Introduction and Motivation QFI based on expectation values Case study Conclusion and outlook

Optimal bound on the quantum Fisher Information

Based on few initial expectation values of the prove state.

lagoba Apellaniz ¹, Matthias Kleinmann ¹, Otfried Ghüne ², & Géza Tóth ^{1,3,4}

iagoba.apellaniz@gmail.com

¹Department of Theoretical Physics, University of the Basque Country, Spain
 ²Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Germany
 ³IKERBASQUE, Basque Foundation for Science, Spain
 ⁴Wigner Research Centre for Physics, Hungarian Academy of Sciences, Hungary

Recent Advances in Quantum Metrology; Warsaw - 2016

Outline

- Introduction and Motivation
- 2 QFI based on expectation values: Are they optimal?
 - Optimization problem
- Case study
 - Spin squeezed states
 - Unpolarized Dicke states
- 4 Conclusion and outlook

Many inequalities have been proposed to lower bound the quantum Fisher Information.

Bounds for qFI

$$\mathcal{F}[\varrho,J_z] \geq rac{\langle J_x
angle^2}{\left(\Delta J_y
ight)^2}, \qquad \mathcal{F}[\varrho,J_y] \geq eta^{-2} rac{\langle J_x^2 + J_z^2
angle}{\left(\Delta J_z
ight)^2 + rac{1}{4}},
onumber \ \mathcal{F}[\varrho,J_z] \geq rac{4(\langle J_x^2 + J_y^2
angle)^2}{2\sqrt{\left(\Delta J_x^2
ight)^2 \left(\Delta J_y^2
ight)^2} + \langle J_x^2
angle - 2\langle J_y^2
angle (1 + \langle J_x^2
angle) + 6}$$

[I.A., B. Lücke, J. Peise, C. Klempt & G. Toth, New J. Phys. 17, 083027 (2015)]

[L. Pezzé & A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009)]

[Z. Zhang & L.-M. Duan, 2014 New J. Phys. 16 103037 (2014)]

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- 2 Typically, we only have a couple of expectation values to characterize the state.

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- 2 Typically, we only have a couple of expectation values to characterize the state.

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- Typically, we only have a couple of expectation values to characterize the state.
- The archetypical criteria that demonstrates useful entanglement on the state.

$$\mathcal{F}[\varrho,J_z] \geq \frac{\langle J_x \rangle}{\left(\Delta J_z\right)^2}$$

[L. Pezzé & A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009)]

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- ② Typically, we only have a couple of expectation values to characterize the state.
- The archetypical criteria that demonstrates useful entanglement on the state.
- It is essential either to verify them or find new ones for different set of expectation values.

- 1 Introduction and Motivation
- 2 QFI based on expectation values: Are they optimal?
 - Optimization problem
- Case study
 - Spin squeezed states
 - Unpolarized Dicke states
- Conclusion and outlook

The non trivial exercise of computing the qFI

Different forms of the qFI

$$\mathcal{F}[\varrho, J_z] = 2 \sum_{\lambda, \gamma} \frac{(p_{\lambda} - p_{\gamma})^2}{p_{\lambda} + p_{\gamma}} |\langle \lambda | J_z | \gamma \rangle|^2$$

$$\mathcal{F}[\varrho, J_z] = \min_{\{p_k, |\Psi_k\rangle\}} 4 \sum_k p_k \left(\Delta J_z\right)_{|\Psi_k\rangle}^2$$

The non trivial exercise of computing the qFI

Oifferent forms of the qFI

$$\mathcal{F}[\varrho, J_z] = 2 \sum_{\lambda, \gamma} \frac{(p_{\lambda} - p_{\gamma})^2}{p_{\lambda} + p_{\gamma}} |\langle \lambda | J_z | \gamma \rangle|^2$$

$$\mathcal{F}[\varrho, J_z] = \min_{\{p_k, |\Psi_k\rangle\}} 4 \sum_k p_k \left(\Delta J_z\right)_{|\Psi_k\rangle}^2$$

For pure states it's extremely simple

$$\mathcal{F}[\varrho,J_z]=4\left(\Delta J_z\right)^2$$

The non trivial exercise of computing the qFI

Different forms of the qFI

$$\mathcal{F}[\varrho, J_z] = 2 \sum_{\lambda, \gamma} \frac{(p_{\lambda} - p_{\gamma})^2}{p_{\lambda} + p_{\gamma}} |\langle \lambda | J_z | \gamma \rangle|^2$$

$$\mathcal{F}[\varrho, J_z] = \min_{\{p_k, |\Psi_k\rangle\}} 4 \sum_k p_k \left(\Delta J_z\right)_{|\Psi_k\rangle}^2$$

For pure states it's extremely simple

$$\mathcal{F}[\varrho,J_z]=4\left(\Delta J_z\right)^2$$

In the general case, usually lower bounded by its "classical" counterparts.

- Introduction and Motivation
- QFI based on expectation values: Are they optimal?
 - Optimization problem
- Case study
 - Spin squeezed states
 - Unpolarized Dicke states
- 4 Conclusion and outlook

Spin squeezed states Unpolarized Dicke states

Spin squeezed states Unpolarized Dicke state Introduction and Motivation QFI based on expectation values Case study Conclusion and outlook

Thank you for your attention!

Group's home page \rightarrow https://sites.google.com/site/gedentqopt