

วันที่ 6 พฤษภาคม 2552

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 5 ข้อสอบมี 3 ข้อ 10 หน้า ให้ทำทุกข้อ เวลา 9:00 – 12:00 น.

ราคาที่ดินสุดหรรษา (Happy Land)

สำนักวิชาวิศวกรรมศาสตร์และทรัพยากร

สำนักวิชาวิทยาศาสตร์

มหาวิทยาลัยวลัยลักษณ์

โรนัลโด้ต้องการซื้อที่ดินบนเกาะสมุยเพื่อจัดสร้างรีสอร์ทส่วนตัวซึ่งมีลักษณะเป็นรูปสี่เหลี่ยมขนาด M x N ตาราง กิโลเมตร ที่ดินทั้งหมดที่โรนัลโด้ต้องการซื้อ เจ้าของที่แบ่งขายเป็นแปลงย่อย ๆ แต่ละแปลงมีขนาดเท่า ๆ กัน คือ แปลงละ 1 x 1 ตารางกิโลเมตร ทั้งนี้โรนัลโด้สามารถซื้อได้ครั้งละหนึ่งแปลงเท่านั้น เราสามารถพิจารณาที่ดินทั้งหมดในลักษณะ ของตารางขนาด M แถว N คอลัมน์

รูปที่ 1 แสคงที่คินจำนวนขนาค 3 x 3 ตารางกิโลเมตร ที่แบ่งเป็น 9 แปลงย่อยที่อยู่ติคกัน แต่ละแปลงย่อยมีราคาดังที่ แสดงไว้ดังรูปที่ 1

	คอลัมน์ที่ 1	คอลัมน์ที่ 2	คอลัมน์ที่ 3
	(1,1)	(1,2)	(1,3)
แถวที่ 1	500,000	750,000	1,000,000
ä	(2,1)	(2,2)	(2,3)
แถวที่ 2	500,000	1,200,000	1,000,000
·	(3,1)	(3,2)	(3,3)
แถวที่ 3	1,000,000	800,000	750,000

รูปที่ 1 ตัวอย่างที่ดินขนาด 3 x 3 ตารางกิโลเมตร

จากรูปที่ 1 เราจะเรียกที่คินแปลงที่อยู่แถวที่ i และคอลัมน์ที่ j ว่าที่คินแปลงที่ (i,j)

ที่ดินแต่ละแปลง อาจจะติดกับที่ดินแปลงอื่น ๆ กล่าวคือ ที่ดินแปลงที่ (i,j) จะติดกับที่ดินแปลงที่ (x,y) ถ้าผลต่างระหว่าง i กับ x มีค่าไม่เกิน 1 <u>และ</u> ผลต่างระหว่าง j และ y มีค่าไม่เกิน 1 ซึ่งการติดกันของที่ดิน จะเป็นไปได้มากที่สุดคือแปด ทิศทาง

ที่ดินแต่ละแปลงย่อย มีราคาขายตั้งต้นระบุไว้ กล่าวคือ ที่ดินแปลงที่ (i,j) จะมีราคาขายตั้งต้น C_(i,j) บาท แต่มีปัญหาว่า ราคาของที่ดินแต่ละแปลง จะมีราคาจะสูงขึ้น 10 % ของราคาที่ดินที่ติดกันที่ถูกขายออกไปแล้ว

เช่น ถ้าโรนัลโด้ซื้อที่ดินแปลงที่ (2,2) ก่อน จะส่งผลให้ราคาที่ดินที่ติดกับที่ดินแปลงที่ (2,2) เพิ่มขึ้นแปลงละ 1,200,000 x 0.10 หรือ 120,000 บาท ดังรูปที่ 2

รูปที่ 2 ตัวอย่างราคาที่ดินหลังจากมีการขายที่ดินแปลงที่ (2,2) ออกไปแล้ว

แต่ถ้าโรนัลโด้ซื้อที่ดินแปลงที่ (2,1) ก่อน จะส่งผลให้ราคาที่ดินที่ติดกับแปลงที่ (2,1) เพิ่มขึ้น 500,000 x 0.10 หรือ 50,000 บาท ดังรูปที่ 3

(1,1)	(1,2)	(1,3)
550 000	800,000	1,000,000
(2,1)	(2,2)	(2,3)
500,000	1,250,000	1,000,000
(3,1)	(3,2)	(3,3)
(3,1)	(3,2)	(3,3)

รูปที่ 3 ตัวอย่างราคาที่ดินหลังจากมีการขายที่ดินแปลงที่ (2,1) ออกไปแล้ว

งานของคุณ

เขียนโปรแกรมเพื่อช่วยโรนัลโค้คำนวณจำนวนเงินที่น้อยที่สุดที่โรนัลโค้จะสามารถใช้ซื้อที่ดินไค้<u>ครบทุกแปลง</u>ตามที่ ต้องการ

ข้อมูลนำเข้า อ่านจาก Standard Input

บรรทัดแรก ระบุ จำนวนเต็มบวกสองจำนวน M และ N ระบุขนาดของที่ดินที่โรนัล โด้ต้องการซื้อ กล่าวคือ M แทนจำนวนแถวของแปลงที่ดินและ N แทนจำนวนคอลัมน์ของแปลงที่ดิน ($1 \le M \le 3$ และ $1 \le N \le 3$) จากนั้น M บรรทัดถัด ไประบุมูลค่าเริ่มต้นของแปลงที่ดินทั้งหมด กล่าวคือ ในบรรทัดที่ 1+i สำหรับ $1 \le i \le M$ ระบุมูลค่าเริ่มต้นของแปลงที่ดินแถวที่ i เป็นจำนวนจริง N จำนวน คือ $C_{(i,1)}$, $C_{(i,2)}$,..., $C_{(i,N)}$ แต่ละจำนวนคั่นด้วยช่องว่าง <u>เพียง 1 ช่อง</u> ($1 \le C_{(i,j)} \le 100,000,000$) สำหรับ $1 \le j \le N$

ข้อมูลส่งออก ส่งออกไปยัง Standard Output

มีหนึ่งบรรทัด แสดงจำนวนเงินที่น้อยที่สุดที่โรนัลโด้จะสามารถใช้ซื้อที่ดินได้ทั้งหมด โดยแสดงเป็นทศนิยม 2 ตำแหน่ง

ตัวอย่าง

<u>ตัวอย่างที่ 1</u>	<u>ตัวอย่างที่ 1</u>	<u>ตัวอย่างที่ 2</u>
ข้อมูลนำเข้า	ข้อมูลนำเข้า	ข้อมูลนำเข้า
1 2 500 750	2 2 500 750 1000 800	3 3 500000 750000 1000000 500000 1200000 1000000 1000000 800000 750000
ข้อมูลส่งออก 1300.00	ข้อมูลส่งออก 3453.00	ข้อมูลส่งออก 9086505.00

หมายเหตุทางเทคนิค

- 1. การใช้ตัวแปรซึ่งเกี่ยวข้องกับราคาที่คินให้ใช้ตัวแปรประเภท double
- 2. การรับข้อมูลนำเข้าสำหรับข้อมูลตัวแปรประเภท double ให้ใช้ รูปแบบ "%lf"
- 3. การแสดงผลให้ใช้ทศนิยม<u>สอง</u>ตำแหน่ง โดยใช้รูปแบบ "%.21f" ในการแสดงผล

ข้อกำหนด

หัวข้อ	เงื่อนไข			
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ค)			
ข้อมูลส่งออก	Standard Output (จอภาพ)			
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล ต่อชุดทคสอบหนึ่งชุด	เ วินาที			
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล ต่อชุดทดสอบหนึ่งชุด	2 MB			
จำนวนชุดทดสอบ (โปรแกรมประมวลผลครั้งละชุดทดสอบ)	20			
เงื่อนไขการรับโปรแกรม	โปรแกรมจะต้องประมวลผลข้อมูลตามตัวอย่างที่ให้			
	มาได้			

ข้อมูลคำสั่งเพิ่มเติม

ส่วนหัวของโปรแกรมเพื่อระบุชื่อโจทย์ สำหรับผู้เข้าแข่งขันที่เขียนโปรแกรมด้วยภาษา C

/*

TASK: Land LANG: C

AUTHOR: YourName YourLastName

CENTER: YourCenter

* /

ส่วนหัวของโปรแกรมเพื่อระบุชื่อโจทย์ สำหรับผู้เข้าแข่งขันที่เขียนโปรแกรมด้วยภาษา C++

/*

TASK: Land LANG: C++

AUTHOR: YourName YourLastName

CENTER: YourCenter

* /