Outline

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

Sec 2.5 初等矩阵

前情回顾

初等变换

A FIRST D. FINTE D.

定义 3.1 (矩阵的初等变换)

初等行变换:

- 1. r_i ↔ r_i: 交换第 i 行和第 j 行
- 2. k×r; k∈F乘第i行 kr→r
- 3. $r_i + k \times r_j$. 第 j 行乘以 $k \in F$ 并加到第 i 行初等列变换: 改"行"为"列" $k_j + r_i \rightarrow r_i$ 初等变换: 初等行变换和初等列变换的统称.

```
Ci ← Cj
kCi
Cj+kCi
```

等价

定义 3.2

(者限次)

称 A 等价于 B, 如果 A 可以通过一系列初等变换变成 B. 即, 存在一个序列

$$A = A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_s = B,$$

其中每个 A_{i+1} 可由 A_i 经过一次初等变换得到.

等价关系(1.=)

一个二元关系 ~ 是一个等价关系, 如果满足以下 三个条件:

i χγι

- ▶ 反身性: A ~ A
- ▶ 对称性: A ~ B 则 B ~ A
- ▶ 传递性: A~B且B~C,则A~C

可验证. 刚刚定义的矩阵等价关系确实是一个等 价关系..... A=A= B

- ▶ 反身性: 显然 ✓
- ▶ 对称性: 初等变换均有初等变换的逆 B
- ▶ 传递性: 显然 A→ → B → → C

阶梯形矩阵

定义 3.3 (阶梯形矩阵)

称一个矩阵 A 为一个 阶梯形矩阵, 如果

- ▶ 0 元素以下的元素都是 0
- ▶ 首个非零元一下的元素都是 0

记 a_{i,ji} 为第 i 行的首个非零元素, 则

$$a_{i,j} = 0$$
 if $j < j_i$ 说价, j_i 在代验 $j_i = 1, j_2 = 3$

和

$$a_{i,j} = 0$$
 if $\exists i_0 < i \text{ s.t. } j_{i_0} = j$

定理 3.1

定理 3.1 (化简为阶梯形)

任意一个矩阵都可以经过有限次 初等行变换 化为 阶梯形矩阵.

Q: Why not 上三角矩阵?

定理 3.1 证明

下所稀 = (上所稀)

其实就是消元法.

Q: 怎样化为 "下" 阶梯形矩阵?

$$\begin{pmatrix} \overline{A_{1}} \\ \overline{A_{2}} \\ \overline{A_{3}} \end{pmatrix} = O$$

例题 3.1

把以下矩阵化为阶梯形矩阵

$$\begin{pmatrix} 1 & 0 & 4 & -2 & 1 \\ 2 & -1 & 9 & -5 & 2 \\ 1 & -1 & 5 & 0 & -1 \\ 2 & 3 & 5 & 5 & -2 \end{pmatrix}$$

定理 3.2

定理 3.2 (进一步化简)

任何一个 $m \times n$ 矩阵都等价于一个矩阵形如

$$\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} \frac{1}{9} & \frac{2}{9} & \frac{2}{9} \\ \frac{2}{9} & \frac{2}{9} & \frac{2}{9} \\ \frac{2}{9} & \frac{2}{9} & \frac{2}{9} \end{pmatrix}$$

其中 $r \leq \min\{m, n\}$

证明

先行消元, 再列消元.

等价标准形

定理 3.2 (进一步化简)

如果

等价于 A, 则称它为 A 的 等价标准形.

等价标准形只提供一个信息 r, 这就是矩阵的秩

k 阶子式

定义 3.4 (k 阶子式)

对一个 $m \times n$ 矩阵 A, 任取 k 行 k 列 $(k \le \min\{m, n\})$, 取这些行列交叉点上的 k^2 个元素, 按原来的顺序构成一个 $k \times k$ 的矩阵, 这个矩阵的行列式称为 A 的一个 k 阶子式.

$$\begin{pmatrix} a_{11} & a_{1n} \\ & & \\ &$$

秩

称 $r \in \mathbb{Z}_+$ 为一个矩阵 A 的 秩 (rank) (记为 r(A)), 如果

- ▶ 存在非零的 r 阶子式
- ightharpoonup 不存在非零的 r+1 阶子式

规定零矩阵的秩为 0.

满秩与降秩

定义 (满秩与降秩)

对于 n 阶方阵, 如果 r(A) = n, 那个称 A 为 满秩的 (非奇异的, 非退化的); 否则, 称为 降秩的 (奇异的, 退化的).

降來

可见, A 满株当且仅当 det(A) = 0.

A=0

定理 3.3

定理 3.3

初等变换不改变矩阵的秩.

可见, 矩阵 A 的标准形为 $\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$, 则 A 的秩

$$r(A)=r$$
.

证明

初等变换不改变行列式

性质 3.1

性质 3.1

两个同型矩阵等价, 当且仅当它们同秩.

证明

$$r(A) = r = r(B)$$
 当且仅当

$$A \sim \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} \sim B.$$

性质 3.2

性质 3.2

阶梯形矩阵的秩等于它非零的行的数量.

证明

假设阶梯形矩阵 A 有 r 行非零元.

一方面, 对于第 i 行, 选取第 j_i 列, 可得 $r \times r$ 的上三角矩阵, 其行列式不为 0.

另一方面,任意 $(r+1) \times (r+1)$ 的行列式都为 0.

例题 3.3

例题 3.3 求以下矩阵的秩

例题 3.3 通过初等变换化为阶梯形矩阵.

Outline

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

Sec 2.5 初等矩阵

逆元

对于数域 F中的元素 a

- ▶ 加法的逆元 -a 满足 a + (-a) = 0
- ▶ 乘法的逆元 a^{-1} 满足 $a \times a^{-1} = 1$

对于矩阵

- ▶ 矩阵加法的逆元 -A 满足 A + (-A) = 0
- ▶ 矩阵乘法的逆元 A^{-1} 应该满足 $A \times A^{-1} = E$

$$0+A=A+O=A$$
 $E*A=A*E=A$

逆矩阵

$$1 \times M = 1 \times 2$$

$$(a_1 \ a_2) \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \xrightarrow{B \times A = 0} 0$$

$$B \times A = 0$$

定义 4.1 (逆矩阵)

设 A 是一个 n 阶方阵, 如果存在矩阵 B, s.t.

$$AB = BA = E,$$

$$A \sim \underbrace{A^{\mathsf{T}}A}_{\mathsf{S}} \cdot \underbrace{AA^{\mathsf{T}}}_{\mathsf{S}}$$

$$(A^{\mathsf{T}}A)^{\mathsf{T}} \cdot (A^{\mathsf{T}}A)^{\mathsf{T}}$$

则称 A 存在逆矩阵 B, 将 A 的 <mark>逆矩阵</mark> (记为 A^{-1}). 称 A 与 B 为 互逆矩阵.

$$\begin{pmatrix} E_{1} \\ O & O \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} O & O \end{pmatrix}$$

Q: 为什么要先声明 B 的存在性?

Q: 如果 A 不是方阵呢?

例题 4.1 (1)

对角矩阵的逆矩阵 对角矩阵 $diag(a_1, \ldots, a_n)$ 的逆矩阵为

$$\begin{pmatrix} a_1 \\ a_n \end{pmatrix} \begin{pmatrix} a_1^{-1} \\ a_n^{-1} \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ a_n \end{pmatrix}$$

例题 4.2 (2)

三角矩阵的逆矩阵

上三角矩阵 A 的逆矩阵 A^{-1} 也是上三角, 且 A^{-1} 的对角元 $a_{i,i}^{-1}$ 满足

$$\begin{vmatrix} a_{i,i}^{-1} = (a_{i,i})^{-1} \\ a_{i,j} & a_{i,2} \\ a_{i,j} & b_{i2} \\ a_{i,j} & b_{22} \end{vmatrix} = \begin{vmatrix} a_{i,j} & a_{i,j} & a_{i,j} \\ a_{i,j} & a_{i,j} & a_{i,j} \\ a_{i,j} & a_{i,j} & a_{i,j} \end{vmatrix}$$

逆矩阵的唯一性 如果 A 可逆, 那么 A 的逆矩阵唯一确定.

证明

如果 B, C 都是 A 的逆矩阵, 那么

$$B = BE$$

$$= B(AC) = (BA)C$$

$$= EC = C. \checkmark$$

逆的逆

A 可逆, 则 A-1 可逆, 且

$$(A^{-1})^{-1} = A.$$

证明
$$AA^{-1} = A^{-1}A = E.$$

$$A A A^{-1} = A^{-1}A = E.$$

$$A A A^{-1} = A^{-1}A = E.$$

$$A A A^{-1} = A^{-1}A = E.$$

乘积的逆 $(AB)^T = B^TA^T$ A, B 可逆, 那么 AB 可逆, 且 $(AB)^{-1} = B^{-1}A^{-1}$.

证明

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$

= AEA^{-1}
= E .

转置的逆 *A* 可逆, 则 *A^T* 可逆, 且

$$(A^T)^{-1} = (A^{-1})^T$$
.

证明

$$(A^{-1})^T A^T = (\underline{AA^{-1}})^T = E^T = E.$$

例题 4.2

判断
$$A = \begin{pmatrix} 0 & 3 \\ 0 & 4 \end{pmatrix}$$
 是否可逆.

证明

假设 A 存在逆矩阵 $B = \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{pmatrix}$, 那么

$$\begin{pmatrix} 0 & 3 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{pmatrix} = \begin{pmatrix} 3b_{2,1} & 3b_{2,2} \\ 4b_{2,1} & 4b_{2,2} \end{pmatrix}$$

$$\begin{vmatrix} 3 & b_{2,1} & 1 \\ 4 & b_{2,1} & 0 \end{vmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

伴随矩阵

定义 4.2 (伴随矩阵)

矩阵 $A = (a_{i,j})_{n,n}$ 的 伴随矩阵 定义为

$$A^* := egin{pmatrix} A_{1,1} & \dots & A_{j,1} & \dots & A_{n,1} \ dots & & dots & & dots \ A_{1,i} & \dots & A_{j,i} & \dots & A_{n,i} \ dots & & dots & & dots \ A_{1,n} & \dots & A_{j,n} & \dots & A_{n,n} \end{pmatrix}$$

其中 $A_{i,j}$ 为 $a_{i,j}$ 的代数余子式.