

Kammavari Sangham (R) 1952, K.S.Group of Institutions

K. S INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Project Phase – II (18CSP83) Review – 1

FACE MASK DETECTION

Group No.: G3 Batch No.: 2021_CSE_11

1KS18CS121	YASHWANTH K
1KS18CS101	SUDHAKAR YASWANTH
1KS18CS070	PRATEEK HAVALE
1KS18CS118	VINOD H MALALI

Guided By:
Mrs. Pavithra J
Assistant Professor
Dept of CSE, KSIT

Contents

- Introduction
- Comparison with similar work
- Problem Statement and Objectives
- Methodology Proposed/ Design
- Technologies / Tools Used
- Implementation of Modules with codes
- Snapshots
- References

Introduction

- Coronavirus disease 2019 (COVID-19) has globally infected over 5.1 billion people causing over 6.2 million deaths.
- Individuals with COVID-19 have had a wide scope of symptoms reported serious illness.
- Fever, dry cough, tiredness, loss of taste and smell are the major symptoms of coronavirus.
- Respiratory problems like difficulty in breathing.
- Elder people having lung disease can possess serious complications from COVID-19 illness as they appear to be at higher risk.

Cont...

- Many precautionary measures have been taken to fight against coronavirus.
 Among them cleaning hands, maintaining a safe distance and wearing a mask.
- In order to protect ourselves from the COVID-19 Pandemic, every one of us should wear a face mask.
- It becomes necessary to check if the people wear face mask in most public gatherings such as School, College, Malls etc.
- This model can be used to develop a full-fledged software to scan every person before they can enter the public gathering.

Comparison with similar work

SL NO	TITLE OF THE PAPER	AUTHOR	JOURNAL AND PUBLICATION YEAR OF PAPER	METHODOLOGY	LIMITATIONS
1	Covid-19 Face Mask Detection Using TensorFlow, Keras and OpenCV	1.Arjya Das 2.Mohammad Wasif Ansari 3.Rohini Bask	IEEE 2020	The proposed method consists of a cascade classifier and a pre-trained CNN which contains two 2D convolution layers	It can detect if a person is wearing the mask or not.
2	Detection of Face Mask using Convolutional Neural Network	1.Riya Chiragkumar Shah 2.Rutva Jignesh Shah	IEEE 2021	Used the MobileNetV2 of convolutional neural network for detection of mask.	Dataset size 2k images. 99% precision and 99% recall this may lead to overfitting problem.

Comparison with similar work

SI NO	TITLE OF THE PAPER	AUTHOR	JOURNAL AND PUBLICATION YEAR OF PAPER	METHODOLOGY	LIMITATIONS
3	Face Mask Detection on Real-World Webcam Images	1.Eashan Adhikarla 2.Brian D. Davison	IEEE 2021	Used Yolo V5 Model to detect mask	Yolo V5 needs high computational devices to train and predict the images.
4	Real Time Face Mask Detection and Recognition using Python	1.Roshan M Thomas 2.Motty Sabu 3.Tintu Samson	IJERT 2021	Used CNN to detect face mask.	Uses classification not object detection.

Problem Statement

"In order to protect ourselves from the COVID-19 Pandemic, almost every one of us tends to wear a face mask. It becomes increasingly necessary to check if the people in a crowd wear face masks in public gatherings such as Malls, Theaters, and Parks. The development of a solution to detect if the person is wearing a face mask and allow their entry would be of great help to society."

Objectives

- To effectively provide a working model for accurate face mask detection.
- Classification of real time face images as With and Without Mask.
- Increasing the number of images in Dataset in order to improve the Accuracy of the model.
- Optimization of the algorithm to capture and detect With and Without Mask Faces in real time.

Methodology Proposed / Design

Methodology Proposed / Design

- Dataset: Collected from GitHub repository and kaggle.
- Preprocessing: Labelling, Resize done using Roboflow.
- Augmentation : Increases the size of data.
- Model Selection : YoloV4-tiny
- Model Training: Used Darknet
- Model Testing

Technologies / Tools Used

- Google Colab
- Python
- YOLO V4 Tiny
- Darknet
- Webcam
- Windows OS


```
[65]
       %cd ..
       from google.colab import drive
       drive.mount('/content/gdrive')
       !ln -s /content/gdrive/My\ Drive/ /mydrive
       !ls /mydrive/yolov4-tiny
       /content
      Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", force remount=True).
       ln: failed to create symbolic link '/mydrive/My Drive': File exists
       obj.data obj.names obj.zip process.py training yolov4-tiny-custom.cfg
  [66] %cd /content/darknet/
       !sed -i 's/OPENCV=0/OPENCV=1/' Makefile
       !sed -i 's/GPU=0/GPU=1/' Makefile
       !sed -i 's/CUDNN=0/CUDNN=1/' Makefile
       !sed -i 's/CUDNN HALF=0/CUDNN HALF=1/' Makefile
       !sed -i 's/LIBSO=0/LIBSO=1/' Makefile
       /content/darknet
  [67] # building darknet
       make
       In file included from src/yolo v2 class.cpp:2:0:
       include/yolo v2 class.hpp: In member function 'void track kalman t::clear old states()':
       include/yolo v2 class.hpp:879:50: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
                       if ((result vec pred[state id].x > img size.width) ||
       include/yolo v2_class.hpp:880:50: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
                           (result vec pred[state id].y > img size.height))
       include /valo v2 class hone. In member function (track kalman tests t track kalman tests state id/hhov t stde vector/hools&).
                                                                            4s completed at 1:39 PM
```


[62] # training dataset

!./darknet detector train data/obj.data cfg/yolov4-tiny-custom.cfg yolov4-tiny.conv.29 -dont show -map

```
Streaming output truncated to the last 5000 lines.
```

```
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 37 Avg (IOU: 0.759776), count: 4, class loss = 0.342405, iou loss = 3.686358, total loss = 4.028763
total bbox = 609912, rewritten bbox = 0.385957 %
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 30 Avg (IOU: 0.909744), count: 4, class loss = 0.001773, iou loss = 0.227873, total loss = 0.229647
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 37 Avg (IOU: 0.000000), count: 1, class loss = 0.000000, iou loss = 0.000000, total loss = 0.000000
total bbox = 609916, rewritten bbox = 0.385955 %
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 30 Avg (IOU: 0.902353), count: 3, class loss = 0.000295, iou loss = 0.149265, total loss = 0.149560
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 37 Avg (IOU: 0.834224), count: 2, class loss = 0.005616, iou loss = 1.323494, total loss = 1.329110
total bbox = 609921, rewritten bbox = 0.385952 %
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 30 Avg (IOU: 0.876056), count: 4, class loss = 0.005750, iou loss = 0.176988, total loss = 0.182738
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 37 Avg (IOU: 0.000000), count: 1, class loss = 0.000000, iou loss = 0.000000, total loss = 0.000000
total bbox = 609925, rewritten bbox = 0.385949 %
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 30 Avg (IOU: 0.832914), count: 6, class loss = 0.410965, iou loss = 0.270438, total loss = 0.681403
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 37 Avg (IOU: 0.000000), count: 1, class loss = 0.000171, iou loss = 0.000000, total loss = 0.000171
total bbox = 609931, rewritten bbox = 0.385945 %
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 30 Avg (IOU: 0.879437), count: 4, class loss = 0.147108, iou loss = 0.105788, total loss = 0.252896
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 37 Avg (IOU: 0.000000), count: 1, class loss = 0.000002, iou loss = 0.000000, total loss = 0.000002
total bbox = 609935, rewritten bbox = 0.385943 %
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 30 Avg (IOU: 0.890362), count: 5, class loss = 0.058161, iou loss = 0.499339, total loss = 0.557500
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 37 Avg (IOU: 0.917770), count: 1, class loss = 0.089802, iou loss = 0.495673, total loss = 0.585475
total bbox = 609941, rewritten bbox = 0.385939 %
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 30 Avg (IOU: 0.811395), count: 4, class loss = 0.187889, iou loss = 0.180261, total loss = 0.368151
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 37 Avg (IOU: 0.000000), count: 1, class loss = 0.000109, iou loss = 0.000000, total loss = 0.000109
total bbox = 609945, rewritten bbox = 0.385936 %
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 30 Avg (IOU: 0.896808), count: 3, class_loss = 0.031683, iou_loss = 0.122770, total_loss = 0.154453
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 37 Avg (IOU: 0.608238), count: 2, class loss = 0.276968, iou loss = 0.631789, total loss = 0.908757
total bbox = 609950, rewritten bbox = 0.385933 %
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 30 Avg (IOU: 0.875216), count: 4, class loss = 0.236979, iou loss = 0.146939, total loss = 0.383918
v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00) Region 37 Avg (IOU: 0.000000), count: 1, class loss = 0.000287, iou loss = 0.000000, total loss = 0.000287
 total bbox = 609954, rewritten bbox = 0.385931 %
```



```
|yolo| params: lou loss: clou (4), lou norm: 0.0/, obj norm: 1.00, cls norm: 1.00, delta norm: 1.00, scale x y: 1.05
[74] nms kind: greedynms (1), beta = 0.600000
        31 route 27
                                                     -> 13 x 13 x 256
        32 conv 128
                           1 x 1/ 1
                                       13 x 13 x 256 -> 13 x 13 x 128 0.011 BF
        33 upsample
                                  2x 13 x 13 x 128 -> 26 x 26 x 128
        34 route 33 23
                                                     -> 26 x 26 x 384
        35 conv 256 3 x 3/1 26 x 26 x 384 -> 26 x 26 x 256 1.196 BF
        36 conv
                           1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 21 0.007 BF
        37 yolo
      [yolo] params: iou loss: ciou (4), iou norm: 0.07, obj norm: 1.00, cls norm: 1.00, delta norm: 1.00, scale x y: 1.05
      nms kind: greedynms (1), beta = 0.600000
      Total BFLOPS 6.789
      avg outputs = 299797
      Allocate additional workspace size = 12.46 MB
      yolov4-tiny-custom
       0 : compute capability = 370, cudnn half = 0, GPU: Tesla K80
      net.optimized memory = 0
       ↑ ↓ © 目 ‡ 🗓 🔋
      def imShow(path):
        import cv2
        import matplotlib.pyplot as plt
        %matplotlib inline
        image = cv2.imread(path)
        height, width = image.shape[:2]
        resized image = cv2.resize(image,(3*width, 3*height), interpolation = cv2.INTER CUBIC)
        fig = plt.gcf()
        fig.set size inches(18, 10)
        plt.axis("off")
        plt.imshow(cv2.cvtColor(resized image, cv2.COLOR BGR2RGB))
        #plt.show('')
```



```
#set custom cfg to test mode
[77]
     %cd cfg
     !sed -i 's/batch=64/batch=1/' yolov4-tiny-custom.cfg
     !sed -i 's/subdivisions=16/subdivisions=1/' yolov4-tiny-custom.cfg
     %cd ..
    /content/darknet/cfg
     /content/darknet
[78] #Testing
     !./darknet detector test data/obj.data cfg/yolov4-tiny-custom.cfg /mydrive/yolov4-tiny/training/yolov4-tiny-custom best.weights /mydrive/test images/image.jpg -thresh 0.3
    imShow('predictions.jpg')
     CUDA-version: 11010 (11020), cuDNN: 7.6.5, CUDNN HALF=1, GPU count: 1
     CUDNN HALF=1
     OpenCV version: 3.2.0
     0 : compute capability = 370, cudnn half = 0, GPU: Tesla K80
     net.optimized memory = 0
    mini batch = 1, batch = 1, time steps = 1, train = 0
        layer filters size/strd(dil)
                                           input
                                                               output
       0 Create CUDA-stream - 0
     Create cudnn-handle 0
             32
                                 416 x 416 x 3 -> 208 x 208 x 32 0.075 BF
       1 conv
                                      208 x 208 x 32 -> 104 x 104 x 64 0.399 BF
                          3 x 3/1
       2 conv
                                      104 x 104 x 64 -> 104 x 104 x 64 0.797 BF
       3 route 2
                                                  1/2 -> 104 x 104 x 32
       4 conv
                          3 x 3/1
                                      104 x 104 x 32 -> 104 x 104 x 32 0.199 BF
       5 conv
                          3 x 3/1
                                      104 x 104 x 32 -> 104 x 104 x 32 0.199 BF
       6 route 5 4
                                                      -> 104 x 104 x 64
       7 conv
                          1 x 1/ 1
                                      104 x 104 x 64 -> 104 x 104 x 64 0.089 BF
       8 route 2 7
                                                      -> 104 x 104 x 128
       9 max
                           2x 2/ 2 104 x 104 x 128 -> 52 x 52 x 128 0.001 BF
       10 conv 128
                           3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.797 BF
```


Snapshots

Snapshots

Face Mask Detection.ipynb 🌣

File Edit View Insert Runtime Tools Help All changes saved

References

- https://www.kaggle.com/datasets
- https://roboflow.com/
- [1] Arjya Das, Mohammad Wasif Ansari, Rohini Basak "Covid-19 Face Mask Detection Using TensorFlow, Keras and OpenCV", IEEE 17th India Council International Conference (INDICON), 2020
- [2] Riya Chiragkumar Shah, Rutva, "Detection of Face Mask using Convolutional Neural Network", arXiv, 10th June 2021
- [3] Eashan Adhikarla Brian, D. Davison "Face Mask Detection on Real-World Webcam Images" ACM ISBN 978-1-4503-8478-0/21/09, 2021, pp 139-144. https://dl.acm.org/doi/10.1145/34622033475903
- [4] Roshan M Thomas, Motty Sabu, Tintu Samson, Shihana Mol B, Tinu Thomas "Real Time Face Mask Detection and Recognition using Python", IJERT, 2021, pp 57-62.

