```
In [1]:
```

Out[3]:

```
#importig the libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
#ignore harmless warnings
import warnings
warnings.filterwarnings("ignore")
#set to display all the columns in dataset
pd.set_option("display.max_columns", None)
#to run sql queries on DataFrame
import pandasql as psql
                                                                           In [3]:
dp= pd.read_csv(r"C:\Users\Dlc\Downloads\Diamonds Prices2022.csv",header=0)
dp_bk=dp.copy()
dp.head(20)
```

	Unna med: 0	carat	cut	color	clarity	depth	table	price	x	у	z
0	1	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
1	2	0.21	Premi um	E	SI1	59.8	61.0	326	3.89	3.84	2.31
2	3	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
3	4	0.29	Premi um	I	VS2	62.4	58.0	334	4.20	4.23	2.63
4	5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
5	6	0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
6	7	0.24	Very Good	I	VVS1	62.3	57.0	336	3.95	3.98	2.47
7	8	0.26	Very Good	Н	SI1	61.9	55.0	337	4.07	4.11	2.53
8	9	0.22	Fair	Е	VS2	65.1	61.0	337	3.87	3.78	2.49
9	10	0.23	Very Good	Н	VS1	59.4	61.0	338	4.00	4.05	2.39
10	11	0.30	Good	J	SI1	64.0	55.0	339	4.25	4.28	2.73
11	12	0.23	Ideal	J	VS1	62.8	56.0	340	3.93	3.90	2.46
12	13	0.22	Premi um	F	SI1	60.4	61.0	342	3.88	3.84	2.33
13	14	0.31	Ideal	J	SI2	62.2	54.0	344	4.35	4.37	2.71
14	15	0.20	Premi um	E	SI2	60.2	62.0	345	3.79	3.75	2.27
15	16	0.32	Premi um	E	I1	60.9	58.0	345	4.38	4.42	2.68
16	17	0.30	Ideal	1	SI2	62.0	54.0	348	4.31	4.34	2.68
17	18	0.30	Good	J	SI1	63.4	54.0	351	4.23	4.29	2.70
18	19	0.30	Good	J	SI1	63.8	56.0	351	4.23	4.26	2.71
19	20	0.30	Very Good	J	SI1	62.7	59.0	351	4.21	4.27	2.66

```
dp.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53943 entries, 0 to 53942
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	53943 non-null	int64
1	carat	53943 non-null	float64
2	cut	53943 non-null	object
3	color	53943 non-null	object
4	clarity	53943 non-null	object
5	depth	53943 non-null	float64
6	table	53943 non-null	float64
7	price	53943 non-null	int64
8	x	53943 non-null	float64
9	У	53943 non-null	float64
10	z	53943 non-null	float64

 ${\tt dtypes: float64(6), int64(2), object(3)}$

memory usage: 4.5+ MB

In [5]:

```
Out[5]:
Index(['Unnamed: 0', 'carat', 'cut', 'color', 'clarity', 'depth', 'table',
       'price', 'x', 'y', 'z'],
     dtype='object')
                                                                         In [6]:
 dp=dp.drop('Unnamed: 0',axis=1)
 dp.columns=['Weight','Cut_Quality','Color','Clarity','Depth','Table','Price
 ','X_length','Y_width','Z_depth']
                                                                         In [8]:
 dp['Cut_Quality'].value_counts()
                                                                         Out[8]:
Ideal
            21551
Premium
         13793
Very Good 12083
Good
             4906
Fair
             1610
Name: Cut_Quality, dtype: int64
```

```
dp['Color'].value_counts()
```

```
Out[9]:
G
   11292
Ε
     9799
F
     9543
     8304
Η
D
     6775
     5422
I
     2808
J
Name: Color, dtype: int64
                                                                        In [10]:
 dp['Clarity'].value_counts()
                                                                       Out[10]:
SI1 13067
VS2
      12259
       9194
SI2
VS1
       8171
VVS2
       5066
VVS1
        3655
IF
        1790
I1
         741
Name: Clarity, dtype: int64
```

dp.describe()

Out[11]:

	Weight	Depth	Table	Price	X_length	Y_width	Z_depth
count	53943.0000 00						
mean	0.797935	61.749322	57.457251	3932.73429 4	5.731158	5.734526	3.538730
std	0.473999	1.432626	2.234549	3989.33844 7	1.121730	1.142103	0.705679
min	0.200000	43.000000	43.000000	326.000000	0.000000	0.000000	0.000000
25%	0.400000	61.000000	56.000000	950.000000	4.710000	4.720000	2.910000
50%	0.700000	61.800000	57.000000	2401.00000 0	5.700000	5.710000	3.530000
75%	1.040000	62.500000	59.000000	5324.00000 0	6.540000	6.540000	4.040000
max	5.010000	79.000000	95.000000	18823.0000 00	10.740000	58.900000	31.800000

DATA CLEANING¶

Remove Duplicates¶

dp[dp.duplicated()]

Out[12]:

	Weight	Cut_Q uality	Color	Clarity	Depth	Table	Price	X_leng th	Y_widt h	Z_dept h
1005	0.79	Ideal	G	SI1	62.3	57.0	2898	5.90	5.85	3.66
1006	0.79	Ideal	G	SI1	62.3	57.0	2898	5.90	5.85	3.66
1007	0.79	Ideal	G	SI1	62.3	57.0	2898	5.90	5.85	3.66
1008	0.79	Ideal	G	SI1	62.3	57.0	2898	5.90	5.85	3.66
2025	1.52	Good	E	I 1	57.3	58.0	3105	7.53	7.42	4.28
50079	0.51	Ideal	F	VVS2	61.2	56.0	2203	5.19	5.17	3.17
52861	0.50	Fair	E	VS2	79.0	73.0	2579	5.21	5.18	4.09
53940	0.71	Premiu m	E	SI1	60.5	55.0	2756	5.79	5.74	3.49
53941	0.71	Premiu m	F	SI1	59.8	62.0	2756	5.74	5.73	3.43
53942	0.70	Very Good	E	VS2	60.5	59.0	2757	5.71	5.76	3.47

149 rows × 10 columns

```
dp.drop_duplicates(inplace=True)
                                                                In [14]:
 dp.isnull().sum()
                                                               Out[14]:
Weight 0
Cut_Quality 0
Color
           0
Clarity
          0
Depth
Table
           0
Price
           0
X_length
           0
Y_width
           0
Z_depth
            0
dtype: int64
[Detect-Remove] Outliers¶
                                                                In [15]:
```

numeric_cols = ['Weight', 'Depth', 'Table', 'Price', 'X_length', 'Y_width',

```
'Z depth']
plt.figure(figsize=(15, 15))
for i in range (7) :
    plt.subplot(3, 3, i+1)
    sns.boxplot(x=dp[numeric cols[i]], color='#6DA59D')
    plt.title(numeric_cols[i])
plt.show()
                                                                          In [16]:
def detect_outliers (data, column):
    q1 = dp[column].quantile (.25)
    q3= dp[column].quantile (.75)
    IQR = q3-q1
    lower_bound = q1-(1.5*IQR)
    upper bound = q3+(1.5*IQR)
    ls = dp.index [ (dp [column] < lower_bound) | (dp [column] >
upper bound) ]
    return 1s
                                                                          In [17]:
index_list = []
for column in numeric_cols:
    index_list.extend( detect_outliers (dp, column))
# remove duplicated indices in the index list and sort it
index_list = sorted(set(index_list))
```

```
before_remove = dp.shape
  dp=dp.drop(index_list)
  after_remove =dp.shape
  print(f'''Shape of data before removing outliers: {before_remove}
  Shape of data after remove : {after_remove}''')

Shape of data before removing outliers: (53794, 10)
  Shape of data after remove : (47416, 10)
```

Data Visualisation¶

In [19]:

```
cols = ['Weight', 'Depth', 'Table', 'X_length', 'Y_width', 'Z_depth']
plt.figure(figsize=(18, 12))
for i in range(6) :
   plt.subplot(2, 3, i+1)
   #sns.set()
   plt.scatter(dp[cols[i]], dp['Price'],color='#679C94')
   plt.title(cols[i])
   plt.ylabel('Price', size=13)
plt.show()
```

```
In [20]:
```

```
quality= dp.groupby('Cut_Quality').mean().sort_values('Price',
   ascending=False)
quality=quality [['Price']].round(2)
quality.reset_index(inplace=True)
quality
```

Out[20]:

	Cut_Quality	,	Price
0	Fair	3701.98	
1	Premium	3485.01	
2	Very Good	3222.78	
3	Good	3215.51	
4	ldeal	2801.71	

In [21]:

 $sns.barplot(x=quality['Cut_Quality'], y= quality['Price'], palette='bone') \\ plt.show$

Out[21]:

<function matplotlib.pyplot.show(close=None, block=None)>

```
color= dp.groupby('Color').mean().sort_values('Price', ascending=False)
color=color[['Price']].round(2)
color.reset_index(inplace=True)
color
```

Out[22]:

		Color	Price
0	J	3895.46	
1	1	3627.18	
2	Н	3507.42	
3	G	3209.37	
4	F	3069.83	
5	D	2654.11	
6	Е	2588.76	

In [23]:

```
sns.barplot(x= color[ 'Color'], \ y=color['Price'], \ palette='bone') \\ plt.show
```

```
Out[23]:
```

<function matplotlib.pyplot.show(close=None, block=None)>

In [24]:

clarity = dp.groupby('Clarity').mean().sort_values('Price',
 ascending=False)
clarity= clarity[['Price']].round(2)
clarity.reset_index(inplace=True)
clarity

Out[24]:

		Clarity	Price
0	SI2	3760.29	
1	I1	3296.18	
2	SI1	3260.29	
3	VS1	3142.50	
4	VS2	3092.77	
5	VVS2	2782.27	
6	VVS1	2125.65	
7	IF	2119.54	

```
sns.barplot(x= clarity[ 'Clarity'], y=clarity['Price'], palette='bone')
 plt.show
                                                                           Out[25]:
<function matplotlib.pyplot.show(close=None, block=None)>
Importing Libraries Of Machine Learning¶
                                                                            In [26]:
 from sklearn.preprocessing import StandardScaler
 from sklearn.linear_model import LinearRegression
 from sklearn.model selection import train test split
 from sklearn.preprocessing import PolynomialFeatures
 from sklearn.linear_model import Ridge
 from sklearn. ensemble import RandomForestRegressor
 from sklearn.metrics import r2 score
```

from sklearn.model_selection import cross_val_score

from sklearn.compose import ColumnTransformer
from sklearn.model selection import GridSearchCV

Data Preprocessing¶

In [27]:

```
dp['Cut_Quality'] = dp['Cut_Quality'].map({'Fair': 0, 'Good' :1, 'Very
Good' :2, 'Premium' :3, 'Ideal' :4})
dp['Color'] = dp['Color'].map({'J' :0, 'I':1, 'H':2, 'G' :3, 'F' :4, 'E':5,
'D': 6})
dp['Clarity'] = dp[ 'Clarity'].map({'II': 0, 'SI2':1, 'SII':2, 'VS2':3,
'VS1' :4, 'VVS2':5, 'VVS1' :6, 'IF':7})
```

In [28]:

dp.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 47416 entries, 0 to 53939
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Weight	47416 non-null	float64
1	Cut_Quality	47416 non-null	int64
2	Color	47416 non-null	int64
3	Clarity	47416 non-null	int64
4	Depth	47416 non-null	float64
5	Table	47416 non-null	float64

6 Price 47416 non-null int64
7 X_length 47416 non-null float64
8 Y_width 47416 non-null float64
9 Z_depth 47416 non-null float64

dtypes: float64(6), int64(4)

memory usage: 4.0 MB

In [29]:

dp.head(20)

Out[29]:

	Weight	Cut_Q uality	Color	Clarity	Depth	Table	Price	X_leng th	Y_widt h	Z_dept h
0	0.23	4	5	1	61.5	55.0	326	3.95	3.98	2.43
1	0.21	3	5	2	59.8	61.0	326	3.89	3.84	2.31
3	0.29	3	1	3	62.4	58.0	334	4.20	4.23	2.63
4	0.31	1	0	1	63.3	58.0	335	4.34	4.35	2.75
5	0.24	2	0	5	62.8	57.0	336	3.94	3.96	2.48
6	0.24	2	1	6	62.3	57.0	336	3.95	3.98	2.47
7	0.26	2	2	2	61.9	55.0	337	4.07	4.11	2.53
9	0.23	2	2	4	59.4	61.0	338	4.00	4.05	2.39
10	0.30	1	0	2	64.0	55.0	339	4.25	4.28	2.73
11	0.23	4	0	4	62.8	56.0	340	3.93	3.90	2.46
12	0.22	3	4	2	60.4	61.0	342	3.88	3.84	2.33

	Weight	Cut_Q uality	Color	Clarity	Depth	Table	Price	X_leng th	Y_widt h	Z_dept h
13	0.31	4	0	1	62.2	54.0	344	4.35	4.37	2.71
14	0.20	3	5	1	60.2	62.0	345	3.79	3.75	2.27
15	0.32	3	5	0	60.9	58.0	345	4.38	4.42	2.68
16	0.30	4	1	1	62.0	54.0	348	4.31	4.34	2.68
17	0.30	1	0	2	63.4	54.0	351	4.23	4.29	2.70
18	0.30	1	0	2	63.8	56.0	351	4.23	4.26	2.71
19	0.30	2	0	2	62.7	59.0	351	4.21	4.27	2.66
20	0.30	1	1	1	63.3	56.0	351	4.26	4.30	2.71
21	0.23	2	5	3	63.8	55.0	352	3.85	3.92	2.48

In [30]:

```
IndepVar=[]
for col in dp.columns:
    if col!='Price':
        IndepVar.append(col)
TargetVar='Price'
x=dp[IndepVar]
y=dp[TargetVar]
```

In [31]:

```
te=43)
x_train.shape,x_test.shape,y_train.shape,y_test.shape
                                                                           Out[31]:
((33191, 9), (14225, 9), (33191,), (14225,))
                                                                           In [32]:
from sklearn.preprocessing import MinMaxScaler
mmscaler=MinMaxScaler(feature_range=(0,1))
x_train=mmscaler.fit_transform(x_train)
x_train=pd.DataFrame(x_train)
x_{test=mmscaler.fit_transform(x_{test})
x_test=pd.DataFrame(x_test)
                                                                           In [34]:
 #load the RGR data
RGRResults=pd.read_csv(r"C:\Users\Dlc\Downloads\Diamonds
Prices2022.csv",header = 0)
RGRResults.head()
```

Out[34]:

	Unna med: 0	carat	cut	color	clarity	depth	table	price	x	у	z
0	1	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
1	2	0.21	Premi um	E	SI1	59.8	61.0	326	3.89	3.84	2.31
2	3	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
3	4	0.29	Premi um	1	VS2	62.4	58.0	334	4.20	4.23	2.63
4	5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75

In [35]:

```
# Build the Regression / Regressor models
```

```
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
#from sklearn.neighbors import KNeighborsRegressor
#from sklearn.linear_model import BayesianRidge
#from sklearn.svm import SVR
```

Create objects of Regression / Regressor models with default hyper-parameters

```
ModelMLR = LinearRegression()
ModelDCR = DecisionTreeRegressor()
ModelRFR = RandomForestRegressor()
```

ModelETR = ExtraTreesRegressor()

#ModelKNN = KNeighborsRegressor(n_neighbors=5)

#ModelBRR = BayesianRidge()

#ModelSVR = SVR()

Evalution matrix for all the algorithms

```
#MM = [ModelMLR, ModelDCR, ModelRFR, ModelETR, ModelKNN, ModelBRR,
ModelSVR]
MM = [ModelMLR, ModelDCR, ModelRFR, ModelETR]
for models in MM:
    # Fit the model with train data
    models.fit(x train, y train)
    # Predict the model with test data
    y_pred = models.predict(x_test)
    # Print the model name
    print('Model Name: ', models)
    # Evaluation metrics for Regression analysis
    from sklearn import metrics
    print('Mean Absolute Error (MAE):',
round(metrics.mean_absolute_error(y_test, y_pred),3))
    print('Mean Squared Error (MSE):',
round(metrics.mean_squared_error(y_test, y_pred),3))
    print('Root Mean Squared Error (RMSE):',
round(np.sqrt(metrics.mean_squared_error(y_test, y_pred)),3))
    print('R2 score:', round(metrics.r2 score(y test, y pred),6))
    print('Root Mean Squared Log Error (RMSLE):',
round(np.log(np.sgrt(metrics.mean squared error(y test, y pred))),3))
    \# Define the function to calculate the MAPE - Mean Absolute Percentage
Error
    def MAPE (y_test, y_pred):
        y_test, y_pred = np.array(y_test), np.array(y_pred)
        return np.mean(np.abs((y_test - y_pred) / y_test)) * 100
    # Evaluation of MAPE
    result = MAPE(y test, y pred)
    print('Mean Absolute Percentage Error (MAPE):', round(result, 2), '%')
```

```
# Calculate Adjusted R squared values
    r squared = round(metrics.r2 score(y test, y pred),6)
    adjusted r squared = round(1 -
 (1-r_squared)*(len(y)-1)/(len(y)-x.shape[1]-1),6)
    print('Adj R Square: ', adjusted_r_squared)
print('-----
 -----')
 #-----
 ______
    new row = {'Model Name' : models,
             'Mean Absolute Error MAE' :
metrics.mean_absolute_error(y_test, y_pred),
             'Adj_R_Square' : adjusted_r_squared,
             'Root Mean Squared Error RMSE' :
np.sqrt(metrics.mean_squared_error(y_test, y_pred)),
             'Mean Absolute Percentage Error MAPE' : result,
             'Mean Squared Error MSE' :
metrics.mean_squared_error(y_test, y_pred),
             'Root Mean Squared Log Error RMSLE':
np.log(np.sqrt(metrics.mean_squared_error(y_test, y_pred))),
             'R2_score' : metrics.r2_score(y_test, y_pred)}
    Results = RGRResults.append(new row, ignore index=True)
 #-----
 _____
Model Name: LinearRegression()
Mean Absolute Error (MAE): 1118.887
Mean Squared Error (MSE): 1751705.406
Root Mean Squared Error (RMSE): 1323.52
R2 score: 0.765354
Root Mean Squared Log Error (RMSLE): 7.188
Mean Absolute Percentage Error (MAPE): 89.78 %
Adj R Square: 0.765309
```

Model Name: DecisionTreeRegressor() Mean Absolute Error (MAE): 330.251 Mean Squared Error (MSE): 359188.121 Root Mean Squared Error (RMSE): 599.323 R2 score: 0.951886 Root Mean Squared Log Error (RMSLE): 6.396 Mean Absolute Percentage Error (MAPE): 9.89 % Adj R Square: 0.951877 ______ -----Model Name: RandomForestRegressor() Mean Absolute Error (MAE): 224.831 Mean Squared Error (MSE): 159739.578 Root Mean Squared Error (RMSE): 399.674 R2 score: 0.978602 Root Mean Squared Log Error (RMSLE): 5.991 Mean Absolute Percentage Error (MAPE): 7.13 % Adj R Square: 0.978598 -----_____ Model Name: ExtraTreesRegressor() Mean Absolute Error (MAE): 293.259 Mean Squared Error (MSE): 194338.139 Root Mean Squared Error (RMSE): 440.838

R2 score: 0.973968

Root Mean Squared Log Error (RMSLE): 6.089 Mean Absolute Percentage Error (MAPE): 12.1 %

Adj R Square: 0.973963
