Chapter 1 Problem Solution:

Q1-1: Five Components of a Data Communications System

- 1. **Message** The data being communicated.
- 2. **Sender** The device that sends the message (e.g., computer, phone).
- 3. **Receiver** The device that receives the message.
- 4. **Transmission Medium** The channel through which the data travels (e.g., cables, wireless).
- 5. **Protocol** The set of rules that govern data communication.

O1-2: Three Criteria for an Effective & Efficient Network

- 1. **Performance** Measured in speed, latency, and throughput.
- 2. **Reliability** Ensures consistent data transmission without errors.
- 3. **Security** Protects data from unauthorized access and attacks.

Q1-3: Advantages of Multipoint Over Point-to-Point

- 1. **Cost-effective** Uses fewer cables and hardware resources.
- 2. **Scalability** Easier to add new devices to the network.
- 3. **Efficient Resource Use** Multiple devices share the same link.

Q1-4: Two Types of Line Configuration

- 1. **Point-to-Point** A dedicated link between two devices.
- 2. **Multipoint** A shared link among multiple devices.

Q1-5: Topologies in Terms of Line Configuration

- 1. **Mesh** Point-to-point.
- 2. **Star** Point-to-point between devices and the central hub.
- 3. **Bus** Multipoint (shared communication medium).
- 4. **Ring** Point-to-point between adjacent devices.

Q1-6: Difference Between Half-Duplex & Full-Duplex

- Half-Duplex Data flows in both directions but one at a time (e.g., walkie-talkies).
- Full-Duplex Data flows in both directions simultaneously (e.g., phone calls).

Q1-7: Four Basic Network Topologies & Their Advantages

- 1. **Mesh** Reliable (each device has a dedicated link).
- 2. **Star** Easy to troubleshoot and scalable.
- 3. **Bus** Cost-effective (less cabling).
- 4. **Ring** Ensures equal data transmission among devices.

Q1-8: Number of Cable Links Required

For **n devices**:

- $Mesh n(n-1)2 \frac{n(n-1)}{2} 2n(n-1)$
- Ring nnn
- Bus 1 (shared link)
- Star nnn (each device connects to the central hub)

O1-9: Factors That Differentiate LAN & WAN

- 1. **Geographical Scope** LAN covers a small area, WAN covers large areas.
- 2. **Speed** LANs are faster than WANs.
- 3. **Ownership** LANs are typically privately owned; WANs may involve multiple providers.

Q1-10: Difference Between "Internet" and "internet"

- **Internet** (capital "I") The global public network.
- **internet** (lowercase "i") Any interconnected network of computers.

Q1-11: Why Protocols Are Needed

Protocols define rules for communication, ensuring data integrity, compatibility, synchronization, and security.

Q1-12: Does a Link-Layer Switch Need an Address?

No, because a link-layer switch operates at Layer 2 (Data Link Layer) and forwards data based on MAC addresses rather than needing an IP address.

Q1-13: Point-to-Point WANs Needed for n LANs

For n LANs, the number of direct point-to-point WAN connections needed is $n(n-1)2\frac{n(n-1)}{2}2n(n-1)$ (same as a mesh network).

Q1-14: Circuit-Switched vs. Packet-Switched Networks (Local Telephone Call)

A local telephone call uses a **circuit-switched network**, where a dedicated communication path is established between the two callers.

Q1-15: Role of the Telephone Company in Internet Connection

The telephone company provides access to the internet by acting as an ISP (Internet Service Provider) using DSL (broadband) or dial-up connections.

Q1-16: First Principle for Protocol Layering

Each layer should **perform a specific function independently** while ensuring **bidirectional communication** with adjacent layers.

Q1-17: Internet Draft vs. Proposed Standard

- Internet Draft A working document that may change before becoming a standard.
- **Proposed Standard** A more stable and reviewed document, awaiting final approval.

Q1-18: Required RFC vs. Recommended RFC

- **Required RFC** Must be implemented in all systems for compatibility.
- **Recommended RFC** Suggested but not mandatory for system implementation.

O1-19: IETF vs. IRTF

- IETF (Internet Engineering Task Force) Develops protocols and standards for the internet.
- **IRTF (Internet Research Task Force)** Focuses on **long-term research** related to networking and future internet technologies.

Problems:

P1-1: Maximum Number of Characters Represented by Unicode

Unicode can represent up to 1,114,112 characters (from 0x0000 to 0x10FFFF). However, currently, only about 150,000 characters have been assigned.

P1-2: Maximum Number of Colors in a 16-bit Color Image

Since 16 bits are used per pixel:

$$2^{4} \{16\} = 65,536$$

Thus, **65,536 different colors** can be represented.

P1-3: Mesh Topology with Six Devices

• Number of cables required = n(n-1)/2

$$6(6-1)/2=(6\times5)/2=15$$

• Number of ports per device = n-1

6-1=5

Thus, 15 cables and 5 ports per device are needed.

P1-4: Failure Consequences in Different Topologies

- a) **Mesh Topology** No major impact; alternate paths exist.
- b) **Star Topology** If a device fails, only that device is affected. But if the **hub** fails, the entire network goes down.
- c) **Bus Topology** A single cable failure can bring down the entire network.
- d) **Ring Topology** If a single device fails, the entire network is disrupted unless a dual-ring structure is used.

P1-5: LAN or WAN for Two Computers Connected by an Ethernet Hub?

It is a LAN (Local Area Network) because:

- It covers a small area (home).
- Uses Ethernet, which is typical for LANs.
- The devices are directly connected without requiring an external service provider.

P1-6: Effect of Unplugging a Station in a Ring Topology

• If a station is unplugged, the ring is broken, **disrupting the entire network** unless a bypass mechanism exists.

P1-7: Effect of Unplugging a Station in a Bus Topology

- If a **device** is unplugged, the network still works.
- If the **main bus cable** is disconnected or damaged, the entire network **fails**.

P1-8: Sensitivity of Applications to Delay

- a) Sending an E-mail Not very sensitive (small delays are acceptable).
- b) Copying a File Somewhat sensitive (affects transfer speed, but data remains intact).
- c) Surfing the Internet Highly sensitive (delays lead to slow page loading).

P1-9: Local Telephone Call – Point-to-Point or Multipoint?

A local telephone call is point-to-point, as it establishes a dedicated connection between two parties.

P1-10: Comparison of Telephone Network and the Internet

Feature	Telephone Network	Internet
Type of Connection	Circuit-switched	Packet-switched
Dedicated Path	Yes, per call	No, packets take different routes
Primary Use	Voice communication	Data transfer
Scalability	Limited	Highly scalable
Reliability	High (if the line is established)	Depends on routing protocols