

Dr. José Lázaro Martínez Rodríguez

 La multiplicación de matrices tiene una importancia inmensa en diversos campos debido a su capacidad para representar y manipular sistemas complejos de forma eficaz.

1. Fundamento del álgebra lineal:

• Permite representar y resolver sistemas de ecuaciones lineales, que surgen en diversas áreas como la física, la ingeniería, la economía y las computadoras.

2. Representación eficiente de sistemas complejos:

- Cuando se trabaja con conjuntos de datos multidimensionales o sistemas con relaciones intrincadas, la multiplicación de matrices se convierte en una herramienta eficaz para procesar y analizar dicha información.
- Por ejemplo, el procesamiento de imágenes utiliza matrices para representar píxeles y sus colores, mientras que los sistemas de recomendación se basan en matrices para capturar las preferencias de los usuarios y las propiedades de los artículos.

3. Modelado de transformaciones lineales:

- La multiplicación de matrices nos permite modelar fenómenos del mundo real que pueden describirse como transformaciones lineales.
- Esto incluye tareas como la rotación de objetos en el espacio 3D, la predicción de valores futuros en series temporales y la transformación de imágenes mediante filtros.

4. Computación y aproximación:

• Resolución de ecuaciones complejas en física hasta el diseño de modelos de aprendizaje automático, la multiplicación de matrices desempeña un papel fundamental en la realización eficiente de cálculos complejos.

5. Aplicaciones en diversos campos:

- Gráficos y procesamiento de imágenes: La multiplicación de matrices es esencial para manipular imágenes, aplicar filtros y renderizar gráficos 3D.
- Aprendizaje automático: La formación y el uso de redes neuronales, una tecnología clave en la inteligencia artificial, depende en gran medida de la multiplicación de matrices para aprender de los datos.
- Procesamiento de señales: El análisis y filtrado de señales, como las de audio o eléctricas, a menudo implica la multiplicación de matrices para extraer información significativa.
- Estadística y econometría: La construcción de modelos econométricos para analizar las tendencias económicas y la realización de análisis estadísticos suelen implicar el cálculo de matrices.

- El proceso de multiplicación se puede abordar por partes
- El producto AB de una matriz fila $A = [a_i]$ y una matriz columna $B = [b_i]$ con el mismo número de elementos se define como el **escalar** (o matriz 1×1) obtenido multiplicando las entradas correspondientes y sumando; es decir:

$$AB = [a_1, a_2, \dots, a_n] \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + \dots + a_nb_n = \sum_{k=1}^n a_kb_k$$

(a)
$$[7, -4, 5] \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = 7(3) + (-4)(2) + 5(-1) = 21 - 8 - 5 = 8$$

(b) $[6, -1, 8, 3] \begin{bmatrix} 4 \\ -9 \\ -2 \\ 5 \end{bmatrix} = 24 + 9 - 16 + 15 = 32$

• ¿Esto a qué se parece?

- Supongamos que $A = [a_{ik}]$ y $B = [b_{kj}]$ son matrices tales que el número de columnas de A es igual al número de filas de B; digamos que A es una matriz $m \times p$ y B es una matriz $p \times n$.
- Entonces el producto AB es la matriz $m \times n$ cuya entrada ij se obtiene multiplicando la fila i-esima de A por la columna j-esima de B.

De este modo

$$\begin{bmatrix} a_{11} & \dots & a_{1p} \\ \vdots & \ddots & \vdots \\ a_{i1} & \dots & a_{ip} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mp} \end{bmatrix} \begin{bmatrix} b_{11} & \dots & b_{1j} & \dots & b_{1n} \\ \vdots & \dots & \vdots & \ddots & \vdots \\ \vdots & \dots & \vdots & \dots & \vdots \\ b_{p1} & \dots & b_{pj} & \dots & b_{pn} \end{bmatrix} = \begin{bmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \dots & \vdots \\ \vdots & \ddots & \vdots \\ c_{m1} & \dots & c_{mn} \end{bmatrix}$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

• El producto AB no está definido si A es una matriz $m \times p$ y B es una matriz $q \times n$, donde $p \neq q$.

• Encontrar
$$AB$$
 donde $A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ y $B = \begin{bmatrix} 2 & 0 & -4 \\ 5 & -2 & 6 \end{bmatrix}$

- Como A es 2 x 2 y B es 2 x 3, el producto AB está definido y AB es una matriz 2 x 3.
- Para obtener la primera fila de la matriz producto AB, multiplicamos la primera fila [1, 3] de A por cada columna de B,
- [1 3]

$$\begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \end{bmatrix}, \begin{bmatrix} -4 \\ 6 \end{bmatrix} \qquad AB = \begin{bmatrix} 2+15 & 0-6 & -4+18 \\ \end{bmatrix} = \begin{bmatrix} 17 & -6 & 14 \\ \end{bmatrix}$$

- Encontrar AB donde $A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ y $B = \begin{bmatrix} 2 & 0 & -4 \\ 5 & -2 & 6 \end{bmatrix}$
- Para obtener la segunda fila de AB, multiplica la segunda fila [2,-1] de A por cada columna de B.

$$AB = \begin{bmatrix} 17 & -6 & 14 \\ 4 - 5 & 0 + 2 & -8 - 6 \end{bmatrix} = \begin{bmatrix} 17 & -6 & 14 \\ -1 & 2 & -14 \end{bmatrix}$$

• Suponga
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 y $B = \begin{bmatrix} 5 & 6 \\ 0 & -2 \end{bmatrix}$

$$AB = \begin{bmatrix} 5+0 & 6-4 \\ 15+0 & 18-8 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 15 & 10 \end{bmatrix}$$

$$BA = \begin{bmatrix} 5+18 & 10+24 \\ 0-6 & 0-8 \end{bmatrix} = \begin{bmatrix} 23 & 34 \\ -6 & -8 \end{bmatrix}$$

Ejercicios

 Realice cada multiplicación o indique por qué no podría realizarse

1)

$$\begin{bmatrix} 5 & -4 & -2 \\ 5 & -5 & 4 \\ 2 & 5 & -4 \\ -5 & 4 & 3 \\ 3 & -4 & -3 \end{bmatrix} \begin{bmatrix} 5 \\ -2 \\ -3 \end{bmatrix}$$

2

$$\begin{bmatrix} 0 & -1 & -1 & 3 \\ 5 & -5 & -2 & 2 \\ 1 & 0 & 4 & 5 \end{bmatrix} \begin{bmatrix} 0 & -3 \\ -2 & -1 \\ 3 & -3 \end{bmatrix}$$

3)

$$\begin{bmatrix} 3 & -3 & -3 \\ -3 & -2 & -5 \\ 5 & -1 & -4 \\ -4 & 3 & -3 \end{bmatrix} \begin{bmatrix} -4 & 1 & 5 & -3 & 0 \\ 1 & -4 & 2 & 1 & -5 \\ -5 & -5 & 5 & -5 & -4 \end{bmatrix}$$

4)

$$\begin{bmatrix} 4 & 4 & -2 & -3 & 2 \\ 0 & -4 & 0 & -2 & 4 \end{bmatrix} \begin{bmatrix} 0 & -5 & 2 \\ 5 & -2 & 5 \\ -1 & 3 & 4 \\ -1 & -2 & 4 \\ -3 & 5 & -1 \end{bmatrix}$$

5)

$$\begin{bmatrix} 0 & -4 & 3 \\ -4 & -4 & -4 \\ -5 & 4 & -3 \\ -2 & -5 & -4 \end{bmatrix} \begin{bmatrix} 1 & 3 & 3 & 1 \\ 4 & -1 & 3 & 4 \\ 2 & -4 & -4 & 2 \end{bmatrix}$$

Calcular

$$[8, -4, 5] \left[egin{array}{c} 3 \ 2 \ -1 \end{array}
ight]$$

$$[8, -4, 5] \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = 8(3) + (-4)(2) + 5(-1) = 24 - 8 - 5 = 11$$

$$[6, -1, 7, 5] \begin{bmatrix} 4 \\ -9 \\ -3 \\ 2 \end{bmatrix}$$

$$[6, -1, 7, 5] \begin{bmatrix} 4 \\ -9 \\ -3 \\ 2 \end{bmatrix} \qquad [6, -1, 7, 5] \begin{bmatrix} 4 \\ -9 \\ -3 \\ 2 \end{bmatrix} = 24 + 9 - 21 + 10 = 22$$

$$[3,8,-2,4]$$
 $\begin{bmatrix}5\\-1\\6\end{bmatrix}$

El producto no está definido cuando la matriz fila y la matriz columna tienen distinto número de elementos.

• Sea $(r \times s)$ una matriz $r \times s$. Hallar los tamaños de los productos matriciales definidos:

(a)
$$(2 \times 3)(3 \times 4)$$
, (c) $(1 \times 2)(3 \times 1)$, (e) $(4 \times 4)(3 \times 3)$

(c)
$$(1 \times 2)(3 \times 1)$$

(e)
$$(4 \times 4)(3 \times 3)$$

(b)
$$(4 \times 1)(1 \times 2)$$
,

(d)
$$(5 \times 2)(2 \times 3)$$
,

(b)
$$(4 \times 1)(1 \times 2)$$
, (d) $(5 \times 2)(2 \times 3)$, (f) $(2 \times 2)(2 \times 4)$

(a)
$$2 \times 4$$
,

(d)
$$5 \times 3$$
,

(f)
$$2 \times 4$$

(b)
$$4 \times 2$$
,

(c) y (d) no están definidos

$$A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$$

• Sean
$$A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 0 & -4 \\ 3 & -2 & 6 \end{bmatrix}$$

• Obtener AB y BA

$$AB = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & -4 \\ 3 & -2 & 6 \end{bmatrix} = \begin{bmatrix} 11 & -6 & 14 \\ 4 - 3 & 0 + 2 & -8 - 6 \end{bmatrix}$$

$$AB = \begin{bmatrix} 11 & -6 & 14 \\ 1 & 2 & -14 \end{bmatrix}$$

El producto BA no está definido

$$B = 2x3$$

$$A=2x2$$

Encontrar

(a)
$$\begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ -7 \end{bmatrix}$$
, (b) $\begin{bmatrix} 2 \\ -7 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix}$, (c) $\begin{bmatrix} 2, -7 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix}$

• a)

$$\begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ -7 \end{bmatrix} = \begin{bmatrix} 2 - 42 \\ -6 - 35 \end{bmatrix} = \begin{bmatrix} -40 \\ -41 \end{bmatrix}$$

b) No está definido

c)

$$[2,-7]$$
 $\begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix}$ = $[2+21, 12-35]$ = $[23,-23]$

• Encontrar la transpuesta de cada matriz

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 7 & 8 & -9 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}, \qquad C = [1, -3, 5, -7], \qquad D = \begin{bmatrix} 2 \\ -4 \\ 6 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 7 \\ -2 & 8 \\ 3 & -9 \end{bmatrix}$$
 $B^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ $C^{T} = \begin{bmatrix} 1 \\ -3 \\ 5 \\ -7 \end{bmatrix}$ $D^{T} = [2, -4, 6]$

• Encuentre la diagonal y traza de las siguientes matrices

(a)
$$A = \begin{bmatrix} 1 & 3 & 6 \\ 2 & -5 & 8 \\ 4 & -2 & 9 \end{bmatrix}$$
, (b) $B = \begin{bmatrix} 2 & 4 & 8 \\ 3 & -7 & 9 \\ -5 & 0 & 2 \end{bmatrix}$, (c) $C = \begin{bmatrix} 1 & 2 & -3 \\ 4 & -5 & 6 \end{bmatrix}$