The transformation of a DECA is given as

 $\times \exp(: V_4:) \exp(: aL:) \exp(: H_4/2:) \exp(: bL:) \exp(: F_{out}:),$ where L and H_4 are the Hamiltonians of a drift of length L and a thin decapole kick with integrated strength K4:

(106)

 $\exp(: F_{in} :) \exp(: aL :) \exp(: H_4/2 :) \exp(: bL :)$

$$H_4 = \frac{K4}{5!} \Re(x - iy)^5, \tag{107}$$

respectively. The coefficients are $a \equiv 1/2 - 1/\sqrt{12}$ and b = 1/2 - a. Terms exp(: $F_{\rm in}$:) and exp(: $F_{\rm out}$:) are transformations for entrance and exit nonlinear fringes. The term exp(: V_4 :) is a correction to adjust the third-order

transformations for entrance and exit nonlinear fringes. The term
$$\exp(: V_4:)$$
 is a correction to adjust the third-ord terms in L:

$$V_4 = \sum_{j=(x,y),k=(x,y)} -\frac{\beta}{2} H_{4,k}^2 + \gamma H_{4,j} H_{4,k} H_{4,j,k} , \qquad (108)$$

j=(x,y),k=(x,y)

where , i represents the derivative by x or y. We have also introduced two coefficients $\beta = 1/6 - 1/\sqrt{48}$ and $\gamma = 1/40 - 1/(24\sqrt{3})$.