GIÁI TÍCH I CHƯƠNG I GIỚI HAN VÀ LIÊN TỤC BÀI 1 GIỚI HẠN HÀM SỐ

1. Ôn tập

1. C1. Tim $I = \lim_{x \to +\infty} (\sqrt{x^2 + 2x + 5} - x)$.

G: Nhân và chia với liên hợp, ta có

$$I = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + 2x + 5} - x\right) \cdot \left(\sqrt{x^2 + 2x + 5} + x\right)}{\sqrt{x^2 + 2x + 5} + x} = \lim_{x \to +\infty} \frac{2x + 5}{\sqrt{x^2 + 2x + 5} + x} = \lim_{x \to +\infty} \frac{2 + \frac{5}{x}}{\sqrt{1 + \frac{2}{x} + \frac{5}{x^2}} + 1}$$
$$= \frac{2}{1 + 1} = 1.$$

2. C2. Tim $I = \lim_{x \to -\infty} (\sqrt{x^2 - 5x - 1} - \sqrt{x^2 + 3x + 3})$

G: Nhân và chia với liên họp, ta có

$$I = \lim_{x \to -\infty} \frac{x^2 - 5x - 1 - (x^2 + 3x + 3)}{\sqrt{x^2 - 5x - 1} + \sqrt{x^2 + 3x + 3}} = \lim_{x \to -\infty} \frac{-8x - 4}{\sqrt{x^2 - 5x - 1} + \sqrt{x^2 + 3x + 3}} = \dots = 4.$$
3. C3. Tîm
$$I = \lim_{x \to 0} \frac{\sqrt{\cos x} - \sqrt[3]{\cos x}}{\sin^2 x}.$$

G: Đặt
$$t = \sqrt[6]{\cos x} \rightarrow \begin{cases} \sqrt{\cos x} = t^3 \\ \sqrt[3]{\cos x} = t^2 \end{cases}$$

$$\cos x = t^6 \rightarrow \sin^2 x = 1 - \cos^2 x = 1 - t^{12}.$$

$$\begin{split} I &= \lim_{t \to 1} \frac{t^3 - t^2}{1 - t^{12}} = \lim_{t \to 1} \frac{t^2(t - 1)}{(1 - t^6) \cdot (1 + t^6)} = \lim_{t \to 1} \frac{t^2(t - 1)}{(1 - t)(1 + t + t^2)(1 + t^3)(1 + t^6)} \\ &= \lim_{t \to 1} \frac{-t^2}{(1 + t + t^2)(1 + t^3)(1 + t^6)} = -\frac{1}{12}. \end{split}$$

4. C4. Tim $I = \lim_{x \to 1} \left(\frac{3}{1 - \sqrt{x}} - \frac{2}{1 - \frac{3}{\sqrt{x}}} \right)$

G: Đặt
$$t = \sqrt[6]{x} \rightarrow x = t^6 \rightarrow \begin{cases} \sqrt{x} = t^3 \\ \sqrt[3]{x} = t^2 \end{cases}$$
 và $t \rightarrow 1$ khi $x \rightarrow 1$. Nên
$$I = \lim_{t \rightarrow 1} \left(\frac{3}{1 - t^3} - \frac{2}{1 - t^2} \right) = \lim_{t \rightarrow 1} \left(\frac{3}{(1 - t)(1 + t + t^2)} - \frac{2}{(1 - t)(1 + t)} \right)$$

$$= \lim_{t \rightarrow 1} \frac{3(1 + t) - 2(1 + t + t^2)}{(1 - t)(1 + t + t^2)(1 + t)} = \lim_{t \rightarrow 1} \frac{-2t^2 + t + 1}{(1 - t)(1 + t + t^2)(1 + t)}$$

$$- \lim_{t \to 1} \frac{1}{(1-t)(1+t+t^2)(1+t)} - \lim_{t \to 1} \frac{1}{(1-t)(1+t+t^2)(1+t)} = \lim_{t \to 1} \frac{2t^2-t-1}{(t-1)(1+t+t^2)(1+t)} = \lim_{t \to 1} \frac{2t+1}{(1+t+t^2)(1+t)} = \frac{3}{3.2} = \frac{1}{2}.$$

5. C5. Tim $I = \lim_{x \to 0} \frac{1}{x} \cdot \left(\frac{1}{x-1} + \frac{1}{x+1} \right)$

G: Ta có

$$I = \lim_{x \to 0} \frac{1}{x} \cdot \frac{x+1+x-1}{(x-1)(x+1)} = \lim_{x \to 0} \frac{2}{x^2-1} = \frac{2}{-1} = -2.$$

6. C6. Tim $I = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + 1}}$.

G: Chia cả tử và mẫu cho \sqrt{x} , ta có

$$I = \cdots = 1$$
.

2. Giới hạn lượng giác

$$\lim_{x \to 0} \frac{\sin x}{x} = 1; \lim_{x \to 0} \frac{\tan x}{x} = 1; \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.$$

* $y = \arcsin x \rightarrow x = \sin y$; $y = \arctan x \rightarrow x = \tan y$; $\lim_{x \to 0} \frac{\arcsin x}{x} = 1$. * $\lim_{x \to +\infty} \arctan x = \arctan (+\infty) = \frac{\pi}{2}$; $\arctan (-\infty) = -\frac{\pi}{2}$.

7. C7. Tim
$$I = \lim_{x \to \infty} x^2 \left(\cos \frac{1}{x} - 1 \right)$$
.

G: Đặt
$$t = \frac{1}{x} \to 0$$
 khi $x \to \infty$. Nên

G: Đặt
$$t = \frac{1}{x} \to 0 \text{ khi } x \to \infty$$
. Nên
$$I = \lim_{t \to 0} \frac{1}{t^2} \cdot (\cos t - 1) = \lim_{t \to 0} \frac{\cos t - 1}{t^2} = \lim_{t \to 0} \frac{1 - \cos t}{t^2} = -\frac{1}{2}. \qquad \left(\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}\right)$$

8. C8. Tim
$$I = \lim_{x\to 0} \frac{\sqrt{1+2x^2-\cos x}}{x^2}$$
.

G: Ta có

$$\begin{split} I &= \lim_{x \to 0} \frac{\sqrt{1 + 2x^2} - 1 + 1 - \cos x}{x^2} = \lim_{x \to 0} \left(\frac{\sqrt{1 + 2x^2} - 1}{x^2} + \frac{1 - \cos x}{x^2} \right) = \lim_{x \to 0} \frac{1 + 2x^2 - 1}{x^2 (\sqrt{1 + 2x^2} + 1)} + \frac{1}{2} \\ &= \lim_{x \to 0} \frac{2}{\sqrt{1 + 2x^2} + 1} + \frac{1}{2} = \frac{2}{1 + 1} + \frac{1}{2} = \frac{3}{2}. \quad \left(v \right) \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \right) \end{split}$$

9. C9. Tîm
$$I = \lim_{x \to 0} \frac{\sqrt{1 - \frac{2x}{4 + \cos x}}}{x^2}$$

G: Nhân tử và mẫu với liên hợp của tử, ta có

$$I = \lim_{x \to 0} \frac{(\sqrt{5} - \sqrt{4 + \cos x})(\sqrt{5} + \sqrt{4 + \cos x})}{x^2(\sqrt{5} + \sqrt{4 + \cos x})} = \lim_{x \to 0} \frac{1 - \cos x}{x^2(\sqrt{5} + \sqrt{4 + \cos x})}$$
$$= \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \frac{1}{\sqrt{5} + \sqrt{4 + \cos x}} = \frac{1}{2} \cdot \frac{1}{2\sqrt{5}} = \frac{\sqrt{5}}{20}. \quad \left(v^2 \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}\right)$$

3. Nguyên lý kep

- ĐL: Nếu

$$\begin{cases} 0 \leq |f(x)| \leq g(x) \ \forall x \in (a,b) \setminus \{x_o\} \\ \lim_{x \to x_o} g(x) = 0 \end{cases} \to \lim_{x \to x_o} f(x) = 0.$$

10. Tìm
$$I = \lim_{x \to 2} (x - 2)^3 \sin \frac{1}{x - 2}$$

G: Ta có, vì $\left|\sin\frac{1}{r-2}\right| \le 1$ nên

$$0 \le \left| (x-2)^3 \sin \frac{1}{x-2} \right| \le \left| (x-2)^3 \right| \to 0$$

khi $x \to 2$. Nên theo Nguyên lý kẹp, $I = \lim_{x \to 2} (x - 2)^3 \sin \frac{1}{x - 2} = 0$.

4. Số e

$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{x} = e \approx 2, 7 = \lim_{t = \frac{1}{x} \to 0} (1 + t)^{\frac{1}{t}}.$$

$$\lim_{x \to 0} \frac{e^{x} - 1}{x} = 1 = \lim_{x \to 0} \frac{\ln(1 + x)}{x}; \lim_{x \to 0} \frac{a^{x} - 1}{x} = \ln a.$$

11. C10. Tim $I = \lim_{x \to 2} \frac{2^x - x^2}{x - 2}$.

G: Đặt $t = x - 2 \rightarrow 0$ khi $x \rightarrow 2$. Và x = t + 2 nên

$$I = \lim_{t \to 0} \frac{2^{t+2} - (t+2)^2}{t} = \lim_{t \to 0} \frac{2^t \cdot 4 - t^2 - 4t - 4}{t} = \lim_{t \to 0} \left(\frac{4 \cdot (2^t - 1) - t^2 - 4t}{t} \right)$$
$$= \lim_{t \to 0} \left(4 \cdot \frac{2^t - 1}{t} - t - 4 \right) = 4 \cdot \ln 2 - 4. \quad \left(v \right) \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \right)$$

12. C11. Tim $I = \lim_{x \to 0} \frac{e^{x^3 - 1 + x^2}}{x \tan x}$.

G: Ta có, vì $\lim_{x\to 0} \frac{\tan x}{x} = 1$ nên

$$I = \lim_{x \to 0} \frac{e^{x^3} - 1 + x^2}{x^2 \cdot \frac{\tan x}{x}} = \lim_{x \to 0} \left(\frac{e^{x^3} - 1 + x^2}{x^2} \right) = \lim_{x \to 0} \left(\frac{e^{x^3} - 1}{x^2} + 1 \right) = \lim_{x \to 0} \left(\frac{e^{x^3} - 1}{x^3} \cdot x + 1 \right) = 1.0 + 1$$

$$= 1. \quad \left(vi \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \right)$$

13. C12. Tim $I = \lim_{x \to 1} (1 - x) \tan x$

G: Đặt $t = 1 - x \rightarrow 0$ khi $x \rightarrow 1$ và x = 1 - t. Nên

$$I = \lim_{t \to 0} t \cdot \tan \frac{\pi(1-t)}{2} = \lim_{t \to 0} t \cdot \tan \left(\frac{\pi}{2} - \frac{\pi t}{2}\right) = \lim_{t \to 0} t \cdot \cot \frac{\pi t}{2} = \lim_{t \to 0} \frac{t}{\tan \frac{\pi t}{2}}$$

Vì
$$\lim_{x\to 0} \frac{\tan x}{x} = 1$$
 nên $I = \lim_{t\to 0} \frac{\frac{\pi t}{2}}{\tan \frac{\pi t}{2}} \cdot \frac{2}{\pi} = \frac{1}{1} \cdot \frac{2}{\pi} = \frac{2}{\pi}$.

- Nếu
$$\begin{cases} \lim_{x\to x_0} u(x) = 1\\ \lim_{x\to x_0} v(x) = \infty \end{cases}$$
 thì

$$\lim_{x\to x_o} u^v = 1^\infty = e^{\lim_{x\to x_o} [v.(u-1)]}$$

- Nếu
$$\begin{cases} \lim_{x \to x_0} w(x) = \infty \end{cases}$$
 thì $\lim_{x \to x_0} u^v = 1^\infty = e^{\lim_{x \to x_0} [v.(u-1)]}.$

14. C14. Tìm $I = \lim_{x \to \infty} \left(\frac{3x^2 + 1}{3x^2 + 5}\right)^{2x^2 + x}.$

C: Ta có $\int u = \frac{3x^2 + 1}{3x^2 + 5} \to 1$ nân

G: Ta có,
$$\begin{cases} u = \frac{3x^2 + 1}{3x^2 + 5} \to 1 \\ v = 2x^2 + x \to \infty \end{cases}$$
 nên

$$I = \lim_{x \to x_0} u^v = 1^{\infty} = e^{\lim_{x \to x_0} [v.(u-1)]} = e^{\lim_{x \to \infty} (2x^2 + x). \left(\frac{3x^2 + 1}{3x^2 + 5} - 1\right)} = e^{\lim_{x \to \infty} (2x^2 + x). \frac{-4}{3x^2 + 5}} = e^{\lim_{x \to \infty} \frac{-8x^2 - 8x}{3x^2 + 5}}$$

$$= e^{\lim_{x \to \infty} \frac{-8 - \frac{8}{x}}{3 + \frac{5}{x^2}}} = e^{-\frac{8}{3}}.$$

15. C15. Tim $I = \lim_{x \to \infty} \left(\frac{2x^2 + 1}{2x^2 - 5} \right)^{x^2}$.

G: Ta có, với
$$\begin{cases} u = \frac{2x^2 + 1}{2x^2 - 5} \rightarrow 1 \\ v = x^2 \rightarrow \infty \end{cases}$$
 thì

$$I = \lim_{x \to x_0} u^v = 1^{\infty} = e^{\lim_{x \to x_0} [v \cdot (u-1)]} = e^{\lim_{x \to \infty} x^2 \cdot \left(\frac{2x^2+1}{2x^2-5}-1\right)} = e^{\lim_{x \to \infty} x^2 \cdot \frac{6}{2x^2-5}} = e^{\lim_{x \to \infty} \frac{6x^2}{2x^2-5}} = e^{\lim_{x \to \infty} \frac{6}{2} \cdot \frac{1}{x^2}} = e^3.$$

16. C16. Tim
$$I = \lim_{x \to \infty} \left(\frac{x+2}{x+1} \right)^{3x}$$
.

G: Ta có,
$$\begin{cases} u = \frac{x+2}{x+1} \to 1 \\ v = 3x \to \infty \end{cases}$$
 nên

$$I = e^{\lim_{x \to x_0} [v.(u-1)]} = e^{\lim_{x \to \infty} 3x \left(\frac{x+2}{x+1}-1\right)} = e^{\lim_{x \to \infty} 3x \cdot \frac{1}{x+1}} = e^{\lim_{x \to \infty} \frac{3x}{x+1}} = \cdots = e^3.$$

17. C17. Tìm $I = \lim_{x \to 1} (1 + \sin \pi x)^{\cot \pi x}$.

G: Ta có

$$I = e^{\lim_{x \to x_0} [v.(u-1)]} = e^{\lim_{x \to 1} \cot \pi x.(1+\sin \pi x-1)} = e^{\lim_{x \to 1} (\cot \pi x.\sin \pi x)} = e^{\lim_{x \to 1} (\cos \pi x)} = e^{\cos \pi} = e^{-1}.$$

18. C18. Tìm $I = \lim_{x\to 0} (1 - 2x^2)^{\cot^2 x}$.

G: Ta có

$$I = e^{\lim_{x \to x_0} [v.(u-1)]} = e^{\lim_{x \to 0} \cot^2 x.(-2x^2)} = e^{\lim_{x \to 0} \frac{-2x^2}{\tan^2 x}} = e^{\lim_{x \to 0} -2.\left(\frac{x}{\tan x}\right)^2} = e^{-2.\left(\frac{1}{1}\right)^2} = e^{-2}.$$

19. C19. Tim $I = \lim_{r \to 0^+} \sqrt[x]{\cos \sqrt{x}}$.

G: Ta có

$$\begin{split} I &= e^{\lim_{x \to x_0} [v.(u-1)]} = \lim_{x \to 0^+} (\cos \sqrt{x})^{\frac{1}{x}} = e^{\lim_{x \to 0^+} \frac{1}{x} \cdot (\cos \sqrt{x} - 1)} = e^{\lim_{x \to 0^+} \frac{\cos \sqrt{x} - 1}{x}} = e^{\lim_{x \to 0^+} \frac{-1 - \cos \sqrt{x}}{(\sqrt{x})^2}} \\ &= e^{-\frac{1}{2}}. \quad \left(v \right) \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \right) \end{split}$$

Bài 2 VÔ CÙNG BÉ

1. ĐN

- ĐN: Cho HS y=f(x) xác định trên khoảng $(a,b)\setminus\{x_o\}$. HS f(x) gọi là 1 VCB (vô cùng bé) khi $x\to x_o$ nếu

$$\lim_{x\to x_0}f(x)=0.$$

VD. Hàm $\sin(x-2)$ là 1 VCB khi $x \to 2$.

2. So sánh VCB

- ĐN: Cho 2 VCB f(x) và g(x) khi $x \to x_o$ (tức $\lim_{x \to x_o} f(x) = 0$). Xét $\lim_{x \to x_o} \frac{f(x)}{g(x)} = L$.
- * Nếu $\lim_{x\to x_o} \frac{f}{g} = L = 0$ thì f gọi là VCB bậc cao hơn g, ký hiệu là f = o(g) khi $x \to x_o$.
- * Nếu $\lim_{x\to x_o} \frac{\bar{f}}{g} = L = \infty$ thì f gọi là VCB bậc thấp hơn g khi $x\to x_o$.
- * Nếu $\lim_{x\to x_0}\frac{f}{g}=L=1$ thì f và g
 gọi là 2 VCB tương đương, ký hiệu $f\sim g$ khi $x\to x_0$.
- * Nếu $\lim_{x\to x_0} \frac{f}{g} = L \neq 0, 1, \infty$ thì ta nói f và g là 2 VCB cùng bậc khi $x\to x_0$.
- VD. Khi $x \to 0$, ta có $\lim_{x \to 0} \frac{\sin x}{x} = 1 = \lim_{x \to 0} \frac{\tan x}{x}$ nên $\sin x \sim x \sim \tan x$ khi $x \to 0$.
- 20. Ca. So sánh các VCB $f = \sqrt{1+x} \sqrt{1-x}$; $g = x^2$ khi $x \to 0$.

G: Có f, g là các VCB khi $x \rightarrow 0$. Xét

$$\lim_{x \to 0} \frac{f}{g} = \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x^2} = \lim_{x \to 0} \frac{1+x - (1-x)}{x^2 \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{x^2 \left(\sqrt{1+x} + \sqrt{1-x}\right)}$$
$$= \lim_{x \to 0} \frac{2}{x \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \frac{2}{0.(1+1)} = \infty.$$

Nên f là VCB bậc thấp hơn g khi $x \rightarrow 0$

- 3. Quy tắc ngắt bỏ VCB bậc cao hơn trong tổng hiệu
- ĐL: Nếu g = o(f) (tức g là VCB bậc cao hơn f) khi $x \to x_o$ thì

$$\lim_{x\to x_0} (f\pm g) = \lim_{x\to x_0} f$$
.

21. Tim $I = \lim_{x\to 0} \frac{3x^2 + \sin^3 x - x^6}{5x^2 - \tan^4 x}$.

G: Ta có khi $x \to 0$, vì $\sin x \sim x \to (\sin x)^3 \sim x^3 = o(x^2)$; $x^6 = o(x^2)$; $(\tan x)^4 \sim x^4 = o(x^2)$ khi $x \to 0$. Theo Quy tắc ngắt bỏ VCB bậc cao hơn trong tổng hiệu, có

$$I = \lim_{x \to 0} \frac{3x^2}{5x^2} = \frac{3}{5}.$$

- ĐL2: Quy tắc thay thế tương đương trong tích thương: Nếu khi $x \to x_o$, ta có

 $f \sim f_1$; $g \sim g_1 \left(t \text{ if } c \lim_{\chi \to \chi_0} \frac{f}{f_1} = 1 \right)$ thì

$$\begin{cases} \lim_{x \to x_o} (f.g) = \lim_{x \to x_o} (f_1.g_1); \\ \lim_{x \to x_o} \frac{f}{g} = \lim_{x \to x_o} \frac{f_1}{g_1}. \end{cases}$$

- (Một số VCB tương đương) Khi $x \to 0$, ta có

 $\sin x \sim x$; $\tan x \sim x \sim \arcsin x$;

$$1 - \cos x \sim \frac{1}{2}x^{2}; 1 - \cos ax \sim \frac{1}{2}.(ax)^{2} = \frac{a^{2}x^{2}}{2};$$

$$e^{x} - 1 \sim x; a^{x} - 1 \sim x \ln a; \ln(1+x) \sim x;$$

$$(1+x)^{a} - 1 \sim a. x; \sqrt{1+x} - 1 = (1+x)^{\frac{1}{2}} - 1 \sim \frac{1}{2}. x; \sqrt[3]{1+x} - 1 \sim \frac{1}{3}. x$$

22. Tim $I = \lim_{x\to 0} \frac{\sqrt{5} - \sqrt{4 + \cos x}}{x^2}$

G: Ta có

$$I = \lim_{x \to 0} \frac{\left(\sqrt{5} - \sqrt{4 + \cos x}\right)\left(\sqrt{5} + \sqrt{4 + \cos x}\right)}{x^2\left(\sqrt{5} + \sqrt{4 + \cos x}\right)} = \lim_{x \to 0} \frac{1 - \cos x}{x^2\left(\sqrt{5} + \sqrt{4 + \cos x}\right)}.$$

Khi $x \to 0$, ta có $1 - \cos x \sim \frac{1}{2} x^2$. Nên theo Quy tắc thay thế tương đương trong tích thương, có

$$I = \lim_{x \to 0} \frac{\frac{1}{2}x^2}{x^2(\sqrt{5} + \sqrt{4 + \cos x})} = \lim_{x \to 0} \frac{1}{2(\sqrt{5} + \sqrt{4 + \cos x})} = \frac{1}{4\sqrt{5}} = \frac{\sqrt{5}}{20}.$$

23. Tim $I = \lim_{x\to 2} \frac{2^x - x^2}{x-2}$

$$I = \lim_{t \to 0} \frac{2^{t+2} - (t+2)^2}{t} = \lim_{t \to 0} \frac{2^t \cdot 4 - t^2 - 4t - 4}{t} = \lim_{t \to 0} \frac{4 \cdot (2^t - 1) - t^2 - 4t}{t} = \lim_{t \to 0} \left(4 \cdot \frac{2^t - 1}{t} - t - 4\right).$$

Theo Quy tắc thay thế tương đương trong tích thương, có khi $x \to 0$, thì $a^x - 1 \sim x \ln a \to 2^t - 1 \sim t \ln 2$ nên

$$I = \lim_{t \to 0} \left(4 \cdot \frac{t \cdot \ln 2}{t} - t - 4 \right) = \lim_{t \to 0} \left(4 \ln 2 - t - 4 \right) = 4 \cdot \ln 2 - 4.$$
24. Tîm $I = \lim_{x \to 0} \frac{\sqrt{\cos x} - \sqrt[3]{\cos x}}{x^2}$.

G: Vì khi $x \to 0$, có $\sqrt{1+x} - 1 \sim \frac{1}{2}x$; $\sqrt[3]{1+x} - 1 \sim \frac{1}{2}x$ nên

$$I = \lim_{x \to 0} \frac{\left(\sqrt{1 + (\cos x - 1)} - 1\right) - \left(\sqrt[3]{1 + (\cos x - 1)} - 1\right)}{x^2} = \lim_{x \to 0} \frac{\frac{\cos x - 1}{2} - \frac{\cos x - 1}{3}}{x^2}$$
$$= \lim_{x \to 0} \frac{\cos x - 1}{6x^2} = \lim_{x \to 0} -\frac{1 - \cos x}{6x^2}.$$

Vì khi $x \to 0$, có $1 - \cos x \sim \frac{x^2}{2} \to \cos x \sim 1 - \frac{x^2}{2}$, nên $I = \lim_{x \to 0} -\frac{\frac{x^2}{2}}{6x^2} = -\frac{1}{12}$

25. Tim $I = \lim_{x \to 1} \left(\frac{3}{1 - \sqrt{x}} - \frac{2}{1 - 3/x} \right)$

G: Ta có

$$\begin{split} I &= \lim_{x \to 1} \left(\frac{3 \left(1 + \sqrt{x} \right)}{1 - x} - \frac{2 \left(1 + \sqrt[3]{x} + \sqrt[3]{x^2} \right)}{1 - x} \right) = \lim_{x \to 1} \frac{1 + 3 \sqrt{x} - 2\sqrt[3]{x} - 2\sqrt[3]{x^2}}{1 - x} \\ &= \lim_{t = x - 1 \to 0} \frac{1 + 3 \sqrt{1 + t} - 2\sqrt[3]{1 + t} - 2\sqrt[3]{1 + 2t + t^2}}{-t} \\ &= \lim_{t \to 0} \frac{2 \left(\sqrt[3]{1 + 2t + t^2} - 1 \right) + 2 \left(\sqrt[3]{1 + t} - 1 \right) - 3 \left(\sqrt{1 + t} - 1 \right)}{t} \\ &= \lim_{t \to 0} \frac{\frac{2}{3} \left(2t + t^2 \right) + \frac{2}{3} \cdot t - \frac{3}{2} \cdot t}{t} = \lim_{t \to 0} \left(\frac{2}{3} \left(2 + t \right) + \frac{2}{3} - \frac{3}{2} \right) = \frac{1}{2}. \end{split}$$

26. Cb. So sánh các VCB f = x - 1; $g = \cot \frac{\pi x}{2}$ khi $x \to 1$.

G: Có f, g là các VCB khi $x \rightarrow 1$.

Xét $\lim_{x\to 1} \frac{f}{g} = \lim_{x\to 1} \frac{x-1}{\cot \frac{\pi x}{2}}$. Đặt $t=x-1\to 0$ khi $x\to 1$. Và x=t+1. Vì $\cot x=\tan\left(\frac{\pi}{2}-x\right)$ nên

$$\begin{split} \lim_{x\to 1} \frac{f}{g} &= \lim_{t\to 0} \frac{t}{\cot\frac{\pi(t+1)}{2}} = \lim_{t\to 0} \frac{t}{\cot\left(\frac{\pi t}{2} + \frac{\pi}{2}\right)} = \lim_{t\to 0} \frac{t}{\tan\left(\frac{\pi}{2} - \frac{\pi t}{2} - \frac{\pi}{2}\right)} \\ &= \lim_{t\to 0} \frac{t}{\tan\left(-\frac{\pi t}{2}\right)} = \lim_{t\to 0} \frac{-t}{\tan\left(\frac{\pi t}{2}\right)}. \end{split}$$

Vì $t \to 0$, thì $tan \ t \sim t \to tan \ \left(\frac{\pi t}{2}\right) \sim \frac{\pi t}{2}$. Thay thế tương đương, được $L = \lim_{t \to 0} \frac{-t}{\frac{\pi t}{2}} = -\frac{2}{\pi} \neq 0$, $1, \infty$.

Vậy f, g là các VCB cùng bậc khi $x \to 1$.

27. Cc. So sánh các VCB $f = 1 - \cos^2 x$; $g = \ln(1 + x)$ khi $x \to 0$.

G: Có f, g là các VCB khi $x \rightarrow 0$. Xét

$$\lim_{x\to 0} \frac{f}{g} = \lim_{x\to 0} \frac{1-\cos^2 x}{\ln(1+x)} = \lim_{x\to 0} \frac{\sin^2 x}{\ln(1+x)}.$$

Vì khi $x \to 0$, có $\sin x \sim x \to \sin^2 x \sim x^2$; $\ln (1+x) \sim x$ nên thay thế tương đương, được

$$\lim_{x\to 0} \frac{f}{a} = \lim_{x\to 0} \frac{x^2}{x} = \lim_{x\to 0} x = 0.$$

Nên f là VCB bậc cao hơn g khi $x \to 0$.

28. Cd.
$$f = \sqrt{1+x} - \sqrt{1-x}$$
; $g = \ln(1+x)$; $x \to 0$.

G: Có f, g là các VCB khi $x \rightarrow 0$. Xét

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\ln(1+x)} = \lim_{x \to 0} \frac{(1+x) - (1-x)}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)} = \lim_{x \to 0} \frac{2x}{\ln(1+x) \cdot \left$$

Vì khi $x \to 0$, có $\ln (1+x) \sim x$, nên thay thế tương được

$$L = \lim_{x \to 0} \frac{2x}{x \cdot (\sqrt{1+x} + \sqrt{1-x})} = \lim_{x \to 0} \frac{2}{\sqrt{1+x} + \sqrt{1-x}} = \frac{2}{1+1} = 1.$$

Vậy f, g là các VCB tương đương khi $x \to 0$

29. Ce. So sánh các VCB $f = \cos \frac{2}{x} - \cos \frac{1}{x}$; $g = \frac{1}{x}$; $x \to \infty$.

G: Có f, g là các VCB khi $x \to \infty$. Đặt $t = \frac{1}{x} \to 0$ khi $x \to \infty$. Suy ra $L = \lim_{t \to 0} \frac{f}{g} = \lim_{t \to 0} \frac{\cos 2t - \cos t}{t}$.

Vì $\cos a - \cos b = -2 \sin \frac{a+b}{2} \sin \frac{a-b}{2}$ nên

$$L = \lim_{t \to 0} \frac{-2 \sin \frac{3t}{2} \sin \frac{t}{2}}{t} = \lim_{t \to 0} \frac{-2 \cdot \frac{3t}{2} \cdot \frac{t}{2}}{t} = \lim_{t \to 0} \left(-\frac{3}{2}t \right) = 0. \quad \left(v \right) \sin \frac{3t}{2} \sim \frac{3t}{2}; \sin \frac{t}{2} \sim \frac{t}{2} \text{ khi } t \to 0 \right)$$

Nên f là VCB bậc cao hơn g khi $x \to \infty$.

4. VCL

a) ĐN. HS f(x) gọi là 1 VCL (vô cùng lớn) khi $x \to x_o$ nếu

$$\lim_{x\to x_0} f(x) = \infty.$$

VD. Khi $x \to 0$, hàm $\frac{1}{x^3}$ là 1 VCL.

- Khi $x \to \infty$, hàm x^2 là 1 VCL.

b) So sánh VCL

- ĐN: Cho 2 VCL
$$f(x)$$
 và $g(x)$ khi $x \to x_0$. Xét $\lim_{x \to x_0} \frac{f(x)}{g(x)} = L$.

- * Nếu L=0 thì f gọi là VCL bậc thấp hơn g khi $x \to x_o$.
- * Nếu $L = \infty$ thì f gọi là VCL bậc cao hơn g khi $x \to x_0$.
- * Nếu L=1 thì f và g gọi là 2 VCL tương đương khi $x \to x_o$.
- * Nếu $L \neq 0, 1, \infty$ thì ta nói f và g là 2 VCL cùng bậc khi $x \rightarrow x_0$.
- 30. Ca. So sánh các VCL $f = e^x + e^{-x}$; $g = e^x e^{-x}$ khi $x \to +\infty$.

G: Có f, g là các VCL khi $x \to +\infty$. Xét

$$\lim_{x \to +\infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim_{x \to +\infty} \frac{e^x + \frac{1}{e^x}}{e^x - \frac{1}{e^x}} = \lim_{x \to +\infty} \frac{e^{2x} + 1}{e^{2x} - 1} = \lim_{x \to +\infty} \frac{1 + \frac{1}{e^{2x}}}{1 - \frac{1}{e^{2x}}} = \frac{1 + \frac{1}{\infty}}{1 - \frac{1}{\infty}} = \frac{1 + 0}{1 - 0} = 1 = L.$$

Nên f và g là 2 VCL tương đương khi $x \to +\infty$.

31. Cb. So sánh các VCL $f = e^{x} + e^{-x}$; $g = e^{x} - e^{-x}$ khi $x \to -\infty$.

G: Có f, g là các VCL khi $x \to -\infty$. Xét

$$\lim_{x \to -\infty} \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} = \lim_{t = -x \to +\infty} \frac{e^{-t} + e^{t}}{e^{-t} - e^{t}} = \lim_{t = -+\infty} \frac{\frac{1}{e^{t}} + e^{t}}{\frac{1}{e^{t}} - e^{t}} = \dots = -1.$$

Nên ...

5. Tìm phần chính có dạng $C. x^a$ $(C \neq 0)$

- ĐN: Cho HS y = f(x) xác định trên khoảng $(a, b) \setminus \{x_o\}$. Nếu tồn tại số $C \neq 0$ và $a \in R$ sao cho khi $x \to x_o$, có

$$f(x) \sim C. x^a \rightarrow lim_{x \rightarrow x_o} \frac{f(x)}{C. x^a} = 1,$$

thì phần $C. x^a$ gọi là phần chính của f(x) khi $x \to x_0$.

- Tìm phần chính có dạng $C. x^a$ $(C \neq 0)$ khi $x \rightarrow 0$ của:

32. a)
$$f = \sqrt{1 - 2x} - 1 + x$$
.

G: Vì $x \to 0$ nên

$$f = \sqrt{1 - 2x} - 1 + x = \frac{\left(\sqrt{1 - 2x} - 1 + x\right)\left(\sqrt{1 - 2x} + 1 - x\right)}{\sqrt{1 - 2x} + 1 - x} = \frac{1 - 2x - (1 - x)^2}{\sqrt{1 - 2x} + 1 - x}$$
$$= \frac{1 - 2x - 1 + 2x - x^2}{\sqrt{1 - 2x} + 1 - x} = \frac{-x^2}{\sqrt{1 - 2x} + 1 - x} \sim \frac{-x^2}{1 + 1} = -\frac{1}{2} \cdot x^2 = C \cdot x^a$$

khi $x \to 0$. Vậy $-\frac{1}{2}x^2$ là phần chính của f khi $x \to 0$.

33. b) f = tan x - sin x.

G: Vì $x \rightarrow 0$ nên

$$f = \tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \sin x \left(\frac{1}{\cos x} - 1\right) = \sin x \cdot \frac{1 - \cos x}{\cos x} \sim x \cdot \frac{\frac{1}{2}x^2}{\cos 0} = \frac{1}{2} \cdot x^3$$

$$khi \ x \to 0. \quad \left(do \sin x \sim x; 1 - \cos x \sim \frac{1}{2}x^2 \ khi \ x \to 0\right)$$

Vậy phần chính là $\frac{1}{2}$. x^3 khi $x \to 0$.

34. c)
$$f = e^{x^2} - \cos x$$
.

G: Vì $x \rightarrow 0$ nên $e^0 = 1 = \cos 0$, suy ra

$$f = e^{x^2} - \cos x = (e^{x^2} - 1) + (1 - \cos x) \sim x^2 + \frac{1}{2}x^2 = \frac{3}{2} \cdot x^2$$

khi
$$x \to 0$$
. $\left(do \ e^x - 1 \sim x \to e^{x^2} - 1 \sim x^2; 1 - \cos x \sim \frac{1}{2} x^2 \right)$

Vậy phần chính là $\frac{3}{2}x^2$ khi $x \to 0$.

35. d)
$$f = \sqrt{3} - \sqrt{2 + \cos x}$$
.

G: Vì $x \rightarrow 0$ nên

$$f = \sqrt{3} - \sqrt{2 + \cos x} = \frac{3 - 2 - \cos x}{\sqrt{3} + \sqrt{2 + \cos x}} = \frac{1 - \cos x}{\sqrt{3} + \sqrt{2 + \cos x}} \sim \frac{\frac{1}{2}x^2}{\sqrt{3} + \sqrt{2 + \cos 0}} = \frac{\sqrt{3}}{12} \cdot x^2$$
khi $x \to 0$.

BÀI 3 LIÊN TỤC CỦA HÀM SỐ

- 1. Liên tục tại 1 điểm
- ĐN: Cho HS y = f(x) xác định trên khoảng $(a, b) \ni x_o$. HS f(x) gọi là liên tục tại điểm x_o nếu $\lim_{x\to x_o} f(x) = f(x_o).$

- Nếu hàm f ko liên tục tại
$$x_o$$
 thì f gọi là gián đoạn tại x_o .

36. C1. Xét tính liên tục của $f = \begin{cases} \frac{2x}{e^{2x} - e^{-x}} : x \neq 0 \\ a : x = 0 \end{cases}$; $x_o = 0$.

G: Có

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{2x}{e^{2x} - e^{-x}} = \lim_{x\to 0} \frac{2x}{e^{2x} - \frac{1}{e^x}} = \lim_{x\to 0} \frac{2xe^x}{e^{3x} - 1}.$$

Vì khi $x \to 0$ thì $e^x - 1 \sim x \to e^{3x} - 1 \sim 3x$ nên Thay thế tương đương

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{2xe^x}{3x} = \lim_{x\to 0} \frac{2e^x}{3} = \frac{2}{3}$$

 $V\grave{a} f(0) = a.$

- Nếu $a=\frac{2}{3}\to \lim_{x\to 0}f(x)=f(0)\to \mathrm{HS}$ liên tục tại $x_o=0$. Nếu $a\neq\frac{2}{3}\to \mathrm{HS}$ gián đoạn tại $x_o=0$.

b) Liên tục trên khoảng

- ĐN: HS y = f(x) gọi là LT trên khoảng (a, b) nếu nó LT tại mọi điểm $x_0 \in (a, b)$.
- Hàm cơ bản: là các hàm lũy thừa, lượng giác, mũ và loga.
- Hàm sơ cấp: là tổng, hiệu, tích thương của các hàm cơ bản.
- ĐL: Các hàm sơ cấp thì liên tục trên TXĐ của nó.

37. C2. Xét tính liên tục của
$$f = \begin{cases} \frac{x^2 - 1}{x^3 - 1} & : x \neq 1 \\ a & : x = 1. \end{cases}$$

G: Xét $x_o \neq 1 \rightarrow f = \frac{x^2 - 1}{x^3 - 1}$ là hàm sơ cấp có TXĐ $D = R \setminus \{1\}$ nên nó LT tại mọi $x_o \neq 1$.

- Xét $x_o = 1$. Có

$$\lim_{x\to 1} f(x) = \lim_{x\to 1} \frac{x^2 - 1}{x^3 - 1} = \lim_{x\to 1} \frac{x + 1}{x^2 + x + 1} = \frac{2}{3}$$

 $V\grave{a} f(1) = a.$

Nên nếu $a = \frac{2}{3} \rightarrow lim_{x \rightarrow 1} f(x) = f(1) \rightarrow \text{HS LT tại } x_o = 1.$

- Nếu $a \neq \frac{2}{3}$ \rightarrow HS gián đoạn tại $x_o = 1.*$ Chú ý: $arctan \ (+\infty) = \frac{\pi}{2}$

38. C3. Xét tính liên tục của $f = \begin{cases} \arctan \frac{1}{|x|} : x \neq 0 \\ \alpha : x = 0. \end{cases}$

G: Xét $x_o \neq 0 \rightarrow f = \arctan \frac{1}{|x|}$ là hàm sơ cấp có TXĐ $D = R \setminus \{0\}$ nên nó LT tại mọi điểm $x_o \neq 0$.

- Xét $x_o = 0$. Có

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \arctan\frac{1}{|x|} = \arctan\left(\frac{1}{0^+}\right) = \arctan(+\infty) = \frac{\pi}{2}$$

 $V\grave{a} f(0) = a.$

- Nếu $a = \frac{\pi}{2}$ $\rightarrow \lim_{x \to 0} f(x) = f(0)$ \rightarrow HS LT tại $x_0 = 0$.
- Nếu $a \neq \frac{\bar{\pi}}{2}$ \rightarrow HS gián đoạn tại $x_o = 0$.
- 39. C5. Xét tính liên tục của $f = \begin{cases} \frac{3\sqrt{1+2x}-1}{x} &: x > 0 \\ \frac{x}{x} &: x < 0 \end{cases}$

G: Xét $x_o > 0 \rightarrow f = \frac{\sqrt[3]{1+2x-1}}{x}$ là hàm sơ cấp có TXĐ $D = R \setminus \{0\}$ nên nó LT tại mọi điểm $x_o > 0$. - Xét $x_o < 0 \rightarrow f = a + x^2$ là hàm sơ cấp có TXĐ D = R nên nó LT tại mọi điểm $x_o < 0$.

- Xét
$$x_0 = 0$$
. Có khi $x \to 0$, thì $(1+x)^a - 1 \sim a$. $x \to \sqrt[3]{1+2x} - 1 = (1+2x)^{\frac{1}{3}} - 1 \sim \frac{1}{3}$. $2x$ nên

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{\sqrt[3]{1+2x}-1}{x} = \lim_{x\to 0^+} \frac{\frac{1}{3} \cdot 2x}{x} = \frac{2}{3}.$$

Và $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (a+x^2) = a$.

 $Va f(0) = a + 0^2 = a.$

- Nếu $a = \frac{2}{3} \rightarrow \lim_{x \to 0} f(x) = f(0) \rightarrow \text{HS LT tại } x_o = 0$. Nếu $a \neq \frac{2}{3} \rightarrow \text{HS gián đoạn tại } x_o = 0$.

40. C7. $f = \begin{cases} \frac{1 - \cos \sqrt{x}}{x} & : & x > 0 \\ a + 2x & : & x \le 0 \end{cases}$.

40. C7.
$$f = \begin{cases} \frac{1-\cos\sqrt{x}}{x} &: x > 0\\ a+2x &: x \le 0 \end{cases}$$

G: Xét $x_0 > 0 \rightarrow f = \frac{1-\cos\sqrt{x}}{x}$ là hàm sơ cấp có TXĐ $D = R_+$ nên nó LT tại mọi điểm x > 0.

- Xét $x_o < 0 \rightarrow f = a + 2x$ là hàm sơ cấp có TXĐ D = R nên ...

- Xét $x_0 = 0$. Vì khi $x \to 0$, thì $1 - \cos x \sim \frac{1}{2}$. $x^2 \to 1 - \cos \sqrt{x} \sim \frac{1}{2}$. $(\sqrt{x})^2$ nên Thay thế tương đương

$$\lim_{x \to 0^{+}} \frac{1 - \cos \sqrt{x}}{x} = \lim_{x \to 0^{+}} \frac{\frac{1}{2} \cdot (\sqrt{x})^{2}}{x} = \frac{1}{2}.$$

Và $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (a+2x)$

Va f(0) = a + 2.0 = a.

41. C8.
$$f = \begin{cases} \frac{1 - e^{\sin x}}{x - \pi} &: x > \pi \\ a + x^2 &: x \le \pi \end{cases}$$

Nên nếu $a = \frac{1}{2} \rightarrow \lim_{x \to 0} f(x) = f(0) \rightarrow \text{HS LT tại } x_o = 0$. Nếu $a \neq \frac{1}{2} \rightarrow \cdots$ 41. C8. $f = \begin{cases} \frac{1 - e^{\sin x}}{x - \pi} &: x > \pi \\ a + x^2 &: x \leq \pi \end{cases}$.

G: Xét $x_o > \pi \rightarrow f = \frac{1 - e^{\sin x}}{x - \pi}$ là hàm sơ cấp có TXĐ $D = R \setminus \{\pi\}$ nên nó LT tại mọi điểm $x_o > \pi$.

- Xét $x_o < \pi \rightarrow f = a + x^2$ là hàm sơ cấp có TXĐ D = R nên nó LT tại mọi điểm $x_o < \pi$.

- Xét $x_o = \pi$. Đặt $t = x - \pi \to 0^+$ khi $x \to \pi^+$. Nên $x = t + \pi \to 0^+$

$$\lim_{x \to \pi^{+}} \frac{1 - e^{\sin x}}{x - \pi} = \lim_{t \to 0^{+}} \frac{1 - e^{\sin(t + \pi)}}{t} = \lim_{t \to 0^{+}} \frac{1 - e^{-\sin t}}{t} = \lim_{t \to 0^{+}} \frac{1 - \frac{1}{e^{\sin t}}}{t} = \lim_{t \to 0^{+}} \frac{e^{\sin t} - 1}{t \cdot e^{\sin t}} = \lim_{t \to 0^{+}} \frac{\sin t}{t \cdot e^{\sin t}} = \lim_{t \to 0^{+}$$

Và

$$\lim_{x \to \pi^{-}} f(x) = \lim_{x \to \pi^{-}} (a + x^{2}) = a + \pi^{2}.$$

Và $f(\pi) = a + x^2 = a + \pi^2$.

Vậy nếu $a + \pi^2 = 1 \rightarrow a = 1 - \pi^2 \rightarrow \lim_{x \rightarrow \pi} f(x) = f(\pi) \rightarrow \text{HS LT tại } x_o = \pi.$

Nếu $a \neq 1 - \pi^2 \rightarrow HS$ gián đoạn tại $x_0 = \pi$.

* Nguyên lý kẹp: Nếu

$$\begin{cases} |f(x)| \leq g(x) \ \forall x \in (a,b) \setminus \{x_o\} \\ \lim_{x \to x_o} g(x) = 0 \end{cases} \to \lim_{x \to x_o} f(x) = 0.$$

* Nguyen ly kẹp: Neu
$$\begin{cases} |f(x)| \leq g(x) \ \forall x \in (a,b) \setminus \{x_o\} \\ lim_{x \to x_o} g(x) = 0 \end{cases} \to lim_{x \to x_o} f(x) = 0.$$
42. C4. Xét tính liên tục của $f = \begin{cases} (x^2 - 1) \sin \frac{\pi}{x - 1} &: x \neq 1 \\ a &: x = 1. \end{cases}$
G: Xét $x_o \neq 1 \to f = (x^2 - 1) \sin \frac{\pi}{x - 1}$ là ...

- Xét $x_0 = 1$. Áp dụng Nguyên lý kẹp, vì

$$0 \le \left| (x^2 - 1) \sin \frac{\pi}{x - 1} \right| \le \left| x^2 - 1 \right| \to 0$$

khi $x \to 0$, nên theo Nguyên lý kẹp, có

$$\lim_{x \to 1} (x^2 - 1) \sin \frac{\pi}{x - 1} = 0.$$

43. C6. Xét tính liên tục của $f = \begin{cases} x \ln x &: x > 0 \\ a &: x \le 0. \end{cases}$ G: Xét $x_0 > 0 \rightarrow f = x \ln x$ là hàm sơ cấp có TXĐ $D = R_+$ nên nó LT tại mọi điểm $x_0 > 0$.

 $X\acute{e}t \ x_o < 0 \rightarrow f = a \dots$

 $\mathbf{X\acute{e}t}\ x_o = \mathbf{0}.\ \mathbf{C\acute{o}}$

$$f(0^+) = \lim_{x \to 0^+} x \ln x.$$

Đặt $t = \ln x \rightarrow -\infty$ khi $x \rightarrow 0^+$. Và $x = e^t$ nên

$$f(0^+) = \lim_{t \to -\infty} t. e^t.$$

Đặt $u = -t \to +\infty$ khi $t \to -\infty$ nên

$$f(0^+) = \lim_{u \to +\infty} -u. e^{-u} = \lim_{u \to +\infty} -\frac{u}{e^u}.$$

Vì khi $u \to +\infty$, ta có $e^u > u^2$, nên

$$0 \le \left| -\frac{u}{e^u} \right| = \frac{u}{e^u} < \frac{u}{u^2} = \frac{1}{u} \to 0$$

khi $u \to +\infty$. Nên theo Nguyên lý kẹp, có

$$f(0^+)=0.$$

Mà

$$f(\mathbf{0}^{-})=a.$$

- Nếu a = 0 $\rightarrow \lim_{x\to 0} f(x) = f(0)$ \rightarrow HS LT tại $x_0 = 0$.

- Nếu $a \neq 0$ → ...

CHƯƠNG II ĐAO HÀM VÀ VI PHÂN BÀI 1 ĐẠO HÀM CẤP 1

1. **ĐN**

- Cho HS y = f(x) xác định trên khoảng $(a, b) \ni x_0$. Thì

$$f'(x_o) = \lim_{x \to x_o} \frac{f(x) - f(x_o)}{x - x_o}.$$

44. Tính
$$f'(0)$$
, biết $f = \begin{cases} 0 : x = 0 \\ \frac{tan^4 x}{x^3} : x \neq 0. \end{cases}$

G: Xét $x = 0 \to f(0) = 0$. Nên

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\tan^4 x}{x^3} - 0 = \lim_{x \to 0} \frac{\tan^4 x}{x^4}.$$

Thay thể tương đương $tan x \sim x$ khi $x \rightarrow 0$, được

$$f'(0) = \lim_{x \to 0} \frac{x^4}{x^4} = 1.$$

 $\mathbf{V}\mathbf{\hat{a}}\mathbf{y}\,f'(\mathbf{0})=\mathbf{1}.$

45. C2. Tính y'(0), biết $f = x(x-1)(x-2) \dots (x-29)$.

G: Ta có f(0) = 0 nên

$$y'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x(x - 1)(x - 2) \dots (x - 29) - 0}{x} = \lim_{x \to 0} (x - 1)(x - 2) \dots (x - 29) = (-1)(-2)(-3) \dots (-29) = (-1)^{29} \cdot 29! = -29!$$

2. Đạo hàm 1 phía

- ĐN: Cho HS y = f(x) xác định trên khoảng $(a, b) \ni x_0$. Thì

$$f'_{+}(x_o) = \lim_{x \to x_o^{+}} \frac{f(x) - f(x_o)}{x - x_o}.$$

Và
$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}$$
.

46. Ca. Tính đạo hàm của $y = |(x-1)^2 \cdot (x+1)|$.

G: Có
$$y = (x - 1)^2 \cdot |x + 1| =$$

$$=\begin{cases} (x-1)^2 \cdot (x+1) = x^3 - x^2 - x + 1 : & x \ge -1 \\ -(x-1)^2 (x+1) = -x^3 + x^2 + x - 1 : & x < -1. \end{cases}$$
- Néu $x > -1 \to y = x^3 - x^2 - x + 1 \to y' = 3x^2 - 2x - 1.$

- Nếu $x < -1 \rightarrow y = -x^3 + x^2 + x 1 \rightarrow y' = -3x^2 + 2x + 1$
- Nếu $x = -1 \to y(-1) = 0$. Nên

$$y'_{+}(-1) = \lim_{x \to (-1)^{+}} \frac{y(x) - y(-1)}{x - (-1)} = \lim_{x \to (-1)^{+}} \frac{(x - 1)^{2}(x + 1) - 0}{x + 1} = \lim_{x \to (-1)^{+}} (x - 1)^{2} = 4.$$

Và

$$y'_{-}(-1) = \lim_{x \to (-1)^{-}} \frac{y(x) - y(-1)}{x - (-1)} = \lim_{x \to (-1)^{-}} \frac{-(x - 1)^{2}(x + 1) - 0}{x + 1} = \lim_{x \to (-1)^{-}} -(x - 1)^{2} = -4$$

$$\neq y'_{+}(-1) = 4.$$

Nên $\nexists y'(-1)$.

47. Cb. Tính đạo hàm của $y = |\pi - x| \cdot \sin^2 x$

G: Ta có
$$y = \begin{cases} (\pi - x) \cdot \sin^2 x &: x \le \pi \\ (x - \pi) \cdot \sin^2 x &: x > \pi \end{cases}$$

- Nếu $x < \pi \rightarrow$

$$y = (\pi - x) \cdot \sin^2 x \rightarrow y' = -\sin^2 x + (\pi - x) \cdot 2\sin x \cos x$$

- Nếu $x > \pi \rightarrow$

$$y = (x - \pi)$$
. $sin^2 x \to y' = sin^2 x + (x - \pi)$. $2sinx cosx$

- Xét $x_0 = \pi$. Ta có $y(\pi) = 0$ và

$$y'_{+}(\pi) = \lim_{x \to \pi^{+}} \frac{y(x) - y(\pi)}{x - \pi} = \lim_{x \to \pi^{+}} \frac{(x - \pi) \cdot \sin^{2} x - 0}{x - \pi} = \lim_{x \to \pi^{+}} (\sin^{2} x) = \sin^{2} \pi = 0.$$

Và
$$y'_{-}(\pi) = \lim_{x \to \pi^{-}} \frac{y(x) - y(\pi)}{x - \pi} = \lim_{x \to \pi^{-}} \frac{(\pi - x) \cdot \sin^{2} x - 0}{x - \pi} = \lim_{x \to \pi^{-}} (-\sin^{2} x) = -0 = 0 = y'_{+}(\pi).$$

Nên $y'(\pi) = 0$.

* $y = \arcsin x \rightarrow x = \sin y$

* Bằng đạo hàm: $(a^x)' = a^x \cdot \ln a$; $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$;

$$(\arctan x)' = \frac{1}{1+x^2}$$

$$\to (e^u)' = e^u \cdot u'; (a^u)' = a^u \ln a \cdot u'; (\ln u)' = \frac{u'}{u} ;$$

$$(\arcsin u)' = \frac{1}{\sqrt{1-u^2}} \cdot u'; (\arctan u)' = \frac{1}{1+u^2} \cdot u'$$

48. Cc. Tính đạo hàm của $y = f = \begin{cases} \arctan x & : & x \ge 0 \\ x^2 + x & : & x < 0. \end{cases}$ G: Nếu $x > 0 \rightarrow f = \arctan x \rightarrow f' = \frac{1}{1+x^2}$.

G: Nếu
$$x > 0 \rightarrow f = \arctan x \rightarrow f' = \frac{1}{1+x^2}$$
.

- Nếu $x < 0 \to f = x^2 + x \to f' = 2x + 1$
- Nếu $x = 0 \rightarrow f(0) = arctan 0 = 0$. Nên

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\arctan x - 0}{x} = \lim_{x \to 0^{+}} \frac{\arctan x}{x} = \lim_{x \to 0} \frac{x}{x} = \lim_{x \to 0} \frac{x}{x} = \lim_{x \to 0} \frac{x}{x}$$

$$= 1. \quad (v) \text{ khi } x \to 0, \text{ thi } \arctan x \sim x)$$

Và
$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x^{2} + x - 0}{x} = \lim_{x \to 0^{-}} (x + 1) = 1 \to f'_{+}(0) = f'_{-}(0) = 1.$$

Nên $f'(0) = 1$.

49. Cd.
$$f = \begin{cases} x^2 - 2x : x < 2 \\ 2x - 4 : x \ge 2. \end{cases}$$

G: Nếu $x > 2 \rightarrow f = 2x - 4 \rightarrow f' = 2.$

- Nếu $x < 2 \rightarrow f = x^2 - 2x \rightarrow f' = 2x - 2$.

- Xét $x_0 = 2$ → f(2) = 0. Có

$$f'_{+}(2) = \lim_{x\to 2^{+}} \frac{f(x) - f(2)}{x - 2} = \lim_{x\to 2} \frac{2x - 4}{x - 2} = 2.$$

$$V\grave{a} \ f'_{-}(2) = \lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^{-}} \frac{x^{2} - 2x}{x - 2} = \lim_{x \to 2^{-}} (x) = 2 = f'_{+}(2).$$

 $V_{av} f'(2) = 2.$

50. C2. Tính y'(0), biết $y = x(x-1)(x-2) \dots (x-26)$.

G: Ta có f(0) = 0 nên

$$y'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x(x - 1)(x - 2) \dots (x - 26) - 0}{x} = \lim_{x \to 0} (x - 1)(x - 2) \dots (x - 26) = \lim_{x \to 0} (x - 2)(x - 2) \dots (x - 2) = \lim_{x \to 0} (x - 2)(x - 2) \dots (x - 2) = \lim_{x \to 0} (x - 2)$$

$$= (-1)(-2)(-3) \dots (-26) = (-1)^{23} \cdot 26! = 2$$
51. C3. Tính $f'_{+}(0), f'_{-}(0), f'(0)$ của $f = \begin{cases} \frac{x}{1+e^{(\frac{1}{x})}} : x \neq 0 \\ 0 : x = 0. \end{cases}$

G: Có f(0) = 0. Nên

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\frac{x}{1 + e^{\frac{1}{x}}} - 0}{x} = \lim_{x \to 0^{+}} \frac{1}{1 + e^{\frac{1}{x}}} = \frac{1}{1 + e^{\frac{1}{0^{+}}}} = \frac{1}{1 + e^{+\infty}} = \frac{1}{1 + e^{+\infty}} = 0.$$

$$\text{Và } f'_{-}(0) = \lim_{x \to 0^{-}} \frac{\frac{f(x) - f(0)}{x - 0}}{x - 0} = \lim_{x \to 0^{-}} \frac{\frac{x}{1 - 0}}{x} = \lim_{x \to 0^{-}} \frac{\frac{1}{1 + e^{\frac{1}{x}}}}{1 + e^{\frac{1}{x}}} = \frac{1}{1 + e^{\frac{1}{x}}} = \frac{1}{1 + e^{-\infty}} = \frac{1}{1 + \frac{1}{e^{+\infty}}} = \frac{1}{1 + \frac{1}{e^{+\infty}}} = \frac{1}{1 + 0} =$$

 $1 \neq f'_{+}(0) = 0.$

Nên $\nexists f'(0)$.

52. Tính đạo hàm của y = (x + 2) |x - 1|

G: Có

$$y = \begin{cases} (x+2)(x-1) = x^2 + x - 2 : x \ge 1 \\ -(x+2)(x-1) = -x^2 - x + 2 : x < 1. \end{cases}$$

- Nếu $x > 1 \rightarrow y = x^2 + x 2 \rightarrow y' = 2x + 1$.
- Nếu $x < 1 \rightarrow y' = -2x 1$
- Nếu $x = 1 \to y(1) = 0$. Xét

$$y'_{+}(1) = \lim_{x \to 1^{+}} \frac{y(x) - y(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{(x + 2)(x - 1) - 0}{x - 1} = \lim_{x \to 1^{+}} (x + 2) = 3.$$

 $V\grave{a}\;y'_{-}(1)=\lim_{x\to 1^{-}}\frac{y(x)-y(1)}{x-1}=\lim_{x\to 1^{-}}\frac{-(x+2)(x-1)-0}{x-1}=\lim_{x\to 1^{-}}-(x+2)=-3\neq y'_{+}(1)=3.$ Nên ∄f'(1).

1. ĐL

- ĐL: Nếu hàm cho dạng tham số
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
. Thì

$$y'(x) = \frac{y'(t)}{x'(t)}.$$

Và đạo hàm cấp hai

$$y''(x) = (y'_x)'_x = \frac{(y'_x)'(t)}{x'(t)}.$$

53. Cb. Tính
$$y'(x)$$
; $y''(x)$ của HS
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$

G: Có $y = a(1 - \cos t)$ nên

$$y'(x) = \frac{y'_t}{x'_t} = \frac{a \sin t}{a(1 - \cos t)} = \frac{2 \sin \frac{t}{2} \cos \frac{t}{2}}{2 \sin^2 \frac{t}{2}} = \cot \frac{t}{2}.$$

$$V\grave{a}\;y''(x) = \frac{(y'_x)'_t}{x'_t} = \frac{-\frac{1}{\sin^2\frac{t}{2}}\cdot\frac{1}{2}}{a(1-\cos t)} = -\frac{1}{2a\sin^2\frac{t}{2}(1-\cos t)}.$$

 $x(t)=t-\sin t, y(t)=1-\cos t$ $x(t)=1+\cos t, y(t)=1+\sin t$

54. Cc. Tính y'(x); y''(x) của HS $\begin{cases} x = 2e^t \cos t \\ y = 3e^t \sin t. \end{cases}$

G: Có (u.v)' = u'v + uv' nên $y = 3e^t \sin t$

$$y'(x) = \frac{y'_t}{x'_t} = \frac{3e^t \cdot \sin t + 3e^t \cdot \cos t}{2e^t \cos t + 2e^t \cdot (-\sin t)} = \frac{3e^t (\sin t + \cos t)}{2e^t (\cos t - \sin t)} = \frac{3\sqrt{2} \sin \left(t + \frac{\pi}{4}\right)}{2\sqrt{2} \cos \left(t + \frac{\pi}{4}\right)} = \frac{3}{2} \tan \left(t + \frac{\pi}{4}\right).$$

$$\mathbf{V\grave{a}}\; \mathbf{y}''(\mathbf{x}) = \frac{{(y_{\mathbf{x}}')}_t'}{x_t'} = \frac{\frac{3}{2} \cdot \frac{1}{\cos^2(t + \frac{\pi}{4})} \cdot 1}{2e^t(\cos t - \sin t)} = \frac{3}{4e^t\cos^2(t + \frac{\pi}{4})(\cos t - \sin t)}.$$

55. Cd.
$$\begin{cases} x = t + e^t \\ y = t^2 + 2t^3. \end{cases}$$

G: Có

$$y'(x) = \frac{y'_t}{x'_t} = \frac{2t + 6t^2}{1 + e^t}.$$

Và

$$y''(x) = \frac{(y'_x)'_t}{x'_t} = \cdots$$

2. Tính khả vi của hàm số

- ĐN: Nếu HS y = f(x) có đạo hàm tại điểm x thì ta nói HS là khả vi tại x và ta có công thức vi phân $df = f' \cdot dx$
- Xét tính khả vi của HS là kiểm tra xem HS có đạo hàm hay ko?

56. C1. Xét tính khả vi của y = (x + 2) |x - 1|G: Có

$$y = \begin{cases} (x+2)(x-1) = x^2 + x - 2 : x \ge 1 \\ -(x+2)(x-1) = -x^2 - x + 2 : x < 1. \end{cases}$$

- Nếu $x > 1 \rightarrow y = x^2 + x 2 \rightarrow y' = 2x + 1 \rightarrow HS$ khả vi tại x > 1
- Nếu $x < 1 \rightarrow y' = -2x 1 \rightarrow HS$ khả vi tại x < 1.
- Nếu $x = 1 \rightarrow y(1) = 0$. Xét

$$y'_{+}(1) = \lim_{x \to 1^{+}} \frac{y(x) - y(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{(x + 2)(x - 1) - 0}{x - 1} = \lim_{x \to 1^{+}} (x + 2) = 3.$$

$$V\grave{a}\ y'_{-}(1) = \lim_{x \to 1^{-}} \frac{y(x) - y(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{(x + 2)(x - 1) - 0}{x - 1} = \lim_{x \to 1^{-}} -(x + 2) = -3 \neq y'_{+}(1) = 3.$$

Nên $\nexists f'(1)$. Vậy HS ko khả vi tại x = 1.

57. C2. Xét tính khả vi của
$$f = \begin{cases} \frac{\sqrt{x}-1}{\sqrt{x}-1} : x > 1 \\ sin(x-1) : x \le 1. \end{cases}$$

$$(\sin(x-1) : x \le 1.$$
G: Nếu $x > 1 \rightarrow f = \frac{\sqrt{x-1}}{\sqrt{x-1}} \rightarrow f' = \frac{\frac{1}{2\sqrt{x}}\sqrt{x-1} - (\sqrt{x-1}) \cdot \frac{1}{2\sqrt{x-1}}}{x-1} = \cdots$
- Xét $x < 1 \rightarrow f = \sin(x-1) \rightarrow f' = \cdots$

- Xét x = 1. Ta có $f(1) = \sin 0 = 0$. Nên

$$f'_{+}(1) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{\frac{\sqrt{x} - 1}{\sqrt{x} - 1} - 0}{x - 1} = \lim_{x \to 1^{+}} \frac{\sqrt{x} - 1}{\sqrt{x} - 1} = \lim_{x \to 1^{+}} \frac{\sqrt{x} - 1}{\sqrt{x} - 1} = \lim_{x \to 1^{+}} \frac{1}{\sqrt{x} - 1} = \lim_{x \to 1^{+}} \frac{1}{\sqrt{x} - 1} = 0$$

Và

$$f'_{-}(1) = \lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{\sin(x - 1) - 0}{x - 1} = 1.$$

58. C3.
$$f = \begin{cases} 1 - \cos x : & x \le 0 \\ \ln (1 + x) : & x > 0. \end{cases}$$

59. C4.
$$f = \begin{cases} \frac{x-1}{4} \cdot (x+1)^2 & : & x \ge 1 \\ x-1 & : & x < 1 \end{cases}$$

G: ...

3. ĐAO HÀM CẤP CAO

- Đạo hàm cấp hai

$$f'' = (f')' \to f^{(n)} = (f^{(n-1)})'$$

 $f''=(f')' o f^{(n)}=(f^{(n-1)})'$ 60. Ca. Tính đạo hàm cấp n của HS $f=rac{x-1}{x^2+5x+6}$.

G: Đặt

$$\frac{x-1}{x^2+5x+6} = \frac{a}{x+2} + \frac{b}{x+3}$$

Suy ra

$$f = \frac{a(x+3) + b(x+2)}{(x+2)(x+3)} = \frac{x(a+b) + 3a + 2b}{x^2 + 5x + 6}.$$

Nên x - 1 = x(a + b) + 3a + 2b, đồng nhất hệ số 2 vế, được

$$\begin{cases} a+\dot{b}=1\\ 3a+2b=-1 \end{cases} \rightarrow \begin{cases} a=-3\\ b=4. \end{cases}$$

Vậy

$$f = -\frac{3}{x+2} + \frac{4}{x+3} = 4.(x+3)^{-1} - 3.(x+2)^{-1}.$$

Nên

$$f' = 4 \cdot (-1)(x+3)^{-2} - 3(-1)(x+2)^{-2}$$

$$\to f'' = 4 \cdot (-1)(-2)(x+3)^{-3} - 3(-1)(-2)(x+2)^{-3} \to f^{(3)} = 4(-1)(-2)(-3)(x+3)^{-4} - 3(-1)(-2)(-3)(x+2)^{-4}$$

Vậy

$$f^{(n)} = 4(-1)(-2)(-3) \dots (-n)(x+3)^{-(n+1)} - 3(-1)(-2)(-3) \dots (-n)(x+2)^{-(n+1)}$$
$$= 4 \cdot \frac{(-1)^n \cdot n!}{(x+3)^{n+1}} - 3 \cdot \frac{(-1)^n \cdot n!}{(x+2)^{n+1}}.$$

61. Cb. Tính đạo hàm cấp n của HS $f = \frac{12x+7}{6x^2+7x+3}$

G: Viết
$$\frac{12x+7}{6x^2+7x+2} = \frac{a}{2x+1} + \frac{b}{3x+2}$$

Suy ra
$$12x + 7 = a(3x + 2) + b(2x + 1)$$
. Thay $x = -\frac{1}{2}$; $x = -\frac{2}{3} \rightarrow \begin{cases} \frac{1}{2}a = 1\\ -\frac{1}{3}b = -1 \end{cases} \rightarrow \begin{cases} a = 2\\ b = 3 \end{cases}$

Nên
$$f = \frac{12x+7}{6x^2+7x+2} = \frac{2}{2x+1} + \frac{3}{3x+2} = 2.(2x+1)^{-1} + 3.(3x+2)^{-1}$$

Suy ra $f' = 2 \cdot (-1)(2x+1)^{-2} \cdot 2 + 3 \cdot (-1)(3x+2)^{-2} \cdot 3 = 2^2 \cdot (-1)(2x+1)^{-2} + 3^2 \cdot (-1)(3x+2)^{-2}$ Nên $f'' = 2^3 \cdot (-1)(-2)(2x+1)^{-3} + 3^3 \cdot (-1)(-2)(3x+2)^{-3} \to f^{(3)} = 2^4 \cdot (-1)(-2)(-3)(2x+1)^{-4} + 3^3 \cdot (-1)(-2)(-3)(2x+1)^{-4} + 3^3 \cdot (-1)(-3)(2x+1)^{-4} +$ $3^4 \cdot (-1)(-2)(-3)(3x+2)^{-4}$

$$\begin{array}{l} \mathbf{V_{\hat{\mathbf{a}}\mathbf{y}}} f^{(n)} = 2^{n+1}.(-1)(-2)(-3)...(-n)(2x+1)^{-(n+1)} + 3^{n+1}.(-1)(-2)(-3)...(-n)(3x+2)^{-(n+1)} = \\ \frac{2^{n+1}.(-1)^{n}.n!}{(2x+1)^{n+1}} + \frac{3^{n+1}.(-1)^{n}.n!}{(3x+2)^{n+1}} \end{array}$$

62. Cc. Tính đạo hàm cấp n của HS $f = \frac{1+x}{1-x}$

G: Có

$$f = \frac{x+1}{-x+1} \to f' = \frac{2}{(-x+1)^2} = 2.(x-1)^{-2}.$$

Suy ra

$$f'' = 2(-2).(x-1)^{-3} \to f^{(3)} = 2(-2)(-3).(x-1)^{-4} \to f^{(4)} = 2.(-2)(-3)(-4).(x-1)^{-5}.$$

Vây

$$f^{(n)} = 2.(-2)(-3)...(-n).(x-1)^{-(n+1)} = \frac{2.(-1)^{n-1}.n!}{(x-1)^{n+1}}.$$

63. Cd. $f = \ln \sqrt[3]{1-4x}$ G: Có

$$f = ln (1 - 4x)^{\frac{1}{3}} = \frac{1}{3} ln (1 - 4x).$$

Nên

$$f' = \frac{1}{3} \cdot \frac{1}{1 - 4x} \cdot (-4) = \frac{1}{3} \cdot (-4) \cdot (1 - 4x)^{-1}$$

Suy ra

$$f'' = \frac{-4}{3} \cdot (-1) \cdot (1 - 4x)^{-2} \cdot (-4) = \cdots$$

BÀI 5 QUY TẮC LOPITAL

1. ĐL

$$- \text{N\'eu} \begin{cases} \lim_{x \to x_o} \frac{f(x)}{g(x)} = \frac{0}{0}; \frac{\infty}{\infty} \\ \lim_{x \to x_o} \frac{f'}{g'} = L \end{cases} \text{thì } \lim_{x \to x_o} \frac{f}{g} = \lim_{x \to x_o} \frac{f'}{g'} = L.$$

Nó gọi là quy tắc Lopital.

64. C10. Tim
$$I = \lim_{x \to 0} \frac{x - \sin x}{\sqrt{1 + 2x} - e^x}$$
. $\left(= \frac{0}{0} \right)$

G: Áp dụng Lop, ta có

$$I \triangleq \lim_{x \to 0} \frac{\frac{1 - \cos x}{1 - \cos x}}{\frac{1}{2\sqrt{1 + 2x}} \cdot 2 - e^x} = \lim_{x \to 0} \frac{1 - \cos x}{(1 + 2x)^{-\frac{1}{2}} - e^x} = \frac{0}{0}.$$

- Áp dụng Lop tiếp, được
$$I = \lim_{x \to 0} \frac{\sin x}{-\frac{1}{2} \cdot (1+2x)^{-\frac{3}{2}} \cdot 2 - e^x} = \lim_{x \to 0} \frac{\sin x}{-(1+2x)^{-\frac{3}{2}} - e^x} = \frac{0}{-2} = 0.$$

65. C1. Tim
$$I = \lim_{x \to 0} \frac{\ln(1+3x)-3x}{x^2}$$
. $\left(=\frac{0}{0}\right)$

G: Áp dụng quy tắc Lop, ta có

$$I \triangleq \lim_{x \to 0} \frac{\frac{1}{1+3x} \cdot 3 - 3}{2x} = \lim_{x \to 0} \frac{\frac{3-3-9x}{1+3x}}{2x} = \lim_{x \to 0} \frac{-9}{2(1+3x)} = -\frac{9}{2}.$$

66. Tim
$$I = \lim_{x \to 0} \frac{1 - \cos x}{\sqrt[3]{1 + 3x} - e^x}$$

G: ...* Bằng đạo hàm: $(a^x)' = a^x \ln a$; $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$;

$$(\arctan x)' = \frac{1}{1+x^2} \to (\arctan u)' = \frac{1}{1+u^2}.u'$$

67. C3. Tim
$$I = \lim_{x \to 0} \frac{4 \arctan(1+3x) - \pi}{x}$$
. $\left(= \frac{0}{0} \right)$

G: Áp dụng quy tắc Lop, ta có

$$I \triangleq \lim_{x \to 0} \frac{4 \cdot \frac{1}{1 + (1 + 3x)^2} \cdot 3 - 0}{1} = 4 \cdot \frac{1}{2} \cdot 3 = 6.$$

68. C5. Tim
$$I = \lim_{x \to +\infty} \frac{\ln^3 x}{x}$$
. $\left(= \frac{\infty}{\infty} \right)$

G: Áp dụng Lop, ta có

$$I \triangleq \lim_{x \to +\infty} \frac{3 \ln^2 x}{1} = \lim_{x \to +\infty} \frac{3 \ln^2 x}{x} = \frac{\infty}{\infty}.$$

- Áp dụng Lop tiếp, được
$$I = \lim_{x \to +\infty} \frac{3.2 \ln x}{1} = \lim_{x \to +\infty} \frac{6 \ln x}{x} = \frac{\infty}{\infty}$$

- Lop lần 3, được
$$I = \lim_{x\to\infty} \frac{6 \cdot \frac{1}{x}}{1} = \lim_{x\to\infty} \frac{6}{x} = \frac{6}{\infty} = 0.$$

69. C13. Tim
$$I = \lim_{x \to +\infty} \frac{x^7}{e^x}$$
.

G: Áp dụng Lop liên tiếp nhiều lần, ta có

$$I \triangleq \lim_{x \to +\infty} \frac{7.6^5}{e^x} = \lim_{x \to +\infty} \frac{7.6x^5}{e^x} = \lim_{x \to +\infty} \frac{7.6.5x^4}{e^x} = \dots = \lim_{x \to +\infty} \frac{7.6.5...2x^1}{e^x} = \lim_{x \to +\infty} \frac{7.6...2x^1}{e^x} = \lim_{x \to +\infty} \frac{7.6...2x^1}{e^x} = 0.$$

* Thay thế tương đương trong thương:

- Nhắc lại: Ta nói
$$f \sim f_1$$
 khi $x \to x_o$ nếu $\lim_{x \to x_o} \frac{f}{f_1} = 1$.

VD. Vì $\lim_{x\to 0} \frac{\sin x}{x} = 1 \to \sin x \sim x$ khi $x\to 0$. Turong tự, ta có $\tan x \sim x \sim \arcsin x$ khi $x\to 0$.

- Quy tắc: Nếu khi $x \to x_o$, ta có $f \sim f_1$; $g \sim g_1$ thì

$$lim_{x\to x_0}\frac{f}{g}=lim_{x\to x_0}\frac{f_1}{g_1}.$$

70. C4. Tim
$$I = \lim_{x\to 0} \frac{\arctan x - x}{x \cdot \sin^2 x}$$

G: Thay thế tương đương, vì khi $x \to 0$ thì $\sin x \sim x \to \sin^2 x \sim x^2$ nên $I = \lim_{x \to 0} \frac{\arctan x - x}{x} = 1$

 $\lim_{x\to 0} \frac{\arctan x-x}{x^3}$. Áp dụng Lop, ta có

$$I \triangleq \lim_{x \to 0} \frac{\frac{1}{1+x^2} - 1}{3x^2} = \lim_{x \to 0} \frac{-x^2}{(1+x^2) \cdot 3x^2} = \lim_{x \to 0} \frac{-1}{3(1+x^2)} = -\frac{1}{3}.$$

71. C2. Tim $I = \lim_{x\to 0} \frac{e^x - 1 - x}{x \cdot \sin 2x}$

G: Vì khi $x \to 0$, có $\sin x \sim x \to \sin 2x \sim 2x$, nên thay thế tương đương trước:

$$I = \lim_{\substack{x \to 0 \\ e^x - 1}} \frac{e^x - 1 - x}{x \cdot 2x} = \lim_{\substack{x \to 0}} \frac{e^x - 1 - x}{2x^2}.$$

Áp dụng quy tắc Lop, ta có $I \triangleq \lim_{x\to 0}$

Nên Lop tiếp, được
$$I riangleq \lim_{x \to 0} \frac{e^x}{4} = \frac{1}{4}$$
.
72. C12. Tìm $I = \lim_{x \to 0} \frac{x \cdot \tan x}{\sqrt[5]{1+5x} - (1+x)}$.

G: Thay thế tương đương, vì khi $x \to 0$ nên $\tan x \sim x$, ta có $I = \lim_{x \to 0} \frac{x \cdot x}{\sqrt[5]{1+5x}-(1+x)} = \lim_{x \to 0} \frac{x^2}{(1+5x)^{\frac{1}{5}}-(1+x)}$.

- Áp dụng Lop, ta có

$$I \triangleq \lim_{x \to 0} \frac{2x}{\frac{1}{5} \cdot (1+5x)^{-\frac{4}{5}} \cdot 5-1} = \lim_{x \to 0} \frac{2x}{(1+5x)^{-\frac{4}{5}} - 1} = \frac{0}{0}.$$

- Áp dụng Lop lần 2, được $I = lim_{x\to 0} \frac{2}{-\frac{4}{5}(1+5x)^{-\frac{9}{5}}.5} = lim_{x\to 0} \frac{2}{-4.(1+5x)^{-\frac{9}{5}}} = \frac{2}{-4} = -\frac{1}{2}.$

73. C15. Tîm
$$I = \lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$$
.

G: Có $I = \lim_{x\to 0} \frac{\sin^2 x - x^2}{x^2 \cdot \sin^2 x}$.

Vì khi $x \to 0$, ta có $\sin x \sim x \to \sin^2 x \sim x^2$ nên theo quy tắc thay thế VCB tương đương trong tích thương, ta có

$$I = \lim_{x \to 0} \frac{\sin^2 x - x^2}{x^2 + x^2} = \lim_{x \to 0} \frac{\sin^2 x - x^2}{x^4}$$

 $I = \lim_{x \to 0} \frac{\sin^2 x - x^2}{x^2 \cdot x^2} = \lim_{x \to 0} \frac{\sin^2 x - x^2}{x^4}.$ Áp dụng quy tắc Lop, ta có $I \triangleq \lim_{x \to 0} \frac{2 \sin x \cos x - 2x}{4x^3} = \lim_{x \to 0} \frac{\sin 2x - 2x}{4x^3} = \frac{0}{0}.$

Áp dụng Lop tiếp, được

$$I = \lim_{x \to 0} \frac{\cos 2x \cdot 2 - 2}{12x^2} = \lim_{x \to 0} \frac{\cos 2x - 1}{6x^2} \left(= \frac{0}{0} \right) = \lim_{x \to 0} \frac{-\sin 2x \cdot 2}{12x} = \lim_{x \to 0} \frac{-\sin 2x}{6x} = \lim_{x \to 0} \frac{-2x}{6x} = \lim_{x \to 0} \frac{-2x}{6$$

Chú ý: Ta có thể viết tích $f.g = \frac{g}{1}$.

74. C9. Tim $I = \lim_{x \to +\infty} x \cdot (\pi - 2 \arctan 3x)$.

G: Áp dụng Lopital, ta có

$$I = \lim_{x \to +\infty} \frac{\pi - 2 \arctan 3x}{\frac{1}{x}} \triangleq \lim_{x \to +\infty} \frac{-2 \cdot \frac{1}{1 + 9x^2} \cdot 3}{\frac{-1}{x^2}} = \lim_{x \to +\infty} \frac{6x^2}{9x^2 + 1} = \lim_{x \to +\infty} \frac{6}{9 + \frac{1}{x^2}} = \frac{6}{9} = \frac{2}{3}$$

75. C11. Tim $I = \lim_{x \to 0^+} x^2 . \ln x$

G: Áp dụng Lopital, ta có

$$I = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x^2}} = \lim_{x \to 0^+} \frac{\ln x}{x^{-2}} \triangleq \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{1}{x^{-2}}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{1}{x^2}} = \lim_{x \to 0} \left(-\frac{x^3}{2x} \right) = \lim_{x \to 0} \left(-\frac{x^2}{2} \right) = 0.$$

3. Dang: $I = \lim u^v$

- PP tính: Lấy loga 2 vế, ta có

$$\ln I = \lim \ln (u^v) = \lim (v \cdot \ln u) = \lim \frac{\ln u}{\frac{1}{v}} = \dots = L \to I = e^L.$$

76. C8. Tim $I = \lim_{x \to 0^+} (\sin x)^{\tan 2x}$

G: Lấy loga 2 vế, được ln $I = \lim_{x\to 0^+} \tan 2x \cdot \ln (\sin x)$.

- Thay thế tương đương $tan\ 2x\sim 2x$ khi $x\to 0$, được $ln\ I=lim_{x\to 0^+}\ 2x$. $ln\ (sin\ x)=lim_{x\to 0}\frac{z.\ ln\ (sin\ x)}{\frac{1}{2}}$.

- Áp dụng Lop, được

$$I = \lim_{x \to 0^+} \frac{2 \cdot \frac{1}{\sin x} \cdot \cos x}{-\frac{1}{x^2}} = \lim_{x \to 0} \frac{-2x^2 \cdot \cos x}{\sin x}.$$

- Vì khi $x \to 0$, có $\sin x \sim x$. Áp dụng thay thế tương đương trong thương tích, được

$$ln\ I = lim_{x\to 0} \frac{-2x^2 \cdot \cos x}{x} = lim_{x\to 0} (-2x \cdot \cos x) = -0.1 = 0. \text{ Vậy } ln\ I = 0 \to I = e^0 = 1.$$

77. C6. Tim
$$I = \lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$$
.

G: Lấy loga 2 vế, ta có $\ln I = \lim_{x\to 0} \frac{1}{x^2} \cdot \ln \left(\frac{\sin x}{x} \right) = \lim_{x\to 0} \frac{\ln \left(\frac{\sin x}{x} \right)}{x^2} = \lim_{x\to 0} \frac{\ln \left(\sin x \right) - \ln x}{x^2}$. Áp dụng Lop, được

$$ln I = lim_{x\to 0} \frac{\frac{1}{\sin x} \cdot \cos x - \frac{1}{x}}{2x} = lim_{x\to 0} \frac{\cos x}{\sin x} - \frac{1}{x}}{2x} = lim_{x\to 0} \frac{\cos x \cdot x - \sin x}{\sin x \cdot x \cdot 2x}$$
$$= lim_{x\to 0} \frac{\cos x \cdot x - \sin x}{2\sin x \cdot x^{2}}.$$

Thay thế khi $x \to 0$, thì $\sin x \sim x$ trong thương tích rồi Lop, được $\ln I = \lim_{x \to 0} \frac{x.\cos x - \sin x}{2x.x^2} =$

$$lim_{x\to 0} \frac{x. \cos x - \sin x}{2x^3} = lim_{x\to 0} \frac{\cos x + x.(-\sin x) - \cos x}{6x^2} = lim_{x\to 0} \frac{-\sin x}{6x} = lim_{x\to 0} \frac{-x}{6x} = -\frac{1}{6}$$

Vậy
$$\ln I = -\frac{1}{6} \to I = e^{-\frac{1}{6}}$$
.

78. C14. Tim
$$I = \lim_{x \to 0} \left(\frac{1}{x^2}\right)^{\sin x}$$
.
G: Có $I = \lim_{x \to 0} (x^{-2})^{\sin x} = \lim_{x \to 0} x^{(-2\sin x)}$.

G: Có
$$I = \lim_{x\to 0} (x^{-2})^{\sin x} = \lim_{x\to 0} x^{(-2\sin x)}$$
.

- Lấy loga 2 vế, được $\ln I = \lim_{x\to 0} (-2\sin x. \ln x)$.

- Thay thế tương đương, $\sin x \sim x$ khi $x \to 0$, được

$$ln I = lim_{x\to 0}(-2x ln x) = lim_{x\to 0} \frac{-2 ln x}{1}.$$

- Áp dụng Lop, được
$$\ln I = \lim_{x\to 0} \frac{-2 \cdot \frac{\hat{1}}{x}}{-\frac{1}{x^2}} = \lim_{x\to 0} \frac{2x^2}{x} = \lim_{x\to 0} (2x) = 0.$$

 $\mathbf{V}\mathbf{\hat{a}}\mathbf{y}\ ln\ I=\mathbf{0}\rightarrow I=e^{\mathbf{0}}=\mathbf{1}.$

79. Tim
$$I = \lim_{x \to 0^+} (x^x)$$
.

G: Lấy loga 2 vế, được

$$ln I = lim_{x\to 0^+} x. ln x = lim_{x\to 0^+} \frac{ln x}{\frac{1}{x}}.$$

- Áp dụng Lop, ta có
$$\ln I = \lim_{x\to 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x\to 0} \left(-\frac{x^2}{x}\right) = \lim_{x\to 0} \left(-x\right) = 0.$$

Vây
$$\ln I = 0 \to I = e^0 = 1$$
.

80. So sánh các VCB $a = 1 - \cos 4x$; $b = \sin 3x$ khi $x \to 0$.

G: Có a, b là các VCB khi $x \to 0$. Xét $\lim_{x\to 0} \frac{a}{b} = \lim_{x\to 0} \frac{1-\cos 4x}{\sin 3x}$. Thay thế tương đương, $\sin 3x \sim 3x$ khi $x \to 0$, được $L = \lim_{x \to 0} \frac{1 - \cos 4x}{3x}$. - Áp dụng Lop, được $L = \lim_{x \to 0} \frac{\sin 4x \cdot 4}{3} = \frac{0 \cdot 4}{3} = 0$. Vậy a là VCB bậc cao hơn b khi $x \to 0$.

81. So sánh các VCB
$$f = \sqrt{1+x} - \sqrt{1-x}$$
; $g = x^2$ khi $x \to 0$.

G: Có f, g là các VCB khi $x \to 0$. Xét $L = \lim_{x \to 0} \frac{f}{a} = \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x^2}$. Áp dụng Lop, ta có

$$L \triangleq \lim_{x \to 0} \frac{\frac{1}{2\sqrt{1+x}} \cdot 1 - \frac{1}{2\sqrt{1-x}} \cdot (-1)}{2x} = \lim_{x \to 0} \frac{\frac{1}{2\sqrt{1+x}} + \frac{1}{2\sqrt{1-x}}}{2x} = \frac{1}{0} = \infty.$$
 Nên f là VCB bậc thấp hơn g khi $x \to 0$.

82. Xét tính liên tục của
$$f = \begin{cases} \frac{2x}{e^{2x} - e^{-x}} &: x \neq 0 \\ a &: x = 0. \end{cases}$$

82. Xét tính liên tục của $f = \begin{cases} \frac{2x}{e^{2x} - e^{-x}} : x \neq 0 \\ a : x = 0. \end{cases}$ G: Xét $x_o \neq 0$. Có $f = \frac{2x}{e^{2x} - e^{-x}}$ là hàm sơ cấp có TXĐ $D = R \setminus \{0\}$ nên nó LT tại mọi $x_o \neq 0$.

- Xét $x_0 = 0$. Theo quy tắc Lop, có

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{2x}{e^{2x} - e^{-x}} \triangleq \lim_{x\to 0} \frac{2}{e^{2x} \cdot 2 - e^{-x} \cdot (-1)} = \lim_{x\to 0} \frac{2}{e^{2x} \cdot 2 + e^{-x}} = \frac{2}{3}.$$

 $V\grave{a} f(0) = a.$

- Nếu $a = \frac{2}{3} \rightarrow \lim_{x \to 0} f(x) = f(0) \rightarrow \text{HS liên tục tại } x_0 = 0.$

- Nếu
$$a = \frac{2}{3}$$
 \rightarrow HS gián đoạn tại $x_o = 0$.
83. Xét sự liên tục của $f = \begin{cases} 0 : x \ge 0 \\ \frac{1-\sqrt{1-x}}{x} : x < 0. \end{cases}$

G: Với $x > 0 \rightarrow f = 0$ là hàm sơ cấp có TXĐ D = R nên nó LT tại mọi điểm x > 0.

- Với $x < 0 \rightarrow f = \frac{1 - \sqrt{1 - x}}{x}$ là hàm sơ cấp có TXĐ $D = (-\infty, 1] \setminus \{0\}$ nên nó LT tại mọi x < 0.

- Xét $x_0 = 0$. Có

$$\lim_{x\to 0^+} f = \lim_{x\to 0^+} 0 = 0.$$

Và

$$lim_{x\to 0^-} f = lim_{x\to 0^-} \frac{1-\sqrt{1-x}}{x}$$

Áp dụng Lop, ta có

$$lim_{x\to 0^{-}} f = lim_{x\to 0^{-}} \frac{-\frac{1}{2\sqrt{1-x}} \cdot (-1)}{1} = lim_{x\to 0^{-}} \frac{1}{2\sqrt{1-x}} = \frac{1}{2} \neq 0.$$

 $Var{h} f(0) = 0.$

Nên
$$\lim_{x\to 0} f(x) \neq f(0) \to \text{HS gián đoạn tại } x = 0.$$

84. Xét tính liên tục của $f = \begin{cases} \frac{3\sqrt{1+2x}-1}{x} &: x>0\\ a+x^2 &: x\leq 0. \end{cases}$

G: Xét $x_o > 0 \rightarrow f = \frac{\sqrt[3]{1+2x-1}}{x}$ là hàm sơ cấp có TXĐ $D = R \setminus \{0\}$ nên nó LT tại mọi điểm $x_o > 0$. - Xét $x_o < 0 \rightarrow f = a + x^2$ là hàm sơ cấp có TXĐ D = R nên nó LT tại mọi điểm $x_o < 0$.

- Xét $x_o = 0$. Theo quy tắc Lop, có

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{\sqrt[3]{1+2x}-1}{x} = \lim_{x\to 0^+} \frac{(1+2x)^{\frac{1}{3}}-1}{x} \triangleq \lim_{x\to 0^+} \frac{\frac{1}{3}\cdot(1+2x)^{-\frac{2}{3}}\cdot 2}{1} = \frac{2}{3}.$$

- Và $\lim_{x\to 0^-} (a+x^2) = a$.

- Và f(0) = a + 0 = a.

- Nên nếu $a = \frac{2}{3} \rightarrow \lim_{x \to 0} f(x) = f(0) \rightarrow \text{HS LT tại } x_0 = 0.$

- Nếu
$$a \neq \frac{2}{3} \rightarrow$$
 HS gián đoạn tại $x_o = 0$.
85. Xét tính liên tục của $f = \begin{cases} 0 : x \geq 0 \\ \frac{1 - \sqrt[3]{1 + x}}{x} : x < 0. \end{cases}$
G: Xét $x > 0 \rightarrow f = 0$ là hàm sơ cấp có TXĐ $D = R$ nên nó LT tại $x > 0$.

Xét
$$x < 0 \rightarrow f = \frac{1 - \sqrt[3]{1 + x}}{x}$$
 là hàm sơ cấp có TXĐ $D = (-\infty, 1] \setminus \{0\}$
Xét $x_0 = 0$.

86. Tính đạo hàm của $f = \begin{cases} 2x - 6 : x \ge 4 \\ x^2 - 3x - 2 : x < 4. \end{cases}$ G: Nếu $x > 4 \rightarrow f = 2x - 6 \rightarrow f' = 2.$

Nếu $x < 4 \rightarrow f = x^2 - 3x - 2 \rightarrow f' = 2x - 3$.

Xét $x = 4 \rightarrow f(4) = 2$. Nên

$$f'_{+}(4) = \lim_{x \to 4^{+}} \frac{f(x) - f(4)}{x - 4} = \lim_{x \to 4} \frac{2x - 6 - 2}{x - 4} = 2.$$

Và

$$f'_{-}(4) = \lim_{x \to 4^{-}} \frac{f(x) - f(4)}{x - 4} = \lim_{x \to 4^{-}} \frac{x^2 - 3x - 2 - 2}{x - 4} = \lim_{x \to 4^{-}} \frac{x^2 - 3x - 4}{x - 4} = \lim_{x \to 4^{-}} \frac{x^2 - 3x - 4}{x - 4} = \lim_{x \to 4^{-}} (x + 1)$$

$$= 5 \neq f'_{+}(4) = 2.$$

Nên ko tồn tai f'(4).

87. Tính đạo hàm của $f = \begin{cases} arctan \ 2x & : \ x \ge 0 \\ 5^x - 1 & : \ x < 0. \end{cases}$ G: Xét $x > 0 \to f = arctan \ 2x \to f' = \frac{1}{1+4x^2}$. 2

- Xét $x < 0 \to f = 5^x - 1 \to f' = 5^x$. $\ln 5$

- Xét $x_o = 0 \rightarrow f(0) = arctan \ 0 = 0$. Áp dụng Lop, ta có

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\arctan 2x - 0}{x} = \lim_{x \to 0^{+}} \frac{\frac{1}{1 + 4x^{2}} \cdot 2}{1} = \frac{2}{1} = 2.$$

Và áp dụng Lop, ta có $f'_{-}(0) = \lim_{x\to 0^{-}} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^{-}} \frac{5^{x}-1}{x} = \lim_{x\to 0} \frac{5^{x} \cdot \ln 5}{1} = \ln 5 \neq 2 = f'_{+}(0).$ Vây ∄f'(0).

$$f'(x_o) = \lim_{x \to x_o} \frac{f(x) - f(x_o)}{x - x_o}.$$

88. Tính đạo hàm của hàm $f = \begin{cases} 2 \cos(3x - 6) : x \ge 2 \\ x^2 - 2x : x < 2 \end{cases}$

G: Xét $x > 2 \rightarrow \cdots$

Xét ...

CHƯƠNG III TÍCH PHÂN Bài 4 Tích phân suy rộng

1. Tích phân suy rộng loại I

-
$$\text{DN: } \int_a^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_a^b f(x) dx.$$

- Công thức Newton- Leibnit mở rộng: Nếu F là 1 nguyên hàm của f thì $\int_a^{+\infty} f(x) dx = F(x) |_a^{+\infty} = F(+\infty) - F(a)$.

- Chú ý:
$$\frac{1}{\infty} = \mathbf{0} \rightarrow F(+\infty) = \mathbf{0}$$
.

89. C2. Tính
$$I = \int_0^{+\infty} \frac{dx}{(x+1)^2 \cdot (x+2)^2}$$

G: Tách

$$I = \int_0^{+\infty} \frac{(x+2)-(x+1)}{(x+1)^2.(x+2)} dx = \int_0^{+\infty} \left(\frac{1}{(x+1)^2} - \frac{1}{(x+1).(x+2)}\right) dx = \int_0^{+\infty} \left(\frac{1}{(x+1)^2} - \frac{(x+2)-(x+1)}{(x+1).(x+2)}\right) dx = \int_0^{+\infty} \left[\frac{1}{(x+1)^2} - \frac{1}{(x+1).(x+2)}\right] dx = \int_0^{+\infty} \left[\frac{1}{(x+1)^2} - \frac{1}{(x+1)} - \frac{1}{(x+1)}\right] dx = \int_0^{+\infty} \left[\frac{1}{(x+1)^2} - \frac{1}{(x+1)} - \frac{1}{(x+1)} - \frac{1}{(x+1)}\right] dx = \int_0^{+\infty} \left[\frac{1}{(x+1)^2} - \frac{1}{(x+1)} - \frac{1}{(x+1)} - \frac{1}{(x+1)} - \frac{1}{(x+1)}\right] dx = \int_0^{+\infty} \left[\frac{1}{(x+1)^2} - \frac{1}{(x+1)^2} - \frac$$

90. C1.
$$I = \int_{1}^{+\infty} \frac{dx}{x^2 \cdot (x+2)}$$

G: Viết

$$\frac{1}{x^2.(x+2)} = \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x+2} = \frac{ax(x+2) + b(x+2) + cx^2}{x^2(x+2)} = \frac{x^2(a+c) + x(2a+b) + 2b}{x^2(x+2)}$$

$$\to x^2(a+c) + x(2a+b) + 2b = 1.$$

Đồng nhất hệ số, được
$$\begin{cases} a + c = 0 \\ 2a + b = 0 \\ 2b = 1 \end{cases} \begin{cases} a = -\frac{1}{4} \\ b = \frac{1}{2} \\ c = \frac{1}{4} \end{cases}$$

$$\Rightarrow \frac{1}{x^2 \cdot (x+2)} = -\frac{1}{4} \cdot \frac{1}{x} + \frac{1}{2} \cdot \frac{1}{x^2} + \frac{1}{4} \cdot \frac{1}{x+2}.$$

Cách 2. Có

$$\begin{split} I &= \int_{1}^{+\infty} \frac{(x+2)-x}{x^{2} \cdot (x+2)} \cdot \frac{1}{2} dx = \int_{1}^{+\infty} \left(\frac{1}{x^{2}} - \frac{1}{x \cdot (x+2)} \right) \cdot \frac{1}{2} dx = \frac{1}{2} \cdot \int_{1}^{+\infty} \left(\frac{1}{x^{2}} - \frac{(x+2)-x}{x(x+2)} \cdot \frac{1}{2} \right) dx \\ &= \frac{1}{2} \cdot \int_{1}^{+\infty} \left(\frac{1}{x^{2}} - \frac{1}{2} \cdot \left(\frac{1}{x} - \frac{1}{x+2} \right) \right) dx = \frac{1}{2} \left(-\frac{1}{x} - \frac{1}{2} \left(\ln|x| - \ln|x+2| \right) \right) \Big|_{1}^{+\infty} \\ &= \frac{1}{2} \left(-\frac{1}{x} - \frac{1}{2} \ln\left| \frac{x}{x+2} \right| \right) \Big|_{1}^{+\infty} = 0 - \frac{1}{2} \left(-1 - \frac{1}{2} \ln\left| \frac{1}{3} \right| \right) = \frac{1}{2} \left(1 + \frac{1}{2} \ln\left| \frac{1}{3} \right| \right). \end{split}$$

91. C4. Tính
$$I = \int_{1}^{+\infty} \frac{dx}{x \cdot \sqrt{x^4 + 1}}$$

G: Viết
$$I = \int_{1}^{+\infty} \frac{x^3 dx}{x^4 \cdot \sqrt{x^4 + 1}}$$

- Đặt
$$t = \sqrt{x^4 + 1} \rightarrow t^2 = x^4 + 1 \rightarrow x^4 = t^2 - 1 \rightarrow 4x^3 dx = 2t dt \rightarrow x^3 dx = \frac{t dt}{2}$$
. Đổi cận nên $I = \int_{\sqrt{2}}^{+\infty} \frac{t dt}{2(t^2 - 1)t} = \frac{1}{2} \cdot \int_{\sqrt{2}}^{+\infty} \frac{dt}{(t - 1) \cdot (t + 1)} = \frac{1}{2} \cdot \int_{\sqrt{2}}^{+\infty} \frac{t + 1 - (t - 1)}{(t - 1) \cdot (t + 1)} \cdot \frac{dt}{2} = \frac{1}{4} \cdot \int_{\sqrt{2}}^{+\infty} \left(\frac{1}{t - 1} - \frac{1}{t + 1}\right) dt = \frac{1}{4} \cdot (\ln|t - 1| - \ln|t - 1|)$

$$|\ln |t+1|$$
 $\Big|_{\sqrt{2}}^{+\infty} = \frac{1}{4} \cdot \ln \left| \frac{t-1}{t+1} \right| \Big|_{\sqrt{2}}^{+\infty} = 0 - \frac{1}{4} \ln \left| \frac{\sqrt{2}-1}{\sqrt{2}+1} \right| = 0$

$$-rac{1}{4}ln\left|rac{\sqrt{2}-1}{\sqrt{2}+1}
ight|$$
. $\left(vì\ khi\ t
ightarrow\infty$, theo quy tắc ngắt bỏ VCL bậc thấp hơn thì $rac{t-1}{t+1}\simrac{t}{t}=1
ight)$

92. C5. Tính
$$I = \int_0^{+\infty} \frac{dx}{(\sqrt{x}+1)^3}$$

G: Đặt
$$t = \sqrt{x} + 1 \to \sqrt{x} = t - 1 \to x = (t - 1)^2 = t^2 - 2t + 1 \to dx = (2t - 2)dt$$
. Đổi cận nên $I = \int_1^{+\infty} \frac{(2t - 2)dt}{t^3} = \int_1^{+\infty} \left(\frac{2}{t^2} - \frac{2}{t^3}\right) dt = \int_1^{+\infty} (2t^{-2} - 2t^{-3}) dt = \left(\frac{2t^{-1}}{-1} - \frac{2t^{-2}}{-2}\right) \Big|_1^{+\infty} = \left(-\frac{2}{t} + \frac{1}{t^2}\right) \Big|_1^{+\infty} = 0 - (-1) = 1$.

**Công thức:
$$\int \frac{dx}{a^{2}x^{2}} = \frac{1}{a} \cdot \arctan \frac{x}{a} + C, \ -1,$$

G: Viết
$$I = \int_{1}^{+\infty} x^{3} \cdot e^{-x^{2}} dx = \int_{1}^{+\infty} x^{2} e^{-x^{2}} \cdot x dx$$
. Đặt $t = x^{2} \to dt = 2x dx \to x dx = \frac{dt}{2}$. Đổi cận nên $I = \int_{1}^{+\infty} t e^{-t} \cdot \frac{dt}{2} = \int_{1}^{+\infty} \frac{t}{2} \cdot e^{-t} dt$.

- TPTP. Đặt
$$\begin{cases} u = \frac{t}{2} \\ dv = e^{-t} \end{cases} \rightarrow \begin{cases} u' = \frac{1}{2} \\ dv = \int e^{-t} dt = -e^{-t}. \end{cases}$$
 Nên

$$I = uv - \int v du = -\frac{t}{2}e^{-t} + \int_{1}^{+\infty} \frac{1}{2}e^{-t} dt = -\frac{t}{2}e^{-t} + \frac{1}{2} \cdot \int_{1}^{+\infty} e^{-t} dt = \left(-\frac{t}{2}e^{-t} + \frac{1}{2} \cdot (-e^{-t})\right)|_{1}^{+\infty} = \left(-\frac{t+1}{2}e^{-t}\right)|_{1}^{+\infty} = 0 - (-e^{-1}) = e^{-1} \quad \left(do \ e^{-\infty} = \frac{1}{e^{+\infty}} = \frac{1}{+\infty} = 0\right)$$

99. C13.
$$I = \int_0^{+\infty} x^2 e^{-x} dx$$
.

G: TPTP. Đặt
$$\begin{cases} u = x^2 \\ dv = e^{-x} dx \end{cases} \rightarrow \begin{cases} u' = 2x \\ dv = \int e^{-x} dx = -e^{-x} \end{cases}$$
 Nên

G: TPTP. Đặt
$$\begin{cases} u = x^2 \\ dv = e^{-x} dx \end{cases} \Rightarrow \begin{cases} u' = 2x \\ dv = \int_0^{+\infty} e^{-x} dx = -e^{-x}. \text{ Nên} \end{cases}$$
$$I = uv - \int v du = (-x^2 e^{-x}) \mid_0^{+\infty} + \int_0^{+\infty} 2x e^{-x} dx = 0 + \int_0^{+\infty} 2x e^{-x} dx = \int_0^{+\infty} 2x e^{-x} dx.$$

TPTP lần 2. Đặt
$$\begin{cases} u = 2x \\ dv = e^{-x}dx \end{cases} \Rightarrow \begin{cases} u' = 2 \\ dv = \int e^{-x}dx = -e^{-x}. \end{cases}$$

Nên

$$I = uv - \int v du = (-2xe^{-x}) \mid_0^{+\infty} + \int_0^{+\infty} 2e^{-x} dx = 0 - 2e^{-x} = (-2e^{-x}) \mid_0^{+\infty} = 0 - (-2) = 2.$$

- Chú ý: Nếu F là 1 nguyên hàm của f thì

$$\int_{-\infty}^{+\infty} f(x)dx = F(x) \mid_{-\infty}^{+\infty} = F(+\infty) - F(-\infty).$$

(Công thức Newton- Leibnit mở rộng)

Và $\arctan(-\infty) = -\frac{\pi}{2}$; $\int \frac{dx}{a^2 + x^2} = \frac{1}{a}$. $\arctan(\frac{x}{a}) + C$.

100. Tính
$$I = \int_{-\infty}^{+\infty} \frac{dx}{4x^2 + 4x + 4}$$
.

100. Tính
$$I = \int_{-\infty}^{+\infty} \frac{dx}{4x^2 + 4x + 4}$$
.
G: Có $I = \int_{-\infty}^{+\infty} \frac{dx}{4x^2 + 4x + 1 + 3} = \int_{-\infty}^{+\infty} \frac{dx}{(2x + 1)^2 + 3}$.

Đặt
$$t=2x+1 \rightarrow dt=2dx \rightarrow dx=\frac{1}{2}dt$$
. Đổi cận nên

Đặt
$$t = 2x + 1 \rightarrow dt = 2dx \rightarrow dx = \frac{1}{2}dt$$
. Đổi cận nên $I = \int_{-\infty}^{+\infty} \frac{dt}{2(t^2+3)} = \frac{1}{2} \cdot \int_{-\infty}^{+\infty} \frac{dt}{(\sqrt{3})^2 + t^2} = \frac{1}{2} \cdot \frac{1}{\sqrt{3}} \cdot \arctan \frac{t}{\sqrt{3}} \mid_{-\infty}^{+\infty} = \frac{1}{2\sqrt{3}} \cdot \left[\frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right] = \frac{\pi}{2\sqrt{3}}.$

101. Tính
$$I = \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 3}$$

G: Ta có

$$I = \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 1 + 2} = \int_{-\infty}^{+\infty} \frac{dx}{(x+1)^2 + 2} = \int_{-\infty}^{+\infty} \frac{d(x+1)}{\left(\sqrt{2}\right)^2 + (x+1)^2} = \frac{1}{\sqrt{2}} \cdot arctan\left(\frac{x+1}{\sqrt{2}}\right) \mid_{-\infty}^{+\infty} = \frac{1}{\sqrt{2}} \left(arctan(+\infty) - \frac{1}{\sqrt{2}}\right) \mid_{-\infty}^{+\infty} = \frac{1}{\sqrt{2}} \left(\frac{x+1}{\sqrt{2}}\right) \mid_{-\infty}^{+\infty} = \frac{1}{\sqrt{2}} \left(\frac$$

$$arctan(-\infty) = \frac{1}{\sqrt{2}} \left[\frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right] = \frac{\pi}{\sqrt{2}}.$$
102. Tính $I = \int_{-\infty}^{2} \frac{dx}{x^2 - 4x + 8}.$

102. Tính
$$I = \int_{-\infty}^{2} \frac{dx}{x^2 - 4x + 8}$$

G: ...

2. Tích phân suy rộng loại II

- ĐN: Cho hàm y = f(x) ko xác định tại cận x = a or x = b. Thì TPSR loại 2 là $I = \int_a^b f(x) dx$.

103. C15. Tính
$$I = \int_0^1 \frac{dx}{(2-x).\sqrt{1-x}}$$

G: Tại x=0, hàm f xác định. Hàm f ko xác định tại cận x=1. Nên đây là TPSR loại II.

- Đặt $t=\sqrt{1-x}
ightarrow t^2=1-x
ightarrow x=1-t^2
ightarrow dx=-2tdt$. Đổi cận nên

$$I = \int_{1}^{0} \frac{-2tdt}{(2-1+t^{2}). t} = 2. \int_{0}^{1} \frac{dt}{t^{2}+1} = 2 \arctan t \mid 0^{1} = 2(\arctan 1 - \arctan 0) = 2(\frac{\pi}{4} - 0) = \frac{\pi}{2}.$$

104. Tính
$$I = \int_0^2 \frac{dx}{\sqrt{x}.(x-4)}$$

G: Hàm f ko xác định tại cận x=0. Đặt $t=\sqrt{x} \to t^2=x \to x=t^2 \to dx=2tdt$. Đổi cận nên $I=\int_0^{\sqrt{2}}\frac{2tdt}{t.(t^2-4)}=2$. $\int_0^{\sqrt{2}}\frac{dt}{(t-2).(t+2)}=2$. $\int_0^{\sqrt{2}}\frac{(t+2)-(t-2)}{(t-2).(t+2)}\cdot\frac{dt}{4}=\frac{1}{2}$. $\int_0^{\sqrt{2}}\left(\frac{1}{t-2}-\frac{1}{t+2}\right)dt=\frac{1}{2}$. $(\ln|t-2|-\ln|t+2|)|_0^{\sqrt{2}}=\frac{1}{2}$. $\ln\left|\frac{t-2}{t+2}\right|$ $|_0^{\sqrt{2}}=\frac{1}{2}$ $\ln\left|\frac{\sqrt{2}-2}{\sqrt{2}+2}\right|-0=\frac{1}{2}$ $\ln\left|\frac{\sqrt{2}-2}{\sqrt{2}+2}\right|$. 105. Tính $I=\int_0^1x^2.\ln xdx$.

G: TPTP. Đặt
$$\begin{cases} u = \ln x \\ dv = x^2 dx \end{cases} \rightarrow \begin{cases} u' = \frac{1}{x} \\ v = \int x^2 dx = \frac{x^3}{3}. \end{cases}$$
 Nên
$$I = uv - \int v du = \frac{\ln x \cdot x^3}{3} - \int_0^1 \frac{1}{x} \cdot \frac{x^3}{3} dx = \frac{\ln x \cdot x^3}{3} - \int_0^1 \frac{x^2}{3} dx = \left(\frac{\ln x \cdot x^3}{3} - \frac{x^3}{9}\right) \mid_0^1 = -\frac{1}{9}.$$

1. Định nghĩa

- Xét
$$I = \int_0^1 \frac{dx}{x^2} = \left(-\frac{1}{x}\right)|_0^1 = -1 - (\infty) = \infty$$
. Nên $I = \infty$. Ta nói I là phân kỳ.

- Nếu tích phân $I = L < \infty \rightarrow I$ hữu hạn. Ta nói I là hội tụ.

2. Tích phân cơ bản

- Xét
$$I = \int_0^1 \frac{dx}{x^a}$$
 là TPSR loại II. Nếu mũ $a < 1 \rightarrow I < \infty \rightarrow I$ là hội tụ.

- Nếu mũ $a \ge 1 \rightarrow I = \infty \rightarrow I$ là ph kỳ.

3. Tiêu chuẩn tương đương

- Cho
$$f(x)$$
; $g(x) \ge 0$ và $f(x) \sim g(x)$ khi $x \to 0^+$. (tức $\lim_{x \to 0^+} \frac{f}{g} = 1$) Nếu $\int_0^1 f dx$ hội tụ $\to \int_0^1 g dx$ hội tụ.

- Ngược lại, nếu $\int_0^1 f dx$ ph kì $\to \int_0^1 g dx$ cũng ph kì.

- (Một số VCB tương đương) Khi $x \to 0$, ta có

$$\sin x \sim x \sim \tan x \sim \arcsin x; 1 - \cos x \sim \frac{1}{2}x^{2};$$

$$1 - \cos ax \sim \frac{a^{2}x^{2}}{2}; e^{x} - 1 \sim x; a^{x} - 1 \sim x \ln a; \ln(1+x) \sim x;$$

$$(1+x)^{a} - 1 \sim a. x; \sqrt{1+x} - 1 \sim \frac{1}{2}. x; \sqrt[3]{1+x} - 1 \sim \frac{1}{3}x.$$

106. C11. Xét sự hội tụ của $I = \int_0^1 \frac{dx}{\sqrt{\tan x}}$

G: Hàm f ko xác định tại cận x = 0. Vì khi $x \to 0^+$, có

$$\tan x \sim x \to \sqrt{\tan x} \sim \sqrt{x} = x^{\frac{1}{2}} \to \frac{1}{\sqrt{\tan x}} \sim \frac{1}{\frac{1}{x^{\frac{1}{2}}}}$$

- Vì mũ $a = \frac{1}{2} < 1$ nên $J = \int_0^1 \frac{dx}{\frac{1}{x^2}} < \infty$. Vậy theo tiêu chuẩn tương đương, I cũng hội tụ.

107. C13.
$$I = \int_0^1 \frac{\sin \sqrt{x} \, dx}{\sqrt{1+x}-e^{x^2}}$$

107. C13. $I = \int_0^1 \frac{\sin \sqrt{x} dx}{\sqrt{1+x}-e^x}$. G: Hàm f ko xác định tại cận x = 0. Ta có khi $x \to 0^+$, nên

$$\frac{\sin\sqrt{x}}{\sqrt{1+x}-e^x} = \frac{\sin\sqrt{x}}{(\sqrt{1+x}-1)-(e^x-1)} \sim \frac{\sqrt{x}}{\frac{1}{2}\cdot x-x} = -\frac{2}{\sqrt{x}} = -2.\frac{1}{x^{\frac{1}{2}}}$$

- Vì mũ $a = \frac{1}{2} < 1$, nên J = -2. $\int_0^1 \frac{dx}{\frac{1}{x^2}} < \infty$. Theo tiêu chuẩn tương đương, nên $I = \int_0^1 \frac{\sin \sqrt{x} \, dx}{\sqrt{1+x} - e^x} < \infty$ cũng hội tụ.

108. C12.
$$I = \int_0^1 \frac{\sin x dx}{\sqrt{1-x^2}}$$
.

G: Tại cận x=0, hàm f xác định. Nhưng hàm f ko xác định tại cận x=1. Vì khi $x\to 1^-$, ta có $\frac{\sin x}{\sqrt{1-x^2}} = \frac{\sin x}{\sqrt{1+x}. \ \sqrt{1-x}} \sim \frac{\sin 1}{\sqrt{1+1}. \ \sqrt{1-x}} = \frac{\sin 1}{\sqrt{2}}. \frac{1}{(1-x)^{\frac{1}{2}}}$

$$\frac{\sin x}{\sqrt{1-x^2}} = \frac{\sin x}{\sqrt{1+x} \cdot \sqrt{1-x}} \sim \frac{\sin 1}{\sqrt{1+1} \cdot \sqrt{1-x}} = \frac{\sin 1}{\sqrt{2}} \cdot \frac{1}{(1-x)^{\frac{1}{2}}}$$

- Vì mũ $a = \frac{1}{2} < 1$, nên $J = \frac{\sin 1}{\sqrt{2}}$. $\int_0^1 \frac{dx}{(1-x)^{\frac{1}{2}}} < \infty$. Nên theo tiêu chuẩn tương đương, $I = \int_0^1 \frac{\sin x dx}{\sqrt{1-x^2}} < \infty$ cũng hội tụ.

109. Xét
$$I = \int_0^{\frac{\pi}{2}} \frac{dx}{\cos^3 x}$$

G: Hàm f ko xác định tại cận $x = \frac{\pi}{2}$. Xét $x \to \frac{\pi}{2}$ thì $t = \frac{\pi}{2} - x \to 0$, nên $\cos x = \sin\left(\frac{\pi}{2} - x\right) \sim \frac{\pi}{2} - x$. Suy

$$\frac{1}{\cos^3 x} = \frac{1}{\left(\sin\left(\frac{\pi}{2} - x\right)\right)^3} \sim \frac{1}{\left(\frac{\pi}{2} - x\right)^3}.$$

- Vì mũ $a=3>1 \rightarrow J=\int_0^{\frac{\pi}{2}}\frac{dx}{\left(\frac{\pi}{2}-x\right)^3}$ ph kỳ. Theo tiêu chuẩn tương đương, I cũng ph kì.

110. C16.
$$I = \int_0^1 \frac{x dx}{\tan x - \sin x}$$

G: Hàm f ko xác định tại cận
$$x = 0$$
. Khi $x \to 0^+$, có
$$\frac{x}{\tan x - \sin x} = \frac{x}{\frac{\sin x}{\cos x} - \sin x} = \frac{x}{\sin x \cdot \left(\frac{1}{\cos x} - 1\right)} = \frac{x \cdot \cos x}{\sin x \cdot (1 - \cos x)} \sim \frac{x \cdot \cos 0}{x \cdot \frac{1}{2}x^2} = \frac{2}{x^2} = 2 \cdot \frac{1}{x^2}$$
- Vì mũ $a = 2 > 1$ nên $J = 2 \cdot \int_0^1 \frac{dx}{x^2} = \infty$. Nên theo tiêu chuẩn tương đương, I cũng phân kì.

111. C15.
$$I = \int_0^1 \frac{dx}{x(e^{4\sqrt{x}}-1)}$$
.

G: ...

112. C25.
$$I = \int_0^1 \frac{\ln(1+\sqrt{x})}{e^{\sin(x^2)}-1} dx$$
.

G: HS ko xác định tại x = 0. Khi $x \to 0^+$, có $\frac{\ln(1+\sqrt{x})}{e^{\sin(x^2)}-1} \sim \frac{\sqrt{x}}{\sin x^2} \sim \frac{\sqrt{x}}{x^2} = \frac{1}{x^2}$

- Vì mũ $a = \frac{3}{2} > 1$, nên $J = \int_0^1 \frac{dx}{x^2} = \infty$. Nên theo tiêu chuẩn tương đương, I cũng phân kì.

113. Xét
$$I = \int_0^1 \frac{dx}{(2-x).\sqrt{1-x^3}}$$
.

G: Tại x = 0, hàm f xác định. Nhưng hàm f ko xác định tại cận x = 1. Vì khi $x \to 1^-$, ta có $\frac{1}{(2-x).\sqrt{1-x^3}} = \frac{1}{(2-x)\sqrt{1-x}.\sqrt{1+x+x^2}} \sim \frac{1}{1.\sqrt{3}.\sqrt{1-x}} = \frac{1}{\sqrt{3}}.\frac{1}{(1-x)^{\frac{1}{2}}}.$

$$\frac{1}{(2-x).\sqrt{1-x^3}} = \frac{1}{(2-x)\sqrt{1-x}.\sqrt{1+x+x^2}} \sim \frac{1}{1.\sqrt{3}.\sqrt{1-x}} = \frac{1}{\sqrt{3}}.\frac{1}{(1-x)^{\frac{1}{2}}}$$

- Vì mũ $a = \frac{1}{2} < 1$ nên $J = \frac{1}{\sqrt{3}} \cdot \int_0^1 \frac{dx}{(1-x)^{\frac{1}{2}}} < \infty$. Theo tiêu chuẩn tương đương, I cũng hội tụ.

- 2. Tích phân cơ bản suy rộng loại I
- Xét $I_1=\int_1^{+\infty} \frac{dx}{r^a}$ là TPSR loại I. Nếu mũ $a>1 \to I_1<\infty o I_1$ là hội tụ.
- Nếu mũ $a \le 1 \to I_1 = \infty \to I_1$ là ph kì.
- 3. Tiêu chuẩn tương đương
- Cho f(x); $g(x) \ge 0$ và $f(x) \sim g(x)$ khi $x \to +\infty$. (tức $\lim_{x \to +\infty} \frac{f}{g} = 1$) Nếu $\int_1^{+\infty} f dx$ hội tụ $\to \int_1^{+\infty} g dx$ hôi tu.
- Ngược lại, nếu $\int f dx$ ph kỳ $\rightarrow \int g dx$ cũng ph kỳ.
- 114. C1. Xét sự hội tụ của $I = \int_{1}^{+\infty} x \cdot \ln\left(1 + \frac{1}{x^2}\right) dx$.

G: Vì khi
$$x \to +\infty$$
, thì $t = \frac{1}{x^2} \to 0$ nên

$$ln\left(1+\frac{1}{x^2}\right) \sim \frac{1}{x^2} \to x \, ln\left(1+\frac{1}{x^2}\right) \sim x. \, \frac{1}{x^2} = \frac{1}{x} = \frac{1}{x^1}.$$

- Vì mũ a=1 nên $J=\int_1^{+\infty}\frac{dx}{x^1}=\infty$. Theo tiêu chuẩn tương đương, nên $I=\infty$ cũng là ph kỳ.

115. C6.
$$I = \int_{1}^{+\infty} \left(1 - \cos\frac{1}{x}\right) dx$$
.

G: Vì khi
$$x \to +\infty$$
 thì $t = \frac{1}{x} \to 0$, nên

$$1 - \cos \frac{1}{x} \sim \frac{1}{2} \cdot \left(\frac{1}{x}\right)^2 = \frac{1}{2} \cdot \frac{1}{x^2}$$

- Vì mũ a = 2 > 1, nên $J = \frac{1}{2}$. $\int_{1}^{+\infty} \frac{dx}{x^2} < \infty$. Nên theo tiêu chuẩn tương đương, $I = \int_{1}^{\infty} \left(1 \cos\frac{1}{x}\right) dx < \infty$ cũng là hội tu.
- Quy tắc ngắt bỏ VCL bậc thấp hơn trong tổng hiệu: ...

VD. Tim
$$I = \lim_{x \to \infty} \frac{3x^3 + x - 1}{5x^3 + 2x^2 + 7} = \lim_{x \to \infty} \frac{3x^3}{5x^3} = \frac{3}{5}$$
.
116. C2. Xét $I = \int_1^{+\infty} \frac{\sqrt{x} \, dx}{x^2 + \sin x}$.

116. C2. Xét
$$I = \int_{1}^{+\infty} \frac{\sqrt{x} \, dx}{x^2 + \sin x}$$

G: Vì khi $x \to +\infty$, nên $-1 \le \sin x \le 1 < x = x^1 < x^2$. Theo quy tắc ngắt bỏ VCL bậc thấp hơn, ta có

$$\frac{\sqrt{x}}{x^2 + \sin x} \sim \frac{\sqrt{x}}{x^2} = \frac{1}{\frac{3}{x^2}}.$$

- Vì mũ $a=rac{3}{2}>1$ nên $J=\int_1^{+\infty}rac{dx}{3\over x^{\frac{3}{2}}}<\infty$. Theo tiêu chuẩn tương đương, thì $I<\infty$ cũng là hội tụ.

117. C7.
$$I = \int_{1}^{+\infty} \frac{dx}{x \cdot \sqrt{x^4 + x^2 + 1}}$$

G: Vì khi $x \to +\infty$, theo quy tắc ngắt bỏ VCL bậc thấp hơn thì $\frac{1}{x.\sqrt{x^4+x^2+1}} \sim \frac{1}{x.\sqrt{x^4}} = \frac{1}{x^3}.$

$$\frac{1}{x. \sqrt{x^4 + x^2 + 1}} \sim \frac{1}{x. \sqrt{x^4}} = \frac{1}{x^3}.$$

- Vì mũ a=3>1, nên $J=\int_1^{+\infty}\frac{dx}{x^3}<\infty$. Theo tiêu chuẩn tương đương, nên $I=\int_1^{\infty}\frac{dx}{x\sqrt{x^4+x^2+1}}<\infty$ cũng là hôi tu.
- 4. Tiêu chuẩn so sánh
- Cho $0 \le f(x) \le g(x)$. Nếu $\int f dx$ ph kì $\rightarrow \int g dx$ ph kì.
- Ngược lại, nếu $\int g dx$ hội tụ $\rightarrow \int f dx$ cũng hội tụ.
- Tức là: Lớn hơn ph kỳ là ph kỳ. Nhỏ hơn hội tụ là hội tụ.

- Chú ý. Khi
$$x \to +\infty$$
, thì
$$\begin{cases} ln(1+x) > 1 \\ ln(1+x) < \sqrt{x} = x^{\frac{1}{2}} \\ e^x > x^9 \\ arctan x \to arctan(+\infty) = \frac{\pi}{2} \approx 1, 5 > 1; 1, 5 < 2. \end{cases}$$

118. Xét
$$I = \int_{1}^{+\infty} \frac{\ln(1+x^2)dx}{x}$$
.

- Phân tích: Xét $J = \int_1^{+\infty} \frac{dx}{x} = \int_1^{+\infty} \frac{dx}{x^1}$ là ph kì (do mũ a = 1). Nên ta sẽ CM I > J thì I cũng ph kì. (Lớn hơn ph kì là ph kì)

Giải. Vì khi $x \to +\infty$, thì

$$ln(1+x^2) > 1 \to \frac{ln(1+x^2)}{x} > \frac{1}{x} = \frac{1}{x^{1+x^2}}$$

- Vì mũ a=1 nên $J=\int_1^{+\infty}\frac{dx}{x^1}$ ph kì. Theo tiêu chuẩn so sánh, vì I>J nên $I=\int_1^{+\infty}\frac{\ln{(1+x^2)}dx}{x}$ cũng ph kì.

119. C3. Xét
$$I = \int_1^{+\infty} \frac{\ln(1+x^5)}{x^2} dx$$
.

- Phân tích: Xét $K = \int_1^{+\infty} \frac{dx}{x^2}$. Vì mũ a = 2 > 1 nên K hội tụ.

- Định hướng. Ta CM I cũng h tụ và I < K. (bé hơn htu là htu)

Giải. Thật vậy, vì khi $x \to +\infty$, thì

$$ln(1+x^5) < \sqrt{x} = x^{\frac{1}{2}} \rightarrow \frac{ln(1+x^5)}{x^2} < \frac{x^{\frac{1}{2}}}{x^2} = \frac{1}{x^{\frac{3}{2}}}$$

- Vì mũ $a = \frac{3}{2} > 1$ nên $J = \int_1^{+\infty} \frac{dx}{x^2} < \infty$. Theo tiêu chuẩn so sánh, vì $I < J \rightarrow I = \int_1^{+\infty} \frac{\ln(1+x^5)}{x^2} dx$ cũng hội

120. C4.
$$I = \int_{1}^{+\infty} \frac{\arctan x}{x} dx$$
.

Phân tích: Xét $J = \int_{1}^{+\infty} \frac{1}{x} dx$. Vì mũ a = 1 nên J ph kì.

- Định hướng: Nếu I > J thì I cũng ph kì. (Lớn hơn ph kì là ph kì)

- Giải: Vì khi $x \to +\infty$, thì

$$\lim_{x\to+\infty} \arctan x = \arctan (+\infty) = \frac{\pi}{2} \approx 1, 5 > 1 \to \frac{\arctan x}{x} > \frac{1}{x} = \frac{1}{x^1}$$

- Vì mũ a=1 nên $J=\int_1^\infty \frac{dx}{x^1}$ ph kì. Theo tiêu chuẩn so sánh, vì I>J nên I cũng ph kì.

121. Xét
$$I = \int_1^{+\infty} \frac{dx}{\sqrt{x^4 + \ln x}}$$

G: Vì khi $x \to +\infty$, ta có $1 < \ln x < \sqrt{x} = x^{\frac{1}{2}} < x^4$. Theo quy tắc ngắt bỏ VCL bậc thấp hơn trong tổng

hiệu, thì
$$\frac{1}{\sqrt{x^4 + \ln x}} \sim \frac{1}{\sqrt{x^4}} = \frac{1}{x^2}.$$

- Vì mũ a=2>1 nên $J=\int_1^{+\infty}\frac{dx}{x^2}<\infty$. Theo tiêu chuẩn tương đương, nên $I=\int_1^{+\infty}\frac{dx}{\sqrt{x^4+\ln x}}$ cũng hội tụ.

122. C5.
$$I = \int_1^{+\infty} \frac{\arctan x}{x \sqrt{x}} dx.$$

Phân tích: Xét $J = \int_1^{+\infty} \frac{1}{x\sqrt{x}} dx = \int_1^{+\infty} \frac{dx}{\frac{3}{x}}$. Vì mũ $a = \frac{3}{2} > 1$ nên $J = \int_1^{+\infty} \frac{dx}{x\sqrt{x}} < +\infty$.

- Định hướng: Nếu I < J thì I cũng hội tụ. (bé hơn htu là htu)

- Giải: Vì khi $x \to +\infty$, thì

$$\arctan x \rightarrow \arctan (+\infty) = \frac{\pi}{2} \approx 1, 5 < 2 \rightarrow \frac{\arctan x}{x\sqrt{x}} < \frac{2}{x^{\frac{3}{2}}} = 2.\frac{1}{x^{\frac{3}{2}}}$$

- Vì mũ $a = \frac{3}{2} > 1 \rightarrow J = 2$. $\int_{1}^{\infty} \frac{1}{x^{\frac{3}{2}}} dx < \infty$. Theo tiêu chuẩn so sánh, nên $I = \int_{1}^{+\infty} \frac{\arctan x}{x\sqrt{x}} dx$ cũng hội tụ.

123. Xét
$$I = \int_1^{+\infty} \frac{dx}{\sqrt{x + \ln x}}$$

G: Vì khi $x \to +\infty$, ta có $1 < \ln x < \sqrt{x} = x^{\frac{1}{2}} < x^1$ nên theo quy tắc ngắt bỏ VCL bậc thấp hơn nên $\frac{1}{\sqrt{x + \ln x}} \sim \frac{1}{\sqrt{x}} = \frac{1}{\frac{1}{x^2}}.$

$$\frac{1}{\sqrt{x+\ln x}} \sim \frac{1}{\sqrt{x}} = \frac{1}{\frac{1}{x^2}}$$

Vì mũ $a = \frac{1}{2} < 1$ nên $J = \int_{1}^{+\infty} \frac{dx}{\frac{1}{x^{2}}} = \infty$. Theo tiêu chuẩn tương đương, nên I cũng ph kỳ.

124. Xét
$$I = \int_1^{+\infty} \frac{dx}{\sqrt{x^2 + \ln x}}$$
.

Phân tích: Đặt $J = \int_1^{+\infty} \frac{dx}{\sqrt{x^2}} = \int_1^{+\infty} \frac{dx}{x} = \int_1^{+\infty} \frac{dx}{x^1}$. Vì mũ $a = 1 \rightarrow J$ ph kì.

- Định hướng. Ta CM I cũng ph kì và I > J (Lớn hơn ph kì là ph kì).

Giải. Vì khi $x \to +\infty$, ta có

$$\ln x < \sqrt{x} = x^{\frac{1}{2}} \to \frac{1}{\sqrt{x^2 + \ln x}} > \frac{1}{\sqrt{x^2 + x^{\frac{1}{2}}}} \sim \frac{1}{\sqrt{x^2}} = \frac{1}{x} = \frac{1}{x^1}.$$

Vì mũ $a=1 \rightarrow J=\int_1^{+\infty} \frac{dx}{x^1}$ ph kì. Theo tiêu chuẩn so sánh, $I>J\rightarrow I$ cũng ph kì.

125. C8. Xét
$$I = \int_4^{+\infty} \frac{dx}{x \cdot \ln^2 x}$$
.

G: Đặt
$$t = \ln x \rightarrow dt = \frac{dx}{x}$$
. Đổi cận nên

$$I = \int_{\ln 4}^{+\infty} \frac{dt}{t^2} = \left(-\frac{1}{t}\right) \Big|_{\ln 4}^{+\infty} = 0 - \left(-\frac{1}{\ln 4}\right) = \frac{1}{\ln 4} < \infty.$$

126. C9. Xét sự hội tụ của
$$I = \int_1^{+\infty} \frac{x dx}{1 + \sin x + x \cdot \sqrt{x}}$$

G: Theo quy tắc ngắt bỏ VCL bậc thấp hơn trong tổng hiệu nên khi $x \to +\infty$, thì $-1 \le \sin x \le 1 < x < \infty$

$$x.\sqrt{x}=x^{\frac{3}{2}}$$
 nên

$$\frac{x}{1+\sin x + x. \sqrt{x}} = \frac{x}{1+\sin x + x^{\frac{3}{2}}} \sim \frac{x}{x^{\frac{3}{2}}} = \frac{1}{x^{\frac{1}{2}}}.$$

 $\frac{x}{1+\sin x+x. \sqrt{x}} = \frac{x}{1+\sin x+x^{\frac{3}{2}}} \sim \frac{x}{x^{\frac{3}{2}}} = \frac{1}{x^{\frac{1}{2}}}.$ - Vì mũ $a = \frac{1}{2} < 1$ nên $J = \int_{1}^{+\infty} \frac{dx}{\frac{1}{x^{\frac{1}{2}}}} = \infty$. Theo tiêu chuẩn tương đương, nên I cũng là ph kỳ.

127. C25. Xét
$$I = \int_0^1 \frac{\ln(1+\sqrt{x})dx}{e^{\sin x}-1}$$
.

G: HS ko xác định tại cận x = 0. Nên khi $x \to 0$, có $\frac{\ln(1+\sqrt{x})}{e^{\sin x}-1} \sim \frac{\sqrt{x}}{\sin x} \sim \frac{\sqrt{x}}{x} = \frac{1}{\frac{1}{2}}$. $(vì e^x - 1 \sim x)$

- Vì mũ $a=\frac{1}{2}<1$ nên $J=\int_0^1\frac{dx}{\frac{1}{x^2}}<\infty$ là h tụ. Nên theo tiêu chuẩn tương đương, I cũng là h tụ.

BÀI 3 ỨNG DỤNG CỦA TÍCH PHÂN

- 1. Tính độ dài của đường cong
- Công thức: Cho (C): y = y(x); $x \in [a, b] \rightarrow \text{độ dài } l = \int_a^b \sqrt{1 + y'^2(x)} \ dx$.
- 128. Tính độ dài của $l: y = ln x; x \in [1, 3]$.

G: Có
$$y' = \frac{1}{x}$$
; $x \in [1, 3]$. Nên độ dài $l = \int_a^b \sqrt{1 + y'^2(x)} \, dx = \int_1^3 \sqrt{1 + \frac{1}{x^2}} \, dx = \int_1^3 \sqrt{\frac{x^2 + 1}{x^2}} \, dx = \int_1^3 \frac{\sqrt{x^2 + 1} \, dx}{x^2} = \int_1^3 \frac{\sqrt{x^2 + 1} \, dx}{x^2}.$

- Đặt
$$t = \sqrt{x^2 + 1} \to t^2 = x^2 + 1 \to x^2 = t^2 - 1 \to 2xdx = 2tdt \to xdx = tdt$$
. Đổi cận nên
$$l = \int_{\sqrt{2}}^{\sqrt{10}} \frac{t \cdot tdt}{t^2 - 1} = \int_{\sqrt{2}}^{\sqrt{10}} \frac{t^2dt}{t^2 - 1} = \int_{\sqrt{2}}^{\sqrt{10}} \frac{(t^2 - 1) + 1}{t^2 - 1} dt = \int_{\sqrt{2}}^{\sqrt{10}} \left(1 + \frac{1}{t^2 - 1}\right) dt = \int_{\sqrt{2}}^{\sqrt{10}} \left(1 + \frac{1}{(t - 1) \cdot (t + 1)}\right) dt = \int_{\sqrt{2}}^{\sqrt{10}} \left(1 + \frac{1}{(t - 1) \cdot (t + 1)}\right) dt$$

$$\int_{\sqrt{2}}^{\sqrt{10}} \left[1 + \frac{(t+1)-(t-1)}{(t-1)(t+1)} \cdot \frac{1}{2} \right] dt = \int_{\sqrt{2}}^{\sqrt{10}} \left[1 + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} (\ln|t-1| - \ln|t+1|) \right] = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1}{t+1} \right) \right] dt = \left[t + \frac{1}{2} \left(\frac{1}{t-1} - \frac{1$$

$$\frac{1}{2}\ln\left|\frac{t-1}{t+1}\right|\right]\Big|_{\sqrt{2}}^{\sqrt{10}}=\cdots$$

- Chú ý: Cho (C): y = y(x); $x \in [a, b] \rightarrow \text{độ dài } l = \int_a^b \sqrt{1 + y'^2(x)} \ dx$.
- Nếu (C): x = x(y); $y \in [a, b] \rightarrow \text{độ dài } l = \int_a^b \sqrt{1 + x'^2(y)} dy$.
- 129. C1. a) Tính độ dài $l: x = \frac{1}{4}y^2 \frac{1}{2}\ln y$; $1 \le y \le e$.

G: Có
$$x' = \frac{y}{2} - \frac{1}{2y}$$
; $1 \le y \le e \rightarrow \mathbf{D}$ ộ dài

$$l = \int_a^b \sqrt{1 + x'^2(y)} dy = \int_1^e \sqrt{1 + \left(\frac{y}{2} - \frac{1}{2y}\right)^2} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{\frac{y^2}{4} + \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{4} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{4} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{4} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{4} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{1}{4} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{y^2}{4} - \frac{y^2}{4} + \frac{1}{4y^2}} dy = \int_1^e \sqrt{1 + \frac{y^2}{4} - \frac{y^2}{4} -$$

$$\int_{1}^{e} \sqrt{\left(\frac{y}{2} + \frac{1}{2y}\right)^{2}} dy = \int_{1}^{e} \left|\frac{y}{2} + \frac{1}{2y}\right| dy = \int_{1}^{e} \left(\frac{y}{2} + \frac{1}{2y}\right) dy = \left(\frac{y^{2}}{4} + \frac{1}{2}\ln y\right) |_{-}1^{\circ}e = \left(\frac{e^{2}}{4} + \frac{1}{2}\right) - \frac{1}{4} = \frac{e^{2} + 1}{4}.$$

130. Tính độ dài của $l: y = ln(\cos x); x \in \left[0, \frac{\pi}{3}\right]$

G: Có
$$y' = \frac{1}{\cos x}$$
. $(-\sin x) = -\tan x$; $x \in \left[0, \frac{\pi}{3}\right]$. Nên độ dài

$$l = \int_{a}^{b} \sqrt{1 + y'^{2}(x)} \, dx = \int_{0}^{\frac{\pi}{3}} \sqrt{1 + \tan^{2}x} \, dx = \int_{0}^{\frac{\pi}{3}} \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| \Big|_{0}^{\frac{\pi}{3}} = \cdots \quad \left(v \right) \int \frac{dx}{\sin x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \cdot \int \frac{d$$

- Nếu (C):
$$\begin{cases} x = x(t) \\ y = y(t); \ t \in [a, b] \end{cases} \to l = \int_a^b \sqrt{x'^2(t) + y'^2(t)} dt.$$

131. Cb) Tính độ dài $l: x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}; \ a > 0.$ G: Có

$$\cos^{2}t + \sin^{2}t = 1 \rightarrow \frac{x^{\frac{2}{3}}}{a^{\frac{2}{3}}} + \frac{y^{\frac{2}{3}}}{a^{\frac{2}{3}}} = 1 \rightarrow \left[\left(\frac{x}{a}\right)^{\frac{1}{3}}\right]^{2} + \left[\left(\frac{y}{a}\right)^{\frac{1}{3}}\right]^{2} = 1 \rightarrow \begin{cases} \left(\frac{x}{a}\right)^{\frac{1}{3}} = \cos t \\ \left(\frac{y}{a}\right)^{\frac{1}{3}} = \sin t \end{cases} \rightarrow \begin{cases} x = a\cos^{3}t \\ y = a\sin^{3}t; \ t \in [0, 2\pi]. \end{cases}$$

- NX: Vì ĐTHS nhận Ox và Oy là các trục đối xứng nên ta chỉ cần tính độ dài phần đường cong nằm trong góc xOy rồi nhân với 4. Nên $t = (\widehat{0x,0M}) \in \left[0,\frac{\pi}{2}\right]$ và $\begin{cases} x = a\cos^3 t \\ y = a\sin^3 t \end{cases}$

$$\begin{cases} x' = a.3 \cos^2 t. (-\sin t) = -3a \cos^2 t \sin t \\ y' = a.3 \sin^2 t. \cos t = 3a \sin^2 t \cos t. \end{cases}$$
 Nên độ dài $l = \int_a^b \sqrt{x'^2(t) + y'^2(t)} dt = 4. l_1 = 1$

$$4. \int_0^{\frac{\pi}{2}} \sqrt{9a^2 \cos^4 t \sin^2 t + 9a^2 \sin^4 t \cos^2 t} \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \sin t \cdot \sqrt{\cos^2 t + \sin^2 t}| \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \cos t \sin t \, dt = 4. \int_0^{\frac{\pi}{2}} |3a \cos t \cos t \cos t \, dt = 4. \int_0^{\frac{\pi}{$$

$$2. \int_0^{\frac{\pi}{2}} 3a \cdot 2\sin t \cos t \, dt = 6a. \int_0^{\frac{\pi}{2}} \sin 2t \, dt = 6a. \frac{-\cos 2t}{2} = (-3a \cos 2t)|_0^{\frac{\pi}{2}} = (3a) - (-3a) = 6a.$$

* Tọa độ cực. Trong mp (Oxy), cho điểm M(x,y) gọi là tọa độ Đề Các. Đặt $\begin{cases} r = OM = \sqrt{x^2 + y^2} \\ \varphi = (Ox, OM) \in [0, 2\pi] \end{cases} \rightarrow M(r, \varphi)$ gọi là tọa độ cực của điểm M.

- Nếu (C): $r = r(\varphi)$; $\varphi \in [a, b] \to \mathrm{độ}$ dài $l = \int_a^b \sqrt{r^2 + r'^2} d\varphi$.

132. c) $l: r = a(1 + \cos \varphi); a > 0.$

G: NX: Đồ thị có hình trái tim nhận Ox là trục đối xứng nên ta chỉ cần tính độ dài phần đường cong nằm trên trục Ox rồi nhân với 2. Nên góc $\varphi = (\widehat{0x,0M}) \in [0,\pi]; \ r = a(1+\cos\varphi) \to r' = a. (-\sin\varphi) = -a\sin\varphi \to \text{độ dài}$

$$l = \int_a^b \sqrt{r^2 + r'^2} d\varphi = 2. l_1 = 2 \int_0^\pi \sqrt{a^2 (1 + \cos \varphi)^2 + a^2 \sin^2 \varphi} d\varphi =$$

$$2a \int_0^{\pi} \sqrt{1 + 2\cos\varphi + \cos^2\varphi + \sin^2\varphi} \, d\varphi = 2a \int_0^{\pi} \sqrt{2 + 2\cos\varphi} \, d\varphi = 2a \int_0^{\pi} \sqrt{2\left(1 + \cos 2 \cdot \frac{\varphi}{2}\right)} \, d\varphi = 2a \int_0^{\pi} \sqrt{2\left(1 + \cos 2 \cdot \frac{\varphi}{2}\right)} \, d\varphi$$

$$2a\int_0^\pi \sqrt{2.2\cos^2\frac{\varphi}{2}}\,d\varphi = 4a\int_0^\pi \left|\cos\frac{\varphi}{2}\right|\,d\varphi = 4a\int_0^\pi \cos\frac{\varphi}{2}\,d\varphi \qquad \left(v \wr \varphi \in [0,\pi] \to \frac{\varphi}{2} \in \left[0,\frac{\pi}{2}\right]\right) = \left(4a.\frac{\sin\frac{\varphi}{2}}{\frac{1}{2}}\right) = \left(8a\sin\frac{\varphi}{2}\right)|_{-}0^{\wedge}\pi = 8a.$$

133. Cd) $l: y = arcsin(e^{-x}); x \in [0, 1].$

G: Có
$$(arcsin x)' = \frac{1}{\sqrt{1-x^2}} \rightarrow y' = \frac{1}{\sqrt{1-(e^{-x})^2}}$$
. e^{-x} . $(-1) = \frac{-e^{-x}}{\sqrt{1-e^{-2x}}}$. Nên độ dài

$$l = \int_a^b \sqrt{1 + y'^2(x)} \, dx = \int_0^1 \sqrt{1 + \frac{e^{-2x}}{1 - e^{-2x}}} \, dx = \int_0^1 \sqrt{\frac{1}{1 - e^{-2x}}} \, dx = \int_0^1 \frac{dx}{\sqrt{1 - e^{-2x}}} = \int_0^1 \frac{e^{-2x} dx}{e^{-2x} \sqrt{1 - e^{-2x}}}$$

- Đặt
$$t = \sqrt{1 - e^{-2x}} \rightarrow t^2 = 1 - e^{-2x} \rightarrow e^{-2x} = 1 - t^2 \rightarrow e^{-2x}$$
. $(-2)dx = -2tdt \rightarrow e^{-2x}dx = tdt$. Đổi cận nên

$$l = \int_0^{\sqrt{1-e^{-2}}} \frac{tdt}{(1-t^2).t} = \int_0^{\sqrt{1-e^{-2}}} \frac{dt}{1-t^2} = \int_0^{\sqrt{1-e^{-2}}} \frac{dt}{(1-t).(1+t)} = \int_0^{\sqrt{1-e^{-2}}} \frac{(1-t)+(1+t)}{(1-t)(1+t)} \cdot \frac{1}{2} dt = \frac{1}{2} \cdot \int_0^{\sqrt{1-e^{-2}}} \left(\frac{1}{1-t} + \frac{1}{1+t}\right) dt = \frac{1}{2} \cdot \left(\frac{\ln|1-t|}{-1} + \ln|1+t|\right) = \cdots$$

134.
$$l: y = ln(\cos x); x \in \left[0; \frac{\pi}{3}\right].$$

G: Có
$$y' = \frac{1}{\cos x}$$
. $(-\sin x) = -\tan x$; $x \in \left[0; \frac{\pi}{3}\right]$. Nên độ dài

$$l = \int_{a}^{b} \sqrt{1 + y'^{2}(x)} \, dx = \int_{0}^{\frac{\pi}{3}} \sqrt{1 + \tan^{2}x} \, dx = \int_{0}^{\frac{\pi}{3}} \frac{1}{\cos x} \, dx = \ln\left|\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| \, \Big|_{0}^{\frac{\pi}{3}}$$

$$= \cdots \left(v^{2} \int \frac{dx}{\sin x} = \ln\left|\tan\frac{x}{2}\right| + C \to \int \frac{dx}{\cos x} = \int \frac{dx}{\sin\left(x + \frac{\pi}{2}\right)} = \ln\left|\tan\frac{x + \frac{\pi}{2}}{2}\right|$$

$$= \cdots \right)$$

Cách 2. Xét
$$I = \int_0^{\frac{\pi}{3}} \frac{1}{\cos x} dx = \int \frac{\cos x dx}{\cos^2 x} = \int \frac{\cos x dx}{1 - \sin^2 x}$$

Đặt
$$t = \sin x \rightarrow dt = \cos t dt$$
. Đổi cận nên

$$I = \int_0^{\frac{\sqrt{3}}{2}} \frac{dt}{1-t^2} = \int_0^{\frac{\sqrt{3}}{2}} \frac{dt}{(1-t).(1+t)} = \int_0^{\frac{\sqrt{3}}{2}} \frac{(1-t)+(1+t)}{(1-t).(1+t)} \cdot \frac{dt}{2} = \frac{1}{2} \cdot \int_0^{\frac{\sqrt{3}}{2}} \left(\frac{1}{1-t} + \frac{1}{1+t}\right) dt = \cdots$$

- Nếu $r=r(\varphi); \varphi \in [a,b] o$ Độ dài

$$l=\int_a^b \sqrt{r^2+r'^2}d\varphi.$$

- Nếu
$$l: r = r(\varphi); \ \varphi \in [a, b] \rightarrow \text{độ dài } l = \int_a^b \sqrt{r^2 + r'^2} d\varphi.$$

* Tọa độ cực. Trong mp (Oxy), cho điểm
$$M(x,y)$$
. Đặt $\begin{cases} r = OM \\ \varphi = (\widehat{Ox,OM}) \end{cases} \to M(r,\varphi)$ gọi là tọa độ cực.

135. Ce)
$$r = 2\varphi$$
; $\varphi \in [0, 2\pi]$.

G: Có
$$r' = 2 \rightarrow$$
Độ dài $l = \int_{a}^{b} \sqrt{r^2 + r'^2} d\varphi = \int_{0}^{2\pi} \sqrt{4\varphi^2 + 4} d\varphi = 2$. $\int_{0}^{2\pi} \sqrt{\varphi^2 + 1} d\varphi$.

- Xét
$$I = \int_0^{2\pi} \sqrt{x^2 + 1} dx$$
. Dùng TPTP, được $I = \int u dv = uv - \int v du = \sqrt{x^2 + 1}$. $x - \int x d(\sqrt{x^2 + 1}) = x\sqrt{x^2 + 1} - \int x \cdot \frac{2x}{2\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1 - 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 + 1}} dx = x\sqrt{x^2 + 1} - \int \frac{x^2 + 1}{\sqrt{x^2 +$

$$\int \sqrt{x^2 + 1} dx + \int \frac{dx}{\sqrt{x^2 + 1}} = x\sqrt{x^2 + 1} - I + \ln |x + \sqrt{x^2 + 1}| \to I =$$

$$\frac{x}{2}\sqrt{x^2+1} + \frac{1}{2}\ln|x+\sqrt{x^2+1}| \quad \left(vi \int \frac{dx}{\sqrt{x^2+1}} = \ln|x+\sqrt{x^2+1}|\right)$$

Vậy
$$l = 2$$
. $I = (x.\sqrt{x^2 + 1} + ln |x + \sqrt{x^2 + 1}|)|_0^{2\pi} = \cdots$

- Cách 2. Xét
$$l=2$$
. $\int_0^{2\pi} \sqrt{\varphi^2+1} d\varphi$. Đặt $\varphi=1$. $tan\ t=tan\ t \to d\varphi=\frac{1}{cos^2t} dt$.

- Vì
$$1 + tan^2t = \frac{1}{cos^2t}$$
 nên đổi cận

$$- \text{Vì } 1 + tan^2t = \frac{1}{\cos^2t} \text{ nên đổi cận}$$

$$l = 2. \int_0^{arctan (2\pi)} \frac{1}{\cos t} \cdot \frac{1}{\cos^2t} dt = 2. \int_0^{arctan (2\pi)} \frac{1}{\cos^3t} dt = 2. \int_0^{arctan (2\pi)} \frac{\cos t}{\cos^4t} dt = 2. \int_0^{arctan (2\pi)} \frac{\cos t}{(1-\sin^2t)^2} dt = 2. \int_0^{arctan (2\pi)} \frac{\cos t}{\cos^4t} dt = 2. \int_0^{arctan (2\pi)} \frac{\cos t}{(1-\sin^2t)^2} dt = 2. \int_0^{arctan (2\pi)} \frac{\cos t}{\cos^4t} dt = 2. \int_0^{arctan (2\pi)} \frac{\cos t}{(1-\sin^2t)^2} dt = 2. \int_0^{arctan (2\pi)} \frac{\cos t}{\cos^4t} dt = 2. \int_0^{arctan (2\pi)} \frac{\cos^4t}{\cos^4t} dt =$$

$$\text{Dặt } u = \sin t \to du = \cos t \ dt. \ \text{Nên } l = 2. \int_0^{\sin{(\arctan{2\pi})}} \frac{du}{{(1-u^2)}^2} = 2. \int_0^{\sin{(\arctan{2\pi})}} \left(\frac{1}{(1-u).(1+u)}\right)^2 du = 0. \int_0^{\cos{(\arctan{2\pi})}} \left(\frac{1}{(1-u).(1+u)}\right)^2 d$$

$$2. \int_0^{\sin{(\arctan{2\pi})}} \left(\frac{(1-u)+(1+u)}{(1-u).(1+u)} \cdot \frac{1}{2}\right)^2 du = \frac{1}{2}. \int_0^{\sin{(\arctan{2\pi})}} \left(\frac{1}{1+u} + \frac{1}{1-u}\right)^2 du = \frac{1}{2}. \int_0^{\sin{(\arctan{2\pi})}} \left(\frac{1}{(1+u)^2} + \frac{1}{(1-u).(1+u)} + \frac{1}{(1-u)^2}\right) du = \frac{1}{2}. \int_0^{\sin{(\arctan{2\pi})}} \left(\frac{1}{(1+u)^2} + \frac{(1-u)+(1+u)}{(1-u).(1+u)} + \frac{1}{(1-u)^2}\right) du = \cdots$$

136. Tính
$$I = \int_1^{+\infty} \frac{x+5}{x(x^2+3)} dx$$
.

G: Tách

$$I = \int_{1}^{+\infty} \left(\frac{x}{x(x^2+3)} + \frac{5}{x(x^2+3)} \right) dx = \int_{1}^{+\infty} \frac{1}{x^2+3} dx + 5 \int_{1}^{+\infty} \frac{1}{x(x^2+3)} dx = \frac{1}{\sqrt{3}} \arctan \frac{x}{\sqrt{3}} + 5 \int_{1}^{+\infty} \frac{x}{x^2(x^2+3)} dx.$$

- Xét
$$J = \int_1^{+\infty} \frac{x}{x^2(x^2+3)} dx$$
. Đặt $t = x^2 \rightarrow dt = 2xdx \rightarrow xdx = \frac{dt}{2}$. Đổi cận nên

$$J = \int_{1}^{+\infty} \frac{dt}{2t(t+3)} = \frac{1}{2} \cdot \int_{1}^{+\infty} \frac{(t+3)-t}{t(t+3)} dt = \frac{1}{2} \cdot \int_{1}^{+\infty} \left(\frac{1}{t} - \frac{1}{t+3}\right) dt = \cdots$$

$$J = \int_{1}^{+\infty} \frac{dt}{2t(t+3)} = \frac{1}{2} \cdot \int_{1}^{+\infty} \frac{(t+3)-t}{t\cdot(t+3)} dt = \frac{1}{2} \cdot \int_{1}^{+\infty} \left(\frac{1}{t} - \frac{1}{t+3}\right) dt = \cdots$$
- Tính độ dài: Nếu
$$\begin{cases} x = x(t) \\ y = y(t); \ t \in [a, b] \end{cases} \to l = \int_{a}^{b} \sqrt{x'^{2}(t) + y'^{2}(t)} dt.$$

- Nếu
$$y = y(x)$$
; $x \in [a, b] \to l = \int_a^b \sqrt{1 + y'^2(x)} dx$.

- Nếu
$$x = x(y) \to l = \int_a^b \sqrt{1 + x'^2(y)} \, dy$$
.

- Nếu
$$r = r(\varphi)$$
; $\varphi \in [a, b] \rightarrow l = \int_a^b \sqrt{r^2 + r'^2} d\varphi$.

2. Tính diện tích hình phẳng

- Tính diện tích: Nếu
$$y = f(x) \ge y = g(x)$$
; $x \in [a, b] \rightarrow$

$$S{y = f(x); y = g(x)} = \int_a^b [f(x) - g(x)]dx.$$

- Nếu
$$x = f_1(y) \ge x = f_2(y)$$
; $y \in [c, d] \rightarrow$ diện tích

$$S\{x = f_1(y); \ x = f_2(y)\} = \int_{c}^{d} [f_1(y) - f_2(y)] dy.$$

- Và nếu
$$\begin{cases} x = x(t) \\ y = y(t); \ t \in [a, b] \end{cases}$$
 \rightarrow diện tích $S = \int_a^b |y(t)| \ x'(t) |dt = \frac{1}{2} \cdot \int_a^b r^2(\varphi) d\varphi$.

137. C2. b) Tính diện tích
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}; 0 \le t \le 2\pi; 0x.$$

G: Có
$$x'(t) = a(1 - \cos t) = y(t) \rightarrow \text{diện tích}$$

$$S = \int_a^b |y(t).x'(t)| dt = \int_0^{2\pi} |a(1-\cos t).a(1-\cos t)| dt = a^2 \int_0^{2\pi} (1-\cos t)^2 dt = a^2 \int_0^{2\pi} (1-\cos t)^2$$

$$2\cos t + \cos^2 t)dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(\frac{2 - 4\cos t + 1 + \cos 2t}{2}\right) dt = \frac{a^2}{2} \int_0^{2\pi} (3 - \cos t + \cos t) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2}\right) dt = a^2 \int_0^{2\pi} \left(1 -$$

$$4\cos t + \cos 2t)dt = \frac{a^2}{2} \left(3t - 4\sin t + \frac{\sin 2t}{2}\right)|_0^{2\pi} = 3\pi a^2.$$

138. C2. a) (E):
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

G: Có
$$(E)$$
: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1 \rightarrow$

$$\begin{cases} \frac{x}{a} = \cos t \\ \frac{y}{b} = \sin t \end{cases} \Rightarrow \begin{cases} x = a \cos t \\ y = b \sin t; \ t \in [0, 2\pi]. \end{cases}$$

- NX: Vì ĐTHS nhận Ox và Oy là các trục đối xứng nên ta chỉ cần tính diện tích phần đồ thị nằm trong góc xOy rồi nhân với 4. Nên góc $t=(O\widehat{x,OM})\in\left[0,\frac{\pi}{2}\right]$; $x=a\cos t\to x'(t)=a(-\sin t)\to$ diện tích $S=\int_a^b|y(t).x'(t)|dt=4.S_1=4.\int_0^{\frac{\pi}{2}}|b\sin t.a(-\sin t)|dt=4ab.\int_0^{\frac{\pi}{2}}\sin^2tdt=4ab.\int_0^{\frac{\pi}{2}}\frac{1-\cos 2t}{2}dt=2ab.\int_0^{\frac{\pi}{2}}(1-\cos 2t)dt=2ab.\left(t-\frac{\sin 2t}{2}\right)|_0^{\Lambda}\pi/2=2ab.\frac{\pi}{2}=\pi ab.$

139. c) Tính diện tích $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$; a > 0. G: Có $\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t; \ t \in [0, 2\pi]. \end{cases}$

 $(y = a \sin^3 t; \ t \in [0, 2\pi].$ - NX: Vì ĐTHS nhận Ox và Oy là các trục đối xứng nên ta chỉ cần tính diện tích phần đồ thị nằm trong góc xOy rồi nhân với 4. Nên $t = (ox, oM) \in \left[0, \frac{\pi}{2}\right]; x = a \cos^3 t \rightarrow x' = a.3 \cos^2 t. (-\sin t) = -3a \cos^2 t \sin t.$ Vậy diện tích $S = 4. S_1 = 4. \int_0^{\frac{\pi}{2}} |y(t).x'(t)| dt = 4. \int_0^{\frac{\pi}{2}} a \sin^3 t. 3a \cos^2 t \sin t dt = 12a^2. \int_0^{\frac{\pi}{2}} \sin^4 t \cos^2 t dt = 12a^2 \int_0^{\frac{\pi}{2}} (\sin^2 t)^2. \cos^2 t dt = 12a^2 \int_0^{\frac{\pi}{2}} \left(\frac{1-\cos 2t}{2}\right)^2. \frac{1+\cos 2t}{2} dt = \frac{3a^2}{2} \int_0^{\frac{\pi}{2}} (1-\cos 2t)^2. (1+\cos 2t) dt = \frac{3a^2}{2} \int_0^{\frac{\pi}{2}} (1-2\cos 2t+\cos 2t). (1+\cos 2t) dt = \frac{3a^2}{2} \int_0^{\frac{\pi}{2}} \left(1-2\cos 2t+\cos 2t\right). (1+\cos 2t) dt = \frac{3a^2}{4}. \int_0^{\frac{\pi}{2}} (3-4\cos 2t+\cos 4t). (1-\cos 2t) dt = \frac{3a^2}{4}. \int_0^{\frac{\pi}{2}} 3.1 dt = \frac{9\pi a^2}{8} \left(v \right) \int_0^{\frac{\pi}{2}} \cos 2t \ dt = \left(\frac{\sin 2t}{2}\right) \Big|_0^{\frac{\pi}{2}} = 0 \right)$

- Diện tích $S = \int_a^b |y(t).x'(t)| dt = \frac{1}{2} \int_a^b r^2(\varphi) d\varphi$.

1. C2. d) Tính S:
$$r = a$$
. $(1 + \cos \varphi)$; $0 \le \varphi \le 2\pi$; $a > 0$.

G: Co dien tich
$$S = \frac{1}{2} \cdot \int_{a}^{b} r^{2}(\varphi) d\varphi = \frac{1}{2} \cdot \int_{0}^{2\pi} a^{2} (1 + \cos \varphi)^{2} d\varphi = \frac{a^{2}}{2} \cdot \int_{0}^{2\pi} (1 + 2\cos \varphi + \cos^{2}\varphi) d\varphi = \frac{a^{2}}{2} \cdot \int_{0}^{2\pi} \left(1 + 2\cos \varphi + \cos^{2}\varphi\right) d\varphi = \frac{a^{2}}{2} \cdot \int_{0}^{2\pi} \left(1 + 2\cos \varphi + \cos^{2}\varphi\right) d\varphi = \frac{a^{2}}{2} \cdot \int_{0}^{2\pi} \frac{3+4\cos \varphi + \cos 2\varphi}{2} d\varphi = \frac{a^{2}}{2} \cdot \int_{0}^{2\pi} (3 + \cos \varphi + \cos 2\varphi) d\varphi = \frac{a^{2}}{4} \cdot \left(3\varphi + 4\sin \varphi + \frac{\sin 2\varphi}{2}\right) |_{-}0^{2} = \frac{3a^{2}\pi}{2}.$$

face/ baitap giaitich utc

2. Tính diện tích $S: r = 2 - \sin \varphi$; $\varphi \in [0, 2\pi]$.

Giải: Có diện tích

$$S = \frac{1}{2} \cdot \int_{a}^{b} r^{2}(\varphi) d\varphi = \frac{1}{2} \cdot \int_{0}^{2\pi} (2 - \sin \varphi)^{2} d\varphi = \frac{1}{2} \cdot \int_{0}^{2\pi} (4 - 4 \sin \varphi + \sin^{2} \varphi) d\varphi = \frac{1}{2} \cdot \int_{0}^{2\pi} \left(4 - 4 \sin \varphi + \sin^{2} \varphi \right) d\varphi = \frac{1}{2} \cdot \int_{0}^{2\pi} \left(\frac{8 - 8 \sin \varphi + 1 - \cos 2\varphi}{2} \right) d\varphi = \frac{1}{4} \cdot \int_{0}^{2\pi} (9 - 8 \sin \varphi - \cos 2\varphi) d\varphi = \frac{1}{4} \cdot \left(9\varphi + 8 \cos \varphi - \frac{\sin 2\varphi}{2} \right) \Big|_{0}^{2\pi} = \frac{9\pi}{2}.$$

- Chú ý: Diện tích
$$S = \int_c^d |f_1(y) - f_2(y)| dy$$
.

3. C2. e) S:
$$y = x^2$$
; $y = 4x^2$; $y = 4$.

$$\frac{f(x)=x^2}{f(x)=4x^2}$$

$$\frac{f(x)=4}{f(x)=4}$$

Cách 2. Tính theo biến x

$$\Rightarrow S = 2.S_1 = 2.\left(\int_0^1 (4x^2 - x^2)dx + \int_1^2 (4 - x^2)dx\right) = \cdots$$
of $(x^2 + y^2)^2 = a^2(x^2 - y^2)$.

4. f)
$$(x^2 + y^2)^2 = a^2(x^2 - y^2)$$
.
G: Đặt $\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases}$; $\varphi \in [0, 2\pi] \rightarrow r^4 = a^2 \cdot r^2 \cos 2\varphi \rightarrow r^2 = a^2 \cos 2\varphi \geq 0 \rightarrow \cos 2\varphi \geq 0$.

NX: Đồ thị nhận Ox, Oy là các trục đối xứng nên ta chỉ tính S phần nằm trong góc Oxy rồi nhân 4. Nên $\varphi \in \left[0; \frac{\pi}{2}\right].$

Nhưng vì $r^2 = a^2 \cos 2\varphi \ge 0 \rightarrow \cos 2\varphi \ge 0 \rightarrow 2\varphi \le \frac{\pi}{2} \rightarrow 0 \le \varphi \le \frac{\pi}{4}$.

Nên
$$S = 4S_1 = 4 \cdot \frac{1}{2} \int_a^b r^2 d\varphi = 2 \int_0^{\frac{\pi}{4}} a^2 \cos 2\varphi d\varphi = 2a^2 \cdot \frac{\sin 2\varphi}{2} = 4a^2 \cdot \sin 2\varphi \Big|_0^{\frac{\pi}{4}} = 4a^2 \cdot \sin 2\varphi \Big|_0^{\frac{\pi}{4}}$$

5. g)
$$y = -\sqrt{4 - x^2}$$
; $x^2 + 3y = 0$.

$$\frac{f(x)=-(4-x^2)^{(1/2)}}{f(x)=-x^2/3}$$

G:

$$y = -\frac{x^{2}}{3} \to -\sqrt{4 - x^{2}} = -\frac{x^{2}}{3} \to \sqrt{4 - x^{2}} = \frac{x^{2}}{3} \to x^{2} = 3 \to x = \pm\sqrt{3}.$$

$$-\text{Vi} - \frac{x^{2}}{3} \ge -\sqrt{4 - x^{2}} \ \forall x \in [-\sqrt{3}, \sqrt{3}] \text{ nên}$$

$$S = \int_{a}^{b} |f(x) - g(x)| dx = \int_{-\sqrt{3}}^{\sqrt{3}} \left| \left(-\frac{x^{2}}{3} \right) - \left(-\sqrt{4 - x^{2}} \right) \right| dx = \left| \int_{-\sqrt{3}}^{\sqrt{3}} \left(-\frac{x^{2}}{3} + \sqrt{4 - x^{2}} \right) dx \right| = \left| \left(-\frac{x^{3}}{9} \right) \right|_{-\sqrt{3}}^{\sqrt{3}} + \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{4 - x^{2}} dx.$$

- Xét
$$J = \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{4 - x^2} dx$$
. Đặt $x = a \sin t = 2 \sin t \rightarrow dx = 2 \cos t dt$. Đổi cận nên

6. Tính
$$S = S\{y = x^2; y = x; y = 2x\}$$
.

GPT
$$x^2 = x \to x = 1$$
. Và $x^2 = 2x \to x = 2$.

Tách

$$S=S_1+S_2=S_1\{y=2x;y=x;0\leq x\leq 1\}+S_2\{y=2x;y=x^2;1\leq x\leq 2\}=\int_0^1(2x-x)dx+\int_1^2(2x-x^2)\ dx=\left(\frac{x^2}{2}\right)|_0^1+\left(x^2-\frac{x^3}{3}\right)|_1^2=\frac{1}{2}+\frac{2}{3}=\frac{7}{6}.$$
 facebook bai tap giai tich utc chieu th3 ca4 p303

7. h)
$$y = |x^2 - 1|$$
; $y = |x| + 5$.

- Tính độ dài: Nếu
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \rightarrow l = \int_a^b \sqrt{x'^2(t) + y'^2(t)} dt$$
.

- Nếu
$$y = y(x) \rightarrow l = \int_a^b \sqrt{1 + y'^2(x)} \, dx$$
.

- Nếu
$$r = r(\varphi) \rightarrow l = \int_a^b \sqrt{r^2 + r'^2} d\varphi$$
.

- Tính diện tích

$$S = \int_{a}^{b} |f(x) - g(x)| dx = \int_{c}^{d} |f_{1}(y) - f_{2}(y)| dy$$
$$= \int_{a}^{b} |y(t).x'(t)| dt = \frac{1}{2} \int_{a}^{b} r^{2}(\varphi) d\varphi.$$

3. Tính thể tích của vật thể khi quay hình phẳng

- Tính thể tích quay quanh Ox. Nếu $y = f(x) \ge 0 \ \forall x \in [a, b]$ thì

$$V_{Ox}{y = f(x); Ox; x = a; x = b} = \pi. \int_a^b f^2(x) dx.$$

- Nếu $y = f(x) \ge y = g(x) \ge 0 \ \forall x \in [a, b]$ thì

$$V_{0x}{y = f(x); y = g(x)} = \pi. \int_a^b [f^2(x) - g^2(x)] dx.$$

8. Tính $V_{0x}{y = 6x - x^2; y = 2x}$.

Ta có
$$6x - x^2 = 2x \rightarrow \begin{bmatrix} x = 0 \to y = 0 \\ x = 4 \to y = 8 \end{bmatrix}$$

G: Ta có $6x - x^2 = 2x \rightarrow \begin{bmatrix} x = 0 \rightarrow y = 0 \\ x = 4 \rightarrow y = 8 \end{bmatrix}$ - Vẽ hình: $y = 6x - x^2 \rightarrow y' = 6 - 2x \rightarrow x = 3 \rightarrow y = 9$. Vì $6x - x^2 \ge 2x \ \forall x \in [0, 4]$ nên $V_{0x} = \pi \cdot \int_{a}^{b} [f^{2}(x) - g^{2}(x)] dx = \pi \cdot \int_{0}^{4} [(6x - x^{2})^{2} - 4x^{2}] dx = \pi \cdot \int_{0}^{4} (36x^{2} - 12x^{3} + x^{4} - 4x^{2}) dx = \pi \cdot \int_{0}^{4} (32x^{2} - 12x^{3} + x^{4}) dx = \left(\frac{32x^{3}}{3} - 3x^{4} + \frac{x^{5}}{5}\right) \Big|_{0}^{4} = \frac{1792\pi}{15}.$

9. C3. a) Tính thể tích $V_{0x}\{y=2x-x^2;y=0\}$ quay quanh Ox.

Có
$$2x - x^2 = 0 \rightarrow x = 0$$
; = 2.

- Vẽ hình: $y = 2x - x^2 \rightarrow y' = 2 - 2x = 0 \rightarrow x = 1 \rightarrow y = 1 \rightarrow \text{Đinh } I(1, 1)$. Vì $2x - x^2 \ge 0 \ \forall x \in [0, 2]$

$$V_{0x} = \pi \cdot \int_a^b \left| f^2(x) - g^2(x) \right| dx = \pi \int_0^2 \left[(2x - x^2)^2 - \mathbf{0}^2 \right] dx = \pi \int_0^2 (4x^2 - 4x^3 + x^4) dx = \pi \left(\frac{4x^3}{3} - x^4 + \frac{x^5}{5} \right) \left| \mathbf{0}^2 \right| dx = \pi \int_0^2 \left[(2x - x^2)^2 - \mathbf{0}^2 \right] dx = \pi \int_0^2 (4x^2 - 4x^3 + x^4) dx = \pi \left(\frac{4x^3}{3} - x^4 + \frac{x^5}{5} \right) \left| \mathbf{0}^2 \right| dx = \pi \int_0^2 \left[(2x - x^2)^2 - \mathbf{0}^2 \right] dx = \pi \int_0^2 \left[(2x - x^2) - \mathbf{0}^2 \right] dx = \pi \int_0^2 \left[(2x - x^2) - \mathbf{0}^2 \right] dx = \pi \int_0^2 \left[(2x - x^2) - \mathbf{0}^2 \right] dx = \pi \int_0^2 \left[(2x - x^2) -$$

- Chú ý. Nếu $\begin{cases} x = x(t) \\ y = y(t) \ge 0; \ t \in [a, b] \end{cases}$ thì thể tích $V_{0x} = \pi. \int_a^b |y^2(t). x'(t)| dt$.

10. C3. b) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$; a > 0 quanh trục Ox.

G: Tham số hóa có
$$\cos^2 t + \sin^2 t = 1$$
, nên $\begin{cases} x = a\cos^3 t \\ y = a\sin^3 t \end{cases}$. - Vì $y \ge 0 \rightarrow \sin t \ge 0 \rightarrow t \in [0,\pi]; \ x = a\cos^3 t \rightarrow x'(t) = a.3\cos^2 t. (-\sin t)$. Nên thể tích $V_{0x} = \pi. \int_a^b \left| y^2(t).x'(t) \right| dt = \pi. \int_0^\pi \left| a^2 \sin^6 t. 3a\cos^2 t \left(-\sin t \right) \right| dt = 3\pi a^3. \int_0^\pi (1 - \cos^2 t)^3 \cos^2 t \cdot \sin t \ dt$. - Đặt $u = \cos t \rightarrow du = -\sin t \ dt \rightarrow \sin t \ dt = -du$. Đổi cân nên

- Bat $u = \cos t \to au = -\sin t$ at $\to \sin t$ at = -au. Bot can non $V_{0x} = 3\pi a^3$. $\int_{1}^{-1} (1 - u^2)^3$. u^2 . $(-du) = 3\pi a^3$. $\int_{-1}^{1} (1 - 3u^2 + 3u^4 - u^6)$. $u^2 du = 3\pi a^3$. $\int_{-1}^{1} (u^2 - 3u^4 + 3u^6 - u^8) du = 3\pi a^3$. $\left(\frac{u^3}{3} - u^4 + \frac{3u^7}{7} - \frac{u^9}{9}\right)|_{-1}^{1} = \cdots$

11. C3. c) $x^2 + (y-2)^2 = 1$ quay quanh Ox.

(3)

G: Ta gọi là hình vành khuyên. Có
$$(y-2)^2 = 1 - x^2 \rightarrow y - 2 = \pm \sqrt{1-x^2} \rightarrow \begin{bmatrix} y = 2 + \sqrt{1-x^2} = f(x) \\ y = 2 - \sqrt{1-x^2} = g(x) \end{bmatrix}; x \in [-1,1].$$
 Nên thể tích
$$V_{0x} = \pi. \int_a^b \left| f^2(x) - g^2(x) \right| dx = \pi. \int_{-1}^1 \left[\left(2 + \sqrt{1-x^2} \right)^2 - \left(2 - \sqrt{1-x^2} \right)^2 \right] dx.$$
 - Vì $(a+b)^2 - (a-b)^2 = 4ab$ nên
$$V_{0x} = \pi. \int_{-1}^1 4.2. \sqrt{1-x^2} dx = 8\pi. \int_{-1}^1 \sqrt{1-x^2} dx.$$
 - Đặt $x = a \sin t = \sin t \rightarrow dx = \cos t dt.$ Đổi cận nên
$$V_{0x} = 8\pi. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t. \cos t dt = 8\pi. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t dt = 8\pi. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos 2t}{2} dt = 4\pi. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + \cos 2t) dt = 4\pi. \left(t + \frac{\sin 2t}{2} \right) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 4\pi. \pi = 4\pi^2.$$

- Quay xung quanh trục Oy:
- Công thức: Nếu $y = f(x) \ge 0 \ \forall x \in [a, b] \rightarrow \text{thể tích}$ $V_{0y}\{y = f(x); x = a; x = b; 0x\} = 2\pi. \int_a^b x f(x) dx.$

12. Tính
$$V_{Oy}{y = 5x - x^2; Ox}$$
.

 $f(x)=5x-x^2$

G:
$$C6 5x - x^2 = 0 \rightarrow x = 0; x = 5.$$

- Vẽ: $y = 5x - x^2 \rightarrow y' = 5 - 2x = 0 \rightarrow x = \frac{5}{2} \rightarrow y = \frac{25}{4}$. Nên $V_{Oy} = 2\pi. \int_a^b x f(x) dx = 2\pi. \int_0^5 x (5x - x^2) dx = 2\pi. \int_0^5 (5x^2 - x^3) dx = 2\pi. \left(\frac{5x^3}{3} - \frac{x^4}{4}\right) \Big|_0^5 = \frac{625\pi}{6}$.

- Chú ý: Thể tích

$$V_{0y}{x = f_1(y); x = f_2(y)} = \pi. \int_{c}^{d} [f_1^2(y) - f_2^2(y)] dy.$$

13. C3. f) $y^2 + x = 9$; x = 0 quay quanh trục Oy.

 $x(t)=9-t^2, y(t)=t$ x(t)=0, y(t)=t

G:
$$C6 \ y^2 + x = 9 \rightarrow x = 9 - y^2 = 0 \rightarrow y = \pm 3.$$
 - Vē: $x = 9 - y^2 \rightarrow x' = -2y = 0 \rightarrow y = 0 \rightarrow x = 9.$ Vì $x = 9 - y^2 \geq x = 0 \ \forall y \in [-3, 3]$ nên $V_{0y} = \pi. \int_c^d \left[f_1^2(y) - f_2^2(y) \right] dy = \pi. \int_{-3}^3 [(9 - y^2)^2 - 0^2] dy = \pi. \int_{-3}^3 (81 - 18y^2 + y^4) dy = \pi. \left(81 - 6y^3 + \frac{y^5}{5} \right) |_{-3}^3 = \frac{1296\pi}{5}.$ 14. d) $y = x$; $x = 0$; $y = \sqrt{1 - x^2}$ quanh Oy.

f(x)=x $f(x)=(1-x^2)^{(1/2)}$ x(t)=0, y(t)=t

G:
$$\frac{1}{2} \rightarrow x = \frac{\sqrt{2}}{2} = y.$$

Có
$$x = \sqrt{1 - x^2} \to x^2 = 1 - x^2 \to x^2 =$$

Và $y = x \to x = y = f_1(y);$ $y = \sqrt{1 - x^2} \to y^2 = 1 - x^2 \to x^2 + y^2 = 1 \to x^2 = 1 - y^2 \to x = \sqrt{1 - y^2} = f_2(y).$

Nên

f(x)=x $f(x)=(1-x^2)^{(1/2)}$ x(t)=0, y(t)=t $f(x)=1/2^{(1/2)}$

$$V_{0y} = V_1(H_1) + V_2(H_2) = \pi. \int_0^{\frac{\sqrt{2}}{2}} f_1^2(y) dy + \pi. \int_{\frac{\sqrt{2}}{2}}^1 f_2^2(y) dy = \pi. \int_0^{\frac{\sqrt{2}}{2}} (y)^2 dy + \pi. \int_{\frac{\sqrt{2}}{2}}^1 \left(\sqrt{1-y^2} \right)^2 dy = \pi. \int_0^{\frac{\sqrt{2}}{2}} y^2 dy + \pi. \int_{\frac{\sqrt{2}}{2}}^1 (1-y^2) dy = \pi. \int_0^{\frac{\sqrt{2}}{2}} y^2 dy + \pi. \int_{\frac{\sqrt{2}}{2}}^1 (1-y^2) dy = \pi. \int_0^{\frac{\sqrt{2}}{2}} y^2 dy + \pi. \int_{\frac{\sqrt{2}}{2}}^1 (1-y^2) dy = \pi. \int_0^{\frac{\sqrt{2}}{2}} y^2 dy + \pi. \int_{\frac{\sqrt{2}}{2}}^1 (1-y^2) dy = \pi. \int_0^{\frac{\sqrt{2}}{2}} y^2 dy + \pi. \int_{\frac{\sqrt{2}}{2}}^1 (1-y^2) dy = \pi. \int_0^{\frac{\sqrt{2}}{2}} y^2 dy + \pi. \int_{\frac{\sqrt{2}}{2}}^1 (1-y^2) dy = \pi. \int_0^{\frac{\sqrt{2}}{2}} y^2 dy + \pi. \int_0^{\frac{\sqrt{2}}{2}} y$$

- Tính thể tích. Nếu f(x); g(x); $f_1(y)$; $f_2(y) \ge 0 \to V = \pi \int_a^b \left| f^2(x) - g^2(x) \right| dx$ $= \pi \int_a^d \left| f_1^2(y) - f_2^2(y) \right| dy = \pi \int_a^b \left| y^2(t) . x'(t) \right| dt.$

$$V_{Oy}{y = f(x); x = a; x = b; Ox} = 2\pi . \int_a^b x f(x) dx.$$

- Tính độ dài: Nếu $\begin{cases} x=x(t) \\ y=y(t) \end{cases} o l = \int_a^b \sqrt{x'^2(t) + y'^2(t)} dt$.
- Nếu $y = y(x) \to l = \int_a^b \sqrt{1 + y'^2(x)} \, dx$.
- Nếu $r = r(\varphi) \rightarrow l = \int_a^b \sqrt{r^2 + r'^2} d\varphi$.
- Tính diện tích:

$$S = \int_{a}^{b} |f(x) - g(x)| dx = \int_{c}^{d} |f_{1}(y) - f_{2}(y)| dy$$
$$= \int_{a}^{b} |y(t).x'(t)| dt = \frac{1}{2} \int_{a}^{b} r^{2}(\varphi) d\varphi.$$

KIỂM TRA ĐIỀU KIỆN (50') TUẦN SAU

Ca 1: SBD 1 đến 34: 7h đến 8h.

Ca 2. Còn lại. 8h đến 9h.

Đề có 4 câu.

Câu 1. So sánh VCB or Xét tính liên tục (= Lopital)

Câu 2. Tính đạo hàm = qui tắc và = ĐN (= Lopital)

Câu 3. Tính tích phân suy rộng (= đổi biến, TPTP) or xét sự hội tụ của tích phân

Câu 4. Tính độ dài, diện tích or V

KIỂM TRA ĐIỀU KIỆN (50') TUẦN SAU

Ca 1: SBD 1 đến 24: 9h 30 đến 10h 30.

Ca 2. Còn lại. 10h 30 đến 11h 30.

Đề có 4 câu.

Câu 1. So sánh VCB or Xét tính liên tục (= Lopital)

Câu 2. Tính đạo hàm = qui tắc và = \overrightarrow{DN} (= Lopital)

Câu 3. Tính tích phân suy rộng (= đổi biến, TPTP) or xét sự hội tụ của tích phân

Câu 4. Tính độ dài, diện tích or V

Câu 5.

KIỂM TRA ĐIỀU KIỆN (50') TUẦN SAU

Ca 1: SBD 1 đến 28: 3h 20 đến 4h 20.

Ca 2. Còn lại. 4h 20 đến 5h 20.

Đề có 4 câu.

Câu 1. So sánh VCB or Xét tính liên tục (= Lopital)

Câu 2. Tính đạo hàm = qui tắc và = ĐN (= Lopital)

Câu 3. Tính tích phân suy rộng (= đổi biến số, TPTP) or xét sự hội tụ của tích phân suy rộng

Câu 4. Tính độ dài, diện tích or V

Câu 5.

KIỂM TRA ĐIỀU KIỆN (50') TUẦN SAU

Ca 1: SBD 1 đến 31: 7h đến 8h.

Ca 2. Còn lai. 8h đến 9h.

Đề có 4 câu.

Câu 1. So sánh VCB or Xét tính liên tục (= Lopital)

Câu 2. Tính đạo hàm = qui tắc và = ĐN (= Lopital)

Câu 3. Tính tích phân suy rông (= đổi biến số, TPTP) or xét sự hội tụ của tích phân suy rông

Câu 4. Tính độ dài, diện tích or V

Câu 5.

CHƯƠNG IV CHUÔI BÀI 1 CHUÕI SỐ

1. Định nghĩa

- ĐN: Cho dãy số u_n ; $n \ge 1$. Chuỗi số là tổng vô hạn

$$\sum_{n\geq 1} u_n = u_1 + u_2 + \dots + u_n + \dots$$

 $\sum_{n\geq 1}u_n=u_1+u_2+\cdots+u_n+\cdots$ - Số u_n gọi là số hạng tổng quát. Đặt $S_n=u_1+u_2+\cdots+u_n$ là tổng của n số hạng đầu tiên thì S_n gọi là tổng riêng thứ n. Khi đó, chuỗi số

$$\sum_{n>1}u_n=lim_{n\to\infty}S_n=S.$$

-ĐN: Nếu chuỗi $\sum_{n\geq 1} u_n = \lim_{n\to\infty} S_n = S < \infty$ hữu hạn thì chuỗi $\sum_{n\geq 1} u_n$ gọi là hội tụ. Ngược lại, nếu chuỗi $\sum_{n\geq 1} u_n = \lim_{n\to\infty} S_n = S = \infty$ vô hạn thì chuỗi $\sum_{n\geq 1} u_n$ gọi là phân kỳ. 16. VD1. Xét chuỗi $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \cdots + \frac{1}{n.(n+1)} + \cdots$.

- Ta có tổng riêng $S_n = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n.(n+1)} = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1} \to 1 - \frac$

0 = 1

khi $n \to \infty$. Nên chuỗi $\sum_{n \ge 1} u_n = 1 < \infty$ là hội tụ.

- Chú ý:
$$1 + q + q^2 + \dots + q^{n-1} = \frac{1-q^n}{1-q}$$
. $(q \neq 1)$

- Nếu |q|<1 $ightarrow lim\ q^n=0$; nếu |q|>1 $ightarrow lim\ q^n=\infty$.

17. VD2. Xét chuỗi $1 + q + q^2 + \cdots + q^{n-1} + \cdots$ $(q \neq 1)$

Ta có tổng riêng $S_n = 1 + q + q^2 + \dots + q^{n-1} = \frac{1-q^n}{1-q}$.

- Nếu |q| < 1 thì $S_n = \frac{1-q^n}{1-q} \to \frac{1-0}{1-q} = \frac{1}{1-q} < \infty$

khi $n \to \infty$. Nên chuỗi $\sum_{n \ge 1} u_n = \frac{1}{1-n}$ là hội tụ.

- Nếu |q| > 1 thì $S_n = \frac{1-q^n}{1-q} \rightarrow \frac{1-\infty}{1-q} = \infty$

khi $n \to \infty$. Nên chuỗi $\sum_{n>1} u_n = \infty$ là phân kì.

2. Tiêu chuẩn hội tụ

- Chuỗi cơ bản: Xét chuỗi $\sum_{n\geq 1}\frac{1}{n^a}$. Nếu mũ a>1 ightarrow Chuỗi là h tụ.

Nếu $a \le 1$ → Chuỗi là ph kỳ.

- Tiêu chuẩn tương đương. Cho 2 chuỗi dương $u_n \geq 0$; $v_n \geq 0$. Nếu $u_n \sim v_n$ khi $n \to \infty$ (tức $\lim_{n \to \infty} \frac{u_n}{v} = 0$

1) thì 2 chuỗi $\sum_{n\geq 1} u_n$; $\sum_{n\geq 1} v_n$ là cùng hội tụ hoặc cùng phân kỳ.

- Quy tắc ngắt bỏ VCL bậc thấp hơn: ... chỉ giữ lại bậc cao nhất.

- Xét sự hội tụ của chuỗi số:

18.
$$\sum_{n\geq 1} \frac{n^3 + n + \sin n}{n^5 + n^2 + \cos n}$$
.

G: Vì khi $n \to \infty$, ta có $-1 \le \sin n$; $\cos n \le 1 < n = n^1$, nên theo quy tắc ngắt bỏ VCL bậc thấp hơn, nên khi $n \to +\infty$, có

$$u_n = \frac{n^3 + n + \sin n}{n^5 + n^2 + \cos n} \sim \frac{n^3}{n^5} = \frac{1}{n^2}.$$

Vì mũ a=2>1 nên chuỗi $\sum_{n\geq 1}\frac{1}{n^2}$ là h tụ. Theo tiêu chuẩn tương đương, nên chuỗi $\sum_{n\geq 1}u_n$ là h tụ.

19. Xét sự h tụ của $\sum_{n\geq 1} \frac{n^5 - n + \sin n}{n^6 + 2n^2 + 3\cos n}$

G: Vì $-1 \le \sin n$; $\cos n \le 1 < n = n^1$, nên theo quy tắc ngắt bỏ VCL bậc thấp hơn, nên khi $n \to +\infty$, có

$$u_n = \frac{n^5 - n + \sin n}{n^6 + 2n^2 + 3\cos n} \sim \frac{n^5}{n^6} = \frac{1}{n} = \frac{1}{n^1}.$$

Vì mũ a=1 nên chuỗi $\sum_{n\geq 1}\frac{1}{n^1}$ là ph kì. Nên theo tiêu chuẩn tương đương, có chuỗi $\sum_{n\geq 1}u_n$ là ph kì.

20. Xét chuỗi $\sum_{n\geq 1} (\sqrt{n+3} - \sqrt{n+1})$.

G: Nhân và chia với liên họp, được
$$u_n = \sqrt{n+3} - \sqrt{n+1} = \frac{n+3-n-1}{\sqrt{n+3}+\sqrt{n+1}} = \frac{2}{\sqrt{n+3}+\sqrt{n+1}}$$
.

Ngắt bỏ VCL bậc thấp hơn, khi $n \to +\infty$, được $u_n \sim \frac{2}{\sqrt{n} + \sqrt{n}} = \frac{1}{1}$

- Vì mũ $a = \frac{1}{2} < 1 \rightarrow \sum_{n \ge 1} \frac{1}{n^{\frac{1}{2}}}$ là ph kì. Theo tiêu chuẩn tương đương, nên chuỗi $\sum_{n \ge 1} u_n$ cũng là ph kì.

21. Xét sự h tụ của $\sum_{n\geq 1} \frac{n^4+n+1}{n^7+n^2+n}$

G: Theo quy tắc ngắt bỏ VCL bậc thấp hơn, nên khi $n \to +\infty$, có

$$u_n = \frac{n^4 + n + 1}{n^7 + n^2 + n} \sim \frac{n^4}{n^7} = \frac{1}{n^3}.$$

- Vì mũ a=3>1 nên $\sum_{n\geq 1}\frac{1}{n^3}$ là h tụ. Theo tiêu chuẩn tương đương, nên chuỗi $\sum_{n\geq 1}u_n$ cũng h tụ.

22. B1. C1.
$$\sum_{n\geq 1} (\sqrt{n+2}-2.\sqrt{n+1}+\sqrt{n})$$

G: Có

$$u_{n} = \sqrt{n+2} - 2.\sqrt{n+1} + \sqrt{n} = \left(\sqrt{n+2} - \sqrt{n+1}\right) - \left(\sqrt{n+1} - \sqrt{n}\right) = \frac{n+2-(n+1)}{\sqrt{n+2} + \sqrt{n+1}} - \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+2} + \sqrt{n+1}} - \frac{1}{\sqrt{n+1} + \sqrt{n}} = \frac{(\sqrt{n+1} + \sqrt{n}) - (\sqrt{n+2} + \sqrt{n+1})}{(\sqrt{n+2} + \sqrt{n+1}) \cdot (\sqrt{n+1} + \sqrt{n})} = \frac{\sqrt{n} - \sqrt{n+2}}{(\sqrt{n+2} + \sqrt{n+1}) \cdot (\sqrt{n+1} + \sqrt{n})} = \frac{n-(n+2)}{(\sqrt{n+2} + \sqrt{n+1}) \cdot (\sqrt{n+1} + \sqrt{n})} = \frac{2}{(\sqrt{n+2} + \sqrt{n+1}) \cdot (\sqrt{n+1} + \sqrt{n})} = \frac{2}{(\sqrt$$

$$\frac{n - (n+2)}{(\sqrt{n+2} + \sqrt{n+1}). \ (\sqrt{n+1} + \sqrt{n}). \ (\sqrt{n} + \sqrt{n+2})} = -\frac{2}{(\sqrt{n} + \sqrt{n+2}). \ (\sqrt{n+2} + \sqrt{n+1}). \ (\sqrt{n+1} + \sqrt{n})}.$$
 Nên khi $n \to \infty$, thì ngắt bỏ VCL bậc thấp hơn được
$$u_n \sim -\frac{2}{(\sqrt{n} + \sqrt{n}). \ (\sqrt{n} + \sqrt{n}). \ (\sqrt{n} + \sqrt{n})} = -\frac{1}{4. \ n^{\frac{3}{2}}} = -\frac{1}{4}. \frac{1}{n^{\frac{3}{2}}}$$

- Vì mũ $a=\frac{3}{2}>1 \to -\frac{1}{4}$. $\sum_{n\geq 1}\frac{1}{\frac{3}{2}}<\infty$. Theo tiêu chuẩn tương đương, nên $\sum_{n\geq 1}u_n<\infty$ cũng h tụ.

23. C5.
$$\sum_{n\geq 1} \frac{1}{n \cdot \sqrt[n]{n}}$$
.

G: Đặt
$$u_n = \frac{1}{n \cdot \sqrt[n]{n}}$$
; $v_n = \frac{1}{n}$. Có

$$\lim \frac{u_n}{v_n} = \lim \frac{1}{\sqrt[n]{n}} = \frac{1}{1}$$

$$= 1. \quad \left(do \lim \sqrt[n]{n} = \lim n^{\frac{1}{n}} = e^{\lim \ln \left(n^{\frac{1}{n}} \right)} = e^{\lim \frac{1}{n} \ln n} = e^{\lim \frac{1}{n}} < e^{\lim \frac{1}{n}} = e^{\lim \frac{1}{\sqrt{n}}} = e^{\lim$$

Nên khi $n \to \infty$, thì $u_n \sim v_n$. Mà $\sum_{n \ge 1} v_n = \sum_n \frac{1}{n} = \sum_n \frac{1}{n^1}$ ph kì. Nên theo tiêu chuẩn tương đương, chuỗi $\sum_{n\geq 1} u_n$ cũng ph kì.

- Các VCB tương đương: Khi $x \to 0$, thì

* $sin x \sim x \sim tan x \sim arcsin x$.

*
$$1 - \cos x \sim \frac{1}{2}x^2$$
; $e^x - 1 \sim x$; $a^x - 1 \sim x \ln a$; $\ln (1 + x) \sim x$.

*
$$(1+x)^a - 1 \sim ax$$
; $\sqrt{1+x} - 1 = (1+x)^{\frac{1}{2}} - 1 \sim \frac{1}{2}x$.

24. C10. Xét
$$\sum_{n\geq 1} \left(tan \frac{3}{n} - sin \frac{3}{n} \right)$$

G: Có
$$u_n = tan \frac{3}{n} - sin \frac{3}{n} = \frac{sin \frac{3}{n}}{cos \frac{3}{n}} - sin \frac{3}{n} = sin \frac{3}{n} \cdot \left(\frac{1}{cos \frac{3}{n}} - 1\right) = \frac{sin \frac{3}{n} \cdot \left(1 - cos \frac{3}{n}\right)}{cos \frac{3}{n}}$$

- Nên khi
$$n \to +\infty$$
 thì $t = \frac{3}{n} \to 0$, nên $u_n \sim \frac{\frac{3}{n} \cdot \frac{1}{2} \cdot \left(\frac{3}{n}\right)^2}{\cos 0} = \frac{27}{2n^3} = \frac{27}{2} \cdot \frac{1}{n^3}$.

- Vì mũ a=3>1 nên chuỗi $\frac{27}{2}$. $\sum_{n\geq 1}\frac{1}{n^3}$ là h tụ. Theo tiêu chuẩn tương đương, chuỗi là h tụ.

25. C13.
$$\sum_{n\geq 1} \frac{1}{n} . \ln\left(1+\frac{1}{n^2}\right).$$

G: Vì khi $n \to \infty$, thì $t = \frac{1}{n^2} \to 0$ nên

$$ln\left(1+\frac{1}{n^2}\right)\sim \frac{1}{n^2}\to \frac{1}{n}. ln\left(1+\frac{1}{n^2}\right)\sim \frac{1}{n}.\frac{1}{n^2}=\frac{1}{n^3}.$$

- Vì mũ a=3>1 nên chuỗi $\sum_{n\geq 1}\frac{1}{n^3}$ là h tụ. Theo tiêu chuẩn tương đương, chuỗi $\sum_{n\geq 1}u_n$ cũng h tụ. 26. C14. $\sum_{n\geq 1}\frac{1}{n}$. $sin\frac{\pi}{n}$.

G: Vì khi $n \to \infty$, thì $t = \frac{\pi}{n} \to 0$ nên

$$sin\frac{\pi}{n} \sim \frac{\pi}{n} \rightarrow \frac{1}{n}. sin\frac{\pi}{n} \sim \frac{1}{n}. \frac{\pi}{n} = \frac{\pi}{n^2} = \pi. \frac{1}{n^2}$$

- Vì mũ a=2>1 nên chuỗi $\sum_{n\geq 1}\frac{1}{n^2}$ h tụ. Theo tiêu chuẩn tương đương, nên chuỗi $\sum_{n\geq 1}u_n$ là h tụ.

* Tiêu chuẩn so sánh:

- Lớn hơn chuỗi ph kì là ph kì.
- Bé hơn chuỗi h tụ là h tụ.

Chú ý. Khi $n \to +\infty$,

$$\begin{cases} arctan \ n \rightarrow arctan \ (+\infty) = \frac{\pi}{2} < 2; > 1. \\ ln \ n > 1 \\ ln \ n < \sqrt{n} = n^{\frac{1}{2}} \end{cases}$$

27. Xét
$$\sum_{n\geq 1} \frac{\ln n}{n^3+n^2+2}$$
.

Phân tích: Xét chuỗi $\sum_{n\geq 1} \frac{1}{n^3+n^2+2}$. Có khi $n\to +\infty$, thì

$$\frac{1}{n^3+n^2+2}\sim\frac{1}{n^3}.$$

Vì số mũ a=3>1 nên chuỗi này hội tụ. Ta CM chuỗi là hội tụ và đánh giá dấu bé hơn.

G: - Xét
$$u_n = \frac{\ln n}{n^3 + n^2 + 2}$$
.

Vì khi $n \to \infty$, có $\ln n < n \to$

$$u_n = \frac{\ln n}{n^3 + n^2 + 2} < \frac{n}{n^3 + n^2 + 2} \sim \frac{n}{n^3} = \frac{1}{n^2} \rightarrow u_n < \frac{1}{n^2}$$

- Vì a=2>1 $\rightarrow \sum_{n\geq 1}\frac{1}{n^2}<\infty$. Theo tiêu chuẩn so sánh, nên $\sum_{n\geq 1}u_n<\infty$ cũng là h tụ.

28. Xét
$$\sum_{n\geq 1} \frac{\arctan n}{n^3}$$
.

Phân tích. Xét $\sum_{n\geq 1}\frac{1}{n^3}$ là h tụ do mũ a=3>1. Định hướng CM $\sum_n u_n$ h tụ và đánh giá dấu bé hơn. G: Vì khi $n\to\infty$, thì

$$arctan \ n \rightarrow arctan \ (+\infty) = \frac{\pi}{2} < 2 \rightarrow \frac{arctan \ n}{n^3} < \frac{2}{n^3} = 2 \cdot \frac{1}{n^3}$$

- Vì mũ a=3>1 o 2. $\sum_{n\geq 1}\frac{1}{n^3}$ h tụ. Theo tiêu chuẩn so sánh, nên chuỗi $\sum_n u_{n\geq 1}$ h tụ.

29. C2. Xét $\sum_{n} \frac{\ln n}{n+2}$.

- Phân tích. Xét chuỗi $\sum_n \frac{1}{n+2} \sim \frac{1}{n} = \frac{1}{n^1}$ ph kì do mũ a=1. Định hướng CM $\sum_n u_n$ ph kì và dấu lớn hơn. G: Vì $n \to \infty$, thì

$$ln \ n > 1 \rightarrow \frac{ln \ n}{n+2} > \frac{1}{n+2} \sim \frac{1}{n} = \frac{1}{n^1}.$$

Vì mũ $a=1 \to \sum_{n\geq 1} \frac{1}{n^1}$ ph kì. Theo tiêu chuẩn so sánh, nên chuỗi $\sum_{n\geq 1} u_n$ ph kì.

30. C3. $\sum_{n\geq 1} \frac{n.\ln n}{n^2-1}$.

Phân tích: Xét chuỗi $\frac{n}{n^2-1} \sim \frac{n}{n^2} = \frac{1}{n} = \frac{1}{n^1}$

(do số mũ a=1) nên chuỗi này phân kì. Ta CM chuỗi ban đầu ph kì và phải đánh giá lớn hơn.

Giải: Xét $u_n = \frac{n \ln n}{n^2 - 1}$.

Vì $n \to \infty$, ta có $\ln n \to \infty$ nên $\ln n > 1 \to \infty$

$$u_n = \frac{n \cdot \ln n}{n^2 - 1} > \frac{n}{n^2 - 1} \sim \frac{n}{n^2} = \frac{1}{n} = \frac{1}{n^1}$$

Vì $a = 1 \rightarrow \sum_{n \ge 1} \frac{1}{n^1} = \infty$. Theo tiêu chuẩn so sánh, nên $\sum_{n \ge 1} u_n = \infty$ là ph kì.

31. C9. $\sum_{n\geq 1} \frac{\ln(n^5+n)}{\sqrt{n^5+n}}$.

Phân tích. Xét $\sum_{n}^{\sqrt{n^{5}+n}} \frac{1}{\sqrt{n^{5}+n}}$. Có $v_{n} = \frac{1}{\sqrt{n^{5}+n}} \sim \frac{1}{\sqrt{n^{5}}} = \frac{1}{n^{\frac{5}{2}}}$

khi $n \to +\infty$. Vì mũ $a = \frac{5}{2} > 1$ nên $\sum_n v_n$ h tụ. Nên ta định hướng CM $\sum_n u_n$ h tụ và đánh giá dấu nhỏ hơn.

Thật vậy: Vì khi $n \to +\infty$, có

$$\ln\left(n^5+n\right)<\sqrt{n}\rightarrow\frac{\ln\left(n^5+n\right)}{\sqrt{n^5+n}}<\frac{\sqrt{n}}{\sqrt{n^5+n}}\sim\frac{\sqrt{n}}{\sqrt{n^5}}=\frac{1}{n^2}.$$

- Vì mũ a=2>1 nên chuỗi $\sum_{n\geq 1}\frac{1}{n^2}$ h tụ. Theo tiêu chuẩn so sánh, nên chuỗi $\sum_{n\geq 1}u_n$ cũng h tụ.

32. C12. $\sum_{n\geq 1} \frac{\ln(n)}{\sqrt{2n^5+3n}}$.

Phân tích: Xét $\sum_{n} \frac{1}{\sqrt{2n^5+3n}}$. Có

$$v_n = \frac{1}{\sqrt{2n^5 + 3n}} \sim \frac{1}{\sqrt{2n^5}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{n^{\frac{5}{2}}}$$

khi $n \to +\infty$. Vì mũ $a = \frac{5}{2} > 1$ nên $\sum_n v_n$ h tụ. Nên ta định hướng CM $\sum_n u_n$ h tụ và đánh giá dấu nhỏ hơn.

Giải. Vì khi $n \to +\infty$, có

$$ln(n) < \sqrt{n} \rightarrow \frac{ln(n)}{\sqrt{2n^5 + 3n}} < \frac{\sqrt{n}}{\sqrt{2n^5 + 3n}} \sim \frac{\sqrt{n}}{\sqrt{2n^5}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{n^2}$$

Vì mũ a=2>1 nên chuỗi $\sum_{n\geq 1}\frac{1}{n^2}$ h tụ. Theo tiêu chuẩn so sánh, nên chuỗi $\sum_{n\geq 1}u_n$ cũng h tụ.

- Tiêu chuẩn Cauchy: Đặt $\lim_n \sqrt[n]{|u_n|} = q$.

Nếu q>1 \rightarrow chuỗi $\sum_{n\geq 1}u_n$ là phân kì.

Nếu $q < 1 \rightarrow \text{chuỗi } \sum_{n \geq 1}^{n} u_n$ là hội tụ.

- Chú ý: Áp dụng tiêu chuẩn Cauchy khi tất cả các số hạng đều có mũ là n.

33. C4.
$$\sum_{n\geq 1} \frac{n^n}{(n+1)^n \cdot 2^{n-1}}$$

G: Có
$$\sum_{n\geq 1} \frac{n^n}{(n+1)^n \cdot 2^{n-1}} = \sum_{n\geq 1} \frac{n^n \cdot 2}{(n+1)^n \cdot 2^n} = 2 \cdot \sum_{n\geq 1} \frac{n^n}{(n+1)^n \cdot 2^n}$$

Xét
$$u_n = \frac{n^n}{(n+1)^n \cdot 2^n}$$
. Nên khi $n \to \infty$, có

$$\sqrt[n]{|u_n|} = \frac{n}{(n+1).2} = \frac{n}{2n+2} \sim \frac{n}{2n} = \frac{1}{2} = q < 1.$$

Vậy theo tiêu chuẩn Cauchy, vì $q=\frac{1}{2}<1$ nên chuỗi $\sum_{n\geq 1}u_n$ là hội tụ.

34.
$$\sum_{n} (-1)^{n} \cdot \left(\frac{3n+2}{4n+7}\right)^{n}$$

G: Có

$$|u_n| = \left(\frac{3n+2}{4n+7}\right)^n \to \sqrt[n]{|u_n|} = \frac{3n+2}{4n+7} = \frac{3+\frac{2}{n}}{4+\frac{7}{n}} \to \frac{3}{4} = q < 1.$$

- Vậy vì $q=rac{3}{4}<1$ nên theo tiêu chuẩn Cauchy, chuỗi $\sum_{n\geq 1}u_n$ là hội tụ.

Chú ý. Số
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2, 7.$$

35. Xét
$$\sum_{n\geq 1} \frac{(n+1)^{n^2}}{n^{n^2} \cdot 3^n}$$

G: Có

$$u_n = \frac{(n+1)^{n^2}}{n^{n^2} \cdot 3^n} \to \sqrt[n]{|u_n|} = \frac{(n+1)^n}{n^n \cdot 3} = \frac{\left(\frac{n+1}{n}\right)^n}{3} = \frac{\left(1+\frac{1}{n}\right)^n}{3} \to \frac{e}{3} = q < 1. \quad \left(v \cdot \lim_{n \to \infty} \left(1+\frac{1}{n}\right)^n = e\right)$$

Vậy theo tiêu chuẩn Cauchy, chuỗi $\sum_{n\geq 1} u_n$ là hội tụ.

36. C8.
$$\sum_{n} \frac{1}{2^n} \cdot \left(1 + \frac{1}{n+1}\right)^{n^2}$$
.

G:
$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$
. Có $u_n = \frac{1}{2^n} \cdot \left(1 + \frac{1}{n+1}\right)^{n^2}$. Nên

$$\sqrt[n]{|u_n|} = \frac{1}{2} \cdot \left(1 + \frac{1}{n+1}\right)^n = \frac{1}{2} \cdot \left(1 + \frac{1}{n+1}\right)^{(n+1) \cdot \frac{n}{n+1}} = \frac{1}{2} \cdot e^1 = \frac{e}{2} = q$$

$$> 1. \quad \left(v \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e \approx 2, 7\right)$$

Nên theo tiêu chuẩn Cauchy, vì $q = \frac{e}{2} > 1$ nên chuỗi là ph kì.

Chú ý. Số
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2, 7.$$

37. C11.
$$\sum_{n} \frac{(n)^{n^2}}{(n-1)^{n^2} \cdot 3^n}$$
.

G: Có
$$u_n = \frac{(n)^{n^2}}{(n-1)^{n^2}.3^n}$$
. Nên

$$\sqrt[n]{|u_n|} = \frac{n^n}{(n-1)^n \cdot 3} = \left(\frac{n}{n-1}\right)^n \cdot \frac{1}{3} = \left(\frac{n-1+1}{n-1}\right)^n \cdot \frac{1}{3} = \left(1 + \frac{1}{n-1}\right)^n \cdot \frac{1}{3} = \left(1 + \frac{1}{n-1}\right)^{(n-1) \cdot \frac{n}{n-1}} \cdot \frac{1}{3}$$

$$\rightarrow e^1 \cdot \frac{1}{3} = \frac{e}{3} = q < 1.$$

Theo tiêu chuẩn Cauchy, chuỗi là h tụ.

38. C18.
$$\sum_{n\geq 1} (-1)^n \cdot \left(\frac{3n+2}{2n+7}\right)^n$$
.

G: Có

$$|u_n| = \left(\frac{3n+2}{2n+7}\right)^n \to \sqrt[n]{|u_n|} = \frac{3n+2}{2n+7} = \frac{3+\frac{2}{n}}{2+\frac{7}{n}} \to \frac{3}{2} = q > 1.$$

Vậy theo tiêu chuẩn Cauchy, vì $q = \frac{3}{2} > 1$ nên chuỗi $\sum_{n \ge 1} u_n$ là hội tụ.

39. Xét
$$\sum_{n\geq 1} \frac{1}{\sqrt{n+3 \ln n}}$$

G: Vì khi $n \to \infty$, thì $1 < \ln n < \sqrt{n} = n^{\frac{1}{2}} < n = n^1$, nên theo quy tắc ngắt bỏ VCL bậc thấp hơn, thì

$$u_n = \frac{1}{\sqrt{n+3 \ln n}} \sim \frac{1}{\sqrt{n}} = \frac{1}{\frac{1}{n^2}}$$

- Vì mũ $a = \frac{1}{2} < 1 \rightarrow \sum_{n} \frac{1}{\frac{1}{n^2}}$ là ph kì. Theo tiêu chuẩn tương đương, $\sum_{n \ge 1} \frac{1}{\sqrt{n+3 \ln n}}$ cũng ph kì.

40. Xét
$$\sum_{n\geq 1} \frac{n}{\sqrt{n^5+4 \ln{(1+n^5)}}}$$

G: Vì khi $n \to \infty$, thì $1 < \ln\left(1 + n^5\right) < \sqrt{n} = n^{\frac{1}{2}} < n^5$, nên theo quy tắc ngắt bỏ VCL bậc thấp hơn thì $u_n = \frac{n}{\sqrt{n^5 + 4 \ln\left(1 + n^5\right)}} \sim \frac{n}{\sqrt{n^5}} = \frac{1}{\frac{3}{n^2}}.$

$$u_n = \frac{n}{\sqrt{n^5 + 4 \ln{(1 + n^5)}}} \sim \frac{n}{\sqrt{n^5}} = \frac{1}{n^{\frac{3}{2}}}$$

- Vì mũ $a = \frac{3}{2} > 1$ nên $\sum_{n \geq 1} \frac{1}{\frac{3}{2}}$ là h tụ. Theo tiêu chuẩn tương đương, chuỗi $\sum_{n \geq 1} u_n$ cũng h tụ.

- Tiêu chuẩn Dalembert: Đặt $\lim_{n} \left| \frac{u_{n+1}}{u_n} \right| = q$.

Nếu q>1 \rightarrow chuỗi $\sum_{n\geq 1}u_n$ là phân kì.

Nếu $q < 1 \rightarrow \operatorname{chuỗi} \sum_{n \geq 1} u_n$ là hội tụ.

Chú ý. Các bài có n! ta hay dùng tiêu chuẩn Dalembert. Vì

$$\frac{(n+1)!}{n!} = \frac{(n+1).\,n!}{n!} = n+1; \frac{n!}{(n-1)!} = \frac{n.\,(n-1)!}{(n-1)!} = n.$$

41. Xét
$$\sum_{n\geq 1} \frac{2^n \cdot n!}{n^n}$$

G: Có
$$u_n = \frac{2^{n} \cdot n!}{n^n} \rightarrow u_{n+1} = \frac{2^{n+1} \cdot (n+1)!}{(n+1)^{n+1}}$$
. Nên

$$\left|\frac{u_{n+1}}{u_n}\right| = \frac{2^{n+1} \cdot (n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{2^n \cdot n!} = \frac{2 \cdot (n+1)}{(n+1)^{n+1}} \cdot n^n = \frac{2 \cdot n^n}{(n+1)^n} = \frac{2}{\left(\frac{n+1}{2}\right)^n} = \frac{2}{\left(1+\frac{1}{2}\right)^n} \to \frac{2}{e} = q < 1 \quad \left(v \cdot \lim_n \left(1+\frac{1}{n}\right)^n = e\right)$$

- Vì $q=\frac{2}{e}<1$ nên theo tiêu chuẩn Dalembert, chuỗi $\sum_{n\geq 1}u_n$ là h tụ.

42. Xét
$$\sum_{n\geq 1} (-1)^n \cdot \frac{3^n}{n^5}$$
.

G: Có
$$u_n = (-1)^n \cdot \frac{3^n}{n^5} \to u_{n+1} = (-1)^{n+1} \cdot \frac{3^{n+1}}{(n+1)^5}$$
. Nên

$$\left|\frac{u_{n+1}}{u_n}\right| = \frac{3^{n+1}}{(n+1)^5} \cdot \frac{n^5}{3^n} = \frac{3}{(n+1)^5} \cdot n^5 = 3 \cdot \left(\frac{n}{n+1}\right)^5 \to 3 \cdot 1^5 = 3 = q$$

- Vì q=3>1 nên theo tiêu chuẩn Dalembert, chuỗi $\sum_{n\geq 1}u_n$ là ph kì. 43. C6. $\sum_n\frac{3.5.7...(2n+1)}{2.5.8...(3n-1)}$.

43. C6.
$$\sum_{n} \frac{3.5.7...(2n+1)}{2.5.8...(3n-1)}$$

G: Đặt

$$u_n = \frac{3.5.7...(2n+1)}{2.5.8...(3n-1)} \rightarrow u_{n+1} = \frac{3.5....(2n+3)}{2.5...(3n+2)} = \frac{3.5....(2n+1)(2n+3)}{2.5...(3n-1)(3n+2)}.$$

Nên $\left|\frac{u_{n+1}}{u_n}\right| = \frac{2n+3}{3n+2} \to \frac{2}{3} = q$ khi $n \to +\infty$. Vì q < 1 nên theo tiêu chuẩn Dalambert, chuỗi là h tụ.

44. C7.
$$\sum_{n} \frac{3^{n} \cdot n!}{n^{n}}$$
.

G: Có
$$u_n = \frac{3^n \cdot n!}{n^n} \rightarrow u_{n+1} = \frac{3^{n+1} \cdot (n+1)!}{(n+1)^{n+1}}$$
. Nên

G: Có
$$u_n = \frac{3^n \cdot n!}{n^n} \to u_{n+1} = \frac{3^{n+1} \cdot (n+1)!}{(n+1)^{n+1}}$$
. Nên
$$\left| \frac{u_{n+1}}{u_n} \right| = \frac{3 \cdot (n+1)}{(n+1)^{n+1}} \cdot n^n = \frac{3 \cdot n^n}{(n+1)^n} = \frac{3}{\left(\frac{n+1}{n}\right)^n} = \frac{3}{\left(1 + \frac{1}{n}\right)^n} \to \frac{3}{e} = q > 1$$

khi $n \to +\infty$. Vì q > 1 nên theo Dalembert, chuỗi là ph kì.

45. C19.
$$\sum_{n} (-1)^{n} \cdot \frac{n^{3}}{2^{n}}$$
.
G: Có $u_{n} = (-1)^{n} \cdot \frac{n^{3}}{2^{n}} \rightarrow u_{n+1} = (-1)^{n+1} \cdot \frac{(n+1)^{3}}{2^{n+1}}$. Nên
$$\left| \frac{u_{n+1}}{u_{n}} \right| = \frac{(n+1)^{3}}{2 \cdot n^{3}} = \frac{1}{2} \cdot \left(\frac{n+1}{n} \right)^{3} \rightarrow \frac{1}{2} = q.$$

Vì $q = \frac{1}{2} < 1$ nên theo tiêu chuẩn Dalembert, chuỗi là h tụ.

ĐK cần để chuỗi h tụ.

- Nếu chuỗi $\sum_{n\geq 1} u_n$ h tụ thì $\lim u_n = 0$.

- Nếu $\lim_{n \to 0} u_n \neq 0$ $\rightarrow \sum_{n \ge 1} u_n$ là ph kì. 46. Xét chuỗi $\sum_{n \ge 1} \frac{2n+1}{3n-2}$.

G: Có khi $n \to \infty$, thì ngắt bỏ VCL bậc thấp hơn, có

Nên chuỗi
$$\sum_{n\geq 1} u_n$$
 là ph kì (theo ĐK cần để chuỗi h tụ)

- Chú ý: Số $e \approx 2$, $7 = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$.

47. C20. Xét $\sum_{n\geq 1} (-1)^n \cdot \left(\frac{n}{n+1}\right)^n$

G: Ta có

$$u_{n} = (-1)^{n} \cdot \left(\frac{n}{n+1}\right)^{n} = \pm \left(\frac{n}{n+1}\right)^{n} = \pm \left(\frac{n+1-1}{n+1}\right)^{n} = \pm \left(1 - \frac{1}{n+1}\right)^{n}$$

$$= \pm \left(1 + \frac{1}{-(n+1)}\right)^{-(n+1) \cdot \frac{n}{-n-1}} \to \pm e^{-1} \neq 0. \quad \left(v \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n} = e\right)$$

Nên $\lim u_n \neq 0 \to ext{theo DK cần để chuỗi h tụ, thì chuỗi } \sum_{n\geq 1} u_n$ là ph kì.

48. C22.
$$\sum_{n\geq 1} (-1)^n \cdot \left(\frac{n}{n-1}\right)^n$$
.

G: Ta có

$$u_n = (-1)^n \cdot \left(\frac{n}{n-1}\right)^n = \pm \left(\frac{n-1+1}{n-1}\right)^n = \pm \left(1 + \frac{1}{n-1}\right)^n = \pm \left(1 + \frac{1}{n-1}\right)^{(n-1) \cdot \frac{n}{n-1}} \rightarrow \pm e^1 = \pm e \neq 0.$$
khi $n \to \infty$. Nên $\lim u_n \neq 0 \to$ theo ĐK cần để chuỗi h tụ, thì chuỗi $\sum_{n \geq 1} u_n$ là ph kì. 49. C23. $\sum_n (-1)^n \cdot n^2$

G: Có

$$u_n = (-1)^n \cdot n^2 = \pm n^2 \to \pm \infty \neq 0$$

khi $n \to \infty$. Nên theo ĐK cần để chuỗi h tụ, thì chuỗi ph kì.

- * Tiêu chuẩn tích phân
- Xét chuỗi $\sum_{n\geq 1} u_n$ với $u_n=f(n)\geq 0$. Đặt y=f(x) và xét $I=\int_2^{+\infty} f(x)dx$ là TPSR loại I. Thì
- nếu I hội tụ thì $\sum_{n\geq 1} u_n$ h tụ.
- nếu I ph kì thì $\sum_{n\geq 1} u_n$ ph kì. 50. Xét $\sum_n \frac{1}{n.(\ln n)^2}$.

50. Xét
$$\sum_{n} \frac{1}{n(\ln n)^2}$$
.

G: Có
$$u_n = \frac{1}{n.(\ln n)^2} = f(n) \to f(x) = \frac{1}{x.(\ln x)^2}$$

Xét

$$I = \int_{2}^{+\infty} \frac{dx}{x \cdot (\ln x)^{2}} = \int_{2}^{+\infty} \frac{d(\ln x)}{(\ln x)^{2}} = \left(-\frac{1}{\ln x}\right) \mid_{2}^{+\infty} = 0 - \left(-\frac{1}{\ln 2}\right) = \frac{1}{\ln 2} < \infty.$$

Nên theo tiêu chuẩn tích phân, chuỗi là h tu.

51.
$$\sum_{n} \frac{1}{n \ln n}$$

G: Có
$$u_n = \frac{1}{n \ln n} = f(n) \rightarrow f(x) = \frac{1}{x \ln x}$$
. Xét
$$I = \int_2^{+\infty} \frac{dx}{x \ln x} = \int_2^{+\infty} \frac{d(\ln x)}{\ln x} = \left(\ln (\ln x) \right) \Big|_2^{+\infty} = +\infty.$$

Nên theo tiêu chuẩn tích phân, chuỗi là p

52. Xét
$$\sum_{n} \frac{1}{n \cdot \sqrt{\ln n}}$$

G: Có
$$u_n = \frac{1}{n \cdot \sqrt{\ln n}} = f(n) \rightarrow f(x) = \frac{1}{x \cdot \sqrt{\ln x}}$$
. Xét
$$I = \int_2^{+\infty} \frac{dx}{x \cdot \sqrt{\ln x}} = \int_2^{+\infty} \frac{d(\ln x)}{\sqrt{\ln x}} = \left(2\sqrt{\ln x}\right)|_2^{+\infty} = +\infty.$$

Nên theo tiêu chuẩn tích phân, chuỗi

53. Xét
$$\sum_{n\geq 1} \frac{1}{n \cdot l n^3 n}$$
.

54. Xét
$$\sum_{n\geq 1} \frac{1}{n \cdot \ln^5 n}$$
.

53. Xét
$$\sum_{n\geq 1} \frac{1}{n \cdot \ln^3 n}$$
.
54. Xét $\sum_{n\geq 1} \frac{1}{n \cdot \ln^5 n}$.
55. Xét $\sum_{n\geq 1} \frac{1}{n \cdot \ln n \cdot \ln (\ln n)}$.

56. Xét
$$\sum_{n\geq 1} \frac{1}{n \cdot \sqrt[3]{\ln n}}$$
.

- Tiêu chuẩn Leibnitz về chuỗi đan dấu.

- Xét chuỗi đan dấu

$$\sum_{n\geq 1} (-1)^n \cdot a_n = -a_1 + a_2 - a_3 + a_4 - a_5 + \cdots$$

Nếu dãy a_n giảm và $\lim a_n = 0$ thì chuỗi đan dấu $\sum_{n \geq 1} (-1)^n$. a_n là hội tụ. Nó gọi là tiêu chuẩn Leibnitz cho chuỗi đan dấu.

57. C17. Xét sự h tụ của
$$\sum_{n\geq 1} (-1)^n \cdot \frac{n}{n^2-1}$$

G: Đây là chuỗi đan dấu. Có

$$u_n = (-1)^n \cdot \frac{n}{n^2 - 1} \rightarrow a_n = \frac{n}{n^2 - 1} \sim \frac{n}{n^2} = \frac{1}{n}$$

là giảm và có giới hạn là 0 khi $n \to \infty$. Nên theo tiêu chuẩn Leibnitz, chuỗi $\sum_{n \ge 1} (-1)^n \cdot \frac{n}{n^2 - 1}$ là hội tụ.

58. C21.
$$\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n}+2}$$
.

G: Đây là chuỗi đan dấu. Có

$$u_n = (-1)^n \cdot \frac{1}{\sqrt{n}+2} \to a_n = \frac{1}{\sqrt{n}+2}$$

là giảm khi n tăng và có giới hạn là 0 khi $n \to \infty$. Nên theo tiêu chuẩn Leibnitz, chuỗi đan dấu $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n}+2}$ hôi tu.

59. C22.
$$\sum_{n} \frac{(-1)^n}{\ln{(2+n)}}$$

G: Đây là chuỗi đan dấu. Có

$$u_n = \cdots \rightarrow a_n = \frac{1}{\ln{(2+n)}}$$

là giảm và có giới hạn là 0 khi $n \to \infty$. Nên theo tiêu chuẩn Leibnitz, chuỗi hôi tu.

Xét sự hội tụ tuyệt đối, bán hội tụ:

- ĐL: Nếu chuỗi $\sum_{n\geq 1}|u_n|$ là h tụ thì $\sum_{n\geq 1}u_n$ cũng hội tụ.
- (vì $u_n \leq |u_n|$, chuỗi lớn mà h tụ thì chuỗi bé hơn nó cũng h tụ.)
- ĐN: Nếu chuỗi $\sum_{n\geq 1}|u_n|$ là h tụ thì chuỗi $\sum_{n\geq 1}u_n$ gọi là hội tụ tuyệt đối.
- Nếu chuỗi $\sum_{n\geq 1} |u_n|$ là ph kì nhưng $\sum_{n\geq 1} u_n$ là h tụ thì $\sum_{n\geq 1} u_n$ gọi là bán hội tụ.

- Xét sự hội tụ tuyệt đối, bán hội tụ của chuỗi:

60. C1.
$$\sum_{n\geq 1} \frac{(-1)^n}{(n+1)(n+2)}$$
.

$$u_n = \frac{(-1)^n}{(n+1)(n+2)} \rightarrow |u_n| = \frac{1}{(n+1). (n+2)} \sim \frac{1}{n. n} = \frac{1}{n^2}$$

- Vì mũ a=2>1 nên $\sum_{n\geq 1}|u_n|$ hội tụ, nên chuỗi $\sum_{n\geq 1}u_n$ là hội tụ tuyệt đối.

61. C2. Xét
$$\sum_{n\geq 1} (-1)^{n-1} \cdot \frac{2^n}{n!}$$

$$|u_n| = \frac{2^n}{n!} \to |u_{n+1}| = \frac{2^{n+1}}{(n+1)!} \to \left|\frac{u_{n+1}}{u_n}\right| = \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} = \frac{2}{n+1} \to 0 = q$$

- Theo tiêu chuẩn Dalembert, vì q=0<1 nên $\sum_{n\geq 1}|u_n|$ hội tụ, nên chuỗi $\sum_{n\geq 1}u_n$ là hội tụ tuyệt đối.

140. C16. Xét
$$\sum_{n\geq 1} \frac{(-1)^n}{n \cdot (\ln n)^2}$$

G: Có
$$u_n = \frac{1}{n \cdot (\ln n)^2} = f(n) \to f(x) = \frac{1}{x \cdot (\ln x)^2}$$

Xét

$$I = \int_{2}^{+\infty} \frac{dx}{x \cdot (\ln x)^{2}} = \int_{2}^{+\infty} \frac{d(\ln x)}{(\ln x)^{2}} = \left(-\frac{1}{\ln x}\right) \mid_{2}^{+\infty} = 0 - \left(-\frac{1}{\ln 2}\right) = \frac{1}{\ln 2} < \infty.$$

- Nên theo tiêu chuẩn tích phân, chuỗi $\sum_{n\geq 1}|u_n|$ là h tụ, nên chuỗi $\sum_{n\geq 1}u_n$ là h tụ tuyệt đối.

141.
$$\sum_{n\geq 1} \frac{(-1)^n}{n \ln n}$$
.

G: Có
$$u_n = \frac{1}{n \ln n} = f(n) \rightarrow f(x) = \frac{1}{x \ln x}$$
. Xét
$$I = \int_2^{+\infty} \frac{dx}{x \ln x} = \int_2^{+\infty} \frac{d(\ln x)}{\ln x} = \left(\ln(\ln x)\right)|_2^{+\infty} = +\infty.$$

Nên theo tiêu chuẩn tích phân, chuỗi $\sum_{n\geq 1}|u_n|$ là ph kì. Mà chuỗi $\sum_{n\geq 1}u_n$ h tụ theo tiêu chuẩn Leibnitz về chuối đan dấu. Vậy chuỗi là bán h tụ.

62. C3.
$$\sum_{n} \frac{(-1)^n}{n+1}$$
.

62. C3.
$$\sum_{n} \frac{(-1)^{n}}{n+1}$$
.
G: C6 $|u_{n}| = \frac{1}{n+1} \sim \frac{1}{n} = \frac{1}{n^{1}}$.

Vì mũ $a=1
ightarrow \sum_n |u_n|$ ph kì. Mặt khác, đây là chuỗi đan dấu với

$$u_n = (-1)^n \cdot \frac{1}{n+1} \to a_n = \frac{1}{n+1}$$

giảm và có giới hạn là 0 khi $n o \infty$ nên theo tiêu chuẩn Leibnitz, chuỗi $\sum_n u_n$ là hội tụ. Vậy chuỗi $\sum_n u_n$ là bán hội tụ.

63. C4. Xét
$$\sum_{n\geq 1} (-1)^n \cdot \frac{1+n}{n^2}$$

G: Có

$$u_n = (-1)^n \cdot \frac{1+n}{n^2} \to |u_n| = \frac{1+n}{n^2} \sim \frac{n}{n^2} = \frac{1}{n} = \frac{1}{n^1}$$

Vì mũ $a = 1 \rightarrow \sum_{n \ge 1} |u_n|$ là ph kì.

- Mặt khác, đây là chuỗi đan dấu với

$$a_n = \frac{1+n}{n^2} = \frac{1}{n^2} + \frac{1}{n}$$

giảm và có giới hạn là 0 khi $n \to \infty$ nên theo tiêu chuẩn Leibnitz về chuỗi đan dấu, chuỗi $\sum_{n>1} u_n$ là hội tụ. Mà $\sum_{n\geq 1}|u_n|$ là ph kì, nên chuỗi $\sum_{n\geq 1}u_n$ là bán hội tụ.

64. C5.
$$\sum_{n\geq 1} \frac{(-1)^n}{\ln{(n+1)}}$$

$$u_n = \frac{(-1)^n}{\ln{(n+1)}} = (-1)^n \cdot \frac{1}{\ln{(n+1)}} \to |u_n| = \frac{1}{\ln{(n+1)}}$$

Vì khi $n \to \infty$, thì $\ln (n+1) < \sqrt{n}$ nên $\frac{1}{\ln (n+1)} > \frac{1}{\sqrt{n}} = \frac{1}{\frac{1}{\sqrt{n}}}$

- Vì mũ $a=rac{1}{2}<1
ightarrow \sum_{n\geq 1}|u_n|$ ph kì. Mặt khác đây là chuỗi đan dấu với $a_n=rac{1}{\ln{(n+1)}}$ là dãy giảm và có giới hạn là 0 khi $n \to \infty$ nên theo tiêu chuẩn Leibnitz về chuỗi đan dấu, chuỗi $\sum_{n \ge 1} u_n = (-1)^n$. a_n là hội tụ. Mà chuỗi $\sum_{n\geq 1}|u_n|$ ph kì, nên chuỗi $\sum_{n\geq 1}u_n$ là bán hội tụ.

65. C6.
$$\sum_{n} (-1)^{n} \cdot (\sqrt{n+1} - \sqrt{n-1})$$
.

G: Có

$$u_n = (-1)^n \cdot \left(\sqrt{n+1} - \sqrt{n-1}\right) = (-1)^n \cdot \frac{(n+1) - (n-1)}{\sqrt{n+1} + \sqrt{n-1}} = (-1)^n \cdot \frac{2}{\sqrt{n+1} + \sqrt{n-1}}$$

Nên

$$|u_n| = \frac{2}{\sqrt{n+1} + \sqrt{n-1}} \sim \frac{2}{\sqrt{n} + \sqrt{n}} = \frac{1}{\sqrt{n}} = \frac{1}{\frac{1}{n^2}}$$

Vì ...

BÀI 3 TÌM MIỀN HỘI TU CỦA CHUỗI HÀM LỮY THỪA

- Tìm miền hội tụ của chuỗi lũy thừa:

66. C1.
$$\sum_{n\geq 1} \frac{(-4)^n \cdot arcsin^n x}{\pi^n (n+1)}$$

G: Có

$$u_n = \frac{(-4)^n \cdot arcsin^n x}{\pi^n(n+1)} = \frac{1}{n+1} \cdot \left(\frac{-4 \ arcsin \ x}{\pi}\right)^n.$$

$$\text{Dặt } X = \frac{-4. \ arcsin \, x}{\pi} \to u_n = \frac{X^n}{n+1}.$$

Tiêu chuẩn Dalembert: Đặt $\lim_{n} \left| \frac{u_{n+1}}{u_n} \right| = q$.

- Nếu q>1 ightarrow chuỗi $\sum_{n\geq 1}u_n$ là phân kì.
- Nếu $q < 1 \rightarrow$ chuỗi là hội tụ.

Áp dụng: Có

$$u_n = \frac{X^n}{n+1} \to u_{n+1} = \frac{X^{n+1}}{n+2} \to \left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{X^{n+1}}{n+2} \cdot \frac{n+1}{X^n} \right| = \left| \frac{X}{n+2} \cdot (n+1) \right| = |X| \cdot \frac{n+1}{n+2} \to |X| \cdot 1 = |X| = q$$

khi $n \to \infty$. Nên theo tiêu chuẩn Dalembert, chuỗi là hội tụ nếu

$$q = |X| < 1 \rightarrow -1 < X < 1.$$

- Nếu
$$X = 1 \rightarrow u_n = \frac{X^n}{n+1} = \frac{1}{n+1} \sim \frac{1}{n} = \frac{1}{n^1}$$

khi $n \to \infty$. Mà $\sum_{n \ge 1} \frac{1}{n^1}$ ph kì nên theo tiêu chuẩn tương đương, $\sum_{n \ge 1} u_n$ là ph kì.

- Nếu $X=-1 \rightarrow u_n=\frac{(-1)^n}{n+1}=(-1)^n.\frac{1}{n+1}$ là chuỗi đan dấu. Theo tiêu chuẩn Leibnitz về chuỗi đan dấu, vì $a_n = \frac{1}{n+1}$ giảm và có giới hạn là 0 khi $n \to \infty$ nên chuỗi $\sum_{n \ge 1} u_n$ là hội tụ.

Vậy miền hội tụ là

$$-1 \leq X < 1 \rightarrow -1 \leq \frac{-4 \arcsin x}{\pi} < 1 \rightarrow \frac{\pi}{4} \geq \arcsin x > -\frac{\pi}{4} \rightarrow \frac{\sqrt{2}}{2} \geq x > -\frac{\sqrt{2}}{2} \rightarrow x \in \left(-\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right].$$

67. C2. Xét
$$\sum_{n\geq 1} \frac{1}{n-2^n} \left(\frac{x}{x+1}\right)^n$$
.

G: Có
$$u_n = \frac{1}{n-2^n} \left(\frac{x}{x+1} \right)^n = \frac{1}{n} \cdot \left(\frac{x}{2x+2} \right)^n$$
.

Đặt
$$X = \frac{x}{2x+2} \rightarrow u_n = \frac{X^n}{n}$$
. Nên

khi $n \to \infty$. Nên theo tiêu chuẩn Dalembert, chuỗi hội tụ nếu

$$q = |X| < 1 \rightarrow -1 < X < 1.$$

- Xét nếu $X=1 \rightarrow u_n=\frac{1}{n}=\frac{1}{n^1}$. Vì mũ a=1 nên $\sum_{n\geq 1}u_n$ ph kì.

- Nếu $X=-1 \rightarrow u_n=\frac{(-1)^n}{n}=(-1)^n.\frac{1}{n}$ là chuỗi đan dấu. Theo tiêu chuẩn Leibnitz về chuỗi đan dấu, vì $a_n=rac{1}{n}$ giảm và có giới hạn là 0 khi $n o\infty$ nên chuỗi $\sum_{n\geq 1}u_n=(-1)^n$. a_n là hội tụ.

- Vậy miền hội tụ là

$$-1 \le X < 1 \to -1 \le \frac{x}{2x+2} < 1 \to \begin{cases} \frac{x}{2x+2} + 1 \ge 0 \\ \frac{x}{2x+2} - 1 < 0 \end{cases} \to \begin{cases} \frac{3x+2}{2x+2} \ge 0 \\ \frac{-x-2}{2x+2} < 0 \end{cases} \to \begin{cases} x < -1 \text{ or } x \ge -\frac{2}{3} \\ x < -2 \text{ or } x > -1 \end{cases} \to x < -2 \text{ or } x \ge \frac{2}{3}$$

$$-\frac{2}{3} \to x \in (-\infty, -2) \cup \left[-\frac{2}{3}, +\infty \right].$$

$$68. \text{ C4. } \sum_{n} \frac{(-1)^{n} n^{2}}{2^{n}} \cdot e^{nx}.$$

G: Có

$$u_n = \frac{(-1)^n n^2}{3^n} \cdot e^{nx} = n^2 \cdot \left(\frac{-e^x}{3}\right)^n$$

Đặt

$$X = \frac{-e^x}{3} \to u_n = n^2.X^n$$

Có

$$u_{n+1} = (n+1)^2 \cdot X^{n+1} \to \left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{(n+1)^2 X}{n^2} \right| = |X| \cdot \left(\frac{n+1}{n} \right)^2 \to |X| \cdot 1^2 = |X| = q.$$

Nên theo tiêu chuẩn Dalembert, chuỗi hội tụ nếu

$$q = |X| < 1 \to -1 < X < 1.$$

- Nếu $X=1 \rightarrow u_n=n^2 \rightarrow \infty \neq 0$ khi $n \rightarrow \infty$. Nên theo ĐK cần để chuỗi htu, thì chuỗi là ph kì. - Nếu $X=-1 \rightarrow u_n=-n^2 \rightarrow |u_n|=n^2 \rightarrow \infty \neq 0$ khi $n \rightarrow \infty$. Nên theo ĐK cần để chuỗi htu, thì chuỗi ph kì.

Vậy chuỗi hội tụ nếu

$$-1 < X < 1 \to -1 < \frac{-e^x}{3} < 1 \to 3 > e^x > -3 \to e^x < 3 \to x < \ln 3 \to x \in (-\infty, \ln 3).$$

$$\sum_{x \in \mathbb{Z}^n. sin^n x} |x|^{2^n. sin^n x}$$

69. C6. $\sum_{n} \frac{2^{n} \cdot \sin^{n} x}{x^{2}}$.

G: Có

$$u_n = \frac{2^n \cdot \sin^n x}{n^2} = \frac{(2 \sin x)^n}{n^2}.$$

Đặt

$$X = 2 \sin x \rightarrow u_n = \frac{X^n}{n^2} \rightarrow u_{n+1} = \frac{X^{n+1}}{(n+1)^2}.$$

Nên

$$\left|\frac{u_{n+1}}{u_n}\right| = \left|\frac{X}{(n+1)^2} \cdot n^2\right| = |X| \left(\frac{n}{n+1}\right)^2 \rightarrow |X| = |X| = q.$$

Nên theo tiêu chuẩn Dalembert, chuỗi hội tụ nếu

$$\dot{q} = |X| < 1 \rightarrow -1 < X < 1.$$

Tại $X = 1 \rightarrow u_n = \frac{1}{n^2}$. Vì mũ a = 2 > 1 nên chuỗi là hội tụ.

Tại $X=-1 \rightarrow u_n=(-1)^n \cdot \frac{1}{n^2}$. Theo tiêu chuẩn Leibnitz cho chuỗi đan dấu, vì $a_n=\frac{1}{n^2}$ giảm và có giới hạn là 0 khi $n \to \infty$ nên chuỗi là hội tụ.

Vậy miền hội tụ của chuỗi là

$$-1 \le X \le 1 \to -1 \le 2 \sin x \le 1 \to -\frac{1}{2} \le \sin x \le \frac{1}{2} \to -\frac{\pi}{6} \le x \le \frac{\pi}{6} \to x \in \left[-\frac{\pi}{6}, \frac{\pi}{6}\right].$$
70. C3. $\sum_{n} \frac{(-\ln x)^n}{2n+1}$.

G: Đặt
$$X = -ln x$$
. Nên

$$u_n = \frac{X^n}{2n+1} \to u_{n+1} = \frac{X^{n+1}}{2n+3} \to \left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{X}{2n+3} \cdot (2n+1) \right| = |X| \cdot \frac{2n+1}{2n+3} \to |X| \cdot 1 = |X| = q.$$

Nên ...

71. C5.
$$\sum_{n\geq 1} \frac{1}{n.(\ln x)^n}$$
.

G: Có
$$u_n = \frac{1}{n(\ln x)^n} = \frac{1}{n} \cdot \left(\frac{1}{\ln x}\right)^n$$
.

- Đặt
$$X = \frac{1}{\ln x} \rightarrow u_n = \frac{1}{n} \cdot X^n$$
. Nên ...

72. C7.
$$\sum_{n} \frac{n}{n+1} \cdot \left(\frac{x}{2x+1}\right)^{n}$$
.

G: Có
$$u_n = \frac{n}{n+1} \cdot \left(\frac{x}{2x+1}\right)^n$$
.

G: Có
$$u_n = \frac{n}{n+1} \cdot \left(\frac{x}{2x+1}\right)^n$$
.
- Đặt $X = \frac{x}{2x+1} \to u_n = \frac{n}{n+1} \cdot X^n$.
73. C11. $\sum_n \frac{1}{2^n} \cdot \left(\frac{2x+1}{x+2}\right)^n$.

73. C11.
$$\sum_{n} \frac{1}{2^n} \cdot \left(\frac{2x+1}{x+2}\right)^n$$
.

G: Có
$$u_n = \frac{1}{2^n} \cdot \left(\frac{2x+1}{x+2}\right)^n = \left(\frac{2x+1}{2x+2}\right)^n$$
.

Đặt

$$X = \frac{2x+1}{2x+2} \to u_n = X^n \to \sqrt[n]{|u_n|} = |X| = q.$$

Theo Tiêu chuẩn Cauchy, chuỗi hội tụ nếu $q = |X| < 1 \rightarrow -1 < X < 1$.

Tại $X=1 o u_n=1 o 1
eq 0$. Nên theo ĐK cần để chuỗi htu, thì chuỗi ph kì.

Tại $X=-1 \rightarrow u_n=(-1)^n \rightarrow |u_n|=1 \rightarrow 1 \neq 0$. Nên theo ĐK cần để chuỗi htu, thì chuỗi ph kì.

Vậy miền hội tụ của chuỗi là

$$-1 < X < 1 \to -1 < \frac{2x+1}{2x+2} < 1 \to \begin{cases} \frac{2x+1}{2x+2} - 1 < 0 \\ \frac{2x+1}{2x+2} + 1 > 0 \end{cases} \to \begin{cases} \frac{-1}{2x+2} < 0 \\ \frac{4x+3}{2x+2} > 0 \end{cases} \to -1 < x < -\frac{3}{4} \to x$$

$$\in \left(-1, -\frac{3}{4}\right).$$

74. C12. $\sum_{n} \frac{(n+1)^n}{n^n} \cdot (2x-1)^n$

G: Có

$$u_n = \frac{(n+1)^n}{n^n} \cdot (2x-1)^n$$
.

Đặt

$$X = 2x - 1 \rightarrow u_n = \left(\frac{(n+1)X}{n}\right)^n \rightarrow \sqrt[n]{|u_n|} = \left|\frac{(n+1)X}{n}\right| = |X| \cdot \frac{n+1}{n} \rightarrow |X| = q$$

khi $n \to \infty$. Theo tiêu chuẩn Cauchy, chuỗi hội tụ nếu

$$q = |X| < 1 \rightarrow -1 < X < 1.$$

$$q=|X|<1\rightarrow -1< X<1.$$
 Xét $X=1\rightarrow u_n=\frac{(n+1)^n}{n^n}=\left(\frac{n+1}{n}\right)^n=\left(1+\frac{1}{n}\right)^n\rightarrow e\neq 0$ khi $n\rightarrow \infty$. Nên chuỗi phân kì.

 $X\acute{e}t X = -1.$

Vậy miền hội tụ là

$$-1 < X < 1 \rightarrow -1 < 2x - 1 < 1 \rightarrow 0 < x < 1 \rightarrow x \in (0, 1).$$

75. C13.
$$\sum_{n} \frac{n^n}{(2n-1)^n} \cdot (3x+1)^n$$
.

G: Có

$$u_n = \frac{n^n}{(2n-1)^n} \cdot (3x+1)^n.$$

Đặt

$$X = 3x + 1 \rightarrow u_n = \frac{n^n}{(2n-1)^n}.X^n \rightarrow \sqrt[n]{|u_n|} = \left|\frac{n}{2n-1}.X\right| = |X|.\frac{n}{2n-1} \rightarrow |X|.\frac{1}{2} = q$$

khi $n \to \infty$. Theo tiêu chuẩn Cauchy, chuỗi hội tụ nếu

$$q = |X| \frac{1}{2} < 1 \rightarrow |X| < 2 \rightarrow -2 < X < 2.$$

- Nếu
$$X = 2 \rightarrow u_n = \frac{n^n}{(2n-1)^n}$$
. $2^n = \left(\frac{2n}{2n-1}\right)^n = \left(1 + \frac{1}{2n-1}\right)^n = \left(1 + \frac{1}{2n-1}\right)^{(2n-1)\frac{n}{2n-1}} \rightarrow e^{\frac{1}{2}} \neq 0$ khi $n \rightarrow \infty$. Nên chuỗi ph kì.

- Nếu $X = -2 \rightarrow \text{Chuỗi ph kì.}$

Vậy miền hội tụ của chuỗi là

$$-2 < X < 2 \rightarrow -2 < 3x + 1 < 2 \rightarrow \cdots$$

76. C14.
$$\sum_{n} \frac{n^n}{(3n-1)^n} \cdot (2x+1)^n$$
.

G: ...