Proposition 5.3. For any $n \in \mathbb{N}$:

- (i) $5^{2n} 1$ is divisible by 24.
- (ii) $2^{2n+1} + 1$ is divisible by 3.
- (iii) $10^n + 3 \cdot 4^{n+2} + 5$ is divisible by 9.

Proof. (i) We proceed by induction on n. For the base case $n=1, 5^2-1=24$ is divisible by 24, since $24=24\cdot 1$. For the induction step, assume that $5^{2n}-1$ is divisible by 24, i.e., there is $k\in\mathbb{Z}$ such that $5^{2n}-1=24k$. Then by Proposition 5.2,

$$5^{2(n+1)} - 1 = 5^{2n+2} - 1 = 5^{2n}5^2 - 1 = (24k+1)25 - 1$$
.

Here the last equation follows with the induction hypothesis. Hence

$$5^{2(n+1)} - 1 = (24k+1)25 - 1 = 24 \cdot 25k + 24 = 24(25k+1)$$
.

So we found an integer j = 25k + 1 such that $5^{2(n+1)} - 1 = 24j$, so by definition, 24 divides $5^{2(n+1)} - 1$, and our induction is complete.

(ii) We proceed by induction on n. For $n=1, 2^3+1=9$ is divisible by 3, since $9=3\cdot 3$. For the induction step, assume that $2^{2n+1}+1$ is divisible by 3, i.e., there is $k\in\mathbb{Z}$ such that $2^{2n+1}+1=3k$. Then

$$2^{2(n+1)+1} + 1 = 2^{2n+3} + 1 = 4 \cdot 2^{2n+1} + 1 = 4(3k-1) + 1 = 12k - 3 = 3(4k-1)$$
.

So we found an integer, namely 4k-1, such that $2^{2(n+1)+1}+1$ equals 3 times that integer, so by definition, 3 divides $2^{2(n+1)+1}+1$, and our induction is complete.

(iii) We first give a lemma, namely that for all $n \in \mathbb{N}$, $10^n - 1$ is divisible by 9.

We prove this lemma by induction on n. For n = 1, $10^1 - 1 = 9$ is certainly divisible by 9. For the induction step, assume that $10^n - 1$ is divisible by 9, that is, there is $j \in \mathbb{Z}$ such that $10^n - 1 = 9j$. Then by Proposition 5.2,

$$10^{n+1} - 1 = 10 \cdot 10^n - 1 = 10(9j+1) - 1 = 90j + 9 = 9(10j+1).$$

So we found an integer m = 10j + 1 such that $10^{n+1} - 1 = 9m$, so by definition, 9 divides $10^{n+1} - 1$, which finishes the proof of our lemma.

To prove (iii), we proceed by induction on n. For n=1, $10^1+3\cdot 4^3+5=207$ is divisible by 9, since $207=9\cdot 23$. For the induction step, assume that $10^n+3\cdot (4^{n+2})+5$ is divisible by 9, i.e., there is $k\in\mathbb{Z}$ such that $10^n+3\cdot 4^{n+2}+5=9k$. Now by the above lemma, there exists $j\in\mathbb{Z}$ such that $10^n=9j+1$. This together with Proposition 5.2 and our induction hypothesis gives

$$10^{n+1} + 3 \cdot 4^{n+3} + 5 = 10 \cdot 10^n + 3 \cdot 4^{n+2} \cdot 4 + 5 = 10(9j+1) + 4(9k-10^n - 5) + 5$$
$$= 90j + 36k - 4 \cdot 10^n - 5 = 90j + 36k - 4(9j+1) - 5$$
$$= 54j + 36k - 9 = 9(6j + 4k - 1).$$

So we found an integer m = 6j + 4k - 1 such that $10^{n+1} + 3 \cdot 4^{n+3} + 5 = 9m$, that is, 9 divides $10^{n+1} + 3 \cdot 4^{n+3} + 5$, and our induction is complete.

Project 5.4. Determine for which natural numbers $n^2 < 2^n$ and prove your answer.

For n = 1 and n > 5, we have $n^2 < 2^n$.

Proof. For n = 1, $n^2 = 1 < 2 = 2^n$.

Now we will prove that $n^2 < 2^n$ for all $n \ge 5$ by induction on n. The base case n = 5 follows with $5^2 = 25 < 32 = 2^n$.

For the induction step, suppose that we know that $n^2 < 2^n$ for some $n \ge 5$. We wish to prove that $(n+1)^2 < 2^{n+1}$. $(n+1)^2 = n^2 + 2n + 1 < 2^n + 2n + 1$, by our induction hypothesis. If we can prove that $2n+1 < 2^n$, then we're done, since it then follows that $2^n + 2n + 1 < 2^n + 2^n = 2 \cdot 2^n = 2^{n+1}$ (by the recursive definition of exponentials).

So now we'll prove that $2n + 1 < 2^n$ for all $n \ge 5$, which we will do again by induction on n. The base case n = 5 follows with $2 \cdot 5 + 1 = 11 < 32 = 2^5$. For the induction step, suppose that we know that $2n + 1 < 2^n$ for some $n \ge 5$. Then $2(n+1) + 1 = 2n + 3 = (2n+1) + 2 < 2^n + 2$. If we can prove that $2 < 2^n$, then it follows that $2^n + 2 < 2^n + 2^n = 2^{n+1}$, which would finish our second induction step.

So it remains to prove that $2 < 2^n$ for all $n \ge 5$, which we'll do with an easy induction proof on n. The base case n = 5 follows with $2 < 32 = 2^5$. For the induction step, assume that $2 < 2^n$. Then $2 < 2^n + 2^n = 2^{n+1}$, which finishes our third induction.