

Trust Assessment of Smart Health Devices

Final presentation

Alexis Davidson

Introduction

Use cases of Smart Health devices

Trust

Architecture and risks of Health Monitoring Systems

Trust Networks

Introduction

Use cases of Smart Health devices

Trust

Architecture and risks of Health Monitoring Systems

Trust Networks

Introduction

- Smart health systems are evolving rapidly
- Impact lives in different ways
 - Saving life
 - Improving life or performance
 - Data monitoring

Introduction - The Pacemaker

- Bradycardia: heart rate too slow
- Pacemaker provides electrical impulse
 - → keep heart rate from dropping
- IoT pacemaker: wireless connection
 - exchange information with hospital and doctors
 - can be remotely monitored
- Replace regular visits to the doctor's office for a check with the remote monitoring?
- How far can we trust this device to function properly at all times and how can we assess trust in them?

Introduction - Problem

- Trust is a complex subject
- Many works propose different mathematical methods
- Focus on TNA-SL (Trust Network Analysis using Subjective Logic)
 - method for quantifying trust
 - covered in different works in literature
 - can be applied on IoT and smart health networks

Introduction

Use cases of Smart Health devices

Trust

Architecture and risks of Health Monitoring Systems

Trust Networks

Use cases of Smart Health devices

- Specific medical condition
 - SMARTDIAB against diabetes: insulin therapy
 - heart rate monitoring (remote and real-time)
- Vital signs
 - electrocardiogram
 - blood pressure
 - temperature
- Smart technologies
 - ECG on mattress
 - toilet seats
 - pillows

Introduction

Use cases of Smart Health devices

Trust

Architecture and risks of Health Monitoring Systems

Trust Networks

Trust

Definition: "a state involving confident positive expectations about another's motives with respect to oneself in situations entailing risk" (D Susan and John G Holmes, 1991)

- Trust relationship involves two or more entities: a trustor and a trustee
- Trust involves risk
- Trustor believes in the trustee's honesty and benevolence

Trust - Characteristics

- Directed: oriented relationship
- Subjective
- Context-dependent
- Measurable
- Influenced by past experience
- Dynamic: may change over time

Trust - Modeling and management

Trust model

- Evaluates, sets up trust relationships amongst entities in order to calculate trust
- Helps in trust measurement
- Many works propose different models for different goals

Trust management

- Trust establishment: trust relationship between trustor and trustee
- Trust monitoring: performance of trustee, collect evidence for
- Trust assessment: evaluate trustworthiness of trustee
- Trust control and re-establishment: trust relationship in case broken before

Introduction

Use cases of Smart Health devices

Trust

Architecture and risks of Health Monitoring Systems

Trust Networks

Architecture and risks of Health Monitoring Systems

- Patient Unit
- Central Processing Unit
- Doctor and Emergency Units

Risks

- System shutdown
- Software error
- Unreliable communication
- Personal

Introduction

Use cases of Smart Health devices

Trust

Architecture and risks of Health Monitoring Systems

Trust Networks

Trust Networks

- Many works propose different trust models
- TNA-SL (trust network analysis using subjective logic)
 - Transitive trust relationships between people, organizations and possibly software agents.
 - In examples we show the case of human trust

TNA-SL - Transitivity

- Recommendation
- Trust scope

- Referal trust
- Functional trust

TNA-SL - Parallel trust combination

$$([A, E]) = (([A, B] : [B, C]) \diamond ([A, D] : [D, C])) : [C, E]$$

TNA-SL - Subjective logic

Subjective logic: belief calculus used for calculative analysis trust networks

Belief theory

- related to probability theory
- the probabilities over the set of possible outcomes do not always add up to 1

Belief calculus

- approximate reasoning in situations with partial ignorance
- represented by subjective logic using opinions

TNA-SL - Opinion

$$\omega_x^A = (b, d, u, a)$$

- A is the trustor of the statement x
- **b** represents *belief*
- **d** represents *disbelief*
- **u** represents *uncertainty*, where $b, d, u \in [0, 1]$ and b + d + u = 1
- $\mathbf{a} \in [0, 1]$ is the base rate
 - represents the *initial trust* put in any member of the community before any positive or negative experience was observed.

TNA-SL - Subjective logic

$$E(\omega_x^A) = b + au$$

TNA-SL - Subjective logic

Two opinions ω_x and ω_y are ordered following rules by priority. The greatest opinion is the opinion with:

- the greatest probability expectation
- the least uncertainty
- the least base rate

TNA-SL - PDF

Probability density function (PDF) denoted as (α,β) :

$$\alpha = r + 2a, \beta = s + 2(1 - a)$$

- r represents a number of positive past observations
- s represents a number of negative past observations,

Can be expressed as:

(Audun Jøsang, Simon Pope, and David McAnally, 2006) & (Morris H DeGroot and Mark J Schervish, 2012)

$$\begin{cases} b_x = r/(r+s+2) \\ d_x = s/(r+s+2) \\ u_x = 2/(r+s+2) \\ a_x = \text{base rate of } x \end{cases} \iff \begin{cases} r = 2b_x/u_x \\ s = 2d_x/u_x \\ 1 = b_x + d_x + u_x \\ a = \text{base rate of } x \end{cases}$$

TNA-SL - Assessing trust

Reputation score of *Z* at time *t*:

$$R^t(Z) = \frac{r+2a}{r+s+2} \qquad \text{with } 0 \le R^t(Z) \le 1$$

- probability indicating the reliability of an agent Z in the future
- a is high, that means the initial trust in the agent is relatively high, a single negative rating s will have more impact on the reputation score than a single positive rating r.
- On the other hand, if the base rate a is low, a single positive rating will have more impact than a single negative rating.
- "it takes many good experiences to balance out one bad experience"

TNA-SL - Applying to smart health

- Consists of transitive trust relationships betw.
 - o people
 - organizations
 - software agents
- IoT perspective: entities represent components communicating with each other
- Applicable on different types of entities
 - → usable for different types of network

Trust acts on different levels or hierarchies!

TNA-SL - Applying to smart health

- Human trust
 - network of humans
 - some have direct functional trust towards a smart health device

TNA-SL - Applying to smart health

Component-based network (see Fig.)

- choose preferred unit for best result
- administrator can interpret which units need some improving

TNA-SL depends on the number of known relationships (Geir M Køien, 2011)

- → network with more entities has better result than a smaller one
- → For simple smart health IoT systems, this method is likely not effective

Introduction

Use cases of Smart Health devices

Trust

Architecture and risks of Health Monitoring Systems

Trust Networks

- Introduced smart health with use cases
- Trust in IoT
- Architecture of health monitoring
- TNA-SL

Summing up - Perspectives

- Health IoT needs to be trustable on each layer of the architecture
- Malicious intent?
- Review different trust assessment models
- Research psychological difference on trust between using IoT and smart health IoT
- In-depth look in each aspect of trust
- Health monitoring architecture: go over each channel and unit and analyze reliability

Thank you!