The R package *trioClasses* for definition of the class SNPTrioExperiment, an extension of SummarizedExperiment, for use in trio based analyses of genetic data.

Samuel G. Younkin

March 13, 2013

1 Packages & Data

```
> library("trioClasses")
> data("sample")
> data("8q24-european-all.sm")
```

2 SummarizedExperiment

3 Pedigree

> ped <- PedClass(ped.DF)

4 SNPTrioExperiment

```
class: SNPTrioExperiment
dim: 8951 960
exptData(0):
assays(1): geno
rownames(8951): chr8:129296000 chr8:129296113 ...
    chr8:130354703 chr8:130354790
rowData metadata column names(0):
colnames(960): H_ME-DS10776_2-DS10776_2
    H_ME-DS10776_3-DS10776_3 ... H_ME-DS11313_3-DS11313_3
    H_ME-DS11313_1-DS11313_1
colData names(1): id
pedigree(4139): famid id fid mid sex dx
complete trios(320):
```

> (ste <- SNPTrioExperiment(se, pedigree = ped))</pre>

5 Methods

5.1 ScanTrio

```
> (ste.rare <- ste[!(MAF(ste) >= 0.01 | is.na(MAF(ste)))])
class: SNPTrioExperiment
dim: 6397 960
exptData(0):
assays(1): geno
rownames(6397): chr8:129296113 chr8:129296185 ...
  chr8:130354703 chr8:130354790
rowData metadata column names(0):
colnames(960): H_ME-DS10776_2-DS10776_2
 H_ME-DS10776_3-DS10776_3 ... H_ME-DS11313_3-DS11313_3
 H_ME-DS11313_1-DS11313_1
colData names(1): id
pedigree(4139): famid id fid mid sex dx
complete trios(320):
> window <- rowData(ste)[1:10] + 1000</pre>
> system.time(scan.trio <- ScanTrio(object = ste.rare,
     window = window, block = range(rowData(ste.rare))))
  user system elapsed
  3.848 0.028
                  3.894
> scan.trio
DataFrame with 10 rows and 7 columns
          lr minor.in major.in minor.out major.out mendel.in
   <numeric> <integer> <integer> <integer> <integer> <integer>
                                       5437
1
   16.38618
                    11
                               3
                                                 6011
                                                              0
2
   16.38618
                    11
                               3
                                       5437
                                                 6011
                                                              0
3
   18.97866
                    13
                               4
                                       5435
                                                 6010
                                                              0
                               4
                                      5435
                                                              0
4
   18.97866
                    13
                                                 6010
5
   18.97866
                    13
                               4
                                      5435
                                                 6010
                                                              0
                               4
6
   18.97866
                    13
                                      5435
                                                 6010
                                                              0
7
   18.97866
                    13
                               4
                                     5435
                                                 6010
                                                              0
8
   18.97866
                    13
                               4
                                      5435
                                                 6010
                                                              0
                    13
                               4
                                      5435
                                                              0
9
   18.97866
                                                 6010
10 30.73175
                    14
                                      5434
                                                 6010
                                                              0
  mendel.out
    <integer>
            0
1
2
            0
3
            0
4
            0
            0
5
6
            0
7
            0
8
```


9 0 10 0

> save(scan.trio, file = "./../data/scan-trio.RData")

5.2 Holger-style Genotype Matrix

```
Coercion to matrix for trio
> geno <- as(ste, "matrix")</pre>
> aTDT(geno[, 1:5])
$stat
[1] 16.13333 26.47059 21.55172 20.16129 35.00000
$pval
[1] 5.903578e-05 2.675813e-07 3.444129e-06 7.117887e-06 3.297053e-09
$transMinor
[1] 4 2 2 3 0
$transMajor
[1] 26 32 27 28 35
Or apply the aTDT method to the SNPTrioExperiment directly.
> aTDT(ste[1:5])
$stat
[1] 23.405063 3.368421 26.888889 27.000000 5.254545
$pval
[1] 1.312327e-06 6.645742e-02 2.154942e-07 2.034555e-07 2.188952e-02
$transMinor
[1] 18 30 14 15 19
$transMajor
[1] 61 46 58 60 36
```

A Count of Transmission of Variants (TransCount())

A.1 Window

```
> window <- gr[100] + 10000
> window2 <- gr[100] + 1000
> block <- range(rowData(ste))
> TransCount(ste, window)
```

A.2 Not in window, but in block

> TransCount(ste, setdiff(block, window))

A.3 In the whole block

> TransCount(ste, block)

A.4 In both windows

> TransCount(ste, GRangesList(window, window2))

A.5 Not "In both windows," but in block

B Count of Transmission of Rare Variants (TransCount())

- B.1 In both windows
- B.2 Not "In both windows," but in block

C Classes

C.1 SnpMatrix, DataFrame, GRanges

The four key ingredients are the SNP matrix, the pedigree information as a DataFrame, position of the SNPs given by a GRanges object, and covariate data given as a DataFrame.

```
> sm
> ped.DF
> gr
```

C.2 SummarizedExperiment

We combine three of the key ingredients when we create the SummarizedExperiment object.

C.3 SNPTrioExperiment

Now, we include the pedigree information as an object of class PedClass. We keep PedClass independent of SNPTrioExperiment for flexibility.

```
> ped <- PedClass(ped.DF)
> ste <- SNPTrioExperiment(se, pedigree = ped)</pre>
```

Here is the show method.

> ste

And now we verify that it is indeed an extension of SummarizedExperiment.

> getClass("SNPTrioExperiment")

C.4 PedClass

Now we investigate the pedigree slot of the SNPTrioExperiment object.

```
> class(pedigree(ste))
> getClass("PedClass")
```

> pedigree(ste)

C.5 geno accessor

```
> class(geno(ste))
> getClass("SnpMatrix")
```

> geno(ste)

C.6 RowData

> rowData(ste)

C.7 ColData

D Validity