Homework 13

Joe Baker, Brett Schreiber, Brian Knotten

February 11, 2018

19

\mathbf{a}

Problem 5.9 part (a): Show that EXACT INDSET $\in \pi_2^p$.

Proof.

EXACT INDSET can be expressed as the following language in first-order logic:

 $\text{EXACT INDSET} = \big\{ (G, k) \mid \forall \text{ Independent Sets } S_1 \in G, \exists \text{ an Independent Set } S_2 \in G \text{ such that } |S_2| = k \text{ and } |S_2| > = |S_1| \big\}.$

By the definition of π_2^p , EXACT INDSET $\in \pi_2^p$.

b

Problem 5.11: Show that SUCCINCT SET-COVER $\in \Sigma_2^p$.

Proof:

SUCCINCT SET COVER can be expressed as the following language in first-order logic:

SUCCINCT SET COVER = $\{(S, k) \mid \exists S' \subseteq S, \forall \text{ possible assignments of } S', \text{ then } |S'| <= k \text{ and } S' \text{ true} \}.$

By the definition of Σ_2^p , SUCCINCT SET COVER $\in \Sigma_2^p$.

\mathbf{c}

Problem 5.13: Show that VC-DIMENSION $\in \Sigma_3^p$.

Proof:

VC-DIMENSION can be expressed as the following language in first-order logic:

VC-DIMENSION = $\{(C, k) \mid \exists X \subseteq U, \forall X' \subseteq X, \exists i, \text{ such that } |X| >= k \text{ and } C_i \cup X = X' \}.$

By the definition of Σ_3^p , VC-DIMENSION $\in \Sigma_3^p$.

\mathbf{d}

Problem 5.9 part(b): Show that EXACT INDSET \in DP.

Proof:

Let $L_1 = \{(G, k) \mid \exists$ an Independent Set S, such that $|S| = k\}$. $L_1 \in \text{NP}$ because $L_1 \in \Sigma_1^p$ by definition and $\Sigma_1^p = \text{NP}$.

Let $L_2 = \{(G, k) \mid \forall \text{ Independent Sets } S, \text{ such that } |S| <= k\}.$ $L_2 \in \text{co-NP}$ because it is in π_1^p by definition and $\pi_1^p = \text{co-NP}$.

Since the intersection of two sets requires both constraints to be met:

Let $L = L_1 \cap L_2 = \{(G, k) \mid \forall \text{ Independent Sets } S_1, \exists \text{ an Independent Set } S_2, \text{ such that } |S_1| <= k \text{ and } |S_2| = k \} = \text{EXACT IND SET.}$

Finally, since $L = L_1 \cap L_2$ and $L_1 \in NP$ and $L_2 \in co-NP$, then $L \in DP$.

20

Problem 5.3: Show that if 3SAT is polynomial-time reducible to $\overline{3SAT}$, then PH = NP.

Proof:

First we will show that if 3SAT is polynomial-time reducible to $\overline{3SAT}$, then NP = co-NP:

Let $L \in \text{co-NP}$. Then $\overline{3\text{SAT}} \leq_P L$ since $\overline{3\text{SAT}}$ is co-NP-complete. Next, $3\text{SAT} \leq_P \overline{3\text{SAT}} \leq_P L$ by our original assumption, so L is reducible to 3SAT. Since $3\text{SAT} \leq_P L$, there exists a TM with input and advice tapes which accepts L in polynomial time, so $L \in \text{NP}$. Thus, $L \in \text{co-NP} \to L \in \text{NP}$. Now let $L \in \text{NP}$. Then.... prove pt 1.b

Next we will show that if NP = co-NP, then $\Sigma_2^p = \text{NP} = \pi_2^p = \text{co-NP}$: Proof for pt 2 goes here..

Finally, we can repeat the logic used to show that Σ_2^p and π_2^p collapse into NP and co-NP to show that higher levels of the polynomial time hierarchy collapse into NP and co-NP. Thus if 3SAT is polynomial-time reducible to $\overline{3SAT}$, then PH = NP.