Hoja 4

Bases y dimensión

Problema 4.1 Comprobar si el vector $(3,4,4)^t$ pertenece al conjunto generado por los vectores $\{(1,2,3)^t, (-1,0,2)^t\}$ y, en tal caso, determinar cómo obtenerlo con alguna combinación lineal.

Problema 4.2 Probar que el conjunto de vectores $\{(1,0,0)^t,(0,1,0)^t,(0,0,1)^t,(1,2,3)^t\}$ es linealmente dependiente. Probar que el conjunto de vectores $\{(0,1,0)^t,(0,0,1)^t,(1,2,3)^t\}$ es linealmente independiente.

Problema 4.3 Decidir si los polinomios $p_1(x) = 1 - x + x^2$, $p_2(x) = 2 + x$ y $p_3(x) = 1 + 2x - x^2$ son linealmente dependientes o independientes en \mathbb{P}_2 . Si son linealmente dependientes, encontrar alguna de las posibles dependencias.

Problema 4.4 Decidir si las matrices de $\mathbb{R}^{2\times 2}$

$$A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 3 \\ 4 & 2 \end{pmatrix}$$

son linealmente dependientes o independientes.

Problema 4.5 Sea el espacio vectorial \mathbb{P}_2 y su subespacio W generado por los vectores $v_1(x) = 1$ y $v_2(x) = x^2 - 3$.

- 1. Encontrar una base B' de W a partir de B = $\{1, x^2 3\}$. ¿Cuál es la dimensión de W?
- 2. Determinar si los vectores $p(x) = 5x + x^2$ y $q(x) = 3 x^2$ son elementos de W. En el caso de que lo sean, determinar las coordenadas de p y q respecto a la base B' encontrada en el apartado anterior.
- 3. Determinar las coordenadas de p y q respecto a la base de \mathbb{P}_2 dada por $B'' = (1 x, 1 + x, x^2)$.

Problema 4.6 Sea el conjunto

$$B = \left\{ \left(\begin{array}{cc} 0 & 1 \\ 2 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array} \right) \right\}$$

de $\mathbb{R}^{2\times 2}$.

- 1. Probar que es un conjunto linealmente independiente.
- 2. Probar que la matriz

$$A = \left(\begin{array}{cc} 0 & 3 \\ 1 & -5 \end{array}\right)$$

pertenece a W = Gen(B).

3. Hallar las coordenadas de A con respecto a alguna base B' de W.

Problema 4.7 Determinar los espacios asociados a la matriz

$$A = \begin{pmatrix} 3 & 1 \\ 2 & 0 \\ -1 & -1 \end{pmatrix}$$

y las correspondientes dimensiones.

Problema 4.8 Sea A la matriz 4 × 5 dada por

$$A = \begin{pmatrix} 1 & 2 & 1 & 1 & 2 \\ 0 & 1 & 2 & 1 & 4 \\ -1 & 3 & 9 & 1 & 9 \\ 0 & 1 & 2 & 0 & 1 \end{pmatrix}.$$

- 1. Encontrar el espacio nulo de A, su dimensión y una base.
- 2. Encontrar el espacio columna de A, su dimensión y una base.
- 3. Encontrar el espacio fila de A, su dimensión y una base.
- 4. Encontrar el espacio nulo de la traspuesta de A, su dimensión y una base.

Problema 4.9 Sea el conjunto $B = \{(1, 1, 0)^t, (1, 2, 1)^t, (2, 1, 0)^t\} de \mathbb{R}^3$.

- 1. Construir con los elementos de B una base B' de \mathbb{R}^3 .
- 2. Encontrar las coordenadas del vector $v = (3, -2, 1)^t$ con respecto a B' (resolviendo un sistema).
- 3. Encontrar las coordenadas del vector w con respecto a la base canónica si se sabe que sus coordenadas respecto a la base B' son $[w]_{B'} = (2, -1, 7)^t$ (resolviendo un sistema).
- 4. Encontrar las matrices de cambio de base para pasar de B_0 a B^\prime y de B^\prime a B_0 .
- 5. Comprobar que las coordenadas de los vectores v y w halladas en los apartados anteriores se obtienen multiplicando la matriz de cambio de base adecuada por las coordenadas conocidas.

Problema 4.10 Sea el espacio \mathbb{P}_3 con bases $B_0=(1,x,x^2,x^3)$, $B_1=(1+x,x+x^2,x^2-x^3,1+2x^3)$ y $B_2=(1,1+x,1+x+x^2,1+x+x^2+x^3)$.

- 1. Hallar la matriz de cambio de base para pasar de B_0 a B_1 .
- 2. Hallar la matriz de cambio de base para pasar de B_0 a B_2 .
- 3. Hallar la matriz de cambio de base para pasar de B_1 a B_2 .
- 4. Sea el polinomio $p(x)=x^3-2x$. Hallar sus coordenadas con respecto a B_0 , B_1 y B_2 .