設計製図Ⅱ 計算書

九州工業大学 機械知能工学科 機械知能コース 3年 学籍番号: 13104069 坂本悠作

平成 27 年 7 月 21 日

第1章 歯車設計編

与えられたデータを以下に示す.

表 1.1: データ

衣 1.1: 丿ー	>
入力動力 (kw)	17
回転数 (rpm)	1300
速度伝達比	12
ねじれ角 (deg)	21

1.1 手順 **A**: 歯数仮定 $Z_1Z_2Z_3Z_4$

以下の式より, u_1 , u_2 を算出する.

$$u_i = 1.15\sqrt{i} \approx 3.9837$$

$$u_2 = 0.87\sqrt{i} \approx 3.0137$$

ピニオン (小歯車) の歯数を仮定する. 歯数の範囲は,21~25 の範囲で定めるここでは,以下のように仮定した.

表 1.2: 歯数の仮定

$$egin{array}{c|cccc} Z_1 & 21 \\ Z_2 & 83 \\ Z_3 & 24 \\ Z_4 & 74 \\ \hline \end{array}$$

1.2 手順 B: モジュールの選定

モジュールの仮定は、以下のように定めた

1.3 手順 C: 歯幅b の仮定

 $1.3 \times 1.25\pi m_t/tan\beta \ge b \ge 1.25\pi m_t/tan\beta$

モジュールが決定したので、以下のものが決定される

表 1.3: モジュールの仮定

歯車の組み合わせ	モジュール
Z_1 と Z_2	4
Z_3 と Z_4	4.5

表 1.4: bの仮定

			1247		
歯車の組み合わせ	モジュール	bの値	bの最大許容値	bの最小許容範囲	ı
Z_1 と Z_2	4	41	53.197	40.920	ı
Z_3 と Z_4	4.5	58	59.846	46.036	ì

1.4 手順 \mathbf{D} : σ_F の算出

歯元曲げ応力の式を以下に示す.

$$\sigma_F = F_W / (bm \cos \alpha_t) Y Y_{\epsilon} K_{\delta} K_A K_V K_{\beta}$$

ここで,L=17(kw), n_1 =1300(rpm), r_1 =44.988 より,

$$F_{W12} = 9.74 \times 10^5 L/(r_1 n_1)$$

= 283.117668[kgf]
 $F_{W34} = 9.74 \times 10^5 L/(r_3 n_3)$
= 897.223143[kgf]

- $\alpha_t = 0.371738799[radian]$
- Y = 2.56
- $Y_{\epsilon} = 1.0$
- $K_A = 1.25$
- $K_{\delta} = 1.0$
- $K_V = 1.2$
- $K_{\beta} = 1.5$

表 1.5: $d_{a,b}$ の算出 [mm]

歯車番号	ピッチ円筒直径 (d)	歯先円直径 (da)	基礎円直径 (d_b)
1	89.976	97.976	83.831
2	351.335	359.335	327.338
3	110.864	119.864	103.291
4	356.691	365.691	332.328

上の条件により,

 $\sigma_{F1} = 283.11766/(41 \times 4 \times \cos 0.371738799)2.56 \times 1.0 \times 1.0 \times 1.25 \times 1.2 \times 1.5$ = 10.8393741[kgfmm]

同様の計算により,以下の値が算出される.

表 1.6: σ_F の算出 [kgfmm]

歯車 No.	σ_F	安全率 S_F
1	10.839	2.445
2	8.588	2.970
3	26.226	1.247
4	21.719	1.477

 $S_F = rac{\sigma_{Flim}}{\sigma_F}$ …曲げ強さに対する安全係数

1.5 手順 G: 歯車材選定

1.5.1 歯車1の材料

炭素鋼 (焼入焼戻し)

- 硬さ $H_B = 290, H_V = 305$
- 引っ張り強さ (下限)912.0[N/mm²]
- 曲げ強さ $\sigma_{Flim} = 255.9[N/mm^2]$
- 歯面強さ $\sigma_{Hlim}6686.5[N/mm^2]$

1.5.2 歯車2の材料

炭素鋼 (焼入焼戻し)

- 硬さ $H_B = 270, H_V = 284$
- 引っ張り強さ (下限)853.2[N/mm²]
- 曲げ強さ $\sigma_{Flim} = 255.0[N/mm^2]$
- 歯面強さ $\sigma_{Hlim}657.0[N/mm^2]$

1.5.3 歯車3の材料

炭素鋼 (焼入焼戻し)

- 硬さ $H_B = 290, H_V = 305$
- 引っ張り強さ (下限)912.0[N/mm²]
- 曲げ強さ $\sigma_{Flim} = 255.9[N/mm^2]$
- 歯面強さ $\sigma_{Hlim}6686.5[N/mm^2]$

1.5.4 歯車4の材料

炭素鋼 (焼入焼戻し)

- 硬さ $H_B = 270, H_V = 284$
- 引っ張り強さ (下限)853.2[N/mm²]
- 曲げ強さ $\sigma_{Flim} = 255.0[N/mm^2]$
- 歯面強さ $\sigma_{Hlim}657.0[N/mm^2]$

を仮定する.

1.6 手順 \mathbf{E} : σ_H の算出

 σ_H を算出するには、以下の式を用いる.

$$\sigma_H = \sqrt{K} Z_{HH} Z_E \sqrt{K}_A \sqrt{K}_V \sqrt{K}_B$$

これを計算するためには、 \sqrt{K} , Z_{HH} , Z_E の値を計算する.

$$K = \frac{F_W}{bd_1} \frac{u+1}{u}$$

$$Z_{HH} = 2\sqrt{\cos\beta_b}/\sqrt{\epsilon_a \sin 2_{\alpha_i}}$$

$$Z_E = \sqrt{0.35E_1E_2/(E_1 + E_2)}$$

表 1.7: σ_H の算出 [kgfmm]

歯車 No.	$\sigma_H[N/mm^2]$	安全率 S_H
1	469.5756	1.4619
2	469.5756	1.3991
3	645.9699	1.0627
4	645.9699	1.0170

 $S_H = rac{\sigma_{Hlim}}{\sigma_H}$...歯面強さに対する安全係数

1.7 手順 N

1.7.1 バックラッシの計算

汎用減速機の歯車には通常歯車精度等級に $3 \sim 4$ 級が使用される. よって, ここでは 3 級として計算をしていく. バックラッシの計算は、次式で求まる.

最大値 $j_{t(max)} = 35.5\omega[\mu m]$ 最小値 $j_{t(min)} = 10\omega[\mu m]$ ただしここでは、 $\omega = d^{1/3} + 0.65m_t$

この計算式によって計算すると,次の計算結果が算出される.

表 1.8: バックラッシの計算結果

歯車番号	最大値 (<i>μm</i>)	最小値 (μm)	ω	合計値 (max)	合計値 (min)
1	257.943	72.660	7.266	171.072	607.306
2	349.364	98.412	9.841		
3	281.764	79.370	7.937	181.620	644.753
4	362.988	102.250	10.225		

1.7.2 中心間距離寸法公差の計算

中心距離寸法公差等級は H7として計算する.H7の中心距離寸法公差は以下のとおりである.

$$\Delta a = 16\omega_c \tag{1.1}$$

ここで, $\omega_c = 0.45a^{1/4} + 0.001a(a: 中心距離) である.$

表 1.9: 中心間距離寸法公差の計算結果

段	$\omega_c(\mu m)$	$\Delta a(\mu m)$
12(1 段目)	2.940	47.039
34(2 段目)	3.006	48.094

1.7.3 歯厚寸法差

次に示すのは、歯厚寸法差 $\Delta s(\mu m)$ の計算式である.

$$\Delta s_1 = \Delta s_2 = (-j_t + 2\Delta a \tan \alpha_n)/2$$

 Δs はバックラッシと中心距離寸法公差の組み合わせで最大、最小の値を計算すると、次のようになる.

表 1.10: 歯厚の寸法差の計算結果

段	$\Delta s_{max}(\mu m)$	$\Delta s_{min}(\mu m)$
12	-153.951	-590.185
34	-164.115	-627.248

1.7.4 またぎ歯厚

またぎ歯厚 W(mm) は次式で計算する.

またぐ歯数
$$Z_m = Z(\alpha_t/180 + \tan \alpha_t \tan^2 \beta_b/\pi) + 0.5$$
(最も近い整数値) (1.2)

$$inv(\alpha_t) = \tan \alpha_t - \alpha_t$$
 (1.3)

$$W = m \cos \alpha_n (\pi (Z_m - 0.5) + Zinv(\alpha_t)) - |\Delta s| \cos \alpha_n \cos \beta$$
 (1.4)

表 1.11: またぎ歯厚計算結果

歯車番号	Z	Zm	m	W(max)[mm]	W(min)[mm]
1	21	3	4	34.575	34.192
2	83	12	4	136.669	137.052
3	24	4	4.5	44.483	44.077
4	74	10	4.5	137.456	137.050

1.8 簡易平面図

図 1.1: 簡易平面図

第2章 軸設計書

歯車周速 2.1

ピッチ円周上における歯車の速度を以下のようにして求めた.

$$v_{12} = \frac{\pi d_1 n_1}{1000} \times \frac{1}{60} = \frac{\pi \times 98.5453 \times 1300}{1000} \times \frac{1}{60} = 6.7077[m/s]$$
 (2.1)

$$v_{12} = \frac{\pi d_1 n_1}{1000} \times \frac{1}{60} = \frac{\pi \times 98.5453 \times 1300}{1000} \times \frac{1}{60} = 6.7077 [m/s]$$

$$v_{34} = \frac{\pi d_3 n_3}{1000} \times \frac{1}{60} = \frac{\pi \times 128.537 \times 328.5714}{1000} \times \frac{1}{60} = 2.2113 [m/s]$$
(2.1)

動力と接線力の関係 2.2

動力と接線力には次の関係が有る.

$$T[N \cdot m] = F[N]r[m] \tag{2.3}$$

$$T[N \cdot m] = F[N]r[m]$$

$$P[kW] = \frac{2\pi T[N \cdot m]n[rpm]}{60}w$$
(2.3)

以上より、接線力は以下のように算出できる.

$$P[W] = \frac{\pi F[N]d[m]n[rpm]}{60} = F[N]v[N \cdot m] \, \& \, l) \, ,$$

$$F_{12} = \frac{60P}{\pi d[m]n[rpm]} = \frac{60 \times 17000}{\pi \times 0.098545 \times 1300} = 2534.4008[N]$$

$$F_{34} = \frac{60P}{\pi d[m]n[rpm]} = \frac{60 \times 17000}{\pi \times 0.128537 \times 328.5714} = 7687.6284[N]$$
(2.5)

$$F_{34} = \frac{60P}{\pi d[m]n[rpm]} = \frac{60 \times 17000}{\pi \times 0.128537 \times 328.5714} = 7687.6284[N]$$
 (2.6)

スラスト 荷重とラジアル荷重の算出

軸に加えられる力を,軸に対して直角に作用するラジアル荷重と,軸方向に作用するスラスト荷 重に分類分けをする.こうすることでかかる力とモーメントの関係をそれぞれ算出し、後で合成す ることで計算ができる.

歯車の形状から、ラジアル荷重 P_r とスラスト 荷重 P_t は以下のように計算される.ここに、正面圧 力角 (歯車を正面から見た時のピッチ円周上の歯の角度) $\alpha_t = 21.2991[degree]$, ピッチ円筒ねじれ 角 $\beta = 21[degree]$ とする

$$P_r = F \tan(\alpha) \tag{2.7}$$

$$P_t = F \tan(\beta) \tag{2.8}$$

よって,

$$P_{r1} = P_{r2} = F \tan(\alpha) = 2534.4008 \times \tan(21.2991) = 988.08[N]$$
 (2.9)

$$P_{r3} = P_{r4} = F \tan(\alpha) = 7687.6284 \times \tan(21.2991) = 2997.14[N]$$
 (2.10)

$$P_{t1} = P_{t2} = F \tan(\beta) = 2534.4008 \times \tan(21) = 972.87[N]$$
 (2.11)

$$P_{t3} = P_{t4} = F \tan(\beta) = 7687.6284 \times \tan(21) = 2951[N]$$
 (2.12)

2.4 スパンの決定

2.4.1 湯浴式潤滑法

湯浴式の潤滑法とは、歯末部分が潤滑油に浸されており、歯車の回転運動の遠心力により潤滑油が飛沫 (ひまつ) して軸受けなど各部へ供給される方法である。この方法は歯車の周速が $3\sim 13m/s$ であるものが適している。理由としては、飛び散らせるための力として 3m/s 以上が好ましいということと、速すぎると潤滑油が必要以上に飛ばされるため、十分な油膜の形成に影響が出て、かつ動力損失を増してしまうため、13m/s 以下が好ましいことが挙げられる。同様な理由により、ギヤボックスと歯車の間隔にも制約が入る。しかし、間隔が開きすぎると材料にかかる応力が大きくなるので、ここでは以下の式を用いて最大値と最小値を求める。ここに、C をギヤボックスと車軸の間隔とすると、

$$C = (2 \sim 3)v + 10 + \alpha \tag{2.13}$$

2.4.2 最大値と最小値の計算

この式を用いて最大値と最小値を計算する

$$C_{1max} = 3v + 10 = 3 \times 6.7077 + 10 + \alpha = 30.1231 + \alpha \tag{2.14}$$

$$C_{1min} = 2v + 10 = 2 \times 6.7077 + 10 + \alpha = 23.4154 + \alpha$$
 (2.15)

ここで第3歯車を固定し、相対的な速度が潤滑に影響するパラメータであると考えると、次のようになる.

$$C_{2max} = 3v + 10 = 3 \times (6.7077 - 2.2113) + 10 + \alpha = 23.4892 + \alpha$$
 (2.16)

$$C_{2min} = 2v + 10 = 2 \times (6.7077 - 2.2113) + 10 + \alpha = 18.9928 + \alpha$$
 (2.17)

$$C_{3max} = 3v + 10 = 3 \times 2.2113 + 10 + \alpha = 16.6339 + \alpha \tag{2.18}$$

$$C_{3min} = 2v + 10 = 2 \times 2.2113 + 10 + \alpha = 14.4226 + \alpha$$
 (2.19)

2.4.3 スパンの決定

先ほどの計算から、きりのいい整数値で決定すると、

$$C_1 = 24, C_2 = 20, C_3 = 15$$

ここでギヤボックスの幅を 40mmとすると,軸の長さが計算できる.

軸長 =
$$C_1 + C_2 + C_3 + b_{12} + b_{34} + 40 \times 2$$
 (2.20)

$$= 24 + 20 + 15 + 45 + 65 + 40 \times 2 \tag{2.21}$$

$$= 249 (2.22)$$

よって、スパン長が決定する.

$$a_1 = \frac{40}{2} + 15 + \frac{65}{2} = 67.5$$
 (2.23)

$$a_2 = \frac{65}{2} + 20 + \frac{45}{2} = 75$$
 (2.24)

$$a_3 = \frac{45}{2} + 24 + \frac{40}{2} = 66.5$$
 (2.25)

2.5 軸に作用する力の算出

2.5.1 入力軸

図 2.1 と図 2.2 は入力軸に作用する力をモデル化したものである.このモデルに対して,材力の公式を用いて力の分析をする.

図 2.1: 入力軸モデル (xz 成分)

図 2.2: 入力軸モデル (y 成分)

正回転の場合

釣り合いの式を以下に示す.

$$x$$
 成分 : $P_{r1} - R_{1x} - R_{2x} = 0$ (2.26)

$$y$$
 成分 : $Fw_{12} - R_{1y} - R_{2y} = 0$ (2.27)

$$z$$
 成分 : $-P_{t1} + R_{2z} = 0$ (2.28)

$$y$$
軸, R_1 回りのモーメント : $(a_1 + a_2)P_{r1} + \frac{d_1}{2}P_{t1} - (a_1 + a_2 + a_3)R_{2x}$ (2.29)

$$x$$
軸, R_1 回りのモーメント : $(a_1 + a_2)Fw_{12} - (a_1 + a_2 + a_3)R_{2y}$ (2.30)

この方程式を解くことで、次の結果を得る.

- $R_{1x} = 85.030$
- $R_{1y} = 806.401$
- $R_{2x} = 903.040$
- $R_{2y} = 1728.000$
- $R_{2z} = 972.870$

上の結果から, 軸受けにかかるラジアル荷重の大きさが以下のように算出できる.

$$R_1 = \sqrt{R_{1x}^2 + R_{1y}^2} (2.31)$$

$$= \sqrt{85.030^2 + 806.401^2} = 810.871 \tag{2.32}$$

$$R_2 = \sqrt{R_{2x}^2 + R_{2y}^2} (2.33)$$

$$= \sqrt{903.040^2 + 1728.000^2} = 1949.735 \tag{2.34}$$

次に,この軸にかかるモーメントを求め,BMDに示す. 歯車が有る点を中心に考えると,軸受けの ラジアルカによって軸にかかるモーメントは次のように求めることができる.

図 2.3: 入力軸モデル (x 成分 BMD)

図 2.4: 入力軸モデル (y 成分 BMD)

$$M_{1x} = R_{1y} \times (a_1 + a_2) = 114912.114$$
 (2.35)

$$M_{2x} = R_{2y} \times a_3 = 114912.114 \tag{2.36}$$

$$M_{1y} = R_{1x} \times (a_1 + a_2) = 12116.775$$
 (2.37)

$$M_{2y} = R_{2x} \times a_3 = 60052.160 \tag{2.38}$$

最大曲げモーメントを算出する.

$$M_{1max} = \sqrt{M_{1x}^2 + M_{1y}^2} (2.39)$$

$$= \sqrt{114912.114^2 + 12116.775^2} = 115549.168 \tag{2.40}$$

$$M_{2max} = \sqrt{M_{2x}^2 + M_{2y}^2} (2.41)$$

$$= \sqrt{114912.114^2 + 60052.160^2} = 129657.355 \tag{2.42}$$

軸に作用するねじりモーメントを求める

$$T_1 = 0 (2.43)$$

$$T_2 = \frac{a_1}{2} \times Fw_{12} \tag{2.44}$$

$$T_2 = \frac{d_1}{2} \times Fw_{12}$$
 (2.44)
= $\frac{98.545}{2} \times 2534.4008 = 124877.531$ (2.45)

軸に作用する荷重(軸力:スラスト力)を求める.

$$T_{z1} = 0 (2.46)$$

$$T_{z2} = R_{2z} = P_{t1} = 972.870 (2.47)$$

逆回転の場合

釣り合いの式を以下に示す.

$$x$$
 成分 : $P_{r1} - R_{1x} - R_{2x} = 0$ (2.48)

$$y$$
 成分 : $Fw_{12} - R_{1y} - R_{2y} = 0$ (2.49)

$$z$$
 成分 : $P_{t1} - R_{2z} = 0$ (2.50)

$$y$$
軸, R_1 回りのモーメント : $(a_1 + a_2)P_{r1} - \frac{d_1}{2}P_{t1} - (a_1 + a_2 + a_3)R_{2x}$ (2.51)

$$x$$
軸, R_1 回りのモーメント : $(a_1 + a_2)Fw_{12} - (a_1 + a_2 + a_3)R_{2y}$ (2.52)

この方程式を解くことで、次の結果を得る.

- $R_{1x} = 543.746$
- $R_{1y} = 806.401$
- $R_{2x} = 444.324$
- $R_{2y} = 1728.000$
- $R_{2z} = -972.870$

上の結果から, 軸受けにかかるラジアル荷重の大きさが以下のように算出できる.

$$R_1 = \sqrt{R_{1x}^2 + R_{1y}^2} (2.53)$$

$$= \sqrt{543.746^2 + 806.401^2} = 972.595 \tag{2.54}$$

$$R_2 = \sqrt{R_{2x}^2 + R_{2y}^2} (2.55)$$

$$= \sqrt{444.324^2 + 1728.000^2} = 1784.211 \tag{2.56}$$

次に,この軸にかかるモーメントを求め,BMDに示す. 歯車が有る点を中心に考えると,軸受けの ラジアルカによって軸にかかるモーメントは次のように求めることができる.

図 2.5: 入力軸モデル (x 成分 BMD)

図 2.6: 入力軸モデル (y 成分 BMD)

$$M_{1x} = R_{1y} \times (a_1 + a_2) = 114912.114$$
 (2.57)

$$M_{2x} = R_{2y} \times a_3 = 114912.114 \tag{2.58}$$

$$M_{1y} = R_{1x} \times (a_1 + a_2) = 77483.781$$
 (2.59)

$$M_{2y} = R_{2x} \times a_3 = 29547.557 \tag{2.60}$$

最大曲げモーメントを算出する.

$$M_{1max} = \sqrt{M_{1x}^2 + M_{1y}^2} (2.61)$$

$$= \sqrt{114912.114^2 + 77483.781^2} = 138594.747 \tag{2.62}$$

$$M_{2max} = \sqrt{M_{2x}^2 + M_{2y}^2} (2.63)$$

$$= \sqrt{114912.114^2 + 29547.557^2} = 118650.014 \tag{2.64}$$

軸に作用するねじりモーメントを求める

$$T_1 = 0 (2.65)$$

$$T_2 = \frac{d_1}{2} \times Fw_{12} \tag{2.66}$$

$$= \frac{98.545}{2} \times 2534.4008 = 124877.531 \tag{2.67}$$

軸に作用する荷重(軸力:スラスト力)を求める.

$$T_{z1} = 0 (2.68)$$

$$T_{z2} = R_{2z} = P_{t1} = 972.870 (2.69)$$

図 2.7: 中間軸モデル

2.5.2 中間軸

正回転の場合

釣り合いの式を以下に示す.

$$x$$
 成分 : $P_{r3} - P_{r2} + R_{3x} - R_{4x} = 0$ (2.70)

$$y$$
 成分 : $-Fw_{12} - Fw_{34} + R_{3y} + R_{4y} = 0$ (2.71)

$$z$$
 成分 : $-P_{t2} + P_{t3} + R_{4z} = 0$ (2.72)

$$y$$
軸, R_3 回りのモーメント : $a_1P_{r3} - (a_1 + a_2)P_{r2} - (a_1 + a_2 + a_3)R_{4x} - \frac{d_3}{2}P_{t3} - \frac{d_2}{2}P_{t2}$ (2.73)

$$x$$
軸, R_3 回りのモーメント : $-a_1Fw_{34} - (a_1 + a_2)Fw_{12} + (a_1 + a_2 + a_3)F_{4y}$ (2.74)

この方程式を解くことで、次の結果を得る.

- $R_{3x} = 100.142$
- $R_{3y} = 6011.182$
- $R_{4x} = 2109.198$
- $R_{4y} = 4210.847$
- $R_{4z} = 1978.130$

上の結果から, 軸受けにかかるラジアル荷重の大きさが以下のように算出できる.

$$R_3 = \sqrt{R_{3x}^2 + R_{3y}^2} (2.75)$$

$$= \sqrt{100.142^2 + 6011.182^2} = 6012.016 \tag{2.76}$$

$$R_4 = \sqrt{R_{4x}^2 + R_{4y}^2} (2.77)$$

$$= \sqrt{2109.198^2 + 4210.847^2} = 4709.559 \tag{2.78}$$

次に,この軸にかかるモーメントを求め,BMDに示す. 歯車が有る点を中心に考えると,軸受けの ラジアルカによって軸にかかるモーメントは次のように求めることができる.

図 2.8: 中間軸 y 軸基準

$$M_{3x} = R_{3y} \times a_1 = -405754.796 \tag{2.79}$$

$$M_{4x} = R_{4y} \times (a_2 + a_3) = -280021.328$$
 (2.80)

$$M_{31y} = R_{3x} \times a_1 = 6759.573 \tag{2.81}$$

$$M_{32y} = M_{31y} + P_t \frac{d_3}{2} = -182897.361$$
 (2.82)

$$M_{21y} = M_{22y} + P_t \frac{d_2}{2} = 49397.762$$
 (2.83)

$$M_{22y} = R_{4x} \times a_3 = -140261.688$$
 (2.84)

以上より,最大モーメントの組み合わせは,

$$\sqrt{M_{x3}^2 + M_{32y}^2} = 445071.229 \tag{2.85}$$

軸に作用するねじりモーメントを求める

$$T_3 = 0 (2.86)$$

$$T_4 = \frac{d_3}{2} \times Fw_{34} \tag{2.87}$$

$$= \frac{128.5374}{2} \times 7687.628 = 494073.883 \tag{2.88}$$

軸に作用する荷重(軸力:スラスト力)を求める.

$$T_{z3} = -1978.130 (2.89)$$

$$T_{z4} = R_{4z} = 1978.130 (2.90)$$

図 2.9: 中間軸 x 軸基準

逆回転の場合

図 2.10: 中間軸モデル

釣り合いの式を以下に示す.

$$x$$
 成分 : $P_{r3} - P_{r2} + R_{3x} - R_{4x} = 0$ (2.91)

$$y$$
 成分 : $-Fw_{12} - Fw_{34} + R_{3y} + R_{4y} = 0$ (2.92)

$$z$$
 成分 : $P_{t2} - P_{t3} + R_{4z} = 0$ (2.93)

$$y$$
軸, R_3 回りのモーメント : $a_1P_{r3} - (a_1 + a_2)P_{r2} + (a_1 + a_2 + a_3)R_{4x} + \frac{d_3}{2}P_{t3} + \frac{d_2}{2}P_{t2}$ (2.94)

$$x$$
軸, R_3 回りのモーメント : $a_1Fw_{34} + (a_1 + a_2)Fw_{12} - (a_1 + a_2 + a_3)F_{4y}$ (2.95)

この方程式を解くことで,次の結果を得る.

- $R_{3x} = 3529.680$
- $R_{3y} = 6011.182$
- $R_{4x} = 1520.624$
- $R_{4y} = 4210.847$
- $R_{4z} = 1978.130$

上の結果から, 軸受けにかかるラジアル荷重の大きさが以下のように算出できる.

$$R_3 = \sqrt{R_{3x}^2 + R_{3y}^2} (2.96)$$

$$= \sqrt{3529.680^2 + 6011.182^2} = 6970.865 \tag{2.97}$$

$$R_4 = \sqrt{R_{4x}^2 + R_{4y}^2} (2.98)$$

$$= \sqrt{1520.624^2 + 4210.847^2} = 4477.000 \tag{2.99}$$

次に,この軸にかかるモーメントを求め,BMDに示す. 歯車が有る点を中心に考えると,軸受けの ラジアルカによって軸にかかるモーメントは次のように求めることができる.

図 2.11: 中間軸 y 軸基準

図 2.12: 中間軸 x 軸基準

$$M_{3x} = R_{3y} \times a_1 = 405754.796 \tag{2.100}$$

$$M_{4x} = R_{4y} \times (a_2 + a_3) = 280021.328$$
 (2.101)

$$M_{31y} = R_{3x} \times a_1 = -238253.403$$
 (2.102)

$$M_{32y} = M_{31y} + P_t \frac{d_3}{2} = -48596.496$$
 (2.103)

$$M_{21y} = M_{22y} + P_t \frac{d_2}{2} = 88537.984$$
 (2.104)

$$M_{22y} = R_{4x} \times a_3 = 101121.465 \tag{2.105}$$

以上より,最大モーメントの組み合わせは,

$$\sqrt{M_{x3}^2 + M_{31y}^2} = 470533.355 \tag{2.106}$$

軸に作用するねじりモーメントを求める

$$T_3 = 0 (2.107)$$

$$T_4 = \frac{d_3}{2} \times Fw_{34} \tag{2.108}$$

$$= \frac{128.5374}{2} \times 7687.628 = 494073.883 \tag{2.109}$$

軸に作用する荷重(軸力:スラスト力)を求める.

$$T_{z3} = -1978.130 (2.110)$$

$$T_{z4} = R_{4z} = 1978.130 (2.111)$$

図 2.13: 出力軸モデル (xz 成分)

図 2.14: 出力軸モデル (y 成分)

2.5.3 出力軸

正回転の場合

釣り合いの式を以下に示す.

$$x$$
 成分 : $-P_{r3} + R_{5x} + R_{6x} = 0$ (2.112)

$$y$$
 成分 : $Fw_{34} - R_{5y} - R_{6y} = 0$ (2.113)

$$z$$
 成分 : $-P_{t3} + R_{6z} = 0$ (2.114)

$$y$$
軸, R_5 回りのモーメント : $-a_1P_{r3} + \frac{d_4}{2}P_{t3} + (a_1 + a_2 + a_3)R_{6x}$ (2.115)

$$x$$
軸, R_5 回りのモーメント : $a_1 F w_{34} - (a_1 + a_2 + a_3) R_{6y}$ (2.116)

この方程式を解くことで,次の結果を得る.

- $R_{5x} = 4789.314$
- $R_{5y} = 5204.782$
- $R_{5z} = 2951.000$
- $R_{6x} = 1792.187$
- $R_{6y} = 2482.846$

上の結果から、軸受けにかかるラジアル荷重の大きさが以下のように算出できる.

$$R_5 = \sqrt{R_{5x}^2 + R_{5y}^2} (2.117)$$

$$= \sqrt{4789.314^2 + 5204.782^2} = 7072.996 \tag{2.118}$$

$$R_5 = \sqrt{R_{5x}^2 + R_{5y}^2}$$

$$= \sqrt{4789.314^2 + 5204.782^2} = 7072.996$$

$$R_6 = \sqrt{R_{6x}^2 + R_{6y}^2}$$

$$(2.117)$$

$$(2.118)$$

$$= \sqrt{-1792.187^2 + 2482.846^2} = 3062.101 \tag{2.120}$$

次に、この軸にかかるモーメントを求め、BMDに示す. 歯車が有る点を中心に考えると、軸受けの ラジアル力によって軸にかかるモーメントは次のように求めることができる.

図 2.15: 入力軸モデル (x 成分 BMD)

$$M_{5x} = R_{5y} \times a_1 = 351322.779 \tag{2.121}$$

$$M_{6x} = R_{6y} \times (a_2 + a_3) = 351322.779$$
 (2.122)

$$M_{5y} = R_{5x} \times a_1 = 323278.666 \tag{2.123}$$

$$M_{6y} = R_{6x} \times (a_2 + a_3) = -253594.471$$
 (2.124)

最大曲げモーメントを算出する.

$$M_{1max} = \sqrt{M_{5x}^2 + M_{5y}^2} (2.125)$$

$$= \sqrt{351322.779^2 + (323278.666)^2} = 477427.262 \tag{2.126}$$

$$M_{2max} = \sqrt{M_{6x}^2 + M_{6y}^2} (2.127)$$

$$= \sqrt{351322.779^2 + (-253594.471)^2} = 433287.261 \tag{2.128}$$

図 2.16: 入力軸モデル (y 成分 BMD)

軸に作用するねじりモーメントを求める

$$T_1 = 0 (2.129)$$

$$T_2 = \frac{d_4}{2} \times Fw_{34} \tag{2.130}$$

$$= \frac{390.9679}{2} \times 7687.628 = 1502807.966 \tag{2.131}$$

軸に作用する荷重(軸力:スラスト力)を求める.

$$T_{z1} = 0 (2.132)$$

$$T_{z2} = R_{6z} = P_{t3} = 2951.000 (2.133)$$

逆回転の場合

釣り合いの式を以下に示す.

$$x$$
 成分 : $-P_{r3} + R_{5x} + R_{6x} = 0$ (2.134)

$$y$$
 成分 : $Fw_{34} - R_{5y} - R_{6y} = 0$ (2.135)

$$z \, \text{R} \, \text{f} : \quad -P_{t3} + R_{5z} = 0 \tag{2.136}$$

$$y$$
軸, R_5 回りのモーメント : $-a_1P_{r3} + \frac{d_4}{2}P_{t3} + (a_1 + a_2 + a_3)R_{6x}$ (2.137)

$$x$$
軸, R_5 回りのモーメント : $a_1 F w_{34} - (a_1 + a_2 + a_3) R_{6y}$ (2.138)

この方程式を解くことで、次の結果を得る.

- $R_{5x} = 731.004$
- $R_{5y} = -5204.782$
- $R_{5z} = -2951.000$

- $R_{6x} = -3728.130$
- $R_{6u} = -2482.846$

上の結果から,軸受けにかかるラジアル荷重の大きさが以下のように算出できる.

$$R_5 = \sqrt{R_{5x}^2 + R_{5y}^2} (2.139)$$

$$= \sqrt{731.004^2 + (-5204.782)^2} = 5255.865 \tag{2.140}$$

$$= \sqrt{731.004^2 + (-5204.782)^2} = 5255.865$$

$$R_6 = \sqrt{R_{6x}^2 + R_{6y}^2}$$
(2.141)

$$= \sqrt{(-3728.130)^2 + (-2482.846)^2} = 4479.228 \tag{2.142}$$

次に、この軸にかかるモーメントを求め、BMDに示す. 歯車が有る点を中心に考えると、軸受けの ラジアル力によって軸にかかるモーメントは次のように求めることができる.

図 2.17: 入力軸モデル (x 成分 BMD)

$$M_{5x} = R_{5y} \times a_1 = 351322.779 \tag{2.143}$$

$$M_{6x} = R_{6y} \times (a_2 + a_3) = 351322.779$$
 (2.144)

$$M_{5y} = R_{5x} \times a_1 = 49342.738 \tag{2.145}$$

$$M_{6y} = R_{6x} \times (a_2 + a_3) = -527530.398$$
 (2.146)

最大曲げモーメントを算出する.

$$M_{1max} = \sqrt{M_{5x}^2 + M_{5y}^2} (2.147)$$

$$= \sqrt{351322.779^2 + (49342.738)^2} = 354770.913 \tag{2.148}$$

$$M_{2max} = \sqrt{M_{6x}^2 + M_{6y}^2} (2.149)$$

$$= \sqrt{351322.779^2 + (-527530.398)^2} = 633810.710 \tag{2.150}$$

図 2.18: 入力軸モデル (y 成分 BMD)

軸に作用するねじりモーメントを求める

$$T_1 = 0 (2.151)$$

$$T_2 = \frac{d_4}{2} \times Fw_{34} \tag{2.152}$$

$$= \frac{390.9679}{2} \times 7687.628 = 1502807.966 \tag{2.153}$$

軸に作用する荷重(軸力:スラスト力)を求める.

$$T_{z1} = 0 (2.154)$$

$$T_{z2} = R_{6z} = P_{t3} = 2951.000 (2.155)$$

2.6 軸の最小径の決定

2.6.1 計算手順

まず次の計算を行い、最小軸径をそれぞれ求める.

1. 破壊条件に基づく軸径

軸に生じる最大応力が,軸の許容応力よりも大きくなければならないという条件から,軸の最小径を求めていく.ここで用いる軸は丸棒であるので,軸の径が小さいほど許容せん断応力は小さくなる.よって,軸の直径 dを小さくしていき,許容せん断応力と最大せん断応力が等しくなる dを算出すればよい.

2. 座屈条件に基づく軸径

座屈荷重による強度は、最小断面 2 次モーメントに依存する. これにより、耐えられる座屈荷重が決定するので、最小軸径も決定する.

3. ねじり 剛性に基づく 軸径

一般的に $_{,1m}$ の軸に対して $_{0.25[degree]}$ というのが目安になる. 軸系を大きくするとねじられにくさが向上するので、最小軸系も決定する.

それぞれ算出した軸径以上の軸径を選択する.また,入力軸の材料は第1歯車と一体化しなければ ならないので、第1歯車と同素材を用いる、よって軸の許容応力は以下のように定まる、キー溝が有 る場合は、次の値に更に 0.75 倍したものを採用する.

最大せん断応力の場合
$$\tau_{al} = 0.18 \times \sigma_{UTS}$$
 (2.156)

$$= 0.18 \times 755.1 = 135.92[MPa] \tag{2.157}$$

最大主応力の場合
$$\tau_{al} = 0.36 \times \sigma_{UTS}$$
 (2.158)

$$= 0.36 \times 755.1 = 271.84[MPa] \tag{2.159}$$

動的効果係数

実際の軸にはどう荷重が作用する、この影響を考えるために、動的効果の係数を導入する、この係 数は3段階に分類分けされているが、ここでは軽い変動荷重が作用するとして、ねじりの動的効果 の係数を $k_t = 1.0, k_b = 1.5$ として計算をする.

破壊条件に基づく軸径 2.6.2

軸受け 1 にかかる許容せん断応力 τ_{al} は、ねじりが作用しないので、次の式で算出する.

$$\tau_{al} = \frac{16}{\pi d^3} \sqrt{(M + \frac{d}{8}P)^2 + T^2}$$
 (2.160)

$$d_{min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{(M + \frac{d}{8}P)^2 + T^2}}$$
(2.161)

$$d_{min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{(k_b M + \frac{d}{8}P)^2 + k_t T^2}}$$
 (2.162)

軸受け1側の軸(正回転)

軸受け1側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する. ここで P = 0, T = 0を代入した.

$$d_{11min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{k_b M^2}}$$

$$= \sqrt[3]{\frac{16}{\pi 135.92} \sqrt{1.5 \times 115549.168^2}}$$
(2.163)

$$= \sqrt[3]{\frac{16}{\pi 135.92}}\sqrt{1.5 \times 115549.168^2} \tag{2.164}$$

$$= 18.66[mm] (2.165)$$

軸受け1側の軸(逆回転)

軸受け 1 側にかかる 許容せん 断応力 τ_{al} は、ねじりと 軸力が作用しないので、次の式で算出する. ここで P=0, T=0 を代入した.

$$d_{11min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{k_b M^2}}$$
 (2.166)

$$= \sqrt[3]{\frac{16}{\pi 135.92}} \sqrt{1.5 \times 138595.08^2}$$
 (2.167)

$$= 19.82[mm]$$
 (2.168)

軸受け2側の軸(正回転)

軸受け 2 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する. ここで P=-972.87, T=124876.26, M=129657.71 を代入した.この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する. 初期値 20[mm] とする.

軸受け2側の軸(逆回転)

軸受け 2 側にかかる 許容せん 断応力 τ_{al} は、ねじりと 軸力が作用しないので、次の式で算出する。ここで P=972.87, T=124876.26, M=118650.16 を代入した。この計算では d(直径) の値がわかっていないので、繰り返し 計算で算出する。初期値 20[mm] とする。

軸受け3側の軸(正回転)

軸受け 33 側にかかる 許容せん断応力 τ_{al} は、ねじりと 軸力が作用しないので、次の式で算出する. ここで P=0, T=0 を代入した.

$$d_{11min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{k_b M^2}}$$
 (2.179)

$$= \sqrt[3]{\frac{16}{\pi 135.92}} \sqrt{1.5 \times 405810.94^2} \tag{2.180}$$

$$= 28.36[mm] (2.181)$$

軸受け3側の軸(逆回転)

軸受け 3 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する. ここで P=0, T=0 を代入した.

$$d_{11min} = \sqrt[3]{\frac{16}{\pi \tau_{ol}} \sqrt{k_b M^2}}$$
 (2.182)

$$= \sqrt[3]{\frac{16}{\pi 135.92}} \sqrt{1.5 \times 470533.23^2}$$
 (2.183)

$$= 29.79[mm]$$
 (2.184)

第3歯車と第4歯車の間の軸(正回転)

軸受け 3 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する.また、キー溝があるので、 τ_{al} の値を 0.75 倍にした.ここで P=2951, T=494077.63, M=445071.18 を代入した.この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する.初期値 20[mm] とする.

第3歯車と第4歯車の間の軸(逆回転)

軸受け 3 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する.また、キー溝があるので、 τ_{al} の値を 0.75 倍にした.ここで P=2951, T=, M=408654.51 を代入した.この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する.初期値 20[mm] とする.

$$d_{12min} = \sqrt[3]{\frac{16}{\pi \tau_{al}}} \sqrt{(k_b M + \frac{d}{8}P)^2 + k_t T^2}$$

$$= \sqrt[3]{\frac{16}{\pi \times 0.75 \times 135.92}} \sqrt{(1.5 \times 408654.51 + \frac{20}{8} \times 2951)^2 + (1.0 \times 494077.63)^2}$$

$$= 34.09$$

$$= \sqrt[3]{\frac{16}{\pi \times 0.75 \times 135.92}} \sqrt{(1.5 \times 408654.51 + \frac{34.09}{8} \times 2951)^2 + (1.0 \times 494077.63)^2}$$

$$= \sqrt[3]{\frac{16}{\pi \times 0.75 \times 135.92}} \sqrt{(1.5 \times 408654.51 + \frac{34.09}{8} \times 2951)^2 + (1.0 \times 494077.63)^2}$$

$$= 34.10 [mm] (収束確認)$$

$$(2.196)$$

第4歯車側の軸(正回転)

軸受け 4 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する.また、キー溝があるので、 τ_{al} の値を 0.75 倍にした。ここで P=-1978.13、M=313185.59 を代入した。この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する。初期値 20[mm] とする.

$$d_{12min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{(k_b M + \frac{d}{8}P)^2 + k_t T^2}}$$

$$= \sqrt[3]{\frac{16}{\pi \times 135.92} \sqrt{(1.5 \times 313185.59 + \frac{20}{8} \times -1978.13)^2}}$$
(2.197)

$$= 25.92$$

$$= \sqrt[3]{\frac{16}{\pi \times 135.92}} \sqrt{(1.5 \times 313185.59 + \frac{25.92}{8} \times -1978.13)^2}$$
(2.199)

(2.200)

$$= 25.89[mm]$$

$$= \sqrt[3]{\frac{16}{\pi \times 135.92}} \sqrt{(1.5 \times 313185.59 + \frac{34.48}{8} \times -1978.13)^2}$$
(2.201)

(2.202)

$$= 25.89[mm](\Psi \pi a)$$
 (2.203)

第4歯車側の軸(逆回転)

軸受け 4 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する.また、キー溝があるので、 τ_{al} の値を 0.75 倍にした.ここで P=1978.13, M=297720.25 を代入した.この計算では d(i) の値がわかっていないので、繰り返し計算で算出する.初期値 20[i] とする.

$$d_{12min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{(k_b M + \frac{d}{8}P)^2}}$$

$$= \sqrt[3]{\frac{16}{\pi \times 135.92} \sqrt{(1.5 \times 297720.25 + \frac{20}{8} \times 1978.13)^2}}$$
(2.204)

$$= 25.67 ag{2.206}$$

$$= \sqrt[3]{\frac{16}{\pi \times 135.92} \sqrt{(1.5 \times 297720.25 + \frac{34.09}{8} \times 1978.13)^2}}$$

(2.207)

(2.214)

(2.205)

$$= 25.67[mm](収束確認) (2.208)$$

第5歯車側の軸(正回転)

軸受け 3 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する. また、キー溝があるので、 τ_{al} の値を 0.75 倍にした. ここで P=2951, T=1502808.35, M=477427.46 を代入した. この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する. 初期値 20[mm] とする.

第5歯車側の軸(正回転)

軸受け 3 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する。また、キー溝があるので、 τ_{al} の値を 0.75 倍にした。ここで P=-2951, T=1502808.35, M=

354770.75 を代入した. この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する. 初期値 20[mm] とする.

軸受け 6 側の軸 (正回転)

軸受け 6 側にかかる 許容せん 断応力 τ_{al} は、ねじりと 軸力が作用しないので、次の式で算出する. ここで P=0, T=0 を代入した.

$$d_{11min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{k_b M^2}}$$
 (2.220)

$$= \sqrt[3]{\frac{16}{\pi 135.92}} \sqrt{1.5 \times 433286.99^2} \tag{2.221}$$

$$= 28.99[mm]$$
 (2.222)

軸受け 6 側の軸 (逆回転)

軸受け 6 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する. ここで P=0, T=0 を代入した.

$$d_{11min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{k_b M^2}}$$
 (2.223)

$$= \sqrt[3]{\frac{16}{\pi 135.92}} \sqrt{1.5 \times 633810.96^2}$$
 (2.224)

$$= 32.90[mm] (2.225)$$

2.6.3 座屈条件に基づく軸径

原理

炭素鋼には、軟鋼と硬鋼があり、それぞれさらに特別極軟鋼、極軟鋼、軟鋼、半軟鋼、半硬鋼、硬鋼、 最硬鋼と分類される. 今回軸として採用した軸の材料は s53c(炭素量が 0.53%) であるので、最硬鋼 に分類される. 硬鋼の場合は、細長比が $85\sqrt{n}$ よりも小さければ、座屈で計算する.n は端末係数で ある.

ここで、細長比 λ は次のように算出する.

$$\lambda = \frac{L}{r}$$
 (2.226)
ここに, L : 部材の長さ, r : 断面回転半径 (2.227)

ここに,
$$L$$
: 部材の長さ, r : 断面回転半径 (2.227)

$$r = \sqrt{\frac{I}{A}} \tag{2.228}$$

ここに,
$$A$$
: 断面積, I : 断面 2 次モーメントとする.以上より, (2.229)

$$r=\sqrt{\frac{I}{A}}$$
 (2.228)
ここに, $A:$ 断面積, $I:$ 断面 2 次モーメントとする.以上より, (2.229)
 $\lambda=\frac{L\sqrt{A}}{\sqrt{I}}$ (2.230)

座屈で計算する場合は、以下のオイラーの座屈公式を用いる.

$$P_k = C \frac{\pi^2}{l^2} EI \tag{2.231}$$

$$I = \frac{\pi d^4}{64} \tag{2.232}$$

$$I = \frac{\pi d^4}{64}$$
 (2.232)
$$d = \sqrt[4]{P_k \frac{64l[mm^2]}{\pi^3 CE[N/mm^2]}}$$
 (2.233)

第2軸受け側の軸

$$d = \sqrt[4]{P_k \frac{64l[mm^2]}{\pi^3 CE[N/mm^2]}}$$

$$= \sqrt[4]{972.87 \times \frac{64 \times 66.5^2}{\pi^3 \times 206000[N/mm^2]}}$$
(2.234)

$$= \sqrt[4]{972.87 \times \frac{64 \times 66.5^2}{\pi^3 \times 206000[N/mm^2]}}$$
 (2.235)

$$= 2.56[mm]$$
 (2.236)

第3軸受けと第4軸受けの間の軸

$$d = \sqrt[4]{P_k \frac{64l[mm^2]}{\pi^3 CE[N/mm^2]}}$$

$$= \sqrt[4]{2951 \times \frac{64 \times 75^2}{\pi^3 \times 206000[N/mm^2]}}$$
(2.238)

$$= \sqrt[4]{2951 \times \frac{64 \times 75^2}{\pi^3 \times 206000[N/mm^2]}}$$
 (2.238)

$$= 3.59[mm]$$
 (2.239)

第4軸受け側の軸

$$d = \sqrt[4]{P_k \frac{64l[mm^2]}{\pi^3 CE[N/mm^2]}}$$

$$= \sqrt[4]{1978.13 \times \frac{64 \times 66.5^2}{\pi^3 \times 206000[N/mm^2]}}$$
(2.241)

$$= \sqrt[4]{1978.13 \times \frac{64 \times 66.5^2}{\pi^3 \times 206000[N/mm^2]}}$$
 (2.241)

$$= 3.06[mm]$$
 (2.242)

第5軸受け側の軸

$$d = \sqrt[4]{P_k \frac{64l[mm^2]}{\pi^3 CE[N/mm^2]}}$$

$$= \sqrt[4]{2951 \times \frac{64 \times 67.5^2}{\pi^3 \times 206000[N/mm^2]}}$$
(2.243)

$$= \sqrt[4]{2951 \times \frac{64 \times 67.5^2}{\pi^3 \times 206000[N/mm^2]}}$$
 (2.244)

$$= 3.41[mm]$$
 (2.245)

2.6.4 ねじり 剛性に基づく 軸径

計算原理

上で述べたとおり , 一般的な比ねじれ角の目安である $\bar{\theta}=0.25\pi/180[radian/m]$ を採用して, 次 の計算をする.

$$\bar{\theta} = \frac{T}{GJ}$$
ここで, J : 断面 2 次極モーメント, G : 縦弾性係数 (2.247)

ここで,
$$J$$
: 断面 2 次極モーメント, G : 縦弾性係数 (2.247)

$$J = \frac{\pi d^4}{32} \tag{2.248}$$

$$J = \frac{\pi d^4}{32}$$
 (2.248)
$$d[mm] = \sqrt[4]{\frac{32T[N \cdot mm]}{\pi \bar{\theta}/1000[radian/mm]G[N/mm^2]}}$$
 (2.249)

以下の計算では, $G = 79500[N/mm^2]$ を用いて計算をする

軸受け2 側の軸

$$d[mm] = \sqrt[4]{\frac{32T[N \cdot mm]}{\pi \bar{\theta}/1000[radian/mm]G[N/mm^2]}}$$

$$= \sqrt[4]{\frac{32 \times 124876.26}{\pi \times 0.25/1000 \times 79500}}$$
(2.250)

$$= \sqrt[4]{\frac{32 \times 124876.26}{\pi \times 0.25/1000 \times 79500}}$$
 (2.251)

$$= 43.76[mm]$$
 (2.252)

第2歯車と第3歯車の間の軸

$$d[mm] = \sqrt[4]{\frac{32T[N \cdot mm]}{\pi \bar{\theta}/1000[radian/mm]G[N/mm^2]}}$$

$$= \sqrt[4]{\frac{32 \times 494077.63}{\pi \times 0.25/1000 \times 79500}}$$

$$= 61.72[mm]$$
(2.253)

$$= \sqrt[4]{\frac{32 \times 494077.63}{\pi \times 0.25/1000 \times 79500}} \tag{2.254}$$

$$= 61.72[mm] (2.255)$$

軸受け5側の軸

$$d[mm] = \sqrt[4]{\frac{32T[N \cdot mm]}{\pi \bar{\theta}/1000[radian/mm]G[N/mm^2]}}$$

$$= \sqrt[4]{\frac{32 \times 1502808.35}{\pi \times 0.25/1000 \times 79500}}$$

$$= 81.5[mm]$$
(2.256)

$$= \sqrt[4]{\frac{32 \times 1502808.35}{\pi \times 0.25/1000 \times 79500}} \tag{2.257}$$

$$= 81.5[mm]$$
 (2.258)

2.7 最小軸径のまとめ

表 9 1・最小軸径のまとめ

女 2.1. 取小神社のよしの		
軸の名称	軸の最小径 [mm]	軸の径 [mm]
d11	19.82	20
d12	43.76	44
d21	29.79	30
d22	61.72	62
d23	25.89	26
d31	81.5	82
d32	32.9	33

2.8 キーの設計

2.8.1 キーの許容圧縮応力と許容せん断応力

キーに使う材料は,s45c(機械構造用炭素鋼鋼材)とし,端部は角型とする.安産率は4とする.キー の許容圧縮応力と許容せん断応力の計算を以下に示す.

$$(s45c \, \mathcal{O} \, \text{引っ張り強さ}) = 690[N/mm^2]$$
 (2.259)

キーの許容圧縮応力:
$$\sigma_{al} = \frac{690}{4} = 172.5[N/mm^2]$$
 (2.260)

許容せん断応力:
$$\tau_{al} = \frac{\sigma_{al}}{2} = 86.25[N/mm^2]$$
 (2.261)

次の関係式を満たすようにキーを設計する。

$$\sigma_{al} \ge \frac{2T}{dlt_1} \tag{2.262}$$

$$\tau_{al} \ge \frac{2T}{dlb} \tag{2.263}$$

2.8.2 第2歯車のキー

d=62.b=18.h=11.l=50と仮定すると、

$$\sigma_{al} \geq \frac{2T}{dlt_1}$$
 (2.264)
(右辺) = $\frac{2 \times 494077.63[N \cdot mm]}{62[mm] \times 50[mm] \times 11/2[mm]}$ (2.265)

(右辺) =
$$\frac{2 \times 494077.63[N \cdot mm]}{62[mm] \times 50[mm] \times 11/2[mm]}$$
(2.265)

$$\approx 57.956[N \cdot m] \tag{2.266}$$

$$\leq 172.5$$
 (2.267)

$$\tau_{al} \geq \frac{2T}{dlb} \tag{2.268}$$

(右辺) =
$$\frac{2 \times 494077.63[N \cdot mm]}{62[mm] \times 50[mm] \times 18[mm]}$$
(2.269)

$$= 17.70 (2.270)$$

$$\leq 86.25[N \cdot m] \tag{2.271}$$

よって、仮定値を採用する

2.8.3 第3歯車のキー

d=62,b=18,h=11,l=50と仮定すると、

$$\sigma_{al} \geq \frac{2T}{dlt_1} \tag{2.272}$$

(右辺) =
$$\frac{2 \times 494077.63[N \cdot mm]}{62[mm] \times 50[mm] \times 11/2[mm]}$$
(2.273)

$$\approx 57.956[N \cdot m] \tag{2.274}$$

$$\leq 172.5 \tag{2.275}$$

$$\tau_{al} \geq \frac{2T}{dlb} \tag{2.276}$$

(右辺) =
$$\frac{2 \times 494077.63[N \cdot mm]}{62[mm] \times 50[mm] \times 18[mm]}$$
 (2.277)

$$= 17.70 (2.278)$$

$$\leq 86.25[N \cdot m] \tag{2.279}$$

よって、仮定値を採用する

2.8.4 第4歯車のキー

d=82,b=22,h=14,l=70と仮定すると、

$$\sigma_{al} \geq \frac{2T}{dlt_1} \tag{2.280}$$

(右辺) =
$$\frac{2 \times 1502808.35015[N \cdot mm]}{82[mm] \times 70[mm] \times 14/2[mm]}$$
 (2.281)

$$\approx 74.804[N \cdot m] \tag{2.282}$$

$$\leq 172.5$$
 (2.283)

$$\tau_{al} \geq \frac{2T}{dlb} \tag{2.284}$$

(右辺) =
$$\frac{2 \times 1502808.35015[N \cdot mm]}{82[mm] \times 70[mm] \times 22[mm]}$$
 (2.285)

$$= 23.801 \tag{2.286}$$

$$\leq 86.25[N \cdot m] \tag{2.287}$$

よって、仮定値を採用する

第3章 軸受け

3.1 軸受けにかかる力のまとめ

表 3.1: 表題

軸受け番号	最小軸径 [mm]	ラジアル荷重 Fr[N]	スラスト 荷重 Fa[N]	回転数 [rpm]
1	20	972.6	0	1300
2	44	1784.21	972.87	1300
3	30	6970.86	0	328.5714
4	26	4477	1978.13	328.5714
5	82	5255.86	2951	108.0235
6	33	4479.24	0	108.0235

3.2 軸受け計算

3.2.1 軸受け1の選定

軸受け1データ

表 3.2: 軸受け 1 データ 名称 記号 ラジアル荷重 F_r 972.6[N]スラスト 荷重 F_a 回転数 1300[rpm] n 定格寿命 L_h 20000以上 [hour] 最小軸径 20 [mm] 軸受け種類 p(玉軸受け) $3[\cdot]$

表 3.3: NSK60/28

名称	記号	値
内径	d	$28 [\mathrm{mm}]$
外径	D	$52 [\mathrm{mm}]$
基本動定格荷重	C_r	12500
基本静定格荷重	C_{0r}	7400
軸受各部の形状および適用する	f_0	14.5
応力水準によって定まる係数		

軸受け1検討

寿命係数
$$f_h = \left(\frac{L_h}{500}\right)^{1/p} = \left(\frac{20000}{500}\right)^{1/3} = 3.420$$
 (3.1)

速度係数
$$f_n = \left(\frac{100}{3n}\right)^{1/p} = \left(\frac{100}{3 \times 1300}\right)^{1/3} = 0.29488$$
 (3.2)

$$P = XF_r + YF_a = 972.6 (3.3)$$

$$C = \frac{f_h}{f_n} \times P = 11280.1546[N] \tag{3.4}$$

軸受け1再検討

アキシアル荷重が働いていないので、自動的に X=1,Y=0とする。

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.5)

$$= 500 \times \frac{100}{3 \times 1300} \times (12500/972.6)^3 \tag{3.6}$$

$$= 27126.523 \ge 20000 \tag{3.7}$$

$$0.6F_r + 0.5F_a = 0.6 \times 972.6 + 0.5 \times 0 = 486.3 \le F_r \tag{3.8}$$

よって、静等価荷重
$$P_0 = F_r = 972.6$$
 (3.9)

$$f_s = \frac{C_{0r}}{P_0} = \frac{7400}{972.6} \ge 1 \tag{3.10}$$

3.2.2 軸受け2の選定

軸受け 2 データ

表 3 4・ 軸受け 9 データ

衣 5.4. 軸文() Z / - ス		
名称	記号	値
ラジアル荷重	F_r	1784.21[N]
スラスト 荷重	F_a	972.87[N]
回転数	n	$328.5714 [\mathrm{rpm}]$
定格寿命	L_h	20000以上 [hour]
最小軸径	α	44 [mm]
軸受け種類	p(玉軸受け)	$3[\cdot]$

表 3.5: NSK6011

2 3.3. 1.511001	-	
名称	記号	値
内径	d	$55 [\mathrm{mm}]$
外径	D	90 [mm]
基本動定格荷重	C_r	28300
基本静定格荷重	C_{0r}	21200
軸受各部の形状および適用する	f_0	15.3
応力水準によって定まる係数		

軸受け2検討

X=0.56, Y=1.00とする。

寿命係数
$$f_h = \left(\frac{L_h}{500}\right)^{1/p} = \left(\frac{20000}{500}\right)^{1/3} = 3.420$$
 (3.11)

速度係数
$$f_n = \left(\frac{100}{3n}\right)^{1/p} = \left(\frac{100}{3 \times 1300}\right)^{1/3} = 0.29488$$
 (3.12)

$$\frac{F_a}{F_r} = \frac{972.87}{1784.21} = 0.5453 (\ge 0.44)$$

$$P = XF_r + YF_a = 0.56 \times 1784.21 + 1.00 \times 972.87 = 1972.0276$$
(3.14)

$$P = XF_r + YF_a = 0.56 \times 1784.21 + 1.00 \times 972.87 = 1972.0276$$
 (3.14)

$$C = \frac{f_h}{f_n} \times P = 11.59794 \times 1972.0276 = 22941.045[N]$$
 (3.15)

軸受け2再検討

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.16)

$$= 500 \times \frac{100}{3 \times 1300} \times (28300/1972.0276)^3 \tag{3.17}$$

$$= 37890.099 \ge 20000 \tag{3.18}$$

$$P_0 = 0.6F_r + 0.5F_a (3.19)$$

$$= 0.6 \times 1784.21 + 0.5 \times 972.87 = 1556.961 \le F_r \qquad (3.20)$$

よって、静等価荷重
$$P_0 = F_r = 1784.21$$
 (3.21)

$$f_s = \frac{C_{0r}}{P_0} = \frac{21200}{1784.21} \ge 1 \tag{3.22}$$

3.2.3 軸受け3の選定

軸受け3データ

表 3.6: 軸受け 3 データ 名称 記号 ラジアル荷重 F_r 6970.86[N] スラスト 荷重 F_{a} 回転数 328.5714[rpm]n 定格寿命 L_h 20000以上 [hour] 最小軸径 30 [mm]

p(玉軸受け)

 $3[\cdot]$

軸受け種類

表 3.7: NSK6309 名称 記号 内径 d 45 [mm] 外径 D 100 [mm] 基本動定格荷重 C_r 53000 基本静定格荷重 C_{0r} 32000 軸受各部の形状および適用する f_0 13.1 応力水準によって定まる係数

軸受け3検討

寿命係数
$$f_h = \left(\frac{L_h}{500}\right)^{1/p} = \left(\frac{20000}{500}\right)^{1/3} = 3.420$$
 (3.23)

速度係数
$$f_n = \left(\frac{100}{3n}\right)^{1/p} = \left(\frac{100}{3 \times 328.5714}\right)^{1/3} = 0.4664$$
 (3.24)

$$P = XF_r + YF_a = 6970.86 (3.25)$$

$$C = \frac{f_h}{f_n} \times P = 51115.654[N] \tag{3.26}$$

軸受け3再検討

アキシアル荷重が働いていないので、自動的に X=1,Y=0とする。

寿命時間
$$L_h = 500 f_n^{\ p} (C_r/P)^p$$
 (3.27)

$$= 500 \times \frac{100}{3 \times 328.5714} \times (53000/6970.86)^3 \tag{3.28}$$

$$= 22293.975 \ge 20000 \tag{3.29}$$

$$0.6F_r + 0.5F_a = 0.6 \times 6970.86 + 0.5 \times 0 = 4182.516 \le F_r \tag{3.30}$$

よって、静等価荷重
$$P_0 = F_r = 6970.86$$
 (3.31)

$$f_s = \frac{C_{0r}}{P_0} = \frac{32000}{6970.86} \ge 1 \tag{3.32}$$

3.2.4 軸受け4の選定

軸受け4データ

表 38. 軸受け 4 データ

11	9.0. 抽入17 4	
名称	記号	值
ラジアル荷重	F_r	4477[N]
スラスト 荷重	F_a	1978.13[N]
回転数	n	$328.5714 [\mathrm{rpm}]$
定格寿命	L_h	20000以上 [hour]
最小軸径	α	26 [mm]
軸受け種類	p(玉軸受け)	$3[\cdot]$

表 3.9: NSK6308

_	
記号	値
d	40 [mm]
D	90 [mm]
C_r	40500
C_{0r}	24000
f_0	13.2
	d D C_r C_{0r}

軸受け4検討

X=0.56, Y=1.00とする。

寿命係数
$$f_h = \left(\frac{L_h}{500}\right)^{1/p} = \left(\frac{20000}{500}\right)^{1/3} = 3.420$$
 (3.33)

速度係数
$$f_n = \left(\frac{100}{3n}\right)^{1/p} = \left(\frac{100}{3 \times 328.5714}\right)^{1/3} = 0.4664$$
 (3.34)

$$\frac{F_a}{F_r} = \frac{1978.13}{4477} = 0.4418(\ge 0.44) \tag{3.35}$$

$$P = XF_r + YF_a = 0.56 \times 4477 + 1.00 \times 1978.13 = 4485.25$$
 (3.36)

$$C = \frac{f_h}{f_n} \times P = 7.33276 \times 4485.25 = 32889.26[N] \tag{3.37}$$

軸受け4再検討

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.38)

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.38)
= $500 \times \frac{100}{3 \times 328.5714} \times (40500/4485.25)^3$ (3.39)

$$= 37344.2805 \ge 20000 \tag{3.40}$$

$$P_0 = 0.6F_r + 0.5F_a (3.41)$$

$$= 0.6 \times 4477 + 0.5 \times 1978.13 = 3675.265 \le F_r \tag{3.42}$$

よって、静等価荷重
$$P_0 = F_r = 4477$$
 (3.43)

$$f_s = \frac{C_{0r}}{P_0} = \frac{24000}{4477} \ge 1 \tag{3.44}$$

3.2.5 軸受け5の選定

軸受け5データ

表 3.10: 軸受け 5 データ

1	0.10. THI X ()	/ /
名称	記号	值
ラジアル荷重	F_r	5255.86[N]
スラスト 荷重	F_a	2951[N]
回転数	n	$108.0235 [\mathrm{rpm}]$
定格寿命	L_h	20000以上 [hour]
最小軸径	α	82 [mm]
軸受け種類	p(玉軸受け)	$3[\cdot]$

表 3.11: NSK6918

> • • • • • • • • • • • • • • • • • • •		
名称	記号	値
内径	d	90 [mm]
外径	D	$125 [\mathrm{mm}]$
基本動定格荷重	C_r	3300
基本静定格荷重	C_{0r}	31500
軸受各部の形状および適用する	f_0	136.5
応力水準によって定まる係数		

軸受け5検討

X=0.56, Y=1.00とする。

寿命係数
$$f_h = \left(\frac{L_h}{500}\right)^{1/p} = \left(\frac{20000}{500}\right)^{1/3} = 3.420$$
 (3.45)

速度係数
$$f_n = \left(\frac{100}{3n}\right)^{1/p} = \left(\frac{100}{3 \times 108.0235}\right)^{1/3} = 0.67575$$
 (3.46)

$$\frac{F_a}{F_r} = \frac{2986}{5255.86} = 0.568 (\ge 0.44)$$

$$P = XF_r + YF_a = 0.56 \times 5255.86 + 1.00 \times 2951 = 5894.2816$$
(3.47)

$$P = XF_r + YF_a = 0.56 \times 5255.86 + 1.00 \times 2951 = 5894.2816$$
 (3.48)

$$C = \frac{f_h}{f_n} \times P = 5.0610 \times 5894.2816 = 29830.959[N]$$
 (3.49)

軸受け5再検討

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.50)

$$= 500 f_n^{\gamma} (C_r/F)^{\gamma}$$

$$= 500 \times \frac{100}{3 \times 108.0235} \times (33000/5894.2816)^3$$
(3.51)

$$= 27575.70 \ge 20000 \tag{3.52}$$

$$P_0 = 0.6F_r + 0.5F_a (3.53)$$

$$= 0.6 \times 5255.86 + 0.5 \times 2951 = 4629.016 \le F_r \tag{3.54}$$

よって、静等価荷重
$$P_0 = F_r = 5255.86$$
 (3.55)

$$f_s = \frac{C_{0r}}{P_0} = \frac{31500}{5255.86} \ge 1 \tag{3.56}$$

3.2.6 軸受け6の選定

軸受け6データ

表 3.12: 軸受け 6 データ

	3.12. 押文() ()	<u> </u>
名称	記号	值
ラジアル荷重	F_r	4479.24[N]
スラスト 荷重	F_a	0
回転数	n	$108.0235 [\mathrm{rpm}]$
定格寿命	L_h	20000以上 [hour]
最小軸径	α	33 [mm]
軸受け種類	p(玉軸受け)	$3[\cdot]$

表 3.13: NSK6310

名称	記号	
内径	d	50 [mm]
外径	D	110 [mm]
基本動定格荷重	C_r	62000
基本静定格荷重	C_{0r}	38500
軸受各部の形状および適用する	f_0	13.2
応力水準によって定まる係数		

軸受け6検討

寿命係数
$$f_h = \left(\frac{L_h}{500}\right)^{1/p} = \left(\frac{20000}{500}\right)^{1/3} = 3.420$$
 (3.57)

速度係数
$$f_n = \left(\frac{100}{3n}\right)^{1/p} = \left(\frac{100}{3 \times 108.0235}\right)^{1/3} = 0.67575$$
 (3.58)

$$P = XF_r + YF_a = 4479.24 (3.59)$$

$$C = \frac{f_h}{f_n} \times P = 22669.62752[N] \tag{3.60}$$

軸受け 6 再検討

アキシアル荷重が働いていないので、自動的に X=1,Y=0とする。

寿命時間
$$L_h = 500 f_n^{\ p} (C_r/P)^p$$
 (3.61)

$$= 500 \times \frac{100}{3 \times 108.0235} \times (62000/4479.24)^3 \tag{3.62}$$

$$= 30257.740 \ge 20000 \tag{3.63}$$

静荷重の確認

$$0.6F_r + 0.5F_a = 0.6 \times 4479.24 + 0.5 \times 0 = 2687.544 \le F_r \tag{3.64}$$

よって、静等価荷重
$$P_0 = F_r = 4479.24$$
 (3.65)

$$f_s = \frac{C_{0r}}{P_0} = \frac{24000}{4479.24} \ge 1 \tag{3.66}$$

3.3 オイルシールの選定

3.3.1 軸受け1側オイルシール

表 3.14	4: 商品コード:AA213600
メーカー	NOK
型式	TCJ
内径	25
外形	45
厚さ	11
材質	ニトリルゴム+PTFE 焼付

3.3.2 軸受け 6 側オイルシール

表 3.15: 商品コード: AA213607 商品コード AA213607

メーカーコード	GJ2651-P0
メーカー	NOK
型式	TCJ
内径 (mm)	45
外径 (mm)	62
厚さ (mm)	9
材質	ニトリルゴム+PTFE 焼付

第4章 その他

4.1 歯車箱の厚さ

歯車の厚さは、次の式で決定した。ここで CL=最終段中心距離=259.753[mm]となる。

下部ケース :
$$0.025CL + 3[mm] = 9.494 \approx 10[mm]$$
 (4.1)

上部ケース :
$$0.02CL + 3[mm] = 8.195 \approx 9[mm]$$
 (4.2)

4.2 歯車とケース内壁との最小間隔

次の式で算出する。vは歯車収束である。

第1段 :
$$C = 2.5v + 10[mm] = 2.5 \times 6.7077 + 10 = 26.769[mm] \approx 27[mm]$$
 (4.3)

第 2 段 :
$$C = 2.5v + 10[mm] = 2.5 \times 2.2113 + 10 = 15.528[mm] \approx 16[mm]$$
 (4.4)

4.3 歯車箱の放熱面積の決定

4.3.1 BS 規格

4.3.2 AGMA 規格

図 4.1: AGMA

AGMA の規格によれば、

$$A = 43.2C_L^{1.7} (4.5)$$

である。ここで、 $C_L(inch^2)=$ 最終段中心距離である。CL=最終段中心距離=259.753[mm] であるので、

$$A = 43.2 \times (259.753 \times 0.03937)^{1.7} = 2249.147[inch^{2}]$$
(4.6)

$$= 1.451[m^2] \tag{4.7}$$

- 4.4 油面の高さの決定
- 4.5 重量計算
- 4.6 歯車箱への装着物
- 4.7 仕上げ記号、はめあい記号の決定
- 4.8 参考文献
 - 1. http://www.juntsu.co.jp/qa/qa2119.html
 - 2. http://www.superior-inc.com/有限会社スピリアの構造変更情報館へようこそ!/構造変更一般/基本事項/強度検討書等を作成するための考察/圧縮(座屈)に付いて/
 - 3. http://www.toishi.info/metal/hard_metal.html