PUP-TAGUIG FACULTY LOADING AND SCHEDULING SYSTEM

Software Test Plan Version 1.0

Prepared by: UNTITLED

Malaluan, Kyla Rica C.

Martinez, Emmanuel

Naoe, Adrian B.

Rasquero, Via Clariz A.

August 25, 2024

Table of Content

1.Introduction	4
2. Test Items.	4
3. Software Risk Issues.	6
4. Features to be Tested	7
5. Features not to be Tested	8
6. Test Approach.	8
7. Item Pass/Fail Criteria	9
8. Suspension Criteria and Resumption Requirement	9
9. Test Deliverables.	10
10. Remaining Test Tasks	10
11. Environmental Needs	10
12. Staffing and Training Needs	11
13. Responsibilities	11
14. Schedule	11
15. Planning Risks and Contingencies	12
16. Approvals	12
17. Glossary	12

Revision History

Version	Name	Reason for Changes	Date
1.0		Initial Draft	August 25, 2024

Approved By

Name	Signature	Department	Date
Malaluan, Kya Rica		BSIT – Quality	
		Assurance Developer	
Martinez, Emmanuel		BSIT – Project	
		Manager Developer	
Naoe, Adrian		BSIT – Technical Lead	
		Developer	
Rasquero, Via Clariz		BSIT – Technical	
		Writer Developer	

1. Introduction

This is the Software Test Plan document for the PUP Taguig Faculty Loading and Scheduling System (PUPT FLSS). It contains a detailed and executable strategy for conducting testing activities of the system. Its main focus is to test the functionality of the PUPT Faculty Loading and Scheduling System. This includes the course scheduling, faculty workload management, report generation, and system performance under normal and peak conditions.

2. Test Items

This activity focuses on the following modules and functionalities:

- 1. Scheduling Module
- 2. Program Management
- 3. Admin Management
- 4. Faculty Management
- 5. Curriculum Management
- 6. Rooms Management
- 7. Reports Generation

Item to Test	Test Description	Responsibility		
	Scheduling Module			
Scheduling Module	Verify that the system allows	To resolve any conflicts or		
	administrators to schedule	errors in the scheduling process		
	classes without conflicts in time,	and ensure synchronization		
	room availability, or faculty	across modules.		
	assignments. Ensure the			
	scheduling adheres to			
	institutional policies and			
	displays conflicts or overlaps			
	correctly to the user.			
	Program Management			
Program Management	To verify that new programs can	To correct any data		
	be created, updated, or deleted	inconsistency issues and		
	correctly, ensuring data integrity	maintain the integrity of		
	and consistency across all	program information.		
	associated records.			
	Admin Management			
Admin Management	To check if admin roles are	To fix any unauthorized access		
	correctly assigned and that	or permission issues and ensure		
	permissions are enforced	proper role assignment.		
	according to predefined policies,			
	including access to sensitive			
	data and management			
	capabilities.			
	Faculty Management			
Faculty Management	To ensure that faculty details are	To address any discrepancies in		
	accurately maintained and that	faculty assignments and		
	faculty can be correctly assigned	maintain accurate faculty		
	to courses and schedules without	records.		
	conflicts.			
	_1	l .		

Curriculum Management				
Curriculum Management	To confirm that courses and	To resolve any issues with		
	curriculums can be set up,	curriculum updates and ensure		
	modified, or deleted as per	data consistency.		
	requirements, and that these			
	changes are reflected across all			
	relevant modules.			
	Rooms Management			
Rooms Management	To validate that rooms are	To correct any room allocation		
	correctly allocated for classes,	errors and ensure accurate room		
	exams, and events, without	availability status.		
	conflicts or overbooking, and			
	that room availability is			
	accurately reflected in the			
	system.			
	Reports Generation			
Reports Generation	To verify that reports are	To address any errors in report		
	generated accurately, reflecting	generation and ensure that data		
	up-to-date data from all	is correctly presented.		
	modules, and are available in the			
	required formats for			
	stakeholders.			

3. Software Risk Issues

Several factors are outside the control of the PUP Taguig Faculty Loading and Scheduling System but have direct impacts on its functionality and performance and must be monitored closely:

- The system's performance, including load times and data synchronization, may be affected by the speed and stability of the internet connection, as it is a web-based application.
- The system is optimized for use with modern web browsers like Google Chrome and Microsoft Edge; using unsupported or outdated browsers may cause slower performance or unexpected behavior.

- Devices not meeting the minimum hardware and software requirements (e.g., sufficient RAM, processor speed, or storage) may experience slow performance, crashes, or other operational issues.
- Regular backups of the database are required to prevent data loss in the event of a system failure, hardware malfunction, or unexpected shutdown.
- The system's user authentication relies on secure email and password combinations; compromised credentials may lead to unauthorized access, potentially impacting data privacy and security.
- Unexpected changes in university policies, academic calendars, or regulations could require immediate system updates, posing a risk to the stability and integrity of the system until the changes are implemented.
- Integration issues may arise with external systems, such as the Human Resource Information System (HRIS), if they are not maintained or updated consistently, causing discrepancies in faculty data.
- High usage during peak periods, such as the start of a semester or during faculty scheduling, may lead to system overload, causing delays or temporary inaccessibility.

4. Features to be Tested

The following areas will be the primary focus during the testing of the Faculty Loading and Scheduling System:

- **Submission of Faculty Preferences:** Test the submission process where faculty members select their preferred courses, time slots, and year levels for the semester.
- **Review of Faculty Assignments:** Verify that administrators can review and approve faculty assignments, ensuring no conflicts in scheduling or workload.
- **Generation of Scheduling Reports:** Check the generation of various reports, including faculty loads, room allocation, and overall schedules for different programs.
- Maintenance of the System Data: Test the ability to add, update, or delete faculty data, course information, and program details in the system.
- **Room Allocation Functions:** Ensure the system correctly allocates rooms for classes and events without double-booking or conflicts.
- Alerts and Notifications: Validate that the system sends alerts and notifications to faculty and administrators for schedule changes, approvals, or pending actions.

5. Features Not to be Tested

The following areas will not be specifically addressed during testing. All testing in these areas will be indirect, resulting from other testing efforts:

- Security testing against malware and external threats will not be included, as the focus will be on functional and performance testing.
- Functionalities already provided by integrated external systems, such as the Human Resource Information System (HRIS) for faculty data management.
- User actions that redirect to other pages or involve using different functionalities while in the middle of an ongoing process, such as submitting faculty preferences or approvals.
- System performance issues due to bad internet connections or failures to save changes/upload documents caused by network instability.

6. Test Approach

Given the short development timeframe and the necessity to deliver a functional application that may require frequent changes based on university policies and academic calendar adjustments, the development team has chosen to utilize the Agile Software Development Life Cycle (SDLC) methodology. This approach consists of five key phases in the test cycle: Test Planning, Daily Scrums, Test Agility Review, Release Readiness, and Impact Assessment.

Test Planning: The development team begins by planning and preparing the testing schedule, defining the processes, and determining the expected outcomes. This phase involves identifying the scope of testing, allocating resources, and outlining detailed test cases based on system requirements and user stories. The team focuses on areas such as faculty data management, scheduling conflicts, and report generation.

Daily Scrums: To ensure continuous alignment and communication throughout the development process, the team conducts daily scrums. These brief meetings, typically lasting 15-30 minutes, allow team members to share progress, discuss any issues or obstacles, and adjust plans as needed. Developers and testers can quickly clarify misunderstandings about processes or the codebase, facilitating a more efficient workflow.

Test Agility Review: After each sprint or development cycle, the testing team and developers review the testing process itself. They assess the effectiveness of their testing strategies, identify areas for

improvement, and adapt their approach based on evolving requirements, such as changes in academic programs or faculty assignments. This phase ensures that the testing process remains flexible and responsive to project needs.

Release Readiness: The team ensures that the Faculty Loading and Scheduling System is ready for deployment by conducting final testing cycles, addressing any critical bugs, and verifying functionality against predefined acceptance criteria. This phase includes preparing deployment documentation, user manuals, and training materials to support a smooth rollout for both faculty members and administrators.

Impact Assessment: After deployment, the team evaluates the system's performance and gathers user feedback. They monitor system usage, identify any post-deployment issues, and assess how well the system meets its intended objectives, such as improved faculty scheduling efficiency and reduced conflicts. Based on this feedback, the team makes necessary adjustments and plans for future updates or enhancements.

7. Item Pass/Fail Criteria

All functionalities of the Faculty Loading and Scheduling System should perform as expected. A pass rate of at least 95% across all test cases is required. Any test cases that fail must not critically impact the core functionalities of the system, such as faculty data management, scheduling, and report generation, or significantly hinder the user's ability to use the application effectively.

8. Suspension Criteria and Resumption Requirements

- A critical defect is identified, and the necessary code fix requires substantial re-testing of the
 affected functions, particularly those involving faculty scheduling or data management.
- Major modifications are needed due to changes in business or technical specifications, requirements, or scope, resulting from escalated test issues or additional requests made by stakeholders.
- External dependencies, such as integrations with the Human Resource Information System (HRIS) or other third-party services, become unavailable or unresponsive.
- The test environment encounters significant issues, such as server outages, hardware failures, or any other problem that reduces system performance to below 50% of its normal operating capacity.

 Testing will resume once the critical problems are resolved, necessary modifications are implemented, external dependencies are restored, or the test environment is stabilized and fully functional.

9. Test Deliverables

- Test Cases Documentation
- Test Scenarios / Use Cases
- Software Test Report
- Software Test Plan

10. Remaining Test Tasks

- Conduct comprehensive re-testing of the Faculty Loading and Scheduling System to ensure all identified issues have been resolved.
- Report newly discovered bugs and issues to the development team for analysis and feedback.
- Address and fix any issues found during the testing phase, particularly those affecting faculty data management, scheduling, and report generation.

11. Environmental Needs

The following elements are essential to support the testing efforts at all levels of the Faculty Loading and Scheduling System:

- A computer, laptop, or smartphone that meets the minimum hardware and software requirements to run the system effectively.
- A modern web browser (e.g., Google Chrome, Microsoft Edge) to access the system's web-based interface.
- Reliable internet access to access the system online, synchronize data, and facilitate timely notifications.
- Access to the Test Cases document sheet to track test cases and document results.

12. Staffing and Training Needs

The testing will be conducted by both the development team and key stakeholders, including faculty members and administrative staff. If stakeholders or faculty members are unavailable, at least one dedicated tester should be assigned to continue the testing process. Training sessions may be needed for stakeholders and faculty members to familiarize them with the testing procedures and the functionality of the system.

13. Responsibilities

The Lead Tester will oversee the entire testing process, including organizing schedules and ensuring all testing activities are completed as planned. The entire Project Team will participate in reviewing the system, responding to change requests, and resolving defects identified during development and testing. The Stakeholders (such as faculty members and administrators) will test the system for inconsistencies and defects, provide feedback to the developers, and ensure that the system meets their functional requirements and expectations.

14. Schedule

Time has been allocated within the project test plan for the following testing activities. The specific dates and times for each activity are outlined in the project test plan timeline. The necessary personnel for each task, including the test team, development team, management, and stakeholders, are identified in the project timeline and plan. Coordination of all personnel involved will be managed by the project manager in collaboration with the development and test team leaders.

- Review of System Requirements: Conducted by team members to ensure that all requirements related to faculty data management, scheduling, and reporting are well-understood.
- Development of Test Plan: Preparation of the test plan and test cases, with time allocated for each testing activity, including unit testing, integration testing, and user acceptance testing (UAT).

15. Planning Risks and Contingencies

During the testing process, testing may be halted if an unexpected issue arises that requires immediate fixing or if essential staff are unavailable. In the absence of a formal risk management plan, such challenges will be managed through proactive communication and agile decision-making, with the project team collaborating to identify potential risks as they emerge, such as delays in integrating with external systems (e.g., the Human Resource Information System) or issues with data accuracy. The team will assess the impact of these risks on the testing schedule, prioritize fixing critical bugs affecting core functionalities like faculty scheduling and report generation, and implement contingency measures to minimize delays, such as reallocating tasks to available team members or adjusting the timeline for less critical features. In cases where stakeholder or faculty member availability poses a challenge, the team will promptly adapt and communicate revised timelines for reviews and acceptance testing, ensuring the testing process remains flexible while maintaining overall project timelines and deliverables.

16. Approvals

Project Manager Developer	Emmanuel Martinez
Technical Lead Developer	Adrian Naoe
Quality Assurance Developer	Kyla Rica Malaluan
Technical Writer Developer	Via Clariz Rasquero

17. Glossary

Term/Acronym	Definition
PUPT FLSS	Polytechnic University of the Philippines Taguig
	Faculty Loading and Scheduling System – A web-
	based application designed to manage faculty
	scheduling, workload assignments, and room
	allocation.
Agile SDLC	Agile Software Development Life Cycle – A
	methodology that emphasizes iterative
	development, collaboration, and flexibility, used

	for managing the system's development and
	testing processes.
HRIS	Human Resource Information System – An
	external system integrated with the FLSS to
	manage faculty data, including personal
	information, employment status, and
	qualifications.
Faculty Loading	The process of assigning courses, teaching loads,
	and schedules to faculty members based on their
	availability, preferences, and institutional
	requirements.
Scheduling Conflicts	Situations where there are overlapping or
	conflicting schedules for faculty, rooms, or
	courses that need to be resolved to maintain the
	system's integrity.
Test Plan	A document that outlines the strategy, objectives,
	resources, schedule, and scope of testing activities
	for the system to ensure that all functionalities are
	thoroughly evaluated.
User Acceptance Testing (UAT)	A phase in the testing process where end-users,
	such as faculty members and administrators, test
	the system to verify that it meets their
	requirements and expectations.
Daily Scrum	A short daily meeting used in Agile
	methodologies to discuss progress, identify
	obstacles, and plan daily activities.
Release Readiness	A stage in the development process that ensures
	the system is fully tested, all critical issues are
	resolved, and the application is prepared for
	deployment.
Impact Assessment	The evaluation of the system's performance post-
	deployment to determine its effectiveness,
	identify any issues, and plan future enhancements.

Test Case	A set of conditions or variables used by testers to
	determine whether the system behaves as
	expected.
Contingency Measures	Actions planned and executed to mitigate
	potential risks or delays in the project schedule.