

Richmond D-3
Fletch

NRL Memorandum Report 4914

Adaptation of Flux-Corrected Transport Algorithms for Modelling Blast Waves

D. L. BOOK, J. P. BORIS, M. A. FRY*,
R. H. GUIRGUIS**, AND A. L. KUHL†

Laboratory for Computational Physics

**Science Applications Inc.
McLean, VA*

***JAYCOR
Alexandria, VA*

*†R&D Associates
Marina del Rey, CA*

October 12, 1982

This work was supported by the Defense Nuclear Agency under Subtask Y99QAXSG,
work unit 00027, and work unit title "Flux Corrected Transport Code."

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

20000915 050

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

18. Supplementary Notes (Continued)

*Present address: Science Applications Inc., McLean, VA.

**Present address: JAYCOR, Alexandria, VA.

†Present address: R&D Associates, Marina del Rey, CA.

ADAPTATION OF FLUX-CORRECTED TRANSPORT ALGORITHMS FOR MODELLING BLAST WAVES

Blast wave phenomena include reactive and two-phase flows associated with the motion of chemical explosion products; the propagation of shocks, rarefaction waves, and contact discontinuities through a nonideal medium (real air, possibly thermally stratified and containing dust and water vapor); and the interaction of the blast waves (including boundary layer effects) with structural surfaces. Flux-Corrected Transport (FCT) represents an accurate and flexible class of methods for solving such nonsteady compressible flow problems (Boris and Book, 1976). Coupled with a nondiffusive adaptive gridding scheme (Book, *et al.*, 1980; Fry, *et al.*, 1981), it enables complex time-dependent shocks to be efficiently "captured."

In models which treat all the physical effects required for blast wave simulation, truncation errors inherent in the underlying finite-difference scheme are exacerbated by nonlinear coupling between the fluid equations and by the greater complexity of the phenomena being simulated. Typical of these errors are the "terraces" which develop under some circumstances on the flanks of sloping profiles when the growth of ripples due to phase errors at short length scales is terminated by the action of the flux limiter. Two approaches are possible toward eliminating them: improving the short-wavelength phase and amplitude properties of the underlying algorithm, and switching on additional diffusion locally. The latter approach folds information about the shape of the profile and the nature of the physical process taking place (e.g., rarefaction) into the switch criterion, thus changing the FCT technique from a "convective equation solver" to a "fluid system solver." In doing this, care must be taken to avoid losing the accuracy, robustness and problem-independence which constitute valuable attributes of FCT algorithms (Book, *et al.*, 1981).

Tests carried out on scalar advection of simple density profiles by a uniform flow field show that terracing does not require either diverging velocities or discontinuities in the profile, but appears typically (for $v > 0$) where the first and second derivatives of density have the same sign (Fig.1). In order to improve the properties of the basic difference scheme, we propose a new algorithm for integrating generalized continuity equations over a timestep δt . Consider the following three-point transport scheme:

$$\hat{\rho}_j = \rho_j^o - \eta(\rho_{j+1}^o - \rho_{j-1}^o) + \kappa(\rho_{j+1}^o - 2\rho_j^o + \rho_{j-1}^o);$$

$$\bar{\rho}_j = \hat{\rho}_j - \theta(\rho_{j+1}^o - \rho_{j-1}^o) + \lambda(\rho_{j+1}^o - 2\rho_j^o + \rho_{j-1}^o);$$

$$\rho_j^n = \bar{\rho}_j - \mu(\phi_{j+1/2} - \phi_{j-1/2}),$$

where

$$\phi_{j+1/2} = \hat{\rho}_{j+1} - \hat{\rho}_j.$$

The arrays $\{\rho_j^0\}$ and $\{\rho_j^n\}$ are the old and new densities, $\hat{\rho}_j$ and $\bar{\rho}_j$ are temporary intermediate densities, and η , θ , κ , λ , and μ are velocity-dependent coefficients. Here κ and λ are diffusion coefficients, and μ is the antidiffusion coefficient. In the actual algorithm, $\phi_{j+1/2}^c$ is corrected (hence the name FCT) to a value $\phi_{j+1/2}^c$ chosen so no extrema in $\bar{\rho}_j$ can be enhanced or new ones introduced in ρ_j^n . Previous FCT algorithms had $\theta = 0$; the widely used ETBFCT and related algorithms (Boris, 1976) have in addition $\kappa = 0$. If we define ρ_j to be sinusoidal with wave number k on a mesh with uniform spacing δx , so that $\rho_j^0 = \exp(ij\beta)$ where $\beta = k\delta x$, then the new density array satisfies

$$\begin{aligned}\rho_j^n / \rho_j^0 &\equiv A = 1 - 2i(\eta + \theta)\sin\beta + 2(\kappa + \lambda)(\cos\beta - 1) \\ &\quad - 2\mu(\cos\beta - 1)[1 - 2i\eta\sin\beta + 2\kappa(\cos\beta - 1)].\end{aligned}$$

From A we can determine the amplification $\alpha = A$ and relative phase error $R = (1/\epsilon\beta)\tan^{-1}(-ImA/ReA) - 1$, where $\epsilon = v\delta t/\delta x$ is the Courant number.

Expanding in powers of β we find

$$\alpha = 1 + \alpha_2\beta^2 + \alpha_4\beta^4 + \alpha_6\beta^6 + \dots ;$$

$$R = R_0 + R_2\beta^2 + R_4\beta^4 + R_6\beta^6 + \dots .$$

First-order accuracy entails making R_0 vanish, which requires that $\eta + \theta = \epsilon/2$. Second-order accuracy ($\alpha_2 = 0$) implies that $\mu = \kappa + \lambda - \epsilon^2/2$. Analogously, the "reduced-phase-error" property $R_2 = 0$ (Boris and Book, 1976) determines $\mu = (1 - \epsilon^2)/6$, thus leaving two free parameters. One of these can be used to make R_4 vanish also. The resulting phase error $R(\beta)$ is small not only as $\beta \rightarrow 0$, but also for larger values of β , corresponding to the short wavelengths responsible for terraces (Fig. 2). The remaining parameter η can be chosen to relax the Courant number restriction needed to ensure positivity from $\epsilon < 1/2$ to $\epsilon < 1$. When coded, these changes necessitate a small increase in the operation count of ETBFCT along with a small increase in overhead to precalculate the two new arrays of velocity-dependent transport coefficients. On advection tests, the new algorithm completely eliminated terraces (Fig. 3). When applied to the coupled systems of gas dynamic equations, it produced profiles which closely approximate the Riemann solution of the exploding diaphragm problem (Fig. 4).

The second approach uses a rarefaction flux limiter (RFL) to eliminate numerical ripples in strong rarefaction waves. This approach is physically motivated. Raw anti-diffusive fluxes $\phi_{j+1/2}$ are limited so that the slope of local flow field profiles decays with time in a rarefaction wave. In effect, additional diffusion is left in the field to maintain monotonicity of local slopes. For multi-material calculations a "contact surface sensor" is needed to detect physical discontinuities and shut off the RFL locally.

In addition we found that some care was required when applying generalized continuity equation solvers to a system of equations. Truncation errors of the various equations can interact, causing undershoots or overshoots in nonconvective quantities such as pressure. We found that it was necessary to monotonize derived quantities (pressure, velocity) before using them in minimal-diffusion transport algorithms.

The above methodology has been applied to a series of test problems initiated by a spherical high-explosive (HE) detonation in air. An ideal Chapman-Jouguet detonation was used to specify the initial conditions; afterburning was neglected. In the absence of reflecting surfaces, spherical symmetry is maintained and the calculation remains one-dimensional. A nonuniform radial grid was used with extremely fine zoning near the shock front. The grid was moved so that the shock remained approximately fixed with respect to the mesh. The original version of the FCT algorithm gave rise to pronounced terraces in the rarefaction region. This would have rendered any two-dimensional calculation involving shock diffraction or nonideal effects dubious. The techniques described here improved the blast wave results considerably. The decrease in phase error reduced terracing dramatically.

Next, a two-dimensional (2D) numerical calculation was performed to simulate one of Carpenter's (1974) height-of-burst experiments which used spherical 8-lb. charges of PBX 9404 at 51.6 cm. The previous fine-zoned 1D calculation was used to initialize the problem. It was mapped onto the 2D grid just prior to the onset of reflection. The solution was then advanced in time, with pressure being calculated from a real-air equation of state and a JWL equation of state for the combustion products. The front of the blast wave was captured in a finely gridded region which moved outward horizontally. Special care was taken to ensure that the grid moved smoothly. The resulting solution, particularly the curve of peak overpressure vs. range, was consistent with Carpenter's experimental data (Fig. 8). Although this calculation represents a reasonable accurate simulation of the double-Mach-stem region, no doubt improvements can and will be made to numerically model such phenomena.

References

Book, D., Boris, J., Kuhl, A., Oran, E., Picone, M., and Zalesak, S., Seventh International Conf. on Num. Methods in Fluid Dynamics, Stanford (1980). W. C. Reynolds and R. W. MacCormack, eds. p. 84.

Book, D., Boris, J., and Zalesak, S., in Finite-Difference Techniques for Vectorized Fluid Dynamics Calculations, D. Book, Ed. (Springer-Verlag, New York, 1981).

Boris, J., "Flux-Corrected Transport Modules for Solving Generalized Continuity Equations," NRL Memorandum Report 3237 (1976).

Boris, J.P., and Book, D.L., in Methods in Computational Physics, J. Killeen, Ed., (Academic Press, New York, 1976) Vol. 16, p. 85.

Carpenter, H.J., Proc. Fourth International Symp. on Military Applications of Blast Simulation (1974).

Fry, M., Tittsworth, J., Kuhl, A., Book, D., Boris, J., and Picone, M., "Shock Capturing Using Flux-Corrected Transport Algorithms with Adaptive Gridding," NRL Memorandum Report 4629 (1981).

Fig. 1 — Rounded half circle used in passive scalar advection tests (a) initially, and (b) after propagation for 14 cycles using JPBFCCT. Note that terraces form even, as here, in the absence of corners in the profile. Tick marks indicate computational zones ($N = 100$).

MULTICOEFFICIENT

REL. PHASE

Fig. 2—Contour plot of $R(\beta, \epsilon)$ for new multicoefficient FCT algorithm.
Note $R \approx 0$ except for $\beta \geq 3\pi/2$. The relative phase error vanishes exactly for $\epsilon = 1/2$ and $\epsilon = 1$.

Fig. 3 — (a) Blowup of Fig. 1(a) (dashed line) compared with (b) same profile as computed using new sixth order-phase-accurate FCT algorithm. Solid traces are exact solutions.

Fig. 4 — (a) Exact and (b) computed solution of exploding diaphragm problem
(10-to-1 initial density jump, 100-to-1 initial pressure jump)

Fig. 5 — One-dimensional solution of expanding HE products and air calculated with the new algorithm using 500 equally spaced zones. Note contact surface separating HE products from air.

Fig. 6 — Adaptive grid for height-of-burst problem shown (a) initially and
(b) at time when transition to Mach reflection occurs

HE - AIR JPBFC

ST = 1.00×10^0

XLOC =

10.00×10^{-8}

YLOC =

5.00×10^{-8}

Fig. 7 — Pressure-time histories directly beneath burst site. Note second peak, associated with interaction between shock reflected from ground and following contact surface.

HE - AIR JPBFC

ST = 3.60×10^{-1}

Fig. 8 — Computed peak overpressure vs distance along ground surface.
Broken curve represents Carpenter's (1974) data.

DISTRIBUTION LIST

ASSISTANT TO THE SECRETARY OF DEFENSE
(ATOMIC ENERGY)
WASHINGTON, DC 20301
O1CY ATTN EXECUTIVE ASSISTANT

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
WASHINGTON, DC 20305
(ADR CNWDCI: ATTN CCDE 240 FCR)
O1CY ATTN CCDE 570 R LIPP

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
WASHINGTON, DC 20301
O1CY ATTN RDS-3A (TECH LIB)
O1CY ATTN DB-4N
O1CY ATTN DT-1C
O1CY ATTN DT-2
O1CY ATTN DB-4C E OFARRELL

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
O2CY ATTN SPSS
O1CY ATTN SPSS G ULLRICH
O1CY ATTN SPSS T DEEVY
O4CY ATTN TITLE

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA 22314
(12 IF OPEN PUB, OTHERWISE 2 - NO WINTEL)
2CY ATTN DT

CHAIRMAN
DEPARTMENT OF DEFENSE EXPLO SAFETY BOARD
HOFFMAN BLDG 1, PM 856-C
2461 EISENHOWER AVENUE
ALEXANDRIA, VA 22321
O1CY ATTN CHAIRMAN

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND AFB, NM 87115
01CY ATTN FCTMOF
01CY ATTN FCT
01CY ATTN FCPR
01CY ATTN FCTT

CHIEF
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
LIVERMORE BRANCH
P O BOX 808 L-317
LIVERMORE, CA 94550
01CY ATTN FCPR

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NB 68113
01CY ATTN JLA
01CY ATTN DOXT
01CY ATTN XPFS
01CY ATTN MRI-STINFO LIBRARY
01CY ATTN JLTH-2

COMMANDANT
NATO SCHOOL (SHAPE)
APC NEW YORK 09172
01CY ATTN II S DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, DC 20301
01CY ATTN STRATEGIC & SPACE SYS (CS) RM 3E129

DIRECTOR
BMD ADVANCED TECHNOLOGY CENTER
DEPARTMENT OF THE ARMY
P O BOX 1500
HUNTSVILLE, AL 35807
01CY ATTN ATC-T
01CY ATTN ICRDASH-X
01CY ATTN ATC-T

COMMANDER
BMD SYSTEMS COMMAND
DEPARTMENT OF THE ARMY
P O BOX 1500
HUNTSVILLE, AL 35807
OICY ATTN BMDSC-FW
OICY ATTN BMDSC-HW R DEKALB
OICY ATTN BMDSC-H N HURST
OICY ATTN BMDSC-R C WEBB

CHIEF OF ENGINEERS
DEPARTMENT OF THE ARMY
FORRESTAL BUILDING
WASHINGTON, DC 20314
OICY ATTN DAEN-MCE-D
OICY ATTN DAEN-RDL
OICY ATTN DAEN-MPE-T D REYNOLDS

DEP CH OF STAFF FOR CPS & PLANS
DEPARTMENT OF THE ARMY
WASHINGTON, DC 20310
OICY ATTN DAMC-NC

COMMANDER
HARRY DIAMOND LABORATORIES
DEPARTMENT OF THE ARMY
2300 POWDER MILL ROAD
ADELPHI, MD 20783
(CNWDT- INNER ENVELOPE: ATTN: DELHD-RBH FOR)
OICY ATTN DELHD-I-TL (TFCH LIB)
OICY ATTN CHIEF DIV 20000

COMMANDER
U S ARMY ARMAMENT MATERIAL READINESS COMMAND
ROCK ISLAND, IL 61202
OICY ATTN MA LIBRARY

DIRECTOR
U S ARMY BALLISTIC RESEARCH LABS
ABERDEEN PROVING GROUND, MD 21005
OICY ATTN DRDAR-BLV
OICY ATTN DRDAR-BLT J KEEFR
OICY ATTN DRDAP-TSP-S (TFCH LIB)

COMMANDER AND DIRECTOR
U S ARMY COLD REGION RES ENGR LAB
P O BOX 282
HANOVER, NH 03755
OICY ATTN LIBRARY

COMMANDER
U S ARMY CONCEPTS ANALYSIS AGENCY
8120 WOODMONT AVENUE
BETHESDA, MD 20014
OICY ATTN CSSA-ADL (TECH LT3)

DIRECTOR
U S ARMY CONSTRUCTION ENGRG RES LAB
P O BOX 4005
CHAMPAIGN, IL 61820
OICY ATTN LIBRARY

COMMANDER
U S ARMY ENGINEER CENTER
FORT BELVOIR, VA 22060
OICY ATTN TECHNICAL LIBRARY
OICY ATTN ATZA

DIVISION ENGINEER
U S ARMY ENGINEER DIV HUNTSVILLE
P O BOX 1600, WEST STATION
HUNTSVILLE, AL 35807
OICY ATTN HNDED-SR
OICY ATTN HNDED-FD

DIRECTOR
U S ARMY ENGR WATERWAYS EXP'R STATION
P O BOX 631
VICKSBURG, MS 39180
OICY ATTN J ZELASKE
OICY ATTN WESSO J JACKSON
OICY ATTN J STRANGE
OICY ATTN WESSE L INGRAM
OICY ATTN LIBRARY
OICY ATTN WESSA W FLATHAU

COMMANDER
U S ARMY FOREIGN SCIENCE & TECH CTR
220 7TH STREET, NE
CHARLOTTESVILLE, VA 22901
OICY ATTN DRXST-SD

COMMANDER
U S ARMY MATERIAL & MECHANICS RSCH CTR
WATERTOWN, MA 02172
(ADDRESS CNWDI: ATTN: DOCUMENT CONTROL FOR:
OICY ATTN TECHNICAL LIBRARY
OICY ATTN DRXMR-TE R SHEA
OICY ATTN DRXMR J MESCALL

COMMANDER

U S ARMY MATERIAL DEV & READINESS CMD
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

OICY ATTN DRCDE-D L FLYNN

OICY ATTN DRYAM-TL (TECH LIB) UNCL ONLY

COMMANDER

U S ARMY MISSILE COMMAND
REDSTONE ARSENAL, AL 35898
OICY ATTN PSIC
OICY ATTN DRDVI-XS

COMMANDER

U S ARMY MOBILITY EQUIP R&D CMD

FORT BELVOIR, VA 22060

(CNWDT TO ARMY MAT DEV & READINESSS COMMAND)

OICY ATTN DRDME-WC (TECH LIB)

COMMANDER

U S ARMY NUCLEAR & CHEMICAL AGENCY

7500 BACKLICK ROAD

BUILDING 2073

SPRINGFIELD, VA 22150

(DESIRSES ONLY 1 CY TO LIBRARY)

OICY ATTN J SIMMS

OICY ATTN LIBRARY

COMMANDANT

U S ARMY WAR COLLEGE

CARLISLE BARRACKS, PA 17013

OICY ATTN LIBRARY

COMMANDER

DAVID TAYLOR NAVAL SHIP R & D CTR

BETHESDA, MD 20084

(CNWDT ONLY ATTN MRS. M. BIRKHEAD CODE 5815-6)

OICY ATTN CODE L42-3 (LIBRARY)

OFFICER-IN-CHARGE

NAVAL CIVIL ENGINEERING LABORATORY

PORT HUENEME, CA 93041

OICY ATTN CODE L53 J FCRREST

OICY ATTN CODE LO&A (LIBRARY)

OICY ATTN CODE L51 J CRAWFORD

OICY ATTN L51 R MURTHA

COMMANDER

NAVAL ELECTRONIC SYSTEMS COMMAND

WASHINGTON, DC 20360

OICY ATTN PME 117-21

COMMANDER
NAVAL FACILITIES ENGINEERING COMMAND
WASHINGTON, DC 20390
O1CY ATTN CODE 04B

HEADQUARTERS
NAVAL MATERIAL COMMAND
WASHINGTON, DC 20360
O1CY ATTN MAT 08T-22

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
O1CY ATTN CODE 013 E COOPER
O1CY ATTN CODE 4471 (TECH LIB)

SUPERINTENDENT
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93940
(DESIRSES NC CNWCI DOCUMENTS)
O1CY ATTN CODE 1424 LIBRARY
O1CY ATTN G LINDSAY

COMMANDING OFFICER
NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20375
(RD & RD/N ATTN CODE 1221 FOR & RD ATTN CODE 2628 FOR)
O1CY ATTN CODE 4040 J BORTS
20CY ATTN CODE 2627 (TECH LIB)
100CY ATTN CODE 4040 S BORK

COMMANDER
NAVAL SEA SYSTEMS COMMAND
WASHINGTON, DC 20362
O1CY ATTN SEA-09G53 (LIB)
O1CY ATTN SEA-0351

OFFICER IN CHARGE
NAVAL SURFACE WEAPONS CENTER
WHITE OAK LABORATORY
SILVER SPRING, MD 20910
O1CY ATTN P44 H GLAZ
O1CY ATTN CODE F31
O1CY ATTN CODE X211 (TECH LIB)

COMMANDER
NAVAL SURFACE WEAPONS CENTER
DAHLGREN, VA 22449
O1CY ATTN TECH LIBRARY & INFO SVCS BR

PRESIDENT
NAVAL WAR COLLEGE
NEWPORT, RI 02840
OICY ATTN CODE E-11 (TECH SERVICE)

COMMANDER
NAVAL WEAPONS CENTER
CHINA LAKE, CA 93555
OICY ATTN CODE 3201 P CIRCLE
OICY ATTN CODE 266 C AUSTIN
OICY ATTN CODE 233 (TECH LIB)

COMMANDING OFFICER
NAVAL WEAPONS EVALUATION FACILITY
KIRTLAND AIR FORCE BASE
ALBUQUERQUE, NM 87117
OICY ATTN R HUGHES
OICY ATTN CODE 1C (TECH LIB)

OFFICE OF NAVAL RESEARCH
ARLINGTON, VA 22217
OICY ATTN CODE 474 N PERRONE

OFFICE OF THE CHIEF OF NAVAL OPERATIONS
WASHINGTON, DC 20350
OICY ATTN OP 981
OICY ATTN OP 036G

DIRECTOR
STRATEGIC SYSTEMS PROJECT OFFICE
DEPARTMENT OF THE NAVY
WASHINGTON, DC 20376
OICY ATTN NSP-272
OICY ATTN NSP-43 (TECH LIB)

AIR FORCE GEOPHYSICS LABORATORY
HANSOM AFB, MA 01731
OICY ATTN LHN K THOMPSON

AIR FORCE INSTITUTE OF TECHNOLOGY
AIR UNIVERSITY
WRIGHT-PATTERSON AFB, OH 45433
(DOES NOT DESIPE CLASSIFIED DOCUMENTS)
OICY ATTN LIBRARY

HEADQUARTERS
AIR FORCE SYSTEMS COMMAND
ANDREWS AFB, DC 20334
OICY ATTN DLWM
OICY ATTN DLW

AIR FORCE WEAPONS LABORATORY, AFSC
KIRTLAND AFB, NM 87117

O1CY ATTN NTES-C R HENNY
O1CY ATTN NTED-I
O1CY ATTN NTED R MATAUCCI
O1CY ATTN NTF M PLAMONDON
O1CY ATTN NT D PAYTON
O1CY ATTN NTED-A
O1CY ATTN NTES-G
O1CY ATTN SUL
O1CY ATTN DEX
O1CY ATTN NTES-S
O1CY ATTN NTFC
O1CY ATTN DEY

DIRECTOR
AIR UNIVERSITY LIBRARY
DEPARTMENT OF THE AIR FORCE
MAXWELL AFB, AL 36112
(DESIGNS NC CNWDI)
O1CY ATTN AUL-LSE

ASSISTANT CHIEF OF STAFF
INTELLIGENCE
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
O1CY ATTN IN RM 4A932

ASSISTANT CHIEF OF STAFF
STUDIES & ANALYSES
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
O1CY ATTN AF/SAMI (TECH LIB)

ASSISTANT SECRETARY OF THE AF
RESEARCH, DEVELOPMENT & LOGISTICS
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
O1CY ATTN SAFARL/DER FOR STRAT & SPACE SYS

BALLISTIC MISSILE OFFICE/MN
AIR FORCE SYSTEMS COMMAND
NORTON AFB, CA 92409
(MINUTEMAN)

O1CY ATTN MNMXH G KALANSKY
O1CY ATTN MNMXH M CELVECCHIO
O1CY ATTN MNW CRABTREE
O1CY ATTN MNMXH D GAGE
O1CY ATTN MNMX

DEPUTY CHIEF OF STAFF
RESEARCH, DEVELOPMENT, & ACQ
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
OICY ATTN AFRRDQI N ALEXANDROW
OICY ATTN AFRRDPN
OICY ATTN APPDQI

DEPUTY CHIEF OF STAFF
LOGISTICS & ENGINEERING
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
OICY ATTN LEEF

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
OICY ATTN NIIS LIBRARY

COMMANDER
ROWE AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13441
(DESIPES NC CNWDTI)
OICY ATTN TSLO

STRATEGIC AIR COMMAND
DEPARTMENT OF THE AIR FORCE
OFFUTT AFB, NB 68113
OICY ATTN NRI-STINFO LIBRARY
OICY ATTN XPFS
OICY ATTN INT J MCKINNEY

VELA SEISMOLOGICAL CENTER
312 MONTGOMERY STREET
ALEXANDRIA, VA 22314
OICY ATTN G ULLRICH

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P O BOX 5400
ALBUQUERQUE, NM 87115
OICY ATTN CTID

DEPARTMENT OF ENERGY
WASHINGTON, DC 20545
OICY ATTN CHA/RDET

DEPARTMENT OF ENERGY
NEVADA OPERATIONS OFFICE
P O BOX 14100
LAS VEGAS, NV 89114
OICY ATTN MAIL & RECORDS FOR TECHNICAL LIBRARY

LAWRENCE LIVERMORE NATIONAL LAB

P O BOX 808

LIVERMORE, CA 94550

O1CY ATTN L-90 R DONG

O1CY ATTN L-205 J HEARST (CLASS L-203)

O1CY ATTN L-90 D MCPRTS (CLASS L-504)

O1CY ATTN L-7 J KAHN

O1CY ATTN D GLENN

O1CY ATTN L 437 R SCHECK

O1CY ATTN TECHNICAL INFO DEPT. LIBRARY

O1CY ATTN L-200 T BLTKOVICH

LOS ALAMOS NATIONAL SCIENTIFIC LAB

MAIL STATION 5000

P O BOX 1663

LOS ALAMOS, NM 87545

(CLASSIFIED ONLY TO MAIL STATION 5000)

O1CY ATTN R WHITTAKER

O1CY ATTN C KELLER

O1CY ATTN M T SANFORD

O1CY ATTN MS 364 (CLASS REPORTS LIB)

O1CY ATTN E JONES

LOVELACE BIOMEDICAL &

ENVIRONMENTAL RSCH INSTITUTE, INC.

P O BOX 5890

ALBUQUERQUE, NM 87115

O1CY ATTN P JONES (UNCL ONLY)

OAK RIDGE NATIONAL LABORATORY

NUCLEAR DIVISION

X-10 LAB RECORDS DIVISION

P O BOX X

OAK RIDGE, TN 37830

O1CY ATTN CIVIL DEF RES PROJ

O1CY ATTN CENTRAL RSCH LIBRARY

SANDIA LABORATORIES

LIVERMORE LABORATORY

P O BOX 969

LIVERMORE, CA 94550

O1CY ATTN LIBRARY & SECURITY CLASSIFICATION DIV.

SANDIA NATIONAL LAB
P O BOX 5800
ALBUQUERQUE, NM 87195
(ALL CLASS ATTN SEC CONTROL OFC FOR)

OICY ATTN A CHABAN
OICY ATTN L HILL
OICY ATTN ORG 1250 W BROWN
OICY ATTN A CHABIA
OICY ATTN W PCHERTY
OICY ATTN 3141
OICY ATTN L VORTMAN
OICY ATTN J BENISTER

CENTRAL INTELLIGENCE AGENCY
WASHINGTON, DC 20505
OICY ATTN OSWP/MED

DEPARTMENT OF THE INTERIOR
BUREAU OF MINES
BLDG 20, DENVER FEDERAL CENTER
DENVER, CO 80225
(UNCL ONLY)
OICY ATTN TECH LIP (UNCL ONLY)

DIRECTOR
FEDERAL EMERGENCY MANAGEMENT AGENCY
NATIONAL SEC OFC MITIGATION & RSCH
1725 I STREET, NW
WASHINGTON, DC 20472
(ALL CLASS ATTN B105 DOC CONTROL FOR)
OICY ATTN MITIGATION & RSCH DIV

ACIPEX CORP.
485 CLYDE AVENUE
MOUNTAIN VIEW, CA 94042
OICY ATTN C WOLF

AEROSPACE CORP.
P O BOX 92957
LOS ANGELES, CA 90009
OICY ATTN H MIRELS
OICY ATTN TECHNICAL INFORMATION SERVICES

AGBABIAN ASSOCIATES
250 N NASH STREET
EL SEGUNDO, CA 90245
OICY ATTN M AGBABIAN

ANALYTIC SERVICES, INC.
400 ARMY-NAVY DRIVE
Arlington, VA 22202
OICY ATTN G HESSLBACHER

APPLIED RESEARCH ASSOCIATES, INC.
2601 WYOMING BLVD NE SUITE F-1
ALBUQUERQUE, NM 87112
OICY ATTN J PRATTON
OICY ATTN M HIGGINS

APPLIED THEORY, INC.
1010 WESTWOOD BLVD
LOS ANGELES, CA 90024
(2 CYS IF UNCLASS OR 1 CY IF CLASS)
OICY ATTN J TRULIE

APTEC ASSOCIATES, INC.
26046 EDEN LANDING ROAD
HAYWARD, CA 94545
OICY ATTN S GILL

ASTRON RESEARCH & ENGINEERING
1901 OLD MIDDLEFIELD WAY #15
MOUNTAIN VIEW, CA 94043
OICY ATTN J HUNTINGTON

AVCO RESEARCH & SYSTEMS GROUP
201 LOWELL STREET
WILMINGTON, MA 01887
OICY ATTN LIBRARY A830

BDM CORP.
7915 JONES BRANCH DRIVE
MCLEAN, VA 22102
OICY ATTN A LAVAGNINC
OICY ATTN T NEIGHBERS
OICY ATTN CORPORATE LIBRARY

BDM CORP.
P O BOX 9274
ALBUQUERQUE, NM 87119
OICY ATTN R HENSLEY

BOEING CO.
P O BOX 3707
SEATTLE, WA 98124
OICY ATTN S STRACK
OICY ATTN AFROSPACE LIBRARY
OICY ATTN M/S 42/37 R CARLSON

CALIFORNIA RESEARCH & TECHNOLOGY, INC.
6269 VARTEL AVENUE
WOODLAND HILLS, CA 91367
OICY ATTN LIBRARY
OICY ATTN K KREYENHAGEN
OICY ATTN M ROSENBLATT

CALIFORNIA RESEARCH & TECHNOLOGY, INC.
4049 FIRST STREET
LIVERMORE, CA 94550
OICY ATTN D ORPHAL

CALSPAN CORP.
P O BOX 400
BUFFALO, NY 14225
OICY ATTN LIBRARY

DENVER, UNIVERSITY OF
COLORADO SEMINARY
DENVER RESEARCH INSTITUTE
P O BOX 10127
DENVER, CO 80210
(ONLY 1 COPY OF CLASS RPTS)
OICY ATTN SEC OFFICER FOR J WISOTSKI

EG&G WASH. ANALYTICAL SVCS CTR, INC.
P O BOX 10218
ALBUQUERQUE, NM 87114
OICY ATTN LIBRARY

FRIC H. WANG
CIVIL ENGINEERING PSCH FAC
UNIVERSITY OF NEW MEXICO
UNIVERSITY STATION
P O BOX 25
ALBUQUERQUE, NM 87131
OICY ATTN J LAMB
OICY ATTN P LODDE
OICY ATTN N BAUM
OICY ATTN J KOVARNA

GARD, INC.
7449 N NATCHEZ AVENUE
NILES, IL 60648
OICY ATTN G NEIDHARDT (UNCL ONLY)

GENERAL ELECTRIC CO.
SPACE DIVISION
VALLEY FORGE SPACE CENTER
P O BOX 8555
PHILADELPHIA, PA 19101
OICY ATTN M BOPTNER

GENERAL RESEARCH CORP.
SANTA BARBARA DIVISION
P O BOX 6770
SANTA BARBARA, CA 93111
OICY ATTN TIO

H-TECH LABS, INC.
P O BOX 1686
SANTA MONICA, CA 90406
OICY ATTN B HARTENDAHL

HORIZONS TECHNOLOGY, INC.
7830 CLAIPEMONT MESA BLVD
SAN DIEGO, CA 92111
OICY ATTN R KRUGER

IIT RESEARCH INSTITUTE
10 W 35TH STREET
CHICAGO, IL 60616
OICY ATTN R WELCH
OICY ATTN M JOHNSON
OICY ATTN DOCUMENTS LIBRARY

INFORMATION SCIENCE, INC.
123 W PADRE STREET
SANTA BARBARA, CA 93105
OICY ATTN W DUDZIAK

INSTITUTE FOR DEFENSE ANALYSES
400 ARMY-NAVY DRIVE
ARLINGTON, VA 22202
OICY ATTN CLASSIFIED LIBRARY

J D HALTIWANGER CONSULT ENG SVCS
RM 106A CIVIL ENGINEERING BLDG
208 N ROMINE STREET
URBANA, IL 61801
OICY ATTN W HALL

J. H. WIGGINS CO., INC.
1650 S PACIFIC COAST HIGHWAY
REDONDO BEACH, CA 90277
OICY ATTN J COLLINS

KAMAN AVIDYNE
83 SECOND AVENUE
NORTHWEST INDUSTRIAL PARK
BURLINGTON, MA 01803
OICY ATTN P RUETENIK
OICY ATTN LIBRARY
OICY ATTN N HOBBS
OICY ATTN E CRISCIONE

KAMAN SCIENCES CORP.
P O BOX 7463
COLORADO SPRINGS, CO 80933
OICY ATTN D SACHS
OICY ATTN F SHELTON
OICY ATTN LIBRARY

KAMAN TEMPO
816 STATE STREET (P O DRAWER CQ)
SANTA BARBARA, CA 93102
01CY ATTN DASIA

LOCKHEED MISSILES & SPACE CO., INC.
P O BOX 504
SUNNYVALE, CA 94086
01CY ATTN J WEISNER
01CY ATTN TIC-LIBRARY

MARTIN MARIETTA CORP.
P O BOX 5837
ORLANDO, FL 32855
01CY ATTN G FCTIFC

MARTIN MARIETTA CORP.
P O BOX 179
DENVER, CO 80201
01CY ATTN G FREYER

MCDONNELL DOUGLAS CORP.
5301 BOLSA AVENUE
HUNTINGTON BEACH, CA 92647
01CY ATTN H HERDMAN
01CY ATTN R HALPRIN
01CY ATTN D DEAN

MCDONNELL DOUGLAS CORP.
3855 LAKWOOD BOULEVARD
LONG BEACH, CA 90846
01CY ATTN M POTTER

MERRITT CASES, INC.
P O BOX 1206
REDLANDS, CA 92373
01CY ATTN J MERRITT
01CY ATTN LIBRARY

METEOROLOGY RESEARCH, INC.
464 W WOODBURY ROAD
ALTADENA, CA 91001
01CY ATTN W GREEN

MISSION RESEARCH CORP.
P O DRAWER 719
SANTA BARBARA, CA 93102
(ALL CLASS: ATTN: SEC OFC FOR)
01CY ATTN C LONGMIRE
01CY ATTN G MCCARTER

PACIFIC-SIERRA RESEARCH CORP.
1456 CLOVERFIELD BLVD
SANTA MONICA, CA 90404
OICY ATTN H BRODE

PACIFIC-SIERRA RESEARCH CORP.
WASHINGTON OPERATIONS
1401 WILSON BLVD
SUITE 1100
ARLINGTON, VA 22209
OICY ATTN D GORMLEY

PACIFICA TECHNOLOGY
P O BOX 148
DEL MAR, CA 92014
OICY ATTN R BJORK
OICY ATTN G KENT
OICY ATTN TECH LIBRARY

PATEL ENTERPRISES, INC.
P O BOX 3531
HUNTSVILLE, AL 35810
OICY ATTN M PATEL

PHYSICS INTERNATIONAL CO.
2700 MERCED STREET
SAN LEANDRO, CA 94577
OICY ATTN L BEHRMANN
OICY ATTN TECHNICAL LIBRARY
OICY ATTN E MOORE
OICY ATTN J THOMSEN
OICY ATTN F SAUER

P S D ASSOCIATES
P O BOX 9695
MARINA DEL REY, CA 90291
OICY ATTN R PORT
OICY ATTN A KUHL
OICY ATTN J LEWIS
OICY ATTN W WRIGHT
OICY ATTN J CARPENTER
OICY ATTN TECHNICAL INFORMATION CENTER

PAND CORP.
1700 MAIN STREET
SANTA MONICA, CA 90406
OICY ATTN C MCW

SCIENCE APPLICATIONS, INC
RADIATION INSTRUMENTATION DIV
4615 HAWKINS, NE
ALBUQUERQUE, NM 87109
OICY ATTN J DISCHN

SCIENCE APPLICATIONS, INC.
P O BOX 2351
LA JOLLA, CA 92038
OICY ATTN H WILSEN
OICY ATTN TECHNICAL LIBRARY
OICY ATTN R SCHLAUG

SCIENCE APPLICATIONS, INC.
101 CONTINENTAL BLVD
FL SEGUIN, CA 90245
OICY ATTN D HOVE

SCIENCE APPLICATIONS, INC.
2450 WASHINGTON AVENUE
SAN LEANDRO, CA 94577
OICY ATTN D BERNSTEIN
OICY ATTN D MAXWELL

SCIENCE APPLICATIONS, INC.
P O BOX 1303
MCLEAN, VA 22102
OICY ATTN J COCKAYNE
OICY ATTN B CHAMBERS III
OICY ATTN M KNASEL
OICY ATTN W LAYSCH
OICY ATTN R SIEVERS

SOUTHWEST RESEAPCH INSTITUTE
P O DRAWER 28510
SAN ANTONIO, TX 78284
OICY ATTN A WENZEL
OICY ATTN W BAKER

SRI INTERPNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025
OICY ATTN G ABRAHAMSEN
OICY ATTN LIBRARY
OICY ATTN J COLTON

SYSTEMS, SCIENCE & SOFTWARE INC
P O BOX 8243
ALBUQUERQUE NM 87198
OICY ATTN C NEEDHAM

SYSTEMS, SCIENCE & SOFTWARE, INC.

P O BOX 1620

LA JOLLA, CA 92038

OICY ATTN J BARTHEL

OICY ATTN T RINFY

OICY ATTN D GRINE

OICY ATTN LIBRARY

OICY ATTN C HASTING

OICY ATTN K PYATT

OICY ATTN C DISMUKES

OICY ATTN T CHERRY

SYSTEMS, SCIENCE & SOFTWARE, INC.

11900 SUNRISE VALLEY DRIVE

RESTON, VA 22091

OICY ATTN J MURPHY

TELEDYNE BROWN ENGINEERING

CUMMING'S RESEARCH PARK

HUNTSVILLE, AL 35807

OICY ATTN J RAVENSCRAFT

OICY ATTN J MCSWAIN

TERPA TEK, INC.

420 WAKARA WAY

SALT LAKE CITY, UT 84108

OICY ATTN A ABOU-SAYED

OICY ATTN LIBRARY

OICY ATTN A JONES

OICY ATTN S GREEN

TETRA TECH, INC.

630 N POSEMEAD BLVD

PASADENA, CA 91107

OICY ATTN L HWANG

TRW DEFENSE & SPACE SYS GROUP

ONE SPACE PARK

REDONDO BEACH, CA 90278

OICY ATTN N LIPNER

OICY ATTN TECHNICAL INFORMATION CENTER

OICY ATTN T MAZZOLA

TRW DEFENSE & SPACE SYS GROUP

P O BOX 1310

SAN BERNARDINO, CA 92402

OICY ATTN G HULCHEP

OICY ATTN P DAI

OICY ATTN E WONG

UNIVERSAL ANALYTICS, INC.
7740 W MANCHESTER BLVD
PLAYA DEL REY, CA 90291
01CY ATTN E FIELD

WEIDLINGER ASSOC., CONSULTING ENGINEERS
110 E 59TH STREET
NEW YORK, NY 10022
01CY ATTN I SANDLER
01CY ATTN M BARON

WEIDLINGER ASSOC., CONSULTING ENGINEERS
3000 SAND HILL ROAD
MENLO PARK, CA 94025
01CY ATTN J ISENBERG