

AĞ ANALİZLERİ

Doğrusal programlamanın gerçek hayatta en yaygın kullanılma alanlarından biri de karşılıklı ilişkileri grafik veya şekillerle ifade edilebilen problemlerdir. Elemanlarla bunların arasındaki ilişkilerin şekillerle ifade edilmesinden hareketle bu tür modellere ağ (network ya da şebeke) modelleri denir. Ağ analizi bir programlama tekniği olup genellikle büyük ölçekli projelerin modellenmesi, bir noktadan bir başka noktaya en kısa yolun bulunması, yeni ürün pazarlamasının planlanması, belirli sistemlerdeki en büyük akışın belirlenmesi gibi pek çok alanda kullanılmaktadır. Ağ analizinde kullanılacak tekniklere geçmeden önce bazı terimlere değinmek gerekmektedir.

Grafik: İki veya daha fazla noktanın bir ya da birkaç çizgi ile birleştirilmesiyle ortaya çıkan seriye grafik denir.

Düğüm: Grafik üzerindeki bağlantı noktalarına bağlantı denir.

Ayrıt: İki düğümü birleştiren çizgiye ayrıt denir.

Ağ (Şebeke): Ayrıtlarında ayrım olan grafiğe ağ (şebeke) denir.

Düğüm noktaları olayları, ayrıtlar ise faaliyetleri gösterir.

Olay: Bir olay, zamanda öyle bir anı ifade eder ki, bu anda bir faaliyet bitmiş diğer bir faaliyet başlamaya hazırdır.

Faaliyet: Bir işin tamamlanması için zaman ve kaynak gerektiren hareketi ifade eder.

Düğüm	Ayrıt	Akım
Kavşak	Yollar	Araçlar
Vanalar	Borular	Su
Hava Limanı	Hava Yolları	Uçak

Zincir: i ve j gibi iki düğümü birleştiren dallar dizisine i ve j düğümleri arasındaki zincir denir.

Yol: Üzerinde gidiş yönü belirlenen zincire yol denir.

Döngü: Bir düğümü kendisine bağlayan zincire döngü denir.

Bağlantılı grafik: Bir grafikte her düğüm noktasını birleştiren bir zincir varsa bu grafiğe bağlantılı grafik denir.

Ağaç: Döngüsü olmayan bağlantılı grafiğe ağaç denir.

A-EN KISA YOL PROBLEMİ

Herhangi bir şebeke içinde başlangıç noktasına kaynak ve son noktaya bitim adı verilsin. En kısa yol probleminde amaç, kaynaktan bitime doğru minimum toplam uzunlukla gitmeyi sağlayan dallar dizisini bulmaktır.

Problemin matematiksel modeli:

$$Min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$

$$\sum_{j=2}^{n} x_{1j} = 1 \ başlangıç düğümden yalnız bir düğüme geçilir.$$

$$\sum_{i=1}^{n-1} x_{in} = 1 \text{ son düğüme yalnız bir düğümden geçilebilir.}$$

$$\sum_{i} x_{ik} = \sum_{j} x_{kj} \quad k \neq 1 \quad k \neq n$$

$$x_{ij} = \begin{cases} 1, & i \ den \ j \ ye \ geçilir \\ 0, & diğer \ durumlarda \end{cases}$$

ÖRNEK: Bir otomobil kiralama firması 5 yıllık planlama dönemi için amaç filosu ile ilgili yenileme planı gerçekleştirmek istemektedir. Her yılın başında arabanın kullanılacağına veya yenileneceğine karar verilmektedir. Bir otomobilin en az bir yıl kullanılması zorunlu olup üç yıl sonunda yenilenmesi gerekmektedir. Aşağıdaki tablo otomobilin satın alındığı ve kullanıldığı yıl sayısının bir fonksiyonu olarak yenileme maliyetini göstermektedir.

Satın	Kullanımdaki yıllar için		
Alındığı Yıl	yenileme maliyeti		
	1 2 3		3
2012	4000	5400	9800
2013	4300	6200	8700
2014	4800	7100	-
2015	4900	-	-
2016			

Minimum maliyet için araçları hangi yılın başında değiştirmeliyiz?

Kaç yol mevcut sorusunun cevabı aşağıda göründüğü gibi 7 yolun varlığıdır.

1	1	1	1	4000+4300+4800+4900=18000
2	1	1		5400+4800+4900=15100
1	2	1		4000+6300+4900=15200
1	1	2		4000+4300+7100=15400
1	3			4000+8700=12700
3	1			9800+4900=14700
2	2			5400+7100= <mark>12500</mark>

Minimum maliyete sahip yol ise; Min Z= 5400+7100=12500

ile iki yılda bir arabaların yenilenmesi biçimindedir.

Yollar, düğümler arttıkça artar ve her yolun tek tek değerlendirilmesi güçleşir. Minimum yolu bulmak için önerilmiş algoritma Dijkstra Algoritmasıdır.

Dijkstra Algoritması: Algoritmanın hesaplamaları özel bir etiketleme prosedürü kullanılarak i. Düğümden hemen sonra gelen j. Düğüme ilerletilir.

 u_i : 1. düğümden i. düğüme en kısa uzaklık (minimum maliyet) olsun.

 $ve\ d_{ij}\ (\ge 0\)(i,j)\$ bağlantısının uzunluğu olarak tanımlansın. J. Düğüm için etiket.

 $[u_j, i] = [u_i + d_{ij}, i]$ $d_{ij} \ge 0$ biçiminde tanımlanır.

Dijkstra algoritmasında düğüm etiketleri geçici ve kalıcı olmak üzere iki tiptir.

Geçici etiket aynı düğüme daha kısa başka bir yol bulunursa değiştirilebilir. Daha iyi bir yolun bulunamayacağı açıkça ortaya çıktığı noktada geçici etiketin statüsü kalıcıya dönüşür.

Algoritmanın adımları;

- 1. Adım: Kaynak düğümü (1. düğüm) kalıcı etiket [0,-] ile etiketlenir. i=1 olarak belirlenir.
- 2. Adım:
 - a) j'nin kalıcı etiketlenmemiş olması koşuluyla i. düğümden ulaşılabilen her j düğümü için geçici $[u_i+d_{ij}$, i] etiketini hesapla. j. düğüm başka bir k düğümü içerisinde $[u_i,k]$ ile zaten etiketlenmiş ise
 - ve $u_i + d_{ij} < u_j$ ise $\left[u_j, k\right]$ yı $\left[u_i + d_{ij}, i\right]$ ile değiştir.
 - b) Tüm düğümlerde kalıcı etiketler oluşmuşsa durulur. Aksi halde tüm geçici etiketler arasında $[u_j, i]$ nin en kısa mesafeli olanı seçilir. (Eşitlik durumunda herhangi biri rasgele seçilir.) i=r olarak belirlenir ve ilk adım tekrarlanır.

ÖRNEK: Aşagıdaki şebeke 1. Şehir ile diğer 6 şehir arasındaki yolları ve bunların kilometre cinsinden uzunluklarını göstermektedir. 1. Şehir ile 7. Şehir arasındaki en kısa yolu belirleyiniz.

1. Yineleme:

Düğüm	Etiket	Statü
1	[0]	K
2	[2,1]	G→K
3	[5,1]	G
4	[4,1]	G→K

2. Yineleme:

Düğüm	Etiket	Statü
1	[0]	K
2	[2,1]	K
3	[5,1] [2+2,2] [4+1,4]	G
4	[4,1]	K
5	[2+7;2] [4+4;3]	G
6	[4+4;4] [5+4,3]	G

3. Yineleme:

Düğüm	Etiket	Statü
1	[0]	K
2	[2,1]	K
3	[4,2]	K
4	[4,1]	K
5	[8;3]	K
6	[8;4]	K
7	[8+5,5] [8+7,6] [13,5]	G K

1. Düğüm ile 7. Düğüm arasındaki en kısa yol

$$(7)[13,5] \rightarrow (5)[8,3] \rightarrow (3)[4,2] \rightarrow (2)[2,1]$$

 $1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 7$
 $2 + 2 + 4 + 5 = 13$

B-EN KÜÇÜK YAYILMA (MİNİMUM ÖRTEN AĞAÇ)

Amaç, her bir olay veya nokta çiftleri arasında en kısa yolu bularak şebeke içinde toplam en kısa uzaklığı sağlayan yolu bulmaktır. Özelliği tüm noktalardan geçilmesi gerektiğidir.

Matematiksel Model:

$$Min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$

$$\sum_{i} x_{ij} > 1 \,, \forall \, j \, i \varsigma in \, (Her \, d \ddot{\mathsf{u}} \ddot{\mathsf{g}} \ddot{\mathsf{u}} me \, en \, az \, bir \, d \ddot{\mathsf{u}} \ddot{\mathsf{g}} \ddot{\mathsf{u}} mden \, gelinir.)$$

$$\sum_{j} x_{ij} > 1 \,, \forall \, i \, i \mbox{\'e}in \, (Her \, d\mbox{\'u}\mbox{\'g}\mbox{\'u}mden \, en \, az \, bir \, d\mbox{\'u}\mbox{\'g}\mbox{\'u}me \, ge\mbox{\'e}ilir.)$$

$$x_{ij} = \{1,0\}$$

Algoritma: $N = \{1, 2, ..., n\}$ şebekenin düğümler kümesi olsun.

 C_k : k. $iterasyonda\ kalıcı\ olarak\ bağlanmış\ düğümler\ kümesi$

 $ar{C}_k$: henüz kalıcı olarak bağlanmamış düğümler kümesi

- 1. Adım: $C_0 = \emptyset \ \overline{C}_0 = N$
- 2. Adım: Bağlanmamış düğümler kümesi \bar{C}_0 daki herhangi bir i. düğümle başlanıp $C_1 = \{i\}$ olarak belirlenir. Bu otomatik olarak $\bar{C}_1 = N \{i\}$ sonucunu verir. K=2 olarak belirlenir.
- k. Genel Adım: Bağlanmış düğümler kümesi C_{k-1} bir düğüme en kısa bağlantıyı verecek şekilde \bar{C}_{k-1} bağlanmamış düğümler kümesinden bir j^* düğümü seçilir. Bu düğüm C_{k-1} e kalıcı olarak bağlanır. \bar{C}_{k-1} kümesinden çıkarılır. Bağlanmamış düğümler kümesi \emptyset ise durulur. Değilse k=k+1 olarak belirlenir ve k. Genel adım tekrarlanır.

ÖRNEK: Bir yerleşim yerindeki 8 tüketim merkezine boru hattı ile doğalgaz verilecektir. Tüketim merkezlerinin birbirlerine olan bağlantıları aşağıdaki gibidir. En az boru kullanarak merkezler arasında gerçekleşecek bağlantıyı oluşturun.

Başlangıç noktası olarak 5 seçilsin.

Bağlantı Yapılmış	Erişilebilir Düğüm ve	Örten Ağaç	
Düğümler Kümesi	Ayrıt Uzunluğu	(Düğümler)	
{5}	{5-4}-2 *	{5-4}	
	{5-7}-5		
	{5-6}-6		
	{5-3}-3		
	{5-8}-4		Daalamara maleta hamaisi aluwaa alaum
{5,4}	{5-7}-5	{5-3}	Başlangıç nokta hangisi olursa olsun
	{5-6}-6		minimum örten ağaç aynı olur.
	{5-3}-3 *		8. 9. 9
	{5-8}-4		
	{4-2}-6		Minimum örten ağaç şebekenin
	{4-7}-9		üzerinde kırmızı çizgiler ile
{5,4,3}	{5-7}-5	{5-8}	, ,
	{5-6}-6		gösterilmiştir.
	{5-8}-4*		
	{4-2}-6		11 1 1 1 1 1
	{4-7}-9		Kullanılacak minimum boru
	{3-1}-7		uzunluğu=3+4+3+2+5+4+2=27
	{3-2}-4		
(F 4 2 0)	{3-6}-6	(0, ()	birimdir.
{5,4,3,8}	{8-7}-7	{8-6}	
(5 4 2 0 6)	{8-6}-2*	(2, 2)	
{5,4,3,8,6}	{3-2}-4*	{3-2}	
{5,4,3,8,6,2}	{2-1}-3*	{2-1}	
(5 4 2 0 (2 1)	{2-3}-4	(5.7)	
{5,4,3,8,6,2,1}	{1-3}-7	{5-7}	
(E 4 2 0 6 2 1 7) – N	{5-7}-5*		
{5,4,3,8,6,2,1,7}=N			

C-EN BÜYÜK AKIŞ PROBLEMİ

 d_{ij} : i den j ye akış kapasiyesi

 x_{ij} : i den j ye akış miktarı

 x_0 : ağda gerçekleşecek toplam akış

Başlangıç düğüme x_0 gibi bir başlangıç akış miktarı girecek ve aynı zamanda başka düğümlerden de girdiler olabilir. Düğümlerde girdi miktarları ve çıktı miktarları birbirine eşit olmalı.

Matematiksel Model:

$$Enb\ Z = x_0$$

$$\sum_k x_{k1} - \sum_k x_{1k} = -x_0 \to Başlangıç$$

$$\sum_k x_{kj} - \sum_k x_{jk} = 0 \to Ara\ düğümler.\ Akışların\ korunumu\ ilkesi$$

$$\sum_k x_{nk} - \sum_k x_{kn} = -x_0 \to Bitiş\ aşaması$$

$$0 < x_{ij} \le d_{ij}$$

Tek bir başlangıç ve tek bir bitiş düğümü olan bir şebekede belli bir zaman periyodunda başlangıç ve bitiş düğümleri arasındaki en fazla akışı bulmayı amaçlayan algoritmaya Maximum Akış Algoritması denir.

Maximum Akış Algoritması Adımsal olarak;

Adım 1: Kaynak düğümünden bitiş düğümüne kadar tüm dallarında akış olan bir yol seçilir. Böyle bir yol kalmamışsa maximum akışa ulaşılmış demektir.

Adım 2: Belirlenen yoldaki en büyük kapasiteli akış saptanır. Bu C olsun;

- a) Bu yoldaki tüm dallarda akış yönündeki bütün kapasiteler C kadar azaltılır.
- b) Yollardaki tüm dallarda aksi istikametteki kapasiteler C kadar azaltılır.

Adım 3: Bütün dallarda akış kapasiteleri olan bir yol olup olmadığı kontrol edilir, böyle bir yol yoksa optimal akış miktarına ulaşılmış demektir.

ÖRNEK: A ve B şehirleri arasındaki karayolu bakımı nedeniyle bir süre trafiğe kapanacaktır. Kara yolları mühendisleri saatte 6 bin arabalık bu trafik akımını alternatif yollarla sağlamak zorundadır. Alternatif yollar ve kapasiteleri grafikteki gibidir. A ve B şehri arasındaki maximum akışı belirleyiniz.

1 ile 6 düğümleri arasındaki kullanılabilecek yollardan biri

1-2-5-6 bağlantılarının izlenmesidir ve akış kapasiteleri (6-4-2) dir.

Bu kapasitelerden en küçük olanı 2 dir. Bu yoldan 2 birim araç gidebilir.

Bu durumda bu yoldaki kapasiteler iki birim azalacaktır.

1-4-6 bağlantıları izlenirse akış kapasiteleri (3-7) dir.

Bu kapasitelerden en küçük olanı 3 dür.

Yoldaki kapasiteler 3 birim azalır.

1-3-4-6 bağlantıları izlenirse akış kapasiteleri (5-8-4) dir.

Bu kapasitelerden en küçük olanı 4 dür.

Yoldaki kapasiteler 4 birim azalır.

Artık her dalında kapasite olan bir yol kalmamıştır.

Toplam taşınabilecek miktar 2+3+4=9 birimdir.