第一章 極限與連續性

1.1 直觀極限: 取雙邊接近值

$$\lim_{x \to 2} x = 2$$

$$\lim_{x \to 2} x = 2$$

$$\lim_{x \to 2} x = 2$$

$$\lim_{x \to 2} x^2 = 4$$

$$\lim_{x \to 2} \frac{x + 2}{x^2 + x - 6} = 0.2$$

$$\frac{x + 1.9 + 1.99 + 1.999 + 2.001 + 2.01 + 2.1}{f(x) + 3.61 + 3.9601 + 3.996 + 3.996 + 3.004 + 3.004 + 3.004 + 3.004 + 3.004}{f(x) + 3.20408 + 3.20040 + 3.20044 + 3.01996 + 3.19960 + 3.19608}$$

1.2 單側極限,無限遠極限,無窮極限

單側極限 (One-Sided Limits)

$$\lim_{x \to 2-} g(x) = 3, \qquad \lim_{x \to 5-} g(x) = 2$$

$$\lim_{x \to 2+} g(x) = 1, \qquad \lim_{x \to 5+} g(x) = 2$$

$$\lim_{x \to 2} g(x) = \text{DNE}, \qquad \lim_{x \to 5} g(x) = 2$$

例.
$$g(x) = \begin{cases} \sqrt{x-4} & \exists x > 4 \\ 8-2x & \exists x < 4 \end{cases}, \lim_{x \to 4} g(x) = 0.$$

例.
$$f(x) = \sqrt{4-x^2}$$
, $\lim_{x \to (-2)+} f(x) = 0$, $\lim_{x \to 2+} f(x) = \text{DNE}$, $\lim_{x \to 2-} f(x) = 0$.

例. •
$$\lim_{x\to 0} |x| = 0$$

•
$$\lim_{x \to 0} \frac{|x|}{x} = \text{DNE}$$

•
$$\lim_{x \to 0} \frac{|x|}{x} = \text{DNE}$$
 • $\lim_{x \to 3+} \lfloor x \rfloor = 3$, $\lim_{x \to 3-} \lfloor x \rfloor = 2$, $\lim_{x \to \pi} \lfloor x \rfloor = 3$.

定理. 若 $F \in \mathbb{R}$, $\lim_{x \to a} f(x) = F \iff \lim_{x \to a-} f(x) = \lim_{x \to a+} f(x) = F$.

無限遠極限 (Limits at Infinity)

例.
$$\lim_{\substack{x\to\infty\\\forall\,N\in\,\mathbb{N}}}\frac{1}{x^\alpha}\ =\ 0,\ \alpha\ >\ 0;\ \lim_{\substack{x\to-\infty\\x\to-\infty}}\frac{1}{x^N}\ =\ 0, \qquad \quad \bullet\ \lim_{\substack{x\to\infty\\\forall\,a>1.}}a^x\ =\ \infty,\ \lim_{\substack{x\to-\infty\\x\to-\infty}}a^x\ =\ 0,\ \lim_{\substack{x\to0-\\x\to0-}}a^{\frac{1}{x}}\ =\ 0,$$

•
$$\lim_{\substack{x \to \infty \\ \forall a > 1}} a^x = \infty, \lim_{\substack{x \to -\infty \\ }} a^x = 0, \lim_{\substack{x \to 0-}} a^{\frac{1}{x}} = 0$$

•
$$\lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2}$$
, $\lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2}$

無窮極限 (Infinite Limits)

例.

•
$$\lim_{x \to 0+} \frac{1}{x} = \infty$$

•
$$\lim_{x \to 0-} \frac{1}{x} = -\infty$$

$$\lim_{r \to 0} \frac{1}{r} = DNH$$

$$\bullet \quad \lim_{x \to 0} \frac{1}{x^2} = \infty$$

•
$$\lim_{x \to 0+} \frac{1}{x} = \infty$$
 • $\lim_{x \to 0-} \frac{1}{x} = -\infty$ • $\lim_{x \to 0} \frac{1}{x} = \text{DNE}$ • $\lim_{x \to 0} \frac{1}{x^2} = \infty$ • $\lim_{x \to \frac{\pi}{2}} \tan x = \infty$

1.3 極限運算

性質. 若函數 f 為多項式,指數,對數,三角,或反三角函數,則 $\lim_{x\to a}f(x)=f(a), \, \forall \, a\in \mathrm{dom}\, f.$

• $\lim_{x \to \pi} \frac{1}{r^2} = \frac{1}{\pi^2}$

•
$$\lim_{x \to -3} \left(\frac{1}{3}\right)^x = 27$$

$$\bullet \lim_{x \to 1} \tan^{-1} x = \frac{\pi}{4}$$

• $\lim_{x \to \pi} x^{\pi} = \pi^{\pi}$

•
$$\lim_{x \to -5} \cos x = \cos(-5) = \cos 5$$
 • $\lim_{x \to 5} \log_2 x = \log_2 5$

•
$$\lim_{x \to 5} \log_2 x = \log_2 5$$

定理 (極限四則運算). 若 $\lim_{x \to a} f(x) = F$, $\lim_{x \to a} g(x) = G$, 則

1.
$$\lim_{x \to a} c = c, \lim_{x \to a} x = a$$

4.
$$\lim_{x \to a} (f(x) \cdot g(x)) = F \cdot G$$

$$2. \lim_{x \to a} k f(x) = k F$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{F}{G}, \, \not\equiv G \neq 0$$

3.
$$\lim_{x \to a} (f(x) \pm g(x)) = F \pm G$$

6.
$$\lim_{x \to a} (f(x))^{\alpha} = F^{\alpha}$$
, 若 $\alpha \in \mathbb{Q} \land F > 0$

當 F, G 存在 (非為無窮), 此定理敘述對「單側極限」及「無限遠極限」均成立.

例. •
$$\lim_{t \to -1} \frac{t-2}{t+3} = \frac{\lim_{t \to -1} t-2}{\lim_{t \to -1} t+3} = \frac{-3}{2}$$

•
$$\lim_{t \to -3} \frac{1-t}{\cos t} = \frac{\lim_{t \to -3} 1-t}{\lim_{t \to -3} \cos t} = \frac{4}{\cos 3}$$

例.

•
$$\lim_{h \to 0} \frac{(2+h)^2 - 4}{2h} = \lim_{h \to 0} \frac{h^2 + 4h + 4 - 4}{2h} = \lim_{h \to 0} \frac{h^2 + 4h}{2h} = \lim_{h \to 0} \frac{h + 4}{2} = 2$$

•
$$\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 16} = \lim_{x \to 4} \frac{x(x-4)}{(x-4)(x+4)} = \lim_{x \to 4} \frac{x}{x+4} = \frac{1}{2}$$

•
$$\lim_{x \to 2} \frac{x-2}{x^2 + x - 6} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+3)} = \lim_{x \to 2} \frac{1}{x+3} = \frac{1}{5}$$

1.
$$\lim_{x \to -1} \frac{\sqrt{x^2 + 8} - 3}{x + 1}$$
.

2.
$$\lim_{x \to 3} \frac{\sqrt{x-2} - \sqrt{4-x}}{x-3}$$
.

解.

$$1. \ \lim_{x \to -1} \frac{\sqrt{x^2 + 8} - 3}{x + 1} = \lim_{x \to -1} \frac{1}{x + 1} \frac{(x^2 + 8) - 3^2}{\sqrt{x^2 + 8} + 3} = \lim_{x \to -1} \frac{1}{x + 1} \frac{x^2 - 1}{\sqrt{x^2 + 8} + 3} \\ = \lim_{x \to -1} \frac{1}{x + 1} \frac{(x + 1)(x - 1)}{\sqrt{x^2 + 8} + 3} = \lim_{x \to -1} \frac{x - 1}{\sqrt{x^2 + 8} + 3} = \frac{-2}{\sqrt{1 + 8} + 3} = -\frac{1}{3}.$$

$$2. \lim_{x \to 3} \frac{\sqrt{x-2} - \sqrt{4-x}}{x-3} = \lim_{x \to 3} \frac{1}{x-3} \frac{(x-2) - (4-x)}{\sqrt{x-2} + \sqrt{4-x}} = \lim_{x \to 3} \frac{1}{x-3} \frac{2x-6}{\sqrt{x-2} + \sqrt{4-x}} = \lim_{x \to 3} 2 \frac{1}{\sqrt{x-2} + \sqrt{4-x}} = \frac{2}{\sqrt{1+\sqrt{1}}} = 1.$$

69.
$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2} = \lim_{x \to \infty} \frac{5 + \frac{8}{x} - \frac{3}{x^2}}{3 + \frac{2}{x^2}} = \frac{5 + 0 + 0}{3 + 0} = \frac{5}{3} = \lim_{x \to -\infty} \frac{5x^2 + 8x - 3}{3x^2 + 2}.$$

例. 求
$$\lim_{x\to\infty} (\sqrt{x^2 + 5x} - \sqrt{x^2 - x}).$$

$$\begin{array}{l} {\bf P\!\!\!/} {\bf I} \lim\limits_{x \to \infty} \left(\sqrt{x^2 + 5x} - \sqrt{x^2 - x} \right) = \lim\limits_{x \to \infty} \frac{(x^2 + 5x) - (x^2 - x)}{\sqrt{x^2 + 5x} + \sqrt{x^2 - x}} = \lim\limits_{x \to \infty} \frac{6x}{\sqrt{x^2 + 5x} + \sqrt{x^2 - x}} \\ = \lim\limits_{x \to \infty} \frac{6x}{\sqrt{x^2 (1 + \frac{5}{x})} + \sqrt{x^2 (1 - \frac{1}{x})}} = \lim\limits_{x \to \infty} \frac{6x}{|x| \sqrt{1 + \frac{5}{x}} + |x| \sqrt{1 - \frac{1}{x}}} = \lim\limits_{x \to \infty} \frac{6x}{x \sqrt{1 + \frac{5}{x}} + x \sqrt{1 - \frac{1}{x}}} \\ = \lim\limits_{x \to \infty} \frac{6}{\sqrt{1 + \frac{5}{x}} + \sqrt{1 - \frac{1}{x}}} = \frac{6}{\sqrt{1 + 0} + \sqrt{1 - 0}} = 3 \end{array}$$

例. 求 $\lim_{x \to -\infty} \frac{3x}{\sqrt{4x^2 + x} - 2x}$.

解.

•
$$\lim_{x \to -\infty} \frac{3x}{\sqrt{4x^2 + x} - 2x} = \lim_{x \to -\infty} \frac{3x}{\sqrt{x^2(4 + \frac{1}{x})} - 2x} = \lim_{x \to -\infty} \frac{3x}{|x|\sqrt{4 + \frac{1}{x}} - 2x} = \lim_{x \to -\infty} \frac{3x}{-x\sqrt{4 + \frac{$$

• 另解: 變數變換
$$y = -x \implies x = -y$$
: $\lim_{x \to -\infty} \frac{3x}{\sqrt{4x^2 + x} - 2x} = \lim_{y \to \infty} \frac{-3y}{\sqrt{4y^2 - y} + 2y}$ $= \lim_{y \to \infty} \frac{-3y}{\sqrt{y^2(4 - \frac{1}{y})} + 2y} = \lim_{y \to \infty} \frac{-3y}{|y|\sqrt{4 - \frac{1}{y}} + 2y} = \lim_{y \to \infty} \frac{-3y}{y\sqrt{4 - \frac{1}{y}} + 2y} = \lim_{y \to \infty} \frac{-3}{\sqrt{4 - \frac{1}{y}} + 2} = -\frac{3}{4}.$

定理 (夾擠 (squeeze) 定理; 三明治定理). 若 $g(x) \leqslant f(x) \leqslant h(x) \ \forall \ x \in [a,b], \ c \in [a,b]$ 且 $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$,則 $\lim_{x \to c} f(x) = L$.

例. 求 $\lim_{x\to 0} x \sin^2 \frac{1}{x}$.

解. 若 $x \neq 0$, $0 \leqslant \sin^2 \frac{1}{x} \leqslant 1$, 則 $-|x| \leqslant x \sin^2 \frac{1}{x} \leqslant |x|$. 又 $\lim_{x \to 0} (-|x|) = \lim_{x \to 0} |x| = 0$, 由夾擠定理 $\lim_{x \to 0} x \sin^2 \frac{1}{x} = 0$.

1.4 連續性

定義. 給定 $f, a \in \text{dom } f$.

- 若 $\lim_{x \to a} f(x)$ 存在且 $f(a) = \lim_{x \to a} f(x)$, 則稱 f 在 a 連續.
- 若 $\lim_{x \to a+} f(x)$ 存在且 $f(a) = \lim_{x \to a+} f(x)$, 則稱 f 在 a 左連續.
- 若 $\lim_{x \to a-} f(x)$ 存在且 $f(a) = \lim_{x \to a-} f(x)$, 則稱 f 在 a 右連續.

f(x) 在 a 連續 $\iff \lim_{x \to a} f(x) = f(\lim_{x \to a} x) = f(a)$,亦即 (極限値) = (函數値).

定義 (端點連續性). 給定 f, dom f = [a, b].

• 若 f 在 b 左連續, 則稱 f 在 b 連續.

• 若 f 在 a 右連續, 則稱 f 在 a 連續.

定義 (連續函數).

- 若 f 在區間 I 之每一點均連續, 則稱 f 在 I 連續.
- 若 f 在 dom f 之每一點均連續, 則稱 f 為連續函數.

定理 (五則運算仍連續).

- 若 f, g 在 a 連續, 則 $f \pm g, f \cdot g, kf, f^{\alpha}, \frac{f}{g}$ (若 $g(a) \neq 0$) 均在 a 連續.
- 若 f 在 a 連續, 且 g 在 f(a) 連續, 則 $g \circ f$ 在 a 連續.

性質. 多項式, 指數, 對數, 三角, 反三角函數及其五則運算在其定義域內均為連續函數.

例. 若
$$f(x) = \begin{cases} x+2 & \text{ 當 } x < a \\ x^2 & \text{ 當 } x \geqslant a \end{cases}$$
 為連續函數, 求 a .

解. 若 f 為連續函數,則 f 在 a 連續 $\Longrightarrow \lim_{x \to a-} f(x) = \lim_{x \to a+} f(x) \Longrightarrow a+2 = a^2 \Longrightarrow a = -1 \ \lor \ a = 2.$

例. 若
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{ if } x < 2 \\ ax^2 - bx + 3 & \text{ if } 2 \leqslant x < 3 \text{ 為連續函數, 求 } a, b. \\ 2x - a + b & \text{ if } x \geqslant 3 \end{cases}$$

解. 若 f 為連續函數,則 f 在 2,3 均連續 \Longrightarrow $\left(\lim_{x\to 2-}f(x)=\lim_{x\to 2+}f(x)\right)$ \land $\left(\lim_{x\to 3-}f(x)=\lim_{x\to 3+}f(x)\right)$ \Longrightarrow (4=4a-2b+3) \land (9a-3b+3=6-a+b) \Longrightarrow $a=\frac{1}{2},$ $b=\frac{1}{2}.$

定理 (Bolzano 定理; 勘根定理). 若 f 在 [a,b] 連續且 $f(a) \cdot f(b) < 0$, 則存在 $c \in (a,b)$ 使得 f(c) = 0.

定理 (中間値定理). 若 f 在 [a,b] 連續,則對任意介於 f(a) 與 f(b) 之間的數 d, 存在 $c \in [a,b]$ 使得 f(c) = d. 註.

- 中間値定理不適用於不連續函數: 取 $f(x)=\begin{cases} x+2 & -1 < x \leqslant 1 \\ x & -2 \leqslant x \leqslant -1 \end{cases}$,則 $f(-2)<0, \ f(1)>0,$ 但 f(x)=0 無解.
- $f(x)=egin{cases} x\sin\frac{1}{x} & x\neq 0 \\ 0 & x=0 \end{cases}$,則存在無限多 $x\in[-\frac{2}{3\pi},\,\frac{2}{\pi}]$ 使 f(x)=0.

例. 證明 $4x^3 - 6x^2 + 3x - 2 = 0$ 在 1, 2 間有實根.

解. 令 $f(x) = 4x^3 - 6x^2 + 3x - 2$. f 為連續函數且 f(1) < 0, f(2) > 0, 由 Bolzano 定理知存在 $c \in (1,2)$ 使得 f(c) = 0, 亦即 $4x^3 - 6x^2 + 3x - 2 = 0$ 在 1, 2 間有實根.

例. 證明 $\sqrt{\cos \pi x} = \sin 2\pi x + \frac{1}{2}$ 至少有一實根.

解. 令 $f(x) = \sqrt{\cos \pi x} - (\sin 2\pi x + \frac{1}{2})$. f 在 $[-\frac{1}{2}, \frac{1}{2}]$ 連續, 顯然在 $[0, \frac{1}{2}]$ 連續且 $f(0) = \frac{1}{2} > 0$, $f(\frac{1}{2}) = -\frac{1}{2} < 0$, 由 Bolzano 定理知存在 $c \in (0, \frac{1}{2})$ 使得 f(c) = 0, 亦即 $\sqrt{\cos \pi x} = \sin 2\pi x + \frac{1}{2}$ 在 $0, \frac{1}{2}$ 間有一實根.

例. 證明: 奇數次多項式方程式必有實根.

解. 令奇數次多項式 f(x) 為 $f(x) = a_{2n+1}x^{2n+1} + a_{2n}x^{2n} + \dots + a_1x + a_0$; 不失一般性令 $a_{2n+1} > 0$. 由 $\lim_{x \to \infty} f(x) = \infty$ 與 f 之連續性, $\exists \alpha (f(\alpha) > 0)$. 又由 $\lim_{x \to -\infty} f(x) = -\infty$ 與 f 之連續性, $\exists \beta (f(\beta) < 0)$. 故由 Bolzano 定理知存在 c 介於 α , β 之間使得 f(c) = 0.

例 (不動點定理). 令 $f:[0,1] \to [0,1]$ 在 [0,1] 連續. 證明: 存在 $c \in [0,1]$ 使得 f(c) = c.

解. 令 g(x) = f(x) - x. 則 g 在 [0,1] 連續,且 $g(0) = f(0) \geqslant 0$, $g(1) = f(1) - 1 \leqslant 0$, 0 介於 g(0), g(1) 之間. 故由中間値定理,存在 $c \in [0,1]$ 使得 $g(c) = 0 \Longrightarrow f(c) - c = 0 \Longrightarrow f(c) = c$.