Алгебра висловлювань

Мета МЛ – забезпечити формалізм для проведення міркувань.

Найпростіша логічна теорія – *логіки висловлювань* (ЛВ) або *алгебра висловлювань* (АВ).

В АВ нас будуть цікавити ствердждувальні речення, які можуть бути тільки *істинними* або *фальшивими*. Кожне таке стверджувальне речення називається *висловлюванням*.

Приклади. "Сніг білий", "4 ділиться на 2".

"Істина" чи "фальш", які приписуються кожному висловлюванню, називаються істиносними значеннями висловлювання і позначаються, як правило, буквами І і Ф, або символами 1 і 0.

Висловлювання будемо позначати великими латинськими буквами з індексами або без них.

Наприклад, ми можемо позначити вис-ловлювання наступним чином:

- Р "Сніг білий",
- Q "4 ділиться на 2".

Символи P, Q, R і т. д., які використовуються для позначення висловлювань, називаються *атомарними* формулами або *атомами*.

Із висловлювань можна будувати складні висловлювання, використовуючи логічні (зв'язки) операції. В АВ ми будемо використовувати пять логічних операцій:

 \neg (ні), \land (і), \lor (або), \rightarrow (якщо ..., то) і \leftrightarrow (тоді і тільки тоді).

٧

Операції можна використовувати для побудови все більш складних висловлювань шляхом повторного застосування операцій.

Наприклад, нехай X, Y, Z — довільні висловлювання. За допомогою логічних операцій ми можемо утворити складні висловлювання:

$$Y \vee Z, X \leftrightarrow Y.$$

Із одержаних висловлювань можемо утворити нові

$$X \rightarrow (Y \lor Z),$$

 $\neg(X \leftrightarrow Y)$

іт. д.

В логіці довільні вирази, які ϵ висловлюваннями, називаються правильно побудованими формулами.

- **Df**. Правильно побудовані формули (або просто формули) в AB визначаються рекурсивно наступним чином:
 - 1. Атом ϵ формулою.
 - 2. Якщо G формула, то ¬(G) формупа.
 - 3. Якщо G і H формули, то
- $(G \land H)$, $(G \lor H)$, $(G \to H)$ і $(G \leftrightarrow H) формули.$
 - 4. Ніяких інших формул нема.

Висловлювання можуть бути постійними, тобто мати визначене значення 0 чи 1, або змінними. Тоді вони позначаються великими латинськими буквами, як уже було сказано вище.

Неважко бачити, що такі вирази, як $(P \rightarrow)$ і $(P \land)$ не ϵ формулами.

Нехай G і H — дві формули. Тоді істиносне значення формул \neg (G), (G \land H), (G \lor H), (G \rightarrow H) і (G \leftrightarrow H) пов'язане з істиносними значеннями формул G і H наступним чином:

- 1. ¬(G) істинна, коли G фальшива, і фальшива, коли G істинна. Формула ¬(G) називається запереченням G.
- 2. (G∧H) істинна, якщо G і H обидві істинні. В іншому випадку (G∧H) фальшива. (G∧H) називається кон 'юнкцією G і H.
- 3. (G∨H) істинна, якщо по крайній мірі одна із формул G і H істинна. В іншому випадку (G ∨ H) фальшива. (G∧H) називається диз 'юнкцією G і H.

- M
- 4. ($G \rightarrow H$) фальшива, якщо G істинна і H фальшива. B іншому випадку ($G \rightarrow H$) істинна. ($G \rightarrow H$) читається як G *імплікує* H.
- 5. ($G \leftrightarrow H$) істинна тоді і тільки тоді, коли G і H мають однакові істинносні значення. В іншому випадку ($G \leftrightarrow H$) фальшива. ($G \leftrightarrow H$) читається, як G еквівалентна H.

Перелічені співвідношення зручно подавати в наступній таблиці:

Використовуючи цю таблицю, можна обчислювати істинносне значення формули за істинносними значеннями атомів, що в неї входять.

Інтерпретація формул АВ

Істиносне значення довільної формули можна обчислити, виходячи з істиносних значень атомів.

Приклад. Розглянемо формулу

$$G = (P \land Q) \rightarrow (R \leftrightarrow (\neg S)).$$

Атоми цієї формули – P, Q, R і S.

Нехай істиносні значення цих атомів дорівнюють 1, 0, 1 і 1 відповідно.

Тоді
$$(P \land Q) \in 0$$
, $(\neg S) \in 0$, $(R \leftrightarrow (\neg S)) \in 0$, $(P \land Q) \rightarrow (R \leftrightarrow (\neg S)) \in 1$.

Таким чином, G ϵ 1, якщо атомам P, Q, R i S приписані значення 1, 0, 1 і 1.

Приписування істиносних значень атомам називається *інтерпретацією* формули G. Так як кожному із атомів P, Q, R і S можна приписати 0 або 1, то існує рівно $2^4 = 16$ інтерпретацій формули G.

Df. Нехай G — формула і A_1 , ..., A_n — її атоми. Тоді інтерпретацією формули G називається приписування істиносних значень всім атомам A_1 , ..., A_n .

 \mathbf{Df} . Говорять, що формула G істинна при деякій інтерпретації, якщо її значення ϵ істиною при цій інтерпретації.

Іноді ітерпретацію формули будемо задавати множинами всіх атомів, які в ній зустрічаються.

Наприклад, множина $\{P, \neg Q, \neg R, S\}$ представляє інтерпретацію, в якій атомам приписані 1, 0, 0, 1.

Загальнозначимість і суперечливість

Розглянемо формулу

$$G = ((P \rightarrow Q) \land P) \rightarrow Q$$

Ця формула має 4 інтерпретації, причому вона істинна при всіх інтерпретаціях. Таку формулу називають *загальнозначимою* або *тавтологією*.

Формула

$$G = ((P \rightarrow Q) \land (P \land \neg Q))$$

фальшива при всіх інтерпретаціях. Такі формули будемо називати суперечливими.

- м
- **Df**. Говорять, що формула *загальнозначима* (*тавтологія*), якщо вона істинна при всіх можливих інтерпретаціях.
- **Df**. Формула *незагальнозначима*, якщо вона не є загальнозначимою.
- **Df**. Говорять, що формула *суперечлива*, якщо вона фальшива при всіх можливих інтерпретаціях.
- **Df**. Формула *несуперечлива* (виконувана), якщо вона не ϵ суперечливою.

Із приведених визначень випливає:

- 1. Формула загальнозначима, якщо її заперечення суперечливе.
- 2. Формула суперечлива, якщо її заперечення загальнозначиме.
- 3. Формула незагальнозначима, якщо існує по крайній мірі одна інтерпретація, при якій формула фальшива.
- 4. Формула несуперечлива, якщо існує по крайній мірі одна інтерпретація, при якій формула істинна.

Якщо формула F істинна в інт

Якщо формула F істинна в інтерпретації I, то говорять, що І *задовольняє* F, або F *виконується* в інтерпретації I.

Якщо формула F фальшива в інтерпретації I, то говорять, що I *спростовує* F.

Якщо інтерпретація І задовольняє формулу F, то I називається, також, *моделлю* F.

Рівносильність формул

Df. Дві формули F і G називаються *рівносильними* (*тотоженими*), якщо при будь-яких інтерпретаціях ці формули приймають однакові значення.

Приклади (рівносильних формул).

$$\neg\neg X = X,$$

$$X \land Y = Y \land X$$

$$(X \land Y) \land Z = X \land (Y \land Z)$$

$$X \land (Y \lor Z) = (X \land Y) \lor (X \land Z)$$

$$X \lor (X \land Y) = X$$
 $X \land (X \lor Y) = X$
 $\neg (X \lor Y) = \neg X \land \neg Y$
 $X \lor X = X$
 $X \lor \neg X = 1$
 $X \land \neg X = 0$

Ці співвідношення перевіряються за допомогою визначених раніше логічних операцій.

Нормальні форми

Часто виникає потреба перетворення формул із однієї форми в іншу, особливо в так звану "нормальну форму".

Df. *Літера* ϵ атом або заперечення атома.

Df. Говорять, що формула F знаходиться в кон'юнктивній нормальній формі, якщо $F = F_1 \land F_2 \land ... \land F_n$, n≥1,

де кожна з F_i є диз'юнкцією літер.

Df. Говорять, що формула F знаходиться в диз'юнктивній нормальній формі, якщо

$$F = F_1 \vee F_2 \vee \ldots \vee F_n, n \geq 1,$$

де кожна з F_i є кон'юнкцією літер.

Приклади. Формула

$$F = (P \vee \neg Q \vee R) \wedge (\neg P \vee Q)$$

 ϵ формулою в кон'юнктивній нормальній формі. Формула $F = (\neg P \land Q) \lor (P \land \neg Q \land \neg R)$

є формулою в диз'юнктивній нормальній формі.

Всяка формула може бути перетворена в нормальну форму. Це легко досягається за допомогою тотожностей, приведених вище.

Приклад. Побудувати ДНФ для формули $(P \lor \neg Q) \rightarrow R$.

$$(P \lor \neg Q) \rightarrow R = \neg (P \lor \neg Q) \lor R = (\neg P \land Q) \lor R.$$

Логічні наслідки

Df. Нехай задані формули F_1 , F_2 , ..., F_n і формула G. Говорять, що G ϵ логічним наслідком формул F_1 , F_2 , ..., F_n , якщо для всякої інтерпретації І в якій $F_1 \wedge F_2 \wedge \ldots \wedge F_n$ істинна, G також істинна.

Теорема 1. Нехай задані формули F_1 , F_2 , ..., F_n і формула G. Тоді G є логічним наслідком F_1 , F_2 , ..., F_n тоді і тільки тоді, коли формула

$$(F_1 \wedge F_2 \wedge \ldots \wedge F_n) \rightarrow G$$

загальнозначима.

Доведення (\Rightarrow). Нехай G ϵ логічним наслідком формул F_1 , F_2 , ..., F_n і I довільна інтерпретація. Якщо F_1 , F_2 , ..., F_n істинні в I, то за визначенням логічного наслідку G ϵ істинною в I. Отже, $(F_1 \wedge F_2 \wedge ... \wedge F_n) \rightarrow$ G ϵ істинною в I. 3 іншого боку, якщо не всі формули F_1 , F_2 , ..., F_n істинні в I, тобто хоча б одна з них фальшива, то $(F_1 \wedge F_2 \wedge ... \wedge F_n) \rightarrow$ G істинна в I. Таким чином, $(F_1 \wedge F_2 \wedge ... \wedge F_n) \rightarrow$ G - загальнозначима.

 (\Leftarrow) . Нехай $(F_1 \land F_2 \land \dots \land F_n) \rightarrow G$ — тавтологія. Тоді для всякої інтерпретації I, якщо $F_1 \land F_2 \land \dots \land F_n$ істинна в I, то G повинна бути істинною в I, тобто G є логічним наслідком $F_1 \land F_2 \land \dots \land F_n$.

Теорема 2. Нехай задані формули $F_1, F_2, ..., F_n$ і формула G. Тоді G є логічним наслідком $F_1, F_2, ..., F_n$ тоді і тільки тоді, коли формула $(F_1 \wedge F_2 \wedge ... \wedge F_n \wedge \neg G)$ суперечлива.

Доведення. За попередньою теоремою G є логічним наслідком F_1 , F_2 ,..., F_n тоді і тільки тоді, коли формула ($F_1 \land F_2 \land ... \land F_n$) $\rightarrow G$ є тавтологією. Отже, G є логічним наслідком F_1 , F_2 ,..., F_n тоді і тільки тоді, коли $\neg((F_1 \land F_2 \land ... \land F_n) \rightarrow G)$ суперечлива.

Так, як $\neg((F_1 \land F_2 \land \dots \land F_n) \rightarrow G) =$ $\neg(\neg(F_1 \land F_2 \land \dots \land F_n) \lor G) =$ $(\neg\neg(F_1 \land F_2 \land \dots \land F_n) \land \neg G) =$ $(F_1 \land F_2 \land \dots \land F_n) \land \neg G =$ $(F_1 \land F_2 \land \dots \land F_n \land \neg G).$

Теореми 1 і 2 дають можливість доводити, що деяка формула є логічним наслідком скінченної множини формул шляхом доведення того, що деяка зв'язана з ними формула загальнозначима або суперечлива.

Df. Якщо G є логічним наслідком формул $F_1, F_2, ..., F_n$, то формула $(F_1 \land F_2 \land ... \land F_n) \rightarrow G$ називається *теоремою*, а G висновком теореми.

Багато проблем можуть бути сформульовані, як проблеми доведення теорем.

Приклад. Розглянемо формули

$$F_1 = (P \rightarrow Q), F_2 = \neg Q, G = \neg P.$$

Покажемо, що G ε логічним наслідком F_1 і F_2 .

Метод 1. Можна використати визначення логічних операцій (таблиці), щоб показати, що G істинна в кожній моделі формули $(P \rightarrow Q)$ ∧ $\neg Q$.

Метод 2. Можемо використати теорему 1. Для цього треба показати, що формула

$$((P \rightarrow Q) \land \neg Q) \rightarrow \neg P -$$

тавтологія.

Це можна зробити за допомогою таблиць або зведенням до КНФ:

$$\begin{split} &((P {\rightarrow} Q) \wedge \neg Q) \rightarrow \neg P = \neg ((P {\rightarrow} Q) \wedge \neg Q) \vee \neg P = \\ &\neg ((\neg P \vee Q) \wedge \neg Q) \vee \neg P = \neg ((\neg P \wedge Q) \vee (Q \wedge \neg Q)) \vee \neg P = \\ &\neg ((\neg P \wedge Q) \vee 0) \vee \neg P = \neg ((\neg P \wedge Q)) \vee \neg P = (P \vee Q) \vee \neg P = \\ &(Q \vee P) \vee \neg P = Q \vee (P \vee \neg P) = Q \vee 1 = 1. \end{split}$$

Метод 3. Можемо використати теорему 2. Для цього треба показати, що формула

$$(P \rightarrow Q) \land \neg Q \land P -$$

тотожно фальшива.

Це можна зробити за допомогою таблиць або зведенням до ДНФ:

$$(P \rightarrow Q) \land \neg Q \land P = (\neg P \lor Q) \land \neg Q \land P = \\ (\neg P \land \neg Q \land P) \lor (Q \land \neg Q \land P) = 0 \lor 0 = 0.$$

Нормальні форми дозволяють більш ефективно розв'язувати проблему, що полягає в побудові алгоритму, який для кожної формули АВ дає відповідь на питання: є вона тотожньо істинною (тавтологією) чи ні.

Критерії істинності формул АВ

- 1. Для того, щоб формула була тавтологією, необхідно і достатньо, щоб кожний множник її КНФ мав як мінімум два доданки, із яких один є запереченням іншого.
- 2. Для того, щоб формула була тотожно фальшивою, необхідно і достатньо, щоб кожний доданок її ДНФ мав як мінімум два множники, із яких один є запереченням іншого.

Подання довільної двохзначної функції формулою АВ

Нехай $F(x_1, ..., x_n)$ – довільна функція, причому змінні і сама функція приймають тільки два значення 1 і 0.

Кожну таку функцію можна подати у вигляді формули АВ, а саме

$$F(x_1, ..., x_n) = F(1, ..., 1) x_1...x_n \lor F(1, ...1, 0) x_1...x_{n-1}x'_n \lor ...$$

 $\lor F(0, ..., 0) x'_1...x'_n$.

Приклад. Розглянемо функцію $F(x_1, x_2, x_3)$, яка приймає значення 1, якщо всі змінні приймають однакові значення і 0 в інших випадках.

Так як F(1, 1, 1) = 1, F(0, 0, 0) = 1, то цю функцію можна подати у вигляді

$$F(x_1, x_2, x_3) = x_1 x_2 x_3 \lor x'_1 x'_2 x'_3.$$

Добутки всіх змінних або їх заперечень називаються елементарними, а сума елементарних добутків, що задають функцію, називається досконалою ДНФ. Існує багато ДНФ для функції $F(x_1, ..., x_n)$. Існує єдина досконала ДНФ для функції $F(x_1, ..., x_n)$.

Аналогічно визначається досконала КНФ.

Справедливі наступні співвідношення (для спрощення формул):

$$X \lor XY = X,$$
 $X' \lor XY = X' \lor Y$
 $X(X \lor Y) = X,$ $X(X' \lor Y) = XY$
 $X \lor X'Y = X \lor Y,$ $X'(X \lor Y) = X'Y$