доожные нары					
1.	Летним днем перед грозой плотность влажного воздуха (масса пара и воздуха в 1 м³) равна $\rho = 1140 \text{ г/м}^3$ при давлении $p = 100 \text{ кПа}$ и температуре $t = 30 \text{ °C}$. Найдите отношение парциального давления водяного пара, содержащегося в воздухе, к парциальному давлению сухого воздуха. Принять, что молярные массы воздуха и пара равны M в = 29 г/моль и M п = 18 г/моль соответственно. Универсальная газовая постоянная $R = 8,31 \text{ Дж/}$ (моль K).				
2.	В парной бани относительная влажность воздуха составляла $\phi_1 = 50\%$ при температуре $t_1 = 100$ °C. После того как температура воздуха уменьшилась до $t_2 = 97$ °C и пар «осел», относительная влажность воздуха стала $\phi_2 = 45\%$. Какая масса воды выделилась из влажного воздуха парной, если ее объем $V = 30 \text{ м}^3$? Известно, что при температуре t_2 давление насыщенного пара на 80 мм рт.ст. меньше, чем при t_1 .				
3.	В цилиндре под поршнем с пружиной заперты водяной пар и вода, масса которой $M=1$ г. Температура в цилиндре поддерживается постоянной и равной 100° С. Когда из цилиндра выпустили часть пара массой $m=7$ г, поршень стал двигаться. После установления равновесия объем содержимого в цилиндре под поршнем оказался в 2 раза меньше первоначального. Какая масса пара была в цилиндре и какой объем он занимал в начале опыта? Поршень занимает положение равновесия у дна цилиндра, когда пружина не напряжена.				
4.	В сосуде объемом $V_1 = 20$ л находятся вода, насыщенный водяной пар и воздух. Объем сосуда при постоянной температуре медленно увеличивают до $V_2 = 40$ л, давление в сосуде при этом уменьшается от $p_1 = 3$ атм до $p_2 = 2$ атм. Определите массу воды в сосуде в конце опыта, если общая масса воды и пара составляет $m = 36$ г. Объемом, занимаемым жидкостью, в обоих случаях пренебречь.				
5.	Жидкость и ее насыщенный пар находятся в цилиндре под поршнем при некоторой температуре. При медленном изобарическом нагреве температура системы повысилась до 100 °C, а объем увеличился на 54%. На сколько градусов нагрели содержимое цилиндра, если масса пара вначале составляла 2/3 от полной массы смеси? Начальным объемом жидкости по сравнению с объемом системы пренебречь.				
6.	В сосуде находятся жидкость и ее насыщенный пар. В процессе изотермического расширения объем, занимаемый паром, увеличивается в β = 3 раза, а давление пара уменьшается в α = 2 раза. Найдите отношение массы жидкости $m_{\rm ж}$ к массе пара $m_{\rm п}$, которые первоначально содержались в сосуде. Объемом, занимаемый жидкостью, пренебречь.				
7.	В цилиндре под поршнем находится влажный воздух. В изотермическом процессе объём цилиндра уменьшается в $\alpha=4$ раза, при этом давление под поршнем увеличивается в $\gamma=3$ раза. Какая часть первоначальной массы пара сконденсировалась? В начальном состоянии парциальное давление сухого воздуха в $\beta=3/2$ раза больше парциального давления пара.				
8.	Замкнутый цилиндрический сосуд делится подвижным поршнем на 2 равные части. В одной из них находится воздух, а в другой – вода и пар. При медленном нагревании всего сосуда поршень начинает двигаться и в некоторый момент времени останавливается. В этот момент он дели объем сосуда на части в отношении 1:3. Определите отношение массы воды к массе пара в начале опыта. Температуры в обеих частях сосуда всё время одинаковые. Объемом, занимаемым водой в одной из частей сосуда пренебречь.				
9.	В герметичном цилиндре длиной $l=1$ м и сечением $S=10$ см 2 находится тонкий поршень массой $M=200$ г, который может перемещаться вдоль цилиндра без трения. Первоначально ось цилиндра горизонтальна, а поршень				

10.

находится посередине цилиндра. По обе стороны от поршня находятся одинаковые количества m=0.4 г воды и её паров при атмосферном давлении. Затем цилиндр переводят в вертикальное положение.

- а) На сколько при этом смещается поршень, если во всём цилиндре поддерживается температура $T=100^{\circ}C$?
- б) Как изменится ответ а), если m = 0,8 г?

Одно колено высокой симметричной U-образной трубки, имеющей площадь поперечного сечения S, открыто в атмосферу, а второе — наглухо закрыто. Трубка заполнена жидкостью плотностью р, причём в открытом колене уровень жидкости доходит до краёв, а в закрытом — на h ниже из-за оставшегося под крышкой воздуха (рис.). Трубку нагревают от начальной комнатной температуры T_1 до температуры T_2 кипения жидкости при атмосферном давлении Ро. Найдите объём *∆V* жидкости, вылившейся из открытого колена к моменту закипания, если известно, что уровень жидкости закрытом колене остался горизонтального участка трубы. Испарением жидкости из открытого колена в процессе нагревания и давлением насыщенных паров жидкости комнатной температуре можно пренебречь

Два закрытых сосуда ёмкостью V_1 = 10 литров и V_2 = 20 литров имеют жёсткие стенки и поддерживаются при одинаковой постоянной температуре 0° С. Сосуды соединены короткой трубкой с краном. Вначале кран закрыт. В первом сосуде находится воздух под давлением p_1 = 2 атм при относительной влажности r_1 = 20%. Во втором сосуде находится воздух под давлением p_2 = 1 атм при относительной влажности r_2 = 40%. Кран постепенно открывают так, что процесс выравнивания давлений в сосудах можно считать изотермическим. Найдите минимальную и максимальную относительную влажность воздуха в сосуде ёмкостью 10 литров.

На рисунке приведён график зависимости давления насыщенного пара некоторого вещества от температуры. Определённое количество этого вещества находится в закрытом сосуде постоянного объёма в равновесном состоянии, соответствующем точке А на рисунке. До какой температуры следует охладить эту систему, чтобы половина имеющегося в сосуде вещества сконденсировалась? Объёмом сконденсировавшегося вещества можно пренебречь по сравнению с объёмом сосуда.

В герметично закрытом сосуде находится влажный воздух, температура которого равна $t_1 = 75$ \circ C, а относительная влажность ϕ_1 = 25%. Воздух в сосуде начинают *13.* охлаждать. При какой температуре t2 внутренние стенки сосуда запотеют? График зависимости давления насыщенного водяного пара относительных единицах ОТ температуры приведен на рисунке.

В цилиндре под поршнем находится смесь воздуха и паров некоторой жидкости. Смесь изотермически сжимают. На рисунке представлена экспериментальная зависимость давления в сосуде от объёма в этом процессе. Чему равны давление насыщенных паров жидкости р_н при данной температуре и внутренняя энергия смеси при объёме цилиндра более 5 л? Примечание. Считать воздух идеальным двухатомным газом, а пары жидкости — идеальным трёхатомным газом.

15.

Горизонтальный цилиндр с поршнем заполнен воздухом, содержащим пары воды. В исходном состоянии его объём $V_0=1$ л, давление $p_0=10^5$ Па, температура $T_0=30^{\circ}$ С. Если закрепить поршень и охлаждать цилиндр при постоянном объёме, то при $T_1=10,5^{\circ}$ С в нём выпадает роса. Можно поступить по-другому: оставить поршень свободным и охлаждать воздух из исходного состояния при постоянном давлении p_0 . При какой температуре T_2 выпадет роса в этом случае? Зависимость давления насыщенных паров воды от температуры показана на графике.

22.

23.

а водяной пар является идеальным газом с молярной теплоёмкостью при постоянном объеме Cv = 3R. Молярной теплотой парообразования при некоторой температуре T называется количество теплоты, необходимое для превращения одного моля воды в пар в двухфазной системе «вода — насыщенный пар» при постоянной температуре T.

Водяной пар массой m = 1 г находится в теплоизолированной камере объёмом

V=39 л при температуре T=300 К. В той же камере имеется вода, масса которой меньше массы пара. В процессе адиабатного сжатия температура пара возрастает на $\Delta T=1$ К, а часть воды испаряется. На сколько увеличится при этом масса пара в камере? Удельная теплота испарения воды $L=2,37\cdot 10^6$ Дж/кг; пар считать идеальным газом с молярной теплоёмкостью $C_V=3R\approx 25$ Дж/(моль · K); теплоёмкостью воды пренебречь. Известно также, что при малых изменениях температуры ΔT насыщенного пара его давление изменяется на $\Delta p=k\Delta T$, где $k=2\cdot 10^2$ Па/К.

Теплоизолированная труба разделена на два отсека неподвижной перегородкой П с многочисленными тончайшими отверстиями (порами) и закрыта с обоих концов подвижными и теплоизолированными поршнями А и В. В начальный момент между поршнем А и перегородкой находится при температуре $t_1 = 95$ • С вода, масса которой m = 1 кг. На поршень А действует давление $p_1 = 10^3$ атм, а поршень В прижат к перегородке П атмосферным давлением р2. Вода под давлением поршня А начинает очень медленно перегородку (рис.). Определите просачиваться сквозь испарившейся к моменту окончания процесса продавливания. Удельную теплоёмкость воды считайте постоянной и равной $c_B = 4.2 \text{ кДж/(кг} \cdot \text{ K)}, \text{ а}$ удельную теплоту парообразования λ = 2260 кДж/кг. Считать, что удельный объём воды не зависит от давления и температуры, а оба поршня перемещаются без трения.

Герметичный

одинаковых шаров объёмом V = 5 м³ каждый и тонкой вертикальной трубки (рис.). Поршень в трубке делит сосуд на две части: в нижней — воздух при постоянной температуре, а в верхней — вода и пар, причём площадь свободной поверхности воды в верхнем шаре S = 3 см². При каких температурах То воды и пара возможна такая ситуация, что при малых изменениях ΔТ0 этой температуры поршень смещается в одну и ту же сторону от положения равновесия независимо от знака $\Delta T0$? Примечание. Если при некоторой температуре Т давление насыщенного пара их малые изменения связаны vравнением Клаузиуса $\Delta p = \lambda \mu p \Delta T/(RT^2)$.

сосуд состоит из

24.

	10 /				
	где молярная масса μ = 18 г/моль, удельная				
	теплота парообразования $\lambda = 2,3 \cdot 10^6$ Дж/кг,				
	универсальная газовая постоянная R = 8,31				
	Дж/(моль·K).				
	В покоящемся сосуде объёмом V = 31 л с очень жёсткими и совершенно не				
25.	проводящими тепло стенками находятся воздух при нормальных условиях и				
	вода в количестве m = 9 г. Сосуд практически мгновенно приобретает скорость				
	и и движется поступательно. После установления теплового равновесия				
	воздух в сосуде имеет влажность r = 50%. Найдите скорость и. Удельная				
	теплота парообразования воды L = 2,5 МДж/кг, удельная теплоёмкость воды				
	С = 4200 Дж/(кг · К), давление насыщенных паров воды при нормальных				
	условиях р = 600 Па, удельная теплоёмкость воздуха при постоянном объёме				
	$c_V = 720 \text{Дж/(кг} \cdot \text{K)}$, средняя молярная масса воздуха $\mu = 0.029 \text{кг/моль}$.				
	На рисунке (см. отдельный лист) представлен график зависимости давления				
	от температуры при изохорном нагревании для смеси воздуха и воды.				
26.	Известно, что на одно маленькое деление по оси ординат приходится 20 торр				
	(одна атмосфера равна 760 торр). Определите: 1) Температуру и давление в				
	точках А и В. 2) Температуру, при которой испарилось 40% воды. Не забудьте				
	описать метод получения результатов.				

9. Зависимость давления *р* и плотности *р* насыщенного водяного пара от температуры

t, °C	р, кПа	ρ , r/m^3	t, °C	р, кПа	ρ, r/m ³
-5	0,40	3,2	14	1,60	12,1
0	0,61	4,8	15	1,71	12,8
1	0,65	5,2	16	1,81	13,6
2	0,71	5,6	17	1,94	14,5
3	0,76	6,0	18	2,07	15,4
4	0,81	6,4	19	2,20	16,3
5	0,88	6,8	20	2,33	17,3
6	0,93	7,3	21	2,49	18,3
7	1,0	7,8	25 '	3,17	23,0
8	1,06	8,3	50	12,3	83,0
9	1,14	8,8	60	19,9	129,4
10	1,23	9,4	70	31,0	195,7
11	1,33	10,0	80	47,3	290,2
12	1,40	10,7	90	70,0	417,6
13	1,49	11,4	100	101,3	588,3

