UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA LINEAL 520131 Listado 1 (Matrices)

1.- Considere las matrices:

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

- a) Calcule AB, BA y $(AC^2 I)$.
- b) Resuelva las siguientes ecuaciones matriciales:

i)
$$-2X+C=B$$
, ii) $(A-\frac{2}{3}X)^t=2C$, iii) $2C+X=B^2$. (En práctica ii))

- 2.- Considere las siguientes definiciones:
 - i) M se dice antisimétrica si $M^t = -M$, ii) M se dice ortogonal si $M^{-1} = M^t$. Demuestre las siguientes proposiciones: (En práctica d), e))
 - a) Si A es una matriz cuadrada, entonces $A+A^t$ es una matriz simétrica y $A-A^t$ es una matriz antisimétrica
 - b) Toda matriz cuadrada es suma de una matriz simétrica y otra antisimétrica.
 - c) Las matrices AA^t y A^tA son simétricas.
 - d) Si A y B son matrices ortogonales, entonces AB es una matriz ortogonal.
 - e) Si A es una matriz simétrica y H es una matriz ortogonal, entonces $H^{-1}AH$ es una matriz simétrica.
 - f) Si $A \in M_{n \times n}$ es simétrica y $B \in M_{n \times m}$, entonces $B^t A B$ es una matriz simétrica.

3.- Calcule la inversa de las siguientes matrices, donde $a \in \mathbb{R}$.

(En práctica f))

a)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 1 & 4 \\ 0 & 2 \end{pmatrix}$ c) $C = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$

d)
$$D = \begin{pmatrix} 1 & -a & 1 \\ 0 & 1 & -a \\ 0 & 0 & 1 \end{pmatrix}$$
 e) $E = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$ f) $F = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}$.

4.- Sea
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- a) Calcule los números reales a y b, tales que: $A^2 + aA + bI = \theta$.
- b) De la ecuación anterior calcule una expresión para la inversa de A.
- c) Usando la expresión obtenida en (b) calcule la inversa de A.
- d) Compruebe el resultado obtenido.

5.- Sea
$$A \in M_{m \times n}(\mathbb{R})$$
 tal que $A^t A$ es invertible, y sea $B = I - A(A^t A)^{-1} A^t$. (En práctica)

- a) Pruebe que $B^2 = B$.
- b) Muestre que $BA = \theta$.
- c) Pruebe que B es una matriz simétrica.

VOE/

2020-I