Contract Report CHL-97-3 September 1997

Final Report for Field Studies of Nearshore Sedimentary Structures

by Thomas G. Drake, North Carolina State University

| March | Marc

Approved For Public Release; Distribution Is Unlimited

19971030 016

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings of this report are not to be construed as an official Department of the army position, unless so designated by other authorized documents.

Final Report for Field Studies of Nearshore Sedimentary Structures

by Thomas G. Drake

Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, NC 27695-8208

Final report

Approved for public release; distribution is unlimited

PTIC QUALITY DESPECTED 3

Prepared for

U.S. Army Corps of Engineers

Washington, DC 20314-1000

Monitored by

U.S. Army Engineer Waterways Experiment Station 3909 Halls Ferry Road, Vicksburg, MS 39180-6199

Waterways Experiment Station Cataloging-in-Publication Data

Drake, Thomas G.

Final report for field studies of nearshore sedimentary structures / by Thomas G. Drake; prepared for U.S. Army Corps of Engineers; monitored by U.S. Army Engineer Waterways Experiment Station.

157 p.: ill.; 28 cm. — (Contract report; CHL-97-3) Includes bibliographic references.

1. Sedimentary structures. 2. Sedimentation analysis — Research — North Carolina—Duck. 3. Offshore structures — Hydrodynamics. 4. Fluid dynamic measurements. I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Coastal and Hydraulics Laboratory (U.S. Army Engineer Waterways Experiment Station) IV. Title. V. Series: Contract report (U.S. Army Engineer Waterways Experiment Station); CHL-97-3.

TA7 W34c no.CHL-97-3

Table of Contents

Introduction
Synopsis of results
Methods and Analysis
Synthetic Stratigraphy
Implications for Mechanisms of Offshore Bar Migration
Acknowledgments
References1
Tables
Table 2. Instrument Locations on the SIO Cross-Shore Transect
Figures
Figure 2. Synthetic Stratigraphy Schematic Diagram
Figure 3. Schematic Logs from Bar-Crest Cores
Figure 5. Onshore Migration of Megaripple Deposits on Offshore Side of Bar
Appendix A – Visual Core Logs A
Appendix B - Radiograph Logs B

Conversion Factors, Non-SI to SI Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units as follows:

Multiply	Ву	To Obtain	
inches	0.0254	meters	

Preface

The investigation summarized in this report was conducted by the U.S. Army Engineer Waterways Experiment Station's (WES's) Coastal and Hydraulics Laboratory (C&HL) and was selected for study and funded by the Coastal Sedimentation and Dredging Program. The Program Manager is Carolyn Holmes. This program is sponsored by Headquarters, U.S. Army Corps of Engineers (HQUSACE). The HQUSACE Program Monitors are Messrs. John H. Lockhart, Jr., Charles Chesnutt, and Barry W. Holliday.

Work was performed under the general supervision of Mr. William A. Birkemeier, Chief, Field Research Facility (FRF), C&HL; Mr. Thomas W. Richardson, Chief, Engineering Development Division, C&HL; Dr. James R. Houston, Director, C&HL.

The report was prepared by Dr. Thomas G. Drake of North Carolina State University, Raleigh, NC. Funding for this research was provided by CH&L (Contract DACW39-94-0037: Field Studies of Nearshore Sedimentary Structures). The vibracores used in this study were collected through the efforts of many individuals including Keil Schmid, Srinath Alapati, Mark Lampe, Mason Cox, Doug Dorman, and J.B. Smith. Technical and logistical support at the FRF was generously provided by Eugene W. Bichner, Brian Scarborough, and Charles R. Townsend, Mike Leffler, and Bill Grogg. William A. Birkemeier, Chief, FRF, provided supervisory and technical support, as well as much appreciated advice concerning field operations. Beach and nearshore survey data for documenting profile dynamics at the FRF site were provided by C&HL through the courtesy of William A. Birkemeier.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

Introduction

The research described herein is a part of the Duck94 Nearshore Processes Field Experiment, a multi-disciplinary study that took place during the summer and fall months of 1994 at the U.S. Army Engineer Field Research Facility (FRF) at Duck, North Carolina. The work comprises reconnaissance field studies seeking to develop tools for hydrodynamic and bathymetric interpretation of nearshore sedimentary structures, using as primary data sediment cores taken in close proximity to fluid-motion and bed-elevation measurements. This report conveys the following products listed in contract DACW39-94-K-0037, as modified 29 March 1994:

Sedimentological data from cores obtained by Drake will be maintained in the form of core logs, which will record the time, location and orientation of each sample, and a description of sedimentary structures obtained by visual inspection. The following ancillary data will be provided by Scripps Institution of Oceanography (SIO) investigators R.T. Guza, S. Elgar, and E. Gallagher for cores obtained by Drake which are located within 20m of the SIO cross-shore instrument transect: mean water depth, mean wave height, mean cross-shore and mean alongshore fluid velocity and net change in bed elevation at the nearest SIO sensor, where the time interval for net change in bed elevation and averaging all quantities will be determined by the principal investigator. The ancillary SIO data will be provided under the Duck94 data sharing policy of no dissemination to third parties. Relationships between unapproved sedimentary features observed in the cores and fluid motion and bed elevation studies will be explored in collaborative interaction with SIO, NPS and/or FRF investigators, with the aim of producing one or more articles for publication in refereed scientific journals. A final report covering the period of support and including the core logs will be provided at the end of FY95. No provision is made in this proposal for preservation or storage of cores.

A no-cost extension of the original contract through 31 March 1996 was provided to accommodate additional analysis of ancillary data provided by SIO collaborators.

Synopsis of Results

Few studies of sedimentary structures in the nearshore have been undertaken (e.g., Clifton et al., 1971; Hunter et al., 1979; Greenwood and Osborne, 1991) and none have had the benefit of the substantial supporting studies conducted during the Duck '94 experiment, in particular, a cross-shore transect of instruments designed to provide measurements of water depth, bed elevation, and cross- and alongshore components of nearbed water velocity at a frequency of 2 Hz for the duration of the Duck '94 experiment. Observations of these fundamental fluid-dynamic quantities, provided by investigators R.T. Guza and S. Elgar of the Center for Coastal Studies, Scripps Institution of Oceanography, University of California at San Diego, form the basis for relating sedimentary structures from sediment cores obtained using the FRF's Coastal Research Amphibious Buggy (CRAB). Analyses of the cores were undertaken both during the course of the experiment and afterwards at North Carolina State University.

The principal findings of this investigation are the following:

- Sedimentary structures observed in the cores, in particular, bedding planes or other evidence of stratification, are generally rather poorly correlated with synthetic stratigraphies generated from sonic altimeter observations of bed elevation. In a few particular cases, however, the correlation between structures observed in cores and sonic altimeter observations is good, and may offer useful means for using structures from cores to retrodict the wave climate responsible for their formation, or vice-versa. Techniques for generation of synthetic stratigraphies and special cases of interest are discussed in detail below.
- Alongshore variation in sedimentary structures from cores obtained at the same nominal cross-shore location may be substantial, which carries the implication that even apparently two-dimensional nearshore environments (such as that at the Duck study site (Stauble, 1992)) may not be adequately sampled by a single or even several cross-shore transects.
- Presence of estuarine mud near the present seabed in several cores suggests that sediment supply in the vicinity of the Field Research Facility may be limited, and that relatively non-erodable substrate may crop out in the surfzone. That the underlying geology may strongly influence shoreface evolution along the Outer Banks has been previously suggested (Riggs et al., 1995), but extant predictive models for bathymetric evolution uniformly assume sufficient sediment supply at all times. The possibility of insufficient supply and its effects

must be addressed in future studies.

- Cores extracted from the crest of a newly-deposited bar formed entirely during the course of the Duck '94 experiment show unequivocally that offshore bar migration occurred by the onshore migration of megaripples from deep water onto the offshore side of the bar, while unknown processes eroded the onshore side of the bar. Evidence for megaripple-induced bar migration is in the form of onshore-dipping cross-bedded sand layers preserved in the cores, which can only result from grains avalanching down the slipface of an onshore-migrating bedform. Much ancillary evidence for the presence of such bedforms exists, but the only unequivocal evidence of the direction of their migration is found in oriented bar-crest cores. This result is unexpected, since hydrodynamic data (e.g. Gallagher, 1996) indicate pervasive offshore water velocities over most of the vertical water column, and models for sediment transport (e.g. Bowen, 1980; Bailard, 1981, hereafter called the Bowen/Bailard model) which use the velocity data predict both net offshore sediment transport and offshore bar migration. Our data show that, while offshore flow higher in the water column most likely transported suspended sediment offshore over the bar crest, nearbed velocities must have driven megaripple migration in the onshore direction. Such observations 1) call into question the efficacy of the Bailard/Bowen model, and 2) point to the need for considerably more work on fundamental sediment-transport processes, in particular, the mechanics of megaripple migration.
- Finally, logistical difficulties associated with surfzone coring studies are considerable. For the very limited set of conditions explored during the course of this reconnaissance study, the predictive value of most of the cores obtained is equivocal. On the other hand, we now know the conditions under which cores are likely to obtain extremely useful information that cannot be obtained by direct (and expensive) surfzone observation of the usual hydrodynamic variables, in particular the near-bed fluid velocity. The evidence for megaripple-induced bar migration offered by sedimentary structures in the cores is immensely valuable, and exists nowhere else in the collective Duck '94 dataset.

The body of this report consists of a description of coring and analysis techniques, an overview of sedimentary structures observed in the cores and their significance, and a detailed examination of some particularly significant cores. Supporting information includes a table of

cores taken during the experiment, including relevant hydrodynamic quantities from SIO investigators, detailed visual descriptions of most of the cores and descriptions of radiographs which were obtained for some of the cores. Some of the information contained herein was presented by Mr. J.B. Smith, Contract Officer's Representative for this contract, at the Geological Society of America Annual Meeting in New Orleans, Louisiana, November, 1995 (Smith *et al.*, 1995). A videotape showing an animated visualization of a typical synthetic stratigraphy generated from bed-elevation time series is available from the author of this report.

Methods and Analysis

Short vibracores obtained using the FRF's CRAB as a coring platform provided essentially all the sedimentological information for this study. Attempts to use small boxcores in the surfzone proved unsatisfactory, for one or more of the following reasons: poor or hazardous diving conditions; including large waves in shallow water, strong currents, poor visibility and concomitant difficulty in establishing the location and orientation of the core; box-core equipment failure due to compacted, fine-grained bottom sediment. Vibracores were obtained after several significant sedimentologic events using the CRAB. Standard techniques were used to obtain cores in three-inch-diameter aluminum tubes; sample location and orientation were determined from CRAB instrumentation. Core locations are reported in meters in the FRF coordinate system, and elevation of the seabed (or top of the core) is referenced to NGVD. The nominal resolution in all three coordinates is about 10 cm; for the highly irregular bathymetry associated with megaripples the bottom elevation may vary by 30 cm or more from the reported value, due to the location of the survey reference point on the top of the CRAB, rather than at the seabed. The coarse nature of the bed material precluded the effective use of a core-catcher, and some cores of coarse sand and gravel were disturbed during the coring and/or extraction procedure. Such disturbances are noted in the core logs; and in general, the uppermost 10 cm to 25 cm of the cores do not yield reliable sedimentary structure information.

All cores were cut longitudinally such that the cutting plane trended in the on-offshore direction, for the purpose of revealing cross-stratification of on-offshore migrating bedforms. This choice of orientation effectively biases the observations, as stratification due to alongshore migrating bedforms may not be evident in cores cut as described above. Once cut, cores were logged visually by Mr. Keil Schmid (Table 1 and Appendix A). Selected cores were slabbed for x-ray radiography using conventional techniques (Appendix B). Particular care was made to distinguish erosional contacts and their orientation in the cores, as these are the primary indicators of sediment-transport mechanisms.

Hydrodynamic data was obtained from SIO investigators R.T. Guza and S. Elgar for sensors located on a cross-shore transect extending from the swash zone to about 900 m offshore. Figure 1 shows the location of the SIO instrument transect and the vibracores taken during this

		offiller, Nell Scr	Total Drake, J. Balley Smith, Kell Schmid, Srinath Alapati	Alapati	l	pati				
+						Data provid	Data provided for cores within 20 m of SIO transect	in 20 m of SIO	transect	
+						Weighted b	Weighted by depositional thickness of sedimentary strata	ickness of sedim	nentary strata	
			Core Location,	n, FRF coords					Diam's diam's	
-					Elev	Net			Significant	400
o o		Days after	Longshore	Cross-shore	NGVD	deposition	U (+ onshore)	V (+ to south)	Wave height	Oiroption
Š.	Date	July 20th	Y (m)	X(m)	(m)	(cm)	(cm/s)	(cm/s)	mayo lieigin	Dilection O
-	9-Aug-94	20	8.866	313.9	-3.42		me were an indicate the same and the same and	(61110)	(CIII)	(U=north)
2	9-Aug-94	20	998.8	311.8	-3.40					
က	9-Aug-94	20	1000.7	160.3	-1 90	miunita				
4	11-Aug-94	22	992.7	183.2	-1.52	an intern				
Ω.	11-Aug-94	22	991.8	206.0	-1.80					
9	11-Aug-94	22	940.9	169.8	-1.40		no sensor data			
/	11-Aug-94	22	941.5	207.9	-1.77	2 50	no hydrodynomic dots hefer	o doto hafers		
80	11-Aug-94	22	960.7	169.2	-1.32		no nyarodynami	c data Derore Z	25.96 days affer 2	days after 20 July 1994
6	18-Aug-94	29	940.0	135.0	-0.26		no sensor data			
0	18-Aug-94	29	940.0	190.2	-1.69		no sensor data			
	18-Aug-94	29	940.0	220.2	-2.07	66.6	-2.30	17 50		1
7	18-Aug-94	29	940.0	240.6	-2.35	63.75	06 5-			, 1
27	19-Aug-94	30	991.1	138.6	-0.52				46.10	/
4	19-Aug-94	30	991.0	146.6	-1.08					
15	19-Aug-94	30	992.2	219.9	-1.74					
10	19-Aug-94	30	932.6	240.8	-2.08	Militar stank				
17	19-Aug-94	30	992.6	242.4	-2.23					
ω :	19-Aug-94	30	960.0	220.7	-1.86					
19	19-Aug-94	. 30	960.5	205.6	-1.83					
20	19-Aug-94	30	961.3	145.7	-0.60					
21	19-Aug-94	30	961.4	135.3	-0.02					
2	19-Aug-94	30	939.4	230.0	-2.10	63.28	-5.50	-18 10	00 07	T C
23	19-Aug-94	30	939.5	209.8	-1.86	7.47	no current data			20
24	19-Aug-94	30	940.0	168.8	-1.54		no sensor data	2000	00.00	
25	19-Aug-94	30	940.8	145.4	-0.88		no sensor data			
26	19-Aug-94	30	951.7	169.3	-1.55		no sensor data			
7	19-Aug-94	30	950.3	205.8	-1.79	7.47	no cirront data	nt data		
28	25-Aug-94	36	991.5	599.0	-5.77		Ollpo Oll	ווו חמומ	08.90	
	25-Aug-94	36	992.3	498.9	-4.91					
30	25-Aug-94	36	992.6	400.0	-4.40					
-	25-Aug-04	96	0 +00	1 070						

					LIEC LIEC	Net			Significant.	Callein
Core		Days after	Longshore	Cross-shore	NGVD	deposition	U (+ onshore)	V (+ to south)	Wave height	Direction
No.	Date	July 20th	Y (m)	X(m)	(m)	(cm)	(cm/s)	(cm/s)	(cm)	(0=north)
32	8-Sep-94	50	939.6	270.2	-2.28	60.73	-29.10	62.10	163.20	155
33	8-Sep-94	50	940.3	260.2	-1.92	60.73	-29.10	62.10	163.20	155
34	8-Sep-94	50	940.6	250.1	-1.80	95.67	-17.70	31.40	82.90	140
35	8-Sep-94	50	940.5	239.9	-1.95	95.67	-17.70	31.40	82.90	140
36	8-Sep-94	50	940.5	230.4	-2.05	13.50	-23.50	0.20	94.00	84
37	8-Sep-94	50	940.3	217.7	-2.05	13.50	-23.50	0.20	94.00	84
38	9-Sep-94	51	940.5	210.3	-2.06	20.00	-1.40	-9.50	63.90	218
39	9-Sep-94	51	940.4	205.1	-2.07	20.00	-1.40	-9.50	06.89	218
40	9-Sep-94	51	939.5	170.4	-2.11		no sensor data			
41	9-Sep-94	51	940.3	152.6	-1.72		no sensor data			
42	9-Sep-94	51	940.2	146.2	-1.13		no sensor data			
43	9-Sep-94	51	960.7	219.9	-2.08	and the second				
44	9-Sep-94	51	6.096	250.0	-1.83	and the second				
45	9-Sep-94	51	960.2	270.2	-2.21	suit Harry				
46	9-Sep-94	51	960.3	260.1	-1.94	adens and it also				
47	9-Sep-94	51	960.1	239.8	-1.97	ing an americal last				
48	9-Sep-94	51	0.096	230.3	-2.07	outer sound				
49	9-Sep-94	51	6.096	152.9	-1.51	i ka				V 2 1
50	21-Oct-94	63	940.3	370.0	-3.65		no sensor data			
51	21-Oct-94	93	939.6	340.4	-2.98	22.71	-18.40	-2.10	185.30	105
52	21-Oct-94	69	939.8	167.0	-1.64	83.86	-15.30	2.90	116.10	89
53	21-Oct-94	69	939.3	320.0	-2.83	22.71	18.40	-2.10	0 185.30	105
54	23-Oct-94	95	939.6	348.1	-2.80		no sensor data			
55	23-Oct-94	95	939.9	330.0	-2.42	102.07	-5.20	0.50	0 86.70	156
56	23-Oct-94	95	939.6	309.8	-2.72	102.07	-5.20	-0.50	0 86.70	156
57	23-Oct-94	95	1006.0	360.2	-3.16	ari esseed				
58	23-Oct-94	95	1005.3	340.2	-2.55	La Zinione est				
69	23-Oct-94	95	1006.1	320.2	-2.09	istanci id as				
09	23-Oct-94	95	940.2	160.0	-0.95		no sensor data			
6.1	23-Oct-94	95	940.3	154.8	-1.19		no sensor data			
62	25-Oct-94	26	940.8	320.7	-2.50	112.00	0 -4.80	00:0-	0 83.70	156
63	25-Oct-94	97	940.8	317.5	-2.59	112.00	0 -4.80	0.30	0 83.70	156
64	27-Oct-94	66	940.0	135.1	-0.32		no sensor data			
65	27-Oct-94	66	940.0	119.3	0.42		no data (dry beach)	ach)		
00	27 Oct 04	c	0 0 0	000	0		Land date (duri hand)	1400		

Figure 1. Vibracore locations for three periods during the Duck '94 experiments. August cores were obtained before substantial deposition occurred; September cores were obtained after a brief but intense storm; and October cores were obtained approximately one week after a sustained Nor'easter. Symbols are shifted in the alongshore direction if overlaps would otherwise obscure locations.

study. Table 1 provides details of the vibracore locations and averages of the hydrodynamic data; Table 2 lists the locations of the SIO instrument packages. All hydrodynamic data provided by SIO investigators is subject to the Duck '94 data-sharing agreement, with no distribution to third-party investigators without prior permission. Water-surface elevation, bed-surface elevation, cross- and alongshore components of water velocity were obtained at 2 Hz frequency for most of the Duck '94 experiment. From the 2-Hz data, SIO investigators provided this study with 17-minute averages for water surface elevation, significant wave height, and cross- and alongshore current velocity. The sign convention for water velocities is positive **u** (cm/s) in the onshore direction, and positive **v** (cm/s) to the south.

Time series of bed elevation data are post-processed using a "bottom-finding" algorithm

Table 2. In	strument Locat	ions on the SIC	Cross-Shore	Fransect ¹
Sensor	X(m)	Y(m)	Elevation (m, NGVD)	Comment
p01	830	124.9	0.54	No sonic altimeter or current
p02	830	135.0	-0.31	
p03	830	145.4	-0.92	
p04	830	160.8	-0.58	
p05	830	169.5	-0.63	Sonic heart (array of 7 altimeters)
p23	830	190.2	-1.10	2m-stack, no sonic, 3 current meters
p12	830	205.3	-1.04	
p13	830	220.2	-1.34	
p14	830	240.6	-1.63	
p15	830	264.7	-1.90	
p16	830	295.8	-3.14	No sonic altimeter
p17	830	320.4	-2.93	
p45	830	370.1	-4.31	4m-stack, no sonic, 3 current meters
p18	830	398.4	-3.71	
p19	.830	480.3	-4.76	No sonic
p87	830	885.0	-7.79	8m-stack, no sonic, 7 current

¹ Pressure sensors are buried beneath the seabed, and elevation of other sensors varies but is typically less than 0.5 m above the seabed. These elevations correspond to locations established at the initiation of the Duck '94 experiment.

(Gallagher et al., 1996) to provide bottom-location estimates in the surfzone having resolution on the order of ± 3 cm about twice per minute. Because the generation of synthetic stratigraphies depends directly on the implementation of the bottom-finding algorithm, a brief description of the algorithm follows:

A histogram having 2-cm-wide distance bins is constructed from 512 bottom samples obtained at 2 Hz. The bin having the highest number of occurrences (excluding distances less than 25 cm) provides a rough estimate of the distance to the seafloor. A second set of histograms having 0.5-cm-wide bins is then calculated for each of eight 32-second-long subintervals of the

original 512 samples. These bins are centered ± 20 cm of the maximum obtained from the 512-sample histogram. The maxima of the 32-second histograms provide estimates of the distance to the seafloor every 32 s.

Synthetic Stratigraphy

Time series of bed elevations are used to generate "synthetic" stratigraphies for each of the sonic altimeter sensors. In concept, the generation of such stratigraphies is straightforward (Figure 2), but entails numerous assumptions in practice, due to smoothing and filtering of the

Synthetic Stratigraphy

Figure 2. Schematic of synthetic stratigraphy generation using time-series of bed elevation. Alternating black and white bars are hypothetical strata; erosional contacts separate strata.

noisy altimeter data. For each time interval in which the bed elevation remains constant or increases, corresponding to deposition or lack of erosion, a single stratum is produced. The position of the bottom of the stratum corresponds to the start of data acquisition. If the bed elevation decreases, the single stratum is eroded, and the new eroded top of the stratum is thus an unconformity, or depositional hiatus. The stratum may be completely or partially eroded, until deposition is re-initiated and a new stratum is generated. Importantly, there is no information available about the bed history prior to the start of data acquistion; thus sedimentary features only millimeters below the initial bed surface may be minutes or thousands of years old.

Likewise, if hundreds of centimeters of deposition are subsequently removed by erosion before a core can be taken, no sedimentary record of the depositional processes can be extracted. Such obvious limitations have and will continue to severely hinder process-oriented sedimentological studies.

Practical problems arise in attempting to determine whether fluctuations in bed-elevation measurements from the sonic altimeters correspond to true fluctuations of the bed surface. Without *a priori* information to guide our choice of filtering parameters, we attempted to optimally select parameters to "best-fit" the number and thickness of strata observed in cores to similar descriptors derived from synthetically generated stratigraphies. Our inability to find such suitable parameters may be attributed to one or more of the following:

Difficulties in visual identification of strata in the cores. Radiographic studies of several selected cores failed to reveal strata in apparently massively-bedded, fine-sand deposits. Such deposits may typify deposition during energetic conditions in the absence of sufficiently rapid bedform migration to create laminae.

Difficulties in evaluating errors in sonic-altimeter data. Altimeter resolution and accuracy are inversely related to some function of the sea-state energy (e.g., significant wave height), while changes in sea-bed elevation are positively correlated significant wave height. Insufficient independent data are available to quantify such errors.

To the extent possible, coring was undertaken when bed elevations were increasing, so that the cores could be expected to contain sediments deposited under known hydrodynamic conditions. In practice, however, logistical constraints including weather and CRAB availability

hindered efforts to obtain cores having high information density, and many of the cores contain sediment for which there is no hydrodynamic or bed elevation data. Furthermore, many of the cores were taken much more than 20 m distance from the SIO transect; and these cores are not examined in detail in this report.

Bar Migration Deposits

One of the primary objectives in nearshore research is to determine the sediment-transport mechanisms for bar migration. During the course of the Duck '94 experiment, several bar migration episodes occurred, all of them relatively rapid and in the offshore direction. The typically much slower onshore migration characteristic of spring and summer low-energy conditions was not sampled during this experiment; thus introducing a significant potential bias in the interpretation of nearshore sedimentary deposits. Nevertheless, several cores were taken after a major Nor'easter occurred in mid-October, and analyses of them reveal several features of interest.

Cores 62 and 63 were obtained 25 October 1994, appoximately one week after the cessation of the storm. During the storm the low, linear bar migrated offshore approximately 100 m, and buried the SIO sensors at X=320 m (p17 and associated instruments). The cores are located at the same alongshore position; and core 62 was taken at a cross-shore position X=320.7 m, while core 63 was extracted at X=317.5 m, or approximately 3 m closer to shore. The elevations of the tops of the cores differ by 0.09 m, which corresponds to diver observations of variations in bed surface elevation obtained during the coring procedure. Perhaps surprisingly, these cores exhibit rather distinct sedimentary structures, as shown schematically in Figure 3. An incomplete synthetic stratigraphy shows tantalizing hints about the conditions just preceding and after sensor burial at the height of the storm (Figure 4).

Implications for Mechanisms of Offshore Bar Migration

The uppermost 0.75 to 1 m of each of cores 62 and 63 exhibits well-developed shoreward-dipping crossbeds, which are interpreted as indicative of shoreward bedform migration. Such deposits are essentially unequivocal evidence for *onshore* migration of megaripples, which effected the *offshore* migration of the bar form, perhaps in concert with concurrent deposition of suspended sediment eroded from the onshore side of the bar. Figure 5

Schematic logs from bar-crest cores

Cores taken at same time, 3 m apart in cross-shore direction

Figure 3. Schematic log showing major sedimentological features of cores 62 (left) and 63 (right), collected 25 October 1994, approximately one week after a major Nor'easter induced offshore-directed bar migration of about 100 m. Despite their relative proximity, the cores are distinctly different, and exhibit cross-strata indicative of bedform migration both on- and offshore.

63 exhibit onshore (west) dipping crossbeds, however, which would typically be interpreted as indicative of onshore bedform corresponding to cores 62 and 63. A strong mean offshore flow was measured at this location before instrument burial, and such flows were measured throughout the storm at other cross-shore locations. The uppermost 0.75 to 1 m of cores 62 and Figure 4. Synthetic stratigraphy and near-bed water velocities from SIO sensors located at cross-shore location X=320 m migration.

Figure 5. Onshore migration of megaripples deposits sand on the offshore side of the bar crest, which is simultaneously eroding on its onshore side. Top figure shows megaripples at the start of bar migration, and bottom figure shows sequence of cross beds after bar migration. This schematic depiction was created using computer software developed by Dr. David M. Rubin, US Geological Survey (Rubin, 1987).

shows a schematic diagram of the megaripple migration processes inferred to operate on the offshore side of the bar. Figure 6 is a somewhat more speculative picture of one possible scenario for eroding the onshore side of the bar as it migrated offshore; there is considerable evidence for the existence of megaripples migrating alongshore in the bar trough during the bar migration event (Gallagher, 1996; Thornton, personal communication, 1994). Evidence for megaripple-induced bar migration is in the form of onshore-dipping, cross-bedded sand layers preserved in the cores, which can only result from grains avalanching down the slipface of an onshore migrating bedform. Much ancillary evidence for the presence of such bedforms exists (Gallagher, 1996; Thornton, personal communication, 1994), but the only unequivocal evidence of the direction of their migration is found in these oriented bar-crest cores.

Figure 6. Alongshore migration of megaripples on the onshore side of the bar crest during offshore bar migration leaves essentially no sedimentary record of the processes effecting bar migration.

Acknowledgments

The assistance of the FRF staff during the course of the Duck '94 experiment is gratefully acknowledged; in particular, Chief Bill Birkemeier, Gene Bichner, Bill Grogg, Mike Leffler, Brian Scarborough and Ray Townsend provided us expert assistance on a regular basis. Mason Cox, Doug Dorman and Mark Lampe drove the CRAB and assisted with vibracoring efforts under difficult conditions. Equipment loaned to us by Dr. Stan Riggs, East Carolina University, greatly eased several early difficulties with coring apparatus.

References

- Bailard, J. A. (1981). "An energetics total load sediment transport model for a plain sloping beach," *Journal of Geophysical Research* 86, 10,938-10,954.
- Bowen, A. J. (1980). "Simple models of nearshore sedimentation; beach profiles and longshore bars". *The Coastline of Canada, Geological Survey of Canada Paper 80-10*. S. B. McCann, ed., 1-11.
- Clifton, H. E., Hunter, R. E. and Phillips, R. L. (1971). "Depositional structures and processes in the non barred high energy nearshore," *Journal of Sedimentary Petrology* 41 (3), 651-670.
- Gallagher, E. L. (1996). "Observations of seafloor evolution on a natural barred beach," *Ph.D dissertation*, University of California, San Diego, Scripps Institution of Oceanography, 63p.
- Gallagher, E. L., Boyd, W., Elgar, S., Guza, R. T., and Woodward, B. (1996). "Performance of a sonar altimeter in the nearshore," *Marine Geology* 133, 241-248.
- Greenwood, B. and Osborne, P. D. (1991). "Equilibrium slopes and cross-shore velocity asymmetries in a storm-dominated, barred nearshore system," *Marine Geology* 96, 211-235.
- Hay, A. E. and Bowen, A. J. (1993). "Spatially correlated depth changes in the nearshore zone during autumn storms," *Journal of Geophysical Research* 98 (C7), 12,387-12,404.
- Hunter, R. E., H. E. Clifton, and R. L. Phillips, (1979), "Depositional processes, sedimentary structures and predicted vertical sequences in barred nearshore systems," *Journal of Sedimentary Petrology*, 49, 711-726.
- Riggs, S. R., Cleary, W. J., and Snyder, S. W. (1995). "Influence of inherited geologic framework on barrier island shoreface morphology and dynamics," *Marine Geology* 126, 213-234.
- Rubin, D. M. (1987). "Cross-bedding, bedforms, and paleocurrents". *Concepts in Sedimentology and Paleontology*, 1, Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, 187 p.
- Smith, J.B., Drake, T. G., Elgar, S. and Gallagher, E., (1995) "Do detailed hydrodynamic and sedimentologic data aid prediction of nearshore stratigraphy? Examples from the Duck94 Nearshore Field Experiment," 1995 Geological Society of America Annual Meeting Program, 54.
- Stauble, D. K. (1992). "Long-term profile and sediment morphodynamics: Field Research Facility case history". U.S. Army Engineer Waterways Experiment Station Technical Report CERC-92-7.

Appendix A - Visual Core Logs

Visual core logs were generated solely by Mr. Keil Schmid to assure consistent description of sedimentary grain size and structure. Handwritten core logs have been converted into computer-form for ease of reading and consistency. Each log records the date of coring and logging, the location in the FRF coordinate system, a graphic depiction of core lithology, dip of sedimentary features (in degrees to the east or west), grain size in ϕ _(phi) units, where the grain size in millimeters D is obtained from ϕ by the following relation:

The absolute elevation of sedimentary features in the cores is obtained by subtracting the distance from the top of the core from the Z coordinate of the core location. For example, the black-green mud found at the base of Core #2 occurs at an absolute elevation (NGVD) of -3.40 m - 1.50 m, or -4.90 m (NGVD). The graphic depiction of the logs is intended to provide a visual picture of the structures of interest; because the usual sedimentary logging symbols can not adequately depict subtle features in these cores, various patterns are used to indicate relative changes of grain size or texture within a single core. Several of the longer cores are described on two or more consecutive logs because cores of length greater than about one meter were typically cut into pieces for safe transport. In these cases the logs are labeled "top" and "bottom," where "top" refers to that portion of the core immediately adjacent to the seafloor-water interface. Cores extensively damaged during the coring process or subsequent transport were not logged.

Following is a list of cores for which logs were obtained:

Core #02
Core #03
Core #04
Core #05
Core #06
Core #07
Core #08
Core #09
Core #10
Core #11
Core #12
Core #13
Core #14
Core #15
Core #16

Core #46 Core #47 Core #48 Core #49 Core #50 Core #51 Core #52 Core #53 Core #54 Core #55 Core #56 Core #57 Core #58 Core #59 Core #60

Core #61

Core #62

Core #63

Core #17 Core #18 Core #19 Core #20 Core #21 Core #23 Core #24 Core #25 Core #26 Core #27 Core #27 Core #28 Core #30 Core #31

Core #37 Core #38 Core #39 Core #40 Core #41

Core #32 Core #34 Core #35 Core #36

Core #42 Core #43

Core #44

Core #45

Vibracore # 2 Date of Coring: 940809 Logged by Keil Schmid Date Logged: 940914

Location (FRF coordinates, m)

X (cross shore) = 311.8

Y (long shore) = 998.8

Z= -3.40 (NGVD; top of core)

X (cross shore)) = 31	1.8	1 (long	shore) =	
Lithology East	West	Grain Size (phi)	Dip (deg)	Distance from top of core (n	
		2.0		-	Yellow-brown fine to medium quartz sand. Mean grain size 2.0 phi. Well sorted. Quartz =95%, calcium carbonate =6%. Trace amounts of heavy minerals.
				0.5	Faint contact (occurred during opening of core??). Yellow-brown medium quartz sand, mean grain size ≈1.7phi. Well sorted. Quartz ≈90%, calcium carbonate ≈10%. Slight fining upwards. Trace amount of heavy minerals.
		1.7		- - -	Gray fine quartz sand appears slightly cross-bedded. Iron staining on top of laminae, mean grain size ≈2.3 phi. Very well sorted. Quartz 95%, calcium carbonate 5%, increasing downwards. Trace amount of heavy minerals.
		2.3 1.0 / 2.0		1.0	Sharp contact. Cross-bedded medium to coarse sand with fine sand. Coarse grains are well rounded. Coarse laminae 75% quartz, 25% calcium carbonate, mean grain size 1.0 phi, well sorted. Fine laminae 90% quartz, 10% calcium carbonate, mean grain size 2.0 phi, well sorted.
				-	Sharp contact, gray fine quartz sand cross-bedded with yellow brown medium/coarse quartz sand and shell fragments. Fining upwards section.
				1.5	Sharp contact, gray fine quartz sand, one planar laminae of medium sand. Quartz ≈95%, calcium carbonate 5%. Very sharp contact, coarse sand, no bedding. Quartz 70%, calcium carbonate 30%.
				- · · · · · · · · · · · · · · · · · · ·	Black-green mud. 95% clay, 5% sand, calcium carbonate, shells. Gorp section.

Vibracore # 3 Date of Coring: 940809 Logged by Keil Schmid Date Logged: 940914

Location (FRF coordinates, m) X (cross shore) = 160.3 **Y (long shore)** = 1000.7 Z= -1.90 (NGVD: top of core)

Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.0 1.8 2.2 0.5	12 W 12 W 15 W 18 W 5 E	0.5	Gray-yellow fine quartz sand. No noticeable structure. 95% quartz, 5% calcium carbonate. Lower contact dips 12° towards shore (W). Medium sand. 90% quartz 10% calcium carbonate. Contacts dip 12°. Gray fine quartz sand. Upper contact 12°W lane contact 14°W. Coarse sand and gravel/pebble, poorly sorted, upper contact 14°W, lower contact 15°W. Large slump area on side of core which could be an artifact of coring process Gray fine quartz sand upper contact 15·W, slight indications of cross beds dipping 18°W, below 0.55m weak cross-beds dip E at 5°.

Vibracore # 4 top Date of Coring: 940811 Logged by Keil Schmid Date Logged: 940915

Location (FRF coordinates, m)

X (cross shore) = 183.2

Y (long shore) = 992.7

Z= -1.52

(NGVD; top of core)

East	Lithology West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
		(phi) 2.0 2.0	30E 10E 20W	0.5	Top unit is fine gray-yellow quartz sand. No indications of bedding are visible. Slight fining-upwards from 0.9 m to top of core. Laminae indicated on log are very subtle structures. Graded contact. Small bioturbation mark at 0.8m. Slightly higher content of shell material. Gray to yellow fine quartz sand. No visible structures.
				_	

Vibracore # 4 bottom Date of Coring: 940811 Logged by Keil Schmid Date Logged: 940916

Location (FRF coordinates, m)

X (cross shore) = 183.2 Y (long shore) = 992.7 Z= -1.52 (NGVD; top of core)

Lithology	Grain	Dip	Distance	Description (NGVD; top of core)
East West	Size (phi)	(deg)	from top	Description
East West	Size			

Logged by Keil Schmid Date of Coring: 940811 Date Logged: 940914 Vibracore # 5

Location (FRF coordinates, m)

Y (long shore) = 991.8

Z= -1.80 (NGVD: top of core)

X (cross shore) = 20	6.0	Y (long	shore) = 99	11.8 Z= -1.80 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.1			Light gray fine quartz sand. Slight increase in grain size down section. Fining upwards sequence.
	2.0			
	1.9		0.5	N. H
	1.8		_	Yellow-gray fine to medium quartz sand. Large mottled area, could be an artifact of the coring process.
			_	Contacts in the upper 0.75 to 0.8m of the core may be artifacts of coring.
	1.9			
		20W	1.0	Gray fine quartz sand with laminations of darker grains. Fining upwards sequence.
	2.0	0 5W		
		10E	_	·
**************************************	1		1.5	Gray fine quartz sand . Contact is flat with
				upper bed. Lower contact is dipped 10°.
	2.2	10W		
	0.7			Yellow medium quartz sand. No structures.
				Black stained fine quartz sand, smells estuarine.

Vibracore # 6 Date of Coring: 940811 Logged by Keil Schmid Date Logged: 940915

Location (FRF coordinates, m)

X (cross shore) = 169.8 Y (long shore) = 940.9 Z= -1.40 (NGVD; top of core)

X (cross snore) = 16		1 (long	shore) = 94	40.9 Z= -1.40 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.2		0.5	Fine quartz sand. No visible structures. Dry at time of logging.
				Gray fine quartz sand with no obvious structures.
	1.8 1.6		1.0	Yellow medium sand. Structure is distorted.
	2.2			Gray fine quartz sand with no obvious structures.
	1.8	30E 5E	1.5	Contact 30° Fine to medium quartz sand, faint laminae with 5° dip. Fining upwards.
	1.9	5E 20W	1.5	Fine quartz sand with very faint horizontal laminae. One coarse layer dips 20° in opposite direction as others found in core.
	1.9 - 1 .0	0		Horizontal contact. Coarse shelly quartz sand. Abundant lithoclasts and black shells.
	2.0	20W	2.0	Black poorly sorted very fine to medium quartz sand with heavy minerals. Possibly estuarine.

Vibracore # 7 top Date of Coring: 940811 Logged by Keil Schmid Date Logged: 940929

Location (FRF coordinates, m)

X (cross shore) = 207.9

Y (long shore) = 941.5

Z= -1.77 (NGVD; top of core)

East	Lithology West	Grain Size	Dip (deg)	Distance from top	Description
されたというというというというというというというというというというというというというと		(phi) 2.0	40W 40W	0.25	Gray-yellow fine quartz sand appears to fine upwards slightly. Above 0.60m core has a mottled look, perhaps due to bioturbation or deformation during coring. Mottled areas are slightly darker. Overall 90% quartz, 10% calcium carbonate, well sorted, unimodal. Very faint, steeply dipping (40°) laminae, may be artifacts of coring. Laminae are slightly coarser.

Vibracore # 7 bottom Date of Coring: 940811 Logged by Keil Schmid Date Logged: 940929

Location (FRF coordinates, m)

X (cross shore) = 207.9

Y (long shore) = 941.5

Z= -1.77 (NGVD; top of core)

Litheless Cook		f (long snore) = 94		- (itars) top of core)
Lithology East Wes	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.8 2.0	10W		Fairly sharp contact dipping 10° W. Top portion of a fining-upwards sequence. Gray fine to medium quartz sand with no structures evident.
			1. <u>00</u> —	Gray medium quartz sand witha calcium carbonate content of up to 25 -30 % from about 1.1 m to 0.95 m.
	1.6	5E		Medium quartz grain sand with two thin coarser laminae. Curved contact dips 5° E. Coarsening upward sequence.
	2.0	4E 4E	1.25	Medium/fine gray quartz sand. Graded contact with upper lithology. Several heavy mineral laminations dipping 4-5° E.
	1.8	5W 5W 5W		Medium yellow/brown quartz sand. Upper contact dips 5°. Heavy mineral laminations also dip 5°. Section possibly fines upwards?
	1.5 2.0	5W		Medium grain, shelly, black stained, quartz sand. Contact dips 5° W.
			1. <u>50</u>	Medium/fine black stained quartz sand. Sharp contact dipping at 5° W.

Vibracore # 8 top Date of Coring: 940811 Logged by Keil Schmid Date Logged: 940920

Location (FRF coordinates, m)

X (cross shore) = 169.2

Y (long shore) = 960.7

Z= -1.32 (NGVD; top of core)

X (cross shore) = 169	٠.٤	i (long	snore) = 96	
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.0			Top ≈0.5m structureless gray-yellow medium to fine quartz sand. No observable bedding planes. Quartz 90%, calcium carbonate 10%.
	1.8	50E	0.50 —	0.5 to 0.75m — strange looking structure (disturbed? during coring) almost an overturned anticline with slightly coarser sediment. Steep laminations below the structure.
	1.7			Coarsening upwards sequence of structureless medium quartz sand. Increasing shell contact upwards, 15% calcium carbonate.
	1.8	30W	1. <u>00</u>	Extremely faint contact. Real?

Vibracore # 8 bottom Date of Coring: 940811 Logged by Keil Schmid Date Logged: 940920

Location (FRF coordinates, m) X (cross shore) = 169.2

X (cross shore) = 16	9.2	Y (long	shore) = 96	50.7 Z= -1.32 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	Size		from top	

Vibracore # 9 Date of Coring: 940818 Logged by Keil Schmid Date Logged: 940920

Location (FRF coordinates, m)

X (cross shore) = 135.0 Y (long shore) = 940.0 Z= -0.26 (NGVD; top of core)

X (cross snore) = 13			Distance	
Lithology East West	Size	(deg)	from top	Description
East West	Grain Size (phi) -1.25 -1.5 -1.0 -1.8 -0.5 1.8 1.7 0 2.0 1.0	10 W 10 W 5 W 10 E 10 E	O.5	Sandy gravel with no structures evident. Large grains are a mix of shells and lithoclasts. Poor sorting. Moderately sorted. Structureless gray sand with occasional gravel sized grains. Sandy gravel, also structureless. Thin bed of medium to fine quartz sand. (gray) Sandy gravel. Thin gray fine quartz sand. Grey fine medium quartz sand, structureless contacts are both dipping 10°E Gravelly sand, poor sorting.
			-	

Vibracore # 10 Date of Coring: 940818 Logged by Keil Schmid Date Logged: 940923

Location (FRF coordinates, m) X (cross shore) = 190.2

Y (long shore) = 940.0

Z= -1.69 (NGVD; top of core)

Lithology		Grain		Distance	()
	West		Dip (deg)	Distance from top of core (m)	Description
		2.0			Yellow-gray fine/medium quartz sand. No structures evident. One slightly coarser laminae and an ever-so-slight dark layer dip and curve to the east at 15°. The rest of this section looks mottled, perhaps due to bioturbation. A general fining upwards trend is present.
		1.7	15 E	0.5	
		1.9			
		1.8 2.1		1.0	
		2.1	0		Contact here looks erosional, with slight iron staining.
		1.9	5 E		Fining upwards sequence. Top part is gray, lower portion is yellow brown. Top has horizontal laminations. Lower part is dipping slightly offshore.

Vibracore # 11 top Date of Coring: 940818 Logged by Keil Schmid Date Logged: 940928

Location (FRF coordinates, m)

X (cross shore) = 220.2

Y (long shore) = 940.0

Z= -2.07 (NGVD; top of core)

East	Lithology West	Grain Size	Dip (deg)	Distance from top	Description
		(phi)	(0,	of core (m)	
		2.0			Gray/yellow fine quartz sand. No structures evident. 95% quartz, 5% shell. Very homogenous.
				0.25	No structures evident.
		2.0			
		1.8		0.50	Small curved lamina, slightly coarser, looks like a filled burrow.
		1.8			No structures evident.
222		2.0		0.75	(This core used as a test for peels.)

Vibracore # 11 bottom Date of Coring: 940818 Logged by Keil Schmid Date Logged: 940926

Location (FRF coordinates, m)

X (cross shore) = 220.2 Y (long shore) = 940.0 Z= -2.07 (NGVD; top of core)

Lithology West Size (deg) (deg) (phi) 1.9 1.9 2.0 W 1.00 1.25 1.7 0 1.7 0 1.6 5 W 5 W 1.6 1.6 5 W 5 W 0 1.6 5 W 5 W 0 1.6 1.50 Description Erosional contact. Yellow-gray fine to medium quartz sand. Quartz 90%, calcium carbonate 10%. Slightly coarser at contact (lag). No structures evident. Gray fine to medium quartz sand. Very faint bedding structures at 0.9, 1.15 and 1.20 m. Horizontal medium to slightly coarse shelly stringers. Shells are angular. Delicate larminations are about 5mm thick. Coarse angular and delicate shells overlying coarse quartz sand and rounded shells. Contact dips 5°W. Yellow medium quartz sand with horizontal larminations having slightly higher concentration of heavy minerals.	X (cross snore) = 22	0.2	Y (long	g shore) = 940.0 Z= -2.07 (NGVD; top of core)
Yellow-gray fine to medium quartz sand. Quartz 90%, calcium carbonate 10%. Slightly coarser at contact (lag). No structures evident. 1.00 1.00 1.00 1.00 1.25 1.7 0 1.7 0 1.7 0 0 0.7 1.6 5 E 1.6 5 W 5 W 0 1.50 Coarse angular and delicate shells overlying coarse quartz sand and rounded shells. Contact digns 5°W. Yellow-gray fine to medium quartz sand. Quartz 90%, calcium carbonate 10%. Slightly coarser at contact (lag). No structures evident. Horizontal medium to slightly coarse shelly stringers. Shells are angular. Delicate laminations are about 5mm thick. Coarse angular and delicate shells overlying coarse quartz sand and rounded shells. Contact digns 5°W. Yellow medium quartz sand with horizontal laminations having slightly higher concentration		Size		from top
		2.0 1.7 1.7 0.7	5 W 55 W 5 S	Yellow-gray fine to medium quartz sand. Quartz 90%, calcium carbonate 10%. Slightly coarser at contact (lag). No structures evident. Gray fine to medium quartz sand. Very faint bedding structures at 0.9, 1.15 and 1.20 m. 1.00 Horizontal medium to slightly coarse shelly stringers. Shells are angular. Delicate laminations are about 5mm thick. Coarse angular and delicate shells overlying coarse quartz sand and rounded shells. Contact dips 5°W. Yellow medium quartz sand with horizontal laminations having slightly higher concentration

Vibracore # 12 top Date of Coring: 940818 Logged by Keil Schmid Date Logged: 940926

Location (FRF coordinates, m)

X (cross shore) = 240.6 Y (long shore) = 940.0 Z= -2.35 (NGVD; top of core)

Vibracore # 12 bottom Date of Coring: 940818 Logged by Keil Schmid Date Logged: 940926

Location (FRF coordinates, m)

X (cross shore) = 240.6

Y (long shore) = 940.0

Z= -2.35 (NGVD; top of core)

Lithology	I Grain		Dietamas	(1.0.1.2, top 01 001c)
East Wes	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.0			Medium-fine gray quartz sand.
	1.6 2.0 1.6 2.0	20 W 20 W	1. <u>00</u>	Two slightly coarser laminae dip 20°W.
	1.5 1.8 1.5	15 W 15 E		Fairly sharp contact. Gray/yellow medium quartz sand with coarse upper and lower contacts both dipping 15°W. One coarse laminae dips 15°E.
	1.8 1.5 2.0	10 W	1.25	Fining upwards mdium/fine quartz sand, gray in color, upper contact very sharp dipping 10°W,
	1.5 1.2	2 E		Fining upwards coarse quartz sand (yellow),
	0.5 1.9	0 E 5 W 10 E	1.50	gradual change to finer grained, horizontal bedding? Fining upwards yellow-gray medium to medium fine quartz sand, several lineations dip 10°E. One at 1.65m is noticeably coarser. Signs at
		10 E 10 E		1.45m of a west dipping lineation, very weak.
	1.6			

Vibracore # 13 Date of Coring: 940819 Logged by Keil Schmid Date Logged: 940926

Location (FRF coordinates, m)

X (cross shore) = 138.6

Y (long shore) = 991.1

Z= -0.52 (NGVD; top of core)

X (cross shore) = 138	3.6	Y (long	shore) = 99	1.1 Z= -0.52 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	Size	(deg) 0? 0?	from top	Yellow-brown medium and coarse sand. Bimodal, poorly sorted, no structures. Section does not fine upwards or downwards. Fairly sharp contact. Yellow/brown sandy gravel. Slight coarsenting upwards. No preserved structures. Poor sorting, bimodal. Sharp contact, curved as if coring disturbed flat contact. Gray/yellow medium quartz sand. Sharp contact, curved, as above, poor sorting. Yellow/brown sandy gravel, no structures preserved. Slight coarsening upwards.
	2.0	8 E 8 E		Bimodal. Gray fine quartz sand, slightly dipping laminations, at 8°E. May be disturbed slightly.
				Sharp erosional (?) contact. Clean yellow/brown gravel, no fine sand. Unimodal.

Vibracore # 14 Date of Coring: 940819 Logged by Keil Schmid Date Logged: 940927

Location (FRF coordinates, m) X (cross shore) = 146.6

X (cross shore) = 14	6.6	Y (long	shore) = 99	91.0 Z= -1.08 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.6 0 -1.0	30 E	0.5	Yellow-brown medium and coarse quartz sand. Poorly sorted, bimodal. Sharp contact. Fining upwards sequence(?) of sandy gravel, bimodal. Large pebbles are well rounded lithoclasts. No apparent structures.
	-1.5 2.0	70 W		Sharp, very steeply dipping contact (70°W) Structureless, yellow medium-fine quartz sand with above-average concentration of heavy
	1.2 1.6 1.9	0 5E 5E 5E	1.0	minerals. Very homogenous. Unimodal. Yellow-brown medium quartz sand matrix with embedded coarse sand to gravel-size grains. Bimodal, coarsens upwards to sharp horizontal contact. Slight horizontal laminations. Gradational horizonatal contact. Gray medium-
	1.7	5 E		fine quartz sand, fining upwards, with very faint laminations dipping 5°E. Slightly dipping (5°E) gradational contact. Yellow-brown medium to coarse quartz sand.

Vibracore # 15 top Date of Coring: 940819 Logged by Keil Schmid Date Logged: 940930

Location (FRF coordinates, m)

X (cross shore) = 219.9

Y (long shore) = 992.2

Z= -1.74 (NGVD; top of core)

East	Lithology West	Grain Size	Dip (deg)	Distance from top	Description
East		Size (phi) 2.0	(deg) 2 W 3 E 0 5 E 5 W 5	0.25	Gray-yellow medium-fine quartz sand. Slightly higher percent of shells than other cores with similar sediments. Shells are delicate and angular. Core has a very mottled look. Coarser shells are randomly distributed. Same unit. Has deformed structures that dip opposite ways and are curved as if caused by coring process. Laminae are slightly darker color and at 0.52m slightly coarser grains are present.

Vibracore # 15 bottom Date of Coring: 940819 Logged by Keil Schmid Date Logged: 940930

Location (FRF coordinates, m)

X (cross shore) = 219.9

Y (long shore) = 992.2

Z= -1.74 (NGVD; top of core)

Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.8 2.0 1.3 1.8 1.0 1.8	30 7 5 33 30 0 0 0	1.00 —	Yellow-gray medium fine quartz sand. Very faint, darker laminations. No trends in grain size. Fairly sharp horizontal contact. Gray fine quartz sand with horizontal laminae. Fairly sharp contact (horizontal) yellow/brown medium quartz sand with horizontal beds of coarse quartz sand and one fine horizontal bed at 1.24-1.26m. Sharp contact with fine horizontal bed yellow-brown coarse shelly quartz sand. No structures evident. Sharp horizontal contact. Yellow-gray fine quartz sand.

Logged by Keil Schmid Date Logged: 940927 Date of Coring: 940819 Vibracore # 16

Location (FRF coordinates, m)

Y (long shore) = 992.6

Z= -2.08 (NGVD; top of core)

X (cross shore) = 240.8		Y (long shore) = 992		2.6 Z= -2.08 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.9 1.5 1.5 2.0 2.0	2W 3E 0EE WW	0.5	Top 0.65m mottled yellow-gray medium-fine quartz sand. There are vertical laminations that appear to be from the coring process, may be bioturbation. No apparent trends in grain size. Graded contact dips slightly (2°W). Yellow/brown medium quartz sand with some shells (≈15%). Bed contains curved laminae that appear to be deformed by coring. Laminations are coarser than matrix. No grain size trends recognizable. Gray medium/fine quartz sand with two slightly darker laminations and one coarser lamina possibly part of a string of fining upwards sequence.

Vibracore # 17 top Date of Coring: 940819 Logged by Keil Schmid Date Logged: 940928

Location (FRF coordinates, m)

X (cross shore) = 242.4

Y (long shore) = 992.6

Z= -2.23 (NGVD; top of core)

Lithology West Size (deg) Dip (deg) of core (m) 2.0 0.25 One big slightly fining upward deposit, if there were any structures they were destroyed in the coring process. There is a mottled look which could be bioturbation.	× (C	X (cross shore) = 242.4			shore) = 99	2.6 Z= -2.23 (NGVD; top of core)
One big slightly fining upward deposit, if there were any structures they were destroyed in the coring process. There is a mottled look which could be bioturbation.	East	Lithology West	Size	Dip (deg)	from top	
					0.50	were any structures they were destroyed in the coring process. There is a mottled look which

Vibracore # 17 botom Date of Coring: 940819 Logged by Keil Schmid Date Logged: 940928

Location (FRF coordinates, m)

X (cross shore) = 242.4

Y (long shore) = 992.6

Z= -2.23 (NGVD; top of core)

X (C	ross shore) = 242	2.4		snore) = 99	
East	Lithology West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
		1.7 1.4 1.5 1.5 1.2 2.1	30 E 10 E 10 E 0 5 E 0 5 W	1.00 — ——————————————————————————————————	Fining-upward sequence. Yellow-brown medium quartz sand, up to 15% calcium carbonate. Has slightly coarser cross laminae, all dipping east. Weak contact, dipping 10°E. Bimodal mediumfine to coarse quartz sand. Faint laminations dip 15°E. Strong contact dips 10°E. Gray fine quartz sand, fines upwards. Strong contact, 5°E. Yellow-brown medium quartz sand, upward fining, no real structures. Strong contact. Gray fine quartz sand. Upward fining? One cross bed dipping 5°W, some faint laminae that are horizontal.

Vibracore # 18 top. Date of Coring: 940819 Logged by Keil Schmid Date Logged: 940930

Location (FRF coordinates, m)

X (cross shore) = 220.7

X (cross shore) = 22		Y (long	shore) = 96	Z= -1.86 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.8		0.25	Yellow-brown medium-fine quartz sand moderately well sorted with no visible structures. There are some black shells (2%) that are slightly larger than the modal size. No signs of mottling.

Vibracore # 18 bottom Date of Coring: 940819 Logged by Keil Schmid Date Logged: 940930

Location (FRF coordinates, m)

X (cross shore) = 220.7

Y (long shore) = 960.0

Z= -1.86 (NGVD; top of core)

Lithology				
East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	Size	Dip (deg) 55 SSO 10 E E EEEEE		Yellow-brown medium-fine quartz sand structureless, as is top of core. Graded contact, change in color is fairly sharp. Yellow-gray fine quartz sand. Fining upward section. Iron stain at 0.80m. 0.90m coarse lag below, heavy mineral laminae. One large shell present. These laminae are wavy (below 90cm). Sediment is also ccalser below 0.90m. Sharp contact (dips 10°E) looks erosional (slight wavy). Yellow-gray fine to medium quartz sand with darker laminations dipping 5°E.

Vibracore # 19 top Date of Coring: 940819

Logged by Keil Schmid

Date Logged: 941002

Location (FRF coordinates, m)

X (cross shore) = 205.6

Y (long shore) = 960.5

Z= -1.83 (NGVD; top of core)

I istanta ana	0	(long shore) =	2= -1.63 (NGVD; top of core)
		Dip Distance	
east west	Size (d	deg) I from top	.[
	(phi)	of core (n	0)
Lithology East West	Grain Size (phi) 1.9 1.6 1.6	Dip deg) Distance from top of core (n	

Vibracore # 19 bottom Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941003

Location (FRF coordinates, m)

X (cross shore) = 205.6

Y (long shore) = 960.5

Z= -1.83 (NGVD; top of core)

East	Lithology West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
		1.6		0.75	Yellow/brown medium quartz sand with darker mottled pockets. Structures begin at about 0.80m.
		1.9	10 W	1.00	Several curved cross-beds and laminae present, dipping 10°W.
		1.4	5 W		Coarser bed dips 5°W — no sharp contacts at upper and lower boundary.
			10 W	1.25	Linear dark lamina dips 10°W.
		1.9	10 W	_	Dark stained sand above contact. Very sharp contact at 5°W. Thin bed of olive-
		8.0?	5 W 5 W		brown clay (mud) Very sharp contact dips 5°W.
		1.6	20 W 20 W 8 W	1.50	Yellow-brown medium quartz sand with clayey cross laminae. Below 125 cm gray medium-fine quartz sand with subtle, darker laminae. This whole sequence seems to be a coarsening-upwards sequence.
		1.8	7 W 7 W 7 W		
				_	

Vibracore # 20 top Date of Coring: 940819

Logged by Keil Schmid

Date Logged: 941003

Location (FRF coordinates, m)

X (cross shore) = 145.7

Y (long shore) = 961.3

Z= -0.60 (NGVD; top of core)

Grain	Din	Distance	Description
Size	(deg)	from top	
Grain Size (phi)	Dip (deg)	0.25 0.50	Gray-yellow heavily mottled fine to medium quartz sand. Mottled areas are yellow-brown medium quartz sand. Structures appear to be caused by coring(?). Possibly a fining-upward sequence. Bottom contact with coarse sediment, plume shaped, with sharp boundaries.
	Size (phi) 1.9	Size (deg) (phi) 1.9	Size (deg) from top of core (m) 1.9 1.7 0.25

Vibracore # 20 bottom Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941004

Location (FRF coordinates, m)

X (cross shore) = 145.7

Y (long shore) = 961.3

Z= -0.60 (NGVD; top of core)

X (cross shore) =	= 145		Y (long	shore) = 96	Z = -0.60 (NGVD; top of core)
Lithology East W	Vest	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
		1.8			Yellow-brown medium-fine quartz sand with a nearly vertical bed (dips 70°) of poorly-sorted (bimodal) very coarse sand in fine-medium sand matrix. (Disturbed?)
		1.5			
		0.8	25 W	0.75	Cross-bed of gravelly sand (yellow-brown)
0000		1.9	10 W 10 W	0.75	upper contact is fairly gradational, bottom contact is very sharp.
		1.2	10 W 20 W	_	Very sharp contact (dips 10°W). Yellow-gray fine fine sand with a planar-dipping region having a slight color change.
		1.9	2 W	_	Gradational contact (dips @ 10°W). Yellow-brown poorly-sorted bimodal coarse sand.
		1.7	2 W 7 W	1.00	Fairly sharp contact (dips 20°W). Fining-upward unit top is gray-yellow fine quartz sand. Lower portion is yellow medium quartz sand. Several weak laminae are present.
		1.5			
				_	

Vibracore # 22 top Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941004

Location (FRF coordinates, m)

X (cross shore) = 939.4 Y (long shore) = 230.0 Z = -2.10 (NGVD; top of core)

Lit East	hology West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
		1.9		0.25	Grey-yellow mottled fine quartz sand. Evidence of flow structures (from coring?). Some grain size variation from 0.65 m to 0.80 m, otherwise homogenous. No apparent bedding structures, except for possible deformed cross-bed from 0.65 m to 0.80 m. No noticeable grain-size trends.
		1.7		0.75	Boundary marked by color change. Slightly coarser grain size with a noticeable increase in shell material.
		1.9			Color change boundary. Gray-yellow structureless medium quartz sand.

Vibracore # 22 bottom Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941005

Location (FRF coordinates, m)

X (cross shore) = 230.0

Y (long shore) = 939.4

Z= -2.10 (NGVD; top of core)

East	Lithology West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
		1.9 1.7	10-15 W	1.00	Gray-yellow structureless fine to medium quartz sand. Same bed, but has nicely-preserved structures. Distinct grain size change (coarser) and color is yellow-brown. Laminae are alternately coarser and finer, and exhibit same color change as bulk of the sand.
		1.5 1.9	15 E 15 E 3 W	1. <u>25</u> —	Change in bedding direction. Sharp erosional (?) contact dipping 15°E. Gray-yellow fine to medium quartz sand. Very fine, closely-spaced sub-horizontal laminations.
		1.7 1.2 1.7 1.5 1.0 1.0	20 E 0 0 15 W 10 E 7 E	1.50	Sharp contact dips 2°W. Yellow medium quartz sand, steeper bedding than overlying unit. Sharp contact, horizontal. Medium to coarse poorly sorted quartz sand with shell. Erosional contact. Yellow-gray poorly sorted medium-fine quartz sand weak bedding, fairly steeply dipping. Very weak contact dips 10°E. Yellow/brown medium-coarse quartz sand with crossbeds of coarse sand.

Vibracore # 23 top Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941005

Location (FRF coordinates, m)

X (cross shore) = 209.8

Y (long shore) = 939.5

Z= -1.86 (NGVD; top of core)

Lithology		Grain	Dip	Distance	Description
	Vest	Size	(deg)	from top	
***********		(phi)		of core (m)	
		2.0		_	Grey-yellow fine to medium quartz sand. Vertical flow structures (due to water escape
					during coring?).
· · · · · · · · · · · · · · · · · · ·					
				_	Several large black shells are present.
					Octoral large black shells are present.
······································					
				0.25	
				0.25	
· · · · · · · · · · · · · · · · · · ·					
				_	
				_	
		i			
				0.50	Slight indication of bedding that has been
					distorted.
		1	l		
			l	-	
1	::				
	::			0.75	
				_	
			l		Graded contact.
······································	::	ľ	ı	_	Very coarse sand to gravel, slightly bimodal.
	:::				Section is fining upwards and no structures are present.
····/···/	::]	1.8	l		proofit.
	끏	l			
		1	ł		
		İ		\dashv	

Vibracore # 23 bottom Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941005

Location (FRF coordinates, m)

X (cross shore) = 209.8

Y (long shore) = 939.5

Z= -1.86 (NGVD; top of core)

X (C	ross shore) = 209	7.0	1 (long	snore) = 93	9.5 Z= -1.66 (NGVD, top of cole)
East	Lithology West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
Y		1.8		1.00	Yellow-brown medium quartz sand. Almost vertical bedding. Nearly vertical border with gray medium-fine quartz sand. Continuation of fining-upward trend found at the bottom of top half of core.
		1.6			
		1.9	30 W		Nearly vertical contact. Gray medium/fine quartz sand fining upwards sequence. Below 1.25 m there are crossbeds that dip steeply to the west (30°). Bottom of unit
		1.4	30 W	1.25	is yellow-brown medium-coarse quartz sand.
		2.0	2 E	_	
		10	2 E		
110		1.9 2.0	5 E	1.50	Contact looks erosional. Gray-black fine quartz sand. No bedding, possibly bioturbuted.
	**************************************	1.6		_	Medium-coarse sand, curved contact.
				1.75	

Vibracore # 24 top Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941013

Location (FRF coordinates, m)

X (cross shore) = 168.8

Y (long shore) = 940.0

7- -1 54 (NGVD: top of core)

X (cross shore	=) = 10	0.0	Y (long	shore) = 94	0.0 Z= -1.54 (NGVD; top of core)
Lithology East	West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
East	West	Size	(deg)	from top	
				1.00	

Vibracore # 24 bottom Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941013

Location (FRF coordinates, m)

X (cross shore) = 168.8

Y (long shore) = 940.0

Z= -1.54 (NGVD; top of core)

X (cross shore) = 16	8.8	Y (long	shore) = 94	0.0 Z= -1.54 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
The second secon	2.0	20 E 20 E 15 E	1.25	Yellow-brown medium-fine quartz sand. Very slight laminae at 20°E, (very! slight) Sharp contact indicated by color change dips 20°E. Gray fine-medium quartz sand. Slightly-deformed (?) cross-bedding dips15°E.
	1.9	20 W 35 W 20 W	1.50	Wavy cross-bedding dipping to W. Cross beds have slightly coarser grain size.
	2.0 1.0	5 W	1.75	Same bed, but no signs of cross-bedding. Graded contact. Very coarse sand to gravel. Slightly bimodal. No structures. Fining upwards.
	0.0			

Vibracore # 25 Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941013

Location (FRF coordinates, m)

X (cross shore) = 145.4 Y (long shore) = 940.8 Z= -0.88 (NGVD; top of core)

X (Cr	oss shore) = 14	5.4	Y (long	shore) = 9	240.8 Z= -0.88 (NGVD; top of core)
East	Lithology West	Grain Size (phi)	Dip (deg)	Distance from top of core (m	
		1.9		-	Yellow-gray fine-medium quartz sand is structureless from top of core to 0.3 m. Possible bioturbation.
	/	1.0		0.5	Lens-like contact containing a pod of poorly sorted coarse quartz sand to gravel. Bimodal.
		2.0	20-30 E	_	Disturbed contact (due to coring?). Slightly curved. Sequence of yellow-brown medium-coarse fining upward to fine to medium quartz
		1.8	10 E		sand. Upper section (0.5 m to 0.75 m) has distinct dark heavy mineral laminations. Dip angles decrease downwards. Only weak indication of laminae below 0.75m.
		1.5		1.0	Noticeably coarser.
		-1.5	5		Contact is somewhat sharp and is horizontal. Yellow-brown sandy gravel to pebble. Bimodal.
		1.8 1.5 0.8	5	_	Very sharp contact dips 5°E. Gray-yellow medium-fine sand grading downward into medium-coarse sand. Slight structures in upper portion.
*****		-1.0		1.5	Graded sharp contact, looks slightly distorted. Yellow-brown very coarse sand to gravel. No structures. Slightly bimodal.
i					
				2.0	

Vibracore # 26 top Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941014

Location (FRF coordinates, m)

X (cross shore) = 169.3

Y (long shore) = 951.7

Z= -1.55 (NGVD; top of core)

	oss snore) = 168			Silore) = 90	
	_ithology	Grain	Dip	Distance	Description
East	West	Size	(deg)	from top	
		(phi)		of core (m)	
		4.0			
		1.9			
				-	
				0.25	Yellow-gray fine-medium quartz sand. No
					visible cross-bedding in upper 0.95 m. Possibly
				-	a slight fining-upward sequence.
				_	
				-	
					•
				0.50	
				0.50	
					•
				I —	
				-	
			ļ.	0.75	Flow structures.
				0.73	Flow structures.
:-:-/-			-	-	
· · · /:	<i>;-}-:-</i> :-:-		l		
1-1-1-1-1	,		1	l _	
:-:-		i			
		}			
		1			
·:-:-		j	1		
		1		_	
+ + +/		1.8	1		
				1 00 -	
		<u> </u>	<u> </u>	1.00	

Vibracore # 26 bottom Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941014

Location (FRF coordinates, m)

X (cross shore) = 169.3

Y (long shore) = 951.7

Z= -1.55 (NGVD; top of core)

Lithology	Grain	Dip	Distance	Description
East West		(deg)	from top	Description
	(phi)		of core (m)	
	1.8	50 W	1.00	Yellow-gray medium-fine quartz sand cross- beds in upper portion of bed may have been deformed during coring. Lower portion has increasingly coarser cross-beds.
			1.25	
	1.6	40 W		
	1.6	10 W	-	Graded contact dips 10°W
	1.0	10 W 10 W 10 W	1.50	Same bed, but coarse sand sequence of cross- beds dipping 10°W.
	1.9	10 W	-	Sharp contact dips10°W. Gray medium-fine sand. Very faint cross-beds dip 10°W. Cross-bedding is much less-well-defined than that in the overlying bed. Slight fining-upward sequence.
	1.7			
			1.75	
			_	

Vibracore # 27 (top) Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941014

Location (FRF coordinates, m) X (cross shore) = 205.8

Y (long shore) = 950.3

(NGVD; top of core) **Z=** -1.79

Lithology East West	Grain Size	Dip (deg)	Distance from top	Description
East west	(phi)	(ucg)	of core (m)	
	1.9		0.25	Typical yellow-gray medium-fine quratz sand. Very faint flow structures in upper portion of core. Only minor grain size variations.
	1.8	0	0. <u>50</u>	Beginning to see very faint evidence of cross-bedding at bottom of core. Above that there are flow structures.
	1.9	5 W	1.00	Color is more gray, it is wetter or slight difference in sediment grain size or comp.

Vibracore # 27 (bot) Date of Coring: 940819 Logged by Keil Schmid Date Logged: 941014

Location (FRF coordinates, m)

X (cross shore) = 205.8

Y (long shore) = 950.3

Z= -1.79

(NGVD; top of core)

x (01000 311010) = 20			silore) = 95	$\frac{2}{1.79} = \frac{1.79}{\text{(NGVD; top of core)}}$
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.9	5 W	1.00	Gray-yellow medium to medium fine quartz sand, fining upward.
	1.7 1.9	10 W		Slightly curved cross-beds, dipping at 10°W.
		5 E	1.25 —	Sharp, nearly horizontal contact. Gray fine quartrz sand with cross beds of medium sand. One very distinct organic layer. Several areas of iron staining, possibly of organic origin.
	1.7	?	=	Back to fine-medium quartz sand, very slight indication of cross-bedding.
	1.5		1.50	Very strange contact (?) and very sharp medium quartz sand (yellow). Slight indications of cross-bedding.
	1.9	5 W		Once again a strange contact, very sharp (erosional??). Gray fine-medium quartz sand. Very slight indications of cross-bedding possibly dipping 5°W. Bottom of core at 1.67 m.
			1.75	

Vibracore # 28 (top) Date of Coring: 940825 Logged by Keil Schmid Date Logged: 941015

Location (FRF coordinates, m)

X (cross shore) = 599.0

Y (long shore) = 991.5

Z= -5.77

(NGVD; top of core)

Lithology Bast West Size (deg) (deg) (deg) from top of core (m) Gray-yellow fine quartz flow structures domin the structures, heavily disturbed. 2.1 O.25 Yellow-gray fine sand, nearly devoid of any structures.	X (cross shore) = 599	9.0	Y (long	shore) = 99	1.5 Z= -5.77 (NGVD; top of core)
The structures, heavily disturbed. O.25 Yellow-gray fine sand, nearly devoid of any structures.		Size		from top	
structures.		2.1		0.25	Gray-yellow fine quartz flow structures dominate the structures, heavily disturbed.
		2.0		0. <u>50</u>	
					Silty cross-bed. Below cross-bed there are numerous silty patches and coarse sand to gravel particles. Silty particles appear to be ripup clasts. Matrix sediment is gray fine quartz

Vibracore # 28 (bot) Date of Coring: 940825 Logged by Keil Schmid Date Logged: 941015

Location (FRF coordinates, m)

X (cross shore) = 599.0 Y (long shore) = 991.5 Z= -5.77 (NGVD; top of core

X (cross shore) = 59	9.0	Y (long	shore) = 99	21.5 Z= -5.77 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.5 1.2			Gray fine to very fine quartz sand with interbeds of coarse gravel to pebble-=sized grains. Crossbeds appear to be horizontal and their contacts are not sharp. Scattered "floating" gravel particles.
	2.0		1.25	Several bioturbation structures filled with yellow fine-medium quartz sand.
	0.8 2.1	0?	1.50	Very faint horizontal laminations.
	1.2	0?	1.75	Very faint horizontal laminations.
	2.0	0?	2.00	Very faint horizontal laminations.

Vibracore # 29 (top) Date of Coring: 940825 Logged by Keil Schmid Date Logged: 941014

Location (FRF coordinates, m) X (cross shore) = 498.9

Y (long shore) = 992.3

Z= -4.91

(NGVD: top of core)

X (cross shore) = 49	3.9	Y (long	shore) = 99	2.3 Z= -4.91 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.0		0.25	Gray fine quartz sand. Unusual mottling with some very black stained sand, organic.
	1.8	30 E 5 E	0.50	Contact, sharp, st 30°E. Yellow-gray fine-medium quartz sand with faint cross-bedding at 10°E.
	2.0		0.75	Contact marked by heavy mineral layer. Appears to be deformed, 5°E dip? Gray fine quartz sand. Trace amounts of coarse sand and gravel. No discernible bedding structures.
			1.00	Black sand bed

Vibracore # 29 (bot) Date of Coring: 940825 Logged by Keil Schmid Date Logged: 941014

Location (FRF coordinates, m)

X (cross shore) = 498.9

Y (long shore) = 992.3

Z= -4.91

(NGVD; top of core)

Lithology	Grain		Distance	(*************************************
East West	Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.2			Dark gray very fine quartz sand.
	1.0 2.0	30 W	_	Very coarse/gravel steep cross-bed.
19.50.00.00	0.5	20 E	1.25	Very coarse steep cross-bed.
	1.9		-	Very fine sand with scattered grave!.
	2.2	10 E 5 E		Heavy mineral cross-beds and mica? Very fine sand.
	-1.0	5 E	1.50	Sandy gravel contact at 5°E . Coarsening-upward sequence.
	2.0 0.0	10 E		Fine quartz sand.
	1.7			Coarse sand to gravel cross-bed, coarsening upward.
			1.75	
			\exists	
			=	
			2.00	

Vibracore # 30 (top) Date of Coring: 940825 Logged by Keil Schmid Date Logged: 941017

Location (FRF coordinates, m) X (cross shore) = 400.0 **Z=** -4.40 (NGVD; top of core) Y (long shore) = 992.6

X (cross shore) = 400.0 Y (long shore) = 992.6 Z= -4.40 (NGVD; top of cor	e)
Lithology Grain Dip Distance Description East West Size (deg) from top of core (m)	
Gray-yellow fine-medium quartz sand. Nors-bedding. Flow-like structures are visible, but in general top 0.75 m of core is homogenous. Numerous coarse sand to granule-sized grains scattered throughout to core. 0.25 0.50 0.75 1.00	fairly

Vibracore # 30 (mid) Date of Coring: 940825 Logged by Keil Schmid Date Logged: 941017

Location (FRF coordinates, m)

X (cross shore) = 400.0 Y (long shore) = 992.6 Z = -4.40 (NGVD; top of core)

A (Closs shore) = 40		Y (long snore) = 99		$Z = -4.40 \qquad (NGVD; top of core)$
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.0			(Top of middle of #30) Gray fine quartz sand. No preserved structures, but evidence of structures destroyed by coring. Scattered coarse sand grains in matrix.
	1.0	20 W		
	2.0		1.00	
	1.7			Yellow-gray fine to medium quartz sand. Abundant coarse grains scattered throughout.
	2.0 0.0	00.44	1.25	Yellow-gray fine-medium quartz sand with distinct "pods" of coarse sand to gravel grains. These may have been cross-beds, before coring. Both dip at about 30°W. Fewer floating
	2.0	30 W		coarse grains.
	0.5	30 W	_	
	2.0			
			1.50	
			크	
			2.00	
			2.00	

Vibracore # 30 (bot) Date of Coring: 940825 Logged by Keil Schmid Date Logged: 941018

Location (FRF coordinates, m)

X (cross shore) = 400.0

Y (long shore) = 992.6

Z= -4.40

X (cross shore) = 400).0	Y (long shore) = 99		2.6 Z= -4.40 (NGVD, top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.7		1.50	(Bottom of #30) Gray fine quartz sand with coarse basal layer, probably the bottom of this fining-upwards sequence.
	2.0			Sharp contact, disturbed by coring? Fining-upwards sequence. Gray fine-medium quartz sand at top, coarsening to yellow-brown coarse sand. Only the faintest indication fo cross-bedding in coarse part.
	1.0 2.0 1.5 0.0	10 W 15 W 0 5 W	1.75	Very sharp contact, curved and dipping 15°W. Small fining-upwards sequence. Gray fine quartz sand coarsening downwards to coarse sand. Faint cross-bedding is noticeable. Some coarse grains in fine-grained matrix.
	1.5 1.2 2.0	зw		Slightly sharp boundary at 5°W. Gray fine quartz sand with numerous coarse grains; strongly bimodal (mixing of layers?). Grades downward into medium-coarse yellow quartz sand (well-sorted).
	0.5	10 W 0 0	200	Very sharp contact (3°W). Gray fine quartz sand with faint indications of cross-beds at 10°W? A couple of floating coarse sand-size shell fragments.
	2.0	0 0	2.00	Sharp contact at 0°. Thin plane bed of yellow-brown coarse quartz sand.
	1.3		_	Sharp contact at 0°. Same bed as above.
	1.8			Sharp contact at 0°. Coarsening upwards sequence. Bimodal gray fine quarz sand with coarse sand. One horizontal black bed.

Vibracore # 31 (top) Date of Coring: 940825 Logged by Keil Schmid Date Logged: 941019

Location (FRF coordinates, m)

X (cross shore) = 346.7

Y (long shore) = 991.8

Z= -4.07

X (Closs shore) = 32		Y (long snore) = 99		$Z = -4.07 \qquad (NGVD; \text{ top of core})$
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
В	(phi)		0.25	Extremely disturbed core. Appears to have had significant structures A: Yellow medium-fine quartz sand with 5% shell material interspersed in matrix. B: Gray-yellow fine-medium quartz sand, without much shell material. C: Dark (black) fine to coarse heavy-mineral-enriched quartz sand. Very strange bed. Darkest material is at contact with B. Coarse grains on east wall of core tube.
			0.50	D: Yellow medium quartz sand with serveral gravel pieces. Poorly sorted.
× D				Bottom of core section at 0.60 m.
•			0.75	
			1.00	

Vibracore # 31 (bot) Date of Coring: 940825 Logged by Keil Schmid Date Logged: 941020

Location (FRF coordinates, m)

X (cross shore) = 346.7

Y (long shore) = 991.8

Z= -4.07

X (cross shore) = 34	6.7	Y (long shore) = 99		11.8 Z= -4.07 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	Highly Variable			Highly disturbed? Vertical beds of alternating coarse and fine sand.
	Highly		0.75	Yellow-brown medium to very coarse sand.
	1.0			Irregular contact. Gray fine-medium quartz sand with scattered coarse to very coarse sand.
	1.8	·		Long bioturbation (?) structure, filled with coarse to very coarse sand.
			1.0 <u>0</u> —	
	1.5			Relatively undeformed section of core. Yellow-
		0		brown medium-coarse sand grading to coarse- very coarse sand. Very faint indication of cross- beds with one easily recognized fine-grained
	1.9	2 E	1.25	lamination dipping 2°E. Fainter ones are horizontal.
**************************************	8.0	0	_	

Vibracore # 32 (top) Date of Coring: 940908 Logged by Keil Schmid Date Logged: 941013

Location (FRF coordinates, m)

X (cross shore) = 270.2 Y (long shore) = 939.6 Z= -2.28 (NGVD; top of core)

X (cross shore) = 27	0.2	Y (long shore) = 93		39.6 Z= -2.28 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.9	30 W 30 W 25 W	0.25	Yellow-gray medium-fine quartz sand. Very slight indications of cross-bedding at 5°-7°E. Pockets of sltightly coarser sand mainly below 0.5m, otherwise very homogenous. Core has very slight laminations (may show up better with peel) Very slight laminations. Heavy mineral lamination.
			1.00	

Vibracore # 32 (bot) Date of Coring: 940908 Logged by Keil Schmid Date Logged: 941013

Location (FRF coordinates, m)

Y (cross chars) = 270.2 Y (long shore) = 939.6 Z= -2.28 (NGVD: top of core)

X (cross shore) = 270		Y (long	shore) = 93	9.6 Z= -2.28 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
		5 W 5 W 35 E		Yellow-gray medium-fine quartz sand. Very faint cross beds dipping 5° W Sharp contact dipping 35°E Gray fine quartz sand. This bed is entirely cross-bedded with heavy mineral banding. All dips are nearly horizontal. No vertical change in grain size. Noticeably darker lamination. Cross-bed of olive/brown fine sand.

Vibracore # 33 (top) Date of Coring: 940908 Logged by Keil Schmid Date Logged: 941019

Location (FRF coordinates, m)

X (cross shore) = 260.2

Y (long shore) = 940.3

Z= -1.92

X (01033 311016) = 20		f (long shore) = 94		(11412) (0) (0) (0)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.7			Yellow medium-fine quartz sand. Very faint indication of cross beds in upper 10cm.
	2.0	20 E		Yellow-gray cross-beded medium-fine quartz sand. Top cross-bed is thick (5cm) and gray.
	1.8	10 E	 	eand. Top cross-bed is trick (SCIII) and gray.
	1.9	10-15E	-	Slight grain size change and slightly steeper cross beds. Slight fining-upwards trend.
	1.8			
			0. <u>50</u>	
			\exists	
			_	
		•		
			0.75	
			\exists	
			1.00	

Vibracore # 33 (bot) Date of Coring: 940908 Logged by Keil Schmid Date Logged: 941020

Location (FRF coordinates, m)

X (cross shore) = 260.2 Y (long shore) = 940.3 Z = -1.92 (NGVD; top of core)

X (cross shore) = 26	0.2	Y (long shore) = 94		0.3 Z= -1.92	(NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description	
	1.8	5-10 E	0. <u>50</u> — — — —	are curved, probably fr grain size differentiatio	approximately 5°. Beds
	1.9	0-5 E	0. <u>75</u>	medium quartz sand. slight apparent grain-si	Also cross-bedded, but ize difference. Cross-y dipping offshore, not eds are curved, but

Vibracore # 34 (top) Date of Coring: 940908 Logged by Keil Schmid Date Logged: 941020

Location (FRF coordinates, m)

X (cross shore) = 250.1 Y (long shore) = 940.6 Z = -1.8 (NGVD; top of core)

Lithology	Crain		snore) = 94	(Marz) top of cole)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.7	50 E 40 E 30 E	0.50	Yellow medium quartz sand. Flow structures down to about 50 cm from top of core. Slight fining-downwards trend is noticeable. Grey-yellow fine-medium quartz sand with partly preserved structures. Cross-beds appear to be slightly coarser or have more heavy minerals. Dip of beds is very steep at 50 cm from top of core, but dips flatten out quickly with down-core distance from 50 to 60 cm from the top of the core.

Vibracore # 34 (bot) Date of Coring: 940908 Logged by Keil Schmid Date Logged: 941020

Location (FRF coordinates, m)

X (cross shore) = 250.1

Y (long shore) = 940.6

Z= -1.80

Lithology	Grain	Dip	Distance	Description
East West	Size	(deg)	from top	Description
	(phi)		of core (m)	
	1.9	20 E	0.75	Gray-yellow fine-medium quartz sand gradding into yellow-gray medium-fine quartz sand. Cross-bedding in upper portion at 20°E
		10 W		Contact possibly erosional. Gray fine-medium quartz sand with faint crossbeds dipping approximately 10°W. Slight fining-upward trend.
	1.9		1.00	Medium-coarse shelly quartz cross-bed.
	1.7	10 -15 W 10 W		Sharp contact dipping 10°W.
	1.5	10 W 10 W		Yellow medium quartz sand crossbed.
	1.9	10 W 10 W	1.25	Sharp contact (slightly disturbed) Black-gray fine quartz sand.
	1.5	20 W		Sharp contact (also disrupted.) Yellow medium quartz sand with cross-beds dipping 20°W.

Vibracore # 35 (top) Date of Coring: 940908 Logged by Keil Schmid Date Logged: 941021

Location (FRF coordinates, m)

X (cross shore) = 239.9 Y (long shore) = 940.5 Z= -1.95 (NGVD; top of core)

	9.9	Y (long shore) = 94		0.5 Z = -1.95 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.0			Gray-yellow fine-medium quartz sand. No structures.
	1.9	10 W 5 W 0 15 E 20 E	0.25 —	Yellow medium-fine quartz sand fining downward to yellow gray fine-medium quartz sand crossbeds to 40 cm below top of core. Beds dip toward the west at 10 to 20 cm from top of core, and at greater depth dip sharply to east. Lower beds may have been disturbed by coring.
	2.0	20 E 5 W	0.50	Contact, possibly erosional. Slight color change to grayish-yellow fine- medium quartz sand. Two very distinct crossbeds that have been disturbed. Below disturbed cross beds sediment is gray fine- medium quartz sand with one distinctly undisturbed cross-bed at 5°W.
			0.75	

Vibracore # 35 (bot) Date of Coring: 940908 Logged by Keil Schmid Date Logged: 941021

Location (FRF coordinates, m)

X (cross shore) = 239.9

Y (long shore) = 940.5

Z= -1.95

Lithology	Grain	Dip (deg)	Distance from top	Description
East West	Size (phi)	(deg)	of core (m)	
	2.0	2 - 5 W	0.75	Gray-yellow fine quartz sand coarsening to yellow gray fine-medium quartz sand. Cross-bedding structures throughout. They are faint but appear to be dipping onshore.
	1.8	_	_	Fairly sharp contact evident as a color change, 10°E dip.
	2.0	10 E 0	1. <u>00</u>	Gray fine quartz sand with horizontal crossbeds, once again very faint indications.
	2.0			
	1.6	2 W	1.25	Nearly horizontal sharp contact yellow medium quartz sand with some shell material. Possible horizontal cross-beds? Very faint!!
			_	
			_	

Vibracore # 36 (top) Date of Coring: 940908 Logged by Keil Schmid Date Logged: 941018
Location (FRF coordinates, m)

X (cross shore) = 230.4

Y (long shore) = 940.5

Z= -2.05

A (cross snore) = 2.			snore) = 94	
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.9		0.25	Yellow medium-fine quartz sand. Occasional flow structures. Very homogeneous, no sign of cross beds.
			0.50	Slightly coarser flow structure.
	1.8	0	0.75	One distinct cross-bed, deformed by coring (?).
			1.00	

Vibracore # 36 (bot) Date of Coring: 940908 Logged by Keil Schmid Date Logged: 941018

Location (FRF coordinates, m)

X (cross shore) = 230.4

Y (long shore) = 940.5

Z= -2.05 (NGVD; top of core)

X (cross shore) = 23			snore) = 94	
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	
	1.8	7 W	1.00	Yellow medium-fine quartz sand, no structures. Sharp contact, curved slightly, dipping 7°W.
		7 W		Gray fine-medium quartz sand. Fining-upwards unit. Faint cross-beds. Color changes to yellow down core.
			1.25	
		2 W		
	1.4	2 - 5 W	1.50	Medium-coarse quartz sand with abundant shell fragments. Very faint cross-bedding.

Vibracore # 37 (top) Date of Coring: 940908 Logged by Keil Schmid Date Logged: 941022

Location (FRF coordinates, m)

X (cross shore) = 217.7 Y (long shore) = 940.3 Z= -2.05 (NGVD; top of core)

X (Closs shore) = 21			snore) = 94	(11212) 100 01 0010)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.9		0.25	Gray fine-medium quartz sand. No structures.
	1.6	5 W	0. <u>50</u>	Slightlydeformed contact, yet sharp. Yellow medium quartz sand. Distinctly different bed from bed above, with deformed cross-bedding. Fining upwards slightly.
	1.5			Sharp contact but deformed
	2.0		0.75	Sharp contact, but deformed. Gray fine-medium quartz sand with anticlinal cross-beds (deformed).
			1.00	

Vibracore # 37 (bot) Date of Coring: 940908 Logged by Keil Schmid Date Logged: 941024

Location (FRF coordinates, m) X (cross shore) = 217.7

Y (long shore) = 940.3

Z= -2.05

X (cross shore) = 217	(./	Y (long	shore) = 94	$\mathbf{Z} = -2.05 (NGVD; \text{ top of core})$
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.9	40 - 50 E		Gray fine-medium quartz sand coarsening to yellow medium to slightly coarse quartz sand very steeply dipping cross-beds.
	1.7		1.00	
		_		Very sharp contact (erosional?), dipping 20°E
	1.4 2.0	20 E 10 E		Gray fine sand coarsening to gray-yellow fine- medium quartz sand. Cross-beds change orientation with depth.
		0 A 1	1.25	
	1.9	5 E 5 E		Sharp contact dipping at 5°E, not erosional.
	1.7	15 E		Yellow medium to slightly fine quartz sand. Cross-beds change quickly from off to onshore.
	1.7	5 W	1. <u>50</u> —	
	1.9 1.7 1.2 1.6	0		Coarse sand cross-bed, fairly sharp horizontal contacts.
			1. <u>75</u> —	

Vibracore # 38 (top) Date of Coring: 940909 Logged by Keil Schmid Date Logged: 941024

Location (FRF coordinates, m)

X (cross shore) = 210.3

Y (long shore) = 940.5

Z= -2.06

1 *					
Lithology East	West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
		1.9			Gray fine-medium quartz sand, coarsening to yellow medium quartz sand at 30 cm below top of core.
<u> </u>			60 W	0.25	Marginal contact (disturbed)
			75 E		Yellow medium quartz sand.
					Cross-beds below 30cm are highly deformed and dip at extreme angles (up to 75°).
			75 E	0.50	,
<u> </u>		1.5			
	ĺ			0.75	
				·	
	ľ			=	
					·
				1.00	

Vibracore # 38 (bot) Date of Coring: 940909 Logged by Keil Schmid Date Logged: 941031

Location (FRF coordinates, m)

X (cross shore) = 210.3

Y (long shore) = 940.5

Z= -2.06

X (cross shore) = 21	0.5	i (long	snore) = 940		(NGVD, top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description	
	1.7 1.9	30 E	0.75	Yellow-gray mediun sand. Top cross be	n/fine to fine/medium quartz eds deformed.
	1.2	20 W			
	1.2	30 W	1.00		
	1.8	20 W 15 W			
		10 W			
	1.5	10 W	1.25		
		10 W			
	1.8	5 W			
	1.4	15 E	1.50	Very subtle contact	t.
	1.6				
	<u> </u>				

Vibracore # 39 Date of Coring: 940909 Logged by Keil Schmid Date Logged: 941031

Location (FRF coordinates, m)

X (cross shore) = 205.1 Y (long shore) = 940.4 Z = -2.07 (NGVD; top of core)

Lithology Grain Dip Distance		(*************************************		
East West	Size	(deg)	Distance from top of core (m)	Description
East West	1.7 1.5 1.4 1.5 1.6 2.0	40 W 5 W 10 W	1.50 —	Yellow medium fine quartz sand. No apparent structures. Sharp contact dipping 35° - 40° W. Yellow medium quartz sand with coarse crossbeds that are highly deformed. Fairly sharp contact. Gray fine quartz sand. No apparent cross-beds.
			2.00	

Vibracore # 40 Date of Coring: 940909 Logged by Keil Schmid Date Logged: 941101

Location (FRF coordinates, m)

X (cross shore) = 170.4 Y (long shore) = 939.5 Z= -2.11 NGVD; top of core)

X (cross shore) = 170.4		Y (long	shore) = 93	9.5 Z = -2.11 NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	
	1.6	20 W		Yellow medium quartz sand. Only faint indications of cross-bedding.
	1.8	40 W		Gray-yellow fine-medium quartz sand. Appears to be cross-bedded but beds are highly disturbed. Slight coarsening upwards sequence.
	1.9 1.3	0 30 W	1. <u>00</u>	Medium-coarse quartz sand.
			1.50	
			2.00	

Vibracore # 42 Date of Coring: 940909 Logged by Keil Schmid Date Logged: 941101

Location (FRF coordinates, m)

X (cross shore) = 146.2 Y (long shore) = 940.2 Z= -1.13 (NGVD; top of core)

Lithology East West Size (phi) 1.7 1.7 1.9 1.7 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5	A (Cross shore) = 14			snore) = 94	, , , , , , , , , , , , , , , , , , , ,
coarse sand to gravel scattered in matrix. No apparent cross-beds preserved. 1.7 1.9 1.9 1.3 1.7 1.0 1.0 1.5 W 1.7 1.0 1.5 W 1.7 1.0 1.5 W 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Lithology East West		Dip (deg)	from top	
	East West	1.7 1.3 1.7 1.0 1.7	50 E 20 E 0 15 W 20 W 15 W	0.5	Yellow-gray medium-fine quartz sand with coarse sand to gravel scattered in matrix. No apparent cross-beds preserved. Slight contact. Gray-yellow fine-medium quartz sand cross-bedded with upper portion slightly disturbed. Large cross-beds, alternating coarse and fine.
2.0					

Vibracore # 43 Date of Coring: 940909 Logged by Keil Schmid Date Logged: 941101

Location (FRF coordinates, m)

X (cross shore) = 219.9

Y (long shore) = 960.7

Z= -2.08 (NGVD; top of core)

X (cross shore) = 21			Siloie) = 90	
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.7	0		Yellow-gray medium-fine quartz sand. No structures evident.
	1.9	0		Gray-yellow fine-medium quarz sand, with deformed structures.
	1.5	30 E	0.50	Gray fine quartz sand, cross-beds in upper portion, lower portion appears to be bioturbuted. No visible cross-beds in lower portion.
	2.0		1.00	Fairly sharp contact.
	1.7 1.0	15 E 15 W	-	Medium to very coarse sand with cross beds.
	1.6	15 W	1.50	Yellow medium quartz sand appears structureless.
			2.00	

Vibracore # 45 Date of Coring: 940909 Logged by Keil Schmid Date Logged: 941101

Location (FRF coordinates, m)

X (cross shore) = 270.2

Y (long shore) = 960.2

Z= -2.21 (NGVD; top of core)

Lithology East West	Grain Size	Dip (deg)	Distance from top	Description (NGVD; top of core)
				Yellow-gray medium-fine quartz sand. Deformed structures. Graded contact. Grayyellow fine-medium quartz sand, with disturbed structures. Very sharp erosional contact, horizontal. Fining-upward sequence. Top: yellow medium quartz sand. Bottom: yellow-brown coarse quartz sand appears to have cross-beds. Horizontal. Very sharp contact. Gray fine quartz sand with black and cross-beds.
			2.00	

Date Logged: 941101 Date of Coring: 940909 Logged by Keil Schmid Vibracore # 46

Location (FRF coordinates, m) X (cross shore) = 260.1

Y (long shore) = 960.3

Z=-1.94 (NGVD: top of core)

X (cross shore) = 26	0.1	Y (long	shore) = 96	60.3 Z= -1.94 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.6	45 W		Yellow medium quartz sand Cross beds dip steeply onshore. Probably disrupted?
	1.6 1.9	35 E 20 E 15 E	0.50	Yellow-gray medium-fine cross-bedded quartz sand. All cross beds dip offshore (East).
	1.5 2.0 1.4 2.0 1.2 1.9	5 E	1.00	Gray fine quartz sand with cross beds of medium/coarse sand. Cross-bed sets up to 5 cm thick, dipping mainly offshore and fining-upward.
	1.0 1.9	0		

Vibracore # 47 Date of Coring: 940909 Logged by Keil Schmid Date Logged: 941101

Location (FRF coordinates, m)

X (cross shore) = 239.8 Y (long shore) = 960.1 Z = -1.97 (NGVD; top of core

X (cross shore) = 23	39.8	Y (long	shore) = 96	60.1 Z= -1.97 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.9			Yellow-gray fine-medium fining upward to gray fine quartz sand. Many distorted cross-beds.
	1.8	15 W	0.50 —	
	2.0	40 W	1.00	
ក្តើក្រសួមប្រកិច្ចបំប្រព័ទ្ធ ប៉ុន្តបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រ កំប្រកិច្ចប្រកិច្ចបំបានបានបានបានបានបាន និង បើបើប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រ កុំប្រកិច្ចប្រកិច្ចបំប្រកិចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំបិប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិចប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំបិប្បប់ប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំបិច្ចបំបិប្បប់ប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំប្រកិច្ចបំបិប្ច	1.5 1.0	5 E		Yellow-brown medium to very coarse cross- bedded sand. Cross-beds are coarser.
	1.5	10 W	1.50	Yellow-brown medium quartz cross-bedded sand. Cross-beds are slightly coarser.
			2.00	

Vibracore # 48 Date of Coring: 940909 Logged by Keil Schmid Date Logged: 941005

Location (FRF coordinates, m)

X (cross shore) = 230.3 Y (long shore) = 960.0 Z = -2.07 (NGVD; top of core)

Lithology East West	Grain Size	Dip (deg)	Distance from top	Description
	(phi) 1.9		of core (m)	Yellow-gray fine-medium quartz sand. Several distorted bedding structures.
	1.8	10 E	0.25	Gray fine quartz sand. Graded contact, slight color change. Crude bedding with iron staining (?). Grain size homogeneous from top of core to 0.8 m from top of core.
			0.50	to o.a m nom top of core.
		15 E	0.75	Very weak indications of bedding.
	2.0	10 E 5 E		Color change, slightly darker.
	1.0	5 E	1.00	

Vibracore # 49 Date of Coring: 940909 Logged by Keil Schmid Date Logged: 941101

Location (FRF coordinates, m)

X (cross shore) = 152.9 Y (long shore) = 960.9 Z= -1.51 (NGVD; top of core)

Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
East West	Size			
		·	1.00	

Date of Coring: 941021 Logged by Keil Schmid Date Logged: 941027 Vibracore # 50

Location (FRF coordinates, m) X (cross shore) = 370.0 Z= -3.65 (NGVD; top of core) **Y (long shore) =** 940.3

X (cross shore) = 37	0.0	Y (long shore) = 94		
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.0	50 E		Yellow-gray fine-medium quartz sand appears to have had some structure, especially below 0.5 m but highly deformed. Fining-upward sequence.
	1.5 1.9 2.3	25 E 25 E 25 E	0.50	Erosional contact: sharp color change and slight grain size change. Yellow gray fine-medium quartz sand fining to gray-black fine quartz sand. Lots of cross-beds dipping offshore but somewhat disturbed. Closely spaced.
	2.0 2.1	5 W 15 E 5 E	1.00	Color change contact with only slight grain size change. Dips 25°E. Gray fine quartz sand finning to gray-black fine quartz sand. Crossbeds switch from onshore (at top) to offshore.
	2.0 0.5 0.5 2.0	15 W 15 W 0		Curved contact? 5°E (deformed) Gray fine quartz sand with curved nearly horizontal bleck color cross-beds at top. Two prominant coarse sand cross-beds.
			1.50	
			2.00	

Vibracore # 51 Date of Coring: 941021 Logged by Keil Schmid Date Logged: 941027

Location (FRF coordinates, m) X (cross shore) = 340.4 Y (long shore) = 939.6 Z= -2.98 (NGVD; top of core)

Lithology	Grain	Dip	Distance	Description
East West	Size	(deg)	from top	
0001000000000	(phi)		of core (m)	
			_	Yellow-gray medium quartz sand coarsening upwards. No major grain size variations.
	1			grant dies vandions.
			0.50	
			-	
	1.8			Highly deformed by coring.
	1.0			• •
				Slightly coarser cross-beds
	1.6	40 E	1.00	
		!		Possible deformation during coring?
				Fine quartz sand cross-beds dipping steeply
بنبذ بنبذ	1.9	30E		offshore (E).
		i		i
		5E	-	
			1.50	Fine quartz sand cross-beds dipping shallowly
	1.6			offshore (E).
	2.0		│	
	ĺ	l		
			-	
	Ì			
			2.00	

Date Logged: 941030 Date of Coring: 941021 Logged by Keil Schmid Vibracore # 52

Location (FRF coordinates, m) X (cross shore) = 167.0

Y (long shore) = 939.8

Z= -1.64 (NGVD; top of core)

X (cross shore) = 16	7.0	1 (lolig	shore) = 93	9.8 Z= -1.64 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.8			Yellow-gray fine-medium quartz sand slight finning upwards. Highly cross-bedded but all beds disturbed during coring.
		70 W		Two pebble-size quartz fragments.
		50 W	0.25	
		35 W	_	
		0	0. <u>50</u>	Sudden change in cross bed dip direction with no apparent erosional surface.
		30 W 50 W		
	1.7	30 W 30 W 30 W	0.75	Very sharp contact.
	1.2	30 W		Yellow-brown medium to very coarse quartz sand, not any shells. Slight cross-bedding.
	0.0			Very sharp irregular contact. Gray-yellow fine-medium quartz sand.
				-
			1.00	

Vibracore # 53 Date of Coring: 941021 Logged by Keil Schmid Date Logged: 941030

Location (FRF coordinates, m) X (cross shore) = 320.0 Y (long shore) = 939.3Z= -2.83 (NGVD: top of core)

A (cross shore) = 32	.0.0	r (long	snore) = 93	39.3 Z= -2.83 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.0 1.7 1.8 1.5 2.0 2.0	10 E 5 W 30 W 35-40 W 35 W 15-20 W 5 W 10 E 25 E 20 E 5 E 10 E 5 E	1.50 —	Yellow medium-fine quartz sand has slight flow structures in top 10 cm or core. Disturbed cross-beds below 10 cm. Fairly sharp contact, dipping 30°W, disturbed by coring. Yellow-gray fining-upward sequence. High angle cross-beds, disturbed by coring. Sharp contact dipping 35°W, disturbed. Gray fine quartz sand. Fining-upward sequence. Cross beds throughout. Coarse-grained cross beds from 100 cm to 125 cm below top of core. Very subtle contact. Gray fine quartz sand with single black cross-bed. Cross-beds are very subtle and dip shallowly off-shore.
			2.00	

Vibracore # 55 Date of Coring: 941023 Logged by Keil Schmid Date Logged: 941030

Location (FRF coordinates, m)

X (cross shore) = 330.0 Y (long shore) = 939.9 Z= -2.42 (NGVD; top of core)

X (cross snore) = 33			Distance	
Lithology East West	Grain Size	Dip (deg)	Distance from top	Description
	(phi)		of core (m)	
	1.6	Flow	0.50	Yellow-gray medium to slightly fine quartz sand. Flow structures caused by coring extend from top of core to 75 cm below top of core.
	1.7	10 E 35 W	1.00	Abundant cross beds dipping 10°E, possibly deformed by coring. Beds possible deformed by coring?
	1.6	35 W 15 W		Beds likely undeformed.
	1.9 2.0 1.7	10 W	1.50	Sharp contact dipping 10°W Gray fine quartz sand coarsening downward to gray-yellow fine-medium quartz sand. Horizontal cross beds (?) and some gravel-size grains.
			2.0	

Vibracore # 56 Date of Coring: 941023 Logged by Keil Schmid Date Logged: 941031

Location (FRF coordinates, m)

X (cross shore) = 309.8 Y (long shore) = 939.6 Z= -2.72 (NGVD; top of core)

Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.8		0.25 — 0.50 — 0.75 — 1.00	Yellow/gray fine-medium quartz sand. Homogeneous grain size. Possible westward-dipping cross beds.

Logged by Keil Schmid Date Logged: 941027 Date of Coring: 941023 Vibracore # 57

Location (FRF coordinates, m)

Y (cross shore) = 360.2

Y (long shore) = 1006.0

Z= -3.16 (NGVD; top of core)

X (cross shore) = 360	0.2	Y (long	shore) = 10	06.0 Z= -3.16 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.9			Gray-yellow fine to slightly medium quartz sand. No real structures visible.
	2.0	-	0. <u>50</u> —	Gray fine quartz sand with highly deformed cross-bedding.
	1.7	5 E 10 E		Yellow fine-medium quartz sand with cross-beds dipping 10°E. Beds are slightly deformed.
	2.0	10 E	_	Gray fine quartz sand with fine quartz sand cross-beds. Abundant black heavy minerals. Cross-beds are wavy.
	1.6	10 W 5 W	1. <u>00</u>	Yellow-gray medium fine quartz sand at top coarsening downward to gray-yellow fine-medium quartz sand. Highly cross-bedded, dipping 5°W.
	1.8	10 E	1.50	Yellow medium quartz sand. Possible cross- beds.
				-
			2.00	-

Vibracore # 58 Date of Coring: 941023 Logged by Keil Schmid Date Logged: 941030

Location (FRF coordinates, m)

X (cross shore) = 340.2 Y (long shore) = 1005.3 Z= -2.55 (NGVD; top of core)

List alama		r (long shore) = 10		(*************************************
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.0 1.8	25 E 35 E 45 E		Gray fine-medium quartz sand coarsening downwards to yellow medium quartz sand. Highly cross-bedded. Steeply dipping to the east. Dips are steeper at bottom of unit. All cross-beds appear to be deformed.
	1.5	50 E	0.50	Sharp contact, dipping 10°E. Dark gray fine
	1.9	10 E 5-10 E 5 E		quartz sand with faint cross-bedding. Slightly disturbed graded contact dipping 5°E.
	1.8	5 E		Yellow medium quartz sand. Highly cross- bedded 5°E, still slightly disturbed. Grading into yellow-gray fine-medium quartz
	1.2 1.5	0 5 E	1. <u>00</u> —	sand. Cross-bedded (faint) at 5°E. Fairly sharp contact. Medium-coarse yellow quartz sand. Slight indication of cross beds.
			1.50	
			\exists	
			2.00	

Vibracore # 59 Date of Coring: 941023 Logged by Keil Schmid Date Logged: 941031

Location (FRF coordinates, m)

X (cross shore) = 320.2 Y (long shore) = 1006.1 Z = -2.09 (NGVD; top of core)

X (cross snore) = 32			Distance	Description
Lithology East West	Grain Size	Dip (deg)	from top	Description
East West	(phi)	(ucg)	of core (m)	
	(511)			Top 25cm yellow medium/coarse quartz sand. Disturbed.
				Distuibed.
	1.2			
			-	
			0.25	
	1			Valley medium guertz cond. Cross hadded. All
	1.5	45 W		Yellow medium quartz sand. Cross-bedded. All slightly disturbed.
ではないない	1			ongnay distarbed.
	1	25 W		
	1			
			<u> </u>	
	1	20 W	l —	
	3			
	7	10 W	ــ محم ـــ	·
	3	0.147	0.50	
	1.5	0 W	_	Shift from offshore dips to onshore dips.
and the same of the same		10 E		
				i
	4			
		20 E		
	1		_	
المراوا المستمين المستمين	1			
	4		0.75	
	2			
			_	
	1			
	3	ŀ		
	4	10 E		1
	4	' -		Faint contact
	4	1	-	1
	4		-	
	1.8		-	1
	1.0		1 00 -	1
			1.00	

Vibracore # 60 Date of Coring: 941023 Logged by Keil Schmid Date Logged: 941027

Location (FRF coordinates, m)

X (cross shore) = 160.0 Y (long shore) = 940.2 Z = -0.95 (NGVD; top of core)

Lithology	Grain		Distance	(****-, **p **, ***)
East West	Size	Dip (deg)	Distance from top	Description
	(phi)	(,	of core (m)	
	1.8	25 W		Yellow gray medium quartz sand. Fining- upward sequence. Coarser grained cross-beds throughout. Dip angles change with depth, but are uniformly to the west.
	1.6	5 W 5 W	0.5	
	1.7	25 W 25 W		
	0.8 2.1	5 W 5 W	1.0	Sharp contact at 5°W. Erosional gray fine quartz sand cross-beds dipping 5°W.
	0.5 1.3	20 W 20 W		Large cross-bed of coarse sand dipping 20°W Bimodal distribution of sand sizes. Poorly sorted gray-yellow fine-medium quartz
			1.5	sand with gravel.
			2.0	

Vibracore # 61 Date of Coring: 941023 Logged by Keil Schmid Date Logged: 941031

Location (FRF coordinates, m)

X (cross shore) = 154.8 Y (long shore) = 940.3 Z= 1.19 (NGVD; top of core)

X (cross shore) = 154.8		Y (long	shore) = 94	0.3 Z= 1.19 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.2 1.7	?	0.50	Yellow-brown medium-coarse quartz sand. Curved horizontal contact. Sharp. Gray-yellow medium/fine quartz sand. Very faint indications of slightly curved cross-beds. No grain size difference between beds.
	1.7		1.00	
	1.0 1.7 1.2	8 W	1.50	Medium/fine quartz sand. Grading into medium/coarse sand.
			2.00	

Vibracore # 62 (top) Date of Coring: 941025 Logged by Keil Schmid Date Logged: 941102

Location (FRF coordinates, m)

X (cross shore) = 320.7

Y (long shore) = 940.8

Z= -2.50 (NGVD; top of core)

Lithology Crain		l (long shore) = 94		(
Lithology East West	Grain Size	Dip (deg)	Distance from top	Description
1	(phi)	(deg)	of core (m)	
	1.7			Medium quartz sand. Deformed structures.
	1.7	20 W 30 W 20 W	0.3 — — 0.50 —	Yellow medium quartz sand Highly cross-bedded. Cross beds are closely spaced and all dip onshore (W). Coarsing upwards sequence.
	1.8 1.9	15 W 10 W 10 W		
	2.1	15 W 35 E	1.00	Faint contact, dipping10°W Gray fine quartz sand Larger cross-beds than above.
			1.50	
			2.00	

Vibracore # 62 (bot) Date of Coring: 941025 Logged by Keil Schmid Date Logged: 941102

Location (FRF coordinates, m)

X (cross shore) = 320.7

Y (long shore) = 940.8

Z= -2.50

(NGVD; top of core)

X (cross shore) = 320).7	Y (long shore) = 94		2 = -2.50 (NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	1.7	5 W		Yellow-gray fine-medium quartz sand, cross- bedded.
	2.0			Gray fine quartz sand, less evidence of cross- bedding.
	0.0	15 E 15 E	1.50	Medium sand to gravel cross bed, very sharp contacts dipping at 15°E.
	2.0			Gray fine quartz sand, increased shell content. No apparent structures.
		15 W		Sharp contact dipping 15°W. Yellow-brown medium-coarse quartz sand, slightly mottled
	1.0		2.00 —	look. Appears to have been bioturbated.
	0.8 1.7	10 E		
	1.0	2 W 2 W		Very sharp contact dipping 2°W. Gray fine
	1.7	10 W 5 W	2.50	quartz sand. Numerous coarse-grained cross beds spaced randomly throughout unit.
	2.0			
		5 E		
			200	
			3.00	
33333333333333333333333333333333333333		30 W		

Vibracore # 63 (top) Date of Coring: 941025 Logged by Keil Schmid Date Logged: 941102

Location (FRF coordinates, m)

X (cross shore) = 317.5

Y (long shore) = 940.8

Z= -2.59

(NGVD; top of core)

X (0.000 0.1010) = 01			silole) = 94	0.6 Z= -2.59	(NGVD; top of core)
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description	
	1.8	40 W 30 W 20 W	1.50	bedded. Cross beds core to about 30 cm I beds dip onshore and Cross-beds are slight	tly coarser than other sand. Not many cross-beds.

Vibracore # 63 (bot) Date of Coring: 941025 Logged by Keil Schmid Date Logged: 941102

Location (FRF coordinates, m)

X (cross shore) = 317.5

Y (long shore) = 940.8

Z= -2.59 (NGVD; top of core)

X (cross shore) = 317.5		Y (long snore) = 94		
Lithology East West	Grain Size (phi)	Dip (deg)	Distance from top of core (m)	Description
	2.1	10 W		Apparently structureless gray fine quartz sand.
	1.0	10 00		Fairly sharp contact dipping 10°W Yellow brown coarse quartz sand
	1.8 1.0 0.5	40 W 0 W 5 W	2.00	Very steeply dipping contact. Gray fine-medium quartz sand, increase in fragile shell fragments. Fairly sharp contact. Yellow-brown coarse quartz sand. Fairly sharp contact.
	_ 1.7	16 VV		Gray poorly sorted fine to slightly coarse quartz sand. Definite increase in delicate shells. Appears to be cross-bedded. Fairly sharp contact.
	0.8	5 W 15 E	2. <u>50</u>	Yellow-brown medium-coarse quartz sand slight mottling. Well-rounded grains. Some shell frags. Extremely sharp erosional contact. Gray fine
	2.0	0		quartz sand with distinctly coarser cross beds.
· (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	1.7 2.0 1.7	10 W		
	1.8	20.5	3.00	
	0.8	20 E		
			3.50	

 CORE#___7
 TOTAL LENGTH: ____1.49

 Page 1 of 2
 X-RAY LOGGED BY: ____E. Kane _____9/9/96

Proper orientation unknown. Relative directions indicated here.

BEGIN DEPTH	DIP	DESCRIPTION
		DESCRIPTION
(m below top)	(deg)	
0	0	Horizontal beds (very faint) indicated by
		aligned shell fragments, fine-med sand.
0.00		
0.03	40	Cross beds. Bedding indicated by aligned
	->	shell fragments. Dip increases with depth.
		Beds very likely disturbed by coring.
0.00	40	
0.09	40	Change in direction of dip
	<-	
0.14	70	
0.14	70	Dip of structures increases abruptly.
	<-	Structures are apparently flow structures
		(Due to coring).
0.30	35	Flow structures shares directions at
	->	Flow structures change directions. Dips are shallower. Shell fragments are not
		uniformly aligned.
		ansionary arrangement.
0.37	15	Structures resemble bedding
	<-	333333
0.40		Structureless (either by nature or coring)
0.74	35	Faint beds, possibly bowed by coring.
	<-	
0.83	12	Bedding preserved, undisturbed.
	<-	
0.86	0	Dip decreases.
0.90	25	Concave upward beds (e.g. synclinal) both
	-><-	arms dipping equally med sand.
0.00		
0.97	20	Increase in coarse fraction and shell
	-><-	fragment content (Beds still concave upward)
1.09	-20	One 3 1
1.09	20	Gradual increase in avg. grain size and
	-><-	content (Med-coarse sand)
1.14	15	15 mm thick had as many 22 2
4.14		15 mm thick bed of markedly lower shell content
	-/<-	COULEUC

Relative directions indicated here

Proper orientation unknown. Relative directions indicated here.				
BEGIN DEPTH	DIP	DESCRIPTION		
(m below top)	(deg)			
1.16	15	8 mm thick bed w. very high shell content		
	-><-			
1.17	10	Decreasing shell content		
	-><-	1 1 1 1 (00)		
1.20	8	Abrupt decrease in shell content (~0%)		
1.25	-><- 20	Crossbeds of different dip/orientation,		
1.25	<-	truncated cleanly across top (@ 1.25m)		
		craneacea creamy across ses (craneac		
1.30		Apparently massive/structureless.		
1.35	0	Faint bedding.		
1.36	0	Bedding clearer-slightly higher shell		
		content (sand-sized fragments)		
1.44	0	Shell fraction abruptly decreases to near 0.		
2.32		Lens of shell fragments indicates dip = 0.		
1.49		End of film and log.		
	 			
	L			
	 			
		·		

CORE# 9 Page 1 of 1 TOTAL LENGTH: 1.13m

X-RAY LOGGED BY: E. Kane 9/9/96, 9/11/96

First film ("0.0 - 0.4") Begins at 0.065 m

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)		DESCRIPTION
0.065		Coargo gand C ground 1 /ha 20 ha a line
J.003		Coarse sand & gravel (to 20mm). Little indication of bedding. Elongated grains
		dip from 60°W to 60°E (common)
		LEG LEGIN OUN CO OU E (COMMINIT)
0.17		Very few elongated grains. Apparently
		massive coarse sand & gravel, poorly sorted.
		graver, poorry sorted.
0.58	20 W	Faint bed. Lower gravel fraction - poorly
		sorted.
0.65	?	Gap in core (60 mm). Mud or sand with
		gravel?
0.54		
0.71		Increase in avg. grain size - moderately
		sorted-fine gravel to coarse sand.
0.74	20 **	
0.74	20 W	Fairly distinct bedding
0.85	15 W	Din domestic 2.11
0.05	TO M	Dip decreasing. Bedding more faint
0.86	5 W	(Dip decreasing)
		(DIP decreasing)
0.87		Mud or sand w. coarse sand to gravel size
		grains (<10%)
0.88		Return to fine gravel - coarse sand - no
		indications of bedding.
0.91	0	Horizontal Bed? (Faint)
0.01		
0.94	30 E	Offshore dipping bed.
0.05		
0.95		No indications of bedding
0.98		Pines and a second
0.30		Finer sediment - fine sand (presumed) with
		occasional coarse sand to fine gravel size
		shell fragments. Massive.
1.09	0	Sand to gravel size sodiment
	Ť	Sand to gravel size sediment, very poorly sorted.
1.13		End of core & log.
		- 2010 4 209.

CORE# 10

TOTAL LENGTH: 1.20 (?) m

Page 1 of 1 X-RAY LOGGED BY: E. Kane 9/11/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
0		Massive sand w. occasional coarse sand-
		sized shell fragments.
0.36	20 E	Faint bed. Slightly coarser avg. grain
		size.
0.42	15 E	Fairly distinct beds, ~5mm thick, w.
		higher fraction of coarse sand size shell
		fragments. Beds are bowed sharply
		downward (to vertical) on offshore (E)
		side of core (disturbed by coring)
0.46		Return to massive sand w. occasional coarse
		sand sized shell fragments.
0.77		Avg. grain size increases to med-coarse
		sand. Massive.
		2 (
0.97		Massive fine-med (presumed) sand. Shell
		fragments rare.
1 07	1 E 1/2	Shell fragments more common. Fairly
1.07	15 W	distinct beds, convex upward but asymmetric
		- Longer "arm" dips onshore (w).
		- Longer aim dips onshore (w/:
1.12	15	Convex upward beds become symmetric
1.14	(<>)	CONTOR ADWARD DECOME BYMMECTIC
1.13	25 E	Convex upward beds asymmetric - Longer
		arm dips offshore (E)
1.16		Slight increase in avg. grain size.
		Moderately sorted massive med. sand.

CORE# 11 Page 1 of 1

TOTAL LENGTH: 1.6 m (?)

X-RAY LOGGED BY: E. Kane 9/11/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	DESCRIPTION
0		Discount of the second of the
U		Fine-med (presumed) sand w. faint
		vertical flow structures, no bedding.
0.40		
0.48		Segment w. slightly coarser avg. grain
	<u> </u>	size, higher shell fraction. No bedding
		preserved (if present at all)
0.55		
0.55		End of coarser segment.
0.70		
0.73		Slightly coarser section.
0.00		
0.80		End coarser section.
0.00		
0.90	~70	Sharply bowed layers, convex upward,
	(<>)	symmetric
1.10	25	
1.10	25	Less sharply bowed layer, convex upward,
	(<>)	symmetric
1.02		No no include the control of the con
1.04		Massive
1.13	0	
1.13	0	Faint horizontal bed, ~10mm thick.
		Very faint indications of horizontal beds
		from 1.13 to 1.31 m.
1.31	10	Dightimet had
1.71		Distinct beds up to 3 mm thick, slightly
	(-><-)	
		coarse to very coarse sand size shells.
1.51	0	Crossel at a 2 at 12 at 2
1.71		Gravel sized shells, pebbles, & coarse
		sand, apparently horizontal bedding.
1.56	7 1.1	Dohama ta Ci
1.30	7 W	Return to fine-med sand with 1-3mm thick
		beds. Occasional coarse shell fragments.
1.58	7 7.7	Gli-hi
1.30	7 W	Slight increase in avg. grain size.
1.60		Pro-2 - 6 6:1 - (2
1.00		End of film/log.

CORE# 12 Page 1 of 2 TOTAL LENGTH: 1.69 m (film) (core length?)

X-RAY LOGGED BY: E. Kane 9/11/96, 9/13/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
0		Very faint flow structures. Fine-med
		sand with common coarse sand shell
		fragments
0.50	25 W	Possible very faint bedding
0.54		Bottom of bedding, return to massive sand
		(fine-med w. occasional coarse shell
		fragments)
	45	www.coint hadding
0.92	45 W_	Very faint bedding
0.00	40 57	Distinct bed of coarser sand w. higher
0.98	40 W	fraction of shell fragments, 8 mm thick
		Traction of Sheff fragmenes, o min chies.
1.02	30 W	Fairly distinct bed of slightly coarser
1.02	30 W	sand.
1.04	20 W	Dip decreasing. Avg. grain size slightly
		coarser
1.06	20 E	Dip changes directions. Grain size &
		composition roughly the same as above.
1.13	20 W	Dip reverses again. Texture & composition
		unchanged.
1.16	0	Dip decreases. Slightly coarser beds w.
		slightly higher shell fraction.
1.18	0	Finer avg. grain size (fine-med sand) w.
		less shell. Faint horizontal beds.
1 01		No film of 1 21 m to 1 26 m Programed
1.21		No film of 1.21 m to 1.26 m. Presumed
	 	same as above.
1 20	10 F	Higher fraction of coarse shell fragments.
1.28	10 E	Beds more distinct, 3-10mm thick.
	1	Coarsening downward interval to 1.43 m.
		Coarbeiling downward interval to 1.15 m.

CORE# 12 Page 2 of 2

TOTAL LENGTH: 1.69 m (film) (core length?)

X-RAY LOGGED BY: E. Kane 9/11/96, 9/13/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
1.39	5 E	Med to very coarse sand w. abundant med-
		coarse sand shell fragments.
1 42	\	
1.43	4 E	Abrupt change to finer sed (fine-med sand)
		w. occasional med sand shell fragments. Thin (1-3 mm) beds.
		11111 (1-5 hdit) Deas.
1.60	10 E	Dip increases slightly
1.64	20 E	Dip increases. Slightly higher shell
		fraction & avg. grain size.
1.65	5 E	Din degranges slight described
1.05	J E	Dip decreases, slight decrease in shell fraction & avg. grain size.
		Transfer & dvg. grain Size.
1.69	5 E	End of film (apparently not end of core)

TOTAL LENGTH: 1.78 m

CORE# 22 Page 1 of 2 X-RAY LOGGED BY: E. Kane 9/13/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
0		Massive fine-med sand w. minor shell
		content.
0.68	N/A	Bowed beds (disturbed by coring) ~10 mm
		thick. Common med-grained shell fragments.
0.78		Massive sand w. minor shell content
		This had a raisely bigher shell sontont
1.06	30 E	Faint bed w. slightly higher shell content.
1.07		Massive fine-med sand.
1.07		Massive line-med sand.
1.17	40 W	Fairly distinct beds w. slightly higher
1.1/	10 11	shell content
1.23	30 W	Slight decrease in dip
1.26	20 W	Slight decrease in dip, coarse shell
		fraction increases.
1.30	20 E	Well-defined contact. Change in dip
		direction. Texture, content similar to
		above (med sand w. common coarse shell
		fragments)
1.36	10 W	Well-defined contact. Change in dip
1.30	10 W	direction. Fine-med sand w. occasional
		med shell fragments. Beds 1-4 mm thick.
1.42	5 W	Dip decreases
1.47	25 E	Very sharp contact. Change in dip
		direction. Slightly coarser avg. grain size
		(med sand) with common med shell fragments.
1.52	0	Grain size increases to coarse sand. Dip
	 	decreases.
1 52	20 5	Avg. grain size increases slightly (still
1.53	20 E	coarse sand) Dip very faint.
	<u> </u>	Coarse Sand, Drb Very Tarne.

CORE# 22 Page 2 of 2

TOTAL LENGTH: 1.78 m

X-RAY LOGGED BY: E. Kane 9/13/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	DESCRIPTION
1.56	20 W	
1.30	20 W	Well-defined contact. Change in dip
		direction. Fine-med sand with occasional med shell fragments.
		med shell fragments.
1.60	10 W	Dip decreasing. Shell content increasing
		(Common).
1.62	10 E	Increase in avg. grain size (med sand).
		Faint contact. Change in dip direction.
1 66	10 =	
1.66	10 E	Bed of med-coarse sand, ~8 mm thick.
1.68	10 E	Occasional pakklas (i
1.00	10 E	Occasional pebbles (in med-coarse sand)
1.70	10 E	Bed of med-coarse sand, ~8 mm thick.
		- or med course sand, ~o min thick.
1.71	?	Bedding unclear. Med sand.
1.78		End of core.

CORE# 23 Page 1 of 1 TOTAL LENGTH: 1.62 m

1 X-RAY LOGGED BY: E. Kane 9/13/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
0	`	Massive fine-med sand
0.77		Common med shell fragments. Med sand.
0.93		Nearly vertical flow structure along
		boundary between med sand w. common shell
		fragments (above) and massive fine-med sand w. minor shell fragments (below).
		sand w. minor shell fragments (below).
1.13	22 W	Slight increase in avg. grain size, to med
		sand. Faint bedding.
1.21	30 W	Increase in dip.
1.27	10 W	Decrease in dip.
1.00	<u> </u>	Daniel de la company de la com
1.29		Decrease in avg. grain size, to fine-med sand. No discernible bedding.
		sand. No discernible bedding.
1.37	10	Faint beds of fine-med sand, 1-5 mm thick,
	(-><-)	symmetrically concave upward
1.44	8 E	Faint offshore-dipping bed
1.45		No discernible bedding. Fine-med sand.
1.59	5 E	15 mm thick bed of med sand w. common
1.09	J E	shell fragments
		DITT II GGMCHOD
1.60		No discernible bedding. Fine-med sand.
1.62		End of core.
	<u> </u>	
	-	
	-	

CORE# 24 Page 1 of 1

TOTAL LENGTH: 1.91 m

X-RAY LOGGED BY: E. Kane 9/13/96

BEGIN DEPTH	DIP	DECODIFFICM
(m below top)	(deg)	DESCRIPTION
0		Fine-med sand w. occasional coarse shell
		fragments. Faint vertical flow structures.
0.05		
0.85		Common med. shell fragments.
0.99		
0.99		Coarse sand - fine gravel w. common coarse
		shell fragments.
1 05		
1.05	0	Gradational contact w. med sand. Very
		faint indication of dip (aligned shell
		fragments)
1.25	12	Year 6 i d
1.25		Very faint convex upwards beds, symmetric.
1.26	(<>)	Y- 1' 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.20	?	No discernible bedding.
1.28	15 E	Warran Carin La CC in the Carin La Co
1.20	13 E	Very faint offshore dipping beds.
1.31	15 E	25 mm mobble 2 2
1.31	13 E	25 mm pebble in med sand.
1.38	15 E	Redding hogens astrony 3 C. L.
2.55	10 E	Bedding becomes extremely faint but no
		indication of changing dip.
1.40	>15E?	Dip may be increasing
		or may be increasing
1.48	40 E	Very faint bedding. Dip has increased.
		Occasional grains of very coarse sand/
		fine gravel.
1.52		No discernible bedding. Fine-med sand.
		rine-med saild.
1.66	20 W	Faint bed (?), dipping onshore
		The state of the s
1.67		No discernible bedding
		- Doubling
1.77	28 W	Very faint bedding (?) (blurry x-ray)
		(., (bruily A-ray)
1.91		End of core

TOTAL LENGTH: 1.49 m

CORE# 25 Page 1 of 2 X-RAY LOGGED BY: E. Kane 9/15/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
0		Massive fine med sand w. occasional very
		coarse grains (<<1%), no shell fragments.
0.15		Very coarse grains increasing. Core appears
		disturbed by coring. Coarse fraction ~1-2%
0.26		Sudden increase in very coarse fraction
		(~20%). Grading to coarse sand.
0.36		Moderately sorted coarse-very coarse sand.
		Massive
0.46		Massive poorly sorted coarse sand to fine
		gravel
0.50		Large pebble (35 mm-45 mm) in coarse sand-
	ļ	Fine gravel.
0.54	E	Bedding contact w. fine-med sand. Contact
		is disturbed, angle not measured.
0.60	25 17	Own thick had Din conforms to that of
0.60	35 E	2mm thick bed. Dip conforms to that of
		contact above - Assume similar dips between
	 	0.54m & 0.60m
0.65	25 E	Dip decreases slightly. No indications of
0.05	22 5	bedding between 0.60m & 0.65m, but presume
		similar dips in the interval.
		VARIABLE VAR
0.70	20 E	Slight decrease in dip. Faint indications
, , , <u>,</u>		of bedding between 0.65m & 0.70m.
0.78	0	Faint indications of steadily decreasing
		dip from 0.70m to 0.78m.
0.79	0 (?)	No indications of bedding - assume 0° dip
		based on cracks at 0.86m & 0.98m (see below)
0.86	0 (?)	Horizontal crack in core indicates possible
		bedding plane w. 0° dip.

CORE# 25

TOTAL LENGTH: 1.49 m

Page 2 of 2 X-RAY LOGGED BY: E. Kane 9/15/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)		
0.98	0 (?)	Horizontal crack in core indicates possible
	0 (.,	bedding plane w. 0° Dip.
		promise with the promise of the prom
1.03	8	Common med-coarse shell fragments. Faint
	(-><-)	concave upward symmetrical beds.
1.07	20 E	Faint contact w. offshore-dipping beds.
1.09		No indications of bedding. Common coarse
		sand to fine gravel grains (disturbed
		section?)
1.13	0	Charp horizontal contact
1.13	U	Sharp horizontal contact w. poorly sorted
		coarse sand-fine gravel. Common med-coarse shell fragments. No indications of bedding
		below contact.
1.20	0	Sharp horizontal contact w. fine-med sand.
		Sand coarsens downward.
1.25	0	Common fine-med shell fragments, faint
		bedding
1 20		
1.28	0	Abundant med shell fragments.
1.29	0	Wood googge and I i i
1.23	U	Med-coarse sand w. abundant med-coarse
		shell fragments. Still coarsening downwards.
1.32	0	Very coarse sand-fine gravel.
1.33	?	Bedding indiscernible, possibly horizontal?
		Coarsening downward trend continues to
		bottom of core.
1 16		
1.46	?	Large pebble (35mm x 15mm) in very coarse
		sand to fine gravel
1.49		End of core
7.47		End of core.

TOTAL LENGTH: 1.69 m

CORE# 26 Page 1 of 2 X-RAY LOGGED BY: E. Kane 9/15/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
0		Fine-med sand w. occasional med shell
		fragments. Vertical flow structures
		(disturbance by coring).
0.23		Patch of coarse grains in fine-med sand
		(coarse fraction ~10%)
		n i a transfer and a mortical flow
0.26		Return to fine-med sand w. vertical flow .
		structures.
0.45		Common med-coarse shell fragments.
0.43		Vertical flow structures persist.
0.63		Abundant med-coarse shell fragments.
		Vertical flow structures persist.
0.85		Shell fragments abruptly uncommon. Flow
		structures persist. Fine-med sand.
1 00	20 77	First (apparently) undisturbed beds. Fine-
1.02	30 W	med sand w. common med shell fragments.
		med Sand W. Common med Sherr rragments
1.05	?	Bedding indiscernible. Fine-med sand
1.03	•	w. occasional med shell fragments.
1.22	30 W	Faint bedding. Fine-med sand w. occasional
		med shell fragments.
	0.5.55	Dela mark mark
1.28	25 W	Dip gradually decreasing. Beds much more
		distinct
1.30	10 W	Dip gradually decreasing. Beds much more
1.50	10 W	distinct
1.33	8 W	Dip gradually decreasing. Beds becoming
		more faint
1.42	0	Horizontal bed contact?
	1 00 ==	
1.43	20 W	Sudden increase in dip. Similar material.

CORE# 26

TOTAL LENGTH: 1.69 m

Page 2 of 2 X-RAY LOGGED BY: E. Kane 9/15/96

BEGIN DEPTH	DID	DECORPTION
	DIP	DESCRIPTION
(m below top)	(deg)	
1.46	20 W	Slight coarsening downward trend.
1.49	10 W	Gradual decrease in dip. Med-coarse sand.
1 50		
1.50	0	Coarse sand-fine gravel layer, 1 cm thick
1.51		Character of City and
1.31	0	Sharp contact w. fine-med sand. Bedding
		very faint.
1.52	15 W	Very faint bedding.
	FT	rainc beauting.
1.58	0	Dip decreases. Bedding more distinct,
		slight increase in shell fragments.
1.62	15 W	Increase in dip.
1.69		End of core.

CORE# 27

TOTAL LENGTH: 1.70 m

page 1 of 2 X-RAY LOGGED BY: E. Kane 9/15/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
0		Fine-med sand w. common coarse shell
		fragments. Vertical flow structures
		(Disturbance by coring)
0.49		Remnants of bedding, disturbed by coring.
0.87		Decreasing shell content. Bed is disturbed
		by coring.
0.89	25 W	Undisturbed bedding.
0.02	15 7.7	Doguesaine die Chell forements needle
0.93	15 W	Decreasing dip. Shell fragments nearly
		absent.
1.00	10 W	Minimum dip (of this interval)
1.00	10 W	FITHIUM CIP (OI CHIS INCELVAL)
1.01		Dip gradually increasing
		3
1.05	15 W	Dip gradually increasing
1.10	20 W	Dip gradually increasing. Coarsening
		downward, increasing shell fragments.
1.19	25 E,	Asymmetric, convex upward contact, sharp.
	40 W	Below contact:
		Fine-med sand w. almost no shell fragments.
1 01	25 ***	Tine and roud
1.21	35 W	Fine-med sand.
1.27	15 W	(Progumed gradual) degrades in din
1.4/	TO M	(Presumed gradual) decrease in dip.
1.29	10 W	(Presumed gradual) decrease in dip.
1.25	TO M	(Fresumed graduar) decrease in dip.
1.31	3 E	Change in dip direction
1.35	~0	Bedding very faint, near horizontal.
1.37	~0	End coarsening downward sequence, return
		to fine-med sand w. few shell fragments.

CORE# 27 Page 2 of 2

TOTAL LENGTH: 1.70 m

X-RAY LOGGED BY: E. Kane 9/15/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	DESCRIPTION
1.50	0	Horizontal contact w. med sand, coarsening
2.00	- v	downward slightly to med-coarse sand.
		Bedding faint below contact.
		bedding faint below contact.
1.55	~20 E	Contact w. fine-med sand. Bedding below
		contact faint, dipping offshore.
		original design of the state of
1.63	30 E	Faint bedding.
		Julia Dada Lig.
1.68		Bedding indiscernible.
		beauting indiscernible.
1.70		End of core.
		·
		·

CORE#__32__

TOTAL LENGTH: 1.68 m

X-RAY LOGGED BY: E. Kane 9/16/96 Page 1 of 2

No offshore direction indicated on film

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
0		Massive or disturbed fine-med sand w.
		common coarse shell fragments. Possible
		vertical flow structures.
0.54	55->	Disturbed bedding.
0.67	~55->	Med-coarse sand. Bedding disturbed
0.67	~55->	med-coarse sand. Bedding discursed
0.70	~55->	Fine-med sand w. occasional med-shell
		fragments.
0.88	30->	Fine-med sand w. abundant shell fragments
0.90		Same material - Bedding indiscernible.
		Grading to medium sand.
1 01	F0.	Contact w. fine-medium sand. Contact dips
1.01	50<-	opposite bedding above. Possibly disturbed
		by coring.
1.05	15->	Very faint bedding. Dip is opposite that
1.00		of contact above.
1.10	25->	Dip increasing, beds becoming clearer.
1.18	25->	Dip constant from 1.10-1.18
1.21	10->	Dip decreasing
1 04		mbin (1.2 mm) haminantal hada aliahti.
1.24	0	Thin (1-2 mm) horizontal beds, slightly
		convex upward. (fine-med sand w. common
		shell fragments)
1.30	25->	Common coarse shell fragments. Faint
1.30		cross-bedding. Horizontal to left-dipping
	0)	beds on left side of core are truncated
	,	by right-dipping beds on right side of
		core.

CORE# 32 TOTAL LENGTH: 1.68 m
Page 2 of 2 X-RAY LOGGED BY: E. Kane 9/16/96

		shore direction indicated on film
BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
1.35	0	Contact. Thin horizontal beds. Fine med
		sand w. occasional med shell fragments
1.41	0,10<-,	Cross bedding in fine-med sand w. common
	30->	med shell fragments.
1.46	5<-	Sub-Horizontal contact. Bedding just
		below contact presumed horizontal.
7 457		
1.47	~0	Elongated pebble (20 mm x 5 mm) oriented
		near horizontal.
1.49	0	Vora faint 1
1.49		Very faint horizontal bedding.
1.54	0	Bedding becoming more distinct.
		bedding becoming more distinct.
1.57	10->	Sharp horizontal contact w. right-dipping
		beds (fine-med sand w. common med shell
		fragments) Beds are 1-2 mm, distinct.
1.60	8->	Dip decreasing slightly
1.64	~>	Beds warped, still dipping gently to right.
1.69		End of core.

CORE# 33 TOTAL LENGTH: 0.97 m (?)

Page 1 of 1 X-RAY LOGGED BY: E. Kane 9/16/96

No offshore direction known

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
0	<-	Med sand w. abundant med shell fragments.
		Dip presumed to conform to that of lower
		beds.
0.05	~30<-	Fine-med sand w. abundant med shell
		fragments in 2-5 mm asymmetric convex-
		upward beds (beds disturbed by coring)
		presumed original dip indicated here.
0.16		Dips becoming shallower
	/051	
0.28		Symmetric convex-upward beds
	20(<>)	(original dips presumed to be horizontal)
0.36	0.2	Podding your faint
0.36	0?	Bedding very faint
0.47	15<-,	5-7mm thick asymmetric convex upward bed
0.47	38->	5 / min circa asymmetric convex appeara bea
	30 /	
0.49	20(<>)	5mm thick symmetric convex upward beds
	(0?)	
0.60	10<-,	Beds becoming asymmetric
	20->	(Original dips to left?)
	(10<-?)	
0.70	20<-	Dips becoming solely leftward.
0.87	8<-	Dips becoming shallower
0.90	0	Horizontal beds
0.97		End of core (?)
	ļ	

CORE# 34 Page 1 of 2 TOTAL LENGTH: 1.36 m

X-RAY LOGGED BY: E. Kane 9/17/96

BEGIN DEPTH	DIP	DECODISTION
(m below top)		DESCRIPTION
	(deg)	
0		Fine-med sand w. common med-coarse shell
		fragments. Possible vertical flow
		structures, indicated by vertical cracks
		in core.
0.32	35 W	Faint bedding, disturbed by coring (dip
		becomes vertical near offshore side of core).
0.40		No offshore direction noted from 0.4m to
		0.64m. Irrelevant though, as core is
		largely destroyed in this interval - no
		structures could be discerned. Material is
		fine-med sand w. common med-coarse
		shell fragments.
0.64	~20 E	Thin (1-5 mm) faint beds of fine-med sand
		w. occasional shell fragments.
0.68	18 E	Beds are warped vertically downward on
		onshore side of core.
0.72	10 E	Dip decreasing. Beds still warped sharply.
0.77	(40 W)	Presumed anomalous dip - faint bed dipping
		steeply offshore conforms to dips of
		warped portions of above beds.
0.81	10 W	Faint beds of fine-med sand w. common med
		shell fragments. Dip presumed to be true
		apparent dip of beds.
0.88	10 W	Fine-med sand w. common med shell fragments,
		occasional coarse shell fragments.
		LI agments.
1.03	10 W	Fairly distinct contact w. fine-med sand
		w. abundant coarse shell fragments. 3-5 mm
		beds. Coarse shell fragments become less
		abundant w. depth (fining downward sequence)
		(
1.10	5 W	Sharp contact

CORE# 34 page 2 of 2

TOTAL LENGTH: 1.36 m

X-RAY LOGGED BY: E. Kane

9/17/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
1.10	15 W	Fine to med sand w. common med shell
		fragments (increasing w. depth)
1.15	15 W	Fine-med sand w. no shell fragments.
1.17	8 W	Med sand w. abundant shell fragments.
1 01	~	
1.21	6 W	Fine-med sand w. common shell fragments.
		Beds are warped vertically downward on onshore side of core.
		onshore side or core.
1.27	0	Bedding very faint. Dips have apparently
		decreased to horizontal.
1.36		End of core. Bedding indiscernible.
	<u> </u>	

CORE# 35 Page 1 of 2

TOTAL LENGTH: 1.69 m ? ?

X-RAY LOGGED BY: E. Kane 9/17/96

No offshore direction noted

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
0		Apparently massive fine-med sand w. common
		med-coarse shell fragments.
0.14	5->	Faint beds, 2-4mm thick, of fine-med sand
		w. abundant med shell fragments. Beds are
		warped vertically upward on right side
		of film.
0.16	0	Dip decreases, changes direction. Beds
		still warped on right.
0.10	10	
0.18	13<-	Beds still warped on right.
0.21	10	
0.21	12<-	Dip increasing.
0.26	20	
0.26	20	
0.28		Poše
0.20	<-	Beds warped steeply downward on left side
		of film. "True" dip cannot be determined,
		but is to left.
0.44	<-	Coarsening downward sequence, med-coarse
		sand w. occasional med-coarse shell
		fragments at top. (Beds warped)
0.49	<	Med-coarse sand w. abundant coarse shell
		fragments
0.50	<-	Sharp contact w. fine-med sand w. rare
		med shell fragments. Beds warped steeply
		on both left (down) and right (up)
0.59	13<-	"True" dip? Two 4 mm thick beds of fine-
	(?)	med sand w. no shell fragments. Beds
		are warped on left & right sides of film,
		but middle appears undisturbed.
0.61		
0.61	10<-	Fine-med sand w. occasional med shell
		fragments. Bedding becomes very faint.

CORE# 35
Page 2 of 2

TOTAL LENGTH: 1.69 m ? ?

X-RAY LOGGED BY: E. Kane

9/17/96

No offshore direction noted

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	•
0.69	?	Film missing 0.69 - 1.02 m
1.02		Apparently massive fine-med sand w. common
		med-very coarse shell fragments.
1.15	3->	Faint 2-3 mm thick beds of fine-med sand
1.13		w. common med shell fragments.
1.17	4<-	Dip reverses, increases w. depth.
	15	District description of the second se
1.19	15<-	Dip increasing in depth.
1.27	30<-	Fine-med sand w. abundant med-coarse
1.27	301	shell fragments.
1.30	<-	Beds too warped (downward on left of film)
		to get reliable dips. Beds 3-5 mm thick.
1.40	(30<-)	"True" dip? (Beds still warped sharply
1.40	(300-7	downward on left side of film)
		1.3 m to 1.69 m missing. 0.3-0.69 m
		x-rayed & mis-labeled as 1.3-1.69 m.
		(End of log)
		(End of log)
	 	
		
	ļ	
	 	
	 	
	I	

CORE# 36 Page 1 of 2

TOTAL LENGTH: 1.41

X-RAY LOGGED BY: E. Kane 9/18/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
0		Fine-med sand w. occasional coarse grains.
		Apparently massive.
0.28	?	Fine-med sand w. common med-coarse shell
		fragments. Bedding disturbed by coring.
0.38	?	Occasional shell fragments, med grained.
0.60		
0.62	?	5-15 mm thick band of med coarse sand
		and coarse shell fragments.
0.70		Contract 2 / Africal 1 2 1 2
0.70		Contact? (disturbed if present) w. fine-
		med sand w. no shell fragments.
0.73		Fine-coarse sand. Coarse fraction
		decreases w. depth.
		decreases w. depen.
0.82	0	Very faint horizontal bed of fine-coarse
		sand, ~20 mm thick.
		·
0.84	0?	Fine to medium sand.
0.85	0	Faint thin beds of fine-med sand. Shell
		fraction increasing from occasional at top
		to abundant at bottom.
0.90	0	Pino mod good so should be
0.50	<u> </u>	Fine-med sand w. abundant med-coarse
		shell fragments. Contact w. fine-med sand w. rare shell fragments.
		are brieff fragments.
0.94	8 W	Dips increasing.
0.98	20 W	Dips increasing. Common med-coarse shell
		fragments.
1.04	10 W	Dips decreasing. Beds becoming more faint,
		shell fraction decreasing.
1.10		Dips increase. Shell fraction increasing
		w. depth.

CORE# 36 Page 2 of 2 TOTAL LENGTH: 1.41

X-RAY LOGGED BY: E. Kane 9/18/96

	DESCRIPTION	DIP	BEGIN DEPTH
		(deg)	(m below top)
	Abundant med-coarse shell fragments in	25 W	1.14
	med sand		
	Sudden decrease in shell fragments.	25 W	1.15
s.	Med sand w. abundant med shell fragments	25 W	1.18
	Tica baila w. abailaane mea birobe 1985, mene	23 11	1.10
	Sudden decrease in shell fragments. Conta	25 W	1.20
i.	w. med-coarse sand, coarsening downward.		
		13 W	1.24
ing			
	faint to totally indiscernible.		
nts.	Med-coarse sand w common shell fragment:	2	1 30
105.	Med-Coarse sand w. Common sherr fragment	•	1.30
	Med-coarse sand w. abundant med-coarse	5 W	1.36
	increasing w. depth.		
	End of core		1.41
		 	
nts	Fine-med sand w. common med shell fragments. Coarsening downward. Bedding faint to totally indiscernible. Med-coarse sand w. common shell fragments Med-coarse sand w. abundant med-coarse shell fragments. Avg. grain size still increasing w. depth. End of core	13 W ?	1.24

CORE# 37 TOTAL LENGTH:

Page 1 of 2 X-RAY LOGGED BY: E. Kane 9/18/96

*No offshore direction indicated on film. Field log has offshore direction.

*No offshore dir	ection in	ndicated on film. Field log has offshore dir.indicated
BEGIN DEPTH	DIP	DESCRIPTION
(m below top)	(deg)	
0	?	Fine-med sand. Apparently massive (But
		may have indiscernible bedding)
0.13		
0.13	20->	Very faint bedding.
0.24	20 -	Point 1-17:
0.24	20->	Faint bedding (assume that interval from
		0.13 m-0.24 m conforms to dips at 0.13 & 0.24 m)
		& 0.24 m)
0.34	(10->)?	Crack in core may indicate dip.
		order in core may indicate dip.
0.35		No discernible bedding.
0.40		Med-coarse sand w. no discernible bedding.
0.68	-	Apparently massive fine-med sand.
0.80	26.	
0.80	50<-, 60<-	Fine-med sand, w. bedding, likely
	00<-	disturbed from original orientation.
0.87	<-	Fine-med sand w. common very coarse shell
		fragments. Bedding too disturbed to get
		reliable dips.
0.91	30<~	Faint bedding (same material) & occasional
		v. coarse sand grains. Coarse grains &
		shell fragments increasing w. depth.
1.00	30<-	Charp contact of Simulation
1.00		Sharp contact w. fine-med sand with common
		med shell fragments. Faint bedding conforms w. dip of contact.
1.07	0 (?)	20 mm thick bed of fine-med sand w.
		common very coarse grains.
1 10		
1.10	0	Very faint bedding in fine-med sand.
1.15	17	Foint head:
1.15	17->	Faint bedding (same material) (Bedding
		has gradually reversed from that at 1.00m)

CORE#__37__

TOTAL LENGTH: 1.59 m

Page 2 of 2 X-RAY LOGGED BY: E. Kane 9/18/96

DIP	DESCRIPTION
(deg)	
\ 97	Bedding too faint to see.
20->	Extremely faint bedding.
12->	Faint contact w. fine-med sand w. common
	med shell fragments.
25.4	Dip reverses direction. Bedding is too
25<-	faint to tell whether reversal is gradual
	or abrupt.
	or aprage.
(25<>)	Symmetric, chevron-shaped bed - possibly
?	anomalous, due to crack in core.
5->	3-8 mm thick beds, alternating fine-med
	sand w. abundant med shell fragments
	and fine-med sand w. occasional med shell
	fragments.
10->	Bedding becoming faint. Fine-med sand w.
	common med shell fragments.
_	Faint horizontal beds. Same material,
Ŭ	grading to med-coarse sand at end of core.
	End of core.
	(deg) 20-> 12-> 25<- (25<>) ?

CORE# 38 Page 1 of 2

TOTAL LENGTH: 1.58 m

X-RAY LOGGED BY: E. Kane 9/18/96

BEGIN DEPTH	DIP	DECODIFIEDA
(m below top)	(deg)	DESCRIPTION
0		Fine-med sand w. occasional med-coarse
		shell fragments. No discernible bedding.
^ 45		
0.17	W	Very faint disturbed bedding, steeply
		dipping offshore (could not get reliable
		dip measurement)
0.00		
0.30		No discernible bedding.
0.40		
0.42	E	Faint disturbed bedding, dipping offshore,
		warped sharply downward on offshore side
		of core. Fine-med sand w. common med shell
		fragments, coarsening downward.
0.52	E	Med-coarse sand. Abundant med-coarse
		shell fragments.
0.53	E	Contact w. fine-med sand. Common med shell
		fragments - coarsening downward.
0.70	E	Med-v. coarse sand w. common med shell
		fragments.
0.51		
0.71		Fine-med sand w. occasional med shell
		fragments.
0.77	45.55	
0.77	45 W	Onshore dipping bed? Crack in core.
0.00		
0.80	?	No discernible bedding.
0.00	10 ==	
0.86	10 W	Very faint bedding (fine-med sand w. common
		med shell fragments)
0.91	10 W	Gradational contact w. med-coarse sand.
1.04	10W(?)	Contact w. fine-med sand w. rare shell
		fragments. Contact is warped steeply
		downward on onshore side. No discernible
		bedding below contact.

CORE#__38__

TOTAL LENGTH: 1.58 m

Page 2 of 2 X-RAY LOGGED BY: E. Kane 9/18/96

BEGIN DEPTH	DIP	DESCRIPTION			
(m below top)	(deg)				
1.09	~15 W	Faint onshore-dipping beds.			
1.19	15 W	Faint onshore-dipping beds. Dips			
		decreasing.			
1 22	3 7.7	Faint onshore-dipping beds.			
1.22	3 W	raint onshore-dipping beds.			
1.39	10 W	30 mm thick coarsening downward section.			
		Fine-coarse sand at top, med-coarse at			
		bottom.			
1.42	10 W	Fine-med sand.			
1.43	10 W	Sharp contact w. offshore-dipping			
	<u></u>	crossbeds.			
1.44	15 E	Offshore-dipping beds (fine-med sand)			
1.33	13.5	orishore-dipping beds (line-med sand)			
1.46	20 E	Fine-med sand w. common v. coarse sand			
		to fine gravel sized grains.			
1.57	~20 E				
		shell fragments.			
1.58		End of gove			
1.30		End of core.			
	ļ				
	 				

CORE# 41 Page 1 of 2

TOTAL LENGTH: >1.23 m

X-RAY LOGGED BY: E. Kane 9/18/96

BEGIN DEPTH	DIP	DECODIFIEDA			
		DESCRIPTION			
(m below top)	(deg)				
0	?	Med-coarse sand. Bedding disturbed &/or			
		indiscernible in top 0.3m			
0.30	?	Fine to med sand w. 1-2 mm beds. Bedding			
		highly disturbed.			
0.41	?	Apparently massive fine-med sand.			
0.53	?	Med sand w. common very coarse sand to			
		fine gravel grains.			
0.77	0	Sharp horizontal contact w. fine-med sand.			
		Bedding below contact is horizontal, faint.			
0.87	0	Sharp horizontal contact w.coarse sand to			
		gravel. Occasional coarse gravel grains			
		(up to 25mm) (very poorly sorted).			
		No discernible bedding.			
0.96	~0	Sharp horizontal contact w. fine-med sand.			
	8 W	Very faint bedding, dipping onshore.			
0.99	8 W	15mm thick bed of med-coarse sand w.			
		abundant shell fragments.			
1.00		Fine-med sand. Bedding very faint.			
1.04	6 W	30mm section of alternating med-coarse and			
		fine-med sand.			
1.07		Faint thin beds of fine-med sand.			
1.15	12 W	20mm coarsening downward bed of med sand			
		to med-coarse sand.			
1.17		Contact w. fine-med sand. Very faint			
		bedding. Dips shallowly onshore. Dip			
		decreases w. depth.			

CORE# 41
Page 2 of 2

TOTAL LENGTH: >1.23 m

2 of 2 X-RAY LOGGED BY: E. Kane 9/18/96

BEGIN DEPTH	DIP	DESCRIPTION
(m below top)		
1.22	0	(Horizontal bedding)
1.23		End of film.
	<u> </u>	
	 	
	ļ	
	-	
	-	
	<u> </u>	
	<u> </u>	
	 	
	 	
	1	

CORE# 50 Page 1 of 1

TOTAL LENGTH: 1.20 m (?)

X-RAY LOGGED BY: E. Kane 9/18/96

BEGIN DEPTH	DIP	DESCRIPTION		
(m below top)	(deg)	DESCRIPTION		
0	E	Fine-med sand hodding distant li		
		Fine-med sand, bedding disturbed by coring		
0.14	E?	No. 24 - 12 2 12 2		
		No discernible bedding.		
0.20	15 E	Nome Called a 22		
0.20	12 5	Very faint beddng.		
0.23		27 11		
0.23		No discernible bedding. Fine-coarse sand.		
0.58				
0.36	E?	Distinct but disturbed beds, 1-2 mm thick.		
		Fine-med sand w. abundant med shell		
		fragments. Beds asymmetrically convex		
		upward (longer limb to east)		
0.66	20 =			
0.00	20 E	Faint, slightly disturbed bedding. Dips		
		decreasing.		
0.68	10 =			
0.08	~10 E	Faint bedding.		
0.70				
0.70		No discernible bedding. Fine-med sand.		
0.05				
0.85	25 E,	Slightly asymmetric convex upward bed.		
	30 W	onger limb is to west.		
0.86		No discernible bedding.		
1.00	5 E	Faint bedding, dipping shallowly offshore.		
		District Court of the court of		
1.01		No discernible bedding.		
1.10	0	Faint horizontal bedding. Dip increases		
		slightly w. depth.		
1.17	15 W			
1.20		End of film. End of core?		
		01 COLE:		

CORE# 62 page 1 of 2

TOTAL LENGTH: 3.20 m
X-RAY LOGGED BY: E. Kane

9/4/96

BEGIN DEPTH	DIP	DESCRIPTION		
(m below top)	(deg)			
0		Disturbed by coring - no structures visible		
0.11		1-5 mm - thick faint crossbeds, dipping		
	W	onshore. Beds become more distinct with		
		depth. Some shell fragments.		
0.30		Disturbed/no structures		
0.38	20-30	1 - 3 mm thick crossbeds, dipping on shore.		
	W	Crossbeds @ 0.42-0.49 m appear disturbed.		
0.57	20 14	Dips decreasing. Common shell fragments.		
0.57	20 W	Dips decreasing. Common shell fragments.		
0.63	20 W	Common shell fragments, sand-sized.		
0.71		Disturbed/no structures.		
0.74	25 14	Create apparently along hodding plane		
0.74	25 W	Crack, apparently along bedding plane		
0.80	20 W	Crack, apparently along bedding plane		
0.85	20W	Last faint indication of bedding before		
		disturbed section below		
1 0 1 05		mil a mi anima		
1.0 - 1.25		Film missing		
1.24	5-10 W	2-5 mm thick crossbeds. Occasional		
		pebbles, 3-8 mm.		
		·		
1.35		Apparently structureless/massive section.		
		Common shell fragments.		
1.45	0	Indications of bedding re-appear. Sed is		
7.47		sand-sized.		
1.46	10 E	Coarse sand & pebble lag. Dip increases		
		w. depth. Pebbles up to 16 mm.		
1 13	05 =			
1.49	25 E			

CORE# 62 Page 2 of 2

TOTAL LENGTH: 3.20 m

X-RAY LOGGED BY: E. Kane 9/4/96

BEGIN DEPTH	DIP	DESCRIPTION			
(m below top)		DESCRIPTION			
	` 07				
1.55	~20 W	Return to finer-grained sed, alignment of			
		flat shell fragments indicates on-shore-			
		dipping beds.			
1 (0					
1.62		No indications of structure/bedding			
1.82	50-70	Bedding structures (disturbed by coring?)			
	W	Abundant shell fragments (sand-sized)			
1.89	30 W	Dips lower-presume undisturbed			
1.94		No indications of bedding (structureless/			
		massive) Abundant shell material			
2.00		End of Log			

CORE# 63

TOTAL LENGTH: 3.20 m

Page 1 of 3 X-RAY LOGGED BY: E. Kane 9/5/96

BEGIN DEPTH	DIP	DESCRIPTION			
(m below top)	(deg)				
0		Structureless/massive sand-size sed.			
		(fine-med)			
0.18	10 W	Crack across core, possibly indicating			
		bedding plane			
0.19		Continued structureless/massive sand-size			
		sed.			
0.44	35 W	Faint indications of bedding (e.g. alignment			
		of flat shell fragments)			
0.50	20 W	Faint indications of bedding (e.g. alignment			
		of flat shell fragments)			
0.58	25 W	Bedding much clearer, 1-2mm thick crossbeds			
0.68	35 W	Bedding much clearer, 1-2mm thick crossbeds			
0.00	33 W	Deduzing macri crearer, i amm criren crossseds			
0.75	25 W	Bedding much clearer, 1-2mm thick crossbeds			
0.80	10 W	Bedding bedoming more faint			
0.85	5 W	Bedding becoming more faint			
0.00	3				
0.86		No indications of bedding			
0.96	15 W	Faint bedding, aligned shell fragments			
1.06	25 W	Last visible indication of bedding in this			
		interval			
1.07		Structureless/massive occasional pebbles			
	<u> </u>	(3-8 mm) and shell fragments (~5mm)			
1.82	22 W	Increase in shell content (0-30+ % over 3cm)			
1.04	22 W	Bedding visible by alignment of shell			
		fragments			
1.88	45 W	Dip increases dramatically			

Page 2 of 3

CORE# 63 TOTAL LENGTH: 3.20 m

X-RAY LOGGED BY: E. Kane 9/5/96

BEGIN DEPTH	DIP	DESCRIPTION			
(m below top)		DESCRIPTION			
	(deg)				
1.93	25 W	Dip decreases. Shell content decreases			
		suddenly.			
2 25					
2.05	20 W	Faint indication of bedding			
0.00					
2.08		No indications of bedding. Sudden increase			
		in shell content.			
2 12	00				
2.13	20 W	(Shell still abundant) indications of			
		bedding			
2.16	10 77				
2.16	10 W	Decrease in shell content (still common)			
2.20	20.53	0			
2.20	30 W	Shell still common. Dip increasing			
2.27	20 57	1			
4.41	20 W	1 cm thick bed w. higher shell content			
2.35	10 57	/Din d			
2.33	10 W	(Dip decrease over 2.20 - 2.35m)			
2.38		Chall from an and a series			
2.30		Shell fragments suddenly more abundant.			
		Bedding structures not apparent (Fragments			
		oriented randomly)			
2.46	?	No Data			
2.30		Julia			
2.50	0	Aligned shells for the			
2.50	- 0	Aligned shells faintly indicate bedding			
2.66	15 W	Strongon indications of 1 221			
2.00	13 W	Stronger indications of bedding - Shell			
		content slightly higher			
2.78	10 W	Ding degranging Rode fairle dist			
2.70	TO W	Dips decreasing. Beds fairly distinct			
2.835	5 W	Ding degracaing Rode fairle 3:			
	J W	Dips decreasing. Beds fairly distinct			
2.92	0	Ding documents			
2.72		Dips decreasing. Beds less distinct			
2.96	5 E	Reds bogin dinning off-land			
2.50		Beds begin dipping offshore slightly.			
		Shell fragments common			
<u> </u>					

CORE# 63 Page 3 of 3 TOTAL LENGTH: 3.20m

X-RAY LOGGED BY: E. Kane 9/5/96

BEGIN DEPTH	DIP	DESCRIPTION					
(m below top)	(deg)						
3.04	0	Dips decrease to zero.					
		2200 4302 4302 4302 4302					
3.10	0	Last faint indications of bedding					
3.11		No indications of bedding. Shell content					
		increases gradually toward bottom of core.					

Appendix B - Radiograph Logs

Radiographs were obtained from thin, parallel-sided slabs approximately one cm thick using conventional techniques. Radiographs were obtained for the following cores:

Core#07

Core#09

Core#10

Core#11

Core#12

Core#22

Core#23

Core#24

Core#25

Core#26

Core#27

Core#32

Core#33

Core#34

Core#35

Core#36

Core#37

Core#38

Core#41

Core#50

Core#62

Core#63

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC20503.

1.AGENCY USE ONLY (Leave blank)

2.REPORT DATE

September 1997

3.REPORT TYPE AND DATES COVERED

Final report

4.TITLE AND SUBTITLE

Final Report for Field Studies of Nearshore Sedimentary Structures

6.AUTHOR(S)

Thomas G. Drake

7.PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Marine, Earth and Atmospheric Sciences North Carolina State University

Raleigh, NC 27695-8208

8.PERFORMING ORGANIZATION REPORT NUMBER

> Contract Report CHL-97-3

5.FUNDING NUMBERS

9.SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Engineer Waterways Experiment Station 3909 Halls Ferry Road, Vicksburg, MS 39180-6199

10.SPONSORING/MONITORING AGENCY REPORT NUMBER

11.SUPPLEMENTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a.DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b.DISTRIBUTION CODE

13.ABSTRACT (Maximum 200 words)

This report describes research conducted as part of the Duck94 Nearshore Processes Field Experiment, a multidisciplinary study that took place during the summer and fall months of 1994 at the Field Research Facility (FRF) of the Coastal and Hydraulics Laboratory, U.S. Army Engineer Waterways Experiment Station. The FRF is located at Duck, NC. Work consisted of reconnaissance field studies which sought to develop tools for hydrodynamic and bathymetric interpretation of nearshore sedimentary structures, using as primary data sediment cores taken in close proximity to fluid-motion and bed-elevation measurements. The report contains core logs of sedimentological data, which record the time, location, and orientation of all samples, as well as a description of sedimentary structures obtained by visual inspection and by x-radiographs.

14.SUBJECT TERMS			15.NUMBER OF PAGES
Bed-elevation measurements	157		
Duck94 Fluid-motion measurements	16.PRICE CODE		
17.SECURITY CLASSIFICATION OF REPORT	18.SECURITY CLASSIFICATION OF THIS PAGE	19.SECURITY CLASSIFICATION OF ABSTRACT	20.LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED		