Giorno 17: numeri irrazionali (e trascendenti)

Per il teorema di Pitagora, la lunghezza d della diagonale di un quadrato è legata alla lunghezza l del lato dalla relazione $d^2=2l^2$. Ma che numero è $x=\frac{d}{l}$ che deve soddisfare $x^2=2$?

Nota: Qui vi ho introdotto x come una quantità geometrica apposta per non farvi dire semplicemente non esiste soluzione. La diagonale avrà una certa lunghezza, giusto?

Ora mostriamo che non esiste nessun numero razionale $x=\frac{n}{d}$ che soddisfa $x^2=2$. Abbiamo bisogno di un paio di ingredienti: intanto 2 è primo.

Secondo, se $2|n^2$ allora $4|n^2$.

Nota: Se $2|n^2=nn$ allora, siccome 2 è primo, 2|n, cioè esiste un intero k tale che n=2k, quindi $n^2=4k^2$, quindi $4|n^2$.

Terzo, possiamo supporre che n e d non hanno fattori comuni, se k|n allora non k|d.

Nota: Se k|n e k|d possiamo semplificare la frazione e alla fine eliminare ogni fattore comune. Siccome basta eliminare i fattori primi comuni per eliminare qualunque fattore comune si dice che possiamo assumere che n e d sono coprimi.

Se $x^2 = \frac{n^2}{d^2} = 2$ allora deve essere $n^2 = 2d^2$ tra interi.

Quindi la nostra dimostrazione comincia con: supponiamo per assurdo che esista un numero razionale $x=\frac{n}{d}$ con n,d due interi coprimi tale che $x^2=2$, cioè $n^2=2d^2$.

Siccome $n^2 = 2d^2$, allora $2|n^2$, quindi $4|n^2$. Quindi esiste un intero m tale che n = 2m e quindi $4m^2 = 2d^2$ che semplificando un 2 diventa $2m^2 = d^2$. Quindi $2|d^2$, quindi $4|d^2$, quindi 2|d quindi esiste un intero c tale che d = 2c. Quindi d = 2c è pari (2|d) e pure n = 2m (2|n) è pari. Quindi, contrariamente a quanto ipotizzato, n e d hanno un fattore comune 2, non possono essere coprimi.

L'unica via d'uscita (ma dovete essere convinti che l'ipotesi per assurdo è l'unica assunzione che abbiamo fatto) è che non è vero che x è razionale.

Ora la storiella finisce che siccome la diagonale ha una lunghezza, ma questa non può essere razionale, devono esistere numeri (e.g. $\sqrt{2}$) che non sono razionali. Per ora non siamo in grado di definirli (sono i numeri reali, dentro i numeri reali ci sono anche i numeri razionali, mentre i numeri reali che non sono razionali si chiamano irrazionali).

Nota: I numeri irrazionali sono numeri che non si possono scrivere esattamente come con espressioni decimale. Vero. Ma pure $\frac{1}{3}$ non può essere scritto esattamente in forma decimale, eppure e razionale. I numeri irrazionali sono numeri che non possono essere scritti come frazioni, $\frac{1}{3}$ può, $\sqrt{2}$ no.

Il numero irrazionale $\sqrt{2}$ è quindi la soluzione irrazionale dell'equazione $x^2 = 2$ che è un'equazione a coefficienti razionali (questa addirittura a coefficienti interi!). Questo è particolarmente fastidioso. Abbiamo definito i numeri razionali

 $\mathbb Q$ e con questi possiamo scrivere equazioni $x^2=2$ che non hanno soluzioni in $\mathbb Q$. Se la pensate così alzate le spalle e andate a fare merenda. Che problema può essere avere una equazione che non ha soluzione? Anche $x^2+1=0$ non ha soluzioni (neanche reali) e questo è perfettamente naturale visto che $1+x^2\geq 1$ di certo non può essere $1+x^2=0$! Pure l'equazione 3+0x=2 non ha soluzione, ci certo 3=3+0x non è uguale a 2!

Nota: Un altro esempio di equazione senza soluzioni: 0x=1. Che è il motivo per cui non abbiamo ammesso la frazione $\frac{1}{0}$ tra i razionali.

Non ci sarebbe nulla di strano ad avere equazioni che non hanno soluzioni. Se non fosse che come ho detto all'inizio che $d = \sqrt{2}$ è la lunghezza della diagonale di un quadrato di lato l = 1. Siccome faccio fatica a dire che questa quantità non esiste ho *scoperto* i numeri irrazionali, non li *invento*!

Nota: Ok, vi sto ammaliando di parole, il mio discorso è pubblicità, visto che posso anche dire che le equazioni senza soluzione esistono, quindi *invento* i numeri razionali, per dare un senso all'equazione che altrimenti non avrebbe soluzione. Ma il punto è proprio questo: entrambi i punti di vista sono difendibili e criticabili. Quindi non sono problemi veri sono solo opinioni linguistiche e retoriche!

Tra l'altro gli esempi di altre equazioni senza soluzioni li ho scelti apposta. L'equazione $x^2+1=0$ decidiamo di risolverla comunque e definisce i numeri complessi, mentre l'equazione 0x=1 decidiamo di non risolverla e lasciamo $\frac{1}{0}$ fuori dai razionali e da ogni altro insieme numerico che definiamo. Perché questo razzismo?

Perché se ammetto i numeri complessi posso estendere le operazioni e ottengo un campo più vasto dei numeri reali, mentre se ammetto $\frac{1}{0}$ tra i numeri non riesco ad estendere in maniera ragionevole le operazioni aritmetiche. Non sono io che decido cosa scoprire, non so come gli alieni chiamano i campi, possono non averli ancora scoperti (e allora dubito siano in grado di costruire navi interstellari) oppure avere qualcosa di più generale (come noi abbiamo i campi che di sicuro sono inconcepibili ai romani). Ma se parlano di campi pure loro scoprono i numeri complessi e e reali, e i quaternioni (che sono solo un corpo visto che il prodotto non è commutativo).

Tra parentesi è falso che i campi sono inconcepibili per i romani! Ulrich è un romano e ha scoperto i campi come noi potremo scoprire quello che gli alieni avanzati usano al posto.

Comunque approfittiamone per dare 2 nomi (che finora non ne abbiamo dati abbastanza). Pure π è irrazionale (non che sia facile da dimostrare). Peggio ancora non è soluzione di nessuna equazione che potete scrivere usando solo coefficienti in \mathbb{Q} (che è ancora peggio da dimostrare). Quindi tra gli irrazionali, i numeri che non sono soluzioni di equazioni in \mathbb{Q} come π , sono detti trascendenti.

Abbiamo già discusso (argomento diagonale di Cantor) che i numeri reali non sono numerabili (sono \aleph_1 per l'ipotesi del continuo).

Ora pensateci, gli irrazionali sono tanti quanti le equazioni che potete scrivere in \mathbb{Q} che hanno un numero finito di coefficienti in \mathbb{Q} , cioè lasciatemelo dire male sono numerabili come \mathbb{Q} (che andrebbe dimostrato che qui si cammina sulle sabbie mobili). Quelli che rompono sono i trascendenti. Quasi tutti i numeri reali sono trascendenti nel senso che la cardinalità dei numeri irrazionali non trascendenti dovrebbe essere \aleph_0 sono i trascendenti i colpevoli per \aleph_1 .

Nota: come vi sembra ora il tesseract di Interstellar/Marvel?