ME951 - Estatística e Probabilidade I

Parte 9

Notas de aula de ME414 produzidas pelos professores **Samara Kiihl**, **Tatiana Benaglia** e **Benilton Carvalho** modificadas e alteradas pela Profa. **Larissa Avila Matos**

Variável Aleatória Discreta

Variável Aleatória

- Em um experimento aleatório, muitas vezes não estamos interessados nos detalhes do resultado do evento, mas sim em alguma quantidade numérica obtida a partir do experimento.
- Ex: lançamento de dois dados. O interesse pode estar apenas na soma, não nos resultados individuais dos dados.
- Quantidades de interesse que são determinadas a partir do resultado de experimento aleatório são denominadas variáveis aleatórias.
- Cada resultado possível de uma variável aleatória (v.a.) tem associado uma probabilidade. O conjunto de todos os resultados possíveis e as respectivas probabilidades é denominado distribuição de probabilidade.

Estamos interessados na soma dos resultados.

Definição: Variável Aleatória Discreta

Uma função X que associa a cada elemento do espaço amostral um valor num conjunto enumerável de pontos da reta é denominada variável aleatória discreta.

Exemplo: Lançamento de uma moeda

$$X = 1$$
 se cara e $X = 0$ se coroa

Exemplo: Lançamento de uma moeda duas vezes

X é a soma dos resultados (coroa é 0 e cara é 1).

Distribuição de Probabilidade

Distribuição de Probabilidade - v.a. discreta

- Quando a v.a. assume valores inteiros: v.a. discreta.
- A distribuição de probabilidade associa uma probabilidade P(X = x) para cada valor possível, x, da variável aleatória X.
- Para cada valor de x, $0 \le P(X = x) \le 1$.
- Soma das probabilidades de todos os valores possíveis de X é igual a 1.

Distribuição de Probabilidade - v.a. discreta

- Seja X uma v.a. discreta com n valores possíveis denotados por x_1, x_2, \ldots, x_n .
- $P(X = x_i)$ denota a probabilidade de que a v.a. X assuma o valor x_i .
- O conjunto de todas essas probabilidades (para cada x_i) representa a **distribuição de probabilidade** de X.

$$X$$
 x_1 x_2 x_3 ... x_n $P(X=x_1)$ $P(X=x_2)$ $P(X=x_3)$... $P(X=x_n)$

■ Como X só pode assumir valores entre x_1, x_2, \ldots, x_n , temos que:

$$\sum_{i=1}^{n} P(X = x_i) = 1$$

Exemplo

Suponha que X seja uma v.a. discreta que assume os valores 1, 2 e 3.

Se
$$P(X = 1) = 0.4$$
 e $P(X = 2) = 0.1$, qual o valor de $P(X = 3)$?

$$\sum_{i=1}^{n} P(X = x_i) = 1$$

$$P(X = 1) + P(X = 2) + P(X = 3) = 1$$

$$0.4 + 0.1 + P(X = 3) = 1$$

$$P(X=3) = 0.5$$

Distribuição de Probabilidade

Podemos representar a distribuição de probabilidade com o seguinte gráfico:

A altura de cada barra representa a probabilidade daquele valor.

Um vendedor de enciclopédias visita cada casa duas vezes.

Com anos de experiência, ele acredita que a probabilidade de uma venda logo na primeira visita é 0.3.

Já na segunda visita, ele acredita que a probabilidade de venda seja 0.6. Ele acredita também que o resultado em cada visita seja independente.

Qual é a distribuição de probabilidade da v.a. X: número de vendas feitas em uma casa?

Seja V_1 : venda na primeira visita e V_2 : venda na segunda visita.

■ Espaço amostral do fenômeno aleatório:

$$\Omega = \{ (V_1^c \cap V_2^c), (V_1 \cap V_2^c), (V_1^c \cap V_2), (V_1 \cap V_2) \}$$

- \blacksquare A v.a. X pode assumir os valores 0, 1 ou 2.
- Se nenhuma venda ocorrer nas duas visitas, X = 0.

$$P(X = 0) = P(V_1^c \cap V_2^c)$$

$$\stackrel{ind}{=} P(V_1^c)P(V_2^c)$$

$$= [1 - P(V_1)][1 - P(V_2)]$$

$$= (1 - 0.3)(1 - 0.6) = 0.28$$

■ X = 1 quando ocorre uma venda apenas na primeira visita **ou** uma venda apenas na segunda visita.

$$P(X = 1) = P[(V_1 \cap V_2^c) \cup (V_1^c \cap V_2)]$$

$$= P(V_1 \cap V_2^c) + P(V_1^c \cap V_2)$$

$$\stackrel{ind}{=} P(V_1)P(V_2^c) + P(V_1^c)P(V_2)$$

$$= (0.3)(1 - 0.6) + (1 - 0.3)(0.6)$$

$$= 0.54$$

 $\blacksquare X = 2$ quando ocorre uma venda nas duas visitas.

$$P(X = 2)$$
 = $P(V_1 \cap V_2)$
 $\stackrel{ind}{=}$ $P(V_1)P(V_2) = (0.3)(0.6) = 0.18$

Satisfaz a propriedade:

$$\sum_{i=0}^{2} P(X=i) = P(X=0) + P(X=1) + P(X=2)$$

$$= 0.28 + 0.54 + 0.18 = 1$$

$$X = 0 1 2$$

$$P(X=x) = 0.28 0.54 0.18$$

Exemplo: Comissão

O Departamento de Estatística é formado por 35 professores, sendo 21 homens e 14 mulheres.

Uma comissão de 3 professores será constituída sorteando, ao acaso, três membros do departamento.

Qual é a probabilidade da comissão ser formada por pelo menos duas mulheres?

Seja X o número de mulheres na comissão.

X pode assumir os valores: 0, 1, 2 e 3.

Como X= número de mulheres na comissão, então X=0,1,2,3.

$$P(X=0) = \frac{\binom{21}{3}\binom{14}{0}}{\binom{35}{3}} = 0.203$$

$$P(X=1) = \frac{\binom{21}{2}\binom{14}{1}}{\binom{35}{3}} = 0.450$$

$$P(X=2) = \frac{\binom{21}{1}\binom{14}{2}}{\binom{35}{3}} = 0.291$$

$$P(X=3) = \frac{\binom{21}{0}\binom{14}{3}}{\binom{35}{3}} = 0.056$$

Veja que $\sum_{i=0}^{3} P(X=i) = 1$.

Probabilidade da comissão ter pelo menos duas mulheres:

$$P(X \ge 2) = P(X = 2) + P(X = 3) = 0.347$$

Exemplo: Comissão

A distribuição de probabilidade de X é dada por:

\overline{X}	0	1	2	3
P(X=x)	0.203	0.450	0.291	0.056

Exemplo: Comissão

Outra maneira para calcular as probabilidades:

Espaço amostral	Probabilidade	X
(ННН)	$\frac{21}{35} \times \frac{20}{34} \times \frac{19}{33} = 0,203$	0
(HHM)	$\frac{21}{35} \times \frac{20}{34} \times \frac{14}{33} = 0,150$	1
(НМН)	$\frac{21}{35} \times \frac{14}{34} \times \frac{20}{33} = 0,150$	1
(МНН)	$\frac{14}{35} \times \frac{21}{34} \times \frac{20}{33} = 0,150$	1
(HMM)	$\frac{21}{35} \times \frac{14}{34} \times \frac{13}{33} = 0.097$	2
(MHM)	$\frac{14}{35} \times \frac{21}{34} \times \frac{13}{33} = 0,097$	2
(MMH)	$\frac{14}{35} \times \frac{13}{34} \times \frac{21}{33} = 0,097$	2
(MMM)	$\frac{14}{35} \times \frac{13}{34} \times \frac{12}{33} = 0,056$	3

Qual a probabilidade da soma ser menor do que 6?

X: soma dos dados.

$$P(X < 6) = P(X = 5) + P(X = 4) + P(X = 3) + P(X = 2) = \frac{10}{36}$$

 $Y\colon$ máximo resultado no lançamento de 2 dados.

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

\overline{Y}	1	2	3	4	5	6
P(Y=y)	1/36	3/36	5/36	7/36	9/36	11/36

 $Z\colon$ diferença entre os pontos do segundo e do primeiro lançamento.

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Z	-5	-4	-3	-1	-1	0	1	2	3	4	5
P(Z=z)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Exemplo: Construção

Na construção de um certo prédio, as fundações devem atingir 15 metros de profundidade, e para cada 5 metros de estacas colocadas, o operador anota se houve alteração no ritmo de perfuração previamente estabelecido.

Essa alteração é resultado de mudanças para mais ou para menos na resistência do subsolo.

Nos dois casos, medidas corretivas serão necessárias, encarecendo o custo da obra.

- com base em avaliações geológicas, admite-se que a probabilidade de ocorrência de alterações é de 0.1 para cada 5 metros.
- o custo básico inicial é de 100 UPCs (Unidades Padrão de Construção) e será acrescido de 50k, com k representando o número de alterações observadas.

Exemplo: Construção

Como se comporta a variável Custo de Obra de fundações?

Assumimos que as alterações ocorrem independentemente entre cada um dos três intervalos de 5 metros.

A= ocorrência de alterações em cada intervalo.

$$3 \text{ etapas} \implies 2 \times 2 \times 2 = 2^3 = 8 \text{ possibilidades.}$$

Espaço Amostral:

$$\Omega = \{AAA, AAA^c, AA^cA, A^cAA, AA^cA^c, A^cAA^c, A^cA^cA, A^cA^cA^c\}$$

Evento	Probabilidade	Custo
AAA	$(0.1)^3 = 0.001$	250
AAA^c	$(0.1)^2(0.9) = 0.009$	200
AA^cA	$(0.1)^2(0.9) = 0.009$	200
A^cAA	$(0.1)^2(0.9) = 0.009$	200
AA^cA^c	$(0.1)(0.9)^2 = 0.081$	150
A^cAA^c	$(0.1)(0.9)^2 = 0.081$	150
A^cA^cA	$(0.1)(0.9)^2 = 0.081$	150
$A^cA^cA^c$	$(0.9)^3 = 0.729$	100

Note que associamos a cada evento do espaço amostral um valor da variável C (custo), e eventos diferentes podem corresponder ao mesmo valor de C:

$$c_1 = 100, \quad c_2 = 150, \quad c_3 = 200, \quad c_4 = 250$$

$$P(C = c_1) = P(A^c A^c A^c) = 0.729$$

$$P(C = c_2) = P(AA^cA^c \cup A^cAA^c \cup A^cA^cA) = 3 \times 0.081 = 0.243$$

$$P(C = c_3) = P(AAA^c \cup AA^cA \cup A^cAA) = 3 \times 0.009 = 0.027$$

$$P(C = c_4) = P(AAA) = 0.001$$

O comportamento de C estudado através da probabilidade de ocorrência pode auxiliar na previsão de gastos e na elaboração de orçamentos:

\overline{C}	100	150	200	250
P(C=c)	0.729	0.243	0.027	0.001

Exemplo: Lançamento de uma moeda duas vezes

$$\Omega = \{CC, CX, XC, XX\},$$
em que $C = {\rm cara}$ e $X = {\rm coroa}.$

Seja a v.a. N = número de caras em dois lançamentos.

0

N

P(N=n)	$P(XX) = \frac{1}{2}$	$P\left(CX \cup XC\right) = \frac{2}{4} = \frac{1}{2}$	$P(CC) = \frac{1}{2}$
I(IV - Ib)	$\frac{1}{4}$	$1 (CR ORC) = \frac{1}{4} = \frac{1}{2}$	$\frac{1}{4}$

1

Função de Distribuição Acumulada

Exemplo: Vacina

Um grupo de 1000 crianças foi analisado para determinar a efetividade de uma vacina contra um tipo de alergia. As crianças recebiam uma dose de vacina e após um mês passavam por um novo teste. Caso ainda tivessem tido alguma reação alérgica, recebiam outra dose.

Variável de interesse: X = número de doses.

$\overline{\text{Doses}(X)}$	1	2	3	4	5
Frequência	245	288	256	145	66

Uma criança é sorteada ao acaso, qual será a probabilidade dela ter recebido 2 doses?

$$P(X=2) = \frac{288}{1000} = 0.288$$

Exemplo: Vacina

Distribuição de Probabilidade de X

$\overline{\mathrm{Doses}\ (X)}$	1	2	3	4	5
P(X=x)	0.245	0.288	0.256	0.145	0.066

Qual a probabilidade da criança ter recebido até duas doses?

$$P(X \le 2) = P(X = 1) + P(X = 2)$$

= 0.245 + 0.288
= 0.533

Função de Distribuição Acumulada

A função de distribuição acumulada (f.d.a.) de uma variável aleatória \boldsymbol{X} é definida por

$$F(x) = P(X \le x), \quad x \in \mathbb{R}$$

Assim, se X assume os valores em $\{x_1, x_2, ..., x_n\}$, em que $x_1 < x_2 < ... < x_n$: $F(x_1) = P(X = x_1)$ $F(x_2) = P(X = x_1) + P(X = x_2)$ \vdots $F(x_n) = P(X = x_1) + ... + P(X = x_n)$

Exemplo: Vacina

$\overline{\mathrm{Doses}\ (X)}$	1	2	3	4	5
P(X=x)	0.245	0.288	0.256	0.145	0.066

Note que a f.d.a. de X= número de doses é definida para qualquer valor real, logo:

$$F(x) = \begin{cases} 0 & x < 1 \\ 0.245 & 1 \le x < 2 \\ 0.533 & 2 \le x < 3 \\ 0.789 & 3 \le x < 4 \\ 0.934 & 4 \le x < 5 \\ 1 & x \ge 5 \end{cases}$$

Exemplo: Vacina

Função de distribuição acumulada (f.d.a.) do número de doses (X)

Exemplo: Comissão

O Departamento de Estatística é formado por 35 professores, sendo 21 homens e 14 mulheres. Uma comissão de 3 professores será constituída sorteando, ao acaso, três membros do departamento.

Seja X o número de mulheres na comissão. X pode ser 0, 1, 2 e 3.

X	0	1	2	3
P(X=x)	0.203	0.450	0.291	0.056

$$F(x) = P(X \le x) = \begin{cases} 0, & \text{se } x < 0 \\ 0.203 & \text{se } 0 \le x < 1 \\ 0.653 & \text{se } 1 \le x < 2 \\ 0.944 & \text{se } 2 \le x < 3 \\ 1 & \text{se } x \ge 3 \end{cases}$$

Exemplo: Comissão

Esperança e Variância - variável aleatória discreta

Esperança: variável aleatória discreta

Seja X uma v.a. discreta assumindo os valores x_1, \ldots, x_n .

A esperança (ou valor esperado) da variável X é dada por:

$$\mathbb{E}(X) = \sum_{i=1}^{n} x_i P(X = x_i)$$

A esperança de X é a média ponderada de todos os valores possíveis de X, onde o peso de cada valor é a probabilidade.

Esperança - Exemplos

Suponha que X assuma os valores 0 ou 1 com igual probabilidade, ou seja,

$$P(X = 0) = P(X = 1) = \frac{1}{2}$$

$$\mathbb{E}(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = \frac{1}{2}$$

Suponha que X assuma os valores 0 ou 1 com as seguintes probabilidades,

$$P(X = 0) = \frac{2}{3}$$
 e $P(X = 1) = \frac{1}{3}$

$$\mathbb{E}(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = 0 \times \frac{2}{3} + 1 \times \frac{1}{3} = \frac{1}{3}$$

Veja que nesses dois exemplos: $\mathbb{E}(X) = P(X=1)$

Exemplo: Lançamento de um dado

X é a v.a. representando o resultado do lançamento.

$$P(X = i) = \frac{1}{6}, \qquad i = 1, 2, 3, 4, 5, 6$$

$$\mathbb{E}(X) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 3.5$$

Neste caso, a esperança de X não é igual a nenhum dos valores possíveis de X.

Não podemos interpretar $\mathbb{E}(X)$ como o valor que esperamos que X irá assumir, mas sim como uma média dos valores observados de X ao longo de muitas repetições do experimento aleatório.

Se jogarmos o dado muitas vezes e calcularmos uma média de todos os resultados obtidos, essa média será aproximadamente 3.5.

Exemplo: Seguros

Uma companhia de seguros determina o prêmio anual do seguro de vida de maneira a obter um lucro esperado de 1% do valor que o segurado recebe em caso de morte.

Encontre o valor do prêmio anual para um seguro de vida no valor de 200 mil reais assumindo que a probabilidade do cliente morrer naquele ano é 0.02.

A: prêmio anual

X: lucro da companhia no ano para o cliente

Então,

$$X = \begin{cases} A, & \text{se o cliente sobrevive} \\ A - 200000, & \text{se o cliente morre} \end{cases}$$

Exemplo: Seguros

$$\mathbb{E}(X) = A \times P(\text{sobreviver}) + (A - 200000) \times P(\text{morrer})$$

$$\mathbb{E}(X) = A \times 0.98 + (A - 200000) \times 0.02$$

$$\mathbb{E}(X) = A - 4000$$

Companhia quer lucro esperado de 1% do valor recebido em caso de morte: 2000 reais.

$$\mathbb{E}(X) = 2000 = A - 4000$$

Portanto, A=6000 é o valor do prêmio anual.

Um empresário pretende estabelecer uma firma para montagem de um componente mecânico. Cada peça é composta de duas partes, A e B, cada uma com uma chance específica de ser defeituosa. Só é possível verificar a qualidade das peças depois que elas são montadas.

Se ambas são defeituosas, a peça é descartada e dá um prejuízo de \$5.

Se a peça B é defeituosa, ainda é possível reparar a peça e obter um lucro de \$5.

De maneira semelhante, se A é defeituosa, o reparo permite vender a peça inteira com um lucro de \$10.

Se as duas peças são boas, o lucro é de \$15.

Seja A o evento indicando que a peça A está perfeita.

Então A^c indica que a peça A está com defeito.

Seja B o evento indicando que a peça ${\bf B}$ está perfeita.

Então B^c indica que a peça B está com defeito.

Cada uma das configurações está associada a uma probabilidade:

$$P(A \cap B) = 0.56$$
 $P(A^c \cap B) = 0.23$

$$P(A \cap B^c) = 0.02$$
 $P(A^c \cap B^c) = 0.19$

Como podemos descrever a distribuição do lucro por componente?

Qual o lucro esperado por peça produzida?

$$P(A \cap B) = 0.56, \, P(A^c \cap B) = 0.23 \, \, P(A \cap B^c) = 0.02 \, \, \mathrm{e} \, \, P(A^c \cap B^c) = 0.19$$

Seja X a variável indicando o lucro na produção de um componente.

- X assume o valor 15 se as peças A e B estão ok, o que ocorre com probabilidade 0.56.
- \blacksquare X assume o valor 10 se apenas A apresentar defeito, o que ocorre com probabilidade 0.23.
- \blacksquare X assume o valor 5 se apenas B apresentar defeito, o que ocorre com probabilidade 0.02.
- \blacksquare X assume o valor -5 se tanto A quanto B apresentarem defeito, o que ocorre com probabilidade 0.19.

Distribuição de probabilidade para a variável aleatória X:

X	-5	5	10	15
P(X=x)	0.19	0.02	0.23	0.56

X	-5	5	10	15
P(X=x)	0.19	0.02	0.23	0.56

Função de Distribuição Acumulada:

$$F(x) = \begin{cases} 0 & \text{se} \quad x < -5 \\ 0.19 & \text{se} \quad -5 \le x < 5 \\ 0.21 & \text{se} \quad 5 \le x < 10 \\ 0.44 & \text{se} \quad 10 \le x < 15 \\ 1 & \text{se} \quad x \ge 15 \end{cases}$$

Suponha que o empresário faça a seguinte pergunta: Qual o lucro médio por conjunto montado que espero conseguir?

X	-5	5	10	15
P(X=x)	0.19	0.02	0.23	0.56

Lembrem-se que a esperança de uma v.a. X com valores x_1, x_2, \ldots, x_n é:

$$\mathbb{E}(X) = \sum_{i=1}^{n} x_i P(X = x_i)$$

Para saber o lucro esperado, basta aplicar a fórmula:

$$\mathbb{E}(X) = -5 \times 0.19 + 5 \times 0.02 + 10 \times 0.23 + 15 \times 0.56$$
$$= 9.85$$

Exemplo: Pedágio

Você, cansado de esperar em filas de pedágio com frequência, está considerando assinar o serviço de pagamento eletrônico. Dentre as opções oferecidas, você se interessa pelas duas abaixo:

Plano Clássico: obrigatório fazer adesão novamente após 5 anos.

Plano Clássico: em caso de perda/roubo/troca é preciso pagar a taxa de substituição.

Assumindo que não há roubo/perda, mas apenas troca do veículo e que não há o desconto na adesão para renovar após 5 anos, como decidir?

Podemos fazer um exemplo de acordo com o período em que vamos assinar o plano escolhido.

Exemplo: Pedágio

Seja a v.a. T: idade do veículo até a troca.

E a função de distribuição acumulada dada por:

$$F(t) = \begin{cases} 0 & \text{se} \quad t < 2\\ 0.1 & \text{se} \quad 2 \le t < 3\\ 0.2 & \text{se} \quad 3 \le t < 4\\ 0.5 & \text{se} \quad 4 \le t < 5\\ 0.7 & \text{se} \quad 5 \le t < 6\\ 0.9 & \text{se} \quad 6 \le t < 7\\ 1 & \text{se} \quad t \ge 7 \end{cases}$$

Exemplo: Pedágio

T: idade do veículo até a troca.

Assumindo que você queira assinar por um período de 3 anos. Vamos definir:

 C_1 : custo do plano 1 por 3 anos.

Probabilidade de trocar de carro em até 3 anos: 0.2

Portanto, C_1 assume os valores:

$$C_1 = \begin{cases} 73.16 + 13.05 \times 12 \times 3 = 542.96, & \text{com probabilidade } 0.8 \\ 73.16 + 13.05 \times 12 \times 3 + 43.83 = 586.79, & \text{com probabilidade } 0.2 \end{cases}$$

$$\mathbb{E}(C_1) = 542.96 \times 0.8 + 586.79 \times 0.2 = 551.73$$

 C_2 : custo do plano 2 por 3 anos.

 C_2 assume o valor $17.28 \times 12 \times 3 = 622.08$, com probabilidade 1

$$\mathbb{E}(C_2) = 622.08$$

Assumindo que você queira assinar por um período de 6 anos. Vamos definir:

 C_1 : custo do plano 1 por 6 anos.

Probabilidade de trocar de carro em até 6 anos: 0.9

Portanto, C_1 assume os valores:

$$C_1 = \begin{cases} 2 \times 73.16 + 13.05 \times 12 \times 6 = 1085.92, & \text{com prob. } 0.1\\ 2 \times 73.16 + 13.05 \times 12 \times 6 + 43.83 = 1129.75, & \text{com prob. } 0.9 \end{cases}$$

$$\mathbb{E}(C_1) = 1085.92 \times 0.1 + 1129.75 \times 0.9 = 1125.37$$

 C_2 : custo do plano 2 por 6 anos.

 C_2 assume o valor $17.28 \times 12 \times 6 = 1244.16$, com probabilidade 1

$$\mathbb{E}(C_2) = 1244.16$$

Variância: variável aleatória discreta

Vimos que a esperança nos dá a média ponderada de todos os resultados possíveis de uma v.a..

No entanto, a esperança não descreve a dispersão dos dados.

Considere as seguintes v.a.'s:

U=0, com probabilidade 1

$$V = \begin{cases} -1, & \text{com prob. } 1/2 \\ 1, & \text{com prob. } 1/2 \end{cases}$$
 e $W = \begin{cases} -10, & \text{com prob. } 1/2 \\ 10, & \text{com prob. } 1/2 \end{cases}$

$$\mathbb{E}(U) = \mathbb{E}(V) = \mathbb{E}(W) = 0$$

No entanto, claramente a dispersão é bem diferente para as três variáveis.

Variância: variável aleatória discreta

Queremos uma medida para quantificar quão distantes os valores da v.a. X estão da sua esperança.

Definição: Se X é uma v.a. com esperança $\mathbb{E}(X) = \mu$, então a variância de X é:

$$Var(X) = \mathbb{E}[(X - \mu)^2]$$

Notação: $\sigma^2 = Var(X)$

Se X é uma v.a. discreta assumindo valores x_1, x_2, \ldots, x_n com respectivas probabilidades $P(X = x_i) = p_i$, então:

$$Var(X) = \sum_{i=1}^{n} (x_i - \mu)^2 p_i$$

Propriedade Geral da Variância

Definição:
$$Var(X) = \mathbb{E}([X - \mathbb{E}(X)]^2)$$

Uma forma alternativa de calcular a variância é usando a fórmula:

$$Var(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$$

Demonstração:

$$\begin{split} \mathbb{E}([X - \mathbb{E}(X)]^2) &= \mathbb{E}([X - \mu]^2) \\ &= \mathbb{E}(X^2 - 2X\mu + \mu^2) = \mathbb{E}(X^2) - 2\mu\mathbb{E}(X) + \mu^2 \\ &= \mathbb{E}(X^2) - 2\mu\mu + \mu^2 = \mathbb{E}(X^2) - 2\mu^2 + \mu^2 \\ &= \mathbb{E}(X^2) - \mu^2 \\ &= \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 \end{split}$$

Exemplo

Encontre Var(X), onde X é uma v.a. tal que:

$$X = \begin{cases} 1, & \text{com probabilidade } p \\ 0, & \text{com probabilidade } 1-p \end{cases}$$

$$\mathbb{E}(X) = 1 \times p + 0 \times (1-p) = p$$

$$Var(X) = \mathbb{E}(X^2) - p^2$$

$$X^2 = \begin{cases} 1^2, & \text{com probabilidade } p \\ 0^2, & \text{com probabilidade } 1-p \end{cases}$$

$$\mathbb{E}(X^2) = 1 \times p + 0 \times (1-p) = p$$

$$Var(X) = p - p^2 = p(1-p)$$

Propriedades da Esperança

 \blacksquare Para qualquer v.a. X e constantes a e b:

$$\mathbb{E}(aX+b) = a\mathbb{E}(X) + b$$

Casos particulares:

- $\blacksquare \mathbb{E}(X+b) = \mathbb{E}(X) + b$
- $\blacksquare \mathbb{E}(aX) = a\mathbb{E}(X)$
- 2 Se X_1, X_2, \ldots, X_n são variáveis aleatórias:

$$\mathbb{E}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{E}(X_i)$$

Propriedades da Esperança

Proposição: Se X é uma v.a. discreta com valores x_i e função de massa $p(x_i)$, então para qualquer função g:

$$\mathbb{E}[g(X)] = \sum_{i} g(x_i)p(x_i)$$

Exemplo: Seja X uma v.a. tal que:

$$X = \begin{cases} 1, & \text{com probabilidade } p \\ 0, & \text{com probabilidade } 1 - p \end{cases}$$

$$\mathbb{E}(X^2) = 1^2 \times p + 0^2 \times (1 - p) = p$$

Propriedades da Variância

 \blacksquare Para qualquer v.a. X e constantes a e b:

$$Var(aX + b) = a^2 Var(X)$$

Casos particulares:

- Var(X+b) = Var(X)
- $Var(aX) = a^2 Var(X)$
- 2 Se X_1, X_2, \ldots, X_n são variáveis aleatórias independentes:

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i)$$

■ A média, valor esperado ou esperança de uma variável aleatória discreta X, cuja f.d.p. é dada por $P(X = x_i) = p_i$ é dada pela expressão:

$$\mu_X = \mathbb{E}(X) = \sum_{i \ge 1} x_i p_i$$

■ A mediana (Md) é o valor que satisfaz:

$$P(X \ge Md) \ge \frac{1}{2}$$
 e $P(X \le Md) \ge \frac{1}{2}$

■ A **moda** (Mo) é o valor da variável X que tem maior probabilidade de ocorrência:

$$P(X = Mo) = \max\{p_1, p_2, \ldots\}$$

Exemplo: Considere a v.a. discreta X, tal que:

\overline{X}	-5	10	15	20
P(X=x)	0.3	0.2	0.4	0.1

$$\mu_X = \mathbb{E}(X) = (-5) \times 0.3 + 10 \times 0.2 + 15 \times 0.4 + 20 \times 0.1 = 8.5$$

$$Mo(X) = 15$$

$$P(X \le 10) = P(X \ge 15) = 0.5,$$

então a mediana é

$$Md(X) = \frac{10+15}{2} = 12.5$$

■ Obs: Note que nem a média (8.5) nem a mediana (12.5) são valores assumidos pela variável X.

Exemplo: Considere a v.a. X tal que:

X	2	5	8	15	20
P(X=x)	0.1	0.3	0.2	0.2	0.2

Calcule a média, a moda e a mediana de X.

$$\mu_X = 10.3$$

$$Mo(X) = 5$$

$$Md(X) = 8$$

Exemplo: Considere a v.a. X do slide anterior e seja Y=5X-10 , então

\overline{Y}	0	15	30	65	90
$\overline{P(Y=y)}$	0.1	0.3	0.2	0.2	0.2

Calcule a média, a moda e a mediana de Y.

$$\mu_Y = 41.5, \qquad Mo(Y) = 15 \qquad \text{e} \qquad Md(Y) = 30$$

Note que, como Y = 5X - 10:

$$\mu_Y = 5\mu_X - 10 = 5 \times 10.3 - 10 = 41.5$$

$$Mo(Y) = 5Mo(X) - 10 = 5 \times 5 - 10 = 15$$

$$Md(Y) = 5Md(X) - 10 = 5 \times 8 = 10 = 30$$

Exemplo

Considere uma urna contendo três bolas vermelhas e cinco pretas.

Retire três bolas, sem reposição, e defina a variável aleatória X igual ao número de bolas pretas.

Obtenha a distribuição de X. Calcule a esperança e a variância.

Fonte: Morettin | Bussab, Estatística Básica 5^a edição, pág 135.

Repare que não há reposição:

- a primeira extração tem 5 possibilidades em 8 de ser uma bola preta;
- a segunda terá 5 em 7 se a primeira for vermelha, ou 4 em 7 se a primeira foi preta, e assim por diante.

Retirar 3 bolas, sem reposição, de uma urna com 3 bolas vermelhas e 5 pretas

A partir do gráfico, podemos construir uma tabela com os eventos do espaço amostral:

Extrações	Probabilidade
PPP	$5/8 \times 4/7 \times 3/6 = 5/28$
PPV	$5/8 \times 4/7 \times 3/6 = 5/28$
PVP	$5/8 \times 3/7 \times 4/6 = 5/28$
VPP	$3/8 \times 5/7 \times 4/6 = 5/28$
PVV	$5/8 \times 3/7 \times 2/6 = 5/56$
VPV	$3/8 \times 5/7 \times 2/6 = 5/56$
VVP	$3/8 \times 2/7 \times 5/6 = 5/56$
VVV	$3/8 \times 2/7 \times 1/6 = 1/56$

Como X é o número de bolas pretas, temos que:

Somando as probabilidades dos eventos, encontradas anteriormente, obtemos a função de distribuição de X, $p_X(x)$.

Eventos	X = x	$p_X(x) = P(X = x)$
$\overline{\{VVV\}}$	0	0.02
$\{VVP\} \cup \{VPV\} \cup \{PVV\}$	1	0.27
$\{PPV\} \cup \{PVP\} \cup \{VPP\}$	2	0.53
$\{PPP\}$	3	0.18

Podemos calcular a esperança e a variância de X a partir de sua função de probabilidade:

$$\mu = \mathbb{E}(X) = \sum_{x=0}^{3} x p_X(x)$$
$$= 0 \times 0.02 + 1 \times 0.27 + 2 \times 0.53 + 3 \times 0.18 = 1.87$$

$$Var(X) = \mathbb{E}[(X - \mu)^2] = \sum_{x=0}^{3} (x - \mu)^2 p_X(x)$$
$$= (0 - 1.87)^2 \times 0.02 + (1 - 1.87)^2 \times 0.27 +$$
$$+ (2 - 1.87)^2 \times 0.53 + (3 - 1.87)^2 \times 0.18 = 0.51$$

Exemplo

O tempo T, em minutos, necessário para um operário processar certa peça é uma v.a. com a seguinte distribuição de probabilidade:

\overline{T}	2	3	4	5	6	7
$\overline{P(T=t)}$	0.1	0.1	0.3	0.2	0.2	0.1

- I Calcule o tempo médio de processamento.
- 2 Cada peça processada paga ao operador \$2.00 mas, se ele processa a peça em menos de 6 minutos, ganha \$0.50 por minuto poupado. Por exemplo, se ele processa a peça em 4 minutos, ganha um bônus de \$1.00. Encontre a distribuição, a média e a variância da v.a. S: quantia paga por peça.

Fonte: Morettin & Bussab, Estatística Básica 5^a edição, pág 140.

1 Tempo médio de processamento

$$\mathbb{E}(T) = \sum_{t=2}^{7} tP(T=t)$$

$$= 2 \times 0.1 + 3 \times 0.1 + 4 \times 0.3 + 5 \times 0.2 + 6 \times 0.2 + 7 \times 0.1 = 4.6$$

Podemos trocar os valores na tabela do tempo, pelo total ganho por peça. Note, contudo, que o operário receberá \$2.00 no evento $\{T=6\} \cup \{T=7\}$, logo somamos suas probabilidades. Seja S a v.a. "ganho final".

\overline{S}	\$4.00	\$3.50	\$3.00	\$2.50	\$2.00
P(S=s)	0.1	0.1	0.3	0.2	0.3

Obtemos a média e a variância de S através da definição:

$$\mathbb{E}(S) = \sum_{s} sP(S=s)$$
 = $4 \times 0.1 + 3.5 \times 0.1 + 3 \times 0.3 + 2.5 \times 0.2 + 2 \times 0.3 = 2.75$

$$\mathbb{E}(S^2) = \sum_{s} s^2 P(S = s)$$

$$= 16 \times 0.1 + 12.25 \times 0.1 + 9 \times 0.3 + 6.25 \times 0.2 + 4 \times 0.3 = 7.975$$

Então,

$$Var(S) = 7.975 - (2.75)^2 = 0.4125$$

Leituras

- OpenIntro: seção 2.4.
- \blacksquare Ross: seções 5.1, 5.2, 5.3.
- Magalhães: seção 3.1.