Московский физико-технический институт

Растровый электронный микроскоп

Лабораторная работа по курсу «Вакуумная электроника»

выполнила студентка 653 группы ФФКЭ Карпова Татьяна Кирилловна

1 Цель работы

- 1. Изучить физические принципы функционирования и основные методики измерений РЭМ
- 2. Получить изображения различных образцов в следующих режимах работы РЭМ:
 - режим сбора истинно вторичных электронов
 - режим сбора упруго-отражённых электронов

2 Физические основы растровой электронной микроскопии

Принцип растровой электронной микроскопии состоит в сканировании исследуемой поверхности тонким электронным лучом по типу телевизионной развёртки. Выбитые электронным лучом вторичные электроны регистрируются детектором электронов. Интенсивность полученного с детектора сигнала определяет яркость точки растра на итоговом изображении. Так как коэффициент вторичной эмиссии зависит от угла падения первичных электронов, на экране монитора возникает изображение, определяемое рельефом исследуемой поверхности.

2.1 Вторичная электронная эмиссия

Вторичная электронная эмиссия - испускание электронов из твёрдого тела при бомбардировке пучком первичных электронов. Это явление представляет собой сложное наложение нескольких взаимосвязанных процессов: упругое и неупругое рассеяние первичных электронов, возбуждение внутренних, истинно вторичных электронов, их движения к поверхности и выхода в вакуум. Сложный характер явления вторичной электронной эмиссии проявляется в энергетическом спектре вторичных электронов (рис. 1)

Рис. 1: Энергетический спектр вторичных электронов

- \bullet первая область (< 50 eV) медленные истинно вторичные электроны (secondary electrons).
- вторая область (50-2000 eV) оже-электроны (Auger electrons) среди неупруго- и упруго-отражённых электронов (backscattered electrons)
- При энергии, близкой к энергии первичных электронов E_0 , наблюдается узкий пик, соответствующий упруго отраженным электронам

Спектр истинно вторичных электронов имеет вид кривой с максимумом при некотором значении $E=E_m$. У металлов и полупроводников $E_m=1.5-3$ эВ, полуширина спектра $\triangle E=3-10$ эВ; у диэлектриков $E_m\approx 1$ эВ, полуширина спектра $\triangle E\approx 1.5-3$ эВ. Вторичная электронная эмиссия характеризуется коэффициентом вторичной эмиссии δ , зависящим от элементного состава вещества и от угла падения пучка, то есть от рельефа поверхности. В частности, области на поверхности образца, на которые сканирующий пучок будет попадать под острыми углами, будут на изображении в РЭМ более светлыми.

В РЭМ также анализируются **отражённые электроны**. Коэффициент отражения - сложная функция E_0 и атомного номера Z вещества. Если для малых энергий $E_0=0.6-3$ эВ для всех элементов максимум функции распределения соответствует упругоотражённым электронам, то для энергий $E_0=10-30$

кэВ максимум с ростом Z растёт по величине и смещается в сторону E_0 . При нормальном падении первичного пучка для всех элементов с ростом угла отражения уменьшается число отраженных электронов и сама величина максимума распределения.

2.2 Контраст в растровом электронном микроскопе

Информативными являются как отражённые, так и вторичные электроны.

Если образец однороден по составу и имеет выраженный рельеф, то изображение в **отражённых электронах** будет иметь такой же вид, как если бы мы смотрели на поверхность со стороны падения первичного пучка. Изображение также лишено полутонов и имеет чётко выраженные тёмные и светлые области. Для анализа образца, неоднородного по рельефу и составу, может использоваться парный детектор.

В отличие от отражённых электронов, изображение в истинно вторичных электронах содержит полутона и имеет гораздо больше деталей, следовательно является более привычным для человеческого глаза. Большая глубина фокуса в РЭМ обусловлена тем, что между объектом и детектором вторичных электронов нет линзы с осесимметричным полем (в оптическом микроскопе линза между объектом и глазом присутствует).

2.3 Рентгеновский микроанализ

Рентгеновский микроанализ в РЭМ осуществляется на основе следующих физических закономерностей и явления:

- Закон Мозли зависимость энергии характеристического излучения от квадрата атомного числа элемента
- Явление электронного удара электрон пучка с энергией несколько кэВ выбивает из атома Кэлектрон (или переводит его на один из высоких свободных уровней), образуя вакансию. На образовавшуюся незанятую оболочку переходит один из L- или М-электронов, испуская рентгеновский фотон.

3 Устройство и работа электронного растрового электронного микроскопа

Рис. 2: Общая схема растрового электронного микроскопа

Структурная схема растрового электронного микроскопа представлена на рис. 2. Ускорение и фокусировка пучка происходит в колонне, вверху которой находится электронная пушка, испускающая электроны. Далее следует система электронной оптики, которая формирует узки зонд, а также позволяет

отклонять его в сторону, направляя в определенные точки образца. Во внутренних областях колонны поддерживается вакуум, чтобы избежать рассеяния электронов и окисления вольфрамовой нити, являющейся источником электронов. Образец, крепящийся в специальном держателе, окружен детектирующей аппаратурой - детектором отражённых электронов, детектором вторичных электронов, рентгеновским спектрометром.

- эмиссия электронов в приборе осуществляется термоэлектронным катодом из вольфрамовой проволоки
- далее электроны разгоняются до энергий до 30 кэВ с помощью системы из анода и катода
- пройдя через отверстие в анодной пластине, электроны попадают в систему электромагнитных линз, с помощью которых формируется узкий зонд. Система представляет собой цилиндрически симметричный электромагнит с очень острыми кольцевыми наконечниками полюсов, создающими сильное неоднородное магнитное поле, фокусирующее электроны
- С помощью системы *отклоняющих электромагнитных катушек* происходит сканирование пучка по поверхности образца
- *детектор вторичных электронов* представляет собой сцинцилляторный счётчик. Вторичные электроны собираются у детектора с помощью клетки Фарадея. Падающие на напылённый фосфором слой электроны вызывают испускание ультрафиолетовых фотонов, которые по световоду попадают в фотоумножитель
- для детектирования отражсённых электронов используется твердотельный детектор
- для проведения рентгеновского микроанализа образца используются волновые или дисперсионные детекторы рентгеновского излучения

4 Выполнение работы

1. Получим изображение образца медь-хром в различных режимах работы микроскопа: в режиме сбора истинно вторичных электронов (SE) и в режиме сбора упругоотражённых электронов (BSE) (рис. 3 - 5)

Рис. 3: Изображение образца медь-хром (режим SE)

Рис. 4: Изображение образца медь-хром (элементный анализ, режим BSE)

Рис. 5: Изображение образца медь-хром (топографический анализ, режим BSE)

Проанализируем изображения. На первом изображении в истинно вторичных электронах представлен рельеф поверхности, присутствуют полутона. В отличие от него, на втором и третьем изображениях неровности отображены чёткими тёмными и светлыми пятнами. На первом и втором изображениях видны неоднородности образца по элементному составу. Заряд меди больше чем заряд хрома, и коэффициент отражения для неё больше при одинаковой энергии первичных электронов. Поэтому участки меди выглядят на изображении более светлыми, чем участки хрома. Третье изображение чисто топографический анализ поверхности в отражённых электронах.

2. Получим изображение микросхемы операционного усилителя в режиме сбора истинно вторичных электронов и в режиме сбора упругоотражённых электронов в разных масштабах и при разном времени выдержки (рис. 6 - 11).

Рис. 6: Изображение микросхемы (режим SE, увеличение 1000х)

Рис. 7: Изображение микросхемы (режим SE, увеличение 150x)

Рис. 8: Изображение микросхемы (топографический анализ, режим BSE, увеличение 1000х)

Рис. 9: Изображение микросхемы (топографический анализ, режим BSE, увеличение 150x)

На этих изображениях также видны особенности различных режимов сканирования: более объёмное изображение в режиме SE, более контрастное (без полутонов) - в режиме BSE. Различие изображений, полученных в одном и том же режиме, связано с различным временем выдержки (время сбора электронов детектором при снятии сигнала с одного растра). На изображениях элементного анализа можно увидеть вкрапления другого вещества - лужёные провода, капли припоя (для припоя используются тяжелые металлы, такие как олово, свинец, кадмий - благодаря большому заряду атома на изображении они выглядят светлее.)

3. Создадим в системе низкий вакуум. Получим изображение крыла бабочки в режиме сбора истинно вторичных электронов (рис. 12, 13)

В режиме сбора истинно вторичных электронов видим объёмное изображение с полутонами.

Рис. 10: Изображение микросхемы (элементный анализ, режим BSE, увеличение 1000х)

Рис. 11: Изображение микросхемы (элементный анализ, режим BSE, увеличение 150х)

Рис. 12: Изображение крыла бабочки, режим SE, увеличение 42500

Рис. 13: Изображение крыла бабочки, режим SE, увеличение 5000

4. Получим изображение внутренней камеры микроскопа в режимах SE и BSE (рис. 14 - 16)

Рис. 14: Изображение внутренней камеры, режим ${\rm BSE}$

Рис. 15: Изображение внутренней камеры, режим ${\rm BSE}$

Рис. 16: Изображение внутренней камеры, режим SE

Получение изображения внутренней камеры микроскопа возможно благодаря тому, что образец из полистирола при бомбардировке электронами накапливает большой заряд и превращается в электронное зеркало: электроны после отражения от образца и дальнейшего переотражения от стенок камеры попадают в детектор и образуют изображение камеры микроскопа. На рисунке 12 чётко прослеживается форма детектора отражённых электронов - кольцо, разделённое на две половины, каждая из которых функционирует как отдельный детектор.

5 Вывод

В ходе работы были изучены физические принципы работы растрового электронного микроскопа, а также его устройство. Были исследованы образцы сплава медь-хром, микросхемы операционного усилителя, а также крыло бабочки в режиме сбора истинно вторичных электронов, а также в режимах элементного и топографического анализа сбора упругоотражённых электронов.