Rapport bibliographique Correction du mouvement respiratoire en TEP

Simon Marache-Francisco

Laboratoire CREATIS/LRMN - Philips Medisys

29 septembre 2011

PHILIPS Creatis

A destination de :

- Jean-Michel Rouet, Philips Medisys
- Carole Lartizien, CREATIS/LRMN
- Rémy Prost, CREATIS/LRMN

Table des matières

Ι	Int	roduc	tion	9
II	In	nageri	e TEP	11
1	Prin	cipe Pl	hysique	15
	1.1	Génér	ralités	. 15
		1.1.1	Détecteur	. 15
	1.2	pertur	rbation trajet du photon	. 16
		1.2.1	Diffusion	. 16
		1.2.2	Déviation	. 16
		1.2.3	Absorbtion	. 16
2	Dér	ouleme	ent d'une acquisition	17
	2.1	2D / 3	3D	. 17
	2.2	Forma	at des données	. 17
		2.2.1	List-mode	. 17
		2.2.2	Sinogramme	. 18
3	Alg	orithme	es de reconstruction	19
	3.1	Itérati	ifs	. 19
		3.1.1	EM	. 19
		3.1.2	OSEM	. 19
	3.2	Analy	rtiques	. 19

II	I N	Iouve	ment respiratoire	21		
4	Res	piratio	n et influence sur les acquisitions TEP/TDM	23		
	4.1	Mouv	rement respiratoire	. 23		
	4.2	Locali	isation et Volume	. 24		
	4.3	Mesu	re de l'activité des tumeurs	. 25		
		4.3.1	Décalage de la carte d'atténuation	. 25		
		4.3.2	Déplacement de la tumeur au cours du cycle	. 26		
	4.4	Impac	et du mouvement respiratoire sur la detection	. 27		
		4.4.1	Thielemans 2006	. 27		
		4.4.2	Chang 2010	. 28		
5	Pro	cessus (d'estimation du mouvement	29		
	5.1	Capte	urs externes	. 29		
		5.1.1	Spiromètre	. 29		
		5.1.2	Ceinture	. 29		
		Todo	donner ref de raison utilisation	. 29		
		5.1.3	Basés caméras	. 30		
		5.1.4	Techniques basées sur les images TEP	. 30		
	5.2	Estim	ation du champ de mouvement	. 31		
		Todo	traduire	. 31		
		5.2.1	Image TDM 4D	. 31		
		5.2.2	Image TEP 4D	. 32		
	5.3	Modè	le	. 32		
6	Cor	Correction du mouvement respiratoire				
	6.1	Synch	ronisation respiratoire	. 33		
	6.2	Synch	ronisation respiratoire avec recalage	. 35		
		6.2.1	Estimation du mouvement respiratoire corps entier	. 35		
		Todo	continuer	. 35		
	6.3	Corre	ction pré-reconstruction	. 36		

	6.4	Correction pendant la reconstruction	37
	6.5	Déconvolution de l'image	38
IJ	/ E	valuation des performances de diagnostique	1 1
7	Perf	ormance des outils de détection	43
	7.1	Généralités	43
	7.2	Méthodologie ROC - Receiver-Operating Curve	44
		7.2.1 Courbes Localization ROC (L-ROC)	46
	7.3	F-ROC	47
		7.3.1 Courbes Free-ROC	47
		7.3.2 Courbes Alternative Free-ROC	48
		7.3.3 Comparaison des courbes	48
8	Syst	èmes de détection	51
	8.1	Les CAD en TEP	51
	8.2	Types de classification	51
		8.2.1 supervisée - méthodologie	51
		8.2.2 non supervisée - méthodologie	52
	8.3	classifieurs	53
		8.3.1 SVM (Separateur à Vaste Marge)	53
		8.3.2 LDA	53
	8.4	Systèmes humain	53
\mathbf{V}	Si	mulation et base de données (MIC 2011)	55
9	Sim	ulations	57
	9.1	principe des simulations	57
		9.1.1 monte carlo	57
		9.1.2 analytiques	57
		9.1.3 MC accélérés	57

	9.2	simulateurs disponibles	57
	9.3	processus de simulation avec SORTEO	57
	9.4	Contribution à SORTEO	57
10	D	1 1 /	=.
10		de donnée	59
		Présentation	
		Modèles	
	10.3	données clef	59
V]	I R	ésultats	61
11	métl	nodes (MIC 2010)	63
	11.1	Système CAD	63
		11.1.1 Classifications	64
	11.2	Optimisation des paramètres du classifieur	64
	11.3	Réduction des faux positifs	65
		11.3.1 Technique simple : Critère basés sur l'intersection	65
		11.3.2 Technique étendue : Basés intersection et étendue spatiale	65
12	Ana	lyse des résultats	67
		Tests de différents paramètres	67
		12.1.1 Base témoin	
		12.1.2 Base Erosion	
		12.1.3 Base Appauvrie	68
		12.1.4 Base Enrichie	
		12.1.5 Base Normalisation	
		12.1.6 Courbe Free-ROC	
		12.1.7 Comparaison des performances JAFROC	
	12.2	Comparaison des performances des différentes méthodes Poumon	
		12.2.1 ET-IM	
		12.2.2 ET-LOR	

VIII	Biblic	ographie	85
VII C	Conclu	ısion	83
	12.3.2	Courbes Free-ROC	78
	12.3.1	Comparaison des performances JAFROC	78
12.3	Compa	araison des performances des différentes méthodes Foie	78
	12.2.5	Courbes Free-ROC	74
	12.2.4	Comparaison des performances JAFROC	74
	12.2.3	ET-NoCorr	74

Première partie Introduction

Deuxième partie Imagerie TEP

La Tomographie par Émission de Positons (TEP) est une modalité d'imagerie fonctionnelle utilisant la désintégration d'un traceur radioactif pour mettre en valeur les zones de forte activité métaboliques. Elle est principalement utilisée en imagerie cérébrale, oncologie et cardiologie.

Principe Physique

1.1 Généralités

L'imagerie TEP permet de visualiser de manière indirecte les désintégrations de particules survenant dans le corps du patient. Pour cela, on inject un "traceur" contenant une particule radioactive dans le corps du patient. Ce traceur est conçu de manière à se fixer sur les zones du corps que l'on souhaite imager. Pendant toute la durée de l'examen, les particules radioactives vont se désintégrer selon la loi de décroissance radioactive de la formule 1.1.

$$dN = -\lambda N dt \tag{1.1}$$

N représente le nombre le particules radioactives présentes dans le corps du patient. dN représente la variation de ce nombre de particules (le nombre de désintégrations par dt) et λ est une constante dépendant de l'élément radioactif.

Chaque désintégration d'un élément radioactif va déclencher l'émission d'une particule β , aussi appellée positon. En oncologie, on utilise le Fluor ^{18}F qui se désintégre en Oxygène ^{18}O en émettant le positon. Cette particule va parcourir quelques mm avant de s'annihiler avec un élection en émettant 2 photons dans deux directions opposées avec une énergie de 511 KeV.

Ce seront ces photons qui vont être détectés par l'imageur TEP pour reconstituer la position de la désintégration initiale.

1.1.1 Détecteur

Les détecteurs utilisés en TEP sont constitués d'un matériau photomultiplicateur placé devant un capteur. Chaque photon va entraîner un qui va déclencher une émission lumi-

neuse à cahque photon détecté, placé à cotésuivi par un détecteur qui va convertir cette émission lumineuse en impulsion électrique.

1.2 perturbation trajet du photon

- 1.2.1 Diffusion
- 1.2.2 Déviation
- 1.2.3 Absorbtion

Déroulement d'une acquisition

$2.1 \quad 2D / 3D$

2.2 Format des données

Les données acquises par une caméra TEP peuvent être stockées sous deux formes principales : Sinogramme et list-mode.

2.2.1 List-mode

Ce format correspond à un enregistrement "brut" des données issues de l'électronique de la caméra.

Ce format de fichier est en fait un enregistrement séquentiel des évènements, dans leur ordre de détection. On peut enregistrer chaque détection indépendamment, ou encore uniquement les coïncidences. Les évènements sont datés, ce qui permet de conserver l'informations temporelles.

Il existe plusieurs formats de fichiers pour le stockage de ces données, notamment le format LMF (List-Mode Format) développé pour le projet ClearPET et le format ROOT développé par le CERN.

L'avantage de ces formats est qu'ils permettent de conserver les informations sur la dynamique de l'acquisition, mais aussi qu'ils permettent le stockage de métadonnées utiles en simulations, notamment le nombre de diffusions, ou de marquer les coincidences fortuites.

2.2.2 Sinogramme

Le sinogramme est une image

Algorithmes de reconstruction

- 3.1 Itératifs
- 3.1.1 EM
- 3.1.2 **OSEM**
- 3.2 Analytiques

Troisième partie Mouvement respiratoire

Respiration et influence sur les acquisitions TEP/TDM

Le mouvement respiratoire en imagerie TEP engendre plusieurs effets sur les images reconstruites, qui seront détaillés ci-après. Ils occasionnent notamment une diminution de la qualité des images, ce qui peut perturber le travail des praticiens.

4.1 Mouvement respiratoire

Ce mouvement est la succession d'une phase inspiratoire, suivi d'une phase expiratoire. Chacune de ces phases combine plusieurs mouvements élémentaires [servant laval, 2007] :

- 1. thoracique, avec un déplacement des côtes
- 2. abdominal, avec un déplacement du diaphragme
- 3. en cas d'inspiration forcée, action des pectoraux

La variabilité inter et intra-patient de ce mouvement est très importante : le volume d'air inspiré peut varier de 500mL à 1200mL selon que la personne a une respiration normale ou profonde. Pour ces deux extrêmes, la fréquence respiratoire varie de 5 cycles/min. à 20 cycles/min. [Sherwood, 2006].

Or une acquisition TEP a une durée de plusieurs minutes par lit, ce qui amène à la reconstruction d'une image dégradée, notamment au niveau de la localisation de la tumeur, de son activité mesurée et, par extension, de sa détection. De le même manière, des artefacts apparaissent au niveau des zones de forts mouvement dans les images TDM, lorsque les organes bougent pendant une rotation du capteur.

Je vais tout d'abord introduire les effets visibles sur les images, puis je m'attarderais sur les mesures quantitatives utilisés pour mesurer l'apport de la correction du mouve-

FIG. 4.1: Modélisation de la respiration par le fantôme XCAT.

ment sur les tumeurs. Ensuite, je détaillerais les publications utilisant des critères pouvant être assimilés à de la détection.

4.2 Localisation et Volume

$$\%PRD = \left| \frac{Image \ non \ corrigée - Image \ de \ référence}{Image \ de \ référence} \right| \tag{4.1}$$

La localisation et le volume des tumeurs peuvent être modifiés par le mouvement engendré par la respiration (voir figure 4.2). D'après [Lamare et al., 2007a], réalisé sur des simulations monte-Carlo à l'aide du logiciel de simulation Geant4[Jan et al., 2004] en utilisant le modèle NCAT[Segars, 2001], la largeur à mi-hauteur des lésions peut être modifiée de 48% (equation 4.1 : Percent relative difference) dans le cas d'une lésion de 7mm de diamètre dans la partie basse du poumon. L'imprécision axiale sur le positionnement de la tumeur peut atteindre 9% dans les mêmes conditions.

FIG. 4.2: Effet du déplacement d'une tumeur sur les données acquises. La position de la tumeur change en fonction du temps, ce qui provoque l'acquisition d'une tumeur équivalente présentée à droite.

4.3 Mesure de l'activité des tumeurs

Le contraste des tumeurs par rapport au fond est un critère important pour déterminer la malignité des tumeurs [Dimitrakopoulou-Strauss et al., 2002] [Krak et al., 2005]. Mais il va aussi directement déterminer si la tumeur est détectable ou non.

L'article de [Chang et al., 2010] est une évaluation clinique réalisée sur 13 patients (21 tumeurs au total).

L'activité peut être influencée par la respiration de deux manières : par un mauvais ajustement de la carte d'atténuation, et par le moyennage de la position de la tumeur.

4.3.1 Décalage de la carte d'atténuation

La carte d'atténuation utilisée pour corriger les images reconstruites est basée sur une image TDM prise à un instant donné du cycle. Or l'atténuation de la zone correspondant à une tumeur peut être différente de celle du tissus environnant.

% variation
$$SUV_{max} = 100 \times \frac{|SUV_1 - SUV_2|}{(SUV_1 + SUV_2)/2}$$
 (4.2)

D'après l'étude [Erdi et al., 2004] réalisée sur cinq patients, on peut observer des variations de SUV_{max} (voir eq. 4.2) allant jusqu'à 24% selon que la correction d'atténuation est réalisée à partir d'une image TDM en fin d'expiration ou d'inspiration. Sur l'ensemble du cycle, la variation peut atteindre 30%.

Artefacts dûs à l'utilisation de l'image TDM

On peut voir sur les images de la figure 4.3 des artefacts présents sur les images TDM utilisées pour la correction d'atténuation. Ces artefacts proviennent de la manière dont les images sont acquises : la caméra tourne autour du sujet dans un mouvement hélicoïdal, et l'algorithme de reconstruction va ensuite utiliser les acquisitions pour reconstruire une image complète. Or en cas de respiration rapide, des incohérences peuvent survenir quand le mouvement du diaphragme est tellement rapide qu'il va plus vite que la caméra. Ce type d'artefacts va créer des incohérences dans les images TEP reconstruites.

FIG. 4.3: Artefacts présents sur des images TDM utilisées pour la correction d'atténuation

4.3.2 Déplacement de la tumeur au cours du cycle

Le mouvement respiratoire va avoir pour effet de déplacer la tumeur pendant l'acquisition, ce qui va moyenner la quantité de radioactivité sur l'ensemble du cycle. Si le déplacement de la tumeur est suffisamment grand par rapport à son diamètre, la réduction de radioactivité va être importante.

L'étude [Boucher et al., 2004] montre que sur des fantomes, un déplacement d'une source radioactive de 6mm sur un cycle respiratoire moyen entraîne une sous-estimation

de l'activité maximale de la tumeur de 41% pour une lésion de 1.2mL et de 21% pour une sphère de 19.4mL.

4.4 Impact du mouvement respiratoire sur la detection

Peu de travaux ont été réalisés sur l'impact du mouvement respiratoire sur la détection des tumeurs. Globalement, les critères utilisés sont principalement des mesures orientées sur quantification des lesions (SUV_{max} , profils de lesions, ...). Très peu d'articles utilisent des critères orientés détection tels que les observateurs.

Voici une liste des critères utilisés dans différentes publications pour évaluer la performances d'algorithmes de correction du mouvement respiratoire :

- 1. SUV_{max} , contraste : [Chang et al., 2010] [Lamare et al., 2007b] [Nehmeh et al., 2002] [Detorie and Dahlbom, 2008]
- 2. Line profile: [Chang et al., 2010] [Thielemans et al., 2006] [Lamare et al., 2007b]
- 3. Volume et position de la lésion : [Chang et al., 2010] [Lamare et al., 2007b] [Nehmeh et al., 2002]
- 4. Rapport signal sur bruit (SNR): [Chang et al., 2010]
- 5. Observateur de Hotelling (CHO): [Thielemans et al., 2006]

Comme on peut le voir, les deux seuls critères qui pourrait s'approcher d'une étude sur la détection sont le SNR et le CHO, mais ils sont largement sous-représentés.

Je vais me concentrer sur les deux publications qui utilisent un observateur, et présenterai les résultats des autres publications dans la partie suivante.

Un autre document par rahmim arman [Rahmim et al.,] propose d'utiliser le CHO pour évaluer l'amélioration de la détection des défauts dans de l'imagerie cardiaque corrigée du mouvement respiratoire. Ce document n'a pas encore donné lieu à publication.

4.4.1 Thielemans 2006

Dans sa publication, Thielemans [Thielemans et al., 2006] utilise le CHO [Barrett et al., 1993] dans le cas ou le signal (activité des lesions) et le fond sont connus (activité du poumon). Cet observateur est un classifieur linéaire, utilisé en conjonction avec des informations fréquentielles.

Cependant ils utilisent le CHO uniquement sur des lésions de fort diamètre et contraste (13mm de diamètre et contraste de 4.25 :1, sur des simulations analytiques). Les résultats présentés (fig. 4.4) montrent une amélioration du score pour les méthodes de correction de l'ordre de 50% dans certains cas.

Mais il est difficile d'évaluer de manière précise l'apport des méthodes de détection à l'aide de ces seuls "scores" car ce sont des résultats qualitatifs.

FIG. 4.4: Index de CHO pour différents techniques de correction du mouvement respiratoire en fonction du nombre d'itérations. la méthode utilisant le gating est comparée avec une méthode évolution présentée dans le document.

4.4.2 Chang 2010

Cette publication utilise entre autres le rapport signal sur bruit pour évaluer l'amélioration de la visibilité des lésions. Son interêt est qu'elle est réalisée sur 13 patients et compare les performances sur 21 tumeurs au total.

Ils ont calculés le rapport signal sur bruit (SNR) en divisant le SUV moyen de la tumeur par l'écart-type d'une zone d'interêt dans le poumon. On observe une amélioration moyenne de 26% du SNR sur les tumeurs, et pouvant atteindre 66%.

Il est intéressant de constater qu'il y a un point où le SNR diminue de 3.4%, mais que le SUV_{max} et le SUV_{moyen} augmentent tout de même de presque 18%. Cela semble indiquer une erreur car le SUV de la zone d'interêt n'est pas censé changer de manière importante.

Processus d'estimation du mouvement

5.1 Capteurs externes

Ces capteurs fournissent un signal qui sera corrélé avec la respiration. Ils vont permettre par la suite de faire correspondre les données acquises avec une phase particulière du mouvement respiratoire.

5.1.1 Spiromètre

Le spiromètre est un capteur externe placé sur la bouche du patient et qui permet de mesurer les déplacements d'air dans le système respiratoire [Guivarc'h et al., 2004]. Les spiromètres mesurent un débit ou un volume d'air inspiré/expiré (voir illustration figure 5.1). A partir de l'une des grandeur, il est possible d'estimer l'autre facilement. L'avantage du spiromètre est qu'il permet d'accéder à une mesure caractérisant directement la respiration du patient, et n'est pas sujet à des perturbations externes (mouvements involontaires par exemple). Par contre cela demande un appareillage qui peut être assez invasif pour le patient.

5.1.2 Ceinture

Pour mesurer le signal respiratoire, il est possible d'utiliser un capteur qui va mesurer le périmètre du thorax. L'extension de cette ceinture va correspondre aux mouvements de la cage thoracique et de l'abdomen pendant la respiration du patient. C'est une mesure indirecte de l'amplitude du mouvement respiratoire utilisée couramment en routine clinique **||A Faire :** donner ref de raison utilisation|| .

Différentes technologies existent pour mesurer cette informations (RespiTrace R250 de Studley. Data Systems, Respiratory Belt Transducer de ADInstruments, ...). Elles sont

FIG. 5.1: spiromètre Syn'r : on peut voir le système de mesure de la respiration ainsi qu'un système de moniteurs implantés dans les lunettes pour aider le patient à contrôler sa respiration

basées sur plusieurs effets (résisitif, inductif...) et ont l'avantage d'avoir un faible coût et de ne pas perturber le patient.

5.1.3 Basés caméras

Des caméras peuvent être utilisées pour estimer le mouvement respiratoire. Une des techniques consiste à utiliser des informations surfaciques en reconstruisant en 3D certaines parties du corps à l'aide de plusieurs caméras (avec ou sans marqueurs) ou de caméra temps de vol. Cela permet d'avoir plus d'informations sur la respiration.

Une autre technique consiste à installer un marqueur sur le corps du patient et de relever les déplacements de ce marqueur à l'aide d'une caméra. Un tel système est décris dans [Nehmeh et al., 2002] : Respiratory Gating System de Varian Medical Systems (voir figure 5.2).

Ces techniques ont l'avantage d'être moins invasives et plus facilement acceptées par le patient. Cependant, elles sont beaucoup plus sensibles aux mouvements parasites.

5.1.4 Techniques basées sur les images TEP

Une publication utilise des images TEP pour déduire le signal respiratoire [Bundschuh et al., 2007] : les images TEP sont reconstruites par pas temporel de 0.5s. La position axiale du ba-

FIG. 5.2: Photographie du système RGS de Varian medical Systems en action : une caméra va détecter le déplacement d'une zone du thorax en mesurant le déplacement de marqueurs placés sur un bloc plastique.

rycentre de chaque image donne une estimation du signal respiratoire. Cette technique donne les meilleurs résultats pour une zone d'interêt centrée sur une tumeur de forte intensité.

5.2 Estimation du champ de mouvement

Le signal respiratoire acquis par les méthodes précédemment cités est utilisé pour décomposer les données acquises en TDM ou TEP en plusieurs phases, chacune correspondant à un instant du cycle. Ces informations sont utilisées pour assembler les données acquises en **||A Faire:** traduire|| "bins", reconstruits indépendamment. Ces reconstructions vont être utilisées pour estimer les champ de mouvements à l'aide de techniques de recalage.

5.2.1 Image TDM 4D

Les images TDM peuvent être acquises en mode dynamique de manière à obtenir un ensemble d'image couvrant tout le cycle respiratoire [Lamare et al., 2007b, Qiao et al., 2006]. Les données des

Des algorithmes de recalage sont utilisés de manière à déduire le champ de mouvement. Bien que les images soient de bonne qualité et permettent une estimation précise du champ de mouvement, cela demande une exposition supplémentaire aux rayonnements X.

Plusieurs publications basées sur des simulations se servent des cartes de labels utilisées pour la simulation pour réaliser les estimation de mouvements. Cela donne une estimation dans le "meilleur des cas", où l'image TDM est parfaitement en phase avec les images TEP.

5.2.2 Image TEP 4D

Les données regroupées selon l'instant du cycle auquel ils appartiennent [Dawood et al., 2008, Dawood et al., 2006]. Les image sont reconstruites indépendamment sans correction d'atténuation, puis un algorithme de recalage est utilisé pour estimer le champ de mouvement. L'avantage de cette technique est de ne pas nécessiter d'irradiation ni de temps supplémentaire. Cependant, les images reconstruites sont de mauvaises qualité et peuvent réduire la précision du champ de mouvement estimé.

5.3 Modèle

Une autre voie est en cours de développement basée sur la création d'un modèle de respiration généralisé adapté à chaque patient à partir de données réduites. Fayad [Fayad et al., 2010] propose une méthode basée sur l'analyse en composantes principales pour modéliser les mouvements. Ce modèle est ensuite adapté à un patient à partir de deux images TDM prises à des instants différents du cycle. Enfin, une caméra 3D permettant d'obtenir la surface du corps du patient est utilisé pour synchroniser le mouvement respiratoire et affiner le modèle.

L'avantage de ce modèle est qu'il est totalement continu, et permet l'extraction d'un nombre arbitraire de phases.

Correction du mouvement respiratoire

6.1 Synchronisation respiratoire

La synchronisation respiratoire correspond à un découpage du cycle respiratoire en plusieurs phases (voir Fig.6.1). Une seule d'entre elles sera utilisée pour la reconstruction. En théorie cela permet d'avoir le meilleur résultat, car il est possible de sélectionner les évènements correspondants à la phase où a été acquise la carte d'atténuation.

FIG. 6.1: Illustration de la synchronisation respiratoire : Le cycle est découpé en plusieurs phases

Cette technique est notamment présentée dans [Nehmeh et al., 2002], où le signal respiratoire est estimé par une caméra qui suit un marqueur placé sur le torse du patient. L'auteur annonce une réduction du volume des tumeurs pouvant aller jusqu'à 34%, avec une augmentation du SUV_{max} de 160%.

Une autre publication [Boucher et al., 2004] utilise un thermomètre détectant l'air chaud émis en début de cycle respiratoire pour réaliser la synchronisation. Les différentes reconstructions issues de l'expérience sont visibles figure 6.2.

Une variante de cette technique ne nécessitant pas de capteur est décrite dans [Nehmeh et al., 2003]. Un point faiblement radioactif est fixé au-dessus du torse du patient. Les acquisitions de

FIG. 6.2: Illustration de l'étendue du mouvement respiratoire sur des images reconstruites après synchronisation respiratoire [Boucher et al., 2004]. La rangée du haut montre l'étendue du mouvement de l'apex du coeur, et celle du bas l'étendue du mouvement du rein

l'imageur sont ensuite enregistrées par blocs temporels de 1 seconde, et une zone d'interêt est reconstruite dans chacune des images. Les données où le point source est dans cette zone d'interêt sont sommées et l'image finale reconstruite.

Guoping et al. [Chang et al., 2010] réalisent la carte d'atténuation à partir d'une image TDM réalisée en respiration libre, et reconstruisent les données TEP acquises lorsque l'amplitude respiratoire est proche de celle utilisée pour l'acquisition TDM (voir exemples figure 6.3. Les résultats présentés sur 13 patients (21 tumeurs) montrent une amélioration du rapport signal sur bruit pouvant aller de -3.4 à 81% suivant les tumeurs, avec une amélioration moyenne de 26.3%.

Le principal problème de ces techniques est qu'elles demandent un temps d'acquisition beaucoup plus long à qualité d'image égale. Si l'on ne conserve que 20% des évènements détectés, cela signifie qu'il faut augmenter le temps d'acquisition d'un facteur 5 pour obtenir une image d'une qualité égale. Il n'est donc pas envisageable de mettre en place ces protocoles en routine clinique, car le temps disponible n'est pas suffisant. C'est pour cela que de nombreuses équipes se sont mises à travailler sur une évolution de cette technique, où les images sont déformées les unes sur les autres pour prendre en compte toutes les informations de l'acquisition.j jj

FIG. 6.3: Images TEP/TDM superposées du poumon reconstruites avec et sans gating respiratoire en utilisant la méthode décrite dans [Chang et al., 2010]. On peut observer que les tumeurs sont mieux définies et correspondent à l'image TDM qui sert de référence.

6.2 Synchronisation respiratoire avec recalage

Pour réaliser cela, les différentes techniques se basent sur une estimation préalable du mouvement respiratoire. Les images de chaque phase sont reconstruites indépendamment, puis recalées sur une phase de référence grâce au champ de mouvement. Enfin, les images déformées sont sommées. La difficulté se situe dans l'estimation du champ de mouvement interne lors de la respiration, car ce mouvement est complexe.

Les premières publications décrivant cette technique l'utilisaient notamment pour réaliser de l'imagerie cardiaque en TEP [Klein and Huesman, 1997]. Cette publication démontre la faisabilité du procédé sur un animal en utilisant des techniques de flux optique pour estimer le champs de mouvement. En effet le coeur a l'avantage d'avoir une activité métabolique intense, ce qui rend l'estimation de son mouvement aisée même sur des images avec une faible statistique.

6.2.1 Estimation du mouvement respiratoire corps entier

Le mouvement respiratoire corps entier est complexe et nécéssite des modèles élastiques **||A Faire :** continuer|| . cependant, cette complexité nécessite de réaliser l'estimation sur des images 3D du patient, et donc d'estimer les mouvemnts internes. Pour cela, on peut utiliser les deux modélités disopnibles lors d'un examen TEP/CT :

imagerie TEP avec gating

L'acquisition TEP est réalisée en conservant les informations temporelles associées Les premiers algorithmes étaient utilisés en imagerie cardiaque [Klein et al., 2001] avec des transformations simples (affines), puis d'autres algorithmes plus adaptés aux images corps entier ont été utilisées, comme les flux optiques [Dawood et al., 2006], ou l'interpolation par B-spline [Bai and Brady, 2009].

imagerie CT 4D

Les images CT 4D peuvent être utilisées pour réaliser l'estimation du mouvement respiratoire. Cela nécessite par contre une dose plus importante et un temps d'acquisition plus long. Dawood a réalisé plusieurs publications sur le sujet en utilisant le flux optique pour l'estimation du champ de mouvement [Dawood et al., 2006, Dawood et al., 2008]. L'algorithme a été étudié sur des images de patients réels. Une autre publication [Thorndyke et al., 2006] indique une amélioration du rapport de contraste sur bruit (CNR) d'un facteur 3 grâce à la correction.

6.3 Correction pré-reconstruction

Les méthodes de correction du mouvement pré-reconstruction modifient les positions des Lignes de réponse (LDR) fournies par le scanner. Ce recalage des LDR correspond à un déplacement des lignes de réponse dans l'espace du détecteur (voir fig. 6.4) en fonction du mouvement respiratoire. La limitation principale de ce type de méthode est que le champ de mouvement ne peut pas être élastique.

Cependant, il a été étudié en imagerie du cerveau [Bloomfield et al., 2003], où il permettait de corriger les mouvements de la tête. Il a été aussi utilisé en imagerie cardiaque TEP [Livieratos et al., 2005] en utilisant un champ de mouvement rigide (rotation suivie d'une translation).

Dans les deux cas, les résultats ont montrés une nette amélioration des images (voir fig. 6.5

Dans le cadre du mouvement respiratoire du thorax, l'approche de recalage par LDR a été expérimentée par Frederic Lamare [Lamare et al., 2007a], mais avec des résultats mitigés.

Cette technique de correction du mouvement a été utilisée pour la correction du mouvement respiratoire du thorax [Lamare et al., 2007a, Lamare et al., 2007b], avec des performances plus limitées. En effet, le champ était approximé par une transformation affine, qui peut difficilement modéliser le mouvement du thorax dans son ensemble.

Ces résultats ont été améliorés par l'utilisation de la technique suivante qui permettait la prise en compte d'un mouvement élastique.

FIG. 6.4: Illustration du recalage des lignes de réponse dans l'espace du détecteur : P_A et P_B représentent les positions des détections, $P_{A'}$ et $P_{B'}$ les positions des points corrigé et Q_A et Q_B les détections correspondantes

FIG. 6.5: Résultats de l'algorithme de recalage des LOR sur des images de patients utilisant le radiotraceur [\$^{11}\$C]raclopride. (a) montre une image non corrigée du mouvement et (b) une image corrigée. On peut noter que les éléments interne du cerveau sont beaucoup mieux définis. (c) représente une coupe du coeur petit axe non corrigée (en haut) et corrigée (en bas). On peut voir une amélioration de la définition de l'image.

6.4 Correction pendant la reconstruction

Plusieurs auteurs ont présentés des méthodes permettant de réaliser la correction de mouvement pendant la reconstruction. Qiao et al. [Qiao et al., 2006] et Lamare et al. [Lamare et al., 2007b ont proposés une méthode de correction du mouvement respiratoire basé sur une modi-

fication de la matrice de sensibilité lors de la reconstruction pour prendre en compte le mouvement. Tous les deux utilisent un champ de mouvement élastique estimé en utilisant un champ interpolé par B-splines.

L'algorithme original utilisé est basé sur OPL-EM [Reader et al., 2002] qui organise les données en "sous-ensemble" de la même manière que OS-EM [Hudson, 1994] mais en utilisant les informations list-mode dans l'algorithme de Lamare. Le principe de la reconstruction avec correction du mouvement respiratoire est décrit par la formule suivante :

$$f^{k+1} = \frac{f^k}{S} \sum_{N_{frames}} P_t^T \frac{1}{P_t f^k} \tag{6.1}$$

 f^k est l'image à l'itération k,

T est l'opérateur de transposition

 P_t représente la matrice système à l'instant t. Chaque élément p_{ij} de cette matrice indique la probabilité de détecter à la ligne de réponse i un évenement généré au voxel j.

S est la matrice de sensibilité :

$$S = \frac{1}{N_{frames}} \sum_{N_{frames}} P_t^T N A_t \tag{6.2}$$

 A_t est la matrice permettant de corriger les effets de l'atténuation au temps t et N est la matrice de normalisation qui compense l'inhomogénéité spatiale de la sensibilité.

Dans la publication [Lamare et al., 2007b], deux variantes de cette technique sont comparées avec la correction par synchronisation respiratoire avec recalage présentée précédemment ainsi que la correction pré-reconstruction. Les résultats présentés montrent un clair avantage pour la correction pendant la reconstruction, avec des performances

6.5 Déconvolution de l'image

Cette technique qui est peu décrite en [El Naqa et al., 2006] utilise une connaissance du mouvement respiratoire acquise à partir d'une image TDM 4D pour déduire un filtrage appellé TLP (*Tumor Location Probability*) qui correspond à la dégradation dû au mouvement respiratoire.

L'image est ensuite déconvoluée pour corriger les effets du mouvement respiratoire. Cette méthode a été évaluée sur un fantôme physique et des patients réels à l'aide d'un grand nombre de critères provenant pour partie de la TEP (sous-estimation de l'activité de

FIG. 6.6: comparaison des performances des différentes techniques de correction du mouvement sur un profil d'image TEP contenant une tumeur placée au niveau du diaphragme.

la tumeur, exemples d'images), et pour partie du domaine de la déconvolution (entropie, "rugosité").

Quatrième partie

Evaluation des performances de diagnostique

Performance des outils de détection

7.1 Généralités

En oncologie, la détection des site tumoraux est une étape capitale dans la prise en charge des patients. Elle permet l'évaluation de l'état d'avancement de la maladie, ou encore d'étudier la réponse à un traitement [Dimitrakopoulou-Strauss et al., 2002]. Cette détection se fait actuellement par le médecin qui va observer les images TEP/TDM acquises à la recherche de fixations anormales. Cependant, ces fixations peuvent provenir d'autres facteurs, tels que la "graisse brune", des muscles activés ou encore une inflammation locale [Bordessoule et al., 2006]. Associés aux limites de l'imageur, surtout au niveau du rapport signal sur bruit des volumes reconstruits, il est donc possible qu'il y ait une erreur lors du diagnostique.

Dans cette partie, je vais détailler les techniques qui permettent de comparer les performances de plusieurs observateurs (médecins ou algorithmes) face aux mêmes images, ou alors du même observateur face à plusieurs types d'images différentes.

Pour l'instant le problème va être simplifié au cas où un observateur doit classer un signal en "Sain" (normal, HO) ou "Pathologique" (anormal, H1). Les performances d'un classifieur sont indiquées par la matrice de confusion (table 7.1), qui recense les signaux correctement et incorrectement classés

		Classe estimée		
		Sain	pathologique	
Classe réelle	Sain	VN (Vrai Négatif)	FP (Faux Positif)	
	Pathologique	FN (Faux Négatif)	VP (Vrai Positif)	

TAB. 7.1: Matrice de confusion : donne une vue d'ensemble des performances du classifieur. Elle indique le résultat de la classification de signaux connus.

On utilise habituellement deux grandeurs pour mesurer les performances d'un classi-

fieur:

La sensibilité (eq. 7.1) correspond à la proportion d'images correctement évaluées pathologiques par l'observateur par rapport au nombre total d'images réellement pathologiques. Elle donne une information sur la capacité du classifieur à détecter les cas pathologiques.

$$Sensibilite = \frac{VP}{VP + FN} \tag{7.1}$$

La *spécificité* (eq. 7.2) représente le même type de grandeur, mais cette-fois ci appliquée aux cas non pathologiques : elle correspond à la capacité du test à donner un résultat négatif lorsque l'image est non pathologique.

$$Specificite = \frac{VN}{VN + FP} \tag{7.2}$$

Ces deux grandeurs sont complémentaires mais ne permettent pas à elle seules de comparer des classifieurs. En effet, un utilisateur va donner des notes, qui vont indiquer son degré de certitude sur la présence de la pathologie (à ne pas confondre avec des notations sur la gravité des lésions, comme les techniques de gradation de [Genestie et al., 1998]).

Les techniques de comparaisons d'organes de décision comme les ROC (Receiver-Operating Curve) permettent de prendre en compte ces incertitudes. Elles proviennent à l'origine du domaine des télécommunications pendant la seconde guerre mondial, où il fallait une métrique permettant de tester les performances des systèmes RADAR [Zou et al., 2007] pour la détection des avions ennemis. Les courbes ROC servent donc à évaluer la capacité de un ou plusieurs "observateurs" à discriminer des signaux entre deux classes "normal" et "anormal". Les informations de sensibilité et de spécificité se limitent à comparer les performances pour un niveau de détection donné.

7.2 Méthodologie ROC - Receiver-Operating Curve

Les ROC [Swets and Pickett, 1982] [Metz, 1986] sont des courbes indiquant la spécificité et la sensibilité du modèle de classification pour différents niveaux de certitudes. Elles fournissent une mesure objective des performances d'un observateur dans une tâche de discrimination entre deux classes.

Elles peuvent être utilisée pour comparer les performances relatives de différents observateurs ou pour déterminer leurs paramètres optimaux

l'évaluation d'un observateur par la méthode ROC implique de créer un jeu de données de données labellisé en deux classes : Normale (H0) et Pathologiques (H1). L'observateur va se voir présenter l'ensemble des images et devra les noter individuellement selon un

barème défini à l'avance (par exemple 0: pas du tout pathologique, 1: potentiellement pathologique, 3: équivoque, 6: certainement pathologique). Par convention, plus la note (notée λ) sera élevée, plus l'observateur va considérer qu'il est en présence d'un cas pathologique. A l'inverse, une note basse va indiquer un cas présumé sain.

L'observateur peut être un humain ou un algorithme, et les notes peuvent être discrètes ou continues.

Le tracé de la courbe ROC se fait en reportant la sensibilité et la valeur "1-spécificité" du classifieur pour différents seuils. Par construction, la courbe va commencer au point (0,0) (tous les points sont marqués négatifs) et se terminer au point de coordonnée (1,1) (tous les points sont marqués positifs).

Le formalisme ROC considère que les distributions de probabilité des notes des cas H0 et H1 suivent une loi gaussienne (voir fig. 7.2). Ce modèle de décision suppose que l'ensemble des valeurs de λ évaluées sur des cas H0 (sain) suit une distribution de probabilité $P(\lambda_0, \sigma_0)$ de valeur moyenne λ_0 et d'écart-type σ_0 . De même, les valeurs de λ évaluées sur des cas H1 (pathologiques), suivent une distribution de probabilité $P(\lambda_1, \sigma_1)$. Le mécanisme de décision se base sur le choix d'une valeur de seuil λ_s au-delà de laquelle les observations sont considérées comme pathologiques.

FIG. 7.1: Modèle de la distribution de probabilité de la variable de décision dans pour les populations H0 $(P(\lambda_0, \mu_0))$ et H1 $(P(\lambda_1, \mu_1))$ dans les études ROC. λ_s repésente le seuil à partir duquel une observation sera catégorisée H0 ou H1.

Ce seuil permet de modifier de manière dynamique la répartition des observations dans la matrice de confusion. Cela permet d'enrichir la comparaison des observateurs par rapport au couple (sensibilité/spécificité) seul.

Un ensemble d'indicateurs permettent de comparer les performances de classifieurs à partir des courbes ROC. La performance est représentée par une FDM (Figure De Mérite). La FDM la plus simple consiste à choisir un niveau de spécificité (noté α) et à comparer les sensibilités des différents classifieurs. L'avantage de ce système est qu'il permet de comparer les performances dans des conditions proches de la réalité, où l'on cherche à

rester dans un taux de spécificité données. Cependant, les résultats vont dépendre du paramètre α . Une métrique plus globale est l'aire sous la courbe ROC. Étant donné que la courbe sera nécessairement comprise dans un carré unitaire, la valeur de l'aire sera comprise entre 0 (le classifieur donne systématiquement les mauvaises réponses), 0.5 (le classifieur donne des réponses aléatoires) et 1 (le classifieur donne toujours la bonne réponse)[Nie et al., 2006].

IL est important lors du calcul de la FDM d'avoir une estimation de l'erreur. Il est possible de l'estimer en ajustant une courbe théorique (répondant à la loi théorique de la figure 7.2). Plusieurs logiciels ont été développés pour estimer les paramètres, qui ont été comparés dans la publication [Stephan et al., 2003] (AccuROC, Analyse-It, CMDT, GraphROC, MedCalc, mROC, ROCKIT, and SPSS).

Une grandeur souvent utilisée dans la littérature pour évaluer la pertinence d'un résultat est la *p-valeur*. Elle représente la probabilité d'obtenir un résultat au moins aussi extrème que le résultat obtenu (dans notre cas, la courbe ROC), en prenant en compte l'hypothèse selon laquelle le classifieur est aléatoire. Elle permet de vérifier si le test est statistiquement significatif.

Le problème des courbes ROC est que l'observateur ne donne pas d'information de localisation du problème dans l'image. Dans notre cas, nous voulons comparer des classifieurs qui détectent les tumeurs dans l'image. Il faut non seulement savoir si des lésions sont présentes, mais aussi avoir leur nombre et leur localisation. Cela est plus proche du travail en routine clinique qui consiste à évaluer l'étendue et le nombre des lésions pour déterminer l'efficacité d'un traitement par exemple.

Pour éviter cette limitation, plusieurs extensions à la méthodologie ROCsont décrites dans la littérature : L-ROC, AF-ROC ou encore F-ROC. Les L-ROC sont décrites ci-après, tandis que les AF-ROC et F-ROC seront décrites dans la section suivante.

7.2.1 Courbes Localization ROC (L-ROC)

L'analyse L-ROC [Farquhar et al., 1999] ajoute l'information de localisation lors de la décision. L'observateur doit indiquer sur l'image qu'il considère comme pathologique la localisation de la lésion la plus probable. Elle est considérée comme un vrai positif si la distance entre la localisation indiquée et la localisation réelle de la lésion est inférieur à une certaine distance.

Cependant, bien que cette technique prenne en compte l'information de localisation, elle ne permet pas de traiter de manière satisfaisante les cas multi-lesions.

7.3 F-ROC

7.3.1 Courbes Free-ROC

les courbes F-ROC [Bunch et al., 1978] sont une généralisation des courbes ROC aux cas où l'on évalue la capacité de l'observateur à détecter un ensemble de lésions dans une série d'images. Chaque image pouvant contenir un nombre indéfini de lésions. L'observateur va donc devoir pointer sur l'image l'ensemble des sites suspects et y associer une note.

Dans ce cas, on ne peut pas utiliser le formalisme ROC car le terme de spécificité n'est pas directement calculable pour chaque niveau de confiance. On utilise à sa place le nombre moyen de faux positifs par image pour un seuil donné (voir fig.7.3.1).

On utilise les termes de LL (Localisation de Lésion) et NL (Non-Lésion) en lieu et place des informations de vrai positifs et faux positifs sur les courbes ROC. De la même manière, la sensibilité et la spécificité sont respectivement FLL (Fraction de localisation de lésion) et FNL (Fraction des Non-Lésions).

FIG. 7.2: Courbe Free ROC

Les courbes F-ROC n'ayant pas de bornes sur l'axes des abscisses, il est impossible de comparer plusieurs courbes à partir de l'aire sous la courbe. Il reste cependant possible de comparer la sensibilité pour un nombre de faux positifs donnés, mais on retrouve les mêmes problèmes que pour l'analyse ROC : il faut choisir un paramètre.

7.3.2 Courbes Alternative Free-ROC

Les courbes A-FROC [Chakraborty and Winter, 1990] sont des extensions des courbes Free-ROC présentées précédemment mais qui ne prennent en compte que le faux positif de plus haut score par image, ce qui ne pénalise pas le cas où un observateur indique un grand nombre de localisations sans lésions.

7.3.3 Comparaison des courbes

Plusieurs techniques ont été développées pour permettre de réaliser des comparaisons. De la même manière que pour les courbe ROC, il est possible de comparer les courbes F-ROC en fonction de la FLL pour un nombre de faux positifs donnés. Cependant, étant donné que les courbes F-ROC n'ont pas de fin déterminée, il n'est pas possible d'utiliser l'aire sous la courbe. JAFROC[Chakraborty and Berbaum, 2004] (JAcknife Free Receiver Operating Curve) est un algorithme et un logiciel développé par Chakraborty et se base sur une FDM non liée directement à la courbe.

Cette mesure de performance utilise un algorithme dérivé des études A-FROC, ce qui signifie qu'il n'utilise pas l'ensemble des informations disponibles dans les courbes Free-ROC. Il va comparer les scores des faux positifs de plus forte note pour chaque image avec les notes des vrais positifs. La FDM mesure la probabilité d'avoir un score de vrai positif supérieur à celui d'un faux positif (de n'importe quelle image).

Soit θ la valeur de la FDM, N_T le nombre total d'images, indexés par i, N_A le nombre total de cas pathologiques, indexés par j. n_j est le nombre total de lésions dans le cas anormal j.

$$\theta = \frac{1}{N_T N_A} \sum_{i=1}^{N_T} \sum_{j=1}^{N_A} \sum_{k=1}^{n_j} W_{jk} \psi(X_i, Y_{jk})$$

$$\psi(X, Y) = \begin{cases} 1.0 & \text{si } Y > X \\ 0.5 & \text{si } Y = X \\ 0.0 & \text{si } Y < X \end{cases}$$

$$\text{avec } \sum_{k=1}^{n_j} W_{jk} = 1$$

$$(7.3)$$

 X_i le score du plus haut Faux positif de l'image i, Y_{jk} est la note de la lésion k de l'image j. Si une lésion n'a pas été détectée, alors sa note sera par défaut de "0".

Les poids W_{jk} correspondent à l'importance relative de détecter la lésion k dans l'image j pour le diagnostique. Pour chaque image, la somme des poids doit être égale à 1.

Une seconde version de JAfroc existe avec un pouvoir statistique plus important, mais elle nécessite de disposer d'un grand nombre de cas non pathologiques. La formule est la même que celle précédente (eq. 7.3). La seule différence est que la première sommation se fait sur l'ensemble des cas non pathologiques N_N (eq. 7.4).

$$\theta = \frac{1}{N_T N_A} \sum_{i=1}^{N_N} \sum_{j=1}^{N_A} \sum_{k=1}^{n_j} W_{jk} \psi(X_i, Y_{jk})$$
 (7.4)

Systèmes de détection

8.1 Les CAD en TEP

Les systèmes CAD (Computer-Aided-Detection) sont des algorithmes permettant d'assister le praticien dans la détection des lésions ou le classement des images images médicales. Dans le cadre de l'imagerie TEP oncologique, le besoin principal est celui du suivi thérapeutique. Pour cela, il est important de détecter d'éventuelles lésions résiduelles. Pour cela, il faut que le système CAD soit particulièrement adapté à la recherche de petites lésions de faible contraste qui pourraient échapper au médecin. Cependant, le diagnostique, qui consiste à évaluer la dangerosité des lésions, et leur caractère pathologique est une tâche plus complexe qui relève plus des système d'aide au diagnostique, qui ne seront pas traités ici.

Le développement des systèmes CAD a débuté dans les années 1980 [Chan et al., 1987], notamment pour détecter les micro calcifications en mammographie. Bien qu'il existe plusieurs systèmes CAD commerciaux pour l'imagerie TDM (xLNA pour philips par exemple), aucun CAD commercial pour la TEP n'existe à ma connaissance.

8.2 Types de classification

8.2.1 supervisée - méthodologie

Les classifieurs supervisés nécessitent une connaissance a priori des classes. On entraîne le classifieur en lui fournissant des *exemples* de cas avec l'étiquette associée. A partir de cette base de données d'entraînement, le classifieur va générer un *modèle* predictif permettant de classer de futurs exemples non encore connus.

FIG. 8.1: Fonctionnement d'un classifieur supervisé : Les données d'apprentissage servent à entraîner le classifieur pour générer un modèle. Ce modèle permettra de rattacher des observations aux classes apprises.

Machines à vecteur de support (SVM)

La "Machine à Vecteur de Support", aussi appelée "Séparateur à Vaste Marge", ou "Support Vector Machines" en Anglais, est un classifieur qui comme son nom l'indique vise à maximiser la marge[Boser et al., 1992], qui est la distance entre les points des données et la surface spéaratrice (voir figure 8.2.1).

8.2.2 non supervisée - méthodologie

Dans le système de classification non supervisé, on fourni directement au classifieur l'ensemble des données à traiter. Il devra de lui-même les classer par similitude en groupes. On utilise ce type de classifieur si on ne connaît pas a priori les classes 8.2.2.

La classification nom supervisée repose sur une méthode statistique utilisant une fonction de proximité.

FIG. 8.2: Machine à Vecteur de Support : Les points vecteur de support (entourés de bleu) sont les seuls utilisés pour calculer la surface de séparation d'équation $\vec{w}.x+b=0$. Le vecteur \vec{w} est normal à la surface de séparation et permet de calculer la marge $\frac{1}{\|\vec{w}\|}$.

8.3 classifieurs

8.3.1 SVM (Separateur à Vaste Marge)

Ce type de classifieur se base sur

8.3.2 LDA

8.4 Systèmes humain

FIG. 8.3: Fonctionnement d'un classifieur non supervisé : Les données brutes sont envoyées au classifieur qui va les regrouper en classes en fonction de leur répartition dans l'espace des caractéristiques.

Cinquième partie

Simulation et base de données (MIC 2011)

Simulations

- 9.1 principe des simulations
- 9.1.1 monte carlo
- 9.1.2 analytiques
- 9.1.3 MC accélérés
- 9.2 simulateurs disponibles
- 9.3 processus de simulation avec SORTEO
- 9.4 Contribution à SORTEO

Base de donnée

- 10.1 Présentation
- 10.2 Modèles
- 10.3 données clef

Sixième partie Résultats

méthodes (MIC 2010)

J'ai utilisé la base de donnée présentée dans pa partieV pour évaluer les performances des techniques de correction du mouvement respiratoire présentés dans le chapitre 6.

Les techniques de correction du mouvement implémentées sont les suivantes :

- 1. Correction pendant la reconstruction par modification de la matrice système (voir section 6.4)
- 2. Correction post-reconstruction par recalage des images prises à différents instants du cycle (voir section 6.2)

Elles sont comparées avec les images non Corrigées et des images statiques (qui représentent une correction parfaite).

Dans le cas présent, l'objectif est de d'évaluer les performances des techniques de correction du mouvement sur la détection des lésions de faible contraste/faible diamètre. Pour cela, je vais comparer les performances d'un système de détection automatique sur les différents types d'images.

11.1 Système CAD

Le système CAD utilise des informations fréquentielles obtenue par décomposition des images en ondelettes Biorthogonale 4.4. Ces données sont utilisées par le système de classification basé sur un SVM travaillant voxel par voxel. Une étape de réduction des faux positifs est ajoutée par la suite.

11.1.1 Classifications

- 1. Décomposition des images en ondelettes : Pour chaque voxel de l'image d'origine, on obtient entre 8 et 32 coefficients, qui correspondent au vecteur de caractéristiques utilisés apr le classifieur
- 2. Extraction de la base d'apprentissage : Les coefficients des centres de toutes les tumeurs sont extraites des volumes décomposés, et vont former la base d'apprentissage H1 (positifs). 100 voxels sont tirés aléatoirement dans chaque images et leur coefficients sont ajoutés à la base H0 (négatifs).
- 3. Apprentissage : Le classifieur SVM est entraîné sur cette base d'apprentissage pour générer le modèle qui sera utilsé pour le test.
- 4. Tests : Le SVM entraîné est utilisé pour classer chaque voxel contenu dans les organes à evaluer (poumon et foie).

Le nombre de niveau de composition est déterminé par optimisation des paramètres (voir 11.2).

Les points utilisés pour représenter la classe "non Tumeur" sont extraits du volume érodé de deux voxels pour faciliter l'apprentissage. Cela pose des problèmes sur les cartes de score finales car les interfaces entre les organes sont fortements bruitées.

11.2 Optimisation des paramètres du classifieur

Paramètres à optimiser :

C Le terme de pénalisation des exemples mal classés par le classifieur
gamma La largeur de bande du RBF du noyau du classifieur
j Le niveau de décomposition des images

J'ai effectué une recherche exaustive par grille avec les paramètres suivants :

C de 1 à 10000 en 10 pas logarithmique gamma de 0.0001 à 1 en 10 pas logarithmique j de 1 à 4, soit de 8 à 32 caractéristiques

L'optimisation a été réalisée à l'aide du logiciel rapid-i [Mierswa et al., 2006] pour chaque modalité. Les performances sont obtenues en réalisant une cross-validation à 5 étapes sur l'ensemble de la base d'apprentissage. Le triplet de paramètre retenu est celui qui maximise la sensibilité.

11.3 Réduction des faux positifs

11.3.1 Technique simple : Critère basés sur l'intersection

Les points classés positifs sont regroupés en amas de points connexes (connexité 27 en 3D). Il y a un ensemble de règles qui vont déterminer si un amas intersectant une lésions représente un vrai positif. Soit L l'ensemble des points de la lésion, A les points correspondant à l'amas candidat.

 $card(L \cap A) > \alpha \times card(L)$ avec α fixé à 0.05 qui fixe la proportion minimale de la tumeur qui doit être présente dans l'amas. Elle permet d'éviter les amas qui intersecteraient la tumeur par accident.

 $card(L \cap A) > \beta \times card(A)$ avec β fixé à 0.20 limite l'étendue de l'amas en dehors de la tumeur.

11.3.2 Technique étendue : Basés intersection et étendue spatiale

Ce second algorithme est basé sur le premier auquel il ajoute deux critères qui limitent la forme de l'amas.

Il faut définir l'étendue maximale de l'amas selon les différentes dimensions $d:\delta_d$. Soit $\delta_d(A)=max_d(A)-min_d(A)$ avec max_a la position la plus

Volume englobant Le volume du plus petit rectangle englobant l'amas

$$max\left(\frac{\delta_x}{\delta_y},\frac{\delta_x}{\delta_z},\frac{\delta_y}{\delta_x},\frac{\delta_y}{\delta_z},\frac{\delta_z}{\delta_z},\frac{\delta_z}{\delta_x},\frac{\delta_z}{\delta_y}\right)$$

Une seconde étape a été ajoutée pour limiter l'étalement de certains amas :

Limitations de volume englobant + Limitation des différences d'étendue des amas entres les 3 dimensions.

Analyse des résultats

12.1 Tests de différents paramètres

Tests de 3 types de paramètres :

- **Normalisation :** Les données sont normalisées de manière à ce que la moyenne et l'écarttype de chaque caractéristique soit de 1 $((\mu, \sigma) = (1, 1))$ (mean), ou que l'ensemble des valeurs soit comprises entre -1 et +1 (range).
- Nombre de points de la base d'apprentissage: Le nombre de points extraits de chaque image pour alimenter la base d'exemples normaux peut avoir une influence sur les résultats. Deux valeurs sont testées. 200 pts/im. (soit 3000 pts. négatifs) et 1000 pts/im. (soit 15000 pts. négatifs)
- **positions des points extraits :** Une érosion est réalisée sur les images avant d'extraire les points négatifs. Cele permet de retirer les points de la base d'apprentissage qui pourraient poser des problèmes

12.1.1 Base témoin

Cette base contient des données normalisées par la méthode mean avec 200 points extraits de chaque image.

Meilleurs paramètres de classification

Les paramètres du classifieur sont déterminés par une recherche grille. La performance de chaque triplet (C, γ, j) est estimée en réalisant une cross-validation à 5 validations sur l'ensemble de la base d'apprentissage. Les paramètres sont choisits à partir du front de pareto figure 12.1.a en maximisant la sensibilité.

12.1.2 Base Erosion

Cette base contient des données normalisées par la méthode mean/std avec 200 points extraits de chaque image érodée (2 voxels).

Meilleurs paramètres

Les paramètres sont choisits à partir du front de pareto figure 12.1.b en maximisant la sensibilité.

12.1.3 Base Appauvrie

Cette base contient des données normalisées par la méthode mean/std avec 100 points extraits de chaque image.

Meilleurs paramètres

Les paramètres sont choisits à partir du front de pareto figure 12.1.b en maximisant la sensibilité.

12.1.4 Base Enrichie

Cette base contient des données normalisées par la méthode mean/std avec 1000 points extraits de chaque image.

Meilleurs paramètres

Les paramètres sont choisits à partir du front de pareto figure 12.1.b en maximisant la sensibilité.

12.1.5 Base Normalisation

Cette base contient des données normalisées par la méthode range avec 200 points extraits de chaque image.

Meilleurs paramètres

Les paramètres sont choisits à partir du front de pareto figure 12.1.c en maximisant la sensibilité.

12.1.6 Courbe Free-ROC

Voir figure 12.4 Le maximum de performances est apporté par la combinaison de 200 points avec mean/std.

12.1.7 Comparaison des performances JAFROC

La p-value est de 0.049, ce qui permet pas déclarer que au moins deux paramètres testés sont différents. 12.5

Fig. 12.1: Fronts de pareto des résultats de la recherche des meilleurs paramètres du classifieur (1/2). Pour chaque triplet de paramètres (C, γ , j), la sensibilité et la spécificité sont reportées sur le graphique. Le code couleur correspond à la valeur de j. En a), la base témoin, avec 200 points négatifs par image et une normalisation mean, en b) la base appauvrie avec 100 points négatifs par image et une normalisation mean, et en c) la base enrichie avec 1000 points négatifs par image et une normalisation mean.

FIG. 12.2: Fronts de pareto des résultats de la recherche des meilleurs paramètres du classifieur (2/2). Pour chaque triplet de paramètres (C, γ , j), la sensibilité et la spécificité sont reportées sur le graphique. Le code couleur correspond à la valeur de j. En a) la base normalisation avec 200 points négatifs par image et une normalisation range. En b), la base érodée, avec 200 points négatifs par image et une normalisation mean, en b) la base enrichie avec 1000 points négatifs par image et une normalisation mean.

a	Base Témoin	Base Erosion	Base appauvrie	Base enrichie	Base normalisée
С	464	74	5412	5412	10000
γ	0.0053	0.0094	0.00031	0.0017	0.052
j	3	3	3	4	3
Sensibilité	0.75	0.80	0.82	0.60	0.76
Spécificité	0.99	0.99	0.99	0.99	0.99
Précision	0.98	0.98	0.97	0.99	0.98

FIG. 12.3: Paramètres sélectionnés pour l'optimisation des performances. Sont indiqués pour chaque base le triplet de paramètres sélectionné ainsi que sa position sur le front de pareto.

FIG. 12.4: Courbe Free-ROC comparant les performances du CAD sur une base témoin (normalisation moyenne et 200 points négatifs par image), sur une base enrichie (1000 points négatifs par image), sur une base appauvrie (100 points négatifs par image), sur une base normalisée différemment (normalisation entre -1 et +1 et 200 points négatifs par image) et enfin sur une base de 100 points négatifs par image mais dont les volumes ont été érodés de 2 voxels.

FIG. 12.5: Les FOM (Figure de Mérite) obetnues pour les différents paramètres

12.2 Comparaison des performances des différentes méthodes Poumon

Les caractéristiques utilisées pour obtenir ces résultats sont les suivants :

- 200 points tirés aléatoirement dans le volume de chaque image (hors tumeurs)
- normalisation par moyennage et neutralisation de la variance

12.2.1 ET-IM

Cette base contient des données normalisées par la méthode mean/std. avec 200 points extraits de chaque image.

Front de pareto

Les paramètres sont choisits à partir du front de pareto figure 12.6.a en maximisant la sensibilité.

Meilleurs paramètres

Choisit en maximisant la sensibilité.

Voir 12.2

12.2.2 ET-LOR

Cette base contient des données normalisées par la méthode mean/std. avec 200 points extraits de chaque image.

Front de pareto

Les paramètres sont choisits à partir du front de pareto figure 12.6.b en maximisant la sensibilité.

Meilleurs paramètres

Choisit en maximisant la sensibilité.

Voir 12.2

12.2.3 ET-NoCorr

Cette base contient des données normalisées par la méthode mean/std. avec 200 points extraits de chaque image.

Front de pareto

Les paramètres sont choisits à partir du front de pareto figure 12.6.c en maximisant la sensibilité.

Meilleurs paramètres

Voir 12.2

12.2.4 Comparaison des performances JAFROC

La p-value est de 0.10, ce qui ne permet pas de déclarer que statistiquement les données sont différentes : 12.10.

12.2.5 Courbes Free-ROC

Voir figure 12.9. Le maximum de performances est apporté par les images statiques, suivi par les images ET-IM.

FIG. 12.6: Fronts de pareto des résultats de la rechdeche des meilleurs paramètres du classifieur pour les différentes modalitées, avec 200 points négatifs par image. Pour chaque triplet de paramètres (C, γ, j) , la sensibilité et la spécificité sont reportées sur le graphique. Le code couleur correspond à la valeur de j. a) représente la correction d'image ET-IM, b) les images non corrigées du mouvement, et c) les images corrigées par ka méthode LOR.

a	Base Statique	Base IM	Base LOR	Base NoCorr
С	464	10000	10000	10000
$\overline{\gamma}$	0.0053	0.00097	0.00031	0.00055
j	3	3	4	3
Sensibilité	0.75	0.81	0.82	0.83
Spécificité	0.99	0.99	0.99	0.99
Précision	0.98	0.98	0.98	0.98

FIG. 12.7: Paramètres sélectionnés pour l'optimisation des performances du Poumon. Sont indiqués pour chaque base le triplet de paramètres sélectionné ainsi que sa position sur le front de pareto.

FIG. 12.8: Les FOM (Figure de Mérite) obetnues pour les différentes modalités.

FIG. 12.9: Courbe Free-ROC comparant les performances du CAD selon les modalités de correction du mouvement respiratoire.

12.3 Comparaison des performances des différentes méthodes Foie

Les caractéristiques utilisées pour obtenir ces résultats sont les suivants :

- 200 points tirés aléatoirement dans le volume de chaque image (hors tumeurs)
- normalisation par moyennage et neutralisation de la variance

12.3.1 Comparaison des performances JAFROC

La p-value est de 0.1, ce qui ne permet pas de déclarer que statistiquement les données sont différentes : 12.10

FIG. 12.10: Les FOM (Figure de Mérite) obetnues pour les différentes modalités.

12.3.2 Courbes Free-ROC

Voir figure 12.11. Le maximum de performances est apporté par les images statiques, suivi par les images ET-IM.

FIG. 12.11: Courbe Free-ROC comparant les performances du CAD selon les modalités de correction du mouvement respiratoire.

FIG. 12.12: Fronts de pareto des résultats de la rechdeche des meilleurs paramètres du classifieur pour les différentes modalitées, avec 200 points négatifs par image. Pour chaque triplet de paramètres (C, γ, j) , la sensibilité et la spécificité sont reportées sur le graphique. Le code couleur correspond à la valeur de j. a) représente la correction d'image ET-Static, b) les images corrigées du mouvement post-reconstruction.

FIG. 12.13: Fronts de pareto des résultats de la rechdeche des meilleurs paramètres du classifieur pour les différentes modalitées, avec 200 points négatifs par image. Pour chaque triplet de paramètres (C, γ, j) , la sensibilité et la spécificité sont reportées sur le graphique. Le code couleur correspond à la valeur de j. c) représente la correction d'image pendant la reconstruction et d) le images non corrigées.

a	Base Statique	Base IM	Base LOR	Base NoCorr
С	858	5412	251	5412
γ	0.002	0.00055	0.0053	0.0017
j	4	4	4	4
Sensibilité	0.62	0.68	0.51	0.31
Spécificité	0.99	0.99	0.99	0.96
Précision	0.98	0.98	0.97	0.94

FIG. 12.14: Paramètres sélectionnés pour l'optimisation des performances du Foie. Sont indiqués pour chaque base le triplet de paramètres sélectionné ainsi que sa position sur le front de pareto.

Septième partie Conclusion

Huitième partie Bibliographie

Bibliographie

- [Bai and Brady, 2009] Bai, W. and Brady, M. (2009). Regularized B-spline deformable registration for respiratory motion correction in PET images. *Physics in Medicine and Biology*, 54:2719.
- [Barrett et al., 1993] Barrett, H., Yao, J., Rolland, J., and Myers, K. (1993). Model observers for assessment of image quality. *Proceedings of the National Academy of Sciences of the United States of America*, 90(21):9758.
- [Bloomfield et al., 2003] Bloomfield, P., Spinks, T., Reed, J., Schnorr, L., Westrip, A., Livieratos, L., Fulton, R., and Jones, T. (2003). The design and implementation of a motion correction scheme for neurological PET. *Physics in Medicine and Biology*, 48:959.
- [Bordessoule et al., 2006] Bordessoule, D., Jaccard, A., Chaury, M., Desfougères, M., and Monteil, J. (2006). Impact de la tep dans la prise en charge des lymphomes malins hodgkiniens et non hodgkiniens. *Oncologie*, 8(4):322–330.
- [Boser et al., 1992] Boser, B., Guyon, I., and Vapnik, V. (1992). A training algorithm for optimal margin classifiers. In *Proceedings of the fifth annual workshop on Computational learning theory*, pages 144–152. ACM.
- [Boucher et al., 2004] Boucher, L., Rodrigue, S., Lecomte, R., and Benard, F. (2004). Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. *Journal of Nuclear Medicine*, 45(2):214.
- [Bunch et al., 1978] Bunch, P., Hamilton, J., Sanderson, G., and Simmons, A. (1978). A free-response approach to the measurement and characterization of radiographic-observer performance. *J. Appl. Photogr. Eng.*, 4(4):166–171.
- [Bundschuh et al., 2007] Bundschuh, R., Martinez-Moeller, A., Essler, M., Martinez, M., Nekolla, S., Ziegler, S., and Schwaiger, M. (2007). Postacquisition detection of tumor motion in the lung and upper abdomen using list-mode PET data: a feasibility study. *Journal of Nuclear Medicine*, 48(5):758.
- [Chakraborty and Berbaum, 2004] Chakraborty, D. and Berbaum, K. (2004). Observer studies involving detection and localization: modeling, analysis, and validation. *Medical physics*, 31:2313.
- [Chakraborty and Winter, 1990] Chakraborty, D. and Winter, L. (1990). Free-response methodology: alternate analysis and a new observer-performance experiment. *Radiology*, 174(3):873.

- [Chan et al., 1987] Chan, H., Doi, K., Galhotra, S., Vyborny, C., MacMahon, H., and Jokich, P. (1987). Image feature analysis and computer-aided diagnosis in digital radiography. i. automated detection of microcalcifications in mammography. *Medical Physics*, 14:538.
- [Chang et al., 2010] Chang, G., Chang, T., Pan, T., Clark, John W., J., and Mawlawi, O. R. (2010). Implementation of an Automated Respiratory Amplitude Gating Technique for PET/CT: Clinical Evaluation. *J Nucl Med*, 51(1):16–24.
- [Dawood et al., 2008] Dawood, M., Buther, F., Jiang, X., and Schafers, K. (2008). Respiratory motion correction in 3-d pet data with advanced optical flow algorithms. *Medical Imaging, IEEE Transactions on*, 27(8):1164–1175.
- [Dawood et al., 2006] Dawood, M., Lang, N., Jiang, X., and Schafers, K. (2006). Lung motion correction on respiratory gated 3-D PET/CT images. *IEEE transactions on medical imaging*, 25(4):476.
- [Detorie and Dahlbom, 2008] Detorie, N. C. and Dahlbom, M. (2008). Quantitative evaluation of reconstruction algorithms for motion compensated pet. In *Nuclear Science Symposium Conference Record*, 2008. NSS '08. IEEE, pages 5366 –5372.
- [Dimitrakopoulou-Strauss et al., 2002] Dimitrakopoulou-Strauss, A., Strauss, L., Heichel, T., Wu, H., Burger, C., Bernd, L., and Ewerbeck, V. (2002). The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions. *Journal of Nuclear Medicine*, 43(4):510.
- [El Naqa et al., 2006] El Naqa, I., Low, D., Bradley, J., Vicic, M., and Deasy, J. (2006). Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods. *Medical physics*, 33:3587.
- [Erdi et al., 2004] Erdi, Y., Nehmeh, S., Pan, T., Pevsner, A., Rosenzweig, K., Mageras, G., Yorke, E., Schoder, H., Hsiao, W., Squire, O., et al. (2004). The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. *Journal of Nuclear Medicine*, 45(8):1287.
- [Farquhar et al., 1999] Farquhar, T., Llacer, J., Hoh, C., Czernin, J., Gambhir, S., Seltzer, M., Silverman, D., Qi, J., Hsu, C., and Hoffman, E. (1999). Roc and localization roc analyses of lesion detection in whole-body fdg pet: effects of acquisition mode, attenuation correction and reconstruction algorithm. *Journal of Nuclear Medicine*, 40(12):2043.
- [Fayad et al., 2010] Fayad, H., Pan, T., Roux, C., and Visvikis, D. (2010). Application of a generic motion model for pet respiratory motion correction. *Journal of Nuclear Medicine*, 51(2):524.
- [Genestie et al., 1998] Genestie, C., Zafrani, B., Asselain, B., Fourquet, A., Rozan, S., Validire, P., Vincent-Salomon, A., and Sastre-Garau, X. (1998). Comparison of the prognostic value of scarff-bloom-richardson and nottingham histological grades in a series of 825 cases of breast cancer: major importance of the mitotic count as a component of both grading systems. *Anticancer research*, 18(1B):571–576.

- [Guivarc'h et al., 2004] Guivarc'h, O., Turzo, A., Visvikis, D., and Bizais, Y. (2004). Synchronization of pulmonary scintigraphy by respiratory flow and by impedance plethysmography. In *Proceedings of SPIE*, volume 5370, page 1166.
- [Hudson, 1994] Hudson, H. (1994). Accelerated Image Reconstruction Using Ordered Subsets of Projection Data. *IEEE TRANSACTIONS ON MEDICAL IMAGING*, 13(4).
- [Jan et al., 2004] Jan, S., Santin, G., Strul, D., Staelens, S., Assie, K., Autret, D., Avner, S., Barbier, R., Bardies, M., Bloomfield, P., et al. (2004). GATE: a simulation toolkit for PET and SPECT. *Physics in medicine and biology*, 49:4543.
- [Klein and Huesman, 1997] Klein, G. and Huesman, R. (1997). A 3D optical flow approach to addition of deformable PET volumes. *nam*, page 0136.
- [Klein et al., 2001] Klein, G., Reutter, R., and Huesman, R. (2001). Four-dimensional affine registration models for respiratory-gated pet. *Nuclear Science, IEEE Transactions on*, 48(3):756–760.
- [Krak et al., 2005] Krak, N., Boellaard, R., Hoekstra, O., Twisk, J., Hoekstra, C., and Lammertsma, A. (2005). Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. *European journal of nuclear medicine and molecular imaging*, 32(3):294–301.
- [Lamare et al., 2007a] Lamare, F., Cresson, T., Savean, J., Cheze Le Rest, C., Reader, A., and Visvikis, D. (2007a). Respiratory motion correction using affine transformation of list mode data in PET. *Physics in medicine and biology*, 52:121–140.
- [Lamare et al., 2007b] Lamare, F., Ledesma Carbayo, M., Cresson, T., Kontaxakis, G., Santos, A., Le Rest, C., Reader, A., and Visvikis, D. (2007b). List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. *Physics in medicine and biology*, 52(17):5187–5204.
- [Livieratos et al., 2005] Livieratos, L., Stegger, L., Bloomfield, P., Schafers, K., Bailey, D., and Camici, P. (2005). Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET. *Physics in Medicine and Biology*, 50:3313.
- [Metz, 1986] Metz, C. (1986). Roc methodology in radiologic imaging. *Investigative Radiology*, 21(9):720.
- [Mierswa et al., 2006] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., and Euler, T. (2006). Yale: Rapid prototyping for complex data mining tasks. In Ungar, L., Craven, M., Gunopulos, D., and Eliassi-Rad, T., editors, KDD '06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 935–940, New York, NY, USA. ACM.
- [Nehmeh et al., 2002] Nehmeh, S., Erdi, Y., Ling, C., Rosenzweig, K., Schoder, H., Larson, S., Macapinlac, H., Squire, O., and Humm, J. (2002). Effect of respiratory gating on quantifying PET images of lung cancer. *Journal of Nuclear Medicine*, 43(7):876.
- [Nehmeh et al., 2003] Nehmeh, S., Erdi, Y., Rosenzweig, K., Schoder, H., Larson, S., Squire, O., and Humm, J. (2003). Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET: methodology and comparison with respiratory gated PET. *Journal of Nuclear Medicine*, 44(10):1644.

- [Nie et al., 2006] Nie, Y., Li, Q., Li, F., Pu, Y., Appelbaum, D., and Doi, K. (July 2006). Integrating pet and ct information to improve diagnostic accuracy for lung nodules: A semiautomatic computer-aided method. *Journal of Nuclear Medicine*, 47(7):1075–1080.
- [Qiao et al., 2006] Qiao, F., Pan, T., John Jr, W., and Mawlawi, O. (2006). A motion-incorporated reconstruction method for gated PET studies. *Physics in Medicine and Biology*, 51:3769.
- [Rahmim et al.,] Rahmim, A., Tang, J., Ay, M., and Bengel, F. 4D Respiratory Motion-Corrected Rb-82 Myocardial Perfusion PET Image Reconstruction.
- [Reader et al., 2002] Reader, A., Ally, S., Bakatselos, F., Manavaki, R., Walledge, R., Jeavons, A., Julyan, P., Zhao, S., Hastings, D., and Zweit, J. (2002). One-pass list-mode em algorithm for high-resolution 3-d pet image reconstruction into large arrays. *Nuclear Science*, *IEEE Transactions on*, 49(3):693 699.
- [Segars, 2001] Segars, W. (2001). Development and Application of the new dynamic nurbs-based cardiac-torso (NCAT) phantom. PhD thesis.
- [servant laval, 2007] servant laval, A. (2007). Cours anatomie fonctionnelle. Disponible sur Internet à l'adresse http://www.chups.jussieu.fr/polysPSM/anatfonctPSM2/poly/POLY.Chp.8.html.
- [Sherwood, 2006] Sherwood, L. (2006). Fundamentals of physiology: a human perspective. Thomson Brooks/Cole.
- [Stephan et al., 2003] Stephan, C., Wesseling, S., Schink, T., and Jung, K. (2003). Comparison of eight computer programs for receiver-operating characteristic analysis. *Clin Chem*, 49(3):433–439.
- [Swets and Pickett, 1982] Swets, J. and Pickett, R. (1982). *Evaluation of diagnostic systems : methods from signal detection theory*. Academic Press New York.
- [Thielemans et al., 2006] Thielemans, K., Manjeshwar, R., Tao, X., and Asma, E. (2006). Lesion detectability in motion compensated image reconstruction of respiratory gated pet/ct. In *Nuclear Science Symposium Conference Record*, 2006. *IEEE*, volume 6, pages 3278 –3282.
- [Thorndyke et al., 2006] Thorndyke, B., Schreibmann, E., Koong, A., and Xing, L. (2006). Reducing respiratory motion artifacts in positron emission tomography through retrospective stacking. *Medical physics*, 33:2632.
- [Zou et al., 2007] Zou, K., O'Malley, A., and Mauri, L. (2007). Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. *Circulation*, 115(5):654.