Text Classification (SNLP tutorial)

Vilém Zouhar

June 4, 2021

Overview

- Task, approaches Features _

- Document Frequency Information Gain Pointwise Mutual Information Pointwise Mutual Information

- χ^- Term Strength Classification Algorithms Decision Trees Naïve Bayes

- Perceptron
- Homework

TODO multicolumn

Text Classification

f: Text → C (classes/categories)
Topic detection: Document → {politics, NLP, healthcare, sport, ...}
Spam detection: Document → {SPAM, BENIGN, MARKETING}
Author identification/profiling: Document(s) → {F. Bacon, W. Shakespeare, ...}
Native language identification: Document → {German, Polish, ...}
POS Tagging: Sentence → {NN, VERB, PART., ...} |S|
Sense Disambiguation: Word+sentence → Senses of Word

Classification vs. Clustering

	Classification	Clustering
Method	Supervised	Unsupervised
Classes	Given	Unknown
# Classes	Given	(Mostly) unknown

Binary vs. Multi-Class Classification

Multi-Class

• $f: D \rightarrow \{\text{politics}, \text{NLP}, \text{healthcare}, \text{sport}, \ldots\}$

Binary

- $f_1: D \to \{\text{politics}, \text{not politics}\}$
- $f_2: D \rightarrow \{NLP, not NLP\}$
- $f_3: D \rightarrow \{\text{healthcare}, \text{not healthcare}\}$
- ...

Flat vs. Hiearchical

TODO

Vilém Zouhar Text Classification June 4, 2021 6/21

Single-Category vs Multi-Category

TODO

Feature Extraction

• Move from text to more processable domain

Binary/indicator features

$$f_b(doc) = egin{cases} 1 & ext{ Contains string "Super free $$$ discount"} \ 0 & ext{ Otherwise} \end{cases}$$

Integer features

 $f_i(doc) = \text{Number of occurences of "buy"}$

Real-valued features

$$f_r(doc) = rac{ ext{Number of occurences of "buy"}}{|doc|}$$

Feature Selection

TODO

Vilém Zouhar Text Classification June 4, 2021 9/21

Document Frequency

DF

$$\textit{df(term)} = \frac{|\{\textit{doc}|\textit{term} \in \textit{doc}, \textit{doc} \in \textit{D}\}|}{|\textit{D}|}$$

- Remove rare items $(df \le \frac{2}{|D|})$ Won't occur in new documents anyway
- Remove frequent items (df = 1)
 Usually stop words
 No information
- Sometimes not a good idea (interaction with other terms, etc.)
- Stopword distribution gives information in author identification

Information Gain

• Information gained (reduction in entropy) by knowing term present or not

$$G(C, t) = H(C) - H(C|t)$$

$$= -\sum_{i} p(c_{i}) \log p(c_{i})$$

$$+ p(t) \sum_{i} p(c_{i}, t) \log p(c_{i}, t)$$

$$+ p(\overline{t}) \sum_{i} p(c_{i}, \overline{t}) \log p(c_{i}, \overline{t})$$

Pointwise Mutual Information

• Difference between observed distribution and independent

$$\mathsf{pmi}(c_i,t) = \log rac{p(c_i,t)}{p(c_i) \cdot p(t)}$$

- TODO (expansion using Bayes)
- TODO (average, max)
- TODO (relation to mutual information)

$$\chi^2$$

$$\chi^2(c_1,c_2) = \sum_{tt,tf,ft,ff} (O-E)^2$$

- TODO example
- TODO table
- χ^2 avg vs. χ^2 max (multiple categories)

Term Strength

- Two documents: d_1, d_2
- Term t
- $p(t \in d_2 | t \in d1)$
- What is the probability that the term t will be in d_2 given that it is in d_1 ?
- ullet If two documents related o high probability
- ullet If two documents not related o low probability
- "Constant" with stop words

Classification

TODO

Vilém Zouhar Text Classification June 4, 2021 15/21

Decision Trees

TODO

Vilém Zouhar Text Classification June 4, 2021 16 / 21

Naïve Bayes

TODO

Vilém Zouhar Text Classification June 4, 2021 17/21

kNN

TODO

Vilém Zouhar Text Classification June 4, 2021 18/21

SVM

- Find a boundary that maximizes the distance to closest vectors
- If not possible, find one that minimizes the error
- Add the kernel trick

Perceptron

- Binary classification
- Linear boundary in feature space
- $\hat{y} = sign(wx + b)$

Algorithm:

•
$$w_0 = \overrightarrow{0}$$

- For every data point x_i
- if $\hat{y_i} \neq y_i$:
- $\bullet \qquad \star \quad w_{k+1} = w_k \hat{y}_i \cdot x$
- else:
- \bullet \star $w_{k+1} = w_k$
- TODO: illustration

20 / 21

Resources

- UdS SNLP Class, WSD: https://teaching.lsv.uni-saarland.de/snlp/
- Classical Statistical WSD: https://www.aclweb.org/anthology/P91-1034.pdf