TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2023

Adjusting Generation

Temperature and Guidance

Temperature-Adjusted Generation

Training:
$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{(x,y) \sim \operatorname{Pop}}[-\ln P_{\Phi}(y|x)]$$

$$P_{\Phi}(y|x) = \underset{y}{\operatorname{softmax}} e^{s_{\Phi}(y|x)}$$

Generation:
$$P_{\Phi}^{\beta}(y|x) = \operatorname{softmax} e^{\beta s_{\Phi}(y|x)} \propto P_{\Phi}(y)^{\beta}$$

In language translation we take $\beta = \infty$ (softmax \Rightarrow argmax).

In language generation from an LLM we take $\beta > 1$.

Temperature Adjusted Generation for Language

In practice we use

$$P_{\Phi}^{\beta}(y_{i+1} \mid y_1, \dots, y_i) = \operatorname{softmax} \beta s_{\Phi}(y_{i+1} \mid y_1, \dots, y_i)$$
$$\propto P_{\Phi}(y_{i+1} \mid y_1, \dots, y_i)^{\beta}$$

This is different from

$$P_{\Phi}^{\beta}(y_1,\ldots,y_N) \propto P_{\Phi}(y_1,\ldots,y_N)^{\beta}$$

Temperature-Adjusted Generation for Language

For language generation $\beta = 1$ tends to yield rambling and incoherent text.

On the other hand $\beta = \infty$ generates repetition.

We look for a Goldilocks β .

An alternative to temperature-adjusted generation is top-P sampling, also called nucleus sampling, which is similar in structure and performance.

There is a literature on generation adjustment for language.

Temperature-Adjusted Reverse-Diffusion

$$z(t - \Delta t) = z(t) + \left(\frac{\hat{E}_{\Phi}[y|t, z(t)] - z(t)}{t}\right) \Delta t + \epsilon \sqrt{\frac{\Delta t}{\beta}}$$

$$t' = t/\beta$$

$$z(t' - \Delta t') = z(t') + \beta \left(\frac{\hat{E}_{\Phi}[y|t', z(t')] - z(t')}{t'} \right) \Delta t' + \epsilon \sqrt{\Delta t'}$$

As with language generation, this is not the same as $P_{\Phi}^{\beta}(y) \propto P_{\Phi}(y)^{\beta}$

Classifier-Guidance

Diffusion Models Beat GANs on Image Synthesis Dharwali and Nichol, May 2021

For imagenet class-conditional image generation $P_{\Psi}(y|x)$ they utilize an imagenet classification model $P_{\Psi}(x|y)$.

They train a diffusion model for unconditional imagenet generation $P_{\Phi}(y)$.

They note that

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)} \propto P(y)P(x|y)$$

Classifier-Guidance

For generation they modify the reverse-diffusion process so as to intuitively approximate

$$P_{\Phi,\Psi}^{\gamma}(y|x) = \operatorname{softmax}_{y} s_{\Phi}(y) + \gamma s_{\Psi}(x|y)$$

 γ is called the strength of the guidance.

$$z(t - \Delta t) = z(t) + \beta \left(\frac{\hat{E}_{\Phi}[y|t, z(t)] + -z(t)}{t} + \gamma s_{\Psi}(x|y) \right) \Delta t + \epsilon \sqrt{\Delta t}$$

I have included β as a parameter because the relative size of the linear drift and noise is a natural parameter of reverse-diffusion.

Classifier-Guidance

$$z(t-\Delta t) = z(t) + \beta \left(\frac{\hat{E}_{\Phi}[y|t,z(t)] - z(t)}{t} + \gamma s_{\Psi}(x|z(t))\right) \Delta t + \epsilon \sqrt{\Delta t}$$

Note that this uses an **unconditional** model $P_{\Phi}(y)$ implicitly defined by $\hat{E}_{\Phi}[y|t,z(t)]$.

This is different from, but motivated by,

$$P_{\Phi,\Psi}^{\beta,\gamma}(y|x) \propto P_{\Phi}(y)^{\beta} P_{\Psi}(x|y)^{\beta+\gamma}$$

Conditional Diffusion Models

 $P_{\Phi}(y \mid \text{panda bear chemist})$

panda mad scientist mixing sparkling chemicals, artstation

Train $\hat{E}_{\Phi}[y|t,z(t),\textbf{x}]$

Classifier-Free Guidance (Self-Guidance)

Classifier-Free Diffusion Guidance Ho and Salimans, December 2021 (NeurIPS workshop)

Training:
$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{(x,y) \sim \operatorname{Pop}}[-\ln P_{\Phi}(y|x)]$$

$$P_{\Phi}(y|x) = \underset{y}{\operatorname{softmax}} e^{s_{\Phi}(y|x)}$$

We introduce a special x-value \emptyset and arrange that

$$Pop(y|\emptyset) = Pop(y).$$

They modify the reverse-diffusion process to intuitively approximate

$$P_{\Phi}^{\beta}(y|x) = \operatorname{softmax} e^{\beta(s_{\Phi}(y|x) - (1 - 1/\beta)s_{\Phi}(y|\emptyset))}, \quad \beta \ge 1$$

For $\beta = 1$ we have no adjustment.

$$P_{\Phi}^{1}(y|x) = \operatorname{softmax} e^{s_{\Phi}(y|x)}$$

For $\beta >> 1$ (used in practice) we have.

$$P_{\Phi}^{\beta}(y|x) \approx \operatorname{softmax} e^{\beta(s_{\Phi}(y|x) - s_{\Phi}(y|\emptyset))}$$

$$P_{\Phi}^{\beta}(y|x) = \operatorname{softmax} e^{\beta(s_{\Phi}(y|x) - s_{\Phi}(y|\emptyset))} \quad \propto \quad \left(\frac{P_{\Phi}(y|x)}{P_{\Phi}(y|\emptyset)}\right)^{\beta}$$

$$z(t - \Delta t) = z(t) + \left(\frac{\beta(\hat{E}_{\Phi}[y|t, z(t), x] - \hat{E}_{\Phi}[y|t, z(t), \emptyset]) - z_t}{t}\right) \Delta t + \epsilon \sqrt{\Delta t}$$

$$P_{\Phi}^{\beta}(y|x) \propto \left(\frac{P_{\Phi}(y|x)}{P_{\Phi}(y|\emptyset)}\right)^{\beta}$$

Ho and Salimans motivate this from Classifier Guidance and

$$P(x|y) \propto \frac{P(y|x)}{P(y)}$$

But this is false.

$$P(x|y) = \frac{P(x)P(y|x)}{P(y)} \propto \frac{P(y|x)}{P(y)}$$

$$z(t-\Delta t) = z(t) + \beta \left(\frac{(\hat{E}_{\Phi}[y|t, z(t), x] - \hat{E}_{\Phi}[y|t, z(t), \mathbf{blurry}]) - z_t}{t} \right) \Delta t + \epsilon \sqrt{\Delta t}$$

This will make the generated image sharper.

A More General Formulation

Consider a Markovian VAE with deterministic encoder $z_{1,\text{enc}}(y)$ and $z_{i+1,\text{enc}}(z_i)$ and where $z_{N,\text{enc}}(z_{N-1})$ is a constant \emptyset .

This holds for language models but also seems reasonable for a StyleGAN inverter (long story).

This is an enormous simplification (a good thing).

enc*, gen* = argmin
$$E_y[-\ln(P_{gen}(y|z_1)P_{gen}(z_1|z_2)\cdots P_{gen}(z_{N-1}|\emptyset))]$$

A More General Formulation

$$\operatorname{enc}^*, \operatorname{gen}^* = \underset{\operatorname{enc,gen}}{\operatorname{argmin}} E_y[-\ln(P_{\operatorname{gen}}(y|z_1)P_{\operatorname{gen}}(z_1|z_2)\cdots P_{\operatorname{gen}}(z_{N-1}|\emptyset))]$$

In a language model we generate one word at a time.

But we can also consider the case where z_i is a vector whose dimension is decreasing as i increases.

In this case we can use

$$P_{\text{gen}}(z_{i-1}|z_i) = \hat{z}_{i-1}(z_i) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$

A More General Formulation

enc*, gen* = argmin
$$E_y[-\ln(P_{gen}(y|z_1)P_{gen}(z_1|z_2)\cdots P_{gen}(z_{N-1}|\emptyset))]$$

$$P_{\text{gen}}(z_{i-1}|z_i) = \hat{z}_{i-1}(z_i) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$

enc*, gen* = argmin
$$E_y ||y - z_1||^2 + \sum_{i=1}^{N-1} ||z_i - \hat{z}_i(z_{i+1})||^2$$

Conditional Generation

Training the encoder and the decoder conditioned on x (as in a language translation model). This trains $\hat{z}_{i-1}(z_i, x)$.

For generation we then have

Unadjusted:
$$z_{i-1} = \hat{z}_{i-1}(z_i, x) + \epsilon$$

Temperature Adjusted:
$$z_{i-1} = \hat{z}_{i-1}(z_i, x) + \frac{1}{\sqrt{\beta}} \epsilon$$

Guidance Adjusted:
$$z_{i-1} = \hat{z}_{i-1}(z_i, x_{\text{good}}) - \hat{z}_{i-1}(z_i, x_{\text{bad}}) + \frac{1}{\sqrt{\beta}} \epsilon$$

Output z_1

\mathbf{END}