Finite representation of real numbers Floating-point numbers

Dr. Ing. Rodrigo Gonzalez

rodralez@fing.uncu.edu.ar

Control y Sistemas

Facultad de Ingeniería, Universidad Nacional de Cuyo

Summary

- Floating-point Representation
 - Floating-point Representation
 - Standards
 - Normalized Form
 - Floating-point Examples
 - De-normalized Form
 - Special values
 - Rounding schemes
 - Dynamic range
- Precision
 - Sum of two floating-point positive numbers Floating-point Representation
 - Floating-point Representation
 - Standards
 - Normalized Form
 - Floating-point Examples
 - De-normalized Form
 - Special values
 - Rounding schemes
- Dynamic range

Floating-point Representation

A floating-point number can represent a very large or a very small value, positive and negative.

Floating-point Numbers (Decimal)

 $(-1)^S \times F \times r^E$.

A floating-point number is typically expressed in the scientific notation in the form of

- F, fraction.
- E, exponent.
- r, certain radix. r = 2 for binary; r = 10 for decimal.

Modern computers adopt IEEE 754-2008 standard for representing floating-point numbers.

						IEEI	E Sta	ndar	d P7	54 Fo	rmat					
Bit	31	30	29	28	27	26	25	24	23	22	21	20		2	1	0
	S	27	26	25	24	23	22	21	20	2 1	2 2	2 3		2 21	2 22	2-23
Sigr	ı (s)	\leftarrow Exponent (c) \rightarrow							\leftarrow Fraction $(f) \rightarrow$							
							I	вм і	Form	at						
Bit	31	30	29	28	27	26	25	24	23	22	21	20		2	1	0
	S	26	2 ⁵	24	2 ³	2 ²	21	20	2-1	2 2	2-3	2 4		2 22	2 23	2-24
Sigr	Sign (s)		\leftarrow Exponent (e) \rightarrow							\leftarrow Fraction $(f) \rightarrow$						
					DEC	(Dig	ital I	Equip	mer	nt Co	rp.) F	orma	it			
Bit	31	30	29	28	27	26	25	24	23	22	21	20		2	1	0
	S	27	2 ⁶	25	24	2 ³	2 ²	21	20	2-2	2 -3	2 4		2 22	2 -23	2 24
Sign (s)			\leftarrow Exponent (e) \rightarrow							\leftarrow Fraction $(f) \rightarrow$						
						M	IL-S	TD 1	750	\ For	mat					
Bit	31	30	29		11	10	9	8	7	6	5	4	3	2	1	0
	20	2 1	2 2		2-20	2 21	2 22	2 -23	27	26	25	24	23	22	21	20
		\leftarrow Fraction $(f) \rightarrow$								← Exponent (e) →						

IEEE 754-2008 standard

IEEE 754-2008 standard defines several formats.

	Binary form	tats $(B=2)$	Decimal formats $(B = 10)$				
Parameter	Binary 16	Binary 32	Binary 64	Binary 128	Decimal 132	Decimal 164	Decimal 128
p, digits	10 + 1	23 + 1	52 + 1	112 + 1	7	16	34
e_{max}	+15	+127	+1023	+16383	+96	+384	+16,383
e_{min}	-14	-126	-1022	-16382	-95	-383	-16,382
Common name	Half precision	Single precision	Double precision	Quadruple precision			

IEEE-754 32-bit Single-Precision

$$(-1)^S \times F \times r^{(E-bias)}$$

- *S*, sign bit. 0 for positive numbers and 1 for negative numbers.
- E, 8-bits exponent.
- We need to represent both positive and negative exponents.
- E = [1, 254], bias = 127; $-126 \le E bias \le 127$.
- E = 0 and E = 255 are reserved.
- F, 23-bits fraction.

Normalized Form

- Representation of a floating point number may not be unique: $11.01_2 = 1.101_2 \times 2^1 = 110.1_2 \times 2^{-1}$.
- Therefore, the fractional part *F* is normalized.
- 1.F, implicit leading 1.

Floating-point Representation Floating-point Examples De-normalized Form Special values Rounding schemes Dynamic range Precision Sum of two

Example 1

Represent 3215.020002₁₀

http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html

Represent $3215.020002_{10} \times 2 = 6430.040004_{10}$

Decimal Value Entered: 6430.040004

Single precision (32 bits):

```
Binary: Status: normal
```

```
Bit 31
                          Bits 30 - 23
                                                                     Bits 22 - 0
Sign Bit
                         Exponent Field
                                                                     Significand
  0
                                                            1 .10010001111000001010010
                            10001011
  0: +
         Decimal value of exponent field and exponent
                                                          Decimal value of the significand
  1: -
                       139
                             - 127 = 12
                                                                     1.5698340
```

Hexadecimal: 45C8F052 Decimal: 6430.0400

Represent $3215.020002_{10}/4 = 803.7550005_{10}$

```
Decimal Value Entered: 803.7550005
```

Single precision (32 bits):

```
Binary:
          Status: normal
  Bit 31
                           Bits 30 - 23
                                                                      Bits 22 - 0
Sign Bit
                          Exponent Field
                                                                      Significand
   0
                             10001000
                                                             1 .10010001111000001010010
                                                          Decimal value of the significand
          Decimal value of exponent field and exponent
   1: -
                              -127 = 9
                       136
                                                                      1.5698340
```

Decimal: 803.75500

Floating-point numbers are auto-scaled!

Hexadecimal: 4448F052

De-normalized Form

Not all real numbers in the range are representable

Normalized floating-point numbers

Denormalized floating-point numbers

- Normalized form has a serious problem.
- With an implicit leading 1 for the fraction, it cannot represent the number zero!
- De-normalized form is devised to represent zero and small numbers.
- $E = 0 \Rightarrow 0.F$, implicit leading 0.

Represent -3.4E-39₁₀

Decimal Value Entered: -3.4e-39

Single precision (32 bits):

Special values

- **Zero**: E = 0, F = 0. Two representations: **+0** (S = 0) and **-0** (S = 1).
- Inf (Infinity): E = 0xFF, F = 0. Two representations: +Inf (S = 0) and -Inf (S = 1).
- NaN (Not a Number): E = 0xFF, $F \neq 0$. A value that cannot be represented as a real number (e.g. 0/0).

MATLAB

- $0 \gg a = 1/0$
- 2 » ans = Inf

- 0 > c = 0/0

Rounding schemes

- *ulp* (unit of least precision, eps ()).
- f, significant, f = 1.F.
- f' and f" being two successive multiples of ulp.
- Assume that f' < f < f'', f'' = f' + ulp,
- Then, the rounding function round(f) associates to f either f' or f'', according to some rounding strategy.

Rounding schemes II

Rounding schemes are:

- Truncation (also called round toward 0 or chopping):
 - if f is positive, round(f) = f'.
 - if f is negative, round(-f) = f''.
- Round toward plus infinity: round(f) = f''.
- Round toward minus infinity: round(f) = f'.
- Round to nearest (default):
 - if f < f' + ulp/2, round(f) = f'.
 - if f > f' + ulp/2, round(f) = f''.

Dynamic range

$$DR_{dB} \approx 6.02 \cdot 2^{b_E}$$

where b_E is the number of bits of E.

For single precision (32-bits):

$$DR_{dB} \approx 6.02 \cdot 2^8 \approx 1541 \, dB$$

For fixed-point Q31 (32-bits):

$$DR_{dB} \approx 6.02 \cdot 31 \approx 186 \, dB$$

Precision

- Precision is not constant throughout floating point numbers' range.
- As the numbers get larger, the precision gets worse.

MATLAB

- 0 » u = linspace(-15,15,1000);
- ② » q = quantizer([6 4],'float'); % [wordlength exponentlength]

- **⑤** »

Precision II

Precision III

Precision IV

 $\mathtt{eps}\,(\mathtt{x})\,$ returns the positive distance from $\mathtt{abs}\,(\mathtt{x})\,$ to the next larger in magnitude floating point number of the same precision.

MATLAB

- \bullet » e1 = eps(single(1))
- ② » e1 = 1.1920929e-07
- 3 » e2 = eps(single(1e1))

- \bullet » e3 = 1024

Sum of two floating-point positive numbers

$$n = n_1 + n_2 = 1.F \times r^{(E-bias)},$$

 $n_1 = 1.F_1 \times r^{(E_1-bias)},$
 $n_2 = 1.F_2 \times r^{(E_2-bias)}.$

- if $E_1 >= E_2$ then, $E = E_1, F = F_1 + (F_2 >> (E_1 - E_2))$
- else,

$$E = E_2, F = (F_1 >> (E_2 - E_1)) + F_2$$

• if F >= r then, (first normalization)

$$E = E + 1, F = F >> 1$$

- F = round(F)
- if F >= r then, (second normalization)

$$E = E + 1, F = F >> 1$$

$$\begin{split} n &= 1e10 + 1300 \,, \\ 1e10 &= (-1)^0 \times 1.00101010000001011111001 \times r^{(160-127)} \,, \\ 1300 &= (-1)^0 \times 1.111000000000000000000 \times r^{(131-127)} \,. \end{split}$$

• if
$$160 >= 131$$
 then,

$$E = 160$$
.

$$E = 160, F = 1.001010100000010111111001$$

$$n = (-1)^0 \times 1.001010100000010111111001 \times r^{(160-127)}$$

- In floating-point processors scaling the data increases dynamic range, but scaling does not improve precision, and in fact degrades performance.
- When calculations involve large and small numbers at the same time, the loss of precision affects the small number and the result.

MATLAB

- 2 » ans = 0
- \bullet » t = 2.2204e-16 % eps(1)

Fixed-point vs floating-point

Bibliography

- Bruno Paillard. An Introduction To Digital Signal Processors, Chapter 5 "Binary representations and fixed-point arithmetic".
- Richard G. Lyons. Understanding Digital Signal, Chapter 12 "Digital data formats and their effects".
- Texas Instruments. C28x IQ Math Library. Link to document.
- Jean-Pierre Deschamps, Gustavo D. Sutter, and Enrique Cantó. Guide to FPGA Implementation of Arithmetic Functions, Chapter 12 "Floating Point Arithmetic".