

Programming Massively Parallel Hardware – Optimising Tridag

Group Project Department of Computer Science

Written by:

Morten Espensen & Niklas Høj & Mathias Svennson dzr
440 - 19/06/1991 & nwv762 - 24/07/1991 & tpx783/- din/mor/XX October 31, 2014

Supervised by:

Cosmin E. Oancea

Contents

1	Transformations			
	1.1	Tridag Rewrite	2	
	1.2	Naive CUDA implementation	2	
	1.3	Propagating outer loop into rollback	2	
	1.4	Optimising coalesced memory access	2	
2	Will it validate?		3	
3	3 Results			

Chapter 1

Transformations

Our initial approach to implementing a CUDA version in this project was just to get started with converting the different parts of the program into a CUDA ready format, thus simplifying parts and transforming parts which were not easily implemented in CUDA kernels.

- 1.1 Tridag Rewrite
- 1.2 Naive CUDA implementation
- 1.3 Propagating outer loop into rollback
- 1.4 Optimising coalesced memory access

Chapter 2

Will it validate?

Yes.

Chapter 3

Results

Data set size / Implementation	Small	Medium	Large
Sequential with flatten arrays	$2162560 \mu s$	$5652265 \mu s$	$195845401 \mu s$
OpenMP	$183016 \mu s$	$241972 \mu s$	$9680948 \mu s$
Naive CUDA	$3956322 \mu s$	$3639421 \mu s$	$34980508 \mu s$
Optimised CUDA	$183016 \mu s$	$241972 \mu s$	$9680948 \mu s$