Функциональный анализ

Лектор Широков Николай Алекеевич Кафедра Алгоритмической математики

ВВЕДЕНИЕ

Основной способ развития математики — обобщение. Немецкому математику Леопольду Кронекеру принадлежат слова: «Бог создал натуральные числа, а всё прочее — дело рук человеческих». Функциональный анализ – типичный пример такого способа развития. В начале XX века стало заметно, что накопившиеся математические знания, формально относящиеся к разным ее областям, часто имеют между собой много общего. Была создана необходимая база и сформировалось понимание того, что нужно рассматривать функции, действующие на множестве функций так же, как ранее рассматривались функции, заданные на множестве чисел. Идея не была абсолютно новой, уже давно математики работали с функциями

нескольких переменных, т. е. с функциями, заданными на векторах. Особое место здесь занимали простые, но важные объекты – линейные функции. Работа с ними, сильно отличающаяся от работы с функциями общего вида, и сформировала аппарат линейной алгебры. Этот раздел математики выделялся своей «законченностью» (возможностью за конечное число шагов получить ответ на поставленный вопрос), и естественно он оказался очень востребованным в формировании математических моделей самых разнообразных процессов. Возникало желание (у математиков) и необходимость (у тех, кто использовал этот аппарат) «перейти к пределу» — допустить к рассмотрению векторы с бесконечным числом компонент, а затем заменить их на функции. Существует множество ситуаций, где такие переходы естественны и необходимы.

Самым простым и убедительным примером подобного обобщения является скалярное произведение — удобный технический аппарат, отвечающий за геометрию конечномерного пространства:

$$\vec{a} = (a_1, \dots, a_n), \ \vec{b} = (b_1, \dots, b_n), \ (\vec{a}, \vec{b}) = \sum_{k=1}^n a_k \overline{b_k}.$$

Если необходимо вычислить энергию периодического сигнал f(x) по его разложению в ряд Фурье $f(x) = \sum_{k=1}^{\infty} c_n e^{inx}$, достаточно вычислить скалярное произведение бесконечного вектора $\vec{c} = (c_n)$ на себя

$$(\vec{c}, \vec{c}) = \sum_{k=1}^{\infty} c_n \overline{c_n} = \sum_{k=1}^{\infty} |c_n|^2.$$

Равенство Парсеваля утверждает, что ту же энергию можно вычислить и другим способом

$$\sum_{k=1}^{\infty} |c_n|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx.$$

Это наблюдение дает основание для определения скалярного произведения на множестве 2π -периодических функций

$$(f,g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx.$$

В итоге оформилась новая математическая дисциплина — функциональный анализ. Объектами ее исследований стали нормированные линейные пространства и действующие на них линейные операторы. Желание работать с бесконечномерными объектами не позволяет содержательно рассматривать нелинейные операторы, но большое количество важных задач, которые удалось решить с использованием функционального анализа, более чем оправдывают его существование.

ЛИНЕЙНЫЕ НОРМИРОВАННЫЕ ПРОСТРАНСТВА

- Определение 1.1. Множество X называется линейным пространством над полем K, если выполнены следующие три требования:
- I. Имеется правило, посредством которого любым двум элементам x, y множества X ставится в соответствие третий элемент этого множества, называемый суммой элементов x и y и обозначаемый символом x+y.
- II. Имеется правило, посредством которого любому элементу x множества X и любому элементу λ поля K ставится в соответствие элемент u этого множества, называемый произведением элемента x на элемент (число) λ и обозначаемый символом λx .

- III. Указанные два правила подчинены следующим восьми аксиомам:
- 1) x + y = y + x (коммутативность);
- 2) (x+y)+z=x+(y+z) (accoulumuehocmb);
- 3) существует нулевой элемент 0 такой, что x + 0 = x (для любого x);
- 4) для каждого элемента x существует противоположный элемент $x' \in X$ такой, что x + x' = 0;
 - 5) $1 \cdot x = x$, где 1 единица поля K;
 - 6) $\lambda \cdot (\mu x) = (\lambda \mu) \cdot x, \quad \lambda, \mu \in K$;
 - 7) $(\lambda + \mu)x = \lambda x + \mu x$, $\lambda, \mu \in K$;
 - 8) $\lambda(x+y) = \lambda x + \lambda y$, $\lambda \in K$.

Структура линейного пространства однако слишком бедна — в ней нельзя совершать предельные переходы, поэтому здесь всегда будут рассматриваться линейные пространства, снабженные нормой. -

Определение 1.2. Нормой в линейном пространстве X называется любая функция, отображающая пространство X в множество вещественных неотрицательных чисел $x \to ||x||$ такая, что

- 1) для любого $x \in X$ и для любого $k \in K$ выполнено равенство $||kx|| = |k| \cdot ||x||;$
 - 2) для любых $x, y \in X$ справедливо неравенство $||x + y|| \le ||x|| + ||y||$;
- 3) для любого $x \in X$ справедливо неравенство $||x|| \ge 0$, причем равенство ||x|| = 0 возможно только для x = 0.

Норма позволяет измерять расстояние ||x-y|| между парой элементов линейного пространства $x,y \in X$. Следовательно, можно говорить о пределах последовательностей $x_n \in X : x_n \to x_0$, если $||x_n - x_0|| \to 0$.

Пример 1.1. Множество рациональных чисел \mathbb{Q} , конечно, образует линейное пространство над \mathbb{Q} . Оно является полем, и в качестве коэффициентов можно взять сами элементы того же пространства. Но надо понимать, что говорить о сходимости по норме можно только, когда известен элемент $x_0 \in X$. По этой причине последовательность рациональных чисел, сходящуюся, скажем, к числу $\sqrt{2}$, нельзя назвать сходящейся в смысле нашего определения, так как предельный элемент не является элементом исходного пространства.

Чтобы облегчить операции с предельными переходами, вводится понятие фундаментальной последовательности.

Определение 1.3. Последовательность $\{x_n\}$ называется фундаментальной, если

$$\forall \varepsilon > 0 \quad \exists N : \quad \forall n, k > N \quad ||x_n - x_k|| < \varepsilon.$$

Определение нормы допускает множество реализаций в одном и том же линейном пространстве, что на первый взгляд представляется излишним, однако решение задачи может быть значительно упрощено за счет введения подходящей нормы. Точнее говоря, трудности решения задачи могут быть переведены в трудности работы с определением. Главным достоинством такого подхода является то, что решение становится более прозрачным, благодаря хорошему структурированию.

Рассмотрим примеры нормированных пространств над полем ℝ, часто используемых в решении разнообразных задач. На этих примерах хорошо видна схема обобщения понятий, типичная для функционального анализа.

Пример
$$l_n^1 = \{x = (x_1, \dots, x_n) : ||x|| = |x_1| + \dots + |x_n|\}$$

Пример
$$l_n^2 = \{x = (x_1, \dots, x_n) : ||x|| = (x_1^2 + \dots + x_n^2)^{1/2}\}$$

$$IIpumep \ l^{\infty} = \{x = (x_1, \dots, x_n, \dots) : ||x|| = \sup\{|x_k|, k = 1, \dots, n, \dots\} < \infty\}$$

Необходимо проверить что введенные в примерах функции являются нормами — удовлетворяют свойствам, перечисленным в определении. Первое и третье свойства очевидны. Проверка неравенства треугольника в первом и третьем примерах переводится на координаты и сводится к числовым неравенствам

$$|a+b| \le |a| + |b|$$
, $\max\{|a|, |b|\} \le |a| + |b|$.

Неравенство треугольника в l^2 легко вывести из неотрицательности нормы (свойство 3):

$$0 \le ||x - \lambda y||^2 = \sum_{k=1}^n (x_k - \lambda y_k)^2 = \sum_{k=1}^n x_k^2 - 2\lambda \sum_{k=1}^n x_k y_k + \lambda^2 \sum_{k=1}^n y_k^2.$$

Из неотрицательности квадратного трехчлена следует, что его дискриминант меньше либо равен 0. Это дает оценку (неравенство Коши-Буняковского)

$$\left(\sum_{k=1}^{n} x_k y_k\right)^2 \leqslant \left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} y_k^2\right)$$

$$||x+y||^2 = \left(\sum_{k=1}^n x_k^2\right)^2 + 2\left(\sum_{k=1}^n x_k y_k\right)^2 + \left(\sum_{k=1}^n y_k^2\right)^2 \leqslant 1$$

$$\leq \left(\sum_{k=1}^{n} x_k^2\right)^2 + 2\left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} y_k^2\right) + \left(\sum_{k=1}^{n} y_k^2\right)^2 = (||x|| + ||y||)^2.$$

Переход к бесконечной размерности вносит в работу с таким объектами большие трудности. Например, приходится заменять максимум на супремум, так как бесконечная последовательность может не достигать максимума (например, $x_n = (n-1)/n$), в то время как точная верхняя граница sup существует у любой ограниченной последовательности. Этот факт — простое следствие аксиомы вложенных промежутков. Напомним определение:

$$A = \sup\{x_n\}$$
, если $\forall n \ x_n \leq A$ и $\forall \varepsilon > 0 \ \exists n : A - x_n < \varepsilon$.

Еще одно отличие заключается в том, что эти пространства существенно различаются по составу элементов: если x = (1, ..., 1, ...), то $x \in l^{\infty}$, но $x \notin l^1$, $x \notin l^2$; если x = (1, 1/2, ..., 1/n, ...), то $x \in l^2$, но $x \notin l^1$.

Как было отмечено ранее, появление нескольких норм в одном линейном пространстве оправдывается тем, что норма может быть приспособлена к решению конкретной задачи. Оказывается, что все возможные нормы можно описать в геометрических терминах — они соответствуют выпуклым множествам, для которых 0 является внутренней точкой.

 $Onpedenehue\ 1.4.\ \Pi$ усть W — выпуклое множество и 0 является его внутренней точкой. $Hopmoй\ Muhkobckozo$, порожденной множеством W, называется

$$||x|| = \inf \left\{ \lambda : \frac{x}{\lambda} \in W, \ \lambda > 0 \right\}.$$

$$-xeW$$

Определение 1.5. Выпуклым телом называется выпуклое множество W, в котором существует такая точка w, что для любого $x \in X$ найдется число $\varepsilon(x) > 0$ такое, что множество W содержит отрезок w + tx, при всех $t \in (-\varepsilon(x); \varepsilon(x))$.

Теорема 1.1 (Минковского). Если W — выпуклое ограниченное тело и 0 является его внутренней точкой, то выражение $||x|| = \inf\left\{\lambda: \frac{x}{\lambda} \in W, \ \lambda > 0\right\}$ задает норму в пространстве X.

Доказательство. Будет доказано только первое утверждение, так как второе легко выводится из свойств нормы.

Проверим, что ||x|| удовлетворяет всем свойствам нормы. Однородность ($||kx|| = |k| \cdot ||x||$) и неотрицательность очевидны. Из ограниченности W следует, что норма равна нулю только для нулевого элемента.

Остается проверить неравенство треугольника $||x_1+x_2|| \le ||x_1||+||x_2||$. Фиксируем $\varepsilon > 0$ и подберем числа r_1, r_2 так, что $||x_k|| \le r_k \le ||x_k|| + \varepsilon$. Заметим, что $\frac{x_k}{r_k} \in W$ и положим $r = r_1 + r_2$. В силу выпуклости множе-

ство W содержит отрезок $\frac{t}{r} \cdot \frac{x_1}{r_1} + \frac{1-t}{r} \cdot \frac{x_2}{r_2}$, $0 \leqslant t \leqslant 1$. Полагая $t = r_1$, получим $\frac{x_1 + x_2}{r} \in W$. Следовательно, $||x_1 + x_2|| \leqslant r = r_1 + r_2 \leqslant ||x_1|| + ||x_2|| + 2\varepsilon$ и в силу произвольности выбора ε получаем $||x_1 + x_2|| \leqslant ||x_1|| + ||x_2||$.

Пример
$$l^p = \{x = (x_1, \dots, x_n, \dots) : ||x|| = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} < \infty\}, 1 \le p < \infty, x_n \in \mathbb{R}.$$

Еще одно важное семейство пространств возникает из предыдущего примера благодаря переходу от последовательностей к функциям.

Определение 1.6. $L^p(a,b)$ – это пространство функций f, для которых $|f(x)|^p$ интегрируема на интервале (a,b), т. е.

$$L^{p}(a,b) = \left\{ f(x) : ||f||_{p} = \left(\int_{a}^{b} |f(x)|^{p} dx \right)^{1/p} < \infty \right\}, \quad 1 \le p < \infty.$$

Определение 1.7.
$$L^{\infty}(a,b) = \{f(x) : ||f||_{\infty} = \sup_{x \in [a,b]} |f(x)| \}.$$

Подтверждением естественности последнего определения является следующее равенство:

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p.$$

Несмотря на внешние аналогии, определение нормы в пространствах $L^{p}(a,b)$ требует существенной доработки. Дело в том, что введенные «кандидаты» на норму в пространствах $L^p(a,b)$ не удовлетворяют третьему свойству нормы. Действительно, функция, определенная равенствами $f\left(\frac{a+b}{2}\right) = 1$, f(x) = 0, $x \neq \frac{a+b}{2}$, не является нулевой, однако, $||f||_p = 0, 1 \le p < \infty, ||f||_{\infty} = 1$. Это, в частности, «опровергает» утверждение задачи, предложенной ранее. Избежать этой неприятности в рамках существующих определений невозможно. Выход состоит в том, что надо изменить точку зрения на функции,

Еще одна, правда, меньшая трудность связана с желанием сохранять справедливым неравенство треугольника. Для p=1 и $p=\infty$ неравенство проверяется непосредственно, для p=2 проходит та же схема доказательства через неравенство Коши-Буняковского. Для остальных p требуется новое доказательство. Здесь возникает еще одно подтверждение естественности определений $L^p(a,b)$ пространств. Аналогом неравенства Коши-Буняковского оказывается *неравенство Гельдера*. Точнее, неравенство Гельдера обобщает неравенство Коши-Буняковского, реализуя переход от $p = 2 \text{ к } 1 \leq p < \infty$. Это неравенство позволяет доказать неравенство треугольника в пространствах $L^{p}(a,b)$, но только этим значение неравенства Гельдера не ограничивается. Главное его значение — в выявлении связи между парами пространств с индексами, удовлетворяющими соотношению $\frac{1}{-} + \frac{1}{-} = 1$. Значение этой связи настолько велико, что пару пространств $L^p(a,b)$ и $L^q(a,b)$ называют двойственными пространствами.

Предложение 1.1. Пусть p и q — вещественные числа, большие единицы и такие, что $\frac{1}{p}+\frac{1}{q}=1$. Тогда для любых чисел a и b справедливо неравенство

$$|ab| \leqslant \frac{|a|^p}{p} + \frac{|b|^q}{q}.$$

Доказательство. Рассмотрим вспомогательную функцию $\varphi(x) = x^m - mx$, x > 0, 0 < m < 1. Так как $\varphi'(x) = m(x^{m-1} - 1)$, то $\varphi(1) \geqslant \varphi(x)$ при всех положительных x. Последнее неравенство можно переписать в виде $x^m - 1 \leqslant m(x - 1)$. Положим теперь $m = \frac{1}{p}$, $x = \frac{|a|^p}{|b|^q}$.

Тогда $|a|\cdot |b|^{-q/p}-1\leqslant \frac{|a|^p|b|^{-q}-1}{p}$. Если домножить неравенство на $|b|^q$ и учесть, что $q-\frac{q}{p}=1$, то получится требуемое неравенство.

Следствие 1 (дискретное неравенство Гельдера):

$$\sum_{n} |x_n y_n| \leqslant \left(\sum_{n} |x_n|^p\right)^{1/p} \left(\sum_{n} |y_n|^q\right)^{1/q}.$$

Доказательство. Для нулевых последовательностей оценка очевидна. Далее считаем, что обе последовательности не нулевые. Положим $A^p = \sum_n |x_n|^p, \quad B^q = \sum_n |y_n|^q, \quad x_n' = \frac{x_n}{A}, \quad y_n' = \frac{y_n}{B}.$ Неравенство из предложения дает $\left|x_n'y_n'\right| \leqslant \frac{\left|x_n'\right|^p}{p} + \frac{\left|y_n'\right|^q}{q}.$ Суммируя неравенства, получим $\sum_n \left|x_n'y_n'\right| \leqslant \frac{1}{p} \sum_n \left|x_n'\right|^p + \frac{1}{q} \sum_n \left|y_n'\right|^q = \frac{1}{p} + \frac{1}{q} = 1.$ Следовательно, $\sum_n |x_ny_n| \leqslant AB.$ ■

Аналогично доказывается и следствие 2.

Следствие 2 (неравенство Гельдера для функций):

$$\int_{a}^{b} |f(x)g(x)| dx \le \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{1/p} \left(\int_{a}^{b} |g(x)|^{q} dx\right)^{1/q}.$$

Здесь $f \in L^p(a,b)$ и $g \in L^q(a,b)$.

Еще один пример – пространство непрерывных функций на отрезке.

Определение 1.8. C[a,b] – пространство непрерывных функций на отрезке: [a,b] с нормой $||f|| = \max\{|f(x)|: a \leqslant x \leqslant b\}$.

Проверьте, что это равенство задает норму.