

Tropical Oriented Matroids

Federico Ardila¹ Mike Develin²

¹San Francisco State University

²University of California, Berkeley

MIT Combinatorics Seminar Cambridge, MA . November 15, 2007

Ten Questions in Tropical Geometry (ADFMMMPSY - MSRI, 2006)

A list of ten key open problems in (the algebraic and combinatorial side of) tropical geometry.

Question 8. What is a tropical oriented matroid?

Construct a combinatorial model which captures the fundamental properties of a tropical hyperplane arrangement.

The plan

- Tropical hyperplane arrangements
 - What is tropical geometry?
 - Tropical hyperplane arrangements
- Oriented matroids
 - Definition
 - Uses
- Tropical oriented matroids
 - Covectors
 - Toolkit
 - Geometric models
 - Open problems

Tropical Geometry

What is tropical geometry?

It depends on who you ask. One point of view:

algebraic variety \mapsto tropical variety

 $V \mapsto \operatorname{Trop}(V)$.

Idea: Obtain information about V from Trop(V).

o Trop(V) is simpler, but contains much information about V.

o $\operatorname{Irop}(V)$ is a polynedral ran, where we can do combinatorics.

Example: Gromov-Witten invariants of \mathbb{CP}^2 can be computed by tropicalizing, *i.e.*, combinatorially. (Mikhalkin)

Tropical Geometry

What is tropical geometry?

It depends on who you ask. One point of view:

algebraic variety \mapsto tropical variety

 $V \mapsto \operatorname{Trop}(V)$.

Idea: Obtain information about V from Trop(V).

o Trop(V) is simpler, but contains much information about V.

o Trop(V) is a polyhedral fan, where we can do combinatorics.

Example: Gromov-Witten invariants of \mathbb{CP}^2 can be computed by tropicalizing, *i.e.*, combinatorially. (Mikhalkin)

Tropical Geometry

What is tropical geometry?

It depends on who you ask. One point of view:

algebraic variety \mapsto tropical variety

 $V \mapsto \operatorname{Trop}(V)$.

Idea: Obtain information about V from Trop(V).

o Trop(V) is simpler, but contains much information about V.

o Trop(V) is a polyhedral fan, where we can do combinatorics.

Example: Gromov-Witten invariants of \mathbb{CP}^2 can be computed by tropicalizing, *i.e.*, combinatorially. (Mikhalkin)

$$x \oplus y = \max(x, y)$$
 $x \odot y = x + y$

Example 1. Tropical conics in \mathbb{TP}^2 :

$$AX^2 + BY^2 + CZ^2 + DXY + EXZ + FYZ = 0 \mapsto \max(a+2x,b+2y,\ldots,e+x+z,f+y+z)$$
 achieved twice.

Two tropical conics:

(Tropical projective plane \mathbb{TP}^2 :

 $(a, b, c) \sim (a - c, b - c, 0)$

Example 2. Tropical hyperplanes in \mathbb{TP}^{n-1} .

$$A_1X_1 + \ldots + A_nX_n = 0 \mapsto \max(x_1 + a_1, \ldots, x_n + a_n)$$
 ach. twice

 \mathbb{TP}^2 : max(x-3, y+2, z) twice \mathbb{TP}^3 : max (x_1, x_2, x_3, x_4) twice

This is the polar fan of the simplex centered at $-(a_1, \ldots, a_n)$. It divides \mathbb{TP}^n into n+1 regions.

Goal: To study tropical hyperplane arrangements.

Goal: To study tropical hyperplane arrangements.

Why? Some reasons:

- Tropical polytopes "=" arrangements. (Develin, Sturmfels)
- Tropical linear spaces are very interesting and not well understood. (A., Klivans; A., Reiner, Williams; Speyer) They live inside arrangements. Connections:
 - Lafforgue's surgery on Grassmannians, matroid subdivs.
 - De Concini-Procesi's wonderful compactifications.
- Subdivs. of $\Delta_{n-1} \times \Delta_{d-1}$ and the Schubert calculus of the flag manifold. (A., Billey)
- Convexity in Bruhat-Tits buildings. (Joswig, Sturmfels, Yu)
- The rich theory of hyperplane arrangements.

Goal: To study tropical hyperplane arrangements.

Why? Some reasons:

- Tropical polytopes "=" arrangements. (Develin, Sturmfels)
- Tropical linear spaces are very interesting and not well understood. (A., Klivans; A., Reiner, Williams; Speyer) They live inside arrangements. Connections:
 - Lafforgue's surgery on Grassmannians, matroid subdivs.
 - De Concini-Procesi's wonderful compactifications.
- Subdivs. of $\Delta_{n-1} \times \Delta_{d-1}$ and the Schubert calculus of the flag manifold. (A., Billey)
- Convexity in Bruhat-Tits buildings. (Joswig, Sturmfels, Yu)
- The rich theory of hyperplane arrangements.

Oriented Matroids

A - hyperplane arrangement in \mathbb{R}^n .

 M_A - **oriented matroid** - captures its combinatorial structure.

A **covector** for each face of A:

¿On what side of each hyperplane am I?

What is an oriented matroid?

A collection of **covectors** in $\{+, -, 0\}^n$ such that:

- (Zero) 0 is a covector
- (Symmetry) If v is a covector, so is -v.
- (Surrounding) If u, v are covectors, so is $u \circ v$.
- (Elimination) If u, v are covectors and $j \in S(u, v)$, there is a covector w with $w_i = 0$ and $w_i = (u \circ v)_i$ for $i \notin S(u, v)$.

Here:

$$(\boldsymbol{u} \circ \boldsymbol{v})_i := \begin{cases} u_i \text{ si } u_i \in \{+, -\} \\ v_i \text{ si } u_i = 0. \end{cases}$$

and

$$S(u, v) := \{i : u_i = -v_i \neq 0\}$$

Fine, but what is an oriented matroid?

A combinatorial model for real hyperplane arrangements. Each axiom abstracts a geometric property of arrangements.

It is a great model:

- Almost no matroid comes from hyperplane arrangements, but they all come from a pseudo-hyperplane arrangement.
- Almost any combinatorial theorem about hyperplane arrangements is true for matroids.
- It is applicable to vector configs, graphs, polytopes,...
- A powerful toolkit has been develoepd:
 - equivalent points of view (independence, cycles, ...)
 - constructions (duality, sum, intersection, ...)

Uses. Topology of complex hyperplane arrangements, combinatorial differential manifolds, random walks,

Fine, but what is an oriented matroid?

A combinatorial model for real hyperplane arrangements. Each axiom abstracts a geometric property of arrangements.

It is a great model:

- Almost no matroid comes from hyperplane arrangements, but they all come from a pseudo-hyperplane arrangement.
- Almost any combinatorial theorem about hyperplane arrangements is true for matroids.
- It is applicable to vector configs, graphs, polytopes,...
- A powerful toolkit has been develoepd:
 - equivalent points of view (independence, cycles, ...)
 - constructions (duality, sum, intersection, ...)

Uses. Topology of complex hyperplane arrangements, combinatorial differential manifolds, random walks,....

Tropical oriented matroids

The project.

- Build a combinatorial model for tropical hyperplane arrangements.
- Develop the theory of tropical oriented matroids.

Tropical oriented matroids

A hyperplane splits \mathbb{TP}^{d-1} into d sectors. Which one am I in? n hyperplanes in $\mathbb{TP}^{d-1} \mapsto \text{covectors } (A_1, \dots, A_n)$, $A_i \subseteq [d]$.

Properties of covectors?

Property 1. (Boundary)

 (i,\ldots,i) is a covector for all $1 \leq i \leq d$.

I go to infinity in the *i*th direction.

Property 2. (Elimination)

If A and B are covectors and i is a coordinate, there is a covector C such that $C_i = A_i \cup B_i$, and $C_j \in \{A_j, B_j, A_j \cup B_j\}$ for all j.

C is the intersection of H_i with the line segment from A to B.

Property 3. (Comparability)

Two covectors cannot form a cycle:

$$A = (347, 25, 2, 3, 23, 16)$$

$$B = (36, 456, 6, 46, 1, 367)$$

If I walk from A to B, I move less in direction 3 than in 1.

Property 4. (Surrounding)

For any covector A=(3457,256,124,357,25,16) and any ordered partition 3,5<1,4,7<2,6, the "minimal covector" $A_<=(35,5,14,35,5,1)$ is a covector.

Walk from A in the direction specified by $< \rightarrow$ get to face $A_{<}$.

Definition/Theorem. (A., Develin, 2007)

Definition. A tropical oriented matroid is a set of covectors of the form (A_1, \ldots, A_n) , with $A_i \subseteq [d]$, such that:

- (Boundary) (i, ..., i) is a covector for all $1 \le i \le d$.
- (Elimination) If A and B are covectors and $1 \le i \le d$, there is a covector C with $C_i = A_i \cup B_i$ and $C_j \in \{A_j, B_j, A_j \cup B_j\}$ for $j \ne i$.
- (Comparability) No two covectors form a cycle.
- (Surrounding) For any covector A and any ordered partition
 of [d], the "minimal covector" A< is a covector.

Theorem. The covectors of a tropical hyperplane arrangement form a tropical oriented matroid.

Tropical oriented matroids (TOMs) are a good combinatorial model for tropical hyperplane arrangements:

- Sufficiently weak to include tropical arrangements.
- Sufficiently strong to prove interesting theorems.

Toolkit.

- 1. Constructions:
 - Theorem. The deletion $M \setminus i$ is a TOM. Erase coordinate i from each covector. $(1 \le i \le n)$
 - Theorem. The contraction M/i is a TOM. Consider only the covectors not containing j. $(1 \le j \le d)$
 - Conjecture. The dual of a TOM is a TOM.
 Transpose: (124, 1, 134, 23, 124) → (1235, 145, 34, 135)

2. Convexity. (joint work with Anna Brown, 07)

A **convex geometry** is a combinatorial model that captures the common features of many notions of convexity, in the same way that matroids model independence. (Edelman et. al.)

- Theorem. (Björner, Edelman, Ziegler) An oriented matroid M determines a convex geometry on the elements of M.
- Theorem. (A., Brown) A tropical oriented matroid M determines a convex geometry on the elements of M.
- Ongoing project. Investigating these "tropical convex geometries".

2. Convexity. (joint work with Anna Brown, 07)

A **convex geometry** is a combinatorial model that captures the common features of many notions of convexity, in the same way that matroids model independence. (Edelman et. al.)

- Theorem. (Björner, Edelman, Ziegler) An oriented matroid M determines a convex geometry on the elements of M.
- Theorem. (A., Brown) A tropical oriented matroid M determines a convex geometry on the elements of M.
- Ongoing project. Investigating these "tropical convex geometries".

2. Convexity. (joint work with Anna Brown, 07)

A **convex geometry** is a combinatorial model that captures the common features of many notions of convexity, in the same way that matroids model independence. (Edelman et. al.)

- Theorem. (Björner, Edelman, Ziegler) An oriented matroid M determines a convex geometry on the elements of M.
- Theorem. (A., Brown) A tropical oriented matroid M determines a convex geometry on the elements of M.
- Ongoing project. Investigating these "tropical convex geometries".

- 3. Equivalent points of view.
 - Theorem.
 The regions (maximal covectors) of M determine it.
 - Theorem.
 The vertices (minimal covectors) of M determine it.
 - Question. Axioms for regions? for vertices?
 - Conjecture. Two geometric models:
 - Subdivisions of the polytope $\Delta_{n-1} \times \Delta_{d-1}$.
 - "Pseudohyperplane" arrangements.

- 3. Equivalent points of view.
 - Theorem.
 The regions (maximal covectors) of M determine it.
 - Theorem.
 The vertices (minimal covectors) of M determine it.
 - Question. Axioms for regions? for vertices?
 - Conjecture. Two geometric models:
 - Subdivisions of the polytope $\Delta_{n-1} \times \Delta_{d-1}$.
 - "Pseudohyperplane" arrangements.

Subdivisions of $\Delta_{n-1} \times \Delta_{d-1}$

The product of simplices $\Delta_{n-1} \times \Delta_{d-1}$ is the polytope in \mathbb{R}^{n+d} whose nd vertices are, for $1 \le i \le n, 1 \le j \le d$,

$$e_i + f_j = (0, \dots, 0, 1, 0, \dots, 0; 0, \dots, 0, 1, 0, \dots, 0)$$

Subdivision of P: A tiling $P = P_1 \cup ... \cup P_k$ where the P_i s are subpolytopes, and $P_i \cap P_j$ is empty or is a face of P_i and P_j .

Triangulation: A subdivision into simplices.

Subdivisions of $\Delta_{n-1} \times \Delta_{d-1}$.

- Very nice structure. (Gelfand Kapranov Zelevinsky)
- Toric varieties of transportation polytopes. (Sturmfels)
- Disconnected toric Hilbert schemes. (Santos)
- d = 3: Schubert calc.: criterion for Littlewood Richardson numbers $c_{uvw} = 0$ in the flag manifold (A., Billey)
- (A., Beck, Hosten, Pfeifle, Seashore; Babson, Billera; Bayer; Develin-Sturmfels; Haiman; Postnikov; etc.)

Conjecture. (A.-Develin, 2007)

Tropical oriented matroids of (n, d) = Subdivs. of $\Delta_{n-1} \times \Delta_{d-1}$

Theorems

- tropical oriented matroids ⊆ subdivisions
- tropical oriented matroids = subdivisions (d = 3).
- subdivisions satisfy the boundary, comparability, and surrounding axioms.

Only one axiom is missing!

Conjecture. Subdivisions satisfy the elimination axiom.

Difficulty: To "navigate" a subdivision in a controlled manner.

Conjecture. (A.-Develin, 2007)

Tropical oriented matroids of (n, d) = Subdivs. of $\Delta_{n-1} \times \Delta_{d-1}$

Theorems:

- tropical oriented matroids ⊆ subdivisions
- tropical oriented matroids = subdivisions (d = 3).
- subdivisions satisfy the boundary, comparability, and surrounding axioms.

Only one axiom is missing!

• Conjecture. Subdivisions satisfy the elimination axiom.

Difficulty: To "navigate" a subdivision in a controlled manner.

Conjecture. (A.-Develin, 2007)

Tropical oriented matroids of (n, d) = Subdivs. of $\Delta_{n-1} \times \Delta_{d-1}$

Theorems:

- tropical oriented matroids ⊆ subdivisions
- tropical oriented matroids = subdivisions (d = 3).
- subdivisions satisfy the boundary, comparability, and surrounding axioms.

Only one axiom is missing!

Conjecture. Subdivisions satisfy the elimination axiom.

Difficulty: To "navigate" a subdivision in a controlled manner.

Sketch of the bijection.

Subdivisions ↔ Tropical oriented matroids

(mixed) faces
$$\leftrightarrow$$
 covectors

$$11, 12, 13, 21 \leftrightarrow (123, 1)$$

$$12, 13, 21, 23 \leftrightarrow (23, 13)$$

$$12,21,22,23 \leftrightarrow (2,123)$$

$$13,21,23 \leftrightarrow (3,13)$$

$$12,21 \leftrightarrow (2,1)$$

22, 23 \leftrightarrow (\emptyset , 23) We ignore it.

Sketch of the bijection.

Subdivisions ← Tropical oriented matroids

$$11, 12, 13, 21 \leftrightarrow (123, 1)$$

$$12, 13, 21, 23 \leftrightarrow (23, 13)$$

$$12,21,22,23 \leftrightarrow (2,123)$$

$$13,21,23 \leftrightarrow (3,13)$$

$$12,21 \leftrightarrow (2,1)$$

22, 23 \leftrightarrow (\emptyset , 23) We ignore it.

Tropical pseudohyperplane arrangements

Topological Representation Theorem.

(Folkman, Lawrence, 1978)

Any oriented matroid can be represented by an arrangement of pseudohyperplanes.

Topological Representation Conjecture.

(A., Develin)

Any tropical oriented matroid can be represented by an arrangement of pseudohyper-planes.

Topological Representation Conjecture. (A., Develin)

Any tropical oriented matroid can be represented by an arrangement of pseudohyperplanes.

Sketch of a proof. Step 1.

The Cayley trick gives us a bijection:

subdivs. of $\Delta_{n-1} \times \Delta_{d-1} \leftrightarrow \text{mixed subdivs.}$ of $n\Delta_{d-1}$

Topological Representation Conjecture. (A., Develin)

Any tropical oriented matroid can be represented by an arrangement of pseudohyperplanes.

Sketch of a proof. Step 2.

Draw the mixed Voronoi subdivision of each cell.

The lower-dimensional faces determine the arrangement of tropical pseudohyperplanes.

An example:

A mixed subdivison of $n\Delta_2$ is a tiling with triangles and unit rhombi. The corresponding arrangement:

A mixed subdivision of $n\Delta_3$ and the corresponding arrangement:

A tropical pseudohyperplane arrangement in \mathbb{TP}^3 :

Open problems.

Combinatorics

- Prove TOM duality.
- Define morphisms (strong maps) between TOMs.
- Define tropical (unoriented) matroids.

Geometry

- Bijection between TOMs and subdivs of $\Delta_{n-1} \times \Delta_{d-1}$.
- Make precise connection with Schubert calculus of $\mathcal{F}\ell_n$.

Topology

- Prove the topological representation conjecture.
- Study the topology of a TOM (face poset, etc.)
- Use TOMs and their morphisms to give a combinatorial model of the space of tropical hyperplane arrangements.

many thanks!

The article is available at:

http://math.sfsu.edu/federicohttp://front.math.ucdavis.edu/0706.2920

