Celestools

Release 1.0.5

Alexis Petit

CONTENTS:

1	Introduction to Celestools	3
2	Installation	5
3	Benchmark	7
4	Description of the modules	9
5	Indices and tables	15
Python Module Index		17
Index		19

CONTENTS: 1

2 CONTENTS:

INTRODUCTION TO CELESTOOLS

This Python package contains modules useful for celestial mechanics and in particular for orbital flight.

Last update: 2020/04/06 by Alexis Petit, Delphine Ly.

- Version 1.0.0: Initial version from CelestialPy (constants, coordinates, time scales, TLE).
- Version 1.0.1: Add coordinate and frame transformations using Orekit.
- Version 1.0.2: Determination of the satellite coordinate systems RSW and NWT as defined by Vallado, 2013, p.157.
- Version 1.0.3: Modification of the keys.
- Version 1.0.4: Vectorization of the conversion modules. Add arguments in the TLE reader.
- Version 1.0.5: Reference frame transformation (with Orekit and Astropy).

CHAPTER

TWO

INSTALLATION

From the repo

\$ git clone ssh://git@SMS2:/srv/git/celestools.git

Install the CelesTools Python package (setup.py in the package directory)

\$ python setup.py install

To remove

\$ pip uninstall

CHAPTER

THREE

BENCHMARK

In the directory tests, you check the package with

\$ python vallado.py

DESCRIPTION OF THE MODULES

This chapter describes the main modules of the Celestools code.

coordinates.py

- · Authors: Alexis Petit, PhD Student, Namur University
- Date: 2017/03/09
- It allows to perform coordinate transformations.

```
\verb|celestools.coordinates.cart_2_kepl| (\textit{cart}, \textit{mu}, \textit{unit} = '\textit{rad}')|
```

Return keplerian elements from cartesian coordinates.

Parameters

- cart (float array) Cartesian coordinates (r[m],v[m/s]).
- mu (float) Gravitational constant time the mass of the central body.
- unit (string) Unit of the angles ('rad' or 'deg').

Returns kepl – Orbital elements (a,e,i,raan,omega,ma).

Return type float array

celestools.coordinates.kepl_2_cart (kepl, mu, unit='rad')

Return cartesian coordinates from orbital elements.

Parameters

- **kepl** (*float array*) Orbital elements (a,e,i,raan,omega,ma).
- mu (float) Gravitational constant time the mass of the central body.
- unit (string) Unit of the angles ('rad' or 'deg').

Returns cart – Cartesian coordinates (x[m],v[m/s])

Return type float array

```
celestools.coordinates.df_kepl_2_cart (ic_kepl, unit='rad')
```

Return a dataframe of cartesian coordinates from a dataframe of orbital elements.

Parameters

- ic_kepl (dataframe) Orbital elements (a,e,i,raan,omega,ma).
- unit (string) Unit of the angles ('rad' or 'deg').

Returns ic_cart – Cartesian coordinates (x[m],v[m/s]).

Return type dataframe

```
celestools.coordinates.df_cart_2_kepl (ic_cart, unit='rad')
     Return a dataframe of orbital elements from a dataframe of cartesian coordinates.
          Parameters
                • ic cart (dataframe) - Cartesian coordinates (x[m],v[m/s]).
                • unit (str) – Unit of the angles ('rad' or 'deg').
          Returns ic_kepl – Orbital elements (a,e,i,raan,omega,ma).
          Return type dataframe
celestools.coordinates.cart_2_sph (cart)
     Return spherical coordinates from cartesian coordinates.
          Parameters cart (float array) - Cartesian coordinates (x[m],v[m/s]).
          Returns kepl – Spherical coordinates (alt,long,lat,dalt,dlong,dlat).
          Return type float array
celestools.coordinates.sph 2 cart (sph)
     Return cartesian coordinates from spherical coordinates.
          Parameters sph (float array) - Spherical coordinates (alt,long,lat,dalt,dlong,dlat)
          Returns cart – Cartesian coordinates (x[m],v[m/s])
          Return type float array
celestools.coordinates.kepl_2_equinoctial(kepl, mu)
     Return equinoctial coordinates from orbital elements. Ref: Vallado, 2012, p. 108
          Parameters
                • kepl (float array) – Keplerian elements (a,e,i,raan,omega,ma).
                • mu (float) – Gravitational constant time the Earth mass.
          Returns equinoc – Equinoctial coordinates (a,k,h,l,p,q)
          Return type float array
celestools.coordinates.mean_anomaly_2_ecc_anomaly(e, ma, precision=1e-14, unit='rad')
     Compute the eccentric anomaly from the mean anomaly.
     ecc: float Excentricity
     ma: float Mean anomaly
          Returns ea – Eccentric anomaly
          Return type float
celestools.coordinates.true_anomaly_2_ecc_anomaly(ecc, nu, unit='rad')
     Compute the eccentric anomaly from the true anomaly.
     ecc: float Eccentricity
     nu: float True anomaly
     unit: string Unit of the angle.
          Returns ea – Eccentric anomaly
          Return type float
```

```
celestools.coordinates.ecc_anomaly_2_mean_anomaly(ecc, ea, unit='deg')
     Compute the mean anomaly from the eccentric anomaly.
     ecc: float Eccentricity
     ea: float Eccentric anomaly
          Returns ma – Mean anomaly
          Return type float
celestools.coordinates.true_anomaly_2_mean_anomaly (ecc, nu, unit='rad')
     Compute mean anomaly from the true anomaly.
     ecc: float Eccentricity
     nu: float True anomaly
          Returns ea - Eccentric anomaly
          Return type float
celestools.coordinates.ecc_anomaly_2_true_anomaly(ecc, ea, unit='rad')
     Compute the true anomaly from the eccentric anomaly.
     ecc: float Eccentricity
     ea: float Eccentric anomaly
          Returns nu – True anomaly
          Return type float
celestools.coordinates.mean_anomaly_2_true_anomaly(ecc, ma, tolerance=le-14)
     Compute the true anomaly from the mean anomaly.
     ecc: float Excentricity
     ma: float Mean anomaly
          Returns nu – True anomaly
          Return type float
celestools.coordinates.flight_path_angle(ecc, ea, unit='rad')
     Compute the flight path angle.
     ecc: float Eccentricity.
     ea: float Eccentric anomaly.
     unit: string Unit of the angle.
          Returns fpa – Flight path angle.
          Return type float
celestools.coordinates.dms_2_rad(dms)
     Give an angle in radians from an angle in degrees, minutes, and seconds.
     dms: array of float Degrees, minutes, and seconds
```

Returns angle – Angle in radians.

Return type float

```
celestools.coordinates.hms_2_rad(hms)
     Give an angle in radians frim an angle in hours, minutes, and seconds.
     hms: array of float Hours, minutes, and seconds
           Returns angle – Angle in radians.
           Return type float
celestools.coordinates.degree 2 hms (angle)
     Give an angle in hours, minutes, and seconds from an angle in degress.
     angle: float Angle in degress.
           Returns
                 • hh (float) – Hours.
                 • mm (float:) – Minutes.
                 • ss (float) – Seconds.
celestools.coordinates.degree 2 dms (angle)
     Give an angle in degress, minutes, and seconds from an angle in degress.
     angle: float Angle in degress.
           Returns
                 • dd (float) – Degress.
                 • mm (float:) – Minutes.
                 • ss (float) – Seconds.
celestools.coordinates.geocentric_2_topocentric(theta_lst, lat_gd, r_geo, unit='rad')
     Compute the position from the geocentric frame to the topocentric frame (Vallado, p.162).
     theta_lst: float Local sideral time [deg]
     lat_gd: float Geodedic latitude [deg].
     r_geo: array of float Position in the geocentric frame.
           Returns r_topo – Position in the topocentric frame.
           Return type array of float
celestools.coordinates.topocentric_2_geocentric(theta_lst, lat_gd, r_topo, unit='rad')
     Compute the position from the topocentric frame to the geocentric frame (Vallado, p.162).
     theta_lst: float Local sideral time.
     lat_gd: float Geodedic latitude.
     r_topo: array of float Position in the topocentric frame.
           Returns r geo – Position in the geocentric frame.
```

Return type array of float

celestools.coordinates.latlon_2_ecef (phi_gd, lamb, h_ell, unit='rad')

Return cartesian coordinate of a station from the geodedic longitude, latitude and altitude. Ref: Vallado, p.144.

Parameters

- **phi_gd** (float) Decimal geodetic latitude.
- lamb (float) Decimal longitude.
- h_ell (float) Ellipsoidal height [m].
- unit (string) Unit of the angles ('rad' or 'deg').

Returns \mathbf{r} – Cartesian coordinates in [m] and [m/s].

Return type array of float

```
celestools.coordinates.ecef_2_latlon(r_ecef)
```

Return longitude, latitude and altitude from cartesian coordinates in the ECEF frame. Ref: Algorithm 12, p.172 in Vallado 2012.

Parameters r_ecef (float array) - Cartesian coordinates in the ECEF frame [m].

Returns

- **lon** (*float*) Longitude [rad]
- **lat** (*float*) Geodetic latitude [rad]

celestools.coordinates.rotation(alpha, axe, unit='rad')

Return a matrix rotation. Ref: Vallado p.162

Parameters

- **alpha** (*float*) Angle of rotation.
- **axe** (*integer*) Axe of rotation.
- unit (string) Unit of the angles ('rad' or 'deg').

Returns rot – Matrix rotation.

Return type matrix of float [3x3]

celestools.coordinates.convert_ephemeris_2_snapshot(list_ephemeris)

Return a list of snapshots from a list of ephemerides.

Parameters list_ephemeris(list of dataframes) - List of ephemeris.

Returns list snapshots – List of snapshots.

Return type list of dataframes

CHAPTER

FIVE

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

С

celestools.coordinates,9

18 Python Module Index

INDEX

С	L				
<pre>cart_2_kepl() (in module celestools.coordinates), 9 cart_2_sph() (in module celestools.coordinates), 10</pre>	latlon_2_ecef() (in module celestools.coordinates), 13				
celestools.coordinates module,9	M				
<pre>convert_ephemeris_2_snapshot() (in module</pre>	$\begin{tabular}{ll} mean_anomaly_2_ecc_anomaly () (in module celestools.coordinates), 10 \end{tabular}$				
D	mean_anomaly_2_true_anomaly() (in module celestools.coordinates), 11				
<pre>degree_2_dms() (in module celestools.coordinates), 12</pre>	module celestools.coordinates,9				
<pre>degree_2_hms() (in module celestools.coordinates), 12</pre>	R				
<pre>df_cart_2_kepl() (in module ce- lestools.coordinates), 9</pre>	rotation() (in module celestools.coordinates), 13				
df_kepl_2_cart() (in module ce-	S				
lestools.coordinates), 9 dms_2_rad() (in module celestools.coordinates), 11	<pre>sph_2_cart() (in module celestools.coordinates), 10</pre>				
E	Т				
ecc_anomaly_2_mean_anomaly() (in module celestools.coordinates), 10 ecc_anomaly_2_true_anomaly() (in module celestools.coordinates), 11 ecef_2_latlon() (in module celestools.coordinates), 13	topocentric_2_geocentric() (in module celestools.coordinates), 12 true_anomaly_2_ecc_anomaly() (in module celestools.coordinates), 10 true_anomaly_2_mean_anomaly() (in module celestools.coordinates), 11				
F					
flight_path_angle() (in module celestools.coordinates), 11					
G					
<pre>geocentric_2_topocentric() (in module ce- lestools.coordinates), 12</pre>					
Н					
hms_2_rad() (in module celestools.coordinates), 12					
K					
kepl_2_cart() (in module celestools.coordinates), 9 kepl_2_equinoctial() (in module ce- lestools.coordinates), 10					