Electrongun

1 Overview

- geometry is unchanged from Artem's version
- all computations use the full beamtube (1.5 m)

- ullet electrostatic potential using p=2 and nsub=8
- absolute value of the electric field using p=2 and nsub=8
- convergence studies for the electrostatic potential and the electric field
- ullet the reference uses p=3 and nsub=64
- \bullet the relative error is computed using the maximum field value

2 Tracking

- new implementation for field map computation: hand over $\Delta_{x,y,z}$ and compute h as the diagonal of the cuboid
- choose $N_{x,y,z}$ such that the desired domain is fully enclosed
- repeat convergence study by simultaneously decreasing Δ by 2^{-n}
- do this for full 3D fieldmap right away (only compute one quadrant and take care of the duplicate entries at the interfaces)
- emission is handled on my side, either uniformly or normally distributed particles
- both types depend on multiple parameters: total charge Q, number of particles N_{prt} , position of probe particles and also bounds for uniform or μ, σ for normal distribution

3 Optimization

- cost function uses outermost beam minimum, distance of beam minima and radial derivatives of minima
- extra constraint to force continuity at (0,0)
- start with straight cathode

 $\bullet\,$ only load the geometry once and manipulate control points (increase number of control points with each optimization cycle)

