ISUP 标准下 3D 数据的联合模型

2019.9.30

训练数据:

本次实验所用的是 ISUP 标准下的 3D 数据, 其中共 156 个案例 (97 个案例 label 为 0, 59 个 label 为 1), 经过新的 ICC 筛选后, 各提取了 3158 个特征 (平扫期 1034 个、动脉期 1090 个、静脉期 1034 个)。

方法描述:

特征选取:

我们将这些特征分成了四类,分别为形状特征(13 个)、灰度特征(19 个)、纹理特征(56 个)、变换特征(594 个)。其中变换特征我们只选取了小波变换,去除了 log-sigma 变换得到的特征。

随后,我们分别选取前两类、前三类、前四类特征作为训练数据进行训练,比较训练所得模型的结果,从而比较特征类型对结果的影响。在下文中我们将这三种特征集合成为 2kind、3kind、4kind。

数据平衡:

另外,由于数据中的 label 值分布并不平衡,label 为 1 的数据量明显较少,所以我们对这批数据进行了 smote(Synthetic Minority Oversampling Technique)算法处理。它可以对少数类样本进行分析,并根据少数类样本人工合成新样本添加到数据集中。

降维方式:

在训练过程中我们采用 PCC 的降维方式,即通过计算特征之间的皮尔逊相关系数,从 而筛去一些相关性较高的特征,从而达到降维的目的,减小模型的大小和参数量。

分析方式:

我们用方差分析的方式(ANOVA)来检验特征与 label 的相关性,从而使得显著相关的特征更加容易被提取到。

归一化:

我们对数据进行了 z-score 标准化,公式如下。

$$x^* = \frac{x - \bar{x}}{\sigma}$$

训练模型:

本次实验一共才用了四种训练模型:支持向量机(SVM)、随机森林(RF)、逻辑回归(LR)、LASSO逻辑回归(LASSO-LR)。它们的简单说明可见附录。

期态-特征类数模型训练结果:

(在进行训练时由于重新拆分了测试集,所以每个期态—特征类数模型的测试集各不相同,这使得模型的比较标准不一致,所以还需要重新训练。不过这对于最终的模型结果并不会造成很大的影响,因此我们还是将这个模型保存下来,并将其展示,从而对最终的分类效果有个大致的估计)

对于平扫期、动脉期、静脉期,我们分别对 2kind、3kind、4kind 特征集进行训练,在经过观察后,我们选出了每个期态—特征类数中的最佳模型,如表 1 所示。

其中'Model'一栏中,表示的是最佳模型的模型类别和特征数(exp: Rf13 表示使用的是随机森林(RF)模型,选取特征数为 13)。

特征类数	2kind			3kind				4kind				
模型和 AUC 值	Model	train	Val	Test	Model	train	Val	Test	Model	train	Val	Test
平扫期	Rf13	1.000	0.902	0.858	Rf7	1.000	0.925	0.761	Rf5	1.000	0.890	0.728
动脉期	Rf12	1.000	0.855	0.845	Rf8	1.000	0.820	0.920	Rf12	1.000	0.876	0.860
静脉期	Rf5	1.000	0.800	0.805	Rf11	1.000	0.847	0.820	Rf9	1.000	0.852	0.702

表 1. 最佳模型结果汇总

可以看出所选的模型都是随机森林模型,这是因为我们主要是根据验证集的 AUC 来进行选取,而随机森林的模型特点就是会产生比较严重的过拟,所以在使用交叉验证的情况下,

随机森林模型的验证集 AUC 值会偏高。

联合模型的训练结果:

(在进行归一化时不应该用测试集的标准差与平均值进行计算,这也会造成最终 AUC 的误差,不过也不会造成巨大偏差)

为了获得最终的联合模型,我们必须在同一期态的三个模型中选出一个模型作为代表。 经过比较,平扫期选择了 2kind 的 Rf13 模型,动脉期选择了 3kind 的 Rf8 模型,静脉期选择了 3kind 的 Rf11 模型。(已在表 1 中有斜体字标出)

由于随机森林模型可以输出预测概率值, 所以我们将每个期态的预测概率值输入逻辑回归模型之中, 从而得到联合模型。经过两两组合, 共获得了 4 组联合模型, 结果如表 2 所示。(其中"权重"与"期态"相对应)

期态	Train	Test	权重		
平扫+动脉+静脉	0.982	0.973	2.525, 2.525, 0.252		
平扫+动脉	0.982	0.970	2.556, 2.601		
动脉+静脉	0.949	0.962	3.656, 0.548		
平扫+静脉	0.952	0.968	3.473, 0.941		

表 2. 联合模型结果汇总

结果讨论:

- 1. 虽然在训练过程中存在两个问题,但是我认为并不会对最终结果造成过多的影响。总体而言结果相当不错,0.982 和 0.973 的测试集和训练集 AUC 可以说已经没有很大的提高空间了。
- 2. 经过比较,对于平扫期而言,只选取形状特征和强度特征便已足够;而对于动脉期和静脉期而言,加入纹理特征是更好的策略。而变换特征则相对而言并不是十分必要。由于动脉期和静脉期中存在造影剂,所以纹理特征更为重要似乎是可以解释的。
- 3. 平扫期和动脉期对于最终的分类有着更大的贡献,静脉期图像的分类效果略差。这一点

似乎也与预期的较为符合。平扫期的图像是基本;动脉期中加入造影剂后尚未经过很长时间,对于分类很有帮助;而静脉期则由于经过了较长时间,而对于不同病人,造影剂消退的程度不同,这也就导致了图像效果不太稳定。

4. 虽然静脉期的模型效果并不理想,但是加入静脉期模型依旧对联合模型有所帮助, (可以比较"平扫+动脉+静脉"和"平扫+动脉"的模型结果),只是提升效果十分有限。如 果说静脉期的模型加入会使得模型更为复杂的话,出于这方面因素,可以考虑将静脉期 模型舍去。

工作展望:

首先在保存下这个模型的同时,需要使用更加规范的方式来训练模型。如果结果差不多的话,应当使用后者作为最终模型,因为这更加便于解释。

关于如何选取最佳模型(包括如何选取期态—特征类数模型,以及如何选取期态最佳模型),还存在值得讨论的地方。接下来我会思考,是否有方法使得整个模型选取的过程更加系统规范,这样有利于解释,也便于重复。

附录:

支持向量机 (SVM):

SVM 是一种高效稳定的分类器, 其思想是建立一个最优决策超平面, 使得该平面两侧 距离该平面最近的两类样本之间的距离最大化, 从而对分类问题提供良好的泛化能力。

随机森林 (RF):

随机森林是一种有监督学习算法。就像你所看到的它的名字一样,它创建了一个森林,并使它拥有某种方式随机性。所构建的"森林"是决策树的集成,大部分时候都是用"bagging"方法训练的。

逻辑回归 (LR):

这是一种线性回归模型,即将问题构建为 y=wx+b 的形式,然后将其输入 sigmoid 函数从而得到分类结果。

LASSO 逻辑回归(LASSO-LR):

即在逻辑回归的基础上,针对特征数量添加一个惩罚项,从而减少最终选取的特征数量,简化模型