关系代数 连接运算

佛靈內容

- ◆ 广义笛卡尔积
- 2 连接运算
 - θ-连接
 - 等值连接
 - 自然连接
 - 外连接
 - 自身连接
- → 重命名

广义笛卡尔积 (Cartesian Product)

给定—组域D1, D2, ..., Dn, 这n个域的**笛卡尔积**为:
D1×D2×...×Dn = {(d1, d2, ..., dn) | di∈Di, i = 1,2,...,n }

Di 为有限集,其基数为mi ,则D1×D2×...×Dn的基数M为:

关系R

R.A	В	С	S.A	D	R×S
a_1	b ₁	c ₁			

R.A	В	С	S.A	D
a_1	b_1	c ₁	a_1	d_1
a_1	b_1	c_1	a_2	d_2

R×S

关系R

Α	В	С
a ₁	b ₁	c ₁
a ₁	b ₂	C ₂
a_2	b ₂	c ₁

关系S

Α	D
a_1	d_1
a_2	d_2

R.A	В	C	S.A	D
a_1	b ₁	c ₁	a_1	d_1
a_1	b_1	c ₁	a_2	d_2
a_1	b_2	C ₂	a_1	d_1
a_1	b_2	c ₂	a_2	d_2
a_2	b_2	c ₁	a_1	d_1
a_2	b_2	c ₁	a_2	d_2

$$R \times S = \{trts | tr \in R \land ts \in S\}$$

学生

学号	姓名	所在系	性别
S01	王玲	计算机	女
S02	李渊	计算机	男
S08	王明	数学	男

选课

学号	课程编号	成绩
S01	C01	83
S02	C01	90
S02	C02	92

查询学生及其选修课程的信息

学生X选课

学号	姓名	所在系	性别	学号	课程编号	成绩
S01	王玲	计算机	女	S01	C01	83
S01	王玲	计算机	女	S02	C01	90
S01	王玲	计算机	女	S02	C02	92
S02	李渊	计算机	男	S01	C01	83
S02	李渊	计算机	男	S02	C01	90
S02	李渊	计算机	男	S02	C02	92
S08	王明	数学	男	S01	C01	83
S08	王明	数学	男	S02	C01	90
S08	王明	数学	男	S02	C02	92

学号	姓名	所在系	性别	学号	课程编号	成绩
S 01	王玲	计算机	女	S 01	C01	83
S02	李渊	计算机	男	S02	C01	90
S02	李渊	计算机	男	S02	C02	92

♂学生.学号=选课.学号 (学生X选课)

连接 (Join) 运算

θ-连接运算从两个关系的笛卡尔积中选取属性间满足一 定条件的元组,记为

$$R\bowtie_{A\theta B}S=\sigma_{R.A\theta S.B}(RXS)$$

- A和B分别是R和S上属性个数相等且可比的属性组
- θ为比较运算符: <、>、=、≤、≥和≠

$$\sigma_{R.A\theta S.B}(RXS) = \sigma_{R.A1\theta S.B1 \land R.A2\theta S.B2 \land ... \land R.Ak\theta S.Bk}(RXS)$$

当θ为"="时, θ-连接运算称为等值连接。

$$R\bowtie_{A=B}S = \sigma_{R,A=S,B}$$
 (RXS)

$$\sigma_{R,A=S,B}(RXS) = \sigma_{R,A1=S,B1 \land R,A2=S,B2 \land ... \land R,Ak=S,Bk}(RXS)$$

查询学生及其选修课程的信息

学号	姓名	所在系	性别	学号	课程编号	成绩
S01	王玲	计算机	女	S01	C01	83
S02	李渊	计算机	男	S02	C01	90
S02	李渊	计算机	男	S02	C02	92

♂学生.学号=选课.学号 (学生X选课)

学生 ⋈ 学生. 学号= 选课. 学号 选课

查询学生及其选修课程的信息

学号	姓名	所在系	性别	学号	课程编号	成绩
S 01	王玲	计算机	女	S01	C01	83
S02	李渊	计算机	男	S02	C01	90
S02	李渊	计算机	男	S02	C02	92

学生 ⋈ 学生. 学号= 选课. 学号 选课

π学号, 姓名,所在系,性别,课程编号,成绩(学生 ≥ 学生.学号=选课.学号 选课)

查询学生及其选修课程的信息

学号	姓名	所在系	性别	课程编号	成绩
S01	王玲	计算机	女	C01	83
S02	李渊	计算机	男	C01	90
S02	李渊	计算机	男	C02	92

学生 ⋈ 学生. 学号= 选课. 学号 选课

学生×选课=π_{学号, 姓名,所在系,性别,课程编号,成绩}学生×_{学生.学号=选课.学号}选课)

自然连接是一种特殊的等值连接。

$$R\bowtie S = \pi_{Z1,Z2,...,Zm} (R\bowtie_{A=A}S)$$

- A和B是相同属性组
- Z1,Z2,...,Zm是去掉R或S中重复属性A后的诸属性

$$R \bowtie_{A=A} S = \sigma_{R.A=S.A}(RXS)$$

查询学生及其选修课程的信息

学生

学号	姓名	所在系	性别	选课
S01	王玲	计算机	女	-
S02	李渊	计算机	男	
S08	王明	数学	男	—

学号	课程编号	成绩
S01	C01	83
S02	C01	90
S02	C02	92

学生**≥**选课 学号 姓名 所在系 性别 课程编号 成绩

查询学生及其选修课程的信息

学生	学号	姓名	所在系	性别
	S01	王玲	计算机	女
	S02	李渊	计算机	男
	S08	王明	数学	男

学号	课程编号	成绩
S01	C01	83
S02	C01	90
S02	C02	92

学生⋈选课

悬浮元组 dangling tuple

学号	姓名	所在系	性别	课程编号	成绩
S01	王玲	计算机	女	C01	83
S02	李渊	计算机	男	C01	90
S02	李渊	计算机	男	C02	92

选课

外连接 (Outer Join)

在自然连接的结果上,保留因在公共属性上没有相同属性值而被舍弃的元组(悬浮元组),并且在这些元组新增加的属性上赋空值,这种连接称为外连接。

- 在结果中只保留运算符左边关系中的悬浮元组,称做左外连接**以**;
- 在结果中只保留运算符右边关系中的悬浮元组,称做右外连接
- 在结果中保留两个关系中的悬浮元组,称做完全外连接 ▼。

关系R

Α	В	С
a_1	b ₁	c ₁
a_1	b_2	c ₂
a_2	b_2	c ₁

关系S

В	U	D
b_1	c ₁	d_1
b_2	c_1	d_2
b_1	c_2	d_2

关系R

Α	В	С
a_1	b ₁	c ₁
a_1	b_2	c ₂
a_2	b ₂	c ₁

$R \bowtie S$

A	В	C	D
a_1	b ₁	c ₁	d_1
a_2	b_2	c ₁	d_2

关系S

В	C	D
b ₁	c ₁	d_1
b_2	c_1	d_2
b_1	c_2	d_2

R**™**S

Α	В	С	D
a_1	b ₁	c ₁	d_1
a_2	b_2	c ₁	d_2
a_1	b_2	c_2	null

R **™** S

Α	В	С	D
a_1	b_1	c ₁	d_1
a_2	b_2	c ₁	d_2
a_1	b_2	c_2	null
null	b ₁	c ₂	d_2

R ⋈ S

Α	В	C	D
a_1	b_1	c ₁	d_1
a_2	b_2	c ₁	d_2
null	b_1	c_2	d_2

查询学生及其选修课程的信息

学生

学号	姓名	所在系	(性别)
S01	王玲	计算机	女
S02	李渊	计算机	男
S08	王明	数学	男

学号	课程编号	成绩
S01	C01	83
S02	C01	90
S02	C02	92

学生⋉选课

学号	姓名	所在系	性别	课程编号	成绩
S01	王玲	计算机	女	C01	83
S02	李渊	计算机	男	C01	90
S02	李渊	计算机	男	C02	92

选课

查询学生及其选修课程的信息

学生

学号	姓名	所在系	性别
S01	王玲	计算机	女
S02	李渊	计算机	男
S08	王明	数学	男

选课

学号	课程编号	成绩
S 01	C01	83
S02	C01	90
S02	C02	92

学生፞፞፞类选课

学号	姓名	所在系	性别	课程编号	成绩
S01	王玲	计算机	女	C01	83
S02	李渊	计算机	男	C01	90
S02	李渊	计算机	男	C02	92
S 08	王明	数学	男	null	null

学生(学号,姓名,性别,出生时间,所在系)

课程(课程编号,课程名,先修课程号)

选课(学号,课程编号,成绩)

▶ 查询选修了课程编号为 "C02" , 成绩大于90的所有学生姓名。

π姓名(**⑤**课程编号 = 'C02' ∧ 成绩>90 (**S**⋈**SC**))

学生(学号,姓名,性别,出生时间,所在系)

课程(课程编号,课程名,先修课程号)

选课(学号,课程编号,成绩)

▶ 查询至少选修学号为 "S05" 的学生所选修的一门课程的学生的姓名。

π课程编号(**⑤**学号= 'S05' (选课))

课程编号 C01 C02

学号	课程编号	成绩
S01	C01	83
S02	C01	90
S02	C02	92
S03	C03	90
S04	C02	92
S05	C01	88
S05	C02	76

学生(学号,姓名,性别,出生时间,所在系)

课程(课程编号,课程名,先修课程号)

选课(学号,课程编号,成绩)

▶ 查询至少选修学号为 "S05" 的学生所选修的一门课程的学生的姓名。

 π 姓名(π 学号(π 课程编号(π 学号= 'S05' (选课)) 以选课) 以学生)

学生(学号,姓名,性别,出生时间,所在系)

课程(课程编号,课程名,先修课程号)

选课(学号,课程编号,成绩)

▶ 查询每门课程的间接先修课程,输出课程编号和间接先修课程号。

课程编号	课程名	先修课程号
C01	程序设计	NULL
C02	数据结构	C01
C03	数据库	C02

学生(学号,姓名,性别,出生时间,所在系)

课程(课程编号,课程名,先修课程号)

选课(学号,课程编号,成绩)

查询每门课程的间接先修课程,输出课程编号和间接先修课程号。

课程编号	课程名	先修课程号
C01	程序设计	NULL
C02	数据结构	C01
C03	数据库	C02

学生(学号,姓名,性别,出生时间,所在系)

课程(课程编号,课程名,先修课程号)

选课(学号,课程编号,成绩)

查询每门课程的间接先修课程,输出课程编号和间接先修课程号。

课程编号	课程名	先修课程号
C01	程序设计	NULL
C02	数据结构	C01
C03	数据库	C02

课程编号	课程名	先修课程号
C01	程序设计	NULL
C02	数据结构	C01
C03	数据库	C02

学生(学号,姓名,性别,出生时间,所在系)

课程(课程编号,课程名,先修课程号)

选课(学号,课程编号,成绩)

查询每门课程的间接先修课程,输出课程编号和间接先修课程号。

课程编号	课程名	先修课程号	课程编号	课程名	先修课程号
C02	数据结构	C01	C01	程序设计	NULL
C03	数据库	C02	C02	数据结构	C01

重命名

重命名运算

ρs(R) 或 **ρs**(A1, A2, ..., An) (**R**)

- 重命名后的关系S与关系R完全相同
- R中属性在关系S中可重新命名为A1, A2, ..., An等新属性

重命名

- 实现关系的自身连接
- 解决具有相同属性的两个关系的笛卡尔乘积或连接操作的属性命名
- 给一个代数表达式的结果命名为一个新关系

学生(学号,姓名,性别,出生时间,所在系)

课程(课程编号,课程名,先修课程号)

选课(学号,课程编号,成绩)

C1

查询每门课程的间接先修课程,输出课程编号和间接先修课程号。

课程编号	课程名	先修课程号	课程编号	课程名	先修课程号
C02	数据结构	C01	C01	程序设计	NULL
C03	数据库	C02	C02	数据结构	C01

C2

学生(学号,姓名,性别,出生时间,所在系)

课程(课程编号,课程名,先修课程号)

选课(学号,课程编号,成绩)

▶ 查询每门课程的间接先修课程,输出课程编号和间接先修课程号。

 $\pi_{C1.$ 课程编号, C2.先修课程号(ρ_{C1} (课程) $\bowtie_{C1.$ 先修课程号= C2.课程编号(ρ_{C2} (课程))

小结

- 广义笛卡尔积是关系代数的基本运算,可以将任意两个关系的信息组合在一起,是连接运算的基础。
- 实际应用数据库上的查询主要通过关系的外键进行关系的自然连接操作。
- 当涉及对关系进行自身连接运算时,需要借助于关系的重命名操作来实现。