CS303T Theory of Computation

R. Kabaleeshwaran

August 9, 2022

Outline

- Recap
 - Introduction
 - Why to study Automata Theory
 - Course Overview
 - ► Introduction to Automata Theory
- Today
 - Language
 - Deterministic Finite Automata
 - DFA-Examples

Language and Problem

- In automata theory, a PROBLEM is the question of deciding whether a given string is a member of some particular language
- Problem can be expressed as membership in a language
- If Σ is an alphabet and L is a language over Σ then the problem L is Given a string w in Σ^* decide whether or not w is in L
- Examples:
 - ▶ Problem 1: Is $x \in \{0,1\}^*$ a member of the set S_1 , where $S_1 = \{w | w \text{ is a binary string ending in 01}\}$
 - ▶ Problem 2: Is $n \in \{0,1\}^*$ a member of the set S_2 , where $S_2 = \{w | w \text{ is a binary integer that is prime } \}$

Language vs Problem

- It seems language and problem are really same! But,
- When we care only about the strings for their own sake Here we tend to think of a language as set of strings
 - Ex: The set $\{0^n 1^n | n \ge 1\}$,
- In certain cases we tend to assign 'semantic' to the strings Things represented by the strings (rather than strings itself)
 - ▶ Here we tend to think of a set of strings as a problem.
 - Ex: Strings logical expressions, even (or odd) integers

Finite Automata

- Finite automaton has a set of states, and its control moves from state to state in response to external inputs.
 - Deterministic automaton will be in a unique state at a particular time
 - ► Non-Deterministic automaton could be in several states at a particular time

Example

Deterministic Finite Automata (DFA)

DFA is a five tuple $(Q, \Sigma, \delta, q_0, F)$,

- A finite set of states, Q
- A finite set of input symbols, Σ
- A transition function (denoted δ) that takes as arguments a state and an input symbol and returns a state. i.e., $\delta: Q \times \Sigma \to Q$
- A start state $q_0 \in Q$
- A set of final or accepting states $F \subseteq Q$

DFA Representation

Transition Diagram

Transition Table

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q_0 & q_2 & q_0 \\ *q_1 & q_1 & q_1 \\ q_2 & q_2 & q_1 \\ \hline \end{array}$$

DFA Example

Design a DFA to accept the language $L = \{w | w \text{ has both an even number of 0's and an even number of 1's }$

