1. Generalități

Definiția 1.1. Un inel unitar K cu $1 \neq 0$ se numește corp dacă orice element nenul al său este inversabil.

Dacă înmulțirea pe K este comutativă, atunci K se numește corp comutativ.

Notație: $K^{\times} = K \setminus \{0\}.$

Exemplul 1.2. (i) $(\mathbb{Q}, +, \cdot)$ şi $(\mathbb{R}, +, \cdot)$ sunt corpuri comutative.

- (ii) \mathbb{Z}_n este corp dacă și numai dacă n este număr prim.
- (iii) $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ este corp comutativ.

Remarca 1.3. Orice corp este inel integru.

Exercițiul 1.4. Arătați că orice inel unitar $(1 \neq 0)$ integru și finit este corp.

Propoziția 1.5. Fie R un inel unitar cu $1 \neq 0$. Atunci R este corp dacă și numai dacă $\{0\}$ și R sunt singurele ideale la stânga (la dreapta) ale lui R.

Proof. "⇒" Fie I un ideal la stânga al lui R. Presupunem că $I \neq \{0\}$. Atunci există $a \in I$, $a \neq 0$. Deoarece R este corp, elementul a este inversabil și cum $a^{-1}a \in I$ rezultă $1 \in I$. De aici se obține că $r = r1 \in I$ pentru orice $r \in R$, deci I = R. " \Leftarrow " Fie $a \in R$, $a \neq 0$. Idealul la stânga Ra este nenul, deoarece $a = 1a \in Ra$. Din ipoteză Ra = R, deci există $a' \in R$ astfel încât a'a = 1. Evident $a' \neq 0$ și un raționament analog ne arată că există $a'' \in R$ cu proprietatea că a''a' = 1. Înmulțind la dreapta cu a obținem a''a'a = a, adică a'' = a. În concluzie, aa' = 1, deci a este inversabil.

Remarca 1.6. Deși în orice corp $\{0\}$ și corpul însuși sunt singurele ideale bilaterale, reciproc este fals: în inelul $R = M_2(\mathbb{Q})$ singurele ideale bilaterale sunt $\{0\}$ și R și acesta nu este corp. Un inel cu proprietatea că nu are ideale bilaterale netriviale se numește *inel simplu*.

Definiția 1.7. Fie K un corp și $K' \subseteq K$ o submulțime nevidă. Atunci K' se numește subcorp al lui K dacă $(K', +, \cdot)$ este corp. În acest caz se mai spune că K este o extindere a lui K'.

Propoziția 1.8. Fie K un corp şi $K' \subseteq K$ o submulțime nevidă. Atunci K' este subcorp al lui K dacă și numai dacă sunt satisfăcute următoarele condiții:

- (i) $x, y \in K' \implies x y \in K'$,
- (ii) $x, y \in K', x \neq 0 \implies x^{-1}y \in K',$ pentru orice $x, y \in K'.$

Să observăm că din (ii) rezultă imediat că $1 \in K'$.

Exemplul 1.9. (i) Orice corp este un subcorp al său.

- (ii) $\mathbb{Q} \subseteq \mathbb{R}$ este subcorp.
- (iii) $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{R}$ este subcorp.

Remarca 1.10. Corpurile $\mathbb{Z}/p\mathbb{Z}$ și \mathbb{Q} nu au subcorpuri proprii.

Definiția 1.11. Fie K, K' corpuri și $f: K \to K'$ o funcție. Aceasta se numește morfism de corpuri dacă

$$f(x + y) = f(x) + f(y),$$

$$f(xy) = f(x)f(y),$$

$$f(1) = 1',$$

pentru orice $x, y \in K$.

Remarca 1.12. (i) În definiția de mai sus f este morfism de corpuri dacă este morfism unitar de inele.

(ii) Dacă f este morfism de corpuri, atunci $f(x^{-1}) = f(x)^{-1}$ pentru orice $x \in K^{\times}$.

Propoziția 1.13. Orice morfism de corpuri este injectiv.

Proof. Fie $f: K \to K'$ un morfism de corpuri. Deoarece Ker f este ideal bilateral al lui K rezultă că Ker $f = \{0\}$, deci f este morfism injectiv.

Lema 1.14. Fie K un corp şi $K_{\alpha} \subseteq K$, $\alpha \in A$ o familie de subcorpuri ale lui K. Atunci $\bigcap_{\alpha \in A} K_{\alpha}$ este un subcorp al lui K.

Dacă considerăm intersecția tuturor subcorpurilor unui corp dat obținem un subcorp care nu are subcorpuri proprii.

Definiția 1.15. Un corp care nu are subcorpuri proprii se numește corp prim.

Deci orice corp conține ca subcorp un corp prim. După cum am observat deja, $\mathbb{Z}/p\mathbb{Z}$ și \mathbb{Q} sunt corpuri prime. Este adevărat însă și reciproc.

Propoziția 1.16. Orice corp prim este izomorf cu \mathbb{Q} sau cu $\mathbb{Z}/p\mathbb{Z}$, p prim.

Proof. Fie K un corp prim şi $\varphi : \mathbb{Z} \to K$ dată prin $\varphi(n) = n \cdot 1$. Este clar că φ este morfism de inele şi avem două posibilități:

- (i) $\operatorname{Ker} \varphi = \{0\}$, caz în care $\mathbb{Z} \simeq \operatorname{Im} \varphi$, deci K conține un subinel izomorf cu \mathbb{Z} . Rezultă că K conține un subcorp izomorf cu \mathbb{Q} și cum K este corp prim obținem $K \simeq \mathbb{Q}$.
- (ii) Ker $\varphi = p\mathbb{Z}, \ p \in \mathbb{N} \setminus \{0,1\}$. Avem $\mathbb{Z}/p\mathbb{Z} \simeq \operatorname{Im} \varphi \subseteq K$, deci $\mathbb{Z}/p\mathbb{Z}$ este inel integru. De aici rezultă că p este număr prim, deci $\mathbb{Z}/p\mathbb{Z}$ este corp și cum K este corp prim obţinem $K \simeq \mathbb{Z}/p\mathbb{Z}$.

Definiția 1.17. Fie K un corp. Dacă K conține un subcorp prim izomorf cu \mathbb{Q} , atunci spunem că K este corp de caracteristică zero şi scriem char K=0. Dacă K conține un subcorp prim izomorf cu $\mathbb{Z}/p\mathbb{Z}$, atunci spunem că K este corp de caracteristică p şi scriem char K=p.

Remarca 1.18. (i) char K = 0 dacă și numai dacă ord(1) = ∞ în grupul (K, +), iar char K = p dacă și numai dacă ord(1) = p în grupul (K, +).

(ii) Dacă $K' \subseteq K$ este o extindere de corpuri, atunci char $K' = \operatorname{char} K$.

Exemplul 1.19. (i) char $\mathbb{Q} = 0$ și char $\mathbb{Z}/p\mathbb{Z} = p$. (ii) char $\mathbb{R} = 0$ și char $\mathbb{Q}(\sqrt{2}) = 0$.

2. Construcții de corpuri

Vom construi acum trei exemple importante de corpuri.

1. Corpul numerelor complexe

Fie $\mathbb{C} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$. Se verifică uşor că \mathbb{C} este corp în raport cu adunarea şi înmulţirea matricelor. Există un morfism de corpuri $f : \mathbb{R} \to \mathbb{C}$ dat prin $f(a) = aI_2$. Astfel putem identifica pe \mathbb{R} cu un subcorp al lui \mathbb{C} . Fie $i = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Atunci $i^2 = -I_2$ iar $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} = aI_2 + bi$. Cum I_2 este elementul unitate al lui $\mathbb C$ vom scrie a + bi în loc de $aI_2 + bi$. Deci $\mathbb C = \{a + bi : a, b \in \mathbb R\}$ este un corp cu adunarea şi înmulţirea date astfel:

$$(a+bi) + (c+di) = (a+c) + (b+d)i,$$

 $(a+bi)(c+di) = (ac-bd) + (ad+bc)i.$

pentru orice $a, b, c, d \in \mathbb{R}$.

2. Corpul cuaternionilor

Fie $\mathbb{H} = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} : a, b \in \mathbb{C} \right\}$. Se verifică uşor că \mathbb{H} este corp necomutativ în raport cu adunarea şi înmulţirea matricelor. Elementele lui \mathbb{H} se numesc cuaternioni. Există un morfism de corpuri $f: \mathbb{C} \to \mathbb{H}$ dat prin $f(a) = \begin{pmatrix} a & 0 \\ 0 & \overline{a} \end{pmatrix}$. Astfel putem identifica pe \mathbb{C} cu un subcorp al lui \mathbb{H} . Orice $a \in \mathbb{R}$ se identifică cu aI_2 , iar $i \in \mathbb{C}$ se identifică cu $\mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$. Considerăm acum cuaternionii $\mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ şi $\mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$. Scriem a = x + iy, b = z + it, cu $x, y, z, t \in \mathbb{R}$. Atunci

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} = x + \mathbf{i}y + \mathbf{j}z + \mathbf{k}t.$$

Deci $\mathbb{H} = \{x + \mathbf{i}y + \mathbf{j}z + \mathbf{k}t : x, y, z, t \in \mathbb{R}\}$ şi avem relaţiile:

$$ij = k, ji = -k,$$

 $jk = i, kj = -i,$
 $ki = j, ik = -j,$
 $i^2 = j^2 = k^2 = -1.$

Remarca 2.1. Cuaternionii $\{\pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\}$ formează un grup necomutativ în raport cu înmulțirea numit grupul cuternionilor.

3. Corpul de fracții al unui domeniu de integritate

Fie R un domeniu de integritate (cu $1 \neq 0$). Vom construi un corp comutativ care îl conține pe R ca subinel și care este cel mai mic corp cu această proprietate. Să considerăm produsul cartezian $R \times R^{\times} = \{(a,b): a,b \in R, b \neq 0\}$. Pe această mulțime definim o relație binară astfel: $(a,b) \sim (c,d)$ dacă și numai dacă ad = bc. Este imediat că " \sim " este o relație de echivalență. Fie $Q(R) = R \times R^{\times} / \sim$. Clasa de echivalență a unei perechi (a,b) în raport cu relația " \sim " se va nota $\frac{a}{b}$ și se va numi fracție. Definim pe Q(R) două operații algebrice astfel:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd},$$
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd},$$

pentru orice $a,b,c,d\in R,\ b\neq 0,\ d\neq 0.$ Aceste operații sunt bine definite și $(Q(R),+,\cdot)$ este un corp comutativ, numit corpul de fracții al lui R.

Exemplul 2.2. (i) $Q(\mathbb{Z}) = \mathbb{Q}$.

(ii) Fie
$$\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$$
. Atunci $Q(\mathbb{Z}[\sqrt{2}]) = \mathbb{Q}(\sqrt{2})$.

Există un morfism injectiv de inele unitare $\varphi: R \to Q(R)$ dat prin $\varphi(a) = \frac{a}{1}$.

Teorema 2.3. (Proprietatea de universalitate a corpurilor de fracții) Fie R un domeniu de integritate, K un corp comutativ și $f: R \to K$ un morfism injectiv de inele unitare. Atunci există un morfism de corpuri $\overline{f}: Q(R) \to K$ unic cu proprietatea că $\overline{f} \circ \varphi = f$.

Proof. Să vizualizăm această proprietate cu ajutorul următoarei diagrame:

Definim $\overline{f}(\frac{a}{b}) = f(a)f(b)^{-1}$ oricare ar fi $a \in R$ și $b \in R^{\times}$.

Pentru început arătăm că \overline{f} este bine definită: dacă $\frac{a}{b} = \frac{c}{d}$, atunci ad = bc și aplicând f acestei egalități obținem f(a)f(d) = f(b)f(c). Cum $f(b), f(d) \in K^{\times}$ deducem că $f(a)f(b)^{-1} = f(c)f(d)^{-1}$.

Să arătăm acum că \overline{f} este morfism de inele:

$$\overline{f}(\frac{a}{b} + \frac{c}{d}) = \overline{f}(\frac{ad + bc}{bd}) = f(ad + bc)f(bd)^{-1} = f(a)f(d)f(b)^{-1}f(d)^{-1} + f(b)f(c)f(b)^{-1}f(d)^{-1} = f(a)f(b)^{-1} + f(c)f(d)^{-1} = \overline{f}(\frac{a}{b}) + \overline{f}(\frac{c}{d}),$$

$$\overline{f}(\frac{a}{b}\cdot\frac{c}{d}) = \overline{f}(\frac{ac}{bd}) = f(ac)f(bd)^{-1} = f(a)f(b)^{-1}f(c)f(d)^{-1} = \overline{f}(\frac{a}{b})\overline{f}(\frac{c}{d}).$$

Să verificăm și că $\overline{f} \circ \varphi = f$: pentru $a \in R$ avem $\overline{f} \circ \varphi(a) = \overline{f}(\frac{a}{1}) = f(a)$.

Să presupunem acum că ar mai exista un morfism $g: Q(R) \to K$ cu proprietatea că $g \circ \varphi = f$ și să arătăm că $g = \overline{f}$: pentru $a \in R$ și $b \in R^{\times}$ avem $g(\frac{a}{b}) = g(\frac{a}{1} \cdot \frac{1}{b}) = g(\frac{a}{1})g(\frac{1}{b})$. Dar $g(\frac{a}{1}) = g \circ \varphi(a) = f(a)$. Pe de altă parte, $1 = g(\frac{1}{1}) = g(\frac{1}{1}) = g(\frac{a}{1})g(\frac{1}{2})$

$$g(\frac{1}{b} \cdot \frac{b}{1}) = g(\frac{1}{b})g(\frac{b}{1}) = g(\frac{1}{b})f(b)$$
, deci $g(\frac{1}{b}) = f(b)^{-1}$. Putem concluziona că $g(\frac{a}{b}) = f(a)f(b)^{-1} = \overline{f}(\frac{a}{b})$, adică $g = \overline{f}$.

Corolarul 2.4. Fie R un domeniu de integritate. Atunci Q(R) este cel mai mic corp comutativ cu proprietatea că îl conține pe R ca subinel.

Proof. Fie K un corp comutativ cu proprietatea că R este subinel unitar al lui K.

Din proprietatea de universalitate a corpurilor de fracții rezultă că Q(R) este izomorf cu un subcorp al lui K.