(Loop Blocking) Analyzer Report

Introduction:

This report generated by CNN-EIA. The goal of this report is analysing the loop blocking of the given Machine Learning Model. The analysis was done on these inputs:

```
Memory Architecture:
```

```
mem_levels:
capacity:
                           [4.0, 16.0, 65536.0, 536870912.0]
access_cost:
                           [0.0125, 0.05, 6, 200]
static_cost:
                           [0, 0, 0, 0]
parallel_count:
                           [1, 256, 1, 1]
mac_capacity:
                           0
parallel mode:
                           [0, 1, 0, 0]
parallel cost:
                           [2]
capacity_scale:
                           [2, 2]
access cost scale:
                           [2, 2]
explore_points:
                           [5, 5]
precision:
                           16
array dim:
                           None
utilization_threshold:
                           0.0
replication:
                           True
invalid_underutilized:
                           True
                           [[0, 0, 0], [0, 0, 0], [0, 0, 0], [None, None, None]]
memory_partitions:
}
```

Layer Architecture:

```
fmap_width:
                          1
fmap_height:
                          1
input_fmap_channel:
                         500
output_fmap_channel:
                         250
window width:
                         1
window height:
                          1
                         16
batch size:
stride width:
                          1
stride height:
layer info:
                         [1, 1, 500, 250, 1, 1, 16, 1, 1]
layer_name:
                         mlp_fc3_batch16
}
```

Schedule Architecture:

Glossary:

- Cache Levels: (L0, L1, L2, L3)
 The smallest index the nearest to CPU.
- Loop Names: (MEM, FX, FY, OX, OY, OC, IC, ON)

Analysis Output:

Map Configuration

Loop Blocking (factors):

MEM	L0	L1	L2	L3
FX	1	3	1	1
FY	1	1	1	1
ОХ	1	1	1	1
OY	1	1	1	1
ОС	1	2	1	50
IC	1	1	250	2
ON	1	2	1	8

The factors of each loop for each cache.

Loop Partitioning (units):

MEM	LO	L1	L2	L3
FX	1	1	1	1
FY	1	3	1	1
ОХ	1	1	1	1
OY	1	13	1	1
ОС	1	4	1	1
IC	1	1	1	1
ON	1	1	1	1

Take the processing elements from parallel memories.

Loop Ordering:

MEM	LO	L1	L2	L3
FX	6	0	6	6
FY	6	1	6	6
ОХ	6	6	6	6
OY	6	3	6	6
OC	6	2	6	0
IC	6	6	0	1
ON	6	4	6	2

The order on each cache.

Schedule

The Best format for schedule found is:

Cost

MEM	ENERGY	(PJ)
-----	---------------	------

L0 99950.0 L1 2139800.0 L1-PARA 35648000.0 L2 8472000.0 L3 NOT_CHECKED TOTAL 46359750.0