Affiliation Recommendation using Auxiliary Networks

Course: Introduction to data mining
Faculty of Science – Department of Mathematics

Contents

- Introduction
- Models
- Evaluation of algorithms
- List of functions
- References

Goal

- Find and construct meaningful data network
- Carry out and describe 2 models for solving the problem
- Discuss about the implementation of the two models
- Discuss about the metods which concern evaluation of efficiency of various algorithms

Problem description

- N_n number of users in network
- N_g number of groups in network
- Friendship network / matrix S ($\in \mathbb{R}^{N_u \times N_u}$)
- Affiliation network / matrix A ($\in \mathbb{R}^{N_u \times N_g}$)
- Generate $N_u \times N_g$ score matrix for ranking of the groups per user

Data

- YouTube dataset used was downloaded from http://socialnetworks.mpi-sws.org/data-imc2007.html
- Number of users: > 1 000 000
- Number of groups: > 30 000
- Using FormData() and IsConnected() functions we extracted a smaller connected component

Descriptive Statistics

Feature	Youtube
N_u	942
N_g	3137
Average number of groups per user	6.8
Minimum number of groups per user	1
Mode of number of groups per user	1
Average number of users per group	2.03
Mode of number of users per group	1
Minimum number of users per group	1
Average number of friends per user	16.2
Mode of number of friends per user	1

Visual representation of the matrix A

- S is symmetric ($S^T = S$), and represents the undirected graph
- We observe matrix $\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$ as undirected bipartite graph
- We merge the upper two graphs into one:

$$C = \begin{bmatrix} \lambda S & A \\ A^T & 0 \end{bmatrix},$$

where $\lambda \ge 0$ is a parameter which controls the weight of the matrix S

Models

Graph Proximity model:

 Score matrix will be a matrix whose entries will represent the distance between corresponding vertices in the graph

Latent Factors model:

 Score matrix will be a matrix whose entries will represent the product of corresponding latent factors

Graph Proximity model

- Proximity/distance of the 2 veritces is calculated as a weighted sum of number of paths of different lengths between the 2 veritces
- Katz measure:

(matrix S) Katz(S;
$$\beta$$
) = $\beta S + \beta^2 S^2 + \beta^3 S^3 + ... = \sum_{i=1}^{\infty} \beta^i S^i$

 $(S^k)_{i,j}$... Number of paths of length k between vertices i and j

• extKatz(
$$A$$
; β) = ($\beta AA^T + \beta^2 (AA^T)^2 + \beta^3 (AA^T)^3 + ...$) A
=Katz(AA^T ; β) A

 $(AA^T)_{i,j}$... Number of the shared groups between user i and j

- Score matrix: Katz(C; β)₁₂
- Score matrix can be calculated in two ways:

1.

 $tKatz(C, \beta, k)_{12} = \sum_{i=1}^{k} \beta^{i} C_{12}^{i}$

In Octave, tKatz()

2.

Katz(
$$C$$
; β)₁₂= $((I - \beta C)^{-1} - I)_{12}$

In Octave, AltKatz()

Latent Factors model

- For \forall user $i \in N_u$ and \forall group $j \in N_g$ we assume that their representations exist, i.e. low-dimensional vectors u_i and g_j
- Affinity of user i towards group j will correspond to the inder product of their vectors, i.e. $u_i^T g_j$
- Subsequently, we have $A \approx U^T G$,
- $U \in \mathbb{R}^{d \times N_u}$ is a matrix of user factors, while $G \in \mathbb{R}^{d \times N_g}$ is a matrix of group facotrs
- We observe the new combined matrix $C'(\lambda, D) = \begin{bmatrix} \lambda S & A \\ A^T & D \end{bmatrix}$, where the only novelty is matrix D which represent the similarity between groups

We have the following aproximation:

$$\begin{bmatrix} \lambda S & A \\ A^T & D \end{bmatrix} \approx \begin{bmatrix} U^T \\ G^T \end{bmatrix} \begin{bmatrix} U & G \end{bmatrix}$$

Concretely, we want to minimize the following expression:

$$||U^T U - \lambda S||^2 + 2||U^T G - A||^2 + ||G^T G - D||^2$$

• Solution to the minimization problem: SVD(C', d)

- Remark: D can be of the form $\lambda A^T A$, where $(A^T A)_{i,j}$ simply represents the number of the shared users between groups i and j
- In Octave function LFM()

Performance of the algorithms

• We split the data in 3 groups: training, validation, test (30 %):

```
training \cap validation = \emptyset

training \cap set = \emptyset

validation \cap test = \emptyset
```

In Octave function SplitData()

Best parameters

Algorithm	Youtube
Katz(A)	$\beta = 10^{-12}$
Katz(C)	$\beta = 0.01, \lambda = 0.02$
LFM(A)	d = 20
LFM(C)	$d = 40, \lambda = 0.7$
$LFM(C^{T}(A^TA))$	$d = 20, \lambda = 0.8$

- Best parameters found during the validation process for different algorithms
- TOP 15 recommendations per user

Evaluation approach

•
$$Precision = \frac{TP}{TP+FP}$$

•
$$Sensitivity = \frac{TP}{TP+FN}$$

• Specificity =
$$\frac{TN}{FP+TN}$$

- ROC curve Sensitivity vs (1 - Specificity) plot
- AUC = area under ROC curve
- Greater AUC
 more effective algorithm

"per user" vs. "global"

• "per user" *Sensitivity*:

$$N_u^{-1} \sum_{u} \frac{k(n_u)}{|test_u|}$$
,

where $k(n_u)$ denotes the number of good recommendations made in n_u recommendations

• "global" *Sensitivity*:

$$\frac{k'(n)}{\sum_{u}|test_{u}|}$$

where k'(n) denotes the number of good recommendations made in overall n recommendations

In Octave functions Prec() i AvgSenSpec()

"global" Sensitivity

ROC curves – "per user" Sensitivity

$$n_u = \{5, 10, 15, 20, 25, 30\}$$

Different choice of D in $C'(D, \lambda)$

$$D = A^T A$$

Conclusion

 We saw how algorithms fruitfully exploited the information acquired from the matrix S

• GPM > LFM

List of functions

- sem1.m main program
- FormData() function which returns binary matrices S and A and indices(ID) of users and groups which are present in those matrices
- SplitData() function which splits the matrix A in 3 parts and returns disjoint matrices/datasets: training, validation, test
- AltKatz() returns score matrix using the Graph Proximity model
- LFM() returns score matrix using the Latent Factors model
- AvgSenSpec() calculates and returns "per user" Sensitivity and (1 Specificity)
- Prec() returns "global" Precision
- Val() returns the number of good recommendations
- GroupRecommend() returns the matrix of sorted indices (descend, by magnitude of affinity) of groups per user
- IsConnected() returns 1 if matrix(graph) is connected, otherwise 0

References

- [1] Vishvas Vasuki, Nagarajan Natarajan, Zhengdong Lu, Berkant Savas, Inderjit Dhillon: Affiliation Recommendation using Auxiliary Networks, Department of Computer Science and ICES, University of Texas at Austin
- [2] Vishvas Vasuki, Nagarajan Natarajan, Zhengdong Lu, Berkant Savas, Inderjit Dhillon: Scalable Affiliation Recommendation using Auxiliary Networks, Department of Computer Science and ICES, University of Texas at Austin
- [3] Zlatko Drmač: lectures from the Course Introduction to data mining, Zagreb 2020.