Rapport du Projet LU3IN003

ZHOU runlin 28717281

MA peiran 28717249

Introduction:

Le but de ee projet porte est un problème de génomique : l'alignement de séquences.

D'un point de vue biologique, il s'agit de mesurer la similarité entre deux séquences d'ADN, que l'on voit simplement comme des suites de nucléotides.

D'un point de vue informatique, les séquences de nucléotides sont vues comme des mots sur **l'alphabet {A,T,G,C}**. On s'intéresse d'abord à un *algorithme naïf*, puis à un algorithme de *programmation dynamique*. On utilise la méthode diviser pour régner pour améliorer la complexité spatiale de ces algorithmes.

Nous présenterons notre réalisation de l'algorithme en plusieurs parties.

Le problème d'alignement de séquences (Ex 2):

Question 1:

Soit $(\overline{xu}, \overline{yv})$ est un alignement de (xu, yv) ssi

$$\begin{array}{l} \text{(i) } \pi(\overline{xu}) = xu \\ \text{(ii) } \pi(\overline{yv}) = yv \\ \text{(iii) } |\overline{xu}| = |\overline{yv}| \\ \text{(iv) } \forall i \in [1,...,|\overline{xu}|], \overline{xu}_i \neq - \ ou \ \overline{yv}_i \neq - \end{array}$$

Nous pouvons facilement déduire que :

- $\pi(\overline{x}\overline{u}) = \pi(\overline{x}) * \pi(\overline{u}) = xu$
- $\pi(\overline{yv}) = \pi(\overline{y}) * \pi(\overline{v}) = yv$
- $|\overline{x}\overline{u}| = |\overline{x}| + |\overline{u}|$, car $(\overline{x}, \overline{y})$ et $(\overline{u}, \overline{v})$ sont respectivement des alignements de (x, y) et (u, v), donc on a $|\overline{x}| + |\overline{u}| = |\overline{y}| + |\overline{v}| = |\overline{y}v|$
- Car $(\overline{x},\overline{y})$ et $(\overline{u},\overline{v})$ sont respectivement des alignements de (x,y) et (u,v), donc on a $\forall i\in [1,...,|\overline{x}|], \overline{x}_i \neq -$ ou $\overline{y}_i \neq -$ et $\forall i\in [1,...,|\overline{u}|], \overline{u}_i \neq -$ ou $\overline{v}_i \neq -$, on ajoute les deux conditions emsemble. Et on a $\forall i\in [1,...,|\overline{xu}|], \overline{xu}_i \neq -$ ou $\overline{yv}_i \neq -$

Donc, $(\overline{xu}, \overline{yv})$ est bien que un alignement de (xu, yv)

Question 2:

Si $(\overline{x},\overline{y})$ est un alignment de (x,y), on a $\forall i\in [1,...,|\overline{x}|], \overline{x}_i \neq -$ ou $\ \overline{y}_1 \neq -$ donc la longueur maximale est |x|+|y|

Algorithmes pour l'alignement de séquences (Ex 3) :

Programmation naive:

Question 3:

Nous pouvons convertir le problème en sélectionnant k dans n + k positions comme '-', donc le nombre de mot est C^n_{n+k}

Question 4:

Soit $k \in [0, m]$ (l'intervalle étant choisi de manière à ne pas dépasser le nombre maximum de gaps, déterminé à la question (2)).

On suppose que l'on ajoute k gaps à x pour former une chaîne \overline{x} de longueur n+k. Alors les alignements $(\overline{x},\overline{y})$ de (x,y) seront exactement les alignements construits en ajoutant n+k-m gaps à y à des indices i tels que $\overline{x} \neq -$.

Les alignements sont donc en bijection avec les parties à n+k-m éléments de [1,n] : il y en a C^n_{n+k-m} , en notant qu'on a bien $0 \le n+k-m \le n$.

Soit A_k l'ensemble des alignements produits en ajoutant k gaps à x, et A l'ensemble des alignements de (x,y). On a :

$$|A| = \sum_{i=0}^{m} |A_i| = \sum_{i=0}^{m} C_{n+i}^i * C_{n+i-m}^n$$

Pour $\lvert x \rvert = 15$ et $\lvert y \rvert = 10$, on calcule 298,199,265 alignements.

Question 5:

Soit la compelxité de énumérer un alignement de (x, y) est O(1).

Le nombre de alignment de (x,y) est $\sum_{i=0}^{m} C_{n+i}^{i} * C_{n+i-m}^{n}$, avec |x|=n et |y|=m.

$$|A| = \sum_{i=0}^m C_{n+i}^i * C_n^{n+i-m} = \sum_{i=0}^m rac{(n+i)!}{n!i!} * rac{n!}{(m-i)!(n+i-m)!}$$

Donc, la complexité est en O(m * n!)

Et pour déduire un alignement de coût minimal, on a besion de rechercher le nombre minimal dans la liste de coût des alignments, qui a la même complexité d'énumeration.

Question 6:

Programmation dynamique

Ouestion 7:

Comme $\pi(\overline{u})=x$ et $\pi(\overline{v})=y$, on a $\overline{u}_l\in\{-,x_i\}$ et $\overline{v}_l\in\{-,v_i\}$. En particulier,

• si $\overline{u}_l = -$, alors $\overline{v}_l = y_i$;

- ullet si $\overline{v}_l=-$, alors $\overline{u}_l=x_i$ et
- si u_l et v_l sont différents de alors ils valent respectivement x_i et y_j .

Question 8:

On note $u=(\overline{u}_i)_{i=1}^{l-1}$ et $v=(\overline{v}_i)_{i=1}^{l-1}$

- Si $\overline{u}_l = -$, alors $C(\overline{u},\overline{v}) = c_{ins} + C(u,v)$.
- Si $\overline{v}_l = -$, alors $C(\overline{u}, \overline{v}) = c_{d\acute{e}l} + C(u, v)$.
- Sinon, $C(\overline{u}, \overline{v}) = c_{sub}(\overline{u}_l, \overline{v}_l) + C(u, v)$.

Question 9:

Comme les distances sont positives, par croissance de la somme il suffit d'optimiser la distance de manière gloutonne en appliquant une transformation de coût minimal au dernier caractère. Plus précisément :

- Si i=0 ou j=0 alors...
- Sinon
 - Si $x_i = y_j$ alors D(i,j) = D(i-1,j-1) (comme $c_{sub}(x_i,y_j) = 0$, le meilleur choix est fait en laissant les deux caractères).
 - $\begin{array}{l} \circ \ \ \text{Sinon, } D(i,j) = min\{c_{d\acute{e}l} + D(i-1,j), c_{ins} + D(i,j-1), c_{sub}(x_i,y_j) + D(i-1,j-1)\}. \\ \text{Comme on ne peut pas mettre de gap au même endroit, on a le choix} \\ \text{entre consommer } x_i \ \text{(dans quel cas on place un gap à } y, \text{ induisant le coût } c_{d\acute{e}l}) \\ \text{et consommer } y_j \ \text{(dans quel cas on place un gap à } x, \text{ induisant le coût } c_ins) \ \text{ou} \\ \text{consommer } x_i \ \text{et } y_j \ \text{(cas traité à l'étape précédente)}. \\ \end{array}$

Plus généralement, on a la relation de récurrence $C(i+1,j+1) = min\{c_{d\acute{e}l} + D(i-1,j), c_{ins} + D(i,j-1), c_{sub}(xi,yj) + D(i-1,j-1)\}.$

Question 10:

On a $D(0,0)=d(\varepsilon,\varepsilon)$. Par la borne supérieure sur la longueur des alignements trouvée plus haut, le seul alignement de $(\varepsilon,\varepsilon)$ est vide, donc de coût nul : D(0,0)=0.

Question 11:

Soit $u\in \Sigma *$ de longueur j. Par un argument sur les longueurs, le seul alignement possible de (ε,u) (respectivement (u,ε)) est (-,u) (respectivement (u,-)). On a ainsi $C(0,j)=jc_{ins}$ et $C(i,0)=ic_{d\acute{e}l}$.

Question 12:

```
def DIST_1(X, Y):
    n - |X|
    p - |Y|
    if n=0 && p=0, then
        return 0
    end if
```

```
if n = 0, then
    return p * C_ins
end if

if p = 0, then
    return n * C_dél
end if
D - 0
```

[Partie 3.2]

Une extension : l'alignement local de séquences (Ex 4) :

Conclusion: