Exercise 2

Holo

Saturday 29th July, 2023

Exercise 1.

Let $\mathbb{P}, A, f : A \to V^{\mathbb{P}}$ be as in the question, for each generic G let \mathscr{A} be the unique $x \in A \cap G$, define $\uparrow : \mathbb{P} \times A \to 2^{\mathbb{P}}, \ g : V^{\mathbb{P}} \times A \to V^{\mathbb{P}}$ and $\sigma : A \to V^{\mathbb{P}}$ as:

- $x \uparrow a$ is the set of all common strengthening of x and a
- $q(\tau, a) = \{(\pi, x) \mid \exists y(\pi, y) \in \tau \land x \in y \uparrow a\}$
- $\sigma_a = g(f(a), a)$

Notice that $(f(\mathcal{A}))_G = (\sigma_{\mathcal{A}})_G$, the \subseteq direction is follows from the fact that every 2 elements in G have a common strengthening, indeed if $\tau \in f(\mathcal{A})$ is don't discarded by G then its right side is in G, in particular $\pi_2(\tau) \uparrow \mathcal{A} \neq \emptyset$ (where π_i is the projection function) and so there is some $\pi \in \sigma_{\mathcal{A}}$ such that $\pi_1(\pi) = \pi_1(\tau)$ and $\pi_2(\pi) \in G$. The \supseteq direction follows from the fact that G is closed downwards, if $\pi \in \sigma_{\mathcal{A}}$ is not discarded by G, then $\pi_2(\pi)$ comes from some $\tau \in f(\mathcal{A})$ with $\pi_1(\tau) = \pi_1(\pi)$ and $\pi_2(\tau) \leq \pi_2(\pi)$, which means that τ is also not discarded by G because it is closed downwards.

In addition if Q is a different generic ideal such that for some x we have $x \in (\sigma_{\mathcal{C}^{\bullet}})_Q$ then $\mathcal{C}^{\bullet} = \mathcal{C}^{\bullet}$ (in other words, $\sigma_{\mathcal{C}^{\bullet}}$ and $\sigma_{\mathcal{C}^{\bullet}}$ for G, H generics that don't have a common A-member don't interfere with one another) because any right side of an element of $\sigma_{\mathcal{C}^{\bullet}}$ must have stronger tag than \mathcal{C}^{\bullet} and Q is closed downwards which means that $\mathcal{C}^{\bullet} \in A \cap Q$ which by definition is equal to \mathcal{C}^{\bullet} , so we can let $\sigma_f = \bigcup_{a \in A} \sigma_a$.

Exercise 4.

Part 4.1.

For $(2) \to (1)$ in the book, notice that (1) is a special case of (2). For $(2) \to (3)$ notice that assuming (2) we have $\{r \mid r \Vdash^* \psi\} \supseteq \{r \mid r \geq p\}$, and the latter trivially dense above p.

For the atomic (1) \rightarrow (2) direction, let $p \Vdash^* \tau_1 = \tau_2$ and r > p, I want to show that for all $(\pi_1, s_1) \in \tau_1$ the set $\{q \geq r \mid q \geq s_1 \implies \exists (\pi_2, s_2) \in \tau_2 (q \geq s_2 \land q \Vdash^* \pi_1 = \pi_2)\}$

is dense above r, indeed take an element s above r, then because $p \Vdash^* \tau_1 = \tau_2$ and that $s \geq r \geq p$ there exists some $t \in \{q \geq p \mid q \geq s_1 \implies \exists (\pi_2, s_2) \in \tau_2 (q \geq s_2 \land q \Vdash^* \pi_1 = \pi_2)\}$ greater than s, but because $t \geq s \geq r$ we have that $t \in \{q \geq r \mid q \geq s_1 \implies \exists (\pi_2, s_2) \in \tau_2 (q \geq s_2 \land q \Vdash^* \pi_1 = \pi_2)\}$, so that set is indeed dense above r. A symmetric argument will finish this proof.

Now assume $p \Vdash^* \tau_1 \in \tau_2$ and $r \geq p$, take $s \geq r \geq p$, there is some $t \in \{q \mid (\pi, x) \in \tau_2 (q \geq x \land q \Vdash^* \pi = \tau_1)\}$ that is stronger than $s \geq r$, so the set is dense above r.

For $(3) \to (1)$ we just need to prove that if $\{r \mid D \text{ is dense above } r\}$ is dense above p, then D is dense above p, indeed take $q \ge p$ and $r \in \{r \mid D \text{ is dense above } r\}$ greater than q, then let q' > r, because D is dense above r there exists $t \in D$ such that $t \ge q' > r \ge q \ge p$, hence D is dense above D.

To finish all of the details of the proof of the lemma from the book we need to show $(1) \to (2)$ and $(3) \to (1)$ for \neg and $\exists x$.

For (1) \to (2), assume $p \Vdash^* \neg \varphi$ and $r \ge p$, then every $t \ge r$ is also stronger than p, hence does not force* the sentence φ , therefore $r \Vdash^* \neg \varphi$. Assume $p \Vdash^* \exists x \varphi(x)$ and take $r \ge p$ and $t \ge r$, because $t \ge p$ there exists $q \ge t$ such that $\exists \sigma \in V^{\mathbb{P}}(q \Vdash^* \varphi(\sigma))$, in particular $\{q \mid \exists \sigma \in V^{\mathbb{P}}(q \Vdash^* \varphi(\sigma))\}$ is dense above r.

For (3) \rightarrow (1) for the $\neg \varphi$ case, assume $p \not\models^* \neg \varphi$ then there is some $r \geq p$ that forces* φ , by the induction hypothesis we get that every $t \geq p$ also forces* φ , a contradiction. The $\exists x \varphi(x)$ case follows from the same fact as the atomic case, that if $\{r \mid D \text{ is dense above } r\}$ is dense above p, then D is dense above p

Part 4.2.

Assume $p \Vdash^* \varphi$, we want to prove $p \vdash^* \neg \neg \varphi$, in particular we want to show:

$$\forall q \geq p(\neg q \Vdash \neg \varphi)$$

$$\iff \forall q \geq p(\neg(\forall r \geq q(\neg r \Vdash^* \varphi)))$$

$$\iff \forall q \geq p(\exists r \geq q(r \Vdash^* \varphi))$$

But any $r \geq q$ will witness it is true, as $r \geq q \geq p$ and from (4.1) $r \Vdash^* \varphi$.

Part 4.3.

Let D_{ψ} be as in the question and let $p \in \mathbb{P}$ be any term, if there is $q \geq p$ such that $q \Vdash^* \psi$ then we are done as $p \leq q \in D_{\psi}$. Otherwise we have that $p \Vdash^* \neg \psi$ by definition, so $p \in D_{\psi}$.

So assume $p \Vdash^* \neg \neg \psi$, the set D_{ψ} is dense above p, by definition there is no $q \geq p$ that forces* $\neg \psi$, so $\{q \mid q \Vdash^* \psi\} = D_{\psi} \cap \{q \mid q \geq p\}$ is dense above p, by (4.1) this is equivalent to $p \Vdash \psi$.

Exercise 6.

Assume $(p \Vdash^* \varphi(\overline{\tau}))^M$, in particular we have that for every G a generic containing p we have $\exists q \in G(q \Vdash^* \varphi(\overline{\tau}))^M$, by theorem 3.5 in the book we have $M[G] \models \varphi(\overline{\tau}_G)$, hence by definition $p \Vdash^M_{\mathbb{P}} \varphi(\overline{\tau})$

Now assume $p \Vdash^M_{\mathbb{P}} \varphi(\overline{\tau})$ and let $r \geq p$ and G be a \mathbb{P} -generic contains r, by definition $M[G] \models \varphi(\overline{\tau}_G)$, by theorem 3.5 in the book there exists some $t \in G$ such that $(t \Vdash^* \varphi(\overline{\tau}))^M$, let $q \in G$ be stronger than r and t, by (4.1) we know that $(q \Vdash^* \varphi(\overline{\tau}))^M$, hence $\{q \mid q \Vdash^* \varphi(\overline{\tau})\}$ is (dense above $p)^M$, which implies that $(p \Vdash^* \varphi(\overline{\tau}))^M$

To get the form we had in class all we need to do is "concat" this result to question theorem 3.5, if G is a generic and $M[G] \models \varphi(\overline{\tau}_G) \iff \exists p \in G \ (p \Vdash^* \varphi(\overline{\tau}))^M \iff \exists p \in G \ p \Vdash^M_{\mathbb{P}} \varphi(\overline{\tau}).$

Exercise 7.

Part 7.1.

Let D be the set $\{p \mid \exists \sigma \in V^{\mathbb{P}}(p \Vdash \psi(\sigma, \overline{\tau}))\}$, we know this set is dense above $0_{\mathbb{P}}$, which means it is just dense.

Let $A \subseteq D$ be a maximal anti-chain, and for each $x \in A$ let f(x) be a name that is a witness of $x \in D$, let σ_f be the name from exercise 1.

For every generic (= for every generic contains $0_{\mathbb{P}}$) we have that $M[G] \models \psi((\sigma_f)_G, \overline{\tau}_G)$, which by definition means $0_{\mathbb{P}} \Vdash \psi(\sigma_f, \overline{\tau})$.

Part 7.2.

Let $\psi(x, y, w, z) = (x \text{ is a function from } w \text{ to } z) \land (y \text{ is a function from } w \text{ to } z \implies x = y)$, notice that for every y', w', z' such that $(z' = \emptyset \implies w' = \emptyset)$ we have that $\exists x \psi(x, y', w', z')$ is tautology.

Let G be a generic ideal and $f: \alpha \to \beta$ function in M[G], let τ be the name that G interpret as f, because f is a function we have that either $\beta \neq 0$ or both α and β are 0, in particular for every Q a generic ideal we have that $M[G] \models \exists x \psi(x, \tau_Q, \check{\alpha}_Q, \check{\beta}_Q)$, so $0_{\mathbb{P}} \Vdash \exists x \psi(x, \tau, \check{\alpha}, \check{\beta})$, from (7.1) we have that there is some name σ such that $0_{\mathbb{P}} \Vdash \psi(\sigma, \tau, \check{\alpha}, \check{\beta})$.

Clearly $0_{\mathbb{P}} \Vdash \sigma : \check{\alpha} \to \check{\beta}$ and because $\tau_G = f$ is a function from α to β we have that $f = \tau_G = \sigma_G$.