

Setting up your ML application

Train/dev/test sets

Applied ML is a highly iterative process

layers

hidden units

learning rates

activation functions

Experiment

NLP, Vision, Speech, Structural dortal Ads Search Security Logistic Code

Train/dev/test sets

Mismatched train/test distribution

Corts

Training set: Dev/test sets: Cat pictures from? Cat pictures from users using your app webpages tran / der

tran / der

There is the second of the second in the second

Not having a test set might be okay. (Only dev set.)

Setting up your ML application

Bias/Variance

Bias and Variance

Bias and Variance

Train set error:

Dev set error

Heran : 10%

Cat classification

Andrew Ng

High bias and high variance

Setting up your ML application

Basic "recipe" for machine learning

Basic "recipe" for machine learning

Basic recipe for machine learning

Regularizing your neural network

Regularization

Logistic regression

$$\min_{w,b} J(w,b)$$

$$\lim_{w,b} J(w,b) = \lim_{n \to \infty} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n$$

Neural network

Neural network

$$J(\omega^{r0}, b^{r0}, ..., \omega^{r03}, b^{r03}) = \frac{1}{m} \sum_{i=1}^{m} f(y^{i}, y^{i}) + \frac{2m}{m} \sum_{i=1}^{m} ||\omega^{r03}||^{2}$$

How does regularization prevent overfitting?

How does regularization prevent overfitting?

Regularizing your neural network

Why regularization reduces overfitting

How does regularization prevent overfitting?

How does regularization prevent overfitting?

Regularizing your neural network

Dropout regularization

Dropout regularization

Implementing dropout ("Inverted dropout")

Illustre with layer
$$l=3$$
. teep-prob= $\frac{0.8}{2}$
 $\Rightarrow d3$ = np. random. rand (a3. shape [o], a3. shape [i]) < teep-prob

 $a3 = np$. multiply (a1, d3) # a3 * = d3.

 $\Rightarrow 2 = \frac{1}{2} = \frac{1}$

Making predictions at test time

/= keap-pols

Regularizing your neural network

Understanding dropout

Why does drop-out work?

Intuition: Can't rely on any one feature, so have to spread out weights. Shrink weights.

Regularizing your neural network

Other regularization methods

Data augmentation

Setting up your optimization problem

Normalizing inputs

Normalizing training sets

Why normalize inputs?

$$x^{3}$$
: $(--.2)$

Setting up your optimization problem

Vanishing/exploding gradients

Single neuron example

Setting up your optimization problem

Numerical approximation of gradients

Checking your derivative computation

Checking your derivative computation

Setting up your optimization problem

Gradient Checking

Gradient check for a neural network

Take $W^{[1]}$, $b^{[1]}$, ..., $W^{[L]}$, $b^{[L]}$ and reshape into a big vector θ . $\mathcal{J}(\omega^{(1)}, b^{(1)}, \dots, b^{(L)}, b^{(L)})^2 = \mathcal{J}(\theta)$

Take $dW^{[1]}$, $db^{[1]}$, ..., $dW^{[L]}$, $db^{[L]}$ and reshape into a big vector $d\theta$.

Is do the gradet of J(0)?

Gradient checking (Grad check)

for each
$$\bar{c}$$
:

 $\Rightarrow \underline{Mogpar}[\bar{c}] = \underline{J(0_{1},0_{2},...,0_{1}+\epsilon_{1},...)} - \underline{J(0_{1},0_{2},...,0_{1}-\epsilon_{1},...)}$
 $\Rightarrow \underline{Mogpar}[\bar{c}] = \underline{JJ}$
 $& \underline{Mocil} = \underline{JJ}$
 $& \underline{JJJ}$
 $& \underline{JJJJ}$
 $& \underline{JJJJ}$

Setting up your optimization problem

Gradient Checking implementation notes

Gradient checking implementation notes

- Don't use in training — only to debug

- If algorithm fails grad check, look at components to try to identify bug.

- Remember regularization.

- Doesn't work with dropout.

- Run at random initialization; perhaps again after some training.

Mini-batch gradient descent

Batch vs. mini-batch gradient descent X { 4.3 \ 243.

Vectorization allows you to efficiently compute on m examples.

Andrew Ng

Mini-batch gradient descent stop of grabit dect veg XIII YIts. (as ifmel soo) Formal peop on X Sts. Arg = Prob on (Sers) } lestoisel implementation (1200 examples) A TW = 9 TW (2 TW) Compute cost $J^{\{\ell\}} = \frac{1}{1000} \stackrel{\text{def}}{=} J(y^{(j)}, y^{(j)}) + \frac{\lambda}{2.1000} \stackrel{\text{E}}{=} ||W^{(1)}||_F^2$. Bookprop to compart grobates cort JEE2 (usy (XEE2)) W:= W - ddw(2), b(1) = b(1) - ddb(2) "I epoch" poss through training set.

deeplearning.ai

Optimization Algorithms

Understanding mini-batch gradient descent

Training with mini batch gradient descent

Batch gradient descent

Mini-batch gradient descent

Choosing your mini-batch size

> If mini-both Size = m: Both godat desch. (XSIS, YSIS) = (X, Y).

> If mini-both Size = 1: Stochaste graph desch. Every excuple is it our (XINS, YSIS) = (KII), YII) ... (KE, YII) mini-both.

(n practice: Someth in-bother I all m

Stochostic

gradent

legant

Lose spealup

fon varioritation

In-bother (minthotal size not to by (small) Fustest learning. · Vectoraution. (N / 900)

· Make proportion.

(Noterous entire true set.

Bostila

gradient desemb

(min; booth size = m)

Too long per iteration

Choosing your mini-batch size

If small tray set: Use both graher desient.
(m < 2000) Typical minz-borth sizes! -> 64 , 128, 256, 512 2^{6} 2^{6} 2^{7} Make sure ministral fit in CPU/GPU memory. X Ex Y Ex 3

Exponentially weighted averages

Temperature in London

```
\theta_{1} = 40^{\circ}F + C \leftarrow
\theta_{2} = 49^{\circ}F 
\theta_{3} = 45^{\circ}F 
\vdots
\theta_{180} = 60^{\circ}F 
\theta_{181} = 56^{\circ}F 
\vdots
```


Exponentially weighted averages

Understanding exponentially weighted averages

Exponentially weighted averages

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

Exponentially weighted averages

$$v_t = \beta v_{t-1} + (1-\beta)\theta_t$$

$$v_{100} = 0.9v_{99} + 0.1\theta_{100}$$

$$v_{99} = 0.9v_{98} + 0.1\theta_{99}$$

$$v_{98} = 0.9v_{97} + 0.1\theta_{98}$$
...

$$\frac{1}{2} = \frac{1}{6} = \frac{1}$$

Implementing exponentially weighted averages

$$v_0 = 0$$

 $v_1 = \beta v_0 + (1 - \beta) \theta_1$
 $v_2 = \beta v_1 + (1 - \beta) \theta_2$
 $v_3 = \beta v_2 + (1 - \beta) \theta_3$
...

$$V_0 := 0$$
 $V_0 := \beta V + (1-\beta) O_1$
 $V_0 := \beta V + (1-\beta) O_2$
 $V_0 := \beta V + (1-\beta) O_2$

>
$$V_0 = 0$$

Repeat ξ

Cut next 0_{\pm}
 $V_0 := \beta V_0 + (1-\beta) 0_{\pm} \angle 0$

Bias correction in exponentially weighted average

Bias correction

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

$$v_0 = 0$$

$$v_1 = 0.98 \quad v_0 + 0.020$$

$$v_2 = 0.98 \quad v_1 + 0.020$$

$$v_3 = 0.98 \quad v_1 + 0.020$$

$$v_4 = 0.020$$

$$v_6 = 0.01960$$

$$v_6 = 0.020$$

$$\frac{1-\beta^{t}}{t=2:} \quad 1-\beta^{t} = 1-(0.98)^{2} = 0.0396$$

$$\frac{1-\beta^{t}}{0.0396} = \frac{0.01960. + 0.020}{0.0396}$$

Andrew Ng

Gradient descent with momentum

Implementation details

On iteration t:

Compute dW, db on the current mini-batch

$$v_{db} = \beta v_{db} + (1/\beta)db$$

$$W = W - \alpha v_{dW}, \ b = \underline{b} - \alpha v_{db}$$

Hyperparameters:
$$\alpha, \beta$$

$$\beta = 0.9$$
Overloge on last 100 graduits

RMSprop

Adam optimization algorithm

Adam optimization algorithm

Vac = 0, Saw = 0. Val = 0, Sal = 0

On iterate t:

Compute also do using current mini-borted

Value =
$$\beta_1$$
 Value + (1- β_2) db , Val = β_1 Value + (1- β_2) db \in "monest" β_1

Saw = β_2 Saw + (1- β_2) db \in "RMSprp" β_2

what = np.array([.9, 0.2, 0.1, .4, .9])

Value = Value / (1- β_2), Value = Value / (1- β_1)

Saw = Saw / (1- β_2), Saw = Sab / (1- β_2)

Saw = Saw / (1- β_2), Saw = Sab / (1- β_2)

When the same that the same

Hyperparameters choice:

$$\rightarrow$$
 d: needs to be tune
 \rightarrow β_i : 0.9 \rightarrow (dw)
 \rightarrow β_2 : 0.999 \rightarrow (dw²)
 \rightarrow Σ : 10-8

Adam: Adaptiv moment estimation

Adam Coates

Learning rate decay

Learning rate decay

Learning rate decay

Epoch	2
	0.1
2	0.67
3	6.5
4	D. 4

Other learning rate decay methods

The problem of local optima

Local optima in neural networks

Problem of plateaus

- Unlikely to get stuck in a bad local optima
- Plateaus can make learning slow

Hyperparameter tuning

Tuning process

Hyperparameters

Try random values: Don't use a grid

Coarse to fine

Hyperparameter tuning

Using an appropriate scale to pick hyperparameters

Picking hyperparameters at random

Appropriate scale for hyperparameters

$$\frac{10^{2} - 4}{10^{2} - 4} = 10^{2}$$

Andrew Ng

Hyperparameters for exponentially weighted averages

$$\beta = 0.9 \dots 0.999$$

Hyperparameters tuning

Hyperparameters tuning in practice: Pandas vs. Caviar

Re-test hyperparameters occasionally

- NLP, Vision, Speech, Ads, logistics,

- Intuitions do get stale. Re-evaluate occasionally.

Babysitting one model

Panda <

Training many models in parallel

Caviar <

Andrew Ng

Batch Normalization

Normalizing activations in a network

Normalizing inputs to speed up learning

Implementing Batch Norm Crisa some intermediate values in NN μ: m ≥ 2⁽ⁱ⁾

Batch Normalization

Fitting Batch Norm into a neural network

Adding Batch Norm to a network

Working with mini-batches

Implementing gradient descent

for t=1 num Mini Bortches Compute Cornal Pap on X 8t3. It eat hidden lay, use BN to report 2 with 2 Tell. Update partes Wes: = Wi-adwind } = Bin adwind Bin adwind } = Bin adwind Bin Works w/ momente, RMSpap, Adam.

Batch Normalization

Why does Batch Norm work?

Learning on shifting input distribution

Why this is a problem with neural networks?

Batch Norm as regularization

- Each mini-batch is scaled by the mean/variance computed on just that mini-batch.
- This adds some noise to the values $z^{[l]}$ within that minibatch. So similar to dropout, it adds some noise to each hidden layer's activations.
- This has a slight regularization effect.

Batch Normalization

Batch Norm at test time

Batch Norm at test time

$$\mu = \frac{1}{m} \sum_{i} z^{(i)}$$

$$\sigma^{2} = \frac{1}{m} \sum_{i} (z^{(i)} - \mu)^{2}$$

$$Z_{\text{norm}}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^{2} + \varepsilon}}$$

$$\tilde{z}^{(i)} = \gamma z_{\text{norm}}^{(i)} + \beta$$

Multi-class classification

Softmax regression

Recognizing cats, dogs, and baby chicks

Softmax layer

Softmax examples

Multi-class classification

Trying a softmax classifier

Understanding softmax

Loss function

Summary of softmax classifier

Programming Frameworks

Deep Learning frameworks

Deep learning frameworks

- Caffe/Caffe2
- CNTK
- DL4J
- Keras
- Lasagne
- mxnet
- PaddlePaddle
- TensorFlow
- Theano
- Torch

Choosing deep learning frameworks

- Ease of programming (development and deployment)
- Running speed
- Truly open (open source with good governance)

Programming Frameworks

TensorFlow

Motivating problem


```
Code example
    import numpy as np
    import tensorflow as tf
    coefficients = np.array([[1], [-20], [25]])
    w = tf.Variable([0],dtype=tf.float32)
    x = tf.placeholder(tf.float32, [3,1])
    cost = x[0][0]*w**2 + x[1][0]*w + x[2][0]
    train = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
    init = tf.global_variables_initializer()
                                                with tf.Session() as session:
    session = tf.Session()
    session.run(init)
                                                  session.run(init)
                                                  print(session.run(w))
    print(session.run(w))
    for i in range(1000):
      session.run(train, feed_dict={x:coefficients})
```

print(session.run(w))

Andrew Ng