Problem 21: Show that $\sin 4\theta$ cannot be expressed as a function of $\sin \theta$. (Source: AoPS Precalculus)

Suppose there is a function f such that $f(\sin \theta) = \sin 4\theta$.

Let
$$\theta = \frac{\pi}{3}$$
. Then $f\left(\sin\frac{\pi}{3}\right) = f\left(\frac{\sqrt{3}}{2}\right) = \sin\frac{4\pi}{3} = -\frac{\sqrt{3}}{2}$.

Let
$$\theta = \frac{2\pi}{3}$$
. Then $f\left(\sin\frac{2\pi}{3}\right) = f\left(\frac{\sqrt{3}}{2}\right) = \sin\frac{8\pi}{3} = \frac{\sqrt{3}}{2}$.

But
$$f\left(\frac{\sqrt{3}}{2}\right)$$
 cannot equal both $\frac{\sqrt{3}}{2}$ and $-\frac{\sqrt{3}}{2}$, since a function must have exactly one output for every input.

Thus there is no function f such that $f(\sin \theta) = \sin 4\theta$. This is equivalent to saying $\sin 4\theta$ cannot be expressed in terms of $\sin \theta$.