1 Logic

- Sentences
 - not ¬
 - \bullet and \wedge
 - \bullet or \vee
 - \bullet tautology a = a
 - contradiction $a \neq a$
- Truth tables
- Laws of equivalence
 - Commutative $a \wedge b \equiv b \wedge a$
 - Associative $(a \wedge b) \wedge c \equiv a \wedge (b \wedge c)$
 - Distributive $a \wedge (b \vee c) \equiv (a \wedge b) \vee (a \wedge c)$
 - De Morgan's $\neg(a \land b) \equiv \neg a \lor \neg b$
- Proof of De Morgan's with truth table
- Conditional statements $a \to b \equiv \neg a \lor b$
 - Hypothesis
 - Conclusion
 - Contrapositive $a \to b \equiv \neg b \to \neg a$
 - Converse $b \to a$
 - Inverse $\neg a \rightarrow \neg b$
 - Bi
conditional statements $a \leftrightarrow b$
- Arguments
 - Modus ponens (method of affirming) $a \to b$ a :: b
 - Modus tollens (method of denying) $a \to b \quad \neg b \quad \therefore \neg a$

2 Predicates and Quantified statements

- \bullet Predicate
 - Domain $D = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{1, \dots, 9\}$
 - Set-builder $\{x \in D \mid P(x)\}$
 - Truth set $\{1,\ldots,4\}$
- Quantifiers
 - \bullet Universal quantifier \forall
 - \bullet Existential quantifier \exists
- Universal Conditional Statement $\forall x, P(x) \rightarrow Q(x) \equiv P(x) \Rightarrow Q(x)$
- Arguments
 - Modus ponens $\forall x, P(x) \to Q(x)$ P(a) $\therefore Q(a)$
 - Modus tollens $\forall x, P(x) \to Q(x) \quad \neg Q(a) \quad \therefore \neg P(a)$
- Multi-quantified statements $\forall x \in D, \exists y \in E, P(x, y)$
- Laws of multi-quantified statements
 - De Morgan's $\neg(\forall x \in D, \exists y \in E, P(x, y)) \equiv \exists x \in D, \forall y \in E, \neg P(x, y)$

3 Sequences, Induction and Recursion

- \bullet Sequences
 - Definition D: f(x)
 - Properties
- Summations \sum
- Telescopic sums $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{1} \frac{1}{n+1}$
- Product ∏
- Theorems
 - Adding and removing a final term

•
$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} a_k + b_k$$

•
$$c \dot{\sum}_{k=m}^{n} a_k = \sum_{k=m}^{n} c \dot{a}_k$$

•
$$\prod_{k=m}^{n} a_k + \prod_{k=m}^{n} b_k = \prod_{k=m}^{n} a_k + b_k$$

- Factorials n!
- Combinations $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Induction
 - $a, k \in \mathbb{Z}$
 - If P(a)
 - and $\forall k \geq a, P(k) \rightarrow P(k+1)$
 - then $\forall n \geq a, P(n)$
- Prove sum of first n integers by induction
- Recursion

4 Regular Expressions and Finite-state Automata

- Chomsky
 - Regular languages $A \to a A \to a B$
 - Context-free languages $A \to \alpha$
 - Context-sensitive languages $\alpha A\beta \to \alpha \gamma \beta$
 - Turing-complete languages $\alpha A\beta \rightarrow \gamma$
- Formal languages
 - Alphabet Σ
 - String over Σ
 - Language L over Σ
- Combining languages
 - Concatenation $LL' = \{xy \mid x \in L \land y \in L'\}$
 - Union $L \cup L' = \{x \mid x \in L \lor x \in L'\}$
 - Kleene closure $L^* = \{x \mid \text{is a concatenation of strings in L}\}$
- Regular Expressions
 - Base/terminals $\emptyset, \epsilon, x \mid x \in \Sigma$
 - Recursion/non-terminals
 - \bullet (rs) r concatenated with s
 - $(r \mid s)$ r or s
 - r^* $r^* \in \{\epsilon, r, rr, rrr, \ldots\}$
- Finite-state automaton
 - Input alphabet Σ

 - Initial state $s_0, s_0 \in S$
 - \bullet Final states F
 - Next-state function $N: S \times \Sigma \to S$
- Eventual-state function $N^*: S \times \Sigma^* \to S$
- Draw $a(b|cd)^*e$
- $\bullet\,$ Regular languages
 - can be defined by a regular expression
 - can be accepted by a finite-state automata

5 Set Theory

- Notation
 - Set-roster notation $A = \{1, 2, 3\}$ $B = \{10, 11, 12, \dots, 119\}$
 - Set-builder notation $M = \{x \in S \mid P(x)\}$
 - The empty set $\emptyset = \{\}$
 - Powerset $\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$
- Operations
 - Membership $e \in M$
 - Intersection $A \cap B$
 - Union $A \cup B$
 - Difference A B
 - Complement A^C
- Subset $A \subseteq B \Leftrightarrow \forall x \in A, x \in B$
 - Not a subset $A \not\subseteq B \Leftrightarrow \exists x \in A, x \notin B$
 - Proper subset $A \subset B \Leftrightarrow \forall x \in A, x \in B \land \exists x \in B, x \notin A$
 - Equality $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$
 - Transitivity $A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$
- Disjoint sets $A \cap B = \emptyset$
 - Partitions $\{A_1, A_2, \dots, A_n\}$ of set A
 - $A = \bigcup_{i=1}^n A_i$
 - $\forall a, b \in \{1, 2, \dots, n\}, A_a \cap A_b = \emptyset \lor a = b$
- Laws
 - Commutative $A \cap B = B \cap A$
 - Associative $(A \cap B) \cap C = A \cap (B \cap C)$
 - Distributive $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - De Morgan's $(A \cup B)^C = A^C \cap B^C$
- Ordered pair $(a, b) = \{\{a\}, \{a, b\}\}$
- Cartesian product $\begin{array}{c} A \times B = \{(a,b) \mid a \in A \wedge b \in B\} \\ A \times B \times C = \{(a,b,c) \mid a \in A \wedge b \in B \wedge c \in C\} \end{array}$
- Relations $R \subseteq \{(x,y) \in A \times B\}$
- Functions $\forall x \in A, \exists y \in B, (x, y) \in F$ $\forall x \in A \land y \in B \land z \in B, ((x, y) \in F \land (x, z) \in F) \rightarrow y = z$

6 Relations

- Definition
 - When R is a relation x R y
 - $R \subseteq \{(x,y) \in A \times B\}$
 - $R^{-1} = \{(x, y) \in B \times A \mid (x, y) \in R\}$
- Properties
 - Reflexivity $\forall x \in A, (x, x) \in R$
 - Symmetry $\forall x, y \in A, (x, y) \in R \rightarrow (y, x) \in R$
 - Transitivity $\forall x, y, z \in A, (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$
 - Equivalence relation
- Relation induced by partition $x R y \Leftrightarrow \exists A_i, x \in A_i \land y \in A_i$
 - Reflexive (x R x)

$$\exists A_i, x \in A_i \land x \in A_i$$
 by definition of $x R x$

• Symmetric $(x R y \rightarrow y R x)$

$$\exists A_i, x \in A_i \land y \in A_i$$
 by definition of $x R y$

• Transitive $(x R y \land y R z \rightarrow x R z)$

$$\begin{split} &\exists A_i, x \in A_i \wedge y \in A_i \text{ by definition of } x \, R \, y \\ &\exists A_i, y \in A_i \wedge z \in A_i \text{ by definition of } y \, R \, z \\ &A_i \cap A_j = \emptyset \vee A_i = A_j \\ &y \in A_i \wedge y \in A_j \Leftrightarrow y \in A_i \cap A_j \Rightarrow A_i \cap A_j \neq \emptyset \\ &A_i = A_j \Rightarrow x \in A_i \wedge z \in A_i \text{ the definition of } x \, R \, z \end{split}$$

- Antisymmmetry
 - Anitsymmetric $\forall a, b \in A, a \ R \ b \land b \ R \ a \rightarrow a = b$
 - Not antisymmetric $\exists a, b \in A, a \mathrel{R} b \land b \mathrel{R} a \land a \neq b$
- Partial ordering
 - Reflexive, antisymmetric, transitive
 - $a \in A$ is maximum if: $\forall b \in A, b \leq a \lor b \nleq a$
 - $a \in A$ is greatest if: $\forall b \in A, b \leq a$
 - $a \in A$ is minimum if: $\forall b \in A, a \leq b \lor a \nleq b$
 - $a \in A$ is least if: $\forall b \in A, a \leq b$

7 Static Analysis

- Static analysis
 - Soundness: A static analysis is said to be sound if it rejects all faulty programs.
 - Completeness: A static analysis is said to be complete if all correct programs passes.
 - Process
 - \bullet Pre- and Post-conditions
 - "Run" code and update state
 - Compare state with postcondition
- Hoare logic
 - Hoare tripple $\{P\}C\{Q\}$
 - Skip commands $\{P\}skip\{P\}$

 - Selection $\{B \land P\}S\{Q\}, \{\neg B \land P\}T\{Q\}$ $\{P\}if\ B\ then\ S\ else\ T\ endif\{Q\}$
 - Iteration $\{B \land P\}S\{P\}$ $\{P\}while\ B\ do\ S\ done\{\neg B \land P\}$
- Design by contract
 - Idea
 - What does contract expect?
 - What does contract guarantee?
 - What does contract maintain?
 - Content
 - Input values and types
 - Return values and types
 - Error/Exception condition values and types
 - Side effects
 - Pre- and Post-conditions
 - Invariants