### Part1: Simulation Exercise

Haonan

October 26, 2016

#### Overview

This is a simulation practice which we would like to compare the simulation means and variances with the theoratical means and variances of a certain distribution. The distribution is an exponential distribution with lamda equals 0.2, 40 simulations will make up a sample and totally there are 1000 samples. This simulation will produce mean and variance plots and verify the assumption that the mean and the variance distribution is approximately normal.

# Set Up the Simulation

We use the code as follows to set up the simulation results:

```
setwd("C:/Users/Haonan/Desktop/Study/R/statistical inferring project")

library(ggplot2)

random <- data.frame()
for (i in 1:1000){
    a <- rexp(40,.2)
    meanr <- mean(a)
    stdr <- sd(a)
    random[i,1] <- meanr
    random[i,2] <- stdr
}

colnames(random) <- c("Mean", "Std_Dev")</pre>
```

```
## Mean Std_Dev

## 1 4.445450 4.079561

## 2 4.407662 3.950253

## 3 5.236816 6.142477

## 4 5.113871 5.427024

## 5 5.481151 6.559435

## 6 5.129172 4.418907
```

## Comparison

#### Sample Means

The theoretical mean of exponential distributions is 1/lamba, which, in this case, was 1/0.2 = 5 Firstly, it is reasonable to conduct a t test to see whether there's a significant difference between the sample mean and the theoretical mean

```
t.test(random$Mean, mu = 5)
```

```
##
## One Sample t-test
##
## data: random$Mean
## t = 0.74452, df = 999, p-value = 0.4567
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
## 4.969461 5.067879
## sample estimates:
## mean of x
## 5.01867
```

From the result we could clearly identify that the p-value is very large. This means there's no significance between the sample mean and the theoretical mean, they're equal.

Then we graph it, add a vertical line which indicates the theoretical mean = 5, and finally add a normal line as follows:

```
gg1 <- ggplot(random, aes(Mean)) + geom_histogram(alpha = .3, fill = 3, binwidth = .1, aes(y = ..density..))+ stat_function(fun=dnorm, size = 3, color = "red", args=list(mean=mean(random$Mean), sd=sd(random$Mean))) + geom_vline(xintercept = 5, size = 2)+labs(x = "Mean", y = "Density", tit le = "Sample Mean Density Distribution")
gg1</pre>
```



From the plot, the sample mean is almost normally distributed with mean = 5. Compared with the red line, the sample mean is approximately normal

## Sample Variance

The theoretical variance of exponential distributions is 1/lamba^2, which, in this case, was 1/0.2^2 = 25 Firstly, it is reasonable to conduct a t test to see whether there's a significant difference between the sample mean and the theoretical mean

```
with(random, t.test(Std_Dev^2, mu = 1/.04))
```

```
##
## One Sample t-test
##
## data: Std_Dev^2
## t = 0.6666, df = 999, p-value = 0.5052
## alternative hypothesis: true mean is not equal to 25
## 95 percent confidence interval:
## 24.53738 25.93860
## sample estimates:
## mean of x
## 25.23799
```

From the result we could clearly identify that the p-value is quite large. This means there's no significance between the sample variance and the theoretical variance, they're equal

Then we graph it, add a vertical line which indicates the theoretical variance = 25, and finally add a normal line as follows:



From the plot, the sample variance seems like normally distributed with mean = 25, but still, a little skewed to the right. Compared with the red line, the sample variance distribution is approximately normal

#### Conclustsion

The simulation exercise has produced the desired results that the sample mean and the sample variance is nearly normal