Esercizi di Algebra relazionale

Nota: Sulle operazioni di Join mancano le espressioni sui nomi degli attributi che sono uguali (si potrebbe utilizzare l'operatore Natural Join: *). Inoltre l'operazione di assegnamento $A \leftarrow B$ è definita come $\sigma(A,B)$.

Si consideri lo schema:

```
SUPPLIERS (<u>sid</u>, sname, address)
PARTS (<u>pid</u>, pname, color)
CATALOG (<u>sid</u>\, <u>pid</u>\, cost)
```

1. Trovare i nomi dei SUPPLIERS i quali forniscono una parte di colore "red".

```
\pi_{sname}(\pi_{sid}((\pi_{pid}\sigma_{color='red'}Parts) \bowtie Catalog) \bowtie Suppliers)
```

2. Trovare i sids dei SUPPLIERS che forniscono o parti di colore "red" o di colore "green".

$$\pi_{sid}(\pi_{pid}(\sigma_{color='red'\vee color='qreen'}Parts) \bowtie catalog)$$

3. Trovare i sids dei SUPPLIERS forniscono o parti di colore "red" o si trovano all'indirizzo "221 Packer Street".

```
\rho(R1, \pi_{sid}((\pi_{pid}\sigma_{color='red'}Parts) \bowtie Catalog))

\rho(R2, \pi_{sid}\sigma_{address='221PackerStreet'}Suppliers)

R1 \cup R2
```

4. Trovare i sids dei SUPPLIERS che forniscono sia parti di colore "red" sia di colore "green".

```
\rho(R1, \pi_{sid}((\pi_{pid}\sigma_{color='red'}Parts) \bowtie Catalog))

\rho(R2, \pi_{sid}((\pi_{pid}\sigma_{color='green'}Parts) \bowtie Catalog))

R1 \cap R2
```

5. Trovare le coppie di sids tali che i SUPPLIERS del primo sid caricano di più dei SUPPLIERS del secondo sid.

```
\rho(R1, Catalog)

\rho(R2, Catalog)

\pi_{R1,sid,R2,sid}(\sigma_{R1,pid=R2,pid \land R1,sid \neq R2,sid \land R1,cost \gt R2,cost}(R1 \times R2))
```

6. Trovare i pids delle PARTS fornite da due differenti SUPPLIERS.

```
\rho(R1, Catalog)

\rho(R2, Catalog)

\pi_{R1.pid}\sigma_{R1.pid=R2.pid \land R1.sid \neq R2.sid}(R1 \times R2)
```

Si consideri lo schema:

FLIGHTS (<u>flno</u>, from, to, distance, departs, arrives) AIRCRAFT (<u>aid</u>, aname, cruisingrange) CERTIFIED (<u>eid</u>↑, <u>aid</u>↑) EMPLOYEES (<u>eid</u>, ename, salary)

Trovare i nomi dei piloti che posso pilotare gli aerei dalla portata (cruisingrange) maggiore di 3.000 miglia ma che non sono certificati per qualsiasi aereoplano "Boeing".

```
\rho(R1, \pi_{eid}(\sigma_{cruisingrange>3000}(Aircraft \bowtie Certified)))
\pi_{ename}(Employees \bowtie (R1 - \pi_{eid}(\sigma_{aname='Boeing'}(Aircraft \bowtie Certified))))
```

Esercizio

Considerare lo schema di base di dati contenente le relazioni:

DEPUTATI (<u>Codice</u>, Cognome, Nome, Commissione, Provincia[↑], Collegio) COLLEGI (<u>Provincia</u>[↑], <u>Numero</u>[↑], Nome) PROVINCE (<u>Sigla</u>, Nome, Regione) COMMISSIONI (<u>Numero</u>, Nome, Presidente[↑])

Formulare in algebra relazionale le seguenti interrogazioni:

- 1. Trovare nome e cognome dei presidenti di commissioni cui partecipa almeno un deputato eletto in una provincia della Sardegna
- 2. Trovare nome e cognome dei deputati della commissione Bilancio.
- 3. Trovare nome, cognome, provincia e regione di elezione dei deputati della commissione Bilancio.

Soluzione

- π_{NomeP,CognomeP}((σ_{Regione = "Sardegna"} (PROVINCE) Join _{Sigla=Provincia} (DEPUTATI Join _{Commissione=NumeroC} ρ_{NumeroC,NomeC} ← Numero,Nome(COMMISSIONI)) Join _{Presidente=CodiceP} ρ_{CodiceP,CognomeP,NomeP,CommissioneP,ProvinciaP,CollegioP} ← Codice ,Cognome,Nome,Commissione,Provincia,Collegio (DEPUTATI)))
- π_{Nome,Cognome}(σ_{NomeC="Bilancio"}(DEPUTATI) Join Commissione = NumeroC ρ_{NumeroC,NomeC←Numero,Nome}(COMMISSIONI)))
- π_{Nome,Cognome,NomeProv,Regione} ((σ_{NomeC="Bilancio"} (DEPUTATI) Join Commissione=Numero ρ_{NomeC←Nome} (COMMISSIONI)) Join Provincia = Sigla ρ_{NomeProv←Nome} (PROVINCE))

Si assuma il seguente schema di data base per la gestione di una biblioteca:

LIBRO(codice_libro, autore, titolo)
LETTORE(codice_lettore, nome, cognome)
PRESTITO(codice_lettore, codice_libro, data_prestito)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Titoli dei libri presi a prestito il giorno 12/5/99;
- b) Autori dei libri presi a prestito dai signori Paolo Rossi;
- c) Codici dei lettori che hanno preso a prestito libri scritti da Gibson oppure da Sterling.
- a) π_{titolo} σ_{data prestito=12/5/99}PRESTITO ⋈ LIBRO
- b) π_{autore} σ_{nome='Paolo' and cognome='Rossi'}LETTORE ⋈ PRESTITO ⋈ LIBRO
- c) $\pi_{codice\ lettore}\ \sigma_{autore=`Gibson'\ or\ autore=`Stirling'}$ LIBROMPRESTITO

Esercizio

Si assuma il seguente schema di data base per la gestione di dati riguardanti il noleggio di cd:

CD(codice_cd, autore, titolo)

CLIENTE(codice cliente, nome, cognome)

NOLEGGIO(codice_cliente, codice_cd, data_noleggio)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Autore e titolo dei cd noleggiati dai signori Paolo Rossi in data 20/5/99;
- b) Nome e cognome dei clienti che hanno noleggiato cd dei **REM** in data 12/10/98;
- c) Titolo dei cd che sono stati noleggiati dal cliente avente codice 123A oppure dal cliente avente codice 236B.
- a) $\pi_{\text{autore, titolo}}$ ($\sigma_{\text{nome='Paolo' and cognome='Rossi'}}$ CLIENTE $\sigma_{\text{data=20/5/99}}$ NOLEGGIO Γ CD)
- b) $\pi_{\text{nome, cognome}}$ ($\sigma_{\text{autore='REM'}}$ CD \bowtie $\sigma_{\text{data=12/10/98}}$ NOLEGGIO \bowtie CLIENTE)
- c) π_{titolo} (CD ⋈ σ_{codice_cliente='123A'} or codice_cliente='236B'</sub>, NOLEGGIO)

MONDIALE(anno, luogo, nazione_vincitrice)
ALLENATORE(cognome, nome, nazione_allenata, anno)
PARTITA(anno, nazione A, nazione B, punteggio)

Nazioni che hanno vinto il mondiale in casa ed anno in cui ciò è avvenuto:

 $\pi_{\text{nazione vincitrice, anno}}$ ($\sigma_{\text{luogo=nazione vincitrice}}$ MONDIALE)

Anno e luogo dei mondiali vinti dalle nazioni allenate da Paolo Rossi:

 $\pi_{anno,\;luogo}\left(\;\sigma_{nome='Paolo'and\;cognome='Rossi'},\rho_{anno_all\;\leftarrow\;anno}\;ALLENATORE\right.$ $\bowtie_{nazione_allenata=nazione_vincitrice\;and\;anno_all=anno}\;MONDIALE)$

Nazioni contro cui ha giocato la nazione vincitrice del mondiale 98 durante lo stesso.

$$\pi_{\text{nazione_B}}(\sigma_{\text{anno=1998}}\rho_{\text{anno_vinc}\leftarrow \text{ anno}} \text{MONDIALE} \bowtie_{\text{nazione_vincitrice=nazione_A and anno_vinc=anno}} \text{PARTITA})$$

$$\pi_{\text{nazione_A}}(\sigma_{\text{anno=1998}}\rho_{\text{anno_vinc}\leftarrow \text{ anno}} \text{MONDIALE} \bowtie_{\text{nazione_vincitrice=nazione_B and anno_vinc=anno}} \text{PARTITA})$$

Esercizio

Si assuma il seguente schema di data base per la raccolta di prenotazioni di posti su treni:

VIAGGIATORE(codice_v, nome, cognome)
TRENO(codice_t, provenienza, destinazione)
PRENOTAZIONE(codice_v, codice_t, data)

Nome e cognome dei viaggiatori che in data 10/11/97 hanno prenotato posti su treni da Milano per Roma;

 $\pi_{nome,cognome} \ (\sigma_{provenienza=`Milano'\ and\ destinazione=`Roma'}, TRENO$ $\bowtie \ \sigma_{data=10/11/97} \ PRENOTAZIONE \bowtie \ VIAGGIATORE)$

Elenco delle date in cui viaggiatori dal cognome Rossi hanno effettuato prenotazioni;

 $\pi_{data}(\,\sigma_{cognome=`Rossi}, VIAGGIATORE \bowtie PRENOTAZIONE)$

Provenienza e destinazione dei treni su cui è stata effettuata almeno una prenotazione.

π_{provenienza,destinazione} (PRENOTAZIONE ⋈ TRENO)

Si assuma il seguente schema di data base per la gestione di un video-noleggio:

CLIENTE(codice_c, nome, cognome)
FILM(codice_f, titolo, anno, genere)
NOLEGGIO(codice_c, codice_f, data)

Nome e cognome dei clienti che hanno noleggiato film di fantascienza; $\pi_{\text{nome, cognome}}$ ($\sigma_{\text{genere='fantascienza'}}$ FILM \bowtie NOLEGGIO \bowtie CLIENTE)

Titolo dei film gialli noleggiati da Paolo Rossi:

 $\pi_{titolo}(\sigma_{nome=\text{`Paolo'} \text{ and `Cognome=\text{`Rossi'}}}\text{CLIENTE} \bowtie \text{NOLEGGIO} \bowtie \sigma_{genere=\text{`giallo'}}, \text{FILM})$

Cognome dei clienti che in data 17/3/99 hanno noleggiato film di fantascienza o film girati nel 1965.

 π_{cognome} (CLIENTE $\bowtie \sigma_{\text{data}=17/3/99}$ NOLEGGIO $\bowtie \sigma_{\text{genere-'fantascienza' or anno-1965}}$ FILM)

Esercizio

Si assuma il seguente schema di data base per la prenotazione di aule per esami

ESAME(codice_esame, materia, professore)
AULA(codice_aula, nome, edificio, capienza)
PRENOTAZIONE(codice_aula, codice_esame, data)

Edificio e nome delle aule prenotate per gli esami di fisica il giorno 12/5/99. $\pi_{\text{nome, edificio}}$ ($\sigma_{\text{materia='fisica'}}$ ESAME $\bowtie \sigma_{\text{data=12/5/99}}$ PRENOTAZIONE \bowtie AULA)

Nome e capienza delle aule prenotate per esami tenuti dal Prof. Rossi; $\pi_{\text{nome,capienza}}(\sigma_{\text{professore='Rossi'}}, \text{ESAME} \bowtie \text{PRENOTAZIONE} \bowtie \text{AULA})$

Edificio e nome delle aule con capienza di almeno 120 posti le quali non hanno prenotazioni in data 9/11/99

 $\pi_{\text{edificio, nome}}\left(\sigma_{\text{capienza} \ge 120} \text{ AULA}\right) - \pi_{\text{edificio, nome}}\left(\sigma_{\text{data} = 12/5/99} \right. \\ \left. \begin{array}{c} \text{PRENOTAZIONE} \\ \\ \hspace{0.5cm} \scriptstyle{\scriptstyle{\text{Capienza} \ge 120}} \text{ AULA} \right)$

Si assuma il seguente schema di data base per una biblioteca:

UTENTE(codice_utente,nome,cognome)

LIBRO(codice_libro,titolo,autore)

PRESTITI(codice_libro,codice_utente,data)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Titolo dei libri avuti in prestito da Paolo Rossi;
- b) Titoli dei libri scritti da Manzoni presenti in biblioteca;
- c) Nome e cognome degli utenti che hanno chiesto in prestito libri di Manzoni in data 10/12/96
- a) π_{titolo} ($\sigma_{nome='Paolo' and 'Cognome='Rossi'}$ UTENTE \bowtie PRESTITI \bowtie LIBRO)
- b) π_{titolo} (σ_{autore='Manzoni}, LIBRO)
- c) $\pi_{\text{nome,cognome}}(\sigma_{\text{autore='Manzoni'}}, \text{LIBRO} \bowtie \sigma_{\text{data=10/12/96}} \text{ PRESTITI} \bowtie \text{UTENTE})$

Esercizio

Si assuma il seguente schema di data base:

STUDENTE(matr,nome,cognome)

MATERIA(materia,codice insegnamento,titolare)

ESAME(codice_insegnamento,matr,data,voto)

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Esami sostenuti dagli studenti chiamati Paolo Rossi;
- b) Elenco degli insegnamenti il cui titolare ha cognome Verdi;
- c) Nome, cognome, matricola degli studenti che hanno superato l'esame di Fisica con voto superiore a 20.
- a) $\pi_{\text{materia}}(\sigma_{\text{nome='Paolo'} \text{ and 'Cognome='Rossi'}}\text{STUDENTE} \bowtie \text{ESAME} \bowtie \text{MATERIA})$
- b) $\pi_{\text{materia}}(\sigma_{\text{titolare='Verdi'}}, \text{MATERIA})$
- c) $\pi_{\mathsf{nome}, \mathsf{cognome}, \mathsf{matr}}(\sigma_{\mathsf{materia}=\mathsf{`Fisica'}}, \mathsf{MATERIA} \bowtie \sigma_{\mathsf{voto} > 20} \mathsf{ESAME} \bowtie \mathsf{STUDENTE})$

Si assuma il seguente schema di data base:

```
ARTICOLO (cod_art, nome_art, categoria_art, prezzo_art)
CLIENTE(cod_cl, nome_cl, residenza_cl)
ORDINE(cod_cl, cod_art, quantità, data)
```

Si esprima, nell'algebra relazionale, ciascuna delle seguenti affermazioni:

- a) Nome dei clienti che hanno ordinato articoli con un prezzo compreso tra uno e due milioni;
- b) Nome dei clienti che hanno ordinato articoli con un prezzo compreso tra uno e due milioni nel mese di dicembre.
- a) $\pi_{\mathsf{nome_cl}}(\sigma_{\mathsf{prezzo_art} >= 1000000 \; \mathsf{and} \; \mathsf{prezzo}} = 2000000 \; \mathsf{ARTICOLO} \bowtie \mathsf{ORDINE} \bowtie \mathsf{CLIENTE})$
- b) $\pi_{\text{nome_cl}}(\sigma_{\text{prezzo_art}>=1000000 \text{ and prezzo}} \land \text{ARTICOLO}$

 $\bowtie_{\sigma_{data \succ 1/12/00 \text{ and } data \leq 31/12/00}} \text{ ORDINE }\bowtie \text{ CLIENTE})$