SPRING 2023

CS 378: INTRO TO SPECH AND AUDIO PROCESSING

Neural Network Acoustic Models 1

DAVID HARWATHAssistant Professor, UTCS

Welcome!

- Today:
 - Intro to neural nets
 - Non-E2E neural net acoustic models
 - Hybrid/Tandem
 - Architectures

Outline

- Neural Net Overview
 - Definition and Examples
 - Neuron/Layer view
 - Optimization via SGD and Backpropagation
- Architectures used for ASR hybrid models
 - Feedforward
 - Recurrent variants, BPTT
 - CNN

A Logistic Regression Acoustic Model

Speech waveform

Acoustic features such as MFCCs Let $x \in \mathbb{R}^D$

Affine transform to compute phonetic state scores Let $z \in \mathbb{R}^{C}$ (assuming we have C different phonetic states)

Softmax function to normalize score distribution (i.e. all scores positive and sum to 1)

Vector *y* representing phonetic state probabilities

From Logistic Regression to a Neural Net

From a Neural Net to a Deep Neural Net

A View of Neural Net Classifiers

Nonlinear feature extractor with trainable parameters ($H^{(k)}$ and $a^{(k)}$)

(Multiclass) Logistic Regression classifier that operates in $h^{(N)}$ space

Neural Nets as Sequences of Transformations

Neural Nets as Function Approximators

We want to learn a function $y' = f(x, \theta)$ and all we have is a finite set of (x, y') pairs

Neural Nets as Function Approximators

Loss function L(y, y'): Measures how *different* (in some well-defined way) the output we got (y) is from the output we want (y')

As long as we can compute (or even estimate) $\nabla_{\theta} L(y, y')$, we can train the model with gradient descent (the most popular, but not the only way to train).

Nonlinear Layers

- Much of the power of neural nets comes from their ability to learn complex, nonlinear input-output relations
- The canonical way to introduce nonlinearity into the model is with an "activation function" like ReLU or sigmoid that we insert between linear transformations (basically just some form of clipping)

Common Activation Functions

Why "Neural" Networks?

Inspired by biological neurons – taking a weighted sum of inputs followed by saturating nonlinearity resembles "integrate and fire" response of biological neurons

Training via Gradient Descent

Gradient descent computes a *series* of parameter vectors:

$$\theta_{t+1} = \theta_t - \gamma \nabla_{\theta} L(y, y')$$

We stop when some criteria has been met (convergence, predefined number of steps, model performance on held-out validation set, etc.)

Guaranteed to converge to a *local* minimum of the loss function.

Gradient Descent Flavors

Working with a *set* of training examples (assumed i.i.d.):

Using all examples at once:

$$\theta_{t+1} = \theta_t - \gamma \frac{1}{N} \sum_{i=0}^{N-1} \nabla_{\theta} L(y_i, y_i')$$

Using a random subset (minibatch) M_t of examples at each step:

$$\theta_{t+1} = \theta_t - \gamma \frac{1}{B} \sum_{(x,y,y') \in M_t} \nabla_{\theta} L(y,y')$$

Typically called Stochastic Gradient Descent (SGD)

Typical value of γ : usually 0.01 to 0.0001, but highly problem specific! ₁₅

SGD with Momentum

- Problem with SGD: high variance of the gradient
- One solution: keep a memory or "momentum" α (typical value: 0.9) of past updates and blend it with the current gradient

$$v_t = \alpha v_{t-1} + \gamma \frac{1}{B} \sum_{(x,y,y') \in M_t} \nabla_{\theta} L(y,y')$$

$$\theta_{t+1} = \theta_t - v_t$$

Some Learning Rate Schedules

Adaptive SGD variants

• Try to use individual learning rates for each parameter

• Many variants: Adagrad, Adadelta, RMSprop, Adam...

Adam arguably the most popular optimizer right now

Computing the Gradient via Backpropagation

Backprop takeaway

If:

- 1. You can express your neural network model as a sequence of atomic operations (layers)
- 2. Each atomic operation you use is locally differentiable (output w.r.t. input/parameters)

Then: You can use backpropagation to efficiently compute the gradient for every network parameter, without having to analytically derive anything besides the local gradient of each layer.

Neural Net Toolkits

 Any modern neural network software toolkit (e.g. PyTorch, Tensorflow) ships with a large library of layer classes that already implement forward and local backward passes (as well as optimization algorithms)

• If you want to create a new layer type, you just need to define the class and implement the forward and backward (local gradient) computations.

PyTorch code example of NN training


```
import torch # Basic torch library, includes stuff like Tensors
import torch.nn # Torch's neural network library
import torch.optim as optim # Torch's optimization library
data = np.load('dataset.npz') # Load the data
# Cast numpy arrays to torch tensors
# Assume we have 10 classes and our feature dimension is 16
train feats = torch.tensor(data['train feats']) # tensor will be size (N examples, N features)
train labels = torch.tensor(data['train labels']) # tensor will be size (N examples, N classes)
# Wrap the features and labels together into a dataset object
train dataset = torch.utils.data.TensorDataset(train feats, train labels)
# Create a dataloader (iterator that samples minibatches from the full dataset)
train loader = torch.utils.data.DataLoader(train dataset, batch size=8, shuffle=True)
class MyNetwork(nn.Module):
    def init (self):
        super(MyNetwork, self). init ()
        self.linear1 = nn.Linear(16, 64) # Hidden layer, size (N features, hidden dimension)
       self.relu = nn.ReLU() # Rectified Linear Unit nonlinearity
        self.linear2 = nn.Linear(64, 10) # Output layer, size (hidden dimension, N classes)
    def forward(self, x):
        x = self.relu(self.linear1(x)) # Compute the hidden unit activations
        x = self.linear2(x) # Compute the logits over the classes
        return x
model = MvNetwork() # Instantiate the model
criterion = nn.CrossEntropyLoss() # The loss function: will apply both softmax and cross-entropy
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # The optimizer
for epoch in range(10): # loop over the dataset 10 times ("epochs")
    for i, (inputs, labels) in enumerate(train loader, 0):
        optimizer.zero grad() # Reset the optimizer's gradient accumulators
        outputs = model(inputs) # Compute the network outputs (forward pass)
       loss = criterion(outputs, labels) # Compute the loss
        loss.backward() # Backpropagate the loss into the network
        optimizer.step() # Take a single step of gradient descent
```

Some Common Layers and Their Gradients

Assume: $X \in \mathbb{R}^{N \times D}$ (batch size x feature dimension), and $\frac{dL}{dY}$ is the "upstream" gradient of the loss w.r.t. output Y (will have the same dimension as Y)

Layer Name	Forward Pass	Input Gradient	Parameter Gradient
Linear	Y = WX	$\frac{dL}{dX} = W^T \frac{dL}{dY}$	$\frac{dL}{dW} = \frac{dL}{dY}X^T$
Sigmoid	$y_{nd} = \frac{1}{1 + e^{-x_{nd}}}$	$\frac{dL}{dx_{nd}} = \frac{dL}{dy_{nd}} y_{nd} (1 - y_{nd})$	N/A
Rectified Linear Unit (ReLU)	$Y = \max(0, X)$	$\frac{dL}{dx_{nd}} = \begin{cases} \frac{dL}{dy_{nd}} & \text{if } x_{nd} > 0\\ 0 & \text{else} \end{cases}$	N/A
Softmax	$y_{nd} = \frac{e^{x_{nd}}}{\sum_{d'} e^{x_{nd'}}}$	$\frac{dL_{nj}}{dx_{nd}} = \begin{cases} \frac{dL}{dy_{nd}} y_{nd} (1 - y_{nj}) & \text{if } j = d \\ -\frac{dL}{dy_{nd}} y_{nd} y_{nj} & \text{else} \end{cases}$	N/A

Some Common Loss Functions

• Regression: L2 loss (also called Mean Squared Error or MSE): $L(y,y') = \|y-y'\|_2^2$

- Classification: Cross-entropy
 - Assume y' represents the *true* probability distribution over class labels p(c) (usually just a 1-hot vector)
 - Assume y represents our *estimated* distribution over the labels q(c)

$$L(q(c) = y, p(c) = y') = -\sum_{c=1}^{N_c} p(c) \log q(c)$$

Cross Entropy in Practice

- Usually the final parameterized layer in a classifier network is a linear layer with N_c neurons
 - Output of this layer z sometimes called "class scores" or "logits"
- We normalize these scores with a softmax layer:

$$y = \frac{e^z}{\sum_{z'} e^{z'}}$$

We can then write the cross entropy loss as:

$$L(y, y') = -\log(y)^T y'$$