Chemical Process Safety

Chapter 7: Prevention of Fires & Explosions

Design Criteria

- 1. Prevent flammable mixtures.
- 2. Reduce ignition sources.

Need to remember inherently safer design, that is, to reduce inventories, substitute with less dangerous materials, and reduce operating T and P.

Inerting and Purging

Purpose: To reduce the oxygen or fuel concentration to below a target value using an inert gas. Can use nitrogen, carbon dioxide, others. Nitrogen is the most common.

Reduce oxygen concentration to a safe level.

Inerting Procedures

- 1. Vacuum Purge evacuate and replace with inert.
- 2. Pressure Purge pressurize with inert, then relieve pressure.
- 3. Sweep Purge continuous flow of inert.
- ${\bf 4. \ Siphon \ Purge fill \ with \ liquid, then \ drain \ and \ replace \ liquid \ with \ inert.}$
- ${\bf 5.\ Combined:\ pressure\ and\ vacuum\ purge,\ others.}$

Vacuum Purge - 1

Moles oxygen constant

At A:
$$n_{OXY} = y_o \left(\frac{P_t V}{R_g T} \right)$$
 $y_1 = \frac{n_{OXY}}{n_{TOT}} = \frac{y_o}{N_{TOT}}$

 $y_1 = \frac{n_{OXY}}{n_{TOT}} = \frac{y_o \left(\frac{P_L V}{R_g T}\right)}{\frac{P_H V}{R_g T}} = y_o \left(\frac{P_L}{P_H}\right)$

Vacuum Purge - 2

At end of 2nd cycle:

$$y_2 = y_1 \left(\frac{P_L}{P_H}\right) = y_o \left(\frac{P_L}{P_H}\right) \left(\frac{P_L}{P_H}\right) = y_o \left(\frac{P_L}{P_H}\right)^2$$

At end of jth cycle: $y_j = y_o \left(\frac{P_L}{P_H}\right)^j$ Eq. (7-6)

Total nitrogen used: $\Delta n_{N_2} = j(P_H - P_L) \frac{V}{R_v T}$ Eq. (7-7)

CM4310: Chapter 7

Purge Assumptioms

- 1. Pure nitrogen used.
- 2. Vessel is well mixed (not a bad assumption for gases).
- 3. Ideal gas law.

Pressure Purge Concentration is constant. Moles oxygen constant Faster than vacuum purge, but uses more nitrogen.

Combined Pressure / Vacuum - 1

1. Evacuate first:

Best to evacuate first - uses less nitrogen.

Combined Pressure / Vacuum - 2

2. Pressurize first:

$$y_o = y_{oxy} \left(\frac{P_O}{P_H} \right)$$

$$y_{j} = y_{o} \left(\frac{P_{L}}{P_{H}} \right)^{j}$$

Inerting with Impure Nitrogen

Let $y_{oxy} = concentration of oxygen in nitrogen.$

Then, the following equation applies:

$$y_j - y_{oxy} = \left(y_o - y_{oxy}\right) \left(\frac{P_L}{P_H}\right)^j$$

Eqn. 7-12

Sweep Purging

 $Q_{\rm v}$ C =oxygen conc. Well Stirred-Tank

Mass Balance on Oxygen: $V \frac{dC}{dt} = C_o Q_v - C Q_v$

Solution is: $Q_v t = V \ln \left[\frac{C_1 - C_o}{C_2 - C_o} \right] = \text{Total Nitrogen Volume}$

If $C_0 = 0$: $Q_0 t = V \ln \left[\frac{C_1}{C_2} \right]$ Uses lots if inert!!

Prevention of Static -3

7

Prevention of Static - 4

- 2. Be careful of:
 - Glass containers / vessels / pipes.
 - Plastic containers / vessels / pipes / pumps.
 - Low conductive liquids: benzene, toluene, xylene, heptane, hexane.
- 3. Avoid: Free fall of liquids into vessels.

Static Electrical Hazards

Question: Which item below represents the greatest static electricity hazard?

- 1. An ungrounded plastic container?
- 2. An ungrounded metal container?

Static Electrical Hazards

Answer: The ungrounded metal container represents the greatest hazard.

The charge can readily move around on the metal container and can easily cause a spark.

The static charge on the non-conductive plastic container is distributed on the surface – it is unlikely that the charge can move to a single point to create a spark.

Static Electrical Hazards

Question: Which item below represents the least static electricity hazard:

- 1. A grounded plastic container?
- 2. A grounded metal container?

Static Electrical Hazards

Answer: The grounded metal container. The charge can readily move around on the metal container and can be dissipated to ground. The plastic container is non-conductive and the charge cannot be easily removed.

Conclusion: Metal containers are preferred to eliminate static but, if used, must be grounded!

Fire Protection: Electrical Area Classification

Group 1: Locations with flammable gases or vapors.

Group 2: Locations with flammable dusts.

Group 3: Locations with flammable fibers.

Division 1: Flammable concentrations are normally present

Division 2: Flammable concentrations present only under abnormal situations. Flammable materials normally contained in the closed systems.

Fire Protection: Ventilation

For flammable materials within buildings, use 1 ft^3/ft^2 of floor area.

See Table 7-6 for qualifying details.

Fire Protection: Sprinkler Systems

Closed Head: Typically found in occupied buildings;

Open Head: Activated from a central location.

Monitor nozzles: Fixed location, but can be directed.

Water requirements: $0.25 - 0.5 \text{ gpm/ft}^2$ protected

See Table 7-7

Closed Head Sprinkler

Fire Protection: Sprinklers

Open Head Nozzle

Deluge System

Fire Protection: Monitor Nozzle

