A Gentle Introduction to Neural Networks (with Python)

Tariq Rashid @postenterprise

PyCon Italy April 2017

Background Ideas DIY Handwriting **Thoughts**

Background

Start With Two Questions

locate people in this photo

add these numbers

2403343781289312

+ 2843033712837981

+ 2362142787897881

+ 3256541312323213

+ 9864479802118978

+ 8976677987987897

+ 8981257890087988

= ?

Google's and Go

Ideas

Simple Predicting Machine

Simple Predicting Machine

try a model - this one is linear

Key Points

- Don't know how something works exactly? Try a model with adjustable parameters.
- 2. Use the error to refine the parameters.

Classifying Bugs

Key Points

1. Classifying things is kinda like predicting things.

Example	Width	Length	Bug
1	3.0	1.0	ladybird
2	1.0	3.0	caterpillar

How Do We Update The Parameter?

$$E = (A + \Delta A)x - Ax$$

$$\Delta A = E / x$$

Calm Down the Learning

Calm Down the Learning

Key Points

 Moderating your learning is good - ensures you learn from all your data, and reduces impact of outliers or noisy training data.

Boolean Logic

IF I have eaten my vegetables **AND** I am still hungry **THEN** I can have ice cream.

IF it's the weekend **OR** I am on annual leave **THEN** I'll go to the park.

Input A	Input B	AND	OR
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Boolean Logic

Boolean Logic

Input A	Input B	XOR
0	0	0
0	1	1
1	0	1
1	1	0

... Use more than one node!

Key Points

- Some problems can't be solved with just a single simple linear classifier.
- You can use multiple nodes working together to solve many of these problems.

Brains in Nature

Brains in Nature

Artificial Neuron

Artificial Neural Network .. finally!

Where Does The Learning Happen?

Key Points

- Natural brains can do sophisticated things, and are incredibly resilient to damage and imperfect signals .. unlike traditional computing.
- Trying to copy biological brains partly inspired artificial neural networks.
- 3. Link weights are the adjustable parameter it's where the learning happens.

Feeding Signals Forward

Feeding Signals Forward

Feeding Signals Forward

Matrix Multiplication

Matrix Multiplication

weights incoming signals

$$W_{1,1} W_{2,1}$$
 input 1

 $W_{1,2} W_{2,2}$ input 2

 $(input_1 * W_{1,1}) + (input_2 * W_{2,1})$
 $(input_1 * W_{1,2}) + (input_2 * W_{2,2})$

Key Points

- The many feedforward calculations can be expressed concisely as matrix multiplication, no matter what shape the network.
 - Some programming languages can do matrix multiplication really efficiently and quickly.

Internal Error

Internal Error

Matrices Again!

$$error_{hidden} = \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix} - \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

$$error_{hidden} = w^{T}_{hidden_output} \cdot error_{output}$$

Key Points

- Remember we use the error to guide how we refine a model's parameter link weights.
- The error at the output nodes is easy the difference between the desired and actual outputs.
 - The error at internal nodes isn't obvious. A
 heuristic approach is to split it in proportion to
 the link weights.
 - and back propagating the error can be expressed as a matrix multiplication too!

Yes, But How Do We Actually Update The Weights?

$$o_k = \frac{1}{1 + e^{-\sum_{j=1}^{3} (w_{j,k} \cdot \frac{1}{1 + e^{-\sum_{i=1}^{3} (w_{i,j} \cdot x_i)})}}$$

Aaarrrggghhh !!

landscape is a complicated difficult mathematical function with all kinds of lumps, bumps, kinks ...

Gradient Descent

smaller gradient .. you're closer to the bottom ... take smaller steps?

Key Points

- Gradient descent is a practical way of finding the minimum of difficult functions.
- You can avoid the chance of overshooting by taking smaller steps if the gradient gets shallower.
- 3. The error of a neural network is a **difficult** function of the link weights ... so maybe gradient descent will help ...

Climbing Down the Network Error Landscape

Error Gradient

A gentle intro to calculus

http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html

Updating the Weights

DIY

Python Class and Functions

Function - Initialise

```
# initialise the neural network
def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
    # set number of nodes in each input, hidden, output layer
    self.inodes = inputnodes
    self.hnodes = hiddennodes
    self.onodes = outputnodes
    # link weight matrices, wih and who
    # weights inside the arrays are w i j, where link is from node i to node j in the next layer
    # w11 w21
    # w12 w22 etc
    self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))
    self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes))
    # Learning rate
    self.lr = learningrate
    # activation function is the sigmoid function
    self.activation function = lambda x: scipy.special.expit(x)
    pass
```


numpy.random.normal()

random initial weights

```
then sigmoid applied
# query the neural network
def query(self, inputs list):
    # convert inputs list to 2d array
    inputs = numpy.array(inputs_list, ndmin=2).T
    # calculate signals into hidden layer
    hidden inputs = numpy.dot(self.wih, inputs)
    # calculate the signals emerging from hidden layer
    hidden_outputs = self.activation_function(hidden_inputs)
    # calculate signals into final output layer
    final_inputs = numpy.dot(self.who, hidden_outputs)
    # calculate the signals emerging from final output layer
    final outputs = self.activation function(final inputs)
    return final_outputs
                                                                 similar for output layer
```

numpy.dot()

combined weighted signals into hidden

Function - Train

```
# train the neural network
   def train(self, inputs list, targets list):
       # convert inputs list to 2d array
                                                                        same feed forward as before
       inputs = numpy.array(inputs list, ndmin=2).T
       targets = numpy.array(targets_list, ndmin=2).T
       # calculate signals into hidden layer
       hidden inputs = numpy.dot(self.wih, inputs)
       # calculate the signals emerging from hidden layer
       hidden outputs = self.activation function(hidden inputs)
       # calculate signals into final output layer
                                                                           output layer errors
       final inputs = numpy.dot(self.who, hidden outputs)
       # calculate the signals emerging from final output layer
       final outputs = self.activation function(final inputs)
                                                                                      hidden layer errors
       # output layer error is the (target - actual)
       output errors = targets - final outputs
       # hidden layer error is the output errors, split by weights, recombined at hidden nodes
       hidden_errors = numpy.dot(self.who.T, output_errors)
       # update the weights for the links between the hidden and output layers
       self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)),
numpy.transpose(hidden outputs))
       # update the weights for the links between the input and hidden layers
       self.wih += self.lr * numpy.dot((hidden errors * hidden outputs * (1.0 - hidden outputs)),
numpy.transpose(inputs))
       pass
```

Handwriting

Handwritten Numbers Challenge

MNIST dataset: 60,000 training data examples 10,000 test data examples

```
In [8]: data file = open("mnist dataset/mnist train 100.csv", 'r')
 data list = data file.readlines()
 data file.close()
In [9]: len(data list)
Out[9]: 100
In [10]: data list[0]
3,253,253,253,253,253,253,251,93,82,82,56,39,0,0,0,0,0,0,0,0,0,0,18,219,253,253,253,253,253,198,182,247,241,0,0,0
 ,0,23,66,213,253,253,253,253,198,81,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,171,219,253,253,253,253,195,80,9,0,0,0,0,0
```

MNIST Datasets

labe

```
In [8]: data_file = open("mnist_dataset/mnist_train_100.csv", 'r')
 data list = data file.readlines()
 data file.close()
In [9]: len(data_list)
Out[9]: 100
In [10]: data list[0]
Out[10]
 3,253,253,253,253,253,253,251,93,82,82,56,39,0,0,0,0,0,0,0,0,0,0,18,219,253,253,253,253,253,198,182,247,241,0,0,0
```

784 pixels values

```
In [32]: all_values = data_list[0].split(',')
image_array = numpy.asfarray(all_values[1:]).reshape((28,28))
matplotlib.pyplot.imshow(image_array, cmap='Greys', interpolation='None')

Out[32]: <matplotlib.image.AxesImage at 0x108818cc0>

28 by 28 pixel image

28 by 28 pixel image
```

Output Layer Values

output layer	label	example "5"	example "O"	example "9"
0	0	0.00	0.95	0.02
1	1	0.00	0.00	0.00
2	2	0.01	0.01	0.01
3	3	0.00	0.01	0.01
4	4	0.01	0.02	0.40
5	5	0.99	0.00	0.01
6	6	0.00	0.00	0.01
7	7	0.00	0.00	0.00
8	8	0.02	0.00	0.01
9	9	0.01	0.02	0.86

Experiments

96% is very good!

we've only used simple ideas

and code

More Experiments

Thoughts

Peek Inside The Mind Of a Neural Network?

Peek Inside The Mind Of a Neural Network?

Thanks!

Finding Out More

 $\underline{makeyourownneuralnetwork.} \underline{blogspot.co.uk}$

github.com/makeyourownneuralnetwork

www.amazon.co.uk/dp/B01EER4Z4G

twitter.com/myoneuralnet

slides goo.gl/JKsb62

Raspberry Pi Zero

It all works on a Raspberry Pi Zero ... and it only costs £4 / \$5 !!