

Anomaly Detection and Recommender Systems.

Is it OK to remove an outlier?

Motivation

- Fraud detection.
- Manufacturing.
- Monitoring computers in a data center.

Gaussian (Normal) distribution

Say $x \in \mathbb{R}$. If x is a distributed Gaussian with mean μ , variance σ^2 .

Anomaly detection algorithm

- Choose features x_i that you think might be indicative of anomalous examples.
- Fit parameters $\mu_1, \ldots, \mu_n, \sigma_1^2, \ldots, \sigma_n^2$

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

$$\sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2$$

$$\sigma_{j}^{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{j}^{(i)} - \mu_{j})^{2}$$
3. Given new example x , compute $p(x)$:
$$p(x) = \prod_{j=1}^{n} p(x_{j}; \mu_{j}, \sigma_{j}^{2}) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_{j}} \exp\left(-\frac{(x_{j} - \mu_{j})^{2}}{2\sigma_{j}^{2}}\right)$$

Anomaly if $p(x) < \varepsilon$

Multivariate Gaussian (Normal) distribution

 $x \in \mathbb{R}^n$. Don't model $p(x_1), p(x_2), \ldots$, etc. separately. Model p(x) all in one go.

Parameters: $\mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n}$ (covariance matrix)

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 0.6 & 0 \\ 0 & 0.6 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Algorithm evaluation

Fit model p(x) on training set $\{x^{(1)},\ldots,x^{(m)}\}$ On a cross validation/test example x, predict

$$y = \begin{cases} 1 & \text{if } p(x) < \varepsilon \text{ (anomaly)} \\ 0 & \text{if } p(x) \ge \varepsilon \text{ (normal)} \end{cases}$$

Possible evaluation metrics:

- True positive, false positive, false negative, true negative
- Precision/Recall
- F₁-score

Can also use cross validation set to choose parameter ε

Anomaly detection

Very small number of positive examples (y = 1). (0-20 is common).

Large number of negative (y=0) examples.

Many different "types" of anomalies. Hard for any algorithm to learn from positive examples what the anomalies look like; future anomalies may look nothing like any of the anomalous examples we've seen so far.

vs. Supervised learning

Large number of positive and negative examples.

Enough positive examples for algorithm to get a sense of what positive examples are like, future positive examples likely to be similar to ones in training set.

Recommender Systems

Recommender Systems

Example: Predicting movie ratings

User rates movies using one to five stars

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last				
Romance forever				
Cute puppies of love				
Nonstop car chases				
Swords vs. karate				
	'			

 n_u = no. users n_m = no. movies r(i,j) = 1 if user j has rated movie i $y^{(i,j)}$ = rating given by user j to movie i (defined only if r(i,j) =) 1

Problem formulation

```
r(i,j) = 1 if user j has rated movie i (0 otherwise)
y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}
 \theta(j) = parameter vector for user j
 x^{(i)} = feature vector for movie i
For user j, movie i, predicted rating: (\theta^{(j)})^T(x^{(i)})
 m^{(j)} = no. of movies rated by user j
 To learn \theta^{(j)}:
```

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

Collaborative filtering

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	;	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	?	5
Romance forever	5	?	?	0	?	?
Cute puppies of love	;	4	0	?	?	?
Nonstop car chases	0	0	5	4	?	?
Swords vs. karate	0	0	5	?	,	?

$$\theta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \, \theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \, \theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}, \, \theta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$$

Optimization algorithm

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(i)}$:

$$\min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given $\theta^{(1)},\ldots,\theta^{(n_u)}$, to learn $x^{(1)},\ldots,x^{(n_m)}$:

$$\min_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

```
Given x^{(1)}, \ldots, x^{(n_m)} (and movie ratings), can estimate \theta^{(1)}, \ldots, \theta^{(n_u)}
```

```
Given \theta^{(1)},\dots,\theta^{(n_u)} , can estimate x^{(1)},\dots,x^{(n_m)}
```

Collaborative filtering optimization objective

Given $x^{(1)},\ldots,x^{(n_m)}$, estimate $\theta^{(1)},\ldots,\theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, estimate $x^{(1)}, \dots, x^{(n_m)}$:

$$\min_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Minimizing $x^{(1)}, \ldots, x^{(n_m)}$ and $\theta^{(1)}, \ldots, \theta^{(n_u)}$ simultaneously:

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1\\ x^{(1)}, \dots, x^{(n_m)}}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^$$

Collaborative filtering algorithm

- 1. Initialize $x^{(1)},\ldots,x^{(n_m)},\theta^{(1)},\ldots,\theta^{(n_u)}$ to small random values.
- 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every:

$$j = 1, \dots, n_u, i = 1, \dots, n_m$$

$$x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

3. For a user with parameters θ and a movie with (learned) features x, predict a star rating of $\theta^T x$.