Learning Convolutional Neural Networks (1)

Qiyang Hu
UCLA Office of Advanced Research Computing
Feb 11, 2022

In this talk

bit.ly/LDL_repo

Image Data

- Popular image dataset
- Image preprocessing

01

CNN Basics

- Origins & ideas
- CNN mechanism

02

CNN Variants

03

- Conv as feature extractor
- De-conv, 3d conv, ...
- FCN and GCN

- CNN in pytorch
- Save/load pytorch model
- Setup of colab env

04

In this talk

Image Data • Popular image dataset • Image preprocessing O1 CNN Variants

Popular Datasets for Computer Vision Tasks

MNIST dataset of handwritten digits

Fashion MNIST dataset

CIFAR-10

IMAGENET

Microsoft COCO

ADE20K

Dogs vs. Cats Kaggle Challenge

- Redux: Kernels Edition
 - Submission scored by the probability of dogs using log loss

$$L = -rac{1}{n} \sum_{i=1}^n \Bigl[y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i) \Bigr]$$

- Dataset
 - Training set: 25,000 dogs and cats images
 - Testing set: 12,500 images
 - Images with different sizes
 - Neural network needs fixed sized input.
 - We will resize images to 150x150 pixels
 - Images are colored
 - Represented by Red-Green-Blue channels
 - One image \Rightarrow 150x150x3 matrices

Digitalization for Color Images

3-D Tensors

Image data conversion in PyTorch

- PIL to convert JPG to PIL Image
 - pil.Image.open(path).convert('RGB')

- Resize to the uniform sizes for all images
 - torchvision.transforms.Resize((150, 150))
- Convert to tensors:
 - torchvision.transforms.ToTensor()
 - Indexes $(H \times W \times C) \Rightarrow (C \times H \times W)$
 - Range $[0, 255] \Rightarrow [0.0, 1.0]$

Python Image Library (PIL)

- Pillow as newer versions
- Various image processing
- Per-pixel manipulations

Torchvision is a package for computer vision, containing:

- Popular datasets
- Model architectures
- Image transformations

Datasets and Data loading

- Defining the dataset class
 - Subclassing torch.utils.data.Dataset
 - PyTorch dataset object requires 2 methods:
 - __len__()
 - __getitem__()
 - Wrapping conversions in __getitem__()
- Loading the dataset with torch.utils.data.DataLoader
 - Batching the data
 - Shuffling the data
 - Loading the data in parallel using multiprocessing workers

For Image Classification Tasks

- Naive steps:
 - a. Matrices ⇒ Vectors
 - b. Fully connected (FC) networks
- Limitations for FC models
 - Not scale well with pixel numbers
 - 1024x1024 RGB image One 1024-feature hidden layer
 - → 3 billion parameters
 - → 12 GB ram for 32-bit floats
 - → Hard to fit in a GPU
 - Not translation-equivariant
 - Shifting 1 pixel → Re-learn!

In this talk

Image Data

- Popular image dataset
- Image preprocessing

01

CNN Basics

- Origins & ideas
- CNN mechanism

02

CNN Variants

- Conv as feature extractor
- De-conv, 3d conv, ...
- FCN and GCN

U3

Demo

- CNN in pytorch
- Save/load pytorch model
- Setup of colab env

Inspiration from Cognitive Neuroscience

Convolutional Neural Networks (CNNs)

- Origins in computer vision
 - Neocognitron: K. Fukushima (1980)
 - convolutional layers, and downsampling layers
 - Modern CNN: Yann LeCun et al. (1989)
 - backpropagation

Steps in CNNs:

Training by backpropagation

One Channel, One Filter

Image Matrix

$$0*0+0*-1+0*0$$

+0*-1+105*5+102*-1
+0*0+103*-1+99*0 = 320

Output Matrix

Convolution with horizontal and vertical strides = 1

Example Input Image

Identity Sharpen

Blur

Outline

Multiple Channels

Figure Source

Stacking Multiple Filters (Feature Maps)

Figures from Aurélien Géron's 1st Ed. Book

Figure Source

A Convolutional layer

A Convolution Layer

Figure Source

Pooling Layer

Figure Source

 Assuming downsampling will not lose the major information.

Figures from Aurélien Géron's 1st Ed. Book

Architecture of Convolutional Neural Networks

In this talk

Image Data

- Popular image dataset
- Image preprocessing

01

CNN Basics

- Origins & ideas
- CNN mechanism

02

CNN Variants

- Conv as feature extractor
- De-conv, 3d conv, ...
- FCN and GCN

03

Demo

- CNN in pytorch
- Save/load pytorch model
- Setup of colab env

<u>04</u>

Convolutional layers as feature extractors

Style Transfer Paper (2016)

Style transferred art image

Try it by yourself using <u>Lucent!</u>

Convolution and "Deconvolution": Autoencoder

3D Convolutions

Dilated Convolutions

Fully Convolutional Neural Networks (FCNs)

- From image classification to semantic segmentation
 - Per-pixel classifications
 - o CNN's fully connection layers:
 - throw away spatial coordinate
 - ~ applying an img-size kernel
- Ideas in <u>FCNs</u>
 - Convolutionalization
 - Upsampling by deconvolution
 - Skip layers
- Similar ideas and variants:
 - o R-FCN, Mask R-FCN, SSD, ...

Graph Convolutional Neural Networks

- From images to graphs
 - Images: a special grid graph
 - Vertex: Pixel; Edges: indirectly connected to 4 neighbors
 - o Graphs:
 - Embedding the info on both V + E
- Graph Neural Network:
 - o Input: (X, A), Latents: (H, A)
 - Predictions over nodes, graph, edges
- Graph Convolutional Neural Network:
 - Update with a symmetric normalisation on Adj Matrix
 - Popularized by Kipf & Welling, ICLR 2017
- MPNNs and GATs

In this talk

Image Data

- Popular image dataset
- Image preprocessing

01

CNN Basics

- Origins & ideas
- CNN mechanism

02

CNN Variants

- Conv as feature extractor
- De-conv, 3d conv, ...
- FCN and GCN

U3

Demo

- CNN in pytorch
- Save/load pytorch model
- Setup of colab env

04

Construct CNN architecture for Dogs-vs.-Cats Problem

4 Convolution layers:

torch.nn.Conv2d(in channels, out channels, kernel size, ...)

- \circ Input size: (N, C_{in}, H, W)
- Output size: $(N, C_{out}, H_{out}, W_{out})$
- Activation function: torch.nn.functional.relu(...)

MaxPooling layer:

torch.nn.max pool2d(...)

- Kernel size: 2
- Default: stride=None, padding=0, dilation=1
- Flattened layer
 - Manually flattening tensor by views
- Dense (linear) layer

torch.nn.Linear(in_features, out_features)

- o Units: 512 and 2
- Activation: 'relu' and 'softmax'

```
class CatAndDogNet(nn.Module):
   def __init__(self):
       super(). init ()
       self.conv1 = nn.Conv2d(in channels = 3, out channels = 32, kernel size=(3, 3))
       self.conv2 = nn.Conv2d(in channels = 32, out channels = 64, kernel size=(3, 3))
       self.conv3 = nn.Conv2d(in channels = 64, out channels = 128, kernel size=(3, 3))
       self.conv4 = nn.Conv2d(in channels = 128, out channels = 128, kernel size=(3, 3))
       self.fc1 = nn.Linear(in features= 128 * 7 * 7, out features=512)
       self.fc2 = nn.Linear(in features=512, out features=2)
   def forward(self, X):
    X = F.relu(self.conv1(X))
(148,148,32)
       X = F.max_pool2d(X, 2) (74.74.32)
       x = F.relu(self.conv2(X)) (72,72,64)
       x = F.max_{pool2d}(x, 2) (36,36,64)
       x = F.relu(self.conv3(x)) (34,34,128)
       X = F.max_pool2d(X, 2) (17,17,128)
       x = F.relu(self.conv4(x)) (15,15,128)
       X = F.max_{pool2d}(X, 2) (7.7.128)
       X = X.view(-1, self.num flat features(X)) 6272
       X = F.relu(self.fc1(X))
       X = self.fc2(X)
       return X
   def num flat features(self, x):
       size = x.size()[1:] # all dimensions except the batch dimension
       num features = 1
                           # Get the products
       for s in size:
           num features *= s
       return num features
```

Save and Load the model in PyTorch

- Need to save the trained model
 - Colab's active session time is limited.
 - Models can be re-used at user's end (e.g. browser with tf.js or phone with tf.lite)
- PyTorch 3 core functions:
 - o torch.sove: saves a serialized object to disk
 - torch.load: deserializes pickled object files to memory
 - o torch.nn.Module.load_state_dict: loads parameters using a deserialized state_dict
- Recommended usage (for inference):
 - torch.save(model.state_dict(), PATH)
 - model.load_state_dict(torch.load(PATH))
 - o model.eval()
- Saving & loading a checkpoint for resuming training (<u>link</u>)

Before running the colab demo in this workshop

- 1. Register a Kaggle account
 - Kaggle.com → "Register"
- 2. Create Kaggle API token and download json file
 - Sign in → Your Profile → "Account" → "Create New API Token"
- 3. Join the competition → "Join Competition"
 - <u>Dogs-vs-Cats Challenge</u>

Colab Hands-on

bit.ly/LDL_cnn1

Questions to think about:

- How can we improve the performance of our CNNs model?
- Should we have to start from the scratch?
- Any guidelines to design a CNN model?
 - Kernel size? Channel number? Layer number?
- What's the latest development of CNNs?

See you next Friday!

Survey

bit.ly/survey_cnn1