

Hi3519AV100/Hi3556AV100 安全启动使用 指南

文档版本 00B02

发布日期 2018-09-04

版权所有 © 深圳市海思半导体有限公司 2018。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任 何形式传播。

商标声明

(上) HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

HIR LATER SENDENCE SERVICE SER 您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不 做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用 指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为电气生产中心 邮编: 518129

http://www.hisilicon.com 网址:

客户服务电话: +86-755-28788858

客户服务传真: +86-755-28357515

support@hisilicon.com

前言

概述

本文档主要介绍 Hi3519AV100/Hi3556AV100 安全启动的使用方法,主要内容包括:安全启动介绍、安全镜像生成步骤及 OTP 烧写说明。

支持如下启动介质: SPI NOR FLASH、SPI NAND FLASH、并口 NAND FLASH和 eMMC。

□ 说明

未有特殊说明, Hi3556AV100 与 Hi3519AV100 内容一致。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本	36
Hi3519A	V100	V/A
Hi3556A	V100	-16

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新 内容。

修订日期	版本	修订说明
2018-09-04	00B02	第 2 次临时版本发布。 1.4 小节涉及修改
2018-08-08	00B01	第1次临时版本发布。

目录

前	言	
	安全启动介绍	
	1.1 普通安全 boot 镜像结构	
	1.2 加密安全 boot 镜像结构	
	1.3 安全启动流程	
	1.4 安全启动源代码目录说明	
2 3	安全镜像生成	
	2.1 安全 U-boot 生成步骤	
	2.2 密钥文件介绍	
3 O	TP 烧写步骤	

插图目录

图 1-1 普通安全 boot 镜像结构图
图 1-3 安全启动流程
图 1-3 安全启动流程 The proposed of
HHi3519A VIORO1CO2SPCO10Hilling

1 安全启动介绍

Hi3519AV100 支持普通安全 boot 启动和加密安全 boot 启动,其差异在于普通安全 boot 镜像中,ddr_init.bin 和 u-boot.bin 是明文;加密的安全 boot 镜像中,ddr_init.bin 和 u-boot.bin 是密文。

1.1 普通安全 boot 镜像结构

Hi3519AV100 普通安全 U-boot 镜像结构如图 1-1 所示。

图1-1 普通安全 boot 镜像结构图

普通安全启动 uboot 镜像由公钥镜像、ddr_init.bin 镜像(包括 param.bin 和ddr_init.bin)、非安全 uboot.bin 镜像和 ddr_init.bin 的数字签名(ddr_init_signature.bin)、非安全 uboot.bin 的数字签名(uboot_signature.bin)及它们各自的长度信息组成。

其中: RSA 支持 2048、3072 和 4096 两种格式。AES IV 的值为 0。

1.2 加密安全 boot 镜像结构

图1-2 加密安全 boot 镜像结构图

加密安全启动 uboot 镜像由公钥镜像、ddr_init.bin 镜像(包括 param.bin 和 ddr_init.bin)及其数字签名通过 AES 加密后的密文、非安全 uboot.bin 镜像及其数字签名通过 AES 加密后的密文和它们各自的长度信息组成。

其中:RSA 支持 2048、3072 和 4096 两种格式。AES IV 的值为非 0 值。

3/12/IIII 3519A VIORONCO 25RONOKI INHIKE ITHILIK

1.3 安全启动流程

图1-3 安全启动流程

1.4 安全启动源代码目录说明

安全启动源代码目录为 hi3519av100_secureboot_release, 其详细目录结构如下:

CASignTool -> CASignTool_Linux_BVT/CASignTool/bin/CASignTool_m64

├── CASignTool_Linux_BVT ----- CASignTool 工具源代码目录

build.sh

CASignTool

| |---- libCASign

readme.txt

|----- ddr_init ------ DDR 初始化源代码目录

boot

├── cfg.mk

ddr_init_hi3519av100.bin

drv	
include	
linker.lds	
linker.lds.mk	
Makefile	
mkddrinit.sh	
	DDR 初始化表格,编译时,需
ddr_init_hi3519av100.bin	生成的 DDR 初始化镜像。
├── HASH RSA Pub Key hash 值解析工具。	由 hash_modify.c 文件生成的
hash_modify.c	Z.
Makefile	安全启动发布包总 Makefile。
rsa2048pem	长度为 2048 Bit 的密钥文件存放目录。
rsa2048pem.sh	· 生成长度为 2048 Bit 密钥的脚本。
rsa3072pem	长度为 3072 Bit 的密钥文件存放目录。
rsa3072pem.sh	· 生成长度为 3072 Bit 密钥的脚本。
rsa4096pem	长度为 4096 Bit 的密钥文件存放目录。
rsa4096pem.sh	· 生成长度为 4096 Bit 密钥的脚本。
├── secure_boot.cfgddr_init.bin 和 u-boot.bin 镜像执行 AES 加密; ddr_init.bin 和 u-boot.bin 镜像加密。	/\ \
sha256.cfg SHA256,不需要修改。	该文件设置执行的算法,已设置为
u-boot-hi3519av100,bin	· 非安全 uboot 镜像。

注意

安全启动流程中,执行的是 hi3519av100_secureboot_release 目录下的 SVB 及 DDR 初始化代码,UBOOT 中的 SVB 及 DDR 初始化流程不会被执行!

因此在安全启动场景下,如果需要更新 SVB 或 DDR 初始化流程,须修改如下目录文件:

osdrv/opensoruce/uboot/hi3519av100_secureboot_release/ddr_init/drv/

--- cmd_bin

海思专有和保密信息 版权所有 © 深圳市海思半导体有限公司

2 安全镜像生成

2.1 安全 U-boot 生成步骤

步骤 1. 生成非安全 U-boot 镜像:

参考《Hi3519AV100/Hi3556AV100 U-boot 移植应用开发指南》中 "移植 U-boot"章节。

步骤 2. 解压安全 U-boot 发布包:

tar xvf hi3519av100_secureboot_release.tgz

将步骤 1 生成的非安全 U-boot 镜像 u-boot-hi3519av100.bin 拷贝至 hi3519av100_secureboot_release 目录。

步骤 3. 拷贝 reg_info.bin 文件:

从 osdrv/tools/pc/uboot_tools 目录拷贝新生成的 reg_info.bin 文件到 hi3519av100_secureboot_release/ddr_init 目录。

步骤 4. 配置 secure_boot.cfg 文件中的 KEY 和 IV:

如果要生成普通安全启动 uboot 镜像,secure_boot.cfg 文件中的 KEY 和 IV 的值都设置为空;如果要生成加密安全启动 uboot 镜像,secure_boot.cfg 文件中的 KEY 和 IV 的值需要设置。如: KEY=67452301efcdab8967452301efcdab89 IV=012332100123321001233210

步骤 5. 编译安全启动 uboot 镜像:

cd hi3519av100 secureboot release

执行 make rsa2048pem_gen、make rsa3072pem_gen 或 make rsa4096pem_gen

最终在 hi3519av100_secureboot_release 目录下生成对应的安全镜像。

-----结束

注意

发布包脚本会在第一次编译时产生公钥和私钥文件,后续编译的安全镜像均采用第一次生成的公钥和私钥,如果要更新公钥和私钥,需手动删除 rsa2048pem、rsa3072pem或 rsa4096pem 目录下的文件。

2.2 密钥文件介绍

	rsa2048pem	
1	rsa2048_pem_hash_val.txt	//文本格式的公钥 HASH 和寄存器配置命令
1	rsa_priv_2048.pem	//PEM 格式私钥
1	rsa_pub_2048.bin	//二进制格式公钥
1	rsa_pub_2048.pem	//PEM 格式公钥
1	rsa_pub_2048_sha256.txt	//文本格式的公钥的 HASH 值
<u> </u>	— rsa3072pem	COL
	rsa3072_pem_hash_val.txt rsa_priv_3072.pem	//文本格式的公钥 HASH 和寄存器配置命令 //PEM 格式私钥
	rsa_pub_3072.bin	//二进制格式公钥
1	rsa_pub_3072.pem	//PEM 格式公钥
	rsa_pub_3072_sha256.txt	//文本格式的公钥的 HASH 值
 	— rsa4096pem	
	rsa4096_pem_hash_val.txt	//文本格式的公钥 HASH 和寄存器配置命令
	rsa_priv_4096.pem	//PEM 格式私钥
1	rsa_pub_4096.bin	//二进制格式公钥
I	rsa_pub_4096.pem	//PEM 格式公钥
I	rsa_pub_4096_sha256.txt	//文本格式的公钥的 HASH 值
据是12周Hi3510	A 1100ROO1CO2St	
\$		

3 OTP 烧写步骤

```
步骤 1. 烧写非安全 U-boot, 并启动 U-boot 至命令行;
```

步骤 2. 公钥 HASH 烧写(必选):

mw 0x040A0008 0x6

mw 0x040A000c 0xxxxxxxxx

mw 0x040A0010 0xxxxxxxxx

mw 0x040A0014 0xxxxxxxxx

mw 0x040A0018 0xxxxxxxxx

mw 0x040A001c 0xxxxxxxxx

mw 0x040A0020 0xxxxxxxxx

mw 0x040A0024 0xxxxxxxxx

mw 0x040A0028 0xxxxxxxxx

□ 说明

以上公钥 HASH 配置命令,可从 rsa2048_pem_hash_val.txt 、 rsa3072_pem_hash_val.txt 或 rsa4096_pem_hash_val.txt 中直接 copy。

mw 0x040A0000 0x2

mw 0x040A0004 0x1acce551

步骤 3. DDR 加扰 BIT 烧写(可选):

mw 0x040A0034 0x1

mw 0x040A0030 0x2

mw 0x040A0000 0x4

mw 0x040A0004 0x1acce551

步骤 4. 安全启动 BIT 烧写(必选):

mw 0x040A0034 0x0

mw 0x040A0030 0x1

mw 0x040A0000 0x4

mw 0x040A0004 0x1acce551

步骤 5. AES KEY 烧写 (可选):

mw 0x040a0008 0x0

mw 0x040a000c 0xxxxxxxxx

mw 0x040a0010 0xxxxxxxxx

mw 0x040a0014 0xxxxxxxxx

mw 0x040a0018 0xxxxxxxxx

□ 说明

以上配置的 AES KEY 的值,需要与 secure_boot.cfg 文件中的 KEY 值一致,写入时需要进行大小端转换。例如: secure_boot.cfg 文件中"KEY=67452301efcdab8967452301efcdab89",则上面设置寄存器的命令为"mw 0x040a000c 0x01234567;mw 0x040a0010 0x89abcdef; mw 0x040a0014 0x01234567; mw 0x040a0018 0x89abcdef;"

mw 0x040a0000 0x2

mw 0x040a0004 0x1acce551

步骤 6. 通过 U-boot 命令烧写安全镜像至启动介质,或通过 hitool 工具烧写安全镜像至启动介质。

----结束

注意

以上每个烧写步骤都必须谨慎小心,以免烧写错误导致芯片不可用。

如果要生成普通安全 uboot 镜像, secure_boot.cfg 文件中的 KEY 和 IV 都要设置为空。