Álgebra Linear e Aplicações - Lista 3

Entregar dia 4 de Maio

- 1. Dado um espaço vectorial $V, b \in V$ e U subespaço de V, calcula a projeção de b em U.
 - (a) (5 pts) $V = \mathbb{R}^3$, b = (1, 2, 3), $U = \text{Span}\{(1, 1, 1), (1, -1, -1)\}$
 - (b) (5 pts) $V = \mathbb{R}^3$, b = (1, 2, 3), $U = \{v \in \mathbb{R}^3, v_1 + v_2 + v_3 = 0\}$
 - (c) (10 pts) $V = \mathbb{R}^n$, $b = (b_1, \dots, b_n)$, $U = \{v \in \mathbb{R}^n, v_1 = v_2 = \dots = v_n\}$
 - (d) (10 pts) V é o espaço de funções integráveis em $[-\pi,\pi]$, tais que $\int_{-\pi}^{\pi} f(x)^2 dx < \infty$, com o produto interno:

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx$$

- $b(x) = x, U = \operatorname{Span}\{1, \sin(x), \cos(x)\}\$
- 2. (10 pts) Mostra que a projecção para um complemento ortogonal de um espaço é dada por: $P_{V^{\perp}} = I P_V$, onde I é a matriz de identidade.
- 3. Se a projecção para o espaço coluna de A é dado por $A(A^TA)^{-1}A$, qual é a fórmula para a projecção:
 - (a) (5 pts) no espaço linha de A?
 - (b) (5 pts) no espaço nulo de A^T ? (Sugestão: Usa 2.)
 - (c) (5 pts) no espaço nulo de A?
- 4. Este exercício é sobre várias propriedades interessantes da transformada de Fourier discreta (DFT) convoluções e matrizes circulantes.
 - (a) (10 pts) Mostra que a matriz $\frac{1}{\sqrt{n}}\mathcal{F}_n$, onde \mathcal{F}_n é a matriz DFT, é unitária. Isto é $\mathcal{F}_n^*\mathcal{F}_n = nI_n$. Sugestão: Usa a fórmula da soma de séries geométricas.
 - (b) (10 pts) Considera dois vectores $x,y\in\mathbb{C}^n$, e \hat{x},\hat{y} as suas transformadas de Fourier. Mostra que $\langle \hat{x},\hat{y}\rangle=n\langle x,y\rangle$. (Relembrar: $\langle x,y\rangle=\sum_{j=0}^{n-1}\overline{x_j}y_j=x^*y$). Noutras palavras, a transformada de Fourier preserva o produto interno.
 - (c) (5 pts) Mostra que se $x \in \mathbb{R}^n$, então $(\mathcal{F}x)_0$ é real e, para k entre 0 e n (0 < k < n), $(\mathcal{F}x)_k = \overline{(\mathcal{F}x)_{n-k}}$.
 - (d) (10 pts) Mostra que as seguintes condições são equivalentes
 - i. Para $k > 0, x_k = x_{n-k}$.
 - ii. A matriz circulante C_x é simétrica.
 - iii. A transformada de Fourier de x é real $(\mathcal{F}x \in \mathbb{R}^n)$.
 - (e) (10 pts) Para que vetores $x \in \mathbb{C}^n$ é que a matriz circulante C_x é unitária?