

The University of Lahore

Faculty of Information Technology

Assignment Cover Letter

(Individual Work)

Student Name	Atta Elahi	Program	BS(SE)
SAP ID	70082385	Title of Assignment	02
Course Code	CS 11303	Due Date	16/10/2022
Course Name	Operating Systems	Submission Date	07/11/2022
Section	Т	Submission Date	07/11/2022

The assignment should meet the below requirements:

- 1- Assignment (hard copy) is required to be submitted on clean paper and soft copy as per lecturer's instructions.
- 2- Soft copy assignment also requires the signed (hardcopy) submission of this form, which automatically validates the softcopy submission.
- 3- The above information is complete and legible.
- 4- Compiles pages are firmly attached.
- 5- Assignment has been copied (softcopy & hardcopy) for each student ahead of the submission.

Plagiarism/Cheating

The university seriously regards all forms of plagiarism, cheating and collision as academic offenses which may result in severe penalties, including loss/drop of marks, course/class discontinuity and other possible penalties executed by the University.

Declaration of Originality

By signing this assignment, I understand, accept and consent to The University of Lahore terms and policies on plagiarism.

I hereby declare that this work represents my own effort, and that all text and code have been written by me and has not been submitted for the use of assessment in another course or class, except where this has been notified and accepted in advance.

Signature	

Question 1: Round robin schedulers normally maintain a list of all runnable processes, with each process occurring exactly once in the list. What would happen if a process occurred twice in the list? Can you think of any reason for allowing this?

If a processor occurs more than once in the round-robin list, then it will get two turns for each pass through the list. One reason for allowing this would be to implement a primitive priority system since the more times it occurs on the list, the higher the percentage of time the CPU will spend on that process.

Question 2: Most round robin schedulers use a fixed size quantum. Give an argument in favor of a small quantum. Now give an argument in favor of a large quantum.

An argument against a small time quantum: Efficiency. A small time quantum requires the timer to generate interrupts with short intervals. Each interrupt causes a context switch, so overhead increases with a larger number of interrupts. An argument for a small time quantum: Response time. A large time quantum will reduce the overhead of context switching since interrupts will be generated with relatively long intervals, hence there will be fewer interrupts. However, a short job will have to wait longer time on the ready queue before it can get to execute on the processor. With a short time quantum, such a short job will finish quicker and produces the result to the end user faster than with a longer time quantum.

Question 3: Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

Process	Burst Time	Priority
P_1	10	3
P_2	1	1
P_3	2	3
P_4	1	4
P_5	5	2

_			6015
Be Tornara	nd -lime	of each pro	Cess
FCFS	JF	MPP	RR
8	9 170 = 19 ms		
P1 0+10 = 10ms	9+10=19ms	18ms	19ms
P2 10+1 = 11ms	0-11 = 1ms	Ims	Zms
P3 11+2 = 13ms	2+2 = 4ms	10ms	zm F
P4 13+1=14ms	1+1 = 2ms	19ms	4ms
P5 14+5=19mm	4+5 = 9ms	6ms	14 ms
	-		
Co Maiting Times			
FCFS	87 F	MPP	RR
P1 Oms	9 ms	8ms	9 ms
P2 10ms	Oms	Oms	(ms
P3 11ms	2 ms	8ms	5mg
P4 13ms	Ims	18ms	3m
P5 14ms	4 ms	1 ms	9 ms
De Avarages			
FCFS	SJF	MPP	RR
48/5	16/5	35/5	27/5
[9.6ms]	[3-21ms]	[zmF]	[5.4ms]
SJF has minimal avarage.			

Question 4: Suppose that the following processes arrive for execution at the times indicated. Each process will run the listed amount of time. In answering the questions, use non-preemptive scheduling and base all decisions on the information you have at the time the decision must be made.

Process	Arrival Time	Burst Time
P_1	0.0	8
P_2	0.4	4
P_3	1.0	1

Question 5: Consider the following set of processes, with the length of the CPU burst given in milliseconds:

Process	Burst
P1	10
P2	4
P3	8
P4	4
P5	7

