IEEE 802.11 (WiFi)

Standard IEEE 802.11

- Famille de standards définissant les spécifications de la couche physique et MAC d'un <u>réseau local sans fil</u>
- Modes de fonctionnement
 - Mode ad-hoc
 - Permet de construire des réseaux spontanés à couverture très réduite
 - Pas de protocole de routage défini dans la norme
 - Communication directe entre stations dans une zone réduite
 - Independent Basic Service Set (IBSS)
 - groupe de stations utilisant les mêmes fréquences radio et à portée radio les unes des autres
 - IEEE 802.11S

Mode infrastructure

Mode Infrastructure

- Présence d'un point d'accès (Access Point, AP)
- Permet de compléter un réseau filaire existant en offrant un accès sans fil autour des points d'accès
- Nœud connecté à l'AP : station (STA)

Mode infrastructure : terminologie

- Point d'accès (AP)
- Équipement central du mode infrastructure qui fédère autour de lui des terminaux sans fil à sa portée radio
- Généralement relié à un réseau filaire et supporte plusieurs fonctions
 - handover,
 - gestion énergie
 - ...
- Basic Service Set (BSS)
 - Groupe de nœuds (1 AP et les terminaux à sa portée radio) utilisant les mêmes fréquences radio
- Dans un BSS, tout le trafic passe par l'AP
- Un BSS peut supporter théoriquement jusqu'à 100 stations
- 1 BSS = 1 cellule = 1 point d'accès

Mode infrastructure : terminologie

- Extended Service Set (ESS)
 - Regroupement de BSS
 - Permet d'étendre la zone de couverture du réseau sans fil
 - Les communications entre stations de BSS différents, mais appartenant au même ESS, est effectué de manière transparente
 - Vision d'un même réseau pour les stations
 - Gestion du *handover* (*roaming* dans la terminologie 802.11)
- Ceci est rendu possible grâce à des fonctionnalités accrues au niveau de l'AP et au système de distribution qui assurent l'acheminement des trames

Mode infrastructure : terminologie

- Distribution System (DS)
 - Interconnecte plusieurs BSS
 - Par le biais des AP
 - Permet de former un unique réseau
 - Architecture protocolaire du DS non communiquée par IEEE 802.11
 - La norme définit par contre explicitement les services qu'il doit fournir

- Portal
 - équipement (pont) qui permet d'accéder à un réseau local 802.x
 - En général un réseau Ethernet

Services et fonctions 802.11

Architecture protocolaire

- MAC
 - Contrôle d'accès, fragmentation, chiffrement
- MAC Management
 - Synchronisation d'horloges, connexion au réseau, handover, gestion de l'énergie, Message Information Base (MIB)
- Physical Layer Convergence Protocol (PLCP)
 - Écoute de la porteurse
 - Adaptation des unités de données MAC à PMD
- Physical Medium Dependent (PMD)
 - Modulation et codage en ligne
- PHY Management
 - Sélection du canal de transmission, MIB
- Station Management
 - Coordination de toutes les fonctions de gestion

Services et fonctions 802.11

- Deux groupes de services
 - Services de base
 - ensemble de servies supportés par toute station 802.11
 - Services complémentaires
 - offerts par les point d'accès (valable pour le mode infrastructure)
- Services de base :
 - Services d'acheminement de trames : 2 types prévus
 - Service sans garantie (au mieux)
 - Service pour des données temps critique (optionnel)
 - Authentification / désauthentification :
 - Permet d'établir l'identité d'une station à une autre
 - Chiffrement des messages

Services et fonctions 802.11

- Services complémentaires (offerts par le point d'accès)
 - Association (connexion au réseau) / Dé-association
 - Une station qui souhaite intégrer un réseau sans fil avec infrastructure doit s'associer avec un AP
 - L'association permet à l'AP de connaître l'adresse de la station
 - utilisée par l'AP pour l'acheminement des trames
 - L'association intègre la station au BSS
 - Dé-association : service permettant de rompre cet attachement
 - Distribution
 - Permet d'aiguiller les trames dans le réseau
 - Si la destination est dans le même BSS, la trame est directement transmise sur le lien sans fil
 - Sinon, elle est transmise via le DS grâce au service intégration
 - Intégration
 - Permet à deux AP de communiquer au travers du DS

Famille des standards 802.11

- Deux bandes de fréquences utilisées
 - 2.4 Ghz pour 802.11 b/g
 - 5.1 Ghz pour 802.11 a
- Une troisième bande de fréquence (IR) est définie dans le standard mais il n'existe pas de produit commerciaux l'utilisant

Couche physique

Couche physique 802.11: versions

- Frequency Hopping Spread Spectrum (FHSS)
 - 79 canaux de 1Mhz de largeur de bande
 - 3 ensembles de 26 séquences soit 78 séquences de sauts possibles
 - Modulation GFSK (*Gaussian shaped Frequency Shift Keying*) à 2/4 fréquences (1 ou 2 Mb/s)
- Direct Sequence Spread Spectrum (DSSS)
 - Modulation Differential Binary Phase Shift Keying (DBPSK) pour 1Mb/s
 - Modulation Differential Quadrature PSK (DQPSK) pour 2Mb/s
- Puissance maximale d'émission
 - 100 mW (Europe)
 - 1W (USA)

Couche physique 802.11b DSSS

- Solution la plus répandue actuellement même si la solution 802.11g prend de l'ampleur
- Canaux
 - Découpage en 14 canaux dont 13 sont utilisables en Europe
 - Les canaux recouvrant sont inexploitables simultanément
 - 3 canaux ont des intersections vides permettant de faire cohabiter 3 BSS avec peu de risque d'interférences

Couche physique 802.11b DSSS

- La sous couche physique PLCP
 - Adapte les unités de données MAC à la couche PMD
 - Indique à la sous-couche MAC si le medium est libre ou pas
 - Clear Channel Assessment (CCA)
 - Indique aux autres stations le débit d'émission avec lequel la trame de niveau MAC sera transmise
 - 2 formats de trames sont définis
 - format long
 - format court
 - Exemple pour le format Long

Couche physique 802.11b DSSS

- *Synchronization* : 010101...
- *Start Frame Delimiter* (SFD) : 1111001110100000
- Signal
 - Débit de la charge utile (oA: 1 Mbit/s DBPSK; 14: 2 Mbit/s DQPSK), ..
- Service : pour utilisation ultérieure, oo: conforme à 802.11
- Length : Taille de la charge utile
- Header Error Check (HEC)
 - protection des champs : signal, service et length
- Remarque : le *preamble* et *header* sont toujours transmis à 1Mbps

Couche physique 802.11a OFDM

- Canaux
 - 8 canaux de 20 Mhz sont séparés
 - Chaque canal contient 52 sous canaux de 300Khz utilisables en parallèle
 - Débits de 6 à 54Mb/s
 - Modulation BPSK: 0,125 Mb/s par sous canal → 6Mb/s
 - Modulation QAM84: 1,124 Mb/s par sous canal → 54Mb/s

Fréquence médiane = 5180 + 20*numéro de canal [MHz]

Couche physique 802.11a OFDM

La sous couche PLCP

– Même principe que pour 802.11b

^{* :} Pour un espacement inter-canal de 20MHz (autres valeurs d'espacement possibles : 10MHz et 5MHz). Débits obligatoires : 6, 12 et 24Mb/s. Valeur spécifié par le champ signal

Sous-couche MAC

MAC 802.11

- Fonctions MAC de 802.11 détaillées ci-dessous :
 - Contrôle d'accès au canal
 - Adressage
 - Fragmentation
 - Synchronisation
 - Connexion au réseau/point d'accès
 - Processus de sondage (*probing*)
 - Processus d'authentification
 - Processus d'association
 - Gestion du handover
 - Gestion d'énergie

Plan de données

Plan de gestion

MAC 802.11 : contrôle d'accès au canal

- Deux types de service de communication de niveau MAC
 - Service d'acheminement *Best effort*, i.e. sans garantie :
 - Service avec contention
 - Avec possibilité de diffusion et diffusion limitée (multicast)
 - Service d'acheminement pour données critiques, supposé offrir des garanties sur les délais et débits (optionnel)
 - Service sans contention
- Pour cela, deux modes d'accès sont définis
 - Distributed coordination function (DCF)
 - Point coordination function (PCF) (optionnel)
- Ces deux modes d'accès sont exécutés cycliquement

MAC 802.11 : contrôle d'accès au canal

Structure temporelle

- Beacon
 - Trame de gestion
 - Transmission quasi périodique
- PCF et DCF
 - Échange de plusieurs trames avec garanties différentes
 - Échange unicast : trame de données suivie d'une trame d'acquittement

MAC 802.11: espaces inter-trames

- Pour réglementer les échanges entre trames de contrôle et de données et entre échanges en mode PCF et en mode DCF, plusieurs espaces inter-trames (*InterFrame Spacing*) sont définis, parmi lesquels :
 - SIFS (Short IFS): pour les échanges atomiques
 - PIFS (PCF IFS): pour donner la priorité à un accès PCF sur DCF
 - DIFS (DCF IFS): pour accès normal en mode DCF
 - EIFS (*Extended* IFS): à utiliser à la place du DIFS lors d'une tentative d'accès suite à la détection d'une erreur de trame
 - SIFS < PIFS < DIFS < EIFS

MAC 802.11: espaces inter-trames

MAC 802.11: espaces inter-trames

- Valeurs des différents IFS dépendent de la couche physique
 - Ils sont exprimés en unités de « slot time » (comme dans Dix Ethernet)
 - SIFS et *slot time* sont explicitement spécifiés par la couche physique des différents standards 802.11, les autres sont déduits
 - PIFS = SIFS + Slot_Time
 - DIFS = SIFS + 2-Slot_Time
 - EIFS = SIFS + DIFS + temps de transmission de ACK au débit de 1Mbps

	802.11	802.11b	802.11a	802.11g
Slot time (μs)	50	20	9	9
SIFS (μs)	28	10	16	10/20

Mode Distributed Coordination Function (DCF)

- Technique d'accès pour le mode avec infrastructure et mode ad-hoc basée sur la technique CSMA/CA
 - Accès aléatoire suivant la méthode CSMA (écouter avant de transmettre)
 - Écoute pendant une durée fixe DIFS pour s'assurer que le canal est libre
 - Fonction écoute appelée Clear Channel Assessment (CCA)
 - Comparaison de la puissance de réception à un seuil (-82 dbm) + éventuellement (fonction du constructeur)
 - Détection du préambule de la trame physique 802.11
 - Network Allocation Vector (NAV) appelé aussi le virtual carrier sensing : fonction de réservation du canal pour une durée spécifiée dans une trame 802.11

- Pas de possibilité de détecter de collision
 - Phénomène d'éblouissement : puissance d'émission >> puissance de réception. Récupération du signal reçu compliquée !
- Détection de collision indirecte par non réception d'acquittement
 - Acquittement systématique des trames émises
- Évitement de collision (Collision Avoidance (CA)) dont le rôle est de réduire la probabilité des collisions
 - Procédure de *Backoff*

- La procédure de *Backoff*
 - Attendre que le canal reste libre pendant DIFS
 - La station continue à écouter le bus pendant une durée de temps aléatoire additionnelle appelée backoff time (temps de backoff);
 - Le backoff time est tiré aléatoirement sur l'intervalle [o, CW]
 - Contention Window (CW) exprimée en unités de slot time
 - $\bullet\,$ Initialisée après chaque transmission réussie à CW $_{\rm min}$
 - CW_{min} est fixée par le standard
 - 7 pour 802.11
 - 15 pour 802.11a/g
 - 31 pour 802.11b
 - SI le canal reste libre durant le backoff la station peut accéder au canal
 - SINON dès que le canal est occupé, le compteur du backoff est arrêté
 - Le décompte ne peut reprendre que lorsque le canal reste libre pendant DIFS: on parle de *defering*

: slots de backoff

- Après transmission de trame
 - Si la transmission échoue (i.e. pas d'ACK) on double la fenêtre de backoff (on parle de Backoff exponentiel)
 - CW=min{2*CW+1, CW_{max}}
 - CW_{max} est fixé dans la norme
 - 255 dans 802.11
 - 1023 dans 802.11 a/b/g

- La réservation de ressources avec RTS/CTS
 - Request To Send (RTS) émis avant de démarrer la communication par l'émetteur
 - Clear To Send (CTS) envoyé en réponse par le récepteur à destination de l'émetteur ainsi qu'à tous les voisins du récepteurs
 - Les nœuds voisins savent ainsi qu'une communication va avoir lieu et n'essaient pas de communiquer avec le récepteur pendant la durée de la transmission

- IFS et Atomicité
- Attente des nœuds à portée
 - À portée du RTS
 - A portée du CTS

- Le mécanisme RTS / CTS permet d'éviter certaines situations de terminaux cachés mais ne garantit pas qu'il n'y en aura jamais
 - Certaines situations problématiques peuvent encore survenir

- Avantages du mode RTS/CTS
 - Adapté au problème du nœud caché
 - Efficace en cas de surcharge du réseau
 - RTS trame courte => protocole plus réactif en cas de collisions entre trames RTS
- Inconvénients
 - Débits réduits à cause du trafic supplémentaire introduit
 - Ne peut être appliqué au trafic broadcast/multicast
- En pratique
 - Option peu utilisée
 - Si utilisée, activée lorsque la taille de la trame dépasse un certain seuil fixé par un paramètre protocolaire
 - RTS-Threshold (pouvant être configuré sur l'équipement)
 - Utilisée uniquement avant l'envoi de la première trame en cas de fragmentation

- Le mécanisme d'écoute virtuelle du médium ou Network Allocation Vector (NAV)
 - Chaque station maintient une estimation de la durée pendant laquelle le canal va être alloué à une autre station
 - Permet de différer ses tentatives d'accès au support.
 - Cette durée est annoncée dans les trames de données ainsi que par les trames RTS/CTS (champ d'en-tête prévu)
 - Pour une trame de données: durée depuis la transmission de la trame de donnée jusqu'à la fin de transmission de l'acquittement
 - Dans RTS/CTS: tient compte de toute la transaction
 - Transmissions RTS, CTS, Data, ACK
 - Les stations n'actualisent leur NAV que lorsque la valeur de la durée qu'ils viennent de recevoir dépasse celle qu'ils possèdent déjà

- Impact sur le débit utile au niveau IP
 - Exemple pour un lien 802.11b à 11Mb/s

Mode Point Coordination Function (PCF)

- Point Coordination Function
 - Possible uniquement en mode infrastructure
 - Proposé pour les applications avec contraintes sur délai de transfert et débit
 - L'AP prend le contrôle des transmissions en choisissant les stations qui peuvent émettre: *polling*
 - Chaque interrogation de station donne lieu à une et une seule transmission
 - Algorithme de polling non défini par le standard

Mode PCF

- Prise de parole par l'AP
- Transmissions séparées de SIFS
 - Pas de réponse après SIFS : rien à émettre par la STA

Format de trames

- Les trames 802.11
 - Différents types de trames:
 - Trames de contrôle
 - Trames de données
 - Trame de gestion
 - Particularités :
 - Numéro de séquence : nécessaire contre la duplication des trames à la suite de la perte de l'acquittement
 - 4 champs d'adresse : La sémantique des @1, .. @4 est dépendante des valeurs des champs *ToDS*, *FromDS*
 - Divers : durée de transmission, gestion de l'énergie, ..

byte	es 2	2	6		6		6	2		6	0-2312	4	
	Frame Control	Duration ID	on/ Addr 1	ess	Addre 2	ss Ad	dress 3	Sequen Contro		dress 4	Data	CRO	2
bits	2	2	4	1	1	1	1	4	1	1	1		
	Protocol version	Туре	Subtype	To DS	From DS	More Frag	Retry	Power Mgmt	More Data	WEP	Order		

Format de trames : adressage

- Illustration de l'utilisation des champs adresses
 - Pour les réseaux ad-hoc

Format de trames : adressage

• Réseau avec infrastructure: transmission dans le DS

Format de trames : adressage

• Réseau avec infrastructure: transmission vers l'AP

MAC et fragmentation

- Gestion de la fragmentation
 - La couche MAC 802.11 divise un MSDU (Mac SDU) trop grand en plusieurs fragments qui sont transmis individuellement
- Méthodologie
 - Transmission du MSDU est atomique
 - Chaque fragment est acquitté en ligne
 - Numérotation des fragments
 - En cas de non acquittement d'un fragment, retransmission instantanée du fragment

MAC et synchronisation

- Synchronisation des horloges des stations
 - Nécessaire pour assurer plusieurs fonctions :
 - Localiser le début du Mode PCF, Gestion de l'énergie, fixer les instants de sauts avec une couche physique type FHSS
 - Comment ? Synchronisation avec la trame *beacon* comportant une étiquette temporelle
 - En mode avec infrastructure : étiquette = valeur de l'horloge de l'AP

MAC et synchronisation

• En mode ad-hoc, chaque noeud essaye d'imposer la valeur de son horloge

TBTT: Target Beacon Transition Time

MAC et connexion à l'AP

- Connexion à l'AP en trois phases :
 - Sondage de l'environnement (*Scan*)
 - Authentification
 - Association
- La phase de sondage peut être de deux types
 - Scan passif
 - La station passe de canal en canal et stocke les trames beacon qu'elle reçoit
 - Scan actif
 - La station envoie une trame de *probe* sur chacun des canaux et attend une trame réponse
- Lorsque la station peut se joindre à plusieurs BSS
 - Dans ce cas, elle peut décider de se joindre à celui qui offre le signal le plus puissant
 - C'est typiquement le cas lorsqu'une station se déplace

MAC et connexion à l'AP

- La phase d'authentification :
 - Une fois un BSS choisi, la station s'authentifie auprès de l'AP
 - Permet de s'assurer que la station a le droit d'accéder au réseau sans fil
 - L'authentification peut
 - N'impliquer aucun contrôle (système ouvert) (définie dans le standard 802.11)
 - être basée sur l'identifiant du BSS/ESS
 - être basée sur l'adresse MAC
 - être basée sur la connaissance d'une clé partagée (définie par le standard 802.11)
 - être basée sur une architecture d'authentification plus complexe (extension du standard)

MAC et connexion à l'AP

- La phase d'association
 - Requête d'association suivie d'une réponse d'association
 - Permet d'intégrer la station dans le BSS et d'échanger des paramètres protocolaires
 - TBTT
 - Liste des débits qui doivent être supportés par la station pour se joindre au BSS
 - •

MAC et handover

- Le handover transparent
 - Prenons un terminal T associé à l'AP A et souhaitant rejoindre l'AP C
 - 1) Requête de ré-association avec l'AP C
 - 2) AP C confirme l'association et intègre le terminal dans son BSS
 - 3) AP C diffuse sur le système de distribution l'adresse de T comme étant un terminal qui lui est associé
 - 4) AP A fait suivre à AP C les trames qui ne lui ont pas encore été envoyées et dé-associe le terminal de son BSS

MAC et énergie

- Principe
 - Désactiver le transceiver s'il n'est pas utilisé => station peut être dans l'état sleep/awake
- La station émettrice
 - a connaissance des stations à économie d'énergie
 - mémorise les paquets des stations dans l'état sleep
- Grâce à la fonction de synchronisation, les stations passent dans l'état awake simultanément
 - en mode infrastructure, pour récupérer
 - Traffic Indication Map (TIM)
 - liste des récepteurs de transmission unicast
 - Delivery Traffic Indication Map (DTIM)
 - liste des récepteurs de transmission multicast/broadcast

MAC et énergie

MAC et énergie

- en mode Ad-hoc
 - Ad-hocTraffic Indication Map (ATIM) de chaque nœud possédant des trames pour des stations avec économie d'énergie
 - Liste des récepteurs de transmission unicast
 - Une fenêtre temporelle ATIM est prévue pour permettre à toutes les stations d'annoncer leur ATIM

Extensions à IEEE 802.11

- 802.11a,b,g déjà traités
- 802.11e: Amendement de la couche MAC orienté QoS
- 802.11f: Gestion de la mobilité
 - Définition du protocole IAPP (Inter-Access Point Protocol)
- 802.11h: Gestion de spectre pour 802.11a
 - Cette extension a été lancée pour répondre au futur problème de la sur-utilisation de la bande 5 Ghz
 - Principalement, 2 nouvelles fonctions sont implémentées:
 - La sélection dynamique de fréquence (DFS: *Dynamic Frequency Selection*) qui permet à un AP de choisir la bande de fréquence qui offrirait les meilleures performances
 - Le contrôle de puissance (TPC: *Transmit Power Control*) qui permet à l'émetteur de contrôler sa puissance et d'émettre qu'à la puissance minimum nécessaire (minimisant les interférences)
- 802.11i: Mécanismes pour améliorer la sécurité offerte par la couche MAC 802.11
 - TKIP améliore WEP tout en restant compatible avec les systèmes à base de WEP
 - AES offre une méthode de chiffrement plus sécurisée
- 802.11k: Méthodes pour mesurer la qualité du canal
 - Définir des mesures et des formats de trames permettant à une station de mesurer/évaluer la qualité d'un canal radio
- 802.11n: Haut débit 100Mbps et plus
 - Extension au niveau des couches physique et MAC pour offrir 100Mbit/s au niveau du MAC SAP
 - Utilisation d'antennes MIMO (*Multiple Input Multiple Output*), un débit théorique allant jusqu'à 600Mbps
- 802.11p: Communications inter-véhicules et panneaux
- 802.11s: réseaux maillés sans fil