Modern Control Theory Notes

Jiarui Tan KTH Royal Institute of Technology

latest update: June 25, 2021

Abstract

This is my personal note for *Control Theory and Practice*, *Advanced Course* (EL2520) in 2021 Spring. It is just a review outline for the exam (2021 June) so there might be a lot of mistakes.

1 Basics

1.1 Norm

In this course, vector norm (Eq. 1) and signal norm (Eq. 2) are both Euclidian norms, while system gain is infinity norm.

$$|z|^2 = z^T z \tag{1}$$

$$||z(t)||_{\infty} = \sqrt{\int_{-\infty}^{\infty} |z(t)|^2 \mathrm{d}t}$$
 (2)

1.2 Gain

amplification of system S

$$\frac{||y||_2}{||u||_2} = \frac{||Su||_2}{||u||_2}$$

energy gain of system S

$$||S|| = \sup_{0 < ||u||_2 < \infty} \frac{||Su||_2}{||u||_2}$$

(supremum of amplification). For scalar linear systems,

$$||S|| = ||G||_{\infty}$$

(L- ∞ norm of transfer function). For y = Ax, it is

$$||A|| = \sqrt{\sigma_{max}(A)}$$

(sqrt of max singular value).

1.3 Stability

input-output stability

If $||S|| < \infty$, system S is input-output stable.

Small Gain Theorem

 $||S_1||, ||S_2||$ both input-output stable; $||S_1|| \cdot ||S_2|| < 1$. Then the closed-loop system is i-o stable. (conservative if phase info ignored!)

2 SISO Systems

2.1 Transfer Functions

In a closed-loop system, we have six transfer functions: $S, T, G_c, SG, SF_y, SF_r$ for a controller with two DoFs (feedback & feedforward).

internal stability

equivalent to: For all inputs (including r, w_u, w, n) and outputs, the closed-loop system is input-output stable.

For SISO systems, internal stable iff the Gang of Four (S, SG, SF_y, F_r) stable.

sensitivity functions

In order to extend to MIMO cases, we shape sensitivity functions instead of margins.

S: disturbance attenuation; sensitivity to model uncertainty.

 $|S(\mathrm{i}w)| < 1$ means the disturbance is attenuated. Otherwise it is amplified. $\tilde{G} = G(1 + \Delta G) \Longrightarrow \tilde{G}_c = G_c(1 + S\Delta G)$

T: noise attenuation; robustness to model uncertainty

2.2 Robustness

robust stability

With system uncertainty ΔG , will the closed-loop system be stable? Consider the system in " $\Delta G - T$ " form. According to Small Gain Theorem, ① ΔG stable, ② T internally stable, ③ $||T\Delta G||_{\infty} < 1 \Longrightarrow$ system I-O stable.

One thing before checking robust stability: make sure the controller makes the nominal system G stable!

model sets

We often define a model set to analyze system robustness.

(1) weight \times relative uncertainty

$$G_{p}(s) = G(s)(1 + W_{I}(s)\Delta_{I}(s)), ||\Delta_{I}||_{\infty} \le 1$$

For LTI systems, $||S_1S_2|| < 1$ is sufficient to substitute the second condition.

How to determine weights

Again, nominal stability! From SGT, then $||W_I T||_{\infty} \leq 1$.

Note that SGT requires $\Delta_I(s)$ to be stable. Thus, in this case G_p and G must have the same number of RHP poles.

Another approach if nominal model known: $|W_I(i\omega)| \ge |\frac{G_p(i\omega) - G(i\omega)}{G(i\omega)}|$

(2) weight \times inverse relative uncertainty

$$G_p(s) = G(s)(1 + W_{iI}(s)\Delta_{iI}(s))^{-1}, ||\Delta_{iI}||_{\infty} \le 1$$

This approach is intended for uncertain number of RHP poles, since a controller is possible to change the stability. Δ_{iI} can still be stable. From SGT, $||W_{iI}S||_{\infty} \leq 1$.

robust performance

Desired performance of nominal model:

$$|W_p S| \leq 1, \forall \omega$$

With model uncertainty, robust performance:

$$|W_p S| + |W_I T| \le 1, \forall \omega$$

2.3 Design Limitations

Design weights for sensitivity functions: W_S, W_T

$$W_S = \frac{1}{M_S} + \frac{\omega_{BS}}{s}$$

$$W_T = \frac{1}{M_T} + \frac{s}{\omega_{BT}}$$

Two parameters we need to consider: peak value M and bandwidth ω . Not all designs are feasible because of some trade-offs.

- ① $S + T = 1 \Longrightarrow |W_s(i\omega)| > 2$ and $|W_T(i\omega)| > 2$ cannot hold at the same frequency
- (2) if pole excess ≤ 2 , $\exists \omega$, s.t. $|S(i\omega)| > 1$
- ③ waterbed effect: cannot push down W^{-1} at all frequencies
- (4) interpolation constraints: consider RHP zeros (z), RHP poles (p), time delay
- (θ) of the system. First, we have S(z)=1, T(z)=0, S(p)=0, T(p)=1. Thus, if we tolerate arbitrarily large peaks $(M_S=\infty)$

$$\omega_{BS} \le z, \omega_{BT} \ge p, \omega_{BS} \le \frac{2}{\theta}$$

or if we tolerate $M_S = 2$ (more reasonable)

$$\omega_{BS} \le \frac{z}{2}, \omega_{BT} \ge 2p, \omega_{BS} \le \frac{1}{\theta}$$

If there is a pair of RHP zero and pole that are close, it results in a large peak

$$||S||_{\infty} \ge |\frac{z+p}{z-p}|$$

3 MIMO Systems

Transfer Matrices 3.1

Solve transfer matrices:

- (1) output \rightarrow against signal flow \rightarrow input
- (2) blocks: left to right
- (3) exit a loop: add $(I+L)^{-1}$
- L: from exit agianst the signal flow of the loop
- (4) add parallell paths

A formula for comparing MIMO transfer matrices: push thru

$$A(I + BA)^{-1} = (I + AB)^{-1}A$$

 $A(I + BA)^{-1} = (I + AB)^{-1}A$ Specially, when B = I, $A(I + A)^{-1} = (I + A)^{-1}A$

3.2 Poles and Zeros

pole

eigenvalues of A (minimal state-space realization); roots of pole polynomial pole polynomial

 $\lambda(s) = |sI - A|$; least common denominator of all minors of G(s)

G(z) looses rank.

zero polynomial

greatest common divisor of maximal normed minors of G(s)

If the control signal u is known, it is easy to solve state-space model to get poles and zeros of closed-loop system.

direction

$$G(p)u_p = \infty \cdot y_p, G(z)u_z = 0 \cdot y_z$$

Equivalently

$$y_p^H G(p) = \infty \cdot u_p^H, y_z^H G(z) = 0 \cdot u_z^H$$

u and v are input and output directions, respectively, and H means conjugate transpose. u_z is in the null space of G(z) while y_z is in the left null space of G(z).

Zeros and poles at the same position but with different directions cannot be cancelled in MIMO cases!

3.3 Gain

The gain of a MIMO system depends on both direction and frequency.

$$\underline{\sigma}(G(i\omega)) \le \frac{|Y(i\omega)|}{|U(i\omega)|} \le \bar{\sigma}(G(i\omega)) = |G(i\omega)|$$
$$||G||_{\infty} = \sup_{\omega} |G(i\omega)|$$

minor: determinant of small square matrics by deleting some rows and columns of G

"normed" means the denominator is the pole polynomial

Singular Value Decomposition

$$A = U\Sigma V^H, Av_i = \sigma_i u_i$$

 v_i : eigenvector of $A^H A$, u_i : eigenvector of AA^H , $\sigma_i = \sqrt{\lambda_i(A^H A)}$ useful: $\lambda(kA) = k\lambda(A)$

3.4 Internal Stability

For MIMO systems, stability of six transfer matrices: S, SG, S_u, S_uF_y, F_r are required. (recall: for SISO, only the Gang of Four)

Some principles should be noticed:

RHP pole-zero cancellation between F_y and G will cause instability.

RHP poles of G must be retained as zeros of S;

RHP zeros of G must be retained as zeros of T.

$$S(p)y_p = 0 \cdot y_p, \quad y_z^H T(z) = 0 \cdot y_z^H$$

 y_p : output pole direction, y_z : output zero direction

3.5 Decentralized Control and Decoupling

Relative Gain Array (RGA)

$$\Lambda(s) = \begin{bmatrix} \lambda_{11} & 1 - \lambda_{11} \\ 1 - \lambda_{11} & \lambda_{11} \end{bmatrix}$$

$$\lambda_{11} = \frac{1}{1 - \frac{g_{12}g_{21}}{g_{11}g_{22}}}$$

Sum of any row or column of RGA equals one. (for $N \times N$ matrices this also holds)

Should we use decentralized control?

First, compute $\Lambda(0)$ and determine input-output pairs according to signs of elements. Then check $\Lambda(\mathrm{i}w_c) \in (0.5,3)$ to ensure that the interaction is weak. **decoupler**

Try to make all elements are zero on the off-diagonal, e.g., $W=G^{-1}$

3.6 Robustness

For MIMO systems, it matters that we model the uncertainty at the input or output side. But W(s) is still a scalar.

output uncertainty

$$G_p(s) = (I + W_O(s)\Delta_O(s))G(s), ||\Delta_O||_{\infty} \le 1$$

robust stability condition:

$$||TW_O||_{\infty} < 1$$

input uncertainty

$$G_n(s) = G(s)(I + W_I(s)\Delta_I(s)), ||\Delta_I||_{\infty} \leq 1$$

robust stability condition:

$$||T_u W_I||_{\infty} < 1$$

$$T_u = F_u G (I + F_u G)^{-1}$$

*inverse input uncertainty

$$G_p(s) = G(s)(I + W_{iI}(s)\Delta_{iI}(s))^{-1}, ||\Delta_{iI}||_{\infty} \le 1$$

robust stability condition:

$$||S_u W_{iI}||_{\infty} < 1$$

 $S_u = I - T_u = (I + F_y G)^{-1}$

3.7 Design Limitations

We need to design W_S and W_T so that

$$\bar{\sigma}(S(\mathrm{i}\omega)) \leq |W_S^{-1}(\mathrm{i}\omega)|, \forall \omega$$
$$\bar{\sigma}(T(\mathrm{i}\omega)) \leq |W_T^{-1}(\mathrm{i}\omega)|, \forall \omega$$

some basic limitations

- ① $S + T = I, S_u + T_u = I \Longrightarrow \bar{\sigma}(S), \bar{\sigma}(T)$ cannot < 0.5 at the same time; one peak implies another.
- ② waterbed effect: trade-offs between frequencies and directions, from Bode Sensitivity Integral
- ③ interpolation constraints: $\bar{\sigma}(S(z)) > 1$ so $W_S(z) < 1$. Similarly, $|W_T(p)| < 1$. disturbance attenuation

$$z = S(s)g_d(s)d$$

For $\forall \omega$, given that |d| < 1, we hope |z| < 1, which indicates that

$$||Sg_d||_{\infty} < 1$$

disturbance direction:

$$y_d(i\omega) = \frac{g_d(i\omega)}{|g_d(i\omega)|}$$

- $\widehat{1}$ Check if there is any constraint on control signal u. Will it be sufficient?
- ② Before we design a controller, we should think about the system itself if there are RHP zeros.

From Maximum Modulus Theorem,

$$|y_z^H g_d(z)| < 1$$

It must be satisfied.

(3) The requirement on S is in direction y_d :

$$\bar{\sigma}(S(\mathrm{i}\omega)y_d(\mathrm{i}\omega)) < \frac{1}{|g_d(\mathrm{i}\omega)|}, \forall \omega$$

It is a good idea to scale the system.

When $y_z \perp y_d$, no limitation from this RHP zero; when $y_z \parallel y_d$, worst case!

3.8 Controller Design

Aim: design a controller to attenuate disturbance, noise and reduce control signal.

Approach 1: classical loop shaping

shape open-loop system: translate bounds on $\bar{\sigma}(S)$ and $\bar{\sigma}(T)$ into bounds on singular values of $L = GF_v$

$$\underline{\sigma}(L) >> 1 \Rightarrow \bar{\sigma}(S) \approx \frac{1}{\underline{\sigma}(L)}$$

$$\bar{\sigma}(L) << 1 \Rightarrow \bar{\sigma}(T) \approx \bar{\sigma}(L)$$

As there is no phase margin defined for MIMO systems, stability problems might exist. E.g., from the restrictions on W_S^{-1} and W_T^{-1} , will the slope of bode plot $\sigma_i(L) - \omega$ around crossover frequency be too large?

If we need more accurate bounds, there are some useful formulas:

$$\bar{\sigma}(A^{-1}) = \frac{1}{\underline{\sigma}(A)}$$

$$|\sigma_i(L) - 1| \leq \sigma_i(I + L) \leq \sigma_i(L) + 1 \text{ (from Fan's Theorem)}$$

$$\bar{\sigma}(A)\underline{\sigma}(B) \leq \bar{\sigma}(AB) \leq \bar{\sigma}(A)\bar{\sigma}(B)$$

*robust loop shaping

In this course, we use Glover-McFarlane loop shaping to stabilize a loop-shaped system. More details can be found in lecture notes but it is not exam-related.

$$G(s) = (M(s) + \Delta_M(s))^{-1}(N(s) + \Delta_N(s))$$
$$\|\Delta_M(s)\Delta_N(s)\|_{\infty} \le \epsilon$$

Approach 2: formulate and solve optimization problems See next chapter.

4 Optimal Control

In this chapter, we review both a classical optimal control method (LQG) and modern ones (H_2 , H_∞ , MPC).

4.1 H_{∞} Control

$$\begin{split} z &= Sw + Tn \\ u &= -FyS(w+n) = G_{wu}(w+n) \\ F_y &= \underset{F_y}{\operatorname{argmin}} \left\| \frac{W_SS}{W_TT} \right\|_{\infty} \end{split}$$

extended system: $z_e = y = G_0 u + w$, G_0 : open loop

- ① Formulate W_S, W_T, W_u : transform constraints into standard form
- 2 Form the extended system G_{ec} : $(y, z_e) \rightarrow (u, u_e)$. Design extended signals

 z_{ei} , u_e . E.g., $z_{e1} = W_S z = W_S (Gu + w)$, $u_e = w$. We hope the original problem is equivalent to a signal minimization problem.

$$\sup_{w} \frac{\|z_e\|_2}{\|w\|_2} = \|G_{ec}\|_{\infty}$$

- ③ Formulate a sub-optimal problem: $||G_{ec}||_{\infty} = \gamma$. Select a reasonable γ . (If you fails in the next step, return here.)
- 4 Derive controller based on state-space model of **open loop system** G_0 . First scale the system so that $D^T M = 0, D^T D = I$. Then solve the Riccati Equation

 $A^{T}P + PA + M^{T}M + P(\gamma^{-2}NN^{T} - BB^{T})P = 0$

If such a γ exists, then $u(t) = -L_{\infty}\hat{x}(t), L_{\infty} = B^T P$. Use Laplace transform to get $F_u(s)$.

 \bigcirc Moreover, ensure $A - BB^TP$ is stable.

4.2 LQG Control

LQG: linear system, quadratic cost, Gaussian noise

$$J = \lim_{T \to \infty} \frac{1}{T} \int_0^T [z^T Q_1 z + u^T Q_2 u] dt$$

We also hope to reduce some signals z and control signal u but this time we consider euclidean norm. The problem can be divided into two sub-problems if separation principle holds.

Step 1. solve LQ regulator optimal linear state feedback

$$\dot{x} = Ax + Bu$$

$$z=Mx, u=-Lx$$

solve Riccati equation

$$A^T S + SA + M^T Q_1 M - SBQ_2^{-1} B^T S = 0, S \ge 0$$
$$L = Q_2^{-1} B^T S$$
$$u(t) = -Lx(t)$$

Step 2. solve Kalman filter

optimal observer

$$\dot{x} = Ax + Bu + Nv_1$$

$$y = Cx + v_2$$

$$\dot{\hat{x}} = A\hat{x} + Bu + K_f(y - c\hat{x})$$

Some terminologies: controllable, observable, stabilizable ($\exists L$ so that A-BL stable), detectable ($\exists K$ so that A-KC stable)

See lecture notes.

solve Riccati equation

$$PA^{T} + AP - PC^{T}R_{2}^{-1}CP + NR_{1}N^{T} = 0, P \ge 0$$

 $K_{f} = PC^{T}R_{2}^{-1}$

closed-loop matrices

$$x: A - BL, \hat{x} - x: A - KC$$

Step 3. combine $(y \rightarrow u)$

controller (u, x), observer $(u, x, y) \rightarrow$ controller (u, y)

Eliminate state variables, so we get a controller based on observation.

4.3 H₂ Control

H₂ norm of SISO transfer function:

$$||G||_2^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 d\omega$$

Instead of H_{∞} norm, here we consider H_2 norm. In fact, minimizing H_2 norm of a transfer function is equivalent to a LQ problem if we know z = Mx + Du and $\min \|z(t)\|_2 \Leftrightarrow \min \|G\|_2^2$. H_2 considers all singular values while H_{∞} cares about the greatest one.

Solving H_2 is just like solving H_{∞} . But G(s) must be **strictly** proper and stable! Thus, we cannot always formulate weights as we wish.

4.4 Model Predictive Control (MPC)

MPC is a finite-horizon LQR problem. Thus, first we need to discretize the state-space model.

may be useful when dealing with MIMO:

$$e^{At} = L^{-1}[(sI - A)^{-1}]$$

Then we eliminate state variables $x_k, ..., x_{k+N}$ which results in a cost function J(u). Generally, the optimal value of the last input $u_{k+N}^* = 0$, and the terms that are not related to u can be ignored. Finally it can be a constrained QP problem with respect to $u_k, ..., u_{k+N-1}$.

*anti-set windup

Another approach dealing with hard constraints is so-called anti-set windup. We use a modified observer

$$\dot{\hat{x}} = A\hat{x} + Bu_p + K(y - C\hat{x})$$

where u_p is the actual input (may be saturated), and we get feedback from $u - u_p$.

$$\dot{\hat{x}} = (A - BL - KC)\hat{x} + Ky + B(u_p - u)$$

Then we can track input

$$U(s) = -F_y(s)Y(s) + W(s)(U_p(s) - U(s))$$