HOMEWORK 3 – MATH 392 January 26, 2018

ALEX THIES athies@uoregon.edu

Problem 8.22. Prove Theorem 8.8.

Theorem 8. Let K be a field and suppose $a(x), b(x) \in K[x]$ are associates. The polynomial a(x) is irreducible over K if and only if b(x) is irreducible over K.

Proof. Let K, a(x), and b(x) be as above.

 \Rightarrow) Assume a(x) is irreducible over K, and suppose by way of contradiction that b(x) is reducible over K. Then we know there exists polynomials $d(x), f(x) \in K[x]$ such that b(x) = d(x)f(x). And since a(x) and b(x) are associates we can write a(x) = cb(x) = c[d(x)f(x)]!

This implies that a(x), which we assumed to be irreducible over K, has factors in K[x], a contradiction. A similar argument can be used to prove the converse.

Problem 8.23. Prove Theorem 8.9.

Theorem 9. Let K be a field. Every polynomial in K[x] of degree 1 is irreducible over K.

Proof. Let K be a field and $a(x) \in K[x]$ such that $\deg a(x) = 1$. Since K is a field K[x] is an integral domain and thus the degree of polynomials is additive in K[x]. We can write a(x) = b(x)c(x), and since $\deg a(x) = 1$, we know that either $\beta = \deg b(x) = 1$ and $\gamma = \deg c(x) = 0$, or the other way around. This means that we can only factor a(x) into associates, which is the definition of being irreducible.

Hence, for a field K, every polynomial in K[x] of degree 1 is irreducible over K.

Problem 8.30. Complete the proof of Theorem 8.15.

Theorem 15. Let K be a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$. The element $c \in K$ is a root of a(x) if and only if b(x) = -c + x is a factor of a(x).

Proof. Let K, a(x) be as above.

 \Leftarrow) Suppose that b(x) = x - c is a factor of a(x), we will show that $c \in K$ is a root of a(x). Since b(x) is a factor of a(x), we can write a(x) = b(x)d(x) for some polynomial d(x). Further, since K is a field, K[x] is an integral domain and the zero product property works like we'd like it to, so we have a(c) = (c - c)d(c) = 0, hence c is a root of a(x).

Problem 8.31. Use the PMI to prove Theorem 8.17, for any $n \ge 1$. In the inductive step when you have $a(x) = (-c_1 + x) \cdot \cdot \cdot (-c_k + x)q(x)$ be sure to show why $q(c_k + 1)$ must equal 0_K .

Theorem 17. Suppose K is a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$. If the distinct elements $c_1, c_2, \ldots, c_n \in K$ are all roots of a(x), then the product $b(x) = (-c_1 + x)(-c_2 + x) \cdots (-c_n + x)$ is a factor of a(x).

This one eluded me.

Problem 8.37. Prove Theorem 8.19.

Theorem 19. Let K be a field. If c_1, c_2, \ldots, c_n are distinct roots of the nonzero polynomial $a(x) \in K[x]$, then $\deg(a(x)) \geq n$.

Proof. Let K, a(x) be as above. By Theorem 8.17 we can write a(x) = b(x)f(x) where $f(x) = \prod_{i=1}^{n}(x-c_i)$ for distinct roots $c_i \in K$. Since K is a field, K[x] is an integral domain and degree is additive for elements of K[x]. Let $\deg a(x) = \alpha$, $\deg b(x) = \beta$, $\deg f(x) = \eta$. Its clear that $\eta = n$, and by the same reasoning that allows us to conclude that, we can also surmise $\alpha \geq \eta$, hence $\deg(a(x)) \geq n$, as desired. \square

Problem 8.38. Complete the proof of Theorem 8.22.

Theorem 22. Let K be a field and $a(x) \in K[x]$ with deg(a(x)) = 2 or deg(a(x)) = 3. The polynomial a(x) is reducible over K if and only if a(x) has a root in K.

Proof. Let K, a(x) be as above.

 \Leftarrow) Assume a(x) has a root $c \in K$, we will show that a(x) is reducible over K. Since K is a field, K[x] is an integral domain and the degree is additive. We'll proceed by cases.

Case 1: $\deg a(x) = 2$. When $\deg a(x) = 2$ we can write a(x) = b(x)c(x) for polynomials $b(x), c(x) \in K[x]$. Let $\beta = \deg b(x)$ and $\gamma = \deg c(x)$, then we know $\beta + \gamma = 2$. But since a(x) has a root, one of β or γ must be 1 since constant polynomials don't have roots. Hence, $\beta = \gamma = 1$, and we can write a(x) as the product of non-constant polynomials, which defines a(x) to be reducible.

Case 2: $\deg a(x)=3$. When $\deg a(x)=3$ we can write a(x)=d(x)e(x) for polynomials $d(x), e(x)\in K[x]$. Let $\delta=\deg d(x)$ and $\varepsilon=\deg e(x)$, then we know $\delta+\varepsilon=3$. But since a(x) has a root, one of δ or ε must be 1 since constant polynomials don't have roots. And with one of δ or ε being 1, the other must be 2, again allowing a(x) to satisfy the definition of being reducible over K.

Hence, for a field K and polynomial $a(x) \in K[x]$ such that $\deg(a(x)) = 2$ or $\deg(a(x)) = 3$, the polynomial a(x) is reducible over K if and only if a(x) has a root in K.

Problem 8.46. Prove Theorem 8.27.

Theorem 27. Let K be a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$. If deg(a(x)) = n then there can be at most n distinct roots of a(x) in K.

Proof. Let K be a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$, and assume that $\deg a(x) = n$. Since $\deg a(x) = n$, we can write a(x) = b(x)f(x) for some polynomials b(x) and $f(x) = \prod_{i=1}^{n} (x - c_i)$, each of which is an element of K[x], where $c_i \in K$ are the roots of a(x). Notice that the linear factors that comprise f(x) each has degree 1, thus $f(x) = \prod_{i=1}^{n} (x-c_i)$ has degree n, as K is a field and K[x] and integral domain. That tells us that the only option for b(x) is a constant polynomial with degree 0. This implies that f(x) takes into account each of the distinct roots of a(x), hence a(x) has at most n distinct roots in K.

Problem 8.47. Let $a(x) = \frac{1}{3} + x + \frac{2}{3}x^2 + 3x^3 + \frac{1}{2}x^4$ in $\mathbb{Q}[x]$. Find an associate of a(x) in $\mathbb{Z}[x]$ then determine the possible roots for a(x) in \mathbb{Q} .

Proof. We proceed by finding a common denominator,

$$a(x) = \frac{1}{3} + x + \frac{2}{3}x^2 + 3x^3 + \frac{1}{2}x^4,$$

$$= \frac{2 + 3x + 4x^2 + 18x^3 + 3x^4}{6},$$

$$= \frac{1}{6} \left(2 + 3x + 4x^2 + 18x^3 + 3x^4 \right).$$

We can see that $b(x) = 2 + 3x + 4x^2 + 18x^3 + 3x^4 \in \mathbb{Z}[x]$ is an associate of a(x) with c = 1/6. We now apply the rational roots theorem with b(x). Since $a_0 = 2$ and $a_4 = 3$ are both prime, we have s/t = 2/3 as the only possible rational root of a(x), and we can see that $a(2/3) \neq 0$, so a(x) has no rational roots.

A quick trip to WolframAlpha shows that the roots of a(x) are $c_1 \doteq -5.8$, $c_2 \doteq -0.44$, and that their exact forms are disgusting looking expressions involing lots of radicals, and are definitely not rational. \square

Problem 8.59. Use Eisenstein's Criterion to show that the polynomial $a(x) = \frac{2}{5} + \frac{8}{15}x + \frac{2}{3}x^2 + \frac{4}{5}x^3 + \frac{2}{15}x^4 + \frac{4}{15}x^5 + \frac{1}{3}x^6$ is irreducible over \mathbb{Q} .

Proof. Eisenstein's Criterion states that for an integral polynomial a(x) with degree n > 0, if a prime number p that divides $a_0, a_1, \ldots, a_{n-1}$, but not a_n , and p^2 does not divide a_0 , then a(x) is irreducible over \mathbb{Q} . We use the common denominator trick to find that $b(x) = 6 + 8x + 10x^2 + 12x^3 + 2x^4 + 4x^5 + 5x^6 \in \mathbb{Z}[x]$ is an associate of a(x). Its fairly obvious that the only prime which satisfies the criterion is p = 2, as b_0, \ldots, b_5 are even, b_6 is odd, and $p^2 \not| 6$. The fact that $b_4 = 2$ sort of gives this one away.

Problem 8.66. Use Theorem 8.37 to prove that $a(x) = 56 + 36x + 29x^2 + x^3$ is irreducible over \mathbb{Q} .

Proof. Theorem 8.37 states that for a monic integral polynomial a(x) with degree k, if there exists n > 1 so that $\bar{f}_n(a(x))$ is irreducible in \mathbb{Z}_n , then a(x) is also irreducible in $\mathbb{Z}[x]$. Notice that a(x) is monic, and that $\bar{f}_3(a(x)) = 2 + 2x^2 + x^3$. We have $\bar{f}_3(a(x)) \in \mathbb{Z}[x]$, by the rational roots theorem the only possible root for $\bar{f}_3(a(x))$ is s/t = 2, and it is obvious upon inspection that $2 + 2(4) + 8 \neq 0$. Thus by the rational roots theorem $\bar{f}_3(a(x))$ is irreducible over \mathbb{Q} , thus it is also irreducible over \mathbb{Z}_3 . Hence, by Theorem 8.37 with $\bar{f}_3(a(x))$ irreducible over \mathbb{Z}_3 , we have a(x) is irreducible over \mathbb{Z} . By the rational roots theorem, since a(x) is monic, its only rational roots are integers, and since we have shown a(x) is irreducible over \mathbb{Z} , we can now claim that it is also irreducible over \mathbb{Q} , as desired.