2024 Cleveland Cavaliers Sport Business and Analytics Night Hackathon

Andrew Yu

Case Western Reserve University

Problem Statement

- Business intelligence
 - Collect and analyze customer interactions and business operations
 - Drive growth and profitability
 - Track trends, monitor performance, and make informed decisions
- Analyze food, beverage, and retail sales for the Cavs
 - Segment fans based on purchases
 - Discover behaviors, patterns, and preferences
 - Create opportunities to tailor our offerings

Total Revenue per Item

- Retail overshadows F&B heavily
- In F&B, beer and hot food bring in the most revenue

Total Revenue per Payment Method

 Credit card vs. mobile payment

Distributed evenly across all groupings

Total Revenue per Location

Online retail dominates

 All location-based revenue is secondary to what they sell (retail vs. F&B)

Feature Derivation: 110 Total Features

- Time features:
 - Days since season start (1)
 - Seconds since game start (1)
- External data:
 - Win / loss (1)
 - East or West conference (1)
- Continuous values:
 - Total amount (1)
 - Quantity (1)

- Categorical Values:
 - Item (33)
 - Category (2)
 - Payment method (2)
 - Location (6)
- Derived features:
 - Subcategories:
 - Alcoholic / non-alcoholic (2)
 - Hot food / snack (2)
 - Clothing / accessories (2)
- Aggregation: Sum and mean (x2 for all)
- Scaling: Adjust values to standard normal distribution

Unsupervised K-Means Clustering

 Clustering samples into groups of similar features without any labeled data

• Steps:

- 1. (Find number of clusters)
- 2. Assign each sample to nearest centroid
- 3. Update centroids' locations
- 4. Repeat 2 and 3 until converged

Choosing k (Number of Clusters)

- Run k-means for each possible number of clusters
- Compute the cluster spread from the centroids (WCSS)
- Determine elbow (point of diminishing returns)
- In this case, k=3

Principal component analysis (PCA)

- Derive linear combinations of original features
- Trade accuracy and interpretability for simplicity
- Visualize complex data in 2D

Results: Fan Segments

- 7,500/10,000: <u>Superfans</u>
 - ~\$6,430 per customer
 - High attendance (~38/39 games)
- 1,250/10,000: <u>Shoppers</u>
 - ~\$5,160 per customer
 - No food & beverage; mostly online
 - Low attendance (~13/39 games)
- 1,250/10,000: Regulars
 - ~\$1,360 per customer
 - No retail
 - High attendance (~36/39 games)

Fan Segment Analysis: Opportunities

- Retail brings in most of the revenue
- Regulars attend many games, but never buy retail
 - Incentivize them with retail discounts for attendance
- Regulars and Superfans buy lots of F&B
 - Incentivize them with retail discounts for F&B purchases
- Shoppers don't attend many games
 - Incentivize them with ticket discounts for retail purchases

Win Boosters

- Subgroup of <u>Superfans</u>
 - 2,004/7,500
- 2x or more spent when the Cavs win

Other Methods Tested

- Derived Data
 - Day of the week
 - Opponent
 - Box score data
- Correlation matrix

- Clustering methods
 - Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
 - Hierarchical (agglometerative) clustering
- Choosing k
 - Silhouette scores
- Dimensionality reduction
 - t-distributed Stochastic
 Neighbor Embedding (t-SNE)

References & Software

- Box score data: NBA.com/stats
- Programming language: Python
- Data loading: pandas
- Data processing: pandas + scikit-learn
- Analysis: scikit-learn
- Visualization: matplotlib

Thank You