surrosurv: an R Package for the Evaluation of Failure Time Surrogate Endpoints in Individual Patient Data Meta-Analyses of Randomized Clinical Trials

Abstract

Surrogate endpoints are endpoints which are attractive for use in clinical trials instead of well-established endpoints because of practical convenience. Two measures of surrogacy can be obtained in a meta-analytic context: the individual-level $R_{\rm indiv}^2$ and the trial-level $R_{\rm trial}^2$. In the case of failure time endpoints, the usual two-step approach estimates a Kendall's τ at the individual level using a copula model, and then computes the $R_{\rm trial}^2$ via a weighted regression. Recently, we also developed an approach based on bivariate survival models with individual random effects to measure the τ and treatment-by-trial interactions to measure the $R_{\rm trial}^2$. We used auxiliary mixed Poisson models to fit such a model.

The R package **surrosurv** implements the two-step method with Clayton, Plackett, and Hougaard copulas (with and without measurement-error adjustment), as well as the mixed Poisson approach. In this paper, we present the package and we show its use in practice on individual patient data from a meta-analysis of 4069 patients with advanced/recurrent gastric cancer from 20 trials of chemotherapy.

Keywords: surrogate endpoint, survival, time-to-event, randomized clinical trials, individual patient data meta-anaysis, copula, mixed proportional hazard models, Poisson regression, surrosurv, R.

1. Introduction

Surrogate endpoints are endpoints which can relibly used instead of well-established endpoints and which yield improved practical convenience in terms of cost, rapidity or ease of assessment, or reduced invasiveness (Burzykowski *et al.* 2006). A reliable surrogate endpoint must be strongly associated to the true endpoints at the individual level and the effect of the treatment on the surrogate must be assciated to the effect on the true endpoint. In a meta-analytic context, the usual measure of individual level surrogacy for continuous endpoints is the R_{indiv}^2 and the ususal measure of trial level surrogacy is the R_{trial}^2 (Buyse *et al.* 2000).

In the case of failure time (survival) endpoints, the classical methods developed for cannot be used because of right censoring. Burzykowski et al. (2001) proposed a meta-analytic model for failure time endpoints consisting in two-step, one to measure individual level surrogacy in terms of Kendall (1938)'s τ and one for the $R_{\rm trial}^2$ at the trial level. Despite the numerous successfully applications of this approach, it is affected by numerical convergence problems preventing its applicability in a number of applications (Oba et al. 2013; Burzykowski and

Cortiñas Abrahantes 2005). In principle, the most natural framework for adapting the metaanalytic approach to the survival case are mixed proportional hazard models, (or frailty models) (Duchateau and Janssen 2008). Since the estimation of frailty models with complex structures of random effects is computationally intensive and can fail to converge, we exploited (Rotolo et al. 201x) the well-known connection between the proportional hazard models and the Poisson log-linear models (Whitehead 1980; Laird and Olivier 1981), which has also been used more recently for individual patient data meta-analyses (Crowther et al. 2012).

In the present paper, we show how all these models can be fitted by use of the R (R Core Team 2016) package **surrosurv** (Rotolo *et al.* 2016). We illustrate the use of the available functions using individual data of a meta-analysis of 20 randomized trials of chemotherapy, including 4069 patients with advanced/recurrent gastric cancer (GASTRIC group 2013; Paoletti *et al.* 2013).

2. The evaluation of failure time surrogate endpoints

Let T_{ij} and S_{ij} be the times to the true and the surrogate endpoints, respectively, for patient $j \in \{1, ..., n_i\}$ in trial $i \in \{1, ..., N\}$. Let Z_{ij} be the indicator of the treatment arm to which the j-th patient in the i-th trial has been randomized.

2.1. Two-step copula approach

The model proposed by Burzykowski et al. (2001) for failure time endpoints consists in two steps, one for the individual and one for the trial level.

Individual-level. At the first the bivariate proportional hazard model is defined by means of the marginal hazard functions and the copula function accounting for their dependence:

$$\begin{cases}
h_{Sij}(s; Z_{ij}) = h_{Si}(s) \exp\left\{\alpha_i Z_{ij}\right\} \\
h_{Tij}(t; Z_{ij}) = h_{Ti}(t) \exp\left\{\beta_i Z_{ij}\right\} \\
C_{\theta}(S_{Sij}(s), S_{Tij}(t))
\end{cases} \tag{1}$$

where $h_{Si}(s)$ and $h_{Ti}(s)$ are the trial-specific baseline hazards, α_i and β_i the treatment effects, and $S_{Sij}(s)$ and $S_{Tij}(t)$ the survival functions associated to of h_{Tij} and h_{Tij} . The dependence parameter θ is reparametrized into the individual-level Kendall's τ , according to the copula function thanks to the tau() function in the copula package (Hofert *et al.* 2016; Yan 2007).

In the **surrosurv** package, Weibull marginal hazards are implemented, toghether with three copula functions:

• the Clayton (1978) copula

$$C_{\theta}(u,v) = \left(u^{-\theta} + v^{-\theta} - 1\right)^{-1/\theta},$$
 (2)

with $\theta > 0$ and Kendall's $\tau = \theta/(\theta + 2)$;

• the Plackett (1965) copula

$$C_{\theta}(u,v) = [Q - R^{1/2}]/[2(\theta - 1)],$$

$$Q = 1 + (\theta - 1)(u + v),$$

$$R = Q^{2} - 4\theta(\theta - 1)uv,$$
(3)

with $\theta > 0$ and Kendall's τ computed numerically as no analytical expression is available;

• the Hougaard (1986) copula

$$C_{\theta}(u,v) = \exp\left(-\left[(-\ln u)^{1/\theta} + (-\ln v)^{1/\theta}\right]^{\theta}\right),\tag{4}$$

with $\theta \in (0,1)$ and Kendall's $\tau = 1 - \theta$.

Further details on these three copula models can be found in the vignette('copula', package = 'surrosurv').

Trial level. At the second step, the estimates of the treatment effects obtained at the first step are assumed to follow the mixed model

$$\begin{pmatrix} \hat{\alpha}_i \\ \hat{\beta}_i \end{pmatrix} = \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} + \begin{pmatrix} \epsilon_{ai} \\ \epsilon_{bi} \end{pmatrix}, \tag{5}$$

$$\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \begin{pmatrix} d_a^2 & d_a d_b \rho_{\text{trial}} \\ d_a d_b \rho_{\text{trial}} & d_b^2 \end{pmatrix} \right), \tag{6}$$

$$\begin{pmatrix} \epsilon_{ai} \\ \epsilon_{bi} \end{pmatrix} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Omega}_{i}\right). \tag{7}$$

where $(\alpha_i, \beta_i)'$ are the true treatment effects and $(\epsilon_{ai}, \epsilon_{bi})'$ the estimation errors.

The trial-level surrogacy measure is $R_{\rm trial}^2 = \rho_{\rm trial}^2$. In practice, the $\rho_{\rm trial}$ is computed via a linear regression of the β_i 's over the α_i 's adjusted by measurement error by fixing the Ω_i 's at their estimates from the first step (van Houwelingen et al. 2002) by using the **mvmeta** package (Gasparrini et al. 2012; Gasparrini 2015). This adjusted (for measurement error) model is sometimes computationally challenging and does not always converge. The **surrosurv** package returns also the so-called unadjusted $R_{\rm trial}^2$, obtained using a simple linear regression, equivalent to fix all the elements of Ω_i equal to 0. In this case, the linear regression coefficients are usually estimated by weighing the observations $(\alpha_i, \beta_i)'$ by the trial size, in order to account at least partially for measurement error.

2.2. One-step mixed Poisson approach

Let us assume that the bivariate proportional hazard model given by the first two lines of equation (1) holds conditionally on an individual random effect $u_{ij} \sim \mathcal{N}(0, \sigma_{\text{indiv}}^2)$:

$$\begin{cases} h_{Sij}(s \mid u_{ij}) = h_{Si}(s) \exp\{u_{ij} + \alpha_i Z_{ij}\} \\ h_{Tij}(t \mid u_{ij}) = h_{Ti}(t) \exp\{u_{ij} + \beta_i Z_{ij}\} \end{cases}$$
 (8)

Note that this corresponds to a shared frailty model with bivariate clusters (Duchateau and Janssen 2008). The shared frailty term u_{ij} accounts for individual level dependence.

It is well-known (see for instance Whitehead 1980; Crowther *et al.* 2012) that the parameters of Cox models can be estimated by fitting a so-called 'auxiliary' Poisson log-linear regression model, by dividing the time scale into intervals k = 1, ..., K In the surrogacy assessment context, the parameters of the bivariate frailty model (8) can be estimated via a bivariate mixed Poisson model

$$\begin{cases} \log\left(\mu_{Sij}^{(k)}\right) = \mu_{Si}^{(k)} + u_{ij} + \alpha_i Z_{ij} + \log\left(y_{Sij}^{(k)}\right) \\ \log\left(\mu_{Tij}^{(k)}\right) = \mu_{Ti}^{(k)} + u_{ij} + \beta_i Z_{ij} + \log\left(y_{Tij}^{(k)}\right) \end{cases}$$
(9)

with $y_{Sj}^{(k)}$ and $y_{Tj}^{(k)}$ the time spent at risk by subject i in trial j for each endpoint during the period k.

Individual-level surrogacy. The use of the a shared frailty u_{ij} , the estimated variance of which is $\hat{\sigma}_{\text{indiv}}^2$, can be used to compute an estimate of the Kendall's $\hat{\tau} = 4 \int_0^\infty s \mathcal{L}(s) \mathcal{L}^{(2)}(s) ds - 1$, where $\mathcal{L}(s)$ and $\mathcal{L}^{(2)}(s)$ are the Laplace transform of the frailty distribution and its second derivative. As an analytic expression of $\mathcal{L}(s)$ is not available for the log-normal frailty distribution, we approximated it using the Laplace method (Goutis and Casella 1999), implemented in the fr.lognormal() function in the parfm package (Munda et al. 2012; Rotolo and Munda 2015).

Trial-level surrogacy. In model (9), the same assumptions (6) as in the two-step copula model are done for the trial-specific treatment effects Thus, the correlation ρ_{trial} between the two treatment effects provides us with the coefficient of determination $R_{\text{trial}}^2 = \rho_{\text{trial}}^2$, also referred to simply as R^2 .

Reduced Poisson models. In order to deal with convergence issues, the **surrosurv** package computes four reduced versions of the full model (9).

- Model **Poisson T** has random trial-treatment interactions α_i and β_i , but does not incoroporate individual effects $(u_{ij} \equiv 0)$ and it has common baselines between trials $(\mu_{Si}^{(k)} = \mu_S^{(k)}, \mu_{Ti}^{(k)} = \mu_T^{(k)}, \forall i)$. This model provides only the trial-level measure of surrogacy R_{trial}^2 .
- Model **Poisson I** contains individual random effects u_{ij} , but not the trial-specific treatment effects $(\alpha_i = \alpha, \beta_i = \beta, \forall i)$ and has common baselines between trials. This model provides only the individual-level measure of surrogacy τ .
- Model **Poisson TI** incorporates both random trial-treatment interactions $(\alpha_i, \beta_i)'$ and individual random effects u_{ij} , but still has common baselines between trials. It provides both individual-level and trial-level measures of surrogacy τ and R_{trial}^2 .
- Model **Poisson TIa** extends the model Poisson TI by accounting for trial-specific baseline risks, using shared random effects at the trial level: $\mu_{Si} = \mu_S + m_i$, $\mu_{Ti} = \mu_T + m_i$, with $m_i \sim \mathcal{N}(0, \sigma_m^2)$.

3. A data example within the surrosurv package

We illustrate the use of the function in the **surrosurv** package by means of the individual patient data of the advanced GASTRIC meta-analysis (GASTRIC group 2013; Paoletti *et al.* 2013).

```
R> library('surrosurv')
Loading required package: optimx

R> packageVersion('surrosurv')
[1] '1.1.3'
R> source('~/IGR/misc/R/paletteigr.R')
R> palette(paletteigr[c(4:1, 5)])
R> LWD <- 3

The individual data of the 4069 patients, already made public by Buyse et al. (2016), are also available directly in R in the surrosurv package:
R> data('gastadv')
R> nrow(gastadv)
[1] 4069
```

The data set contains the following variables:

```
R> names(gastadv)
```

```
[1] "timeT" "statusT" "statusS" "timeS" "trialref" "trt" "id"
```

where timeT and timeS are the (possibly censored) times for overall survival (T) and for progression-fre survival (S) expressed in days, statusT and statusS are the associated indicators of censoring (0) or event (1), trialref is the trial indicator (i), trt is the treatment arm (-0.5 for control and 0.5 for chemotherapy), and id is the patient indicator (j). Figure 1 shows the survival curves for overall survival, the true endpoint T, and progression-free survival, the candiddate surrogate S.

4. Fitting the surrogacy models

The surrogacy models presented in Section 2 can be fitted via the surrosurv() function. The only mandatory argument for the surrosurv() function is data, which has to be a data frame with columns

• trialref, a factor containing the trial identifier;

Figure 1: Survival curves for overall survival (T) and progression-free survival S in the advanced GASTRIC meta-analysis (GASTRIC group 2013)

- trt, the treatment arm, coded as -0.5 vs. 0.5;
- id, a factor containing the patient id;
- timeT and timeS, two positive-valued numerical variables, containing the observed or censoring times of the true endpoint T and of the candidate surrogate S, respectively;
- status and status, the censoring/event (0/1) indicators of T and S, respectively.

A second argument, models, can optionally contain the list of the models to fit. It can contain ny value of clayton, plackett, hougaard, or poisson). If not specified, all of them are fitted. Two further parameters, intWidth and nInts, specify the width and the number of time intervals for data Poissonization. These parameters are passes to the function poissonize(), described in the Appendix (Sec. A). Only one of them can be specified. By default, nInts = 8 which means that the study period is divided into eight periods, the length of which is fixed so that 1/8th of the observed events falls in each interval.

The optimizer used for optimization of the copula models and the Poisson models can be passed via the arguments cop.OPTIMIZER and poi.OPTIMIZER, passed to the **optimx** package (Nash 2012; Nash et al. 2013).

The last parameter, verbose, is a logical value stating whether the function should print out the model being fitted (default: FALSE).

The surrogacy models for the advanced GASTRIC cancer meta-analysis are obtained as follows:

R> allSurroRes <- surrosurv(gastadv, verbose = TRUE)

Estimating model: clayton

Estimating model: plackett

Estimating model: hougaard

Estimating model: poisson

Note that, the computation time of the surrogacy models can be long. In this example, the computations required 38 mins. The results are an object of class surrosurv and the estimated Kendall's τ and R^2 can be easily shown:

R> allSurroRes

	kTau	R2
Clayton unadj	0.61	0.45
Clayton adj	0.61	0.42
Plackett unadj	0.62	0.45
Plackett adj	0.62	0.41
Hougaard unadj	0.32	0.45
Hougaard adj	0.32	0.38
PoissonT		1
PoissonI	0.51	
PoissonTI	0.51	0.63
PoissonTIa	0.51	0.83

For each copula model, both the results with measurement error adjustment (adj) and without adjustment (unadj) are shown.

4.1. Assessing convergence

The function convergence() checks whether convergence criteria are met by each of the fitted models:

R> convergence(allSurroRes)

	${\tt maxSgrad}$	${\tt minHev}$	${\tt minREev}$
Clayton unadj	FALSE	FALSE	
Clayton adj	FALSE	FALSE	TRUE
Plackett unadj	FALSE	FALSE	
Plackett adj	FALSE	FALSE	TRUE
Hougaard unadj	FALSE	TRUE	
Hougaard adj	FALSE	TRUE	TRUE
PoissonT	TRUE	TRUE	FALSE
PoissonI	TRUE	TRUE	
PoissonTI	TRUE	TRUE	TRUE
PoissonTIa	TRUE	TRUE	TRUE

Three convergence criteria are considered. The first criterion, maxSgrad, verifies whether the maximum gradient is small enough. The two other criteria, minHev and minREev, verify whether the minimum eigenvalue of the Hessian matrix of the fixed parameters (H) and of the covariance matrix of the random effects (RE) are big enough, in order to assure the positive definitess of the two matrices. Two parameters can be used to tune the thresholds for 'small enough' maximum gradient and for 'big enough' minmum eigen value: kkttol (1e-2 by default), and kkt2tol (1e-8 by default).

If the values of the minimum gradient and of the maximum eigenvalues are needed, the function convals() can be used:

R> convals(allSurroRes)

```
maxSgrad
                           minHev minREev
                1.5e+00 -6.1e+00
Clayton unadj
Clayton adj
                1.5e+00 -6.1e+00 9.8e-03
Plackett unadj
                4.1e+02 -5.2e+00
Plackett adj
                4.1e+02 -5.2e+00 8.7e-03
                         7.7e-01
Hougaard unadj
                1.4e+01
                1.4e+01
                         7.7e-01 7.7e-03
Hougaard adj
PoissonT
                1.3e-05
                         1.3e+02 6.3e-12
PoissonI
                2.0e-05
                          6.8e+01
PoissonTI
                7.1e-06
                         6.7e+01 2.0e-02
                5.0e-05
                         9.4e+07 1.0e-01
PoissonTIa
```

5. Prediction of the treatment effect

When fitting surrogacy models, an estimate of the treatment effects on the two endpoints is computed internally for each trial. The function predict(), applied to an object of class surrosurv, returns the treatment effect predictions for each trial. The minimal syntax is predict(allSurroRes), but one can be interested in prediction of only one of the fitted models:

```
R> predict(allSurroRes, models = 'PoissonTI')
```

Treatment effect prediction for surrosurv object

Poisson TI

This function returns an object of class predictSurrosurv.

The predicted treatment effects can also be vizualied graphically using the linear regression of the effect on T given the effect on S. The usual surrogacy plot is obtained using the function plot() for the classes surrosurv and predictSurrosurv. For example, the surrogacy plots for the adjusted Clayton copula and the Poisson TI models in the advanced GASTRIC meta-analysis (Fig. reffig:predictions) can be obtained as follows:

Figure 2: Predictions for the advanced GASTRIC meta-analysis (GASTRIC group 2013), as computed by the adjusted Clayton copula model, which had poor convergence metrics, and by the Poisson TI model, which was deemed converged. HR = hazard ratio.

R> plot(allSurroRes, c('Clayton adj', 'PoissonTI'))

The argument surro.stats controls whether the estimated Kendall's τ and R^2 must be displayed on the plots; pred.ints controls whether the prediction intervals must be plotted; show.ste controls whether the surrogate threshold effect (STE) must be displayed on the plots. The STE is the minimal treatment effect to be observed on the surrogate endpoint S to predict a statistically significant effect on the true endpoint T (Burzykowski and Buyse 2006). The value of the STE estimated by each surrogacy model can be obtained via the function ste(), both in terms of regression parameter (beta) and in terms of hazard ratio (HR):

R> ste(allSurroRes)

	beta	HR
Clayton.unadj	-0.61	0.54
Clayton.adj	-0.30	0.74
Plackett.unadj	-0.61	0.54
Plackett.adj	-0.30	0.74
Hougaard.unadj	-0.61	0.54
Hougaard.adj	-0.28	0.76
PoissonT	-0.12	0.88
PoissonTI	-0.41	0.66
PoissonTIa	-1.04	0.36

5.1. Leave-one-trial-out cross-validation

One technique used to assess the validity of the surrogacy model is to apply the leave-one-out principle to the trials in the meta-analysis and to cross-validate the results of the model fitted on N-1 trials thanks to the prediction in the left-out trial of the treatment effect on T, based on the observed effect on S (Michiels et al. 2009; Mauguen et al. 2013; Rotolo et al. 2017). The function loovc() allows performing this evaluation for a given list of models. The cross-validation requires fitting as many models as the number of trials N. As each model is usually very time-consuming to converge, a fortiori the cross-validation is too. For that reason, the function loovc() has been implemented to fit the N models by parallel computing. The argument parallel is a logical for allowing or not such a parallelization, whereas nCores allows specifying the number of cores to use. By default, parallel = TRUE and nCores is set to the minimum between N and the maximum number of cores on the machine.

```
R> loocvRes <- loocv(gastadv, models = c('Clayton', 'PoissonTI'))</pre>
```

Parallel computing on 8 cores (the total number of cores detected)

The results of the crossvalidation can be easily printed

R> loocvRes

```
Clayton copula (Unadjusted)
                    3
                                5
                                       6
              2
                          4
obsBeta -0.31 -0.21 -0.09 -0.02 -0.22 -0.34 ...
        -0.76 -0.65 -0.42 -0.51 -0.48 -0.62 ...
lwr
        -0.05 0.02 0.28 0.17 0.21 0.09 ...
upr
   Clayton copula (Adjusted)
                                     5
obsBeta -0.309 -0.212 -0.095 -0.023 -0.222 -0.342 ...
        -0.571 -0.491 -0.277 -0.358 -0.332 -0.448 ...
lwr
upr
        -0.213 -0.130 0.105 -0.001 0.042 -0.078 ...
   Poisson TI
              2
                    3
                                5
                                       6
                          4
obsBeta -0.31 -0.21 -0.09 -0.02 -0.22 -0.34 ...
        -0.87 -0.67 -0.42 -0.59 -0.29 -0.54 ...
lwr
        -0.45 -0.21 0.57 0.23 0.23 -0.22 ...
upr
```

and plotted (Fig. 3) by showing, for each trial, the comparison between the observed treatment effect on T, and its prediction interval, based on the observed treatment effect on S for the same trial and the surrogacy model fitted on the other N-1 trials:

```
R> plot(loocvRes)
```

Clayton copula (Unadjusted)

Clayton copula (Adjusted)

Poisson TI

Figure 3: Leave-one-trial-out cross-validation results for the advanced GASTRIC metaanalysis (GASTRIC group 2013). The symbol ' \mathbf{X} ' means that the surrogacy model could not be fitted due to numerical problems.

6. Utilities for data simulation

Most of the publications that discuss statistical methods for evaluating failure time surrogate endpoints do not show simulations till date. To our knowledge, rare exceptions are those papers by Burzykowski and Cortiñas Abrahantes (2005); Shi *et al.* (2011); Renfro *et al.* (2012, 2014, 2015).

6.1. Data generation based on a Clayton copula

The data geration method used by Burzykowski and Cortiñas Abrahantes (2005) and by Renfro *et al.* (2014, 2015) reflects the data generating process underlying the two-step copula model (Sec. 2.1).

We implemented this approach for the Clayton family (Eq. (2)), which is available using the function simData.cc(). This function generates data as follows:

• trial-specific random effects are generated from

$$\begin{pmatrix} m_{S_i} \\ m_{T_i} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_S^2 & \sigma_S \sigma_T \rho_m \\ \sigma_S \sigma_T \rho_m & \sigma_T^2 \end{pmatrix} \right)$$

• trial-specific treatment effects are generated from

$$\left(\begin{array}{c} \alpha_i \\ \beta_i \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{cc} \alpha \\ \beta \end{array}\right), \left(\begin{array}{cc} d_a^2 & d_a d_b \rho_{\text{trial}} \\ d_a d_b \rho_{\text{trial}} & d_b^2 \end{array}\right)\right)$$

 \bullet exponentially distributed individual times are simulated for S, conditionally on the random effects generated before.

$$S_{ij} = -\log(U_{Sij})/\lambda_{Sij}$$
, with $\lambda_{Sij} = \exp(\mu_S + m_{Si} + \alpha_i Z_{ij})$ and $U_{Sij} \sim U(0,1)$

• exponentially distributed individual times are simulated for $T \mid S$, conditionally on the random effects generated before and on the value of S

$$T_{ij} = -\log(U'_{Tij})/\lambda_{Tij}, \quad \text{with } \lambda_{Tij} = \exp(\mu_T + m_{T_i} + \beta_i Z_{ij}),$$

$$U'_{Tij} = \left[\left(U_{Tij}^{-\theta/(1+\theta)} - 1 \right) U_{Sij}^{-\theta} + 1 \right]^{-1/\theta}, \text{ and }$$

$$U_{Tij} \sim U(0, 1).$$

The details of the arguments of the simData.cc() function can be obtained using help(simData.cc).

6.2. Data generation based on a mixture of half-normal and exponential random variables

The data geration method used by Shi et al. (2011) and by Renfro et al. (2012) is based on the results by Cowles (2004), which showed that a Weibull distribution can be expressed as a scaled mixture of half-normal distribution and an exponential distribution with unit rate parameter.

This approach, implemented in the function simData.mx(), which generates data as follows:

• trial-specific random effects are generated from

$$\begin{pmatrix} m_{S_i} \\ m_{T_i} \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_S^2 & \sigma_S \sigma_T \rho_m \\ \sigma_S \sigma_T \rho_m & \sigma_T^2 \end{pmatrix} \end{pmatrix}$$

• trial-specific treatment effects are generated from

$$\left(\begin{array}{c} \alpha_i \\ \beta_i \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{cc} \alpha \\ \beta \end{array}\right), \left(\begin{array}{cc} d_a^2 & d_a d_b \rho_{\text{trial}} \\ d_a d_b \rho_{\text{trial}} & d_b^2 \end{array}\right)\right)$$

• individual half-normal random variables Y_{ij}^* are generated from the distribution

$$f(y^*) = \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{y^{*2}}{2}\right), \quad y^* \in \mathbb{R}_+$$

- unit rate parameter exponential random variables Λ_{Sij} and Λ_{Tij} are generated from $-\log(U_{Sij})_{Sij}$ and $-\log(U_{Tij})$, with $U_{Sij} \sim U(0,1)$ and $U_{Tij} \sim U(0,1)$
- \bullet exponentially distributed individual times are simulated for S and T from

$$S_{ij} = \left(Y_{ij}^* \sqrt{2\Lambda_{Sij}}\right) \exp(\mu_S + m_{S_i} + \alpha_i Z_{ij}),$$

$$T_{ij} = \left(Y_{ij}^* \sqrt{2\Lambda_{Tij}}\right) \exp(\mu_S + m_{T_i} + \alpha_i Z_{ij}).$$

The details of the arguments can be obtained using help(simData.mx).

6.3. Data generation based on mixed proportional hazard models

In Rotolo *et al.* (201x), we also generated data using individual random effects to control individual-level surrogacy. This approach is implemented in the function simData.re() and generates data as follows:

- trial-specific random effects and trial-specific treatment effects were generated as in the Clayton copula case
- individual random effects were generated from $u_{ij} \sim \mathcal{N}(0, \sigma^2)$, with σ^2 depending on the scenario (according to the Kendall's τ)
- exponentially distributed individual times were simulated for S and T, conditionally on the random effects generated before. We used the inverse transform method, which consists in transforming a uniform random variable by means of the inverse of the probability distribution function of the random variable to be generated (see for instance Robert and Casella 2009, § 2.1.2)

$$S_{ij} = -\log(U_{Sij})/\lambda_{Sij}$$
, with $\lambda_{Sij} = \exp(\mu_S + m_{S_i} + \alpha_i Z_{ij} + u_{ij})$ and $U_{Sij} \sim U(0, 1)$, $T_{ij} = -\log(U_{Tij})/\lambda_{Tij}$, with $\lambda_{Tij} = \exp(\mu_T + m_{T_i} + \beta_i Z_{ij} + u_{ij})$ and $U_{Tij} \sim U(0, 1)$.

The details of the arguments can be obtained using help(simData.re).

Acknowledgments

The present work has been supported by the French National Cancer Institute (Institut National du Cancer, INCa), Grant SHS 2014-141, and by the Ligue Nationale Contre le Cancer.

References

- Burzykowski T, Buyse M (2006). "Surrogate Threshold Effect: An Alternative Measure for Meta-Analytic Surrogate Endpoint Validation." *Pharmaceutical Statistics*, **5**(3), 173–186. doi:10.1002/pst.207.
- Burzykowski T, Cortiñas Abrahantes J (2005). "Validation in the Case of Two Failure-Time Endpoints." In T Burzykowski, G Molenberghs, M Buyse (eds.), *The Evaluation of Surrogate Endpoints*, pp. 163–194. Springer, New York, NY.
- Burzykowski T, Molenberghs G, Buyse M (2006). The Evaluation of Surrogate Endpoints. Springer Science & Business Media, New York, NY.
- Burzykowski T, Molenberghs G, Buyse M, Geys H, Renard D (2001). "Validation of Surrogate End Points in Multiple Randomized Clinical Trials with Failure Time End Points." *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, **50**(4), 405–422. doi:10. 1111/1467-9876.00244.
- Buyse M, Molenberghs G, Burzykowski T, Renard D, Geys H (2000). "The Validation of Surrogate Endpoints in Meta-Analyses of Randomized Experiments." *Biostatistics*, **1**(1), 49–67. doi:10.1093/biostatistics/1.1.49.
- Buyse M, Molenberghs G, Paoletti X, Oba K, Alonso A, Van der Elst W, Burzykowski T (2016). "Statistical Evaluation of Surrogate Endpoints with Examples from Cancer Clinical Trials." *Biometrical Journal*, **58**(1), 104–132. doi:10.1002/bimj.201400049.
- Clayton D (1978). "A Model for Association in Bivariate Life Tables and its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence." *Biometrika*, **65**, 141–151. doi:10.1093/biomet/65.1.141.
- Cowles M (2004). "Evaluating Surrogate Endpoints for Clinical Trials: A Bayesian Approach." Technical report, University of Iowa. URL https://stat.uiowa.edu/sites/stat.uiowa.edu/files/techrep/tr334.pdf.
- Crowther MJ, Riley RD, Staessen JA, Wang J, Gueyffier F, Lambert PC (2012). "Individual Patient Data Meta-Analysis of Survival Data Using Poisson Regression Models." *BMC Medical Research Methodology*, **12**(1), 34. doi:10.1186/1471-2288-12-34.
- Duchateau L, Janssen P (2008). *The Frailty Model*. Springer Verlag, New York, NY. ISBN 978-0-387-72834-6. doi:10.1007/978-0-387-72835-3.

- Gasparrini A (2015). "mvmeta: Multivariate and Univariate Meta-Analysis and Meta-Regression." R package version 0.4-7. URL https://CRAN.R-project.org/package=mvmeta.
- Gasparrini A, Armstrong B, Kenward M (2012). "Multivariate Meta-Analysis for Non-Linear and Other Multi-Parameter Associations." *Statistics in Medicine*, **31**, 3821–3839. doi: 10.1002/sim.5471.
- GASTRIC group (2013). "Role of Chemotherapy for Advanced/Recurrent Gastric Cancer: An Individual-Patient-Data Meta-Analysis." European Journal of Cancer, 49(7), 1565–1577. doi:10.1016/j.ejca.2012.12.016.
- Goutis C, Casella G (1999). "Explaining the Saddlepoint Approximation." The American Statistician, 53(3), 216–224. doi:10.1080/00031305.1999.10474463.
- Hofert M, Kojadinovic I, Maechler M, Yan J (2016). "copula: Multivariate Dependence with Copulas." R package version 0.999-15. URL https://CRAN.R-project.org/package=copula.
- Hougaard P (1986). "A Class of Multivariate Failure Time Distributions." *Biometrika*, **73**, 671–678. doi:10.1093/biomet/73.3.671.
- Kendall MG (1938). "A New Measure of Rank Correlation." *Biometrika*, **30**(1/2), 81–93. URL http://www.jstor.org/stable/2332226.
- Kovalchik S (2013). "Re: Exponential Proportional Hazard Model." http://r.789695. n4.nabble.com/exponential-proportional-hazard-model-td805536.html. Accessed: 2016-11-14.
- Laird N, Olivier D (1981). "Covariance Analysis of Censored Survival Data Using Log-Linear Analysis Techniques." *Journal of the American Statistical Association*, **76**(374), 231–40. doi:10.1080/01621459.1981.10477634.
- Mauguen A, Pignon JP, Burdett S, Domerg C, Fisher D, Paulus R, Mandrekar SJ, Belani CP, Shepherd FA, Eisen T, Pang H, Collette L, Sause WT, Dahlberg SE, Crawford J, O'Brien M, Schild SE, Parmar M, Tierney JF, Le Pechoux C, Michiels S (2013). "Surrogate endpoints for overall survival in chemotherapy and radiotherapy trials in operable and locally advanced lung cancer: A re-analysis of meta-analyses of individual patients' data." The Lancet Oncology, 14(7), 619–26. doi:10.1016/S1470-2045(13)70158-X.
- Michiels S, Le Maître A, Buyse M, Burzykowski T, Maillard E, Bogaerts J, Vermorken JB, Budach W, Pajak TF, Ang KK, Bourhis J, Pignon JP (2009). "Surrogate endpoints for overall survival in locally advanced head and neck cancer: meta-analyses of individual patient data." The Lancet Oncology, 10(4), 341–50. doi:10.1016/S1470-2045(09)70023-3.
- Munda M, Rotolo F, Legrand C (2012). "parfm: Parametric Frailty Models in R." Journal of Statistical Software, 51(1), 1–20. doi:10.18637/jss.v051.i11.
- Nash JC (2012). "On Best Practice Optimization Methods in R." Journal of Statistical Software, 60(2), 1–14. doi:10.18637/jss.v043.i09.

- Nash JC, Varadhan R, Grothendieck G (2013). "opitmx: A Replacement and Extension of the optim() Function." R package version 2013.8.7. URL https://CRAN.R-project.org/package=optimx.
- Oba K, Paoletti X, Alberts S, Bang YJ, Benedetti J, Bleiberg H, Catalano P, Lordick F, Michiels S, Morita S, Ohashi Y, Pignon JP, Rougier P, Sasako M, Sakamoto J, Sargent D, Shitara K, Van Cutsem E, Buyse M, Burzykowski T (2013). "Disease-Free Survival as a Surrogate for Overall Survival in Adjuvant Trials of Gastric Cancer: A Meta-Analysis." *Journal of the National Cancer Institute*, 105(21), 1600–7. doi:10.1093/jnci/djt270.
- Paoletti X, Oba K, Bang YJ, Bleiberg H, Boku N, Bouché O, Catalano P, Fuse N, Michiels S, Moehler M, Morita S, Ohashi Y, Ohtsu A, Roth A, Rougier P, Sakamoto J, Sargent D, Sasako M, Shitara K, Thuss-Patience P, Van Cutsem E, Burzykowski T, Buyse M (2013). "Progression-Free Survival as a Surrogate for Overall Survival in Advanced/Recurrent Gastric Cancer Trials: A Meta-Analysis." Journal of the National Cancer Institute, 105(21), 1667–1670. doi:10.1093/jnci/djt269.
- Plackett RL (1965). "A class of Bivariate Distributions." *Journal of the American Statistical Association*, **60**, 516–522. doi:10.1080/01621459.1965.10480807.
- R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Renfro LA, Shang H, Sargent DJ (2015). "Impact of copula directional specification on multi-trial evaluation of surrogate endpoints." *Journal of Biopharmaceutical Statistics*, **25**, 857–877. doi:10.1080/10543406.2014.920870.
- Renfro LA, Shi Q, Sargent DJ, Carlin BP (2012). "Bayesian adjusted R^2 for the meta-analytic evaluation of surrogate time-to-event endpoints in clinical trials." Statistics in Medicine, 31(8), 743–761. doi:10.1002/sim.4416.
- Renfro LA, Shi Q, Xue Y, Li J, Shang H, Sargent DJ (2014). "Center-within-trial versus trial-level evaluation of surrogate endpoints." Computational Statistics & Data Analysis, 78, 1–20. doi:10.1016/j.csda.2014.03.011.
- Robert C, Casella G (2009). *Introducing Monte Carlo Methods with R*. Springer Science & Business Media. doi:10.1007/978-1-4419-1576-4.
- Rotolo F, Munda M (2015). "parfm: Parametric Frailty Models." R package version 2.5.10. URL https://CRAN.R-project.org/package=parfm.
- Rotolo F, Paoletti X, Burzykowski T, Buyse M, Michiels S (2016). "surrosurv: Evaluation of Failure Time Surrogate Endpoints in Individual Patient Data Meta-Analyses." R package version 1.0.1. URL https://CRAN.R-project.org/package=surrosurv.
- Rotolo F, Paoletti X, Buyse M, Burzykowski T, Michiels S (201x). "Evaluation of Failure Time Surrogate Endpoints in Individual Patient Data Meta-Analyses of Randomized Clinical Trials: a Poisson Approach." Working paper.
- Rotolo F, Pignon JP, Bourhis J, Marguet S, Leclercq J, Ng WT, Ma J, Chan A, Huang6 PY, Zhu G, Chua D, Chen Y, Mai HQ, Kwong DLW, Soong YL, Moon J, Tung Y, Chi KH,

Fountzilas G, Zhang L, Pun Hui E, Lee AWM, Blanchard P, Michiels S (2017). "Surrogate Endpoints for Overall Survival in Loco-Regionally Advanced Nasopharyngeal Carcinoma: an Individual Patient Data Meta-Analysis." *Journal of the National Cancer Institute*, 109(4). doi:10.1093/jnci/djw239.

Shi Q, Renfro LA, Bot BM, Burzykowski T, Buyse M, Sargent DJ (2011). "Comparative assessment of trial-level surrogacy measures for candidate time-to-event surrogate endpoints in clinical trials." *Computational Statistics & Data Analysis*, **55**(9), 2748–2757. doi: 10.1016/j.csda.2011.03.014.

van Houwelingen HC, Arends L, Stijnen T (2002). "Advanced Methods in Meta-Analysis: Multivariate Approach and Meta-Regression." *Statistics in Medicine*, **21**, 589–624. doi: 10.1002/sim.1040.

Whitehead J (1980). "Fitting Cox's Regression Model to Survival Data Using GLIM." Journal of the Royal Statistical Society: Series C (Applied Statistics), pp. 268–275. doi:10.2307/2346901.

Yan J (2007). "Enjoy the Joy of Copulas: With a Package **copula**." *Journal of Statistical Software*, **21**(1), 1–21. doi:10.18637/jss.v021.i04.

A. Data poissonization

Fitting auxiliary Poisson models for estimating the parameters of a proportional hazard model (Whitehead 1980; Crowther *et al.* 2012) needs that data are rearranged in order to provide, for each time period, the number of events and the total time passed at risk. The function poissonize() in the **surrosurv** package allows to easily perform the necessary data manipulaton easily and quickly. The core of the function has been derived from the original code publicly shared by Kovalchik (2013).

The main argument of the poissonize() function is data, a data frame with columns: id, the patient identifyier; time, the event/censoring time; status, the event (1) or censoring (0) indicator; ..., other factors such like the covariables needed in the regression model.

The breakpoints between time intervals can be entered in the second argument, all.breaks. Otherwise, if all.breaks is not specified, one can specify either the width of the time intervals interval.width, or their number nInts (used only also if is.null(interval.width)).

Any other variables to be kept in the poissonized data frame can be entered in factors. The last argument (compress) is a logical indicating whether the record with the same factor profile should be summarized into one record, i. e. whether the data should be expressed in a short form.

In the advanced GASTRIC cancer example, we first change the column names in order to match the ones needed by poissonize():

- R> gastadv.poi <- gastadv
- R> gastadv.poi\$time <- gastadv.poi\$timeT / 365.25</pre>
- R> gastadv.poi\$status <- gastadv.poi\$statusT

We fit the proportional hazard model, to which we will compare the results of the auxiliary Poisson model.

```
R> fitcox <- coxph(Surv(time, status) ~ trt, data = gastadv.poi)
R> cox.base <- basehaz(fitcox, centered = FALSE)</pre>
```

We 'possonize' the data over 10 intervals (the default) and we fit the auxiliary Poisson model.

```
R> gastadv.poi <- poissonize(gastadv.poi, nInts = 10, factors = 'trt')
R> gastadv.poi
    interval trt m Rt N
```

```
1
                  0 -0.5 181 292 1668
     0.1832128678987 -0.5 180 173 1475
2
3
    0.30921697467488 -0.5 192 149 1288
4 0.435221081451061 -0.5 159 132 1088
  0.567018480492813 -0.5 154 114
  0.703885010266941 -0.5 156 108
                                  751
7 0.867545516769336 -0.5 157 103
                                  584
    1.07320739219713 -0.5 143 101
                                  414
8
9
    1.39328678986995 -0.5 117
                              97
                                  239
10 2.07255030800821 -0.5 60 87
11
                  0
                     0.5 216 421 2401
12
     0.1832128678987
                     0.5 221 258 2167
13 0.30921697467488 0.5 213 229 1935
14 0.435221081451061 0.5 247 207 1706
15 0.567018480492813 0.5 237 181 1446
16 0.703885010266941 0.5 225 176 1203
17 0.867545516769336 0.5 228 171 965
18 1.07320739219713 0.5 221 183
                                  715
19 1.39328678986995 0.5 211 205 460
20 2.07255030800821 0.5 117 171 204
     fitpoi <- glm(m ~ -1 + interval + trt + offset(log(Rt)),
R>
                  data = gastadv.poi, fam = 'poisson')
```

The function plotsson() can be used to draw the survival curves (or the instantaneous hazard) estimated by the auxiliary Poisson model:

The treatment effect estimated by the Cox model is -0.14, whereas it is of -0.14 when using the auxiliary Poisson model.

Figure 4: Overall survival curves in the advanced GASTRIC meta-analysis (GASTRIC group 2013). (a) Comparison between the survival probability obtanied using the Breslow estimator in the Cox model (solid lines) and those obtained using the auxiliary Poisson model (dashed lines). (b) Piecewise constant hazard estimated by the auxiliary Poisson model

Affiliation: