Česká zemědělská univerzita v Praze Technická fakulta

Laboratorní práce

Speciální senzorika **Termočlánky a odporové snímače teploty**

Autor: Josef Kořínek

30. prosince 2022

1.Zadání

- Proveďte měření převodní charakteristiky odporových snímačů teploty
- Zjistěte typ neznámého termočlánku, pomocí hodnot získaných z termočlánku typu K
- Vypracujte protokol dle vzoru, který naleznete v kurzu předmětu na moodle.czu.cz

2. Princip fungování senzoru

Termočlánek je jakýsi generátor elektrické energie a skládá se ze dvou rozdílných kovů. Při změně okolní teploty se změní generovaný proud, čím vyšší je teplota, tím větší je elektrický proud produkovaný termočlánkem.[1]

Odporový snímač je oproti termočlánku pasivním prvkem. Odporové snímače využívají skutečnosti, že drahé kovy mění svůj odpor v lineární závislosti na změně teploty.[2]

3. Postup měření

Snímače teploty byly postupně po 10 °C ohřívány od 20 °C do 80 °C ve vodní lázni. Pro každou teplotu byla odečtena hodnota odporu u odporových snímačů a hodnota napětí u neznámého termočlánku. Teplota byla zjišťována pomocí DAQ (zařízení pro sběr dat) které rovnou převádělo napětí na známém termočlánku na teplotu.

4. Schéma zapojení

Obr. 1 Schéma zapojení odporových snímačů teploty

Obr. 2 Schéma zapojení termočlánků

Na kanále CH1 byl připojen referenční termočlánek a na kanále CH2 byl připojen neznámý článek (Obr. 2). Ostatní snímače byly odporové a každý snímač měl svůj vlastní ohmmetr tak jak je vidět na Obr. 1.

5. Použité přístroje

Číslo	Název	Тур	Sériové číslo
1.	Multimetr	METEX ME-31	939622
2.		PROTEK 506	506023086
3.		METEX ME-32	FE51761
4.		METEX M3890D USB	1001208
5.	DAQ / SWITCH UNIT	Agilent 34972A LXI	MY49005710

Tab. 1 Seznam použitých přístrojů

6. Použité senzory

Číslo	Тур			
1.	Termočlánek neznámý			
2.	Termočlánek 5TC-TT-K-36-36			
3.	Snímač Pt100			
4.	Snímač Pt1000			
5.	PTC2kΩ			
6.	NTC2k2			

Tab. 2 Seznam použitých senzorů

7. Zpracování dat

°C	Pt100 [Ω]	Pt1000 [kΩ]	PTC2kΩ [kΩ]	NTC2k2 [kΩ]	neznámý [μV]	Neznámý s ofsetem [mV]
22	110	1,1	1,965	2,447	-61	1,039
29,7	113,4	1,67	2,075	1,798	217	1,317
40,2	119,6	1,196	2,194	1,3	436	1,536
50,1	121	1,202	2,39	0,53	942	2,042
60	124,6	1,238	2,586	0,577	1420	2,52
70,4	128,8	1,279	2,763	0,417	1735	2,835
79,5	132,2	1,4236	2,937	0,312	2118	3,218

Tab. 3 Naměřená data

Graf 1 Závislost odporu na teplotě Pt100

Graf 2 Závislost odporu na teplotě Pt1000

Graf 3 Závislost odporu na teplotě $Pt2k2\Omega$

Graf 4 Závislost odporu na teplotě NTC2k2

Graf 5 Závislost napětí na teplotě neznámého snímače

Obr. 3 Výsledek online kalkulačky nejvíce odpovídající měřeným teplotám

8.Závěr

I přes viditelné nepřesnosti v měření jde na grafickém znázornění vidět lineární závislost, avšak abychom to mohli potvrdit museli bychom mít větší počet měření, který byl vzhledem k časovému omezení hodiny nerealizovatelný. Platinové snímače teploty pt100, pt1000 a pt2k2Ω mají stoupající charakteristiku, jelikož jako u všech vodičů s vzrůstající teplotou roste odpor. Z měření vyplívá, že NTC2k2 má opačnou teplotní charakteristiku tedy, že s rostoucí teplotou odpor klesá, tedy že se jedná o polykrystalický negastor.

Za použití online kalkulačky bylo empiricky při použití ofsetu 1,1 zjištěno, že se charakteristika neznámého snímače nejvíce podobá termočlánku typu K.

9.Zdroje

- [1] Termočlánek: princip činnosti, zařízení [online]. [vid. 2022-12-30]. Dostupné z: https://cs.ruarrijoseph.com/domashniy-uyut/13170-termopara-princip-deystviya-ustroystvo.html
- [2] Snímače teploty Pt100 princip, zapojení, třídy přesnosti | PROFESS [online]. [vid. 2022-12-30]. Dostupné z: https://www.profess.cz/cs/pci/odporove snimace teploty