7 FEB EDA

February 7, 2025

1 EDA Lab

- 1.1 7 February
- 2 Tufan Kundu
- 2.1 Reg No. 24MDT0184
- 2.2 Titanic dataset
- 2.3 Loading the dataset

[2]: titanic

```
[2]:
           PassengerId
                           Survived
                                      Pclass
      0
                        1
                                             3
                        2
      1
                                    1
                                             1
                        3
      2
                                    1
                                             3
                        4
      3
                                    1
                                             1
      4
                        5
                                    0
                                             3
                                             2
                                    0
      886
                     887
      887
                     888
                                    1
                                             1
      888
                     889
                                    0
                                             3
      889
                     890
                                    1
                                             1
      890
                     891
                                    0
                                             3
```

```
Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
```

```
2
                                  Heikkinen, Miss. Laina
                                                            female
                                                                    26.0
                                                                               0
3
          Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                                    35.0
                                                            female
                                                                               1
4
                                Allen, Mr. William Henry
                                                              male
                                                                    35.0
                                                                               0
. .
886
                                   Montvila, Rev. Juozas
                                                              male
                                                                    27.0
                                                                               0
887
                           Graham, Miss. Margaret Edith
                                                            female
                                                                    19.0
                                                                               0
               Johnston, Miss. Catherine Helen "Carrie"
888
                                                            female
                                                                     {\tt NaN}
                                                                               1
889
                                   Behr, Mr. Karl Howell
                                                              male
                                                                    26.0
                                                                               0
890
                                     Dooley, Mr. Patrick
                                                                    32.0
                                                                               0
                                                              male
```

	Parch	Ticket	Fare	${\tt Cabin}$	Embarked
0	0	A/5 21171	7.2500	NaN	S
1	0	PC 17599	71.2833	C85	C
2	0	STON/02. 3101282	7.9250	NaN	S
3	0	113803	53.1000	C123	S
4	0	373450	8.0500	NaN	S
	•••	•••	•••	•••	
886	0	211536	13.0000	NaN	S
887	0	112053	30.0000	B42	S
888	2	W./C. 6607	23.4500	NaN	S
889	0	111369	30.0000	C148	C
890	0	370376	7.7500	NaN	Q

[891 rows x 12 columns]

- [3]: titanic.shape
- [3]: (891, 12)

2.4 Checking for missing values

[4]: titanic.isnull().sum().sort_values(ascending=False)

[4]:	Cabin	687
	Age	177
	Embarked	2
	PassengerId	0
	Survived	0
	Pclass	0
	Name	0
	Sex	0
	SibSp	0
	Parch	0
	Ticket	0
	Fare	0
	dtype: int64	

```
[5]: ## Percentage of women survived

women = titanic.loc[titanic.Sex == 'female']['Survived']
rate_women = sum(women)/len(women)
rate_women

## percentage of men survived

men = titanic.loc[titanic.Sex == 'male']['Survived']
rate_men = sum(men)/len(men)

print(f"{round(rate_women,3)*100}% women survived")
print(f"{round(rate_men,3)*100}% men survived")
```

74.2% women survived 18.9% men survived

Inference: - women survival rate was much higher than men

Female survival rate

Male survival rate


```
[8]: titanic['Survived'] = titanic['Survived'].map({0:"not_survived",1:"survived"})
    plt.figure(figsize = (10,5))
    plt.subplot(1,2,1)
    titanic['Sex'].value_counts().plot.bar()
    plt.title("Number of passenger by sex")
    plt.ylabel("Population")
    plt.subplot(1,2,2)
    sns.countplot(x ="Sex",data = titanic, hue="Survived",palette='viridis')
    plt.title("Sex: Survived Vs dead")
    plt.show()
```



```
[9]: plt.figure(figsize = (10,7))
  plt.subplot(1,2,1)
  titanic['Pclass'].value_counts().plot.bar()
  plt.title("Number of passenger by Pclass")
  plt.ylabel("Population")
  plt.subplot(1,2,2)
  sns.countplot(x = "Pclass", data = titanic, hue="Survived", palette='viridis')
  plt.title("Pclass: Survived Vs dead")
  plt.show()
```


Inference: - Most people were from pclass 3 - Survival rate was the lowest in Pclass 3

```
[10]: titanic["Embarked"] = titanic["Embarked"].fillna("S")
titanic
```

	titanic									
[10]:		PassengerId	Survived	Pclass	\					
	0	1	not_survived	3						
	1	2	survived	1						
	2	3	survived	3						
	3	4	survived	1						
	4	5	not_survived	3						
		•••	•••	•••						
	886	887	not_survived	2						
	887	888	survived	1						
	888	889	${\tt not_survived}$	3						
	889	890	survived	1						
	890	891	${\tt not_survived}$	3						
						Name	Sex	Age	SibSp	\
	0			Braund,	Mr. Owen H	Harris	male	22.0	1	
	1	Cumings, Mrs	. John Bradley	(Floren	ce Briggs	Th fen	nale 38	3.0	1	

2

Heikkinen, Miss. Laina female 26.0

0

```
3
          Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                          female
                                                                  35.0
                                                                             1
4
                               Allen, Mr. William Henry
                                                                  35.0
                                                                             0
                                                            male
. .
                                                                    •••
                                  Montvila, Rev. Juozas
                                                                             0
886
                                                            male
                                                                  27.0
887
                           Graham, Miss. Margaret Edith
                                                          female
                                                                  19.0
                                                                             0
888
              Johnston, Miss. Catherine Helen "Carrie"
                                                          female
                                                                   NaN
                                                                             1
889
                                  Behr, Mr. Karl Howell
                                                            male 26.0
                                                                             0
890
                                    Dooley, Mr. Patrick
                                                                             0
                                                            male
                                                                  32.0
     Parch
                       Ticket
                                  Fare Cabin Embarked
0
         0
                   A/5 21171
                                7.2500
                                         NaN
                    PC 17599 71.2833
1
         0
                                         C85
                                                     С
2
            STON/02. 3101282
                                7.9250
                                         NaN
                                                     S
3
         0
                       113803 53.1000 C123
                                                     S
4
         0
                       373450
                                8.0500
                                                     S
                                         NaN
. .
                              13.0000
                                                     S
886
         0
                      211536
                                         NaN
887
         0
                               30.0000
                                         B42
                                                     S
                       112053
                                                     S
         2
                  W./C. 6607
                                         NaN
888
                               23.4500
                                                     С
889
         0
                       111369
                               30.0000 C148
890
                       370376
                                7.7500
                                                     Q
                                         NaN
```

[891 rows x 12 columns]

```
[11]: plt.figure(figsize = (10,7))
   plt.subplot(1,2,1)
   titanic['Embarked'].value_counts().plot.bar()
   plt.title("Number of passenger by Embarked")
   plt.ylabel("Number")
   plt.subplot(1,2,2)
   sns.countplot(x = "Embarked",data = titanic, hue="Survived",palette='viridis')
   plt.title("Embarked: Survived Vs dead")
   plt.show()
```


[12]: sns.histplot(titanic['Age'].dropna(), kde = True)
plt.show()


```
[13]: sns.histplot(titanic['Fare'], kde=True)
plt.show()
```


2.4.1 Multivariate analysis

```
[14]: sns.pairplot(titanic,height=2,vars = [ 'Fare','Age','Pclass'], hue="Survived")
plt.show()
```


2.5 Correlation table with heatmap

```
[15]: titanic['Embarked'] = titanic['Embarked'].map({"S":1, "C":2,"Q":2,"NaN":0})
    Tcorrelation = titanic.corr(method='pearson', numeric_only=True)
    Tcorrelation
```

[15]:		PassengerId	Pclass	Age	SibSp	Parch	Fare	\
	PassengerId	1.000000	-0.035144	0.036847	-0.057527	-0.001652	0.012658	
	Pclass	-0.035144	1.000000	-0.369226	0.083081	0.018443	-0.549500	
	Age	0.036847	-0.369226	1.000000	-0.308247	-0.189119	0.096067	
	SibSp	-0.057527	0.083081	-0.308247	1.000000	0.414838	0.159651	
	Parch	-0.001652	0.018443	-0.189119	0.414838	1.000000	0.216225	
	Fare	0.012658	-0.549500	0.096067	0.159651	0.216225	1.000000	
	Embarked	-0.022204	-0.074053	0.023233	-0.068734	-0.060814	0.162184	

Embarked
PassengerId -0.022204
Pclass -0.074053
Age 0.023233

SibSp -0.068734 Parch -0.060814 Fare 0.162184 Embarked 1.000000

[16]: sns.heatmap(Tcorrelation,xticklabels=Tcorrelation.columns, yticklabels=Tcorrelation.columns)

[16]: <Axes: >

3 Time series analysis

```
[17]: import os
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
zero_mean_series = np.random.normal(loc = 0.0, scale = 1., size = 50)
     zero_mean_series
[17]: array([ 0.31725832, -0.39958418, 0.41585006, -0.23364894,
                                                                0.48110827,
             0.21572602, -1.08674158, 2.68668795, 2.40092511, 0.63678105,
            -1.39538987, -0.64133054, 1.13271997, 1.280581 , 0.1842885 ,
            -0.7927226 , 0.74674999 , -0.24743869 , 2.24069045 , -0.4399123 ,
             0.12639721, 0.60011777, -1.49506548, 0.66911955, 0.96791617,
            -0.25789412, -0.7213727, 0.26417692, 0.59009659, 0.03823919,
             0.74082901, 0.58670692, -0.17957267, 0.42757738, 0.14048686,
             0.10622285, 1.27041735, 0.98185353, 0.31460675, -0.16486628,
            -0.14424799, 0.58920466, -0.22556404, -0.70532822, 0.0071992,
             0.25717507, -0.31991982, -0.24006193, -0.77315687, -0.60716803])
[18]: plt.figure(figsize=(16, 8))
     sns.lineplot(data=zero mean series)
     plt.title('Zero mean model')
     plt.xlabel('Time index')
     plt.show()
```



```
[19]: random_walk = np.cumsum(zero_mean_series)

[20]: plt.figure(figsize=(16, 8))
    sns.lineplot(data=random_walk)
    plt.title('Random Walk')
    plt.xlabel('Time index')
    plt.show()
```


3.1 loading a dataset

[21]: df = pd.read_csv(r"D:\study material\VIT_Data_Science\Winter_Sem\Exploratory

⇔Data Analysis Lab\7_Feb\opsd_germany_daily.csv")

df

[21]:		Date	Consumption	Wind	Solar	Wind+Solar
	0	2006-01-01	1069.18400	NaN	NaN	NaN
	1	2006-01-02	1380.52100	NaN	NaN	NaN
	2	2006-01-03	1442.53300	NaN	NaN	NaN
	3	2006-01-04	1457.21700	NaN	NaN	NaN
	4	2006-01-05	1477.13100	NaN	NaN	NaN
	•••	•••		•••		
	4378	2017-12-27	1263.94091	394.507	16.530	411.037
	4379	2017-12-28	1299.86398	506.424	14.162	520.586
	4380	2017-12-29	1295.08753	584.277	29.854	614.131
	4381	2017-12-30	1215.44897	721.247	7.467	728.714
	4382	2017-12-31	1107.11488	721.176	19.980	741.156

[4383 rows x 5 columns]

[22]: df.shape

[22]: (4383, 5)

[23]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4383 entries, 0 to 4382
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Date	4383 non-null	object
1	Consumption	4383 non-null	float64
2	Wind	2920 non-null	float64
3	Solar	2188 non-null	float64
4	Wind+Solar	2187 non-null	float64

dtypes: float64(4), object(1)
memory usage: 171.3+ KB

```
[24]: #convert object to datetime format
df['Date'] = pd.to_datetime(df['Date'])
df
```

F7		_				
[24]:	Date		${\tt Consumption}$	Wind	Solar	Wind+Solar
	0	2006-01-01	1069.18400	NaN	NaN	NaN
	1	2006-01-02	1380.52100	NaN	NaN	NaN
	2	2006-01-03	1442.53300	NaN	NaN	NaN
	3	2006-01-04	1457.21700	NaN	NaN	NaN
	4	2006-01-05	1477.13100	NaN	NaN	NaN
	•••	•••		•••	•••	
	4378	2017-12-27	1263.94091	394.507	16.530	411.037
	4379	2017-12-28	1299.86398	506.424	14.162	520.586
	4380	2017-12-29	1295.08753	584.277	29.854	614.131
	4381	2017-12-30	1215.44897	721.247	7.467	728.714
	4382	2017-12-31	1107.11488	721.176	19.980	741.156

[4383 rows x 5 columns]

[25]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4383 entries, 0 to 4382
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype					
0	Date	4383 non-null	datetime64[ns]					
1	Consumption	4383 non-null	float64					
2	Wind	2920 non-null	float64					
3	Solar	2188 non-null	float64					
4	Wind+Solar	2187 non-null	float64					
dt.vn	dtypes: datetime64[ns](1) float64(4)							

dtypes: datetime64[ns](1), float64(4)

memory usage: 171.3 KB

Now that the Date column is in correct datatype, let's set it as the DataFrame's index because in time series analysis the index column is always datetime column.

```
[26]: df = df.set_index('Date')
[27]: df.tail()
[27]:
                  Consumption
                                  Wind
                                          Solar Wind+Solar
      Date
      2017-12-27
                   1263.94091 394.507 16.530
                                                    411.037
                   1299.86398 506.424 14.162
      2017-12-28
                                                    520.586
                   1295.08753
                                         29.854
      2017-12-29
                               584.277
                                                    614.131
      2017-12-30
                   1215.44897
                               721.247
                                          7.467
                                                    728.714
      2017-12-31
                   1107.11488 721.176 19.980
                                                    741.156
[28]: df.index
[28]: DatetimeIndex(['2006-01-01', '2006-01-02', '2006-01-03', '2006-01-04',
                      '2006-01-05', '2006-01-06', '2006-01-07', '2006-01-08',
                      '2006-01-09', '2006-01-10',
                     '2017-12-22', '2017-12-23', '2017-12-24', '2017-12-25',
                     '2017-12-26', '2017-12-27', '2017-12-28', '2017-12-29',
                     '2017-12-30', '2017-12-31'],
                    dtype='datetime64[ns]', name='Date', length=4383, freq=None)
[29]: ## Adding columns with year, month and weekday name
      df['Year'] = df.index.year
      df['Month'] = df.index.month
      df['Weekday Name'] = df.index.day_name()
[30]: ## displaying a random sample of 5 rows
      df.sample(5,random state=42)
[30]:
                  Consumption
                                                 Wind+Solar Year Month Weekday Name
                                  Wind
                                          Solar
      Date
      2007-11-02
                                                                                Friday
                     1408.209
                                   NaN
                                            NaN
                                                        {\tt NaN}
                                                             2007
                                                                       11
      2012-08-14
                     1269.779
                               64.136
                                        153.658
                                                    217.794
                                                             2012
                                                                        8
                                                                               Tuesday
      2007-08-20
                     1373.403
                                                             2007
                                                                                Monday
                                  NaN
                                            NaN
                                                        {\tt NaN}
                                                                        8
      2013-03-14
                     1420.149
                               28.595
                                         62.718
                                                     91.313
                                                             2013
                                                                        3
                                                                              Thursday
      2009-10-27
                     1405.611
                                  NaN
                                            NaN
                                                        NaN 2009
                                                                       10
                                                                               Tuesday
[31]: df.loc['2015-10-02']
[31]: Consumption
                      1391.05
      Wind
                       81.229
      Solar
                      160.641
      Wind+Solar
                       241.87
      Year
                         2015
      Month
                           10
```

Weekday Name Friday

Name: 2015-10-02 00:00:00, dtype: object

```
[32]: df.loc['2017-01-01':'2017-12-30']
```

[32]:		Consumption	Wind	Solar	Wind+Solar	Year	Month	Weekday Name
	Date							
	2017-01-01	1130.41300	307.125	35.291	342.416	2017	1	Sunday
	2017-01-02	1441.05200	295.099	12.479	307.578	2017	1	Monday
	2017-01-03	1529.99000	666.173	9.351	675.524	2017	1	Tuesday
	2017-01-04	1553.08300	686.578	12.814	699.392	2017	1	Wednesday
	2017-01-05	1547.23800	261.758	20.797	282.555	2017	1	Thursday
	•••	•••					•••	
	2017-12-26	1130.11683	717.453	30.923	748.376	2017	12	Tuesday
	2017-12-27	1263.94091	394.507	16.530	411.037	2017	12	Wednesday
	2017-12-28	1299.86398	506.424	14.162	520.586	2017	12	Thursday
	2017-12-29	1295.08753	584.277	29.854	614.131	2017	12	Friday
	2017-12-30	1215.44897	721.247	7.467	728.714	2017	12	Saturday

[364 rows x 7 columns]

```
[33]: # Visualization for Time series analysis
sns.set_theme(rc={'figure.figsize':(16, 4)})
plt.rcParams['figure.dpi'] = 150
df['Consumption'].plot(linewidth = 0.4)
plt.show()
```



```
[34]: cols_to_plot = ['Consumption', 'Solar', 'Wind']

axes = df[cols_to_plot].plot(marker='.', alpha=0.5,

linestyle='None',figsize=(14, 7), subplots=True,grid=True)

for ax in axes:

ax.set_ylabel('Daily Totals (GWh)')
```



```
[35]: df.loc['2016', 'Consumption'].plot()
plt.ylabel('Daily Consumption (GWh)')
plt.show()
```



```
[36]: df.loc['2016-12-23':'2016-12-30', 'Consumption'].plot(marker='o', linestyle='-') plt.ylabel('Daily Consumption (GWh)') plt.show()
```



```
[37]: df.loc['2016-12','Consumption'].plot(marker = 'o', linestyle = '-')
plt.ylabel("Daily consumption (Gwh)")
plt.show()
```



```
[38]: # import dates module from matplotlib
import matplotlib.dates as mdates

# plot graph
fig, ax = plt.subplots()

ax.plot(df.loc['2017-01':'2017-02', 'Consumption'], marker='o', linestyle='--')
ax.set_ylabel('Daily Consumption (GWh)')
ax.set_title('Jan-Feb 2017 Electricity Consumption')

# to set x-axis major ticks to weekly interval, on Mondays
ax.xaxis.set_major_locator(mdates.WeekdayLocator(byweekday=mdates.MONDAY))
# to set format for x-tick labels as 3-letter month name and day number
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %d'))
```



```
[39]: fig, axes = plt.subplots(3, 1, figsize=(8, 7), sharex=True)
for name, ax in zip(['Consumption', 'Solar', 'Wind'], axes):
    sns.boxplot(data=df, x='Month', y=name, ax=ax, palette='viridis')
    ax.set_ylabel('GWh')
    ax.set_title(name)
    if ax != axes[-1]:
        ax.set_xlabel('')
```

C:\Users\TUFAN\AppData\Local\Temp\ipykernel_12948\2142063830.py:3:
FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(data=df, x='Month', y=name, ax=ax, palette='viridis')
C:\Users\TUFAN\AppData\Local\Temp\ipykernel_12948\2142063830.py:3:
FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(data=df, x='Month', y=name, ax=ax, palette='viridis')
C:\Users\TUFAN\AppData\Local\Temp\ipykernel_12948\2142063830.py:3:
FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(data=df, x='Month', y=name, ax=ax, palette='viridis')


```
[41]: columns = ['Consumption', 'Wind', 'Solar', 'Wind+Solar']
      power_weekly_mean = df[columns].resample('W').mean()
      power_weekly_mean.head(10)
[41]:
                  Consumption
                               Wind Solar
                                            Wind+Solar
      Date
      2006-01-01 1069.184000
                                NaN
                                       NaN
                                                   NaN
      2006-01-08 1381.300143
                                NaN
                                       NaN
                                                   NaN
      2006-01-15 1486.730286
                                NaN
                                       NaN
                                                   NaN
      2006-01-22 1490.031143
                                NaN
                                       NaN
                                                   NaN
      2006-01-29 1514.176857
                                NaN
                                       NaN
                                                   NaN
      2006-02-05 1501.403286
                                       NaN
                                NaN
                                                   NaN
      2006-02-12 1498.217143
                                NaN
                                       NaN
                                                   NaN
      2006-02-19 1446.507429
                                NaN
                                       NaN
                                                   NaN
      2006-02-26 1447.651429
                                NaN
                                       NaN
                                                   NaN
      2006-03-05 1439.727857
                                NaN
                                       NaN
                                                   NaN
[42]: start, end = '2016-01', '2016-06'
[43]: fig, ax = plt.subplots()
      ax.plot(df.loc[start:end, 'Solar'],
      marker='.', linestyle='-', linewidth=0.5, label='Daily')
      ax.plot(power_weekly_mean.loc[start:end, 'Solar'],
      marker='o', markersize=8, linestyle='-', label='Weekly Mean Resample')
      ax.set_ylabel('Solar Production in (GWh)')
```


ax.legend()
plt.show()

4 Time Series analysis for Bitcoin dataset

```
[114]: df = pd.read_csv(r"D:\study material\VIT_Data_Science\Winter_Sem\Exploratory_
       ⇔Data Analysis Lab\7_Feb\btc-eth-prices.csv")
      df
[114]:
            Timestamp
                           Bitcoin
                                     Ether
           2017-04-02 1099.169125
                                     48.55
      1
           2017-04-03 1141.813000
                                     44.13
           2017-04-04 1141.600363
                                     44.43
      2
      3
           2017-04-05 1133.079314
                                     44.90
      4
           2017-04-06 1196.307937
                                     43.23
      360 2018-03-28 7960.380000 445.93
      361 2018-03-29 7172.280000
                                    383.90
      362 2018-03-30 6882.531667
                                    393.82
      363 2018-03-31 6935.480000
                                   394.07
      364 2018-04-01 6794.105000 378.85
      [365 rows x 3 columns]
[115]: df.shape
[115]: (365, 3)
[116]: df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 365 entries, 0 to 364
      Data columns (total 3 columns):
           Column
                     Non-Null Count Dtype
                      _____
           Timestamp 365 non-null
                                     object
           Bitcoin
                                     float64
                      365 non-null
           Ether
                      362 non-null
                                     float64
      dtypes: float64(2), object(1)
      memory usage: 8.7+ KB
[117]: # Convert Date column to datetime format
      df['Timestamp'] = pd.to_datetime(df['Timestamp'])
       # Set Date as index
      df.set_index('Timestamp', inplace=True)
[118]: # Extract year, month, and weekday name
      df['Year'] = df.index.year
      df['Month'] = df.index.month
      df['Weekday Name'] = df.index.day_name()
```

```
[119]: df.loc["2017-04-08"]
[119]: Bitcoin
                       1181.149838
      Ether
                             44.37
       Year
                              2017
      Month
                                 4
       Weekday Name
                          Saturday
       Name: 2017-04-08 00:00:00, dtype: object
[120]: df.loc["2016-04-05":"2019-03-05"]
[120]:
                                 Ether Year Month Weekday Name
                       Bitcoin
       Timestamp
       2017-04-02 1099.169125
                                 48.55
                                        2017
                                                  4
                                                          Sunday
       2017-04-03 1141.813000
                                 44.13
                                        2017
                                                  4
                                                          Monday
       2017-04-04 1141.600363
                                 44.43
                                                  4
                                                         Tuesday
                                        2017
       2017-04-05 1133.079314
                                 44.90 2017
                                                  4
                                                       Wednesday
       2017-04-06 1196.307937
                                 43.23 2017
                                                  4
                                                        Thursday
       2018-03-28 7960.380000 445.93 2018
                                                       Wednesday
                                                  3
       2018-03-29 7172.280000 383.90 2018
                                                  3
                                                        Thursday
       2018-03-30 6882.531667
                                393.82 2018
                                                  3
                                                          Friday
       2018-03-31 6935.480000
                                394.07
                                        2018
                                                  3
                                                        Saturday
       2018-04-01 6794.105000
                               378.85 2018
                                                          Sunday
       [365 rows x 5 columns]
[121]: # Plot Bitcoin and Ethereum prices over time
       plt.figure(figsize=(16, 6))
       plt.plot(df.index, df['Bitcoin'], label="Bitcoin Price", linewidth=0.7)
       plt.plot(df.index, df['Ether'], label="Ethereum Price", linewidth=0.7)
       plt.xlabel("Date")
       plt.ylabel("Price (USD)")
       plt.title("Bitcoin & Ethereum Price Trends")
       plt.legend()
       plt.show()
```



```
df['Ether'] = df['Ether'].rolling(window=30).mean()

plt.figure(figsize=(14, 6))
plt.plot(df.index, df['Bitcoin'], alpha=0.5, label='Bitcoin Price')
plt.plot(df.index, df['Bitcoin'], label='Bitcoin 30-day MA', linestyle='--')
plt.plot(df.index, df['Ether'], alpha=0.5, label='ETH Price')
plt.plot(df.index, df['Ether'], label='Etherium 30-day MA', linestyle='--')
plt.legend()
plt.title('Bitcoin & Etherium Prices with 30-Day Moving Average')
plt.show()
```



```
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
sns.histplot(df['Bitcoin'], bins=50, kde=True, ax=ax[0], color='blue')
sns.histplot(df['Ether'], bins=50, kde=True, ax=ax[1], color='orange')
ax[0].set_title('Bitcoin Price Distribution')
ax[1].set_title('Etherium Price Distribution')
plt.show()
```

