

HE1: Perimeter Security

Pascal Knecht pascal.knecht@juventus.schule

Video 0: Überblick

Die 3 grundlegenden IT-Security Massnahmen

- Starke Passwörter
- Software Updates
- Backup (und Restore)

Wichtiger Hinweis

- Dies ist eine Lehrveranstaltung.
- Die im Rahmen der Hacking-Exposed-Vorlesung vermittelten Kenntnisse sollen dazu beitragen, dass Sie Informationssicherheitsaspekte beachten und in Ihren Projekten berücksichtigen.
- Die HE-Vorlesung ist keineswegs als Anstiftung zum Hacken zu verstehen.

Inhalt heute Abend

- Perimeter Security Massnahmen
- Firewalling Grundidee
- Firewalling mit Netfilter und Iptables
- Port Scanning

Ziele

- Sie kennen wichtige Komponenten in der Netzwerksecurity und können deren Zweck beschreiben.
- Sie verstehen wieso es wichtig ist ein Netzwerk in Security-Zonen einzuteilen.
- Sie können Firewall-Regeln lesen, verstehen und selbstständig einfache Regeln schreiben.
- Sie können Nmap bedienen um offene Ports zu finden, Applikationsversionen herauszufinden und eigene Firewall-Regeln überprüfen.

#01 Perimeter Security Massnahmen

Video 1: Perimeter Security Massnahmen

Perimeter Security

Innerer Perimeter Hauptverteidigungswall

Bergfried Letzte Bastion

Äusserer Perimeter Zusätzliche Hürde

Firewall als Perimeter Security

Firewall Konzept mit DMZ

Firewall

- Ermöglicht Netzwerkszugriffseinschränkung unabhängig von Rechner / Server oder Applikation
- Segmentierung in verschiedene Netze
- IP kontrollieren
 - Vermittlungsschicht, OSI Layer 3
- Ports kontrollieren
 - Transportschicht, OSI Layer 4
- NAT
- Logging von Netzwerkaktivitäten
- Netfilter, CheckPoint, Fortinet etc.

Weitere Security Massnahmen

OSI-Schicht	TCP/IP-Schicht	Beispiel		
Anwendungen (7)		HTTP, UDS, FTP, SMTP, POP, Telnet, DHCP, OPC UA		
Darstellung (6)	Anwendungen			
Sitzung (5)		TLS, SOCKS		
Transport (4)	Transport	TCP, UDP, SCTP		
Vermittlung (3)	Internet	IP (IPv4, IPv6), ICMP (über IP)		
Sicherung (2)	Notzzugang	Ethornot Tokon Bus Tokon Bing EDDI		
Bitübertragung (1)	Netzzugang	Ethernet, Token Bus, Token Ring, FDDI		

Web Proxy

- Anti-Virus Scanning
- URL Filtering
- Connection- & Content-Rating
- Caching

- Logging
- User / Group Verwaltung
- Bandwidth Management

Web Reverse Proxy / Web Application Firewall (WAF)

- TLS-Termination
- Anti-Virus Scanning
- Logging
- Policy Enfocement bspw. OWASP Top 10

- Connection- & Content-Rating
- Caching
- Load Balancing

Mail Security Gateway

- Anti-Virus Scanning
- Deny- & Allow-Listing
- Anti-Spam

- Adress Harvesting Protection
- Logging
- Mail Routing

#02 Firewalling Grundidee

Video 2: Firewalling Grundidee

Server-Applikation und Betriebssystem

- Server-Applikationen h\u00f6ren auf einem Port auf eingehende Anfragen
 - Beispiel: Der Prozess Apache Webserver kann auf allen IPv4 Interfaces (0.0.0.0) für die Ports 80, 443 und 9000 hören. Eine andere Applikation kann dann nicht mehr auf derselben IP/Port Kombination hören.
- Eine Applikation/Prozess pro Port
 - Applikation fordert diesen vom Betriebssystem an
 - Well-Known Ports setzen Root-/Administratorenrechte voraus
- Mehrere Applikationen pro IP-Adresse

	IPv4	IPv6	
Localhost	127.0.0.1	::1	
Spezifisches Interface	129.168.1.210	2a02:168:4090::196	
Alle Interfaces	0.0.0.0	:::	

Prozesse und deren Sockets unter Linux anzeigen

```
$ sudo netstat -tulpn
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address
                                             Foreign Address
                                                                       State
                                                                                   PID/Program name
tcp
           0
                  0 127.0.0.1:5433
                                             0.0.0.0:*
                                                                       LISTEN
                                                                                   1385/postgres
                  0 127.0.0.1:5434
                                             0.0.0.0:*
                                                                       LISTEN
                                                                                   1382/postgres
tcp
           0
                                             0.0.0.0:*
                  0 127.0.0.1:5435
                                                                       LISTEN
                                                                                   1383/postgres
tcp
           0
                                             0.0.0.0:*
                  0 127.0.0.1:53
                                                                       LISTEN
                                                                                   1944/stubby
tcp
           0
                                             0.0.0.0:*
                                                                                   1333/stunnel4
tcp
                  0 127.0.0.1:8853
                                                                       LISTEN
           0
                  0 127.0.0.1:631
                                             0.0.0.0:*
                                                                       LISTEN
                                                                                   1189/cupsd
tcp
           0
                  0 127.0.0.1:5432
                                             0.0.0.0:*
tcp
           0
                                                                       LISTEN
                                                                                   1388/postgres
                  0::1:53
                                              :::*
                                                                       LISTEN
                                                                                   1944/stubby
tcp6
           0
. . .
```


FS22

Segmentierung von Netzen

- Verschiedene Bereiche eines Netzwerkes haben unterschiedliche Sicherheitsstufen
- Nicht jeder Rechner soll jeden anderen Rechner «sehen»

Typische Segmente

- Im Firmenumfeld wird das Netzwerk meist in verschiedene Teilbereiche aufgeteilt:
 - Internet: Nicht vertrauenswürdige Zone grösste Restriktion
 - DMZ: Demilitarisierte Zone mit strengen Zugriffskontrollen
 - «Was von extern und von intern erreichbar ist»
 - Server, Proxy, Mail-Gateway etc.
 - LAN: Interne Zone die aus dem Internet nicht erreichbar ist
 - Arbeitsplatzrechner, Drucker etc.
 - Server Netz: Interne Zone mit internen Servern die nicht (direkt) aus dem Internet erreichbar sind
 - AD, Exchange, File Share etc.

Firewalling Überblick

Allgemeine Funktionsweise einer Firewall

Anwenden einer Regel eines Regelsets auf eintreffende Netzwerkpakete

- Logisch-UND verknüpft
- Inbound: Aus Sicht des Gerätes kommt der Pfeil von extern auf das Gerät
- Outbound: Aus Sicht des Gerätes geht der Pfeil Richtung extern
- Ausführen einer Aktion
 - Allow: Verbindung zulassen
 - Deny/Block: Verbindung blockieren und keine Antwort zurücksenden
 - Reject: Verbindung blockieren und Sender informieren
 - Bspw. TCP Reset Paket oder ICMP Fehlermeldung
- Firewall allgemein gilt: First Match Action und Deny-All-Rule als Clean-up Rule

Fokus: Firewall auf lokalem System

 Wir konzentrieren uns auf ein Setup, in dem die Firewall direkt auf dem Server / Notebook konfiguriert wird:

Beispiel

Interface	INPUT / OUTPUT	Source	Destination	Port	Action
eth0	INPUT	192.168.1.0/24	192.168.1.17	80/tcp	Allow
eth0	INPUT	192.168.1.0/24	192.168.1.17	443/tcp	Allow
eth0	INPUT	Any	Any	Any	Deny
eth0	OUTPUT	192.168.1.17	Any	443/tcp	Allow
eth0	OUTPUT	192.168.1.17	Any	53/udp	Allow
eth0	OUTPUT	Any	Any	Any	Reject

#03 Firewalling Netfilter und Iptables

Video 3: Firewalling Netfilter und Iptables

Netfilter und Iptables

- Netfilter ist die Linux Firewall
- Iptables das Userspace Programm zur Verwaltung des Regelsets Netfilter components

Jan Engelhardt, last updated 2014-02-28 (initial: 2008-06-17)

Userspace tools

Netfilter kernel components
other networking components

Iptables Komponenten

Tables

- Verschiedene Tabellen beherbergen verschiedene Rule-Typen
- Filter, NAT, Mangle, RAW & Security
- Chains
 - Punkt im Traffic-Flow an welchem eine Rule aktiv sein kan
 - Prerouting, Input, Forward, Output & Postrouting
- Rules
 - Bestimmt welche Action für ein Paket vorgesehen ist
 - Matching-Component
 - Protokoll, IP-Adresse, Port, Interface, Headers etc.
 - Target-Component
 - Terminating Targest: Accept, Drop, Reject und einige andere

Iptables Chain

- Jedes Netzwerkpaket (Inbound und Outbound) durchläuft mindestens eine Chain
 - INPUT eingehende Pakete die für lokalen Socket vorgesehen sind
 - FORWARD eingehende Pakete die für ein anderes System vorgesehen sind
 - OUTPUT lokal generierte Pakete welche dieses System verlassen
- Jede Chain hat eine Policy
 - ACCEPT Paket wird akzeptiert, Standardeinstellung
 - # iptables --policy INPUT ACCEPT
 - DROP Paket wird verworfen
 - # iptables -P INPUT DROP

Regelset für einfachen, lokalen Webserver

- Port 80 eingehend erlauben
 - # iptables -A INPUT -i eth0 -p tcp --dport 80 -j ACCEPT
- FORWARD und INPUT Chain alle Pakete verwerfen
 - # iptables -P FORWARD DROP
 - # iptables -P INPUT DROP

Regeln

- Gehören zu einer Chain
 - Werden an diese angehängt I am Anfang und mit A am Ende des Regelsets
 - Und mit -D gelöscht (selber Befehl)
- Steuern Protokoll, Port und IP-Adressen
- Haben eine Aktion j (für Jump)
 - ACCEPT
 - DROP
 - REJECT
- Ganzes Regelset kann mit iptables -L angezeigt werden
- Alle Regeln löschen mit iptables -F (ausser Chain Policy)

#04 Port Scanning

Video 4: Port Scanning

Netzwerk Port

- Ein Port ist der Bestandteil einer Netzwerk-Adresse auf dem Transport Layer (TCP und UDP)
 - Well-Known Ports: 0 bis 1023
 - Registered Ports: 1024 bis 49151
 - High Ports: 49152 bis 65535 (2¹⁶-1)
- Server Applikationen sind an einen oder mehrere Ports gebunden (bind) und warten auf Anfragen (listen)
- Client Applikation wird vom OS ein Source Port zugeordnet

TCP Handshake

Quelle: Wikipedia

FS22 32

Der Port-Scanner Nmap

- Ziel ist Finden von offenen Ports
 - Jeder offene Port ist eine mögliche Bedrohung
- Einsatzzweck
 - Security Audits von Netzwerkgeräten
 - Finden von offenen Ports
 - Erstellen eines Netzwerkinventars
 - Finden von Schwachstellen in Software oder Systemen
- Vergewissern Sie sich stets, dass Sie den richtigen Host scannen und scannen Sie nie Systeme die Ihnen nicht gehören

Port Zustände

- Nmap ist in der Lage, Remote Ports in unterschiedliche Zustände einzuteilen. Die wichtigsten sind:
 - open Applikation akzeptiert TCP Verbindungsaufbau
 - closed Port ist erreichbar aber keine Applikation hört auf dem Port (TCP RST) → Host ist online!
 - filtered Firewall blockiert Zugriff auf Port, kein TCP RST

Nmap Usage

- \$ nmap scanme.nmap.org
 - Scan der 1000 häufigsten Ports
- \$ nmap www.addere.ch -p 1,2,4-8,16
 - Scannt Ports 1, 2, 4, 5, 6, 7, 8 und 16

Scan-Techniken

- Nmap unterstützt eine Vielzahl unterschiedlicher Scan-Methoden mit spezifischen Finsatzzwecken
- TCP SYN scan (-sS) ist Standard-Scan
 - Nur SYN-Pakete, kein TCP Handshake, sehr schnell, erweiterte Rechte notwendig
- TCP connect scan (-sT)
 - Verwendet OS Network API und baut TCP Verbindung auf, weniger schnell und genau
- Weitere Scan-Methoden: UDP scan (-sU), TCP NULL, FIN und Xmas scan (-sN, -sF, -sX), TCP ACK scan (-sA), etc.

Service & Version Detection

- Service-DB mit ca. 2200 Port und Service Kombinationen
 - 25/tpc ist SMTP
- Schnell
- Ungenau respektive kann falsch sein
 - Webserver kann auch auf Port 25/tcp hören
- Keine Informationen über Service/Daemon
 - Jedoch nötig für Vulnerability Suche

Service & Version Detection

- Version detection mit sV starten
- Verschiedene Anfragen werden auf Port geschickt und Antworten/Reaktionen ausgewertet
 - Service Protocol
 - FTP, SSH, Telnet, HTTP etc.
 - Application Name
 - ISC BIND, Apache httpd, Solaris telnetd etc.
 - Version Number
 - Hostname
 - Device Type
 - Printer, Router etc.
 - OS Family
 - Windows, Linux

Übungen & Labor

Übungen: HE1

Labor: github.com/ryru/HackingExposed

Kurze Einführung in Wireshark

- Packet-Filter
 - host <ip> and port <port>
- Drei UI-Bereiche
- Display-Filter
 - ip.addr == <ip> and tcp.port == 80
 - Häufige Protokolle filtern
 - http, ssl, icmp, smtp
- TCP Flow
- Statistics
 - Protocol Hierarchy
 - Conversations
 - Endpoints

Videoempfehlungen fürs Selbststudium

Hirne Hacken (43 Min)

