2007—2008 学年第一学期线性代数 期末考试试卷

一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线

F (4)设 $A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 2 & 1 \end{bmatrix}$,则 $A^{-1} =$ _____. (2) 设 $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}, B = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}, 则 |AB| = __$ (3)已知 $\alpha = (1,2,3)^{\mathrm{T}}, \beta = (1,1,1)^{\mathrm{T}}, 则 \alpha \cdot \beta^{\mathrm{T}} =$

(5)设 $A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 1 & 4 & 3 \\ 0 & a & 2 & -1 \end{bmatrix}$, $\beta = \begin{bmatrix} 1 \\ 5 \\ -6 \end{bmatrix}$,且线性方程组 $AX = \beta$ 无解,则 a二、选择题(本题共5小题,每小题3分,满分15分,把答案填在题中括号

(1)设A是 $m \times n$ 矩阵,B是 $n \times m$ 矩阵,则(A. 当m > n时,必有行列式 $|AB| \neq 0$

> B. 当m > n时,必有行列式|AB| = 0C. 当 n > m 时,必有行列式 $|AB| \neq 0$

(2)设A为n阶方阵,且A的行列式 $|A|=a\neq 0$,而 A^* 是A的伴随矩阵; D. 当n>m时,必有行列式|AB|=0

则|A*|等于().

(3) $\bigoplus_{a_{21}} A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, B = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{11} & a_{32} + a_{12} & a_{33} + a_{13} \end{bmatrix}, P_1 = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ B. $\frac{1}{a}$ C. a^{n-1} D. a^n

 $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, 则还有().$

(4)n维向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ (3 \leqslant s \leqslant n)线性无关的充分必要条件是(). A. $AP_1P_2=B$ B. $AP_2P_1=B$ C. $P_1P_2A=B$ D. $P_2P_1A=B$ A. 存在一组不全为 0 的数 k_1 , k_2 , ..., k_s , 使 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s \neq 0$

B. a₁, a₂, ····, a₄, 中任意两个向量都线性无关.

C. a1, a2, ····, a, 中存在一个向量, 它不能由其余向量线性表示 D. a₁, a₂, ····, a₃ 中任意一个向量都不能由其余向量线性表示

齐次线性方程组 AX=0 的基础解系, k_1 , k_2 为任意常数,则方程组 AX=b 的通 解必是(). (5)已知 β , β 。是非齐次线性方程组AX=b的两个不同的解, α , α 。是对应

A. $k_1\alpha_1 + k_2(\alpha_1 + \alpha_2) + \frac{\beta_1 - \beta_2}{2}$ $\mathbf{B}_{k_1\alpha_1+k_2}(\alpha_1-\alpha_2)+\frac{\beta_1+\beta_2}{2}$

 $C. k_1 \alpha_1 + k_2 (\beta_1 + \beta_2) + \frac{\beta_1 - \beta_2}{2}$ D. $k_1 \alpha_1 + k_2 (\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$

三、计算题(本题共3小题,每小题10分,满分30分,要求写出演算过程或

267

 $(A-E)^{-1}.$

3. 求线性方程组的通解

$$\begin{cases} x_1 - x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - 3x_4 = 1 \\ x_1 - x_2 - 2x_3 + 3x_4 = -0.5 \end{cases}$$

四、解答题(本题共2小题,每小题10分,满分20分,要求写出演算过程或聚)

- 1. $\mbox{$\psi$} \ \alpha_1 = (1,1,1)^{\mathrm{T}}, \ \alpha_2 = (1,2,3)^{\mathrm{T}}, \ \alpha_3 = (1,3,t)^{\mathrm{T}}.$
- (1)当t为何值时,向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关?
- (2)当 t 为何值时,向量组 a1, a2, a3 线性相关?
- (3)当向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关时,将 α_3 表示为 α_1 和 α_2 的线性组合.
- 2. λ 为何值时,线性方程组

$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$$

- (1)有唯一解?(2)无解?(3)有无穷多个解?并求通解.
- 五、证明题(本题共2小题,每小题10分,满分20分)
- 1. 设 $b_1 = 3a_1 + 2a_2$, $b_2 = a_2 a_3$, $b_3 = 4a_3 5a_1$, 且向量组 a_1 , a_2 , a_3 线性无关, 证明: 向量组 b_1 , b_2 , b_3 也线性无关.
- 2. 设 $A=E-\xi \Gamma$, 其中 E 是 n 阶单位矩阵, ξ 是 n 维非零列向量, $\xi \Gamma$ 是 ξ 的 转置,证明: $A^2=A$ 的充分必要条件是 $\xi \Gamma \xi=1$.

(9分)

2007—2008 学年第一学期线性代数期末考试试卷标准答案

=,(1)B (2)C (3)C (4)D (5)B

$$\begin{vmatrix} 0 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & 1 & \cdots & 1 & 1 \\ 1 & 0 & 0 & \cdots & 1 & 1 \\ 1 & 1 & 0 & \cdots & 1 & 1 \\ 1 & 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 0 \\ \end{vmatrix} \begin{vmatrix} n-1 & n-1 & n-1 & \cdots & n-1 & n-1 \\ 1 & 0 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 0 \\ \end{vmatrix} \begin{vmatrix} n-1 & n-1 & n-1 & \cdots & n-1 & n-1 \\ 1 & 0 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 0 \\ \end{vmatrix} \begin{vmatrix} n-1 & n-1 & n-1 & \cdots & n-1 & n-1 \\ 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 0 \\ \end{vmatrix} \begin{vmatrix} n-1 & n-1 & n-1 & \cdots & n-1 & n-1 \\ 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 0 \\ \end{vmatrix} \begin{vmatrix} n-1 & n-1 & n-1 & \cdots & n-1 & n-1 \\ 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 0 \\ \end{vmatrix}$$

00

 $= (-1)^{n-1} (n-1) \tag{10 }$

3. 对方程组的增广矩阵 A 作初等行变换,有

$$\begin{pmatrix}
1 & -1 & -1 & 1 & 0 \\
1 & -1 & 1 & -3 & 1 \\
1 & -1 & -2 & 3 & -\frac{1}{2}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -1 & 0 & -1 & \frac{1}{2} \\
0 & 0 & 1 & -2 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$
(5 $\cancel{\#}$)

由此得齐次线性方程组(导出组)的基础解系为

$$\eta_1 = (1, 1, 0, 0)^T, \eta_2 = (1, 0, 2, 1)^T$$
(7 $\%$)

非齐次线性方程组的特解为

$$\xi = \left(\frac{1}{2}, 0, \frac{1}{2}, 0\right)^{\mathrm{T}}$$
 (9 \pm)

于是所求方程组的通解为

$$x=k_1\eta_1+k_2\eta_2+\xi$$
 (其中 k_1,k_2,k_3 为任意常数) (10分)

四、1. 设有数组 k_1 , k_2 , k_3 , 使 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$,

于是有方程组

$$\begin{cases} k_1 + k_2 + k_3 = 0 \\ k_1 + 2k_2 + 3k_3 = 0 \end{cases}$$
 (2 $\frac{1}{2}$)

其系数矩阵行列式

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{vmatrix} = t - 5$$
 (3 $\frac{4}{3}$)

(1)当t \neq 5时,D \neq 0,方程组只有零解: $k_1 = k_2 = k_3 = 0$. 此时,向量组 α_1 ,

(2)当t=5时,D=0,方程组有非零解,即存在不全为0的常数 k_1,k_2,k_3 ,

使 $k_1\alpha_1+k_2\alpha_2+k_3\alpha_3=0$. 此时,向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关.

$$(3)$$
当 $t=5$ 时,对方程组的矩阵A作初等行变换,

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{vmatrix} \lambda & 1 & 1 \\ 2.(1) & 1 & \lambda & 1 \\ 1 & \lambda & 1 & = (\lambda+2)(\lambda-1)^2 \neq 0, \text{即 } \lambda \neq 1, -2 \text{ 时, 方程组有唯一解.} \\ 1 & 1 & \lambda & (4 分) \end{vmatrix}$$

(2)当 \1 = -2 时,

$$\overline{A} = \begin{pmatrix} -2 & 1 & 1 & 1 \\ 1 & -2 & 1 & -2 \\ 1 & 1 & -2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 & -2 & 4 \\ 0 & -3 & 3 & 6 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

方程组无解.

(6分)

方程组有无穷多个解,通解为

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = k_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

(10分)

五、1. 证明 因为

$$(b_1, b_2, b_3) = (a_1, a_2, a_3) \begin{vmatrix} 2 & 1 & 0 \\ 0 & -1 & 4 \end{vmatrix}$$
 (4 \Re)

且 a1, a2, a3 线性无关

(6分)

×

(5分)

$$\begin{vmatrix} 3 & 0 & -5 \\ 2 & 1 & 0 \\ 0 & -1 & 4 \end{vmatrix} = 22 \neq 0$$
 (8 \Rightarrow)

故向量组 b1, b2, b3 也线性无关.

(10分)

2. 证明
$$A^2 = (E - \xi \xi^{T})(E - \xi \xi^{T}) = E - 2\xi \xi^{T} + \xi \xi^{T} \xi \xi^{T}$$

$$=E-2\xi\xi^{\mathsf{T}}+(\xi^{\mathsf{T}}\xi)\xi\xi^{\mathsf{T}} \tag{2.5}$$

$$A^{2} = A \Leftrightarrow E - 2 \xi^{T} + (\xi^{T} \xi) \xi^{T} = E - \xi^{T} \Leftrightarrow (\xi^{T} \xi - 1) \xi^{T} = 0$$
 (4 分)
由最后的等式立即得知, $\xi^{T} \xi = 1$ 是 $A^{2} = A$ 的充分条件. (6 分)

再对最后的等式两边依次左乘
$$\xi^T$$
右乘 ξ ,得到 $(\xi^T\xi-1)(\xi^T\xi)^2=0$,由于 ξ

是非零向量,因此 $\xi^*\xi \neq 0$,所以 $\xi^*\xi = 1$ 又是 $A^2 = A$ 的必要条件.