8 bit number

Given an integer N.
$$N = 12 \rightarrow 00001100$$

 $i = 5$

- 1) Set ith bit of N $\rightarrow N = \frac{N / (1 \ll i)}{N}$ no change if it is already set.
- 2) Toggle ith bit of $N \rightarrow N = N^{\Lambda}(1 << i)$
- 3) Unset ith bit of N \rightarrow if (sheck Bit (N, i)) no shange if it is $N = N^{(1 \leftrightarrow i)}$ already unset. else 1/100 shange
- 4) Check if ith bit is set $\rightarrow N | (1 << i) == N \Rightarrow i^{th}$ bit is set $N^{(1} < i) < N \Rightarrow i^{th}$ bit is set $N | (1 << i) == 2^{i} \Rightarrow i^{th}$ bit is set

a → sheek if it bit is set in N without left shift operator.

$$N \ge 1 \longrightarrow 0^{\frac{1}{2}} \text{ bit is } 1$$

$$0 \longrightarrow 0^{\frac{1}{2}} \text{ bit is } 0$$

$$N = 45 \longrightarrow 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1$$

$$N \gg 3 \longrightarrow 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$$

$$(N \gg i) \ \lambda \ | \longrightarrow i \ ^{th} \ \text{lit is set}$$

 $0 \Rightarrow i \ ^{th} \ \text{lit is west}$

A→ liver an integer N, court no. of set bits in N.

$$N = 45 \rightarrow 00101101$$
 $Me = 4$

```
N = 10 \rightarrow 00001010 Ans = 2
    N = 10
                       N=10
   N = N \gg 1
                      N = N + 2
   perint (N)
                     print(N) → 12
 N = 10 \rightarrow 00001010
 N>1 000001010
                                           NA1 == 1 /
 N > 2 000000 10
           00000001
 N >>> 3
N \rightarrow 4 0000000 \rightarrow st_{op}
                                        TC = O(log_2(N))
  ars = 0
  while (N > 0) {
      if((NLI) == 1) } are i = (NLI) are i = 1
                                         int → 32
     N = N \gg I  // N = N/2
                                          long → 64
return are
                                         10:30 PM
                         6 5 4 3 1
                   8 bit number
                   2^{7} + 2^{6} + 2^{5} + \dots + 2^{6} = 2^{6} + (2^{6} - 1) = 2^{6} - 1 = 255
Nagative Numbers (2's Longlement)
        \frac{2^{\circ}(2^{7}-1)}{2^{-1}} = 2^{7}-1
        1 → -re
        0 \rightarrow tre
             0 0 1 0 1 1 0 1
```

Ronges

Range -128 to 127

Integers

31 30 29 28 --- 0

32 bits min \rightarrow 1 0 0 0 --- 0 \rightarrow -2 = -2147483648 = -2*10

max \rightarrow 0 1 1 1 --- 1 \rightarrow 2 -1 = 2147483647 = 2*10

Long. (3 62 61 - -- 0

64 bits min \rightarrow | 0 0 -- 0 \rightarrow -2⁶³ = -9 \times 10¹⁸

max \rightarrow 0 | 1 -- 1 \rightarrow 2⁶³-1 = $\frac{9 \times 10^{18}}{9 \times 10^{18}}$

A→ liver a integer array, find the sum of all array elements.

ist are = 0

for $i \rightarrow 0$ to (N-1)ore + = Alireturn are (N-1) (N-1)

mose total seen = $10^6 + 10^6 + 10^6 - - - + 10^6$ 10^5 times = $10^6 * 10^5 = 10^{11}$

constraints → datatypes

TLE

a → Find a *b for given integers a & b.

int are = $a * b \times max \ a \rightarrow 2*10^{9}$ return are

long are = $a * b \times max \ a * b \rightarrow 4*10^{18} \rightarrow long$ return are

int * int * int * int

long are = long (a*b) \times

return are

return are