

Machine Learning Preparation

Exploratory Data Analysis

Outline Pembelajaran

Exploratory Data Analysis

- Exploratory Data Analysis (EDA) itu apa?
- How to EDA
- Hands-on: studi kasus Pengiriman Makanan

Hands-On Required:

Hands - On:

Hands-On - Exploratory Data Analysis.ipynb

Dataset:

1. Food_Delivery_Dataset.csv

Klik disini untuk mengakses folder Hands-On dan Dataset

Apa itu Exploratory Data Analysis (EDA)?

Data juga ingin dipahami

"Exploratory Data Analysis (EDA) adalah proses analisis untuk memahami karakteristik data, dan hal-hal yang perlu kita lakukan agar data tersebut dapat digunakan untuk proses pembelajaran model"

		一一中央企業等項	
Tahap	Masuk	Proses	Keluar
Data collection	-	Survey/LabellingETL	Data mentah
Data understanding	Data mentah	Exploratory Data Analysis	Data mentahInsight (?)
Data preparation	Data mentahInsight (?)	Pre-processingFeature processing	Data trainingData test/validation
Modelling	Data training	Model trainingHyperparameter tuning	ML Model
Evaluation	Data test/ validation	Validation	Performance measure
Deployment	Data baru	Prediction	Prediksi

Insight apa yang kita inginkan dari EDA? Insight yang akan membantu kita melatih model ML yang lebih baik

Pertanyaan yang perlu kita jawab:

- Bagaimana sebaran nilai dalam feature dan label kita?
- Apakah kira-kira feature yang kita miliki cukup baik untuk memprediksi target?
- 'Persiapan' macam apa yang harus kita lakukan sebelum dataset kita dapat digunakan dalam proses pelatihan model ML?

Insight apa yang kita inginkan dari EDA? Insight yang akan membantu kita melatih model ML yang lebih baik

Hal yang tidak kita lakukan dalam EDA:

- Mencari 'business insight' atau 'story' dari data yang dimiliki
 - 'Mengubah' atau 'membersihkan' data; dipahami saja jangan disentuh dulu

Outline Pembelajaran

Exploratory Data Analysis

- Exploratory Data Analysis (EDA) itu apa?
- How to EDA
- Hands-on: studi kasus House Rent

Bagaimana cara melakukan EDA?

Dataset

Titanic

- Deskripsi:

Memprediksi *survival* dari kecelakaan Titanic berdasarkan data-data penumpang.

- Data:

Setiap baris mewakili penumpang, setiap kolom berisi atribut penumpang.

Data dipisah menjadi 2, ambil train.csv

- Link Kaggle: https://www.kaggle.com/c/titanic/data


```
1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 4 import seaborn as sns
 5 from matplotlib import rcParams
 7 print('Numpy version: ', np.__version__)
 8 print('Pandas version: ',pd.__version__)
 9 print('Seaborn version: ',sns.__version__)
Numpy version: 1.18.5
Pandas version: 1.0.5
Seaborn version: 0.10.1
```

1 rcParams['figure.figsize'] = (10,7) 2 rcParams['lines.linewidth'] = 2.5

3 rcParams['xtick.labelsize'] = 'x-large' 4 rcParams['ytick.labelsize'] = 'x-large'

```
1 df = pd.read csv('train.csv')
```

rcParams mengubah pengaturan default matplotlib

Understand The Data

=	kaggle	Q Search		
Ø	Home	verview Data Notebooks Discus	sion Leaderboard Rules	Join Competition
Ψ	Compete	Variable	Definition	Kéy
	Data	survival	Survival	0 = No, 1 = Yes
>	Notebooks	pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
■	Discuss	sex	Sex	
91	Courses	Age	Age in years	
~	More	sibsp	# of siblings / spouses aboard the Titanic	
		parch	# of parents / children aboard the Titanic	
		ticket	Ticket number	
		fare	Passenger fare	
		cabin	Cabin number	
		embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Bagaimana cara melakukan EDA?

#1: Descriptive Statistics

Descriptive Statistics:

Ringkasan statistik dari setiap kolom di dataset yang dapat memberikan gambaran besar keadaan data.


```
1 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
               Non-Null Count Dtype
    Column
  PassengerId 891 non-null int64
    Survived
               891 non-null
                            int64
  Pclass
               891 non-null
                            int64
               891 non-null
                            object
    Name
  Sex
               891 non-null
                            object
  Age
               714 non-null
                             float64
   SibSp
               891 non-null
                             int64
               891 non-null
  Parch
                            int64
8 Ticket
                             object
               891 non-null
9 Fare
               891 non-null
                            float64
10 Cabin
               204 non-null
                            object
   Embarked
            889 non-null
                              object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

df.info() akan memunculkan informasi umum mengenai dataframe

Yang perlu diperhatikan:

- Apakah ada data dengan tipe yang kurang sesuai?
 Misal, Name dengan tipe int 64
- Apakah ada data yang hilang?
 Cari kolom dengan count < jumlah row


```
1 numericals = ['Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']
2 categoricals = ['Sex', 'Embarked']
```

Pisahkan kolom2 yang ingin dianalisis

Sample

1 df.sample(5)

df.sample(), df.head(), atau df.tail()
akan menampilkan beberapa baris data secara langsung

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
464	465	0	3	Maisner, Mr. Simon	male	NaN	0	0	A/S 2816	8.0500	NaN	S
838	839	1	3	Chip, Mr. Chang	male	32.0	0	0	1601	56.4958	NaN	S
93	94	0	3	Dean, Mr. Bertram Frank	male	26.0	1	2	C.A. 2315	20.5750	NaN	S
442	443	0	3	Petterson, Mr. Johan Emil	male	25.0	1	0	347076	7.7750	NaN	S
386	387	0	3	Goodwin, Master. Sidney Leonard	male	1.0	5	2	CA 2144	46.9000	NaN	S

Yang perlu diperhatikan:

Apakah ada kolom dengan nilai yang tidak sesuai dengan nama kolom?

PROTIP: Memisahkan Berdasarkan Data Types

```
1 num_dtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
2
3 # Langsung subset df
4 num_df = df.select_dtypes(include=num_dtypes)
5 numericals = num_df.columns
6
7 print(numericals)
Index(['PassengerId', 'Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare'], dtype='object')
```

Kita bisa langsung mengambil hanya kolom-kolom dengan tipe data tertentu!

Pandas dtype	Python type	NumPy type	Usage
object	str or mixed	string_, unicode_, mixed types	Text or mixed numeric and non-numeric values
int64	int	int., int8, int16, int32, int64, uint8, uint16, uint32, uint64	Integer numbers
float64	float	float_, float16, float32, float64	Floating point numbers
bool	bool	bool_	True/False values
datetime64	NA	datetime64[ns]	Date and time values
timedelta[ns]	NA	NA	Differences between two datetimes
category	NA	NA	Finite list of text values

1 df.	describe()						
	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

df.describe() akan menampilkan beberapa statistik dari setiap kolom dalam dataframe. Secara *default* hanya kolom numerik saja yang akan ditampilkan.

... sebelumnya di Rakamin...

Statistika Deskriptif

Statistical Summary (2)

Yang perlu diperhatikan:

- Apakah nilai yang tertera pada setiap kolom masuk akal?
- Apakah nilai maksimal/minimal masih berada di batas wajar?
 Min/max yang terlalu jauh dari mean/median bisa jadi indikasi kesalahan input data
- Apakah ada kolom dengan perbedaan yang signifikan antara mean dan median?

Perbedaan antara mean/median mengindikasikan *outlier* atau *skewed distribution*Apabila semua kolom di dataframe bertipe

categorical, df.describe() akan memunculkan statistik kategori.

1 df[c	ategor	icals].de
	Sex	Embarked
count	891	889
unique	2	3
top	male	S
freq	577	644

Yang perlu diperhatikan:

- Apakah jumlah unique values masuk akal?
- Apakah frekuensi dari nilai yang paling umum terlalu timpang?

Apabila distribusi nilai terlalu timpang, feature tidak akan terlalu berguna dalam klasifikasi

. sebelumnya di Rakamin...

Statistika Deskriptif

Tipe-tipe Distribusi


```
Rakamin
```

```
1 df['Sex'].value_counts()

male 577
female 314
Name: Sex, dtype: int64
```

See Unique Values

```
1 df['Sex'].unique()
array(['male', 'female'], dtype=object)
```

df['nama_kolom'].value_counts()
akan menampilkan jumlah dari setiap
nilai unik di kolom tersebut.

df['nama_kolom'].unique()
menampilkan semua nilai unik di kolom.

INI PENTING TERUTAMA UNTUK TARGET DI SUPERVISED LEARNING!

Masalah apa yang bisa diidentifikasi hanya dengan statistika deskriptif?

Bagaimana cara melakukan EDA?

#2: Univariate Analysis

Univariate Analysis:

Analisis setiap kolom secara terpisah, melihat distribusi nilainya secara detail

Individual Boxplots (Numeric)

```
features = numericals
for i in range(0, len(features)):
   plt.subplot(1, len(features), i+1)
   sns.boxplot(y=df[features[i]], color='green', orient='v')
   plt.tight_layout()
```


Yang perlu diperhatikan:

• Berapa banyak dan berapa jauh outlier di setiap kolom? Definisi umum outlier: berjarak 1.5x IQR dari Q1/Q3

Individual Distplot (Numerical)

```
features = numericals
for i in range(0, len(features)):
   plt.subplot(2, 4, i+1) # 2x4=8 > len(numericals)=7
   sns.kdeplot(x=df[features[i]], color='green')
   plt.xlabel(features[i])
   plt.tight_layout()
```


Individual Distplot (Numerical)

Yang perlu diperhatikan:

- Bagaimana bentuk distribusi setiap kolom?
 Apakah normal? Positive skewed? Negative skewed? Bimodal?
- Apakah ada nilai-nilai tertentu yang umum?
 Lonjakan pada distribution plot mungkin memiliki makna tertentu

Alternatif: Individual Violin Plots (Numeric)

```
features = numericals
for i in range(0, len(features)):
   plt.subplot(1, len(features), i+1)
   sns.violinplot(y=df[features[i]], color='green')
   plt.tight_layout()
```


Individual Violin Plots (Numeric)

Violin plot merupakan gabungan antara box plot dan distribution plot

Yang perlu diperhatikan:

• Sama dengan box plot + distribution plot

Individual Countplot (Categorical)

```
features = categoricals
for i in range(0, len(features)):
    plt.subplot(1, len(features), i+1)
    sns.countplot(x=df[features[i]], color='green')
    plt.tight_layout()
```


Individual Countplot (Categorical)

Untuk data kategori, kita bisa menggunakan countplot biasa

Yang perlu diperhatikan:

Ketimpangan antar kategori, terutama pada target
 Sebaran kategori yang timpang pada feature merupakan indikasi ketidakgunaan feature. Pada target, sebaran yang timpang dapat membuat proses learning gagal.

Bagaimana cara melakukan EDA?

#3: Multivariate Analysis

Multivariate Analysis:

Analisis beberapa kolom sekaligus untuk mencari hubungan antar kolom

1 sns.heatmap(df.corr(), cmap='Blues', annot=True, fmt='.2f')

df.corr() akan mengembalikan matriks korelasi; sns.heatmap() membuat heatmap berdasarkan matriks

Yang perlu diperhatikan:

- Apakah feature memiliki korelasi dengan target?
 Bila tidak, maka model linear tidak dapat digunakan
- Apakah ada 2 feature yang berkorelasi kuat (>0.7)?
 Bila ya, ada kemungkinan besar kedua feature tersebut redundan

. sebelumnya di Rakamin...

Korelasi Linear (Pearson correlation)

- Pola hubungan antara X dan Y membentuk pola garis lurus
 Semakin besar X, semakin besar pula Y ATAU semakin besar X, semakin kecil Y, dengan rate konstan (linear) (kotak hijau di samping)
- Nilai korelasi berkisar dari -1 s.d. 1
 1: hubungan linear sempurna, searah
 -1: hubungan linear sempurna
 namun berlawanan arah
 0: pola hubungan BUKAN linear

Pair Plots (Numeric)

1 sns.pairplot(df, diag_kind='kde')

sns.pairplot() secara otomatis menggambar scatter plot untuk setiap pasangan kolom

Yang perlu diperhatikan:

 Apakah ada scatter plot yang menunjukkan cluster/pattern yang cukup jelas?

Pola pada scatter plot bisa menjadi petunjuk untuk memilih fitur yang baik

Pair Plots + Hue (Numeric)

```
1 sns.pairplot(df, diag_kind='kde',
2 hue='Survived')
```

parameter hue memberikan warna yang berbeda untuk setiap kemungkinan nilai target

Yang perlu diperhatikan:

 Apakah ada scatter plot dimana kedua warna terpisah dengan baik?
 Scatter plot dimana target terpisah dapat menjadi indikasi kombinasi fitur yang baik

Category Plots (Categorical - Numeric)

Tidak ada fungsi otomatis untuk menggambarkan semua kombinasi categorical vs numeric value. Harus dilakukan manual dengan sns.stripplot().

Parameter hue juga tersedia disini.

Yang perlu diperhatikan:

- Apakah feature categorical memiliki korelasi dengan target?
- Apakah ada 2 feature categorical yang terlihat jelas berkorelasi?

EDA: Tips + Trik

- 1. Fokus pada kecepatan dan kelengkapan eksplorasi, bukan estetika visualisasi
- 2. Jangan menggali business insight EDA bertujuan untuk mempermudah proses modeling

Outline Pembelajaran

Exploratory Data Analysis

- Exploratory Data Analysis (EDA) itu apa?
- How to EDA
- Hands-on: studi kasus Pengiriman Makanan

Hands-on: EDA Prediksi Waktu Kedatangan Pesanan

Dataset

Food_Delivery_Dataset.csv

- Deskripsi:

Sebuah perusahaan pengiriman makanan ingin meningkatkan sistemnya dalam menghitung waktu kedatangan pesanan. Manajemen telah memutuskan untuk mengembangkan perangkat lunak cerdas yang dapat memprediksi waktu kedatangan pesanan.

Dataset. memprediksi waktu kedatangan pesanan.

- Data:

Setiap baris mewakili satu pesanan, setiap kolom berisi atribut pesanan tersebut.

Dataset

Column Name	Description
D	Represents a unique identification of an entry
Delivery person ID	Represents a unique identification of a delivery person.
Delivery person Age	Represents the age of a delivery person.
Delivery person Ratings	Represents the average ratings given to the delivery person. (1to5)
Restaurant latitude	Represents the latitude of the restaurant.
Restaurant longitude	Represents the longitude of the restaurant.
Delivery location latitude	Represents the latitude of the Delivery location.
Delivery location longitude	Represents the longitude of the Delivery location.
Order Date	Represents the date when the order was placed.
Time Orderd	Represents the time when the order was placed.
Time Order picked	Represents the time when the order was picked from the restaurant.

Dataset

Column Name	Description
Weather conditions	Represent the weather conditions (Windy, Sunny, Cloudy, Stormy, Fog, Sandstorms, etc)
Road traffic density	Represents the road traffic density (Jam, High, Medium and Low)
Vehicle condition	Represents the condition of the vehicle. (Smooth, good or average)
Type of order	Represents the type of order (Snack, Meal, Buffet, Drinks, etc)
Type of vehicle	Represents the type of vehicle one is using (motorbike, bicycle etc.)
multiple deliveries	Represents the number of orders to be delivered in one attempt
Festival	Represents whether day is festive or not
City	Represents the city
Time taken	Represents the time taken by the delivery person to deliver the order.

Sudah.

Sesi tanya-jawab