CSc106 Lab 6 Fall 2012

Heaps: A quick review

Complexity: P vs NP

Heaps

- A nearly complete binary tree
- Satisfies a heap property:
 - Max heaps: every node (except the root) is less than or equal to its parent
 - Min heaps: every node (except the root) is greater than or equal to its parent

A Max Heap

Complexity

Kinds of Problems

- Optimization
 - Find the smallest/largest...
- Decision
 - Is there a solution of size k?
- Can convert from Optimization to Decision
 - ask if there's a solution for a specific measure

Fitch's

- Optimization Version:
 - Find a most parsimonious tree...
- Decision Version:
 - Is there a tree of size at most k?

Fitch's

Optimization Version:

Decision Version:

MST

Optimization Version:

Decision Version:

MST

- Optimization Version:
 - Find the minimum-cost spanning tree
- Decision Version:
 - Is there a spanning tree of cost less than or equal k?

Hardness

- Complexity Classes:
 - P
 - NP
 - NP-hard
 - NP-complete
 - lots of others....

• How do we know a problem is in P?

- How do we know a problem is in P?
 - It has an algorithm
 - That runs in at most polynomial time

What problems have we seen in the Class
P?

- What problems have we seen in the Class P?
 - MST
 - Fitch's
 - Quicksort
 - Selection Sort

• ...

- How do we know a problem is in NP?
 - It has an algorithm
 - We can check an answer in polynomial time

- What problems have we seen in the Class NP?
 - MST, Fitch's, Quicksort, etc.
 - Large Parsimony Problem
 - Travelling Salesperson Problem

P and NP

- How are they related??
- P is in NP
 - Why?

P and NP

- How are they related??
- P is in NP
 - Why?
 - What does that look like?

P and NP: two possibilities

P and NP: two possibilities

NP-Hard and NP-Complete

• Where do they fit in???

Class NP-Hard

- Problems that are at least as hard as any other in NP
- No necessarily in NP!
 - For example: Halting Problem
 - undecidable (cannot check correctness)

Class NP-Hard

Class NP-Hard

Class NP-Complete

- Problems that are at least as hard as any other in NP
- *And in NP*

Class NP-Complete

Class NP-Complete

Friday, 19 October, 12

- How to show Problem A is NP-Complete:
 - I. Show it is in NP
 - 2. Reduction: convert a hard problem, B, into A
 - 3. Show that if B is solvable, so is A and vice versa
 - 4. Show this transformation is poly-time

- How to show Problem A is NP-Complete:
 - Show it is in NP
 - Reduction: convert a hard problem, B, into A

- How to show Problem A is NP-Complete:
 - Show it is in NP
 - Reduction: convert a hard problem, B, into A

- How to show Problem A is NP-Complete:
 - Show it is in NP
 - Reduction: convert a hard problem into A

- If Problem B is NP-Complete:
 - NO KNOWN POLY-TIME ALGORITHM

 We can use Problem A to solve Problem B, so if A isn't hard, we could solve solve B!

