## 向量空间

#### 一、何量空间及其子空间

1. 定义1: (运算的封闭性)设V是n维向量的非空集合,

称 V 对于向量加法及数乘两种运算封闭,如果

 $\forall \alpha, \beta \in V, k \in R, \Rightarrow \alpha + \beta \in V, k\alpha \in V, \vec{n} \vec{v}$ 

定义2: 设V是n维向量的非空集合,如果V对于向量

加法及数乘两种运算封闭,则称集合V为n

维向量空间,简称为何量空间。

#### 例如:

$$R^{3} = \left\{ \alpha = (a_{1,}a_{2}, a_{3}) \middle| a_{1,}a_{2}, a_{3} \in R \right\} \sqrt{$$

$$R^{n} = \{ \alpha = (a_{1}, a_{2}, \dots, a_{n}) | a_{1}, a_{2}, \dots, a_{n} \in R \}$$

$$V_1 = \{ \alpha = (0, a_2, \dots, a_n) | a_2, \dots, a_n \in R \}$$

$$V_2 = \{ \alpha = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m | k_1, k_2, \dots, k_m \in R \}$$

$$V_3 = \{ \alpha = (1, a_2, \dots, a_n) | a_2, \dots, a_n \in R \} \times$$

### 2. 子空间:

设W、V为何量空间,若W  $\subset V$ ,则称W 是V 的子空间。

$$V_1 = \{\alpha = (0, a_2, \dots, a_n) | a_2, \dots, a_n \in R\}$$
  
是谁的子空间?

$$V_2 = L(\alpha, \alpha, \dots, \alpha)$$

2 一(a1, a2, , am) 走R 的子空间吗?

例1:  $V_1 = L(\alpha_1, \alpha_2, \dots, \alpha_m), V_2 = L(\beta_1, \beta_2, \dots, \beta_s),$ 

若 $\alpha_1, \alpha_2, \dots, \alpha_m$ 与 $\beta_1, \beta_2, \dots, \beta_s$ 等价,证明:  $V_1 = V_2$ 

只需证明 $V_1 \subset V_2 且 V_1 \supset V_2$ 

二、向量空间的基与维数

定义3: 若n维向量空间V中的向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 满足

(i)  $\alpha_1, \alpha_2, \cdots, \alpha_n$  线性无关;

(ii) V 中旬量均可由  $\alpha_1, \alpha_2, \dots, \alpha_r$  线性表示。

则称 $\alpha_1, \alpha_2, \cdots, \alpha_r$  为V的一个基。

定义4: 基中所含向量个数/称为向量空间的维数。

思考

有什么联想吗? 学习过类似的定义吗?

何量组的极大无关组和秩。

若将向量空间视作向量组,则基就是向量组的 极大线性无关组,维数就是向量组的秩。

因此,基与维数的求法类似于向量组的极大无 关组与秩的求法。

R"的维数为n; 基为e<sub>1</sub>, e<sub>2</sub>, ..., e<sub>n</sub>. 为2世

练习 
$$V_1 = \{ \alpha = (0, a_2, \dots, a_n) | a_2, \dots, a_n \in R \}$$
的 维数=  $(n-1)$ , 基为  $(e_2, \dots, e_n)$ .

结论

 $V_2 = L(\alpha_1, \alpha_2, \cdots, \alpha_m)$ 的维数为 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 的秩  $r(\alpha_1, \alpha_2, \cdots, \alpha_m)$  基为 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 的极大无关组。

若向量空间的基为  $\mathcal{E}_1,\mathcal{E}_2,\cdots,\mathcal{E}_r \Rightarrow$ 

$$V = L(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r).$$

中国大学

## 三、向量在基下的坐标

定义4: 设 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_r$ , 是何量空间V的基,  $\alpha \in V$ , 且  $\alpha \in k_1 \varepsilon_1 + k_2 \varepsilon_2 + \dots + k_r \varepsilon_r$ ,

则称录数 $k_1, k_2, \cdots, k_r$ 为 $\alpha$ 在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r$ 下的坐标。

#### 注:

- 1. 何量在一组确定的基下的坐标是惟一的。(为什么?)
- 2. 何量空间的基不惟一。因此,何量在不同基下的坐标也不一样。
- 3. 何量在一组基下的坐标如何求?
- 一般有两种求法: 待定系数法与矩阵方程法。

好多路

例3: 求向量  $\alpha = (1, 2, 1)$  在基  $\varepsilon_1 = (1, 1, 1), \varepsilon_2 = (1, 1, -1),$   $\varepsilon_3 = (1, -1, -1)$  下的坐标。

解 I 设α 在基  $\varepsilon_1, \varepsilon_2, \varepsilon_3$  下的坐标为  $(x_1, x_2, x_3)$ ,则有

 $x_1 \mathcal{E}_1 + x_2 \mathcal{E}_2 + x_3 \mathcal{E}_3 = \alpha$ .

记
$$A = (\varepsilon_1 \ \varepsilon_2 \ \varepsilon_3)$$
, $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ ,则注式化为 $AX = \alpha$ .
$$\varepsilon_1 \ \varepsilon_2 \ \varepsilon_3$$
为基,故 $A = (\varepsilon_1 \ \varepsilon_2 \ \varepsilon_3)$ 可逆。

$$(A : \alpha) = \begin{pmatrix} 1 & 1 & 1 & \vdots & 1 \\ 1 & 1 & -1 & \vdots & 2 \\ 1 & -1 & -1 & \vdots & 1 \end{pmatrix} \xrightarrow{r_2 - r_1, r_3 - r_1} \begin{pmatrix} 1 & 1 & 1 & \vdots & 1 \\ 0 & 0 & -2 & \vdots & 1 \\ 0 & -2 & -2 & \vdots & 0 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3, r_2 \cdot (-\frac{1}{2}), r_3 \cdot (-\frac{1}{2})} \begin{pmatrix} 1 & 1 & 1 & \vdots & 1 \\ 0 & 1 & 1 & \vdots & 0 \\ 0 & 0 & 1 & \vdots & -\frac{1}{2} \end{pmatrix} \xrightarrow{r_1 - r_2, r_2 - r_3} \begin{pmatrix} 1 & 0 & 0 & \vdots & 1 \\ 0 & 1 & 0 & \vdots & \frac{1}{2} \\ 0 & 0 & 1 & \vdots & -\frac{1}{2} \end{pmatrix}$$

$$\text{数} X = \left(1, \frac{1}{2}, -\frac{1}{2}\right), \quad \text{即a在基} \ \varepsilon_1, \varepsilon_2, \varepsilon_3 \text{F的坐标为} \left(1, \frac{1}{2}, -\frac{1}{2}\right).$$

解II 设
$$\alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + x_3 \varepsilon_3$$
,则有
$$\begin{cases} 1 = x_1 + x_2 + x_3, \\ 2 = x_1 + x_2 - x_3, \end{cases}$$

**解之得**
$$x_1 = 1, x_2 = \frac{1}{2}, x_3 = -\frac{1}{2}$$
.

这就是 $\alpha$ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的坐标。



解法 I 是借助于求解矩阵方程求出坐标。设 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为一组基, $\alpha$ 为一已知何量, $\otimes A = (\varepsilon_1 \ \varepsilon_2 \ \dots \ \varepsilon_n)$ ,

 $(A:\alpha)$  → 初等行変換  $\to$  (E:X),

则X即为 $\alpha$ 在基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 下的坐标。

解法 II 使用方程组的方法来求的,将何量方程

$$\alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_n \varepsilon_n$$

转化为线性方程组并求出 x1, x2, ···, xn 即可。

# 向量组的正交性

### 何量的内积

.定义1: 沒有何量 $\alpha = (a_1, a_2, \dots, a_n), \beta = (b_1, b_2, \dots, b_n),$ 

 $a_1b_1 + a_2b_2 + \dots + a_nb_n$ 

称为向量 $\alpha$ 与 $\beta$ 的内积,记作  $(\alpha, \beta)$ 

$$(\alpha,\beta) = a_1b_1 + a_2b_2 + \dots + a_nb_n.$$

- (i)  $(\alpha, \beta) = \alpha \beta^T$ ,
- (ii)  $(\alpha, \beta) = (\beta, \alpha)$ ,



中国大学

(iii) 
$$(k\alpha, \beta) = k(\alpha, \beta) = (\alpha, k\beta)$$
,

(iv) 
$$(\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$$
,

(iv) 
$$(\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$$
,  
(v)  $(\alpha, \alpha) = a_1^2 + a_2^2 + \dots + a_n^2 = \|\alpha\|^2$ .

# 何量的正交性:

1. 定义2: 若  $(\alpha, \beta) = 0$ ,则称向量 $\alpha$ 与 $\beta$ 正交。

2. 定义3: 如果m个n维非零向量α1, α2, ..., αm两 两正交,即满足  $(\alpha_i, \alpha_j) = 0, (i \neq j)$  则称 **向量组α<sub>1</sub>, α<sub>2</sub>, ..., α<sub>m</sub> 为正**交向量组, 简称为正交组。

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$$

为正交组。也称为单位正交组或标准正交组。

## 3.正交向量组的性质

定理: 设 $\alpha_1, \alpha_2, \dots, \alpha_m$ 为正交向量组,则 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关。

# 回忆 如何证明一组向量线性无关? \

证: 设  $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$ .

$$\Rightarrow (\alpha_i, k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m) = (\alpha_i, O) = 0.$$

$$\Rightarrow k_1(\alpha_i, \alpha_1) + k_2(\alpha_i, \alpha_2) + \dots + k_m(\alpha_i, \alpha_m) = 0.$$

$$\alpha_1, \alpha_2, \cdots, \alpha_m$$
为正交向量组, $\Rightarrow (\alpha_i, \alpha_j) = 0, (i \neq j)$ 

$$\therefore k_i(\alpha_i,\alpha_i)=0.$$

由于
$$\alpha_i \neq O$$
, 即 $(\alpha_i, \alpha_i) \neq 0 \Rightarrow k_i = 0$ .  $(i-1, 2, \dots, m)$ 

$$\therefore \alpha_1, \alpha_2, \cdots, \alpha_m$$
 为线性无关向量组。

设 $\alpha_1$ ,  $\alpha_2$ , ...,  $\alpha_m$ 为线性无关向量组, 令

$$\beta = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1,$$

$$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2,$$

看出规律 来了吗?

$$\beta_{m} = \alpha_{m} - \frac{(\alpha_{m}, \beta_{1})}{(\beta_{1}, \beta_{1})} \beta_{1} - \frac{(\alpha_{m}, \beta_{2})}{(\beta_{2}, \beta_{2})} \beta_{2} - \dots - \frac{(\alpha_{m}, \beta_{m-1})}{(\beta_{m-1}, \beta_{m-1})} \beta_{m-1}.$$

(i)  $\alpha_1, \alpha_2, \dots, \alpha_m$  与  $\beta_1, \beta_2, \dots, \beta_m$  等价; (ii)  $\beta_1, \beta_2, \dots, \beta_m$  为正交组

再将 $\beta_1$ , $\beta_2$ ,…, $\beta_m$ 为单位化,即得到单位正交向量组。



#### 五、正交矩阵

- 1、定义4: 若n阶方阵A满足 $A^TA=E$ ,则称A为n阶正交矩阵。
- 2、性质: (i) 若A 为n阶正交矩阵  $\Rightarrow |A| = \pm 1$ .
  - (ii) 若A为n阶正交矩阵  $\Rightarrow A^T = A^T$  也是正交矩阵。
  - (iii) 若A, B为n阶正交矩阵 $\Rightarrow AB$ 与BA也是正交矩阵。

#### 3、正灰矩阵的判定

定理: 矩阵 $A = (a_{ij})_{n \times n}$  为正交矩阵 $\Leftrightarrow A$  的行(列) 何量组为单位正交何量组。

仅证列向量组的情形。

 $A = (\alpha_1, \alpha_2, \dots, \alpha_n), A$ 为正交矩阵  $\Leftrightarrow A^T A = E.$ 





例1 设向量组 I: α<sub>1</sub>,···,α<sub>m</sub>与向量组 II: β<sub>1</sub>,···,β<sub>n</sub>的秩相同,且 向量组II可由向量组I 线性表示,证明向量组I与向量组II 等价。

设r(I)=r(II)=s, $\alpha_{i1},\cdots,\alpha_{is}$ 为向量组 1的极大无关组, $\beta_{j1},\cdots,\beta_{js}$ 为向量组 11的极大无关组。

由题设 $\beta_{j1},\cdots,\beta_{js}$ 可由 $\alpha_{i1},\cdots,\alpha_{is}$ 线性表示,设表示式为

$$\begin{pmatrix} \beta_{j1} \\ \vdots \\ \beta_{js} \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1s} \\ \vdots & & \vdots \\ a_{s1} & \cdots & a_{ss} \end{pmatrix} \begin{pmatrix} \alpha_{j1} \\ \vdots \\ \alpha_{is} \end{pmatrix},$$

设 r(I)=r(II)=s, α,,···,α,为向量组1的极大无关组, 为向量组 II 的极大无关组。

由题设  $\beta_{j1},\cdots,\beta_{js}$ 可由  $\alpha_{i1},\cdots,\alpha_{is}$  线性表示,设表示式为

$$\begin{pmatrix} \beta_{j1} \\ \vdots \\ \beta_{js} \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1s} \\ \vdots & & \vdots \\ \alpha_{s1} & \cdots & \alpha_{ss} \end{pmatrix} \begin{pmatrix} \alpha_{n1} \\ \vdots \\ \alpha_{ls} \end{pmatrix},$$

$$\begin{pmatrix} \alpha_{n1} \\ \vdots \\ \alpha_{s1} \\ \vdots \\ \alpha_{ls} \end{pmatrix} = \begin{pmatrix} \alpha_{n1} & \cdots & \alpha_{ns} \\ \vdots \\ \alpha_{ss} \\ \vdots \\ \alpha_{ls} \end{pmatrix},$$

は
$$A = \begin{bmatrix} \vdots \\ \alpha_u \end{bmatrix}$$
,  $B = \begin{bmatrix} \vdots \\ \beta_{ju} \end{bmatrix}$ ,  $K = (\alpha_{ij})_{sss}$ , 则  $B = KA$ .  $\implies r(K) = S$ .

由  $S = r(B) = r(KA) \le r(K)$  知:  $r(K) \ge S$ , 但显然有 $r(K) \le S$ ,

即 K 为可逆阵,故有  $A=K^{-1}B$ ,即  $\alpha_{i1},\cdots,\alpha_{ir}$  可由  $\beta_{j1},\cdots,\beta_{jr}$  线性表示,从而  $\alpha_{i1},\cdots,\alpha_{ir}$  与  $\beta_{j1},\cdots,\beta_{jr}$  等价。

由极去无关组与原向量组的等价性得α,,…,α"与β,…,β"等价。

注:1.两向量组的秩相同,不能断言两向量组等价,但附加一定的条件后可以等价.因此要注意:何量组的等价仅由秩相等是不够的,这一点与矩阵等价不一样。

2. 在例1中,因为m与n不一定相同,但两向量组的秩相等,故取极为无关组来做. 实际上,此题若不利用极为无关组是很难证出来的。因此,在讨论向量组的问题时,可取其极为无关组为讨论对象。

例2 设向量组 $\alpha_1, \cdots, \alpha_s$  线性无关且向量组 $\beta_1, \cdots, \beta_s$ 可由其线性表示为

$$\begin{pmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_s
\end{pmatrix} = \begin{pmatrix}
k_{11} & k_{12} & \cdots & k_{1s} \\
k_{21} & k_{22} & \cdots & k_{2s} \\
\vdots & \vdots & & \vdots \\
k_{s1} & k_{s2} & \cdots & k_{ss}
\end{pmatrix} \begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_s
\end{pmatrix},$$

设 $K = (k_{ij})_{sxs}$ , 证明 $\beta_1, \beta_2, \dots, \beta_s$  线性无关 $\Leftrightarrow r(K) = s$ .

$$\beta_1, \beta_2, \cdots, \beta_s$$
 线性相关 $\Leftrightarrow r(K) < s$ .

练

# 已知向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关,则线性无关的向量组为C

(A) 
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$$
;

(B) 
$$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_4, \alpha_4 - \alpha_6$$
;

(C) 
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_4 + \alpha_4, \alpha_4 - \alpha_1$$
;

(D) 
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_4, \alpha_4, \alpha_4 - \alpha_1$$

$$(A), K = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}, r(K) = 3;$$

$$\mathfrak{F}(B), K = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{pmatrix}, r(K) = 3$$

**对**(D), 
$$K = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$
  $r(K) = 3;$