Package 'HybridDesign'

December 15, 2022

Type Package

Title Hybrid Design for Phase I Dose-Finding Studies
Version 1.0
Maintainer Heng Zhou <heng.zhou@merck.com></heng.zhou@merck.com>
Description The Hybrid design is a combination of model-assisted design (e.g., the modified Toxicity Probability Interval design) with dose-toxicity model-based design for phase I dose-finding studies. The hybrid design controls the overdosing toxicity well and leads to a recommended dose closer to the true maximum tolerated dose (MTD) due to its ability to calibrate for an intermediate dose. More details can be found in Liao et al. 2022 <doi:10.1002 ijc.34203="">.</doi:10.1002>
Imports testit, ResourceSelection
Depends R (>= 3.6)
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.2
NeedsCompilation no
Author Heng Zhou [aut, cre], Feng Zhou [aut], Jason Liao [aut]
Repository CRAN
Date/Publication 2022-12-15 09:10:02 UTC
R topics documented:
get_boundary_mtpi
IIIICA

2 get_boundary_mtpi

get_boundary_mtpi

Generate modified mTPI Design Decision Boundary

Description

Generate dose escalation and deescalation boundaries of modified Toxicity Probability Interval (mTPI) design with overdose control.

Usage

```
get_boundary_mtpi(
  target,
  ncohort,
  cohortsize,
  eps1 = 0.05,
  eps2 = 0.05,
  a = 1,
  b = 1,
  cutoff.eli = 0.95,
  tox.control = FALSE,
  cut.tox = 0.8,
  esc.control = FALSE,
  cut.esc = 0.5
)
```

target toxicity rate

Arguments

target

ncohort	the total number of cohorts
cohortsize	the cohort size
eps1	modified Toxicity Probability Interval (mTPI) design parameter epsilon1. Default: 0.05
eps2	modified Toxicity Probability Interval (mTPI) design parameter epsilon2. Default: 0.05
а	Beta prior shape parameter 1. Default: 1
b	Beta prior shape parameter 2. Default: 1
cutoff.eli	Posterior probability cutoff of eliminating dose due to unacceptable toxicity. Default: 0.95
tox.control	indicator of whether to perform toxicity control. If TRUE, change "stay" to "deescalation" if the posterior probability of DLT rate greater than target+eps2 is greater than the toxicity control cutoff cut.tox
cut.tox	toxicity control cutoff. Default: 0.8
esc.control	indicator of whether to perform escalation control. If TRUE, change decision of "escalation" to "stay" if the posterior probability of DLT rate less than target-eps1 is greater than the escalation control cutoff cut.esc
cut.esc	escalation control cutoff. Default: 0.5

get_oc_hybrid 3

Value

This function returns the table of escalation and deescalation boundaries.

Examples

```
get_boundary_mtpi(target=0.30, ncohort=10, cohortsize=3)
```

get_oc_hybrid Generate operating characteristics for single-agent dose-finding ies using the Hybrid design	stud-
--	-------

Description

Obtain the operating characteristics of the Hybrid design for single-agent dose-finding studies by simulation.

Usage

Arguments

trueMTD	the dosage of true maximum tolerated dose (MTD)
trueDLTvec	a vector of true dose-limiting toxicity (DLT) rates at each dose level
dose	a vector containing the numerical dosage of each dose level
target	target toxicity rate
ncohort	the total number of cohorts
cohortsize	the cohort size
eps1	mTPI design parameter epsilon1. Default: 0.05
eps2	mTPI design parameter epsilon2. Default: 0.05
а	Beta prior shape parameter 1. Default: 1
b	Beta prior shape parameter 2. Default: 1
cutoff.eli	Posterior probability cutoff of eliminating dose due to unacceptable toxicity. Default: 0.95
tox.control	indicator of whether to perform toxicity control. If TRUE, change "stay" to "deescalation" if the posterior probability of DLT rate greater than target+eps2 is greater than the toxicity control cutoff cut.tox
cut.tox	toxicity control cutoff. Default: 0.8

4 hybrid

esc.control indicator of whether to perform escalation control. If TRUE, change decision of

"escalation" to "stay" if the posterior probability of DLT rate less than target-eps1

is greater than the escalation control cutoff cut.esc

cut.esc escalation control cutoff. Default: 0.5
ntrial the total number of trials to be simulated

seednum the random seed for simulation

Value

This function returns the operating characteristics of the Hybrid design as a list, including: (1) Percentage of correct selection of the true MTD in all simulated trials, (2) Percentage of selecting a dose above MTD in all simulated trials, (3) Percentage of selecting a dose below MTD in all simulated trials, (4) Average number of patients treated at MTD in all simulated trials.

Examples

hybrid Implement Hybrid design with real data	hybrid	Implement Hybrid design with real data	
---	--------	--	--

Description

Obtain decision for the next dose level to be tested given current trial data.

Usage

```
hybrid(dose, nDLT, npts, currdose, nextdose=0, target, ncohort, cohortsize, eps1=0.05, eps2=0.05, a=1, b=1, cutoff.eli=0.95, tox.control=TRUE, cut.tox=0.8, esc.control=FALSE, cut.esc=0.5, regrule)
```

Arguments

dose	a vector containing the numerical dosage of each dose level
nDLT	a vector containing the number of patients who experienced dose-limiting toxicity at each dose level
npts	a vector containing the number of patients at each dose level
currdose	the dosage at the current dose level
nextdose	the dosage of next higher dose level; could be an intermediate dose
target	the target toxicity rate

hybrid_MTD_selection 5

ncohort	the total number of cohorts
cohortsize	the cohort size
eps1	modified Toxicity Probability Interval (mTPI) design parameter epsilon1. Default: 0.05
eps2	modified Toxicity Probability Interval (mTPI) design parameter epsilon2. Default: 0.05
a	Beta prior shape parameter 1. Default: 1
b	Beta prior shape parameter 2. Default: 1
cutoff.eli	Posterior probability cutoff of eliminating dose due to unacceptable toxicity. Default: 0.95
tox.control	indicator of whether to perform toxicity control. If TRUE, change "stay" to "deescalation" if the posterior probability of DLT rate greater than target+eps2 is greater than the toxicity control cutoff cut.tox
cut.tox	toxicity control cutoff. Default: 0.8
esc.control	indicator of whether to perform escalation control. If TRUE, change decision of "escalation" to "stay" if the posterior probability of DLT rate less than target-eps1 is greater than the escalation control cutoff cut.esc
cut.esc	escalation control cutoff. Default: 0.5
regrule	indicator of whether to apply additional overdose control rule

Value

This function returns the decision of implementing the Hybrid design with real trial data as a list, including: (1) dose transition boundaries of modified mTPI design, (2) decision table of modified mTPI design, (3) the decision given current data, (4) the summary table of tested dose levels

Examples

```
hybrid(dose=c(2,4,8,16,22,28,40), nDLT=c(0,0,0,0,1,0,2), npts=c(3,3,4,6,9,5,16), currdose=40, nextdose=54, target=0.3, ncohort=10, cohortsize=3, eps1=0.05, eps2=0.05, a=1, b=1, cutoff.eli=0.95, tox.control=TRUE, cut.tox=0.8, regrule=TRUE)
```

 $\begin{tabular}{lll} hybrid_MTD_selection & Select the maximum tolerated dose (MTD) for single-agent dose-finding studies & \end{tabular}$

Description

Select the maximum tolerated dose (MTD) when the single-agent dose-finding study is completed

Usage

```
hybrid_MTD_selection(target, dose, npts, nDLT, elimdose)
```

Arguments

target	the target toxicity rate
dose	a vector containing the numerical dosage of each dose level
npts	a vector containing the number of patients treated at each dose level
nDLT	a vector containing the number of patients who experienced dose-limiting toxi-

city at each dose level

elimdose the dosage at the dose level which is excluded due to excessive toxicity

Details

hybrid.MTD.selection() selects the MTD based on isotonic estimates of toxicity probabilities. The isotonic estimates are obtained by the pooled-adjacent-violators algorithm (PAVA) (Barlow, 1972 <doi: 10.1080/01621459.1972.10481216>).

Value

The selected dosage as MTD

Note

The dose levels above elim are all excluded for MTD selection.

Examples

```
hybrid_MTD_selection(target=0.3, dose=c(2,4,8,16,22,28,40), npts=c(2,4,8,16,22,28,40), nDLT=c(0,0,0,0,1,0,2), elimdose=28)
```

Index

```
get_boundary_mtpi, 2
get_oc_hybrid, 3
hybrid, 4
hybrid_MTD_selection, 5
```