Let f: (-w, a) -) C be a continous function except at c, c, ... , c, . For simplicity, assume that 6 hes a singularity at couly

Lemma Let w= f(3) be a complex-valued function with a simple pole at c.

Then

The Laurent series is  $f(3) = \frac{a_{-1}}{3-c} + \sum_{n=0}^{\infty} a_n(3-c)^n$ , o<13-c|< R.

Do, for r< R.

 $\int_{T_{r}}^{R(3)} d3 = \alpha_{-1} \int_{T_{r}}^{1} \frac{1}{3-c} d3 + \int_{T_{r}}^{R(3)} d3.$ 

 $a_{-1}\int_{-\frac{1}{3}-c}^{\frac{1}{3}-c}d_3=a_{-1}\int_{0}^{\theta_2}\frac{1}{re^{i\theta}}ire^{i\theta}d\theta$ 

= i(0,-0,) Res(f,c)

Next, suppose 19(2) | M for all 3 with 13-cl < R, , R, < R. Then 1/9(3)/d3 ≤ M(6,-0,) + >0 r -> o. o. Tr 1:m f &(3) d3 = i(e,-e,) Res(f,e). Example Compete I = pv f e'x dx. -P 3 -+ 0 - 3 P = C+ - Y - Tr + 8+  $0 = \int \frac{e^{i3}}{3} d3 = \int \frac{1}{3} \frac{e^{i3}}{3} d3 + \int \frac{e^{i3}}{3} d3 - \int \frac{e^{i3}}{3} d3$ + 5 = 3 23 Let p->oo, r->o+. Then 0 = lim { [= 18 x dex + [ e 18 x dex ] -lim 5 = 3 23 es pu seid = in lineid = in = pv [ = 11.