Cálculo y Geométria Diferencial.

 Jesús María Martínez Ruiz - Luis Vidal Santiago - Lizangel Núñez. April 15, 2024

Derivadas

- 1) Estudiar la derivabilidad, en su campo de definición, de las siguientes funciones
 - $f(x) = e^{-|x|}$.
 - $f(x) = \sqrt{x^3 + x^2}.$

En nuestra primer función analizaremos el comportamiento de:

$$x > 0, \ x = 0, \ x < 0.$$

Si tenemos:

$$x > 0$$
.

Obtendremos:

$$f(x) = e^{-|x|} \to |x| = x \to f(x) = e^{-x}.$$

La cual es derivable en \mathbb{R} .

Si hacemos esto mismo con:

$$x = 0$$
.

Obtendremos:

$$f(x) = e^{-|x|} \to |0| = 0 \to f(x) = e^0 \to e^0 = 1.$$

Y como ${\bf 1}$ es una constante su derivada es ${\bf 0}$.

Analizando los limites laterales podemos dilucidar que $x=0 \to \nexists$.

Limite Izquierda	Limite Derecha	Resultado
$\lim_{x \to 0^-} f(x) = 1$	$\lim_{x\to 0^+} f(x) = -1$	$lim_{x\to 0}f(x)=\nexists$

Por último:

$$x < 0$$
.

Obtenemos:

$$f(x) = e^{-(-x)} \to f(x) = e^x$$

La función e^x es derivable en todo \mathbb{R}

Podemos decir entonces que x es derivable en todo \mathbb{R} a excepción de $\mathbf{0}$. En nuestra segunda función analizaremos el comportamiento de

$$f(x) = \sqrt{x^3 + x^2}.$$

Lo primero a evaluar es el dominio de la función, con esta sabremos la deravilidad de la función.

$$x^{2}(x+1) = 0 \rightarrow x+1 = 0 \rightarrow x = -1$$

Tenemos entonces $Dom = [-1, \infty)$ tal como se aprecia en su gráfica.

Figure 1: Función $f(x) = \sqrt{x^3 + x^2}$. Tomada de Geogebra.

Podemos decir entonces que la función es derivable desde -1 hasta ∞ .

2) Calcular la derivada de las funciones definidas por las expresiones siguientes, en sus dominios de definición:

•
$$arctg\left(\sqrt{x-1}\right) - arcsin\left(\sqrt{\frac{x-1}{x}}\right)$$
.

$$\bullet \ \sqrt{1 + tg\left(x + \frac{1}{x}\right)}.$$

En nuestra primera función trabajaremos de la forma:

$$f(x) - g(x) = f'(x) - g'(x).$$

$$f(x) = arctg(\sqrt{x-1}).$$

$$\mathbf{f'(x)} = \frac{\frac{1}{2}(x-1)^{-\frac{1}{2}}}{1+(\sqrt{x-1})^2} = \frac{\frac{1}{2(x-1)^{\frac{1}{2}}}}{1+x-1} = \frac{1}{(2\sqrt{x-1})(1+x-1)} = \frac{1}{2\sqrt{x-1}+2x\sqrt{x-1}-2\sqrt{x-1}} = \frac{1}{2\sqrt{x-1}+2x\sqrt{x-1}-2\sqrt{x-1}}$$

$$g(x) = \arcsin\left(\sqrt{\frac{x-1}{x}}\right)$$
.

$$\mathbf{g'(x)} = \frac{\frac{1}{2x^2\sqrt{\frac{x-1}{x}}}}{\sqrt{1-\left(\sqrt{\frac{x-1}{x}}\right)^2}} = \frac{\frac{1}{2x^2\sqrt{\frac{x-1}{x}}}}{\sqrt{1-\frac{x-1}{x}}} = \frac{\frac{1}{2x^2\sqrt{\frac{x-1}{x}}}}{\sqrt{-\frac{1}{x}}} = \frac{1}{\left(2x^2\sqrt{\frac{x-1}{x}}\right)\left(\sqrt{-\frac{1}{x}}\right)} = \frac{1}{2x^2\sqrt{\frac{x-1}{x}} \times \frac{1}{x}} = \frac{1}{2x^2\sqrt{\frac{x-1}{x}}} = \frac{1}{2x^2\sqrt{\frac{x-1}{x}}} = \frac{1}{2x^2\sqrt{\frac{x-1}{x}}} = \frac{1}{2x\sqrt{x-1}}.$$

Una vez con nuestras funciones derivadas, procedemos a ejecutar la resta en cuestión:

$$f'(x) - g'(x) \to \frac{1}{2x\sqrt{x-1}} - \frac{1}{2x\sqrt{x-1}} = \mathbf{0}.$$

Ahora continuaremos con nuestra segunda derivada:

$$h(x) = \sqrt{1 + tg\left(x + \frac{1}{x}\right)}.$$

$$h'(x) = \frac{1}{2} \left(1 + tg\left(x + \frac{1}{x}\right) \right)^{-\frac{1}{2}} sec^2 \left(x + \frac{1}{x}\right) \left(1 - \frac{1}{x^2}\right).$$
$$h'(x) = \frac{sec^2 \left(x + \frac{1}{x}\right) \left(1 - \frac{1}{x^2}\right)}{2\sqrt{1 + tg\left(x + \frac{1}{x}\right)}}.$$

3) Calcular los extremos de la función:

$$f(x) = e^x + e^{-x} - 2\cos(x).$$

Figure 2: Función $f(x) = e^x + e^{-x} - 2cos(x)$ Tomada de Geogebra

Primero calcularemos nuestra primera derivada y segunda derivada, después trabajaremos de la forma x=0 para encontrar los máximos y mínimos.

Primera derivada.

$$x=0$$

$$f'(x) = e^x - e^{-x} - 2\sin(x) \times 1.$$
 $f'(0) = e^0 - e^{-0} - 2\sin(0) = 0$

$$f'(0) = e^0 - e^{-0} - 2\sin(0) = \mathbf{0}$$

$$x=0$$

$$f''(x) = e^x + e^{-x} + 2\cos(x)$$

$$f''(0) = e^0 + e^0 + 2\cos(0) = 4$$

Máx

Mín

4

0

Como podemos apreciar, nuestra segunda derivada es un número positivo, con lo cual podemos arguir que representa un máximo, nuestro cero un mínimo.

4) Calcular los desarrollos limitados siguientes (desarrollos de Taylor):

•
$$f(x) = \sqrt[3]{3+x} \rightarrow \text{De orden } 3 \text{ en } x = 5.$$

•
$$f(x) = \frac{x}{\cos(x)} \to \text{De orden 4 en } x = 0.$$

Procedemos con nuestra primera función:

Derivadas. x=5. $f(x) = (3+x)^{\frac{1}{3}}$. $f(5) = (3+5)^{\frac{1}{3}} = 2$.

 $f'(x) = \frac{1}{3}(3+x)^{\frac{-2}{3}} \times 1.$ $f'(5) = \frac{1}{3\sqrt[3]{64}} \times 1 = \frac{1}{12}.$

 $f''(x) = -\frac{2}{9}(3+x)^{-\frac{5}{3}} \times 1.$ $f''(5) = -\frac{2}{9\sqrt[3]{32.768}} \times 1 = -\frac{1}{144}.$

 $f'''(x) = \frac{10}{27}(3+x)^{-\frac{8}{3}} \times 1$ $f'''(5) = \frac{10}{27\sqrt[3]{16.777.216}} \times 1 = \frac{5}{3.456}$

$$P_3(x) = 2 + \frac{1}{12}(x-5) - \frac{1}{288}(x-5)^2 + \frac{5}{20.736}(x-5)^3.$$

Ahora vamos con nuestra segunda función:

Derivadas.
$$f(x) = x s e^{-x}$$

$$x=0$$
.

$$f(x) = xsec(x).$$

$$f(0) = 0sec(0) = 0.$$

$$f'(x) = sec(x) + xsec(x)tan(x).$$

$$f'(0) = sec(0) + 0sec(0)tan(0) = 1.$$

$$f''(x) = xsec^{3}(x) + xsec(x)tan^{2}(x) + 2sec(x)tan(x).$$

$$f''(0) = 0sec^{3}(0) + 0sec(0)tan^{2}(0) + 2sec(0)tan(0) = 0.$$

$$f'''(x) = 3sec^3(x) + 5xsec^3(x)tan(x) + xsec(x)tan^3(x) + 3sec(x)tan^2(x).$$

$$f'''(0) = 3sec^{3}(0) + 5.0sec^{3}(0)tan(0) + 0sec(0)tan^{3}(0) + 3sec(0)tan^{2}(0) = 3.$$

$$f^{4}(x) = 5xsec^{5}(x) + 18xsec^{3}(x)tan^{2}(x) + 20sec^{2}(x)tan(x) + 4sec(x)tan^{3}(x).$$

$$\begin{split} f^4(0) = \\ 5.0sec^5(0) + 18.0sec^3(0)tan^2(0) + \\ 20sec^2(0)tan(0) + 4sec(0)tan^3(0) = 0. \end{split}$$

$$P_4(x) = 0 + 1(x) - 0(x)^2 + \frac{1}{2}(x)^3 + 0(x)^4 = x + \frac{x^3}{2}.$$

- 5) Representar gráficamente la curva de la ecuación y=f(x), determinando el dominio de definición más grande posible de la función f en los siguientes casos:
 - $y = x^3 5x^2 + 5x 1$.
 - $\bullet \quad \frac{2x^3 5x^2 + 4x + 1}{2x^2 x 1}$

Vamos con nuestra primera función:

 $Dom = \mathbb{R}.$

Puntos criticos:

$$\frac{\text{Primera derivada}}{y' = 3x^2 - 10x + 5}.$$

$$\left(\frac{5+\sqrt{10}}{3}, \frac{5-\sqrt{10}}{3}\right).$$

Puntos de inflexión:

Segunda derivada.
$$\mathbf{x}$$
 \mathbf{y} $y'' = 6x - 10$. $\left(\frac{5}{3}, -\frac{52}{27}\right)$.

Creciente: Decreciente:

$$\left(-\infty, \frac{5-\sqrt{10}}{3}\right) \cup \left(\frac{5+\sqrt{10}}{3}, +\infty\right) \qquad \left(\frac{5-\sqrt{10}}{3}, \frac{5+\sqrt{10}}{3}\right)$$

Máximos y Mínimos relativos: Máximo relativo:

$$(0.612)^3 - 5(0.612)^2 + 5(0.612) - 1 =$$
0.41

$${f x} {f y} \ ({f 0.612}, \ {f 0.41})$$

Mínimo relativo:

$$(2.27)^3 - 5(2.27)^2 + 5(2.27) - 1 = -4.26$$

$$x y (2.27, -4.26)$$
.

Concavidad:

Convexa: Cóncava:

$$\left(-\infty, \frac{5}{3}\right)$$
. $\left(\frac{5}{3}, +\infty\right)$.

Simetría

Simetría par: Simetría impar:

$$f(x) = x^3 - 5x^2 + 5x - 1.$$

$$f(-x) = -x^3 - 5x^2 - 5x - 1.$$

$$f(x) \neq f(-x).$$

$$f(-x) = -x^3 - 5x^2 - 5x - 1.$$

$$-f(x) = -x^3 + 5x^2 - 5x + 1.$$

$$f(-x) \neq -f(x).$$

No presenta simetría.

Intersección en y

$$f(0) = (0)^3 - 5(0)^2 + 5(0) - 1 = -1$$

Limites por izquierda y derecha:

$$\lim_{x \to -\infty} = -\infty \qquad \qquad \lim_{x \to +\infty} = +\infty$$

Asíntotas:

No presenta asíntotas nuestra función.

Con los cual obtenemos la siguiente función al aunar toda la información que podemos contrastar con nuestros resultados.

Figure 3: Función $y = x^3 - 5x^2 + 5x - 1$. Tomada de Geogebra

Segunda función:

$$Dom = \mathbf{R} - [1, \frac{1}{2}.]$$

Primero vamos a simplificar nuestra función realizando la división de la misma, donde obtenemos:

$$x - 2 + \frac{3x - 1}{2x^2 - x - 1}$$

Primera derivada:

$$1 + \frac{-6x^2 + 4x - 4}{(2x^2 - x - 1)^2}$$

$$\frac{12(2x^3-2x^2+4x-1)}{(2x^2-x-1)^3}$$

Intersección en el eje y.

$$x = 0 \rightarrow$$

$$\frac{2(0)^3 - 5(0)^2 + 4(0) + 1}{2(0)^2(0) - 1} = 1$$

$$\mathbf{x} \quad \mathbf{y}$$
 $(0,-1)$

Simetría.

Simetría par:

$$f(x) = \frac{2x^3 - 5x^2 + 4x + 1}{2x^2 - x - 1}.$$

$$f(-x) = \frac{-2x^3 - 5x^2 - 4x + 1}{-2x^2 - x - 1}.$$

$$f(-x) = \frac{-2x^3 - 5x^2 - 4x + 1}{-2x^2 - x - 1}.$$

$$-f(x) = \frac{-2x^3 + 5x^2 - 4x - 1}{-2x^2 + x + 1}.$$

$$f(x) \neq f(-x).$$

$$f(-x) \neq -f(x).$$

No presenta simetría.

Asíntotas.

Horizontal. Vertical. Oblicua.

No presenta. $\left(-\frac{1}{2}, 1\right)$. (x-2)

Límites.

Izquierda. Derecha.

 $\lim_{x \to -\infty} = -\infty \qquad \qquad \lim_{x \to +\infty} = \infty$

Al aunar toda esta información procedemos a obtener y contrastar con la gráfica.

Figure 4: Función $\frac{2x^3-5x^2+4x+1}{2x^2-x-1}$. Tomada de Geogebra

Integrales

 $\int x^2 \sin(x^3) dx$

Usando el cambio de variable $u=x^3$, tenemos $du=3x^2\,dx$. Dividiendo ambos lados por 3, obtenemos $\frac{1}{3}du=x^2\,dx$. Reemplazando esto en la integral original, obtenemos:

$$\int x^2 \sin(x^3) \, dx = \int \sin(u) \cdot \frac{1}{3} du$$

La cual se simplifica a:

$$\frac{1}{3} \int \sin(u) \, du$$

Resolvemos la integral:

$$-\frac{1}{3}\cos(x^3) + C$$

 $\int \frac{x^3}{\sqrt[5]{x^4 + 2}} dx$

Realizamos el cambio de variable $u=x^4+2$, lo que implica $du=4x^3\,dx$. Dividiendo ambos lados de la ecuación por 4, obtenemos $\frac{du}{4}=x^3\,dx$.

Sustituimos en la integral:

$$\int \frac{x^3}{\sqrt[5]{x^4 + 2}} \, dx = \int \frac{\frac{du}{4}}{\sqrt[5]{u}}$$

Simplificamos la expresión y sacamos la constante $\frac{1}{4}$ fuera de la integral:

$$\frac{1}{4} \int \frac{du}{u^{1/5}}$$

Integramos $u^{-1/5}$ con respecto a u, lo que nos da:

$$\frac{1}{4} \int u^{-1/5} \, du = \frac{1}{4} \cdot \frac{u^{4/5}}{4/5} + C$$

Volvemos a sustituir $u = x^4 + 2$:

$$= \frac{1}{4} \cdot \frac{(x^4 + 2)^{4/5}}{4/5} + C$$
$$= \frac{5}{16}(x^4 + 2)^{4/5} + C$$

$$\int x \cdot e^x \, dx$$

Seleccionamos u y dv:

$$u = x$$
 y $dv = e^x dx$

Calculamos du y v:

$$du = dx$$
 y $v = \int e^x dx = e^x$

Aplicamos la fórmula de integración por partes:

$$\int x \cdot e^x dx = uv - \int v \, du = x \cdot e^x - \int e^x \, dx = x \cdot e^x - e^x + C$$

$$\int \sin^2(x) dx$$

Siendo:

$$u = \sin(x)$$
 y $dv = \sin(x) dx$

Derivamos u para obtener du e integramos dv para obtener v:

$$du = \cos(x) dx$$
 y $v = -\cos(x)$

Aplicamos la fórmula de integración por partes:

$$\int \sin^2(x) dx = uv - \int v du$$
$$= -\sin(x)\cos(x) - \int (-\cos(x))(\cos(x)dx)$$

Simplificamos y resolvemos la integral:

$$= -\sin(x)\cos(x) + \int \cos^2(x) \, dx$$

Aplicamos la identidad trigonométrica $\cos^2(x) = \frac{1+\cos(2x)}{2}$:

$$= -\sin(x)\cos(x) + \int \frac{1 + \cos(2x)}{2} dx = -\sin(x)\cos(x) + \frac{1}{2} \int (1 + \cos(2x)) dx$$

Integramos término a término:

$$= -\sin(x)\cos(x) + \frac{1}{2}\left(\int 1 \, dx + \int \cos(2x) \, dx\right)$$
$$= -\sin(x)\cos(x) + \frac{1}{2}\left(x + \frac{1}{2}\sin(2x)\right) +$$

$$\int \frac{x^2 + 1}{x^2 - 3x + 2}$$

Factorizamos el denominador:

$$x^2 - 3x + 2 = (x - 1)(x - 2)$$

La función se convierte en:

$$\frac{x^2+1}{(x-1)(x-2)}$$

Descompondremos en fracciones simples:

$$\frac{x^2+1}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2}$$

Multiplicamos ambos lados por el denominador común (x-1)(x-2) para despejar $x^2 + 1$:

$$x^{2} + 1 = A(x - 2) + B(x - 1) = x^{2} + 1 = Ax - 2A + Bx - B$$

Igualamos coeficientes:

$$A + B = 1$$
$$-2A - B = 1$$

Después de resolver el sistema, encontramos que A=-2 y B=3.

Entonces, la descomposición en fracciones simples es:

$$\frac{x^2+1}{(x-1)(x-2)} = \frac{-2}{x-1} + \frac{3}{x-2}$$

Finalmente, la integral se resuelve integrando término a término:

$$\int \frac{x^2 + 1}{x^2 - 3x + 2} \, dx = -2 \int \frac{1}{x - 1} \, dx + 3 \int \frac{1}{x - 2} \, dx$$

Integrando, obtenemos:

$$-2\ln|x-1| + 3\ln|x-2| + C$$

6)
$$\int \frac{1}{x^2(x+1)}$$

$$\frac{1}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$$

$$1 = A(x)(x+1) + B(x+1) + C(x^2)$$

$$1 = Ax^2 + Ax + Bx + B + Cx^2$$

$$1 = (A+C)x^{2} + (A+B)x + B$$

$$A+C=0, \quad A+B=0, \quad B=1$$

$$B=1, \quad A=-1, \quad C=1$$

$$\int \frac{1}{x^{2}(x+1)} dx = \int \left(\frac{-1}{x} + \frac{1}{x+1} + \frac{1}{x^{2}}\right) dx$$

$$= -\ln|x| + \ln|x+1| - \frac{1}{x} + C$$

$$\int \sin^3(x) \cos^4(x) \, dx$$

Identidad trigonométrica $\rightarrow \sin^2(x) + \cos^2(x) = 1$

$$\int \sin^2(x) \cdot \sin(x) \cdot \cos^4(x) \, dx = \int (1 - \cos^2(x)) \cdot \sin(x) \cdot \cos^4(x) \, dx$$

Realizando el cambio de variable $u = \cos(x)$ y $du = -\sin(x) dx$, la integral se convierte en:

$$= -\int (1 - u^2) \cdot u^4 du = -\int (u^4 - u^6) du$$
$$= -\frac{u^5}{5} + \frac{u^7}{7} + C = -\frac{\cos^5(x)}{5} + \frac{\cos^7(x)}{7} + C$$

$$\int \cos(2x)\sin^2(x)\,dx$$

Identidad trigonométrica
$$\to \sin^2(x) = \frac{1-\cos(2x)}{2}$$

 $= \int \cos(2x) \cdot \sin^2(x) \, dx = \int \frac{\cos(2x) - \cos^2(2x)}{2} \, dx$
 $= \frac{1}{2} \int \cos(2x) \, dx - \frac{1}{2} \int \cos^2(2x) \, dx = \frac{1}{2} \cdot \frac{1}{2} \sin(2x) - \frac{1}{4} \int (1 + \cos(4x)) \, dx$
 $= \frac{1}{4} \sin(2x) - \frac{1}{4} \left(x + \frac{1}{4} \sin(4x) \right) + C.$