Problem: Co-ordinate seometry (x_1, y_1) (x_2, y_2) . Risearble priniple: n figeenbles, kus (11 th) pigeons h be for in 2 or more pigeons attent are of the pigeonthes into home Problem: (a, b1), (a2, b2), (a3, b3), (a4, b4) & (a5, b5) ai, bi i:1, b 5 are integer , I at least one pair amost 1, Rz. - Ps S. Wel Ku mid pt g he line sepment P1-((019)) (Even, her) (even, odd), (odd, odd)

(odd, even) -> pigeonholes ly by ly & by) -> pigeons a De ill have top figer.

At less one of the She will have two presen-
8, his his pigean: (Great, even) (even, even) E 2x7.
Ever, odd) (Rur odd)
(hr -) I game at last t at the most 3 gams.
He plays for 75 hows & max nw. 9 saws is 125
Re plays for 75 hows I max no g soms is 125 12. 3. 1. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
ai > no y matches he has played till time is 150 = 75
$a_3 + \frac{1}{2} \delta$ $a_1 > 1$ $a_2 \leq a_{i+1} - a_i \leq 3$
$1 \leq \alpha_1 < \alpha_2 < \alpha_3 \ldots < \alpha_{2s} \leq 125 $
<u>li = ai + 24.</u>
$25 \leq 9.124 \leq 92+24 \leq \leq 975+24 \leq 125+24 \leq 145$
25 < b1 < b2 < b2 < [149]
Call [a, G2, 9x, b1, b2, b25] as pissens

Noi 1,2,3, ... , 145 as pissean Wes 1 S J S 149, Me'j has has pigem bh, br Pigean: Rx Gr. ak = br. ab = artah au by

get x be an Arabal momber & j be an integer 1 2x - [jx] < /n $x = \sqrt{1} = 1.414.$ $y = \sqrt{1} = 2.828$ $y = \sqrt{1} = 2.828$ $y = \sqrt{1} = 2.828$ $|3x - [2.828]| = 0.826 < \frac{1}{2}$ $\frac{1}{2}x - \frac{1}{2}x = \frac{1}{2}(0,1)$

Intervals: $(0, \frac{1}{2})$, $(\frac{1}{2}, \frac{2}{2})$, $(\frac{1}{2}, \frac{2}{$

 $\frac{(1-x^{4})^{3}}{(1-x)^{3}} = \frac{1+3(-x^{4})}{+3(x^{8})-x}$ $\frac{(1-x^{4})^{3}}{(1-x^{3})} = \frac{1+3(-x^{4})}{+3(x^{8})-x}$ $\frac{(1-x^{4})^{3}}{(1-x^{3})} = \frac{1}{2}(x^{8}) - x$ $\frac{(1-x^{4})^{3}}{(1-x^{4})^{3}} = \frac{1}{2}(x^{4}) - x$ $\frac{(1-x^{4})^{3}}{(1-x^{4})^{3}} = \frac{1}{2}(x^{4})$

 $\frac{1-9x}{1-1+0x} = \frac{4h}{1-6x} + \frac{4sh}{1-6x}$

 $\frac{1-8x}{1-8x} \frac{1-8x}{1-10x} = A \frac{1-10x}{1-10x} + B \frac{1-8x}{1-10x} + B \frac{1-8x}{1-10x}$ $\frac{1-9x}{1-9x} = A \frac{1-10x}{1-9x} + B \frac{1-8x}{1-9x}$ $\frac{1-9x}{1-9x} = A \frac{1-x}{1-9x}$ $\frac{1-9x}{1-$