

Az R³ tér geometriája

Összeállította: dr. Leitold Adrien egyetemi docens

Vektorok

Vektor: irányított szakasz

Jel.: \underline{a} , \mathbf{a} , \vec{a} , $A\vec{B}$,

Jellemzői:

- irány,
- hosszúság, (abszolút érték) jel.: |<u>a</u>|
- Speciális vektorok:
 - nullvektor: hossza 0, iránya tetszőleges. Jel.: 0, o
 - egységvektor: hossza egységnyi.
- Megjegyzés: az azonos hosszúságú és irányú, de különböző kezdőpontú vektorokat azonosaknak tekintjük.

- A vektorokat közös kezdőpontba tolva az általuk meghatározott félegyenesek szöge Jel.: \angle ($\underline{a},\underline{b}$) = φ
- Speciálisan:
 - Ha $\varphi = 0^{\circ}$, $\Rightarrow \underline{a}$ és \underline{b} azonos irányú, (párhuzamos)
 - Ha $\varphi = 180^{\circ}$, $\Rightarrow \underline{a}$ és \underline{b} ellentétes irányú, (párhuzamos)
 - Ha $\varphi = 90^{\circ}$, $\Rightarrow \underline{a}$ és \underline{b} merőleges.

Vektorok koordináta-rendszerben

A vektorokat helyvektorokként helyezzük el a térbeli, derékszögű (Descartes-féle) koordináta-rendszerben.

Ekkor minden térbeli vektor egyértelműen felbontható a koordináta-tengelyek irányába eső összetevőkre:

$$\underline{v} = v_1 \cdot \underline{i} + v_2 \cdot \underline{j} + v_3 \cdot \underline{k}$$

Vektorok koordináta-rendszerben (folyt.)

- A \underline{v} vektor koordináta-tengelyek irányába eső összetevői: $v_1 \cdot \underline{i}$, $v_2 \cdot \underline{j}$, $v_3 \cdot \underline{k}$
- A \underline{v} vektor koordinátái: v_1 , v_2 , v_3
- Megjegyzés: A <u>v</u> helyvektor koordinátái azonosak végpontjának koordinátáival.

Jel.:
$$\underline{v} = (v_1, v_2, v_3)$$

 A <u>v</u> vektor hossza (a térbeli Pitagorasz-tétel alapján):

$$|\underline{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

Műveletek vektorokkal: összeadás

Összeadás:

paralelogramma-módszer

ha \underline{a} és \underline{b} nem párhuzamos

4

Összeadás (folyt.)

Az összeadás tulajdonságai:

Legyenek <u>a</u>, <u>b</u> és <u>c</u> tetszőleges térbeli vektorok. Ekkor:

$$(\underline{a} + \underline{b}) + \underline{c} = \underline{a} + (\underline{b} + \underline{c})$$
 (asszociativitás)

$$\underline{a} + \underline{b} = \underline{b} + \underline{a}$$
 (kommutativitás)

$$\underline{a} + \underline{o} = \underline{a}$$

$$|\underline{a} + \underline{b}| \le |\underline{a}| + |\underline{b}|$$
 (háromszög-egyenlőtlenség)

Összeadás koordinátákkal:

Legyenek $\underline{a} = (a_1, a_2, a_3)$ és $\underline{b} = (b_1, b_2, b_3)$ térbeli vektorok. Ekkor:

$$\underline{a} + \underline{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$
_{R³ vektortér/7}

Műveletek vektorokkal: skalárral való szorzás

Skalárral való szorzás:

Legyen \underline{a} egy tetszőleges térbeli vektor, $\lambda \in R$ egy skalár. Ekkor:

- $\lambda \cdot \underline{a}$ az a vektor, amelynek
 - hossza: $|\lambda| \cdot |\underline{a}|$,
 - iránya:
 - azonos az \underline{a} vektor irányával, ha $\lambda > 0$,
 - ellentétes az \underline{a} vektor irányával, ha $\lambda < 0$,
 - tetszőleges, ha $\lambda = 0$.

4

Skalárral való szorzás (folyt.)

A skalárral való szorzás tulajdonságai:

Legyenek \underline{a} és \underline{b} tetszőleges térbeli vektorok, λ , $\mu \in R$ skalárok. Ekkor:

$$0 \cdot \underline{a} = \underline{o}$$

$$\lambda \cdot \underline{o} = \underline{o}$$

$$1 \cdot \underline{a} = \underline{a}$$

$$(\lambda + \mu) \cdot \underline{a} = \lambda \cdot \underline{a} + \mu \cdot \underline{a}$$

$$\lambda \cdot (\underline{a} + \underline{b}) = \lambda \cdot \underline{a} + \lambda \cdot \underline{b}$$

$$\lambda \cdot (\mu \cdot \underline{a}) = (\lambda \cdot \mu) \cdot \underline{a}$$

Skalárral való szorzás koordinátákkal:

Legyen $\underline{a} = (a_1, a_2, a_3)$ egy tetszőleges térbeli vektor, $\lambda \in R$ egy skalár. Ekkor:

$$\lambda \cdot \underline{a} = (\lambda \cdot a_1, \lambda \cdot a_2, \lambda \cdot a_3)$$

Műveletek vektorokkal: különbség

Különbség (származtatott művelet):

$$\underline{a} - \underline{b} = \underline{a} + (-1) \cdot \underline{b}$$

A különbség számolása koordinátákkal:

Legyenek $\underline{a} = (a_1, a_2, a_3)$ és $\underline{b} = (b_1, b_2, b_3)$ térbeli vektorok. Ekkor:

$$\underline{a} - \underline{b} = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$$

Műveletek vektorokkal: skaláris szorzás

Skaláris szorzás:

Legyenek <u>a</u> és <u>b</u> tetszőleges térbeli vektorok. Ekkor:

 $\underline{a} \cdot \underline{b} = |\underline{a}| \cdot |\underline{b}| \cdot \cos \varphi$, ahol φ a két vektor szöge.

Megjegyzés: a művelet eredménye skalár!

Skaláris szorzás (folyt.)

A skaláris szorzás tulajdonságai:

Legyenek \underline{a} és \underline{b} tetszőleges térbeli vektorok, $\lambda \in R$ skalár. Ekkor:

$$\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{a}$$

$$\underline{a} \cdot \underline{a} = |\underline{a}|^{2} \implies |\underline{a}| = \sqrt{\underline{a} \cdot \underline{a}}$$

$$\underline{a} \cdot \underline{b} = 0 \iff \underline{a} = \underline{o} \text{ vagy } \underline{b} = \underline{o} \text{ vagy } \varphi = 90^{\circ}$$

$$(\text{azaz } \underline{a} \perp \underline{b})$$

$$\lambda \cdot (\underline{a} \cdot \underline{b}) = (\lambda \cdot \underline{a}) \cdot \underline{b} = \underline{a} \cdot (\lambda \cdot \underline{b})$$

$$\underline{a} \cdot (\underline{b} + \underline{c}) = \underline{a} \cdot \underline{b} + \underline{a} \cdot \underline{c}$$

Skaláris szorzás (folyt.)

Skaláris szorzás koordinátákkal:

Legyenek $\underline{a} = (a_1, a_2, a_3)$ és $\underline{b} = (b_1, b_2, b_3)$ térbeli vektorok. Ekkor:

$$\underline{a} \cdot \underline{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$$

Műveletek vektorokkal: vektoriális szorzás

Vektoriális szorzás:

(Ez a művelet síkbeli vektorokra nem értelmezhető!)

Legyenek \underline{a} és \underline{b} tetszőleges térbeli vektorok. Ekkor \underline{a} és \underline{b} vektoriális szorzata (jel.: $\underline{a} \times \underline{b}$) az a vektor,

- amelynek hossza: $|\underline{a} \times \underline{b}| = |\underline{a}| \cdot |\underline{b}| \cdot \sin \varphi$, ahol φ a két vektor szöge,
- amely merőleges az <u>a</u> vektorra és a <u>b</u> vektorra is,
- amelyre az \underline{a} , \underline{b} és $\underline{a} \times \underline{b}$ vektorok jobbrendszert alkotnak.

(azaz $\underline{a} \times \underline{b}$ oda mutat, ahonnan nézve az \underline{a} -t \underline{b} -be vivő, 180°-nál kisebb szögű forgatás pozitívnak látszik)

Vektoriális szorzás (folyt.)

Az \underline{a} , \underline{b} és $\underline{a} \times \underline{b}$ vektorok térbeli elhelyezkedése:

Vektoriális szorzás (folyt.)

A vektoriális szorzás tulajdonságai:

$$\underline{a} \times \underline{b} \neq \underline{b} \times \underline{a}$$

$$\underline{a} \times \underline{b} = -(\underline{b} \times \underline{a})$$

$$(\underline{a} \times \underline{b}) \times \underline{c} \neq \underline{a} \times (\underline{b} \times \underline{c})$$

$$\lambda \cdot (\underline{a} \times \underline{b}) = (\lambda \cdot \underline{a}) \times \underline{b} = \underline{a} \times (\lambda \cdot \underline{b})$$

$$\underline{a} \times (\underline{b} + \underline{c}) = \underline{a} \times \underline{b} + \underline{a} \times \underline{c}$$

$$(\underline{b} + \underline{c}) \times \underline{a} = \underline{b} \times \underline{a} + \underline{c} \times \underline{a}$$

$$\underline{a} \times \underline{b} = \underline{o} \iff \underline{a} = \underline{o} \text{ vagy } \underline{b} = \underline{o} \text{ vagy } \varphi = 0^{\circ} \text{ vagy } \varphi = 180^{\circ}$$

$$(\text{azaz } \underline{a} \parallel \underline{b})$$

Vektoriális szorzás (folyt.)

Vektoriális szorzás koordinátákkal:

Legyenek $\underline{a} = (a_1, a_2, a_3)$ és $\underline{b} = (b_1, b_2, b_3)$ térbeli vektorok. Ekkor:

$$\underline{a} \times \underline{b} = (a_2b_3 - a_3b_2, -a_1b_3 + a_3b_1, a_1b_2 - a_2b_1)$$

Az egyenes

Adott: $P_0=(x_0, y_0, z_0)$, az e egyenes egy pontja, $\underline{v}=(v_1, v_2, v_3)$, az e egyenes egy irányvektora.

Legyen P=(x, y, z) az e egyenes egy tetszőlegesen választott pontja. Jelölje \underline{r}_0 a P_0 pontba, \underline{r} a P pontba mutató helyvektort.

Ekkor $\underline{r} = \underline{r}_0 + t \cdot \underline{v}$ teljesül valamely $t \in R$ valós paraméterre.

Megjegyzés: Térbeli egyeneseknél a normálvektor fogalmát nem használjuk.

Az egyenes (folyt.)

Az egyenes paraméteres vektoregyenlete:

$$\underline{r} = \underline{r}_0 + t \cdot \underline{v}$$
 , $t \in R$

Az egyenes paraméteres egyenletrendszere:

$$x = x_0 + t \cdot v_1$$

$$y = y_0 + t \cdot v_2$$

$$z = z_0 + t \cdot v_3 \quad , \quad t \in R$$

Megjegyzés: A tér egy tetszőleges $A=(x_a, y_a, z_a)$ pontja pontosan akkor van rajta egy e egyenesen, ha az A pont koordinátái kielégítik az e egyenes paraméteres egyenletrendszerét valamely $t \in \mathbb{R}$ valós paraméterrel.

Az egyenes (folyt.)

Az egyenes paramétermentes egyenletrendszere

Ha az irányvektor egyik koordinátája sem nulla:

$$\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3}$$

• Ha az irányvektor egyik koordinátája (pl. v_3) nulla:

$$\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2}, \quad z = z_0$$

 Ha az irányvektor két koordinátája is nulla, akkor nem írható fel paramétermentes egyenletrendszer.

A sík

Adott: $P_0 = (x_0, y_0, z_0)$, az S sík egy pontja,

 $\underline{n}=(n_1,n_2,n_3)$, az S sík egy normálvektora (a síkra merőleges, nullvektortól különböző vektor).

Legyen P=(x, y, z) az S sík egy tetszőlegesen választott pontja. Jelölje \underline{r}_0 a P_0 pontba, \underline{r} a P pontba mutató helyvektort.

Ekkor
$$\underline{r} \cdot \underline{r}_0 \perp \underline{n}$$
, így $\underline{n} \cdot (\underline{r} \cdot \underline{r}_0) = 0$ azaz:
$$n_1 \cdot (x \cdot x_0) + n_2 \cdot (y \cdot y_0) + n_3 \cdot (z \cdot z_0) = 0$$

A sík egyenlete

A sík egyenlete:

$$n_1 \cdot (x - x_0) + n_2 \cdot (y - y_0) + n_3 \cdot (z - z_0) = 0$$

azaz:

$$n_1 \cdot x + n_2 \cdot y + n_3 \cdot z = n_1 \cdot x_0 + n_2 \cdot y_0 + n_3 \cdot z_0 = \text{konst.}$$

vagy:

$$A \cdot x + B \cdot y + C \cdot z = D,$$

ahol $\underline{n} = (A, B, C)$ a sík egy normálvektora, $D \in R$ konstans.

Térelemek kölcsönös helyzete:

Két egyenes kölcsönös helyzete

Két térbeli egyenes (e és f) kölcsönös helyzete:

- A két egyenes azonos. $(e \equiv f)$ Minden pont közös.
- A két egyenes párhuzamos. (e || f)
 Nincs közös pont.
- A két egyenes metsző.
 Egy közös pont van.
- A két egyenes kitérő.
 Nincs közös pont.

Két egyenes kölcsönös helyzetének vizsgálata

Térelemek kölcsönös helyzete:

Egyenes és sík kölcsönös helyzete

Egyenes és sík (e és S) kölcsönös helyzete:

- Az egyenes a síkban helyezkedik el. ($e \subset S$) Az egyenes minden pontja közös pont.
- Az egyenes és a sík párhuzamos. (e | | S)
 Nincs közös pont.
- Az egyenes metszi a síkot.
 Egy közös pont van.

Egyenes és sík kölcsönös helyzetének vizsgálata

Térelemek kölcsönös helyzete:

Két sík kölcsönös helyzete

Két sík (S_1 és S_2) kölcsönös helyzete:

- A két sík azonos. $(S_1 \equiv S_2)$ Minden pont közös.
- A két sík párhuzamos. $(S_1 || S_2)$ Nincs közös pont.
- A két sík metsző.
 Végtelen sok közös pont van: a metszésvonal egyenes.

Két sík kölcsönös helyzetének vizsgálata I.

Két sík kölcsönös helyzetének vizsgálata II.

Két sík kölcsönös helyzetének vizsgálata a síkok egyenletei alapján:

Legyen a két sík (S_1 és S_2) egyenlete az alábbi:

$$S_1$$
: $n_1 \cdot x + n_2 \cdot y + n_3 \cdot z = k_1$

$$S_2$$
: $n_1' \cdot x + n_2' \cdot y + n_3' \cdot z = k_2$

- 1.Ha a két sík normálvektora nem párhuzamos, akkor S_1 és S_2 metsző.
- 2. Ha a két sík normálvektora párhuzamos, azaz $\frac{n_1}{n_1'} = \frac{n_2}{n_2'} = \frac{n_3}{n_3'} = \lambda$, akkor
 - S_1 és S_2 azonos ($S_1 \equiv S_2$), ha $\frac{k_1}{k_2} = \lambda$,
 - S_1 és S_2 párhuzamos ($S_1 \parallel S_2$), ha $\frac{k_1}{k_2} \neq \lambda$.

Térelemek metszéspontjának meghatározása

Megjegyzés: Két térelem metszéshalmaza nem más, mint egyenleteik rendszerének megoldáshalmaza.

Vizsgáljuk:

- Két egyenes metszéspontjának,
- Sík és egyenes metszéspontjának,
- Két sík metszésvonalának

meghatározását.

-

Két egyenes metszéspontja

Legyen adott két egyenes (e és f) paraméteres egyenletrendszere:

e:
$$x = x_0 + t \cdot v_1$$
 f: $x = x_0' + t \cdot v_1'$
 $y = y_0 + t \cdot v_2$ $y = y_0' + t \cdot v_2'$
 $z = z_0 + t \cdot v_3$ $z = z_0' + t \cdot v_3'$

1.Olyan t_1 , t_2 paraméterértékeket keresünk, amelyek a két egyenletrendszerben ugyanazon x, y, z koordinátaértékeket szolgáltatják:

$$x_0 + t_1 \cdot v_1 = x_0' + t_2 \cdot v_1'$$

 $y_0 + t_1 \cdot v_2 = y_0' + t_2 \cdot v_2'$ $\Rightarrow t_1, t_2$
 $z_0 + t_1 \cdot v_3 = z_0' + t_2 \cdot v_3'$

2.A kapott paraméterértékeket az egyenletrendszerekbe visszahelyettesítve megkapjuk a metszéspont koordinátáit.

Sík és egyenes metszéspontja

Legyen adott az *S* sík egyenlete és az *e* egyenes paraméteres egyenletrendszere:

S:
$$n_1 \cdot x + n_2 \cdot y + n_3 \cdot z = k$$

e: $x = x_0 + t \cdot v_1$
 $y = y_0 + t \cdot v_2$
 $z = z_0 + t \cdot v_3$

- 1. A sík egyenletébe x, y és z helyére az egyenes paraméteres egyenletrendszeréből behelyettesítjük azok t paramétertől függő alakját és a kapott egyenletet megoldjuk t-re.
- 2. A kapott *t* paraméterértéket az egyenes egyenletrendszerébe visszahelyettesítve megkapjuk a metszéspont koordinátáit.

Két sík metszésvonala

Legyen adott két sík (S_1 és S_2) egyenlete:

$$S_1$$
: $n_1 \cdot x + n_2 \cdot y + n_3 \cdot z = k_1$

$$S_2$$
: $n_1' \cdot x + n_2' \cdot y + n_3' \cdot z = k_2$

1. Keresünk egy olyan $P_0 = (x, y, z)$ pontot, amelynek koordinátái mindkét sík egyenletét kielégítik.

A három koordináta közül egy szabadon megválasztható!

- 2. A metszésvonal irányvektora: $\underline{v} = \underline{n}_1 \times \underline{n}_2$, ahol \underline{n}_1 az S_1 sík, \underline{n}_2 az S_2 sík normálvektora.
- 3. Felírjuk a P_0 ponton átmenő, \underline{v} irányvektorú egyenes egyenletrendszerét.

Térelemek távolságának meghatározása

Vizsgáljuk:

- két pont,
- pont és egyenes,
- két párhuzamos egyenes,
- két kitérő egyenes,
- pont és sík,
- sík és vele párhuzamos egyenes,
- két párhuzamos sík

távolságának meghatározását.

1. Két pont távolsága

Legyen $P_1 = (x_1, y_1, z_1)$ és $P_2 = (x_2, y_2, z_2)$ két tetszőleges pont.

Távolságuk (a térbeli Pitagorasz-tétel alapján):

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

2. Pont és egyenes távolsága

Legyen az e egyenes egy pontja P_0 és egy irányvektora \underline{v} . Legyen P egy az e egyenesre nem illeszkedő pont. Ekkor:

$$t = \left| \underline{v} \times \overrightarrow{P_0 P} \right| = \left| \underline{v} \right| \cdot d$$

$$d = \frac{\left| \underline{v} \times \overrightarrow{P_0 P} \right|}{\left| \underline{v} \right|}$$

3. Két párhuzamos egyenes távolsága

Legyen e és f két párhuzamos egyenes.

- Felveszünk egy tetszőleges P pontot az f egyenesen.
- Kiszámítjuk a P pont és az e egyenes távolságát
 szerint.

4. Két kitérő egyenes távolsága

Legyen e és f két kitérő egyenes. Kitérő egyenesek esetén mindig létezik két olyan egymással párhuzamos sík, amely az egyik ill. a másik egyenest tartalmazza. Azt az egyenest, amely e-t és f-t egyaránt merőlegesen metszi, normáltranzverzális egyenesnek nevezzük. Ezen egyenes e és fközé eső darabját normáltranzverzálisnak hívjuk.

e és f távolsága: a normáltranzverzális hossza.

4. Két kitérő egyenes távolsága (folyt.)

Legyen P_1 az e, P_2 az f egyenes tetszőleges pontja.

Legyen \underline{n} a normáltranzverzális irányába mutató tetszőleges vektor.

A keresett d távolság egyenlő a $\overline{P_1P_2}$ vektor \underline{n} irányába eső merőleges vetületének hosszával.

A számolás lépései:

Felveszünk egy-egy tetszőleges P₁ és P₂ pontot az e ill. az f egyeneseken.

• \underline{n} számolása: $\underline{n} = \underline{v}_e \times \underline{v}_f$ (vektoriális szorzat)

• \underline{n}_{e} számolása: $\underline{n}_{e} = \frac{1}{|\underline{n}|} \cdot \underline{n}$ (skalárral való szorzás)

• d számolása: $d = |\overrightarrow{P_1P_2} \cdot \underline{n}_e|$ (skaláris szorzás)

5. Pont és sík távolsága

Legyen *P* az *S* síkra nem illeszkedő pont. Távolságuk meghatározása:

- Felírjuk annak az e egyenesnek a paraméteres egyenletrendszerét, amely átmegy P-n és merőleges S-re.
- Meghatározzuk az e egyenes és az S sík metszéspontját $\Rightarrow M$
- A távolság: d = |PM|

6. Sík és vele párhuzamos egyenes távolsága

Legyen az f egyenes párhuzamos az S síkkal. Távolságuk meghatározása:

- Felveszünk egy tetszőleges
 P pontot az f egyenesen.
- Meghatározzuk a P pont és az S sík távolságát 5. szerint.

7. Két párhuzamos sík távolsága

Legyen az S_1 és S_2 sík párhuzamos. Távolságuk meghatározása:

- Felveszünk egy tetszőleges P pontot az S_2 síkon.
- Meghatározzuk a P pont és az S₁ sík távolságát 5. szerint.

Térelemek szögének meghatározása

Vizsgáljuk:

- két egyenes,
- egyenes és sík,
- két sík

szögének meghatározását.

Megjegyzés: térelemek szöge mindig 0° és 90° közé esik.

Két egyenes szöge

Legyen az e egyenes egy irányvektora \underline{v}_e , az f egyenes egy irányvektora \underline{v}_f . Az e és fszögének (α) meghatározása:

 Kiszámoljuk a két irányvektor szögét (φ):

$$\cos \varphi = \frac{\underline{v}_e \cdot \underline{v}_f}{|\underline{v}_e| \cdot |\underline{v}_f|} \implies \varphi$$

• Ha $\varphi \le 90^\circ \Rightarrow \alpha = \varphi$ Ha $\varphi > 90^\circ \Rightarrow \alpha = 180^\circ - \varphi$

Egyenes és sík szöge

Legyen az e egyenes egy irányvektora \underline{v} , az S sík egy normálvektora \underline{n} . Az e és Sszögének (α) meghatározása:

 Kiszámoljuk az irányvektor és a normálvektor szögét (φ):

$$\cos \varphi = \frac{\underline{v} \cdot \underline{n}}{|\underline{v}| \cdot |\underline{n}|} \implies \varphi$$

• Ha $\varphi \le 90^\circ \Rightarrow \alpha = 90^\circ - \varphi$ Ha $\varphi > 90^\circ \Rightarrow \alpha = \varphi - 90^\circ$

Két sík szöge

Legyen az S_1 sík egy normálvektora \underline{n}_1 , az S_2 sík egy normálvektora \underline{n}_2 . Az S_1 és S_2 síkok szögének (α) meghatározása:

• Kiszámoljuk a két normálvektor szögét (φ):

$$\cos \varphi = \frac{\underline{n}_1 \cdot \underline{n}_2}{|\underline{n}_1| \cdot |\underline{n}_2|} \quad \Rightarrow \quad \varphi$$

• Ha
$$\varphi \le 90^\circ \Rightarrow \alpha = \varphi$$

Ha $\varphi > 90^\circ \Rightarrow \alpha = 180^\circ - \varphi$