

Estatística inferencial no software R

Por meio do pacote Rcmdr

Diogo Macedo Mendes Keyla Megumi Sano de Oliveira Profa. Dra. Giovana Fumes Ghantous December 4, 2023

Inferência

 $\acute{\rm E}$ o processo de tirar conclusões ou fazer previsões sobre uma população com base em informações obtidas de uma amostra desta população.

Inferência - Conceitos Básicos

Etapas da análise estatística.

Inferência - Intervalo de confiança $\gamma = (1 - \alpha)$

É uma faixa de valores que é usada para estimar um parâmetro desconhecido de uma população com um certo grau de confiança.

Em termos simples, um intervalo de confiança fornece um intervalo de valores dentro do qual é provável que o valor real do parâmetro esteja, com base nos dados da amostra.

Por exemplo, se você calcular um intervalo de confiança de 95% para a média de uma população, isso significa que há 95% de confiança de que o intervalo contenha a verdadeira média da população. Quanto maior o nível de confiança (por exemplo, 95% em vez de 90%), o intervalo de confiança será mais amplo, refletindo uma maior incerteza.

Inferência - Teste de Hipóteses

É um método estatístico usado para avaliar a validade de uma afirmação (hipótese) sobre uma população com base em uma amostra. A hipótese de interesse é chamada de **hipótese** nula (H_0) , e a outra de hipótese alternativa (H_a) .

• Por exemplo: Deseja-se saber se a média da distribuição de notas de uma turma é **igual** a 8 ou não, as hipóteses são dadas por:

$$H_0: \mu = 8$$

$$H_a: \mu \neq 8.$$

Inferência - Teste de Hipóteses

Table: Relação entre os erros tipo I e tipo II no processo de decisão.

	Não rejeitar H_0	Rejeitar H_0
H_0 verdadeira	Decisão correta	Erro do tipo I (α)
H_0 falsa (ou H_a)	Erro do tipo II (β)	Decisão correta

Inferência - Teste de Hipóteses

- Os testes podem ser bilaterais (bicaudais) ou unilaterais (monocaudais).
- Por exemplo, as hipóteses de testes para médias populacionais podem ser da forma:

Inferência - Teste de normalidade

Para avaliar se a variável altura do banco de dados "AULA2" segue uma distribuição normal, os seguintes passos podem ser utilizados: Estatísticas > Resumos > Test of normality

Inferência - Teste de normalidade

Neste caso, as hipóteses do teste são:

 H_0 : Os dados seguem distribuição normal H_a : Os dados não seguem distribuição normal

R Test of Normality		×
Variável (selecione um	•	
<u>Altura</u> Aluno	^	
Filhos		
Idade		
Peso		
Turma	~	
Normality Test		
Shapiro-Wilk	 Anderson-Darling 	
Cramer-von Mises	O Lilliefors (Kolmogorov-Smirnov)	Number of bins
 Shapiro-Francia 	O Pearson chi-square	for Pearson chi-square <auto></auto>
Test by groups		
Ajuda	Sesetar OK	Cancelar Aplicar

Inferência - Teste de normalidade


```
Output
> normalityTest(~Altura, test="shapiro.test", data=Dataset)
        Shapiro-Wilk normality test
data: Altura
W = 0.9279, p-value = 0.0875
                                           H<sub>a</sub>= A Distribuição
                                           dos dados é normal
                                           P-valor > 0.05. não
                                               rejeita-se H
```

Como p-valor > 0,05, não rejeita-se a hipóte nula. Portanto, conclui-se que a distribuição dos dados da variável altura seguem uma distribuição normal.

- O teste t para média de uma população deve ser usado quando deseja-se testar se a média é igual/menor ou igual/maior ou igual/diferente a um valor especificado.
- Para realizar esse teste, é preciso partir do pressuposto que a distribuição dos dados é normal, e a variância populacional é desconhecida.

Exemplo. Com base no conjunto de dados do arquivo "AULA2" deseja-se testar se, ao nível de 5% de significância, a média das alturas dos alunos é igual à 1,62 metros. Suponha para realizar o teste que a amostra seja proveniente de uma distribuição normal.

$$H_0: \mu = 1,62$$

$$H_a: \mu \neq 1,62$$

 ${\bf Estatísticas} > {\bf M\'edias} > {\bf Teste}\ t\ {\bf para}\ {\bf uma}\ {\bf amostra}$

Estatísticas	Gráficos	Modelo	S	Distribuições Ferramentas Ajuda	
Resumos Tabelas o	le Conting	ência	▶ ▶	to de dados 🔯 Ver conjunto de dados	Modelo: Σ
Médias			×	Teste t para uma amostra	
Frequênc	ias/Propor	ções	•	Teste t para amostras independentes	


```
Output

> with(aula2, (t.test(Altura, alternative = "two.sided", mu = 1.62, conf.level = .95)))

One Sample t-test

data: Altura
t = 7.3179, df = 23, p-value = 0.000000191
alternative hypothesis: true mean is not equal to 1.62
95 percent confidence interval:
1.713251 1.786749

sample estimates:
mean of x
1.75

Se for menor que Cl,
rejelta-se HO!
```

Como p-valor $<0.05=\alpha$, rejeita-se a hipótese nula. Logo, não há evidências com base na amostra para afirmar-se que a média populacional das alturas seja igual a 1,62 metros.

Note que $IC(\mu, 95\%) = [1, 71; 1, 79].$

- É utilizado quando deseja-se comparar médias entre dois grupos;
- A pressuposição para a realização deste teste é que os dados sejam provenientes de populações que sigam distribuições normais;
- Para a realização do teste é necessário verificar se as variâncias das duas populações são iguais ou diferentes, pois para cada situação, uma estatística de teste é utilizada.

Exemplo. Utilizando o mesmo banco de dados do exemplo anterior, verifique a hipótese de que a média das alturas das mulheres é inferior a dos homens. Adote $\alpha = 5\%$ para os testes.

 $H_0: \mu_{mulheres} = \mu_{homens}$

 $H_a: \mu_{mulheres} < \mu_{homens}$

O primeiro passo é descobrir se as variâncias são homogêneas ou não.

 $\operatorname{Estatísticas} > \operatorname{Variâncias} > \operatorname{Teste} \ \operatorname{F} \ \operatorname{para} \ 2 \ \operatorname{variâncias}$

Na aba **Dados**, seleciona-se o grupo (Sexo) e a variável de interesse (Altura).

R Teste F para 2 Variân	cias			×
Dados Opções				
Grupos (escolha um)		Variável Resposta (escolh	a uma)	
Casado Sexo	~	Altura Aluno Filhos Idade Peso Turma	^ ·	
(i) Ajuda	•	Resetar OK	☆ Cancelar	

Na aba **Opções**, selecione a hipótese alternativa.

R Teste F para 2 Variâncias	×
Dados Opções	
Ratio: Feminino / Masculino Hipotese alternativa © [Bilatera] Ratio < 1 Ratio > 1 Nivel de Confiança: .95	
Ajuda • Resetar • OK Cancelar	Aplicar

Com a opção selecionada, as hipóteses são dadas por:

$$H_0: \sigma^2_{mulheres} = \sigma^2_{homens}$$

 $H_a: \sigma^2_{mulheres} \neq \sigma^2_{homens}$


```
Output
> var.test(Altura ~ Sexo. alternative='two.sided'. conf.level=.95. data=aula2)
        F test to compare two variances
data: Altura by Sexo
F = 0.17356, num df = 7, denom df = 15, p-value = 0.02608
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.05269852 0.79276323
                                                                Analisar olhando o
sample estimates:
                                                                    p-valor.
ratio of variances
         0.1735552
                                                               Se for menor que \alpha.
                                                                  reieita-se HO!
```

Como o p-valor<0.05, rejeita-se H_0 , e conclui-se, ao nível de 5% de significância, que as variâncias não são homogêneas.

Agora sim, é possível testar se as médias são iguais. Para isso basta seguir os passos: Estatísticas > Médias > Teste t para amostras independentes

Estatísticas	Gráficos	Modelos	Distribuições Ferramentas Ajuda
Resumos Tabelas d	le Conting	ència ▶	to de dados
Médias		•	Teste t para uma amostra
Frequênc	ias/Propor	ções 🕨	Teste t para amostras independentes
Variância	s	•	Teste t (dados pareados)
Testes Na	io-Paramé	tricos 🕒	ANOVA para um fator (one way)
A 411 D	:	i .	A N I O V / A Life L = - / N A Li A

Selecione a variável que especifica os Grupos (Sexo) e a Variável Resposta (Altura), que é a variável com os valores a serem testados.

▼ Teste-t p/ amostras	ndep	endentes		×
Dados Opções				
Grupos (escolha um)		Variável Resposta (escolh	na uma)	
<u>Casado</u> Sexo	^ ~	Altura Aluno Filhos Idade Peso Turma	^ ~	
(C) Ajuda	\$	Resetar OK	Cancelar Aplica	

▼ Teste-t p/ amostras independentes				
Dados Opções Diferença: Feminino - Masculino Hipotese alternativa Nível de confiança Assumir variâncias iguais? ○ Bilateral .95 ○ Sim ○ Differença < 0 ○ Não ○ Differença > 0				
♦ Resetar ♦ OK Cancelar ♦ Aplica	r			


```
Output
> t.test(Altura ~ Sexo, alternative = "less", conf.level = .95, var.equal = FALSE, data = aula2)
        Welch Two Sample t-test
data: Altura by Sexo
t = -4.4067, df = 21.635, p-value = 0.0001156
alternative hypothesis: true difference in means between group Feminino and group Masculino is less than 0
95 percent confidence interval:
        -Inf -0.06519838
sample estimates:
                                                                   Analisar olhando o
mean in group Feminino mean in group Masculino
               1,678750
                                        1.785625
                                                                        p-valor.
                                                                  Se for menor que \alpha.
                                                                     reieita-se HO!
```

Como o p-valor<0,05, rejeita-se H_0 . Assim, pode-se concluir que a altura das mulheres é inferior a altura dos homens, ao nível de 5%.

- Uma amostra pareada é aquela na qual tem-se pares de observações, exemplos:
 - \rightarrow Medir a pressão arterial de um grupo de pacientes antes e depois de administrar um medicamento.
 - \rightarrow Avaliar o desempenho de estudantes em um teste antes e depois de receberem aulas de reforço.

Para testar as médias de amostras pareadas é preciso:

- Calcular a diferença entre a primeira observação e a segunda observação de cada indivíduo. Se não houver diferença significativa entre as duas observações para o mesmo indivíduo, a diferença será igual a zero;
- Assumir que a distribuição das diferenças segue uma distribuição normal.

Exemplo. Deseja-se avaliar se aulas de reforço de Estatística Básica ministradas para alunos de uma turma da FZEA/USP, foram eficazes para melhorar o rendimento da turma. Registrou-se as notas de cada aluno antes e depois das aulas de reforço. A tabela apresenta os resultados.

Alunos	ANTES	DEPOIS
Laura	2	2
Beatriz	1	2
Julia	8	8
José	0	2
Afonso	10	9
Maria	3	7
Enzo	3	6
Diogo	6	5
Lívia	4	3
Cesar	1	3
Antônio	2	5
Felipe	5	7
Kennedy	3	4
Gabriela	0	5
Evelyn	2	7
Lígia	8	8
Yumi	0	5
Rosana	6	9
Valmir	1	5

Adotando um nível de $\alpha=5\%$ de significância, teste se houve um aumento nas notas dos alunos após as aulas de reforço, supondo que a pressuposição de normalidade esteja cumprida.

Assim, as hipóteses são dadas por:

$$H_0: \mu_{depois} = \mu_{antes}$$

$$H_a: \mu_{depois} > \mu_{antes}$$

No menu, siga o passo a passo: Estatísticas > Médias > Teste t (dados pareados)

Na aba **Dados**, selecione as variáveis a serem consideradas, sendo a 1° DEPOIS e a 2° ANTES (pois deseja-se comparar as notas de depois do reforço com antes).

☐ Teste-t pareado		×
Dados Opções		
Primeira variável (escolha u	ıma) Segunda variável (escoll	ha uma)
ANTES	ANTES	^
<u>DEPOIS</u>	DEPOIS	
	/	∨
🗱 Ajuda 🦠	Resetar 🗳 OK	💢 Cancelar 🧽 Aplicar

Ainda na aba de **Dados**, seleciona-se o tipo de hipótese alternativa, para este caso, espera-se que a nota de depois seja maior que a nota de antes, ou seja, **espera-se que a diferença seja maior do que zero.**

R Teste-t pareado	×
Dados Opções	
Hipotese alternativa Bilateral Differença < 0 Differença > 0	
♦ Resetar ♦ OK	


```
Output

Paired t-test

data: DEPOIS and ANTES

t = 4.0531, df = 18, p-value = 0.000373
alternative hypothesis: true mean difference is greater than 0
95 percent confidence interval:
1.114223 Inf
sample estimates:
mean difference
1.947368

Analisar olhando o
p-valor.

Se for menor que \( \alpha \), rejeita-se HO!
```

Como p-valor< 0,05, conclui-se, ao nível de 5% de significância, que houve um aumento nas notas dos alunos após as aulas de reforço.

Um teste qui-quadrado pode ser utilizado para verificar se há dependência entre duas variáveis categóricas.

Exemplo: Com o banco de dados "TURMAGIA2005", verifique se existe uma dependência entre o sexo do estudante e o fato dele ser casado ou não. (Use $\alpha = 5\%$).

No teste, as hipóteses são dadas por:

 H_0 : Estado civil e Sexo são independentes H_a : Estado civil e Sexo não são independentes

No menu, tem-se o caminho: Estatísticas > Tabelas de contingência > Tabela de dupla-entrada

▼ Tabelas de dupla entrada	\times
Dados Estatísticas	
Variável linha (escolha uma) Casado Sexo Variável coluna (escolha uma) Casado Sexo	
Expressão (subset expression) <todos casos="" válidos=""> < ></todos>	
Ajuda Sesetar OK Cancelar Aplica	ər

	<
Dados Estatísticas	
Computar Percentagens Percentual nas linhas Percentual nas colunas Percentagens do total Sem percentual Testes de Hipótese	
✓ Teste de independência de Qui-Quadrado ☐ Componentes da estatística do Qui-quadrado ☐ Apresente frequências esperadas ☐ Teste exato de Fisher	
Ajuda	


```
Casado Feminino Masculino
Não 50 31
Sim 38 71

Pearson's Chi-squared test

data: .Table
X-squared = 13.489, df = 1, p-value = 0.0002399
```

 \bullet Como p-valor<0,05, há evidências de que os fatores estado civil e sexo são dependentes.

Inferência - Correlação

Esta medida é usada para medir o grau de associação entre duas variáveis quantitativas.

De forma específica, a correlação de **Pearson** (r) mede o grau de correlação **LINEAR** entre duas variáveis quantitativas.

Exemplo: Deseja-se testar se há uma correlação entre peso e altura dos alunos presentes no banco "AULA2".

No teste, as hipóteses são dadas por:

 H_0 : Não existe correlação entre peso e altura dos alunos H_a : Existe correlação entre peso e altura dos alunos

Inferência - Correlação de Pearson

No menu, tem-se que: Estatísticas > Resumos > Teste de correlação

Inferência - Correlação de Pearson

Na janela que abrir, basta selecionar as duas variáveis (com a tecla CTRL seleciona-se a segunda).

R Teste de Correlação		×
Variáveis (selecione 2) Altura Aluno Filhos Idade Peso Turma		.4
Tipo de Correlação Produto-momento de Pearson	Hipotese alternativa Bilateral	
Spearman (rank-order)	Correlação < 0	
tau de Kendall (Kendall's tau)	○ Correlação > 0	
Ajuda Seseta	or 💜 OK 💢 Cancelar 🥟 Aplicar	

Inferência - Correlação de Pearson

r= 0,5721778 e p-valor<0,05, o que significa que existe uma correlação linear positiva e significativa entre as duas variáveis.

O modelo de regressão linear simples usa apenas uma variável independente (X) para explicar a variável dependente (Y).

Exemplo. Deseja-se estabelecer um modelo de regressão linear simples para o banco de dados denominado por "**NOTAS**", o qual contém o número de horas de estudo para uma prova (X) e a nota obtida na referida avaliação (Y).

No teste, a principal hipótese de interesse, é testar se o coeficiente angular (β) de uma reta de regressão $(Y = \alpha + \beta X + \epsilon)$ pode ser nulo ou não.

$$H_0$$
: $\beta = 0$

$$H_a: \beta \neq 0$$

No menu, tem-se que Estatísticas > Ajuste de Modelos > Regressão Linear...

Selecionar a variável resposta (dependente Y) e a variável explicativa (independente X):

Regressão Linear	×
Defina um nome p/ o modelo: Variável resposta (escolha 1) Hrs_de_estudo_na_semana Nota Nota RegModel.3 Variáveis Explicativas (escolha 1 ou mais) Hrs_de_estudo_na_semana Nota	
Indices or names of row(s) to remove <use all="" cases="" valid=""></use>	
Expressão (subset expression) <todos casos="" válidos=""></todos>	
Ajuda Sesetar OK Cancelar	olicar


```
Output
Call:
lm(formula = Nota ~ Hrs de estudo na semana, data = Dataset)
Residuals:
    Min
              10 Median 30
                                       Max
-0.98775 -0.06083 -0.02429 -0.00602 0.94831
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
                      -0.03052 0.09389 -0.325 0.747
(Intercept)
Hrs de estudo na semana 2.01827 0.02536 79.597 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2598 on 43 degrees of freedom
Multiple R-squared: 0.9933, Adjusted R-squared: 0.9931
F-statistic: 6336 on 1 and 43 DF, p-value: < 2.2e-16
```


Para criar o gráfico da reta de regressão, basta ir em Gráficos > Diagrama de dispersão

Selecione as variáveis:

E em opções, selecione Linha de quadrados mínimos:

Opções gráficas	Gráfico de pontos e linhas	
Deslocamentos (Jitter) na variável-x Deslocamentos (Jitter) na variável-y	rótulo do eixo-x	<auto></auto>
Log eixo-x	rótulo do eixo-y	<auto></auto>
Boxplots marginais	Título do gráfico	<auto></auto>
Cl Links de quadrados minimos Smooth line Mostre espalhamento (spread) Definição para a suavização (Smooth) Gráfico de concentração (elipte)	Caracteres do gráfico	<auto></auto>
	Tamanho do ponto	1.0
	tamanho do texto no eixo	1.0
Níveis de concentração: .5, .9	tamanho do texto - rótulo do eixo	1.0
○ Automaticamente ○ Intestativamente com o mouse ⑤ Não identificar No. pontos para identificar 2	Posição da legenda	
	Acima do gráfico	
	○ No alto à esquerda ○ No alto à direita	
	○ Embaixo à esquerda	
	○ Embaixo à direita	

E assim, tem-se:

Referências e links úteis

- Descrição do pacote Remdr
- Desvendando a Estatística com o R Commander
- Dicas
- Getting Started With the R Commander
- Graphical Exploration
- Importando dados com R Commander
- O pacote Rcmdr
- R-Studio Vs. Rcmdr