| Table of agegrp by response |               |               |      |  |  |
|-----------------------------|---------------|---------------|------|--|--|
| agegrp                      | :             | response      | !    |  |  |
| Frequency<br>Expected       | no yes Total  |               |      |  |  |
| older                       | 225<br>197.99 | 253<br>280.01 | 478  |  |  |
| younger                     | 434<br>461.01 | 679<br>651.99 | 1113 |  |  |
| Total                       | 659           | 932           | 1591 |  |  |

#### Exercise 1a):

We constructed a contingency table for **agegrp** and **response** variables. We also presented expected frequency and observed frequencies for all categories. We see that we have higher than expected observations in the cell where older individual did not do home improvements and in the cell where younger individual did not do home improvements. We have smaller than expected observations in the cell where younger individual did not do home improvements and in the cell where older individual did home improvements.

#### Exercise 1b):

We performed the following tests (on the next page). We see that all p-values are smaller than significance level. So, we reject null hypothesis and we accept alternative hypothesis which states there is association between variables. And there is a statistically significant association. It also provides us with the measures of association, however we see that it is pretty weak. (approx. 0.075)

| Table of agegrp by response |               |               |      |  |  |
|-----------------------------|---------------|---------------|------|--|--|
| agegrp                      | :             | response      | !    |  |  |
| Frequency<br>Expected       | no yes Total  |               |      |  |  |
| older                       | 225<br>197.99 | 253<br>280.01 | 478  |  |  |
| younger                     | 434<br>461.01 | 679<br>651.99 | 1113 |  |  |
| Total                       | 659           | 932           | 1591 |  |  |

# Statistics for Table of agegrp by response

| Statistic                      | DF | Value  | Prob   |
|--------------------------------|----|--------|--------|
| Chi-Square                     | 1  | 8.9916 | 0.0027 |
| Likelihood Ratio Chi-Square    | 1  | 8.9394 | 0.0028 |
| Continuity Adj. Chi-Square     | 1  | 8.6618 | 0.0032 |
| Mantel-Haenszel Chi-Square     | 1  | 8.9860 | 0.0027 |
| Phi Coefficient                |    | 0.0752 |        |
| <b>Contingency Coefficient</b> |    | 0.0750 |        |
| Cramer's V                     |    | 0.0752 |        |

| Fisher's Exact Test      |        |  |  |
|--------------------------|--------|--|--|
| Cell (1,1) Frequency (F) | 225    |  |  |
| Left-sided Pr <= F       | 0.9988 |  |  |
| Right-sided Pr >= F      | 0.0017 |  |  |
|                          |        |  |  |
| Table Probability (P)    | 0.0005 |  |  |
| Two-sided Pr <= P        | 0.0032 |  |  |

 $Sample\ Size = 1591$ 

| Table of agegrp by response |              |              |      |  |  |
|-----------------------------|--------------|--------------|------|--|--|
| agegrp                      |              | response     |      |  |  |
| Frequency<br>Row Pct        | no yes Total |              |      |  |  |
| older                       | 225<br>47.07 | 253<br>52.93 | 478  |  |  |
| younger                     | 434<br>38.99 | 679<br>61.01 | 1113 |  |  |
| Total                       | 659          | 932          | 1591 |  |  |

## Statistics for Table of agegrp by response

| Column 1 Risk Estimates |                               |        |                                                   |        |        |        |
|-------------------------|-------------------------------|--------|---------------------------------------------------|--------|--------|--------|
|                         | Risk                          | ASE    | 95% Exact 95% Confidence Limits Confidence Limits |        |        |        |
| Row 1                   | 0.4707                        | 0.0228 | 0.4260                                            | 0.5155 | 0.4252 | 0.5166 |
| Row 2                   | 0.3899                        | 0.0146 | 0.3613                                            | 0.4186 | 0.3612 | 0.4193 |
| Total                   | 0.4142                        | 0.0123 | 0.3900                                            | 0.4384 | 0.3899 | 0.4389 |
| Difference              | 0.0808                        | 0.0271 | 0.0276                                            | 0.1339 |        |        |
|                         | Difference is (Row 1 - Row 2) |        |                                                   |        |        |        |

| Column 2 Risk Estimates       |         |        |                |         |                   |           |
|-------------------------------|---------|--------|----------------|---------|-------------------|-----------|
|                               | Risk    | ASE    | 95<br>Confiden | , •     | Exact<br>Confiden | , , , , , |
| Row 1                         | 0.5293  | 0.0228 | 0.4845         | 0.5740  | 0.4834            | 0.5748    |
| Row 2                         | 0.6101  | 0.0146 | 0.5814         | 0.6387  | 0.5807            | 0.6388    |
| Total                         | 0.5858  | 0.0123 | 0.5616         | 0.6100  | 0.5611            | 0.6101    |
| Difference                    | -0.0808 | 0.0271 | -0.1339        | -0.0276 |                   |           |
| Difference is (Row 1 - Row 2) |         |        |                |         |                   |           |

Sample Size = 1591

#### Exercise 1c):

We now tested if younger individuals have a significantly higher probability of doing home improvements they would have previously hired someone to do. We look at the second table (Column 2 Risk Estimates), we see that it is equal to 0.6101. Also, by looking at the difference, we see that it is negative (and do not involve 0), so younger individuals (Row2) have a significantly higher probability of doing home improvements. So, the difference is significant. It is estimated to be 0.0808 higher than the risk for older individuals of doing home improvements.

| Table of work by response |               |               |      |  |  |
|---------------------------|---------------|---------------|------|--|--|
| work                      | 1             | response      |      |  |  |
| Frequency<br>Expected     | no yes Total  |               |      |  |  |
| office                    | 301<br>323.91 | 481<br>458.09 | 782  |  |  |
| skilled                   | 119<br>149.11 | 241<br>210.89 | 360  |  |  |
| unskill                   | 239<br>185.98 | 210<br>263.02 | 449  |  |  |
| Total                     | 659           | 932           | 1591 |  |  |

#### Exercise 2a):

We constructed a contingency table for **work** and **response** variables. We also presented expected frequency and observed frequencies for all categories. We see that we have smaller than expected observations in the cell where individual who works at the office did not do home improvements and in the cell where skilled individual did not do home improvements. We have higher than expected observations in the cell where individual who works at the office did home improvements and in the cell where skilled individual did not do home improvements.

| Table of work by response |               |               |      |  |  |
|---------------------------|---------------|---------------|------|--|--|
| work                      | 1             | response      |      |  |  |
| Frequency<br>Expected     | no yes Tota   |               |      |  |  |
| office                    | 301<br>323.91 | 481<br>458.09 | 782  |  |  |
| skilled                   | 119<br>149.11 | 241<br>210.89 | 360  |  |  |
| unskill                   | 239<br>185.98 | 210<br>263.02 | 449  |  |  |
| Total                     | 659           | 932           | 1591 |  |  |

## Statistics for Table of work by response

| Statistic                      | DF | Value   | Prob   |
|--------------------------------|----|---------|--------|
| Chi-Square                     | 2  | 38.9525 | <.0001 |
| Likelihood Ratio Chi-Square    | 2  | 38.7783 | <.0001 |
| Mantel-Haenszel Chi-Square     | 1  | 20.4480 | <.0001 |
| Phi Coefficient                |    | 0.1565  |        |
| <b>Contingency Coefficient</b> |    | 0.1546  |        |
| Cramer's V                     |    | 0.1565  |        |

Sample Size = 1591

#### Exercise 2b):

We performed the following tests; we see it on the above table. We see that all p-values are smaller than significance level. So, we reject null hypothesis and we accept alternative hypothesis which states there is association between variables. And there is a statistically significant association. It also provides us with the measures of association; however we see that it is only approx. 0.16.

| Table of Species by swgroup |                      |              |     |  |  |
|-----------------------------|----------------------|--------------|-----|--|--|
| Species(Iris<br>Species)    |                      | swgroup      |     |  |  |
| Frequency<br>Expected       | Longer Shorter Total |              |     |  |  |
| Setosa                      | 42<br>22.333         | 8<br>27.667  | 50  |  |  |
| Versicolor                  | 8<br>22.333          | 42<br>27.667 | 50  |  |  |
| Virginica                   | 17<br>22.333         | 33<br>27.667 | 50  |  |  |
| Total                       | 67                   | 83           | 150 |  |  |

#### Exercise 3a):

We constructed a contingency table for **Species** and **swgroup** variables. We see that we have higher than the expected observations in the cell where setosa has longer (>30mm) sepal width, and in the cell where Versicolor has shorter sepal width, and in the cell where virginica has shorter sepal width. We have lower than the expected observations in the cell where setosa has shorter sepal width, and in the cell where virginical has longer sepal width. So setosa has the highest probability of having longer longer sepal width and versicolor has the lowest probability of having shorter sepalwidth.

| Table o                  | Table of Species by swgroup |              |     |  |  |
|--------------------------|-----------------------------|--------------|-----|--|--|
| Species(Iris<br>Species) |                             | swgroup      |     |  |  |
| Frequency<br>Expected    | Longer Shorter Total        |              |     |  |  |
| Setosa                   | 42<br>22.333                | 8<br>27.667  | 50  |  |  |
| Versicolor               | 8<br>22.333                 | 42<br>27.667 | 50  |  |  |
| Virginica                | 17<br>22.333                | 33<br>27.667 | 50  |  |  |
| Total                    | 67                          | 83           | 150 |  |  |

#### Statistics for Table of Species by swgroup

| Statistic                      | DF | Value   | Prob   |
|--------------------------------|----|---------|--------|
| Chi-Square                     | 2  | 50.2248 | <.0001 |
| Likelihood Ratio Chi-Square    | 2  | 54.1967 | <.0001 |
| Mantel-Haenszel Chi-Square     | 1  | 25.1191 | <.0001 |
| Phi Coefficient                |    | 0.5786  |        |
| <b>Contingency Coefficient</b> |    | 0.5008  |        |
| Cramer's V                     |    | 0.5786  |        |

### Sample Size = 150

#### Exercise 3b):

We performed the following tests; we see it on the above table. We see that all p-values are smaller than significance level. So, we reject null hypothesis and we accept alternative hypothesis which states there is association between variables. And there is a statistically significant association. It also provides us with the measures of association, all of them are slightly above 0.5, which is considered as a strong relationship. A look at the data shows that **setosa** species often have longer sepal width than expected due to chance, **versicolor** species less likely to have longer sepal width than expected. These can be observed by looking at the differences in sepalwidth measurements as well.

#### The ANOVA Procedure

| Class Level Information |   |                             |  |  |  |
|-------------------------|---|-----------------------------|--|--|--|
| Class Levels Values     |   |                             |  |  |  |
| Species                 | 3 | Setosa Versicolor Virginica |  |  |  |

| Number of Observations Read | 150 |
|-----------------------------|-----|
| Number of Observations Used | 150 |

#### Exercise 4a):

We performed a one-way ANOVA for **sepalwidth** with **species** as the categorical predictor. The analysis of variance and diagnostics are on the next page. We see that we don't have any missing observations: number of observations read = number of observations used. The first ANOVA table was generated for the overall model. Further we state our null hypothesis; under the null hypothesis the model explains no more variation per degree of freedom than expected. So, based on the table we got F-value of 49.16 and p-value very small (<0.0001), so we reject null hypothesis. Our model is **statistically significant**, as the variation described by the model gets larger. The variation described by differences across species is significantly greater (from a statistical perspective) than expected due to chance.

Looking at the R-square value in the next table, of the next page we see that it is equal to 40%. We can say that is not a huge percentage, but it is rather weak percentage of **practical significance**. About 40% of variation in sepal width could be described by type of species alone.

The data in the third table would be identical to the values in the first table. So the conclusion species term describes more variation than expected and it is good to keep it in the model.

Lastly, it also generated a box plot that visualizes the distributions of the sepalwidth values for the different types of species. We may observe that **setosa species** generally have longer (>30mm) sepalwidth comparing to other types of species.

The ANOVA Procedure

# Dependent Variable: SepalWidth Sepal Width (mm)

| Source                 | DF  | Sum of<br>Squares |            | F Value | Pr > F |
|------------------------|-----|-------------------|------------|---------|--------|
| Model                  | 2   | 1134.493333       | 567.246667 | 49.16   | <.0001 |
| Error                  | 147 | 1696.200000       | 11.538776  |         |        |
| <b>Corrected Total</b> | 149 | 2830.693333       |            |         |        |

| R-Square | Coeff Var | Root MSE | SepalWidth Mean |
|----------|-----------|----------|-----------------|
| 0.400783 | 11.11059  | 3.396877 | 30.57333        |

| Source  | DF | Anova SS    | Mean Square | F Value | Pr > F |
|---------|----|-------------|-------------|---------|--------|
| Species | 2  | 1134.493333 | 567.246667  | 49.16   | <.0001 |



#### The ANOVA Procedure

| Class Level Information |   |                             |  |  |  |  |
|-------------------------|---|-----------------------------|--|--|--|--|
| Class Levels Values     |   |                             |  |  |  |  |
| Species                 | 3 | Setosa Versicolor Virginica |  |  |  |  |

| Number of Observations Read | 150 |
|-----------------------------|-----|
| Number of Observations Used | 150 |

#### Exercise 4b):

Next, we test equal variance assumption. First tables and box plot were the same tables that we previously got. Now we focus on the next table that includes Levene's test. Null hypothesis will be that the variances are the same for each type of species. We see that the p-value is larger than 0.05 (<0.4073), so we accept null hypothesis.

Moving now to Tukey's test for differences of sepalwidth means, a table containing alpha value, degrees of freedom and a few statistics needed for constructing confidence intervals for the differences of means is generated and followed by the comparison of means. The estimated differences of means are also provided along with 95% confidence intervals. From the table we can see that mean **sepalwidth** measurement for Setosa species is higher than for species Versicolor and Virginica. However, we may observe that the differences are not high (between 2.04-6.58). Moreover, all of the differences are statistically significant, since they don't involve 0 in the confidence intervals.

Generally, it matches the conclusion from Exercise 3b) about the difference measurements across species as stated above. However, there is some discrepancy in values.

The ANOVA Procedure

# Dependent Variable: SepalWidth Sepal Width (mm)

| Source                 | DF  | Sum of<br>Squares |            | F Value | Pr > F |
|------------------------|-----|-------------------|------------|---------|--------|
| Model                  | 2   | 1134.493333       | 567.246667 | 49.16   | <.0001 |
| Error                  | 147 | 1696.200000       | 11.538776  |         |        |
| <b>Corrected Total</b> | 149 | 2830.693333       |            |         |        |

| R-Square | Coeff Var | Root MSE | SepalWidth Mean |
|----------|-----------|----------|-----------------|
| 0.400783 | 11.11059  | 3.396877 | 30.57333        |

| Source  | DF | Anova SS    | Mean Square | F Value | Pr > F |
|---------|----|-------------|-------------|---------|--------|
| Species | 2  | 1134.493333 | 567.246667  | 49.16   | <.0001 |



The ANOVA Procedure

| Levene's Test for Homogeneity of SepalWidth Variance<br>ANOVA of Squared Deviations from Group Means |     |                   |       |         |        |  |
|------------------------------------------------------------------------------------------------------|-----|-------------------|-------|---------|--------|--|
| Source                                                                                               | DF  | Sum of<br>Squares |       | F Value | Pr > F |  |
| Species                                                                                              | 2   | 584.3             | 292.2 | 0.90    | 0.4073 |  |
| Error                                                                                                | 147 | 47521.1           | 323.3 |         |        |  |



## The ANOVA Procedure

# Tukey's Studentized Range (HSD) Test for SepalWidth

**Note:** This test controls the Type I experimentwise error rate.

| Alpha                               | 0.05     |
|-------------------------------------|----------|
| <b>Error Degrees of Freedom</b>     | 147      |
| Error Mean Square                   | 11.53878 |
| Critical Value of Studentized Range | 3.34842  |
| Minimum Significant Difference      | 1.6086   |

| Comparisons significant at the 0.05 level are indicated by ***. |                                |                                             |         |     |  |  |  |
|-----------------------------------------------------------------|--------------------------------|---------------------------------------------|---------|-----|--|--|--|
| Species<br>Comparison                                           | Difference<br>Between<br>Means | Simultaneous<br>95%<br>Confidence<br>Limits |         |     |  |  |  |
| Setosa - Virginica                                              | 4.5400                         | 2.9314                                      | 6.1486  | *** |  |  |  |
| Setosa - Versicolor                                             | 6.5800                         | 4.9714                                      | 8.1886  | *** |  |  |  |
| Virginica - Setosa                                              | -4.5400                        | -6.1486                                     | -2.9314 | *** |  |  |  |
| Virginica - Versicolor                                          | 2.0400                         | 0.4314                                      | 3.6486  | *** |  |  |  |
| Versicolor - Setosa                                             | -6.5800                        | -8.1886                                     | -4.9714 | *** |  |  |  |
| Versicolor - Virginica                                          | -2.0400                        | -3.6486                                     | -0.4314 | *** |  |  |  |