Trip Data Dashboard – Technical Report

1. Problem Framing and Dataset Analysis

The dataset contains urban taxi trips with fields including pickup_datetime, dropoff_datetime, trip_duration, trip_distance, trip_speed_kmh, fare_amount, and passenger_count. It represents city mobility patterns.

Data Challenges:

- Missing values for fare_per_km and trip_duration.
- Outliers: zero duration, zero distance, or unrealistic speeds.
- Anomalies: inconsistent timestamps.

Assumptions:

- Non-finite or negative trips were excluded from charts and stats.
- Hourly analysis uses pickup hour; filters apply inclusive date ranges.

Unexpected Observation:

Some trips had extremely high fares for short distances. This led to including **fare and distance filters** in the dashboard for focused exploration.

2. System Architecture and Design Decisions

Architecture Diagram:

```
[Frontend: HTML/CSS/JS + Chart.js] \rightarrow [Backend: Node.js/Express API] \rightarrow [Data: CSV/JSON]
```

Design Choices:

• Frontend: Chart.js for interactive visualisation, plain JS for simplicity.

- Backend: Node.js/Express serves API endpoints efficiently.
- Data: CSV/JSON sufficient for 50,000 trips.

Trade-offs:

- Flat files simplify deployment but limit query speed for larger datasets.
- Avoided heavy frontend frameworks to maintain lightweight performance.
- Manual algorithms implemented for heatmap and top routes, emphasizing algorithmic thinking.

3. Algorithmic Logic

Top-Routes Aggregation:

- Round lat/lon to a given precision.
- Use a map with key pickup_lat, pickup_lon, dropoff_lat, dropoff_lon →
 count.
- Increment counts per trip; extract top k routes.

Pseudo-code:

Complexity: Time O(n log k), Space O(n).

This manual approach avoids library functions like sort_values or Counter.

4. Insights and Interpretation

1. Busiest Hours:

- Counted trips per hour; top 5: 8–9 AM, 5–7 PM.
- Interpretation: Aligns with peak commuting times; helps optimize fleet allocation.
- Visualization: Bar chart.

2. Average Fare Trend:

- Daily average fare_per_km; higher on weekends.
- Interpretation: Reflects demand-driven pricing.
- Visualization: Line chart.

3. Trip Duration Distribution:

- Most trips last 5–15 minutes, long tail beyond 45 minutes.
- **Interpretation:** Short trips dominate urban areas; long trips indicate congestion or anomalies.
- Visualisation: Histogram.

5. Reflection and Future Work

Technical Challenges: Handling missing/invalid data and performance with 50,000+ trips. **Team Challenges:** Coordinating chart/filter updates and agreeing on data cleaning assumptions.

Future Enhancements:

- Real-time trip data streaming.
- Export filtered trips for analysis.
- Predictive models for fare or duration.