Probabilidad

Daniel Fraiman

Esperanza y varianza

- 1. Sea X una v.a. discreta con P(X=-1)=1/3, P(X=0)=1/6 y P(X=2)=1/2. Hallar la esperanza y la varianza de X.
- 2. Sea X una v.a. discreta uniforme entre 1 y 5, es decir, P(X=k)=1/5 para k=1,2,...,5. Hallar la esperanza y la varianza de X.
- 3. Sea X una variable aleatoria Uniforme[0,10].
 - a) Hallar $\mathbb{E}(X)$.
 - b) Hallar Var(X) con \mathbf{R} .
- 4. Sea X una variable aleatoria continua cuya función de densidad es

$$f_X(x) = \begin{cases} 2x & 0 \le x \le 1. \\ 0 & \text{en caso contrario} \end{cases}$$

Hallar $\mathbb{E}(X)$ y Var(X) con \mathbb{R} .

- 5. Sea X una v.a. con $\mathbb{E}(X)=2$ y Var(X)=36, e Y otra v.a. que es independiente de X con $\mathbb{E}(Y)=3$ y Var(Y)=25. Hallar
 - (a) $\mathbb{E}(X+Y)$ y $\mathbb{E}(2X-4Y)$
 - (b) Var(X+Y) y Var(2X-4Y).
- 6. Un experimento consiste en arrojar 10 veces un dado de 4 caras (con los números del 1 al 4). Llamemos X_1 al resultado del primer dado dado, X_2 al resultado del segundo y así sucesivamente.
 - (a) Hallar $\mathbb{E}(X_1 + X_2 + ... + X_{10})$.
 - (b) ¿Las variables aleatorias $X_1, X_2, ..., X_{10}$ son independientes entre ellas?
 - (c) Hallar $V(X_1 + X_2 + ... + X_{10})$.
- 7. Supongamos que $\mathbb{E}(X) = \mu$ y Var $X = \sigma^2$. Sea $Z = (X \mu)/\sigma$. Mostrar que $\mathbb{E}(Z) = 0$ y Var Z = 1. Luego, la transformación hecha sobre X convierte a la variable aleatoria X en una que tiene media cero y varianza igual a 1 (aunque la distribución de X no sea normal).
- 8. Se toman dos mediciones independientes, X e Y, de una cantidad μ . $E(X) = E(Y) = \mu$ pero σ_X y σ_Y no son iguales. Las dos mediciones se combinan a través de un promedio ponderado para dar

$$Z = \alpha X + (1 - \alpha)Y$$

donde α es un escalar y $0 \le \alpha \le 1$.

- (a) Mostrar que $E(Z) = \mu$.
- (b) Hallar α , en términos de σ_X y σ_Y , que minimice la Var(Z).