EJEMPLO 7.1.6 Transformación de reflexión

Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$. Es fácil verificar que T es lineal. En términos geomé-

tricos, T toma un vector en \mathbb{R}^2 y lo refleja respecto al eje y (vea la figura 7.2).

Figura 7.2

El vector (-x, y) es la reflexión respecto al eje y del vector (x, y).

Transformación de $\mathbb{R}^n \to \mathbb{R}^m$ dada por la multiplicación por una matriz de $m \times n$

Sea A una matriz de $m \times n$ y defina $T: \mathbb{R}^n \to \mathbb{R}^m$ por $T\mathbf{x} = A\mathbf{x}$. Como $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y}$ y $A(\alpha \mathbf{x}) = \alpha A\mathbf{x}$ si \mathbf{x} y \mathbf{y} están en \mathbb{R}^n , se observa que T es una transformación lineal. Entonces toda matriz A de M A0 A1 se puede utilizar para definir una transformación lineal de \mathbb{R}^n en \mathbb{R}^m . En la sección 7.3 se verá que se cumple el converso: toda transformación lineal entre espacios vectoriales de dimensión finita se puede representar por una matriz.

EJEMPLO 7.1.8 Transformación de rotación

Suponga que el vector $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ en el plano xy se rota un ángulo θ (medido en grados o radianes)

en sentido contrario al de las manecillas del reloj. Llame a este nuevo vector rotado $\mathbf{v}' = \begin{pmatrix} x' \\ y' \end{pmatrix}$. Entonces, como se ve en la figura 7.3, si r denota la longitud de \mathbf{v} (que no cambia por la rotación),

$$x = r \cos \alpha$$
 $y = r \sin \alpha$
 $x' = r \cos (\theta + \alpha)$ $y' = r \sin (\theta + \alpha)$

Pero $r \cos(\theta + \alpha) = r \cos\theta \cos\alpha - r \sin\theta \sin\alpha$, de manera que

$$x' = x \cos \theta - y \sin \theta$$

Nota

Esto se deduce de la definición estándar de $\cos\theta$ y sen θ como las coordenadas x y y de un punto en el círculo unitario. Si (x, y) es un punto en el círculo de radio r con centro en el origen, entonces $x = r \cos \varphi$ y $y = r \sin \varphi$, donde φ es el ángulo que forma el vector (x, y) con el lado positivo del eje x.

(7.1.3)

Figura 7.3 (x', y') se obtiene rotando (x, y) un ángulo θ .