

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»	

Отчет по лабораторной работе № 1 по дисциплине "Архитектура ЭВМ"

Тема	Разработка СнК на ПЛИС Altera
Стин	ент Хамзина Р. Р.
Групі	па <u>ИУ7-53Б</u>
Оцен	ка (баллы)
Преп	одаватель Дубровин Е. Н.

Содержание

Введение		3
1	Система на кристалле	4
2	Проектирование системы	6
3	Верификация системы	9
Заключение		11

Введение

Целью данной лабораторной работы является изучение основ построения микропроцессорных систем на ПЛИС.

Далее будут рассмотрены принципы построения систем на кристалле (СНК) на основе ПЛИС, проектирование и верификация системы с использованием отладочного комплекта Altera DE1Board.

1 Система на кристалле

Система на кристалле (SoC, CHK) — это функционально законченная электронная вычислительная система, состоящая из одного или нескольких микропроцессорных модулей, а также системных и периферийных контроллеров, выполненная на одном кристалле.

Рассмотрим функциональную схему разрабатываемой системы на кристалле, которая показана на рисунке 1.1.

Рисунок 1.1 – Функциональная схема разрабатываемой системы на кристалле

Система на кристалле состоит из следующих блоков:

- микропроцессорное ядро Nios II/е выполняет функции управления системой;
- внутренняя оперативная память СНК, используемая для хранения программы управления и данных;
- системная шина Avalon обеспечивает связность всех компонентов системы;
- блок синхронизации и сброса обеспечивает обработку входных сигналов сброса и синхронизации и распределение их в системе. Внутренний сигнал сброса синхронизирован и имеет необходимую для системы длительность;

- блок идентификации версии проекта обеспечивает хранение и выдачу уникального идентификатора версии, который используется программой управления при инициализации системы;
- контроллер UART обеспечивает прием и передачу информации по интерфейсу RS232.

2 Проектирование системы

Проектирование выполнялось на системе автоматизированного проектирования (САПР) Altera Quartus II.

На рисунке 2.1 представлен модуль системы на кристалле Altera Qsys, построенный на основе функциональной схемы 1.1.

Рисунок 2.1 – Готовый модуль в системе проектирования систем на кристалле Altera Qsys

САПР Quartus II автоматически выделяет каждому подключенному компоненту свое собственное адресное пространство, которое едино для данных и кода по принципу Фон Неймана. Корректное распределение необходимо во избежание возникновения ошибок. На рисунке 2.2 представлена таблица распределения адресов, которая была автоматически получена для данной системы.

Рисунок 2.2 – Таблица распределения адресов

Назначение портам проекта контактов микросхемы показано на рисунке 2.3.

Рисунок 2.3 – Назначение портам проекта контактов микросхемы

3 Верификация системы

Верификация системы проводилась с использованием программы терминала.

Код, представленный на рисунке 3.1, передает по UART значение SystemID (32-х разрядный код, состоящий из номера группы и варианта) в виде четырех байт символов в ASCII формате. Параметр SystemID был ранее задан значением "5313".

Рисунок 3.1 – Код программы микропроцессорного ядра NIOS2

Вывод SystemID на экран показан на рисунке 3.2.

Рисунок 3.2 – Верификация проекта с использованием программы терминала

Примечание: в связи с наличием одной отладочной платы, верификация проводилась на программе одногруппника, которую было разрешено прикладывать в отчете.

Заключение

Цель, поставленная перед началом работы, была достигнута: была изучена система на кристалле на основе ПЛИС, которая была спроектирована и протестирована с использованием отладочного комплекта Altera.