Lecture 19

Review

Recap: Confidence Intervals

Confidence interval, a general formula

point estimate
$$\pm z^* \cdot SE$$

Conditions when the point estimate $= \bar{x}$:

- Independence: Observations in the sample must be independent
 - random sample/assignment
 - ightharpoonup if sampling without replacement, n < 10% of population
- **Sample size / skew:** $n \ge 30$ and population distribution should not be extremely skewed

The Inputs

- Point Estimates: computed from data, typically sample statistics (e.g., \bar{X})
- z*: the critical z value, found using qnorm() and the choice of significance
- SE: the standard error, specific to each point estimate; if using \bar{X} then this is $SE = \frac{\sigma}{\sqrt{n}}$.

Recap: Hypothesis testing framework

- Set the hypotheses.
- Check assumptions and conditions.
- Calculate a test statistic and a p-value.
- Make a decision, and interpret it in context of the research question.

Recap: Hypothesis testing for a population mean

- Set the hypotheses
 - $\vdash H_0: \mu = \text{null value}$
 - \vdash $H_A: \mu < \text{or} > \text{or} \neq \text{null value}$
- Calculate the point estimate
- Check assumptions and conditions
 - ► Independence: random sample/assignment, 10% condition when sampling without replacement
 - Normality: nearly normal population or $n \ge 30$, no extreme skew or use the t distribution (next chapter)

Recap: Hypothesis testing for a population mean

Calculate a test statistic and a p-value (draw a picture!)

$$Z = \frac{\bar{x} - \mu}{SE}$$
, where $SE = \frac{s}{\sqrt{n}}$

- Make a decision, and interpret it in context
 - ▶ If p-value $< \alpha$, reject H_0 , data provide evidence for H_A
 - If p-value $> \alpha$, do not reject H_0 , data do not provide evidence for H_A

We're going to now solve some problems from the WW Practice.