

MÉTODO DE NEWTON RAPHSON

Método de Newton Raphson

Métodos numéricos Universidad San Buenaventura Cali

MÉTODO DE NEWTON RAPHSON

Se basa en trazar rectas tangentes que "toman la forma" de la función por medio de su primera derivada.

Supóngase una función f(x) = 0 a la que se desea calcular su raíz. Evaluando un valor x_1 cercano a la raíz en la función y trazando una recta tangente al punto x_1 , $f(x_1)$ se obtiene un nuevo valor x_2 que es mucho más cercano a la raíz que x_1 .

Para encontrar el valor de x_2 , se tomará la ecuación de la recta,

$$f(x_2) - f(x_1) = m(x_2 - x_1)$$

Se supone que $f(x_2)$ sea igual a 0 para que x_2 sea una raíz de f(x)

$$-f(x_1) = m(x_2 - x_1)$$

Pero en el punto x_1 , $f(x_1)$ la pendiente m puede tomarse como $f'(x_1)$ por ser la mejor aproximación a la pendiente en dicho punto.

$$-f(x_1) = f'(x_1)(x_2 - x_1)$$
$$x_2 - x_1 = \frac{f(x_1)}{f'(x_2)}$$

Y despejando x_2

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Si buscamos una mejor aproximación a la raíz utilizando este nuevo valor x_2

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

Si nuevamente se busca otra aproximación que es cada vez más cercana a la raíz,

$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)}$$

Entonces podemos generalizar la ecuación de la siguiente manera,

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \quad k \in Z^+$$

Que es la ecuación de Newton-Raphson.

EJEMPLO:

Expresamos la ecuación en la forma f(x) = 0, e identificamos la función f.

$$f(x) = e^x - \frac{1}{x}$$

SOLUCIÓN:

1. Calculamos la derivada

$$f'^{(x)} = e^x + \frac{1}{x^2}$$

2. Construimos la fórmula de recurrencia:

$$x_{j+1} = x_j - \frac{e^{xj} - \frac{1}{x_j}}{e^{xj} + \frac{1}{x_j^2}}$$

Tomamos una estimación inicial de la solución, en este caso podemos tomar $x_0 = 1$ y calculamos las siguientes aproximaciones.

$$x_0 = 1$$

$$x_1 = 1 - \frac{e^1 - \frac{1}{1}}{e^1 + \frac{1}{1^2}} = 0.53788284$$

$$x_2 = x_1 - \frac{e^{x_1} - \frac{1}{x_1}}{e^{x_1} + \frac{1}{x_1^2}} = 0.56627701$$

$$x_3 = 0.56714258$$

$$x_4 = 0.56714329$$

$$x_5 = 0.56714329$$

Entonces podemos tomar como solución x = 0.567143