LUNDS TEKNISKA HÖGSKOLA **MATEMATIK**

TENTAMENSSKRIVNING Tredimensionell vektoranalys 2014-04-03 kl 8-10

INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.

- 1. Låt $\mathbf{F} = (P, Q, R)$ vara ett C^1 -vektorfält i \mathbb{R}^3 och låt $K \subseteq \mathbb{R}^3$ vara en kropp.
 - a) Definiera divergensen av F och formulera Gauss sats med alla förutsättningar på $K \text{ och } \partial K$. (0.3)
 - b) Betrakta nu kroppen K som ges av olikheterna

$$x^2 + y^2 + 1 \le z^2$$
 och $1 \le z \le 2$.

Beräkna flödet av fältet $\mathbf{F} = (x^3z, y^3z, -(x^2+y^2)z^2)$ ut ur kroppen K. (0.4)

c) Bestäm alla värden på den reella konstanten a så att

$$\iint_{\Gamma} \boldsymbol{F}_a \cdot \boldsymbol{n} \, dS = 0,$$

 $d\ddot{a}r \Gamma \ddot{a}r ytan$

$$x^2 + y^2 + 1 = z^2$$
, $x^2 + y^2 \le 3$, $z \ge 1$,

och fältet F_a ges av

$$\mathbf{F}_a(x, y, z) = (2xz - x, -a^2yz, z - 2). \tag{0.3}$$

(0.3)

2. Betrakta ytan \mathcal{C} som ges av parametriseringen

$$r(s,t) = (\cos s, \sin s, t), \quad 0 \le s \le 2\pi, -2 \le t \le 2.$$

- a) Rita en skiss av \mathcal{C} och bestäm dess area.
- b) Beräkna rotationen av vektorfältet $\mathbf{F} = (x \cos y, x \sin y, z^2)$ och bestäm sedan värdet av

$$\int_{\partial \mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r},$$

där randen till \mathcal{C} är positivt orienterad.

(0.4)

c) Planet x+y+z=0 skär \mathcal{C} i en ellips γ och delar ytan i två lika stora delar. Beräkna kurvintegralen

$$\int_{\gamma} \frac{y \, dx}{x^2 + y^2} - \frac{x \, dy}{x^2 + y^2} + z \, dz,$$

där orienteringen av γ är valt så att kurvan går ett varv runt z-axeln moturs. (0.3)