Bonus Level

Score = 0

0	5	0	10
5	5	0	0
1	0	0	0
0	0	0	1

Score = 0

0	5	0	10
5	5	0	0
1	0	0	0
0	0	0	1

Score = 0

0	5	0	10
5	5	0	0
1	0	0	0
0	0	0	1

Score = 0 + 5

0	5	0	10
0	5	0	0
1	0	0	0
0	0	0	1

Score = 0 + 5

0	5	0	10
0	5	0	0
1	0	0	0
0	0	0	1

0	5	0	10
0	0	0	0
1	0	0	0
0	0	0	1

0	5	0	10
0	0	0	0
1	0	0	0
0	0	0	1

0	5	0	10
0 —	0	0	0
1	0	0	0
0	0	0	1

0	5	0	10
0	0	0	0
1	0	0	0
0	0	0	0

Score = 0 + 5 + 5 + 1 + 10 + 5

Score =
$$0 + 5 + 5 + 1 + 10 + 5 = 26$$

Score = 0 + 5 + 5 + 1 + 10 + 5 = 26

0	5	0	10
			•
5	5	0	0
_			
1	0	0	0
	•		I ♠
0	0	0	1

Score =
$$0 + 5 + 5 + 1 + 10 + 5 = 26$$

Observation: reverse blue edges

Score =
$$0 + 5 + 5 + 1 + 10 + 5 = 26$$

0	5	0	10
5	5	0	0
			*
1	0	0	0
			+
0	0	0	1
			—

Observation: reverse blue edges

Score =
$$0 + 5 + 5 + 1 + 10 + 5 = 26$$

Observation: reverse blue edges

Solution

- Model the problem using flows (min cost max flow)
- Dynamic programming

Solution

- Model the problem using flows (min cost max flow)
- Dynamic programming

- If we move along paths at the same time, we are always on the same diagonal
- Therefore, the tokens can only intersect at the same time

- If we move along paths at the same time, we are always on the same diagonal
- Therefore, the tokens can only intersect at the same time

maximum number of coins we can collect if we start from the position:

DP[d, r1, r2] = i. the first token is on the cell which intersects diagonal d and row r1, and

ii. the second token is on the cell which intersects diagonal d and row r2

- If we move along paths at the same time, we are always on the same diagonal
- Therefore, the tokens can only intersect at the same time

```
maximum number of coins we can collect if we start from the position:

DP[d, r1, r2] = i. \text{ the first token is on the cell which intersects diagonal } d \text{ and row } r1, \text{ and } ii. \text{ the second token is on the cell which intersects diagonal } d \text{ and row } r2
```

 $\begin{aligned} \textbf{DP[d, r1, r2]} &= & \text{coins(d, r1)} + (\text{coins(d, r2)} \text{ if } \text{r2} \neq \text{r1}) + \\ & \text{max(} & \text{DP[d + 1, r1, r2],} \\ & \text{DP[d + 1, r1 + 1, r2],} \\ & \text{DP[d + 1, r1, r2 + 1],} \\ & \text{DP[d + 1, r1 + 1, r2 + 1]} \end{aligned}$

- If we move along paths at the same time, we are always on the same diagonal
- Therefore, the tokens can only intersect at the same time

```
maximum number of coins we can collect if we start from the position:

DP[d, r1, r2] = i. \text{ the first token is on the cell which intersects diagonal } d \text{ and row } r1, \text{ and } ii. \text{ the second token is on the cell which intersects diagonal } d \text{ and row } r2
```

```
 \begin{aligned} \textbf{DP[d, r1, r2]} &= & \text{coins(d, r1)} + (\text{coins(d, r2) if } \text{r2} \neq \text{r1}) + \\ & \text{max(} & \text{DP[d + 1, r1, r2],} \\ & \text{DP[d + 1, r1 + 1, r2],} \end{aligned}  Running time: O(n^3)  \begin{aligned} \textbf{DP[d + 1, r1, r2 + 1],} \\ \textbf{DP[d + 1, r1 + 1, r2 + 1]} \end{aligned}
```