Dynamic Programming Dynamics:

 $\bullet x_{k+1} = f_k(x_k, u_k, w_k), k = 0, 1, ..., N-1$ where $x_k \in S_k, u_k \in U_k(x_k)$, and $w_k \backsim p_{w_k|x_k,u_k}$ with $\begin{aligned} p_{w_k|x_k,u_k,*} &= p_{w_k|x_k,u_k}, \forall * \in \{x_l,u_l,w_l|l < k\} \\ &\bullet \text{ admissible policy:} \pi = (\mu_0(.),\mu_1(.),...,\mu_{N-1}(.)) \end{aligned}$

 $u_k = \mu_k(x_k), u_k \in U_k(x_k), k = 0, 1, ..., N - 1$

Expected Cost:

Given $x \in S_0$, the expected closed loop cost of starting at $x_0 = x$ associated with policy π is: $J_{\pi}(x) =$ $\mathop{E}_{(X_1,W_0|x_0=x)}[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k,\mu_k(x_k),w_k)],$

where $X_1 = (x_1, ..., x_N), W_0 = (w_0, ..., w_{N-1})$ Objective:

Construct an optimal policy π^* s.t. $\forall x \in S_0$:

$$\pi^* = \underset{\pi \in \Pi}{\operatorname{argmin}} J_{\pi}(x)$$

*Open loop control can never give better performance than closed loop control $(u_k \text{ depends on } x_k)$ since open loop control is a special case of closed loop control. In the absence of disturbances w_k , the two give theoretically the same performance.

Consider a system with N_x distinct states and N_u distinct control inputs: There are a total of N_u^N different open loop strategies. There are a total of $N_u(N_u^{N_x})^{N-1}$ different closed loop strategies.

Transition Probability:

$$\begin{array}{l} P_{ij}(u,k) = P(x_{k+1} = j | x_k = i, u_k = u) = \\ p_{x_{k+1} \mid x_k, u_k}(j \mid i, u) = p_{w_k \mid x_k, u_k}(j \mid i, u) = \\ \sum_{\bar{w}_k \mid f_k(i, u, \bar{w}_k) = j} p_{w_k \mid x_k, u_k}(\bar{w}_k \mid i, u) \end{array}$$

Principle of Optimality: Let π^* be an optimal policy. Consider the subproblem whereby we are at

$$x \in S_i$$
 at time i and we want to minimize:

$$E_{X_{i+1},W_i|x_i=x}[g_N(x_N) + \sum_{k=i}^{N-1} g_k(x_k,\mu_k(x_k),w_k)]$$

where $X_{i+1} = (x_{i+1}, ..., x_N) and W_i = (w_i, ..., w_{N-1}).$ Then the truncated policy $\pi^* = (\mu_i^*(.), ..., \mu_{N-1}^*(.))$ is optimal for this problem

DPA:

Initialization: $J_N(x) = g_N(x), \forall x \in S_N$ Recursion:

$$J_k(x) = \min_{u \in U_k(x)(w_k|x_k=x,u_k=u)} E[g_k(x_k,u_k,w_k) + \frac{E}{u_k(x_k,u_k)}]$$

 $J_{k+1}(f_k(x_k, u_k, w_k)), \forall x \in S_k, k = N-1, ..., 0$ *We calculate cost-to-go J_k with expected value, where we don't consider variance $Var(x) = E(x^2) - E(x)^2$ *Computation: $N_u N_x (N-1) + N_u$ operations Time Lags: Assume the dynamics becomes:

$$x_{k+1} = f_k(x_k, x_{k-1}, u_k, u_{k-1}, w_k)$$

Let
$$y_k = x_{k-1}$$
, $s_k = u_{k-1}$, $\tilde{x}_k = (x_k, y_k, s_k)$

$$\tilde{x}_{k+1} = \begin{bmatrix} x_{k+1} \\ y_{k+1} \\ s_{k+1} \end{bmatrix} = \begin{bmatrix} f_k(x_k, y_k, u_k, s_k, w_k) \\ x_k \\ u_k \end{bmatrix} =$$

 $\tilde{f}_k(\tilde{x}_k, u_k, w_k)$

Correlated Disturbances

If $w_k = C_k y_{k+1}, y_{k+1} = A_k y_k + \xi_k$, where $\xi_k, k = 0, ..., N - 1$ are independent random variables. • Let the augmented state vector $\tilde{x}_k = (x_k, y_k)$. Note

that now y_k must be observed at time k, which can be done using a state estimator. $\bullet \ \tilde{x}_{k+1} = \begin{vmatrix} x_{k+1} \\ y_{k+1} \end{vmatrix} =$

$$\begin{bmatrix} f_k(x_k, u_k, w_k = C_k(A_k y_k + \xi_k)) \\ A_k y_k + \xi_k \end{bmatrix} = \tilde{f}_k(\tilde{x}_k, u_k, \xi_k)$$

Forecast

At the beginning of each period k, we receive a prediction y_k (forecast), we know a collection of distributions $\{p_{w_k|y_k}(.|.),...\}$ and priori The forecast itself has a given a-priori probability distribution $p(\xi_k)$ with $y_{k+1} = \xi_k$. y_{k+1} : this event happens on day k+1, ξ_k : the forecast about y_{k+1} on day k

• New state vector: $\tilde{x}_k = (x_k, y_k)$, new disturbance:

$$\begin{aligned} w_k &= (w_k, \xi_k) \\ \tilde{x}_{k+1} &= \begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} f_k(x_k, u_k, w_k) \\ \xi_k \end{bmatrix} = \tilde{f}_k(\tilde{x}_k, u_k, \xi_k) \bullet \\ \text{The dynamics becomes: } J_k(\tilde{x}) &= \min_{u \in U_k(x)} \end{aligned}$$

$$\begin{split} & & E \\ & (w_k|y_k = y) [g_k(x, u, w_k) + E [J_{k+1}(f_k(x, u, w_k), \xi_k)]] \\ & = \min_{u \in U_k(x)(w_k|y_k = y)} E [g_k(x, u, w_k) + \\ & u \in U_k(x)(w_k|y_k = y) \end{split}$$

 $\sum_{i=1}^{m} p_{\xi_k}(i) J_{k+1}(f_k(x, u, w_k), i)]$

 $\forall x \in S_k, y \in \{1, ..., m\}, k = N - 1, ..., 0$

Infinite Horizon Problem: as N goes infinity, let $\mathbf{V}_{\mathbf{l}}(.) = \mathbf{J}_{\mathbf{N}-\mathbf{l}}(.)$, V converges, so we have J(x) = $\min_{u \in U_k(x)(w|x=x,u=u)} [g(x,u,w) + J(f(x,u,w))], \forall x \in S,$

i.e. Bellman Equation -> optimal policy is time invariant

Stochastic Shortest Path Problem

• Dynamics:

 $x_{k+1} = w_k, P(w_k = j | x_k = i, u_k = u) = P_{ij}(u)$ (timeinvariant transition probability), $\forall x_k \in S, u \in U(i)$ U, S are finite, • Cost:

$$J_{\pi}(i) = \sum_{\substack{(X_1, W_0 | x_0 = i)}}^{E} \left[\sum_{i=0}^{N-1} g(x_k, \mu_k(x_k), w_k) \right]$$

Assumption 4.1 Cost-free termination state: State 0 is denoted as the termination state with S = 0, 1, ..., n, where

 $P_{00}(u) = 1, a(0, u, 0) = 0, \forall u \in U(0)$

A stationary policy μ is said to be **proper** if, when using this policy, there exists an integer m such that: $P(x_m = 0 | x_0 = i) > 0$

Assumption 4.2 proper policy: There exists at least one proper policy $\mu \in \Pi$. Furthermore, for every

improper policy μ' , the corresponding cost function $J_{i}(i)$ is infinity for at least one state $i \in S$.

*This assumption is required in order to guarantee that a unique solution to the BE exists for the SSP problem, which will then be the optimal cost.

*It ensures that a policy exists for which the probability of reaching the termination state goes to one as the time horizon N goes to infinity. It also ensures that the policies for which this does not occur incur infinite cost, which ensures that there are no non-positive cycles.

Theorem for SSP:*under assumption 4.1 and 4.2, 1. Given any initial conditions $V_0(1), ..., V_0(n)$, the sequence $V_l(i)$:

$$V_{l+1}(i) = \min_{u \in U(i)} (q(i, u) + \sum_{j=1}^{n} P_{ij}(u)V_{l}(j)), \forall i \in S^{+}(1)$$

where
$$S^+ = S \setminus 0$$
 and $q(i, u) = \mathop{E}_{(w|x=i, u=u)}[g(x, u, w)]$

converges to the optimal cost $J^*(i)$ for all $i \in S^+$ 2. The optimal cost satisfy the BE:

 $J^{*}(i) = \min_{u \in U(i)} (q(i, u) + \sum_{j=1}^{n} P_{ij}(u)J^{*}(j)), \forall i \in S^{+}$

- 3. The solution to the BE is unique
- 4. The minimizing u for each $i \in S^+$ of the BE gives an optimal policy, which is proper.

Value Iteration: (1) above, until a threshold for $||V_{l+1}(i) - V_l(i)||$ is reached

Policy Iteration: • initialization: Initialize with a proper policy $\mu^0 \in \Pi$

• Policy evaluation: Given a policy μ_h , solve for the corresponding cost $J_{\mu h}$ by solving the linear system

 $J_{\mu h}(i) = q(i, \mu^{h}(i)) + \sum_{j=1}^{n} P_{ij}(\mu^{h}(i)) J_{\mu h}(j), \forall i \in S^{+}$ • Policy Improvement: Obtain a new stationary policy μ^{h+1} :

 $\mu^{h+1}(i) = argmin(q(i, u) + \sum_{j=1}^{n} P_{ij}(u)J_{\mu h}(j)), \forall i \in$ S^+ , iterate until $J_{nh+1}(i) = J_{nh}(i)$ for all $i \in S^+$