

Table of Contents

- Introduction
- 2 Data Analysis
- 3 LSTM Cells
- 4 Experimental Results
- 5 Improving the Model

Semester Project, Spring 2017

Motivation

We have got to pause and ask ourselves: How much clean air do we need?

Lee Lacocca, CEO/Chairman, Chrysler Corporation, 1979-1992

- London Disaster, 1952.
- Beijing smog: pollution red alert declared in China capital and 21 other cities, 16 Dec 2016¹
- Air Pollution Grips Macedonian Capital, 7 Feb , 2017²
- Health Issue: asthma, bronchitis and chronic obstructive pulmonary disease (COPD).
- How do we model the dynamics of air pollutant ?

¹https://www.theguardian.com/world/2016/dec/17/beijing-smog-pollution-red-alert-declared-in-china-capital-and-21-other-cities

²http://www.balkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-capital-bulkaninsight.com/en/article/air-pollution-grips-macedonian-grips-macedonian-grips-macedonian-grips-macedonian-grips-macedonian-grips-macedonian-grips-macedonian-grips-macedonian-grips-macedonian-

Air pollution and Time Series

- Time series analysis can be used to capture pollutant trends and dynamics. How?
- Air pollution data is obtained at regular intervals from a number of fixed site monitors located throughout a region (6 regions of Macedonia)
- Pollutants reported are CO₂, PM₁₀, PM_{2.5}, O₃, SO₂,NO₂ and CO.
 Weather data (Temperature, Humidity etc) were also collected.
- We analyze the historical data and try to forecast the pollutant concentration some few time steps ahead (prediction horizon).
- What strategy shall we adopt in for multi-time step prediction?
- How many steps or horizons can we predict with confidence?

Recursive Prediction Strategy

- The recursive strategy :
 - trains first a one step model

Recursive Prediction Strategy

- The recursive strategy :
 - trains first a one step model
 - then uses it recursively for returning a multistep prediction

Recursive Prediction Strategy

- The recursive strategy :
 - trains first a one step model
 - then uses it recursively for returning a multistep prediction
 - The approximator \hat{f} returns the prediction value at the time step t+1 by iterating the predictions obtained in the previous steps

A look at the Data set

- Data sets from 6 regions (Eastern Region, Western Region and Skopje Region)
- Each region contains multiple location
- We will focus on one Region (Skopje) and one location (Rektorat) for a target pollutant (PM_{10})
- We will consider influence of other pollutant on prediction accuracy
- Then we consider influence of one location data on the chosen locatio
- And also influence of data from other regions on the chosen pollutant trends.

Bellman equation for Markov Reward Process (MRP)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 626500 entries, 0 to 626499
Data columns (total 19 columns):
date
                       626500 non-null datetime64[ns]
                       370787 non-null float64
PM10
NAME
                       626500 non-null object
                       626500 non-null int64
PM10 null pointers
                       352851 non-null float64
CO
                       626500 non-null int64
CO null pointers
NO<sub>2</sub>
                       222714 non-null float64
                       626500 non-null int64
NO2 null pointers
0.3
                       291676 non-null float64
03 null pointers
                       626500 non-null int64
PM25
                       79371 non-null float64
PM25 null pointers
                       626500 non-null int64
time
                       626500 non-null object
month
                       626500 non-null int32
day
                       626500 non-null int32
hour
                       626500 non-null int64
davsInterval
                       626500 non-null timedelta64[ns]
days interval
                       626500 non-null int64
hour interval
                       626500 non-null int64
dtypes: datetime64[ns](1), float64(5), int32(2), int64(8), object(2), timedelta64[ns](1)
memory usage: 86.0+ MB
```


Lag Plot And Time series plot of data

Figure: Time series plot of sampled data for PM10

Figure: Lag plot for PM10

Dealing With Missingness

Missingness Taxonomy:

- Missing Completely at Random (MCAR)
- Missing not at Random (MNAR)
- Missing at Random (MAR)

Solutions:

- Deletion
- Single Imputation method (Mean, mode)
- Model based Method(Multiple Imputation, Maximum Likelihood)

Missingness Plot

Partial Autocorrelation

For time series, the partial auto-correlation between $PM10_t$ and $PM10_{t-h}$ is defined as the conditional correlation between $PM10_t$ and $PM10_{t-h}$ conditional on $PM10_{t-h+1}, \ldots, PM10_{t-1}$: the set of observations that come between the time points t and t-h.

Partial Autocorrelation

For time series, the partial auto-correlation between $PM10_t$ and $PM10_{t-h}$ is defined as the conditional correlation between $PM10_t$ and $PM10_{t-h}$ conditional on $PM10_{t-h+1}, \ldots, PM10_{t-1}$: the set of observations that come between the time points t and t-h.

Figure: Partial Autocorrelation Plot PM10

With this we can approximately choose an horizon of 24 time-steps ahead.

Box-Cox Transformation

From Skewed to Symmetric Distribution:

Figure: Histogram plot PM10

Figure: After Box Cox Transformation

Correlation Between PM₁₀ And Other Pollutants

Figure: Pair Plot

LSTM : for modelling time series sets and their Long Time Dependencies accurately.

 It has memory cell using linear and logistic unit using

- It has memory cell using linear and logistic unit using
- Memory cells have multiplicative interaction

- It has memory cell using linear and logistic unit using
- Memory cells have multiplicative interaction
- Information gets into cell when write gate is open

- It has memory cell using linear and logistic unit using
- Memory cells have multiplicative interaction
- Information gets into cell when write gate is open
- Information stays in cell so long as keep gate is on.

- It has memory cell using linear and logistic unit using
- Memory cells have multiplicative interaction
- Information gets into cell when write gate is open
- Information stays in cell so long as keep gate is on.
- Information can be read by turning on the read

- linear unit that has a self link. And retains information when weight is one
- We can backpropagate through the circuit because logistic have nice derivative.

Simple LSTM and Backpropagation

Figure: LSTM

Experimental results

Base Models: AR,MA and ARIMA.

Figure: AR, MA, and ARIMA models

Prediction With LSTM

LSTM Models: From left to right, using only PM10, using PM10 with local mean filling, PM10 with other impurities from same region

Prediction With LSTM

LSTM Models: From left to right, using only PM10, using PM10 with local mean filling, PM10 with other impurities from same region

Semester Project, Spring 2017

Prediction With LSTM

LSTM Models: From left to right, using only PM10, using PM10 with local mean filling, PM10 with other impurities from same region

Figure: AR, MA, and ARIMA models

Table Of Prediction Score

Model	RMSE	R ²	Input		Nan Mecha- nism
MA	1.061809	0.0496	PM10		Mean Filling
AR	1.139356	0.05798	PM10		Mean Filling
ARIMA	1.11608	0.2330	PM10		Mean Filling
LSTM _{pm10}	1.6754	0.39751	PM10		Zero Filling
LSTM _{pm10}	1.48916	0.2210	PM10		Local Mean Filling
LSTM _{pm10}	0.5790	3.6e-5	PM10 Other ties	plus Impuri-	Local Mean Filling
LSTM _{pm10}	0.994	0.65	PM10 Other ties	plus Impuri-	Using Mask

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

LSTM Implementation

LSTM Implementation

Once in while set state to zero in the computational graph:

LSTM Implementation Continued

When using regularisation parameter, do not optimise "bias term":

Improving Model And New Model Proposal

- Average over Many Different Models (e.g LSTM, ARIMA and Gaussian processes)
- Use LSTM architecture but average over predictions made by many different weight vectors (Use different Hidden layer, different number or types of units per layer).

Improving Model And New Model Proposal

- Use Hidden Markov Models
- Describe a probabilistic distribution over the states (Good, Moderate, Unhealthy for sensitive groups, Unhealthy and Harzadous).
- Use LSTM for belief state prediction.
- Use Veterbi algorithm, Forward-Backward Algorithm and Expectation maximization as necessary.

Conclusions

- LSTM offers a very promising way to predict air quality
- Missing data can also be imputed using predictions from LSTM.
- Using Mixture of models can offer considerable improvement.
- Data from neighboring locations and meteorological data can be very useful in prediction for a location of interest.
- Using Markov Models can also be an alternative.

Conclusions

Thank You for Your Attention.

Questions?

