Real Analysis II Homework 1

Due Date: March 20

Solve the following problems except bonus.

Problem 1 Define

$$\log^+(x) = \max\{0, \log(x)\}$$

Show that if $|f|(1 + \log^+ |f|) \in L^1(\mathbb{R}^n)$ then $f^* \in L^1(E)$, where E is a measurable set with $|E| < \infty$.

Problem 2 Prove that if $f \in L^1(\mathbb{R}^d)$, and f is not identically zero, then

$$f^*(x) \ge \frac{C}{\|x\|^d}$$

for some C > 0 and all $||x|| \ge 1$.

Problem 3 Let $A \subseteq [a,b]$ with |A| > 0. Show that for every $n \in \mathbb{N}$, there exists $(x,d) \in A \times \mathbb{R}^{\times}$ such that

$$\{x+d, x+2d, \dots, x+nd\} \subseteq A$$

Bonus Show that

$$\int_{\mathbb{R}} \Gamma(1+ix) dx = \frac{2\pi}{e}$$

where Γ is the Gamma function.