Chapter 16 Analysis of Categorical Data

LEARNING OBJECTIVES

The overall objective of this chapter is to give you an understanding of two statistical techniques used to analyze categorical data, thereby enabling you to:

- 1. Use the chi-square goodness-of-fit test to analyze probabilities of multinomial distribution trials along a single dimension.
- 2. Use the chi-square test of independence to perform contingency analysis

CHAPTER OUTLINE

- 16.1 Chi-Square Goodness-of-Fit Test
- 16.2 Contingency Analysis: Chi-Square Test of Independence

KEY TERMS

Categorical Data Chi-Square Distribution Chi-Square Goodness-of-Fit Test Chi-Square Test of Independence Contingency Analysis Contingency Table

STUDY QUESTIONS

•	Statistical techniques based on assumptions about the population from which the sample data are selected are called statistics.			
2.	Statistical techniques based on fewer assumptions about the population and the parameters are called statistics.			
3.	A chi-square goodness-of-fit test is being used to determine if the observed frequencies from seven categories are significantly different from the expected frequencies from the seven categories. The degrees of freedom for this test are			
ļ.	A value of alpha = .05 is used to conduct the test described in question 3. The critical table chi-square value is			
5.	A variable contains five categories. It is expected that data are uniformly distributed across these five categories. To test this, a sample of observed data is gathered on this variable resulting in frequencies of 27, 30, 29, 21, 24. A value of .01 is specified for alpha. The degrees of freedom for this test are			
Ó.	The critical table chi-square value of the problem presented in question 5 is			
' .	The observed chi-square value for the problem presented in question five is Based on this value and the critical chi-square value, a researcher would decide to the null hypothesis.			
3.	A researcher believes that a variable is Poisson distributed across six categories. To test this a random sample of observations is made for the variable resulting in the following data:			
	Number of arrivals Observed			
	0 47			
	1 56			
	2 38			
	3 23			
	4 15			
	5 12			
	Suppose alpha is .10, the critical table chi-square value used to conduct this chi-square goodness-of-fit test is			
).	The value of the observed chi-square for the data presented in question 8 is			
	Based on this value and the critical value determined in question 8, the decision of the researcher is to the null hypothesis.			

10.	The degrees of freedom used in conducting a chi-square goodness-of-fit test to determine if a distribution is normally distributed are			
11.	In using the chi-square goodness-of-fit test, a statistician needs to make certain that none of the expected values are less than			
12.	The chi-square is used to analyze frequencies of two variables with multiple categories.			
13.	A two-way frequency table is sometimes referred to as a table.			
14.	Suppose a researcher wants to use the data below and the chi-square test of independence to determine if variable one is independent of variable two.			
	Variable One			
	A B C			
	Variable D 25 40 60			
	Two E 10 15 20			
	The expected value for the cell of D and B is			
15.	The degrees of freedom for the problem presented in question 16 are			
16.	. If alpha is .05, the critical chi-square value for the problem presented in question 16 is			
17.	The observed value of chi-square for the problem presented in question 16 is Based on this observed value of chi-square and the critical chi-square value determined in question 18, the researcher should decide to the null hypothesis that the two variables are independent.			
18.	. A researcher wants to statistically determine if variable three is independent of variable four using the observed data given below:			
	Variable Three A B Variable C 92 70 Four D 112 145			
	If alpha is .01, the critical chi-square table value for this problem is			
19.	The observed chi-square value for the problem presented in question 20 is Based on this value and the critical value determined in question 20, the researcher should decide to the null hypothesis.			

ANSWERS TO STUDY QUESTIONS

- 1. Parametric Statistics
- 2. Nonparametric Statistics
- 3. 6
- 4. 12.5916
- 5. 4
- 6. 13.2767
- 7. 2.091, Fail to Reject
- 8. 7.77944
- 9. 16.2, Reject
- 10. k-3
- 11. 5
- 12. Test of Independence
- 13. Contingency
- 14. 40.44
- 15. 2
- 16. 5.9915
- 17. .19, Fail to Reject
- 18. 6.6349
- 19. 6.945, Reject

SOLUTIONS TO THE ODD-NUMBERED PROBLEMS IN CHAPTER 16

16.1	f_0	$f_{\!$	$\frac{(f_0 - f_e)^2}{f_0}$
	53	68	3.309
	37	42	0.595
	32	33	0.030
	28	22	1.636
	18	10	6.400
	15	8	6.125

H_o: The observed distribution is the same as the expected distribution.

H_a: The observed distribution is not the same as the expected distribution.

Observed
$$\chi^2 = \sum \frac{(f_0 - f_e)^2}{f_e} = 18.095$$

$$df = k - 1 = 6 - 1 = 5$$
, $\alpha = .05$

$$\chi^2_{.05,5} = 11.0705$$

Since the observed $\chi^2 = 18.095 > \chi^2_{.05,5} = 11.0705$, the decision is to **reject the null hypothesis**.

The observed frequencies are not distributed the same as the expected frequencies.

16.3	Number	f_0	$(Number)(f_0)$
	0	28	0
	1	17	17
	2	11	22
	3	_5	<u>15</u>
		61	54

H_o: The frequency distribution is Poisson.

H_a: The frequency distribution is not Poisson.

$$\lambda = \frac{54}{61} = 0.9$$

	Expected	Expected
Number	Probability	Frequency
0	.4066	24.803
1	.3659	22.320
2	.1647	10.047
≥ 3	.0628	3.831

Since f_e for ≥ 3 is less than 5, collapse categories 2 and ≥ 3 :

Number	$f_{ m o}$	$f_{ m e}$	$\frac{(f_0 - f_e)^2}{f_0}$
0	28	24.803	0.412
1	17	22.320	1.268
<u>≥</u> 2	<u>16</u>	<u>13.878</u>	0.324
	61	60.993	2.004

$$df = k - 2 = 3 - 2 = 1$$
, $\alpha = .05$

$$\chi^2_{.05.1} = 3.8415$$

Observed
$$\chi^2 = \sum \frac{(f_0 - f_e)^2}{f_e} = 2.001$$

Since the observed $\chi^2 = 2.001 < \chi^2_{.05,1} = 3.8415$, the decision is to **fail to reject** the null hypothesis.

There is insufficient evidence to reject the distribution as Poisson distributed. The conclusion is that the distribution is Poisson distributed.

16.5	<u>Definition</u>	$f_{\!\scriptscriptstyle \underline{0}}$	Exp.Prop.	$f_{ m e}$	$\frac{(f_0 - f_e)^2}{f_0}$
	Happiness	42	.39	227(.39)= 88.53	24.46
	Sales/Profit	95	.12	227(.12) = 27.24	168.55
	Helping Others Achievement/	27	.18	40.86	4.70
	Challenge	<u>63</u> 227	.31	70.37	<u>0.77</u> 198.48

H_o: The observed frequencies are distributed the same as the expected frequencies.

H_a: The observed frequencies are not distributed the same as the expected frequencies.

Observed
$$\chi^2 = 198.48$$

$$df = k - 1 = 4 - 1 = 3$$
, $\alpha = .05$

$$\chi^2_{.05,3} = 7.8147$$

Since the observed $\chi^2 = 198.48 > \chi^2_{.05,3} = 7.8147$, the decision is to **reject the null hypothesis**.

The observed frequencies for men are not distributed the same as the expected frequencies which are based on the responses of women.

16.7	Age	f_o	m	fm	fm^2
	10-20	16	15	240	3,600
	20-30	44	25	1,100	27,500
	30-40	61	35	2,135	74,725
	40-50	56	45	2,520	113,400
	50-60	35	55	1,925	105,875
	60-70	<u>19</u>	65	<u>1,235</u>	80,275
		231		$\Sigma fm = 9,155$	$\Sigma fm^2 = 405,375$

$$\bar{x} = \frac{\sum fM}{n} = \frac{9,155}{231} = 39.63$$

$$s = \sqrt{\frac{\sum fM^2 - \frac{(\sum fM)^2}{n}}{n-1}} = \sqrt{\frac{405,375 - \frac{(9,155)^2}{231}}{230}} = 13.6$$

H_o: The observed frequencies are normally distributed.

Ha: The observed frequencies are not normally distributed.

For Category 10-20	Prob
$z = \frac{10 - 39.63}{13.6} = -2.2$.4854
$z = \frac{20 - 39.63}{13.6} = -1.4$	<u>4251</u>
	Expected prob0603

For Category 20-30	Prob
for $x = 20$, $z = -1.44$.4251
$z = \frac{30 - 39.63}{13.6} = -0.7$	71 <u>2611</u>
H	Expected prob1640

For Category 30-40 Prob
for
$$x = 30$$
, $z = -0.71$.2611

$$z = \frac{40 - 39.63}{13.6} = 0.03 + .0120$$

Expected prob. .2731

For Category 40-50	Prob	
-		
50-39.63	2764	

$$z = \frac{50 - 39.63}{13.6} = 0.76 \tag{2764}$$

for
$$x = 40$$
, $z = 0.03$ -.0120

Expected prob. .2644

For Category 50-60 Prob

$$z = \frac{60 - 39.63}{13.6} = 1.50 \tag{4332}$$

for
$$x = 50$$
, $z = 0.76$ -.2764

Expected prob. .1568

For Category 60-70 Prob

$$z = \frac{70 - 39.63}{13.6} = 2.23 \tag{4871}$$

for
$$x = 60$$
, $z = 1.50$ $\underline{-.4332}$

Expected prob. .0539

For < 10:

Probability between 10 and the mean = .0603 + .1640 + .2611 = .4854Probability < 10 = .5000 - .4854 = .0146

For > 70:

Probability between 70 and the mean = .0120 + .2644 + .1568 + .0539 = .4871Probability > 70 = .5000 - .4871 = .0129

Age	Probability	$f_{ m e}$
< 10	.0146	(.0146)(231) = 3.37
10-20	.0603	(.0603)(231) = 13.93
20-30	.1640	37.88
30-40	.2731	63.09
40-50	.2644	61.08
50-60	.1568	36.22
60-70	.0539	12.45
> 70	.0129	2.98

Categories < 10 and > 70 are less than 5. Collapse the < 10 into 10-20 and > 70 into 60-70.

<u>Age</u>	$f_{\underline{o}}$	$f_{\underline{\mathrm{e}}}$	$\frac{(f_0 - f_e)^2}{f_0}$
10-20	16	17.30	0.10
20-30	44	37.88	0.99
30-40	61	63.09	0.07
40-50	56	61.08	0.42
50-60	35	36.22	0.04
60-70	19	15.43	0.83
			2.45

$$df = k - 3 = 6 - 3 = 3$$
, $\alpha = .05$

$$\chi^2_{.05,3} = 7.8147$$

Observed $\chi^2 = 2.45$

Since the observed $\chi^2 < \chi^2_{.05,3} = 7.8147$, the decision is to **fail to reject the null hypothesis**.

There is no reason to reject that the observed frequencies are normally distributed.

16.9	Category	$f_{\underline{0}}$	Prop. from survey	$f_{\!$	$\frac{(f_0 - f_e)^2}{f_0}$
	Containers/Packaging	86	.303	(.303)(300)=90.9	0.279
	Nondurable Goods	74	.213	(.213)(300)=63.9	1.379
	Durable Goods	70	.196	(.196)(300)=58.8	1.792
	Yard Trimmings/Other	41	.149	(.149)(300)=44.7	0.334
	Food Scraps	<u>29</u>	.139	(.139)(300)=41.7	<u>5.562</u>
		300			9.346

H_o: The distribution of observed frequencies is the same as the distribution of expected frequencies (national EPA survey).

H_a: The distribution of observed frequencies is not the same as the distribution of expected frequencies (national EPA survey).

$$\alpha = .10$$
, df = $k - 1 = 5 - 1 = 4$

$$\chi^2_{.10,4} = 7.7794$$

The observed $\chi^2 = 9.346$

Since the observed $\chi^2 = 9.346 > \chi^2_{.10,4} = 7.7794$, the decision is to **reject the null hypothesis**.

There is enough evidence to declare that the distribution of observed frequencies is different from the distribution of expected frequencies.

16.11

	Variable Two					
Variable	24	13	/0 /7	58	142	
One	93	59	187	244	583	
One	73	37	107	277	303	
	117	72	234	302	725	

H_o: Variable One is independent of Variable Two.

H_a: Variable One is not independent of Variable Two.

$$e_{11} = \frac{(142)(117)}{725} = 22.92$$
 $e_{12} = \frac{(142)(72)}{725} = 14.10$ $e_{13} = \frac{(142)(234)}{725} = 45.83$ $e_{14} = \frac{(142)(302)}{725} = 59.15$ $e_{21} = \frac{(583)(117)}{725} = 94.08$ $e_{22} = \frac{(583)(72)}{725} = 57.90$ $e_{23} = \frac{(583)(234)}{725} = 188.17$ $e_{24} = \frac{(583)(302)}{725} = 242.85$

		Variable Two						
Variable	(22.92)	(14.10)	(45.83)	(59.15)				
One	24	13	47	58	142			
	(94.08)	(57.90)	(188.17)	(242.85)				
	93	59	187	244	583			
	117	72	234	302	725			

$$\chi^{2} = \frac{(24 - 22.92)^{2}}{22.92} + \frac{(13 - 14.10)^{2}}{14.10} + \frac{(47 - 45.83)^{2}}{45.83} + \frac{(58 - 59.15)^{2}}{59.15} + \frac{(93 - 94.08)^{2}}{94.08} + \frac{(59 - 57.90)^{2}}{57.90} + \frac{(188 - 188.17)^{2}}{188.17} + \frac{(244 - 242.85)^{2}}{242.85} = 0.05 + .09 + .03 + .02 + .01 + .02 + .01 + .01 = 0.24$$

$$\alpha = .01, \text{ df} = (c-1)(r-1) = (4-1)(2-1) = 3, \quad \chi^{2}_{.01,3} = 11.3449$$

Since the observed $\chi^2 = 0.24 < \chi^2_{.01,3} = 11.3449$, the decision is to **fail to reject the null hypothesis**.

Variable One is independent of Variable Two.

	Type of Music Preferred					
		Rock	R&B	Coun	Clssic	
	NE	140	32	5	18	195 235
Region	S	134	41	52	8	235
	W	154	27	8	13	202
		428	100	65	39	632

H_o: Type of music preferred is independent of region.

H_a: Type of music preferred is not independent of region.

$$e_{11} = \frac{(195)(428)}{632} = 132.6$$

$$e_{23} = \frac{(235)(65)}{632} = 24.17$$

$$e_{12} = \frac{(195)(100)}{632} = 30.85$$

$$e_{24} = \frac{(235)(39)}{632} = 14.50$$

$$e_{13} = \frac{(195)(65)}{632} = 20.06$$

$$e_{14} = \frac{(195)(39)}{632} = 12.03$$

$$e_{21} = \frac{(202)(100)}{632} = 31.96$$

$$e_{21} = \frac{(235)(428)}{632} = 159.15$$

$$e_{22} = \frac{(235)(100)}{632} = 37.18$$

$$e_{34} = \frac{(202)(39)}{632} = 12.47$$

	Type of Music Preferred					
		Rock	R&B	Coun	Clssic	
	NE	(132.06)	(30.85)	(20.06)	(12.03)	195
Region		140	32	5	18	235
	S	(159.15)	(37.18)	(24.17)	(14.50)	202
		134	41	52	8	632
	W	(136.80)	(31.96)	(20.78)	(12.47)	
		154	27	8	13	
		428	100	65	39	

$$\chi^{2} = \frac{(141-132.06)^{2}}{132.06} + \frac{(32-30.85)^{2}}{30.85} + \frac{(5-20.06)^{2}}{20.06} + \frac{(18-12.03)^{2}}{12.03} + \frac{(134-159.15)^{2}}{159.15} + \frac{(41-37.18)^{2}}{37.18} + \frac{(52-24.17)^{2}}{24.17} + \frac{(8-14.50)^{2}}{14.50} + \frac{(154-136.80)^{2}}{136.80} + \frac{(27-31.96)^{2}}{31.96} + \frac{(8-20.78)^{2}}{20.78} + \frac{(13-12.47)^{2}}{12.47} = \frac{.48 + .04 + 11.31 + 2.96 + 3.97 + .39 + 32.04 + 2.91 + 2.16 + .77 + 7.86 + .02 = 64.91}{\alpha = .01, df = (c-1)(r-1) = (4-1)(3-1) = 6}$$

Since the observed $\chi^2 = 64.91 > \chi^2_{.01,6} = 16.8119$, the decision is to **reject the null hypothesis**.

Type of music preferred is not independent of region of the country.

		<u>≤</u> 2	3	<u>≥</u> 4	
Number of	1	116	101	57	274
Stories	2	90	325	160	575
		206	426	217	849

H₀: Number of Stories is independent of number of bedrooms.

H_a: Number of Stories is not independent of number of bedrooms.

$$e_{11} = \frac{(274)(206)}{849} = 66.48$$

$$e_{21} = \frac{(575)(206)}{849} = 139.52$$

$$e_{12} = \frac{(274)(426)}{849} = 137.48$$

$$e_{22} = \frac{(575)(426)}{849} = 288.52$$

$$e_{13} = \frac{(274)(217)}{849} = 70.03$$

$$e_{23} = \frac{(575)(217)}{849} = 146.97$$

$$\chi^{2} = \frac{(90 - 139.52)^{2}}{139.52} + \frac{(101 - 137.48)^{2}}{137.48} + \frac{(57 - 70.03)^{2}}{70.03} + \frac{(90 - 139.52)^{2}}{139.52} + \frac{(325 - 288.52)^{2}}{288.52} + \frac{(160 - 146.97)^{2}}{146.97} =$$

$$\chi^{2} = 36.89 + 9.68 + 2.42 + 17.58 + 4.61 + 1.16 = 72.34$$

$$\alpha = .10 \quad \text{df} = (c-1)(r-1) = (3-1)(2-1) = 2$$

$$\chi^{2}_{.10,2} = 4.6052$$

Since the observed $\chi^2 = 72.34 > \chi^2_{.10,2} = 4.6052$, the decision is to **reject the null hypothesis**.

Number of stories is not independent of number of bedrooms.

16.17
$$\alpha = .01, k = 7, df = 6$$

 H_0 : The observed distribution is the same as the expected distribution H_a : The observed distribution is not the same as the expected distribution

Use:

$$\chi^{2} = \sum \frac{(f_{0} - f_{e})^{2}}{f_{e}}$$

critical $\chi^2_{.01,6} = 16.8119$

f.	f.	$(f_0 - f_e)^2$	$(f_0 - f_e)^2$
<u>Jo</u>	<u>Je</u>	<u> </u>	$\overline{f_0}$
214	206	64	0.311
235	232	9	0.039
279	268	121	0.451
281	284	9	0.032
264	268	16	0.060
254	232	484	2.086
211	206	25	0.121
			3.100

$$\chi^2 = \sum \frac{(f_0 - f_e)^2}{f_e} = 3.100$$

Since the observed value of $\chi^2 = 3.1 < \chi^2_{.01,6} = 16.8119$, the decision is to **fail to reject the null hypothesis**. The observed distribution is not different from the expected distribution.

		NE	W	S	
Customer	Industrial	230	115	68	413
	Retail	185	143	89	417
		415	258	157	830

$$e_{11} = \frac{(413)(415)}{830} = 206.5$$
 $e_{21} = \frac{(417)(415)}{830} = 208.5$ $e_{12} = \frac{(413)(258)}{830} = 128.38$ $e_{22} = \frac{(417)(258)}{830} = 129.62$ $e_{13} = \frac{(413)(157)}{830} = 78.12$ $e_{23} = \frac{(417)(157)}{830} = 78.88$

			Location		
		NE	W	S	
Customer	Industrial	(206.5)	(128.38)	(78.12)	
		230	115	68	413
	Retail	(208.5) 185	(129.62)	(78.88)	
		185	143	89	417
		415	258	157	830

$$\chi^{2} = \frac{(230 - 206.5)^{2}}{206.5} + \frac{(115 - 128.38)^{2}}{128.38} + \frac{(68 - 78.12)^{2}}{78.12} + \frac{(185 - 208.5)^{2}}{208.5} + \frac{(143 - 129.62)^{2}}{129.62} + \frac{(89 - 78.88)^{2}}{78.88} = \frac{2.67 + 1.39 + 1.31 + 2.65 + 1.38 + 1.30 = 10.70}{208.5}$$

$$\alpha = .10 \text{ and } df = (c - 1)(r - 1) = (3 - 1)(2 - 1) = 2$$

$$\chi^{2}_{.10,2} = 4.6052$$

Since the observed $\chi^2 = 10.70 > \chi^2_{.10,2} = 4.6052$, the decision is to **reject the null hypothesis**.

Type of customer is not independent of geographic region.

		Gen	Gender		
		M	F		
Bought Car	Y	207	65	272	
Car	N	811	984	1,795	
		1,018	1,049	2,067	

H_o: Purchasing a car or not is independent of gender.

H_a: Purchasing a car or not is <u>not</u> independent of gender.

$$e_{11} = \frac{(272)(1,018)}{2,067} = 133.96$$
 $e_{12} = \frac{(27)(1,049)}{2,067} = 138.04$ $e_{21} = \frac{(1,795)(1,018)}{2,067} = 884.04$ $e_{22} = \frac{(1,795)(1,049)}{2,067} = 910.96$

		Gende	Gender	
		M	F	
Bought	Y	(133.96)	(138.04)	
Car		207	65	272
	N	(884.04)	(910.96)	
		811	984	1,795
		1,018	1,049	2,067

$$\chi^{2} = \frac{(207 - 133.96)^{2}}{133.96} + \frac{(65 - 138.04)^{2}}{138.04} + \frac{(811 - 884.04)^{2}}{884.04} + \frac{(984 - 910.96)^{2}}{910.96} = 39.82 + 38.65 + 6.03 + 5.86 = 90.36$$

$$\alpha = .05 \qquad \text{df} = (c-1)(r-1) = (2-1)(2-1) = 1$$

$$\chi^{2}_{.05,1} = 3.8415$$

Since the observed $\chi^2 = 90.36 > \chi^2_{.05,1} = 3.8415$, the decision is to **reject the null hypothesis**.

Purchasing a car is not independent of gender.

16.23 H_o: The distribution of observed frequencies is the same as the distribution of expected frequencies.

H_a: The distribution of observed frequencies is not the same as the distribution of expected frequencies.

Soft Drink	$f_{\rm o}$	proportio	ns f _e	
			· -	$\frac{(f_0 - f_e)^2}{(f_0 - f_e)^2}$
				$f_{\scriptscriptstyle e}$
Classic Coke	397	.26	(.26)(1726) = 448.76	5.97
Pepsi	310	.15	(.15)(1726) = 258.90	10.09
Diet Coke	207	.15	258.90	10.40
Mt. Dew	160	.10	172.60	0.92
Diet Pepsi	130	.08	138.08	0.47
Sprite	126	.08	138.08	1.06
Dr. Pepper	143	.09	155.34	0.98
Others	<u>253</u>	.09	155.34	61.40
$\sum f_{\rm o} =$	1,726			91.29

Observed
$$\chi^2 = 91.29$$

$$\alpha = .05$$
 df = $k - 1 = 8 - 1 = 7$

$$\chi^2_{.05,7} = 14.0671$$

Since the observed $\chi^2 = 91.29 > \chi^2_{.05,6} = 14.0671$, the decision is to **reject the null hypothesis**.

The observed frequencies are not distributed the same as the expected frequencies from the national poll.

16.25

		Type of College or University			
		Community	Large	Small	
		College	University	College	
Number	0	25	178	31	234
of	1	49	141	12	202
Children	2	31	54	8	93
	<u>≥</u> 3	22	14	6	42
		127	387	57	571

H_o: Number of Children is independent of Type of College or University.
 H_a: Number of Children is not independent of Type of College or University.

$$e_{11} = \frac{(234)(127)}{571} = 52.05$$

$$e_{31} = \frac{(93)(127)}{571} = 20.68$$

$$e_{12} = \frac{(234)(387)}{571} = 158.60$$

$$e_{32} = \frac{(193)(387)}{571} = 63.03$$

$$e_{13} = \frac{(234)(57)}{571} = 23.36$$

$$e_{33} = \frac{(93)(57)}{571} = 9.28$$

$$e_{21} = \frac{(202)(127)}{571} = 44.93$$

$$e_{41} = \frac{(42)(127)}{571} = 9.34$$

$$e_{22} = \frac{(202)(387)}{571} = 136.91$$

$$e_{42} = \frac{(42)(387)}{571} = 28.47$$

$$e_{23} = \frac{(202)(57)}{571} = 20.16$$

$$e_{43} = \frac{(42)(57)}{571} = 4.19$$

		Type of College or University			
		Community	Large	Small	
		College	University	College	
Number	0	(52.05)	(158.60)	(23.36)	234
of		25	178	31	
Children	1	(44.93)	(136.91)	(20.16)	202
		49	141	12	
	2	(20.68)	(63.03)	(9.28)	93
		31	54	8	
	<u>≥</u> 3	(9.34)	(28.47)	(4.19)	42
		22	14	6	
	•	127	387	57	571

$$\chi^{2} = \frac{(25-52.05)^{2}}{52.05} + \frac{(178-158.6)^{2}}{158.6} + \frac{(31-23.36)^{2}}{23.36} + \frac{(49-44.93)^{2}}{44.93} + \frac{(141-136.91)^{2}}{136.91} + \frac{(12-20.16)^{2}}{20.16} + \frac{(31-20.68)^{2}}{20.68} + \frac{(54-63.03)^{2}}{63.03} + \frac{(8-9.28)^{2}}{9.28} + \frac{(22-9.34)^{2}}{9.34} + \frac{(14-28.47)^{2}}{28.47} + \frac{(6-4.19)^{2}}{4.19} = \frac{14.06 + 2.37 + 2.50 + 0.37 + 0.12 + 3.30 + 5.15 + 1.29 + 0.18 + 17.16 + 7.35 + 0.78 = 54.63$$

$$\alpha = .05, \qquad \text{df} = (c - 1)(r - 1) = (3 - 1)(4 - 1) = 6$$

$$\chi^{2}_{.05,6} = 12.5916$$

Since the observed $\chi^2 = 54.63 > \chi^2_{.05,6} = 12.5916$, the decision is to **reject the null hypothesis**.

Number of children is not independent of type of College or University.

16.27 The observed chi-square value for this test of independence is 5.366. The associated *p*-value of .252 indicates failure to reject the null hypothesis. There is not enough evidence here to say that color choice is dependent upon gender. Automobile marketing people do not have to worry about which colors especially appeal to men or to women because car color is independent of gender. In addition, design and production people can determine car color quotas based on other variables.