Présentations efficaces dans le cadre scolaire et universitaire

Julian Steinhart

2022-07-03

Table des matières

1	Intro	oduction	2				
	1.1	Compétences visées	2				
2	Plan	du cours	2				
3	Con	cevoir la présentation	2				
	3.1	Les diapos	2				
	3.2	Vos notes	4				
	3.3	Le polycopié	4				
4	Get	your GitBook	4				
5	Editing the book						
	5.1	Creating new chapters	8				
	5.2	Linking across chapters	9				
	5.3	Advanced editing	9				
6	Figu	res and tables	9				
7	Exaı	Examples					
	7.1	Statistics with R (H. Quene)	11				
	7.2	Theory Construction and Statistical Modeling (C. J. van Lissa)	11				
	7.3	Doing Meta-Analysis in R (C. J. van Lissa)	11				
	7.4	Métodos quantitativos em Psicologia com R (L. Anunciação)	11				
8	Ope	n Educational Resources	11				
9	Compatibility with existing systems						
	9.1	Add a hyperlink	12				
	9.2	Embed the whole book	12				
10	Lice	nse your GitBook	12				

1 Introduction

1.1 Compétences visées

Les étudiantes savent:

- Planifier une présentation de manière autonome.
- Créer des diaporamas simples, attractifs et efficaces.
- Délivrer une présentation captivante et convaincante.

2 Plan du cours

Table 1: Dates et thèmes du cours

10/09/2022	Introduction		
	Planifier la présentation		
	Créer la présentation		
	Créer le diaporama		
	Le polycopié		
	Comment choisir un grpahe		
	Donner la présentation		
	Répondre À des questions		
	Espace pour vous		
	Espace pour vous		
	Espace pour vous		

3 Concevoir la présentation

Nous avons déjà vu qu'on ne démarre pas la préparation des sa présentation en cliquant sur PowerPoint. Cependant les diaporamas jouent un rôle important pour la présentation. Les diaporamas servent avant tout à souligner ce que vous dites. Elles ne sont ni notes, ni polycopié pour le public. Dans cette partie nous allons voir comment concevoir ces trois éléments essentielles pour la présentation.

Dans certains cas il sera même possible que vous n'avez pas besoin de diapos. Quand vous voulez discuter en détail de certains diagrammes, graphiques ou faits, il est souvent envisageable de fournir seulement le polycopié et de baser son discours sur lui.

3.1 Les diapos

Dans cette section nous allons voir d'après quels principes on peut concevoir sa présentation, afin de souligner de manière efficace son discours.

Figure 1: Est-ce que le titre de la présentation est bien lisible ?

- 3.1.1 La grille de base
- 3.1.2 La relation "signal-noise"
- 3.1.3 Picture superiority effect
- 3.1.4 Contraster, aligner, rapprocher et répéter
- 3.1.4.1 Que dire sur les points clés ?
- 3.1.5 Les éléments du design
- 3.1.5.1 Répartition de l'espace
- 3.1.5.2 Typographie
- **3.1.5.3 Couleurs** Avec les couleurs du diaporama il est possible de s'exprimer voire d'influencer le public d'une certaine manière. Cf. Color Meanings pour explications plus précises sur significations des couleurs différents. Que faire si on a trouvé sa couleur principale? Comment obtenir une palette des couleurs adéquates? Un conseil: Adobe Colors. Ici vous pouvez à partir des schémas de combinaison des couleurs définir une palette harmonisée. Il est aussi possible de faire créer une palette a partir d'une photo clé qu'on va utiliser dans sa présentation. En plus il y a un tas de palettes déjà faites à découvrir donc pas besoin de concevoir une toute nouvelle palette.¹

3.1.6 Une foire aux présentations modèles

Tache: Créez un design avec une palette des couleurs, décidez vous aussi pour une police de caractères. Ajoutez ensuite une diapo avec la grille de vos diapos et deux diapos exemplaires. Un modèle est mis à votre disposition.²

 $^{{}^{1}\}text{Pour une explication comment créer une palette de couleurs en PowerPoint, voir cette vidéo: YouTube.}$

 $^{^2 \}mbox{Vous trouverez des modèles à remplir ici: Drive}$

3.2 Vos notes

3.3 Le polycopié

Avant de commencer la section : trois diapos par pages A4 ne sont pas un polycopié. PowerPoint ou Keynote ne sont pas d'outils pour créer un text. Il y a des outils beaucoup plus appropriés : LaTeX, Microsoft Word, LibreOffice Writer, InDesgin...

Pour créer des formats différents d'un document. Il peut être approprié de travailler en *Markdown*. Il y a des éditeurs diverses qui permettent d'écrire en *Markdown* (voir Tab. 2). *Pandoc* permet ensuite d'émettre des documents dans différents formats.

Table 2: Editeurs Markdown

RStudio	gratuit	possibilité de créer des documents html, pdf, epub
Typora	15\$	possibilité de créer des documents html, pdf, epub
Microsoft Visual Studio	gratuit	possibilité de créer des documents html, pdf, epub

Pour obtenir des textes bien placés, je recommande fortement d'utiliser LaTeX. Si on se connaît bien en conception de documents, InDesign ou Scribus (gratuit) peuvent être une très bonne alternative. Microsoft Word est dans presque tous les cas le plus mauvais choix.

3.3.1 Une foire aux polycopiés modèles

4 Get your GitBook

To get your GitBook, you should follow these steps:

- 1. Go to https://github.com/cjvanlissa/gitbook-demo
- 2. In the top right of the page, click Fork.

- 3. My repository is now copied to your account. It is a template repository, which means that you can create a *new repository* based on this one.
- 4. Create a new repository for your own GitBook. Create one for a course you've been wanting to update. In the top-right corner of the GitHub website, click the + icon, and select "New repository":

5. In the dialog, select the gitbook-demo as "Repository template", and give the repository an appropriate name for your course. Then, press Create repository:

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere? Import a repository.

Repository template
Start your repository with a template repository's contents.

6. Now, go back to Rstudio on your computer. In Rstudio, click File > New Project. A dialog will open. If you set up Rstudio with Git correctly, the dialog should have an option to create a new project from Version control. Click it:

7. In the next dialog window, you should copy the URL of the GitHub repository you created in *Step 5*, like so:

8. Now, in Rstudio, you can open files for editing and create new files (explained in the next Chapter). Open files by clicking them in the Files editor (usually in the bottom right of Rstudio):

9. After you make a change, it will show up in the Git tab (usually in the top right of Rstudio). You must Commit the change locally, and then Push the change to GitHub to update your repo. To Commit, select the file and click the Commit button. Write a short message to describe the changes you made, then click the Commit button again. Now, press Push to send your commits to GitHub.

10. To render your book as a GitBook, you must "Build" it. In the top-right panel of Rstudio, you see a "Build" tab. In this tab, simply click the "Build Book" button to build your book. You should see a lot of rendering messages, until a window pops up with your brand new GitBook. If you get errors at this stage, you probably made a mistake in preparing your system (see the previous Chapter).

11. Building the book generated a lot of new files in the ./docs directory. This directory contains the website files for your GitBook. Open the Git tab again, verify that the ./docs directory is listed, and Commit and Push all of these new files as described in *Step 9*.

12. There is only one last remaining task: To publish your GitBook on GitHub pages. Once you do this, any change to the ./docs folder that you push to GitHub will lead to an immediate update of your GitBook website. Go back to the GitHub page for your Repository. Click on the Settings tab on the top right of the page:

13. On the Settings page, scroll all the way down until you reach a section called GitHub Pages. There, under the "Source" heading, click the word None, and select master branch /docs folder. When you select it, the page will update, and if you scroll back down to the GitHub Pages section, you will see the URL where your GitBook is published. The first time, it will take a few minutes for your GitBook to come online. When you publish updates to the GitBook however (simply by following *Step 11* again), the update will be near-instantaneous. The Pages section should now look like this (and that is hopefully the link where you found this book):

GitHub Pages

5 Editing the book

The contents of the book are written in **RMarkdown**. You can use any formatting code that Pandoc's Markdown supports, e.g., a math equation $a^2+b^2=c^2$. Moreover, you can include chunks of R-code, like this:

The results of these chunks can be rendered to the GitBook:

```
## [1] "This is an R-command!"
```

To edit the book, you can change the text in the .Rmd files. Each Rmd file should contain **one and only one** chapter. A chapter is defined by the first-level heading #, e.g., # Editing the book.

Any sub-headings within the chapter are indicated with several # signs, e.g., ## (level 2) and ### (level 3).

5.1 Creating new chapters

To create a new chapter, you must follow two steps: 1) Create the file, and 2) Include it in the list of chapters.

First, to create the file for a new chapter in Rstudio, click File > New File > Text file. At the top of the file, write your chapter heading, as explained above.

Then, click File > Save. Save the file as .Rmd, without spaces in the file name, e.g.: editing_the_book.Rmd.

Second, to include it in the list of chapters, open the file _bookdown.yml (click it in the Files explorer in the bottom right of Rstudio). This file has a list of .Rmd files to be included in the book. In this example, the list looks like this:

```
tmp <- readLines("_bookdown.yml")
cat(tmp[grep("^rmd_files", tmp):grep("references\\.Rmd", tmp)], sep = "\n")</pre>
```

rmd_files: ["index.Rmd", "plan-du-cours.Rmd", "creer-diapos.Rmd", "get_your_gitbook.Rmd", "editing_the_book.Rmd", "figures_tables.Rmd", "examples.Rmd", "open_educational.Rmd", "use in course.Rmd", "licenses.Rmd", "references.Rmd"]

Insert the file name of your new chapter in the desired position in this list.

5.2 Linking across chapters

You can label chapter and section titles using {#label} after them. The labels can be used as cross-references. For example, we can link to Chapter 6. If you do not manually label chapters, there will be automatic labels anyway, e.g., Chapter 7.

5.3 Advanced editing

The convenient Rmarkdown Cheat Sheet by Rstudio covers most of the knowledge required for advanced Rmarkdown editing. You can print it out and stick it to your wall!

6 Figures and tables

Figures and tables with captions will be placed in figure and table environments, respectively.

```
par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
```

Reference a figure by its code chunk label with the fig: prefix, e.g., see Figure 2. Similarly, you can reference tables generated from knitr::kable(), e.g., see Table 3.

```
knitr::kable(
  head(iris, 20), caption = 'Here is a nice table!',
  booktabs = TRUE
)
```

You can write citations, too. For example, we are using the **bookdown** package (Xie, 2022) in this sample book, which was built on top of R Markdown and **knitr** (Xie, 2015).

7 Examples

Here are some examples of other GitBooks for courses; if you want to have your GitBook added to the list, please send a Pull Request (here's how to send a pull request).

Figure 2: Here is a nice figure!

Table 3: Here is a nice table!

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
- Sepai.Length	Sepai. Width	1 Ctai.Length	1 Ctal. Width	эрссісь
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa
5.4	3.7	1.5	0.2	setosa
4.8	3.4	1.6	0.2	setosa
4.8	3.0	1.4	0.1	setosa
4.3	3.0	1.1	0.1	setosa
5.8	4.0	1.2	0.2	setosa
5.7	4.4	1.5	0.4	setosa
5.4	3.9	1.3	0.4	setosa
5.1	3.5	1.4	0.3	setosa
5.7	3.8	1.7	0.3	setosa
5.1	3.8	1.5	0.3	setosa

7.1 Statistics with R (H. Quene)

https://hugoquene.github.io/emlar2020

A GitBook for a tutorial on *Statistics with R (Basics)*, held as part of the workshop on Experimental Methods in Language Acquisition Research (EMLAR, https://emlar.wp.hum.uu.nl/), Utrecht, on 17 April 2020. This compact introduction helps you with your first steps into R.

7.2 Theory Construction and Statistical Modeling (C. J. van Lissa)

http://cjvanlissa.github.io/TCSM

A GitBook for the course "Theory Construction and Statistical Modeling", with some interesting code, for example: Blocks of answers to the tutorial questions that can be collapsed and expanded.

7.3 Doing Meta-Analysis in R (C. J. van Lissa)

http://cjvanlissa.github.io/Doing-Meta-Analysis-in-R

A GitBook on doing meta-analysis in R, based on the book 'Doing Meta-Analysis in R', by Mathias Harrer, Pim Cuijpers, & David Ebert, and adapted to focus on the metafor package, and exploring heterogeneity using metaforest. The original can be found here: https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/

7.4 Métodos quantitativos em Psicologia com R (L. Anunciação)

https://anovabr.github.io/mqt/

This book provides a short and to-the-point exposition on the essentials of statistics, and was written for undergraduate students at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio). To a lesser degree, the mathematical modeling of statistical questions will be addressed. This book might be relevant for Portuguese-speaking students who enroll for laboratory-based statistics and anyone who wants to learn R.

8 Open Educational Resources

UNESCO defines Open Educational Resources as teaching, learning and research materials in any medium – digital or otherwise – that reside in the public domain or have been released under an open license that permits no-cost access, use, adaptation and redistribution by others with no or limited restrictions.

Open Educational resources can help lighten the workload on individual teachers, who can collaborate with the development of high-quality open access resources, instead of having to develop their own proprietary materials from scratch. Moreover, Open Educational resources are inclusive, lowering the barrier to knowledge acquisition for learners around the world, and enabling lifelong learning for those outside academia.

Many universities support Open Educational Resources. Here are just a few (feel free to send a pull request with other relevant resources).

• OER Commons: A freely accessible online library of open educational resources.

- Utrecht University Figshare: Open learning objects from Utrecht University.
- Johns Hopkins University OCW: Open public health courses and materials.
- University of Pittsburgh OER: Big List of Open Educational Resources.
- MERLOT: Online learning and support materials and content creation tools, led by an international community of educators, learners and researchers.

9 Compatibility with existing systems

Many universities offer digital platforms for learning. You might wish to embed your GitBook within these existing systems. Here are two ways in which you might do that. Currently, this section only discusses BlackBoard, but the same principles should apply to other platforms.

9.1 Add a hyperlink

You can add a link to your GitBook in the BlackBoard course menu by following this tutorial.

9.2 Embed the whole book

You can add a Blank Page to your BlackBoard course menu, and fill that page with a full-size "iframe" - a web page within the web page. This tutorial explains how to do it. It is possible that your university is blocking this feature, however.

10 License your GitBook

In the spirit of Open Science, it is good to think about making your course materials Open Source. That means that other people can use them. In principle, if you publish materials online without license information, you hold the copyright to those materials. If you want them to be Open Source, you must include a license. It is not always obvious what license to choose.

The Creative Commons licenses are typically suitable for course materials. This GitBook, for example, is licensed under CC-BY 4.0. That means you can use and remix it as you like, but you must credit the original source.

If your project is more focused on software or source code, consider using the GNU GPL v3 license instead.

You can find more information about the Creative Commons Licenses here. Specific licenses that might be useful are:

- CC0 ("No Rights Reserved"), everybody can do what they want with your work.
- CC-BY 4.0 ("Attribution"), everybody can do what they want with your work, but they must credit you. Note that this license may not be suitable for software or source code!

For compatibility between CC and GNU licenses, see this FAQ.

Références

Xie, Y. (2015). *Dynamic Documents with R and knitr*. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Xie, Y. (2022). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.26.