HW 7 . A 10.1 abc, 10.14, 11.5, 11.8 bd, 11.26	NEVIN LIANG
(a) Let $\begin{bmatrix} 1 & 1 \\ 0 & 0.95 \end{bmatrix}$ A and $\begin{bmatrix} 0 \\ 0.1 \end{bmatrix}$ = 6	
S(++1) = A s(+) + b u(+)	
S(0) = 0 $S(1) = bu(0)$ $S(2) = Abu(0) + bu(1)$	
5(3) - A2bu(0) + Abu(1) + bu(2)	
S(u) = A3bu(2)+A2bu(1) + Abu(2) + bu(3)	
5(N) = A ^{N-1} bu(o) + A ^{N-2} bu(i) + + A'bu(N-2) + bu(N-1)	
$= \begin{bmatrix} A^{N-1}b & A^{N-2}b & A^{N-3}b & \dots & A^{1}b & b \end{bmatrix} \begin{bmatrix} u(v) \\ u(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 10 \end{bmatrix}$	
Let [n(0); a(1); a(1).; a(07)]=11.	
[A ^{N-1} b A ^{N2} b A ¹ b] · U = [10] and we want to minimum.	
$E = \sum_{n=1}^{\infty} n(x)^{2} = \ n\ ^{2}$	
IF C = [ANI b ANI b ANI b A'b b] and d = ["],	
we are trying to minimine x 2 subject to Cx.d.	
(b) & (c) on matlab next page.	

```
% 10.1b
N = 30;
A = [1 1; 0 0.95];
b = [0; 0.1];
C = zeros(2, N);
bi = b;
for i = N:-1:1
C(:,i) = bi;
bi = A * bi;
end
d = [10; 0];
[Q, R] = qr(C', 0);
u = Q * (R' \setminus d);
s = zeros(2, N);
for i = 1:N
    s(:,i+1) = A * s(:,i) + b * u(i);
end
plot(0:N, s(1,:));
xlabel('time t');
ylabel('position s1');
title('position vs time for N = 30');
```



```
plot(0:N, s(2,:));
xlabel('time t');
ylabel('velocity s2');
title('velocity vs time for N = 30');
```

```
velocity vs time for N = 30
    0.5
   0.45
   0.4
   0.35
    0.3
velocity s2
    0.2
   0.15
    0.1
   0.05
                      5
                                    10
                                                   15
                                                                  20
                                                                                 25
                                                 time t
```

```
% 10.1c

E = zeros(28, 1);
for N = 2:29
    A = [1 1; 0 0.95];
    b = [0; 0.1];

C = zeros(2, N);

bi = b;
for i = N:-1:1
    C(:,i) = bi;
    bi = A * bi;
end

d = [10; 0];

[Q, R] = qr(C', 0);
u = Q * (R' \ d);
```

```
E(N - 1) = norm(u)^2;
end

semilogy(1:28, E);
xlabel('time horizon N');
ylabel('energy E');
title('energy vs time horizon length');
```


10.14) A: mxn	motrix with livearly .II. columns.
	$\hat{x}^{(i)}$ = solution to $\left[\begin{array}{c} \text{minime } \ Ax\ ^2 \\ \text{s.t. } e.^Tx=-1 \end{array}\right]$
a) P _N ,	$\hat{x}^{(i)} = \frac{-1}{e_i^T (A^T A)^{-1} e_i} (A^T A)^T e_i$
	istramed least square formulation
	minimize
	tian is $\begin{bmatrix} A^TA & C^T \end{bmatrix} \begin{bmatrix} X \\ Z \end{bmatrix} = \begin{bmatrix} A^Tb \\ A \end{bmatrix}$ If a $\neq cxiHs$
	our case $b = \overline{O}$, $C = e_i T$ and $A : A : d : -1$
	$A^{T}A \times + e_{i} = A^{T} \vec{O} = \vec{O}$ $e_{i}^{T} \times = -1 \Rightarrow \text{subject to condition.}$
	$X = (A^{\dagger}A)^{-1} (-e, 2)$ $A \text{ has lim } L \text{ cols.}$
	$e_{i}^{T} \cdot (A^{T}A)^{-1} \cdot (-e_{i}z) = -1$ $e_{i}^{T} \cdot (A^{T}A)^{-1} \cdot e_{i} \cdot z = 1$
	lug beck into eq. 1:
	$X = \frac{1}{e_i^T (A^T A)^{-1} e_i} (A^T A)^{-1} e_i$

- ATA = (OF)TOR

 - 2) (ATA) = RTR-T
- Once the find N in $O(2n)_4$ mn?) each $\chi^{(i)}$ takes O(i) to calculate.

ļl.5)	
	(a) Is A. Hall 2. QQT positive semi-definite:
	$y^{T} \cdot A \cdot y = \frac{1}{\ a\ ^{2}} \cdot y^{T} \cdot a \cdot a^{T} \cdot y = \frac{1}{\ a\ ^{2}} \ a^{T}y\ ^{2}$
	$y^{T}aa^{T}y = (a^{T}y)^{T}(a^{T}y)$
	for any vector y, and nonzeo vector a,
	$ \mathbf{a}^{T}\mathbf{y} \ge 0$ and $ \mathbf{a} ^2 > 0$.
	covality occurs when $y = \vec{0}$. If $y \neq \vec{0}$, then $ a^{\dagger}y > 0$
	There A is postlying somi-defenite.
	and also positive definite not positive definite He aTy 15 = 0.
	Is B = I - A positive semi-definite or positive definite?
	yt (a) y = yt (x-A)y = yTy - ytAy
	Now, for all y, ytag >0 from 11 prov section.
	979 - yT. Malle aat y = yTy - 11alle yTa aTy
	$= y^{T}y - \frac{1}{\ \mathbf{a}\ ^{2}} \cdot (\mathbf{a}^{T}y)^{2} = \ \mathbf{y}\ ^{2} - \frac{1}{\ \mathbf{a}\ ^{2}} \cdot (\mathbf{a}^{T}y)^{2} \cdot ? \cdot 0$
	= y 2 (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \cos^2 \theta \right) + \frac{1}{2} \cos^2 \theta \right) + \frac{1}{2} \left(\frac{1}{2} \cos^2 \theta \right) + \frac{1}{2} \cos^2 \theta \right)$
	= y ² sin ² Ø ≥ 0
	This, B is positive semi-define
	por postive definit (D=0)

(a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} R_{11} & R_{21} & R_{21} & R_{21} & R_{21} \\ R_{11} & R_{12} & R_{21} & R_{22} & R_{23} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{23} \\ R_{12} & R_{12} & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & R_{12} & R_{23} \\ R_{13} & R_{14} & 0 & 0 & 0 & R_{23} \\ R_{14} & 0 & 0 & 0 & 0 & R_{23} \\ 0 & 0 & 0 & 0 & R_{23} \end{bmatrix} \begin{bmatrix} 0 & R_{21} & R_{23} \\ 0 & 0 & R_{22} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & 0 & 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{23} & R_{23} \end{bmatrix} \begin{bmatrix} 0 & 0 & R_{23} & R_{23} \\ 0 & R_{$$

	11.26) (a)	$A = \begin{bmatrix} B & -C^{T} \\ C & D \end{bmatrix} = \begin{bmatrix} R_{11}^{T} R_{11} & R_{11}^{T} R_{12} \\ -R_{12}^{T} R_{11} & -R_{12}^{T} R_{21} + R_{21}^{T} R_{22} \end{bmatrix}$
	· · · · · · · · · · · · · · · · · · ·		B is PD so B=R,TR, is possible.
			$C_{z} = R_{12}^{T} R_{11}$
			sine Rn has positive diagonal elements,
			this, since R, is V.T> invente
			$-R_{\mu}T = C \cdot R_{\mu}^{-1}$
			and $R_{ii} = \left(-C \cdot R_{ii}^{-1}\right)^{T}$
			D= -Rint Rint Rint Rin he was to prove that Rin is imper thought
		· ·	$R^{T} R_{12} T R_{12} = R_{22} T R_{12}$
			positive define positive semblefinine form:
			$a^{T} R_{n}^{T} R_{n} - a = \ (R_{n} \cdot a)\ ^{2} \geq 0$ for all a .
			PO+PSD=PD so Pn exists and is U.T.
		(હ)	Step 1: B= RIT RII -> RIII takes 3 n3 by cholesky
			Step 2: $C = -R_{11}^T R_{11}$. $R_{11} \cdot \vec{X} = \vec{y}$ takes $O(N^2)$ to solve
			N colors of Ms mn² since X has m colors.
			Sup 3: $D_{\uparrow} R_{12}^{\dagger} R_{11} = R_{12}^{\dagger} R_{22} \Rightarrow \text{cholesty's} = \frac{1}{3} m^{3}$ $\int (n \times m)^{\dagger} (n \times m) \Rightarrow 2 m^{2} n$
•			$\frac{1}{2mn^2 + \frac{1}{3}n^3 + \frac{1}{3m^3}} $ and cubic tens.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

. . . .

. . .

. . .

. . .

. . .

. . .

. . .

.

. . .