

Table of Content Apa yang Akan Kita Pelajari Hari Ini?

- 1. SVM
- 2. Neural Network
- 3. Multiclass classification

SVM

• Find a linear hyperplane (decision boundary) that will separate the data

There are many possible solution

• Find hyperplane maximizes the margin => B1 is better than B2

$$f(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x} + b \le -1 \end{cases}$$

$$Margin = \frac{2}{\|\vec{w}\|^2}$$

• What if the problem is not linearly separable?

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^{N} \xi_i^k\right)$$

Subject to:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 + \xi_i \end{cases}$$

Nonlinear Support Vector Machines

What if decision boundary is not linear?

Nonlinear Support Vector Machines

Transform data into higher dimensional space

Neural Network

Brief History

History of ANN

- 1943: McCulloch and Pitts: First mathematic model of neuron
- 1958: Rosenblatt: Perceptron Single layer NN
- 1986: Rumelhart: Back Propagation algorithm
- 1995: Y. LeCun, Y. Bengio, et al.: Convolutional neural network
- 2006: G. E. Hinton, et al.: Deep belief nets.

Artificial Neural Network

- Artificial Neural Network (Jaringan saraf tiruan) terdiri dari kumpulan unit pemrosesan sederhana yang berkomunikasi dengan mengirimkan sinyal satu sama lain melalui sejumlah besar koneksi berbobot.
- Model yang terinspirasi oleh bagaimana neuron dalam otak manusia bekerja

Types of ANN

Types of ANN

- Feedforward neural network
- Recurrent neural network (RNN)
- Convolutional neural network (CNN)
- etc,

Biological motivation

- Neural Networks awalnya terinspirasi oleh tujuan pemodelan sistem saraf biologis.
- Unit komputasi dasar otak adalah neuron.
- Sekitar 86 miliar neuron dapat ditemukan di sistem saraf manusia

Perceptron

- Perceptron adalah pengklasifikasi linier (linear classifier).
- Frank Rosenblatt, seorang psikolog Amerika, mengusulkan model perceptron klasik pada tahun 1958

https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f

Perceptron

- Digunakan untuk mengklasifikasikan data input yang diberikan.
- The perceptron terdiri dari 4 bagian
 - Input values atau one input layer
 - Weights dan Bias
 - Net sum
 - Activation Function

Perceptron (how does it work?)

- Semua inputs x dikalikan dengan weights w
- Jumlahkan semua hasil perkalikan tersebut (kita sebut Weighted Sum)
- Mengaplikasikan activation function ke weighted sum

				Input
X ₁	X_2	X ₃	Υ	nodes Black box
1	0	0	0	Output
1	0	1	1	0.3 node
1	1	0	1	
1	1	1	1	X_2 0.3 Σ Y
0	0	1	0	
0	1	0	0	
0	1	1	1	$X_3 \longrightarrow 0.3$
0	0	0	0	0.3 b = -0.4

Multilayer perceptron

- Model ini terdiri dari tiga jenis layer input layer, hidden layer, output layer.
- Kecuali node input, setiap node adalah neuron yang menggunakan fungsi aktivasi nonlinier.
- MLP menggunakan backpropagation untuk training-nya.

General Structure of MLP

Activation function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Multilayer perceptron

Hidden nodes

$$O_k = \frac{1}{1 + e^{-\sum h_j w_{jk} + \theta_k}}$$

$$h_j = \frac{1}{1 + e^{-\sum x_i w_{ij} + \theta_j}}$$

Network Training

- Tujuan dari training
 - Mendapatkan weights yang membuat hampir semua sampel dalam training data dapat diklasifikasikan dengan benar
 - Langkah-langkah
 - Inisialisasi weights w_{ij} dengan nilai acak(random)
 - Masukkan (feed) sample training X ke dalam jaringan satu persatu
 - Untuk setiap unit
 - Hitung output value O dengan mengaplikasikan activation function
 - Hitung error *E*
 - Update weights w_{ij} dan biases

Backpropagation Learning

Output vector O

Input vector X

Hic	dden	nodes

Output nodes

X_1	X ₂	X ₃	Υ
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

- Net Input $I_i = 0.2 + 0 + -0.5 0.4 = -0.7$
- Output $O_i = (1/(1+e^{0.7})=0.332$
- Net Input $I_k = -0.3(0.332) (0.2)(0.525) + 0.1 = -0.105$
- Output $O_k = (1/(1+e^{0.105}) = 0.474$

Input vector X

Output nodes

X_1	X_2	X ₃	Υ
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

- delta_k=(0.474)(1-0.474)(1-0.474)=0.131
- $w_{jk} = -0.3 + (0.9)(0.1311)(0.332) = -0.261$
- Dan seterusnya...

Discussion on NN

- Keuntungan
 - Robust -berfungsi baik ketika training set mengandung error
 - Output bisa discrete, real-valued, atau vector
- Criticism
 - Waktu yang lama saat training
 - Sulit untuk dipahami

MLP in Sklearn

Sklearn menyediakan class MLPClassifier

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000) [source]

Hyperparameter	Description
hidden_layer_sizes	Jumlah hidden layer dan node-nya
activation	Activation function
max_iter	Jumlah iterasi

Multiclass

Basic Classification in ML

 $\frac{\mathsf{Input}}{\mathbf{x} \in \mathcal{X}}$

 $\frac{\mathsf{Output}}{y \in \mathcal{Y}}$

Cancer detection

Binary

- Cancer
- Not cancer

Character recognition

Multi-Class

- Α
- В
- C
- [...

Multiclass classification

- Multiclass classification
 - Klasifikasi yang melibatkan lebih dari dua Class
 - Setiap data hanya dapat dimiliki oleh satu Class
- Multilabel classification
 - Klasifikasi yang melibatkan lebih dari dua Class
 - Setiap data dapat dimiliki oleh beberapa Class

Binary to multiclass

- Can we use a binary classifier to construct a multiclass classifier?
 - Decompose the prediction into multiple binary decisions
- How to decompose?
 - One-vs-all (One vs Rest/ OvR)
 - One vs One (OvO)

One vs Rest (OvR)

- Learn a classifier one at a time
- Given m classes, train m classifiers: one for each class
- Classifier j: treat tuples in class j as positive & all others as negative
- To classify a tuple X, choose the classifier with maximum value

Visualizing one vs rest

One vs Rest learning algorithm

- Learning: Given a dataset $D = \{(x_i, y_i)\}$ $x_i \in \mathbb{R}^n, \ y_i \in \{1,2,3,...K\}$
- Decompose into K binary classification tasks
 - Learn K models: w_1 , w_2 , w_3 , ... w_K
 - For class k, construct a binary classification task as:
 - Positive examples: Elements of D with label k
 - Negative examples: All other elements of D
 - The binary classification can be solved by any algorithm we have seen

One vs Rest inference algorithm

- Inference: "Winner takes all"
 - $\hat{y} = \operatorname{argmax}_{y \in \{1,2,...K\}} w_y^T x$

For example: $y = \operatorname{argmax}(w_{red}^T x, w_{blue}^T x, w_{green}^T x)$

One vs One (OvO)

- Learn a classifier for each pair of classes
- Given m classes, construct m(m-1)/2 binary classifiers
- A classifier is trained using tuples of the two classes
- To classify a tuple X, each classifier votes.
- X is assigned to the class with maximal vote

One vs One (OvO)

Classify x according to majority voting

One vs One learning algorithm

- Learning: Given a dataset $D = \{(x_i, y_i)\}$ $x_i \in \mathbb{R}^n, y_i \in \{1,2,3,...K\}$
- Decompose into K(K-1)/2 binary classification tasks
 - Learn K(K-1)/2 models: w_1 , w_2 , w_3 , ... $w_{K*(K-1)/2}$
 - For each class pair (i,j), construct a binary classification task as:
 - Positive examples: Elements of D with label i
 - Negative examples Elements of D with label j
 - · The binary classification can be solved by any algorithm

One vs One Inference algorithm

- Prediction:
 - Majority: Pick the label with maximum votes

Lets Practice!

Thank YOU

