

Image-Based Situation Awareness Audit 1.3.2018

Sakari Lampola

Work Done

Image object velocity is necessary for:

- predicting image object locations when matching new measurements
- · identifying image objects
- predicting image object locations for hidden objects

Estimation algorithm

Image Object Kalman Filtering

Bounding box corner location

State vector s:

$$s = \begin{bmatrix} l \\ v \end{bmatrix}$$

where

I = location coordinate ($x_{min, v}$, x_{max} , $y_{min, v}$, y_{max}) of the bounding box corner in the image v = velocity ($vx_{min, v}$, $vx_{max, v}$, $vy_{min, v}$, vy_{max}) of the bounding box corner in the image

State equation in differential form:

$$\frac{ds(t)}{dt} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} * s(t) + \epsilon(t) = A_1 * s$$

State equation in difference form:

$$s(k+1) = (I + \Delta * A_1) * s(k) + \epsilon(k)$$

$$= \begin{bmatrix} 1 & \Delta \\ 0 & 1 \end{bmatrix} * s(k) + \varepsilon(k) = A * s(k) + \varepsilon(k)$$

where Δ is the time increment and ε Gaussian noise with covariance R.

Measurement equation

$$z(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} * s(k) + \delta(k) = C * s(k) + \delta(k)$$

Where δ is Gaussian noise with covariance matrix Q.

Kalman filter initialization:

$$\mu(0) = \begin{bmatrix} l(0) \\ 0 \end{bmatrix}$$

where I(0) is the first location measurement

$$\Sigma(0) = \begin{bmatrix} 10.0 & 0 \\ 0 & 10000.0 \end{bmatrix}$$

where 10.0 and 10000.0 are believed initial error variances of location and velocity.

$R = \begin{bmatrix} 1.0 & 0 \\ 0 & 1.0 \end{bmatrix}$

where diagonal elements are believed state equation variances of location and velocity.

$$Q = [10.0]$$

Where 10.0 is the believed measurement variance.

Kalman filter update:

$$\mu_1(k) = A * \mu(k-1)$$

$$\Sigma_1(k) = A * \Sigma(k-1) * A^T + R$$

$$K(k) = \Sigma_1(k) * C^T * (C * \Sigma_1(k) * C^T + Q)^{-1}$$

$$K(k) = \Sigma_1(k) * C^t * (C * \Sigma_1(k) * C^t + Q)^{-1}$$

$$\mu(k) = \mu_1(k) + K(k) * (Z(k) - C * \mu_1(k))$$

$$\Sigma(k) = (I - K(k) * C) * \Sigma_1(k)$$

Asiakirjan loppu 🔳

Image object

- id
- status
- x min
- x max
- y_min
- y max
- vx min
- vx max
- vy_min
- vy_max
- class
- confidence
- appearance

Numerical values are estimated using grid search and 10 step ahead mean prediction error. Values rounded.

Moving object (car)

Location variance

Velocity variance

Moving object (car)

10 step ahead mean prediction error

Static object (calf)

40 30 20 10 0 20 40 80 80 100 120 140 160

Measured and filtered location (upper left corner)

Estimated velocity

Location variance

Velocity variance

Static object (calf)

10 step ahead mean prediction error

Speech Synthesis

Software Architecture

Speech Synthesis

Entities

- Event is generated when
 - new image object is created
 - image object status is changed
- Event will pause the video for the duration of speech (not in the final version)
- Events are collected (history)

Work in Progress

Perception

"The first step in achieving SA is to perceive the status, attributes, and dynamics of relevant elements in the environment. Thus, Level 1 SA, the most basic level of SA, involves the processes of monitoring, cue detection, and simple recognition, which lead to an awareness of multiple situational elements (objects, events, people, systems, environmental factors) and their current states (locations, conditions, modes, actions)."

Next Steps

Next steps

Comprehension:

- 1. Closing the open questions
- 2. 2d -> 3d transformation
- 3. World object state estimation

To Be Discussed

Method followup

- Google search enough?
- Good way of following new papers?

Thank you!

lampola@student.tut.fi
https://github.com/SakariLampola/Thesis