Math 449: Numerical Methods Lecture 02

Sep 1st, 2017

Today: Finding roots via fixed point iteration

How do we know if a function has real roots?

Theorem:

Suppose $f: [a,b] \longrightarrow \mathbb{R}$ is continuous and $f(a) \cdot f(b) \leq 0$, then f has a root in [a,b]

proof: 2f f(a)f(b)=0, then either a orb is a root.

If f(a) f(b) < 0, then one is negative and the other is positive, f is continuous, by intermediate value

Why must Jy exist for y >0?

For
$$y < 0$$
, $f(x) = x^2 - y$

f(0) < 0 f(b)>0 for b suff large

Heron's Method

$$x_{RH} = g(x_R)$$
 s.t. $g(x) = \frac{1}{2}(x + \frac{y}{x})$

If g is continuous and $x_k \rightarrow \xi$ as $k \rightarrow \infty$,

$$\lim_{k\to\infty} x_{k+1} = \lim_{k\to\infty} g(x_k)$$

 ξ is called a fixed point of g when $g(\xi) = \xi$

As seen last time, fixed pt of g are precise roots of $f(x) = x^2 - y$

Approach:

1. Given problem of finding a root of f

- 2. Construct a function g whose fixed points are roots of f.
- 3. Apply fixed-point iteration for k=0,1,2,... $x_{k+1}=g(x_k)$

Easy to come up with g whose fixed pts are roots of f.

Ex.
$$g(x) = x - f(x)$$
 so $g(\xi) = \xi - f(\xi) = \xi \iff f(\xi) = 0$.

This is usually not a good choice.

Ex.
$$f(x) = x^2 - 2$$
 $g(x) = x - x^2 + 2$

check:
$$g(\sqrt{12}) = \sqrt{12} - 2 + 2$$

$$x_0 = 1$$

 $x_1 = g(x) = 2$
 $x_2 = g(2) = 2 - 4 + 2 = 0$
 $x_3 = g(8) = 2$
 $x_4 = g(2) = 0$

Motivates two questions:

- 1. When does a function g have a fixed point? (How many?)
- 2. Are these fixed points Stable (iteration converges)?

Theorem Browner's fixed pt theorem

If $g: [a,b] \rightarrow [a,b]$ is continuous, then $\exists \xi \in [a,b]$ not necessarily unique.

$$f(x) = x - g(x)$$

$$f(a) = a - g(a) \le 0$$

$$f(b) = b - g(b) \ge 0$$

by intermediate value theorem
$$f(\xi) = 0$$
 for some $\xi \in [a,b]$ s.t. $\xi - g(\xi) = 0$

Remark. It's estimated that [a, b] is a closed interval Otherwise conclusion needs not hold

Ex. $g(x) = x^3$ on [-1,1] fixed pts [-1,0,1] g(x) = x. \forall pts fixed.

Def. $f: [a,b] \rightarrow [a,b]$ is a contraction if \exists a constant 0 < L < I s.t. $|g(x)-g(y)| \leq L|x-y| \forall x,y \in [a,b]$

Distance between x, y shrinks (or contracts) by a factor of at least L when g is appliced.

Faut. Every contraction is continuous. Lim g(x) = g(y) $x \rightarrow y$

Theorem (Contraction Mapping Theorem)

Every contraction $g:[a,b] \rightarrow [a,b]$ has a unique fixed pt $\xi \in [a,b]$

Futhermore, the iteration $X_{k+1} = g(X_k)$ converges to ξ for any starting guess $X_0 \in [a,b]$

Existence: g is continuous so & exists by Bronwer

Uniqueness: Suppose ξ , $\eta \in [a,b]$ are both fixed pts

$$|\xi-\eta| = |g(\xi) - g(\eta)| \le L|\xi-\eta|$$
 0<1<1

only true if $|\xi-y|=0$ $\xi=y$

Convergence: Let $X_0 \in [a, b]$ § is fixed pt

Everytime I iterate,

 $|x_{k+1} - \xi| = |g(x_k) - g(\xi)| \le L|x_k - \xi|$ distance to ξ shrinks by at least a factor of L.

By induction,

$$0\leqslant |x_k-\xi|\leqslant \lfloor^k|x_0-\xi|\to 0$$

By squeeze thm,
$$|x_k - \xi| = 0$$

Lemma If
$$|g'(x)| \le L$$
 $\forall x \in [a,b]$ then $|g(x) - g(y)| \le L|x-y|$ $\forall x,y \in [a,b]$

Proof by MVT

$$g(x) - g(y) \leq g'(y)(x-y)$$
 for some y between x, y .

By Heron's: $g(x) = \frac{1}{2}(x + \frac{y}{x})$ $g'(x) = \frac{1}{2}(|-\frac{4}{x^2})$ on $\left[\sqrt{\frac{4}{b}}\right]$ $\left[\frac{4}{b^2}(x)\right] \leq \frac{1}{2}\left(|-\frac{4}{b^2}\right)$ error shrinks by at least $\frac{1}{2}$