《高等微积分1》第九次习题课材料

- 1 设 f 处处有连续的 2 阶导函数, x_0 是给定的实数.
 - (1) 计算如下极限

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - hf'(x_0)}{h^2}.$$

(2) 假设 $f''(x_0) \neq 0$, 设函数 $\theta : \mathbf{R} \to (0,1)$ 满足

$$f(x_0 + h) - f(x_0) = h \cdot f'(x_0 + \theta(h) \cdot h), \quad \forall h \in \mathbf{R}.$$

证明: $\lim_{h\to 0} \theta(h) = \frac{1}{2}$.

- 2 下列函数在哪些区间中是下凸函数? 在哪些区间中是上凸函数?
 - (1) $f_1(x) = x^{\alpha}$.
 - (2) $f_2(x) = a^x$.
 - (3) $f_3(x) = \log_a x$.
 - (4) $f_4(x) = \sin x$.
- 3 设函数 $f: \mathbf{R} \to \mathbf{R}$ 处处有二阶导数, 并且对任何 $x \in (a, b)$ 都有 f''(x) > 0. 证明: f 在区间 [a, b] 上的最大值一定在区间端点 a 或 b 处取得.
- 4 设 $x_1, ..., x_n, \alpha_1, ..., \alpha_n \in \mathbf{R}_+, \alpha_1 + ... + \alpha_n = 1$. 定义函数 $g: \mathbf{R} \setminus \{0\} \to \mathbf{R}$ 为:

$$g(t) = (\alpha_1 x_1^t + \dots + \alpha_n x_n^t)^{1/t}.$$

证明:

- (1) $\lim_{t\to 0} g(t) = x_1^{\alpha_1} ... x_n^{\alpha_n}$.
- (2) $\lim_{t \to +\infty} g(t) = \max\{x_1, ..., x_n\}.$

- (3) $\lim_{t \to -\infty} g(t) = \min\{x_1, ..., x_n\}.$
- (4) 设 $a, b \in \mathbf{R}_+$. 证明: $\ln b \le \ln a + \frac{b-a}{a}$.
- (5) 设 $y_1, ..., y_n \in \mathbf{R}_+$. 利用 (4) 的结论, 证明:

$$(\alpha_1 y_1 + ... + \alpha_n y_n) \ln(\alpha_1 y_1 + ... + \alpha_n y_n) \le \alpha_1 y_1 \ln y_1 + ... + \alpha_n y_n \ln y_n.$$

- (6) 利用 (5) 的结论, 证明: 对任何 $t \in \mathbf{R} \setminus \{0\}$, 有 $g'(t) \ge 0$.
- 5 设 $f:[a,b] \to \mathbf{R}$ 在 [a,b] 上有连续的二阶导函数, f' 与 f'' 处处为正, $\xi \in (a,b)$ 且 $f(\xi) = 0$. 定义数列 $\{x_n\}_{n=0}^{\infty}$ 为

$$x_0 = b$$
, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, $\forall n \ge 0$.

- (1) 证明: $\xi < x_1 < b$.
- (2) 证明: $\lim_{n\to\infty} x_n = \xi$.
- (3) $m = \min_{a \le x \le b} f'(x)$. 证明:

$$|x_n - \xi| \le \frac{|f(x_n)|}{m}.$$

- (4) 证明: 对每个正整数 n, 存在 $c \in (\xi, x_n)$, 使得 $x_{n+1} \xi = \frac{1}{2} \cdot \frac{f''(c)}{f'(x_n)} (x_n \xi)^2$.
- (5) 记 $M = \max_{a < x < b} |f''(x)|$. 证明:

$$|x_{n+1} - \xi| \le \frac{M}{2m} \cdot |x_n - \xi|^2.$$

- 6 设 f 是 [a,b] 上的非负连续函数. 证明: 如果 $\int_a^b f(x)dx = 0$, 则 f 在 [a,b] 上恒等于 0.
- 7 设 $f \in C([a,b])$. 证明: 存在 $\xi \in (a,b)$ 使得:

$$\int_{a}^{b} f(x)dx = (b-a)f(\xi).$$

8 (简单版本的第一积分中值定理) 设 $f,g \in C([a,b])$ 且 g 在 [a,b] 上处处非负. 证明: 存 在 $\xi \in [a,b]$ 使得:

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx.$$

9 (简单版本的第二积分中值定理) 设 $f \in C([a,b])$, g 在 [a,b] 上单调且处处可导. 证明: 存在 $\xi \in [a,b]$ 使得:

$$\int_a^b f(x)g(x)dx = g(a)\int_a^\xi f(x)dx + g(b)\int_\xi^b f(x)dx.$$

- 10 (简单版本的 Riemann-Lebesgue 引理) 设 f 在 [a,b] 上可导且导函数连续. 证明:
 - (1) $\lim_{\lambda \to \infty} \int_a^b f(x) \cos \lambda x dx = 0.$
 - (2) $\lim_{\lambda \to \infty} \int_{a}^{b} f(x) \sin \lambda x dx = 0.$