

SY/III/AIDS

B.Tech.Artificial Intelligence and Data Science

QP Code: 38122302

ADC302

Design and Analysis of Algorithm (DAA)

Date:28/11/2023

Time:10:30am to 12:30pm

Max Marks: 60

Q.1	Solve a	ny Four				Marks	CO	BT	
a)	Apply Master theorem to solve the given recurrence relation. a. $T(n) = 4T(n/2) + n!$ b. $T(n) = 9T(n/3) + n^2 \log n$ c. $T(n) = 2T(n/2) + n^3$					5	CO1	BT3	
b)	Compare and contrast Divide & Conquer strategy and Greedy approach.					5	CO2	BT2	
c)	Apply greedy approach to solve given knapsack problem and find 5 CO3 maximum profit. Knapsack Capacity = 12							BT3	
		Item (i)	Value (Vi)	Weight (Wi)					
		1	18	3					
		2	25	4					
		3	27	4					
		4	10	3					
		5	15	6					
d)	Find LCS of given two sequences. String 1: 010011 String 2: 10101101							BT3	
e)	Explain Knuth Morris Pratt algorithm and compare the same with naïve matching algorithm.					5	CO5	BT3	
f)	Define P, NP, NP-Hard and NP-Complete class					5	CO6	BT3	
Q.2	Solve any Four					Marks	CO	BT	
a)	Explain asymptotic notations in detail.					5	CO1	BT3	
b)	Sort the following array elements with Quick sort algorithm.					5	CO2	BT3	

{ 65, 20, 45, 75, 80, 55, 85, 60 }

c) Solve the following Job sequencing problem with the given deadline to 5 CO3 BT3 find maximum profit gained.

N=8

N=8
Profits (P1, P2,.....P8)={30, 15,20,18, 10,60,40, 55}
Deadlines (D1, D2,D8)={1, 3, 4, 3, 2, 1, 2, 1}

d) Apply Floyd's algorithm to calculate all pairs shortest path for the given 5 CO4 BT3 graph.

e) Find the given pattern in the text by applying naïve string matching 5 CO5 BT3 algorithm and specify the position of the pattern.

Text:baabaababa

Patten: ba

- f) Explain vertex cover problem. 5 CO6 BT3
- Q.3 Solve any Two Marks CO BT
- a) Apply dynamic programming approach and calculate single source 10 CO4 BT4 shortest path for the given graph from source vertex 'S'.

b) Apply Prim's and Kruskal's algorithm to find minimum spanning tree of 10 CO3 BT3 the given

c) Define 15 Puzzle problem. Explain how branch and bound strategy can be 10 CO5 BT2 used to solve 15-puzzle problem with example.