Diferenciálny počet funkcií komplexnej premennej

Pokračovanie

Oľga Stašová

Ústav informatiky a matematiky Fakulta elektrotechniky a informatiky Slovenská technická univerzita

letný semester 2023/2024

Cauchyho - Riemannove rovnice (veľmi dôležité)

Nutná a postačujúca podmienka diferencovateľnosti Veta

Funkcia $f:A(\subset \mathbf{C})\longrightarrow \mathbf{C},\ f(z)=u(x,y)+i\,v(x,y)$ (A je otvorená) je diferencovateľná v bode $\mathbf{a}=a_1+i\,a_2$ vtedy a len vtedy ak sú funkcie u(x,y) a v(x,y) diferencovateľné v bode $\mathbf{a}=(a_1,a_2)$ a platia nasledujúce podmienky:

$$\frac{\partial u(\mathbf{a})}{\partial x} \ = \ \frac{\partial v(\mathbf{a})}{\partial y} \qquad \qquad \frac{\partial u(\mathbf{a})}{\partial y} = -\frac{\partial v(\mathbf{a})}{\partial x}$$

Tieto 2 rovnice nazývame Cauchyho - Riemannove rovnice.

Deriváciu funkcie f pomocou parciálnych derivácií funkcií u a v vypočítame nasledovne:

$$f'(\mathbf{a}) = \frac{\partial u(\mathbf{a})}{\partial x} + i \frac{\partial v(\mathbf{a})}{\partial x} = \frac{\partial v(\mathbf{a})}{\partial y} - i \frac{\partial u(\mathbf{a})}{\partial y}$$

Hľadanie analytickej funkcie

Použitím **Vety o nutnej a postačujúcej podmienke diferencovateľnosti** vieme nájsť analytickú funkciu, ak je daná:

- iba jej reálna časť.
- iba jej imaginárna časť.

Hľadanie analytickej funkcie - príklad

Príklad

(Typ skúškového príkladu)

Nájdite analytickú funkciu $f:A(\subset \mathbf{C})\longrightarrow \mathbf{C},\ f(z)=u(x,y)+i\,v(x,y),$ ak je daná $v:\mathbf{R}^2\longrightarrow \mathbf{R},\ v(x,y)=2xy+3x.$

Riešenie: (Príklad budem riešiť (a vysvetľovať) na prednáške.) Jeho riešenie vychádza z nasledujúcej teórie.

Pretože hľadáme analytickú funkciu f, mala by byť diferencovateľná v každom bode oblasti A, t.j. podľa **Vety o nutnej a postačujúcej podmienke diferencovateľnosti:** funkcie u a v musia byť diferencovateľné v oblasti A a musia spĺňať **Cauchyho** - **Riemannove rovnice**.

Derivovanie a integrovanie reálnych funkcií 2 premenných

Pri hľadaní analytickej funkcie budeme derivovať a integrovať reálne funkcie 2 premenných u(x,y) a v(x,y) podľa jednotlivých premenných.

Ak derivujeme (integrujeme) podľa premennej x, tak s premennou y pracujeme tak, ako keby to bola konštanta.

Ak derivujeme (integrujeme) podľa premennej y, tak s premennou x pracujeme tak, ako keby to bola konštanta.

Harmonické funkcie

Definícia

Reálna funkcia $u:A(\subset \mathbf{R}^2)\longrightarrow \mathbf{R}$ sa nazýva harmonická, ak

- $ullet \ u(x,y)$ má spojité parciálne derivácie 2. rádu v oblasti A.
- $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ pre každé $(x,y) \in A$.

Poslednú rovnicu nazývame **Laplaceova rovnica**, ktorá sa často zapisuje v nasledujúcej forme

$$\triangle u = 0$$
,

kde

$$\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

je Laplaceov operátor.

Harmonické funkcie

Veta

Nech $f:A\longrightarrow \mathbf{C},\ f(z)=u(x,y)+i\ v(x,y)$ je analytická funkcia a funkcie u a v sú dvakrát spojite diferencovateľné. Potom u a v sú harmonické funkcie v oblasti A.

Pozn. Opačné tvrdenie k predchádzajúcej vete neplatí, pretože dve harmonické funkcie v oblasti A nemusia byť časťami analytickej funkcie (nemusia spĺňať Cauchyho - Riemannove rovnice).

Harmonicky združené funkcie

Definícia

Nech $u,v:A(\subset \mathbf{R}^2)\longrightarrow \mathbf{R}$ sú harmonické funkcie. Ak u,v spĺňajú Cauchyho - Riemannove rovnice v oblasti A, potom hovoríme, že u,v sú harmonicky združené funkcie.

Lemma

Reálna a imaginárna časť každej analytickej funkcie $f:A\longrightarrow \mathbf{C},\ f=u+iv,\ A\subset \mathbf{C}$ sú harmonicky združené funkcie v oblasti A, pričom funkcie u a v sú dvakrát spojite diferencovateľné.

Pozn. Použitím Cauchyho - Riemannových rovníc na ľubovoľnú harmonickú funkciu $u:A(\subset \mathbf{R}^2)\longrightarrow \mathbf{R}$, môžeme nájsť harmonicky združenú funkciu $v:A(\subset \mathbf{R}^2)\longrightarrow \mathbf{R}$ tak, že funkcie $f=u+i\,v$ a $g=v+i\,u$ sú analytické v oblasti A.

Príklad

Príklad

(Typ skúškového príkladu)

Nech $u: \mathbf{R}^2 \longrightarrow \mathbf{R}, \, u(x,y) = x^2 - y^2$. Nájdite harmonicky združenú

funkciu $v: \mathbf{R}^2 \longrightarrow \mathbf{R}$, takú, že v(0,0) = 0.

Riešenie: (Príklad budem riešiť (a vysvetľovať) na prednáške.)

Ďakujem za pozornosť.