Test of Robustness of Fit Against Changes in Flavour Composition

- Test that fitting procedure is robust to changes in the flavour composition
 - => Create templates for each of the flavour combinations by fitting to individual spectra.
 - => Adding the fractions with different weights to produce spectra with different flavour combinations

- Apply Poisson fluctuations to create 'data-like' distributions.
- These are fitted to and then p-values of fits are compared for the two different flavour compositions
- This is repeated for 100 different 'data-like' distributions.

Mean p-values

	Nominal	b-jets doubled
3 Par.	0.325 +/-	0.308 +/-
Fit	0.024	0.024
4 Par.	0.280 +/-	0.267 +/-
Fit	0.023	0.022
5. Par	0.283 +/-	0.276 +/-
Fit	0.022	0.022

Spurious Signal Tests for Varying Flavour Compositions

- Test a spurious signal due to discrepancies between fit and background for different flavour compositions
 - => Use spectra created templates for each of the flavour combinations by fitting to individual spectra.
 - => Adding the fractions with different weights to produce spectra with different flavour combinations

- Fit to the above spectra using 3-parameter fit function.
- Use search phase of BumpHunter to search for discrepant regions

- No significant spurious signal found
 - Large p-values
 - Wide signal unlike benchmark models.
- This study not currently in supporting note in CDS.
 - Documented and ready to go.
 - Can go in next version.