Physical Kinetics

Alejandro Campos

October 24, 2024

Contents

\mathbf{A}	Lag	rangian and Eulerian PDFs	2
	A.1	Eulerian PDF	2
	A.2	Lagrangian PDF	2
	A.3	Relation between Lagrangian and Eulerian PDFs	3
	A.4	Evolution equation for fine-grained Eulerian PDF	3
	A.5	Evolution equation for fine-grained Lagrangian PDF	3

Appendix A

Lagrangian and Eulerian PDFs

A.1 Eulerian PDF

Consider an Eulerian velocity field $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$. The Eulerian PDF $f = f(\mathbf{V}; \mathbf{x}, t)$ gives the probability that the velocity field will have a value of \mathbf{V} at location \mathbf{x} and at time t. We'll also introduce the fine-grained Eulerian PDF $f' = f'(\mathbf{V}; \mathbf{x}, t)$, which is defined as

$$f'(\mathbf{V}; \mathbf{x}, t) = \delta(\mathbf{u}(\mathbf{x}, t) - \mathbf{V}). \tag{A.1}$$

Note: a delta function of a 3D argument means the following $\delta(\mathbf{a}) = \delta(a_1)\delta(a_2)\delta(a_3)$. The Eulerian PDF can be obtained from the fine-grained Eulerian PDF using

$$f(\mathbf{V}; \mathbf{x}, t) = \langle f'(\mathbf{V}; \mathbf{x}, t) \rangle.$$
 (A.2)

The proof is as follows,

$$\langle f'(\mathbf{V}; \mathbf{x}, t) \rangle = \langle \delta(\mathbf{u}(\mathbf{x}, t) - \mathbf{V}) \rangle$$

$$= \int \delta(\mathbf{V}' - \mathbf{V}) f(\mathbf{V}'; \mathbf{x}, t) d\mathbf{V}'$$

$$= f(\mathbf{V}; \mathbf{x}, t). \tag{A.3}$$

A.2 Lagrangian PDF

Consider a Lagrangian particle with velocity $\mathbf{u}^+ = \mathbf{u}^+(t, \mathbf{y})$ and position $\mathbf{x}^+(t, \mathbf{y})$. The Lagrangian PDF $f_L = f_L(\mathbf{V}, \mathbf{x}; t|\mathbf{y})$ gives the probability that the particle that started at location \mathbf{y} at the reference time t_0 will have a velocity \mathbf{V} and position \mathbf{x} at time t. We'll also introduce the fine-grained Eulerian PDF $f'_L = f'_L(\mathbf{V}, \mathbf{x}; t|\mathbf{y})$, which is defined as

$$f'_{L}(\mathbf{V}, \mathbf{x}; t|\mathbf{y}) = \delta(\mathbf{u}^{+}(t, \mathbf{y}) - \mathbf{V})\delta(\mathbf{x}^{+}(t, \mathbf{y}) - \mathbf{x}). \tag{A.4}$$

Note: a delta function of a 3D argument means the following $\delta(\mathbf{a}) = \delta(a_1)\delta(a_2)\delta(a_3)$. The Lagrangian PDF can be obtained from the fine-grained Lagrangian PDF using

$$f_L(\mathbf{V}, \mathbf{x}; t|\mathbf{y}) = \langle f'_L(\mathbf{V}, \mathbf{x}; t|\mathbf{y}) \rangle.$$
 (A.5)

The proof is as follows,

$$\langle f'_{L}(\mathbf{V}, \mathbf{x}; t | \mathbf{y}) \rangle = \langle \delta(\mathbf{u}^{+}(t, \mathbf{y}) - \mathbf{V}) \delta(\mathbf{x}^{+}(t, \mathbf{y}) - \mathbf{x}) \rangle$$

$$= \int \delta(\mathbf{V}' - \mathbf{V}) \delta(\mathbf{x}' - \mathbf{x}) f(\mathbf{V}', \mathbf{x}'; t | \mathbf{y}) d\mathbf{V}' d\mathbf{x}'$$

$$= f_{L}(\mathbf{V}, \mathbf{x}; t | \mathbf{y}). \tag{A.6}$$

A.3 Relation between Lagrangian and Eulerian PDFs

As a quick side note, we mention that the inverse of \mathbf{x}^+ is $\mathbf{y}^+ = \mathbf{y}^+(t, \mathbf{z})$, which gives the initial location of a fluid particle that at time t is located at position \mathbf{z} . Thus, $\mathbf{x}^+(t, \mathbf{y}^+(t, \mathbf{z})) = \mathbf{z}$.

We begin as follows

$$\int f'_{L}(\mathbf{V}, \mathbf{x}; t | \mathbf{y}) d\mathbf{y} = \int \delta(\mathbf{u}^{+}(t, \mathbf{y}) - \mathbf{V}) \delta(\mathbf{x}^{+}(t, \mathbf{y}) - \mathbf{x}) d\mathbf{y}$$

$$= \int \delta(\mathbf{u}(\mathbf{x}^{+}(t, \mathbf{y}), t) - \mathbf{V}) \delta(\mathbf{x}^{+}(t, \mathbf{y}) - \mathbf{x}) d\mathbf{y}$$

$$= \int \delta(\mathbf{u}(\mathbf{x}^{+}(t, \mathbf{y}), t) - \mathbf{V}) \delta(\mathbf{x}^{+}(t, \mathbf{y}) - \mathbf{x}) |\det D\mathbf{x}^{+}| d\mathbf{y}, \qquad (A.7)$$

where we have introduced $|\det D\mathbf{x}^+|$, which is the absolute value of the determinant of the Jacobean $\partial \mathbf{x}^+/\partial \mathbf{y}$, and is equal to one for incompressible flows. Using integration by substitution we obtain

$$\int f'_L(\mathbf{V}, \mathbf{x}; t|\mathbf{y}) d\mathbf{y} = \int \delta(\mathbf{u}(\mathbf{z}, t) - \mathbf{V}) \delta(\mathbf{z} - \mathbf{x}) d\mathbf{z} = \delta(\mathbf{u}(\mathbf{x}, t) - \mathbf{V})$$
(A.8)

Given the definition of $f'(\mathbf{V}; \mathbf{x}, t)$, we have

$$\int f'_L(\mathbf{V}, \mathbf{x}; t|\mathbf{y}) d\mathbf{y} = f'(\mathbf{V}; \mathbf{x}, t). \tag{A.9}$$

Taking the expectation of the above we obtain

$$\int f_L(\mathbf{V}, \mathbf{x}; t|\mathbf{y}) d\mathbf{y} = f(\mathbf{V}; \mathbf{x}, t). \tag{A.10}$$

A summary of all of the relations derived thus far is given by the following graph

A.4 Evolution equation for fine-grained Eulerian PDF

A.5 Evolution equation for fine-grained Lagrangian PDF