

Policy Gradient Methods in Deep Reinforcement Learning Introduction and Implementation

Yinghan Sun

Control & Learning for Robotics and Autonomy (CLEAR) Lab

05/30/2024

Contact: yinghansun2@gmail.com

Agenda

✓ Training deep neural networks

✓ Overview of basic RL concepts

✓ Building your environments for RL training

✓ Policy gradient methods for deep RL

How to define a simple network?

```
import torch
             import torch.nn as nn
                                                could have multiple hidden layers
             class MLP(nn.Module):
                 def __init__(self, input_dim, hidden_dim, output_dim):
                     super(MLP, self). init ()
fully-connected layer self.fc1 = nn.Linear(input_dim, hidden_dim)
                     self.fc2 = nn.Linear(hidden dim, output dim)
                 def forward(self, x):
activation function x = torch.relu(self.fc1(x))
                     x = self.fc2(x)
                     return x
             if __name__ == '__main__':
                 mlp instance = MLP(5, 10, 1)
```

Activation Functions

Activation functions are used at the end of a hidden unit to introduce nonlinear complexities to the model.

 $\mathbb{R} \to (0,1)$ could output a probability. Sigmoid Tanh **ReLU** Leaky ReLU $g(z) = \max(\epsilon z, z)$ $g(z) = \frac{1}{1 + e^{-z}}$ $g(z) = \max(0, z)$ with $\epsilon \ll 1$

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

How to train your network?

- Step 1: collect training data
- Step 2: import your model (network)
- Step 3: define a loss function
- Step 4: define an optimization method (optimizer)
- Step 5: start the optimization iteratively

How to train your network?

```
import torch
X train = torch.randn(100, 5)
y train = torch.randn(100, 1)
model = MLP(5, 10, 1)
                                           learning rate
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
                  SGD: stochastic gradient decent
for epoch in range(100):
    optimizer.zero_grad()
    outputs = model(X_train)
    loss = criterion(outputs, y_train)
    loss.backward()
    optimizer.step()
    if (epoch+1) % 10 == 0:
        print(f'Epoch {epoch+1}, Loss: {loss.item()}')
```

Review: Basic RL concepts

State, action, reward, state transition ... $P(S'|S, \alpha) = P(S_{\epsilon} = S') S_{\epsilon-1} = S, A_{\epsilon} = \alpha)$ state, action, reward, state transition ...

• policy $\pi(als) = P(Ae=a|Se=s)$

a mapping from states to probabilities of selecting each possible action.

episode, trajectory, return ...

episode: one complete play of the agent interacting

With the environment. state-value functions, action-value functions

traj .: So, ao, r, S, a, rz, ...

• RL objective: maximize the accumulated reward

return: accumulated (discounted) reward, Gt = Rent & Rent Y Rent + Y2 Rent + ...

Review: Basic RL concepts

- State-value functions: estimate how good it is for the agent to be in a given state.

$$V_{\pi}(s) = E_{\pi}[G_{\epsilon}|S_{\epsilon}=s] = E_{\pi}[\sum_{k=0}^{\infty} y^{k}|S_{\epsilon+k+1}|S_{\epsilon}=s],$$

- action-value functions: estimate how grad it is to perform a given action in a given state.

$$Q_{\pi}(s, a) = E_{\pi}[G_{\epsilon}|S_{t}=s, A_{\epsilon}=a] = E_{\pi}[\frac{\infty}{2} 8^{k} R_{\epsilon + k+1}|S_{\epsilon}=s, A_{\epsilon}=a]$$

- Relationships: $V_{\pi}(S_{e}) = \sum_{\alpha_{e}} \pi(\alpha_{e}|S_{e}) \cdot Q_{\pi}(S_{e},\alpha_{e}).$ Ex. $A = \{\alpha^{C_{1}}, \alpha^{C_{2}}, \alpha^{C_{3}}\},$

$$V_{\pi}(S_{e}) = p(\alpha^{C_{1}}|S_{e}) Q_{\pi}(S_{e}, \alpha^{C_{1}}) + p(\alpha^{C_{1}}|S_{e}) \cdot Q_{\pi}(S_{e}, \alpha^{C_{1}})$$

$$+ p(\alpha^{C_{1}}|S_{e}) \cdot Q_{\pi}(S_{e}, \alpha^{C_{1}}).$$

RL Training Environment

RL Training Environment

```
class TemplateEnv:
    def init (self):
        # define obs space, action space ...
    def reset(self):
        obs = self._get_observation()
        return obs
    def step(self, action):
        rewards = self. compute reward()
        dones = self.__get_done_info()
        obs = self.__get_observation(action)
       infos = {}
        return obs, rewards, dones, infos
    def _get_observation(self, action):
        return obs
    def _compute_rewards(self):
        return rewards
    def get done infos(self):
        return dones
```


Half Cheetah

Hopper

Humanoid Standup

Humanoid

Inverted Double Pendulum

Inverted Pendulum

Reacher

Swimmer

https://www.gymlibrary.dev/environments/mujoco/

Exploration and Exploitation

• Exploitation: make the best decision given current information.

$$a_t = \arg\max_a Q(s, a)$$

• Exploration: to gather more information.

$$a_t = \begin{cases} \arg\max Q(s, a), & \text{with probability } 1 - \epsilon \\ a & \text{a random action,} \end{cases}$$
 with probability ϵ

• The best long-term strategy may involve short-term sacrifices. So we need to gather enough information to make the best overall decisions.

Exploration and Exploitation

The greedy method performed significantly worse in the long run because it often got stuck performing suboptimal actions.

RL An Introduction, Sutton, et al.

Representation of a Policy

Numeric expression

• Parametric expression (with parameters determined / undetermined)

Neural networks

Define the Policy Network (Actor)

```
import torch
import torch.nn as nn
import torch.distributions import Normal
from mlp import MLP
class Actor(nn.Module):
    def __init__(self, obs_dim, hidden_dim, action_dim, init_noise_std=1.0):
        super(Actor, self). init ()
        self.actor = MLP(obs dim, hidden dim, action dim)
        self.std = nn.Parameter(init noise std * torch.ones(action dim))
        self.distribution = None
    def update distribution(self, obs):
        mean = self.actor(obs)
        self.distribution = Normal(mean, mean * 0. + self.std)
    def act(self, obs):
        self.update distribution(obs)
                                                      exploration
        return self.distribution.sample()
    def act inference(self, obs):
                                                      exploitation
        action mean = self.actor(obs)
        return action mean
```

REINFORCE: Vanilla Policy Gradient

Recall: RL goal max
$$E_{s-l}(\pi_{\theta}(s), \alpha - \pi_{\theta}(\alpha l s)) [G]$$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} E_{s-l}(\pi_{\theta}(s), \alpha - \pi_{\theta}(\alpha l s)) [G].$$

$$= E_{s-l}(\pi_{\theta}(s)) [\int_{\alpha \in A} \nabla_{\theta} \pi_{\theta}(\alpha l s) \cdot G d\alpha]$$

$$= E_{s-l}(\pi_{\theta}(s)) [\int_{\alpha \in A} \frac{\pi_{\theta}(\alpha l s)}{\pi_{\theta}(\alpha l s)} \nabla_{\theta} \pi_{\theta}(\alpha l s) \cdot G d\alpha]$$

$$= E_{s-l}(\pi_{\theta}(s)) [\int_{\alpha \in A} \pi_{\theta}(\alpha l s) \cdot \frac{\nabla_{\theta} \pi_{\theta}(\alpha l s)}{\pi_{\theta}(\alpha l s)} \cdot G d\alpha]$$

$$= E_{s-l}(\pi_{\theta}(s), \alpha - \pi_{\theta}(\alpha l s)) \cdot [\nabla_{\theta} \log \pi_{\theta}(\alpha l s) \cdot G]$$

V(5).

Q(s,a)

J (8).

A(c,a)

REINFORCE: Vanilla Policy Gradient

- 1. Initialize the policy parameter θ at random.
- 2. Generate one trajectory on policy π_{θ} : $S_1, A_1, R_2, S_2, A_2, \ldots, S_T$.
- 3. For t=1, 2, ..., T:
 - 1. Estimate the the return G_t ;
 - 2. Update policy parameters: $\theta \leftarrow \theta + \alpha \gamma^t G_t \nabla_\theta \ln \pi_\theta(A_t | S_t)$

REINFORCE: Vanilla Policy Gradient

```
import torch
from actor import Actor
class REINFORCE:
    def init (self, state dim, hidden dim, action dim, learning rate, gamma, device):
        self.actor = Actor(state dim, hidden dim, action dim).to(device)
        self.optimizer = torch.optim.Adam(self.actor.parameters(), lr=learning_rate)
        self.gamma = gamma
        self.device = device
    def update(self, rollout buffer):
        G = 0
        self.optimizer.zero grad()
        for i in reversed(range(len(rollout_buffer.reward_list))):
            reward = rollout buffer.reward list[i]
            obs = rollout buffer.obs list[i, :]
            action_log_prob = torch.log(self.actor(obs))
            G = self.gamma * G + reward
            loss = -action log prob * G
            loss.backward()
        self.optimizer.step()
```

Training an Agent

```
import gym
import torch
from rollout buffer import RolloutBuffer
# hyper-params: lr, num_episodes, hidden_dim, gamma, device, ...
env = gym.make('CartPole-v0') # make environment
state dim = env.observation space.shape[0]
action dim = env.action space.n
rollout buffer = RolloutBuffer()
rl alg = REINFORCE(state_dim, hidden_dim, action_dim, learning_rate, gamma, device)
return list = [] # for recording
for episode idx in range(10):
    episode return = 0
    obs = env.reset()
    done = False
    while not done:
        action = rl alg.actor.act(obs)
        next obs, reward, done, = env.step(action)
        rollout buffer.add(obs, action, next obs, reward, done)
        obs = next obs
        episode return += reward
    return list.append(episode return)
    rl alg.update(rollout buffer)
    print('episode = {}, return = {}'.format(episode_idx, return_list[-1]))
```

Variance Reduction: Baselines

• Approach: subtract a baseline value from the return.

$$g = \mathbb{E}\left[\sum_{t=0}^{\infty} \Psi_t \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)\right],$$

Increasing the likelihood of actions that do *better* than the average return at each state, and **decreasing** ... *worse* ...

where Ψ_t may be one of the following:

- 1. $\sum_{t=0}^{\infty} r_t$: total reward of the trajectory.
- 4. $Q^{\pi}(s_t, a_t)$: state-action value function.

2. $\sum_{t'=t}^{\infty} r_{t'}$: reward following action a_t .

- 5. $A^{\pi}(s_t, a_t)$: advantage function.
- 3. $\sum_{t'=t}^{\infty} r_{t'} b(s_t)$: baselined version of previous formula.
- 6. $r_t + V^{\pi}(s_{t+1}) V^{\pi}(s_t)$: TD residual.
- A common approach: subtract the state-value from action-value.

 How much better than average a given action is compared to the average return at a particular state.
- It can be shown that the baseline does not change the policy gradient.
- How to estimate the advantage? Generalized Advantage Estimation (GAE).

GAE, Schulman, et al. ICLR 2016.

Value Estimation: Monte-Carlo

```
First-visit MC prediction, for estimating V \approx v_{\pi}
Input: a policy \pi to be evaluated
Initialize:
    V(s) \in \mathbb{R}, arbitrarily, for all s \in S
    Returns(s) \leftarrow \text{an empty list, for all } s \in S
Loop forever (for each episode):
    Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:
              Append G to Returns(S_t)
              V(S_t) \leftarrow \text{average}(Returns(S_t))
```

RL An Introduction, Sutton, et al.

Incremental implementation for updating the value estimation

General equation for value estimation update

• Temporal difference methods

• TD target, TD error ...

 $\sqrt{\pi} \quad (\zeta^{\epsilon}) = \frac{1}{m+1} \sum_{i=1}^{m+1} \beta^{\epsilon}_{i}$

current measurement.

average of all measurements:
$$V_{TT}^{(m)}(S_t) = g_t^{(i)} + \dots + g_t^{(m)}$$
 $g_{t-2} \vee (S_{t-2}) = v_{t-1} + y_{t}^2 v_{t+1} + y_{t}^2 v_{t+1}$

M-th estimation of $V_{TT}(S_t)$.

Incremental implementation:

mth measurement

of $V_{TT}(S_t) = \frac{1}{2} \left(g_{t-1}^{(m)} + m \cdot V_{t-1}^{(m)} \left(S_t^{(m)} \right) \right)$

m-th measurement

of
$$V_{\pi}(S_{\epsilon})$$
.

$$= \frac{1}{m+1} \left(g_{+}^{[m+1]} + m \cdot \sqrt{\pi} (s_{+}) \right)$$

$$= \frac{1}{m+1} \left(g_{+}^{(m+1)} + \frac{m}{2} g_{+}^{(i)} \right)$$

$$=\frac{1}{m+1}\left((m+1)\sqrt{\pi}\left(\varsigma_{\epsilon}\right)+g_{\epsilon}^{[m+1]}-\sqrt{\pi}\left(\varsigma_{\epsilon}\right)\right)$$

$$= \frac{1}{m+1} g^{\lfloor m+1 \rfloor} + \frac{1}{m+1} \cdot m \cdot \frac{1}{m} \cdot \frac{m}{2} g^{(i)}$$

$$= \sqrt{\frac{(m)}{\pi}} (\varsigma_{\epsilon}) + \frac{1}{m+1} \left(\varsigma_{\epsilon} - \sqrt{\frac{(m+1)}{\pi}} (\varsigma_{\epsilon}) \right).$$

$$= \frac{1}{m+1} \int_{\epsilon}^{\epsilon} \frac{m}{m+1} \cdot \sqrt{m} \cdot \sqrt{m} \cdot (s_{\epsilon})$$

just need to store the last estimation.

$$V_{\pi}^{(m+1)}(S_{t}) = V_{\pi}^{(m)}(S_{t}) + \frac{1}{m+1} \left(g_{t}^{(m+1)} - V_{\pi}^{(m)}(S_{t}) \right)$$

MC-estimation

New Estimation = Old Estimation + 2 (New Measurement - Old Estimation)

How focusing on the new measurement:

Je = Ve+1 + & Yetz + Y2 Ye+3 +... must wait until the end of the episode

Temporal - Difference:

real + 8 V7 (Sea) 8 Jean. need to wart only until the next time step.

Using last estimation to replace, could be V7 (Sea).

$$\frac{1}{2}\left(\begin{array}{c} (V_{m+1}) & V_{m} \\ V_{m} & V_{m} \end{array}\right) = V_{m} \left(\begin{array}{c} (V_{m}) \\ (V_{m}) \\ \end{array}\right)$$

 $V_{\pi}^{\text{[m+1]}}(S_{\epsilon}) = V_{\pi}^{\text{[m]}}(S_{\epsilon}) + \lambda \left((V_{t+1}^{\text{[m+1]}} + \chi V_{\pi}(S_{t+1}) - V_{\pi}^{\text{[m]}}(S_{\epsilon}) \right)$ The estimation

Tabular TD(0) for estimating v_{π} Input: the policy π to be evaluated Algorithm parameter: step size $\alpha \in (0, 1]$ Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0Loop for each episode: Initialize SLoop for each step of episode: $A \leftarrow$ action given by π for S Take action A, observe R, S' $V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]$ $S \leftarrow S'$ until S is terminal

RL An Introduction, Sutton, et al.

Define the Value Network (Critic)

```
import torch
import torch.nn as nn
import torch.nn.functional as F
class Critic(nn.Module):
   def init (self, obs dim, hidden dim):
        super(Critic, self). init ()
        self.fc1 = nn.Linear(obs_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, 1)
   def forward(self, obs):
       x = F.relu(self.fc1(obs))
        return self.fc2(x)
```

REINFORCE with Baseline – Actor Critic

Algorithm 1 Vanilla Policy Gradient Algorithm

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: **for** k = 0, 1, 2, ... **do**
- 3: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- 4: Compute rewards-to-go \hat{R}_t .
- 5: Compute advantage estimates, \hat{A}_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- 6: Estimate policy gradient as

$$\hat{g}_k = \frac{1}{|\mathcal{D}_k|} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T \left. \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \right|_{\theta_k} \hat{A}_t.$$

7: Compute policy update, either using standard gradient ascent,

$$\theta_{k+1} = \theta_k + \alpha_k \hat{g}_k,$$

or via another gradient ascent algorithm like Adam.

8: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm.

9: end for

REINFORCE with Baseline – Actor Critic

```
import torch
import torch.nn.functional as F
from actor import Actor
from critic import Critic
from gae import GAE
class ActorCritic:
    def __init__(self, obs_dim, hidden_dim, action_dim, actor_lr, critic_lr, gamma, lmbda, device):
        self.actor = Actor(obs dim, hidden dim, action dim).to(device)
        self.critic = Critic(obs dim, hidden dim).to(device)
        # initialize optimizers, parameters ...
    def update(self, obs, rewards, next obs, dones):
        td target = rewards + self.gamma * self.critic(next obs) * (1 - dones)
        td error = td target - self.critic(obs)
        advantage = GAE(self.gamma, self.lmbda, td error)
        log probs = torch.log(self.actor(obs))
        actor loss = torch.mean(-log probs * advantage.detach())
        critic loss = torch.mean(F.mse loss(self.critic(obs), td target.detach()))
        self.actor optimizer.zero grad(); self.critic optimizer.zero grad()
        actor loss.backward(); critic loss.backward()
        self.actor optimizer.step(); self.critic optimizer.step()
```

More Discussions

If time permits:

- Importance Sampling
- Trust Region Policy Optimization (TRPO)
- Proximal Policy Optimization (PPO)