Motion Estimation — BMA

Dr. Xiqun Lu

College of Computer Science

Zhejiang University

Outline

- Optical Flow (Pixel-level)
 - What is optical flow?
 - Lucas-Kanade algorithm (LK) [2]
 - Horn-Schunck algorithm (HS) [3]
- BMA (Block-level)
 - The principle of BMA
 - Full search scheme
 - Three step search [4]
 - New three step search [5]
 - Four step search [6]
 - Diamond search scheme [7]

Outline

- Optical Flow (Pixel-level)
 - What is optical flow?
 - Lucas-Kanade algorithm (LK) [2]
 - Horn-Schunck algorithm (HS) [3]
- BMA (Block-level)
 - The principle of BMA
 - Full search scheme
 - Three step search [4]
 - New three step search [5]
 - Four step search [6]
 - Diamond search scheme [7]

Four-Step Search: FSS [6]

- 1) For the maximum motion displacement of ± 7 , the proposed FSS algorithm utilizes a center-biased search pattern with 9 checking points on a 5×5 window in the first step.
 - If the minimum BDM point is found at the center of the search window, go to step 4; otherwise go to step 2.
- 2) The search window is kept as 5×5. But the search pattern will depend on the position of the previous minimum BDM point.
 - If the previous minimum BDM point is located at the corner of the previous search window, 5 additional checking points are used.
 - If the previous minimum BDM point is located at the **edge** of the previous search window, 3 additional checking points are used.
- 3) The searching pattern strategy is the same as step 2, but finally it will go to step 4.
- 4) The search window is reduced to 3×3 .

Four-Step Search: FSS [6]

• The total number of checking points is varied from (9+8) =17 to (9+5+5+8) = 27. The worst case computational requirement of the FSS is 27 block matches.

Fig. 3. Two different search paths of 4SS.

Diamond Search Algorithm: DS [7]

- The error surface is usually not monotonic:
 - Small search pattern → quite likely to be trapped into local minimum for those video sequences with large motion.
 - Large search pattern → most likely to mislead the search path to a wrong direction.
- **Center-biased**: the distribution of the global minimum points is centered at the position of zero motion.

Diamond Search Algorithm: DS

- The motion vector distribution probabilities within certain distances from the search window center.
 - About 52.76% to 98.70% of the motion vectors are enclosed in a circular support with a radium of 2 pixels and centered on the position of zero motion.
 - The block displacement mainly in horizontal and vertical directions.

Radium (pel)	Tennis	Football	Caltrain	Susie	Salesman	Claire
0	0.2622	0.6196	0.0416	0.0938	0.6562	0.9076
1	0.3751	0.7297	0.5373	0.3592	0.9452	0.9702
2	0.5276	0.7983	0.8523	0.5950	0.9609	0.9870
3	0.7178	0.8641	0.9168	0.7622	0.9741	0.9932
4	0.8402	0.9042	0.9380	0.8225	0.9795	0.9950
5	0.8930	0.9329	0.9561	0.8779	0.9853	0.9957
6	0.9200	0.9483	0.9720	0.9038	0.9957	0.9964
7	0.9599	0.9658	0.9894	0.9365	0.9975	0.9973

Diamond Search Algorithm: DS

- Large Diamond Search Pattern (LDSP) and Small Diamond Search Pattern (SDSP)
 - LDSP is repeatedly used until the step in which the minimum block distortion (MBD) occurs at *the center point*.
 - switched from LDSP to SDSP

Search path example which leads to the motion vector (-4, -2) in five search steps.

References

- [1] G. Johansson, "Visual perception of biological motion and a model for its analysis", *Perception and Psychophysics*, vol.14, 201-211, 1973.
- [2] B. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," in Proc. of *International Joint Conf. On Artificial Intelligence*, pp.674-679, 1981.
- [3] B. Horn and B. Schunck, "Determining optical flow," *Artificial Intelligence*, 17:185-203, 1981.
- [4] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, "Motion compensated interframe coding for video conferencing," *Proceedings of national Telecommunications conference*, New Orleans, LA, pp.G5.3.1–G5.3.5, Dec. 1981.
- [5] R. Li, B. Zeng, and M. L. Liou, "A new three-step algorithm for block motion estimation," *IEEE Trans. On Circuits and Systems for Video Technology*, 4(4): 438-442, 1994.
- [6] L.-M. Po and W.-C. Ma, "A novel four-step search algorithm for fast block motion estimation," *IEEE Trans. On Circuits and Systems for Video Technology*, 6(3): 313-317, 1996.
- [7] S. Zhu and K.-K. Ma, "A new diamond search algorithm for fast block-matching motion estimation," *IEEE Trans. On Image Processing*, 9(2): 287-290, 2000.

Thank You!

Dr. Xigun Lu xqlu@zju.edu.cn