Práctica 7: Campos vectoriales en \mathbb{R}^2 y \mathbb{R}^3

Se sugiere complementar la resolución de los ejercicios de esta práctica con GeoGebra.

1. Identificar qué campo vectorial F no fue graficado, y graficarlo.

i)
$$\mathbf{F}(x,y) = (y,-x)$$

ii)
$$\mathbf{F}(x,y) = (-x, -y),$$

$$iii)$$
 $\mathbf{F}(x,y) = (\operatorname{sen}(x+y), \operatorname{sen}(x+y)),$

$$iv) \mathbf{F}(x,y) = (-x,y).$$

2. Graficar los siguientes campos $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$.

a)
$$\mathbf{F}(x, y, z) = (y, 1, -x),$$

b)
$$\mathbf{F}(x, y, z) = (1, y, 1)$$

b)
$$\mathbf{F}(x, y, z) = (1, y, 1),$$
 c) $\mathbf{F}(x, y, z) = (y, 1, 1).$

3. Encuentrar los campos vectoriales gradiente de f.

a)
$$f(x,y) = \sqrt{x^2 + y^2}$$

$$b) \ f(x, y, z) = xyz,$$

a)
$$f(x,y) = \sqrt{x^2 + y^2}$$
, b) $f(x,y,z) = xyz$, c) $f(x,y,z) = \frac{e^{xz}}{y^2 + x^2}$.

4. Dibujar las curvas de nivel de las funciones junto con sus campos vectoriales gradiente. ¿Qué observa?

a)
$$f(x,y) = 1 - x^2 - y^2$$

$$b) f(x,y) = x^2 - y,$$

a)
$$f(x,y) = 1 - x^2 - y^2$$
, b) $f(x,y) = x^2 - y$, c) $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$.

5. Decidir si F es un campo vectorial gradiente, y si lo es, encuentrar la función potencial f (es decir, la función que verifica que $\mathbf{F} = \nabla f$).

$$a) \mathbf{F}(x,y) = (x,y)$$

b)
$$\mathbf{F}(x, y, z) = (yz, xz, xy + 2z),$$

c)
$$\mathbf{F}(x,y) = (e^x \cos(y), e^x \sin(y)),$$
 d) $\mathbf{F}(x,y) = (y, x^2),$

$$d) \mathbf{F}(x,y) = (y,x^2),$$

e)
$$\mathbf{F}(x, y, z) = (y, x, xy),$$

f)
$$\mathbf{F}(x,y) = (2xy + y^{-2}, x^2 - 2xy^{-3}), y > 0.$$

6. Las **líneas de flujo** (o **líneas de corriente**) de un campo vectorial \mathbf{F} son las trayectorias que sigue una partícula cuyo campo de velocidades es \mathbf{F} . Es decir, $\sigma: \mathbb{R} \to \mathbb{R}^2$ es una línea de flujo de \mathbf{F} si se verifica que

$$\sigma'(t) = \mathbf{F}(\sigma(t)).$$

Por tanto, los vectores en un campo vectorial son tangentes a las líneas de flujo.

Hallar una línea de flujo de cada uno de los siguientes campos que pase por el punto indicado.

- a) $\mathbf{F}(x,y) = (x,-y), p = (1,1),$
- b) $\mathbf{F}(x,y) = (1,x), p = (1,0).$
- 7. Para cada una de las siguientes trayectorias, hallar un campo vectorial \mathbf{F} tal que σ sea una línea de flujo de \mathbf{F} .
 - a) $\sigma(t) = (\cos(t), \sin(t)),$
 - b) $\sigma(t) = (t^3, \sqrt{t}).$

Rotor

- 8. Dibujar el campo $\mathbf{F}(x, y, z) = (0, x, 0)$ y decidir (sin hacer la cuenta) si el rotor es cero en $\{x > 0\}$. Confirma tu intuición haciendo la cuenta.
- 9. Hallar el rotor de los siguientes campos vectoriales.
 - a) $\mathbf{F}(x, y, z) = (x + yz, y + xz, z + xy),$
 - b) $\mathbf{F}(x, y, z) = (xye^z, 0, yze^x),$
 - c) $\mathbf{F}(x, y, z) = (\operatorname{sen}(yz), \operatorname{sen}(zx), \operatorname{sen}(xy)).$
- 10. Decidir si cada uno de los siguientes campos son o no conservativos. En caso de que lo sea, hallar f tal que $\mathbf{F} = \nabla f$.
 - a) $\mathbf{F}(x, y, z) = (y^2 z^3, 2xyz^3, 3xy^2 z^2),$
 - b) $\mathbf{F}(x, y, z) = (xyz^2, x^2yz^2, x^2y^2z),$
 - c) $\mathbf{F}(x, y, z) = (1, \sin(z), y \cos(z)),$
 - d) $\mathbf{F}(x,y,z) = (e^x \operatorname{sen}(yz), ze^x \cos(yz), ye^x \cos(yz)).$
- 11. Demostrar que cualquier campo vectorial de la forma

$$\mathbf{F}(x, y, z) = (f(x), g(y), h(z)),$$

donde f, g, h son funciones derivables, es irrotacional (es decir, rot $\mathbf{F} = 0$).

- 12. Este ejercicio demuestra la relación entre el vector rotacional y las rotaciones. Sea B un cuerpo rígido que gira alrededor del eje z. La rotación se puede describir mediante el vector $w=(0,0,\omega)$ donde ω es la velocidad angular de B, es decir, la velocidad tangencial de cualquier punto P en B dividida por la distancia d a partir del eje de rotación. Sea r=(x,y,z) el vector de posición de P.
 - i) Considerar el ángulo θ de la figura y demostrar que el campo de velocidades de B está dado por $v=w\times r$.
 - ii) Demostrar que $v = (-\omega y, \omega x, 0)$.
 - iii) Demostrar que rot v = 2w.

Divergencia

13. Hallar la divergencia de los siguientes campos vectoriales.

a)
$$\mathbf{F}(x, y, z) = (xy^2z^3, x^3yz^2, x^2y^3z),$$

b)
$$\mathbf{F}(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}(x, y, z),$$

c)
$$\mathbf{F}(x, y, z) = (e^x \operatorname{sen}(y), e^y \operatorname{sen}(z), e^z \operatorname{sen}(x)),$$

d)
$$\mathbf{F}(x, y, z) = \left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$$
.

14. Demostrar que cualquier campo de la forma

$$\mathbf{F}(x, y, z) = (f(y, z), q(x, z), h(x, y)),$$

donde f, g y h son funciones diferenciables, es incompresible (es decir, div $\mathbf{F} = 0$).

- 15. Sea f un campo escalar y \mathbf{F} un campo vectorial. Decidir si cada una de las siguientes expresiones tienen sentido. Si no es así, explicar por qué. Si tienen sentido, decidir si se trata de un campo vectorial o escalar.
 - a) rot f,
- b) ∇f ,
- $c) \operatorname{div} \mathbf{F},$
- $d) \operatorname{rot}(\nabla f),$

- $e) \nabla \mathbf{F}$.
- $f) \nabla (\operatorname{div} \mathbf{F}), \qquad q) \operatorname{div}(\nabla f),$
- h) rot(rot \mathbf{F}).
- 16. Demostrar las siguientes identidades, suponiendo que existen las derivadas parciales y que son continuas. Para f un campo escalar y \mathbf{F} , \mathbf{G} campos vectoriales, se define

$$(f \mathbf{F})(x, y, z) = f(x, y, z)\mathbf{F}(x, y, z),$$

$$(\mathbf{F} \cdot \mathbf{G})(x, y, z) = \mathbf{F}(x, y, z) \cdot \mathbf{G}(x, y, z),$$

$$(\mathbf{F} \times \mathbf{G})(x, y, z) = \mathbf{F}(x, y, z) \times \mathbf{G}(x, y, z).$$

- a) div $(f \mathbf{F}) = f \operatorname{div} \mathbf{F} + \mathbf{F} \cdot \nabla f$,
- b) $\operatorname{rot}(f \mathbf{F}) = f \operatorname{rot} \mathbf{F} + (\nabla f) \times \mathbf{F},$
- c) $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{rot} \mathbf{F} \mathbf{F} \cdot \operatorname{rot} \mathbf{G}$,
- d) $\operatorname{div}(\nabla f \times \nabla q) = 0$.
- 17. Para $\mathbf{r}(x,y,z) = (x,y,z)$ y $r = ||\mathbf{r}||$, verificar las siguientes identidades.

$$a) \nabla \cdot \mathbf{r} = 3,$$

b)
$$\nabla \cdot (r \ \mathbf{r}) = 4r$$

a)
$$\nabla \cdot \mathbf{r} = 3$$
, b) $\nabla \cdot (r \mathbf{r}) = 4r$ c) $\nabla^2 r^3 = 12r$.

18. Sabemos que todos los campos vectoriales de la forma $\mathbf{F} = \nabla g$ satisfacen la ecuación rot $\mathbf{F} = 0$ y que todos los campos vectoriales de la forma $\mathbf{F} = \text{rot } \mathbf{G}$ satisfacen la ecuación div $\mathbf{F} = 0$ (si se suponen que las derivadas parciales son continuas). Esto lleva a plantear la pregunta: ¿existen ecuaciones que deben satisfacer todas las funciones de la forma $f = \text{div } \mathbf{G}$?

Demostrar que la respuesta a esta pregunta es "no" mediante la demostración de que toda función continua $f: \mathbb{R}^3 \to \mathbb{R}$ es la divergencia de algún campo vectorial.

[Sugerencia: considerar $\mathbf{G}(x,y,z) = (g(x,y,z),0,0)$ donde $g(x,y,z) = \int_0^x f(t,y,z)dt$.]