Podstawowa teoria

Rozkład wielowymiarowy

Korepetycje.intro23wertyk@gmail.com Bartosz Pawliczak

2021-05-19

Materiały ogólnodostępne przygotowane przeze mnie: https://github.com/bpawliczak/intro23wertvk_public

Pełne zestawienie materiałów (tylko dla kursantów): https://github.com/bpawliczak/intro23wertyk

Wiecei informacii i inspiracii: https://www.facebook.com/intro23wertvk

Rysunek: Korepetycje i stawka godzinowa (równoważnie: czy były realizowane w jedną, dwie, czy większą liczbę osób). Jaka stawka jest najpopularniejsza?

Rysunek: Korepetycje i stawka godzinowa (równoważnie: czy były realizowane w jedną, dwie, czy większą liczbę osób). Jaka stawka jest najpopularniejsza?

Rozkład dyskretny możemy zapisać za pomocą tabelki, z której odczytujemy prawdopodobieństw konkretnego zdarzenia (np. jakie jest prawdopodobieństwo, że udzielanymi korepetycjami były bazy danych po stawce 80 zł/h), czyli **rozkład łączny**.

Rysunek: Korepetycje i stawka godzinowa (równoważnie: czy były realizowane w jedną, dwie, czy większą liczbę osób). Jaka stawka jest najpopularniejsza?

Rozkład dyskretny możemy zapisać za pomocą tabelki, z której odczytujemy prawdopodobieństw konkretnego zdarzenia (np. jakie jest prawdopodobieństwo, że udzielanymi korepetycjami były bazy danych po stawce 80 zł/h), czyli **rozkład łączny**.

Możemy też sprawdzać rozkład względem konkretnej zmiennej, np. prawdopodobieństwo, że wybierając dowolną godzinę koreptycji natrafimy akurat na analizę. Jest to **rozkład brzegowy**.

Dwie zmienne X i Y są niezależne, jeżeli dla dowolnych zbiorów liczb rzeczywistych A i B zachodzi:

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$

Zmienne niezależne

Dwie zmienne X i Y są niezależne, jeżeli dla dowolnych zbiorów liczb rzeczywistych A i B zachodzi:

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$

Jeżeli choć w jednym wypadku nie zachodzi równość, mówimy, że zmienne są zależne.

Zmienne niezależne

Dwie zmienne X i Y są niezależne, jeżeli dla dowolnych zbiorów liczb rzeczywistych A i B zachodzi:

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$

Jeżeli choć w jednym wypadku nie zachodzi równość, mówimy, że zmienne są zależne.

				YX	80	100	120		
				rach. prawdopod.	0,2	0	0	0,2	
Bartosz Pawliczak					analiza	0,1	0,2	0	0,3
	Y	Q ∑¹ DATA		∲ G		0,1	0	0,3	0,4
1	1	21/01/23	16:0	1	danych	-/-			
2	3	21/01/23	18:0	2	algebra	0,1	0	0	
3	4	21/01/24	12:0	2					0,1
4	1	21/01/24	14:3	2					
5	1	21/01/26	10:0	1		0,5	0,2	0,3	
-									

Warunkowy rozkład

Dla dyskretnych zmiennych rozkład warunkowy ma postać:

$$\mathbb{P}(Y = y_i | X = x_j) = \frac{\mathbb{P}(X = x_j, Y = y_i)}{\mathbb{P}(X = x_j)}$$

Warunkowy rozkład

Dla dyskretnych zmiennych rozkład warunkowy ma postać:

$$\mathbb{P}(Y = y_i | X = x_j) = \frac{\mathbb{P}(X = x_j, Y = y_i)}{\mathbb{P}(X = x_j)}$$

Rysunek: Jaka interpretacje ma rozkład warunkowy na przedstawionym przypadku?

W jaki sposób intrepretować rozkład ciągły?

W jaki sposób intrepretować rozkład ciągły? Można rozpatrywać punkty w układzie współrzędnych OXY, a wartość prawdopodobieństwa traktować jako wysokość w danym punkcie.

Rysunek: Jeżeli przedstawiony wykres wyznaczałby ciągły rozkład dwuwymiarowy, to ile wynosiłaby wartość $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$

Niech łączny rozkład zmiennych losowoych X i Y będzie zdefiniowany przez funkcję gęstości g(x, y). Rozkłady brzegowe to odpowiednio:

Niech łączny rozkład zmiennych losowoych X i Y będzie zdefiniowany przez funkcję gęstości g(x,y). Rozkłady brzegowe to odpowiednio:

$$g_X(x) = \int_{-\infty}^{\infty} g(x, y) dy,$$

Niech łączny rozkład zmiennych losowoych X i Y będzie zdefiniowany przez funkcję gęstości g(x,y). Rozkłady brzegowe to odpowiednio:

$$g_X(x) = \int_{-\infty}^{\infty} g(x, y) dy,$$

$$g_Y(y) = \int_{\infty}^{\infty} g(x, y) dx.$$

Rozkład brzegowy w rozkładzie ciągłym

Niech łączny rozkład zmiennych losowoych X i Y będzie zdefiniowany przez funkcję gęstości g(x,y). Rozkłady brzegowe to odpowiednio:

$$g_X(x) = \int_{-\infty}^{\infty} g(x, y) dy,$$

$$g_Y(y) = \int_{\infty}^{\infty} g(x, y) dx.$$

Analogicznie jak w przypadku zmiennych dyskretnych, rozkład ciągłych $g_{X|Y}(x|y) = \frac{g(x,y)}{g_{X|Y}}$. (definicję tę wykorzystuje się przy liczeniu prawdopodobieństwa, ale też warunkowej watości oczekiwanej)

Rozkład brzegowy w rozkładzie ciągłym

Niech łączny rozkład zmiennych losowoych X i Y będzie zdefiniowany przez funkcję gęstości g(x,y). Rozkłady brzegowe to odpowiednio:

$$g_X(x) = \int_{-\infty}^{\infty} g(x, y) dy,$$

$$g_Y(y) = \int_{\infty}^{\infty} g(x, y) dx.$$

Analogicznie jak w przypadku zmiennych dyskretnych, rozkład ciągłych $g_{X|Y}(x|y) = \frac{g(x,y)}{g_{Y}(y)}$. (definicję tę wykorzystuje się przy liczeniu prawdopodobieństwa, ale też warunkowej watości oczekiwanej) A niezależność: $g(x, y) = g_X(x)g_Y(y)$

Uzasadnij, że $g(x,y) = \frac{3}{2}xy$, , $x + y \le 2$, x > 0, y > 0 jest funkcją gęstości. Następnie wyznacz:

- 1 g(x|y),
- $\mathbb{P}(X > 1 | Y = \frac{1}{2}),$
- $\mathbb{P}(X \in (\frac{1}{2}, 1) | Y = \frac{1}{2}),$
- $\mathbb{E}(\frac{X}{Y}).$

Uzasadnij, że $g(x,y) = \frac{3}{2}xy$, , $x + y \le 2$, x > 0, y > 0 jest funkcją gęstości. Następnie wyznacz:

- 1 g(x|y),
- $\mathbb{P}(X > 1 | Y = \frac{1}{2}),$
- $\mathbb{P}(X \in (\frac{1}{2}, 1) | Y = \frac{1}{2}),$
- $\mathbb{E}(\frac{X}{Y}).$

Aby sprawdzić, że g(x, y) jest funkcją gęstości, stwierdzamy, że x, y > 0, a ponadto $\int_{0}^{2} \int_{0}^{-x+2} g(x,y) dy dx$. Skąd takie granice całkowania?

Uzasadnij, że $g(x,y) = \frac{3}{2}xy$, , $x + y \le 2$, x > 0, y > 0 jest funkcją gęstości. Następnie wyznacz:

- 1 g(x|y),
- $\mathbb{P}(X > 1 | Y = \frac{1}{2}),$
- $\mathbb{P}(X \in (\frac{1}{2}, 1) | Y = \frac{1}{2}),$
- $\mathbb{E}(\frac{X}{V}).$

Aby sprawdzić, że g(x, y) jest funkcją gęstości, stwierdzamy, że x, y > 0, a ponadto $\int_0^2 \int_0^{-x+2} g(x,y) dy dx$. Skąd takie granice całkowania?

$$\int_0^2 \int_0^{-x+2} g(x,y) \, dy \, dx = \dots$$

$$\int_0^2 \int_0^{-x+2} g(x,y) \, dy \, dx = \dots$$

$$\int_0^2 \int_0^{-x+2} g(x, y) \, dy \, dx = \dots$$

$$\int_0^2 \int_0^{-x+2} g(x,y) \, dy \, dx = \dots$$

1
$$g_{X|Y}(x|y) = \frac{g(x,y)}{g_Y(y)}$$
, gdzie $g_Y(y) = \int_{-\infty}^{\infty} g(x,y) dx$, mamy $g_Y(y) = \int_0^{-y+2} \frac{3}{2} xy dx$ i ostatecznie

$$\int_0^2 \int_0^{-x+2} g(x,y) \, dy \, dx = \dots$$

I
$$g_{X|Y}(x|y) = \frac{g(x,y)}{g_Y(y)}$$
, gdzie $g_Y(y) = \int_{-\infty}^{\infty} g(x,y) dx$, mamy $g_Y(y) = \int_0^{-y+2} \frac{3}{2} xy dx$ i ostatecznie $g_{X|Y}(xy) = \frac{2x}{(2-y)^2}$,

$$\int_0^2 \int_0^{-x+2} g(x,y) \, dy \, dx = \dots$$

- I $g_{X|Y}(x|y) = \frac{g(x,y)}{g_Y(y)}$, gdzie $g_Y(y) = \int_{-\infty}^{\infty} g(x,y) dx$, mamy $g_Y(y) = \int_0^{-y+2} \frac{3}{2} xy dx$ i ostatecznie $g_{X|Y}(xy) = \frac{2x}{(2-y)^2}$,
- $\mathbb{P}(X > 1 | Y = \frac{1}{2}) = \int_{1}^{\frac{3}{2}} g_{x | \frac{1}{2}}(x) dx,$

$$\int_0^2 \int_0^{-x+2} g(x,y) \, dy \, dx = \dots$$

- $g_Y(y) = \int_0^{-y+2} \frac{3}{2} xy dx$ i ostatecznie $g_{X|Y}(xy) = \frac{2x}{(2-y)^2}$,
- $\mathbb{P}(X > 1 | Y = \frac{1}{2}) = \int_{1}^{\frac{3}{2}} g_{x | \frac{1}{2}}(x) dx,$
- $\mathbb{P}(X \in (\frac{1}{2}, 1) | Y = \frac{1}{2}) = \int_{\frac{1}{2}}^{1} g_{x|\frac{1}{2}}(x) dx,$

$$\int_0^2 \int_0^{-x+2} g(x,y) \, dy \, dx = \dots$$

I
$$g_{X|Y}(x|y) = \frac{g(x,y)}{g_Y(y)}$$
, gdzie $g_Y(y) = \int_{-\infty}^{\infty} g(x,y)dx$, mamy $g_Y(y) = \int_0^{-y+2} \frac{3}{2}xydx$ i ostatecznie $g_{X|Y}(xy) = \frac{2x}{(2-y)^2}$,

3
$$\mathbb{P}(X \in (\frac{1}{2}, 1) | Y = \frac{1}{2}) = \int_{\frac{1}{2}}^{1} g_{x|\frac{1}{2}}(x) dx$$
,

$$\mathbb{E}(\frac{X}{Y}) = \int_0^2 \int_0^{-x+2} \frac{x}{y} g(x, y) \, dy \, dx.$$

《日》《圖》《意》《意》