2/2

2/2

2/2

2/2

2/2

2/2

0/2

2/2

2/2

2/2

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas) : □0 □1 ■2 □3 □4 □5 □6 □7 □8 □9
ETOURNEAU.	
Cysil	
plutôt que cocher. Renseigner les champs d'ident réponses justes. Toutes les autres n'en ont qu'u restrictive (par exemple s'il est demandé si 0 est r de corriger une erreur, mais vous pouvez utilis pénalisent; les blanches et réponses multiples val	e, ni dans les éventuels cadres grisés « ﴿ ». Noircir les cases ité. Les questions marquées par « » peuvent avoir plusieurs ine; si plusieurs réponses sont valides, sélectionner la plus nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible ser un crayon. Les réponses justes créditent; les incorrectes lent 0. Applet: les 5 entêtes sont +128/1/xx+···+128/5/xx+.
Q.2 Soit L un langage sur l'alphabet Σ . Si $\overline{L} = 0$	Ø alors
\Box $L = \emptyset$	$\Box L = \{\varepsilon\} \qquad \qquad \blacksquare L = \Sigma^*$
Q.3 Pour $L_1 = (\{a\}\{b\})^*, L_2 = \{a, b\}^*$:	
$\Box L_1 = L_2 \qquad \Box L_1 \supseteq L_2$	
	$L_2 \qquad \square \qquad L_1 \not\supseteq L_2 \qquad \blacksquare \qquad L_1 \subseteq L_2$
Q.4 Que vaut $\{\varepsilon, a, b\} \cdot \{a, b\}$?	
\blacksquare $\{a,b,aa,ab,ba,bb\}$ \Box $\{aa,bb\}$	
Q.5 Que vaut <i>Pref</i> ({ab, c}):	
	\square \emptyset \square $\{b, \varepsilon\}$ \square $\{b, c, \varepsilon\}$
Q.6 Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$	
	$\{a\}\{b\}^* \cup \{b\}^* \qquad \Box \qquad \{a,b\}^*\{b\}\{a,b\}^*$
	$\{b\}\{a\}^* \cup \{b\}^*$
Q.7 Pour toute expression rationnelle e , on a \emptyset	$0+e\equiv e+\emptyset\equiv\emptyset.$
•	aux 🗌 vrai
Q.8 Pour toutes expressions rationnelles e, f, c	on a $(ef)^*e \equiv e(ef)^*$.
□ v	rai 🛮 faux
Q.9 Pour $e = (a + b)^* + \varepsilon$, $f = (a^*b^*)^*$:	
	(f) \square $L(e) \nsubseteq L(f)$ \square $L(e) \subseteq L(f)$
Q.10 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L \subseteq \Sigma$	Σ^* , on a $\{a\}.L = \{a\}.M \implies L = M$.
☐ fa	aux 🔣 vrai

Q.11 L'expression Perl '[-+]?[0-9]+(,[0-9]+)?(e[-+]?[0-9]+)' n'engendre pas :

☐ Aucune de ces réponses n'est

correcte.

2/2 ☐ '42,4e42' ☐ '42,42e42' '42,e42' ☐ '42e42' Pour qu'un mot soit accepté par un automate fini non-déterministe il faut qu'il mène l'automate de tous les états initiaux à un état final X d'un état initial à un état final 2/2 de tous les états initiaux à tous les états finaux d'un état initial à tous les états finaux L'automate de Thompson de l'expression rationnelle $(ab)^*c$ □ ne contient pas de cycle est déterministe a 8, 10, ou 12 états 2/2 n'a aucune transition spontanée Quel automate reconnaît le langage décrit par l'expression ((ba)*b)* Q.14 2/2 ε Quel est le résultat d'une élimination arrière des transi-Q.15 tions spontanées? 2/2 Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents? -1/2

Q.17 Le langage $\{ \mathbf{\Sigma}^n \mathbf{A}^n \mid \forall n \in \mathbb{N} \}$ est

2/2	☐ rationnel ☐ fini ☐ vide 🙍 non reconnaissable par automate fini
0/2	 Q.18 A propos du lemme de pompage ☑ Si un langage ne le vérifie pas, alors il n'est pas rationnel ☑ Si un langage le vérifie, alors il est rationnel ☑ Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel Q.19 Si L₁ ⊆ L ⊆ L₂, alors L est rationnel si :
2/2	$\ \ \ \ \ \ \ \ \ \ \ \ \ $
2/2	Q.20 Quelle séquence d'algorithmes teste l'appartenance d'un mot au langage d'une expression rationnelle? ☐ Thompson, déterminisation, évaluation. ☐ Thompson, déterminisation, élimination des transitions spontanées, évaluation. ☐ Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation. ☐ Thompson, déterminisation, Brzozowski-McCluskey.
	Q.21 Déterminiser cet automate : $\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b}$
2/2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Q.22 Duelle(s) opération(s) préserve(nt) la rationnalité?
0/2	☑ Pref ☑ Transpose ☑ Sous – mot ☑ Suff ☑ Fact ☐ Aucune de ces réponses n'est correcte.
	Q.23 & Quelle(s) opération(s) préserve(nt) la rationnalité?
0/2	 ☑ Union ☑ Intersection ☑ Complémentaire ☑ Différence ☑ Différence symétrique ☐ Aucune de ces réponses n'est correcte.
	Q.24 Soit Rec l'ensemble des langages reconnaissables par DFA, et Rat l'ensemble des langages définissables par expressions rationnelles.
2/2	\square Rec \supseteq Rat \boxtimes Rec $=$ Rat \square Rec $\not\subseteq$ Rat \square Rec \subseteq Rat
	Q.25 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il
2/2	 □ a des transitions spontanées □ est déterministe ☒ accepte le mot vide □ accepte un langage infini
	Q.26 On peut tester si un automate déterministe reconnaît un langage non vide.
0/2	☐ Seulement si le langage n'est pas rationnel ☐ Oui ☐ Cette question n'a pas de sens ☐ Non
	Q.27 Si L_1, L_2 sont rationnels, alors:
2/2	$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) \text{ aussi} \qquad \Box \qquad L_1 \subseteq L_2 \text{ ou } L_2 \subseteq L_1 \qquad \Box \qquad \bigcup_{n \in \mathbb{N}} L_1^n \cdot L_2^n \text{ aussi}$ $\Box \qquad \overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2}$

	Q.28 Combien d'états a l'automate minimal qui accepte le langage $\{a,b\}^+$?
2/2	☐ 1 ☐ 3 ☑ 2 ☐ Il en existe plusieurs!
	Q.29 Si L et L' sont rationnels, quel langage ne l'est pas nécessairement?
0/2	
	Q.30 Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage.
0/2	✓ vrai en temps fini ☐ faux en temps infini ☐ vrai en temps constant ☐ faux en temps fini
	Q.31 & Quels états peuvent être fusionnés sans changer le langage reconnu.
2/2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Q.32 Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :
2/2	
	Q.33 Considérons \mathcal{P} l'ensemble des <i>palindromes</i> (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.
0/2	☐ Il existe un DFA qui reconnaisse 𝒫
· -	\square Il existe un ε -NFA qui reconnaisse ${\cal P}$ \square Il existe un NFA qui reconnaisse ${\cal P}$
	Q.34 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de \xrightarrow{a} ?
2/2	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
-1/2	Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0? $(ab^+ + a + b^+)(a(a + b^+))^*$ $(ab^+ + a + b^+)(a + b^+)$ $(ab^+ + a + b^+)a(a + b^+)$ $(ab^+ + a + b^+)a(a + b)^*$ $(ab^+ + a + b^+)a(a + b)^*$

2/2

Q.36 Sur $\{a,b\}$, quel est le complémentaire de b

Fin de l'épreuve.

89

+128/6/53+