sh951011@gmail.com

https://github.com/sh951011

RIN

Recurrent Neural Network (RNN)

RNN 계층의 순환 구조 펼치기

Recurrent Neural Network (RNN) BPTT (Backpropagation Through Time)

Recurrent Neural Network (RNN) Truncated BPTT

Recurrent Neural Network (RNN) forward (순전파)

Recurrent Neural Network (RNN) forward (순전파)

Recurrent Neural Network (RNN) forward (순전파)

Recurrent Neural Network (RNN) forward (순전파)

Recurrent Neural Network (RNN) backward (역전파)

Recurrent Neural Network (RNN) backward (역전파) - 시작

Recurrent Neural Network (RNN) backward (역전파) - (1) dh_next

Recurrent Neural Network (RNN) backward (역전파) - (2) dtanh

Recurrent Neural Network (RNN) backward (역전파) - (3) 덧셈 노드

Recurrent Neural Network (RNN) backward (역전파) - (4) 곱셈 노드

Recurrent Neural Network (RNN) backward (역전파) – gif

Time RNN 계층과 RNN 계층

Time RNN 계층과 RNN 계층

Time RNN 계층의 역전파

Time RNN 계층과 RNN 계층

Hyperbolic tangent tanh & dtanh

Vanishing gradient

Exploding gradient

Recurrent Neural Network (RNN) Interface

Long Shor Term Memory (LSTM) Interface

Gate Recurrent Unit (GRU) Interface

RNN과 LSTM Interface 비교

Long Shor Term Memory (LSTM) 비유하자면 게이트는 물의 흐름을 제어한다

Long Shor Term Memory (LSTM) 비유하자면 게이트는 물의 흐름을 제어한다

Long Shor Term Memory (LSTM) 물이 흐르는 양을 0.0 ~ 1.0 범위에서 제어한다.

Long Shor Term Memory (LSTM) 물이 흐르는 양을 0.0 ~ 1.0 범위에서 제어한다.

Long Short Term Memory (LSTM) LSTM의 계산 그래프

Long Short Term Memory (LSTM) 기억 셀 c_t 를 바탕으로 은닉상태 h_t 를 계산하는 LSTM 계층

Long Short Term Memory (LSTM) output 게이트 추가 (o gate)

Long Short Term Memory (LSTM) forget 게이트 추가 (f gate)

Long Short Term Memory (LSTM) 새로운 기억 셀에 필요한 정보를 추가 (g gate)

Long Short Term Memory (LSTM) Input 게이트 추가 (i gate)

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM)

4개분의 가중치를 모아 아핀 변환을 수행하는 LSTM의 계산그래프

LSTM과 GRU Interface 비교

Gated Recurrent Unit (GRU) GRU의 계산 그래프

Gated Recurrent Unit (GRU) GRU의 Forget Gate 와 Input Gate

Gated Recurrent Unit (GRU) GRU의 Forget Gate 와 Input Gate

BLSTM

Bidirection LSTM BLSTM

seq2seq

Encoder와 Decoder가 음성인식을 수행하는 예

안녕하세요 카이립입니다.

음성 인식기 (SEQUENCE TO SEQUENCE)

인코더의 셀은 주황색 디코더의 색은 초록색으로 표현

안녕하세요 카이립입니다.

Encoder는 문장을 고정 길이 벡터로 인코딩한다.

Encoder를 구성하는 계층

Encoder를 구성하는 계층

Decoder를 구성하는 계층

Seq2seq의 전체 계층 구성

Seq2seq Decoder init state

Single Fully Connected Network를 Encoder와 Decoder 사이에 배치

Encoder_layer_size의 인풋과 decoder_layer_size의 아웃풋을 가지는 Fully Connected Network를 배치함으로써 서로 다른 사이즈의 인코더의 Hidden State를 이용하여 디코더의 Hidden State를 초기화 할 수 있다.

디코더의 Hidden State는 랜덤으로 초기화 한 후, 인코더의 Hidden State Output(Last Hidden State)을 디코더의 인풋에 **concatenate**한다.

Peeky Seq2seq

Seq2seq + Attention

Basic Seq2seq의 한계

- 1) 아무리 긴 입력 시퀀스가 오더라도 고정 길이의 벡터만을 출력
- 2) RNN의 고질적인 문제인 Vanishing Gradient 문제 발생

Basic Seq2seq의 한계

기껏 계산해 놓은 RNN의 Hidden State들은 쓰이지를 않는다

① Attention Score 계산

① Attention Score 계산

Dot-Product Attention

② 소프트맥스 함수를 통해 Attention Distribution을 구한다.

③ Attention Distribution과 인코더의 Hidden State들을 각각 곱한다

hs a 8.0

Seq2seq + Attention Step ①

Seq2seq + Attention Step ②

Seq2seq + Attention Step ③

Seq2seq + Attention Step 4

Seq2seq + Attention Step ⑤

Seq2seq + Attention Step 6

Seq2seq + Attention Step ⑦

Seq2seq + Attention Step ®

Seq2seq + Attention Step 9

Seq2seq + Attention Mechanism

Decoder

Encoder