Temat: Złączenia. (baza nazwisko firma)

Jeśli pobieramy dane z więcej niż jednej tabeli, w rzeczywistości wykonujemy tak zwane złączenie. W SQL istnieją instrukcje pozwalające na formalne wykonanie złączenia tabel - istnieje wiele typów złączeń.

Zapoznaj się z treścią wykładu 3.21_SQL_Zlaczenia.pdf!

1. Złączenie typu CROSS JOIN – to złączenie krzyżowe, którego ogólna postać jest następująca:

SELECT kolumna1, kolumna2, ..., kolumnaN FROM tabela1 CROSS JOIN tabela2;

Wykonuje ono iloczyn kartezjański łączonych tabel, czyli łączy każdy wiersz *tabeli1* z każdym wierszem t*abeli2*. Jest to zatem odpowiednik instrukcji:

SELECT kolumna1, kolumna2, ..., kolumnaN FROM tabela1, tabela2;

Ćw.1

Wykonaj złączenie krzyżowe tabel pracownicy i stanowiska.

SELECT *

FROM pracownicy CROSS JOIN stanowiska;

Ćw.1.1

Wykonaj złączenie krzyżowe tabel stanowiska i pracownicy. Porównaj wyniki obu zapytań.

SELECT *

FROM stanowiska CROSS JOIN pracownicy;

Ćw.1.2

Wykonaj złączenie krzyżowe tabel *pracownicy* i *stanowiska*. Wybierz tylko pola: *imie, nazwisko, nazwa* i *pensja*.

SELECT imie, nazwisko, nazwa, pensja FROM pracownicy CROSS JOIN stanowiska;

Wynik tego złączenia przedstawia rysunek obok.

Ćw.1.3

Wykonaj złączenie krzyżowe tabel stanowiska i pracownicy.

Wybierz tylko pola: nazwa, pensja, imie, nazwisko.

SELECT imie, nazwisko, nazwa, pensja FROM stanowiska CROSS JOIN pracownicy;

2. Złączenie typu INNER JOIN – to złączenie warunkowe o postaci:

SELECT kolumna1, kolumna2, ..., kolumnaN FROM tabela1 [INNER] JOIN tabela2 ON wyrażenie_warunkowe;

Słowo INNER w większości implementacji jest opcjonalne. W przypadku tego złączenia wyniku pojawią się tylko te wiersze z tabeli1 i tabeli2, które spełniają warunki wymienione po klauzuli ON. Jest to więc odpowiednik instrukcji:

SELECT kolumna1, kolumna2, ..., kolumnaN

imie	nazwisko	nazwa	pensja i
Anna	. Nowak	! kierownik	4000.00
Anna	l Nowak	asystent	1 3200.00 1
Anna	Nowak	sekretarka	1 2500.00 I
Anna	Nowak	pracownik	2800.00
Anna	Nowak	kierowca	2700.00
Jan	Kowalski	kierownik	4000.00
Jan	Kowalski	l asystent	3200.00
i Jan	Kowalski	¦ sekretarka	1 2500.00 i
l Jan	Kowalski		2800.00
		pracownik	
Jan	Kowalski	kierowca	1 2700.00 1
l Kaja	Borecka	l kierownik	1 4000.00 1
: Kaja	l Borecka	l asystent	1 3200.00 1
l Kaja	l Borecka	l sekretarka	: 2500.00 :
¦ Kaja	l Borecka	pracownik	1 2800.00 1
l Kaja	Borecka	¦ ĥierowca	1 2700.00 1
Maria	Borek	kierownik	1 4000.00 1
Maria	Borek	asystent	3200.00
Maria	Borek	l sekretarka	1 2500.00 1
Maria	Borek	pracownik	1 2800.00 I
Maria	Borek	kierowca	2700.00

FROM tabela1, tabela2, ..., tabelaN WHERE warunki;

Ćw.2

Wykonaj złączenie typu INNER JOIN pobierające dane z kolumn: imie, nazwisko, stanowisko i pensja z tabel pracownicy i stanowiska takie, aby każdemu pracownikowi była przypisana odpowiadająca mu płaca. imie pensja

SELECT imie, nazwisko, nazwa, pensja

2500.00 Anna Nowak Kowalski sekretarka Jan Kaja Maria 4000 . OO kiernwnik Borecka Borek asystent 3200.00 FROM pracownicy INNER JOIN stanowiska 2800.00 2800.00 2700.00 pracownik Marczak Marian pracownik kierowca ON stanowisko=stanowiska.id stanowiska;

3. Złączenie typu LEFT OUTER JOIN – pozwala na uwzględnienie w wyniku danych, które nie mają swoich odpowiedników w złączonych tabelach. Oznacza to, że jeżeli w pierwszej tabeli znajdują się wiersze, które nie mają swoich odpowiedników w drugiej tabeli, i tak zostaną uwzględnione w złączeniu, a w miejsce pustych kolumn zostaną wstawione wartości NULL. Konstrukcja ta ma postać:

SELECT kolumna1, kolumna2, ..., kolumnaN FROM tabela1 LEFT [OUTER] JOIN tabela2 ON wyrażenie warunkowe;

Słowo OUTER w większości implementacji jest opcjonalne. Aby sprawdzić, jak działa w praktyce, dodaj do tabeli pracownicy nowy wiersz:

INSERT INTO pracownicy VALUES (8, 'Robert', 'Nowicki', '1985-11-01', '85110123456', 'Gdansk', 8);

Osobie tej został przypisany identyfikator nieistniejącego stanowiska (8). Jest to błąd polegający na niespójności danych w bazie, ale taka sytuacja może się zdarzyć w rzeczywistości. W takiej sytuacji złączenie typu INNER JOIN nie ujawni osoby o numerze 8, ponieważ w tabeli stanowiska nie ma stanowiska, któremu przypisano identyfikator 8. Inaczej będzie w przypadku złączenia LEFT INNER JOIN.

Ćw.3

Wyświetl dane pracowników wraz z zajmowanymi przez nich stanowiskami, tak aby w wyniku pojawiły się również osoby, którym przypisano błędny numer stanowiska.

SELECT imie, nazwisko, nazwa, pensja FROM pracownicy LEFT OUTER JOIN stanowiska ON stanowisko=stanowiska.id stanowiska;

W wyniku pojawiły się dane wszystkich pracowników. W kolumnach dotyczących stanowiska dla których nie ma

į	imie	nazwisko	nazwa	pensja i
	Anna Jan Kaja Maria Marian Kajetan Maria Robert	Nowak Kowalski Borecka Borek Marczak Grota Grota Nowicki	sekretarka kierownik asystent pracownik pracownik kierowca asystent	2500.00 4000.00 3200.00 2800.00 2800.00 2700.00 3200.00

odpowiedników w tabeli stanowiska, pojawiła się wartość NULL. W ten sposób otrzymaliśmy dane wszystkich pracowników, nawet jeśli były niespójne.

4. Złączenie typu RIGHT OUTER JOIN – jest przeciwieństwem LEFT OUTER JOIN. W tabeli wynikowej uwzględnia ono wiersze z drugiej tabeli, które nie mają swoich odpowiedników w pierwszej tabeli. Ma ono postać:

SELECT kolumna1, kolumna2, ..., kolumnaN FROM tabela1 RIGHT [OUTER] JOIN tabela2 ON wyrażenie warunkowe;

Słowo OUTER, tak jak w poprzednio opisywanych przypadkach, zazwyczaj jest opcjonalne. Aby sprawdzić działanie tego typu złączenia, dodaj do tabeli *stanowiska* stanowisko, do którego nie będzie przypisany żaden pracownik.

INSERT INTO stanowiska VALUES(6, 'informatyk', 4000.00);

<u>Ćw.4</u>

Użyj zapytania typu RIGHT OUTER JOIN do złączenia tabel pracownicy i stanowiska.

SELECT imie, nazwisko, nazwa, pensja FROM pracownicy RIGHT OUTER JOIN stanowiska ON stanowisko=stanowiska.id_stanowiska;

Łatwo zauważyć, że RIGHT OUTER JOIN i LEFT OUTER JOIN i Kajetan kontro funkcjonalne odpowiedniki. Wystarczy zmienić kolejność tabel, aby uzyskać zapytanie pierwszego bądź drugiego typu.

imie	¦ nazwisko	nazwa	pensja
Jan Kaja Maria Anna Maria Marian Kajetan	Kowalski Borecka Grota Nowak Borek Marczak Grota NULL	kierownik asystent asystent sekretarka pracownik pracownik kierowca informatyk	4000.00 3200.00 3200.00 2500.00 2500.00 2800.00 2800.00 2700.00

Ćw.4.1

Użyj złączenia typu LEFT OUTER JOIN do uzyskania rezultatów takich jak w poprzednim ćwiczeniu.

5. Złączenie typu FULL OUTER JOIN – jest kombinacją LEFT OUTER JOIN i RIGHT OUTER JOIN. Nie jest ono obsługiwane przez bazę MYSQL. Ma ogólną postać:

SELECT kolumna1, kolumna2, ..., kolumnaN FROM tabela1 FULL [OUTER] JOIN tabela2 ON wyrażenie warunkowe;

Uwzględnia ono w wynikach zapytania zarówno takie wiersze z pierwszej tabeli, które nie mają swoich odpowiedników w drugiej, jak i takie wiersze z drugiej tabeli, które nie mają swoich odpowiedników w pierwszej.

Ćw.5

Użyj złączenia typu FULL OUTER JOIN do złączenia tabel pracownicy i stanowiska.

SELECT imie, nazwisko, pesel, nazwa, pensja FROM pracownicy FULL OUTER JOIN stanowiska ON stanowisko=stanowiska.id_stanowiska;

6. Złączenia i klauzula WHERE

W złączeniach można również stosować klauzule WHERE. W wyniku takiego zapytania najpierw zostanie wykonane złączenie spełniające warunki występujące po klauzuli ON, następnie z otrzymanych wierszy zostaną wyeliminowane te, które nie spełniają warunków występujących po klauzuli WHERE, a serwer bazy danych zwróci ostateczny wynik.

Ćw.6

Napisz zapytanie wykorzystujące złączenie LEFT OUTER JOIN do wyświetlenia danych pracowników, dla których w kolumnie *stanowisko* znajdują się wartości niemające odpowiedników w tabeli *stanowiska*.

SELECT imie, nazwisko, pesel, nazwa, pensja FROM pracownicy LEFT OUTER JOIN stanowiska ON stanowisko=stanowiska.id_stanowiska WHERE nazwa IS NULL;

imie	+ nazwisko +	nazwa	I pensja I
Robert	Nowicki	NULL	NULL !

Efekt działania tego zapytania przedstawiony jest na rysunku powyżej.

Ćw.6.1

Napisz zapytanie wykorzystujące dowolne złączenie do wyświetlenia nazw stanowisk, dla których w kolumnie *nazwisko* znajdują się wartości niemające odpowiedników w tabeli *stanowiska*.

7. Zrzuty ćwiczeń od 1 do 6.1 wraz z drugą częścią ćwiczeń prześlij przez zakładkę Zadania.

Temat: Operacje pionowe na zbiorach. Łączenie wyników zapytań.

Drugą grupą operacji na zbiorach, są operacje pionowe, czyli:

- UNION suma (bez powtórzeń).
- UNION ALL suma (z powtórzeniami).
- EXCEPT odejmowanie zbiorów.
- INTERSECT iloczyn (część wspólna).

Warunkiem podstawowym, któregokolwiek ze sposobów operowania na zbiorach w sposób pionowy, jest podobna struktura tabel wejściowych. Liczba kolumn w każdym zbiorze (kwerendzie), musi być identyczna oraz typy danych poszczególnych kolumn, muszą do siebie pasować. Nazwy kolumn, nie mają znaczenia. W zbiorze wynikowym, atrybuty będą nazwane tak jak w pierwszej z kwerend.

1. W bazie danych *zapytania_nazwisko* przygotuj dwie nowe tabele. Będą one zawierały listę pracowników dwóch uczelni: UczelniaA i UczelniaB.

Uczelnia A

id	imie	nazwisko	pesel
1	Jan	Kowalski	01234567890
2	Adam	Nowak	12345678901
3	Anna	Wilk	23456789012

Uczelnia B

id	imie	nazwisko	pesel
1	Olga	Wolska	34567890123
2	Beata	Nowak	45678901234
3	Jan	Kowalski	01234567890

2. Wykonaj zapytanie, które wyświetli dane (imię, nazwisko i PESEL) wszystkich pracowników uczelni UczelniaA i UczelniaB.

SELECT imie, nazwisko pesel FROM UczelniaA UNION

SELECT imie, nazwisko pesel FROM UczelniaB;

Dane Jana Kowalskiego, będącego pracownikiem obu uczelni, pojawiły się w wynikach zapytania tylko raz.

3. Użyj instrukcji UNION wyświetlającej dane wszystkich pracowników w taki sposób, aby w wynikach znalazły się wszystkie wiersze zapytań składowych.

SELECT imie, nazwisko pesel FROM UczelniaA UNION ALL

SELECT imie, nazwisko pesel FROM UczelniaB;

4. Napisz zapytanie stwierdzające, którzy pracownicy pracują zarówno na UczelniA jak i na UczelniB.

SELECT imie, nazwisko pesel FROM UczelniaA
INTERSECT (instrukcja nie jest obsługiwana przez bazę MySQL)
SELECT imie, nazwisko pesel FROM UczelniaB;

5. Napisz zapytanie pozwalające stwierdzić, którzy z pracowników UczelniA nie pracują jednocześnie na UczelniB.

SELECT imie, nazwisko pesel FROM UczelniaA
EXCEPT (instrukcja
nie jest obsługiwana przez bazy MySQL i ORACLE)
SELECT imie, nazwisko pesel FROM UczelniaB;

I imie	nazwisko	+ nazwa +	I pensja
NULL	NULL	informatyk	4000.00

- 6. Z tabeli pracownicy wyświetl listę osób, których imiona zaczynają się na literę A i którzy zarabiają powyżej 2000 zł.
- 7. Zrzuty wszystkich ćwiczeń z tego PDF-a prześlij przez zakładkę Zadania.