Distributed Computing

DSBA 6190-U90 | Colby T. Ford, Ph.D.

Overview

Terms

History of Parallel Computing

Containerization and Kubernetes

Intro to Apache Spark

Terms

High Performance Computing

- Using more powerful machines to do computations faster.
- Measured in FLOPS

Parallel Computing (c)

- Using multiple cores to do multiple things at once.
- Measured in degree of parallelism

Distributed Computing (b)

- Using multiple machines to do multiple things at once.
- Measured in degree of distribution and parallelism

File:Distributed-parallel.svg. (2014, August 28). Wikimedia Commons, the free media repository. Retrieved 15:47, October 16, 2019 from https://commons.wikimedia.org/w/index.php?title=File:Distributed-

parallel.svg&oldid=132972776.

Technology Pipeline

Cluster Architecture

Containerization

Popular Container Frameworks

Most popular, Full-featured Requires root Windows, macOS, and Linux Less popular, More limited Daemonless and rootless Windows, macOS, and Linux Popular on HPC Clusters
Only for Linux
(formerly "Singularity")

"Whale, hello there."

Docker

- Support for Linux and Windows Server containers (and now WebAssembly).
- Flexibility to support microservices and traditional app workloads.
- Integrated graphical user interface-based management and operation.
- Granular role-based access control, LDAP, and Azure Active Directory integration.
- Connection to custom networking and volumes (data storage)
- Think of Docker is a trimmed down VM image with sets of packages and settings that are configured for reuse.

Dockerfile

- Contains layers of instructions for configuring the system and installing libraries and files.
- Specifies a base layer, which is useful for "picking up where someone left off"

```
38 lines (13 sloc) 546 Bytes
      FROM rocker/r-ver:4,1,2
      LABEL org.opencontainers.image.licenses="GPL+2.0-or-later" \
            org.opencontainers.image.source="https://github.com/rocker-org/rocker-versioned2"
            org.opencontainers.image.vendor="Rocker Project" \
            org.opencontainers.image.authors="Carl Boettiger (cboettig@ropensci.org)"
      ENV 56 VERSTON-v2.1.0.2
      ENV RSTUDIO VERSION-2021.09.2+382
     EMV DEFAULT_USER=rstudio
      EWV PATH#/usr/lib/rstudio-server/bin:SPATH
      NUM /rocker_scripts/install_rstudio.sh
      NUM /rocker_scripts/install_pandoc.sh
      EXPOSE 8787
     CHD ["/init"]
```

```
48 lines (34 sloc) 1.08 KB
      FROM myidia/cuda:11.3.1-base-ubuntu20.84
      # Install some basic utilities
      NIN apt-get update && apt-get install -y \
          curl \
          ca-certificates \
          sudo \
          eft \
          brin2 \
          11bx11-6 %
       && rm -rf /vac/lib/apt/lists/*
      # Create a working directory
      BLW mkdir /app
      WORKDIR /app
      RUW adduser -- disabled-password -- gecos '' -- shell /bin/bash user \
       && chown -R user: user /apo
      RUN echo "user ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/98-user
      USER user
      # All users can use /home/user as their home directory
      ENV HOREe/home/user
      RUN chepd 777 /home/user
      # Set up the Conda environment
      ENV CONDA AUTO UPDATE CONDA-Felse \
          PATH=/home/user/miniconda/bin:$PATH
      COPY environment.vml /app/environment.yml
      NUM curl -sto -/miniconda.sh https://repo.continuum.io/miniconda/Miniconda3-py39 4.10.3-Linux-x86 64.sh \
       && cheed +x -/miniconda.sh \
       88 -/miniconda.sh -b -p -/miniconda \
       && rm -/miniconda.sh \
       && conde env update -n base -f /app/environment.yml \
       && rm /app/environment.vml \
       && conda clean -ya
      # Set the default command to python3
      CHD ["python3"]
```

Dockerfile Layers

- Docker uses layers to save on image space and on build complexity.
- Each layer contains the information that changes the layer before it.
- When you rebuild, Docker will cache the unchanged layers.

Docker Commands

Pull an Image from a Container Registry

- docker pull <url>/<user>/<image>:<tag>
- docker pull nvidia/cuda:12.6.1-cudnn-devel-ubuntu22.04
- docker pull nvcr.io/nvidia/pytorch:22.04-py3

Build an Image Locally

- docker build -t <image tag> .
- docker build -t reactwebapp .

Run a Container Locally

- docker run <image name> <other options>
- docker run -p 8888:8888 -v /data/local:/home/jovyan/work jupyter/base-notebook
- docker run --name cuda_gpu_1 --gpus all -t nvidia/cuda

Execute Command in a Container

- docker run/exec <image name> <commands>
- docker run --name mycontainer1 -it mycontainer /bin/bash
- docker exec -it mycontainer /bin/bash

Volumes (and sharing other resources)

Docker Compose

- Docker Compose allows you to specify multiple images that can communicate with one another.
 - Networking (vNets)
 - Volumes (databases)
- docker compose up -d
- docker compose down

Less used in cloud native environments where PaaS options are more common.

Directory Structure

compose.yaml File

```
services:
  backend:
    build: backend
    ports:
      - 80:80
      - 9229:9229
      - 9230:9230
  db:
    image: mariadb:10.6.4-focal
  frontend:
    build: frontend
    ports:
    - 3000:3000
```

_

Container Storage

DockerHub

Azure Container Registry

GitHub Packages

Container Usage

- Deploy containerized applications to Azure for quick and scalable use.
- Pick the Runtime Stack (Node, .NET, Python, etc.) and OS (Linux or Windows)
- Pick the size of machine (RAM, CPUs, GPUs)

Azure Kubernetes Service

Container Registry Commands

Login to the Container Registry

- az acr login --name <registry name>
- az acr login --name crdsba6190deveastus001

Tag the Image with the URL, your name, and tag

- docker tag <image name> <registry name>.azurecr.io/<image name>:<tag>
- docker tag instructor_sklearn crdsba6190deveastus001.azurecr.io/instructor_sklearn:latest

Push the Image to the Container Registry

- docker push <registry name>.azurecr.io/<image name>:<tag>
- docker push crdsba6190deveastus001.azurecr.io/instructor_sklearn:latest

Container Orchestration

- Once containers are created, use container orchestration to organize, coordinate, and schedule their use.
- Useful for scaling containers and making use of distributed environments
- Other capabilities:
 - Security management
 - API Serving
 - Resource Monitoring
 - Load Balancing

Mesos Architecture

Kubernetes Node

Kubernetes Node

What is / Why Kubernetes?

What is Kubernetes?

Kubernetes (K8s) is an open-source container orchestration system.

Use Docker containers and spin up compute nodes as needed.

Specify different resource needs by node pool.

Memory, CPUs, GPUs

Learn more: https://kubernetes.io/

Why (Cloud) Kubernetes?

- K8s can be used for everything from microservices to long-running compute tasks
 - O Not everything in bioinformatics is a pipeline. (Duct taped shell scripts, anyone?)
 - O Not every pipeline has the same needs (GPUs, memory, CPUs, etc.)
- Cloud providers have platform services that are fully compatible with opensource K8s
 - Azure Kubernetes Service (AKS)
 - O AWS Elastic Kubernetes Service (EKS)
 - O Google Kubernetes Engine (GKE)

- Take advantage of the "limitless" compute capacity of the cloud + networking and security
- Mount your data lake as a Volume in the K8s cluster, making the data available to every container
 - O No copying data around
 - O Get references and input files from /mnt
 - O Write results directly back to the data lake

Basic K8s Cluster Architecture

Kubernetes + Queue-Based Architecture

Example Pod Specification

- Specifies the name of the pod, its image, and other information.
 - Volumes
 - Commands
 - Secrets
 - Resource Requests
 - CPUs
 - GPUs
 - Memory
 - Tolerations

```
apiVersion: v1
kind: Pod
metadata:
  name: instructor-test-01
spec:
  restartPolicy: Never
  containers:
  - name: instructor-sklearn
    image: crdsba6190deveastus001.azurecr.io/instructor sklearn:latest
    volumeMounts:
      name: datalake
        mountPath: "/mnt/datalake/"
        readOnly: false
    # command: ["/bin/bash", "-c"]
    # args: ["./run.py"]
    command: [ "/bin/bash", "-c", "--" ]
    args: [ "while true; do sleep 30; done;" ]
    # resources:
       limits:
          memory: "2Gi"
          cpu: "200m"
  imagePullSecrets:
    - name: acr-secret
  volumes:
    - name: datalake
      persistentVolumeClaim:
        claimName: pvc-datalake-class-blob
```

kubectl Commands

Get Azure Kubernetes Service Credentials

• az aks get-credentials --resource-group rg-ahab-dev-eastus-001 --name kub-ahab-dev-eastus-001 --overwrite-existing

Apply Kubernetes Pod

- kubectl apply -f <pod yaml file>
- kubectl apply -f example_pod.yml

Execute Command in Pod

- kubectl exec -it <pod_name> -- <command>
- kubectl exec -it instructor-test-01 -- /bin/bash train.py

Lab Steps - Kubernetes

Apache Spark + Databricks

Why Spark?

- Open-source data processing engine built around speed, ease of use, and sophisticated analytics
- In memory engine that is up to 100 times faster than Hadoop
- Largest open-source data project with 1000+ contributors
- Highly extensible with support for Scala, Java and Python alongside Spark SQL, GraphX,
 Streaming and Machine Learning Library (MLlib)

Why Databricks?

- Databricks is the premium version of Spark available in the market
- Spark founders created Databricks
- Spark is the dominant workload in Hadoop
- Databricks commits 75% of the code to Open-Source Spark

Hadoop MapReduce

MapReduce in Hadoop

Writing to disk takes time... every time you run this process in MapReduce

What is Azure Databricks?

Apache® Spark™ is FASTER and EASIER than MapReduce in Hadoop

Soark

Faster – In Spark data stays in cache this give Spark the speed over MapReduce (writing to disk)

Soark

Easier – You can use the language you are most comfortable with in Spark (Python, Scala, R, SQL)

What is Azure Databricks?

A fast, easy and collaborative Apache® Spark™ based analytics platform optimized for Azure

Designed in collaboration with the founders of Apache Spark

One-click set up; streamlined workflows

Interactive workspace that enables collaboration between data scientists, data engineers, and business analysts.

Native integration with Azure services (Power BI, SQL DW, Cosmos DB, Blob Storage)

Enterprise-grade Azure security (Active Directory integration, compliance, enterprise-grade SLAs)

What's Under the Hood?

Data Lake Store

Blob Storage

SQL Data Warehouse

SQL DB

Cosmos DB

Event Hubs

3

Data Factory

Power BI

Kafka On HDInsight

What's Under the Hood?

Azure Databricks key audiences & benefits

Data scientist

Integrated workspace

Easy data exploration

Collaborative experience

Interactive dashboards

Faster insights

- Best Spark & serverless
- Databricks managed Spark

Data engineer

Improved ETL performance

Zero management clusters, serverless

Easy to schedule jobs

Automated workflows

Enhanced monitoring & troubleshooting

• Automated alerts & easy access to logs

Zero Management Spark

Cluster democratization (High-concurrency)

CDO, VP of analytics

Fast, collaborative analytics platform accelerating time to market

No dev-ops required

Enterprise grade security

- Encryption
- End-to-end auditing
- Role-based control
- Compliance

Azure Databricks

Spark is Lazy, but in a Smart Way

When you execute a command, Spark doesn't actually do anything unless it's required to show you something or it has to write something out.

This is the difference between a **Transformation** and an **Action**.

"Lazy Evaluation"

Transformations

- Lazily evaluated.
- Spark operation that returns a DataFrame (usually).
- Multiple transformations add to the steps of a Spark job, but no data gets processed.
- Examples: select, filter, groupBy, map

Actions

- Not lazily evaluated.
- Returns counts of elements or lists of them (usually)
- Enacts a series of transformations
- Examples: show/display, count, collect, take, write

Spark Pipelines

- Can be saved similar to ML models
- Provides stability into the model scoring process

Define which columns are categorical and numerical

Dummy code categorical features [OneHotEncoder]

Assemble data into a series of vectors [VectorAssembler]

Transform data through pipeline [pipelinemodel. transform(dataset)]

Prepare pipeline [pipeline.fit(dataset)]

Scale features [StandardScaler]

MLlib Models

Define evaluation Initialize ML algorithm Define cross-validation method Define parameter grid object method [BinaryClassification [ParamGridBuilder] [LogisticRegression] [CrossValidator] Evaluator] Evaluate model Transform data through Fit model model [evaluator. [cv.fit(train)] [cvModel.transform(test)] evaluate(predictions)]

Lab Steps - Databricks

Sample Architectures

BIG DATA & ADVANCED ANALYTICS AT A GLANCE

Modern Big Data Warehouse

Business / custom apps (Structured)

Advanced Analytics on Big Data

Modern Data Platform with Azure Databricks

Modern Big Data Warehouse

Real-time analytics on Big Data

KNOWING THE VARIOUS BIG DATA SOLUTIONS

