Chapitre T5 – Machines thermiques

Plan du cours

I Machine thermique

- **I.1** Machine thermique ditherme
- I.2 Diagramme de Clapeyron

II Moteur ditherme

- II.1 Impossibilité d'un moteur thermique monotherme
- II.2 Sens réel des échanges d'énergie
- II.3 Rendement

III Récepteurs dithermes

- III.1 Sens réel des échanges d'énergie
- III.2 Efficacité
- III.3 Pompe à chaleur

Ce qu'il faut savoir et savoir faire

- \rightarrow Donner le sens des échanges énergétiques pour un moteur ou un récepteur thermique ditherme.
- \rightarrow Analyser un dispositif concret et le modéliser par une machine cyclique ditherme.
- → Définir un rendement ou une efficacité et les relier aux énergies échangées au cours d'un cycle. Justifier et utiliser le théorème de Carnot.
- → Citer quelques ordres de grandeur des rendements des machines thermiques réelles actuelles.
- \rightarrow Expliquer le principe de la cogénération.

Questions de cours

- \rightarrow Donner le sens réel des échanges d'énergie dans un moteur, une pompe à chaleur, un réfrigérateur.
- → Citer quelques ordres de grandeur des rendements des machines thermiques réelles actuelles.
- → Définir le rendement ou l'efficacité de chaque type de machine en fonction des énergies échangées au cours du cycle et établir la formulation associée au théorème de Carnot.

Documents

Document 1 - Réflexions sur la puissance motrice du feu

La thermodynamique est née durant la révolution industrielle, avec la volonté d'exploiter l'énergie libérée par la combustion du charbon pour produire un mouvement. Désirant améliorer l'efficacité des machines à vapeur, Sadi Carnot (1796 – 1832) publia en 1824 un mémoire intitulé Réflexions sur la puissance motrice du feu. Il est l'un des fondateurs de la thermodynamique.

Document 2 - Schéma de principe d'un réacteur à eau pressurisée

Document 3 - Moteurs réels

Les moteurs réels fonctionnent sur des cycles **irréversibles** : leur rendement est toujours inférieur au rendement de Carnot :

- pour une centrale nucléaire avec $T_c \sim 600 \,\mathrm{K}$ (le réacteur) et $T_f \sim 300 \,\mathrm{K}$ (une rivière), on a $\eta_C = 0.5$ mais le rendement réel n'est que de 30 à $40 \,\%$;
- pour un moteur de voiture, avec $T_c \sim 3000\,\mathrm{K}$ (les gaz en combustion) et $T_f \sim 300\,\mathrm{K}$ (l'atmosphère), on a $\eta_C = 0.9$ alors qu'en pratique, leur rendement est de l'ordre de 0.4 dans des conditions optimales. Le rendement des moteurs Diesel (42 %) est légèrement plus élevé que celui des moteurs à essence (36 %). En ville, le régime de fonctionnement de ces moteurs n'est pas optimal et le rendement n'atteint que $15\,\%$.

En comparaison, le rendement des moteurs électriques peut atteindre 98 %!

Document 4 - Moteur de Stirling

À une époque où les fortes pressions nécessaires au fonctionnement des machines à vapeur entrainent régulièrement des accidents, le moteur de Stirling, breveté en 1816, présente l'avantage d'utiliser une source de chaleur extérieure. Cela en fait un moteur polyvalent, qui peut être facilement adapté en fonction des ressources disponibles : il est par exemple utilisé dans certaines centrales solaires pour produire de l'électricité, dans des sous-marins comme propulseur pour son fonctionnement silencieux, ou en cogénération. Utilisé comme récepteur, il peut aussi être exploité comme réfrigérateur afin de liquéfier des gaz.

Son principe général consiste à comprimer un gaz quand il est froid (peu coûteux car sa pression est faible), puis à le chauffer et récupérer le travail en le détendant (sa pression est alors plus importante). On peut décomposer le cycle en quatre étapes, représentées ci-dessous. Son fonctionnement sera détaillé en TD.

https://fr.wikipedia.org/wiki/Moteur Stirling

Le gaz, majoritairement dans la zone en contact avec la source froide, est froid ($\sim T_f$) au terme des échanges thermiques. Son volume $V_{\rm max}$ est maximal.

Le gaz, toujours en contact avec la source froide, est comprimé jusqu'au volume $V_{\min} < V_{\max}$ minimal.

Le gaz est déplacé par le piston intérieur vers la source chaude. À la fin des échanges thermiques, le gaz est chaud ($\sim T_c$), mais son volume est toujours minimal.

Le gaz est détendu jusqu'au volume $V_{\rm max}$. La majorité du gaz est toujours en contact avec la source chaude. Il est finalement déplacé à nouveau par le piston intérieur vers la zone froide et le cycle recommence.

Document 5 – Cogénération

Un moteur thermique rejette une partie de l'énergie reçue de la source chaude sous la forme d'un transfert thermique vers la source froide. Cette énergie est souvent perdue. La **cogénération** consiste à coupler la production d'énergie électrique à partir d'une machine thermique à la production d'eau chaude ou à un procédé industriel nécessitant un apport d'énergie par transfert thermique.

En notant Q_c le transfert thermique reçu par la machine de la source chaude, $W_u = -W$ le travail électrique (ou mécanique) exploitable et Q_u le transfert thermique utile récupéré pour la

production d'eau chaude ou pour un procédé industriel $(0 < Q_u \leq -Q_f)$, le rendement global η_g de l'installation devient

$$\eta_g = \frac{W_u + Q_u}{Q_c} > \frac{W_u}{Q_c}.$$

La cogénération permet donc une meilleure exploitation des ressources primaires, ce qui est un des enjeux actuels majeurs.

Document 6 - Pompe à chaleur

Document 7 - Machines thermiques dithermes

Ce tableau n'est pas à apprendre par cœur, mais à savoir reconstruire!

Machine	W	Q_c	Q_f	η ou e	$\eta_{ m r\'eel}$ ou $e_{ m r\'eel}$
Moteur					
Réfrigérateur					
Pompe à chaleur					

1 Machine thermique

À l'aide d'une éolienne ou d'un barrage, il est en principe possible de convertir intégralement l'énergie mécanique d'un fluide en travail, électrique par exemple. En revanche, il est impossible de convertir intégralement une variation d'énergie interne en travail.

Définition

Une **machine thermique** est un dispositif qui réalise des conversions d'énergie impliquant des transferts thermiques.

Cela peut désigner un dispositif destiné à :

- produire du travail : on parle de moteur thermique;
- réaliser des échanges thermiques : on parle de **récepteur thermique** (réfrigérateur ou pompe à chaleur).

Ces dispositifs fonctionnent grâce à un fluide qui subit une série de transformations thermodynamiques.

On ne s'intéressera qu'à des machines dont le comportement est cyclique.

Exemple : Le cycle de Beau de Rochas permet par exemple de modéliser le comportement des moteurs à essence.

https://fr.wikipedia.org/wiki/Cycle de Beau de Rochas

Propriété

Pour une machine thermique cyclique, sur un cycle on a

$$\Delta U = 0$$
 et $\Delta S = 0$

car les états initial et final sont identiques.

1.1 Machine thermique ditherme

On s'intéresse aux échanges d'énergie entre :

- le **fluide** de la machine thermique : c'est le système ;
- un système mécanique ou électrique avec lequel elle échange du travail;
- deux thermostats : une source chaude à la température T_c et une source froide à T_f .

On parle de machine thermique ditherme.

Le sens conventionnel des échanges d'énergie est toujours celui de la **convention égoïste**. On peut alors représenter le schéma conventionnel d'une machine thermique ditherme.

On ne s'intéresse qu'au **régime permanent** du fonctionnement de ces machines.

1.2 Diagramme de Clapeyron

Dans le cas d'un fonctionnement quasi-statique ou réversible, pour étudier le comportement d'une machine thermique, on représente le cycle subit par le fluide dans le diagramme de Clapeyron (P, v)

Propriété _

Dans le diagramme de Clapeyron, si le cycle est parcouru dans le sens :

- horaire, le travail W reçu par le fluide est négatif : on a un fonctionnement moteur ;
- trigonométrique, W > 0: on a un fonctionnement récepteur.

Le travail reçu par le fluide au cours d'un cycle est directement proportionnel à l'aire algébrique \mathcal{A} du cycle et à la masse de fluide $m: W = -m\mathcal{A}$.

2 Moteur ditherme

2.1 Impossibilité d'un moteur thermique monotherme

On considère une machine thermique en contact avec un unique thermostat à la température T_c .

Application 1 – Machine monotherme

On considère une machine thermique monotherme en contact avec un thermostat à la température T_c . La machine a un comportement cyclique.

- ${\bf 1.}\,$ Dans le cas d'un moteur, indiquer le signe des échanges d'énergie.
- 2. En appliquant les deux principe de la thermodynamique sur un cycle, déterminer le signe du transfert thermique Q_c , puis celui du travail W reçus par la machine. Conclure : de quel type de machine s'agit-il?
- 3. Sur un schéma, représenter le sens réel des échanges d'énergie pour la machine obtenue.

Propriété

Il est impossible de réaliser un moteur thermique monotherme.

On ne s'intéressera qu'à des machines thermiques dithermes.

2.2 Sens réel des échanges d'énergie

On souhaite que la machine soit motrice, c'est-à-dire W<0. En appliquant le premier principe sur un cycle, il vient

$$\Delta U = 0 = W + Q_c + Q_f, \quad \text{soit} \quad Q_c + Q_f = -W > 0 \quad \text{d'où} \quad Q_c > -Q_f.$$

En appliquant le deuxième principe sur un cycle

$$\Delta S = 0 = \frac{Q_c}{T_c} + \frac{Q_f}{T_f} + S_c \quad \text{d'où} \quad \frac{Q_c}{T_c} + \frac{Q_f}{T_f} = -S_c \leqslant 0.$$

Propriété _____

Inégalité de Clausius

Pour une machine thermique cyclique ditherme, on a

$$\frac{Q_c}{T_c} + \frac{Q_f}{T_f} \leqslant 0.$$

L'inégalité de Clausius se réécrit

$$Q_c \leqslant -Q_f \frac{T_c}{T_f},$$

d'où, en combinant les résultats des deux principes

$$-Q_f < Q_c \leqslant -Q_f \frac{T_c}{T_f}, \quad \text{soit} \quad -Q_f < -Q_f \frac{T_c}{T_f} \quad \text{et finalement} \quad Q_f \left(1 - \frac{T_c}{T_f}\right) > 0.$$

On en déduit $Q_f < 0$ et $Q_c > 0$.

Propriété

Pour un moteur thermique ditherme, on a W < 0, $Q_c > 0$ et $Q_f < 0$.

Le sens réel des échanges d'énergie est donc

L'énergie fournie par la source chaude est **partiellement** convertie en travail exploitable, le reste est « perdu » sous la forme d'un transfert thermique vers la source froide.

2.3 Rendement

Définition

Pour un moteur thermique, on définit le **rendement** η comme le rapport, sur un cycle,

$$\eta = \left| rac{\mathcal{E}_{ ext{utile}}}{\mathcal{E}_{ ext{coûteuse}}}
ight|.$$

Rq: Pour un moteur thermique, on a toujours $0 < \eta < 1$.

Rendement de Carnot

Pour un moteur thermique ditherme, on a

$$\eta = \left| \frac{W}{Q_c} \right| = \frac{-W}{Q_c}.$$

En appliquant le premier principe sur un cycle on a $-W=Q_c+Q_f$, d'où

$$\eta = 1 + \frac{Q_f}{Q_c}.$$

En appliquant le deuxième principe sur un cycle, on a

$$\frac{Q_c}{T_c} + \frac{Q_f}{T_f} = -S_c \leqslant 0 \quad \mbox{d'où} \quad \frac{Q_f}{Q_c} \leqslant -\frac{T_f}{T_c}. \label{eq:constraint}$$

Finalement, le rendement vérifie

$$\eta \leqslant 1 - \frac{T_f}{T_c} = \eta_C.$$

Théorème de Carnot

Le rendement d'un moteur thermique ditherme qui fonctionne entre deux sources de températures T_c et $T_f < T_c$ est limité par le **rendement de Carnot**

$$\eta \leqslant \eta_C \quad \text{avec} \quad \eta_C = 1 - \frac{T_f}{T_c}.$$

L'égalité est obtenue pour un cycle réversible.

Application 2 - Cycle de Carnot

- 1. Rappeler le signe des échanges d'énergie pour un moteur ditherme. Sur un schéma, indiquer le sens réel de ces échanges.
- 2. Dans le cas d'un fonctionnement cyclique, établir l'expression du rendement de Carnot. Le cycle de Carnot est l'unique cycle réversible ditherme. Il est composé de quatre transformations réversibles :
 - 1. isotherme à la température de la source froide T_f ;
 - 2. compression adiabatique;
 - 3. isotherme à la température de la source chaude T_c ;
 - 4. détente adiabatique.

On considère un moteur ditherme suivant le cycle de Carnot, fonctionnant avec n moles d'un fluide assimilé à un gaz parfait diatomique.

- 3. Rappeler les expression de $C_{\rm v}$, $C_{\rm p}$ et $\gamma = C_{\rm p}/C_{\rm v}$.
- 4. Montrer que, pour chaque étape du cycle, la pression suit une loi de la forme $P(v) = \csc \times v^{\alpha}$, en précisant les valeurs de α .
- 5. Représenter ce cycle dans le diagramme de Clapeyron.
- 6. Exprimer le rendement d'un tel moteur.

Rq: Le rendement d'un moteur ditherme est plus élevé si les températures des deux sources sont très différentes. Mais un grand écart de température a tendance à augmenter l'irréversibilité du cycle.

Application 3 – Moteur réel

Un moteur réel fonctionnant entre deux sources de chaleur, l'une à $T_f=400\,\mathrm{K}$, l'autre à $T_c=650\,\mathrm{K}$, produit $500\,\mathrm{J}$ par cycle, pour $1500\,\mathrm{J}$ de transfert thermique fourni.

- 1. Comparer son rendement à celui d'une machine de Carnot fonctionnant entre les deux mêmes sources.
- 2. Calculer l'entropie créée par cycle, notée S_c .
- 3. Montrer que la différence entre le travail fourni par la machine de Carnot et la machine réelle est égale à T_fS_c , pour une dépense identique.

Rq: Le fonctionnement des moteurs thermiques réels repose sur des cycles irréversibles : leur rendement est de l'ordre de 40 % (Doc. 3 et 4).

Cogénération

Dans le cas des centrales électriques thermiques, la source froide est souvent l'atmosphère ou l'eau d'une rivière. Le transfert thermique Q_f cédé par la machine ne fait alors que réchauffer les oiseaux ou les poissons. On choisi alors parfois de récupérer une partie de ce transfert thermique pour alimenter le réseau d'eau chaude sanitaire d'un lotissement voisin, c'est la cogénération (Doc. 5).

La cogénération n'améliore pas le rendement du moteur, mais une meilleure exploitation de l'énergie fournie par la source chaude.

3 Récepteurs dithermes

3.1 Sens réel des échanges d'énergie

Application 4 - Machine frigorifique : sens réel des échanges d'énergie

On considère une machine frigorifique ditherme en contact avec deux sources aux températures T_f et $T_c > T_f$. On utilisera les notations habituelles pour les transferts thermiques et le travail.

- 1. Représenter le schéma conventionnel d'une machine thermique ditherme. Identifier chacun des éléments : à quoi correspondent les sources froides et chaudes, etc.
- **2.** Justifier que $Q_f > 0$, puis montrer que $Q_c < 0$ et W > 0.
- 3. Sur un schéma, représenter le sens réel des échanges d'énergie.

Propriété .

L'intérêt d'une machine thermique ditherme réceptrice est de forcer les **transferts thermiques non spontanés** (c'est-à-dire de la source froide vers la source chaude), au prix d'un travail à fournir à la machine :

$$Q_f > 0$$
, $Q_c < 0$ et $W > 0$.

Rq: Dans la machine, les échanges entre le fluide et les sources se font dans le sens spontané.

3.2 Efficacité

Toujours dans le cas d'un réfrigérateur, on cherche à exprimer le rapport

$$\left| \frac{\mathcal{E}_{\text{utile}}}{\mathcal{E}_{\text{coûteuse}}} \right| \stackrel{=}{=} \frac{Q_f}{W}.$$

Avec le premier principe, on obtient

$$\frac{Q_f}{W} = \frac{Q_f}{-Q_f - Q_c},$$

puis avec le deuxième principe

$$\frac{Q_f}{W} = \frac{1}{\frac{T_c}{T_f} - 1 + \frac{S_c}{Q_f}} \leqslant \frac{T_f}{T_c - T_f}.$$

Dans le cas où T_c et T_f sont proches, ce qui est en pratique le cas, ce rapport est plus grand que 1.

Définition

Pour une machine réceptrice ditherme, on définit l'efficacité e comme le rapport

$$e = \left| \frac{\mathcal{E}_{\text{utile}}}{\mathcal{E}_{\text{coûteuse}}} \right|.$$

Théorème de Carnot

L'efficacité e d'une machine frigorifique ditherme qui fonctionne entre deux sources de températures T_c et $T_f < T_c$ est maximale pour un cycle réversible

$$e \leqslant \frac{T_f}{T_c - T_f}.$$

Rq: L'efficacité augmente si les températures des deux sources sont proches.

Application 5 – Machine frigorifique: efficacité

Estimer l'efficacité de Carnot d'un réfrigérateur, puis celle d'un congélateur.

3.3 Pompe à chaleur

Le principe est identique à celui d'un réfrigérateur, sauf que l'on exploite le transfert thermique vers la source chaude $-Q_c$ pour chauffer l'intérieur d'une maison en hiver par exemple (cf. Doc. 6).

Application 6 - Pompe à chaleur

- 1. Montrer que l'efficacité d'une pompe à chaleur qui fonctionne entre deux sources aux températures T_c et $T_f < T_c$ est inférieure à une valeur maximale que l'on exprimera en fonction de T_c et T_f . À quelle condition cette valeur est-elle atteinte?
- **2.** Faire l'application numérique pour $T_c = 20 \,^{\circ}\text{C}$ et $T_f = 5 \,^{\circ}\text{C}$.
- 3. Quel sens physique donner à l'efficacité?

Rq: Le fait que l'efficacité soit supérieure à 1 ne pose aucun problème. Une partie de l'énergie utile est prélevée à la source froide : c'est l'intérêt d'une pompe à chaleur par rapport à un système de chauffage classique.

- Théorème de Carnot

L'efficacité e d'une pompe à chaleur ditherme qui fonctionne entre deux sources de températures T_c et $T_f < T_c$ est maximale pour un cycle réversible

$$e \leqslant \frac{T_c}{T_c - T_f}.$$

Rq: Là encore, l'efficacité augmente si les températures des deux sources sont proches.

Pour une pompe à chaleur, on parle de COP (coefficient optimal de performance) plutôt que d'efficacité.

Bilan (Doc. 7)