estimate functions and definite integrals by Taylor approximations and the ASET. Also review interval and radius of convergence.

Reference: §11.10, 11.11

Note For these problems, you should use a handy theorem that we'll mention in class on Friday. Here it is, in case you are starting early (see also p. 775 of the textbook):

Alternating Series Estimation Theorem (ASET): If $\sum_{n=0}^{\infty} (-1)^n a_n$ is an alternating series that passes the three conditions of the alternating series test (a_n) positive, a_n decreasing. $a_n \to 0$), then the error of partial sum $\sum_{n=1}^{m} (-1)^n a_n$ is less than a_{n+1} .

The "error of the partial sum" means the difference between it and the sums. Less formally: the error of any partial sum is less than the absolute value of the next term in the series.

- 1. Use Series to Estimate $\frac{1}{e}$ with error less than $\frac{1}{20}$. Justify.
- 2. Use Series to Estimate $\frac{1}{e}$ with error less than $\frac{1}{100}$. Justify. (Can reuse work from 1)
- 3. Use Series to Estimate $\frac{1}{e}$ with error less than $\frac{1}{500}$. Justify. (Can reuse work from 1)
- 4. Use Series to Estimate $\sin(1)$ with error less than $\frac{1}{1000}$. Justify.
- 5. Use Series to Estimate $e^{-\frac{1}{3}}$ with error less than $\frac{1}{100}$. Justify.
- 6. Use Series to Estimate $\arctan\left(\frac{1}{2}\right)$ with error less than $\frac{1}{100}$. Justify.
- 7. Use Series to Estimate $\int_0^1 x \ln(1+x^3) dx$ with error less than $\frac{1}{20}$. Justify.
- 8. Use Series to Estimate $\int_0^1 x \sin(x^2) dx$ with error less than $\frac{1}{1000}$. Justify.

Review: Find the Interval and Radius of Convergence for each of the following.

9.
$$\sum_{n=1}^{\infty} (n!)^2 (3x - 7)^n$$

9.
$$\sum_{n=1}^{\infty} (n!)^2 (3x-7)^n$$
 10.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (5x-2)^n}{n^3 8^n}$$
 11.
$$\sum_{n=1}^{\infty} \frac{(x-7)^n}{n! \sqrt{n}}$$

11.
$$\sum_{n=1}^{\infty} \frac{(x-7)^n}{n! \sqrt{n}}$$