

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»					
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»					
Лабораторная работа № <u>1</u>					
Дисциплина Методы вычислений					
Тема Метод поразрядного поиска					
Вариант №2					
Студент Брянская Е.В.					
Группа <u>ИУ7-21М</u>					
Оценка (баллы)					
Преподаватель Власов П.А.					

Цель работы: изучение метода поразрядного поиска для решения задачи одномерной минимизации.

Содержание работы

- 1. реализовать метод поразрядного поиска в виде программы на ЭВМ;
- 2. провести решение задачи

$$\begin{cases} f(x) \to min \\ x \in [a, b] \end{cases}$$

для данных индивидуального варианта;

3. организовать вывод на экран графика целевой функции, найденной точки минимума $(x^*, f(x^*))$ и последовательности точек $(x_i, f(x_i))$, приближающих точку искомого минимума (для последовательности точек следует предусмотреть возможность «отключения» вывода её на экран).

Целевая функция $f(x)$	[a, b]
$\cos\left(x^{5} - x + 3 + 2^{\frac{1}{3}}\right) + arctg\left(\frac{x^{3} - 5\sqrt{2}x - 4}{\sqrt{6}x + \sqrt{3}}\right) + 1.8$	[0, 1]

Метод поразрядного поиска является усовершенствованием метода перебора для уменьшения числа обращений к целевой функции.

Одно из свойств унимодальных функций:

$$f(x_i) < f(x_{i+1}) \Longrightarrow x^* \in [a; x_{i+1}]$$

 $f(x_i) \ge f(x_{i+1}) \Longrightarrow x^* \in [x_i; b]$

С использованием этого свойства можно сначала найти грубое приближение точки минимума с шагом Δ , а затем уменьшить шаг и уточнить положение точки x^* .

Обычно сначала рассматривают $\Delta \ge \epsilon$ (ϵ – требуемая точность) и вычисляют значения

$$f(x_i) = f(a + i\Delta), i = 0, 1, 2 ...$$

до тех пор, пока на некотором шаге не будет выполнено условие: $f(x_i) < f(x_{i+1})$. В этих случаях направление поиска изменяют на противоположное и уменьшают шаг (как правило, в 4 раза).

Текст программы представлен на Листинге 1

Листинг 1

```
function lab01()
    clc();

    debugFlg = 1;
    delayS = 0.6;
    a = 0;
    b = 1;
    eps = 0.01;

    fplot(@f, [a, b]);
    hold on;

    [xStar, fStar] = bitwiseSearch(a, b, eps, debugFlg, delayS);
    scatter(xStar, fStar, 'r', 'filled');
end
```

```
function [x0, f0] = bitwiseSearch(a, b, eps, debugFlg, delayS)
    delta = (b - a) / 4;
    x0 = a;
    f0 = f(x0);
    while 1
        i = i + 1;
        x1 = x0 + delta;
        f1 = f(x1);
        if debugFlg
            fprintf('№ %2d x*=%.10f f(x*)=%.10f\n', i, x1, f1);
            plot(x1, f1, 'xk');
            hold on;
            pause(delayS);
        end
        if f0 > f1
            x0 = x1;
            f0 = f1;
            if a < x0 && x0 < b
                continue
            else
                if abs(delta) <= eps</pre>
                    break;
                else
                    x0 = x1;
                    f0 = f1;
                    delta = -delta / 4;
                end
            end
        else
            if abs(delta) <= eps</pre>
                break;
            else
                x0 = x1;
                f0 = f1;
                delta = -delta / 4;
            end
        end
    end
    i = i + 1;
    if debugFlg
        fprintf('Nº %2d x*=%.10f f(x*)=%.10f\n', i, x0, f0);
        fprintf('RESULT: x^*=%.10f f(x^*)=%.10f n', x0, f0);
    end
end
function y = f(x)
    y = cos(power(x,5) - x + 3 + power(2, 1/3)) + atan((power(x,3) - 5 * sqrt(2)*x - 4) /
(sqrt(6)*x + sqrt(3))) + 1.8;
end
```

Результаты расчетов для задачи из индивидуального варианта.

№ п/п	ε	N	<i>x</i> *	$f(x^*)$
1	0.01	17	0.6640625000	-0.2251354694
2	0.0001	30	0.6639404297	-0.2251354854
3	0.000001	47	0.6639623642	-0.2251354862