Mon Jan 30, 2017

Last time

- The electric field: demonstration
- Calculating electric field: Group Activity

This time

- Electric field visualization applet reminder
- Introduction to Gauss' Law: the first of the four Maxwell equations of electromagnetism
- Electric Flux, calculating flux

Electric Fields

www.falstad.com/vector3de

shows electric field vectors, electric field lines, equipotential surfaces, etc. for a large number of objects we have been considering

Electric Flux; Gauss' Law

Gauss' Law is equivalent to Coulomb's law. It will provide us:

- (i) an easier way to calculate the electric field in specific circumstances (especially situations with a high degree of symmetry)
- (ii) a better understanding of the properties of conductors in electrostatic equilibrium (more on this as we go)
- (iii) It is valid for moving charges not limited to electrostatics.

Electric flux, passing through a closed
$$\Phi_E = \iint \vec{E} \cdot d\vec{A} = \frac{Q_{enc}}{\varepsilon_0}$$
 Gaussian surface

Area vector

- Area vector, \vec{A} :
 - magnitude is equal to the surface area
 - direction normal to the plane of the area (unit vector, \vec{n})

Area vector

- Area vector, \overrightarrow{dA} :
 - area vector for infinitesimally small surface segment (small enough to be considered flat)

– on closed surfaces we choose \overrightarrow{dA} to point

outwards

Electric flux passing through a **closed**Gaussian surface

Gauss's law: the net flux passing through a closed surface (Gaussian surface) is proportional to the net charge inside the surface. It does NOT depend on the shape of the surface.

Flux: amount of 'something' (air, water.....) flowing through an area

The air flowing through the loop is maximum when $\theta = 0^{\circ}$

No air flows through the loop when 양물,90% ter 2017

 $v_{\perp} = v \cos\theta$ is the component of the air velocity perpendicular to the loop.

Cross-sectional area

Area measured in a plane \perp to the direction of flow.

Area of shadow cast by | | light rays

Flux through 1 = Flux through 2

Electric flux passing through a **closed**Gaussian surface

$$\oint \vec{E} \cdot \overrightarrow{da} = \frac{Q_{enclosed}}{\epsilon_0}$$

$$F_E = Q_{encl} / e_0$$

Flux: amount of 'something' (air, water.....) flowing through an area

Cross section of a Gaussian sphere of radius *r*. This is a mathematical surface, not a physical surface.

The electric field is everywhere perpendicular to the surface *and* has the same magnitude at every point

If the positive charge is replaced by a negative charge, the flux would be:

$$F_E = -q/e_0$$

PHYS 259, Winter 2017

Electric flux through a surface with area A

$$\Phi_{\rm E} = EA\cos\theta$$

How to evaluate

$$\Phi_E = \iint \vec{E} \cdot d\vec{A}$$

• If the electric field is tangent to the surface:

$$\Phi = 0$$

 If the electric field is normal to the surface and is constant at every point:

$$\Phi = EA$$

TopHat Questions