02. Network Data Model

GE3238 GIS Design and Practices
Geography@NUS
Chen-Chieh FENG

1

1

Learning Objectives

- Network as a broad concept underpinning mobility, social network, hydrologic applications
- What is the underlying model that enables finding, e.g. shortest path, and give directions?
 - You should already know where point, line, and polygon can be applied
- What is a network dataset in Esri's Geodatabase and how to build a simple/basic network dataset?

2

Examples of Network

Key terms

Network

3

3

Data Model

 Everyone has a mental model of reality or a problem, be it sophisticated or basic Key terms

Mental model
Data model

 Data models help <u>make explicit</u> and scaffold our mental models as we use information technology to solve complex problems

4

Spatial Data Model

- A collective term for the process of identifying all the design elements used in the construction of a GIS
- What are the primitive entities?
 - What are the permitted relations between entities?
 - What are the properties of an entity?
 - How do we enforce constraints to avoid problems in the database?

Key terms

Spatial data model Entity Property Relation between entities

5

5

Spatial Data Model? Rugo Cresent Rugo Cresent Acar Rugo Cresent Ac

Basic Elements 0: Primitive Entities

- Node
 - A node refers to the end point of a link
- Link (or edge)
 - A link refers to a road segment defined by two end points

Key terms

Primitive Node Link

7

7

Basic Element 3a: Link Impedance

- The cost of traversing a link
 - Length of a link?
 - Traveling speed?

Key terms

Forms of cost Edge or link

11

11

Basic Element 3b: Junction Impedance

Node#	Arc1#	Arc2#	Angle	Minutes
341	503	467	90	0.500
341	503	466	0	0.250
341	503	465	-90	0.250
341	467	503	-90	0.250
341	467	466	90	0.500
341	467	465	0	0.250
341	466	503	0	0.250
341	466	467	-90	0.250
341	466	465	90	0.500
341	465	503	90	0.500
341	465	467	0	0.250
341	465	466	-90	0.250

Key terms

Cost Junction

12

Node#	Arc1#	Arc2#	Angle	Minutes
341	503	467	90	0.500
341	503	466	0	0.250
341	503	465	-90	0.250
341	467	503	-90	0.250
341	467	466	90	0.500
341	467	465	0	0.250
341	466	503	0	0.250
341	466	467	-90	0.250
341	466	465	90	0.500
341	465	503	90	0.500
341	465	467	0	0.250
341	465	466	-90	0.250

Node#	Arc1#	Arc2#	Angle	Minutes
265	339	342	-87.412	0.000
265	339	340	92.065	0.000
265	339	385	7.899	0.000
265	342	339	87.412	0.500
265	342	340	-0.523	0.250
265	342	385	-84.689	0.250
265	340	339	-92.065	0.250
265	340	342	0.523	0.250
265	340	385	95.834	0.500
265	385	339	-7.899	0.000
265	385	342	84.689	0.000
265	385	340	-95.834	0.000

17

Side note

 There is a more powerful tool for turns in Geodatabase – turn feature class

https://pro.arcgis.com/en/proapp/latest/help/analysis/networks/turns-in-thenetwork-dataset.htm

18

Enabler: Network Dataset (xx_ND)

- Practically (and historically)
 - ArcGIS was a vector-based system, and
 - this means that it started with point, line, and polygon, all in 2D space
 - That is, no notion of connectivity involved
- Conceptually?

21

21

Putting Together a Network

Points and lines → nodes and edges

- Gathering linear features

Building topology

Adding attributes

-

Key terms

Workflow Data sources

(See also the supplement slides)

22

Summary

- What we just did and what are the take home message?
 - Scratched the surface of a specific data model for navigation related applications
 - The physical model is based on Esri's native Geodatabase model
 - Geodatabase (the chosen physical model) accommodates a specific logical model (network dataset) for navigation applications; NUSRoad ND can be considered at this level
 - Several tools from GE2215 are leveraged for ascertain data quality (e.g., topology checking and projection conversion)
 - The logical model is an implementation of the conceptual model that describes a simplified real world

25

25

SUPPLEMENT SLIDES

(SEE IN-CLASS DEMO)

The data used in the demo is in week02-demo on Canvas

OSM Data

- https://osmtoday.com/asia/singapore.html (last accessed 21 Jan 2025, native format: pbf)
- https://download.geof abrik.de/asia/malaysi a-singaporebrunei.html

(last accessed 21 Jan 2025, native format: pbf, but Shapefile also available)

27

OSM Data, zoom to NUS only

Data-rich environment

- What kinds of roads?
- Do we need all "roads" for [a stated purpose]

(navigation in this case)?

Semimajor Axis

Semiminor Axis

Domain, Resolution and Tolerance

6378137.0 6356752.314245179

298.257223563

OK Cancel

related?

33

Network Dataset – CONNECTIVITY matters From GE2215, topology checking in ArcGIS Pro Remember what is a feature dataset? Why is feature dataset being brought up here?

Network Dataset - CONNECTIVITY matters

Network dataset is an option/tool under feature dataset

35

Network Dataset - CONNECTIVITY matters

Network dataset is an option/tool under feature dataset

Create network dataset with a random name NUS ND

Elevation is not about height above mean sea level, but for over- or underpasses

Network Dataset – CONNECTIVITY matters Creating a network dataset

Dirty area created by creating the network dataset

37

