ECG2 - Mathématiques

DM₂

- * À rendre le lundi 7 novembre au début de la séance de cours. Aucun délai supplémentaire ne sera accordé.
- * Le devoir doit être rédigé sur des copies doubles. Les résultats doivent être mis en valeur (encadrés ou soulignés par exemple).
- * La concision et la clarté des arguments aura une part importante dans la notation.

Exercice 1

On considère l'évolution de l'espérance de vie des hommes et des femmes en France entre 2000 et 2007 :

Année	2000	2001	2002	2003	2004	2005	2006	2007
Hommes (X)	75.3	75.5	75.8	75.9	76.8	76.8	77.2	77.6
Femmes (Y)	82.8	82.9	83	82.9	83.9	83.8	84.2	84.5

On considère la série statistique double associée aux caractères X et Y ci-dessus.

Pour les tracés, on arrondira les valeurs numériques au centième près.

1. (a) Donner la commande Python permettant de définir les vecteurs

$$X = (75.3, 75.5, 75.8, 75.9, 76.8, 76.8, 77.2, 77.6)$$
 et $Y = (82.8, 82.9, 83, 82.9, 83.9, 83.8, 84.2, 84.5)$.

- (b) Donner la commande Python permettant d'obtenir \bar{X} et \bar{Y} .
- (c) Déterminer X et Y.
- 2. Dans un repère orthonormé, tracer le nuage de point associé et placer le point moyen.
- 3. (a) Donner la commande Python permettant d'obtenir l'écart-type de X et de Y. Calculer ces écart-types.
 - (b) Écrire un programme Python permettant de calculer la covariance empirique $s_{X,Y}^2$.
 - (c) Calculer la covariance empirique $s_{X,Y}^2$.
 - (d) En déduire le coefficient de corrélation linéaire de Y et X. Un ajustement linéaire est-il pertinent?
 - (e) Déterminer la droite de régression linéaire de Y en X puis la tracer dans le repère de la question 2.

Exercice 2

- 1. Calculer les intégrales suivantes :
 - (a) $\int_{-1}^{2} \frac{x}{1+x^2} dx$,
 - (b) $\int_0^1 \frac{e^{3x}}{1 + e^{3x}} dx,$
 - (c) $\int_{1}^{e} t \ln(t) dt.$
- 2. Étudier la nature des intégrales suivantes et, le cas échéant, calculer leur valeur.
 - (a) $\int_0^{+\infty} \frac{1}{(2t+3)^2} dt$,
 - (b) $\int_{2}^{+\infty} (2x-1) \ln(x-1) dx$,
- 3. Étudier la nature des séries suivantes et, le cas échéant, calculer leur somme.
 - (a) $\sum_{n\geq 0} \frac{n2^n}{n!}.$
 - (b) $\sum_{n\geq 0} \frac{n}{2^{2n+1}}$.

Exercice 3

Soient n et b deux entiers avec $n \ge 1$ et $b \ge 2$. On considère une urne contenant n boules noires et b boules blanches, toutes indiscernables.

Un joueur A effectue des tirages successifs d'une boule **sans remise** dans l'urne jusqu'à obtenir une boule blanche. Il laisse alors la place au joueur B qui effectue des tirages successifs d'une boule **avec remise** dans l'urne jusqu'à obtenir une boule blanche.

On note X la variable aléatoire réelle égale au nombre de boules noires tirées par A avant de tirer une boule blanche et on appelle Y la variable aléatoire réelle égale au nombre de boules noires tirées par B avant de tirer une boule blanche (s'il ne reste plus de boule noire, on a donc Y = 0).

Par exemple, si n = 3 et b = 7 et que les tirages successifs ont donné : « noire, blanche, noire, noire, noire, blanche » alors :

- A a effectué deux tirages, il a retiré une boule noire puis une boule blanche de l'urne;
- l'urne contient maintenant 8 boules dont deux noires et six blanches;
- B a effectué ensuite cinq tirages dans cette urne, il a pioché 4 boules noires qu'il a reposé dans l'urne après chaque tirage puis il a pioché une boule blanche;
- X vaut 1 et Y vaut 4.
- 1. Dans cette question, on suppose que b = n = 2. On suppose donc ici que l'urne contient initialement 2 boules blanches et 2 boules noires.
 - (a) Donner les probabilités des évènements : [X = 0], [X = 1], [X = 2].
 - (b) En déduire l'espérance et la variance de X.
 - (c) Montrer que la probabilité de l'évènement [Y = 0] est donnée par :

$$P([Y=0]) = \frac{1}{2}.$$

(d) Pour tout $i \in \mathbb{N}^*$, déterminer les probabilités suivantes :

$$P([X = 0] \cap [Y = i])$$
 ; $P([X = 1] \cap [Y = i])$; $P([X = 2] \cap [Y = i])$.

(e) En déduire la loi de Y.

Uniquement à l'aide de l'expression de P([Y = i]) en fonction de i, vérifier que : $\sum_{i=0}^{+\infty} P([Y = i]) = 1$.

- (f) Montrer que Y admet une espérance et la calculer.
- 2. On se place maintenant dans le cas général.
 - (a) Pour tout $k \in [\![1,n]\!]$, calculer la probabilité P ([X = k]) puis vérifier que :

$$P\left([X=k]\right) = \frac{\binom{n-k+b-1}{b-1}}{\binom{n+b}{b}}.$$

2

(b) Utiliser la question qui précède pour justifier que : $\sum_{k=0}^{n} {k+b-1 \choose b-1} = {n+b \choose b}.$