MATH378 - Nonlinear Optimization

Based on lectures from Fall 2025 by Prof. Tim Hoheisel. Notes by Louis Meunier

Contents

1	Preliminaries	2
	I.1 Terminology	2
	1.2 Convex Sets and Functions	
2 1	Jnconstrained Optimization	3
	2.1 Theoretical Foundations	
	2.1.1 Quadratic Approximation	
	2.2 Differentiable Convex Functions	

§1 Preliminaries

§1.1 Terminology

We consider problems of the form

minimize
$$f(x)$$
 subject to $x \in X$, (\dagger)

with $X \subset \mathbb{R}^n$ the feasible region with x a feasible point, and $f: X \to \mathbb{R}$ the objective (function); more concisely we simply write

$$\min_{x \in Y} f(x)$$
.

When $X = \mathbb{R}^n$, we say the problem (\dagger) is unconstrained, and conversely constrained when $X \subseteq \mathbb{R}^n$.

⊗ Example 1.1 (Polynomial Fit): Given $y_1, ..., y_m \in \mathbb{R}$ measurements taken at m distinct points $x_1, ..., x_m \in \mathbb{R}$, the goal is to find a degree $\leq n$ polynomial $q : \mathbb{R} \to \mathbb{R}$, of the form

$$q(x) = \sum_{k=0}^{n} \beta_k x^k,$$

"fitting" the data $\{(x_i,y_i)\}_i$, in the sense that $q(x_i)\approx y_i$ for each i. In the form of (\dagger) , we can write this precisely as

$$\min_{\beta \in \mathbb{R}^{n+1}} \frac{1}{2} \sum_{i=0}^n \left(\underbrace{\beta_n x_i^n + \dots + \beta_1 x_i + \beta_0}_{q(x_i)} - y_i \right)^2;$$

namely, we seek to minimize the $\ell^2\text{-distance}$ between $(q(x_i))$ and $(y_i).$ If we write

$$X\coloneqq\begin{pmatrix}1&x_1&\ldots&x_1^n\\ \vdots&\ldots&\ldots&\vdots\\ 1&x_m&\ldots&x_m^n\end{pmatrix}\in\mathbb{R}^{m\times(n+1)},\qquad y\coloneqq\begin{pmatrix}y_1\\ \vdots\\ y_m\end{pmatrix}\in\mathbb{R}^m,$$

then concisely this problem is equivalent to

$$\min_{\beta \in \mathbb{R}^{n+1}} \frac{1}{2} \| X \cdot \beta - y \|_2^2,$$

a so-called least-squares problem.

We have two related tasks:

- 1. Find the optimal value asked for by (\dagger) , that is what $\inf_X f$ is;
- 2. Find a specific point \overline{x} such that $f(\overline{x})=\inf_X f$, i.e. the value of a point

$$\overline{x} \in \mathrm{argmin}_X f \coloneqq \Big\{ x \in X \mid f(x) = \inf_{\mathbf{v}} f \Big\}.$$

(noting that argmin should be viewed as a set-valued function, as there may be multiple admissible minimizers) Notice that if we can accomplish 2., we've accomplished 1. by computing $f(\overline{x})$.

Note that $\overline{x} \in \operatorname{argmin}_X f \Rightarrow f(\overline{x}) = \inf_X f$, but $\inf_X f \in \mathbb{R}$ does not necessarily imply $\operatorname{argmin}_X f \neq \emptyset$, that is, there needn't be a feasible minimimum; for instance $\inf_{x \in \mathbb{R}} e^x = 0$, but $\operatorname{argmin}_{\mathbb{R}} f = \emptyset$ (there is no x for which $e^x = 0$).

 \hookrightarrow **Definition 1.1** (Minimizers): Let $X \subset \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$. Then $\overline{x} \in X$ is called a

- global minimizer (of f over X) if $f(\overline{x}) \leq f(x) \forall x \in X$, or equivalently if $\overline{x} \in \operatorname{argmin}_X f$;
- local minimizer (of f over X) if $f(\overline{x}) \leq f(x) \forall x \in X \cap B_{\varepsilon}(\overline{x})$ for some $\varepsilon > 0$.

In addition, we have *strict* versions of each by replacing "\le " with "\le ".

 \hookrightarrow **Definition 1.2** (Some Geometric Tools): Let $f: \mathbb{R}^n \to \mathbb{R}$.

- gph $f \coloneqq \{(x, f(x)) \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^n \times \mathbb{R}$
- $f^{-1}(\{c\}) \coloneqq \{x \mid f(x) = c\} \equiv \text{contour/level set at } c$
- $\mathrm{lev}_c f \coloneqq f^{-1}((-\infty,c]) = \{x \mid f(x) \le c\} \equiv \mathit{lower level/sublevel set at } c$

Remark 1.1:

- $\operatorname{lev}_{\inf f} f = \operatorname{argmin} f$
- assume f continuous; then all (sub)level sets are closed (possibly empty)

We recall the following result from calculus/analysis:

 \hookrightarrow Theorem 1.1 (Weierstrass): Let $f:\mathbb{R}^n \to \mathbb{R}$ be continuous and $X \subset \mathbb{R}^n$ compact. Then, $\operatorname{argmin}_X f \neq \emptyset$.

From, we immediately have the following:

1.1 Terminology

 \hookrightarrow Proposition 1.1: Let $f: \mathbb{R}^n \to \mathbb{R}$ continuous. If there exists a $c \in \mathbb{R}$ such that $\text{lev}_c f$ is nonempty and bounded, then $\text{argmin}_{\mathbb{R}^n} f \neq \emptyset$.

PROOF. Since f continuous, $\text{lev}_c f$ is closed (being the inverse image of a closed set), thus $\text{lev}_c f$ is compact (and in particular nonempty). By Weierstrass, f takes a minimimum over $\text{lev}_c f$, namely there is $\overline{x} \in \text{lev}_c f$ with $f(\overline{x}) \leq f(x) \leq c$ for each $x \in \text{lev}_c f$. Also, f(x) > c for each $x \notin \text{lev}_c f$ (by virtue of being a level set), and thus $f(\overline{x}) \leq f(x)$ for each $x \in \mathbb{R}^n$. Thus, \overline{x} is a global minimizer and so the theorem follows.

§1.2 Convex Sets and Functions

 \hookrightarrow Definition 1.3 (Convex Sets): $C \subset \mathbb{R}^n$ is *convex* if for any $x, y \in C$ and $\lambda \in (0, 1), \lambda x + (1 - \lambda)y \in C$; that is, the entire line between x and y remains in C.

 \hookrightarrow Definition 1.4 (Convex Fucntions): Let $C \subset \mathbb{R}^n$ be convex. Then, $f: C \to \mathbb{R}$ is called

1. convex(on C) if

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y),$$

for every $x,y\in C$ and $\lambda\in(0,1)$;

- 2. strictly convex (on C) if the inequality \leq is replaced with <;
- 3. *strongly convex* (on C) if there exists a $\mu > 0$ such that

$$f(\lambda x + (1-\lambda)y) + \mu \lambda (1-\lambda) \|x-y\|^2 \leq \lambda f(x) + (1-\lambda)f(y),$$

for every $x,y\in C$ and $\lambda\in(0,1)$; we call μ the modulus of strong convexity.

Remark 1.2: $3. \Rightarrow 2. \Rightarrow 1.$

Remark 1.3: A function is convex iff its epigraph is a convex set.

⊗ Example 1.2: exp : $\mathbb{R} \to \mathbb{R}$, log : $(0, \infty) \to \mathbb{R}$ are convex. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ of the form f(x) = Ax - b for $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ is called *affine linear*. For m = 1, every affine linear function is convex. All norms on \mathbb{R}^n are convex.

→Proposition 1.2:

- 1. (Positive combinations) Let f_i be convex on \mathbb{R}^n and $\lambda_i > 0$ scalars for i = 1, ..., m, then $\sum_{i=1}^m \lambda_i f_i$ is convex; as long as one is strictly (resp. strongly) convex, the sum is strictly (resp. strongly) convex as well.
- 2. (Composition with affine mappings) Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and $G: \mathbb{R}^m \to \mathbb{R}^n$ be affine. Then, $f \circ G$ is convex on \mathbb{R}^m .

§2 Unconstrained Optimization

§2.1 Theoretical Foundations

We focus on the problem

$$\min_{x \in \mathbb{R}^n} f(x),$$

where $f:\mathbb{R}^n \to \mathbb{R}$ is continuously differentiable.

 \hookrightarrow Definition 2.1 (Directional derivative): Let $D \subset \mathbb{R}^n$ be open and $f: D \to \mathbb{R}$. We say f directionally differentiable at $\overline{x} \in D$ in the direction $d \in \mathbb{R}^n$ if

$$\lim_{t\to 0^+}\frac{f(\overline{x}+td)-f(\overline{x})}{t}$$

exists, in which case we denote the limit by $f'(\overline{x};d)$.

 \hookrightarrow Lemma 2.1: Let $D \subset \mathbb{R}^n$ be open and $f: D \to \mathbb{R}$ differentiable at $x \in D$. Then, f is directionally differentiable at x in every direction d, with

$$f'(x;d) = \nabla f(x)^T d = \langle \nabla f(x), d \rangle.$$

2.1 Theoretical Foundations

② Example 2.1 (Directional derivatives of the Euclidean norm): Let $f: \mathbb{R}^n \to \mathbb{R}$ by $f(x) = \|x\|$ the usual Euclidean norm. Then, we claim

$$f'(x;d) = \begin{cases} \frac{x^T d}{\|x\|} & x \neq 0 \\ \|d\| & x = 0 \end{cases}$$

For $x \neq 0$, this follows from the previous lemma and the calculation $\nabla f(x) = \frac{x}{\|x\|}$. For x = 0, we look at the limit

$$\lim_{t\to 0^+}\frac{f(0+td)-f(0)}{t}=\lim_{t\to 0^+}\frac{t\|d\|-0}{t}=\|d\|,$$

using homogeneity of the norm.

⇒Lemma 2.2 (Basic Optimality Condition): Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}$. If \overline{x} is a *local minimizer* of f over X and f is directionally differentiable at \overline{x} , then $f'(\overline{x}; d) \geq 0$ for all $d \in \mathbb{R}^n$.

PROOF. Assume otherwise, that there is a direction $d \in \mathbb{R}^n$ for which the $f'(\overline{x};d) < 0$, i.e.

$$\lim_{t\to 0^+}\frac{f(\overline{x}+td)-f(\overline{x})}{t}<0.$$

Then, for all sufficiently small t > 0, we must have

$$f(\overline{x} + td) < f(\overline{x}).$$

Moreover, since X open, then for t even smaller (if necessary), $\overline{x} + td$ remains in X, thus \overline{x} cannot be a local minimizer.

 \hookrightarrow Theorem 2.1 (Fermat's Rule): In addition to the assumptions of the previous lemma, assume further that f is differentiable at \overline{x} . Then, $\nabla f(\overline{x}) = 0$.

Proof. From the previous, we know $0 \le f'(\overline{x}; d)$ for any d. Take $d = -\nabla f(\overline{x})$, then using the representation of a directional derivative for a differentiable function, and the fact that norms are nonnegative,

$$0 \le -\|\nabla f(\overline{x})\|^2 \le 0,$$

which can only hold if $\|\nabla f(\overline{x})\| = 0$ hence $\nabla f(\overline{x}) = 0$

We recall the following from Calculus:

 \hookrightarrow Theorem 2.2 (Taylor's, Second Order): Let $f: D \to \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable, then for each $x, y \in D$, there is an η lying on the line between x and y such that

$$f(y) = f(x) + \nabla f(x)^T (y-x) + \frac{1}{2} (y-x)^T \nabla^2 f(\eta) (y-x).$$

 \hookrightarrow Theorem 2.3 (2nd-order Optimality Conitions): Let $X \subseteq \mathbb{R}^n$ open and $f: X \to \mathbb{R}$ twice continuously differentiable. Then, if x a local minimizer of f over X, then the Hessian matrix $\nabla^2 f(x)$ is positive semi-definite.

PROOF. Suppose not, then there exists a d such that $d^T \nabla^2 f(x) d < 0$. By Taylor's, for every t > 0, there is an η_t on the line between x and x + td such that

$$\begin{split} f(x+td) &= f(x) + \underbrace{t \underbrace{\nabla f(x)^T}_{=0} d} + \frac{1}{2} t^2 d^T \nabla^2 f(\eta_t) d \\ &= f(x) + \frac{t^2}{d^T} \nabla^2 f(\eta_t) d. \end{split}$$

As $t \to 0^+$, $\nabla^2 f(\eta_t) \to \nabla^2 f(x) < 0$. By continuity, for t sufficiently small, $\frac{t^2}{2} d^T \nabla^2 f(\eta_t) d < 0$ for t sufficiently small, whence we find

$$f(x + td) < f(x),$$

for sufficiently small t, a contradiction.

 \hookrightarrow Lemma 2.3: Let $X \subset \mathbb{R}^n$ open, $f: X \to \mathbb{R}$ in C^2 . If $\overline{x} \in \mathbb{R}^n$ is such that $\nabla^2 f(\overline{x}) > 0$ (i.e. is positive definite), then there exists $\varepsilon, \mu > 0$ such that $B_{\varepsilon}(\overline{x}) \subset X$ and

$$d^T \nabla^2 f(x) d \geq \mu \|d\|^2, \qquad \forall d \in \mathbb{R}^n, x \in B_{\varepsilon}(\overline{x}).$$

Combining this and Taylor's Theorem, we can deduce the following (our first "sufficient" result of this section):

 \hookrightarrow Theorem 2.4 (Sufficient Optimality Condition): Let $X \subset \mathbb{R}^n$ open and $f \in C^2(X)$. Let \overline{x} be a stationary point of f such that $\nabla^2 f(\overline{x}) > 0$. Then, \overline{x} is a *strict* local minimizer of f.

2.1 Theoretical Foundations

2.1.1 Quadratic Approximation

Let $f: \mathbb{R}^n \to \mathbb{R}$ be C^2 and $\overline{x} \in \mathbb{R}^n$. By Taylor's, we can approximate

$$f(y) \approx g(y) \coloneqq f(\overline{x}) + \nabla f(\overline{x})^T (y - \overline{x}) + \frac{1}{2} (y - \overline{x})^T \nabla^2 f(\overline{x}) (y - \overline{x}).$$

Back Example 2.2 (Quadratic Functions): For $Q \in \mathbb{R}^{n \times n}$ symmetric, $c \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$, let

$$f: \mathbb{R}^n \to \mathbb{R}, \qquad f(x) = \frac{1}{2}x^TQx + c^Tx + \gamma,$$

a typical quadratic function. Then,

$$\nabla f(x) = \frac{1}{2} \big(Q + Q^T\big) x + c = Qx + c, \qquad \nabla^2 f(x) = Q.$$

We find that f has no minimizer if $c \notin \operatorname{rge}(Q)$ or Q is not positive semi-definite, combining our previous two results. In turn, if Q is positive definite (and thus invertible), there is a unique local minimizer $\overline{x} = -Q^{-1}c$ (and global minimizer, as we'll see).

§2.2 Differentiable Convex Functions

 \hookrightarrow Theorem 2.5: Let $C \subset \mathbb{R}^n$ be open and convex and $f: C \to \mathbb{R}$ differentiable on C. Then:

1. f is convex (on C) iff

$$f(x) \geq f(\overline{x}) + \nabla f(\overline{x})^T (x - \overline{x}) \qquad \star_1$$

for every $x, \overline{x} \in C$;

- 2. f is strictly convex iff same inequality as 1. with strict inequality;
- 3. f is strongly convex with modulus $\sigma > 0$ iff

$$f(x) \geq f(\overline{x}) + \nabla f(\overline{x})^T (x - \overline{x}) + \frac{\sigma}{2} \|x - \overline{x}\|^2 \qquad \star_2$$

for every $x, \overline{x} \in C$.

PROOF. (1., \Rightarrow) Let $x, \overline{x} \in C$ and $\lambda \in (0, 1)$. Then,

$$f(\lambda x + (1 - \lambda)\overline{x}) - f(\overline{x}) \le \lambda (f(x) - f(\overline{x})),$$

which implies

$$\frac{f(\overline{x}+\lambda(x-\overline{x}))-f(\overline{x})}{\lambda}\leq f(x)-f(\overline{x}).$$

Letting $\lambda \to 0^+$, the LHS \to the directional derivative of f at \overline{x} in the direction $x - \overline{x}$, which is equal to, by differentiability of f, $\nabla f(\overline{x})^T(x - \overline{x})$, thus the result.

$$(1,,\Leftarrow)$$
 Let $x_1,x_2\in C$ and $\lambda\in(0,1)$. Let $\overline{x}:=\lambda x_1+(1-\lambda)x_2$. \star_1 implies

$$f(x_i) \ge f(\overline{x}) + \nabla f(\overline{x})^T (x_i - \overline{x}),$$

for each of i=1,2. Taking "a convex combination of these inequalities", i.e. multiplying them by $\lambda, 1-\lambda$ resp. and adding, we find

$$\lambda f(x_1) + (1 - \lambda)f(x_2) \ge f(\overline{x}) + \nabla f(\overline{x})^T (\lambda x_1 + (1 - \lambda)x_2 - \overline{x}) = f(\lambda x_1 + (1 - \lambda)x_2),$$

thus proving convexity.

(2., \Rightarrow) Let $x \neq \overline{x} \in C$ and $\lambda \in (0, 1)$. Then, by 1., as we've just proven,

$$\lambda \nabla f(\overline{x})^T(x-\overline{x}) \leq f(\overline{x} + \lambda(x-\overline{x})) - f(\overline{x}).$$

But $f(\overline{x} + \lambda(x - \overline{x})) < \lambda f(x) + (1 - \lambda)f(\overline{x})$ by strict convexity, so we have

$$\lambda \nabla f(\overline{x})^T(x-\overline{x}) < \lambda (f(x)-f(\overline{x})),$$

and the result follows by dividing both sides by λ .

- $(2., \Leftarrow)$ Same as $(1., \Leftarrow)$ replacing " \leq " with "<".
- (3.) Apply 1. to $f \frac{\sigma}{2} \|\cdot\|^2$, which is still convex if f σ -strongly convex, as one can check.

 \hookrightarrow Corollary 2.1: Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Then,

- a) there exists an affine function $g: \mathbb{R}^n \to \mathbb{R}$ such that $g(x) \leq f(x)$ everywhere;
- b) if f strongly convex, then it is coercive, i.e. $\lim_{\|x\| \to \infty} f(x) = \infty$.

$\hookrightarrow\!\!\text{\bf Corollary}$ 2.2: Let $f:\mathbb{R}^n\to\mathbb{R}$ be convex and differentiable, then TFAE:

- 1. \overline{x} is a global minimizer of f;
- 2. \overline{x} is a local minimizer of f;
- 3. \overline{x} is a stationary point of f.

Proof. $1. \Rightarrow 2$. is trivial and $2. \Rightarrow 3$. was already proven and $3. \Rightarrow 1$. follows from the fact that differentiability gives

$$f(x) \geq f(\overline{x}) + \underline{\nabla(f)(\overline{x})^T(x-\overline{x})}$$

for any $x \in \mathbb{R}^n$.

⇔Corollary 2.3: (2.2.4)

 \hookrightarrow Theorem 2.6 (Twice Differentiable Convex Functions): Let $\Omega \subset \mathbb{R}^n$ open and convex and $f \in C^2(\Omega)$. Then,

- 1. f is convex on Ω iff $\nabla^2 f \geq 0$;
- 2. f is strictly convex on $\Omega \Leftarrow \nabla^2 f > 0$;
- 2. f is σ -strongly convex on $\Omega \Leftrightarrow \sigma \leq \lambda_{\min} (\nabla^2 f(x))$ for all $x \in \Omega$.

- 1. $f \operatorname{convex} \Leftrightarrow A \geq 0$;
- 2. f strongly convex $\Leftrightarrow A > 0$.