Integral s parametrom

Naj bo $D=[a,\bar{b}]\times [c,d]$ in $f:D\to \mathbb{R}$ dana funkcija.

$$F(y) = \int_{a}^{b} f(x, y) dx$$

Zveznost

Če je f zvezna, je F(y) zvezna na [c,d].

Odvajanje integrala

Naj bosta $u,v:[c,d]\to [a,b]$ in $u,v\in\mathcal{C}^1([c,d]),$ $f\in\mathcal{C}([a,b]\times[c,d]),$ $f_y\in\mathcal{C}([a,b]\times[c,d])$ Definirajmo:

$$F(y) = \int_{u(y)}^{v(y)} f(x, y) dx$$

Potem je F odvedljiva in

$$F^{\prime}(y) = \int_{u(y)}^{v(y)} f_{y}(x,y) dx + f\left(v(y),y\right) v^{\prime}(y) - f\left(u(y),y\right) u^{\prime}(y)$$

Dvokratno integriranje funkcije

Če je fzvezna funkcija $f\in\mathcal{C}([a,b]\times[c,d]),$ lahko zamenjamo vrstni red integracije:

$$\int_a^b \int_c^d f(x,y) dy \ dx = \int_c^d \int_a^b f(x,y) dx \ dy$$

Integral z limito

Če je f zvezna, $f \in \mathcal{C}([a,b] \times [Y-\varepsilon,Y+\varepsilon])$, velja:

$$\lim_{y \to Y} \int_a^b f(x,y) dx = \int_a^b \lim_{y \to Y} f(x,y) dx$$

Integrali na neomejenih območjih

Naj bo $f\in\mathcal{C}([a,\infty]\times[c,d])$:

$$F(y) := \int_a^\infty f(x,y) dx = \lim_{b \to \infty} \int_a^b f(x,y) dx$$

Enakomerna konvergenca funkcij

Funkcijsko zaporedje F_b enakomerno konvergira protiF,če za $\forall \varepsilon>0:\exists B:b>B:$

$$|F_b(y) - F(y)| < \varepsilon; \quad \forall y \in [c, d]$$

Integral s parametrom je enakomerno konvergenten na [c,d],če za $\forall \varepsilon>0:\exists B:\forall b>B:$

$$\left| \int_{b}^{\infty} f(x, y) dx \right| < \varepsilon$$

 $\begin{array}{l} Posledica: \ \check{\operatorname{Ce}} \ | \ \operatorname{ez} \ a \ f \in \mathcal{C}([a,\infty] \times [c,d]) \ \operatorname{integral} \ \operatorname{s} \\ \operatorname{parametrom} \ F(x) = \int_a^\infty f(x,y) dx \ \operatorname{enakomerno} \\ \operatorname{konvergenten} \ \operatorname{na} \ [c,d], \ \operatorname{je} \ F \ \operatorname{zvezna} \ \operatorname{na} \ [c,d]. \end{array}$

Menjava vrstnega reda integracije

Naj bo $f \in \mathcal{C}([a,\infty] \times [c,d])$ in $F(y) := \int_a^\infty f(x,y) dx$ enakomerno konvergentna. Definirajmo še $G(x) = \int_a^d f(x,y) dy$. Potem velja

$$\int_{c}^{d} dy \int_{a}^{\infty} f(x, y) dx = \int_{a}^{\infty} dx \int_{c}^{d} f(x, y) dy$$

Odvajanje integrala na neomejenih območjih

Naj bosta $f,f_y\in\mathcal{C}([a,\infty]\times[c,d]),\ F(y):=\int_a^\infty f(x,y)dx$ obstaja za $\forall y\in[c,d]$ in $G(y):=\int_a^\infty f_y(x,y)dx$ enakomerno konvergira na [c,d]. Potem je F odvedljiva in

$$F'(y) = \int_{0}^{\infty} f_{y}(x, y) dx$$

Funkcija Γ

- $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$, $\forall s > 0$
- $\Gamma(1) = 1$
- $\Gamma(s+1) = s\Gamma(s)$
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
- $\Gamma(n+1) = n!$ $n \in \mathbb{N}$
- $\Gamma(x)\Gamma(x+1) = \frac{\pi}{\sin(\pi x)}$

Funkcija B

• $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$, $\forall p, q > 0$

$$\bullet \ B(p,q) = \int_0^\infty \frac{u^{p-1}}{(1+u)^{p+q}} du$$

- $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$
- $\frac{1}{2}B(p,q) = \int_0^{\frac{\pi}{2}} (\sin x)^{2p-1} (\cos x)^{2q-1}$
- simetričnost: B(p,q) = B(q,p)

Gaussov integral:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

Trigonometrične identitete

 $\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$ $\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$ $\tan(x \pm y) = \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x)\tan(y)}$ $\cot(x \pm y) = \frac{\cot(x)\cot(y) \mp 1}{\tan(x) \pm \tan(y)}$

$$\sin^{2}(x) + \cos^{2}(x) = 1$$
$$1 + \cot^{2}(x) = \frac{1}{\sin^{2}(x)}$$

$$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$$

Koordinatni sistemi

Nove koordinate uvedemo z dimorfizmom (glatka bijekcija z gladkim inverzom) $q: \Pi \to P$.

$$g(u_1, ..., u_n) = (g_1(u_1, ..., u_n), ..., g_n(...))$$

Zanjo lahko izračunamo jakobijevo matriko:

$$J_g = \begin{bmatrix} \frac{\partial g_1}{\partial u_1} & \dots & \frac{\partial g_1}{\partial u_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial u_1} & \dots & \frac{\partial g_n}{\partial u_n} \end{bmatrix}$$

$$\int_{P} f(x_{1},...,x_{n}) dP = \int_{\Pi} f(g(u_{1},...,u_{n})) |\det J_{g}| d\Pi$$

Polarne koordinate

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

$$|\det J| = r$$

Eliptične koordinate

$$x = a r \cos \varphi$$

$$y = b r \sin \varphi$$

$$|\det J| = a b r$$

Cilindrične koordinate

$$x = r \cos \varphi$$
$$y = r \sin \varphi \quad |\det J| = r$$

Sferične koordinate

$$x = r \cos \varphi \cos \theta$$

 $y = r \sin \varphi \cos \theta$ $|\det J| = r^2 \cos \theta$
 $z = r \sin \theta$

Izračun težišča

$$m = \iint_{P} \rho dP$$
$$x_{T} = \frac{\iint_{P} x \rho dP}{m}$$

Krivuljni integral

 $\gamma: [a, b] \to \mathbb{R}^n$ odsekoma \mathcal{C}^1 , f zvezna funkcija

$$\int_{\gamma} f \, ds = \int_{a}^{b} f(\gamma(t)) \, |\dot{\gamma}(t)| \, dt$$

Dolžina krivulje je

$$\int_{\gamma} 1\,ds = \int_a^b |\dot{\gamma}(t)|\,dt$$

Delo

$$A = \int_{\gamma} \overrightarrow{F} d\overrightarrow{r}$$

$$\int_{\alpha}^{\beta} (f_1(x(t), y(t)), f_2(x(t), y(t))) \cdot (\dot{x}(t), \dot{y}(t)) dt$$

$$r(t) = (x(t), y(t)) \quad F = (f_1, f_2)$$

Greenova formula

Naj bo D pozitivno orientirano območje.

$$\int_{\partial D} \overrightarrow{F} d\overrightarrow{r} = \int_{D} \operatorname{rot} \overrightarrow{F} dP$$
$$\operatorname{rot} \overrightarrow{F} = f_{2x} - f_{1y}$$

Ploskovni integral

Ploskev podamo parametrično v obliki:

$$\overrightarrow{r}(u,v) = (x(u,v), y(u,v), z(u,v))$$

Ploščina je tedaj:

$$\begin{split} &\iint_{D} |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| \, du dv = \iint_{D} \sqrt{EG - F^{2}} \\ &E = \overrightarrow{r}_{u} \cdot \overrightarrow{r}_{u} \quad F = \overrightarrow{r}_{u} \cdot \overrightarrow{r}_{v} \quad G = \overrightarrow{r}_{v} \cdot \overrightarrow{r}_{v} \end{split}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Kompleksna analiza

Funkcija $f:D\to\mathbb{C}$ (D odprta podmnožica v \mathbb{C}) je odvedljiva v točki $z\in\mathbb{C}$, če obstaja limita:

$$f'(z) := \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

Funkcija f je **holomorfna**, če je odvedlijva $\forall z \in D$.

$$f(x+iy) = u(x,y) + iv(x,y)$$

f holomorfna ⇔ veljajo Cauchy-Riemanove enečbe:

$$u_x = v_y$$
 $u_y = -v_x$

Laplacov operator:

$$\Delta u = u_{xx} + u_{yy}$$

Če je $\Delta u = 0$ in $u \in \mathbb{C}^2$ je funkcija u harmonična.

Integral po poti

Pot je pozitovno orientirana, če je območje na levi. Naj bo $f \in \mathcal{C}(D), \, D^{\text{odprta}} \subseteq \mathbb{C}, \, \gamma : [a,b] \to D$ odsekoma zvezna.

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t)) \dot{\gamma}(t) dt$$

Naj bo $D^{\text{odprta}}\subseteq\mathbb{C},\,\Omega\subset D$ omejeno območje s kosoma gladkim robom, $\overline{\Omega}\subset D.$ Če je fholomorfna na D, je

$$\int_{\partial\Omega} f(z)dz = 0$$

Cauchiyev izrek

Naj bo $D\subseteq \text{enostavno}$ povezano območje, fholomorfna naD in γ sklenjena krivulija vD.

$$f(a)I(\gamma, a) = \int_{\gamma} \frac{f(z)}{z - a} dz$$

$$I(\gamma, a) = 2\pi i \cdot \text{št. ovjev } \gamma \text{ okoli } a$$

Laurentova vrsta

$$\sum_{n=-\infty}^{\infty} a_n z^n = \underbrace{\sum_{n=-\infty}^{-1} a_n z^n}_{\text{glavni del}} + \underbrace{\sum_{n=0}^{\infty} a_n z^n}_{\text{regularni del}}$$

Če glavni del konvergira na $|z|>R_1$, regularni del pa na $|z|< R_2$, Laurentova vrsta konvergira na kolobarju $A(a,R_1,R_2)$.

Znane Taylorjeve vrste

$$\frac{1}{1-q} = \sum_{n=0}^{\infty} q^n \qquad okoli \ q = 0$$

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n \qquad {n \choose k} = \frac{n!}{k!(n-k)!}$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

V splošnem:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \quad \text{okoli } a$$

Izrek o ostankih

Naj bofholomorf
na na Drazen morda v končno točkah $a_1, ..., a_n \in D$

Naj bo $K\subset D$ kompakten, ∂K kosoma gladek in $\partial K\cap\{a_1,...,a_n\}=\emptyset$

$$\int_{\partial K} f(z) dz = 2\pi i \sum_{a_j \in K} \operatorname{Res}(f, a_j)$$

 $\mathrm{Res}(f,a)$ je koeficient c_{-1} (pri $(z-a)^{-1})$ pri razvoju fv Laurentovo vrsto okolia.

Če je a_i pol stopnje n funkcije f, je

$$Res(f, a) = \lim_{z \to a} \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} ((z-a)^n f(z))$$

Pogoste kompleksne formule

$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$

$$z = x + iy$$
 $\overline{z} = x - iy$ $\operatorname{Re} z = \frac{z + \overline{z}}{2}$ $\operatorname{Im} z = \frac{z - \overline{z}}{2}$

Odvodi

Ouvoui	
funkcija	odvod
c	0
x^n	nx^{n-1}
a^x	$a^x \ln a$
$\frac{a^x}{\ln a}$	a^x
x^x	$x^x(1+\ln x)$
ln(x)	$\frac{1}{x}$
$\log_a(x)$	$\frac{1}{x \ln(a)}$
$\sin(x)$	cos(x)
$\cos(x)$	-sin(x)
tan(x)	$\frac{1}{\cos^2(x)}$
$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x)$	$-\frac{1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
$\operatorname{arccot}(x)$	$-\frac{1}{1+x^2}$
$sh(x) = \frac{e^x - e^{-x}}{2}$	ch(x)
$ch(x) = \frac{e^x + e^{-x}}{2}$	sh(x)
$ch(x) = \frac{e^x + e^{-x}}{2}$ $th(x) = \frac{sh(x)}{ch(x)}$	$\frac{1}{\operatorname{ch}^2(x)}$
$cth(x) = \frac{1}{th(x)}$	$-\frac{1}{\sinh^2(x)}$
$\operatorname{arsh}(x) = \ln(x + \sqrt{x^2 + 1})$	$\frac{1}{\sqrt{1+x^2}}$
$\operatorname{arch}(x) = \ln(x + \sqrt{x^2 - 1})$	$\frac{1}{\sqrt{1-x^2}}$
$arth(x) = \frac{1}{2} \ln \frac{1+x}{1-x}$	$\frac{1}{(1+x)(1-x)}$

Pravila za odvajanje

funkcija	odvod
$f(x) \pm g(x)$	$f'(x) \pm g'(x)$
$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$
f(x)	$f'(x) \cdot g(x) - f(x) \cdot g'(x)$
g(x)	$g^{2}(x)$
f(g(x))	$f'(g(x)) \cdot g'(x)$
$f^{-1}(x)$	$\frac{1}{f'(f^{-1}(x))}$
	J (J (±))

Integracijske metode

Uvedba nove spremenljivke

$$\int f(x) dx = \int f(g(t))g'(t)dt$$

$$u = g(x) \implies du = g'(x)dx \implies dx = \frac{du}{g'(x)}$$

Perpartes

$$\int u(x) \, v'(x) \, dx = u(x)v(x) - \int v(x) \, u'(x) \, dx$$

Integral racionalne funkcije

Z deljenjem zapišemo racionalno funkcijo R(x) v obliki $p(x)+\frac{r(x)}{q(x)},$ kejr je r nižje stopnje od q.

Polinom q rezcepimo na linearne in nerazcepne kvadratne faktorje.

Funkcijo $\frac{p(x)}{q(x)}$ zapišemo kot vsoto parcialnih ulomkov:

$$\begin{split} \frac{1}{(x-a)^k} &\leadsto \frac{A_1}{(x-a)} + \frac{A_2}{(x-a)^2} + \ldots + \frac{A_k}{(x-a)^k} \\ \frac{1}{(x^2+bx+c)^l} &\leadsto \frac{B_1 + C_1 x}{(x^2+bx+c)} + \ldots + \frac{B_l + C_l x}{(x^2+bx+c)^l} \end{split}$$

Parcialne ulomke posamično integriremo (imenovalec mora hiti nerazenen!):

$$\int \frac{dx}{ax^2 + bx + c} = \frac{1}{a\omega} \arctan\left(\frac{2ax + b}{2a\omega}\right); \ \omega = \frac{c}{a} - \left(\frac{b}{2a}\right)^2$$

$$\int \frac{px + q}{ax^2 + bx + c} dx = \frac{p}{2a} \ln|t| + \left(q - \frac{pb}{2a}\right) \int \frac{dx}{t}$$

$$\int \frac{px + q}{(ax^2 + bx + c)^n} dx = \frac{p}{2a} \frac{t^{1-n}}{1-n} + \left(q - \frac{pb}{2a}\right) \int \frac{dx}{t^n}$$

$$\int \frac{dx}{(ax^2 + bx + c)^n} = \frac{1}{a^n \omega^n} I_n$$

$$I_n = \int \frac{dx}{(t^2 + 1)^n} \qquad I_1 = \arctan t$$

$$I_n = I_{n-1} \left(1 - \frac{1}{2(n-1)}\right) + \frac{t}{2(n-1)(t^2 + 1)^{n-1}}$$

Integrali trigonometričnih funkcij

Integrale z trigonometričnimi funkcijami z univerzalno trigonometrično substitucijo prevedemo na integral racionalne funkcije.

$$\tan\frac{x}{2} = t$$
 $dx = \frac{2dt}{1+t^2}$ $\cos x = \frac{1-t^2}{1+t^2}$ $\sin x = \frac{2t}{1+t^2}$

Uporabni integrali

$$\int \sqrt{1+x^2} dx = \frac{1}{2} (x\sqrt{1+x^2} + \ln(x+\sqrt{1+x^2}))$$
$$\int \sin^2(x) dx = \frac{x}{2} - \frac{1}{4} \sin(2x)$$
$$\int \cos^2(x) dx = \frac{x}{2} + \frac{1}{4} \sin(2x)$$

Integral iracionalne funkcije

Integrale tipa $\int \frac{p(x)dx}{\sqrt{ax^2+bx+c}}$ rešujemo na naslednji način:

• Če je p konstanten, integral (z dopolnitvijo do ■ in s substitucijo) prevedemo na enega izmed:

$$\begin{split} &\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin\left(\frac{x}{a}\right) + C; \quad a > 0 \\ &\int \frac{dx}{\sqrt{x^2-a^2}} = \ln\left|x+\sqrt{x^2-a^2}\right| + C; \quad a > 0 \end{split}$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln\left(x + \sqrt{x^2 + a^2}\right) + C; \quad a > 0$$

• Če je p poljuben polinom, uporabimo nastavek:

$$\int \frac{p(x)}{\sqrt{ax^2 + bx + c}} dx = \widetilde{p}(x)\sqrt{ax^2 + bx + c} + \int \frac{C}{\sqrt{ax^2 + bx + c}} dx$$

C je konstanta, \widetilde{p} pa polinom, ki ima stopnjo 1 manjšo kot p. Koeficiente polinoma \widetilde{p} in konstanto C dobimo z odvajanjem zgornje enačbe.

Diferencialne enačbe

Ločljive spremenljivke

$$g(y)y' = f(x)$$

Upoštevamo, da je $y'=\frac{dy}{dx}$. Enačbo pomnožimop z dx in integriramo obe strani enačbe.

Homogena diferencialna enačba

$$y' = f(\frac{y}{x})$$

Uvedemo novo spremenlivko $v(x)=\frac{y}{x} \Rightarrow y=xv \Rightarrow y'=xv'+v$, vstavimo v začetno enačbo in dobimo

$$xv'v = f(x) \Rightarrow \frac{v'}{f(v) - v} = \frac{1}{x}$$

Linearna diferencialna enačba

$$p(x)y' + q(x)y = r(x)$$

Najprej rešimo homogeni del (r(x) = 0)

$$py' + qy = 0 \implies y = De^{P(x)}; \ P(x) = -\int \frac{q}{p} dx$$

D postane funkcija odvisna od x (variacija konstante). Zgornjo enačbo odvajoamo in dobimo y'.

$$y' = D'e^P - \frac{q}{p}De^P$$

y in y^\prime vstavimo v prvotno enačbo in iz nje izrazimo $D^\prime,$ D dobimo z integriranjem.

Bernoullijeva diferencialna enačba

$$p(x)y' + q(x)y = r(x)^{\alpha}$$

Če je $\alpha=0$, je enačba linearna. Če je $\alpha=1$ ima ločljive spremenljivke. Sicer, enačbo prevedemo na linearno. Enačbo delimo z y^{α} in uvedemo novo funkcijo $z=y^{1-\alpha}$ $\Rightarrow z'=(1-\alpha)y'y^{-\alpha}$. Dobimo linearno enačbo:

$$\frac{1}{1-\alpha}pz'+qz=r$$

Eksaktne diferencialne enačbe

$$P(x,y)dx+Q(x,y)dy=0\quad\text{ali}\quad P+Qy'=0$$
 Naj bo rešitev enačbe $u(x,y)=C.$
Če je $P_y=Q_x$, obstaja funckcija u , da je $\forall u=(P,Q)\Rightarrow$

 $u_x = P$, $u_y = Q$. Izračunamo u tako da u_x integriramo po x (namesto konstante prištejemo funkcijo f(y)). Nato pravkar izračunani u odvajamo po y in ga enačimo $z u_y = Q$.

Izrazimo f' in z integriranjem dobimo f. Če $P_y \neq Q_x$, obstaja integrajoči množitelj μ , da je $(\mu P)_u = (\mu Q)_x$

Homegena linearna dif. enačba 2. reda

$$y'' + p(x)y' + q(x)y = 0$$

Naj bo $y_1(x)$ dana rešitev enačbe. Drugo linearno neodvisno rešitev $y_2(x)$ dobimo kot rešitev

$$y_1y_2' - y_1'y_2 = W(x)$$
 $W(x) = e^{-\int p(x)dx}$

Nehomogena linearna dif. enačba 2. reda

$$y'' + p(x)y' + q(x)y = r(x)$$

Naj bosta y_1,y_2 linearno neodvisni rešitvi homegene enačbe (r(x)=0). Partikularno rešitev dobimo z nastavkom:

$$y_p = C_1(x)y1 + c_2(x)y_2$$

kjer funkciji C_1, C_2 zadoščata

$$C_1'y_1 + C_2'y_2 = 0$$
 $C_1'y_1' + C_2'y_2' = r(x)$

Linearna dif. enačba 2. reda s konstantnimi koeficienti

$$y'' + py' + qy = r(x)$$

Kjer sta $p, r \in \mathbb{R}$.

Najprej rešimo homogeni del. V zgornjo enačbo vstavimo $y=e^{\lambda x}$ in dobimo karakteristični polinom:

$$\lambda^2 + p\lambda + q = 0$$

• Če je $\lambda_1, \lambda_2 \in \mathbb{R}$, je splošna rešitev oblike

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

• Če je $\lambda_1, \lambda_2 \in \mathbb{C}$, je splošna rešitev oblike

$$\lambda_1 = a + bi$$
 $\lambda_2 = a - bi$

$$y = C_1 e^{ax} \cos bx + C_2 e^{ax} \sin ax$$

Linearna dif. enačba 2. reda s konstantnimi koeficienti in posebno vrsto nehomogenosti

$$y'' + py' + qy = P(x)e^{\lambda x}$$

kjer so $p, q, \lambda \in \mathbb{R}$, P(x) pa polinom. Partikularno rešitev določimo z nastavkom

$$y_p = Q(x)x^k e^{\lambda x}$$

Kjer je Q(x) polinom iste stopnje kot P, k pa pove večkratnost ničle karakterističnega polinoma.

Sistemi linearnih diferencialnih enačb

$$\dot{x} = Ax$$

Kjer je A 2 × 2 matrika.

 Če se A da diagonalizirati, oziroma ima dva linearno neodvisna lastna vektorja e

 ₁, e

 ₂ in lastni vrednosti λ₁, λ₂.

$$x(t) = C_1 e^{\lambda_1 t} \overrightarrow{e_1} + C_2 e^{\lambda_2 t} \overrightarrow{e_2}$$

• Če se A ne da diagonalizirati, oziroma ima samo en lastni vektor \overrightarrow{e} , potem izračunamo \overrightarrow{k} kot rešitev $(A-\lambda I)\overrightarrow{k}=\overrightarrow{e}$

$$x(t) = C_1 e^{\lambda t} \overrightarrow{e} + C_2 e^{\lambda t} (\overrightarrow{k} + t \overrightarrow{e})$$