# Introduction to NetFPGA And OpenFlow

#### **Outline**

- NetFPGA
  - FPGA
  - Programming on an FPGA
  - NetFPGA
- OpenFlow
  - OpenFlow Protocol
  - OpenFlow Switch
- OpenFlow Switch using NetFPGA
  - Switch Structure
  - Switch Demo

# NetFPGA

#### **FPGA**

- Field-programmable Gate Array (FPGA) is an integrated circuit designed to be configured AFTER manufacturing.
- The configuration is specified using a hardware description language (HDL), e.g., Verilog.
- FPGAs contains logic blocks which generally can be arbitrarily connected together.
- FPGAs can be used to implement any logical function that an ASIC (an integrated circuit customized for a particular use) could perform.

# Programming on an FPGA

- Specification
- High Level Design
- Micro Design/Low level design
- RTL Coding Simulation
- Synthesis
- Place & Route
- Post Silicon Validation

#### NetFPGA - 1G

- A reconfigurable hardware platform for 1Gbps high-speed networking.
- Components
  - Processor: Xilinx Virtex-II Pro 50 FPGA.
  - Memory:
    - (1) 4.5 MB SRAM for storing tables.
    - (2) 64 MB DDR2 DRAM for buffering packets.
  - Gigabit Ethernet Ports: 4 x 1 Gbps bi-directional Ethernet ports.

#### NetFPGA - 1G contd.

- Components
  - Multi-gigabit I/O: 2 SATA connectors for chaining multiple NetFPGAs.
  - standard PCI: Compatible with a PCI-X slot.
  - Hardware Debugging port.

#### NetFPGA - 1G contd.



Figure 2: Detailed block diagram of the components of the NetFPGA board.

## NetFPGA - 1G contd.



#### NetFPGA - 10G

Coming soon...



Questions?

# OpenFlow

# OpenFlow Protocol

- Modern Ethernet switches and routers contain flow-tables that run at line-rate to implement firewalls, NAT, QoS, and to collect statistics.
- OpenFlow is an open protocol for modifying the flow-table in different switches and routers.
- OpenFlow allows the control paths to be outside the switches or routers.

## OpenFlow Protocol contd.

- Definition of a flow
- 12-tuple

| Ingres | s Ether | Ether       | Ether | VLAN                | VLAN | IP  | IP          | IP    | IΡ   | TCP/ | TCP/        |
|--------|---------|-------------|-------|---------------------|------|-----|-------------|-------|------|------|-------------|
| Port   | source  | $_{ m dst}$ | type  | $\operatorname{id}$ | pri- | src | $_{ m dst}$ | proto | ToS  | UDP  | UDP         |
|        |         |             |       |                     | or-  |     |             |       | bits | src  | $_{ m dst}$ |
|        |         |             |       |                     | ity  |     |             |       |      | port | port        |

Table 2: Fields from packets used to match against flow entries.

# **OpenFlow Switch**

- A switching device is an OpenFlow Switch if

   (1) it has a flow table which performs packet lookup and forwarding.
  - (2) it has a secure channel to an external controller which is in charge of configuring the flow table in (1).
- An entry in the flow table

| Header Fields | Counters | Actions |
|---------------|----------|---------|
|---------------|----------|---------|

Header Fields are fields in the flow definition.

# OpenFlow Switch contd.



# OpenFlow Switch contd.

 Workflow for an OpenFlow Switch a packet arrives look up the packet in the flow table if there is a match take the corresponding action else send the packet to the controller do what the controller decide to do (adding a new flow for the packet is optional)

# OpenFlow Switch contd.



Figure 1: Steps when a new flow arrives at an Open-Flow switch.

# OpenFlow Switch using NetFPGA

#### Switch Structure



OpenFlow Protocol (SSL/TCP)

**Control Path** 

OpenFlow

Data Path (Hardware)

#### Switch Structure contd.



# Switch Demo

#### Initialization

- Load the router circuit into the FPGA on the NetFPGA.
- Setup the datapath for the OpenFlow Switch.
- Setup the OpenFlow Controller.
- Setup the OpenFlow protocol stack for the OpenFlow Switch and connect to the OpenFlow Controller.

#### Scenario 1

- 2 senders and 1 receiver in a Y-shape topology. Sender 1: 192.168.2.202 --> port1 on NetFPGA Sender 2: 192.168.2.203 --> port2 on NetFPGA Receiver: 192.168.2.201 --> port3 on NetFPGA
- The controller does NOTHING. This scenario is for purely demonstrating how the flow table works on the NetFPGA.
- Use dpctl to manually configure the flow table.

#### Scenario 2

- 2 senders and 1 receiver in a Y-shape topology.
   Sender 1: 192.168.2.202 --> port1 on NetFPGA
   Sender 2: 192.168.2.203 --> port2 on NetFPGA
   Receiver: 192.168.2.201 --> port3 on NetFPGA
- The OpenFlow Switch acts as a learning switch.

Questions?

The End