Introduction to Artificial Intelligence

COMP307/AIML420 Neural Networks 3: Neural Engineering

Dr Andrew Lensen

Andrew.Lensen@vuw.ac.nz

Outline

- Back propagation algorithm to train neural network
- Other considerations when designing (engineering)
 NNs

NB: We are perhaps slightly behind in content –
 any slides that we do not finish today will become
 readings: still examinable, but more "advanced
 knowledge" for A-level questions.

Training a Neural Network

Initialise the weights (randomly)

Feedforward

- For each example, calculate the predicted outputs o_z using the current weights
- Calculate the total error $\sum_z (d_z o_z)^2$
- If the error is small enough, we can stop.
- Otherwise, we use back propagation to adjust the weights to make the error smaller.
 - Uses gradient descent (GD)

- Estimate the <u>contribution (gradient)</u> of each weight to the *error*, i.e. how much the error will be reduced by changing the weight by the gradient.
- Change each weight (simultaneously) proportional to its contribution to reduce the error as much as possible
 - Move in the direction of the steepest gradient
- We calculate the contribution/gradient backwards (from the last/output layer to the first hidden layer)
- Error of a single **output** node is $d_z o_z$
 - d_z means "desired"
 - $-o_z$ means "output" (i.e. what we *actually* got)

- How big a change should we make to weight w_{i→i}?
 - Make a big change if will improve error a lot (big contribution)
 - Make a small change if little effect on error (small contribution)

- β_i is how "beneficial" a change is for node j ("error term")
- When changing $w_{i\rightarrow j}$, the error change should be:
 - Proportional to the output: o_i (larger output = more effect)
 - Proportional to the *slope* of the activation function at node j: $slope_j$
 - Proportional to error term of j (β_i)

- How to calculate slope;?
 - Some calculus knowledge: derivative of the activation function
 - Steeper (larger) the slope, larger the effect of changing the weight
 - We don't expect calculus in this course!

- How to calculate β_i?
 - Back-propagated from later layer
 - The output layer: the error $\beta_z = d_z o_z$
 - Other layers: error is $\beta_j = \sum_k w_{j \to k} \times slope_k \times \beta_k$ $activate(w_{j \to k} o_j + \cdots)$

6

- Assume a neural network with:
 - Activation function: sigmoid

$$slope_j = o_j(1 - o_j)$$

Target: minimise total sum squared error

$$error = \frac{1}{2} \sum_{s \in examples} \sum_{c \in classes} (d_{sc} - o_{sc})^2$$

Output node:

$$\beta_z = d_z - o_z$$

Hidden node:

$$\beta_j = \sum_k w_{j \to k} o_k (1 - o_k) \beta_k$$

Makes the maths easier! (differentiation)

BP Algorithm Implementation

- Let η be the learning rate ("eta"...)
- Initialise all weights (+bias) to small random values
- Until total error is small enough, repeat:
 - For each input example:
 - Feed forward pass to get predicted outputs
 - Compute $\beta_z = d_z o_z$ for each output node
 - Compute $\beta_j = \sum_k w_{j\to k} o_k (1 o_k) \beta_k$ for each hidden node (working backwards from last to first layer)
 - Compute (+store) the weight changes for all weights $\Delta w_{i\rightarrow j} = \eta o_i o_j (1 o_j) \beta_j$ (proportional to all 3 factors)
 - Sum up weight changes for all input examples
 - Change weights!

BP Algorithm Example

 Calculate one pass of the BP algorithm given the example (feedforward + back propagation)

Inputs		Outputs	
I_1	I_2	d_5	d_6

Notes on BP Algorithm

- 1 Epoch: all input examples (entire training set, batch, ...)
- A target of 0 or 1 cannot be reached in reasonable time.
 Usually interpret an output > 0.9 or > 0.8 as '1'
- Training may require thousands of epochs. A convergence curve can help to decide when to stop (overfitting?)

Weight Update Frequency

- All the weights are updated after one feedforward pass and one backward propagation/pass
- Frequency of weight update = Frequency of passes
- Online learning: a pass for each training instance
- Batch learning: a pass for a batch (a subset of training instances)
 - weight change is the sum of the changes for all the instances in the batch
- Offline learning: a pass for all the training instances
 - Weight change is the sum of the changes for all training instances
- Online and batch learning are stochastic gradient descent
- Offline learning is "true" gradient descent

Weight Update Frequency

- Assuming a weight w = 0.2
- 4 training instances
- Online learning
 - Instance 1, $\Delta w = 0.1$, $w \rightarrow 0.3$
 - Instance 2, $\Delta w = 0.05$, $w \rightarrow 0.35$
 - Instance 3, $\Delta w = 0.03$, $w \rightarrow 0.38$
 - Instance 4, $\Delta w = 0.01, w \to 0.39$
- Offline learning
 - Instance 1, $\Delta w = 0.1$, w = 0.2 unchanged
 - Instance 2, $\Delta w = 0.08$, w = 0.2 unchanged
 - Instance 3, $\Delta w = -0.03$, w = 0.2 unchanged
 - Instance 4, $\Delta w = 0.05$, w = 0.2 unchanged
 - $w \rightarrow 0.2 + 0.1 + 0.08 0.03 + 0.05 = 0.4$

Weight Update Frequency

- Epoch: period when all the training instances are used once
- #Iterations = #passes
- 1000 training instances, batch size = 500, then need 2 iterations to complete one epoch

Learning Rate

- Large learning rate may cause oscillating behaviour
- Small learning rate may cause slow convergence
- 0.2 is a good starting point in practice

$$\Delta w_{i\to j} = \eta o_i o_j (1 - o_j) \beta_j$$

Overfitting

- Has a very high accuracy on the training set, but poor accuracy on the test set
- Caused by:
 - Training for too long
 - Too many weights (parameters) to train
 - Too few training instances
- The more parameters to train, the more data (training instances) we need to have an accurate estimation

Stopping Criteria

- When a certain number of epochs is reached
- When the error (e.g. mean/total squared error) on the training set is smaller than some threshold T
- Proportion of correctly classified training instances (i.e. accuracy) is larger than a threshold
- Early stopping strategy
 - Validation control to avoid overfitting

Validation Control

- Break the training set into two parts
- Use 1st part to compute the weight changes

 Every m (e.g. 10, 50, 100) epochs apply the current NN to the 2nd part (validation set)

to calculate the validation error

Stop when the error on the validation set is minimum

Local Minima

- For each weight vector, we can calculate the error of the NN
- The (weight vector, error) surface/landscape can be very rugged: many local minima
- Search: a trajectory of points leading to the global minima
- A bad trajectory leads to poor local minimum

Surface with 2 weights

Surface with 1 weight

ANN Architecture

- How many input and output nodes?
 - Usually determined by the problem and data
- Number of input nodes equals the number of features
- Number of outputs
 - 1 output nodes for binary classification (true/false)
 - N output nodes for N-class classification
 - Example: (1, 0, 0) = class 1; (0, 1, 0) = class 2; (0, 0, 1) = class 3

ANN Architecture

- How many hidden layers/nodes?
 - Theorem: one hidden layer is enough for any problem
 - But training is significantly faster with several layers
 - Best to have as few hidden layers/nodes as possible: better generalisation, fewer weights to optimise (easier to solve)
 - Make the best guess you can
 - If training is unsuccessful try more hidden nodes
 - If training is successful try fewer hidden nodes
 - Observe weights after training:
 nodes with small weights can probably be eliminated

Momentum

- Normal to have huge ANNs take days/weeks/months to train
- Speeding this up is crucial!
- Momentum is a widely used approach
 - Use the gradient from last step(s)

$$\Delta w_{i \to j}(t) \leftarrow \eta o_j o_j (1 - o_j) \beta_j + \alpha \Delta w_{i \to j} (t - 1)$$

- Does momentum always help?
- Have you used/seen momentum before?
- How do we choose η and α ?

Design Questions

- How to properly arrange the data for network training and for measuring the results?
- Number of input/output nodes?
- How many hidden layers are needed and how many nodes in each hidden layer?
- Values for the parameters and variables for controlling the training process, for example, learning rate, initial weights, momentum and number of epochs?
- Stopping criteria (validation control)?
- How often are the weights changed (batch size)?

Summary

- Different frequencies for weight update
 - Online, offline, batch learning
- Learning rate
 - Not too large nor too small, 0.2 is a good starting point
- Overfitting
- Stopping criteria
 - Validation control to avoid overfitting
- Local minima
- ANN architecture: #input/output/hidden nodes
- Momentum to speed up training