Vortragender: Clemens Weber

Vorlesung 4

Vom 11.12.2023

Vorbereitung zur Aufnahme auf das Studienkolleg

Themen-Gebiete Gesamt

- Vereinfachung von Bruchtermen
- o Polynomdivision
- Wurzelgleichungen Ungleichungen
- o Exponentialgleichungen & Logarithmusgleichungen
- o Trigonometrischen Funktionen
- Erkennen von Funktionsgraphen
- Geometrie; vor allem Satzgruppe des Pythagoras, Strahlensätze, Kreisberechnungen, Flächen- und Volumenberechnungen

Organisation

- Untericht am Montag &
 Mittwoch von 16.00 bis
 17.30 Uhr
- Alle Materialien werden
 Online zur Verfügung
 gestellt
- o GitHub
- O Übungsaufgaben jede Woche Mittwoch
- Lösung Vorstellen und Besprechen am Montag

https://github.com/ClemWeber/ASL-MatheKurs

Vorlesung 4

Umfang:

- OAufgaben Fragen Runde
- •Zahlenmengen
- ODefinitionsbereiche
- Prozentrechnung
- O Dreisatz

Feedback Runde

Zu viel/wenig?

Zu leicht/schwer?

Welche Aufgabe konnte ich nicht lösen?

Was soll nochmal erklärt werden?

Feedback Runde

Wollt ihr Präsenz-Veranstaltungen?

In der ASL-Schule, ab Januar, einmal die Woche?

Präsenz im
Januar 1x die
Woche
Mittwochs

Januar 2024

Kalenderpedia Informationen zum Kalender

KW	Montag	Dienstag	Mittwoch	Donnerstag	Freitag	Samstag	Sonntag
1	1	2	3	4	5	6	7
2	8	9	10	11	12	13	14
3	15	16	17	18	19	20	21
4	22	23	24	25	26	27	28
5	29	30	31	1	2	3	4

© Kalenderpedia® www.kalenderpedia.de

1.: Neujahrstag

Angaben ohne Gewäh

Zahlen Mengen

- \circ Natürlichen Zahlen \mathbb{N}_0 (Finger abzählen)
- \circ Ganzen Zahlen \mathbb{Z}_0 (Negative Zahlen)
- \circ Gebrochen Rationalen Zahlen \mathbb{Q}_0 (Brüche aus ganzen Zahlen)
- o Irrationalen Zahlen I (endlosen Zahlen)
- \circ Die Reellen Zahlen \mathbb{R}_0 (Alle zusammen)

- o Natürlichen Zahlen N_0
- \circ Ganzen Zahlen \mathbb{Z}_0
- o Gebrochen Rationalen Zahlen \mathbb{Q}_0
- o Irrationalen Zahlen I (endlosen Zahlen)
- o Die Reellen Zahlen \mathbb{R}_0

Teil-Menge

A ist Teilmenge von B wenn gilt für alle x: Aus x ist Element von A folgt x Element von B

Zahlen-Mengen am Zahlen-Strahl

```
o Natürlichen Zahlen \mathbb{N}_0 = \{0, 1, 2, 3, 4, ..., 8392, ...\}
oSind ein Teil von den: \mathbb{N} \sqsubset \mathbb{Z}
o Ganzen Zahlen \mathbb{Z}_0 = \{..., -2, -1, 0, 1, 2, ..., 8392, ...\}
```


Gebrochen Rationalen Zahlen

- Natürlichen Zahlen $\mathbb{N}_0 = \{0, 1, 2, 3, 4, ..., 8392, ...\}$
- o Ganzen Zahlen $\mathbb{Z}_0 = \{..., -2, -1, 0, 1, 2, ..., 8392, ...\}$
- o Gebrochen Rationalen Zahlen $\mathbb{Q}_0 = \{..., -1, ..., -\frac{1}{2}, ..., 0, ..., \frac{1}{4}, ..., 8392, ...\}$

Zahlen Mengen

- o Natürlichen Zahlen $\mathbb{N}_0 = \{0, 1, 2, 3, 4, ..., 8392, ...\}$
- o Ganzen Zahlen $\mathbb{Z}_0 = \{..., -2, -1, 0, 1, 2, ..., 8392, ...\}$
- o Gebrochen Rationalen Zahlen $\mathbb{Q}_0 = \{..., -1, ..., -\frac{1}{2}, ..., 0, ..., \frac{1}{4}, ..., 8392, ...\}$
- o Irrationalen Zahlen $\mathbb{I} = \{..., \sqrt{2}, ..., \pi, ..., e\}$
- o Die Reellen Zahlen $\mathbb{R}_0 = \{..., -\pi, ..., -\frac{1}{2}, ..., 0, ..., 1, ..., e, ..., \pi, ...\}$

Zahlenmengen

Ausblick: Komplexe Zahlen

- o Komplexe Zahlen C
 - $\mathsf{OZ}\;\epsilon\;\mathbb{C}$
 - \circ Re(z) + Im(z)
 - ORealteil Re als Reelle Zahl
 - olmaginär-teil: $i * x wobei x \in \mathbb{R}$
- o Definition $i^2 = -1$
- o Erlaubt Wurzeln aus Negativen Zahlen:

$$\sqrt{-4} \in \mathbb{C}$$

Ausblick: Komplexe Zahlen

- o Komplexe Zahlen C
 - $\mathsf{OZ}\;\epsilon\;\mathbb{C}$
 - \circ Re(z) + Im(z)
 - ORealteil Re als Reelle Zahl
 - olmaginär-teil: $i * x wobei x \in \mathbb{R}$
- o Definition $i^2 = -1$
- o Erlaubt Wurzeln aus

Negativen Zahlen:

$$\sqrt{-4} \in \mathbb{C}$$

Ausblick: Komplexe Zahlen

Vorher: Zahlenstrang

Jetzt: Zahlenebene

Eindimensionale Zahl z ϵ $\mathbb C$ Lässt sich in 2D darstellen

Zahlenmengen

Zahlen Mengen

 $\mathbb{N} \times \mathbb{N} = \{(a,b) \mid a \in \mathbb{N}, b \in \mathbb{N}\} = \{(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1), \ldots\}$

o Für Welche Werte ist meine Gleichung oder Funktion Definiert?

 $x \rightarrow y$ x wird abgebildet auf y

$$f(x) = y$$

Wenn x aus \mathbb{N}_0 dann ist y auch aus \mathbb{N}_0 y ist die Lösungs-Menge

o Für Welche Werte ist meine Gleichung oder Funktion

Definiert?

x → y x wird abgebildet auf y Für jeden Wert von x wird **EIN** y Wert zugeordnet.

$$f(x) = x^2$$

Wenn x aus \mathbb{R}_0 dann ist y aus \mathbb{R}_0^+
y ist die Lösungs-Menge

o Für Welche Werte ist meine Gleichung oder Funktion

Definiert?

x → y x wird abgebildet auf y Für jeden Wert von x wird **EIN** y Wert zugeordnet.

$$f(x) = \sqrt{x}$$

Wenn x aus \mathbb{R}_0 dann ist y entweder aus \mathbb{R}_0^+ oder aus \mathbb{R}_0^- y ist die Lösungs-Menge

Funktion oder Keine Fkt?

 $oldsymbol{1}$ Handelt es sich bei den folgenden Graphen um den Graph einer Funktion? **Kreuze an**.

Funktion oder Keine Fkt?

o Für Welche Werte ist meine Gleichung oder Funktion Definiert?

 $x \rightarrow y$ x wird abgebildet auf y

$$f(x) = 3x - \frac{5x^2}{(3-x)}$$

x ist aus \mathbb{R}_0 außer $\{3\}$ $x \in \mathbb{R}_0 \setminus \{3\}$ y wird über Maximum und Minimum bestimmt (Nächste Vorlesung)

Kontinente

o Ein Prozent (1 %) entspricht einem Anteil von $10^{-2} = \frac{1}{100}$ von etwas.

o Ein Promille (1‰) entspricht einem Anteil von $10^{-3} = \frac{1}{1000}$

$$\frac{10 \, \text{m}}{100 \, \text{m}} = 0.1 = 10 \, \%$$

100 m

o Ein Prozent (1 %) entspricht einem Anteil von $10^{-2} = \frac{1}{100}$ von etwas.

- o Beispiel:
 - OMünchen hat ca. 1.6 Millionen Einwohner
 - O Deutschland hat insgesamt ca. 84.5 Millionen Einwohner

$$\frac{1.6 * 10^6}{84.5 * 10^6} = \frac{3}{169} = 0.017751$$

- o Ein Prozent (1%) entspricht einem Anteil von $10^{-2} = \frac{1}{100}$
- o Ein Promille (1‰) entspricht einem Anteil von $10^{-3} = \frac{100_1}{1000}$ Beispiel:
 - o München hat ca. 1.6 Millionen Einwohner
 - o Deutschland hat insgesamt ca. 84.5 Millionen Einwohner

$$\frac{1.6 * 10^6}{84.5 * 10^6} = \frac{3}{169} = 0.017751$$

- o Ca. 1,8 % der deutschen leben in München
- o Ca. 18 ‰ " " , ca. 18 von 1000 deutschen Einwohnern leben inMünchen

- o Ein Prozent (1%) entspricht einem Anteil von $10^{-2} = \frac{1}{100}$
- o Ein Promille (1‰) entspricht einem Anteil von $10^{-3} = \frac{100_1}{1000}$ Beispiel:
 - o München hat ca. 1.6 Millionen Einwohner
 - o Deutschland hat insgesamt ca. 84.5 Millionen Einwohner

$$\frac{1.6 * 10^6}{84.5 * 10^6} = \frac{3}{169} = 0.017751$$

- o Ca. 1,8 % der deutschen leben in München
- o Ca. 18 ‰ " " , ca. 18 von 1000 deutschen Einwohnern leben in München

Visualisierung von Prozent

AnteileDarstellen

o Statistik lesen können

Diagramm Verstehen

• Summe ist 100 %

Wie wohlhabend bin ich?

So viel Prozent der Bevölkerung hatten 2016 ein bedarfsgewichtetes Nettomonatseinkommen von ...

Gesamtbevölkerung	Personen mit Hochschulabschluss			
weniger als 400 Euro	■0,9	0,7		
401 bis 800	5,9	2,8		
801 bis 1.200	12,9	5,0		
1.201 bis 1.600	18,0	8,7		
1.601 bis 2.000	17,8	12,9		
2.001 bis 2.400	14,7	14,9		
2.401 bis 2.800	10,0	13,6		
2.801 bis 3.200	7,0	10,9		
3.201 bis 3.600	4,1	7,8		
3.601 bis 4.000	2,5	5,5		
4.001 bis 4.400	1,8	4,6		
4.401 bis 4.800	1,3	3,4		
4.801 bis 5.200	0,7	2,2		
5.201 bis 5.600	0,6	2,2		
5.601 bis 6.000	0,5	1,1		
6.001 bis 7.000	10,6	1,7		
mehr als 7.000 Euro	0,8	2,0		

Quellen: Sozio-oekonomisches Panel, Institut der deutschen Wirtschaft

Dreis-Satz - Proportionalität

o Proportional: ein Gleichbleibendes Verhältnis

o Beispiel: Kuchen Rezept

- Die Zutaten bleiben gleich
- Das Verhältnis bleibt gleich

Kuchen Rezept

- o Proportional: ein Gleichbleibendes Verhältnis
- o Beispiel: Kuchen Rezept
- o Für 3 Personen:
 - o500 g Mehl
 - o50 g Kakao
 - o3 Eier
 - o200 g Butter
- O Was ist das Rezept für 5 Personen?
- o Lösung: Dreisatz

Kuchen Rezept

- o Proportional: ein Gleichbleibendes Verhältnis
- o Beispiel: Kuchen Rezept
- o Für 3 Personen:
 - o500 g Mehl
 - o50 g Kakao
 - o3 Eier
 - o200 g Butter
- O Was ist das Rezept für 5 Personen?
- o Lösung: Dreisatz

o Proportional: ein Gleichbleibendes Verhältnis

$$\frac{a}{b} = \frac{c}{x}$$

Das Verhältnis von a zu b ist gleich wie das Verhältnis von c und x.

Größe A	Größe B
a	b
c	\boldsymbol{x}

$$o \frac{a}{b} = \frac{x}{c}$$

- O Direkte Proportionalität
- o Beispiel:
 - O Zug fährt 210 km in 3 Stunden
 - O Wie weit kommt der Zug in 7 Stunden

$$a = 210km$$

$$b=3$$
 std

$$c=7 std$$

Größe A	Größe B
a	\boldsymbol{b}
c	\boldsymbol{x}

- o Indirekte Proportionalität (Nicht Exponentiell)
- o Beispiel:
 - O Wenn ich die Anzahl meiner Arbeiter verdreifache auf
 - o Dann verringert sich die Projektlaufzeit um die Hälfte.
 - O Anfangs: 12 Mitarbeiter
 - O Projektlaufzeit 48 Stunden

Größe A	Größe B
a	b
c	\boldsymbol{x}

- o Gewünschte Projektlaufzeit sind 12 Stunden
- O Wie viele Mitarbeiter muss ich zusätzlich Einstellen?

- \circ 12 mit * 3 * x = Neuer Wert
- $0 48 std * \frac{1}{2} * x = Neuer Wert$
- o Beispiel:
 - O Wenn ich die Anzahl meiner Arbeiter verdreifache auf
 - o Dann verringert sich die Projektlaufzeit um die Hälfte.
 - O Anfangs: 12 Mitarbeiter
 - o Projektlaufzeit 48 Stunden
 - o Gewünschte Projektlaufzeit sind 12 Stunden
 - o Wie viele Mitarbeiter muss ich zusätzlich Einstellen?

- \circ 12 mit * 3 * x = Neuer Wert
- \circ 48 std $*\frac{1}{2}*x = Neuer Wert$
- Gewünschte Projektlaufzeit sind 12 Stunden
 - O Wie viele Mitarbeiter muss ich zusätzlich Einstellen?

$$48 \ std \ *\frac{1}{2} * x = 12 \ std \qquad x = 2$$

$$12 \ mit * 3 * x = 72 \ mit$$

Es werden zusätzlich 60 Mitarbeiter benötigt.

- \circ 12 mit * 3 * x = Neuer Wert
- $0 48 std * \frac{1}{2} * x = Neuer Wert$
- o Beispiel:
 - O Wenn ich die Anzahl meiner Arbeiter verdreifache auf
 - o Dann verringert sich die Projektlaufzeit um die Hälfte.
 - O Anfangs: 12 Mitarbeiter
 - o Projektlaufzeit 48 Stunden
 - o Gewünschte Projektlaufzeit sind 30 Stunden
 - O Wie viele Mitarbeiter muss ich zusätzlich Einstellen?

- \circ 12 mit * 3 * x = Neuer Wert
- \circ 48 std $*\frac{1}{2}*x = Neuer Wert$
- o Beispiel:
 - O Wenn ich die Anzahl meiner Arbeiter verdreifache auf
 - o Dann verringert sich die Projektlaufzeit um die Hälfte.
 - o Anfangs: 12 Mitarbeiter
 - o Projektlaufzeit 48 Stunden
 - o Gewünschte Projektlaufzeit sind 30 Stunden
 - o Wie viele Mitarbeiter muss ich zusätzlich Einstellen?

Dreis-Satz - Proportionalität

o Proportional: ein Gleichbleibendes Verhältnis

o Beispiel: Kuchen Rezept

- Die Zutaten bleiben gleich
- Das Verhältnis bleibt gleich

Vorlesung 4

Umfang:

- O Aufgaben Fragen Runde
- o Zahlenmengen
- o Definitionsbereiche
- o Prozentrechnung
- o Dreisatz

Ziel der Veranstaltung:

Ihr besteht ALLE den Aufnahmetest für das Studienkolleg :)

Eine Formel-Sammlung zum lernen und Üben!

Feedback

Tempo zu schnell/langsam?

Mathe Vokabeln?

Was wünscht ihr euch? (Basics?)

Aus den letzten Vorlesungen

E-Funktion Exponential Funktion

o Natürliche e-Funktion

$$oe = 2.7182...$$

Besondere Eigenschaft:

Steigung = Wert der Fkt

An jedem Punkt!

e-Funktion Erklärung und Beis

Natürliche Logarithmus: ln(x)

$$\ln(e^x) = x = e^{\ln(x)}$$

$$b^{x} = (e^{\ln(b)})^{x} = e^{\ln(b) \cdot x}$$

Logarithmus Gesetze

8.1 Formeln für Logarithmen:

$$b^x = y \iff x = \log_b y$$

$$(y \in IR^+ \text{ und } b \in IR^+ \text{ohne } \{1\})$$

z. B.
$$0.5^x = 3 \iff x = \log_{0.5} 3 = \frac{\lg 3}{\lg 0.5}$$

Der dekadische Logarithmus: $\log_{10} a =: \lg a; \lg 1 = 0; \lg 10 = 1; \lg 100 = 2;$

Der natürliche Logarithmus: $\log_e x =: \ln x$; $\ln 1 = 0$; $\ln e = 1$; (e = 2,71828... heißt Eulersche Zahl)

Logarithmus Rechengesetze

Rechengesetze für Logarithmen (u, v > 0)

$$\log_b(u \cdot v) = \log_b u + \log_b v$$

$$\log_b \left(\frac{u}{v}\right) = \log_b u - \log_b v$$

$$\log_b u^n = n \cdot \log_b u ,$$

$$\log_b 1 = 0$$

$$\log_b b^n = n$$

$$b^{\log_b n} = n$$

$$\log_c a = \frac{\log_b a}{\log_b c}$$
 die Basisumrechnungsformel

$$(a > 0 \text{ und } b, c \in IR \text{ ohne } \{1\})$$

Logarithmus als Umkerhfunktion der Exponentialfunktion

Trigonometrische Funktionen

Trigonometrische Funktionen

- o Längste Seite = Hypotenuse
- liegt gegenüber des größten Winkels

Hier: c & γ

$$Sinus(alpha) = sin(\alpha) = \frac{Gegenkathete \, von \, alpha}{Hypotenuse}$$

Cosinus
$$(alpha) = \cos(\alpha) = \frac{Ankathete \, von \, alpha}{Hypotenuse}$$

Tangens
$$(alpha) = \tan(\alpha) = \frac{Cos(\alpha)}{Sin(\alpha)} = \frac{Ankathete}{Gegenkathete}$$

Hypotenuse

Summe aller Winkel: $a+\beta + \gamma = 180$ °

Satz des Pythagoras für Dreiecke mit Rechtem Winkel (90 Grad)

$$a^2 + b^2 = c^2$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

Annimation:

https://www.youtube.com/watch?v=w-hXOYZ2gpo

$$Sin^2(a) = 1 - Cos^2(a)$$

Wertetabelle:

Winkel in Grad	0 °	30 °	45°	60°	90°	180°	270°	360°
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π
sin a = y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos a = x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

$$Sin^2(a) = 1 - Cos^2(a)$$

Winkel in Grad	0 °	30 °	45°	60°	90°	180°	270°	360°
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π
sin(a = y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos a = x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
a°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Ziel der Veranstaltung:

Ihr besteht ALLE den Aufnahmetest für das Studienkolleg :)

Kommutativ Gesetz

$$a + b = b + a$$
$$a * b = b * a = ba$$

Distributiv Gesetz

$$oldsymbol{o} a(b+c) = ab + ac$$

$$o(b+c)/a = b/a + c/a$$

$$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$$

$$a + a = a + c = a +$$

Binomische Formeln

Binomische Formeln:

$$(a+b)(c+d) = ac+ad+bc+bd$$

$$(a+b)^2 = (a+b) \cdot (a+b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b = a^2 + 2 \cdot a \cdot b + b^2$$

 $(a-b)^2 = (a-b) \cdot (a-b) = a \cdot a - a \cdot b - b \cdot a + b \cdot b = a^2 - 2 \cdot a \cdot b + b^2$
 $(a+b) \cdot (a-b) = a \cdot a - a \cdot b + b \cdot a - b \cdot b = a^2 - b^2$

Dritter Ordnung:

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

Erste Binomische Formel

$$(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$

Zweite Binomische Formel

$$(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2$$

Dritte Binomische Formel

$$a^2 - b^2 = (a+b) \cdot (a-b)$$

Kopfrechen Tricks

Trick mit den Binomischen Formel:

$$37^2 = (30+7)^2 = 30^2 + 2 \cdot 30 \cdot 7 + 7^2 = 900 + 420 + 49 = 1369$$

ler

$$37^2 = (40 - 3)^2 = 40^2 - 2 \cdot 40 \cdot 3 + 3^2 = 1600 - 240 + 9 = 1369$$

Kopfrechen Tricks

Addition und Subtraktion der Wurzel:

$$\sqrt{a} + \sqrt{b} = \sqrt{\left(\sqrt{a} + \sqrt{b}\right)^2} = \sqrt{a + b + 2\sqrt{ab}}$$

Mitternachtsformel

$$ax^2 + bx + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Auswendig lernen!

