COMPARISON_MediaPipe+CNN+LSTM

June 21, 2025

```
[18]: from modules.SignLanguageProcessor import load_and_preprocess_data,parse_frame
      import os
[19]: ROOT PATH = ''
      sequences,labels,label_map = load_and_preprocess_data(os.path.
       ⇔join(ROOT_PATH, 'data'))
[20]: num_classes = len(label_map)
[21]: len(labels)
[21]: 3413
[22]: sequences.shape
[22]: (3413, 3, 61, 3)
[23]: from sklearn.model_selection import train_test_split
      X_train, X_temp, y_train, y_temp = train_test_split(
          sequences, labels, test_size=0.4, stratify=labels, random_state=42
      X_val, X_test, y_val, y_test = train_test_split(
          X_temp, y_temp, test_size=0.5, stratify=y_temp, random_state=42
[24]: import numpy as np
      def normalize landmark data(X):
          Normalize the landmark features (x, y) to have zero mean and unit variance
       \hookrightarrowacross the training set.
          Assumes X shape is (N, F, L, T), where F=3 (x, y, vis).
          X = X.copy()
          # Flatten across all samples, landmarks, and frames
          x_vals = X[:, 0, :, :].flatten()
          y_vals = X[:, 1, :, :].flatten()
```

```
# Compute mean and std
         x_mean, x_std = np.mean(x_vals), np.std(x_vals)
         y_mean, y_std = np.mean(y_vals), np.std(y_vals)
          # Normalize
         X[:, 0, :, :] = (X[:, 0, :, :] - x_mean) / x_std
         X[:, 1, :, :] = (X[:, 1, :, :] - y_mean) / y_std
         return X, (x_mean, x_std), (y_mean, y_std)
      def apply_normalization(X, x_mean, x_std, y_mean, y_std):
         X = X.copy()
         X[:, 0, :, :] = (X[:, 0, :, :] - x_mean) / x_std
         X[:, 1, :, :] = (X[:, 1, :, :] - y_mean) / y_std
         return X
[25]: def reshape_frames_for_cnn(X, y):
         X = X.transpose(0, 3, 2, 1) # (N, T, L, F)
         X = X[..., np.newaxis] # (N, T, L, F, 1)
         return X,y
[26]: X_train_norm, (x_mean, x_std), (y_mean, y_std) =
      →normalize_landmark_data(X_train)
      X_val_norm = apply_normalization(X_val, x_mean, x_std, y_mean, y_std)
      X test_norm = apply_normalization(X_test, x_mean, x_std, y_mean, y_std)
      X train_cnn, y_train_cnn = reshape_frames_for_cnn(X_train_norm, y_train)
      X_val_cnn, y_val_cnn = reshape_frames_for_cnn(X_val_norm, y_val)
      X_test_cnn, y_test_cnn = reshape_frames_for_cnn(X_test_norm, y_test)
      print(X_train_cnn.shape)
      print(y_train_cnn.shape)
     (2047, 3, 61, 3, 1)
     (2047,)
[27]: input_shape = X_train_cnn.shape[1:]
      print(input_shape)
     (3, 61, 3, 1)
[28]: import tensorflow as tf
      train_ds = tf.data.Dataset.from_tensor_slices((X_train_cnn, y_train_cnn))
      train_ds = train_ds.shuffle(buffer_size=1000).batch(64).prefetch(tf.data.
       →AUTOTUNE)
```

```
val_ds = tf.data.Dataset.from_tensor_slices((X_val_cnn, y_val_cnn))
      val_ds = val_ds.batch(64).prefetch(tf.data.AUTOTUNE)
      test_ds = tf.data.Dataset.from_tensor_slices((X_test_cnn, y_test_cnn))
      test_ds = test_ds.batch(64).prefetch(tf.data.AUTOTUNE)
[29]: from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import TimeDistributed, Conv2D, MaxPooling2D,
       →Flatten, Input
      from tensorflow.keras.layers import LSTM, Dropout, Dense, BatchNormalization
      model = Sequential([
          Input((3, 61, 3, 1)),
          TimeDistributed(Conv2D(32, (3, 2), activation='relu', padding='same')),
          TimeDistributed(BatchNormalization()),
          TimeDistributed(MaxPooling2D(pool_size=(2, 1))),
          TimeDistributed(Dropout(0.25)),
          TimeDistributed(Conv2D(64, (3, 2), activation='relu', padding='same')),
          TimeDistributed(BatchNormalization()),
          TimeDistributed(MaxPooling2D(pool_size=(2, 1))),
          TimeDistributed(Flatten()),
          LSTM(128, return_sequences=False),
          Dropout(0.5),
          Dense(num_classes, activation='softmax')
      ])
      model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', u
       →metrics=['accuracy'])
[30]: history = model.fit(train_ds, validation_data=val_ds, epochs=50, batch_size=64)
     Epoch 1/50
                       6s 71ms/step -
     32/32
     accuracy: 0.0712 - loss: 3.6093 - val_accuracy: 0.1069 - val_loss: 3.6128
     Epoch 2/50
     32/32
                       2s 54ms/step -
     accuracy: 0.1152 - loss: 3.1231 - val_accuracy: 0.1537 - val_loss: 3.3119
     Epoch 3/50
     32/32
                       2s 53ms/step -
     accuracy: 0.1489 - loss: 2.9579 - val_accuracy: 0.1552 - val_loss: 3.0274
     Epoch 4/50
     32/32
                       2s 54ms/step -
     accuracy: 0.1756 - loss: 2.8015 - val_accuracy: 0.1933 - val_loss: 2.8193
     Epoch 5/50
                       2s 52ms/step -
     32/32
     accuracy: 0.2241 - loss: 2.7012 - val_accuracy: 0.2372 - val_loss: 2.7337
```

```
Epoch 6/50
32/32
                 2s 52ms/step -
accuracy: 0.2613 - loss: 2.5861 - val_accuracy: 0.2972 - val_loss: 2.6101
Epoch 7/50
32/32
                 2s 48ms/step -
accuracy: 0.2631 - loss: 2.5559 - val_accuracy: 0.3382 - val_loss: 2.5513
Epoch 8/50
32/32
                 2s 51ms/step -
accuracy: 0.3352 - loss: 2.4166 - val_accuracy: 0.3777 - val_loss: 2.4247
Epoch 9/50
32/32
                 2s 50ms/step -
accuracy: 0.3638 - loss: 2.2752 - val_accuracy: 0.3441 - val_loss: 2.4053
Epoch 10/50
32/32
                 2s 48ms/step -
accuracy: 0.3673 - loss: 2.2314 - val_accuracy: 0.3865 - val_loss: 2.3214
Epoch 11/50
32/32
                 2s 49ms/step -
accuracy: 0.4153 - loss: 2.1264 - val_accuracy: 0.3836 - val_loss: 2.2909
Epoch 12/50
32/32
                 2s 49ms/step -
accuracy: 0.4595 - loss: 2.0062 - val_accuracy: 0.4100 - val_loss: 2.2592
Epoch 13/50
32/32
                 2s 49ms/step -
accuracy: 0.4510 - loss: 1.9713 - val_accuracy: 0.4905 - val_loss: 2.1077
Epoch 14/50
32/32
                 2s 49ms/step -
accuracy: 0.5053 - loss: 1.8851 - val_accuracy: 0.5124 - val_loss: 2.0930
Epoch 15/50
32/32
                 2s 48ms/step -
accuracy: 0.5136 - loss: 1.7895 - val_accuracy: 0.4846 - val_loss: 2.1556
Epoch 16/50
32/32
                 2s 49ms/step -
accuracy: 0.5522 - loss: 1.7098 - val_accuracy: 0.5300 - val_loss: 2.0626
Epoch 17/50
32/32
                 2s 48ms/step -
accuracy: 0.5491 - loss: 1.6804 - val_accuracy: 0.5081 - val_loss: 2.0680
Epoch 18/50
32/32
                 2s 48ms/step -
accuracy: 0.5857 - loss: 1.5507 - val_accuracy: 0.5447 - val_loss: 1.9993
Epoch 19/50
32/32
                 2s 48ms/step -
accuracy: 0.6256 - loss: 1.4825 - val_accuracy: 0.6135 - val_loss: 1.8325
Epoch 20/50
32/32
                 2s 49ms/step -
accuracy: 0.6331 - loss: 1.4369 - val_accuracy: 0.6032 - val_loss: 1.8713
Epoch 21/50
32/32
                 2s 50ms/step -
accuracy: 0.6275 - loss: 1.4572 - val_accuracy: 0.5944 - val_loss: 1.7713
```

```
Epoch 22/50
32/32
                 2s 49ms/step -
accuracy: 0.6691 - loss: 1.3031 - val_accuracy: 0.6076 - val_loss: 1.8070
Epoch 23/50
32/32
                 2s 49ms/step -
accuracy: 0.6976 - loss: 1.2281 - val_accuracy: 0.6457 - val_loss: 1.7261
Epoch 24/50
32/32
                 2s 49ms/step -
accuracy: 0.6864 - loss: 1.2291 - val_accuracy: 0.6193 - val_loss: 1.7012
Epoch 25/50
32/32
                 2s 49ms/step -
accuracy: 0.7164 - loss: 1.1419 - val_accuracy: 0.6764 - val_loss: 1.6196
Epoch 26/50
32/32
                 2s 48ms/step -
accuracy: 0.7444 - loss: 1.0669 - val_accuracy: 0.6603 - val_loss: 1.5814
Epoch 27/50
32/32
                 2s 49ms/step -
accuracy: 0.7472 - loss: 1.0222 - val_accuracy: 0.6135 - val_loss: 1.6472
Epoch 28/50
32/32
                 2s 49ms/step -
accuracy: 0.7637 - loss: 1.0055 - val_accuracy: 0.7028 - val_loss: 1.3802
Epoch 29/50
32/32
                 2s 50ms/step -
accuracy: 0.7529 - loss: 1.0032 - val_accuracy: 0.7013 - val_loss: 1.3752
Epoch 30/50
32/32
                 2s 48ms/step -
accuracy: 0.7921 - loss: 0.8948 - val_accuracy: 0.7233 - val_loss: 1.3757
Epoch 31/50
32/32
                 2s 49ms/step -
accuracy: 0.7946 - loss: 0.8668 - val_accuracy: 0.7174 - val_loss: 1.3613
Epoch 32/50
32/32
                 2s 49ms/step -
accuracy: 0.7878 - loss: 0.8528 - val_accuracy: 0.7482 - val_loss: 1.2329
Epoch 33/50
32/32
                 2s 49ms/step -
accuracy: 0.8085 - loss: 0.7934 - val_accuracy: 0.6999 - val_loss: 1.4288
Epoch 34/50
32/32
                 2s 57ms/step -
accuracy: 0.8188 - loss: 0.7503 - val_accuracy: 0.7570 - val_loss: 1.1362
Epoch 35/50
32/32
                 2s 54ms/step -
accuracy: 0.8125 - loss: 0.7429 - val_accuracy: 0.7160 - val_loss: 1.3110
Epoch 36/50
32/32
                 2s 54ms/step -
accuracy: 0.8319 - loss: 0.7239 - val_accuracy: 0.7657 - val_loss: 1.2184
Epoch 37/50
32/32
                 2s 54ms/step -
accuracy: 0.8471 - loss: 0.6726 - val_accuracy: 0.7716 - val_loss: 1.1800
```

```
Epoch 38/50
     32/32
                       2s 52ms/step -
     accuracy: 0.8313 - loss: 0.6721 - val accuracy: 0.7643 - val loss: 1.2114
     Epoch 39/50
     32/32
                       2s 51ms/step -
     accuracy: 0.8464 - loss: 0.6331 - val_accuracy: 0.7160 - val_loss: 1.1898
     Epoch 40/50
     32/32
                       2s 53ms/step -
     accuracy: 0.8556 - loss: 0.5981 - val accuracy: 0.7452 - val loss: 1.1791
     Epoch 41/50
     32/32
                       2s 52ms/step -
     accuracy: 0.8494 - loss: 0.6114 - val_accuracy: 0.7496 - val_loss: 1.2675
     Epoch 42/50
     32/32
                       2s 53ms/step -
     accuracy: 0.8714 - loss: 0.5451 - val_accuracy: 0.7745 - val_loss: 1.0424
     Epoch 43/50
     32/32
                       2s 52ms/step -
     accuracy: 0.8830 - loss: 0.5088 - val accuracy: 0.7701 - val loss: 1.1306
     Epoch 44/50
     32/32
                       2s 53ms/step -
     accuracy: 0.8862 - loss: 0.5115 - val_accuracy: 0.7862 - val_loss: 1.0396
     Epoch 45/50
     32/32
                       2s 52ms/step -
     accuracy: 0.8987 - loss: 0.4726 - val_accuracy: 0.7789 - val_loss: 1.0102
     Epoch 46/50
     32/32
                       2s 52ms/step -
     accuracy: 0.8887 - loss: 0.4885 - val_accuracy: 0.7599 - val_loss: 1.1317
     Epoch 47/50
     32/32
                       2s 54ms/step -
     accuracy: 0.9171 - loss: 0.4109 - val_accuracy: 0.7965 - val_loss: 1.0105
     Epoch 48/50
                       2s 51ms/step -
     32/32
     accuracy: 0.8995 - loss: 0.4424 - val_accuracy: 0.7862 - val_loss: 1.0209
     Epoch 49/50
     32/32
                       2s 52ms/step -
     accuracy: 0.8997 - loss: 0.4203 - val_accuracy: 0.7980 - val_loss: 0.9457
     Epoch 50/50
     32/32
                       2s 51ms/step -
     accuracy: 0.9131 - loss: 0.3951 - val_accuracy: 0.7921 - val_loss: 0.9908
[31]: test loss, test accuracy = model.evaluate(test ds)
      print(f"Test Accuracy: {test accuracy:.4f}")
     print(f"Test Loss: {test_loss:.4f}")
                       Os 9ms/step -
     accuracy: 0.7747 - loss: 1.0272
     Test Accuracy: 0.7672
```

Test Loss: 1.0240

```
[32]: import matplotlib.pyplot as plt from sklearn.metrics import classification_report, confusion_matrix import seaborn as sns
```

```
[33]: plt.figure(figsize=(12, 4))
      plt.subplot(1, 2, 1)
      plt.plot(history.history['accuracy'])
      plt.plot(history.history['val_accuracy'])
      plt.title('Model accuracy')
      plt.ylabel('Accuracy')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      # Plot training & validation loss values
      plt.subplot(1, 2, 2)
      plt.plot(history.history['loss'])
      plt.plot(history.history['val_loss'])
      plt.title('Model loss')
      plt.ylabel('Loss')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      plt.show()
```



```
[34]: y_true, y_pred = [], []
target_names = [label_map[i] for i in range(len(label_map))]
for X_batch, y_batch in test_ds:
    y_true.append(y_batch.numpy())

    batch_pred = model.predict(X_batch, verbose=0)
    y_pred.append(np.argmax(batch_pred, axis=1))

y_true = np.concatenate(y_true)
```

c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

	precision	recall	f1-score	support
Α	0.462	0.750	0.571	8
В	0.875	0.700	0.778	10
С	0.833	0.556	0.667	18
D	0.000	0.000	0.000	9
E	0.842	0.941	0.889	17
F	0.273	0.500	0.353	6
G	0.667	0.889	0.762	9
Н	0.750	0.667	0.706	9
Ι	0.938	0.714	0.811	21
J	0.731	0.905	0.809	21
K	0.667	0.727	0.696	11

L	0.867	0.684	0.765	19
M	0.750	0.429	0.545	7
N	0.571	0.667	0.615	6
0	0.846	1.000	0.917	22
P	0.667	0.222	0.333	9
Q	0.875	0.778	0.824	9
R	0.667	0.632	0.649	19
S	0.583	0.583	0.583	12
T	0.500	0.462	0.480	13
U	0.857	0.667	0.750	18
V	1.000	0.938	0.968	16
W	0.750	0.882	0.811	17
Х	0.600	0.750	0.667	8
Y	0.750	0.600	0.667	5
Z	0.682	0.789	0.732	19
baca	0.800	0.615	0.696	13
bantu	0.846	1.000	0.917	11
bapak	1.000	0.769	0.870	13
buangairkecil	1.000	0.857	0.923	7
buat	0.929	1.000	0.963	13
halo	0.842	0.889	0.865	18
ibu	1.000	0.750	0.857	4
kamu	0.737	0.737	0.737	19
maaf	0.895	0.944	0.919	18
makan	0.800	0.571	0.667	14
mau	1.000	0.765	0.867	17
nama	0.833	0.833	0.833	18
pagi	0.833	0.789	0.811	19
paham	1.000	0.850	0.919	20
sakit	1.000	1.000	1.000	3
sama-sama	0.852	0.958	0.902	24
saya	0.167	0.833	0.278	6
selamat	0.800	0.941	0.865	17
siapa	0.786	0.917	0.846	12
tanya	0.692	0.529	0.600	17
tempat	1.000	0.750	0.857	4
terima-kasih	0.762	0.889	0.821	18
terlambat	0.917	0.846	0.880	13
tidak	1.000	0.643	0.783	14
tolong	0.800	0.923	0.857	13
accuracy			0.767	683
macro avg	0.770	0.746	0.743	683
weighted avg	0.793	0.767	0.768	683

