Taller 2: Representación booleana a partir de un número natural*

Frank Hernández^a, Juliana Bejarano¹

^aPontificia Universidad Javeriana, Bogotá, Colombia

Abstract

En este documento se presenta el problema de escribir un algoritmo para solucionar el problema de calcular la representación booleana de un número natural usando la estrategia de "dividir y vencer".

Keywords: algoritmo, escritura formal, dividir y vencer, booleano, número natural.

1. Análisis del problema

La definición de número natural y su representación booleana, se representa como:

$$S = \langle S_i : i \in \{1..N\} \subset \mathbb{N} \rangle$$

Y se representa como \mathbb{B} .

Dónde:

- $S = \langle s_i \mid a_i \in \mathbb{N} \rangle$, es la secuencia que contiene los elementos.
- $s_i \in S$, es la posición de cada elemento.

2. Diseño del problema

El análisis anterior nos permite diseñar el problema: definir las entradas y salidas de un posible algoritmo de solución, que aún no está definido.

1. Entradas:

- a) $S = \langle s_i \mid a_i \in \mathbb{N} \rangle$, la secuencia de elementos.
- b) b, punto de partida de la secuencia.
- c) e, última posición de la secuencia.
- 2. Salidas: B, la representación booleana del elemento.

^{*}Este documento presenta la escritura formal de un algoritmo.

*Email addresses: fs.hernandezl@javeriana.edu.co (Frank Hernández),
juliana_bejarano@javeriana.edu.co (Juliana Bejarano)

3. Algoritmos de solución

3.1. Algoritmo recursivo

Este algoritmo de solución es una traducción literal de las deficiones de lo que se quiere resolver.

Algorithm 1 Representación booleana de un número natural.

```
1: procedure BOOLEAN REP(s)
       if s = 0 then
 2:
           return 0
 3:
       end if
 4:
       if s = 1 then
 5:
           return 1
 6:
 7:
       end if
       cantbits \leftarrow CANTIDAD(s)
 8:
       return BOOLEAN REP AUX(s, 0, cantbits - 1)
10: end procedure
11: procedure CANTIDAD(s)
12:
       cantbits \leftarrow 0
13:
       while s \gg cantbits do
           cantbits \leftarrow cantbits + 1
14:
       end while
15:
       {f return}\ cantbits
17: end procedure
18: procedure BOOLEAN REP AUX(s, b, e)
19:
       if b = e then
           return str((s \gg b)\&1)
20:
       end if
21:
       q \leftarrow (b+e)//2
22:
       L \leftarrow \texttt{boolean\_rep\_aux}(s,\,b,\,q)
23:
       R \leftarrow \text{BOOLEAN} REP AUX(s, q+1, e)
24:
       return R + L
25:
26: end procedure
```

3.1.1. Invariante

La invariante del algoritmo es s, el número que se recibe, dado que:

- Inicio: Al comienzo, la invariante se asegura de que la función está preparada para construir la representación binaria correcta de todos los bits de s.
- Avance: En cada paso recursivo, la invariante se mantiene porque cada subproblema se resuelve correctamente para su respectivo intervalo de bits, y estos se combinan para formar la representación binaria.

■ <u>Terminación</u>: Cuando el caso base se alcanza y la recursión termina, la invariante asegura que todos los bits han sido procesados correctamente, y la representación binaria completa de s se ha generado.

3.1.2. Análisis de complejidad

El algoritmo BOOLEAN_REP tiene orden de complejidad O(2T(n/2) + O(1)), calculado a partir del teorema maestro debido a que no hay ciclos, y hay 2 llamados recursivos. Al resolver la ecuación por teorema maestro, llegamos a la complejidad O(s).

4. Plan de pruebas

4.0.1. Numero: 0

1. resultado esperado: 0

2. resultado Obtenido:

```
Ingrese el número: 0
La representación booleana del número es 0
```

Figura 1: Resultado numero 0

4.0.2. Numero: 3

resultado esperado: 11
 resultado Obtenido:

```
Ingrese el número: 3
La representación booleana del número es 11
```

Figura 2: Resultado numero $3\,$

4.0.3. Numero: 28

1. resultado esperado: 11100

2. resultado Obtenido:

```
Ingrese el número: 28
La representación booleana del número es 11100
```

Figura 3: Resultado numero 28

4.0.4. Numero: 126

1. resultado esperado: 1111110

2. resultado Obtenido:

Ingrese el número: 126 La representación booleana del número es 1111110

Figura 4: Resultado numero 126

4.0.5. Numero: 1002

1. resultado esperado: 1111101010

2. resultado Obtenido:

Ingrese el número: 1002 La representación booleana del número es 1111101010

Figura 5: Resultado numero 1002