Álgebra Relacional

Concepto de relación

Dada una serie de conjuntos D1, D2,..., Dn se dice que R es una relación sobre los n conjuntos si es un conjunto de t tuplas ordenadas $< d1, d2,..., dn > / d1 \in D1, d2 \in D2,..., dn \in Dn$

Dominios de R: son los conjuntos **D1**, **D2**,...., **Dn**Grado de R: valor **n**Cardinalidad de R: número de tuplas **t**

Por su parte, el álgebra relacional es un conjunto de operaciones sobre las relaciones. Cada operación del álgebra relacional toma 1 ó 2 tablas como operandos y produce como resultado una nueva relación. Se compone de dos grupos de operadores:

Operadores Tradicionales: son los operadores utilizados en álgebra. Son ellos: Unión, intersección diferencia y producto cartesiano.

Operadores Especiales: son operadores orientados al manejo de relaciones. Los operadores σ (select), π (project), \bowtie (join) y % (division), constituyen el álgebra relacional.

Operadores Tradicionales

Union: La unión de dos relaciones compatibles ${\bf A}$ y ${\bf B}$ es el conjunto de todas las tuplas que pertenecen a ambas relaciones. Ejemplo : sean las relaciones ${\bf A}$ y ${\bf B}$.

A B

A#	NomA	CiudadA
A1	Marina	París
A2	Martin	Londres
A3	Sandra	Bs. As.
X1	Angel	Toronto

B#	NomB	Ciudad
B1	José	Miami
В2	Jorge	Orlando
X1	Angel	Toronto

$A \cup B$

A#	NomA	CiudadA
A1	Marina	París
A2	Martin	Londres
A3	Sandra	Bs. As.
X1	Angel	Toronto
B1	José	Miami
B2	Jorge	Orlando

Intersección : La intersección de dos relaciones compatibles en la unión ${\bf A}$ y ${\bf B}$ es el conjunto de todas las tuplas que pertenecen tanto a ${\bf A}$ como a ${\bf B}$.

$A \cap B$

A#	NomA	CiudadA
X1	Angel	Toronto

Diferencia : La diferencia entre dos relaciones ${\bf A}$ y ${\bf B}$ es el conjunto de las tuplas que pertenecen a ${\bf A}$ y no pertenecen a ${\bf B}$

A - B

A#	NomA	CiudadA				
A1	Marina	París				
A2	Martin	Londres				
A3	Sandra	Bs. As.				

Producto cartesiano : El producto cartesiano extendido de dos
relaciones A y B es el conjunto de las tuplas t tales que t es la
concatenación de una tupla a perteneciente a A y una tupla b
perteneciente a B. Dicho de otra manera, dada una serie de conjuntos
D1, D2, ..., Dn; el producto cartesiano de estos n conjuntos, es el
conjunto de las n tuplas posibles.

аХв

A#	NomA	CiudadA	В#	NomB	Ciudad
A1	Marina	París	B1	José	Miami
A1	Marina	París	В2	Jorge	Orlando
A1	Marina	París	X1	Angel	Toronto
A2	Martin	Londres	В1	José	Miami
A2	Martin	Londres	В2	Jorge	Orlando
A2	Martin	Londres	X1	Angel	Toronto
A3	Sandra	Bs. As.	B1	José	Miami
A3	Sandra	Bs. As.	В2	Jorge	Orlando
A3	Sandra	Bs. As.	X1	Angel	Toronto
X1	Angel	Toronto	B1	José	Miami
X1	Angel	Toronto	В2	Jorge	Orlando
X1	Angel	Toronto	X1	Angel	Toronto

Operadores Especiales

Operador SELECT (σ)

Construye una nueva tabla al tomar un subconjunto **horizontal** de la tabla existente. Produce un subconjunto horizontal de una relación específica.

El resultado de la selección es otra tabla con los mismos atributos que la tabla original

Operador PROJECT (π)

Construye una nueva tabla al tomar un subconjunto **vertical** de la tabla existente. Produce un subconjunto vertical de una relación dada, es decir el subconjunto obtenido de seleccionar los atributos especificados.

Operador JOIN (⋈)

El resultado de aplicar un JOIN sobre dos tablas es una nueva tabla donde cada renglón se forma concatenando dos renglones que tengan el mismo valor de atributo. Se puede definir un join **mayor que** de la relación $\bf A$ sobre el atributo $\bf X$ con la relación $\bf B$ sobre el atributo $\bf Y$ como el conjunto de todas las tuplas $\bf t$ tales que, $\bf t$ es la concatenación de una tupla $\bf a$ tal que $\bf a$ pertenece a $\bf A$ y una tupla $\bf b$ perteneciente a $\bf B$ donde $\bf x$ > $\bf y$ y $\bf x$ es el componente $\bf X$ de $\bf A$ e $\bf y$ es el componente $\bf Y$ de $\bf B$

Esta operación es equivalente a tomar el producto cartesiano de las dos relaciones dadas y luego realizar una selección adecuada sobre ese producto. En el caso de que el join se defina de manera tal que la condición **se fundamenta en la igualdad** entre valores de la columna común, la tabla resultante contiene por fuerza dos columnas idénticas.

Una columna se podría eliminar aplicando un project, pero para evitar esta operación se utiliza el **natural join**, operación mediante la cuál una de las columnas idénticas es eliminada

Operador DIVISION (%)

Sea una relación $\bf A$ de grado $\bf m + \bf n$ donde $\bf A$ puede definirse como un conjunto de pares de valores $\bf < x,y>$. Sea una relación $\bf B$ de grado $\bf n$, donde $\bf B$ puede definirse como un conjunto de valores $\bf < y>$ simples.

Al aplicar el operador división \mathbf{A} % \mathbf{B} el resultado será una relación \mathbf{C} de grado \mathbf{m} donde \mathbf{C} puede definirse como el conjunto de valores \mathbf{x} tales que el par $\langle \mathbf{x}, \mathbf{y} \rangle$ aparece en \mathbf{A} para todos los valores \mathbf{y} que aparecen en \mathbf{B} .

Los atributos de la relación resultado, tienen los mismos nombres que los primeros ${\bf m}$ atributos de ${\bf A}$.

A

Atrib	Atrib	Atrib	Atrib	Atrib		Atrib
A1	A2	A3	 Am	Am+1		Am+n
		х		У		

В

Atrib	Atrib		Atrib					
B1	B2		Bn					
У								

С

Atrib	Atrib	Atrib	Atrib		
C1	C2	C3	 Cm		
		Х			

Ejemplo : sean las relaciones A, B, C y D :

A			
S#	P#	В	D
S1	P1	P#	P#
S1	P2	P1	P1
S1	Р3		P2
S1	P4		Р3
S1	P5		P4
S1	P6		P5
S2	P1	C	Р6
S2	P2	P#	
S3	P2	P2	
S4	P2	P4	
S4	P4		
S4	P5		

A % B

S#

S1

S2

A % C

S#

S#

S1

S1

S1

Otros ejemplos

1. Sea la relación ABC

1.2.
$$\pi$$
 ABC = | b1 | c1 | B,C | b2 | c2 | b3 | c3 |

4.	Sea	R	=	a	b	С	Sea	S	=	a	b	d	
				r	s	t				a	b	С	
				а	d	С				W	Z	У	
				W	Z	У							

4.2. R - S | r | s | t | a | d | c

5. Sea R =

A	В	С
1 4 7 3 5	2 5 8 1	3 6 9 5

В	D
1 2	7

6.1. A % B | 1 |

Consultas

S : SUPPLIERS

S#	SNAME	Status	Ciudad
s ₁	Smith	30	London
S ₂	Jones	10	París
S ₃	Blake	30	París
S ₄	Clark	20	London
S ₅	Adams	30	Athenas

P : PARTS

P#	PNAME	Color	Peso	City
P ₁	Nut	Red	12	London Paris Rome London Paris London
P ₂	Bolt	Green	17	
P ₃	Screw	Blue	17	
P ₄	Screw	Red	14	
P ₅	Cam	Blue	12	
P ₆	Cog	Red	19	

SPJ : Relation

s#	P#	Qty
\$1 \$1 \$2 \$2 \$2 \$2 \$2 \$3 \$3 \$4	P1 P2 P3 P3 P3 P3 P3 P3 P5 P3 P4	200 100 400 200 200 500 600 400 800 100 200 500 300
\$4455555555555555555555555555555555555	P P P P P P P P P P P P P P P P P P P	300 200 100 500 100 200 900 900 800 400 500

Teniendo en cuenta los operadores vistos y las relaciones de ejemplo planteadas, es posible que en un caso real se nos presenten las siguientes consultas. Primero se analizará como se responderían a estas consultas en forma lógica y luego aplicando los operadores relacionales.

1) Halle ciudad para S# = S1

S#	Ciudad
S1	London

2) Halle S# y Status de los proveedores de París

S#	Status
S2	10
S3	30

3) Halle PNAME para las partes suministradas por el proveedor S1

S#	P#
S1	P1
S1	P2
S1	Р3

P#	NOMP
P1	Nut
P2	Bolt
P3	Screw

4) Para cada parte suministrada, halle el P# y los nombres de todas las ciudades que suministran la parte

S#	P#
S1	P1
S1	P2
S1	P3
S2	P1
S2	P2

S#	Ciudad
S1	London
S2	París
S3	París

P#	Ciudad
P1	London
P2	London
Р3	London
P1	París
P2	París

Aplicando estos operadores relacionales a las cuatro consultas precedentes, el resultado es el siguiente.

3)
$$\pi$$
 (σ (SP) $\triangleright \triangleleft$ P) S#='S1' P# NOMP

4)
$$\pi$$
 (π (SP) \bowtie S) P#,S# S# Ciudad

Trabajo Práctico

S : SUPPLIERS

s#	SNAME	Status	Ciudad
s ₁	Smith	30	London
s ₂	Jones	10	París
s ₃	Blake	30	París
S4	Clark	20	London
85	Adams	30	Athena <i>s</i>

P : PARTS

P#	PNAME	Color	Peso	City
P ₁	Nut	Red	12	London Paris Rome London Paris London
P2	Bolt	Green	17	
P ₃	Screw	Blue	17	
P4	Screw	Red	14	
P ₅	Cam	Blue	12	
P6	Cog	Red	19	

SPJ : Relation

S#	Р#	J#	Qty
11222222222222222222222222222222222222	P P P P P P P P P P P P P P P P P P P	JJ412345672123724572444444 JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ	200 100 400 200 500 600 400 800 100 500 300 200 100 500 100 900 900 800 400 500

J : JOBS

J	#	JNAME	Ciudad
J	2.3.4.5.6	Sorter Punch Reader Console Collator Terminal	Paris Rome Athenas Athenas London Oslo London

- 1) Valores S# para proveedores que proveen el proyecto J1.
- 2) Valores S# para proveedores que proveen el proyecto J1 c/la parte P1.
- 3) Valores JNAME para proyectos suministrados por el proveedor S1.
- 4) Valores de Color para partes suministradas por el proveedor S1.
- 5) Valores S# para proveedores que suministren los proyectos J1 y J2.
- 6) Valores S# para prov.que proveean el proyecto J1 con una parte roja.
- 7) Valores P# para partes suministradas a cualquier proyecto en London.
- 8) Valores S# para proveedores que suministren a proyectos de London o Paris con una parte roja.
- 9) Valores P# para partes suministradas a cualquier proyecto por cualquier proveedor en una misma ciudad.
- 10) Valores S# para proveedores que suministren la misma parte a todos los proyectos.
- 11) Valores J# para proyectos los cuales usen solo partes del prov. S1.