This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

⑩日本国特許庁(IP)

⑩特許出願公開

四公開特許公報(A)

昭60-126620

@Int_Cl_1

識別記号

庁内黎理番号

❸公開 昭和60年(1985)7月6日

G 02 B 27/10 G 11 B 7/09

8106-2H Z-7247-5D **

審査請求 未諳求 発明の数 1 (全5頁)

公発明の名称

明

⑫発

レーザビーム合成装置

②特 願 昭58-234245

②出 願 昭58(1983)12月14日

⑫発 明 者 立 野 男

公

岛

国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中 央研究所内

=

国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中

央研究所内

⑦発 眀 者 斉

者

進

国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中

央研究所内

砂出 願 人 株式会社日立製作所 创代 理

片

岡

東京都千代田区神田駿河台4丁目6番地

弁理士 高橋 明夫

外1名

创出 日立工機株式会社 人

弁理士 高橋 明夫

最終頁に続く

砂代 理 人

東京都千代田区大手町二丁目6番2号

発明の名称 レーザピーム合成装置

特許額求の管理

複数個のレーザビームを一本のビームに合成す るビーム合成光学系において、塩助や温度変化な どの外乱によつて生じるビーム位置ずれを光学的 に検出し、酸検出信号によつてアクチュエータを 駆助しレンズ、あるいはレーザを移助することに より、位置ずれが生じることなく、ビーム合成が 行なわれることを特徴とするレーザビーム合成装

発明の詳細な説明

(発明の利用分野)

本発明は、複数本のレーザビームの軸合せする 合成装置に関するものであり、光デイスク配録や、 レーザビームプリンタの光学系として用いて好遊 なレーザビーム合成装置である。

(発明の背景)

従来から、複数本のレーザビームの光頭を一本 に合わせ、配像面上で一点に放り込み、高い出力

光を得るための工夫がいくつかある。それらの中 には、第1回に示すようにレーザビームの個光特 性を利用し、 p 係光 1 は透過し、 a 係光 2 は反射 する個光プリズム3を用いる方法、あるいは第2 図に示すように、波長の異なつた 2 粒のレーザビ ームにより、一方のビーム4は避過し、他方のビ ーム 5 は反射させるような多間コーティングを旅 こしたミラーフイルター6を用いる方法、あるい は第3回に示すように、波長分散回折格子7を用 いる方法、あるいは第4図に示すように、ホログ ラム8を利用する方法などが知られている。

しかし、以上のような方法では、記録面上での スポット位配合せが困难であり、霹蛮により、仮 に位置合せができたとしても、協助や、温度変化 などによる外乱の影響を受け易く、簡単に位置す れが生じてしまうという欠点があり、実用化には いたつていないのが現状である。

(発明の目的)

本発明の目的は上述の欠点を解決し、複数本の レーザビームを配碌面上の同一地点に位置合わせ . を行ない、しかも外乱の必可を受けないレーザビ ーム合成装置を提供することにある。

(発明の概要)

以下本発明の一突施例を第5図により説明する。すなわち、第1図に示した従来例に本発明を適用したものが第5図である。個光プリズム3に対し、p 個光として入射するように配配した半導体レーザ9、個光プリズム3に対し。個光として半導体レーザ10からのビームを個光プリズム3で合成し、光韓合わせを行ない、一本のビームとし、紋り込みレンズ11により配録面5上に2倍の強度をもつたレーザビームとして銀光させる。

記録面12としては、光デイスク、あるいは光

遊伝感光ドラム(レーザプリンタ)などを用いる ことができる。

さて、ここで問題となるのが、位置ずれの検出 方法である。第6図にその一例を示す。

第6図において、第5図で示したと同様のユニットからの合成ビームを、少くとも50%以上の透過率をもつ半透明プリズム(又はミラー)17を通過させ、透過ビームは絞り込みレンズ11を経て記録面12に高強度ビームとして纵光させる。

一方、プリズム17による反射光は、光学寮子 18. 半週明プリズム19、結例レンズ20を経 て基準板21にいたる。基準板21には、擬方向、 横方向それぞれに深さな/ 4 (1 はレーザビーム の被長)の海が刻んである。光学素子18により、 基準板 21では第7回に示すように少くとも4つ のサイドスポツトが結例されるようにする。光学 粜子18としては、例えばよく知られた光ディス クトラツキング用のグレーティングを模模2次元 に拡張して用いればよい。基準板21からの反射 ビームは第6図において半透明ミラー19により 反射され、Ps分離の似光プリズム22により分 麓され、レンズ23。23′により光検知器24。 24′にいたる。光検知器24,24′は、第8 図に示した様に4つに分削されており、各々のセ グメント上に、基準板上のスポツトが結像されて

今仮りに外乱により、レーザ9が低かに低面内 でずれたとすると、基準板上でのスポント25、 26が移動する。移動に伴ない一方のスポントが、 游にさしかかる。さしかかつた部分は ∞ / 2の位 相変闘を受けるため、反射してレンズ 23に戻る 光量は減少する。

従つて光検知器上の光型にアンバランスが生じ、 対向するセグメント間の出力光電源に窓が生じる。 この差を検出してスポントずれ検出信列とし、ア クチュエータ15にフィードバンクし、常に、基 準板上での中心スポントがクロスポイントに数ま るようにする。このようなサーボを2つの半導体 レーザ光線9,10に適用すれば、基準面21上 で2つのスポントは合成される。

今、半導体レーザ光源 9 。 1 0 と、基準面 2 1 上での結像点は互いに共役である。一方、配録面 1 2 上での結像点とも互いに共役な関係にある。 従つて、基準面 2 1 上のスポットと記録面 1 2 上 のスポットとは互いに共役であり、基準面 2 1 上 のスポットがサーボにより不動となるので、記録 面 1 2 上でのスポットも不動となる。

以上の説明は2つの光源の合成であるが、第9回に示すように、例えば4つの光源の合成も可能

である・すなわち、 2 節の偏光プリズムおよび 1、 の波長の光は透過し、 A 。 の波長の光は反射 するフイルターミラー 6 により、 4 つのビームを 1 本に合成することが可能であり、約 4 倍の強度 をもつビームを得ることができる。

(発明の効果)

以上述べてきたように、本発明によれば、従来 不可能とされていた複数本のレーザビームを一本 のビームに合成し、数倍のレーザスポットを得る ことが可能であり、しかも振動や温度変動に対し 合成したビームがバラバラにずれることもない。

このような高出力レーザビームモデユール27は、例えば、第10図に示すようにDRAW光デイスク28の光源に適用することができ、このシステムの高速化、あるいは、光感度は低いが、保存性に實むような記録材料を使用することができる。

また、第11図に示すようにレーザビームプリ. ンタの光学系に適用すれば、 感度は低いが耐刷性、 安全性などの秀れた特性を持つアモルファスシリ コン光伝導ドラム 2 9 を使用することも可能となる。 印字速度の向上が可能となることは云うまでもない。

さらに、第12図に示すようにこのような大出 力光潔モデユール27を、人工領量30にのせ、 対地上、あるいは領型間の空間伝播光通信に利用 することもできる。

図面の簡単な説明

第1図から第4図はビーム合成の従来河を示す 図、第5図は本発明の駆動部の一例を示す図、第 6図は本発明の一次施例を示す図、第7図は進準 板とスポットの拡大図、第8辺は光検知器の拡大 図、第9図は本発明の他の突施例を示す図、第 10図、第11図、第12図はそれぞれ本発明の 応用例を示す図である。

1 … p 偏光ビーム、 2 … s 編光ビーム、 3 … 編光 プリズム、 4 … 被及 2, のビーム、 5 … 施長 2 s のビーム、 6 … ミラーフィルター、 7 … 回折格子、 8 … ホログラム、 9, 10 … 半雄体レーザ、 11 … 絞り込みレンズ、 12 … 臨光材料面、 13.

1 4 …カツブリングレンズ、1 5 , 1 6 … 2 次元アクチユエータ、1 7 … 半透明プリズム、1 8 … グレーテイング、1 9 … 半透明プリズム、2 0 … 較リ込みレンズ、2 1 … 基準板、2 2 … 偏光プリズム、2 3 , 2 3 ′ … 較リ込みレンズ、2 4 , 2 4 ′ … 4 分割光検知器、2 5 , 2 6 … 較り込みスポント、2 7 … ビーム合成モデユール、2 8 … D R A W ディスク、2 9 … 感光ドラム、3 0 … 人工衡原。

代理人 弁理士 髙橋明

第 5 図

第10 図

第11日

第1頁の続き

@Int_Cl_4

識別記号

庁内黎理番号

G 02 B 26/10 H 01 S 3/18

7348-21

切発 明 者 有 本

昭 国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中 央研究所内