

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 391 464 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 25.02.2004 Bulletin 2004/09
- (21) Application number: 02720634.1
- (22) Date of filing: 26.04.2002

- (51) Int CI.7: **C07K 16/28**, C12N 15/13, C12N 5/10, C12P 21/08, A61K 39/395, A61P 35/00, A61P 37/04, A61P 37/06, A61P 37/08, A61P 7/00
- (86) International application number: PCT/JP2002/004292
- (87) International publication number: WO 2002/088186 (07.11.2002 Gazette 2002/45)
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE TR

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 27.04.2001 US 13672 11.05.2001 JP 2001142482 05.10.2001 JP 2001310535 26.10.2001 US 40244 27.04.2001 US 844684
- (71) Applicant: KIRIN BEER KABUSHIKI KAISHA Chuo-Ku, Tokyo (JP)
- (72) Inventors:
 - MIKAYAMA, Toshifumi,
 c/o Pharmac. Research Laborat.
 Takasaki-shi, Gunma 370-1295 (JP)

- YOSHIDA, Hitoshi, c/o GEMINI SCIENCE INC. San Diego, CA 92109 (US)
- FORCE, Walker, R, c/o GEMINI SCIENCE INC.
 San Diego, CA 92121 (US)
- CHEN, Xingjie
 Milpitas, CA 95035 (US)
- TAKAHASHI, N., ;c/o Pharmaceut. Research Laborat. Takasaki-shi, Gunma 370-1295 (JP)
- (74) Representative: HOFFMANN EITLE Patent- und Rechtsanwälte Arabellastrasse 4 81925 München (DE)
- (54) ANTI-CD40 MONOCLONAL ANTIBODY
- (57) An antibody or a functional fragment thereof, acting agonistically or antagonistically on CD40.

Description

TECHNICAL FIELD

[0001] The present invention relates to an antibody or a functional fragment thereof that recognizes a human CD40 antigen present on the surface of human B cells, dendritic cells (DC) and the like. Specifically, the present invention relates to an anti-human CD40 antibody or a functional fragment thereof that is substantially antagonistic to a human CD40 antigen on the dendritic cell (DC) surface, and an agonistic anti-human CD40 antibody or a functional fragment thereof that is expected to have a therapeutic effect higher than those of conventional anti-human CD40 antibodies.

BACKGROUND ART

1. CD40

10

20

25

30

35

40

45

50

[0002] CD40 is an antigen with a molecular weight of 50 kDa that is present on the cell membrane surface. CD40 is expressed on B cells, dendritic cells (DC), certain types of cancer cells, and thymic epithelial cells. CD40 is known to play a key role in proliferation and differentiation of B cells and DC. CD40 has been identified as an antigen that is expressed on the human B cell surface (E. A. Clark et. al., Proc. Natl. Acad. Sci. USA 83: 4494, 1986, 1. Stamenkovic et. al., EMBO J. 8:1403, 1989). Based on the amino acid sequence homology, CD40 is thought to be a member of the TNF receptor family, to which a low affinity NGF receptor, TNF receptor, CD27, OX40, CD30 and the like belong. The gene of a ligand (CD40L) for human and mouse CD40 has been cloned recently, revealing that it is a type II membrane protein, and is expressed on activated CD4+T cells. It has also been shown that CD40L introduces strong activation signals into human and mouse B cells.

[0003] The expression of CD40 has been confirmed more often on dendritic cells than on B cells, so that it has become clear that CD40 plays an important role. The binding of CD40 with CD40L causes the activation of antigenpresenting cells (APC). Specifically, it enhances the expression of co-stimulation molecules such as CD80 (B7-1) and CD86 (B7-2), or the production of IL-12 (Caux, C., et al.: Activation of human dendritic cells through CD40 cross-linking. J. Exp. Med., 180:1263, 1994), (Shu, U., et al: Activated T cells induce interleukin-12 production by monocyte via CD40-CD40 ligand interaction. Eur. J. Immunol. 25: 1125, 1995). Dendritic cells show strong antigen-presenting ability, and have strong helper T (Th) cell-activating ability. Furthermore, it is thought that dendritic cells control the differentiation of naive Th cells into Th1 or Th2 cells. When dendritic cells (DC1) are made to mature by culturing peripheral blood monocytes that are myeloid dendritic cells in the presence of GM-CSF and IL-4 and using CD40L, the DC1 in vitro are capable of producing IL-12, stimulate and activate allo-naive Th cells, and thus induce IFN γ -producing T cells (specifically, promotes differentiation into Th1). Since this action is inhibited by anti-IL-12 antibodies, the reaction may be mediated by IL-12. On the other hand, when lymphocyte-dendritic cells (DC2) are prepared by culturing lymphatic tissue T regions or plasmacytoid T cells present in peripheral blood with IL-3 and CD40 ligands, DC2 are incapable of producing IL-12, stimulate and activate allo-naive Th cells, induce IL-4-producing T cells, and thus promote differentiation into Th2. It is thought that Th1 cells are involved in the activation of cellular immunity, and Th2 cells are involved in enhancement of the ability for humoral immunity as well as the suppression of the ability for cellular immunity. Cytotoxic T cells (CTL) activated with the help of Th1 cells can remove causative factors (many viruses, Listeria monocytogenes, tubercle bacillus, toxoplasma protozoa and the like) multiplying in the cytoplasm and tumor cells.

[0004] It has been shown that anti-CD40 monoclonal antibodies that recognize CD40 expressed on the membrane surfaces exert a variety of biological activities on B cells. Anti-CD40 monoclonal antibodies are largely classified into agonistic and antagonistic antibodies impacting the interaction between CD40 and CD40L.

2. Agonistic antibody

[0005] The activation of B cells is known as an action of agonistic antibodies. For example, anti-CD40 antibodies have been reported to induce cell adhesion (Barrett et al., J. Immunol. 146: 1722, 1991; Gordon et al., J. Immunol. 140: 1425, 1988), enhance cell size (Gordon et al., J. Immunol. 140: 1425, 1988; Valle et al., Eur. J. Immunol. 19: 1463, 1989), induce the division of B cells that are activated only with anti-IgM antibodies, anti-CD20 antibodies or phorbol ester (Clark and Ledbetter, Proc. Natl. Acad. Sci. USA 83: 4494, 1986; Gordon et al., LEUCOCYTE TYPING III. A. J. McMicheal ed. Oxford University Press. Oxford, p. 426; Paulie et al., J. Immunol. 142: 590, 1989), induce the division of B cells in the presence of IL4 (Valle et al., Eur. J. Immunol. 19: 1463, 1989; Gordon et al., Eur. J. Immunol. 17: 1535, 1987), induce the expression of IgE (Jabara et al., J. Exp. Med. 172: 1861, 1990; Gascan et al., J. Immunol. 147: 8, 1991), IgG and IgM (Gascan et al., J. Immunol. 147: 8, 1991) of cells stimulated with IL-4 and cultured without T cells, enhance the secretion and the on-the-cell expression (Challa A, Allergy, 54: 576, 1999) of soluble CD23/Fcs RII from B cells by IL-4 (Gordon and Guy, Immunol. Today 8: 339, 1987; Cairns et al., Eur. J. Immunol. 18: 349, 1988),

and promote IL-6 production (Clark and Shu, J. Immunol. 145: 1400, 1990). Furthermore, it has been reported that B cell clones are established from human primary culture B cells by adding IL-4 and anti-CD40 antibodies in the presence of CDw32+ adhesion cells (Bancherau et al., Science 241:70,1991), and the inhibition of the apoptosis of germinal center cells is mediated by CD40, regardless of the function of antigen receptors (Liu et al., Nature 342: 929,1989). As described above, CD40 has been identified as an antigen expressed on the human B cell surface. Thus, most of the isolated antibodies have been evaluated mainly using function to induce the proliferation and differentiation of human B cells and activity to induce cell death in cancer cells as indicators (Katira, A. et. al., LEUKOCYTE TYPING V. S. F. Schlossossman, et al. eds. p. 547. Oxford University Press. Oxford, W. C. Flansow et al., LEUKOCYTE TYPING V. S. F. Schlossossman, et al. eds. p. 555. Oxford University Press. Oxford, J. D. Pound et al., International Immunology, 11: 11, 1999).

[0006] Anti-CD40 antibodies were shown to cause the maturation of DC (Z. H. Zhou et. al., Hybridoma, 18: 471 1999). Moreover, the role of CD4T cells in antigen-specific CD8T cell priming has been reported to activate DC via CD40-CD40L signaling. It was shown that the role of CD4 helper T cells in activation of dendritic cells (DC) can be replaced by that of anti-CD40 monoclonal antibodies (mAb) (Shoenberger, S.P., et al.: T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature, 480, 1998). Furthermore, it was shown in mice that the organism can be protected not only from tumor cells expressing CD40 but also from tumor cells not expressing the same by the administration of anti-CD40 antibodies (French, R. R., et. al.: CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nature Medicine, 5, 1999).

[0007] Most antibodies reported to date have not been isolated using the effect on DC as an indicator. However, in terms of the modification of DC functions, antibodies selected by their action on B cells are likely to be insufficient as therapeutic agents. It was reported that among monoclonal antibodies against mouse CD40, there are clones that react to DC, but do not react to vascular endothelial cells, and, conversely, clones that do not react to DC, but react to vascular endothelial cells, depending on epitopes that the antibodies recognize (Van Den Berg, TK, et. al., Immunology, 88: 294, 1996). It is also assumed that the binding and action of human CD40 antibodies to DC differ depending on epitopes.

[0008] It is known that anti-CD40 antibodies or CD40 ligands can suppress the proliferation of CD40-expressing lymphoma cell lines and thus can induce the cell death (Funakoshi S et al., Blood, 83: 2782, 1994; Funakoshi S et al., Journal of Immunotherapy, 19, 93, 1996; Z. H. Zhou et. al., Hybridoma, 18: 471 1999; and Joseph A et al., Cancer Research, 60: 3225, 2000). What is interesting about agonistic antibodies is that the function of the antibody does not always coincide always with that of CD40L. Action to activate B cells does not also coincide with action to suppress B cell tumor growth. It is desired to develop antibodies having both DC-activating ability and tumor cell proliferationsuppressing action. Moreover, among agonistic antibodies, both antibodies that inhibit and those that do not inhibit the binding of CD40L to CD40 are present (Challa A et al., Allergy, 54: 576, 1999). For example, antibodies produced by G28-5 (ATCC No.HB-9110) compete with CD40L, so that there is no effect resulting from the combined use with CD40L. The degree of activation of CD40-expressing cells differs depending on antibodies. Even when antibodies exhibit independently weak agonistic activity, the combined use of the antibodies with CD40 ligands may more significantly promote the activity in the presence of the antibodies, than the activity resulting from CD40 ligands alone. In contrast, even when antibodies exhibit independently agonistic activity, inhibition of CD40 ligands may lower the activity in the presence of the antibodies to a greater extent than the activity resulting from CD40 ligands alone (Pound et al., International Immunology, 11:11, 1999). It was shown that with antibodies that do not compete with CD40 ligands, stronger suppression of proliferation can be achieved in the presence of CD40 ligands, although the tumor cell proliferationsuppressing action of the antibody itself is weak (Joseph A et al., Cancer Research, 60: 3225, 2000). Accordingly, it is desired to develop antibodies that bind to CD40 to suppress independently cell proliferation, but that do not inhibit the binding of CD40 ligands to CD40. By taking full advantage of such characteristics, there is a possibility of developing a therapeutic agent that is more efficient than a soluble CD40L. For example, the soluble CD40L is activated by binding with CD40, and at the same time, it suppresses the function of CD40L present in vivo. An antibody that does not compete with CD40L, does not cause such suppression, and has better therapeutic effects can be expected by synergistic effect.

Antagonistic antibody

[0009] In the meantime, as described above, it is expected that because CD40 plays an important role in immune reaction, therapeutic agents for immune suppression upon organ transplantation and against autoimmune disease can be developed by inhibiting the binding of CD40 with its ligand. Sawada-Hase et al., have reported that the proportion of cells strongly expressing CD40 was increased in the peripheral blood monocytes of Crohn's disease patients. However, antibodies that inhibit the binding of CD40 with its ligand have not been well understood For example, such antibodies that inhibit the binding may be effective for the functional analysis of CD40, and therapy against disease, for which activation of CD40 is required. Moreover, antibodies that inhibit CD40 ligands have been also shown to have

10

20

25

30

40

the potential of being effective as agents against diseases with which the binding of CD40 with CD40 ligands is involved. However, it has been reported that CD40L is expressed in activated blood platelets (V. Henn et. al., Nature 391: 591, 1998). Thus, it has been reported that there is a risk of causing thrombi, if anti-CD40L antibodies are used as a therapeutic agent (T. Kawai et. al., Nat. Medi. 6: 114, 2000). From such a point of view, antibodies against CD40 can be expected to be safer than anti-CD40L antibodies, as an antibody therapeutic agent that inhibits the binding of CD40 with its ligand. Anti-CD40 antibodies are required to suppress the binding of CD40L to CD40, and not to activate CD40 by the antibody itself.

[0010] Although a huge number of studies have been conducted in the past concerning antibodies that bind specifically to human CD40 and suppress the binding of CD40L to CD40 without activating CD40, only a single case, that is a mouse anti-human CD40 antibody, named 5D12, has been reported (J. Kwekkeboom et al., Immunology 79: 439, 1993). In addition, it has not been known whether or not antibodies showing neutralization activity for B cells can also show the same for DC that is, if the antibodies can neutralize the action of CD40 ligands. Furthermore, it has been reported that the action of biotinylated anti-mouse CD40 antibodies is enhanced by cross-linking with avidin (Johnson et al., Eur J Immunol, 24: 1835, 1994). We enhanced the action of soluble CD40 ligands against a B cell line (Ramos cells) using antibodies (M2) against tags (FLAG), which had been previously provided by genetic engineering techniques to the soluble ligands, and measured the neutralization activity. Thus, we confirmed that 5D12 (ATCC No. HB-11339) exhibits only slight neutralization activity.

[0011] We have newly found that 5D12, an antagonistic antibody, has agonistic activity on its own, as a result of cross-linking even in the absence of CD40L. Conventionally, it has been reported that the action of mouse CD40 antibodies is enhanced by cross-linking of biotin with avidin (Johnson et al., Eur J Immunol, 24: 1835, 1994). Furthermore, it has been known that solid-phasing of CD40 antibodies using anti-immunoglobulin antibodies solid-phased on a plate leads to an increase in activity to suppress the proliferation of tumor cells. This has been thought to be an effect resulting from solid-phasing. However, it has not been known that when anti-immunoglobulin antibodies are added to a culture solution for cross-linking of anti-CD40 antibodies, it may become possible even for antagonistic antibodies to show agonistic activity. If antibodies to be used for therapy have antigenicity, a completely opposite effect may occur, such that antibodies which bind to CD40 antibodies in a human body are produced, and with which CD40 antibodies are cross-linked, so that activity seemingly the same as that of CD40 ligands is produced. Accordingly, in view of the safety of a therapeutic agent, it is very important to keep the antigenicity of antibodies at a low level. Consider a case wherein a therapeutic agent is developed by humanization technology based on the sequence of a variable region of a mouse antibody. Since humanized antibodies are known to have immunogenicity, anti-humanized anti-CD40 antibodies may be produced after administration. Specifically, there may be a risk that the antibodies would become agonistic antibodies. Even if the antigenicity is low, anti-CD40 antibodies may be cross-linked with antibody receptors (FcR). From these points, a preferred antagonistic antibody is a human antibody, which binds specifically to CD40. suppresses the binding of CD40L, and does not activate CD40 even by cross-linking, and exhibits weak binding to FcR.

SUMMARY OF THE INVENTION

10

15

20

25

30

35

40

45

50

55

[0012] As described above, the functions of DC have been increasingly analyzed recently, so that CD40 has begun to be recognized as a gene important in controlling the functions of DC. Starting from this background, the purpose of the present invention is to provide by employing an evaluation system using DC; an anti-human CD40 antibody or a functional fragment thereof, which is substantially antagonistic also to a human CD40 antigen on the dendritic cell (DC) surface, and an agonistic anti-human CD40 antibody or a functional fragment thereof that is expected to have a therapeutic effect higher than that of the conventional anti-human CD40 antibody.

[0013] As a result of intensive studies concerning the preparation of antibodies against human CD40, we have completed the present invention by succeeding in producing a novel agonistic antibody and antagonistic antibody that are thought to have a therapeutic effect against disease higher than that of the conventionally known anti-CD40 antibody. That is, the present invention is as follows.

- (1) An antibody against a human CD40, or a functional fragment thereof, having at least one property selected from the following properties (a) to (f) of:
 - (a) acting on dendritic cells to produce IL-12 in the presence of LPS and IFNy,
 - (b) having activity to act on dendritic cells causing the cells to mature, which is higher than that of a G28-5 antibody;
 - (c) having activity to promote an established B cell line to express CD95, which is higher than that of the G28-5 antibody;
 - (d) having activity to suppress the proliferation of an established B cell line, which is higher than that of the G28-5 antibody;

- (e) inducing cell death of an established B cell line; and (f) not inhibiting the binding of CD40 ligands to CD40.
- (2) The above antibody or the functional fragment thereof of the present invention, wherein the maturation of dendritic cells is performed at a concentration of 20 μ g/ml or less. In addition, the antibody or the functional fragment thereof promote the established B cell line to express CD95 at the antibody concentration of 20 μ g/ml or less. Examples of the established B cell line include Ramos, HS-Sulton or the like.
- (3) Furthermore, the above antibody or the functional fragment thereof of the present invention leads to the production of 100 pg/ml or more IL-12 when the antibodies with a concentration of 0.1 μ g/ml or more are added to dendritic cells with a concentration of 1×10^6 cells/ml, and the production of 1000 pg/ml or more, preferably 10000 pg/ml or more IL-12 when the antibodies with a concentration of 1 μ g/ml or more are added.
- (4) Furthermore, within the antibody concentration range between 0.01 μg/ml and 10 μg/ml, the above antibody or the functional fragment thereof of the present invention, promoting the established B cell line (Ramos cell) to express CD95 with approximately 2 to 3 times or more greater effectiveness than that expressed by a G28-5 antibody as a control. For example, with an antibody concentration of 0.01 μg/ml, the expression is promoted with approximately 2 to 6 times or more greater effectiveness than that expressed by the G28-5 antibody as a control. With an antibody concentration of 0.1 μg/ml, the expression is promoted with approximately 2 to 7 times or more greater effectiveness than that expressed by the G28-5 antibody as a control. With an antibody concentration of 1 μg/ml, the expression is promoted with approximately 2 to 7 times or more greater effectiveness than that expressed by the G28-5 antibody as a control. With an antibody concentration of 10 μg/ml, the expression is promoted with approximately 2 to 6 times or more greater effectiveness than that expressed by the G28-5 antibody as a control.
- (5) An antibody or a functional fragment thereof, having the amino acid sequences of a heavy chain variable region and a light chain variable region of an antibody that is produced by a hybridoma KM302-1 (Accession No: FERM BP-7578), KM341-1-19 (Accession No: FERM BP-7759), 2105 (Accession No: FERM BP-8024) or F1-102 (Accession No: ATCC PTA-3337).

Name	Accession No.	Deposition date	Deposited with:		
KM302-1	FERM BP-7578	May 9, 2001	International Patent Organism Depositary, National		
KM341-1-19	FERM BP-7759	September 27, 2001	Institute of Advanced Industrial Science and Technology (Central 6, 1-1-1, Higashi, Tsukuba,		
2105	FERM BP-8024	April 17, 2002	Ibaraki, Japan)		
F1-102	ATCC PTA-3337	April 24, 2001	American Type Culture Collection (10801 University Blvd. Manassas, Virginia, 20110-2209, U.S.A.)		

(6) An antibody or a functional fragment thereof, having amino acid sequences of the mature portions of a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma F2-103, which are respectively encoded by plasmid DNAs with Accession Nos. ATCC PTA-3302 and ATCC PTA-3303; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma F5-77, which are respectively encoded by plasmid DNAs with Accession Nos. ATCC PTA-3304 and ATCC PTA-3305; or a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma F5-157, which are respectively encoded by plasmid DNAs with Accession Nos. ATCC PTA-3306 and ATCC PTA-3307.

Name	Accession No.	Deposition date	Deposited with:	
F2-103 heavy chain (F2-103-H)	ATCC PTA-3302	April 19, 2001	American Type Culture Collection	
F2-103 light chain (F2-103-L)	ATCC PTA-3303	April 19, 2001	(10801 University Blvd. Manassas, Virginia, 20110-2209, U.S.A.)	
F5-77 heavy chain (F5-77-H)	ATCC PTA-3304	April 19, 2001	Virginia, 20110-2209, O.S.A.)	
F5-77 light chain (F5-77-L)	ATCC PTA-3305	April 19, 2001	·	
F5-157 heavy chain (F5-157-H)	ATCC PTA-3306	April 19, 2001		
F5-157 light chain (F5-157-L)	ATCC PTA-3307	April 19, 2001		

(7) An antibody or a functional fragment thereof, having amino acid sequences of the mature portions of a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma KM341-1-19, which

10

15

20

25

30

35

40

45

50

are respectively represented by SEQ ID NOS: 28 and 30; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma 2105, which are respectively represented by SEQ ID NOS: 32 and 34; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma 110, which are respectively represented by SEQ ID NOS: 36 and 38; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma 115, which are respectively represented by SEQ ID NOS: 40 and 42; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma KM643-4-11, which are respectively represented by SEQ ID NOS: 52 and 54; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma F2-103, which are respectively represented by SEQ ID NOS: 60 and 62; or a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma F5-77, which are respectively represented by SEQ ID NOS: 64 and 66.

(8) An antibody or a functional fragment thereof, having amino acid sequences of the mature portions of a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma KM341-1-19, which are respectively represented by SEQ ID NOS: 27 and 29; a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma 2105; which are respectively represented by SEQ ID NOS: 31 and 33; a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma 110, which are respectively represented by SEQ ID NOS: 35 and 37; a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma 115, which are respectively represented by SEQ ID NOS: 39 and 41; a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma KM643-4-11, which are respectively represented by SEQ ID NOS: 51 and 53; a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma F2-103, which are respectively represented by SEQ ID NOS: 59 and 61; or a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma F2-103, which are respectively represented by SEQ ID NOS: 59 and 61; or a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma F5-77, which are respectively represented by SEQ ID NOS: 63 and 65.

(9) An antibody against a human CD40, or a functional fragment thereof, having at least one property selected from the following properties (g) to (j) of:

- (g) neutralizing the action of ligands on CD40;
- (h) neutralizing or alleviating one or more effects that ligands, which are for CD40 on an established B cell line, have on CD40-expressing cells, and having agonistic action on CD40 on the above established B cell line weaker than that of 5D12 due to cross-linking by anti-immunoglobulin antibodies;
- (i) alleviating or neutralizing the action of CD40 ligands on the established B cell line to increase CD95 expression; and
- (j) having antagonistic action on CD40 expressed on dendritic cells.

(10) The antibody or the functional fragment of (9) above can suppress the expression of CD95 in Ramos cells to a level approximately 10% or less than that of a control, when antibodies with a concentration of 0.1 μ g/ml are added to the Ramos cells with a concentration of 1×10^6 cells/ml supplemented with a saturated amount of CD40L-expressing cells; can suppress the expression of CD95 in Ramos cells to the same level as that of a negative control, when the antibodies with a concentration of 1 μ g/ml are added; and can suppress the expression of CD95 in the Ramos cells to the same level as that of the negative control, when the antibodies with a concentration of 10 μ g/ml are added.

(11) The antibody or the functional fragment thereof of (9) above, wherein the proliferation of tonsillar B cells is suppressed in vitro by approximately 80 to 95% or more, when the antibodies with a concentration between 0.001 μ g/ml and 10 μ g/ml are added to 1×10^5 tonsillar B cells supplemented with soluble CD40L (1μ g/ml). For example, when the antibodies with a concentration between 0.01 μ g/ml and 10 μ g/ml are added, the proliferation of tonsillar B cells is suppressed by approximately 95% or more. In particular, when the antibodies with a concentration of 0.001 μ g/ml are added, the proliferation of tonsillar B cells is suppressed by approximately 80% or more.

(12) An antibody or a functional fragment thereof, having amino acid sequences of a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma KM281-1-10 (Accession No: FERM BP-7579), 4D11 (Accession No: FERM BP-7758) or F4-465 (Accession No: ATCC PTA-3338).

Name	Accession No.	Deposition date	Deposited with:
KM281-1-10	FERM BP-7579	May 9, 2001	International Patent Organism Depositary, National
4D11	FERM BP-7758	September 27, 2001	Institute of Advanced Industrial Science and Technology (Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, Japan)

55

5

10

15

20

25

30

35

40

45

(continued)

Name	Accession No.	Deposition date	Deposited with:
F4-465	ATCC PTA-3338	April 24, 2001	American Type Culture Collection (10801 University Blvd. Manassas, VA 20110-2209, U.S.A.)

- (13) An antibody or a functional fragment thereof, having amino acid sequences of the mature portions of a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma KM281-1-10, which are respectively represented by SEQ ID NOS: 44 and 46; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma 4D11, which are respectively represented by SEQ ID NOS: 48 and 50; or a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma F4-465, which are respectively represented by SEQ ID NOS: 56 and 58.
- (14) An antibody or a functional fragment thereof, having amino acid sequences of the mature portions of a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma KM281-1-10, which are respectively represented by SEQ ID NOS: 43 and 45; a heavy chain variable region and a light chain variable region of an antibody produced by a hybridoma 4D11, which are respectively represented by SEQ ID NOS: 47 and 49; or a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma F4-465, which are respectively represented by SEQ ID NOS: 55 and 57.
- (15) Examples of the antibody or the functional fragment thereof of (1) to (14) above include human antibodies.
- (16) A pharmaceutical composition, containing as an active ingredient the antibody or the functional fragment thereof of any one of (1) to (15) above.
- (17) An immunopotentiating agent, anti-tumor agent or anti-autoimmune disease agent, containing as an active ingredient the antibody or the functional fragment thereof of any one of (1) to (8) above.
- (18) An immunosuppressive agent, anti-autoimmune disease agent, therapeutic agent against allergies or therapeutic agent against blood coagulation factor VIII-inhibiting syndrome, containing as an active ingredient the antibody or the functional fragment thereof of any one of (9) to (14) above.
- (19) Here, an epitope of a human CD40 that the monoclonal antibody of the present invention recognizes can be determined by a known method, such as by examining the binding to overlapping synthetic oligopeptides obtained from the primary amino acid sequence of human CD40 (e.g., Ed Harlow and David Lane (eds.), Antibodies: A Laboratory Manual, 1988 Cold Spring Harbor Laboratory Press; US Patent No. 4708871). A peptide library kit with the phage display process (New England BioLabs) can also be used for epitope mapping. The present invention also encompasses an antibody or a functional fragment thereof that recognizes a novel epitope of human CD40 that the antibody or the functional fragment thereof produced by each of the above hybridomas recognizes.
- (20) The present invention further provides a nucleic acid (RNA or cDNA) encoding at least the variable region of a heavy chain and/or light chain of an antibody isolated from each of the above hybridomas, a vector containing the nucleic acid, and a host cell carrying the nucleic acid.
- [0014] The present invention will be described in detail. This specification includes part or all of the contents as disclosed in the specification and/or drawings of PCT Application PCT/US01/13672 (filed on April 27, 2001), Japanese Patent Application No. 2001-142482 (filed on May 11, 2001), Japanese Patent Application No. 2001-310535 (filed on October 5, 2001), and U.S. Patent Application USSN 10/040,244 (filed on October 26, 2001) which are priority documents of the present application.
- [0015] As described later, we have found that a known monoclonal antibody 5D12 (ATCC No. HB-11339) that is antagonistic to CD40 on B cells is not antagonistic to CD40 on DC. We have further found that many monoclonal antibodies show agonistic activity on their own as a result of cross-linking by anti-immunoglobulin antibodies, even if they are antagonistic antibodies that block the action of CD40L.

1. Definition

10

15

20

25

30

35

40

45

50

55

[0016] The terms used in this specification are defined as follows.

[0017] The term "human CD40" in the present invention means a polypeptide having an amino acid sequence shown by Clark et al. (E. A. Clark et al., Proc. Natl. Acad. Sci. USA 83: 4494, 1986) or Stamenkovic et al. (I. Stamenkovic et al., EMBO J. 8: 1403, 1989). Specifically, the human CD40 is an antigen polypeptide that is expressed on the surface of a B cell, DC, macrophage, endothelial cell, epithelial cell or tumor cells of these cells.

[0018] The term "anti-CD40 monoclonal antibody" means any monoclonal antibody against CD40 expressed by a cell, full-length CD40 or partial length CD40. A more preferred anti-CD40 monoclonal antibody binds to the extracellular

portion of CD40 and provides agonistic or antagonistic action on the cells expressing CD40.

[0019] Furthermore, the term "antibody" in the present invention is derived from a gene (generically called an "antibody gene") encoding a heavy chain variable region, a heavy chain constant region, a light chain variable region and a light chain constant region composing an immunoglobulin. The antibody of the present invention encompasses an antibody that is of any immunoglobulin class and has any isotype. The term "functional fragment" of the antibody in the present invention is a part (a partial fragment) of an antibody as defined above, and means a fragment retaining one or more actions of the antibody on an antigen. Specific examples of such functional fragment include F(ab')₂, Fab', Fab, Fv, FVs with disulfide bond, single-stranded FV(scFV), and polymers thereof (D. J. King., Applications and Engineering of Monoclonal Antibodies., 1998 T. J. International Ltd).

10 [0020] The term "human antibody" in the present invention means an antibody which is the expression product of a human-derived antibody gene.

[0021] The term "agonistic" means an action to promote the binding of CD40 ligands to CD40 expressed on the surfaces of cells such as B cells, tumor cells or dendritic cells, or an action to provide CD40-expressing cells with one or more effects that are provided by CD40 ligands to CD40-expressing cells. The term "agonistic antibody" means an antibody having such an agonistic action.

[0022] The term "antagonistic" means an action to inhibit the binding of CD40 ligands to CD40 expressed on the surfaces of cells such as B cells; tumor cells or dendritic cells, or an action to neutralize one or more effects that are provided by CD40 ligands to CD40-expressing cells. The term "antagonistic antibody" means an antibody having such an action.

[0023] The term "dendritic cells (DC)" in the present invention indicates a group of cells which are also referred to as dendritic leukocytes having a strong antigen-presenting function. Dendritic cells used herein are induced by culturing CD34 positive precursor cells contained in, for example, bone marrow, umbilical cord blood or peripheral blood. Alternatively, the dendritic cells can be obtained by culturing CD14 positive monocytes in peripheral blood in the presence of GM-CSF and IL-4.

[0024] The term "immature DC" means DC that are CD14 negative, CD1a strongly positive, CD83, CD86 positive, and MHC class II positive.

[0025] The term "mature DC" means DC that are CD14 negative, CD1a positive, and have become CD83, CD86 and MHC class II strongly positive.

[0026] The term "activate DC" in the present invention means a change that DC induce by responding to the stimulation by CD40. For example, it also means to cause the maturation of immature DC, the high expression of CD80, CD86 and HLA-Class II, and the enhancement of IL-12 production. Alternatively, when T cells co-exist, it also means to stimulate T cells to promote their proliferation.

[0027] The term "activate B cells and a B cell line" in the present invention means a change that cells induce by responding to the stimulation by CD40. For example, it means to cause DNA synthesis, promote the incorporation of thymidine, and thus to increase the expression amount of CD95.

2. Obtainment of antibody

15

20

25

35

40

45

50

[0028] To obtain the antibody of the present invention, it is preferred to immunize mice using as an antigen a gene recombinant mouse cell line expressing a human CD40 or a soluble human CD40 that has been produced and purified with recombinants. Mice to be used for immunization are preferred to produce human antibodies (Tomizuka. et al., Proc Natl Acad Sci USA., 2000 Vol 97: 722). By selecting monoclonal antibodies that bind to soluble human CD40 that has been produced and purified with recombinants, antibodies that react also to CD40 expressed on cells other than B cells may be more easily obtained than by a case wherein clones reacting specifically to B cells are selected. Hybridomas can be produced by the method of Kohler and Milstein et al. (Nature, 1975 Vol. 256: 495) generally used in monoclonal antibody production using the lymphnode cells or splenocytes of immunized mice.

[0029] Furthermore, the binding of soluble CD40L to CD40 is analyzed using a surface plasmon resonance system such as BlAcore 2000 (Biacore), and then antibodies that do not compete with CD40L are selected. In addition, antibodies that suppress independently the suppression of the cell growth of B lymphoma are selected. Furthermore, antibody selection is performed using the condition of whether or not they act on DC as an indicator. This enables the production and selection of antibodies with advantages of acting on dendritic cells or B cells without competing with CD40L, and suppressing the proliferation of CD40-expressing cancer cells.

[0030] The antibody of the present invention is obtained by culturing the thus obtained hybridoma. Further, a gene encoding a human monoclonal antibody or a variable region thereof is cloned from an antibody-producing cell such as a B cell or a hybridoma, the cloned gene is incorporated into an appropriate vector, and then the vector is introduced into a host (e.g., a mammalian cell line, *Escherichia coli*, yeast cell, insect cell or plant cell), so that a recombinant antibody produced by gene recombination technology can be prepared (P. J. Delves., ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES., 1997 WILEY, P. Shepherd and C. Dean., Monoclonal Antibodies., 2000 OXFORD UNI-

VERSITY PRESS; J. W. Goding., Monoclonal Antibodies: principles and practice., 1993 ACADEMIC PRESS). Moreover, transgenic cattle, goat, sheep or pigs, wherein a target antibody gene is incorporated into the endogenous gene by transgenic animal generation techniques are generated. From the milk of these transgenic animals, monoclonal antibodies derived from the antibody gene can be obtained in large quantities. When hybridomas are cultured in vitro, they are grown, maintained and stored in a way suitable for various conditions such as the properties of cell species to be cultured, purposes of experiments and studies, and culturing methods. Then, hybridomas can be cultured using any nutrient medium that is induced and prepared from a known nutrient medium or known basic medium that is used for the production of monoclonal antibodies in the culture supernatant.

3. Screening

10

15

20

25

35

40

45

50

[0031] Screening for agonistic antibodies is performed by analysis using human B lymphoma, so that antibodies that promote CD95 expression can be selected. Antibodies are further added to a purified DC culture solution, and then antibodies causing maturation are selected. Alternatively, antibodies showing activity to proliferate T cells in a mixed-lymphocyte reaction using immature DC are selected. Furthermore, antibodies are added to mature DC, and then antibodies having action to promote IL-12 production are selected. Furthermore, antibodies having activity to suppress the growth of tumor cells expressing CD40 or activity to induce cell death of the tumor cells are selected. Competition with CD40L can be distinguished from other cases based on whether or not the antibody inhibits the binding of soluble CD40 with soluble CD40 ligands using, for example, a surface plasmon resonance system (BIOCore). Alternatively, it can also be distinguished from other cases based on whether or not the antibody enhances the action of CD40 ligands on a B cell line.

[0032] Screening for antagonistic antibodies is performed by analysis using human B lymphoma. Further addition of soluble CD40L having FLAG as a tag in the presence of anti-FLAG antibody enables screening for antibodies that inhibit more strongly the binding of soluble CD40L to CD40 on the human B lymphoma cell. By the introduction of a gene encoding CD40L instead of soluble CD40L, it is also possible to use recombinant cells expressing many CD40 ligands on the cell surface. Subsequently, human antibodies are cross-linked with anti-human IgG antibodies, so that clones that activate B lymphoma by cross-linking are removed. Furthermore, antibodies showing activity to suppress the T cell proliferation in a mixed-lymphocyte reaction using purified and matured DC, or antibodies having action to suppress IL-12 production when CD40 ligands are added to mature DC are selected.

[0033] Antibodies that are obtained as described above have at least any of the following properties that are thought to be therapeutically effective.

(1) In the case of agonistic antibody

[0034]

- (a) The antibody acts on dendritic cells to cause IL-12 production in the presence of LPS (lipopolysaccharide) and IFNγ. The LPS concentration in this case ranges from 10 pg/ml to 10 ng/ml and the IFNγ concentration ranges from 10-4 M to 10-2 M. With an antibody concentration of 1 μg/ml or more, or preferably, 0.1 μg/ml or more, the production amount of IL-12 is greater than that in a test using a G28-5 antibody as a control, the known agonistic anti-CD40 antibody. When the antibodies with a concentration of 0.1 μg/ml or more are added to dendritic cells with a concentration of 1x10⁶ cells/ml, 100 pg/ml or more IL-12 is produced, or when the same with a concentration of 1 μg/ml or more are added, 1,000 pg/ml or more, or preferably, 10,000 pg/ml or more IL-12 is produced (see Examples 9 and 13).
 - (b) The antibody has action of binding to dendritic cells and thus to cause the maturation of the dendritic cells. Moreover, when the antibodies with a concentration of 20 μ g/ml or less, preferably 0.1 to 15 μ g/ml; further preferably 5 to 15 μ g/ml were cultured with dendritic cells, the activity to cause maturation is higher than that of the G28-5 antibody (see Example 9).
 - (c) The antibody has activity to promote CD95 expression of an established B cell line, which is greater than that of the G28-5 antibody. In this case, with an antibody concentration of 10 μ g/ml or more, preferably 1 μ g/ml or more, further preferably 0.1 μ g/ml or more, still further preferably 0.01 μ g/ml or more, and most preferably 0.001 μ g/ml or more, the activity to promote CD95 expression is higher than that of the G28-5 antibody that is used as a control in a test. The ratios of the activity of the G28-5 antibody, which was used in a test as a control, to promote CD95 expression to the same of the antibody with concentrations of 10 μ g/ml, 1 μ g/ml, 0.1 μ g/ml and 0.01 μ g/ml are as shown below (Table 1).

Table 1

Antibody concentration	Ratio Approximately 2-fold, preferably approximately 3-fold, more preferably 4.5-fold, and further preferably 6-fold			
10 μg/ml				
1 μg/ml	Approximately 2-fold, preferably approximately 5-fold, more preferably approximately 6-fold, and further more preferably 7-fold			
0.1 μg/ml	2-fold, preferably 6-fold, more preferably approximately 7-fold			
0.01 μg/ml	2-fold, preferably 4-fold, more preferably 5-fold, further preferably approximately 6-fold			

The promoted expression of CD95 means that the antibody activates the established B cell line. Here, examples of the established B cell line include Ramos cells and HS-Sulton cells. In addition, Ramos cells are of Burkitt's lymphoma, which are model cells of human centroblastic B cells. HS-Sulton cells are of Burkitt's lymphoma (see Examples 6 and 12).

- (d) The antibody has activity to suppress the DNA synthesis, thymidine incorporation, and proliferation of the established B cell line (Ramos cells or HS-Sulton cells), which is higher than that of G28-5 antibody. The antibody concentration in this case is at least 0.05 μg/ml, or preferably 0.1 to 15 μg/ml (see Example 8).
- (e) The antibody induces cell death of the established B cell line (see Example 16).
- (f) The antibody does not inhibit the binding of CD40 ligands to CD40. The term "does not inhibit" means that CD40L can bind to CD40 to the same degree as that when the antibody is absent, even when the antibody previously binds to CD40 (that is, in the presence of the antibody). Either one of or both CD40 ligands and CD40 may be a type of a protein that is expressed on the membrane or a soluble protein (see Example 11).

[0035] Antibodies having the above properties are produced, for example, by a hybridoma KM302-1 (FERM BP-7578) and a hybridoma KM341-1-19 (FERM BP-7759).

[0036] The nucleotide sequences and amino acid sequences of the heavy chain (H chain) and light chain (L chain) variable regions of a monoclonal antibody produced by the hybridoma KM341-1-19 were determined (Example 17). The present invention provides DNA encoding at least the heavy chain variable region, or the full-length heavy chain, and DNA encoding the light chain variable region of the monoclonal antibody produced by the hybridoma KM341-1-19. The DNAs also include other DNAs encoding the same amino acid sequences due to codon degeneration in addition to those described in Example 17. Moreover, the present invention provides monoclonal antibodies or functional fragments thereof as specified by the amino acid sequences of at least the heavy chain variable regions or the amino acid sequences of the full-length heavy chains, and the amino acid sequences of the light chain variable regions, as disclosed in Example 17.

(2) In the case of antagonistic antibody

⁴⁰ [0037]

10

15

20

25

30

35

45

50

- (g) The antibody neutralizes the action of ligands for CD40. Here, the term "the action of ligands" means both the action of ligands expressed on T cells or other cells, and the action of free ligands for CD40 (see Examples 7 and 14).
- (h) The antibody neutralizes one or more effects that ligands for CD40 on the established B cell line have on CD40-expressing cells, and do not show agonistic action to CD40 on the above established B cell line by cross-linking by anti-immunoglobulin antibodies. This action is weaker than that of 5D12. The "effects that ligands have on CD40-expressing cells" mean the activation of the CD40-expressing cells. Specifically in B cells, the effect means the activation of thymidine incorporation and B cell proliferation, and the activation of the enhanced expression of CD95 in the established B cell line. Furthermore, in DC, the effect means the activation of DC maturation, the activation of the enhanced expression of CD86 and HLA-DR, the activation of thymidine incorporation by the co-existing T cells, the promotion of the proliferation, the activation of IL-12 and IL-10 production, and the like. Cross-linking by anti-immunoglobulin antibodies is performed by causing the presence of 0.1 μ g/ml or more of anti-immunoglobulin antibodies in a culture solution (see Example 7).
- (i) The antibody alleviates or neutralizes the activity of cross-linked CD40L or CD40L expressed by cells to enhance the expression of CD95 in the established B cell line. The antibody also alleviates or neutralizes the activity of CD40L, the action of which is enhanced by cross-linking by antibodies and the like against tags. The binding of

ligands (including both free ligands and ligands expressed by specific cells) for CD40 to CD40-expressing cells causes intracellular signal transduction, and finally causes the cells to express CD95 (Fas) on the cell surfaces. Accordingly, the antagonistic antibody of the present invention inhibits the above signal transduction by binding to CD40, thereby neutralizing the expression of CD95. The antibody concentration in this case is 1 μ g/ml or more, or preferably 0.1 μ g/ml or more (see Examples 7 and 14).

(j) The antibody is antagonistic to CD40 on DC. Specifically, the antibody alleviates or neutralizes the activity of CD40L to activate DC. When DC are stimulated by ligands on T cells co-existing with the DC, T cells are activated, so that thymidine incorporation and the like are promoted. In the mixed-lymphocyte reaction, wherein DC and T -cells that are both derived from different individuals are allowed to co-exist, DC interact with T cells, thereby causing T-cell activation. The antagonistic antibody of the present invention inhibits the above interaction by binding to CD40, resulting in suppressed incorporation of thymidine. The antibody concentration in this case is at least 0.001 μg/ml, or preferably 0.1 to 10 μg/ml (see Example 10).

[0038] The above antagonistic antibody is produced by, for example, hybridomas KM281-1-10 (FERM BP-7579) and KM281-2-10-1-2 (FERM BP-7580) (May 9, 2001, the International Patent Organism Depositary (IPOD) at the National Institute of Advanced Industrial Science and Technology (Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki) and 4D11 (PERM BP-7758).

[0039] (3) The antibody of the present invention can be altered to an antibody of a different subclass (for example, see EP314161 publication), by modification by genetic engineering techniques known by a person skilled in the art, specifically by substituting a region that defines the subclass of an antibody heavy chain with a region that defines another subclass. A heavy chain variable region and the constant region of another subclass can be directly linked. For example, an alteration of the subclass of the antibody of the present invention to IgG2 or IgG4 makes it possible to lower the binding degree of the antibody to a Fc receptor. Specifically, Nhe I site (GCTAGC) is introduced into a human antibody heavy chain, EU index 118 (Ala), 119 (Ser) site according to Kabat et al (Sequence of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institute of Health, Bethesda, Md. (1991)). By digestion using the restriction enzyme, switching to another subclass, IgG, can be performed without altering the amino acid. Moreover, artificial alteration of the amino acid sequence of a constant region, or the binding of a constant region sequence having such an altered sequence with the variable region of the antibody of the present invention can lower the binding degree to a Fc receptor (Lund J., et al., J. Immunol. 1991 vol 147: 2657-2662), or can also increase or decrease CDC activity (Tao M., et al., J. Exp. Med. 1991 vol 1025-1028, Idusogie E E., et al., J. Immunol. 2001 vol 166: 2571-5). Furthermore, to avoid the action of ADCC, CDC or the like, only IgG2 or IgG4 subclass antibodies can be previously selected. In addition, the binding of a radionuclide, bacterial toxin, chemotherapeutant, prodrug or the like with the antibody of the present invention can further enhance the therapeutic effect against disease such as cancer.

4. Pharmaceutical composition

5

10

15

20

25

35

45

50

[0040] A pharmaceutical composition containing a pharmaceutical preparation that is the purified antibody of the present invention is also encompassed by the scope of the present invention. Such a pharmaceutical composition preferably contains a physiologically acceptable diluent or carrier in addition to the antibody, or may be a mixture with other antibodies or other drugs, such as antibiotics. Examples of the appropriate carrier include, but are not limited to, a physiological saline solution, a phosphate buffered saline solution, a phosphate buffered saline glucose solution and a buffered physiological saline. Alternatively, the antibody is freeze-dried, and then used when necessary by adding the above buffered aqueous solution for reconstruction. Examples of the route of administration include an oral route and a parenteral route including intravenous, intramuscular, hypodermic and intraperitoneal injections or drug delivery. [0041] In this case, the effective dose to be administered as a combination of the effective dose of the antibody of the present invention, an appropriate diluent, and a pharmacologically acceptable carrier ranges from 0.1 mg to 100 mg per kg of body weight per administration. Administration is performed at intervals of 2 days to 8 weeks.

[0042] When a pharmaceutical composition containing the antibody of the present invention is used, and particularly, when the agonistic antibody is used, the composition is used as an immunopotentiating drug (anti-viral agent and anti-infective drug), anti-tumor agent or anti-autoimmune disease agent. Multiple examples of these diseases may occur together. Alternatively, the antibody can also be used as an adjuvant in combination with a vaccine such as a cancer-specific peptide. When the composition contains the antagonistic antibody, it is useful as an immunosuppressive agent (prophylactic or therapeutic agent against immunological rejection or GVHD upon transplantation of islets of Langer-hans, kidneys or the like) upon organ transplantation, or an anti-autoimmune disease agent (e.g., against rheumatism, or as a therapeutic agent against arterial sclerosis, disseminated sclerosis, systemic erythematodes, idiopathic throm-bocythemia or Crohn's disease), therapeutic agent against allergies such as asthma, or therapeutic agent against blood coagulation factor VIII-inhibiting syndrome. Multiple examples of these diseases may occur together.

[0043] When the anti-CD40 antibody is used as a therapeutic means against a disease in which CD40 is involved,

it can be expected that antibodies providing a better therapeutic effect can be obtained by selecting the antibodies using the function of DC as an indicator.

[0044] In the case of the agonistic antibody, it can be expected that antibodies having strong immunopotentiation action can be obtained by selecting antibodies that can activate DC more effectively. Furthermore, by using the promotion of IL-12 production by mature DC as an indicator, antibodies having strong CTL-inducing action can be obtained. By the CTL induction, antibodies that are highly effective for removing cells infected with viruses or tumor cells can be obtained. Moreover, since synergistic effects can be expected, preferred antibodies bind to CD40 without inhibiting the binding of CD40 ligands to CD40. When cancer treatment is considered, if antibodies that directly induce cell death of CD40-expressing cancer cells or suppress their proliferation, and effectively activate DC are present, synergistic effects are expected therefrom, and such antibodies can be a therapeutic agent that can be used against tumors that do not express CD40. These antibodies are considered to be useful as a therapeutic agents against viral diseases or antitumor agents.

[0045] In the meantime, antibodies that specifically bind to CD40 and suppress the binding of CD40L without activating CD40 are also expected to be able to suppress not only the action of ligands for B cells, but also the action on DC. However, antibodies have been so far obtained using as an indicator their effect on B cells. Thus, it is highly significant to obtain antibodies that have strong suppressive action also on dendritic cells and to develop them as a pharmaceutical product. Further, it is a concern that the anti-CD40 antibody can have a totally opposite action by cross-linking as described above. Thus, antibodies that do not activate CD40 even by cross-linking are required. It is also a concern that monoclonal antibodies derived from a non-human mammal such as a mouse, chimeric antibodies consisting of the variable region of a mouse monoclonal antibody and a constant region of a human immunoglobulin and humanized antibodies resulting from CDR grafting, which have been so far reported as antibodies against human CD40, have antigenicity. Therefore, a human antibody is desirable as an antibody to inhibit the binding with CD40 ligands.

BRIEF DESCRIPTION OF DRAWINGS

[0046]

10

15

20

25

30

35

40

45

50

Fig.1 shows that KM302-1 antibodies promoted CD95 expression.

Fig.2A shows that the antagonistic antibodies neutralized the action of CD40 ligands on Ramos cells.

Fig.2B shows that the antagonistic antibodies neutralized the action of CD40 ligands on Ramos cells.

Fig.3 shows that KM281-1-10 antibodies neutralized the action of CD40 ligands on Ramos cells.

Fig.4 shows that cross-linked KM281-1-10 antibodies did not promote CD95 expression.

Fig.5 shows that cross-linked 5D12 antibodies promoted CD95 expression.

Fig.6 shows the proliferation suppressive effect of KM302-1 antibodies on tumor cells.

Fig.7 shows that KM302-1 antibodies promoted the maturation of DC.

Fig.8 shows that KM302-1 antibodies promoted the IL-12 production of DC.

Fig.9 shows that KM281-1-10 antibodies neutralized the action of CD40 ligands on DC.

Fig. 10 shows that KM281-1-10 antibodies neutralized the action of CD40 ligands on DC.

Fig. 11 shows that KM302-1 antibodies activated immature DC-MLR.

Fig.12 shows that KM341-1-19 antibodies and the like promoted CD95 expression of Ramos cells.

Fig.13 shows that KM341-1-19 antibodies promoted IL-12 production of mature DC.

Fig.14 shows that KM341-1-19 antibodies promoted IL-10 production of mature DC.

Fig.15 shows that 4D11 antibodies and the like neutralized the action of CD 40 ligands on Ramos cells.

Fig.16 shows that KM302-1 antibodies showed anti-tumor effect on the human tumor cell-transplanted mouse model.

Fig.17 shows that KM341-1-19 antibodies showed a proliferation suppressive effect against tumor cells.

Fig.18 shows that F4-465, 4D11 and KM281-1-10 suppressed antigen-specific IgG production.

Fig.19 shows that F4-465, 4D11 and KM281-1-10 suppressed antigen-specific IgM production.

Fig.20 shows that F4-465 suppressed the proliferation of tonsillar B cells.

BEST MODE FOR CARRYING OUT THE INVENTION

[0047] The present invention will be further described in detail by referring to the examples. However, the technical scope of the invention is not limited by these examples.

[Example 1] Preparation of antigen

(1) Cell

10

15

20

40

45

- [0048] EL-4 cells are of a mouse-derived established T cell line, and can be easily obtained (ATCC No.: TIB-39). Ramos B cells (ATCC No.: CRL-1596) and mouse anti-CD40 antibody-producing hybridoma G28-5 (HB-9110) and 5D12 (HB-11339) were purchased from ATCC.
 - (2) Expression and purification of antigen

[0049] Extracellular regions were amplified by PCR using human CD40 cDNA (Genbank Accession Number: NM_001250) as a template and the following primers under conditions of 20 cycles of 95°C for 5 seconds, 55°C for 30 seconds and 72°C for 30 seconds.

Primer 1: 5'-CCCAGATCTGTCCATCCAGAACCACCCACTGCATGCAGAG-3' (SEQ ID NO: 1)

Primer 2: 5'-ACAAGATCTGGGCTCTACGTATCTCAGCCGATCCTGGGGAC-3' (SEQ ID NO: 2)

[0050] The amplified cDNA was inserted following the melittin signal sequence and before the human IgG1-derived FC or mouse IgG2a-derived FC region of a pFastBac vector (Gibco BRL). To produce CD40, recombinant baculoviruses were prepared according to the instruction. Th5 cells were infected with the recombinant viruses, and then cultured for 4 days. The supernatant was treated with a 0.22 nm filter, ProteinG sepharose (Amersham Pharmacia) was added thereto, and then the mixture was gently shaken at 4°C. After one night, sepharose was transferred to a column and then washed with a 20× volume of PBS. A human CD40 FC protein was eluted with a 20 mM glycine buffer (pH 3.0). The vector to express CD40 on cell surfaces was obtained from Randolph J. Noelle (Inui, S et al., EJI, 20, 1747-1753, 1990). The full-length cDNA was cleaved with the Xba I enzyme, and then inserted into pCDNA3 (INVITROGEN). The vector was introduced into EL-4 cells, and then the cells were cultured in the presence of 0.5 mg/ml G418 (Gibco BRL), thereby obtaining a stable expression strain. The expression of CD40 was confirmed by FACS analysis using FITC-conjugated anti-human CD40 antibodies (Pharmingen).

[Example 2] Generation of mice for immunization

[0051] The mice used for immunization had a genetic background whereby they were homozygotes for both disrupted endogenous lg heavy chain and κ light chain, and the mice harbored at the same time chromosome 14 fragment (SC20) containing human lg heavy chain gene locus, and human lg κ chain transgene (KCo5). These mice were generated by crossing mice of a line A having a human lg heavy chain gene locus with mice of a line B having a human lg κ chain transgene. The mice of line A are homozygous for both disrupted endogenous lg heavy chain and κ light chain, and harbor chromosome 14 fragment (SC20), which is transmittable to progeny, as is described, for example, in the report of Tomizuka et al. (Tomizuka. et al., Proc Natl Acad Sci USA., 2000 Vol 97: 722). The mice of the line A were immunized, so that the following hybridomas F2-103 and F5-77 were obtained. Furthermore, the mice of line B (transgenic mice) are homozygotes for both disrupted endogenous lg heavy chain and κ light chain, and harbor a human lg κ chain transgene (KCo5), as described, for example, in the report of Fishwild et al. (Nat Biotechnol., 1996 Vol 14:845). [0052] Individuals obtained by crossing male mice of the line A with female mice of the line B, or female mice of the line A with male mice of the line B, and having human lg heavy chain and κ light chain detected simultaneously in the sera (Ishida & Lonberg, IBC's 11th Antibody Engineering, Abstract 2000) were used for the following immunization experiment. In addition, the above human antibody-producing mice are available from Kirin Brewery Co., Ltd via con-

3822, 285, 110, 115, KM281-1-10, KM281-2-10-1-2, KM283-5, KM292-1-24, KM225-2-56, KM341-6-9, 4D11, 5H10, 11E1, 5G3, 3811, 3411 and 3417 were obtained. Moreover, chimeric mice (Kuroiwa et al., Nat Biotechnol., 2000 vol 18:1086) harboring human antibody Lambda chain reported by Kuroiwa et al. were also used for the following immunization experiment. A hybridoma F4-465 was obtained from the mouse.

tract. By immunizing the above mice, the following hybridomas KM302-1, KM341-1-19, KM643-4-11, 2053, 2105, 3821,

[Example 3] Preparation of human monoclonal antibody against human CD40

[0053] Monoclonal antibodies in this example were prepared according to a general method described in the Introduction of Experimental Procedures for Monoclonal Antibodies (written by Tamie ANDO et al., KODANSHA, 1991). The human CD40 used as an immunogen herein were the human CD40 human FC and CD40-expressing EL-4 cells prepared in Example 1. Animals used herein for immunization were human antibody-producing mice that produce the human immunoglobulin prepared in Example 2.

[0054] The human antibody-producing mice were immunized with 2 to 100 μ g/immunization of CD40: hFc per mouse. Excluding the first immunization, an antigen solution was mixed with an equivalent volume of Freund's incomplete adjuvant (Sigma), and then injected subcutaneously into several separate positions. Immunization was performed 3 to 4 times approximately every 10 days to 3 weeks. For the first immunization, Freund's incomplete adjuvant (Sigma) was used. Blood was collected from the mouse tail, and then human antibody γ and κ against CD40 in the serum were measured using ELISA. 3 to 4 days before excision of the spleen, final immunization was performed by injecting 20 μ g of CD40: Fc dissolved in PBS via the caudal vein.

[0055] The human antibody-producing mice were immunized with human CD40-expressing mouse EL-4 cells. EL-4 cells (10⁸ cells/ml) were suspended in PBS, and then gently mixed with an equivalent volume of RIBI adjuvant previously emulsified with PBS. Immunization was performed with the cells 3 to 5 times approximately every 10 days to 3 weeks. When the adjuvant was not used, the cells were irradiated with X-rays with 8000 rad for use.

[0056] The spleen was surgically obtained from the immunized mice. The collected splenocytes were mixed with mouse myeloma SP2/0 (ATCC No.: CRL1581) at a ratio of 5 to 1. The cells were fused using polyethylene glycol 1500 (Boehringer Mannheim) as an agent for cell fusion, thereby preparing a large number of hybridomas. The selection of hybridomas was performed by culturing in HAT-containing DMEM media (Gibco BRL) supplemented with 10% fetal calf serum (FCS), hypoxanthine (H), aminopterin (A) and thymidine (T). Furthermore, single clones were obtained by the limiting dilution method using HT-containing DMEM media. Culturing was performed in a 96-well microtiter plate (Beckton Dickinson). Screening for hybridma clones producing anti-human CD40 human monoclonal antibodies was performed by measurement using enzyme-linked immuno adsorbent assay (ELISA) and fluorescence activated cell sorter (FACS), as described later in Example 4.

[0057] Screening for the human monoclonal antibody-producing hybridoma by ELISA was performed by 3 types of ELISA and FACS analyses as described below. Thus, a large number of hybridomas producing human monoclonal antibodies that had human immunoglobulin γ chain (hlg γ) and human immunoglobulin light chain κ , and had reactivity specific to human CD40 were obtained. In any of the following examples including this example, and tables and figures showing the test results of the examples, each hybridoma clone producing the human anti-human CD40 monoclonal antibody of the present invention was denoted using symbols. A clone represented by the symbols followed by "antibody" means an antibody that is produced by each of the hybridomas, or a recombinant antibody that is produced by a host cell carrying an antibody gene (full-length or a variable region) isolated from the hybridoma. In addition, within a contextually clear range, the name of a hybridoma clone may express the name of an antibody.

[0058] The following hybridoma clones represent single clones.

Agonistic antibody:

15

20

25

30

35

40

45

50

55

KM302-1, KM341-1-19, KM643-4-11, 2053, 2105, 3821, 3822, 285, 110, 115, F1-102, F2-103, F5-77 and F5-157

Antagonistic antibody:

KM281-1-10, KM281-2-10-1-2, KM283-5, KM292-1-24, KM225-2-56, KM341-6-9, 4D11, 5H10, 11E1, 5G3, 3811, 3411, 3417 and F4-465

[0059] 3 hybridoma clones KM 302-1, KM 281-1-10 and KM 281-2-10-1-2 among them were deposited on May 9, 2001, clones KM341-1-19 and 4D11 were deposited on September 27, 2001, and clone 2105 was deposited on April 17, 2002, with the International Patent Organism Depositary at the National Institute of Advanced Industrial Science and Technology (Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, Japan) under the Budapest Treaty. Plasmids having the heavy chain and light chain variable regions of F2-103, F5-77 and F5-157, were deposited on April 19, 2001, and hybridoma clones F1-102 and F4-465 were deposited on April 24, 2001, with ATCC (American Type Culture Collection, 10801 University Blvd., Manassas, Virginia, U.S.A.) under the Budapest Treaty (Table 2).

Table 2

Name	Accession No.
KM302-1	FERM BP-7578
KM281-1-10	FERM BP-7579
KM281-2-10-1-2	FERM BP-7580
KM341-1-19	FERM BP-7759
4D11	FERM BP-7758
2105	FERM BP-8024
F1-102	ATCC PTA-3337
F4-465	ATCC PTA-3338
F2-103 heavy chain (F2-103-H)	ATCC PTA-3302
F2-103 light chain (F2-103-L)	ATCC PTA-3303
F5-77 heavy chain (F5-77-H)	ATCC PTA-3304
F5-77 light chain (F5-77-L)	ATCC PTA-3305
F5-157 heavy chain (F5-157-H)	ATCC PTA-3306
F5-157 light chain (F5-157-L)	ATCC PTA-3307

[Example 4] Screening for hybridoma

10

15

20

25

30

35

40

45

55

Detection of monoclonal antibody having human immunoglobulin γ chain

[0060] The human CD40 mouse FC (1 μg/ml) prepared in Example 1 was added at 50 μl/well to each well of a 96-well microplate for ELISA (Maxisorp, Nunc) and incubated at 4°C for the human CD40 mouse FC to be adsorbed to the microplate. Next, the supernatant was discarded, and then a blocking reagent (Block Ace, DAINIPPON PHARMACEU-TICAL) was added to each well, followed by incubation at room temperature for blocking. The culture supernatant (50 μl) of each hybridoma was added to each well for reaction, and then each well was washed with a 0.1% Tween20-containing phosphate buffer (PBS-T). Goat anti-human IgG (γ) antibody (Sigma, A0170) labeled with peroxydase was then diluted 5,000-fold with 1% FBS-containing PBS-T. The solution was added (50 µl/well) to each well, and then incubation was performed. The microplate was washed 3 times with PBS-T, and then a chromogenic substrate solution (TMB, 50 μl/well, SUMITOMO BAKELITE) was added to each well, followed by incubation at room temperature for 30 minutes. A stop solution was added (50 µl/well) to each well to stop reaction. Absorbance at a wavelength of 450 nm was measured with a microplate reader. The culture supernatant of positive wells was analyzed by FACS, an then the wells wherein Ramos cells were stained were selected. The cells in the wells were cloned by the limiting dilution method, and then the cells of 1 clone were obtained per well. hk-positive status was confirmed by ELISA using the human CD40 mouse FC. As a result, anti-human CD40 antibodies of 173 clones were obtained from 20 mice. Some of these antibodies were shown in Table 3 (agonistic antibodies) and Table 4 (antagonistic antibodies). Among the agonistic antibodies, at least KM341-1-19 and 2105 did not significantly compete with ligands in a competitive test using CD40Lexpressing cells, CD40-expressing cells and the antibodies.

Table 3

		lable 5		
. 7		Agonistic antibo	dy	
Hybridoma	Antigen	Subclass	DC	Tumor cell
KM302-1	CD40 mouse FC	lgG4	activated	suppressed proliferation
KM341-1-19	human CD40-expressing EL-4	lgG2	activated	suppressed proliferation
KM643-4-11	CD40 mouse FC	IgG1	not implemented	not implemented
2053	CD40 mouse FC	lgG2	not implemented	not implemented

Table 3 (continued)

	Ago	onistic antibo	dy	
Hybridoma	Antigen	Subclass	DC	Tumor cell
2105	CD40 mouse FC	lgG2	not implemented	not implemented
3821	human CD40-expressing EL-4	lgG3	not implemented	not implemented
3822	human CD40-expressing EL-4	lgG3	not implemented	not implemented
285	CD40 mouse FC	lgG 1	not implemented	not implemented
110	CD40 mouse FC	lgG4	not implemented	not implemented
115	CD40 mouse FC	IgG4	not implemented	not implemented
F2-103	CD40 mouse FC	lgG1	not implemented	not implemented
F5- 7 7	CD40 mouse FC	IgG 1	not implemented	not implemented

	Т	able 4		
	Antagon	istic antibody	1	
Hybridoma	Ańtigen	Subclass	Effect of cross-linking	DC-MLR
KM281-1-10	CD40 mouse FC	lgG1	low	suppressed
KM281-2-10-1-2	CD40 mouse FC	lgG1	low	not implemented
KM283-5	CD40 mouse FC	lgG4	significant	not suppressed
KM225-2-56	CD40 mouse FC	lgG4	significant	not implemented
KM292-1-24	CD40 mouse FC	lgG2	significant	not implemented
KM341-6-9	human CD4-expressing EL-4	lgG1	significant	not implemented
4D11	CD40 mouse FC	lgG1	low	not implemented
5H10	CD40 mouse FC	lgG1	low	not implemented
11E1	CD40 mouse FC	lgG1	low	not implemented
5G3	CD40 mouse FC	lgG2	significant	not implemented
3811	human CD40-expressing EL-4	lgG1	significant	not implemented
3411	human CD40-expressing EL-4	lgG2	significant	not implemented
3417	human CD40-expressing EL-4	lgG2	significant	not implemented
F4-465	human CD40-expressing EL-4	lgG 1	not implemented	not implemented

[0061] Monoclonal antibodies having human immunoglobulin light chain κ (Ig κ) were detected in a manner similar to the above described ELISA method for human immunoglobulin γ chain except that goat anti-human lgκ antibodies (diluted 1,000-fold, 50 μl/well, Southern Biotechnology) labeled with peroxydase were used.

[0062] The subclass of each monoclonal antibody was identified in a manner similar to the above ELISA method for human immunoglobulin γ chain, except that a sheep anti-human IgG1 antibody, sheep anti-human IgG2 antibody, sheep anti-human IgG3 antibody or sheep anti-human IgG4 antibody (each diluted 2,000-fold, 50μl/well, The Binding Site) labeled with peroxydase, was used. Reaction test of each monoclonal antibody against human CD40-expressing cells

[0063] The reactivity of each monoclonal antibody against a Ramos cell line reported to express CD40 was studied by FACS analysis.

[0064] The Ramos cell line was suspended at a concentration of 2×106/ml in a staining buffer (SB) of 0.1% NaN₃ and 2% FCS-containing PBS. The cell suspension (100 µl/well) was apportioned to a 96-well round bottom plate (Beckton Dickinson). The culture supernatant (50µl) of each hybridoma was added, and then incubation was performed at ice temperature for 30 minutes. Human IgG1 antibodies against human serum albumin were used as a negative control, and prepared at a concentration of 2 µg/ml with a hybridoma culture medium. 50µl of the solution was added, and then

5

10

15

20

25

30

35

40

45

incubation was performed at ice temperature for 15 minutes. After washing with SB, 50μ I of R-PE fluorescence-labeled anti-human antibody (Southern Biotechnology) diluted 250-fold was added, and then incubation was performed at ice temperature for 15 minutes. After washing twice with SB, the product was suspended in 300 to $500\,\mu$ I of a FACS buffer, and then the fluorescence intensity of each cell was measured by FACS (FACSort and FACScan, Beckton Dickinson). As a result, antibodies having binding activity for the Ramos cell line were selected.

[Example 5] Preparation of each antibody

10

20

25

30

35

40

45

55

[0065] The culture supernatant containing monoclonal antibodies was prepared by the following method.

[0066] A G28-5 antibody-producing hybridoma was obtained from ATCC (ATCC No. HB-9110). Anti-CD40 antibody-producing hybridomas were acclimatized in eRDF media (Kyokutoseiyaku) containing bovine insulin (5 μ g/ml, Gibco BRL), human transferrin (5 μ g/ml, Gibco BRL), ethanolamine (0.01 mM, Sigma) and sodium selenite (2.5x10-5 nM, Sigma). The hybridomas were cultured in a spinner flask. When the viable cell rate of the hybridomas reached 90%, the culture supernatant was collected. The collected supernatant was applied to a 10 μ m and 0.2 μ m filters (German Science) so as to eliminate miscellaneous debris such as hybridomas.

[0067] Anti-CD40 antibodies were purified from the above culture supernatant by the following method. The culture supernatant containing the anti-CD40 antibodies was subjected to affinity purification using a Hyper D Protein A column (NGK INSULATORS, LTD) or a Protein G column (for purifying mouse IgG1, Amersham Pharmacia Biotech) according to the attached instruction using PBS (-) as an adsorption buffer and 0.1 M sodium citrate buffer (pH 3) as an elution buffer. 1 M Tris-HCl (pH 8.0) or Na₂HPO₄ solution was added to adjust the elution fraction to have a pH of around 7.2. The prepared antibody solution was substituted with PBS (-) using a dialysis membrane (10000 cut, Spectrum Laboratories) or SP column (Amersham Pharmacia Biotech), and then sterilization by filtration was performed using a membrane filter MILLEX-GV (MILLIPORE) with a pore size of 0.22 μm. The concentration of the purified antibody was found by measuring absorbance at 280 nm and then calculating with 1 mg/ml at 1.45 OD.

[Example 6] Promotion of CD95 expression in Ramos cells by anti-CD40 agonistic antibody

[0068] A 5.0×10^5 cells/ml Ramos cell suspension was inoculated at 100 μ l/well (5×10^4 cells per well) to a 96-well plate. The hybridoma culture supernatant or the purified antibody was diluted to 20 μ g/ml with a medium, and then the solution was added at a concentration of 100 μ l/well to a 96-well plate. After overnight culture, the cells were collected and then analyzed by FACSCan or FACSsort (Beckton Dickinson) using R-PE-labeled anti-CD95 antibodies (Pharmingen NJ). Figure 1 shows the result. The horizontal axes in Fig. 1 indicate the expression intensity of CD95. Addition of antibodies is indicated with a thick line, and non addition of antibodies is indicated with a thin line. It was shown that the KM302-1 antibodies promoted CD95 expression better than G28-5 antibodies, which were the known antibodies. That is, the KM302-1 antibody was shown to be more effectively agonistic.

[Example 7] Suppression of CD95 expression in Ramos cell by anti-CD40 antagonistic antibody

[0069] A 1.0x10⁶ cells/ml Ramos cell suspension was inoculated at 50 μl/well to a 96-well plate. The hybridoma culture supernatant or the purified antibody was adjusted at 2 μg/ml with a medium, and then added at 100 μl/well to a 96-well plate. Soluble CD40 ligands (4 μg/ml, ALEXIS CORPORATION) and anti-FLAG antibodies (4 μg/ml, M2, Sigma) were added to media, and then the media were added at 50 μl/well to the 96-well plate. After overnight culture, the cells were collected and then analyzed by FACS using R-PE-labeled anti-CD95 antibodies (Pharmingen NJ). Figures 2A and 2B, and 3 show the results. The horizontal axes in the figures indicate the expression intensity of CD95. CD95 expression was suppressed to the same degree as that of a negative control by the antibodies produced by each of the following hybridomas: KM281-1-10, KM281-2-10-1-2, KM283-5, KM292-1-24 and KM225-2-56. [0070] In Fig. 3, KM281-1-10 antibodies (lower panel) suppressed CD95 expression more effectively than that the 5D12 antibodies (central panel), the known antibody, only slightly suppressed CD95 expression. Specifically, the KM281-1-10 antibody was shown to be more effectively antagonistic. Thus, the human monoclonal antibody was shown

Effect of cross-linking by anti-immunoglobulin antibody

to be an antagonistic antibody.

[0071] A 1.0x10⁶ cells/ml Ramos cell suspension was inoculated at 50 µl/well to a 96-well plate. The hybridoma culture supernatant or the purified antibody was adjusted to 2 µg/ml with a medium, and then added at 100 µl/well to a 96-well plate. Anti-human lgG antibodies (Sigma, 13382) or anti-mouse lgG antibodies (Biosource, AMI3401) were added at 4 µg/ml to media, and then the media were added at 50 µl/well to a 96-well plate. After overnight culture, the cells were collected, and then analyzed by FACS using R-PE-labeled anti-CD95 antibodies (Pharmingen NJ). Figures

4 and 5 show the results. The horizontal axes in the figures indicate the expression intensity of CD95. CD95 expression was suppressed by the antibodies produced by each of the hybridomas KM281-1-10 and KM281-2-10-1-2. Conversely, CD95 expression was enhanced by the antibodies produced by each of the following hybridomas, 5D12, KM283-5, KM292-1-24 and KM225-2-56.

[Example 8] Proliferation suppression in Ramos cells by anti-CD40 agonistic antibody

[0072] A 1.0x10⁵ cells/ml Ramos and HS-Sulton cell suspension was inoculated at 100 μl/well to a 96-well plate. A mixture of equivalent amount of the purified antibodies or soluble CD40 ligands, and anti-FLAG antibodies (M2) was added to media. After 2 days of culturing, 10 μl of 100 μCi/ml ³H-Thymidine (Amersham Pharmacia) was added. After 18 hours, the culture product was harvested in a Printed Filtermat A (Wallac) using a Macro 96 Harvester (SKATRON), dried, and then immersed well in Betap;Scint (Wallac). After packaging, activity was measured using a 1205 BETA-PLATE liquid scintillation counter. Figure 6 shows the results. In the figure, the longitudinal axes indicate the amount of ³H thymidine incorporated by cells, and the horizontal axes indicate the concentration of the antibody or CD40L in the culture solution. When the KM302-1 antibodies were added to Ramos cells and HS-Sulton cells, the amount of thymidine incorporated was lower than the conventional G28-5 antibodies and CD40L. Thus, it was shown that the KM302-1 antibody is an agonistic antibody that can effectively suppress the proliferation of tumor cells.

[Example 9] Activation of dendritic cell by CD40 agonistic antibody

(1) Materials and methods

10

15

20

25

30

35

40

45

50

[0073] Recombinant human IL-4 was purchased from Genzyme techne. Anti-human CD14 MACS beads were purchased from Miltenyi Biotech GmbH. Lymphoprep was purchased from Nycomed Pharma AS. The medium used for culturing was RPMI1640 (Gibco BRL) supplemented with 10% heat inactivated FCS (Cell Culture Technologies), 10mM HEPES (Sigma), 55 µM 2-mercaptoethanol (Gibco BRL) and streptomycin sulfate (MEIJI SEIKA KAISHA, LTD.), when DC were induced. The cells in a staining process were washed with PBS (Sigma) supplemented with 2% FCS (Cell Culture Technologies) and 0.02% Azaid. When the cells were frozen, Cell banker (Nippon Zenyaku Kogyo) was used.

(2) Induction of monocyte-derived DC

[0074] Mononuclear cells were prepared (PBMC) from peripheral blood by density gradient centrifugation using Lymphoprep. The cells were subjected to positive selection using anti-human CD14 MACS beads, so as to separate the cells into a CD14 positive fraction and negative fraction. Recombinant human GM-CSF (50 ng/ml) and recombinant human IL-4 (100 ng/ml) were added to the positive fraction, followed by culturing in RPMI1640 media supplemented with 10% FCS in a 6-well plate. At the start of culturing, the cells were cultured at a concentration of 1×10^6 /ml (3 ml per well). During culturing, the media were exchanged once every 2 days. Medium exchange was performed by sampling 10% of the culture solution in a centrifugation tube, centrifuging the solution, removing the supernatant, suspending with a new culture solution (containing cytokine and the like at the above concentration) in a volume 2-fold greater than the sampled culture solution, and then returning the suspension to each well. On day 6 of culturing, the cells were collected, the cell number was calculated, and then the cells were suspended at a concentration of 1×10^6 /ml in the above media. Anti-CD40 antibodies or the isotype controls thereof were added to the media, and then cultured for further 4 days in a 24-well plate. During this period, no culture exchange was performed (cell number per well of 1×10^6 /ml).

(3) Cell staining and analysis by flow cytometer

[0075] For staining, anti-HLA-DR antibodies (isotype control: rat IgG2a), anti-CD86 antibodies (isotype control: rat IgG1) and anti-CD83 antibodies (isotype control: rat IgG2b) were used. First, the antibodies were added, and then incubation was performed at 4°C for 30 minutes. After 3 washings, analysis was performed using the FACS Calibur (Beckton Dickinson).

(4) Increase in IL-12 secretion ability of Mature DC

[0076] After immature DC were obtained as described above, LPS (400 pg/ml) and IFNγ (10⁻³M) were added, and then culturing was performed for 2 days, thereby obtaining mature DC. To the mature DC, 10 μg/ml anti-CD40 antibodies or the isotype control was added. For the supernatant after 24 hours, IL-12 production was measured using ELISA (Pharmingen).

(5) Results and Discussion

[0077] Figure 7 shows the effect of KM302-1 antibodies, the agonistic antibodies, on DC maturation, and Figure 8 shows the effect of KM302-1 antibodies on IL-12 production of mature DC. The degree of maturation was compared with G28-5 antibodies as a control. When the expression of CD86 and that of HLA-DR were examined, the expression was further elevated, that is, the degree of maturation was increased in the case of KM302-1 antibodies compared with the case of G28-5 antibodies. It was also shown that IL-12 secretion was increased by the treatment of mature DC with KM302-1 antibodies. Accordingly, it was shown that the KM302-1 antibodies acted as agonistic antibodies on DC.

[Example 10] DC-MLR

5

10

15

20

25

30

35

40

45

50

[0078] Blood (peripheral blood) collected from a normal human was centrifuged at 2000 rpm for 10 minutes, and then the serum was absorbed. The blood cell fraction was re-suspended with PBS, and then gently placed on Ficoll (Amersham Pharmacia). Centrifugation was performed at 2000 rpm for 30 minutes, so that a PBMC portion in the intermediate layer was collected, washed twice with PBS, and then used for a certain cell separation process using MACS.

[0079] Monocyte separation for culturing DC was performed according to the attached instruction using MACS (Miltenyi Biotec GmbH). This is briefly explained as follows. 800 μ l of MACS Buffer and 200 μ l of MACS CD 14 (Miltenyi Biotec GmbH, 502-01) were added to PBMC (1×10⁸), and then treated at 4°C for 15 minutes. The cells were adsorbed to a MACS LS column, and then washed. The cells adsorbed to the column were collected as monocytes. MACS HLA-DR (Miltenyi Biotec GmbH, 461-01) was added to the cells that were not adsorbed to the column. HLR-DR positive cells were removed with a BS column, thereby preparing a T cell fraction. The proportion of CD3 positive cells was measured by FACS, and then substantial number of T cells was calculated from the total cell number in the T cell fraction. The obtained monocytes were cultured in R0 media (PPMI medium supplemented with β -mercapto ethanol (Gibco) and HEPES (SIGMA)) containing 100 ng/ml IL-4 (R&D system), 50 ng/ml G-CSF (KIRIN) and 10% FCS (SIGMA) at a concentration of 1×10⁶ cells/ml in a 6-well culture plate. On day 5 after culturing, 10 ng/ml LPS (DIFCO) was added for the cells to differentiate into mature DC.

[0080] MLR was performed by mixing T cells and mature DC, which had been isolated from different humans. The cell ratio of T cells to DC was determined as 1:80, and number of T cells was determined as 2×10^5 cells/well. First, antibodies were added to DC for reaction to proceed for 30 minutes. Subsequently, T cells were added, culturing was performed for 4 days, and then 10 μ l of 100 μ Ci/ml 3 H-Thymidine (Amersham Pharmacia) was added. 14 hours later, the cells were harvested in Printed Filtermat A (Wallac) using a Macro 96 Harvester (SKATRON), dried, and then immersed well in Betap;Scint (Wallac). After packaging, activity was measured using a 1205 BETAPLATE liquid scintillation counter. MLR using immature DC was performed by mixing T cells with mature DC, which had been isolated from different humans. With a cell ratio of T cells to DC of 1:40, MLR was performed similarly. Figures 9 and 10 show the results. It was shown that the addition of KM281-1-10 antibodies lowered thymidine incorporation, and thus MLR could be suppressed. Furthermore, it was shown in Fig. 10 that KM283-5 and 5D12 antibodies could not suppress DC-MLR. That is, only the KM281-1-10 antibody is an antagonistic antibody that neutralizes the action of CD40 ligands on DC. Moreover, Fig. 11 shows the results of examining the effect of KM302-1 antibodies, which are agonistic antibodies, on MLR using immature DC. Activation of DC promoted interaction with T cells, and caused an increase in thymidine incorporation. These results indicated that KM302-1 is an agonistic antibody that acts on immature DC.

[Example 11] Effect of CD40 antibody on the binding of CD40L to CD40

[0081] Anti-CD40 antibodies were caused to bind to immobilized CD40 human FC using BIAcore 2000 (Biacore), and then changes in the binding amount of soluble CD40L to CD40 were measured. According to the instruction attached to the system, soluble CD40 human FC was immobilized on a CM chip (CM5, Biacore). Next, $25\,\mu\text{g/ml}$ anti-CD40 antibodies were added to bind to CD40. Further, $10\,\mu\text{g/ml}$ soluble CD40L was added for binding. A difference between the binding amounts before and after addition of CD40L was measured. When control IgG was added, the binding amount of CD40L was 100 RU. After addition of KM302-1 antibodies, the binding amount of CD40L was 110 RU, and after addition of KM283-5 antibodies the binding amount of CD40L was 18RU. Thus, it was shown that the KM302-1 antibody does not inhibit the binding of CD40L to CD40.

55 [Example 12] Promotion of CD95 expression in Ramos cells by anti-CD40 agonistic antibody

[0082] Purified antibodies of the hybridomas obtained in Example 4 were analyzed according to the method of Example 6, and then clones producing agonistic antibodies were selected (number of cells per well: 5×10^4 ; cell concentrations.

tration: 2.5×10^5 /ml). Figure 12 shows the results. In the figure, the horizontal axis indicates the antibody concentration in culture solutions, and the longitudinal axis indicates average fluorescence intensities, that is, CD95 expression intensities. At a concentration of 0.01 μ g/ml or more, KM341-1-19 and 2105 antibodies were shown to promote CD95 expression of Ramos cells more effectively than G28-5 antibodies, which are known mouse antibodies. Specifically, KM341-1-19 and 2105 antibodies were shown to be more effective agonistic antibodies. Further, the agonistic activity (to increase CD95 expression of Ramos cells) of KM341-1-19 and 2105 antibodies (0.01 μ g/ml) was higher than that of G28-5 antibodies (10 μ g/ml) (Fig. 12). Table 5 summarizes that at each antibody concentration, CD95 expression level is how many times greater or less than that expressed by the addition of G28-5 antibodies.

Table 5

Antibody concentration (μg/ml)	KM341-1-19	2105	F5-77	F2-103
0.01	5.7	3.9		
0.1	7.0	7.1	1.2	1.2
1	5.7	5.1	1.7	1.8
10	4.5	3.3	2.0	1.7

[Example 13] Activation of dendritic cell by CD40 agonistic antibody

[0083] According to the method of Example 9, the effect of CD40 agonistic antibodies on IL-12 production and IL-10 production by mature DC was examined. IL-10 was measured by the ELISA (Pharmingen) method. Figures 13 and 14 show the results. It was shown that IL-12 secretion was increased by treatment with KM341-1-19 antibodies. In contrast, even when CD40 ligand-expressing recombinant L cells (2×10^5 cells/ml) that had been irradiated with X-rays (5000 rad) were allowed to co-exist, the concentrations of IL-12 and IL-10 in culture solutions were 254 and 51 pg/ml, respectively. They were lower than that when 1 μ g/ml KM341-1-19 antibodies were added.

[0084] As described above, it was shown that KM341-1-19 antibodies act on DC as effective agonistic antibodies. The agonistic activity of KM341-1-19 antibodies (0.1 μ g/ml) to cause mature DC to secrete IL-12 was higher than that of G28-5 antibodies (100 μ g/ml). The agonistic activity of KM341-1-19 antibodies (1 μ g/ml) to cause mature DC to secrete IL-12 was 100 times or more greater than that by G28-5 antibodies (100 μ g/ml) (Fig. 13). Furthermore, the agonistic activity of KM341-1-19 antibodies (1 μ g/ml) to cause mature DC to secrete IL-10 was 10 times or more greater than that by G28-5 antibodies (100 μ g/ml) (Fig. 14). Moreover, since the subclass of KM341-1-19 antibody was IgG2, the antibody has lower binding ability to the Fc receptor than that of IgG1 or IgG3. Its ability to sensitize the killer activity of NK cells and ability to activate the complement system are also weak. Accordingly, there may be a low risk that the function of CD40-expressing cells or the number of the cells themselves decreases due to the antibody. Furthermore, the antibody is not easily cross-linked by an Fc receptor, so that it can be expected that the drug effect is easily controlled without any large fluctuation in in vivo agonistic activity due to cross-linking.

[Example 14] Suppression of CD95 expression in Ramos cells by anti-CD40 antagonistic antibody

[0085] 1.0×10^6 cells/ml Ramos cell suspension was inoculated at 50 µl/well to a flat bottom 96-well plate (number of cells per well: 5×10^4). Purified antibodies diluted with media were added at 100 µl/well to a 96-well plate. Human CD40 ligand-expressing recombinant mouse L cells (see Spriggs, M.K. et. al., J. Exp. Med., 176: 1543, 1992; Garrone, P. et. al., J. Exp. Med., 182: 1265, 1995 and the like) were prepared at 1.0×10^5 cells/ml. The prepared cells were added at 50 µl/well (the number of Ramos cells per well: 5×10^4 ; Ramos cell concentration: 2.5×10^4 cells/ml). After overnight culture, the number of mouse L cells per well: 5×10^3 ; mouse cell concentration: 2.5×10^4 cells/ml). After overnight culture, the cells were collected, and then analyzed by FACS using R-PE-labeled anti-CD95 antibodies. Figure 15 shows the results. In the figure, the longitudinal axis indicates the average fluorescence intensity, that is, CD95 expression intensity. Whereas the known 5D12 antibodies suppressed the expression slightly, 4D11 antibodies suppressed, even at a concentration of 0.1 µg/ml, CD95 expression to the same degree as that of a case of a negative control wherein no CD40L-expressing cells had been added. Moreover, at a concentration of 1 µg/ml, 4D11, F4-465 and KM281-1-10 suppressed CD95 expression to the same degree as that of the case of the negative control wherein no CD40L-expressing cells had been added. These results showed that 4D11, F4-465 and KM281-1-10 antibodies are more effective antagonistic antibodies. Table 6 shows relative values of the average fluorescence intensity corresponding to each antibody concentration, when the value of the control case wherein no antagonistic antibodies were added is determined as 100.

10

15

20

25

30

35

40

45

Table 6

Antibody concentration (μg/ml)	5D12	4D11	F4-465	KM281-1-1 0
0.1	77.6	-11.8	49.6	60.1
1	72.3	0.01	2.5	7.3
10	69.5	0	1.1	12.6

[Example 15] Anti-tumor effect in Ramos cell transplantation model by anti-CD40 agonistic antibody

[0086] Anti-asialo GM1 antibodies were intravenously injected to 5-week-old C.B.17/lcr-scidJc1 mice (CLEA JA-PAN). 1 day later, 5×10^6 Ramos cells per mouse were intravenously injected as tumor cells. 1 day later, KM302-1 antibodies or anti-human albumin human IgG antibodies as a negative control were intravenously injected. The doses per mouse of KM302-1 antibodies were 1, 10 and 100 μ g, and the same of the negative control antibodies was 100 μ g. Each of these antibodies was administered once to 5 mice. Figure 16 shows the results. By day 34 after transplantation, all the mice of the negative control-administered group had died, whereas all the 5 mice each of the groups administered with 10 μ g and 100 μ g of KM302-1 antibodies had been administered to which survived. Thus, the antitumor effect of KM302-1 antibodies was confirmed. The KM302-1 antibody is of the IgG4 subclass, so that the Fc receptor-mediated antibody dependent cellular cytotoxicity (ADCC) and activation of the complement system are weak. Despite these characteristics, it was observed that single administration of 10 μ g of KM302-1 antibodies prolonged the survival time of tumor-bearing mice.

[Example 16] Ramos cell proliferation suppression by anti-CD40 agonistic antibody

[0087] A Ramos cell suspension was prepared at $1x10^4$ cells/ml in an RPMI1640 medium supplemented with 10%FBS, and then 100 μ l of the suspension was apportioned to a 96-well plate. A KM341-1-19 antibody or soluble ligand solution prepared at 20 μ g/ml using media was added. Anti-FLAG antibodies (M2) with the same concentration as that of the ligands were allowed to co-exist with the soluble ligands (the concentration in the reaction solution was 10 μ g/ml), thereby enhancing the activity. After 5 days of culturing, 20 μ l of MTS reagent (Promega) was added to each well, and then allowed to react for 2 to 3 hours. Differences in absorbance between the cell-free and antibody-free wells and the cell- and antibody-containing wells were measured at a wavelength of 490 nm, thereby measuring viable cell count. Furthermore, the proliferation-suppressing action was compared with that of G28-5 antibodies using a 96-well U-bottomed plate similarly. KM341-1-19 antibodies or G28-5 antibodies prepared at 2 μ g/ml using media were added. Figure 17 shows the results. In wells to which KM341-1-19 antibodies had been added, dead cells were observed, the cell number was significantly lower than those of wells to which G28-5 antibodies or the ligands had been added, and the absorbance was also low. These results indicate that the proliferation of tumor cells was suppressed, and cell death was induced.

[Example 17] cDNA cloning of antibody gene

[0088] Hybridomas producing KM341-1-19, 2105, 110, 115, KM281-1-10, 4D11, KM643-4-11, F4-465, F2-103 and F5-77 antibodies were cultured, and then the cells were collected by centrifugation. TRIZOL (Gibco BRL) was added to the cells, and then Total RNA was extracted according to the attached instructions. Cloning of the variable regions of the antibody cDNA was performed according to the attached instructions using a SMART RACE cDNA amplification Kit (CLONTECH). Using 5 μg of total RNA as a template, 1st Strand cDNA was constructed. To amplify the heavy chains (H chain) of KM341-1-19, 2105, 110, 115, KM281-1-10, 4D11, KM643-4-11, F2-103 and F5-77, Z-Taq (Takara) and UMP and hh6 primers were used, and a cycle of 98°C for 1 second and 68°C for 30 seconds was repeated 30 timēs. Furthermore, using 1 μl of the reaction solution as a template and NUMP and hh3 primers, a cycle of 98°C for 1 second and 68°C for 30 seconds was repeated 20 times. To amplify a F4-465 heavy chain, UMP and hh2 primers and an Advantage 2 PCR kit (Clonthech, cat#1910) were used, and 5 cycles of 94°C for 5 seconds and 72°C for 3 minutes, 5 cycles of 94°C for 5 seconds, 70°C for 0 seconds and 72°C for 3 minutes, and 25 cycles of 94°C for 5 seconds, 68°C for 10 seconds and 72°C for 3 minutes were performed.

55

10

20

25

30

35

40

45

hh6 primer: 5'-GGT CCG GGA GAT CAT GAG GGT GTC CTT-3' (SEQ ID NO: 3) hh3 primer: 5'-GTG CAC GCC GCT GGT CAG GGC GCC TG-3' (SEO ID NO: 4) 10 hh2 primer: 5'-GCT GGA GGG CAC GGT CAC CAC GCT G-3' (SEO ID NO: 5) 15 [0089] Subsequently, the amplified PCR product was purified using a PCR purification kit (QIAGEN), and then the nucleotide sequence was determined using hh4 as a primer. Alternatively, the product was subcloned to PCR-Script (Stratagene, Lajolla, CA) or PCR-Blunt (Invitrogene, Carlsbad, CA), and then sequencing was performed. Based on the sequence information, antibody heavy-chain-specific primers were synthesized. A 341H primer was synthesized in the case of KM341-1-19, a 2105Hsal primer in the case of 2105, a 110Hsal primer in the case of 110 and 115, a 281Hsal primer in the case of KM281-1-10, a 4D11Sal primer in the case of 4D11, a 643Hsal primer in the case of KM643-4-11, H11-9 5' primer in the case of F4-465, a F2-103H primer in the case of F2-103 and F5-77H primer in the case of F5-77. Using the antibody heavy chain specific primers and hh4, cDNA was amplified from the 1st Strand cDNA, and then the sequence from the opposite direction was determined using the amplified product as a template 25 and the antibody-specific primers. hh4 primer: 5'-GGTGCCAGGGGGAAGACCGATGG-3' (SEQ ID NO: 6) 30 341H 5'-atatgtcgacGCTGAATTCTGGCTGACCAGGGCAG-3' primer: (SEQ ID NO: 7) 35 2105Hsal: atatgtcgacTCCCAGGTGTTTCCATTCAGTGATCAG (SEQ ID NO: 8) 40 110Hsal: atatgtcgacTTCCATTCGGTGATCAGCACTGAACAC (SEQ ID NO: 9) 45 281Hsal: atatgtcgacTTTGAGAGTCCTGGACCTCCTGTG (SEQ ID NO: 10) 50 4D11Sal: atatgtcgacGAGTCATGGATCTCATGTGCAAG (SEQ ID NO: 11) 55 643Hsal: atatgtcgacCCAGGGCAGTCACCAGAGCTCCAGAC (SEQ ID

NO: 12)

H11-9 5': -ACC GTG TCG ACT ACG CGG GAG TGA CT (SEQ ID NO:

13)

5

10

15

20

25

30

35

40

50

F2-103 H: accgtgtcgacgctgatcaggactgcaca (SEQ ID NO: 14)

F5-77 H: accgtgtcgacggtgatcaggactgaacag (SEQ ID NO: 15)

[0090] The light chains (L chains) of KM341-1-19, 2105, 110, 115, KM281-1-10, 4D11, KM643-4-11, F2-103 and F5-77 were amplified using UMP and hk2 primers and by repeating 30 times a cycle of 98°C for 1 second and 68°C for 30 seconds. The light chain of F4-465 was amplified using UMP and hL2 primers and by repeating 30 times a cycle of 98°C for 1 second and 68°C for 30 seconds. The amplified PCR product was purified using a PCR purification kit, and then the nucleotide sequence was determined using hk6 or hL2 primers. Based on the sequences, light chain specific primers were synthesized. A 341K primer was synthesized in the case of KM341-1-19, 2053KBgl primer in the case of 2105, 110KBgl primer in the case of 110 and 115, 281KBgl primer in the case of KM281-1-10, 4D11KBg1 in the case of 4D11, 643KBgl primer in the case of KM643-4-11, Lamda 5' primer in the case of F4-465, and F2-103K primer in the case of F-103 and F5-77.

[0091] In the case of 341-1-19, 110, 115, KM643-4-11, KM281-1-10, 4D11 and 2105, cDNA was amplified from the 1st Strand cDNA using the light chain specific primer and hk6 primer. The sequence was then determined from both directions using the amplified product as a template. For F4-465, F2-103 and F5-77, subcloning to PCR-Script (Stratagene, Lajolla, CA) or PCR-Blunt (Invitrogene, Carlsbad, CA) was performed to determine the sequence.

hk2 primer: 5'-GTT GAA GCT CTT TGT GAC GGG CGA GC-3' (SEQ ID NO: 16)

hL2 primer: 5'- TCT TCT CCA CGG TGC TCC CTT CAT-3' (SEQ ID NO:

341K primer: 5'-atatagatctGAACTGCTCAGTTAGGACCCAGAGG-3' (SEQ ID NO: 18)

2053KBgl: atatagatctCGCGGGGAAGGAGACTGCTCAGTT (SEQ ID NO:

₄₅ 19)

20)

17)

110KBgl: atatagatctAGTCAGACCCAGTCAGGACACAGC (SEQ ID NO:

281KBgl: atatagatetGAGCTGCTCAGTTAGGACCCAGAGGG (SEQ ID NO: 21)

	4D11KBgl: atatagatctTAAGCAAGTGTAACAACTCAGAGTAC (SEQ ID
	NO: 22)
5	
	643KBgl: atatagatctGAGGAACTGCTCAGTTAGGACCCAGAGG (SEQ
	ID NO: 23)
10	*
	Lamda 5': -AACTCCAGATCTGCCTCAGGAAGCAGCATC (SEQ ID NO:
	24)
15	
	F2-103 K: aactccagatctagggcaagcagtggtaac (SEQ ID NO: 25)
20	hk6 primer: 5'-TGGCGGGAAGATGAAGACAGATGGTG-3' (SEQ ID NO:
	26)
25	[0092] DNAs of 341-1-19 encoding the full-length H-chain and L-chain variable regions and the amino acid sequences
	of H-chain and L-chain are respectively shown below.
	[0093] The translation initiation point of the H-chain DNA is an ATG codon that begins from the 50th adenine (A from the 5' end of SEQ ID NO: 27, and the termination codon is TGA beginning from the 1472nd thymine (T). The
	boundary of the antibody variable region and the constant region is located between the 493rd adenine (A) and the
30	494th guanine (G) from the 5'end. In the amino acid sequence, the H-chain variable region ranges from the N-terminus to the 148th serine (S) residue of SEQ ID NO: 28, and the constant region is of the 149th alanine (A) and the following
	residues. It was predicted by a gene sequence prediction software (Signal P ver.2) that the H-chain signal sequence
	ranges from the N-terminus to the 20th serine (S) of SEQ ID NO: 28. It is thought that the N-terminus of the mature
35	protein is the 21 st glutamine (Q) of SEQ ID NO: 28. [0094] The translation initiation point of the L-chain DNA is an ATG codon that begins from the 29th A from the 5
	end of SEQ ID NO: 29, and the variable region ranges from the 5' end to the 400th adenine (A). In the amino acid

sequence, the variable region ranges from the N-terminus to the 124th lysine (K) of SEQ ID NO: 30. Analysis of the N-terminus of the purified L-chain protein revealed that the L-chain signal sequence ranges from the N-terminus to the 20th glycine (G) of SEQ ID NO: 30, and the N-terminus of the mature protein is the 21 st glutamic acid (E) of SEQ ID

40

45

55

NO: 30.

341-1-19 H-chai	n (SEQ	IDN	0: 27):
-----------------	--------	-----	---------

5

GTCGACGCTGAATTCTGGCTGACCAGGGCCACCAGAGCTCCAGACAA
TGTCTGTCTCCTCATCTTCCTGCCCGTGCTGGGCCTCCCATGGGGTGT
${\tt CCTGTCACAGGTCCAACTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCCT}$
CGCAGACCCTCTCACCTGTGCCATCTCCGGGGACAGTGTCTCTAGCA
ACAGTGCTACTTGGAACTGGATCAGGCAGTCCCCATCGAGAGACCTTGAGT
${\tt GGCTGGGAAGGACATACTACAGGTCCAAGTGGTATCGTGATTATGTAGGAT}$
CTGTGAAAAGTCGAATAATCATCAACCCAGACACCACCACCACCACCAGTTCT
CCCTGCAGCTGAACTCTGTGACTCCCGAGGACACGGCTATATATTACTGTAC
AAGAGCACAGTGGCTGGGAGGGGATTACCCCTACTACTACAGTATGGACGT

CTGGGGCCAAGGGACCACGGTCACCGTCTCTTCAGCCTCCACCAAGGGCC CATCGGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAG CGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTG TCGTGGAACTCAGGCGCTCTGACCAGCGGCGTGCACACCTTCCCAGCTGT CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTC CAGCAACTTCGGCACCCAGACCTACACCTGCAACGTAGATCACAAGCCCA GCAACACCAAGGTGGACAAGACAGTTGAGCGCAAATGTTGTGTCGAGTGC CCACCGTGCCCAGCACCACCTGTGGCAGGACCGTCAGTCTTCCTCTTCCCC CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACGTG CGTGGTGGTGGACGTGAGCCACGAAGACCCCGAGGTCCAGTTCAACTGGT ACGTGGACGCGTGGAGGTGCATAATGCCAAGACAAAGCCACGGGAGGA GCAGTTCAACAGCACGTTCCGTGTGGTCAGCGTCCTCACCGTTGTGCACCA GGACTGGCTGAACGCCAAGGAGTACAAGTGCAAGGTCTCCAACAAGGC CTCCCAGCCCCATCGAGAAAACCATCTCCAAAACCAAAGGGCAGCCCCG AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGA ACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCG CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGACAACTACAAGACCAC ACCTCCCATGCTGGACTCAGACGCTCCTTCTTCCTCTACAGCAAGCTCAC CGTGGACAAGAGCAGGTGCCAGCAGGGGAACGTCTTCTCATGCTCCGTGA TGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTC **CGGGTAAATGAGGATCC**

40

45

50

55

10

15

20

25

30

35

341-1-19 H-chain amino acid sequence (SEQ ID NO: 28)

MSVSFLIFLPVLGLPWGVLSQVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSA
TWNWIRQSPSRDLEWLGRTYYRSKWYRDYVGSVKSRIIINPDTSNNQFSLQL
NSVTPEDTAIYYCTRAQWLGGDYPYYYSMDVWGQGTTVTVSSASTKGPSVF
PLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLY
SLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAG
PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKT

KPREEOFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKGLPAPIEKTISKTKG OPREPOVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT PPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG K

ACTGCTCAGTTAGGACCCAGAGGGAACCATGGAAGCCCCAGCTCAGCTTC

TCTTCCTCCTGCTACTCTGGCTCCCAGATACCACCGGAGAAATTGTGTTGAC ACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTC

CTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGA

AACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCA CTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACT

CTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGC AGCGTAGCAACACTTTCGGCCCTGGGACCAAAGTGGATATCAAACGTACG

10

341-1-19 L-chain (SEQ ID NO: 29):

15

20

25

30

*3*5

341-1-19 L-chain amino acid sequence (SEQ ID NO: 30)

MEAPAOLLFLLLWLPDTTGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLA WYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC **QQRSNTFGPGTKVDIKRT**

40

45

[0095] DNAs of 2105 encoding the H-chain variable region and L-chain variable region and the amino acid sequences of the H-chain and L-chain are shown below.

[0096] The translation initiation point of the H-chain DNA is an ATG codon that begins from the 70th adenine (A) from the 5' end of SEQ ID NO: 31. The boundary of the antibody variable region and the constant region is located between the 495th adenine (A) and the 496th guanine (G) from the 5' end. In the amino acid sequence, the H-chain variable region ranges from the N-terminus to the 142nd serine (S) residue of SEQ ID NO: 32, and the constant region is of the 149th alanine (A) and the following residues. It was predicted by a gene sequence prediction software (Signal P ver.2) that the H-chain signal sequence ranges from the N-terminus to the 19th cystein (C) of SEQ ID NO: 32. It is thought that the N-terminus of the mature protein is the 20th glutamic acid (E) of SEQ ID NO: 32.

[0097] The translation initiation point of the L-chain DNA is an ATG codon that begins from the 28th A from the 5' end of SEQ ID NO: 33, and the variable region ranges from the 5' end to the 405th adenine (A). In the amino acid sequence, the variable region ranges from the N-terminus to the 126th lysine (K) of SEQ ID NO: 34. It was predicted by gene sequence prediction software (Signal P ver.2) that the L-chain signal sequence ranges from the N-terminus to the 20th glycine (G) of SEQ ID NO: 34. It is thought that the N-terminus of the mature protein is the 21st glutamic acid (E) of SEQ ID NO: 34.

2105 H-chain (SEQ ID NO: 31)

10

15

20

25

30

35

40

45

50

CTGAACACAGACCCGTCGACTCCCAGGTGTTTCCATTCAGTGATCAGCACT
GAACACAGAGGACTCACCATGGAGTTGGGACTGAGCTGGATTTTCCTTTTG
GCTATTTTAAAAGGTGTCCAGTGTGAAGTGCAGCTGGTGGAGTCTGGGGG
AGGCTTGGTACAGCCTGGCAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGG
ATTCACCTTTGATGATTATGCCATGCACTGGGTCCGGCAAGCTCCAGGGAA
GGGCCTGGAGTGGGTCTCAGGTATTAGTTGGAATAGTGGTAGCTTGGTGCA
TGCGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGA
ACTCCCTGTATCTGCAAATGAACAGTCTGAGAGCTGAGGACACGGCCTTGT
ATTACTGTGCAAGGAGATAGGCTATTTCGGGGAGTTAGGTACTACGGTATGGA
CGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTAGCACCAAGG

2105 H-chain amino acid sequence (SEQ ID NO: 32)

MELGLSWIFLLAILKGVQCEVQLVESGGGLVQPGRSLRLSCAASGFTFDDYA

MHWVRQAPGKGLEWVSGISWNSGSLVHADSVKGRFTISRDNAKNSLYLQMN

SLRAEDTALYYCARDRLFRGVRYYGMDVWGQGTTVTVS\$A\$TK

2105 L-chain (SEQ ID NO: 33)

CTGCTCAGTTAGGACCCAGAGGGAACCATGGAAGCCCCAGCTCAGCTTCT

CTTCCTCCTGCTACTCTGGCTCCCAGATACCACCGGAGAAATTGTGTTGAC

ACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTC

CTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGA

AACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCA

CTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACT

CTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGC

AGCGTAGCCACTGGCTCACTTTCGGCGGGGGGACCAAGGTGGAGATCAAA

CGTACGGTG

2105 L-chain amino acid sequence (SEQ ID NO: 34)
MEAPAQLLFLLLWLPDTTGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLA
WYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC
QQRSHWLTFGGGTKVEIKRTV

[0098] DNAs of 110 encoding the H-chain variable region and L-chain variable region and the amino acid sequences of the H-chain and L-chain are respectively shown below.

[0099] The translation initiation point of the H-chain DNA is an ATG codon that begins from the 60th adenine (A) from the 5' end of SEQ ID NO: 35. The boundary of the antibody variable region and the constant region is located between the 479th adenine (A) and the 480th guanine (G) from the 5'end. In the amino acid sequence, the H-chain variable region ranges from the N-terminus of SEQ ID NO: 36 to the 140th serine (S) residue, and the constant region is of the 141 st alanine (A) and the following residues. It was predicted by gene sequence prediction software (Signal P ver.2) that the H-chain signal sequence ranges from the N-terminus to the 19th cystein (C) of SEQ ID NO: 36. It is thought that the N-terminus of the mature protein is the 20th glutamine (Q) of SEQ ID NO: 36.

[0100] The translation initiation point of the L-chain DNA is an ATG codon that begins from the 35th A from the 5' end of SEQ ID NO: 37, and the variable region ranges from the 5' end to the 421 st adenine (A). In the amino acid sequence, the variable region ranges from the N-terminus to the 129th lysine (K) of SEQ ID NO: 38. It was predicted by gene sequence prediction software (Signal P ver.2) that the L-chain signal sequence ranges from the N-terminus to the 22nd cystein (C) of SEQ ID NO: 38. It is thought that the N-terminus of the mature protein is the 23rd valine (V) of SEQ ID NO: 38.

110 H-chain (SEQ ID NO: 35)

CTGAACACAGACCCGTCGACTTCCATTCGGTGATCAGCACTGAACACAGA
GGACTCACCATGGAGTTTGGGCTGAGCTGGGTTTTCCTCGTTGCTCTTTTA
AGAGGTGTCCAGTGTCAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGT
CCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTT
CAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGG
AGTGGGTGGCAGTTATATGGTATGATGGAAGTATTAAATACTATGCAGACTC
CGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTA
TCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGC
GAGAGAGGGCTACAATATTTTGACTGGTTATTTTGGCTACTGGGGCCAGGG
AACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGGG

50

55

10

15

20

25

30

35

40

45

110 H-chain amino acid sequence (SEQ ID NO: 36)

MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG MHWVRQAPGKGLEWVAVIWYDGSIKYYADSVKGRFTISRDNSKNTLYLQMN SLRAEDTAVYYCAREGYNILTGYFGYWGQGTLVTVSSASTK

110 L-chain (SEQ ID NO: 37)

5

TCACAGATCTAGTCAGACCCAGTCAGGACACAGCATGGACATGAGGGTCC CCGCTCAGCTCCTGGGGCTCCTGCTCTGGCTCCCAGGTGCCAGATGTG 10 TCATCTGGATGACCCAGTCTCCATCCTTACTCTCTGCATCTACAGGAGACAG AGTCACCATCAGTTGTCGGATGAGTCAGGGCATTAGCAGTGATTTAGCCTG 15 GTATCAGCAAAAACCAGGGAAAGCCCCTGAGCTCCTGATCTCTGCTGCATC CACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGA CAGATTTCACTCTCACCATCAGCTGCCTGCAGTCTGAAGATTTTGCAACTTA 20 TTACTGTCAACAGTATTATAGTTTTCCGTGGACGTTCGGCCAAGGGACCAA

25

30

110 L-chain amino acid sequence (SEQ ID NO: 38)

GGTGGAAATCAAACGTACG

MDMRVPAQLLGLLLWLPGARCVIWMTQSPSLLSASTGDRVTISCRMSQGISS DLAWYQQKPGKAPELLISAASTLQSGVPSRFSGSGSGTDFTLTISCLQSEDFAT YYCQQYYSFPWTFGQGTKVEIKRT

35

[0101] DNAs of 115 encoding the H-chain variable region and L-chain variable region and the amino acid sequences of the H-chain and L-chain are respectively shown below. [0102] The translation initiation point of the H-chain DNA is an ATG codon that begins from the 60th adenine (A)

40

from the 5' end of SEQ ID NO: 39. The boundary of the antibody variable region and the constant region is located between the 479th adenine (A) and the 480th guanine (G) from the 5'end. In the amino acid sequence, the H-chain variable region ranges from the N-terminus of SEQ ID NO: 40 to the 140th serine (S) residue, and the constant region is of the 141 st alanine (A) and the following residues. It was predicted by gene sequence prediction software (Signal P ver.2) that the H-chain signal sequence ranges from the N-terminus to the 19th cystein (C) of SEQ ID NO: 40. It is

thought that the N-terminus of the mature protein is the 20th glutamine (Q) of SEQ ID NO: 40.

[0103] The translation initiation point of the L-chain DNA is an ATG codon that begins from the 35th A from the 5' end of SEQ ID NO: 41, and the variable region ranges from the 5' end to the 421 st adenine (A). In the amino acid sequence, the variable region ranges from the N-terminus to the 129th lysine (K) of SEQ ID NO: 42. It was predicted by gene sequence prediction software (Signal P ver.2) that the L-chain signal sequence ranges from the N-terminus to the 22nd cystein (C) of SEQ ID NO: 42. It is thought that the N-terminus of the mature protein is the 23rd valine (V) of SEQ ID NO: 42.

55

45

115 H-chain (SEQ ID NO: 39)

CTGAACACAGACCCGTCGACTTCCATTCGGTGATCAGCACTGAACACAGA
GGACTCACCATGGAGTTTGGGCTGAGCTGGGTTTTCCTCGTTGCTCTTTTA
AGAGGTGTCCAGTGTCAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGT
CCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTT
CAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGG
AGTGGGTGGCAGTTATATGGAATGATGGAAGTATTAAATACTATGCAGACTC
CGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTA
TCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGC
GAGAGAGGGCTACAATATTTTGACTGGTTATTTTGGCTACTGGGGCCAGGG
AACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGG

115 H-chain amino acid sequence (SEQ ID NO: 40)

MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG

MHWVRQAPGKGLEWVAVIWNDGSIKYYADSVKGRFTISRDNSKNTLYLQMN

SLRAEDTAVYYCAREGYNILTGYFGYWGQGTLVTVSSASTK

GTATCACCATCAGTTGTCGGATGAGTCAGGGCATTAGCAGTGATTTAGCCTG
GTATCAGCAAAAACCAGGGAAAGCCCCTGAGCTCCTGATCTCTGCTGCATC
CACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGA
CAGATTTCACTCTCACCATCAGCTGCCTGCAGTCTGAAGATTTTGCAACTTA
TTACTGTCAACAGTATTATAGTTTTCCGTGGACGTTCGGCCAAGGGACCAA
GGTGGAAATCAAACGTACG

55

10

15

20

25

30

35

45

115 L-chain amino acid sequence (SEQ ID NO: 42)

MDMRVPAQLLGLLLWLPGARCVIWMTQSPSLLSASTGDRVTISCRMSQGISS

DLAWYQQKPGKAPELLISAASTLQSGVPSRFSGSGSGTDFTLTISCLQSEDFAT

YYCQQYYSFPWTFGQGTKVEIKRT

[0104] DNAs of 281-1-10 encoding the H-chain variable region and L-chain variable region and the amino acid sequences of the H-chain and L-chain are respectively shown below.

[0105] The translation initiation point of the H-chain DNA is an ATG codon that begins from the 52nd adenine (A) from the 5' end of SEQ ID NO: 43. The boundary of the antibody variable region and the constant region is located between the 468th adenine (A) and the 469th guanine (G) from the 5'end. In the amino acid sequence, the H-chain variable region ranges from the N-terminus of SEQ ID NO: 44 to the 139th serine (S) residue, and the constant region is of the 140th alanine (A) and the following residues. It was predicted by gene sequence prediction software (Signal P ver.2) that the H-chain signal sequence ranges from the N-terminus to the 19th serine (S) of SEQ ID NO: 44. It is thought that the N-terminus of the mature protein is the 20th glutamine (Q) of SEQ ID NO: 44.

[0106] The translation initiation point of the L-chain DNA is an ATG codon that begins from the 41 st A from the 5' end of SEQ ID NO: 45, and the variable region ranges from the 5' end to the 424th adenine (A). In the amino acid sequence, the variable region ranges from the N-terminus to the 128th lysine (K) of SEQ ID NO: 46. It was predicted by gene sequence prediction software (Signal P ver.2) that the L-chain signal sequence ranges from the N-terminus to the 20th glycine (G) of SEQ ID NO: 46. It is thought that the N-terminus of the mature protein is the 21 st glutamic acid (E) of SEQ ID NO: 46.

281-1-10 H-chain (SEQ ID NO: 43)

281-1-10 H-chain amino acid sequence (SEQ ID NO: 44)

MKHLWFFLLLVAAPRWVLSQVQLQESGPGLVKPSETLSLTCTVSGGSISGYY

WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLNSVT

AADTAVYYCARAPLHGDYKWFHPWGQGTLVTVSSASTK

15

20

25

30

35

40

50

281-1-10 L-chain (SEQ ID NO: 45)

TCACAGATCTGAGCTGCTCAGTTAGGACCCAGAGGGAACCATGGAAACCC
CAGCGCAGCTTCTCTCCTCCTGCTACTCTGGCTCCCAGATACCACCGGAG
AAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAA
GAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAG
CCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTG
CATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGTCT

GGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCA GTGTATTACTGTCAGCAGTATGGTAGCTCACCGATCACCTTCGGCCAAGGG ACACGACTGGAGATCAAACGTACG

281-1-10 L-chain amino acid sequence (SEQ ID NO: 46)

METPAQLLFLLLWLPDTTGEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYL

AWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYY

CQQYGSSPITFGQGTRLEIKRT

³⁵ [0107] DNAs of 4D11 encoding the H-chain variable region and L-chain variable region and the amino acid sequences of the H-chain and L-chain are respectively shown below.

[0108] The translation initiation point of the H-chain DNA is an ATG codon that begins from the 16th adenine (A) from the 5' end of SEQ ID NO: 47. The boundary of the antibody variable region and the constant region is located between the 456th adenine (A) and the 457th guanine (G) from the 5'end. In the amino acid sequence, the H-chain variable region ranges from the N-terminus of SEQ ID NO: 48 to the 147th serine (S) residue, and the constant region is of the 148th alanine (A) and the following residues. It was predicted by gene sequence prediction software (Signal P ver.2) that the H-chain signal sequence ranges from the N-terminus to the 26th serine (S) of SEQ ID NO: 48. It is thought that the N-terminus of the mature protein is the 27th glutamine (Q) of SEQ ID NO: 48.

[0109] The translation initiation point of the L-chain DNA is an ATG codon that begins from the 59th A from the 5' end of SEQ ID NO: 49, and the variable region ranges from the 5' end to the 442nd adenine (A). In the amino acid sequence, the variable region ranges from the N-terminus to the 128th lysine (K) of SEQ ID NO: 50. It was predicted by gene sequence prediction software (Signal P ver.2) that the L-chain signal sequence ranges from the N-terminus to the 22nd cystein (C) of SEQ ID NO: 50. It is thought that the N-terminus of the mature protein is the 21 st alanine (A) of SEQ ID NO: 50.

50

10

15

20

25

30

40

45

4D11 H-chain (SEQ ID NO: 47)

ATATGTCGACGAGTCATGGATCTCATGTGCAAGAAAATGAAGCACCTGTGG
TTCTTCCTCCTGCTGGTGGCGGCTCCCAGATGGGTCCTGTCCCAGCTGCAG
CTGCAGGAGTCGGGCCCAGGACTACTGAAGCCTTCGGAGACCCTGTCCCT
CACCTGCACTGTCTCTGGCGGCTCCATCAGCAGTCCTGGTTACTACGGGGG
CTGGATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGAGTATCTA
TAAAAGTGGGAGCACCTACCACAACCCGTCCCTCAAGAGTCGAGTCACCA
TATCCGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGA
CCGCCGCAGACACGGCTGTGTATTACTGTACGAGACCTGTAGTACGATATTT
TGGGTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG
CTAGC

- 4D11 H-chain amino acid sequence (SEQ ID NO: 48)

 MDLMCKKMKHLWFFLLLVAAPRWVLSQLQLQESGPGLLKPSETLSLTCTVSG

 GSISSPGYYGGWIRQPPGKGLEWIGSIYKSGSTYHNPSLKSRVTISVDTSKNQF

 SLKLSSVTAADTAVYYCTRPVVRYFGWFDPWGQGTLVTVSSAS
- 4D11 L-chain (SEQ ID NO: 49)

 AGATCTTAAGCAAGTGTAACAACTCAGAGTACGCGGGGAGACCCACTCAG
 GACACAGCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTTCTGCTGC

 TCTGGCTCCCAGGTGCCAGATGTGCCATCCAGTTGACCCAGTCTCCATCCT
 CCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTC
 AGGGCATTAGCAGTGCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCT
 CCTAAGCTCCTGATCTATGATGCCTCCAATTTGGAAAGTGGGGTCCCATCAA
 GGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCC
 TGCAGCCTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAGTTACCC
 GACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGTACG

55

10

15

4D11 L-chain amino acid sequence (SEQ ID NO: 50)

MDMRVPAQLLGLLLWLPGARCAIQLTQSPSSLSASVGDRVTITCRASQGISS ALAWYQQKPGKAPKLLIYDASNLESGVPSRFSGSGSGTDFTLTISSLQPEDFAT YYCQQFNSYPTFGQGTKVEIKRT

[0110] DNAs of KM643-4-11 encoding the H-chain variable region and L-chain variable region and the amino acid sequences of the H-chain and L-chain are respectively shown below.

[0111] The translation initiation point of the H-chain DNA is an ATG codon that begins from the 1 st adenine (A) from the 5' end of SEQ ID NO: 51. The boundary of the antibody variable region and the constant region is located between the 447th adenine (A) and the 448th guanine (G) from the 5'end. In the amino acid sequence, the H-chain variable region ranges from the N-terminus of SEQ ID NO: 52 to the 149th serine (S) residue, and the constant region is of the 150th alanine (A) and the following residues. It was predicted by gene sequence prediction software (Signal P ver.2) that the H-chain signal sequence ranges from the N-terminus to the 20th serine (S) of SEQ ID NO: 52. It is thought that the N-terminus of the mature protein is the 21 st glutamine (Q) of SEQ ID NO: 52.

[0112] The translation initiation point of the L-chain DNA is an ATG codon that begins from the 38th A from the 5' end of SEQ ID NO: 53, and the variable region ranges from the 5' end to the 409th adenine (A). In the amino acid sequence, the variable region ranges from the N-terminus to the 124th lysine (K) of SEQ ID NO: 54. It was predicted by gene sequence prediction software (Signal P ver.2) that the L-chain signal sequence ranges from the N-terminus to the 20th glycine (G) of SEQ ID NO: 54. It is thought that the N-terminus of the mature protein is the 21st Glutamic acid (E) of SEQ ID NO: 54.

KM643-4-11 H-chain (SEQ ID NO: 51)

ATGTCTGTCTCCTCATCTTCCTGCCCGTGCTGGGCCTCCCATGGGGTG
TCCTGTCACAGGTACAGCTGCAGCAGTCAGGTCCAGGACTGGTGAAGCCC
TCGCAGACCCTCTCATTCACCTGTGCCATCTCCGGGGACAGTGTCTCTAGC
AACAGTGCTGCTTGGAACTGGATCAGGCAGTCCCCATCGAGAGGCCTTGA
GTGGCTGGGAAGGACATACTACAGGTCCAAGTGGTATAAAGATTATGCAGT
ATCTGTGAAAAGTCGAATAACCATCAACCCAGACACATCCAAGAACCAGTT
CTCCCTGCAGCTGAACTCTGTGACCCCCGAGGACACGGCTGTGTATTACTG
TGCAAGAGGGTATTACTATGGTTCGGGGAGCTATCCCTACTACCAAAATG
GACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTAGC

KM643-4-11 H-chain amino acid sequence (SEQ ID NO: 52)

MSVSFLIFLPVLGLPWGVLSQVQLQQSGPGLVKPSQTLSFTCAISGDSVSSNSA

AWNWIRQSPSRGLEWLGRTYYRSKWYKDYAVSVKSRITINPDTSKNQFSLQL

NSVTPEDTAVYYCARGYYYGSGSYPYYYQMDVWGQGTTVTVSSAS

5

10

15

20

25

30

35

40

45

50

KM643-4-11 L-chain (SEQ ID NO: 53)

AATTGAGGAACTGCTCAGTTAGGACCCAGAGGGAACCATGGAAGCCCCAG
CTCAGCTTCTCTTCCTCCTGCTACTCTGGCTCCCAGATACCACCGGAGAAAT
TGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGTGC
CACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTA
CCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAA
CAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAG
ACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTA
CTGTCAGCAGCGTAGCAACACTTTCGGCGGAGGGACCAAGGTGGAGATCA
AACGAAC

20

25

5

10

15

KM643-4-11 L-chain amino acid sequence (SEQ ID NO: 54)

MEAPAQLLFLLLWLPDTTGEIVLTQSPATLSLSPGESATLSCRASQSVSSYLA WYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC

30

QORSNTFGGGTKVEIKR

95 [0113] DNAs of F4-465 encoding the H-chain variable region and L-chain variable region and the amino acid sequences of the H-chain and L-chain are respectively shown below.

[0114] The translation initiation point of the H-chain DNA is an ATG codon that begins from the 47th adenine (A) from the 5' end of SEQ ID NO: 55. The boundary of the antibody variable region and the constant region is located between the 484th adenine (A) and the 445th guanine (G) from the 5'end. In the amino acid sequence, the H-chain variable region ranges from the N-terminus of SEQ ID NO: 56 to the 146th serine (S) residue, and the constant region is of the 147th alanine (A) and the following residues. It was predicted by gene sequence prediction software (Signal P ver.2) that the H-chain signal sequence ranges from the N-terminus to the 19th serine (S) of SEQ ID NO: 56. It is thought that the N-terminus of the mature protein is the 20th glutamine (Q) of SEQ ID NO: 56.

[0115] The translation initiation point of the L-chain DNA is an ATG codon that begins from the 81 st A from the 5' end of SEQ ID NO: 57, and the variable region ranges from the 5' end to the 440th (C). In the amino acid sequence, the variable region ranges from the N-terminus to the 120th Threonine (T) of SEQ ID NO: 58. It was predicted by gene sequence prediction software (Signal P ver.2) that the L-chain signal sequence ranges from the N-terminus to the 19th alanine (G) of SEQ ID NO: 58. It is thought that the N-terminus of the mature protein is the 20th serine (S) of SEQ ID NO: 58.

50 NO: 5

CTGAACACAGACCCGTCGACTACGCGGGAGACCACAGCTCCACACCATGG ACTGGACCTGGAGGATCCTATTCTTGGTGGCAGCAGCAACAGGTGCCCACT CCCAGGTGCAGCTGGTGCAATCTGGGTCTGAGTTGAAGAAGCCTGGGGCC TCAGTGAAGGTCCCCTGCAAGGCTTCTGGATACACCTTCACTAGCTATGCTA

25

10

15

20

F4-465 H-chain amino acid sequence (SEQ ID NO: 56)

MDWTWRILFLVAAATGAHSQVQLVQSGSELKKPGASVKVPCKASGYTFTSYA MNWVRQAPGQGLEWMGWINTNTGNPTYAQGFTGRFVFSLDTSVSTAYLQIS SLKAEDTAVYYCAREVVPVAMRVTHYYYGMDVWGQGTTVTVSSAST

35

30

40

45

50

55

F4-465 L-chain (SEQ ID NO: 57)

10

15

20

25

30

35

40

45

CTGGGTACGGTAACCGTCAGATCGCCTGGAGACGCCATCACAGATCTGCCT TCGGCGTCCTTGTTTACTGCACAGGATCCGTGGCCTCCTATGAGCTGACTC TCTGGAGATAAATTGGGGGATAATTTTACTTGCTGGTATCAGCAGAAGCCA GGCCAGTCCCCTGTGCTGGTCATCTTTCAGGATTGGAAGCGGCGCCCAGGG ATCCTGCGCGATTCTCTGGCTCCAAGTCTGGGAACACACCCACTCTGACC **ATCAGCGGGACCCAGGCTATGGATGAGGCTGACTATTACTGTCAGGCGTGG** GACATCAGCACTGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGGT CAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAG CTTCAAGCCAACAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCG GGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGG AGTGGAGACCACCACACCTCCAAACAAGCAACAACAAGTACGCGGCC **AGCAGCTACCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTA** CAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCC CTACAGAATGTTCATGAATTCAGATCCGTTAACGGTTACCAACTACCTAGAC

TGGATTCGTGACCAACATA

F4-465 L-chain amino acid sequence (SEQ ID NO: 58)

MAWIPLFLGVLVYCTGSVASYELTQPPSVSVAPGQTASITCSGDKLGDNFTCW
YQQKPGQSPVLVIFQDWKRRPGIPARFSGSKSGNTATLTISGTQAMDEADYYC
QAWDISTVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYP
GAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSC
QVTHEGSTVEKTVAPTECS

50 [0116] DNAs of F2-103 encoding the H-chain variable region and L-chain variable region and the amino acid sequences of the H-chain and L-chain are respectively shown below.

[0117] The translation initiation point of the H-chain DNA is an ATG codon that begins from the 32nd adenine (A) from the 5' end of SEQ ID NO: 59. The boundary of the antibody variable region and the constant region is located between the 463rd adenine (A) and the 464th Guanine (G) from the 5'end. In the amino acid sequence, the H-chain variable region ranges from the N-terminus of SEQ ID NO: 60 to the 144th Serine (S) residue, and the constant region is of the]45th Alanine (A) and the following residues. It was predicted by gene sequence prediction software (Signal P ver.2) that the H-chain signal sequence ranges from the N-terminus to the 19th Cystein (C) of SEQ ID NO: 60. It is thought that the N-terminus of the mature protein is the 20th Glutamic acid (E) of SEQ ID NO: 60.

[0118] The translation initiation point of the L-chain DNA is an ATG codon that begins from the 29th A from the 5 end of SEQ ID NO: 61, and the variable region ranges from the 5' end to the 415th adenine (A). In the amino acid sequence, the variable region ranges from the N-terminus to the 129th Lysine (K) of SEQ ID NO: 62. It was predicted by gene sequence prediction software (Signal P ver.2) that the L-chain signal sequence ranges from the N-terminus to the 22nd Cystein (C) of SEQ ID NO: 62. It is thought that the N-terminus of the mature protein is the 23rd Asp (D) of SEQ ID NO: 62.

©F2-103 H-chain (SEQ ID NO: 59) GCTGATCAGGACTGCACACAGAGAACTCACCATGGAGTTTGGGCTGAGCT GGGTTTTCCTTGTTGCTATTTTAAAAGGTGTCCAGTGTGAGGTGCAGCTGG TGGAGTCCGGGGGGGGCTTAGTTCAGCCTGGGGGGTCCCTGAGACTCTCC TGTGCAGTCTCTGGATTCACCTTCAGTACCTACTGGATGCACTGGGTCCGC CAAGCTCCAGGGAAGGGGCTGGTGTGGGTCTCACGTATTAATAGTGATGGG AGTAGCACAACCTACGCGGACTCCGTGAAGGGCCGATTCACCATCTCCAGA GACAACGCCAAGAACACGCTGTATCTGCAAATGAACAGTCTGAGAGCCGA GGACACGCTGTGTATTACTGTGCAAGAGATAGAGTACTATGGATCGGGGA

GTTATCCTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGT CTCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTC

CAAGAGCACCTCT 30

F2-103 H-chain amino acid sequence (SEQ ID NO: 60) 35 MEFGLSWVFLVAILKGVQCEVQLVESGGGLVQPGGSLRLSCAVSGFTFSTYW MHWVRQAPGKGLVWVSRINSDGSSTTYADSVKGRFTISRDNAKNTLYLOMN 40 SLRAEDTAVYYCARDRVLWIGELSYYGMDVWGQGTTVTVSSASTKGPSVFPL **APSSKSTS**

45

10

15

20

25

50

55

F2-103 L-chain (SEQ ID NO: 61)

10

15

20

25

30

35

40

GGGGAGTCAGACCCAGTCAGGACACAGCATGGACATGAGGGTCCCCGCTC
AGCTCCTGGGGCTCCTGCTCTCTGCTCCCAGGTGCCAAATGTGACATCC
AGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCA
CCATCACTTGCCGGGCCAGTCAGAGTATTAGTAACTGGTTGGCCTGGTATC
AGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGCTCTATAAGGCATCTGGTT
TAGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAA

TTCACTCTCACCATCAACAGCCTGCAGCCTGATGATTTTGCAACTTATTACT
GCCAACAGTCTAATAGTTATTCGTGGACGTTCGGCCACGGGACCAAGGTGG
AAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGA
TGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCAATAACTT
CTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATC
GGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCT
ACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC
AAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA

F2-103 L-chain amino acid sequence (SEQ ID NO: 62)

MDMRVPAQLLGLLLWLPGAKCDIQMTQSPSTLSASVGDRVTITCRASQSISN

WLAWYQQKPGKAPKLLLYKASGLESGVPSRFSGSGSGTEFTLTINSLQPDDFA

TYYCQQSNSYSWTFGHGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN

NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH

45 KVYACEVTHQGL

[0119] DNAs of F5-77 encoding the H-chain variable region and L-chain variable region and the amino acid sequences of the H-chain and L-chain are respectively shown below.

[0120] The translation initiation point of the H-chain DNA is an ATG codon that begins from the 100th adenine (A) from the 5' end of SEQ ID NO: 63. The boundary of the antibody variable region and the constant region is located between the 528th adenine (A) and the 529th Guanine (G) from the 5'end. In the amino acid sequence, the H-chain variable region ranges from the N-terminus of SEQ ID NO: 64 to the 143rd Serine (S) residue, and the constant region is of the 144th Alanine (A) and the following residues. It was predicted by gene sequence prediction software (Signal P ver.2) that the H-chain signal sequence ranges from the N-terminus to the 19th Cystein (C) of SEQ ID NO: 64. It is thought that the N-terminus of the mature protein is the 20th Glutamic acid (E) of SEQ ID NO: 64.

[0121] The translation initiation point of the L-chain DNA is an ATG codon that begins from the 59th A from the 5'

end of SEQ ID NO: 65, and the variable region ranges from the 5' end to the 445th adenine (A). In the amino acid sequence, the variable region ranges from the N-terminus to the 129th Lysine (K) of SEQ ID NO: 66. It was predicted by gene sequence prediction software (Signal P ver.2) that the L-chain signal sequence ranges from the N-terminus to the 22nd Cystein (C) of SEQ ID NO: 66. It is thought that the N-terminus of the mature protein is the 23rd Asp (D) of SEQ ID NO: 66.

F5-77 H-chain (SEQ ID NO: 63)

GGTCTATATAAGCAGAGCTGGGTACGTCCTCACATTCAGTGATCAGCACTG
AACACAGACCCGTCGACGGTGATCAGGACTGAACAGAGAGAACTCACCAT
GGAGTTTGGGCTGAGCTGGCTTTTTCTTGTGGCTATTTTAAAAGGTGTCCA
GTGTGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGG
GGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGC
CATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAG
CTATTAGTGGTAGTGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCC
GGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGA
ACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAAGATGGG
GGGTACTATGGTTCGGGGAGTTATGGGTACTTTGACTACTGGGGCCAGGGA
ACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCC
CTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTG
CCTGGTCAAGGACTACTTCCCC

35

10

15

20

25

30

F5-77 H-chain amino acid sequence (SEQ ID NO: 64)

MEFGLSWLFLVAILKGVQCEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAM

SWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSL

RAEDTAVYYCAKDGGYYGSGSYGYFDYWGQGTLVTVSSASTKGPSVFPLAP

45

40

SSKSTSGGTAALGCLVKDYFP

50

55

F5-77 L-chain (SEQ ID NO: 65)

5

10

15

20

25

30

35

40

45

50

55

CAAGCAGTGGTAACAACGCAGAGTACGCGGGGGGGAGTCAGACCCAGTCA
GGACACAGCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCT
GCTCTGGTTCCCAGGTTCCAGATGCGACATCCAGATGACCCAGTCTCCATC
TTCCGTGTCTCGGATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGAG
TCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAG
CCCCTAAGCTCCTGATCTATGCTGGATCCAGTTTGCAAAGTGGGGTCCCATC
AAGGTTCAGCGGCAGTGGATTTGGAACAGATTTCACTCTCACCATCAGCAG
CCTGCAGCCTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAGCAGTTT
CCCTCGGACATTCGGCCAAGGGACCAAGGTGGAGTCAAACGTACGGTGG
AACTGCCTCTGTTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGG
AACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAA
AGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGA
GTGTCACAGAGCAGGACAGCACCTACAGCCTCAGCAGCACC
CTGACGCTGAGCAAAGCAGACAAGCACACAAAGTCTACGCCTGCGA
AGTCACCCATCAGGGCCTGA

F5-77 L-chain amino acid sequence (SEQ ID NO: 66)

MDMRVPAQLLGLLLLWFPGSRCDIQMTQSPSSVSGSVGDRVTITCRASQGISS
WLAWYQQKPGKAPKLLIYAGSSLQSGVPSRFSGSGFGTDFTLTISSLQPEDFAT
YYCQQASSFPRTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF
YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK
VYACEVTHQGL

[Example 18] Expression of antibody protein in animal cell

[0122] The above obtained DNA fragment containing the variable region of the antibody was incorporated into an appropriate vector such as NSKG1 (IDEC Pharmaceuticals, US patent 6001358), thereby preparing an antibody expression vector. As a host cell for expression, for example, CHO-Ras (Katakura Y., et al., Cytotechnology, 31: 103-109, 1999) is appropriately used. The vector can be introduced into the host cell by, for example, electroporation. Approximately 2 μg of the antibody expression vector was linearized with a restriction enzyme. The gene was introduced into 4x10⁷ CHO-Ras cells under conditions of 350V and 500μF using a Bio-Rad electrophoreter, and then inoculated to a 96-well culture plate. A drug corresponding to the selection marker of the expression vector was added, and culturing was continued. When colonies were observed, antibody-expressing lines were selected by the method described in Example 4. Antibodies can be purified from the selected cells according to Example 5.

[Example 19] Antigen-specific antibody production suppressive action of CD40 antagonistic antibody

[0123] Mice having a genetic background whereby they were homozygotes for mouse endogenous disrupted CD40 and harboring a transgene of a human CD40 gene (Yasui. et al. Int. Immunol. 2002 Vol 14: 319) were sensitized by intraperitoneally injecting 100 μg (in an amount of NP-CGG) of a complex of 4-hydroxy-3-nitrophenylacetyl-chicken γglobulin conjugates (NP-CGG: distributed by Hitoshi KIKUTANI, Professor, Research Institute for Microbial Diseases, Osaka University) and ARAM (ARAM: Antigen Recognition Activation Motif). 30 or 100 µg of each monoclonal antibody was administered via caudate vein immediately before antigen sensitization. 100 µg of anti-human albumin human IgG4 antibody was administered as a negative control. 7 days after sensitization, blood was collected from the orbital venous plexus, and then the amounts of NP specific IgG1 and IgM antibodies in sera were measured by the ELISA method. The ELISA method was performed by adding NP-bound bovine serum albumin (NP-BSA: 2.5 µg/ml) (50 µl/ well) to each well of a 96-well micro plate for ELISA (Maxisorp, Nunc), incubating at 4°C and then absorbing NP-BSA. Next, the supernatant was discarded, a blocking reagent (Super Block, Pierce) was added to each well, and then incubation was performed at room temperature for blocking. Each well was then washed 3 times with a 0.1% Tween20-containing phosphate buffer (PBS-T). Subsequently, each serum diluted with 10% BlockAce-containing PBS-T was added (50 μl/well) to each well, followed by incubation at 37°C for 2 hours for reaction. The microplate was washed 3 times with PBS-T. A solution prepared by diluting 1,000-fold alkaline phosphatase-labeled goat anti-mouse lgG1 or lgM antibody (COSMO BIO, 1070-04 or 1020-04) with 10% BlockAce-containing PBS-T was added (50 μl/ well) to each well, followed by 2 hours of incubation at 37°C. Next, the microplate was washed 3 times with PBS-T, a chromogenic substrate solution (50 μ l/well, Sigma104, phosphatase substrate) was added to each well, and then absorbance at a wavelength of 405 nm was measured with a microplate reader. Figures 18 and 19 show the results. In the figures, longitudinal axes indicate values obtained by conversion using as a unit the serum diluted 10,000-fold in the case of IgG1 antibody, and the serum diluted 100-fold in the case of IgM antibody. Here, the serum was prepared by injecting NP-CGG twice into C57BL/6 mice, collecting blood from the mice, and pooling the serum. Administration of 100 µg each of F4-465, 4D11 and KM281-1-10 antibodies strongly suppressed NP-specific IgG 1 and IgM antibody production.

[Example 20] Proliferation suppression of tonsillar B cells by CD40 antagonistic antibody

30 [0124] Human tonsils were obtained from Children's Hospital (San Diego, California, U.S.A.). Tonsils were cut into small pieces, minced, and then passed through a 70-micrometer nylon mesh cell strainer, thereby preparing a cell suspension. The cell suspension was washed several times with PBS, the cell number was counted, and then the suspension was cryopreserved with 90% human serum (ICN) and 10% DMSO. After thawing, the cells were re-suspended in a standard RPMI medium supplemented with 10% human serum and 2.5 μg/ml amphotericin (fangizon, Gibco/BRL), and then used.

[0125] $1x10^5$ cells were added to a 96-well plate, and then anti-human CD40 antibodies were added at concentrations of 0.01, 0.1, 1.0 and 10 µg/ml. The test was conducted in triplicate at each concentration. 1 µg/ml flag-labeled CD40L (Alexis) and 1 µg/ml CD40L enhancer antibodies (Alexis) were added to each well, followed by 3 days of culturing. Then, 1 µCi [3 H] thymidine was added to each well. 12 to 15 hours later, the cells were collected, and then the proliferation of tonsillar B cells was measured using a liquid scintillation counter. The count obtained when B cells had proliferated due to the stimulation of CD40L and no antibody had been added was determined as 100, and the count obtained when no CD40L had been added and B cells had not been not stimulated was determined as 0. For example, when the relative count measured was 30, this was expressed in this experiment as that 70% proliferation inhibition had occurred.

5012, which is the known antagonistic antibody, did not show more than 50% proliferation inhibition even with the antibody concentration of 100 μg/ml. F4-465 showed approximately 80% proliferation suppression even with the antibody concentration as low as 0.01 μg/ml, and showed approximately 95% proliferation suppression with an antibody concentration of 0.1 to 10 μg/ml (Fig. 20).

[0127] All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Industrial Applicability

[0128] The present invention provides an antibody against CD40. The antibody of the present invention includes both an antibody that acts agonistically on CD40 and an antibody that acts antagonistically on CD40. Thus, these antibodies are useful as, for example, an immunopotentiating agent and immunosuppressive agent, respectively.

15

20

25

40

50

55

Sequence Listing Free Text

[0129]

5	SEQ ID NO: 1: Synthetic DNA
	SEQ ID NO: 2: Synthetic DNA
	SEQ ID NO: 3: Synthetic DNA
	SEQ ID NO: 4: Synthetic DNA
	SEQ ID NO: 5: Synthetic DNA
10	SEQ ID NO: 6: Synthetic DNA
	SEQ ID NO: 7: Synthetic DNA
	SEQ ID NO: 8: Synthetic DNA
	SEQ ID NO: 9: Synthetic DNA
	SEQ ID NO: 10: Synthetic DNA
15	SEQ ID NO: 11: Synthetic DNA
	SEQ ID NO: 12: Synthetic DNA
	SEQ ID NO: 13: Synthetic DNA
	SEQ ID NO: 14: Synthetic DNA
	SEQ ID NO: 15: Synthetic DNA
20	SEQ ID NO: 16: Synthetic DNA
	SEQ ID NO: 17: Synthetic DNA
	SEQ ID NO: 18: Synthetic DNA
	SEQ ID NO: 19: Synthetic DNA
	SEQ ID NO: 20: Synthetic DNA
25	SEQ ID NO: 21: Synthetic DNA
	SEQ ID NO: 22: Synthetic DNA
	SEQ ID NO: 23: Synthetic DNA
	SEQ ID NO: 24: Synthetic DNA
	SEQ ID NO: 25: Synthetic DNA
30	SEQ ID NO: 26: Synthetic DNA

35

40

45

50

*5*5

SEQUENCE LISTING

5	<110> KIRIN BEER KABUSHIKI KAISHA	
	<120> ANTI CD40 MONOCLONAL ANTIBODY	
10	<130> PH-1569-PCT	
	<140>	
	<140 <i>></i>	
15		
	<150> PCT/US01/13672	
	<151> 2001-04-27	
20		
	<150> US09/844, 684	
	<151> 2001-04-27	
25	<150> JP2001/142482	
	<151> 2001-05-11	
	<150> JP2001/310535	
30	<150> 31 2001, 510033 <151> 2001–10–05	
	1017 2001 10 00	
	<150> US10/040, 244	
	<151> 2001-10-26	
35		
	<160> 66	
40	(170) B () T () 0 1	
	<170> PatentIn Ver. 2.1	
	<210> 1	
	<211> 40	
<i>‡5</i>	<212> DNA	
	<213> Artificial Sequence	
50	<220>	
	<223> Description of Artificial Sequence:Synthetic DNA	
	<400> 1	
55	cccagatctg tccatccaga accacccact gcatgcagag	40

	The state of the s	
	<210> 2	
	⟨211⟩ 41	
5	<212> DNA	
	(213) Artificial Sequence	
10	⟨220⟩	
	(223) Description of Artificial Sequence: Synthetic DNA	
	<400> 2	
15	acaagatotg ggototacgt atotoagoog atootgggga c	41
	<210> 3	
20	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
25	⟨220⟩	
	(223) Description of Artificial Sequence: Synthetic DNA	
30	<400> 3	
	ggtccgggag atcatgaggg tgtcctt	27
35	<210> 4	
55	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
40	valor in villotal soquence	
	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
1 5	<400> 4	
	gtgcacgccg ctggtcaggg cgcctg	26
50		
	<210> 5	
	<211> 25	
	<212> DNA	
55	<213> Artificial Sequence	

	<220>	• 0
	<223> Description of Artificial Sequence: Synthetic DNA	
5		
	<400> 5	
	gctggagggc acggtcacca cgctg	25
		50
10		
	<210> 6	
	⟨211⟩ 23	
15	<212> DNA	
	<213> Artificial Sequence	
	<220>	
20	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 6	
	ggtgccaggg ggaagaccga tgg	23
25		
	<210> 7	
20	<211> 35	
30	<212> DNA	
	<213> Artificial Sequence	
	(220)	
35	<220> <222 Decembring of Amtificial Security (C. 1) in Day	
	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 7	
	atatgtcgac gctgaattct ggctgaccag ggcag	35
40		33
ě.	<210> 8	
<i>45</i>	<211> 37	
7.5	<212> DNA	
	<213> Artificial Sequence	
50	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
	<40 0 > 8	
55	atatgtcgac tcccaggtgt ttccattcag tgatcag	37

	⟨210⟩ 9	9
	<211> 37	* *
5	<212> DNA	
	<213> Artificial Sequence	
10	⟨220⟩	
	(223) Description of Artificial Sequence: Synthetic DNA	
	(100)	
	<400> 9	
15	atatgtcgac ttccattcgg tgatcagcac tgaacac	37
•		
	⟨210⟩ 10	
20	⟨211⟩ 34	
	<212> DNA	
	<213> Artificial Sequence	
25		
	⟨220⟩	
	<223> Description of Artificial Sequence: Synthetic DNA	
10	<400> 10	
30	atatgtcgac tttgagagtc ctggacctcc tgtg	34
		54
15	<210> 11	
	<211> 33	
	<212> DNA ***********************************	
0	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence:Synthetic DNA	
5		
3	<400> 11	
	atatgtcgac gagtcatgga tctcatgtgc aag	33
o		
	<210> 12	
	<211> 36	
5	<212> DNA	
	<213> Artificial Sequence	• 100

	⟨220⟩	
	<223> Description of Artificial Sequence: Synthetic DNA	
5 ,	. Joquet Divine Line Divine Li	
	<400> 12	
	atatgtcgac ccagggcagt caccagagct ccagac	36
		00
10		
	<210> 13	
	<211> 26	
15	<212> DNA	
	<213> Artificial Sequence	
	<220>	
20	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 13	
	accgtgtcga ctacgcggga gtgact	26
25		20
	<210> 14	
	⟨211⟩ 29	
30	<212> DNA	
	<213> Artificial Sequence	
^ =	<220>	
35	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 14	
10	accgtgtcga cgctgatcag gactgcaca	29
	<210> 15	
1 5	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
50	<220>	
	(223) Description of Artificial Sequence: Synthetic DNA	
	⟨400⟩ 15	
55	accgtgtcga cggtgatcag gactgaacag	30
		JU .

	<210> 16		
	<211> 26	4 1 6. 1	
5	<212> DNA		40
	<213> Artificial Sequence		
10	<220>		
	<223> Description of Artificial Sequence Synthetic DNA		
	<400> 16		
15	gttgaagctc tttgtgacgg gcgagc		0.0
	grigaagote titgigaegg gegage		26
	<210> 17		
20	<211> 24		
	<212> DNA		
	<213> Artificial Sequence		
25			
	<220>		
	<223> Description of Artificial Sequence: Synthetic DNA		
30	<400> 17		
	tcttctccac ggtgctccct tcat		24
35	<210> 18		
	<211> 35		
	<212> DNA		
	<213> Artificial Sequence		
40			
	<220>		
	<223> Description of Artificial Sequence: Synthetic DNA		
45			
	<400> 18		
	atatagatct gaactgctca gttaggaccc agagg		35
50			
	<210> 19		
	(211) 34		
	<212> DNA		
55	(213) Artificial Seguence		

	44.4		
	⟨220⟩		
	(223) Description of Artificial Sequence: Synthetic DNA		
5			
	⟨400⟩ 19		
	atatagatet egeggggaag gagaetgete agtt		34
10			
	⟨210⟩ 20		
	<211> 34		
15	<212> DNA		
	<213> Artificial Sequence		
	<220> _		
20	<223> Description of Artificial Sequence:Synthetic DNA		
	<400> 20		
	atatagatet agteagacee agteaggaca cage	•	34
25			
	<210> 21		
	<211> 36		
30	<212> DNA		
	<213> Artificial Sequence		
35	<220>		
	<223> Description of Artificial Sequence: Synthetic DNA		
	<400> 21		
	atatagatet gagetgetea gttaggacee agaggg		36
10			
	*		
	<210> 22		
45	<211> 36		
	<212> DNA		•
	<213> Artificial Sequence		
50	<220>		
,,,	<223> Description of Artificial Sequence: Synthetic DNA		
	Valor rescription of Artificial Sequence-Synthetic DNA		
	<400> 22		
55	atatagatet taageaagtg taacaactea gagtae		36

	<210> 23	
	<211> 38	
5	<212> DNA	
	<213> Artificial Sequence	
0	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 23	
5	atatagatct gaggaactgc tcagttagga cccagagg	38
	Z01.0N :0.4	
20	<210> 24 <211> 30	
	<211> 30	
	<213> Artificial Sequence	
	(213) Altificial Sequence	
25	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
10	<400> 24	
	aactccagat ctgcctcagg aagcagcatc	30
15	<210> 25	
	<210> 25 <211> 30	
	<211> 30 <212> DNA	
	<213> Artificial Sequence	
10	Value in till old soddenes	
	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
!5		
	<400> 25	
	aactccagat ctagggcaag cagtggtaac	30
50		
	<210> 26	
	<211> 26	
	<212> DNA	
55	<213> Artificial Sequence	

```
<220>
          (223) Description of Artificial Sequence: Synthetic DNA
          <400> 26
          tggcgggaag atgaagacag atggtg
                                                                             26
10
         (210) 27
         <211> 1480
         <212> DNA
15
         <213> Homo sapiens
         <400> 27
         gtcgacgctg aattctggct gaccagggca gccaccagag ctccagacaa tgtctgtctc 60
20
         cttcctcatc ttcctgcccg tgctgggcct cccatggggt gtcctgtcac aggtccaact 120
         gcagcagtea ggtccaggac tggtgaagcc ctcgcagacc ctctcactca cctgtgccat 180
         ctccggggac agtgtctcta gcaacagtgc tacttggaac tggatcaggc agtccccatc 240
         gagagacett gagtggetgg gaaggacata etacaggtee aagtggtate gtgattatgt 300
25
         aggatetgtg aaaagtegaa taateateaa eecagacaca tecaacaace agtteteeet 360
         gcagctgaac tetgtgaete eegaggaeae ggetatatat taetgtaeaa gageaeagtg 420
         gctgggaggg gattacccct actactacag tatggacgtc tggggccaag ggaccacggt 480
         caccetetet teageeteea ecaagggeee ateggtette eceetggege eetgeteeag 540
30
         gagcacctcc gagagcacag cggccctggg ctgcctggtc aaggactact tccccgaacc 600
         ggtgacggtg tcgtggaact caggcgctct gaccagcggc gtgcacacct tcccagctgt 660
         cctacagtee teaggactet acteecteag eagegtggtg accgtgeect ecageaactt 720
35
         eggeacceag acctaeacet geaacgtaga teacaageee ageaacacea aggtggacaa 780
         gacagttgag cgcaaatgtt gtgtcgagtg cccaccgtgc ccagcaccac ctgtggcagg 840
         accetcagtc ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc 900
         tgaggtcacg tgcgtggtgg tggacgtgag ccacgaagac cccgaggtcc agttcaactg 960
40
         gtacgtggac ggcgtggagg tgcataatgc caagacaaag ccacgggagg agcagttcaa 1020
         cagcacgttc cgtgtggtca gcgtcctcac cgttgtgcac caggactggc tgaacggcaa 1080
         ggagtacaag tgcaaggtet ccaacaaagg ceteceagee eccategaga aaaceatete 1140
         caaaaccaaa gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggagga 1200
45
         gatgaccaag aaccaggtca gcctgacctg cctggtcaaa ggcttctacc ccagcgacat 1260
         cgccgtggag tgggagagca atgggcagcc ggagaacaac tacaagacca cacctcccat 1320
         getggaetea gaeggeteet tetteeteta cageaagete acegtggaea agageaggtg 1380
         gcagcagggg aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac 1440
50
         gcagaagagc ctctccctgt ctccgggtaa atgaggatcc
                                                                            1480
         (210) 28
55
         (211) 474
```

	(21	2> P	K I													
	⟨21	3> H	omo	sapi	ens											
5																
		0> 2 Ser		Ser	Pho	len	Ha	Phe	l en	Pro	. Val	Ιω	. Cl.	La	. Dwa	Trp
10	1	361	¥ <i>a</i> 1	SeI	5		116	1116	Leo	10		. Let	1 613	Let	15	_
10				_	~ .						_		_			
	GIA	Val	Leu	Ser 20	GIn	Val	Gln	Leu	G1n 25		Ser	GLy	Pro	Gly 30		Val
15	Lys	Pro	Ser 35	Gln	Thr	Leu	Ser	Leu 40		Cys	Ala	Ile	Ser 45		Asp	Ser
20	Val	Ser 50	Ser	Asn	Ser	Ala	Thr 55	Trp	Asn	Trp	Ile	Arg 60		Ser	Pro	Ser
25	Arg 65	Asp	Leu	Glu	Trp	Leu 70	Gly	Arg	Thr	Tyr	Tyr 75	Arg	Ser	Lys	Trp	Туг 80
30	Arg	Asp	Tyr	Val	Gly 85	Ser	Val	Lys	Ser	Arg 90	Ile	Ile	Ile	Asn	Pro 95	Asp
	Thr	Ser	Asn	Asn 100	G1n	Phe	Ser	Leu	Gln 105	Leu	Asn	Ser	Val	Thr 110	Pro	Glu
35	Asp	Thr	Ala 115	Ile	Tyr	Tyr	Cys	Thr 120	Arg	Ala	Gln	Trp	Leu 125	Gly	Gly	Asp
40	Tyr	Pro 130	Tyr	Tyr	Tyr	Ser	Met 135	Asp	Val	Trp	Gly	Gln 140	Gly	Thr	Thr	Val
45	Thr 145	Val	Ser	Ser	Ala	Ser 150	Thr	Lys	Gly	Pro	Ser 155	Val	Phe	Pro	Leu	Ala 160
	Pro	Cys	Ser	Arg	Ser 165	Thr	Ser	Glu	Ser	Thr 170	Ala	Ala	Leu	G1y	Cys 175	Leu
50	Val	Lys	Asp	Tyr 180	Phe	Pro	Glu	Pro	Val 185	Thr	Val	Ser		Asn 190	Ser	Gly
55	Ala		Thr 195	Ser	Gly	Val	His	Thr 200	Phe	Pro	Ala		Leu 205	Gln	Ser	Ser

5	Gly	Leu 210		Sex	Leu	Ser	Ser 215		l Va	l Thi	r Vai	220		r Se	r As	n Phe
10	Gly 225		Gln	Thr	Tyr	Thr 230		Asn	ı Val	l Ası	His 235		Pr	o Se	r Ası	n Thr 240
	Lys	Val	Asp	Lys	Thr 245		Glu	Arg	Lys	Cys 250		Val	. Glı	а Суз	s Pro 25	Pro
15	Cys	Pro	Ala	Pro 260		Val	Ala	Gly	Pro 265		· Val	Phe	Lei	270		Pro
20	Lys	Pro	Lys 275	Asp	Thr	Leu	Met	Ile 280		Arg	Thr	Pro	Glu 285		Thr	Cys
25	Val	Val 290	Val	Asp	Val	Ser	His 295	Glu	Asp	Pro	Glu	Val 300		Phe	Asn	Trp
30	Tyr 305	Val	Asp	Gly	Val	Glu 310	Val	His	Asn	Ala	Lys 315	Thr	Lys	Pro	Arg	Glu 320
	Glu	Gln	Phe	Asn	Ser 325	Thr	Phe	Arg	Val	Val 330	Ser	Val	Leu	Thr	Val 335	Val
35	His	Gln	Asp	Trp 340	Leu	Asn	Gly	Lys	Glu 345	Tyr	Lys	Cys	Lys	Val 350	Ser	Asn
40	Lys	Gly	Leu 355	Pro	Ala	Pro	Ile	Glu 360	Lys	Thr	Ile	Ser	Lys 365	Thr	Lys	Gly
45	Gln	Pro 370	Arg	Glu	Pro	Gln	Val 375	Tyr	Thr	Leu	Pro	Pro 380	Ser	Arg	Glu	Glu
	Met 385	Thr	Lys	Asn	Gln	Val 390	Ser	Leu	Thr	Cys	Leu 395	Val	Lys	Gly	Phe	Tyr 400
50	Pro	Ser	Åsp	lle	Ala 405	Val	G1u	Trp	Glu	Ser 410	Asn	Gly	G1n	Pro	Glu 415	Asn
55	Asn	Tyr		Thr 420	Thr	Pro	Pro	Met	Leu 425	Asp	Ser	Asp	Gly	Ser 430	Phe	Phe

5	435 440 445
	Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 450 455 460
10	Gln Lys Ser Leu Ser Pro Gly Lys 465 470
15	<210> 29
20	<211> 406 <212> DNA <213> Homo sapiens
25	<400> 29 actgctcagt taggacccag agggaaccat ggaagcccca gctcagcttc tcttcctcct 60 gatagtatag at acceptate acceptage setterates acceptate acceptate acceptate acceptate acceptate.
	getactetgg eteccagata ecaceggaga aattgtgttg acacagtete eagecaceet 120 gtetttgtet ecaggggaaa gagecaceet etectgeagg geeagteaga gtgttageag 180 etacttagee tggtaceaac agaaacetgg ecaggeteec aggeteetea tetatgatge 240
30	atccaacagg gccactggca tcccagccag gttcagtggc agtgggtctg ggacagactt 300 cactctcacc atcagcagcc tagagcctga agattttgca gtttattact gtcagcagcg 360 tagcaacact ttcggccctg ggaccaaagt ggatatcaaa cgtacg 406
35	<210> 30
-	<211> 126 <212> PRT
40	<213> Homo sapiens
45	<pre>(400> 30 Met Glu Ala Pro Ala Gln Leu Leu Phe Leu Leu Leu Leu Trp Leu Pro 1 5 10 15</pre>
50	Asp Thr Thr Gly Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser 20 25 30
	Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser 35 40 45
55	Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro

			50					55					60				٠.	
5	* • • • •	Arg 65	Leu	Leu	Ile	Tyr	Asp 70	Ala	Ser	Asn	Arg	Ala 75		Gly	Ile	Pro	Ala 80	
10		Arg	Phe	Ser	Gly	Ser 85		Ser	Gly	Thr	Asp 90	Phe	Thr	Leu	Thr	Ile 95	Ser	
15		Ser	Leu	Glu	Pro 100	Glu	Asp	Phe	Ala	Val 105	Tyr	Tyr	Cys	Gln	Gln 110	Arg	Ser	
20		Asn	Thr	Phe 115	Gly	Pro	Gly	Thr	Lys 120	Val	Asp	Ile	Lys	Arg 125	Thr			
25		<211 <212)> 31 > 50 > DN > Ho	08 NA	sapie	ens												
30)> 31 acac		ıcccg	tcga	ic to	ccag	gtgt	: ttc	catt	cag	tgat	cago	ac t	gaac	acaga	60
		cagt	gtga	ag t	gcag	ctgg	gt gg	agto	tggg	gga	ggct	tgg	taca	gcct	gg c	aggt	gtgtc ccctg tccgg	180
35		caag gtgc	ctcc	ag g	gaag ctct	ggcc gtga	t gg a gg	agte gcce	ggtc attc	tca acc	ggta atct	tta	gttg gaga	gaat caac	ag t gc c	ggta aaga	gcttg actcc caaga	300 360
10		gata	ggct	at t	tcgg	ggag		ggta	ctac								ccacg	
1 5		<211 <212	> 32 > 14 > PR	6 T	apie													
50		< 400	> 32															
		Met 1	Glu	Leu	Gly	Leu 5	Ser	Trp	Ile	Phe	Leu 1	Leu	Ala :	Ile I	Leu]	Lys (Sly	
55		Val	G ln	Cvs	Glu	Val	Gln	Leu	Val (Glu :	Ser (Glv :	Glv (il v I	A11 1	Val G	lln	

5	*		20					25					30			
*	Pro Gly	Arg		Leu	Arg	Leu	Ser 40	Cys	Ala	Ala	Ser	Gly 45	Phe	Thr	Phe	e , e, e
10	Asp Asp		Ala	Met	His	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu	
15	Glu Trp 65	Val	Ser	G1y	Ile 70	Ser	Trp	Asn	Ser	Gly 75	Ser	Leu	Val	His	Ala 80	
20	Asp Ser	· Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ala	Lys 95	Asn	
 25	Ser Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Leu	
:5	Tyr Tyr	Cys 115	Ala	Arg	Asp	Arg	Leu 120	Phe	Arg	Gly	Val	Arg 125	Tyr	Tyr	Gly	
30	Met Asp 130		Trp	Gly	Gln	Gly 135	Thr	Thr	Val	Thr	Val 140	Ser	Ser	Ala	Ser	. €°
35	Thr Lys															
ao	<210> 3 <211> 4 <212> D <213> H	14 NA	sánie	ens												
45	<400> 3	3														
50	ctgctca ctactct tctttgt tacttag tccaaca	ggc t ctc (cct (tccca caggg ggtac	gata gaaa caac	c ca g ag a ga	ccgg ccac aacc	agaa cctc tggc	att tcc cag	gtgt tgca gctc	tga ggg cca	caca ccag ggct	gtct tcag	cc a ag t at c	gcca gtta; tatg;	ccctg gcagc atgca	120 180 240
55	actctca agccact	cca t	tcago	agcc	t ag	agcc	tgaa	gat	tttg	cag	ttta	ttac	tg t	cagca		

1.	(21	02.3	54														
	<21	1> 1	29						· -								
5	<21	2> P	RT														
	<21	3> H	lomo	sapi	ens												
	<40	0> 3	4														
10	Met	Glu	Ala	Pro	Ala	Gln	Leu	Leu	Phe	Leu	Leu	Leu	Leu	Trn	Leu	Pro	
	1				5					10					15		
	Asp	Thr	Thr	Gly	Glu	Ile	Val	Leu	Thr	G1n	Ser	Pro	Ala	Thr	Leu	Ser	
15	-			20					25					30		501	
														00			
	Leu	Ser	Pro	Gly	Glu	Arg	Ala	Thr	Leu	Ser	Cvs	Arg	Ala	Ser	Gln	Ser	
20			35			_		40			-,-	0	45		-1	001	
.0																	
	Va1	Ser	Ser	Tyr	Leu	Ala	Trp	Tvr	Gln	G1n	Lvs	Pro	Glv	Gln	Ala	Pro	
		50					55	-				60	,				
25																	
	Arg	Leu	Leu	Ile	Tyr	Asp	Ala	Ser	Asn	Arg	Ala	Thr	Glv	He	Pro	Ala	
	65				•	70				·	75					80	
																00	
0	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	
					85					90					95		
	Ser	Leu	Glu	Pro	Glu	Asp	Phe	Ala	Val	Tyr	Tyr	Cys	Gln	Gln	Arg	Ser	
5				100					105					110	Ū		
	His	Trp	Leu	Thr	Phe	Gly	Gly	Gly	Thr	Lys	Val	Glu	Ile	Lys	Arg	Thr	
			115					120					125				
0																	
	Val																
_													(
5																	
	<210	> 35	,														
	<211	> 49	3														
n	<212	> DN	IA														
,	<213	> Ho	mo s	apie	ns												
	<400	> 35	;														
5	ctga	acac	ag a	CCCE	tcga	c tt	ccat	tcgg	tga	tcag	cac	tgaa	caca	ga o	gacti	cacca	60
																tcagg	
		-	0	•	0	J 0-		- 0	0		• '		00 00		-6.6	.vagg	12(

	Lgc	aget	ggı	ggag	rcrg	gg g	gagg	Cgtg	g ic	Cago	CLEE	gag	gccc	clg	agac	i c c c c	Ci
*)-	gtg	cago	gtc	tgga	ttca	cc, t	tcag	tagc	t at	ggca	tgca	ctg	ggto	cgc	cagg	ctcc	ag
5	gca	aggg	gct	ggag	tggg	tg g	cagt	tata	t gg	tatg	atgg	aag	tatt	aaa	tact	atgc	ag
	act	ccgt	gaa	gggċ	cgat	tc a	ccat	ctcc	a ga	gaca	attc	caa	gaad	acg	ctgt	atct	gc
	aaa	tgaa	cag	cctg	agag	cc g	agga	cacg	g ct	gtgt	atta	ctg	tgcg	gaga	gagg	gcta	ca
10	ata	tttt	gac	tggt	tatt	tt g	gcta	ctgg	g gc	cagg	gaac	cct	ggto	acc	gtct	cctca	ag
17	cta	gcac	caa	ggg													
15	<21	0> 30	6														
	<21	1> 14	44														
	<213	2> PI	RT														
	<213	3> H	omo .	sapi	ens												
20																	
		0> 36					-					_	•				
	Met	Glu	Phe	Gly	Leu	Ser	Trp	Val	Phe		Val	Ala	Leu	Leu	_	Gly	
25	1				5					10					15		
20		0.1	•	0.7	32 7	61	,			•	61	0.1					
	Val	Gin	Cys		Val	GIn	Leu	Val		Ser	Gly	GIY	Gly			Gln	
				20					25					30			
30	Dwo	Cl _w	1-0	Ser	Lou	A = ==	Lou	Sor	Caro	A1.	Ala	Sar	G1 _v	Dho	Th-	Dha	
	PIO	GIY	35	361	Leu	ut R	Leu	40	Cys	піа	nia	261	45		1111	rne	
			30					10					40				
	Ser	Ser	Tvr	Gly	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Glv	Lvs	Glv	Len	
35		50	•				55		Ū			60		-,-	,		
	Glu	Trp	Val	Ala	Val	Ile	Trp	Tyr	Asp	Gly	Ser	Ile	Lys	Tyr	Tyr	Ala	
40	65					70					75					80	
,,,																	
	Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	
					85					90					95		
45																	
	Thr	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	${\tt Glu}$	Asp	Thr	Ala	Val	
				100					105					110			
50	Tyr	Tyr	Cys	Ala	Arg	Glu	Gly	Tyr	Asn	Ile	Leu	Thr	Gly	Tyr	Phe	Gly	
			115					120					125				
5 <i>5</i>	Tyr	-	Gly	Gln	Gly	Thr		Val	Thr	Val	Ser		Ala	Ser	Thr	Lys	
JJ		130					135					140					

	<21	0> 3	7		*			8 .			• •						
	<21	1> 4	27														
5	<21	2> D	NA	-	· 												
	<21	3> H	omo	sapi	ens						0 :				*	*	
10	<40	0>̈ 3	7						•						4 2		
	tca	caga	tct	agto	agac	cc a	gtca	ggac	a ca	gcat	gga	ate	gagg	gtcc	ccg	ctcagct	60
	cct	gggg	ctc	ctgc	tgct	ct g	gctc	ccag	g tg	ccag	gatgt	gto	atc	tgga	tga	cccagtc	120
	tcc	atcc	tta	ctct	ctgc	at c	taca	ggag	a ca	gagt	caco	ato	agt	tgtc	gga	tgagtca	180
15	ggg	catt	agc	agtg	attt	ag c	ctgg	tatc	a go	aaaa	acca	ggg	gaaag	gccc	ctga	agctcct	240
																gtggatc	
																ttatta	
	ctg	tcaa	cag	tatt	atag	tt t	tccg	tgga	c gt	tcgg	ccaa	ggg	acca	agg	tgga	aatcaa	420
20	acg	tacg															427
	<210	0> 3	8														
25	<21	1> 1:	31														
	<212	2> PI	RT														
	<213	3> He	omo	sapi	ens												
30	<400)> 3t	8 .														
	Met	Asp	Met	Arg	Val	Pro	Ala	Gln	Leu	Leu	Gly	Leu	Leu	Leu	Leu	Trp	
	1				5					10					15		
35		_			_	_			_								
	Leu	Pro	Gly		Arg	Cys	Val	Ile		Met	Thr	Gln	Ser			Leu	
				20					25					30			
10	Leu	Ser	Ala	Ser	Thr	Gly	Asp	Arg	Val	Thr	Ile	Ser	Cys	Arg	Met	Ser	
			35				_	40					45				
	Gln	Gly	Ile	Ser	Ser	Asp	Leu	Ala	Trp	Tyr	Gln	G1n	Lys	Pro	Gly	Lys	
5		50					55					60				-	
	Ala	Pro	Glu	Leu	Leu	Ile	Ser	Ala	Ala	Ser	Thr	Leu	Gln	Ser	Gly	Val	
	65					70					75					80	
ю																	
	Pro	Ser	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	
					85					90					95		
5														٠			
	Ile	Ser	Cys	Leu	Gln	Ser	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	

100 105 110 Tyr Tyr Ser Phe Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 115 120 125 Lys Arg Thr 10 130 15 <210> 39 (211) 492 <212> DNA <213> Homo sapiens 20 <400> 39 ctgaacacag accegtegae ttecattegg tgateageae tgaacacaga ggaeteacea 60 tggagtttgg gctgagctgg gttttcctcg ttgctctttt aagaggtgtc cagtgtcagg 120 25 tgcagctggt ggagtctggg ggaggcgtgg tccagcctgg gaggtccctg agactctcct 180 gtgcagcgtc tggattcacc ttcagtagct atggcatgca ctgggtccgc caggctccag 240 gcaaggggct ggagtgggtg gcagttatat ggaatgatgg aagtattaaa tactatgcag 300, actoogtgaa gggccgattc accateteca gagacaattc caagaacacg etgtatetge 360 30 aaatgaacag cctgagagcc gaggacacgg ctgtgtatta ctgtgcgaga gagggctaca 420 atattttgac tggttatttt ggctactggg gccagggaac cctggtcacc gtctcctcag 480 ctagcaccaa gg 492 35 (210) 40 <211> 144 <212> PRT 40 <213> Homo sapiens <400> 40 Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly 45 1 5 10 15 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln 20 25 30 50 Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 45 55 Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu

	50 55 60	
5	Glu Trp Val Ala Val Ile Trp Asn Asp Gly Ser Ile Lys Tyr Tyr Ala 65 70 75 80	
10	Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 85 90 95	ì
15	Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val	
	Tyr Tyr Cys Ala Arg Glu Gly Tyr Asn Ile Leu Thr Gly Tyr Phe Gly 115 120 125	
20	Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys 130 135 140	
25		
	⟨210⟩ 41	
	<211> 427	
30	<212> DNA	
	<213> Homo sapiens	
	<400> 41	
35	tcacagatet agtcagacee agtcaggaca cagcatggac atgagggtcc ccgctcage	t 60
	cctggggctc ctgctgetct ggctcccagg tgccagatgt gtcatctgga tgacccagt	
	tocatoctta ctototgoat ctacaggaga cagagtoacc atcagttgto ggatgagto	a 180
40	gggcattagc agtgatttag cctggtatca gcaaaaacca gggaaagccc ctgagctcc	
10	gatctctgct gcatccactt tgcaaagtgg ggtcccatca aggttcagtg gcagtggat	
	tgggacagat ttcactctca ccatcagctg cctgcagtct gaagattttg caacttatt	
	ctgtcaacag tattatagtt ttccgtggac gttcggccaa gggaccaagg tggaaatca acgtacg	
1 5	acgtacg	427
	<210> 42	
50	<211> 131	
	<212> PRT	
	<213> Homo sapiens	
55	<400> 42	
	Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp	

	1				5					10			-		15	ē	
5	Leu	Pro	Gly	Ala 20	Arg	Cys	Val	Ile	Trp 25	Met	Thr	Gln	Ser	Pro 30	Ser	Leu	*
10	Leu	Ser	Ala 35	Ser	Thr	Gly	Asp	Arg 40	Val	Thr	Ile	Ser	Cys 45	Arg	Met	Ser	
15	Gln	Gly 50	Ile	Ser	Ser	Asp	Leu 55	Ala	Trp	Tyr	Gln	Gln 60	Lys	Pro	Gly	Lys	
20	Ala 65	Pro	Glu	Leu	Leu	Ile 70	Ser	Ala	Ala	Ser	Thr 75	Leu	Gln	Ser	Gly	Val 80	
	Pro	Ser	Arg	Phe	Ser 85	Gly	Ser	Gly	Ser	Gly 90	Thr	Asp	Phe	Thr	Leu 95	Thr	
25	Ile	Ser	Cys	Leu 100	Gln	Ser	G1u	Asp	Phe 105	Ala	Thr	Tyr	Tyr	Cys 110	Gln	Gln	
30	Tyr	Tyr	Ser 115	Phe	Pro	Trp	Thr	Phe 120	Gly	Gln	Gly	Thr	Lys 125	Val	Glu	Ile	
35	Lys	Arg 130	Thr														
40	<211 <212	0> 43 1> 48 2> DN 3> Ho	B1 NA	sapie	ens												
45	ctga		ag a													aacat agctg	
50	cagg tctg ctgg	gagto ggtgg gagtg gagt	gg g ct c gga t	ccca cato tggg cata	ggac agtg tata tcag	t gg g tt t ct t ag	tgaa acta atta acac	geet ctgg cagt gtcc	tcg agc ggg aag	gaga tgga agca aacc	ccc tcc cca agt	tgtc ggca acta tctc	cctc gccc caat cctg	ac c cc a cc c aa g	tgca gggaa tccc ctgaa	ctgtc aggga tcaag	180 240 300 360
55																actac ccaag	

	<21	0> 4	4													
	<21	1> 1	43			*								7 - 7	:	
5	<21	2> P	RT											j."		
•	⟨21	3> H	omo	sapi	ens									0.		A 197
	(40	0> 4	4													
10				Leu	Trn	Phe	Phe	len	Leu	len	Val	Ala	Δla	Pro	120	Tana
	. 1	ی ری	*****	Dec	5		1110	LCu	Leu	10		nic	nic	1110	15	
															10	
15	Val	Leu	Ser	Gln	Val	Gln	Leu	G1n	G1u	Ser	Gly	Pro	Gly	Leu	Val	Lys
				20					25					30		
	Dro	Sor	C1.	The	Lau	Co-	1	Tha	C	ፕե	V = 1	C	C 1.	C 3		* 1
20	110	261	35	1111	Leu	261	ren	40	Cys	1111	Val	ser	45	Gly	ser	ile
													10			
	Ser	Gly	Tyr	Tyr	Trp	Ser	Trp	Ile	Arg	Gln	Pro	Pro	Gly	Lys	Gly	Leu
25		50					55					60				
	61	Trn	710	G3 w	Tur	T1.	Trem	Two	Sam	C1	C	7L	A	т		_
	65	пр	116	Gly	1 9 1	70	1 y 1	1 9 1	Sei	Gly	75	Inr	ASN	Tyr	Asn	Pro 80
30						. •										80
	Ser	Leu	Lys	Ser	Arg	Val	Thr	Ile	Ser	Val	Asp	Thr	Ser	Lys	Asn	Gln
					85					90					95	
35	Phe	Sar	I eu	Ive	1 011	Acn	Sar	Val	Thr	A1-	410	Aan	The	Ala	17=13	T
	1 110	561	Leu	100	Leu	noii	261	141	105	VI	ліа	ASP	1111	110	vaı	ıyr
10	Tyr	Cys	Ala	Arg	Ala	Pro	Leu	His	Gly	Asp	Tyr	Lys	Trp	Phe	His	Pro
			115					120					125			
	Trn	G1v	G1 n	G1 v	Thr	Lan	Va1	Thr	Va I	Sar	S0=	۸٦.	C	Thr	T	
‡ 5		130	0111	Oly	1111	Leu	135	1111	vai	261	OE1	140	261	A CLE	Lys	
				V .												
50	<210															
		> 43														
	<212		A Mos	anio	nc											
55	(213	/ 110	1110 S	apre	112											
~	<400	> 45														

	tca	caga	tct	gagc	tgct	ca g	ttag	gacc	c ag	aggg	aacc	atg	gaaa	ccc	cago	gcago	ct
	tct	cttc	ctc	ctgc	tact	ct g	gctc	ccag	a ta	ccac	cgga	gaa	attg	tgt	tgac	gcagt	tc
5	tcc	aggc	acc	ctgt	cttt	gt c	tcca	gggg	a aa	gagc	cacc	cto	tcct	gca	gggc	cagto	a
	gag	tgtt	agc	agca	gcta	ct t	agcc	tggt	а сс	agca	gaaa	cct	ggcc	agg	ctcc	caggo	t
	cct	catc	tat	ggtg	catc	ca g	cagg	gcca	c tg	gcat	ccca	gac	aggt	tca	gtgg	cagt	gg
	gtc	tggg	aca	gact	tcac	tc t	cacc	atca	g ca	gact	ggag	cct	gaag	att	ttgc	agtgt	a
10	tta	ctgt	cag	cagt	atgg [.]	ta g	ctca	ccga	t ca	cctt	cggc	caa	ggga	cac	gact	ggaga	t
	caa	acgt.	acg														
15			_														
		0> 4															
		1> 1:															
		2> Pi															
20	(21	32 H	omo :	sapi	ens												
	(40	0> 40	e														
				Pro	Δla	G1n	l au	וום ו	Phe	Len	וום 1	Len	Ī eu	Trn	l en	Pro	
25	1	Olu	* ***	.10	5	0,111	200	200	1110	10	200		Dou	11 p	15		
25	_																
	Asp	Thr	Thr	Gly	Glu	Ile	Val	Leu	Thr	G1n	Ser	Pro	Gly	Thr	Leu	Ser	
				20					25					30			
30																	
	Leu	Ser	Pro	Gly	${\tt Glu}$	Arg	Ala	Thr	Leu	Ser	Cys	Arg	Ala	Ser	Gln	Ser	
			35					40					45				
35	Val		Ser	Ser	Tyr	Leu		Trp	Tyr	Gln	Gln		Pro	Gly	Gln	Ala	
		50					55					60					
	D	A	Lass	Lan	т1.	Т	C1	41.	Sa.	C ~ ~	A 20 G	41.	Thm	C3	T1.	D	
40	65	_	Leu	Leu	TIG	70	СТУ	MIA	Set	261	75	Ala	Inr	СТУ	116	80	
	00					, 0					15					00	
	Asn	Aro	Phe	Ser	Glv	Ser	Glv	Ser	Glv	Thr	Asp	Phe	Thr	Len	Thr	Tle	
	пор	*** 5		501	85		01,	001	,	90	пор			Lua	95	110	
45																	
	Ser	Arg	Leu	Glu	Pro	G1u	Asp	Phe	Ala	Val	Tyr	Tyr	Cys	Gln	Gln	Tyr	
		•		100			-		105		·	-		110		-	
F0																	
50	Gly	Ser	Ser	Pro	Ile	Thr	Phe	Gly	Gln	Gly	Thr	Arg	Leu	Glu	Ile	Lys	
			115					120					125				
55	Arg	Thr															
		130															

	<21	.0> 4	17														
	<21	1> 4	162														
5	<21	2> E)NA														
	<21	3> F	omo	sapi	ens												
10	<40	0> 4	7														
	ata	tgto	gac	gagt	catg	ga t	ctca	tgtg	c aa	gaaa	atga	ago	acc	tgtg	gtto	ttcctc	60
	ctg	ctgg	tgg	cggc	tccc	ag a	tggg	tcct	g to	ccag	gctgc	ago	tgca	agga	gtcg	ggccca	120
	gga	ctac	tga	agco	ttcg	ga g	accc	tgtc	c ct	caco	etgca	cte	gtct	etgg	cgg	tccatc	180
15	agc	agtc	ctg	gtta	ctac	gg g	ggct	ggat	с с	ccag	gcccc	cag	ggaa	ggg	gctg	gagtgg	240
	att	ggga	gta	tcta	taaa	ag t	ggga	gcac	c ta	ccad	aacc	cgt	ccct	caa	gagt	cgagtc	300
	acc	atat	ccg	taga	cacg	tc c	aaga	acca	g tt	ctcc	ctga	ago	tgag	ctc	tgtg	accgcc	360
20	gca	gaca	cgg	ctgt	gtat	ta c	tgta	cgag	а сс	tgta	gtac	gat	attt	tgg	gtgg	ttcgac	420
	ccc	tggg	gcc	aggg	aacc	ct g	gtca	ccgt	c tc	ctca	gcta	gc					462
25		0> 4															
		1> 1															
		2> P															
30	<21	3> H	omo	sapi	ens												
	440		_														
		0> 4		16.4	C .	1		M	,	17.		_	7.	~.			
		Asp	Leu	met 		Lys	Lys	Met	Lys			lrp	Phe	Phe		Leu	
35 ·	1				5					10					15		
	Lau	Val	Δla	412	Pro	Ara	Trn	Val	Lou	Sor	Gla	Lou	Cl-	Lass	C1	C1	
	Leu	Vai	nia	20	110	ni g	пр	101	25	261	GIN	Leu	GIII	30		GIU	
40				20					20					30			
70	Ser	G) v	Pro	Glv	Len	Len	Lvs	Pro	Ser	G111	Thr	Lon	Sor	Lou	Thr	Cva	
	501	01)	35	01)	Dea	204	D, 0	40	501	oru	* 111	Lea	45	Leu	1111	Cys	
			00					10					40				
45	Thr	Va1	Ser	G1 v	Glv	Ser	Tle	Ser	Ser	Pro	Glv	Tur	Tur	Gl _w	Cly	Twn	
		50	001	01)	0.,	•••	55	551	501		OI,	60	2 7 1	OLY	OLY	iib	
							•					00					
F0	Tle	Arg	Gln	Pro	Pro	Glv	l.vs	Gly	Leu	Glu	Trn	Tle	G1 v	Sar	Tla	Tur	
50	65	,,, P	V 1 1 1			70	2,5		Dea	V1.0	75	110	Gry	261	116	-	
	50					, ,					, 0					80	
	Lvs	Ser	Glv	Ser	Thr	Tvr	Hie	Asn	Pro	Ser	Len	Lve	Ser	Δ×~	V-1	Thr	
55	2,0		013	001	85	. , .		.,,,,,,	0	90	LUU	r i s	261	ur R		1117	
					00					30					95		

5	Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu Lys Leu Ser Ser 100 105 110	
*.	Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Thr Arg Pro Val Val 115 120 125	
-10	Arg Tyr Phe Gly Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr 130 135 140	
15	Val Ser Ser Ala Ser 145	
20	<210> 49 <211> 448 <212> DNA <213> Homo sapiens	
25	(400) 40	
	<400> 49 agatettaag caagtgtaac aacteagagt acgeggggag acceaetcag gacacageat 6 ggacatgagg gtccccgete ageteetggg gettetgetg etetggetee caggtgccag 1	
30	atgtgccatc cagttgaccc agtctccatc ctccctgtct gcatctgtag gagacagagt 1	
	caccatcact tgccgggcaa gtcagggcat tagcagtgct ttagcctggt atcagcagaa 2 accagggaaa gctcctaagc tcctgatcta tgatgcctcc aatttggaaa gtggggtccc 3 atcaaggttc agcggcagtg gatctgggac agatttcact ctcaccatca gcagcctgca 3	00 60
35	gcctgaagat tttgcaactt attactgtca acagtttaat agttacccga cgttcggcca 4 agggaccaag gtggaaatca aacgtacg 4	20 48
40	<210> 50	
	<211> 130 <212> PRT	
45	<213> Homo sapiens	
	<pre><400> 50 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp</pre>	٠.
50	1 5 10 15	
	Leu Pro Gly Ala Arg Cys Ala Ile Gln Leu Thr Gln Ser Pro Ser Ser 20 25 30	
55	len Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cue Are Ala Car	

		• =		35					40					45				
5	* .	G1n	Gly 50	Ile	Ser	Ser	Ala	Leu 55	Ala	Trp	Tyr	Gln	Gln 60	Lys	Pro	G1y	Lys	•
10		Ala 65	Pro	Lys	Leu	Leu	Ile 70	Tyr	Asp	Ala	Ser	Asn 75	Leu	Glu	Ser	G1y	Val 80	
15		Pro	Ser	Arg	Phe	Ser 85	Gly	Ser	Gly	Ser	Gly 90	Thr	Asp	Phe	Thr	Leu 95	Thr	
 20		Ile	Ser	Ser	Leu 100	G1n	Pro	Glu	Asp	Phe 105	Ala	Thr	Tyr	Tyr	Cys 110	G1n	Gln	
		Phe	Asn	Ser 115	Tyr	Pro	Thr	Phe	Gly 120	G ln	Gly	Thr	Lys	Val 125	Glu	Ile	Lys	
25		Arg	Thr 130						1									
90 . 85		<211 <212	0> 51 1> 45 2> DN 3> Ho	53 IA	sapie	ens												
)> 51 ctgt		ctto	ctca	ıt ct	tcct	gccc	gtg	ctgg	gcc	tccc	atgg	gg t	gtcc	tgtca	60
0		acct	gtgo	ca t	ctcc	gggg	a ca	gtgt	ctct	agc	aaca	gtg	ctgc	ttgg	aa c	tgga	cattc tcagg ggtat	180
5		cagt agag	tctc ggta	cc t	gcag ctat	ctga ggtt	a ct	ctgt	gacc ctat	ccc	gagg tact	aca	cggc	tgtg	ta t	tact	agaac gtgca ggggc	360
5		<210 <211 <212	> 15	1												·		
-		<213	> Ho	mo s	apie	nş												

		<40	0> 5	2														
ī	•	Met 1	Ser	Val	Ser	Phe 5	Leu	Ile	Phe	Leu	Pro 10		Leu	Gly	Leu	Pro 15	Trp	
o		Gly	Val	Leu	Ser 20	GIn	Val	Gln	Leu	Gln 25	Gln	Ser	Gly	Pro	Gly 30	Leu	Val	
		Lys	Pro	Ser 35	G1n	Thr	Leu	Ser	Phe 40	Thr	Cys	Ala	Ile	Ser 45	Gly	Asp	Ser	
5		Val	Ser 50	Ser	Asn	Ser	Ala	Ala 55	Trp	Asn	Trp	Ile	Arg 60	Gln	Ser	Pro	Ser	
0		Arg 65	Gly	Leu	Glu	Trp	Leu 70	Gly	Arg	Thr	Tyr	Tyr 75	Arg	Ser	Lys	Trp	Tyr 80	
5		Lys	Asp	Tyr	Ala	Val 85	Ser	Val	Lys	Ser	Arg 90	Ile	Thr	Ile	Asn	Pro 95	Asp	
0		Thr	Ser	Lys	Asn 100	Gln	Phe	Ser	Leu	Gln 105	Leu	Asn	Ser	Val	Thr 110	Pro	Glu	
D ,		Asp	Thr	Ala 115	Val	Tyr	Tyr	Cys	Ala 120	Arg	Gly	Tyr		Tyr 125	Gly	Ser	Gly	
5		Ser	Tyr 130	Pro	Tyr	Tyr	Tyr	Gln 135	Met	Asp	Val	Trp	Gly 140	Gln	Gly	Thr	Thr	
o		Val 145	Thr	Val	Ser	Ser	Ala 150	Ser										
5			> 53 > 41															
		<212	> DN	_	apie	ns												
o			gagg	aa c													ttct	
5		agcc	accc	tg t	cttt	gtct	с са	gggg	aaag	tgc	cacc	ctc	tcct	gcagi	gg c	cagto	ctcc agag tcat	180

	cta	tgat	gca	tcca	acag	gg c	cact	ggca	t co	cago	cage	tte	agte	ggca	gtgg	gtctgg	300
5	gac	agad	ttc	acto	tcac	ca t	cago	agco	t ag	agco	tgaa	gat	tttt	gcag	ttta	ttactg	360
	tca	gcag	cgt	agca	acac	tt t	cggc	ggag	g ga	ccaa	ggtg	gag	gatca	aac	gaac	;	414
					· .												
7.44	(01)	^ ^															
10		0> 5															
		1> 1										•					
		2> P															
	(21)	о) п	omo	sapi	ens												
15	<400)> 5	4														
	Met	Glu	Ala	Pro	Ala	Gln	Leu	Leu	Phe	Leu	Leu	Leu	Leu	Trp	Leu	Pro	
	1				5					10					15		•
20																	
	Asp	Thr	Thr	Gly	Glu	Ile	Val	Leu	Thr	Gln	Ser	Pro	Ala	Thr	Leu	Ser	
				20					25					30			
25	Leu	Ser			Glu	Ser	Ala	Thr	Leu	Ser	Cys	Arg	Ala	Ser	Gln	Ser	
			35					40					45				
	V- 1	C	C	T	T	A 3 -	Т	т	C1	63.		_	-			_	
30	vai	50	Ser	iyr	reu	АТА	55	Tyr	Gin	GIN	Lys		GLy	Gin	Ala	Pro	
		30					33					60					
	Arg	Leu	Leu	Ile	Tvr	Asp	Ala	Ser	Asn	Arg	Ala	Thr	Glv	Tle	Pro	Ala	
	65				- ,	70				6	75		01,	110	110	80	
35	,																
	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr.	Ile	Ser	
					85					90					95		
10																	
	Ser	Leu	Glu		Glu	Asp	Phe	Ala	Val	Tyr	Tyr	Cys	Gln	Gln	Arg	Ser	
				100					105					110			
	. *	m)	~ 1		0.3	0.1	mı			~~		_					
15	Asn	Thr		Gly	Gly	Gly	Thr		Val	GIu	He	Lys				•	,
			115					120					125				
	<210	> 55															
	<211																
	<212																
	<213			apie	ns												
55																	
	<400	> 55	•														

8	ctg	aaca	cag	accc	gtcg	ac t	acgc	ggga	g ac	caca	gctc	cac	acca	itgg	actg	gacctg	60
	gag	gatc	cta	ttct	tggt	gg c	agca	gcaa	c ag	gtgc	ccac	tcc	cage	gtgc	agct	ggtgca	120
5	atc	tggg	tct	gagt	tgaa	ga a	gcct	gggg	c ct	cagt	gaag	gtc	ccct	gca	aggo	ttctgg	180
	ata	cacci	ttc :	acta	gcta	tg c	tatg	aatt	g gg	tgcg	acag	gcc	cctg	gac	aagg	gcttga	240
	gtg	gatg	gga	tgga [.]	tcaa	ca c	caac	actg.	g ga	accc	aacg	tat	gccc	agg	gctt	cacagg	300
	acg	gttts	gtc 1	ttct	cctt	gg a	cacc	tctg	t ca	gcac	ggca	tat	ctgc	aga	tcag	cagcct	360
10	aaa	ggct	gag (gaca	ctgc	cg t	gtat [.]	tact	g tg	cgag	agag	gta	gtac	cag	ttgc	tatgag	420
	ggt	aacto	cac 1	tact	acta	cg g	tatg	gacg	t ct	gggg	ccaa	ggg	acca	cgg	tcac	cgtctc	480
	ctc	agcta	agc a	acca	3												495
15																	
	<21	0> 56	ŝ														
		1> 14															
		2> PF															
20		3> Ho		sapie	ens					~							
				-													
	<400	0> 56	5														
25	Met	Asp	Trp	Thr	Trp	Arg	Ile	Leu	Phe	Leu	Val	Ala	Ala	Ala	Thr	Gly	
	1				5					10					15		
	Ala	His	Ser	Gln	Val	Gln	Leu	Val	G1n	Ser	Gly	Ser	Glu	Leu	Lys	Lys	
30				20					25					30			
	Pro	Gly		Ser	Val	Lys	Val		Cys	Lys	Ala	Ser		Tyr	Thr	Phe	
			35					40					45				
35		_	-				~			01		ъ	0.3	0.7	0.3	•	
	Thr		Tyr	Ala	Met	Asn		Val	Arg	GIn	Ala		Gly	Gin	Gly	Leu	
		50					55					60					
40	61	· · · · · · · · · · · · · · · · · · ·	M_ +	<u>۲</u> ۱	T	T1.	A = =	Th	A	The	<i>C</i> 1	A	Dwa	The	Т	A1	
		irp	мег	GIA	irp	70	nsii	1111	VZII	1111	75	ASH	110	1111	Tyr		
	65					70					, 0					80	
	C1n	C1 _w	Dho	Thr	Gĺv	Ara	Pho	Va l	Pho	Sar	l eu	Aen	Thr	Ser	Val	Sor	
45	GIII	GIY	rne	IIIT	85	nt g	ine	Vai	THE	90	Leu	лър	1111	Det	95	Ser	
					00					50					20		
	Thr	41a	Tur	i en	Gln	Tla	Ser	Ser	Len	Lvs	Ala	Glu	Asn	Thr	Ala	Val	
	1 411	nia	1 7 1	100	0111	110		~~1	105	~, 5		-14	برد	110			
50				100													
	Tur	Tvr	Cvs	Ala	Arø	Glas	Val	Val	Pro	Val	Ala	Met	Aro	Val	Thr	His	
		1 y 1	115	,,,,,,	B	714	,	120	0			,,,, ,	125	. 41			
EE.			110										120				
55	Term	Tur	Tur	612	Mat	Acn	Val	Trn	Glv	G1 _P	G1v	Thr	Thr	Val	Thr	Va 1	

140

135

130

Ser Ser Ala Ser Thr 145 10 <210> 57 <211> 830 <212> DNA <213> Homo sapiens 15 <400> 57 ctgggtacgg taaccgtcag atcgcctgga gacgccatca cagatctgcc tcaggaagca 60 gcatcggagg tgcctcagcc atggcatgga tccctctctt cctcggcgtc cttgtttact 120 20 gcacaggate egtggeetee tatgagetga etcagecace etcagtgtee gtggceecag 180 gacagacage cagcateace tgttetggag ataaattggg ggataatttt acttgetggt 240 atcagcagaa gccaggccag tcccctgtgc tggtcatctt tcaggattgg aagcggcgcc 300 25 cagggatece tgcgcgatte tetggeteca agtetgggaa cacagceact etgaceatea 360 gcgggaccca ggctatggat gaggctgact attactgtca ggcgtgggac atcagcactg 420 tggtattcgg cggagggacc aagctgaccg tcctaggtca gcccaaggct gcccctcgg 480 tcactctgtt cccgccctcc tctgaggagc ttcaagccaa caaggccaca ctggtgtgtc 540 30 tcataagtga cttctacccg ggagccgtga cagtggcctg gaaggcagat agcagccccg 600 tcaaggcggg agtggagacc accacacct ccaaacaaag caacaacaag tacgcggcca 660 gcagctacct gagcctgacg cctgagcagt ggaagtccca cagaagctac agctgccagg 720 tcacgcatga agggagcacc gtggagaaga cagtggcccc tacagaatgt tcatgaattc 780 35 agatccgtta acggttacca actacctaga ctggattcgt gaccaacata 830 <210> 58 40 <211> 231 <212> PRT <213> Homo sapiens 45 **<400> 58** Met Ala Trp Ile Pro Leu Phe Leu Gly Val Leu Val Tyr Cys Thr Gly 1 5 10 15 50 Ser Val Ala Ser Tyr Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala 20 25 30 Pro Gly Gln Thr Ala Ser Ile Thr Cys Ser Gly Asp Lys Leu Gly Asp 55 35 40 45

5	Asn	Phe 50	Thr	Cys	Trp	Tyr	Gln 55	Gln	Lys	Pro	Gly	Gln 60	Ser	Pro	Val	Leu
	Val 65	Ile	Phe	Gln	Asp	Trp 70	Lys	Arg	Arg	Pro	Gly 75	Ile	Pro	Ala	Arg	Phe 80
10	Ser	Gly	Ser	Lys	Ser 85	Gly	Asn	Thr	Ala	Thr 90	Leu	Thr	Ile	Ser	Gly 95	Thr
15	Gln	Ala	Met	Asp 100	Glu	Ala	Asp	Tyr	Tyr 105	Cys	Gln	Ala	Trp	Asp 110	Ile	Ser
eo ,	Thr	Val	Val 115	Phe	Gly	Gly	Gly	Thr 120	Lys	Leu	Thr	Val	Leu 125	Gly	Gln	Pro
25	Lys	Ala 130	Ala	Pro	Ser	Val	Thr 135	Leu	Phe	Pro	Pro	Ser 140	Ser	G1u	G1u	Leu
	G1n 145	Ala	Asn	Lys	Ala	Thr 150	Leu	Val	Cys	Leu	Ile 155	Ser	Asp	Phe	Tyr	Pro 160
80	Gly	Ala	Val	Thr	Val 165	Ala	Trp	Lys	Ala	Asp 170	Ser	Ser	Pro	Val	Lys 175	Ala
35	Gly	Val	Glu	Thr 180	Thr	Thr	Pro	Ser	Lys 185	G1n	Ser	Asn	Asn	Lys 190	Tyr	Ala
10	Ala	Ser	Ser 195	Tyr	Leu	Ser	Leu	Thr 200	Pro	Glu	G1n	Trp	Lys 205	Ser	His	Arg
15	Ser	Tyr 210	Ser	Cys.	Gln	Val	Thr 215	His	Glu	Gly		Thr 220	Val	Glu	Lys	Thr
	Val 225	Ala	Pro	Thr	Glu	Cys 230	Ser									
50																,
	<210	> 59)											•		
		> 52														
55		2> DN 3> Ho		ania	ne											
	1210	, 11C	כ טוווי	opie	113											

	<400	> 59	•		e							1 -		. * -			
	gctga	atca	gg	actg	caca	ca g	agaa	ctca	с са	tgga	gttt	ggg	ctga	gct	gggt	tttcct	60
;	tgtt	gcta	itt 1	ttaa	aagg	tg t	ccag	tgtg	a gg	tgca	gctg	gtg	gagt	ccg	gggg	aggctt	120
	agtto	cago	ct į	gggg	ggtc	cc t	gaga	ctct	cct	gtgc	agtc	tct	ggat	tca	cctt	cagtac	180
	ctact	tgga	tg (cact	gggt	cc g	ccaa	gctc	c ag	ggaa	gggg	ctg	gtgt	ggg	tete	acgtat	240
v* *	taata	agtg	at	ggga	gtag	ca c	aacc	tacg	c gg	actc	cgtg	aag	ggcc	gat	tcac	catctc	300
,	cagag	gaca	ac (gcca	agaa	ca c	gctg	tatc	t gc	aaat	gaac	agt	ctga	gag	ccga	ggacac	360
	ggctg	gtgt	at i	tact	gtgc	aa g	agat	agag	t ac	tatg	gatc	ggg	gagt	tat	ccta	ctacgg	420
	tatgg	gacg	tc 1	tggg	gcca	ag g	gacc	acgg	t ca	ccgt	ctcc	tca	gcta	gca	ccaa	gggccc	480
5	atcgg	gtct	tc	cccc	tggc	ac c	ctcc	tcca	a ga	gcac	ctct			•			520
	(210)																
0	<211>																
	<212×																
	<213	, uo	omo s	sapre	ens												
5	<400>	60)														
	Met (Glv	Leu	Ser	Tro	Val	Phe	Leu	Val	Ala	Tle	Len	I.vs	G1 v	
	1			,	5					10					15	01,	
9	Val (Gln	Cys	Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	
				20					25					30			
5	Pro C	ly		Ser	Leu	Arg	Leu		Cys	Ala	Val	Ser		Phe	Thr	Phe	
			35					40					45				
	^ n	n 2	m			,,,	~	17 1		0.1		n	0.7		63		
_	Ser 1		lyr	Irp	met	HIS	_	val	Arg	Gin	Ala		Gly	Lys	Gly	Leu	
0		50					55					60					
	Val T	rn	Val	Sor	Ara	Tla	Acn	Sor	4 cn	Gliv	Sor	Sor	Thr	The	T	A1.	
	65	цр	141	261	urg	70	NSII	Ser	vsh	Oly	75	Set	1111	1111	1 y 1	80	
5	00					. 0					••	•					
	Asp S	Ser	Val	Lvs	Glv	Arg	Phe	Thr	He	Ser	Arg	Asp	Asn	Ala	Lvs	Asn	
				,	85	0				90	6				95		
_																	
9	Thr l	_eu	Tyr	Leu	G1n	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	
				100					105				-	110		_	
5	Tyr I	yr	Cys	Ala	Arg	Asp	Arg	Val	Leu	Trp	Ile	Gly	Glu	Leu	Ser	Tyr	
			115					120					125				

	Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 130 135 140	
5		
	Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys 145 150 155 160	
10	Ser Thr Ser	N.,
15	<210> 61 <211> 698	
20	<212> DNA <213> Homo sapiens	
	<400> 61 ggggagtcag acccagtcag gacacagcat ggacatgagg gtccccgctc agctcctggg	60
25	geteetgetg etetggetee caggtgecaa atgtgacate cagatgacee agteteette caccetgtet geatetgtag gagacagagt caccateact tgeegggeea gteagagtat	120
	tagtaactgg ttggcctggt atcagcagaa accagggaaa gcccctaagc tcctgctcta taaggcatct ggtttagaaa gtggggtccc atcaaggttc agcggcagtg gatctgggac	240
30	agaattcact ctcaccatca acagcctgca gcctgatgat tttgcaactt attactgcca acagtctaat agttattcgt ggacgttcgg ccacgggacc aaggtggaaa tcaaacgtac	360
<i>3</i> 5	ggtggctgca ccatctgtct tcatcttccc gccatctgat gagcagttga aatctggaac tgcctctgtt gtgtgcctgc tgaataactt ctatcccaga gaggccaaag tacagtggaa ggtggataac gccctccaat cgggtaactc ccaggagagt gtcacagagc aggacagcaa	540
	ggacagcacc tacagcctca gcagcaccct gacgctgagc aaagcagact acgagaaaca caaagtctac gcctgcgaag tcacccatca gggcctga	
40		
	<210> 62 <211> 223	
45	<212> PRT <213> Homo sapiens	
	<400> 62 ·	
50	Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp 1 5 10 15	
55	Leu Pro Gly Ala Lys Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Thr 20 25 30	

5		Leu	Ser	Ala 35	Ser	Val	Gly	Asp	Arg 40	Val	Thr	Ile	Thr	Cys 45		Ala	Ser
		Gln	Ser 50	Ile	Ser	Asn	Trp	Leu 55	Ala	Trp	Tyr	Gln	G1n 60	Lys	Pro	Gly	Lys
10		Ala 65	Pro	Lys	Leu	Leu	Leu 70	Tyr	Lys	Ala	Ser	Gly 75	Leu	G1u	Ser	Gly	Val 80
15		Pro	Ser	Arg	Phe	Ser 85	Gly	Ser	Gly	Ser	Gly 90	Thr	Glu	Phe	Thr	Leu 95	Thr
20		Ile	Asn	Ser	Leu 100	Gln	Pro	Asp	Asp	Phe 105	Ala	Thr	Tyr	Tyr	Cys 110	Gln	Gln
25		Ser	Asn	Ser 115	Tyr	Ser	Trp	Thr	Phe 120	Gly	His	Gly	Thr	Lys 125	Val	Glu	Ile
<i>30</i>		Lys	Arg 130	Thr	Val	Ala	Ala	Pro 135	Ser	Val	Phe	Ile	Phe 140	Pro	Pro	Ser	Asp
		Glu 145	G1n	Leu	Lys	Ser	Gly 150	Thr	Ala	Ser	Val	Val 155	Cys	Leu	Leu	Asn	Asn 160
35		Phe	Tyr	Pro	Arg	Glu 165	Ala	Lys	Val	Gln	Trp 170	Lys	Val	Asp	Asn	Ala 175	Leu
40		Gln	Ser	Gly	Asn 180	Ser	Gln	Glu	Ser	Val 185	Thr	Glu	Gln	Asp	Ser 190	Lys	Asp
45		Ser	Thr	Tyr 195	Ser	Leu	Ser	Ser	Thr 200	Leu	Thr	Leu	Ser	Lys 205	Ala	Asp	Tyr
50		Glu	Lys 210	His	Lys	Val	Tyr	Ala 215	Cys	Glu	Val	Thr	His 220	G1n	Gly	Leu	
50																	
)> 63														
	•		> 63														
55			!> DN !> Hc		apie	ens					•						

	<400> 63					1
	ggtctatata	agcagagctg	ggtacgtcct	cacattcagt	gatcagcact	gaacacagac 60
5	ccgtcgacgg	tgatcaggac	tgaacagaga	gaactcacca	tggagtttgg	gctgagctgg 120
	ctttttcttg	tggctatttt	aaaaggtgtc	cagtgtgagg	tgcagctgtt	ggagtctggg 180
	ggaggcttgg	tacagcctgg	ggggtccctg	agactctcct	gtgcagcctc	tggattcacc 240
10	tttagcagct	atgccatgag	ctgggtccgc	caggetecag	ggaaggggct	ggagtgggtc 300
,,,	tcagctatta	gtggtagtgg	tggtagcaca	tactacgcag	actccgtgaa	gggccggttc 360
	accateteca	gagacaattc	caagaacacg	ctgtatctgc	aaatgaacag	cctgagagcc 420
	gaggacacgg	ccgtatatta	ctgtgcgaaa	gatggggggt	actatggttc	ggggagttat 480
15	gggtactttg	actactgggg	ccagggaacc	ctggtcaccg	tctcctcagc	tagcaccaag 540
	ggcccatcgg	tcttcccct	ggcaccctcc	tccaagagca	cctctggggg	cacagcggcc 600
	ctgggctgcc	tggtcaagga	ctacttcccc			630
20						
	<210> 64				•	
	<211> 177					
25	<212> PRT	•				
	<213> Homo	sapiens				
	<400> 64					
		a Gly Lau S	er Trp Leu I	Pho Lou Val	Ala Tia Lau	Iva Cly
30	l l	5 Oly Lea 5	er hip bed i	10	Ald lie Led	15
	•	Ü		10		
	Val Gln Cys	s Glu Val G	ln Leu Leu (Glu Ser Gly	Gly Gly Leu	Val Gln
35		20		25	30	
	Pro Gly Gly	y Ser Leu A	rg Leu Ser (Cys Ala Ala	Ser Gly Phe	Thr Phe
	38	5	40		45	
40						-
	Ser Ser Typ	r Ala Met S	er Trp Val A	Arg Gln Ala	Pro Gly Lys	Gly Leu
	_. 50		55		60	
45						
			le Ser Gly S		Ser Thr Tyr	•
	65	•	70	7 5		80
	. 6 4 1		ב מיי מו	71 . C A.		
50	Asp Ser Val		rg Phe Thr I		Asp Asn Ser	•
		85		90		95
	The Law Too	r Lou Gla M	et Asn Ser L	on Ara Ala	Clu Aca The	Ale Vel
55	ini tea lyi	100		05	GIO ASP INF	VIQ AUT
		100			110	

5 5		Cys Ala 115	Lys As		Gly Tyr 120	Tyr Gly	Ser Gly Se	er Tyr Gly	
	Tyr Phe 1	Asp Tyr	Trp G1	y Gln (Gly Thr	Leu Val	Thr Val Se	er Ser Ala	
2	Ser Thr	Lys Gly	Pro Se		Phe Pro	Leu Ala 155	Pro Ser Se	er Lys Ser 160	
5	Thr Ser	Gly Gly	Thr Al 165	a Ala L	Leu Gly	Cys Leu 170	Val Lys As	p Tyr Phe 175	
eo	Pro								
	<210> 65								
5	<211> 728 <212> DN	A					,		
0	<213> Hos	mo sapi	ens						
	ggacatga	gg gtcc	ccgctc	agctcct	ggg gct	cctgctg	ctctggttcc	gacacagcat	120
25	caccatca	ct tgtc	gggcga	gtcaggg	tat tag	cagctgg	ttagcctggt	gagacagagt atcagcagaa gtggggtccc	240
0	gcctgaag	at tttg	caactt a	actattg	tca aca	ggctagc	agtttccctc	gcagcctgca ggacattcgg tcatcttccc	420
	gccatctg	at gago	agttga a	atctgg	aac tgc	ctctgtt	gtgtgcctgc	tgaataactt cgggtaactc	540
5		gc ãaag						gcagcaccet tcacccatca	
ro									
5	<210> 66 <211> 22: <212> PR	3							
5	<213> Hor	mo sapi	ens						

	 <40	0> 6	6													
5	Met 1	Asp	Met	Arg	Val 5	Pro	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Leu	Leu 15	Trp
10	Phe	Pro	Gly	Ser 20	Arg	Cys	Asp	Ile	Gln 25	Met	Thr	Gln	Ser	Pro 30	Ser	Ser
	Val	Ser	Gly 35	Ser	Val	Gly	Asp	Arg 40	Val	Thr	Ile	Thr	Cys 45	Arg	Ala	Ser
15	Gln	Gly 50	Ile	Ser	Ser	Trp	Leu 55	Ala	Trp	Tyr	Gln	Gln 60	Lys	Pro	Gly	Lys
20	Ala 65	Pro	Lys	Leu	Leu	Ile 70	Tyr	Ala	Gly ·	Ser	Ser 75	Leu	Gln	Ser	Gly	Val 80
25	Pro	Ser	Arg	Phe	Ser 85	G1y	Ser	Gly	Phe	Gly 90	Thr	Asp	Phe	Thr	Leu 95	Thr
20	Ile	Ser	Ser	Leu 100	Gln	Pro	Glu	Asp	Phe 105	Ala	Thr	Tyr	Tyr	Cys 110	Gln	Gln
30	Ala	Ser	Ser 115	Phe	Pro	Arg	Thr	Phe 120	Gly	G1n	Gly	Thr	Lys 125	Val	Glu	Ile
35	Lys	Arg 130	Thr	Val	Ala	Ala	Pro 135	Ser	Val	Phe	Ile	Phe 140	Pro	Pro	Ser	Asp
40	Glu 145	Gln	Leu	Lys	Ser	Gly 150	Thr	Ala	Ser	Val	Val 155	Cys	Leu	Leu	Asn	Asn 160
45	Phe	Tyr	Pro	Arg	Glu 165	Ala	Lys	Val	Gln	Trp 170	Lys	Val	Asp	Asn	Ala 175	Leu
	Gln	Ser	Gly	Asn 180	Ser	Gln	Glu	Ser	Val 185		G1u	Gln	Asp	Ser 190	Lys	Asp
50	Ser	Thr	Tyr 195	Ser	Leu	Ser	Ser	Thr 200	Leu	Thr	Leu	Ser	Lys 205	Ala	Asp	Tyr
55	Glu	Lys 210	His	Lys	Val	Tyr	Ala 215	Cys	Glu	Va1	Thr	His 220	Gln	Gly	Leu	

Claims

5

10

15

20

30

35

40

50

55

- An antibody against a human CD40 or a functional fragment thereof, having at least one property selected from the following properties (a) to (f) of:
 - (a) acting on dendritic cells to produce IL-12 in the presence of LPS and IFNy,
 - (b) having activity to act on dendritic cells causing the cells to mature, which is higher than that of a G28-5 antibody:
 - (c) having activity to promote an established B cell line to express CD95, which is higher than that of the G28-5 antibody;
 - (d) having activity to suppress the proliferation of an established B cell line, which is higher than that of the G28-5 antibody;
 - (e) inducing cell death of an established B cell line; and
 - (f) not inhibiting the binding of CD40 ligands to CD40.

2. The antibody or the functional fragment thereof of claim 1, wherein the maturation of dendritic cells is performed at an antibody concentration of 20 μg/ml or less.

- 3. The antibody or the functional fragment thereof of claim 1, promoting the established B cell line to express CD95 at an antibody concentration of 20 µg/ml or less.
- The antibody or the functional fragment thereof of claim 1, wherein the established B cell line is Ramos or HS-Sulton.
- 5. The antibody or the functional fragment thereof of claim 1, wherein the production of 100 pg/ml or more IL-12 is provided when the antibodies with a concentration of 0.1 μg/ml or more are added to dendritic cells with a concentration of 1×10⁶ cells/ml.
 - 6. The antibody or the functional fragment thereof of claim 1, wherein the production of 1000 pg/ml or more IL-12 is provided when the antibodies with a concentration of 1 μg/ml or more are added to dendritic cells with a concentration of 1 × 10⁶ cells/ml.
 - 7. The antibody or the functional fragment thereof of claim 1, wherein the production of 10000 pg/ml or more IL-12 is provided when the antibodies with a concentration of 1 μg/ml or more are added to dendritic cells with a concentration of 1×10⁶ cells/ml.
 - 8. The antibody or the functional fragment thereof of claim 1, promoting within the antibody concentration range between 0.01 μ g/ml and 10 μ g/ml the established B cell line (Ramos cell) to express CD95 with approximately 2 to 3 times or more greater effectiveness than that expressed by a G28-5 antibody as a control.
 - 9. The antibody or the functional fragment thereof of claim 1, promoting with an antibody concentration of 0.01 μ g/ml the established B cell line (Ramos cell) to express CD95 with approximately 2 to 6 times or more greater effectiveness than that expressed by a G28-5 antibody as a control.
- 45 10. The antibody or the functional fragment thereof of claim 1, promoting with an antibody concentration of 0.1 μg/ml the established B cell line (Ramos cell) to express CD95 with approximately 2 to 7 times or more greater effectiveness than that expressed by a G28-5 antibody as a control.
 - 11. The antibody or the functional fragment thereof of claim 1, promoting with an antibody concentration of 1 μg/ml the established B cell line (Ramos cell) to express CD95 with approximately 2 to 7 times or more greater effectiveness than that expressed by a G28-5 antibody as a control.
 - 12. The antibody or the functional fragment thereof of claim 1, promoting with an antibody concentration of 10 μg/ml the established B cell line (Ramos cell) to express CD95 with approximately 2 to 6 times or more greater effectiveness than that expressed by a G28-5 antibody as a control.
 - 13. An antibody or a functional fragment thereof, having the amino acid sequences of a heavy chain variable region and a light chain variable region of an antibody that is produced by a hybridoma KM302-1 (Accession No: FERM

BP-7578), KM341-1-19 (Accession No: FERM BP-7759), 2105 (Accession No: FERM BP-8024) or F1-102 (Accession No: ATCC PTA-3337).

- 14. An antibody or a functional fragment thereof, having amino acid sequences of the mature portions of a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma F2-103, which are respectively encoded by plasmid DNAs with Accession Nos. ATCC PTA-3302 and ATCC PTA-3303; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma F5-77, which are respectively encoded by plasmid DNAs with Accession Nos. ATCC PTA-3304 and ATCC PTA-3305; or a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma F5-157, which are respectively encoded by plasmid DNAs with Accession Nos. ATCC PTA-3306 and ATCC PTA-3307.
- 15. An antibody or a functional fragment thereof, having amino acid sequences of the mature portions of a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma KM341-1-19, which are respectively represented by SEQ ID NOS: 28 and 30; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma 2105, which are respectively represented by SEQ ID NOS: 32 and 34; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma 110, which are respectively represented by SEQ ID NOS: 36 and 38; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma 115, which are respectively represented by SEQ ID NOS: 40 and 42; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma KM643-4-11, which are respectively represented by SEQ ID NOS: 52 and 54; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma F2-103, which are respectively represented by SEQ ID NOS: 60 and 62; or a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma F5-77, which are respectively represented by SEQ ID NOS: 64 and 66.
- 25 16. An antibody or a functional fragment thereof, having amino acid sequences of the mature portions of a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma KM341-1-19, which are respectively represented by SEQ ID NOS: 27 and 29; a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma 2105, which are respectively represented by SEQ ID NOS: 31 and 33; a heavy chain variable region and a light 30 chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma 110, which are respectively represented by SEQ ID NOS: 35 and 37; a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma 115, which are respectively represented by SEQ ID NOS: 39 and 41; a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma KM643-4-11, which are respectively represented by SEQ ID 35 NOS: 51 and 53; a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma F2-103, which are respectively represented by SEQ ID NOS: 59 and 61; or a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma F5-77, which are respectively represented by SEQ ID NOS: 63 and 65.
- 17. An antibody against a human CD40, or a functional fragment thereof, having at least one property selected from the following properties (g) to (j) of:
 - (g) neutralizing the action of ligands for CD40;
 - (h) neutralizing or alleviating one or more effects that ligands, which are for CD40 on an established B cell line, have on CD40-expressing cells, and having agonistic action on CD40 on the established B cell line weaker than that of 5D12 due to cross-linking by anti-immunoglobulin antibodies;
 - (i) alleviating or neutralizing the action of CD40 ligands on the established B cell line to increase CD95 expression; and
 - (j) having antagonistic action on CD40 expressed on dendritic cells.
 - 18. The antibody or the functional fragment of claim 17, which can suppress the expression of CD95 in Ramos cells to a level approximately 10% or less than that of a control, when antibodies with a concentration of 0.1 μ g/ml are added to the Ramos cells with a concentration of 1×10^6 cells/in] supplemented with a saturated amount of CD40L-expressing cells.
 - 19. The antibody or the functional fragment of claim 17, which can suppress the expression of CD95 in Ramos cells to the same level as that of a negative control, when the antibodies with a concentration of 1 μg/ml are added to the Ramos cells with a concentration of 1×10⁶ cells/ml supplemented with a saturated amount of CD40L-express-

5

10

15

20

45

50

55

ing cells.

10

15

25

30

35

40

- 20. The antibody or the functional fragment of claim 17, which can suppress the expression of CD95 in the Ramos cells to the same level as that of the negative control, when the antibodies with a concentration of 10 μg/ml are added to the Ramos cells with a concentration of 1×10⁶ cells/ml supplemented with a saturated amount of CD40L-expressing cells.
- 21. The antibody or the functional fragment of claim 17, wherein the proliferation of tonsillar B cells is suppressed in vitro by approximately 80 to 95% or more, when the antibodies with a concentration between 0.001 μ g/ml and 10 μ g/ml are added to 1×10^5 tonsillar B cells supplemented with soluble CD40L (1μ g/ml).
- 22. The antibody or the functional fragment of claim 17, wherein the proliferation of tonsillar B cells is suppressed in vitro by approximately 95% or more, when the antibodies with a concentration between 0.01 μ g/ml and 10 μ g/ml are added to 1×10^5 tonsillar B cells supplemented with soluble CD40L (1μ g/ml).
- 23. The antibody or the functional fragment of claim 17, wherein the proliferation of tonsillar B cells is suppressed in vitro by approximately 80% or more, when the antibodies with a concentration of 0.001 μ g/ml are added to 1×10⁵ tonsillar B cells supplemented with soluble CD40L (1 μ g/ml).
- 24. An antibody or a functional fragment thereof, having amino acid sequences of a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma KM281-1-10 (Accession No: FERM BP-7579), 4D11 (Accession No: FERM BP-7758) or F4-465 (Accession No: ATCC PTA-3338).
 - 25. An antibody or a functional fragment thereof, having amino acid sequences of the mature portions of a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma KM281-1-10, which are respectively represented by SEQ ID NOS: 44 and 46; a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma 4D11, which are respectively represented by SEQ ID NOS: 48 and 50; or a heavy chain variable region and a light chain variable region of the antibody produced by a hybridoma F4-465, which are respectively represented by SEQ ID NOS: 56 and 58.
 - 26. An antibody or a functional fragment thereof, having amino acid sequences of the mature portions of a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma KM281-1-10, which are respectively represented by SEQ ID NOS: 43 and 45; a heavy chain variable region and a light chain variable region of an antibody produced by a hybridoma 4D11, which are respectively represented by SEQ ID NOS: 47 and 49; or a heavy chain variable region and a light chain variable region that are encoded by nucleic acid sequences isolated from a hybridoma F4-465, which are respectively represented by SEQ ID NOS: 55 and 57.
 - 27. The antibody or the functional fragment thereof of any one of claims 1 to 26, which is a human antibody.
 - 28. A pharmaceutical composition, containing as an active ingredient the antibody or the functional fragment thereof of any one of claims 1 to 26.
- 29. An immunopotentiating agent, anti-tumor agent or anti-autoimmune disease agent, containing as an active ingredient the antibody or the functional fragment thereof of any one of claims 1 to 16.
 - 30. An immunosuppressive agent, anti-autoimmune disease agent, therapeutic agent against allergies or therapeutic agent against blood coagulation factor VIII -inhibiting syndrome, containing as an active ingredient the antibody or the functional fragment thereof of any one of claims 17 to 26.

50

55

KM302-1 antibody

Fig. 2A

Fig. 2B

KM283-5 antibody

KM281-2-10-1-2 antibody

KM281-2-13 antibody

CD40L only

CD40L+5D12

CD40L+KM281-1-10 antibody

Fig. 4

KM281-1-10 antibody

KM281-2-10-1-2 antibody

KM283-5 antibody

KM225-2-56 antibody

KM292-1-24 antibody

Fig. 5

anti-mouse-5D12.017

27

100

101

102

103

104

FL2-H

5D12 antibody+anti-mouse IgG antibody

anti-mouse IgG antibody only

Fig. 6

HS-Sulton

Ramos

Fig. 7

G28-5 antibody

KM302-1 antibody

Fig. 8

Fig.9

Fig. 10

Fig. 11

Fig. 12

Action of anti-CD40 agonistic antibody to increase CD95 expression in Ramos cell

antibody concentration (µg/ml)

Fig. 13

IL-12 production by DC

antibody concentration (µg/ml)

Fig. 14

Fig. 15

Fig. 16

anti-tumor effect of anti-CD40 antibody in Ramos cell-transplanted model

Fig. 17A

Fig.17B

Fig. 18

Fig. 19

Fig. 20

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/04292

0										
	SIFICATION OF SUBJECT MATTER C1 ⁷ C07K16/28, C12N15/13, C12N	45/10 C12D21/09 N61K3	0/305							
Inc.	A61P35/00, A61P37/04, A61									
	o International Patent Classification (IPC) or to both n	adonal classification and IPC								
	S SEARCHED ocumentation searched (classification system followed	by closeiffortion symbols								
	C1 ⁷ C07K16/28, C12N15/13, C12N		9/395,							
	A61P35/00, A61P37/04, A61P37/06, A61P37/08, A61P7/00									
Documental	tion searched other than minimum documentation to th	e extent that such documents are included	in the fields searched							
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)										
	sprot/PIR/Geneseq, WPI(DIALOG)									
	•									
C. DOCU	MENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.							
Х	Ledbetter, J. A. et al., Agor		1-16,28,29							
Y	CD40-specific single-chain Fr variable regions of mAb G28-5		27							
	1997, Vol.17, Nos.5 to 6, pag		•							
х	Zhou, Z. H. et al., An agonis	st anti-human CD40	1-16,28,29							
Ϋ́	monoclonal antibody that indu	ces dendritic cell	27							
	formation and maturation and of a myeloma cell line. Hybri		÷							
	pages 471 to 478(1999)	rdoma, vol.18, No.8,								
v	de Boer, M. et al., Generatio	on of managional	17 26 20 30							
X Y	antibodies to human lymphocyt		17-26,28,30 27							
	antigens using insect cells e	expressing recombinant								
	proteins. J. Immnol. Methods, pages 15 to 23(1992)	Vol.152, No.1,								
	pages 19 co 25(1332)		9							
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.								
	categories of cited documents: ent defining the general state of the art which is not	"T" later document published after the inte priority date and not in conflict with the								
conside	ned to be of particular relevance document but published on or after the international filing	understand the principle or theory und "X" document of particular relevance; the	erlying the invention							
date		considered novel or cannot be consider	ted to involve an inventive							
cited to	ent which may throw doubts on priority claim(s) or which is e establish the publication date of another citation or other	step when the document is taken alone "Y" document of particular relevance; the	claimed invention cannot be							
"O" docum	reason (as specified) ent referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such	documents, such							
"P" docume	ent published prior to the international filing date but later	"&" document member of the same patent								
	e priority date claimed actual completion of the international search	Date of mailing of the international seam	h report							
	uly, 2002 (08.07.02)	23 July, 2002 (23.0	•							
	nailing address of the ISA/	Authorized officer								
Japa	nese Patent Office	Α								
Facsimile N	0.	Telephone No.	•							

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/04292

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
T	Boon, L. et al., Preclinical assessment of anti-CD40 Mab 5D12 in cynomolgus monkeys. Toxicology, Vol.174, pages 53 to 65(2002)	17-26,28,30
Y	Tomizuka, K. et al., Double trans-chromosomic mice: Maintenance of two individual human chromosome fragments containing Ig heavy and Ioci and expression of fully human antibodies. Proc. Natl. Acad. Sci. USA, Vol.97, No.2, pages 722 to 727 (2000)	27
Y	WO 98/37757 A1 (Kirin Beer), 03 September, 1998 (03.09.98), & EP 972445 A1	27
	- -	
	z.	
	·	
	- -	·

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP02/04292

A	. CL	ASSIFICAT	TION	F SUBJE	CT MATTER

Int.Cl⁷ C07K16/28, C12N15/13, C12N5/10, C12P21/08, A61K39/395, A61P35/00, A61P37/04, A61P37/06, A61P37/08, A61P7/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C07K16/28, C12N15/13, C12N5/10, C12P21/08, A61K39/395,
A61P35/00, A61P37/04, A61P37/06, A61P37/08, A61P7/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
SwissProt/PIR/Geneseq, WPI(DIALOG), BIOSIS(DIALOG), JICST FILE(JOIS)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y X	Ledbetter, J. A. et al., Agonistic activity of a CD40-specific single-chain Fv constructed from the variable regions of mAb G28-5. Crit. Rev. Immunol., 1997, Vol.17, Nos.5 to 6, pages 427 to 435	1-16,28,29 27
X Y	Zhou, Z. H. et al., An agonist anti-human CD40 monoclonal antibody that induces dendritic cell formation and maturation and inhibits proliferation of a myeloma cell line. Hybridoma, Vol.18, No.6, pages 471 to 478(1999)	1-16,28,29 27
X Y	de Boer, M. et al., Generation of monoclonal antibodies to human lymphocyte cell surface antigens using insect cells expressing recombinant proteins. J. Immnol. Methods, Vol.152, No.1, pages 15 to 23(1992)	17-26,28,30 27

×	Further documents are listed in the continuation of Box C.		See patent family annex.				
* "A" "E"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing	"T" "X"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be				
"L"	date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other	considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such					
"P"	means document published prior to the international filing date but later than the priority date claimed	"&"	combination being obvious to a person skilled in the art document member of the same patent family				
Date	of the actual completion of the international search	Date	of mailing of the international search report				
	08 July, 2002 (08.07.02)		23 July, 2002 (23.07.02)				
Nam	and mailing address of the ISA/	Auth	orized officer				
	Japanese Patent Office						
Facsi	mile No.	Telephone No.					

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/04292

T		- 1	
ategory*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No
T	Boon, L. et al., Preclinical assessment of anti-CD40 Mab 5D12 in cynomolgus monkeys. Toxicology, Vol.174, pages 53 to 65(2002)		17-26,28,30
A	Tomizuka, K. et al., Double trans-chromosomic mice: Maintenance of two individual human chromosome fragments containing Ig heavy and Ioc and expression of fully human antibodies. Proc. Natl. Acad. Sci. USA, Vol.97, No.2, pages 722 to 727(2000)		27
Y	WO 98/37757 Al (Kirin Beer), 03 September, 1998 (03.09.98), & EP 972445 Al		27
		*	
			•
į			
	·		
de la circle de la			
	·		
-			

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

Int. C17 C07K	属する分野の分類(国際特許分類(IPC)) 16/28、C12N15/13、C12N5/10、C12P21/08、A61K 5/00、A61P37/04、A61P37/06、A61P37/08、A61I		
B. 調査を行	テった分野	· · · · · · · · · · · · · · · · · · ·	<u> </u>
	けったの名 最小限資料(国際特許分類(IPC))		
	16/28、C12N15/13、C12N5/10、C12P21/08、A61K		
A61P3	5/00、A61P37/04、A61P37/06、A61P37/08、A61P	77/00	
最小限資料以外	トの資料で調査を行った分野に含まれるもの		
			-
	用した電子データベース (データベースの名称、	調査に使用した用語)	÷
	t/PIR/Geneseq、 0G)、BIOSIS(DIALOG)、JICSTファイル(JOIS)		
WI I (DINE	oo, Chiobio (himos) (Giobio) (100		
C. 関連する	ると認められる文献		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	請求の範囲の番号
X	Ledbetter, J. A. et al.,		1-16, 28, 29
	Agonistic activity of a CD40-spec		0.7
Y	constructed from the variable reg		27
	Crit. Rev. Immunol., 1997, Vol. 17	, No. 5-6, pp. 427-435	,
X	Zhou, Z. H. et al.,		1-16, 28, 29
	An agonist anti-human CD40 monocl	onal antibody that induces	
Y	dendritic cell formation and matu	ration and inhibits	27
	proliferation of a myeloma cell 1		
	Hybridoma, Vol. 18, No. 6, pp. 471-478	(1999)	
区欄の続き			紙を参照。
* 引用文献の	Dカテゴリー 車のある文献ではなく、一般的技術水準を示す	の日の後に公表された文献 「T」国際出願日又は優先日後に公表:	された文献であって
もの		出願と矛盾するものではなく、	- ***
	順日前の出願または特許であるが、国際出願日 公表されたもの	の理解のために引用するもの「X」特に関連のある文献であって、	出窓であるなでで出
	主張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考え	えられるもの
	くは他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、 上の文献との、当業者にとって	
	里由を付す) よる開示、使用、展示等に言及する文献	よって進歩性がないと考えられ	
	顧日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	
国際調査を完	了した日	国際調査報告の発送日のコークス	02
	08.07.02	国際調査報告の発送日 23.07	.04
	の名称及びあて先	特許庁審査官(権限のある職員) 田 村 明 照	4B 8412
	国特許庁 (ISA/JP) 郵便番号100-8915	田村明照	
1	歌千代田区館が関三丁目 4 番 3 号	電話番号 03-3581-1101	内線 3448

国際調査報告

く(結よ)	関連ネスト製めたれる立動	
(続き). 用文献の	関連すると認められる文献	関連する
テゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X	de Boer, M. et al., Generation of monoclonal antibodies to human lymphocyte cell	17-26, 28, 30
Y	surface antigens using insect cells expressing recombinant proteins.	27
	J. Immunol. Methods, Vol. 152, No. 1, pp. 15-23 (1992)	
T	Boon, L. et al., Preclinical assessment of anti-CD40 Mab 5D12 in cynomolgus	17-26, 28, 30
	monkeys. Toxicology, Vol. 174, pp. 53-65 (2002)	
Y	Tomizuka, K. et al.,	27
1	Double trans-chromosomic mice: Maintenance of two individual human chromosome fragments containing Ig heavy and loci and	4
	expression of fully human antibodies. Proc. Natl. Acad. Sci. USA, Vol. 97, No. 2, pp. 722-727 (2000)	
Y	WO 98/37757 A1 (Kirin Beer) 1998.09.03 & EP 972445 A1	27
		ě
		7

様式PCT/ISA/210 (第2ページの続き) (1998年7月)