

X3-Class HiPerFET™ **Power MOSFET**

IXFT170N15X3HV IXFQ170N15X3 IXFH170N15X3

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ra	ntings
V _{DSS}	$T_{_{\rm J}} = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	150	V
$V_{\scriptscriptstyle DGR}$	$T_J = 25^{\circ}C$ to 150°C, $R_{gs} = 1M\Omega$	150	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _c = 25°C	170	Α
I _{L(RMS)}	External Lead Current Limit	160	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	340	Α
I _A	T _c = 25°C	85	А
E _{as}	$T_{c} = 25^{\circ}C$	1.7	J
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	20	V/ns
P_{D}	T _c = 25°C	520	W
T _J		-55 +150	°C
T _{JM}		150	°C
T _{stg}		-55 +150	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M _d	Mounting Torque (TO-247 & TO-3P)	1.13 / 10	Nm/lb.in
Weight	TO-268HV	4.0	g
	TO-3P	5.5	g
	TO-247	6.0	<u>g</u>

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Charac Min.	cteristic ' Typ.	Values Max	.
BV _{DSS}	$V_{GS} = 0V, I_{D} = 1mA$	150			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4mA$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125$ °C			10 300	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D2S}, Note 1$		5.7	6.7	mΩ

150V 170A D25 $6.7 m\Omega$ $\mathbf{R}_{\mathrm{DS(on)}}$

TO-268HV (IXFT..HV)

TO-3P (IXFQ)

G = Gate= Drain D S = SourceTab = Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- · AC and DC Motor Drives
- Robotics and Servo Controls

Symbol Test Conditions Chara			acteristic Values		
$(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		Тур.	Max		
g _{fs}	V _{DS} = 10V, I _D = 60A, Note 1	54	90	S	
R_{gi}	Gate Input Resistance		1.5	Ω	
C _{iss}			7620	pF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1240	pF	
C _{rss}			40	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related $V_{GS} = 0V$		730	pF	
C _{o(tr)}	Time related $V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1700	pF	
t _{d(on)}	Resistive Switching Times		30	ns	
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		30	ns	
t _{d(off)}	20 20 2		90	ns	
t, J	$R_{\rm G} = 5\Omega$ (External)		14	ns	
Q _{g(on)}			122	nC	
Q _{gs}	$V_{gs} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		35	nC	
Q _{gd}			40	nC	
R _{thJC}				0.24 °C/W	
R _{thCS}	TO-247& TO-3P		0.21	°C/W	

Source-Drain Diode

• • • • • • • • • • • • • • • • • • • •		cteristic Values			
$(1_{J} = 25^{\circ}C, 1_{J}$	Jnless Otherwise Specified)	Min.	Тур.	Max	
Is	$V_{GS} = 0V$			170	Α
SM	Repetitive, pulse Width Limited by $T_{_{JM}}$			680	Α
V _{SD}	$I_{\rm F} = 100 {\rm A}, V_{\rm GS} = 0 {\rm V}, {\rm Note} 1$			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. \right\}$	$I_F = 85A$, -di/dt = 100A/ μ s $V_R = 100V$		90 320 7		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

ID - Amperes

60

40

20

0 -50

-25

Fig. 8. Input Admittance 200

T_C - Degrees Centigrade

75

125

150

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Output Capacitance Stored Energy

Fig. 14. Forward-Bias Safe Operating Area

Fig. 15. Maximum Transient Thermal Impedance

0.44	INCHES		MILLIMETER		
SYM	MIN	MAX	MIN	MAX	
Α	.193	.201	4.90	5.10	
Α1	.106	.114	2.70	2.90	
A1 A2 b	.001	.010	0.02	0.25	
Ь	.045	.057	1.15	1.45	
C C2 D	.016	.026	0.40	0.65	
C2	.057	.063	1.45	1.60	
D	.543	.551	13.80	14.00	
D1	.465	.476	11.80	12.10	
D2	.295	.307	7.50	7.80	
D3	.114	.126	2.90	3.20	
E	.624	.632	15.85	16.05	
E1	.524	.535	13.30	13.60	
е	.215 BSC		5. 4 5 BSC		
(e2)	.374	.386	9.50	9.80	
H	.736	.752	18.70	19.10	
L	.067	.079	1.70	2.00	
L2	.039	.045	1.00	1.15	
L3	.010	BSC	0.25	BSC	
L4	.150	.161	3.80	4 .10	

