NMMB538 - DÚ5 Jan Oupický

1

- 1. Použijeme lemma R.1. Využijeme předchozího úkolu, kde F' = K(D). Pokud označíme $y_1 \coloneqq \frac{x_2^2 + (g)}{x_1^2 + (g)} = t^2 \in K(D), \frac{x_2(b x_1^2) + (g)}{x_1^2 + (g)} = st \in K(D).$ ϕ dle R.1 existuje pokud y_1 nebo y_2 je transcendentní nad K a $f(y_1, y_2) = 0$. Z předchozího úkolu zřejmě platí, že oba prvky jsou transcendentní nad K. Dále jsme v minulém úkolu také ukázali, že platí $f(y_1, y_2) = f(u, v) \in F' = K(D)$.
- 2. Dle R.7 platí $\phi = \sigma^*$, kde $\sigma = (\sigma_1, \sigma_2)$, kde $\sigma_1 = y_1, \sigma_2 = y_2$. Zvolíme reprezentanty (y_1, y_2) například jako $r_1 = \frac{x_2^2}{x_1^2}, r_2 = \frac{x_2(b-x_1^2)}{x_1^2}$.
- 3. Víme, že y_1, y_2 jsou trans. nad K, tedy $\deg(\sigma) < \infty$. Zároveň jsme ukázali, že $K(y_1, y_2) = K(u, v)$ a v minulých úkolech jsme ukázali, že $[F' : K(y_1, y_2)] = 2 \Longrightarrow \text{protože } F' = K(D) : [K(D) : K(y_1, y_2)] = 2 = \deg(\sigma)$.
- 4. Pro přehlednost označme P_{∞} ze zadání jako $M_{\infty} \in \mathbb{P}_{K(C)/K}$. Místo $M_{\infty} \in \mathbb{P}_{K(C)/K}$ zřejmě obsahuje $x_1^{-2} + (f)$, jelikož $v_{\infty}(x_1 + (f)) = -2$. Tento prvek se nám pomocí σ^* zobrazí na $\frac{x_1^4 + (g)}{x_2^4 + (g)} = \frac{x_2^{-4} + (g)}{x_1^{-4} + (g)} = u^{-2} \in \operatorname{Im}(\sigma^*) = F \subset F'$. Z minulého úkolu víme, že jediné místo F/K, co obsahuje u^{-2} je $P_{\infty} \in \mathbb{P}_{F/K}$, tedy $\sigma^*(M_{\infty}) = P_{\infty}$. Dále jsme také ukázali, že pro $P_0' \in \mathbb{P}_{K(D)/K}$ platí $P_0' \mid P_{\infty} \implies P_0' \mid \sigma^*(M_{\infty})$.

$5. \Rightarrow :$

Opět použijeme značení M_{α} pro místo K(C)/K. Zvolme $\rho \in K(C)$. Víme, že platí $v_{M_{\alpha}}(\rho) > 0 \iff \rho(\alpha) = 0$. Z předpokladů platí obdobně, že $v_{P'_{\beta}}(\sigma^*(\rho)) > 0 \implies \sigma^*(\rho)(\beta) = 0$. Dle lemma R.8 pokud je $\rho(\sigma(\beta))$ definované, tak platí $\rho(\sigma(\beta)) = \sigma^*(\rho)(\beta) \implies \rho(\sigma(\beta)) = 0 \implies \rho \in M_{\sigma(\beta)}, \ \sigma(\beta) \in C$ tedy musí platit $M_{\sigma(\beta)} = M_{\alpha} \iff \sigma(\beta) = \alpha$.

Pokud $\rho(\sigma(\beta))$ není def. tak musí platit $\beta \notin \text{Dom}(\sigma) \implies \beta_1 = 0 \implies \beta_2 = 0$. Případ $\sigma(\beta) \notin \text{Dom}(\rho)$ nenastane, jelikož ρ můžeme brat jako $\frac{x_1 - \alpha_1 + (f)}{1 + (f)}$ nebo $\frac{x_2 - \alpha_2 + (f)}{1 + (f)}$ tedy $\text{Dom}(\rho) = C$. Tedy v případě $\beta = (0,0)$ máme z 4) $P'_0|P_\infty$. Dále by tedy P'_0 obsahovalo místo P_α což je spor.

⇐:

Obdobně zvolme $\rho \in M_{\alpha} \Longrightarrow \rho(\alpha) = 0$. Platí tedy $0 = \rho(\alpha) = \rho(\sigma(\beta)) = \sigma^*(\rho)(\beta)$. Neboli $v_{P'_{\beta}}(\sigma^*(\rho)) > 0 \Longrightarrow P'_{\beta}|\sigma^*(M_{\alpha})$.

6. Vidíme, že $D \setminus \{(0,0)\} = (\mathrm{Dom}(r_1) \cap \mathrm{Dom}(r_2))$. Kdyby $\mathrm{Dom}(\rho) \supset \{(0,0)\}$, tak by dle 5) $P'_0|P_\alpha$ což je spor, jelikož již obsahuje P_∞ .