Задача А. Расстановка скобок в лямбда-выражении

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 5 секунд Ограничение по памяти: 512 мегабайт

На вход вашей программе дается лямбда-выражение в следующей грамматике:

```
\langle {
m Bыражениe} \rangle ::= [\langle {
m Применениe} \rangle] '\' \langle {
m Переменная} \rangle '.' \langle {
m Выражениe} \rangle \langle {
m Применениe} \rangle ::= \langle {
m Применениe} \rangle \langle {
m Атом} \rangle ::= '(' \langle {
m Выражениe} \rangle ')' | \langle {
m Переменная} \rangle \langle {
m Переменная} \rangle ::= ('a' ... 'z') {'a' ... 'z'} | '0' ... '9' | ''' }*
```

Аргументы-переменные в применении должны разделяться пробелом. В остальных случаях пробелы могут отсутствовать. Любые пробелы между нетерминальными символами (кроме пробела, разделяющего аргументы в применении) — а также начальные и конечные пробелы в строке — должны игнорироваться. Символы табуляции, возврата каретки и перевода строки должны трактоваться как пробелы.

Требуется расставить все недостающие скобки вокруг всех абстракций и применений, и напечатать получившийся результат.

Формат входных данных

Размер входного файла не превышает 1 МБ.

Формат выходных данных

В единственной строке выходного файла (заканчивающейся переводом строки) должно быть приведено лямбда-выражение с расставленными скобками без каких-либо пробельных символов. Исключение: одиночные пробелы, разделяющие аргументы в применении.

Примеры

стандартный ввод			
\a.\b.a b c (\d.e \f.g) h			
стандартный вывод			
(\a.(\b.((((a b) c) (\d.(e (\f.g)))) h)))			
стандартный ввод			
((a\bbb.c)d)e			
f g			
стандартный вывод			
(((((a (\bbb.c)) d) e) f) g)			

Задача В. Нормализация лямбда-выражения

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 15 секунд Ограничение по памяти: 1024 мегабайта

Дано лямбда-выражение, требуется провести m ($m \in \mathbb{N}_0$) бета-редукций этого выражения используя нормальный порядок редукции и мемоизацию, при этом выводить на печать требуется каждое k-е выражение ($k \in \mathbb{N}_0, k < m$). Формулы нумеруются с 0, если нормальная форма была достигнута на формуле с некратным k номером — на формуле δ_s , где $k \cdot (n-1) < s < k \cdot n$, — то выдача должна завершиться формулой δ_s . Например, редуцирование выражения ($\lambda x.x \ x \ x$) (($\lambda x.x$)) в данных условиях пройдёт через следующие стадии (редуцируемые бета-редексы подчёркнуты):

обозначение (номер) формула

ooosna ienne (nomep)	q-oping//a
δ_0	$(\lambda x.x \ x \ x \ x) \ ((\lambda x.x) \ (\lambda x.x))$
δ_1	$\overline{\left(\left(\lambda x.x\right)\left(\lambda x.x\right)\right)\left(\left(\lambda x.x\right)\left(\lambda x.x\right)\right)\left(\left(\lambda x.x\right)\left(\lambda x.x\right)\right)\left(\left(\lambda x.x\right)\left(\lambda x.x\right)\right)}$
δ_2	$(\lambda x.x) (\lambda x.x) (\lambda x.x) (\lambda x.x)$
δ_3	$\overline{(\lambda x.x) \ (\lambda x.x)} \ (\lambda x.x)$
δ_4	$\overline{(\lambda x.x) \; (\lambda x.x)}$
δ_5	$\overline{(\lambda x.x)}$

Если при этом k=2, то на печать должны быть выведены формулы δ_0 , δ_2 , δ_4 , δ_5 .

Гарантируется, что суммарная длина всех выражений, которые будут получены в результате s бета-редукций, не превышает 100 миллионов лексем.

Для точного определения условий задачи, давайте напомним два важных определения— нормальный порядок редукций и мемоизацию.

- 1. Рассмотрим лямбда-выражение, расставим все необязательные скобки в нём. Назовём нормальным порядком редукции такой порядок, при котором всегда редуцируется самый левый редекс: то есть редекс, первый символ которого находится левее всего в выражении.
- 2. Чтобы определить мемоизацию, определим некоторое расширенное лямбда-исчисление. Помимо обычных выражений будем рассматривать отложенные подстановки: это переменные с указанием заменяемого выражения в угловых скобках $x_{\langle A \rangle}$.

При этом подстановка A[x := B] раскрывается так:

$$A[x := B] = \begin{cases} t_{\langle B \rangle}, & A = x \\ y, & A = y, y \neq x \\ \lambda x.P, & A = \lambda x.P \\ \lambda y.(P[x := B]), & A = \lambda y.P, y \neq x \\ (P[x := B]) (Q[x := B]), & A = P Q \end{cases}$$

Здесь t — некоторая новая отложенная переменная, ранее в выражении не встречавшаяся.

Естественным образом мы можем определить <u>плоское</u> лямбда-выражение для данного выражения, рассматривая каждую переменную вида $x_{\langle P \rangle}$ как P.

Тогда шаг редукции с мемоизацией устроен так:

- Выберем редекс ($\lambda x.A$) B например, найдём самый левый редекс в плоском лямбдавыражении, соответствующем данному.
- Если $(\lambda x.A)$ содержит вхождение отложенной подстановки $y_{\langle P \rangle}$, в которую входит заменяемая переменная x, перед редукцией заменим данное вхождение $y_{\langle P \rangle}$ на P. Обратите внимание, случай $\lambda x.A = y_{\langle P \rangle}$ также надо учитывать.
- Все остальные отложенные подстановки в редексе оставим без изменений рассматриваем, как переменные. Производим редукцию.

• Если редекс целиком находится внутри какой-то отложенной подстановки — редукцию производим во всех отложенных подстановках по той же переменной.

Формат входных данных

В первой строке приведены числа m и k через пробел. Во второй строке дано лямбда-выражение δ_0 в грамматике из предыдущего задания.

Формат выходных данных

Выведите формулы $\delta_0,\,\delta_k,\,\delta_{k\cdot 2},\,...,\,\delta_{k\cdot (n-1)},\,\delta_s,$ по формуле на новой строке.

Примеры

стандартный ввод	стандартный вывод	
10 1	((\x.x) z)	
(\x.x) z	z	
100 1	((\x.y) z)	
(\x.y) z	У	
100 1	((\a.(\a.b)) c)	
(\a.\a.b) c	(\v0.b)	
100 1	((\a.(\x.a)) (x y))	
(\a.\x.a) (x y)	(\v0.(x y))	

Задача С. Вывод типа в просто-типизированном лямбда-исчислении

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 10 секунд Ограничение по памяти: 512 мегабайт

На вход вашей программе дается лямбда-выражение в следующей грамматике:

```
\langle {
m Bыражениe} \rangle ::= [\langle {
m Применениe} \rangle] '\' \langle {
m Переменная} \rangle '.' \langle {
m Выражениe} \rangle \langle {
m Применениe} \rangle ::= \langle {
m Применениe} \rangle \langle {
m Атом} \rangle ::= '(' \langle {
m Выражениe} \rangle ')' | \langle {
m Переменная} \rangle \langle {
m Переменная} \rangle ::= ('a' ... 'z') {'a' ... 'z'} | '0' ... '9' | ''' }*
```

Аргументы-переменные в применении разделяются пробелом. В остальных случаях пробелы могут отсутствовать. Любые пробелы между нетерминальными символами (кроме пробела, разделяющего аргументы в применении)—а также начальные и конечные пробелы в строке—должны игнорироваться. Символы табуляции и возврата каретки должны трактоваться как пробелы.

Требуется найти наиболее общий тип этого лямбда-выражения и вывести доказательство того, что лямбда-выражение имеет этот тип, а также найти типы свободных переменных, содержащихся в лямбда-выражении, или же сказать, что лямбда-выражение не имеет типа.

В доказательстве вы можете пользоваться следующими правилами:

Правило	Зависимости	Вывод	Дополнительные условия
№ 1		$\Gamma, x : \sigma \vdash x : \sigma$	$x \notin \text{dom}(\Gamma)$
№2	$\Gamma \vdash M : \sigma \to \tau, N : \sigma$	$\Gamma \vdash MN : \tau$	
№3	$\Gamma, x : \sigma \vdash M : \tau$	$\Gamma \vdash \lambda x.M : \sigma \to \tau$	$x \notin \mathrm{dom}(\Gamma)$

Формат входных данных

В единственной строке входного файла содержится лямбда-выражение в грамматике из условия. Длина выражения не превышает 255 символов.

Гарантируется, что имена всех вложенных абстракций различны, а также имена абстракций не совпадают с именами свободных переменных.

Формат выходных данных

Если заданное лямбда-выражение не имеет типа, в единственной строке выходного файла должна быть запись «Expression has no type».

Иначе в файле должно быть доказательство. В файле должны отсутствовать пустые строки. Строки доказательства должны идти в правильном порядке. Каждый отступ должен представляться с помощью «* »—символа «*» (ASCII 42) и трех последовательных пробелов (ACSII 32). В конце каждой строки должно быть описание правила, которое было применено для вывода этой строки. В остальном следуйте формату из примеров.

Выведенный тип должен быть наиболее общим типом для заданного лямбда-выражения.

Примеры

стандартный ввод
x
стандартный вывод
x : t1 - x : t1 [rule #1]

```
стандартный ввод
(\x. x) (\y. y)
                               стандартный вывод
|- ((\x. x) (\y. y)) : (t2 -> t2) [rule #2]
   |-(x. x):((t2 \rightarrow t2) \rightarrow (t2 \rightarrow t2)) [rule #3]
      x : (t2 -> t2) |- x : (t2 -> t2) [rule #1]
   |- (\y. y) : (t2 -> t2) [rule #3]
   * y : t2 |- y : t2 [rule #1]
                               стандартный ввод
\a. a' a z8'
                               стандартный вывод
a': (t1 -> (t4 -> t5)), z8': t4 |- (\a. ((a'a) z8')) : (t1 -> t5) [rule #3]
    a': (t1 -> (t4 -> t5)), z8': t4, a: t1 |- ((a'a) z8'): t5 [rule #2]
       a': (t1 -> (t4 -> t5)), z8': t4, a: t1 |- (a'a): (t4 -> t5) [rule #2]
        * a': (t1 -> (t4 -> t5)), z8': t4, a: t1 |- a': (t1 -> (t4 -> t5)) | [rule #1]
           a': (t1 -> (t4 -> t5)), z8': t4, a: t1 |- a: t1 [rule #1]
       a': (t1 -> (t4 -> t5)), z8': t4, a: t1 |- z8': t4 [rule #1]
```