Lecture 9

- AC Power Calculation

Outline

- Instantaneous power
- Average power
- Apparent power
- Power factor
- Complex power

AC Power in Time Domain: Instantaneous

Time Domain

$$v(t) = V_m \cos(\omega t + \theta_v)$$
 $i(t) = I_m \cos(\omega t + \theta_i)$

Instantaneous power:

power at any instant of time.

$$p(t) = v(t)i(t) = V_m I_m \cos(\omega t + \theta_v) \cos(\omega t + \theta_i)$$

$$p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$

AC Power in Time Domain: Instantaneous

Average Power P (Capitalized)

$$v(t) = V_m \cos(\omega t + \theta_v) \quad i(t) = I_m \cos(\omega t + \theta_i)$$

$$p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$

Average (or real) power (unit: watts)

The average power, in watts, is the average of the instantaneous power over one period.

$$P = \frac{1}{T} \int_{0}^{T} p(t) dt$$

Average Power P (time domain)

$$P = \frac{1}{T} \int_0^T \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) dt$$

$$+ \frac{1}{T} \int_0^T \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i) dt$$

$$= \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) \frac{1}{T} \int_0^T dt$$

$$+ \frac{1}{2} V_m I_m \frac{1}{T} \int_0^T \cos(2\omega t + \theta_v + \theta_i) dt$$

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

Average Power P (phasor domain)

$$v(t) = V_m \cos(\omega t + \theta_v) \quad i(t) = I_m \cos(\omega t + \theta_i)$$

$$\mathbf{V} = V_m / \underline{\theta_v} \text{ and } \mathbf{I} = I_m / \underline{\theta_i},$$

$$\frac{1}{2} \mathbf{V} \mathbf{I}^* = \frac{1}{2} V_m I_m / \underline{\theta_v} - \underline{\theta_i}$$

$$= \frac{1}{2} V_m I_m [\cos(\theta_v - \theta_i) + j \sin(\theta_v - \theta_i)]$$

$$P = \frac{1}{2} \text{Re}[\mathbf{V}\mathbf{I}^*] = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

Two special cases for average power P

$$P = \frac{1}{2} \text{Re}[\mathbf{V}\mathbf{I}^*] = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

For a purely resistive load R:

$$P = \frac{1}{2}V_m I_m = \frac{1}{2}I_m^2 R = \frac{1}{2}|\mathbf{I}|^2 R$$
 where $|\mathbf{I}|^2 = \mathbf{I} \times \mathbf{I}^*$

For a purely reactive load:

$$P = \frac{1}{2} V_m I_m \cos 90^\circ = 0$$

Resistive vs. Inductive

$$p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$

Pure resistive load

$$P_{\text{avg}} = \frac{V_m I_m}{2}$$

$$P_{\text{avg}} = 0$$

A resistive load (R) absorbs power at all times, while a reactive load (L or C) absorbs zero average power.

Half the time, the energy is delivered to the inductance; The other half time, energy is returned to the source.

Lecture 9

Effective Value (RMS) Root Mean Square of periodic signal

• For any periodic function x(t) in general, its rms value is

$$X_{\text{eff}} = X_{\text{rms}} = \sqrt{\frac{1}{T} \int_0^T x^2(t) dt}$$

$$V_{\text{eff}} = \sqrt{\frac{1}{T}} \int_0^T v^2(t) dt$$

$$I_{\text{eff}} = \sqrt{\frac{1}{T} \int_0^T i^2(t) dt}$$

RMS of a sinusoidal signal

• The RMS value of $v(t) = V_m \cos(\omega t + \phi)$ is

$$V_{\text{rms}} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} v^2(t) dt$$

$$= \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} V_m^2 \cdot \cos^2(\omega t + \phi) dt$$

$$= \frac{V_m}{\sqrt{2}}$$

Average Power

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta_v - \theta_i)$$
$$= V_{\text{rms}} I_{\text{rms}} \cos(\theta_v - \theta_i)$$

Outline

- Instantaneous power
- Average power
- Apparent power
- Power factor
- Complex power

Apparent Power

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta_v - \theta_i)$$
$$= V_{\text{rms}} I_{\text{rms}} \cos(\theta_v - \theta_i)$$

$$S \text{ or } Sa = V_{rms}I_{rms}$$

Unit: volt-amp (VA)

It seems <u>apparent</u> that the power should be the voltage-current product, by <u>analogy with dc resistive</u> circuits.

Power Factor

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta_v - \theta_i)$$
$$= V_{\text{rms}} I_{\text{rms}} \cos(\theta_v - \theta_i)$$

The power factor

$$pf = \frac{P}{Sa} = \cos(\theta_v - \theta_i)$$

- $(\theta_v \theta_i)$ is called power factor angle.
 - >0 means a *lagging* pf (current lags voltage)
 - <0 means a *leading* pf (current leads voltage)
- pf ranges from 0 to 1.

Power Factor-2

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta_v - \theta_i)$$
$$= V_{\text{rms}} I_{\text{rms}} \cos(\theta_v - \theta_i)$$

The power factor

$$pf = \frac{P}{S} = \cos(\theta_v - \theta_i)$$

- $(\theta_v \theta_i)$ is called power factor angle.
- $(\theta_v \theta_i)$ is equal to the angle of the load impedance

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{V_m / \theta_v}{I_m / \theta_i} = \frac{V_m}{I_m} / \theta_v - \theta_i$$

Also
$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{\mathbf{V}_{\text{rms}}}{\mathbf{I}_{\text{rms}}} = \frac{V_{\text{rms}}}{I_{\text{rms}}} / \frac{\theta_v - \theta_i}{I_{\text{rms}}}$$

Power Factor-3

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{V_m / \theta_v}{I_m / \theta_i} = \frac{V_m}{I_m} / \theta_v - \theta_i$$

Power factor leading and lagging relationships for a load $\mathbf{Z} = R + jX$.

Load Type	$\boldsymbol{\phi_{\mathbf{Z}}} = (\theta_v - \theta_i)$	I-V Relationship	pf
Purely Resistive $(X = 0)$	$\phi_z = 0$	I in-phase with V	1
Inductive $(X > 0)$	$0 < \phi_z \le 90^{\circ}$	I lags V	lagging
Purely Inductive $(X > 0 \text{ and } R = 0)$	$\phi_z = 90^{\circ}$	I lags V by 90°	lagging
Capacitive $(X < 0)$	$-90^{\circ} \le \phi_{\mathcal{Z}} < 0$	I leads V	leading
Purely Capacitive $(X < 0 \text{ and } R = 0)$	$\phi_{\mathcal{Z}} = -90^{\circ}$	I leads V by 90°	leading

Outline

- Instantaneous power
- Average power
- Apparent power
- Power factor
- Complex power

Complex Power

$$v(t) = V_m \cos(\omega t + \theta_v) \Longrightarrow \mathbf{V} = V_m \angle \theta_v$$

$$i(t) = I_m \cos(\omega t + \theta_i) \Longrightarrow \mathbf{I} = I_m \angle \theta_i$$

We observe that:

$$\frac{1}{2}\mathbf{V}\mathbf{I}^* = \frac{1}{2}V_m I_m \angle (\theta_v - \theta_i)$$
$$= \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) + j\frac{1}{2}V_m I_m \sin(\theta_v - \theta_i)$$

Define a single power metric

$$\mathbf{S} = \frac{1}{2}\mathbf{V}\mathbf{I}^* = \mathbf{V}_{rms}\mathbf{I}_{rms}^* = V_{rms}I_{rms} \angle (\theta_v - \theta_i) = P + jQ$$

Unit: volt-amp (VA)

Complex power is important in power analysis because it contains *all* the information pertaining to the power absorbed by a given load.

Another Way to Calculate Complex Power using impedance

$$\mathbf{V}_{\rm rms} = \mathbf{I}_{\rm rms} Z$$

$$S = V_{rms}I_{rms}^*$$

$$= V_{rms} \left(\frac{V_{rms}}{Z}\right)^*$$

$$= \frac{|V_{rms}|^2}{Z^*}$$

$$S = V_{rms}I_{rms}^{*}$$

$$= I_{rms}ZI_{rms}^{*}$$

$$= |I_{rms}|^{2}Z$$

$$= |I_{rms}|^{2}(R + jX)$$

$$= |I_{rms}|^{2}R + j|I_{rms}|^{2}X$$

$$= I_{rms}^{2}R + jI_{rms}^{2}X$$

$$\mathbf{S} = I_{\text{rms}}^2 \mathbf{Z} = \frac{V_{\text{rms}}^2}{\mathbf{Z}^*} = \mathbf{V}_{\text{rms}} \mathbf{I}_{\text{rms}}^*$$

$$P = \text{Re}(\mathbf{S}) = I_{\text{rms}}^2 R$$
 $Q = \text{Im}(\mathbf{S}) = I_{\text{rms}}^2 X$

Lecture 9

Power Triangle

$$P = \text{Re}(\mathbf{S}) = I_{\text{rms}}^2 R$$
 $Q = \text{Im}(\mathbf{S}) = I_{\text{rms}}^2 X$

Figure 11.21

(a) Power triangle, (b) impedance triangle.

Quantity	Units
Complex power	volt-amps
Average power	watts
Reactive power	var

$$\mathbf{S} = \frac{1}{2}\mathbf{V}\mathbf{I}^* = \mathbf{V}_{rms}\mathbf{I}_{rms}^* = V_{rms}I_{rms} \angle (\theta_v - \theta_i) = P + jQ$$

$$P = \text{Re}(\mathbf{S}) = I_{\text{rms}}^2 R$$
 $Q = \text{Im}(\mathbf{S}) = I_{\text{rms}}^2 X$

Average (or real) power

$$P = \operatorname{Re}\left[\frac{1}{2}\mathbf{V}\mathbf{I}^*\right]$$

Unit: W

Reactive power

$$Q = \operatorname{Im}\left[\frac{1}{2}\mathbf{V}\mathbf{I}^*\right]$$

Unit: Volt Amperes Reactive (VAR)

Apparent power

$$S = |\mathbf{S}| = \frac{1}{2} V_m I_m = V_{rms} I_{rms}$$

Unit: volt-amp (VA)

Short summary

Complex Power =
$$\mathbf{S} = P + jQ = \mathbf{V}_{rms}(\mathbf{I}_{rms})^*$$

 $= |\mathbf{V}_{rms}| |\mathbf{I}_{rms}| / \theta_v - \theta_i$
Apparent Power = $S = |\mathbf{S}| = |\mathbf{V}_{rms}| |\mathbf{I}_{rms}| = \sqrt{P^2 + Q^2}$
Real Power = $P = \text{Re}(\mathbf{S}) = S\cos(\theta_v - \theta_i)$
Reactive Power = $Q = \text{Im}(\mathbf{S}) = S\sin(\theta_v - \theta_i)$
Power Factor = $\frac{P}{S} = \cos(\theta_v - \theta_i)$

Reactive Power Q

Let us look at Instantaneous power again

$$p(t) = v(t)i(t)$$

$$p(t) = pR(t) + p_X(t)$$

$$p_R(t) =$$

$$p_X(t) =$$

Reactive Power Q: Peak Exchanged Power

 Definition: The <u>peak</u> instantaneous power associated with the <u>energy storage elements</u> contained in a general load.

$$Q = \begin{cases} 0 & \text{for resistive } (\theta_v - \theta_i = 0^\circ) \\ \frac{1}{2} V_m I_m & \text{for inductive } (\theta_v - \theta_i = 90^\circ) \\ -\frac{1}{2} V_m I_m & \text{for capacitive } (\theta_v - \theta_i = -90^\circ) \end{cases}$$

- Reactive power is still of concern to power-system engineers
 - Transmission lines/transformers/fuses et al. must be capable of withstanding the current associated with reactive power.

Example

• Find the average power and reactive power absorbed by an impedance $Z=30-j70\Omega$, when a voltage $\mathbf{V}_{\rm m}=120\angle 0^{\circ}$ is applied across it.

Example

• Find the average power and reactive power absorbed by an impedance $Z=30-j70\Omega$, when a voltage $V_{\rm m}=120\angle0^{\circ}$ is applied across it.

$$I_{m} = \frac{V_{m}}{Z} = \frac{120\angle 0^{\circ}}{30 - j70} = \frac{120\angle 0^{\circ}}{76.16\angle - 66.8^{\circ}}$$
$$= 1.576\angle 66.8^{\circ} \text{ A}$$

$$P = \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) = 37.24$$
W

$$Q = \frac{1}{2}V_mI_m\sin(\theta_v - \theta_i) = -86.91\text{VAR}$$

Exercise

- The voltage across a load is $v(t) = 60\cos(\omega t 10^\circ)V$, and the current through the load is $i(t) = 1.5\cos(\omega t + 50^\circ)$. Find
 - The complex and apparent powers.
 - The real and reactive powers.
 - The power factor and the load impedance.

Exercise

- The voltage across a load is $v(t) = 60\cos(\omega t 10^\circ)V$, and the current through the load is $i(t) = 1.5\cos(\omega t + 50^\circ)$. Find
 - The complex and apparent powers.
 - The real and reactive powers.
 - The power factor and the load impedance.

$$S = V_{rms}I_{rms}^* = 45/-60^{\circ} VA$$

$$pf = 0.5$$
 (leading)

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = 40 / \underline{-60^{\circ}} \,\Omega$$

Example

- Find V_L and I_L .
- Find the average and reactive power
 - Delivered to the load
 - Delivered to the line
 - Supplied by the source

Example

- Find V_L and I_L.
- Find the average and reactive power
 - Delivered to the load
 - Delivered to the line
 - Supplied by the source

$$I_{L} = \frac{250 \angle 0^{\circ}}{40 + j30} = 4 - j3$$

= $5\angle - 36.87^{\circ}$ (rms)

$$\mathbf{V}_{L} = \mathbf{I}_{L}(39 + j26)$$

$$= 234 - j13$$

$$= 234.36 \angle - 3.18^{\circ}$$

Load:

$$V_L I_L^* = 975 + j650 \text{ VA}$$

Line:

$$P = (5)^{2}(1) = 25 \text{ W}$$

 $Q = (5)^{2}(4) = 100 \text{ VAR}$

Source:

$$250 \angle 0^{\circ} \mathbf{I_L^*} = 1000 + j750 \text{ VA}$$

Complex Power

Complex Power

$$\mathbf{S} = \frac{1}{2} \mathbf{V} \mathbf{I}^* = \mathbf{V}_{\text{rms}} \mathbf{I}_{\text{rms}}^* = P + jQ$$

Real Average Power

$$P = \Re [S]$$

$$= V_{\text{rms}} I_{\text{rms}} \cos(\phi_v - \phi_i)$$

$$= I_{\text{rms}}^2 R$$

Apparent Power

$$S = |\mathbf{S}| = \sqrt{P^2 + Q^2}$$
$$= V_{\text{rms}} I_{\text{rms}}$$
$$= I_{\text{rms}}^2 |\mathbf{Z}|$$

$$S = Se^{j\phi_S}$$

$$\phi_S = \phi_V - \phi_i = \phi_Z$$

Reactive Power

$$Q = \mathfrak{Im} [S]$$

$$= V_{\text{rms}} I_{\text{rms}} \sin(\phi_v - \phi_i)$$

$$= I_{\text{rms}}^2 X$$

Power Factor

$$pf = \frac{P}{S}$$

$$= \cos(\phi_v - \phi_i)$$

$$= \cos\phi_z$$

Maximum average power transfer

For Self-Study

Power factor correction

