Slide #8. Proof that $d(C_{24}) = 8$. This can be carried out by "simply" listing all 2^{12} codewords of C_{24} and observing that the minimum non-zero weight equals 8. However, we will show an alternative proof of this (non brute force) using elementary concepts from linear codes.

Part 1: Show that the weight of any codeword in C_{24} is congruent to zero modulo 4. Let G be the generator matrix for C_{24} as displayed on slide #5. Let \mathbf{g}_i denote the ith row of G for $i=1,\ldots,12$. Recall that any codeword in C_{24} is a linear combination of the rows of G. Thus, the idea for the proof is to show that $\operatorname{wt}(\mathbf{g}_i) \equiv 0 \pmod{4}$, $\operatorname{wt}(\mathbf{g}_i + \mathbf{g}_j) \equiv 0 \pmod{4}$, $\operatorname{wt}(\mathbf{g}_i + \mathbf{g}_j) \equiv 0 \pmod{4}$ for all $i, j, k \in [1..12]$, etc.

- By direct inspection, $\operatorname{wt}(\boldsymbol{g}_i) \equiv 0 \pmod{4}$.
- wt($\mathbf{g}_i + \mathbf{g}_j$) = wt(\mathbf{g}_i) + wt(\mathbf{g}_j) 2 · wt($\mathbf{g}_i * \mathbf{g}_j$). Since C_{24} is self-dual, one has wt($\mathbf{g}_i * \mathbf{g}_j$) $\equiv 0 \pmod{2}$, whence 2 · wt($\mathbf{g}_i * \mathbf{g}_j$) $\equiv 0 \pmod{4}$. In conclusion, wt($\mathbf{g}_i + \mathbf{g}_j$) is the summation of three terms, each a multiple of 4. Thus, wt($\mathbf{g}_i + \mathbf{g}_j$) $\equiv 0 \pmod{4}$.
- wt $(\boldsymbol{g}_i + \boldsymbol{g}_j + \boldsymbol{g}_k) = \text{wt}(\boldsymbol{g}_i + \boldsymbol{g}_j) + \text{wt}(\boldsymbol{g}_k) 2 \cdot \text{wt}((\boldsymbol{g}_i + \boldsymbol{g}_j) * \boldsymbol{g}_k)$. In the previous bullets, we showed that wt $(\boldsymbol{g}_i + \boldsymbol{g}_j)$ and wt (\boldsymbol{g}_k) are both multiples of 4. Again, since C_{24} is self-dual, one has wt $((\boldsymbol{g}_i + \boldsymbol{g}_j) * \boldsymbol{g}_k) \equiv 0 \pmod{2}$, whence $2 \cdot \text{wt}(\boldsymbol{g}_i * \boldsymbol{g}_j) \equiv 0 \pmod{4}$. In conclusion, wt $(\boldsymbol{g}_i + \boldsymbol{g}_j + \boldsymbol{g}_k)$ is the summation of three terms, each a multiple of 4. Thus, wt $(\boldsymbol{g}_i + \boldsymbol{g}_j + \boldsymbol{g}_k) \equiv 0 \pmod{4}$.
- We can now proceed iteratively and show that the weight of any sum of $4, 5, \ldots, 12$ rows of G is always a multiple of 4.

Part 2: Show that there is no word of weight 4. By way of contradiction, suppose $\mathbf{c} \in C_{24}$ has weight equal to 4. Write $\mathbf{c} = (\mathbf{c}_L | \mathbf{c}_R)$ where \mathbf{c}_L consists of the first 12 bits of \mathbf{c} (in other words, \mathbf{c}_L is the left half of \mathbf{c}). Similarly, \mathbf{c}_R is the right half of \mathbf{c} . Observe that

$$\boldsymbol{c} = (\boldsymbol{c}_L \mid \boldsymbol{c}_R) = \boldsymbol{u} \cdot [I_{12} \mid B] = [\boldsymbol{u} \mid \boldsymbol{u} \cdot B]$$

for some information vector u. Since $[B \mid I_{12}]$ is another generator matrix for C_{24} , we also have

$$\boldsymbol{c} = (\boldsymbol{c}_L \mid \boldsymbol{c}_R) = \boldsymbol{u}' \cdot [B \mid I_{12}] = [\boldsymbol{u}' \cdot B \mid \boldsymbol{u}']$$

for some information vector u'. We then have five possibilities:

- $\operatorname{wt}(\boldsymbol{c}_L) = 0$ and $\operatorname{wt}(\boldsymbol{c}_R) = 4$. This implies $\boldsymbol{u} = \boldsymbol{0}$ and $\operatorname{wt}(\boldsymbol{u} \cdot B) = 4$, a contradiction.
- $\operatorname{wt}(\boldsymbol{c}_L) = 4$ and $\operatorname{wt}(\boldsymbol{c}_R) = 0$. This implies $\boldsymbol{u}' = \boldsymbol{0}$ and $\operatorname{wt}(\boldsymbol{u}' \cdot B) = 4$, a contradiction.
- $\operatorname{wt}(\boldsymbol{c}_L) = 1$ and $\operatorname{wt}(\boldsymbol{c}_R) = 3$. This implies $\operatorname{wt}(\boldsymbol{u}) = 1$ and $\operatorname{wt}(\boldsymbol{u} \cdot B) = \operatorname{wt}(\text{some row of } B) = 3$. But this is impossible since no row of B has weight equal to 3.
- $\operatorname{wt}(\boldsymbol{c}_L) = 3$ and $\operatorname{wt}(\boldsymbol{c}_R) = 1$. This implies $\operatorname{wt}(\boldsymbol{u}') = 1$ and $\operatorname{wt}(\boldsymbol{u}' \cdot B) = \operatorname{wt}(\text{some row of } B) = 3$. But this is impossible since no row of B has weight equal to 3.

• $\operatorname{wt}(\boldsymbol{c}_L) = 2$ and $\operatorname{wt}(\boldsymbol{c}_R) = 2$. This implies $\operatorname{wt}(\boldsymbol{u}) = 2$ and $\operatorname{wt}(\boldsymbol{u} \cdot B) = \operatorname{wt}(\operatorname{sum} \text{ of } 2 \text{ rows of } B) = 2$. But this does not happen either.

In conclusion, no codeword in C_{24} has weight equal to 4.

Slide #9. Justification for the decoding algorithm for C_{24} . As usual, the main part of the decoding algorithm is to determine the error pattern \boldsymbol{u} . Since the error-correcting capability of C_{24} equals 3, we shall assume that $\operatorname{wt}(\boldsymbol{u}) \leq 3$. The syndrome of any such error pattern uniquely identifies it (no two such error patterns have the same syndrome).

Recall that $s = \operatorname{syn} \mathbf{r} = \operatorname{syn} \mathbf{u}$. Let $\mathbf{u} = [\mathbf{u}_1 \mid \mathbf{u}_2]$. Since

$$H = \left[\frac{I_{12}}{B} \right],$$

one has $s = \mathbf{u}_1 + \mathbf{u}_2 \cdot B$. Observe that either $\operatorname{wt}(\mathbf{u}_1) \leq 1$ or $\operatorname{wt}(\mathbf{u}_2) \leq 1$.

Notation: In what follows, e_i denotes the word or vector having a 1 in position i (for some $i \in [1..12]$) and 0s in the other positions.

- If $\operatorname{wt}(\boldsymbol{u}_2) = 0$, then $s = \boldsymbol{u}_1$, whence $\operatorname{wt}(s) \leq 3$. In this case, $\boldsymbol{u} = [s \mid \boldsymbol{0}]$.
- If $\operatorname{wt}(\boldsymbol{u}_2) = 1$, then $s = \boldsymbol{u}_1 + \boldsymbol{b}_i$ for some $i \in [1..12]$. Recall that \boldsymbol{b}_i denotes the *i*th row of B. One has $\operatorname{wt}(\boldsymbol{u}_1) = \operatorname{wt}(s + \boldsymbol{b}_i) \leq 2$. In this case, $\boldsymbol{u} = [s + \boldsymbol{b}_i \mid \boldsymbol{e}_i]$.

Note that $s \cdot B = \mathbf{u}_1 \cdot B + \mathbf{u}_2$.

- If $\operatorname{wt}(\boldsymbol{u}_1) = 0$, then $sB = \boldsymbol{u}_2$, whence $\operatorname{wt}(sB) \leq 3$. In this case, $\boldsymbol{u} = [\boldsymbol{0} \mid sB]$.
- If $\operatorname{wt}(\boldsymbol{u}_1) = 1$, then $sB = \boldsymbol{b}_i + \boldsymbol{u}_2$ for some $i \in [1..12]$. One has $\operatorname{wt}(\boldsymbol{u}_2) = \operatorname{wt}(sB + \boldsymbol{b}_i) \leq 2$. In this case, $\boldsymbol{u} = [\boldsymbol{e}_i \mid sB + \boldsymbol{b}_i]$.