مسألة شاملة في المتتاليات العدية

: المتالية المعرفة على $\mathbb N$ كما يلي المتالية المعرفة على الكن التكن الميالي المتالية المعرفة على المتالية المتا

$$\left\{\begin{array}{l} u_0=\alpha & (\alpha\neq 1) \\ u_{n+1}=\frac{8u_n-6}{u_n+1} \end{array}\right.$$

- . $u_n
 eq 1: \mathbb{N}$ من n من أجل كل أجل التراجع من أجل كل n
- $x^2-7x+6=0$: حلى في ${\mathbb R}$ المعادلة ذات المجهول x التالية (2
 - . عين قيمة العدد الحقيقي lpha حتى تكون المتتالية (u_n) ثابتة (3

. $u_0=8$: نفرض في كل ما يلى : الثانى : نفرض

- $u_n \geq 6$ تحقق أن $u_n = 8 rac{14}{u_n+1}$ ثم برهن بالتراجع أن (1
 - ، $u_{n+1}-u_n=rac{-\left(u_n-1
 ight)\left(u_n-6
 ight)}{u_n+1}$: أثبت أن (2 u_n+1 استنتج اتجاه تغير المتالية (u_n).
- $\ell^2 7\ell + 6 = 0$: ثبت أن (u_n) متقاربة نحو العدد ℓ وَ يحقق (3
 - . $\lim_{n o +\infty} u_n$ عين النهاية (4

 $f\left(x
ight)=rac{8x-6}{x+1}$: إ $\left[1;8
ight]$ الجزء الثالث : نعتبر f دالة معرفة

- . أدرس تغيرات الدالة f ثم أنشئ (C_f) تمثيلها البياني (1
- $f\left(x
 ight)\in\left[4;8
 ight]$. بين أنه إذا كان $x\in\left[4;8
 ight]$ ، فإن 2
- $0.6 \leq u_n \leq 8 : \mathbb{N}$ من n من أجل كل من أجل كل برهن بالتراجع من أجل كل .
 - u_2 مثل على محور الفواصل الحدود u_1 ، u_0 وَ u_2 .
 - . أعط تخمينا حول اتجاه تغير المتتالية (u_n) وتقاربها (5
- برهن بالتراجع على كل n من n ، \mathbb{N} من $u_n=1-rac{5}{\left(rac{2}{7}
 ight)^{n+1}-1}$ برهن بالتراجع على كل n من n من $\lim_{n o +\infty}u_n$ استنتج u_n

 $\left\{egin{array}{l} v_0=4 \ v_{n+1}=f\left(v_n
ight) \end{array}
ight.$ الجزء الرابع : $\left(v_n
ight)$ متتالية معرفة على $\mathbb N$ بـ:

- $4 \leq v_n \leq 6$) برهن بالتراجع من أجل كل n من n
 - ي أثبت أن (v_n) متتالية متزايدة ، ماذا تستنتج ؟
 - . v_2 و v_1 ، v_0 مثل على محور الفواصل الحدود (3

. اهو تخمينك حول اتجاه تغير المتتالية (v_n) و تقاربها (4

 $w_{n+1}=f\left(u_{n}
ight)-f\left(v_{n}
ight)$: نضع: نضع: الجزء الخامس:

- $w_{n+1} = rac{14 \left(u_n v_n
 ight)}{\left(u_n + 1
 ight)\left(v_n + 1
 ight)} : n \in \mathbb{N}$ أثبت من أجل (1
 - . $w_n \geq 0$: \mathbb{N} من n من أجل كل n من أجل كل n
 - . $u_{n+1}-v_{n+1} \leq rac{14}{35} \left(u_n-v_n
 ight)$: يين أن (3
- $u_n-v_n \leq 4\left(rac{14}{35}
 ight)^n$: n غنية عدد طبيعي عدد طبيعي (4 أثبت أنه من أجل كل عدد طبيعي استنتج أن المتتاليتان (u_n) و (v_n) متجاورتان
- $L_n = rac{u_n 6}{u_n 1}$: الجزء السادس: (L_n) متتالية معرفة على $\mathbb N$ با
 - . برهن أن (L_n) متتالية هندسية يطلب تعيين أساسها (1
 - . n بدلالة u_n بدلالة u_n بدلالة u_n بدلالة (2
 - ب ماذا تستنتج ا $\lim_{n o +\infty} u_n$ ثم $\lim_{n o +\infty} L_n$ عاذا تستنتج (3
- $S_n = L_0 + L_1 + L_2 + ... + L_n$ (4) أحسب بدلالة n المجموع: استنتج بدلالة n المجموع:

$${S'}_n = \frac{1}{u_0-1} + \frac{1}{u_1-1} + \ldots + \frac{1}{u_n-1}$$

. $P_n = L_0^{2018} imes L_1^{2018} imes ... imes L_n^{2018}$: أحسب الجداء (5

لحزء السابع:

- . $u_{n+1}-6=rac{2\left(u_{n}-6
 ight)}{u_{n}+1}$: $\mathbb N$ من n کل n برهن من أجل کل (1
 - : عين عدداً حقيقياً k من المجال 0;1[بحيث (2
 - $|u_{n+1}-6| \le k |u_n-6|$
 - $|u_n-6| \leq 2 {\left(rac{2}{7}
 ight)}^n$: $\mathbb N$ ابين من أجل كل n من n
 - . استنتج أن المتتالية (u_n) متقاربة ، يطلب تعيين نهايتها (4

•

التصحيح النموذجي --- المسألة الشاملة في المتتاليات ---

$$\left\{egin{array}{ll} u_0=lpha & ; & lpha
eq 1 \ u_{n+1}=rac{8u_n-6}{u_n+1} & :$$
الجزء الأول: لدينا (u_n) متتالية معرفة على $\mathbb N$ كما يلي

$p\left(n ight):u_{n} eq1:\mathbb{N}$ لنبرهن بالتراجع من أجل كل n من n

. لنتحقق من صحة $p\left(0
ight)$: من أجل n=0 لدينا : $u_{0}=lpha
eq1$ إذن $p\left(0
ight)$ محققة .

 $u_{n+1}
eq 1$: نفرض صحة $p\left(n+1
ight)$ أي: $1
eq u_n
eq 1$ و لنبرهن صحة $p\left(n+1
ight)$ أي: $p\left(n+1
ight)$

 $u_n=1$ یکفی إثبات أنه من أجل كل n من $n:\mathbb{N}$ من $u_{n+1}=1$ یستلزم

$$u_n=1$$
: لدينا $u_n=7$ منه $u_n=7$ و منه $u_n=6+1$ و منه $u_n=6+1$ و منه $u_n=7$ إذن $u_n=7$ إذن

إذن إذا كان $u_n
eq 1$ فإن $u_{n+1} \neq 1$ أي $u_n \neq 1$ صحيحة

 $u_n \neq 1$ ، n اذن من أجل كل عدد طبيعي إذن من أجل

$x^2-7x+6=0$ حل في ${\mathbb R}$ المعادلة التالية (2

: لدينا كلمعادلة حلان مختلفان هما ، $\Delta=49-24=25$ ، إذن للمعادلة حلان مختلفان هما

$$x_2=rac{-b+\sqrt{\Delta}}{2a}=rac{7+5}{2}=6$$
 § $x_1=rac{-b-\sqrt{\Delta}}{2a}=rac{7-5}{2}=1$

تعيين قيمة العدد الحقيقي lpha حتى تكون المتتالية (u_n) ثابتة :

$$u_{n+1}=u_n=u_0=lpha$$
 متتالية ثابتة يعني من أجل كل n من (u_n)

$$lpha^2+lpha=8lpha-6$$
 من العلاقة : $lpha=(lpha+1)=8lpha-6$ منه : $lpha=(lpha+1)=3$ و منه : $lpha=(lpha+1)=3$ و منه : $lpha=(lpha+1)=3$ من العلاقة : $lpha=(lpha+1)=3$ نجد : $lpha=(lpha+1)=3$ منه : $lpha=(lpha+1)=3$ و هي المعادلة السابقة ، و عليه : $lpha=(lpha+1)=3$ (مقبول) أو $lpha=(lpha+1)=3$ مرفوض لأن $lpha=(lpha+1)=3$

 $u_0=8$: نفرض في كل ما يلي $u_0=8$.

$$u_n=8-rac{14}{u_n+1}$$
نتحقق أن $(1$

.
$$\boxed{u_n=8-rac{14}{u_n+1}}$$
: ندينا: $\dfrac{8-rac{14}{u_n+1}}{u_n+1}=\dfrac{8\,(u_n+1)-14}{u_n+1}=\dfrac{8u_n+8-14}{u_n+1}=\dfrac{8u_n-6}{u_n+1}$ منه: $\dfrac{9\,(n):u_n\geq 6:n}{u_n+1}$ منه: - ندرهن بالتراجع من أجل كل n من $n>0$ من التراجع من أجل كل n من $n>0$

لنتحقق من صحة $p\left(0
ight)$: من أجل n=0 لدينا : $u_{0}=8>6$ إذن $p\left(0
ight)$ محققة arsigma

. نفرض صحة $p\left(n
ight)$ أي: $1
eq u_n
eq 1$ و لنبرهن صحة $p\left(n+1
ight)$ أي: ℓ

$$rac{-14}{u_n+1}\geq rac{-1}{7}$$
 : و منه $u_n\geq 1$ و منه $u_n+1\leq rac{1}{7}$ و منه $u_n\geq 6$: لدينا حسب فرضية التراجع أن

و منه :
$$8-2$$
 $8-1$ أي : $8-\frac{14}{u_n+1} \geq 8$ منه $p\left(n+1
ight)$ منه و منه :

. $u_n \geq 6$ ، اوذن من أجل كل عدد طبيعي ،n

$$u_{n+1}-u_n=rac{-\left(u_n-1
ight)\left(u_n-6
ight)}{u_n+1}$$
 (2) اِثْبَاتْ أَن

$$u_{n+1}-u_n=rac{8u_n-6}{u_n+1}-u_n=rac{8u_n-6-u_n\left(u_n+1
ight)}{u_n+1}=rac{8u_n-6-u_n^2-u_n}{u_n+1}=rac{-\left(u_n^2-7u_n+6
ight)}{u_n+1}$$
: لدينا $u_{n+1}-u_n=rac{-\left(u_n-1
ight)\left(u_n-6
ight)}{u_n+1}$ إذن :

(u_n) استنتاج اتجاه تغير المتتالية - استنتاج

 $u_n+1>0$ بما أن $u_n\geq 0$ فإن $u_n-6\geq 0$ و $u_n-6\geq 0$ و أن $u_n\geq 0$ بما أن $u_n\geq 0$ فإن $u_n+1>0$ و بالتالي $u_n+1>0$ متناقصة $u_n+1>0$

: متقاربة (u_n) متقاربة (3

 ℓ بما أن $u_n \geq 0$ فإن u_n متتالية محدودة من الأسفل و متناقصة فهي متقاربة و تقترب نحو العدد الحقيقي

$$\displaystyle \lim_{n o +\infty} u_n = \lim_{n o +\infty} u_{n+1} = \ell$$
 : منه

$$\ell^2+\ell=8\ell-6$$
: كدينا $\ell=rac{8\ell-6}{\ell+1}$ منه $u_{n+1}=\lim_{n o+\infty}rac{8u_n-6}{u_n+1}$ ومنه $u_{n+1}=rac{8u_n-6}{u_n+1}$ تكافئ : $\ell=rac{8u_n-6}{u_n+1}$

$\displaystyle \lim_{n o +\infty} u_n$ تعيين النهاية (4

$$\ell=6$$
 لدينا: $\ell=6+7$ $\ell=7$ من أجل $\ell=1$ أو $\ell=6$ بما أن $\ell=6$ فإن $\ell=6$ و عليه الما أن $\ell=6$ فإن $\ell=6$

 $f\left(x
ight)=rac{8x-6}{x+1}$: $x\in\left[1;8
ight]$ الجزء الثالث: لدينا من أجل

f دراسة تغيرات الدالة f:

$$\begin{array}{c|cccc}
x & 1 & 8 \\
f'(x) & + & \vdots \\
f(x) & 1 & \xrightarrow{58} \\
\end{array}$$

$$f'(x)=rac{8\left(x+1
ight)-1\left(8x-6
ight)}{\left(x+1
ight)^2}=rac{8+6}{\left(x+1
ight)^2}=rac{14}{\left(x+1
ight)^2}>0$$
 : $x\in[1;8]$ من أجل كل f دالة متزايدة تماماً على المجال f . f دالة متزايدة تماماً على المجال و

$f\left(x ight)\in\left[4;8 ight]$ فإن $x\in\left[4;8 ight]$ كنبين أنه إذا كان $x\in\left[4;8 ight]$ (2

 $f\left(x
ight)\in\left[rac{26}{4};rac{58}{9}
ight]$: و منه $f\left(x
ight)\in\left[f\left(4
ight);f\left(8
ight)
ight]$ د دللة متزايدة تماماً ، منه $f\left(x
ight)\in\left[f\left(4
ight);f\left(8
ight)
ight]$ د دللة متزايدة تماماً ، منه د

$$f\left(x
ight)\in\left[4;8
ight]$$
 : فإن ו $\left[rac{26}{5};rac{58}{9}
ight]\subset\left[4;8
ight]$ بما أن

$p\left(n ight):6\leq u_{n}\leq8:\mathbb{N}$ نبرهن بالتراجع من أجل كل n من n

. محققة $p\left(0
ight)$ محققة $u_{0}\leq u_{0}\leq s$ محققة $u_{0}=0$ لديناn=0 لدينا $p\left(0
ight)$ محققة $u_{0}\leq s$

. $6 \leq u_{n+1} \leq 8$: نفرض صحة $p\left(n+1
ight)$ أي $1 \leq u_{n+1} \leq s$ نفرض صحة $p\left(n+1
ight)$ أي $1 \leq u_{n+1} \leq s$

 $6 \leq u_{n+1} \leq rac{58}{\mathrm{q}}$: لدينا حسب فرضية التراجع $f\left(6
ight) \leq t\left(u_{n}
ight) \leq t\left(8
ight)$ منه $f\left(6
ight) \leq t\left(u_{n}
ight) \leq t\left(a_{n} \leq 8
ight)$ أي

و بما أن
$$0 \leq k \leq n$$
 فإن $0 \leq k \leq n$ فإن $0 \leq k \leq n$ منه $0 \leq k \leq n$ صحيحة

. $6 \leq u_n \leq 8$ ، n إذن من أجل كل عدد طبيعي

$$\left\{egin{array}{l} v_0=4 \ v_{n+1}=f\left(v_n
ight) \end{array}
ight.$$
معرفة كما يلي: $\left(v_n
ight)$ من n المتتالية $\left(v_n
ight)$ معرفة كما يلي:

$p\left(n ight):4\leq v_{n}\leq 6$: $\mathbb N$ من n کل من أجل كل (1

. لنتحقق من صحة $p\left(0
ight)$: من أجل n=0 لدينا : $v_0=4$ منه : $0\leq v_0\leq 4$ إذن $p\left(0
ight)$ محققة .

 $4 \leq v_{n+1} \leq 6$: نفرض صحة $p\left(n+1
ight)$ نفرض صحة $4 \leq v_n \leq 6$: نفرض صحة $oldsymbol{V}$

 $rac{26}{5} \leq u_{n+1} \leq 6$: أي $f\left(4
ight) \leq f\left(v_{n}
ight) \leq f\left(6
ight)$ لدينا حسب فرضية التراجع: $4 \leq v_{n} \leq 6$ دالة متزايدة تماماً ، منه

و بما أن $2 \leq rac{26}{5}$ فإن : $6 \leq v_{n+1} \leq 4$ منه $p \left(n + 1
ight)$ صحيحة

. $4 \leq v_n \leq 6$ ، n إذن من أجل كل عدد طبيعي

: إثبات أن (v_n) متتالية متزايدة (2

$$v_{n+1}-v_n=f\left(v_n
ight)-v_n=rac{8v_n-6}{v_n+1}-v_n=rac{-\left(v_n-1
ight)\left(v_n-6
ight)}{v_n+1}$$
: لدينا

 $v_n+1>0$ بما أن $4\leq v_n-1>0$ فإن $0\leq v_n-1>0$ و َ

 $oxedsymbol{igcup}$ إذن : $v_n \geq v_{n+1} - v_n \geq v_{n+1}$ و بالتالي

. ℓ' متتالية محدودة من الأسفل و متزايدة فهي متقاربة و تقترب نحو العدد الحقيقي الاستنتاج: بما أن $4 \leq v_n$ فإن

- . انظر الشكل أدناه : v_2 و v_1 ، v_0 على محور الفواصل الحدود (3
 - 4) التخمين:

y=x أي: $v_0 < v_1 < v_2$ مع المستقيم ذو المعادلة $v_0 < v_1 < v_2$ من الشكل نلاحظ أن $v_0 < v_1 < v_2$ متزايدة متناقصة و تقترب نحو فاصلة نقطة تقاطع

 $\lim_{n\to+\infty}v_n=\ell'=6$

$$\begin{aligned} w_{n+1} &= f\left(u_n\right) - f\left(v_n\right): العرفة على \mathbb{N} العرفة على \mathbb{N} المعرفة على \mathbb{N} العرفة على \mathbb{N} المعرفة على \mathbb{N} العرفة على العرفة على العرفة على \mathbb{N} الموجه على \mathbb{N} الموجه على \mathbb{N} الموجه العرفية \mathbb{N} العرب \mathbb{N} العرب \mathbb{N} الموجه العرفية \mathbb{N} العرب \mathbb{N} الموجه العرب العرب \mathbb{N} الموجه العرب \mathbb{N} الموجه العرب \mathbb{N} العرب \mathbb{N} العرب \mathbb{N} العرب \mathbb{N} الموجه العرب \mathbb{N} العرب \mathbb{N} الموجه الموافق العرب \mathbb{N} الموجه العرب \mathbb{N} الموجه الموافق العرب \mathbb{N} الموجه الموافق العرب \mathbb{N} الموجه الموبة المو$$

$$\overline{(u_n+1)\,(v_n+1)} \leq \overline{35}\,$$
 كلينا: $\overline{(u_n+1)\,(v_n+1)} \leq \overline{35}\,$ و منه : $\overline{35}\,$ و منه : $\overline{(v_n+1)\,(v_n+1)} \leq \overline{4}\,$ كنظرب طرفي المتباينة بالعدد الموجب $\overline{(u_n+1)\,(v_n+1)} \leq \overline{35}\,$ فنجد : $\overline{(u_n+1)\,(v_n+1)} \leq \overline{35}\,$ فنجد : $\overline{(u_n+1)\,(v_n+1)} \leq \overline{35}\,$

$$\left| u_{n+1} - v_{n+1} \leq rac{14}{35} \left(u_n - v_n
ight)
ight|$$
 إذن:

$$u_n-v_n \leq 4igg(rac{14}{35}igg)^n$$
ا ثبت أنه من أجل كل عدد طبيعي n : n عدد طبيعي (4

$$u_n-v_n \leq 4igg(rac{14}{35}igg)^n rac{14}{35} = 0$$
 ا بنیت آنه من أجل کل عدد طبیعی $u_1-v_1 \leq rac{14}{35} = 0$ $u_1-v_1 \leq rac{14}{35} = 0$ $u_2-v_2 \leq rac{14}{35} = 0$ $u_3-v_3 \leq 1$

. $u_n-v_n \leq \left(rac{14}{35}
ight)^n \left(u_0-v_0
ight)$: بضرب المتباينات طرفاً لطرف نجد

$$\left|u_n-v_n\leq 4igg(rac{14}{35}igg)^n
ight|$$
: و بما أن $u_0-v_0=8-4=4$ فإن $u_0-v_0=8-4=4$

. (v_n) متتالية متناقصة وَ (v_n) متتالية متزايدة وَ $(v_n)=0$ متتالية متزايدة وَ $(v_n)=0$ متجاورتان المتنتاج: بما أن

 $L_n = rac{u_n - 6}{u_n - 1}$: لدينا المتتالية (L_n) معرفة على $\mathbb N$ كما يلي لدينا المتتالية

: متتالية هندسية ($oldsymbol{L_n}$) نابرهن أن

$$L_{n+1} = rac{u_{n+1} - 6}{u_{n+1} - 1} = rac{rac{8u_n - 6}{u_n + 1} - 6}{rac{8u_n - 6}{u_n + 1} - 1} = rac{rac{8u_n - 6 - 6\left(u_n + 1
ight)}{u_n + 1}}{rac{8u_n - 6 - \left(u_n + 1
ight)}{u_n + 1}} = rac{8u_n - 6 - 6\left(u_n + 1
ight)}{8u_n - 6 - \left(u_n + 1
ight)} = rac{2u_n - 12}{7u_n - 7}$$
: لدينا :

$$L_{n+1}=rac{2}{7}\left(rac{u_n-6}{u_n-1}
ight)=rac{2}{7}L_n$$
 : منه

$$|L_0=rac{2}{7}|$$
 : ين $|L_0=rac{u_0-6}{u_0-1}=rac{8-6}{8-1}$ و حدها الأول $|q=rac{2}{7}|$ أي $|q=rac{2}{7}|$

n بدلالة L_n بدلالة (2

$$L_n=\left(rac{2}{7}
ight)^{n+1}$$
: لدينا $L_n=\left(rac{2}{7}
ight)^n$ عنه $L_n=L_0 imes q^n$ إذن

: n استنتاج u_n بدلاله -

$$L_nu_n-u_n=L_n-6$$
 : نلينا يا $L_nu_n-L_n=u_n-1$ تكافئ $L_nu_n-L_n=u_n-1$ تكافئ يا $L_nu_n-1=u_n-1$ تكافئ

$$u_n=rac{\left(rac{2}{7}
ight)^{n+1}-6}{\left(rac{2}{7}
ight)^{n+1}-1}$$
: نكافئ $u_n=rac{L_n-6}{L_n-1}$ تكافئ $u_n=rac{L_n-6}{L_n-1}$ تكافئ

3) حساب النهايات:

. 0 متتالية متقاربة نحو
$$(L_n)$$
 منه: $\lim_{n o +\infty}L_n=0$ منه: $\lim_{n o +\infty}\left(rac{2}{7}
ight)^{n+1}=0$ فإن 0 متتالية متقاربة نحو 1

. 6 وَ :
$$6$$
 وَ : 6 المتالية متقاربة نحو $u_n = \lim_{n o +\infty} u_n = \lim_{n o +\infty} u_n = \lim_{n o +\infty} \frac{\left(\dfrac{2}{7}\right)^{n+1} - 6}{\left(\dfrac{2}{7}\right)^{n+1} - 1} = \dfrac{-6}{-1} = 6$. نستنتج أن u_n متتالية متقاربة نحو u_n

$:S_n$ حساب بدلالة n المجموع (4

$$S_n = L_0\left(rac{1-q^{n+1}}{1-q}
ight)$$
: منه $S_n = L_0 + L_1 + L_2 + ... + L_n$ لدينا

$$S_n = rac{2}{5} \left(1 - \left(rac{2}{7}
ight)^{n+1}
ight)$$
 و منه : $S_n = rac{2}{7} \left(rac{1 - \left(rac{2}{7}
ight)^{n+1}}{1 - rac{2}{7}}
ight) = rac{2}{7} imes rac{1 - \left(rac{2}{7}
ight)^{n+1}}{rac{5}{7}}$: و منه

 $:\!S'_n$ استنتاج المجموع -

$$L_n-1=-\frac{5}{u_n-1}: 4 u_3 L_n=1-\frac{5}{u_n-1}: 4 u_3 L_n=\frac{u_n-1-5}{u_n-1}: 4 u_3 L_n=\frac{u_n-6}{u_n-1}: 4 u_n-\frac{1}{5}=\frac{1}{u_n-1}: 4 u_n-\frac{1}{5}=\frac{1}{u_n-1}$$

 $|u_n-6| \leq 2 {\left(rac{2}{7}
ight)}^n$ نبین من أجل کل n من n ننبین من أجل کا (3

$$\left\{egin{array}{l} |u_1-6|\leq rac{2}{7}\,|u_0-6|\ |u_2-6|\leq rac{2}{7}\,|u_1-6|\ |u_3-6|\leq rac{2}{7}\,|u_2-6| &: |u_{n+1}-6|\leq rac{2}{7}\,|u_n-6| : |u_{n-1}-6| &: |u_{n-1}-6|$$

متقاربة ، يطلب تعيين نهايتها . (u_n) استنتاج أن المتتالية

$$\lim_{n o +\infty}\ |u_n-6|\le 0$$
 لدينا : $\lim_{n o +\infty}\ |u_n-6|\le \lim_{n o +\infty}2igg(rac{2}{7}igg)^n$: منه : $u_n-6|\le 2igg(rac{2}{7}igg)^n$ منه : $\lim_{n o +\infty}\ |u_n-6|\le 2igg(rac{2}{7}igg)^n$ في : $\lim_{n o +\infty}\ |u_n-6|=0$ إذن : $\lim_{n o +\infty}\ |u_n-6|=0$ ، أي المينا : $\lim_{n o +\infty}\ |u_n-6|=0$ بنحو u_n

