Computational Bayesian data analysis

Bruno Nicenboim / Shravan Vasishth 2020-04-29

Bayesian Regression Models using 'Stan': brms

Examples 1: A single participant pressing a button repeatedly (A simple linear model)

Prior predictive distributions

The influence of priors: sensitivity analysis

Posterior predictive distributions

Comparing different likelihoods: The log-normal likelihood

- Deriving the posterior distribution analytically is possible for only a very limited number of cases.
- The denominator, the marginal likelihood, requires us to compute a possibly intractable integral:

$$p(\Theta|y) = \frac{p(y|\Theta) \cdot p(\Theta)}{\int_{\Theta} p(y|\Theta) \cdot p(\Theta)d\Theta} \tag{1}$$

Alternative: Deriving the posterior through sampling

We want to derive the posterior distribution of the Cloze probability of "umbrella", θ :

- Data: a word (e.g., "umbrella") was answered 80 out of 100 times,
- · Likelihood: a binomial distribution
- Prior for θ : Beta(a=4,b=4)

We sample from the posterior distribution of θ :

- · We use a probabilistic programming language,
- given enough samples we will have a good approximation of the real posterior distribution,
- say we got 20000 samples from the posterior distribution of the Cloze probability, θ :

0.782, 0.826, 0.788, 0.671, 0.712, 0.776, 0.819, 0.75, 0.8, 0.817, 0.814, 0.863, 0.782, 0.818, 0.753, 0.743, 0.782, 0.772, 0.785, 0.724, ...

The approximation of the posterior looks quite similar to the real posterior.¹

Figure 1: Histogram of the samples of θ from the posterior distribution calculated through sampling in gray; density plot of the exact posterior in red.

¹The difference between the true and the approximated mean and variance are -0.0002 and 0.000005 respectively

Computational Bayesian data analysis:

Why has Bayes suddenly gained in prominence since the 2000s?

- increase in computing power
- appearance of probabilistic programming languages: WinBUGS (Lunn et al. 2000), JAGS (Plummer 2016), and more recently pymc3
 (Salvatier, Wiecki, and Fonnesbeck 2016), Stan (Carpenter et al. 2017), INLA (Blangiardo and Cameletti 2015).

Easier alternatives based on Stan:

- rstanarm (Goodrich et al. 2018)
- brms (Bürkner 2019)

Bayesian Regression Models

using 'Stan': brms

Load the following:

```
set.seed(42)
library(MASS)
## be careful to load dplyr after MASS
library(dplyr)
library(tidyr)
library(purrr)
library(readr)
library(ggplot2)
library(brms)
## Save compiled models:
rstan_options(auto_write = TRUE)
## Parallelize the chains using all the cores:
options(mc.cores = parallel::detectCores())
library(bayesplot)
library(tictoc)
```

simple linear model)

Examples 1: A single participant

pressing a button repeatedly (A

We have data from a participant repeatedly pressing the space bar as fast as possible, without paying attention to any stimuli.

Data:

reaction times in milliseconds in each trial

Question:

How long does it take to press a key when there is no decision involved?

Assumptions:

- 1. There is a true underlying time, μ , that the participant needs to press the space bar.
- 2. There is some noise in this process.
- 3. The noise is normally distributed (this assumption is questionable given that reaction times are generally skewed; we fix this assumption later).

Formal model:

Likelihood for each observation n:

$$rt_n \sim Normal(\mu, \sigma)$$
 (2)

(Bad) priors:

$$\mu \sim Uniform(0,60000)$$

$$\sigma \sim Uniform(0,2000)$$
(3)

Fitting the model

We'll first load the data from data/button_press.csv:

```
df noreading data <-
  read_csv("./data/button_press.csv")
df noreading data
## # A tibble: 361 x 2
##
        rt trialn
     <dbl> <dbl>
##
## 1
      141
## 2
      138
      128
## 3
     132
## 4
## 5
      126
                5
## #
       rrith 256 mara rarra
```

```
ggplot(df_noreading_data, aes(rt)) +
  geom_density() +
  ggtitle("Button-press data")
```


Specifying the model in brms

```
fit press <- brm(rt ~ 1,
  data = df_noreading_data,
  family = gaussian(),
  prior = c(
    prior(uniform(0, 60000), class = Intercept),
    prior(uniform(0, 2000), class = sigma)
  ),
  chains = 4.
  iter = 2000.
  warmup = 1000
```

Sampling and convergence in a nutshell

- 1. Chains start in random locations;
- 2. in each iteration they take one sample each;
- 3. samples at the beginning do not belong to the posterior distribution;
- 4. eventually, the chains end up in the vicinity of the posterior distribution;
- 5. from that point onwards the samples will belong to the posterior.

Figure 4: Trace plot of a model that did not converge.

```
posterior_samples(fit_press) %>% str()

## 'data.frame': 4000 obs. of 3 variables:
## $ b_Intercept: num 168 171 169 172 167 ...
## $ sigma : num 24.4 25.4 24 25.9 26.1 ...
## $ lp__ : num -1688 -1689 -1689 -1691 -1689 ...
```

plot(fit_press)


```
fit_press
# posterior summary(fit press) is also useful
## Family: gaussian
##
  Links: mu = identity; sigma = identity
## Formula: rt ~ 1
     Data: df_noreading_data (Number of observations: 361)
##
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
           total post-warmup samples = 4000
##
##
## Population-Level Effects:
            Estimate Est.Error 1-95% CI u-95% CI Rhat
##
## Intercept 168.64 1.33 166.06 171.35 1.00
         Bulk_ESS Tail_ESS
##
## Intercept 3384
                        2336
##
## Family Specific Parameters:
        Estimate Est.Error 1-95% CI u-95% CI Rhat
##
         25.00 0.95 23.23 26.93 1.00
## sigma
        Bulk ESS Tail ESS
##
```

Notice that the Estimate is just the mean of the posterior sample, and CI are the 95% quantiles:

```
posterior_samples(fit_press)$b_Intercept %>%
 mean()
## [1] 169
posterior samples(fit press)$b Intercept %>%
  quantile(c(0.025, .975))
## 2.5% 98%
## 166 171
```

Important questions

- 1. What information are the priors encoding? Do the priors make sense?
- 2. Does the likelihood assumed in the model make sense for the data?

Prior predictive distributions

Prior predictive distributions

We want to know the density $p(\cdot)$ of a data vector $y=\langle y_1,\dots,y_n\rangle$, given a vector of priors Θ (e.g., $\Theta=\langle \mu,\sigma\rangle$)

The prior predictive density is:

$$p(y) = \int p(y|\Theta)p(\Theta) d\Theta$$
 (4)

We avoid doing the integration analytically; we will use Monte Carlo integration. We repeat the following:

- 1. Take one sample from each of the priors.
- 2. Plug those samples in the likelihood and generate a dataset

$$y_{pred} = \langle y_{pred}, \dots, y_{pred} \rangle$$
.

```
normal_predictive_distribution <- function(mu_samples, sigma_samples, N_obs) {
  # empty data frame with headers:
  df_pred <- tibble(</pre>
    trialn = numeric(0),
   rt_pred = numeric(0),
    iter = numeric(0)
  # i iterates from 1 to the length of mu samples.
  # which we assume is identical to
  # the length of the sigma samples:
  for (i in seq_along(mu_samples)) {
    mu <- mu_samples[i]</pre>
    sigma <- sigma samples[i]</pre>
    df_pred <- bind_rows(</pre>
      df pred.
      tibble(
        trialn = seq_len(N_obs), # 1, 2,... N_obs
        rt_pred = rnorm(N_obs, mu, sigma),
        iter = i
  df_pred
```

This approach works, but it's quite slow:

```
tic()
N_samples <- 1000
N obs <- nrow(df noreading data)
mu_samples <- runif(N_samples, 0, 60000)</pre>
sigma samples <- runif(N samples, 0, 2000)
normal_predictive_distribution(mu_samples = mu_samples,
                             sigma_samples = sigma_samples,
                              N \text{ obs} = N \text{ obs}
toc()
## # A tibble: 361,000 x 3
##
    trialn rt_pred iter
##
     <dbl> <dbl> <dbl>
## 1
     1 44587. 1
## 2 2 48271. 1
## 3 3 50291. 1
## 4 48784.
## 5 5 49350.
## # ... with 3.61e+05 more rows
## 4.762 sec elapsed
```

A more efficient version:

```
normal predictive distribution fast <- function(mu samples.
                                                sigma_samples,
                                                N obs) {
 # map dfr works similarly to lapply, it essentially runs
 # a for-loop, and builds a dataframe with the output.
 # We iterate over the values of mu samples and sigma samples
  # simultaneously, and in each iteration we bind a new
  # data frame with N obs observations.
 map2_dfr(mu_samples, sigma_samples, function(mu, sigma) {
   tibble(
     trialn = seq_len(N_obs),
     rt pred = rnorm(N obs. mu. sigma)
   )}. .id = "iter") %>%
    # .id is always a string and needs to be converted to a number
   mutate(iter = as.numeric(iter))
```

```
tic()
(prior_pred <- normal_predictive_distribution_fast()</pre>
 mu_samples = mu_samples,
  sigma_samples = sigma_samples,
 N obs))
toc()
## # A tibble: 361,000 x 3
##
     iter trialn rt_pred
##
    <dbl> <int> <dbl>
## 1
              1 48513.
## 2 1 2 46243.
## 3 1
              3 48812.
## 4 1 4 49650.
## 5 1
              5 49096.
## # ... with 3.61e+05 more rows
## 0.301 sec elapsed
```

```
prior_pred %>%
filter(iter <= 12) %>%
ggplot(aes(rt_pred)) +
geom_histogram() +
facet_wrap(~iter, ncol = 3)
```


Figure 5: Eighteen samples from the prior predictive distribution.

Distribution of statistics

```
## # A tibble: 3,000 x 3
##
   iter stat
                  rt
##
    <dbl> <dbl> <dbl>
## 1
    1 min_rt 43017.
## 2 1 max_rt 52560.
## 3 1 average rt 47753.
## 4
       2 min rt
                13331.
44 5
       0 ----
                 2222
```

```
prior_stat %>%
    ggplot(aes(rt)) +
    geom_histogram(binwidth = 500) +
    facet_wrap(~stat, ncol = 1)
```


Figure 6: Prior predictive distribution of averages, maximum, and minimum values.

Why are our distributions so bad?

We used much less prior information than what we really had: our priors are clearly not very realistic given what we know about reaction times for such a button pressing task.

What priors should we have chosen?

The influence of priors:

sensitivity analysis

Types of priors

- 1. Flat uninformative priors: priors as uninformative as possible.
- 2. **Regularizing priors**: priors that downweight extreme values (that is, they provide regularization), they are not very informative, and mostly let the likelihood dominate in determining the posteriors.
- 3. **Principled priors**: priors that encode all (or most of) the theory-neutral information that we do have.
- 4. **Informative priors**: There are cases where we have a lot of prior knowledge, and not much data.

Revisiting the button-pressing example with different priors

What would happen if we use even wider priors for the model?

$$\mu \sim Uniform(-10^{10}, 10^{10}) \\ \sigma \sim Uniform(0, 10^{10})$$
 (5)

In brms:

```
fit_press_unif <- brm(rt ~ 1,
  data = df_noreading_data,
  family = gaussian(),
  prior = c(
      prior(uniform(-10^10, 10^10), class = Intercept),
      prior(uniform(0, 10^10), class = sigma))
)</pre>
```

The output of the model is virtually identical!

fit_press_unif

```
## Family: gaussian
##
  Links: mu = identity; sigma = identity
## Formula: rt ~ 1
##
     Data: df noreading data (Number of observations: 361)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
           total post-warmup samples = 4000
##
##
## Population-Level Effects:
            Estimate Est.Error 1-95% CI u-95% CI Rhat
##
## Intercept 168.63 1.29 166.04 171.16 1.00
##
          Bulk_ESS Tail_ESS
## Intercept 3371
                        2578
##
## Family Specific Parameters:
        Estimate Est.Error 1-95% CI u-95% CI Rhat
##
           24.99 0.95 23.21 26.93 1.00
## sigma
        Bulk ESS Tail ESS
##
            3654
                     2897
## sigma
##
```

What happens if we use very informative priors and they are off?

```
\mu \sim Normal(400, 10)
\sigma \sim Normal_{+}(100, 10)
(6)
```

```
fit press inf <- brm(rt ~ 1,
  data = df noreading data,
  family = gaussian().
  prior = c(
    prior(normal(400, 10), class = Intercept),
    # brms knows that SD needs to be bounded by zero:
    prior(normal(100, 10), class = sigma)
```

Even in this case, the new estimates are just a couple of milliseconds away from our previous estimates:

fit_press_inf

```
Family: gaussian
##
    Links: mu = identity; sigma = identity
## Formula: rt ~ 1
##
     Data: df noreading data (Number of observations: 361)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
           total post-warmup samples = 4000
##
## Population-Level Effects:
            Estimate Est.Error 1-95% CI u-95% CI Rhat
##
## Intercept 172.93 1.40 170.16 175.78 1.00
         Bulk_ESS Tail_ESS
##
## Intercept 2761
                        2607
##
## Family Specific Parameters:
##
        Estimate Est.Error 1-95% CI u-95% CI Rhat
           26.07 1.07 24.11
                                      28.28 1.00
## sigma
##
        Bulk ESS Tail ESS
## sigma
            2866
                     2621
```

This doesn't mean that priors never matter:

- When there is enough data for a certain parameter, the likelihood will dominate
- If we are not sure about the extent to which the posterior is influenced by our priors, we can do a *sensitivity analysis* (for a published example in psycholinguistics, see Vasishth et al. 2013).
- We can use prior predictive distributions to see if we are on the right order of magnitude for our priors

Posterior predictive distributions

Once we have the posterior distribution $p(\Theta \mid y)$, we can derive the predictions based on this distribution:

$$p(D_{pred} \mid y) = \int_{\Theta} p(D_{pred} \mid \Theta) p(\Theta \mid y) d\Theta$$
 (7)

Here we can also avoid the integration, and we can even use the same function that we created before:

```
N_obs <- nrow(df_noreading_data)</pre>
mu samples <- posterior samples(fit press)$b Intercept</pre>
sigma_samples <- posterior_samples(fit_press)$sigma
(normal predictive distribution fast(
  mu_samples = mu_samples,
  sigma samples = sigma samples,
 N obs
))
## # A tibble: 1,444,000 x 3
##
      iter trialn rt_pred
##
     <dbl> <int>
                    <dbl>
## 1
                   214.
## 2
                   136
## 3
                    195.
## 4
                    125.
## 5
                5
                     159.
## # with 1 444e+06 more rows
```

Descriptive adequacy/posterior predictive checks

Could the current data have been generated by our model?

pp_check(fit_press, nsamples = 11, type = "hist")

pp_check(fit_press, nsamples = 100)

Comparing different likelihoods:

The log-normal likelihood

If y is log-normally distributed, this means that $\log(y)$ is normally distributed.²

$$\log(y) \sim Normal(\mu, \sigma)$$

$$y \sim \exp(Normal(\mu, \sigma))$$

$$y \sim LogNormal(\mu, \sigma)$$
 (8)

The log-normal distribution is again defined using μ and σ , but these correspond to the mean and standard deviation of the normally distributed logarithm of the data y: $\log(y)$.

 $^{^{2}}$ In fact, $\log_{e}(y)$ or $\ln(y)$, but we'll write it as just log()

Re-fitting a single participant pressing a button repeatedly with a log-normal likelihood

New likelihood:

$$rt_n \sim LogNormal(\mu, \sigma)$$
 (9)

New scale for the priors:

$$\mu \sim Uniform(0,8) \\ \sigma \sim Uniform(0,1)$$
 (10)

Because the parameters are in a different scale than the dependent variable, their interpretation changes:

- The location, μ : In our previous linear model, μ represented the grand mean (or the grand median, or grand mode, since in a normal distribution the three coincide). But now, the grand mean is $\exp(\mu + \sigma^2/2)$ and the grand median is $\exp(\mu)$.
- The scale, σ : This is the standard deviation of the normal distribution of $\log(y)$. The standard deviation of a log-normal distribution with location μ and scale σ will be $\exp(\mu + \sigma^2/2) \times \sqrt{(\exp(\sigma^2) 1)}$.

Prior predictive distributions

```
N samples <- 1000
N obs <- nrow(df noreading data)
mu samples <- runif(N samples, 0, 8)</pre>
sigma samples <- runif(N samples, 0, 1)
prior_pred_ln <- exp(normal_predictive_distribution_fast())</pre>
  mu samples = mu samples,
  sigma samples = sigma samples,
  N obs
```

Distribution of statistics

```
(prior_pred_stat_ln <-
prior_pred_ln %>%
group_by(iter) %>%
summarize(
  min_rt = min(rt_pred),
  max_rt = max(rt_pred),
  average_rt = mean(rt_pred),
  median_rt = median(rt_pred)
) %>%
pivot_longer(cols = ends_with("rt"), names_to = "stat", values_to = "rt"))
```

```
## # A tibble: 2,840 x 3

## iter stat rt

## <dbl> <chr> <dbl> <hr> ## 1 2.72 min_rt 106.

## 2 2.72 max_rt 154.

## 3 2.72 average_rt 130.

## 4 2.72 median_rt 131.

## 5 7.39 min_rt 2.99

## # ... with 2,835 more rows
```

```
prior_pred_stat_ln %%
ggplot(aes(rt)) +
scale_x_continuous("Reaction times in ms",
    trans = "log", breaks = c(0.001, 1, 100, 1000, 10000, 100000)) +
geom_histogram() +
facet_wrap(~stat, ncol = 1)
```


Figure 9: Prior predictive distribution of averages, maximum, and minimum value of the log-normal model; the x-axis is log-transformed.

Better regularizing priors for the log-normal model

$$rt_n \sim LogNormal(\mu,\sigma)$$
 (11)

$$\mu \sim Normal(6, 1.5)$$
 $\sigma \sim Normal_{+}(0, 1)$ (12)

Median effect for our new priors:

```
c(
  lower = exp(6 - 2 * 1.5),
  higher = exp(6 + 2 * 1.5)
)

## lower higher
## 20 8103
```

Prior predictive distributions

```
N samples <- 1000
N obs <- nrow(df noreading data)
mu samples <- rnorm(N samples, 6, 1.5)
sigma samples <- rtnorm(N samples, 0, 1, a = 0)
(prior_pred_ln_better <- exp(normal_predictive_distribution_fast())</pre>
  mu samples = mu samples,
  sigma_samples = sigma_samples,
 N obs
)))
## # A tibble: 361,000 x 3
##
     iter trialn rt_pred
##
    <dbl> <dbl> <dbl>
## 1 2.72 2.72 261.
## 2 2.72 7.39 248.
## 3 2.72 20.1 441.
## 4 2.72 54.6 841.
## 5 2.72 148. 2975.
## # with 3 61e+05 more rows
```

```
(prior pred stat better ln <- prior pred ln better %>%
  group_by(iter) %>%
  summarize(
    min_rt = min(rt_pred),
    max_rt = max(rt_pred),
    average_rt = mean(rt_pred),
    median rt = median(rt pred)
  ) %>%
  pivot longer(
    cols = ends_with("rt"),
    names to = "stat", values to = "rt"
  ))
## # A tibble: 2,840 x 3
                           rt.
```

```
##
     iter stat
##
    <dbl> <chr>
                      <dbl>
## 1 2.72 min_rt
                       4.33
## 2 2.72 max_rt
                    9351.
     2.72 average_rt 734.
## 3
## 4 2.72 median rt
                     344.
## 5 7.39 min rt
                      23.8
## # ... with 2,835 more rows
```


Figure 10: Prior predictive distribution of averages, maximum, and minimum value of the log-normal model with better priors.

brms model with reasonable priors:3

```
fit_press_ln <- brm(rt ~ 1,
  data = df_noreading_data,
  family = lognormal(),
  prior = c(
    prior(normal(6, 1.5), class = Intercept),
    prior(normal(0, 1), class = sigma)
)
)</pre>
```

³Notice that we need to specify that the family is lognormal()

```
## Family: lognormal
    Links: mu = identity; sigma = identity
##
## Formula: rt ~ 1
     Data: df noreading data (Number of observations: 361)
##
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
          total post-warmup samples = 4000
##
## Population-Level Effects:
           Estimate Est.Error 1-95% CI u-95% CI Rhat
##
## Intercept 5.12
                       0.01
                               5.10
                                       5.13 1.00
##
           Bulk_ESS Tail_ESS
## Intercept 3377
                       2768
##
## Family Specific Parameters:
       Estimate Est.Error 1-95% CI u-95% CI Rhat
##
         0.13 0.01 0.13 0.15 1.00
## sigma
##
       Bulk ESS Tail ESS
## sigma
           2919
                   2201
##
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
## is a crude measure of effective sample size, and Rhat is the potential
```

fit press ln

How long does it take to press the space bar in milliseconds?

```
estimate_ms <- exp(posterior_samples(fit_press_ln)$b_Intercept)
c(mean = mean(estimate_ms), quantile(estimate_ms, probs = c(.025, .975)))
## mean 2.5% 98%
## 167 165 169</pre>
```

Posterior predictive checks

pp_check(fit_press_ln, nsamples = 100)

Figure 11: Posterior predictive distribution of $fit_noreading_ln$

Are the posterior predicted data now more similar to the real data, compared to the case where we had a Normal likelihood?

We suspect that the normal distribution would generate reaction times that are too fast (since it's symmetrical) and that the log-normal distribution may capture the long tail better than the normal model.

```
pp_check(fit_press, type = "stat", stat = "min") +
    ggtitle("Normal model")
pp_check(fit_press_ln, type = "stat", stat = "min") +
    ggtitle("Log-normal model")
```


Figure 12: Distribution of minimum values in a posterior predictive check. The minimum in the data is 110 ms.

```
pp_check(fit_press, type = "stat", stat = "max") +
    ggtitle("Normal model")
pp_check(fit_press_ln, type = "stat", stat = "max") +
    ggtitle("Log-normal model")
```


Figure 13: Distribution of maximum values in a posterior predictive check. The maximum in the data is 409 ms.

What did we do?

- fitted and interpreted a normal model
- looked at the effect of priors:
 - prior predictive distributions
 - sensitivity analysis
- looked at the fit of the posterior:
 - posterior predictive distribution (descriptive adequacy)
- fitted and interpreted a log-normal model
- compared a normal model with a log-normal one

References

Blangiardo, Marta, and Michela Cameletti. 2015. Spatial and Spatio-Temporal Bayesian models with R-INLA. John Wiley & Sons.

Bürkner, Paul-Christian. 2019. *Brms: Bayesian Regression Models Using 'Stan'*. https://CRAN.R-project.org/package=brms.

Carpenter, Bob, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. "Stan: A Probabilistic Programming Language." *Journal of Statistical Software* 76 (1). Columbia Univ., New York, NY (United States); Harvard Univ., Cambridge, MA (United States).

Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2018. "Rstanarm: Bayesian Applied Regression Modeling via Stan."