

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών https://courses.softlab.ntua.gr/progtech/

Προγραμματιστικές Τεχνικές

Άσκηση 11 Μονοπάτια και κύκλοι Euler

Προθεσμία υποβολής στον grader: 8/6/2018

Δίνεται ένας μη κατευθυνόμενος γράφος N κορυφών (αριθμημένων από 0 έως N-1) και M ακμών. Θα είναι $2 \le N \le 10.000$ και $0 \le M \le 100.000$. Είναι πιθανό κάποια ακμή να υπάρχει πολλές φορές, όπως επίσης και να υπάρχουν κυκλικές ακμές — δηλαδή ακμές της μορφής (u,u). Θεωρήστε δεδομένο ότι ο γράφος θα είναι συνεκτικός, δηλαδή ότι θα είναι δυνατή η μετακίνηση από οποιαδήποτε κορυφή σε οποιαδήποτε άλλη, μέσω κάποιου μονοπατιού αποτελούμενου από ακμές.

Γράψτε ένα πρόγραμμα που να διαβάζει τον γράφο από το standard input και να ελέγχει υπάρχει κύκλος ή μονοπάτι Euler στον γράφο. Συγκεκριμένα, το πρόγραμμά σας πρέπει να εκτυπώνει στο standard output μία γραμμή που να περιέχει ένα από τα εξής τρία:

- "CYCLE", αν υπάρχει κύκλος Euler.
- "PATH $\,$ u $\,$ v", $\,$ αν υπάρχει δεν υπάρχει κύκλος Euler, υπάρχει όμως μονοπάτι Euler από την κορυφή $\,$ u $\,$ στην κορυφή $\,$ υ $\,$ φροντίστε να είναι $\,$ u $\,$ e $\,$ v.
- "IMPOSSIBLE", αν δεν υπάρχει ούτε κύκλος ούτε μονοπάτι Euler.

Η είσοδος θα περιέχει τα εξής. Η πρώτη γραμμή θα περιέχει δύο αριθμούς, χωρισμένους μεταξύ τους με ένα κενό διάστημα: το πλήθος των κορυφών N και το πλήθος των ακμών M. Οι επόμενες M γραμμές της εισόδου θα περιγράφουν τις ακμές του γράφου. Κάθε μία θα περιέχει δύο αριθμούς, χωρισμένους μεταξύ τους με ένα κενό διάστημα: η γραμμή που περιέχει τους αριθμούς u και v θα παριστάνει μία ακμή μεταξύ των κορυφών u και v του γράφου.

Μπορείτε να προσαρμόσετε κατάλληλα τους γνωστούς τρόπους αναπαράστασης γράφου ώστε να καλύπτουν την περίπτωση γράφων με πολλαπλές και με κυκλικές ακμές.

Παραδείγματα γράφων:

Είσοδος:

_		
4	7	
0	1	
0	1	
0	2	
0	2	
3	0	
3	1	
3	2	

8	13
0	7
0	7
0	1
0	6
1	7
7	6
6	1
1	2
	5
2	5 3
2	3
3	4
5	4

8	
1	
2	
3	
4	
2	
3	
2	
3	
	1 2 3 4 2 3 2

Έξοδος:

IMPOSSIBLE

PATH 2 5

CYCLE

Προσοχή!

Θα προστεθεί μία ακόμη άσκηση, πάνω σε BFS/DFS, με την ίδια προθεσμία παράδοσης.