Fields

A field is a non-zero commutative ring Fin which every non-zero element $a \in F$ has an inverse $a^{-1} \in F$ defined

$$a \cdot a^{-1} = a^{-1} \cdot a = 1$$

- All fields are Integral Domains.
- Every finite integral domain is a field.

Vector Spaces

A vector space V over a Field F is any set where for any vector $\mathbf{v} \in \mathbf{V}$ and scalar $\lambda \in F$ we have

- An abelian group V = (V, +) i.e. vector addition
- A mapping $F \times V \rightarrow : (\lambda, \mathbf{v} \mapsto \lambda \mathbf{v})$ i.e. scalar multiplication or the action of F on

and which also obeys the following axioms: $u, v, w \in V$ and $a, b \in F$

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

$$\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$$

$$\mathbf{v} + 0 = \mathbf{v}$$

$$\mathbf{v} + (-\mathbf{v}) = 0$$

$$a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}$$

$$(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$$

$$a(b\mathbf{v}) = (ab)\mathbf{v}$$

$$1v = v$$

Vector Subspaces

A subset U of a vector space V is called a vector subspace if U contains the zero vector and whenever $\mathbf{u}, \mathbf{v} \in \mathbf{U}$ and $\lambda \in F$ we have

- $\mathbf{u} + \mathbf{v} \in \mathbf{U}$
- $\lambda \mathbf{u} \in \mathbf{U}$

We write $U \subseteq V$.

For infinite and finite $U_1, U_2 \subseteq V$

- $U_1 \cap U_2$ is a subspace
- $U_1 + U_2$ is a subspace
- $U_1 \cup U_2$ is not a subspace

A proper vector subspace of a finite dimensional vector space has itself a smaller dimension.

- $-U \subseteq V \implies \dim U \le \dim V$
- $\dim U = \dim V \implies V = U$

QUICK CHECK: For $\mathbf{u}, \mathbf{v} \in$ $\lambda_1 \lambda_2 \in F$ we have $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} \in \mathbf{U}$

Generating Vector Subspaces

Let T be a subset of a vector space V over a field F. Then amongst all vector subspaces of V that include T there is a smallest vector subspace

$$\langle T \rangle = \langle T \rangle_F \subseteq V.$$

It can be described as the set of all vectors $\alpha_1 \vec{v}_1 + \cdots + \alpha_r \vec{v}_r$ with $\alpha_1, \ldots, \alpha_r \in F$ and $\vec{v}_1, \ldots, \vec{v}_r \in T$, together with the zero vector in the case $T = \emptyset$.

A subset of a vector space is called a generating or spanning set of our vector space if its span is all of the vector space.

Power Sets

If X is a set, then the set of all subsets

 $\mathcal{P}(X) = \{U : U \subseteq X\} \text{ of } X \text{ is the so-called }$ power set of X. We can refer to a subset of $\mathcal{P}(X)$ is a system of subsets of X. Given such a system $\mathcal{U} \subseteq \mathcal{P}(X)$ we can create two new subsets of X, the union and the intersection of the sets of our system \mathcal{U} , as

$$\bigcup_{U \in \mathcal{U}} U = \{ x \in X : \text{s.t. } \exists U \in \mathcal{U} \text{ with } x \in U \}$$

$$\bigcap_{U \in \mathcal{U}} U = \{ x \in X : x \in U \text{ for all } U \in \mathcal{U} \}$$

In particular the intersection of the empty system of subsets of X is X, and the union of the empty system of subsets of X is the empty set.

Liinear Independence

A subset L of a vector space V is called linearly independent if for all pairwise different vectors $\vec{v}_1, \dots, \vec{v}_r \in L$ and arbitrary scalars $\alpha_1, \ldots, \alpha_r \in F$,

$$\alpha_1 \vec{v}_1 + \dots + \alpha_r \vec{v}_r = \overrightarrow{0} \Longrightarrow \alpha_1 = \dots = \alpha_r = 0$$

A basis of a vector space V is a linearly independent generating set in V.

A basis always exists for finite vector spaces. The following are equivalent for a subset E of a vector space V

- (1) Our subset E is a basis, i.e. a linearly independent generating set;
- (2) Our subset E is minimal among all generating sets, meaning that $E \setminus \{\vec{v}\}\$ does not generate V, for any $\vec{v} \in E$;
- (3) Our subset E is maximal among all linearly independent subsets, meaning that $E \cup \{\vec{v}\}\$ is not linearly independent for any
- (4) If $L \subset V$ is a linearly independent subset and E is minimal amongst all generating sets of our vector space with the property that $L \subseteq E$, then E is a basis. (5) If $E \subseteq V$ is a generating set and if L is maximal amongst all linearly independent subsets of vector space with the property $L \subseteq E$, then L is a basis.

Dimension

The dimension of a vector space V is the cardinality (size) of a basis of V.

e.g. Free Vector Space

Let X be a set and F a field. The set $\operatorname{Maps}(X, F)$ of all mappings $f: X \to F$ is called the free vecotr space with the operations of pointwise addition and multiplication by a scalar.

The subset of all mappings which send almost all elements of X to zero is a vector subspace

Fundamental Estimate

No linearly independent subset of a given vector space has more elements than a generating set. Thus if V is a vector space, $L \subset V$ a linearly independent subset and $E \subseteq V$ a generating set, then:

$$|L| \leqslant |E|$$

Steinitz Exchange Lemma

Let V be a vector space, $L \subset V$ a finite Linear Independence—linearly independent subset and $E \subseteq V$ a generating set. Then there is an injection $\phi: L \hookrightarrow E$ such that $(E \setminus \phi(L)) \cup L$ is also a generating set for V.

In other words, we can swap some elements $U = \{x \in X : \text{s.t. } \exists U \in \mathcal{U} \text{ with } x \in U\}$ of a generating set by the elements of our linearly independent set, and still keep a generating set.

Dimension Theorem

Let V be a vector space containing vector subspaces $U, W \subseteq V$. Then

 $\dim(U+W)+\dim(U\cap W)=\dim U+\dim W.$

Linear Homomorphisms Let V and W be vector spaces over the same field. A function $f: V \to W$ is said to be a linear map if for all $x, y \in V$ and some scalar $c \in K$, the operations of vector addition and scalar multiplication are preserved.

$$f(x+y) = f(x) + f(y)$$
$$f(cx) = cf(u)$$

- A linear map is injective if and only if its kernel is zero.
- All linear maps have that $f(\vec{0}) = \vec{0}$.
- All compositions of linear maps are also linear.
- Linear mappings are completely determined by the values they take on the basis

Endomorphisms are Homomorphisms from a vector space to itself.

isomorphisms are bijective homomorphisms.

Automorphisms are isomorphisms from a vector space to itself.

Kernal and Image

The pre-image of the zero vector of a linear mapping $f: V \to W$ is denoted by

$$\ker(f) := f^{-1}(0) = \{v \in V : f(v) = 0\}$$

and is called the kernel of the linear mapping f.

The image of a linear mapping $f: V \to W$ is the subset $im(f) = f(V) \subseteq W$. The kernel and image are vector subspaces of

Fixed Points

A point that is sent to itself by a mapping is called a fixed point of the mapping. Given a mapping $f: X \to X$, we denote the set of fixed points by

$$X^f = \{x \in X : f(x) = x\}.$$

Complemetary Subspaces

Two vector subspaces V_1, V_2 of a vector space V are called complementary if $V_1 \times$ $V_2 \stackrel{\sim}{\to} V$ (addition) defines a Bijection.

Internal Direct Sum

Given Complementary Subspaces $U, U' \subseteq$ V and the Linear Mappings $f: U \to V$, $f': U' \to V$ then we can form a new linear mapping $f: U \oplus U' \to V$ by the recipe

$$f(u, u') = f(u) + f'(u')$$

we then produce an vector space isomorphism $U \oplus U' \stackrel{\sim}{\rightarrow} V$.

We abuse notation a little by writing $V = U \oplus U'$ and say that the vector space V is the internal direct sum of the vector subspaces U and U'.

Direct Sum

Let V be a Vector Space with Vector Subspaces V_1, \ldots, V_n .

The vector subspace of V they generate is called the sum of our vector subspaces and denoted by $V_1 + \cdots + V_n$.

$$\langle V_1 \cup \dots \cup V_n \rangle = V_1 + \dots + V_n$$

If the natural Homomorphism given by addition $V_1 + \cdots + V_n \to V$ is an injection then we say the sum of the vector subspaces V_i is direct.

We write their sum also as $V_1 \oplus \cdots \oplus V_n$.

Linear Mapping and Basis

Let V, W be vector spaces over F and let $B \subset V$ be a basis. Then restriction of a mapping gives a bijection

 $operatornameHom_F(V, W) \stackrel{\sim}{\to} \operatorname{Maps}(B, W)$ $f \mapsto f|_B.$

In-Bi-Surjection

 $f:A\to B$

- is an injection (or one-to-one) if $f(a_1) = f(a_2)$ implies $a_1 = a_2$.
- is a surjection (or onto) if every $b \in B$ has at least one pre-image in A.
- is a bijection (or one-to-one correspondence) if it is both an injection and a surjection.

Left and Right Inverse Every injective linear mapping $f:V\hookrightarrow W$ has a left inverse, in other words a linear mapping $g:W\to V$ such that $g\circ f=\mathrm{id}_V$.

Every surjective linear mapping $f: V \to W$ has a right inverse, in other words a linear mapping $g: W \to V$ such that $f \circ q = \mathrm{id}_W$.

Rank-Nulity

Let $f:V\to W$ be a linear mapping between vector spaces.

Then:

$$\dim V = \dim(\ker f) + \dim(\operatorname{im} f).$$

This is called the "Rank-Nullity Theorem" because it is common to call the dimension of the image of f the rank of f, and the dimension of the kernel of f the nullity of f.

Applications: $f:V\to W$ is linear and V is finite-dimensional. - Then f is injective if and only if $\dim f=\dim V$. - Since $\dim f\leq \dim W$, a necessary condition for injectivity is $\dim V\leq \dim W$. - Then f is surjective if and only if $\dim \ker f=\dim V-\dim W$. - Since $\dim \ker f\geq 0$,

a necessary condition for surjectivity is $\dim V \ge \dim W$.

Suppose $f:V\to W$ is an isomorphism and V is finite-dimensional. Then $\dim W=\dim V$. (In particular, F^m and F^n are isomorphic if and only if m=n.) Suppose $f:V\to W$ is linear and that V,W are finite-dimensional with the same dimension. Then f is injective if and only if f is surjective.

Matrices as Linear Mappings

Let F be a field and let $m, n \in \mathbb{N}$ be natural numbers.

There is a bijection between the space of linear mappings $F^m \to F^n$ and the set of matrices with n rows and m columns and entries in F:

$$M: \operatorname{Hom}_F(F^m, F^n) \xrightarrow{\sim} \operatorname{Mat}(n \times m; F)$$

 $f \mapsto [f].$

This attaches to each linear mapping f its representing matrix M(f) := [f].

The columns of this matrix are the images under f of the standard basis elements of F^m

$$[f] := (f(\vec{e}_1) | f(\vec{e}_2) | \cdots | f(\vec{e}_m)).$$

Mat Mu

Let $n, m, \ell \in \mathbb{N}, F$ a field, and let $A \in \operatorname{Mat}(n \times m; F)$ and $B \in \operatorname{Mat}(m \times \ell; F)$ be matrices.

The product $A \circ B = AB \in \operatorname{Mat}(n \times \ell; F)$ is the matrix defined by

$$(AB)_{ik} = \sum_{j=1}^{m} A_{ij} B_{jk}$$

Properties

$$(A + A') B = AB + A'B$$

$$A (B + B') = AB + AB'$$

$$IB = B$$

$$AI = A$$

$$(AB)C = A(BC).$$

Composition of Linear Mappings

The composition $g \circ f : U \to W$ is the matrix product of the representing matrices of f and g:

$$_{\mathcal{C}}[g \circ f]_{\mathcal{A}} = _{\mathcal{C}}[g]_{\mathcal{B}} \circ \mathcal{B}[f]_{\mathcal{A}}$$

Invertible Matrices

A matrix A is called invertible if and only if there exists matrices B and C such that BA = I and AC = I.

To calculate the inverse of a matrix A:

- Write the identity matrix I next to it, thereby producing an $(n \times 2n)$ -matrix $(A \mid I)$.
- Apply elementary row operations, including multiplying a row by a non-zero scalar, in order to bring A into Echelon Form, and then possibly further row operations to bring it into "reduced" echelon

form: this will actually be the identity matrix.

- The inverse to A is then what is standing in the right half of the $(n \times 2n)$ -matrix.

Elementary Matrix

An elementary matrix is any square matrix that differs from the identity matrix in at most one entry.

All the elementary matrices with entries in a field are, with the exception of those where you take one 1 in the identity matrix and replace it by 0, invertible.

Rank

The column rank of a matrix $A \in \text{Mat}(n \times m; F)$ is the dimension of the subspace of F^n generated by the columns of A. Column and row rank are equal. Rank is subadditive:

$$rank(A + B) \le rank A + rank B$$

Center of a Group

The centre of a group G, denoted as Z(G), consists of elements that commute with every element in G.

$$Z(G) = \{ g \in G \mid \forall h \in G, gh = hg \}$$

The centre is a subgroup of G and is always non-empty.

If G is an abelian group, then its centre is the entire group (Z(G) = G).

Abstract Linear Mappings as Matrices

Let F be a Field, V and W Vector Spaces over F with ordered Basis $\mathcal{A} = (\vec{v}_1, \dots, \vec{v}_m)$ and $\mathcal{B} = (\vec{w}_1, \dots, \vec{w}_n)$. Then to each Linear Mapping $f: V \to W$

we associate a representing matrix $_{\mathcal{B}}[f]_{\mathcal{A}}$ whose entries a_{ij} are defined by the identity

$$f(\vec{v}_j) = a_{1j}\vec{w}_1 + \dots + a_{nj}\vec{w}_n \in W.$$

i.e. the image of a basis element $\vec{v_i} \in \mathcal{A}$ of V is a linear combination of the basis elements $\vec{w_i} \in \mathcal{B}$ of W.

This produces a Bijection, which is even an Isomorphism of vector spaces:

$$\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}: \operatorname{Hom}_{F}(V, W) \xrightarrow{\sim} \operatorname{Mat}(n \times m; F)$$

$$f \mapsto_{\mathcal{B}}[f]_{\mathcal{A}}$$

We call $M_{\mathcal{B}}^{\mathcal{A}}(f) = {}_{\mathcal{B}}[f]_{\mathcal{A}}$ the representing matrix of the mapping f with respect to the bases \mathcal{A} and \mathcal{B} .

The columns of this matrix give the coefficients of the linear combination of vectors in \mathcal{B} that make up each element of \mathcal{A}

i.e. The coordinates of the image of a basis vector from \mathcal{A} with respect to the basis \mathcal{B}

If V is m-dimensional and W is n-dimensional then $\mathcal{M}^{\mathcal{A}}_{\mathcal{B}}(f) = (a_{ij})$ is an $n \times m$ matrix, i.e. has n rows and m columns.

Change of Basis

The representing the identity mapping with respect to these bases

$$_{\mathcal{B}}[\mathrm{id}_V]_{\mathcal{A}}$$

is called a change of basis matrix.

By definition, its entries are given by the equalities $\vec{v}_j = \sum_{i=1}^n a_{ij} \vec{w}_i$.

between Vector Spaces

Let V and W be finite dimensional Vector Space—vector spaces over F and let $f: V \to W$ be a Linear Mapping.

Suppose that $\mathcal{A}, \mathcal{A}'$ are Families of Elements—ordered basis of V and $\mathcal{B}, \mathcal{B}'$ are ordered bases of W. Then

$$_{\mathcal{B}'}[f]_{\mathcal{A}'} = _{\mathcal{B}'}[\mathrm{id}_W]_{\mathcal{B}} \circ _{\mathcal{B}}[f]_{\mathcal{A}} \circ _{\mathcal{A}}[\mathrm{id}_V]_{\mathcal{A}'}$$

within a Vector Space

Now let f be the Endomorphism $f: V \to$ V, we have

$$_{\mathcal{A}'}[f]_{\mathcal{A}'} = _{\mathcal{A}}[\mathrm{id}_V]_{\mathcal{A}'}^{-1} \circ _{\mathcal{A}}[f]_{\mathcal{A}} \circ _{\mathcal{A}}[\mathrm{id}_V]_{\mathcal{A}'}$$

Similar Matrices

Let $N = {}_{\mathcal{B}}[f]_{\mathcal{B}}$ and $M = {}_{\mathcal{A}}[f]_{\mathcal{A}}$ then if

$$N = T^{-1}MT$$

where $T = {}_{\mathcal{A}}[id_V]_{\mathcal{B}}$. We say that N and M are similar matrices.

Matrices that are similar are equivalent.

The set of integers modulo m is the set of integers that have the same remainder when you divide them by m and is written

 $\mathbb{Z}/m\mathbb{Z}$ is a ring.

As $\bar{a} = \bar{b} \in \mathbb{Z}/m\mathbb{Z}$ is the same as $a - b \in$ $m\mathbb{Z}$, and we write

$$a \equiv b \pmod{m}$$
.

The elements of $\mathbb{Z}/m\mathbb{Z}$ consist of congruence classes of integers modulo m. Each congruence class \bar{a} is of the form \bar{a} = $a + m\mathbb{Z}$ with $a \in \mathbb{Z}$.

If $m \in \mathbb{N} \ge 1$ then there are m congruence classes modulo m, in other words $|\mathbb{Z}/m\mathbb{Z}|=m$, and can be written out as

$$\mathbb{Z}/m\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$$

ddition and multiplication are defined

$$\bar{a} + \bar{b} = \overline{a+b}$$
 and $\bar{a} \cdot \bar{b} = \overline{ab}$.

 $\mathbb{Z}/m\mathbb{Z}$ is an integral domain if and only if m is prime.

Rings

A ring is a set with two operations $(R, +, \cdot)$ that satisfy: 1) (R, +) is a Abelian group; this means - there is an identity element $0 = 0_R \in R \ 2) \ (R, \cdot)$ is a monoid; this means - the second operation $\cdot: R \times R \to$ R is associative - there is an identity element $1 = 1_R \in R$, often called just the identity, with the property that $1 \cdot a =$ $a \cdot 1 = a$ for all $a \in R$. 3) The distributive laws hold, meaning that for all $a, b, c \in R$

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
$$(a+b) \cdot c = (a \cdot c) + (b \cdot c).$$

The two operations are called addition and multiplication in our ring. A ring in which

multiplication is commutative, that is in which $a \cdot b = b \cdot a$ for all $a, b \in R$, is a commutative ring.

Units of a Ring

Let R be a ring. An element $a \in R$ is called a unit if is invertible in R i.e. there exists $a^{-1} \in R$ such that

$$aa^{-1} = 1 = a^{-1}a.$$

The set of units in a ring forms a group under multiplication and is called the group of units of the ring R written R^{\times} .

Integral Domains

An integral domain is a non-zero commutative ring that has no zero-divisors. 1. $ab = 0 \Rightarrow a = 0 \text{ or } b = 0, \text{ and }$

2. $a \neq 0$ and $b \neq 0 \rightarrow ab \neq 0$

Let R be an integral domain and let $a, b, c \in R$. If ab = ac and $a \neq 0$ then b = c. All Fields are integral domains since a unit cannot be a zero-divisor.

Every finite integral domain is a field.

Orbit - Stabiliser

The orbit of an element x under the action of a group G is denoted as G. x and is the set $\{g \cdot x \mid g \in G\}$.

The stabiliser of an element x under the action of a group G, denoted as G_x , is the subgroup of elements in G that leave x fixed. $G_x = \{g \in G \mid g \cdot x = x\}$

Polynomials

Let R be a ring. A polynomial over R is an expression of the form

$$P = a_0 + a_1 X + a_2 X^2 + \dots + a_m X^m$$

for some non-negative integer m and elements $a_i \in R$ for $0 \le i \le m$.

The set of all polynomials over R is denoted by R[X].

In case a_m is non-zero, the polynomial Phas degree m, written $\deg(P)$, and a_m is its leading coefficient.

When the leading coefficient is 1 the polynomial is a monic polynomial.

A polynomial of degree one is called linear, a polynomial of degree two is called quadratic, and a polynomial of degree three is called cubic.

Ring of Polynomials

Set R[X] of Polynomials becomes a Ring called the ring of polynomials with coefficients in R, with the operations $+, \times$.

$$(a_0 + a_1 X + \dots + a_m X^m) + (b_0 + b_1 X + \dots + b_n X^n)$$

= $(a_0 + b_0) + (a_1 + b_1) X + \dots$

and

$$(a_0 + a_1 X + \dots + a_m X^m) \qquad I \leq R,$$

$$\times (b_0 + b_1 X + \dots + b_n X^n) \qquad 1. I \neq$$

$$= a_0 b_0 + (a_0 b_1 + a_1 b_0) X \qquad 3. \text{ for}$$

$$+ (a_0 b_2 + a_1 b_1 + a_2 b_0) X^2 + \dots + a_m b_n X^{m+n} \text{ if } \in I.$$

where $m, n \ge 0, a_i, b_i \in R$ for $0 \le i \le m$ and $0 \le j \le n$.

The zero and the identity of R[X] are the zero and identity of R, respectively.

The elements of R are just polynomials of degree 0. These are constant polynomials. From the multiplication rule, if R is commutative, then so too is R[X].

If R is a ring with no zero-divisors, then R[X] has no zero-divisors and deg(PQ) = $\deg(P) + \deg(Q)$ for non-zero $P, Q \in R[X]$. If R is an integral domain then so is R[X]. Let R be an integral domain and let $P, Q \in$ R[X] with Q monic.

Then there exists unique $A, B \in R[X]$ such that

$$P = AQ + B$$

and deg(B) < deg(Q) or B = 0.

Polynomial Roots

Let R be a commutative ring, let $\lambda \in R$ and $P(X) \in R[X]$. Then λ is a root of P(X) if and only if $(X - \lambda)$ divides P(X). Let R be a field, or more generally an integral domain. Then a non-zero polynomial $P \in R[X] \setminus \{0\}$ has at most $\deg(P)$ roots

Algebraic Closure

A field F is algebraically closed if each non-constant polynomial $P \in F[X] \backslash F$ with coefficients in our field has a root in our field F.

If F is an algebraically closed field, then every non-zero polynomial $P \in F[X] \setminus \{0\}$ decomposes into linear factors

$$P = c(X - \lambda_1) \cdots (X - \lambda_n)$$

with $n \ge 0, c \in F^{\times}$ and $\lambda_1, \dots, \lambda_n \in F$. This decomposition is unique up to reordering the factors.

Fundamental Theorem of Algebra

The field of complex numbers \mathbb{C} is algebraically closed.

Rings Homomorphisms

Let R and S be rings.

A mapping $f: R \longrightarrow S$ is a ring homomorphism if the following hold for all $x, y \in R$

$$f(x+y) = f(x) + f(y)$$
$$f(xy) = f(x)f(y)$$

For all $x, y \in R$ and $m \in \mathbb{Z}$:

- $f(0_R) = 0_S$, where 0_R and 0_S are the zeros of R and S respectively;

-f(-x) = -f(x);

- f(x - y) = f(x) - f(y);

- f(mx) = mf(x),

 $- f(x^n) = (f(x))^n$

f is injective if and only if $\ker f = \{0\}$.

Ideals

A subset I of a ring R is an ideal, written $I \subseteq R$, if the following hold:

- 1. $I \neq \emptyset$;
- 2. I is closed under subtraction;
- 3. for all $i \in I$ and $r \in R$ we have ri,

Condition (3) says that I is closed under multiplication by elements of R.

In any ring R, $\{0\}$ and R are ideals of R.

The intersection of any collection of ideals of a ring R is an ideal of R.

Let I and J be ideals of a ring R. Then

$$I + J = \{a + b : a \in I, b \in J\}$$

is an ideal of R.

Each ideal is a kernel of at least one Ring Homomorphism, namely $can: R \to R/I$

Generting Ideals

Let R be a commutative ring and let $T \subset$ R. Then the ideal of R generated by T is the set

$$_R\langle T\rangle = \{r_1t_1 + \dots + r_mt_m : t_1, \dots, t_m \in T,$$

 $r_1, \dots, r_m \in R\}$

together with the zero element in the case

We often write $_{R}\langle t_{1},\ldots,t_{n}\rangle$ instead of $_R \langle \{t_1,\ldots,t_n\} \rangle.$

Let $m \in \mathbb{Z}$. Then $\mathbb{Z}\langle m \rangle = m\mathbb{Z}$.

Let $P \in \mathbb{R}[X]$. Then $\mathbb{R}_{\mathbb{R}[]}\langle P \rangle = \{AP : A \in \mathbb{R}\}$ $\mathbb{R}[X]$ = { $Q : P \text{ divides } Q \text{ in } \mathbb{R}[X]$ }.

Let R be a commutative ring and let $T \subseteq$ R. Then $_R\langle T\rangle$ is the *smallest* ideal of R that contains T.

Principle Ideals

An ideal I of R is called a principal ideal if $I = \langle t \rangle$ for some $t \in R$.

i.e. it I is generated by one element of R.

Kernal of a Ring Homomorphism

Let R and S be Rings with zero elements 0_R and 0_S respectively and let $f: R \to S$ be a ring homomorphism. The kernel of f

$$\ker f = \{r \in R : f(r) = 0_S\}.$$

Subrings

Let R be a ring. A subset R' of R is a subring of R if R' itself is a ring under the operations of *addition* and *multiplication* defined in R.

Quick Check

Let R' be a subset of a ring R. Then R' is a subring if and only if

- 1) R' has a multiplicative identity, and
- 2) R' is closed under subtraction: $a, b \in$ $R' \to a - b \in R'$, and
- 3) R' is closed under multiplication.

Let R and S be rings and $f:R\longrightarrow S$ a Ring Homomorphism.

- 1) If R' is a subring of R then f(R') is a subring of S. In particular, im f is a subring of S.
- 2) Assume that $f(1_R) = 1_S$. Then if xis a unit in R, f(x) is a unit in S and $(f(x))^{-1} = f(x^{-1})$. In this case f restricts to a group homomorphism $f|_{R^{\times}}$: $R^{\times} \to S^{\times}$.

It is not true that the intersection of two subrings of R is a subring of R.

Equivalence Relation

A relation R on a set X is a subset $R \subseteq X \times X$. In this context, instead of writing $(x, y) \in R$, I will write xRy.

Then R is an equivalence relation on X

when for all elements $x, y, z \in X$ the following hold:

- 1) Reflexivity: xRx;
- 2) Symmetry: $xRy \Leftrightarrow yRx$;
- 3) Transitivity: (xRy and yRz) $\rightarrow xRz$.

Equivalence Class

Suppose that \sim is an Equivalence Relation on a set X. For $x \in X$ the set E(x) := $\{z \in X : z \sim x\}$ is called the equivalence class of x.

A subset $E \subseteq X$ is called an equivalence class for our equivalence relation if there is an $x \in X$ for which E = E(x).

An element of an equivalence class is called $r_1, \ldots, r_m \in R$, a representative of the class.

A subset $Z \subseteq X$ containing precisely one element from each equivalence class is called a system of representatives for the equivalence relation.

For $x, y \in X$ the following are equivalent:

- 1) $x \sim y$;
- 2) E(x) = E(y);
- 3) $E(x) \cap E(y) \neq \emptyset$.

Set of Equivalence Classes

Given an Equivalence Relation \sim on the set X, we denote the set of equivalence classes, which is a subset of the Power Sets—power set $\mathcal{P}(X)$, by

$$(X/\sim) := \{E(x) : x \in X\}$$

There is a canonical mapping where each element of X must belong to some equivalence class

$$can: X \to (X/\sim), x \mapsto E(x)$$

It is a Surjection.

Cosets of a Ring

Let $I \subseteq R$ be an ideal in a Ring R. The set

$$x+I:=\{x+i:i\in I\}\subseteq R$$

is a coset of I in R or the coset of x with respect to I in R.

In the sense of group theory, x + I is the left coset w.r.t I and is also the right coset because R is Abelian.

It follows that there is an Equivalence Relation on R defined by

$$x \sim y \iff x - y \in I$$

whose Equivalence Classes E(x) are the cosets x + I.

Factor Rings

Then R/I, the factor ring of R by I (or the quotient of R by I), is the Set of Equivalence Classes (R/\sim) for this \sim .

This is actually the set of cosets of I in R because each Equivalence Class can be written

$$x \sim y \iff x - y \in I$$

$$\Longrightarrow y \in I + x$$

$$\Longrightarrow [x] = x + I := \{x + r : r \in I\}$$

which is clearly of coset of I wrt x. R/I is a ring.

Addition is defined by

$$(x+I)\dot{+}(y+I) = (x+y)+I$$
 for all $x, y \in R$

with 0 + I as the additive identity.

Multiplication is defined by

$$(x+I) \cdot (y+I) = xy + I$$
 for all $x, y \in R$

with -x + I as the inverse of x + I

Universal Property of Factor Rings Let R be a Ring and I an ideal of R.

1) The mapping $can : R \to R/I$ sending r to r + I for all $r \in R$ is a Surjection—surjective Ring Homomorphism with kernel I.

2) If $f: R \to S$ is a ring homomorphism with $f(I) = \{0_S\}$, so that $I \subseteq \ker f$, then there is a unique ring homomorphism $\bar{f}: R/I \to S$ such that $f = \bar{f} \circ can$.

The second part of the Theorem states that f factorises uniquely through the canonical mapping to the factor whenever the ideal I is sent to zero.

First Isomorphism Theorem for Rings

Let R and S be Rings. Then every Ring Homomorphism $f: R \longrightarrow S$ induces a ring Isomorphism

$$\bar{f}: R/\ker f \xrightarrow{\sim} \operatorname{im} f.$$

Modules

A (left) module M over a Ring R is a pair consisting of an Abelian group M =(M, +) and a mapping

$$R \times M \to M$$

 $(r, a) \mapsto ra$

such that for all $r, s \in R$ and $a, b \in M$ the following identities hold:

$$r(a+b) = (ra) \dot{+} (rb)$$
$$(r+s)a = (ra) \dot{+} (sa)$$
$$r(sa) = (rs)a$$
$$1_{R}a = a$$

The first two laws are the Distributive Laws; the third law is called the Associativity Law.

We call a left module M over a ring R an R-module.

Let R be a ring and M an R-module.

- 1) $0_R a = 0_M$ for all $a \in M$.
- 2) $r0_M = 0_M$ for all $r \in R$.
- 3) (-r)a = r(-a) = -(ra) for all $r \in$ $R, a \in M$. Here the first negative is a negative in R, the last two are negatives in

Direct Sum of Modules

Given a Ring R and R-modules M_1, \ldots, M_n , the cartesian product $M_1 \times M_2 \times \cdots \times M_n$ is an R-module if we define addition and multiplication as follows:

$$(a_1, \dots, a_n) + (b_1, \dots, b_n)$$

= $(a_1 + b_1, \dots, a_n + b_n)$

and

$$r\left(a_1,\ldots,a_n\right)=\left(ra_1,\ldots,ra_n\right)$$

for all $r \in R$ and $a_i, b_i \in M$.

This is denoted $M_1 \oplus \cdots \oplus M_n$ and called the direct sum.

Sub-module

A non-empty subset M' of an R-module M is a submodule if M' is an R- module with respect to the operations of the R-module M restricted to M'.

- Let $T \subseteq M$. Then ${}_R\langle T \rangle$ is the smallest submodule of M that contains T.
- The intersection of any collection of submodules of M is a submodule of M.
- Let M_1 and M_2 be submodules of a. Then

$$M_1 + M_2 = \{a + b : a \in M_1, b \in M_2\}$$

is a submodule of M.

QUICK CHECK

Let R be a Ring and let M be an Rmodule. A subset M' of M is a submodule
if and only if

- 1) $0_M \in M'$
- $2)\ a,b\in M'\Rightarrow a-b\in M'$
- 3) $r \in R, a \in M' \Rightarrow ra \in M'$.

Cosets of a Module

Let R be a Ring, M an R-module and N a submodule of M.

For each $a \in M$ the coset of a with respect to N in M is

$$a+N = \{a+b : b \in N\}$$

It is a coset of N in the abelian group M and so is an Equivalence Class for the Equivalence Relation $a \sim b \Leftrightarrow a - b \in N$.

Factor Module

Let R be a Ring, M an R-module and N a submodule of M.

Define M/N, as the factor module of M by N (or the quotient of M by N), to be the set (M/\sim) of all cosets of N in M.

This becomes an R-module by introducing the operations of addition and multiplication as follows:

$$(a+N)\dot{+}(b+N) = (a+b) + N$$
$$r(a+N) = ra + N$$

for all $a, b \in M, r \in R$.

Universal Property of Factor Modules

Let R be a Ring, let L and M be Rmodules, and N a Submodule of M.

- 1) The mapping $can: M \to M/N$ sending a to a+N for all $a \in M$ is a surjective R-homomorphism with kernel N.
- 2) If $f: M \to L$ is an R-homomorphism with $f(N) = \{0_L\}$, so that $N \subseteq \ker f$, then there is a *unique homomorphism* $\bar{f}: M/N \to L$ such that $f = \bar{f} \circ can$.

The second part of the theorem states that f factorises uniquely through the canonical mapping to the factor whenever the submodule N is sent to zero.

First Isomorphism Theorem for Modules

Let R be a Ring and let M and N be

 $R\text{-}\mathrm{modules}.$ Then every $R\text{-}\mathrm{homomorphism}$ $f:M\longrightarrow N$ induces an $R\text{-}\mathrm{isomorphism}$

$$\bar{f}: M/\ker f \xrightarrow{\sim} \operatorname{im} f.$$

Multilinear Form

Let U_1, U_2, \dots, U_n, W be vector spaces over a Field F, then a map

$$H: U_1 \times U_2 \times \cdots \times U_n \to W$$

is multilinear if it is linear in each of its entries separately.

In the case n = 2 this is exactly the definition of a Bilinear Form

A multilinear form is alternating if it vanishes on every n-tuple of elements of U that has at least two entries equal, in other words if:

$$(\exists i \neq j \text{ with } v_i = v_j)$$

 $\rightarrow H(v_1, \dots, v_i, \dots, v_j, \dots, v_n) = 0$

This is the same as writing, for any $\sigma \in \mathfrak{S}_n$

$$H\left(v_{\sigma(1)},\ldots,v_{\sigma(n)}\right) = \operatorname{sgn}(\sigma)H\left(v_1,\ldots,v_n\right)$$

Symmetric Group

The group of all permutations of the set $\{1, 2, ..., n\}$, also known as *Bijections* from $\{1, 2, ..., n\}$ to itself, is denoted by \mathfrak{S}_n and called the *n*-th symmetric group. It is a group under *composition*. It has n! elements.

A transposition is a permutation that swaps two elements of the set and leaves all the others unchanged.

- All transpositions are odd permutations and have length 2|i-j|-1

An inversion of a permutation $\sigma \in \mathfrak{S}_n$ is a pair (i, j) such that $1 \leq i < j \leq n$ and $\sigma(i) > \sigma(j)$.

The number of inversions of the permutation σ is called the *length* of σ and written $\ell(\sigma)$. In formulas:

$$\ell(\sigma) = |\{(i, j) : i < j \text{ but } \sigma(i) > \sigma(j)\}|$$

Length can also be counted from the number of crossings in a permutation diagram. The sign of σ is defined to be the parity of the number of inversions of σ . In formulas:

$$\operatorname{sgn}(\sigma) = (-1)^{\ell(\sigma)}$$

For each $n \in \mathbb{N}$ the sign of a permutation produces a group homomorphism $sgn: \mathfrak{S}_n \to \{+1, -1\}$ from the symmetric group to the two-element group of signs. In formulas:

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$$
 for all $\sigma, \tau \in \mathfrak{S}_n$ minant

A permutation whose sign is +1, in other words which has *even length*, is called an *even permutation*, while a permutation whose sign is -1, in other words which has *odd length*, is called an *odd permutation*. For $n \in \mathbb{N}$, the set of even permutations in \mathfrak{S}_n forms a subgroup of \mathfrak{S}_n because it is the kernel of the group homomorphism

 $sgn: \mathfrak{S}_n \to \{+1, -1\}$. This group is the alternating group and is denoted A_n .

Determinant

 $\begin{tabular}{ll} Multilinear Form & Characterisation \\ Let & F \ be a \ Field. & The mapping \\ \end{tabular}$

$$\det: \operatorname{Mat}(n; F) \to F$$

is the unique alternating multilinear form on n-tuples of column vectors with values in F that takes the value 1_F on the identity matrix.

Or if we are to consider the matrix as an ordered list of n column vectors

$$\det: F^n \times \cdots \times F^n \to F, (v_1, \dots, v_n) \mapsto \det(v_1, \dots, v_n)$$

Leibniz Characterisation

Let R be a commutative Ring and $n \in \mathbb{N}$. The determinant is a mapping det: Mat $(n;R) \to R$ from Square Matrices with coefficients in R to the ring R that is given by the following formula:

$$A \mapsto \det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \dots a_{n\sigma(n)}$$

The sum is over all permutations of n, and the coefficient $sgn(\sigma)$ is the sign of the permutation σ .

The degenerate case n=0 assigns the value 1 as the determinant of the "empty matrix".

Laplace's Expansion of the Determinant Let $A = (a_{ij})$ be an $(n \times n)$ -matrix with entries from a commutative ring R. For a fixed i the i-th row expansion of the determinant is

$$\det(A) = \sum_{j=1}^{n} a_{ij} C_{ij}$$

and for a fixed j the j-th column expansion of the determinant is

$$\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij}$$

Multiplicativity

Let R be a commutative ring and let $A, B \in Mat(n; R)$. Then

$$det(AB) = det(A) det(B).$$

Determinantal Criterion for Invertibility The determinant of a square matrix with entries in a field F is non-zero if and only if the matrix is invertible.

A square matrix with entries in a commutative ring R is invertible if and only if its determinant is a unit in R.

That is, $A \in \operatorname{Mat}(n; R)$ is invertible if and only if $\det(A) \in R^{\times}$. Inverse of the Determinant

If A is invertible then $\det(A^{-1}) = \det(A)^{-1}$. If B is a square matrix B then

$$\det\left(A^{-1}BA\right) = \det(B)$$

Determinant of an Endomorphism The determinant of an representative matrix $_{\mathcal{A}}[f]_{\mathcal{A}}$ is independent of the choice of basis \mathcal{A} . Therefore the determinant is in fact defined only by the endomorphism f. Transpose

$$\det\left(A^{\top}\right) = \det(A)$$

Cramer's Rule

Let A be an $(n \times n)$ -matrix with entries in a commutative ring R. adj is the Adjugate Matrix. Then

$$A \cdot \operatorname{adj}(A) = (\det A)I_n$$

Jacobi's Formula

Let $A = (a_{ij})$ where the coefficients $a_{ij} = a_{ij}(t)$ are functions of t. Then

$$\frac{d}{dt}\det A = \operatorname{Tr}\operatorname{Adj} A \frac{dA}{dt}.$$

Cofactor of a Matrix

Let $A \in \text{Mat}(n; R)$ for some commutative Ring R and natural number n. Let i and j be integers between 1 and n. Then the (i, j) cofactor of A is

$$C_{ij} = (-1)^{i+j} \det(A\langle i, j \rangle)$$

where $A\langle i,j\rangle$ is the matrix obtained from A be deleting the i-th row and the j-th column.

Adjugate

Let A be an $(n \times n)$ -matrix with entries in a commutative Ring R. The adjugate matrix $\operatorname{adj}(A)$ is the $(n \times n)$ -matrix whose entries are $\operatorname{adj}(A)_{ij} = C_{ji}$ where C_{ji} is the (j,i)-cofactor.

Real Inner Product

Let V be a Vector Space over \mathbb{R} . An inner product on V is a mapping

$$(-,-): V \times V \to \mathbb{R}$$

that satisfies the following for all $\vec{x}, \vec{y}, \vec{z} \in V$ and $\lambda, \mu \in \mathbb{R}$:

- 1) $(\lambda \vec{x} + \mu \vec{y}, \vec{z}) = \lambda(\vec{x}, \vec{z}) + \mu(\vec{y}, \vec{z})$
- 2) $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x})$
- 3) $(\vec{x}, \vec{x}) \ge 0$, with equality if and only if $\vec{x} = \vec{0}$

A real inner product space is a real vector space endowed with an inner product.

A real inner product space is necessarily a Symmetric Bilinear Form.

A finite-dimensional real inner product space is a Euclidean Vector Space.

Every finite dimensional inner product space has an orthonormal basis.

Complex Inner Product

Let V be a Vector Space over \mathbb{C} . An inner product on V is a mapping

$$(-,-): V \times V \to \mathbb{C}$$

that satisfies the following for all $\vec{x}, \vec{y}, \vec{z} \in V$ and $\lambda, \mu \in \mathbb{C}$:

- 1) $(\lambda \vec{x} + \mu \vec{y}, \vec{z}) = \lambda(\vec{x}, \vec{z}) + \mu(\vec{y}, \vec{z})$
- 2) $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x})$
- 3) $(\vec{x}, \vec{x}) \ge 0$, with equality if and only if $\vec{x} = 0$

Here \bar{z} denote the *complex conjugate* of z.

A complex inner product space is a complex vector space endowed with an inner product.

Complex inner product spaces are Skew-Linear in their second variable, also known as sesquilinear.

Inner Product Norm

In a real or complex inner product space the length or inner product norm $\|\vec{v}\| \in \mathbb{R}$ of a vector \vec{v} is defined as the non-negative square root

$$\|\vec{v}\| = \sqrt{(\vec{v}, \vec{v})}$$

Two vectors \vec{v}, \vec{w} are orthogonal and we write

$$\vec{v} \perp \vec{w}$$

if and only if $(\vec{v}, \vec{w}) = 0$. We say that \vec{v} and \vec{w} are at right-angles to each other. We write $S \perp T$ as a shorthand for $\vec{v} \perp \vec{w}$ for all $\vec{v} \in S$ and $\vec{w} \in T$.

Vectors whose length is 1 are called units.

Orthogonal Complement

Let V be an Inner Product Space and let $T \subseteq V$ be an arbitrary subset. Define

$$T^{\perp} = \{ \vec{v} \in V : \vec{v} \perp \vec{t} \text{ for all } \vec{t} \in T \},$$

calling this set the orthogonal to T. If T is a subspace it is the orthogonal complement to V.

Orthogonal Matrix

An orthogonal matrix is an $(n \times n)$ -matrix P with real entries such that $P^{\top}P = I_n$. In other words, an orthogonal matrix is a square matrix P with real entries such that $P^{-1} = P^{\top}$.

Unitary Matrix

An unitary matrix is an $(n \times n)$ -matrix P with complex entries such that $\bar{P}^{\top}P = I_n$. In other words, a unitary matrix is a square matrix P with complex entries such that $P^{-1} = \bar{P}^{\top}$.

Gram-Schmidt Process

Given nn arbitrary linearly independent ordered subset $\vec{v}_1, \vec{v}_2, \ldots$ of an inner product space V.

Our aim is to produce the elements of $(\vec{w_i})$, an orthonormal family in V.

- 1. Take the first element \vec{v}_1 and normalize it to have length 1. Let this be the first element \vec{w}_1 .
- 2. For each subsequent vector \vec{v}_i from the subset:
- Subtract the orthogonal projection of \vec{v}_i onto the space $\langle \vec{w}_1, \vec{w}_2, \dots, \vec{w}_{i-1} \rangle$.
- Normalize the resulting vector to have length 1 . Let this be the i th element $\vec{w_i}$ of the orthonormal family.

Repeat this process until you've dealt with all vectors $\vec{v}_1, \vec{v}_2, \dots$

Adjoint Endomorphisms

Let V be an Inner Product Space. Then two Endomorphisms $T,S:V\to V$ are called adjoint to one another if the following holds for all $\vec{v},\vec{w}\in V$:

$$(T\vec{v}, \vec{w}) = (\vec{v}, S\vec{w})$$

In this case I will write $S=T^*$ and call S the adjoint of T. Any endomorphism has at most one adjoint. Let V be a finite dimensional inner product space. Let $T:V\to V$ be an endomorphism. Then T^* exists. That is, there exists a unique linear mapping $T^*:V\to V$ such that for all $\vec{v},\vec{w}\in V$

$$(T\vec{v}, \vec{w}) = (\vec{v}, T^*\vec{w})$$

Self-Adjoint

An Endomorphism of an Inner Product Space $T:V\to V$ is self-adjoint if it equals its own adjoint that is if $T^*=T$. Let $T:V\to V$ be a self-adjoint linear mapping on an inner product space V.

- 1) Every eigenvalue of T is real.
- 2) If λ and μ are distinct eigenvalues of T with corresponding eigenvectors \vec{v} and \vec{w} , then $(\vec{v}, \vec{w}) = 0$.
- 3) T has an eigenvalue.

Hermitian Matrices

A real $(n \times n)$ -matrix A describes a self-adjoint mapping on the standard inner product space \mathbb{R}^n precisely when A is symmetric, that is when $A^{\top} = A$.

A complex $(n \times n)$ -matrix A describes a self-adjoint mapping on the standard inner product space \mathbb{C}^n precisely when $A = \bar{A}^{\top}$ holds.

Such matrices are called hermitian.

Conjugate Transpose

The conjugate transpose \bar{A}^T is the matrix obtained from A by first conjugating each entry and then transposing the resulting matrix.

Raleigh Quotient

V is a finite dimensional real Inner Product Space. The Raleigh Quotient is the real-valued function defined

$$R: V \setminus \{\overrightarrow{0}\} \to \mathbb{R} \tag{1}$$

$$\vec{v} \mapsto R(\vec{v}) = \frac{(T\vec{v}, \vec{v})}{(\vec{v}, \vec{v})}$$
 (2)

Spectral Theorem

For Self-Adjoint Endomorphisms

Let V be a finite dimensional Inner Product Space and let $T:V\to V$ be a self-adjoint linear mapping. Then V has an Orthonormal Basis consisting of eigenvectors of T.

For Real Symmetric Matrices

Let A be a real $(n \times n)$ symmetric matrix. Then there is an $(n \times n)$ -orthogonal matrix P such that

$$P^{\top}AP = P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

where $\lambda_1, \ldots, \lambda_n$ are the (necessarily real) eigenvalues of A, repeated according to their multiplicity as roots of the characteristic polynomial of A.

For Hermitian Matrices

Let A be $a(n \times n)$ -hermitian matrix. Then there is an $(n \times n)$ -unitary matrix P such that

$$\bar{P}^{\top}AP = P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

where $\lambda_1, \ldots, \lambda_n$ are the (necessarily real) eigenvalues of A, repeated according to their multiplicity as roots of the characteristic polynomial of A.

Exponential Mapping

 $\exp: \operatorname{Mat}(n; \mathbb{C}) \to \operatorname{Mat}(n; \mathbb{C})$

$$A \mapsto \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

This mapping plays a central role in describing the solutions to linear differential equations with constant coefficients. If $A \in \operatorname{Mat}(n;\mathbb{C})$ is a square matrix and $\vec{c} \in \mathbb{C}^n$ a column vector, then there exists exactly one differentiable mapping γ : $\mathbb{R} \to \mathbb{C}^n$ with initial value $\gamma(0) = \vec{c}$ and which satisfies $\dot{\gamma}(t) = A\gamma(t)$ for all $t \in \mathbb{R}$: it is the mapping

$$\gamma(t) = \exp(tA)\vec{c}$$
.

Cayley-Hamilton

Let $A \in \operatorname{Mat}(n;R)$ be a square matrix with entries in a commutative Ring R. Then evaluating its characteristic polynomial $\chi_A(x) \in R[x]$ at the matrix A gives zero.

JNF

Let F be an algebraically closed field. Let V be a finite dimensional vector space and let $\phi: V \to V$ be an endomorphism of V with characteristic polynomial

$$\chi_{\phi}(x) = (x - \lambda_1)^{a_1} (x - \lambda_2)^{a_2} \dots (x - \lambda_s)^{a_s} \in F[x]$$

$$, a_i \geqslant 1, \sum_{i=1}^s a_i = n,$$

for distinct $\lambda_1, \lambda_2, \dots, \lambda_s \in F$.

Then there exists an ordered basis \mathcal{B} of V such that the matrix of ϕ with respect to the basis \mathcal{B} is block diagonal with Jordan Blocks on the diagonal

$$\mathcal{B}[\phi]_{\mathcal{B}} = \operatorname{diag}(J(r_{11}, \lambda_1), \dots, J(r_{1m_1}, \lambda_1), J(r_{21}, \lambda_2), \dots, J(r_{sm_s}, \lambda_s)$$

with $r_{11}, ..., r_{1m_1}, r_{21}, ..., r_{sm_s} \ge 1$ such that

$$a_i = r_{i1} + r_{i2} + \dots + r_{im_i} (1 \le i \le s).$$

Kronecker Delta

The Kronecker Delta is defined:

$$\delta_j^i = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$