Motivation

Gegeben ist ein zeitabhängiges System $t\mapsto x(t)$. Möchten verstehen, wie sich x(t) über die Zeit entwickelt. Zu festen Zeitpunkten $t_0, \cdots t_n$ lässt sich $x(t_i)$ messen und damit $x'(t_i)\cong \frac{x(x(t_i)-x(t_{i-1}))}{t_i-t_{i-1}}$ näherungsweise bestimmen. Im allgemeinen ist x'(t)=f(x(t),t).

Beispiel

(1) $x'(t) = \mu x(t)$. Dann ist $x(t) = ce^{\mu t}$ für alle $c \in \mathbb{R}$ eine Lösung. Ist $x(0) = x_0$, so ist $x(t) = x_0 e^{\mu t}$ eine Lösung von (1) mit $x(0) = x_0$.

Ein System von Differentialgleichungen 1-ter Ordnung ist ein System von Gleichungen

$$x'_1(t) = f_1(t, x_1, \dots, x_n)$$

$$x'_2(t) = f_2(t, x_1, \dots, x_n)$$

$$\vdots$$

$$x'_n(t) = f_n(t, x_1, \dots, x_n)$$

Werden zusätzlich die Anfanfsbedingungen $x_1(t_0)=x_0^1,\ldots,x_n(t_0)=x_0^n$ vorgegebenen, so spricht man von einem Anfangswertproblem. Eine Lösung ist eine Funktion $x:I\subset\mathbb{R}\to\mathbb{R}^n$, deren Koordinatenfunktionen diese Bedingungen erfüllt.

Ein Anfangswertproblem *n*-ter Ordnung

$$x^{(n)}(t) = f(t, x^{(n)}, x^{(n-1)}, \cdots, x', x)$$

mit $x(t_0) = x_0$; $x'(t_0) = x_1$; \cdots ; $x^{n-1}(t_0) = x_{n-1}$ ist äquivalent zu dem System von Differentialgleichungen 1-ter Ordnung

$$x'_1(t) = x_2(t)$$

$$x'_2(t) = x_3(t)$$

$$\vdots$$

$$x'_n(t) = f(t, x_1, \dots, x_n)$$

mit den Anfangswertbedingungen

$$x_1(t_0) = x_0, x_2(t_0) = x_1, \cdots, x_{n-1}(t_0) = x_{n-1}.$$

Harmonischer Oszillator

$$x''(t) = -x(t).$$

Harmonischer Oszillator

$$\frac{d}{dt}\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

Lösung Harmonischer Oszillator

Anfangswert
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1(t_0) \\ x_2(t_0) \end{pmatrix}$$

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = e^{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^t} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Für eine vektorwertige Funktion $f:I\to\mathbb{R}^n; f(t):=\begin{pmatrix} f(t)\\ \vdots\\ f_n(t) \end{pmatrix}$ definieren wir das Integral komponentenweise durch

$$\int_a^b f(t)dt := \begin{pmatrix} \int_a^b f_1(t)dt \\ \vdots \\ \int_a^b f_n(t)dt \end{pmatrix}.$$

System von Differentialgleichungen

Ein Weg $\varphi: I \subset \mathbb{R} \to \mathbb{R}^n$ ist genau dann Lösung des AWP $\varphi'(t) = F(t, \varphi)$ mit $\varphi(t_0) = x_0$, wenn

$$\varphi(t) = x_0 + \int_{t_0}^t F(t,\varphi)dt$$

gilt.

Beweis

Folgt direkt durch komponentenweise Anwendung des Hauptsatzes der Integral- und Differentialrechnung.

Volterra-Lotka System

https://de.wikipedia.org/wiki/Lotka-Volterra-Gleichungen

Ein Vektorfeld ist eine Abbildung

$$v:\Omega\subset\mathbb{R}^n\to\mathbb{R}^n$$
,

die jedem Punkt $x \in \Omega$ einen Vektor $v(x) \in \mathbb{R}^n$ zuordnet.

Figure: Quelle:

 $Wikipedia: https://en.wikipedia.org/wiki/Vector_field\#/media/File: VectorField.swindows and the property of the property of$

Angewandte Mathematik

Dynamische Systeme

System von Differentialgleichungen

Ein Weg $\varphi: I \subset \mathbb{R} \to \mathbb{R}^n$ heißt Integralkurve in dem Vektorfeld $v: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$, falls

$$\varphi'(t) = v(\varphi(t))$$

gilt für alle $t \in I$.

Figure: Quelle:

Ein dynamisches System ist eine Abbildung $F: U \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, die jedem Punkt $(t,x) \in U$ einen Vektor $F(t,x) \in \mathbb{R}^n$ zuordnet. Eine Integralkurve oder Lösung für F ist eine Weg $\varphi: I \to \mathbb{R}^n$ mit

$$\varphi'(t) = F(t, \varphi(t))$$

für alles $t \in I$.

Angewandte Mathematik

Dynamische Systeme

Lösung Harmonischer Oszillator

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Harmonischer Oszillator

$$e^{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} t} = \sum_{k=0}^{\infty} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^k \frac{t^k}{k!}$$

Harmonischer Oszillator

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{k} = \begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; k = 0 \mod 4 \\ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}; k = 1 \mod 4 \\ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}; k = 2 \mod 4 \\ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; k = 3 \mod 4 \end{cases}$$

Harmonischer Oszillator

$$\sum_{k=0}^{n} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{k} \frac{t^{k}}{k!} = \begin{pmatrix} 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \frac{t^{6}}{6!} \cdots & -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \frac{t^{7}}{7!} \cdots \\ 1 & 0 \\ t - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} - \frac{t^{7}}{7!} \cdots & 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \frac{t^{6}}{6!} \cdots \end{pmatrix}$$
$$= \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$$

Link: Trigonometrische Taylorreihen

Harmonischer Oszillator Eigenwerte

$$\det(\begin{pmatrix}0 & -1\\1 & 0\end{pmatrix} - \lambda E) = \det\begin{pmatrix}-\lambda & -1\\1 & -\lambda\end{pmatrix} = \lambda^2 + 1 \Rightarrow \lambda_{1,2} = \pm i$$

Komplexer Eigenwert.

Angewandte Mathematik

Dynamische Systeme

Gedämpftes Pendel

$$heta''(t) = -L heta - \underbrace{\mu heta'}_{\mathsf{drag}}. \ L heta = mg\sin(heta)$$

System gedämpftes Pendel

$$\frac{\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} x_2(t) \\ -\mu x_2(t) - \frac{mg}{L} \sin(x_1(t)) \end{pmatrix} \text{ (nicht linear!)}$$

Euler Verfahren

$$\dot{y} = f(t, y), \quad y(t_0) = y_0$$

$$t_k = t_0 + kh \tag{1}$$

$$y_{k+1} = y_k + hf(t_k, y_k)$$
 (2)

Runge Kuta Verfahren

$$\dot{y}=f(t,y),\quad y(t_0)=y_0$$

$$y_{n+1} = y_n + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4),$$
 (3)

$$t_{n+1} = t_n + h \tag{4}$$

$$k_1 = f(t_n, y_n), (5)$$

$$k_2 = f\left(t_n + \frac{h}{2}, y_n + h\frac{k_1}{2}\right),$$
 (6)

$$k_3 = f\left(t_n + \frac{h}{2}, y_n + h\frac{k_2}{2}\right),$$
 (7)

$$k_4 = f(t_n + h, y_n + hk_3).$$
 (8)

