

一周AI大事

自Google和OpenAI后, Perplexity推出Deep Research

微信、知乎等平台接入 Deepseek R1大模型

阶跃星辰发布全球最大开源 视频模型Step-Video-T2V

马斯克xAI的Grok 3亮相,Imarena首个突破1400分的模型,出道即巅峰

arok 5 release with live define of fivioriday flight e

Smartest AI on Earth.

Deepseek提出新型注意力机制NSA,梁文峰亲自提交arxiv预印本

Kimi提出MoBA的新型注意力机制,能 将处理1M长文本的速度一下子提升6.5倍

Google AI co-scientists利用多智能体系统, 携手人类科学家加速科学创新研究

2025-02-15 ~ 2025.02.20

https://plms.ai/teaching/index.html

该章节内容主要参参照神经网络与深度学习一书

□ 基于规则

- 包含 "五折优惠"
- 包含"免费访问","交易"

垃圾邮件

主题:**五折优惠!免费访问**我们的**交易**平台,享受限时优惠!亲爱的,

我们很高兴地通知您,我们的交易平台现正进行五折优惠活动!现在,您可以免费访问我们的平台,并享受各种交易的优惠。

这是一个难得的机会,您可以以更低的价格购买您所需的商品,或者通过我们的平台卖出您不需要的物品。我们的平台提供了安全、快捷、方便的交易体验,让您可以轻松地进行买卖操作。

请注意,这是一个限时的优惠活动,机会难得,不要错过!现在就点击下面的链接,免费访问我们的交易平台,并开始享受您的优惠吧!

如果您有任何疑问或需要帮助,请随时联系我们的客服团队。我们期待与您的合作,并为您提供最好的服务。

谢谢!

□ 基于规则

- 包含 "五折优惠"
- 包含"免费访问","交易"

垃圾邮件

亲爱的,

我们很高兴地通知您,我们正在进行一项特别活动!现在,您可以访问我们的平台,并享受各种优惠。

这是一个难得的机会,您可以以更低的价格购买您所需的商品,或者卖出您不需要的物品。我们的平台提供了安全、快捷、方便的体验,让您可以轻松地进行买卖操作。

请注意,这是一个限时活动,机会难得,不要错过!现在就点击下面的链接,访问我们的平台,并开始享受您的优惠吧!

如果您有任何疑问或需要帮助,请随时联系我们的客服团队。我们期待与您的合作,并为您提供最好的服务。

谢谢!

□ 基于规则

- 包含 "五折优惠"
- 包含"免费访问","交易"

正常邮件

主题:关于校园内新服务的免费访问与交易信息

亲爱的师生们,

我们很高兴地通知大家, 学校最近引进了一项新的服务, 现在开始向全校师生提供免费访问。这项服务旨在丰富我们的教育资源, 帮助大家更有效地学习和教学。

同时,我们也将开展一系列与此服务相关的交易活动,包括资源共享、教材交换等。我们鼓励大家积极参与,共同打造更加丰富多彩的校园文化。请大家通过以下链接了解更多详情并开始享受这项免费服务: [链接] 感谢大家的关注与支持! 祝学习进步.

□ 基于规则

- 包含 "五折优惠"
- 包含"免费访问","交易"

□ 机器学习

- 收集标注为"垃圾"和"正常"的邮件
- 设计可以描述一组邮件的特征
- 学习一个分类器
 - □ f("邮件") = "垃圾邮件" or "正常邮件"

机器学习≈构建一个映射函数

- □ 邮件过滤
 - f("尊敬的…交易..")= "垃圾邮件"
- □ 图片识别
 - f (🐼) = "猫'
- □ 语音识别
 - f (₩) = "你好"

机器学习≈构建一个映射函数

- □ 邮件过滤
 - f("尊敬的…交易..") = "垃圾邮件"
- □ 图片识别
 - f (**逐**) = "猫"
- □ 语音识别
 - f (₩) = "你好"

$$\mathbf{x}$$
 \rightarrow $f(\mathbf{x}, \theta^*)$ \rightarrow y 或 $p(y|\mathbf{x})$ 输出

机器学习三要素

- □ 模型: 模型是对现实世界数据关系的数学表达式
 - 线性方法: $f(\mathbf{x}, \theta) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b$
- □ 学习准则: 损失函数或目标函数, 计算模型预测值与实际值之间的差异
 - 期望风险 $\mathcal{R}(f) = \mathbb{E}_{(\mathbf{x},y) \sim p(\mathbf{x},y)}[\mathcal{L}(f(\mathbf{x}),y)]$
- □ 优化方法: 用于调整模型参数,以最小化学习准则
 - 梯度下降

常见机器学习类型

	监督学习	无监督学习	强化学习
训练样本	训练集 $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$	训练集 $\{\mathbf{x}^n\}_{n=1}^N$	智能体和环境交互的 轨迹 τ 和累积奖励 G_{τ}
优化目标	$y = f(\mathbf{x}) \otimes p(y \mathbf{x})$	$p(\mathbf{x})$ 或带隐变量 \mathbf{z} 的 $p(\mathbf{x} \mathbf{z})$	期望总回报 $\mathbb{E}_{ au}[G_{ au}]$
学习准则	期望风险最小化 最大似然估计	最大似然估计 最小重构错误	策略评估 策略改进

常见机器学习类型

半监督学习:利用少量的有标签数据和大量的无标签数据来提高学习精度

	监督学习	无监督学习	强化学习		
训练样本	训练集 $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$	训练集 $\{\mathbf{x}^n\}_{n=1}^N$	智能体和环境交互的 轨迹 τ 和累积奖励 G_{τ}		
优化目标	$y = f(\mathbf{x}) \ \mathbf{x} p(y \mathbf{x})$	$p(\mathbf{x})$ 或带隐变量 \mathbf{z} 的 $p(\mathbf{x} \mathbf{z})$	期望总回报 $\mathbb{E}_{ au}[G_{ au}]$		
学习准则	期望风险最小化 最大似然估计	最大似然估计 最小重构错误	策略评估 策略改进		

自监督训练:从未标记的数据中自动生成标签或目标,然后使用这些生成的标签来训练模型

参数学习

- $f \square$ 期望风险未知,通过经验风险近似 $\mathcal{R}(f) = \mathbb{E}_{(\mathbf{x},y) \sim p(\mathbf{x},y)}[\mathcal{L}(f(\mathbf{x}),y)]$
 - 训练数据: $\mathcal{D} = \{x^{(i)}, y^{(i)}\}, i \in [1, N]$

$$\mathcal{R}_{\mathcal{D}}^{emp}(\theta) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(y^{(n)}, f(x^{(n)}, \theta))$$

- □ 经验风险最小化
 - 寻找参数,使得经验风险最小化

$$\theta^* = \arg\min_{\theta} \mathcal{R}_{\mathcal{D}}^{emp}(\theta)$$

□ 机器学习问题转化成为一个最优化问题

优化: 梯度下降法

□ 梯度下降(Gradient Decent, GD)

$$w \leftarrow w - \eta \nabla_w \underbrace{\sum_{i=1}^n L(x^{(i)}, y^{(i)}, f_w)}_{\text{training loss}}$$

优化:梯度下降法

□ 梯度下降(Gradient Decent, GD)

$$w \leftarrow w - \eta \nabla_w \underbrace{\sum_{i=1}^n L(x^{(i)}, y^{(i)}, f_w)}_{\text{training loss}}$$

□ 随机梯度下降 (Stochastic GD)

For each
$$(x,y) \in D_{\text{train}}$$
:
$$w \leftarrow w - \eta \nabla_w \underbrace{L(x,y,f_w)}_{\text{example loss}}$$

输入: 训练集 $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}, n = 1, \dots, N$, 验证集 \mathcal{V} , 学习率 α

1 随机初始化 θ ;

2 repeat

```
3 対训练集 \mathcal{D} 中的样本随机重排序;

4 for n = 1 \cdots N do

5 从训练集 \mathcal{D} 中选取样本 (\mathbf{x}^{(n)}, y^{(n)});

// 更新参数

6 \theta \leftarrow \theta - \alpha \frac{\partial \mathcal{L}(\theta; x^{(n)}, y^{(n)})}{\partial \theta};

7 end
```

 $\mathbf{8}$ until 模型 $f(\mathbf{x}, \theta)$ 在验证集 \mathcal{V} 上的错误率不再下降; 输出: θ

一般有训练、验证、测试集合

优化: GD vs SGD

特性/算法	梯度下降 (GD)	随机梯度下降 (SGD)	批量梯度下降 (batch GD)
计算开销	高(需要所有样本)	低(单个样本)	中等(小批量样本)
收敛速度	慢	快	快于GD,慢于SGD
稳定性	高	低	中等
内存开销	高	低	中等
参数调整难度	较低	较高	中等
适用场景	数据量较小,计算资源充足 时	大规模数据集,需要快速选 代时	大规模数据集,平衡计算效 率和模型性能时

机器学习=优化?

过拟合: 经验风险最小化原则很容易导致模型在训练集上错误率很低,但是在未知数据上错误率很高。

期望风险

$$\mathcal{R}(f) = \mathbb{E}_{(\mathbf{x},y) \sim p(\mathbf{x},y)} [\mathcal{L}(f(\mathbf{x}),y)],$$

真实分布 p_r

经验风险

$$\mathcal{R}_{\mathcal{D}}^{emp}(\theta) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(y^{(n)}, f(x^{(n)}, \theta))$$

$$\mathcal{G}_{\mathcal{D}}(f) = \mathcal{R}(f) - \mathcal{R}_{\mathcal{D}}^{emp}(f)$$

泛化错误

如何减少泛化错误?

优化

经验风险最小

正则化

降低模型复杂度

正则化

增加优化约束

L1/L2约束、数据增强

干扰优化过程

权重衰减、随机梯度下 降、提前停止

优化过程超参数设置例子: "Alpaca"

```
torchrun --nproc per node=4 --master port=<your random port> train.py \
    --model_name_or_path <your_path_to_hf_converted_llama_ckpt_and_tokenizer> \
    --data path ./alpaca data.json \
    --bf16 True \
    --output dir <your output dir> \
    --num_train_epochs 3 \
    --per_device_train_batch_size 4 \
    --per_device_eval_batch_size 4 \
     -gradient accumulation steps 8 \
    --evaluation strategy "no" \
    --save_strategy "steps" \
    --save steps 2000 \
    --save_total_limit 1 \
    --learning rate 2e-5 \
    --weight_decay 0. \
    --warmup_ratio 0.03 \
     --lr_scheduler_type "cosine" \
    --logging steps 1 \
    --fsdp "full shard auto wrap" \
    --fsdp transformer layer cls to wrap 'LlamaDecoderLayer' \
    --tf32 True
```


它假设输入变量(自变量)和输出变量(因变量)之间存在线性关系,即模型预测的**输出是输入变量的加权和**

应用: 图像分类

[32x32x3] array of numbers 0...1 (3072 numbers total)

10 numbers, indicating class scores

应用: 文本分类

根据文本内容来判断文本的相应类别

 D_1 : "我喜欢读书"

 D_2 : "我讨厌读书"

	我	喜欢	讨厌	读书
D_1	1	1	0	1
D_2	1	0	1	1

$$g(\mathbf{x}, \mathbf{w}) = \begin{cases} +1 & \stackrel{\text{def}}{=} \mathbf{w}^{\mathrm{T}} \mathbf{x} > 0, \\ -1 & \stackrel{\text{def}}{=} \mathbf{w}^{\mathrm{T}} \mathbf{x} < 0. \end{cases}$$

□ 学习准则

$$\mathcal{L}(\mathbf{w}; \mathbf{x}, y) = \max(0, -y\mathbf{w}^{\mathrm{T}}\mathbf{x}).$$

□ 优化:随机梯度下降

$$\frac{\partial \mathcal{L}(\mathbf{w}; \mathbf{x}, y)}{\partial \mathbf{w}} = \begin{cases} 0 & \stackrel{\text{def}}{=} y \mathbf{w}^{\mathrm{T}} \mathbf{x} > 0, \\ -y \mathbf{x} & \stackrel{\text{def}}{=} y \mathbf{w}^{\mathrm{T}} \mathbf{x} < 0. \end{cases}$$

两类感知器算法

```
输入: 训练集 \{(\mathbf{x}^{(n)}, y^{(n)})\}, n = 1, \dots, N, 迭代次数 T
 1 初始化: \mathbf{w}_0 \leftarrow 0, k \leftarrow 0;
 2 for t = 1 \cdots T do
         随机对训练样本进行随机排序;
 3
         for n = 1 \cdots N do
 4
              选取一个样本 (\mathbf{x}^{(n)}, y^{(n)});
 5
              if \mathbf{w}_k^{\mathrm{T}}(y^{(n)}\mathbf{x}^{(n)}) \leq 0 then
 6
                  \mathbf{w}_{k+1} \leftarrow \mathbf{w}_k + y^{(n)} \mathbf{x}^{(n)};
 7
                 k \leftarrow k + 1;
 8
              end
 9
         end
10
11 end
    输出: \mathbf{w}_k
```


□模型

$$p(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x}) \triangleq \frac{1}{1 + \exp(-\mathbf{w}^{\mathrm{T}}\mathbf{x})}$$

□ 学习准则:交叉熵

$$\mathcal{R}(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \left(y^{(n)} \log \hat{y}^{(n)} + (1 - y^{(n)}) \log(1 - \hat{y}^{(n)}) \right)$$
 布之间差异的度量方法.

交叉熵是一种常用于衡量两个概率分 布之间差异的度量方法.

□ 优化:随机梯度下降

$$\frac{\partial \mathcal{R}(\mathbf{w})}{\partial \mathbf{w}} = -\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} (y^{(n)} - \hat{y}^{(n)})$$

$$P(y = c | \mathbf{x}) = \operatorname{softmax}(\mathbf{w}_c^{\mathsf{T}} \mathbf{x})$$
$$= \frac{\exp(\mathbf{w}_c^{\mathsf{T}} \mathbf{x})}{\sum_{i=1}^{C} \exp(\mathbf{w}_i^{\mathsf{T}} \mathbf{x})}.$$

□ 学习准则:交叉熵

$$\mathcal{R}(W) = -\frac{1}{N} \sum_{n=1}^{N} (\mathbf{y}^{(n)})^{\mathrm{T}} \log \hat{\mathbf{y}}^{(n)}$$

□ 优化:随机梯度下降

$$\frac{\partial \mathcal{R}(W)}{\partial W} = -\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} \left(\mathbf{y}^{(n)} - \hat{\mathbf{y}}^{(n)} \right)^{\mathrm{T}}$$

推导过程

■ 在实际应用中,特征往往比分类器更重要

■ 在实际应用中,特征往往比分类器更重要

■ 在实际应用中,特征往往比分类器更重要

特征工程问题

□ 模型

在实际应用中,特征往往比分类器更重要

31