Numerical Methods

By

Md. Abul Ala Walid

False Position Method (Regula Falsi Method) Steps

Step-1:	Find points x_0 and x_1 such that $x_0 < x_1$ and $f(x_0) \cdot f(x_1) < 0$.					
Step-2:	Take the interval $\begin{bmatrix} x_0, x_1 \end{bmatrix}$ and					
	find next value $x_2 = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$ Or $x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}$					
Step-3:	If $f(x_2) = 0$ then x_2 is an exact root,					
	If $f(x_2) = 0$ then x_2 is an exact root, else if $f(x_0) \cdot f(x_2) < 0$ then $x_1 = x_2$, else if $f(x_2) \cdot f(x_1) < 0$ then $x_0 = x_2$.					
	else if $f(x_2) \cdot f(x_1) < 0$ then $x_0 = x_2$.					
Step-4:	Repeat steps 2 & 3 until $f(x_i) = 0$ or $ f(x_i) \le Accuracy$					

Find a root of an equation $f(x)=x^3-x-1$ using False Position method.

Here
$$x^3 - x - 1 = 0$$

Let
$$f(x) = x^3 - x - 1$$

Here

X	0	1	2
<i>f</i> (<i>x</i>)=	-1	-1	5

n	x_0	$f(x_0)$	<i>x</i> ₁	$f(x_1)$	x_2	$f(x_2)$	Update
1	1	-1	2	5	1.16667	-0.5787	$x_0 = x_2$
2	1.16667	-0.5787	2	5	1.25311	-0.28536	$x_0 = x_2$
3	1.25311	-0.28536	2	5	1.29344	-0.12954	$x_0 = x_2$
4	1.29344	-0.12954	2	5	1.31128	-0.05659	$x_0 = x_2$
5	1.31128	-0.05659	2	5	1.31899	-0.0243	$x_0 = x_2$
6	1.31899	-0.0243	2	5	1.32228	-0.01036	$x_0 = x_2$
7	1.32228	-0.01036	2	5	1.32368	-0.0044	$x_0 = x_2$
8	1.32368	-0.0044	2	5	1.32428	-0.00187	$x_0 = x_2$
9	1.32428	-0.00187	2	5	1.32453	-0.00079	$x_0 = x_2$
10	1.32453	-0.00079	2	5	1.32464	-0.00034	$x_0 = x_2$

1st iteration:

Here
$$f(1)=-1<0$$
 and $f(2)=5>0$

∴ Now, Root lies between $x_0=1$ and $x_1=2$

$$x2={1\cdot(5)-2\cdot(-1)}/{5-(-1)}$$

=7/6

Or
$$x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}$$

2nd iteration:

Here
$$f(x_2) = f(1.16667) = -0.5787 < 0$$

and $f(x_1) = f(2) = 5 > 0$

∴ Now, Root lies between x_0 =1.16667 and x_1 =2

$$x3={1.16667\cdot(5) -2 \cdot (-0.5787)}/{5-(-0.5787)}$$

$$x3=1.25311$$

If $f(x_2) = 0$ then x_2 is an exact root, else if $f(x_0) \cdot f(x_2) < 0$ then $x_1 = x_2$, else if $f(x_2) \cdot f(x_1) < 0$ then $x_0 = x_2$.

3rd iteration:

Here
$$f(1.25311)=-0.28536<0$$
 and $f(2)=5>0$

∴ Now, Root lies between x_0 =1.25311 and x_1 =2

$$x4=?$$

 $x4=1.29344$

Assignment

Fixed Point Iteration Method Algorithm or Iteration Method