Versuchsbericht zu

O1 - Geometrische Optik

Gruppe 14Mo

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 04.04.2018 betreut von Helge Gehring

Inhaltsverzeichnis

1	Kurzfassung Methoden						
2							
3	Ergebnisse und Diskussion						
	3.1 Beobachtung						
		3.1.1	Demonstrationsversuch	3			
		3.1.2	Prisma	3			
		3.1.3	Brechungsindex von Wasser	3			
		3.1.4	Brennweite der Sammellinse	3			
		3.1.5	Brennweite der Streulinse	3			
		3.1.6	Strahlaufweitung und Sammellinse	3			
	3.2 Datenanalyse						
		3.2.1	Prisma	3			
		3.2.2	Brechungsindex von Wasser	4			
		3.2.3	Brennweite Streulinse	4			
	3.3	Diskus	ssion	4			
4	Schlussfolgerung						

1 Kurzfassung

2 Methoden

3 Ergebnisse und Diskussion

3.1 Beobachtung

- 3.1.1 Demonstrationsversuch
- 3.1.2 Prisma
- 3.1.3 Brechungsindex von Wasser
- 3.1.4 Brennweite der Sammellinse
- 3.1.5 Brennweite der Streulinse
- 3.1.6 Strahlaufweitung und Sammellinse

3.2 Datenanalyse

3.2.1 Brechungsindex des Prismas

In der Einleitung wurde Gleichung (1) zur Bestimmung des Brechungsindex des Prismamaterials, bei einer minimalen Ablenkung δ_m , aufgeührt.

$$n = \frac{\sin\left[(\delta_m + \alpha)/2\right]}{\sin\left(\alpha/2\right)} \tag{1}$$

$$u(n) = u(\delta_m) \cdot \left| \frac{\sin(a/2)\cos[(a+\delta_m)/2]}{\cos(\alpha) - 1} \right|$$
 (2)

Dabei wurde in einem Abstand d eine orthogonale Auslenkung a gemessen. Der Apexwinkel α beträgt 60°. Es folgt eine minimale Auslenkung $\delta_m = \arctan(a/d)$. Die aus den Messungen folgenden Werte sind in Tabelle 1 aufgelistet.

Tabelle 1: Aus gemessener Auslenkung des Lichtstrahls und Abstand des Lineals lässt sich der Ablenkungswinkel δ bestimmen. Der Brechungsindex des Prismas folgt widerum aus dem minimalen Ablenkungswinkel δ_m .

Laser	Auslenkung a	Abstand d	δ_m	
rot	$(13,23 \pm 0,14) \mathrm{cm}$	$(12,0 \pm 0,2) \mathrm{cm}$	$(0.8341 \pm 0.0098) \mathrm{rad}$	$1,616 \pm 0,006$
blau	$(14.82 \pm 0.14) \mathrm{cm}$	$(12,0\pm0,2)$ cm	$(0.8901 \pm 0.0094) \mathrm{rad}$	$1,648 \pm 0,005$

3.2.2 Brechungsindex von Wasser

Das Snelliussche Brechungsgesetz lautet:

$$n_i \cdot \sin(\theta_i) = n_t \cdot \sin(\theta_t) \tag{3}$$

Somit kann der Brechungsindex n_{Wasser} mit

$$n_{\text{Wasser}} = n_{\text{Luft}} \frac{\sin(\vartheta_{\text{Luft}})}{\sin(\vartheta_{\text{Wasser}})} \tag{4}$$

$$u(n_{\text{Wasser}}) = n_{\text{Luft}} \sqrt{\left(\frac{\cos(\vartheta_{\text{Luft}})}{\sin(\vartheta_{\text{Wasser}})} u(\vartheta_{\text{Luft}})\right)^2 + \left(\frac{\sin(\vartheta_{\text{Luft}})\cos(\vartheta_{\text{Wasser}})}{\sin(\vartheta_{\text{Wasser}})^2} u(\vartheta_{\text{Wasser}})\right)^2}$$
(5)

gemessen werden. Die Messwerte sowie resultierende Brechungsindizes sind in Tabelle 2 aufgeführt. Gemittelt ergibt sich ein Brechungsindex für Wasser bei rotem Licht von $1,309 \pm 0,010$ und bei blauem $1,318 \pm 0,012$.

Ordnung Laser $\vartheta_{
m Luft}$ $\vartheta_{\mathrm{Wasser}}$ n_{Wasser} $(52.8 \pm 0.3)^{\circ}$ $(37.5 \pm 0.3)^{\circ}$ -2 $1,308 \pm 0,010$ rot $(23.8 \pm 0.3)^{\circ}$ $(18.0 \pm 0.3)^{\circ}$ -1 $1,306 \pm 0,026$ 1 $(24.0 \pm 0.3)^{\circ}$ $(18,0 \pm 0,3)^{\circ}$ $1,316 \pm 0,026$ 2 $(53.5 \pm 0.3)^{\circ}$ $(38.0 \pm 0.3)^{\circ}$ $1,306 \pm 0,010$ blau -3 $(48,0 \pm 0,3)^{\circ}$ $(34.5 \pm 0.3)^{\circ}$ $1,312 \pm 0,012$ -2 $(30.0 \pm 0.3)^{\circ}$ $(22.2 \pm 0.3)^{\circ}$ $1,323 \pm 0,021$ $(14.5 \pm 0.3)^{\circ}$ $(10.9 \pm 0.3)^{\circ}$ $1,324 \pm 0,045$ $(14.5 \pm 0.3)^{\circ}$ $(11.0 \pm 0.3)^{\circ}$ $1,312 \pm 0,044$ 2 $(30,0 \pm 0,3)^{\circ}$ $(22,2\pm0,3)^{\circ}$ $1,323 \pm 0,021$ 3 $(34.8 \pm 0.3)^{\circ}$ $1,312 \pm 0,012$

Tabelle 2

3.2.3 Brennweite Streulinse

In der Einführung wurde die Brennweite eines Linsensystems mit folgender Formel beschrieben:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2} \tag{6}$$

Im Falle eines eintrefenden kollimerten Strahls der nach dem Linsensystem erneut kollimiert ist liegt der Fokus im Unendlichen. Der Kehrwert 1/f nähert sich also Null an. Für Gleichung (6) folgt daraus, dass $d = f_1 + f_2$ gelten muss. Die Brennweite der Sammellinse beträgt (7.5 ± 1.2) cm und der Abstand der Linsen d war (10.7 ± 1.2) cm. Es ergibts sich also eine Brennweite von (3.2 ± 1.7) cm für die Streulinse.

3.3 Diskussion

4 Schlussfolgerung