

POLITECNICO DI MILANO DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

myTaxiService Cost Estimation

Supervisor:

Prof. Elisabetta Di Nitto

Students: Alberto Gasparin Vito Matarazzo

Contents

1	\mathbf{Intr}	roduction	3
	1.1	Purpose and Scope	3
	1.2	Definitions, Acronyms, Abbreviations	3
		1.2.1 Acronyms	3
	1.3	Reference Document	3
2	Fun	ction Point	4
	2.1	0 / /	4
	2.2	External interface file (EIF)	5
	2.3	External input (EI)	5
	2.4	External output (EO)	6
	2.5	External inquiry (EQ)	6
	2.6	UFP	7
3	CO	COMO II	8
	3.1	SLOC	8
	3.2	Scale drivers	8
	3.3	Cost drivers	9
	3.4	Effort Equation	0
	3.5	Schedule Estimation	.0
4	Sch	edule of the project 1	2
5	Res	ource allocation 1	5
6	Risl	k analysis 1	6
	6.1	· ·	6
	6.2		8
7	App	pendix 1	9
	7.1^{-1}		9
	7.2		9

Revision History

Date	Reason for changes	Version
February 2, 2016		v1.0

1 Introduction

1.1 Purpose and Scope

This document proposes a project plan for myTaxiService application. In the document an effort estimation and a cost estimation are presented applying Function Points and COCOMO II. Moreover, the main tasks of the project are identified and an estimation of both time and resources to be allocated to each task is performed. The last section of the document presents an overview of potential problems (risks) that might happen or not along the duration of the project.

1.2 Definitions, Acronyms, Abbreviations

1.2.1 Acronyms

DD: Design Document

DB: Database

FP: Function Point

ITP: Integration Test Plan

RASD: Requirement Analysis and Specification Document

1.3 Reference Document

Specification Document: myTaxiService Project AA 2015-2016.pdf.

RASD, Alberto Gasparin, Vito Matarazzo, v1.1, November 2015.

DD, Alberto Gasparin, Vito Matarazzo, v1.0, December 2015.

ITP, Alberto Gasparin, Vito Matarazzo, v1.0, January 2015.

COCOMO II - Model Definition Manual, v2.1

2 Function Point

This methodology determines a cost estimation considering the functionalities of the system, in other words we will consider data and processes significant to the end user. The method quantifies the information stored in the system and those ones going in and out of the system. The functionalities list has been obtained from the RASD document and for each one of them the realization complexity has been evaluated. First we will briefly describe the FP types, that are:

- Internal Logic File: it represents a set of homogeneous data handled by the system.
- External Interface File: it represents a set of homogeneous data used by the application but handled by external application.
- External Imput: elementary operation that allows input of data in the system.
- External Output: elementary operation that creates a bitstream towards the outside of the application.
- External Inquiry: elementary operation that involves input and output operations.

The following table outlines the number of Functional Points based on funtionality and relative complexity:

Function Type	Complexity			
runction Type	Simple	Medium	Complex	
Internal Logic File	7	10	15	
External Interface File	5	7	10	
External Input	3	4	6	
External Output	4	5	7	
External Inquiry	3	4	6	

Now, we will procede computing the FP for each FP type.

2.1 Internal logical file (ILF)

ILFs included in the application are user, taxi, ride, reservation and zone. The information stored about user are those requested in the registration procedure (firstname, lastname, email, username, password, ...) and a few more fields are included, like a type field used to identify the user type (passenger, driver, developer, administrator), the driving license for taxi drivers and the assigned APIkey for developer's only. Taxi information are needed in order to monitor the fleet of the taxi company. Those information include the taxi code, the driver and the number of available seats. Ride and reservation are two entities that are updated on a regular basis, and they are mapped to several different entities so their managing is not simple. Finally the system has to manage zones in which the city has been divided. For each zone the coordinates of the vertices are stored in the

system. The system uses this information to map a specific location into a certain zone.

ILF	Complexity	FP
User	Medium	10
Taxi	Simple	7
Ride	Medium	10
Reservation	Medium	10
Zone	Medium	10
To	47	

2.2 External interface file (EIF)

The system has to acquire external data like ETA and best path available using GoogleMapsAPI. The data are returned in JSON format, our system will be able to interpret them and supply them to the users(Passenger and Taxi driver). Moreover GoogleMapsAPI are used to obtain the coordinates of a certain location (pickup, destination). Those coordinates will be used to compute the zone corresponding to the location submitted.

ELF	Complexity	FP
ETA	Simple	5
Optimal path	Complex	10
Coordinates	Simple	5
To	20	

2.3 External input (EI)

The application interacts with the user to allow him/her to:

- Login/Logout: these are simple operations because only one entity is involved (User).
- Register: this is a simple operation because only one entity is involved (User).
- Update profile: this is a simple operation because only one entity is involved (User).
- Request a taxi: this is a Complex operation because it involves at least 4 entities.
- Reserve a taxi: this is a Complex operation because it involves at least 4 entities.
- Cancel a reservation: this is a simple operation because it involves only one entity.
- Change the current status: this is a simple operation.
- Signal the occurrence of an unexpected event: this is a medium operation because even if it does not involve directly a lot of entities, it triggers a chain of events of average complexity.

• Request an APIkey: this is a simple operation because it involves only one entity (User).

EI	Complexity	FP
Login/Logout	Simple	2x3
Register	Simple	3
Update profile	Simple	3
Request a taxi	Complex	6
Reserve a taxi	Complex	6
Cancel a reservation	Simple	3
Change the current status	Simple	3
Signal unexpected event	Medium	4
Request APIkey	Simple	3
Total		37

2.4 External output (EO)

Once a user is logged into the system he/she can be notified about incoming requests (for the taxi driver) or proposals (for the passenger). Moreover the passenger will receive updates after requesting a taxi (for example the passenger is notified if the expected taxi driver cannot arrive at the desired place due to some unexpected events). All these notifications involve two entities so we can consider them of medium complexity. Finally the system computes and shows to the requesting developer his/her APIkey, which is a simple operation.

EI	Complexity	\mathbf{FP}
Notifications	Medium	3x5
Show APIkey	Simple	4
To	19	

2.5 External inquiry (EQ)

The application allows users to visualize information about:

- Ride history: displays the information about the past rides and reservations of a user. It involves three entities so we can consider it as a medium operation.
- User profile: displays the information about the user profile. It involves only the user entity so it's a simple operation.

EI	Complexity	FP
Show ride history	Medium	4
Show user profile	Simple	3
Total		

2.6 UFP

Given the values of each function point count, we obtain the following Unadjusted Function Point (UFP) value:

FP type	FP
ILF	47
EIF	10
EI	37
EO	19
EQ	7
Total	120

The final result can be adjusted to obtain the FP value, which is an estimation of the effort of the project, but this does not always improve the estimation. The better choice is to use the UFP value in combination with the COCOMO approach.

3 COCOMO II

COCOMO is a technique used to estimate the effort required for the development of a software product. This estimation is achieved through a complex, non linear model that takes into account the characteristics of product, people and process. The main elements of COCOMO II model are: SLOC (Source Lines Of Code), scale drivers, cost drivers and the effort equation.

3.1 SLOC

The effort estimation of COCOMO model is based on estimates of the project's size, expressed in source lines of code(SLOC). Im our case, this estimate comes from the UFP count calculated in the previous section multiplied by an average conversion factor of 46, which is the factor associated to J2EE programming language. The result is:

$$SLOC = 46 * UFP = 5520$$

3.2 Scale drivers

Scale drivers are the most important factors contributing to a project's duration and cost. We used the following table taken from the COCOMO II manual to evaluate them:

Table 10. Scale Factor Values, SF_j, for COCOMO II Models

Scale Factors	Very Low	Low	Nominal	High	Very High	Extra High
	thoroughly	largely unpreceden	somewhat unpreceden	generally familiar	largely familiar	thoroughly familiar
PREC	unpreceden ted	ted	ted	lamilal	lamillar	iamilar
SF _i :	6.20	4.96	3.72	2.48	1.24	0.00
FLEX	rigorous	occasional relaxation	some relaxation	general conformity	some conformity	general goals
SF _i :	5.07	4.05	3.04	2.03	1.01	0.00
RESL	little (20%)	some (40%)	often (60%)	generally (75%)	mostly (90%)	full (100%)
SF _j :	7.07	5.65	4.24	2.83	1.41	0.00
	very difficult interactions	some	basically cooperative	largely cooperative	highly cooperative	seamless interactions
TEAM	interactions	interactions	interactions	cooperative	cooperative	interactions
SF _j :	5.48	4.38	3.29	2.19	1.10	0.00
The estimated Equivalent Process Maturity Level (EPML) or						
PMAT	SW-CMM	SW-CMM	SW-CMM	SW-CMM	SW-CMM	SW-CMM
- MAI	Level 1	Level 1	Level 2	Level 3	Level 4	Level 5
SF _j :	Lower 7.80	Upper 6.24	4.68	3.12	1.56	0.00

• Precedentness: reflects the previous experience that we had with this kind of projects. Since for us this is the first experience of designing and developing a project like this, this value will be low.

- Development flexibility: reflects the degree of flexibility in the development process. Since the project assignments contained only general specifications without going too much in detail, this value will be high.
- Risk resolution: reflects the extent of risk analysis carried out. We have taken into account the most important risks in our project, doing an average risk analysis, so this value will be nominal.
- Team cohesion: reflects how well the development team know each other and work together. In our case we had already worked together in some other projects without particular issues, so this value will be very high.
- Process maturity: reflects the process maturity of the organization. This is evaluated using the CMMI framework to establish the level of maturity, and we obtained a level 2, so nominal value.

The results are resumed in the following table:

Scale Driver	Scale Factor	SF value
Precedentness	low	4.96
Dev. flexibility	high	2.03
Risk resolution	nominal	4.24
Team cohesion	very high	1.10
Process maturity	nominal	4.68
Tota	17.01	

3.3 Cost drivers

Cost drivers are multiplicative factors used to evaluate different characteristics of the project. Using an average value of nominal for all the cost drivers, we obtained the following results:

Cost Driver	Rating level	Multiplier
RELY	low	0.92
DATA	nominal	1.00
CPLX	nominal	1.00
RUSE	high	1.07
DOCU	nominal	1.00
TIME	nominal	1.00
STOR	nominal	1.00
PVOL	low	0.87
ACAP	high	0.87
PCAP	high	0.88
PCON	very low	1.29
APEX	very low	1.22
PLEX	low	1.09
LTEX	nominal	1.00
TOOL	nominal	1.00
SITE	high	0.93
SCED	nominal	1.00
Total F	1.046	

3.4 Effort Equation

The effort equation gives us the effort estimation measured in Person-Months (PM):

$$Effort := A * EAF * KSLOC^{E}$$

Where:

- A := 2.94 (for COCOMO II);
- EAF := product of all the cost drivers, equal to: 1.046;
- E := exponent derived from Scale Drivers. Is calculated as:

$$B + 0.01 * \sum_{i} SF[i] := B + 0.01 * 17.01 = 0.91 + 0.1701 = 1.0801;$$
 (1)

in which B is equal to: 0.91 for COCOMO II;

• KSLOC := estimated lines of code using the FP analysis: 5.520;

With these parameters we can compute the Effort value, that is equal to:

$$Effort := 2.94 * 1.046 * 5.520^{1.0801} = 19.4647PM$$

3.5 Schedule Estimation

The schedule equation predicts the number of months required to complete a software project. The duration is computed as:

$$Duration := 3.67 * Effort^{SE}$$

Where:

$$SE := 0.28 + 0.2 * (E-B) = 0.31402$$

Follows then:

$$Duration := 3.67*19.4647^{0.31402} = 9.32 \simeq 9$$

Finally we can calculate the number of required people N:

$$N:=Effort/Duration=2.16\simeq 2$$

Which is exactly the number of people in our group.

4 Schedule of the project

The following Gantt chart shows the different tasks of the project and their schedule. It contains the actual schedule of the activities completed so far, and an estimation of the following tasks to be performed. We assumed that a Unit Test Plan was done in the period between 9/12/2015 and 5/01/2016 instead of the code inspection assignment.

By comparing the duration calculated by COCOMO estimation with the estimated duration of about 6 months indicated in this schedule, we have a difference of about 3 months. This can be due to two possibilities:

- some of the estimations we made are not appropriate for the actual problem we are analysing;
- the team will have more time to dedicate to the project from the beginning of February to the delivery day, so it is likely that the amount of daily work will increase.

5 Resource allocation

Starting from the tasks identified in the previous section, the following is a bar chart that represents the staff allocated to each task. This allocation is as close as possible to the real tasks' division between the members of the group.

6 Risk analysis

In this section we will define the main risks that the project can encounter. Risks are potential problems that can cause unwanted consequences or losses if they become real problems. So the following analysis is aimed at identifying the different risks, estimating their probability and impact, and explaining the associated recovery actions to perform in case of risk realization.

6.1 Risk Identification and ranking

In the following table we list the risks that may be encountered during the project development. The risks are listed in decreasing order w.r.t the impact they may have on the project itself.

Risk	Probability	Effects
Key personnel leave the	Low, since the team is com-	Catastrophic, because, as
project taking critical in-	posed of only two members	said, the team is com-
formation with them and	which don't have any reason	posed of two members so if
subsequent impossibility to	to leave the project.	one leaves, the other would
recruit new personnel with		find hard to complete the
the required skills.		project.
Key staff are unavailable	Moderate, because unex-	Critical, for the same reason
at critical times during the	pected problems could al-	of the previous risk, but not
project.	ways happen.	catastrophic since the lack
		of members would not be
		definitive.
Changes to requirements	Moderate, because even if	Critical, because design
that require major design	at this time of the project it	changes could delay the
rework are proposed.	is unlikely that the require-	whole project.
	ments change, the design	
	choices may be not defini-	
	tive because of our inexperience.	
Expansion of project scope,	Low, because the initial as-	Critical, because this could
due to addition of features	signment has never been	expand the time necessary
and/or requirements.	changed	to accomplish the project;
and of requirements.	Citalised	in a real world scenario this
		may also lead to budget
		overruns.
Failure to manage end user	Moderate, because users of	Critical, because if the
expectation.	the application could find	application doesn't satisfy
_	it difficult to use some fea-	user expectation, it could
	tures, especially in the first	require major requirements
	releases of the software	or design revision.
Misunderstanding of re-	Low, because at this time	Critical, because it can lead
quirements.	of the project the require-	to important revisions in
	ments have been reviewed	the initial phases of the
	many times.	project.
Faults in reusable software	Moderate, since our inexpe-	Critical, because if the
components have to be re-	rience could lead to wrong	components have faults the
paired before using them.	choices of the components	whole application could
	to be used	work wrong.
The database used in the	Moderate, since our inexperience could lead to a grand	Critical, because if the
system cannot process as	rience could lead to a wrong	database has faults the
many transactions per second as expected	choice of the database to be used.	whole application could work wrong.
Unrealistic time estimate	High, since this is our	Marginal, because this is a
omeansue ume esumate	first experience in this kind	university project; in a real
	of projects, the estimates	world scenario this would be
	might not be correct.	critical, because a delay in a
	migni noi be contect.	critical activity may have a
	17	cascading effect on the en-
		tire project.
		tire project.

6.2 Strategy

In the following table we propose a strategy for each of the risk identified above.

Risk	Strategy	
Personnel leaves	Increase the collaboration and information sharing	
	among the team; if not enough, investigate recruiting	
	new members	
Key staff unavailable	Increase the collaboration and information sharing	
	among the team, so that people understand each other's	
	job.	
Requirements changes	Use requirement traceability table in order to identify	
	those components that need to be modified.	
Expansion of project scope	Increase collaboration between customers and develop-	
	ers, plan regular discussion about features and estimates	
	on a regular basis.	
Failed user expectation	Collect feedback from a group of users that act as beta	
	testers.	
Misunderstanding of re-	Increase collaboration between customers and require-	
quirements	ment engineers in order to be sure that what is being	
	produced matches the customers' needs.	
Defective components	Replace potentially defective components with bought-	
	in components of known reliability.	
Database performance	Investigate the possibility to adopt a different database.	
Unrealistic time estimate	Plan for two releases, the first one with a limited set of	
	functionalities and the second one more complete.	

7 Appendix

7.1 Software Tool used

• TexMaker (http://www.xm1math.net/texmaker/): L*TEXeditor, used to redact this document.

7.2 Hours of work

- \bullet Alberto Gasparin $\sim 12~\mathrm{h}$
- \bullet Vito Matarazzo $\sim 12~\mathrm{h}$