

1 The opinion in support of the decision being entered
2 today is *not* binding precedent of the Board
3
4 UNITED STATES PATENT AND TRADEMARK OFFICE
5
6

7 BEFORE THE BOARD OF PATENT APPEALS
8 AND INTERFERENCES
9
10

11 *Ex parte* JOSEPH J. HARDING
12
13

14 Appeal 2006-3186
15 Application 10/700,364
16 Technology Center 3700
17
18

19 Decided: September 12, 2007
20
21

22 *Before:* TERRY J. OWENS, MURRIEL E. CRAWFORD, and DAVID B.
23 WALKER *Administrative Patent Judges.*

24 CRAWFORD, *Administrative Patent Judge.*
25
26
27

28 DECISION ON APPEAL
29

30 STATEMENT OF CASE

31 Appellant appeals under 35 U.S.C. § 134 (2002) from a final rejection
32 of claims 12-15. We have jurisdiction under 35 U.S.C. § 6(b) (2002).

33 Appellant invented a packaging system for providing a controlled
34 quantity of dunnage material for top-filling a container in which one or more
35 objects are packed for shipping (Specification 1).

36 Claim 12 under appeal reads as follows:

1 12. A void-fill system for automatically determining and
2 producing an amount of dunnage material sufficient to fill the void
3 left in a container in which one or more objects have been placed,
4 comprising:

5 a dunnage dispenser which is operable to dispense a controlled
6 amount of a dunnage material;

7 a void-measuring apparatus which measures the amount of void
8 left in a container after one or more objects have been placed in the
9 container, the void-measuring apparatus being operative to command
10 the dunnage dispenser to dispense a prescribed amount of dunnage
11 material; and

12 an input device connected to the void-measuring apparatus
13 which enables selection of a void-fill density from a plurality of void-
14 fill densities, and wherein the void-measuring apparatus, in response
15 to a selected void-fill density, varies the amount of dunnage material
16 that the dunnage dispenser is commanded to dispense per measured
17 volume of void, thereby to obtain the selected void-filled density.

18
19 The Examiner rejected claims 12 and 14 under 35 U.S.C. § 102(b) as
20 being anticipated by, or in the alternative under 35 U.S.C. § 103 as being
21 unpatentable over Harding.

22 The Examiner rejected claims 13 and 15 under 35 U.S.C. § 103 as
23 being unpatentable over Harding in view of Hale or Reynolds.

24 The prior art relied upon by the Examiner in rejecting the claims on
25 appeal is:

Hale	US 3,819,918	Jun. 25, 1974
Reynolds	US 5,719,678	Feb. 17, 1998
Harding	US 5,871,429	Feb. 16, 1999

30 Appellant contends that Harding does not disclose or suggest an input
31 device connected to a void-measuring apparatus which enables the selection
32 of a void-fill density from a plurality of void-fill densities.

1

ISSUE

2 The issue is whether Appellant has shown that the Examiner erred in
3 finding that Harding discloses or suggests an input device connected to a
4 void-measuring apparatus which enables the selection of a void-fill density
5 from a plurality of void-fill densities.

6

FINDINGS OF FACT

7 Appellant's invention is a void-fill system which includes an input
8 device 98 connected to a logic device 76. An operator may select a void fill
9 density from a plurality of void fill densities (Specification 11). Upon the
10 selection of a void-fill density an input or logic device 76 varies the amount
11 of dunnage material to be dispensed per measured volume of void
12 (Specification 11). For example, if minimal protection is needed a less
13 dunnage is dispensed per unit volume but if maximum protection is needed
14 more dunnage is dispensed per unit volume. (Specification 11).

15 Harding discloses a void-fill system which includes a void volume
16 probe which measures the void volume of a container to determine the
17 volume of padding necessary to fill the container (Harding, col 18, ll. 29-
18 34). The information from the probe is transferred to a logic device 48
19 (Harding, col. 18, ll. 19-21). The logic device 48 determines the amount of
20 pad and length of pad to produce to adequately cushion the container
21 (Harding, col. 18, ll. 10-14). Harding does not include an input device or
22 logic device which enables the selection of a void-fill density from a
23 plurality of void-fill densities. Harding discloses only one void-fill density
24 i.e., the density necessary to fill the container. Harding does not allow the
25 operator to vary the amount of dunnage to fill the container.

Hale and Reynolds do not disclose an input device which enables the selection of void-fill density from a plurality of void-fill densities.

3

4 DISCUSSION

5 We will not sustain the rejection of claims 12 and 14 under 35 U.S.C.
6 § 102 as anticipated by Harding or in the alternative under 35 U.S.C. § 103
7 as being unpatentable over Harding. Harding does not disclose nor does
8 Harding suggest an input or logic device which enables an operator to select
9 a void-fill density from a plurality of void-fill densities as required by claims
10 12 and 14.

11 We will also not sustain the rejection of claims 13 and 15 under 35
12 U.S.C. § 103 as being unpatentable over Harding in view of Hale or
13 Reynolds because claims 13 and 15 depend from claims 12 and 14 and thus
14 require the input device which enables an operator to select a void-fill
15 density from a plurality of void-fill densities and neither Hale nor Reynolds
16 remedies the deficiency of Harding.

1

CONCLUSION

2

The decision of the Examiner is reversed.

3

4

REVERSED

5

6

7

8

9

10

11

12 hh

13

14 RENNER OTTO BOISSELLE & SKLAR, LLP

15 1621 EUCLID AVENUE

16 NINETEENTH FLOOR

17 CLEVELAND, OH 44115