PROJETO DE BANCOS DE DADOS

- Conceito
- Projeto de Bancos de Dados dentro do ciclo de vida de um Sistema de Informação.
- Fases do projeto de Banco de Dados e de grandes BDs.
- Tipos de modelos de dados de acordo com as fases do projeto.
- Dependências das fases do projeto em relação ao SGBD utilizado.

PROJETO DE BANCO DE DADOS

Conceito

Processo de desenvolvimento da estrutura de um banco de dados a partir das necessidades dos usuários. A estrutura deve satisfazer as necessidades de informação dos usuários de uma organização, tendo em vista um determinado conjunto de aplicações.

Características Gerais:

- Complexidade
 Precisa da divisão do problema em sub-partes
- Multiplicidade de Tarefas
 Requer a utilização de uma só metodologia.

PROJETO DE BANCOS DE DADOS DENTRO DO CICLO DE VIDA DE UM SISTEMA

CICLO DE VIDA DE UM SISTEMA DE BANCO DE DADOS

FASES DO PROJETO DE BANCOS DE DADOS (GRANDES BDS)

Figura 10.1

Fases de projeto e implementação para grandes bancos de dados.

Fase 1: Levantamento e Análise de Requisitos

- Identificação das principais áreas de aplicação, bem como dos grupos de usuários.
- Análise e estudo da documentação existente relativa às aplicações.
- O estudo do ambiente operacional atual e o uso planejado da informação.
- Respostas a conjuntos de consultas levantadas a usuários ou grupos potenciais.

TIPOS DE MODELOS DE DADOS

Basicamente existem dois tipos de modelos de dados:

Modelos conceituais (SEMÂNTICOS), Utilizados no projeto conceitual de BDs.

Exemplos:

- Modelo de entidades e relacionamentos
- Modelo funcional
- Modelo Orientado a Objetos
- Modelos lógicos (CLÁSSICOS), Suportados pelos SGBDs
 - Modelo relacional
 - Modelo de rede (CODASYL)
 - Modelo Hierárquico

TIPOS DE SGBDS

Dependências das fases de projeto do tipo de SGBD e do SGBD específico.

TIPOS DE SGBDs:

- Relacional
- Hierárquico
- п Rede
- Orientado a Objetos

EXEMPLOS DE SGBDs:

SQL/DS, DB2, ORACLE, INGRES, SYBASE, INFORMIX, ADABAS, IDMS, IMS, SYSTEM 2000, Jasmin, Poet, etc.

TIPOS DE SGBDS

Tipo de SGDB **SGBD** especifico **Projeto Conceitual** Não Não **Projeto** Lógico Não Sim **Projeto Físico** Sim Sim

FASE 3: ESCOLHA DE UM SGBD

- Regido por fatores: técnicos, econômicos e políticos.
- Técnicos → conveniência do SGBD em relação à tarefa que se tem.
 - Aspectos: tipo de SGBD; estrutura de armazenamento e os caminhos de acesso que suporta; interfaces disponíveis para usuários e programadores; tipo de linguagesn de consulta; a disponibilidades ferramentas de desenvolvimento; facilidade de conexão com outros SGBDs; opções arquitetônicas relacionadas a C/S, etc.

FASE 3: ESCOLHA DE UM SGBD

- Fatores econômicos: custos a serem considerados:
 - Custo para aquisição de software
 - Custo de manutenção
 - Custo de aquisição de hardware
 - Custo de criação e de conversão do BD (Difícil de ser estimado)
 - Custo de pessoal (cargos para ABD e equipe)
 - Custo de treinamento
 - Custo operacional (pode ser independente da escolha do SGBD)

FASE 3: ESCOLHA DE UM SGBD

- Fatores organizacionais:
 - Adoção massiva de uma certa filosofia na organização
 - Familiaridade do pessoal com o sistema
 - Disponibilidade de serviço de venda.

FASES DO PROJETO DE UM BANCO DE DADOS

IMPORTÂNCIA DA FASE DE PROJETO CONCEITUAL (FASE 2)

Desde o ponto de vista do projetista:

Torna o projeto final mais estável Adia a seleção do SGBD que será utilizado Facilita a manutenção do BD (indep. do SGBD) Facilita a integração de BDs

Desde o ponto de vista do usuário:

Facilita a comunicação com o projetista
Facilita o controle do projeto
Aumenta a possibilidade de convergência do
projeto no produto final

Alternativas para o projeto conceitual de Banco de Datos

projeto conceitual centralizado

- Os requerimentos das diferentes aplicações e grupos de usuários da **fase 1** são convertidos num só conjunto de requerimentos antes de iniciar o projeto.
- ✓ ABD responsável pela união dos requisitos dos diferentes usuários e aplicações.
- Depois de projetar o esquema conceitual, os esquemas externos são especificados pelo ABD

Alternativas para o projeto conceitual de Bancos de Dados

Projeto conceitual por integração de visões

- Um esquema para cada grupo de usuários ou aplicação.
- É necessário uma fase de integração de visões para integrar esquemas gerando um esquema conceitual global para o BD.
- Ferramentas automatizadas podem ajudar nesta etapa (Exista uma metodologia).

Estratégias para o projeto conceitual

Dado um conjunto de requisitos de um grupo de usuários, como construir um esquema conceitual?

1. Estratégia "Top-down"

Entidades Atributos (Dividir entidades) Refinando Especialização: Entidad Subconjuntos

2. Estratégia "Bottom-up"

Atributos — Entidades mais parecido com normalização

Generalização: Subconjuntos ── E. Genérica.

- 3. Estratégia "Inside-Out"
- 4. Estratégia Mista.

Exemplos de refinamento *top-down*. (a) Gerando um tipo entidade novo. (b) Decompondo um tipo de entidade em dois tipos: entidade e relacionamento

Exemplos de refinamento *botton-up*. (a) Descobrindo e adicionando novos relacionamentos. (b) Descobrindo e relacionando uma nova categoria (tipo união).

 Para grandes BDs com muitos usuários e aplicações é muito difícil projetar o esquema conceitual diretamente.

É necessário uma metodologia de integração de esquemas:

1. Identificar correspondências e conflitos entre os esquemas.

Especificar construções nos esquemas que representam o mesmo conceito do mundo real.

Existem vários tipos de conflitos:

a. Conflitos de nome

Sinônimos diferentes nomes para descrever o mesmo conceito.

Homônimos mesmo nome para diferentes conceitos.

 Para grandes BDs com muitos usuários e aplicações é muito difícil projetar o esquema conceitual diretamente.

É necessário uma metodologia de integração de esquemas:

1. Identificar correspondências e conflitos entre os esquemas.

Especificar construções nos esquemas que representam o mesmo conceito do mundo real.

Existem vários tipos de conflitos:

a. Conflitos de nome

Usuário e Cliente

Sinônimos diferentes nomes para descrever o mesmo conceito.

Homônimos ——— mesmo nome para diferentes conceitos.

PEÇAS: Componentes de um Computador ou peças de mobiliário

b. Conflitos de Tipos

O mesmo conceito pode ser representado de maneiras diferentes (tipo de entidade ou atributo). --> DEPARTAMENTO

c. Conflitos de Domínios

Um atributo pode ter diferentes domínios (peso em Kgms ou libras; ID inteiro ou string)

d. Conflitos entre restrições

Dois esquemas podem representar diferentes restrições sobre o mesmo conceito (ENSINA 1:N ou M:N)

2. Modificar visões para formar outra.

Fazer algumas mudanças sobre alguns dos esquemas para formar esquemas mais próximos. Alguns conflitos são solucionados.

3. "Merging" das visões.

O esquema global é criado juntando os esquemas individuais.

Conceitos correspondentes são representados uma só vez.

Conversões entre as visões e o esquema global são especificados como parte do processo de "reunião".

4. Reestructuração.

O esquema global é analisado e reestruturado para remover qualquer redundância ou complexidade que não é necessária.

Modificando visões para adaptação antes da integração

Esquema integrado depois da fusão das visões 1 e 2

Estratégias para o processo de integração de visões

- Integração escada binária (Integração manual)
- Integração N-aria (Ferramentas Comp.)
- Integração binária balanceada
- Estratégia mista.

Diferentes estratégias para o processo de integração de visões

Integração em Etapas Binárias

Integração N-ária

Integração Binária Balanceada

Integração Mista

COLECIONADOR de MUSICA

BANCOS DE DADOS USP

Um aficionado à música que possui uma grande coleção de música popular, deseja criar uma banco de
dados no qual possa cadastrar todos os suas gravações (discos de vinil, CDs e fitas) e obter uma série de
informações sobre eles. Ao analizar esta aplicação, foi possível estabelecer as seguintes afirmações:
🖵 Para cada gravação deverão constar, obrigatoriamente, o código do catálogo, o título, o gênero, as
músicas e, opcionalmente, o selo de gravação e o ano de gravação.
■Se a gravação for um disco de vinil devem ser identificadas as músicas de acordo com o lado.
O código do catálogo é único para cada gravação.
□Para cada companhia ou selo de gravação deverão existir, obrigatoriamente, um número de
identificação, o nome e opcionalmente,o endereço.
□O número de identificação é único para selo de gravação.
□Para cada música deverão existir, obrigatoriamente, o título e os compositores e, opcionalmente, o ano
em que foi composto.
□Toda música possui, pelo menos um compositor.
□Toda gravação contem gravações de um único intérprete.
□Para cada compositor, como também para cada intérprete, deverão ser definidos, obrigatoriamente, o
nome e, opcionalmente, o local e a data de nascimento.
□Existem compositores que também são intérpretes.
Se ao projetar o banco de dados vc. considera outras afirmações além das anteriores, não deixe de

mencioná-las.

