- a clustering $\mathcal{C} = \{c_1, c_2, \dots, c_k\}$ of \mathbf{T} , where c_i is the identifier of cluster i- a distance measure d. **Output:** For every tuple t in T, a probability prob(t). Main Procedure: - (Step 1) For i = 1 ... k: * compute cluster representative rep_i for c_i

Input: A set of tuples T,

* initialize sum of distances for c_i , $S(c_i) = 0$. - (Step 2) For each tuple $\mathbf{t} \in \mathbf{T}$ that belongs to c_i : * compute $d_{\mathbf{t}} = d(\mathbf{t}, rep_i)$, the distance of \mathbf{t} to the representative of its cluster.

by merging all the tuples that belong to it.

* Add d_t to $S(c_i)$. - (Step 3) For each tuple $\mathbf{t} \in \mathbf{T}$ that belongs to c_i :

* compute similarity $s_{\mathbf{t}} = 1 - \frac{d_{\mathbf{t}}}{S(c_{\mathbf{t}})}$. * $prob(\mathbf{t}) = 1.0 \text{ if } |c_i| = 1, \text{ or }$

 $prob(\mathbf{t}) = \frac{s_{\mathbf{t}}}{|c_{\mathbf{t}}|-1}$ otherwise.