Лабораторная работа №3

Определение ускорения свободного падения с помощью маятника.

Цель: определить ускорение свободного падения g, используя зависимость периода колебаний маятника от длины подвеса ℓ .

Оборудование: штатив, груз, нить, линейка демонстрационная, секундомер.

Указания к выполнению работы.

Если груз, подвешенный на нити, колеблется, а его размеры значительно меньшие, чем длина нити ℓ , то период колебаний может быть определён из формулы: $T=2\pi\sqrt{\frac{\ell}{g}}$, где ℓ длина нити (точнее расстояние от точки подвеса до центра масс груза), g- ускорение свободного падения. Зная период колебаний T и длину подвеса ℓ , на основании этой формулы можно определить величину ускорения свободного падения: $g=\frac{4\pi^2}{T^2}\ell$

Период колебаний можно определить по промежутку времени Δt , за которое маятник совершит определённое количество колебаний N: $T = \frac{\Delta t}{N}$.

Порядок выполнения работы

- 1. Разместите штатив на столе так, чтобы нить с грузом выступала за край поверхности стола. Груз должен висеть на некотором расстоянии от пола.
- 2. Для записи результатов измерений и вычислений подготовьте таблицу:

№ опыта	ℓ,м	N	Δt, c	$\Delta t_{cp}, c$	T,c	g,м/c ²

- 3. Измерьте линейкой длину подвеса ℓ .
- 4. Отклоните маятник на $5-10\ {\rm cm}$ и отпустите его.

- 5. Замерьте время Δt , за которое он совершит 40 полных колебаний.
- 6. Повторите опыт 5 раз, вычислите среднее время, за которое маятник совершит 40 колебаний $\Delta t_{\it cp}$.
- 7. Вычислите период колебаний $T = \frac{\Delta t_{cp}}{N}$
- 8. Вычислите ускорение свободного падения g.
- 9. Сделайте оценку погрешностей и постройте доверительный интервал для рассчитанного g.