

## PROGRAMMABLE VOLTAGE REFERENCE

- ADJUSTABLE OUTPUT VOLTAGE : V<sub>ref</sub> to 36V
- SINK CURRENT CAPABILITY: 1 to 100mA
   TYPICAL OUTPUT IMPEDANCE: 0.22Ω
- 1% AND 2% VOLTAGE PRECISION



#### **DESCRIPTION**

The TL431 is a programmable shunt voltage reference with guaranteed temperature stability over the entire temperature range of operation.

The output voltage may be set to any value between  $V_{\text{ref}}$  (approximately 2.5V) and 36V with two external resistors.

The TL431 operates with a wide current range from 1 to 100mA with a typical dynamic impedance of  $0.22\Omega$ .

#### **ORDER CODES**

| Part number     | Temperature  | Р | ackag | е |
|-----------------|--------------|---|-------|---|
| i ait iidiiibei | Range        | Z | D     |   |
| TL431C/AC       | 0°C, +70°C   | • | •     | • |
| TL431I/AI       | -40°C, +85°C | • | •     | • |

#### **PIN CONNECTIONS**



November 1996 1/7

#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol            | Parameter                            | Value                  | Unit                   |    |
|-------------------|--------------------------------------|------------------------|------------------------|----|
| $V_{KA}$          | Cathode to Anode Voltage             | 37                     | V                      |    |
| I <sub>K</sub>    | Continuous Cathode Current Range     | -100 to +150           | mA                     |    |
| I <sub>ref</sub>  | Reference Input Current Range        |                        | -0.05 to +10           | mA |
| T <sub>oper</sub> | Operating Free-air Temperature Range | TL431C/AC<br>TL431I/AI | 0 to +70<br>-40 to +85 | °C |
| T <sub>stg</sub>  | Storage Temperature Range            |                        | -65 to +150            | °C |

#### **OPERATING CONDITIONS**

| Symbol          | Parameter                | Value                  | Unit |
|-----------------|--------------------------|------------------------|------|
| V <sub>KA</sub> | Cathode to Anode Voltage | V <sub>ref</sub> to 36 | V    |
| I <sub>K</sub>  | Cathode Current          | 1 to 100               | mA   |

## **ELECTRICAL CHARACTERISTICS**

T<sub>amb</sub> = 25°C (unless otherwise specified)

| Symbol                                 | Parameter                                                                                                                                                                                                           | TL431C        |            |               | 1             | Unit       |               |      |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|---------------|---------------|------------|---------------|------|
| Зуппоог                                | raiailietei                                                                                                                                                                                                         | Min.          | Тур.       | Max.          | Min.          | Тур.       | Max.          | Unit |
| $V_{ref}$                              | $ \begin{array}{c} \text{Reference Input Voltage - (figure 1)} \\ V_{KA} = V_{ref}, \ I_{K} = 10 \text{mA} & T_{amb} = 25^{\circ}\text{C} \\ T_{min.} \leq T_{amb} \leq T_{max}. \end{array} $                      | 2.44<br>2.423 | 2.495      | 2.55<br>2.567 | 2.47<br>2.453 | 2.495      | 2.52<br>2.537 | V    |
| $\Delta V_{ref}$                       | Reference Input Voltage Deviation Over Temperature Range - (figure 1, note1) $V_{KA} = V_{ref,\ l_K} = 10mA,\ T_{min.} \le T_{amb} \le T_{max.}$                                                                    |               | 3          | 17            |               | 3          | 15            | mV   |
| $\frac{\Delta V_{ref}}{\Delta V_{KA}}$ | Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage - (figure 2) $I_{K} = 10 \text{mA}$ $\Delta V_{KA} = 10 \text{V to } V_{\text{ref}}$ $\Delta V_{KA} = 36 \text{V to } 10 \text{V}$ |               | -1.4<br>-1 | -2.7<br>-2    |               | -1.4<br>-1 | -2.7<br>-2    | mV/V |
| Iref                                   | Reference Input Current - (figure 2) $I_{K} = 10mA, \ R_{1} = 10k\Omega, \ R_{2} = \infty \\ T_{amb} = 25^{o}C \\ T_{min.} \leq T_{amb} \leq T_{max.}$                                                              |               | 1.8        | 4<br>5.2      |               | 1.8        | 4<br>5.2      | μА   |
| $\Delta I_{ref}$                       | Reference Input Current Deviation Over Temperature Range - (figure 2) $I_{K} = 10mA, \ R_{1} = 10k\Omega, \ R_{2} = \infty \\ T_{min.} \leq T_{amb} \leq T_{max}.$                                                  |               | 0.4        | 1.2           |               | 0.4        | 1.2           | μА   |
| I <sub>min</sub>                       |                                                                                                                                                                                                                     |               | 0.5        | 1             |               | 0.5        | 0.6           | mA   |
| l <sub>off</sub>                       | Off-State Cathode Current - (figure 3)                                                                                                                                                                              |               | 2.6        | 1000          |               | 2.6        | 1000          | nA   |
| Z <sub>KA</sub>                        | Dynamic Impedance - (figure 1, note 2) $V_{KA} = V_{ref}, \Delta I_K = 1 \text{ to } 100\text{mA}, f \leq 1\text{kHz}$                                                                                              |               | 0.22       | 0.5           |               | 0.22       | 0.5           | Ω    |

Notes : 1.  $\Delta V_{ref}$  is defined as the difference between the maximum and minimum values obtained over the full temperature range.

range.  $\Delta V_{ref} = V_{ref max.} - V_{ref min}$   $V_{ref min.}$   $V_{ref min.}$  T1 T2Temperation

2. The dynamic Impedance is defined as  $|Z_{\text{KA}}| = \frac{\Delta V_{\text{KA}}}{\Delta l_{\text{K}}}$ 

## **ELECTRICAL CHARACTERISTICS**

 $T_{amb} = 25^{\circ}C$  (unless otherwise specified)

| Symbol                                 | Parameter                                                                                                                                                                                                                                    | TL431I<br>Min. Typ. Max. |            |              | I TL431AI    |            |              |      |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|--------------|--------------|------------|--------------|------|
| Syllibol                               | Faranteter                                                                                                                                                                                                                                   |                          |            |              | Min.         | Тур.       | Max.         | Unit |
| $V_{ref}$                              | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                       | 2.44<br>2.41             | 2.495      | 2.55<br>2.58 | 2.47<br>2.44 | 2.495      | 2.52<br>2.55 | V    |
| $\Delta V_{ref}$                       | Reference Input Voltage Deviation Over Temperature Range - (figure 1, note1) $V_{KA} = V_{ref}, \ I_{K} = 10 mA, \ T_{min.} \leq T_{amb} \leq T_{max.}$                                                                                      |                          | 7          | 30           |              | 7          | 17           | mV   |
| $\frac{\Delta V_{ref}}{\Delta V_{KA}}$ | Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage - (figure 2) $I_{K} = 10\text{mA} \qquad \qquad \Delta V_{KA} = 10\text{V to } V_{ref} \\ \Delta V_{KA} = 36\text{V to } 10\text{V}$                        |                          | -1.4<br>-1 | -2.7<br>-2   |              | -1.4<br>-1 | -2.7<br>-2   | mV/V |
| Iref                                   | Reference Input Current - (figure 2) $ \begin{aligned} \text{I}_{\text{K}} &= 10\text{mA}, \ \text{R}_1 = 10\text{k}\Omega, \ \text{R}_2 = \infty \\ & T_{amb} = 25^{\circ}\text{C} \\ & T_{min.} \leq T_{amb} \leq T_{max}. \end{aligned} $ |                          | 1.8        | 4<br>6.5     |              | 1.8        | 4<br>6.5     | μА   |
| $\Delta I_{ref}$                       | Reference Input Current Deviation Over Temperature Range - (figure 2) $I_K = 10 \text{mA}, \ R_1 = 10 \text{k}\Omega, \ R_2 = \infty \\ T_{min.} \leq T_{amb} \leq T_{max}.$                                                                 |                          | 0.8        | 2.5          |              | 0.8        | 1.2          | μА   |
| I <sub>min</sub>                       |                                                                                                                                                                                                                                              |                          | 0.5        | 1            |              | 0.5        | 0.7          | mA   |
| l <sub>off</sub>                       | Off-State Cathode Current - (figure 3)                                                                                                                                                                                                       |                          | 2.6        | 1000         |              | 2.6        | 1000         | nA   |
| Z <sub>KA</sub>                        | Dynamic Impedance - (figure 1, note 2) $V_{KA} = V_{ref}$ , $\Delta I_K = 1$ to 100mA, $f \le 1$ kHz                                                                                                                                         |                          | 0.22       | 0.5          |              | 0.22       | 0.5          | Ω    |

**Notes :** 1.  $\Delta V_{ref}$  is defined as the difference between the maximum and minimum values obtained over the full temperature range.

 $\Delta V_{ref} = V_{ref max.} - V_{ref min}$ 



2. The dynamic Impedance is defined as  $|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$ 

Figure 1 : Test Circuit for  $V_{KA} = V_{ref}$ 



Figure 2 : Test Circuit for  $V_{KA} > V_{ref}$ 



Figure 3: Test Circuit for Ioff



# PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP



| Dim.   |       | Millimeters |       |       | Inches |       |
|--------|-------|-------------|-------|-------|--------|-------|
| Diiii. | Min.  | Тур.        | Max.  | Min.  | Тур.   | Max.  |
| Α      |       | 3.32        |       |       | 0.131  |       |
| a1     | 0.51  |             |       | 0.020 |        |       |
| В      | 1.15  |             | 1.65  | 0.045 |        | 0.065 |
| b      | 0.356 |             | 0.55  | 0.014 |        | 0.022 |
| b1     | 0.204 |             | 0.304 | 0.008 |        | 0.012 |
| D      |       |             | 10.92 |       |        | 0.430 |
| Е      | 7.95  |             | 9.75  | 0.313 |        | 0.384 |
| е      |       | 2.54        |       |       | 0.100  |       |
| e3     |       | 7.62        |       |       | 0.300  |       |
| e4     |       | 7.62        |       |       | 0.300  |       |
| F      |       |             | 6.6   |       |        | 0260  |
| i      |       |             | 5.08  |       |        | 0.200 |
| L      | 3.18  |             | 3.81  | 0.125 |        | 0.150 |
| Z      |       |             | 1.52  |       |        | 0.060 |

## PACKAGE MECHANICAL DATA

8 PINS - BATWING PLASTIC MICROPACKAGE (SO8)



| Dimensions |           | Millimeters |      |        | Inches |       |  |  |
|------------|-----------|-------------|------|--------|--------|-------|--|--|
| Dimensions | Min.      | Тур.        | Max. | Min.   | Тур.   | Max.  |  |  |
| Α          |           |             | 1.75 |        |        | 0.069 |  |  |
| a1         | 0.1       |             | 0.25 | 0.004  |        | 0.010 |  |  |
| a2         |           |             | 1.65 |        |        | 0.065 |  |  |
| а3         | 0.65      |             | 0.85 | 0.026  |        | 0.033 |  |  |
| b          | 0.35      |             | 0.48 | 0.014  |        | 0.019 |  |  |
| b1         | 0.19      |             | 0.25 | 0.007  |        | 0.010 |  |  |
| С          | 0.25      |             | 0.5  | 0.010  |        | 0.020 |  |  |
| c1         |           |             | 45°  | (typ.) |        |       |  |  |
| D          | 4.8       |             | 5.0  | 0.189  |        | 0.197 |  |  |
| E          | 5.8       |             | 6.2  | 0.228  |        | 0.244 |  |  |
| е          |           | 1.27        |      |        | 0.050  |       |  |  |
| e3         |           | 3.81        |      |        | 0.150  |       |  |  |
| F          | 3.8       |             | 4.0  | 0.150  |        | 0.157 |  |  |
| L          | 0.4       |             | 1.27 | 0.016  |        | 0.050 |  |  |
| М          |           |             | 0.6  |        |        | 0.024 |  |  |
| S          | 8° (max.) |             |      |        |        |       |  |  |

#### **PACKAGE MECHANICAL DATA**

3 PINS - PLASTIC PACKAGE TO92



| Dimensions |       | Millimeters |       |        | Inches |        |
|------------|-------|-------------|-------|--------|--------|--------|
|            | Min.  | Тур.        | Max.  | Min.   | Тур.   | Max.   |
| L          |       | 1.27        |       |        | 0.05   |        |
| В          | 3.2   | 3.7         | 4.2   | 0.126  | 0.1457 | 0.1654 |
| 01         | 4.45  | 5.00        | 5.2   | 0.1752 | 0.1969 | 0.2047 |
| С          | 4.58  | 5.03        | 5.33  | 0.1803 | 0.198  | 0.2098 |
| K          | 12.7  |             |       | 0.5    |        |        |
| O2         | 0.407 | 0.5         | 0.508 | 0.016  | 0.0197 | 0.02   |
| а          | 0.35  |             |       | 0.0138 |        |        |

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1996 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

#### SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

