THE WONDERFUL COMPACTIFICATION FOR QUANTUM GROUPS

Iordan Ganev

University of Texas at Austin

16 December 2015

Geometric and Categorical Representation Theory Conference, Mooloolaba

SECTIONS

- · Introduction and motivation
- Definition and basic properties of the wonderful compactification
- · The Vinberg semigroup
- · Quantum groups, quantum \mathcal{D} -modules

INTRODUCTION

Let G be a connected reductive group. Let $G_{adj}=G/Z(G)$ be the adjoint group.

We're interested in a certain compactification $\overline{G_{adj}}$ of G_{adj} . Construction to come. Basic properties:

- · Smooth projective variety with a $G \times G$ action.
- · Open orbit is G_{adj} with left and right multiplication action.
- · Closed orbit is $G/B \times G/B$.
- Other orbits are related to partial flag varieties, wonderful compactifications of smaller rank groups, degenerations of G, etc.
- · Encodes asymptotics of matrix coefficients

WHY IS IT WONDERFUL?

'Wonderful' is a technical term (a wonderful variety is a type of spherical variety with conditions on the boundary divisors).

Appearances in geometric representation theory:

- · character sheaves [Bezrukavnikov-Finkelberg-Ostrik]
- · second adjointness for p-adic groups [Bezrukavnikov-Kazhdan, Sakellaridis-Venkatesh]
- · constant term & Eisenstien series functors [Drinfeld-Gaitsgory]

Also relevant in the theory of spherical varieties, Poisson geometry, arithmetic geometry.

Question: What is the wonderful compactification for quantum groups? What can we do with it?

CONSTRUCTION

- · Let G be a connected reductive group over $\mathbb C$. Fix a Borel B \subset G and a maximal torus T \subset B.
- · Let $V = V_{\lambda}$ be a finite-dimensional irreducible representation of regular highest weight λ . Consider

CONSTRUCTION

- · Let G be a connected reductive group over $\mathbb C$. Fix a Borel B \subset G and a maximal torus T \subset B.
- · Let $V = V_{\lambda}$ be a finite-dimensional irreducible representation of regular highest weight λ . Consider

Lemma. The map ψ is well-defined, injective, and $G \times G$ equivariant.

Definition/Proposition

The wonderful compactification $\overline{G_{adj}}$ of G_{adj} is the closure of the image of ψ in $\mathbb{P}(\operatorname{End}(V))$. The projective $G \times G$ -variety $\overline{G_{adj}}$ is smooth and does not depend on the choice of regular highest weight.

EXAMPLE: $G = SL_2$

Let $G = SL_2$, and so $G_{adj} = PSL_2$.

Claim: The wonderful compactification is $\overline{PSL_2} = \mathbb{P}^3$.

Proof: The defining representation \mathbb{C}^2 is of regular highest weight.

$$\begin{array}{ccc} SL_2\mathbb{C} & \longrightarrow Mat_2\mathbb{C} \setminus \{0\} \\ & & \downarrow \\ PSL_2\mathbb{C} & \stackrel{\psi}{\longrightarrow} \mathbb{P}(Mat_2\mathbb{C}) \simeq \mathbb{P}^3 \end{array}$$

The image of ψ is dense.

Note: The complement of PSL_2 in \mathbb{P}^3 is

$${\text{rank 1 matrices}}/\mathbb{C}^{\times} = \mathbb{P}^1 \times \mathbb{P}^1$$

The stratification into $G \times G$ orbits is $PSL_2 \coprod (\mathbb{P}^1 \times \mathbb{P}^1)$.

EXAMPLE: $G = SL_3$ AND HIGHER

WARNING: For n>2, the defining representation of SL_n is not regular, and the wonderful compactification of PSL_n is **not** \mathbb{P}^{n^2-1} . (Although this is **a** compactification of PSL_n , there aren't enough $G\times G$ orbits, and the structure isn't as rich.)

Example: For $G = SL_3$, the wonderful compactification is harder to describe than for SL_2 . It has four orbits: PSL_3 , $SL_3/B \times SL_3/B$, and two that form fibrations (i=1,2)

THE $G \times G$ ORBITS

Let Δ be the set of positive simple roots of Lie(G). For $I \subseteq \Delta$, let P_I and L_I denote the corresponding parabolic subgroup and Levi.

Proposition

The $G \times G$ orbits on $\overline{G_{adj}}$ are in bijection with subsets of Δ . Write Orb_1 for the orbit corresponding to $I \subseteq \Delta$. There are fibrations:

where $\overline{L_{adj}}$ is the wonderful compactification of the adjoint group L_{adj} of L_I , and $\overline{Orb_I}$ denotes the closure of Orb_I in $\overline{G_{adj}}$.

Extremes: $Orb_{\Delta} = G_{adj}$ and $Orb_{\emptyset} = G/B \times B^{-}\backslash G$.

ANOTHER PERSPECTIVE

There is a different perspective on the wonderful compactification based on the Vinberg semigroup.

Key tools:

- · Peter-Weyl theorem
- · Rees algebra of $\mathcal{O}(G)$
- · GIT quotients

VINBERG SEMIGROUP

Recall:

$$\left\{\begin{array}{c} \text{finite-dimensional irreducible} \\ \text{representations of G} \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{dominant weights} \\ \text{of G} \end{array}\right\} =: \Lambda^+.$$

$$\mathsf{V}_\lambda \longleftrightarrow \lambda$$

Peter-Weyl Theorem

There is an isomorphism of $G \times G$ representations

$$\bigoplus_{\lambda \in \Lambda^+} \mathsf{V}_{\lambda}^* \otimes \mathsf{V}_{\lambda} \longrightarrow \mathcal{O}(\mathsf{G})$$

given by matrix coefficients: $f \otimes v \mapsto [g \mapsto \langle f, g \cdot v \rangle]$.

Remark: The multiplication on $\mathcal{O}(G)$ does not respect the decomposition. Reason: $V_{\lambda} \otimes V_{\mu} = V_{\lambda+\mu} \oplus \text{stuff}$.

THE PETER-WEYL FILTRATION ON O(G)

Let $\Lambda = X^*(T)$ be the weight lattice of G, equipped with the following partial order: $\mu \leq \lambda$ if $\lambda - \mu$ is a sum of non-negative multiples of positive roots.

Lemma. If $V_{\nu} \subseteq V_{\lambda} \otimes V_{\mu}$, then $\nu \leq \lambda + \mu$. Consequently, there is a Λ -filtration on $\mathcal{O}(G)$ given by

$$\mathcal{O}(\mathsf{G})_{\leq \lambda} = \bigoplus_{\mu < \lambda} \mathsf{V}_{\mu}^* \otimes \mathsf{V}_{\mu}.$$

Example. If $G = SL_2$, then $\Lambda^+ = \mathbb{Z}_{\geq 0} \subseteq \Lambda = \mathbb{Z}$ and $\alpha = 2$ is the only positive root. Partial order:

$$\cdots \le -2 \le 0 \le 2 \le 4 \le \dots$$

$$\cdots \le -1 \le 1 \le 3 \le 5 \le \dots$$

We have $\mathcal{O}(SL_2) = \mathbb{C}[a,b,c,d]/(ad-bc=1)$. As a vector space, $\mathcal{O}(SL_2)_{<1}$ is spanned by a,b,c,d.

THE VINBERG SEMIGROUP

Definition/Proposition

The Rees algebra of $\mathcal{O}(G)$ is the following subalgebra of $\mathcal{O}(G)\otimes \mathbb{C}[\Lambda]$:

$$\mathsf{Rees}(\mathcal{O}(\mathsf{G})) = \bigoplus_{\lambda \in \Lambda} \mathcal{O}(\mathsf{G})_{\leq \lambda} \mathsf{Z}^{\lambda}.$$

Rees($\mathcal{O}(G)$) is naturally a bialgebra (not Hopf!). Define the Vinberg semigroup as $\mathbb{V}_G = \operatorname{Spec}(\operatorname{Rees}(\mathcal{O}(G)))$.

(Here $\mathbb{C}[\Lambda]$ is the group algebra, so $z^{\lambda+\mu}=z^{\lambda}z^{\mu}$.)

Remark. This is not Vinberg's original definition; see work of Brion.

Example. For $G = SL_2$, we have $V_{SL_2} = Mat_2$.

Also: The inclusion $\mathbb{C}[z^{\alpha} \mid \alpha \in \Delta] \hookrightarrow \mathcal{O}(\mathbb{V}_G)$ induces a map $\pi: \mathbb{V}_G \to \mathbb{A}^r$. The generic fiber is G; the other fibers are rational degenerations of G.

RELATION TO THE WONDERFUL COMPACTIFICATION

Since $\mathcal{O}(\mathbb{V}_G) = \text{Rees}(\mathcal{O}(G))$ is graded by $\Lambda = X^*(T)$, there is an action of T on \mathbb{V}_G .

Theorem

- 1. [Martens-Thaddeus] Fix $\lambda \in \Lambda^+$ regular. Then $\overline{G_{adj}} = \mathbb{V}_G /\!\!/_{\lambda} T$.
- 2. A Poisson-Lie bracket on $\mathcal{O}(G)$ (e.g. the Sklyanin bracket) on G induces Poisson structures on \mathbb{V}_G , $\overline{G_{adj}}$, and each Orb₁.

QUANTUM GROUPS

- · For simplicity, assume G is semisimple and simply connected.
- · Let $\mathfrak{g} = Lie(G)$.
- · Fix $q\in\mathbb{C}^\times$ and let $U_q(\mathfrak{g})$ be the quantum group.

Example. The quantum group $U_q(\mathfrak{sl}_2)$ is generated by E, F, $K^{\pm 1}$ subject to the relations

$$KE = q^{2}EK$$
 $KF = q^{-2}FK$ $[E, F] = \frac{K - K^{-1}}{q - q^{-1}}$

For q not a root of unity:

$$\left\{\begin{array}{c} \text{finite-dimensional irreducible} \\ \text{representations of } U_q(\mathfrak{g}) \\ \text{(of type 1)} \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{dominant weights} \\ \text{of G} \end{array}\right\} =: \Lambda^+.$$

QUANTUM COORDINATE ALGEBRA

Definition

The quantized coordinate algebra $\mathcal{O}_q(G)$ is the image of

$$\bigoplus_{\lambda \in \Lambda^+} \mathsf{V}_{\lambda}^* \otimes \mathsf{V}_{\lambda} \longrightarrow \mathsf{U}_\mathsf{q}(\mathfrak{g})^*.$$

Theorem

The algebra $\mathcal{O}_q(G)$...

- 1. is a Hopf algebra that quantizes $\mathcal{O}(G)$ with the Sklyanin bracket. [de Concini-Lyubashenko]
- 2. has a Λ -filtration given by $\mathcal{O}_q(\mathsf{G})_{\leq \lambda} = \bigoplus_{\mu < \lambda} \mathsf{V}_\mu^* \otimes \mathsf{V}_\mu$.

Remark. Alternative definitions use FRT algebras and R-matrix quantization.

The algebra $\mathcal{O}_q(Mat_2)$ is generated by elements a,b,c,d with relations

$$ab = qba \qquad cd = qdc$$

$$ac = qca \qquad ad = da + (q - q^{-1})cb \qquad bc = cb \qquad bd = qdb$$

The quantum coordinate algebra of SL₂ is:

$$\mathcal{O}_q(SL_2) = \mathcal{O}_q(Mat_2)/\langle ad-qbc-1\rangle.$$

The coproduct and counit are the same as for $\mathcal{O}(SL_2)$. As a vector space, $\mathcal{O}_q(SL_2)_{\leq 1}$ is spanned by a,b,c,d.

MAIN RESULTS

Definition

The quantum coordinate ring of the Vinberg semigroup is the Rees algebra $\mathcal{O}_q(\mathbb{V}_G):=\text{Rees}(\mathcal{O}_q(G)).$

Proposition [G.]

- 1. $\mathcal{O}_q(\mathbb{V}_G)$ is naturally a bialgebra and quantizes \mathbb{V}_G .
- 2. Fix $\lambda \in \Lambda^+$ regular. The graded algebra

$$\bigoplus_{n>0} \mathcal{O}_q(\mathbb{V}_G)_{n\lambda}$$

quantizes the homogeneous coordinate ring of $\overline{G_{adj}}$.

Recall that the Sklyanin bracket induces Poisson structures on \mathbb{V}_G , $\overline{G_{adj}}$, and each orbit Orb_I .

QUANTUM ORBITS

Fix $I \subseteq \Delta$.

- · Let $\Lambda_I = \mathbb{Z}\{\alpha \mid \alpha \in I\} \subseteq \Lambda$. There is a filtration on $\mathcal{O}_q(G)$ by Λ/Λ_I with associated graded $gr_I(\mathcal{O}_q(G))$.
- · Let \mathfrak{u}_l^\pm and \mathfrak{l}_l be the Lie algebras of $R_{unip}(P_l^\pm)$ and L_l . Regard $\mathfrak{u}_l^- \times \mathfrak{l}_l \times \mathfrak{u}_l$ as a subalgebra of $\mathfrak{g} \times \mathfrak{g}$, with \mathfrak{l}_l positioned diagonally.

Theorem [G.]

Fix $I \subseteq \Delta$. There is an isomorphism of graded algebras

$$gr_{I}(\mathcal{O}_{q}(G)) = \mathcal{O}_{q}(G \times G)^{U_{q}(\mathfrak{u}_{I}^{-} \times \mathfrak{l}_{I} \times \mathfrak{u}_{I})},$$

and each of these algebras quantizes Orb_I.

· The right-hand side can be read as 'group mod stabilizer'.

 $\textbf{Goal} \hbox{: Understand quantum \mathcal{D}-modules on $\overline{G_{adj}}$}$

One approach:

- 1. The algebra of quantum differential operators on G is the smash product $\mathcal{D}_q(G) = \mathcal{O}_q(G) \star U_q(\mathfrak{g})$.
- 2. The algebra of quantum differential operators on \mathbb{V}_G is related to the filtration $\mathcal{D}_q(G)_{\leq \lambda} = \mathcal{O}_q(G)_{\leq \lambda} \star U_q(\mathfrak{g})$.
- 3. There is expected to be a moment map $\mu_q: U_q(\mathfrak{t}) \to \mathcal{D}_q(\mathbb{V}_G)$.
- 4. Hamiltonian reduction along $\mu_{\rm q}$ gives quantum ${\cal D}$ -modules on $\overline{{\rm G}_{\rm adj}}.$

Another goal: Understand \mathcal{D} -modules on the quantum orbits.

- · One way is as quantum \mathcal{D} -modules on $G \times G$ that are strongly equivariant for $U_{\alpha}(\mathfrak{u}_{l}^{-} \times \mathfrak{l}_{l} \times \mathfrak{u}_{l})$.
- · One would like another way coming from asymptotics of quantum \mathcal{D} -modules on the Vinberg semigrroup.
- Functoriality for quantum \mathcal{D} -modules is not well understood, but perhaps categories of \mathcal{D} -modules on quantum orbits are related by taking associated gradeds.

Application: Conjecturally, one recovers quantum Beilinson-Bernstein localization as asymptotics of matrix coefficients by relating \mathcal{D} -modules on the quantum orbits $\text{Orb}_{\Delta} = \text{G}_{\text{adj}} \text{ and } \text{Orb}_{\emptyset} = \text{G}/\text{B} \times \text{B}^- \backslash \text{G}. \ [\text{On-going joint work with D. Ben-Zvi and D. Nadler in both the classical and quantum setting]}.$

