Lecture 12

Injections and Surjections

Friday, Feb. 14

In This Lecture...

- Understanding injections, surjections, and bijections! (Who comes up with these words, anyway?)
- Proving injectivity, surjectivity, and bijectivity!

Definition 12.0: Injectivity

A function $f: X \to Y$ is **injective** if $\forall a, b \in X, (f(a) = f(b) \Rightarrow a = b)$ That is, every $y \in Y$ has at most one $x \in X$ with y = f(x)

Determine whether each function is an injection.

(a) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$

Solution

This function is not an injection.

Proof: Let a=2 and b=-2. We have $f(a)=(2)^2=4$ and $f(b)=(-2)^2=4$, so f(a)=f(b), even though $a\neq b$. Thus f is not injective.

(b) $g: \mathbb{N} \to \mathbb{N}$ defined by $g(x) = x^2$

Solution

This function is an injection.

Proof: Let $a, b \in \mathbb{N}$ with g(a) = g(b). By definition of g, we have $a^2 = b^2$. Rewriting the equation, $a^2 - b^2 = 0$, which can be factored as (a + b)(a - b) = 0. Thus a + b = 0 or a - b = 0. If a + b = 0, we must have a = 0 and b = 0 since a and b are natural numbers (and hence non-negative). If a - b = 0, then a = b. In either case, we have a = b, proving that g is injective.

Proof Strategy: Proving Injectivity

To prove that a function $f: X \to Y$ is injective,

- 1. Let $a, b \in X$ be arbitrary elements with f(a) = f(b).
- 2. Show that a = b.

Definition 12.1: Surjectivity

A function $f: X \to Y$ is **surjective** if $\forall y \in Y, \exists x \in X, y = f(x)$ That is, every $y \in Y$ has at least one $x \in X$ with y = f(x).

Determine whether each function is a surjection.

(a) $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x

Solution

2

This function is a surjection.

Proof: Let $y \in \mathbb{R}$ be arbitrary. Define $x = \frac{y}{2}$. Then $f(x) = 2\left(\frac{y}{2}\right) = y$, demonstrating that f is surjective.

(b) $g: \mathbb{N} \to \mathbb{N}$ defined by g(x) = 2x

Solution

This function is not a surjection.

Proof: Let y = 1. Assume for the sake of contradiction that there is an $x \in \mathbb{N}$ with g(x) = y. Then 2x = 1, so $x = \frac{1}{2}$, contradicting our assumption that x is a natural number. Thus $y \neq f(x)$ for all $x \in \mathbb{N}$, showing that g is not surjective.

Proof Strategy: Proving Surjectivity

To prove that a function $f: X \to Y$ is surjective,

- 1. Let $y \in Y$ be arbitrary.
- 2. Find an $x \in X$ (based on y) such that f(x) = y.

Definition 12.2: Bijectivity

A function $f: X \to Y$ is **bijective** if f is both injective and surjective That is, every $y \in Y$ has exactly one $x \in X$ with y = f(x).

Let $f : \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \to \mathbb{N}$ be the function where f(A) is the smallest element of A. Is f injective? Surjective? Bijective?

Solution

3

f is not injective, because $f(\{0\}) = f(\{0,1\}) = 0$.

f is surjective, because for any $n \in \mathbb{N}$, we have $f(\{n\}) = n$.

f is not bijective, because it is not injective.