Algoritmo simplex 1.

El algoritmo simplex se usa para resolver PL que tienen muchas variables y restricciones.

Convertir un PL en forma estandar

Definición 1.1. (PL forma estándar) Un PL está en forma estándar si:

- Las restricciones son de igualdad.
- Las variables de decisión son no negativas.

Ejemplo 1.1. (Leather Limited)

1.2. Preliminares del algoritmo simplex

Suponga que se ha convertido un PL con m restricciones en su forma estándar. Si se supone que la forma estándar contiene n variables (denominadas por conveniencia x_1, x_2, \ldots, x_n), la forma estándar para tal PL es

$$\max o \min(z) = c_1 \cdot x_1 + c_2 \cdot x_2 + \dots + c_n \cdot x_n \tag{1}$$

sujeto a

$$a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n = b_1$$

$$a_{21} \cdot x_1 + a_{22} \cdot x_2 + \dots + a_{2n} \cdot x_n = b_2$$

$$\vdots$$

$$a_{m1} \cdot x_1 + a_{m2} \cdot x_2 + \dots + a_{mn} \cdot x_n = b_m$$
(2)

 $x_1, x_2, \ldots, x_n \ge 0$

Se define matriz

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
(3)

у

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$(4)$$

Variables básicas y no básicas 1.3.

Con el sistema $A \cdot x = b$ de m ecuaciones lineales y n variables (suponga $n \ge m$).

Definición 1.2. (Solucion básica) Una solucion básica para $A \cdot x = b$ se obtiene haciendo n - m variables iguales a cero, y luego se determinan los valores de las m variables restantes. Así se asume que al hacer las n-m variables iguales a cero se llega a valores únicos para las m variables restantes, o que, en forma equivalente, las columnas para las m variables restantes son linealmente independientes.

- 1. Escoger un conjuto de n-m variables no básicas (VNB).
- 2. Igualar a cero las vaariables no básicas.

Definición 1.3. (Puntos esquina) Una solución básica es un punto esquina si todas las variables son no negativas. La cantidad máxima de puntos esquina es

$$C_m^n = \binom{n}{m} = \frac{n!}{m! \cdot (n-m)!} \tag{5}$$

Ejemplo 1.2.

$$x_1 + x_2 = 3$$

$$-x_2 + x_3 = -1$$
(6)

Variables no básicas (VNB): n - m = 3 - 2 = 1.

$VNB = x_3, BV = \{x_1, x_2\}$	$VNB = x_2, BV = \{x_1, x_3\}$	$VNB = x_1, BV = \{x_2, x_3\}$
$x_3 = 0$	$x_2 = 0$	$x_1 = 0$
$x_1 + x_2 = 3$	$x_1 = 3$	$x_2 = 3$
$x_2 = -1$	$x_3 = -1$	$-x_2 + x_3 = -1$
$x_1 = 2, x_2 = 1, x_3 = 0$	$x_1 = 3, x_2 = 0, x_3 = -1$	$x_1 = 0, x_2 = 3, x_3 = 2$

Cuadro 1: Soluciones básicas

1.4. Soluciones factibles

Definición 1.4. (solución básica factible (sbf)) Cualquier solucion básica de (2) en la cual todas las variables son no negatiavas.

Definición 1.5. (punto estremo) Un punto en la región factible de un PL es un punto extremo si y sólo si es una solución factible básica.

Ejemplo 1.3. Ejemplo sacado del libro Hamby A Taha pág 73.

$$\min Z = 2 \cdot x_1 + 3 \cdot x_2 \tag{7}$$

sujeto a

$$x_1 + x_2 \le 4$$

 $x_1 + 2 \cdot x_2 \le 5$
 $x_1, x_2 \ge 0$ (8)

Variables no básicas (cero)	Variables básicas	Solución básica	Punto de esquina asociado	¿Factible?	Valor objetivo, z
(x_1, x_2)	(s_1, s_2)	(4,5)	A	Sí	0
(x_1, s_1)	(x_2, s_2)	(4,-3)	F	No	-
(x_1, s_2)	(x_2, s_1)	(2.5, 1.5)	В	Sí	7.5
(x_2, s_1)	(x_1, s_2)	(2,3)	D	Sí	4
(x_2, s_2)	(x_1, s_1)	(5,-6)	${ m E}$	No	-
(s_1,s_2)	(x_1, x_2)	(1,2)	\mathbf{C}	Sí	8 (óptimo)

Cuadro 2: Soluciones básicas

Las soluciones básicas estan conformadas por (x_1, x_2, s_1, s_2) . Por ejemplo A = (0, 0, 4, 5), y es factible si todas sus variables son positivas.

Figura 1: Región factible

1.5. Álgebra del método símplex

Ejemplo 1.4. Ejemplo tomado del video YouTube [1].

$$\max z = 7 \cdot x_1 + 4 \cdot x_2 \tag{9}$$

sujeto a

$$2 \cdot x_1 + x_2 \le 20$$

$$x_1 + x_2 \le 18$$

$$x_1 \le 8$$

$$x_1, x_2 \ge 0$$
(10)

Solución:

1. Forma estándar o aumentada:

$$2 \cdot x_1 + x_2 + s_1 = 20$$

$$x_1 + x_2 + s_2 = 18$$

$$x_1 + s_3 = 8$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

$$(11)$$

Tenemos m=3 restricciones y n=5 variables. Por lo tanto, n-m=2 variables no básicas y m=3 variables básicas.

Si $x_1 = x_2 = 0$, entonces $s_1 = 20$, $s_2 = 18$ y $s_3 = 8$. Por lo tanto, (0, 0, 20, 18, 8) es una solución básica factible.

2. Determinación de la dirección de movimiento.

Observando la funcion objetivo z aumenta más rápidamente si x_1 aumenta en una unidad. Por lo tanto, x_1 es la variable de entrada.

¿Aumenta
$$x_1$$
? Tasa de mejoramiento $z = 7$
¿Aumenta x_2 ? Tasa de mejoramiento $z = 4$

Con esto se determina la variable de entrada x_1 .

3. Prueba del cociente mínimo. Cuanto aumentar el valor de la variable básica entrante x_1 antes de detenerse, para no salirse de la región factible.

En la primer ecuación se observa que el valor más pequeño que tomar la variable $s_1 = 0$. Seguimos asi con el razonamiento para las demás ecuaciones.

Usando las restricciones y sabiendo que $x_2 = 0$, se obtiene:

$$2 \cdot x_1 + s_1 = 20 \quad (x_1 \le 10)$$

$$x_1 + s_2 = 18 \quad (x_1 \le 18)$$

$$x_1 + s_3 = 8 \quad (x_1 \le 8) \quad \leftarrow \text{mínimo}$$

$$x_1, s_1, s_2, s_3 \ge 0$$

$$(13)$$

Se la restricción que más limita el crecimiento se despeja y se la coloca en las demás ecuaciones.

4. Resolución de una nueva solución BF. Se reemplaza $x_1 = 8 - s_3$ en las demás ecuaciones:

$$2 \cdot (8 - s_3) + x_2 + s_4 = 20 \longrightarrow x_2 + s_1 - 2 \cdot s_3 = 4
(8 - s_3) + x_2 + s_4 = 18 \longrightarrow x_2 + s_2 - s_3 = 10$$
(15)

El sistema de ecuaciones equivalente es

$$\max z = 56 + 4 \cdot x_2 - 7 \cdot s_3 \tag{16}$$

$$x_{2} + s_{1} - 2 \cdot s_{3} = 4$$

$$x_{2} + s_{2} - s_{3} = 10$$

$$x_{1} + s_{3} = 8$$

$$x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \ge 0$$

$$(17)$$

- 5. Una vez que se tiene un sistema de ecuaciones equivalente, se repite el proceso. Una forma fácil de identificar que variables se ponen en cero se observa la función objetivo $x_2 = 0$ y $s_3 = 0$. Otra forma es observando el sistema de ecuaciones y ver las variables con coeficiente uno.
- 6. Prueba del cociente mínimo.

Como $s_3 = 0$, se obtiene:

$$x_2 + s_1 = 4 \qquad (x_2 \le 4) \qquad \leftarrow \text{m\'inimo}$$

$$x_2 + s_2 = 10 \quad (x_2 \le 10)$$

$$x_1 = 8 \qquad \qquad \leftarrow \text{sin restricci\'on}$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

$$(18)$$

Se la restricción que más limita el crecimiento se despeja y se la coloca en las demás ecuaciones.

7. Resolución de una nueva solución BF.

Despejando de la primer ecuación:

$$x_2 + s_1 - 2 \cdot s_3 = 4 \longrightarrow x_2 = 4 - s_1 + 2 \cdot s_3$$
 (19)

Reemplamos en todo el sistema equivalente:

$$máx z = 56 + 4 \cdot (4 - s_1 + 2 \cdot s_3) - 7 \cdot s_3
= 72 - 4 \cdot s_1 - s_3$$
(20)

$$(4 - s_1 + 2 \cdot s_3) + s_2 - s_3 = 10 \longrightarrow -s_1 + s_2 + s_3 = 6$$
 (21)

El sistema equivalente queda:

$$\begin{aligned} &\max z = 72 - 4 \cdot s_1 - s_3 \\ &x_2 + s_1 - 2 \cdot s_3 = 4 \\ &-s_1 + s_2 + s_3 = 6 \\ &x_1 + s_3 = 8 \\ &x_1, x_2, s_1, s_2, s_3 \geq 0 \end{aligned} \tag{22}$$

8. Seguimos asi.