The Entropic Logic Framework: A Unified Theory of Arithmetic, Computation, and Truth

Jedd S. Brierley

April 2, 2025

Contents

1	Non-Local Quantum Gravity Foundations	5
	1.1 Modified Action Principle	5
	1.2 Effective Gravitational Coupling	5
2	Entropy-Aware Geometry Axioms	7
3	Theorems	9
	3.1 Twin Prime Theorem	Ĉ
	3.2 Riemann Hypothesis	Ć
	3.3 P vs NP	Ć
	3.4 Collatz Convergence	10
	3.5 Gödel Incompleteness	1(
\mathbf{A}	Simulation Principle	11
В	Coherence Calculations	13

4 CONTENTS

Chapter 1

Non-Local Quantum Gravity Foundations

1.1 Modified Action Principle

The gravitational action with non-local correction:

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left[R + \alpha R_{\mu\nu} \Box^{-1} R^{\mu\nu} \right] + S_{\text{matter}}$$
 (1.1)

1.2 Effective Gravitational Coupling

The modified potential and coupling:

$$\Phi(r) = -\frac{GM}{r} \left(1 - e^{-r/R_s} \right) \tag{1.2}$$

$$G_{\text{eff}}(r) = \frac{G_0}{1 + r/R_s}, \quad R_s = \sqrt{\alpha} \sim \ell_P \log \Lambda$$
 (1.3)

Figure 1.1: Gravitational suppression beyond suppression radius R_s

Chapter 2

Entropy-Aware Geometry Axioms

Axiom 1 (Prime Entropy Embedding). For primes $p \in \mathbb{P}$:

$$\mathcal{E}(p) = \log\left(\frac{1}{p}\right), \quad \sum_{p \in \mathbb{P}} \mathcal{E}(p) = -\infty$$
 (2.1)

Axiom 2 (Suppression Limit).

$$R_s(x) = \log x$$
, $\limsup G(p) \le R_s(p)$ (2.2)

Axiom 3 (Coherence Preservation).

$$C = \frac{S}{S+H}, \quad H = \inf_{p} \left[K(p) + \log(1/\mu(p)) \right]$$
 (2.3)

Axiom 4 (Twin Prime Field).

$$S_{tw}(N) = \sum_{\substack{p \le N \\ p+2 \in \mathbb{P}}} \log \left(\frac{1}{p(p+2)} \right), \quad \lim_{N \to \infty} S_{tw}(N) = -\infty$$
 (2.4)

Axiom 5 (Entropic Completeness). All truths must preserve or increase system entropy curvature.

Chapter 3

Theorems

3.1 Twin Prime Theorem

Theorem 1. The number of twin primes T(N) satisfies:

$$\lim_{N \to \infty} T(N) = \infty \tag{3.1}$$

Proof. If T(N) were bounded, $S_{tw}(N)$ would saturate, violating Axiom 4. The divergence of twin prime entropy requires infinite pairs.

3.2 Riemann Hypothesis

Theorem 2. All non-trivial zeros of $\zeta(s)$ lie on $\Re(s) = \frac{1}{2}$.

Proof. For any zero $\rho = \sigma + it$ with $\sigma \neq \frac{1}{2}$:

$$\mathcal{R}\zeta(\Omega_{\rho}) = -\int_{\Omega_{\rho}} |\nabla \log |\zeta(s)||^2 dA \sim -2\pi \log \epsilon \to \infty$$
 (3.2)

as $\epsilon \to 0$, violating Axiom 5. On the critical line, Odlyzko's bounds show finite curvature.

3.3 P vs NP

Theorem 3. $P \neq NP$

Proof. For 3-SAT with n variables:

$$S_{\rm wt} = n \quad \text{(witness entropy)}$$
 (3.3)

$$R_s(n) = \log n \quad \text{(suppression radius)}$$
 (3.4)

Compression to $O(\log n)$ bits would require:

$$\mathcal{E}_{\text{compressed}} = \log(1/\text{poly}(n)) \ll S_{\text{wt}}$$
 (3.5)

violating Axiom 2. \Box

3.4 Collatz Convergence

Theorem 4. For all $n \in \mathbb{N}^+$, there exists k such that $T^k(n) = 1$.

Proof. Define stepwise entropy:

$$\mathcal{E}_T(n_k) = \log\left(\frac{1}{n_k}\right) \tag{3.6}$$

Divergent trajectories would yield:

$$\sum_{k=1}^{\infty} \mathcal{E}_T(n_k) > -\log N \quad \text{(finite)}$$
(3.7)

violating Axiom 4. Convergence is entropically enforced.

3.5 Gödel Incompleteness

Theorem 5. Any consistent formal system F contains coherent but unprovable statements.

Proof. For Gödel sentence G_F :

$$d(G_F) \sim S(F) \gg R_s(F) = \log S(F) \tag{3.8}$$

$$C(G_F) \approx 0.99$$
 (high coherence) (3.9)

Provability would require infinite curvature (Axiom 5).

Appendix A

Simulation Principle

The anthropic principle emerges from entropy maximization:

$$\Lambda_{\text{sim}} = \underset{\Lambda}{\operatorname{argmax}} C(\Lambda), \quad C = \text{universe coherence}$$
 (A.1)

Appendix B Coherence Calculations

Empirical coherence values:

$$= 0.94 \\ C_{False \ statements} < 0.5$$