Environmentally Transmitted Pathogens

Models - Part deux :

Julien Arino

January 2023

A few models of Cvjetanović

A tetanus model

A model of Capasso for ETP

A model for zoonotic transmission of waterborne disease

A few models of schistosomiasis

A first model of Woolhouse

A second model of Woolhouse – Latency

A third model of Woolhouse - Heterogeneous contacts

- Cvjetanović, Grab, Uemura & World Health Organization. Dynamics of acute bacterial diseases: epidemiological models and their application in public health. World Health Organization (1978)
- ▶ Briscoe. On the use of simple analytic mathematical models of communicable diseases. *International Journal of Epidemiology* **9**(3) (1980)

Models of (Branko) Cvjetanović are in discrete time and quite detailed on the epi side

A few models of Cvjetanović

A tetanus model

A model of Capasso for ETP

A model for zoonotic transmission of waterborne disease

A few models of schistosomiasis

A first model of Woolhouse

A second model of Woolhouse - Latency

A third model of Woolhouse - Heterogeneous contacts

Tetanus

Bacterial infection caused by Clostridium tetani

Spores everywhere in the environment, including soil, dust, and manure

Spores develop into bacteria when they enter the body

Not spread P2P (so not a classic model)

Incubation period usually 3-21 days (average 8 days). Can range from 1 day to several months, depending on the kind of wound. Most cases occur within 14 days

1 to 2 in 10 cases are fatal

People of all ages need TETANUS VACCINES

DTaP for young children

Tdap for preteens **Td or Tdap** for adults

- \checkmark 2, 4, and 6 months
- ✓ 15 through 18 months √ 4 through 6 years
- **√** 11 through 12 years
 - **√** Every 10 years

www.cdc.gov/tetanus

The discrete-time tetanus model (my notation)

(1j)

where

$$T=S+L_b+L+I_b+I+R+R_b$$
 and $\delta_T=rac{\Delta D}{T}$ p. 6 – A few models of Cyjetanović

Pl: period of incubation. Mean duration 6 days for newborn and 8 days for general population. Corresponding daily rate of exit $\varepsilon_b=0.1667$ and $\varepsilon=0.125$ PS: period of sickness. Mean duration 3 days for newborn and 14 days for general population. So daily rate of exit $\gamma_b=0.3333$ per sick newborn and $\gamma=0.0714$ for sick general in general population.

Mortality from tetanus. Untreated tetanus cases, fatality rate 90% for newborn S_b and 40% for general population. Treated: 80% for newborn and 30% general population. Immunity. Tetanus cases do not lead to immunity to reinfection. But as a general rule. recovered people are vaccinated. Convalescents and general population effectively immunised by complete course of vaccination go to R for average 10 years. Daily rate of exit is $\nu = 0.000274$ per person. Newborn to women vaccinated during pregnancy are temporarily protected by maternal antibodies and pass through R_b for a mean duration of 6 months. Daily rate of exit $\nu_b = 0.005479$ per immunised newborn Live birth rate 35 per 1,000 population and annual crude death rate 15 per 1,000 population (annual rate of growth 2%). Corresponding daily birth and death rates b = 0.00009889 and d = 0.0000411 per person.

Force of infection

No H2H transmission \implies incidence proportional to number of susceptible individuals and force of infection, which quantifies combined effect of all variables involved in infection process:

- degree of soil contamination with Clostridium tetani
- climate
- frequency of lesions
- proportion of rural population
- socioeconomic conditions
- level of medical care for the wounded and during deliveries

Force of infection acting on newborn (λ_b) and susceptible population (λ) fixed at 3 different levels adequate for reproducing the following stable annual incidence rates of tetanus cases in the community

- For newborn, 200 cases, 400 cases and 600 cases per 100,000 newborn
- ▶ For general population (without newborn), 9, 18 and 27 cases

A few models of Cvjetanović A tetanus model

A model of Capasso for ETF

A model for zoonotic transmission of waterborne disease

A few models of schistosomiasis

A first model of Woolhouse

A second model of Woolhouse – Latency

A third model of Woolhouse – Heterogeneous contacts

A minimal model of V. Capasso

 $1/\gamma_H$ mean infectious period, $1/d_E$ mean lifetime of the agent in the environment, c_H growth rate of the agent due to the human population, g(E) "force of infection" (I would say "incidence") of the agent on human population

Incidence function

$$g(E) = h(E)N\beta p \tag{2}$$

where

- \blacktriangleright h(E) probability for an exposed susceptible to get the infection
- N total human population
- \triangleright β fraction of susceptible individuals in N
- p fraction exposed to contaminated environment per unit time ("probability per unit time to have a "snack" of contaminated food")

Typically, we would assume p and β independent of E and H and h to be saturating

To ensure (2) satisfies these conditions, we can assume

- $ightharpoonup 0 < g(e_1) < g(e_2) \text{ for } 0 < e_1 < e_2$
- ightharpoonup g(0) = 0
- p g''(z) < 0 for all z > 0
- $ightharpoonup 0 < g'_{\perp}(0) < \infty$ (right derivative)
- $ightharpoonup \lim_{z \to \infty} \frac{g(z)}{z} < \frac{d_E \gamma_H}{c_H}$

Of course, we also assume d_E , c_H , $\gamma_H > 0$

The model

$$E' = c_H H - d_E E$$

$$H' = g(E) - \gamma_H H$$

$$C_H H$$

$$g(E)$$

$$g(E)$$

$$(3a)$$

$$C_H H$$

Pay attention to the flows..! E' does not have a -g(E) and H' does not have $-c_HH$. Why?

Let

$$\mathcal{R}_0 = \frac{g'_+(0)c_H}{d_E\gamma_H} \tag{4}$$

Theorem 1

- ▶ If $0 < \mathcal{R}_0 < 1$, then (3) admits only the trivial equilibrium in the positive orthant, which is GAS
- ▶ If $\mathcal{R}_0 > 1$, then two EP exist: (0,0), which is unstable, and $z^* = (E^*, H^*)$ with $E^*, H^* > 0$, GAS in $\mathbb{R}^2_+ \setminus \{0,0\}$

p. 13 - A model of Capasso for ETP

Adding a periodic component

Assume p in (2) takes the form

$$p(t) = p(t + \omega) > 0, \quad t \in \mathbb{R}$$
 (5)

i.e., p has period ω . So we now consider the incidence

$$g(t,E)=p(t)h(E)$$

with h having the properties prescribed earlier. Letting

$$p_{ extit{min}} := \min_{0 \leq t \leq \omega} p(t), \quad p_{ extit{max}} := \max_{0 \leq t \leq \omega} p(t)$$

then we require that

$$\lim_{z \to \infty} \frac{g(z)}{z} < \frac{d_E \gamma_H}{c_H p_{max}}$$

(8)

(7)

(6)

Let

$$\mathcal{R}_0^{min} = \frac{c_H p_{min} h'_+(0)}{d_E \gamma_H}, \quad \mathcal{R}_0^{max} = \frac{c_H p_{max} h'_+(0)}{d_E \gamma_H}$$
(9)

Theorem 2

- If $0 < \mathcal{R}_0^{max} < 1$, then (3) with incidence (6) always goes to extinction
- ▶ If $\mathcal{R}_0^{min} > 1$, then a unique nontrivial periodic endemic state exists for (3) with incidence (6)

p. 15 - A model of Capasso for ETP

A few models of Cvjetanović A tetanus model

A model of Capasso for ETP

A model for zoonotic transmission of waterborne disease

A few models of schistosomiasis

A first model of Woolhouse

A second model of Woolhouse – Latency

A third model of Woolhouse - Heterogeneous contacts

Zoonotic transmission of waterborne disease

Waters, Hamilton, Sidhu, Sidhu, Dunbar. Zoonotic transmission of waterborne disease: a mathematical model. Bull Math Biol (2016) Used for instance to model Giardia transmission from possums to humans

The full model

$$S'_{A} = -\beta_{A}S_{A}I_{A} + \gamma_{A}I_{A}$$
 (10a)
 $I'_{A} = \beta_{A}S_{A}I_{A} - \gamma_{A}I_{A}$ (10b)
 $W' = \alpha I_{A} - \eta W(S_{H} + I_{H}) - \mu W$ (10c)
 $S'_{H} = -\rho \eta W S_{H} - \beta_{H}S_{H}I_{H} + \gamma_{H}I_{H}$ (10d)
 $I'_{H} = \rho \eta W S_{H} + \beta_{H}S_{H}I_{H} - \gamma_{H}I_{H}$ (10e)

Considered with $N_A = S_A + I_A$ and $N_H = S_H + I_H$ constant

Simplified model

Because N_A and N_H are constant, (10) can be simplified:

$$I'_{A} = \beta_{A} N_{A} I_{A} - \gamma_{A} I_{A} - \beta_{A} I_{A}^{2}$$

$$W' = \alpha I_{A} - \eta W N_{H} - \mu W$$
(11a)

$$I'_{H} = \rho \eta W (N_{H} - I_{H}) + \beta_{H} N_{H} I_{H} - \gamma_{H} I_{H} - \beta_{H} I_{H}^{2}$$
 (11c)

Three EP: DFE (0,0,0); endemic disease in humans because of H2H transmission; endemic in both H and A because of W

p. 20 - A model for zoonotic transmission of waterborne disease

Three EP: DFE (0,0,0); endemic disease in humans because of H2H transmission; endemic in both H and A because of W

Let

$$\mathcal{R}_{0A} = \frac{\beta_A}{\gamma_A} N_A$$
 and $\mathcal{R}_{0H} = \frac{\beta_H}{\gamma_H} N_H$ (12)

- ▶ DFE LAS if $\mathcal{R}_{0A} < 1$ and $\mathcal{R}_{0H} < 1$, unstable if $\mathcal{R}_{0A} > 1$ or $\mathcal{R}_{0H} > 1$
- ▶ If $\mathcal{R}_{0H} > 1$ and $\mathcal{R}_{0A} < 1$, (11) goes to EP with endemicity only in humans
- ▶ Endemic EP with both A and H requires $\mathcal{R}_{0A} > 1$ and $\mathcal{R}_{0H} < 1$

Note that proof is **not** global

A few models of Cvjetanović A tetanus model

A model of Capasso for ETP

A model for zoonotic transmission of waterborne disease

A few models of schistosomiasi

A first model of Woolhouse

A second model of Woolhouse – Latency

A third model of Woolhouse - Heterogeneous contacts

A few models of Cvjetanović A tetanus model

A model of Capasso for ETP

A model for zoonotic transmission of waterborne disease

A few models of schistosomiasi

A first model of Woolhouse

A second model of Woolhouse - Latency

A third model of Woolhouse - Heterogeneous contacts

A model of Woolhouse

Woolhouse. On the application of mathematical models of schistosome transmission dynamics. I. Natural transmission. *Acta Tropica* **49**:241-270 (1991)

The model

Population of H individuals using a body of water containing N snails

 i_H mean number of schistosomes per person and i_S the proportion of patent infections in snails (prevalence)

$$i_{H}' = \alpha N i_{S} - \gamma i_{H} \tag{13a}$$

$$i_S' = \beta H i_H (1 - i_S) - \mu_2 i_S$$
 (13b)

- lacktriangleq lpha number of schistosomes produced per person per infected snail per unit time
- $ightharpoonup 1/\gamma$ average life expectancy of a schistosome
- \triangleright 1/ μ_2 average life expectancy of an infected snail
- \triangleright β transmission parameter

p. 23 - A few models of schistosomiasis

Let the basic reproductive rate for schistosomes be

$$\mathcal{R}_0 = \frac{\alpha N \beta H}{\gamma \mu_2} \tag{14}$$

(13) has two EP

$$(i_H^{\star}, i_S^{\star}) = (0,0)$$
, LAS when $\mathcal{R}_0 < 1$ and unstable when $\mathcal{R}_0 > 1$

 $(i_H^{\star}, i_S^{\star}) = \left(\frac{\alpha N}{\gamma} - \frac{\mu_2}{\beta H}, 1 - \frac{1}{R_0}\right)$, which only "exists" when $R_0 > 1$ (and is LAS) then)

p. 24 - A few models of schistosomiasis

A few models of Cvjetanović A tetanus model

A model of Capasso for ETP

A model for zoonotic transmission of waterborne disease

A few models of schistosomiasi

A first model of Woolhouse

A second model of Woolhouse - Latency

A third model of Woolhouse – Heterogeneous contacts

Extending the model

Interval between infection of a snail and onset of patency (release of cercariae) is prepatent or latent period

$$i'_{H} = \alpha N i_{S} - \gamma i_{H}$$

$$\ell'_{S} = \beta H i_{H} (1 - \ell_{S} - i_{S}) - \sigma \ell_{S} - \mu_{1} \ell_{S}$$

$$i'_{S} = \sigma \ell_{S} - \mu_{2} i_{S}$$

$$(15a)$$

$$(15b)$$

$$(15c)$$

- $ightharpoonup 1/\sigma$ average duration of prepatent period
- $ightharpoonup f = \sigma/(\sigma + \mu_1)$ fraction of infected snails surviving preparent period

p. 25 - A few models of schistosomiasis

The basic reproductive rate for schistosomes is now

$$\mathcal{R}_0 = f \frac{\alpha N \beta H}{\gamma \mu_2}$$

(16)

(15) has endemic EP

$$(i_{H}^{\star}, i_{S}^{\star}) = \left(\frac{\alpha N \sigma}{\gamma(\sigma + \mu_{2})} - \frac{\mu_{2}(\sigma + \mu_{1})}{\beta H(\sigma + \mu_{2})}, \frac{\sigma}{\sigma + \mu_{2}} \left(1 - \frac{1}{\mathcal{R}_{0}}\right)\right)$$

p. 26 - A few models of schistosomiasis

Also has models

- where snails lose infectiousness (assumed to happen sometimes)
- with larval population dynamics
- single variable models
- human immigration and emigration
- reservoir hosts

Really worth a read

A few models of Cvjetanović A tetanus model

A model of Capasso for ETP

A model for zoonotic transmission of waterborne disease

A few models of schistosomiasi

A first model of Woolhouse

A second model of Woolhouse – Latency

A third model of Woolhouse - Heterogeneous contacts

Heterogeneities in contact rates

 l_i the number of schistosomes in person $i=1,\ldots,H$ and i_{Si} the proportion of patent infected snails in site j = 1, ..., L (L sites each supporting N snails)

 l_i the number of schistosomes in person $i=1,\ldots,H$ and i_{Sj} the proportion of patent infected snails in site $j=1,\ldots,L$ (L sites each supporting N snails)

$$I_i' = \alpha \left(\sum_j \eta_{ij} N_{iSj} \right) - \gamma I_i \tag{17a}$$

$$i'_{Sj} = \beta \left(\sum_{i} \eta_{ij} I_i \right) (1 - i_{Sj}) - \mu_2 i_{Sj}$$

$$\tag{17b}$$

 η_{ii} rate of water contact by individual i at site i

A few models of Cvjetanović A tetanus model

A model of Capasso for ETP

A model for zoonotic transmission of waterborne disease

A few models of schistosomiasi

A first model of Woolhouse

A second model of Woolhouse – Latency

A third model of Woolhouse - Heterogeneous contacts

Spatial aspects – Cholera in Haiti

Tuite, Tien, Eisenberg, Earn, Ma & Fisman, Cholera Epidemic in Haiti, 2010: Using a Transmission Model to Explain Spatial Spread of Disease and Identify Optimal Control Interventions. Annals of Internal Medicine 154(9) (2011)

p. 31 - A few models of schistosomiasis

Metapopulation model with implicit movement

$$s'_{p} = \mu - \lambda_{p} s_{p} - \mu s_{p}$$

$$i'_{p} = -\gamma i_{p} + \lambda_{p} s_{p} - \mu i_{p}$$

$$r'_{p} = \gamma r_{p} - \mu r_{p}$$

$$w'_{p} = \xi (i_{p} - w_{p})$$
(18a)
$$(18b)$$

$$(18c)$$

with force of infection

$$\lambda_p = \beta_{i_p} i_p + \beta_{W_p} w_p + \sum_{q=1}^{10} \theta_{pq} i_q$$
 (18e)

Influence of infection prevalence in q on incidence in p is gravity-type

$$\theta_{pq} = \kappa \frac{P_p P_q}{d^n}$$

