

1 IN THE CLAIMS:

2

3 Please amend claims 1, 54, and 61 as follows:

4

5 1. A method of using Si-Ge-C in selective etch applications, comprising:
6 growing one or more layers on a single crystal silicon substrate, at least one of
7 which is a Si-Ge-C layer, wherein the carbon of the Si-Ge-C layer is an amount from 1
8 to 10 atomic percent and sufficient to exhibit etch selectivity with respect to the single
9 crystal silicon substrate and/or one or more of the epitaxial layers adjacent the Si-Ge-C
10 layer; and

11 etching with a liquid etchant, the Si-Ge-C layer and the single crystal silicon
12 substrate and/or one or more of the epitaxial layers adjacent the Si-Ge-C layer.

13 54. A method of using Si-Ge-C in selective etch applications in conjunction with
14 a single crystal substrate, comprising:

15 growing one or more epitaxial layers sequentially, starting at the single crystal
16 substrate surface, wherein at least one of the epitaxial layers comprises Si-Ge-C,
17 wherein the carbon of the Si-Ge-C layer is [up] from 1 to 5 atomic percent; and
18 etching with a liquid etchant, the Si-Ge-C layer[,] and the single crystal substrate
19 and/or one or more of the epitaxial layers adjacent the Si-Ge-C layer.

20 61. A method of using Si-Ge-C in selective etch applications in conjunction with
21 a substrate, comprising:

22 growing one or more layers sequentially, starting at the substrate, wherein at
23 least one of the layers comprises Si-Ge-C, wherein the carbon of the Si-Ge-C layer is
24 [up] from 1 to 10 atomic percent; and

25 etching with a liquid etchant, the Si-Ge-C layer and one or more layers adjacent
26 to the Si-Ge-C layer and/or the substrate.

27

28

29

30

1 A clean copy of claims 1, 54, and 61 is as follows:

2

3 1. A method of using Si-Ge-C in selective etch applications, comprising:
4 growing one or more layers on a single crystal silicon substrate, at least one of
5 which is a Si-Ge-C layer, wherein the carbon of the Si-Ge-C layer is an amount from 1
6 to 10 atomic percent and sufficient to exhibit etch selectivity with respect to the single
7 crystal silicon substrate and/or one or more of the epitaxial layers adjacent the Si-Ge-C
8 layer; and
9 etching with a liquid etchant, the Si-Ge-C layer and the single crystal silicon
10 substrate and/or one or more of the epitaxial layers adjacent the Si-Ge-C layer.

11

12 54. A method of using Si-Ge-C in selective etch applications in conjunction with
13 a single crystal substrate, comprising:

14 growing one or more epitaxial layers sequentially, starting at the single crystal
15 substrate surface, wherein at least one of the epitaxial layers comprises Si-Ge-C,
16 wherein the carbon of the Si-Ge-C layer is from 1 to 5 atomic percent; and
17 etching with a liquid etchant, the Si-Ge-C layer and the single crystal substrate
18 and/or one or more of the epitaxial layers adjacent the Si-Ge-C layer.

19

20 61. A method of using Si-Ge-C in selective etch applications in conjunction with
21 a substrate, comprising:

22 growing one or more layers sequentially, starting at the substrate, wherein at
23 least one of the layers comprises Si-Ge-C, wherein the carbon of the Si-Ge-C layer is
24 from 1 to 10 atomic percent; and
25 etching with a liquid etchant, the Si-Ge-C layer and one or more layers adjacent
26 to the Si-Ge-C layer and/or the substrate.

27

28

29

30

1 Please add new claims 68-73 as follows:

2

3 --68. A method of using Si-Ge-C in selective etch applications, comprising:
4 growing one or more layers on a single crystal silicon substrate, at least one of
5 which is a Si-Ge-C layer, wherein the carbon of the Si-Ge-C layer is sufficient to exhibit
6 etch selectivity with respect to the single crystal silicon substrate and/or one or more of
7 the epitaxial layers adjacent the Si-Ge-C layer; and

8 etching with a liquid etchant, the Si-Ge-C layer and the single crystal silicon
9 substrate and/or one or more of the epitaxial layers adjacent the Si-Ge-C layer wherein
10 the Si-Ge-C layer etches slower than the one or more adjacent epitaxial layers.

11

12 69. A method of using Si-Ge-C in selective etch applications, comprising:
13 growing one or more layers on a single crystal silicon substrate, at least one of
14 which is a Si-Ge-C layer, wherein the carbon of the Si-Ge-C layer is sufficient to exhibit
15 etch selectivity with respect to the single crystal silicon substrate and/or one or more of
16 the epitaxial layers adjacent the Si-Ge-C layer; and

17 etching with a liquid etchant, the Si-Ge-C layer and the single crystal silicon
18 substrate and/or one or more of the epitaxial layers adjacent the Si-Ge-C layer wherein
19 the Si-Ge-C layer etches faster than the one or more adjacent epitaxial layers.

20

21 70. A method of using Si-Ge-C in selective etch applications in conjunction with
22 a single crystal substrate, comprising:

23 growing one or more epitaxial layers sequentially, starting at the single crystal
24 substrate surface, wherein at least one of the epitaxial layers comprises Si-Ge-C,
25 wherein the carbon of the Si-Ge-C layer is up to 5 atomic percent; and

26 etching with a liquid etchant, the Si-Ge-C layer and the single crystal substrate
27 and/or one or more of the epitaxial layers adjacent the Si-Ge-C layer wherein the Si-Ge-
28 C layer etches slower than the one or more adjacent epitaxial layers.

29

30

1 71. A method of using Si-Ge-C in selective etch applications in conjunction with
2 a single crystal substrate, comprising:

3 growing one or more epitaxial layers sequentially, starting at the single crystal
4 substrate surface, wherein at least one of the epitaxial layers comprises Si-Ge-C,
5 wherein the carbon of the Si-Ge-C layer is up to 5 atomic percent; and

6 etching with a liquid etchant, the Si-Ge-C layer and the single crystal substrate
7 and/or one or more of the epitaxial layers adjacent the Si-Ge-C layer wherein the Si-Ge-
8 C layer etches faster than the one or more adjacent epitaxial layers.

9
10 72. A method of using Si-Ge-C in selective etch applications in conjunction with
11 a substrate, comprising:

12 growing one or more layers sequentially, starting at the substrate, wherein at
13 least one of the layers comprises Si-Ge-C, wherein the carbon of the Si-Ge-C layer is
14 up to 10 atomic percent; and

15 etching with a liquid etchant, the Si-Ge-C layer and one or more layers adjacent
16 to the Si-Ge-C layer and/or the substrate wherein the Si-Ge-C layer etches slower than
17 the one or more adjacent layers.

18
19 73. A method of using Si-Ge-C in selective etch applications in conjunction with
20 a substrate, comprising:

21 growing one or more layers sequentially, starting at the substrate, wherein at
22 least one of the layers comprises Si-Ge-C, wherein the carbon of the Si-Ge-C layer is
23 up to 10 atomic percent; and

24 etching with a liquid etchant, the Si-Ge-C layer and one or more layers adjacent
25 to the Si-Ge-C layer and/or the substrate wherein the Si-Ge-C layer etches faster than
26 the one or more adjacent layers.--

27

28

29

30