Distribución normal multivariada

Propiedades e inferencias

Mario J. P. López

Departamento de Matemáticas Universidad El Bosque

2020

Distribución normal multivariada

f.d.p. normal p-variada

Un vector aleatorio \boldsymbol{X} $(p \times 1)$ tiene distribución normal multivariada, con vector de medias $\boldsymbol{\mu} \in \mathbb{R}^p$ y matriz de covarianzas $\Sigma > 0$, si su f.d.p. está dada por

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}, \ \mathbf{x} \in \mathbb{R},$$

y escribimos $\boldsymbol{X} \sim N_{p}\left(\boldsymbol{\mu},\boldsymbol{\Sigma}\right)$. El término

$$\Delta = \left[(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \, \Sigma^{-1} \, (\boldsymbol{x} - \boldsymbol{\mu}) \right]^{1/2}$$

se conoce como distancia de Mahalanobis y $|\Sigma|$ es la varianza generalizada de $\pmb{X}.$

Función generadora de momentos

f.g.m.

Un vector aleatorio $\boldsymbol{X} \sim N_p\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$ tiene función generadora de momentos, f.g.m.

$$M_{\boldsymbol{X}}(\boldsymbol{t}) := E\left[\exp\left(\boldsymbol{t}^{\top}\boldsymbol{X}\right)\right] = \exp\left(\boldsymbol{\mu}^{\top}\boldsymbol{t} + \frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t}\right),$$

con $t \in \mathbb{R}^p$.

1. Combinaciónes lineales de v.a. normales multivariadas

- Sea \boldsymbol{a} un vector $(\boldsymbol{p} \times 1)$ de constantes y $\boldsymbol{X} \sim N_{\boldsymbol{p}}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, entonces $\boldsymbol{a}^{\top} \boldsymbol{X} \sim N\left(\boldsymbol{a}^{\top} \boldsymbol{\mu}, \boldsymbol{a}^{\top} \boldsymbol{\Sigma} \boldsymbol{a}\right)$.
- Si A es una matriz $(q \times p)$ de constantes, de rango $q \le p$, y $\boldsymbol{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, entonces $A\boldsymbol{X} \sim N_q(A\boldsymbol{\mu}, A\boldsymbol{\Sigma}A^{\top})$.

2. Estandarización multivariada

Dado $\boldsymbol{X} \sim N_p\left(\boldsymbol{\mu},\boldsymbol{\Sigma}\right)$, un vector estandarizado \boldsymbol{Z} , con distribución $N_p\left(\boldsymbol{0},I_p\right)$, se puede obtener como

$$\boldsymbol{Z} = (\Gamma^{\top})^{-1} (\boldsymbol{X} - \boldsymbol{\mu}),$$

donde $\Sigma = \Gamma^{\top} \Gamma$.

3. Normalidad de distribuciones marginales

Sean
$$\boldsymbol{X}_1 = (X_1,...,X_r)^\top$$
 y $\boldsymbol{X}_2 = \left(X_{r+1},...,X_p\right)^\top,$ con $\boldsymbol{X} \sim N_p\left(\boldsymbol{\mu},\boldsymbol{\Sigma}\right)$ y

$$\boldsymbol{X} = \begin{pmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{pmatrix}, \quad \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix},$$

entonces $X_1 \sim N_r(\mu_1, \Sigma_{11})$.

- En particular, $X_j \sim N\left(\mu_j, \sigma_j^2\right), j=1,...,p$
- lo contrario no es necesariamente cierto

4. Independencia

Sean $\boldsymbol{X}\;(p\times 1)$ y $\boldsymbol{Y}\;(q\times 1),$ tal que

$$\left(\begin{array}{c} \textbf{\textit{X}}\\ \textbf{\textit{Y}} \end{array}\right) \sim N_{p+q} \left(\left(\begin{array}{cc} \mu_{\scriptscriptstyle X}\\ \mu_{\scriptscriptstyle Y} \end{array}\right), \left(\begin{array}{cc} \Sigma_{\scriptscriptstyle XX} & \Sigma_{\scriptscriptstyle XY}\\ \Sigma_{\scriptscriptstyle YX} & \Sigma_{\scriptscriptstyle YY} \end{array}\right) \right),$$

entonces los sub-vectores \boldsymbol{X} y \boldsymbol{Y} son independientes si $\Sigma_{xy}=\boldsymbol{0}$.

5. Distribución condicional

En la propiedad anterior, si \boldsymbol{X} y \boldsymbol{Y} no son independientes, entonces $\Sigma_{xy} \neq \boldsymbol{0}$ y la distribución condicional de \boldsymbol{X} dado \boldsymbol{Y} es normal multivariada con

$$E[\mathbf{Y} \mid \mathbf{X}] = \mu_{y} + \Sigma_{yx} \Sigma_{xx}^{-1} (\mathbf{X} - \mu_{x})$$

$$C[\mathbf{Y} \mid \mathbf{X}] = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}$$

6. Distribución χ^2

Si $\boldsymbol{X} \sim N_{\rho}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ y $\boldsymbol{Z} = (\boldsymbol{\Gamma}^{\top})^{-1} (\boldsymbol{X} - \boldsymbol{\mu})$ tal que $\boldsymbol{Z} \sim N_{\rho} (\boldsymbol{0}, I_{\rho})$ entonces

$$\boldsymbol{Z}^{\top}\boldsymbol{Z} = (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \sim \chi_{p}^{2}$$

7. Distribución de la suma de dos sub-vectores

Sean $\boldsymbol{X}\;(p\times 1)$ y $\boldsymbol{Y}\;(p\times 1),$ independientes, tal que

$$\left(\begin{array}{c} \boldsymbol{X} \\ \boldsymbol{Y} \end{array}\right) \sim N_{2p} \left(\left(\begin{array}{c} \boldsymbol{\mu}_{\scriptscriptstyle X} \\ \boldsymbol{\mu}_{\scriptscriptstyle Y} \end{array}\right), \left(\begin{array}{cc} \boldsymbol{\Sigma}_{\scriptscriptstyle XX} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_{\scriptscriptstyle {\!\mathit{Y\!}\!\mathit{Y\!}}} \end{array}\right) \right),$$

entonces

$$\boldsymbol{X} \pm \boldsymbol{Y} \sim N_p \left(\boldsymbol{\mu}_x \pm \boldsymbol{\mu}_y, \boldsymbol{\Sigma}_{xx} + \boldsymbol{\Sigma}_{yy} \right)$$

Función de (log)verosimilitud

Sean $X_1,...,X_n$ una muestra aleatoria de una v.a. $X \sim N_p(\mu,\Sigma)$, la función de máxima verosimilitud de la muestra está dada por

$$\begin{split} L(\boldsymbol{X}_{1},...,\boldsymbol{X}_{n};\boldsymbol{\mu},\boldsymbol{\Sigma}) &= \prod_{i=1}^{n} f_{\boldsymbol{X}_{i}}(\boldsymbol{x}_{i}) \\ &= \prod_{i=1}^{n} \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu})\right\} \\ &= \frac{1}{(2\pi)^{np/2} |\boldsymbol{\Sigma}|^{n/2}} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu})\right\} \end{split}$$

y la función de log-verosimilitud

$$\ell\left(\boldsymbol{X}_{1},...,\boldsymbol{X}_{n};\boldsymbol{\mu},\boldsymbol{\Sigma}\right)=-\frac{np}{2}\log\left(2\pi\right)-\frac{n}{2}\log\left|\boldsymbol{\Sigma}\right|-\frac{1}{2}\sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{\top}\boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)$$

MLE

Los estimadores de máxima verosimilitud de μ y Σ son

$$\hat{\boldsymbol{\mu}} = \bar{\boldsymbol{X}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}$$

$$\hat{\Sigma} = S_{n} = \frac{1}{n} \sum_{i=1}^{n} \left(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}} \right) \left(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}} \right)^{\top}$$

respectivamente.

Distribución de $\overline{\boldsymbol{X}}$

- Cuando $X_1,...,X_n$ es una muestra aleatoria de una v.a. $X \sim N_p(\mu,\Sigma)$, entonces $\bar{X} \sim N(\mu,\Sigma/n)$
- Cuando $X_1,...,X_n$ es una muestra aleatoria de una distribución no normal con vector de medias μ y matriz de covarianzas Σ , entonces conforme $n \to \infty$, \bar{X} tiene una distribución aproximada $N_p(\mu,\Sigma)$. Este resultado se conoce como el teorema del límite central multivariado. En particular

$$\sqrt{n}\left(\bar{\boldsymbol{X}}-\boldsymbol{\mu}\right)\sim N\left(\boldsymbol{0},\Sigma\right)$$

conforme $n \to \infty$.

Distribución Wishart

Una matriz aleatoria \boldsymbol{W} $(p \times p)$, definida positiva, tiene una distribución Wishart $\boldsymbol{W} \sim W_p(n,V)$ con parámetro V > 0, $(p \times p)$ y grados de libertad n > p-1 si su f.d.p. está dada por

$$f_{\boldsymbol{W}}\left(\boldsymbol{w}\right) = \frac{\left|\boldsymbol{w}\right|^{(n-p-1)/2} e^{-\mathrm{tr}\left(V^{-1}\boldsymbol{w}\right)/2}}{2^{np/2} \left|V\right|^{n/2} \Gamma_{p}\left(\frac{n}{2}\right)},$$

donde $\Gamma(\cdot)$ es la función gama multivariada.

Distribución de S_{n-1}

• La v.a.

$$W = \sum_{i=1}^{n} (\boldsymbol{X}_{i} - \boldsymbol{\mu}) (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\mathsf{T}}$$

tiene distribución $W_p(n,\Sigma)$

• La v.a.

$$W = \sum_{i=1}^{n} \left(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}} \right) \left(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}} \right)^{\top} = (n-1) S_{n-1}$$

tiene distribución $W_p(n-1,\Sigma)$.

• Se puede demostrar además que \bar{X} y S_n son estadísticamente independientes.

q-q plot univariado

- Sean $X_{(1)}, X_{(2)}, ..., X_{(n)}$ las estadísticas de orden de una m.a.
- Encontrar los valores q_i tal que $\Phi(q_i) = P(Z \le q_i) = \frac{i-0.5}{n}$
- Graficar la nube de puntos conformada por las parejas $(q_i, X_{(i)})$
- Agregar la línea $X_{(i)} = a + bq_i$ que "mejor" se ajusta a la nube de puntos.

q-q plot multivariado

- Sea $X_1, X_2, ..., X_n$ una m.a. de v.a. p-variadas.
- Si $\boldsymbol{X}_i \sim N_p(\mu, \Sigma)$, i=1,...,n, entonces

$$u_i = \frac{nD_i^2}{(n-1)^2} \sim Beta\left(\frac{p}{2}, \frac{n-p-1}{2}\right)$$

con

$$D_i = \left(\boldsymbol{X}_i - \bar{\boldsymbol{X}}\right)^{\top} S_{n-1}^{-1} \left(\boldsymbol{X}_i - \bar{\boldsymbol{X}}\right)$$

q-q plot multivariado

• Calcular los cuantiles de la distribución beta, v_i , i=1,...,n, como solución a

$$\int_0^{v_i} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)\Gamma\left(\frac{n-p-1}{2}\right)} y^{\frac{p}{2}-1} \left(1-y\right)^{\frac{n-p-1}{2}-1} dy = \frac{i-a}{n-a-b+1}$$

con
$$a = \frac{(p-2)}{2p}$$
 y $b = \frac{n-p-3}{2(n-p-1)}$.

- Graficar la nube de puntos $(v_i, u_{(i)})$
- Agregar la línea $u_{(i)} = a + bv_i$.

Test de Mardia

Se basa en la asimetría y la curtosis de poblaciones normales multivariadas

$$\beta_{1,p} = E \left[(\boldsymbol{X} - \boldsymbol{\mu})^{\mathsf{T}} \, \Sigma^{-1} \left(\boldsymbol{X} - \boldsymbol{\mu} \right) \right]^{3} = 0$$

$$\beta_{2,p} = E \left[(\boldsymbol{X} - \boldsymbol{\mu})^{\mathsf{T}} \, \Sigma^{-1} \left(\boldsymbol{X} - \boldsymbol{\mu} \right) \right]^{2} = p \left(p + 2 \right)$$

los cuales se pueden estimar como

$$\hat{\beta}_{1,p} = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n g_{ij}^3, \qquad \hat{\beta}_{2,p} = \frac{1}{n} \sum_{i=1}^n g_{ii}^2$$

$$\mathrm{con}\ g_{ij} = \left(\boldsymbol{X}_i - \bar{\boldsymbol{X}}\right)^{\top} S_n^{-1} \left(\boldsymbol{X}_j - \bar{\boldsymbol{X}}\right).$$

Test de Mardia

Luego, se calculan las estadísticas

$$Z_{1} = \frac{(p+1)(n+1)(n+3)}{6[(p+1)(n+1)-6]} \hat{\beta}_{1,p} \sim \chi^{2}_{p(p+1)(p+2)/6}$$

$$Z_{2} = \frac{\hat{\beta}_{2,p} - p(p+2)}{\sqrt{8p(p+2)/n}} \sim N(0,1)$$

Así, se rechaza la hipótesis de normalidad multivariada

- \bullet en términos de asimetría si $Z_1 \geq \chi^2_{0.05,p(p+1)(p+2)/6}$
- \bullet en términos de curtosis si $|Z_2| \geq Z_{0.05}$

Datos atípicos

Detectando outliers

Un simple procedimiento para detectar *outliers* multivariados consiste en calcular la distancia de Mahalanobis muestral para cada individuo *i*-ésimo,

$$MD_i = \left[\left(\boldsymbol{X}_i - \bar{\boldsymbol{X}} \right)^{\mathsf{T}} S_n^{-1} \left(\boldsymbol{X}_i - \bar{\boldsymbol{X}} \right) \right]^{1/2},$$

y compararla con $\chi^2_{p,0.975}$.

Para μ con Σ conocida

- Se desea probar $H_0: \mu = \mu_0$ contra $H_1: \mu \neq \mu_0$, dada una m.a. de una $N(\mu, \Sigma)$.
- Estadístico de prueba:

$$Z^2 = n \left(\bar{\boldsymbol{X}} - \mu_0 \right)^{\top} \Sigma^{-1} \left(\bar{\boldsymbol{X}} - \mu_0 \right)$$

que bajo H_0 sigue una distribución χ_p^2 .

• Rechazamos H_0 si $Z^2 > \chi^2_{\alpha,p}$

Para μ con Σ desconocida

- Se desea probar $H_0: \mu = \mu_0$ contra $H_1: \mu \neq \mu_0$, dada una m.a. de una $N(\mu, \Sigma)$.
- Estadístico de prueba:

$$T^2 = n \left(\bar{\boldsymbol{X}} - \mu_0 \right)^{\top} S_{n-1}^{-1} \left(\bar{\boldsymbol{X}} - \mu_0 \right)$$

que bajo H_0 sigue una distribución $T_{p,n-1}^2$.

- Rechazamos H_0 si $T^2 > T_{\alpha,p,n-1}^2$.
- Tener en cuenta que si $w \sim T_{p,m}^2$ entonces

$$\frac{m-p+1}{pm}w\sim F_{p,m-p+1}$$

Para $\mu_1 - \mu_2$ con $\Sigma_1 = \Sigma_2$ desconocidas

- Se desea probar $H_0: \mu_1 = \mu_2$ contra $H_1: \mu_1 \neq \mu_2$, dadas un par de m.a. de una $N(\mu_1, \Sigma)$ y una $N(\mu_2, \Sigma)$.
- Estadístico de prueba:

$$T^{2} = \frac{n_{1}n_{2}}{n_{1} + n_{2}} \left(\bar{\boldsymbol{X}}_{1} - \bar{\boldsymbol{X}}_{2} \right)^{\top} S_{c}^{-1} \left(\bar{\boldsymbol{X}}_{1} - \bar{\boldsymbol{X}}_{2} \right)$$

que bajo H_0 sigue una distribución T^2_{p,n_1+n_2-2} .

- Rechazamos H_0 si $T^2 > T^2_{\alpha,p,n_1+n_2-2}$.
- Donde

$$S_c = \frac{(n_1 - 1) S_1 + (n_2 - 1) S_2}{n_1 + n_2 - 2}$$

Para $\mu_1 - \mu_2$ con $\Sigma_1 \neq \Sigma_2$ desconocidas

- Se desea probar $H_0: \mu_1 = \mu_2$ contra $H_1: \mu_1 \neq \mu_2$, dadas un par de m.a. de una $N(\mu_1, \Sigma_1)$ y una $N(\mu_2, \Sigma_2)$.
- Estadístico de prueba:

$$T^2 = \left(\bar{\boldsymbol{X}}_1 - \bar{\boldsymbol{X}}_2\right)^{\mathsf{T}} \left[\frac{S_1}{n_1} + \frac{S_2}{n_2}\right]^{-1} \left(\bar{\boldsymbol{X}}_1 - \bar{\boldsymbol{X}}_2\right)$$

que bajo H_0 sigue una distribución χ_p^2 .

• Rechazamos H_0 si $T^2 > T_{\alpha,p}^2$.

Homogeneidad de matrices de covarianza

- Se desea probar $H_0: \Sigma_1 = \Sigma_2 = \cdots = \Sigma_k$ contra $H_1: \Sigma_i \neq \Sigma_j$, $i \neq j$, dadas k m.a. de $N(\mu_i, \Sigma_i)$.
- Prueba de Bartlett: Se basa en la estadística

$$MC^{-1} \sim \chi^2_{(k-1)(p+1)p/2}$$

donde

$$C^{-1} = 1 - \frac{2p^2 + 3p - 1}{6(p+1)(k-1)} \left(\sum_{i=1}^{k} (n_i - 1)^{-1} - \left(\sum_{i=1}^{k} (n_i - 1) \right)^{-1} \right)$$

$$M = \sum_{i=1}^{k} (n_i - 1) \ln |S_c| - \sum_{i=1}^{k} (n_i - 1) \ln |S_i|$$

Referencias

Rencher, A.

Methods of Multivariate Analysis. 2nd ed. Willey, 2002.