HOMEWORK FOR LECTURE 5

This homework problem set can be accomplished with the help of references. Every problem worths 2 points and DO NOT LEAVE ANY PROBLEM BLANK! It is due to 11:59 pm on December 3 (sharp).

Exercise 1. Let M be a smooth manifold and $F: M \to \mathbb{R}^k$ be a *continuous* map. Prove that for any positive continuous function $\epsilon: M \to \mathbb{R}$, there exists a smooth map $G: M \to \mathbb{R}^k$ such that $||G(x) - F(x)|| \le \epsilon(x)$ for any $x \in M$.

Exercise 2. Consider $\theta \in \Omega^2(\mathbb{R}^3)$ defined by

$$\theta = x^2 dy \wedge dz + y dz \wedge dx + z dx \wedge dy.$$

Denote by $S^2 := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$. Compute the integration $\int_{S^2} i^* \theta$ where $i : S^2 \to \mathbb{R}^3$ is the inclusion.

Exercise 3. (1) Given a manifold M and two 1-forms $\alpha, \beta \in \Omega^1(M)$, prove the following identity

$$\alpha \wedge (d\alpha)^n - \beta \wedge (d\beta)^n =$$

$$(\alpha - \beta) \wedge \sum_{j=0}^n (d\alpha)^j \wedge (d\beta)^{n-j} + d\left(\alpha \wedge \beta \wedge \sum_{j=1}^{n-1} (d\alpha)^j \wedge (d\beta)^{n-1-j}\right)$$

for any $n \in \mathbb{N}$. Here $(d\alpha)^n := d\alpha \wedge \cdots \wedge d\alpha$, wedged n times, similarly to others (2) Deduce the following proposition from (1) in this exercise: Given a closed (i.e., compact without boundary) orientable manifold M of dimension 2n+1 and smooth vector field $X \in \Gamma(TM)$, if two 1-forms $\alpha, \beta \in \Omega^1(M)$ satisfy $(\phi_X^t)^*\alpha = \alpha$ and $(\phi_X^t)^*\beta = \beta$ for any $t \in \mathbb{R}$ (invariant condition), moreover $\alpha(X) = \beta(X) = 1$, then

$$\int_{M} \alpha \wedge (d\alpha)^{n} = \int_{M} \beta \wedge (d\beta)^{n}.$$

(Note that the invariant condition above can also be expressed as $\mathcal{L}_X \alpha = \mathcal{L}_X \beta = 0$.)

Exercise 4. Let M be a closed manifold of dimension 2n. (1) Let $\omega \in \Omega^2(M)$ be a 2-form, then ω is non-degenerate (in the sense that at any point $x \in M$, if $v \in T_xM$ is not zero, then there exists some $w \in T_xM$ such that $\omega_x(v,w) \neq 0$) if and only if ω^n is a volume form of M. Recall that a volume form means a 2n-form

that is nowhere vanishing. (2) From HW3, we have seen the (Poisson) bracket of two functions $H, G: M \to \mathbb{R}$ defined by

$$\{H,G\} := \omega(X_H,X_G)$$
, where $-dH = \omega(X_H,\cdot)$, similarly to X_G .

Suppose further that ω is closed, then prove that

$$\int_M \{F, G\} \, \omega^n = 0.$$

(Hint: confirm the following equality: $\{F,G\}$ $\omega^n=-n\,dG\wedge dF\wedge \omega^{n-1}$.)

Exercise 5. Let M^m, N^n be orientable manifolds. Let $\pi_M : M \times N \to M$ and $\pi_N : M \times N \to N$ be the projections. Then for forms $\alpha \in \Omega^m(M)$ and $\beta \in \Omega^n(N)$, consider their "product" defined by

$$\alpha\times\beta:=\pi_M^*\alpha\wedge\pi_N^*\beta\in\Omega^{m+n}(M\times N)$$

prove from definition (of integration on manifold) that

$$\int_{M \times N} \alpha \times \beta = \left(\int_{M} \alpha \right) \cdot \left(\int_{N} \beta \right).$$