Processus de Poisson

Leçons: 263, 264

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé.

Définition 1

Un processus de comptage est une suite de variables aléatoires réelles $(N(t))_{t\geq 0}$ telles que

- 1 N(0) = 0.
- 2 $\forall t \geq 0, N(t) \in \mathbb{N}^*$.
- 3 $t \mapsto N(t)$ est croissante.

Du point de vue de la modélisation, $\forall 0 \le a \le b$, N(b) - N(a) représente le nombre de « tops » se produisant dans l'intervalle de temps [a, b[.

Définition 2

Un processus de Poisson de densité $\lambda > 0$ est un processus de comptage $(N(t))_{t \geqslant 0}$ tel que :

- **1** Le processus est à accroissement indépendants : $\forall t_0 \leq t_1 < \dots < t_k$, les variables aléatoires $N_{t_k} N_{t_{k-1}}, \dots, N_{t_1} N_{t_0}$ sont indépendantes.
- **2** Pour tout $(s,t) \in \mathbb{R}^2_+$, N(s+t)-N(s) suit la loi de Poisson de paramètre λt .

Les processus de Poisson sont souvent utilisés pour modéliser des files d'attente, chaque top représentant l'appel d'un client au guichet.

Proposition 3

Un processus de Poisson est à accroissements stationnaires : soit N_1, \ldots, N_k le nombre de tops se produisant dans les intervalles I_1, \ldots, I_k ; alors si $\tau \ge 0$, et N_1', \ldots, N_k' est le nombre de tops se produisant dans les intervalles translatés de τ $I_1' + \tau, \ldots, I_k'$, (N_1', \ldots, N_k') et (N_1, \ldots, N_k) ont la même loi.

Proposition 4

Un processus de Poisson est localement continu : $\lim_{h\to 0^+} \mathbb{P}(N(t+h)-N(t) \ge 1) = 0.$

Le but du développement est d'étudier le temps d'attente entre deux tops :

Théorème 5

Soit $S_n = \inf\{t \ge 0, N(t) \ge n\}$ et $T_k = S_k - S_{k-1}$ pour $k \ge 1$. Alors

1 $(T_n)_n$ est une suite de variables aléatoires i.i.d. de loi $\mathscr{E}(\lambda)$.

2 $S_n = T_1 + \cdots + T_n$ suit la loi $\Gamma(n, \lambda)$ de densité

$$f_{S_n}(s) = \begin{cases} \frac{\lambda}{(n-1)!} e^{-\lambda s} (\lambda s)^{n-1} & \text{si } s \ge 0\\ 0 & \text{sinon} \end{cases}.$$

Démonstration. Soit $n \in \mathbb{N}^*$.

Étape 1 : Changement de variable : supposons que le vecteur aléatoire (S_1, \ldots, S_n) soit à densité, de densité φ . Soit $f: \mathbb{R}^n \to \mathbb{R}$ continue bornée. Alors comme $S_n \ge \ldots, \ge S_1$, par un changement de variable $s_k = t_1 + \cdots + t_k$ de jacobien 1 (la matrice jacobienne est triangulaire), on a

$$\begin{split} \mathbb{E}[f(T_1,\ldots,T_n)] &= \mathbb{E}[\mathbb{1}_{S_n \geqslant \cdots \geqslant S_1} f(S_1,\ldots,S_n - S_{n-1})] \\ &= \int_{0 \leqslant s_1 \leqslant \cdots \leqslant s_n} f(s_1,\ldots,s_n - s_{n-1}) \varphi(s_1,\ldots,s_n) \mathrm{d}s_1 \ldots \mathrm{d}s_n \\ &= \int_{t_1,\ldots,t_n \geqslant 0} f(t_1,\ldots,t_n) \varphi(t_1,\ldots,t_1 + \cdots + t_n) \mathrm{d}t_1 \ldots \mathrm{d}t_n. \end{split}$$

Donc $\psi:(t_1,\ldots,t_n)\mapsto \varphi(t_1,t_1+t_2,\ldots,t_1+\cdots+t_n)$ est la densité de (T_1,\ldots,T_n) .

Étape 2 : Calcul de la densité de $(S_1, ..., S_n)$:

Soit A_n l'évènement : $S_1 \in [s_1, s_1 + h_1[, \dots, S_n \in [s_n, s_n + h_n[$ où $0 < s_1 < s_1 + h_1 < s_2 < \dots < s_n + h_n$. Alors A_n est la réunion des évènements :

- zéro top dans $[0, s_1[$ et exactement un top dans $[s_1, s_1 + h_1[$
- zéro top dans $[s_1 + h_1, s_2[$ et exactement un top dans $[s_2, s_2 + h_2[$
- •
- zéro top dans $[s_{n-1} + h_{n-1}, s_n[$ et *au moins* un top dans $[s_n, s_n + h_n[$.

Or, le processus étant à accroissements indépendants, les variables aléatoires « nombre de tops » dans des intervalles disjoints sont indépendantes de sorte que

$$\mathbb{P}(A_n) = \mathbb{P}(N(s_1) = 0) \times \mathbb{P}(N(s_1 + h_1) - N(s_1) = 1) \times \mathbb{P}(N(s_2) - N(s_1 + h_1) = 0) \times \mathbb{P}(N(s_2 + h_2) - N(s_2) = 1) \times \dots \times \mathbb{P}(N(s_n) - N(s_{n-1} + h_{n-1}) = 0) \times \mathbb{P}(N(s_n + h_n) - N(s_n) \ge 1)$$

donc

$$\mathbb{P}(A_n) = e^{-\lambda s_1} e^{-\lambda h_1} (\lambda h_1) e^{-\lambda (s_2 - s_1 - h_1)} e^{-\lambda h_2} (\lambda h_2) \dots e^{-\lambda (s_n - s_{n-1} - h_{n-1})} (1 - e^{-\lambda h_n})$$

$$= e^{-\lambda s_n} \lambda^{n-1} h_1 \dots h_{n-1} (1 - e^{-\lambda h_n}).$$

Pour conclure, il suffit de remarquer que

$$\mathbb{P}(A_n) = \int_{\xi_1 = s_1}^{s_1 + h_1} \dots \int_{\xi_n = s_n}^{s_n + h_n} \mathbb{1}_{0 \leqslant \xi_1 \leqslant \dots \leqslant \xi_n} \lambda^n e^{-\lambda \xi_n} d\xi_1 \dots d\xi_n,$$

ceci valant pour tous les pavés $[s_1, s_1 + h_1[\times \cdots \times [s_n + h_n[$, qui constituent une classe stable par intersection engendrant $\mathcal{B}(\mathbb{R}^n)$ donc (S_1, \ldots, S_n) a pour densité $\mathbb{1}_{\xi_1 \leqslant \cdots \leqslant x_n} \lambda^n e^{-\lambda \xi_n}$.

Conclusion : selon la première étape, la densité de $(T_1, ..., T_n)$ est

$$(t_1,\ldots,t_n)\mapsto \lambda^n e^{-\lambda t_1}\ldots e^{-\lambda t_n}\mathbb{1}_{\mathbb{R}^n_+}(t_1,\ldots,t_n).$$

En calculant les densités marginales, on constate immédiatement que $f_{(T_1,\ldots,T_n)}(t_1,\ldots,t_n)=f_{T_1}(t_1)\ldots f_{T_n}(t_n)$; en d'autres termes, T_1,\ldots,T_n sont indépendantes. La loi de S_n est donc $\Gamma(n,\lambda)$ en vertu du lemme ci-dessous.

Lemme 6

Si T_1, \ldots, T_n sont n variables aléatoires i.i.d de loi $\mathcal{E}(\lambda)$, alors $S = T_1 + \cdots + T_n$ suit la loi $\Gamma(n, \lambda)$

Démonstration. Calculons la transformée de Laplace d'une variable aléatoire V suivant la loi $\Gamma(n, \lambda)$, en rappelant que la transformée de Laplace caractérise la loi :

$$L_V(u) = \mathbb{E}[e^{uS}] = \frac{\lambda}{\Gamma(n)} \int_0^\infty e^{ux} e^{-\lambda x} (\lambda x)^{n-1} dx = \frac{\lambda}{\Gamma(n)} \int_0^\infty e^{-x(\lambda - u)} (\lambda x)^{n-1} dx$$

bien définie pour $\lambda - u > 0$ donc en posant $y = x(\lambda - u)$, on a

$$L_{V}(u) = \frac{\lambda}{\Gamma(n)} \int_{0}^{\infty} e^{-y} \left(\frac{\lambda y}{\lambda - u}\right)^{n-1} \frac{\mathrm{d}y}{\lambda - u} = \frac{1}{\Gamma(n)} \left(\frac{\lambda}{\lambda - u}\right)^{n} \int_{0}^{\infty} e^{-y} y^{n-1} \mathrm{d}y = \left(\frac{\lambda}{\lambda - u}\right)^{n}.$$

Or, par le même changement de variable, si $T \sim \mathcal{E}(\lambda)$,

$$L_T(u) = \int_0^{+\infty} e^{ux} \lambda e^{-\lambda x} dx = \frac{\lambda}{\lambda - u} \int_0^{\infty} e^{-y} dy = \frac{\lambda}{\lambda - u}$$

donc comme la transformée de Laplace d'une somme de variable aléatoires indépendantes est le produit de leurs transformées de Laplace, on a le résultat. \Box

Remarque. • On peut aussi parler du paradoxe de l'inspection, ou paradoxe de l'autobus, c'est dans le Foata–Fuchs juste après.

• Les deux premières propositions sont indépendantes du développement proprement dit.

Références:

- Dominique FOATA et Aimé FUCHS (2004). *Processus stochastiques : processus de Poisson, chaînes de Markov et martingales*. Dunod, pp. 28-31
- Dominique FOATA et Aimé FUCHS (2003). *Calcul des probabilités*. Dunod, p. 148 (pour le lemme)