Modelos Lineares I

Regressão Linear Múltipla (RLM): Variáveis indicadoras (*dummy*)

(35^a e 36^a Aulas)

Variável indicadora (ou dummy):

Consideremos agora o caso no qual existe alguma variável explicativa qualitativa de interesse que se deseja incluir na modelagem estatística. Variável desse tipo dão origem a variáveis indicadoras, também chamadas de variáveis binárias ou variáveis dummy.

Os modelos de regressão, cuja matriz X é composta por variáveis indicadoras (ou *variáveis dummy*), também podem ser representados por:

2

Modelo de regressão linear múltipla (RLM) com variável indicadora:

Introdução:

Representação geral:

 $Y = X \beta + \varepsilon$, tal que: $\varepsilon \sim N(0, \sigma^2 I_n)$

- Y e ε são vetores aleatórios de dimensão n;
- X é uma matriz de valores constantes de dimensão n x p;
- β é um vetor de dimensão p x 1 de parâmetros a serem estimados;
- I, é uma matriz unitária de dimensão n.

Modelo de RLM com variável indicadora:

□ Conceitos Básicos:

Variáveis quantitativas (ou *numéricas*): são aquelas variáveis que assumem valores expressos em números.

Variáveis qualitativas (ou *categóricas*): são aquelas variáveis que assumem valores expressos por categorias / atributos.

4

Modelo de RLM com variável indicadora:

☐ Conceitos Básicos:

Exemplos de variáveis qualitativas (ou categóricas):

Ex.1:

 $\textbf{Sexo} \rightarrow \text{variável qualitativa}$

Níveis da variável: masculino, feminino

Ex.2:

Autoavaliação de saúde → variável qualitativa

Níveis da variável: bom, regular, ruim

Modelo de RLM com variável indicadora:

☐ Exemplos de associações:

Exemplo 1:

Variável resposta → Salário (em R\$).

Variável explicativa (categórica) → Nível de escolaridade, sexo, faixa-etária, cargo, etc.

Exemplo 2:

Variável resposta → IMC=peso/altura² (em kg/m²).

Variável explicativa (categórica) → Sexo, faixa-etária, prática de atividade física, ingestão de energia adequada, etc.

Modelo de RLM com variável indicadora:

☐ Variáveis indicadoras (ou dummy):

Um método tradicional para discriminar os diferentes níveis de uma variável qualitativa consiste no uso de variáveis indicadoras (ou dummies).

🔎 llustração 1:

- Variável qualitativa: Sexo (masculino, feminino)
- 1 variável indicadora (ou dummy):

 $X_1 = \begin{cases} 1, & \text{se o indivíduo \'e do sexo masculino} \\ 0, & \text{se o indivíduo \'e do sexo feminino} \end{cases}$

□ Variáveis indicadoras (ou dummy):

Ilustração 2:

- Variável qualitativa: Autoavaliação de saúde (bom, regular, ruim)
- 2 variáveis indicadoras (ou dummy):
- $X_1 = \begin{cases} 1, & \text{se o indiv} (\text{duo autoavaliar seu estado de saúde como "bom"} \\ 0, & \text{se o indiv} (\text{duo não autoavaliar seu estado de saúde como "bom"} \end{cases}$
- $X_2 = \begin{cases} 1, & \text{se o indiv} \text{(iduo autoavaliar seu estado de saúde como "regular"} \\ 0, & \text{se o indiv} \text{(iduo não autoavaliar seu estado de saúde como "regular"} \end{cases}$

,

□ Variáveis indicadoras (ou dummy):

Ilustração 2 (continuação):

2 variáveis indicadoras (ou dummy): X_1 e X_2

X ₁	X ₂	Autoavaliação de saúde (X)		
1	0	Bom		
0	1	Regular		
0	0	Ruim		

Uma variável qualitativa com k=3 níveis, deve ser representada por k-1=3-1=2 variáveis indicadoras (dummy), cada uma assumindo o valor 0 ou 1.

Exemplo 1: Modelo de RLM com variável indicadora

A coordenação de um curso de graduação realizou um estudo para avaliar se a idade do aluno (X_1) e o método de ensino (X_2) do professor influenciam no desempenho dos alunos (Y) numa determinada disciplina obrigatória.

A Tabela 1 fornece essas informações para uma amostra de n=20 alunos matriculados na disciplina.

10

Aluno	Desempenho	Idade	Método de ensino	Método de ensino
1	4,544	22,5	expositiva+pratica	0
2	4,203	20,0	expositiva+pratica	0
3	5,010	25,0	expositiva+pratica	0
4	4,875	24,5	expositiva+pratica	0
5	4,792	23,5	expositiva+pratica	0
6	4,779	23,7	expositiva+pratica	0
7	5,226	26,5	expositiva+pratica	0
8	5,052	25,9	expositiva+pratica	0
9	4,558	22,1	expositiva+pratica	0
10	4,478	21,8	expositiva+pratica	0
11	3,350	22,4	expositiva	1
12	3,123	21,2	expositiva	1
13	3,752	24,8	expositiva	1
14	3,713	26,0	expositiva	1
15	3,470	24,3	expositiva	1
16	3,392	23,8	expositiva	1
17	3,213	22,4	expositiva	1
18	3,547	25,1	expositiva	1
19	3,349	23,2	expositiva	1 11
20	3,229	21,6	expositiva	1

☐ Exemplo 1 (continuação):

- a) Construa o gráfico de dispersão entre a idade do aluno e seu desempenho na disciplina, considerando o método de ensino do professor.
- b) Especifique e ajuste um modelo estatístico para avaliar o efeito da idade do aluno sobre o seu desempenho na disciplina. Calcule o coeficiente de determinação do modelo.
- c) Especifique e ajuste um modelo estatístico para avaliar o efeito da idade sobre o desempenho, levando em conta o método de ensino do professor da disciplina. Calcule o coeficiente de determinação do modelo.

12

☐ Exemplo 1 (continuação):

- d) Avalie a necessidade de se considerar o método de ensino na associação de interesse entre a idade e o desempenho. Para tanto, utilize o teste F de comparabilidade de modelos (construa a tabela ANOVA). Caso seja importante a inclusão do método de ensino, verifique se houve ou não mudança no efeito da idade do aluno no seu desempenho.
- e) Avalie a normalidade dos resíduos do modelo escolhido usando o *QQ-Plot* ou algum teste de normalidade (*Teste Kolmogorov-Smirnov ou Shapiro-Wilk*). Qual a sua conclusão?

E	Exemplo 1 – b):					
	Resultados do ajuste do modelo com idade (X ₁)					
			Model S	ummary		
	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	
	1	,358ª	(,128)	,080	,702869	
	a. Pre	edictors: (Co	nstant), Idade	e_aluno		

Exemplo 1 – c):
Modelo teórico: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$
Defina os componentes do modelo (contexto):
Y _i
X_{i1} :
X_{i2} :
eta_0 :
eta_1 :
eta_2 :
ε _i :
10

Exemplo 1 - c): Resultados do ajuste do modelo com idade (X1), levando em conta o método de ensino (X₂) Mean Square Sig. (,000ª Regression 10,121 1103,695 17 ,005 Residual (,078 10,199 Total 19 a. Predictors: (Constant), Metod_ens_D, Idade_aluno b. Dependent Variable: Desempenho_Y Unstandardized Coefficients Std. Error ,209 ,000 1,428 (Constant) 6,827 ,141 ldade_aluno Metod_ens_D ,030 -,930 -43,847 a. Dependent Variable: Desempenho_Y

Exemple	o 1 – c):						
Resultados do ajuste do modelo com idade (X_1) , levando em conta o método de ensino (X_2)							
		Model S	ummary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate			
1	,996ª	(,992)	,991	,067712			
a. Predictors: (Constant), Metod_ens_D, Idade_aluno							
				20			

Exemplo 1 – d):	
Teste de comparabilidade de modelos (Teste F pa adição de 1 variável)	rcial:
□ Hipóteses a serem testadas:	
➤ Modelo reduzido de RLS de 1 var explicativa (idade):	
➤ Modelo completo de RLM de 2 vars explicativas (idade e métor	<u>do)</u> :
21	

Exemplo 1 – d): <u>Teste de comparabilidade de modelos (Teste F paradição de 1 variável)</u>	rcial:
☐ Estatística de Teste:	
	22

Exemplo 1 – d):	
Teste de comparabilidade de modelos (Teste F pa	rcial:
adição de 1 variável)	
☐ Estatística de Teste (continuação):	
Cálculo do valor observado de F:	
	22
	23

Exemplo 1 – d):	
Teste de comparabilidade de modelos (Teste F parcial:	
adição de 1 variável)	
□ Região crítica:	
□ Tomada de decisão:	
a folilada de decisão.	
24	
24	

Exemplo 1 - d) Tabela ANOVA com a decomposição da SQReg em somas de quadrados extras:

Tabela 1: Para os dados dos desempenhos dos n=20 alunos, no caso de um modelo com 2 variáveis explicativas $(X_1 \in X_2)$:

Fonte de variação	Soma dos quadrados	gl	Quadrado médio
Regressão	SQReg(X ₁ ,X ₂)=10,121	2	QMReg(X ₁ ,X ₂)=5,060
X ₁	SQReg(X ₁)=1,306	1	QMReg(X ₁)=1,306
X ₂ /X ₁	SQReg(X ₂ /X ₁) = 8,814	1	QMReg(X ₂ /X ₁) = 8,814
Resíduos	SQRes(X ₁ ,X ₂) = 0,078	n-3=17	QMRes(X ₁ ,X ₂) = 0,0045882
Total	SQT (X ₁ , X ₂)=10,199	n-1=19	

$$f_{obs} = \frac{QMReg(X_2/X_1)}{QMRes(X_1, X_2)} = \frac{8,814/1}{0,0078/17} = \frac{8,814}{0,0045882} \approx 1.921$$

Aula prática - Exercício 1 ("Saídas"):

Exercício 1: Estudos efetuados com recém-nascidos sugerem que características sensitivas de bebês se desenvolvem em ritmos diferentes. Enquanto, a visão de formas bem definidas ocorre apenas a partir das 4-8 semanas de vida, o olfato encontra-se completamente desenvolvido ao fim da 1ª semana de vida. Para avaliar o efeito do odor materno no tempo de adormecimento de bebês, um pesquisador efetuou um estudo no qual mediu o tempo que bebês de 1 semana, de três maternidades diferentes (A→1, B→2 e C→3), demoram a adormecer.

Aula prática – Exercício 1 (continuação):

O pesquisador em seu estudo, considerou ainda dois grupos de bebês, onde em um grupo (Grupo 1- Sim) ele colocou no berço uma peça de roupa usada pela mãe e no outro (Grupo 2 - Não), foi colocado no berço uma peça de roupa usada por outra parturiente que não a mãe.

Os dados obtidos são apresentados na tabela 2 a seguir:

28

bebê	Maternidade	Peça de roupa da mãe	Tempo para adormecer (min)	
1	Α	Sim	2	
2	Α	Sim	5	
3	Α	Sim	4	
4	Α	Sim	6	
5	Α	Sim	5	
6	Α	Não	9	
7	Α	Não	7	
8	Α	Não	5	
9	Α	Não	6	
10	Α	Não	5	
11	В	Sim	3	
12	В	Sim	6	
13	В	Sim	6	
14	В	Sim	5	
15	В	Sim	5	
16	В	Não	9	
17	В	Não	7	
18	В	Não	5	
19	В	Não	6	
20	В	Não	5	

	Tabela 2 [continuação]: Dados sobre n=30 bebês de três diferentes maternidades					
(contin	uação)	B	-	-		
bebê	Maternidade	Peça de roupa da mãe	Tempo para adormecer (min)			
21	С	Sim	9	=		
22	С	Sim	7			
23	С	Sim	7			
24	С	Sim	4			
25	С	Sim	5			
26	С	Não	9			
27	С	Não	9			
28	С	Não	8			
29	С	Não	9			
30	С	Não	7	_		
				30		

Aula prática - Exercício 1 (continuação):

Considerando os dados da tabela 2, pede-se:

- a) Construa um gráfico para representar a relação das variáveis consideradas no estudo. Analise-o.
- Proponha um modelo a ser ajustado aos dados observados e represente a sua equação descrevendo os termos e variáveis do modelo no contexto do problema.
- c) Mostre todas as etapas de teste até a escolha do modelo final. Para tanto, utilize o Teste F de comparabilidade de modelos (Teste F parcial). OBS: É preciso escrever a equação de todos os modelos sob comparação, e definir as hipóteses a serem testadas, a Estatística de teste, a Região Crítica e a Tomada de decisão.

Aula prática - Exercício 1 (continuação):

- d) Com base no modelo que você selecionou, avalie se a "peça de roupa da mãe" (odor materno) e o "tipo de maternidade" influenciam no tempo em que os bebês demoram a adormecer. Interprete os resultados do ajuste do modelo (estimativas pontuais, teste de significância individual, etc.).
- e) Calcule uma medida global de qualidade do ajuste para o modelo final (interprete-a) e represente graficamente os tempos estimados para adormecer.
- f) Avalie as hipóteses de normalidade e de homocedasticidade dos erros usando a análise gráfica dos resíduos estudentizados.

Saídas - Modelo 1:

Analyze / Regression / Linear

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	47,567	3	15,856	7,283	,001ª
	Residual	56,600	26	2,177		
	Total	104,167	29			

- a. Predictors: (Constant), Peça_roupa_G1, Maternidade_2, Maternidade_1
- b. Dependent Variable: Tempo para adormecer (em minutos)

Coefficient

		Unstandardized Coefficients		Standardized Coefficients			95,0% Confider	ce Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	8,300	,539		15,406	,000	7,193	9,407
	Maternidade_1	-2,000	,660	-,506	-3,031	,005	-3,356	-,644
	Maternidade_2	-1,700	,660	-,430	-2,576	,016	-3,056	-,344
	Peça_roupa_G1	-1,800	,539	-,483	-3,341	,003	-2,907	-,693
a. D	ependent Variable:	Tempo para ado	rmecer (em min	utos)				33

Saídas - Modelo 1:

Analyze / Regression / Linear

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,676ª	,457	,394	1,475

a. Predictors: (Constant), Peça_roupa_G1, Maternidade_2, Maternidade_1

34

Saídas - Modelo 2:

Analyze / Regression / Linear

ANOVA

Mod	del	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	23,267	2	11,633	3,883	,033ª
	Residual	80,900	27	2,996		
	Total	104,167	29			

- a. Predictors: (Constant), Maternidade_2, Maternidade_1
- b. Dependent Variable: Tempo para adormecer (em minutos)

Coefficien

				Coefficients*				
		Unstandardize	d Coefficients	Standardized Coefficients			95,0% Confider	ce Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	7,400	,547		13,519	,000	6,277	8,523
ı	Maternidade_1	-2,000	,774	-,506	-2,584	,016	-3,588	-,412
	Maternidade_2	-1,700	,774	-,430	-2,196	,037	-3,288	-,112

a. Dependent Variable: Tempo para adormecer (em minutos)

35

Saídas - Modelo 2:

Analyze / Regression / Linear

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,473ª	,223	,166	1,731

a. Predictors: (Constant), Maternidade_2, Maternidade_1

36

Aula prática - Exercício 2:

Exercício 2: Considere os dados de duração de aleitamento materno exclusivo (em dias) para n=36 mães, classificadas segundo a sua escolaridade e classe social.

Faça um gráfico das durações médias de AME obtidas para cada combinação de tratamentos (escolaridade e classe social). Analise-o.

Usando os dados da tabela 3, a seguir, responda o itens seguintes. Fazer usando o programa R e SPSS !!! É necessário descrever os testes.

Tabela 3: Duração do aleitamento materno exclusivo (AME) segundo características das mães.

		Escolaridade materna			
		1-Superior	2-Médio	3-Fundamental	
		130	34	20	
	1-	74	80	82	
	Baixa	155	40	70	
	Duixu	180	75	58	
		150	136	25	
Classe	2-	159	106	58	
Social	Média	188	122	70	
	Wieula	126	115	45	
		138	174	96	
	3-	168	150	82	
	Alta	110	120	104	
	Alla	160	139	60	

Aula prática - Exercício 2 (continuação):

- a) Proponha um modelo a ser ajustado aos dados observados e represente a sua equação descrevendo os termos e variáveis do modelo no contexto do problema.
- b) Mostre todas as etapas de teste até a escolha do modelo final. Para tanto, utilize o teste F de comparabilidade de modelos (Teste F parcial). OBS: É preciso escrever a equação de todos os modelos sob comparação; e definir as hipóteses a serem testadas, a Estatística de teste, Região Crítica e Tomada de decisão. Interprete os resultados do ajuste do modelo (estimativas pontuais, teste de significância individual, etc.). Justifique ainda a sua escolha usando medidas de qualidade do ajuste (R² ajustado).

Aula prática - Exercício 2 (continuação):

Ainda considerando os dados da tabela 3, pede-se também:

- c) Calcule uma medida global de qualidade do ajuste (R^2) para o modelo final (selecionado) e interprete-a no contexto do problema.
- d) Avalie a hipótese de normalidade dos erros usando os resíduos estudentizados.

44