Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Neural Network, Wrap Up

Class Logistics and Agenda

- Logistics
 - hiring undergraduates!
 - grading update
- Agenda:
 - Demo and Review
 - Universality
 - Parameter Searching
 - Statistical Testing
 - Lab 4 Town Hall

Class Overview, by topic

Review

Review

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \rho_k$$

Cross entropy

$$\mathbf{V}^{(2)} = \mathbf{A}^{(3)} - \mathbf{Y}$$

new final layer update

Momentum

$$\rho_k = \alpha \nabla J(\mathbf{W}_k) + \beta \nabla J(\mathbf{W}_{k-1})$$

Nesterov's Momentum

$$\rho_k = \underbrace{\beta \, \nabla J \left(\mathbf{W}_k + \alpha \, \nabla J(\mathbf{W}_{k-1}) \right)}_{\text{Step twice}} + \alpha \, \nabla J(\mathbf{W}_{k-1})$$

Mini-batching

•	Daterri	Daterra	Datons	Daten 4	Daterro	Daterro	Daten 1	Datono	Daterra
Epoch 1									
Epoch 2									
Epoch 3									
Epoch 4									
·									

shuffle ordering each epoch and update W's after each batch

Learning rate adjustment (eta)

$$\eta_e = \eta_0 \cdot d^{\lfloor \frac{e}{e_d} \rfloor}$$

$$e_d \text{ epochs between reductions}$$

$$0 < d < 1$$

$$\eta_e = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min}) \left(1 + \cos\left(\frac{e}{e_{max}}\pi\right)\right)$$

Review: Activations Summary

	Definition	Derivative	Weight Init (Uniform Bounds)
Sigmoid	$\phi(z) = \frac{1}{1 + e^{-z}}$	$\nabla \phi(z) = a(1-a)$	$w_{ij}^{(L)} \sim \pm 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
			$b^{(l)} = [-2]$
Hyperbolic Tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	$\nabla \phi(z) = \frac{4}{(e^z + e^{-z})^2}$	$w_{ij}^{(L)} \sim \pm \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
			$b^{(l)} = [0]$
ReLU	$\phi(z) = \begin{cases} z, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$	$\nabla \phi(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$	$w_{ij}^{(L)} \sim \pm \sqrt{2} \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
SiLU	$\phi(z) = \frac{z}{1 + e^{-z}}$	$\nabla \phi(z) = \phi(z) + \sigma(z) \cdot (1 - \phi(z))$	$b^{(l)} = [0]$
			91

Review of Adaptive Strategies $W_{k+1} = W_k - \eta \cdot \rho_k$

Adjust each element of gradient by the steepness (for each layer):

• AdaGrad $\rho_k = \frac{1}{\sqrt{\mathbf{G}_k + \epsilon}} \odot \nabla J(\mathbf{W}_k) \quad \mathbf{G}_k = \gamma \cdot \mathbf{G}_{k-1} + \nabla J(\mathbf{W}_k) \odot \nabla J(\mathbf{W}_k)$ • RMSProp $\rho_k = \frac{1}{\sqrt{\mathbf{V}_k + \epsilon}} \odot \nabla J(\mathbf{W}_k) \quad \mathbf{G}_k = \nabla J(\mathbf{W}_k) \odot \nabla J(\mathbf{W}_k)$ • AdaDelta $\rho_k = \frac{\mathbf{M}_k}{\sqrt{\mathbf{V}_k + \epsilon}}$ • AdaDelta $\rho_k = \frac{\mathbf{M}_k}{\sqrt{\mathbf{V}_k + \epsilon}}$

all operations are per element

update
$$\mathbf{M}_{k+1} \leftarrow \beta_1 \cdot \mathbf{M}_k + (1 - \beta_1) \cdot \nabla J(\mathbf{W}_k)$$

normalizer $\mathbf{V}_{k+1} \leftarrow \beta_2 \cdot \mathbf{V}_k + (1 - \beta_2) \cdot \nabla J(\mathbf{W}_k) \odot \nabla J(\mathbf{W}_k)$

$$\text{update} \quad \mathbf{W}_{k+1} \leftarrow \mathbf{W}_k - \eta \cdot \frac{\hat{\mathbf{M}}_k}{\sqrt{\hat{\mathbf{V}}_k + \epsilon}}$$

$$\hat{\mathbf{M}}_k \leftarrow \frac{\mathbf{M}_k}{(1 - [\beta_1]^k)}$$

$$\hat{\mathbf{V}}_k \leftarrow \frac{\mathbf{V}_k}{(1 - [\beta_2]^k)}$$

exploitation, boosting

Demo

08a. Practical_NeuralNetsWithBias.ipynb

Momentum
Learning Rate Adaptation
Cross Entropy
Smarter Weight Initialization
Adaptive training with AdaGrad
ReLU Nonlinearities
Sklearn Comparison

Revisiting Universality (if time)

 Neural networks can separate any data through multiple layers. The true realization of Rosenblatt:

"Given an elementary α -perceptron, a stimulus world W, and any classification C(W) for which a solution exists; let all stimuli in W occur in any sequence, provided that each stimulus must reoccur in finite time; then beginning from an arbitrary initial state, an error correction procedure will always yield a solution to C(W) in finite time..."

•Universality: No matter what function we want to compute, we know that there is a neural network which can do the job.

Universality

adding layers and convolution help obtain desired behavior...

S² x 1

 $\mathbf{W}^{(2)}$ is **classification layer**, like one versus all logistic regression

- One nonlinear hidden layer with an output layer can perfectly train any problem with enough data, but might be memorizing...
- ... could be better to have **even more layers** for more generalizing features

 $S^1 \times 1$

Grid Searching

Trying to find the best parameters

NN: C1=[1, 10, 100] C2=[1e3, 1e4, 1e5]

	C1				
	(I, Ie3)	(10, le3)	(100, le3)		
C2	(I, Ie4)	(10, le4)	(100, le4)		
	(I, le5)	(10, le5)	(100, le5)		

For each value, want to run cross validation...

Could perform iteratively

or at random...

If random can also draw at random from a distribution!

C1 drawn from $\mathcal{N}(\mu = 50, \sigma = 20)$

Review: Grid Searches in Scikit-learn

```
>>> from sklearn import sym, datasets
                       >>> from sklearn.model_selection import GridSearchCV
                       >>> iris = datasets.load_iris()
                       >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
                       >>> svc = svm.SVC()
                       >>> clf = GridSearchCV(svc, parameters)
                       >>> clf.fit(iris.data, iris.target)
                       GridSearchCV(estimator=SVC(),
                                     param_grid={'C': [1, 10], 'kernel': ('linear', 'rbf')})
        OPTUNA
                                        Key Features Code Examples Installation
                                                                             Blog
                                                                                          Paper
                                                                                                 Community
                                                                                   Videos
Optuna is framework agnostic. You can use it with any machine learning or deep learning framework.
   🚳 Quick Start 💆 PyTorch PyTorch 💠 Chainer 🏗 TensorFlow 🔼 Keras 🧰 MXNet 🕍 Scikit-Learn 🌋 🖫 🖸 LightGBM.
 values, sampled
                        >>> from sklearn.linear_model import LogisticRegression
                        >>> from sklearn.model_selection import RandomizedSearchCV
                        >>> from scipy.stats import uniform
                        >>> iris = load_iris()
                        >>> logistic = LogisticRegression(solver='saga', tol=1e-2, max_iter=200,
                                                           random state=0)
                        >>> distributions = dict(C=uniform(loc=0, scale=4),
                                                  penalty=['l2', 'l1'])
                        >>> clf = RandomizedSearchCV(logistic, distributions, random_state=0)
                        >>> search = ctf.fit(iris.data, iris.target)
                        >>> search.best params
                        {'C': 2..., 'penalty': 'l1'}
```

Review: Self Test

- Using the grid search parameters and testing on the same set...
- Is this data snooping?
 - **A. True**, this is snooping because it uses test set to define parameters
 - **B. True**, this is snooping because we can no longer reliably define the expected performance on new data

How can we define expected performance when using cross validation in a grid search?

Review: Nested Cross Validation

Review: Nested Cross Validation: Hyper-parameters

Self Test

- What is the end goal of nested crossvalidation?
 - A. To determine hyper parameters
 - B. To estimate generalization performance
 - C. To estimate generalization performance when performing hyper parameter tuning
 - D. To estimate the variation in tuned hyper parameters

Statistical Tests

Flipped Module, Model Comparison

 How do we compare two (or more) trained models to one another?

 Are models different enough to prefer one model over another?

Comparing Performance of 2 Models

- Given two models, M₁ and M₂, which is better?
 - M1 is tested on D_1 (size= n_1), found error rate = e_1
 - M2 is tested on D_s (size= n_s), found error rate = e_s
 - Assume D₁ and D₂ are independent
 - If n₁ and n₂ are sufficiently large, then

$$e_1 \sim N(\mu_1, \sigma_1)$$

 $e_2 \sim N(\mu_2, \sigma_2)$

Approximate:

$$\hat{\sigma}_i^2 = \frac{e_i(1 - \frac{1}{n_i})}{n_i}$$

which is approximated well by **normal distrib**

Comparing Performance of 2 Models

- · To test if performance difference is statistically significant: d = e₁ - e₂ -estimate of the mean difference
 - d ~ N(d, a) where d, is the true difference
 - Since D₁ and D₂ are independent, their variance adds

$$\sigma_{i}^{2} = \sigma_{i}^{2} + \sigma_{i}^{2} \cong \sigma_{i}^{2} + \sigma_{i}^{2}$$

$$el(1-el) \quad e2(1-e2)$$

Folded statistical comparisons

- Each learning algorithm may produce k models:
 - L, may produce M, , , M, , ..., M, ,
 - L_2 may produce M_{a_1} , M_{a_2} , ..., M_{a_k}
- If models are generated on the same test sets D₁,D₂ ..., D, (e.g., via cross-validation)
 - For each set: compute $d_i = e_{ti} e_{ti}$, the j^{th} difference
 - d, has mean d and variance α ,

$$\sigma_{i}^{2} = \frac{1}{k-1} \sum_{j=1}^{k} (\bar{d} - d_{j})^{2}$$

how the criterion varies

$$d_t = \bar{d} \pm \frac{1}{\sqrt{k}} t_{1-\alpha,k-1} \sigma_{t_k}$$

McNemar Testing for Comparing Performance

Few assumptions, **Null hypothesis**: predictions are not different!

One caveat: Statistical power depends upon B+C, which might be small, even with lots of test data.

McNemar and Edwards, 1948

$$\chi^2 \approx \frac{(|B-C|-1)^2}{B+C}$$

If predictions are drawn from the same distributions, then this equation follows χ squared statistic with

one DOF

Steps:

- 1. Compare each model's predictions on **the same test data** (2x2 matrix)
- 2. Calculate χ^2 statistic
- 3. Look up *critical value* associated with χ^2 statistic for given confidence
- 4. Are you confident enough to **reject the null hypothesis** that the performance is the same (p<0.05)?

McNemar Example

Model 1	Model 2	Label	Matrix
T-shirt	T-shirt	T-shirt	А
Sneaker	T-shirt	Sneaker	В
T-shirt	Pullover	Pullover	С
Sneaker	Sneaker	Sneaker	Α
T-shirt	Sneaker	Sneaker	С
Pullover	Pullover	T-shirt	D
Pullover	T-shirt	Pullover	В
Sneaker	Sneaker	Sneaker	Α
Sneaker	Sneaker	Sneaker	А

McNemar and Edwards, 1948

$$\chi^2 \approx \frac{(|B-C|-1)^2}{B+C}$$

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm

Since 0.25 < 3.841, we cannot reject the null hypothesis. This means we should not say the models' performance are different based on the evidence.

Self Test:

 You have trained three different models on prediction of child poverty ratings. Each model is trained on the same data and tested on the same single split of the data.

Can you use a McNemar test for selecting a model?

- A. Yes. McNemar testing can be used for any testing of any model without any assumptions.
- B. Yes. McNemar testing can be applied pairwise for the three models.
- C. No. McNemar testing cannot be used for more then two models.
- **D. No.** McNemar testing can only tell if the models are different, we still cannot tell which one is best

Town Hall

Next Time: Deep Learning