

Universidad de Buenos Aires

FACULTAD DE INGENIERÍA

1ER CUATRIMESTRE DE 2025

 $[75.12 \ / \ 95.04]$ Análisis Numérico - Curso Sassano

Ecuaciones Diferenciales Bico de Pato

Integrantes:	Padrón:
Apellido, Nombre <mail></mail>	padrón
Observaciones:	

9 de junio de 2025

${\bf \acute{I}ndice}$

1.	Introduccion	2
2.	Enunciado	3
3.	Detallles técnicos	4
	3.1. Nuestro sector de interés	4
	3.2 Estableciendo las reglas del juego	4

1. Introduccion

Se deasea realizar el intento de ayudar a Franco Colapinto a mejorar sus vueltas para el Gran Premio de Brasil, Interglagos.

Para eso vamos a modelar la trayectoria que se realiza durante un determinado sector de la carrera, el sector es el llamado **Bico de Pato**.

A fines prácticos de este trabajo la complejidad del mismo se reduce, es decir no vamos a contemplar cuestiones de aerodinámias, peraltes, desgastes de neumáticos, consumo de combustible entre otras cosas.

Para comenzar, podemos modelar la trayectoria del auto de Franco posee en las curvas a través de la siguiente ecuación diferencial:

$$\ddot{\theta} + \frac{\hat{g}}{r}\sin(\theta) = 0 \tag{1.1}$$

Donde θ es el ángulo, $\ddot{\theta}$ es la aceleración ángular, r el radio de la curva, \hat{g} es un valor que debemos cuidar, dado que pretendemos que no supere el valor de 6 veces la gravedad $g = 9.81 \text{m/s}^2$.

Por otro lado, vamos a modelar la trayectoria que el auto de Franco posee en las rectas a través de la siguiente ecuación diferencial:

$$\ddot{x} - \frac{F_{(t)}}{m} = 0 ag{1.2}$$

Donde $F_{(t)}$ representa la fuerza que puede ejercer el motor o los frenos, m es la masa del auto más el piloto 800kg y \ddot{x} es la aceleración, la cuál una vez más debe respetar el límite ya mencionado.

Es importante resaltar que solo los pilotos de Formula 1 están entrenados para poder soportar dichas fuerzas en las curvas, en el caso que ese umbral se vea superado el piloto puede sufrir perdidas de conocimiento y de ese modo no poder controlar el auto, siendo así algo de suma delicadeza.

2. Enunciado

- 1. Desarrolle un código que permita resolver por el método de Runge-Kutta 4 la ecuación diferencial ordinaria a valores iniciales de la trayectoria.
- 2. Diseñe una trayectoria para que el auto de Franco pueda realizar el sector de la carrera deaseada. Puede estar compuesta de 1 tramo recto, 2 curvas y 1 recta final, puede ser 1 recta, 1 curva, 1 recta, 1 curva y una recta final, o puede ser la combinación que uno crea correspondiente. Las reglas impuestas por los modelos ya presentados es que no puede frenar o acelerar sobre una curva, cada trayecto individual tiene que encadenarse perfectamente con el siguiente, o sea, no puede haber una discontinuidad ni en posición, velocidad o aceleración. ¹
- 3. Usando el código, simule tantas trayectorias como crea correspondiente hasta hallar la que más le resulte, es decir, que cree que minimiza el tiempo del sector.
- 4. Graficar la posición, velocidad y aceleración en función del tiempo, dejando bien claras las limitaciones establecidas, para posición los límites de la pista, para aceleración los límites establecidos.

Figura 2.1

¹https://www.youtube.com/watch?v=_fVkWFXY3Gk

3. Detalles técnicos

3.1. Nuestro sector de interés

Figura 3.1

3.2. Estableciendo las reglas del juego

No está permitido salir de la pista para reducir el tiempo.

Si van lo suficientemente lento para no sufrir ningún valor elevado de aceleración y el desarrollo es correcto el trabajo estaría aprobado.

No se puede superar 6 veces la aceleración $g = 9.81 \text{m/s}^2$.

La velocidad inicial al t=0s puede ser considerada como máximo en $180\frac{\text{km}}{\text{h}}$.

La posición inicial dentro de la recta marcada en verde puede ser la que desee.

Para que el trabajo sea más simple el auto no va a tener ancho, eso quiere decir que puede ir sobre la línea y no se considera como si hubiese salido de la pista.

Dentro del sector en cuestion, se muestra a continuacion su gráfico.

Figura 3.2 – Bico de Pato, cuadratura 5 en 5

Un gráfico más detallado.

Figura 3.3 – Bico de Pato, cuadratura 2 en 2