Wstęp do multimediów (WMM)

Laboratorium #1: Analiza częstotliwościowa sygnałów czasu dyskretnego

Grupa 101, 21 marca 2022 r., godz. 16.15

- **1.** Dane są dwa sygnały o okresie podstawowym N = 4: $s_1 = \{2, 3, 1, 0\}$ i $s_2 = \{0, 3, 1, 0\}$.
 - a) Dla każdego sygnału wyznaczyć i wykreślić widmo amplitudowe i fazowe, obliczyć moc sygnału i sprawdzić słuszność twierdzenia Parsevala.
 - b) Sprawdzić słuszność twierdzenia o dyskretnej transformacji Fouriera splotu kołowego sygnałów s_1 i s_2 : wyznaczyć ręcznie splot kołowy sygnałów s_1 i s_2 , a następnie wyznaczyć ten splot ponownie za pomocą dyskretnej transformacji Fouriera.
- 2. Zbadać wpływ przesunięcia w czasie na postać widma amplitudowego i widma fazowego dyskretnego sygnału harmonicznego $s[n] = A \sin\left(2\pi \frac{n}{N}\right)$ o amplitudzie A=2 i okresie podstawowym N=88. W tym celu dla każdej wartości $n_0 \in \left\{0, \frac{N}{4}, \frac{N}{2}, \frac{3N}{4}\right\}$ wykreślić widmo amplitudowe i fazowe przesuniętego sygnału $s[n-n_0]$. Skomentować otrzymane wyniki.
- 3. Zbadać wpływ dopełnienia zerami na postać widma amplitudowego i widma fazowego dyskretnego sygnału $s[n] = A \left(1 \frac{n \bmod N}{N}\right)$ o amplitudzie A = 4 i okresie podstawowym N = 12. W tym celu dla każdej wartości $N_0 \in \{0,1N,4N,9N\}$ wykreślić widmo amplitudowe i fazowe sygnału s[n] dopełnionego N_0 zerami. Skomentować otrzymane wyniki.
- **4.** Dany jest sygnał rzeczywisty $s(t) = A_1 \sin(2\pi f_1 t) + A_2 \sin(2\pi f_2 t) + A_3 \sin(2\pi f_3 t)$, gdzie $A_1 = 0.1$, $f_1 = 3000$ Hz, $A_2 = 0.7$, $f_2 = 8000$ Hz, $A_3 = 0.9$, $f_3 = 11000$ Hz. Przy założeniu, że liczba próbek sygnału wynosi $N_1 = 2048$, przedstawić wykres widmowej gęstości mocy sygnału s(t). Czy dla podanej liczby próbek mamy do czynienia ze zjawiskiem przecieku widma? Czy sytuacja uległaby zmianie dla liczby próbek $N_2 = \frac{3}{2} N_1$? Odpowiedź uzasadnić.