УНИВЕРЗИТЕТ "Св. КИРИЛ И МЕТОДИЈ" – СКОПЈЕ Факултет за електротехника и информациски технологии

МАТЕМАТИКА 3

-3бирка задачи-2013/14 -

Скопје, 2013

1 Функции од повеќе променливи

1.1Дефиниција и својства на функции од повеќе променливи

Задача 1.1. Колку променливи имаат следниве функции:

a)
$$f(x+y) = \cos y(\sin x - \cos x) + \sin y(\cos x + \sin y);$$

6)
$$f\left(\frac{x}{y}\right) = \ln x - \ln y + 2;$$

B)
$$f\left(x, \frac{u}{v}\right) = x^2 + 2\frac{uv}{u^2 + v^2} + 1$$
.

Задача 1.2. Да се пресмета f(-x,-y), $f\left(\frac{1}{x},\frac{1}{y}\right)$, $\frac{1}{f(x,y)}$ ако $f(x,y)=\frac{x^2-y^2}{2xy}$.

Задача 1.3. Докажи дека функцијата $f(x,y) = \ln x \ln y$ го задоволува равенството:

$$f(xy, uv) = f(x, v) + f(x, u) + f(y, u) + f(y, v).$$

Задача 1.4. Ако $f\left(x+y,\frac{x}{y}\right)=x^2-y^2$, да се определи f(x,y).

Задача 1.5. Да се определат функциите f и g дефинирани со условите

$$g(x,y) = \sqrt{y} + f(\sqrt{x} - 1), \quad g(x,1) = x, \quad x, y \ge 0.$$

Задача 1.6. Да се определи дефиниционата област на следниве функции:

a)
$$z = \sqrt{1 - x^2 - y^2}$$
;

$$6) z = \sqrt{1 - x^2} + \sqrt{1 - y^2};$$

в)
$$z = \sqrt{y \sin x}$$
;

$$r) z = \arctan \frac{x - y}{1 + x^2 + y^2};$$

д)
$$z = \ln(x \ln(y - x));$$

$$\dot{\mathbf{r}})z = \frac{\sqrt{x+y-1}}{x-1};$$

e)
$$z = x \ln(y^2 - x);$$

ж)
$$z = \arcsin \frac{y}{x}$$
;

3)
$$u = \arcsin x + \arcsin y + \arcsin z$$
; s) $u = \sqrt{x^2 + y^2 + z^2 - 16}$.

1.2 Гранична вредност и непрекинатост на функции од повеќе променливи

$$L_{12} = \lim_{x \to x_0} \lim_{y \to y_0} f(x, y), \quad L_{21} = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y), \quad L = \lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y).$$

Задача 1.7. Дадена е функцијата $f(x,y)=\frac{x^2-y^2+2x^3+2y^3}{x^2+u^2}$. Да се пресмета:

a)
$$\lim_{x\to 0} \lim_{y\to 0} f(x,y);$$
 6) $\lim_{y\to 0} \lim_{x\to 0} f(x,y);$ b) $\lim_{x\to 0} f(x,y).$

б)
$$\lim_{y \to 0} \lim_{x \to 0} f(x, y);$$

$$B) \lim_{\substack{x \to 0 \\ y \to 0}} f(x, y)$$

Задача 1.8. Дали постојат сукцесивните (последователните) и симултаната (истовремената) гранична вредност на функцијата

$$f(x,y) = \frac{x^2y}{(x^2+y^2)^2}$$
 во точката $(0,0)$?

Задача 1.9. Да се пресметаат (ако постојат) $L_{12},\ L_{21},\ L$ за функцијата

$$f(x) = (1+x^2y^2)\frac{1}{x^2+y^2}$$
 во точката $(0,0)$.

Задача 1.10. Да се докаже дека $\lim_{\substack{x\to 0\\x\to 0}} (x+y) \sin \frac{1}{x} \sin \frac{1}{y} = 0.$

Задача 1.11. Дали постои границата $\lim_{x\to 0} \frac{2xy}{x^2+y^2}$?

Задача 1.12. Да се пресмета $\lim_{x\to a}\lim_{y\to b}f(x,y)$ и $\lim_{y\to b}\lim_{x\to a}f(x,y)$ ако: a) $f(x,y)=\frac{x^2+y^2}{x^2+y^4},\quad a=\infty,\quad b=\infty;$

a)
$$f(x,y) = \frac{x^2 + y^2}{x^2 + y^4}$$
, $a = \infty$, $b = \infty$;

6)
$$f(x,y) = \frac{x^y}{1+x^y}, \quad a = \infty, \quad b = 0^+;$$

B)
$$f(x,y) = \sin \frac{\pi x}{2x+y}$$
, $a = \infty$, $b = \infty$.

Задача 1.13. Да се пресметаат следниве гранични вредности:

a)
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x+y}{x^2 - xy + y^2};$$

b) $\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x^2 + y^2}{x^4 + y^4};$

c) $\lim_{\substack{x \to \infty \\ y \to \infty}} (x^2 + y^2)e^{-(x+y)};$

c) $\lim_{\substack{x \to \infty \\ y \to \infty}} \left(\frac{xy}{x^2 + y^2}\right)$

б)
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x^2 + y^2}{x^4 + y^4};$$

B)
$$\lim_{\substack{x \to \infty \\ y \to \infty}} (x^2 + y^2) e^{-(x+y)};$$

$$\Gamma) \lim_{\substack{x \to \infty \\ y \to \infty}} \left(\frac{xy}{x^2 + y^2} \right)^{x^2};$$

$$\pi$$
) $\lim_{\substack{x\to 0\\y\to 0}} \frac{xy}{x^2+y^2}$;

$$f) \lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x+y}{x^2+y^2}.$$

Задача 1.14. Да се пресметаат следниве гранични вредности:

б)
$$\lim_{x\to 0} \frac{\sin xy}{xy}$$
;

$$\mathrm{B})\lim_{x\to 0}\frac{\sin xy}{x},\ a>0.$$

Задача 1.15. Да се најдат точките на прекин на функциите

б)
$$z = \frac{xy}{x+y}$$

B)
$$z = \frac{x+y}{x^3+y^3}$$
;

$$\Gamma) \ z = \frac{1}{\sin x \sin y}.$$

Задача 1.16. Да се докаже дека функцијата $f(x,y)=\left\{ egin{array}{ll} \dfrac{x^2y}{x^4+y^2} &,& x^2+y^2 \neq 0 \\ 0 &,& x^2+y^2=0 \end{array} \right.$ има прекин во точката (0,0).

Задача 1.17. Дадена е функцијата $f(x,y)=\frac{xy^3}{x^2-xy^2+y^4},\;(x,y)\neq(0,0).$ Да се провери дали постојат последователните гранични вредности и двојната гранична вредност во точката (0,0). Дали функцијата може да се дефинира во точката (0,0) така што f(x,y) да биде непрекината во (0,0)?

Задача 1.18. Да се докаже дека функцијата $f(x,y)=\left\{ egin{array}{ll} \dfrac{2xy}{x^2+y^2} &,& x^2+y^2 \neq 0 \\ 0 &,& x^2+y^2=0 \end{array} \right.$ има прекин во точката (0,0).

Задача 1.19. Нека g(x,y) = x + y + f(x - y).

- а) Да се определат функциите f и g ако $g(x,0)=x^2;$
- б) Дали може функцијата F зададена со $F(x,y)=\dfrac{g(x,y)-2y}{(x+u)^2}$ да се додефинира така што да биде непрекината во точката (0,0)?

Задача 1.20. Нека е дадена функцијата $g(x,y)=x^4-f(x+2y)+\frac{x}{2}$ при што g(0,y)=-y.

- а) Да се определат функциите f и q;
- б) Да се пресметаа последователните граници на функцијата $h(x,y) = \frac{g(x,y)}{g(-x,-y)}$ во точката (0,0):
- в) Дали може да се додефинира функцијата h(x,y) во точката (0,0) за да биде непрекината.

1.3 Парцијални изводи и диференцијал од прв ред. Диференцијабилност на функции од повеќе променливи

Задача 1.21. Испитај дали функцијата $z(x,y)=\sqrt{x^2+y^2}$ има парцијални изводи во сите точки од дефиниционата област!

Задача 1.22. Да се најдат првите парцијални изводи на функцијата:

a)
$$u(x,y) = x^4 + y^4 - 4x^2y^2;$$
 6) $u(x,y) = \ln(x+y^2);$

6)
$$u(x,y) = \ln(x + y^2)$$

в)
$$u(x,y) = \frac{x}{\sqrt{x^2 + y^2}};$$

$$\Gamma) \ u(x,y) = x^{z+y^2}.$$

Задача 1.23. Да се докаже дека $\frac{x}{y}\frac{\partial u}{\partial x} + \frac{1}{\ln x}\frac{\partial u}{\partial y} = 2u$ ако $u(x,y) = x^y$.

Задача 1.24. Да се докаже дека $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial u} = (x+y-1)z$ ако $u(x,y) = \frac{e^{xy}}{e^x + e^y}$.

Задача 1.25. Ако $u(x,y)=\varphi(x^2+y^2)$, каде φ е диференцијабилна функција од една променлива, да се докаже дека

$$y\frac{\partial u}{\partial x} - x\frac{\partial u}{\partial y} = 0.$$

Задача 1.26. Да се определат парцијалните изводи од прв ред за функцијата $u(x,y) = \varphi(xy) + (x-y)\psi'(y)$, каде φ и ψ се два пати диференцијабилни функции. Потоа, да се пресмета изразот

$$\frac{y}{x}\frac{\partial^2 u}{\partial x \partial y} - \frac{\partial^2 u}{\partial x^2}.$$

Задача 1.27. Да се докаже дека функцијата z=z(x,y) дефинирана со $x+y+z=f(x^2+y^2+z^2)$, каде што f е диференцијабилна функција од една променлива, ја задоволува равенката

$$(y-z)\frac{\partial z}{\partial x} + (z-x)\frac{\partial x}{\partial y} = x-y.$$

Задача 1.28. Да се пресмета тоталниот диференцијал од прв ред за функцијата

a)
$$z(x,y) = e^{x+y} \sin x + y;$$
 6) $z(x,y) = a^{xy} \tan x.$

Задача 1.29. Да се пресметаат првите изводи $f'_x(0,0)$ и $f'_y(0,0)$ ако $f(x,y) = \sqrt[3]{xy}$. Дали функцијата е диференцијабилна во точката (0,0)?

Задача 1.30. Да се докаже дека функцијата $f(x,y)=\left\{ egin{array}{c} \dfrac{x^3y}{x^6+y^2} &, & x^2+y^2 \neq 0 \\ 0 &, & x^2+y^2=0 \end{array} \right.$ има прекин

во точката (0,0), но има парцијални изводи во таа точка.

Задача 1.31. Да се докаже дека функцијата $f(x,y)=\left\{ egin{array}{c} \dfrac{xy}{\sqrt{x^2+y^2}} &, & x^2+y^2\neq 0 \\ 0 & & & \text{е непре-} \\ 0 & & & & \end{array} \right.$

кината во точката (0,0), има парцијални изводи $f_x'(0,0)$ и $f_y'(0,0)$, но не е диференцијабилна во точката (0,0).

Задача 1.32. Да се покаже дека функцијата $f(x,y)=\left\{ egin{array}{c} \dfrac{x^2y}{x^2+y^2} &, & x^2+y^2 \neq 0 \\ 0 &, & x^2+y^2=0 \end{array} \right.$ е непре-

кината во точката (0,0), има парцијални изводи $f'_x(0,0)$ и $f'_y(0,0)$, но не е диференцијабилна во точката (0,0).

Задача 1.33. Испитај дали функцијата $f(x,y)=\left\{ egin{array}{ll} \dfrac{x^2-y^2}{x^2+y^2} &,& x^2+y^2
eq 0 \\ 1 &,& x^2+y^2=0 \end{array} \right.$ е диференцијабил-

на во точката (0,0).

Задача 1.34. За функцијата z=z(x,y) зададена со равенката $z^3-3xyz=a^3$, да се најдат парцијалните изводи и тоталниот диференцијал од прв ред.

Задача 1.35. Да се пресметаат $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ и dz ако $z = \arctan \frac{u}{v}$, u = x - y, v = x + y.

Задача 1.36. Да се пресмета du ако $u=e^{x-2y}, \;\; x=\sin t, \;\;\; y=t^3.$

1.4 Парцијални изводи и диференцијали од повисок ред

Задача 1.37. Да се најде y', y'', y''' ако функцијата y=y(x) е зададена имплицитно со равенката $x^2+xy+y^2=3$.

Задача 1.38. Ако $u(x,y)=\arctan\frac{x}{y}$ да се покаже дека $u'''_{yyx}=u'''_{xyy}$.

Задача 1.39. Да се докаже дека $u \frac{\partial^2 u}{\partial x \partial y} - \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} = 0, \quad u(x,y) = \varphi(x) \psi(y),$ и φ и ψ се два пати диференцијабилни функции од една променлива.

Задача 1.40. Да се докаже дека $\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$ ако $u(x,y) = x\varphi(x+y) + y\psi(x+y)$ и φ и ψ се два пати диференцијабилни функции од една променлива.

Задача 1.41. Да се пресмета вредноста на изразот $2x\frac{\partial z}{\partial x} + y^2\frac{\partial^2 z}{\partial y^2}$, ако $z(x,y) = x^2\varphi(\frac{x}{y^2})$ и φ е два пати непрекинато диференцијабилна функција со една променлива.

Задача 1.42. Да се најдат парцијалните изводи од втор ред и тоталниот диференцијал од втор ред за функцијата

a)
$$z(x,y) = e^{xy};$$
 6) $u(x,y,z) = xyz + \ln(xyz)$

Задача 1.43. Да се најде dz и d^2z ако $\frac{x}{z} = \ln \frac{z}{y} + 1, \quad z = z(x,y).$

Задача 1.44. Да се пресмета du и d^2u ако $u(x,y)=f(\sqrt{x^2+y^2})$, каде што f е двапати диференцијабилна функција од една променлива.

Задача 1.45. Нека
$$f(x,y)=\left\{egin{array}{ll} xyrac{x^2-y^2}{x^2+y^2} &,& x^2+y^2
eq 0 \\ 0 &,& x^2+y^2=0 \end{array}\right.$$
 . Да се покаже дека $f''_{xy}(0,0)
eq f''_{yx}(0,0).$

1.5 Смена на променливи

Задача 1.46. Во равенката $x^2y'' + xy' + y = 0$, каде што y = y(x) да се воведе нова независна променлива t со смената $x = e^t$.

Задача 1.47. Во равенката $(1+x^2)\frac{\partial^2 z}{\partial x^2} + (1+y^2)\frac{\partial^2 z}{\partial y^2} + x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0$, каде што z = z(x,y) да се воведат нови независни променливи u и v со смената $u = ln(x+\sqrt{1+x^2}), \quad v = ln(y+\sqrt{1+y^2}), \quad z = z(u,v).$

Задача 1.48. Во равенката $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = z^2$, каде што z = z(x,y) да се воведат нови независни променливи u и v и нова функција w = w(u,v) со смените $u = x, \ v = \frac{1}{y} - \frac{1}{x}$ и $w = \frac{1}{z} - \frac{1}{x}$.

Задача 1.49. Да се трансформира равенството $(x-z)\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0, \ z = z(x,y)$ така што x е нова функција, а y и z нови независни променливи.

Задача 1.50. Да се трансформира равенството $(y-z)\frac{\partial z}{\partial x}+(y+z)\frac{\partial z}{\partial y}=0, \quad z=z(x,y)$ така што x е нова функција, а u=y-z и v=y+z се нови независни променливи.

Задача 1.51. Да се трансформира равенката

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = (y - x)z,$$

со воведување на нови независни променливи $u=x^2+y^2, v=\frac{1}{x}+\frac{1}{y}$ и нова функција $w=\ln z-(x+y).$

Задача 1.52. Во равенката $\frac{\partial z}{\partial y} + \frac{y}{2} \frac{\partial^2 z}{\partial y^2} = \frac{1}{x}, \ z = z(x,y)$ да се воведат нови независни променливи u и v и нова функција w = w(u,v) со смените $u = \frac{x}{y}, \ v = x$ и $w = w(u,v), \quad w = xz - y.$

Задача 1.53. Преминувајќи во поларни координати да се трансформира равенството

$$\frac{dy}{dx} = \frac{x+y}{x-y}.$$

Задача 1.54. Во изразот $A=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2},\;z=z(x,y)$ да се воведат нови независни променливи ρ и φ со смената

$$\rho = \sqrt{x^2 + y^2}, \quad \varphi = \arccos \frac{x}{\sqrt{x^2 + y^2}}.$$

Задача 1.55. За функцијата F = F(u, v, w), каде што $u = x^2 + y^2$, $v = x^2 - y^2$, w = 2xy, да се определат dF и d^2F .

Задача 1.56. Да се пресмета $\frac{\partial^2 z}{\partial x \partial y}$ ако $F(x+y,y+z)=0, \quad z=z(x,y).$

Задача 1.57. Да се пресмета $\frac{\partial^2 z}{\partial x \partial y}$ ако $F(x+z,y+z)=0, \quad z=z(x,y).$

1.6 Тангентна рамнина и нормала на површина

Задача 1.58. Да се напише равенка на тангентна рамнина и нормала на површината $z(x,y)=\frac{x^2}{2}-y^2$ во точката M(2,-1,1).

Задача 1.59. Во која точка тангентната рамнина на површината $x^2 + 2y^2 + 3z^2 = 21$, z = z(x, y) е паралелна со рамнината x + 4y + 6z = 0?

Задача 1.60. Да се најдат аглите што нормалата повлечена во точката M(2,2,0) на површината $2z=x^2-y^2,\ z=z(x,y)$ ги зафаќа со координатните оски.

Задача 1.61. Да се докаже дека тангентните рамнини на површината $xyz = m^3, m-const.,$ z = z(x,y) со координатните рамнини формираат тетраедар со константен волумен.

Задача 1.62. Да се докаже дека тангентните рамнини на површината $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a}$, a - const, a > 0 од координатните оски отсекуваат отсечки чиј збир е еднаков на a.

Задача 1.63. Да се најде реалниот параметар m така што рамнината $\frac{x}{5} + \frac{y}{4} + \frac{z}{m} = 1$ го допира елипсоидот $\frac{x^2}{9} + \frac{y^2}{4} + \frac{z^2}{1} = 1$.

Задача 1.64. Да се најдат точките од параболоидот $z=4x^2+y^2$ во кои што тангентната рамнина е паралелна со рамнината x+2y+z=6. Потоа, да се напише тангентната рамнина и нормалата на параболоидот во добиената точка.

1.7 Екстремни вредности на функција од повеќе променливи

Задача 1.65. Да се најде локалниот екстрем на следниве функции:

a)
$$z(x,y) = x^3 + y^3 - 3x$$
;

6)
$$u(x, y, z) = x^3 + y^2 + z^2 + 12xy + 2z$$
;

B)
$$x^2 + y^2 + z^2 - 2x + 2y - 4z - 10 = 0$$
, $z = z(x, y)$;

г)
$$z(x,y) = x + 2y$$
 при услов $x^2 + y^2 = 5$;

д)
$$u(x,y,z)=x^2+y^2+z^2$$
 ако $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1,\quad a>b>c>0;$

ŕ)
$$u(x,y,z)=xy^2z^3$$
 ако $x+2y+3z=a, \quad x,\ y,\ z,\ a>0;$

е)
$$u(x,y,z)=xy+yz$$
 ако $x^2+y^2=2$ и $y+z=2,\ x>0,\ y>0\ ,z>0.$

Задача 1.66. Да се определи точка на рамнината 2x + 3y + 5z = 18 во која функцијата $u(x,y,z) = 4x^2 + 3y^2 + 5z^2$ има најмала вредност.

Задача 1.67. На кривата C која претставува пресек на површината $2z=16-x^2-y^2$ и рамнината x+y=4 да се определат точки кои се најмалку и најмногу оддалечени од координатниот почеток.

Задача 1.68. Да се определи најголемата и најмалата вредност на функцијата $z(x,y)=x^3+y^3-3xy$ во правоаголникот $0\leq x\leq 2, -1\leq y\leq 2.$

Задача 1.69. Да се определи најголемата и најмалата вредност на функцијата $z(x,y) = 2x^3 + 4x^2 + y^2 - 2xy$ во областа затворена и ограничена со кривите $y = x^2$, y = 4.

Задача 1.70. Да се определи најголемата и најмалата вредност на функцијата $z(x,y)=x^2+4y^2-4x+8y$ во областа зададена со неравенствата $x\geq 0,\,y\geq 0,\,y-x+3\geq 0.$

Задача 1.71. Во даден триаголник со страни a, b и c и плоштината P да се најде точка т.ш. сумата на квадратите на нејзините растојанија до страните на триаголникот да биде најмала.

Задача 1.72. Во елипсоидот $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ да се впише паралелопипед чии рабови се паралелни со координатните оски, а неговиот волумен е максимален.

Задача 1.73. На елипсоидот $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ да се определи точка во која тангентната рамнина на елипсоидот со координатните рамнини образува тетраедар со максимален волумен.

Задача 1.74. Да се најде најголемата и најмалата вредност на функцијата

$$f(x,y) = 5 - 2\ln x + 2xy - y^2,$$

во областа $D: y = x - 2, -2 \le y \le 2$ и x > 0.