

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
1. September 2005 (01.09.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/080890 A1

(51) Internationale Patentklassifikation⁷: **F25D 3/08**, A61J 1/16, A01N 1/02, B01L 11/02, B65D 81/38

LEVIS, Michael, Karl [DE/CH]; Vordere Hauptgasse 81, CH-4800 Zofingen (CH). LY, Hon, Quang [CH/CH]; Spitzwaldstrasse 211, CH-4123 Allschwil (CH).

(21) Internationales Aktenzeichen: PCT/CH2005/000086

(74) Anwalt: **BRAUN, André**; Braunpat Braun Eder AG, Reussstrasse 22, CH-4054 Basel (CH).

(22) Internationales Anmeldedatum:
16. Februar 2005 (16.02.2005)

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Einreichungssprache: Deutsch

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW,

(26) Veröffentlichungssprache: Deutsch

[Fortsetzung auf der nächsten Seite]

(30) Angaben zur Priorität:
300/04 24. Februar 2004 (24.02.2004) CH

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **SIEGFRIED GENERICS INTERNATIONAL AG** [CH/CH]; Untere Brühlstrasse 4, CH-4800 Zofingen (CH).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): **WEBER, Beat, T.** [CH/CH]; Wiesenstrasse 4, CH-4800 Zofingen (CH).

(54) Title: PHARMACOLOGICALLY ACCEPTABLE SALTS OF CLOPIDOGREL

(54) Bezeichnung: PHARMAKOLOGISCH AKZEPTIERBARE SALZE VON CLOPIDOGREL

AA Clopidogrel Napsylat der Form B

AA..CLOPIDOGREL NAPSULATE OF FORM B

WO 2005/080890 A1

(57) **Abstract:** The invention relates to polymorphous forms of (+)-(S)-clopidogrel hydrogen bromide, described as polymorphous "form A", polymorphous "form B", polymorphous "form C", polymorphous "form D", polymorphous "form E", and polymorphous "form F", in addition to polymorphous forms of (+)-(S)-clopidogrel napsylate, that are described as polymorphous "form A" and polymorphous "form B" and differ in the X-ray powder diffraction diagrams (XRPD) thereof. The invention also relates to the salts clopidogrel besylate, clopidogrel tosylate and clopidogrel oxalate, and to methods for the production thereof.

[Fortsetzung auf der nächsten Seite]

GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

— *mit internationalem Recherchenbericht*

(57) Zusammenfassung: Polymorphe Formen von (+)-(S)-Clopidogrel-Hydrogenbromid, welche als polymorphe "Form A", polymorphe "Form B", polymorphe "Form C", polymorphe "Form D", als polymorphe "Form E", und als polymorphe "Form F" bezeichnet sind, sowie polymorphe Formen von(+)-(S)-Clopidogrel-Napsylat, welche als polymorphe "Form A" und polymorphe "Form B" bezeichnet sind und sich voneinander in ihren Pulver-Röntgendiagrammen (XRPD) unterscheiden; sowie die Salze Clopidogrel Besylat, Clopidogrel Tosylat und Clopidogrel Oxalat und Verfahren zu deren Herstellung.

Pharmakologisch akzeptierbare Salze von Clopidogrel

Die vorliegende Erfindung betrifft Salze von Clopidogrel, insbesondere neue polymorphe Formen von Clopidogrel-Hydro-

5 bromid, sowie Salze von Clopidogrel mit Benzolsulfonsäure (Besylat), mit para-Toluolsulfonsäure (Tosylat), mit Naphthalin-2-sulfonsäure (Napsylat) und mit Oxalsäure (Oxalat).

10 Clopidogrel ist eine pharmazeutisch wirksame Verbindung und ist an sich bekannt. Mit Clopidogrel wird das rechtsdrehende S-Enantiomere von alfa-(2-Chlorphenyl)-6,7-dihydro-thieno-[3,2-c]pyridin-5(4H)essigsäure-methylester bezeichnet.

15 Die vorliegende Erfindung betrifft auch Verfahren zur Herstellung dieser Verbindungen sowie pharmazeutisch aktive Zusammensetzungen, welche mindestens eine erfindungsgemäße Verbindung in an sich bekannten Konzentrationen enthalten.

20 Die vorliegende Erfindung betrifft auch die Verwendung der neuen Verbindungen und Formen zur Herstellung von pharmazeutisch aktiven Zusammensetzungen, welche mindestens eine erfindungsgemäße Verbindung in einer pharmazeutisch wirksamen Konzentration enthalten.

25 In EP 0 099 802 sind das racemische Gemisch sowie die beiden enantiomeren Formen von Clopidogrel offenbart. In EP 1 087 976 sind weitere Salze von Clopidogrel beschrieben.

30 Die vorliegende Erfindung betrifft sechs neue polymorphe Formen von (+)-(S)-Clopidogrel-Hydrogenbromid, welche hierin als polymorphe "Form A", polymorphe "Form B", polymorphe "Form C", polymorphe "Form D", als polymorphe "Form E", und als polymorphe "Form F" bezeichnet sind, sowie zwei neue polymorphe Formen von (+)-(S)-Clopidogrel-Napsylat, 35 welche hierhin als polymorphe "Form A" und polymorphe "Form B" bezeichnet sind. Diese polymorphen Formen unterscheiden

- 2 -

sich voneinander in ihren Pulver-Röntgendiagrammen (XRPD).

Die polymorphen Formen des Clopidogrel Hydrobromides unterscheiden sich zusätzlich im Infrarot-Spektrum. In der vorliegenden Beschreibung werden die XRPD-Peaks zur

5 Unterscheidung verwendet.

Die charakteristischen XRPD-Peaks von Clopidogrel-Hydro-

bromid der polymorphen Formen A, B, C, D, E und F und

Clopidogrel Napsylat der polymorphen Formen A und B sind

10 ausgedrückt in Grad 2θ mit einer Genauigkeit von ±0.2 Grad

2θ, und befinden sich bei folgenden in Tabelle 1 und

Tabelle 2 aufgelisteten Streuwinkeln.

Tabelle 1

Clopidogrel Hydrobromid Form	Winkel [2θ°]:	relative Intensität
A	9.83	mittel
	10.35	mittel
	19.98	stark
	23.03	stark
B	9.49	mittel
	10.39	mittel
	12.87	mittel
	19.53	stark
C	8.20	stark
	8.92	stark
D	9.76	mittel
	10.40	schwach-mittel
	19.50	stark
	23.01	stark
E	7.72	mittel
	9.27	mittel
	9.88	mittel
	11.91	mittel
F	12.48	stark
	15.89	mittel
	20.16	stark
	21.97	stark

Tabelle 2

Clopidogrel Napsylat Form	Winkel [2θ°]:	relative Intensität
A	8.59	mittel-stark
	13.55	mittel-stark
	19.00	mittel-stark
	21.34	stark
B	7.67	mittel
	8.41	stark
	9.05	mittel
	10.00	mittel

Clopidogrel Hydrobromid der Form A erhält man entweder durch
 5 Vereinigung von Bromwasserstoff (HBr) und Clopidogrel Base
 in einem geeigneten Lösungsmittel und anschliessender
 Kristallisation oder durch Umkristallisation oder durch
 Kristallumwandlung aus der Suspension irgendeiner Form von
 Clopidogrel Hydrobromid aus einem geeigneten Lösungsmittel
 10 oder Lösungsmittelgemisch. Geeignete Lösungsmittel sind
 Aceton, Essigsäureethylester, Diisopropylether, tert.-Butyl-
 methylether, Methyl-isobutylketon, Dichlormethan, Toluol,
 Isobutyronitril, Isopropanol, vorzugsweise bei Temperaturen
 zwischen 18 und 22°C unter Einsatz eines Lösungsmittelge-
 15 misches von Methyl-isobutylketon und Isopropanol vorzugs-
 weise im Massenverhältnis von 4:1.

In diesem Sinn betrifft die Erfindung ein Verfahren zur
 Herstellung von Clopidogrel Hydrobromid der Form A, welches
 20 dadurch gekennzeichnet ist, dass man Clopidogrel Hydrobromid
 einer beliebigen Kristallform aus einem Lösungsmittel oder
 Lösungsmittelgemisch, enthaltend Aceton, Essigsäureethyl-
 ester, Diisopropylether, tert.-Butyl-methylether, Methyl-
 isobutylketon, Dichlormethan, Toluol, Isobutyronitril und/-
 25 oder Isopropanol, vorzugsweise Methyl-isobutylketon und/oder
 Isopropanol, vorzugsweise im Massenverhältnis von 4:1, im
 Temperaturbereich von 18°C bis 22°C, kristallisiert.

Clopidogrel Hydrobromid der Form B erhält man durch Vereinigung von HBr und Clopidogrel Base in einem geeigneten Lösungsmittel und anschliessender Kristallisation und vorteilhaft durch Kristallisation aus dieser Lösung durch

5 rasches Überschreiten der Sättigungskurven durch Techniken, wie schnelle Zugabe eines Gegenlösungsmittels (Antisolvens) oder durch Verdampfungskristallisation, oder durch sehr schnelle Abkühlung der Kristallisierlösung (Schockkühlung). Geeignete Lösungsmittel sind Aceton und Dichlormethan.

10 Geeignete Gegenlösungsmittel sind aliphatische Kohlenwasserstoffe wie Heptan oder Hexan.

Die Erfindung betrifft ein Verfahren zur Herstellung von Clopidogrel Hydrobromid der Form B, welches dadurch gekennzeichnet ist, dass man Clopidogrel Hydrobromid einer beliebigen Kristallform aus einem geeigneten Lösungsmittel, vorzugsweise Aceton und/oder Dichlormethan, durch rasches Überschreiten der Sättigungskurve, vorzugsweise durch schnelle Zugabe eines Gegenlösungsmittels (Antisolvens), vorzugsweise eines aliphatischen Kohlenwasserstoffs, vorzugsweise Heptan und/oder Hexan, oder durch Verdampfungskristallisation, oder durch sehr schnelle Abkühlung der Kristallisierlösung (Schockkühlung), auskristallisiert.

25 Clopidogrel Hydrobromid der Form C erhält man entweder durch Vereinigung von HBr und Clopidogrel Base in einem geeigneten Lösungsmittel oder durch Umkristallisation oder durch Kristallumwandlung aus der Suspension irgendeiner Form von Clopidogrel Hydrobromid aus einem geeigneten Lösungsmittel

30 oder Lösungsmittelgemisch. Geeignetes Lösungsmittel ist Acetonitril.

Die Erfindung betrifft ein Verfahren zur Herstellung von Clopidogrel Hydrobromid der Form C, welches dadurch gekennzeichnet ist, dass man Clopidogrel Hydrobromid einer be-

liebigen Kristallform durch Kristallisation aus Acetonitril gewinnt.

Clopidogrel Hydrobromid der Form D erhält man entweder durch
5 Vereinigung von HBr und Clopidogrel Base in einem geeigneten Lösungsmittel und anschliessender Kristallisation oder durch Umkristallisation oder durch Kristallumwandlung aus der Suspension irgendeiner Form von Clopidogrel Hydrobromid aus einem geeigneten Lösungsmittel oder Lösungsmittelgemisch,
10 enthaltend Aceton, Essigsäureethylester, Diisopropylether, tert.-Butyl-methylether, Methyl-isobutylketon, Dichlormethan, Toluol, Isobutyronitril und/oder Isopropanol, vorzugsweise Methyl-isobutylketon und/oder Isopropanol, vorzugsweise im Massenverhältnis von 4:1, im Temperatur-
15 bereich von 30°C bis 60°C, kristallisiert.

Die Erfindung betrifft ein Verfahren zur Herstellung von Clopidogrel Hydrobromid der Form D, welches dadurch gekennzeichnet ist, dass man Clopidogrel Hydrobromid einer beliebigen Kristallform aus einem Lösungsmittel oder Lösungsmittelgemisch, enthaltend Aceton, Essigsäureethylester, Diisopropylether, tert.-Butyl-methylether, Methyl-isobutylketon, Dichlormethan, Toluol, Isobutyronitril und/oder Isopropanol, vorzugsweise Methyl-isobutylketon und/oder Isopropanol, vorzugsweise im Massenverhältnis von 4:1, im Temperatur-
25 bereich von 30°C bis 60°C, kristallisiert.

Clopidogrel Hydrobromid der Form E erhält man entweder durch Vereinigung von HBr und Clopidogrel Base in einem geeigneten
30 Lösungsmittel und anschliessender Kristallisation oder durch Kristallisation irgendeiner Form von Clopidogrel Hydrobromid aus einem geeigneten Lösungsmittel oder Lösungsmittelgemisch. Geeignete Lösungsmittel sind Gemische aus Dichlormethan und aliphatischen Kohlenwasserstoffen. Besonders bevorzugt werden lange Kristallisierzeiten von bis zu 24 Stun-
35

den, ein Arbeitstemperaturbereich von 0°C bis 25°C und Kristallisation der Form E durch langsames Verdunsten des niedrigerseidenden Lösungsmittels aus dem Lösungsmittelgemisches.

5

Die Erfindung betrifft ein Verfahren zur Herstellung von Clopidogrel Hydrobromid der Form E, welches dadurch gekennzeichnet ist, dass man Clopidogrel Hydrobromid einer beliebigen Kristallform aus Dichlormethan und/oder einem 10 aliphatischen Kohlenwasserstoff mit einem Siedepunkt von vorzugsweise 60°C bis 125°C, vorzugsweise Hexan, Heptan oder Octan, kristallisiert, vorzugsweise in einem Temperaturbereich von 0°C bis 25°C, oder durch Kristallisation durch langsames Verdunsten des niedriger siedenden Lösungsmittels 15 aus dem Lösungsmittelgemisches bei Temperaturen im Temperaturbereich von 0°C bis 25°C. Bevorzugt sind lange Kristallisierzeiten von bis zu 24 Stunden.

Clopidogrel Hydrobromid der Form F erhält man durch Vereinigung von HBr und Clopidogrel Base in einem geeigneten Lösungsmittel und anschliessender Kristallisation oder durch Umkristallisation irgendeiner Form von Clopidogrel Hydrobromid aus einem geeigneten Lösungsmittel oder Lösungsmittelgemisch, enthaltend Aceton, Essigsäureethylester, Diisopropylether, tert.-Butyl-methylether, Methyl-isobutylketon, 20 Dichlormethan, Toluol, Isobutyronitril und/oder Isopropanol. Bevorzugt ist Methyl-isobutylketon und/oder Isopropanol, vorzugsweise im Massenverhältnis von 4:1, wobei man im Temperaturbereich von -5°C bis +15°C auskristallisiert. Bevorzugt sind lange Kristallisier- und Ausrührzeitenzeiten der 25 Lösungen und Suspensionen, vorzugsweise länger als 24 Stunden.

Die Erfindung betrifft ein Verfahren zur Herstellung von 35 Clopidogrel Hydrobromid der Form F, welches dadurch gekenn-

zeichnet ist, dass man Clopidogrel Hydrobromid einer beliebigen Kristallform aus einem Lösungsmittel oder Lösungsmittelgemisch, enthaltend Aceton, Essigsäureethylester, Diisopropylether, tert.-Butyl-methylether, Methyl-isobutylketon, 5 Dichlormethan, Toluol, Isobutyronitril und/oder Isopropanol, vorzugsweise Methyl-isobutylketon und/oder Isopropanol, vorzugsweise im Massenverhältnis von 4:1, im Temperaturbereich von -5°C bis +15°C, kristallisiert.

10 Clopidogrel bildet auch Salze mit ausgewählten organischen Sulfonsäuren. In diesem Sinne betrifft die vorliegende Erfahrung auch die Salze Clopidogrel Besylat, Clopidogrel Tosylat, und Clopidogrel Napsylat als Form A und Form B, sowie auch Clopidogrel Oxalat.

15 Clopidogrel Besylat stellt man her, indem man equimolare Mengen von Benzolsulfonsäure und Clopidogrel Base in einem geeigneten Lösungsmittel miteinander zur Reaktion bringt. Geeignete Lösungsmittel sind beispielsweise Alkohole, Ether 20 und/oder Nitrile. Als Lösungsmittel bevorzugt ist Methanol. Vorzugsweise wird die Verbindung durch Lösungsmittelabstraktion isoliert, d.h. beispielsweise durch Entfernen des Lösungsmittels durch Destillation oder Sprühtrocknung.

25 Clopidogrel Tosylat stellt man her, indem man equimolare Mengen von para-Toluolsulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel miteinander zur Reaktion bringt. Geeignete Lösungsmittel sind beispielsweise Alkohole, Ether und/oder Nitrile. Als Lösungsmittel bevorzugt wird Methanol bei einer Arbeitstemperatur von 20-25°C. Vorzugsweise wird die Verbindung durch Lösungsmittelabstraktion isoliert.

35 Clopidogrel Napsylat Form A stellt man her, indem man equimolare Mengen von Naphthalin-2-sulfonsäure mit Clopidogrel

Base in einem geeigneten Lösungsmittel aufnimmt und die Kristallisierlösung durch Animpfen mit Clopidogrel Napsylat Form A zur Kristallisation bringt. Geeignete Lösungsmittel sind beispielsweise primäre und sekundäre Alkohole, Ether, 5 Nitrile, Toluol und wasserhaltige Lösungsmittelgemische, vorzugsweise von diesen Lösungsmitteln und deren Gemischen, mit einem Wassergehalt von vorzugsweise weniger als 10 Gew.-% (<10 Gew.-%). Der geeignete Temperatur-Arbeitsbereich liegt zwischen 20°C und 60°C. Als Lösungsmittel bevorzugt 10 sind Isopropanol, Diisopropylether, und wässrige Lösungsmittel, vorzugsweise von diesen Lösungsmitteln und deren Gemischen, besonders bevorzugt ist Isopropanol. Alternativ bildet sich Clopidogrel Napsylat Form A auch durch Umsalzen 15 aus Clopidogrel Salzen (z.B. Clopidogrel Hydrobromid) und Naphthalin-2-sulfonsäure Salzen (z.B. Natrium-2-naphthylsulfonat). Geeignete Lösungsmittel sind: Isopropanol, Diisopropylether, und wasserhaltige Lösungsmittelgemische, vorzugsweise von diesen Lösungsmitteln und deren Gemischen, mit einem Wassergehalt von vorzugsweise weniger als 10 Gew.-% 20 Wasser. Der Temperatur-Arbeitsbereich ist auch hier bevorzugt 20°C bis 60°C.

Clopidogrel Napsylat Form A erhält man direkt und ohne Animpfen, wenn man equimolare Mengen von Naphthalin-2-sulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel, wie vorgehend beschrieben, umsetzt, wobei die verwendete Naphthalin-2-sulfonsäure eine Reinheit von mindestens 99.5 Gew.-% aufweist und insbesondere, wenn deren Gehalt an Naphthalin-1-sulfonsäure kleiner als 0.5 Gew.-% beträgt.

30 Clopidogrel Napsylat Form B stellt man her, indem man equimolare Mengen von Naphthalin-2-sulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel auflöst und mit Clopidogrel Napsylat Form B durch Animpfen zur Kristallisation 35 bringt. Geeignete Lösungsmittel sind primäre und

sekundäre Alkohole, Nitrile, Toluol und/oder wasserhaltige Lösungsmittelgemische, vorzugsweise von diesen Lösungsmitteln und deren Gemischen, mit einem Wassergehalt von vorzugsweise weniger als 10 Gew.-% Wasser. Besonders bevorzugt 5 wird Isopropanol als Lösungsmittel, eine stark übersättigte Kristallisierlösung (>20%), ein Temperatur-Arbeitsbereich von 15°C bis 20°C, sowie lange Rührzeiten von bis zu 24 Stunden (Kristallisation und Ausrühren der Suspension). Alternativ bildet sich Clopidogrel Napsylat Form B auch durch 10 Umsalzen aus Clopidogrel Salzen (z.B. Clopidogrel Hydrobromid) und Naphthalin-2-sulfonsäure Salzen (z.B. Natrium-2-naphthylsulfonat) sowie durch Umkristallisation aus Clopidogrel Napsylat Form A durch Animpfen der Lösung mit Form B. Geeignete Lösungsmittel sind Isopropanol, Diisopropylether, 15 und wasserhaltige Lösungsmittelgemische, vorzugsweise von diesen Lösungsmitteln und deren Gemischen, mit einem Wassergehalt von vorzugsweise weniger als 10 Gew.-% (<10 Gew.-%) Wasser, bei einem bevorzugten Temperatur-Arbeitsbereich von 15°C bis 20°C sowie lange Rührzeiten von bis zu 24 Stunden 20 (Kristallisation und Ausrühren der Suspension).

Clopidogrel Napsylat Form B erhält man direkt und ohne Animpfen, wenn man equimolare Mengen von Naphthalin-2-sulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel, wie vorgehend beschrieben, umsetzt, wobei die verwendete Naphthalin-2-sulfonsäure eine Reinheit von weniger als 25 99.0 Gew.-% aufweist und insbesondere, wenn deren Gehalt an Naphthalin-1-sulfonsäure höher ist als 1.0 Gew.-% beträgt.

30 Die vorliegende Erfindung betrifft auch die Verbindung Clopidogrel Oxalat. Clopidogrel Oxalat stellt man her, indem man equimolare Mengen von Oxalsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel umsetzt. Geeignete Lösungsmittel sind beispielsweise Alkohole, Ether, Nitrile, und/- 35 oder wasserhaltige Lösungsmittelgemische, vorzugsweise von

- 10 -

diesen Lösungsmitteln und deren Gemischen, mit einem Wasser-
gehalt von vorzugsweise weniger als 10 Gew.-% Wasser. Als
Lösungsmittel bevorzugt sind Isopropanol, Diisopropylether
und Lösungsmittelgemische mit einem Wassergehalt von vor-
5 zugsweise weniger als 10 Gew.-% (<10 Gew.-%). Vorteilhaft
wird die Verbindung durch Lösungsmittelabstraktion isoliert.
In den vorgehenden Fällen ist die Bedingung, dass der
Wassergehalt niedriger ist als 10 Gew.-% nur bevorzugt.
Diese Grenze ist nicht-kritisch.

10 Die Figuren 1-11 zeigen die XRPD Diagramme von Clopidogrel
HBr Form A (Figur 1), Form B (Figur 2), Form C (Figur 3),
Form D (Figur 4), Form E (Figur 5), Form F (Figur 6),
Clopidogrel Besylat (Figur 7), Clopidogrel Tosylat (Figur
15 8), Clopidogrel Napsylat Form A (Figur 9), Clopidogrel
Napsylat Form B (Figur 10) und Clopidogrel Oxalat (Figur
11). Die folgenden Beispiele erläutern die Erfindung.

Beispiel 1 (Clopidogrel Hydrobromid der Form A)

20 In 260 g Aceton werden 160 g Clopidogrel Base gelöst. Dieser
Lösung wird unter Eiskühlung (Innentemperatur: 0°C – 5°C)
solange Bromwasserstoff Gas zugeleitet bis der pH-Wert der
Lösung (gemessen mit feuchtem Indikator-Papier) bei 2 (zwei)
liegt. Die entstandene Suspension wird auf 20°C erwärmen ge-
25 lassen und zwei Stunden ausgerührt. Der Feststoff wird
mittels Vakuumfiltration isoliert und mit kaltem Aceton ge-
waschen. Die Feuchtware wird im Vakuum bis zur Gewichtskon-
stanz getrocknet. Man erhält 130 g Clopidogrel Hydrobromid
der Form A mit folgenden Eigenschaften:
30 HPLC Gehalt an Clopidogrel HBr: 100%
DSC: Endothermie-Maximum: 143°C

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

3484 67%; 3075 76%; 3005 58%; 2952 50%; 2704 59%;
35 2628 46%; 2476 21%; 1753 3%; 1593 73%; 1474 37%;
1437 17%; 1404 37%; 1349 42%; 1319 18%; 1297 20%;
1226 8%; 1180 22%; 1135 55%; 1056 37%; 983 59%;

- 11 -

965	45%;	919	65%;	885	75%;	845	46%;	789	61%;
762	24%;	740	30%;	706	51%;	626	86%;	597	72%;
534	78%;	454	70%.						

5 XRPD [Cu K α_1]:

Winkel [2 Θ °]:	Rel. Intensität [%]
9.83	33
10.35	22
13.24	14
14.01	51
14.37	30
16.40	8
17.44	10
18.39	18
19.22	18
19.68	18
19.98	100
20.73	16
22.08	25
22.53	19
23.03	90
25.93	11
26.26	30
26.44	34
27.13	11
27.49	11
28.01	28
28.91	37
29.29	8
29.85	16
30.71	10
31.42	12
31.75	34
33.17	19
36.22	9
37.33	7
40.16	9
41.58	10
42.23	10
48.92	7

- 12 -

Beispiel 2 (Clopidogrel Hydrobromid der Form B)

In 60 g Aceton werden 10 g Clopidogrel Hydrobromid unter leichtem Erwärmen vollständig gelöst. Diese Lösung wird in einem gross dimensionierten Rundkolben unter Rühren evakuiert. Es verbleibt ein weisser Rückstand von 10 g von Clopidogrel Hydrobromid der amorphen Form B mit folgenden Eigenschaften:

HPLC Gehalt an Clopidogrel HBr: 100%

DSC: Endothermie-Maximum: schwaches Minimum bei ca. 130°C

10

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

3436	39%	2952	50%	2479	27%	1754	3%	1708	50%	
1636	69%	1480	38%	1437	13%	1320	26%	1296	26%	
1224	13%	1179	25%	1134	64%	1056	46	1038	44%	
15	1011	47%	963	63%	917	78%	883	76%	843	60%
	788	68%	762	26%	727	41%	627	79%	597	65%
	531	76%	455	67%						

XRPD [Cu K α_1]:

Winkel [2 Θ °]:	Rel. Intensität [%]
9.50	34.95
10.39	34.57
12.87	24.42
13.74	23.08
14.14	38.5
16.13	31.84
16.86	20.24
18.52	18.04
19.53	100
20.88	44.26
21.63	20.92
22.34	18.09
22.93	47.93
23.23	52.29
23.60	17.76
24.83	32.92
25.12	47.4
25.41	40.78
27.25	24.32

- 13 -

27.54	26.55
28.50	25.57
29.01	30.56
30.07	16.68
30.67	19.36
31.23	19.37
31.53	14.47
32.26	29.23
33.57	15.51
34.16	10.02
36.09	10.93
36.83	12.91
40.70	11.28
44.15	11.06
48.63	8.98
9.50	34.95

Beispiel 3 (Clopidogrel Hydrobromid der Form C)

In 30 ml Acetonitril werden 13 g Clopidogrel Hydrobromid
 5 mehrere Stunden bei Raumtemperatur verrührt. Anschliessend
 wird der Feststoff mittels Vakuumfiltration isoliert. Die
 Feuchtware wird bis zur Gewichtskonstanz im Vakuum getrock-
 net. Man erhält 11 g Clopidogrel Hydrobromid der Form C mit
 folgenden Eigenschaften:
 10 HPLC Gehalt an Clopidogrel HBr: 100%
 DSC: Endothermie-Maximum: 145 °C

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

3437	65%;	3064	48%;	3003	56%;	2952	51%;	2910	51%;	
15	2533	24%;	1758	3%;	1593	77%;	1480	44%;	1439	21%;
	1392	47%;	1348	44%;	1320	32%;	1295	12%;	1217	17%;
	1178	18%;	1071	51%;	1031	44%;	1015	43%;	973	59%;
	952	63%;	911	72%;	891	69%;	838	65%;	784	76%;
	756	22%;	712	33%;	624	68%;	591	71%;	536	84%;
20	456	74%.								

XRPD [Cu K α_1]:

Winkel [2 Θ °]:	Rel. Intensität [%]
8.20	63
8.92	100
13.91	21
14.76	21
15.07	22
16.67	52
18.52	45
19.42	17
20.49	22
21.31	27
21.62	23
22.49	14
22.88	25
23.31	28
24.46	74
25.83	55
26.87	25
27.60	25
27.96	21
28.81	15
29.66	18
30.60	22
32.67	22
37.51	11

Beispiel 4 (Clopidogrel Hydrobromid der Form D)

In 2 ml Isopropanol wird 1 g Clopidogrel Hydrobromid über 5 Nacht bei 40°C verrührt. Anschliessend wird der Feststoff mittels Vakuumfiltration isoliert. Die Feuchtware wird bis zur Gewichtskonstanz im Vakuum getrocknet. Man erhält 0.8 g Clopidogrel Hydrobromid der Form D mit folgenden Eigenschaften:

10 HPLC Gehalt an Clopidogrel HBr: 100%
 DSC: Endothermie-Maximum: 144°C

IR (KBr Pressling) [cm $^{-1}$ bei % Transmission]:

3483 58%; 3110 78%; 3075 82%; 3021 79%; 2906 61%;

- 15 -

2486	30%;	2362	34%;	1753	3%;	1484	58%;	1436	29%;	
1391	47%;	1337	51%;	1316	46%;	1295	22%;	1260	47%;	
1228	19%;	1188	35%;	1136	72%;	1061	57%;	1035	51%;	
1009	45%;	967	66%;	944	63%;	903	72%;	845	69%;	
5	787	84%;	748	39%;	733	38%;	708	52%;	622	82%;
	597	76%;	542	91%;	484	87%;	454	80%.		

XRPD [Cu K α 1]:

Winkel [2 θ °]:	Rel. Intensität [%]
9.76	43
10.40	10
11.38	11
12.85	13
13.73	52
14.30	27
15.02	22
17.23	24
19.50	100
19.91	33
20.65	68
22.03	29
23.01	95
23.97	35
25.07	52
26.86	31
27.45	30
28.76	44
29.63	30
31.10	32

10 Beispiel 5 (Clopidogrel Hydrobromid der Form E)

In 140 g Dichlormethan werden 13.5 g Clopidogrel Hydrobromid gelöst. Der Lösung werden bei Raumtemperatur 82 g Heptan (Isomerengemisch) zugegeben und unter einem leichten Stickstoffstrom über nacht verrührt. Aus der entstandenen Suspension wird der Feststoff mittels Vakuumfiltration isoliert.

15 und bis zur Gewichtskonstanz getrocknet. Man erhält 13 g Clopidogrel Hydrobromid der Form E mit folgenden Eigenschaften:

HPLC Gehalt an Clopidogrel HBr: 100%

- 16 -

DSC: Endothermie-Maximum: 125 °C

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

3485	57%;	3007	64%;	2956	44%;	2908	41%;	2489	19%;	
5	1748	3%;	1593	75%;	1481	40%;	1438	18%;	1397	46%;
	1345	42%;	1321	31%;	1297	13%;	1263	43%;	1229	12%;
	1180	26%;	1059	52%;	1034	43%;	1015	33%;	968	65%;
	951	64%;	909	72%;	892	71%;	841	60%;	786	72%;
10	758	24%;	720	17%;	623	72%;	593	73%;	539	87%;
	480	81%;	456	73%;	421	86%.				

XRPD [Cu K α_1]:

Winkel [2 Θ °]:	Rel. Intensität [%]
7.72	41
9.27	47
9.88	65
11.91	51
14.28	41
15.45	42
16.91	34
20.65	32
21.10	59
21.38	71
22.17	50
23.15	68
24.11	86
25.36	52
25.87	100
26.96	43
28.74	64
29.74	39

Beispiel 6 (Clopidogrel Hydrobromid der Form F)

15 Ein Gemisch aus 3500g Isopropanol und 620g Clopidogrel Hydrobromid der Form A werden solange erhitzt, bis eine klare, leicht gelbe Lösung vorliegt (Innentemperatur (IT): 60-65 °C). Nach schnellem Abkühlen auf eine Innentemperatur von 10 °C kristallisiert spontan oder nach Animpfen eine
20 weisse, pulverige Masse aus, die durch Vakuumfiltration

- 17 -

isoliert und bis zur Gewichtskonstanz getrocknet wird. Man erhält 361 g Clopidogrel Hydrobromid der Form F mit folgenden Eigenschaften: HPLC Gehalt an Clopidogrel HBr: 100%; DSC: Endothermie-Maximum: 107.6°C

5

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

3325	16%	3113	46%	3067	61%	3013	53%	3001	51%
2961	50%	2889	57%	2858	57%	2725	55%	2479	37%
2349	57%	2299	60%	2142	66%	1956	81%	1744	3%
1613	58%	1588	63%	1573	77%	1493	49%	1470	26%
1453	26%	1434	19%	1423	15%	1390	52%	1364	60%
1351	41%	1334	30%	1322	28%	1285	29%	1276	33%
1257	29%	1239	23%	1222	29%	1211	19%	1188	30%
1171	23%	1093	66%	1056	30%	1043	39%	1028	41%
1011	28%	984	62%	965	57%	955	60%	930	73%
918	78%	906	57%	877	75%	865	69%	842	48%
826	77%	786	53%	762	8%	729	19%	715	44%
672	82%	637	70%	598	47%	590	43%	530	42%
505	58%	485	59%	457	47%	434	76%	425	69%

XRPD [Cu K α_1]:

Winkel [2 θ °]:	Rel. Intensität [%]
8.95	19
9.74	27
12.48	82
13.83	34
15.89	66
16.67	28
17.99	25
18.84	20
19.53	54
20.02	80
20.16	100
20.52	56
20.86	21
21.52	33
21.97	94
22.32	22
23.35	42
24.20	45

- 18 -

24.65	18
25.46	32
26.16	36
26.36	45
27.91	73
28.44	54
31.28	25
32.14	28
33.33	31
34.91	25
36.43	12
37.85	16
41.01	13

Beispiel 7 (Clopidogrel Besylat)

In 30 ml Methanol werden 3.0 g Benzolsulfonsäure und 5.5 g Clopidogrel Base gelöst. Das Lösungsmittel wird im Vakuum entfernt. Es verbleiben 8.5 g Clopidogrel Besylat mit folgenden Eigenschaften:

HPLC Gehalt an Clopidogrel Besylat: 100%

DSC: Endothermie-Maximum: keines

10 IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

3437	28%;	3066	56%;	2957	42%;	2579	44%;	1752	3%;
1636	65%;	1593	76%;	1479	31%;	1444	14%;	1322	36%;
1226	3%;	1159	3%;	1122	4%;	1069	32%;	1034	11%;
1016	6%;	996	14%;	913	69%;	887	70%;	840	67%;
759	16%;	727	10%;	694	20%;	611	4%;	565	26%;
480	76%;	457	74%.						

XRPD [Cu K α_1]: es gibt keine deutlichen Peaks

Beispiel 8 (Clopidogrel Tosylat)

15 In 30 ml Methanol werden 3.2 g para-Toluolsulfonsäure und 5.5 g Clopidogrel Base gelöst gelöst. Das Lösungsmittel wird im Vakuum entfernt. Es verbleiben 8.7 g Clopidogrel Tosylat mit folgenden Eigenschaften:

HPLC Gehalt an Clopidogrel Besylat: 100%

- 19 -

DSC: Endothermie-Maximum: keines

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

XRPD [Cu K α]: es gibt keine deutlichen Peaks

5

Beispiel 9 (Clopidogrel Napsylat, Form A)

In 430 ml demineralisiertem Wasser werden 52.5 g Natrium-2-naphthylsulfonat in der Wärme (ca. 75°C) gelöst. Zu dieser warmen Lösung wird eine Lösung aus 50 g Clopidogrel

10 Hydrogensulfat in 200 ml Wasser gegeben. Die resultierende Mischung wird auf Raumtemperatur gekühlt und die obere ölige Phase abgetrennt. Das abgetrennte Öl wird in 230 g Isopropanol gelöst. Diese Lösung wird mit Magnesium-sulfat getrocknet und mit 250 g Diisopropylether verdünnt. Die Lösung 15 wird in der Wärme (ca. 60°C) mit Clopidogrel Napsylat geimpft und über Nacht unter Rühren auf Raumtemperatur gebracht. Der Feststoff wird mittels Vakuumfiltration isoliert, mit Diisopropylether gewaschen und anschliessend im Vakuum getrocknet. Man erhält 37 g Clopidogrel Napsylat 20 Form A mit folgenden Eigenschaften:

HPLC Gehalt an Clopidogrel Napsylat: 100%

DSC: Endothermie-Maximum: 149°C

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

3438	57%;	2969	47%;	2672	63%;	2593	59%;	2362	72%;
1751	10%;	1595	79%;	1475	54%;	1438	53%;	1329	54%;
1301	59%;	1222	11%;	1171	3%;	1135	29%;	1090	21%;
1032	10%;	993	60%;	956	78%;	906	82%;	886	83%;
866	74%;	830	64%;	783	83%;	753	27%;	724	76%;
698	48%;	676	21%;	650	71%;	623	73%;	597	76%;
567	47%;	480	69%;	461	76%;	421	78%.		

25

- 20 -

XRPD [Cu K α_1]:

Winkel [2 θ °]:	Rel. Intensität [%]
6.79	32
8.27	33
8.59	59
12.44	21
12.62	22
13.07	31
13.55	62
16.87	59
17.24	63
18.25	14
19.00	71
19.69	52
20.02	19
20.24	47
21.34	100
21.82	17
22.40	42
22.72	19
23.02	50
23.27	25
23.65	47
24.75	49
25.09	33
25.34	56
25.85	18
27.11	25
27.61	19
28.12	22
32.14	15
32.55	20
32.97	14
35.10	11

Beispiel 10 (Clopidogrel Napsylat, Form A)

In 60 ml Wasser werden 2.5 g Natrium-2-naphthylsulfonat
 5 gelöst. Schwebestoffe werden durch Klarfiltration abgetrennt. Dann werden 30 ml Methanol und 2.9 g Clopidogrel Hydrobromid zugegeben. Die entstandenen Lösung wird unter

kräftigem Rühren langsam ca. 50% des Lösungsmittels unter leichtem Vakuum bei Raumtemperatur entzogen. Der gebildete weisse Feststoff wird mittels Vakuumfiltration isoliert, mit Wasser gewaschen und im Vakuum bis zur Gewichtskonstanz 5 getrocknet. Man erhält 3 g Clopidogrel Napsylat Form A.

Beispiel 11 (Clopidogrel Napsylat, Form B)

Eine vorgängig zubereitete heisse Lösung (ca. 65°C) von 462g Isopropanol und 82g Clopidogrel Napsylat Form A wird auf 10 20-25°C abgekühlt und mit Clopidogrel Napsylat Form B angeimpft. Die Mischung wird 24 Stunden bei 15-20°C gut gerührt und die Suspension mittels Vakuumfiltration isoliert. Der Filterkuchen wird mit Isopropanol bei 15-20°C gewaschen und im Luftstrom bei IT 20-25°C bis zur Gewichtskonstanz 15 getrocknet. Man erhält 70g Clopidogrel Napsylat Form B.

DSC: Endothermie-Maximum: 114.4°C

XRPD [Cu K α_1]:

Winkel [2 θ °]	Rel. Intensität [%]
7.67	21
8.41	100
9.05	27
10.00	34
11.58	30
15.03	25
16.39	35
16.86	18
17.41	20
17.75	26
18.35	36
18.75	48
19.21	85
19.91	47
20.81	23
21.70	37
22.78	21
23.33	27
23.95	36
25.01	30
25.35	27
25.95	27
26.13	45
26.69	27
28.29	23
30.36	17
33.65	15
34.62	16

Beispiel 12 (Clopidogrel Oxalat)

In 100 ml Dichlormethan werden 10 g Clopidogrel Base und 3.1 g Oxalsäure gelöst. Das Lösungsmittel wird im Vakuum entfernt. Es verbleiben 13 g Clopidogrel Oxalat mit folgenden Eigenschaften:

HPLC Gehalt an Clopidogrel Oxalat: 100%

DSC: Endothermie-Maximum: keines

10 Raman [cm⁻¹, Intensität]:

1737.5	schwach	1621.8	mittel	1594.1	schwach	1576.0	schwach	1531.2	mittel
1514.5	mittel	1498.7	mittel	1451.5	mittel	1396.7	schwach	1352.0	mittel
1329.7	schwach	1316.3	schwach	1281.7	schwach	1252.5	schwach	1236.6	schwach
1192.9	schwach	1167.5	schwach	1135.3	schwach	1089.5	schwach	1044.4	mittel
1004.6	schwach	917.9	schwach	867.7	schwach	847.6	mittel	825.2	schwach
785.9	schwach	764.0	schwach	718.4	mittel	687.9	schwach	682.5	schwach
670.3	schwach	635.1	mittel	609.5	schwach	584.9	schwach	557.8	schwach
542.7	schwach	534.5	schwach	506.0	schwach	486.8	schwach	454.9	schwach
432.1	schwach	410.3	schwach						

XRPD [Cu K α_1]: es gibt keine deutlichen Peaks

Beispiel 13 (Clopidogrel Napsylat Form A)

15 In 600 ml Isopropanol werden 170 g Clopidogrel Base und 115 g Naphthalin-2-sulfonsäure Monohydrat bei 60°C gelöst und langsam gekühlt. Bei 50°C wird die klare Lösung mit Clopidogrel Napsylat Form A geimpft und mit 10°C/h auf Raumtemperatur gekühlt. Die Kristalle werden mittels
20 Vakuumfiltration isoliert und im Vakuum getrocknet. Es werden 223 g Clopidogrel Napsylat Form A erhalten.

Patentansprüche

1. Polymorphe Formen von (+)-(S)-Clopidogrel-Hydrogenbromid, welche hierin als polymorphe "Form A", polymorphe "Form B", polymorphe "Form C", polymorphe "Form D", als polymorphe "Form E", und als polymorphe "Form F" bezeichnet sind, und sich voneinander in ihren Pulver-Röntgendiagrammen (XRPD) gemäss den in Tabelle 1 aufgeführten charakteristischen Peaks, angegeben in Grad 2 Θ mit einer Genauigkeit von ± 0.2 Grad 2 Θ , unterscheiden:

Tabelle 1

Clopidogrel Hydrobromid Form	Winkel [2 Θ]:	relative Intensität
A	9.83	mittel
	10.35	mittel
	19.98	stark
	23.03	stark
B	9.49	mittel
	10.39	mittel
	12.87	mittel
	19.53	stark
C	8.20	stark
	8.92	stark
D	9.76	mittel
	10.40	schwach-mittel
	19.50	stark
	23.01	stark
E	7.72	mittel
	9.27	mittel
	9.88	mittel
	11.91	mittel
F	12.48	stark
	15.89	mittel
	20.16	stark
	21.97	stark

2. Polymorphe Formen von (+)-(S)-Clopidogrel-Napsylat, welche hierhin als polymorphe "Form A" und polymorphe "Form B" bezeichnet sind und sich voneinander in ihren Pulver-Röntgendiagrammen (XRPD) gemäss den in Tabelle 2 aufgeführten charakteristischen Peaks, angegeben in Grad 2θ mit einer Genauigkeit von ± 0.2 Grad 2θ, unterscheiden:

10 Tabelle 2

Clopidogrel Napsylat Form	Winkel [2θ°]:	relative Intensität
A	8.59	mittel-stark
	13.55	mittel-stark
	19.00	mittel-stark
	21.34	stark
B	7.67	mittel
	8.41	stark
	9.05	mittel
	10.00	mittel

3. Verfahren zur Herstellung von Clopidogrel Hydrobromid der Form A nach Anspruch 1, dadurch gekennzeichnet, dass man 15 Clopidogrel Hydrobromid (HBr) einer beliebigen Kristallform aus einem Lösungsmittel oder Lösungsmittelgemisch, enthaltend Aceton, Essigsäureethylester, Diisopropylether, tert.-Butyl-methylether, Methyl-isobutylketon, Dichlormethan, Toluol, Isobutyronitril und/oder Isopropanol, vorzugsweise 20 Methyl-isobutylketon und/oder Isopropanol, vorzugsweise im Massenverhältnis von 4:1, im Temperaturbereich von 18°C bis 22°C, kristallisiert.

4. Verfahren zur Herstellung von Clopidogrel Hydrobromid 25 der Form B nach Anspruch 1, dadurch gekennzeichnet, dass man Clopidogrel Hydrobromid einer beliebigen Kristallform aus einem geeigneten Lösungsmittel, vorzugsweise Aceton und/oder Dichlormethan, durch rasches Überschreiten der Sättigungs-kurve, vorzugsweise durch schnelle Zugabe eines Gegen-

- 25 -

lösungsmittels (Antisolvens), vorzugsweise eines aliphatischen Kohlenwasserstoffs, vorzugsweise Heptan und/oder Hexan, oder durch Verdampfungskristallisation, oder durch sehr schnelle Abkühlung der Kristallisierlösung (Schock-5 kühlung), kristallisiert.

5. Verfahren zur Herstellung von Clopidogrel Hydrobromid der Form C nach Anspruch 1, dadurch gekennzeichnet, dass man Clopidogrel Hydrobromid einer beliebigen Kristallform durch 10 Kristallisation aus Acetonitril gewinnt.

6. Verfahren zur Herstellung von Clopidogrel Hydrobromid der Form D nach Anspruch 1, dadurch gekennzeichnet, dass man Clopidogrel Hydrobromid einer beliebigen Kristallform aus 15 einem Lösungsmittel oder Lösungsmittelgemisch, enthaltend Aceton, Essigsäureethylester, Diisopropylether, tert.-Butylmethylether, Methyl-isobutylketon, Dichlormethan, Toluol, Isobutyronitril und/oder Isopropanol, vorzugsweise Methyl-isobutylketon und/oder Isopropanol, vorzugsweise im 20 Massenverhältnis von 4:1, im Temperaturbereich von 30°C bis 60°C, kristallisiert.

7. Verfahren zur Herstellung von Clopidogrel Hydrobromid der Form E nach Anspruch 1, welches dadurch gekennzeichnet, 25 dass man Clopidogrel Hydrobromid einer beliebigen Kristallform aus Dichlormethan und/oder einem aliphatischen Kohlenwasserstoff mit einem Siedepunkt von vorzugsweise 60°C bis 125°C, vorzugsweise Hexan, Heptan oder Octan, kristallisiert, vorzugsweise in einem Temperaturbereich von 0°C bis 30 25°C, oder durch Kristallisation durch langsames Verdunsten des niedriger siedenden Lösungsmittels aus dem Lösungsmittelgemisches bei Temperaturen im Temperaturbereich von 0°C bis 25°C, vorzugsweise bei langen Kristallisierzeiten von bis zu 24 Stunden.

8. Verfahren zur Herstellung von Clopidogrel Hydrobromid der Form F nach Anspruch 1, dadurch gekennzeichnet, dass man Clopidogrel Hydrobromid einer beliebigen Kristallform aus einem Lösungsmittel oder Lösungsmittelgemisch, enthaltend
5 Aceton, Essigsäureethylester, Diisopropylether, tert.-Butylmethylether, Methyl-isobutylketon, Dichlormethan, Toluol, Isobutyronitril und/oder Isopropanol, vorzugsweise Methyl-isobutylketon und/oder Isopropanol, vorzugsweise im Massenverhältnis von 4:1, im Temperaturbereich von -5°C bis +15°C,
10 kristallisiert.

9. Die Salze Clopidogrel Besylat, Clopidogrel Tosylat und Clopidogrel Oxalat.

15 10. Verfahren zur Herstellung von Clopidogrel Besylat nach Anspruch 9, dadurch gekennzeichnet, dass man equimolare Mengen von Benzolsulfonsäure und Clopidogrel Base in einem geeigneten Lösungsmittel miteinander zur Reaktion bringt, vorzugsweise in einem Alkohol, Ether und/oder Nitril, vorzugsweise in Methanol, wobei man die Verbindung vorzugsweise durch Lösungsmittelabstraktion isoliert, vorzugsweise durch Entfernen des Lösungsmittels durch Destillation oder durch Sprühtrocknung.

25 11. Verfahren zur Herstellung von Clopidogrel Tosylat nach Anspruch 9, dadurch gekennzeichnet, dass man equimolare Mengen von para-Toluolsulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel miteinander zur Reaktion bringt, vorzugsweise in einem Alkohol, Ether und/oder Nitril, vorzugsweise in Methanol, vorzugsweise bei einer Arbeitstemperatur von 20-25°C, wobei man die Verbindung vorzugsweise durch Lösungsmittelabstraktion isoliert.

35 12. Verfahren zur Herstellung von Clopidogrel Oxalat nach Anspruch 9, dadurch gekennzeichnet, dass man equimolare

Mengen von Oxalsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel umsetzt, vorzugsweise in einem Alkohol, Ether, Nitril und/oder wasserhaltigen Lösungsmittelgemischen, vorzugsweise in Isopropanol und/oder Diisopropyl-
5 ether und wasserhaltigen Lösungsmittelgemischen mit weniger als 10 Gew.-% (<10 Gew.-%) Wasseranteil und vorzugsweise die Verbindung durch Lösungsmittelabstraktion isoliert.

13. Verfahren zur Herstellung von Clopidogrel Napsylat Form
10 A nach Anspruch 2, dadurch gekennzeichnet, dass man equimolare Mengen von Naphthalin-2-sulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel aufnimmt und die Kristallisierlösung durch Animpfen mit Clopidogrel Napsylat Form A zur Kristallisation bringt, vorzugsweise in primären
15 und/oder sekundären Alkoholen, Ethern, Nitrilen, Toluol und/oder wasserhaltigen Lösungsmittelgemischen mit einem Wassergehalt von vorzugsweise weniger als 10 Gew.-% Wasser, vorzugsweise bei einem Temperatur-Arbeitsbereich von 20°C und 60°C, vorzugsweise in Isopropanol, Isopropanol-Wasser-
20 Gemischen, Diisopropylether, insbesondere in Isopropanol-Wasser-Gemischen.

14. Verfahren zur Herstellung von Clopidogrel Napsylat Form
A nach Anspruch 2, dadurch gekennzeichnet, dass man dieses
25 durch Umsalzen aus andern Clopidogrel Salzen in Gegenwart von Naphthalin-2-sulfonsäure Salzen, vorzugsweise von Natrium-2-naphthylsulfonat, gewinnt, vorzugsweise aus Clopidogrel Hydrobromid, vorzugsweise in Isopropanol, Diisopropyl-ether, und/oder wasserhaltigen Lösungsmittelgemischen, mit
30 einem Wassergehalt von vorzugsweise weniger als 10 Gew.-% Wasser, vorzugsweise in einem Temperatur-Arbeitsbereich von 20°C bis 60°C.

15. Verfahren zur Herstellung von Clopidogrel Napsylat Form
35 A nach Anspruch 2, dadurch gekennzeichnet, dass man direkt

und ohne Animpfen, equimolare Mengen von Naphthalin-2-sulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel, vorzugsweise in Isopropanol, Diisopropylether, und/oder wasserhaltigen Lösungsmittelgemischen mit einem Wasser-gehalt von vorzugsweise weniger als 10 Gew.-% Wasser, umsetzt, wobei die verwendete Naphthalin-2-sulfonsäure eine Reinheit von mindestens 99.5 Gew.-% aufweist und vorzugsweise deren Gehalt an Naphthalin-1-sulfonsäure kleiner ist als 0.5 Gew.-%.

10

16. Verfahren zur Herstellung von Clopidogrel Napsylat Form B nach Anspruch 2, dadurch gekennzeichnet, dass man equimolare Mengen von Naphthalin-2-sulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel auflöst und mit Clopidogrel Napsylat Form B durch Animpfen zur Kristallisation bringt, vorzugsweise in einem primären und/oder sekundären Alkohol, Nitril, Toluol, und/oder wasserhaltigen Lösungsmittelgemischen mit einem Wassergehalt von vorzugsweise weniger als 10 Gew.-% Wasser, vorzugsweise in Isopropanol als Lösungsmittel, vorzugsweise in einer stark übersättigten Kristallisierlösung (>20%), bei einem Temperatur-Arbeitsbereich von 15°C bis 20°C.

17. Verfahren zur Herstellung von Clopidogrel Napsylat Form B nach Anspruch 2, dadurch gekennzeichnet, dass man dieses durch Umsalzen aus andern Clopidogrel Salzen in Gegenwart von Naphthalin-2-sulfonsäure Salzen, vorzugsweise von Natrium-2-naphthylsulfonat, oder durch Umkristallisation aus Clopidogrel Napsylat Form A durch Animpfen der Lösung mit Form B, gewinnt, vorzugsweise in Isopropanol, Diisopropylether, und/oder wasserhaltigen Lösungsmittelgemischen mit einem Wassergehalt von vorzugsweise weniger als 10 Gew.-% Wasser, vorzugsweise bei einem Temperatur-Arbeitsbereich von 15°C bis 20°C.

35

18. Verfahren zur Herstellung von Clopidogrel Napsylat Form B nach Anspruch 2, dadurch gekennzeichnet, dass man direkt und ohne Animpfen, equimolare Mengen von Naphthalin-2-sulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel, vorzugsweise in Isopropanol, Diisopropylether, und/- oder wasserhaltigen Lösungsmittelgemischen mit einem Wasser-gehalt von vorzugsweise weniger als 10 Gew.-% Wasser, um-setzt, wobei die verwendete Naphthalin-2-sulfonsäure eine Reinheit von weniger als 99.0 Gew.-% aufweist und vorzugs-weise deren Gehalt an Naphthalin-1-sulfonsäure höher ist als 1.0 Gew.-%.

19. Pharmazeutisch aktive Zusammensetzungen, welche min-destens eine Verbindung nach einem der Ansprüche 1, 2 und 9 in einer pharmazeutisch wirksamen Konzentrationen enthalten.

20. Verwendung der Verbindungen nach einem der Ansprüche 1, 2 und 9 zur Herstellung von pharmazeutisch aktiven Zusam-mensetzungen, welche mindestens eine dieser Verbindungen in einer pharmazeutisch wirksamen Konzentration enthalten.

- 1/11 -

Anhang: XRPD Diagramme:

Figur 1: Clopidogrel Hydrobromid der Form A

- 2/11 -

Figur 2: Clopidogrel Hydrobromid der Form B

- 3/11 -

Figur 3: Clopidogrel Hydrobromid der Form C

- 4/11 -

Figur 4: Clopidogrel Hydrobromid der Form D

- 5/11 -

Figure 5: Clopidogrel Hydrobromid der Form E

- 6/11 -

Figure 6: Clopidogrel Hydrobromid der Form F

- 7/11 -

Figur 7: Clopidogrel Besylat

- 8/11 -

Figur 8: Clopidogrel Tosylat

- 9/11 -

Figur 9: Clopidogrel Napsylat der Form A

- 10/11 -

Figur 10: Clopidogrel Napsylat der Form B

- 11/11 -

Figur 11: Clopidogrel Oxalat

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2005/000086

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 355 684 A (GUICE ET AL) 18 October 1994 (1994-10-18) abstract; figure 4 column 6, line 66 – line 12 column 8, line 18 – line 25 column 9, line 43 – line 45 column 9, line 66 – column 10, line 7 column 10, line 34 – line 54 -----	1,3,4, 15,16, 20,24, 26-33
X	GB 1 004 791 A (SALTERPAK LIMITED) 15 September 1965 (1965-09-15) figures 1-6 page 2, line 13 – line 60 -----	1,3-5, 7-17, 21-24, 26-33
A	US 2002/112501 A1 (WILLIAMS DAVID L ET AL) 22 August 2002 (2002-08-22) figure 2 -----	1,7,9
A	US 1 771 186 A (MOCK HUGO) 22 July 1930 (1930-07-22) figure 3 -----	1,7,10
A	NL 1 005 375 C1 (KOMBO PUBLISHING B.V) 28 August 1998 (1998-08-28) figure 2 -----	1,6,14
A	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 18, 5 June 2001 (2001-06-05) & JP 09 243223 A (SAI YOMEI), 19 September 1997 (1997-09-19) abstract -----	1,28

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP2005/000086

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
FR 2840289	A	05-12-2003	FR	2840289 A1		05-12-2003
			AU	2003273561 A1		19-12-2003
			WO	03101861 A2		11-12-2003
US 5934099	A	10-08-1999		NONE		
US 5355684	A	18-10-1994		NONE		
GB 1004791	A	15-09-1965		NONE		
US 2002112501	A1	22-08-2002		NONE		
US 1771186	A	22-07-1930		NONE		
NL 1005375	C1	28-08-1998		NONE		
JP 09243223	A	19-09-1997	JP	2710606 B2		10-02-1998

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2005/000086

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 7 F25D3/08 A61J1/16 A01N1/02 B01L11/02 B65D81/38

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
 IPK 7 F25D A61J A01N B01L B65D A47J

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	FR 2 840 289 A (CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS) 5. Dezember 2003 (2003-12-05) Zusammenfassung; Abbildungen 3-6 Seite 5, Zeile 27 – Seite 6, Zeile 6 Seite 7, Zeile 10 – Seite 8, Zeile 4 Seite 9, Zeile 1 – Zeile 13 -----	1, 3, 5, 15, 16, 18-20, 24, 26-33
X	US 5 934 099 A (COOK ET AL) 10. August 1999 (1999-08-10) Zusammenfassung; Abbildung 6 Spalte 6, Zeile 32 – Zeile 60 Spalte 8, Zeile 14 – Zeile 44 ----- -/-	1-3, 5, 6, 15, 16, 21, 24-33

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

^a Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem Internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldeatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

11. Mai 2005

20/05/2005

Name und Postanschrift der Internationalen Recherchenbehörde
 Europäisches Patentamt, P.B. 5818 Patentlaan 2
 NL – 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Yousufi, S

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2005/000086

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 5 355 684 A (GUICE ET AL) 18. Oktober 1994 (1994-10-18) Zusammenfassung; Abbildung 4 Spalte 6, Zeile 66 – Zeile 12 Spalte 8, Zeile 18 – Zeile 25 Spalte 9, Zeile 43 – Zeile 45 Spalte 9, Zeile 66 – Spalte 10, Zeile 7 Spalte 10, Zeile 34 – Zeile 54 -----	1, 3, 4, 15, 16, 20, 24, 26-33
X	GB 1 004 791 A (SALTERPAK LIMITED) 15. September 1965 (1965-09-15) Abbildungen 1-6 Seite 2, Zeile 13 – Zeile 60 -----	1, 3-5, 7-17, 21-24, 26-33
A	US 2002/112501 A1 (WILLIAMS DAVID L ET AL) 22. August 2002 (2002-08-22) Abbildung 2 -----	1, 7, 9
A	US 1 771 186 A (MOCK HUGO) 22. Juli 1930 (1930-07-22) Abbildung 3 -----	1, 7, 10
A	NL 1 005 375 C1 (KOMBO PUBLISHING B.V) 28. August 1998 (1998-08-28) Abbildung 2 -----	1, 6, 14
A	PATENT ABSTRACTS OF JAPAN Bd. 2000, Nr. 18, 5. Juni 2001 (2001-06-05) & JP 09 243223 A (SAI YOMEI), 19. September 1997 (1997-09-19) Zusammenfassung -----	1, 28

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP2005/000086

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
FR 2840289	A	05-12-2003		FR 2840289 A1		05-12-2003
				AU 2003273561 A1		19-12-2003
				WO 03101861 A2		11-12-2003
US 5934099	A	10-08-1999		KEINE		
US 5355684	A	18-10-1994		KEINE		
GB 1004791	A	15-09-1965		KEINE		
US 2002112501	A1	22-08-2002		KEINE		
US 1771186	A	22-07-1930		KEINE		
NL 1005375	C1	28-08-1998		KEINE		
JP 09243223	A	19-09-1997	JP	2710606 B2		10-02-1998