CLAIMS:

1. A process for the preparation of a compound of formula (1):

$$Ar^1SO_2$$
 Ar^2
 CO_2R

wherein R represents H or an alkali metal, Ar¹ represents 4-chlorophenyl and Ar² represents 2,5-difluorophenyl; comprising the steps of:

(a) stirring a mixture of a *cis*-sulfide of formula (2) and a *trans*-sulfide of formula (3):

$$Ar^{1}S$$
 Ar^{2}
 $CO_{2}H$
 $Ar^{1}S^{1}$
 $CO_{2}H$
 $CO_{2}H$
 $CO_{2}H$
 $CO_{2}H$

10

15

with 4-chlorobenzenethiol in an acidic medium in which said mixture of sulfides is partially soluble, causing preferential crystallisation of *cis*-sulfide of formula (2);

- (b) collecting the cis-sulfide of formula (2);
- (c) oxidising the *cis*-sulfide of formula (2) to the corresponding sulfone; and optionally
 - (d) neutralising the product of step (c) with alkali.
- A process according to claim 1 wherein said acidic medium comprises an acid
 selected from trifluoroacetic acid and C₁₋₄alkylsulfonic acids in which one or more of the carbon atoms may optionally be perfluorinated.
 - 3. The process according to claim 2 wherein the acid is trifluoroacetic acid, trifluoromethanesulfonic acid or methanesulfonic acid.

25

4. A process according to claim 2 wherein said acidic medium additionally comprises a solvent selected from n-heptane, methylcyclohexane, trifluoroethanol,

hexafluorobenzene, trifluorotoluene, hexafluoropropan-2-ol, acetonitrile and mixtures thereof.

- 5. A process according to claim 1 wherein the acidic medium is methanesulfonic acid containing from about 5 to about 15 % water by volume.
 - 6. A process according to claim 1 wherein the mixture of *cis*-sulfide of formula (2) and *trans*-sulfide of formula (3) is generated by reaction of 4-chlorobenzenethiol with an olefin of formula (4):

$$Ar^2$$
 CO_2H

10

wherein Ar² represents 2,5-difluorophenyl, said reaction being carried out in the acidic medium used in step (a) of the said process.

15

7. A process according to claim 1 wherein the mixture of *cis*-sulfide of formula (2) and *trans*-sulfide of formula (3) is generated by reaction of 4-chlorobenzenethiol with a carbinol of formula (5):

$$Ar^2u_{HO}$$
 CO_2H (5)

20

wherein Ar² represents 2,5-difluorophenyl, said reaction being carried out in the presence of a Lewis acid, and the mixture of sulfides being isolated prior to carrying out step (a) of the said process.

8. A process according to claim 1 wherein the mixture of *cis*-sulfide of formula (2) and *trans*-sulfide of formula (3) is generated by reaction of 4-chlorobenzenethiol with a carbinol of formula (5):

$$Ar^2m$$
 HO^{Nr}
 CO_2H

wherein Ar² represents 2,5-difluorophenyl, said reaction being carried out in the acidic medium used in step (a) of the said process.

- 9. A process according to claim 6 or claim 8 wherein the acidic medium comprises an acid and hexafluoropropan-2-ol together with a co-solvent selected from perfluorohexane and perfluorinated 2-butyltetrahydrofuran.
- 10. A process according to claim 9 wherein the acid is trifluoromethanesulfonic acid.
- 11. A process according to claim 6 or claim 8 wherein the acidic medium is methanesulfonic acid containing from about 5 to about 15 % water by volume.
 - 12. A process according to claim 7 or claim 8 wherein the carbinol of formula (5) is prepared by:
 - (a) conversion of carboxylic acid (6a) to magnesium salt (6b):

O
$$CO_2R'$$
(a) $R' = H$
(b) $R' = Mg$

20

5

10

- (b) reaction of (6b) with Ar²-M'; and
- (c) treatment of the resulting product with acid;

wherein M' represents Li, MgX or CeX₂;

X represents Cl, Br or I; and

- 25 Ar² represents 2,5-difluorophenyl.
 - 13. The compound of formula (5):

WO 2005/080309 PCT/GB2005/000544

$$Ar^2um$$
 HO^{N^2}
 CO_2F
 (5)

where Ar² is 2,5-difluorophenyl.

5 14. The compound of formula (4):

$$Ar^2$$
 CO_2 CO_2

wherein Ar² is 2,5-difluorophenyl.

10 15. The compound of formula (2):

$$Ar^{1}S$$
 $CO_{2}H$
 (2)

where Ar¹ is 4-chlorophenyl and Ar² is 2,5-difluorophenyl.