Univariate Regression

(Part 2b – Estimation and Measures of Fit)

Dragos Ailoae

dailoae@gradcenter.cuny.edu

Advanced Economics and Business Statistics ECON-4400w

Brooklyn College

The OLS Estimator, Predicted Values, and Residuals

The OLS estimators of the slope β_1 and the intercept β_0 are

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \frac{s_{XY}}{s_{X}^{2}}$$
(4.7)

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}. \tag{4.8}$$

The OLS predicted values \hat{Y}_i and residuals \hat{u}_i are

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i, \quad i = 1, \dots, n$$
 (4.9)

$$\hat{u}_i = Y_i - \hat{Y}_i, \quad i = 1, \dots, n.$$
 (4.10)

The estimated intercept $(\hat{\beta}_0)$, slope $(\hat{\beta}_1)$, and residual (\hat{u}_i) are computed from a sample of n observations of X_i and Y_i , $i = 1, \ldots, n$. These are estimates of the unknown true population intercept (β_0) , slope (β_1) , and error term (u_i) .

Example

For the regression model $Y_i = \beta_0 + \beta_1 X_i + u_i$ find the OLS estimators $\hat{\beta}_0$, $\hat{\beta}_1$ given the following data sample:

 $\begin{array}{ccc} Y_i & X_i \\ 4 & 1 \\ 5 & 4 \\ 7 & 5 \end{array}$

12

i	Υ	X	y = Y - Ybar	x = X - Xbar	xy	x^2	Y_hat = b0 + b1 * X	u_hat
1	4	1	-3	-3	9	9	2.929	1.071
2	5	4	-2	0	0	0	7.000	-2.000
3	7	5	0	1	0	1	8.357	-1.357
4	12	6	5	2	10	4	9.714	2.286
Sum	28	16	0	0	19	14	28.000	0
Avg (Ybar Xbar)	7	4						
	My Calcs	Excel	Diff.					
n	4	4	0					
$b1 = xy/x^2 = 19/14$	1.357	1.357	0					
b1 = covar(X,Y) / var(X)	1.357	1.357	0					
b0 = Ybar - b1*Xbar	1.571	1.571	0					

Intuition: Regression Slope Coefficient vs Correlation Coefficient

Recall that the correlation coefficient is:

$$ho_{X,Y} = rac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

where
$$\sigma_X = \sqrt{Var(X)}$$
 and $\sigma_Y = \sqrt{Var(Y)}$

We've established that the slope coefficient for univariate regression is:

$$\hat{eta}_1 = rac{\mathrm{Cov}(X,Y)}{\mathrm{Var}(X)} \equiv rac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_X}$$

Which implies the following relationship between the regression slope coefficient and the correlation coefficient:

$$\hat{\beta}_1 = \rho_{X,Y} \frac{\sigma_Y}{\sigma_X}$$

Intuition: Regression line must pass through point (\bar{X}, \bar{Y})

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}.$$

Measures of Fit (SW Section 4.3)

Two regression statistics provide complementary measures of how well the regression line "fits" or explains the data:

- The *regression* \mathbb{R}^2 (aka "coefficient of determination") measures the fraction of the variance of Y that is explained by X; it is unitless and ranges between zero (no fit) and one (perfect fit)
- The *standard error of the regression (SER)* measures the magnitude of a typical regression residual in the units of *Y*.

The regression \mathbb{R}^2 is the fraction of the sample variance of Y_i "explained" by the regression.

$$Y_i = \hat{Y}_i + \hat{u}_i = \text{OLS prediction} + \text{OLS residual}$$

 $\rightarrow \text{ sample var}(Y) = \text{ sample var}(\hat{Y}_i) + \text{ sample var}(\hat{u}_i)$
 $\rightarrow \text{ total sum of squares} = \text{"explained" SS} + \text{"residual" SS}$
 $TSS = ESS + SSR$
 $Definition of R^2:$ $R^2 = \frac{ESS}{TSS} = \frac{\sum_{i=1}^n (\hat{Y}_i - \bar{\hat{Y}})^2}{\sum_{i=1}^n (Y_i - \bar{Y}_i)^2}$
 $= 1 - \frac{SSR}{TSS} = 1 - \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{\sum_{i=1}^n (Y_i - \bar{Y}_i)^2}$

- $R^2 = 0$ means ESS = 0
- $R^2 = 1$ means ESS = TSS
- $0 \le R^2 \le 1$, higher R^2 means better fit
- For regression with a single X, R^2 = the square of the correlation coefficient between X and Y

The Standard Error of the Regression (SER)

The SER measures the spread of the distribution of u. The SER is (almost) the sample standard deviation of the OLS residuals:

$$SER = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (\hat{u}_i - \overline{\hat{u}})^2}$$
$$= \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} \hat{u}_i^2}$$

The second equality holds because $\overline{\hat{u}} = \frac{1}{n} \sum_{i=1}^{n} \hat{u}_i = 0$.

$$SER = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} \hat{u}_i^2}$$

The *SER*:

has the units of u, which are the units of Y

measures the average "size" of the OLS residual (the average "mistake" made by the OLS regression line)

The *root mean squared error* (*RMSE*) is closely related to the *SER*:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \hat{u}_i^2}$$

This measures the same thing as the SER – the minor difference is division by 1/n instead of 1/(n-2).

Example (continued)

For the regression model $Y_i = \beta_0 + \beta_1 X_i + u_i$, find the coefficient of determination (R²) given the following data sample:

 $\begin{array}{ccc} Y_i & X_i \\ 4 & 1 \\ 5 & 4 \\ 7 & 5 \\ 12 & 6 \end{array}$

i	Υ	х	y = Y - Ybar	x = X - Xbar	ху	x^2	Y_hat = b0 + b1 * X	u_hat	y_hat = Y_hat - Y_hat_bar	y_hat^2	y^2	u_hat^2
1	4	1	-3	-3	9	9	2.929	1.071	-4.071	16.577	9	1.148
2	5	4	-2	0	0	0	7.000	-2.000	0.000	0.000	4	4.000
3	7	5	0	1	0	1	8.357	-1.357	1.357	1.842	0	1.842
4	12	6	5	2	10	4	9.714	2.286	2.714	7.367	25	5.224
Sum	28	16	0	0	19	14	28.000	0	0	25.786	38	12.214
Avg (Ybar Xbar)	7	4								ESS	TSS	RSS
												aka SSR
	My Calcs	Excel	Diff.									
n	4	4	0									
$b1 = xy/x^2 = 19/14$	1.357	1.357	0							TSS Check (ESS+RSS)		Diff.
b1 = covar(X,Y) / var(X)	1.357	1.357	0								38.000	0.000
b0 = Ybar - b1*Xbar	1.571	1.571	0									
Measures of fit												
R2 = ESS / TSS	0.679	0.679	0									
R2 = 1 - RSS/TSS	0.679	0.679	0									
SER = sqrt (RSS / (n-2))	2.471	2.471	0									
RMSR = sqrt (RSS / n)	1.747											

Next week – finish chapter 4

- 1. Probability framework for linear regression
- 2. The ordinary least squares (OLS) estimator and the sample regression line
- 3. Measures of fit of the sample regression
- 4. The least squares model assumptions
- 5. The sampling distribution of the OLS estimator