Рекурсивные свойства ветвления и БГГ резольвента

В Д Ляховский 1 , А А Назаров 2,3

¹ Теоретический отдел,

Санкт - Петербургский государственный университет 198904, Санкт - Петербург, Россия e-mail: lyakh1507@nm.ru

² Теоретический отдел,

Санкт - Петербургский государственный университет 198904, Санкт - Петербург, Россия

 2 Лаборатория имени Чебышева,

математико-механический факультет,

Санкт - Петербургский государственный университет 199178, Санкт - Петербург, Россия email: antonnaz@gmail.com

14 февраля 2011 г.

Аннотация

Рекуррентные соотношения для коэффициентов ветвления основываются на определенном разложении сингулярного элемента. Мы показываем, что такое разложение может использоваться для построения параболических модулей Верма и получения обобщенных формул Вейля-Верма для характеров. Также мы демонстрируем, что коэффициенты ветвления определяют обобщенную резольвенту Бернштейна-Гельфанда.

1 Введение

Свойства ветвления (аффинных) алгебр Ли важны для приложений в квантовой теории поля (смотри, например, модели конформной теории поля [1],[2]). В данной работе мы показываем, что ветвление для произвольной редуктивной подалгебры связано с БГГ резольвентой и проявляет свойства резольвенты в категории \mathcal{O}^p [3] (параболического обобщения категории \mathcal{O} [4]).

Резольвента для неприводимых модулей в терминах бесконечномерных модулей важна для теории интегрируемых спиновых цепочек [5]. В подходе *Q*-оператора Бакстера [6] общие трансфер-матрицы, соответствующие (обобщенным) модулям Верма, факторизуются в произведение операторов Бакстера. Резольвента позволяет вычислить трансферматрицы для конечномерных вспомогательных пространств.

Чтобы продемонстрировать связь БГГ резольвенты с ветвлением мы используем рекурсивный подход, представленный в работе [7] (похожий подход для максимальных вложений использовался в работе [8]). Мы рассматриваем подалгебру $\mathfrak{a} \hookrightarrow \mathfrak{g}$ вместе с \mathfrak{a}_{\perp} – "ортогональным партнером" $\mathfrak a$ по отношению к форме Киллинга, а также $\widetilde{\mathfrak a_\perp} := \mathfrak a_\perp \oplus \mathfrak h_\perp,$ где $\mathfrak{h}=\mathfrak{h}_{\mathfrak{a}}\oplus\mathfrak{h}_{\mathfrak{a}_{\perp}}\oplus\mathfrak{h}_{\perp}$. Для любой редуктивной подалгебры \mathfrak{a} подалгебра $\mathfrak{a}_{\perp} \hookrightarrow \mathfrak{g}$ регулярна и редуктивна. Для интегрируемого модуля старшего веса $L^{(\mu)}$ и ортогональной подалгебры \mathfrak{a}_{\perp} мы рассматриваем сингулярный элемент $\Psi^{(\mu)}$ (числитель в формуле Вейля для характеров $ch\left(L^{\mu}\right)=\frac{\Psi^{(\mu)}}{\Psi^{(0)}},$ см., например, [9]) и знаменатель Вейля $\Psi^{(0)}_{\mathfrak{a}_{\perp}}$ для ортогонального партнера. В работе показано, что элемент $\Psi_{\mathfrak{g}}^{(\mu)}$ может быть разложен в комбинацию числителей Вейля $\Psi_{\mathfrak{a}_{\perp}}^{(\nu)}$, где $\nu \in P_{\mathfrak{a}_{\perp}}^{+}$. Это разложение дает возможность построить множество модулей старшего веса $L^{\mu_{\mathfrak{a}_{\perp}}}_{\mathfrak{a}_{\perp}}$. В том случае, если вложение $\mathfrak{a}_{\perp} \hookrightarrow \mathfrak{g}_{\parallel}$ удовлетворяет "стандартным параболическим" условиям, эти модули порождают параболические модули Верма $M^{\mu_{\mathfrak{a}_{\perp}}}_{(\mathfrak{a}_{\perp} \hookrightarrow \mathfrak{g})}$, так что исходный характер $ch\left(L^{\mu}\right)$ в итоге раскладывается в чередующуюся сумму таких модулей. С другой стороны, если параболическое условие нарушено, конструкция сохраняется и по- $M_{\left(\widehat{\mathfrak{b}_{\perp}},\mathfrak{g}\right)}^{\mu_{\widehat{\mathfrak{a}_{\perp}}}},$ где $\widetilde{\mathfrak{b}_{\perp}}$ уже не является подалгеброй в \mathfrak{g} , а оказывается сжатием рождает разложение по отношению к набору обобщенных модулей Верма $\widetilde{\mathfrak{a}_{\perp}}$.

Некоторые общие свойства предложенного разложения формулируются в терминах определенного формального элемента $\Gamma_{\mathfrak{a} \to \mathfrak{a}}$, называ-

емого "веером вложения". Использование этого инструмента позволило сформулировать простой и явный алгоритм для вычисления правил ветвления, подходящий для произвольной (максимальной или не максимальной) подалгебры в аффинной алгебре Ли [7].

Возможные обобщения полученных результатов обсуждаются в Разделе 4.

1.1 Обозначения

```
Пусть \mathfrak{g} и \mathfrak{a} – (аффинные) алгебры Ли, а вложение \mathfrak{a} \hookrightarrow \mathfrak{g} таково, что \mathfrak{a} – редуктивная подалгебра в \mathfrak{a} \subset \mathfrak{g} с согласованным корневым пространством: \mathfrak{h}_{\mathfrak{a}}^* \subset \mathfrak{h}_{\mathfrak{a}}^*. Мы используем следующие обозначения:
```

```
\mathfrak{g} = \mathfrak{n}^- + \check{\mathfrak{h}} + \mathfrak{n}^+ — разложение Картана;
      r, (r_{\mathfrak{a}}) — ранг алгебра \mathfrak{g} (соотв., \mathfrak{a});
      \Delta (\Delta_{\mathfrak{a}})— корневая система; \Delta^+ (соотв., \Delta_{\mathfrak{a}}^+)— набор положительных
корней (алгебр \mathfrak{g} и \mathfrak{a} соответственно);
      \operatorname{mult}(\alpha) \ (\operatorname{mult}_{\mathfrak{a}}(\alpha)) - \operatorname{кратность} \operatorname{корня} \alpha \ \operatorname{в} \Delta \ (\operatorname{соотв., } \operatorname{в} \ (\Delta_{\mathfrak{a}}));
      S (S_{\mathfrak{a}}) — множество простых корней (для \mathfrak{g} и \mathfrak{a} соответственно);
      \alpha_i, (\alpha_{(\mathfrak{a})j}) — i-й (соотв., j-й) простой корень алгебры \mathfrak{g} (соотв.,\mathfrak{a});
i = 0, \dots, r, \ (j = 0, \dots, r_{\mathfrak{a}});
      lpha_i^ee , \left(lpha_{(\mathfrak{a})j}^ee\right) – простой ко-корень для \mathfrak{g} (соотв.,\mathfrak{a}) , i=0,\ldots,r ; (j=0,\ldots,r_{\mathfrak{a}});
      W, (W_{\mathfrak{a}})— группа Вейля;
      C, (C_{\mathfrak{a}})— фундаментальная камера Вейля;
      \bar{C}, (\bar{C}_{\mathfrak{a}}) — замыкание фундаментальной камеры Вейля;
      \epsilon(w) := (-1)^{\operatorname{length}(w)};

ho , (
ho_{\mathfrak{a}}) — вектор Вейля;
      L^{\mu} (L^{\nu}_{\sigma}) — интегрируемый модуль {\mathfrak g} со старшим весом \mu ; (соотв.,
интегрируемый \mathfrak{a}-модуль старшего веса \nu);
      \mathcal{N}^{\mu} , (\mathcal{N}^{\nu}_{\mathfrak{a}}) — весовая диаграмма модуля L^{\mu} (соотв., L^{\nu}_{\mathfrak{a}});
      P (соотв., P_{\mathfrak{a}}) — весовая решетка;
     P^+ (соотв., P^+_{\mathfrak{a}}) — решетка доминантных весов; m_{\xi}^{(\mu)}, \left(m_{\zeta}^{(\nu)}\right) — кратность веса \xi \in P (соотв., \in P_{\mathfrak{a}}) в L^{\mu}, (соотв., в
\zeta \in L^{\nu}_{\mathfrak{a}}):
      ch(L^{\mu}) (соотв., ch(L^{\nu}_{\mathfrak{a}}))— формальный характер L^{\mu} (соответственно,
      ch\left(L^{\mu}\right) = rac{\sum_{w \in W} \epsilon(w) e^{w \circ (\mu + \rho) - \rho}}{\prod_{\alpha \in \Delta^{+}} (1 - e^{-\alpha})^{\mathrm{mult}(\alpha)}} — формула Вейля-Каца;
```

 $R:=\prod_{lpha\in\Delta^+}\left(1-e^{-lpha}
ight)^{\mathrm{mult}(lpha)}\quad ext{(соотв., }R_{\mathfrak{a}}:=\prod_{lpha\in\Delta^+_{\mathfrak{a}}}\left(1-e^{-lpha}
ight)^{\mathrm{mult}_{\mathfrak{a}}(lpha)}$ знаменатель Вейля.

2 Ортогональная подалгебра и сингулярные элементы

В этом разделе мы покажем, как рекуррентный подход к проблеме ветвления естественным образом приводит к представлению формального характера \mathfrak{g} -модуля в виде комбинации характеров, соответствующих параболическим (обобщенным) модулям Верма. Рассмотрим редуктивную алгебру Ли \mathfrak{g} и ее редуктивную подалгебру $\mathfrak{a} \subset \mathfrak{g}$. Пусть L^{μ} — интегрируемый модуль старшего веса алгебры \mathfrak{g} , $\mu \in P^+$. Будем считать L^{μ} полностью приводимым по отношению к подалгебре \mathfrak{a} ,

$$L^{\mu}_{\mathfrak{g}\downarrow\mathfrak{a}} = \bigoplus_{\nu \in P^+} b^{(\mu)}_{\nu} L^{\nu}_{\mathfrak{a}}.$$

Это разложение может быть записано в терминах формальных характеров с использованием оператора проекции $\pi_{\mathfrak{a}}$ (на весовое пространство $\mathfrak{h}_{\mathfrak{a}}^*$):

$$\pi_{\mathfrak{a}}ch\left(L^{\mu}\right) = \sum_{\nu \in P_{\mathfrak{a}}^{+}} b_{\nu}^{(\mu)}ch\left(L_{\mathfrak{a}}^{\nu}\right). \tag{1}$$

Для модуля L^{μ} существует БГГ резольвента (см. [4, 10, 11] и [12]). Все члены фильтрующей последовательности представляются суммами модулей Верма со старшими весами ν , сильно связанными с μ :

$$\{\nu\} = \{w (\mu + \rho) - \rho | w \in W\}.$$

2.1 Ортогональная подалгебра

Пусть $\mathfrak{h}_{\mathfrak{a}}$ – подалгебра Картана в \mathfrak{g} . Для $\mathfrak{a} \hookrightarrow \mathfrak{g}$ введем "ортогонального партнера" $\mathfrak{a}_{\perp} \hookrightarrow \mathfrak{g}$.

Рассмотрим корневое подпространство $\mathfrak{h}_{\perp\mathfrak{a}}^*$, ортогональное к \mathfrak{a} ,

$$\mathfrak{h}_{\perp\mathfrak{a}}^{*}:=\left\{ \eta\in\mathfrak{h}^{*}|\forall h\in\mathfrak{h}_{\mathfrak{a}};\eta\left(h\right)=0\right\} ,$$

и корни \mathfrak{g} (соответственно, положительные корни) ортогональные к \mathfrak{a} ,

$$\Delta_{\mathfrak{a}_{\perp}} := \{ \beta \in \Delta_{\mathfrak{g}} | \forall h \in \mathfrak{h}_{\mathfrak{a}}; \beta(h) = 0 \},
\Delta_{\mathfrak{a}_{\perp}}^{+} := \{ \beta^{+} \in \Delta_{\mathfrak{a}}^{+} | \forall h \in \mathfrak{h}_{\mathfrak{a}}; \beta^{+}(h) = 0 \}.$$
(2)

Обозначим через $W_{\mathfrak{a}_{\perp}}$ подгруппу W, порожденную отражениями w_{β} с корнями $\beta \in \Delta_{\mathfrak{a}_{\perp}}^+$. Корневая подсистема $\Delta_{\mathfrak{a}_{\perp}}$ определяет подалгебру \mathfrak{a}_{\perp} , имеющую подалгебру Картана $\mathfrak{h}_{\mathfrak{a}_{\perp}}$. Пусть

$$\mathfrak{h}_{\perp}^{*} := \left\{ \eta \in \mathfrak{h}_{\perp \mathfrak{a}}^{*} \middle| \forall h \in \mathfrak{h}_{\mathfrak{a} \oplus \mathfrak{a}_{\perp}}; \eta \left(h \right) = 0 \right\}$$

и у \mathfrak{g} есть подалгебры

$$\widetilde{\mathfrak{a}_{\perp}} := \mathfrak{a}_{\perp} \oplus \mathfrak{h}_{\perp} \qquad \widetilde{\mathfrak{a}} := \mathfrak{a} \oplus \mathfrak{h}_{\perp}.$$
 (3)

Заметим, что $\mathfrak{a} \oplus \mathfrak{a}_{\perp}$ в общем случае не является подалгеброй в \mathfrak{g} . Для подалгебр Картана имеет место разложение

$$\mathfrak{h} = \mathfrak{h}_{\mathfrak{a}} \oplus \mathfrak{h}_{\mathfrak{a}_{\perp}} \oplus \mathfrak{h}_{\perp} = \mathfrak{h}_{\widetilde{\mathfrak{a}}} \oplus \mathfrak{h}_{\mathfrak{a}_{\perp}} = \mathfrak{h}_{\widetilde{\mathfrak{a}_{\perp}}} \oplus \mathfrak{h}_{\mathfrak{a}}. \tag{4}$$

Рассмотрим векторы Вейля $\rho_{\mathfrak{a}}$ и $\rho_{\mathfrak{a}_{\perp}}$, соответствующие \mathfrak{a} и \mathfrak{a}_{\perp} . Введем так называемые "дефекты" вложения $\mathcal{D}_{\mathfrak{a}}$ и $\mathcal{D}_{\mathfrak{a}_{\perp}}$:

$$\mathcal{D}_{\mathfrak{a}} := \rho_{\mathfrak{a}} - \pi_{\mathfrak{a}}\rho, \qquad \mathcal{D}_{\mathfrak{a}_{\perp}} := \rho_{\mathfrak{a}_{\perp}} - \pi_{\mathfrak{a}_{\perp}}\rho. \tag{5}$$

Для $\mu \in P^+$ рассмотрим связанные веса $\{(w(\mu + \rho) - \rho) | w \in W\}$ и их проекции на $h_{\mathfrak{a}_+}^*$, дополнительно сдвинутые на дефект $-\mathcal{D}_{\mathfrak{a}_\perp}$:

$$\mu_{\mathfrak{a}_{\perp}}(w) := \pi_{\mathfrak{a}_{\perp}}[w(\mu + \rho) - \rho] - \mathcal{D}_{\mathfrak{a}_{\perp}}, \quad w \in W.$$

Среди весов $\{\mu_{\mathfrak{a}_{\perp}}(w) | w \in W\}$ всегда можно выбрать те, которые попадают в фундаментальную камеру $\overline{C_{\mathfrak{a}_{\perp}}}$. Пусть U – множество представителей u классов $W/W_{\mathfrak{a}_{\perp}}$, таких что

$$U := \left\{ u \in W \middle| \quad \mu_{\mathfrak{a}_{\perp}} \left(u \right) \in \overline{C_{\mathfrak{a}_{\perp}}} \right\} \quad . \tag{6}$$

Тогда можно выделить подмножества:

$$\mu_{\widetilde{\mathfrak{a}}}(u) := \pi_{\widetilde{\mathfrak{a}}}[u(\mu + \rho) - \rho] + \mathcal{D}_{\mathfrak{a}_{\perp}}, \quad u \in U, \tag{7}$$

И

$$\mu_{\mathfrak{a}_{\perp}}(u) := \pi_{\mathfrak{a}_{\perp}} \left[u(\mu + \rho) - \rho \right] - \mathcal{D}_{\mathfrak{a}_{\perp}}, \quad u \in U.$$
 (8)

Заметим, что подалгебра \mathfrak{a}_{\perp} по определению регулярна, так как она построена на подмножестве корней алгебры \mathfrak{g} .

Для интересующих нас модулей формула Вейля-Каца для $\operatorname{ch}(L^{\mu})$ может быть записана через сингулярные элементы [9],

$$\Psi^{(\mu)} := \sum_{w \in W} \epsilon(w) e^{w(\mu + \rho) - \rho},$$

а именно:

$$\operatorname{ch}(L^{\mu}) = \frac{\Psi^{(\mu)}}{\Psi^{(0)}} = \frac{\Psi^{(\mu)}}{R}.$$
 (9)

То же верно и для подмодулей $\operatorname{ch}\left(L_{\mathfrak{a}}^{\nu}\right)$ в формуле (1)

$$\operatorname{ch}\left(L_{\mathfrak{a}}^{\nu}\right) = \frac{\Psi_{\mathfrak{a}}^{(\nu)}}{\Psi_{\mathfrak{a}}^{(0)}} = \frac{\Psi_{\mathfrak{a}}^{(\nu)}}{R_{\mathfrak{a}}},$$

где

$$\Psi_{\mathfrak{a}}^{(\nu)} := \sum_{w \in W_{\mathfrak{a}}} \epsilon(w) e^{w(\nu + \rho_{\mathfrak{a}}) - \rho_{\mathfrak{a}}}.$$

Применяя формулу (9) к правилу ветвления (1) мы получаем соотношение, связывающее сингулярные элементы $\Psi^{(\mu)}$ и $\Psi^{(\nu)}_{\mathfrak{a}}$:

$$\pi_{\mathfrak{a}}\left(\frac{\sum_{w\in W}\epsilon(w)e^{w(\mu+\rho)-\rho}}{\prod_{\alpha\in\Delta^{+}}(1-e^{-\alpha})^{\operatorname{mult}(\alpha)}}\right) = \sum_{\nu\in P_{\mathfrak{a}}^{+}}b_{\nu}^{(\mu)}\frac{\sum_{w\in W_{\mathfrak{a}}}\epsilon(w)e^{w(\nu+\rho_{\mathfrak{a}})-\rho_{\mathfrak{a}}}}{\prod_{\beta\in\Delta_{\mathfrak{a}}^{+}}(1-e^{-\beta})^{\operatorname{mult}_{\mathfrak{a}}(\beta)}},$$

$$\pi_{\mathfrak{a}}\left(\frac{\Psi^{(\mu)}}{R}\right) = \sum_{\nu\in P_{\mathfrak{a}}^{+}}b_{\nu}^{(\mu)}\frac{\Psi_{\mathfrak{a}}^{(\nu)}}{R_{\mathfrak{a}}}.$$

$$(10)$$

2.2 Разложение сингулярного элемента.

Теперь мы выполним разложение сингулярного элемента $\Psi^{(\mu)}$ на сингулярные элементы модулей ортогонального партнера:

Лемма 1. Пусть \mathfrak{a}_{\perp} – ортогональный партнер редуктивной подалгебри $\mathfrak{a} \hookrightarrow \mathfrak{g} \ u \ \mathfrak{h} = \mathfrak{h}_{\mathfrak{a}} \oplus \mathfrak{h}_{\mathfrak{a}_{\perp}} \oplus \mathfrak{h}_{\perp}, \ \widetilde{\mathfrak{a}_{\perp}} = \mathfrak{a}_{\perp} \oplus \mathfrak{h}_{\perp}, \ \widetilde{\mathfrak{a}} = \mathfrak{a} \oplus \mathfrak{h}_{\perp}.$

Пусть L^{μ} — интегрируемый модуль старшего веса $\mu \in P^+$ и $\Psi^{(\mu)}$ — сингулярный элемент L^{μ} .

Тогда элемент $\Psi^{(\mu)}$ может быть разложен в сумму по $u \in U$ (см. (6)) сингулярных элементов $\Psi^{\mu_{\mathfrak{a}_{\perp}}(u)}_{\mathfrak{a}_{\perp}}$ с коэффициентами $\epsilon(u)e^{\mu_{\widetilde{\mathfrak{a}}}(u)}$:

$$\Psi^{(\mu)} = \sum_{u \in U} \epsilon(u) e^{\mu_{\tilde{\mathfrak{a}}}(u)} \Psi^{\mu_{\mathfrak{a}_{\perp}}(u)}_{\mathfrak{a}_{\perp}}.$$
 (11)

Доказательство. Пусть

$$u(\mu + \rho) = \pi_{(\widetilde{\mathfrak{a}})} u(\mu + \rho) + \pi_{(\mathfrak{a}_{\perp})} u(\mu + \rho),$$

где $u \in U$. Для произвольного $v \in W_{\mathfrak{a}_{\perp}}$ рассмотрим сингулярный вес $vu(\mu + \rho) - \rho$ и выполним разложение:

$$vu(\mu + \rho) - \rho = \pi_{(\mathfrak{a})} \left(u(\mu + \rho) \right) - \rho + \rho_{\mathfrak{a}_{\perp}} + v \left(\pi_{(\widetilde{\mathfrak{a}}_{\perp})} u(\mu + \rho) - \rho_{\mathfrak{a}_{\perp}} + \rho_{\mathfrak{a}_{\perp}} \right) - \rho_{\mathfrak{a}_{\perp}}.$$
(12)

Используем дефект $\mathcal{D}_{\mathfrak{a}_{\perp}}$ (5), чтобы упростить первую строчку в формуле (12):

$$\pi_{(\widetilde{\mathfrak{a}})} (u(\mu + \rho)) - \rho + \rho_{\mathfrak{a}_{\perp}} = \pi_{(\widetilde{\mathfrak{a}})} (u(\mu + \rho)) - \pi_{\widetilde{\mathfrak{a}}} \rho - \pi_{\mathfrak{a}_{\perp}} \rho + \rho_{\mathfrak{a}_{\perp}} = \pi_{(\widetilde{\mathfrak{a}})} (u(\mu + \rho) - \rho) + \mathcal{D}_{\mathfrak{a}_{\perp}},$$

и вторую

$$\begin{split} v\left(\pi_{(\mathfrak{a}_{\perp})}u(\mu+\rho)-\rho_{\mathfrak{a}_{\perp}}+\rho_{\mathfrak{a}_{\perp}}\right)-\rho_{\mathfrak{a}_{\perp}} &= \\ v\left(\pi_{(\mathfrak{a}_{\perp})}u(\mu+\rho)-\mathcal{D}_{\mathfrak{a}_{\perp}}-\pi_{(\mathfrak{a}_{\perp})}\rho+\rho_{\mathfrak{a}_{\perp}}\right)-\rho_{\mathfrak{a}_{\perp}} &= \\ &= v\left(\pi_{(\mathfrak{a}_{\perp})}\left[u(\mu+\rho)-\rho\right]-\mathcal{D}_{\mathfrak{a}_{\perp}}+\rho_{\mathfrak{a}_{\perp}}\right)-\rho_{\mathfrak{a}_{\perp}}. \end{split}$$

В результате получаем требуемое разложение сингулярного элемента Ψ^{μ} на сингулярные элементы $\Psi^{\eta}_{\mathfrak{a}_{\perp}}$ модулей $L^{\eta}_{\mathfrak{a}_{\perp}}$ подалгебры \mathfrak{a}_{\perp} :

$$\Psi^{\mu} = \sum_{u \in U} \sum_{v \in W_{\mathfrak{a}_{\perp}}} \epsilon(v) \epsilon(u) e^{vu(\mu+\rho)-\rho} =
= \sum_{u \in U} \epsilon(u) e^{\pi_{\widetilde{\mathfrak{a}}}[u(\mu+\rho)-\rho]+\mathcal{D}_{\mathfrak{a}_{\perp}}} \sum_{v \in W_{\mathfrak{a}_{\perp}}} \epsilon(v) e^{v\left(\pi_{(\mathfrak{a}_{\perp})}[u(\mu+\rho)-\rho]-\mathcal{D}_{\mathfrak{a}_{\perp}}+\rho_{\mathfrak{a}_{\perp}}\right)-\rho_{\mathfrak{a}_{\perp}}} =
= \sum_{u \in U} \epsilon(u) \Psi_{\mathfrak{a}_{\perp}}^{\pi_{(\mathfrak{a}_{\perp})}[u(\mu+\rho)-\rho]-\mathcal{D}_{\mathfrak{a}_{\perp}}} e^{\pi_{(\widetilde{\mathfrak{a}})}[u(\mu+\rho)-\rho]+\mathcal{D}_{\mathfrak{a}_{\perp}}}.$$
(13)

Замечание 1. Это соотношение можно рассматривать как обобщенную форму формулы Вейля для сингулярного элемента $\Psi^{\mu}_{\mathfrak{g}}$: векторы $\mu_{\widetilde{\mathfrak{a}}}\left(u\right)$

играют роль сингулярных весов, а чередующиеся множители $\epsilon(u)$ расширены до $\epsilon(u)\Psi_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}$.

Действительно, при $\mathfrak{a}=\mathfrak{g}$ подалгебры \mathfrak{a}_{\perp} , и \mathfrak{h}_{\perp} тривиальны, U=W и оригинальная формула Вейля восстанавливается, так как сингулярные элементы $\epsilon(u)\Psi_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}=\epsilon(u)$ становятся тривиальными.

В противоположном пределе, когда $\mathfrak{a}=0$, $\Delta_{\mathfrak{a}_{\perp}}=\Delta_{\mathfrak{g}}$, $\mathfrak{h}_{\perp}^{*}=0$, $\mathfrak{a}_{\perp}=\mathfrak{g}$, $\mathcal{D}_{\mathfrak{a}_{\perp}}=0$ и $U=W/W_{\mathfrak{a}_{\perp}}=e$, опять восстанавливается сингулярный элемент Ψ^{μ} , теперь в результате тривиализации множества векторов $\mu_{\mathfrak{a}}\left(e\right)=0$.

Замечание 2. В работе [7] разложение, аналогичное формуле (13), было использовано для построения рекуррентных соотношений для коэффициентов ветвления $k_{\xi}^{(\mu)}$, соответствующих вложению $\mathfrak{a} \hookrightarrow \mathfrak{g}$:

$$k_{\xi}^{(\mu)} = -\frac{1}{s(\gamma_0)} \left(\sum_{u \in U} \epsilon(u) \operatorname{dim} \left(L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)} \right) \delta_{\xi - \gamma_0, \pi_{\tilde{\mathfrak{a}}}(u(\mu + \rho) - \rho)} + \right. \\ \left. + \sum_{\gamma \in \Gamma_{\tilde{\mathfrak{a}} \to \mathfrak{g}}} s \left(\gamma + \gamma_0 \right) k_{\xi + \gamma}^{(\mu)} \right).$$

$$(14)$$

Рекурсия задается множеством $\Gamma_{\widetilde{\mathfrak{a}} \to \mathfrak{g}}$, называемом веером вложения. Это множество определяется как носитель $\{\xi\}_{\mathfrak{a} \to \mathfrak{g}}$ коэффициентной функции $s(\xi)$

$$\{\xi\}_{\widetilde{\mathfrak{a}} \to \mathfrak{a}} := \{\xi \in P_{\widetilde{\mathfrak{a}}} | s(\xi) \neq 0\},$$

возникающей в разложении

$$\prod_{\alpha \in \Delta^+ \setminus \Delta_{\perp}^+} \left(1 - e^{-\pi_{\tilde{\mathfrak{a}}}\alpha} \right)^{\text{mult}(\alpha) - \text{mult}_{\mathfrak{a}}(\pi_{\tilde{\mathfrak{a}}}\alpha)} = -\sum_{\gamma \in P_{\tilde{\mathfrak{a}}}} s(\gamma) e^{-\gamma}; \tag{15}$$

Веса из множества $\{\xi\}_{\widetilde{\mathfrak{a}} \to \mathfrak{g}}$ сдвигаются на γ_0 – младший вектор в $\{\xi\}$, и исключается нулевой элемент:

$$\Gamma_{\widetilde{\mathfrak{a}} \to \mathfrak{g}} = \{ \xi - \gamma_0 | \xi \in \{\xi\} \} \setminus \{0\}. \tag{16}$$

Рекуррентное соотношение (14) первоначально использовалось для описания ветвления интегрируемых модулей. Заметим, что существует важный класс модулей, которые также могут быть редуцированы при помощи веера вложения – это модули Верма.

2.3 Фомулы Вейля-Верма.

Утверждение 1. Для ортогональной подалгебры \mathfrak{a}_{\perp} в \mathfrak{g} (являющейся ортогональным партнером редуктивной подалгебры $\mathfrak{a} \hookrightarrow \mathfrak{g}$) характер интегрируемого модуля старшего веса L^{μ} может быть представлен в виде комбинации (с целочисленными коэффициентами) характеров параболических модулей Верма, распределенных по множеству весов $e^{\mu_{\overline{\mathfrak{a}}}(u)}$:

$$\operatorname{ch}(L^{\mu}) = \sum_{u \in U} \epsilon(u) e^{\mu_{\tilde{\mathfrak{a}}}(u)} \operatorname{ch} M_{I}^{\mu_{\mathfrak{a}_{\perp}}(u)}, \tag{17}$$

где $U:=\left\{u\in W| \;\; \mu_{\mathfrak{a}_{\perp}}\left(u\right)\in\overline{C_{\mathfrak{a}_{\perp}}}\right\}\;u\;I$ – такое подмножество в S, что Δ_{I}^{+} эквивалентно $\Delta_{\mathfrak{a}_{\perp}}^{+}.$

Доказательство. Подалгебра \mathfrak{a}_{\perp} регулярна и редуктивна по определению (2). Рассмотрим её знаменатель Вейля $R_{\mathfrak{a}_{\perp}} := \prod_{\alpha \in \Delta_{\mathfrak{a}_{\perp}}^{+}} (1 - e^{-\alpha})^{\operatorname{mult}_{\mathfrak{a}}(\alpha)}$ и элемент $R_{J} := \prod_{\alpha \in \Delta^{+} \setminus \Delta_{\mathfrak{a}_{\perp}}^{+}} (1 - e^{-\alpha})^{\operatorname{mult}(\alpha)}$ как сомножители в R:

$$R = R_J R_{\mathfrak{a}_\perp}.$$

Согласно этой факторизации и разложению (11) характер $\operatorname{ch}(L^{\mu})$ можно переписать в виде

$$\operatorname{ch}(L^{\mu}) = (R_{J})^{-1} (R_{\mathfrak{a}_{\perp}})^{-1} \Psi^{\mu} = (R_{J})^{-1} \sum_{u \in U} e^{\mu_{\widetilde{\mathfrak{a}}}(u)} \epsilon(u) (R_{\mathfrak{a}_{\perp}})^{-1} \Psi^{\mu_{\mathfrak{a}_{\perp}}(u)}_{\mathfrak{a}_{\perp}}$$
$$= (R_{J})^{-1} \sum_{u \in U} e^{\mu_{\widetilde{\mathfrak{a}}}(u)} \epsilon(u) \operatorname{ch}\left(L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}\right),$$

где $\left\{L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}|u\in U\right\}$ — множество конечномерных \mathfrak{a}_{\perp} -модулей со старшими весами $\mu_{\mathfrak{a}_{\perp}}(u)$. Нас интересуют нетривиальные подалгебры \mathfrak{a} и, соответственно, нетривиальные \mathfrak{a}_{\perp} (случай тривиальной ортогональной подалгебры рассматривался выше в (см. Замечание 1)). Значит $r_{\mathfrak{a}} \geq 1$ и $r_{\mathfrak{a}_{\perp}} < r$. Так как диаграмма Дынкина для любой регулярной подалгебры получается в результате исключения одной, двух или более вершин из расширенной диаграммы Дынкина алгебры, а расширенная диаграмма содержит не более одного зависимого корня (старший корень), множество корней $\Delta_{\mathfrak{a}_{\perp}}^+$ всегда эквивалентно некоторому множеству Δ_I^+ , порожденному набором простых корней $I \subset S$.

Следовательно мы можем (переопределяя множество Δ^+) отождествить $\Delta^+_{\mathfrak{a}_\perp}$ с подмножеством Δ^+_I , где $I\subset S$. В результате мы можем определить объекты, необходимые для построения обобщенных модулей Верма [3, 12]. У нас есть два множества корневых векторов $\{x_\xi\in\mathfrak{g}_\xi|\xi\in\Delta^+_I\}$ и $\{x_\eta\in\mathfrak{g}_\eta|\eta\in\Delta^+\setminus\Delta^+_I\}$, и соответствующие нильпотентные подалгебры в \mathfrak{n}^+ :

$$\mathfrak{n}_I^+ := \sum_{\xi \in \Delta_I^+} \mathfrak{g}_{\xi}, \quad \mathfrak{u}_I^+ := \sum_{\eta \in \Delta^+ \setminus \Delta_I^+} \mathfrak{g}_{\eta}.$$

Первая подалгебра вместе со своей отрицательной копией \mathfrak{n}_I^- порождает простую подалгебру

$$\mathfrak{s}_I = \mathfrak{n}_I^- + \mathfrak{h}_I + \mathfrak{n}_I^+.$$

Мы расширяем ее оставшимися картановскими генераторами:

$$\mathfrak{l}_I = \mathfrak{n}_I^- + \mathfrak{h} + \mathfrak{n}_I^+.$$

Полупрямое произведение \mathfrak{l}_I и \mathfrak{u}_I^+ дает параболическую подалгебру $\mathfrak{p}_I \hookrightarrow \mathfrak{g}$:

$$\mathfrak{p}_I = \mathfrak{l}_I \rhd \mathfrak{u}_I^+. \tag{18}$$

Ее универсальная обертывающая $U(\mathfrak{p}_I)$ является подалгеброй в $U(\mathfrak{g})$. Модули $L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}$ алгебры \mathfrak{l}_I легко поднимаются до \mathfrak{p}_I -модулей при помощи тривиального действия нильрадикала \mathfrak{u}_I^+ . Последний стандартным образом индуцирует $U(\mathfrak{g})$ -модули:

$$M_I^{\mu_{\mathfrak{a}_{\perp}}(u)} = U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_I)} L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}.$$

Это обобщенные модули Верма [3], порожденные старшими весами $\mu_{\mathfrak{a}_{\perp}}(u)$. Как $U\left(\mathfrak{u}_{I}^{-}\right)$ -модуль каждый $M_{I}^{\mu_{\mathfrak{a}_{\perp}}(u)}$ изоморфен $U\left(\mathfrak{u}_{I}^{-}\right)\otimes L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}$ и его характер можно записать при помощи функции Костанта-Хекмана [13], соответствующей вложению ортогонального партнера $\mathfrak{a}_{\perp}\hookrightarrow\mathfrak{g}$:

$$\mathrm{ch} M_I^{\mu_{\mathfrak{a}_{\perp}}(u)} = \mathcal{K} \mathcal{H}_{\mathfrak{a}_{\perp} \hookrightarrow \mathfrak{g}} \mathrm{ch} L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}.$$

Функция $\mathcal{KH}_{\mathfrak{a}_{\perp} \hookrightarrow \mathfrak{g}}$ генерируется знаменателем R_I , так что последнее выражение можно переписать следующим образом

$$\mathrm{ch} M_I^{\mu_{\mathfrak{a}_{\perp}}(u)} = \frac{1}{R_I} \mathrm{ch} L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}.$$

Значит мы получили обобщенную формулу Вейля-Верма для характеров – разложение $\operatorname{ch}(L^{\mu})$ на характеры обобщенных модулей Верма:

$$\operatorname{ch}(L^{\mu}) = \sum_{u \in U} e^{\mu_{\tilde{\mathfrak{a}}}(u)} \epsilon(u) \operatorname{ch} M_{I}^{\mu_{\mathfrak{a}_{\perp}}(u)}. \tag{19}$$

Замечание 3. Здесь обобщенная формула Вейля-Верма для характеров (называемая формулой переменного суммирования в книге [12]) имеет специальный вид: веса $\mu_{\tilde{\mathfrak{a}}}$ и старшие веса обобщенных модулей Верма $\mu_{\mathfrak{a}_{\perp}}$ разделены. Причина в том, что старший вес M_I -модуля не равен проекции его максимального веса на $h_{\mathfrak{a}_{\perp}}^*$ (а должен быть дополнительно сдвинут на дефект).

Пример 1. Рассмотрим обобщенные модули Верма для вложения $A_1 \hookrightarrow B_2$, где подалгебра \mathfrak{a}_{\perp} связана с корнем α_1 алгебры B_2 . Обобщенный модуль Верма $M_1^{\omega_1}$ со старшим весом $\omega_1 = e_1$ показан на Рисунке 1.

Замечание 4. Как доказано, например, в книге [12] (см. утверждение 9.6), характеры обобщенных модулей Верма $M_I^{\mu_{\mathfrak{a}_{\perp}}(u)}$ могут также описываться как линейные комбинации обычных модулей Верма алгебры \mathfrak{g} :

$$\operatorname{ch} M_{I}^{\mu_{\mathfrak{a}_{\perp}}(u)} = \sum_{w \in W_{\mathfrak{a}_{\perp}}} \epsilon(w) \operatorname{ch} M^{w(\mu_{\mathfrak{a}_{\perp}}(u) + \rho_{\mathfrak{a}_{\perp}}) - \rho_{\mathfrak{a}_{\perp}}}$$

Подставляя это выражение в формулу (19) и используя определения (7,8) и (5), мы восстанавливаем стандартное разложение Вейля-Верма для характера:

$$\operatorname{ch}(L^{\mu}) = \sum_{w \in W} \epsilon(u) \operatorname{ch} M^{w(\mu+\rho)-\rho}.$$

3 БГГ резольвента и ветвление

В работе [3] показано, что для модуля старшего веса L^{μ} , где $\mu \in P^+$, последовательность

$$0 \to M_r^I \xrightarrow{\delta_r} M_{r-1}^I \xrightarrow{\delta_{r-1}} \dots \xrightarrow{\delta_1} M_0^I \xrightarrow{\varepsilon} L^{\mu} \to 0, \tag{20}$$

Рис. 1: Обобщенные модули Верма для регулярного вложения A_1 в B_2 . Простые корни α_1, α_2 алгебры B_2 показаны пунктирными стрелками. Простой корень $\beta = \alpha_1 + 2\alpha_2$ алгебры A_1 показан серым вектором. Разложение L^{ω_1} представлено набором контуров входящих в него обобщенных модулей Верма. Пунктирные контуры соответствуют положительным значениям $\epsilon(u)$, а точечные – отрицательным.

где

$$M_k^I = \bigoplus_{u \in U, \text{ length}(u) = k} M_I^{u(\mu+\rho)-\rho}, \quad M_0^I = M_I^{\mu}$$
 (21)

(обобщенная БГГ резольвента), является точной и формула (17) следует из этого разложения.

Утверждение 2. Пусть L^{μ} – \mathfrak{g} -модуль со старшим весом $\mu \in P^+$, и пусть регулярная подалгебра $\mu \in P^+$ ортогональна редуктивной подалгебре $\mathfrak{a} \hookrightarrow \mathfrak{g}$. Тогда разложение (11) определяет как обобщенную резольвенту L^{μ} по отношению к \mathfrak{a}_{\perp} , так и правила ветвления L^{μ} по отношению к подалгебре \mathfrak{a}_{\perp} , так и правила ветвления L^{μ} по отношению к \mathfrak{a} .

Рис. 2: Вложение $A_1 \hookrightarrow B_2$ (см. Рисунок 1). Ортогональный партнер – это подалгебра A_1 , соответствующая корню α_1 . Резольвента простого модуля L^{ω_1} . Показана центральная часть точной последовательности $0 \to Im(\delta_2) \to \left(e^{\mu_{\widetilde{\mathfrak{a}}}(e)} \mathrm{ch} M_I^{\pi_{\mathfrak{a}_{\perp}}[\omega_1] - \mathcal{D}_{\mathfrak{a}_{\perp}}} = M_I^{\omega_1}\right) \to L^{\omega_1} \to 0$. Здесь $\mu_{\widetilde{\mathfrak{a}}}(e) = \pi_{\widetilde{\mathfrak{a}}}[\mu] + \mathcal{D}_{\mathfrak{a}_{\perp}}$.

Доказательство. Положим

$$\operatorname{ch} M_I^{u(\mu+\rho)-\rho} = e^{\mu_{\widetilde{\mathfrak{a}}}(u)} \operatorname{ch} M_I^{\mu_{\mathfrak{a}_{\perp}}(u)}, \operatorname{ch} M_I^{\mu} = e^{\mu_{\widetilde{\mathfrak{a}}}(e)} \operatorname{ch} M_I^{\pi_{\mathfrak{a}_{\perp}}[\mu]-\mathcal{D}_{\mathfrak{a}_{\perp}}}$$

где $\mu_{\tilde{\mathfrak{a}}}(u)$, $\mu_{\mathfrak{a}_{\perp}}(u)$ и $\mathcal{D}_{\mathfrak{a}_{\perp}}$ определены как в Лемме 1, а $u \in U$ определено формулой (6). Тогда мы получаем элементы фильтрующей последовательности (20).

Рассмотрим множество $\{\mu_{\mathfrak{a}_{\perp}}(u) | u \in U\}$ как множество старших весов простых модулей $L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}$ и вычислим размерности этих модулей. Вместе с $\{\mu_{\widetilde{\mathfrak{a}}}(u) | u \in U\}$ мы получим набор сингулярных весов

$$\left\{ \epsilon(u) \ e^{\mu_{\tilde{\mathfrak{a}}}(u)} \dim \left(L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)} \right) \right\}.$$

Ветвление $L^{\mu}_{\mathfrak{g}\downarrow\mathfrak{a}}=\bigoplus_{\nu\in P^+_{\mathfrak{a}}}b^{(\mu)}_{\nu}L^{\nu}_{\mathfrak{a}}$ определяется веером вложения $\Gamma_{\mathfrak{a}\to\mathfrak{g}}$ и соот-

ношением (14), которое дает нам коэффициенты $k_{\xi}^{(\mu)}$, а значит определяет и $b_{\nu}^{(\mu)}$, так как $b_{\nu}^{(\mu)}=k_{\nu}^{(\mu)}$ при $\nu\in\overline{C_{\mathfrak{a}}}$.

Следствие 0.1. Пусть $L^{\mu} - \mathfrak{g}$ -модуль со старшим весом $\mu \in P^{+}$ и $\mathfrak{a} \hookrightarrow \mathfrak{g}$ – редуктивная подалгебра \mathfrak{g} . Пусть \mathfrak{a}_{\perp} – ортогональный партнер для \mathfrak{a} , – эквивалентен A_{1} , $\mathfrak{a}_{\perp} \approx A_{1}$, и $\widetilde{\mathfrak{a}} = \mathfrak{a} \oplus \mathfrak{h}_{\perp}$ с $\mathfrak{h} = \mathfrak{h}_{\mathfrak{a}} \oplus \mathfrak{h}_{\mathfrak{a}_{\perp}} \oplus \mathfrak{h}_{\perp}$. Пусть $L^{\mu}_{\mathfrak{g}\downarrow\widetilde{\mathfrak{a}}} = \bigoplus_{\nu \in P^{+}_{\mathfrak{a}}} b^{(\mu)}_{\nu} L^{\nu}_{\widetilde{\mathfrak{a}}}$ – ветвление модуля L^{μ} относительно подал-

гебры $\widetilde{\mathfrak{a}}$. Тогда коэффициенты $b_{\nu}^{(\mu)}$ определяют обобщенную резольвенту (20) модуля L^{μ} по отношению к \mathfrak{a}_{\perp} .

Доказательство. Пусть α – простой корень A_1 . Используем преобразования из группы Вейля чтобы перевести его в некоторый простой корень алгебры \mathfrak{g} , например α_1 . Построим сингулярный элемент для модуля $L^{\mu}_{\mathfrak{g}\downarrow\widetilde{\mathfrak{a}}}$, то есть $\Psi^{\left(L^{\mu}_{\mathfrak{g}\downarrow\widetilde{\mathfrak{a}}}\right)}_{\widetilde{\mathfrak{a}}} = \sum_{\nu \in P^+_{\widetilde{\mathfrak{a}}}, b^{(\mu)}_{\nu} > 0} b^{(\mu)}_{\nu} \Psi^{(\nu)}_{\widetilde{\mathfrak{a}}}$, и разложим его $\Psi^{\left(L^{\mu}_{\mathfrak{g}\downarrow\widetilde{\mathfrak{a}}}\right)}_{\widetilde{\mathfrak{a}}} = k^{(\mu)}_{\xi} e^{\xi}$. В нашем случае представители u в рекуррентном соотношении (14) определяются весом ξ однозначно:

$$\epsilon(u\left(\xi\right)) \dim \left(L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u\left(\xi\right))}\right) = -s\left(\gamma_{0}\right) k_{\xi}^{(\mu)} - \sum_{\gamma \in \Gamma_{\widetilde{\mathfrak{a}} \to \mathfrak{g}}} s\left(\gamma + \gamma_{0}\right) k_{\xi + \gamma}^{(\mu)}.$$

Тогда

$$\dim\left(L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u(\xi))}\right) = \left|s\left(\gamma_{0}\right)k_{\xi}^{(\mu)} + \sum_{\gamma \in \Gamma_{\widetilde{\mathfrak{a}} \to \mathfrak{g}}} s\left(\gamma + \gamma_{0}\right)k_{\xi + \gamma}^{(\mu)}\right|$$

И

$$\mu_{\mathfrak{a}_{\perp}}\left(u\left(\xi\right)\right) = \frac{1}{2}\left(\dim\left(L_{A_{1}}^{\mu\left(\xi\right)}\right) - 1\right)\alpha_{1}$$

Таким образом, множество обобщенных модулей Верма $e^{\xi+\mathcal{D}_{\mathfrak{a}_{\perp}}}\mathrm{ch}M_I^{\mu_{\mathfrak{a}_{\perp}}(u(\xi))}$ теперь определено:

 $\left\{ e^{\mu_{\tilde{\mathfrak{a}}}(u)} \operatorname{ch} M_I^{\mu_{\mathfrak{a}_{\perp}}(u)} | u \in U \right\}.$

Упорядочивая эти модули по длине u, мы получаем компоненты (21) резольвенты (20).

4 Заключение

В работе [7] было показано, что метод веера вложения работает также и для специальных вложений. Надо заметить, что разложения Вейля-Верма также могут быть получены в этом случае. Резольвенты, соответствующие специальным подалгебрам, описывают соотношения между проекциями характера начального модуля и обобщенными модулями Верма со старшими весами в подпространстве h^* .

Рассмотрим ситуацию, когда выбор простых корней зафиксирован какими-то внешними факторами (возникающими, например, из требований физических приложений). В этом случае ортогональный партнер не может порождаться только простыми корнями. Элементы $\mathfrak{u}_I^+ := \sum_{\eta \in \Delta^+ \backslash \Delta_I^+} \mathfrak{g}_{\eta}$ не образуют подалгебру в \mathfrak{g} , так как некоторые не простые

корни отсутствуют в $\Delta^+ \setminus \Delta_I^+$. Важно отметить, что в этом случае формула Вейля-Верма по-прежнему существует. В ней обобщенные модули Верма соответствуют сжатиями [14] алгебры \mathfrak{n}^+ и соотношения Вейля-Верма описывают разложение пространства представления L^μ в набор обобщенных модулей Верма сжатой алгебры $U\left(\mathfrak{n}_c^+\right)$. Весовые векторы образованы базисом Пуанкаре-Биркгофа-Витта алгебр $U\left(\mathfrak{n}_c^+\right)$ и $U\left(\mathfrak{a}_\perp\right)$. Чтобы рассмотреть такое пространство как \mathfrak{g} -модуль мы должны выполнить деформацию [15] алгебры \mathfrak{n}_c^+ (то есть восстановить первоначальный закон композиции). Пространство сохраняется и после такой деформации генераторы начальной алгебры будут действовать на нем правильным образом.

5 Благодарности

Авторы выражают свою искреннюю благодарность всем, кто подготовил и организовал III международную конференцию "Модели квантовой теории поля 2010", посвященную 70-летию А.Н. Васильева.

Данная работа была частично поддержана грантом РФФИ № 09-01-00504 и лабораторией имени Чебышева (математико-механический факультет СПбГУ) из средств гранта 11.G34.31.2006 правительства Российской Федерации.

Список литературы

- [1] P. Di Francesco, P. Mathieu, and D. Senechal, *Conformal field theory*. Springer, 1997.
- [2] R. Coquereaux and G. Schieber, "From conformal embeddings to quantum symmetries: an exceptional SU (4) example," in *Journal of Physics: Conference Series*, vol. 103, p. 012006, Institute of Physics Publishing. 2008. arXiv:0710.1397.
- [3] J. Lepowsky, "A generalization of the Bernstein-Gelfand-Gelfand resolution," *Journal of Algebra* **49** (1977) no. 2, 496–511.
- [4] J. Bernstein, I. Gel'fand, and S. Gel'fand, "On a category of g-modules," Funktsional. Analiz i ego prilozheniya 10 (1976) no. 2, 1–8.

- [5] S. Derkachov and A. Manashov, "Noncompact sl(N) spin chains: Alternating sum representation for finite dimensional transfer matrices," arXiv:1008.4734.
- [6] S. Derkachov and A. Manashov, "Factorization of \mathcal{R} -matrix and Baxter \mathcal{Q} -operators for generic sl(N) spin chains," J. Phys. A: Math. Theor. **42** (2009), 075204.
- [7] V. Lyakhovsky and A. Nazarov, "Recursive algorithm and branching for nonmaximal embeddings," *J. Phys. A: Math. Theor.* **44** (2011), 075205. arXiv:1007.0318 [math.RT].
- [8] M. Ilyin, P. Kulish, and V. Lyakhovsky, "On a property of branching coefficients for affine Lie algebras," Algebra i Analiz 21 (2009) 2, arXiv:0812.2124 [math.RT].
- [9] J. Humphreys, Introduction to Lie algebras and representation theory. Springer, 1997.
- [10] I. Bernstein, M. Gelfand, and S. Gelfand, "Differential operators on the base affine space and a study of g-modules," in Lie groups and their representations, Summer school of Bolyai Janos Math.Soc., Budapest, 1971 Halsted Press, NY, (1975) 21–64.
- [11] I. Bernstein, I. Gel'fand, and S. Gel'fand, "Structure of representations generated by vectors of highest weights," Funktsional. Anal. i Prilozhen. 5 (1971) no. 1, 1–8.
- [12] J. Humphreys, Representations of semisimple Lie algebras in the BGG category O. Amer. Mathematical Society, 2008.
- [13] G. Heckman *Invent. Math.* **67** (1982) 333–356.
- [14] H. Doebner and O. Melsheimer, "On a Class of Generalized Group Contractions", *Nouvo Cimento A* **49** no. 2, (1967) 306–311.
- [15] A. Nijenhuis and R.W. Richardson, "Cohomology and Deformations in Graded Lie Algebras," Bull. Amer. Math. Soc. 72 P. 1 (1966) 1–29.