Machine Learning & Artificial Intelligence for Data **Scientists: Classification** (Part2)

Ke Yuan
https://kyuanlab.org/
School of Computing Science

Logistic Regression

- Alternative is to directly model $P(T_{\text{new}} = k | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{t}) = f(\mathbf{x}_{\text{new}}; \mathbf{w})$ with some parameters \mathbf{w} .
- ▶ We've seen $f(\mathbf{x}_{new}; \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{x}_{new}$ before can we use it here?
 - ▶ No output is unbounded and so can't be a probability.
- ▶ But, can use $P(T_{\text{new}} = k | \mathbf{x}_{\text{new}}, \mathbf{w}) = h(f(\mathbf{x}_{\text{new}}; \mathbf{w}))$ where $h(\cdot)$ squashes $f(\mathbf{x}_{\text{new}}; \mathbf{w})$ to lie between 0 and 1 a probability.

Recap on probability

- Discrete v continuous.
- Probabilities and densities.
- Joint probabilities and densities.
- Independence.
- Conditioning.

Random variables

If I toss a coin and assign the variable X the value 1 if the coin lands heads and 0 if it lands tails, X is a random variable.

We don't know which value X will take but we do know the possible values and how likely they are.

Discrete and continuous RVs

- Random events with outcomes that we can count: Discrete.
 - Coin toss.
 - Rolling a die.
 - Next word in a document.
 - Number of emails sent in a day.

- Random events with outcomes that we cannot count Continuous.
 - Winning time in Olympic 100m.

Discrete and continuous RVs

Definitions

Random variables given capital letters - X, Y. Lower case letters used for values they can take - x, y.

Discrete RVs

Discrete RVs defines by probabilities of different events taking place. E.g. probability of random variable X taking value x:

$$P(X = x)$$

For example, fair coin:

$$P(X = 1) = 0.5, P(X = 0) = 0.5$$

Die:

$$P(Y = y) = 1/6$$

Probabilities are constrained:

$$0 \le P(Y = y) \le 1, \sum_{y} P(Y = y) = 1.$$

Continuous RVs

- Don't define probabilities of particular outcomes as we can't count them!
- ▶ Instead define a density function p(x):

p(x) tells us how likely different values are. These are **not** probabilities!

We can compute probabilities of ranges by computing the area under the curve:

$$P(6 \le X \le 8) = \int_{x=6}^{x=8} p(x) \ dx$$

▶ Densities are constrained:

$$p(x) \geq 0, \quad \int_{-\infty}^{\infty} p(x) \ dx = 1$$

Joint probabilities and densities

Joint probabilities

For two discrete RVs, X and Y, P(X = x, Y = y) is the probability that RV X has value x and RV Y has value y.

Joint densities

For two continuous RVs, x_0 and x_1 , $p(x_0, x_1)$ is the joint density:

Dependence/Independence

- Let X be the random variable for the toss of a coin (1=heads, 0=tails)
- ▶ Let Y be the random variable for the rolling of a die.
- ▶ P(X = 1, Y = 3) is the probability that I will roll a head **and** a 3.
- ► The outcome of X does not depend on Y.
- X and Y are independent.

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

Dependence/Independence

- ▶ Let X be the random variable for the event I'm playing tennis (1=yes, 0=no)
- ► Let Y be the random variable for the event It is raining (1=yes, 0=no)
- ▶ P(X = 1, Y = 1) is the probability that I am playing and it is raining.
- ► The outcome of X does depend on Y.
- X and Y are dependent.

$$P(X = x, Y = y) \neq P(X = x)P(Y = y)$$

Conditioning

- ▶ Let X be the random variable for the event I'm playing tennis (1=yes, 0=no)
- ► Let Y be the random variable for the event It is raining (1=yes, 0=no)
- Because they are dependent, we can work with conditional probabilities.
- e.g. the probability that I am playing given that it is raining:

$$P(X=1|Y=1)$$

Allows us to decompose the joint probability:

$$P(X = x, Y = y) = P(X = x | Y = y)P(Y = y)$$

Conditioning - continuous

Example 1:

$$p(t_n|x_n,\mathbf{w})$$

This is the density of t_n conditioned on a particular value of x and our model parameters \mathbf{w} .

Example 2:

$$P(9 \le t_n \le 10 | x_n, \mathbf{w})$$

This is the probability of t_n being between 9 and 10 conditioned on a particular value of x and our model parameters \mathbf{w} .

Notational nuance

Technically, we should write $p(t_n|X=x_n, W=\mathbf{w})$ but this becomes unwieldy and gets confusing (difference between X and X?). So, we'll use $p(t_n|x_n, \mathbf{w})$.

For logistic regression (binary), we use the sigmoid function:

$$P(T_{\mathsf{new}} = 1 | \mathbf{x}_{\mathsf{new}}, \mathbf{w}) = h(\mathbf{w}^\mathsf{T} \mathbf{x}_{\mathsf{new}}) = \frac{1}{1 + \exp(-\mathbf{w}^\mathsf{T} \mathbf{x}_{\mathsf{new}})}$$

Back to logistic regression: Sigmoid function

Introducing Likelihood of a single label

if
$$t_n = 1$$
, $p(t_n = 1 | \mathbf{x}_n, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x}_n)}$

if
$$t_n = 0$$
, $p(t_n = 0 | \mathbf{x}_n, \mathbf{w}) = 1 - p(t_n = 1 | \mathbf{x}_n, \mathbf{w})$

One formula for both scenarios

Likelihood function for nth data point

$$p(t_n|\mathbf{x}_n, \mathbf{w}) = p(t_n = 1|\mathbf{x}_n, \mathbf{w})^{t_n} (1 - p(t_n = 1|\mathbf{x}_n, \mathbf{w}))^{(1-t_n)}$$

Likelihood function for all data points

Assuming data points are independent of each other

Likelihood:
$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}) = \prod_{n=1}^{\infty} p(t_n|\mathbf{x}_n, \mathbf{w})$$

Log-Likelihood:
$$\log p(\mathbf{t}|\mathbf{X}, \mathbf{w}) = \sum_{n=1}^{\infty} \log p(t_n|\mathbf{x}_n, \mathbf{w})$$

What about Loss?

Log-Likelihood(
$$\mathbf{t}, \mathbf{X}; \mathbf{w}$$
) = $\sum_{n=1}^{\infty} \log p(t_n | \mathbf{x}_n, \mathbf{w})$

$$Loss(\mathbf{t}, \mathbf{X}; \mathbf{w}) = -Log-Likelihood(\mathbf{t}, \mathbf{X}; \mathbf{w}) = -\sum_{n=1}^{\infty} \log p(t_n | \mathbf{x}_n, \mathbf{w})$$

Find the optimal parameters

```
\hat{\mathbf{w}} = \operatorname{argmin} \operatorname{Loss}(\mathbf{t}, \mathbf{X}; \mathbf{w})
  \hat{\mathbf{w}} = \operatorname{argmax} \operatorname{Likelihood}(\mathbf{t}, \mathbf{X}; \mathbf{w})
\hat{\mathbf{w}} = \operatorname{argmax} \operatorname{Log-Likelihood}(\mathbf{t}, \mathbf{X}; \mathbf{w})
```


Example on orange and lemon data

Can be regularised just the same as linear regression

$$\mathbf{w}_{l2}^{\hat{}} = \underset{\mathbf{w}}{\operatorname{argmin Loss}}(\mathbf{t}, \mathbf{X}; \mathbf{w}) + \frac{1}{C} \mathbf{w}^{T} \mathbf{w}$$

$$\mathbf{w}_{l1}^{\hat{}} = \underset{\mathbf{w}}{\operatorname{argmin Loss}}(\mathbf{t}, \mathbf{X}; \mathbf{w}) + \frac{1}{C} \sum_{d} |w_{d}|$$

```
In [53]: | parameters = {'C':cs}
         logit reg = LogisticRegression(penalty='12', tol=1e-5, max iter=1e4)
         clf = GridSearchCV(logit reg, parameters, cv=5)
         clf.fit(X,t)
         Z = clf.predict proba(np.c [xx.ravel(), yy.ravel()])[:, 1]
         Z = Z.reshape(xx.shape) # Put the result into a color plot
         plt.pcolormesh(xx, yy, Z, cmap=cmap light)
         plt.scatter(X[:, 0], X[:, 1], c=t, cmap=cmap bold, edgecolor='k', s=100) # Plot al
         so the training points
         plt.xlim(xx.min(), xx.max())
         plt.ylim(yy.min(), yy.max())
         plt.title("Logistic Regression with 12 regularisation")
         print("5-fold averae CV error:", 1-clf.best score )
         5-fold averae CV error: 0.025000000000000022
```



```
print(cs)
[2.89435601e-02 8.47653998e-02 2.48247728e-01 7.27029358e-01
 2.12921058e+00 6.23570098e+00 1.82621518e+01 5.34833516e+01
1.56633727e+02 4.58724513e+02 1.34344105e+03 3.93446133e+03
1.15226388e+04 3.37457135e+04 9.88292004e+04 2.89435601e+05]
```

L2 regularised Logistic Regression

from sklearn.model selection import GridSearchCV $cs = 11 \min c(X, t, loss='log')*np.logspace(0, 7, 16)$

Performance Evaluations

- We've seen 2 classification algorithms.
- How do we choose?
 - Which algorithm?
 - Which parameters?
- Need performance indicators.
- We'll cover:
 - ▶ 0/1 loss.
 - ROC analysis (sensitivity and specificity)
 - Confusion matrices

0/1 loss

- \triangleright 0/1 loss: proportion of times classifier is wrong.
- ▶ Consider a set of predictions $t_1, ..., t_N$ and a set of true labels $t_1^*, ..., t_N^*$.
- Mean loss is defined as:

$$\frac{1}{N}\sum_{n=1}^{N}\delta(t_n\neq t_n^*)$$

- \blacktriangleright ($\delta(a)$ is 1 if a is true and 0 otherwise)
- Advantages:
 - Can do binary or multiclass classification.
 - Simple to compute.
 - Single value.

0/1 loss

Disadvantage: Doesn't take into account class imbalance:

- ▶ We're building a classifier to detect a rare disease.
- Assume only 1% of population is diseased.
- ▶ Diseased: t = 1
- ightharpoonup Healthy: t=0
- ▶ What if we always predict healthy? (t = 0)
- ► Accuracy 99%
- But classifier is rubbish!

Sensitivity and specificity

- We'll stick with our disease example.
- ▶ Need to define 4 quantities. The numbers of:
- ▶ True positives (TP) the number of objects with $t_n^* = 1$ that are classified as $t_n = 1$ (diseased people diagnosed as diseased).
- ▶ True negatives (TN) the number of objects with $t_n^* = 0$ that are classified as $t_n = 0$ (healthy people diagnosed as healthy).
- ▶ False positives (FP) the number of objects with $t_n^* = 0$ that are classified as $t_n = 1$ (healthy people diagnosed as diseased).
- ▶ False negatives (FN) the number of objects with $t_n^* = 1$ that are classified as $t_n = 0$ (diseased people diagnosed as healthy).

Sensitivity

$$S_e = \frac{TP}{TP + FN}$$

- ► The proportion of diseased people that we classify as diseased.
- ► The higher the better.
- ▶ In our example, $S_e = 0$.

Specificity

$$S_p = \frac{TN}{TN + FP}$$

- The proportion of healthy people that we classify as healthy.
- The higher the better.
- ▶ In our example, $S_p = 1$.

Optimising sensitivity and specificity

- We would like both to be as high as possible.
- Often increasing one will decrease the other.
- Balance will depend on application:
- e.g. diagnosis:
 - We can probably tolerate a decrease in specificity (healthy people diagnosed as diseased)....
 - ...if it gives us an increase in sensitivity (getting diseased people right).

Receiver Operating Characteristic (ROC)

- Many classification algorithms involve setting a threshold.
- e.g. Logistic Regression:

$$p(t_{new} = 1 | \mathbf{x}_{new}, \mathbf{w}) > 0.5$$

- ► Implies a threshold of zero (sign function)
- ► However, we could use any threshold we like....
- ▶ The Receiver Operating Characteristic (ROC) curve shows how S_e and $1 S_p$ vary as the threshold changes.

```
In [16]:
         from sklearn.model selection import train test split
         from sklearn import metrics
         from sklearn.datasets import load breast cancer
         breast cancer = load breast cancer()
         X = breast cancer.data
         t = breast cancer.target
         X train, X test, y train, y test = train test split(X,t,test size=0.30, random sta
         te=123)
         clf1 = LogisticRegression().fit(X train, y train)
         y pred1 = clf1.predict(X test)
         y pred proba1 = clf1.predict_proba(X_test)[:,1]
         fpr1, tpr1, = metrics.roc curve(y test, y pred probal)
         auc1 = metrics.roc auc score(y test, y pred probal)
         plt.plot(fpr1,tpr1,'ro-',label="breast cancer data, auc="+str(auc1))
         plt.legend(loc=4)
         plt.show()
```


Try it on a breast cancer dataset Plot ROC of a Logistic Regression model

```
In [19]: clf2 = KNeighborsClassifier(10).fit(X_train, y_train)

y_pred2 = clf2.predict(X_test)
y_pred_proba2 = clf2.predict_proba(X_test)[:,1]
fpr2, tpr2, _ = metrics.roc_curve(y_test, y_pred_proba2)
auc2 = metrics.roc_auc_score(y_test, y_pred_proba2)
plt.plot(fpr2,tpr2,'bo-',label="breast cancer data, auc="+str(auc2))
plt.legend(loc=4)
plt.show()
```


The same data with KNN (K =10)

Overlay two ROC plots

```
In [21]: plt.plot(fpr1,tpr1,'ro-',label="Logistic Regression, auc="+str(auc1))
    plt.plot(fpr2,tpr2,'bo-',label="KNN, K = 10, auc="+str(auc2))
    plt.legend(loc=4)
    plt.show()
```


What is happening?

Can I have 7 volunteers?

Confusion matrix

The quantities we used to compute S_e and S_p can be neatly summarised in a table:

		True class			
		1	0		
Predicted class	1	TP	FP		
Fredicted Class	0	FN	TN		

- ► This is known as a confusion matrix
- It is particularly useful for multi-class classification.
- Tells us where the mistakes are being made.
- Note that normalising columns gives us S_e and S_p

Confusion matrix, example

- ▶ 20 newsgroups data.
- ► Thousands of documents from 20 classes (newsgroups)

	True class												
			10	11	12	13	14	15	16	18	18	19	20
	1	750 505	4	2	0	2	10	4	7	1	12	7	47
SS	2	200.00	0	0	4	18	7	8	2	0	1	1	3
	3		0	0	1	0	1	0	1	0	0	0	0
5	4		1	0	1	28	3	0	0	0	0	0	0
eq													
Predicted class													
re	16		3	2	2	5	17	4	376	3	7	2	68
п.	17		1	0	9	0	3	1	3	325	3	95	19
	18		2	1	0	2	6	2	1	2	325	4	5
	19		8	4	8	0	10	21	1	16	19	185	7
	20		0	0	1	0	1	1	2	4	0	1	92

- ► Algorithm is getting 'confused' between classes 20 and 16, and 19 and 17.
 - ▶ 17: talk.politics.guns
 - ▶ 19: talk.politics.misc
 - ► 16: talk.religion.misc
 - ▶ 20: soc.religion.christian
- Maybe these should be just one class?
- Maybe we need more data in these classes?
- Confusion matrix helps us direct our efforts to improving the classifier.