Análisis II - Análisis Matemático II - Matemática 3

Segundo cuatrimestre de 2020

Práctica 0: Repaso de integración y cambio de variables

1. Principio de Cavalieri

Considere un cuerpo que ocupa una región en el espacio comprendida entre los planos z=a y z=b. Entonces el volumen del cuerpo se puede calcular como

$$V = \int_{a}^{b} A(t) \, dt,$$

donde A(t) es el área de la sección del cuerpo obtenida al intersecarlo con el plano z = t.

Ejercicio 1. Calcular el volumen de una región cilindrica, utilizando el Principio de Cavalieri. Verificar que la fórmula resultante coincide con la fórmula superficie de la base por altura.

Ejercicio 2. Calcular el volumen de la región encerrada por el paraboloide de ecuación $z = x^2 + y^2$ y el plano z = 2, utilizando el Principio de Cavalieri.

2. Teorema de Fubini

Ejercicio 3. Sea R el rectángulo $R = [-1, 1] \times [0, 1]$. Evaluar las siguientes integrales dobles:

(a)
$$\iint_R x^2 y \, dA$$

Ejercicio 4. Sea R el rectángulo $R = [a, b] \times [c, d]$. Expresar mediante integrales simples la integral doble $\iint_R F(x, y) dA$ cuando F(x, y) está dada por

(b) $\iint_{B} x \cos(xy) dA$

(a)
$$F(x,y) = f(x)g(y)$$
 (b) $F(x,y) = f(x) + g(y)$

DESCRIPCIÓN DE REGIONES

Ejercicio 5. Sea T el triángulo de vértices (0,0), (2,3) y (3,5). Describirlo como una región de tipo 1, y como una de tipo 2. Hallar su área.

Ejercicio 6. Graficar cada una de las siguientes regiones dadas analíticamente, y calcular el área respectiva.

(a)
$$-1 \le x \le 1 + y$$
; $-1 \le y \le 1$ (b) $0 \le y \le \sqrt{1 - x^2}$; $0 \le x \le 1$

Ejercicio 7. Sea P la pirámide cuyos vértices son (0,0,0),(1,0,0),(0,1,0) y (0,0,1). Describirla analíticamente. Hallar su volumen.

Aplicaciones de la integral

Ejercicio 8. Valor medio. Hallar el valor medio de la función $f(x,y) = x^2y$ en la región triangular de vértices (1,1), (2,0) y (0,1).

Ejercicio 9. Masa. Hallar la masa de la región esférica $x^2 + y^2 + (z - R)^2 = R^2$ sabiendo que la densidad de masa ϱ es proporcional a la componente z, digamos $\varrho = \lambda z$.

Ejercicio 10. Campo gravitatorio. Consideremos un cuerpo material con densidad $\rho(x, y, z)$ que ocupa una región acotada $\Omega \subseteq \mathbb{R}^3$. Sea **r** un punto de \mathbb{R}^3 . A partir de las leyes de Newton, se sabe que el vector campo gravitatorio $E(\mathbf{r})$ que aparece en el punto \mathbf{r} está dado por la integral a valores vectoriales

$$E(\mathbf{r}) = -G \iint_{\Omega} \frac{\mathbf{r} - \mathbf{r}'}{\|\mathbf{r} - \mathbf{r}'\|^3} \varrho(\mathbf{r}') dV(\mathbf{r}'),$$

donde G es una constante universal. Notar que $||E(\mathbf{r})|| \sim \frac{1}{||\mathbf{r}||^2}$ cuando $||\mathbf{r}|| \to \infty$.

A medida que $\|\mathbf{r}\| \to \infty$, la dirección del vector \mathbf{r} - \mathbf{r} ' con \mathbf{r} ' $\in \Omega$ se parece más y más a la dirección de r. Esto hace suponer para puntos lejanos, el campo puede aproximarse por el campo gravitatorio que se obtiene al concentrar la masa total M en el origen: $E_0(\mathbf{r}) = -MG \frac{\mathbf{r}}{\|\mathbf{r}\|^3}$.

Probar que esto es realmente así. Es decir, probar que

$$\lim_{\|\mathbf{r}\| \to \infty} \|\mathbf{r}\|^2 \|E(\mathbf{r}) - E_0(\mathbf{r})\| = 0.$$

5. Cambio de Variables

Ejercicio 11. Sean T(u,v)=(4u+v,u+2v). Sea D^* el rectángulo $[0,3]\times[1,3]$.

- (a) Observar que $D = T(D^*)$ es un paralelogramo, y hallar su área usando geometría elemental.
- (b) Observar que $T: D^* \to D$ es biyectiva, y hallar el área de D en términos de una integral sobre D^* .

Ejercicio 12. Sea D el paralelogramo de vértices (1,2), (5,3), (2,5), (6,6). Calcular

- (a) $\int_D xy \, dx \, dy$
- $\int_{D}^{\infty} (x-y) \, dx dy$

Sugerencia: usar un cambio de variables para plantear ambas como integrales sobre el cuadrado $D^* = [0,1] \times [0,1].$

Ejercicio 13. Sean $D_1 = \{(r, \theta) : 0 \le r \le 1, 0 \le \theta \le 4\pi\}$ y P la transformación dada por $P(r, \theta) =$ $(r\cos\theta, r\sin\theta).$

- (a) Hallar $D=P(D_1)$. (b) Calcular $\int_D (x^2+y^2)\,dxdy$ y $\int_{D_1} r^2J\,drd\theta$ siendo J el jacobiano de la transformación polar. ¿Dan igual las dos integrales? ¿Por qué?

Ejercicio 14. Hallar el área acotada por la lemniscata, esto es, la curva dada por la ecuación

$$(x^2 + y^2)^2 = 2a^2(x^2 - y^2).$$

Ejercicio 15. Calcular $\int_{\Omega} z \, dx \, dy \, dz$ donde $\Omega \subseteq \mathbb{R}^3$ es la región delimitada por plano xy, el cilindro dado por $x^2 + y^2 \le 1$ y el cono dado por $z = (x^2 + y^2)^{1/2}$.

Ejercicio 16. Sea E el elipsoide dado por $(x^2/a^2) + (y^2/b^2) + (z^2/c^2) \le 1$.

- (a) Hallar el volumen de E.
- (b) Calcular $\int_E (x^2/a^2) + (y^2/b^2) + (z^2/c^2) dx dy dz$.

Ejercicio 17. Hallar el centro de masa del cilindro dado por $x^2 + y^2 \le 1$, $1 \le z \le 2$, si su densidad está dada por $\rho(x,y,z) = (x^2 + y^2)z^2$.

Ejercicio 18. Si un sólido $\Omega \subseteq \mathbb{R}^3$ tiene densidad ρ , el momento de inercia de Ω alrededor del eje x está definido por

$$I_x = \int_{\Omega} \rho (y^2 + z^2) dx dy dz$$

y análogamente se definen los momentos de inercia I_y e I_z .

Consideremos el sólido Ω delimitado por arriba por el plano z=a y por debajo por el cono descripto en coordenadas esféricas por $\phi=\phi_0$, donde ϕ_0 es una constante tal que $0<\phi_0<\pi/2$. Dar una integral para su momento de inercia alrededor del eje z, suponiendo que su densidad es constante.