Chip Day, DTU, April 19th, 2022

ASIC prototyping in FPGA

Presented by:

Michael da Costa Carneiro (GN Hearing)

In collaboration with:

Ketil Julsgaard (WSAudiology) Thomas Aakjer (MicroChip)

FPGA vs. ASIC products

Company	FPGA	ASIC	DK development
Demant		X	Hearing Instrument
GN Hearing		X	Hearing Instrument
Infineon		X	Speaker Amplifier IC
Knowles		X	MEM Microphones
Microchip		X	Networking
Napatech	X		Networking
Nvidia		X	Optical interconnect
Silicom Denmark	X		Networking
Skycore		X	Power converters
WSAudiology		X	Hearing Instrument
Xena networks	X		Networking
IP co	ore vendors / Consul	tants	
Comcores	X	X	Networking
Zeuxion	X	X	Misc.

ASIC drivers:

- Small physical dimension
- Low power
- High volumen

FPGA drivers:

- Frequent updates
- Early technology adaption
- Low volumen

FPGA vs. ASIC technology

FPGA (Pure digital)

Custom ASIC (Analog + digital)

	FPGA	ASIC
Size	~cm²	~mm²
Power	+100W	mW
NRE	0	\$1 mio+
Price / unit	\$ 5000+	< 50\$
Upgrade	Yes	No

FPGA vs ASIC design flow.

- Digital design is (largely) the same
- Rest of the flow is very different

FPGA emulation allows rapid prototyping of the digital design

FPGA emulation: Motivation

- Minimize risk of respin.
 - IC errors seriously impact "time to market"
 - Tapeout of an IC is VERY EXPENSIVE
- Get SW started
 - Often SW development is the major part of a chip project
 - SW important for verification
- Simulation is slow
 - Testing interfaces with existing equipment in the lab is very convincing
 - Testing in the lab is much faster than simulating
- Improved debugging in FPGA
 - Debugging inside FPGA (e.g. ChipScope / Signal tap)

FPGA emulation: Limitation

- Power gating (Low power designs)
- FPGA technology
 - Hard IP needs to be included into RTL (added risk)
- Interface to analog contents
 - External to the FPGA i.e partitioning the design.
- Design size design could be too big to build prototype
 - Test selected blocks (Modify RTL i.e. add risk).
 - Reduced performance (e.g. High speed networking)
- Development of FPGA platform (HW + SW)
 - Added cost + resources

FPGA emulation: Other considerations

- Introducing extra tools
 - New tool chain means are added complexity / cost
 - Can cause RTL changes due to different support for RTL (added risk)
- ASIC production and production testing

Hearing aid prototyping in FPGA

	FPGA	ASIC
Logic size	100%	100%
Power	~30W	~20 mW
Frequency	100%	100%
Price / unit	1,000 USD	~1\$

Ethernet switch ASIC prototyping in FPGA

ASIC layout

Shrinking tables, ports etc. (port speeds the same)

	FPGA	ASIC
Logic size	10-20%	100%
Power	~300W	~3W
Frequency	10-20%	100%
Price / unit	50,000 USD	~5\$

Questions or comments?

Thank You

