Grupos de Lie y álgebras de Lie - 2021

Práctico 1

- 1. Probar que el conjunto $T^u(n,\mathbb{R})$ de matrices reales $n \times n$ triangulares superiores es un grupo de Lie. Hallar su dimensión y la correspondiente álgebra de Lie.
- 2. Probar que el conjunto de matrices reales $n \times n$ triangulares superiores cuyos elementos de la diagonal son todos 1 es un grupo de Lie. Hallar su dimensión y la correspondiente álgebra de Lie.
- 3. Dados dos grupos de Lie G, H con álgebras de Lie \mathfrak{g} , \mathfrak{h} , probar que la variedad producto $G \times H$ con la estructura de grupo producto: $(g,h) \cdot (g',h') := (gg',hh')$ es un grupo de Lie. Mostrar que su álgebra de Lie es (isomorfa a) $\mathfrak{g} \times \mathfrak{h}$.
- 4. Consideramos la variedad producto $K = GL(n, \mathbb{R}) \times \mathbb{R}^n$. Probar que la aplicación:

$$K \times K \to K$$
, $(A,s) \cdot (B,t) := (AB, As + t)$,

define una estructura de producto en K, tal que K es un grupo de Lie.

Dicho grupo recibe el nombre de *grupo de movimientos afines* de \mathbb{R}^n , pues si identificamos $(A,t) \in K$ con el movimiento afín de \mathbb{R}^n , $x \mapsto Ax + t$, se tiene un isomorfismo de grupos.

5. Sea V un espacio vectorial con base $\{X,Y\}$. Sea $[\cdot,\cdot]$ el corchete definido por

$$[X,X] = [Y,Y] = 0,$$
 $[X,Y] = Y,$ $[Y,X] = -Y,$

y extendido bilinealmente a todo V. Probar que V con $[\cdot,\cdot]$ es un álgebra de Lie.