

Universidade Federal da Bahia Programa de Pós-Graduação em Engenharia Elétrica

Comunicação entre Robot Operating System - ROS e SoC com FPGA integrado

Autor: Nestor Dias Pereira Neto

Orientador: Prof. Dr. Wagner Luiz Alves de Oliveira

Coorientador: Prof. Dr. Paulo César Farias

Salvador, 6 de dezembro de 2022

Agenda

- 1. Introdução
- 2. Parte I: Referenciais Teóricos
- 3. Parte II: Desenvolvimento
- 4. Parte III: Resultados

Introdução

Contextualização

- Projetos em robótica têm exigido maior percepção do ambiente.
- Maior poder de processamento e maior consumo de energia.
- FPGAs possuem potencial para melhorar desempenho de sistemas computacionais.
- MACs de alta velocidade, processamento paralelo e baixas frequências de trabalho são comuns em FPGA.
- O uso do FPGA pode contribuir com ganho de poder de processamento associado ao baixo consumo.

Contextualização

- Apesar de oferecer grandes vantagens, o FPGA é pouco incentivado em projetos de robótica.
- Atualmente o framework ROS está se consolidando como o padrão na criação de novas plataformas robóticas.
- O ROS é considerado um sistema operacional para robôs.
- Desenvolver uma solução para estabelecer comunicação entre FPGA e o ROS.

Problema

Como estabelecer a comunicação entre o ROS e um sistema de processamento auxiliar embarcado em um FPGA?

Este problema é o que este trabalho busca resolver, possibilitando assim, o uso de aceleração por hardware através do FPGA no desenvolvimento de novos projetos de robótica.

Objetivos

Objetivo geral

 Desenvolver uma solução para estabelecer comunicação entre Field-Programmable Gate Array - FPGA, e o Robot Operating System - ROS.

Objetivos

Objetivos específicos

- Estudar teoria dos assuntos relevantes ao projeto: Verilog HDL, Embedded Linx, Cyclone V, TCP/IP Stack, ROS;
- Estudar conceitos de programação de sockets em Iniguagem C++;
- Implementar distribuição Embedded Linux para processador ARM embarcado no SoC Cyclone V da Intel;
- Implementar distribuição Embedded Linux para processador ARM.
- Estabelecer comunicação entre o ROS e o Cyclone V, através da tecnologia Gigabit Ethernet;
- Avaliar o desempenho da rede entre o computador e o protótipo após a inclusão do FPGA ao sistema.

Parte I: Referenciais Teóricos

SoC é um acrônimo de *System-on-a-Chip* ou apenas *System on Chip*. Um SoC pode combinar diferentes elementos, em diferentes configurações, para formar um sistema completo.

A Intel fornece uma linha de produtos classificados como SoC-FPGA, os quais se caracterizam por possuir um rede de FPGA integrados a um processador ARM Cortex A9.

HPS Portion						FPGA Portion			
	Flasl	h	SDRAM C	ontroller				l	
	Control	lers	Subsy	stem			Control	User	HSSI
							Block	1/0	Transceivers
	Cortex-A9 MPU Subsystem								
					HPS-		FDCA F L :		ahric
	On-Chip		Support		Interfaces		(LUTs, RAMs, Multipliers & Routing)		
	Memories Periphe		rals						
	PLLs	Interface		Debug			PLLs	Hard	Hard Memory
	LLL	Peri	pherals	Debug			LLL	PCle	Controllers
L	MANANANANANA								

Esta estratégia de interconexão entre o HPS e o FPGA do Cyclone V em um único circuito integrado oferece:

- Largura de banda de pico de mais de 100 Gbps;
- Coerência de dados integrada;
- Significativa economia de energia do sistema, eliminando caminhos de E/S externos entre o processador e o FPGA.

Processador ARM Cortex-A9

- É uma linha de processadores ARM de uso geral, otimizados para alcançar maior desempenho aliado a um baixo consumo.
- Possue estrutura interna configurável, o que oferece flexibilidade ideal para o desenvolvimento de um novo SoC.

Arquitetura	Armv7-A				
Multicore	1-4 cores				
Suporte ISA	Extensão DSP				
Suporte ISA	Ponto Flutuante (Opcional)				
MMU	Armv7 MMU				
Caracteristicas	Arquitetura flexisível com caches configuráveis				
Caracteristicas	Desempenho 50% maior do que o Cortex-A8				

Fild-Programmable Gate Array-FPGA

- Dispositivos semicondutores construídos através de uma matriz de blocos lógicos configurável, os CLBs.
- Interconectáveis a partir de conexões programáveis.
- Hardware configuravel pelo usuário.
- Poderosas ferramentas de prototipagem.

Hardware Processor System

A família Cyclone V SoC-FPGA é composta por duas partições, uma malha de FPGA e um *Hard Processor System* (HPS). Os principais módulos do HPS são:

- Microprocessador Unit (MPU), subsistema com um ou dois núcleos ARM Cortex-A9.
- Controladores de memória Flash.
- Controladores de SDRAM.
- Sistema de interconexão.
- On-chip memory.
- Phase-locked loops (PLLs).

Hardware Processor System: FPGA Manager

- Configuração do FPGA.
- 32 sinais de uso geral.
- Status do FPGA.
- Interrupções para o HPS a partir do FPGA.
- Resetar o FPGA.

Hardware Processor System: HPS-FPGA Bridge

- O HPS pode se comunicar com 0 FPGA.
- Podem alcançar larguras de banda superiores a 100Gbps
- O HPS possui três pontes.
- A comunicação funciona nos dois sentidos.

Hardware Processor System: Cortex A9 MPU

O Microprocessor Unit Subsystem (MPU) presentes SoCs da família Cyclone V incluem um Arm Cortex-A9 MPCore, com processador de uso geral de 32 bits com um ou dois núcleos.

Kit de desenvolvimento DE10-nano

Um sistema operacional para robôs

"O Robot Operating System (ROS) é um conjunto de bibliotecas de software e ferramentas que te auxiliam na construção de aplicações em robótica. De *drivers* ao estado da arte de algoritmos, e com poderosas ferramentas de desenvolvimento, ROS tem o que você precisa para seu próximo projeto de robótica. E tudo é open source."

Vantagens do ROS: Tópico

- Recursos Nativos: O ROS oferece, de forma nativa, muitos recursos prontos, testados e validados pela comunidade.
- Ferramentas de desenvolvimento: O ROS é disponibilizado com uma grande quantidade de ferramentas para debugging, visualização, incluindo ferramentas para simulação.
- Suporte a sensores e atuadores: Muitos dos sensores e atuadores usados na robótica já são suportados pelo ROS e o número de dispositivos compatíveis aumenta a cada ano.
- Múltiplas linguagens: O framework ROS pode ser programado em algumas linguagens de programação modernas.

Sistema de arquivos ROS

- Pacotes: Pacotes são a unidade de software principal do ROS.
- Manifesto do pacote: O arquivo package.xml é conhecido como manifesto do pacote, ele fornece os metadados a respeito do pacotes.
- Arquivo .msg: É o arquivo de descrição de um tipo de mensagem.
- Arquivo .srv: É o arquivo de descrição de um tipo de serviço.
- Repositórios: Pacotes ROS são compartilhados usando algum tipo de sistema de controle de versão, como o git.

Componentes ROS: Tópicos ROS

Componentes ROS: ROS Master

Componentes ROS: Parâmetros ROS

- São variáveis globais que podem ser usadas por nós.
- O principal objetivo dos parâmetros é fornecer ao sistema a capacidade de se adaptar a cenários distintos de maneira ágil.
- Os parâmetros são criados com valores padrões

Parte II: Desenvolvimento

Programação de rede:

 Efetuar programação de sockets e bibliotecas específicas para trabalho em redes.

Aplicação ROS:

 Desenvolver um pacote ROS para disponibilizar os dados recebidos dos outros pacotes ROS do sistema para o SoC.

Aplicação HPS-SoC:

 Estabelecer a comunicação entre a interface de rede da placa E10-nano através de um programa executado no HPS do SoC, mantendo uma conexão entre o HPS e o FPGA.

Modelo cliente-servidor

- A comunicação entre o host e a placa DE10-nano através de uma rede gigabit.
- Possui estrutura que permite dividir o esforço computacional.
- Contribue de forma significativa para a modularização do sistema.

Biblioteca de comunicação - libinterfacesocket

- Para manter o padrão do desenvolvimentos dos códigos tanto do cliente quanto do servidor.
- Classe foi desenvolvida como um módulo à parte e compilada como uma biblioteca estática.
- Alterações ou correções de erros, sem alterações nos códigos do servidor ou do cliente.
- Programação da biblioteca foi realizada com base em sockets.
- A programação de sockets em C++ possibilita um alto nível de otimização da comunicação.
- Código fonte disponível no Github.

Pacote ROS (cliente)

No desenvolvimento de aplicações com ROS deve ser respeitada a estrutura de diretórios de um pacote ROS, portanto o desenvolvimento do cliente deve lever em consideração essa estrutura.

Pacote ROS (cliente)

- Configurações iniciais e leitura dos parâmetro.
- Cria o publisher e subscriber.
- Calback ler um tópico enviado por outro nó ROS.
- Faz o tratamento dos dados recebidos e os envia a SoC.
- Recebe dados do SoC e monta as mensagem ROS para ser publicado em um tópico

Neste trabalho o programa servidor disponibiliza ao cliente a interface com o FPGA presente no SoC. Assim, ao receber o pedido do cliente, o servidor deve ser capaz de enviar os dados vindos do cliente à unidade de processamento embarcada no FPGA e em seguida devolver esses dados já processados ao cliente

Processo de BOOT

Distribuição Linux rsyocto

O rsyocto foi a distribuição linux escolhida, desenvolvida exclusivamente para SoCs da Intel com FPGA integrado. Algumas das suas caracteristicas são:

- Linux Kernel 5.11.
- Acesso total ao Dual-Core ARM (ARMv7-A) Cortex-A9.
- Configuração da malha FPGA durante o boot e com comandos Linux simples.
- Todas as interfaces entre o HPS e o FPGA estão habilitadas e prontas para uso.
- Ferramentas para interagir com a malha do FPGA a partir das ARM AXI HPS- toFPGA bridges.

Servidor: Interface socket server

- Baixar, compilar e instalar a libinterfacesocket no linux embarcado.
- Mantém uma porta aberta esperando a conexão com o cliente.
- Dados recebidos do cliente s\u00e3o enviados para serem processados pelo FPGA e em seguida devolvidos ao cliente.
- O acesso do servidor ao FPGA é feito através de mapeamento de endereços do linux.

Servidor: Interface socket server

Parte III: Resultados

Resultados Alcançados

Foram idealizados dois ensaios: o primeiro com o objetivo de testar o fluxo completo de troca de dados entre um nó ROS e o FPGA; o segundo ensaio teve o objetivo de testar um fluxo grande de dados trafegando entre o ROS e o SoC.

Teste Comunicação:

- verificar a comunicação completa entre o nó ROS e um IP sendo executado no FPGA.
- foi projetado um circuito simples que calcula o dobro de um número.

Teste Rede:

- testar a sobrecarga de dados na rede e avaliar o seu comportamento.
- Stream de vídeo com resolução de 1280x720 em 15 fps.

Resultados Alcançados

Velocidade de transmissão

Resultados Alcançados

Atrasos gerados durante a comunicação

Conclusão

Conclusão

Os resultados alcançados para os dois ensaios foram considerados satisfatórios, apesar de, na transferência das imagens, ter sido observado um pequeno delay, menor do que 10 ms.

Trabalhos futuros

Estudos futuros podem dar ênfase a blocos específicos do trabalho, otimizando a comunicação e deixando o sistema ainda mais genérico.

Trabalho publicado no 28º IBERCHIP Workshop, promovido pela IEEE Circuits and Systems Society - CASS, Santiago no Chile, 2022.

Referências i

ALTERA.

SoC FPGA ARM Cortex-A9 MPCore Processor Advance Information Brief.

Altera Corporation, 2 2012.

Intel.

Fpgas cyclone® v e fpgas soc, 2022.

Mahtani, A., Sánchez, L., Fernández, E., and Martinez, A.

Effective Robotics Programming with ROS, 3 ed.

Packt Publishing Ltd, Birmingham, 2016.

ROS.

Pckages.

Open Source Robotics Fundation, 2019.

Referências ii

Terasic.

DE10-Nano User Manual, 2.2 ed.

Terasic Inc, 1 2020. rev. B2/C Hardware.

XILINX, A.

Field programmable gate array (fpga), 2022.

YAMASHINA, K., OHKAWA, T., OOTSU, K., AND YOKOTA, T. Proposal of ros-compliant fpga component for low-power robotic systems: case study on image processing application. 2nd International Workshop on FPGAs for Software Programmers (FSP 2015) (2015), 62–67.