Data Science Masters: Assignment 27

Problem:

To use the K-nearest neighbors algorithm to predict how many points NBA players scored in the 2013-2014 season.

Solution:

Importing Libraries...

In [1]:

```
# Mathematical computation
import numpy as np

# DateFrame setup
import pandas as pd

# Data Visualization
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

# Machine Learning pkgs
from sklearn.metrics import mean_absolute_error , mean_squared_error
from sklearn.model_selection import GridSearchCV , train_test_split
from sklearn.neighbors import KNeighborsRegressor , kneighbors_graph
```

Data Pre-processing Steps

In [2]:

```
# Loading Dataset
with open("nba_2013.csv", 'r') as csvfile:
   nba = pd.read_csv(csvfile)
```

In [3]:

```
# Sample data
nba.head()
```

Out[3]:

	player	pos	age	bref_team_id	g	gs	mp	fg	fga	fg.	 drb	trb	ast	stl	bll
0	Quincy Acy	SF	23	тот	63	0	847	66	141	0.468	 144	216	28	23	26
1	Steven Adams	С	20	OKC	81	20	1197	93	185	0.503	 190	332	43	40	57
2	Jeff Adrien	PF	27	тот	53	12	961	143	275	0.520	 204	306	38	24	36
3	Arron Afflalo	SG	28	ORL	73	73	2552	464	1011	0.459	 230	262	248	35	(
4	Alexis Ajinca	С	25	NOP	56	30	951	136	249	0.546	 183	277	40	23	46

5 rows × 31 columns

In [4]:

4

```
# Column names...
nba.columns
```

Out[4]:

Exploring Data - Analysis

In [5]:

```
# information on dataset
nba.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 481 entries, 0 to 480
Data columns (total 31 columns):
                481 non-null object
player
                481 non-null object
pos
                481 non-null int64
age
bref_team_id
                481 non-null object
                481 non-null int64
                481 non-null int64
gs
                481 non-null int64
mp
fg
                481 non-null int64
                481 non-null int64
fga
fg.
                479 non-null float64
                481 non-null int64
х3р
x3pa
                481 non-null int64
                414 non-null float64
x3p.
                481 non-null int64
x2p
                481 non-null int64
x2pa
                478 non-null float64
x2p.
efg.
                479 non-null float64
ft
                481 non-null int64
fta
                481 non-null int64
ft.
                461 non-null float64
orb
                481 non-null int64
drb
                481 non-null int64
trb
                481 non-null int64
                481 non-null int64
ast
                481 non-null int64
stl
                481 non-null int64
blk
tov
                481 non-null int64
рf
                481 non-null int64
                481 non-null int64
pts
                481 non-null object
season
                481 non-null int64
season end
dtypes: float64(5), int64(22), object(4)
memory usage: 116.6+ KB
```

In [6]:

```
# checking for duplicates and dropping the same...
if(nba.duplicated().any()):
    nba=df_AdultData_trainSet.drop_duplicates(keep='first')
```

In [7]:

```
# Printing unique values in each column in training set
for col in nba.select_dtypes(include=[np.object]).columns:
        print(col , " :" , nba[col].unique(),"\n")
 'P.J. Tucker' 'Ronny Turiat' 'Hedo Turkoglu' 'Evan Turner' 'Jeremy Tyler'
 'Ekpe Udoh' 'Beno Udrih' 'Jonas Valanciunas' 'Anderson Varejao'
 'Jarvis Varnado' 'Greivis Vasquez' 'Jan Vesely' 'Charlie Villanueva'
 'Nikola Vucevic' 'Sasha Vujacic' 'Dwyane Wade' 'Dion Waiters'
 'Kemba Walker' 'John Wall' 'Gerald Wallace' 'Casper Ware' 'C.J. Watson'
 'Earl Watson' 'Maalik Wayns' 'Martell Webster' 'David West'
 'Russell Westbrook' 'D.J. White' 'Royce White' 'Deron Williams'
 'Derrick Williams' 'Elliot Williams' 'Louis Williams' 'Marvin Williams'
 'Mo Williams' 'Reggie Williams' 'Shawne Williams' 'Jeff Withey'
 'Nate Wolters' 'Metta World Peace' 'Brandan Wright' 'Chris Wright'
 'Dorell Wright' 'Tony Wroten' 'Nick Young' 'Thaddeus Young' 'Cody Zeller'
 'Tyler Zeller']
pos : ['SF' 'C' 'PF' 'SG' 'PG' 'G' 'F']
bref_team_id : ['TOT' 'OKC' 'ORL' 'NOP' 'NYK' 'POR' 'MIA' 'MEM' 'BRK' 'PH
I' 'MIL' 'ATL'
 'WAS' 'GSW' 'DEN' 'HOU' 'SAS' 'BOS' 'PHO' 'MIN' 'LAC' 'CLE' 'UTA' 'DET'
 'CHA' 'DAL' 'CHI' 'LAL' 'IND' 'TOR' 'SAC']
```

As we can observe the columns player, bref_team_id, season & season_end are irrelevant when classification done with K-nearest neighbors algorithm. Hence, we need to drop from the given dataset.

In [8]:

```
# Drop columns which are not in need
columns_to_del = ['player','bref_team_id','season','season_end']
nba = nba.drop(columns=columns_to_del , axis= 1 )
# Sample rows after removing columns..
nba.head()
```

Out[8]:

	pos	age	g	gs	mp	fg	fga	fg.	х3р	х3ра	 ft.	orb	drb	trb	ast	stl
0	SF	23	63	0	847	66	141	0.468	4	15	 0.660	72	144	216	28	23
1	С	20	81	20	1197	93	185	0.503	0	0	 0.581	142	190	332	43	40
2	PF	27	53	12	961	143	275	0.520	0	0	 0.639	102	204	306	38	24
3	SG	28	73	73	2552	464	1011	0.459	128	300	 0.815	32	230	262	248	35
4	С	25	56	30	951	136	249	0.546	0	1	 0.836	94	183	277	40	23

5 rows × 27 columns

In [9]:

```
# trimming white space in the dataset
nba=nba.apply(lambda x: x.str.strip() if x.dtype == "object" else x)
```

In [10]:

```
# check null/na present in the dataset or not
nba.isnull().sum()
```

Out[10]:

pos 0 0 age 0 0 gs 0 mp fg 0 0 fga 2 fg. 0 х3р 0 x3pa x3p. 67 x2p 0 x2pa 0 x2p. 3 2 efg. ft 0 0 fta ft. 20 0 orb drb 0 trb 0 0 ast stl 0 0 blk tov 0 рf 0 0 pts dtype: int64

Looks like, columns x3p., x2p., ft., efg. and fg. contains null values. we would be replace them with their column's median value.

In [11]:

```
# replacing null with median value...
cols = ['x3p.' , 'ft.' , 'x2p.' , 'fg.' , 'efg.']
for col in cols:
    nba[col].fillna(nba[col].median(),inplace=True)
```

In [12]:

```
nba.isnull().values.any()
```

Out[12]:

False

In [13]:

Statistical observation on numeric columns
nba.describe()

Out[13]:

	age	g	gs	mp	fg	fga	fg.
count	481.000000	481.000000	481.000000	481.000000	481.000000	481.000000	481.000000
mean	26.509356	53.253638	25.571726	1237.386694	192.881497	424.463617	0.436443
std	4.198265	25.322711	29.658465	897.258840	171.832793	368.850833	0.098467
min	19.000000	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000
25%	23.000000	32.000000	0.000000	388.000000	47.000000	110.000000	0.401000
50%	26.000000	61.000000	10.000000	1141.000000	146.000000	332.000000	0.438000
75%	29.000000	76.000000	54.000000	2016.000000	307.000000	672.000000	0.479000
max	39.000000	83.000000	82.000000	3122.000000	849.000000	1688.000000	1.000000

8 rows × 26 columns

In [14]:

nba.describe(include=[np.object]) # np.object for object type data

Out[14]:

	pos
count	481
unique	7
top	SG
freq	109

Data Visualisation

In [15]:

```
# Training Set
nba.hist(bins=50, figsize=(20,15))
plt.show()
```


Label - OneHotEncoding

In [16]:

```
# Replacing catgeories as numberic object before passing to machine learning model
nba = nba.join(pd.get_dummies(nba['pos'], prefix='pos').iloc[:,:-1])
nba = nba.drop('pos', axis=1)
```

In [17]:

nba.head(2)

Out[17]:

	age	g	gs	mp	fg	fga	fg.	х3р	х3ра	х3р.	 blk	tov	pf	pts	pos_C	рс
0	23	63	0	847	66	141	0.468	4	15	0.266667	 26	30	122	171	0	
1	20	81	20	1197	93	185	0.503	0	0	0.330976	 57	71	203	265	1	

2 rows × 32 columns

```
In [18]:

df_target = nba['pts'] #Selection of points (pts) variable

df_feature = nba.drop('pts',axis = 1)
```

In [19]:

```
# Sample rows
df_target.head(2), df_feature.head(2)
```

Out[19]:

```
(0
     171
     265
Name: pts, dtype: int64,
                  mp fg fga
                               fg. x3p x3pa
                                                                   stl
                                                                        blk
                                                     x3p.
   age
         g gs
0
    23
        63
                 847
                      66
                          141 0.468
                                             15
                                                0.266667
                                                                    23
                                                                         26
        81
           20 1197 93
                         185 0.503
                                                0.330976
                                                                    40
                                                                         57
1
    20
                                        0
                                              0
   tov
         pf
            pos_C pos_F pos_G pos_PF pos_PG pos_SF
0
    30
        122
1
    71
        203
                 1
                        0
                               0
                                       0
                                               0
                                                       0
[2 rows x 31 columns])
```

Train & Test sets

```
In [20]:
```

```
# Spliting Data to Train and test
X_train , X_test , y_train , y_test= train_test_split(df_feature , df_target , random_state
X_train.shape,X_test.shape, y_train.shape,y_test.shape
Out[20]:
```

```
((336, 31), (145, 31), (336,), (145,))
```

Modeling - K-nearest neighbors

In [21]:

```
#Setup arrays to store training and test accuracies
neighbors = np.arange(1,10)
train_accuracy = {} # dictionary to hold score
for i,k in enumerate(neighbors):
    #Setup a knn classifier with k neighbors
    knn = KNeighborsRegressor(n_neighbors=k)
    #Fit the model using train data
    knn.fit(X_train, y_train)
    #Getting accuracy score for different K-value on Training set
    train_accuracy[k]=knn.score(X_train, y_train)
```

In [22]:

```
# Model accuracy with k value:
train_accuracy
```

Out[22]:

```
{1: 1.0,
2: 0.9891586266446848,
3: 0.9853589126395186,
4: 0.9828843596374411,
5: 0.9822746390470796,
6: 0.9792089164860184,
7: 0.9765308507675173,
8: 0.9737272634312061,
9: 0.9725098421782812}
```

In [23]:

```
#Converting train_accuracy into dataframe
df_Train_accuracy_Score = pd.DataFrame( list(zip(train_accuracy.keys() , train_accuracy.val
df_Train_accuracy_Score
```

Out[23]:

	K-Value	Accuracy_Score
0	1	1.000000
1	2	0.989159
2	3	0.985359
3	4	0.982884
4	5	0.982275
5	6	0.979209
6	7	0.976531
7	8	0.973727
8	9	0.972510

In [24]:

```
# Plot Between K-Value and Model Accuracy Score
plt.title('k-NN Varying number of neighbors')
plt.plot(df_Train_accuracy_Score['K-Value'], df_Train_accuracy_Score['Accuracy_Score'], lat
plt.legend()
plt.xlabel('Number of neighbors (K-Value)')
plt.ylabel('Accuracy')
plt.show()
```


Looks like, k = 4 would be optimal for this case.

In [25]:

```
# re-fitting model with k value as 4
knn_reg = KNeighborsRegressor(n_neighbors=4 , algorithm='auto', weights='uniform')
knn_reg.fit(X_train, y_train)
```

Out[25]:

In [26]:

```
# Model Accuarcy Score on test set
accuracy_Score_test = knn_reg.score(X=X_test, y=y_test)
print("Model (Test Set) : ",accuracy_Score_test)
```

Model (Test Set): 0.9752721285759218

In [27]:

```
# Predicting the points using the model
y_test_pred = knn_reg.predict(X_test)
```

In [28]:

```
# printing first 5 values
y_test_pred[:5]
Out[28]:
```

In [29]:

array([1151.25, 709.25, 579.75, 1033.5,

```
#Scatter Plot of "Actual vs predicted values"
plt.figure(figsize=(16,9))
plt.title("Scatter Plot (Test set)")
plt.xlabel("Actual total points the player scored (Test set)")
plt.ylabel("Predicted total points the player scored (Test set)")
plt.scatter(y_test,y_test_pred)
plt.show()
```


Model Evalution

In [30]:

```
from math import sqrt
mean_absolute_error_test = mean_absolute_error(y_test,y_test_pred)
mean_sqaured_error_test = mean_squared_error(y_test,y_test_pred)
root_mean_sqaured_error_test = sqrt(mean_sqaured_error_test)
print('Mean Absolute Error on Test dataset:', mean_absolute_error_test)
print('Mean Squared Error on Test dataset:', mean_sqaured_error_test)
print('Root Mean Squared Error on Test dataset:', root_mean_sqaured_error_test)
```

Mean Absolute Error on Test dataset: 45.543103448275865 Mean Squared Error on Test dataset: 4934.975431034482 Root Mean Squared Error on Test dataset: 70.24938028932698

```
In [31]:
```

```
neighbor_params = {'n_neighbors':[2,3,4,5,6,7,8,9]}
knn = KNeighborsRegressor()
# Selecting GridSearchCV with KNN model
modelSearch_GrdCV = GridSearchCV(knn, neighbor_params, cv=10)
modelSearch_GrdCV.fit(X_train,y_train)
modelSearch_GrdCV.best_params_

Out[31]:
{'n_neighbors': 4}

In [32]:
# Model accuracy score
```

Out[32]:

0.9752721285759218

modelSearch_GrdCV.score(X_test, y_test)

Hence, KNN regressor with 4 negibour achieves the best accuracy (0.9752 i.e about 97.52%) for the given dataset.