ESTATISTIKA METODOAK INGENIARITZAN

7. Hipotesi-kontrasteak

7. Hipotesi-kontrasteak

- 7.1 Sarrera
- 7.2 Oinarrizko kontzeptuak
- 7.3 Hipotesi-kontraste motak
- 7.4 Hipotesi-kontrasteen urratsak
- 7.5 Zenbait hipotesi-kontraste
 - 7.5.1 Populazioaren batezbestekorako hipotesikontrastea
 - 7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea
 - 7.5.3 Populazio normalaren bariantzarako hipotesi-kontrastea

7. Hipotesi kontrastea

- 7.5.4 Banaketa normaleko bi populazio independenteren bariantzen arteko zatidurarako hipotesi-kontrastea
- 7.5.5 Banaketa binomialaren proportziorako hipotesi-kontrastea (n > 100)
- 7.5.6 Bi banaketa binomial independenteren proportzioen arteko kendurarako hipotesi-kontrastea (n, m > 100)
- 7.5.7 Bi banaketa normal ez independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea
- 7.6 Errore motak
- 7.7 p-balioa

7.1 Sarrera

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Inferentzia estatistikoa edo Estatistika Induktiboa

Zorizko lagin bakun batetik ateratako informaziotik populaziorako orokortasunak, ondorioak eta aurresanak lortzea ahalbidetzen duen alorra.

Estimazioa (konfiantza-tarteak)

Lagineko informazioa erabiliz populazioaren parametrorako tarte bat zehaztean datza.

Konfiantza-maila: $1-\alpha$

Hipotesi-kontrastea

Populazioko parametro bati buruzko erabaki bat hartzean datza.

7.1 Sarrera

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Hipotesi estatistikoa

Populazioaren ezaugarri bati buruz egiten den baieztapen bat da.

Hipotesi-kontrastea (Hipotesi kontraste parametrikoak)

Populazioaren ezaugarri bati buruz egindako hipotesia onargarria ala errefusagarria den erabakitzeko erabiltzen den tresna da.

7.1 Sarrera

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

- Hipotesi estatistikoa egia den jakiteko populazio osoa aztertu beharko litzateke.
- Populazio osoa aztertzea ezinezkoa edo oso zaila denez, populazioaren adierazgarria den lagin bat erabiltzen da non hipotesia onargarria den aztertzen da.
- Laginetik lortutako informazioa hipotesiarekin bat badator hipotesia onartu egiten da, eta bat ez badator, berriz, hipotesia errefusatu egiten da.

Ez da faltsua edo egia den esaten: hipotesia **errefusatu** edo **onartu** egiten da.

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Hipotesi nulua H₀

Kontrastatu nahi den hipotesia da

 H_0 errefusatzea sententzia sendo bat da, izan ere hipotesia lortutako datuekin bat ez datorrela esan nahi du.

H₀ ez errefusatzea sententzia ahula da, izan ere hipotesia lortutako datuekin bat datorrela esan nahi du.

Hipotesi alternatiboa Ha

Hipotesi nuluaren hipotesi osagarria da. ("kontrakoa")

Hipotesi nulua H_0 eta Hipotesi alternatiboa H_a

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

 H_0 hipotesi nulua onartu

 $H_{\rm a}$ hipotesi alternatiboa errefusatu

 H_0 hipotesi nulua errefusatu

 $H_{\rm a}$ hipotesi alternatiboa onartu

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Kontrasterako estatistikoa

Hipotesi kontrastea egiteko zorizko lagin bakunean oinarriturik laginaren menpeko estatistiko bat lortuko dugu:

Kontrasterako estatistikoa: $T(x_1, x_2, ..., x_n)$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

S₀ onarpen eremua eta S₁ eremu kritikoa

Kontrasterako estatistikoa lortu ondoren S_0 onarpen eremua edo S_1 eremu kritikoa lortu behar ditugu

Kontrasterako estatistikoaren balioa S_o eremuan badago

Kontrasterako estatistikoaren balioa S₁ eremuan badago

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Hipotesi motak

Eremu kritikoaren arabera, hau da, egindako hipotesi alternatiboaren arabera bi motatako hipotesi-kontrasteak daude:

1. Bi aldeko hipotesi kontrasteak

$$H_0: \theta = \theta_0$$

$$H_a:\theta\neq\theta_0$$

2. Alde bakarreko hipotesi kontrasteak

$$H_0: \theta = \theta_0$$

$$H_a: \theta < \theta_0$$

$$H_0: \theta = \theta_0$$

$$H_a: \theta > \theta_0$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Universidad Euskal Herriko

Unibertsitatea

del País Vasco

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Universidad del País Vasco

Unibertsitatea

7.4 Hipotesi-kontrasteen urratsak

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteer urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

1. Hipotesi nulua eta hipotesi alternatiboa zehaztu $oldsymbol{H}_0 \, oldsymbol{H}_{ m a}$

Aztertu nahi den populazioaren parametroari buruzko baieztapena finkatu.

2. Probarako estatistiko egokia aukeratu

Populazioko parametroaren estimatzailearen menpekoa den probako estatistikoak laginean hartzen duen balioa kalkulatu.

3. Adierazgarritasun maila finkatu α

Adierazgarritasun-maila aurretik finkatuko da. Adierazgarritasun-maila erabilienak:

0.005, 0.01, 0.05

7.4 Hipotesi-kontrasteen urratsak

4. Eremu kritikoa edo/eta onarpen-eremua zehaztu

Zehaztutako estatistikoaren banaketa ezaguna bada, orduan eskualde kritikoa edo/eta onarpen eremua finka daitezke.

5. Erabaki estatistikoa hartu

Probarako estatistikoaren balioa, S₁ eskualde kritikoan badago

 H_0 hipotesi nulua errefusatuko da, lpha adieraz $oldsymbol{\mathrm{g}}$ arritasun mailaz

Probarako estatistikoaren balioa S₁ eskualde kritikoan EZ badago

 I_0 hipotesi nulua onartuko da, lpha adierazgarritasun mailaz

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

7.5.1 <u>Populazioaren batezbestekorako hipotesi-</u> kontrastea

- a) Banaketa normalaren batezbestekorako hipotesi-kontrastea
 - 1. $H_0: \mu = \mu_0 \ eta \ H_a: \mu \neq \mu_0$
 - A) σ ezaguna

Kontrasterako estatistikoa: $\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$

Eskualde kritikoa

$$S_1 = \left(-\infty, -z_{\frac{\alpha}{2}}\right] \cup \left[z_{\frac{\alpha}{2}}, +\infty\right)$$

Onarpen eremua

$$S_0 = \left(-z_{\alpha/2}, z_{\alpha/2}\right)$$

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi

Errore motak

7.5.1 <u>Populazioaren batezbestekorako hipotesi-</u> kontrastea

- a) Banaketa normalaren batezbestekorako hipotesi-kontrastea
 - 1. $H_0: \mu = \mu_0 \ eta \ H_a: \mu \neq \mu_0$
 - B) σ ezezaguna

Kontrasterako estatistikoa: $\frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t_{n-1}$

Sarrera

Oinarrizko

Hipotesi-

Hipotesikontrasteen

urratsak

p-balioa

Errore motak

kontzeptuak

7.5.1 <u>Populazioaren batezbestekorako hipotesi-</u> kontrastea

a) Banaketa normalaren batezbestekorako hipotesi-kontrastea

 $1-\alpha$

 α

- 2. H_0 : $\mu = \mu_0$ eta H_a : $\mu > \mu_0$
- A) σ ezaguna

<u>Kontrasterako estatistikoa</u>: $\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$

Eskualde kritikoa

$$S_1 = [z_{\alpha}, +\infty)$$

Onarpen eremua

$$S_0 = (-\infty, z_\alpha)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi

Errore motak

7.5.1 Populazioaren batezbestekorako hipotesikontrastea

- Banaketa normalaren batezbestekorako hipotesi-kontrastea
 - 2. $H_0: \mu = \mu_0 \ eta \ H_a: \mu > \mu_0$
 - B) σ ezezaguna

Kontrasterako estatistikoa: $\frac{\overline{X} - \mu_0}{S/I_n} \sim t_{n-1}$

Eskualde kritikoa

$$S_1 = \left[t_{n-1;\alpha}, +\infty\right)$$

Onarpen eremua

$$S_0 = \left(-\infty, t_{n-1;\alpha}\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Errore motak

7.5.1 <u>Populazioaren batezbestekorako hipotesi-</u> kontrastea

- a) Banaketa normalaren batezbestekorako hipotesi-kontrastea
 - 3. $H_0: \mu = \mu_0$ eta $H_a: \mu < \mu_0$
 - A) σ ezaguna

Kontrasterako estatistikoa: $\frac{\overline{X} - \mu_0}{\sigma / \Gamma_0} \sim N(0,1)$

Eskualde kritikoa

$$S_1 = (-\infty, -z_\alpha]$$

Onarpen eremua

p-balioa E

Sarrera

Oinarrizko

Hipotesi-

Hipotesikontrasteen

urratsak

Errore motak

kontzeptuak

7.5.1 <u>Populazioaren batezbestekorako hipotesi-</u> kontrastea

- a) Banaketa normalaren batezbestekorako hipotesi-kontrastea
 - 3. $H_0: \mu = \mu_0$ eta $H_a: \mu < \mu_0$
 - B) σ ezezaguna

<u>Kontrasterako estatistikoa</u>: $\frac{\overline{X} - \mu_0}{S/n} \sim t_{n-1}$

Eskualde kritikoa

$$S_1 = \left(-\infty, -t_{n-1;\alpha}\right]$$

Onarpen eremua

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

7.5.1 <u>Populazioaren batezbestekorako hipotesi-</u> kontrastea

b) Edozein banaketaren batezbestekorako hipotesi-kontrastea

A) σ ezaguna

Lagin tamaina handietarako $n \ge 30$, Limite zentralaren teoremak hurrengoa

dio: $\overline{X}\cong N\bigg(\mu_0,\frac{\sigma}{\sqrt{n}}\bigg)$. Beraz, onarpen eremuak eta eskualde kritikoak σ

ezaguna duenean aurreko atalean lortutako berberak dira.

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

7.5.1 <u>Populazioaren batezbestekorako hipotesi-</u> kontrastea

b) Edozein banaketaren batezbestekorako hipotesi-kontrastea

B) σ ezezaguna

Lagin tamaina handietarako $n \ge 100$, **Limite zentralaren teoremak** hurrengoa dio: $\overline{X} \cong N\left(\mu_0, \frac{S}{\sqrt{n}}\right)$. Beraz, onarpen eremuak eta eskualde kritikoak σ

ezaguna duenean aurreko atalean lortutako berberak dira baina kontrasterako \overline{v}

estatistikoa honakoa da: $Z = \frac{X - \mu_0}{S / \sqrt{n}}$.

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

7.5.1 <u>Populazioaren batezbestekorako hipotesi-</u> kontrastea

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak p-balioa

Populazioa	H_0	$H_{\rm a}$	Kontrasterako estatistikoa	Eskualde kritikoa
Normala σ ezaguna	$\mu = \mu_0$	$\mu \neq \mu_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$\left(-\infty,-z_{\alpha_{2}'}\right]\cup\left[z_{\alpha_{2}'},+\infty\right)$
		$\mu < \mu_0$		$\left(-\infty,-z_{lpha} ight]$
		$\mu > \mu_0$		$[z_{\alpha},+\infty)$
Normala σ ezezaguna	$\mu = \mu_0$	$\mu \neq \mu_0$	$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$	$\boxed{\left(-\infty,-t_{n-1;\frac{\alpha}{2}}\right]\cup\left[t_{n-1;\frac{\alpha}{2}},+\infty\right)}$
		$\mu < \mu_0$		$\left(-\infty,-t_{n-1;lpha}\right]$
		$\mu > \mu_0$		$\left[t_{n-1;\alpha},+\infty\right)$

7.5.1 <u>Populazioaren batezbestekorako hipotesi-</u> kontrastea

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak p-balioa

Populazioa	H_0	$H_{\rm a}$	Kontrasterako estatistikoa	Eskualde kritikoa
Edozein σ ezaguna $n \ge 30$	$\mu = \mu_0$	$\mu \neq \mu_0$ $\mu < \mu_0$ $\mu > \mu_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	
Edozein σ ezezaguna $n \ge 100$	$\mu = \mu_0$	$\mu \neq \mu_0$ $\mu < \mu_0$ $\mu > \mu_0$	$Z = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$	$ \begin{array}{c} \left(-\infty,-z_{\alpha_{/2}}\right] \cup \left[z_{\alpha_{/2}},+\infty\right) \\ \\ \left(-\infty,-z_{\alpha}\right] \\ \\ \left[z_{\alpha},+\infty\right) \end{array} $

7.5.1 <u>Populazioaren batezbestekorako hipotesi-</u> kontrastea

Adibidea

1) Lantegi batean ekoiztutako kableek jasan dezaketen tentsioek banaketa normala dute. Kableek 1800 batezbesteko eta 100 desbiderazio tipikoa dutela dakigu. Makinarian egindako mantentze lanen ostean ekoiztutako kableek jasan dezaketen batezbesteko tentsioa altuagoa den susmoa dago. Susmo hau egiaztatzeko 50 klabe hartu dira. Hauek jasan dezaketen batezbesteko tentsioa 1850 izanik.

0.01 adierazgarritasun maila erabiliz, esan al daiteke orain kableen kalitatea hobetzen dela batezbesteko tentsioari dagokionez? (suposatu desbiderazio tipikoa lanen ostean konstante mantentzen dela)

Universidad del País Vasco

Unibertsitatea

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea

- Banaketa normalak
 - 1. $H_0: \mu_1 = \mu_2$ eta $H_a: \mu_1 \neq \mu_2$
 - A) σ_1 eta σ_2 ezagunak

Kontrasterako estatistikoa: $\frac{X_1 - X_2}{\sqrt{\sigma_1^2 + \sigma_2^2}} \sim N(0, 1)$ **Eskualde kritikoa**

 $S_1 = \left(-\infty, -z_{\alpha_2}\right] \cup \left[z_{\alpha_2}, +\infty\right)$

Onarpen eremua:

$$S_0 = \left(-z_{lpha/2}, z_{lpha/2}\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesi-

Hipotesikontrasteen urratsak

Errore motak

p-balioa

7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea

- Banaketa normalak
 - 1. $H_0: \mu_1 = \mu_2$ eta $H_a: \mu_1 \neq \mu_2$
 - B) σ_1 eta σ_2 ezezagunak baina berdinak.

Kontrasterako estatistikoa: -

Eskualde kritikoa

$$S_{1} = \left(-\infty, -t_{n+m-2; \frac{\alpha}{2}}\right] \cup \left[t_{n+m-2; \frac{\alpha}{2}}, +\infty\right)$$

Onarpen eremua

$$S_0 = \left(-t_{n+m-2;\frac{\alpha}{2}}, t_{n+m-2;\frac{\alpha}{2}}\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesi-

Hipotesikontrasteen

urratsak

p-balioa

Errore motak

7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea

- Banaketa normalak
 - 1. $H_0: \mu_1 = \mu_2$ eta $H_a: \mu_1 \neq \mu_2$
 - C) σ_1 eta σ_2 ezezagunak baina ezberdinak.

Kontrasterako estatistikoa: $\frac{\left(\overline{X}_{1} - \overline{X}_{2}\right)}{\sqrt{\frac{S_{1}^{2} + S_{2}^{2}}{S_{2}^{2}}}} \sim t_{v} \text{ non } v = \frac{\left(\overline{S}_{1}\right)^{2}}{\left(\overline{S}_{1}\right)^{2}}$ n+1m+1

Eskualde kritikoa

$$S_1 = \left(-\infty, -t_{v; \frac{\alpha}{2}}\right] \cup \left[t_{v; \frac{\alpha}{2}}, +\infty\right)$$

Onarpen eremua

Sarrera

Oinarrizko kontzeptuak

Hipotesi-

Hipotesikontrasteen urratsak

Errore motak

p-balioa

7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea

- Banaketa normalak
 - 2. $H_0: \mu_1 = \mu_2$ eta $H_a: \mu_1 > \mu_2$
 - A) σ_1 eta σ_2 ezagunak.

Kontrasterako estatistikoa: $\frac{\overline{X}_1 - \overline{X}_2}{\boxed{\sigma_{1}^2 + \sigma_{2}^2}} \sim N(0,1)$

 $1-\alpha$

Eskualde kritikoa

$$S_1 = [z_{\alpha}, +\infty)$$

Onarpen eremua

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Errore motak

7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea

- Banaketa normalak
 - 2. $H_0: \mu_1 = \mu_2$ eta $H_a: \mu_1 > \mu_2$
 - B) σ_1 eta σ_2 ezezagunak baina berdinak.

Kontrasterako estatistikoa:

 $\frac{\left(\bar{X}_{1} - \bar{X}_{2}\right)}{\sqrt{\frac{(n-1)S_{1}^{2} + (m-1)S_{2}^{2}}{n+m-2}}} \sim t_{n}$

Hipotesi-

Oinarrizko kontzeptuak

Sarrera

kontraste motak

Hipotesikontrasteen urratsak

Errore motak

p-balioa

Eskualde kritikoa

$$S_1 = \left[t_{n+m-2;\alpha}, +\infty\right)$$

Onarpen eremua

$$S_0 = \left(-\infty, t_{n+m-2;\alpha}\right)$$

7.5.2 <u>Bi banaketa independenteren batezbestekoen</u> arteko kendurarako hipotesi-kontrastea

- a) Banaketa normalak
 - 2. $H_0: \mu_1 = \mu_2$ eta $H_a: \mu_1 > \mu_2$
 - C) σ_1 eta σ_2 ezezagunak baina ezberdinak.

Kontrasterako estatistikoa:

 $\frac{\left(\overline{X}_{1} - \overline{X}_{2}\right)}{\sqrt{\frac{S_{1}^{2} + S_{2}^{2}}{n}}} \sim t_{v} \text{ non } v = \frac{\left(\frac{S_{1}^{2} + S_{2}^{2}}{n}\right)}{\left(\frac{S_{1}^{2}}{n} + \frac{S_{2}^{2}}{m}\right)} - 2$ $\frac{\left(\frac{S_{1}^{2} + S_{2}^{2}}{n}\right)}{n+1} + \frac{\left(\frac{S_{2}^{2}}{m}\right)^{2}}{m+1}$

 $1-\alpha$

Eskualde kritikoa

$$S_1 = \left[t_{\nu;\alpha}, +\infty\right)$$

Onarpen eremua

$$S_0 = \left(-\infty, t_{\nu;\alpha}\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesi-

Hipotesikontrasteen urratsak

Errore motak

p-balioa

7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea

- Banaketa normalak
 - 3. H_0 : $\mu_1 = \mu_2$ eta H_a : $\mu_1 < \mu_2$
 - A) σ_1 eta σ_2 ezagunak.

Kontrasterako estatistikoa: $\frac{\overline{X}_1 - \overline{X}_2}{\boxed{\sigma_1^2 + \sigma_2^2}} \sim N(0,1)$

 $1-\alpha$

urratsak

kontraste motak

Errore motak

p-balioa

Sarrera

Oinarrizko kontzeptuak

Hipotesi-

Hipotesikontrasteen

Eskualde kritikoa

$$S_1 = (-\infty, -z_\alpha]$$

Onarpen eremua

7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea

- Banaketa normalak
 - 3. $H_0: \mu_1 = \mu_2$ eta $H_a: \mu_1 < \mu_2$
 - B) σ_1 eta σ_2 ezezagunak baina berdinak.

Kontrasterako estatistikoa:

 $1-\alpha$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Errore motak

p-balioa

Eskualde kritikoa

$$S_1 = \left(-\infty, -t_{n+m-2;\alpha}\right]$$

Onarpen eremua

$$S_0 = \left(-t_{n+m-2;\alpha}, +\infty\right)$$

7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea

- Banaketa normalak
 - 3. H_0 : $\mu_1 = \mu_2$ eta H_a : $\mu_1 < \mu_2$
 - C) σ_1 eta σ_2 ezezagunak baina ezberdinak.

Kontrasterako estatistikoa: $\frac{\left(\overline{X}_1 - \overline{X}_2\right)}{\left(\overline{S}_{1}^2 + \overline{S}_{2}^2\right)} \sim t_v \text{ non } v = -\frac{1}{2}$ n+1m+1

 $1-\alpha$

Eskualde kritikoa

$$S_1 = \left(-\infty, -t_{\upsilon;\alpha}\right]$$

Onarpen eremua:

$$S_0 = \left(-t_{\nu;\alpha}, +\infty\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesi-

Hipotesikontrasteen urratsak

Errore motak

p-balioa

7.5.2 <u>Bi banaketa independenteren batezbestekoen</u> <u>arteko kendurarako hipotesi-kontrastea</u>

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak p-balioa

Populazioa	H_0	$H_{\rm a}$	Kontrasterako estatistikoa	Eskualde kritikoa
Normalak independenteak σ_1 , σ_2 ezagunak	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 < \mu_2$ $\mu_1 > \mu_2$	$Z = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}$	
Normalak independenteak σ_1, σ_2 ezezagunak $\sigma_1 = \sigma_2$	$\mu_1 = \mu_2$	$\mu_1 < \mu_2$	$T = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right)}{S\sqrt{\frac{1}{n} + \frac{1}{m}}}$ $S = \sqrt{\frac{(n-1)S_{1}^{2} + (m-1)S_{2}^{2}}{n+m-2}}$	$egin{aligned} \left(-\infty,-t_{n+m-2;lpha_2'} ight] & \cup \left[t_{n+m-2;lpha_2'},+\infty ight) \\ & \left(-\infty,-t_{n+m-2;lpha} ight] \\ & \left[t_{n+m-2;lpha},+\infty ight) \end{aligned}$

7.5.2 <u>Bi banaketa independenteren batezbestekoen</u> arteko kendurarako hipotesi-kontrastea

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

	Populazioa	H_0	H_{a}	Kontrasterako estatistikoa	Eskualde kritikoa
	Normalak independenteak	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	$T = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{n} + \frac{S_{2}^{2}}{m}}}$	$\left(-\infty,-t_{v;{\scriptstyle\alpha\!/\!_{2}}}\right] \cup \left[t_{v;{\scriptstyle\alpha\!/\!_{2}}},+\infty\right)$
	•		$\mu_1 < \mu_2$		$\left(-\infty,-t_{_{V;lpha}} ight]$
			$\mu_1 > \mu_2$		$\left[t_{v;\alpha},+\infty\right)$

non
$$v = \frac{\left(\frac{S_1^2}{n} + \frac{S_2^2}{m}\right)^2}{\frac{\left(S_1^2/n\right)^2}{n+1} + \frac{\left(S_2^2/n\right)^2}{m+1}} - 2$$

7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea

- Edozein banaketa
 - 1. $H_0: \mu_1 = \mu_2$ eta $H_a: \mu_1 \neq \mu_2$
 - A) σ_1 eta σ_2 ezagunak. (n,m>15)

Kontrasterako estatistikoa: $\frac{\overline{X}_1 - \overline{X}_2}{\boxed{\sigma_{1}^2 + \sigma_{2}^2}} \sim N(0,1)$ **Eskualde kritikoa**

 $S_1 = \left(-\infty, -z_{\alpha/2}\right] \cup \left[z_{\alpha/2}, +\infty\right)$

Onarpen eremua

Sarrera

Oinarrizko kontzeptuak

Hipotesi-

Hipotesikontrasteen

urratsak

p-balioa

Errore motak

kontraste motak

7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea

- Edozein banaketa
 - 1. $H_0: \mu_1 = \mu_2$ eta $H_a: \mu_1 \neq \mu_2$
 - B) σ_1 eta σ_2 ezezagunak. (n,m>100)

Kontrasterako estatistikoa: $\frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\underline{S}_{1}^2 + \underline{S}_{2}^2}} \sim N(0,1)$

Eskualde kritikoa

$$S_1 = \left(-\infty, -z_{\alpha/2}\right] \cup \left[z_{\alpha/2}, +\infty\right)$$

Onarpen eremua

Sarrera

Oinarrizko

Hipotesi-

Hipotesikontrasteen urratsak

Errore motak

p-balioa

kontzeptuak

kontraste motak

7.5.2 <u>Bi banaketa independenteren batezbestekoen</u> arteko kendurarako hipotesi-kontrastea

 $1-\alpha$

- b) Edozein banaketa
 - 2. $H_0: \mu_1 = \mu_2$ eta $H_a: \mu_1 > \mu_2$
 - A) σ_1 eta σ_2 ezagunak. (n,m>15)

Kontrasterako estatistikoa: $\frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2 + \sigma_2^2}}} \sim N(0,1)$

Eskualde kritikoa

$$S_1 = [z_\alpha, +\infty)$$

Onarpen eremua

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

7.5.2 <u>Bi banaketa independenteren batezbestekoen</u> arteko kendurarako hipotesi-kontrastea

 $1-\alpha$

- b) Edozein banaketa
 - 2. $H_0: \mu_1 = \mu_2$ eta $H_a: \mu_1 > \mu_2$
 - B) σ_1 eta σ_2 ezezagunak. (n,m>100)

Kontrasterako estatistikoa: $\frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{1} + \frac{S_2^2}{2}}} \sim N(0,1)$

Eskualde kritikoa

$$S_1 = [z_{\alpha}, +\infty)$$

Onarpen eremua

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi

Errore motak

7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea

- Edozein banaketa
 - 3. H_0 : $\mu_1 = \mu_2$ eta H_a : $\mu_1 < \mu_2$
 - A) σ_1 eta σ_2 ezagunak. (n,m>15)

Kontrasterako estatistikoa: $\frac{\overline{X}_1 - \overline{X}_2}{\left[\sigma_{1}^2 + \sigma_{2}^2\right]} \sim N(0,1)$

 $1-\alpha$

Errore motak

p-balioa

Sarrera

Oinarrizko kontzeptuak

Hipotesi-

Hipotesikontrasteen urratsak

kontraste motak

Eskualde kritikoa

$$S_1 = (-\infty, -z_\alpha]$$

7.5.2 Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea

- Edozein banaketa
 - 3. H_0 : $\mu_1 = \mu_2$ eta H_a : $\mu_1 < \mu_2$
 - B) σ_1 eta σ_2 ezezagunak. (n,m>100)

Kontrasterako estatistikoa: $\frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\underline{S}_{1}^2 + \underline{S}_{2}^2}} \sim N(0,1)$

 $1-\alpha$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Errore motak

p-balioa

Eskualde kritikoa

$$S_1 = (-\infty, -z_\alpha]$$

$$S_0 = (-z_\alpha, +\infty)$$

7.5.2 <u>Bi banaketa independenteren batezbestekoen arteko kendurarako hipotesi-kontrastea</u>

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak p-balioa

Populazioa	H_0	H _a	Kontrasterako estatistikoa	Eskualde kritikoa
Edozein independenteak σ_1 , σ_2 ezagunak $(n, m > 15)$	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 < \mu_2$ $\mu_1 > \mu_2$	$Z = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}$	$\left(-\infty,-z_{lpha_{\!\!/2}} ight] \cup \left[z_{lpha_{\!\!/2}},+\infty ight) \ \left(-\infty,-z_{lpha} ight] \ \left[z_{lpha},+\infty ight)$
Edozein independenteak σ_1 , σ_2 ezezagunak $(n, m > 100)$	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$ $\mu_1 < \mu_2$ $\mu_1 > \mu_2$	$Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{S_1^2}{n} + \frac{S_2^2}{m}}}$	

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

7.5.3 <u>Populazio normalaren bariantzarako</u> hipotesi-kontrastea

1.
$$H_0$$
: $\sigma^2 = \sigma_0^2$ eta H_a : $\sigma^2 \neq \sigma_0^2$

A) μ ezaguna

Kontrasterako estatistikoa:
$$\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{\sigma_0^2} \sim \chi_n^2$$

Eskualde kritikoa

$$S_1 = \left[0, \chi_{n;1-\alpha/2}^2\right] \cup \left[\chi_{n;\alpha/2}^2, +\infty\right)$$

$$S_0 = \left(\chi_{n;1-\alpha/2}^2, \chi_{n;\alpha/2}^2\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

7.5.3 <u>Populazio normalaren bariantzarako</u> hipotesi-kontrastea

1.
$$H_0$$
: $\sigma^2 = \sigma_0^2$ eta H_a : $\sigma^2 \neq \sigma_0^2$

B) μ ezezaguna

Kontrasterako estatistikoa:
$$\frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$$

Eskualde kritikoa

$$S_1 = \left[0, \chi^2_{n-1;1-\frac{\alpha}{2}}\right] \cup \left[\chi^2_{n-1;\frac{\alpha}{2}}, +\infty\right)$$

$$S_0 = \left(\chi_{n-1;1-\alpha/2}^2, \chi_{n-1;\alpha/2}^2\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

p-balioa

7.5.3 <u>Populazio normalaren bariantzarako</u> hipotesi-kontrastea

2.
$$H_0: \sigma^2 = \sigma_0^2 \ eta \ H_a: \sigma^2 > \sigma_0^2$$

A) μ ezaguna

Kontrasterako estatistikoa: $\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{\sigma_n^2} \sim \chi_n^2$

Eskualde kritikoa

$$S_1 = \left[\chi_{n;\alpha}^2, +\infty\right)$$

$$S_0 = \left[0, \chi_{n;\alpha}^2\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

p-balioa

7.5.3 <u>Populazio normalaren bariantzarako</u> hipotesi-kontrastea

2.
$$H_0: \sigma^2 = \sigma_0^2 \ eta \ H_a: \sigma^2 > \sigma_0^2$$

B) μ ezezaguna

Kontrasterako estatistikoa:
$$\frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$$

Eskualde kritikoa

$$S_1 = \left[\chi^2_{n-1;\alpha}, +\infty\right)$$

$$S_0 = \left[0, \chi^2_{n-1;\alpha}\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

p-balioa

7.5.3 <u>Populazio normalaren bariantzarako</u> hipotesi-kontrastea

3.
$$H_0: \sigma^2 = \sigma_0^2 \ eta \ H_a: \sigma^2 < \sigma_0^2$$

A) μ ezaguna

Kontrasterako estatistikoa: $\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{\sigma_i^2} \sim \chi_n^2$

Eskualde kritikoa

$$S_1 = \left[0, \chi_{n;1-\alpha}^2\right]$$

$$S_0 = \left(\chi_{n;1-\alpha}^2, +\infty\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

p-balioa

7.5.3 <u>Populazio normalaren bariantzarako</u> hipotesi-kontrastea

3.
$$H_0: \sigma^2 = \sigma_0^2 \ eta \ H_a: \sigma^2 < \sigma_0^2$$

B) μ ezezaguna

Kontrasterako estatistikoa:
$$\frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$$

Eskualde kritikoa

$$S_1 = \left[0, \chi^2_{n-1;1-\alpha}\right]$$

$$S_0 = \left(\chi^2_{n-1;1-\alpha}, +\infty\right)$$

7.5.3 <u>Populazio normalaren bariantzarako</u> hipotesi-kontrastea

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

Populazioa	H_0	$H_{\rm a}$	Kontrasterako estatistikoa	Eskualde kritikoa
Normala μ ezaguna	$\sigma^2 = \sigma_0^2$	$\sigma^{2} \neq \sigma_{0}^{2}$ $\sigma^{2} < \sigma_{0}^{2}$ $\sigma^{2} > \sigma_{0}^{2}$	$\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma_0^2}$	
Normala μ ezezaguna	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$ $\sigma^2 < \sigma_0^2$ $\sigma^2 > \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$ \begin{bmatrix} 0, \chi_{n-1;1-\alpha/2}^2 \end{bmatrix} \cup \begin{bmatrix} \chi_{n-1;\alpha/2}^2, +\infty) \\ 0, \chi_{n-1;1-\alpha}^2 \end{bmatrix} \\ [\chi_{n-1;\alpha}^2, +\infty) $

7.5.3 <u>Populazio normalaren bariantzarako</u> hipotesi-kontrastea

Adibidea

2) Fabrikatzaile batek hornitzen duen materialaren erresistentziak banaketa normala du. Bere batezbestekoa 220 eta desbiderazio tipikoa 7.75 direla uste da. Bederatzi elementuko lagin bat hartu da:

 203
 229
 215
 220

 233
 208
 228
 209

- a) Kontrasta ezazu populazioaren batezbestekoa 220 dela (desbiderazio tipikoa edozein izanik) 0.05 adierazgarritasun maila erabili
- b) Kontrasta ezazu populazioaren desbiderazio tipikoa gehienez 7.75 dela (batezbestekoa edozein izanik), 0.05 adierazgarritasun maila erabili.

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

p-balioa

223

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

p-balioa

7.5.4 <u>Banaketa normaleko bi populazio</u> <u>independenteren bariantzen arteko</u> <u>zatidurarako hipotesi-kontrastea</u>

1.
$$H_0: \sigma_1^2 = \sigma_2^2$$
 eta $H_a: \sigma_1^2 \neq \sigma_2^2$

A) μ_1 eta μ_2 ezagunak

Kontrasterako estatistikoa:

Eskualde kritikoa

$$S_{1} = \left[0, F_{n,m;1-\frac{\alpha}{2}}\right] \cup \left[F_{n,m;\frac{\alpha}{2}}, +\infty\right)$$

$$S_0 = (F_{n,m;1-\alpha/2}, F_{n,m;\alpha/2})$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

p-balioa

- 7.5.4 <u>Banaketa normaleko bi populazio</u> <u>independenteren bariantzen arteko</u> <u>zatidurarako hipotesi-kontrastea</u>
- 1. $H_0: \sigma_1^2 = \sigma_2^2$ eta $H_a: \sigma_1^2 \neq \sigma_2^2$
- B) μ_1 eta μ_2 ezezagunak

Kontrasterako estatistikoa: $\frac{S_1^2}{S_2^2} \sim F_{n-1,m-1}$

Eskualde kritikoa

$$S_1 = \left[0, F_{n-1, m-1; 1-\frac{\alpha}{2}}\right] \cup \left[F_{n-1, m-1; \frac{\alpha}{2}}, +\infty\right)$$

$$S_0 = \left(F_{n-1,m-1;1-\alpha/2}, F_{n-1,m-1;\alpha/2}\right)$$

7.5.4 Banaketa normaleko populazio arteko independenteren bariantzen zatidurarako hipotesi-kontrastea

2.
$$H_0: \sigma_1^2 = \sigma_2^2$$
 eta $H_a: \sigma_1^2 > \sigma_2^2$

A) μ_1 eta μ_2 ezagunak

Kontrasterako estatistikoa:

 $1-\alpha$

Hipotesi-

kontraste motak

kontrasteen urratsak

Sarrera

Oinarrizko

Hipotesi-

kontzeptuak

Errore motak

p-balioa

Eskualde kritikoa

$$S_1 = \left[F_{n,m;\alpha}, +\infty \right)$$

$$S_0 = \left[0, F_{n,m;\alpha}\right)$$

7.5.4 <u>Banaketa normaleko bi populazio</u> <u>independenteren bariantzen arteko</u> zatidurarako hipotesi-kontrastea

 $1-\alpha$

2.
$$H_0: \sigma_1^2 = \sigma_2^2$$
 eta $H_a: \sigma_1^2 > \sigma_2^2$

B) μ_1 eta μ_2 ezezagunak

Kontrasterako estatistikoa: $\frac{S_1^2}{S_2^2} \sim F_{n-1,m-1}$

Eskualde kritikoa

$$S_1 = \left[F_{n-1,m-1;\alpha}, +\infty \right)$$

<u>Onarpen eremua</u>

$$S_0 = \left[0, F_{n-1, m-1; \alpha}\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi

Errore motak

7.5.4 <u>Banaketa normaleko bi populazio</u> <u>independenteren bariantzen arteko</u> zatidurarako hipotesi-kontrastea

3.
$$H_0: \sigma_1^2 = \sigma_2^2$$
 eta $H_a: \sigma_1^2 < \sigma_2^2$

A) μ_1 eta μ_2 ezagunak

Kontrasterako estatistikoa:

$\frac{\sum_{i=1}^{n} \frac{\left(x_{1i} - \mu_{1}\right)^{2}}{n}}{\sum_{i=1}^{m} \frac{\left(x_{2i} - \mu_{2}\right)^{2}}{m}} \sim F_{n,m}$

 $1-\alpha$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi

Errore motak

p-balioa

Eskualde kritikoa

$$S_1 = \left[0, F_{n,m;1-\alpha}\right]$$

$$S_0 = \left(F_{n,m;1-\alpha}, +\infty\right)$$

7.5.4 <u>Banaketa normaleko bi populazio</u> <u>independenteren bariantzen arteko</u> <u>zatidurarako hipotesi-kontrastea</u>

3.
$$H_0: \sigma_1^2 = \sigma_2^2$$
 eta $H_a: \sigma_1^2 < \sigma_2^2$

B) μ_1 eta μ_2 ezezagunak

Kontrasterako estatistikoa: $\frac{S_1^2}{S_2^2} \sim F_{n-1,m-1}$

Eskualde kritikoa

$$S_1 = \left[0, F_{n-1, m-1; 1-\alpha}\right]$$

Onarpen eremua

$$S_0 = \left(F_{n-1,m-1;1-\alpha}, +\infty\right)$$

Sarrera

Oinarrizko

Hipotesi-

Hipotesikontrasteen urratsak

Errore motak

p-balioa

kontzeptuak

kontraste motak

7.5.4 <u>Banaketa normaleko bi populazio</u> <u>independenteren bariantzen arteko</u> zatidurarako hipotesi-kontrastea

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

Populazioa	H_0	$H_{\rm a}$	Kontrasterako estatistikoa	Eskualde kritikoa
Normalak independenteak μ_1, μ_2 ezagunak	$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$ $\sigma_1^2 > \sigma_2^2$	$\frac{\sum_{i=1}^{m} n}{m \left(X_{2i} - \mu_2\right)^2}$	
Normalak independenteak μ_1, μ_2 ezezagunak	$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$ $\sigma_1^2 > \sigma_2^2$	$\frac{S_1^2}{S_2^2}$	$egin{aligned} egin{bmatrix} 0, F_{n-1,m-1;1-lpha_2} \end{bmatrix} & igcup iggl[F_{n-1,m-1;lpha_2}, +\infty iggr) \ iggl[0, F_{n-1,m-1;1-lpha} iggr] \ iggl[F_{n-1,m-1;lpha}, +\infty iggr) \end{aligned}$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

p-balioa

7.5.4 <u>Banaketa normaleko bi populazio independenteren bariantzen arteko zatidurarako hipotesi-kontrastea</u>

Adibidea

 Demagun bonbilen bizi iraupenak banaketa normala duela. 10 bonbila aukeratu dira euren bizi iraupena 1250 ordukoa eta kuasidesbiderazio tipikoa 115 izanik.

Bonbilak sortzeko erabiltzen den material berri bat probatu ondoren 13 bonbila hartu dira, hauen batezbesteko bizi iraupena 1340 ordu eta kuasidesbiderazio tipikoa 106 ordu izanik.

- a) Onar al daiteke 0.05 adierazgarritasun mailaz bariantzak filamentuak aldatu baino lehen eta aldatu ondoren berdinak direla?
- b) 0.05 adierazgarritasun mailaz material berria erabiliz bonbilen batezbesteko bizi itxaropena luzatu egin dela esan al dezakegu?

7.5.5 <u>Banaketa binomialaren proportziorako</u> hipotesi-kontrastea (n > 100)

1.
$$H_0: p = p_0 \text{ eta } H_a: p \neq p_0$$

Kontrasterako estatistikoa: $\frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} \sim N(0,1)$

Eskualde kritikoa

$$S_1 = \left(-\infty, -z_{\alpha/2}\right] \cup \left[z_{\alpha/2}, +\infty\right)$$

Onarpen eremua

$$S_0 = \left(-z_{\alpha/2}, z_{\alpha/2}\right)$$

Sarrera

Hipotesikontraste motak

Hipotesi-

kontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

7.5.5 Banaketa binomialaren proportziorako hipotesi-kontrastea (n > 100)

 $1-\alpha$

 α

2.
$$H_0: p = p_0 \ eta \ H_a: p > p_0$$

Kontrasterako estatistikoa: $\frac{\hat{p}-p_0}{\sqrt{p_0q_0}} \sim N(0,1)$

Eskualde kritikoa

$$S_1 = [z_{\alpha}, +\infty)$$

Onarpen eremua

$$S_0 = (-\infty, Z_\alpha)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Errore motak

7.5.5 <u>Banaketa binomialaren proportziorako</u> hipotesi-kontrastea (*n* >100)

3.
$$H_0: p = p_0$$
 eta $H_a: p < p_0$

Kontrasterako estatistikoa: $\frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} \sim N(0,1)$

Eskualde kritikoa

$$S_1 = (-\infty, -z_\alpha]$$

Onarpen eremua

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen

urratsak

p-balioa

Errore motak

7.5.5 <u>Banaketa binomialaren proportziorako</u> hipotesi-kontrastea (*n* >100)

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

Populazioa	H_0	$H_{\rm a}$	Kontrasterako estatistikoa	Eskualde kritikoa
	$p = p_0$	$p \neq p_0$	$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$	$\left[(-\infty, -z_{\alpha/2}] \cup \left[z_{\alpha/2}, +\infty \right) \right]$
Binomiala		$p < p_0$		$(-\infty, -z_{\alpha}]$
		$p > p_0$		$[z_{\alpha},+\infty)$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

p-balioa

7.5.6 <u>Bi banaketa binomial independenteren proportzioen arteko kendurarako hipotesi-kontrastea (n,m >100)</u>

1.
$$H_0: p_1 = p_2$$
 eta $H_a: p_1 \neq p_2$

Kontrasterako estatistikoa: $\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1 \hat{q}_1}{\hat{q}_1} + \frac{\hat{p}_2 \hat{q}_2}{\hat{q}_2}}} \sim N(0,1)$

Eskualde kritikoa

$$S_1 = \left(-\infty, -z_{\alpha/2}\right] \cup \left[z_{\alpha/2}, +\infty\right)$$

$$S_0 = \left(-z_{\alpha/2}, z_{\alpha/2}\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Errore motak

p-balioa

7.5.6 Bi banaketa binomial independenteren proportzioen arteko kendurarako hipotesi-kontrastea (n,m > 100)

2.
$$H_0: p_1 = p_2$$
 eta $H_a: p_1 > p_2$

Kontrasterako estatistikoa: $\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_1\hat{q}_1 + \hat{p}_2\hat{q}_2}} \sim N(0,1)$

 $1-\alpha$

 α

Eskualde kritikoa

$$S_1 = [z_{\alpha}, +\infty)$$

$$S_0 = (-\infty, z_\alpha)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Errore motak

p-balioa

7.5.6 Bi banaketa binomial independenteren proportzioen arteko kendurarako hipotesi-kontrastea (n,m > 100)

3.
$$H_0: p_1 = p_2$$
 eta $H_a: p_1 < p_2$

Kontrasterako estatistikoa: $\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_1\hat{q}_1 + \hat{p}_2\hat{q}_2}} \sim N(0,1)$

Eskualde kritikoa

$$S_1 = (-\infty, -z_\alpha]$$

$$S_0 = \left(-z_{\alpha}, +\infty\right)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak p-balioa

7.5.6 Bi banaketa binomial independenteren proportzioen arteko kendurarako hipotesi-kontrastea (n,m>100)

Populazioa	H_0	H_{a}	Kontrasterako estatistikoa	Eskualde kritikoa
		$p_1 \neq p_2$	$\hat{p}_1 - \hat{p}_2$	$\left[\left(-\infty, -z_{\alpha/2} \right] \cup \left[z_{\alpha/2}, +\infty \right) \right]$
Binomialak	$p_1 = p_2$	$p_1 < p_2$	$Z = \frac{1}{\sqrt{\hat{p}_1 \hat{q}_1 + \hat{p}_2 \hat{q}_2}}$	$\left(-\infty,-z_{\alpha}\right]$
		$p_1 > p_2$	\sqrt{n} m	$[z_{\alpha},+\infty)$

7.5.6 Bi banaketa binomial independenteren proportzioen arteko diferentziarako hipotesi-kontrastea (n,m>100)

Adibidea

4) Hiri bateko errepide-zirkulazioa oso txarra zenez, udaletxeak bi bidaiari edo gehiagoko ibilgailuak sustatzeko kanpaina bat egin du. Kanpaina baino lehen 2000 ibilgailutik 655 ibilgailuk bi edo bidaiari gehiago zituen eta kanpaina ondoren berriz, 1500 ibilgailu aukeratu ziren, hauetako 576-k bi edo bidaiari gehiago izanez.

Kanpainak bere helburua lortu du? 0.05 adierazgarritasun maila erabili

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

7.5.7 <u>Bi banaketa normal ez independenteren batezbestekoen arteko diferentziarako hipotesi-kontrastea</u>

$$D = X - Y \overline{d} = \sum_{i=1}^{n} \frac{d_i}{n} = \sum_{i=1}^{n} \frac{(x_i - y_i)}{n} S^2 = \sum_{i=1}^{n} \frac{(d_i - \overline{d})^2}{n - 1}$$

Oharra:

Parekatutako datuak direnean (lagin ez independenteak direnean) bikoteen diferentziak kalkulatu eta lagin bakarra dela kontsideratu.

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesi kontraste

Errore motak

p-balioa

Adibidea

5) Esperimentu kimiko bat egiteko nahasketan, esperimentuaren hasieran eta bukaeran azido azetiko kantitatea (mol) aztergai da. Zoriz sei nahasketa hartu dira eta dagozkien azido azetiko kantitateak neurtu dira.

Azido aztetikoa, hasieran	7.0	9.1	7.8	8.1	7.2	9.0
Azido aztetikoa, bukaeran	7.5	8.7	7.6	8.4	7.5	9.1

Normaltasunaren hipotesia suposatuz eta %2 adierazgarritasun-mailaz, onartuko al zenuke esperimentu kimikoaren hasieran eta bukaeran azido azetiko kantitate berdina delako hipotesia?

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

I. Motako errorea: E₁

H_o hipotesi nulua egia izanik, errefusatu egiten da.

- α adierazgarritasun maila: I. motako errorea egiteko probabilitatea. (H_0 errefusatu, H_0 egia izanik)
- $1-\alpha$ konfiantza-maila: H_0 hipotesi nulua egia izanik, H_0 onartzeko probabilitatea.

Adierazgarritasun maila (E_I errorearen probabilitatea)

$$\alpha = P(E_I) = P(H_0 \text{ errefusatu} | H_0 \text{ egia})$$

Konfiantza-maila (erabaki egokia)

$$1-\alpha = 1-P(E_I) = P(H_0 \text{ onartu} | H_0 \text{ egia})$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

II. Motako errorea: E_{II}

H_o hipotesi nulua gezurra izanik, onartu egiten da.

- $\underline{\beta}$: II. motako errorea egiteko probabilitatea. (H_0 onartu, H_0 gezurra izanik)
- <u>1-β kontrastearen-potentzia edo ahalmena</u>: H₀ hipotesi nulua gezurra izanik, H₀ errefusatzeko probabilitatea.

β (E_{II} errorearen probabilitatea)

$$\beta = P(E_{II}) = P(H_0 \text{ onartu} | H_0 \text{ gezurra})$$

1-β kontrastearen-potentzia edo ahalmena (erabaki egokia)

$$1 - \beta = 1 - P(E_{II}) = P(H_0 \text{ errefusatu} | H_0 \text{ gezurra})$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Erroreen arteko erlazioa

Hipotesi-kontraste batean I. motako errorea egiteko probabilitatea jaisterakoan, II. motako probabilitatea egiteko probabilitatea handitu egiten da eta alderantziz.

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Erroreen laburpena

	H_0 egia	H_0 gezurra
H_0 errefusatu	I. motako errorea	Erabaki egokia
H_0 onartu	Erabaki egokia	II. motako errorea

- \circ α adierazgarritasun-maila aldez aurretik finkatzea komeni da.
- \circ 1- β potentzia maximoa (edo bigarren motako errore minimoa)

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Adibidea

6) Irakasle batek egia edo gezurra motako 10 galderaz osatutako test bat planteatu du. Ikasleak zoriz erantzuten duten aztertzeko hurrengo erabaki-araua kontsideratu da:

"Erantzun egokien kopurua gutxienez 7 bada, ikasleak ez du zoriz erantzun"

Kalkula ezazu I. motako errorea egiteko probabilitatea.

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Adibidea

7) Txanpon bat egokia den (aurpegia lortzeko probabilitatea 0.5 den) edo ez aztertzeko, hurrengo erabaki-araua kontsideratu da:

"Txanpona 100 aldiz jaurti ondoren lortutako aurpegi kopurua 40 eta 60 artekoa bada (biak barne), txanpona egokia dela onartzen da."

- a) Kalkula ezazu H₀ hipotesi nulua egia izanik errefusatzeko probabilitatea
- b) Aurreko ataleko erabaki-araua irudikatu
- c) Kalkulatu II. Motako errorearen probabilitatea p=0.7 izanik
- d) Kalkula ezazu p=0.5 izanik, txanpona 100 aldiz jaurtitzean, gutxienez 55 aurpegi lortzeko probabilitatea.

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

p-balioa edo α_c adierazgarritasun-maila kritikoa

Estatistikoaren balioa eremu-kritikoan dagoeneko adierazgarritasun-maila minimoa da. Hau da, hipotesi nulua errefusatzeko (ez onartzeko) adierazgarritasun maila minimoa da.

$$p$$
 - balioa = $\alpha_c = \min \{ \alpha | T(x_1, x_2, ..., x_n) \in S_1 \}$

Oharra: p-balioa edo α_c adierazgarritasun-maila kritikoa

p-balioa hurrengo eran ere definitu daiteke:

Estatistikoaren balioa onarpen eremuan dagoeneko adierazgarritasunmaila maximoa da. Hau da, hipotesi nulua ez errefusatzeko (onartzeko) adierazgarritasun maila maximoa da.

p-balioa-ren erabilpena:

p-balioak hipotesi nulua errefusatzeko edo onartzeko balio du.

Adibidez, p-balioan oinarrituta α =0.05 duen hipotesi kontrastearen onarpen araua hurrengoa litzateke:

- p balioa < 0.05, H_0 errefusatu egiten da, konfiantza-maila %95 izanik.
- $p \text{balioa} \ge 0.05$, H_0 onar daiteke, konfiantza-maila %95 izanik.

Orokorrean:

- $p balioa < \alpha$, H_0 errefusatu egiten da, adierazgarritasun-maila α izanik.
- $p balioa \ge \alpha$, H_0 onar daiteke, adierazgarritasun-maila α izanik.

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

p-balioa zenbat eta txikiagoa izan, hipotesi nulua errefusatzeko ebidentzia gehiago daude:

- p balioa < 0.01, H_0 errefusatzeko ebidentzia asko daude
- $0.01 \le p$ balioa < 0.05, H_0 errefusatzeko ebidentzia sendoak daude
- $0.05 \le p$ balioa < 0.1, H_0 errefusatzeko ebidentzia gutxi daude
- $p \text{balioa} \ge 0.1$, ez dago H_0 errefusatzeko ebidentziarik

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

p-balioaren kalkulua

Demagun <u>kontrasterako estatistikoa S</u> dela eta estatistiko honek <u>laginean</u> hartzen duen balioa berriz, <u>s</u> dela. Orduan:

•
$$H_a: \theta \neq \theta_0 \implies \left[\text{p-balioa} = 2 \cdot \min \left\{ P\left(S \leq s \middle| \theta = \theta_0 \right), P\left(S \geq s \middle| \theta = \theta_0 \right) \right\} \right]$$

•
$$H_a: \theta > \theta_0 \implies \boxed{\text{p-balioa} = P(S \ge s | \theta = \theta_0)}$$

•
$$H_a: \theta < \theta_0 \implies \text{p-balioa} = P(S \le s | \theta = \theta_0)$$

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Adibidea

8) Demagun bonbilen bizi iraupenak banaketa normala duela. 10 bonbila aukeratu dira euren batezbesteko bizi iraupena 1250 ordukoa eta kuasidesbiderazio tipikoa 115 izanik.

Bonbilak sortzeko erabiltzen den material berri bat probatu ondoren 13 bonbila hartu dira, hauen batezbesteko bizi iraupena 1340 ordu eta kuasidesbiderazio tipikoa 106 ordu izanik. Demagun bariantzak filamentuak aldatu baino lehen eta aldatu ondoren berdinak direla.

0.05 adierazgarritasun mailaz, material berria erabiliz bonbilen batezbesteko bizi itxaropena luzatu egin dela esan al dezakegu? Kalkula ezazu kontrastearen p-balioa.

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Adibidea

- 9) Lantegi batek ekoiztutako kableek jasan dezaketen tentsioek banaketa normala dute. Kableek 1800 batezbestekoa eta 100 desbiderazio tipikoa dutela dakigu. Makinarian egindako mantentze lanen ostean ekoiztutako kableek jasan dezaketen batezbesteko tentsioa altuagoa den susmoa dago. Susmo hau egiaztatzeko, 50 kable hartu dira, hauek jasan dezaketen batezbesteko tentsioa 1850 izanik.
 - a) 0.01 adierazgarritasun maila erabiliz, esan al daiteke orain kableen kalitatea hobetzen dela (tentsioari dagokionez)?
 - b) Kalkula ezazu p-balioa $\bar{x}=1850$ izanik.

Sarrera

Oinarrizko kontzeptuak

Hipotesikontraste motak

Hipotesikontrasteen urratsak

Zenbait hipotesikontraste

Errore motak

p-balioa

Adibidea

- 10) Fruitu mota baten pisua neurtzeko 10 fruituz osatutako lagin bat hartu da, euren kuasibariantza 402 izanik. Demagun fruituen pisuak banaketa normala duela.
 - a) 0.05 adierazgarritasun maila erabiliz, populazioaren bariantza 1000 dela errefusa al daiteke?
 - b) Kalkula ezazu p-balioa edo adierazgarritasun maila kritikoa.

