Credit Risk Management

Project Report

Contents

INTRODUCTION	3
Overview of our Bank	4
PART 1: THE LOAN PORTFOLIO: RATIO ANALYSIS	11
Objective	11
Our Working	11
PART 2: MODELING PROBABILITY OF DEFAULT	17
Objective	17
Our Working	17
PART 3 : REGULATORY CAPITAL ANALYSIS	25
Objective	25
Our Working	26
PART 4 : SCENARIO ANALYSIS AND STRESS TESTING	34
Objective	34
Our Working	
CONCLUSIONS	45

INTRODUCTION

Set in the year 2009, we are Chase Bank' credit analysts and we have a portfolio, with 16 borrowers, to lend our money to. We are given the loan amount by each borrower and the maturity days attached to each borrower.

The following is the list of companies and their corresponding ticker in our portfolio.

Serial No.	Borrower	Ticker	Amount	%
1	Acxiom Corp	AXCM	495,400,000.00	6.15%
2	AH Belo	AHC	25,000,000.00	0.31%
3	Apollo Investment Corp	AINV	1,179,000,000.00	14.64%
4	Cedar Fair LP	FUN	64,070,000.00	0.80%
5	CIT Group Inc	CIT	750,000,000.00	9.31%
6	FEI Co	FEIC	100,000,000.00	1.24%
7	HSBC Finance Corp	HSBC	1,800,000,000.00	22.35%
8	Lear Corp	LEA	550,000,000.00	6.83%
9	Penn Virginia Corp, Penn Virginia Holding Corp	PVA	300,000,000.00	3.72%
10	PhotronicsInc	PLAB	130,000,000.00	1.61%
11	Rural/Metro Corp	RURL	17,600,000.00	0.22%
12	Sinclair Broadcast Group	SBGI	405,400,000.00	5.03%
13	Team Financial Inc	TFIN	125,000,000.00	1.55%
14	Trimas Corp	TRS	301,300,000.00	3.74%
15	United States Steel	X	750,000,000.00	9.31%
16	Yellow Roadway Corp, YRC Worldwide Inc	YRCW	1,062,000,000.00	13.18%
	TOTAL AMOUNT		8,054,770,000.00	

Overview of our Bank

I. Asset structure

We are discussing what the main asset activities are and what is the percentage of them to total assets? Please comment on your banks' activities, e.g., more traditional banking or more security investment?

Assets (in millions)	
Cash and due from banks	\$27,831
Deposits with banks	\$484,477
Federal funds sold and securities purchased under resale agreements	\$215,803
Securities borrowed Trading assets:	\$110,435
Debt and equity instruments	\$320,013
Derivative receivables	\$78,975
Securities	\$348,004
Loans	\$757,336
Allowance for loan losses	\$(14,185)
Loans, net of allowance for loan losses	\$743,151
Accrued interest and accounts receivable	\$70,079
Premises and equipment Goodwill	\$15,133
Goodwill	\$47,647
Mortgage servicing rights	\$7,436
Other intangible assets	\$1,192
Other assets	\$102,950
Total assets	\$2,573,126

Asset Distribution Structure for the Bank

Consumer & Community Banking	\$44,368
Corporate & Investment Bank	\$34,633
Commercial Banking	\$6,882
Asset Management	\$12,028
Corporate	\$12
Total Revenue	\$97,923

As the above graph shows, Consumer & Community Banking is J.P. Morgan's biggest segment. The bank is similar to its peers. Core banking activities contribute the biggest chunk of revenues at all four banks. Traditional banking activities are the biggest revenue source for J.P. Morgan.

II. Liability structure

We are discussing what the main funding sources are and what is the percentage of them to total debt? What are the implications of these funding sources on bank risk level?

Liabilities(in million)	
Deposits	\$1,363,427
Federal funds purchased and securities loaned or sold under repurchase agreement	\$192,101
Commercial paper	\$66,344
Other borrowed funds	\$30,222
Debt and equity instruments	\$81,699
Derivative payables	\$71,116
Accounts payable and other liabilities	\$206,954
Beneficial interests issued by consolidated VIEs	\$52,362
Long-term debt	\$276,836
Total liabilities	\$2,341,061

Liability Structure for the Bank

Deposits fund 58% of J.P. Morgan's (JPM) total assets. The deposit mix is diversified both by type and by line of business. Banks have to pay low or no interest on non-interest bearing deposits. On the other hand, interest cost is highest for time deposits.

Of its remaining 42% non-deposit-funded assets, 8% of them are funded by common and preferred equity. And, other assets are funded by unsecured funding including long-term unsecured debt, commercial papers, and other borrowed funds.

Deposits are the most crucial source of funds for any bank. They're also the cheapest, which can affect the bank's overall funding costs. Banks with lower-cost deposits have a competitive advantage over other banks.

Banks also need some long-term funding sources such as debt and equity capital. A bank's credit rating affects the cost and availability of financing. Reductions in credit ratings could increase the cost of funds and decrease the number of investors willing to lend to the firm.

III. Main Income Sources

We are discussing what are the margins on interest vs. non-interest generating business?

Revenue(in millions)	
Investment banking fees	\$6,542
Principal transactions(a)	\$10,531
Lending- and deposit-related fees	\$5,801
Asset management, administration and commissions	\$15,931
Securities gains	\$77
Mortgage fees and related income	\$3,563
Card income	\$6,020
Other income(b)	\$2,106
Noninterest revenue	\$50,571
Net interest income	\$43,634
Total net revenue	\$94,205

Revenue Distribution Structure of the Bank

Main income source is noninterest revenue. Most of noninterest revenue came from assets management. Net interest margin is 2.1. Noninterest margin is 1.8.

IV. Performance Measures

We are discussing all the measures that are discussed in the annual report? How is your bank performance based on these measures?

Measures are net income, earnings per share, net revenue and ROE.

JPMorgan Chase reported record full-year 2014 net income of \$21.8 billion, and record earnings per share of \$5.29, on net revenue of \$94.2 billion. Net income increased by \$3.8 billion, or 21%, compared with net income of \$17.9 billion, or \$4.35 per share, in 2013. ROE for the year was 10%, compared with 9% for the prior year.

Core net interest income increased by \$543 million in 2014 to \$39.1 billion, and core average interest-earning assets increased by \$72.8 billion to \$1.5 trillion. The increase in net interest income in 2014 predominantly reflected higher yields on investment securities, the impact of lower interest expense, and higher average loan balances. The increase was partially offset by lower yields on loans due to the runoff of higher-yielding loans and new originations of lower- yielding loans. The increase in average interest-earning assets largely reflected the impact of higher average balance of deposits with banks. These changes in net interest income and interest-earning assets resulted in the core net interest yield decreasing by 9 basis points to 2.54% for 2014.

2. Capital Ratios

Capital Ratios of the Companies

(in millions)	2014
Tier 1 common capital	\$105,284
Total Tier 1 capital	\$132,971
Risk-weighted assets	\$1,198,006
Tier 1 capital ratio	11.1%
Tier 2 capital	\$44,102
Total Tier 1 capital	\$132,971
Tier 2 capital	\$44,102
Risk-weighted assets	\$1,198,006
Total capital (Tier 1 and Tier 2) ratio	14.8%
Total Tier 1 capital	\$132,971
Total Consolidated Assets	\$1,933,767
Tier 1 leverage ratio	6.9%

Discussing two main topics:

- i) Have these ratios met Fed's requirement and regulation?
- ii) Have these ratios met Fed's requirement and regulation?

In 2014, JPMorgan Chase's capital ratios were able to meet the standards established by the Federal Reserve. At 11% the Tier 1 capital ratio was significantly over the minimum 4% capital requirement established by the Federal Reserve; its total capital ratio was 14.8% which is also in excess of the Federal Reserve's requirement by 6.8% and its leverage ratio was 6.9% well over the 3% standard. Under the Federal Reserve all of Chase's capital ratios were considered to be well-capitalized in 2014.

3. Risks faced by the bank

Risk governance

The independent stature of the Risk organization is supported by a governance structure that provides for escalation of risk issues up to senior management and the Board of Directors.

The illustration of the governance structure and certain senior management level committees and forums that are primarily responsible for key risk-related functions.

The list of risk exposures of the Bank are mentioned in the next page:

List of risk exposures of the Companies

	Risk and key risk management metrics					
Capital risk	The risk the Firm has an insufficient level and composition of capital to support the Firm's business activities and associated risks during normal economic environments ratio.	Metrics: Risk-based capital ratio, supplementary leverage				
Compliance risk	The risk of fines or sanctions or of financial damage or loss due to the failure to comply with laws, rules, and regulations.					
Country risk	The risk that a sovereign event or action alters the value or terms of contractual obligations of obligors, counterparties and issuers or adversely affects markets related to a particular country.	Metrics: Default exposure at 0% recovery, Stress				
Credit risk	The risk of loss arising from the default of a customer, client or counterparty.	Metrics: Total exposure; industry, geographic and customer concentrations; risk ratings; delinquencies; loss experience; stress				
Fiduciary risk	The risk of a failure to exercise the applicable high standard of care, to act in the best interests of clients or to treat clients fairly, as required under applicable law or regulation.					
Legal risk	The risk of loss or imposition of damages, fines, penalties or other liability arising from failure to comply with a contractual obligation or to comply with laws or regulations to which the Firm is subject.					
Liquidity risk	The risk that the Firm will not have the appropriate amount, composition and tenor of funding and liquidity in support of its assets, and that the Firm will be unable to meet its contractual and contingent obligations through normal economic cycles and market stress events.	Metrics: LCR; Stress risk				
Market risk	The risk of loss arising from potential adverse changes in the value of the Firm's assets and liabilities resulting from changes in market variables such as interest rates, foreign exchange rates, equity prices, commodity prices, implied volatilities or credit spreads.	Metrics: VaR, Stress, Sensitivities risk analysis				
Model risk	The risk of the potential for adverse consequences from decisions based on incorrect or misused model outputs and reports.	Metrics: Model Status, Model Tier				
Non-USD FX risk	The risk arising from capital investments, forecasted expense and revenue, investment securities portfolio or issuing debt in denominations other than the U.S. dollar.	Metrics: FX Net Open Position ("NOP") risk.				
Operational risk	The risk of loss resulting from inadequate or failed processes or systems or due to risk external events that are neither market nor credit-related.	Metrics: Firm-specific loss experience; industry loss experience; business environment and internal control factors ("BEICF")				
Principal risk	The risk of an adverse change in the value of privately-held financial assets and instruments, typically representing an ownership or junior capital position. These positions have unique risks due to their illiquidity or for which there is less observable market or valuation data.	Metrics: Carrying Value, Stress risk analysis				
Reputation risk	The risk that an action, transaction, investment or event will reduce the trust that clients, shareholders, employees or the broader public has in the Firm's integrity or competence					
Structural interest rate risk	The risk resulting from the Firm's traditional banking activities (both on- and off- balance sheet positions) arising from the extension of loans and credit facilities, taking deposits and issuing debt (collectively referred to as "non-trading activities"), and also the impact from the CIO investment securities portfolio and other related CIO, Treasury activities.	Metrios: Earnings-at-risk				

PART 1: THE LOAN PORTFOLIO: RATIO ANALYSIS

Objective

- To analyze the financial soundness of each of the companies by calculating the Altman Z-scores of the companies using past year's data
- To qualitatively assess the creditworthiness of each of the companies, by using the 5Cs of credit quality
- To check if our portfolio is well diversified and distributed in various sectors and checking for the sector stock return correlations using past year's data.

Our Working

A) Calculating Altman Z-score of the companies

The Altman Z-score value for each of the companies gives us the probability that the company might go bankrupt within 2 years.

We calculate this value using both Manufacturing and Non-Manufacturing formulae.

Altman Z-score for manufacturing firms

$$Z_{manufacturing} = 1.2x_1 + 1.4x_2 + 3.3x_3 + 0.6x_4 + 0.99x_5$$

Altman Z-score for non-manufacturing firms:

$$Z_{non-manufactured} = 6.56x_1 + 3.26x_2 + 6.72x_3 + 1.05x_4$$

 $x_1 =$ Working Capital / Total Assets

 x_2 = Retained Earnings / Total Assets

 $x_3 = \text{Earnings Before Interest & Tax / Total Assets}$

 x_4 = Market Value of Equity/ Total Liabilities

 $x_5 = \text{Sales} / \text{Total Assets}^1$

 $^{^{1}}x_{5}$ was only considered for manufacturing companies

Altman Z-Score, as of December 2009.

Companies	Liquidity ratio: Working Capital/total assets	Profitability Ratio: Retained Earnings/total assets	Efficiency Ratio : EBIT/ total assets	Insolvency Ratio : Market Cap/Total Liabilities	Asset Turnover Ratio : Sales/Total Assets*	Altman -Z Score
	x1	x2	x3	x4	x5	
ACXM	17.14%	-18.81%	2.17%	131.01%		2.033
AHC	11.44%	-41.26%	1.51%	142.87%	33.50%	0.798
AINV	13.67%	-23.76%	2.46%	104.19%		1.382
FUN	-3.27%	-3.82%	-0.92%	31.22%		-0.074
CIT	2.50%	0.00%	0.59%	20.26%		0.416
FEIC	45.60%	8.59%	0.94%	227.79%	16.19%	2.226
LEA	22.82%	-0.08%	20.37%	78.22%	45.16%	1.861
PVA	5.04%	10.97%	-0.21%	57.81%	2.39%	0.578
PLAB	13.49%	-4.96%	0.65%	110.61%	14.27%	0.919
RURL	12.77%	-95.83%	4.68%	39.23%		-1.56
SBGI	1.45%	-51.45%	-4.16%	17.95%		-1.673
TRS	33.88%	-56.52%	0.86%	29.76%	23.14%	0.051
X	32.52%	5.66%	-2.13%	75.66%	21.75%	1.068
YRCW	28.32%	-46.65%	-3.00%	1.76%	34.63%	0.155
HSBC	-26.52%	0.03%	-0.13%	4.20%		-1.704

^{*}Only Considered for manufacturing companies.

Benchmark for Z-score Manufacturing:

Z > 2.99 - "Safe" Zone

1.8 < Z < 2.99 - "Grey" Zone

Z < 1.80 - "Distress" Zone

Benchmark for Z-score Non-Manufacturing:

If Z" is less than 0, then the firm is equated to default

By analyzing our results, there are several manufacturing companies that rely on the distress Zone.

AH Belo (AHC), PhotronicsInc (PLAB), and Trimas Corp (TRS) have a negative retained earnings (RE) over total assets (TA), which makes the z-score 0.798, 0.919, and 0.051 respectively.

Penn Virginia Corp (PVA) and United States Steel (X) had a z-score of 0.578, 1.068 primarily due to their negative profitability ratio (EBIT/total assets); however, they also had low liquidity ratio, and a low sales to total assets ratio. (YRCW) presented a negative retained earnings (RE) over total assets (TA) and a negative profitability ratio, which also makes it a distressed company.

By analyzing the other 7 non-manufacturing companies, there are 6 companies that are on the distress zone and 4 are below zero (FUN, RURL, SBGI, HSBC), which are equated to default.

FUN and HSBC presented a negative liquidity ratio, and a negative EBIT/TA ratio. RURL's retained earnings over total assets was -95%, which means RURL's deficit is equivalent to 95% of their assets. SBGI and presented negative retained earnings, negative EBIT/TA, and a low liquidity ratio.

CIT presented a z-score (0.416) below 1.80, due to low profitability ratio and no retained earnings. It is worth noting that this company got out of bankruptcy on December 2009.

5Cs of credit to qualitatively assess the credit

5Cs of credit to qualitatively assess the credit

5 Cs	What they indicate?	How are we assessing it?
Capacity	Ability to pay back interest and principals	Interest coverage ratio / Debt to Equity Ratio
Collateral	A secondary source of repayment of the loan	Measuring collateral quantitatively by its value and its ease of liquidation, as perceived
Capital	Sufficient equity in the company provides a cushion to withstand a blip in the company's ability to generate cash flow	Debt to Equity Ratios (no higher than 2 to 3 times); Also, as a percentage of the total investment cost
Character	Management quality, people that can be trusted to honor their commitments in good times and bad	Checking the Credit history
Conditions	The competitive landscape of your company and the nature of your customer relationships	Loan's interest rate, principal amount and repayment length

Summary of 5Cs assessment

According to 5Cs assessment requirement and details of portfolio's companies, we summarized all our portfolio companies' 5C approach into "good", "fair" and "bad" as follow:

5Cs for 8 of the Companies

	Capacity	Collateral	Capital	Character	Conditions
Acxiom Corp	good	good	good	fair	good
AH Belo	bad	bad	no data	good	good
Apollo Investment Corp	fair	good	good	good	good
CIT Group Inc	bad	bad	bad	bad	bad
Cedar Fair LP	bad	bad	bad	good	good
FEI Co	good	good	good	good	good
Lear Corp	good	good	good	bad	good
Penn Virginia Corp, Penn Virginia Holding Corp	bad	fair	good	bad	fair
Photronics Inc	bad	fair	good	fair	bad
Rural/Metro Corp	good	good	bad	good	fair
Sinclair Broadcast Group	bad	good	bad	bad	fair
Trimas Corp	fair	good	good	bad	bad
United States Steel	bad	fair	good	fair	bad
Yellow Roadway Corp	bad	bad	good	fair	bad
HSBC Finance Corp	bad	bad	fair	fair	fair

Let "good" = 3, "fair" = 2, "bad" = 1, then we can get table like follow:

Numbering the 5Cs for all the Companies

	Capacity	Collateral	Capital	Character	Conditions	sum	
Acxiom Corp		3	3	3	2	3	14
AH Belo	4	1	1	2	3	3	10
Apollo Investment Corp	1	2	3	3	3	3	14
CIT Group Inc			1	1	1	1	- 5
Cedar Fair LP		1	1	1	3	3	9
FEI Co		3	3	3	3	3	15
Lear Corp		3	3	3	1	3	13
Penn Virginia Corp, Penn Virginia Holding Corp		1	2	3	1	2	9
Photronics Inc		1	2	3	1	2	9
Rural/Metro Corp		3	3	1	3	2	12
Sinclair Broadcast Group			3	1	1	2	8
Trimas Corp		2	3	3	1	1	10
United States Steel		1	2	3	2	1	9
Yellow Roadway Corp			1	3	2	1	8
HSBC Finance Corp			1	2	2	2	8

5Cs Assessment HSBC Finance Corp United States Steel Sinclair Broadcast Group Photronics Inc Lear Corp Cedar Fair LP Apollo Investment Corp Acxiom Corp 2 10 12 16 ■ Capital Collateral Character Conditions

Chart of 5Cs for 8 of the Companies

The red bar companies have characters that is extremely risky and the yellow bar companies are risky. However, the green bar companies are speculative but seem safer than the rest.

B) Distribution of sectors in the portfolio. Calculating the sector stock return correlations matrix using past year's data

Chase's total loan amount in 2009 was 8,054.77 billion dollars, the loan's period varied from 1 to 6 years. Almost 44% of the debt had to be paid in less than 3 years, 41% between 3 to 5 years, and the remaining 13% between 5 and 6 years.

Almost half of the loan of the portfolio was concentrated in the financial sector, 13% in industrials, 11% in consumer discretionary, and the remaining is distributed among the materials, technology, communications, and the energy sector.

Portfolio Distribution by Sector

Although 48% of the loan is concentrated in the financial sector, 22% is from HSBC and it has a one year duration. The other financial loans are distributed among other 3 companies and their durations range from 2 to 3.3 years.

The industrial sector (13%) is concentrated in only one company, YRCW, which numbers are highly risky.

The sector stock return correlation matrix was created from the companies of our portfolio. The firms were divided into sectors and the returns per stock was calculated. We average the returns per sector, and then we created an index per each sector.

Almost all the sectors are highly correlated. Since Materials and Industrials have a correlation of 0.999, our portfolio is less diversified and more exposed to default.

The healthcare sector is the least correlated, which can help diversify our portfolio; however, less than 0.5% is invested on this sector. Other sectors that help to diversify our portfolio are consumer discretionary and financials. This last sector our largest concentration.

1.0000

Consumer Healthcare Communicatio. Materials **Technology** Industrials **Financials** Energy **Materials** 1.0000 **Technology** 0.8846 1.0000 **Industrials** 0.9999 0.8849 1.0000 Healthcare 1.0000 0.2194 0.5202 0.2196 **Financials** 0.8693 0.8571 0.8693 0.4655 1.0000 Energy 0.9318 0.8005 0.9315 0.1677 0.8942 1.0000 Consumer 0.9507 0.9079 0.9510 0.3632 0.9318 0.9051 1.0000 Discretion

0.4022

0.8566

0.8180

0.9199

Figure 2. Correlation Matrix

Conclusions

Communication

0.9285

- All z-scores are below the safety zone. Only 3 out of 16 are on the grey zone, and the other 13 rely on the distress zone.
- Chase's portfolio is strongly concentrated on companies from the financial sector, which are struggling the most in this period; however, half of this loan's amount is for less than a year.
- YRCM is highly leverage and its credit rating is nearly on default.

0.9184

- The correlation among sectors is high; however, healthcare and financials have less correlation with other industries.

PART 2: MODELING PROBABILITY OF DEFAULT

0.9288

Objective

- The probabilities of default for these companies will be estimated using three different approaches,
 - 1. Reduced form intensity based models
 - 2. Merton's structural KMV approach
 - 3. Agency rating model.
- Develop and test hybrid models by shocking the parameters of the model. Sensitivity analysis.

Our Working

I. Reduced form intensity based models

In the reduced model, we generated the probability of default: using the 5 year CDS spread of each company, and assuming a 40% recovery rate:

$$PD = CDS/(1 - Recovery Rate)$$

Reduced model Results

Name	CDS spread or (Avg yield - risk free rate)	Recovery rate	Default Intensity of this bond
AH Belo	0.0203	40%	3.383%
Sinclair Broadcast Group	0.0297	40%	4.950%
Cedar Fair LP	0.0324	40%	5.400%
Trimas Corp	0.0287	40%	4.783%
Penn Virginia Corp	0.0182	40%	3.033%
Apollo Investment Corp	0.0146	40%	2.433%
HSBC Finance Corp	0.0068	40%	1.133%
Yellow Roadway Corp	0.1126	40%	18.767%
United States Steel	0.0204	40%	3.400%
Acxiom Corp	0.0143	40%	2.383%
FEI Co	0.0087	40%	1.450%
Photronics Inc	0.02	40%	3.333%

II. Merton's Model

The Merton's Distance to Default model is used to estimate the PD by analyzing the capital structure of a company. This model considers the value of the firm a stochastic variable. When the asset value is below debt by the time of maturity, it would be bankrupt.

The function of Merton's model derive from option pricing model Black-Scholes-Merton formula. The functions as follow:

Distance to default:

$$D2 = ln(V0) - ln(D) + \left(r - \frac{\sigma v^2}{2}\right) \left(\frac{T}{\sigma \sqrt{T}}\right)$$

Probability of default:

$$N(-d2)$$

In this model we assumed the default point from the KMV model, assuming the following parameters:

- Equity volatility: Implied volatility of 12-month expiration put.
- Discount Factor: 12 month swap rate.
- Equity Debt: Short term debt plus half the long term debt (KMV default point).
- Maturity: 1 year.
- We ignore firms which have negative and zero value of equity value and debt.

Considering only the companies with enough data and running an optimization model (solver in excel) we got the Merton's Distance to default model result as follows:

Merton's Model Results

Company	Value of company's assets	Volatility of Assets	Value of company's Equity	Debt	Risk Free rate	Volatility of equity	E0 calculated	Equity vol	d1	(d2)	Prob of default N(-d2)
SBGI	860.47	28.21%	190.92	704.97	0.90%	103.05%	190.92	1.03	0.88	0.60	27.51%
HSBC	676,138.70	9.36%	198,766.88	481,689.00	0.90%	31.85%	198766.73	0.32	3.76	3.67	0.01%
YRCW	561.94	37.58%	50.39	665.02	0.90%	170.42%	50.39	1.70	-0.24	-0.61	72.98%
X	9,600.58	39.61%	7,901.45	1,714.50	0.90%	48.13%	7901.44	0.48	4.57	4.17	0.00%
ACXM	1,342.55	50.18%	1,061.76	283.41	0.90%	63.43%	1061.76	0.63	3.37	2.87	0.21%
FEIC	988.91	54.35%	880.30	109.60	0.90%	61.06%	880.30	0.61	4.34	3.79	0.01%
PLAB	300.13	90.62%	236.65	66.37	0.90%	113.01%	236.65	1.13	2.13	1.22	11.08%

III Credit Rating Model

Considering the previous 20 years of the company's S&P ratings, we calculated the probability of default:

Credit Ratings model

Credit Ratings model					
Name	PD average				
Sinclair Broadcast Group	7.18%				
Cedar Fair LP	2.76%				
Lear Corp	6.96%				
Trimas Corp	2.76%				
Penn Virginia Corp	1.24%				
Apollo Investment Corp	0.23%				
CIT Group Inc	0.28%				
HSBC Finance Corp	0.11%				
Rural/Metro Corp	7.17%				
Yellow Roadway Corp	27.81%				
United States Steel	0.92%				
Acxiom Corp	0.88%				
FEI Co	2.76%				
Photronics Inc	1.58%				

Hybrid Models

Since not all the information from our all companies were available, we only considered the companies that have completed data for all the three models in order to calculate our Hybrid Models.

Companies considered for the Hybrid Models

		· ·	
Name	PD reduced form	PD Merton's Model	Credit Rating
Yellow Roadway Corp	18.77%	72.98%	27.81%
Sinclair Broadcast Group	4.95%	27.51%	11.62%
United States Steel	3.40%	0.00%	0.74%
Photronics Inc	3.33%	11.08%	11.62%
Acxiom Corp	2.38%	0.21%	0.99%
FEI Co	1.45%	0.01%	2.76%
HSBC Finance Corp	1.13%	0.01%	0.11%

In this project, we considered 3 hybrid models:

Hybrid model 1: Equally weighted the reduced form, Merton's model and credit rating models.

Hybrid model 2: 50% Reduced + 30% Merton's + 20% Credit Rating

Hybrid model 3: 50% Reduced + 20% Merton's + 30% Credit Rating

The three models have highly correlation. Therefore, combining this three approaches will give us similar results; however, increasing the weight of a certain model, will make it more sensible to different parameters.

Correlation Models

	PD reduced form	PD Merton's Model	Credit Rating		
Reduced Form	1				
Merton's Model	0.9711	1.0000			
Credit Rating	0.9241	0.9678	1		

The probabilities of default for the different hybrid models were:

PDs for Hybrid models

Company	Model 1	Model 2	Model 3
FEIC	1.41%	1.28%	1.55%
X	1.38%	1.85%	1.92%
HSBC	0.42%	0.59%	0.60%
ACXM	1.19%	1.45%	1.53%
PLAB	8.68%	7.32%	7.37%
SBGI	14.69%	13.05%	11.46%
YRCW	39.85%	36.84%	32.32%

Sensitivity analysis

In order to estimate how each parameter, used to calculate the PDs, affected our model, we only moved one parameter at a time, living all else equal. We estimated the probabilities of default and average them equally to calculate a different PD per hybrid model.

- **Implied Volatility**

We analyzed our data if the implied volatility decreased by .2, 0.5, and 0.9 times the original value or if it increased by 1.1, 2, and 5 times its original value:

Changes in Implied Volatility

If the implied volatility decreased, the probabilities of default decreased for all our models; However, the models that were more sensible to these changes were the models that had more weight on the Merton's model (Model 1 and Model 2).

- CDS spread

We changed the CDS spread, leaving everything else constant, to analyze the probabilities of default. We made positive shocks by decreasing the CDS in 400 basis points (bps), 200 bps, 100 bps and for negative shocks we increased it by 100, 200, and 400 bps. If we decreased the CDS spread and it has less than zero, we considered a 0 CDS spread.

With this shock, the reduced form model is the one affected. But overall, Model 3 was the most affected bythese CDS spread changes. If we increased the spread by a 400 bps, the pd of Model 3 increased more than 40%, and if the spread decreased by 400 bps it decreased only by 20%

Changes in CDS Spread

- Risk Free Rate

Keeping all input constraints constant except the risk free rate. For the positive shocks, we increased the rate in 50, 150 and 300 basis points, and for the negative shocks we decreased in 50, 150 and 300 basis points. We considered 0.90% Risk Free rate as the stable value.

Although the most affected modelwas model 1, the risk free rate doesn't have a significant movement on all the probabilities of default. If we increased the rate by 300 bps, the pd in model 1 decreased by 0.27%. If we decreased it, the PD in model 1 increased by 0.27%.

Changes in Risk Free Rate

- Rating Notch

For the movements in credit rating, we identified the value attached to each Rating were 3 levels of shocks applied to the model on both positive and negative ends of the spectrum. The shocks were given in increments of 0.50 notches on both ends. We considered the 2009 rating value of the companies as our 'No Change' Rating Notch value.

Model 1 and 3 were the most affected negatively. Since some of the companies were rated in C or B-, when we decreased the rating by several notches, the companies fell in default. Therefore, having two notches down, the pd of our portfolio increased more than 150% using model 1 and 3.

On the other hand, if we increased the credit ratings on our companies, the default probabilities didn't have the same large movement, but it did decreased the PD by more than 13% just by changing half a notch (model 1 and 3).

Changes in Rating Notch

- Recovery Rate

For the sensitivity analysis changing the recovery rate(RR), we always considered 40% when there is no movement. The positive and negative changes were increments and decrements of 0.1. Therefore, the recovery rate range spanned from 0.1 to 0.7 and the 0.4 value being the 'No Change' value.

Model 2 and 3 were the most affected by these movements. It is important noting that if we increased the recovery rate, the PD increased even that we are recovering more of our money. This is caused because the reduced form ignores the relationship between default intensity and recovery rate, which is a weakness on this model.

% Change in Pd, shocking the Recovery Rate 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -20.0% -10.0% 0.0% 10.0% 20.0% 30.0% 40.0% ■ Model 3 ■ Model 2 ■ Model 1

Changes in Recovery Rate

Market Value of Equity

The Market Value of Equity is calculated as a product between the Market Price of a company's stock and the total number of shares outstanding. On this sensitivity analysis, we changed the whole market price, we didn't move the stock price or the number of shares separately. Ceteris paribus, we increased and decreased the Market Value by 10%, 30% and 60%.

Model 1 and 2 were the most affected models. For decreases of 60% in Value of Equity, the pd increased more than 7.5% in both models. However, if increased the Market value the pd decreased by 4%. Therefore, a decreased in the Market value of Equity will have a higher impact on the portfolio's probability of default.

Conclusion

We see that each parameter has an impact on the Probability of Default calculation. Credit Rating and implied volatility have significant impact on the default probabilities. If we decreased by 1 notch the companies' credit rating, the PD could increase more than 100%. A CDS spread change can also move more than 50% our default probability.

Since the reduced model considers the recovery rate independent from the default intensity, the results on the probabilities are estranged. If the recovery rate increases, the default probability increases.

Based on this movements, we can understand how the probabilities of default could be affected if certain parameters changed. We now continue on conducting a regulatory capital analysis and severe stress testing.

PART 3: REGULATORY CAPITAL ANALYSIS

Objective

To analyze the regulatory capital structure of the company and the sectors they belong to using 3 different approaches:

- a) Standard Approach
- b) Foundation IRB approach
- c) Advanced IRB approach

Our Working

I.Standard Approach

In the Standard Approach, we obtained the credit rating for our portfolio from S&P ratings:

Based on these ratings and on the standard approach weighting table (Figure 1.), we calculated risk-weighted asset based.

Company	Loan Amounts (2009)	Credit Rating
SBGI	405,400,000	B-
AHC	25,000,000	N/A
LEA	550,000,000	D
TRS	301,300,000	B+
FUN	64,070,000	B+
PVA	300,000,000	BB-
HSBC	1,800,000,000	A
CIT	750,000,000	D
AINV	1,179,000,000	BBB
TFIN	125,000,000	N/A
RURL	17,600,000	B+
YRCW	1,062,000,000	CCC
X	750,000,000	BB+
ACXM	495,400,000	BB
FEIC	100,000,000	B+
PLAB	130,000,000	B-

Figure 1. Weights based on a Standard Approach

Rating	AAA to AA-	A+ to A-	BBB+ to BBB-	BB+ to BB-	B+ to B-	Below B-	Unrated
Country	0%	20%	50%	100%	100%	150%	100%
Banks	20%	50%	50%	100%	100%	150%	50%
Corporates	20%	50%	100%	100%	150%	150%	100%

Risk weight asset by company:

Company	Credit Rating	Risk Weights	Risk Weighted Asset
SBGI	B-	150%	608,100,000.00
AHC	-	100%	25,000,000.00

LEA	D	150%	825,000,000.00
TRS	B+	150%	451,950,000.00
FUN	B+	150%	96,105,000.00
PVA	BB-	100%	300,000,000.00
HSBC	A	50%	900,000,000.00
CIT	D	150%	1,125,000,000.00
AINV	BBB	50%	589,500,000.00
TFIN	-	50%	62,500,000.00
RURL	B+	150%	26,400,000.00
YRCW	CCC	150%	1,593,000,000.00
X	BB+	100%	750,000,000.00
ACXM	BB	100%	495,400,000.00
FEIC	B+	150%	150,000,000.00
PLAB	B-	150%	195,000,000.00

Grouped by Industry and considering 8% as the minimum required capital ratio, we calculated the economic capital needed to allocate per industry. The total economic capital for our portfolio is 655.44 million dollars.

Industry	Risk Weight Asset	Economic capital
Communications	633,100,000	50,648,000
Consumer Discretionary	1,373,055,000	109,844,400
Energy	300,000,000	24,000,000
Financials	2,677,000,000	214,160,000
Health Care	26,400,000	2,112,000
Industrials	1,593,000,000	127,440,000
Materials	750,000,000	60,000,000
Technology	840,400,000	67,232,000
TOTAL	8,192,955,000	655,436,400

$$E_{port} = \sqrt{\sum_{i=1}^{n} E_{i}^{2} + \sum_{i=1}^{n} \sum_{j=1}^{n} 2r_{ij} E_{i} E_{j}}$$

We calculated the hybrid model , assuming the correlation $\Box_{\Box\Box}$ from the industries of our portfolio in figure 2. And the new Economic capital is 628.13 million dls.

Health Consumer Materials Technology Industrials Care Energy Discretion Fin **Communications** Materials **Technology** 0.8846 1 **Industrials** 0.9999 0.8848 1 Healthcare 0.2193 0.5202 0.2196 Financials 0.8693 0.4655 0.8693 0.8571 1 Energy 0.9318 0.8004 0.9315 0.1676 0.8941 1 Consumer-Dis 0.9507 0.9078 0.9509 0.3631 0.9317 0.9051 1 0.9287 0.4021 0.9199 Communication 0.9284 0.9184 0.8566 0.8180 1

Figure 2. Industry Correlation (using stock returns)

Adding the correlations to calculate the economic capital between industries (hybrid model) reduces by almost 30 million dollars the amount that the bank must retain as economic capital, which means that our portfolio is diversified between industries.

If the correlation between two industries is low, they don't relate from one another (e.g. if one industry defaults the other industry is not likely to default), it will decrease the economic capital needed from the bank. In our portfolio. On the other hand, if the correlation is almost one they must maintain the total economic capital per industries (e.g. if one industry defaults, the other industry is likely to default).

II. Foundation Internal Rating Based (IRB) approach

Under the Foundation IRB approach banks estimate only PD and the Basel II guidelines determine the other variables for the formula and we have followed the same guidelines

We calculated the WCDR for each company in our portfolio using the PD from the credit rating model and rho. We used the Credit Rating model in particular because we had data for all the companies here.

Borrower	Credit Rating PD	Rho	WCDR
ACXM	0.8790%	0.197323022	13.179%
AINV	0.2340%	0.226750223	11.460%
FUN	2.7595%	0.150196975	30.278%
CIT	0.2760%	0.224531843	12.506%
FEIC	2.7595%	0.150196975	30.278%
HSBC	0.1065%	0.233777154	7.288%
LEA	6.9625%	0.123692271	42.769%

PVA	1.2375%	0.184634075	23.675%
PLAB	1.5820%	0.174406941	25.601%
RURL	7.1660%	0.123335064	43.323%
SBGI	7.1790%	0.123313456	43.358%
TRS	2.7595%	0.150196975	30.278%
X	0.9160%	0.195905697	21.327%
YRCW	27.8135%	0.12000011	77.220%

With the assumption of 60% LGD we calculated economic capital as follows:

	Credit rating PD								
Borrower	Loan amount	Maturity (days)	Maturity (years)	Credit Rating PD	rho	WCDR	b	MA	Economic Capital
ACXM	120,000,000.00	1583	4.3370	0.8790%	0.197323022	13.179%	0.142775323	1.606282586	14,224,697.62
ACXM	375,400,000.00	1948	5.3370	0.8790%	0.197323022	13.179%	0.142775323	1.787968254	49,532,918.55
AINV	1,154,000,000.00	1209	3.3123	0.2340%	0.226750223	11.460%	0.202820136	1.674054605	130,123,714.37
AINV	25,000,000.00	1209	3.3123	0.2340%	0.226750223	11.460%	0.202820136	1.674054605	2,818,971.28
FUN	64,070,000.00	1843	5.0493	2.7595%	0.150196975	30.278%	0.099342726	1.472710525	15,579,282.37
CIT	750,000,000.00	694	1.9014	0.2760%	0.224531843	12.506%	0.19475672	1.24799624	68,681,749.38
FEIC	100,000,000.00	1826	5.0027	2.7595%	0.150196975	30.278%	0.099342726	1.467273394	24,226,260.18
HSBC	1,800,000,000.00	364	0.9973	0.1065%	0.233777154	7.288%	0.243519623	0.998948865	77,481,721.85
LEA	550,000,000.00	1096	3.0027	6.9625%	0.123692271	42.769%	0.069954176	1.1565243	136,656,509.39
PVA	300,000,000.00	1096	3.0027	1.2375%	0.184634075	23.675%	0.128965721	1.320233486	53,320,427.84
PLAB	130,000,000.00	608	1.6658	1.5820%	0.174406941	25.601%	0.119483733	1.096916649	20,550,159.00
RURL	17,600,000.00	730	2.0000	7.1660%	0.123335064	43.323%	0.069121858	1.077117628	4,112,588.86
SBGI	330,000,000.00	2191	6.0027	7.1790%	0.123313456	43.358%	0.06906966	1.385474411	99,247,252.69
SBGI	75,400,000.00	1524	4.1753	7.1790%	0.123313456	43.358%	0.06906966	1.244668588	20,371,880.51
TRS	70,000,000.00	1460	4.0000	2.7595%	0.150196975	30.278%	0.099342726	1.350215172	15,605,452.22
TRS	226,300,000.00	2190	6.0000	2.7595%	0.150196975	30.278%	0.099342726	1.583691954	59,173,955.20
TRS	5,000,000.00	1460	4.0000	2.7595%	0.150196975	30.278%	0.099342726	1.350215172	1,114,675.16
X	750,000,000.00	1064	2.9151	0.9160%	0.195905697	21.327%	0.141073527	1.342680104	123,323,838.39
YRCW	112,000,000.00	1221	3.3452	27.8135%	0.12000011	77.220%	0.035577185	1.08813944	36,127,504.83
YRCW	950,000,000.00	1221	3.3452	27.8135%	0.12000011	77.220%	0.035577185	1.08813944	306,438,657.03

Capital = EAD * LGD * (WCDR - PD) * MA

Where,

 $MA = (1 + (M - 2.5) * b) / (1 - 1.5 * b) Where, M = effective maturity | b = [0.11852 - 0.05478*ln(PD)]^2$

The risk - weighted assets are 12.5 times the Capital so that Capital = 8% of RWA

EAD is the loan amount and the other values are calculated in the previous step.

We then grouped all the companies by industry and summed the risk-weighted asset for all borrowers in the same industry as shown below:

Industry	Risk Weight Asset	Economic capital
Communications	1,495,239,164.93	119,619,133.19
Consumer discretionary	2,851,623,429.21	228,129,874.34
Energy	666,505,347.96	53,320,427.84
Financials	3,488,826,961.07	279,106,156.89
Health care	51,407,360.81	4,112,588.86
Industrials	4,282,077,023.30	342,566,161.86
Materials	1,541,547,979.87	123,323,838.39
Technology	1,356,675,442.02	108,534,035.36

The table below shows the correlation between different industries using stock returns:

	Materials	Technology	Industrials	Healthcare	Financials	Energy	Consumer Discretion	Communications
Materials	1							
Technology	0.88462537	1						
Industrials	0.9999402	0.88487786	1					
Healthcare	0.21935425	0.52024086	0.2196157	1				
Financials	0.86931089	0.85713549	0.8693002	0.4655368	1			
Energy	0.93180195	0.80046082	0.9315407	0.1676719	0.894176	1		
Consumer-Disc	0.95072388	0.90787291	0.9509675	0.3631837	0.931785	0.90510	1	
Communication	0.92848391	0.91842377	0.9287622	0.4021733	0.856625	0.81801	0.91993860	1

The hybrid model was used to aggregate economic capital across different industries and the results were as follows:

$$E_{port} = \sqrt{\sum_{i=1}^{n} E_{i}^{2} + \sum_{i=1}^{n} \sum_{j=1}^{n} 2r_{ij}E_{i}E_{j}}$$

We calculated the hybrid model,

Figure 2. And the new Economic capital is 1,209.165 million dls.

assuming the correlation rij from

With the hybrid model, the economic capital decreased by almost 50 million.

Adding the correlations to calculate the economic capital between industries (hybrid model) reduces by almost 50 million dollars the amount that the bank must retain as economic capital, which means that our portfolio is diversified between industries.

If the correlation between two industries is low, they don't relate from one another (e.g. if one industry defaults the other industry is not likely to default), it will decrease the economic capital needed from the bank. In our portfolio. On the other hand, if the correlation is almost one they must maintain the total economic capital per industries (e.g. if one industry defaults, the other industry is likely to default)

III. Advanced Internal Rating Based (IRB) approach

Under A-IRB banks we used quantitative models to estimate EAD (exposure at default), PD (probability of default), LGD (loss given default) and other parameters required to calculate the RWA (risk-weighted asset). Thetotal required capital is a fixed percentage of the estimated RWA.

A) Using PD calculated in Part II for your portfolio companies. To choose the PD, you can choose hybrid PD model, or the model that gives you the most available information.

Borrower	Credit Rating PD
ACXM	0.8790%
AINV	0.2340%
FUN	2.7595%
CIT	0.2760%
FEIC	2.7595%
HSBC	0.1065%
LEA	6.9625%
PVA	1.2375%
PLAB	1.5820%
RURL	7.1660%
SBGI	7.1790%
TRS	2.7595%

B) We are estimating the 1-year default rate distribution for each rating group using historical default rate for the specific rating following MLE approach

For Rating A For Rating B For Rating BB

rho	0.733937
PD	0.121456

rho	0.600237
PD	0.131144

rho	0.700237
PD	0.131144

For Rating BBB

For Rat	ing C
rho	0.17034

0.276235

PD

rho	0.695013
PD	0.00948

C) Based on your loan type, identify recovery rate recovery rate

Company	Recovery Rate	Loan type
ACXM	0.371	Unsecured
AINV	0.375	Secured
FUN	0.371	Unsecured
CIT	0.375	Secured
FEIC	0.371	Unsecured
HSBC	0.371	Unsecured
LEA	0.375	Secured
PVA	0.375	Secured
PLAB	0.371	Unsecured
RURL	0.371	Unsecured
SBGI	0.375	Secured
TRS	0.371	Unsecured
X	0.375	Secured
YRCW	0.375	Secured

D) Calculating economic capital needed using estimated PD, rho, WCDR, and recovery rate

Company	Capital
ACXM	346949388
AINV	396873463.3
FUN	44334847.64
CIT	208667435.6
FEIC	68942042.91
HSBC	231213850.5
LEA	340536128.1
PVA	178405238.8
PLAB	69224947.07
RURL	10228656.26
SBGI	295463330.3
TRS	215976096.1
Х	410046967.6
YRCW	358610213.4

E) Grouping by industry and sum up the risk-weighted asset for all borrowers in the same industry

Industry	Risk Weight	Economic	
illuustiy	Asset	capital	
communications	3693291628	295463330.3	
consumer	7510588399	600847071.9	
discretionary	7310388333	000847071.9	
energy	2230065485	178405238.8	
Financials	10459434368	836754749.4	
health care	127858203.3	10228656.26	
industrials	4482627668	358610213.4	
materials	5125587095	410046967.6	
technology	6063954725	485116378	

F) Calculating correlation between different industries using stock returns (done in Part I)

	Materials	Technology	Industrials	Healthcare	Financials	Energy	Consumer Discretion	Communications
Materials	1							
Technology	0.884625371	1						
Industrials	0.999940274	0.884877864	1					
Healthcare	0.219354252	0.520240863	0.21961577	1				
Financials	0.869310898	0.857135495	0.86930022	0.465536884	1			
Energy	0.931801954	0.800460825	0.931540732	0.16767191	0.894176288	1		
Consumer Discretion	0.950723885	0.907872914	0.950967523	0.363183778	0.931785852	0.905101576	1	
Communications	0.928483915	0.918423774	0.928762204	0.402173356	0.856626105	0.818011869	0.919938606	1

G) Using hybrid model to aggregate economic capital across different industries

	Risk Weight		
Industry	Asset	Economic capital	Economic capital ^2
communications	3693291628	295463330.3	8.72986E+16
consumer			
discretionary	7510588399	600847071.9	3.61017E+17
energy	2230065485	178405238.8	3.18284E+16
Financials	10459434368	836754749.4	7.00159E+17
health care	127858203.3	10228656.26	1.04625E+14
industrials	4482627668	358610213.4	1.28601E+17
materials	5125587095	410046967.6	1.68139E+17
technology	6063954725	485116378	2.35338E+17

Standard	Hybrid Model (Across
Approach	Industries)
3175472606	3037374953.04016

Total

$$E_{port} = \sqrt{\sum_{i=1}^{n} E_{i}^{2} + \sum_{i=1}^{n} \sum_{j=1}^{n} 2r_{ij} E_{i} E_{j}}$$

We calculated the hybrid model,

assuming the correlation r_{ij} from

Figure 2. And the new Economic capital is 3037.3749 million dls.

With the hybrid model, the economic capital decreased by almost 140 million.

H) The benefit of industry diversification from our calculation

Adding the correlations to calculate the economic capital between industries (hybrid model) reduces by almost 140 million dollars the amount that the bank must retain as economic capital, which means that our portfolio is diversified between industries.

If the correlation between two industries is low, they don't relate from one another (e.g. if one industry defaults the other industry is not likely to default), it will decrease the economic capital needed from the bank. In our portfolio. On the other hand, if the correlation is almost one they must maintain the total economic capital per industries (e.g. if one industry defaults, the other industry is likely to default).

PART 4: SCENARIO ANALYSIS AND STRESS TESTING

Objective

- a. Report the average PD of your portfolio over the nice quarters. 10 points
- b. Calculate economic capital for the nice quarters and evaluate your bank's capital adequacy on tier 1 capital, assuming there is no change to the retained earnings. 10 points
- c. Summarize the key CCAR results for your bank in the recent years (from 2012 to 2015). You can obtain this information from CCAR or bank annual reports

Our Working

1) Report the average PD of your portfolio over the nine quarters.

In order to stress our data we used FED CCAR supervisory scenarios to model our PD's for the next 8 quarters. We consider the CCAR scenarios from 2016 and we forecasted different parameters (Implied Volatility, CDS spread, Swap Rate, Market Capital and Rating Letters) for the next 8 quarters after Q4 2009.

For the first 3 quarters we considered severely adverse scenarios, followed by 3 quarters of adverse scenarios, and 2 quarters back to baseline scenarios. Since we didn't have enough data for all our companies, we only considered 7 companies from our portfolio to calculate the probabilities of default.

Scenario for Implied Volatility

We used the VIX Index and the companies' betas to scale the implied volatility:

	SBGI	HSBC	YRCW	X	ACXM	FEIC	PLAB
Q4 2009	103.047	31.849	170.419	48.132	63.432	61.06	113.013
Q1 2010	135.785	29.3196	586.011	116.421	65.2643	59.5173	47.939
Q2 2010	162.265	35.0375	700.293	139.125	77.992	71.1242	57.2879
Q3 2010	133.232	28.7685	574.995	114.232	64.0375	58.3985	47.0378
Q4 2010	137.222	29.6301	592.215	117.654	65.9553	60.1475	48.4466
Q1 2011	148.636	32.0946	641.474	127.44	71.4413	65.1503	52.4762
Q2 2011	139.44	30.109	601.787	119.555	67.0213	61.1196	49.2296
Q3 2011	154.083	33.2707	664.98	132.11	74.0592	67.5377	54.3991
Q4 2011	151.158	32.6392	652.359	129.602	72.6536	66.2559	53.3667

Scenario for CDS Spread

	SBGI	HSBC	YRCW	X	ACXM	FEIC	PLAB
Q4 2009	297	68	1126	204	143	87	200
Q1 2010	359.5263	82.315789	1363.053	246.9474	173.1053	105.3158	242.1053
Q2 2010	309.913	70.956522	1174.957	212.8696	149.2174	90.78261	208.6957
Q3 2010	309.375	70.833333	1172.917	212.5	148.9583	90.625	208.3333
Q4 2010	275	62.962963	1042.593	188.8889	132.4074	80.55556	185.1852
Q1 2011	308.88	70.72	1171.04	212.16	148.72	90.48	208
Q2 2011	285.5769	65.384615	1082.692	196.1538	137.5	83.65385	192.3077
Q3 2011	279.5294	64	1059.765	192	134.5882	81.88235	188.2353
Q4 2011	297	68	1126	204	143	87	200

Scenario Swap Rate

We repeated this process for eight more quarters and three scenarios. We used the 3 month treasury rate to scale the one year swap rate. Annualized 3-month treasury rate= $(1+\text{rate})^4$ - 1

	SBGI	HSBC	YRCW	X	ACXM	FEIC	PLAB
Q4 2009	0.90%	0.90%	0.90%	0.90%	0.90%	0.90%	0.90%
Q1 2010	0.40%	0.40%	0.40%	0.40%	0.40%	0.40%	0.40%
Q2 2010	0.40%	0.40%	0.40%	0.40%	0.40%	0.40%	0.40%
Q3 2010	0.40%	0.40%	0.40%	0.40%	0.40%	0.40%	0.40%
Q4 2010	10.81%	10.81%	10.81%	10.81%	10.81%	10.81%	10.81%
Q1 2011	12.99%	12.99%	12.99%	12.99%	12.99%	12.99%	12.99%
Q2 2011	15.20%	15.20%	15.20%	15.20%	15.20%	15.20%	15.20%
Q3 2011	8.67%	8.67%	8.67%	8.67%	8.67%	8.67%	8.67%
Q4 2011	9.95%	9.95%	9.95%	9.95%	9.95%	9.95%	9.95%

Scenario for Market Capital

We used the Dow Jones Industrial Index and the companies' betas to scale the total market value of our companies.

	SBGI	HSBC	YRCW	X	ACXM	FEIC	PLAB
Q4 2009	190.92	198767	50.39	7901.45	1061.76	880.3	236.65
Q1 2010	203.34	147896	140.05	15447.3	882.97	693.53	81.14
Q2 2010	227.26	165297	156.52	17264.8	986.85	775.13	90.68
Q3 2010	239.92	174502	165.24	18226.3	1041.81	818.29	95.73
Q4 2010	266.83	194076	183.77	20270.7	1158.67	910.08	106.47
Q1 2011	269.82	196251	185.83	20497.9	1171.66	920.28	107.67
Q2 2011	273.32	198794	188.24	20763.5	1186.84	932.21	109.06
Q3 2011	282.42	205415	194.51	21455	1226.36	963.25	112.69
Q4 2011	282.44	205432	194.53	21456.8	1226.47	963.33	112.7

Scenario for Credit Ratings

We analyzed the next 8 quarter form 2009 Q4. For the 2010 Q1, Q2 and Q3 we considered the Severely adverse scenario. For 2020Q1 the nominal GDP and the real GDP were negative, and the spread between BBB corporate bond yield and 3-month yield got wider, and the DJI went from 17133.5 to 12498. Therefore we considered downgrading all our companies for half a notch. For 2010Q2 the scenarios remained negative, so we decided to leave the ratings down half notch. For 2010Q3 the scenarios continued to be bad, the GDP more negative, the spreads got wider and the DJI more negative, and we downgraded another half notch. The next 2 quarters, everything started to stabilized, so we decided to maintain our credit ratings half notch down the actual rates. For Q2 2011 we upgraded it half a notch, so it was equal to the actual ratings. And for the last 2 quarters, there is a better scenario. Therefore, we increased for half a notch the ratings.

	SBGI	HSBC	YRCW	X	ACXM	FEIC	PLAB
Q4 2009	B-	A	CCC	BB+	BB	B+	B-
Q1 2010	CCC	A-	D	BB	BB-	В	CCC
Q2 2010	CCC	Α-	D	BB	BB-	В	CCC
Q3 2010	D	BBB+	D	BB-	B+	B-	D
Q4 2010	CCC	A-	D	BB	BB-	В	CCC
Q1 2011	CCC	A-	D	BB	BB-	В	CCC
Q2 2011	B-	A	CCC	BB+	BB	B+	B-
Q3 2011	В	A+	B-	BBB-	BB+	BB-	В
Q4 2011	В	A+	B-	BBB-	BB+	BB-	В

Therefore, using each quarter's scenario, the probabilities of default were calculated. In order to capture all the movements from the different scenarios, we used a hybrid model to calculate the PD (averaging the 3 models: Reduced form, Merton's Model, and Credit Rating).

Scenario Used:		Average from the Reduced form, Merton's Model, and Credit Rating Model
	Q4 2009	9.66%
Savanahi adirana	Q1 2010	17.25%
Severely adverse	Q2 2010	17.99%
scenario	Q3 2010	23.91%
	Q4 2010	16.58%
Adverse scenario	Q1 2011	17.17%
	Q2 2011	11.44%
baseline scenario	Q3 2011	10.70%
	Q4 2011	10.68%

Estimating the loss distribution by approach 2: Given the Loss = PD * LGD * EAD

The total loan amount from the 7 analyzed companies was $\underline{4,742.8 \text{ million}}$, and considering a 60% loss given default.

The Loss per quarter was:

	Loss
Q4 2009	274,892,688.0
Q1 2010	490,879,800.0
Q2 2010	511,937,832.0
Q3 2010	680,402,088.0
Q4 2010	471,813,744.0

Q1 2011	488,603,256.0
Q2 2011	325,545,792.0
Q3 2011	304,487,760.0
Q4 2011	303,918,624.0

Economic Capital

We calculated Economic Capital for each quarter using the Internal Rating Based Approach.

Where, Capital = $EAD \times LGD \times (WCDR-PD) \times MA$

Q4 2009							
Company	LGD	EAD = Loan Exposure	PD	WCDR	Maturity in years	MA	Economic Capital
FEIC	0.6	100,000,000.00	1.41%	16.40%	5.002739726	1.609043959	14475403.99
Х	0.6	750,000,000.00	1.38%	16.25%	2.915068493	1.293794227	86573846.87
HSBC	0.6	1,800,000,000.00	0.42%	8.84%	0.997260274	0.9993499676	90845735.7
ACXM	0.6	375,000,000.00	1.19%	15.21%	5.336986301	1.703801218	53743497.36
ACXM	0.6	120,000,000.00	1.19%	15.21%	4.336986301	1.541522353	15559900.13
PLAB	0.6	130,000,000.00	8.68%	38.12%	1.665753425	1.046897696	24042617.39
SBGI	0.6	330,000,000.00	14.69%	50.89%	6.002739726	1.270369776	91063908.18
SBGI	0.6	75,400,000.00	14.69%	50.89%	4.175342466	1.171609294	19189176.89
YRCW	0.6	112,000,000.00	39.85%	80.70%	3.345205479	1.069910427	29371111.98
YRCW	0.6	950,000,000.00	39.85%	80.70%	3.345205479	1.069910427	249129967.7

Ω 1	2010
ŲΙ	2010

Company	LGD	EAD = Loan Exposure	PD	WCDR	Maturity in years	МА	Economic Capital
FEIC	0.6	100,000,000.00	3.05%	22.69%	4.753	1.420440	16,737,124.47
Х	0.6	750,000,000.00	3.31%	23.50%	2.665	1.180317	107,253,508.75
HSBC	0.6	1,800,000,000.00	0.54%	10.21%	0.747	0.945180	98,667,098.90
ACXM	0.6	375,000,000.00	1.52%	16.95%	5.087	1.604201	55,683,601.04
ACXM	0.6	120,000,000.00	1.52%	16.95%	4.087	1.456365	16,176,663.52
PLAB	0.6	130,000,000.00	10.68%	42.78%	1.416	1.026464	25,699,919.93
SBGI	0.6	330,000,000.00	27.41%	69.18%	5.753	1.180227	97,617,913.57
SBGI	0.6	75,400,000.00	27.41%	69.18%	3.925	1.110931	20,994,638.47
YRCW	0.6	112,000,000.00	74.22%	96.67%	3.095	1.039170	15,676,475.11
YRCW	0.6	950,000,000.00	74.22%	96.67%	3.095	1.039170	132,970,101.37

Q2 2010							
Company	LGD	EAD = Loan Exposure	PD	WCDR	Maturity in years	MA	Economic Capital
FEIC	0.6	100,000,000.00	3.01%	22.56%	4.503	1.394576	16,359,181.49
Х	0.6	750,000,000.00	5.09%	28.70%	2.415	1.127413	119,789,549.86
HSBC	0.6	1,800,000,000.00	0.50%	9.77%	0.497	0.887905	88,929,685.74
ACXM	0.6	375,000,000.00	1.75%	17.99%	4.837	1.537120	56,180,070.22
ACXM	0.6	120,000,000.00	1.75%	17.99%	3.837	1.397135	16,340,408.09
PLAB	0.6	130,000,000.00	10.68%	42.78%	1.166	1.010551	25,301,488.72
SBGI	0.6	330,000,000.00	31.73%	73.71%	5.503	1.155864	96,082,049.63
SBGI	0.6	75,400,000.00	31.73%	73.71%	3.675	1.092608	20,751,870.13
YRCW	0.6	112,000,000.00	73.19%	96.41%	2.845	1.034900	16,149,275.94
YRCW	0.6	950,000,000.00	73.19%	96.41%	2.845	1.034900	136,980,465.57

Q3 2010							
Company	LGD	EAD = Loan Exposure	PD	WCDR	Maturity in years	MA	Economic Capital
FEIC	0.6	100,000,000.00	4.38%	26.68%	4.253	1.312746	17,567,564.62
Х	0.6	750,000,000.00	2.74%	21.68%	2.165	1.136403	96,867,219.55
HSBC	0.6	1,800,000,000.00	0.47%	9.43%	0.247	0.828412	80,205,079.53
ACXM	0.6	375,000,000.00	1.83%	18.33%	4.587	1.493434	55,459,224.98
ACXM	0.6	120,000,000.00	1.83%	18.33%	3.587	1.355871	16,112,256.38
PLAB	0.6	130,000,000.00	34.53%	76.33%	0.916	0.997238	32,510,896.98
SBGI	0.6	330,000,000.00	50.29%	87.47%	5.253	1.107664	81,542,249.70
SBGI	0.6	75,400,000.00	50.29%	87.47%	3.425	1.061401	17,853,010.20
YRCW	0.6	112,000,000.00	73.15%	96.40%	2.595	1.030185	16,096,322.72
YRCW	0.6	950,000,000.00	73.15%	96.40%	2.595	1.030185	136,531,308.80

Q4 2010							
Company	LGD	EAD = Loan Exposure	PD	WCDR	Maturity in years	MA	Economic Capital
FEIC	0.6	100,000,000.00	2.91%	22.24%	4.003	1.342991	15,575,543.63
Х	0.6	750,000,000.00	2.40%	20.52%	1.915	1.113041	90,746,870.31
ACXM	0.6	375,000,000.00	1.21%	15.32%	4.337	1.538127	48,848,066.06
ACXM	0.6	120,000,000.00	1.21%	15.32%	3.337	1.376866	13,992,544.36
PLAB	0.6	130,000,000.00	10.33%	42.00%	0.666	0.978369	24,164,778.86
SBGI	0.6	330,000,000.00	26.31%	67.92%	5.003	1.155615	95,211,066.72
SBGI	0.6	75,400,000.00	26.31%	67.92%	3.175	1.084571	20,416,895.35
YRCW	0.6	112,000,000.00	72.43%	96.21%	2.345	1.025664	16,393,291.26
YRCW	0.6	950,000,000.00	72.43%	96.21%	2.345	1.025664	139,050,238.38

Ω1	20	4
() (71	

Company	LGD	EAD = Loan Exposure	PD	WCDR	Maturity in years	MA	Economic Capital
FEIC	0.6	100,000,000.00	2.97%	22.43%	3.753	1.311805	15,318,881.78
Х	0.6	750,000,000.00	3.14%	22.97%	1.665	1.073620	95,818,987.01
ACXM	0.6	375,000,000.00	1.37%	16.20%	4.087	1.474896	49,207,179.88
ACXM	0.6	120,000,000.00	1.37%	16.20%	3.087	1.321058	14,103,889.86
PLAB	0.6	130,000,000.00	10.49%	42.36%	0.416	0.962477	23,922,311.86
SBGI	0.6	330,000,000.00	28.59%	70.49%	4.753	1.138667	94,456,537.23
SBGI	0.6	75,400,000.00	28.59%	70.49%	2.925	1.071143	20,302,061.25
YRCW	0.6	112,000,000.00	73.16%	96.40%	2.095	1.020722	15,943,350.58
YRCW	0.6	950,000,000.00	73.16%	96.40%	2.095	1.020722	135,233,777.22
INCV	0.0	930,000,000.00	/3.10/	30.40%	2.055	1.020/22	133,233,777.22

Q2 2011

Q2 2011							
Company	LGD	EAD = Loan Exposure	PD	WCDR	Maturity in years	MA	Economic Capital
FEIC	0.6	100,000,000.00	1.39%	16.30%	3.503	1.382893	12,372,611.93
Х	0.6	750,000,000.00	2.37%	20.41%	1.415	1.051535	85,369,451.58
ACXM	0.6	375,000,000.00	1.15%	14.97%	3.837	1.466349	45,607,872.05
ACXM	0.6	120,000,000.00	1.15%	14.97%	2.837	1.301967	12,958,431.99
PLAB	0.6	130,000,000.00	4.97%	28.36%	0.166	0.924090	16,862,431.61
SBGI	0.6	330,000,000.00	21.22%	61.39%	4.503	1.154569	91,841,379.68
SBGI	0.6	75,400,000.00	21.22%	61.39%	2.675	1.073929	19,518,738.41
YRCW	0.6	112,000,000.00	48.60%	86.51%	1.845	1.021934	26,037,336.32
YRCW	0.6	950,000,000.00	48.60%	86.51%	1.845	1.021934	220,852,406.30

Q3 2011							
Company	LGD	EAD = Loan Exposure	PD	WCDR	Maturity in years	MA	Economic Capital
FEIC	0.6	100,000,000.00	0.87%	13.11%	3.253	1.410847	10,362,818.84
Х	0.6	750,000,000.00	3.20%	23.16%	1.165	1.018129	91,453,548.91
ACXM	0.6	375,000,000.00	1.18%	15.15%	3.587	1.421151	44,673,255.75
ACXM	0.6	120,000,000.00	1.18%	15.15%	2.587	1.258355	12,657,867.80
SBGI	0.6	330,000,000.00	22.59%	63.27%	4.253	1.138435	91,701,840.35
SBGI	0.6	75,400,000.00	22.59%	63.27%	2.425	1.060662	19,521,092.11
YRCW	0.6	112,000,000.00	43.09%	83.04%	1.595	1.016817	27,294,832.11
YRCW	0.6	950,000,000.00	43.09%	83.04%	1.595	1.016817	231,518,665.18

Q4 2011							
Company	LGD	EAD = Loan Exposure	PD	WCDR	Maturity in years	MA	Economic Capital
FEIC	0.6	100,000,000.00	0.90%	13.33%	3.003	1.360711	10,149,906.77
Х	0.6	750,000,000.00	3.02%	22.59%	0.915	0.990446	87,236,471.47
ACXM	0.6	375,000,000.00	1.19%	15.21%	3.337	1.379243	43,505,878.43
ACXM	0.6	120,000,000.00	1.19%	15.21%	2.337	1.216965	12,283,862.07
SBGI	0.6	330,000,000.00	22.13%	62.65%	4.003	1.129333	90,611,622.59
SBGI	0.6	75,400,000.00	22.13%	62.65%	2.175	1.050624	19,260,457.92
YRCW	0.6	112,000,000.00	43.45%	83.28%	1.345	1.009697	27,025,998.47
YRCW	0.6	950,000,000.00	43.45%	83.28%	1.345	1.009697	229,238,379.92

In order to calculate the amounts of economic capital for each quarter, we used the industry correlation.

Industry correlation:

	Materials	Technology	Industrials	Financials	Communications
Materials	1				
Technology	0.8846	1			
Industrials	0.9999	0.8849	1		
Financials	0.8693	0.8571	0.8693	1	
Communications	0.9285	0.9184	0.9288	0.8566	1

	Economic Capital
Q4 2009	650,521,898.09
Q1 2010	571,497,998.91
Q2 2010	570,394,597.32
Q3 2010	529,629,333.37
Q4 2010	451,496,456.24
Q1 2011	451,417,358.01
Q2 2011	518,472,141.83
Q3 2011	517,480,894.18
Q4 2011	507,839,603.54

In order to calculate the Tier 1 Capital, we assume the 2009 Net Income of 11,728.00 million dollars remained constant through the next quarters. The Tier 1 Capital as of 2009 was 132,971 million, and the Risk-weighted assets in 2009 was 1,198,006 million, which was assume constant through the next quarters.

	Q42009	Q12010	Q2 2010	Q3 2010	Q4 2010	Q1 2011	Q2 2011	Q3 2011	Q4 2011
Net Income	11,728	11,728	11,728	11,728	11,728	11,728	11,728	11,728	11,728
Economic Capital		142.874	142.598	132.407	112.874	112.854	129.618	129.370	126.959
NI - EC		11,585.13	11,585.40	11,595.59	11,615.13	11,615.15	11,598.38	11,598.63	11,601.04
Tier 1 Capital	132,971	144,556	156,142	167,737	179,352	190,967	202,566	214,164	225,765
RWA	1,198,006	1,198,006	1,198,006	1,198,006	1,198,006	1,198,006	1,198,006	1,198,006	1,198,006
Tier 1 Cap ratio	11.10%	12.07%	13.03%	14.00%	14.97%	15.94%	16.91%	17.88%	18.85%

The Tier 1 Capital ratio is above Federal Reserve Capital requirements of 4.5% for all quarters. Starting with 12.07% and continuously increasing over the following years because the Net Income minus the economic capital is always positive, and the amount of Tier 1 Capital is increasing (we are assuming no retained earnings).

(3) Summarize the key CCAR results for your bank in the recent years (from 2012 to 2015). You can obtain this information from CCAR or bank annual reports.

From 2012 to 2015 the CARR results of JPMorgan Chase & Co. as follow:

JPMorgan Chase & Co.	Non-objection to capital plan	Conditional non-objection to capital plan	Objection to capital plan
2012		yes	
2013		yes	
2014	yes		
2015	yes		

CET1 Ratios	Q4′12	Q1'13	Q2′13	Q3′13	Q4'13	Q1′14	Q2′14	Q3′14	Q4'14	TARGET (Basel)	TARGET (Fed)
JPMorgan	8.74%	8.86%	9.33%	9.33%	9.50%	9.58%	9.79%	10.11%	10.18%	9.50%	11.50%

Chase Bank submitted its 2012 capital plan on January 9, 2012, and received notice of the Federal Reserve's conditional non-objection on March 13, 2012. In May 2012, Chase had to resubmit its capital plan to the Federal Reserve because it was listed under the conditional non-objection column of the CCAR 2012 report. In November 2012, Chase received a non-objection from the Federal Reserve.

On March 2013, the Federal Reserve informed the Firm that it did not object to the Firm's 2013 capital plan, but asked the Firm to submit an additional capital plan by the end of the third quarter to address weaknesses in their capital planning processes.

On March 2014, and 2015 the Federal Reserve informed the Firm that it did not object, on both a quantitative and qualitative basis, to the Firm's 2014 and 2015 capital plan.

CONCLUSIONS

Chase bank had good holdings even though it had multiple risk exposures. In this portfolio certain companies were on the brink of bankruptcy such as YRCW, X (United Steel Services), CIT. Also the models take the historic values into consideration and our analysis is intuitive with the companies' past events which makes it very reliable. In addition to this we are maintaining the rules and regulatory compliance while evaluating this portfolio (its constituent companies).

We tested our portfolio under different scenarios given by the FED's CCAR Supervisory Scenarios, where we shocked the Volatilities, CDS Spread, Credit Ratings, Market Capital and Risk-free rate. Under these scenarios, we assumed Net Income to be constant, we found that the Tier1 Capital Ratio was above the required 4.5 benchmark. This was conducted for 7 companies which spanned 5 different sectors. It is important to note that there could be changes if the Income changed for every quarter but we are not considering it.