Partie 2 : Côté émission Codage en bande de base et modulations

- Comment appliquer les infos numériques sur les signaux physiques qui vont se propager sur un canal, en bande de base ou avec modulation ?
- De quoi est composé un émetteur ?

Modélisation de la chaîne de transmission numérique

émetteur en bande de base : 'codeur en ligne'

émetteur pour un canal passe-bande : 'modulateur'

 $\underline{\text{Ex 1}}$: Pour chaque bit, émission d'un signal de durée T_{b} parmi 2 possibles

Ex 2 : Pour chaque groupe de bits, émission d'un signal de durée 2T_b parmi 4 possibles

Transmission avec M états versus transmission binaire

Signal numérique émis sur le canal :

A chaque groupe de m bits, de durée $T=mT_b$, on émet un signal pris dans un alphabet de cardinal M (avec $M=2^m$)

On a M'symboles' ou M'états' possibles à la sortie de l'émetteur, au lieu de 2 seulement

débit binaire : $D_b=1/T_b$ débit symboles (ou rapidité de modulation) : $D_S=1/T$ (Bauds)

Quelques exemples

Débit binaire	Débit symboles	Nombre d'états M
10 Mbit/s		2
60 Mbit/s	20 Mbauds	
	100 Mbauds	4

Exemples de construction de codes PAM

Forme temporelle des codes en ligne binaires usuels

Cas bande de base : codage en ligne de type PAM

Codage PAM: 'pulse amplitude modulation'

Principe du codage:

- g(t), fonction élémentaire de référence, de support $\left[-T/2, T/2\right]$ avec $T = mT_b$
- 1) 'mapping' = correspondance entre un groupe de m bits et une valeur a_k a_k appartient à un alphabet de M valeurs (M=2^m)
- 2) Pour chaque groupe de m bits, émission pendant la durée T de : $\,a_k g(t-kT)\,$

Caractéristiques des différents codes

code	Allure de g(t)	Définition des a _k	m _a	$\sigma_a^{\ 2}$	Caractéristiques de G(f)
NRZ unipolaire	$\begin{array}{c c} & \uparrow \lor \\ \hline & -T_b/2 & T_b/2 \end{array} \to t$	$\begin{cases} a_k = V & \text{si bit}=1 \\ a_k = 0 & \text{si bit}=0 \end{cases}$			
NRZ polaire	$\begin{array}{c c} & \uparrow^{V} \\ \hline & -T_{b}/2 & T_{b}/2 \end{array} \rightarrow t$	$ \int_{a_k} a_k = V \text{si bit} = 1 $ $ a_k = -V \text{si bit} = 0 $			
RZ	$T_b/2$ $T_b/2$	$\begin{cases} a_k = V & \text{si bit}=1 \\ a_k = 0 & \text{si bit}=0 \end{cases}$			
Manchester	$T_b/2$ $T_b/2$	$ \begin{vmatrix} a_k = V & \text{si bit} = 1 \\ a_k = -V & \text{si bit} = 0 \end{vmatrix} $			G(f) = pour f=0

Exemples de codes multi-niveaux : accès RNIS

Codage 2B1Q

Suite:

Choix de l'impulsion g(t) selon les propriétés du système de transmission : nécessité de connaître le spectre qui sera occupé par x(t)

Spectre occupé par les différents codes en ligne

Formule de Bennett (cas des symboles indépendants)

densité spectrale de puissance du signal x(t) :

$$S_x(f) = S_a(f) \times \frac{|G(f)|^2}{T}$$

$$\text{avec } S_a(f) = \sigma_a^2 + \frac{m_a^2}{T} \sum_{n=-\infty}^{+\infty} \delta\left(f - \frac{n}{T}\right)$$

définitions :
$$A = \left\{a_k\right\}_{k \in \mathbb{Z}}$$

$$m_a = E(A)$$

$$\sigma_a^2 = E(A^2) - \left(E(A)\right)^2$$

$$G(f) = TF(g(t))$$

Interprétation de la formule : allure du spectre

$$S_{x}(f) = \sigma_{a}^{2} \times \frac{\left|G(f)\right|^{2}}{T} + \frac{m_{a}^{2}}{T^{2}} \sum_{n=-\infty}^{+\infty} \delta\left(f - \frac{n}{T}\right) \times \left|G(f)\right|^{2}$$

- Forme de la Transformée de Fourier de l'impulsion g(t)
- Présence de raies aux fréquences en n/T à condition d'avoir m_a non nulle et G(f) non nulle à ces fréquences

Caractéristiques des différents codes

code	Allure de g(t)	Définition des a _k	m _a	$\sigma_a^{\ 2}$	Caractéristiques de G(f)
NRZ unipolaire	$\begin{array}{c c} & \uparrow \lor \\ \hline & -T_b/2 & T_b/2 \end{array} \to t$	$\begin{cases} a_k = V & \text{si bit}=1 \\ a_k = 0 & \text{si bit}=0 \end{cases}$	V/2	V ² /4	Sinus cardinal s'annulant en D _b , 2 D _b , 3 D _b
NRZ polaire	$\begin{array}{c c} & \uparrow^{V} \\ \hline & -T_{b}/2 & T_{b}/2 \end{array} \rightarrow t$	$ \int a_k = V \text{si bit} = 1 $ $ a_k = -V \text{si bit} = 0 $	0	V ²	Sinus cardinal s'annulant en D _b , 2 D _b , 3 D _b
RZ	$ \begin{array}{c c} & \uparrow \lor \\ \hline & -T_b/2 & T_b/2 \\ \hline & 1 & \lor \end{array} $	$\begin{cases} a_k = V & \text{si bit}=1 \\ a_k = 0 & \text{si bit}=0 \end{cases}$	V/2	V ² /4	Sinus cardinal s'annulant en 2D _b , 4 D _b , 6 D _b
Manchester	$-T_b/2$ $T_b/2$	$\begin{cases} a_k = V & \text{si bit}=1 \\ a_k = -V & \text{si bit}=0 \end{cases}$	0	V ²	G(f) = 0 $pour f=0$

Caractéristiques des différents codes

code	Allure de g(t)	Définition des a _k	Caractéristiques de G(f)	Raies spectrale s pures
NRZ unipolaire	$\begin{array}{c c} & 1 \\ \hline & -T_b/2 \\ & & T_b/2 \end{array} \rightarrow t$	$\begin{bmatrix} a_k = V & \text{si bit}=1 \\ a_k = 0 & \text{si bit}=0 \end{bmatrix}$	Sinus cardinal s'annulant en D _b , 2 D _b , 3 D _b	En f=O
NRZ polaire	$\begin{array}{c c} \hline & T_b/2 & T_b/2 \end{array} \rightarrow t$	$\begin{bmatrix} a_k = V & \text{si bit}=1 \\ a_k = -V & \text{si bit}=0 \end{bmatrix}$	Sinus cardinal s'annulant en D _b , 2 D _b , 3 D _b	aucune
RZ	$ \begin{array}{c c} \hline -T_b/2 & T_b/2 \\ \hline 1 & V \end{array} $	$\begin{bmatrix} a_k = V & \text{si bit}=1 \\ a_k = 0 & \text{si bit}=0 \end{bmatrix}$	Sinus cardinal s'annulant en 2D _b , 4 D _b , 6 D _b	En f=D _b , 3D _b
Manchester	$-T_b/2$ $T_b/2$	$\begin{bmatrix} a_k = V & \text{si bit}=1 \\ a_k = -V & \text{si bit}=0 \end{bmatrix}$	G(f) = 0 $pour f=0$	aucune

DSP du code NRZ polaire

Fréquence*T

© simplicité de mise en œuvre

DSP du code RZ

- © récupération d'horloge
- ⊗ spectre + étalé qu'avec NRZ

DSP du code de Manchester

© compatibilité avec supports de transmission qui coupent le continu

Cas avec modulation: modulation d'une porteuse sinusoïdale

Signal émis pour $t \in [kT,(k+1)T[$:

Modulation d'amplitude (ASK, amplitude shift keying)

$$p(t) = A_k \cos(2\pi f_o t + \varphi)$$

A_k parmi M valeurs (représentant m bits)

Modulation de phase (PSK)

$$p(t) = A\cos(2\pi f_o t + \varphi + \varphi_k)$$

 φ_k parmi M valeurs (représentant m bits)

Modulation de fréquence (FSK)

$$p(t) = A\cos(2\pi(f_o + f_k)t + \varphi)$$

f_k parmi M valeurs (représentant m bits)

Réalisation de la modulation d'amplitude

=> Implémentation facile

Modulations numériques QAM

modulations hybrides d'amplitude et de phase

Signal émis pour $t \in [kT,(k+1)T[$: 1 groupe de bits représenté par un couple (A_k, φ_k) parmi M

$$p(t) = A_k \cos(2\pi f_o t + \varphi_k)$$

$$= A_k \cos(\varphi_k) \cos(2\pi f_o t) - A_k \sin(\varphi_k) \sin(2\pi f_o t)$$

$$= a_k \cos(2\pi f_o t) + b_k \cos(2\pi f_o t + \frac{\pi}{2})$$

= modulation d'amplitude de deux porteuses en quadrature (QAM, quadrature amplitude modulation)

Ecriture sous forme complexe :

$$p(t) = \text{Re}((a_k + jb_k) \exp(j2\pi f_0 t))$$

= \text{Re}((A_k \exp(j\varphi_k)) \exp(j2\pi f_0 t))

=> 1 groupe de bits représenté par un complexe $c_k = a_k + jb_k = A_k \exp(j\phi_k)$

Représentation des modulations numériques QAM

Représentation du complexe $c_k = a_k + jb_k = A_k \exp(j\phi_k)$

= diagramme de constellation

Avec écriture complexe : modulation = simple multiplication par $exp(j2\pi f_0t)$!

$$ex = QAM16$$

Diagrammes de constellations de QPSK (=QAM4) et PSK8

Transmission

En regardant les signaux émis sur les voies I et Q du modulateur QAM16 basé sur le diagramme de constellation suivant, trouver la valeur des deux octets transmis :

Implémentation du modulateur QAM

'Mapping' = association groupe de m bits $\langle ---- \rangle$ complexe c_{kl} (M complexes possibles)

Rmq: signaux I(t) et Q(t) sont des signaux en bande de base de type NRZ

- Implémentation du modulateur simple : une source CW et un déphaseur de $\pi/2$
- Modulateur IQ = brique de base de la plupart des émetteurs radio
- Pour démodulation : principe inverse (avec filtres passe-bas)

Nécessité de filtrer

Modélisation du canal idéal à bande limitée

Facteur de transmission du canal dépend de la fréquence : le canal se comporte comme un filtre de réponse fréquentielle Hc(f)=t(f).

Bande de base

Transmission avec modulation

Hors de B, Hc(f) est beaucoup plus faible que dans la bande B (bande du canal)

<u>Définition courante</u>: $B = f_c$ où fc est la fréquence de coupure à 3 dB

$$|H_{c}(f_{c})| = H_{c}(f)|_{max}$$
- 3 dB

<u>Rmq</u>: pour la suite des calculs, on prend: $|H_c(f)| = c^{ste} = 1$ dans B

Constitution de l'émetteur

Rappel, en bande de base :
$$x(t) = \sum_{k} a_{k} g(t - kT)$$

Alors, signal émis :
$$s_e(t) = x(t) * h_e(t) = \sum_k a_k (g * h_e)(t - kT) = \sum_k a_k f_e(t - kT)$$

avec $f_e(t) = (g * h_e)(t)$, forme de l'impulsion émise

Bilan 2

- Comprendre la spécificité d'un signal numérique (discret dans le temps, valeurs représentées par des nombres)
- Connaître les principes de codage en ligne et les modulations numériques QAM
 - savoir faire le lien débit binaire, débit symboles, nombre d'états
 - savoir interpréter un diagramme de constellation
- Maîtriser l'équivalence des représentations d'un signal dans les domaines temps ou fréquence
 - savoir utiliser la transformée de Fourier