CSE150 Operating Systems Lecture 19

Disk/SSDs and File Systems

Want Standard Interfaces to Devices (Review)

- Block Devices: e.g., disk drives, tape drives, DVD-ROM, flash
 - Access blocks of data
 - Commands include open(), read(), write(), seek()
 - Raw I/O or file-system access
 - Memory-mapped file access possible
- Character/Byte Devices: e.g., keyboards, mice, serial ports, some USB devices
 - Single characters at a time
 - Commands include get(), put()
 - Libraries layered on top allow line editing
- Network Devices: e.g., Ethernet, Wireless, Bluetooth
 - Different enough from block/character to have own interface
 - Unix and Windows include socket interface
 - » Separates network protocol from network operation
 - » Includes select() functionality

How Does the Processor Talk to Devices?

- Regardless of the complexity of the connections and buses, processor accesses registers in two ways (IA):
 - I/O instructions: in/out instructions (e.g., Intel's 0x21,AL)
 - Memory mapped I/O: load/store instructions
 - » Registers/memory appear in physical address space
 - » I/O accomplished with load and store instructions

Today

- Disks and SSDs
 - Hardware Performance Parameters
 - Disk Scheduling
- Important Storage Policies and Patterns
- File System Structures

I/O Performance

- Contributing factors to latency:
 - » Software paths (can be loosely modeled by a queue)
 - » Hardware controller
 - » I/O device service time
- Queuing behavior:
 - Can lead to big increases of latency as utilization approaches 100%
 - Solutions?

I/O Performance

- Decouple systems
 - » multiple independent buses
 - » or tree-structured buses with higher root bandwidth
- Buffering (as long as you don't have to wait for it) and spooling
 - » Give the processor something to do that gets the data "closer" to its endpoint.

Hard Disk Drives (HDDs)

Western Digital Drive http://www.storagereview.com/guide/

IBM Personal Computer/AT (1986) 30 MB hard disk - \$500 30-40ms seek time 0.7-1 MB/s (est.)

Read/Write Head Side View

IBM/Hitachi Microdrive

Properties of a Magnetic Hard Disk

- Properties
 - Independently addressable element: sector
 OS always transfers groups of sectors together—"blocks"
 - A disk can access directly any given block either sequentially or randomly.
- Zoned bit recording
 - Constant bit density: more bits (sectors) on outer tracks
 - Speed varies with track location

Magnetic Disk Characteristic

- Read/write: three-stage process:
 - Seek time: position the head/arm over the proper track (into proper cylinder)
 - Rotational latency: wait for the desired sector
 to rotate under the read/write head
 - Transfer time: transfer a block of bits (sector) under the read-write head
- Disk Latency = Queuing Time + Controller time +
 Seek Time + Rotation Time + Transfer Time

- Highest Bandwidth:
 - Transfer large group of blocks sequentially from one track

Track

Sector

Cylinde

Platter

Solid State Disks (SSDs)

- 1995 Replace rotating magnetic media with non-volatile memory (battery backed DRAM)
- 2009 Use NAND Multi-Level Cell (2-bit/cell) flash memory
 - Sector (4 KB page) addressable, but stores 4-64 "pages" per memory block
- No moving parts (no rotate/seek motors)
 - Eliminates seek and rotational delay (0.1-0.2ms access time)
 - Very low power and lightweight

- -Transfer time: transfer a 4KB page
 - » Limited by controller and disk interface (SATA: 300-600MB/s)
- –Latency = Queuing Time + Controller time + Xfer Time
- -Highest Bandwidth: Sequential OR Random reads

SSD Architecture – Writes (I)

- Writing data is complex! (~200µs 1.7ms)
- Can only write empty pages in a block
- Erasing a block takes ~1.5ms
- Controller maintains pool of empty blocks by combining used pages (read, erase, write).

Typical NAND Flash Pages and Blocks

https://en.wikipedia.org/wiki/Solid-state_drive

SSD Architecture – Writes (II)

• Write A, B, C, D

SSD Architecture – Writes (II)

- Write A, B, C, D
- Write E, F, G, H and A', B', C', D'
 - Record A, B, C, D as obsolete

SSD Architecture – Writes (II)

- Write A, B, C, D
- Write E, F, G, H and A', B', C', D'
 - Record A, B, C, D as obsolete
- Controller garbage collects obsolete pages by copying valid pages to new block
- Typical steady state behavior when SSD is almost full
 - One erase every 64 or 128 write!

SSD Architecture – Writes (III)

- Write and erase cycles require "high" voltage
 - Damages memory cells, limits SSD lifespan
 - Controller uses error correction.

- Result is very workload dependent performance
 - Latency = Queuing Time + Controller time (Find Free Page) +
 Xfer Time
 - Highest BW: Seq. OR Random writes (limited by empty pages)

Rule of thumb: writes 10x more expensive than reads, and erases 10x more expensive than writes

SSD Summary

- Pros (vs. hard disk drives):
 - Low latency, high throughput (eliminate seek/rotational delay)
 - No moving parts:
 - » Very light weight, low power (0.3x disk), silent, very shock insensitive
 - Read at memory speeds (limited by controller and I/O bus)

Cons

- Smaller storage (0.5x disk), expensive (7~10x disk)
 - » Hybrid alternative: combine small SSD with large HDD
- Cannot update a single page in a block.
- Asymmetric block write performance: read pg/erase/write pg
 - » Controller garbage collection (GC) algorithms have major effect on performance