Lecture 25 – Undecidability

COSE215: Theory of Computation

Jihyeok Park

2025 Spring

• A language L(M) accepted by a TM M is **Recursively Enumerable**:

$$L(M) = \{ w \in \Sigma^* \mid q_0 \ w \vdash^* \alpha \ q_f \ \beta \not\vdash \text{ for some } q_f \in F, \alpha, \beta \in \Gamma^* \}$$
 where $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$.

• A language L(M) accepted by a TM M is **Recursively Enumerable**:

$$L(M) = \{ w \in \Sigma^* \mid q_0 \ w \vdash^* \alpha \ q_f \ \beta \not\vdash \text{ for some } q_f \in F, \alpha, \beta \in \Gamma^* \}$$
 where $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$.

• Let's learn another class of languages: decidable languages (DLs).

• A language L(M) accepted by a TM M is **Recursively Enumerable**:

$$L(M) = \{ w \in \Sigma^* \mid q_0 \ w \vdash^* \alpha \ q_f \ \beta \not\vdash \text{ for some } q_f \in F, \alpha, \beta \in \Gamma^* \}$$
 where $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$.

Let's learn another class of languages: decidable languages (DLs).

• A language L(M) accepted by a TM M is **Recursively Enumerable**:

$$L(M) = \{ w \in \Sigma^* \mid q_0 \ w \vdash^* \alpha \ q_f \ \beta \not\vdash \text{ for some } q_f \in F, \alpha, \beta \in \Gamma^* \}$$
 where $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$.

Let's learn another class of languages: decidable languages (DLs).

Is there a language that is NOT REL?

• A language L(M) accepted by a TM M is **Recursively Enumerable**:

$$L(M) = \{ w \in \Sigma^* \mid q_0 \ w \vdash^* \alpha \ q_f \ \beta \not\vdash \text{ for some } q_f \in F, \alpha, \beta \in \Gamma^* \}$$
 where $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$.

Let's learn another class of languages: decidable languages (DLs).

Is there a language that is NOT REL? Yes!

• A language L(M) accepted by a TM M is **Recursively Enumerable**:

$$L(M) = \{ w \in \Sigma^* \mid q_0 \ w \vdash^* \alpha \ q_f \ \beta \not\vdash \text{ for some } q_f \in F, \alpha, \beta \in \Gamma^* \}$$
 where $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$.

Let's learn another class of languages: decidable languages (DLs).

- Is there a language that is NOT REL? Yes!
- Is there a language that is REL but NOT decidable?

• A language L(M) accepted by a TM M is **Recursively Enumerable**:

$$L(M) = \{ w \in \Sigma^* \mid q_0 \ w \vdash^* \alpha \ q_f \ \beta \not\vdash \text{ for some } q_f \in F, \alpha, \beta \in \Gamma^* \}$$
 where $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$.

Let's learn another class of languages: decidable languages (DLs).

- Is there a language that is NOT REL? Yes!
- Is there a language that is REL but NOT decidable? Yes!

Contents

1. Example of Non-REL

Enumerating Binary Words Encoding TMs as Binary Words Enumerating TMs Diagonal Language L_d L_d is Not Recursively Enumerable

2. Decidable Languages (DLs)

Definition
Closure Properties of DLs

3. Example of REL but Non-DL

The Universal Language L_u L_u is Recursively Enumerable but Not Decidable

4. Decision Problems

Contents

1. Example of Non-REL

Enumerating Binary Words Encoding TMs as Binary Words Enumerating TMs Diagonal Language L_d L_d is Not Recursively Enumerable

2. Decidable Languages (DLs)

Definition

Closure Properties of DLs

3. Example of REL but Non-DL

The Universal Language L_u L_u is Recursively Enumerable but Not Decidable

4. Decision Problems

• We can define a **bijection** $f: \{0,1\}^* \to \mathbb{N}$:

$$f(w) =$$
(the number represented by 1 w in binary)

• We can define a **bijection** $f: \{0,1\}^* \to \mathbb{N}$:

$$f(w) =$$
(the number represented by $1w$ in binary)

It means that the set of all binary words is countably infinite.

• We can define a **bijection** $f: \{0,1\}^* \to \mathbb{N}$:

$$f(w) =$$
(the number represented by $1w$ in binary)

- It means that the set of all binary words is countably infinite.
- And, we can enumerate them in w_i for $i \in \mathbb{N}$:

```
f(\epsilon) = 1 (1 in binary) w_1 = \epsilon

f(0) = 2 (10 in binary) w_2 = 0

f(1) = 3 (11 in binary) w_3 = 1

f(00) = 4 (100 in binary) w_4 = 00

f(01) = 5 (101 in binary) w_5 = 01

f(10) = 6 (110 in binary) w_6 = 10

\vdots
```


• We can define a **bijection** $f: \{0,1\}^* \to \mathbb{N}$:

$$f(w) =$$
(the number represented by $1w$ in binary)

- It means that the set of all binary words is countably infinite.
- And, we can enumerate them in w_i for $i \in \mathbb{N}$:

$$f(\epsilon) = 1$$
 (1 in binary) $w_1 = \epsilon$
 $f(0) = 2$ (10 in binary) $w_2 = 0$
 $f(1) = 3$ (11 in binary) $w_3 = 1$
 $f(00) = 4$ (100 in binary) $w_4 = 00$
 $f(01) = 5$ (101 in binary) $w_5 = 01$
 $f(10) = 6$ (110 in binary) $w_6 = 10$
 \vdots

• We will use w_i to denote the *i*-th binary word.

Encoding TMs as Binary Words

$$M = (Q, \{0, 1\}, \Gamma, \delta, q_1, B, F)$$

where

- $Q = \{q_1, q_2, \cdots, q_r\}$
- $\Gamma = \{X_1, X_2, \cdots, X_s\}$
- Direction: $L = D_1$ and $R = D_2$

Encoding TMs as Binary Words

$$M = (Q, \{0,1\}, \Gamma, \delta, q_1, B, F)$$

where

- $Q = \{q_1, q_2, \cdots, q_r\}$
- $\Gamma = \{X_1, X_2, \cdots, X_s\}$
- Direction: $L = D_1$ and $R = D_2$

We can encode a transition $\delta(q_i, X_i) = (q_k, X_l, D_m)$ as a binary word:

$$0^{i}10^{j}10^{k}10^{l}10^{m}$$

Encoding TMs as Binary Words

$$M = (Q, \{0, 1\}, \Gamma, \delta, q_1, B, F)$$

where

- $Q = \{q_1, q_2, \cdots, q_r\}$
- $\Gamma = \{X_1, X_2, \cdots, X_s\}$
- Direction: $L = D_1$ and $R = D_2$

We can encode a transition $\delta(q_i, X_i) = (q_k, X_l, D_m)$ as a binary word:

$$0^{i}10^{j}10^{k}10^{l}10^{m}$$

Then, we can encode a TM M as a binary word:

$$T_1 11 T_2 11 \cdots 11 T_n 1110^{f_1} 10^{f_2} 1 \cdots 10^{f_t}$$

where T_i is the encoding of the *i*-th transition and $F = \{q_{f_1}, q_{f_2}, \cdots, q_{f_t}\}$.

Encoding TMs as Binary Words – Example

$$M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{X_1 = 0, X_2 = 1, X_3 = B\}, \delta, q_1, B, \{q_3\})$$

$$\delta(q_1, 0) = (q_1, 1, R) \quad \text{(encoded as 01010100100)}$$

$$\delta(q_1, 1) = (q_1, 0, R) \quad \text{(encoded as 01001010100)}$$

$$\delta(q_1, B) = (q_2, B, L) \quad \text{(encoded as 01000100100100)}$$

$$\delta(q_2, 0) = (q_2, 0, L) \quad \text{(encoded as 001010010010)}$$

$$\delta(q_2, 1) = (q_2, 1, L) \quad \text{(encoded as 0010010010010)}$$

$$\delta(q_2, B) = (q_3, B, R) \quad \text{(encoded as 00100010001000100)}$$

The encoding of M as a binary word is:

Definition

We define M_i to be a TM encoded as the *i*-th binary word w_i .

Definition

We define M_i to be a TM encoded as the *i*-th binary word w_i .

However, not all binary words are valid encodings of TMs.

Definition

We define M_i to be a TM encoded as the *i*-th binary word w_i .

- However, not all binary words are valid encodings of TMs.
- If w_i is not a valid encoding of a TM, we define M_i to be the TM that rejects all inputs.

Definition

We define M_i to be a TM encoded as the *i*-th binary word w_i .

- However, not all binary words are valid encodings of TMs.
- If w_i is not a valid encoding of a TM, we define M_i to be the TM that rejects all inputs.
- For example, M_4 denotes a TM encoded as fourth binary word $w_4=00$. However, there is no TM encoded as 00. It means that M_4 is the TM that rejects all inputs (i.e., $L(M_4)=\varnothing$).

Diagonal Language L_d

Definition

The diagonal language $L_d = \{w_i \mid w_i \notin L(M_i)\}$

Diagonal Language L_d

Definition

The diagonal language $L_d = \{w_i \mid w_i \notin L(M_i)\}$

		ϵ	0	1	00	01	10	
		w_1	W_2	W_3	W_4	W_5	w_6	
ϵ	M_1	1	1	0	1	0	1	• • •
0	M_2	1	0	1	0	1	0	
1	M_3	1	1	1	0	0	1	
00	M_4	0	0	0	0	0	0	
01	M_5	1	1	1	1	0	1	
10	M_6	0	1	0	1	0	1	
:	:	:	:	:	:	÷	٠	

where 1 and 0 denote **accept** and **reject**, respectively. Then, L_d is the language consisting of the words in the complement of the diagonal:

$$L_d = \{w_2, w_4, w_5, \cdots\}$$

L_d is Not Recursively Enumerable

Theorem

 L_d is **NOT** recursively enumerable.

Proof) No TM can recognize L_d . Why?

L_d is Not Recursively Enumerable

Theorem

 L_d is **NOT** recursively enumerable.

Proof) No TM can recognize L_d . Why?

Assume that the *i*-th TM M_i recognizes L_d . Then, there are two cases for w_i but both lead to a contradiction.

- If $w_i \in L_d$, then $w_i \notin L(M_i)$ by definition of L_d .
- If $w_i \notin L_d$, then $w_i \in L(M_i)$ by definition of L_d .

Contents

1. Example of Non-REL

Enumerating Binary Words
Encoding TMs as Binary Words
Enumerating TMs
Diagonal Language L_d L_d is Not Recursively Enumerable

2. Decidable Languages (DLs)

Definition

Closure Properties of DLs

3. Example of REL but Non-DL

The Universal Language L_u L_u is Recursively Enumerable but Not Decidable

4. Decision Problems

Definition (Decidable Language (DL))

A language L is **decidable** if there is a TM M such that 1) L(M) = L and 2) M halts on all inputs.

Definition (Decidable Language (DL))

A language L is **decidable** if there is a TM M such that 1) L(M) = L and 2) M halts on all inputs.

If *L* only satisfies 1), then *L* is **recursively enumerable**.

Definition (Decidable Language (DL))

A language L is **decidable** if there is a TM M such that 1) L(M) = L and 2) M halts on all inputs.

If L only satisfies 1), then L is **recursively enumerable**. In other words, a language L is recursively enumerable by a TM M if and only if

- **1** If $w \in L$, then M halts on w and accepts w with a final state.
- 2 If $w \notin L$, then there is two cases:
 - **1** *M* halts on *w* and rejects *w* with a non-final state.
 - M does not halt on w.

Definition (Decidable Language (DL))

A language L is **decidable** if there is a TM M such that 1) L(M) = L and 2) M halts on all inputs.

If L only satisfies 1), then L is **recursively enumerable**. In other words, a language L is recursively enumerable by a TM M if and only if

- **1** If $w \in L$, then M halts on w and accepts w with a final state.
- 2 If $w \notin L$, then there is two cases:
 - **1** *M* halts on *w* and rejects *w* with a non-final state.
 - M does not halt on w.

However, a **decidable language (DL)** *L* satisfies 2) as well.

Definition (Decidable Language (DL))

A language L is **decidable** if there is a TM M such that 1) L(M) = L and 2) M halts on all inputs.

If L only satisfies 1), then L is **recursively enumerable**. In other words, a language L is recursively enumerable by a TM M if and only if

- **1** If $w \in L$, then M halts on w and accepts w with a final state.
- 2 If $w \notin L$, then there is two cases:
 - **1** *M* halts on *w* and rejects *w* with a non-final state.
 - M does not halt on w.

However, a **decidable language (DL)** L satisfies 2) as well. In other words, a language L is decidable by a TM M if and only if

- **1** If $w \in L$, then M halts on w and accepts w with a final state.
- 2 If $w \notin L$, then M halts on w and rejects w with a non-final state.

Closure Properties of DLs

Definition (Closure Properties)

The class of DLs is **closed** under an n-ary operator op if and only if $op(L_1, \dots, L_n)$ is decidable for any DLs L_1, \dots, L_n . We say that such properties are **closure properties** of DLs.

Closure Properties of DLs

Definition (Closure Properties)

The class of DLs is **closed** under an n-ary operator op if and only if $op(L_1, \dots, L_n)$ is decidable for any DLs L_1, \dots, L_n . We say that such properties are **closure properties** of DLs.

The class of DLs is closed under the following operations:

- Union
- Concatenation
- Kleene Star
- Intersection
- Complement (Let's focus on this property)

Closure Properties of DLs - Complement

Theorem (Closure under Complement)

If L is a decidable language, then so is \overline{L} .

Closure Properties of DLs - Complement

Theorem (Closure under Complement)

If L is a decidable language, then so is \overline{L} .

Proof) For a given DL L, we can always construct a TM M:

- **1** If $w \in L$, then M halts on w and accepts w with a final state.
- 2 If $w \notin L$, then M halts on w and rejects w with a non-final state.

Then, we can construct a TM \overline{M} that simulates M and accepts w if M rejects w and vice versa by flipping the **final** and **non-final** states.

Contents

1. Example of Non-REL

Enumerating Binary Words
Encoding TMs as Binary Words
Enumerating TMs
Diagonal Language L_d L_d is Not Recursively Enumerable

Decidable Languages (DLs)

Definition

Closure Properties of DLs

3. Example of REL but Non-DL

The Universal Language L_u L_u is Recursively Enumerable but Not Decidable

4. Decision Problems

The Universal Language L_u

Definition

The language L_u is the set of all pairs (M, w) such that M accepts w:

$$L_u = \{(M, w) \mid w \in L(M)\}$$

where M is a TM and w is a binary word. In other words, L_u is the language accepted by the **universal Turing machine (UTM)**.

Theorem

 L_u is recursively enumerable but NOT decidable.

L_u is Recursively Enumerable but Not Decidable

Theorem

 L_u is recursively enumerable but NOT decidable.

Proof) We need to prove the following two statements:

 $\mathbf{0}$ L_u is recursively enumerable.

Let's construct a TM M_u that accepts L_u .

2 L_u is not decidable.

Let's prove by contradiction. Assume that L_u is decidable. Then, we will show that it is possible construct a TM M_d that accepts L_d . However, we already proved that L_d is not recursively enumerable. This is a contradiction.

It is enough to construct a (universal) TM M_u that accepts L_u :

$$L_u = \{(M, w) \mid w \in L(M)\}$$

It is enough to construct a (universal) TM M_u that accepts L_u :

$$L_u = \{(M, w) \mid w \in L(M)\}$$

Idea) We can construct M_u that simulates M on w with **multiple tapes**:

 The 1st tape (Input) stores 1) the encoding of M and 2) the input word w in binary.

- The 1st tape (Input) stores 1) the encoding of M and 2) the input word w in binary.
- The **2nd** tape (**Tape of** M) stores the **simulated tape** of M in binary. Each tape symbol X_i is encoded as 0^i , and separated by 1.

- The 1st tape (Input) stores 1) the encoding of M and 2) the input word w in binary.
- The 2nd tape (Tape of M) stores the simulated tape of M in binary. Each tape symbol X_i is encoded as 0ⁱ, and separated by 1.
- The 3rd tape (State of M) stores the simulated state of M in binary. The current state q_i is encoded as 0ⁱ.

- The 1st tape (Input) stores 1) the encoding of M and 2) the input word w in binary.
- The **2nd** tape (**Tape of** M) stores the **simulated tape** of M in binary. Each tape symbol X_i is encoded as 0^i , and separated by 1.
- The **3rd** tape (**State of** *M*) stores the **simulated state** of *M* in binary. The current state q_i is encoded as 0^i .
- The 4th tape (Scratch) is used for the simulation.

To simulate a move of M, M_u searches the corresponding transition in the 1st tape and updates the 2nd and 3rd tapes accordingly. For example,

$$\delta(q_i, X_j) = (q_k, X_l, D_m)$$
 encoded as $0^i 10^j 10^k 10^l 10^m$ in the 1st tape

To simulate a move of M, M_u searches the corresponding transition in the 1st tape and updates the 2nd and 3rd tapes accordingly. For example,

$$\delta(q_i, X_j) = (q_k, X_l, D_m)$$
 encoded as $0^i 10^j 10^k 10^l 10^m$ in the 1st tape

Then, M_u updates the 2nd and 3rd tapes as follows:

- The 2nd tape: Replace 0^j with 0^l , and Move the head according to m (m = 0 for left and m = 1 for right).
- The 3rd tape: Replace 0^i with 0^k .

L,, is Not Decidable

• Let's prove by contradiction. Assume that L_u is decidable.

L_{ii} is Not Decidable

- Let's prove by contradiction. Assume that L_u is decidable.
- Then, the complement $\overline{L_u}$ of L_u is also decidable because DLs are closed under complement.

L,, is Not Decidable

- Let's prove by contradiction. Assume that L_u is decidable.
- Then, the complement $\overline{L_u}$ of L_u is also decidable because DLs are closed under complement.
- Consider another TM M_{copy} that **copies** the input word w to (w, w).
- Now, we can construct a TM M_d that accepts the diagonal language L_d using M_{copy} and $\overline{L_u}$ as follows (i.e., $L(M_d) = L_d$):

L_{ii} is Not Decidable

- Let's prove by contradiction. Assume that L_u is decidable.
- Then, the complement $\overline{L_u}$ of L_u is also decidable because DLs are closed under complement.
- Consider another TM M_{copy} that **copies** the input word w to (w, w).
- Now, we can construct a TM M_d that accepts the diagonal language L_d using M_{copy} and $\overline{L_u}$ as follows (i.e., $L(M_d) = L_d$):

• However, we already proved that L_d is not recursively enumerable. This is a contradiction. Thus, L_u is **NOT** decidable.

Contents

4. Decision Problems

June 9, 2025

Definition (Decision Problem)

A decision problem π is a computational problem whose answer is either yes or no for a given input.

Definition (Decision Problem)

A decision problem π is a computational problem whose answer is either yes or no for a given input.

We say that a decision problem π is **decidable** (**solvable**) by a TM M if M halts on all inputs and $L(M) = \{w \mid \pi(w) = \text{yes}\}.$

Definition (Decision Problem)

A decision problem π is a computational problem whose answer is either yes or no for a given input.

We say that a decision problem π is **decidable** (**solvable**) by a TM M if M halts on all inputs and $L(M) = \{w \mid \pi(w) = \text{yes}\}.$

If not, π is an **undecidable problem**. There are many examples:

- Halting Problem Is there a TM that halts on a given input?
- Equivalence of CFGs Are two CFGs equivalent?
- Ambiguity of CFGs Is a CFG ambiguous?
- . . .

Definition (Decision Problem)

A decision problem π is a computational problem whose answer is either yes or no for a given input.

We say that a decision problem π is **decidable** (**solvable**) by a TM M if M halts on all inputs and $L(M) = \{w \mid \pi(w) = \text{yes}\}.$

If not, π is an **undecidable problem**. There are many examples:

- Halting Problem Is there a TM that halts on a given input?
- Equivalence of CFGs Are two CFGs equivalent?
- Ambiguity of CFGs Is a CFG ambiguous?
- . . .

If you are interested in more undecidable problems, please refer to:

https://en.wikipedia.org/wiki/List_of_undecidable_problems

Summary

• The diagonal language L_d :

$$L_d = \{w_i \mid w_i \notin L(M_i)\}$$

where w_i is the i-th binary word and M_i is the i-th TM.

• The universal language L_u accepted by the universal TM (UTM):

$$L_u = \{(M, w) \mid w \in L(M)\}$$

where M is a TM and w is a binary word.

Next Lecture

• P, NP, and NP-Complete Problems

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr