

LISTING OF CLAIMS

1. (Original) A process for measuring surface reflectance (\hat{r}) of an object of interest in a set of image date (i) said process comprising the steps of:

collect the set of image data (i) which contains the surface reflectance of the object of interest as well as additive noise caused by variations in illumination and atmospheric effects;

make an estimate of the additive noise (a) in the set of image data;

process the image data in a high pass filter to remove the estimate of additive noise (a) from the set of image signal lost due to atmospheric effects set (rm);

Use a Discrete Cosine Transform (DCT) on the processed image set to estimate an amount of image signal lost due to atmospheric effects set (rm);

Add the estimate of image signal lost to the processed image set to get a sum reflectance estimate; and

Process the sum reflectance estimate with a multiplicative noise only algorithm to obtain thereby the surface reflectance (\hat{r}) of the object of interest.

2. (Original) A process, as defined in claim 1, wherein said collection step is performed using image sensors that detect image data in a form of pixel spectral vectors $\{x\}$ and which output an image ($i = rm$) where r equals the surface reflectance of the object of interest and m is a multiplicative noise spectrum.

3. (Original) A process, as defined in claim 2, wherein there are N channels of pixel spectral vectors $\{x\}$ that are rotated into a log m principle component (PC) space to produce a rotated ensemble set $\{y\}$.

4. (Original) A process, as defined in claim 3, wherein image formation of the object of interest is elicited by performing a Hadamard product of the rotated ensemble set { y }.