Homework 1

	/ 🗖	$\alpha\alpha\alpha$	
Ν Δ Ν/Ι Η :	/ 👟 -	SCORE	
TATIVITIES	\sim	 SCOILL.	

Subject: Quantum Mechanics I

Deadline: Wednesday 1 June 2022 (until 4pm)

Credits: 20 points Number of problems: 5

Type of evaluation: Formative Evaluation

- This homework consists of problems related to the preliminary concepts reviewed in class about quantum mechanics, plus some problems on classical mechanics.
- You may submit this assignment either individually or in pairs. Submitted assignments should have maximum two authors.
- Unless stated otherwise, write your answers in SI units, and consider all bolded quantities as vector quantities. Please highlight the answers.

1. (4 points) Classical harmonic oscillator

The frictionless motion of a block with a mass of $3.5 \,\mathrm{kg}$, attached to a spring of constant, k, is described by the following one-dimensional velocity:

$$v_x = -2\sin\left(\frac{\pi}{6}\,\mathrm{t} + \frac{5\,\pi}{2}\right)\,\mathrm{m}\,\mathrm{s}^{-1}$$

Note that this is generally called a "horizontal spring-mass system".

- (a) Make a sketch of the system.
- (b) Find the remaining equations of motion, i.e., displacement x, and acceleration a_x .
- (c) What is the amplitude and what is the angular frequency of the oscillation?
- (d) What is the period and what is the frequency of the oscillation?
- (e) Use your favourite programming tool to make plots of x vs. t, v_x vs. t, and a_x vs. t. Please do not make these plots by hand, use programming tools!
- (f) What are the maximum values of velocity and acceleration of the system?
- (g) What are the initial position, velocity, and acceleration?
- (h) Calculate the spring constant, k.

2. (4 points) Classical collision

Consider the problem of a particle A of mass m, moving at an initial velocity $\mathbf{v_0}$, that collides with another particle B of mass 2m, initially at rest. After the collision, the particles follow the trajectories shown in the figure below. Find the value of the angle θ .

NAME/S:	
---------	--

3. (4 points) Group velocity of a waveguide and water waves

Waveguides are structures that guide waves (e.g. sound or electromagnetic waves) with minimal energy loss as they restrict their transmission to a single direction. The wavelength in a waveguide is considered as a wavelength in the direction of wave propagation and is defined as follows:

$$\lambda_{
m wg} = rac{\lambda_0}{\sqrt{1 - \left(rac{\lambda_0}{\lambda_c}
ight)^2}},$$

where λ_0 is a wavelength in free space at a given frequency, ν_0 , and λ_c is the cutoff wavelength at frequency ν_c . The latter is related to the dimensions of the waveguide.

- (a) Write an expression for $\lambda_{\rm wg}$ in terms of the frequencies ν_0 and ν_c .
- (b) Write an expression for the group velocity, v_g , of a waveguide in terms of the light speed, c, and the phase velocity, v_p .
- (c) Find the group velocity of water waves in deep water, which have a frequency given by $\nu = \sqrt{\frac{g}{2\pi\lambda}}$, where g is the acceleration by gravity.
- (d) Find the group velocity of water waves in shallow water, which have a frequency given by $\nu = \sqrt{\frac{2\pi T}{\rho \lambda^3}}$, where T is the surface tension and ρ is the density.
- (e) Compare the results found in (c) and (d), and briefly explain why they are different.

4. (4 points) Compton scattering

Suppose we have an experiment in which monochromatic light is scattered by an electron.

- (a) Find the shift in the wavelength of the light when the scattering angle is 90°.
- (b) Make a sketch of the experiment.
- (c) If the incident light has a $\lambda = 500 \, \mathrm{nm}$ (i.e. photons are in the visible region), what is
- the fractional increase in the wavelength, $\frac{\Delta \lambda}{\lambda}$?

 (d) If the incident light has a $\lambda = 0.1 \, \text{nm}$ (i.e. photons are in the X-ray region), what is the fractional increase in the wavelength, $\frac{\Delta \lambda}{\lambda}$?
- (e) Why were X-rays used by Compton in his experiments?

5. (4 points) Compton and de Broglie wavelengths

- (a) Calculate the Compton wavelength of an electron.
- (b) What can happen if you shine that electron with a photon with that wavelength? Why?
- (c) Calculate the de Broglie wavelength of a (macro)particle of diameter $1 \,\mu \text{m}$ with a mass of $m = 10^{-15} \,\text{kg}$ that is moving at a speed of $1 \,\text{mm s}^{-1}$.
- (d) Based on the result above, are the wave properties of matter relevant in the macroscopic world? Why?