Outline

- Binary search trees
- Selection trees

Merging k ordered list (run)

- Merged list must be ordered
- Need to find the smallest among k runs
 - -k-1 comparison per element
 - –Expensive if k is large
- Better solution: Selection Trees (winner or loser)

Winner Trees

- Ideas
 - –Compare O(log k) instead O(k)
- Complete binary tree
 - -Leaf: smallest from each run
 - -Non-leaf: winner among two children

Example of Winner Tree

• 6 is the smallest among 8 values

Example of Winner Tree

- Add next element from run 4 to the tree
 - Need comparisons between siblings

- Non-leaf is loser, push winner to the top
- No need to compare with siblings

Questions?

