dans chacun des cas suivants:

- $A \in (DC)$ et $C \in [AB]$
- $\mathcal{C} \in [AB) \text{ et } D \in [CB]$
- $B \in [AD]$ et le point D est le milieu de [AC]

Solution de l'exercice