Assignment 1 Solution

1. Consider the finite automaton M_1 and answer the following questions.

(a) What is the start state?

 q_1

- (b) What is the set of accept states? $\{q_3\}$
- (c) What sequence of states does M_1 go through on input abab? $q_1q_2q_3q_2q_3$
- (d) Does M_1 accept the string abab?
- (e) Does M_1 accept the empty string, i.e., ϵ ? No
- (f) Define M_1 formally.

$$M_1 = (\{q_1, q_2, q_3\}, \{a, b\}, \delta, q_1, \{q_3\})$$

$$\delta(q_1, a) = q_2$$

$$\delta(q_1, b) = q_1$$

$$\delta(q_2, a) = q_3$$

$$\delta(q_2, b) = q_3$$

$$\delta(q_3, a) = q_2$$

$$\delta(q_3, b) = q_1$$

2. The formal description of a DFA M_2 is $(\{q_1, q_2, q_3, q_4, q_5\}, \{u, d\}, \delta, q_3, \{q_3\})$, where δ is given by the following table.

	u	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

(a) Draw the state diagram of M_2 .

3. Consider the finite automaton M_3 and answer the related questions

- (a) For each of the following strings specify whether or not it is accepted/recognized by M_3 .
 - i. 0100

Accepted

ii. 1001

Not accepted

iii. 0101

Not accepted

iv. 1

Not accepted

v. 11111

Not accepted

vi. 0101011

Not accepted

(b) Describe in English the language that M_3 accepts/recognizes.

All strings that end with a 0 and don't contain the substring 11

Observe that M_3 is a deterministic finite automaton because (i) every state has exactly one transition for each symbol in the alphabet (assuming the alphabet is $\{0,1\}$), (ii) there is no transition that is labeled by ϵ .

4. Consider alphabet $\Sigma = \{0, 1\}$.

(a) Design a finite automaton that accepts all strings that end with 01.

Figure 1: A deterministic finite automaton

Figure 2: An equivalent non-deterministic finite automaton

(b) Design a finite automaton that accepts only the empty string.

There are many finite automata that accept *only* the empty string. Here is an example of a deterministic finite automaton:

Here is an example of a non-deterministic finite automaton:

