250 mm X-Frame Hover-Capable Quadcopter

07.07.25 Wilson Heath v0.1

Purpose:

- Build and demonstrate a micro-controller-based quadcopter that can hover for several minutes indoors and outdoors.

Scope:

- Designing 250 mm X-frame and motor mounts in Siemens NX
- Performing FEA drop-tests and modal analysis
- Creating GD&T drawings for key structural parts
- Flashing and configuring iNav + BLHeli firmware for hover modes
- Conducting bench-tests, sensor calibrations, and a controlled tethered hover to a set altitude
- Modeling hover in Simulink and comparing simulated vs. logged attitude data
- Writing up phase reports in a final PDF documenting CAD, analysis, firmware, and flight results
- Performing targeted research on drone control theory, iNav configuration, and hover stability to inform design choices and simulation parameters.

Objectives:

- 1.) Stable Altitude Hold: On power-up, the quadcopter ascends to a preset altitude and maintains hover within ±2.0 m for at least 30 s.
- 2.) Simulation Correlation: Show that the Simulink hover model predicts attitude response within 20% of the logged flight data.
- 3.) Complete Documentation: A one-page Project Charter, four phase reports (CAD, FEA/GD&T, bench and hover testing, simulation), and a final combined PDF with all key screenshots, plot, and a hover video link.

Deliverables:

- Siemens NX CAD models & rendered assembly views
- FEA report & GD&T drawings (PDF)
- Electronics schematic
- Flight logs
- Simulink hover model & Comparison plots
- Final report & portfolio web page

Milestones & Timeline:

•	Project Charter Complete	(Day	1)	(<0.1)
•	CAD & Parts Ordered	(End	of Week 1)	(<0.2)
•	FEA & GD&T Complete	(End	of Week 2)	(<0.3)
•	Simulation vs. Attitude Valid	ation	(End of Week 3)	(<0.4)
•	Firmware Flash & Bench Test	ts	(End of Week 4)	(<0.5)
•	Tethered Hover Achieved		(End of Week 4)	(>0.6)
•	Final Report & Publish		(Week 5)	(∨1.0)

Budget Estimate:

- Frame & Hardware ~\$40:
 - o 250 mm frame (CAD design + 3D print)
 - o Standoffs, Screws, Damping Pads
 - Battery Strap (Velcro)
 - o 4x Propellers Materials & Printing
- Motor Hardware ~\$45
 - 4x Brushless Motors
 - 4x ESCs
 - o 4x 5" Props
 - o Flight Controller
- Power System ~\$35
 - o LiPo Charger
 - o XT60 Connectors, Wires
- RC Control ~\$80
 - Receiver
 - Transmitter
- Extra Tools ~\$30
 - Soldering Iron Kit
 - $\circ \quad \text{Heat Shrink, Zip Ties} \\$
 - o MicroSD Card
 - o MicroUSB Cable
 - Safety Tether

Total Estimated Budget: ~\$230

Key Risks & Mitigations:

- Risk: Structural failure under load or landing
 - **Mitigation**: Perform FEA drop-test; start with low-altitude tethered hovers.

- Risk: Hover instability due to vibration or poor sensor isolation.
 - o Mitigation: Mount flight controller on vibration dampeners.
- Risk: Loss of drone or flyaway
 - **Mitigation**: Use tethered testing for all initial flights; set failsafe protocol in iNav; test indoors initially.

Assumptions & Constraints:

- Assumptions:
 - o Access to Siemens NX, Simulink, and a basic electronics bench.
 - Availability of a safe indoor/outdoor area for tethered flight tests.
- Constraints:
 - o Project duration limited to five weeks.
 - o Budget capped at \$250.
 - o No custom PCB fabrication.