РЕШЕНИЯ

Задача 1 (6 очков). Два комка глины, отстоящих друг от друга по горизонтали на S=6 м и по вертикали на H=10 м, бросают одновременно со скоростями v_1 под некоторым углом к горизонту вверх и $v_2=2$ м/с вертикально вниз (см. рис.). Через время t=1 с комки столкнулись. Найти v_1 .

Ответ:
$$v_1 = \frac{1}{t} \sqrt{(H - v_2 t)^2 + S^2} = 10 \text{ m/c}.$$

Решение. Поместим начало координат в точку бросания нижнего комка, направив ось x горизонтально направо, а ось y вертикально вверх. Пусть v_{1x} , v_{1y} — проекции на оси x и y скорости нижнего комка. Если точка столкновения имеет координаты (S,y), то

$$y = v_{1y}t - \frac{gt^2}{2}$$
, $S = v_{1x}t$, $y = H - v_2t - \frac{gt^2}{2}$, $v_{1x}^2 + v_{1y}^2 = v_1^2$.

Отсюда
$$v_1 = \frac{1}{t} \sqrt{(H - v_2 t)^2 + S^2} = 10 \text{ м/c}.$$

Задача 2 (7 очков). Пустая стеклянная бутылка плавает в воде, погрузившись на 3/4 своего объёма. Какой минимальный объём воды нужно долить в бутылку, чтобы она утонула? Плотность стекла $\rho_c = 2.5 \frac{\Gamma}{CM^3}$, воды $\rho = 1 \frac{\Gamma}{CM^3}$, вместимость бутылки 0,7 литра.

Ответ:
$$V_x = \frac{\rho_c}{4\rho_c - 3\rho}V = 250$$
 мл.

Решение. Пусть $V_{\rm c}$ и V_x — объёмы стекла и долитой воды, V — вместимость бутылки. Условия плавания до и после долива

$$\rho_{\rm c} V_{\rm c} g = \frac{3}{4} \rho (V_{\rm c} + V) g, \qquad (\rho_{\rm c} V_{\rm c} + \rho V_x) g = \rho (V_{\rm c} + V) g.$$

Отсюда
$$V_x = \frac{\rho_{\rm c}}{4\rho_{\rm c} - 3\rho}V = 250$$
 мл.

Задача 3 (5 очков). Электрическая цепь состоит из параллельно соединённых резисторов с сопротивлениями $R_1=80$ Ом, $R_2=40$ Ом и подключённого к ним последовательно резистора с сопротивлением $R_3=20$ Ом. К цепи подведено напряжение. На резисторе с сопротивлением R_1 выделяется мощность $P_1=20$ Вт. Найти мощности, выделяющиеся на резисторах с сопротивлениями R_2 и R_3 .

Ответ: $P_2 = 40 \text{ Bt}, P_3 = 45 \text{ Bt}.$

Решение. Напряжение и ток для R_1 : $U_1=\sqrt{P_1R_1}=40~\mathrm{B}$, $I_1=\frac{U_1}{R_1}=0.5~\mathrm{A}$. Ток и мощность для R_2 : $I_2=\frac{U_1}{R_2}=1~\mathrm{A}$, $P_2=\frac{U_1^2}{R_2}=40~\mathrm{Br}$. Ток и мощность для R_3 : $I_3=I_1+I_2=1.5~\mathrm{A}$, $P_3=I_3^2R_3=45~\mathrm{Br}$.

Задача 4 (10 очков). Электрическая цепь состоит из батарейки с ЭДС \mathscr{E} и внутренним сопротивлением r, катушки индуктивностью L и резистора сопротивлением R = 3r. Ключ K замыкают, а затем размыкают в момент, когда напряжение на катушке достигает величины $\frac{2\mathscr{E}}{3}$.

- 1) Найдите напряжение на катушке сразу после замыкания ключа.
 - 2) Какое количество теплоты выделится в цепи после размыкания ключа?

Ответ:
$$U_0 = \frac{3}{4}\mathscr{E}, \ Q = \frac{L\mathscr{E}^2}{162r^2}.$$

Решение. 1) Сразу после замыкания ключа ток через катушку не идёт, ток через резистор $I_0 = \frac{\mathscr{E}}{R+r} = \frac{\mathscr{E}}{4r}$. Напряжение на катушке $U_0 = I_0 R = \frac{3}{4} \mathscr{E}$.

2) Обозначим $U=\frac{2}{3}\mathscr{E}$. Непосредственно перед размыканием ключа ток через резистор $I_R=\frac{U}{R}=\frac{2\mathscr{E}}{9r}$, ток через источник $I_r=\frac{\mathscr{E}-U}{r}=\frac{\mathscr{E}}{3r}$, ток через катушку $I=I_r-I_R=\frac{\mathscr{E}}{9r}$. Сразу после размыкания ключа ток через катушку останется прежним, в ней запасётся энергия, которая и выделится затем в цепи: $Q=\frac{LI^2}{2}=\frac{L\mathscr{E}^2}{162\,r^2}$.

Задача 5 (6 очков). В цилиндре под поршнем находится воздух с относительной влажностью 70%. Объём цилиндра изотермически уменьшили в 10 раз. Какая часть водяного пара сконденсировалась? Объёмом жидкости в конечном состоянии можно пренебречь.

OTBET: $\frac{6}{7}$.

Решение. Пусть V — начальный объём цилиндра, ν_1 и ν_2 — числа молей пара в цилиндре до и после сжатия, $P_{\scriptscriptstyle \rm H}$ — давление насыщенного пара, T — температура. Уравнение состояния пара до и после сжатия:

$$0.7P_{\text{\tiny H}} \cdot V = \nu_1 RT, \qquad P_{\text{\tiny H}} \cdot \frac{V}{10} = \nu_2 RT.$$

Отсюда $\frac{\nu_2}{\nu_1} = \frac{1}{7}$. Сконденсировалась часть пара $x = \frac{\nu_1 - \nu_2}{\nu_1} = 1 - \frac{\nu_2}{\nu_1} = \frac{6}{7}$.

Задача 6 (9 очков). В цепи, показанной на рисунке, конденсатор ёмкостью C заряжен до напряжения U_0 , а конденсатор ёмкостью 2C — до напряжения $3U_0$. Одноимённо заряженные обкладки соединены резистором сопротивлением R. Ключ замыкают на некоторое время, а затем размыкают.

- 1) Найдите ток в цепи сразу после замыкания ключа.
- 2) Какое количество теплоты выделилось в цепи, если в момент размыкания ключа ток в цепи был в 2 раза меньше начального?

Ответ: 1)
$$I_0 = \frac{2U_0}{R}$$
. 2) $Q = CU_0^2$.

Решение. 1) Начальный ток $I_0 = \frac{3U_0 - U_0}{R} = \frac{2U_0}{R}$. 2) В момент размыкания ток $I = \frac{I_0}{2} = \frac{U_0}{R}$. Пусть напряжения на конденсаторах в этот момент U_1 и U_2 . Тогда

$$U_2 - U_1 = IR$$
, $CU_1 + 2CU_2 = CU_0 + 2C \cdot 3U_0$.

Из последних трёх уравнений находим $U_1 = \frac{5}{3}U_0$, $U_2 = \frac{8}{3}U_0$.

Начальная энергия конденсаторов

$$W_1 = \frac{CU_0^2}{2} + \frac{2C(3U_0)^2}{2} = \frac{19}{2}CU_0^2.$$

Энергия конденсаторов в момент размыкания

$$W_2 = \frac{CU_1^2}{2} + \frac{2CU_2^2}{2} = \frac{17}{2}CU_0^2.$$

В цепи выделилось количество теплоты $Q = W_1 - W_2 = CU_0^2$.

Задача 7 (7 очков). С помощью тонкой линзы на экране получили изображение предмета, расположенного перпендикулярно оптической оси линзы. Между линзой и экраном поставили вторую линзу на расстоянии 5 см от экрана, после чего экран пришлось отодвинуть от линз на 5 см, чтобы получить на нём новое изображение.

- 1) Найдите фокусное расстояние второй линзы.
- 2) Каково отношение размеров нового и старого изображений?

Ответ: 1) F = -10 см. 2) $\Gamma = 2$.

Решение. 1) Изображение в первой линзе является мнимым источником для второй линзы. По формуле линзы

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{F}.$$

Здесь a=-5 см, b=10 см. Отсюда фокусное расстояние F=-10 см, т.е. линза рассеивающая.

2) Отношение размеров нового и старого изображений равно увеличению второй линзы: $\Gamma = \left| \frac{b}{a} \right| = 2.$

РЕШЕНИЯ

Задача 1 (6 очков). Два комка глины, отстоящих друг от друга по горизонтали на S=6 м и по вертикали на H=10 м, бросают одновременно со скоростями v_1 под некоторым углом к горизонту вверх и $v_2=2$ м/с вертикально вниз (см. рис.). Через время t=1 с комки столкнулись. Найти v_1 .

Ответ:
$$v_1 = \frac{1}{t} \sqrt{(H - v_2 t)^2 + S^2} = 10 \text{ m/c}.$$

Решение. Поместим начало координат в точку бросания нижнего комка, направив ось x горизонтально направо, а ось y вертикально вверх. Пусть v_{1x} , v_{1y} — проекции на оси x и y скорости нижнего комка. Если точка столкновения имеет координаты (S,y), то

$$y = v_{1y}t - \frac{gt^2}{2}$$
, $S = v_{1x}t$, $y = H - v_2t - \frac{gt^2}{2}$, $v_{1x}^2 + v_{1y}^2 = v_1^2$.

Отсюда
$$v_1 = \frac{1}{t} \sqrt{(H - v_2 t)^2 + S^2} = 10 \text{ м/c}.$$

Задача 2 (7 очков). Пустая стеклянная бутылка плавает в воде, погрузившись на 3/4 своего объёма. Какой минимальный объём воды нужно долить в бутылку, чтобы она утонула? Плотность стекла $\rho_c = 2.5 \frac{\Gamma}{CM^3}$, воды $\rho = 1 \frac{\Gamma}{CM^3}$, вместимость бутылки 0,7 литра.

Ответ:
$$V_x = \frac{\rho_c}{4\rho_c - 3\rho}V = 250$$
 мл.

Решение. Пусть $V_{\rm c}$ и V_x — объёмы стекла и долитой воды, V — вместимость бутылки. Условия плавания до и после долива

$$\rho_{\rm c} V_{\rm c} g = \frac{3}{4} \rho (V_{\rm c} + V) g, \qquad (\rho_{\rm c} V_{\rm c} + \rho V_x) g = \rho (V_{\rm c} + V) g.$$

Отсюда
$$V_x = \frac{\rho_{\rm c}}{4\rho_{\rm c} - 3\rho}V = 250$$
 мл.

Задача 3 (5 очков). Электрическая цепь состоит из параллельно соединённых резисторов с сопротивлениями $R_1=80$ Ом, $R_2=40$ Ом и подключённого к ним последовательно резистора с сопротивлением $R_3=20$ Ом. К цепи подведено напряжение. На резисторе с сопротивлением R_1 выделяется мощность $P_1=20$ Вт. Найти мощности, выделяющиеся на резисторах с сопротивлениями R_2 и R_3 .

Ответ: $P_2 = 40 \text{ Bt}, P_3 = 45 \text{ Bt}.$

Решение. Напряжение и ток для R_1 : $U_1=\sqrt{P_1R_1}=40~\mathrm{B}$, $I_1=\frac{U_1}{R_1}=0.5~\mathrm{A}$. Ток и мощность для R_2 : $I_2=\frac{U_1}{R_2}=1~\mathrm{A}$, $P_2=\frac{U_1^2}{R_2}=40~\mathrm{Br}$. Ток и мощность для R_3 : $I_3=I_1+I_2=1.5~\mathrm{A}$, $P_3=I_3^2R_3=45~\mathrm{Br}$.

Задача 4 (10 очков). Электрическая цепь состоит из батарейки с ЭДС \mathscr{E} и внутренним сопротивлением r, катушки индуктивностью L и резистора сопротивлением R = 3r. Ключ K замыкают, а затем размыкают в момент, когда напряжение на катушке достигает величины $\frac{2\mathscr{E}}{3}$.

- 1) Найдите напряжение на катушке сразу после замыкания ключа.
 - 2) Какое количество теплоты выделится в цепи после размыкания ключа?

Ответ:
$$U_0 = \frac{3}{4}\mathscr{E}, \ Q = \frac{L\mathscr{E}^2}{162r^2}.$$

Решение. 1) Сразу после замыкания ключа ток через катушку не идёт, ток через резистор $I_0 = \frac{\mathscr{E}}{R+r} = \frac{\mathscr{E}}{4r}$. Напряжение на катушке $U_0 = I_0 R = \frac{3}{4} \mathscr{E}$.

2) Обозначим $U=\frac{2}{3}\mathscr{E}$. Непосредственно перед размыканием ключа ток через резистор $I_R=\frac{U}{R}=\frac{2\mathscr{E}}{9r}$, ток через источник $I_r=\frac{\mathscr{E}-U}{r}=\frac{\mathscr{E}}{3r}$, ток через катушку $I=I_r-I_R=\frac{\mathscr{E}}{9r}$. Сразу после размыкания ключа ток через катушку останется прежним, в ней запасётся энергия, которая и выделится затем в цепи: $Q=\frac{LI^2}{2}=\frac{L\mathscr{E}^2}{162\,r^2}$.

Задача 5 (6 очков). В цилиндре под поршнем находится воздух с относительной влажностью 70%. Объём цилиндра изотермически уменьшили в 10 раз. Какая часть водяного пара сконденсировалась? Объёмом жидкости в конечном состоянии можно пренебречь.

OTBET: $\frac{6}{7}$.

Решение. Пусть V — начальный объём цилиндра, ν_1 и ν_2 — числа молей пара в цилиндре до и после сжатия, $P_{\scriptscriptstyle \rm H}$ — давление насыщенного пара, T — температура. Уравнение состояния пара до и после сжатия:

$$0.7P_{\text{\tiny H}} \cdot V = \nu_1 RT, \qquad P_{\text{\tiny H}} \cdot \frac{V}{10} = \nu_2 RT.$$

Отсюда $\frac{\nu_2}{\nu_1} = \frac{1}{7}$. Сконденсировалась часть пара $x = \frac{\nu_1 - \nu_2}{\nu_1} = 1 - \frac{\nu_2}{\nu_1} = \frac{6}{7}$.

Задача 6 (9 очков). В цепи, показанной на рисунке, конденсатор ёмкостью C заряжен до напряжения U_0 , а конденсатор ёмкостью 2C — до напряжения $3U_0$. Одноимённо заряженные обкладки соединены резистором сопротивлением R. Ключ замыкают на некоторое время, а затем размыкают.

- 1) Найдите ток в цепи сразу после замыкания ключа.
- 2) Какое количество теплоты выделилось в цепи, если в момент размыкания ключа ток в цепи был в 2 раза меньше начального?

Ответ: 1)
$$I_0 = \frac{2U_0}{R}$$
. 2) $Q = CU_0^2$.

Решение. 1) Начальный ток $I_0 = \frac{3U_0 - U_0}{R} = \frac{2U_0}{R}$. 2) В момент размыкания ток $I = \frac{I_0}{2} = \frac{U_0}{R}$. Пусть напряжения на конденсаторах в этот момент U_1 и U_2 . Тогда

$$U_2 - U_1 = IR$$
, $CU_1 + 2CU_2 = CU_0 + 2C \cdot 3U_0$.

Из последних трёх уравнений находим $U_1 = \frac{5}{3}U_0$, $U_2 = \frac{8}{3}U_0$.

Начальная энергия конденсаторов

$$W_1 = \frac{CU_0^2}{2} + \frac{2C(3U_0)^2}{2} = \frac{19}{2}CU_0^2.$$

Энергия конденсаторов в момент размыкания

$$W_2 = \frac{CU_1^2}{2} + \frac{2CU_2^2}{2} = \frac{17}{2}CU_0^2.$$

В цепи выделилось количество теплоты $Q = W_1 - W_2 = CU_0^2$.

Задача 7 (7 очков). С помощью тонкой линзы на экране получили изображение предмета, расположенного перпендикулярно оптической оси линзы. Между линзой и экраном поставили вторую линзу на расстоянии 5 см от экрана, после чего экран пришлось отодвинуть от линз на 5 см, чтобы получить на нём новое изображение.

- 1) Найдите фокусное расстояние второй линзы.
- 2) Каково отношение размеров нового и старого изображений?

Ответ: 1) F = -10 см. 2) $\Gamma = 2$.

Решение. 1) Изображение в первой линзе является мнимым источником для второй линзы. По формуле линзы

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{F}.$$

Здесь a=-5 см, b=10 см. Отсюда фокусное расстояние F=-10 см, т.е. линза рассеивающая.

2) Отношение размеров нового и старого изображений равно увеличению второй линзы: $\Gamma = \left| \frac{b}{a} \right| = 2.$