Measure Theory

Measure: Intuition

Roughly: Measure = Integral as a function of its region

$$\mu(A) = \int_A dx$$
 or $\mu(A) = \int_A p(x) dx$

Interpretation

 $\mu(A)$ is mass of A, eg:

- ▶ Geometric case: Volume of *A*, or physical mass of a body.
- ► Probability case: Probability mass of event "random variable *X* takes value in *A*"

σ -algebras (1)

Motivation

P here indicates the Powerset

- ▶ Defining measure: Often difficult/impossible on $\mathcal{P}(\Omega)$
- ▶ Idea: Restrict μ to subset \mathcal{A} ("measurable sets") of $\mathcal{P}(\Omega)$
- Measurable sets = sets over which we can integrate

Intuition: σ -algebra

- Always assume we can integrate over Ω
- ▶ If integrals on $A_1, A_2,...$ given: Write $A = \sigma(\{A_1, A_2,...\})$ for system of all sets with deducable integrals.
- ▶ Compeleted set system A is called σ -algebra.

5/25 7/25

Integration: Abstract properties

Integrals: Decomposition properties

Write $\mu(A)$ for integral $\int_A dx$.

- $\blacktriangleright \mu(\emptyset) = 0$ (integral over empty set is zero)
- Pairwise disjoint sets A_n :

$$\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$$
 and $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$

▶ If *B* ⊂ *A*:

$$\mu(B) \le \mu(A)$$
 and $\mu(A \setminus B) = \mu(A) - \mu(B)$

Henri Lebesgue's Approach

Call any set function an integral (a measure) if it decomposes like an integral.

σ -algebras (2)

Def: σ -algebra

A system of sets $A \subset \mathcal{P}(\Omega)$ is called a σ -algebra if:

- 1. $\emptyset, \Omega \in \mathcal{A}$
- 2. If $A \in \mathcal{A}$, then $CA \in \mathcal{A}$
- 3. If $A_n \in \mathcal{A}$ (for $n \in \mathbb{N}$), then $\bigcup_{n=0}^{\infty} A_n \in \mathcal{A}$

Constructing σ -algebras

Most important method:

- Start with: T = all open sets in Ω.
- ▶ σ -algebra: $\mathcal{B}(\Omega) := \sigma(\mathcal{T})$ Read: $\sigma(\mathcal{T})$ = smallest σ -algebra that includes \mathcal{T}
- ▶ $\mathcal{B}(\Omega)$ is called the *Borel* σ -algebra of Ω
- ► Contains all open and closed sets

6/25