

Advance Technical Information

GigaMOS[™] Trench HiperFET[™] Power MOSFET

IXFN420N10T

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions		Maximum Ratings		
V _{DSS}	$T_{J} = 25^{\circ}\text{C to } 175^{\circ}$	°C	100	V	
V _{DGR}	$T_{J} = 25^{\circ}C \text{ to } 175^{\circ}$	$^{\circ}$ C, R _{GS} = 1M Ω	100	V	
V _{GSS}	Continuous		±20	V	
V _{GSM}	Transient		±30	V	
I _{D25}	$T_{\rm C} = 25^{\circ}\text{C} \text{ (Chip (}$	Capability)	420	А	
L(RMS)	External Lead Cur	rent Limit	200	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse	Width Limited by $T_{_{\rm JM}}$	1000	Α	
I _A	$T_{c} = 25^{\circ}C$		100	Α	
E _{AS}	$T_{\rm C} = 25^{\circ}{\rm C}$		5	J	
dV/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DD}$	ss, T _J ≤ 175°C	20	V/ns	
P _D	T _C = 25°C		1070	W	
T _J			-55 +175	°C	
T _{JM}			175	°C	
T _{stg}			-55 +175	°C	
T,	1.6mm (0.062 in.)	from Case for 10s	300	°C	
T _{SOLD}	Plastic Body for 1		260	°C	
V _{ISOL}	50/60 Hz, RMS	t = 1 minute	2500	٧~	
	$I_{ISOL} \le 1 mA$	t = 1 second	3000	V~	
M _d	Mounting Torque Terminal Connection Torque		1.5/13	Nm/lb.in.	
•			1.3/11.5	Nm/lb.in.	
Weight			30	g	

Symbol	Test Conditions	Characteristic Values				
$(T_J = 25^{\circ}C, l)$	Jnless Otherwise Specified)	Mir	۱.	Тур.	Max	
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$	10	0			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 8mA$	2.	5		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$				50	μΑ
		$T_J = 150^{\circ}C$			5	mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 60A, Note 1$				2.3	mΩ

 $V_{_{DSS}} = 100V$ $I_{_{D25}} = 420A$ $R_{_{DS(on)}} \le 2.3m\Omega$ $t_{_{rr}} \le 140ns$

G = Gate D = Drain S = Source

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

Features

- International Standard Package
- miniBLOC, with Aluminium Nitride Isolation
- Isolation Voltage 2500 V~
- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Synchronous Recification
- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

Symbol (T _J = 25°C	Test Conditions C, Unless Otherwise Specified)	Char Min.	acteristic Typ.	Values Max.
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	110	185	S
C _{iss})		47	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		4390	pF
C _{rss})		530	pF
R _{Gi}	Gate Input Resistance		1.46	Ω
t _{d(on)})		47	ns
t _r	Resistive Switching Times		155	ns
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 100A$		115	ns
t _f	$R_{G} = 1\Omega$ (External)		255	ns
$\mathbf{Q}_{g(on)}$			670	nC
\mathbf{Q}_{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		170	nC
\mathbf{Q}_{gd})		195	nC
R _{thJC}				0.14 °C/W
R _{thCS}			0.05	°C/W

SOT-227B (IXFN) Outline (M4 screws (4x) supplied) SYM INCHES MILLIMETERS MIN MAX MIN MAX A 1.240 1.250 31.50 31.88 B 307 323 7.80 8.20 C 1.61 1.69 4.09 4.29 D 1.61 1.69 4.09 4.29 E 1.61 1.69 4.09 4.29 F 5.87 5.95 14.91 15.11 G 1.186 1.193 30.12 30.30 H 1.496 1.505 38.00 38.23 J 460 481 11.68 12.22 K 351 378 8.92 9.60 L 0.30 0.33 0.76 0.84 M 4.96 5.506 12.60 12.85 N 9.90 1.001 25.15 25.42 O 0.78 0.84 1.95 5.97 O 1.045 1.059 26.54 26.90 R 1.155 1.74 3.94 4.42 S 1.86 1.91 4.72 4.85 T 9.68 9.987 24.59 25.07

-.002

.004

-0.05

0.1

Source-Drain Diode

Symbol Test Conditio (T ₁ = 25°C, Unless Otherwise		Characteristic Values Min. Typ. Max.		
$V_{GS} = 0V$	420	A		
I _{sm} Repetitive, Pul	lse Width Limited by T _{JM} 1680	Α		
V_{SD} $I_F = 60A, V_{GS} =$	0V, Note 1 1.2	V		
$ \begin{vmatrix} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{vmatrix} $	= 0V	ns μC Α		

Note 1. Pulse test, $t \le 300 \mu s$; duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXFN420N10T

Fig. 1. Output Characteristics

Fig. 2. Extended Output Characteristics

Fig. 3. Output Characteristics

Fig. 4. Normalized R_{DS(on)} vs. Junction Temperature

Fig. 5. Normalized R_{DS(on)} vs. Drain Current

Fig. 6. Drain Current vs. Case Temperature

IXFN420N10T

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

Fig. 19. Maximium Transient Thermal Impedance