

- CNN은 1989년 Yann LeCun이 발표한 논문 "Backpropagation applied to handwritten zip code recognition"에서 처음 소개
- 이미지 인식 분야에서 딥러닝을 활용한 기법은 대부분이 CNN이 기반
 - 희소연결: 특성 맵에 있는 하나의 원소는 작은 픽셀 패치 하나에만 연결
 - 파라미터 공유: 동일한 가중치가 입력 이미지의 모든 패치에 사용
- 일반적인 행렬 곱셈 대신 합성곱을 사용하는 신경망
- 이미지 인식과 음성인식등 다양한 곳에서 사용
 - 이미지 검색 서비스
 - 자율주행 자동차
 - 영상 자동 분류 시스템
 - 음성인식이나 자연어 처리 같은 다른 작업에서도 사용

https://www.youtube.com/watch?v=w1n60lF40Ao&list=PL-jkQgH7sqGQw1h27uDE3kX2lb5ZKNSDB

- Fully Connected Layer
 - 각 뉴런은 이전 계층의 모든 뉴런에 연결
 - CIFAR 10 데이터 셋은 32 × 32 × 3 = 3072개의 가중치가 필요
 - 200 × 200 × 3의 크기의 이미지는 200 × 200 × 3 = 120,000개의 가중치가 필요.
 - 뉴런이 다층으로 존재하므로 가중치의 개수는 매우 크게 증가 : 비용증가
- Convolutional Layer
 - 각 뉴런은 이전 계층의 일정한 수의 뉴런에 연결
 - 연결의 가중치는 모든 뉴런이 공유

Learning Tensorflow, Oreilly

- Channel(Color, depth)
 - 이미지 픽셀 하나하나는 실수
 - MNIST 데이터 셋은 1개의 색상으로 2차원 데이터 28 × 28 × 1 (784개 데이터)
 - RGB는 3개의 실수로 표현한 3차원 데이터 32 × 32 × 3 (3072개 데이터)
- Filter(Kernel)
 - 특징 검출기
 - 이미지의 특징을 찾아내기 위한 공용 파라미터
 - 학습된 가중치인 W로 매개변수화
- Feature map(Activation map)
 - 각계층의 입출력 데이터
- Padding
 - 입력데이터 주변을 특정 값으로 채워 늘리는 것
- Stride
- Convolution Layer
- Pooling Layer
- Fully Connected Layer

- Convolutional Layer : CNN의 핵심 구성층
- Pooling Layer: 매개변수와 계산의 양을 줄임으로써 overfitting 방지
- Fully Connected Layer
- ConvNet Demo
 - https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Filter(Kernel)

- 뉴런의 가중치는 수용 필드 크기의 작은 이미지로 표현 될 수 있다.
- 흰 수직선이 있는 검은 사각형(7 × 7 행렬) : 가운데 수직선 부분을 제외하고는 수용 필드에 있는 모든 것을 무시. 흰 수직선은 강조되고 나머지는 희미해 짐
- 흰 수평선이 있는 검은 사각형(7 × 7 행렬) : 가운데 수평선 부분을 제외하고는 수용 필드에 있는 모든 것을 무시. 흰 수평선은 강조되고 나머지는 희미해 짐

Ref: Hands-on Machine Learning with Scikit-Learn, keras&tensorflow - O'REILLY

32x32x3 image -> preserve spatial structure

32x32x3 image

32

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

7x7 input (spatially) assume 3x3 filter applied with stride 3?

Ν

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

1	2	3	4	r		ı	11	14	10
3	5	6	3	×	2 1		 20	26	6
7	8	9	0		-1 2				
3	1	3	6	•			21	30	29
	inn	t						outpu	+
	inp	ut			filter			Outpu	
	Ш	ut			filter			ошри	
1	2	3	4		filter		12		
	2	3		2 1		_	13	16	12
3	2 5	3	4 3	× 2 1	+ 2	2	13		
	2	3			+ 2	2	20	16	12
3	2 5	3	3	×	+ 2	2		16	12

패딩(padding)

- 패딩은 출력 크기를 조정할 목적으로 사용
 - 합성곱 연산을 거칠 때마다 크기가 작아지면 출력 크기가 1이 되는 것을 방지
- 입력 데이터의 공간적 크기를 고정한 채로 다음 계층에 전달 가능

0	0	0		0	0									
0	1	2	3	0	0]	7	12	10	2
							2	0	1		4	15	16	10
: 0	0	1	2	3	0	(*)	0	1	2	\rightarrow	10		4 -	
0	3	0	1	2	0		1		2		10	6	15	6
0	2	3	0	1	0		<u> </u>	U			8	10	4	3
0	0	0		0	0		f	ilter(3,3)			outp	ut(4,	4)

input(padding: 1)

Ref: Hands-on Machine Learning with Scikit-Learn, keras&tensorflow - O'REILLY

1	0	-1	1
1	0	-1	1
1	0	-1	1
1	0	0	1

Same padding

1	0	0	1
1	0	0	1
1	0	0	1
1	0	0	1

-1	0	0	-1	0
-1	1	0	-1	1
-1	1	0	-1	1
-1	1	0	-1	1
0	1	0	0	1

Full padding

1	0	0	1
1	0	0	1
1	0	0	1
1	0	0	1

1	0	-1
1	0	-1
1	0	-1

Valid padding

http://sqlml.azurewebsites.net/2017/09/12/convolution al-neural-network/

A	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q	R	S	Т	U	٧	W	X	Υ
1																									
2				Inpu	<u>t</u>					<u>k</u>	(ern	<u>el</u>			Inte	rme	diate	e Ou	tput						
3					,																				
4		1	0	1	0	2																			
5		1	1	3	2	1				0	1	0				7	5	3							
6		1	1	0	1	1				0	0	2				4	7	5							
7		2	3	2	1	3				0	Ť	0				7	2	8							
8		0	2	0	1	0																			
9																						<u>C</u>	utpi	<u>ut</u>	
10		1	0	0	1	0																			
11		2	0	1	2	0				2	1	0			15	5	3	10				19	13	15	
12		3	1	1	3	0				0	0	0				13	1	13				28	16	20	
13		0	3	0	3	2				0	3	0				7	12	11				23	18	25	
14		1	0	3	2	1																			
15					5																				
16		2	0	1	2	1																			
17		3	3	1	3	2				1	0	0				7	5	2							
18		2	1	1	1	0				1	0	0				11	8	2							
19		3	1	3	2	0				0	0	2				9	4	6							
20		1	1	2	1	1																			
21																									

http://cs231n.github.io/convolutional-networks/

Pooling Layer

Pooling

- 네트워크의 파라미터의 개수나 연산량을 줄이기 위해 사이즈를 줄이는 것
- 과적합(over fitting)을 조절하는 효과도 있다.
- 사이즈 2 × 2와 stride 2를 가장 많이 사용
- Max Pooling, Average Pooing

• 특징

- 입력에 대해 항상 같은 연산을 하므로 파라미터는 따로 존재하지 않는다
- 채널 수가 변하지 않는다. 입력데이터의 채널 수 그대로 출력 데이터로 내보낸다.
- 입력데이터가 조금 변해도 풀링의 결과는 잘 변하지 않는다
 - 입력의 변화에 영향을 적게 받는다.

Better handle odd dimesions

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization laver

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

[55x55x48] x 2

Historical note: Trained on GTX 580 GPU with only 3 GB of memory. Network spread across 2 GPUs, half the neurons (feature maps) on each GPU.

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 17

May 1, 2018

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

CONV1, CONV2, CONV4, CONV5: Connections only with feature maps on same GPU

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 18

May 1, 2018

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

CONV3, FC6, FC7, FC8: Connections with all feature maps in preceding layer, communication across GPUs

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 19 Ma

May 1, 2018