Number-Theoretic Algorithm

31.2 Greatest common divisor

Theorem 31.9: For any nonnegative integer *a* and positive integer *b*,

 $gcd(a, b)=gcd(b, a \mod b).$

Euclid's algorithm

EUCLID(a, b)1 if b = 02 then return a3 else return EUCLID $(b, a \mod b)$

* $T(a, b) = O(\log(\min\{a, b\}))$

31.6 Powers of an element

Input: x, a
Output: x^a

* Let $a_{n-1}a_{n-2}...a_1a_0$ be the binary representation of a. We have

$$x^{a} = \prod_{a_i = 1} x^{2^i}$$

Example:

$$x^{21_d} = x^{10101_b}$$

$$= x^{10000_b \times x^{00100_b \times x^{00001_b}}$$

$$= x^{16_d \times x^{4_d \times x^{1_d}}}$$

Algorithm Power(x, a) (right-to-left)

* $T(x, a) = O(\log a)$

Homework: Prob. 31-1.