End Semester Examination (Discrete Mathematics (MA221))

*Required

Instructions:

Responses are limited to only one

- (i) Attempt all questions
- (ii) Total marks 20
- (iii) There will be no negative marking
- (iv) Follow usual notations

The chromatic number of a complete graph having n vertices is *	1 point
O n-1	
O 2n	
O n/2	
o n	
○ 2n○ n/2	

Ŀ

1 point $p \leftrightarrow q$ is logically equivalent to $(p \rightarrow q) \rightarrow (q \rightarrow p)$ $(p \to q) \lor (q \to p)$ Option 2 Option 1 $(p \land q) \rightarrow (q \land p)$ $(p \rightarrow q) \land (q \rightarrow p)$ Option 3 Option 4 What is order of a group? State Lagrange's theorem for finite groups. * 2 points

The order of a group is its cardinality, i.e. the r

Let A , B be non empty sets $f:A\to B$ be a permutation. Then *	1 point
f is bijective and A ≠ B	
f is bijective and A = B	
f is one one and $A \neq B$	
f is onto and A ≠ B	
Define cnf and dnf of statement variables. *	2 points
CNF : A formula which consists of a product of	
Define equivalence relations and Poset. *	2 points
A RELATION IS SAID TO BE EQUIVALENCE REL	
Define abelian group. Why every subgroup of an abelian group is normal.	* 2 points
A group that follows commutative law is know	

A K3,3 graph is graph. *	nt
planar	
complete	
regular	
v non-planar	
bipertite	
* 1 po	nt
Let, $P(x)$ denote the statement " $x = x + 7$ ". What is the truth value of the quantification $\ni xP(x)$ where the domain consists of all real numbers?),
O True	
False	
O It can be true	
None	
In a capacited flow network if f(e) and c(e) are flow along edge e and capacity of edge respectively then *	nt
□ 0≥f(e), c(e)	
$c(e) \ge f(e)$	
f(e)≥c(e)	
f(e), c(e)≥0	

!

A self-complemented distributive lattice is called *	1 point
Complete lattice	
Self dual lattice	
Modular lattice	
Boolean algebra	
What is simple graph? Explain why no simple graph can have degree sequence (6, 4, 3, 3, 2, 2). *	2 points
A GRAPH WITH NO LOOPS AND PARALLEL ED	
Which of the following does not hold for operations on sets? *	1 point
X-Y=Y-X	
$(X \cup Y) \cap X = X$	
$(X \cup Y) \cap X = Y$	
Suppose repetitions are not permitted. (1)How many three-digit numbers can be formed from the six-digits 2,3,5,6,7 and 9? (2) How many of these numbers are less than 400? *	2 points
(1) 6*5*4 = 120 and (2) 2*5*4 = 40	

!

Back Submit

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms