$(\overline{x} - \overline{y}) \pm t_{\frac{\alpha}{2}n_x + n_y - 2} \times s_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}$

Two-sample t-test: $T = \frac{(\overline{x} - \overline{y}) - (\mu_x - \mu_y)}{\sqrt{\frac{1}{c^2} + \frac{1}{a - 1}}} \sim t_{n_x + n_y - 2}.$

$$s_{\beta}^2 = \frac{\sum (x - \overline{x})^2 + \sum (y - \overline{y})^2}{n_x + n_y - 2} = \frac{(x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}$$
p-Values: The **p-value** of the data is the probability of obtaining is test statistic at least as extreme as the one actually observed.

assuming H_0 is correct. In other words, the p-value is the maximum significance level at which we still reject the null hypothesis H_0 for that sample. Thus, if we are given a fixed α ,

hypothesis H_0 for that sample. Thus, if we are given a fixed α , the null hypothesis H_0 is rejected if the p-value is less than or equal to α . Rule: Smaller p-values suggest stronger evidence against H_0 .