BME2 - Biomedical Ultrasonics

Lecture 5: Medical Ultrasound Imaging

Office: 43 Banbury Road Tel: 01865-(2)74750

Email: constantin.coussios@eng.ox.ac.uk

Acknowledgments: Prof. Ronald A. Roy, George Eastman Visiting Professor 2006-07

Department o f Engineering Scienc

Contents

- 5.1.A brief history of ultrasound imaging
- 5.2. Basic element of a B-Mode scanner and scanning methods
- 5.3. Transmit electronics and beam forming
- 5.4. Ultrasound propagation: diffraction, absorption and scattering
- 5.5. Receive beam forming and time-gain compensation
- 5.6. Filtering, detection and display

References

Duck, F. A., Physical Properties of Tissue, Academic Press, New York, 1990.

Firestone, F. A., "The supersonic reflectoscope for interior inspection," Metal Prog., 48:505-512, 1945.

Holmes, J. H. "Diagnostic ultrasound during the early years of the A.I.U.M.," J. Clin. Ultrasound 8:299-308.1980.

Morse, P. M., and Ingard, K. U., *Theoretical Acoustics*, Princeton University Press, Princeton, NJ, 1968, 400-411.

T.L. Szabo, *Diagnostic Ultrasound Imaging - Inside Out*, Elsevier Academic Press, Boston, 2004 (ISBN: 978-0-12-680145-3)

Wells P.N.T., Physical principles of ultrasonic diagnosis, Academic Press, London, 1969a

Wells P.N.T., "A range-gated ultrasonic Doppler system," Med. Biol. Eng. 7: 641-652,1969b.

First... a Little History About Imaging Ultrasound

Doc knows about as much anatomy as I do!

Early Developments

- SONAR "Echo Ranging" at Ultrasound Frequencies
- Firestone (1945) developed the "reflectoscope" and applied pulse ranging techniques to flaw detection

Early Developments

- It didn't take long before someone thought to move the transducer the 2-D "B-Mode" scan was born
- Howey fitted a pulse echo transducer to a B-29 gun turret (Holmes, 1980); scanned a patient's neck along a circular arc
- Early systems employed water baths
- Wild and Reid developed first hand-held contact scanners (Wells, 1969)

Early Developments

Howery's B-29 Ultrasonic Tomographic System

Lucky Patient

Annotated "Image" of the Neck

Milestone Imaging Systems

Adapted from Szabo (2004)

Radar Equipment!

J. Reid

Early Phased Array System
"HP 70020A"

Early Mechanically Scanned System

Milestone Images Four Views of a Fetus

Surface Rendered Face & Hand

Adapted from Szabo (2004)

Step 1: Electrical Excitation

Primitive Excitation Pulses Consist of Precisely Timed Single-Cycle Pulses or Multiple-Cycle Pulses

Adapted from Szabo (2004)

Step 2: **Transmit Beamformer**

- continuous apertures Arrays consist of many small elements as opposed to large
- plane Each element is excited by signals delayed (phased) to steer and focus the beam electronically in the "scan" or "azimuth"
- A fixed focus lens provides focusing in the elevational plane
- By varying the delays to individual elements you can both focus the beam and direct its' axis.
- Beams can be radially scanned or linearly scanned
- Beamforming on receive proceeds in the same way as on
- You delay the received signals
- You linearly sum the delayed signals

Adapted from Panda (1988) via Szabo (2004)

Linear Array Geometry

Phase Delay Beamsteering

corresponding to a wavefront at angle θ_s from the Z axis. Introduce a linear time (phase) delay across the array elements

From Szabo (2004)

Phase Delay Focusing

- that simulate the curved wavefront Arrays can be focused by adding time delays
- c = distance from origin to focal point

 \mathcal{T}_{n}

 \mathcal{C}

 $\sqrt{\left(x_r - x_n\right)^2 + z_r^2}$

- $x_n = \text{distance from origin to center of nth}$ element (np)
- $t_o = {
 m constant\ delay\ added\ to\ avoid\ negative\ delays}$

elements

Step 3: Transducer Considerations

- and construction. Most arrays employ piezoelectric elements characterized by a resonance frequency and Q determined by material properties
- Geometry and shape of piezoelectric material
- Crystallographic orientation of PZT
- Electrode placement
- onto a backing pedestal Most arrays are stacked layers with large surface area bonded
- The sandwich is cut into rows using a saw
- Space between elements is the "kerf"
- Width of the elements is given by "w"
- Distance between element centers is the "pitch", p (typically 1/2 a wavelength)
- elevational focusing The cut elements are then covered by a cylindrical lens for

Step 3: Transducer Considerations

Adapted from Szabo (2004)

An Important Principle: Reciprocity

- receiver are interchanged that an acoustic response remains the same when the source and In its most elementary form the acoustic reciprocity principle states
- the same on receive as it is on transmit A useful corollary: The acoustic response of a linear transducer is

lmaging vs Therapy Competing Transducer Characteristics

- Axial resolution is given by the spatial pulse length
- B-mode imaging: 1-2 cycle pulse length
- Doppler-mode imaging: 5-10 cycle pulse
- Imaging transducers therefore possess a low quality factor
- Lots of damping (inefficient)
- Operate at low duty cycles to minimize heating and adverse bioeffects
- Therapy arrays must generate high peak acoustic intensities
- Axial resolution given by focusing
- CW or very long pulses
- Tight focusing requires a large aperture
- High efficiency requires low damping (high quality factor)

A tradeoff exists

- Good imaging transducers are poor therapy transducers, and vice versa
- Image-guided therapy scan-heads usually employ separate transducers for imaging and therapy

Step 4: Transmit Diffraction

- along the source surface. described by the mutual interference of "wavelets" generated Radiating sources on the scale of a wavelength create a field
- Subdivide the continuous source into an array of point sources
- Each point source is acoustically compact and generates spherical wave
- Sum these individual fields together to yield the radiated pressure field
- Rayleigh-Sommerfeld integral (Goodman, 1968)

$$\phi(r, \omega, t) = \frac{-1}{2\pi} \int_{S} \frac{e^{i\left[\omega - \vec{k} \cdot (\vec{r} - \vec{r}_{o})\right]}}{\left|\vec{r} - \vec{r}_{o}\right|} V_{n}(r_{o}) dS$$

is the radiating surface Where $V_n(r_o)$ is the surface-normal component of the particle velocity and S

Step 4: Transmit Diffraction

then Let $A_n(r_o)$ be the distribution of normal particle velocity across S,

$$V_n(r_o) = VA_n(r_o)$$

Rayleigh-Sommerfeld integral becomes

$$p(r,\omega,t) = \frac{i\rho ckV}{2\pi} \int_{S} \frac{e^{i\left[\alpha - \vec{k} \cdot (\vec{r} - \vec{r}_{o})\right]}}{\left|\vec{r} - \vec{r}_{o}\right|} A_{n}(r_{o}) dS$$

dimensions are small compared with axial distances, thus The Fresnel (or paraxial) approximation assumes that lateral

$$\left| \vec{r} - \vec{r}_o \right| \approx Z$$

Step 4: Transmit Diffraction

Therefore:

$$p(r,\omega,t) = \frac{i\rho ckV}{2\pi c} e^{i\alpha} \int_{S} e^{i\left[-\bar{k}\cdot\bar{r}\right]} A_{n}(r_{o}) dS$$

- The far field radiation pattern for a transducer looks something like the spatial Fourier transform of $A_n(r_o)$ the "apodization" function.
- For a uniform line source of length L, the apodization function is the rectangular function. The transform is a sinc function. Can show that

$$p(\theta) \propto \sin\left(\frac{kL}{2\pi}\sin\theta\right) = \frac{\sin(\frac{1}{2}kL\sin\theta)}{\frac{1}{2}kL\sin\theta}$$

- Beam possesses a main lobe plus side lobe structure
- Acoustically small aperture -- small kL -- wide beam
- Acoustically large aperture -- large kL -- narrow beam

Step 4: Transmit Diffraction

Adapted from Szabo (2004)

Step 5: Propagation Losses in Tissue

- Waves propagating in real media experience losses
- Thermal conductivity
- Viscous losses
- Molecular relaxation
- propagating wave, a process known as attenuation. These losses, along with scattering, remove energy from the
- A time harmonic propagating plane wave is written as

$$P(z,t) = P_o e^{-\alpha z} e^{i(\alpha t - kz)}$$

where alpha is the attenuation coefficient in nepers/cm. This is essentially a plane wave with a loss factor that increases exponentially with distance.

- as intensities consider the effect of attenuation on pulse waveforms as well Because imaging is done with pulse echoes, it is useful to
- Understanding frequency-dependent attenuation is key

Step 5: Propagation Losses in Tissue

- Visco-thermal absorption has quadratic frequency dependence
- Not the case for propagation through tissues
- Power law attenuation model: $\alpha(f) = \alpha_c + \alpha_f f$
- Dispersion

$$c(f) = c_o + \Delta c(f)$$

- General rule of thumb for power law attenuation: $y \approx 1.1$
- Duck (1990) has compiled data for a number of different tissues
- Scattering contributes to measured attenuation
- About 10-15% of total attenuation at low MHz frequencies
- Deviation from viscothermal behavior is not fully understood
- Viscoelastic rheology, multiple relaxation times, etc
- Beyond scope of lecture: See Szabo (2004) for a detailed discussion

Step 6: The Scattering Medium

- What information is contained in an ultrasound image?
- the propagation medium Spatially dependent backscatter and transmission "properties" of
- Interfaces
- Volume scattering
- Transmission and forward scatter impacts returns from objects "downstream"
- This information is further "colored" by systemic characteristics
- Transducer spatial and temporal response
- Signal processing algorithms
- Image processing algorithms
- Frequency-dependent propagation losses
- Nonlinearity
- you see on the screen and the diagnosis of illness Radiologists are needed to bridge the gap between what

scales Tissues present scatterers possessing several length Step 6: The Scattering Medium

- Class 1: Objects much smaller than λ diffusive scattering
- Rayleigh scattering from individual particles (Morse & Ingard, 1968)
- Pronounced frequency dependence (I_s proportional to f_s
- Discrete returns are not resolved you get volume scattering
- density of scattering particles -- not changes in bulk acoustic impedance Contrast based on compressibility and density of the particles and the number

$$p_s = \frac{1}{3} \frac{p_i}{kr} (ka)^3 \left[\left(\frac{\kappa - \kappa_s}{\kappa} \right) + \left(\frac{3(\rho - \rho_s)}{2(\rho + \rho_s)} \right) \cos \theta_s \right] \qquad ka << 1$$

- Class 2: Objects on the order of λ diffractive scattering
- Discrete returns with complicated angle and frequency dependence
- Governed by matching boundary conditions -- continuity of normal stress and normal velocity -- at the surface of the scatterer (Morse & Ingard, 1968)
- Invoke the Born approximation
- Class 3: Objects and interfaces much larger than λ specular reflection
- Manifested as discrete returns that obey Snell's law
- Contrast based primarily on the impedance mismatch at the boundary
- Interfacial transmission loss matters too!

Step Geometry <u>ნ</u> of A.T The Scattering Medium <u>.</u> **Labs Calibration Phantom**

B-Mode Image of A.T.S. Labs Calibration Phantom Step 6: The Scattering Medium

Analogic AN2300 equipped with a 5 MHz convex array scanhead

Adapted from Szabo (2004)

Time Gain Compensation Step 11: Correcting for Attenuation Loss

- Divide the image into a stack of separate strips
- Horizontal strips (linear scan format
- Concentric arcs (sector scanned format)
- Data arriving in time windows corresponding to each strip is fed to a different receive preamplifier stage
- Set the TGC gains to offset average loss in each zone

Step 11: Filtering

- Low-pass anti-aliasing filter
- Bandpass filter centered at ω_o for conventional B-Mode imaging
- imaging Bandpass filter filter centered at $2\omega_o$ for harmonic

Adapted from Szabo (2004)

Step 12: Detection

- Filtered beamformed signal is envelope detected
- Done in analog using diode bridges (lose phase information)
- information -- good for Doppler) Done in analog using a quadrature demodulator (preserves phase
- Done digitally using a variety of techniques
- Result is logarithmically compressed
- End up with an "A-line" in a known scan vector direction

Step 13: Display

Adapted from Szabo (2004)

- Subsequent scan vectors are obtained and stored in memory
- proper geometrical orientation pulse-echo image where the lines are arranged in their All the lines are interpolated or "scan converted", forming a
- compressed echo amplitude information) and displayed The image is converted to grey scale (represented

Recapitulation

Ф focusing (rf alignment)

ው

 \cap

reception

Recapitulation

Adapted from Szabo (2004)

(M)

Φ

9

log

geometric arrangement of scan lines

image from interpolated scan lines

Popular Imaging Modalities

A-Mode

- Shoot a single line and view the depth (time) dependent returns.
- Similar to what you might see on an oscilloscope display, where time is converted to distance: ∆z = c∆t

Resulting A-Mode Display

٥

Phillips Medical Systems

Popular Imaging Modalities

B-Mode

- Generate a series of scan lines in a plane (the imaging plane)
- (sector scan). The lines can be scanned linearly (linear scan) or angularly
- Propagation time is converted to distance: $\Delta z = c\Delta t$
- Combine the scans to form a 2-D image.

Popular Imaging Modalities

M-Mode

- x-y display where depth is y and x is a running display of the same imaging line shot over and over, and return amplitudes are encoded as brightness
- Displays a time history of activity (interface motion) for a given line
- Duplex M-Mode: displayed in conjunction with B scan

Duplex B-mode image and M-mode display of a mitral valve in the heart

The cardiac cycle is clearly evident in the M-mode display

Phillips Medical Systems

Popular Imaging Modalities

Color Flow Doppler

- A spatial map that depicts blood flow mean velocity with direction given by color
- The map is overlayed on a B-Mode image

Linear B-mode image with color Dopper overlayed

Contiguous imaging format (sector steering plus translation)

Popular Imaging Modalities

- Color M-Mode
- Standard M mode plus a color flow depiction of flow
- Displays a time history of a single color flow line

Color Flow Doppler Image (top)

Color M-Mode display (bottom)

