Cutting cuts

Cut down to 10 minutes.

Alakh Dhruv Chopra and Guillermo (Billy) Mosse January 9, 2019

Chennai Mathematical Institute and Universidad de Buenos Aires

What we want to prove

Lemma

(Basic Elimination Lemma) If $\frac{\alpha}{\rho+1}\Delta$ then $\frac{\omega^{\alpha}}{\rho}\Delta$.

What we want to prove

Lemma

(Basic Elimination Lemma) If $\left|\frac{\alpha}{\rho+1}\Delta\right|$ then $\left|\frac{\omega^{\alpha}}{\rho}\Delta\right|$.

Lemma

(Generalized Elimination Lemma) If $\left|\frac{\alpha}{\beta+\omega^{\rho}}\Delta\right|$ then $\left|\frac{\varphi_{\rho}(\alpha)}{\beta}\Delta\right|$.

Veblen functions (defined inductively)

Figure 1: The range (image) of the first Veblen functions. Not to scale.

- Zero ordinal: $\varphi_0(\alpha) := \omega^{\alpha}$
- Successor ordinals $\rho + 1$: $\varphi_{\rho+1}(\alpha) := Enum(FIX(\varphi_{\rho}), \alpha)$
- $\bullet \ \, \mathsf{Limit} \ \, \mathsf{ordinals} \ \, \lambda \colon \, \varphi_{\lambda}(\alpha) := Enum\big(\cap_{\rho < \lambda} FIX(\varphi(\rho)), \alpha \big)$

Veblen functions (defined inductively)

Figure 1: The range (image) of the first Veblen functions. Not to scale.

- Zero ordinal: $\varphi_0(\alpha) := \omega^{\alpha}$
- Successor ordinals $\rho + 1$: $\varphi_{\rho+1}(\alpha) := Enum(FIX(\varphi_{\rho}), \alpha)$
- $\bullet \ \, \mathsf{Limit} \ \, \mathsf{ordinals} \ \, \lambda \colon \, \varphi_{\lambda}(\alpha) := Enum\big(\cap_{\rho < \lambda} FIX(\varphi(\rho)), \alpha \big)$

Remark: If $\rho_1 < \rho_2$ then φ_{ρ_2} enumerates a subset of fixed points of φ_{ρ_1}

We want to prove that:

$$\left| \frac{\alpha}{\beta + \omega^{\rho}} \Delta \right|$$
 implies $\left| \frac{\phi_{\rho}(\alpha)}{\beta} \Delta \right|$

We want to prove that:

$$\left| \frac{\alpha}{\beta + \omega^{\rho}} \Delta \right|$$
 implies $\left| \frac{\phi_{\rho}(\alpha)}{\beta} \Delta \right|$

We induct on ρ .

We want to prove that:

$$\left| \frac{\alpha}{\beta + \omega^{\rho}} \Delta \right|$$
 implies $\left| \frac{\phi_{\rho}(\alpha)}{\beta} \Delta \right|$

We induct on ρ .

For $\rho=0$, we have $\left|\frac{\alpha}{\beta+\omega^0}\Delta\equiv\left|\frac{\alpha}{\beta+1}\Delta\right|$. By the Basic Elimination Lemma, we get $\left|\frac{\omega^\alpha}{\beta}\Delta\equiv\left|\frac{\varphi_0(\alpha)}{\beta}\Delta\right|$.

Now assume $\rho>0.$ If the last inference was not a cut, we have,

$$\left|\frac{\alpha_{\iota}}{\beta + \omega^{\rho}} \Delta_{\iota} \right|$$
 for $\iota \in I \Rightarrow \left|\frac{\alpha}{\beta + \omega^{\rho}} \Delta\right|$

with $\alpha_{\iota} < \alpha$ for all $\iota \in I$.

Now assume $\rho > 0$. If the last inference was not a cut, we have,

$$\left|\frac{\alpha_{\iota}}{\beta + \omega^{\rho}} \Delta_{\iota} \right|$$
 for $\iota \in I \Rightarrow \left|\frac{\alpha}{\beta + \omega^{\rho}} \Delta\right|$

with $\alpha_{\iota} < \alpha$ for all $\iota \in I$.

By the induction hypothesis, we get,

$$\left| \frac{\varphi_{\rho}(\alpha_{\iota})}{\beta} \Delta_{\iota} \right|$$
 for $\iota \in I$.

Now assume $\rho > 0$. If the last inference was not a cut, we have,

$$\left| \frac{\alpha_{\iota}}{\beta + \omega^{\rho}} \Delta_{\iota} \right|$$
 for $\iota \in I \Rightarrow \left| \frac{\alpha}{\beta + \omega^{\rho}} \Delta \right|$

with $\alpha_{\iota} < \alpha$ for all $\iota \in I$.

By the induction hypothesis, we get,

$$\left| \frac{\varphi_{\rho}(\alpha_{\iota})}{\beta} \Delta_{\iota} \right|$$
 for $\iota \in I$.

Since for every $\iota \in I$, $\alpha_{\iota} < \alpha$, we have $\varphi_{\rho}(\alpha_{\iota}) < \varphi_{\rho}(\alpha)$ (since the Veblen functions are strictly increasing). Thus, we get,

$$\left| \frac{\varphi_{\rho}(\alpha_{\iota})}{\beta} \Delta_{\iota} \right|$$
 for $\iota \in I \Rightarrow \left| \frac{\varphi_{\rho}(\alpha)}{\beta} \Delta\right|$

using the same inference.

Now assume $\rho > 0$. If the last inference was not a cut, we have,

$$\left| \frac{\alpha_{\iota}}{\beta + \omega^{\rho}} \Delta_{\iota} \right|$$
 for $\iota \in I \Rightarrow \left| \frac{\alpha}{\beta + \omega^{\rho}} \Delta \right|$

with $\alpha_{\iota} < \alpha$ for all $\iota \in I$.

By the induction hypothesis, we get,

$$\left| \frac{\varphi_{\rho}(\alpha_{\iota})}{\beta} \Delta_{\iota} \right|$$
 for $\iota \in I$.

Since for every $\iota \in I$, $\alpha_{\iota} < \alpha$, we have $\varphi_{\rho}(\alpha_{\iota}) < \varphi_{\rho}(\alpha)$ (since the Veblen functions are strictly increasing). Thus, we get,

$$\frac{|\varphi_{\rho}(\alpha_{\iota})|}{\beta}\Delta_{\iota} \text{ for } \iota \in I \Rightarrow \frac{|\varphi_{\rho}(\alpha)|}{\beta}\Delta$$

using the same inference.

Similarly, if the last inference was a cut of rank $<\beta$, a similar argument proves the statement (exercise!).

Now assume that the last inference was a cut of the form

$$\textstyle \left|\frac{\alpha_0}{\beta+\omega^\rho}\,\Delta,F\text{ and }\right|\frac{\alpha_0}{\beta+\omega^\rho}\Delta,\neg F\Rightarrow \left|\frac{\alpha}{\beta+\omega^\rho}\,\Delta\right.$$

for $\alpha_0 < \alpha$, and formula F such that $rank(F) \in [\beta, \beta + \omega^{\rho})$.

Now assume that the last inference was a cut of the form

$$\textstyle \left|\frac{\alpha_0}{\beta+\omega^\rho}\Delta,F\text{ and }\right|\frac{\alpha_0}{\beta+\omega^\rho}\Delta,\neg F\Rightarrow \left|\frac{\alpha}{\beta+\omega^\rho}\Delta\right|$$

for $\alpha_0 < \alpha$, and formula F such that $rank(F) \in [\beta, \beta + \omega^{\rho})$.

Let γ be an ordinal such that $rank(F) = \beta + \gamma$. We decompose γ into its Cantor Normal Form and get,

$$rank(F) = \beta + \gamma = \beta + \omega^{\sigma_1} + \ldots + \omega^{\sigma_n} < \beta + \omega^{\rho}$$

such that $\rho > \sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n$, and thus,

$$rank(F) < \beta + \omega^{\sigma_1}(n+1).$$

We now do a side induction on α . When $\alpha=0$, the claim is trivial.

We now do a side induction on α . When $\alpha = 0$, the claim is trivial.

Otherwise, we use the induction hypothesis on

$$\big|\frac{\alpha_0}{\beta+\omega^\rho}\Delta, F \text{ and } \big|\frac{\alpha_0}{\beta+\omega^\rho}\Delta, \neg F \Rightarrow \big|\frac{\alpha}{\beta+\omega^\rho}\Delta$$

to get

$$\big|\frac{\varphi_{\rho}(\alpha_0)}{\beta}\Delta, F \text{ and } \big|\frac{\varphi_{\rho}(\alpha_0)}{\beta}\Delta, \neg F. \Rightarrow \big|\frac{\varphi_{\rho}(\alpha_0)+1}{\beta+\omega^{\sigma_1}(n+1)}\Delta$$

by a cut.

We now do a side induction on α . When $\alpha = 0$, the claim is trivial.

Otherwise, we use the induction hypothesis on

$$\big|\frac{\alpha_0}{\beta+\omega^\rho}\Delta, F \text{ and } \big|\frac{\alpha_0}{\beta+\omega^\rho}\Delta, \neg F \Rightarrow \big|\frac{\alpha}{\beta+\omega^\rho}\Delta$$

to get

$$\Big|\frac{\varphi_{\rho}(\alpha_0)}{\beta}\Delta, F \text{ and } \Big|\frac{\varphi_{\rho}(\alpha_0)}{\beta}\Delta, \neg F. \Rightarrow \Big|\frac{\varphi_{\rho}(\alpha_0)+1}{\beta+\omega^{\sigma_1}(n+1)}\Delta$$

by a cut.

Since $\sigma_1 < \rho$, we apply the main induction hypothesis multiple times to get,

$$\left| \frac{\varphi_{\sigma_1}(\varphi_{\sigma_1}(\dots(\varphi_{\rho}(\alpha_0)+1)))}{\beta} \Delta = \left| \frac{\varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1))}{\beta} \Delta \right|.$$

We have:
$$\frac{|\varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1)))}{\beta}\Delta$$
.

And want to get:
$$\left| \frac{\varphi_{\rho}(\alpha)}{\beta} \Delta \right|$$
.

We have:
$$\frac{\varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1))}{\beta}\Delta$$
.

And want to get: $\frac{\varphi_{\rho}(\alpha)}{\beta}\Delta$.

Claim:
$$\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$$

We have:
$$\frac{|\varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1)))}{\beta}\Delta$$
.

And want to get: $\frac{\varphi_{\rho}(\alpha)}{\beta}\Delta$.

Claim:
$$\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$$

We have:
$$\frac{\varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1))}{\beta}\Delta$$
.

And want to get: $\frac{\varphi_{\rho}(\alpha)}{\beta}\Delta$.

Claim:
$$\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$$

When
$$n = 0$$
, $\varphi_{\sigma_1}^0(\varphi_{\rho}(\alpha_0) + 1) = \varphi_{\rho}(\alpha_0) + 1$

We have:
$$\frac{\varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1))}{\beta}\Delta$$
.

And want to get: $\frac{\varphi_{\rho}(\alpha)}{\beta}\Delta$.

Claim:
$$\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$$

When
$$n = 0$$
, $\varphi_{\sigma_1}^0(\varphi_{\rho}(\alpha_0) + 1) = \varphi_{\rho}(\alpha_0) + 1 < \varphi_{\rho}(\alpha)$.

We have: $\frac{\varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1))}{\beta}\Delta$.

And want to get: $\frac{\varphi_{\rho}(\alpha)}{\beta}\Delta$.

Claim: $\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$

By induction on n.

When $n=0, \varphi_{\sigma_1}^0(\varphi_{\rho}(\alpha_0)+1)=\varphi_{\rho}(\alpha_0)+1<\varphi_{\rho}(\alpha).$

$$n \Rightarrow n+1 : \varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1) = \varphi_{\sigma_1}(\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1))$$

We have: $\frac{\varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1))}{\beta}\Delta$.

And want to get: $\frac{\varphi_{\rho}(\alpha)}{\beta}\Delta$.

Claim: $\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$

When
$$n=0, \varphi_{\sigma_1}^0(\varphi_{\rho}(\alpha_0)+1)=\varphi_{\rho}(\alpha_0)+1<\varphi_{\rho}(\alpha).$$

$$n \Rightarrow n+1 : \varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1) = \varphi_{\sigma_1}(\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1))$$

$$\varphi_{\sigma_1}(\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)) \underset{IH}{<} \varphi_{\sigma_1}(\varphi_{\rho}(\alpha))$$

We have: $\frac{\varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1))}{\beta}\Delta$.

And want to get: $\frac{\varphi_{\rho}(\alpha)}{\beta}\Delta$.

Claim: $\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$

When
$$n=0, \varphi_{\sigma_1}^0(\varphi_{\rho}(\alpha_0)+1)=\varphi_{\rho}(\alpha_0)+1<\varphi_{\rho}(\alpha).$$

$$n \Rightarrow n+1: \varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1) = \varphi_{\sigma_1}(\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1))$$

$$\varphi_{\sigma_1}(\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)) < \varphi_{\sigma_1}(\varphi_{\rho}(\alpha)) = \varphi_{\rho}(\alpha).$$

We have: $\frac{\varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1))}{\beta}\Delta$.

And want to get: $\frac{\varphi_{\rho}(\alpha)}{\beta}\Delta$.

Claim: $\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$

By induction on n.

When $n=0, \varphi_{\sigma_1}^0(\varphi_{\rho}(\alpha_0)+1)=\varphi_{\rho}(\alpha_0)+1<\varphi_{\rho}(\alpha).$

$$n \Rightarrow n+1 : \varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1) = \varphi_{\sigma_1}(\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1))$$

$$\varphi_{\sigma_1}(\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)) \underset{IH}{<} \varphi_{\sigma_1}(\varphi_{\rho}(\alpha)) \underset{\text{by def}}{=} \varphi_{\rho}(\alpha).$$

So by a weakening lemma, we get:

$$\frac{\varphi_{\rho}(\alpha)}{\beta}\Delta.$$

And we are done!

Let's cut it here.

Thanks for listening! Any questions?