Esercitazioni di Analisi 2

EDO LINEARI DEL SECONDO ORDINE A COEFFICIENTI COSTANTI

Equazioni omogenee

1. Determina tutte le soluzioni delle seguenti equazioni differenziali omogenee (nelle soluzioni C_1 e C_2 sono costanti reali arbitrarie):

(c)
$$y'' + 4y = 0$$
 $[y = C_1 \cos 2x + C_2 \sin 2x]$

(d)
$$y'' + 5y' - 6y = 0$$
 [$y = C_1 e^{-6x} + C_2 e^x$]

(e)
$$4y'' + 4y' + y = 0$$
 $\left[y = e^{-\frac{1}{2}x} \left(C_1 + C_2 x \right) \right]$

(f)
$$*y'' + 7y' + 10y = 0$$
 [$y = C_1e^{-2x} + C_2e^{-5x}$]

(g)
$$y'' + 2\sqrt{7}y' + 7y = 0$$
 $\left[y = e^{\sqrt{7}x} \left(C_1 + C_2 x \right) \right]$

(h)
$$y'' + y' + y = 0$$

$$\left[y = e^{-\frac{1}{2}x} \left(C_1 \cos \frac{\sqrt{3}}{2} x + C_2 \sin \frac{\sqrt{3}}{2} x \right) \right]$$

(i)
$$3y'' - 2\sqrt{6}y' + 2y = 0$$
 $\left[y = e^{\sqrt{\frac{2}{3}}x} (C_1 + C_2x) \right]$

(j)
$$3y'' + 5y' - 2y = 0$$
 $\left[y = C_1 e^{-2x} + C_2 e^{\frac{1}{3}x} \right]$

- 2. *Scrivi un'equazione differenziale lineare omogenea del II ordine che abbia tra le proprie soluzioni ϕ_1 e ϕ_2 definite da $\phi_1(t) = e^{3t}$ e $\phi_2(t) = 3e^{-2t} + 2e^{3t}$ [y'' - y' - 6y = 0]
- Determina tutte le soluzioni dell'equazione y''-2y'-3y=0 tali che $\lim_{x \to +\infty} y(x)=0$ $[y=ke^{-x}; k \in \mathbb{R}]$
- *Scrivi un'equazione lineare omogenea a coefficienti costanti di ordine 2 che abbia $\phi_1(t) = e^{2t}$ e $\phi_2(t) = te^{2t}$ tra le proprie soluzioni. [y'' - 4y' + 4y = 0]

1

5. Risolvi i seguenti problemi di Cauchy:

(a)
$$\begin{cases} y'' + y' - 6y = 0 \\ y(1) = 0 \\ y'(1) = -1 \end{cases} \qquad \left[y = \frac{1}{5}e^{-3x+3} - \frac{1}{5}e^{2x-2} \right]$$

(b)
$$\begin{cases} y'' - 2y' + \frac{5}{4}y = 0 \\ y(0) = 0 \\ y'(0) = -1 \end{cases} \quad \left[y = -2e^{-x} \sin \frac{x}{2} \right]$$

(c)
$$\begin{cases} 100y'' - 20y' + y = 0 \\ y(-1) = 0 \\ y'(-1) = -1 \end{cases}$$

$$\left[y = -(x+1)e^{\frac{x+1}{10}} \right]$$

$$\left[y = -\left(x+1\right)e^{\frac{x+1}{10}}\right]$$

- **6**. Data l'equazione $y''\left(t\right)+2\alpha y'\left(t\right)+4y\left(t\right)=0$ determina per quali valori di α :
 - (a) tutte le soluzioni sono infinitesime per $t \longrightarrow +\infty$ [$\alpha > 0$]
 - (b) tutte le soluzioni divergono a $+\infty$ per $t \longrightarrow +\infty$ [$\alpha \le -2$] (c) tutte le soluzioni sono periodiche [$\alpha = 0$]

 - (d) tutte le soluzioni non ammettono limite per $t \longrightarrow +\infty$ [$-2 < \alpha < 0$]

nota: gli esercizi contrassegnati da * sono tratti da temi d'esame.