Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona (ETSETB)

CISE – III Examen Final 16/1/2006

Publicació de Notes (Mòdul C4 Planta –1): dijous 19 de gener (18:00) Al·legacions: Fins al dimecres 25 de gener (10:30) a la Secretaria del mòdul B3 Publicació de Notes definitives: (Mòdul C4 Planta –1): dijous 26 de gener (18:00)

Problema 1 (25 %):

Per al circuit de la figura es demana:

- a) Dibuixeu el fluxograma.
- b) Calculeu el guany de llaç, T(s), i digueu de quin tipus de realimentació es tracta.

$$A_1(s) = \frac{a_1 \cdot \omega_1}{s + \omega_1}$$
 $A_2(s) = \frac{a_2 \cdot \omega_2}{s + \omega_2}$ $a_1, a_2 > 0$

- c) Dibuixeu el Lloc Geomètric de les Arrels aproximat i comenteu si el circuit és sempre estable . $\frac{1}{R_1C_1} < \omega_1 < \omega_2$
- d) A partir del diagrama de Bode de T(s) determineu el valor de la constant de temps R_1C_1 necessària per a que el circuit presenti un marge de fase de 45 graus. Calculeu el valor de R_1 si C_1 = 0,7 μ F.

$$a_1 = a_2 = 10^3$$
 $\omega_1 = 10^6 \, rad \, / \, s$ $\omega_2 = 10^7 \, rad \, / \, s$ $\alpha = \frac{R_2}{R_2 + R_3} = 0.01$

Problema 2 (50 %):

El circuit de la figura 2.1 constitueix un generador de senyal on la seva freqüència és funció del valor de la tensió d'entrada V_{AI} .

Figura 2.1

- a) Determineu l'expressió temporal del senyal $V_1(t)$ en el cas en que Q_1 estigui en tall i en el cas en que Q_1 estigui en la zona de saturació suposant el senyal V_{Al} = A V (A constant, A>0).
- b) Determineu i dibuixeu la característica entrada sortida V_2 = $f(V_1)$ del circuit de la figura per a $\left(1 + \frac{R_2}{R_3}\right)V_R > \frac{R_2}{R_3}V_{cc}$. Considereu que la tensió de saturació dels amplificadors operacionals coincideix amb la seva tensió d'alimentació.
- c) Determineu l'expressió de la tensió de sortida V_{out}(t) en funció de la tensió V₂(t) i de l'estat de funcionament dels transistors Q₁ i Q₂ (tingueu en compte que quan Q₁ i Q₂ condueixen ho fan en la zona de saturació).
- d) Calculeu quina condició han de complir les relacions de resistències R_5/R_4 i R_5/R_1 per a que quan Q_1 i Q_2 condueixen ho facin en la zona de saturació.
- e) Dibuixeu l'evolució temporal dels senyals $V_1(t)$, $V_2(t)$ i $V_{out}(t)$. Considereu un valor $V_{AI}=A\ V$ i un valor inicial $V_1(t)=0\ V$.
- f) Determineu la frequència d'oscil·lació del senyal V_{out}(t) en el cas anterior.

continua a la pàgina següent

El senyal V_{AI} és proporcional a la temperatura que es mesura mitjançant un conjunt de sensors en configuració de pont de Wheatstone més un amplificador d'instrumentació, tal i com es mostra en la següent figura:

Figura 2.2

- g) Calculeu les tensions en mode comú, Vcm, i en mode diferencial, Vd=V₁-V₂, a l' entrada de l'amplificador d'instrumentació en funció de la polarització del pont i de les seves resistències.
- h) Si l'amplificador d'instrumentació te una guany G, calculeu l'expressió del valor mínim requerit del CMRR, si es pretén que l'error màxim a la sortida degut a la tensió en mode comú present a l'entrada no superi en més d'un 10 % el valor ideal.
- i) Determineu l'expressió de la freqüència del senyal $V_{out}(t)$ en funció de la temperatura si la sortida de l'amplificador d'instrumentació (considerat ideal) constitueix l'entrada del generador de senyal de la Figura 2.1.
- j) Determineu l'error absolut en freqüència del senyal V_{out}(t) degut al CMRR de l'amplificador d'instrumentació.

Problema 3 (25 %):

Donat el següent circuit:

Dades:

 $V_i = 10 \text{ V}, R_1 = R_2 = 2 \text{ k}\Omega, R_3 = 1 \text{ k}\Omega, R_4 = 1 \text{ k}\Omega$

Diode Zéner: I_z = 1 mA, $|V_z|$ = 5 V Transistor bipolars T_1 i T_2 iguals : $V_{be,on}$ = 0,6 V, β_f = 200 Errors en contínua de l'A.O.: V_{os} = 2 mV, I_B = 10 μ A, I_{os} = 200 nA , CMRR = 80 dB

Trobeu els valors de:

- a) La tensió nominal a la sortida (V_o).
- b) La resistència R₅ per a que la limitació en corrent produïda per T₂ comenci per a un corrent de sortida de 400 mA i el valor de la resistència R_L que produeix aquest corrent.
- c) El corrent de sortida de l'amplificador operacional si R_5 = 6 Ω , i R_L = 100 Ω . ¿Quin serà l'estat de funcionament de T_1 i T_2 ?.
- d) L'eficiència del circuit i la potència que dissipa el transistor T_1 si la resistència de càrrega (R_L) té un valor de $100~\Omega$ (considereu R_5 = $6~\Omega$).
- e) El corrent que hauria de donar l'amplificador operacional per a mantenir la tensió V_o de l'apartat a) si R_5 = 6 Ω , i R_L = 10 Ω . ¿Quin seria l'estat de funcionament de T_1 i T_2 en aquest cas?
- f) L'error relatiu màxim a la sortida considerant els errors en continua de l'amplificador operacional.