Permit Numbers 118270 and PSDTX1398M1

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)		Air Contaminant Name (3)	Emissio	Emission Rates		
			lbs/hour	TPY (4)		
H-1A	Fractionator Heater H-	VOC	0.70	2.77		
	1A	NO _x	1.29	3.08		
		NOx (MSS)	15.66	(see cap)		
		СО	4.77	18.98		
		CO (MSS)	28.60	(see cap)		
		PM	0.58	2.31		
		PM ₁₀	0.58	2.31		
		PM _{2.5}	0.58	2.31		
		SO ₂	3.36	4.95		
		NH ₃	0.58	2.31		
H-1B	Hot Oil Heater H-1B	VOC	0.57	2.27		
		NO _x	1.06	2.53		
		NOx (MSS)	12.86	(see cap)		
		СО	3.91	15.58		
		CO (MSS)	39.13	(see cap)		
		PM	0.48	1.90		
		PM ₁₀	0.48	1.90		
		PM _{2.5}	0.48	1.90		
		SO ₂	2.76	4.07		
		NH ₃	0.48	1.89		

	Fractionator Heater H-	VOC	0.70	2.77
		NO _x	1.29	3.08
		NOx (MSS)	15.66	(see cap)
		СО	4.77	18.98
		CO (MSS)	28.60	(see cap)
		PM	0.58	2.31
		PM ₁₀	0.58	2.31
		PM _{2.5}	0.58	2.31
		SO ₂	3.36	4.95
		NH ₃	0.58	2.31
H-2B	Hot Oil Heater H-2B	VOC	0.57	2.27
		NO _x	1.06	2.53
		NOx (MSS)	12.86	(see cap)
		СО	3.91	15.58
		CO (MSS)	39.13	(see cap)
		PM	0.48	1.90
		PM ₁₀	0.48	1.90
		PM _{2.5}	0.48	1.90
		SO ₂	2.76	4.07
		NH₃	0.48	1.89
H-1A, H-1B, H-2A, H-2B		NO _x		2.74
	Cap	СО		6.50

H-3	Tank Heater 3	VOC	0.09	_
		NO _x	1.57	_
		СО	1.32	_
		PM	0.12	_
		PM ₁₀	0.12	_
		PM _{2.5}	0.12	_
		SO ₂	0.24	_
H-4	Tank Heater 4	VOC	0.09	_
		NO _x	0.58	_
		СО	0.59	_
		РМ	0.12	_
		PM ₁₀	0.12	_
		PM _{2.5}	0.12	_
		SO ₂	0.24	_
H-3_H-4_CAP	Tank Heaters 3 & 4	VOC	_	0.38
	Annual Emission Cap	NO _x	_	4.71
		СО	_	4.18
		РМ	_	0.53
		PM ₁₀	_	0.53
		PM _{2.5}	_	0.53
		SO ₂	_	1.03
FL-1	Flare	VOC	19.53	11.59
		NO _x	4.42	7.62
		СО	9.89	15.20
		SO ₂	1.00	1.41
FUG-1	Fugitives (5)	VOC	15.63	68.44
		H₂S	0.01	0.02
		NH ₃	0.04	0.18
LOADFUG	Marine Loading Fugitives	VOC	62.48	49.76

		H ₂ S	0.02	0.02
VCU1	Marine Vapor Combustor 1	VOC	15.83	_
	Combustor 1	NO _x	11.25	_
		CO	15.00	_
		PM	0.56	_
		PM ₁₀	0.56	_
		PM _{2.5}	0.56	_
		SO ₂	2.59	_
		H ₂ S	0.01	_
VCU2	Marine Vapor Combustor 2	VOC	15.83	_
	Combustor 2	NO _x	11.25	_
		CO	15.00	_
		PM	0.56	_
		PM ₁₀	0.56	_
		PM _{2.5}	0.56	_
		SO ₂	2.59	_
		H ₂ S	0.01	_
VCU1/VCU2	Marine Vapor	VOC	_	10.59
	Combustors	NO _x	_	12.35
		CO	_	16.46
		PM	_	0.61
		PM ₁₀	_	0.61
		PM _{2.5}	_	0.61
		SO ₂	_	2.01
		H₂S	_	0.01
PTRUCK	Pressurized Truck Loading	VOC	4.61	5.89

T120	Tank No. 120	VOC	2.48	5.65
		H ₂ S	<0.01	<0.01
T121	Tank No. 121	VOC	2.48	5.65
		H ₂ S	<0.01	<0.01
T122	Tank No. 122	VOC	2.48	5.65
		H ₂ S	<0.01	<0.01
T123	Tank No. 123	VOC	2.62	5.65
		H₂S	<0.01	<0.01
T124	Tank No. 124	VOC	2.48	5.65
		H ₂ S	<0.01	<0.01
T125	Tank No. 125	VOC	2.48	5.65
		H ₂ S	<0.01	<0.01
T126	Tank No. 126	VOC	43.09	11.01
		H ₂ S	0.02	0.01
T127	Tank No. 127	VOC	43.09	11.01
		H₂S	0.02	0.01
T128	Tank No. 128	VOC	43.09	10.86
		H₂S	0.02	0.01
T129	Tank No. 129	VOC	43.09	10.86
		H₂S	0.02	<0.01
T135	Tank No. 135	VOC	2.25	5.65
		H₂S	<0.01	<0.01
T136	Tank No. 136	VOC	2.25	5.65
		H ₂ S	<0.01	<0.01
T137	Tank No. 137	VOC	2.37	5.65
		H ₂ S	<0.01	<0.01
T138	Tank No. 138	VOC	2.39	5.65
		H ₂ S	<0.01	<0.01

T139	Tank No. 139	VOC	2.39	5.65
		H ₂ S	<0.01	<0.01
T154	Tank No. 154	VOC	2.56	5.65
		H₂S	<0.01	<0.01
T155	Tank No. 155	VOC	2.56	5.65
		H ₂ S	<0.01	<0.01
T156	Tank No. 156	VOC	2.56	5.65
		H ₂ S	<0.01	<0.01
T157	Tank No. 157	VOC	2.56	5.65
		H ₂ S	<0.01	<0.01
T158	Tank No. 158	VOC	2.56	5.65
		H ₂ S	<0.01	<0.01
T159	Tank No. 159	VOC	2.56	5.65
		H₂S	<0.01	<0.01
T160	Tank No. 160	VOC	2.56	5.65
		H ₂ S	<0.01	<0.01
T161	Tank No. 161	VOC	2.56	5.65
		H ₂ S	<0.01	<0.01
TANKCAP	Tank Cap (6)	VOC	_	80.73
		H ₂ S	_	0.03
FWPTK	Fire Water Pump Fuel	VOC	0.03	0.01
	Tank	H ₂ S	<0.01	<0.01
EMGENTK	Emergency Generator Fuel Tank	VOC	0.03	0.01
	Fuel Falik	H ₂ S	<0.01	<0.01
SAMPTK	Sample Tank	VOC	1.12	0.01
		H₂S	0.01	0.01

FWP1	Fire Water Pump	VOC	0.14	<0.01
		NO _x	3.54	0.18
		СО	0.68	0.03
		PM	0.12	<0.01
		PM ₁₀	0.12	<0.01
		PM _{2.5}	0.12	<0.01
		SO ₂	<0.01	<0.01
EMGEN1	Emergency Generator	VOC	0.15	<0.01
		NO _x	6.95	0.35
		СО	0.74	0.04
		PM	0.05	<0.01
		PM ₁₀	0.05	<0.01
		PM _{2.5}	0.05	<0.01
		SO₂	<0.01	<0.01

EMGEN2	Emergency Generator 2	VOC	0.05	<0.01
		NO _x	1.10	0.06
		CO	0.42	0.02
		PM	0.06	<0.01
		PM ₁₀	0.06	<0.01
		PM _{2.5}	0.06	<0.01
		SO ₂	<0.01	<0.01
MSSVCU	MSS Vapor	VOC	0.09	0.40
	Combustor —Wastewater	NO _x	0.03	0.12
	Treatment	СО	0.05	0.22
		PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
		SO ₂	<0.01	0.03
		H ₂ S	<0.01	<0.01
PTKMSS	Pressurized Trucks MSS Activities	VOC	266.63	3.86
VTRUCK	Vacuum Trucks	VOC	3.58	0.10
		H ₂ S	<0.01	<0.01
FRTANK	Frac Tanks	VOC	67.80	6.18
		H ₂ S	0.02	<0.01
SAMPLE	Product Sampling	VOC	1.48	3.23
		H ₂ S	<0.01	<0.01
FL-1	Pressure Tank MSS	VOC	128.03	0.38
		NO _x	35.34	0.11
		СО	71.06	0.21
VPIPEMSS	Vessels & Piping MSS (Uncontrolled)	VOC	52.33	4.67
	(Shooma shou)	H ₂ S	0.02	<0.01
FL-1	Vessels & Piping MSS (Controlled)	VOC	88.62	2.66

		H ₂ S	<0.01	<0.01
		NO_x	12.23	0.37
		СО	24.42	0.73
		SO ₂	0.04	<0.01
TKLAND-ATM	Uncontrolled Floating Roof Tank Landing	VOC	84.75	1.74
	Cap (7)	H₂S	3.22	0.17
TKLAND-CAP	Overall Floating Roof	VOC	84.75	2.70
	Tank Landing Cap	NO _x	15.15	0.43
		СО	55.50	1.33
		H ₂ S	3.22	0.17
		PM	0.75	0.02
		PM ₁₀	0.75	0.02
		PM _{2.5}	0.75	0.02
		SO ₂	2.27	0.22
MSSVCU	Controlled Floating Roof Tank Landing Cap (6)	VOC	50.49	1.42
		NO _x	15.15	0.43
		СО	55.50	1.33
		H ₂ S	0.01	<0.01
		PM	0.75	0.02
		PM ₁₀	0.75	0.02
		PM _{2.5}	0.75	0.02
		SO ₂	2.27	0.22

PORTVCU	Controlled Floating Roof Tank Landing	VOC	50.49	1.42
	Cap (6)	NO _x	15.15	0.43
		СО	55.50	1.33
		H₂S	0.01	<0.01
		РМ	0.75	0.02
		PM ₁₀	0.75	0.02
		PM _{2.5}	0.75	0.02
		SO ₂	2.27	0.22
MSSVCU	MSS Vapor Combustion Unit	NO _x	2.84	2.76
	Pilot/Assist Gas	СО	5.21	5.07
		VOC	0.10	0.10
		H ₂ S	<0.01	<0.01
		PM	0.14	0.14
		PM ₁₀	0.14	0.14
		PM _{2.5}	0.14	0.14
		SO ₂	0.28	0.27
PORTVCU	MSS Vapor Combustion Unit	NO _x	2.84	2.76
	Pilot/Assist Gas	СО	5.21	5.07
		VOC	0.10	0.10
		H₂S	<0.01	<0.01
		PM	0.14	0.14
		PM ₁₀	0.14	0.14
		PM _{2.5}	0.14	0.14
		SO ₂	0.28	0.27

MSSVCU/PORTVCU	MSSVCU & Portable MSS Vapor	NO _x	2.84	2.76
	Combustion Unit	СО	5.21	5.07
	Pilot/Assist Gas Cap	VOC	0.10	0.10
		H ₂ S	<0.01	<0.01
		PM	0.14	0.14
		PM ₁₀	0.14	0.14
		PM _{2.5}	0.14	0.14
		SO ₂	0.28	0.27

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

 H_2S - hydrogen sulfide

- total oxides of nitrogen NO_x

- sulfur dioxide SO₂

РМ - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

 PM_{10} - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

 particulate matter equal to or less than 2.5 microns in diameter
 carbon monoxide $PM_{2.5}$

CO

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Emission limits for EPN TANKCAP apply to total rolling 12-months emissions from all storage tanks identified in Special Condition 12.
- (7) Emission caps for tank floating roof landing activities apply to all floating roof tanks authorized by this permit (Identified in Special Condition 12).

Date:	October 31, 2019	
Duic.	October 01, 2010	

Permit Numbers GHGPSDTX62

This table lists the maximum allowable emission rates of greenhouse gas (GHG) emissions, as defined in Title 30 Texas Administrative Code § 101.1, for all sources of GHG air contaminants on the applicant's property that are authorized by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities authorized by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant	Emission Rates
		Name (3)	TPY (4)
H-1A	H-1A	CO ₂	60,049
		CH ₄	1.13
		N ₂ O	0.11
		CO ₂ e	60,111
H-2A	H-2A	CO ₂	49,289
		CH ₄	0.93
		N ₂ O	0.09
		CO₂e	49,340
H-1B	H-1B	CO ₂	60,049
		CH ₄	1.13
		N ₂ O	0.11
		CO₂e	60,111
H-2B	H-2B	CO ₂	49,289
		CH₄	0.93
		N ₂ O	0.09
		CO₂e	49,340
H-4	H-4	CO ₂	4,103
		CH ₄	0.08
		N ₂ O	0.01
		CO₂e	4,103
LOADFUG	LOADFUG	CO ₂	
		CH ₄	51.75
		N ₂ O	
		CO₂e	1,294

FL-1	FL-1	CO ₂	7,665
		CH ₄	35.03
		N ₂ O	0.01
		CO ₂ e	8,545
FL-1 (MSS)	FL-1 (MSS)	CO ₂	498.80
		CH ₄	0.03
		N ₂ O	0.01
		CO ₂ e	501
FWP1	FWP1	CO ₂	32.33
		CH ₄	0.03
		N ₂ O	0.04
		CO ₂ e	32
EMGEN1	EMGEN1	CO ₂	37.06
		CH ₄	0.04
		N ₂ O	0.09
		CO ₂ e	37
EMGEN2	EMGEN2	CO ₂	10.76
		CH ₄	0.01
		N ₂ O	0.03
		CO ₂ e	11
FUG-1	FUG-1 (5)	CO ₂	
		CH ₄	30.08
		N ₂ O	
		CO₂e	632
MSSVCU/PORTVCU	MSSVCU/PORTVCU	CO ₂	2,734
		CH ₄	0.06
		N ₂ O	0.01
		CO₂e	2,742

Storage Tanks CAP	CO ₂	
	CH ₄	16.20
	N ₂ O	
	CO ₂ e	405

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) CO_2 carbon dioxide N_2O nitrous oxide

 CH_4 - methane

 CO_2e - carbon dioxide equivalents based on the following Global Warming Potentials (GWP) found

in Table A-1 of Subpart A 40 CFR Part 98 (78 FR 71904) for each pollutant: CO2 (1), N2O

(298), CH₄(25)

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

Date:	October 31,	2019
Daic.	OCTOBEL 31,	2013