Arithmétique : MHT 711

Examen du 15 décembre 2008

Master Sciences et Technologies, mention Mathématiques ou Informatique, spécialité Cryptologie et Sécurité informatique

Durée: 3 heures. Sans document.

Responsable : Gilles Zémor

Les exercices sont indépendants.

- EXERCICE 1. Utiliser ce que vous savez des facteurs irréductibles de $X^{63} + 1$ dans $\mathbb{F}_2[X]$ pour en déduire le nombre de polynômes irréductibles de degré 6 sur \mathbb{F}_2 . Combien de ces polynômes sont primitifs?
- EXERCICE 2. Soit A l'anneau $\mathbb{F}_3[X]/((X-1)^3)$. Combien A contient-il d'éléments?
 - a) Combien y a-t-il de polynômes unitaires de degré 1 sur \mathbb{F}_3 qui n'ont pas 1 comme racine?
 - b) En déduire le nombre de polynômes réductibles unitaires de degré 2 sur \mathbb{F}_3 qui n'ont pas 1 comme racine.
 - c) Combien y a-t-il de polynômes *irréductibles* unitaires de degré $2 \operatorname{sur} \mathbb{F}_3$?
 - d) En déduire le nombre d'éléments de l'anneau des inversibles A^* de A.
 - e) Montrer que pour tout élément α de A^* on a $\alpha^3 \in \mathbb{F}_3$ et $\alpha^6 = 1$. Vérifier que le cardinal de A^* que vous avez trouvé précédemment est bien un multiple de 6.
- EXERCICE 3. Soit α un élément de \mathbb{F}_8 de polynôme minimal $X^3 + X + 1$. Trouver les puissances α^i de α qui sont de trace nulle.
- Exercice 4.
 - a) Montrer que $X^5 + X^3 + X^2 + X + 1$ est un polynôme irréductible de $\mathbb{F}_2[X]$. Montrer, sans faire de calcul, qu'il est également primitif.
 - b) Soit α une racine de $X^5 + X^3 + X^2 + X + 1$ dans le corps \mathbb{F}_{32} . Quel est le polynôme minimal de α^2 ? Quel est le polynôme minimal de α^3 ?
- EXERCICE 5. Combien de facteurs irréductibles dans $\mathbb{F}_2[X]$ a le polynôme $X^{17}+1$? Quels sont leurs degrés?

- EXERCICE 6. Montrer que le polynôme $1+x^3+x^6$ est le polynôme générateur d'un code cyclique binaire de longueur 9. Quelle est la dimension de code ? Quelle est sa distance minimale ?
- Exercice 7. Soit la matrice

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

et soit C le code linéaire sur \mathbb{F}_2 de matrice génératrice \mathbf{G} .

- a) Trouver une autre matrice génératrice de G sous forme systématique, c'està-dire commençant par la matrice identité 4×4 .
- b) En déduire une matrice de parité \mathbf{H} de C.
- c) En déduire la distance minimale de C.
- d) Soit $\mathbf{x} = [100011100]$ un vecteur de \mathbb{F}_2^9 . Calculer son syndrome et en déduire le mot de C le plus proche pour la distance de Hamming.
- e) Quels sont les paramètres (longueur, dimension, distance minimale) du code dual C^{\perp} de C?
- EXERCICE 8. Soit (a_i) la suite définie par $a_0=a_1=a_2=a_3=1$ et la récurrence linéaire :

$$a_i = a_{i-1} + a_{i-4}$$

pour $i \geqslant 4$.

- a) Quelle est la période π de cette suite?
- b) Montrer que l'ensemble C constitué du π -uple $(a_0a_1 \dots a_{\pi-1})$, de tous ces décalés circulaires, ainsi que du π -uple nul, est stable par addition dans \mathbb{F}_2^{π} .
- c) En déduire qu'il s'agit d'un code cyclique. Trouver son polynôme générateur.