Optimization Analysis with Polynomials

General Background

- Polynomials have long been applied to solving linear equations (or minimizing quadratic objectives)
 and have many well-known properties that are useful for analysis
 - o Chebyshev Polynomials (CPs) are especially common and well-understood
 - Chebyshev iterative method, conjugate gradient method, etc.

Our Goal: formulate our optimization problem as a polynomial, and leverage known properties of polynomials to characterize performance

- Chebyshev polynomials have seen a recent resurgence in theoretical machine learning research
 - o PCA, decentralized algorithms, analysis of quadratic objectives, etc.

Chebyshev Polynomials

- Chebyshev polynomials (CPs) are groups/sequences of polynomial functions that are related to the sine and cosine functions
 - Can be defined recursively or with trigonometric functions
 - Widely used within approximation theory
- CPs of the first and second kind are most commonly used
 - There are also third, fourth kind, etc.

• First Kind:

- \circ Trigonometric Definition: $T_n(cos\theta) = cos(n\theta)$
- Recursive Definition: $T_0(x)=1; \ T_1(x)=x; \ T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)$

Second Kind:

- \circ Trigonometric Definition: $U_n(\cos\theta)\sin\theta = \sin((n+1)\theta)$
- \circ Recursive Definition: $U_0(x)=1;\;\;U_1(x)=2x;\;\;U_{n+1}(x)=2xU_n(x)-U_{n-1}(x)$

Chebyshev Polynomials

- Both T and U are defined within the domain [-1, 1]
 - \circ Extrema of ± 1 or $\pm (n+1)$ are achieved on the endpoints of the domain [-1, 1]
 - Same number of extreme points occur in the domain [-1, 1]
 - o Same number of zeros occur (exactly n) in the domain [-1, 1]
- Chebyshev polynomials are "orthogonal" polynomials

• Weighting function:

$$\mathrm{d}\mu(\lambda) = egin{cases} rac{1}{\pi\sqrt{1-\lambda^2}} & ext{if } \lambda \in [-1,1] \ 0 & ext{otherwise}\,. \end{cases}$$

o Orthogonality condition:

$$\int T_i(\lambda)T_j(\lambda)\,\mathrm{d}\mu(\lambda) iggl\{ egin{array}{l} > 0 ext{ if } i=j \ = 0 ext{ otherwise} \,. \end{array}$$

CPs of the second kind can be defined w.r.t. CPs of the first kind

$$U_t(\lambda) = \int rac{T_{t+1}(\xi) - T_{t+1}(\lambda)}{\xi - \lambda} \, \mathrm{d}\mu(\xi) \, .$$

Problem Setup

- How can we connect optimization algorithms to polynomials?
- We consider a strongly convex, quadratic objective:

$$f(x) = \frac{1}{2}x^{\top}Hx + b^{\top}x$$

- H is a positive definite, square matrix
- We aim to minimize this objective w.r.t. x
- \circ We define the largest/smallest eigenvalues of H as L and ℓ
- \circ x^* denotes the optimal solution to f(x)
- Extending analysis from quadratic objectives to general, strongly convex objectives is an open research problem
- Gradient-based methods are usually used to provide a solution
- Main Idea: Any gradient-based method for this objective can be matched with a polynomial function that determines its convergence speed

Analysis of Gradient Descent

• We begin with the simple case of gradient descent, defined below

$$x_{t+1} = x_t - \frac{2}{L+\ell} \nabla f(x_t)$$

• Noticing that $\nabla f(x^*) = 0$, this expression can be manipulated to yield the following

$$x_{t+1} - x^\star = \left(I - \frac{2}{L+\ell}H
ight)^{t+1} \left(x_0 - x^\star
ight)$$

Taking norms and invoking Cauchy-Schwarz, we arrive at the following

$$||x_{t+1} - x^*|| \le \max_{\lambda \in [\ell, L]} \left| (1 - \frac{2}{L + \ell} \lambda)^{t+1} \right| ||x_0 - x^*||$$

• Worst-case convergence must be determined by the factor $\max_{\lambda \in [\ell,L]} \left| (1 - \frac{2}{L+\ell} \lambda)^{t+1} \right|$, so solving for this value yields our final convergence rate...

$$||x_t - x^*|| \le \left(\frac{L - \ell}{L + \ell}\right)^t ||x_0 - x^*||$$

Analysis of General Gradient-Based Methods

We consider methods that combine the current iterate, gradient, and different of previous iterates

$$x_{t+1} = x_t + c_t^{(t)} \nabla f(x_t) + \sum_{i=0}^{t-1} c_i^{(t)} (x_{i+1} - x_i)$$

$$\circ \quad \text{All } c_j^{(t)} \text{ values are scalars (notice that not specifying these values makes the polynomial very generic)}$$

- Recovers many gradient-based methods (e.g., Polyak method), excluding those with matrix preconditioners
- We define the following polynomial in a residual fashion
 - 0-th degree polynomial is 1 by construction
 - This must be true to satisfy $\|x_0 x^\star\| \le \|x_0 x^\star\|$ All residual polynomials as $\|x_0 x^\star\|$
 - All residual polynomials satisfy $P_t(0) = 1$

$$\begin{cases} P_{t+1}(\lambda) = (1 + c_t^{(t)}\lambda)P_t(\lambda) + \sum_{i=0}^{t-1} c_i^{(t)}(P_{i+1}(\lambda) - P_i(\lambda)) \\ P_0(\lambda) = 1 \end{cases}$$

Using this residual polynomial, we can show the following for iteration t of any gradient-based method

$$x_t - x^\star = P_t(H)(x_0 - x^\star)$$
 Current error depends on two terms: polynomial and initialization

We can replace the above matrix polynomial with a scalar bound by replacing H with its eigendecomposition

$$\|oldsymbol{x}_t - oldsymbol{x}^\star\| \leq \max_{egin{array}{c} \lambda \in [\ell,L] \ \end{array}} |P_t(\lambda)| \ \|oldsymbol{x}_0 - oldsymbol{x}^\star\|$$
 conditioning algorithm initialization source

Going in reverse...

$$\|oldsymbol{x}_t - oldsymbol{x}^\star\| \leq \max_{\substack{\lambda \in [\ell,L] \ ext{source}}} |P_t(\lambda)| \ \|oldsymbol{x}_0 - oldsymbol{x}^\star\|$$

- What residual polynomial will give us the best convergence rate? Can we find the following? $\underset{P}{\operatorname{arg\,min\ }}\max_{\lambda\in[\ell,L]}|P(\lambda)|$
 - o If we find this "optimal" residual polynomial, we can reverse-engineer it to derive a better optimization method!
 - \circ This minimization is over all t-degree polynomials such that $P_t(0) = 1$ (makes the problem non-trivial)
- Interestingly, numerical analysis tells us that the above optimization problem is solved by a modified CP
- Specifically, the following shifted CP achieves the smallest value within the domain $[\ell, L]$

$$P_t(\lambda) = \frac{T_t(\sigma(\lambda))}{T_t(\sigma(0))}, \text{ where } \sigma(\lambda) = \frac{L+\ell}{L-\ell} - \frac{2}{L-\ell}\lambda$$

- \circ $\sigma(\cdot)$ simply transforms the domain $[\ell, L]$ to [-1, 1], which is more appropriate for CPs
- We can then plug the above CP into the residual polynomial recurrence and solve for the appropriate coefficients within the gradient-based optimization method -- this yields the Chebyshev Iterative Method

$$\begin{array}{l} \textbf{Chebyshev Iterative Method} \\ \textbf{Input: starting guess } \boldsymbol{x}_0, \rho = \frac{L-\ell}{L+\ell} \\ \boldsymbol{x}_1 = \boldsymbol{x}_0 - \frac{2}{L+\ell} \nabla f(\boldsymbol{x}_0) \\ \boldsymbol{\omega}_1 = 2 \\ \textbf{For } t = 1, 2, \dots \ \ \textbf{do} \\ \\ \boldsymbol{\omega}_{t+1} = (1 - \frac{\rho^2}{4} \boldsymbol{\omega}_t)^{-1} \\ \boldsymbol{x}_{t+1} = \boldsymbol{x}_t + (1 - \boldsymbol{\omega}_{t+1}) \left(\boldsymbol{x}_{t-1} - \boldsymbol{x}_t\right) \\ - \boldsymbol{\omega}_{t+1} \frac{2}{L+\ell} \nabla f(\boldsymbol{x}_t) \end{array}$$

$$||x_t - x^*|| \le 2 \left(\frac{\sqrt{L} - \sqrt{\ell}}{\sqrt{L} + \sqrt{\ell}}\right)^t ||x_0 - x^*||$$

Better than gradient descent!

Analysis of Gradient Descent with Momentum

Gradient Descent with momentum is an optimization method with the following form

$$x_1 = x_0 - \frac{\eta}{1+m} \nabla f(x_0)$$

$$x_{t+1} = x_t + m(x_t - x_{t-1}) - \eta \nabla f(x_t)$$

- \circ Here, m and η are the momentum and learning rate hyperparameters, respectively
- The momentum method shown above is just a specialized case of the general, gradient-based method. So, we can again express the error at a given iteration with residual polynomials $x_t x^* = P_t(H)(x_0 x^*)$
- The definition of the residual polynomial is expressed as follows for the momentum method

$$P_{t+1}(\lambda) = (1 + m - \eta \lambda)P_t(\lambda) - mP_{t-1}(\lambda)$$

$$P_0(\lambda) = 1; \quad P_1(\lambda) = 1 - \frac{\eta}{1 + m}\lambda$$

This recurrence is simple in comparison to the general case, which includes a sum over all previous residual polynomials

Analysis of Gradient Descent with Momentum

- Residual Polynomial of the Momentum Method: a combination of first/second kind CPs
 - Can be shown using induction and by leveraging the recursive definition of CPs

$$P_t(\lambda) = m^{\frac{t}{2}} \left(\frac{2m}{1+m} T_t(\sigma(\lambda)) - \frac{m-1}{1+m} U_t(\sigma(\lambda)) \right)$$
where $\sigma(\lambda) = \frac{1}{2\sqrt{m}} (1+m-\eta\lambda)$

We can now leverage this residual polynomial to derive a convergence rate! Plugging in the CP polynomial
definition above expresses the derivation of a convergence rate as the analysis of CPs

$$\begin{aligned} x_t - x^\star &= P_t(H)(x_0 - x^\star) \\ \Rightarrow & \|x_t - x^\star\| \leq \max_{\lambda \in [\ell, L]} |P_t(\lambda)| \ \|x_0 - x^\star\| \end{aligned} \xrightarrow{\text{CP formulation of } P_t(\lambda)} \quad \max_{\lambda \in [\ell, L]} |P_t(\lambda)| \leq m^{\frac{t}{2}} \left(\frac{2m}{1+m} \max_{\lambda \in [\ell, L]} |T_t(\sigma(\lambda))| + \frac{1-m}{1+m} \max_{\lambda \in [\ell, L]} |U_t(\sigma(\lambda))| \right)$$

Analysis of Gradient Descent with Momentum

$$\max_{\lambda \in [\ell,L]} |P_t(\lambda)| \leq m^{\frac{t}{2}} \left(\frac{2m}{1+m} \max_{\lambda \in [\ell,L]} |T_t(\sigma(\lambda))| + \frac{1-m}{1+m} \max_{\lambda \in [\ell,L]} |U_t(\sigma(\lambda))| \right)$$
 unknowns

- Everything is known except for the bound on CPs, and we know how to derive bounds for CPs!
- $\textbf{Simplest Case:} \ \ \sigma(\lambda) \in [-1,1] \Rightarrow \max_{\lambda \in [\ell,L]} |\sigma(\lambda)| \leq 1 \Rightarrow \left| \frac{(1-\sqrt{m})^2}{\eta} \leq \ell \leq L \leq \frac{(1+\sqrt{m})^2}{\eta} \right| \ \ \text{(use distinction of cases and definition of sigma)}$
 - CPs are bounded by +1 and $\pm t + 1$
 - m and η that satisfy the above inequality form a "robust region" of convergence for the momentum method

Within the robust region, we achieve the following convergence rate:
$$\max_{\lambda \in [\ell,L]} |P_t(\lambda)| \leq m^{\frac{t}{2}} \left(1 + \frac{1-m}{1+m}t\right)$$

- Convergence only depends on the momentum hyperparameter (not learning rate) in the robust region
- This insensitivity to step size within the robust region is leveraged by the <u>yellowfin momentum tuner</u>
- Convergence can also be analyzed outside of the robust region (i.e., there are other convergent hyperparameter settings)

Convergent Regions of Gradient Descent with Momentum

Analysis of Polyak Momentum

Polyak Momentum follows the momentum method recurrence with the following momentum and learning rate

$$m = \left(\frac{\sqrt{L} - \sqrt{\ell}}{\sqrt{L} + \sqrt{\ell}}\right)^2 \quad \eta = \left(\frac{2}{\sqrt{L} + \sqrt{\ell}}\right)^2$$

- Minimizing the convergence rate of the momentum method in the robust region yields Polyak Momentum!
 - Recall the convergence rate for momentum method in the robust region $\max_{k \in [\ell, L]} |P_t(\lambda)| \le m^{\frac{t}{2}} \left(1 + \frac{1-m}{1+m}t\right)$
 - O Also, recall the hyperparameter bounds that define the robust region $\frac{1-\sqrt{m})^2}{n} \le \ell \le L \le \frac{(1+\sqrt{m})^2}{n}$
 - The best convergence rate occurs with the smallest possible momentum in the robust region
 - o By turning the inequalities above into equalities and solving for the hyperparameters, we recover the settings of Polyak momentum:

$$m = \left(\frac{\sqrt{L} - \sqrt{\ell}}{\sqrt{L} + \sqrt{\ell}}\right)^2 \quad \eta = \left(\frac{2}{\sqrt{L} + \sqrt{\ell}}\right)^2$$

 Because the above hyperparameter lie in the robust region, we can easily leverage previous results to obtain a convergence rate for Polyak Momentum:

$$\max_{\lambda \in [\ell, L]} |P_t(\lambda)| \le \left(\frac{\sqrt{L} - \sqrt{\ell}}{\sqrt{L} + \sqrt{\ell}}\right)^t \left(1 + \frac{2\sqrt{L\ell}}{L + \ell}t\right)$$

Square root factor improvement in comparison to Gradient Descent

Acceleration without Momentum

- We again consider a strongly convex, quadratic objective
- Before, we achieved an accelerated rate by solving for the optimal residual polynomial, leading to the Chebyshev iterative method
- Young's Method: use a curated learning rate schedule to achieve accelerated rate without any momentum term
 - To match the optimal residual polynomial (and therefore achieve the accelerated rate), our optimization method's residual polynomial must have the same roots (this is sufficiented the constraint on residual polynomials)
 - Consider a learning rate schedule with a specific learning rate at every iteration

$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$

Using this formulation, we can derive the following:

$$x_{t+1} - x^* = (I - \eta_t H) \dots (I - \eta_0 H)(x_0 - x^*) \xrightarrow{\text{Residual Polynomial}} P_t(\lambda) = (1 - \eta_t \lambda) \dots (1 - \eta_0 \lambda)$$

- Roots of $P_t(\lambda)$ are in factored form and occur at $1/\eta_t, \ldots, 1/\eta_0$ Learning rates can be manipulated to match roots of the optimal residual polynomial (roots of a CP have closed form)
- Result: a learning rate schedule that yields comparable acceleration to the Chebyshev iterative method
- The results for Young's method hold no matter the order of step sizes taken during the optimization process. Additionally, the only guarantee is on the performance of the t-th iterate, and the method might perform arbitrarily bad until this iteration.
 - Note that the resulting learning rate schedule is completely dependent on the value of t!

Applications in Current Research

- Fractal learning rates for improved stability
- Guarantees for accelerated power iteration
- Average-case convergence guarantees for gradient descent
- Yellowfin momentum tuner
- Theoretical analysis of cyclical learning rate schedules