University of California, Los Angeles Department of Statistics

Statistics C183/C283

Instructor: Nicolas Christou

Exam 2 16 May 2016

	SOLUTIONS	
Name:	/ // ///	

UCLA ID: _____

Answer the following questions:

a. Consider the constant correlation mudel with n stocks. You are given the historical variance covariance matrix Σ , the expected return vector $\bar{\mathbf{R}}$, the optimal portfolio weights vector \mathbf{x} , and the risk free rate R_f . Explain how to find the cut-off rate C^* when short sales are allowed. Show all your work.

$$CR = \frac{\rho}{1 - \rho + h\rho} \stackrel{?}{i} \frac{R_i - R_f}{\sigma_i}$$

b. Consider the single index model with n=3 stocks. The following table was constructed in order to find the optimal portfolio (point of tangency) when short sale are not allowed and risk free interest rate $R_f=0.001$. Please find the missing numbers.

	stock					Ratio		
[1,]		-0.007134964						
[2,]	1	-0.002152648	0.5571742	0.002762508	0.005168777	0.003163297		0.002431665
[3,]	2	-0.005787947	1.0622912	0.003583136	0.007098190	??????????	· 	0.0024

0.783940

(R-14)80

277.

 $\lambda = \frac{0.2937377}{0.4793076}$

Z3= 437

6.2977377 = 0.47

$$(d) M(3,3) = 1 + (\sigma_{c3}^2 + b_3 \sigma_n) \left(\frac{b_i}{\sigma_{\epsilon_i}}\right)$$

$$1 + (\sigma_{c3}^2 + b_3 \sigma_n) \left(\frac{b_i}{\sigma_{\epsilon_i}}\right)$$

(e) Multiprop
$$3\times$$
)

 $\frac{7}{4}$
 $\frac{7}$
 $\frac{7}{4}$
 $\frac{$

PII = Arg can. In induring 1

\$1-, Pis and (2021-con

Φ1 = Z101+ 2001 Φ2 = 2101+ 2401 Φ3 = 2501+ 2606

3 wolldhow

2 spocks / Ind

(f) treynor for portfolio A:

$$R_{A}$$
-Rt = 0.16-0.68 = 0.087

Thomps for portfolio B:

 R_{0} -Rt = 0.08 = 0.08 = 0.152

A: Ri = 0.08 + (0.14-0.08) 1.9 = 0.192

R: Ri = 0.08 + (0.14-0.08) 0.8 = 0.108

C: Ri = 0.08 + (0.14-0.08) 0.8 = 0.108

O = Ri = 0.08 + (0.14-0.08) 1.3 = 0.158

O = Ri = 0.08 + (0.14-0.08) 1.3 = 0.158

O = Ri = 0.08 + (0.14-0.08) 1.3 = 0.158

(h) P+50 = C+ FY 5+110 = 17+ 1105 1+00 745 7 117 Stockegn. Seed call 117
(Borrow) to Bur Ptso 115 heed to return 1800 102.9 S1 > 105 Ball A 105 m Both - 107.9 S1 < 105 Ball of 105 = 2.1 profit

Loug Street Short Call short call E=Gu 5, 0 5, 250 50 0 50-5, (0 (SIZEN 110-5, 60-5, 50-5, 5 51 > 60 O 60-5, 50-57 5, >110 8,

(j). P+S = C + E At the money -> E=S P+E=C+ E C=P+E-E Ar

 $C > \mathbf{p}$