Construire et exploiter des croyances sur le monde à partir de régularités d'interactions expérimentées

Florian Bernard

Encadrant : Amélie Cordier Avec la participation d'Olivier Georgeon

22 juin 2015

Sommaire

Contexte

Définition du problème

Contributions

Démonstration

Synthèse du point de vue de l'agent

Questions

Contexte Philosophique

E. Kant définit :

- ▶ Monde nouménal : le monde tel qu'il est
- ► Monde phénoménal : le monde du point de vue de l'individu

Contexte

Théorie de la cognition incarnée

Figure. Modèle du cycle Expérience/Résultat à gauche et classique à droite (Georgeon & Cordier, 2014)

L'agent est :

- incarné : il agit pour connaître son environnement (Anderson, 2003)
- ▶ agnostique : les données d'entrée ne sont pas fonction de l'état du monde (Georgeon & Sakellariou, 2012)

Il utilise:

- l'apprentissage développemental (schème sensorimoteur (Piaget, 1959))
- les interactions

Contexte Définition des interactions

- Couple action/résultat
- Valence

Figure. Modèle basé sur les interactions

Du point de vue de l'agent

Couplage entre l'agent et l'environnement à travers les interactions :

Figure. L'agent est initialisé avec ces interactions

Figure. Flux d'interactions intended et enacted

Régularités

Figure. Régularités disponibles dans l'environnement

Régularités

Figure. Régularités séquentielles que l'on souhaiterait que l'agent trouve et utilise pour satisfaire sa motivation

Environnement String problem

Figure. Représentation graphique du monde nouménal (Georgeon & Hassas, 2013)

Contributions

Table d'usage d'interaction

- Concept des signatures (Gay, 2014)
- Maintenir à jour le nombre d'intended et d'enacted pour chaque :
 - ▶ 6 Pré-interactions
 - ▶ **8**Post-interactions
 - ▶ **Z**Alternatives
 - ▼ ZOpposées
- ▶ 2Types :
 - Persistante
 - Sporadique
 - Sporadique avec croyance

Figure. Table d'usage de l'interaction \bigcirc : « swap up »

Contributions

État de croyance interne

- ▶ Inconnu : interaction sporadique avec ou sans croyance
- ▶ Phénomène : interaction persistante

Figure. Représentation des convictions de l'agent

Démonstration

Interactionnisme radical

Figure. Modèle de l'interactionnisme radical

Démonstration

Synthèse du point de vue de l'agent Ce que l'agent sait faire

- ► Trouver les régularités directes et indirectes des interactions
- Construire et maintenir des phénomènes
- Naviguer dans des environnements simples

Synthèse du point de vue de l'agent Perspectives

- Apprendre des régularités séquentielles hiérarchiques (séquences et sous-séquences)
- Apprendre des interactions composites pour atteindre le modèle de l'interactionnisme radical (Georgeon & Aha, 2013)
- Créer des phénomènes à partir d'interactions composites
- Est-ce que l'agent pourra appréhender des environnements spatiaux avec uniquement des phénomènes et des interactions composites?

Des questions?

Références I

- Anderson, Michael L. 2003. Embodied cognition: A field guide. *Artificial intelligence*, **149**(1), 91–130.
- Gay, Simon. 2014 (Dec.). Mécanismes d'apprentissage développemental et intrinsèquement motivés en intelligence artificielle : étude des mécanismes d'intégration de l'espace environnemental. Thèse de Doctorat en Informatique, Université Lyon 1.
- Georgeon, Olivier, & Aha, David. 2013. The Radical Interactionism Conceptual Commitment. *Journal of Artificial General Intelligence*, 4(2), 31–36.
- Georgeon, Olivier, & Hassas, Salima. 2013. Single agents can be constructivist too. *Constructivist Foundations*, **9**(1), 40–42.

Références II

- Georgeon, Olivier, & Sakellariou, Ilias. 2012 (June). Designing Environment-Agnostic Agents. *Pages 25–32 of :* Enda Howley, Peter Vrancx, & Knudson, Matt (eds), *ALA2012, Adaptive Learning Agents workshop, at AAMAS2012, 11th International Conference on Autonomous Agents and Multiagent Systems.*
- Georgeon, Olivier L, & Cordier, Amélie. 2014. Inverting the Interaction Cycle to Model Embodied Agents. *Procedia Computer Science*, **41**, 243–248.
- Piaget, J. 1959. *The Construction of Reality in the Child.* The Basic classics in psychology. Basic Books.