© THE QUEEN'S PRINTER FOR ONTARIO 1999

REPRODUCED WITH PERMISSION

L'IMPRIMEUR DE LA REINE POUR L'ONTARIO

REPRODUIT AVEC PERMISSION

20 Victoria Street Toronto, Ontario M5C 2N8 Tel: (416) 362-5211 Toll free: 1-800-387-2689 Fax: (416) 362-6161

Email: info@micromedia.on.ca

Large Volume Sampling at Six Lake Ontario Tributaries During 1997 and 1998: Project Synopsis and Summary of Selected Results

October 1999

Ministry of the Environment

Large Volume Sampling at Six Lake Ontario Tributaries During 1997 and 1998:

Project Synopsis and Summary of Selected Results

October 1999

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1999

This publication may be reproduced for non-commercial purposes with appropriate attribution.

ISBN 0-7778-9257-X

PIBS 3927E

Contributors

The authors would like to acknowledge the following list of additional contributors.

Survey Design:

J. Anderson, (EC), R. Bilyea (MOE), M.. D'Andrea (MOE),

S. Painter (EC)

Sample Collection:

R. Bilyea (MOE), C. Cannon (EC), C. Strand (EC)

Sample Analysis:

D. Boomer (MOE), C. Cannon (EC), M. Comba (MOE), C. Strand (EC),

F. Tomassini (MOE)

Mapping/GIS:

B. Neary (MOE)

Reviewed by:

R. Vickers (MOE), F. Fleischer (MOE), P. Kauss (MOE), J. Mahoney

(MOE), S. Maude (MOE), M. Neilson (EC), S. Painter (EC)

Preface

This data summary report, which does not include any statistically-based interpretation or discussion, has been prepared as a means of communicating results of this sampling exercise to all interested parties as soon as possible. The anticipated audience would include government agency staff associated with water quality management and the development of the Lake Ontario Lakewide Management Plan (LaMP), as well as researchers examining the ecosystem effects of toxic substances (persistent trace organics) within the Lake Ontario drainage basin. This study was undertaken as a screening level exercise to identify those watersheds (if any) exhibiting cumulative evidence of contaminant sources within their entire drainage area and to illustrate the general relationship between land use and water quality. It was not designed to identify specific contaminant sources within watersheds. The distribution of these data is intended to encourage and accelerate additional data synthesis and analysis by federal and provincial agency staff and the research community. It is anticipated that subsequent analysis will include a more rigorous statistical examination of the relationships among land use, flow conditions, and contaminant concentrations, along with a comparison of water quality findings with biomonitoring data. The potential application of these data to the estimation of loadings will also be examined.

Table of Contents

1. INTRODUCTION	
1.1 Background	1
2. LAKE ONTARIO DRAINAGE BASIN AND SAMPLING LOCATIONS	
2.1 Summary Description of Lake Ontario Basin 2.2 Land Use and Pollution Sources 2.3 Description of Sampling Locations	3
3. SURVEY METHODS	
3.1 Field Methods	
4. SUMMARY OF SELECTED RESULTS	
4.1 Comparison with PWQOs 4.2 Dry and Wet Weather Contaminant Concentrations	9
5. CONCLUSIONS AND RECOMMENDATIONS	. 19
APPENDIX A-1: DATA LISTING FOR STATION 89 CREDIT RIVER	. 20
APPENDIX A-2: DATA LISTING FOR STATION 90 HUMBER RIVER	. 24
APPENDIX A-3: DATA LISTING FOR STATION 91 GANARASKA RIVER	. 28
APPENDIX A-4: DATA LISTING FOR STATION 92 TRENT RIVER	. 32
APPENDIX A-5: DATA LISTING FOR STATION 93 TWENTY MILE CREEK	. 36
APPENDIX A-6: DATA LISTING FOR STATION 94 TWELVE MILE CREEK	. 40

List of Figures

2.1	Population Densities in the Lake Ontario Drainage Basin
2.2	1997/98 Tributary Toxics Monitoring Locations
4.1	Range of Daily Flows Corresponding to 1997/98 Sampling Episodes
4.2	Range of Suspend Solids Concentrations Sampled During 1997/98
4.3	Range of Total Phosphorus Concentrations Sampled During 1997/98
4.4	Range of Copper Concentrations Sampled During 1997/98
4.5	Range of Zinc Concentrations Sampled During 1997/98
4.6	Range of Benzo(a)pyrene Concentrations Sampled During 1997/98
4.7	Range of Lindane Concentrations Sampled During 1997/98
4.8	Range of Total PCB Concentrations Sampled During 1997/98
4.9	Range of Aldrin/Dieldrin Concentrations Sampled During 1997/98
4.10	Range of α-BHC Concentrations Sampled During 1997/98
4.11	Range of HCB Concentrations Sampled During 1997/98
	List of Tables
2.1	Summary of Sampling Locations, Drainage Basin Areas, and
	Annual Average Flows for 1997/98 Tributary Sampling
3.1	Summary of Detection Limits and PWQOs for Trace Organics Sampled in 1997/98
3.2	Summary of Detection Limits and PWQOs for Trace Metals, Suspended Solids and Total Phosphorus Sampled in 1997/98
4.1	Frequency of Detection Greater than Provincial Water Quality Objectives
4.2	Summary of Median Flows and Concentrations

1. INTRODUCTION

1.1 Background

1

A need to update and improve upon source, concentration, and loading information for persistent, bioaccumulative, trace organic contaminants (commonly referred to as "persistent organic pollutants" or "POPs") in tributaries flowing into Lake Ontario was identified by both the Ontario Ministry of the Environment (MOE) and Environment Canada (EC) during 1996. The Province requires this information to assess surface water quality in Ontario according to the policies and Provincial Water Quality Objectives (PWQOs) ¹ and as part of the development of a Provincial Toxics Plan for Priority Substances. The Canadian federal and provincial governments, in conjunction with U.S. state and federal governments, have also identified a further need for improved concentration and loading data during the development of a Lakewide Management Plan for Lake Ontario.

The principal limitation on previous measurement of tributary concentrations of trace organic contaminants (and hence estimated loadings) has been the difficulty achieving sufficiently low level analytical detection limits for these substances. In particular, the routine MOE detection limit for total PCBs in water has been 20 ng/L (positive identification of a trace amount) or ten times higher for a positively quantified result. This has not compared favourably with the PWQO of 1.0 ng/L and has precluded an accurate assessment of water quality status for this ubiquitous substance. Detection limits for other contaminants such as organochlorine pesticides have been better than this, but still not sufficiently below PWQOs to allow a quantitative assessment of compliance. In addition, existing routine tributary monitoring efforts by MOE have tended to under-sample during high flow events, biassing estimates of contaminant loadings towards low flow conditions.

Tributary and sewer effluent sampling studies by MOE and Metro Toronto (now City of Toronto) along the Toronto Waterfront during the period 1990 to 1993 successfully employed large volume sampling during wet and dry weather events to improve estimates of trace organic contaminant concentrations and loadings. These experiences demonstrated the potential for success of a low-level detection monitoring project to address data deficiencies for Lake Ontario tributaries, and in the spring of 1997 a collaborative sampling program was established between the Environmental Conservation Branch at Environment Canada and the Environmental Monitoring and Reporting Branch at the Ontario Ministry of the Environment. The arrangement was designed to allow sampling under a range of flow conditions during the summer and fall of 1997, and the winter and spring of 1998.

Water Management Policies, Guidelines Provincial Water Quality Objectives, 1995

1.2 Objectives

Two of the principal objectives of the overall 1997/98 study were to:

- (a) measure the ranges of contaminant concentrations under wet and dry conditions at a variety of Lake Ontario watersheds comprising a range of land uses near the point at which they flow into the lake and compare the results with PWQOs; and
- (b) use the data to screen these watersheds for anomalies indicative of potentially significant contaminant sources and which could justify the need for follow-up source "track down" monitoring.

The data were also collected with a view to estimating contaminant loadings from the selected tributaries to Lake Ontario by using the concentration data in conjunction with flow data. Calculation of the uncertainty associated with these estimates is central to any such exercise since it is well documented that the confidence of such calculations would be limited by the relatively small number of samples available through this study. This analysis and discussion will be the focus of a separate report.

2. LAKE ONTARIO DRAINAGE BASIN AND SAMPLING LOCATIONS

2.1 Summary Description of Lake Ontario Basin

Lake Ontario is the last in the chain of Great Lakes and is the smallest Great Lake in terms of surface area (approximately 19,000 square kilometres) although its total volume of 1,640 cubic kilometres is over three times greater than that of Lake Erie. About 93% of the lake's water flows out through the St. Lawrence River and another 7% is lost through evaporation. The average "residence time" for water in the lake is approximately six years. On average, approximately 80% of the water flowing into Lake Ontario comes from Lake Erie via the Niagara River with the remaining flow coming from tributaries within the Lake Ontario watershed and from precipitation. With a watershed land area of approximately 64,000 km² (of which slightly less than half lies in Ontario), Lake Ontario has the highest ratio of watershed land area to lake surface area of all the Great Lakes. The total estimated tributary flow to the lake is approximately 860 m³s¹ and is evenly divided between the Ontario and New York State portions of the lake's watershed at roughly 430 m³s¹ each².

Although the peripheral upland areas of the Lake Ontario basin are forested, nearer the lake, the basin's climate and soil types support various agricultural activities (areas such as the Niagara region are highly specialized for growing fruits and vegetables) and urban areas with high population densities. The "Golden Horseshoe" extending from Cobourg in the east around the western end of Lake Ontario to St. Catharines and Niagara Falls is highly urbanized and industrialized and includes Metropolitan Toronto and the industrial centre of Hamilton.

2.2 Land Use and Pollution Sources

The extensive urban/industrial and rural/agricultural land use activity within the drainage area of Lake Ontago accounts for a range of pollutants entering tributaries and lakes from "point sources" (e.g. industrial and municipal effluent discharges) and "non-point sources" (e.g. diffuse runoff from urban or agricultural areas). These pollutants include suspended solids, dissolved solids, bacteria (not included in this study), nutrients, metals, and trace organic contaminants (including pesticides, PCBs, and a range of industrial organic chemical byproducts).

² Information sources:

Lake Ontario Toxics Management Plan, A Report by the Lake Ontario Toxics Committee February 1989, Environment Canada, United States Environmental Protection Agency, Ontario Ministry of the Environment, New York State Department of Environmental Conservation.

The Great Lakes, An Environmental Atlas and Resource Book, Jointly produced by: Government of Canada and United States Environmental Protection Agency, Third Edition 1995.

The Lake Ontario Lakewide Management Plan, Stage 1: Problem Definition, Environment Canada, United States Environmental Protection Agency, Ontario Ministry of the Environment, New York State Department of Environmental Conservation, May 1998.

Figure 2.1: Population Densities in the Lake Ontario Drainage Basin

Spatial and temporal trends in water quality throughout this area of the province can often be linked to shifts in these land use patterns as well trends in contaminant loads from wastewater discharges (which have tended to decrease over the past 20 years).

Contaminants associated with urban runoff include polynuclear aromatic hydrocarbons (PAHs) which include benzo(a)pyrene (BaP), as well as metals and petroleum hydrocarbons. These contaminants are associated with vehicle exhaust, brake and tire wear, fuel and engine oil leaks or spills, and corrosion and are most prevalent in areas with high traffic densities. Other contaminants associated with roads and urban runoff include suspended solids, nutrients, pesticides and bacteria from sanitary sewer cross connections, infiltration from the sanitary sewer systems, accidental or deliberate spills to road side catch basins, chemical applications (fertilizers and pesticides), run off from commercial/industrial storage areas, and faecal material from wildlife and domestic animals.

Pollutants linked to rural and agricultural land uses can overlap with urban sources. Agricultural activities can contribute suspended solids from erosion and livestock access to waterways, nutrients from fertilizer and manure applications, and pesticides from run-off or drift during application. Sources of elevated bacteria can be liked to run-off from improper manure handling or inappropriate field applications, animal storage areas, faecal material from livestock. The relative impact of suspended solids, fertilizers and pesticides on rural streams can vary widely with the season and local farm practices but can be significant, particularly during the spring.

Not all pollutants are locally or recently generated. Many of the persistent "trace organic compounds" which are still being detected in the water, sediment, and biota of Lake Ontario and

its tributaries are pesticides which have not been used in Ontario for decades, if ever. Present day sources may be hundreds or thousands of kilometres away, but deposition from long-range atmospheric transport combined with large tributary catchment areas can focus contaminants into tributary waters.

2.3 Description of Sampling Locations

Six tributaries in the Canadian portion of the Lake Ontario watershed were sampled over the period July 1997 to March 1998. These were: the Credit River, the Humber River, the Ganaraska River, the Trent River, Twenty Mile Creek, and Twelve Mile Creek (Figure 2.2). These tributaries were selected in order to cover the range of land use, watershed size, and average flows within the Lake Ontario drainage basin. Access to flow monitoring data and the potential for vandal-proof installation of automatic sampling equipment were other factors considered in the selection of tributaries and siting of sampling installations.

A summary of sampling locations, drainage basin areas, and annual average flows is presented in Table 2.1 to illustrate the range of tributary sizes covered by this study, and to provide an indication of the proportion of drainage basin area and flow from Ontario tributaries covered by the 1997/98 sampling program..

The large annual average flows from Twelve Mile Creek and the Trent River, and the extremely large drainage area associated with the Trent watershed, mean that the tributaries selected for sampling in 1997/98 cover approximately 80% of the Ontario tributary flows (excluding the Niagara River), and about 50 % of the Ontario watershed area.

Figure 2.2: 1997/98 Tributary Toxics Monitoring Locations

Table 2.1: Summary of Sampling Locations, Drainage Basin Areas, and Annual Average Flows for 1997/98 Tributary Sampling

Tributary	Station Description	Latitude	Longitude	Approx. Area (km ²)	Annual Flow (m³ s⁻¹)
Credit River	Mississauga Golf and Country Club	43 ° 32.574	79 ° 38.002	650	6.9
Humber	Lewrence Ave. (first two samples) Old Mill Road (subsequent samples)	43 ° 37.849	79 ° 28.232	900	6.2
Ganaraska	Sylvan Glen Road	43 ° 59.444	78 ° 19.695	250	3.2
Trent	South of Hwy. 401 (500 m)	44 ° 07.476	77 ° 35.513	12700	142
Twenty Mile Creek	Balls Falls	43 ° 08.014	79 ° 22.588	300	3
Twelve Mile Creek	South end of Martindale Pond	43 ° 11.913	79 ° 15.933	N.A.	189
Totals				14800	353.3

^{*} flow diversion from Lake Erie

3. SURVEY METHODS

3.1 Field Methods

Large-volume water sample were collected using ISCO automatic samplers with Teflon-lined polyethylene tubing intake lines to minimize contamination of samples. The intake lines were connected to stainless steel pre-filters situated at mid-depth and in the main flow of the tributary. The ISCO samplers were modified to split the flow from the sampler distribution arm into three stainless steel 19 litre containers. Two of the containers were prepared for trace organics analysis by the Environment Canada National Laboratory for Environmental Testing (NLET) using a modification of the protocol previously established for Great Lakes samples. The third sample container, which was used for trace metals, major ions and nutrients analyses, was fitted with a disposable laboratory grade polyethylene bag liner for submission to the MOE Laboratory Services Branch (LSB).

Sample containers were cleaned and prepared, and samples were handled and delivered, using standard protocols designed to minimize sample contamination and degradation. The use of sample blanks and spiked samples further ensured accuracy of the results.

At sites which were co-located with stream flow gauging stations, sampling was triggered by the stream gauge using programmed set-points. Sampling for other sites involved either on-site or project personnel collecting samples in response to events and flow information from remotely accessed stream gauges. Sampling targeted a range of flows covering base-flow levels as well as rainfall events and peak spring flows based on hydrograph data. At Twelve Mile Creek, however, where high flows from Lake Erie are uniformly controlled for power generation and where the influence of runoff from the local drainage basin is extremely small, event sampling was coordinated with nearby Twenty Mile Creek.

3.2 Laboratory Methods

Samples were analysed for a range of trace contaminants and "conventional" pollutants. These included organochlorine pesticides, total polychlorinated biphenyls (total PCBs as represented by a suite of 103 congeners or congener groupings), and polynuclear aromatic hydrocarbon compounds (PAHs). Trace metals (Al, Cr, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Zn) and selected major ions and nutrients were also included. Bacteriological analyses were not carried out as part of this study.

Sample preparation of trace organic samples (two 19 litre containers) involved centrifugation followed by liquid-liquid extraction of the supernatant and extraction of the solid phase. The two extracts were recombined for total PCB and organochlorine analysis by GC/ECD, and PAH analysis by GC/MSD at NLET. Samples from the third container were analysed for nutrients (N and P) and metals using MOE standard methods (AAS, colourimetry, ICP/MS) by the LSB.

Each sample run for PCB analysis included analysis of a laboratory blank and all reported results have been blank corrected.

Table 3.1: Summary of Detection Limits and PWQOs for Trace Organics Sampled in 1997/98

Substance	Detection Limit (ng/L)	PWQO (ng/L)
Aldrin/dieldrin	0.05	1
Benzo(a)pyrene	0.1	210
Chlordane	0.05	60
DDT (total)	0.05	3
нсв	0.05	6.5
Mirex	0.05	1
Octachlorostyrene	0.05	_
PCBs (total)	0.10	1

Table 3.2: Summary of Detection Limits and PWQOs for Trace Metals, Suspended Solids, and Total Phosphorus Sampled in 1997/98

Substance	Detection Limit (µg/l)	PWQO (µg/l)
Suspended Solids	500	_
Total Phosphorus	4	* 30.0
Total Kjeldahl Nitrogen	20	_
Aluminum (clay-free sample)	10	* 75.0
Chromium	0.5	100
Copper	1	* 5.0
Iron	20	300
Lead	5	* 5.0
Manganese	0.5	-
Mercury (filtered sample)	0.02	0.2
Nickel	2	25
Zinc	0.5	* 20.0

^{*} indicates interim PWQO

4. SUMMARY OF SELECTED RESULTS

The following summary focuses on trace organic contaminants and metals. Suspended solids and nutrients have also been included for comparison (since they are routinely available pollution indicators from other monitoring programs). Given the commonly observed relationship between flow conditions and water quality, all data have been partitioned into "wet" and "dry" weather samples to ensure that among-station comparisons of contaminant concentrations are not biassed by differences in the proportion of "wet" (high flow) events available at each station. This partitioning was based on inspection of hydrograph data (except at Twelve Mile Creek where partitioning was based on the Twenty Mile Creek sampling dates).

4.1 Comparison with PWQOs

The frequencies with which water quality parameters were detected above their respective Provincial Water Quality Objectives (PWQOs) are presented in Table 4.1. No samples were detected above PWQOs for chromium, mercury, Mirex, hexachlorobenzene, benzo(a)pyrene, or any of the organochlorine pesticides (lindane, aldrin/dieldrin, chlordane, DDT, endrin, endosulfan) in either dry or wet weather samples. Total PCBs, however, were detected above the PWQO of 1.0 ng/L in all wet and dry weather samples. Cadmium, copper, iron, nickel, lead, zinc, and total phosphorus had detection frequencies greater than PWQOs ranging from 0% to 100% depending upon the location and weather.

4.2 Dry and Wet Weather Contaminant Concentrations

Median concentrations for total phosphorus (TP), metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn), total PCBs, organochlorine pesticides, and the PAH benzo(a)pyrene (BaP) are summarized in Table 4.2. Selected contaminant concentration results, along with flow data, are also presented in Figures 4.1 to 4.11.

As expected, all tributaries exhibited a pattern of wet weather median concentrations of suspended solids (SS) exceeding dry weather median concentrations. Similarly, all tributaries other than the Trent River had wet weather total Kjehdal Nitrogen (TKN) and TP medians which exceeded the dry weather medians, frequently by more than an order of magnitude. Wet weather TP concentrations exceeded the interim PWQO of 0.030 mg/L at all tributaries other than the Trent River. Twenty Mile Creek's dry weather median also exceeded the interim PWQO for TP.

With the exception of Cd and Cr, wet weather metal median concentrations also exceeded dry weather median concentrations. Median concentrations of Cd, Cu, Fe, Pb, and Zn were all detected above their respective PWQOs at two or more tributaries, generally in wet weather samples with the exception of Cd at the Ganaraska and Trent Rivers. Results for BaP showed a similar pattern to that of SS, nutrients, and metals, with wet weather median concentrations exceeding dry weather concentrations at all locations. Total PCBs were an exception to this pattern. Wet weather median concentrations of PCBs did not tend to exceed dry weather medians except at the Humber River.

Results for all other organochlorine compounds were varied, depending upon sample type and location. α -BHC, lindane (γ -BHC), α -endosulfan, β -endosulfan, α -chlordane, dieldrin, p,p-DDD (a DDT metabolite), and p,p-DDT were the most frequently detected, although they were always present at concentrations well below their respective PWQOs.

The Credit River was the only sampling location having dry and wet weather median concentrations of Mirex above the detection limit (0.01 ng L⁻¹) with values of 0.06 ng L⁻¹ and 0.02 ng L⁻¹ respectively (well below the PWQO of 1.0 ng/L).

IMPORTANT NOTE CONCERNING THE FOLLOWING PAGES

THE PAGES WHICH FOLLOW HAVE BEEN FILMED
TWICE IN ORDER TO OBTAIN THE BEST
REPRODUCTIVE QUALITY

USERS SHOULD CONSULT ALL THE PAGES
REPRODUCED ON THE FICHE IN ORDER TO OBTAIN
A COMPLETE READING OF THE TEXT.

REMARQUE IMPORTANTE CONCERNANT LES PAGES QUI SUIVENT

LES PAGES SUIVANTES ONT ÉTÉ REPRODUITES EN DOUBLE AFIN D'AMÉLIORER LA QUALITÉ DE REPRODUCTION

LES UTILISATEURS DOIVENT CONSULTER TOUTES
LES PAGES REPRODUITES SUR LA FICHE AFIN
D'OBTENIR LA LECTURE DU TEXTE INTÉGRAL

20 Victoria Street Toronto, Ontario M5C 2N8

Tel.: (416) 362-5211 Toll Free: 1-800-387-2689

Fax: (416) 362-6161

Email: info@micromedia.on.ca

FREQUENCY OF DETECTIONS GREATER THAN PROVINCIAL WATER QUALITY OBJECTIVES (shown in parentheses)

5	960	100%	20%	100%	%0	%0	*	*60	960	87%	*60	960	NI SOLETION OF THE PARTY OF THE	Separate Sep	200	200	960	960	%0	960	%0	%0	%0	%0	960												
	86	83%	20%	100%	%0	*6	*	*6	%6	80%	350	*6	TOOTS (S ROLL)	740	200	760	960	%0	%0	%0	260	960	960	%0	%0												
N (26 UAC)	*60	20%	*0	29%	%0	33%	%0	%0	*6	%6	%0	200	MIREK (1 mal.)	80	*0	%0	%0	960	%0	940	2%0	260	2%0	960	960		No. of the State o										
(0.2 ub/C)	%0	%0	%0	%0	%0	%0	%0	%0	%0	960	%0	%0	(Singsulfan	%0	960	360	%0	960	%0	%0	%0	%0	%0	%0	%0												
(300 tok)	13%	100%	20%	100%	960	9696	960	%0	%0	83%	%0	33%	ECHLORDANE (90 ng/L)	*6	%0	%0	%0	940	960	%0	%0	%0	%	%0	%0												
(2 MOV.)	%0	83%	20%	100%	860	%0	%	%0	%0	20%	%0	%0	SHEPTCHLOR (+EPOXIDE)	%0	%0	%0	%0	960	%0	%0	%0	%0	%0	%0	*6		THE DAY OF THE PARTY OF THE PAR										
(100 ight)	960	%0	%0	%0	960	%0	%0	%0	%0	%0	%0	%0	(10 ng/L)	%0	%0	%0	%0	960	%0	960	%0	%0	%0	%0	%0	MTHXYCHLOR (40 ng/L)	**0	%0	%0	%0	%0	%0	%0	%0	%0	250	
(0.5 LOA)	38%	33%	20%	57%	81%	33%	75%	9609	14%	17%	%0	%0	ALDRIN DIELDRIN	%0	%0	%0	%0	%0	%0	%0	*6	%0	%0	8	%0	(0.5 mg/L)	%0	960	%0	%0	360	%0	%0	%0	%0	*6	
(30 mo/L)	25%	100%	40%	96%	%0	98%	25%	13%	100%	100%	33%	87%	TPC8 (1 NoA)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	(Z10 ng/L)	%6	%0	%0	%0	*0	9%0	%0	%0	360	%0	-
2 8	00	9	ומ	1	m	o	4	00	1	9	9	9	Z	80	9	S	1	0	o	4	00	1	0	10	9	2		9	40	1	60	o	*	0	1	90	•
DRY	DRY	WET	DRY	WET	DRY	WET	DRY	WET	DRY	WET	DRY	WET	Wet DRY	DRY	WET	DRY	WET	DRY	WET	DRY	WET	DRY	WET	DRY	WEI	DRY	DRY	WET	DRY	WET	DRY	WET	DRY	WET	DRY	NE.	-
	CREDIT		HUMBER		GANARASKA		TRENT		20 MILE CR.		12 MILE CR.		E	CREDIT		HUMBER		GANARASKA		TRENT		ZO MILE CR.		12 MILE CR.	A TABLE OF THE PARTY OF THE PAR		CREDIT		HUMBER		GANARASKA		TRENT		20 MILE CR.		

FREQUENCY OF DETECTIONS GREATER THAN PROVINCIAL WATER QUALITY OBJECTIVES (shown in parentheses)

STN	WET/	z	T	3	Ö	3	F.	Ho	Z	8	7
	DRY		(30 mg/L)	(0.5 µg/L)	(100 µg/L)	(5 µg/L)	(300 µg/L)	(0.2 µg/L)	(25 ug/L)	(Sua/L)	(20 uo/
CREDIT	DRY	60	25%	38%	%0	%0	13%	%0	%0	%00	00
	WET	9	100%	33%	%0	83%	100%	%0	20%	83%	100%
HUMBER	DRY	S	40%	20%	%0	20%	20%	%0	%0	20%	20%
		7	86%	57%	%0	100%	100%	%0	29%	100%	100%
GANARASKA		en	%0	67%	%0	%0	%0	%0	%0	9%0	%0
		o	89%	33%	%0	%0	26%	%0	33%	%0	%0
TRENT		4	25%	75%	%0	%0	%0	%0	%0	%0	%0
		00	13%	20%	%0	%0	%0	%0	%0	%0	%0
20 MILE CR.		1	100%	14%	%0	%0	%0	%0	%0	960	%0
		ဖ	100%	17%	%0	20%	83%	%0	%0	20%	67%
12 MILE CR.		9	33%	%0	%0	%0	%0	%0	%0	%0	%0
		9	67%	%0	%0	%0	33%	%0	%0	%0	%0
NTS	WET/	z	TPCB	ALDRIN/	LINDANE		SCHLORDANE	ENDSULFAN	MIREX	Y-DDT	ENDRIN
			(J ug/L)	(1 ng/L)	(10 ng/L)	(+EPOXIDE) (1 ng/L)	(80 ng/L)	(3 ng/L)	(1 ng/L)	(3 ng/L)	(2 ng/L)
CREDIT	DRY	60	100%	%0	%0	%0	%0	%0	%0	960	750
	WET	9	100%	%0	%0	%0	%0	%0	%0	%0	960
HUMBER	DRY	S	100%	%0	%0	%0	960	%0	%0	9%0	0%0
	WET	1	100%	%0	%0	%0	%0	%0	%0	%0	750
GANARASKA	DRY	6	100%	%0	%0	%0	%0	%0	%0	%0	%0
	WET	O	100%	%0	%0	%0	%0	%0	%0	%0	9%0
TRENT	DRY	4	100%	%0	%0	%0	%0	%0	%0	%0	%0
	WET	60	100%	%0	%0	%0	%0	%0	%0	0%	%0
20 MILE CR.	DRY	1	100%	%0	%0	%0	%0	%0	%0	%0	%0
	WET	9	100%	%0	%0	%0	%0	%0	%0	%0	760
12 MILE CR.	DRY	9	100%	%0	%0	%0	%0	%0	%0	%0	960
	WET	ø	100%	%0	%0	960	960	%0	%0	%0	960
NTS	WET/ DRY	z	BaP (210 ng/L)	HCB (6.5 ng/L)	MTHXYCHLOR (40 ng/L)						
CREDIT	DRY	60	%0	%0	%0						
	WET	9	%0	%0	%0						
HUMBER	DRY	S	%0	%0	%0						
	WET	7	%0	%0	%0						
GANARASKA	DRY	6	%0	%0	%0						
	WET	თ	%0	%0	%0						
TRENT	DRY	4	%0	%0	%0						
	WET	60	%0	%0	%0						
20 MILE CR.	DRY	1	%0	%0	%0						
	WET	9	%0	%0	%0						
12 MILE CR.	DRY	9	%0	%0	%0						
	WET	9	%0	%0	0%						

CREDIT				The state of the s										
	I DRY	Y 8	3 60	Bu)	(mg/L)	(mg/L)	(µg/L)	(mg/L)	(na/L)	1000	P. P.	Mn	Z	Pb
	WET	- W	60.0		0.43	0.014	59.3	00.0	474	286	(marc)	(HOVE)	(MB/L)	(hg/r)
HUMBER			00.81		1 60	0.370	720.5	000	284	00.4	83.43	10.24	0.00	0.00
		0 1	1.43		0.38	0.030	126.0	000	7.0	0.40	1003.00	200.5	24.36	5.6
ALADA COLO			15.23	125.00	1.16	0.250	737 0	0000	0.10	2.29	184.00	25.3	0.00	000
Nother Party			1.77	5.00	0 22	0012	3000	0.22	0.91	11.30	1200.00	181.00	3.85	87.
		6	7.15	60.50	96 0	0110	33.60	0.26	5.55	0.51	64.40	14.80	000	000
TRENT	DRY	4	45.90	2 00	0.46	2000	70.012	00.0	3.28	1.30	411.00	68 60	000	300
	WET	80	175 35	20.4	0.40	0.024	12.60	0.53	3.43	0.65	27.80	4 20	000	0.00
20 MILE CR.	DRY		0000	67 4	0 46	0.017	19.40	0.13	1.54	0.77	00.73	67.11	000	0.00
	MET		90.0	4 00	0.72	0.086	77.30	000	2 63		00 60	10.28	0.00	000
12 MILE CD	300		30.65	194 00	2.35	0.760	1415.00	000	200	1.44	92.90	52.60	2.90	000
MILE CR.	DRY	9	213.80	7.75	0.26	0 005	20 00	000	16.1	5.10	1105.00	123.70	4.43	287
	WET	9	215.51	13.00	0 34	1900	00.00	000	2.68	1.35	98.10	8 55	000	0
STN	WET/	Z	FLOW	70	Dog	00.0	716.50	000	0.78	1.87	217 00	13.06	000	000
	DRY		(CMS)	(ng/L)	(na/L)	(lou)	TPAH	a-BHC	LINDANE	HPTCHLR	ALDRIN	HPTCHI P	3.09	0.00
10000						13.8.	(mg/L)	(ug/L)	(ng/L)	(mg/L)	(ng/L)	EPOXIDE	CHI PONE	ENDOS:
CKEUI	DRY	600	3.59	5.72	4.2	0.66	22 26	0				(ng/L)	(nad)	FAMINGE
	WET	9	19.50	31.10	29	8.36	110000	0.06	0.15	000	00.00	0 03	000	(Table)
HUMBER	DRY	2	1.43	4 54	4.5	0000	07 611	0.28	0.36	0.00	000	000	000	0.03
	WET	1	15 23	43.80	7.4	1.03	32.70	0.13	0.10	000	000	500	000	0.22
GANARASKA	DRY	67	1 27	2000	5.4	22 15	271.06	0 39	0 29	000	800	000	00.0	0.04
	WET	0	7 45		3.5	60.0	8.17	00.0	000	000	000	0.05	0.05	0.17
TRENT	Vac		61.7		3.2	0.15	18.05	0.17	000	800	00.0	00.0	0.00	0.00
	MET	. 0	45.90		4.1	0 00	5 46	600	010	000	0000	000	0.00	0.03
20 MILE CD	200	0 1	1/5.35		4.4	0	11.88	0 17	200	000	0000	00.00	00.0	0.01
The Car	THO !	,	0.08	4 28	4.2	0	11 97	200	0.00	000	0000	0.00	00.0	0.01
-	WE	9	30 65	28.30	2.4	0 34	25.60	000	60.0	0000	00.0	0.00	00.0	000
Z MILE CH	DRY	9	213.80	1.63	8.4	0 23	2000	0.32	0.36	000	000	0.02	000	200
	WET	9	215.51		4	0 2 2 2	11.64	0.27	0.28	00.0	00.0	0 03	800	20.00
STN	WET/	z			DIEL DEIM	15.00	19.56	0.34	0.26	000	000	0.08	0000	0.03
	DRY		(CMS)		(ng/L)	1 5	NDKIN ng/L)	NDSLFN	ODD-d'(TOO-d'o	P.P-DDT	MTHXY	MIREX	HCB 0.03
CREDIT	DRY	90	3 59	0 03				(mg/L)	1	Take!	(ug/L)	CHUR	(ng/L)	(ng/L)
	WET	9	19 50	200	0.0	0000	000	000			000	(1000)	1	
HUMBER	DRY	4	3.43	700	900	0000	000	0.20			200	0.00	90.0	0.02
	MET		200	000	0.10	000	000	0.04			100	000	0.05	0.03
GANARASKA	200	- 0	15.23	0.04	0 0 0	0000	00.0	0 12			000	00.0	00.00	0.01
5	1	2 (1.77	00.00	0.15	000	0000	00.0			0000	00.00	00.0	0.03
TOENT	WEI	o •	7.15	00.00	0 20	000	000	000	000	0000	0.21	00.00	00.00	0.01
MEN	A I	4	45.90	000	0.03	000	000	500			0.14	00.0	00.0	000
	WE	100	175.35	0000	0.03	000	000	20.0			0.01	000	000	0 00
ZO MILE CH.	DRY	1	0.08	0.01	0 0 0	000	800	00.0			00.0	00.0	000	0.00
	WET	9	30.65	00.0	0 00	000	000	000			000	0000	000	20.00
12 MILE CR.	DRY	9	213.80	0 0 0	0 13	000	000	0.12			010	000	000	200
	WET	4				00.0	000	000					00.0	0.03
		0	715.51	000	0.13	000		200		0.00	00.0	000	000	000

Note: Shaded Value Indicates Concentration Greater Than PWQO; "0.00" Indicates "Not Detected"

TABLE 4.2: SUMMARY OF MEDIAN FLOWS AND CONCENTRATIONS

がいい	DRY		(CMS)	(MOAL)	(mg/L)	(mg/L)	(7/07/)	(Nov)	CUDIO.	(UBU)	(DBD)	(3090)	TUBAT THE	SPRINGE
CREDIT	DRY	100	3.59	6.00		0.014	59.30	000	4.74	2.56	93.45	10.24	0.00	0.00
	WET	6	19.50	184.00	1.60	0.370	720.50	0.00	2.81	8	1003.00	200.5	24.36	18.65
HUMBER	DRY	NO.	1.43	11.50	0.38	0.030	126.00	0.00	7.18		184.00	25.3	0.00	0.00
	WET	1	15.23	125.00	1.16	0.250	737.00	0.22	5.91	25	-1200 00	181.00	3.85	long.
GANARASKA	DRY	m	1.77	9.00	0.22	0.012	39.20	0.28	5.55			14.80	000	0.00
	WET	O	7.15	60.50	96.0	0.110	218.00	00.00	3.28		30	68.60	0.00	00.0
TRENT	DRY	4	45.90	2.00	0.45	0.024	12.60	0.63	3.43			11.25	000	00.0
	WET	80	175.35	4.25	0.46	0.017	19.40	0.13	1.54			10.28	0.00	0.00
20 MILE CR.	DRY	1	90.0	4.00	0.72	0.066	77.30	0.00	3.53			52.60	2.90	000
	WET	9	30.65	194.00	2.35	0.780	1415.00	0.00	1.97	1	193	123.70	4.43	2.87
12 MILE CR.	DRY	9	213.80	7.75	0.26	0.025	88.85	0.00	2.68		1	8.55	0.00	0.00
	WET	9	215.51	13.00	0.34	0.061	216.50	00.0	0.78			13.95	3.09	0.00
N.	WET	Z	FLOW (CMS)	(10g/L)	PCB (Mg/L)	(ng/L)	HPAH (ng/L)	(mg/L)	(VOV.)	* 1500	ALD MA	HPTOH R BOXION	OPEN PRO	PNDOSUL PNDOSU
CREDIT	DRY	60	3.59	5.72	42	0.86	22.25	90.0	0.15		1	0.03	00.0	0.03
	WET	9	19.50	31.10	2.0	5.36	119.20	0.28	0.36			0.01	0.00	0.22
HUMBER	DRY	10	1.43	4.54	42	1.03	32.70	0.13	0.10			0.00	0.00	90.0
	WET	1	15.23	43.80	5.4	22.15	271.06	0.39	0.29			0.02	0.02	0.17
GANARASKA	DRY	m	1.77	1.32	3.6	60.0	8.17	0.00	0.00			0.00	0.00	0.00
	WET	0	7.15	5.06	3.2	0.15	18.05	0.17	60.0			0.00	0.00	0.63
TRENT	DRY	4	45.90	2.75	17	0.05	5.46	0.09	0.10			0.00	0.00	0.01
	WET	00	175.35		*	0	11.88	0.17	0.13			0.00	0.00	0.01
20 MILE CR.	DRY	1	0.00		42	0	11.97	0.07	0.09			0.00	0.00	0.02
	WET	0	30.65		2.4	0.34	25.69	0.32	0.36			0.02	0.00	0.12
12 MILE CR.	DRY	0	213.80	1.63	70	0.23	13.17	0.27	0.28			0.03	0.00	0.03
-	WE	D	715.51	4.26	Service.	0.37	19.56	0.34	0.28		- 1	0.05	0.00	0.03
E	WET	Z	FLOW (CMS)	S S	OIELDRIN PL	(Wg/L)	(ng/L)	ENDSLFN (mp/L)	00 (Vell)	(1/6/L)	0	200 200 200 200 200 200 200 200 200 200		100 HOR
CREDIT	DRY	60	3.59		0.10	00.0	00.0	00.00	0.02		00.00	0.00	90.0	0.02
	WET	9	19.50	0.02	90.0	00.00	00.0	0.20	0.02	00.0	0.07	0.00	0.02	0.03
HUMBER	DRY	5	1.43		0.10	00.0	0.00	0.04	0.00		0.00	0.00	0.00	0.01
	WET	1	15.23		0.07	00.0	0.00	0.12	0.03		0.00	0.00	0.00	0.03
GANARASKA	DRY	60	1.77		0.15	00.0	0.00	0.00	0.00		0.21	0.00	0.00	0.01
	WET	o	7.15		0.20	00.00	0.00	0.03	0.05		0.14	0.00	0.00	0.02
TRENT	DRY	4	45.90	0.01	0.03	00.00	0.00	0.05	0.00		0.01	0.00	0.00	0.02
	WET	60	175.35	00.00	0.03	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.02
20 MILE CR.	DRY	1	0.08	0.01	90.0	00.00	0.00	0.00	0.00		00.00	0.00	0.00	0.02
	WET	9	30.65	0.00	90.0	00.0	0.00	0.12	0.01		0.10	0.00	0.00	0.03
12 MILE CR.	DRY	0	213.80	0.02	0.11	00.0	00.0	000	0.00		00.0	0.00	0.00	0.02

Note: Shaded Value Indicates Concentration Greater Than PWQO; "0.00" Indicates "Not Detected"

Figure 4.1: Range of Daily Flows Corresponding to 1997/98 Sampling Episodes

Figure 4.2: Range of Suspended Solids Concentrations Sampled During 1997/98

Figure 4.3: Range of Total Phosphorus Concentrations Sampled During 1997/98

Figure 4.4: Range of Copper Concentrations Sampled During 1997/98

Figure 4.5: Range of Zinc Concentrations Sampled During 1997/98

Figure 4.6: Range of Benzo(a)pyrene Concentrations Sampled During 1997/98

Figure 4.7: Range of Lindane Concentrations Sampled During 1997/98

Figure 4.8: Range of Total PCB Concentrations Sampled During 1997/98

Figure 4.9: Range of Aldrin/Dieldrin Concentrations Sampled During 1997/98

Figure 4.10: Range of α-BHC Concentrations Sampled During 1997/98

Figure 4.11: Range of HCB Concentrations Sampled During 1997/98

5. CONCLUSIONS AND RECOMMENDATIONS

- The similarity in ranges of total PCB concentrations across the range of land use types at
 monitored watersheds suggests a relatively uniform tributary background for the Lake
 Ontario drainage basin which may be attributable to both atmospheric deposition of PCBs
 and its ubiquitous presence at sites throughout the drainage basin.
- 2. The general tendency for wet weather total PCB median concentrations to be lower than (or similar to) dry weather medians may be a genuine reflection of dilution by rain or it may be an artifact of the relatively small number of samples available for analysis in this study. If it is dilution, this would suggest the existence of local dry weather sources (i.e point sources);
- 3. Although concentrations of total DDT are well below the PWQO of 3.0 ng/L, the frequent detection of the p,p-DDT isomer across all monitored tributaries implies that there may still be local sources of DDT within these drainage basins. These low concentrations may reflect the current use of the organochlorine pesticide Dicofol which is manufactured from DDT (technical grade Dicofol contains less than 0.1% DDT) and which is used on a wide variety of fruit, vegetable, ornamental and field crops. It may also reflect soil residues from legal applications of DDT since detection of DDT in soil does not necessarily indicate new use 3;
- The elevated median concentrations of Mirex at the Credit River resulted from the higher frequency of detection at this location relative to other tributaries, and may be indicative of a historical source in this watershed;
- The influence of highways, urban land use and high population density is apparent with median concentrations of the BaP, Cu, Pb, and Zn at the Credit River and Humber River markedly greater than those at other sampling locations;
- 6. Further analysis of available PCB congener group data, additional event-based sampling, and examination of sediment, tissue, and atmospheric data will be required to estimate the relative significance of local sources contributing to the pervasive detection of total PCBs at concentrations greater than 1.0 ng/L in these six Lake Ontario watersheds 4;
- 7. An optimal survey design (e.g. sampling frequency, spatial distribution, list of contaminants) for future monitoring will vary depending upon specific objectives and associated data requirements. For this reason follow-up monitoring plans must be based on a thorough discussion of information needs. Priorities could include "track down" monitoring, improved event-based sampling for loading calculations, or an improved analysis of the relationships between land use and contaminant types.

California Department of Food and Agriculture 1985: Agricultural Sources of DDT residues in California's Environment.

It should be noted that trend data from Lake Ontario juvenile forage fish and sportfish monitoring indicate that exposure in the nearshore waters of Lake Ontario has declined by more than 80% over the past twenty years, and open-lake water quality data from the USEPA indicate ambient concentrations consistently below the PWQO of 1.0 ng/L.

APPENDIX A-1:

Data Listing for Station 89

Credit River

APPENDIX A-1: Data Listing for the Credit River

970724 915 336 4.0 0.440 0.014 70 2.3 611 970724 915 336 4.0 0.440 0.034 70 2.3 612 970724 1.0 3.4 2.5 0.440 0.036 2.1 6.0 6.4 6.0 6.4 6.0 6.4 6.0 6.4 6.0 6.4 6.0 6.4 6.0 6.4 6.0 6.4 6.0 6.4
915 3.96 4.0 0.400 0.014 70 2.3 CARDINATION
3.59 4.0 0.400 0.014 70 2.3 3.30 4.0 0.380 0.014 46 nd 3.30 4.0 0.380 0.014 46 nd 3.49 2.5 0.440 0.008 2.1 nd 6.07 81.0 0.700 0.076 2.2 nd 3.70 8.0 0.420 0.016 4.8 nd 4.13 0.420 0.016 4.8 nd 1.2 4.44 18.0 0.420 0.016 4.8 nd 1.2 4.45 18.0 0.420 0.016 4.8 nd 1.2 4.45 18.0 0.420 0.040 0.040 1.2 1.2 4.45 18.0 0.440 9.96 nd 1.2 1.4 1.4 0.2 1.4 0.2 1.4 0.2 1.4 0.2 1.4 0.2 1.4 0.2 1.4 0.2 1.4 <td< td=""></td<>
4.0 0.400 0.014 70 2.3 cutoes 0.02 0.044 0.008 32 nd 2.3 cutoes 0.040 0.008 32 nd 2.3 cutoes 0.008 0.014 46 nd 47.0 0.008 0.00
400 0.014 70 2.3 CROUGED CROUGED 980 0.014 46 nd nd 440 0.006 32 nd nd 700 0.0076 324 1.2 nd 720 0.016 48 nd nd 80 0.036 85 nd nd 80 0.236 724 0.2 nd 80 0.336 724 0.2 nd 80 0.336 74 0.2 nd 80 0.036 86 nd 2.3 80 nd nd 14.0 14.0 80 nd nd 14.0 14.0 80
014 70 2.3 014 46 md 008 32 md 008 21 md 009 21 md 009 22 md 009 85 md 009 009 md 009 85 md 009 009 009 md 009 009 009 md 009 009 009 009 md 009 009 009 009 009 009 009 009 009 009
70 2.3 46 md 324 nd 121 nd 48 nd 1150
23 nd 12 02 nd 03 nd 03 nd 03 nd 02 nd 02 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
TPCB(NGAL) 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.

APPENDIX A-1: Data Listing for the Credit River

APPENDIX A-1: Data Listing for the Credit River

	pu	P	P	B	Di	Di	2	2	2	2	2	2	2	9
(NGA)														
HCB (NGAL)	0.17	9	0.01	0.02	0.02	0.02	0.03	000	0.02	0.03	0.03	0.02	0.04	0.05
MIREX (NG/L)	0.35	Pu	10.01	10.01	0.69	0.03	90.0	0.18	0.09	0.02	9	pu	0.01	0.02
MTHXYCHLR (NGA)	P	Pu	2	9	pu	pu	p	92	9	0.11	9	P	0.13	Pu
P.P-DOT (NG/L)		Pu	P	00.00	90.0	P	P	P	9	90.0	0.07	pu	0.09	0.08
O.P-DDT (NGAL)		P	Pu	pu	P	Pu	Pu	pu	P	2	pu	Pu	pu	pu
p.p-DDD		9	pu	0.02	90.0	0.01	0.02	90.0	0.05	90.0	0.02	pu	Pu	0.03
TIME	915	1045	0	1430	1115	1600	1515	1145	1600	1230	1430	1115	1349	1115
DATE	970724	970810	970916	970916	970920	970925	971015	971027	971121	980108	980219	980310	960319	960327
STN	98	8	2	88	80	98	8	98	8	80	80	88	8	68

APPENDIX A-2:

Data Listing for Station 90

Humber River

APPENDIX A-2: Data Listing for the Humber River

2		7.18	5.99	80.5		4.63	8.8	9.26	5.91	2.60	6.17	22.40	2.75	1.16	2		5.3	7	9.1	4.2	23.3	3.7	;	5	5.4	1.7	8.6	5.4	
CR(UGAL)															TPCB(NG/														
CD(NGV)		2	2	0.3	1	2 ;	0.3	2	2	P	Pu	0.2	9.0	0.2	ZN(UG/L)		25.4	2.65	57.20	6.76	98.00	3.56	36.20	20 60	30.30	45.00	46.40	97.10	36.00
AL(UGAL)	20 000	20.00	90.00	633.00	164.00	00.00	00:100	38.30	282.00	331.00	1090.00	1530.00	737.00	1070.00	PB(UG/L)	1	2	2	0	2	11	2	7			• ;	= 1	8	•
TP(MGAL)	200		0.03	0.20	0.03	200	200	500	0.10	0.02	0.25	0.79	0.34	0.82	NI(UG/L)	1	2	2	•	2	10	2	•	67	•		= ;	8	2
I KN(MG/L)	0.36	***	*	1.16	0.54	0.62	0.38	95.5	200	\$	0.10				MN(UGAL)	28 90	25.00	0.47	189.00	25.30	227.00	13.90	135.00	68.40	181.00	402 00	110.00	3	322.00
SO(MOLL)	16.50	7 60	3	125.00	11.50	153.00	0006	84.00	23 60	448.00	405.00	230.00	239.00	EEA ICA	(100)	181	124	-	0071	212	1840	151	1250	573	1850	2840	050		36
(200)	1.47	1.20		97.0	1.97	6.01	1.39	7.63	3.23	22.30	62.60	12.80	9 69	CUMIGAL		2.10	1.74	13.80	9 6		18.70	2.29	9.30	11.30	10.70	14.10	17.70	96.0	2.54
	1230	1700	1000		087	1330	1115	1330	1530	1311	1220	1455	1230	TIME		1230	1700	1020	1230		200	0	1330	1530	1311	1220	1466	1230	-
	970724	810809	970821	970000	9000/6	970910	971016	971027	971121	980108	980219	980319	980327	DATE		970724	970609	970821	97000A	970010	97.00		1701/8	971121	90109	980219	980319	980327	
	8	8	8	8	3	8	8	8	8	8	8	8	8	2		8	8	8	8	8	8	8 8	3 8	8	8	8	8	8	

NOTE: unfiltered lotal mercury results were all below the detection limit of 0.02 µg/L and have not been included in this table wet weather flows are shown in bold

APPENDIX A-2: Data Listing for the Humber River

DATE TME BAP (NGL) TPAH(NGL) BHC(NGR) LINDAME HEPTACHLR ALDRIN HPTCHLR 970724 1230 1.24 42.8 0.12 0.10 nd nd nd 970905 1700 0.75 29.9 nd nd nd nd nd 970906 1700 0.75 29.9 nd nd nd nd nd 970906 1700 0.75 29.9 nd nd nd nd nd 970906 1700 0.61 130.3 0.25 0.40 nd nd nd nd 970906 1700 0.61 130.3 0.23 0.30 nd	2		8	8	8	8	8	8	8	8	8	8	8	8	2		8	8	8	8	8	8	8	8	8	8	8	8
SAP (NGL) TPAH(NGL) EBHC(NGL) LINDANE HEPTACHLR ALDRIN NGL) EBAP (NGL) NGL) EBAP (NGL) NGL) EBAP (NGL) NGL) EBHC(NGL) LINDANE HEPTACHLR ALDRIN NGL) NGCL) NGCCL) NGCCCL) NGCCCL) NGCCCL) NGCCCL) NGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	DATE																970724	970809	970821	906026	970910	971016	971027	971121	980108	980219	980319	980327
NH(NGIL) #BHC(NGIL) LINDANE HEPTACHLR ALDRIN FIGURAL) CNGIL)	TIME		1230	1700	1020	1230	1330	1115	1330	1530	1311	1220	1465	1230	TIME		1230	1700	1020	1230	1330	1115	1330	1530	1311	1220	1465	1230
NH(NGIL) #BHC(NGIL) LINDANE HEPTACHLR ALDRIN FIGURAL) CNGIL)	BAP (NGAL)		124	0.75	30.7	1.89	7.86	0.81	5.50	6.20	11.41	32.4	87.5	13.6	9-CHLRDNE	(NG/L)	2	2	0.09	90.0	4.0	2	0.01	0.02	90.0	0.02	0.09	2
NGAL	TPAH(NG/L)		42.8	29.9	498.9	32.7	1303.8	13.0	146.2	187.8	271.1	532.7	1878.7	255.8	a-ENDSLFN	(NGV)	0.10	p	0.41	0.04	0.69	0.04	0.42	90.0	0.24	0.15	0.17	0 10
HEPTACHLR ALDRIN MACH MCAL) MACH MCAL MAC	8-BHC(NGA)		0.12	2	0.25	0.21	0.35	0.13	0.88	0.38	0.42	0.39	0.45	0.21	a-CHLRDNE	(NG/L)	0.04	90.0	0.15	0.03	0.44	90.0	0.03	2	0.04	90.0	0.14	*
(NGL) and	LINDANE	(NGV)	0.10	2	0.40	0.32	0.30	2	2	0.34	0.22	0.28	0.31	0.29	DIELDRIN	(NG/L)	0.13	2	0.18	90.0	0.44	0.10	90.0	0.04	0.11	90.0	0.00	200
	HEPTACHLR	(NGV)	2	2	2	2	2	5	2	5	2	2	2	2	BOD-drd	(NG/L)	5	2	2	2	2	2	5	5	0.01	0.03	2	1
HPTCHLR EPXDE(NGL) nd 0.06 0.07 nd 0.02 0.02 0.02 0.03 0.04 nd 0.44 nd 0.64	ALDRIN	(NG/L)	2	2	2	2	2	2	2	2	2	2	2	2	ENDRIN	(NG/L)	pu	2	2	2	2	2	2	0.04	2	2	2	7
	HPTCHLR	EPXDE(NG/L)	2	2	90.0	10.0	2	0.02	2	0.02	0.03	0.02	20.0	2	D-ENDSLFN	(NGAL)	90.0	2	97.0	2	9.0	90.0	0.38	0.02	0.24	2	2	cic

APPENDIX A-2: Data Listing for the Humber River

STNW DATE TIME PLP-DOD OLP-DOT PLP-DOT MATHKYCHLIR MIREX HCB OCS 90 \$70724 1230 nd nd nd nd nd nd nd 90 \$70809 1700 nd nd nd nd nd nd 90 \$70806 1230 nd nd nd nd nd nd 90 \$70806 1330 nd nd nd nd nd nd 90 \$71027 1330 nd nd nd nd nd nd 90 \$71027 1330 nd nd nd nd nd nd nd 90 \$71027 1330 nd nd nd nd nd nd nd 90 \$70029 131 nd 0.11 nd 0.03 nd nd nd 90 \$60039 12														
DATE TME p.p-DDD o.p-DDT p.p-DDT MTHYYCHLR MIREX 970724 1230 nd nd nd nd nd 970621 1230 nd nd nd nd nd 970626 1230 nd nd nd nd nd 970627 1330 nd nd nd nd nd 971027 1330 nd nd nd nd nd 980108 1311 nd nd nd nd nd 980108 1311 nd nd nd nd nd 980108 1311 nd nd 0.02 nd nd 980108 1311 nd nd 0.02 nd nd 980108 1311 nd nd 0.01 nd nd 980118 1455 0.11 nd 0.11 nd nd 980118	SOC	(NGV)	2	2	2	2	2	2	2	5	2	2	2	2
DATE TME p.p-DDD o.p-DDT MTHKYCHLR Ind 970724 1230 nd nd nd nd 970621 1230 nd nd nd nd 970602 1700 nd nd nd nd 970602 1230 nd nd nd nd 971016 1115 nd nd nd nd 971027 1330 nd nd nd nd 971121 1530 nd nd nd nd 980108 1311 nd nd nd nd 980108 1311 nd nd nd nd 980108 1311 nd nd 0.11 nd 980219 1220 0.10 nd 0.11 nd 980327 1230 0.01 nd 0.01 nd	HCB	(NG/L)	0.03	2	90.0	0.01	0.05	0.01	0.03	0.03	0.03	0.23	90.0	0.02
DATE TME p.p-DDD 0.p-DDT PM-DDT PM-DDT <td>MIREX</td> <td>(NGV)</td> <td>2</td> <td>2</td> <td>2</td> <td>pu</td> <td>2</td> <td>5</td> <td>5</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td>	MIREX	(NGV)	2	2	2	pu	2	5	5	2	2	2	2	2
DATE TME p.p-DDD 0.p-DDT p.p-DDT 970724 1230 nd nd 970809 1700 nd nd 970806 1230 nd nd 970910 1330 nd nd 971027 1330 0.03 nd 980108 1311 nd nd 980219 1220 0.10 nd 980227 1230 0.11 nd 980327 1230 0.11 nd 980327 1230 0.01 nd	MTHKYCHLR	(NGV)	2	2	2	5	5	5	2	5	2	2	0.11	2
OATE TIME p.p-DDD (NGAL) 970724 1230 md 970809 1700 md 970801 1020 0.30 970906 1230 md 971016 1115 md 971121 1530 md 980219 1220 0.10 980319 1456 0.11	T00-4,4	(NGV)	2	9	2	0.03	2	9	2	5	0.02	0.10	0.31	2
(NGAL) 970724 1230 970924 1230 970909 1700 970906 1230 9710910 1115 971121 1530 971121 1530 990108 1311 990019 1220 990319 1455	100-q.º	(NG/L)	2	B	2	P	2	2	2	2	2	2	2	2
970724 970809 970821 970810 971027 971027 971121 980108 980319	000-0'd	(NGV)	2	5	0.30	2	2	5	0.03	5	5	0.10	0.11	0.01
	TIME		1230	1700	1020	1230	1330	1115	1330	1530	1311	1220	1455	1230
88888888888			970724	82000	970621	908046	970910	971018	971027	971121	960106	960219	980319	960327
			8	8	8	8	8	8	8	8	8	8	8	8

APPENDIX A-3:

Data Listing for Station 91

Ganaraska River

APPENDIX A-3: Data Listing for the Ganaraska River

T) AL(UGAL) CD(UGAL)				105.00	39.20		69.60	0.30 567.00 nd		0.31 456.00 nd	0.11 10.00 nd	_	L) PB(UGA) ZN(UGA)	nd nd 1.62	nd nd 121	nd nd 2.81	nd nd 6.15	nd nd 1.32	nd nd 3.39	nd nd 1.18	nd nd 5.96	4 nd 5.08	36 nd 9.66	37 nd 1.07	40.00
TROY(MGAL) TP(MGAL)	0.24	0.22	0.66	0.46	0.22	09:0	0.36	1.44	96.0	1.16	1.16	1.36	MN(UGAL) NI(UGA	14.80	13.60	46.80	51.10	15.50	68.60	26.40	143.00	79.10	90.20	0.50	117.00
SS(MGL)	4.00	9:00	36.50	28.50	5.00	90.50	17.50	127.00	72.50	134.00	33.50	108.00	FE(UGA.)	47.3	2.2	236	8	102	411	149	293	110	877	20	730
FLOW (CMS)	1.77	1.62	979	7.16	2.11	7.80	4.08	19.20	8.62	7 (00%)	6.78	16.50	cu(uou)	15.0	0.50	1.30	2.01	0.62	1.07	0.50	1.61	1.30	1.62	0.67	1.82
1	1500	1400	1100	1400	1540	1520	1400	336	1365	1320	1330	1030	TIME	1500	1400	1100	1400	1540	1520	1400	336	1366	1320	1330	1030
	970724	870808	110010	970929	971020	971029	971121	960108	960219	980310	960320	980327	DATE	970724	810808	970911	970929	971020	971029	971121	960106	980219	960310	980320	960327
	5	5	5	2	5	2	5	5	2	5	5	2	E.	2	5	5	2	2	2	5	2	5	5	2	5

NOTE: unfiltered total mercury results were all below the detection limit of 0.02 µg/L and have not been included in this table wet weether flows are shown in bold

APPENDIX A-3: Data Listing for the Ganaraska River

HPTCHLR	EPXDE(NGAL)	2	2	. 2			2 2		200	100	2	2	PENDSIFN	(NGAL)	000	8	200	2	2	900	2	2	000	90'0	2
ALDRIN	(NGV)	2	2	2			2 2		2	. 5	. 2	2	ENDRIN	(NG/L)	2	2	100	9	2	2	2	2	2	2	2
HEPTACHLR	(NGV)	2	2	8	2	2	2	1	2	2	2	2	900-d.q	(NGA)	2	2	2	2	2	2	2	0.03	0.02	8	2
LINDANE	(NGV)	90.0	5	90'0	000	2	0.12	2	0.00	2	0.17	0:30	DIELDRIN	(MG/L)	0.17	0.15	0.23	0.12	0.00	0.07	0.03	0.62	0.18	0.32	0.59
*-BHC(NG/L)		90.0	5	0.06	0.04	2	0.19	0.07	0.14	0.25	0.28	0.25	a-CHLRDNE	(NGA)	2	2	2	0.01	0.04	2	0.01	2	2	2	2
TPAH(NG/L)		12.0	8.2	57.2	6.5	2.1	10.5	16.3	20.8	5.7	26.9	25.1	a-ENDSLFN	(NGAL)	0.03	2	90.0	0.03	2	90.0	5	5	90.0	90.0	2
BAP (NGA.)		0.00	0.12	0.37	0.19	2	2	0.11	0.25	0.22	5	5	9-CHLRDNE	(NGV)	2	2	2	2	2	2	2	2	2	2	2
TME		1500	1400	1100	1400	1540	1520	1400	336	1365	1330	1030	TIME		1500	1400	1100	1400	1540	1520	1400	336	1355	1330	1030
DATE		970724	970809	970911	970929	971020	971029	971121	90108	980219	960320	960327	DATE		970724	970809	970911	970929	971020	971029	971121	980108	980219	960320	980327
STS.		5	2	2	5	5	5	5	5	5	5	5	STA		5	5	5	5	5	5	5	5	5	5	5

APPENDIX A-3: Data Listing for the Ganaraska River

SOC	(MG/L)	2	2	2	2	2	2	2	8	2	2	8
HCB	(NG/L)	0.03	2	0.02	0.02	0.01	0.01	0.02	0.01	0.02	0.01	0.01
MIREX	(MG/L)	2	2	2	0.01	2	10.0	0.02	0.00	2	0.00	9
MTHXYCHLR	(NG/L)	2	2	2	B	2	2	2	90.0	2	2	2
T00-4,4	(NG/L)	0.21	0.43	0.15	0.26	2	2	0.13	0.57	0.42	2	2
TOO-d'o	(NGA)	P	P	P	P	2	2	P	2	5	2	2
000-4'4	(NGV)	0.13	2	0.16	0.27	2	0.0	90.0	2	90.0	0.03	90.0
TIME		1500	1400	1100	1400	1540	1520	1400	336	1355	1330	1030
DATE		970724	809046	970911	970929	971020	971029	971121	901096	960219	960320	980327
STIME		5	5	5	5	5	5	5	5	5	5	5

APPENDIX A-4:

Data Listing for Station 92

Trent River

APPENDIX A-4: Data Listing for the Trent River

CHINGL	3.	6	50	1	2	0	4.8	80	2	0	0	0	NG/L)	63	4	1	2	*	60	2.8	NO.	1	•	-	WO.
3													TPCB(
CO(DGL)	2	14.0	0.5	0.5	0.5	0.3	0.7	0.9	8	2	2	2	ZN(UG/L)	2.43	3.97	1.80	3.06	3.18	2.39	1.81	4.18	3.04	1.61	3.56	1.58
ALIUGAL	14.20	13.90	10.00	11.30	15.20	23.60	13.50	12.80	160.00	34.00	12.40	27.90	PB(UGAL)	5	2	5	8	2	8	2	2	2	5	2	5
HICK	0.03	0.03	0.02	0.02	0.02	0.02	0.01	0.01	90.0	0.02	0.02	0.02	NI(UGA.)	5	2	2	5	2	2	5	2	2	23	22	25
I PON(MIGHL)	0.44	0.46	0.86	0.44	0.50	0.50	0.50	0.42	0.60	0.40	0.38	0.34	MN(UGV.)	14.70	12.60	0.50	9.89	8.86	19.00	12.20	8.01	48.40	11.70	5.10	7.31
SS(MOL)	1.50	3.00	2.00	2.00	2.00	4.00	2.00	2.00	16.50	4.50	11.00	8.00	FE(UGA)	8	39.4	82	35.6	43.1	51.7	58.7	34.4	234	88.4	48.2	59.3
(cms)	28.8	37.8	54.0	58.2	123.5	74.3	79.5	123.7	341.0	319.0	227.0	287.0	CU(UGAL)	0.50	990	0.67	0.75	1.35	1.00	0.76	1.36	0.78	0.68	0.67	0.65
	1800	1200	1500	1100	1400	1230	1415	0	1700	1428	1500	1425	TIME	1800	1200	1500	1100	1400	1230	1415	0	1700	1428	1500	1425
1	970724	970809	970822	970911	971001	971029	971029	971121	960108	960303	960320	980327	DATE	970724	970809	970822	970911	100178	971029	971029	971121	980108	980303	980320	980327
2	8	8	2	8	8	8	8	8	8	8	8	8	2	8	8	85	8	8	8	8	8	2	8	85	8

NOTE: unfiltered total mercury results were all below the detection limit of 0.02 µg/L and have not been included in this table wet weather flows are shown in bold

APPENDIX A-4: Data Listing for the Trent River

HPTCHLR	EPXDE(NG/L)	0.13	10.0	5	2	2	3	2	2	2	0.01	2	2	D-ENDSLFN	(NGA)	0.06	0.00	2	2	2	92	0.02	2	P	90.0	0.04	2
ALDRIN	(NG/L)	2	2	2	2	2	2	2	9	2	2	2	2	ENDRIN	(NG/L)	0.27	pu	2	Pu	9	2	2	Pu	2	2	Pu	B
HEPTACHLR	(NGV)	2	2	8	2	2	2	2	9	2	2	2	2		(NGV)	2	2	2	9	2	9	2	B	10.0	2	2	2
LINDANE	(NGV)	0.22	0.09	60.0	0.12	0.11	0.12	0.11	0.14	0.17	0.11	0.17	0.15	DIELDRIN	(NGV)	0.23	0.03	0.03	0.02	90.0	0.02	0.01	0.02	90.0	0.03	90'0	90'0
#-BHC(NG/L)		0.13	90.0	90.0	0.11	0.14	90.0	0.13	0.19	0.22	0.14	0.22	0.19	a-CHLRDNE	(NGV)	0.07	2	0.02	000	0.01	2	0.01	2	2	2	2	9
TPAH(NGL)		5.8	4.8	15.8	52	1.6	10.8	4.9	6.3	26.7	22.5	13.0	21.4	a-ENDSLFN	(NGV)	0.16	0.01	0.01	10.01	2	2	0.02	2	2	0.09	0.03	0.02
BAP (NGA.)		2	0.10	2	0.27	P	0.12	2	2	99'0	2	5	0.43	9-CHLRDNE	(NGV)	0.10	2	5	10.01	2	2	2	2	2	2	2	pu
TIME		1800	1200	1500	1100	1400	1230	1415	0	1700	1428	1500	1425	TIME		1800	1200	1500	1100	1400	1230	1415	0	1700	1428	1500	1425
DATE		970724	970809	970822	970911	971001	971029	971029	971121	980108	980303	980320	980327	DATE		970724	970909	970822	970911	971001	971029	971029	971121	90108	980303	980320	980327
STIE		8	25	85	8	85	85	8	8	85	8	28	8	STIME		85	85	8	8	8	85	8	85	85	8	85	85

APPENDIX A-4: Data Listing for the Trent River

STA

OCS (NGA)	2	2	2	2	2	2	2	2	2	2	2	8
HCB (NGL)		0.02	0.02	000	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02
MIREX (NGL)		2	2	2	2	2	2	2	00.0	P	B	2
MTHXYCHLR (NGA.)	2	2	2	8	5	5	5	2	5	2	2	8
p.p-DOT (NG/L)	0.49	0.03	2	9	5	5	P	5	0.02	0.01	0.02	2
O.P-DOT (NG/L)		2	2	5	2	2	2	P	9	9	2	9
(NGV)	0.50	2	5	2	8	2	2	2	8	0.01	B	5
TIME	1800	1200	1500	1100	1400	1230	1415	0	1700	1428	1500	1425
DATE	970724	808026	970822	970911	971001	971029	971029	971121	90108	980303	980320	980327

APPENDIX A-5:

Data Listing for Station 93

Twenty Mile Creek

APPENDIX A-5: Data Listing for Twenty Mile Creek

SS(MG/L)	8.50	1.00	2.50	6.00	7.00	4.00	2.50	4.00	77.50	299.00	279.00	109.00	349.00	FE(UGAL)	159	1.66	51.2	92.9	4.46	80.8	61.8	120	998	1030	1800	1180	1270
TKN(MG/L)	1.00	1.00	0.72	0.72	1.60	0.68	0.66	9.76	2.00	3.40	2.50	3.20	2.20	MN(UGV.)	153.00	97.30	22.30	67.40	52.60	50.40	25.00	19.00	261.00	165.00	88.40	45.20	159.00
I P(MGL)	0.16	0.15	90.0	0.07	0.16	0.09	90.0	0.19	0.39	0.98	0.76	0.76	0.91	NI(UG/L)	B	Pu	69	60	*	60	2	2	60	60	10	20	**
AL(UGAL)	118.00	71.60	38.60	77.30	82.00	86.60	34.50	94.80	852.00	2470.00	2510.00	1310.00	1520.00	PB(UG/L)	2	Pu	2	2	2	Pu	2	2	P	9	1	2	**
CD(NG/L)	P	0.2	P	2	P	92	P	2	0.8	2	Pu	Pu	Pu	ZN(UG/L)	6.45	3.02	3.03	7.73	4.66	4.28	1.54	2.00	17.70	42.30	28.40	28.20	38.00
CH(UGL)	5.58	5.31	1.33	2.15	3.53	3.69	0.50	0.50	16.6	2.43	8.08	1.50	1.37	TPCB(NG/L)	7.9	1.5	5.1	3.0	4.5	2.5	4.2	3.1	2.7	3.0	1.7	2.0	1.9

unfiltered total mercury results were all below the detection limit of 0.02 µg/L and have not been included in this table wet weather flows are shown in bold NOTE

APPENDIX A-5: Data Listing for Twenty Mile Creek

APPENDIX A-5: Data Listing for Twenty Mile Creek

	2	2	2	2	2	2	2	2	2	2	2	2	2
NGL													
		0.02	0.05	0.01	0.05	0.05	0.01	0.01	0.01	0.02	0.03	0.03	0.03
HCB (NGA)													
	2	2	2	2	2	2	2	000	0.00	0.00	2	2	2
MIREX (NGAL)													
5	2	2	2	2	P	2	2	2	P	P	2	P	2
MTHXYCHLR (NGL)													
	0.05	90.0	2	2	2	2	2	2	0.03	0.31	0.1	0.08	0.10
P.P-DDT (NGA.)													
	2	2	2	2	2	2	2	2	2	2	2	2	P
O.P-DDT (NG/L)													
	2	2	2	2	2	2	2	0.01	0.01	0.05	2	2	10.0
ODG-d'd													
TIME	006	1300	1430	1100	2300	1000	1100	0	1430	1116	1645	911	850
DATE	970725	970810	806026	970929	971004	971009	971016	971027	971122	960108	960219	980320	980327
STICE	8	83	8	8	8	8	8	8	8	8	8	88	8

APPENDIX A-6:

Data Listing for Station 94

Twelve Mile Creek

APPENDIX A-6: Data Listing for Twelve Mile Creek

3	157.00	93.80	83.70	84.80	92.90	62.70	106.00	188.00	834.00	353.00	103.00	245.00	3	2	2	2	2	2	2	2	2	2	2	2	2
AL(VGA)													PB(UG												
P(MG/L)	0.0	0.03	0.02	0.03	0.02	0.01	0.02	90.0	0.22	90.0	0.02	90.0	36	2	2	2	2	2	2	2	2	~	•	7	21
													MIC												
NA(MG/L)	0.30	0.26	0.26	0.32	0.24	0.26	0.26	0.40	0.84	0.36	0.32	0.30	UGA.)	17.50	8.42	8.67	12.20	8.08	5.75	10.50	14.90	111.00	13.00	90.9	17.50
2													M												
(HOW)	25.50	4.50	6.00	12.50	9.50	5.00	9.50	11.00	207.00	15.00	5.00	200.00	(GAL)	228	87.7	96.3	1.	85.3	6.06	175	175	507	322	112	250
o													FEC												
	189.4	85.7	218.0	216.6	213.0	214.6	213.0	134.7	228.3	218.6	218.0	208.5	3	1.63	122	1.46	4	1.20	1.26	1.62	2.08	3.97	1.84	1.53	1.8
													CUCK												
	1100	1546	1230	1400	1230	1315	1610	1430	1015	1800	1003	8	3	1100	1546	1230	1400	1230	1316	1610	1430	1015	1800	1003	88
														870726											
1	-	_	-	-	-	_	-	-	-		-	3	8		3		•		•	•		•		•	-

reute were all below the detection limit of 0.02 µg/L and have not been included in this table own in bold NOTE

APPENDIX A-6: Data Listing for Twelve Mile Creek

HETCHAR	EPXDE(NGAL)	0.16	2	100	1000	1000	900	700	0.00	0.07	900	000	900	D-ENDSLFN	(NGAL)	90.0	2	5	5	2	2	90.0	0.02	0.16	2	900	0.13
*	5	2	2	2	2	2	2	2	2	2	2	2	5	Z.	5	0.26	2	2	2	2	2	0.0	2	2	2	2	2
a de	(NGAL)													GNO	(NGA)												
HEPTACHLR	(NGA)	2	8	2	2	2	2	2	2	2	2	2	2	-	(MGAL)		2	2	2	2	2	2				2	
UNDANE	(NGV)	0.48	0.28	0.23	0.28	0.28	0.25	0.23	0.28	0.24	0.26	0.33	0.36	DIELDRIN	(NGA)	0.34	0.10	90.0	0.11	0.11	0.11	0.00	0.10	0.18	0.12	0.13	0.16
*-BHCINGL)		0.41	0.24	0.14	0.25	0.30	0.29	0.31	0.35	0.25	0.34	0.37	0.46	a-CHLRDNE	(MGM)	0.10	2	2	0.01	0.02	0.03	2	0.01	0.00	0.01	2	0.07
TPAH(NGA.)		17.7	9.3	33.8	8.1	7.6	17.0	1.6	15.9	51.0	4:0	23.2	71.3	*ENDSLFN	(NG/L)	0.20	2	0.03	90.0	0.03	0.03	0.02	0.03	90.0	5	0.04	0.16
BAP (NGA.)		0.47	0.25	070	0.12	0.26	0.00	2	2	1.52	0.18	0.56	3.11	9-CHLRDNE	(NGA)	0.15	2	2	2	2	2	2	2	90.0	0.01	5	2
TIME		1100	1546	1230	1400	1230	1315	1610	1430	1015	1800	1003	8	TIME		18	1546	1230	1400	1230	1315	1610	1430	1015	1800	1003	848
DATE		970725	970610	970909	970929	971009	971016	971027	971122	980108	960219	960320	980327	DATE		970725	970810	970909	870828	971009	971016	971027	971122	90108	960219	960320	960327
STR		3	3	3	3	3	3	3	3	2	3	3	3	STRE		3	8	8	3	*	*	3	ä	3	3	3	3

APPENDIX A-6: Data Listing for Twelve Mile Creek

ocs (NGA.)	2	2	2	2	2	2	2	2	2	2	2	2
HCB (MGAL)		0.02	0.01	0.01	10.0	0.02	0.01	10.0	0.03	0.02	0.02	200
MIREX (MGA.)	0.30	2	2	2	2	2	2	000	000	2	2	2
MTHRYCHLR (NGL)	2	2	2	2	2	2	2	2	0.02	2	2	900
P.P-DOT (NGAL)	1970	90.0	2	2	5	5	2	10.0	0.41	0.22	0.03	020
(NGAL)	2	2	2	2	2	2	2	2	2	2	2	2
ONG/L)	090	2	2	2	2	2	2	0.02	0.13	90.0	2	110
3MT	1100	1546	1230	1400	1230	1315	1610	1430	1015	1800	1003	976
DATE	970725	970610	808046	970829	97100	971016	971027	971122	90108	960219	960320	705000
	-	-		_	-	-		-				