Mnl Lab Manual: 2

TASK: 1

Write and assemble a program to load register AX with value 99H. Then from register AX move it to BX, CX, and DX. Use the simulator to single-step the program and examine the registers.

SOURCE CODE:

Output:

TASK: 2

Write and assemble a program to add all the single digits of your ID number and save the result in Accumulator. Pick 7 random numbers (all single digit) if you do not want to use your ID number. Then use the simulator to single-step the program and examine the registers.

Output:

TASK: 3
Subtraction of two 8 bit numbers and place the result in accumulator register

TASK: 4

Add sum of series of first 9 numbers and save it into one of the register. Again take the sum of first 9 numbers and save it to another register. The contents of both the register must be added finally and save the result in the third register.

Output:

TASK: 5

Addition of first ten natural numbers by using INC and ADD instruction.

Output:

TASK: 6

$$X = (A+B) - (C+D)$$

Implement the following equation and place the result in accumulator register.

