Exercice 01:

1. On souhaite partager une part de gâteau en deux parts S_1 et S_2 telles que $S_2=2S_1$ On coupe la part parallélement à la corde de l'arc de cercle. Déterminer x en fonction de R et de θ afin de répondre à la question posée.

- 2. Peut-on trouver où couper S_2 en deux parties égales parallélement à la première découpe ?
- 3. Appliquer les résultats précédent pour R=20 cm et $\theta=\frac{\pi}{2}$. On donnera les résultats en valeur exacte.

Exercice 2 (7 points)

ABC est un triangle quelconque ABC est un triangie queiconque. Le point I est tel que $\overrightarrow{BI} = \frac{1}{4}\overrightarrow{BA}$. Le point J est tel que $\overrightarrow{CJ} = \frac{2}{3}\overrightarrow{CB}$. Le point K est tel que $\overrightarrow{AK} = \frac{3}{5}\overrightarrow{AC}$.

Soit E le point d'intersection des droites (AJ) et (BK).

On se place dans le repère $(B; \overrightarrow{BC}, \overrightarrow{BA})$.

b. Calculer les coordonnées du point K.(1 point)

Dans la suite, on admet que les coordonnées de K sont $\left(\frac{3}{5}, \frac{2}{5}\right)$

- b. Déterminer une équation cartésienne de la droite (BK). (1 $\operatorname{\mathbf{point}})$
- c. En déduire les coordonnées du point E. (1,5 point)
- 3. Démontrer que le point E appartient à la droite $\{CI\}$ et conclure. $\{1,5\,$ point $\}$

Soit f la fonction définie sur R\(-3\) par :

$$f(x) = \frac{x^2 + 4x + 7}{x + 3}$$

- a. Étudier les variations de f.
- b. Tracer sa courbe représentative dans un repère.
- c. Discuter selon les valeurs du paramètre k du nombre de solutions de l'équation d'inconnue x:

$$x^2 + 4x + 7 = k(x+3)$$

III Les nombres pentagonaux

On construit une succession de pentagones emboîtés P₁, P₂, P₃, P₄ comme ci-dessous. Les nombres de points de chaque figure sont appelés nombres pentagonaux. On nommera u_n le n-ième nombre pentagonal.

- 1. a. Combien y a-t-il de points sur un côté de P_n?
- **b.** En déduire que $u_{n+1} = u_n + 3n + 1$.
- 2. On pose $v_n = u_{n+1} u_n$.
- a. Quelle est la nature de la suite (v_n) ?
- **b.** En déduire $v_1 + v_2 + ... + v_{n-1}$, en fonction de n.
- c. Exprimer $v_1 + v_2 + ... + v_{n-1}$ en fonction de u_n et en déduire l'expression de u_n en fonction de n.

Point histoire

Les nombres polygonaux ont fasciné les mathématiciens. Ce fut Cauchy (1789-1857) qui acheva de résoudre le problème de la décomposition des nombres entiers en nombres polygonaux : il démontra qu'un nombre entier quelconque, non nul, est au plus, la somme de trois nombres triangulaires, quatre nombres carrès, cinq nombres pentagonaux, etc.