## Phenomenology of scotogenic models

#### LHC signals



#### Diego Restrepo

November 15, 2016

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co



Volcán de Fuego (Caroline Kish)

#### Focus on

arXiv: arXiv:1308.3655 (JHEP), arXiv:1504.07892 (PRD), arXiv:1509.06313 (PRD), arXiv:1511.01873 (JHEP), arXiv:1605.01129 (PRD)

#### In collaboration with

G. Palacio, F. von der Pahlen, D. Portillo, A. Rivera, M. Sánchez, O. Zapata (UdeA)

C. Arbeláez (USM), W. Tangarife (Tel Aviv U.), C. Yaguna (Heidelberg, Max Planck Inst.).

#### **Table of Contents**

- 1. General framework
- 2. Proposal:  $pp \rightarrow l^+l^- + E_T^{\text{miss}}$
- 3. Specific examples
- 4. Lepton flavor dependence
- 5. Prospects for run-II
- 6. Vector-like fermion mediation

General framework

#### $\nu$ -DM models

#### small neutrino masses



#### $\nu$ -DM models

small neutrino masses  $\Leftarrow Z_2 \Rightarrow$  dark matter



35 non-equivalent dark matter models classified in D.R., C. Yaguna, O. Zapata, arXiv:1308.3655 (JHEP)

2. Neutrinos talk to a different **Higgs boson** 

# Weinberg operator at one-loop



# Weinberg operator at one-loop



## Typical radiative neutrino mass diagram.



## In term of general SU(2)<sub>L</sub> multiplets,



### may be also contain charged particles,



### which may decay into the dark matter particle.



# Proposal: $pp \rightarrow l^+l^- + E_T^{\text{miss}}$

## Dilepton plus transverse missing energy signal



 $SU(2)_L$  assignments:



Smaller cross sections. Intermediate states and smaller lepton  $p_{\uparrow}$ 

# Specific examples

#### Specific examples

- Wino-like scotogenic models
  - Radiative type-III seesaw: 1605.01129, F. von der Pahlen, G. Palacio, DR, O. Zapata
- Higgsino-like scotogenic models
  - 1. SDFM with scalars: 1504.07892, DR, et. al..
  - 2. Inert Zee: 1511.01873, R. Longas, D. Portillo, DR, O. Zapata.
  - 3. Radiative type-II seesaw: 1511.06375, S. Fraser, C. Kownacki, E. Ma, O. Popov

1609.01018, S. Guo, Z. Han, Y, Liao

- Bino-like scotogenic models
  - · In progress ...

### Wino-like scotogenic model

 $\sum_{k}$ 

### Higgsino-like inert Zee model



|              | /                  | `\                | _                | _   |
|--------------|--------------------|-------------------|------------------|-----|
| $\nu$        | $\hat{\Sigma^0}$   |                   | $\overline{\nu}$ | _   |
|              | SU(2) <sub>L</sub> | U(1) <sub>Y</sub> | $Z_2$            | S   |
| Н            | 2                  | 1                 | +                | 0   |
| Ф            | 2                  | 1                 | _                | 0   |
| $L_{\alpha}$ | 2                  | -1                | +                | 1/2 |





| $\nu$        | $\phi^-$           |                   | h⁰    |     |
|--------------|--------------------|-------------------|-------|-----|
|              | SU(2) <sub>L</sub> | U(1) <sub>Y</sub> | $Z_2$ | S   |
| $\phi^-$     | 1                  | -2                | _     | 0   |
| Ф            | 2                  | _                 | 0     | -   |
| $\psi^-$     | 1                  | -2                | _     | 0   |
| $\Psi_{L,R}$ | 2                  | ±1                | _     | 1/2 |
|              |                    |                   |       |     |
|              |                    |                   |       |     |

$$\Sigma^+ o \psi^+$$

### Wino-like scotogenic model

### Higgsino-like scotogenic model



| h <sup>0</sup>                              | $\psi^{0}$     | h <sup>o</sup>   |
|---------------------------------------------|----------------|------------------|
|                                             | •              | 4                |
| 1110                                        |                | 111 0            |
| $\Psi_{\scriptscriptstyle L}^{ \circ lack}$ | 4              | $\Psi_{R}^{0}$   |
|                                             |                |                  |
| $\overline{\nu}$                            | φ <sup>0</sup> | $\overline{\nu}$ |

|            | SU(2) <sub>L</sub> | U(1) <sub>Y</sub> | $Z_2$ | S   |
|------------|--------------------|-------------------|-------|-----|
| Н          | 2                  | 1                 | +     | 0   |
| Ф          | 2                  | 1                 | _     | 0   |
| $L_{lpha}$ | 2                  | -1                | +     | 1/2 |
| $\Sigma_k$ | 3                  | 0                 | _     | 1/2 |

|   |              | SU(2) <sub>L</sub> | U(1) <sub>Y</sub> | $Z_2$ | S   |
|---|--------------|--------------------|-------------------|-------|-----|
| Ī | $\phi^-$     | 1                  | -2                | _     | 0   |
|   | Ф            | 2                  | _                 | 0     | -   |
|   | $\psi^-$     | 1                  | -2                | _     | 0   |
|   | $\Psi_{L,R}$ | 2                  | ±1                | _     | 1/2 |
|   | $\psi$       | 1                  | 0                 | -     | 1/2 |
|   | $\phi$       | 1                  | 0                 | -     | 0   |
|   |              |                    |                   |       |     |

| $\equiv q_{\gamma,Z}$ | $\Sigma_1^-$                    | $\ell_{\alpha}^{\pm}$ |
|-----------------------|---------------------------------|-----------------------|
|                       | $\Sigma_1^{\pm}$ $\Sigma_1^{+}$ | $H^0$                 |

$$\Sigma^+ o \psi^+$$

### Wino-like scotogenic model

### Higgsino-like model



| h <sup>o</sup>                | $\psi^0$   | h°               |
|-------------------------------|------------|------------------|
| $\psi_{\iota}{}^{\circ}\cdot$ |            | Ψ <sub>R</sub> ° |
| $\overline{\nu}$              | $\phi^{0}$ | $\overline{\nu}$ |

|            | SU(2) <sub>L</sub> | U(1) <sub>Y</sub> | $Z_2$ | S   |
|------------|--------------------|-------------------|-------|-----|
| Н          | 2                  | 1                 | +     | 0   |
| Ф          | 2                  | 1                 | _     | 0   |
| $L_{lpha}$ | 2                  | -1                | +     | 1/2 |
| $\Sigma_k$ | 3                  | 0                 | _     | 1/2 |

|              | SU(2) <sub>L</sub>                 | U(1) <sub>Y</sub> | $Z_2$                                                        | S                                                      |
|--------------|------------------------------------|-------------------|--------------------------------------------------------------|--------------------------------------------------------|
| $\phi^-$     | 1                                  | -2                | _                                                            | 0                                                      |
| Ф            | 2                                  | _                 | 0                                                            | -                                                      |
| $\psi^-$     | 1                                  | -2                | _                                                            | 0                                                      |
| $\Psi_{L,R}$ | 2                                  | ±1                | _                                                            | 1/2                                                    |
| $\psi$       | 1                                  | 0                 | -                                                            | 1/2                                                    |
| $\phi$       | 1                                  | 0                 | -                                                            | 0                                                      |
|              | ψ <sup>-</sup><br>Ψ <sub>L,R</sub> |                   | $\phi^{-}$ 1 -2 $\phi$ 2 - $\psi^{-}$ 1 -2 $\psi_{L,R}$ 2 ±1 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |



$$\Sigma^+ \rightarrow \psi^+$$

#### ATLAS arXiv:1403.5294 (JHEP)



CMS  $\gtrsim$  260 GeV  $_{8}$  arXiv:1405.7570



Lepton flavor dependence

#### Neutrino masses

$$(\mathcal{M}_{\nu})_{\alpha\beta} = \sum_{k=1}^{n_{\Sigma}} [\mathbf{Y}^{\mathsf{T}} \Lambda \mathbf{Y}]_{\alpha\beta} , \qquad \alpha, \beta = 1, 2, 3,$$

From neutrino oscillation data, we can get a set of Y choosing the angles for R, an arbitrary complex orthogonal matrix

$$\mathbf{Y} = \sqrt{\Lambda}^{-1} \mathbf{R} \operatorname{diag}(\sqrt{m_{\nu_1}}, \sqrt{m_{\nu_2}}, \sqrt{m_{\nu_3}}) U_{\mathrm{PMNS}}^{\dagger}, \tag{1}$$

$$\hat{\mathbf{Y}}_{\alpha} \equiv \hat{\mathbf{Y}}_{1\alpha} = \mathbf{Y}_{1\alpha} / \sqrt{\sum_{\alpha=e,\mu,\tau} |\mathbf{Y}_{1\alpha}|^2}$$
 $\mathbf{\mathcal{B}}_{\alpha} \equiv \operatorname{Br}(\mathbf{\Sigma}_{1}^{\pm} \to \ell_{\alpha} \mathbf{H}^{0}) = |\hat{\mathbf{Y}}_{\alpha}|^2.$ 

Input parameters: 3 complex angles and 1 phase.

### Casas-Ibarra parametrization

In wino-like scotogenic model (may be in general)



$$\mathcal{B}_l = \mathcal{B}\left(\mathbf{\Sigma^{\pm}} 
ightarrow l^{\pm}H^0\right)$$

### Casas-Ibarra parametrization

In wino-like scotogenic model (may be in general)



$$\mathcal{B}_l = \mathcal{B}\left(\mathbf{\Sigma^{\pm}} \rightarrow l^{\pm}\mathbf{H^0}\right)$$

#### Exploration of flavor space

Wino-like scotogenic model: Recast for  $B_{\mu}+B_{e}\gtrsim0.1$  and

$$m_{H^0} < m_{\Sigma^{\pm}} = m_{\Sigma^0} < m_{A^0}, m_{H^{\pm}}$$

Start with Signal regions as in ATLAS-arXiv:1403.5294 for  $E_T$  with  $e^+e^-$ ,  $\mu^+\mu^-$ ,  $e^\pm\mu^\mp$ .

#### SARAH/FeynRules

 $\Downarrow$ 

micrOMEGAS (Experimental and theoretical constraints)

11

MadGraph

 $\Downarrow$ 

Pythia 6 (hep format)

 $\Downarrow$ 

checkMATE (CL-calculation)

#### Combination



Prospects for run-II

### Golden EW SUSY channel: trilepton and $\not E_T$



Improvement by a factor of 1.4

For a similar improvement we could expect exclusions at the level of 900 GeV in the wino-like scotogenic model,

700 GeV in Higgsino-like scotogenic models.

500 GeV in Bino-like scotogenic models.

### Golden EW SUSY channel: trilepton and $\not$ E<sub>T</sub>



Improvement by a factor of 1.4

For a similar improvement we could expect exclusions at the level of 900 GeV in the wino-like scotogenic model,

700 GeV in Higgsino-like scotogenic models.

500 GeV in Bino-like scotogenic models.

Vector-like fermion mediation

#### Vector-like fermion mediation

Straightforward way to avoid DD constraints in scalar dark matter:

| Name                              | Symbol                                                          | $SU(3)_c$ | $SU(2)_L$ | U(1) <sub>Y</sub> | $Z_2$ |
|-----------------------------------|-----------------------------------------------------------------|-----------|-----------|-------------------|-------|
| $\left(\nu_{L}  e_{L}\right)^{T}$ | $\begin{pmatrix} \xi_{1\alpha} & \xi_{2\alpha} \end{pmatrix}^T$ | 1         | 2         | -1/2              | +1    |
| $(e_R)^{\dagger}$                 | $\eta_1^{lpha}$                                                 | 1         | 1         | +1                | +1    |
| $(\psi_{R})^\dagger$              | $\eta_2^{lpha}$                                                 | 1         | 1         | +1                | -1    |
| $\psi_{L}$                        | $\xi_{3lpha}$                                                   | 1         | 1         | -1                | -1    |
| S                                 |                                                                 | 1         | 1         | 0                 | -1    |

$$\mathcal{L} \supset y_e S(e_R)^{\dagger} \frac{\psi_L}{\psi_L} + m_{\psi^{\pm}} (\psi_R)^{\dagger} \frac{\psi_L}{\psi_L} + \text{h.c} + \frac{1}{2} m_S S^2 + \underline{\lambda}_{HS} S^2 H^{\dagger} H$$

See: arXiv:1307.6181 and arXiv:1307.6480

### LHC constraints: Preliminary



#### Conclusions

Opposite sign dilepton plus missing transverse energy signal at LHC

The use of scotogenic models to interpret dilepton plus missing transverse energy searches, allow for larger sensitivities and full lepton flavor exploration

Additional motivation for fermion vectorlike mediation with zero three-level direct detection cross section and challenging compressed spectra.

