Time Series Modeling Seasonal ARIMA Model

Contents

1. Case Study

2. Creating and Plotting Time Series in Python

3. Checking Stationarity in Python

4. Dickey Fuller (DF) Test

Case Study

Background

Annual Sales for a specific company from year 1961 to 2017

Objective

• To assess stationarity of time series

Available Information

- Number of cases: 57
- Variables: Year, sales(in 10's GBP)

Data Snapshot

turnover_annual data

1)	Varia	bles
Observations on Discrete Time Scale		
a V	Year	sales
	1961	22478
<u>ล</u>	1962	23003
ם פ	1963	23656
S	1964	25096
	1965	26161
SI	1966	26831
	1967	283589
σ 	1968	28016
Se	1969	30142
5	1970	30801
4.	1071	22002

	I I	1071	TANDAL	
Columns	Description	Type	Measurement	Possible values
Year	Financial Year	Numeric	-	-
sales	sales(in 10's GBP)	Numeric	In British Pound	Positive values
		19/4	364834	

1975

392503

Creating and Plotting Time Series in Python

#Importing turnover annual data

```
import pandas as pd
salesdata=pd.read_csv('turnover_annual.csv')

#Creating and Plotting a Time Series Object

rng = pd.date_range('01-01-1961','31-12-2017',freq='Y')
s = salesdata.sales.values
salesseries = pd.Series(s, rng)

salesseries.plot(color='red', title ="Sales Time Series(Simple Plot)")
```


- date_range()
 creates pandas
 date object.
- freq ='Y'
 indicates yealy
 data
- pd.Series()
 creates time
 series object
- Plot function gives line chart

Interpretation:

The time-series clearly shows a positive trend.

Checking Stationarity - Correlogram

ACF Plot

Output

Interpretation:

We can observe that there is a very slow decay which is a sign of

Non-stationarity.

Plot of 1st Order Differenced Time Series

Creating and Plotting a Difference Series

Output

Interpretation:

Even after first orderdifferencing, the serieslooks non-stationary.

Correlogram for 1st Order Differenced Time Series

ACF Plot
plot_acf(salesdiff)

Output

Interpretation:

- ACF plot shows slow decay
- Stationarity is not achieved with first difference.

Plot of 2nd Order Differenced Time Series

#Creating and Plotting 2nd Difference Series

```
salesdiff2 = diff(salesdiff)
salesdiff2.plot(color='red')
```

Output

Interpretation:

After 2nd order differencing, the series looksstationary.

Correlogram for 2nd Order Differenced Time Series

ACF Plot

plot_acf(salesdiff2)

Output

Interpretation:

Stationarity is achieved with 2nd order difference.

Partial Autocorrelations for 2nd Order Differenced Time Series

```
# PACF Plot

plot_pacf(salesdiff2)

# Output

plot_pacf() returns an PACF (Partial Auto Correlation Function) plot.
```


Interpretation:

Stationarity is achieved with 2nd order difference.

Analytical Method – Dickey Fuller (DF) Test

- A linear stochastic process has a unit root if 1 is the root of the process's characteristic equation. Such a process is non-stationary.
- Dickey and Fuller pioneered idea of testing for unit roots for stationarity checking.

Consider X_t (t=1,2,3,...) is a time series of the form

$$X_{t} = \rho X_{t-1} + U_{t}$$
(1)

If $\rho=1$ then X_t becomes a random walk

- We assume that $U_{t} \sim IID$ (0, σ^{2}), i.e U_{t} is a white noise
- Therefore, we are interested in testing for $\rho=1$

Dickey Fuller (DF) Unit Root Test

Objective

To test the **null hypothesis** that **time series is not stationary**

Null Hypothesis
$$H_0$$
: $\rho=1$
Alternate Hypothesis H_1 : $\rho<1$

$$(X_t-X_{t-1}) = \Delta X_t = (\rho-1) X_{t-1} + U_t from (1)$$

$$H_0: \rho*=0 , H_1: \rho*<0, \rho*=(\rho-1)$$

Test Statistic	(ρ*/SE(ρ*)) Test statistic follows DF distribution under null
Decision Criteria	Reject the null hypothesis tcal < DF table value

Dickey Fuller Test

Install "arch"

```
pip install arch

# Import "ADF" from library "arch"

from arch.unitroot import ADF

adf = ADF(salesseries,lags=0,trend='nc')
adf.summary()
```

- ADF() performs a Dickey Fuller unit root test on time series data.
- lags= allows to mention the number of lags to use in the ADF regression. We have used zero.
- trend='nc' specifies no trend and constant in regression

Output

Augmented Dickey-F	uller Results
Test Statistic	19.275
P-value	1.000
Lags	0
Trend: No Trend	
Critical Values: -2.6	61 (1%), -1.95 (5%), -1.61 (10%)
Null Hypothesis: The	process contains a unit root.
Alternative Hypothesi	s: The process is weakly stationary.

Interpretation:

Time series is non-stationary as value of test statistic is greater than 5% critical value.

Dickey Fuller Test

Checking stationarity for series with difference of order 2

```
adf = ADF(salesdiff2,lags=0,trend='nc')
adf.summary()
```

Output

Augmented Dic	key-Fuller Results
Test Statistic	-11.908
P-value	0.000
Lags	0
Trend: No Trend	
Critical Values:	-2.61 (1%), -1.95 (5%), -1.61 (10%)
Null Hypothesis:	The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

Interpretation:

 Time series is stationary as value of test statistic is less than 5% critical value.

Quick Recap

Correlograms

 plot_acf() & plot_pacf() function in Python generate Correlograms

Differencing a Time Series

 Simple numeric function diff() can be used to difference a series

Dickey Fuller Test

- ADF() function from the package arch performs a Dickey Fuller test
- The output gives test statistic and critical values for the test statistic