Задача 1

Разделим все правила исходной $\Pi\Gamma$ на группы с помощью шагов: (старая $\Pi\Gamma$ = широкая $\Pi\Gamma$, новая $\Pi\Gamma$ = узкая $\Pi\Gamma$)

- 1) Те правила, которые имеют вид $A \to xD|x, x \in T$ просто перерепишем как правила новой грамматики
- 2)Правила имеющие вид $A \to xD, x \in T^*$, где x не эпсилон и не терминальный символ (т.е. слово длины большей 1), заменим на несколько правил в регулярной ПГ, эквивалентных данному. Пусть $|\mathbf{x}|=\mathbf{n}$, тогда в новой ПГ напишем п правил $A \to x_1N_1, N_1 \to x_2N_2, \ldots, N_{n-1} \to x_nD$, где A и D те же нетерминальные символы, а N_i новые нетерминальные символы(которых больше нет в исходных правилах) и x_i литералы слова x.

Аналогично преобразуем правило вида $A \to x, x \in T^*$, где $|\mathbf{x}| = \mathbf{n}$ ($\mathbf{n} > 1$) из старой грамматики: заменим такое правило на \mathbf{n} правил $A \to x_1 P_1$, $P_1 \to x_2 P_2, \ldots, P_{n-1} \to x_n$ (здесь все аналогично предыдущему, только P_i - вместо N_i)

- 3)Заменим правила вида (*) $A \to D, A, D \in N$ следующим образом: для каждого такого правила заменим D на то,во что переходит D, если есть правило правило с переходом из D. Удалим правило (*). После повторения этого со всеми правилами вида (*) переходим к следующему шагу, если правил такого вида больше нет. Если еще есть, то заменим во всех правилах (речь идет о наборе правил, созданных на текущий момент для узкой $\Pi\Gamma$), в правых частях которых есть A, этот нетерминал A на D. Удалим правило (*). Если и сейчас остались правила вида (*), просто удалим их. При этом язык не поменяется, т.к. наличие правил вида (*) не даст новых слов(т.е. после их выполнениия слово только из терминальных символов не появится)
- 4) Правила вида (1) $A \to \epsilon, A \in N/\{S\}$ заменим следующим образом: если среди полученных на текущий момент правил найдем правило вида $R \to xA, x \in T, R \in N$ то добавим соответсвующее ему правило вида $R \to x, x \in T, R \in N$. Далее в любом случае удаляем соответсвующее правило вида (1).
- 5) Если есть правило вида $S \to \epsilon$ и в правой части какого-то правила F есть S, то заменяем в F этот символ S на то, во что переходит S по

правилам старой $\Pi\Gamma$ (тут все пары пишем). Полученные таким образом правила преобразуем по пункту 2)

T.к. при преобразовании правил ни одного слова задаваемого старой грамматикой не исключили, и ни одного слова, ею не задаваемого не добавили, то новая $\Pi\Gamma$ эквивалентна старой $\Pi\Gamma$ (доказано по построению).

Задача 3

2014 н 1 Построим автомат, принимающий $\overline{L_1 \cup \overline{L_2^R}} = \overline{L_1} \cap L_2^R$ $L_2({\rm HKA})$

 L_2^R (HKA)

 L_2^R (ДКА, он же ПДКА)

$$\begin{vmatrix} & & & a & & b \\ 1 & ok & 2 & & 3 \\ 2 & Y, Z & 4 & & 3 \\ 3 & Z & 2 & & 3 \\ 4 & X, Y, Z & 4 & & 3 \\ L_2^R \text{ (ДКА, он же ПДКА)} \\ \end{vmatrix}$$

 $\overline{L_2^R}$ (ДКА, он же ПДКА)

 L_1 (HKA)

$$L_1$$
 (ДКА, он же ПДКА)
$$\begin{vmatrix} & & a & b \\ A & S, 1 & B & A \\ B & 2, 3, 6 & C & A \\ C & 4, 5, 7, 8 & C & A \\ L_1$$
 (ДКА, он же ПДКА)

 $L_1 \cup \overline{L_2^R}$ (HKA)

 $L_1 \cup \overline{L_2^R}$ (ДКА, он же ПДКА)

-		a	b
1	S, A, 1	2	3
2	B, 2	4	3
3	A, 3	2	3
4	C, 4	4	3

 $L_1 \cup \overline{L_2^R}$ (ДКА, он же ПДКА)

 $\overline{L_1 \cup \overline{L_2^R}}$ (ПДКА)(это пустой язык)

 $\overline{L_1 \cup \overline{L_2^R}}$ (минимальный ДКА)

Задача 2

2013 н 3

- 1){bbbbb, abbbb, aabbb, aaabbb, aaaabb}
- 2) Т.к. $L' = \{a^nb^n\}$ нерегулярный язык (показано на семинаре из отрицания леммы о накачке) и $L' \subset L_2$, то теми же выкладками для L_2 по отрицанию леммы о накачке получаем, что L_2 нерегулярен.
- 3)Т.к. $L'=\{a^nb^n\}$ нерегулярный язык (показано на семинаре из отрицания леммы о накачке) и $L'\subset L_1$, то теми же выкладками для L_1 по отрицанию леммы о накачке получаем, что L_1 нерегулярен. Было доказано на семинаре, что дополнение регулярного языка регулярно. Предположим, что $\overline{L_1}$ регулярно, тогда $\overline{\overline{L_1}}=L_1$ тоже регулярно, противоречие. Значит, $\overline{L_1}$ нерегулярно.