Интерполяционный многочлен Лагранжа

- 1. Дан набор пар $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$, где все x_i попарно различные. Докажите, что существует единственный многочлен $f \in \mathbb{R}[x]$ степени не более n такой, что $f(x_i) = y_i$ при всех i от 0 до n и этот многочлен задаётся формулой $f(x) = \sum_{i=0}^n y_i \prod_{j \neq i} \frac{x x_j}{x_i x_j}$.
- **2.** У некоторого многочлена не все коэффициенты рациональные. Может ли он принимать во всех рациональных точках рациональные значения?
- 3. Докажите, что если многочлен f(x) степени n принимает целые значения в точках $0, 1, \ldots, n$, то он принимает целые значения во всех целых точках.
- **4.** Пусть $\deg P \leq n$ и **a**) $P(i) = 2^i$; **b**) $P(i) = (i+1)^{-1}$ при всех целых i от 0 до n. Найдите P(n+1).
- **5.** Пусть $\deg P = 2n$ и P(k) = P(-k) для всех целых k от 0 до n. Докажите, что P(x) чётная функция.
- **6.** Целые числа $a_1,\,a_2,\,\dots,\,a_n$ попарно различные. Докажите, что $\sum\limits_{i=1}^n a_i^k/\prod\limits_{j\neq i} (a_i-a_j)\in\mathbb{Z}$ для любого $k\in\mathbb{N}.$
- 7. Пусть x_1, x_2, \ldots, x_n попарно различные действительные числа. Докажите, что значение выражения $\sum_{i=1}^n \prod_{j \neq i} \frac{1-x_i x_j}{x_i-x_j}$ равно остатку от деления n на 2.
- 8. Пусть $f(x), g(x) \in \mathbb{R}[x]$. На координатной плоскости отметили точки $A_1\big(f(1);g(1)\big), A_2\big(f(2),g(2)\big), \ldots, A_n\big(f(n),g(n)\big)$. Оказалось, что $A_1A_2\ldots A_n$ правильный n-угольник. Докажите, что степень хотя бы одного из многочленов f и g не меньше чем n-1.