Title: ELECTRODE STRUCTURE FOR SOLID POLYMER TYPE FUEL CELL Inventor: Kaoru FUKUDA et al. Appln. No.: 10/532,963 Docket No.: 108421-00117 REPLACEMENT SHEET

		т	·											
Δ voltage	(mV)	12	27.6	25	21	22	52	36	43	65	62	37.3	42	58
Penetration resistance	(m25)	3.2	3.8	2.8	4.4	4.8	4.4	4.6	4.8	2.6	3.8	4.2	3.4	4.6
Adhesion ratio	(%)	20	22	18	19	21	23	21	20	18	16	18	12	8
Differential	pressure (mmAa)	06	115	62	75	78	82	70	63	30	50	125	93	88
Water absorption ratio	or anode diffusion layer (wt%)	65	75	46	62	62	83	8.06	93.9	35	72	76	65	65
Content ratio of water	holding material (wt%)	10	20	2		0	25	10		0	10	10	10	10
		Example 1	Example 2	Example 3	Example 4	Example 5	Comparative Example 1	Comparative Example 2	Comparative Example 3	Comparative Example 4	Comparative Example 5	Comparative Example 6	Comparative Example 7	Comparative Example 8

Table 1

Title: ELECTRODE STRUCTURE FOR SOLID POLYMER TYPE FUEL CELL Inventor: Kaoru FUKUDA et al. Appln. No.: 10/532,963 Docket No.: 108421-00117 REPLACEMENT SHEET

										,,							
Δ voltage (mV)		THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM	26	24	24	26	32	55	99	32	65	36	42	32	48	35.8	58
Penetration resistance (mΩ)			4.2	4.4	4.8	4.4	4.4	4.8	4.6	4.6	4.8	4.4	4.2	4.0	3.8	4.5	4.6
Adhesion ratio (%)			20	19	21	20	23	19	22	21	20	18	21	61	20	12	8
Differential pressure (mmAq)		<i>Y</i>	106	65.5	78	87	82	70	65	70	62	103	62	130	45	93	88
Water absorption ratio of anode	diffusion layer	(wt%)	78.5	51.3	65	55	85	85	85	62	47	86	35	82	78	65	65
Water absorption amount of	carbon particles	(g/22)	360	360	360	360	360	360	360	130	80	360	360	360	360	360	360
Contact angle of carbon-based	material	(₀)	75	75	75	75	100	120	140	75	75	75	75	75	75	75	75
			Example 9	Example 10	Example 11	Example 12	Comparative Example 16	Comparative Example 17	Comparative Example 18	Comparative Example 19	Comparative Example 20	Comparative Example 21	Comparative Example 22	Comparative Example 23	Comparative Example 24	Comparative Example 25	Comparative Example 26

Title: ELECTRODE STRUCTURE FOR SOLID POLYMER TYPE FUEL CELL Inventor: Kaoru FUKUDA et al. Appln. No.: 10/532,963
Docket No.: 108421-00117
REPLACEMENT SHEET

														·	
Δ voltage (mV)		28	24	28	25	44.7	55	32.3	65	32	58	33.4	62	34	58
Penetration resistance (mΩ)	Cathode	3.2	2.8	2.6	3.4	3.2	2.4	3.2	3.2	3.2	3.2	4.8	2.6	3.2	3.2
Penetration (m	Anode	2.2	2.2	1.8	2.6	2.2	2.2	2.6	2.8	3.6	1.8	2.2	2.2	2.2	2.2
Adhesion ratio (%)		20	21	19	20	21	22	20	19	19	21	20	20	12.5	7.3
Differential pressure (mmAq)	Cathode	83	83	62	105	83	83	83	83	83	83	132	45	83	83
Differential pro (mmAq)	Anode	85	85	62	100	85	85	83	83	128	42	85	85	85	85
Water absorption ratio of anode diffusion layer	(wt%)	65	65	82.4	50.4	82.4	82.4	37.6	20	32.2	95	82.4	82.4	82.4	82.4
orption amount on particles (cc/g)	Cathode	130	80	130	130	360	520	130	130	130	130	130	130	130	130
Water absorption amount of carbon particles (cc/g)	Anode	360	360	360	360	360	360	130	80	360	360	360	360	360	360
		Example 13	Example 14	Example 15	Example 16	Comparative Example 27	Comparative Example 28	Comparative Example 29	Comparative Example 30	Comparative Example 31	Comparative Example 32	Comparative Example 33	Comparative Example 34	Comparative Example 35	Comparative Example 36

Title: ELECTRODE STRUCTURE FOR SOLID POLYMER TYPE FUEL CELL Inventor: Kaoru FUKUDA et al. Appln. No.: 10/532,963
Docket No.: 108421-00117
REPLACEMENT SHEET

 Δ voltage (mV) 28 36 58 36.3 54 Penetration resistance Cathode 3.2 3.2 3.2 (mQ) Anode 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 Adhesion ratio 20 20 19 19 Cathode Differential pressure 88888 (mmAq) Anode 85 85 85 85 85 Water absorption ratio of anode diffusion layer (wt%) 65 82.4 82.4 82.4 82.4 Water absorption amount Cathode 140 100 75 140 of carbon particles (g/22) Anode 75 100 130 75 75 Sample 1
Sample 2
Sample 3
Sample 3 Example 1

Table 5