STA371H April 15th

Topics for Today: Functions of random variables, variance, PDF (Probability Density Function), joint distributions, correlated random variables, co-variance (Co-Variance Hurts), linear combinations of random variables

Moment: some simplified description of uncertainty

X: random variable

x: some possible outcome

 Ω : set of all possible outcomes

→ Expected value (a moment)

$$E(X) = \sum_{x=\Omega} x * P(X = x)$$

Say f(x) is some function, or a decision

$$E(f(x)) = \sum_{x=0}^{\infty} f(x) * P(X = x)$$

Example: x=stock price; f(x)=0.75x

X	P(X=x)
100	.2
150	.6
200	.2

E(f(X))=

f(100)(.2)+f(150)(.6)+f(200)(.2)

= 0.75*100*.2

+ 0.75*150*.6

+0.75*200*,2

Important rules

Y = f(X) = aX + b

E(Y) = E(f(X)) = aE(x) + b

i.e E[f(x)]=f[E(x)]

** but only for linear functions

For all other functions $E[f(x)] \neq f[E(x)]$

This is **Jensen's Inequality**

Y=f(X)

 $Z=(x-E(X))^2$

u=E(X)

 $Z=f(X)=(x-u)^2$

E(Z) = var(x)

Therefore variance is

 $Var(X) = E[X-E(X)]^2$

 $Var(X) = \sum_{x=\Omega} (x - u)^2 * P(X = x)$ where u=E(X)

Variance Example: In Excel spreadsheet shown below

	A	В	C	D	E	F	G
1	x	P(X=x)	x*P(X=x)	x-E(X)	(x-E(X))^2	[(x-E(X))^2]*I	P(X=x)
2	2	0.2	0.4	-1	1	0.2	
3	3	0.6	1.8	0	0	0	
4	4	0.2	0.8	1	1	0.2	
5							
6		E(x)=	3		Variance	0.4	
7					sqrt of var	0.63245553	
8					st dev		
-							

D1= A1-C6

 $E1=(D1)^2$

F1= E1*B1

Joint Distribution/Multivariate distributions

Joint Distribution is P(X,Y)

X= % return on AAPL from now to next month

Y= % return on GOOG

X	Y	P(X=x and Y=y)
-1	-1	.3
1	-1	.2
-1	1	.2
1	1	.3

Some function f(X,Y)

^this could be a policy, decision, asset allocation, happiness function

$$E[f(X,y)] = \sum_{all \ states \ of \ the \ world} f(x_i, y_i) * P(X = x_i, Y = y_i)$$

Example

Z=f(X,Y)=0.7X+0.3Y

What is E(Z)? E(Z) is column E in the excel spreadsheet below

4	Α	В	C	D	E	F
1	x	у	JointProb	Z=f(X,Y)	f(X,Y)*P(X=x,	Y=y)
2	-2.5	-2.5	0.00158754	-2.5	-0.0039689	
3	-2.5	-1.5	0.00711487	-2.2	-0.0156527	
4	-2.5	-0.5	0.00431539	-1.9	-0.0081992	
5	-2.5	0.5	0.00035423	-1.6	-0.0005668	
6	-2.5	1.5	3.94E-06	-1.3	-5.122E-06	
7	-2.5	2.5	1.00E-08	-1	-1E-08	
8	-2.5	3.5	0	-0.7	0	
9	-1.5	-2.5	0.00158754	-1.8	-0.0028576	
10	-1.5	-1.5	0.01934023	-1.5	-0.0290103	

This is calculated by multiplying Z by the joint probability

So take row 1

D1=.7A2+.3B2

E1 = C2*D2