

SAR TEST REPORT

No. I14Z48975-SEM01

For

TCL Communication Ltd

HSUPA/HSDPA/UMTS Tri band/GSM Quad band mobile phone

Model Name: 4013E

With

Hardware Version:PIO

Software Version: v5B4

FCC ID: 2ACCJH005

Issued Date: 2015-1-12

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China100191 Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl_terminals@catr.cn, website: www.chinattl.com

Revision Version

Report Number	Revision	Issue Date	Description
I14Z48975-SEM01	Rev.0	2015-1-12	Initial creation of test report

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 TESTING ENVIRONMENT	5
1.3 PROJECT DATA	5
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	8
3.1 APPLICANT INFORMATION	8
3.2 Manufacturer Information	8
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1 About EUT	9
4.2 Internal Identification of EUT used during the test	9
4.3 Internal Identification of AE used during the test	10
5 TEST METHODOLOGY	10
5.1 APPLICABLE LIMIT REGULATIONS	10
5.2 APPLICABLE MEASUREMENT STANDARDS	10
6 SPECIFIC ABSORPTION RATE(SAR)	11
6.1 Introduction	11
6.2 SAR DEFINITION	11
7 TISSUE SIMULATING LIQUIDS	12
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	12
7.2 DIELECTRIC PERFORMANCE	12
8 SYSTEM VERIFICATION	16
8.1 System Setup	16
8.2 SYSTEM VERIFICATION	17
9 MEASUREMENT PROCEDURES	18
9.1 Tests to be performed	18
9.2 GENERAL MEASUREMENT PROCEDURE.	19
9.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	
9.4 BLUETOOTH &WI-FI MEASUREMENT PROCEDURES FOR SAR	
9.5 Power Drift	21
10 AREA SCAN BASED 1-G SAR	22
10.1 REQUIREMENT OF KDB	22
10.2 FAST SAR ALGORITHMS	22
11 CONDUCTED OUTPUT POWER	23

II.I MANU	FACTURING TOLERANCE	23
11.2 GSM N	MEASUREMENT RESULT	26
	MA MEASUREMENT RESULT	
11.4 WI-FI	AND BT MEASUREMENT RESULT	27
12 SIMULT	ANEOUS TX SAR CONSIDERATIONS	29
12.1 Intro	DUCTION	29
12.2 Trans	MIT ANTENNA SEPARATION DISTANCES	29
	MEASUREMENT POSITIONS	
	ALONE SAR TEST EXCLUSION CONSIDERATIONS	
13 EVALUA	ATION OF SIMULTANEOUS	31
14 SAR TE	ST RESULT	32
14.1 THE EV	VALUATION OF MULTI-BATTERIES	32
	ESULTS FOR FAST SAR	
	ESULTS FOR STANDARD PROCEDURE	
15 SAR ME	EASUREMENT VARIABILITY	40
16 MEASU	REMENT UNCERTAINTY	41
16.1 MEAS	SUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHZ~3GHZ)	41
16.2 MEAS	SUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHZ)	42
16.3 MEAS	SUREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHZ~3GHZ)	43
16.4 MEAS	SUREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHZ)	44
17 MAIN T	EST INSTRUMENTS	45
ANNEX A	GRAPH RESULTS	46
ANNEX B	SYSTEMVERIFICATION RESULTS	66
ANNEX C	SAR MEASUREMENT SETUP	73
ANNEX D	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	79
ANNEX E	EQUIVALENT MEDIA RECIPES	82
ANNEX F	SYSTEM VALIDATION	83
ANNEX G	PROBE CALIBRATION CERTIFICATE	84
ANNEX H	DIPOLE CALIBRATION CERTIFICATE	95
ANNEX I	SPOT CHECK TEST	119
ANNEX J	ACCREDITATION CERTIFICATE	130

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,
	Beijing, P. R. China100191

1.2 Testing Environment

Temperature:	18°C~25°C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	December 11, 2014
Testing End Date:	December 22, 2014

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Xiao Li

Deputy Director of the laboratory

(Approved this test report)

2 Statement of Compliance

This EUT is a variant product and the report of original sample is No.l14Z48855-SEM01. According to the client request, we quote the test results of original sample from table 14.4 to 14.25. The results of spot check are presented in the annex I.

The maximum results of Specific Absorption Rate (SAR) found during testing for TCL Communication Ltd HSUPA/HSDPA/UMTS Tri band/GSM Quad band mobile phone 4013E are as follows:

Table 2.1:HighestReported SAR(1g)

gp(-g)				
Exposure Configuration	Technology Band	Highest Reported SAR 1g(W/Kg)	Equipment Class	
	GSM 850	0.73		
Hood	PCS 1900	0.65	PCE	
Head (Separation Distance 0mm)	UMTS FDD 5	0.73	PCE	
(Separation Distance onlin)	UMTS FDD 2	1.09		
	WLAN 2.4 GHz	0.46	DTS	
	GSM 850	0.76		
Body-worn (Separation Distance 10mm)	PCS 1900	0.96	PCE	
	UMTS FDD 5	0.68	PCE	
	UMTS FDD 2	0.88		
	WLAN 2.4 GHz	0.56	DTS	

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The highest reported SAR value is obtained at the case of (Table 2.1), and the values are: 1.09W/kg(1g).

Table 2.2: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum
Highest reported SAR value for Head	Left hand, Touch cheek	1.09	0.46	1.55
Highest reported SAR value for Body	Rear	0.96	0.56	1.52

Table 2.3: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Left hand, Touch cheek	1.09	0.26	1.35
Highest reported SAR value for Body	Rear	0.96	0.13	1.09

BT* - Estimated SAR for Bluetooth (see the table 13.3)

According to the above tables, the highest sum of reported SAR values is **1.55 W/kg (1g)**. The detail for simultaneous transmission consideration isdescribed in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCL Communication Ltd
Address /Dest	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address /Post:	Pudong Area Shanghai, P.R. China. 201203
City:	Shanghai
Postal Code:	201203
Country:	P.R.China
Contact:	Gong Zhizhou
Email:	zhizhou.gong@tcl.com
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

3.2 Manufacturer Information

Company Name:	TCL Communication Ltd	
Address /Dest	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,	
Address /Post:	Pudong Area Shanghai, P.R. China. 201203	
City:	Shanghai	
Postal Code:	201203	
Country:	P.R.China	
Contact:	Gong Zhizhou	
Email:	zhizhou.gong@tcl.com	
Telephone:	0086-21-61460890	
Fax:	0086-21-61460602	

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	HSUPA/HSDPA/UMTS Tri band/GSM Quad band mobile phone	
Model Name:	4013E	
Operating mode(s):	GSM 850/900/1800/1900, WCDMA 850/1900/2100, BT, Wi-Fi	
	825 – 848.8 MHz (GSM 850)	
	1850.2 – 1910 MHz (GSM 1900)	
Tested Tx Frequency:	826.4-846.6 MHz (WCDMA850 Band V)	
	1852.4-1907.6 MHz (WCDMA1900 Band II)	
	2412 – 2462 MHz (Wi-Fi 2.4G)	
GPRS/EGPRS Multislot Class:	12	
GPRS capability Class:	В	
	USAT: 4	
WCDMA Cotogony	HSDPA: 10	
WCDMA Category:	HSUPA: 6	
	HSPA+: 14	
	GSM: Rel4	
Release Version:	GPRS: Rel4	
	UMTS: Rel7	
Test device Production information:	Production unit	
Device type:	Portable device	
Antenna type:	Integrated antenna	
Accessories/Body-wornconfigurations:	Headset	
Hotspot mode:	Support simultaneous transmission of hotspot and voice(or data)	
Form factor:	121.6 mm ×64.4 mm ×11.6 mm	

4.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	SN or IMEI HW Version	
EUT1	014265000000235	PIO	V5B4
EUT2	014265000000938	PIO	V5B4
EUT3	014265000000375	PIO	V5B4

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note 1: It is performed to test SAR with the EUT1&2 and conducted power with the EUT 3.

Note 2: The sample information of spot check is presented in the annex I.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAB31P0000CB	/	OCEANSUN
AE2	Battery	CAB1300015C2	/	SCUD
AE3	Battery	CAB31P0000C1	/	BYD
AE4	Headset	CCB3160A11C1	/	Juwei
AE5	Headset	CCB3160A15C1	/	Juwei
AE6	Headset	CCB0002A10C1	/	Juwei
AE7	Headset	CCB3160A11C2	/	Lianyun
AE8	Headset	CCB3160A15C2	/	Lianyun

^{*}AE ID: is used to identify the test sample in the lab internally.

Note: AE4 is same as AE5 & AE6, so they can use the same results.AE7 is same as AE8, so they can use the same results.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1999:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Headfrom Wireless Communications Devices:ExperimentalTechniques.

KDB447498 D01:General RF Exposure Guidance v05r02:Mobile and Portable Devices RF Exposure ProceduresandEquipment Authorization Policies.

KDB648474 D04 Handset SAR v01r02:SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D06 Hotspot Mode SAR v01r01: SAR Evaluation Procedures for Portable Devices withWireless Router Capabilities

KDB248227 D01 SAR meas for 802 11 a b g v01r02 : SAR measurement procedures for 802.112abg transmitters.

KDB 865664 D01SAR measurement 100 MHz to 6 GHz v01r03:SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB 865664 D02RF Exposure Reporting v01r01:RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate(SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

				<u> </u>	
Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date	Туре	Frequency	Permittivity	Drift	Conductivity	Drift	
(yyyy-mm-dd)	1 ypc	rrequerioy	3	(%)	σ (S/m)	(%)	
004440.00	Head	835 MHz	41.02	-1.16	0.911	1.22	
2014-12-22	Body	835 MHz	56.13	1.68	0.962	-0.82	
2014-12-11	Head	1900 MHz	40.44	1.10	1.398	-0.14	
2014-12-11	Body	1900 MHz	52.83	-0.88	1.547	1.78	
2014-12-19	Head	2450 MHz	38.53	-1.71	1.821	1.17	
	Body	2450 MHz	53.01	0.59	1.937	-0.67	

Note: The liquid temperature is 22.0 °C

Picture 7-1: Liquid depth in the Head Phantom (835MHz)

Picture 7-2: Liquid depth in the Flat Phantom (835MHz)

Picture 7-3: Liquid depth in the Head Phantom (1900 MHz)

Picture 7-4 Liquid depth in the Flat Phantom (1900MHz)

Picture 7-5 Liquid depth in the Head Phantom (2450MHz)

Picture 7-6 Liquid depth in the Flat Phantom (2450MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectricmedia, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the validrange of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Table 8.1: System Verification of Head

ſ	Measurement		Target value (W/kg)		Measured value(W/kg)		Deviation	
	Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
	(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
	2014-12-22	835 MHz	6.17	9.43	6.32	9.44	2.43%	0.11%
	2014-12-11	1900 MHz	21.1	40.1	21.4	40.7	1.42%	1.50%
	2014-12-19	2450 MHz	24.8	52.8	24.4	52.4	-1.61%	-0.76%

Table 8.2: System Verification of Body

Measurement		Target value (W/kg)		Measured v	value (W/kg)	Deviation	
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2014-12-22	835 MHz	6.33	9.55	6.20	9.48	-2.05%	-0.73%
2014-12-11	1900 MHz	21.0	39.8	21.4	41.2	1.90%	3.52%
2014-12-19	2450 MHz	23.6	50.3	23.2	49.2	-1.69%	-2.19%

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, alldevice positions, configurations and operational modes shall be tested for each frequencyband according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, asdescribed in annex D),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then allfrequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1,perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3dB of the applicable SAR limit, it is recommended that all other test frequencies shall betested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SARfound in Steps 1 to 2.

Picture 9.1Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements andfully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results

when all the measurement parameters in thefollowing table are not satisfied.

			≤ 3 GHz	> 3 GHz	
Maximum distance from (geometric center of pro			5 ± 1 mm	½-5-ln(2) ± 0.5 mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30° ± 1°	20° ± 1°	
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the measurement plane orientation, measurement resolution must be dimension of the test device with point on the test device.	is smaller than the above, the e < the corresponding x or y	
Maximum zoom scan sp	atial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform g	rid: ∆z _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
grid $\Delta z_{Zoom}(n>1)$: betwee subsequent points		Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z	1	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based I-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta}_d$	β_d (SF)	$oldsymbol{eta}_c/oldsymbol{eta}_d$	$oldsymbol{eta_{hs}}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1. 0
3	15/15	8/15	64	15/8	30/15	1. 5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 6 HSPA Data Devices

Sub-	$oldsymbol{eta}_c$	$oldsymbol{eta_d}$	eta_d	eta_c / eta_d	$oldsymbol{eta_{hs}}$	$oldsymbol{eta_{ec}}$	$oldsymbol{eta}_{ed}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	3.5	3. 5	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.5	3. 5	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2. 5	2. 5	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3. 5	3. 5	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.5	1.5	21	81

9.4 Bluetooth &Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.2 to Table 14.25 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-gSAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any otherpurpose; for example, if the peak SAR location required for simultaneous transmission SAR testexclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concernsidentified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequencydependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracyof the algorithm has been demonstrated across a broad frequency range (136-2450 MHz)and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithmare 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing thealgorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details ofthis study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 Manufacturing tolerance

Table 11.1: GSM Speech

	GSM 850						
Channel	Channel Channel 251 Channel 190 C						
Target (dBm)	32.3	32.3	32.3				
Tune-up(dBm)	33.3	33.3	33.3				
	GSN	1 1900					
Channel	Channel 810	Channel 661	Channel 512				
Target (dBm)	29.3	29.3	29.3				
Tune-up(dBm)	30.3	30.3	30.3				

Table 11.2: GPRS and EGPRS

	10	GSM 850 GPRS (GM		
	Channel	251	190	128
4 Tuelet	Target (dBm)	32.3	32.3	32.3
1 Txslot	Tune-up(dBm)	33.3	33.3	33.3
2 Txslots	Target (dBm)	29.0	29.0	29.0
2 1 XSIOIS	Tune-up(dBm)	30.0	30.0	30.0
3Txslots	Target (dBm)	27.5	27.5	27.5
31 XSIOIS	Tune-up(dBm)	28.5	28.5	28.5
4 Txslots	Target (dBm)	26.5	26.5	26.5
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tune-up(dBm)	27.5	27.5	27.5
		GSM 850 EGPRS (GN	MSK)	
	Channel	251	190	128
1 Txslot	Target (dBm)	32.3	32.3	32.3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tune-up(dBm)	33.3	33.3	33.3
2 Txslots	Target (dBm)	29.0	29.0	29.0
2 1 8 5 10 15	Tune-up(dBm)	30.0	30.0	30.0
3Txslots	Target (dBm)	27.5	27.5	27.5
31 X51015	Tune-up(dBm)	28.5	28.5	28.5
4 Txslots	Target (dBm)	26.5	26.5	26.5
4 1 8 5 10 15	Tune-up(dBm)	27.5	27.5	27.5
		GSM 1900 GPRS (GN	MSK)	
	Channel	810	661	512
1 Txslot	Target (dBm)	29.3	29.3	29.3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tune-up(dBm)	30.3	30.3	30.3
2 Txslots	Target (dBm)	27.0	27.0	27.0
Z 1 731013	Tune-up(dBm)	28.0	28.0	28.0
3Txslots	Target (dBm)	26.0	26.0	26.0
01731013	Tune-up(dBm)	27.0	27.0	27.0
4 Txslots	Target (dBm)	24.0	24.0	24.0
+ 1 \310(3	Tune-up(dBm)	25.0	25.0	25.0

	GSM 1900 EGPRS (GMSK)						
	Channel	810	661	512			
1 Txslot	Target (dBm)	29.3	29.3	29.3			
1 1 XSIOL	Tune-up(dBm)	30.3	30.3	30.3			
2 Txslots	Target (dBm)	27.0	27.0	27.0			
2 1 XSIO(S	Tune-up(dBm)	28.0	28.0	28.0			
3Txslots	Target (dBm)	26.0	26.0	26.0			
31 XSIOIS	Tune-up(dBm)	27.0	27.0	27.0			
4 Txslots	Target (dBm)	24.0	24.0	24.0			
	Tune-up(dBm)	25.0	25.0	25.0			

Table 11.3: WCDMA

	Table 11.3	B: WCDMA							
	WCDMA	A 850 CS							
Channel	Channel 4233	Channel 4182	Channel 4132						
Target (dBm)	Target (dBm) 23.0		23.0						
Tune-up(dBm)	24.0	24.0	24.0						
	HSUPA (sub-test 1)								
Channel	Channel 4233	Channel 4182	Channel 4132						
Target (dBm)	19.0	19.0	19.0						
Tune-up(dBm)	20.0	20.0	20.0						
	HSUPA (s	sub-test 2)							
Channel	Channel 4233	Channel 4182	Channel 4132						
Target (dBm)	19.0	19.0	19.0						
Tune-up(dBm)	20.0	20.0	20.0						
	HSUPA (s	sub-test 3)							
Channel	Channel 4233	Channel 4182	Channel 4132						
Target (dBm)	19.0	19.0	19.0						
Tune-up(dBm)	20.0	20.0	20.0						
	HSUPA (s	sub-test 4)							
Channel	Channel 4233	Channel 4182	Channel 4132						
Target (dBm)	19.0	19.0	19.0						
Tune-up(dBm)	20.0	20.0	20.0						
	HSUPA (s	sub-test 5)							
Channel	Channel 4233	Channel 4182	Channel 4132						
Target (dBm)	21.0	21.0	21.0						
Tune-up(dBm)	22.0	22.0	22.0						
	WCDMA	1900 CS							
Channel	Channel 9538	Channel 9400	Channel 9262						
Target (dBm)	22.8	22.8	22.8						
Tune-up(dBm)	23.8	23.8	23.8						
	HSUPA (s	sub-test 1)							
Channel	Channel 9538	Channel 9400	Channel 9262						
Target (dBm)	19.0	19.0	19.0						
Tune-up(dBm)	20.0	20.0	20.0						

©Copyright. All rights reserved by CTTL.

	HSUPA (sub-test 2)								
Channel	Channel 9538	Channel 9400	Channel 9262						
Target (dBm)	19.0	19.0	19.0						
Tune-up(dBm)	20.0	20.0	20.0						
	HSUPA (sub-test 3)							
Channel	Channel 9538	Channel 9400	Channel 9262						
Target (dBm)	19.0	19.0	19.0						
Tune-up(dBm)	20.0	20.0	20.0						
	HSUPA (sub-test 4)							
Channel	Channel 9538	Channel 9400	Channel 9262						
Target (dBm)	19.0	19.0	19.0						
Tune-up(dBm)	20.0	20.0	20.0						
	HSUPA (sub-test 5)							
Channel	Channel 9538	Channel 9400	Channel 9262						
Target (dBm)	21.0	21.0	21.0						
Tune-up(dBm)	22.0	22.0	22.0						

Table 11.4: Bluetooth

Mode	Target (dBm)	Tune-up(dBm)
GFSK	7.0	8.0
EDR2M-4_DQPSK	6.0	7.0
EDR3M-8DPSK	6.0	7.0

Table 11.5: WiFi

Mode	Target (dBm)	Tune-up(dBm)
802.11 b (2.4GHz)	15.2	16.2
802.11 g (2.4GHz) 6Mbps~18Mbps	15	16
802.11 g (2.4GHz) 24Mbps~36Mbps	14	15
802.11 g (2.4GHz) 48Mbps~54Mbps	13	14
802.11 n (2.4GHz HT20) MCS0-MCS2	13	14
802.11 n (2.4GHz HT20) MCS3-MCS5	12	13
802.11 n (2.4GHz HT20) MCS6-MCS7	11	12
802.11 n (2.4GHz HT40) MCS0-MCS2	10	11
802.11 n (2.4GHz HT40) MCS3-MCS5	8.5	9.5
802.11 n (2.4GHz HT40) MCS6-MCS7	7.5	8.5

11.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 11.6: The conducted power measurement results for GSM850/1900

GSM	Conducted Power (dBm)						
	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)				
850MHz 32.46	32.34	32.37					
CCM		Conducted Power(dBm)					
GSM	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)				
1900MHz	29.42	29.27	28.91				

Table 11.7: The conducted power measurement results for GPRS and EGPRS

GSM 850	Measu	red Power	(dBm)	calculation	Avera	Averaged Power (dBm)		
GPRS (GMSK)	251	190	128		251	190	128	
1 Txslot	32.36	32.26	32.33	-9.03dB	23.33	23.23	23.3	
2 Txslots	29.54	29.42	29.53	-6.02dB	23.52	23.40	23.51	
3 Txslots	27.60	27.49	27.62	-4.26dB	23.34	23.23	23.36	
4 Txslots	26.46	26.41	26.51	-3.01dB	23.45	23.40	23.50	
GSM 850	Measu	ıred Power	(dBm)	calculation	Avera	ged Power	(dBm)	
EGPRS (GMSK)	251	190	128		251	190	128	
1 Txslot	32.33	32.26	32.31	-9.03dB	23.30	23.23	23.28	
2 Txslots	29.51	29.42	29.49	-6.02dB	23.49	23.40	23.47	
3 Txslots	27.57	27.49	27.59	-4.26dB	23.31	23.23	23.33	
4 Txslots	26.43	26.40	26.47	-3.01dB	23.42	23.39	23.46	
PCS1900	Meası	red Power	(dBm)	calculation	Averaged Power (dBm)			
GPRS (GMSK)	810	661	512		810	661	512	
1 Txslot	29.43	29.27	28.91	-9.03dB	20.40	20.24	19.88	
2 Txslots	27.14	26.99	26.64	-6.02dB	21.12	20.97	20.62	
3 Txslots	25.17	24.95	24.51	-4.26dB	20.91	20.69	20.25	
4 Txslots	24.23	23.99	23.65	-3.01dB	21.22	20.98	20.64	
PCS1900	Measu	red Power	(dBm)	calculation	Avera	ged Power	(dBm)	
EGPRS (GMSK)	810	661	512		810	661	512	
1 Txslot	29.47	29.31	28.98	-9.03dB	20.44	20.28	19.95	
2 Txslots	27.17	27.01	26.66	-6.02dB	21.15	20.99	20.64	
3 Txslots	25.19	24.98	24.57	-4.26dB	20.93	20.72	20.31	
4 Txslots	24.29	24.02	23.71	-3.01dB	21.28	21.01	20.70	

NOTES:

To average the power, the division factor is as follows:

¹⁾ Division Factors

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 2Txslots for GSM850 and 4Txslots for PCS1900.

Note: According to the KDB941225 D03, "when SAR tests for EDGE or EGPRS mode is necessary, GMSK modulation should be used".

11.3 WCDMA Measurement result

Table 11.8: The conducted Power for WCDMA850/1900

	1		EDDV	, o		
Item	band		FDDV result			
itoiii	ARFCN	4233(846.6MHz)	4182(836.4MHz)	4132(826.4MHz)		
WCDMA	\	23.76	23.53	23.67		
	1	19.5	19.4	19.6		
	2	19.6	19.4	19.6		
HSUPA	3	19.6	19.4	19.6		
	4	19.0	18.9	19.0		
	5	21.5	21.5	21.5		
Item	band	FDDII result				
item	ARFCN	9538(1907.6MHz)	9400(1880MHz)	9262(1852.4MHz)		
WCDMA	١	23.23	23.01	23.18		
	1	19.4	19.4	19.4		
	2	19.5	19.3	19.3		
HSUPA	3	19.5	19.3	19.4		
-	4	18.9	18.8	18.8		
	5	21.4	21.3	21.3		

11.4 Wi-Fi and BT Measurement result

The output power of BT antenna is as following:

Mode	Conducted Power (dBm)					
Mode	Channel 0 (2402MHz)	Channel 39 (2441MHz)	Channel 78(2480MHz)			
GFSK	6.69	7.11	7.08			
EDR2M-4_DQPSK	4.45	4.88	4.95			
EDR3M-8DPSK	4.45	4.86	4.85			

The average conducted power for Wi-Fi is as following: 802.11b (dBm)

Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
1	15.53	/	/	/
6	15.75	15.68	15.55	15.21
11	15.72	/	/	/

802.11g (dBm)

Channel\	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
data rate								
1	15.47	/	/	/	/	/	/	/
6	15.77	/	/	/	/	/	/	/
11	15.95	15.51	15.34	15.02	14.66	14.13	13.37	13.21

802.11n (dBm) - HT20 (2.4G)

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
1	13.29	/	/	/	/	/	/	/
6	13.51	/	/	/	/	/	/	/
11	13.69	13.25	12.67	12.34	11.85	11.45	11.28	11.11

802.11n (dBm) - HT40 (2.4G)

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
3	10.56	/	/	/	/	/	/	/
6	10.76	/	/	/	/	/	/	/
9	10.84	10.18	9.37	8.97	8.33	7.87	7.64	7.53

12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions								
Mode Front Rear Left edge Right edge Top edge Bottom edge								
Main antenna	Yes	Yes	Yes	Yes	No	Yes		
WLAN	WLAN Yes Yes No Yes Yes No							

12.4 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or bodySAR evaluation by measurement or numerical simulation is not required when thecorresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Table 12.1: Standalone SAR test exclusion considerations

Band/Mode	F(GHz) Position		SAR test exclusion	RF output power		SAR test exclusion
			threshold(mW)	dBm	mW	
Bluetooth	2.441	Head	9.60	7.11	5.14	Yes
Diuelootii		Body	19.20	7.11	5.14	Yes
2.4GHz WLAN 802.11 b	2.45	Head	9.58	15.95	39.36	No
2.4GHZ WLAN 002.11 D	2.40	Body	19.17	15.95	39.36	No

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum	
Highest reported	Left hand, Touch cheek	1.09	0.46	1.55	
SAR value for Head					
Highest reported	Rear	0.96	0.56	1.52	
SAR value for Body	1 130.	3.00	2.20	1	

Table 13.2: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum	
Highest reported	Left hand, Touch cheek	1.09	0.26	1.35	
SAR value for Head	Left flaffu, fouch cheek	1.09	0.20		
Highest reported	Rear	0.96	0.13	1.00	
SAR value for Body	Neal	0.90	0.13	1.09	

BT* - Estimated SAR for Bluetooth (see the table 13.3)

Table 13.3: Estimated SAR for Bluetooth

Position	E (CU-)	Dieteras (mm)	Upper limi	Estimated _{1g}	
	F (GHz)	Distance (mm)	dBm	mW	(W/kg)
Head	2.441	5	8.0	6.31	0.26
Body	2.441	10	8.0	6.31	0.13

^{* -} Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is<1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

1:1

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is addedwhen the estimated 1-gSAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or >1.2W/kg. The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

 Mode
 Duty Cycle

 Speech for GSM850/1900
 1:8.3

 GPRS&EGPRS for GSM850
 1:4

 GPRS&EGPRS for PCS1900
 1:2

Table 14.1: Duty Cycle

14.1 The evaluation of multi-batteries

WCDMA850/1900 &WiFi

We'll perform the head measurement in all bands with the primary battery depending on the evaluation of multi-batteries and retest on highest value point with other batteries. Then, repeat the measurement in the Body test.

Table 14.2: The evaluation of multi-batteries for Head Test

Freque	ency	Mode/Band	Sido	Test	Pottory Type	SAR(1g)	Power
MHz	Ch.	Mode/Band	Side	Position	Battery Type	(W/kg)	Drift(dB)
1880	9400	WCDMA1900	Left	Touch	CAB31P0000CB	0.874	-0.08
1880	9400	WCDMA1900	Left	Touch	CAB1300015C2	0.891	-0.06
1880	9400	WCDMA1900	Left	Touch	CAB31P0000C1	0.906	0.15

Note: According to the values in the above table, the battery, CAB31P0000C1, is the primary battery. We'll perform the head measurement with this battery and retest on highest value point with others.

Table 14.3: The evaluation of multi-batteries for Body Test

Frequ	ency	Mode/Band	Test	Spacing	Pottory Typo	SAR(1g)	Power
MHz	Ch.	Mode/Barid	Position	(mm)	Battery Type	(W/kg)	Drift(dB)
1880	9400	WCDMA1900	Rear	10	CAB31P0000CB	0.711	-0.08
1880	9400	WCDMA1900	Rear	10	CAB1300015C2	0.728	-0.12
1880	9400	WCDMA1900	Rear	10	CAB31P0000C1	0.737	0.02

Note: According to the values in the above table, the battery, CAB31P0000C1, is the primary battery. We'll perform the Body measurement with this battery and retest on highest value point with others.