

Nadai

Carlos

Sesión 3: Las matemáticas detrás de las STARKs

4 de Mayo del 2023

Stark 101: Parte 2

@Nadai02010

https://github.com/Nadai2010

@0xhasher_

https://github.com/cliraa

¿Qué queremos probar?

Hay un número *x* tal que:

$$a_o = 1$$

$$\alpha_1 = x$$

$$a_{1022} = 2338775057$$

Utilizaremos la parte I:

Traza - α

Generador de G - g

Polinomio de Traza - f(x)

Para $\{a_n\}$ CuadFibonacci: $a_{n+2} = a_{n+1}^2 + a_n^2 \mod \text{primo}$, para cualquier n

Restricciones sobre $\{a_n\}$

Necesitamos:

$$a_0 = 1$$

$$\alpha_{_{1022}} = 2338775057$$

$$a_{n+2} = a_{n+1}^{2} + a_{n}^{2}$$

Si $\{a_n\}$ satisface las restricciones \longrightarrow La declaración original es cierta

¿Hacia dónde vamos?

Restricciones sobre $\{a_n\}$:

$$a_0=1$$
 — Reducciones — Otra declaración $a_{1022}=2338775057$
$$a_{n+2}=a_{n+1}^{2}+a_n^{2}$$
 Implica

¿Hacia dónde vamos?

Polinomio de traza

Restricciones sobre $\{a_n\}$:

$$a_0 = 1$$
 Reducciones

$$\alpha_{1022} = 2338775057$$

$$a_{n+2} = a_{n+1}^{2} + a_{n}^{2}$$

a(x)

Existe un polinomio f(x)

tal que:

3 funciones racionales

 $p_0(x), p_1(x), p_2(x)$ son **polinomios**

Polinomio de traza

3 restricciones sobre
$$\{a_n\}$$
 — — \longrightarrow 3 restricciones sobre $f(x)$

$$a_0 = 1$$
 $f(x) = 1$, para $x = g^0$

$$a_{n+2} = a_{n+1}^{2} + a_{n}^{2}$$

 x
 f(x)

 g^0 a_0
 g^1 a_1
 g^2 a_2

 ...
 ...

 g^{1022} a_{1022}

$$a_{n+2} = a_{n+1}^2 + a_n^2 - - - - f(g^2x) = f(gx)^2 + f(x)^2$$

para $x = g^i$, $0 \le i \le 1020$

Por ejemplo: para $x = g^5$:

$$f(g^2 \cdot g^5) = f(g \cdot g^5)^2 + f(g^5)^2$$
 g^7
 g^6
 g^5

X	f(x)	
g ^o	a_o	
g¹	$a_{_1}$	
g ²	a_{2}	
···	_;;_	
$g^{\scriptscriptstyle 5}$	$a_{\scriptscriptstyle 5}$	
g^6	$a_{_6}$	
g ⁷	a_7	
g ¹⁰²²	a 1022	

3 restricciones sobre
$$\{a_n\}$$
 — — \longrightarrow 3 restricciones sobre $f(x)$

$$a_0 = 1$$
 $f(x) = 1$, para $x = g^0$

$$a_{1022} = 2338775057$$
 — — \longrightarrow $f(x) = 2338775057$, para $x = g^{1022}$

3 restricciones sobre
$$\{a_n\}$$
 — — \longrightarrow 3 restricciones sobre $f(x)$

$$a_0 = 1$$
 $f(x) = 1$, para $x = g^0$

Paso II - De las Restricciones a las Raíces < z es una raíz de p(x) si p(z)=0

$$f(x)$$
 - 1 = 0, para $x = g^0$ — — → raíz: g^0

$$(f(x) = 1, para x = g^0)$$

Paso II - De las Restricciones a las Raíces

$$f(x) - 1 = 0$$
, para $x = g^0$ — — — raíz: g^0

$$f(x)$$
 - 2338775057 = 0, para $x = g^{1022}$ — — — raíz: g^{1022}

Paso II - De las Restricciones a las Raíces

$$f(x) - 1 = 0$$
, para $x = g^0$ — — \longrightarrow raíz: g^0

$$f(x)$$
 - 2338775057 = 0, para $x = g^{1022}$ — — — raíz: g^{1022}

$$f(g^2x) - f(gx)^2 - f(x)^2 = 0$$
, para $x = g^i$, $0 \le i \le 1020$ — raíces: $\{g^i | 0 \le i \le 1020\}$

Paso II - De las Restricciones a las Raíces

$$f(x) - 1 = 0$$
, para $x = g^0$ — — \longrightarrow raíz: g^0

$$f(x) - 2338775057 = 0$$
, para $x = g^{1022}$ — \longrightarrow raíz: g^{1022}

$$f(g^2x) - f(gx)^2 - f(x)^2 = 0$$
, para $x = g^i$, $0 \le i \le 1020$ — \Longrightarrow raíces: $\{g^i | 0 \le i \le 1020\}$

$$g^0$$
 es una raíz de $f(x)$ - 1

 g^{1022} es una raíz de $f(x)$ - 2338775057

La declaración original es cierta $\{g^i \mid 0 \le i \le 1020\}$ son raíces de $f(g^2x)$ - $f(gx)^2$ - $f(x)^2$

Paso III - De las Raíces a Funciones Racionales

<u>Trm:</u> z es una raíz de $p(x) \Leftrightarrow (x - z)$ divide a p(x)

Def: (x - z) divide a p(x) si p(x) / (x - z) es un polinomio

Polinomio

$$\frac{x^2 - 3x + 2}{x - 2} = \frac{(x - 2)(x - 1)}{x - 2} = x - 1$$

2 es una raíz

No es un Polinomio

$$\frac{x^2 - 7x + 6}{x - 2} = \frac{(x - 1)(x - 6)}{x - 2}$$

2 NO es una raíz

Paso III - De las Raíces a Funciones Racionales

<u>Trm:</u> z es una raíz de $p(x) \Leftrightarrow (x - z)$ divide a p(x)

Def: (x - z) divide a p(x) si p(x) / (x - z) es un polinomio

$$g^{0}$$
 es una raíz de $f(x)$ - 1 $-- \blacktriangleright \frac{f(x)-1}{x-q^{0}}$ es un polinomio

$$g^{1022}$$
 es una raíz de $f(x)$ - 2338775057 $\longrightarrow \frac{f(x) - 2338775057}{x - g^{1022}}$ es un polinomio

Paso III - De las Raíces a Funciones Racionales

 $\{g^{i} | 0 \le i \le 1020\}$ son raíces de $f(g^{2}x) - f(gx)^{2} - f(x)^{2}$

$$\frac{f(g^2x)-f(gx)^2-f(x)^2}{\prod\limits_{i=0}^{1020}(x-g^i)} \quad \text{es un polinomio}$$

$$\prod_{i=0}^{1023} (x - g^i) = x^{1024} - 1$$
 Cambiar:

$$\frac{f(g^2x)-f(gx)^2-f(x)^2}{(x^{1024}-1)/\big[(x-g^{1021})(x-g^{1022})(x-g^{1023})\big]}$$

3 Funciones Racionales

$$p_0(x) = \frac{f(x) - 1}{x - g^0}$$

$$p_1(x) = \frac{f(x) - 2338775057}{x - g^{1022}}$$

$$p_2(x) = \frac{f(g^2x) - f(gx)^2 - f(x)^2}{(x^{1024} - 1)/[(x - g^{1021})(x - g^{1022})(x - g^{1023})]}$$

Si $p_0(x)$, $p_1(x)$, $p_2(x)$ son polinomios — La declaración original es cierta

¿Hacia dónde vamos?

Restricciones sobre $\{a_n\}$:

$$a_0 = 1$$
 Reducciones

$$a_{1022} = 2338775057$$

$$a_{n+2} = a_{n+1}^{2} + a_{n}^{2}$$

Existe un polinomio f(x)

tal que:

3 funciones racionales

 $p_0(x)$, $p_1(x)$, $p_2(x)$ son **polinomios**

Resumen de Reducción - Primera Restricción

3 Funciones Racionales

$$p_0(x) = \frac{f(x) - 1}{x - g^0}$$

$$p_1(x) = \frac{f(x) - 2338775057}{x - g^{1022}}$$

$$p_2(x) = \frac{f(g^2x) - f(gx)^2 - f(x)^2}{(x^{1024} - 1)/[(x - g^{1021})(x - g^{1022})(x - g^{1023})]}$$

Si $p_0(x)$, $p_1(x)$, $p_2(x)$ son polinomios — La declaración original es cierta

Combinando los $p_i(x)$'s

Combinación lineal aleatoria:

Composition
$$CP = \alpha_0 \cdot p_0(x) + \alpha_1 \cdot p_1(x) + \alpha_2 \cdot p_2(x)$$
Polynomial

Con alta probabilidad:

CP es un polinomio \Leftrightarrow todos los p_i's son polinomios

Compromiso en CP con Merkle Tree

¿Y ahora qué?

Parte 3 - ¿cómo probar que CP es un polinomio?

Pero primero - el código.....

1)
$$p_0(x), p_1(x), p_2(x)$$

2)
$$CP = \alpha_0 \cdot p_0(x) + \alpha_1 \cdot p_1(x) + \alpha_2 \cdot p_2(x)$$

3) Comprometerse en CP

Gracias