The function $f(x) = (x-3)^2 + \frac{1}{2}$ has domain $D_f: (-\infty, \infty)$ and range $R_f: \left[\frac{1}{2}, \infty\right]$.

$$\lim_{x \to a^{-}} f(x)$$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int_a^b$$

$$\int_a^b$$

$$\int_a^b$$

$$\int_{2a}^{2b}$$

$$\int_a^b x^2 \, dx = \left[\frac{x^3}{3}\right]$$

$$\int_{a}^{b} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{a}^{b} = \frac{b^{3}}{3} - \frac{a^{3}}{3}$$

$$\sum_{n=1}^{\infty} ar^{n} = a + ar + ar^{2} + \dots + ar^{n}$$

$$\sum_{n=1}^{\infty} ar^{n} = a + ar + ar^{2} + \dots + ar^{n}$$

$$\int_{a}^{b} f(x) dx = \lim_{x \to \infty} \sum_{k=1}^{\infty} f(x_{k}^{*}) \cdot \Delta x$$

$$\vec{v} = v_1 \vec{i} + v_2 \vec{j} = \langle v_1, v_2 \rangle$$