FINAL ENERO 2020

1. $\chi = (\chi_1, \chi_2)^T$ se distribuye como:

En Π_0 : $f_0(x,y) = \frac{1}{2\Pi} e^{-\frac{1}{2}(x^2+y^2)}$

En TI_1 : $f_1(x,y) = \frac{1}{2e\pi}$. $\oint_C (con C = en el origen de lado$ vertical = 2, y lado honzontal = ett ".

Po = Ps, por la que:

 $R_1 = \left\{ (x,y) \in \mathbb{R}^2 : f_1(x,y) \ge f_0(x,y) \right\}$ restringiums a C $f_1(x,y) \geqslant f_0(x,y) \Leftrightarrow \frac{1}{2\Pi} e^{-\frac{1}{2}(x^2+y^2)} \leqslant \frac{1}{2e\Pi} \Leftrightarrow$ $\Leftrightarrow e^{-\frac{1}{2}(x^2+y^2)} \leq e^{-1} \Leftrightarrow -\frac{1}{2}(x^2+y^2) \leq -1 \Leftrightarrow$ \Leftrightarrow $x^2 + y^2 \geqslant 2$ | circumferencia de radio $\sqrt{2} \approx 1'414$ centrada en el (0,0).

Por tanto, en C:

{(x,y) ∈ C: x2+y2 ≥ 2} C R1 {(x,y) ∈ C: x2+y2 < 2 } C Ro

fo(x,y) > 0 ∀(x,y) € C Fuera de $C: f_1(x_1y) = 0$

Conclusion:

 $R_1 = \frac{1}{2}(x_1y) \in C: x^2 + y^2 \ge 2$

Ro = { (x,y) ∈ C: x2+y2 < 2} U } (x,y) ∈ R2: (x,y) € C}

2.	7 n = 100					
	Observados	Probs	Esperados = n. Pr	obs	Antes de	completar
	8	4-Pa	MIR	7 72 7	esta tabla	necesitamos
-	28	4 + P1	3818		estimar Pa	y B
	10	1-P2	718			verosimilitud
7	54	1 4 + P2	4212		,	
-			, ,	1		
Es	timación de	Pry B	por maxVERO	:		
VEF	20 (P2, P2) = (4-R)8.	$\left(\frac{4}{4} + \beta_1\right)^{28} \cdot \left(\frac{4}{4}\right)$	$-P_2$).	(1/4 + P2) Sq	\Rightarrow
			g (1 - P1) + 28 lo			
			$\frac{8}{P_1} + \frac{28}{\frac{1}{4} + P_1} = 0$			
	⇒ P ₄ =	$\frac{5}{36}$ = 1	0/138 = 0/	139		
->	dlogVERO (PA	(P2) = -	$\frac{10}{-P_2} + \frac{54}{\frac{1}{4} + P_2}$	_ = 0	<>> -215-10 P ₂	2 +1315 -54P2 = 0
	dp2	14	-P2 +P2			0 1 0
		$\frac{M}{64} \approx 1$	0'172 A	shora (romple tamos	le tabla
b	$=\frac{\left(8-11/1\right)^2}{\left(11/1\right)^2}$	+ (28-38	$\frac{(49)^2}{7^{18}} + \frac{(40-7^{18})^{2}}{7^{18}} + \frac{(40-7^{18})^{2}}{7^{18}} = 0^{1}624 + 3$ $0^{1}624 + 3$ $0^{1}624 + 3$	+ (54.	$\frac{-42^{2}}{2^{1}2} =$	Omición de
	W.4		1 - 1 - 0	12 =	4.097	r distribu
	= 0.866 +	3.024 7	0 425	1 72	(71841)	. 614
		~ = P-VO	-0'624 + 3 $0'624 + 3$ $0'624 + 3$ $0'624 + 3$	1- /1	+ = 4-1-	2
		The state of the s	Mirando en	la tabé	a: I	> hemos
	V	11/1/	rurando en	- 10051		estimado P.B

Existe una gran evidencia estadística en contra de Ho porque el p-valor es muy pequeño (menor que el usual x=5%) \Rightarrow RECHAZO Ho \Rightarrow el modelo teórico No se ajusta a la muestra observada.

 $\alpha \approx 0'5\%$

3.
$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \xi_{i} \qquad i = 1, ..., n$$

$$\xi_{i} \sim \int_{1}^{\infty} (x) = \int_{1}^{\infty} x + 1 \quad \text{si } x \in [-1, 0] \qquad \text{habitual}$$

$$\text{densidad} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedicted} \qquad \beta_{0} = \overline{Y} - \frac{\overline{X}}{V_{X}} \cot x + 1 \qquad \text{finedic$$

b) Se cumplen todas las hipótesis que se utilizaron en clase Bo estim. min. cuad. habitual para hallar $V(\hat{\beta_0}) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{n \sqrt{x}} \right]$ En de media 0, varianta o2 Solo tenemos que sustituir σ^2 en le fórmula anterior por $V(\varepsilon_i)$: e independientes.

 \Rightarrow $\mathbb{E}(\hat{\beta}_0) = \beta_0$ insesgado

 $\nabla(\epsilon_i) = \int_{-1}^{1} x^2 \cdot (x+1) dx + \int_{0}^{1} x^2 (1-x) dx = \frac{1}{6} \implies |\nabla(\hat{\beta_0})| = \frac{1}{6} \left[\frac{1}{n} + \frac{\bar{x}^2}{n V_X} \right]$

4. Nos ayudamos del corolario 2 del tema 1. Veamos que satisfacen todas sus hipótesis: • $\times N(\mu, \sigma^2 Id) \longrightarrow se satisface, con <math>\mu = \begin{pmatrix} 1 \\ -\sqrt{2} \\ 2 \end{pmatrix}$ y $\sigma^2 = 3$ • B simétrica e idempotente $\longrightarrow B = \begin{pmatrix} 1/3 & \sqrt{2}/3 \\ \sqrt{2}/3 & 2/3 \end{pmatrix}$ claramente simétrica e idempotentente \iff $B^2 = B : \begin{pmatrix} \frac{1}{3} & \frac{773}{3} \\ \frac{773}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{773}{3} \\ \frac{773}{3} & \frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{4}{3} & \frac{77}{3} \\ \frac{77}{3} & \frac{2}{3} \end{pmatrix}$ • $\mu^T B \mu = 0$: $(1 - \frac{\sqrt{2}}{2}) \begin{pmatrix} 1/3 & 1/3 \\ \sqrt{2}/3 & 2/3 \end{pmatrix} \begin{pmatrix} 1 \\ -\sqrt{2} \\ 2 \end{pmatrix} = (1 - \frac{\sqrt{2}}{2}) \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0$ corolario 2 $Z = \frac{1}{\sigma^2} \times^T B \times = \begin{bmatrix} \frac{1}{3} \times^T B \times \sim X_1^2 \end{bmatrix}$, ya que traza (B) = 1 5. | Yi = Bo + B1 Xin + B2 Xi12 + Ei a) $IC_{95\%}(\beta_1) = \hat{\beta}_1 \pm t_{1n-\kappa-1; \kappa/2} S_{\kappa} \sqrt{q_{11}}$ N=4, K=2, x=5% Podemos conseguir $\hat{\beta}_1$ de $\hat{\beta} = (X^T X)^{-1} X^T Y$. No necesitamos calcular todo B, lleva con la segunda coordenada: $\hat{B}_{1} = \frac{1}{50} \begin{pmatrix} 2 & 16 & -17 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 0 \\ 2 \end{pmatrix} = \frac{18}{25}$ Podemos conseguir q_{11} de la matriz $(X^TX)^{-1}$, que sería el elemento de la $2^{\frac{1}{2}}$ fila y $2^{\frac{1}{2}}$ columna: $q_{11} = \frac{11}{50} \Rightarrow \sqrt{q_{11}} = \frac{\sqrt{22}}{10}$ Para hallar Se procedemos de la siguiente forma:

 $\overline{Y} = \frac{3+2+2}{4} = \frac{7}{4} \implies TSS = \left(3 - \frac{7}{4}\right)^2 + \left(2 - \frac{7}{4}\right)^2 + \left(2 - \frac{7}{4}\right)^2 + \left(\frac{7}{4}\right)^2 = \frac{19}{4}$ $R^2 = 1 - \frac{RSS}{TSS} \implies \frac{RSS}{TSS} = 1 - R^2 \implies RSS = TSS\left(1 - R^2\right) = \frac{19}{4}\left(1 - 0^{\frac{1}{2}}30526\right) \implies RSS = 1^{\frac{1}{2}}8$ $\Rightarrow RSS = 1^{\frac{1}{2}}8$

 $S_R^2 = \frac{RSS}{n-K-1} = \frac{1'28}{1} = 1'28 \implies S_R = \frac{4\sqrt{2}}{5} \approx 1'134$

Por tanto, el intervalo de confianza sería:

$$TC_{95\%}(\beta_1) = \frac{18}{25} \pm \frac{1}{1} + \frac{1}{1$$

b)
$$x_0 = (1,1)^T \longrightarrow \widehat{x_0} = (1,1,1)^T$$

$$\Rightarrow \frac{L_1}{L_2} = \frac{\sqrt{1+\widehat{\chi}_0}^{\mathsf{T}}(\chi^{\mathsf{T}}\chi)^{-1}\widehat{\chi}_0}{\sqrt{\widehat{\chi}_0^{\mathsf{T}}(\chi^{\mathsf{T}}\chi)^{-1}\widehat{\chi}_0}}$$

$$\widetilde{\chi}_{o}^{T}(\widetilde{X}^{T}\widetilde{X})^{-1}\widetilde{\chi}_{o}^{T} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \cdot \frac{1}{50} \begin{pmatrix} 69 & -3 & -31 \\ -3 & 11 & -3 \\ -31 & -3 & 19 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{50} \cdot 25 = \frac{1}{2}$$

$$\Rightarrow \left[\frac{L_1}{L_2} - \frac{\sqrt{1'5}}{\sqrt{0'5}}\right] = \sqrt{3}$$