Economics 144 Economic Forecasting

Lecture 6
Characterizing Cycles
Moving Average Models

Dr. Randall R. Rojas

Today's Class

- Covariance Stationary Time Series
- White Noise
- The Lag Operator
- Wold's Theorem
- Characteristics of the MA(q) Process
 - Example: MA(1) Process

Covariance Stationary Time Series

Recall that covariance stationary processes have $\rho(k)$ and p(k) that $\rightarrow 0$ as $k \rightarrow$ infinity.

White Noise 1 of 3

 White Noise: Time series process with zero mean, constant variance, and no serial correlation.

- Since $\rho(k) = 0$ and p(k) = 0 for $k \ge 1$, there is no link between past and present observations.
 - → Cannot predict the future.
- Examples: S&P500 returns, interest rates, etc.

Example: Autocorrelation Functions of Monthly Returns for Microsoft and the Dow Jones Index

Sample: 1986:03 2004:07 Included observations: 220							
Autocorrelation	Partial Correlation	AC PAC					
		1 -0.081 -0.081 2 -0.094 -0.101 3 0.132 0.117 4 -0.017 -0.006 5 0.008 0.030 6 -0.013 -0.029 7 0.106 0.013 8 0.015 0.023 9 -0.006 0.024 10 0.131 0.112 11 0.013 0.035 12 -0.016 0.005 13 -0.020 -0.045 14 0.030 0.013 15 -0.075 -0.091 16 0.064 0.068 17 0.085 0.051 18 -0.094 -0.064 19 -0.049 -0.076					
	1 170						

Sample: 1986:03 2004:07 Included observations: 220					
Autocorrelation	Partial Correlation	AC PAC			
		1 -0.021 -0.021 2 -0.044 -0.044 3 -0.056 -0.058 4 -0.126 -0.131 5 0.048 0.037 6 -0.031 -0.045 7 0.092 0.081 8 -0.044 -0.057 9 -0.043 -0.030 10 0.043 0.035 11 -0.012 0.006 12 0.015 -0.006 13 -0.003 0.003 14 -0.034 -0.034 15 -0.059 -0.060 16 0.039 0.042 17 0.031 0.012 18 0.079 0.076 19 -0.026 -0.028 20 -0.016 0.005			
Fig. 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 0.010 0.000			

Wold's Theorem (Part I)

- Q: What's left after filtering the trend and seasonal components?
- A: Covariance stationary (short memory) residuals! How should we model them? → Wold's Theorem!
- Wold's Representation Theorem: Let $\{y_t\}$ be any zero-mean covariance-stationary process. Then

$$y_t = B(L)\varepsilon_t = \sum_{i=0}^\infty b_i \varepsilon_{t-i} \text{ and } \varepsilon_t \sim WN(0,\sigma^2)$$

$$\uparrow \qquad \qquad \text{(Innovations)}$$
 where $\sum_{i=0}^\infty b_i^2 < \infty$ and b_o =1.

Moving Average Models

• Def: MA(q) = Moving Average process or order $q \ge 0$: $Y_t = \mu + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + ... + \theta_q \varepsilon_{t-q}$, where $\varepsilon_t \sim (0, \sigma^2)$

• Examples:

- MA(1): $Y_t = \mu + \theta_1 \varepsilon_{t-1} + \varepsilon_t$
- MA(5): $Y_t = \mu + \theta_1 \varepsilon_{t-1} + \theta_5 \varepsilon_{t-5} + \varepsilon_t$
- MA(10): $Y_t = \mu + \theta_{10} \varepsilon_{t-10} + \varepsilon_t$

Moving Average Models

For every MA(q) process, we need to address the following 3 questions:

- 1. What does a time series of an MA process look like?
- 2. What do the corresponding ACFs and PACFs look like?
- 3. What is the optimal forecast?

- (1) What does a time series of an MA process look like?
- Consider the following MA(1) process:

$$Y_t = \mu + \theta \, \varepsilon_{t-1} + \varepsilon_t$$

- We can plot this process for μ =2, and different values of θ , e.g., for θ =0.05, θ =0.5, θ =0.95, and θ =2.
- We can show that $E(Y_t) = \mu$, and $\sigma^2(Y_t) = (1+\theta^2)\sigma^2_{\varepsilon}$

MA(1): $Y_t = \mu + \theta \varepsilon_{t-1} + \varepsilon_t$

• (2) What do the corresponding ACFs and PACFs look like?

ACF:

- − (i) We would expect to see only 1 spike different from zero, i.e., $\rho_1 \neq 0$, and all others equal to zero ($\rho_k = 0$, k>1).
- (ii) The magnitude of the spike should be proportional to θ for $|\theta|<1$.
- Note: You can show (please fill in the steps) that $\rho_1 = \theta / (1+\theta^2)$
- (iii) Given the expression above, the sign of the ACF is the same as the sign of θ .

 (2) What do the corresponding ACFs and PACFs look like?

PACF:

- Note: You can show (please fill in the steps) that the autocovariance of order 1 is given by: $\gamma_1 = \theta \sigma_{\epsilon}^2$, and all other orders are equal to 0.
- (i) The PACF decreases to zero in an alternating fashion, according to $p_k > 0$ (k=odd), and $p_k < 0$ (k =even).
- (ii) We can also show that $p_1 = \rho_1$

Autocorrelation Functions of Simulated MA(1) Processes

Can you distinguish them?

- From our previous example, based on the ACFs alone, we could not distinguish the MA(1) process with θ =0.5 from the MA(1) process with θ =2. This property is known as invertibility.
- Def: Invertibility

An MA(1) process is invertible if $|\theta| < 1$. Otherwise, if $|\theta| \ge 1$, the process is noninvertible.

- Meaning of Invertibility: You can transform the MA(1) process to an 'autoregressive' function of its own past (lagged values), such that the recent past has more weight than the distant past.
- Example: $Y_t = \mu + \theta \varepsilon_{t-1} + \varepsilon_t = \mu + (1-(-\theta)L) \varepsilon_t$

• Solve for
$$\varepsilon_t o \varepsilon_t = \frac{1}{1-(-\theta)L}(Y_t-\mu)$$

• Since $|\theta|$ <1, we can perform a Taylor series expansion of the denominator:

$$\frac{1}{1 - (-\theta)L} = \lim_{i \to \infty} \left(1 + (-\theta)L + (-\theta)^2 L^2 + \dots + (-\theta)^i L^i + \dots \right)$$
$$= \left(1 - \theta L + \theta^2 L^2 + \dots \right)$$

• Therefore, we can re-express $\varepsilon_t = \frac{1}{1-(-\theta)L}(Y_t-\mu)$ as: $\varepsilon_t = \left(1-\theta L + \theta^2 L^2 + \cdots\right)(Y_t-\mu)$

$$Y_t - \mu = \theta(Y_{t-1} - \mu) - \theta^2(Y_{t-2} - \mu) + \dots + \varepsilon_t$$

= Autoregressive Process

• If an MA process is invertible, you can always find an Autoregressive representation.

 To predict the future, we need the information contained in the past.

• As noted earlier, the recent past has more weight than the distant past since: $\lim_{t \to \infty} \theta^t \to 0$

- Q: What can we conclude for the case when $|\theta| \ge 1$?
- A: We cannot perform the Taylor series expansion on θ but we can on $1/\theta$.
- Since $\theta > 1$, consider expanding $1/(1-\theta L)$ as follows:

$$\frac{1}{1-\theta L} = -\frac{\frac{1}{\theta L}}{1-\frac{1}{\theta L}} = -\frac{1}{\theta L} \left(1 + \frac{1}{\theta L} + \left(\frac{1}{\theta L} \right)^2 + \cdots \right)$$

 Def: Forward Operator (F) = 1/L, where $FY_t = Y_{t+1} \rightarrow F(L(Y_t)) = F(Y_{t-1}) = Y_t$. The forward operator is inverse of the lag operator. It delivers the process at a future date.

$$\frac{1}{1-\theta L} = -\frac{1}{\theta}F\left(1 + \frac{1}{\theta}F + \frac{1}{\theta^2}F^2 + \cdots\right)$$

$$\varepsilon_t = \frac{1}{1-\theta L}Y_t = -\frac{1}{\theta}F\left(1 + \frac{1}{\theta}F + \frac{1}{\theta^2}F^2 + \cdots\right)Y_t$$

$$-\frac{1}{\theta}Y_{t+1} = +\frac{1}{\theta^2}Y_{t+2} + \frac{1}{\theta^3}Y_{t+3} + \cdots + \varepsilon_t$$
 The present is a function of the future.

What is the practical use of all this?

Sample: 1953M04 2008M04 Included observations: 660

Autocorrelation	Partial Correlation		AC	PAC	
		3 4 5	-0.073	0.129 -0.063 -0.017 -0.060	

What process would you suggest?

$$\widehat{\rho}_1 = 0.339 \rightarrow \widehat{\theta}_1 \approx 0.34$$

Moving Average Models Forecasting in an MA(1) Process

• Consider first the 1-step-ahead forecast, h = 1:

$$\mathsf{MA}(\mathbf{1}): \ Y_t = \mu + \theta \varepsilon_{t-1} + \varepsilon_t \rightarrow Y_{t+1} = \mu + \theta \varepsilon_t + \varepsilon_{t+1}$$

- Optimal Point Forecast: $f_{t,1} = E(Y_{t+1}|I_t) = \mu + \theta \varepsilon_t$
 - Note: We can write ε_t in terms of lags of Y_t
- One-period-ahead Forecast Error: $e_{t,l} = Y_{t+1}$ $f_{t,1} = \varepsilon_{t+1}$
- Uncertainty of the Forecast: $\sigma_{t+1|t}^2 = var(Y_{t+1}|I_t) = \sigma_{\varepsilon}^2$
- Density Forecast: $f(Y_{t+1}|I_t) \sim N(\mu + \theta \varepsilon_t, \sigma^2_{\varepsilon})$
 - Note: We can compute the confidence intervals from the density forecast.

Please go over the steps for h=1 and h=2 (Section 6.2°)

Moving Average Models Forecasting in an MA(1) Process

Consider first the k-step-ahead forecast, h = k:

$$\mathsf{MA}(\mathbf{1}): \ Y_t = \mu + \theta \varepsilon_{t-1} + \varepsilon_t \rightarrow Y_{t+1} = \mu + \theta \varepsilon_t + \varepsilon_{t+1}$$

- Optimal Point Forecast: $f_{t,k} = E(Y_{t+k}|I_t) = \mu$
- k-period-ahead Forecast Error: $e_{t,k} = Y_{t+k} f_{t,k} = \varepsilon_{t+k} + \theta \varepsilon_{t+k-1}$
- Uncertainty of the Forecast: $\sigma_{t+k|t}^2 = \sigma_{\varepsilon}^2(1+\theta^2) = \sigma_Y^2$
- Density Forecast: $f(Y_{t+k}|I_t) \sim N(\mu, \sigma^2_Y)$

Forecasting the 5-year Constant Maturity Yield

Sample: 1953M04 2008M04 Included observations: 660

Autocorrelation	Partial Correlation		AC PAC	
		3 4 5	0.339 0.339 -0.073 -0.213 0.007 0.129 0.014 -0.063 -0.043 -0.017 -0.073 -0.060 -0.069 -0.035	

Model: $Y_t = \mu + \theta \varepsilon_{t-1} + \varepsilon_t$

Estimated Model: $Y_t = 0.160 + 0.485\varepsilon_t + \varepsilon_t$

where $\widehat{\sigma}_{V}^{2}=23.683$ and $\widehat{\sigma}_{arepsilon}=4.449$

Estimation Output: 5-Year Treasury Yield (Monthly Percentage Changes)

Dependent Variable: DY Method: Least Squares

Sample (adjusted): 1953M05 2007M11

Included observations: 655 after adjustments

Convergence achieved after 7 iterations

Backcast: 1953M04

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	0.160159 0.485011	0.258095 0.034468	0.620544 14.07130	0.5351 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.165370 0.164092 4.449443 12927.79 -1906.173 2.055799	S.D. depende Akaike info co Schwarz crite F-statistic	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion	
Inverted MA Roots	49			

December 2007-April 2008 Forecasts of 5-year Treasure Yield Changes

h = 1 12/2007	$f_{t,1} = \hat{\mu} + \hat{\theta} \varepsilon_t =$ = 0.160 + 0.485 $\hat{\varepsilon}_t$ = -6.276%	$\sigma_{t+1 t}^2 = \hat{\sigma}_{\varepsilon}^2 = 4.449^2$	$f(Y_{t+1} I_t) \to N(\mu_{t+1 t}, \sigma_{t+1 t}^2)$ = $N(-6.276, 4.449^2)$
h = 2 1/2008	$f_{t,2} = \hat{\mu} = 0.160\%$	$\sigma_{t+2 t}^2 = \hat{\sigma}_{\varepsilon}^2 (1 + \hat{\theta}^2)$ = 4.449 ² (1 + 0.485 ²) = 23.683 = $\hat{\sigma}_{\gamma}^2$	$f(Y_{t+2} I_t) \to N(0.16, 23.683)$
h = 3 2/2008	$f_{t,3} = \hat{\mu} = 0.160\%$	$\sigma_{t+3 t}^2 = 23.683 = \hat{\sigma}_Y^2$	$f(Y_{t+3} I_t) \rightarrow N(0.16, 23.683)$
h = 4 3/2008	$f_{t,4} = \hat{\mu} = 0.160\%$	$\sigma_{t+4 t}^2 = 23.683 = \hat{\sigma}_Y^2$	$f(Y_{t+4} I_t) \rightarrow N(0.16, 23.683)$
h = 5 4/2008	$f_{t,5} = \hat{\mu} = 0.160\%$	$\sigma_{t+5 t}^2 = 23.683 = \hat{\sigma}_Y^2$	$f(Y_{t+5} I_t) \rightarrow N(0.16, 23.683)$

Actual data (5-year Treasure rate changes)
Forecast
Lower bound, 95% confidence interval
Upper bound, 95% confidence interval

Sample: 1 2000 Included observations: 1998

$Y_{t} = 2 + 1.7\varepsilon_{t-1} + 0.72\varepsilon_{t-2} + \varepsilon_{t-2}$	t
--	---

	Autocorrelation	Partial Correlation	AC PAC
			1 0.649 0.649 2 0.109 -0.542 3 -0.082 0.394 4 -0.054 -0.315 5 -0.007 0.271 6 0.016 -0.215 7 0.022 0.199
Both ACFs show	/ }		8 0.014 -0.184 9 -0.002 0.157
2 spikes only	Į.	■	10 -0.010 -0.143
\rightarrow MA(2)	Sample: 1 2000		

Sample: 1 2000 Included observations: 1998
$$Y_{t} = 2 - \varepsilon_{t-1} + 0.25\varepsilon_{t-2} + \varepsilon_{t}$$

Autocorrelation	Partial Correlation	AC	PAC
		8 -0.014	-0.356 -0.250 -0.199 -0.106 -0.088 -0.043 -0.022 -0.001

Daily Returns to Microsoft

Sample: 1 570

Included observations: 569

Returns

Sample: 1 570

Included observations: 569

3-day MA

Autocorrelation	Partial Correlation	AC	PAC	Autocorrelation	Partial Correlation		AC	PAC
		1 -0.076 2 0.012 3 0.002 4 0.067 5 -0.026 6 -0.048 7 -0.091 8 0.003 9 -0.014 10 0.015	0.006 0.004 0.068 -0.016 -0.053 -0.100 -0.015			3 4 5 6 7 8 9	0.350 0.023 0.047 -0.038 -0.102 -0.138 -0.084 -0.037	0.629 -0.076 -0.277 0.300 -0.193 -0.194 0.198 -0.042 -0.103 0.198

Looks like white-noise

Looks like an MA(2) process

$$Y_t = 0.95\varepsilon_{t-1} + 0.94\varepsilon_{t-2} + \varepsilon_t$$

What type of a process is this?

Series ma.sim

MA(4) Process

In general, for any MA(q) process, $\rho_k = 0$ for any k>q.

For Next Class

Readings about today's class:
 Chapter 6^a, 8^b

Review Exercises / Problems:

Chapter 7^b: 1, 2, 3

Readings for next class:

6^a ,7^a, 8^b, 9^b