Cálculo de formas de Hilbert Formas de Hilbert y dónde encontrarlas

Mejail, Daniel

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Contenidos

Formas de Hilbert

Formas modulares: repaso Formas de Hilbert

Formas modulares cuaterniónicas

Álgebras de cuaterniones Formas cuaterniónicas

Ejemplos

Contenidos

Formas de Hilbert

Formas modulares: repaso

Formas de Hilbert

Formas modulares cuaterniónicas

Álgebras de cuaterniones

Formas cuaterniónicas

Ejemplos

El semiplano complejo superior

El semiplano complejo superior es

$$\mathfrak{h} \,=\, \big\{z\in\mathbb{C}\,:\, \mathrm{Im}(z)>0\big\}\ .$$

El grupo modular,

$$\mathsf{SL}_2(\mathbb{Z}) \,=\, \left\{ egin{bmatrix} \mathsf{a} & \mathsf{b} \ \mathsf{c} & \mathsf{d} \end{bmatrix} \,:\, \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{Z}, \, \mathsf{ad} - \mathsf{bc} = 1
ight\} \,,$$

actúa en h vía

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot z = \frac{az+b}{cz+d} .$$

El grupo modular

 $\Gamma := \mathsf{SL}_2(\mathbb{Z})$

 El cociente Y(1) = Γ\ħ parametriza clases de isomorfismo de curvas elípticas sobre C:

$$au \in \mathfrak{h} \mapsto E_{ au}$$
 , $\gamma au = au' \Rightarrow E_{ au} \simeq E_{ au'}$

- La curva compleja Y(1) admite una compactificación agregando una *cúspide*: $X(1) = Y(1) \cup \{\infty\}$
- Existe una biyección

$$\left\{f:\,\Gamma\backslash\mathfrak{h}\to\mathbb{C}\right\}\,\leftrightarrow\,\left\{f:\,\mathfrak{h}\to\mathbb{C}\,:\,f(\gamma z)=f(z)\,\forall\gamma\in\Gamma\right\}$$

Formas modulares para $SL_2(\mathbb{Z})$

Definición

Dado $k \in \mathbb{Z}$, decimos que $f : \mathfrak{h} \to \mathbb{C}$ es una forma modular de peso k para $\mathsf{SL}_2(\mathbb{Z})$ ($f \in \mathcal{M}_k(\mathsf{SL}_2(\mathbb{Z}))$), si:

- 1. f es holomorfa en \mathfrak{h} ,
- 2. para toda $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z})$

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$
 y

- 3. f es holomorfa en ∞ ; una forma $f \in \mathcal{M}_k(\operatorname{SL}_2(\mathbb{Z}))$ se dice *cuspidal* $(f \in \mathcal{S}_k(\operatorname{SL}_2(\mathbb{Z})))$, si, además,
 - 4. f se anula en ∞ .

Desarrollo de Fourier

Si f verifica 1 y 2, entonces posee un desarrollo de Fourier.

$$f(z) = \sum_{n \in \mathbb{Z}} a_n(f) e^{2\pi i z n} .$$

- $f \in \mathcal{M}_k(\mathsf{SL}_2(\mathbb{Z}))$, si $a_n(f) = 0$, siempre que n < 0, y
- $f \in \mathcal{S}_k(\mathsf{SL}_2(\mathbb{Z}))$, si, además, $a_0(f) = 0$.

Otros grupos

El grupo $SL_2(\mathbb{R})$ actúa transitivamente en \mathfrak{h} . Podemos obtener un conciente $\Gamma \setminus \mathfrak{h}$ a partir de $\Gamma \subset SL_2(\mathbb{R})$ bajo ciertas condiciones:

• $SL_2(\mathbb{Z})$ y subgrupos de congruencia, por ejemplo

$$\Gamma_0(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathsf{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\};$$

• grupos de unidades de órdenes en álgebras de cuaterniones indefinidas (más adelante).

Contenidos

Formas de Hilbert

Formas modulares: repaso

Formas de Hilbert

Formas modulares cuaterniónicas

Algebras de cuaterniones

Ejemplos

Algunos preliminares

Sea $F = \mathbb{Q}(\sqrt{d}), d > 0$. Existen dos inclusiones $F \hookrightarrow \mathbb{R}$:

$$au_1: a+b\sqrt{d}\mapsto a+b\sqrt{d} \quad \text{y} \quad au_2: a+b\sqrt{d}\mapsto a-b\sqrt{d} \;.$$

Un elemento $x \in F$ se dice totalmente positivo (escribimos $x \gg 0$ o $x \in F_+^{\times}$), si $x_j = \tau_j(x) > 0$ para j = 1, 2.

Definición

- o_F: anillo de enteros de F.
- Cl(F): grupo de clases de F ($\mathfrak{a} \sim \mathfrak{b}$, si $\mathfrak{a} = \lambda \mathfrak{b}$, $\lambda \in F^{\times}$).
- $Cl^+(F)$: grupo de clases estrictas de F ($\lambda \gg 0$).
- V^F : conjunto de lugares de F (primos $\mathfrak{p} \subset \mathfrak{o}_F$, $|\cdot|_{\tau_1}$, $|\cdot|_{\tau_2}$).

Ejemplos

• $F = \mathbb{Q}(\sqrt{d}), d > 0,$

$$\mathfrak{o}_{F} = \begin{cases} \left\{ a + b \frac{1 + \sqrt{d}}{2} \ : \ a, b \in \mathbb{Z} \right\} & d \equiv 1 \, (4) \\ \left\{ a + b \sqrt{d} \ : \ a, b \in \mathbb{Z} \right\} & d \equiv 2, 3 \, (4) \end{cases};$$

• $F = \mathbb{Q}(w)$, $w^3 - w^2 - 8w + 7 = 0$, $\mathfrak{o}_F = \mathbb{Z}[w]$.

Acción en h²

$$\begin{split} \text{Si } (z_1,z_2) \in \mathfrak{h}^2 \ \text{y} \ \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] \in \text{GL}_2^+(F) = \Big\{ \gamma \in \text{GL}_2(F) \ : \ \det(\gamma) \gg 0 \Big\}, \\ \\ \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] \cdot (z_1,z_2) \ := \ \left(\frac{a_1z_1 + b_1}{c_1z_1 + d_1}, \frac{a_2z_2 + b_2}{c_2z_2 + d_2} \right) \ . \end{split}$$

Dadas
$$f: \mathfrak{h}^2 \to \mathbb{C}$$
 y $\gamma = \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] \in \mathsf{GL}_2^+(F)$,

$$f | \gamma (z_1, z_2) := \frac{\det(\gamma_1)}{(c_1 z_1 + d_1)^2} \frac{\det(\gamma_2)}{(c_2 z_2 + d_2)^2} f(\gamma \cdot (z_1, z_2)).$$

Subgrupos de congruencia

Si
$$F=\mathbb{Q}(\sqrt{d})$$
, $\mathfrak{o}_F^{ imes}=ig\{\pm\epsilon_0^k\,:\,k\in\mathbb{Z}ig\}.$ Definimos

$$\mathsf{GL}_{2}^{+}(\mathfrak{o}_{F}) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathfrak{o}_{F}, ad - bc \in \mathfrak{o}_{F,+}^{\times} \right\}
\Gamma_{0}(\mathfrak{N}) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathsf{GL}_{2}^{+}(\mathfrak{o}_{F}) : c \in \mathfrak{N} \right\} \quad (\mathfrak{N} \subset \mathfrak{o}_{F}).$$

Observaciones

- Si $\epsilon \in \mathfrak{o}_{F,+}^{\times}$ y $\mu \in \mathfrak{o}_{F}$, $\begin{bmatrix} \epsilon & \mu \\ 1 \end{bmatrix} \in \Gamma_0(\mathfrak{N})_{\infty}$;
- $\Gamma_0(\mathfrak{N})\backslash \mathfrak{h}^2$ es una superficie no compacta (finitas cúspides);
- asumimos que $h^+(F) = 1$.

Formas modulares para $\Gamma_0(\mathfrak{N})$

Definición

Una función $f: \mathfrak{h}^2 \to \mathbb{C}$ es una forma modular de peso (2,2) para $\Gamma_0(\mathfrak{N})$ $(f \in \mathcal{M}_2(\mathfrak{N}))$, si:

- 1. f es holomorfa en \mathfrak{h}^2 ;
- 2. para toda $\gamma \in \Gamma_0(\mathfrak{N})$, $f | \gamma = f$.

Observación (Desarrollo de Fourier)

Por 2, $f(z + \mu) = f(z)$ para todo $\mu \in \mathfrak{o}_F$ y

$$f = \sum_{\nu \in \mathfrak{o}_F^{\perp}} a_{\nu}(f) e^{2\pi i \operatorname{Tr}(\nu z)} ,$$

donde $\operatorname{Tr}(\nu z) = \nu_1 z_1 + \nu_2 z_2$ y $\mathfrak{o}_F^{\perp} = \{ \nu \in F : \operatorname{Tr}(\nu \mathfrak{o}_F) \subset \mathbb{Z} \}.$

Principio de Koecher y formas cuspidales

Teorema

- $a_{\epsilon\nu} = a_{\nu}$ para todo $\nu \in \mathfrak{o}_F^{\perp}$, $\epsilon \in \mathfrak{o}_{F,+}^{\times}$;
- si $a_{\nu} \neq 0$, entonces $\nu = 0$ o $\nu \gg 0$.

Para ver lo que pasa en otra cúspide, $x \in \mathbb{P}^1(F)$, miramos el desarrollo de $f \mid A$, con $A \cdot \infty = x$.

Definición

Una forma f se dice *cuspidal* $(f \in \mathcal{S}_2(\mathfrak{N}))$, si, además,

3.
$$a_0(f|A) = 0$$
 para toda $A \in GL_2^+(F)$.

Operadores de Hecke y coeficientes de Fourier

El espacio $\mathcal{S}_{\underline{2}}(\mathfrak{N})$ posee un producto interno y, para cada primo $\mathfrak{p} \nmid \mathfrak{N}$, operadores $T_{\mathfrak{p}} : \mathcal{S}_{2}(\mathfrak{N}) \to \mathcal{S}_{2}(\mathfrak{N})$ tales que

- $T_{\mathfrak{p}}T_{\mathfrak{q}}=T_{\mathfrak{q}}T_{\mathfrak{p}}$ y
- $\langle T_{\mathfrak{p}}f,g\rangle = \langle f,T_{\mathfrak{p}}g\rangle.$

Dado $\mathfrak{m} \subset \mathfrak{o}_F$, existe $\nu \in \mathfrak{d}^{-1}$, $\nu \gg 0$ tal que $\mathfrak{m} = \nu \mathfrak{d}$.

$$C(\mathfrak{m}, f) := \mathbb{N}(\mathfrak{m}) a_{\nu}(f) .$$

$$C(\mathfrak{m}, T_{\mathfrak{p}}f) = \mathbb{N}(\mathfrak{p}) C(\mathfrak{p}^{-1}\mathfrak{m}, f) + C(\mathfrak{pm}, f) .$$

$$(\mathfrak{p} \nmid \mathfrak{m} \Rightarrow C(\mathfrak{p}^{-1}\mathfrak{m}, f) = 0).$$

El espacio de formas nuevas

Definición

Si $\mathfrak{N}=\mathfrak{l}\,\mathfrak{M},\,\mathfrak{l}$ primo, existen $\iota_1,\iota_\mathfrak{l}:\,\mathcal{S}_2(\mathfrak{M})\hookrightarrow\mathcal{S}_2(\mathfrak{N}).$

$$\begin{split} \mathcal{S}_{\underline{2}}(\mathfrak{N})^{\mathsf{I}-\mathsf{new}} \; &:= \; \left(\iota_1 \big(\mathcal{S}_{\underline{2}}(\mathfrak{M}) \big) \; + \; \iota_{\mathsf{I}} \big(\mathcal{S}_{\underline{2}}(\mathfrak{M}) \big) \right)^{\perp} \; , \\ \mathcal{S}_{\underline{2}}(\mathfrak{N})^{\mathsf{new}} \; &:= \; \bigcap_{\mathsf{I} \mid \mathfrak{N}} \mathcal{S}_{\underline{2}}(\mathfrak{N})^{\mathsf{I}-\mathsf{new}} \; = \; \left(\mathcal{S}_{\underline{2}}(\mathfrak{N})^{\mathsf{old}} \right)^{\perp} \; . \end{split}$$

Son espacios $T_{\mathfrak{p}}$ -invariantes $(\mathfrak{p} \nmid \mathfrak{N})$.

Corolario

Existe una base ortogonal para $S_{\underline{2}}(\mathfrak{N})^{\text{new}}$ compuesta por autoformas para $T_{\mathfrak{p}}$, $\mathfrak{p} \nmid \mathfrak{N}$ (formas nuevas).

Formas nuevas

Si f es autoforma,

$$C(\mathfrak{p},f) = C(\mathfrak{o}_F,T_{\mathfrak{p}}f) = \lambda_{\mathfrak{p}} C(\mathfrak{o}_F,f) \qquad (\mathfrak{p} \nmid \mathfrak{N}).$$

Si $C(\mathfrak{o}_F, f) \neq 0$, podemos asumir $C(\mathfrak{o}_F, f) = 1$ (normalizada).

Teorema (Multiplicidad uno)

Dado un ideal íntegro $\mathfrak N$ y dado un sistema (de autovalores) $\{\lambda_{\mathfrak p}\}_{\mathfrak p\nmid\mathfrak N}\subset\mathbb C$, existe, a lo sumo, una forma nueva normalizada f de nivel $\mathfrak M\mid\mathfrak N$ tal que $C(\mathfrak p,f)=\lambda_{\mathfrak p}$ para todo $\mathfrak p\nmid\mathfrak N$.

Calculando $S_2(\mathfrak{N})$

- Objetivo: hallar una base para el espacio $\mathcal{S}_2(\mathfrak{N})$.
- Si $F = \mathbb{Q}$, formas modulares elípticas:
 - o el espacio $S_2(N)$ se realiza en la cohomología de $X_0(N)$ (Eichler-Shimura);
 - o si N no es un cuadrado, las formas en $S_2(N)^{\text{new}}$ aparecen como combinaciones lineales de series *theta*.
- Si $[F:\mathbb{Q}]=n$, $f\in\mathcal{S}_{\underline{2}}(\mathfrak{N})$ da lugar a una n-forma diferencial holomorfa $f(z_1,\ldots,z_n)\,dz_1\,\cdots\,dz_n$ en $X_0(\mathfrak{N})$.
- n > 1 es un problema difícil ¿Hay otra manera?

La correspondencia de Jacquet-Langlands garantiza que estas formas también se pueden encontrar en la cohomología de otras variedades. En todo caso, alcanza con mirar variedades de dimensión 0 o 1.

Contenidos

Formas de Hilbert

Formas modulares: repaso

Formas de Hilbert

Formas modulares cuaterniónicas Álgebras de cuaterniones

Formas cuaterniónicas

Ejemplos

Álgebras de cuaterniones

Definición

Un álgebra de cuaterniones sobre un cuerpo F (car(F) \neq 2) es una F-álgebra B con dos generadores i, j que verifican

$$i^2 = a$$
, $j^2 = b$ y $ji = -ij$

 $a,b\in F^{\times}$, k:=ij, $B=(a,b)_F$. Si $h\in B$, es raíz de

$$X^2 - trd(h)X + nrd(h) = X^2 - (h + \bar{h})X + \bar{h}h$$
.

Ejemplos

- $Mat_{2\times 2}(\mathbb{Q})$: $i = \begin{bmatrix} 1 \end{bmatrix}$, $j = \begin{bmatrix} -1 \end{bmatrix}$, nrd = det y trd = Tr;
- $(-1,-1)_{\mathbb{O}} \subset \mathbb{H}$.

Álgebras de cuaterniones (cont.)

Observación

Dadas B/F y una extensión K/F, $B \otimes_F K$ es un álgebra de cuaterniones sobre K. $((-1,-1)_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{H})$.

Definición

- *B ramifica en v*, si B_v/\mathbb{Q}_v es de división $(v=p,\infty)$;
- discriminante: $D_B := \prod_{p \in \mathsf{Ram}(B)} \langle p \rangle$. $(D_{(-1,-1)_{\mathbb{Q}}} = 2\mathbb{Z})$;
- B es indefinida, si $B_{\infty} \simeq \operatorname{Mat}_{2\times 2}(\mathbb{R})$;
- *B* es definida, si $B_{\infty} \simeq \mathbb{H}$.

Teorema (Clasifición global)

Sobre un cuerpo de números, $\lceil B/F \rceil \leftrightarrow$ subconjuntos pares de V^F

Ejemplos

В	Ram(B)	D_B	B_{∞}
$\overline{(-1,-11)_{\mathbb{Q}}}$	$\{11,\infty\}$	$11\cdot \mathbb{Z}$	\mathbb{H}
	$\{ au_1, au_2\}$	1	$\textit{B}_{\tau_1},\textit{B}_{\tau_2}\simeq \mathbb{H}$
$(5-w^2,1-w^2)_{\mathbb{Q}(w)}$	$\{ au_1, au_3\}$	1	$\mathit{B}_{ au_2} \simeq Mat_{2 imes 2}(\mathbb{R})$

$$w^{3} - w^{2} - 8 w + 7 = 0$$

 $\tau_{1} : w \mapsto -2,781...,$
 $\tau_{2} : w \mapsto 0,8621...,$
 $\tau_{3} : w \mapsto 2,919...$

Órdenes e ideales

Definiciones

- Un retículo (completo) en B es un Z-módulo I ⊂ B f.g. que contiene una base (Q · I = B);
- $x \in B$ es *integro*, si $nrd(x), trd(x) \in \mathbb{Z}$;
- un orden es un retículo O que es subanillo (con 1);
- $\mathcal{O}_{der}(I) := \{ h \in B : I h \subset I \}$ es un orden;
- un \mathcal{O} -ideal (a derecha) es un retículo I tal que $\mathcal{O}_{der}(I) = \mathcal{O}$.

Órdenes e ideales (cont.)

Lema

Todo orden $\mathcal{O} \subset B$ tiene asociado un ideal $\operatorname{drd}(\mathcal{O}) \subset F$ de manera que, si $\mathcal{O} \subset \mathcal{O}'$, entonces $\operatorname{drd}(\mathcal{O}) \subset \operatorname{drd}(\mathcal{O}')$. En ese caso, $\mathcal{O} = \mathcal{O}'$, si y sólo si $\operatorname{drd}(\mathcal{O}) = \operatorname{drd}(\mathcal{O}')$.

Observación

Existen órdenes maximales.

Definición

Un orden de Eichler es la intersección de dos órdenes maximales. Si $\mathcal O$ es de Eichler,

$$drd(\mathcal{O}) = D_B \cdot \mathfrak{N}$$
,

 \mathfrak{N} es el *nivel* del orden y $(D_B, \mathfrak{N}) = 1$.

Ejemplos

• $B = \operatorname{Mat}_{2 \times 2}(F)$,

$$\mathcal{O} \,:=\, \begin{bmatrix} \mathfrak{o}_F & \mathfrak{o}_F \\ \mathfrak{N} & \mathfrak{o}_F \end{bmatrix} \,\subset\, \mathsf{Mat}_{2\times 2}(\mathfrak{o}_F) \qquad (\ \mathcal{O}_+^\times = \Gamma_0(\mathfrak{N})\);$$

• $B = (-1, -11)_{\mathbb{Q}}$, $\langle 1, i, j, k \rangle$ no es maximal:

$\mathcal O$	$D(\beta_1,\beta_2,\beta_3,\beta_4)$
$\overline{\langle 1, i, j, k \rangle}$	4 ² 11 ²
$\left\langle 1, i, j, \frac{1+i+j+k}{2} \right\rangle$	$2^2 11^2$
$\langle 1, i, \frac{1+j}{2}, \frac{i+k}{2} \rangle$	11 ²
$\left\langle 1, i, \frac{1+k}{2}, \frac{i-j}{2} \right\rangle$	11 ²

Clases de ideales

$$\mathcal{I}(\mathcal{O}) := \{I \subset B : \mathcal{O}_{\mathsf{der}}(I) = \mathcal{O} \text{ , invertible}\}$$
 .

Dados $I, J \in \mathcal{I}(\mathcal{O})$, $I \sim J$, si existe $h \in B^{\times}$ tal que I = h J.

$$\mathsf{Cl}(\mathcal{O}) := \mathsf{B}^{\times} \backslash \mathcal{I}(\mathcal{O})$$
.

En general, no es un grupo. $H(\mathcal{O}) := \#CI(\mathcal{O}) < \infty$.

Teorema

Si \mathcal{O} es de Eichler, $B_+^{\times} := \{h \in B^{\times} : \operatorname{nrd}(h) \gg 0\}$,

$$\operatorname{nrd}: B_+^{\times} \setminus \mathcal{I}(\mathcal{O}) \twoheadrightarrow \operatorname{Cl}^+(F)$$
.

Si B es indefinida, es una biyección (aproximación fuerte). Si B es definida, nrd : $Cl(\mathcal{O}) \rightarrow Cl^+(F)$.

Contenidos

Formas de Hilbert

Formas modulares: repaso

Formas modulares cuaterniónicas

Álgebras de cuaterniones

Formas cuaterniónicas

Ejemplos

Formas cuaterniónicas: B indefinida

Sean B/F un álgebra indefinida (r=1) y $v_1,\,\ldots,\,v_n\in V_\infty^F$:

$$B_{
u_1} \simeq \operatorname{\mathsf{Mat}}_{2 imes 2}(\mathbb{R}) \ \ \ \mathsf{y} \ \ \ B_{
u_j} \simeq \mathbb{H} \ \ (\ j>1\).$$

El grupo $B_+^{\times} = \{ \text{nrd} \gg 0 \}$ actúa en \mathfrak{h} vía $\gamma \mapsto \gamma_{\infty} \in \mathsf{GL}_2^+(\mathbb{R})$. Dadas $f : \mathfrak{h} \to \mathbb{C}, \ \gamma_{\infty} = \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right],$

$$f | \gamma (z) = \frac{\det(\gamma_{\infty})}{(cz+d)^2} f(\gamma_{\infty} \cdot z)$$
.

Formas cuaterniónicas: B indefinida (cont.)

Dado un orden de Eichler $\mathcal{O} \subset B$ de nivel \mathfrak{N} , $\Gamma := \mathcal{O}_+^{\times}$. El cociente

$$X_0^B(\mathfrak{N}) := \Gamma \backslash \mathfrak{h}$$

es una curva compleja compacta (no hay cúspides) y conexa.

Definición

 $f: \mathfrak{h} \to \mathbb{C}$ es una forma cuaterniónica de peso 2 para \mathcal{O} , si

- 1. f es holomorfa en \mathfrak{h} ;
- 2. para $\gamma \in \Gamma$, $f | \gamma = f$.

Denotamos este espacio por $S_2^B(\mathfrak{N})$.

Operadores de Hecke

El espacio $\mathcal{S}_{\underline{2}}^{\mathcal{B}}(\mathfrak{N})$ posee un producto interno y, para cada primo $\mathfrak{p} \nmid \mathsf{D}_{\mathcal{B}} \cdot \mathfrak{N}$, operadores $T_{\mathfrak{p}} : \mathcal{S}_{2}^{\mathcal{B}}(\mathfrak{N}) \to \mathcal{S}_{2}^{\mathcal{B}}(\mathfrak{N})$ tales que

- $T_{\mathfrak{p}}T_{\mathfrak{q}}=T_{\mathfrak{q}}T_{\mathfrak{p}}$ y
- $\langle T_{\mathfrak{p}}f, g \rangle = \langle f, T_{\mathfrak{p}}g \rangle$.

Si $\mathfrak{p} = \langle p \rangle$ con $p \gg 0$, entonces

$$\mathcal{T}_{\mathfrak{p}}f:=\sum_{i\in\mathfrak{o}_F/\mathfrak{p}}f\left|\pi_i\right.+\left.f\left|\pi_\infty\right.\right.$$
 ,

donde $\pi_i, \pi_\infty \in \mathcal{O}$, $\operatorname{nrd}(\pi_i) = \operatorname{nrd}(\pi_\infty) = p$ y forman un sistema de representantes de

$$\Theta(\mathfrak{p})\,:=\,\Gamma\backslash\Big\{\pi\in\mathcal{O}_+\,:\,\langle\mathsf{nrd}(\pi)\rangle=\mathfrak{p}\Big\}\;.$$

Formas cuaterniónicas: B definida

Sea B/F un álgebra definida (r=0). $B_{v_i} \simeq \mathbb{H}$, si $v_i \in V_{\infty}^F$ y no hay acción en \mathfrak{h} . Sea $\mathcal{O} \subset B$ un orden de Eichler de nivel \mathfrak{N} .

Definición

Una forma modular cuaterniónica de peso $\underline{2}$ para \mathcal{O} es una función $f:\mathcal{I}(\mathcal{O})\to\mathbb{C}$ tal que $f(b\,I)=f(I)$ para todo $b\in B^\times$. Denotamos este espacio $\mathcal{M}_2^B(\mathfrak{N})$.

Observaciones

Sean $I \in \mathcal{I}(\mathcal{O})$, [I] la función carcterística de la clase.

- $[I] \in \mathcal{M}_2^B(\mathfrak{N});$
- $\{[I_1], \ldots, [I_H]\}$ es base de $\mathcal{M}_2^B(\mathfrak{N})$.

Operadores de Hecke

Dados $\mathfrak{p} \nmid D_B \cdot \mathfrak{N} \in I \in \mathcal{I}(\mathcal{O})$,

$$\mathcal{T}_{\mathfrak{p}}(I) := \left\{ J \in \mathcal{I}(\mathcal{O}) : J \subset I, \, \mathsf{nrd}(J) = \mathfrak{p} \, \mathsf{nrd}(I) \right\},$$
 $\mathcal{T}_{\mathfrak{p}}[I] := \sum_{J \in \mathcal{T}_{\mathfrak{p}}(I)} [J].$

- El espacio M₂(
 ^Ω) admite un producto interno respecto del cual los T_p son autoadjuntos.
- Existe $e_0 \in \mathcal{M}_{\underline{2}}(\mathfrak{N})$, autofunción simultánea para los $T_{\mathfrak{p}}$, con autovalor $\mathbb{N}\mathfrak{p}+1$.
- $S_{\underline{2}}^{B}(\mathfrak{N}) := \Big\{ f \in \mathcal{M}_{\underline{2}}^{B}(\mathfrak{N}) : \langle f, e_0 \rangle = 0 \Big\}.$

La correspondencia de Jacquet-Langlands

Teorema

Sea B/F un álgebra de cuaterniones de discriminante D_B y sea $\mathfrak{N}'\subset\mathfrak{o}_F$ un ideal coprimo con D_B . Entonces existe un morfismo inyectivo de módulos de Hecke

$$\mathcal{S}_2^B(\mathfrak{N}') \hookrightarrow \mathcal{S}_2(\mathsf{D}_B \cdot \mathfrak{N}')$$

cuya imagen consiste en las formas f nuevas en los primos $\mathfrak{p} \mid \mathsf{D}_B$.

La correspondencia de Jacquet-Langlands (cont.)

Sean $\mathfrak{N}=\mathfrak{pq}$ ($\mathfrak{p}\neq\mathfrak{q}$), B/F con $\mathsf{Ram}(B)\cap V_f^F=\{\mathfrak{p}\}$. Por J-L,

$$\begin{split} \mathcal{S}_{\underline{2}}(\mathfrak{p}\mathfrak{q}) &= \, \mathcal{S}_{\underline{2}}(\mathfrak{p}\mathfrak{q})^{\mathfrak{p}-\mathsf{new}} \, \oplus \, \mathcal{S}_{\underline{2}}(\mathfrak{p}\mathfrak{q})^{\mathfrak{p}-\mathsf{old}} \\ &= \, \mathcal{S}_{\underline{2}}^{B}(\mathfrak{q}) \, \oplus \, \Big(\iota_{1} \big(\mathcal{S}_{\underline{2}}(\mathfrak{q}) \big) \, + \, \iota_{\mathfrak{p}} \big(\mathcal{S}_{\underline{2}}(\mathfrak{q}) \big) \Big) \; . \end{split}$$

Si $n = [F : \mathbb{Q}] = 1$ o 2, hay una única posibilidad. Si n > 2 hay muchas álgebras (ramificación en ∞).

Si, en cambio, $\mathfrak{N}=\mathfrak{p}^2$, no tenemos tantas opciones: debe ser $\mathsf{D}_B=1$ y $\mathsf{Ram}(B)\subset V_\infty^F$. Si n=1 es imposible; si n=2, hay una única elección.

La correspondencia de Jacquet-Langlands (cont.)

Observación

- Si B/F es indefinida, $f \in \mathcal{S}_{\underline{2}}^B(\mathfrak{N})$ tiene asociada una r-forma diferencial holomorfa en la $variedad \mathcal{O}_+^{\times} \backslash \mathfrak{h}^r$;
- si B es totalmente definida, f es una función en un espacio finito.

Hacer la elección más sencilla y eficiente posible, r = 0 o 1:

- si $2 \mid n = [F : \mathbb{Q}]$, tomar $Ram(B) = V_{\infty}^{F}$;
- si $2 \nmid n$, tomar Ram $(B) = V_{\infty}^F \setminus \{v_1\} \ (n > 2)$.

En estos casos, $\mathcal{S}_2(\mathfrak{N}) \simeq \mathcal{S}_2^B(\mathfrak{N})$.

Método definido

$$F = \mathbb{Q}(\sqrt{5})$$
, $B = (-1, -1)_F$, $Ram(B) = V_{\infty}^F$.

- Si $\mathcal{O}_0(1)$ es maximal, $H(\mathcal{O}_0(1))=1$ y dim $\left(\mathcal{S}_{\underline{2}}^B(1)\right)=0$ (sobre $\mathbb{Q},\ \mathcal{S}_4(1)=0$);
- sobre F, $11=\mathfrak{n}_1\mathfrak{n}_2$ y $\mathcal{S}^B_{\underline{2}}(\mathfrak{n}_1)=0=\mathcal{S}^B_{\underline{2}}(\mathfrak{n}_2)$, también;
- pero $H(\mathcal{O}_0(\mathfrak{n}_1^2)) = 3$ y $\mathcal{S}_{\underline{2}}^B(\mathfrak{n}_1^2) = \mathcal{S}_{\underline{2}}^B(\mathfrak{n}_1^2)^{\mathsf{new}} \neq 0$.

Método definido

$$\dim \left(\mathcal{S}_{\underline{2}}^{\mathcal{B}}(\mathfrak{n}_{1}^{2})\right) \,=\, 2$$

$$\frac{\mathbb{N}\,\mathfrak{p}}{a_{\mathfrak{p}}(f)\,\,|\,\,t\,\,-t\,\,-1\,\,\,4t\,\,-2\,\,-3\,\,\,-5t\,\,\,2t\,\,\,2t}$$

$$(t^{2}-3=0).$$

$$\mathcal{T}_{\mathfrak{p}_{4}} = \begin{bmatrix} 1 & -1 \\ -2 & -1 \end{bmatrix} \,\,, \quad \mathcal{T}_{\mathfrak{p}_{5}} = \begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix} \,\,, \quad \mathcal{T}_{\mathfrak{p}_{9}} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Método definido

$$\dim \big(\mathcal{S}^{B}_{\underline{2}}(11)\big) \, = \, \dim \big(\mathcal{S}^{B}_{\underline{2}}(11)^{\mathsf{new}}\big) \, = \, 3$$

$$T_{\mathfrak{p}_4} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 4 & -4 \\ 5 & 1 & -3 \end{bmatrix} \quad , \quad T_{\mathfrak{p}_5} = \begin{bmatrix} 1 & 0 & 0 \\ 5 & -5 & 4 \\ 0 & -1 & 2 \end{bmatrix}$$

Método indefinido

 $F = \mathbb{Q}(w)$, $B = (5 - w^2, 1 - w^2)_F$ ramifica en dos de los tres lugares reales. Sea \mathcal{O} un orden de Eichler de nivel \mathfrak{n} .

- Si $Cl^+(F) = \{1, \mathfrak{a}\}$, existe $J_{\mathfrak{a}} \in \mathcal{I}(\mathcal{O})$ con $nrd(J_{\mathfrak{a}}) = \mathfrak{a}$.
- $\mathcal{O}_1 = \mathcal{O}$, $\mathcal{O}_{\mathfrak{a}} = \mathcal{O}_{\mathsf{izq}}(J_{\mathfrak{a}})$.
- $\Gamma_1 = \operatorname{inc}_{\infty}(\mathcal{O}_{1,+}^{\times}), \ \Gamma_{\mathfrak{a}} = \operatorname{inc}_{\infty}(\mathcal{O}_{\mathfrak{a},+}^{\times})$ actúan en \mathfrak{h} .

$$X_0^B(\mathfrak{n}) = \Gamma_1 \backslash \mathfrak{h} \sqcup \Gamma_{\mathfrak{a}} \backslash \mathfrak{h}$$
.

Por Eichler-Shimura,

$$\mathcal{S}_{\underline{2}}^{B}(\mathfrak{n})\,\oplus\,\overline{\mathcal{S}_{\underline{2}}^{B}(\mathfrak{n})}\,=\,\mathsf{H}^{1}\big(X_{0}^{B}(\mathfrak{n}),\mathbb{C}\big)\,=\,\mathsf{H}^{1}\big(X(\Gamma_{1}),\mathbb{C}\big)\,\oplus\,\mathsf{H}^{1}\big(X(\Gamma_{\mathfrak{a}}),\mathbb{C}\big)\;.$$

Método indefinido

Sobre
$$F$$
, $31 = \mathfrak{n}_1\mathfrak{n}_2$, con $\mathbb{N}(\mathfrak{n}_1) = 31$, $\mathbb{N}(\mathfrak{n}_2) = 31^2$.
$$\dim \left(\mathcal{S}_{\underline{2}}^B(\mathfrak{n}_1)\right) = 86 \quad , \quad \dim \left(\mathcal{S}_{\underline{2}}^B(\mathfrak{n}_2)\right) = 2722 \; ,$$

$$\dim \left(\mathcal{S}_{\underline{2}}^B(31)^{\text{new}}\right) = 81602 \; .$$

 $S_{\underline{2}}^{B}(\mathfrak{n}_{1})$ se descompone como suma de subespacios Hecke-irreducibles de dimensiones 1, 1, 2, 2, 2, 8, 24 y 46.

$\mathbb{N}\mathfrak{p}$	5	7	8	11	13	17	23	23	23
$a_{\mathfrak{p}}(f_1)$ $a_{\mathfrak{p}}(f_2)$	-3	4	3	0	2	-3	5	-8	3
$a_{\mathfrak{p}}(f_2)$	-3	-4	3	0	-2	3	-5	-8	-3

¡Muchas gracias!