Module 2 – Electricity Spot Markets (e.g. day-ahead)

2.3 From prices to settlement

Settlement process

• After energy schedules and the system price are determined, comes the **settlement** process...

- Using everyday terms:
 - who should pay what?
 - who should get paid, and what amount?

(Obviously, only those with energy production or consumption scheduled are concerned)

• Any opinion?

Settlement process

• After energy schedules and the system price are determined, comes the settlement process...

- Using everyday terms:
 - who should pay what?
 - who should get paid, and what amount?

(Obviously, only those with energy production or consumption scheduled are concerned)

- Any opinion?
- The two main approaches to **settlement** rely on
 - pay-as-bid pricing
 - uniform pricing

Our example auction setup

DTU

Supply: (for a total of 1435 MWh)

Company	Supply/Demand	id	P_i^G (MWh)	$\lambda_i^G \ (\in /MWh)$
$RT^{\mathbb{R}}$	Supply	G_1	120	0
WeTrustInWind	Supply	G_2	50	0
BlueHydro	Supply	G_3	200	15
RT^{\circledR}	Supply	G_4	400	30
KøbenhavnCHP	Supply	G_5	60	32.5
KøbenhavnCHP	Supply	G_6	50	34
KøbenhavnCHP	Supply	G_7	60	36
DirtyPower	Supply	G_8	100	37.5
DirtyPower	Supply	G_9	70	39
DirtyPower	Supply	G_{10}	50	40
RT^{\circledR}	Supply	G_{11}	70	60
RT^{\circledR}	Supply	G_{12}	45	70
SafePeak	Supply	G_{13}	50	100
SafePeak	Supply	G_{14}	60	150
SafePeak	Supply	G_{15}	50	200

Our example auction setup

Demand: (for a total of 1065 MWh)

Company	Supply/Demand	id	P_i^D (MWh)	λ_i^D (\in /MWh)
CleanRetail	Demand	D_1	250	200
El4You	Demand	D_2	300	110
EVcharge	Demand	D_3	120	100
QualiWatt	Demand	D_4	80	90
IntelliWatt	Demand	D_5	40	85
El4You	Demand	D_6	70	75
CleanRetail	Demand	D_7	60	65
IntelliWatt	Demand	D_8	45	40
QualiWatt	Demand	D_9	30	38
IntelliWatt	Demand	D_{10}	35	31
CleanRetail	Demand	D_{11}	25	24
El4You	Demand	D_{12}	10	16

Market clearing results

• After market clearing, the supply and demand schedules are:

Supply id.	Schedule (MWh)	Demand id.	Schedule (MWh)
G_1	120	D_1	250
G_2	50	D_2	300
G_3	200	D_3	120
G_4	400	D_4	80
G_5	60	D ₅	40
G ₆ G ₇	50	D_6	70
G ₇	60	D_7	60
G ₈	55	D ₈	45
G ₉ -G ₁₅	0	D ₉	30
		D ₁₀ -D ₁₂	0

• The system price is of 37.5 €/MWh, corresponding to the price offer of G_8

Settlement with pay-as-bid pricing

- How does that work? For those scheduled.
 - Consumption side: $R_i^{DA,D} = -\lambda_i^D y_i^D$, $R_i^{DA,D} < 0$, (since being a payment)
 - Supply side: $R_i^{DA,G} = \lambda_i^G y_i^G$, $R_i^{DA,G} \ge 0$ (since being a revenue)

- Consumption side (payments):

 - D_1 pays $250 \times 200 = 50000 \in$, $(R_1^{DA,D} = -50000)$ D_2 pays $300 \times 110 = 33000 \in$, $(R_2^{DA,D} = -33000)$, etc. D_9 pays $30 \times 38 = 1140 \in$, $(R_9^{DA,D} = -1140)$
- *Supply* side (revenues):
 - G_1 receives $120 \times 0 = 0 \in (R_1^{DA,G} = 0)$
 - G_2 receives $50 \times 0 = 0 \in (R_2^{DA,G} = 0)$, etc.
 - G_8 receives $55 \times 37.5 = 2062.5 \in (R_0^{DA,G} = 2062.5)$

Settlement with pay-as-bid pricing

- How does that work? For those scheduled.
 - Consumption side: $R_i^{DA,D} = -\lambda_i^D y_i^D$, $R_i^{DA,D} < 0$, (since being a payment)
 - Supply side: $R_i^{DA,G} = \lambda_i^G y_i^G$, $R_i^{DA,G} \ge 0$ (since being a revenue)

- Consumption side (payments):

 - D_1 pays $250 \times 200 = 50000 \in$, $(R_1^{DA,D} = -50000)$ D_2 pays $300 \times 110 = 33000 \in$, $(R_2^{DA,D} = -33000)$, etc. D_9 pays $30 \times 38 = 1140 \in$, $(R_9^{DA,D} = -1140)$
- *Supply* side (revenues):
 - G_1 receives $120 \times 0 = 0 \in (R_1^{DA,G} = 0)$
 - G_2 receives $50 \times 0 = 0 \in (R_2^{DA,G} = 0)$, etc.
 - G_8 receives $55 \times 37.5 = 2062.5 \in (R_8^{DA,G} = 2062.5)$
- Do you foresee the potential consequences of pay-as-bid pricing, e.g., in terms of fixed cost recovery for energy producers and strategic behaviour of market participants?

Settlement with uniform pricing

- How does that work? For those scheduled.
 - Consumption side: $R_i^{DA,D} = -\lambda^{S} y_i^{D}$, $R_i^{DA,D} \leq 0$, (since being a payment)
 - Supply side: $R_i^{DA,G} = \lambda^S y_i^G$, $R_i^{DA,G} \ge 0$ (since being a revenue)

- Consumption side (payments):
 - D_1 pays $250 \times 37.5 = 9375 \in$, $(R_q^{DA,D} = -9375)$
 - D_2 pays $300 \times 37.5 = 11250 \in (R_9^{DA,D} = -11250)$, etc.
 - D_9 pays $30 \times 37.5 = 1125 \in (R_0^{DA,D} = -1125)$
- *Supply* side (revenues):
 - G_1 receives $120 \times 37.5 = 4500 \in$, $(R_8^{DA,G} = 4500)$
 - G_2 receives $50 \times 37.5 = 1875 \in$, $(R_2^{DA,G} = 1875)$, etc. G_8 receives $55 \times 37.5 = 2062.5 \in$, $(R_8^{DA,G} = 2062.5)$

Settlement with uniform pricing

- How does that work? For those scheduled.
 - Consumption side: $R_i^{DA,D} = -\lambda^{S} y_i^{D}$, $R_i^{DA,D} \leq 0$, (since being a payment)
 - Supply side: $R_i^{DA,G} = \lambda^S y_i^G$, $R_i^{DA,G} \ge 0$ (since being a revenue)

- Consumption side (payments):
 - D_1 pays $250 \times 37.5 = 9375 \in (R_9^{DA,D} = -9375)$
 - D_2 pays $300 \times 37.5 = 11250 \in$, $(R_9^{DA,D} = -11250)$, etc. D_9 pays $30 \times 37.5 = 1125 \in$, $(R_9^{DA,D} = -1125)$
- *Supply* side (revenues):
 - G_1 receives $120 \times 37.5 = 4500 \in$, $(R_8^{DA,G} = 4500)$
 - G_2 receives $50 \times 37.5 = 1875 \in (R_2^{DA,G} = 1875)$, etc.
 - G_8 receives $55 \times 37.5 = 2062.5 \in (R_8^{DA,G} = 2062.5)$
- It is expected to attenuate some of the potential negative consequences observed with pay-as-bid pricing

Properties induced by these two settlement approaches

Day-ahead markets with the two settlement approaches guarantee individual rationality
In both cases, consumers will pay at most what they were ready to pay, and producers will receive at least what they wanted to be paid for, i.e.,

$$R_i^{DA,D} \le \lambda_i^D y_i^D, \quad \forall i, \qquad R_j^{DA,G} \ge \lambda_j^G y_j^G, \quad \forall j$$

Properties induced by these two settlement approaches

Day-ahead markets with the two settlement approaches guarantee individual rationality
In both cases, consumers will pay at most what they were ready to pay, and producers will receive at least what they wanted to be paid for, i.e.,

$$R_i^{DA,D} \le \lambda_i^D y_i^D, \quad \forall i, \qquad R_j^{DA,G} \ge \lambda_j^G y_j^G, \quad \forall j$$

Day-ahead markets with the two settlement approaches guarantee revenue adequacy
In both cases, the sum of revenues is greater than or equal to the sum of payments, i.e.,

$$\sum_{j} R_{j}^{DA,G} \ge \sum_{i} R_{i}^{DA,D}$$

Properties induced by these two settlement approaches

Day-ahead markets with the two settlement approaches guarantee individual rationality
In both cases, consumers will pay at most what they were ready to pay, and producers will receive at least what they wanted to be paid for, i.e.,

$$R_i^{DA,D} \le \lambda_i^D y_i^D, \quad \forall i, \qquad R_j^{DA,G} \ge \lambda_j^G y_j^G, \quad \forall j$$

Day-ahead markets with the two settlement approaches guarantee revenue adequacy
In both cases, the sum of revenues is greater than or equal to the sum of payments, i.e.,

$$\sum_{i} R_{j}^{DA,G} \ge \sum_{i} R_{i}^{DA,D}$$

Uniform pricing yields budget balance. Pay-as-bid pricing does not
Only for uniform pricing, the sum of revenues is by definition equal to the sum of payments

Use the self-assessment quizz to check your understanding!

