Today in Cryptography (5830)

Recap of block ciphers, Feistel Length-preserving encryption Blockcipher modes of operation

Recap: Block ciphers & Feistel

Block cipher is a map $E : \{0,1\}^k \times \{0,1\}^n \longrightarrow \{0,1\}^n$

Each key K defines permutation $E_K : \{0,1\}^n \longrightarrow \{0,1\}^n$

Permutation: 1-1, onto

Inverse $D_K: D_K(E_K(M)) = M$

E and D must be efficiently computable

Should behave like random permutation when K secret

M1

Feistel networks turn function into permutation.

- Used in DES with specialized round function F

Best attacks against DES

Attack	Attack type	Complexity	Year
Biham, Shamir	Chosen plaintexts, recovers key	2 ⁴⁷ plaintext, ciphertext pairs	1992
DESCHALL	Brute-force attack	2 ^{56/4} DES computations 41 days	1997
EFF Deepcrack	Brute-force attack	~4.5 days	1998
Deepcrack + DESCHALL	Brute-force attack	22 hours	1999

- DES is still used in some places
- 3DES (use DES 3 times in a row with more keys) expands keyspace and still used widely in practice

Advanced Encryption Standard (AES)

Rijndael (Rijmen and Daemen)

n = 128

k = 128, 192, 256

Number of keys for k=128: 340,282,366,920,938,463,463,374,607,431,768,211,456

Substitution-permutation design. For k=128 uses 10 rounds of:

1) Permute:

SubBytes (non-linear S-boxes)
ShiftRows + MixCols (invertible linear transform)

2) XOR in a round key derived from K

(Actually last round skips MixCols)

Best attacks against AES

Brute-force attack (try all keys): worst case time about 2¹²⁸

Attack	Attack type	Complexity	Year
Bogdanov, Khovratovich, Rechberger	chosen ciphertext, recovers key	2 ^{126.1} time + some data overheads	2011

No direct attacks of practical interest known

Effective side-channel attacks do exist, need to implement very carefully

OpenSSL (underlying cryptography.io) does pretty good job

Applications of block ciphers (sometimes called modes of operation)

Let's assume we have a secure block cipher.

Length-preserving encryption

- Useful for cases where ciphertexts must be same length as plaintexts.
- Should only be used when absolutely needed

Length-extending encryption

- Insecure variants: CTR mode, ECB mode, CBC mode
- We'll build secure ones in a few lectures

Example: Credit card number encryption

Jane Doe	1343-1321-1231-2310	
Thomas Ristenpart	9541-3156-1320-2139	
John Jones	5616-2341-2341-1210	
Eve Judas	2321-4232-1340-1410	

 $AES_K : \{0,1\}^{128} \longrightarrow \{0,1\}^{128}$

Ciphertexts are too big for replacing plaintext within database!

16-digit restriction limits to $10^{16} \approx 2^{50}$ values $2^{50} \ll 2^{128}$

Example: Credit card number encryption

Jane Doe	1343-1321-1231-2310	
Thomas Ristenpart	9541-3156-1320-2139	
John Jones	5616-2341-2341-1210	
Eve Judas	2321-4232-1340-1410	

Database schemas and software require <= 16 decimal digits

46 million credit card accounts stolen

>100 million credit card accounts stolen

>355,000 million credit card accounts stolen

Example: Credit card number encryption

Encryption tool whose ciphertexts are also credit-card numbers

Format-preserving encryption (FPE)

Disk sectors / payment card numbers just two examples Some others:

- 1) Valid addresses for a certain country
- 2) 4096-byte disk sectors
- 3) Assigned Social Security Numbers (9 digits, without leading 8 or 9)
- 4) Composition of (1) and (3)

How to build FPE on 48 bits?

Simplification of FFX encryption

Input
$$M = 48$$
 bits
 $L0 = 24$ bits
 $R0 = 24$ bits

$$F_{K1}(R) = AES(K, 1 || R)$$

 $F_{K2}(R) = AES(K, 2 || R)$

• • •

XOR uses low 24 bits of F output

Use 10 rounds

Balanced Feistel security

- Luby & Rackoff showed that if round functions are random and n is relatively large, then
 - 3 rounds suffice for chosen-plaintext attack security in sense of pseudorandom permutation
 - 4 rounds suffice for chosen-ciphertext attack security pseudorandom permutation
 - Proofs hold up to $q \approx 2^{n/4}$

- Sometimes n is not very large:
 - FFX designers suggested 10 rounds as heuristic

FPE now widely used in practice

Security problems with length-preserving encryption?

But determinism has problems:

	Plaintext	Ciphertext
Jane Doe	1343-1321-1231-2310	1049-9310-3210-4732
Thomas Ristenpart	9541-3156-1320-2139	7180-4315-4839-0142
John Jones	2321-4232-1340-1410	5731-8943-1483-9015
Eve Judas	1343-1321-1231-2310	1049-9310-3210-4732

Security problems with length-preserving encryption?

But determinism has problems:

	Plaintext	Ciphertext
Jane Doe	1343-1321-1231-2310	1049-9310-3210-4732
Thomas Ristenpart	9541-3156-1320-2139	7180-4315-4839-0142
John Jones	2321-4232-1340-1410	5731-8943-1483-9015
Eve Judas	1343-1321-1231-2310	1049-9310-3210-4732

Length-extending encryption security

- Not a bit of information about plaintext leaked
 - Equality of plaintexts hidden
 - Even in case of active attacks
 - Padding oracles we will see later
- Eventually: authenticity of messages as well
 - Decryption should reject modified ciphertexts

CTR[E] mode encryption using block cipher E

Counter mode (CTR)

Pad message M to M1,M2,M3,... where each is n bits except last Choose random n-bit string IV

Then:

Malleability example: Encrypted cookies

abc35h013490... = CTR[E](K, "admin=0")

Malicious client can simply flip a few bits to change admin=1

CBC mode

Ciphertext block chaining (CBC)

Pad message M to M1,M2,M3,... where each block Mi is n bits Choose random n-bit string IV

How do we decrypt?

CBC-mode SE scheme

```
Kg():
K < -\$ \{0,1\}^k
Enc(K,M):
L \leftarrow |M|; m \leftarrow ceil(L/n)
C_0 <- IV <- \$ \{0,1\}^n
M_1,...,M_m \leftarrow PadCBC(M,n)
For i = 1 to m do
       C_i \leftarrow E_k(C_{i-1} \oplus M_i)
Return (C_0, C_1, ..., C_m)
<u>Dec(K,(C<sub>0</sub>, C<sub>1</sub>, ..., C<sub>m</sub>)):</u>
For i = 1 to m do
        M_i \leftarrow C_{i-1} \oplus D_K(C_i)
M <- UnpadCBC(M<sub>1</sub>,...,M<sub>m</sub>,n)
```

Return M

Pick a random key

PadCBC unambiguously pads M to a string of mn bits

UnpadCBC removes padding, returns appropriately lengthed string

CBC mode also has "malleability" issues

How do we change bits of M1 received by server??

Padding for CBC mode

- CBC mode handles messages with length a multiple of n bits
- We use padding to make it work for arbitrary encryption schemes

 Padding checks often give rise to padding oracle attacks (next lecture)

Summary

- We have good blockciphers
- You can use Feistel to help build lengthpreserving encryption out of AES, DES
- Length-preserving encryption leaks message equality
- CTR mode, CBC mode (being randomized) do not leak message equality, but are malleable