Unsupervised ASR

伏宇寬

r11942083@ntu.edu.tw

Outline

- Unsupervised ASR
- Wav2vec-U framework
 - SSL representations
 - Data preprocessing
 - GAN training
- Homework
 - problem 1
 - o problem 2
 - o problem 3
- Reference

Unsupervised Speech Recognition

Reference: [DLHLP 2020] Text Style Transfer and Unsupervised Summarization/Translation/Speech Recognition

Wav2vec-U

SSL representation

Extract from 15th transformer layer of w2v2-large

Speech pre-processing

- 1. Silence removal: robust Voice Activity Detection (rVAD) [ref]
- **2. Extract representation:** 15th layer of w2v2-large
- 3. Identifying speech audio segments: K-means clustering
- **4. Reduce dimension:** PCA > mean-pooling (merge by cluster ids & adjacent segments)

Text pre-processing

1. Phonemization: Use Espeak phonemizer

Ex: get stronger. our peoples and our economies

g ɛ t s t ı ɔ ŋ g ə aʊ ə p iː p əl z æ n d aʊ ə ɪ k ɑː n ə m i z

2. Insert SIL tokens: start & end + between words (25% insertion rate)

Ex:

<SIL> s ə p ου z <SIL> ɔ: l θ ı i: ʌ v <SIL> ð ə f ɑ: l ου ɪ ŋ k ə n d ɪ ʃ ə n z <SIL> h ου l d <SIL>

GAN training objective

$$\min_{\mathcal{G}} \max_{P^r \sim \mathcal{P}^r} \left[\log \mathcal{C}(P^r) \right] - \underset{S \sim \mathcal{S}}{\mathbb{E}} \left[\log \left(1 - \mathcal{C}(\mathcal{G}(S)) \right) \right] - \lambda \mathcal{L}_{gp} + \gamma \mathcal{L}_{sp} + \eta \mathcal{L}_{pd}$$

WGAN-GP [ref]

Segment smoothness penalty:

$$\mathcal{L}_{sp} = \sum_{(p_t, p_{t+1}) \in \mathcal{G}(S)} ||p_t - p_{t+1}||^2$$

Phoneme diversity loss:

$$\mathcal{L}_{pd} = \frac{1}{|B|} \sum_{S \in B} -H_{\mathcal{G}}(\mathcal{G}(S))$$

Self-training

- HMM
- finetuning by pseudo-label

Unsupervised learning - matched setup				
EODM [Yeh et al., 2019]	5-gram	_	36.5	-
GAN* [Chen et al., 2019]	9-gram	-	-	48.6
GAN + HMM* [Chen et al., 2019]	9-gram	-	-	26.1
wav2vec-U	4-gram	17.0	17.8	16.6
wav2vec-U + ST	4-gram	11.3	12.0	11.3
Unsupervised learning - unmatched setup				
EODM [Yeh et al., 2019]	5-gram	_	41.6	-
GAN* [Chen et al., 2019]	9-gram	*1 <u>-</u> 8	_	50.0
GAN + HMM* [Chen et al., 2019]	9-gram	-	-	33.1
wav2vec-U*	4-gram	21.3	22.3	24.4
$wav2vec-U + ST^*$	4-gram	13.8	15.0	18.6

Homework

You only need to do:

1. Preprocessing speech & text

2. Gan training

3. Self training

Instructions: See **README**

Datasets

Speech:

Voxpopuli (unlabeled)

Text:

Voxpopuli (asr transcriptions)

[link of voxpopuli]

Other things you can do

You might try:

- different text corpus
 - Ir rate
 - loss weight
 - model depth
- different w2v2 versions

Q&A

有任何問題都可以直接在 facebook 社團貼文底下留言!

Reading list

- 1. **"Unsupervised speech recognition"**, Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, and MichaelAuli
- 2. "Completely unsupervised phoneme recognition by adversari-ally learning mapping relationships from audio embeddings", Da-Rong Liu, Kuan-Yu Chen, Hung-Yi Lee, and Lin shan Lee
- 3. **"Completely unsupervised speech recogni-tion by a generative adversarial network harmonized with iter-atively refined hidden markov models"**, Kuan-Yu Chen, Che-Ping Tsai, Da-Rong Liu, Hung-Yi Lee,and Lin shan Lee
- 4. "Improved Training of Wasserstein GANs", Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville
- 5. **"Unsupervised automatic speech recognition: A review"**, Hanan Aldarmaki, Asad Ullah, and Nazar Zak

Reference

ASR:

intro.: https://www.youtube.com/watch?v=AIKu43goh-8&list=PLJV el3uVTsO07RpBYFsXg-bN5Lu0nhdG&index=2

LAS: https://www.youtube.com/watch?v=BdUeBa6NbXA&list=PLIV el3uVTsO07RpBYFsXg-bN5Lu0nhdG&index=3

CTC & RNN-T:

https://www.youtube.com/watch?v=CGuLuBaLleI&list=PLJV_el3uVTsO07RpBYFsXg-bN5Lu0nhdG&index=4

LM: https://www.youtube.com/watch?v=dymfkWtVUdo&list=PLJV el3uVTsO07RpBYFsXg-bN5Lu0nhdG&index=8

UASR:

https://www.youtube.com/watch?v=WROBoprE0js&list=PLJV_el3uVTsO07RpBYFsXg-bN5Lu0nhdG&index=25

感謝曾亮軒助教授權提供投影片與處理好的資料