Core-Maths-C3 - 2010-January

Question 1

Express

$$\frac{x+1}{3x^2-3} - \frac{1}{3x+1}$$

as a single fraction in its simplest form.

(4)

Question 2

$$f(x) = x^3 + 2x^2 - 3x - 11$$

(a) Show that f(x) = 0 can be rearranged as

$$x = \sqrt{\left(\frac{3x+11}{x+2}\right)}, \quad x \neq -2.$$

(2)

The equation f(x) = 0 has one positive root α .

The iterative formula $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$ is used to find an approximation to α .

(b) Taking $x_1 = 0$, find, to 3 decimal places, the values of x_2 , x_3 and x_4 .

(3)

(c) Show that $\alpha = 2.057$ correct to 3 decimal places.

(3)

Question 3

- (a) Express $5\cos x 3\sin x$ in the form $R\cos(x + \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$.
- (b) Hence, or otherwise, solve the equation

$$5\cos x - 3\sin x = 4$$

for $0 \le x < 2\pi$, giving your answers to 2 decimal places.

(5)

Question 4

(i) Given that $y = \frac{\ln(x^2 + 1)}{x}$, find $\frac{dy}{dx}$.

(4)

(ii) Given that $x = \tan y$, show that $\frac{dy}{dx} = \frac{1}{1+x^2}$.

(5)

Question 5

Sketch the graph of $y = \ln |x|$, stating the coordinates of any points of intersection with the axes.

(3)

Question 6

Figure 1

Figure 1 shows a sketch of the graph of y = f(x).

The graph intersects the y-axis at the point (0, 1) and the point A(2, 3) is the maximum turning point.

Sketch, on separate axes, the graphs of

- (i) y = f(-x) + 1,
- (ii) y = f(x+2) + 3,
- (iii) y = 2f(2x).

On each sketch, show the coordinates of the point at which your graph intersects the y-axis and the coordinates of the point to which A is transformed.

(9)

Question 7

(a) By writing $\sec x$ as $\frac{1}{\cos x}$, show that $\frac{d(\sec x)}{dx} = \sec x \tan x$.

(3)

Given that $y = e^{2x} \sec 3x$,

(b) find $\frac{dy}{dx}$.

(4)

The curve with equation $y = e^{2x} \sec 3x$, $-\frac{\pi}{6} < x < \frac{\pi}{6}$, has a minimum turning point at (a, b).

(c) Find the values of the constants a and b, giving your answers to 3 significant figures.

(4)

Question 8

Solve

 $\csc^2 2x - \cot 2x = 1$

for $0 \leqslant x \leqslant 180^{\circ}$.

(7)

Question 9

- (i) Find the exact solutions to the equations
 - (a) $\ln(3x 7) = 5$

(3)

(b) $3^x e^{7x+2} = 15$

(5)

(ii) The functions f and g are defined by

$$f(x) = e^{2x} + 3, x \in \mathbb{R}$$

$$g(x) = \ln(x - 1), x \in \mathbb{R}, x > 1$$

(a) Find f^{-1} and state its domain.

(4)

(b) Find fg and state its range.

(3)