3D Face Reconstruction from Stereo Video

Unsang Park Advisor: Anil K. Jain

Biometrics Research Group Michigan State University biometrics.cse.msu.edu Contents

- Motivation
- 3D face reconstruction from video
- Face recognition with reconstructed 3D face models
- Automatic facial landmark detection and reconstruction
- Conclusions and future Work

2

IICHIGAN STATE

Motivation

■ The same face in a video undergoes substantial variations in pose, illumination, etc. → frontal face recognition does not work

 Videos captured by surveillance systems cannot be used for subject identification

Washington Dulles airport security video of the "hijackers" of 9/11 (AP News).

Surveillance system does not provide the capability of

PRINT

3D Face Reconstruction from Video

- 3D Face reconstruction from Video
 - Pose, lighting and expression can be compensated for better 2D face recognition
 - Verification/Identification in 3D domain using 2D sensors

-

1

MICHICAN STATI

SfM vs. Stereography

- SfM (Structure from Motion)
 - Finding R, T, X from n-view geometry given a set of corresponding points
- Stereography
 - Finding X from 2-view geometry given R, T and a set of corresponding points
 - More accurate than SfM
 - Limited applications
 - · R: rotation matrix
 - T: translation matrix
 - · X: 3D world coordinates

5

MICHIGAN STATE

Generic Model Construction

Semi-dense generic model is constructed from Blanz's morphable model

Original morphable model (~70000 vertexes)

5000 vertices

TIPS TO

72 feature points on the generic model

72 feature points on the video frame

ADES NED

Feature points labeling

WDEED W

Sparse Reconstruction with Stereography

■ Back projection to 3D space

$$x = PX$$

$$P = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

$$W \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} X$$

$$\begin{bmatrix} P_3x - P_1 \\ P_3y - P_2 \end{bmatrix} X = 0$$

$$\begin{bmatrix} P_3x - P_1 \\ P_3y - P_2 \\ P_3'x' - P_1' \\ P_2'y' - P_2' \end{bmatrix} X = 0$$

■ Calculates the deformation mapping function from a set of control points *u* to *v*.

Dense Reconstruction with Thin Plate Spline

$$F(u) = c + Au + W^{T}s(u)$$
, c: translation, A: rotation
W: non-linear deformation

$$s(u) = (\sigma(u-u_1), \sigma(u-u_2), \dots, \sigma(u-u_n))^{T}, \quad \sigma(u) = \begin{cases} ||u||^2 \log(||u||), & ||u|| > 0 \\ 0, & ||u|| = 0, \end{cases}$$

$$\begin{bmatrix} s & 1_n & u^T \\ 1_n^T & 0 & 0 \\ u & 0 & 0 \end{bmatrix} \begin{bmatrix} W \\ c^T \\ A^T \end{bmatrix} = \begin{bmatrix} v \\ 0 \\ 0 \end{bmatrix}$$

10

HDEE NES

Dense Reconstruction with Thin Plate Spline

Example TPS fitting process

Fitting of 72 feature points

Fitting of the rest points (5000) according to the TPS deformation function

Reconstruction Results

Input images R

Reconstructed 3D models

Real 3D models

3D model Assisted Face Recognition In Video

- All possible pose and illumination variant images of a subject are not usually available
- Pose and illumination variations can be generated from the 3D face models
- 2D image based face matcher are readily available (e.g., FaceIt® or FaceVAC®)

Gallery images (from a 3D model)

1;

3D model Assisted Face Recognition In Video

 Baseline performance of FaceIt (Identix) and FaceVAC (Cognitec) from FRVT 2002

Example probe images

Rank-1 identification accuracy, 37437 subjects

Performance degradation with pose variations, 87 subjects

MPHENNS

RCAN SEATE

Face Recognition with Reconstruction

- 15 subjects in probe and 100 subjects in gallery
- Score-sum fusion of the matching score from FaceIt® and FaceVAC® by Min-Max normalization
- Frame level fusion is performed by majority-vote

acquired from range sensor

Probe images (from a video)

models

Matching Examples

| Frobe | Correct matching with pose/lighting without pose/lighting w

MICHICAN STATE

HDER NED

Automatic Facial Landmark Detection

 72 landmarks using Active Shape Model (ASM) on a Video with 60 frames

Landmark detection with temporal coherency (estimated feature points at current frame are used as the initial state for the next frame)

17

MICHIGAN STATE

Reconstruction with SfM

 Reconstruction is performed using automatically detected/tracked 72 landmarks on 60 frames by factorization method

Dense reconstruction with texture mapping

18

MICHICAN STATI

PENE

Conclusions

- A (dense) 3D face reconstruction method using stereography, TPS and generic model is proposed
- Reconstructed 3D face model provides better face recognition performance by adding pose/lighting variations into gallery
- Preliminary work on automatic facial landmark detection using ASM, followed by SfM-based reconstruction shows promising results

MICHICAN STA

Future work

HDEEN N

- Developing more robust 3D face reconstruction with SfM
- Real-time 3D face reconstruction from video
- Building a frame work of using reconstructed face models from a video in face recognition task (selecting multiple frames incrementally for the 3D reconstruction and recognition)
- Automatic facial pose/lighting estimation in video for the 3D face reconstruction and recognition

3D Face Model Construction

3D face models are used to generate synthetic2D face images at various pose and lighting

3D database

Multi-view 3D face scanning With Minolta VIVID 910 scanner

Full 3D model

