Hausaufgabe 2

Aufgabe 10

 \mathbf{a}

Sei $Y := \{(1, x) \mid x \in [0, 1]_{\mathbb{Q}}\}$. Da $[0, 1]_{\mathbb{Q}}$ nicht endlich ist, ist Y dies ebenfalls nicht. Damit ist Y eine undendliche Teilmenge von \mathbb{Q}^2 . Ferner seien nun $v, v' \in Y$ mit $v \neq v'$ gegeben. Dann sind v = (1, x), v' = (1, x') für $x, x' \in Q$. Da $v \neq v'$ folgt sofort $x \neq x'$. Seien nun $a, b \in Q$. Dann folgt

$$av + bv' = 0 \iff (a, ax) = (b, bx') \iff a = b \land a(x - x') = 0 \iff a = b = 0$$

Folglich sind v, v' linear unabhängig.

b)

Wir führen Induktion: Sei n=1. Da $f_1(1)=1\neq 0$ folgt auch $f_1\neq 0$, also (f_1) l.u. Sei nun $n\in\mathbb{N}$ mit $(f_i)_{i\in[1,n]}$ ist l.u, gegeben. Dann gilt nach Definition, dass

$$\forall a \in \mathbb{Q}^n : (\sum_{i=1}^n a_i f_i)(n+1) = \sum_{i=1}^n a_i f_i(n+1) = \sum_{i=1}^n a_i 0 = 0$$

Folglich kann es keine Linearkombination f von $(f_i)_{i \in [1,n]}$ geben, sodass f(n+1) = n+1. Da aber $f_{n+1}(n+1) = n+1 \neq 0$ ist also auch $(f_i)_{i \in [1,n+1]}$ linear unabhängig.

Nach dem Prinzip der vollst. Induktion folgt also, dass $(f_i)_{i \in [1,n]}$ für alle $n \in \mathbb{N}$ l.u. ist. Dies ist nach 1.72 äquivalent dazu, dass $\{f_i \mid i \in \mathbb{N}\}$ l.u. ist.

Aufgabe 11

Trivial. (Dies sei dem Leser zur Übung überlassen)