UniHei_Logo.jpg

Gehalten von: Peter Albers

Analysis III.

SKRIPT: PAUL GONDOLF

BEARBEITET: 15.04.2019

CONTENTS

Contents

0	Vor	spann	3
1	Mas	ss-Theorie	4
	1.1	Ringe, Algebren, σ -Algebren	4
	1.2	Additve und σ -additive Funktionen	6
	1.3	Messbare Raume und Massraeume	7
	1.4	Der Fortsetzungssatz	8
	1.5	Das Lebesgue Mass auf $\mathbb R$	11
2	Inte	egrationstheorie	13
	2.1	Messbare Funktionen und Borell-Funktionen	13
	2.2	Partition und einfache Funktionen	15
	2.3	Das Integral nicht-negativer messbarer Funktionen	16
	2.4	Das Integral messbarer Funktionen	19
	2.5	Konvergenzsaetze	20
	2.6	Raeumlich integrierbare Funktionen	21
3	Produktmasse		
	3.1	Produktmass und Satz von Fubini	24
	3.2	Das Lebesgue-Mass auf \mathbb{R}^n	27
	3.3	Bildmasse, Trafosatz und Trafoformel	29
4	Inte	egration auf Untermanigfaltigkeiten	30
	4.1	Untermanigfaltigkeiten	30
	4.2	Tangentialraum und Differential	32
	4.3	Kurven und Flaechenintegrale	34
5	Diff	Gerentialformen	36
	5.1	1-Formen (Pfaff'scher Formen) und Kuvenintegrale	36

CONTENTS 2

	5.2	Differentialformen hoeherer Ordnungen:	39
6	Inte	egralsaetze	45
	6.1	Integration von Formen	45
	6.2	Orientierebarkeit und Untermanigfaltigkeiten mit Rand	45
	6.3	Die Integralsaetze von Gauss und Stokes	47
	6.4	Klassische Formulierung der Integralsaetze	40

0 VORSPANN 3

0 Vorspann

Volumenabbildung vol: $\mathcal{P}(\mathbb{R}^3) \to [0, \infty]$ mit

- a) $vol(\emptyset) = 0$, $vol([0,1])^3 = 1$
- b) $X_1,...,X_k \in \mathcal{P}(\mathbb{R}^3)$ seien paarweise disjunkt $\Rightarrow \text{vol}(X_1 \cup ... \cup X_k) = \text{vol}(X_1) + ... + \text{vol}(X_k)$
- c) "Invarianz unter Bewegung" $\forall v \in \mathbb{R}^3 \ \forall A \in O(3) \ \forall X \in \mathcal{P}(\mathbb{R})^n : \operatorname{vol}(A \cdot X + v) = \operatorname{vol}(X) := \{ \ Ax \ | \ x \in X \ \}$

Theorem: (Banach-Tarski 1924)

Es existieren p.w. disjunkte Mengen $X_1,...,X_n \in \mathbb{R}^n$ und Bewegungen $\beta_1,...\beta_n$ mit

- a) $X_1 \cup ... \cup X_k = [0,1]^3$
- b) $Y_1:=\beta_1(X_1),...,Y_k:=\beta_k(X_k)$ sind ebenfalls p.w. disjunkt und es gilt: $Y_1\cup...\cup Y_k=[0,1]^3\cup[2,3]^3$

Korollar: vol() wie oben existiert nicht.

Banach-Tarski: (starke Version)

Es seien X,Y $\subset \mathbb{R}^d$, $d \geq 3$, beschraenkte Mengen mit nichtleerem Inneren. Dann existieren p.w. disjunkte Mengen $X_1, ... X_k \subset \mathbb{R}^d$ und Bewegungen $\beta_1, ... \beta_n$ mit:

- a) $X = X_1 \cup ... \cup X_k$
- b) $Y_1 := \beta_1(X_1), ..., Y_k := \beta_k(Y_k)$ sind p.w. disjunkt.
- c) $Y = Y_1 \cup ... \cup Y_k$

1 Mass-Theorie

Notationen Es sei X eine Menge und $A, B \subset X$

$$\bullet \ A^C := X \backslash A = \{x \in X \mid x \not \in A\} \Rightarrow \ A \backslash B = A \cup B^C$$

- $A\triangle B:=(A\backslash B)\cup (B\backslash A)$ symetrische Differenz
- Es sei A_n eine Folge in $\mathcal{P}(X)$

$$\left(\bigcup_{n=0}^{\infty} A_n\right)^C = \bigcap_{n=0}^{\infty} A_n^C$$

$$\limsup_{n \to \infty} A_n := \bigcap_{n=0}^{\infty} \bigcup_{m=n}^{\infty} A_m$$

$$\liminf_{n \to \infty} := \bigcup_{n=0}^{\infty} \bigcap_{m=n}^{\infty} A_m$$

• (A_n) sei monoton steigend, d.h. $A_0 \subset A_1 \subset A_2 \subset ... \subset A_n \subset ...$

$$\Rightarrow \limsup A_n = \liminf A_n = \bigcup_{n=0}^{\infty} A_n$$

Wir schreiben dann $A_n \uparrow A$, falls $A = \bigcup_{n=0}^{\infty} A_n$

• (A_n) sei monoton fallend, d.h. $A_0 \supset A_1 \supset A_2 \supset ... \supset A_n \supset ...$

$$\Rightarrow \limsup A_n = \liminf A_n = \bigcap_{n=0}^{\infty} A_n$$

Wir schreiben dann $A_n \downarrow A$, falls $A = \bigcap_{n=0}^{\infty} A_n$

1.1 Ringe, Algebren, σ -Algebren

Definition 1.1: (Ringe, Algebren)

- 1. Eine nichtleere Teilmenge $A \in \mathcal{P}(X)$ heisst Ring, falls gilt:
 - (a) $\emptyset \in \mathcal{A}$
 - (b) $A, B \in \mathcal{A} \Rightarrow A \cup B, A \cap B \in \mathcal{A}$
 - (c) $A, B \in \mathcal{A} \Rightarrow A \backslash B \in \mathcal{A}$
- 2. Ein Ring \mathcal{A} ist eine Algebra, wenn zusaetzlich $X \in \mathcal{A}$ gilt.

Bemerkung:

1. Es sei \mathcal{A} ein Ring. Dann gilt:

 \mathcal{A} ist eine Algebra $\Leftrightarrow \forall A \in \mathcal{A} : A^C \in \mathcal{A}$.

2. Es sei J eine Indexmenge und fuer alle $j \in J$ $\mathcal{A}_j \subset \mathcal{P}(X)$ eine Algebra

$$\Rightarrow \bigcap_{j \in J} A_j = \{A \subset X \mid \forall j \in J : A \in A_j\}$$
 ist eine Algebra. (Der Schnitt ueber beliebige Algebra ist wieder eine Algebra)

- 3. Sei $\mathcal{K} \subset \mathcal{P}(X)$ beliebig.
 - $\Rightarrow \alpha(\mathcal{K}) := \bigcap \{ \mathcal{A} \mid \mathcal{A} \text{ ist eine Algebra mit } \mathcal{K} \subset \mathcal{A} \} \text{ ist die von } \mathcal{K} \text{ erzeugte Algebra.}$

Definition 1.2: $(\sigma\text{-Algebra})$

Eine Teilmenge $\mathcal{E} \subset \mathcal{P}(X)$ heisst σ -Algebra, wenn gilt:

- 1. \mathcal{E} ist eine Algebra.
- 2. Fuer alle Folgen (A_n) in \mathcal{E} gilt: $\bigcup_{n=0}^{\infty} A_n \in \mathcal{E}$

Bemerkung:

- 1. $\mathcal{E} \sigma$ -Algebra \Leftrightarrow
 - (a) $\emptyset \in \mathcal{E}$
 - (b) $A \in \mathcal{E} \Rightarrow A^C \in \mathcal{E}$
 - (c) $A_n \in \mathcal{E} \ \forall n \in \mathbb{N} \ \Rightarrow \ \bigcup_{n=0}^{\infty} A_n \in \mathcal{E}$
- 2. $A_n \in \mathcal{E} \ \forall n \in \mathbb{N}$

$$\Rightarrow \bigcap_{n=0}^{\infty} A_n , \limsup_{n \to \infty} A_n , \liminf_{n \to \infty} A_n \in \mathcal{E}$$

3. Sei $\mathcal{K} \subset \mathcal{P}(X)$ beliebig

$$\Rightarrow \sigma(\mathcal{K}) := \bigcap \{ \mathcal{E} \mid \mathcal{E} \text{ ist eine } \sigma\text{-Algebra mit } \mathcal{K} \subset \mathcal{E} \}$$

Definition 1.3: (Borel σ -Algebra)

Es sei (E,d) ein metrische Raum und $\mathcal{T}_d := \{ U \subset E \mid U \text{ ist offen bzgl. d } \}$ die Topologie auf E. Dann heisst $\sigma(\mathcal{T}_d)$

die Borel- σ -Algebra von E. Wir bezeichen sie mit:

$$\mathcal{B}(E) := \mathcal{B}(E, d) := \sigma(\mathcal{T}_d)$$

1.2 Additive und σ -additive Funktionen

Definition 1.4: (additiv, σ -additiv, σ -subadditiv)

Es sei $\mathcal{A} \subset \mathcal{P}(X)$ ein Ring und $\mu : \mathcal{A} \to [0, \infty] := [0, \infty) \cup \{\infty\}$ eine Abbildung mit $\mu(\emptyset) = 0$

- 1. μ heisst <u>additiv</u>, falls gilt $A, B \in \mathcal{A}, A \cap B = \emptyset \Rightarrow \mu(A \cup B) = \mu(A) + \mu(B)$
- 2. μ heisst $\underline{\sigma}$ -additiv, falls fuer alle Folgen (A_n) in \mathcal{A} , die p.w. disjunkt sind, gilt:

$$\bigcup_{n=0}^{\infty} A_n \in \mathcal{A} \implies \mu\left(\bigcup_{n=0}^{\infty} A_n\right) = \sum_{n=0}^{\infty} \mu(A_n)$$

3. μ heisst $\underline{\sigma}$ -subadditiv, falls fuer alle $B \in \mathcal{A}$ und eine Folge (A_n) in \mathcal{A} gilt:

$$B \subset \bigcup_{n=0}^{\infty} A_n \Rightarrow \mu(B) \leq \sum_{n=0}^{\infty} \mu(A_n)$$

Bemerkung:

- 1. μ sei additiv. Dann folgt:
 - (a) $A_1, ..., A_n \in \mathcal{A}$ p.w. disjunkt

$$\Rightarrow \mu\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=0}^{n} \mu(A_i)$$

- (b) $A, B \subset \mathcal{A}, B \subset A \Rightarrow \mu(B) \leq \mu(A)$
- 2. μ sei σ -additiv. Dann ist μ auch additiv

Lemma 1.5:

- 1. $\mu: \mathcal{A} \to [0, \infty]$ sei σ -additiv. Dann ist μ σ -subadditiv.
- 2. μ sei additiv und σ -subadditiv. Dann ist μ σ -additiv.

Satz 1.6:

Es sei $\mu: \mathcal{A} \to [0, \infty]$ additiv. Dann ist aequivalent:

- 1. μ ist σ -additiv.
- 2. Es sei $(A_n) \subset \mathcal{A}$ und $A \in \mathcal{A}$. Dann gilt:

$$A_n \uparrow A \Rightarrow \mu(A_n) \uparrow \mu(A)$$

Satz 1.7:

Es sei $\mu: \mathcal{A} \to [0, \infty]$ σ -additiv. Dann gilt fuer alle Folgen (A_n) in \mathcal{A} mit $A_n \downarrow A \in \mathcal{A}$:

$$\mu(A_0) < \infty \implies \mu(A_n) \downarrow \mu(A)$$

Korollar 1.8:

Es sei μ σ -additiv auf der σ -Algebra $\mathcal{E} \subset \mathcal{P}(X)$ und $(A_n) \subset \mathcal{E}$. Dann gilt:

$$\mu\left(\liminf_{n\to\infty}A_n\right)\leq \liminf_{n\to\infty}\mu(A_n)$$

Ist $\mu(X) < \infty$, so gilt:

$$\limsup_{n \to \infty} \mu(A_n) \le \mu \left(\liminf_{n \to \infty} A_n \right)$$

Lemma 1.9:

Es sei μ σ -additiv auf der σ -Algebra $\mathcal{E} \subset \mathcal{P}(X)$ und $(A_n) \subset \mathcal{E}$. Dann folgt aus $\sum_{n=0}^{\infty} \mu(A_n) < \infty$:

$$\mu\left(\limsup_{n\to\infty} A_n\right) = 0$$

1.3 Messbare Raume und Massraeume

Definition 1.10 (Messbarer Raum, Mass, Massraum)

- 1. Es sei X eine Menge und $\mathcal{E} \subset \mathcal{P}(X)$ eine σ -Algebra. Dann heisst (X, \mathcal{E}) ein <u>messbarer Raum</u>.
- 2. Es sei $\mu: \mathcal{E} \to [0, +\infty]$ σ -additity. Dann heisst μ ein <u>Mass</u> auf (X, \mathcal{E}) und (X, \mathcal{E}, μ) ein <u>Massraum</u>.

- 3. Ein Mass heisst endlich, falls $\mu(X) < \infty$.
- 4. Ein Mass heisst $\underline{\sigma}$ -endlich, eine Folge $(A_n) \subset \mathcal{E}$ mit $\bigcup_{n=0}^{\infty} A_n = X$ und $\mu(A_n) < \infty$ existiert.

5. Ist $\mu(X) = 1$, so wird μ Wahrscheinlichkeitsmass genannt.

Definition 1.11: (μ -Nullmengen, μ -fast-ueberall)

Es sei (X, \mathcal{E}, μ) ein Massraum.

- 1. Dann heisst eine Menge $B \in \mathcal{E}$ μ -Nullmenge, falls $\mu(B) = 0$.
- 2. Eine Eigenschaft P(x), $x \in X$, ist μ -fast ueberall wahr, falls:

$$\{x \in X \mid P(x) \text{ ist } falsch\}$$

in einer μ -Nullmenge enthalten ist.

Lemma/Definition 1.12: (Vervollstaendigung)

Es sei (X, \mathcal{E}, μ) ein Massraum. Dann ist $\mathcal{E}_{\mu} := \{A \in \mathcal{P}(X) \mid \exists B, C \in \mathcal{E} \text{ mit } \mu(C) = 0 \text{ und } A \triangle B \subset C\}$ eine σ -Algebra mit folgenden Eigenschaften:

- 1. $\mathcal{E} \subset \mathcal{E}_{\mu}$
- 2. Zu $A \in \mathcal{E}_{\mu}$ waehle wie oben $B, C \in \mathcal{E}$ und setze $\overline{\mu}(A) := \mu(B)$

Dann ist $\overline{\mu}: \mathcal{E}_{\mu} \to [0, \infty]$ ein Mass. Der Massraum $(X, \mathcal{E}_{\mu}, \overline{\mu})$ heisst die <u>Vervollstaendigung von \mathcal{E} bzgl. μ </u> Ein Massraum heisst vollstaendig, wenn gilt:

$$\forall A \in \mathcal{E} \text{ mit } \mu(A) = 0 : B \subset A \Rightarrow B \in \mathcal{E}$$

1.4 Der Fortsetzungssatz

Theorem 1.13: (Caratheodory)

Es sei $\mathcal{A} \subset \mathcal{P}(X)$ ein Ring und $\mu : \mathcal{A} \to [0, \infty]$ σ -additiv. Dann kann μ auf $\mathcal{E} := \sigma(\mathcal{A})$ fortgesetzt werden.

Ist μ σ -endlich auf A, d.h. $\exists A_n \in A$ mit $A_n \uparrow X$ und $\mu(A_n) < \infty$ fuer alle $n \in \mathbb{N}$, so ist die Fortsetzung eindeutig.

Definition 1.14: (π -System/ Dynkin System)

1. Ein nicht-leeres $\mathcal{K} \subset \mathcal{P}(X)$ heisst π -System, falls gilt: $A, B \in \mathcal{K} \Rightarrow A \cap B \in \mathcal{K}$

2. Ein nicht-leeres $\mathcal{D} \in \mathcal{P}(X)$ heisst Dynkin-System, falls gilt:

- (a) $\emptyset, X \in \mathcal{D}$
- (b) $A \in \mathcal{D} \Rightarrow A^C \in \mathcal{D}$

(c)
$$(A_n) \subset \mathcal{D}$$
 p.w. disj. $\Rightarrow \bigcup_{n=0}^{\infty} A_n \in \mathcal{D}$

Bemerkung:

- 1. σ -Algebra \Rightarrow Dynkin und π -System.
- 2. C π und Dynkin-System $\Rightarrow C$ σ -Algebra.
- 3. Jeder Ring ist ein π -System.

Theorem 1.15: (Dynkin)

Es sei \mathcal{K} ein π -System und \mathcal{D} ein Dynkin System mit $\mathcal{K} \subset \mathcal{D}$. Dann gilt: $\sigma(\mathcal{K}) \subset \mathcal{D}$.

Proposition 1.16:

Es seien μ_1, μ_2 Masse auf (X, \mathcal{E}) . Es gelten:

- 1. $\mathcal{D}:=\{A\in\mathcal{E}\mid \mu_1(A)=\mu_2(A)\}$ enthaelt ein π -System \mathcal{K} mit $\sigma(\mathcal{K})=\mathcal{E}$
- 2. $\exists (X_i) \subset \mathcal{K} \text{ mit } \mu_1(X_i) = \mu_2(X_i) < \infty \text{ fuer alle } i \in \mathbb{N} \text{ und } X_i \uparrow X.$

Dann folgt: $\mu_1 = \mu_2$

Definition 1.17: (Aeusseres Mass)

Es sei $\mathcal{A} \subset \mathcal{P}(X)$ ein Ring und $\mu : \mathcal{A} \to [0, \infty]$. Dann heisst:

$$\mu^*(E) := \inf \left\{ \sum_{i=0}^{\infty} \mu(A_i) \mid A_i \in \mathcal{A}, E \subset \bigcup_{i=0}^{\infty} A_i \right\}$$

das <u>aeussere Mass</u> von $E \subset \mathcal{P}(X)$, induziert von μ .

Bemerkung:

- 1. $\mu^* : \mathcal{P}(X)$ ist i.a. kein Mass!
- 2. Aus der Definition folgt direkt, dass μ^* monoton ist:

$$E \subset F \subset X \Rightarrow \mu^*(E) \leq \mu^*(F)$$

3. \mathcal{A} ein Ring ist nicht notwendig fuer Def. 1.17.

Proposition 1.18:

 $μ^*$ ist σ-subadditiv. Ist μ ebenfalls σ-subadditiv und $μ(\emptyset) = 0$, so gilt: $μ^*|_{\mathcal{A}} = μ$

Definition 1.19: (additive Mengen)

Es sei $\mu^*: \mathcal{P}(X) \to [0, \infty]$ ein aeusseres Mass. $A \in \mathcal{P}(X)$ heisst additiv bzgl. μ^* , falls:

$$\forall E \in \mathcal{P}(X) : \quad \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^C)$$

$$\mathcal{G} := \{ A \in \mathcal{P}(X) \mid A \text{ ist additiv} \}$$

Bemerkung:

Aus μ^* σ -subadditiv folg: $A \in \mathcal{G} \iff \mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \cap A^C)$

Lemma 1.20:

Es gilt:

1.
$$A \in \mathcal{G} \implies A^C \in \mathcal{G}$$

2.
$$A \in \mathcal{G}, B \in \mathcal{P}(X) \text{ mit } A \cap B = \emptyset \implies \mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$$

Theorem 1.21:

 \mathcal{A} sei ein Ring und $\mu: \mathcal{A} \to [0, \infty]$ additiv. Dann ist \mathcal{G} eine σ -Algebra mit $\mathcal{A} \subset \mathcal{G}$ und $\mu^*|_{\mathcal{G}}$ ist σ -additiv.

Bemerkung:

Insbesondere ist $\left(X,\mathcal{G},\mu^*\big|_{\mathcal{G}}\right)$ ein Massraum.

1.5 Das Lebesgue Mass auf \mathbb{R}

Setze:

$$\mathcal{J} := \{(a, b) \mid a < b\}$$

und

$$\mathcal{A} := \left\{ igcup_{i=1}^n I_i \mid n \in \mathbb{N}, \ I_1, ..., I_n \in \mathcal{J}
ight\} \cup \{\emptyset\}$$

Lemma 1.22:

- 1. \mathcal{A} ist ein Ring.
- 2. Es gilt: $\forall A \in \mathcal{A} \ \exists J_1, ..., J_n \in \mathcal{J}$ p.w. disjunkt mit $A = \bigcup_{i=0}^k J_i$

Definition/Lemma 1.23:

Wir setzen $\lambda(\emptyset) = 0$, $\lambda((a, b]) := b - a$ und fuer $A \in \mathcal{A}$:

 $\lambda(A) := \sum_{i=1}^k \lambda(J_i)$, wobei $A = \bigcup_{i=1}^k J_i$ eine disjunkte Zerlegung gemaess Lemma 1.22 ist.

Dann ist λ wohldefiniert, d.h. $\lambda(A)$ haengt nicht von der Wahl der disj. Zerlegung ab.

Lemma 1.24:

Es sei K ein beschraenktes und abgeschlossenes Intervall und (U_n) ein Folge offener Mengen mit $K \subset \bigcup_{n=0}^{\infty} U_n$. Dann existieren $n_1,, n_k$ mit $K \subset U_{n_1} \cup ... \cup U_{n_k}$,

oder aequivalent:
$$\exists l \in \mathbb{N}: K \subset \bigcup_{n=0}^{l} U_k$$

Theorem 1.25:

 $\lambda: \mathcal{A} \to [0, \infty)$ ist σ -additiv.

Definition 1.26: (translations-invariant, lokal endlich)

Sei μ ein Mass auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

- 1. Dann heisst μ translations-invariant, wenn gilt: $\forall B \in \mathcal{B}(\mathbb{R}) \ \forall h \in \mathbb{R} : \mu(B+h) = \mu(B)$
- 2. μ heisst <u>lokal endlich</u>, falls fuer alle beschraenkten Intervalle $I \subset \mathbb{R}$, gilt: $\mu(I) < \infty$

Bemerkung:

 μ lokal endl. $\Rightarrow \mu \sigma$ -endlich

Theorem 1.27 (Lebesgue-Mass auf \mathbb{R})

Es existiert ein eindeutig bestimmtes translations-invariantes und lokal endliches Mass λ auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ mit

 $\lambda([0,1]) = 1$. λ heisst Lebesgue-Mass.

Genauer: $\forall C \geq 0 \exists !$ translativ, lok.-endl. Mass ν auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ mit $\nu([0,1]) = c$. Es gilt: $\nu = c \cdot \lambda$

Bemerkung:

 λ erzeugt ein aeusseres Mass λ^* : $\mathcal{P}(\mathbb{R}) \to [0, \infty]$ und damit $\mathcal{G} = \{$ additive Mengen bzgl. $\lambda^* \}$ ist σ -Algebra.

Caratheodory: $\lambda^*|_{\mathcal{G}} = \lambda$ ist ein Mass.

Es gilt: $\mathcal{A} \subset \mathcal{B}(\mathbb{R}) \subset \mathcal{G}$. Wir definieren $\mathcal{L}(\mathbb{R}) = \mathcal{B}(\mathbb{R})_{\lambda}$ (Vervollstaendigung)

Es gilt: $\mathcal{L}(\mathbb{R}) = \mathcal{G}$ und heisst Lebesgue σ -Algebra (λ ist auf $\mathcal{L}(\mathbb{R})$ lok.-endl., translationsinvariant.)

2 Integrationstheorie

2.1 Messbare Funktionen und Borell-Funktionen

Sei $\varphi: X \to Y, I \subset \mathcal{P}(X)$

$$\varphi^{-1}(I) = \{ x \in X \mid \varphi(x) \in I \} = \{ \varphi \in I \}$$

1.
$$\varphi^{-1}(I^C) = (\varphi^{-1}(I))^C$$

2. Fuer $(A_i)_{i\in I}\subset \mathcal{P}(Y)$ gilt:

(a)
$$\bigcup_{i \in I} \varphi^{-1}(A_i) = \varphi^{-1} \left(\bigcup_{i \in I} A_i \right)$$

(b) (A_i) p.w. disjunkt $\Rightarrow (\varphi^{-1}(A_i))$ p.w. disjunkt

(c)
$$\bigcap_{i \in I} \varphi^{-1}(A_i) = \varphi^{-1} \left(\bigcap_{i \in I} A_i\right)$$

3. $\mathcal{E} \subset \mathcal{P}(Y)$ σ -Algebra

$$\Rightarrow \varphi^{-1}(\mathcal{E}) = \{\varphi^{-1}(A) \mid A \in \mathcal{E}\} \subset \mathcal{P}(Y)$$
 ist eine σ -Algebra

Definition 2.1: (Messbare Abbildungen)

1. Es seien (X,\mathcal{E}) und (Y,\mathcal{F}) Messraeume. Dann heisst $\varphi:X\to Y$ $(\mathcal{E},\mathcal{F})$ -messbar, falls $\varphi^{-1}(\mathcal{F})\subset\mathcal{E}$

2. Ist $(Y, \mathcal{F}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, so heisst φ reelwertig \mathcal{E} -messbar

3. Zusaetzlich (X,d) metrisch, $\mathcal{E} = \mathcal{B}(\mathbb{R})$, so heisst φ reelwertige Borel-Funktion

Lemma 2.2: (Messbarkeitskriterien)

Es $\mathcal{K} \subset \mathcal{P}(Y)$ und $\mathcal{R} := \sigma(\mathcal{K})$. Dann sind fuer $\varphi : X \to Y$ folgende Aussagen aequivalent:

- 1. φ (\mathcal{E} , \mathcal{F})-messbar.
- 2. $\forall K \in \mathcal{K} : \varphi^{-1}(K) \in \mathcal{E}$
- 3. $\varphi^{-1}(\mathcal{K}) \subset \mathcal{E}$

Bemerkung:

- 1. μ messbar \Leftrightarrow Urbilder messbarer Mengen sind messbar
- 2. Es reicht Messbarkeit auf einem Erzeugendensystem zu ueberpruefen.
- 3. Stetige Funktionen $\varphi:(X,d)\to (Y,d')$ sind Borel-Funktionen, d.h. messbar bzgl. $\mathcal{B}(X,d),\ \mathcal{B}(Y,d')$

Lemma 2.3: (Komposition messbarer Funktionen ist messbar)

Sind (X,\mathcal{E}) , (Y,\mathcal{F}) , (Z,\mathcal{G}) Messraeume,

 $\varphi: X \to Y \quad (\mathcal{E}, \mathcal{F})$ -messbar,

 $\psi: Y \to Z \quad (\mathcal{F}, \mathcal{G})$ -messbar,

dann ist $\psi \circ \varphi : X \to Z$ (\mathcal{E}, \mathcal{G})-messbar.

- 1. Es ist aequivalent:
 - (a) $\varphi: X \to \mathbb{R}$ ist \mathcal{E} -messbar
 - (b) $\forall t \in \mathbb{R}: \ \varphi^{-1}((-\infty, t]) \subset \mathcal{E}$
 - (c) $\forall t \in \mathbb{R}: \ \varphi^{-1}((-\infty, t)) \subset \mathcal{E}$
 - (d) $\forall a, b \in \mathbb{R}: \varphi^{-1}([a, b]) \subset \mathcal{E}$
 - (e) $\forall a, b \in \mathbb{R}: \varphi^{-1}([a, b)) \subset \mathcal{E}$
 - (f) $\forall a, b \in \mathbb{R}: \varphi^{-1}((a, b]) \subset \mathcal{E}$
 - (g) $\forall a, b \in \mathbb{R}$: $\varphi^{-1}((a, b)) \subset \mathcal{E}$
- 2. Sind $\varphi, \psi: X \to \mathbb{R}$ \mathcal{E} -messbar, so auch $\varphi + \psi$, $\varphi \cdot \psi$

Definition 2.4: (erweiterte Funktionen)

- 1. Wir setzen $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$, die <u>erweiterte reelle Gerade</u>, und nennen Fuktionen mit Werten in $\overline{\mathbb{R}}$ erweiterte (oder numerische) Funktion.
- 2. $\varphi:(X,\mathcal{E})\to\overline{\mathbb{R}}$ ist \mathcal{E} -messbar, wenn gilt:

(a)
$$\varphi^{-1}(\{+\infty\}), \ \varphi^{-1}(\{-\infty\}) \in \mathcal{E}$$

(b) $\forall I \in \mathcal{B}(\mathbb{R}) : \varphi^{-1}(I) \in \mathcal{E}$.

Bemerkung:

 $d(x,y) := |\arctan(x) - \arctan(y)| \quad \forall x,y \in \overline{\mathbb{R}} \text{ mit } \arctan(\pm \infty) = \pm \frac{\pi}{2} \iff (\overline{\mathbb{R}},d) \text{ ein kompakter metrischer Raum.}$ Es gilt:

- 1. $A \subset \mathbb{R}$ offen bzgl. $d_{Eukl.}$
 - \Rightarrow A ist d-offen.
- 2. $\varphi: X \to \overline{\mathbb{R}}$ \mathcal{E} -messbar $\Leftrightarrow \varphi$ ist $(\mathcal{E}, \mathcal{B}(\overline{\mathbb{R}}, d))$ -messbar.

Proposition 2.5:

Es sei (φ_n) eine Folge erweiterter \mathcal{E} -messbar Fkt.. Dann sind $\sup_n \varphi_n$, $\inf_n \varphi_n$, $\limsup_{n \to \infty} \varphi_n$, $\liminf_{n \to \infty} \varphi_n$ erweiterte \mathcal{E} -messbare Funktionen.

Bemerkung:

$$(\varphi_n) \quad \mathcal{E}\text{-messbar } \varphi: X \to \overline{\mathbb{R}} \text{ mit } \varphi_n(x) \uparrow \varphi(x) \quad \Rightarrow \quad \varphi \quad \mathcal{E}\text{-messbar, denn } \varphi(x) = \sup_n \varphi_n(x)$$

2.2 Partition und einfache Funktionen

Es sei (X, \mathcal{E}) messbarer Raum.

Defintion 2.6: (einfache Fkt., Partitionen)

- 1. $\varphi: X \to \mathbb{R}$ heisst <u>einfach</u> falls $\varphi(X) \subset \mathbb{R}$ endlich ist.
- 2. Eine endliche, disjunkte Vereinigung $X = A_1 \cup ... \cup A_n$, $[i \neq j \Rightarrow A_i \cap A_j = \emptyset]$ heisst eine endliche Partition von X.

Gilt: $A_1, ..., A_n \in \mathcal{E}$, so heisst $(A_k)_{k+1,...,n}$ eine endliche, \mathcal{E} -messbare Partition von X.

Bemerkung:

1. Menge der einfachen Funktionen bildet einen R-Vektorraum.

2. Schreibe $\varphi(X) := \{a_1, ..., a_n\}, \ (a_i)_{i=1,...,n}$ p.w. verschieden und $A_i := \varphi^{-1}(a_i) \subset X$.

 $\Rightarrow (A_i)_{i=1,\dots,n}$ eine endliche Partition von X und $\varphi = \sum_{i=1}^n a_i \mathbb{1}_{A_i}$. Dies ist die <u>kanonische</u> Darstellung von φ .

3. φ hat viele Darstellunge der Form $\varphi = \sum_{k=1}^{N} \overline{a}_{k} \mathbb{1}_{\overline{A}_{k}}, \quad \overline{a}_{k} \in \mathbb{R}, \overline{A}_{k} \subset X$. Wir erlauben $\overline{a}_{k} \notin \varphi(X)$ und $\overline{A}_{i} \cap \overline{A}_{j} \neq \emptyset$

4. $\varphi = \sum_{k=1}^{n} a_k \mathbb{1}_{A_k}$ kanonisch

Dann gilt: φ \mathcal{E} -messbar

$$\Leftrightarrow A_k \in \mathcal{E} \ \forall k = 1, ..., n$$

 \Leftrightarrow (A_k) endl., messbare Partition.

Proposition 2.7:

Es sei $f: X \to [0, \infty]$ eine nicht negative, \mathcal{E} -messbare Funktion. Fuer $n \in \mathbb{N}, \ n \ge 1$, definiere:

$$\varphi_n(x) = \begin{cases} \frac{i-1}{2^n}, & \text{falls } \frac{i-1}{2^n} \le f(x) < \frac{i}{2^n}, & i = 1, ..., n \cdot 2^n \\ n, & \text{falls } f(x) \ge n \end{cases}$$

 $\Rightarrow \varphi_n$ sind einfach und \mathcal{E} -messbar. Die Folge (φ_n) ist monoton wachsend mit $\varphi_n \uparrow f$. Ist f beschraenkt, so ist die Konvergenz gleichmaessig.

2.3 Das Integral nicht-negativer messbarer Funktionen

Einfache Funktionen

Es sei $\varphi:(X,\mathcal{E},\mu)\to\mathbb{R}$, eine nicht-negative, einfach \mathcal{E} -messbare Funktion. Wir schreiben: $\varphi=\sum\limits_{k=1}^N a_k\mathbbm{1}_{A_k}$ mit $a_1,...,a_N\geq 0,\quad A_1,...,A_N\in\mathcal{E}$

Defintion 2.8 (Integral nicht-neg. messbarer, einfacher Funktionen)

$$\int_{Y} \varphi \, d\mu := \sum_{k=1}^{N} a_k \mu(A_k) \in [0, +\infty]$$

mit der ueblichen definition $0 \cdot \infty := 0$

Bemerkung:

1. Statt $\int\limits_X \varphi \ d\mu$ schreiben wir auch $\int \varphi \ d\mu$ bzw. $\int_X \varphi(X) d\mu(x)$.

2.
$$\int_{\mathbb{R}} 1 \ d\lambda = 1 \cdot \mu(\mathbb{R}) = \infty$$

Lemma 2.9:

Das Integral ist wohldefiniert. D.h.

$$\varphi = \sum_{k=1}^N a_k \mathbb{1}_{A_k} = \sum_{j=1}^M b_j \mathbb{1}_{B_j}$$

impliziert:

$$\sum_{k=1}^{N} a_k \mu(A_k) = \sum_{j=1}^{M} b_j \mu(B_j)$$

Proposition 2.10

Es seien φ und ψ einfache, nicht-negative \mathcal{E} -messbare Funktionen. Dann ist fuer alle $\alpha, \beta \geq 0$ auch $\alpha \varphi + \beta \psi$ eine einfache, nicht-negative \mathcal{E} -messbare Funktion. Es gilt:

$$\int\limits_X (\alpha \ \varphi + \beta \ \psi) \ d\mu = \alpha \int\limits_X \varphi \ d\mu + \beta \int\limits_X \psi \ d\mu$$

Ausserdem gilt: $\varphi \leq \psi \ \Rightarrow \ \int\limits_X \varphi \ d\mu \leq \int\limits_X \psi \ d\mu$

Definition 2.11: (Integrale nicht-neg. messbarer Funktionen)

Es sei $f:(X,\mathcal{E},\mu)\to\overline{\mathbb{R}}_+:=[0,+\infty]$ eine nicht-negative \mathcal{E} -messbare Funktion. Wir definieren:

$$\int\limits_X f \ d\mu := \sup \left\{ \int\limits_X \varphi \ d\mu \, \middle| \, \begin{array}{c} \varphi \ \text{nicht-negativ, einfach \mathcal{E}-messbare} \\ \text{Funktion mit $\varphi \leq $ f$} \end{array} \right\}$$

das Integral von f
 ueber X bzgl. μ .

Bemerkung:

- 1. Prop. 2.7: $\exists (\varphi_n)$ Folge nicht-neg., einfacher \mathcal{E} -messbarer Funktionen mit $\varphi_n \uparrow f$.
- 2. $\int_X f d\mu = +\infty$ ist moeglich und kommt vor.

Proposition 2.12:

 (φ_n) sei eine Folge nicht-neg., einfacher, \mathcal{E} -messbare Funktion:

$$\varphi_n \uparrow f \Rightarrow \int_X \varphi_n \ d\mu \uparrow \int_X f \ d\mu$$

Bemerkung:

D.h.:
$$\int\limits_X f \ d\mu = \sup\left\{\int\limits_X \varphi \ d\mu \ | \ \varphi \le f\right\}$$
 und $\int\limits_X f \ d\mu = \lim_{n \to \infty} \int\limits_X \varphi_n \ d\mu$ fuer alle $\varphi_n \uparrow f$

Lemma 2.13:

1. $f, g: X \to \overline{\mathbb{R}}_+$ \mathcal{E} -messbar und $c \geq 0$. Dann gilt:

$$\int\limits_{Y} (c \cdot f + g) \ d\mu = c \cdot \int\limits_{Y} f \ d\mu + \int\limits_{Y} g \ d\mu$$

und

$$f \leq g \quad \Rightarrow \quad \int\limits_{Y} f \ d\mu \leq \int\limits_{Y} g \ d\mu$$

2. $f_n, g: X \to \overline{\mathbb{R}}_+$ \mathcal{E} -messbar mit $f_n \uparrow g$

$$\Rightarrow \int_{X} f_n d\mu \uparrow \int_{X} g d\mu$$
 (Monotone Konvergenz)

Lemma 2.14: (Markov-Ungleichung)

Es sei $\varphi: X \to \overline{\mathbb{R}}_+$ \mathcal{E} -messbar. Dann gilt fuer $a \in (0, \infty)$

$$\mu\left(\{\varphi \geq a\}\right) \leq \frac{1}{a} \int\limits_{\mathcal{X}} \varphi \ d\mu$$

Korollar 2.15:

Es sei $\varphi: X \to \overline{\mathbb{R}}_+$ \mathcal{E} -messbar:

1.
$$\int_X \varphi \ d\mu < \infty \implies \mu(\{\varphi = \infty\}) = 0$$

2.
$$\int\limits_X \varphi \ d\mu = 0 \quad \Leftrightarrow \quad \varphi = 0 \quad \mu \text{-fast ueberall} \ \Leftrightarrow \ \mu(\{x \mid \varphi(x) > 0\}) = \mu(\{\varphi > 0\}) = 0$$

Lemma 2.16: (Fatou)

 $\varphi_n: X \to \overline{\mathbb{R}}_+$ \mathcal{E} -messbar. Dann gilt:

$$\int\limits_X \liminf_{n \to \infty} \varphi_n \ d\mu \le \liminf_{n \to \infty} \int\limits_X \varphi_n \ d\mu$$

D.h. das Integral ist unterhalb stetig (lower sum continious).

Bermerkung:

 $\varphi_n \to \varphi$ punktweise:

$$\int \varphi \ d\mu \le \liminf_{n \to \infty} \int \varphi_n \ d\mu$$

2.4 Das Integral messbarer Funktionen

Definition 2.17

Es sei $\varphi: X \to \overline{\mathbb{R}}$ eine \mathcal{E} -messbare Funktion auf (X, \mathcal{E}, μ)

1. Ist φ nicht-negativ, so heisst φ μ -integrierbar falls

$$\int_{Y} \varphi \ d\mu < \infty$$

2. φ heisst $\underline{\mu\text{-integrierbar}}$, falls sowohl der Positivteil $\varphi_+ := \max\{\varphi, 0\}$ als auch

der Negativteil $\varphi_-:=\max\{-\varphi,0\}$ $\mu\text{-integrie<a}$ sind. Dann defienieren wir:

$$\int\limits_{X} \varphi \ d\mu := \int\limits_{X} \varphi_{+} \ d\mu - \int\limits_{X} \varphi_{-} \ d\mu$$

3. Es sei $A \in \mathcal{E}$ s.d. $\varphi \cdot \mathbb{1}_A \ \mu\text{-integrierbar}$ ist. Dann definieren wir:

$$\int_{A} \varphi \ d\mu = \int_{X} \varphi \cdot \mathbb{1}_{A} \ d\mu$$

Analog heisst $\psi:A\to\overline{\mathbb{R}}$ μ -integriebar, falls $\overline{\psi}(x):=\left\{ egin{array}{ll} \psi(x) & x\in A \\ 0 & x\notin A \end{array} \right.$ μ -integrierbar ist. Dann setze:

$$\int_{A} \psi := \int_{X} \overline{\psi} \ d\mu$$

Bemerkung:

- 1. $\varphi = \varphi_+ \varphi_-$; $|\varphi| = \varphi_+ + \varphi_ \varphi$ messbar $\Rightarrow \varphi_+, \varphi_-$ messbar.
- 2. Fuer $\varphi: X \to \overline{\mathbb{R}}_+$ \mathcal{E} -messbar ist $\int\limits_X \varphi \ d\mu$ immer definiert, aber φ ist μ -integrierbar $\Leftrightarrow \int\limits_X \varphi \ d\mu < \infty$.

Proposition 2.18:

Es sei $\varphi:(X,\mathcal{E},\mu)\to\overline{\mathbb{R}}$ messbar.

Dann gilt: φ integriebar $\Rightarrow |\varphi|$ μ -integriebar.

Proposition 2.19:

Es sei $\varphi, \psi: X \to \overline{\mathbb{R}}$ μ -integrierbar.

1. Fuer $\alpha, \beta \in \mathbb{R}$ sei $\alpha \cdot \varphi + \beta \cdot \psi$ auf X definiert.

Dann ist $\alpha \cdot \varphi + \beta \cdot \psi$ μ -integrierbar

$$\int (\alpha \cdot \varphi + \beta \cdot \psi) \ d\mu = \alpha \cdot \int \varphi \ d\mu + \beta \cdot \int \psi \ d\mu$$

- $2. \ \varphi \leq \psi \ \Rightarrow \ \int \varphi \ d\mu \leq \int \psi \ d\mu$
- $3. \left| \int\limits_X \varphi \ d\mu \right| \le \int\limits_X |\varphi| \ d\mu$

2.5 Konvergenzsaetze

Satz 2.20: (Monotone Konvergenz)

Es sei (X, \mathcal{E}, μ) ein Massraum und $\varphi_n : X \to \mathbb{R}$ eine monoton wachsende Folge μ -integrierbare Funktionen mit :

$$\exists M \ge 0 \ \forall n \in \mathbb{N} : \quad \int\limits_X \varphi_n \ d\mu \ \le \ M.$$

Dann ist $\varphi := \lim \varphi_n : X \to \overline{\mathbb{R}} \mu$ -integrierbar mit:

$$\lim_{n \to \infty} \int\limits_X \varphi_n \ d\mu = \int\limits_X \varphi \ d\mu$$

Satz 2.21: (Dominierte/ Majorisierte Konvergenz und Lebesgue)

Es sei $\varphi_n:(X,\mathcal{E},\mu)\to\mathbb{R}$, $n\in\mathbb{N}$, eine Folge \mathcal{E} -messbarer Funktionen, die punktweise gegen $\varphi:X\to\mathbb{R}$ konvergiert.

Wir nehmen an , dass $\psi: X \to \mathbb{R}_+$ μ -integriebar mit:

$$\forall x \in X \ \forall n \in \mathbb{N} : \ |\varphi_n(x)| \le \psi(x) \text{ existient}$$

Dann φ_n, φ sind μ -integriebar mit:

$$\lim_{n \to \infty} \int\limits_{X} \varphi_n \ d\mu = \int\limits_{X} \varphi \ d\mu$$

Es gilt auch:

$$\lim_{n \to \infty} \int\limits_{Y} |\varphi - \varphi_n| \ d\mu = 0$$

Korollar (Riemann=Lebesgue)

Es sei $f:[a,b]\to\mathbb{R}$ stetig, dann ist f Riemann und Lebesgue Integrierbar und es gilt:

$$\int_{a}^{b} f \, dx = \int_{[a,b]} f \, d\mu$$

2.6 Raeumlich integrierbare Funktionen

 (X, \mathcal{E}, μ) -Massraum

$$\mathcal{L}^1(X, \mathcal{E}, \mu) := \{ f : X \to \overline{\mathbb{R}} \mid f \text{ μ-integrierbar} \}$$

Achtung: $\varphi + \psi$ ist i.A. nicht definiert auf ganz X.

$$\|\cdot\|_1:\mathcal{L}^1(X,\mathcal{E},\mu)\to [0,\infty),\ \|f\|_1:=\int\limits_X|f|\ d\mu$$

Es gilt:

$$||a \cdot f||_1 = |a| \cdot ||f||_1 \quad \forall a \in \mathbb{R} , \forall f \in \mathcal{L}^1$$

$$||g+f||_1 \le ||f||_1 + ||g||_1; \ \forall f, g \in \mathcal{L}^1$$

Aber: $||f||_1 = 0 \Leftrightarrow f = 0$ fast ueberall

Wir definieren $\varphi \sim \psi \iff \varphi = \psi$ fast ueberall.

Definition 2.22: (L^1)

Der Raum der Aequivalenzklassen bezeichnen wir mit:

$$L^1(X, \mathcal{E}, \mu) := \mathcal{L}^1(X, \mathcal{E}, \mu) / \sim$$

Lemma 2.23:

 $L^1(X, \mathcal{E}, \mu)$ ist ein Vektorraum und $|\cdot|_1$ induziert eine Norm auf $L^1(X, \mathcal{E}, \mu)$, die wir wieder mit $||\cdot|_1$ bezeichnen.

Definition 2.24: (\mathcal{L}^p, L^p)

Fuer $p \in (0, \infty)$ definieren wir

$$\mathcal{L}^p(X,\mathcal{E},\mu) := \left\{ f: X \to \overline{\mathbb{R}} \mid f \text{ \mathcal{E}-messbar, } \int\limits_X |f|^p \ d\mu < \infty \right\}$$

und

$$L^p(X,\mathcal{E},\mu) := \mathcal{L}^p(X,\mathcal{E},\mu)/\sim$$

Lemma 2.24:

 $L^p(X, \mathcal{E}, \mu)$ ist ein Vektorraum.

$$||f||_p := \left(\int\limits_{V} |f|^p \ d\mu\right)^{\frac{1}{p}}$$

ist die $\underline{L^p$ -Norm.

Proposition 2.25: (Hoelder-Ungleichung)

Es sei $\varphi \in L^p(X, \mathcal{E}, \mu), \ \psi \in L^q(X, \mathcal{E}, \mu)$ mit $\frac{1}{p} + \frac{1}{q} = 1, \ p, q \in (0, \infty)$

Dann gilt:

$$\varphi\cdot\psi\in L^1(X,\mathcal{E},\mu)$$

und

$$\|\varphi \cdot \psi\|_1 \leq \|\varphi\|_p \cdot \|\psi\|_q$$

Young-Ungleichung:

$$\forall x, y \ge 0: \quad x \cdot y \le \frac{x^p}{p} + \frac{y^q}{q}$$

Proposition 2.26 (Minkowski-Ungleichung)

Es sei $p \in [1, \infty)$ und $\varphi, \psi \in L^p(X, \mathcal{E}, \mu)$.

Dann ist

$$\varphi + \psi \in L^p(X, \mathcal{E}, \mu)$$

und

$$\|\varphi + \psi\|_p \le \|\varphi\|_p + \|\psi\|_p$$

Bemerkung:

$$\varphi_n \xrightarrow[n \to \infty]{\|\cdot\|_p} 0$$
, d.h $\|\varphi_n\|_p \to 0$

Es gibt Beispiele von solchen Funktionen die nirgends punktweise konvergieren.

Theorem 2.27:

Es sei $p \in [0, \infty)$ und (φ_n) Cauchy-Folge in $L^p(X, \mathcal{E}, \mu)$. Dann gilt:

- 1. \exists Teilfolge $(\varphi_{n_k})_{k\in\mathbb{N}}$, die μ -fast-ueberall punktweise gegen eine Funktion $\varphi\in L^p(X,\mathcal{E},\mu)$ konvergiert.
- 2. $\|\varphi_n \varphi\|_p \xrightarrow{n \to \infty} 0$, d.h. $(L^p(X, \mathcal{E}, \mu), \|\cdot\|_p)$ ist vollstaendig, d.h. ein Banachraum.

Bemerkung:

- 1. L^p spielt wichtige Rolle in der Funktionalanalysis und PDEs
- 2. $(L^{\infty}(X, \mathcal{E}, \mu), \|\cdot\|_{\infty})$ ist Banach-Raum.
- 3. $(L^2(X,\mathcal{E},\mu),\|\cdot\|_2)$ ist ein Hilbertraum. < f, g>_{L^2}:= \int f\cdot g\ d\mu

3 Produktmasse

3.1 Produktmass und Satz von Fubini

Es seien (X, \mathcal{E}) und (Y, \mathcal{F}) messbare Raeume.

Definition 3.1: (Produkt σ -Algebra)

- 1. Mengen $A \times B \subset X \times Y$ mit $A \in \mathcal{E}$ und $B \in \mathcal{F}$ heissen <u>messbare Rechtecke</u>. Es sei $\mathcal{R} := \{A \times B \mid A \in \mathcal{E}, B \in \mathcal{F}\}$ die Menge der messbaren Rechtecke.
- 2. Die σ -Algebra $\mathcal{E} \times \mathcal{F} = \sigma(\mathcal{R})$ heisst Produkt- σ -Algebra von (X, \mathcal{E}) und (Y, \mathcal{F})
- 3. Fuer $E \in \mathcal{E} \times \mathcal{F}$ heissen fuer $x \in X, y \in Y$:

$$E_x := \{ y \in Y \mid (x, y) \in E \} \subset Y \text{ und}$$

$$E^y := \{x \in X \mid (x, y) \in E\} \subset X$$

Schnitte von E.

Bemerkung:

1. \mathcal{R} ist ein π -System (d.h. Schnittstabil)

$$(A\times B)\cap (A'\times B')=(A\cap A')\times (B\cap B')$$

2. $\mu: \mathcal{E} \to [0, \infty]$ und $v: \mathcal{F} \to [0, \infty]$ Masse

$$\leadsto \ \mu \times \upsilon(A \times B) = \mu(A) \cdot \upsilon(B) \ \forall A \times B \in \mathcal{R}$$

$$i_x: Y \to X \times Y$$

$$y \mapsto (x, y) \quad \Rightarrow \quad (i_x)^{-1}(E) = E_x$$

$$i^y: \quad X \to X \times Y$$

$$x \mapsto (x,y) \quad \Rightarrow \quad (i^y)^{-1}(E) = E^y$$

Theorem 3.2:

3.

Es seien $\mu: \mathcal{E} \to [0, \infty]$ und $v: \mathcal{F} \to [0, \infty]$ σ -endliche Masse. Dann gilt fuer $\mathcal{E} \times \mathcal{F}$

1.
$$\forall x \in X : E_x \in \mathcal{F}, \forall y \in Y : E^y \in \mathcal{E}$$

2. Die Funktion
$$X \to [0, \infty]$$
 ist \mathcal{E} -messbar
$$x \mapsto v(E_x)$$

$$\begin{array}{ccc} Y \to [0,\infty] & & \\ \text{und} & & \text{ist \mathcal{F}-messbar.} \\ & & y \mapsto \mu(E^y) & & \\ \text{Es gilt:} & & & \end{array}$$

$$\int_{X} \upsilon(E_x) \ d\mu(x) = \int_{Y} \mu(E^y) \ d\upsilon(y)$$

Theorem 3.3: (Produktmass)

Es seien (X, \mathcal{E}, μ) und (Y, \mathcal{F}, v) σ -endlich Massraeume. Dann existiert ein eindeutig bestimmtes Mass μ auf $X \times Y, \mathcal{E} \times \mathcal{F}$ mit der Eigenschaft:

$$(\mu \times \upsilon)(A \times B) = \mu(A) \cdot \upsilon(B) \quad \forall A \in \mathcal{E}, \ B \in \mathcal{F}$$

Das Mass $\mu \times \nu$ ist σ -endlich. Sind μ, ν endlich so auch $\mu \times \nu$

Definition 3.4: (Produktmass)

- 1. Es seien (X, \mathcal{E}, μ) und (Y, \mathcal{F}, v) σ -endliche Massraeume. Dann heisst $\mu \times v$ das Produktmass auf $X \times Y, \mathcal{E} \times \mathcal{F}$
- 2. $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ Borel- σ -Algebra mit Lebesgue-Mass. Dann gilt:

$$\underbrace{\mathcal{B}(\mathbb{R}) \times ... \times \mathcal{B}(\mathbb{R})}_{n-mal} = \mathcal{B}(\mathbb{R}^n)$$

und wir nennen:

$$\lambda^n := \underbrace{\lambda \times ... \times \lambda}_{n-mal} : \mathcal{B}(\mathbb{R}^n) \to [0, \infty]$$

das n-dimensionale Lebesgue-Mass.

Korollar 3.5:

Es sei $E \in \mathcal{E} \times \mathcal{F}$ mit $\mu \times v(E) = 0$

Dann gilt:

$$\mu(E^y) = 0$$
 fuer v -fast-ueberall $y \in Y$

und

$$v(E_x) = 0$$
 fuer μ -fast-uberall $x \in X$

Theorem 3.6: (Fubini Tonelli)

Es seien (X, \mathcal{E}, μ) und (Y, \mathcal{F}, v) σ -endliche Massraeume. $F: X \times Y \to [0, \infty]$ sei $\mathcal{E} \times \mathcal{F}$ -messbar. Dann gilt:

1. Fuer jedes $x \in X$ (bzw. $y \in Y$) ist die Funktion $Y \ni y \mapsto F(x,y) \in [0,\infty]$ \mathcal{F} -messbar.

(bzw.
$$X \ni x \mapsto F(x,y) \in [0,\infty]$$
 \mathcal{E} -messbar)

2. Die Funktionen

$$X \ni x \mapsto \int\limits_{Y} F(x,y) \ dv(y)$$

und

$$Y \ni y \mapsto \int_{X} F(x,y) \ d\mu(x)$$

sind \mathcal{E} -bzw. \mathcal{F} -messbare Funtkionen.

3. Es gilt:

$$\int\limits_{X\times Y} F(x,y) \; d(\mu\times \upsilon) = \int\limits_X \left(\int\limits_Y F(x,y) \; d\upsilon(y) \right) \; d\mu(x) = \int\limits_Y \left(\int\limits_X F(x,y) \; d\mu(x) \right) \; d\upsilon(y)$$

Korollar 3.7: (Allgemeiner Satz von Fubini)

Es sei $F: \mathcal{E} \times \mathcal{F} \to \overline{\mathbb{R}}$ $\mathcal{E} \times \mathcal{F}$ -messbar. F ist gerade dann $\mu \times \nu$ -integrierbar, wenn beide folgenden Aussagen gelten:

- 1. Fuer μ -fast-ueberall $x \in X$ ist $y \mapsto F(x,y)$ v-integrierbar.
- 2. Die Funktion $x \mapsto \int\limits_{V} |F(x,y)| \ dv(y)$ ist μ -integrierbar.

Dann gilt:

$$\int\limits_{X\times Y} F(x,y) \ d(\mu\times \upsilon) = \int\limits_X \left(\int\limits_Y F(x,y) \ d\upsilon(y)\right) \ d\mu(x) = \int\limits_Y \left(\int\limits_X F(x,y) \ d\mu(x)\right) \ d\upsilon(y)$$

Bemerkung:

1. Es gilt aequivalent:

- (a) Fuer v-fast-ueberall $y \in Y$ ist $x \mapsto F(x, y)$ μ -integrierbar.
- (b) Die Funktion $y \mapsto \int\limits_X |F(x,y)| \ dv(x)$ ist v-integrierbar.
- 2. Analog konstruiert man Produktmasse auf endlichen karthesischen Produkten. $(X_i, \mathcal{E}_i, \mu_i), i = 1, ..., n$ endliche Massraeume.

$$X = X_1 \times ... \times X_n, \quad \mathcal{R} := \{A_1 \times ... \times A_n \mid A_i \in \mathcal{E}_i\}$$

 $\mathcal{E} = \mathcal{E}_1 \times ... \times \mathcal{E}_n = \sigma(\mathcal{R}) \quad \exists ! \mu : \mathcal{E} \to [0, \infty] \text{ mit}$

$$\mu(A_1 \times ... \times A_n) = \mu_1(A_1) \cdot ... \cdot \mu_n(A_n).$$

Dieser Prozess ist assoziativ.

3.2 Das Lebesgue-Mass auf \mathbb{R}^n

$$(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda) \rightsquigarrow (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \lambda^n)$$

Es gilt:

$$\lambda^n \left([a_1, b_1] \times \ldots \times [a_n, b_n] \right) = \prod_{i=1}^n \lambda([a_i, b_i])$$

Notation:

Fuer $a \in \mathbb{R}^n$ und $\delta > 0$ definiere:

$$Q(a, \delta) := [a_1, a_1 + \delta) \times ... \times [a_n, a_n + \delta) = \sum_{i=1}^{n} [a_i, a_i + \delta)$$

 $\delta\text{-Box}$ mit Ecke a.

Zu $N\in\mathbb{N}$ sei

$$Q_N := \{ Q(2^{-N} \cdot k, 2^{-N}) \mid k = (k_1, ..., k_n) \in \mathbb{Z}^n \}$$

$$\Rightarrow Q_N \subset \mathcal{B}(\mathbb{R}^n) \quad \lambda^n (Q(2^{-N} \cdot k, 2^{-N} = (2^{-N})^n = 2^{-n \cdot N}))$$

$$Q := \bigcup_{N=0}^{\infty} Q_N$$

Lemma 3.8

1.
$$Q, Q' \in \mathcal{Q}_N \implies Q \cap Q' = \emptyset \text{ oder } Q = Q'$$

2.
$$Q \in \mathcal{Q}_N, \ Q' \in \mathcal{Q}_M, \ N < M \ \Rightarrow \ Q \cap Q' = \emptyset \text{ oder } Q' \subset Q$$

3.
$$Q, Q' \in \mathcal{Q}$$
. Dann gilt: $Q \cap Q' \neq \emptyset \implies Q \subset Q'$ oder $Q' \subset Q$

Bemerkung:

- 1. Q enthaelt abzaehlbar viele Boxen
- 2. $\forall N \in \mathbb{N} \ \forall x \in \mathbb{R}^n \ \exists ! Q \in \mathcal{Q}_N : x \in Q$

Lemma 3.9:

Es sei $U \subset \mathbb{R}^n$ eine nicht-leere offene Menge. Dann ist U eine abzaehlbare, disjunkte Vereinigung von Mengen aus \mathcal{Q}

Korollar 3.10:

$$\sigma(\mathcal{Q}) = \mathcal{B}(\mathbb{R}^n)$$

Theorem 3.11: (Eigenschaften des n-dim. Lebesguemass)

1. (Translationsinvariant) $\forall E \in \mathcal{B}(\mathbb{R}^n) \ \forall x \in \mathbb{R}^n \ \text{gilt:}$

$$x + E \in \mathcal{B}(\mathbb{R}^n)$$
 und $\lambda^n(x + E) = \lambda^n(E)$

- 2. (Eindeutigkeit) Es sei μ ein translationsinvariantes Mass auf $\mathcal{B}(\mathbb{R}^n)$ mit der Eigenschaft: $\forall K \subset \mathbb{R}^n$ kompakt gilt $\mu(K) < \infty$. Dann existiert ein $c \geq 0$ mit $\mu = c \cdot \lambda^n$
- 3. (Rotationsinvariant) Fuer alle $R \in \mathcal{O}(n)$ gilt:

$$\lambda^n(R(E)) = \lambda^n(E) \quad \forall E \in \mathcal{B}(\mathbb{R}^n)$$

4. (lineare Transformationsformel) Es sei $T: \mathbb{R}^n \to \mathbb{R}^n$ eine lineare Abbildung:

$$\lambda^n(T(E)) = |\det T| \cdot \lambda^n(E) \quad \forall E \in \mathcal{B}(\mathbb{R}^n)$$

3.3 Bildmasse, Trafosatz und Trafoformel

Es sei (X, \mathcal{E}) und (Y, \mathcal{F}) messbare Raeume. μ sei ein Mass auf (X, \mathcal{E}) .

Definition 3.12: (Bildmass)

Es sei $F:X \to Y$ $\mathcal{E}\text{-}\mathcal{F}\text{-messbar}$. Dann heisst

$$F_{\#}\mu(B) := \mu(F^{-1}(B)) \quad \forall B \in \mathcal{F}$$

, das <u>Bildmass</u> von μ unter F.

Bemerkung:

- 1. $F_{\#}\mu$ ist wohldefiniert, da F messbar ist.
- 2. $F_{\#}\mu$ ist ein Mass, denn $F^{-1}\left(\bigcup_{n=0}^{\infty}B_n\right)=\bigcup_{n=0}^{\infty}F^{-1}(B_n)$
- 3. $X \xrightarrow{F} Y \xrightarrow{G} Z \Rightarrow (G \circ F)_{\#}\mu = G_{\#}(F_{\#}\mu)$ $(G \circ F)_{\#}(C) = \mu(F^{-1}(G^{-1}(C))$

Satz 3.13: (Trafosatz)

In der obigen Situation sei $\varphi: Y \to [0, \infty]$ eine \mathcal{F} -messbare Funktion. Dann gilt:

$$\int\limits_{V}\varphi(y)\;dF_{\#}\mu(y)=\int\limits_{V}\varphi\left(F(x)\right)\;d\mu(x)$$

Erinnerung:

 $U, V \subset \mathbb{R}^n$ offen , dann ist $F: U \to V$ ein C^1 -Diffeo, wenn F bijektiv ist und F und F^{-1} C^1 -Abbildungen sind.

$$DF: U \xrightarrow{\text{stetig}} GL(\mathbb{R}^n) \text{ bzw. } Lin(\mathbb{R}^n, \mathbb{R}^n)$$

Theorem 3.14: (Trafoformel)

Es sei $F: U \to V$ ein C^1 -Diffeomorphismus. Dann ist $\varphi: V \to \mathbb{R}$ genau dann λ^n -integrierbar, wenn $\varphi \circ F \cdot |\det DF|$: $U \to \mathbb{R}$ λ^n -integrierbar ist. Dann gilt:

$$\int_{Y} \varphi(y) \ d\lambda^{n}(y) = \int_{U} \varphi(F(x)) \cdot \underbrace{|\det DF(x)| \ d\lambda^{n}(x)}_{dF_{\#}\lambda^{n}}$$

4 Integration auf Untermanigfaltigkeiten

4.1 Untermanigfaltigkeiten

Defnition 4.1:

Eine Teilmenge $M \subset \mathbb{R}^n$ heisst <u>k-dimensionale Untermanigfaltigkeit</u> (UMfkt.) der Klasse C^l ($l \in (\mathbb{N} \cup \{\infty\})$, falls es zu jedem Punkt $a \in M$ eine Umgebung $U \subset \mathbb{R}^n$ von a und C^l -Funktionen $f_1, ..., f_{n-k} : U \to \mathbb{R}$ mit folgenden Eigenschaften gibt:

1.
$$M \cap U = \{ x \in U \mid f_1(x) = \dots = f_{n-k}(x) = 0 \}$$

2.
$$\forall x \in U$$
: Rang $\left(\frac{\partial (f_1, \dots, f_{n-k})}{\partial (x_1, \dots, x_n)}(x)\right) = n - k \ (= \text{maximal})$

Bemerkung:

1. Gilt statt 2. (Def 4.1) folgendes:

Rang
$$\left(\frac{\partial(f_1, ..., f_{n-k})}{\partial(x_1, ..., x_n)}(a)\right) = n - k \ (= \text{maximal})$$

, dann gilt auch 2. (Def 4.1) nach verkleinern von U.

2. 2. (Def 4.1)
$$\Rightarrow$$
 ($\nabla f_1(x),...,\nabla f_{n-k}(x)$) linear unabhaengig $\forall x \in U$

Bemerkung:

Eine (n-1)-Dimensionale UMfkt in \mathbb{R}^n heisst Hyperflaeche. (z.B. $S^{n-1} \subset \mathbb{R}^n$)

Proposition 4.2: (Jede UMfkt. ist lokal ein Graph.)

Sei M eine k-dimensionale UMfkt. des \mathbb{R}^n der Klasse C^l und $a=(a_1,...,a_n)\in M$. Nach eventueller Umnummerierung der Koordinaten gibt es eine offene Umgebung $U'\subset\mathbb{R}^k$ von $a'=(a_1,...,a_k)$ und $U''\subset\mathbb{R}^{n-k}$ von $a''=(a_{k+1},...,a_n)$ und $g\in C^l(U',U'')$ mit:

$$M \cap (U', U'') = Gr(g) = \{ (x', x'') \in U' \times U'' \mid x'' = g(x') \}$$

und g(a') = a''.

Beispiel/Definition:

$$f = (f_1, ..., f_n) : U \subset \mathbb{R}^n \xrightarrow{C^l} \mathbb{R}^r \text{ mit U offen.}$$

 $M_y:=f^{-1}, \;\; y \in \mathbb{R}^r.$ yheisst regulaerer Wert, falls gilt:

$$\forall x \in f^{-1}(y) \quad \frac{\partial f}{\partial x}(x)$$
 hat maximalen Rang

(Ist $y \notin f(U) \Rightarrow y$ regulaerer Wert)

Falls y ein regulaerer Wert, dann ist M_y eine C^l -UMfkt., der Dimension $dim(M_y)$

Theorem: (Sard)

Mengen ohne regulaere Werte haben Lebesgue-Mass 0.

Proposition 4.3: (Jede UMfkt. sieht lokal wie $\mathbb{R}^k \subset \mathbb{R}^n$ aus.)

Sei $M \subset \mathbb{R}^n$ eine k dimensionale Umfkt. der KLasse C^l und $a \in M$. Dann existiert eine offene Umgebung $U \subset \mathbb{R}^n$ von a und eine C^l -Diffeo $F: U \xrightarrow{\simeq} V$ mit:

$$F(U \cap M) = (\mathbb{R}^k \times \{0\}) \cap V$$

Proposition 4.4: (Jede UMfkt. besitzt Karten)

Sei $M \subset \mathbb{R}^n$ eine k dimensionale UMfkt. der Klasse C^l . Fuer alle $a \in M$ existiert eine (in M offene) Umgebung $W \subseteq M$ von a in M, eine offenen Menge $\Omega \subset \mathbb{R}^k$ und eine Karte:

$$\phi: \Omega \to W \subset M \subset \mathbb{R}^n$$

mit folgenden Eigenschaften:

- 1. ϕ ist ein Homoeomorphismus auf W
- 2. ϕ ist eine C^l -Immersion, d.h. $\phi \in C^l(\Omega, \mathbb{R}^n)$ und $\operatorname{Rang}(J_{\phi}(t)) = k = \max t \in \Omega$

Bemerkung:

- 1. $W \subset M$ offen in M, d.h. $\exists \hat{W} \subset \mathbb{R}^n$ offen mit $W = \hat{W} \cap M$
- 2. $\phi^{-1}: W \to \Omega$ stetig, heisst:

$$\forall O \in \Omega \text{ offen } \left(\phi^{-1}\right)^{-1}(O) \subset W \text{ offen in } W$$

- 3. $\phi^{-1}: W \to \Omega \subset \mathbb{R}^k$ heisst lokale Koordinate auf M. $p \in M \leadsto \phi^{-1}(p) \in \mathbb{R}^k$
- 4. $\phi^{-1}: W \to \mathbb{R}^k$, W ist keine offene Menge!

Proposition 4.2: (Koordinatewechsel sind C^l)

Es sei M eine C^l -UMfkt. der Dimension k mit $\phi_i: \Omega_i \to W_i \subset M, \quad i=1,2$ $\Omega_i \subset \mathbb{R}^k$ offen, W_i offen in M, zwei C^l -Karten mit $W_1 \cap W_2 \neq \emptyset$. Dann ist $\phi_i^{-1}(W_1 \cap W_2) \subset \Omega_i$ offen, i=1,2. Und

$$\phi_2^{-1} \circ \phi_1 : \phi_1^{-1}(W_1 \cap W_2) \to \phi_2^{-1}(W_1 \cap W_2)$$

ein C^l -Diffeo..

4.2 Tangentialraum und Differential

Defintion 4.6: (Tangential, Normalraum)

Es sei $M \subset \mathbb{R}^n$ eine k-dimensionale UMfkt. und $p \in M$. Dann heisst:

1.
$$T_pM := \left\{ v \in \mathbb{R}^n \middle| \begin{array}{l} \exists \gamma : (-1,1) \xrightarrow{C^1} M \\ \gamma(0) = p, \ \dot{\gamma}(0) = v \end{array} \right\}$$
 Tangential raum von/an M in p.

2. $N_p M = (T_p M)^{\perp} = T_p^{\perp} M$ der <u>Normalraum</u> von M in p.

Proposition 4.7:

Es sei $M \subset \mathbb{R}^n$ eine UMfkt., $p \in M$. Zu $p \in M$ sei $\phi : \Omega \to W \subset M$ eine Karte mit $0 \in \Omega \subset \mathbb{R}^k$, $\phi(0) = p$. Dann gilt:

$$T_p M = span \left\{ \frac{\partial \phi}{\partial t_1}(0), \cdots, \frac{\partial \phi}{\partial t_k}(0) \right\}$$

Ausserdem sei $U \subset \mathbb{R}^n$ offen mit $p \in U \cap M$ und $U \cap M = \{f_1 = \cdots = f_{n-k} = 0\}$ mit $\nabla f_1, \cdots, \nabla f_{n-k}$ linear unabhaengig. Dann gilt:

$$N_p M = span \{ \nabla f_1(p), \cdots, \nabla f_{n-k}(p) \}$$

Insbesondere sind T_pM und T_pN lineare Unterraeume mit dim $T_pM=k(=\dim M)$ und dim $N_pM=n-k$.

Definition 4.8: (Differenzierbare Abbildungen zwischen UMfkt.)

Es sei $M \subset \mathbb{R}^n$, und $N \subset \mathbb{R}^r$ zwei C^l -UMfkt.. Eine stetige Abbildung $f: M \to N$ heisst C^l -differenzierbar in $p \in M$, falls es Karten $\phi: \Omega_M \to W_M \subset M$ um p und $\psi: \Omega_N \to W_N \subset N$ um f(p) gibt, so dass: $f(W_M) \subset W_N \text{ und } \psi^{-1} \circ f \circ \phi: \Omega_M \to \Omega_N \quad C^l$ -differenzierbar in $\phi^{-1}(p)$ ist.

Bemerkung:

- 1. Die Definition ist unabhaengig von der Wahl der Karten.
- 2. f ist C^l , wenn f in jedem $p \in M$ C^l ist.
- 3. Kompostionen von C^l -Abbildungen sind C^l .

Definition 4.9: (Differential)

Das <u>Differential</u> einer C^l -Abbildung $f:M\to N$ in $p\in M$ ist die Abbildung $Df(p):T_pM\to T_{f(p)}N$ definiert als:

$$\gamma: (-\varepsilon, \varepsilon) \xrightarrow{C^1} M, \quad \gamma(0) = p, \quad \dot{\gamma}(0) = v \in T_p M$$

$$Df(p) \cdot v := \frac{d}{dt} \Big|_{t=0} f \circ \gamma(t) \in T_{f(p)}N$$

Lemma 4.10:

Das Differential Df(p) ist eine lineare Abbildung, die in Karten ϕ um p und ψ um f(p) durch:

$$J_{\psi^{-1}\circ f\circ\phi}(0)$$

gegeben ist. $[\phi(0) = p]$

Bemerkung:

Wenn wir in Lemma 4.10 $f = id_M$ waehlen, erhalten wir die "Physiker-Defintion" (Jaehlich-Vektoranalysis).

Ein Tangetialvektor an $p \in M$ ist eine Zuordnung, die jeder Karte ϕ um $p \in M$ einen Vektor $v \in \mathbb{R}^k$ so zuordnet, dass in einer anderen Karte ψ der vektor $J_{\psi^{-1}\circ\phi}(0)\cdot v$ zugeordnet wird.

4.3 Kurven und Flaechenintegrale

Erinnerung:

$$\gamma : [a, b] \xrightarrow{C^1} \mathbb{R}^n$$

$$L(\gamma) = \int_a^b |\dot{\gamma}(t)| dt$$

Nun sei γ regulaer. D.h. $\dot{\gamma}(t) = J_{\gamma}(t) \neq 0 \ \forall t$

Dann ist $L(\gamma)$ unabhaengig von der Parametrisierung. $\varphi:[c,d] \xrightarrow{C^1\text{-Diffeo}} [a,b]$

$$L(\gamma \circ \varphi) = \int_{c}^{d} \left| \gamma(\varphi(s))' \right| \, ds = \int_{c}^{d} \left| \dot{\gamma}(\varphi(s)) \cdot \varphi'(s) \right| \, ds \underset{\text{Trafo-Formel } f}{=} \int_{a}^{b} \left| \dot{\gamma}(t) \right| \, dt = L(\gamma)$$

Ist γ regulaer und injektiv, so ist $\gamma\big|_{(a,b)}:(a,b)\to\mathbb{R}^n$ eine Karte.

$$f:D\underset{\text{offen}}{\subset}\mathbb{R}^n\xrightarrow{C^0}\mathbb{R},\quad \gamma:[a,b]\to D$$

Wegintegral:
$$\int\limits_{\gamma} f \ ds := \int\limits_{a}^{b} f(\gamma(t)) \cdot |\dot{\gamma}(t)| dt$$

unabhaengig von Parametrsierung.

Definition 4.11:

Es sei $M\subset\mathbb{R}^n$ eine 2-dimensionale UMfkt. und $\phi:\Omega\stackrel{\simeq}{\longrightarrow}V\subset M$ eine Karte. Und

$$g_{i,j}(t) := < \frac{\partial \phi}{\partial t_i}(t) , \frac{\partial \phi}{\partial t_j}(t) > i, j = 1, 2$$

mit

$$g(t) = \det(g_{i,j}(t))$$
 Gram'sche Determinante

Das Flaechenintegral von $M = \phi(\Omega)$ ist:

$$vol_2(M) := \int\limits_{\Omega} \sqrt{g(t)} \ dt_1 dt_2$$

Propositon 4.12:

 $vol_2(M)$ ist unabhaengig von der Karte.

Dimension k:

 $M \subset \mathbb{R}^n$ k-dimensionale UMfkt., $\phi: \Omega \xrightarrow{\simeq} M$ eine Karte.

$$g_{i,j}(\overbrace{t_1,...,t_k}^t) := <\frac{\partial \phi}{\partial t_i}(t) \;,\; \frac{\partial \phi}{\partial t_j}(t)> \quad i,j=1,...,k$$

$$g(t) := \det(g_{i,j}(t)), \quad dS(x) := \sqrt{g(t)} \underbrace{dt}_{dt_1, \dots, dt_k}, \quad x = \phi(t)$$

k-dimensionales <u>Volumenelement</u> (unabaengig von Karte).

Der allgemeine Fall:

1.
$$M = \bigcup_{j=1}^{\infty}, \ V_j \subset M$$
 offen in $M, \ \phi_j : \Omega_j \xrightarrow{\simeq} V_j$ Karte.

2.
$$\lambda_j: M \xrightarrow{\simeq} [0,1] \text{ mit } \lambda_j \big|_{M/V_i} = 0$$

3. Fuer jedes $x \in M$ gibt es nur endlich viele $j \in \mathbb{N}$ mit $\lambda_j(x) \neq 0$.

Es gilt:
$$\sum_{j=1}^{\infty} \lambda_j(x) = 1 \quad \forall x \in M$$
$$dS(x) := \sum_{j=1}^{\infty} \lambda_j(\phi_j(t)) \cdot \sqrt{g_j(t)} \ dt_1...dt_k, \quad x = \phi_j(t)$$

Proposition 4.13:

Es sei $M \subset \mathbb{R}^k$ eine C^l -Untermanigfaltigkeit und $(W_i)_{i \in I}$ eine beliebige offenen Ueberdeckung von M. Dann existiert eine (lokal endliche, der Uerberdeckung $(W_i)_{i \in I}$ untergeordnete) Partition der Eins auf M, d.h:

- 1. \exists abzaehlbare Familie $(V_n)_{n\in\mathbb{N}}$ von offenen Mengen auf M mit:
 - (a) $\bigcup_{n \in \mathbb{N}} V_n = M$
 - (b) \overline{V}_n ist kompakt und liegt in M
 - (c) $\forall n \ \exists i(n) \in I \ \text{sodass} \ V_n \subset W_{i(n)}$
 - (d) $\forall x \in M \ \exists U_x \subset M \ \text{sodass} \ \#\{ \ n \in \mathbb{N} \ | \ U_x \cap V_n \neq \emptyset \ \} < \infty$
- 2. $\exists \lambda_n : M \xrightarrow{C^l} [0,1]$ sodass:

- (a) $\lambda_n \big|_{M \setminus V_n} = 0$
- (b) $\sum_{n\in\mathbb{N}} \lambda_n = 1$ als Funktionen von M.

Lemma 4.14:

 $M \subset \mathbb{R}^k$ C^l -UMfkt. der Dimension m. Dann gibt es eine abzaehlbare offene Ueberdeckung $(V_n)_{n \in \mathbb{N}}$ von M, sodass:

- 1. $\forall n \ \exists \phi_n : \mathbb{R}^m \supset \Omega_n \xrightarrow{\simeq} V_n \subset M$
- 2. \overline{V}_n ist kompakt und enthalten in M.

Korollar 4.15:

 $M\subset\mathbb{R}^k$ UMfkt.. Dann existieren offenen Mengen $O_i\subset M$ mit $\overline{O}_i\subset O_{i+1}$ und \overline{O}_i kompakt. Sowie $\bigcup_{i\in\mathbb{N}}O_i=M$

5 Differentialformen

5.1 1-Formen (Pfaff'scher Formen) und Kuvenintegrale

 $U\subset \mathbb{R}^n$ offen, $p\in U$

 \leadsto n-dimensionale UMfkt. im \mathbb{R}^n (z.B. $id: U \to U$ Karte)

Es gilt eine kanonische Identifikation:

$$T_pU \simeq \mathbb{R}^n$$

Definition 5.1: (Tangential- und Kotangetialbuendel.)

1. Der Kotangentialraum von U bei p ist:

$$T_p^* = (T_p)^* = \{ l : T_p U \to \mathbb{R} \mid l \text{ linear} \}$$

2. Das Tangentialbuendel von U ist

$$TU = \{ (p, v) \in U \times \mathbb{R}^n \mid v \in T_p U \} = \bigcup_{p \in U} \{p\} \times T_p U$$

Die Abbildung $\pi: TU \to U, \ \pi((p,v)) = p$ heisst kanonische Projektion.

3. Das Kotangetialbuendel von U ist

$$T^*U = \{ (p, l) \in U \times (\mathbb{R}^n)^* \mid l \in T_p^*U \} = \bigcup_{p \in U} \{p\} \times T_p^*U$$

 $\text{mit Projetkion } \pi: T^*U \to U, \ \ \pi((p,l)) = p.$

Defintion 5.2: (1-Formen und Vektorfelder)

1. Eine (Differential-) 1-Form (bzw. Pfaff'sche Form) auf U ist eine glatte Abbildung:

$$\omega: U \to T^*U$$
 mit $\pi \circ \omega = id_U$

2. Ein <u>Vektorfeld</u> auf U ist eine Abbildung

$$X: U \to TU$$
 mit $\pi \circ X = id_U$

Bemerkung:

1. Abbildungen mit $\pi \circ \omega = id$ bzw. $\pi \circ X = id$ heissen auch Schnitte von Kotangetialbuendeln bzw. Tangentialbuendeln.

Wir schreiben: $\omega(p) \longleftrightarrow \omega_p$ Analog " $X(p) \in T_pU$ "

2. ω, X sind glatt bezueglich Auswertung:

$$\forall v \in \mathbb{R}^n \ U \ni p \mapsto \omega_p(v) \in \mathbb{R} \ \text{glatt}$$

Defintion 5.3: (Kurvenintegral)

Sei ω eine stetige 1-Form auf $U \subset \mathbb{R}^n$ und $\gamma: [a,b] \to U$ sei stueckweise C^1 : Das <u>Kurvenintergral</u> von ω laengs γ

ist:

$$\int\limits_{\gamma} \omega = \int\limits_{a}^{b} \underbrace{\omega_{\gamma(t)}(\dot{\gamma}(t))}_{[a,b] \to \mathbb{P}} \ dt \ \left[= \sum_{i=1}^{n} \int\limits_{t_{i-1}}^{t_{i}} \omega_{\gamma(t)}(\dot{\gamma}(t)) \ dt \right]$$

Bemerkung:

 $\int\limits_{\gamma}\omega$ ist unabhaengig von der Parmetrisierung von $\gamma.$

Definition 5.4: (exakte 1-Formen)

Eine 1-Form ω auf $U \subset \mathbb{R}^n$ heisst <u>exakt</u>, falls es eine C^1 -Funktion $f: U \to \mathbb{R}$ mit $\omega = df$ gibt. f heisst <u>Stammfunktion</u> Wurzel oder Primitive.

Kotangetialbasis:

Jede 1-Form laesst sich zerlegen in die Form:

$$\omega_p = \sum_{i=1}^n g_i(p) \ dx_i$$

mit $g: U \to \mathbb{R}$ und $dx_i: T_pU \simeq \mathbb{R}^n \to \mathbb{R}$. Es ist ausserdem $\omega \in C^1$ wenn die $g_i \in C^1(U)$

Defintion 5.2: (Gebiet)

Ein Gebiet $\mathcal{G} \subset \mathbb{R}^n$ ist eine zusammenhaengende Menge. In einem Gebiet koennen je zwei Punkte durch einen stueckweise C^1 -Weg verbunden werden.

Proposition 5.6:

Eine stetige 1-Form ω auf einem Gebiet $\mathcal{G} \subset \mathbb{R}^n$ ist genau dann exakt, wenn fuer je zwei stueckweise C^1 -Wege γ , σ in \mathcal{G} mit den selben Anfangs- und Endpunkten gilt:

$$\int_{\gamma} \omega = \int_{\sigma} \omega$$

Dann ist die Stammfunktion f
 von ω eindeutig bis auf eine Konstante:

$$\int_{\gamma} \omega = f(\gamma(b)) - f(\gamma(a))$$

Definition 5.7: (d-Operator)

1. Es sei $\omega = \sum_{i=1}^n f_i dx_i$ eine C^1 -1-Form auf der offenen Menge $U \subset \mathbb{R}^n$. Dann definieren wir:

$$d\omega = \sum_{i,j=1}^{n} \frac{\partial f_i}{\partial x_j} \, dx_j \wedge dx_i$$

Wobei \wedge als "Dach" oder "wedge" bezeichnet wird und folgende Bedingung erfuellt: $dx_i \wedge dx_j = -dx_j \wedge dx_i$

2. ω heisst geschlossen, falls $d\omega$ =0 gilt.

Bemerkung:

$$d\omega = \sum_{1 \le j < i \le n} \left(\frac{\partial f_i}{\partial x_j} - \frac{\partial f_j}{\partial x_i} \right) dx_j \wedge dx_i$$

denn: $dx_i \wedge dx_i = -dx_i \wedge dx_i \implies dx_i \wedge dx_i = 0$

$$d\omega = 0 \Leftrightarrow \frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i} \quad i, j = 1, ..., n$$

Definition 5.8: (sternfoermig)

Eine Teilmenge $X\subset \mathbb{R}^n$ heisst sternfoermig bzgl. $x_0\in X$ falls gilt:

$$\forall x \in X \quad [x_0, x] := \{ t \cdot x + (1 - t) \cdot x_0 \mid t \in [0, 1] \} \subset X$$

Proposition 5.9:

Sei ω eine C^1 -1-Form auf einem Gebiet $\mathcal{G} \subset \mathbb{R}^n$:

- 1. Ist ω exakt, so auch geschlossen.
- 2. Ist \mathcal{G} sternfoermig und ω geschlossen, so ist ω exakt.

Bemerkung:

- 1. In Formeln: $\omega = df \implies d\omega = d(df) = 0$
- 2. Ist \mathcal{G} sternfoermig: $d\omega = 0 \Rightarrow \exists f: \omega = df$

5.2 Differentialformen hoeherer Ordnungen:

Defintion 5.10: (l-Formen und Dachprodukt von Linearformen)

1. Eine <u>k-Form</u> ω auf V [V n-dim. \mathbb{R} -Vektorraum] ist eine multilineare, alternierende Abbildung

$$\omega: \underbrace{V \times \ldots \times V}_{k-mal} \to \mathbb{R}, \quad k \geq 1$$

D.h. fuer $\forall \lambda, \mu \in \mathbb{R} \quad \forall v, w \in V$

(a)
$$\omega(\ldots, \lambda v + \mu w, \ldots) = \lambda \omega(\ldots, v, \ldots) + \mu \omega(\ldots, w, \ldots)$$

(b) (alternierend)
$$\omega(\ldots, v_{\text{i-te Pos.}}, \ldots, w_{\text{j-te Pos.}}, \ldots) = -\omega(\ldots, w_{\text{i-te Pos.}}, \ldots, v_{\text{j-te Pos.}}, \ldots)$$

2. Der Raum der k-Formen ist ein \mathbb{R} -Vektorraum, den wir mit, $\Lambda^k V^*$ bezeichnen.

$$\mathbf{k}{=}0: \quad \Lambda^0 V^* := \mathbb{R}, \quad \mathbf{k}{=}1: \; \Lambda^1 V^* = V^* = \!\! \mathrm{Dualraum \; von \; V}.$$

3. Das <u>aeussere Produkt</u> oder auch <u>Dachprodukt</u> von <u>Linearformen</u> (1-Formen) $\alpha_1, \ldots, \alpha_k \in V^*$, ist definiert durch:

$$(\alpha_1 \wedge \ldots \wedge \alpha_k)(v_1, \ldots, v_k) := \det (\alpha_i(v_j))_{i,j=1,\ldots,k} = \det \begin{pmatrix} \alpha_1(v_1) & \ldots & \alpha_1(v_k) \\ \vdots & & \vdots \\ \alpha_k(v_1) & \ldots & \alpha_k(v_k) \end{pmatrix} \quad \forall v_1, \ldots, v_k \in V$$

Propostiton 5.11:

Es sei $\alpha_1, \ldots, \alpha_n \in V^*$ eine Basis. Dann bilden

$$\alpha_{i_1} \wedge \ldots \wedge \alpha_{i_k} \in \Lambda^k V^* \quad 1 \leq i_1 < i_2 < \ldots < i_k \leq n$$

eine Basis von $\Lambda^k V^*$. Insbesonder gilt:

$$\dim\left(\Lambda^k V^*\right) = \binom{n}{k}$$

Fuer k > n: $\Lambda^k V^* = \{0\}$.

Bemerkung:

1. Aus
$$\binom{n}{k} = \binom{n}{n-k}$$
 folgt $\Lambda^k V^* \simeq \Lambda^{n-k} V^*$

2. Es seien
$$\alpha_1, \ldots, \alpha_k \in V^*$$
 mit $\alpha_i = \alpha_j \quad i \neq j \quad \Rightarrow \quad \alpha_1 \wedge \ldots \wedge \alpha_k = 0$

Defintion 5.12: (Dachprodukt von Formen)

Das Dachprodukt ist eine Abbildung:

$$\Lambda^k V^* \times \Lambda^l V^* \to \Lambda^{k+1} V^*$$

$$(\omega, \sigma) \mapsto \omega \wedge \sigma$$

defniert durch:

$$\omega = \sum_{i_1 < \dots < i_k} \lambda_{i_1, \dots, i_k} \, \alpha_{i_1} \wedge \dots \wedge \alpha_{i_k}$$

und

$$\sigma = \sum_{j_1 < \dots < j_l} \mu_{j_1, \dots, j_l} \ \alpha_{i_1} \wedge \dots \wedge \alpha_{i_l}$$

fuer eine Basis $\alpha_1, \ldots, \alpha_n \in V^*$

$$\omega \wedge \sigma = \sum_{\substack{i_1 < \ldots < i_k \\ j_1 < \ldots < j_l}} \lambda_{i_1, \ldots, i_k} \ \mu_{j_1, \ldots, j_l} \ \alpha_{i_1} \wedge \ldots \wedge \alpha_{i_k} \wedge \alpha_{j_1} \wedge \ldots \wedge \alpha_{j_l}$$

Bemerkung:

- 1. Die Def. ist unabhaengig von der Wahl der Basis $\,\alpha_1,\dots,\alpha_n\in V^*\,$
- 2. Die RHS von $\omega \wedge \sigma$ ist nicht aufsteigend in den Indices

Lemma 5.13: (Rechenregeln)

- 1. $\lambda \in \Lambda^0 V^* = \mathbb{R}$, $\sigma \in \Lambda^l V^*$: $\lambda \wedge \sigma = \lambda \cdot \sigma$
- 2. Linearitaet: $\lambda_i \in \mathbb{R}, \ \omega_i \in \Lambda^k V^*, \ \sigma \in \Lambda^l V^*, \ i = 1, 2$

$$\Rightarrow$$
 $(\lambda_1 \omega_1 + \lambda_2 \omega_2) \wedge \sigma = \lambda_1 \omega_1 \wedge \sigma + \lambda_2 \omega_2 \wedge \sigma$

3. $\omega_1, \ldots, \omega_r, \sigma_1, \ldots, \sigma_s \in V^*$:

$$\Rightarrow (\omega_1 \wedge \ldots \wedge \omega_r) \wedge (\sigma_1 \wedge \ldots \wedge \sigma_s) = \omega_1 \wedge \ldots \wedge \omega_r \wedge \sigma_1 \wedge \ldots \wedge \sigma_s$$

- 4. Assoziativitaet: $(\omega_1 \wedge \omega_2) \wedge \omega_3 = \omega_1 \wedge (\omega_3 \wedge \omega_3) \quad \forall \omega_i \in \Lambda^{k_i} V^* \quad i = 1, 2, 3$
- 5. Alternierenden Gesetz: $\omega \wedge \sigma = (-1)^{k \cdot l} \sigma \wedge \omega$ $\omega \in \Lambda^k V^*, \quad \sigma \in \Lambda^l V^*$

Defintion 5.14: (Differential k-Formen auf offenen Mengen)

Es sei $U \subset \mathbb{R}^n$ offen

1.

$$\Lambda^k T^* U := \bigcup_{p \in U} \{p\} \times \Lambda^k T_p^* U$$

mit $\pi: \Lambda^k T^* U \to U$ Projektion.

2. Eine (Differential)-k-Form ω ist eine Abbildung $\omega: U \to \Lambda^k T^*U$ mit $\pi \circ \omega = id_U$.

d.h.
$$\omega(p) = (p, \omega_p)$$
 mit $\omega_p \in \Lambda^k T_p^* U$

Bemerkung:

- 1. 0-Formen sind Funktionen auf U.
- 2. Kanonische Identifikation $T_pU \simeq \mathbb{R}^n$, $T_p^*U \simeq (\mathbb{R}^n)^*$

$$\Rightarrow \Lambda^k T_p^* U \simeq \Lambda^k (\mathbb{R}^n)^*$$

3. Damit (und mit Prop. 5.10) kann jede k-Form auf U als:

$$\omega = \sum_{i_1 < \dots < i_k} f_{i_1 \dots i_k} \ dx_{i_1} \wedge \dots \wedge dx_{i_k}$$

geschrieben werden, wobei $f_{i_1...i_k}: U \to \mathbb{R}$ eindeutig bestimmte Funktionen sind. ω ist C^r , $r = 0, ..., \infty \Leftrightarrow$ Alle $f_{i_1...i_k}$ sind C^r .

4. Das Dachprodukt und seine Rechenregeln (L 5.13) uebertraegt sich:

$$(\omega \wedge \sigma)_p := \omega_p \wedge \sigma_p , \quad \forall p \in U$$

Notation:

Es sei $U \subset \mathbb{R}^n$ offen. Fuer $k \geq 0$ bezeichnet $\Omega^k(U)$ den Vektorraum der C^{∞} -k-Formen auf U.

$$\hookrightarrow \Omega^0(U) = C^\infty(U, \mathbb{R})$$

Definition 5.15: (Aeussere Ableitung)

Es sei ω eine C^1 -k-Form auf U, $\omega = \sum_{i_1 < \ldots < i_k} f_{i_1 \ldots i_k} \ dx_{i_1} \wedge \ldots \wedge dx_{i_k}$. Dann ist die (k+1)-Form:

$$d\omega = \sum_{i_1 < \dots < i_k} \sum_{l=1}^n \frac{\partial f_{i_1 \dots i_k}}{\partial x_l} dx_l \wedge dx_{i_1} \wedge \dots \wedge dx_{i_k}$$

die aeussere Ableitung von ω .

Notation:

1. Statt
$$\sum_{i_1 < \ldots < i_k} f_{i_1 \ldots i_k} dx_{i_1} \wedge \ldots \wedge dx_{i_k}$$
 schreiben wir: $\sum_{|I|=k} f_I dx_I \quad I = (i_1, \ldots, i_k), \quad |I|=k$

2.
$$\omega = \sum_{i_1 < \dots < i_k} f_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k}$$

$$\Rightarrow d\omega = \sum_{i_1 < \dots < i_k} df_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k} = \sum_{|I| = k} df_I \wedge dx_I$$

Lemma 5.16: (Rechenregeln)

- 1. $\forall \lambda_1, \lambda_2 \in \mathbb{R}$, ω_1, ω_2 k-Formen: $d(\lambda_1 \omega_1 + \lambda_2 \omega_2) = \lambda_1 d\omega_1 + \lambda_2 d\omega_2$
- 2. $\omega \in \Omega^k(U)$, $\sigma \in \Omega^l(U)$: $d(\omega \wedge \sigma) = d\omega \wedge \sigma + (-1)^k \omega \wedge d\sigma$ (Leibnitz Regel)
- 3. Fuer alle C^2 -k-Formen ω : $d(d\omega) = 0$

Proposition 5.17: (Poincare-Lemma)

Es sei ω eine C^1 -k-Form auf dem Gebiet $\mathcal{G} \subset \mathbb{R}^n$. Dann gilt:

- 1. Ist ω exkat, so auch geschlossen.
- 2. Ist \mathcal{G} sternfoermig und ω geschlossen, so ist ω exakt.

Definition 5.18: (Pullback)

Es seien $U \subset \mathbb{R}^n$ und $V \subset \mathbb{R}^l$ offen und $\phi = (\phi_1, \dots, \phi_n) : V \xrightarrow{C^1} U$. Fuer eine k-Form $\omega = \sum_{|I|=k} f_I \, dx_I$ auf U ist die mittels ϕ zurueckgezogene k-Form:

$$\phi^*\omega = \sum_{|I|=k} (f_I \circ \phi) \ d\phi_I$$

wie folgt definiert. Zu $I = (i_1, \ldots, i_k)$ setze:

$$d\phi_I = d\phi_{i_1} \wedge \ldots \wedge d\phi_{i_k}$$
 mit $d\phi_r = \sum_{j=1}^l \frac{\partial \phi_r}{\partial y_j} dy_j$, $r = 1, \ldots, n$

Bermerkung:

1. Es gilt:
$$id^*\omega = \omega$$
, $\psi: W \xrightarrow{C^1} V$, $\phi: V \xrightarrow{C^1} U$,
$$\Rightarrow \psi^*\phi^*\omega = (\phi \circ \psi)^*\omega$$

2. Geometrische Interpretation:

$$(\phi^*\omega)_p(\underbrace{v_1,\ldots,v_k}_{\in T_pV)}) = \omega_{\phi(p)}\left(\underbrace{D\phi(p)\cdot v_1,\ldots,D\phi(p)\cdot v_k}_{T_{\phi(p)}U}\right)$$

3.
$$\omega = f$$
 (0-Form) $\Rightarrow \phi^* f = f \circ \phi$

Lemma 5.19: (Rechenregeln)

1.
$$\forall \lambda_1, \ \lambda_2 \in \mathbb{R}, \quad \omega_1, \ \omega_2 \in \Omega^k(U)$$
: $\phi^*(\lambda_1 \ \omega_1 + \lambda_2 \ \omega_2) = \lambda_1 \ \phi^*\omega_1 + \lambda_2 \ \phi^*\omega_2$

2.
$$\phi^*(\omega \wedge \sigma) = (\phi^*\omega) \wedge (\phi^*\sigma)$$

3.
$$\phi \in C^2$$
, $\omega \in C^1$: $d(\phi^*\omega) = \phi^*d\omega$

Proposition 5.20: (Transformationsverhalten von n-Formen auf \mathbb{R}^n)

Es seien $U, V \subset \mathbb{R}^n$ offen und $\phi \in C^1(U, V)$.

Fuer eine n-Form ω auf U, $\omega := f \, dx_1 \wedge \ldots \wedge dx_n$, gilt:

$$\phi^*\omega = (f \circ \phi) \det(J_\phi) dy_1 \wedge \ldots \wedge dy_n$$

6 Integralsaetze

6.1 Integration von Formen

Es sei $\Omega \subset \mathbb{R}^k$ offen, schreibe $(t_1, \dots, t_k) \in \Omega$. Wir erhalten dann dt_1, \dots, dt_k . $T_p\Omega \simeq \mathbb{R}^K$, $T_p^*\Omega \simeq \left(\mathbb{R}^k\right)^*$.

Die Standardbasis $e_1, \ldots, e_k \in \mathbb{R}^k$ induzieren ein Vektorfeld $\partial_{t_1}, \ldots, \partial_{t_k}$ auf Ω :

d.h.
$$\partial_{t_i}(p) = e_i \in T_p\Omega \simeq \mathbb{R}^k$$

Dann gilt: $dt_i(\partial_{t_i}) = \delta_{ij}$

Definition 6.1: (Integration ueber offenen Mengen)

1. Es sei $\omega := f(t) dt_1 \wedge \ldots \wedge dt_k$ eine stetige k-Form auf Ω und $\lambda(\Omega) < \infty$. Das Integral von ω uber Ω ist :

$$\int_{\Omega} \omega = \int_{\Omega} \omega_t (\partial_{t_1}, \dots, \partial_{t_k}) dt_1 \dots dt_k = \int_{\Omega} f(t) dt_1 \dots dt_k$$

2. Es sei $M \subset \mathbb{R}^n$ eine k-dimensionale Untermanigfaltigkeit, die von einer Karte $\phi: \Omega \xrightarrow{\simeq} M$ ueberdeckt wird. Es sei $U \subset \mathbb{R}^n$ eine offene Menge mit $M \subset U$ und ω stetige k-Form auf U. Dann ist das <u>Integral von Ω ueber M</u> definiert durch:

$$\int_{M} \omega = \int_{\Omega} \phi^* \omega = \int_{\Omega} \omega_{\phi(t)} \left(\frac{\partial \phi}{\partial t_1}(t), \dots, \frac{\partial \phi}{\partial t_k}(t) \right) dt_1 \dots dt_k$$

6.2 Orientierebarkeit und Untermanigfaltigkeiten mit Rand

Definition 6.2: (Orientierbarkeit)

Eine Untermanigfaltigkeit M heisst <u>orientierbar</u>, falls Karten $\phi_i:\Omega_i \xrightarrow{\simeq} W_i \subset M, \quad i \in I$ existieren mit folgenden Eigenschaften:

1. M wird ueberdeckt, d.h. $\bigcup_{i \in I} W_i = M$

2. $\forall i, j \in I: \quad \phi_i^{-1} \circ \phi_j \big|_{\phi_j^{-1}(W_i \cap W_j)}$ hat positve Jacobi-Determinante. D.h.

$$\det J_{\phi_i^{-1} \circ \phi_j}(t) > 0 \quad \forall t \in \phi_j^{-1}(W_i \cap W_j), \quad \forall i, j \in I$$

Bemerkung:

Eine Orientierung von M entspricht einer "stetigen Wahl" von Orientierungen aller T_pM , $p \in M$

Definition 6.3: (Untermanigfaltigkeit mit Rand)

 $M \subset \mathbb{R}^n$ heisst k-dimensionale <u>Untermanigfaltigkeit mit Rand</u>, falls es zu jedem Punkt $a \in M$ eine offene Umgebung $W \subset M$, eine offene Menge $\Omega \subset \mathbb{R}^k$ und eine C^l -Immersion, $l \geq 1$, $\phi : \Omega \to \mathbb{R}^n$ gibt, die $\Omega \cap \mathbb{R}^k$ homoeomorph auf W abbildet.

Dann ist

$$\mathbb{R}^k_- := \{ (t_1, \dots, t_k) \in \mathbb{R}^k \mid t_1 \le 0 \}$$

und

$$\partial \mathbb{R}^k_- := \{ (t_1, \dots, t_k) \in \mathbb{R}^k \mid t_1 = 0 \}$$

Die Punkte in $\phi(\Omega \cap \partial \mathbb{R}^k_-)$ heissen <u>Randpunkte von M.</u> Punkte in $\phi(\Omega \cap \mathring{\mathbb{R}}^k_-)$ heissen <u>innere Punkte</u>. Die Menge der Randpunkte werden mit ∂M bezeichnet und heisst Rand von M.

Bemerkung:

- 1. Randpunkte sind wohldefiniert, denn ϕ Diffeomorphismus. Es bildet also ϕ Punkte mit $t_1 < 0$ auf $t_1 < 0$ (also genau t = 0 auf t = 0) ab.
- 2. ∂M ist eine (k-1)-dimensionale Untermanigfaltigkeiten, denn $\phi\big|_{\Omega\cap\partial\mathbb{R}^k_-}$ bilden Karten von ∂M . $\partial\partial M=\emptyset$
- 3. Das Konzept von Orientierbarkeit uebertraegt sich ohne Aenderung auf Untermanigfaltigkeiten mit Rand.
- 4. Konvention. M zusammenhaengend und kompakte 1-dimensionale-Untermanigfaltigkeit. Dann existiert ein Diffeomorphismus:
 - (a) $\phi: M \to S^1$ oder:
 - (b) $\phi: M \to [a, b]$ a < b

Dann ist M orientierbar und ∂M wird wie $\partial [a, b]$ orientiert:

 $T_b\partial[a,b]$ ist pos. orientiert.

 $T_a \partial [a, b]$ ist neg. orientiert

5. Der Rand "erbt eine Orientierung". M
 orientiert $\Rightarrow \partial M$ ist orientiert.

Definition 6.4: (Integration von k-Formen)

Es sei $M \subset \mathbb{R}^n$ eine orientierbare, k-dimensionale Untermanigfaltigkeit (mit oder ohne Rand) und ω eine C^0 k-Form auf der offenen Menge $U \subset \mathbb{R}^n$, $M \subset U$ Wir waehlen Karte $\phi_i : \Omega_i \to W_i \subset M$, $i \in \mathbb{N}$ (oder endlich) gemaess Definition 6.2. Es sei $\rho_i : M \xrightarrow{C^1} [0,1], i \in \mathbb{N}$, eine Partititon der Eins mit $\sum_i \rho_i = 1$ und

$$\{ p \in M \mid \rho_i(p) \neq 0 \} \subset W_i$$

Dann definieren wir:

$$\int_{M} \omega = \sum_{i=1}^{\infty} \int_{M} \rho_{i} \omega = \sum_{i=1}^{\infty} \int_{\Omega_{i}} \phi_{i}^{*}(\rho_{i} \omega)$$

Bemerkung:

Das Integral haengt nicht von der Wahl der Karten und der Partition der Eins ab.

6.3 Die Integralsaetze von Gauss und Stokes

Theorem 6.5 (Gauss'scher Integralsatz)

Es sei $M \subset \mathbb{R}^n$ eine Kompakte, n-dimensionaler Untermanigfaltigkeit mit Rand. Wir orientieren M durch die uebliche Orientierung des \mathbb{R}^n , d.h. via $T_pM \simeq \mathbb{R}^n$. ∂M trage die induzierte Orientierung.

Es sei ω eine auf einer offenen Umgebung von M definierte, stetig differenzierbare, (n-1)-Form. Dann gilt:

$$\int_{\partial M} \omega = \int_{M} d\omega$$

Anwendung:

1. Geen-Riemann-Formel:

 $M\subset\mathbb{R}^3$ kompakte 2-dimensionale Untermanigfaltigkeit und P,Q $C^1(\mathbb{R}^3,\mathbb{R})$ auf einer Umgebung von M.

Dann gilt:

$$\int\limits_{\partial M} P\,dx + Q\,dy = \int\limits_{M} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\,dxdy$$

2. Cauchy-Integralformel:

M eine kompakte, 2-dimensionale Untermanigfaltigkeit mit Rand sowie $M \subset U$ cund $f: U \to \mathbb{C}$ sei komplex differenzierbar (=holomorph). Dann gilt:

$$\int_{\partial M} f(z) \, dz = 0$$

Theorem 6.6: (Satz von Stokes)

Es sei $M \subset \mathbb{R}^n$ eine kompakte, k-dimensionale, orientierte Untermanigfaltigkeit mit Rand ∂M , der die induzierte Orientierung trage. Es sei ω eine stetig differenzierbare (k-1)-Form auf M. Dann gilt:

$$\int_{\partial M} \omega = \int_{M} d\omega$$

Bemerkung:

 ω eine (k-1)-Form auf M $\Leftrightarrow \omega: M \to \Lambda^{k-1}T^*M$. Die Differenzierbarkeit wird mittles der Karten ueberprueft (Ist M von der Klasse C^2 , so haengt dies nicht von der Wahl der Karte ab).

Korollar 6.7:

Sei M geschlossen (\Leftrightarrow Kompakt und $\partial M \neq \emptyset$) k-dimensionale, orientierbare Untermanigfaltigkeit und ω eine exakte k-Form. Dann:

$$\int_{M} \omega = 0$$

Lemma 6.8:

Es seien $M \subset \mathbb{R}^n$, $N \subset \mathbb{R}^l$ kompakte, k-dimensionale UMfkt. und $\Psi : M \to N$ ein Diffeomorphismus. Es sei N orientiert und $\omega \in \Omega^k(N)$. Dann wird M durch Ψ orientiert und bzgl. dieser Orientierung gilt:

$$\int_{M} \Psi^* \omega = \int_{N} \omega = \int_{\Psi(M)} \omega$$

6.4 Klassische Formulierung der Integralsaetze

Theorem 6.9 (Gaussscher Integralsatz)

Es sei wie in Theorem 6.5 ($M \subset \mathbb{R}^n$ kompakte n-dimensioale UMfkt. und ∂M durch \mathbb{R}^n orientiert). Es sei $\vec{v} = (v_1, \dots, v_n)$ ein stetig differenzierbares Vektorfeld auf der offenen Umgebung von M und u dass aeussere Normalenfeld von ∂M , d.h.

$$\forall p \in \partial M : \vec{u}(p) \perp T_p \partial M$$
 und zeigt nach aussen, sowie: $\|\vec{u}(p)\| = 1$

Dann gilt:

$$\int_{M} \operatorname{div} \vec{v} \ d^{n}x = \int_{\partial M} \langle \vec{v}, \vec{u} \rangle \ dS(x)$$

Theorem 6.10: (Stokes fuer Flaechen im \mathbb{R}^3)

Es sei $M \subset \mathbb{R}^3$ eine kompakte, orientierte UMfkt. mit Rand, die die induzierte Orientierung traegt. Es sei \vec{v} ein Vektorfeld, welches auf einer Umgebung von M definiert und stetig differenzierbar ist.

Bezeichung:

- a) $\vec{u} :=$ "aeussere" Normale zu M
- b) $\vec{t} := \text{Einheitstangentialvektor entlang } \partial M$ in Richtung der Orientierung

Dann gilt:

$$\int\limits_{M} < \operatorname{rot}\,\vec{v}, \vec{u} > \, dS(x) = \int\limits_{\partial M} < \vec{v}, \vec{t} > \, ds(x)$$