Trabalho Computacional - Otimização Multiobjetivo

• • •

José Geraldo Fernandes

Modelo

$$\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}) = [M(\mathbf{x}), F(\mathbf{x})]^{T}$$
$$x_{i} = \{1, 2, 3\}$$

 $M(\mathbf{x}) = \sum x_i - 1$

 $F(\mathbf{x}) = \sum p(x_i) f_i$

 $p(x_i) = \frac{w(t_0 + k\Delta t) - w(t_0)}{1 - w(t_0)}$

 $p(x_i; k) = \frac{w(t_0 + k\Delta t) - priori}{1 - priori}$

 $w(t) = 1 - \exp(-\frac{t^{\beta}}{n})$

Heurística

Solução Intuitiva

Aplique manutenção em equipamentos caros e antigos

- M e F são conflitantes e monotônicas
- NP-Hard para polinomial, linear (naive) ou quadrático
- Ordene pelo custo priori ou custo esperado de nenhuma manutenção

Solução *Naive*

Solução Composta

 $\min \mathcal{L} = [M(\alpha, \gamma), F(\alpha, \gamma)]^T$ α, γ $\alpha, \gamma \in [0, 1]$

 $\alpha + \gamma \leq 1$

$$\min_{\alpha, \gamma}$$

Resultados

Solução *Naive*

 $\delta = 1e-2$ HV = 0.620407
n = 100

Solução Composta

 $\delta = 1e-2$ HV = 0.622683 n = 208

Tomada de Decisão

$$U(\mathbf{x}) = M(\mathbf{x}) + \tau F(\mathbf{x})$$
$$\tau = 1.25$$

$$lpha=0.574$$
 $\gamma=0$

Obrigado