# Networks II: Market Design—Lecture 15 Matching markets with two-sided preferences: The Deferred Acceptance Algorithm

#### ARPITA GHOSH

Dept. Of Information Science, Cornell University

#### What we saw last time

- How does stability relate to Pareto-efficiency, core?
  - Stable matchings are Pareto-efficient, but not all Pareto-efficient matchings are stable
  - Every stable matching is in the core, and every core matching is stable
  - Comparing two definitions: How to, and answers

#### Immediate questions

- How does stability relate to Pareto-efficiency, core in two-sided markets?
  - Stable matchings are Pareto-efficient
  - But not all Pareto-efficient matchings are stable
  - Every stable matching is in the core, and every core matching is stable
- Does a stable matching always exist? If yes, how can we find one?
- What are the properties of stable matchings?
- Stability is a pretty abstraction, but does it matter in reality?

## Finding a stable matching

- ullet A natural idea: Start with some arbitrary matching  $\mu$
- 'Fix' if not stable, by matching a blocking pair: Does this work?
- $\mu_0$ :  $m_1 w_1, m_2 w_2, m_3 w_3$  (preferences as before)

| $m_1$ | $m_2$ | $m_3$                 | $w_1$                 | $W_2$ | <i>W</i> <sub>3</sub> |
|-------|-------|-----------------------|-----------------------|-------|-----------------------|
| $w_1$ | $w_1$ | <i>W</i> <sub>3</sub> | $m_2$                 | $m_3$ | $m_1$                 |
| $W_2$ | $W_3$ | $W_2$                 | <i>m</i> <sub>3</sub> | $m_1$ | $m_3$                 |
| $W_3$ | $W_2$ | $w_1$                 | $m_1$                 | $m_2$ | $m_2$                 |

- Start with blocking pair  $m_2 w_1$ , to get new matching  $\mu_1$ :  $m_1 w_2$ ,  $m_2 w_1$ ,  $m_3 w_3$
- Is this stable?
  - A Yes
  - B No



## Finding a stable matching

• Try this again:  $\mu_0$  is  $m_1-w_2, m_2-w_3, m_3-w_1$  (preferences as before)

| $m_1$ | $m_2$ | $m_3$          | $w_1$                 | $W_2$ | $W_3$ |
|-------|-------|----------------|-----------------------|-------|-------|
| $w_1$ | $w_1$ | W <sub>3</sub> | $m_2$                 | $m_3$ | $m_1$ |
| $W_2$ | $W_3$ | $W_2$          | <i>m</i> <sub>3</sub> | $m_1$ | $m_3$ |
| $W_3$ | $W_2$ | $w_1$          | $m_1$                 | $m_2$ | $m_2$ |

- Blocking pair  $(m_3, w_2)$ : New matching  $m_1 w_1, m_2 w_3, m_3 w_2$
- Blocking pair  $(m_2, w_1)$ : New matching  $m_1 w_3, m_2 w_1, m_3 w_2$
- Is this matching stable?
  - A Yes
  - B No

#### Greedily removing blocking pairs: Another example

• Yet another example: Suppose preferences are

| $m_1$          | $m_2$ | $m_3$          | $w_1$                 | $W_2$ | $W_3$ |
|----------------|-------|----------------|-----------------------|-------|-------|
| W <sub>2</sub> | $w_1$ | $w_1$          | $m_1$                 | $m_3$ | $m_1$ |
| $w_1$          | $W_3$ | $W_2$          | <i>m</i> <sub>3</sub> | $m_1$ | $m_3$ |
| $W_3$          | $W_2$ | W <sub>3</sub> | $m_2$                 | $m_2$ | $m_2$ |

- Start with  $\mu_0$ :  $m_1 w_1, m_2 w_2, m_3 w_3$ 
  - Blocked by  $(m_1, w_2)$ : Switch to  $m_1 w_2, m_2 w_1, m_3 w_3$
  - Blocked by  $(m_3, w_2)$ : Switch to  $m_1 w_3, m_2 w_1, m_3 w_2$
  - Blocked by  $(m_3, w_1)$ : Switch to  $m_1 w_3, m_2 w_2, m_3 w_1$
  - Blocked by  $(m_1, w_1)$ : Switch to  $m_1 w_1, m_2 w_2, m_3 w_3$
- Iterative unblocking cycles back to original matching  $\mu_0$ !



#### A natural question

- Example due to Knuth
- Open problem (Knuth, 1976): Is there an initial matching, and sequence of blocking pairs, such that iterative 'correction' converges to a stable matching?
- (Eventually) resolved by Roth & Vande Vate, in 1990(!)
  - Algorithm to find a stable matching by iteratively eliminating blocking pairs
  - Analysis not so simple: But turns out to be central in more advanced applications

## Finding a stable matching

- Recall: "Immediate questions"
  - Do stable matchings always exist? How can we find them?
- Natural algorithm: Start with a matching; fix if not stable
  - 'Greedy' procedure does not work: Can cycle back to original matching (Knuth 1976)
  - Iterative unblocking conjecture resolved in 1990

#### Existence

Do stable matchings always exist? And how can we find them?

#### Theorem (Gale & Shapley, 1962)

For any instance of the stable marriage problem, there always exists a stable matching.

Proof by construction!: Simultaneously answers both questions

- Such a matching always exists
- Algorithm for constructing a stable matching

# The Deferred Acceptance Algorithm (Gale-Shapley, 1962)

- Initialize: All men and women are free (Assume strict, complete preferences)
- While there is a man m who is free and hasn't proposed to every woman
  - Choose such a man m: Let w be m's most-preferred choice that m has not yet made a proposal to
  - m proposes to w
  - If w is free, then (m, w) become *engaged*
  - Else, if w is currently engaged to m':
     If w prefers m' to m, then m remains free
     If w prefers m to m', then (m, w) become engaged; m' becomes free (ha!)

# The Deferred Acceptance Algorithm (Gale-Shapley, 1962)

- A 'centralized' version:
- In each round:
  - Each 'free' man m proposes to his top-ranked woman w who has not rejected him yet
  - Each woman chooses amongst her current 'provisional' partner, and the best proposal from the current round
  - Woman is engaged to this chosen man at the end of the round, and rejected men become free
- When no more proposals can be made, all engagements are finalized
- Return resulting matching

# Deferred Acceptance Algorithm

#### Two notes:

- Does the order in which men propose matter in the decentralized version?
  - 'Matter': Is outcome of algorithm independent of order of proposals?
- Do centralized and decentralized versions of algorithm produce same outcome?
- No, and yes: Verify for yourself why!

# The Deferred Acceptance Algorithm (Gale-Shapley, 1962)

#### (Centralized version)

- In each round:
  - Each 'free' man m proposes to his top-ranked woman w who has not rejected him yet
  - Each woman chooses amongst her current 'provisional' partner, and the best proposal from the current round
  - Woman is engaged to this chosen man at the end of the round, and rejected men become free
- When no more proposals can be made, all engagements are finalized
- Return resulting matching

#### The deferred acceptance algorithm: Does it work?

To show this algorithm 'works', we need to show:

- Convergence: Does the algorithm always terminate?
  - Yes: Each man proposes to each woman at most once
     —Recall: "Each 'free' man m proposes to his top-ranked woman w who has not rejected him yet"
  - Finite number of men, women
- Correctness: Does it return a stable matching?

## Deferred acceptance: Example

• Preferences:

| $m_1$ | $m_2$ | $m_3$                 | $w_1$                 | $W_2$ | <i>W</i> <sub>3</sub> |
|-------|-------|-----------------------|-----------------------|-------|-----------------------|
| $W_2$ | $w_1$ | $w_1$                 | $m_1$                 | $m_3$ | $m_1$                 |
| $w_1$ | $W_3$ | $W_2$                 | <i>m</i> <sub>3</sub> | $m_1$ | $m_3$                 |
| $W_3$ | $W_2$ | <i>W</i> <sub>3</sub> | $m_2$                 | $m_2$ | $m_2$                 |

• How does the deferred acceptance algorithm work on this example?

## Understanding the Deferred Acceptance algorithm: I

Consider *centralized version* of Deferred Acceptance algorithm (Recall: All agents have (strict) *complete* preferences)

- In each round of the algorithm, ([A] True [B] False)
  - Each woman receives a proposal
  - Each man makes a proposal
- DA terminates in exactly n rounds, if there are n men and n women in the market
- After the last-but-one round of the algorithm,
  - At least one man is free
  - Every woman has received at least one proposal, and therefore no woman is un-engaged
- For any market size n, there exists a preference profile for which DA terminates in one round



## Understanding the Deferred Acceptance algorithm: II

Consider *centralized version* of Deferred Acceptance algorithm (Recall: All agents have (strict) *complete* preferences)

- Suppose m prefers  $w_7 \succ w_3 \succ w_1 \succ \dots$  If DA (Deferred Acceptance) matches m to  $w_3$ , then:
  - A m cannot have proposed to  $w_1$  (in any preference profile)
  - B m must have proposed to  $w_1$  (in every preference profile)
  - C m may have proposed to  $w_1$  (in some preference profile)
- What if  $w_1$  is replaced by  $w_7$  in this question?
- Suppose w prefers  $m_7 \succ m_3 \succ m_1$ . If the DA algorithm matches w to  $m_3$ , then:
  - A  $m_1$  cannot have proposed to w (in any preference profile)

  - C  $m_1$  may have proposed to w ('in some' preference profile)
- What if  $m_1$  is replaced by  $m_7$  in the questions above?

## Analyzing correctness: Some facts

#### For every man m,

- 1 The sequence of women to whom m proposes gets worse and worse (in terms of  $\succ_m$ )
  - —Each 'free' man m proposes to his top-ranked woman w who has not rejected him yet

#### For every woman w,

- 2 w is always engaged after the point at which she receives her first proposal
  - —Each woman chooses amongst her current 'provisional' partner, and the best proposal from the current round
- 3 w has an *improving* sequence of partners (in terms of her preference list  $\succ_w$ )

#### Analysis of Deferred Acceptance

Correctness: Will it return a stable outcome?

- ullet Suppose matching  $\mu$  returned by algorithm is not stable:
  - Unstable: Blocked by pair (m, w)
  - ullet m prefers w to  $w'=\mu(m)$  and w prefers m to  $m'=\mu(w)$
- m's last proposal in DA was to w' (Why?)
- m prefers w to w': m should have proposed to w before w' in DA (Fact [1])
- So m was rejected by w, which means w should be matched to a man she likes better than m
  - Sequence of partners of w only improves, by Fact [3]
- So (m, w) is not a blocking pair:  $\mu$  must be stable



# Existence and construction of stable matchings

#### Theorem (Gale & Shapley, 1962)

The deferred acceptance algorithm returns a matching that is stable for any instance of the marriage model.

- DA algorithm simultaneously answered both our questions:
  - Does a stable matching always exist?
  - How can we find one?

## Extending the basic marriage model

#### Two easy extensions of the model:

- (i) Different numbers of men and women:  $|M| \neq |W|$
- (ii) Incomplete lists:
  - Man m may prefer to remain unmatched than be matched to w (similarly for women)
  - Formally: A man's preference is now a ranked ordering of  $W \cup m$
  - w 'not on' m's preference list:  $m \succ_m w$ 
    - Man m prefers staying single to being matched to w
  - (Equivalent definitions for  $w \in W$ )

## Matchings with incomplete lists

- Matching  $\mu$ : Function from  $M \cup W$  to  $M \cup W$  such that
  - $\mu(m) \in W \cup m$ , and  $\mu(w) \in M \cup w$ ;
  - $\mu(m) = w \iff \mu(w) = m$ , for every man  $m \in M$  and woman  $w \in W$
- Stable matching with incomplete preferences:
  - Matching  $\mu$  is **blocked by an individual** a if  $\mu(a)$  is unacceptable to a
  - Individual rationality:  $\mu$  is not blocked by any  $a \in M \cup W$
  - A matching is stable if it is (i) individually rational and (ii) contains no blocking pairs

# Stable matchings

- When there are different numbers of men and women, and preferences can be *incomplete*,
  - Does a stable matching always exist?
  - How can we find one?

#### The Deferred Acceptance Algorithm

Deferred Acceptance algorithm with incomplete lists:

- In each round:
  - Each 'free' man *m* proposes to his top-ranked (acceptable) woman *w* who has not rejected him yet
  - Each woman chooses amongst her current 'provisional' partner, and the best (acceptable) proposal from the current round
  - Woman is engaged to this chosen man (if such exists) at the end of the round; rejected men become free
- When no more proposals can be made, all engagements are finalized
- Return resulting matching

## Analysis of Deferred Acceptance: I

- Convergence: Does the algorithm always terminate?
  - Yes: Each man proposes to each woman at most once
  - Finite number of man-woman pairs
- Observations 1-3 continue to hold, rephrased slightly:
  - 1 For every man m, the sequence of women to whom m proposes gets worse and worse (in terms of  $\succ_m$ )
  - 2,3 For every woman w,
    - Once engaged, w continues to remain engaged through the algorithm
    - w has an improving sequence of partners (in terms of her preference list ≻<sub>w</sub>)
    - 4 No man proposes to an unacceptable woman; no woman gets engaged to an unacceptable man

#### Analysis of Deferred Acceptance: II

Correctness: Will it return a stable outcome?

- Suppose  $\mu$  is not stable: Blocked by (m, w)
  - m prefers w to  $\mu(m)$  and w prefers m to  $\mu(w)$
  - No proposals made to, or accepted from, unacceptable partner:
     No blocking individuals
- m must have proposed to w: He finds her acceptable, and prefers her to  $\mu(m)$
- So w rejected m: Either m is not acceptable to w, or w received a proposal from a man m' that she prefers to m
  - True [A] or false [B]: m' is w's partner in DA's outcome  $(m' = \mu(w))$
- In either case (m, w) is not a blocking pair: So  $\mu$  is stable



#### Stable matchings in a market

• Preferences:

| $m_1$ | $m_2$ | $m_3$                 | $w_1$                 | $w_2$ | $W_3$ |
|-------|-------|-----------------------|-----------------------|-------|-------|
| $w_1$ | $W_2$ | <i>W</i> <sub>3</sub> | <i>m</i> <sub>3</sub> | $m_1$ | $m_2$ |
| $W_3$ | $w_1$ | $W_2$                 | $m_2$                 | $m_3$ | $m_1$ |
| $W_2$ | $W_3$ | $w_1$                 | $m_1$                 | $m_2$ | $m_3$ |

- ullet Deferred-acceptance gives matching  $(m_1-w_1,m_2-w_2,m_3-w_3)$
- Can you identify another stable matching in this market?
  - Women proposing also gives stable matching:  $(m_1 w_2, m_2 w_3, m_3 w_1)$
- Is there any other stable matching in this market?
  - Yes: Matching  $(m_1 w_3, m_2 w_1, m_3 w_2)$  is stable as well!
- Deferred acceptance algorithm returns one stable matching: Can be other stable matchings too!

#### So far

- Deferred acceptance (DA) algorithm returns stable matching
  - Argument assuming (strict) complete preferences, |M| = |W|
  - Extend model to  $|M| \neq |W|$ ; (strict) incomplete preferences
  - Incomplete preferences: Stability means no blocking pairs and individual rationality
- Appreciating the result:
  - Analog of TTC algorithm for two-sided markets
  - Natural greedy algorithm does not work
  - Stable matchings need not always exist in all markets! (HW4)
- Deferred acceptance produces a stable matching: Other stable matchings may exist!
- Next: Comparing matchings

