

Final Presentation

SVBRDF Estimation using a Physically-based Differentiable Renderer

Markus Andreas Worchel

Recap — Topic

Recap – Approach

^[1] Deschaintre et al., 2018, <u>Single-Image SVBRDF Capture with a Rendering-Aware Deep Network</u>

^[2] Deschaintre et al., 2019, <u>Flexible SVBRDF Capture with a Multi-Image Deep Network</u>

Recap - Project Scope

- [1] Deschaintre et al., 2018, <u>Single-Image SVBRDF Capture with a Rendering-Aware Deep Network</u>
- [2] Deschaintre et al., 2019, <u>Flexible SVBRDF Capture with a Multi-Image Deep Network</u>
- [3] Li et al., 2018, <u>Differentiable Monte Carlo Ray Tracing through Edge Sampling</u>

Recap – Motivation

- Why material estimation?
 - Holistic 3D reconstruction (geometry + material)
 - Photorealistic assets for
 - Games
 - Movies
 - Cultural heritage
 - ...
 - Multi material 3D printing
- Why using a differentiable pathtracer?
 - General approach (independent of use case)
 - Flexible light transport simulations

Algorithm – Data

SDR Image

Diffuse Albedo

Roughness

Specular Albedo

Algorithm – Data

Material mixing

Augmented image generation

Algorithm – Overview

Algorithm – Loss

Algorithm – Differentiable Renderers

Renderer for direct illumination implemented using PyTorch (local)

Redner pathtracer implemented in C++ with PyTorch bindings (pathtracing)

Algorithm – Renderer Output

Problem: No gradient information for weight optimization

Algorithm – Renderer Output

Problem: No gradient information for weight optimization

Solution: Full patch sampling

Algorithm – Patch Sampling

Algorithm – Patch Sampling in Redner

Results – Artificial Images (1)

Results – Artificial Images (2)

Results – Real Images (1)

Results – Real Images (2)

Reference (400k)

Local (285k)

Pathtracing (17k)

Limitations – The Obvious

Correlated SVBRDF maps

- Assumtion of mostly flat macro geometry
- Training with pathtracer is ~25 times slower

Outlook

Finding and fixing potential bugs

More optimized implementation

Generic geometry

BSDF estimation