CS2031 Telecommunications II

Multicast Routing

Routing & Unicast

Routers guide traffic towards destionation

Multicast

• G1= multicast address e.g. 230.0.0.1

Multicast vs Multiple Unicasts

a. Multicasting

b. Multiple unicasting

Multicast Overview

- Multicast requires group management
- Receivers join&leave multicast groups
- Multicast Addresses:
 224.0.0.0 239.255.255.255
 or 224.0.0.0/4

Internet Group Management Protocol (IGMP)

Defines communication between hosts and router

 Specifies messages for hosts for joining and leaving groups

Specifies query messages for routers

IGMP Operation

Network-Layer Multicast Protocols

Distance Vector Multicast Routing Protocol (DVMRP)

 Multicast Open Shortest Path First protocol (MOSPF)

 Protocol Independent Multicast (PIM)

Multicast Routing Protocols

- Intra-AS
 - **MOSPF**
 - **DVMRP**
 - PIM
 - Sparse mode
 - Dense mode

- Inter-AS
 - MBGP + MSDP
 - BGMP + MASC

Reverse-Path Forwarding (RPF)

- Reverse-path forwarding simulates spanning tree routing without keeping state in the router
 - Each router knows shortest path to destination
 - Packets from A arriving on next hop to A are presumed to have followed shortest route from A, so they are forwarded on all other links

Problem with RPF

Net3 receives two copies of the packet

Reverse Path Broadcast/Multicast

Reverse Path Broadcast

R1 is the parent of Net1 and Net2. R2 is the parent of Net3.

Reverse Path Multicast

d. RPM (after grafting)

PIM – Dense Mode (DM)

 When it is likely that many routers are involved in multicast routing

- Source tree created on demand based on RPF rule
- If the source goes inactive, the tree is torn down
- Branches that don't want data are pruned
- Grafts are used to join existing source tree

PIM-DM - Initial flood of data

PIM-DM - Prune non-RPF P2P link

PIM-DM **New branch Source** B **R**1 R2 **IGMP PIM-Graft** Receiver 1 **R3** Receiver 2

CS2031 Telecommunications II

Receiver 3

PIM – Sparse Mode (SM)

- When it is likely that many routers are involved in multicast routing
- One Rendez-Vous Point (RP) per group
- Explicit Join Model
 - Receivers send Join towards the RP
 - Sender Register with RP
 - Last hop routers can join source tree if the data rate warrants by sending joins to the source
- Dedicated "All-PIM-Routers" (224.0.0.13, ff02::d) multicast group

PIM-SM C Sends (S, G) Joins to Join the **Source Shortest Path Tree (SPT)** join **R2 R**1 **Receiver 1** Receiver 2

Summary: Multicast Routing

- Internet Group Management Protocol (IGMP)
 - Join&leave messages from hosts to routers
- Most protocols based on source trees
 - Reverse-Path Forwarding/Broadcast
 - Prune remove subtree from tree
 - Graft join subtree to tree
- Protocol Independent Multicast (PIM)
 - Dense Mode (DM)
 - Sparse Mode (SM)

CS2031 Telecommunications II