Application 1

Pompe turbo-moléculaire - Corrigé

Centrale Supelec PSI 2009.

Le comportement dynamique du rotor est étudié sur un modèle à 6 degrés de liberté : le rotor n'étant en contact avec aucun solide, il dispose des 6 mouvements de corps rigide. On suppose le rotor indéformable. La figure suivante montre à gauche le rotor dans sa position nominale ($\alpha = \beta = \theta = x = y = z = 0$) et à droite le rotor dans une position quelconque. On note A_0 et B_0 les centres des paliers magnétiques radiaux et A et B les points appartenant à l'arbre et confondus avec et dans la position nominale.

C1-05

C2-09

On note O le milieu de $[A_0B_0]$ et M le milieu de [AB]. Bien qu'un soin très important soit apporté à la fabrication du rotor, il est impossible d'annuler totalement les défauts d'équilibrage. Le centre de gravité n'est donc pas exactement situé sur l'axe (AB), mais à une distance de celui-ci telle que $\overrightarrow{MG} = r_0\overrightarrow{y_3}$.

- α paramètre la rotation d'une base $\mathfrak{B}_1\left(\overrightarrow{x_0}, \overrightarrow{y_1}, \overrightarrow{z_1}\right)$ par rapport à \mathfrak{B}_0 autour de l'axe $\overrightarrow{x_0}$;
- ▶ β paramètre la rotation d'une base $\Re_2\left(\overrightarrow{x_2}, \overrightarrow{y_1}, \overrightarrow{z_2}\right)$ par rapport à \Re_1 autour de l'axe $\overrightarrow{y_1}$;

▶ θ paramètre la rotation d'une base $\Re_3\left(\overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_2}\right)$ par rapport à \Re_2 autour de l'axe $\overrightarrow{z_2}$.

Si le rotor présente 6 degrés de liberté, il est bien évident qu'excepté la rotation propre principale θ , ces mouvements sont très petits.

En notant $\varepsilon(x)$ une fonction telle que $|\varepsilon(x)| << |x|$, on peut écrire : $\left\{ \begin{array}{l} x,y,z \simeq \varepsilon(L) \\ \alpha,\beta \simeq \varepsilon(1) \end{array} \right.$

On suppose que la vitesse de rotation du rotor est constante : $\dot{\theta} = \omega$ et $\ddot{\theta} = 0$.

Efforts des paliers et du moteur sur le rotor

Pour le dimensionnement dynamique, on modélise les actions des trois paliers magnétiques et l'action du moteur électrique sous la forme :

$$\{\mathcal{T}(0 \to 3A)\} = \left\{ \begin{array}{l} X_A \overrightarrow{x_0} + Y_A \overrightarrow{y_0} \\ \overrightarrow{0} \end{array} \right\}_A, \{\mathcal{T}(0 \to 3B)\} = \left\{ \begin{array}{l} X_B \overrightarrow{x_0} + Y_B \overrightarrow{y_0} \\ \overrightarrow{0} \end{array} \right\}_B, \{\mathcal{T}(0 \to 3C)\} = \left\{ \begin{array}{l} Z_C \overrightarrow{z_0} \\ \overrightarrow{0} \end{array} \right\}_C, \{\mathcal{T}(\text{moteur} \to 3)\} = \left\{ \begin{array}{l} \overrightarrow{0} \\ C_m \overrightarrow{z_0} \end{array} \right\}_G.$$

Avec
$$\begin{cases} X_{A}\overrightarrow{x_{0}} + Y_{A}\overrightarrow{y_{0}} = -k \left[\overrightarrow{A_{0}}\overrightarrow{A} \right]_{(\overrightarrow{x_{0}},\overrightarrow{y_{0}})} - c \left[\overrightarrow{V}(A,3/0) \right]_{(\overrightarrow{x_{0}},\overrightarrow{y_{0}})} \\ X_{B}\overrightarrow{x_{0}} + Y_{B}\overrightarrow{y_{0}} = -k \left[\overrightarrow{B_{0}}\overrightarrow{B} \right]_{(\overrightarrow{x_{0}},\overrightarrow{y_{0}})} - c \left[\overrightarrow{V}(B,3/0) \right]_{(\overrightarrow{x_{0}},\overrightarrow{y_{0}})} & \text{et } k = 50 \times 10^{4} \,\text{Nm}^{-1} \\ Z_{C} = -k\overrightarrow{C_{0}}\overrightarrow{C}\overrightarrow{z_{0}} - c\overrightarrow{V}(C,3/0) \cdot \overrightarrow{z_{0}} \end{cases}$$

et $c = 970 \,\mathrm{Nm^{-1}}$ s. La notation $\left[\overrightarrow{V}\right]_{\left(\overrightarrow{x_0}, \overrightarrow{y_0}\right)}$ désigne la projection dans le plan $\left(\overrightarrow{x_0}, \overrightarrow{y_0}\right)$

du vecteur \overrightarrow{V} . Les actions de la pesanteur sont négligées. Le bâti est supposé être un référentiel galiléen.

Le rotor, tel que L = 50 mm, a pour masse m = 10 kg, pour centre de gravité G tel que

$$\overrightarrow{MG} = r_0 \overrightarrow{y_3}$$
 où $r_0 = 0.05$ mm, et pour matrice d'inertie en $G: I_G(3) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & -D \\ 0 & -D & C \end{pmatrix}_{B_3}$ où $A = 0.08$ kg m², $C = 0.04$ kg m² et $D = 10^{-4}$ kg m².

On admet que $r_0 \simeq \varepsilon(L)$ et $D \simeq \varepsilon(A) \simeq \varepsilon(C)$.

Objectif

Proposer un modèle de comportement dynamique du rotor en phase de rotation.

Question 1 Appliquer le Principe Fondamental de la Dynamique au rotor et l'exprimer sous forme torsorielle.

Correction

Les questions suivantes visent à déterminer le système d'équations issu de cette équation torsorielle.

Question 2 Montrer quel'expression au premier ordre de la vitesse du centre de gravité G du rotor par rapport au bâti s'écrit : $\overrightarrow{V(G,3/0)} = \dot{x}\overrightarrow{x_0} + \dot{y}\overrightarrow{y_0} + \dot{z}\overrightarrow{z_0} - r_0\omega\overrightarrow{x_3}$.

Correction

Question 3 Déterminer l'expression au premier ordre de l'accélération du centre de gravité G du rotor par rapport au bâti $0 : \overrightarrow{\Gamma(G, 3/0)}$.

Correction

On admet que par changement de base, la matrice $I_{G,3}$ s'écrit dans la base B_2 :

$$I_G(3) = \begin{pmatrix} A & 0 & D\sin\theta\\ 0 & A & -D\cos\theta\\ D\sin\theta & -D\cos\theta & C \end{pmatrix}_{B_2}.$$

Question 4 Montrer que l'expression au premier ordre du moment cinétique en G du

rotor par rapport au bâti s'écrit :
$$\overrightarrow{\sigma(G,3/0)} = \begin{pmatrix} A\dot{\alpha} + D\omega \sin\theta \\ A\dot{\beta} - D\omega \cos\theta \\ C\omega \end{pmatrix}_{B_2}$$
.

Correction

Question 5 Déterminer l'expression au premier ordre du moment dynamique en G du rotor par rapport au bâti $0 : \overline{\delta(G, 3/0)}$, dans la base B_2 .

Correction

Le Principe Fondamental de la Dynamique appliqué au rotor 3, réduit en *G*, conduit alors à :

$$\begin{bmatrix} m\ddot{x} + 2c\dot{x} + 2kx = -mr_0\omega^2 \sin\theta \\ m\ddot{y} + 2c\dot{y} + 2ky = mr_0\omega^2 \cos\theta \\ A\ddot{\alpha} + C\omega\dot{\beta} + 2cL\dot{\alpha} + 2kL\alpha = -D\omega^2 \cos\theta \\ A\ddot{\beta} - C\omega\dot{\alpha} + 2cL\dot{\beta} + 2kL\beta = -D\omega^2 \sin\theta \\ C_m = 0 \end{bmatrix}$$

