

UNIVERSIDAD TÉCNICA DE MACHALA

Maestría en Software

Asignatura:

Base de datos NoSQL

Tema:

Taller Individual 1 - Bases de Datos NoSQL

Docente:

Ing. Nelson Piedra

Estudiante:

Ing. Jimmy Fernando Castillo Crespín

2021-2022

Contenido

Teorema CAP	3
Ejemplos de base de datos relacionales y NoSQL	4
Características de ACID	4
Base de dato NoSql	5
Características o atributos generales de las bases de datos no sql	5
Tipos de bases de datos no sql	5
Describa dos modelos de datos no sql y describa con detalle las características	6
Modelo y meta-modelo físico	6
Meta-modelo Lógico	7
Bibliografía	9

Teorema CAP

El Teorema CAP también conocido como teorema de Brewer [1], indica que un sistema de cómputo distribuido solo puede satisfacer dos de los siguientes tres atributos (Ver ilustración 1):

- Consistencia es decir todos los nodos deben ver los mismos datos al mismo tiempo.
- Disponibilidad es decir garantiza que cada petición a un nodo reciba una confirmación de si ha sido o no satisfactoriamente.
- Tolerancia al particionamiento es decir que debe funcionar a pesar de que los nodos tengan un fallo de comunicación, garantizando la disponibilidad a pesar que un nodo se separe del grupo sin importar la causa.

Ilustración 1: Teorema CAP

Los motores de base de datos relacionales cumplen con los atributos de consistencia y disponibilidad y, en consecuencia, tiene limitada la tolerancia al particionado. Dicho particionado es una estrategia que permite la escalabilidad horizontal en los motores NoSQL. Las bases de datos relacionales están diseñadas para garantizar la consistencia de la información. Estas incluyen mecanismos de redundancia, como clústeres de bases de datos, que garanticen la disponibilidad. Por otra parte, cuando se trata de escalabilidad, en general, soportan escalabilidad vertical y que, por supuesto, está limitada por la capacidad de procesamiento de los servidores donde funcionan. Sin embargo, la escalabilidad horizontal se ve limitada y difícilmente llega en algunos motores relacionales a superar la centena [2].

El teorema solo nos garantiza las siguientes combinaciones [3]:

- CP (Consistency & Partition) El sistema aplicara los cambios de forma consistente y aunque se pierda la comunicación entre nodos ocasionando el particionado. No se asegura la disponibilidad entre los nodos
- AP (Availability & Partition) El sistema siempre estará disponible a las peticiones, aunque se pierda la comunicación entre los nodos ocasionando el particionado. En consecuencia, por la pérdida de comunicación existirá inconsistencia porque no todos los nodos serán iguales
- CA (Consistency & Availability) El sistema siempre estará disponibles respondiendo las peticiones y los datos procesados serán consistentes. En este caso no se puede permitir el particionado

Ejemplos de base de datos relacionales y NoSQL.

• AP: Riak, Cassandra, CouchDB, DynamoDB

• CP: MongoDB, Paxos, Redis, HBase

CA: Mysql, Postgresql

Características de ACID

ACID es un acrónimo de Atomicity, Consistency, Isolation and Durability: Atomicidad, Consistencia, Aislamiento y Durabilidad en español [4].

Atomicidad	es la propiedad que asegura que la operación se ha realizado o no, y por
	lo tanto ante un fallo del sistema no pueda quedar a medias.
Consistencia	es la propiedad que asegura que sólo se empieza aquello que se puede
	acabar. Por lo tanto, se ejecutan aquellas operaciones que no van a
	romper la reglas y directrices de integridad de la base de datos.
Aislamiento	es la propiedad que asegura que una operación no puede afectar a otras.
	Esto asegura que la realización de dos transacciones sobre la misma
	información nunca generará ningún tipo de error.
Durabilidad	es la propiedad que asegura que una vez realizada la operación ésta
	persistirá y no se es la propiedad que asegura que, una vez realizada la
	operación, ésta persistirá y no se podrá deshacer, aunque falle el sistema.

Base de dato NoSql

Características o atributos generales de las bases de datos no sql.

En base al trabajo realizado por [5] se elaboró el siguiente cuadro:

Características	Aplicabilidad	Ejemplos
Muy alto rendimiento.	Aplicaciones que busca alto	Cassandra, Redis, Hbase,
Muy escalable.	rendimiento en las consultas,	Mencached, Riak, MariaDB
Útil para representar datos no	que precisen de alta	
estructurados.	escalabilidad y no necesiten	
No existe el concepto de	implementar relaciones entre sus	
relaciones	datos	
Almacenan datos de tipo	Aplicaciones que preceden de	MongoDB
documento (los documentos	esquemas cambiantes y	Couchbase
representan estructuras clave	necesiten flexibilidad	Amazon_Dynamo
valor anidadas).		CouchDB
Se representan en formato XML,		RethinkDB
JSON o BSON.		RavenDB
Flexible en esquemas de datos		Cloudant
dinámicos.		GemFire
Reducción de la complejidad en		
las consultas para datos		
asociados.		
Los datos se modelan como un	Redes sociales, software de	Neo4j
conjunto de relaciones entre	recomendación, aplicaciones de	Titan
elementos.	geolocalización, aplicaciones de	DEX/Sparksee
Alto rendimiento en consultas de	optimización de rutas, topologías	AllegroGraph
relaciones de proximidad entre	de red	OrientDB
datos, y no para ejecutar		InfiniteGraph
consultas globales.		Sones GraphDB
Flexibilidad en la definición de		InfoGrid
atributos y longitud de registros.		HyperGraphDB

Tipos de bases de datos no sql

En base al trabajo realizado por [6] se elaboró el siguiente cuadro:

Tipos	Concepto	Ejemplos	Representación	
Orientadas a Documentos		de documentos suelen almacenar mongoDB	User Info	
		BSON. Son es a las bbdd alores clave, n este caso, or es un solo ento que ena todos los relacionados una clave	"CITY": "NAV", "STATE": "CA" } 850N 4 Steve Yen 3	

Orientadas a Columnas	Las bases de datos NoSQL de columnas anchas almacenan datos en tablas con filas y columnas similares a las BBDD relacionales, pero los nombres y los formatos de las columnas pueden variar de fila a fila en la tabla	Cassandra	Column store: Uses VersPag compression
Clave/valor	Son el modelo de base de datos NoSQL más popular y sencillo en cuanto a su funcionalidad. Cada elemento está identificado por una llave única que permite la recuperación de información de forma rápida	redis	Values Values
BD en Grafos	Se basa en la teoría de grafos. La información se representa como nodos de un grafo con relaciones a otros nodos. Los elementos se unen entre sí sin la necesidad de índices. Cada "tabla" debe tener una sola columna y dos relaciones a otros grafos.	Neo4j AllegroGraph	Name Bob Age 12 Late of Age 22 Late of Age 22 Late of Age 23 Late of Age 24 Age 25 Late of Age 25 Late

Describa dos modelos de datos no sql y describa con detalle las características

La siguiente información fue obtenida de [7]:

Modelo y meta-modelo físico

El meta-modelo físico puede llegar a ser similar o el mismo que el modelo lógico, dependerá de si la notación de los campos y tipos de datos corresponden físicamente con algún motor de base de datos específico. El propósito del meta-modelo físico, es el mismo que el del meta-modelo lógico, es decir, describir un patrón de cómo debe crecer la base de datos. La utilización de un solo meta-modelo lógico/físico o separarlos en dos distintos, dependerá de las necesidades de visualización que tengan, para el ejemplo el meta-modelo es el mismo.

El modelo físico en cambio, tanto en la base de datos documental, como en la base de datos de grafos, heredaran los conceptos definidos en el meta-modelo. Este modelo puede ayudar a verificar el meta-modelo lógico físico y prever reglas de validación de datos.

Para el modelo documental, se describen las cases que representan los documentos, se pueden mostrar los conceptos anidados con clases anidadas. Los campos pueden variar entre clase y clase, pero siempre se ajustan al meta-modelo físico. Una regla de ejemplo, puede ser que por cada *Identification que exista*, ésta debe tener al menos una propiedad *Number* aunque no se pueda determinar el *IdentificationType*.

Meta-modelo Lógico

A continuación, se describe el meta-modelo lógico para base de datos documental. Para cada concepto identificado en el meta-modelo conceptual, se describen las propiedades susceptibles a ser utilizadas, sus tipos (cadenas, numéricos, etc), la cardinalidad entre clases. Las relaciones entre conceptos, dependen de las que se permitan dentro de un documento NoSQL.

Si se trata de una base de datos de grafos, al igual en en el el diagrama documental, describimos las posibles propiedades y sus tipos, en el meta-modelo lógico se respetan las relaciones de ida y vuelta del meta -modelo conceptual.

Se define un meta-modelo lógico y no como modelo lógico, porque en lugar de describir un futuro modelo lógico, se describe un patrón de cómo debe crecer y evolucionar una base de datos NoSQL. Es decir, sirve de guía para saber cómo relacionar un nuevo concepto, agregar correctamente una propiedad a un concepto adecuado y tener una referencia del tipo que debería tener. Por otro lado, nos ayuda a medir el impacto, cuando es necesario evolucionar el esquema.

Bibliografía

- [1 R. Luque Lodeiro, «Blockchain: Estado del arte, tendencias y retos,» Repositorio
-] Institucional de la Universidad de Oviedo, 2020.
- [2 I. C. Education, «Teorema CAP,» 14 11 2019. [En línea]. Available:
-] https://www.ibm.com/ar-es/cloud/learn/cap-theorem#:~:text=El%20teorema%20CAP%20aplica%20un,(CAP%2C%20en%20ingl%C3%A9 s).. [Último acceso: 2021].
- [3 Gildder, «Teorema CAP,» 2018. [En línea]. Available:
-] https://gildder.medium.com/teorema-cap-e99d66fde6a0.
- [4 P. SOLIGO, J. S. IERACHE y G. MERKEL, «TELEMETRÍA DE ALTAS PRESTACIONES SOBRE BASE
- DE DATOS DE SERIE DE TIEMPOS,» Revista Digital Del departamento de ingenieria e investigaciones de la UNM, vol. 5, nº 2, 2020.
- [5 D. Robles, «¿Qué características tienen los esquemas NOSQL?,» *Investigación y desarrollo*] *en TIC*, vol. 6, nº 1, 2017.
- [6 Teléfonica, «Bases de datos NoSQL Qué son y tipos que nos podemos encontrar,» 2014.
- [En línea]. Available: https://www.acens.com/wp-content/images/2014/02/bbdd-nosql-wp-acens.pdf. [Último acceso: 2021].
- [7 Charito, «Modelos de datos NoSQL,» 2018. [En línea]. Available:
- https://eaminds.com/2018/08/03/modelando-nosql-data-bases/. [Último acceso: 2021].