Università degli Studi di Bergamo, Scuola di Ingegneria, Dalmine Laurea Magistrale in Ingegneria Edile

Dinamica, Instabilità e Anelasticità delle Strutture a.a. 2018/2019

I ELABORATO

Si considerino il telaio multipiano "shear-type" ed il telaio monopiano in C.A. in figura. Si ritengano le colonne assialmente inestensibili, con rigidezza flessionale indicata e prive di massa; gli impalcati infinitamente rigidi.

Dati:

- parametri allievo: $\gamma = \gamma_a = 1 + 0.01$ (*N*−*C*), $\delta = \delta_a = 10 + 0.12$ (*N*−*C*); (*N*=n. lettera iniziale nome, *C*=n. lettera iniziale cognome);
- momento d'inerzia: $J=J_a=0.0006+0.00002 (N-C) \text{ m}^4$;
- massa degli impalcati: m=55000 kg;
- altezza caratteristica delle colonne: h=3.3 m;
- modulo di elasticità: *E*=33000 MPa.

Richieste:

- Si consideri inizialmente il solo telaio monopiano a destra (sistema SDOF):
 - 1. Determinare e rappresentare la risposta non forzata del sistema, considerando i valori δ =0, δ = δ_a , δ - ∞ , con condizioni iniziali u_0 =5 cm, \dot{u}_0 =10 cm/s, per i fattori di smorzamento ζ =0%, 4%, 8%.
 - 2. Assumendo $\delta = \delta_a$ e $\zeta = 4\%$, determinare e rappresentare la risposta con c.i. nulle $u_0 = \dot{u}_0 = 0$ dovuta a forzante armonica $F(t) = F \sin(\omega t)$ di ampiezza F = 36000 N e periodo T = 0.2 s. Verificare se spostamento e velocità massimi a regime risultano inferiori a 6 cm e 40 cm/s. Rappresentare il diagramma di Argand delle risposte z(t), $\dot{z}(t)$, $\ddot{z}(t)$ a forzante armonica $F(t) = F e^{i\omega t}$ e delle forze in gioco: forzante $F e^{i\omega t}$, forza elastica $F_e = kz$, forza smorzante $F_d = c\dot{z}$ (F_e e F_d positive se opposte a z e \dot{z}), forza d'inerzia $F_i = -m\ddot{z}$. Indicare lo sfasamento tra risposta e forzante ed il modulo di tutte le forze sopra indicate.
- Si consideri quindi il telaio multipiano a sinistra (sistema MDOF):
 - 1. Si determinino: a) matrici di massa e rigidezza M e K della struttura; b) modi principali di vibrare, fornendo autovettori ϕ_i , pulsazioni proprie ω_i e periodi propri T_i (utilizzare il metodo numerico dell'iterazione vettoriale inversa e confrontare con soluzioni alternative; rappresentare graficamente i modi principali di vibrare corrispondenti agli autovettori determinati); c) matrici degli autovettori e degli autovalori Φ e Ω (verificare le relazioni matriciali : $K\Phi = M\Phi \Omega^2$, $\mathcal{M} = \Phi^T M\Phi = diag[\mathcal{M}_i]$, $\mathcal{K} = \Phi^T K\Phi = diag[\mathcal{K}_i]$, $\Omega^2 = \mathcal{M}^{-1}\mathcal{K} = diag[\mathcal{K}_i \mathcal{M}_i]$); d) trasformazioni diretta $q = \Phi p$ ed inversa $p = \Phi^{-1}q$ tra coordinate principali p e lagrangiane q.
 - ♦ 2. Assumendo uno smorzamento strutturale "alla Rayleigh", $C = \alpha M + \beta K$, con i parametri α , β da calibrare in modo tale che i fattori di smorzamento associati ai due modi risultino pari a ζ_1 =8%, ζ_2 =4%, si valuti la risposta del sistema ad un'eccitazione sismica secondo lo spettro di risposta di accelerazione relativo al terremoto de L'Aquila del 6 aprile 2009, stazione AQV (dati scaricabili dalla pagina del corso o dal sito dell'Itaca). Considerare la componente orizzontale WE del sisma (periodo proprio in s, ζ =5%). Per ottenere lo spettro di risposta associato a ζ differenti si moltiplichino le ordinate per il fattore $\eta = \sqrt{[0.10/(0.05 + \zeta)]}$. In particolare, si determinino: a) fattori di partecipazione e masse modali efficaci; b) spostamenti massimi attesi degli impalcati (stima SRSS); c) forze equivalenti modali ed azioni interne ad esse corrispondenti (rappresentare i diagrammi N,T,M, N esclusa per le travi); d) valori massimi attesi delle azioni interne (SRSS) nelle sezioni caratteristiche del telaio; e) considerando anche la risposta sismica del telaio monopiano (per δ = δ _a e ζ =4%), determinare il valore minimo della distanza Δ tra le due strutture tale da impedire il fenomeno del "martellamento".
- *Facoltativo*: determinare la risposta sismica in termini di spostamento, velocità ed accelerazione del telaio monopiano (per $\delta = \delta_a$ e $\zeta = 4\%$) all'accelerogramma sismico scaricabile dalle stesse fonti (*time step:* $\Delta t = 0.005$ s), mediante integrazione diretta nel tempo col metodo di Newmark e/o tramite valutazione numerica dell'integrale di Duhamel. Confrontare e commentare gli esiti anche alla luce delle stime precedenti.