TD1: RAPPEL DES LIMITES

Exercice 1. On considère une suite de polynômes $(f_n)_{n\in\mathbb{N}}\in\mathbb{Q}[t]^{\mathbb{N}}$ definie par $f_0(t)=1$ et $f_n(t)=\frac{t\ (t-1)\cdots(t-n+1)}{n!}$ et un operateur $\Delta:\mathbb{C}[t]\to\mathbb{C}[t]$ sur polynômes defini par $(\Delta f)(t)=f(t+1)-f(t)$ pour tout polynôme f. On remarque que $\Delta f_0=0$ et $\Delta f_{n+1}=f_n$ pour $n\in\mathbb{N}$.

- 1. Montrer que pour tout entier $d \in \mathbb{N}$ et polynôme $f \in \mathbb{C}[t]$ de degré $\leq d$, il existe a_0 , a_1, \dots, a_d tel que $f = \sum_{k=0}^d a_k f_k$. De plus, $a_k = (\Delta^k f)(0)$ pour $k = 0, \dots, d$.
- 2. Calculer $\sum_{j=0}^{n} f_k(j)$ pour tout entier $n, k \in \mathbb{N}$.
- 3. En déduire la valeur de $\sum_{j=0}^{n} f(j)$ pour tout polynôme $f \in \mathbb{C}[t]$ en termes des $(\Delta^k f)(0)$ pour $k \in \mathbb{N}$. Écrire explicitement la valuer de $\sum_{j=0}^{n} j^2$ et $\sum_{j=0}^{n} j^3$.
- 4. Soient $z \in \mathbb{C}$ et $f \in \mathbb{C}[t]$. Étudier la convergence de $\sum_{j=0}^{n} f(j) z^{j}$ quand $n \to \infty$ sans calculer la valeur.
- 5. Calculer le polynôme $\sum_{j=0}^{n} f_k(j) u^{j-k} \in \mathbb{Q}[u]$ pour $n, k \in \mathbb{N}$. On remarque que $f_k(j) = 0$ quand j < k. [Indication: considerons l'identité $\sum_{j=0}^{n} u^j = (u^{n+1} 1)/(u 1)$ et prenons les dérivées itérées.]
- 6. En déduire la valeur de $\sum_{j=0}^{n} f(j) z^{j}$ pour $z \in \mathbb{C}$ et polynôme $f \in \mathbb{C}[t]$ en termes des $(\Delta^{k} f)(0)$ pour $k \in \mathbb{N}$. Écrire explicitement la valuer de $\sum_{j=0}^{n} j z^{j}$.
- 7. De la même façon, calculer $\sum_{j=0}^{n} f(j) \binom{n}{j}$ pour $f \in \mathbb{C}[t]$. Écrire explicitement les valeurs de $\sum_{j=0}^{n} \binom{n}{j}$, $\sum_{j=0}^{n} j \binom{n}{j}$ et $\sum_{j=0}^{n} j^2 \binom{n}{j}$.

Solution.

Pour montrer que $a_k = (\Delta^k f)(0)$, on prend Δ^k sur l'égalité $f = \sum_{j=0}^d a_j f_j$ et évalue au point 0. Remarquons que $f_k(0) = 0$ quand k > 0 et $\Delta^k f_j = f_{j-k}$ où on note $f_k = 0$ quand k < 0.

2.
$$\sum_{j=0}^{n} f_k(j) = \sum_{j=0}^{n} (f_{k+1}(j+1) - f_{k+1}(j)) = f_{k+1}(n+1) - f_{k+1}(0) = f_{k+1}(n+1)$$
.

3. $\sum_{j=0}^{n} f(j) = \sum_{j=0}^{n} \sum_{k=0}^{d} (\Delta^{k} f)(0) f_{k}(j) = \sum_{k=0}^{d} (\Delta^{k} f)(0) f_{k+1}(n+1)$. Quand $f(t) = t^{2}$ et $f(t) = t^{3}$ respectivement, on calcule $\Delta^{k} f$ par tableaux

t =	0	1	2	3
$f(t) = t^2$	0	1	4	9
$(\Delta f)(t) =$	1	3	5	• • •
$(\Delta^2 f)(t) =$	2	2	•••	

t =	0	1	2	3	4
$f(t) = t^3$	0	1	8	27	64
$(\Delta f)(t) =$	1	7	19	37	•••
$(\Delta^2 f)(t) =$	6	12	18	•••	
$(\Delta^3 f)(t) =$	6	6	•••		

Donc

$$\sum_{i=0}^{n} j^{2} = f_{2}(n+1) + 2 f_{3}(n+1) = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=0}^{n} j^{3} = f_{2}(n+1) + 6 f_{3}(n+1) + 6 f_{4}(n+1) = \frac{n^{2}(n+1)^{2}}{4}$$

4. Si $|z| \ge 1$ et $f \ne 0$, $f(n)z^n$ ne converge pas à 0 quand $n \to \infty$ donc $\sum_{j=0}^n f(j)z^j$ diverge. Si |z| < 1, on pose $\alpha = (1+|z|)/2$ alors

$$\left| \frac{f(n) z^n}{\alpha^n} \right| = |f(n)| \left| \frac{z}{\alpha} \right|^n \to 0$$

Alors il existe $N \in \mathbb{N}$ tel que quand n > N, on a $|f(n)z^n| \le \alpha^n$. Par conséquence, pour $n \ge m > N$, on a $|\sum_{j=m}^n f(j)z^j| \le \sum_{j=m}^n \alpha^j \le \alpha^m/(1-\alpha) \to 0$ quand $m \to \infty$, donc la suite $(\sum_{j=1}^n f(j)z^j)_{n \in \mathbb{N}}$ est de Cauchy alors converge.

5.

$$\sum_{j=0}^{n} f_k(j) u^{j-k} = \frac{1}{k!} \left(\frac{\mathrm{d}}{\mathrm{d}u} \right)^k \left(\sum_{j=0}^{n} u^j \right) = \frac{1}{k!} \left(\frac{\mathrm{d}}{\mathrm{d}u} \right)^k \frac{u^{n+1} - 1}{u - 1}$$

6. On a déjà calculé la somme quand z=1. Supposons que $z\neq 1$ et notons que $d=\deg f$.

$$\sum_{j=0}^{n} f(j) z^{j} = \sum_{j=0}^{n} \sum_{k=0}^{d} (\Delta^{k} f)(0) f_{k}(j) z^{j} = \sum_{k=0}^{d} \frac{(\Delta^{k} f)(0)}{k!} z^{k} \left(\frac{\mathrm{d}}{\mathrm{d}z}\right)^{k} \frac{z^{n+1} - 1}{z - 1}$$

Quand f(t) = t, on a

$$\sum_{j=0}^{n} j z^{j} = \frac{n z^{n+1} - (n+1) z^{n} + 1}{(z-1)^{2}} z^{n}$$

7. On considère le polynôme en u:

$$\sum_{j=0}^{n} f_k(j) \binom{n}{j} u^{j-k} = \sum_{j=k}^{n} f_k(j) \binom{n}{j} u^{j-k} = \frac{1}{k!} f_k(n) \sum_{j=0}^{n} \binom{n-k}{j} u^j = f_k(n) (1+u)^{n-k}$$

Alors

$$\sum_{j=0}^{n} f(j) \binom{n}{j} u^{j} = \sum_{j=0}^{n} \sum_{k=0}^{d} (\Delta^{k} f)(0) f_{k}(j) \binom{n}{j} u^{j} = \sum_{k=0}^{d} \frac{(\Delta^{k} f)(0)}{k!} u^{k} f_{k}(n) (1+u)^{n-k}$$

Quand $f(t) = 1, t, t^2$ respectivement, on a $\sum_{j=0}^{n} {n \choose j} u^j = (1+u)^n$, $\sum_{j=0}^{n} j {n \choose j} u^j = n u (1+u)^{n-1}$ et $\sum_{j=0}^{n} j^2 {n \choose j} u^j = n u (1+u)^{n-1} + n (n-1) u^2 (1+u)^{n-2}$.

Exercice 2. Déterminer des limites des fonctions suivantes:

1.
$$\frac{\sin 3x}{\sin 5x}$$
 en $x=0$,

2.
$$\frac{\sqrt{x+1} - \sqrt{x^2+1}}{x}$$
 en $x = 0$,

3.
$$u_n = \left(1 + \frac{1}{n}\right)^n$$
 quand $n \to \infty$,

4.
$$u_n = \left(1 + \frac{1}{n^2}\right)^n$$
 quand $n \to \infty$,

5. $v_n = (d^{-1} \sum_{k=1}^d x_k^{1/n})^n$ quand $n \to \infty$, où les x_k sont des réels strictement positifs.

Solution.

- 1. On remarque que $\sin x \sim x$ quand $x \to 0$, donc $\lim_{x\to 0} \sin(3x)/\sin(5x) = 3/5$.
- 2. Deux approches:

•
$$\frac{\sqrt{x+1} - \sqrt{x^2+1}}{x} = \frac{1-x}{\sqrt{x+1} + \sqrt{x^2+1}} \to \frac{1}{2}$$
 quand $x \to 0$,

•
$$\frac{\sqrt{x+1} - \sqrt{x^2+1}}{x} = \frac{\left(1 + \frac{1}{2}x + O(x^2)\right) - (1 + O(x^2))}{x} = \frac{1}{2} + O(x)$$

- 3. $(1+n^{-1})^n \to \exp(1)$,
- 4. $(1+n^{-2})^n = ((1+1/n^2)^{n^2})^{1/n} \to \exp(0) = 1$,
- 5. On remarque que pour tout constant $\alpha > 0$, on a $\alpha^{1/n} = \exp(n^{-1}\log \alpha) = 1 + n^{-1}\ln \alpha + O(n^{-2})$ quand $n \to \infty$, donc $(d^{-1}\sum_{k=1}^d x_k^{1/n})^n = \exp(n\ln(1+(nd)^{-1}\sum_{k=1}^d \ln x_k + O(n^{-2}))) = \exp(n((nd)^{-1}\sum_{k=1}^d \ln x_k + O(n^{-2}))) = \exp(\ln(x_1 \cdots x_d)^{1/d} + O(n^{-1})) = (x_1 \cdots x_d)^{1/d} + O(n^{-1}).$

Exercice 3. Pour tout entier $n \in \mathbb{N}^*$, on définit $u_n = \sum_{k=0}^n 1/k!$ et $v_n = 1/(n \cdot n!) + \sum_{k=0}^n 1/k!$.

- 1. Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes,
- 2. On note e leur limite commune. Montrer que $e \notin \mathbb{Q}$.

Solution.

- 1. Évidemment la suite (u_n) est croissante. $v_{n+1} v_n = 1/((n+1)\cdot(n+1)!) + 1/(n+1)! 1/(n\cdot n!) = -1/(n(n+1)\cdot(n+1)!) < 0$ et $v_n u_n = 1/(n\cdot n!) \to 0$ quand $n \to \infty$.
- 2. Pour tout $n \in \mathbb{N}^*$, on a $u_n < u_{n+1} \le e \le v_{n+1} < v_n$, donc $n! u_n < n! e < n! v_n = n! u_n + 1/n \le n! u_n + 1$. D'autant que $n! u_n \in \mathbb{Z}$, on a $n! e \notin \mathbb{Z}$. Par conséquence, $e \notin \mathbb{Q}$.

Exercice 4. Soient $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ une suite des réels telle que $\lim_{n\to\infty}(a_{n+1}-a_n)=0$ et $l\leq L$ deux valeurs d'adhérence de la suite (a_n) . Montrer que pour tout $v\in[l,L]$, v est une valeur d'adhérence de la suite (a_n) .

Solution. Si v = l ou v = L, l'énoncé est évident. On suppose que l < v < L. Pour tout réel positif $\varepsilon < \min \{v - l, L - v\}/2$ et tout entier $N \in \mathbb{N}$, on va montrer qu'il existe un entier $n \ge N$ tel que $|a_n - v| < \varepsilon$. On prend un entier $N' \ge N$ tel que pour tout $n \ge N'$, on a $|a_{n+1} - a_n| < \varepsilon$. D'autant que l, L sont les valeurs d'adhérence, on peut choisir deux entiers $q > p \ge N'$ tel que $|a_p - l| < \varepsilon < v - l$ et $|a_q - L| < \varepsilon < L - v$, alors $a_p < v < a_q$. On choisit n l'entier maximal tel que $p \le n < q$ et que $a_n \le v$, alors $a_{n+1} > v$. Donc $\varepsilon > a_{n+1} - a_n > v - a_n$.

Exercice 5. Soient $f:[0,1] \to [0,1]$ une fonction continue et $x \in [0,1]$. On définit une suite $(a_n)_{n \in \mathbb{N}}$ par $a_0 = x$ et $a_{n+1} = f(a_n)$. Montrer que la suite (a_n) converge si et seulement si $\lim_{n \to \infty} (a_{n+1} - a_n) = 0$.

Solution. On suppose que $\lim_{n\to\infty} (a_{n+1}-a_n)=0$, et on va montrer que la suite (a_n) converge. On note l la limite inférieure et L la limite supérieure de la suite (a_n) . Remarquons que $0 \le l \le L \le 1$. Il suffit de montre que l=L. On montre par l'absurde. Si l < L, par l'exercice précédente, pour tout $v \in [l, L]$, v serait une valeur d'adhérence, alors il existerait une sous-suite $(a_{n_k})_{k\in\mathbb{N}}$ qui convergerait à v, et alors $a_{n_k+1}=a_{n_k}+(a_{n_k+1}-a_{n_k})\to v$ quand $k\to\infty$. D'autant que $a_{n_k+1}=f(a_{n_k})$ et que la fonction f est continue, v=f(v) pour tout $v\in [l,L]$. On prendrait $\varepsilon=(L-l)/4$, et d'autant que (l+L)/2 serait une valeur d'adhérence, il existerait un entier n tel que $|a_n-(l+L)/2|<\varepsilon$, et alors $a_n=f(a_n)=a_{n+1}=f(a_{n+1})=a_{n+2}=\cdots$, alors (a_n) convergerait, ce serait absurde.

Exercice 6. Calculer les intégrales suivantes:

1.
$$\int_{1}^{2} \frac{x+1}{x^2+x+1} dx$$
,

$$2. \int_2^3 \cos(x) \exp(x) \, \mathrm{d}x,$$

3.
$$\int_{\pi/6}^{\pi/2} \cos(x) \sin(x)^{-2} dx$$
,

4.
$$\int_2^3 (x^2 + 2x) \exp(x) dx$$
.

Solution.

1.
$$\frac{x+1}{x^2+x+1} = \frac{(x+1/2)+1/2}{(x+1/2)^2+3/4} = \frac{y}{y^2+3/4} + \frac{1}{2(y^2+3/4)} \text{ où } y = x+1/2.$$

$$\int_{3/2}^{5/2} \frac{y \, \mathrm{d} y}{y^2+3/4} = \frac{1}{2} \int_I \frac{\mathrm{d}(y^2+3/4)}{y^2+3/4} = \frac{1}{2} \int_3^7 \frac{\mathrm{d} t}{t} = (\ln 7 - \ln 3)/2,$$

$$\int_{3/2}^{5/2} \frac{\mathrm{d} y}{2(y^2+3/4)} = \pi/\sqrt{3} - \sqrt{3} \arctan(5/\sqrt{3})$$

2.
$$I := \int_2^3 \cos(x) \exp(x) dx = \sin(x) \exp(x)|_{x=2}^3 + \int_2^3 -\sin(x) \exp(x) dx = (\sin(x) + \cos(x)) \exp(x)|_{x=2}^3 - I$$

Donc
$$I = \frac{1}{2}(\sin(x) + \cos(x)) \exp(x)|_{x=2}^{3}$$
,

3.
$$\int_{\pi/6}^{\pi/2} \cos(x) \sin(x)^{-2} dx = \int_{I} \sin(x)^{-2} d\sin(x) = \int_{1/2}^{1} t^{-2} dt = 1$$
,

4.
$$\int_{2}^{3} (x^{2} + 2x) \exp(x) dx = (x^{2} + 2x) \exp(x)|_{x=2}^{3} - 2x \exp(x)|_{x=2}^{3} + 2 \exp(x)|_{x=2}^{3} = 9 \exp(3) - 4 \exp(2).$$

Exercice 7. Soit $f: \mathbb{R}_{>0} \to \mathbb{R}$ une fonction continue et pour tout $x \in \mathbb{R}_{>0}$, on a $\lim_{n \to \infty} f(nx) = 0$. Montrer que $\lim_{x \to +\infty} f(x) = 0$. [Indication: pour tout $\varepsilon > 0$, montrer qu'il existe un intervalle ouvert (non-vide et fini) $I \subseteq [1, 2]$ et un entier N > 0 tels que pour tout $x \in I$ et $n \geq N$, on a $|f(nx)| \leq \varepsilon$.]

Solution. Pour tout $\varepsilon > 0$, le but est de montrer qu'il existe $\Delta > 0$ tel que pour tout $x > \Delta$, on a $|f(x)| \le \varepsilon$.

On commence par un lemme

Lemme 1. Il existe un intervalle ouvert (non-vide et fini) $I \subseteq [1,2]$ et un entier N > 0 tels que pour tout $x \in I$ et $n \ge N$, on a $|f(nx)| \le \varepsilon$.

Démonstration. On raisonne par l'absurde. On note E_N l'ensemble des réels x > 0 tels qu'il existe un entier $n \ge N$ tel que $|f(nx)| > \varepsilon$. D'autant que la fonction f est continue, l'ensemble E_N est ouvert. Par ce que l'on a supposé, pour tout invervalle ouvert (non-vide) $I \subseteq [1, 2]$ et tout entier $N, I \cap E_N \ne \emptyset$. On fixe I_0 un intervelle ouvert (non-vide) tel que $I_0 \subseteq \bar{I}_0 \subseteq E_0$. On peut alors construire par récurrence une suite décroissante des intervalles ouverts (non-vides) $(I_n)_{n\in\mathbb{N}}$ telle que $I_n \subseteq \bar{I}_n \subseteq E_n \cap I_{n-1}$. Ensuite, pour tout n, on choisit un point $x_n \in I_n$. Par le théorème de Bolzano-Weierstrass, la suite $(x_n)_{n\in\mathbb{N}} \in [1,2]^{\mathbb{N}}$ admet une valeur d'adhérence $x \in [1,2]$. De plus, pour tout $n \in \mathbb{N}$ et $m \ge n$, on a $x_m \in I_m \subseteq \bar{I}_n$, donc $x \in \bar{I}_n$. Par conséquence, $x \in \bigcap_{n=0}^{\infty} \overline{I_{n+1}} \subseteq \bigcap_{n=0}^{\infty} I_n \subseteq \bigcap_{n=0}^{\infty} E_n$, qui entraine que pour tout entier N, il existe un untier $n \ge N$ tel que $|f(nx)| > \varepsilon$. C'est absurde parce que $\lim_{n\to\infty} f(nx) = 0$.

Par ce lemme, on peux choisir un intervalle ouvert]a,b[et un entier N>0 tels que pour tout $x \in I$ et $n \ge N$, on a $|f(nx)| \le \varepsilon$. On choisit un entier $M \ge N$ tel que a(M+1) < bM. Alors $\{n \mid n \ge N, x \in I\} \supseteq [a(M+1), +\infty[$. On prend $\Delta = a(M+1)$.