GT Number

Name:			GT Numb	er:	
Problem	Points	Lost	Gained	Running Total	TA
1	1				
2	10				
3	14				
4	15				
5	15				

You may ask for clarification but you are ultimately responsible for the answer you write on the paper. If you make any assumptions state them.

Please look through the entire test before starting. WE MEAN IT!!!

Illegible answers are wrong answers.

10

15

10

10

100

Show your work in the space provided to get any credit for problem-oriented questions.

Good luck!

6

7

8

9

Total

1. (1 point, 1 min)

The newly named chair of the School of Computer Science:

- (a) Annie Anton
- (c) Zvi Galil
- (e) Charles Isbell

- (b) Lance Fortnow
- (d) Ellen Zegura
- (e) George Burdell

Nar	me:GT Number:
	ry management
	10 points, 10 min)
	(4 points)
	The number of virtual pages is defined by the ratio:
	/·
	The number of physical frames is defined by the ratio:
	The page table is set up by the
	The page table is looked up on every memory access by the
	(2 points) (circle the right choice) Given 32-bit virtual address; 28-bit physical address; 4 KB page size; 8 processes currently executing, the number of page tables in memory is:
	1. 4 2. 2 ²⁰ 3. 8 4. 28 5. 12 6. 2 ¹⁶ 7. 32
	 (2 points) One scheme to implement a TRUE LRU policy for page replacement by the OS is the following: Have a hardware stack wherein each entry of the stack holds the page frame number accessed by the CPU; CPU updates the stack on each memory access Have an instruction in the ISA for the OS to read the LRU page frame from the stack Why is this idea infeasible to implement?
d)	(2 points) How is the reference bit per page table entry used in implementing an approximate LRU using the second chance page replacement policy (limit to 3 or 4 concise bullets please)?

Name:		GT Nu	mber:
- It is by - It has a bytes of	s the following of the following of the state of the stat	d the address i	s 32 bits long (little endian) ith each data block holding 64
Part3	 Part 2	Part	0
The above fig	ure shows how th	e address is di	ivided into three parts to perform nd the number of bits associated (number of bits)
Part 2:		_ (name)	(number of bits)
Part 3:		(name)	(number of bits)
2) The cacle to local reference brought 3) At some reference brought	way set associated sesses memory local miss. The is not full. The tions X, Y, Z, Pose to location X from memory, the later point in the toler to location X from memory, the firm memory is the firm memory	ive cache. ation X for the The CPU has made, Q, and R in the again. If X en this is a time the cache again. If X is a this is a en this is a	city", "compulsory", "conflict") first time. This is a de a number of accesses including hat order. CPU now makes a is not in the cache and has to be miss. is full. The CPU makes a s not in the cache and has to be miss. physically tagged cache. The
	ddress is 32 bit		
	/PN	Page offset	

The cache is **direct mapped** with **512 KB** and a **block size** of **64 bytes**. How many low order bits of the VPN should remain unchanged in the translation process for the above cache to work correctly?

Name:	GT Number:
-------	------------

Input/Output and Disk

- 4. (15 points, 20 min)
- a) (10 points) Design a DMA controller for a disk drive. You have to design only the way the controller interfaces with the CPU and the memory bus. You don't have to worry about the device electronics side of the controller. Recall that a disk address is a tuple: {cylinder#, platter#, track#, sector#). Clearly show the registers in the controller for interfacing to the CPU and the memory, describe succinctly their purpose, and how the CPU communicates with the controller and vice versa, and how the data transfer is effected by the controller.

Nan	ne:GT	
b)	(5 points) Given the following specifications for a disk drive: 512 bytes per sector 400 sectors per track 6000 tracks per surface 3 platters Rotational speed 15000 RPM	
What	is the transfer rate of the disk?	

File Systems

5. (15 points, 15 min)
a) (6 points)
Notes:

- Unix "touch <file>" command creates a zero byte new file or updates the timestamp of the named file
- Unix "ln <file1> <file2>" command creates a hard link
- Unix "ln -s <file1> <file2>" command creates a sym link
- Unix "rm <file>" removes the named file

In the following table, assume **none of the files exist to start with** in the current directory. Fill in the table. The reference count in the table pertains to the i-node that is affected by the command in that row. If a new i-node is created, show the old reference count for that i-node as 0.

Command	New i-node created	Reference	ce count
	(yes/no)	old	new
touch f1			
ln f1 f2			
ln f2 f3			
rm f1			
ln -s f2 f4			
ln f4 f5			

Use this area for rough work for this question.

Name:	GT Number:

b) (9 points)

Using C like syntax, write the i-node data structure. Note that an i-node may represent a directory, a data file, or a symbolic link. If it represents a data file it has the structure shown in the figure: it could be a top level i-node, or an intermediate index block as shown in the figure.

Name:	GT Number:
-------	------------

Parallel Systems

6. (10 points, 10 min)

X = 0;

The Shared variable X is initialized to 0;

- T3 is waiting for X to become 2
- T2 is waiting for X to become 1
- T1 changes X to 1 and signals T2
- T2 changes X to 2 and signals T3

Write the code snippets that implement the above synchronization among the threads T1, T2, and T3.

Note:

- Busy waiting solution gets NO CREDIT.
- Loss of concurrency **except when needed** to implement the required synchronization will not get full credit.
- Of course you have to ensure there are no deadlocks.

Name: GT Number:

- 7. (15 points, 20 min)
- a) (7 points) Given mutex lock m, and condition variable c, the following events happen in the order of occurrence shown below:
 - T1 executes mutex-lock(m); assume no one has the lock so T will win
 - T1 executes cond-wait(c, m)
 - T2 executes mutex-lock(m)
 - T3 executes mutex-lock(m)
 - T2 executes cond-signal(c)

Show the waiting queues associated with m and c.

- Clearly, show which thread is currently holding the mutex lock, and which threads are in the waiting queue for the lock.
- Note that if a thread is waiting on a condition variable, you should also show the mutex lock it needs for resuming execution.
- (i) State of waiting queues before T2 executes cond-signal

(ii) State of waiting queues after T2 executes cond-signal

Name:_			GT	Number: _		 -
o) (3 pc Fill i		lanks using a s	subset of	the followin	g phrases	exactly once.
Hardwa	re	operating system	m	page table	cache	registers
In an		t supports hard is re				e copies of the
	emory 1	ocation in the	different is respon	caches are sible for en	kept consi suring tha	istent; the at the TLBs in
		processors are all the threads	_			is
(5 pc						and abased
memory		core cache-cone	erent proc	essor with p	er core ca	ache and shared
_	he cohe	rence protocol:				
		write by a core present)	e to its c	ache invalid	ates the <u>r</u>	peer core cached
		_	writ	e-back		
		cached copy in			to date t	chan memory;
						will supply the
		its copy is mo	ore up to	date compare	d to memor	cy)
Inı	tially:	caches are empt				
		ry locations: A	_	33: B conta	ins 15	
(us		-				I if the cached
con	tent is	invalid)				
_						
⊥.			ad A		£	
		he contents of cache	Core 2			
A	COLE 1	. Cacile	COLE 2	Cacile	Memor	У
II.		executes: Sto				
		he contents of		<u>-</u> _		_
A	Core 1	cache	Core 2	cache	Memor	У
А						
III	. Core	1 executes: St	ore #22,	B (write imm	ediate val	lues 22 into B)
		he contents of				
		cache	Core 2		Memor	
В						
	~ ^					
IV.			ad B	a and mamazzz	for momor	ar addmaga D
		he contents of	Core 2			
В	COLE 1	cache	COLE Z	Cacile	Memor	Y
_			1		ı	
V.	Core 2	evicts A from i	its cache			
	Show t	he contents of	the cache	s and memory	for memor	ry address A
		cache	Core 2		Memor	
\mathbf{A}						

Name: GT Number:	
------------------	--

Networking

- 8. (10 points, 10 min)
- a) (2 points) How many IP Networks are there in the following Figure? Assume that the top 24 bits of the 32-bit address name an IP network.

- b) (3 points) Give three short reasons to justify the need for a separate network layer in the protocol stack.
- •
- •
- •
- c) (5 points)
 - A packet header consists of the following fields:

Destination address 8 bytes
Source address 8 bytes
Number of packets in message 4 bytes
Sequence number 4 bytes
Actual packet size 4 bytes
Checksum 4 bytes

Assuming that the maximum packet size is 1574 bytes, what is the maximum payload in each packet?

Name:	GT Number:			
9. (10 points, 10 mins) Given the following:				
Sender overhead	= 1 ms			
Message size	= 200,000 bits			
Wire bandwidth	= 100,000,000 bits/sec			
Time of flight	= 2 ms			
Receiver overhead	= 1 ms			

Compute the observed bandwidth. Recall that the message transmission time consists of sender overhead, time on the wire, time of flight, and receiver overhead. Ignore ACKs.