Example Class 2

Propositional Logic

Outline

- Knights & Knaves
- Find the murderer's knife

The Island of Knights & Knaves

Knights never lie

Knaves always lie

Knave = a dishonest or unscrupulous man, in cards a jack.

Knights & Knaves I

Knights & Knaves I

- p="A is a knight"
- q="B is a knight"

р	q	¬p ∧ q
Т	Т	F
Т	F	F
F	Т	Т
F	F	F

- If A is a knight, then p = true, and ¬p ∧ q must be true.
- If A is a knave, then p=false, and $\neg p \land q$ must false.

Knights & Knaves I

A is a Knave!

Knights & Knaves II

Knights & Knaves II

- p="A is a knight"
- q="B is a knight"

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- If A is a knight, then p = true, and $p \rightarrow q$ must be true.
- If A is a knave, then p=false, and $p \rightarrow q$ must false.

Knights & Knaves II

B is a Knight!

Knights & Knaves III

Knights & Knaves III

- p="A is a knight"
- q="B is a knight"

р	q	¬p v q
Т	T	T
Т	F	F
F	Т	Т
F	F	Т

- If A is a knight, then p = true, and $\neg p \lor q$ must be true.
- If A is a knave, then p=false, and ¬p v q must false.

Knights & Knaves III

A is a Knight!

B is a Knight!

Knights & Knaves IV

p="A is a knight"

р	¬р
Т	F
F	Т

It's a paradox!

The Murder Clues

- 1. if the knife is in the store room, then we saw it when we cleared the store room;
- 2. the murder was committed at the basement or inside the apartment;
- 3. if the murder was committed at the basement, then the knife is in the yellow dust bin;
- 4. we did not see a knife when we cleared the store room;
- 5. if the murder was committed outside the building, then we are unable to find the knife;

6. if the murder was committed inside the apartment, then the knife is in the store room.

Where is the knife?

Statements

- 1. if the knife is in the store room, then we saw it when we cleared the store room;
- 2. the murder was committed at the basement or inside the apartment;
- 3. if the murder was committed at the basement, then the knife is in the yellow dust bin;
- 4. we did not see a knife when we cleared the store room;
- 5. if the murder was committed outside the building, then we are unable to find the knife;

6. if the murder was committed inside the apartment, then the knife is in the store room.

Where is the knife?

Applying Inference Rules

```
1. if s, then c;
```

- 2. **b** or **a**;
- 3. if **b**, then **y**;
- 4. not **c**;
- 5. if o, then u;
- 6. if a, then s

- 1. $s \rightarrow c$
- 2. b V a
- 3. $b \rightarrow y$
- 4. ¬c
- 5. $o \rightarrow u$
- 6. $a \rightarrow s$
- 7. $\neg s$ 1, 4; modus tollens
- 8. ¬a 6, 7; modus tollens
- 9. b 2, 8; case elimination
- ∴ y 3, 9; modus ponens

Summary

- You will need logic for serious matters, such as programming or relational databases.
- Logic can learnt through puzzles: Knights & Knaves, or Find the murderer's knife

