Started on	Thursday, 15 February 2024, 8:15 AM
State	Finished
Completed on	Thursday, 15 February 2024, 8:21 AM
Time taken	6 mins
Grade	6.17 out of 10.00 (61.67 %)
Question 1 Correct Mark 1.00 out of 1.00	

What is the minimum number of states required for a finite automaton recognizing the language L defined over $\Sigma = \{a, b\}$, where L consists of all strings with no consecutive 'a's?

Select one:

- a. 4
- o b. 1
- oc. 2
- d. 3

 ✓

Question 2

Incorrect

Mark 0.00 out of 2.00

What is the minimum number of states in a DFA to recognize the language represented by the regular expression $(0|\Lambda)(1|10)^*$?

Select one:

- a. 3
- b. 4 X
- O c. 1
- Od. 2
- e. 5

Question 3

Partially correct

Mark 1.50 out of 3.00

Suppose M_1 =(Q_1 , Σ , q_1 , A_1 , δ_1) and M_2 =(Q_2 , Σ , q_2 , A_2 , δ_2) are Finite Automata(FA)s that accept languages L_1 and L_2 where $L_i \subseteq \Sigma^*$, Then which of the following is/are true?

Select one or more:

- $\hfill \Box$ c. There is no such a FA, M that accepts the language $L_1\cap L_2$

Question 4

Correct

Mark 2.00 out of 2.00

Consider the above NFA.

Select the states which are included in the set δ *(1, abab)?

Select one or more:

- a. 2
- b. 4

 ✓
- d. 1

Question 5
Partially correct
Mark 1.67 out of 2.00

Suppose the NFA, M=(Q, Σ , q₀ , A, δ) where Q={q₀ , q₁ , q₂ }, Σ ={0,1}, A={q₂} and δ specified as follows is given.

Current State q	δ(q,0)	δ(q,1)
q_0	$\{q_0\}$	{q ₀ , q ₁ }
q ₁	{q ₂ }	{q ₂ }
q_2	Ø	Ø

To find an equivalent DFA, M1=(Q₁, Σ , {q₀} , A₁, δ ₁) , complete the following table with suitable values for each state.

Current State q	δ ₁ (q,0)	δ1(q,1)
{q ₀ }	{q ₀ }	{q0,q1}
{q0,q1}	{q ₀ , q ₂ }	{q0,q1,q2}
{q ₀ ,q ₂ }	{q ₀ }	{q0,q1}
{q0,q1}	{q0, q2}	{q0,q1,q2}