Datathon 2023

NTT data

November 2023

Contents

1	Supositions	3
2	Extras	3
3	Parameters	4
4	Variables	5
5	Restrictions	5
6	Objetivos	5

1 Supositions

- Price of product in year n is last year's price multiplied by a ratio γ (inflation)
- Central storage center that supplies all hospitals (stores their "almacenable" products)
- ullet Environtmental cost \propto #orders
- Unlimited transit (limited indirectly by maximum capacity of storage center)
- Products are distributed to hospitals in a uniform way (Not exactly: elaborate later)
- Mensual orders

2 Extras

• For products of "transito" we group them by day manually

3 Parameters

Note. Vamos a agrupar las compras de todos los hospitales en una única compra centralizada

Initial definition:

• $I = \{\text{index of product}\}\$

Constantes:

- \bullet γ : factor multiplicativo del precio de año a año (inflación $+ \dots$)
- c_i : storage cost for a product i (unitary) for a day
- C_{max}^{i} : maximum quantity of product i that we can store

Precalculados

- $v^{i}(t)$: consumption velocity of product i at time t
- $\xi^{i}(t)$: all hospitals unified demand of product i at time t

Constants to change by client:

- β : extra quantity factor in order (resilience)
- P_{max} : # orders $\propto CO_2$ emissions

4 Variables

- $p^{i}(t)$: quantity of product i demanded at time $t \in \{1, \dots, 12\}$
- $\delta(t)$: boolean (binary) variable to determine if there is an order at time $t \in \{1, \dots, 12\}$

5 Restrictions

 \triangle Remark \triangle . Fijamos *i*. Ajustamos un modelo para cada producto

Definition 1. We define $S^{i}(t)$ as the inventory of product i at time t (En el dia 2 del mes):

$$S^{i}(t) = -\sum_{t'=1}^{t-1} v^{i}(t') + \sum_{t'=1}^{t} \delta(t') \cdot p^{i}(t').$$

Capacity restriction:

$$S^{i}(t) \leq C_{max}^{i}$$
.

Restriction to verify we have enough inventory

$$S^{i}(t) + \sum_{t'=1}^{t-1} v^{i}(t') \ge \beta \cdot \sum_{t'=1}^{t} \xi^{i}(t').$$

Restriction to only do P_{max} orders:

$$\sum_{t=1}^{12} \delta\left(t\right) = P_{max}.$$

Basic restricitions:

$$S^{i}(t) \ge 0$$
$$p^{i}(t) \ge 0.$$

Restrictions over variables:

$$\delta\left(t\right)\in\left\{ 0,1\right\} .$$

 \triangle Remark \triangle . ESTO SE DEBE VERIFICAR $\forall t=1,\ldots,12$

6 Objetivos

• Minimizar precio

Formula a minimizar:

$$\min \sum_{t} S^{i}\left(t\right) \cdot c_{i}.$$