

Europäisches Pat ntamt

European Patent Office

Offic uropéen d s brev ts

(11) EP 0 875 575 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 04.11.1998 Bulletin 1998/45

(51) Int Cl.6: C12N 15/54, C12N 9/10

(21) Application number: 98302489.4

(22) Date of filing: 31.03.1998

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

Designated Extension States: AL LT LV MK RO SI

(30) Priority: 01.04.1997 JP 83133/97

(71) Applicant: NISSHINBO INDUSTRIES, INC. Chuo-ku, Tokyo 103 (JP)

(72) Inventors:

- Hasegawa, Osamu, c/o Nisshinbo Ind.,Inc. Adachi-ku, Tokyo (JP)
- Aotsuka, Satoshi c/o Nisshinbo Ind.,Inc., Adachi-ku, Tokyo (JP)

- Ihara, Yuri
 Takaishi, Osaka (JP)
- Hayashi, Takahisa Uji Kyoto 611 (JP)

 (74) Representative: Bannerman, David Gardner et al Withers & Rogers
 4 Dyer's Buildings
 Holborn
 London, EC1N 2JT (GB)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

(54) Cellulose synthase gene

(57) mRNA was extracted at the stage for cotton plant fibrous cells to accumulate cellulose, and cDNA's complementary thereto were synthesized to construct a cDNA library. Clones of a number of 750 were arbitrarily selected from the library, and they were randomly subjected from to sequencing. Those having homology to

an amino acid sequence deduced from a gene of cellulose 4- β -glucosyltransferase (bcsA) of cellulose synthase operon of acetic acid bacterium were selected from obtained nucleotide sequences of the respective clones. Thus, DNA coding for cellulose synthase was obtained.

Description

5

10

20

25

30

35

40

45

50

55

Technical Field

The present invention relates to a DNA coding for cellulose synthase originating from cotton plant (Gossypium hirsutum), a recombinant DNA containing the same, a transformed cell transformed with the DNA, and a method for controlling cellular cellulose synthesis.

Background Art

Cellulose is used for paper, woody structural materials, fiber, cloths, food, cosmetics, and pharmaceuticals, as well

in biosynthesis of cellulose. The cellulose-related industry has been hitherto directed to such cellulose products that have been already produced, in which there has been no trial to develop a new material based on an aspect of biosynthesis. The mechanism of disease action, which is exerted by pathogenic microorganisms on plants, often results from the inhibition on cellulose biosynthesis as in <u>Pyricularia oryzae</u> (<u>P. oryzae</u>). Therefore, the addition of disease resistance to the cellulose biosynthesis mechanism is agriculturally applicable and valuable. Further, cellulose is the most abundant organic compound on the earth, and it is a sink in which the largest amount of CO₂ in the atmospheric air is fixed. Therefore, the genetic improvement of cellulose biosynthesis enzymes is also applicable to the industry which is directed to the control of CO₂ in the atmospheric air based on the use of cellulose as the sink.

In recent years, cDNA's originating from fiber cells of cotton plant have been randomly sequenced, and it has been reported that full length CelA1 and partial length of CelA2 probably represent cDNAs of cotton plant cellulose synthase, in view of the homology to bacterial cellulose synthase gene (bacterial BcsA) (Pear et al., Proceeding of National Academy of Science, USA (1996) 93 12637-12642). The binding ability to UDP-glucose has been demonstrated for CelA1. However, as for CelA2, the homology has been merely demonstrated for the C-terminal amino acid sequence.

Disclosure of the Invention

The present invention has been made in order to provide a new method for regulating cellulose production in prokaryotic cells or eukaryotic cells, an object of which is to provide a DNA coding for cellulose synthase, a recombinant DNA containing the same, a transformed cell transformed with the DNA, and a method for regulating cellular cellulose synthesis.

The present inventors firstly extracted mRNAs at the stage for cotton plant fiber cells to accumulate cellulose, and cDNAs complementary thereto were synthesized to construct a cDNA library. 750 of cDNA clones were arbitrarily selected from the library, and they were randomly subjected to sequencing. Six amino acid sequences were derived for one nucleotide sequence of each of the obtained clones to select those having homology to an amino acid sequence obtained by translation from a gene of cellulose 4-β-glucosyltransferase (bcsA) of cellulose synthase operon of aceto-bacterium. As a result, genes, which were classified into three types or groups, were found, and they were designated as PcsA1, PcsA2, and PcsA3 respectively (PcsA is an abbreviation of "Plant Cellulose Synthase A").

That is, the present invention lies in a DNA coding for any one of the following proteins (A) to (C):

- (A) a protein having a cellulose synthase activity and comprising an amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence involving deletion, substitution, insertion, or addition of one or several amino acids relevant to SEQ ID NO: 2:
- (B) a protein having a cellulose synthase activity and comprising an amino acid sequence shown in SEQ ID NO: 4 or an amino acid sequence involving deletion, substitution, insertion, or addition of one or several amino acids relevant to SEQ ID NO: 4: and
- (C) a protein having a cellulose synthase activity and comprising an amino acid sequence shown in SEQ ID NO: 8 or an amino acid sequence involving deletion, substitution, insertion, or addition of one or several amino acids relevant to SEQ ID NO: 8, and comprising an amino acid sequence shown in SEQ ID NO: 11 or an amino acid sequence involving deletion, substitution, insertion, or addition of one or several amino acids relevant to SEQ ID NO: 11.

In another aspect, the present invention provides a recombinant vector comprising all or a part of the DNA as defined above, and a transformed cell transformed with the DNA as defined above.

In still another aspect, the present invention provides a method for regulating cellulose synthesis in a cell, comprising the steps of introducing the DNA as defined above into the cell, and expressing RNA having a nucleotide

sequence homologous to the DNA as defined above or a nucleotide sequence complementary to the DNA as define above.

SEQ ID NO: 1 corresponds to a sequence of PcsA1, and SEQ ID NO: 3 corresponds to a sequence of PcsA2. SEQ ID NO: 5 corresponds to a sequence of 3'-side region of PcsA3, SEQ ID NO: 7 corresponds to a sequence of 5'-side region of PcsA3, and SEQ ID NO: 9 corresponds to a sequence of internal region of PcsA3.

It has been demonstrated that PcsA1 and PcsA2 of the DNA's described above are DNA's coding for cotton plant cellulose synthase, according to the expression in eukaryotic cells (animal cells and/or yeast). It has been also demonstrated that an antibody thereagainst inhibits the cotton plant cellulose synthase activity in a cell-free system. Further, PcsA3, which is different from PcsAI and PcsA2, has been found. Any one of these species was obtained as partial one, at the stage of clones obtained by the random sequencing, and no 5'-portion of the coding region was contained. Therefore, clones which have sequences of 5'-portions were isolated in accordance with the 5'-RACE method based on the use of PCR to determine the sequences. As a result of this operation, the sequences of the 5'-portions corresponding to the partial length clones were obtained for PcsA1 and PcsA2.

On the other hand, as for PcsA3, a sequence of a 5'-portion of another clone, which was considered to belong to the same PcsA3 group, was obtained. The both sequences had extremely high homology, and hence they were considered to have underwent multiple gene formation relatively recently originating from an identical gene through the process of duplication. Therefore, even when the both are combined with each other at corresponding portions to construct a fused gene followed by expression, it is assumed that the activity and function of a produced enzyme may not be affected thereby.

As for PcsA1 and PcsA2, in order to obtain a full length clone, primers were designed on the basis of the sequence of the 5'-portion and the sequence of the 3'-portion of the partial length clone to perform PCR. Thus, a clone containing ORF was obtained.

Those applicable as the template to be used for the RACE method may be any of cDNA synthesized from mRNA and a phage library. When the phage library is used, it is possible to use a sequence in the vector as a 5'-side primer.

As a result of random sequencing, seven clones concerning PcsA2 were most abundantly present, of 15 clones seemed to code the cellulose synthase. Expression was confirmed in eukaryotic cells (animal cells and/or yeast) transformed with the cellulose synthase gene. As a result, the cellulose synthase activity was observed.

The present invention will be explained in detail below.

<1> Preparation of cotton plant cDNA library

5

10

20

25

30

35

40

45

50

55

Cotton plant fiber cells at the stage of cellulose accumulation are preferably used as a material for extracting mRNA to construct a cotton plant cDNA library. The method for extracting mRNA is not specifically limited, for which it is possible to adopt an ordinary method for extracting mRNA from plant.

cDNA can be synthesized, for example, by using a poly T sequence which is complementary to poly A nucleotide existing at the terminal of mRNA as a primer to synthesize complementary DNA by the aid of reverse transcriptase, and forming a double strand by the aid of DNA polymerase.

The method therefor is described, for example, in <u>Molecular Cloning</u> (Maniatis et al., Cold Spring Harbour Laboratory). However, a variety of cDNA synthesis kits are commercially available from various companies, which may be used.

Generally, the library is constructed by using a phage vector. A variety of commercially available vectors are usable. However, it is preferable to use a vector, for example, λ ZAP vector in which it is unnecessary to perform recloning from the vector, and it is possible to immediately prepare a plasmid for sequencing.

<2> Determination of nucleotide sequence of cDNA

Clones are randomly selected from the obtained cDNA library to determine nucleotide sequences of inserts in the clones. The nucleotide sequence can be determined in accordance with the Maxam-Gilbert method or the dideoxy method. Among them, the dideoxy method is more convenient and preferred.

The nucleotide sequence can be determined in accordance with the dideoxy method by using a commercially available sequencing kit. Further, the use of an automatic sequencer makes it possible to determine sequences of a large number of clones for a short period of time.

It is unnecessary to determine the sequence for an entire length of the insert. It is enough to determine a length of nucleotide sequence which is considered to be sufficient to perform homology search. For example, in Examples described later on, the homology search as described below was performed when a sequence having not less than 60 nucleotides was successfully determined.

<3> Homology search with gene data base

5

10

15

20

25

30

35

45

50

The determined nucleotide sequence of each of cDNA clones is used to perform the homology search with respect to known amino acid sequences of the cellulose synthase or nucleotide sequences of genes coding therefor registered in the gene data base. The cellulose synthase is exemplified by an enzyme encoded by a gene of cellulose 4β-glucosyltransferase (BcsA) of cellulose synthase operon of acetobacterium (Wong, H. C. et al., Proc. Natl. Acad. Sci. U.S.A., 87, 8130-8134 (1990). ACCESSION No. M37202).

Those usable as the data base include, for example, GenBank, EMBL, and DDBJ published, for example, from Los Alamos National Institute in the United States, Institute of European Molecular Biology, and National Institute of Genetics (Japan). Those commercially available and useable as the program for homology search include, for example, commercially available DNA analysis softwares, such as DNASIS (Hitachi Software Engineering Co.,Ltd.) and GENE-

nected on Internet with NCBI (National Center for Biotechnology Information) to utilize (http://www.ncbi.nim.min.gov/BLAST/) BLAST (Basic Local Alignment Search Tool) so that high speed homology search is performed.

The homology search is performed, for example, in accordance with the following algorithm. When the homology search is performed for a nucleotide sequence, homology comparison is advanced while shifting the nucleotide sequence to be investigated by every one nucleotide with respect to individual gene sequences included in the data base. When six or more continuous nucleotides are coincident, the homology score is counted and calculated in accordance with a homology score table (see, for example, M. Dayhoff, Atlas of Protein Sequence and Structure, vol. 5 (1978)). The system is set so that those having a score not less than a certain value are picked up as candidates which have homology. Further, the gap may be introduced into the sequence to be investigated or into the gene sequence included in the data base to make optimization so that the score is maximized.

When the homology search is performed for an amino acid sequence, a nucleotide sequence to be investigated is converted into amino acids concerning all six frames including those of a complementary chain. The investigation may be performed in the same manner as performed for the nucleotide. Specifically, it is possible to use blastx of BLAST described above. As for detailed techniques and conditions for the search, reference may be made to <u>DDBJ News Letter.</u> No. 15 (February 1995).

<4> Isolation of cDNA clone of cotton plant cellulose synthase

The clone obtained as described above is not necessarily contain the entire nucleotide sequence of the gene. In such a case, the clone is used as a probe to perform screening by means of plaque hybridization. Thus, it is possible to obtain a clone containing a full length gene from the library. A specified method may be carried out with reference to Molecular Cloning, second edition (Maniatis et al., Cold Spring Harbour Laboratory) 12.30 to 12.40.

When obtained cDNA is deficient in 5'-portion, the 5'-portion can be obtained as well by synthesizing primers so that the cDNA sequence may be elongated toward the 5'-terminal, and performing RT-PCR by using mRNA as a template.

As demonstrated in Examples described later on, the DNA of the present invention has been obtained as those having homology to the known bacterial cellulose synthase gene. The DNA further codes for an amino acid sequence GlnXXXXXXArgTrp (SEQID NO: 12) which is considered to form a UDP-glucose binding domain, having high homology in the vicinity thereof.

The nucleotide sequences of DNA of the present invention obtained as described above and the amino acid sequences deduced from the nucleotide sequences are shown in SEQ ID NOs: 1 to 10 in Sequence Listing. SEQ ID NOs: 1 and 3 show nucleotide sequences of PcsAl and PcsA2 respectively. SEQ ID NOs: 2 and 4 show amino acid sequences deduced from the nucleotide sequences of PcsA1 and PcsA2 respectively.

SEQ ID NOs: 5 and 6 show a nucleotide sequence of a clone (PcsA3-682) containing 3'-side region of PcsA3 and an amino acid sequence deduced from the nucleotide sequence respectively. SEQ ID NOs: 7 and 8 show a nucleotide sequence of a 5'-portion (PcsA3-5') of another clone containing 5'-side region of PcsA3 and an amino acid sequence deduced from the nucleotide sequence respectively. SEQ ID NOs: 9 and 10 show a nucleotide sequence of 3'-portion (PcsA3-3') of the clone and an amino acid sequence deduced from the nucleotide sequence respectively (see Fig. 1). That is, SEQ ID NO: 5 corresponds to the 3'-side region of PcsA3, SEQ ID NO: 7 corresponds to the 5'-side region of PcsA3, and SEQ ID NO: 9 corresponds to internal region of PcsA3. The overlapping portion of PcsA3-682 is different from that of PcsA3-3' in 9 nucleotides in the nucleotide sequence and 1 amino acid in the amino acid sequence. Figs. 3 and 4 show the comparison between the nucleotide sequences of PcsA3-682 and PcsA3-3'. SEQ ID NO: 11 shows a combination of the amino acid sequences encoded by PcsA3-682 and PcsA3-3'.

The sequence of GInXXXXXXArgTrp (SEQ ID NO: 12) corresponds to amino acid numbers 710 to 714 in SEQ ID NO: 2 for PcsA1, amino acid numbers 778 to 782 in SEQ ID NO: 4 for PcsA2, and amino acid numbers 356 to 360 in

	530 535 540
	His Asp Arg Tyr Ala Asn Arg Asn Val Val Phe Phe Asp Ile Asn Met
5	550 656
	Leu Gly Leu Asp Gly Leu Gln Gly Pro Val Tyr Val Gly Thr Gly Cys
	505 570 55-
	Val Phe Asn Arg Gln Ala Leu Tyr Gly Tyr Asp Pro Pro Val Ser Glu
10	585
	Lys Arg Pro Lys Met Thr Cys Asp Cys Trp Pro Ser Trp Cys Cys Cys
	600
1.5	Cys Cys Gly Gly Ser Arg Lys Lys Ser Lys Lys Lys Gly Cly Les Tan
15	015
	Gly Leu Leu Gly Gly Leu Leu Tyr Gly Lys Lys Lys Lys Lys Hot Mot Cl
	635
20	Lys Ash Tyr Val Lys Lys Gly Ser Ala Pro Val Phe Asp Leu Glu Glu
	043 650
•	The Gir Gir Leu Glu Gly Tyr Glu Glu Leu Glu Lys Ser Thr Leu
	665
25	Met Ser Gln Lys Asn Phe Glu Lys Arg Phe Gly Gln Ser Pro Val Phe
	680
	Ile Ala Ser Thr Leu Met Glu Asn Gly Gly Leu Pro Glu Gly Thr Asn
	095 700
30	Ser Thr Ser Leu Ile Lys Glu Ala Ile His Val Ile Ser Cys Gly Tyr 705 710 715
	710 715
	Glu Glu Lys Thr Glu Trp Gly Lys Glu Ile Gly Trp Ile Tyr Gly Ser
35	Val Thr Glu Asp Ile Leu Thr Gly Phe Lys Met His Cys Arg Gly Trp
	730 716
	Lys Ser Val Tyr Cys Val Pro Lys Arg Pro Ala Phe Lys Gly Ser Ala
	755
40	Pro Ile Asn Leu Ser Asp Arg Leu His Gln Val Leu Arg Trp Ala Leu
	//3
	Gly Ser Val Glu Ile Phe Leu Ser Arg His Cys Pro Leu Tron Charles
	705
45	Tyr Gly Gly Lys Leu Lys Trp Leu Glu Arg Leu Ala Tyr Ile Asn Thr
	900
	The variety Fig. Fig. Fig. Ser Ile Pro Leu Leu Ala Tvr Cvs Thr. Ile
50	825
	FIG Ala val Cys Leu Leu Thr Gly Lys Phe Ile Ile Pro Thr Lou Com
	840 046
	ASI Leu Thr Ser Val Trp Phe Leu Ala Leu Phe Leu Ser Ile Ile Ala
<i>55</i>	850 855 860

	Thr G	ly v	Val	Leu	Glu	Leu	Arg	Trp	Ser	Gly	Val	Ser	Ile	Gln	yab	Trp			
	865					870					875	•				800			
_	Trp A	rg /	Asn	Glu	Gln	Phe	Trp	Val	Ile	Gly	Gly	Val	Ser	Ala	His	Leu -			
5					885					890)				89:	•			
	Phe A	la '	Val	Phe	Gln	Gly	Leu	Leu			Leu	Ala	Gly	Val	Asp	Thr			
				900					905					910		67			
10	Asn P	he '	Thr	Val	Thr	Ala	Lys			Asp	Asp	Thr	Glu	Phe	GIĀ	GIU			
10			915					920		_		_	92		There	T ON			
						· ·								Ni of C	i i folds	-17-10			
	9	250					-566		••- 1		C1	Val.	Cor	Acro	Ala	Tle			
15	Ile I	le	Leu	Asn	Met			Val	AaT	ATS	GTĀ	var	Ser	ASP	ALG.	960			
	945		_	_		950		G3	-	Ton	959 Pho		Tare	T 🗪 1	Phe	_			
	Asn A	/sn	Gly	Tyr			J.Tp	СТА	PIO	970	PIE ^	GTĀ	Llys	Lea	97	5			
			_		965		T T d C	T on t	The second			T _{O11}	Lvs	Glv					
20	Ala F	ne.	Trp			Leu	ms	LEU	98!		1125			99	0				
	Gly F		~1 ~	980	A	The se	Pm	Thr			Val	Leu	Tro			Leu			
	GIA 1	лд	995		ALG	1111	110	100			•		10	05					
	Leu A	11-	330	TIA	Pha	Ser	I eu			Val	Arq	Ile			Phe	Leu			
25		1010		TTE			101					10	20 -						
	Pro I		, Gln	Thr	Glv	Pro			Lys	Gln	Cys	Gly	Val	Glu	Cys				
	1025	oy o	02		<u> </u>	103			_		10	35					•		
	1020																		
30	(2)	INFC	PMA!	rion	FOR	SEQ	ID	NO:	5:										
		(i)		QUEN															
				A) L						irs								-	
				B) T															
35				c) s					iple										
				D) Ţ					-DA	13.			1						
		-		LECU				A U	יושוו כ	(A									
40		(vi		IGIN A) C					iven 1	ni res	חמו רדו	т.							
40			(A) (C) I	ATOM.	111415 11241	i GOS	SUL SOLVE	re. ('okei	r312	٠.							
		/ 3				LUUF		~											
		(LX		ATUR A) N		/KEY:	CDS	3											
45				B) I															
		/ v-i		QUEN					SEO	ID 1	vo: 5	i:							
	œ	474	TTC	CIIC.	AAG	GAC	CGI	r ccz	A GCI	OTA 1	S AAC	AG#	GA/	LAT A	GAA	GAA		48	
	Pm	Thr	Phe	Val	Lvs	Glu	Arc	Arc	, Ala	a Met	t Lys	Arg	g Glu	ı Tyr	Glu	Glu			
5 0	1					5	-	•	-		10					15			
	TTC	AAG	GTI	AGG	ATA	CAA A	GCZ	CIT	r GT/	A GOO	CAA	y ex	CA	A AAC	GIT	CT		96	

	Phe	Lys	Val	Arg	Ile	Asn	Ala	Leu	Val	Ala	Lys	Ala	Gln	Lys	Val	Pro	
				20)				25	ĵ				3	0		
5	CCA	GAA	GGG	TGG	ATC	ATG	CAA	GAT	GGG	ACA	CCA	TCC	CCA	GGA	AAC	AAT	144
	Pro	Glu	Gly	Trp	Ile	Met	Gln	Asp	Gly	Thr	Pro	Trp	Pro	Gly	Asn	Asn	
			35					40)				4	5			
	ACT	AAA	GAT	CAC	α	GGT	ATG	ATT	CAA	GTA	TIT	CIC	CCT	CAA	agt	GGA	192
10	Thr	Lys	Asp	His	Pro	Gly	Met	Ile	Gln	Val	Phe	Leu	Gly	Gln	Ser	Gly	
		50					55	i				6	0				
	GGC	CAT	GAT	ACC	GAA	GGA	AAT	GAG	CIT	α	CCT	CIC	GTC	TAT	GTA	TCT	240
	Gly	His	Asp	Thr	Glu	Gly	Asn	Glu	Leu	Pro	Arg	Leu	Val	Tyr	Val	Ser	
15	65					70)				7	5				80	
	CGA	GAG	AAA	AGG	CCT	CCT	TTC	TTG	CAT	CAC	AAG	AAA	CCT	GGT	∞	ATG	288
	Arg	Glu	Lys	Arg	Pro	Gly	Phe	Leu	His	His	Lys	Lys	Ala	Gly	Ala	Met	
					85					90)				9	5	
20	AAC		CIT	GIT	∞	GTC	TOG	GGG	GIG	CIC	ACA	AAT	CCT	∞ r	TTT	ATG	336
	Asn	Ala	Leu	Val	Arg	Val	Ser	Gly	Val	Leu	Thr	Asn	Ala	Pro	Phe	Met	
				100					105	5				11	0		
	TTG	AAC	TTG	GAT	TGT	GAC	CAT	TAT	TTA	AAT	AAC	AGC	AAG	CCT	GTA	AGA	384
25	Leu	Asn	Leu	Asp	Cys	Asp	His	Tyr	Leu	Asn	Asn	Ser	Lys	Ala	Val	Arg	
			115					120)				12	5			
	GAG	CCT	ATG	TGT	TTC	TTG	ATG	GAC	∞ r	CAA	ATT	GGA	AGA	AAG	GIT	TGC	432
	Glu	Ala	Met	Cys	Phe	Leu	Met	Asp	Pro	Gln	Ile	Gly	Arg	ràz	Val	CÃ2	
30		130					135	i				140)				
	TAT	GTC	CAA	TTC	α	CAA	CCT	TTC	GAT	CCT	ATT	GAT	AGA	CAT	GAT	CGA	480
	Tyr	Val	Gln	Phe	Pro	Gln	Arg	Phe	Asp	Gly	Ile	Asp	Arg	His	Asp	Arg	
	145					150					155	5			•	160	
35	TAT	∞	AAT	α	AAC	ACA	GIT	TTC	TTT	GAT	ATT	AAC	ATG	AAA	GGT	CTA	528
	Tyr	Ala	Asn	Arg	Asn	Thr	Val	Phe	Phe	Asp	Ile	Asn	Met	Lys	Gly	Leu	
					165					170)	. 1			17	5	
	GAT	CCT	ATA	CAA	GCC	∞ T	GTA	TAT	GIC	GGC	ACG	GGG	TGT	CIT	TTC	AGA	576
40	Asp	Gly	Ile	Gln	Gly	Pro	Val	Tyr	Val	Gly	Thr	Gly	Cys	Val	Phe	Arg	
				180					185	i				19	0		
	AGG	CAA	GCT	CTT	TAT	CCT	TAT	GAA	CCT	CCA	AAG	GGA	α	aag	∞	∞	624
	Arg	Gln	Ala	Leu	Tyr	Gly	Tyr	Glu	Pro	Pro	Lys	Gly	Pro	Lys	Arg	Pro	
45			195					200)				209	5			
	AAA	ATG	GTA	ACC	TGT	GGT	TGC	TGC	∞ r	TGT	TTT	GGA	œc	α	AGA	AAG	672
	Lys	Met	Val	Thr	Cys	Gly	Cys	Cys	Pro	Cys	Phe	Gly	Arg	Arg	Arg	Lys	
		210					215					220)				
50	GAC	AAA	AAG	CAC	TCT	AAG	CAT	CCT	GGA	AAT	GCA	AAT	CCT	CTA	AGC	CTA	720
	Asp	Lys	Lys	His	Ser	Lys	Asp	Gly	Gly	Asn	Ala	Asn	Gly	Leu	Ser	Leu	
	225					230					235	5				240	

	GAA	GCA	∞	AAA	GAT	GAC	AAG	GAG	TTA	TTG	ATG	TOO	CAC	ATG	AAC	TTT	768	
	Glu	Ala	Ala	Lys	Asp	Asp	Lys	Glu	Leu	Leu	Met	Ser	His	Met	Asn	Phe		
5					245	j				25	0				25	55		
	GAA	AAG	AAA	TTT	GGA	CAA	TCA	GCC	ATT	LIL	GTA	ACT	TCA	ACA	CIG	ATG	816	
	Glu	Lys	Lys		_	Gln	Ser	Ala		Phe	Val	Thr	Ser			Met		
				260					26					27				
10				_	_					AGC							86 4	
	GIu	GIN	GTĀ	GIĀ	vai	Pro	Pro	Ser	Ser	Ser	Pro	Ala	Ala	Leu	Leu	Lys		
	Glu	Δla	Tlo	H40	Val	Tle	Sar		Gly	Tyr	Glu	yen	Larc	TED X	Glu	т~~	5,1,7	
15	Olu	290		1113	V 01	116	295	-	GLY	TYT	Giu	30		***	Giu	пр		
	GGA			بلملت	œ	TCC			അ	TCG	חבני			САТ	ATTC	מדינו	960	
							_			Ser							300	
	305	-			-1	310		-1-	0-7	-	31		0			320		
20		GGA	TTC	AAG	ATG			OGT	GGA	TGG			АТА	TAC	TGC		1008	
										Trp								
		•		•	325		•	,		330					33	_		
	CCA	AAG	TTG	CCT	GCA	TTC	AAG	CCT	TCA	GCT	∞	ATC	AAT	CTA	TCG	GAT	1056	
25	Pro	Lys	Leu	Pro	Ala	Phe	Lys	Gly	Ser	Ala	Pro	Ile	Asn	Leu	Ser	Asp		
				340					349	5				35	0			
	CCT	CTA	AAC	CAA	GIC	CIT	CGA	TGG	GCA	CTC	CCT	TCT	GTT	GAA	ATT	TTC	1104	
	Arg	Leu	Asn	Gln	Val	Leu	Arg	Trp	Ala	Leu	Gly	Ser	Val	Glu	Ile	Phe		
30			355					360)				36	5				
	TTT	AGT	CAT	CAT	TGC	CCA	GCA	TCC	TAT	GGT	TTC	AAG	GGA	GGA	AAG	CTA	1152	
	Phe		His	His	Cys	Pro	Ala	Trp	Tyr	Gly	Phe	Lys	Gly	Gly	Lys	Leu	٠	
		370					375					380	-					
35										AAC							1200	
		Trp	Leu	Glų	Arg		Ala	Tyr	Val	Asn			Ile	Tyr	Pro		-	
	385					390					395		1			400		
		_								ACC							1248	
40	THE	Ser	Leu	PIO	405	Leu	VTG	TYL	CAR	Thr		PTO	AIA	TTE		_		
	بلغائب	200	CATT	222		רעדע	בעת	CC3	~~	410		x~~	-	OC 8	41!		1296	
										Ile							1290	
	<u> </u>	***	Λου	420	112	116	···	110	425		SEL	1111	ri æ	430		Leu		
45	TTC	ארנ	ATT		TTG	Jalal	СТТ	TYCA			GCA.	ACT!	ىلىئ			GAG	1344	
	Phe																1044	
			435	<u>-</u>				440					445			~ - ~		
	CTA	AGG		AGT	GGA	GTA	AGC			GAA	TGG	TGG			GAG	CAA	1392	
50	Leu																+ - 	
		_	_		_						-	-	_					

		450					455	i				460)				
	TTT	TGG	GIC	ATC	GGT	GCC	ATT	TCG	GCA	CAT	TTG	TTC	CCT	GTT	ATC	CAA	1440
	Phe	Trp	Val	Ile	Gly	Gly	Ile	Ser	Ala	His	Leu	Phe	Ala	Val	Ile	Gln	
5	465					470	,				475	5				480	
	GGC	TTG	TTG	AAA	GTT	CTA	CCI	GGT	ATT	GAC	ACT	AAT	TTC	ACT	GIC	ACA	1488
	Gly	Leu	Leu	Lys	Val	Leu	Ala	Gly	Ile	Asp	Thr	Asn	Phe	Thr	Val	Thr	
40					485					490)				49	5	
10	TCC	AAG	GCA	ACT	GAT	GAC	GAG	GAG	TTC	GGG	GAA	TTG	TAT	ACT	TIC	AAA	1536
	Ser	Lys	Ala	Thr	Asp	Asp	Glu	Glu	Phe	Gly	Glu	Leu	Tyr	Thr	Phe	Lys	
				500					505					51	_		
			ACC														1584
15	Trp	Thr	Thr	Leu	Leu	Ile	Pro	Pro	Thr	Thr	Val	Leu	Ile	Ile	Asn	Leu	
			515					520					52				
			GIC														1632
00	Val	Gly	Val	Val	Ala	Gly	Ile	Ser	Asp	Ala	Ile	Asn	Asn	Gly	Tyr	Gln	
20		530					535					540					
	_		GGA											*			1680
	Ser	Trp	Gly	Pro	Leu	Phe	Gly	Lys	Leu	Phe			Phe	Trp	Val		
~=	545					550					555					560	
25			CIC														1728
	Val	His	Leu	Tyr			Leu	Lys	Gly			Gly	Arg	Gln		_	
					565					570					57		1000
			ACC														1776
30	Thr	Pro	Thr			Val	Ile	Trp			Leu	Leu	Ala			Pne	
				580					585					590	-	~~~	1004
			CIT														1824
	Ser	Leu	Leu	Trp	Val	Arg	Ile			Phe	Val	Met		_	rys	GTĀ	
35			595					600					60				1004
			ACT								TGAA	\AAAA	AAA 1	CATC	ZI'IGC	X i	1874
	Pro	-	Thr	Thr	Met	Cys			Asn	Cys							
		610					615						m~~1	01 M	~~~	22020	1934
40																AAGAC	
												CATT	CTAL	LA A	CIAI	AAGTT	1994
	TIGI	CATI	CA A	ATTGA	(AAA)	'A GC	ZICAA	CITI	GIG	iA I CA	AA						2033
	(2)	TNEY	RMAI	ידראז	בעם	SEV	א חז	n· e									
45	(2)) SEC														
		(Δ.	_	-		H: 6				ie.							
			•	•		amir			سد								
			-	•		OGY:											
50		(44)	ı) IOM (-													
		(**)	, איני	المحسد	دد سس	وندعه	الإتعا										

(v) FRAGMENT TYPE: C-terminal fragment

		(x1)	SEC	UEN	Œ DE	SCRI	PTIC	ж: S	EQ I	D NC): 6:						
	Pro	Thr	Phe	Val	Lys	Glu	Arg	Arg	Ala	Met	Lys	Arg	Glu	Tyr	Glu	Glu	
5	1				5					10)				1	5	
	Phe	Lys	Val	Arg	Ile	Asn	Ala	Leu	Val	Ala	Lys	Ala	Gln			Pro	
				20					25					3			
10	Pro	Glu	Gly	Trp	Ile	Met	Gln	Asp	Gly	Thr	Pro	ŢŢ			Asn	Asn	
			35					40					4	<u> </u>			
		50	_				55		•		3	50		m	t/ol	Co~	
15	_	His	Asp	Inr	GIU			GIU	ren	PIO	Arg 75	_	AGT	ıăr	vai	80	
	65	Glu	T	A	Pro	70		T Au	Hic	Hie			Ala	Glv	Ala		
	Arg	GIU	rys	Arg	85		FIE	Deu	1112	90		D ₂ O			9		
20	λen	Ala	T A11	Val			Ser	Glv	Val			Asn	Ala	Pro			
	71311			100		-		1	105					110			
	Leu	Asn	Leu			Asp	His	Tyr			Asn	Ser	Lys	Ala	Val	Arg	
			115	-	_	-		120					129				
<i>25</i> .	Glu	Ala	Met	Cys	Phe	Leu	Met	Asp	Pro	Gln	Ile	Gly	Arg	Lys	Val	Cys	
		130					135	;				140)				
	Tyr	Val	Gln	Phe	Pro	Gln	Arg	Phe	Asp	Gly	Ile	Asp	Arg	His	Asp	Arg	
30	145					150)				155	5				160	
	Tyr	Ala	Asn	Arg	Asn	Thr	Val	Phe	Phe	Asp	Île	Asn	Met	Lys			
					165					170			_		17		
	Asp	Gly	Ile			Pro	Val	Tyr			Thr	GTĀ	Cys			Arg	
35	_		_ =	180		~1 -		01	185		*	C1	D	19		Pm	
	Arg	Gln		Leu	ТУĽ	GIY	ıyr			PIO	rys	GTA	20		мg	PIG	•
	T	Met	195	Œb~	C+rc	GI vz	Cree	200		Cue	Pho	Glv			Arra	Lvs	
40	rys	210		1111	Cys	GLY	215		110	Cys		220		9	. – 9		
	ASD	Lys		His	Ser	Lvs			Glv	Asn	Ala			Leu	Ser	Leu	
	225	_	-1-	•		230		•	-		235	_	_			240	
		Ala	Ala	Lys	Asp	Asp	Lys	Glu	Leu	Leu	Met	Ser	His	Met	Asn	Phe	
45				-	245					250					25		
	Glu	Lys	Lys	Phe	Gly	Gln	Ser	Ala	Ile	Phe	Val	Thr	Ser	Thr	Leu	Met	
				260					265	5				27	0		
50	Glu	Gln	Gly	Gly	Val	Pro	Pro	Ser	Ser	Ser	Pro	Ala			Leu	Lys	
			275					280					28			_	
	Glu	Ala		His	Val	Ile			Gly	Tyr	Glu		_	Thr	Glu	Trp	
		290			_		295			_		300		_		•	
55	Gly	Ser	Glu	Leu	Gly	Trp	I1	Tyr	Gly	Ser	Ile	Thr	Glu	Asp	Пе	Leu	

	310 315	320
	Thr Gly Phe Lys Met His Cys Arg Gly Trp Arg Ser Ile Ty	vr Cvs Met
5	325 330	335
	Pro Lys Leu Pro Ala Phe Lys Gly Ser Ala Pro Ile Asn. Le	eu Ser Asn
	370	350
	Arg Leu Asn Gln Val Leu Arg Trp Ala Leu Gly Ser Val Gl	lu Tle Phe
10	355 360 365	
	Phe Ser His His Cys Pro Ala Trp Tyr Gly Phe Lys Gly Gl	v Ive Iou
	370 375 380	., Lys Leu
	Lys Trp Leu Glu Arg Phe Ala Tyr Val Asn Thr Thr Ile Ty	or Pro Phe
15	385 390 395	400
	Thr Ser Leu Pro Leu Leu Ala Tyr Cys Thr Leu Pro Ala Il	900 2
	405 410	415
20	Leu Thr Asp Lys Phe Ile Met Pro Pro Ile Ser Thr Phe Ala	a Ser Jou
20	420	30
	Phe Phe Ile Ala Leu Phe Leu Ser Ile Phe Ala Thr Gly Ile	e fæn Glo
	435 440 445	3 and 014
25	Leu Arg Trp Ser Gly Val Ser Ile Glu Glu Trp Trp Arg Asr	n Glu Gln
	450 455 460	
	Phe Trp Val Ile Gly Gly Ile Ser Ala His Leu Phe Ala Val	l Ile Gln
	465 470 475	480
30	Gly Leu Leu Lys Val Leu Ala Gly Ile Asp Thr Asn Phe Thr	: Val Thr
	485 490	495
	Ser Lys Ala Thr Asp Asp Glu Glu Phe Gly Glu Leu Tyr Thr	Phe Lvs
	500 505 51	ıo
35	Trp Thr Thr Leu Leu Ile Pro Pro Thr Thr Val Leu Ile Ile	Asn Leu
	515 520 525	
	Val Gly Val Val Ala Gly Ile Ser Asp Ala Ile Asn Asn Gly	Tyr Gln
40	530 535 540	
	Ser Trp Gly Pro Leu Phe Gly Lys Leu Phe Phe Ser Phe Trp	Val Ile
	545 550 555	560
	Val His Leu Tyr Pro Phe Leu Lys Gly Leu Met Gly Arg Gln	Asn Arg
45	565 570	575
	Thr Pro Thr Ile Val Val Ile Trp Ser Val Leu Leu Ala Ser	Ile Phe
	580 585 590)
	Ser Leu Leu Trp Val Arg Ile Asp Pro Phe Val Met Lys Thr	Lys Gly
50	595 600 605	- •
	Pro Asp Thr Thr Met Cys Gly Ile Asn Cys	
	610 615	
	(2) INDODAMINON FOR ONE OF	
<i>55</i>	(2) INFORMATION FOR SEQ ID NO: 7:	

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1086 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

	((11)	MOI	ECUI	E T	PE:	CDN	to	mRN	١.								
10	((vi)	ORI	GIN	L SC	URCE	E:											
			(1	A) OF	RGAN	ISM:	Coss	sypi	m h	Lrsu	tum I							
		(ix)	FE	YTURE	S:													
15			(1	A) N	AME/I	ŒY:	\cos											
			(1	3) L	CAT:	ION:	24	1086										
				UEN														
	GGCAC	CGAC	CT 1	TCAT	ATO	T CC												50
20							M	let G	lu A	la S	er A	la G	ly I	eu V	al A	la		
								1				5						00
	GGC 7																	98
	Gly S	Ser	His	Asn	Arg			Leu	Val	Val			Gly	His	Glu			
25	10					15					20					25		7.46
	CCT A																	146
	Pro I	Ĺys	Pro	Leu			Leu	Asp	Gly			Cys	Glu	Ile				
					30					35						0		104
30	GAT (•	194
	Asp (Glu	Ile	_	Leu	Thr	Val	Asp			Leu	rne	vaı			ASIT		
				45					50		m> m	~~~		5		303		242
	GAG 1																	24 2
35	Glu (Cys		Phe	Pro	Val	Cys			Cys	JĀĒ	GIU	1yr 70		Arg	Arg	•	
	GAA (60	~~~	~		~~	65			N/TE	NCN		-	ىلىت	CIV		290
				•														250
	Glu (_	Ser	GIII	GIII	Cys	80		Cys	rys	ш	8!		пуз	лy	Leu		
40	AAG (75	3 CTD	~~	»	CIC			САТ	CAA	САТ		-	САТ	GIG	GAT		338
	Lys (
	_	erā	Ser	PIO	Arg	95		GIY	rap	GIU	100		014	~Sp	•	105		
	90 GAT 1	8.07Y	CAR	CAT	CNA			יושרע	ርልጥ	СУТ			AAC	AAG	ጥልጥ			386
45	Asp 1																	
	ASP.	TTE	GIU	ıus	110		71311	116	qui	115		011.		_,_	12			
	AAT A	A FEDERAL	COTI	CAA			بلعلم	СУТ	CCA			AGC	TAC	ഷ		-		434
	Asn I																	
50	nau i	TTE	A.a	125	عتب.	، حت ل	ستس	4140	130		. ~ 0		-1-	13!		3		
	OCT (288	GAC		CAA	رتئ	באנה.	CAA			α	രണ	TT'A			GIT		482
	<u> </u>			- T-1	~ = 1	~.		~-,		~~.								

	Pro	Glu	Asp	Asp	Glu	Gly	Leu	Gln	Ile	Pro	Pro	Gly	Leu	Ala	Gly	Val	
			140					145					15	-			
5						AGC											530
	Arg	Ser	Arg	Pro	Val	Ser	Gly	Glu	Phe	Pro	Ile	Gly	Ser.	Ser	Leu	Ala	
		155					160					16					
						TCA											578
10	Tyr	Gly	Glu	His	Met	Ser	Asn	Lys	Arg	Val			Тут	Pro	Met		
,,,	170					175					180					185	
						AGA											626
	Glu	Pro	Gly	Ser	Ala	Arg	Trp	Asp	Glu	ŗās	Lys	Glu	Gly	Gly			
16					190					195					20		
15						TGG											674
	Glu	Arg	Met	Asp	Asp	Trp	Lys	Met			Gly	Asn	Leu		_	Glu	
				205					210					21			
						GAT											722
20	Pro	Asp	Asp	Ala	Tyr	Asp	Ala			Ala	Met	Leu			Ala	Arg	
			220					225					23				
						AAA											770
	Gln	Pro	Leu	Ser	Arg	Lys	Val	Pro	Ile	Ala	Ser	Ser	Lys	Ile	Asn	Pro	
25		235					240					245	_				
						GTG											818
	Tyr	Arg	Met	Val	Ile	Val	Ala	Arg	Leu	Val			Ala	Phe	Phe		
	250					255					260					265	
30						AAC											866
	Arg	Tyr	Arg	Ile	Leu	Asn	Pro	Val	His	Asp	Ala	Ile	Gly	Leu			
					270					275					28		
						GAA											914
35	Thr	Ser	Val	Ile	Cys	Glu	Ile	Trp	Phe	Ala	Phe	Ser	Trp	Ile	Leu	Asp	
				285					290					29			
						TTC											962
	Gln	Phe	Pro	ГÀЗ	Trp	Phe	Pro			Arg	Glu	Thr			Asp	Arg	
40			300					305					310				
						GAG											1010
	Leu	Ser	Leu	Arg	Tyr	Glu	Arg	Glu	Gly	Glu	Pro	Asn	Met	Leu	Ala	Ser	
		315					320					325					
45	GIT	GAT	ATT	TTT	GIC	agt	ACA	GIG	GAT	CCA	TTG	AAG	GGA	CCT	∞r	CTA	1058
	Val	Asp	Ile	Phe	Val	Ser	Thr	Val	Asp	Pro	Leu	Lys	Gly	Pro	Pro	Leu	
	330					335					340)				3 4 5	
						GIT				T							1086
50	Val	Thr	Ala	Asn	Thr	Val	Leu	Ser	Ile								
					350												

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

5			((A) I	ENG	TH: 3	85 4 a	mino	aci	.ds							
			((B) 1	YPE:	ami	no a	cid									
			((D) 1	OPOL	OGY:	lin	ear									
		(11	.) MC	LECU	LE T	YPE:	pep	tide									
10		(v)	FRA	GMEN	T TY	PE:	N-te	منسد	al f	ragm	ent						
		_(.x:	_)_SE) O UEV	CE_D	ESCE	TPTT.	ON-	SEO.	TD_N	D=8						
								<u> </u>	N. State State					وسيد			
15	1				5					10						.5	
	Leu	Val	Val	Ile		Gly	His	Glu	Glu	Pro	Lys	Pro	Leu	Lys	Asn	Leu	
				20					2					_	10		
	yab	Gly		Val	Cys	Glu	Ile	Cys	Gly	Asp	Glu	Ile	Gly	Leu	Thr	Val	
20			35			_	_	4(4				
	Asp			Leu	Phe	Val			Asn	Glu	Cys			Pro	Val	Cys	
		50		_		_	55		_			6	_	_			
			Cys	Tyr	GIU			Arg	Arg	Glu			Gln	Gln	Cys		
25	65		T	~~~	3	70		_	_		7		_	_		80	
	GIN	Cys	гåг	Thr			rys	Arg	Leu			Ser	Pro	Arg			
	C3++	N-m	Clu	N-cm	85		1	17-3		9(~ 1	T1.1 ~	03		5	
30	GIY	ASP	GIU	Asp 100		GIU	ASp	var			TTE	GIU	HIS			ASn	
	Tlo	A cro	A ~~			λœ	T	m	105		T1_	N1~	01	110		T	
	116	ഹാഗ	115	Glu	GIII	vəri	пÃ2	120		ASII	116	Αια	125		MEC	Leu	
	His	Glv		Met	Ser	ጥህግ	G1 ₁₇			Pm	Glu	λœ			Clv.	Lou	
35		130		. ~ 0	-	-1-	135		GIY	110	Giu	14(_	GIU	GTĀ	Leu	
	Gln			Pro	Glv	Leu			Val	ATTT	Ser			Val	Sor	Gly	
	145				 1	150		011	V.	·ug	155		110	Vai		160	
		Phe	Pro	Ile	Gly			Leu	Ala	Tvr			His	Met	Ser		
40					165					170					17!		
	Lys	Arg	Val	His	Pro	Tyr	Pro	Met	Ser			Glv	Ser	Ala			
	_			180					185			•		190			
45	Asp	Glu	Lys	Lys	Glu	Gly	Gly	Trp	Arg	Glu	Arg	Met	Asp			Lys	
			195					200					205		-	-	
	Met	Gln	Gln	Gly	Asn	Leu	Gly	Pro	Glu	Pro	Asp	Asp	Ala	Tyr	Asp	Ala	
		210					215					220		_	•		
50	Asp	Met	Ala	Met	Leu	Asp	Glu	Ala	Arg	Gln	Pro	Leu	Ser	Arg	Lys	Val	
	225					230					235			_	_	240	
	Pro	Ile	Ala	Ser	Ser	Lys	Ile	Asn	Pro	Tyr	Arg	Met	Val	Ile	Val	Ala	
55					245					250					255	5	

	Arg	Leu	Val	Ile 260		Ala	Phe	Phe		_	Тух	Arg	Ile			Pro	
	Val	His	Asn			Glw	Len	Ф	26	-	C	**-1	71 -		70		
5			275					286)				28	5		Ile	
	Тър	Phe 290	Ala	Phe	Ser	dıb	Ile 295		Asp	Gln	Phe	Pro 30		Trp	Phe	Pro	
10	Ile 305	ysb	Arg	Glu	Thr	Tyr 310		Asp	Arg	Leu	Ser	Leu		Тут	Glu		
		Gly	Glu	Pro	Asn			Ala	Sor	Val			Dho	Vo 1	C	320	
		•			325				-	330		TIE	PIE	vai	33	_	
	Val	Asp	Pro	Leu		Gly	Pro	Pro	Leu			Ala	Asm	Thr			
15		_		340	-	•			345					35		Leu.	
	Ser	Ile												-	•		
20	(2)	INFO	RMAT	ION :	FOR :	SEQ	ID N	1 0: 9):								
		(i)	SEQ	UENC	E CH	ARAC	TERI	STIC	s:								
) LE						s							
) TY													
25) ST					le								
) TO													
			MOL					to	mRNA								
		(AT)	ORI					_									
30) OR								•					
		/ d er \	FEA?) IN		JUAL	ISO	LATE	: 0	ker3	12						
	,	(11)	_) NAI			The										
) LO				00									
35	((xi)	SEQU							. NO							
	GAC A											YCA (د بالمح	mc :	NAC 1		40
	Asp I	ys V	/al A	rg P	ro T	hr P	he v	Val 1	Lvs (an c	m		N el	Mot 1	ano 1	10M	48
	1			•	5				-1 (10	-y .	- 9.	<u></u>	Æ (15		
40	GAA T	AT G	¥AA G	T AA	TC A	ag g	TT A	AGG A	TA A		CA C	лт с	TA G	OC 2	AAA (3 77	96
	Glu T	Àr G	lu G	lu P	he L	ys V	al A	lrg 1	le A	sn A	la I	eu V	al A	la I	NS A	la.	90
				20				_	25					30	-,		
	CAA A	AG G	TT O	CT O	CA G	AA G	GG 1	19G A	TC A	TG C	AA G	AT G	GG A		CA I	GG	144
45	Gln L	ys V	al P	ro P	ro G	lu G	ly T	I đĩ	le M	et G	ln A	sp G	ly T	hr F	T or	LD.	
			35					40					45				
	CCA G	GAA.	AC A	AT AC	T A	AA G	AT C	AC C	CT G	GT A	TG A	TT C	AA G	TA I	TT C	TC	192
50	Pro G	ly A	sn As	sn Th	n L	ys As	sp H	is P	ro G	ly M	et I	le G	ln V	al P	he L	eu	
50	!	50					55					60					

	GGT	CAA	AGT	GGA	GGC	CAT	GAT	ACC	GAA	GGA	AAT	GAG	CIT	CCT	Œ	CIC	240
	Gly	Gln	Ser	Gly	Gly	His	Asp	Thr	Glu	Gly	Asn	Glu	Leu	Pro	Arg	Leu	
5	· 65	;				70)				7	5				80	
	GIC	TAT	GTA	TCT	CCA	GAG	AAA	AGG	CCA	GGT	TIC	TTG	CAT	CAC	AAG	AAA	288
	Val	Tyr	Val	Ser	Arg	Glu	Lys	Arg	Pro	Gly	Phe	Leu	His	His	Lys	Lys	
					85						0					95	
10	CCT	GGI	∞	ATG	AAC	∞	CIT	GIT	Œ T	GIC	TOG	GGG	GTG	CIT	ACA	AAT	336
.0	Ala	Gly	Ala	Met	Asn	Ala	Leu	Val	Arg	Val	Ser	Gly	Val	Leu	Thr	Asm	
		-001	TTT.													AISC	364
15	ALA	Pro			Leu	Asn	Leu		_	Asp	His	Tyr		_	Asn	Ser	
		~~~	115		~~~	~~~		120					12				400
			_		GAG												432
	rys			Arg	Glu	AJB		_	me	Leu	met			GIN	TTE	GIÀ	
20	200	130		m~~	TAT	CTTC	135		~=	CAA	~~	14		~~	» (TVII)	Cam	480
			_		Tyr												400
•	145	_	Val	Cys	TYL	150		ri e	PIO	GIII	15		veħ	GIY	116	160	
			ርልጥ	CZA.	TAT			ന്ദ	AAC	ACA			بلملعك	САТ	ΔTT		528
25					Tyr												320
	9			9	165			9		170	_	~	•••		17	_	
	ATG	AAA	GGT	CTA	GAT		ATA	CAA	œc			TAT	GTC	GGC			576
					Asp												
30		_	-	180	_	_			185			-		19		_	
	TGT	GTT	TTC	AGA	AGG	CAA	GCT	CIT	TAT	GGT	TAT	GAA	CCT	CCA	AAG	GGA	62 <b>4</b>
	Cys	Val	Phe	Arg	Arg	Gln	Ala	Leu	Tyr	Gly	Tyr	Glu	Pro	Pro	Lys	Gly	
			195					200	1				20	5			
35	CT	AAG	$\infty$	$\infty$	AAA	ATG	GTA	ACC	TGT	CCT	TGC	TCC	$\infty$ T	TGC	TTT	GGA	672
	Pro	Lys	Arg	Pro	Lys	Met	Val	Thr	CAa	Gly	Cys	Cys	Pro	Cys	Phe	${ t Gly}$	
		210					215					220	_				
	œc	œc	AGA	AAG	GAC	AAA	AAG	CAC	TCT	AAG	GAT	GGT	GGA	AAT	GCA	AAT	720
40	_	Arg	Arg	Lys	Asp	_	_	His	Ser	Lys	_	_	Gly	Asn	Ala		
	225			_		230					235					240	
					GAA					,							768
	GTĀ	Leu	Ser	Leu	Glu		Ala	Glu	Asp			Glu	Leu	Leu			
45	010				245				~~~	250					25		0.4
					GAA												816
	H1S	Met	ASN		Glu	rys	rys	rne	_		Ser	Ala	Пе			Thr	
	(IV) 2	202	~m~	260		C2 2	~~	~~	265		~~		m~=	270		~~	064
50					GAA												864
			4.0	A* E	. 7	.7111	171V	171V	<b>771</b>	-111	-111			. T	- r T 1	~ . ~	

			27	75				28	80				2	85				
	GCI	r TT	G CI	C AA	A GA	A GO	CAT	T CA	T GT	A AT	T AG	r TGI	r GG	г та	T G	AA (	GAC	912
5	Ala	Le	u Le	u Ly	s Gl	u Ala	a Ile	e Hi	s Va	1 11	e Sei	r Cys	Gly	ү Ту	r Gl	Lu .	Asp	
		29					29					30						
	AAA	AO	C GA	A TG	G GG	a ag	GA	G CT	T GG	C TG	G ATT	r TAC	GGG	TO	G AI	T A	ACA	960
	1.ys	i	r GI	u IT	b CT			ı Le	u Gl	y Tr	p Ile		. G1 ²	, Se	r Il	e :	Thr	
10	_		יים יו	<b>С</b> фф	A AC:	31		- 22/	7 3 m	~ ~~	31			_			320	
											r TGC s Cys							1000
					32		112	> Llys		33		ALY	GTA	,				
15										٥.	,,							
15	(2)					SEQ												
		( )				HARA												
						TH: 3			o acc	ids								
20						ami												
20		,,,				LOGY:												
						YPE:												
						PE:				_		_						
25	Asn										0: 10				_	_		
	1	-10	V 0.2			5	rie:	VOI	rys		Arg O	Arg	Ala	met		s A 15	rg	
	Glu	Tyr	Glu	. Glu	Phe	Lys	Val	Arg	Ile		Ala	Leu	Val	Ala			la	
				20				_	2						10 10			
30	Gln	Lys	Val	Pro	Pro	Glu	Gly	Trp	Ile	Met	Gln	Asp	Gly			) T:	rp	
			35	5				40	)				4	5				
	Pro	Gly	Asn	Asn	Thr	Lys	Asp	His	Pro	Gly	Met	Ile	Gln	Val	Phe	Le	eu	
	<b>63</b>	50					55					60						
35	65	GIN	Ser	GIY	Gly		Asp	Thr	Glu	Gly	Asn		Leu	Pro	Arg	Le	∋u	
		Тул	17a I	Sor	λ	70	T		<b>D</b>	~1	75						80	
	vax	-7-	vai	GEL	85	GIU	rys	Arg	PTO		Phe	Leu ,	His	His			7S	
10	Ala	Glv	Ala	Met			ī eu	Val	<b>A</b>	90		C1 1	· /- 1	<b>T</b>		95		
40		•		100			~~u	Val	105		Ser	GIA	van		_	AS	sn.	
	Ala 1	Pro	Phe	Met	Leu	Asn	Leu .	Asp			His	Tvr 1	(eu	11( Asn		So	~	
			115					120				-1	125		7511	50	·L	
45	Lys A	Ala	Val	Arg	Glu	Ala i	Met (	Cys	Phe	Leu	Met i	Asp I			Ile	GI	v	
	:	130					135					140						
	Arg I	Lys	Val	Cys	Tyr	Val (	Gln I	Phe	Pro	Gln	Arg 1		Asp (	31y	Ile	As	p	
	145					150					155					1	.60	
50	Arg H	lis .	Asp	Arg	Tyr .	Ala /	Asn A	Arg .	Asn '	Thr	Val I	Phe F	he A	/sp	Ile	Ası	n	
					165					170					17			

	· EC	гуу	GIY	180	_	GIY	116	GIII	185		AGT	ıyı	var	19		Oly
5	Cys	Val	Phe 195	Arg	Arg	Gln	Ala	Leu 200	_	Gly	Tyr	Glu	Pro 20:		Lys	Gly
	Pro	Lys 210		Pro	Lys	Met	Val 215		Cys	Gly	Cys	Cys 220	Pro		Phe	Gly
10	Arg	Arg	Arg	Lys	Asp	Lys			Ser	Lys	Asp			Asn	Ala	Asn
	225					230	)				235	5			~~~	240
					245					250					25	
15	His	Met	Asn				Lys	Phe	_	Gln		Ala	Ile		Val	
	Ser	Thr	Leu	260 Met	Glu	Gln	Gly	Gly	265 Val		Pro	Ser	Ser	270 Ser		Ala
			275					280					289	_		
20	Ala	Leu 290	Leu	Lys	Glu	Ala	11e 295		Val	Ile	Ser	300 CAs	_	Tyr	Glu	Asp
	_	Thr	Glu	Trp	Gly			Leu	Gly	Trp		_	Gly	Ser	Ile	
25	305	•	<b>-</b> 3 -	•	ma	310		<b>T</b>	10-4	•••	315		<b>63</b>			320
	GIU	Asp	116	Leu	325	_	me	rys	Met	330	_	Arg	GIĀ			
	(2)	INFO	RMAT	ION	FOR	SEQ	ID 1	<b>1</b> 0: 1	L <b>1:</b>							
30		(i)		_			TER									
				-			22 ar		acio	is						
			-	-			no ao line									
<i>35</i>		(11)					pept									
						Æ: (	:-ter	mina	al fr	agme	ent,					
		(1X)		TURE		ŒY:										
40			•	3) LC	-											
										ind			ilu c	or Ly	73	
45	Aen									D NO			<b>31</b> 5	Mat	I voc	A www
45	nsp 1	Lys	Val	λιy	5	1111	FIE	AGIT	цуз	10	_	ALG	νтα	PBC	шуS 15	_
	Glu	Tyr	Glu	Glu	Phe	Lys	Val	Arg	Ile			Leu	Val	Ala		
50	<b>~</b> 3	<b>-</b>		20	_	<b>-</b> 3			25			_		_ 30		_
50	GIN	Lys '	35	PTO	PTO	GIU	стХ	1170 40		met	GIN	ASP	Gly <b>4</b> 5	_	PTO	uzb
	Pro	Gly A	Asn.	Asn	Thr	Lys		His	Pro	Gly	Met			Val	Phe	Leu
		50					55					60	ı			

	G1	.y G1	n Se	er Gl	y Gly	' His	Asp	Thr	Glu	ı Gly	Asr	Glu	Leu	Pro	Arc	Leu
	C	5				70	)				7	<b>'</b> 5				80
5	Va	ıl Ty	r Va	ıl Sei	r Arg	Glu	Lys	Arg	Pro	Gly	Phe	Leu	His	His	Lys	s Lys
					85	5				9	0					95
	AL	a GI	Y AL	a Met	t Asn	Ala	Leu	Val			Ser	Gly	Val	Leu	Thr	Asn
40	31	- D-	_ nL	10		_	_		10	_				11	.0	
. 10	AL	a PI	0 Pn 11	e Met	Leu	Asn	Leu	Asp	Cys	Asp	His	Tyr			Asn	Ser
	T ave	s A7.			. Cl.,	<b>31</b> 0	Made	120		_			12	5		
	~.y.	13	0 0	l Arg	Giu	ATA	135		Pne	Leu	Met			Gln	Ile	Gly
15	Arc			l Cys	ירטיר:	Val			D	C1-	<b>3</b>	140				_
	145	5		_ 0,0	-1-	150	GIII	FIE	PIO	GIII	Arg 159		Asp	GLY	Ile	
	Arg	j His	s Ası	p Arg	Tyr		Asn	Arra	Aen	Thr			Dho	<b>&gt;</b>	77.	160
			•		165			· <b>-</b> 9		170		FIE	rije	ASD	11e	
20	Met	Lys	s Gly	, Leu	Asp	Gly	Ile	Gln	Glv			Tvr	Va1	Glaz	.πh	C1••
				180	)	_			185		-	-1-	vai	19(		GLY
	Cys	: Val	Phe	Arg	Arg	Gln .	Ala	Leu	Tyr	Gly	Tyr	Glu	Pro	Pro	T.vs	Glv
25			195	5				200					205	;		
20	Pro	Lys	Arg	Pro	Lys	Met '	Val	Thr	Cys	Gly	Cys	Cys	Pro	Cys	Phe	Gly
		210	)				215					220				
	Arg	Arg	Arg	Lys	Asp	Lys 1	Lys	His	Ser	Lys	Asp	Gly (	Gly .	Asn	Ala	Asn
30	225					230					235					240
	GIĀ	Leu	Ser	Leu	Glu .	Ala A	la:	Xaa .	Asp	Asp	Lys	Glu :	Leu :	Leu i	Met	Ser
	u: o	Mad		<b>73</b> 1	245					250					255	5
	urs	MEC	ASI	Phe	GIU I	ràz i	ÀS	Phe (		Gln :	Ser A	Nla :	[le ]	Phe '	Val	Thr
35	Sar	TT-	Lou	260 Mot	C1 (	33 6			265	_				270		
	JEL	1111	275	Met	GIU (	an G	TĂ (	300 ₹ΤΑ /	Val :	Pro 1	S. Oat	Ser S		er 1	Pro .	Ala
	Ala	Leu		Lys	Glu Z	la T	ום נ	280	7-1	T1. C	· · ·		285			
40		290		-,, 0	<u>.</u>		295	шs I	var .	rie s	er (		TY 1	Àr (	Flu /	Asp
	Lys	Thr	Glu	Trp (	Gly S			eu 6	21 tz - r	ז הייל	יום יו	300 300	·7 C			
	305			-	- (	310		-Cu (	, <u>, , , , , , , , , , , , , , , , , , </u>		315	YL G	ту э	er 1	Te :	
	Glu	Asp	Ile	Leu ?			he I	ys M	1et 1	iis C	vs A	m G	ገъታ ጥ	ע טעק	<b>~~</b> 6	320
45					325	_		•		330	, , , , , , , , , , , , , , , , , , ,	<b>-</b> 9	<b>-</b> y 1	TP A	335	
	Ile	Tyr	Cys	Met I	oro L	ys L	eu P	ro A	la F		vs G	lv S	er A	la D	333 T	.10
				340				;	345					350		
50	Asn	Leu	Ser	Asp A	arg L	eu As	sn G	ln V	al L	eu A	rg T	rp A	la L	eu G	lv s	er
50			355				3	360				:	365			
	Val (	Glu .	Ile :	Phe P	he se	er Hi	s H	is C	ys P	ro A	la T	ap Ty	yr G	ly P	he L	vs
	•	3/0				3	75					380				
55	Gly (	Gly 1	Lys I	Leu L	ys Ti	p Le	u G	lu A	rg P	he Al	la T	yr Va	al As	an Ti	hr T	hr

	385					390	)				395	5				400
	Ile	Tyr	Pro	Phe	Thr	Ser	Leu	Pro	Leu	Leu	Ala	Tyr	Cys	Thr	Leu	Pro
5					405					410	)				41	5
J	Ala	Ile	Cys	Leu	Leu	Thr	Asp	Lys	Phe	Ile	Met	Pro	Pro	Ile	Ser	Thr
				420					425	5				43	0	
	Phe	Ala	Ser	Leu	Phe	Phe	Ile	Ala	Leu	Phe	Leu	Ser	Ile	Phe	Ala	Thr
10			435					440	)				44	5		
	Gly	Ile	Leu	Glu	Leu	Arq	Trp	Ser	Gly	Val	Ser	Ile	Glu	Glu	Trp	Trp
	Arg	Asn	Glu	Gln	Phe	Trp	Val	Ile	Gly	Gly	Ile	Ser	Ala	His	Leu	Phe
15	465					470	ı				475	5				480
	Ala	Val	Ile	Gln	Gly	Leu	Leu	Lys	Val	Leu	Ala	Gly	Ile	Asp	Thr	Asn
					485					490	)				49	5
	Phe	Thr	Val	Thr	Ser	Lys	Ala	Thr	Asp	Asp	Glu	Glu	Phe	Gly	Glu	Leu
20				500					505	;				51	0	
	Tyr	Thr	Phe	Lys	Trp	Thr	Thr	Leu	Leu	Ile	Pro	Pro	Thr	Thr	Val	Leu
			515	_				520	)				52	5		
25	Ile	Ile	Asn	Leu	Val	Gly	Val	Val	Ala	Gly	Ile	Ser	Asp	Ala	Ile	Asn
		530					535					540	)			
	Asn	Gly	Tyr	Gln	Ser	Trp	Gly	Pro	Leu	Phe	Gly	Lys	Leu	Phe	Phe	Ser
	545					550					555	5				560
30	Phe	Trp	Val	Ile	Val	His	Leu	Tyr	Pro	Phe	Leu	Lys	Gly	Leu	Met	Gly
					565					570	)				57	5
	Arg	Gln	Asn	Arg	Thr	Pro	Thr	Ile	Val	Val	Ile	Trp	Ser	Val	Leu	Leu
				580					585	5				590	)	
35	Ala	Ser	Ile	Phe	Ser	Leu	Leu	Trp	Val	Arg	Ile	Asp	Pro	Phe	Val	Met
			595					600			1		609	5		
	Lys	Thr	Lys	Gly	Pro	Asp	Thr	Thr	Met	Cys	Gly	Ile	Asn	Cys		
40		610					615					620	)			
	(2)	INFC														
		(1)	_	UENC												
45			•	A) LI					cids							
			•	3) T												
			•	) TC												
		-		ECUL												
50				MENI					_							
				UENC						D NO	: 12	:				
	Gln	Xaa	Xaa	Xaa		Xaa	Xaa	Arg	Trp							
55	1				5											

	(2) INFORMATION FOR SEQ ID NO: 13:	
	(1) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 50 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: other nucleic acid	
, ,	(A) DESCRIPTION: /desc = "Synthetic DNA"	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
	GAGAGAGAGA GAGAGAGAGA ACTAGTCTCG AGTTTTTTTT TTTTTTTTTT	50
15	(2) INFORMATION FOR SEQ ID NO: 14:	
	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 13 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "Synthetic DNA"	
25	(ix) FEATURE:	
	(A) NAME/KEY:	
	(B) LOCATION:14	
	(D) OTHER INFORMATION: single strand	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
	AATTOGGCAC GAG	13
	(2) INFORMATION FOR SEQ ID NO: 15:	
ac	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 20 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "Synthetic DNA"	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	GACTGAAGAT AAGCCAAAAG	20
45		20
	(2) INFORMATION FOR SEQ ID NO: 16:	
	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 19 base pairs	
50	(B) TYPE: nucleic acid	

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: other nucleic acid	
5	(A) DESCRIPTION: /desc = "Synthetic DNA"	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
	GGAATGATGA ATTTGCCCG	19
10	(2) INFORMATION FOR SEQ ID NO: 17:	
	(A) IENGIA: ZO Dase pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "Synthetic DNA"	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	TGCAGGCAAC TTTGGCATGC	20
	(2) INFORMATION FOR SEQ ID NO: 18:	
25	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 30 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "Synthetic DNA"	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
35	AGCAACACGA GCAAGATGAG GAGGATGACT	30
	nochnicacon ochnomicas enconienci	30
	(2) INFORMATION FOR SEQ ID NO: 19:	
	(1) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 28 base pairs	
40	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
45		
	(A) DESCRIPTION: /desc = "Synthetic DNA"	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	COGGATOCIT CAACCCITCT TOGATITC	28
50	(2) Thromanion for any to up. co	
	(2) INFORMATION FOR SEQ ID NO: 20:	

	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 29 base pairs	
5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
10	(A) DESCRIPTION: /desc = "Synthetic DNA"	
	(RL) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
	CCGGATCCAC GGCAATGCAT CTTGAAACC	29
	(2) TRIDOTRIBUTOR	45
15	(2) INFORMATION FOR SEQ ID NO: 21:	
	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 27 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "Synthetic DNA"	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21: GGTTAGCATA TTGTTTGTAG CATTGGG	
	OSTAL TIGHTIGHAG CAPICOG	27
	(2) INFORMATION FOR SEQ ID NO: 22:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 27 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "Synthetic DNA"	
	(XL) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
	ATCAATGAAA TATGTATAGT TCATAGC	27
40	(2) Thrown a new transfer	27
	(2) INFORMATION FOR SEQ ID NO: 23:	
	(1) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 27 base pairs	
45	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: other nucleic acid	
30	(A) DESCRIPTION: /desc = "Synthetic DNA"	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	

#### CITICGITCT TITIGGITTIG CCATGGC

27

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(11) MOLECULE TEXTS: other nucleic acid

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

AGACTITTTA CAAACAAGAT AAATCCC

27

20

25

30

35

15

5

10

#### Claims

1. A DNA coding for any one of the following proteins (A) to (C):

(A) a protein having a cellulose synthase activity and comprising an amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence involving deletion, substitution, insertion, or addition of one or several amino acids relevant to SEQ ID NO: 2;

(B) a protein having a cellulose synthase activity and comprising an amino acid sequence shown in SEQ ID NO: 4 or an amino acid sequence involving deletion, substitution, insertion, or addition of one or several amino acids relevant to SEQ ID NO: 4; and

(C) a protein having a cellulose synthase activity and comprising an amino acid sequence shown in SEQ ID NO: 8 or an amino acid sequence involving deletion, substitution, insertion, or addition of one or several amino acids relevant to SEQ ID NO: 8, and an amino acid sequence shown in SEQ ID NO: 11 or an amino acid sequence involving deletion, substitution, insertion, or addition of one or several amino acids relevant to SEQ ID NO: 11.

- 2. A recombinant vector comprising all or a part of the DNA as defined in claim 1.
- 3. A transformed cell transformed with the DNA as defined in claim 1.

40

4. A method for controlling cellulose synthesis in a cell, comprising the steps of introducing the DNA as defined in claim 1 into the cell, and expressing RNA having a nucleotide sequence homologous to the DNA as defined in claim 1 or a nucleotide sequence complementary to the DNA as defined in claim 1.

45

50



# FIG. 1

SEQ ID NO: 14

5' AATTCGGCACGAG 3'
3' GCCGTGCTC 5'---

FIG. 2

		10	20	30 40	50	60
PcsA3-	-682 CCGACATT	CGTGAAGGAC	CGTCGAGCT	ATGAAGAGAGAA1	TATGAAGAATTC	AAGGTTAGG
(SEQ ID	NO: 5) ::::::	:::::::::	::::::::::	: : : : : : : : : : : : : : : : : : : :	:::::::::::::::::::::::::::::::::::::::	:::::::::
PcsA3-	-3' CCGACATI	CGTGAAGGAC	CGTCGAGCT	ATGAAGAGAGAA1	TATGAAGAATTC	AAGGTTAGG
(SEQ ID N	0: 9) 20	30	) 4(	50	60	70
		70	80	90 100	110	120
PcsAJ-	-682 ATAAATGO	CACTTGTAGO	AAAGCCCAAA	AGGTTCCTCCAC	SAAGGGTGGATC	ATGCAAGAT
	::::::	:::::::::::::::::::::::::::::::::::::::	:::::::::	· ::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::	:::::::::
- h-			1.A.A.C.C.C.A.A.	Accitorio	ALACCETCCATC	ATCCAAGAT
		30	40	150 160	170	180
PcsA3-	-682 GGGACAC	CATGGCCAGG	WACAATACT	AAAGATCACCCTO	GGTATGATTCAA	GTATTTCTC
	::::::	:::::::::	::::::::		:::::::::::::::::::::::::::::::::::::::	::::::::
PcsA3-	-3' GGGACAC	CATGGCCAGG	WACAATACTA	AAAGATCACCCTO	GGTATGATTCAA	GTATTTCTC
	144	150	160	170	180	190
		190 2	200 :	210 220	230	240
PcsA3-	-682 GGTCAAA	TGGAGGCCA	TGATACCGAA	GGAAATGAGCTTO	CCTCGTCTCGTC	TATGTATCT
	::::::	:::::::	::::::::	:::::::::::	:::::::::::::::::::::::::::::::::::::::	:::::::
PcsA3	-3' GGTCAAA	STGGAGGCCA	TGATACCGAA	GGAAATGAGCTT(	CCTCGTCTCGTC	TATGTATCT
	200	210	220	230	240	250
		250 :	260	270 280	290	300
PcsA3	-682 CGAGAGA	AAAGGCCTGG	TTTCTTGCAT	CACAAGAAAGCT	GGTGCCATGAAC	GCCCTTGTT
	::::::	:::::::	::::::::	::::::::::::	<b>::::</b> ::::::::::::::::::::::::::::::::	::::::::
PcsA3	-3' CGAGAGA	AAAGGCCAGG	TTTCTTGCAT	CACAAGAAAGCT	GGTGCCATGAAC	GCCCTTGTT
	26	0 270	280	0 290	300	310
		310	320	330 344	0 350	360
PcsA3	-682 CGGGTCT	CGGGGGTGCT	CACAAATGCT	CCTTTTATGTTG	AACTTGGATTGT	GACCATTAT
				:::::::::::::::::::::::::::::::::::::::		
PcsA3					AACTTGGATTGT	
	32				360	370
				390 40		420
PcsA3	-682 TTAAATA	ACAGCAAGGC	TGTAAGAGAG	GCTATGTGTTTC	TTGATGGACCCT	CAAATTGGA
					*********	
. PcsA3					TTGATGGACCCT	
	38				420	430
0 40				450 46		480
PosA3	3-682 AGAAAGG					
0. 40					COTATTOATAG	
PosA3	•				GGTATTGATAGA	
	44				480	490
D 40	COO TATCOOA	490	500	510 52		540
PesAS					MAAGGTCTAGA1	
04		TOOCAACAC			::::::::::::::::::::::::::::::::::::::	
PosAC	• •				540	550
	50	ات ب	U 52	. <del>.</del> 330	340	<b>330</b>

FIG. 3

	550	560	570	580	590	600
PcsA3-682	GGCCCTGTATAT	GTCGGCACGG	GGTGTGTTTT	CAGAAGGCAA	GCTCTTTATG	GTTATGAA
SEQ ID NO: 5)	::::::::::	::::::::::	::::::::	::::::::	::::::::::	:::::::
PcsA3-3'	GGCCCTGTATAT	GTCGGCACGG	GGTGTGTTTT	CAGAAGGCAA	GCTCTTTATG	GTTATGAA
SEQ (D NO: 9)	560	570	580	590	600	610
	610	620	630	640	650	660
PcsA3-682	CCTCCAAAGGGA	CCT AAGCGCC	CGAAAATGGT	AACCTGTGGT	TGCTGCCCTT	GTTTTGGA
	::::::::::	::::::::	::::::::	::::::::	:::::::::	:*:::::
PcsA3-3'	CCTCCAAAGGGA	CCTAAGCGCC	CGAAAATGGT	AACCTGTGGT	TGCTGCCCTT	GCTTTGGA
	620	630	640	650	660	670
	670	680	690	700	710	720
PcsA3-682	CGCCGCAGAAAG	GACAAAAAGC	ACTCTAAGGA	TGGTGGAAAT	GCAAATGGTC	TAAGCCTA
	::::::::::::	::::::::	:::::::::::::::::::::::::::::::::::::::	::::::::	::::::::::	:::::::
PcsA3-3'	CGCCGCAGAAAG	GACAAAAAGC	ACTCTAAGGA	TGGTGGAAAT	GCAAATGGTC	TAAGCCTA
	680	690	700	710	720	730
	730	740	750	760	770	780
PcsA3-682	GAAGCAGCCAAA	GATGACAAGG	AGTTATTGAT	GTCCCACATG	AACTTTGAAA	AGAAATTT
	::::::::::	<b>::::</b> :::::	::::::::	::::::::::	::::::::	:::::::
PcsA3-3'	GAAGCAGCCGAA	GATGACAAGG	AGTTATTGAT	GTCCCACATG	AACTTTGAAA	AGAAATTT
	740	750	760	770	780	790
	790	800	810	820	830	840
PcsA3-682	GGACAATCAGCC	ATTTTTGTAA	CTTCAACACT	GATGGAACAA	GGTGGTGTCC	CTCCTTCT
	:::::::::::::::::::::::::::::::::::::::	::::::::	:::::::::	::::::::	::::::::	:::::::
PcsA3-3'	GGACAATCAGCC	ATTTTTGTAA	CTTCAACACT	GATGGAACAA	GGTGGTGTCC	CTCCTTCT
	800	810	820	830	840	850
	850	860	870	880	890	900
PcsA3-682	TCAAGCCCCGCA	GCTTTGCTCA	AAGAAGCCAT	TCATGTAATT	AGTTGTGGTT	ATGAAGAC
	:::::::::					
PcsA3-3'	TCAAGCCCTGCA	GCTTTGCTCA	AAGAAGCCAT	TCATGTAATT	AGTTGTGGTT	ATGAAGAC
	860	870	880	890	900	910
	910	920	930	940	950	960
PcsA3-682	AAAACAGAATGG	GGAAGCGAGC	TTGGCTGGAT	TTACGGCTCG	ATTACAGAAG	ATATCTTA
	:::::*:::::	:::::::::	:::::::::	::::::::	::::::::	:::::::
PcsA3-3'	AAAACCGAATGG	GGAAGCGAGC	TTGGCTGGAT	TTACGGCTCG	ATTACAGAAG	ATATOTTA
	920	930	940	950	960	970
	970	980				
PcsA3-682	ACAGGATTCAAG	ATGCATTGCC	GTGGAT			
	:::::*:::::	::::::::	:::::			
PcsA3-3	ACAGGTTTCAAG	ATGCATTGCC	GTGGAT			
	980	990	1000			

FIG. 4

Articles of the second second

.

# Europäisches Patentamt Europ an Patent Office Office européen des brevets



EP 0 875 575 A3

(12)

#### **EUROPEAN PATENT APPLICATION**

(88) Date of publication A3: 30.06.1999 Bulletin 1999/26

(51) Int CL6: C12N 15/54, C12N 9/10

(11)

(43) Date of publication A2: 04.11.1998 Bulletin 1998/45

(21) Application number: 98302489.4

(22) Date of filing: 31.03.1998

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 01.04.1997 JP 8313397

(71) Applicant: NISSHINBO INDUSTRIES, INC. Chuo-ku, Tokyo 103 (JP)

(72) Inventors:

 Hasegawa, Osamu, c/o Nisshinbo Ind.,Inc. Adachi-ku, Tokyo (JP)

- Aotsuka, Satoshi c/o Nisshinbo Ind.,Inc., Adachi-ku, Tokyo (JP)
- Ihara, Yuri
   Takaishi, Osaka (JP)
- Hayashi, Takahisa
   Uji Kyoto 611 (JP)

 (74) Representative: Bannerman, David Gardner et al Withers & Rogers, Goldings House,
 2 Hays Lane London SE1 2HW (GB)

#### (54) Cellulose synthase gene

(57) .mRNA was extracted at the stage for cotton plant fibrous cells to accumulate cellulose, and cDNA's complementary thereto were synthesized to construct a cDNA library. Clones of a number of 750 were arbitrarily selected from the library, and they were randomly subjected from to sequencing. Those having homology to

an amino acid sequence deduced from a gene of cellulose 4-β-glucosyltransferase (bcsA) of cellulose synthase operon of acetic acid bacterium were selected from obtained nucleotide sequences of the respective clones. Thus, DNA coding for cellulose synthase was obtained.



## EUROPEAN SEARCH REPORT

Application Number EP 98 30 2489

	DOCUMENTS CONSIL	DERED TO BE RELEVAN	T		
Category	Citation of document with of relevant pas	indication, where appropriate, sages	Releva to stain		
рх	IWO 98 00549 A (THE	AUSTRALIAN NATIONAL	1-4	C12N15/54	
	o varraary 200				
	* page 1, line 3 - * page 2, line 21 * example 8 *	line 11 * - page 7, line 28 * - SEQ ID NO.9 and 10			
X,D	homologs of the ba encoding the catal cellulose synthase PROC.NATL.ACAD.SCI	ytic subunit of " .USA, 996, pages 12637-12647			
Υ		BOARD OF REGENTS, THE	1-4		
	* page 1, line 18 * page 5, line 15 * figure 1; example	- page 8, line 13 *		TECHNICAL FIELDS SEARCHED (Int.Cl.6)	
Υ	cotton fiber" PLANT PHYSIOLOGY,		he 1-4		, s . 50
	WO 98 18949 A (CALG * page 7, line 14 - * figures 3,6,8; ex	ENE, INC.) 7 May 1998 page 9, line 25 * amples 1-7 *	1-4		
	-The present search report has	een grawn up for ail slaims			
	Prace of searon	Date of completion of the search		Examiner	1
	MUNICH	8 December 199	8 D	onath, C	
X partic 7 partic docum A techn O : non-s	TEGCRY OF CITED DOCUMENTS sularly relevant if taken alone sularly relevant if combined with anothern of the same category lological background written discissure nediate document	E : earlier patent after the filing  eer D : document cit L : document cite	ed in the application of the second control	iblished an, ar	



Application Number

EP 98 30 2489

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search
report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:
1-4 (partially)
i



## LACK OF UNITY OF INVENTION SHEET B

Application Number

EP 98 30 2489

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims: I-4 (partially)

acid sequence shown in SEQ ID NO:2 or an amino acid sequence involving deletion, substitution, insertion, or addition of one or several amino acids relevant to SEQ ID NO:2, a recombinant vector comprising all or part of said DNA, a cell being transformed with said DNA, and a method for controlling cellulose synthesis in a cell by the use of said DNA.

2. Claims: 1-4 (partially)

Claims 1- 4 (partially) refer to a DNA coding for a protein having a cellulose synthase activity and comprising an amino acid sequence shown in SEQ ID NO:4 or an amino acid sequence involving deletion, substitution, insertion, or addition of one or several amino acids relevant to SEQ ID NO:4, a recombinant vector comprising all or part of said DNA, a cell being transformed with said DNA, and a method for controlling cellulose synthesis in a cell by the use of said DNA.

3. Claims: 1-4 (partially)

Claims 1-4 (partially) refer to a DNA coding for a protein having a cellulose synthase activity and comprising an amino acid sequence shown in SEQ ID NO:8 and in SEQ ID NO:11 or an amino acid sequence involving deletion, substitution, insertion, or addition of one or several amino acids relevant to SEQ ID NO:8 and/or SEQ ID NO:11, a recombinant vector comprising all or part of said DNA, a cell being transformed with said DNA, and a method for controlling cellulose synthesis in a cell by the use of said DNA.

#### SEQ ID NO: 6 for PcsA3.

10

15

20

25

30

35

40

45

50

55

PcsA1 is different from CelA1 reported by Pear et al. (Proceeding of National Academy of Science, USA (1996), 93, 12637-12642) in nucleotide sequence by 28 nucleotides. As a result, the former is different from the latter in amino acid sequence encoded thereby by 10 amino acid residues. In general, the sugar chain specificity and the substrate specificity of the sugar chain transferase are extremely changed by point mutation of the nucleotide of DNA (Yamamoto and Hakomori, The Journal of Biological Chemistry (1990) 265, 19257-19262). Therefore, it is unclear whether or not CelA1 codes for a protein having the cellulose synthase activity. Incidentally, the 48th Arg, the 56th Ser, the 81st Asn, the 104th Ala, the 110th Ser, the 247th Asp, the 376th Asp, the 386th Ser, the 409th Arg, and the 649th Ser in the amino acid sequence encoded by CelAl correspond to Gln, Ile, Ser, Thr, Pro, Asn, Glu, Pro, His, and Gly in PcsA1 respectively.

PcsA2 of the present invention contains the same sequence as that of CelA2 reported by Pear et al. However, CelA2 has an incomplete length, and it does not contain the entire coding region. CelA2 corresponds to nucleotide numbers of 1083 to 3311 in the nucleotide sequence of PcsA2 shown in SEQ ID NO: 3.

Any of the amino acid sequences shown in SEQ ID NOs: 2, 4, 6, 8, 10, and 11 is a novel sequence. All genes having nucleotide sequences coding for the amino acid sequences are included in the present invention.

The amino acid sequences described above may include deletion, substitution, insertion, and/or addition of one or more amino acid residues provided that the characteristic of the gene of the present invention is not substantially affected. The deletion, substitution, insertion, and/or addition of one or more amino acid residues as described above is obtainable by modifying the DNA's coding for the amino acid sequences shown in SEQ ID NOs: 2, 4, 6, 8, 10, and 11 randomly in accordance with the ordinary mutation treatment or intentionally in accordance with the site-directed mutagenesis method. As described above, in general, the sugar chain specificity and the substrate specificity of the sugar chain transferase are extremely changed by point mutation of the nucleotide of DNA. Therefore, DNA coding for a protein having the cellulose synthase activity is selected from the modified DNA's. The cellulose synthase activity can be measured, for example, by means of the method described by T. Hayashi: Measuring-β-glucan deposition in plant cell walls. in Modern Methods of Plant Analysis: Plant Fibers, eds. H. F. Linskens and J. F. Jackson, Springer-Verlag, 10: 138-160 (1989).

Those harboring proteins or genes partially different from the sequences shown in Sequence Listing may exist depending on, for example, the variety of cotton plant or natural mutation. However, such genes are also included in the gene of the present invention. Such a gene may be obtained as DNA which is hybridizable under the stringent condition with all or a part of the coding region of the nucleotide sequence shown in SEQ ID NO: 1, 3, 5, 7, or 9. The "stringent condition" referred to herein indicates a condition under which a so-called specific hybrid is formed, and non-specific hybrid is not formed. It is difficult to definitely express such a condition by using a numerical value. However, for example, the stringent condition is exemplified by a condition under which nucleic acids having high homology, for example, DNA's having homology of not less than 80 % undergo hybridization with each other, and nucleic acids having homology lower than the above do not undergo hybridization with each other.

#### <5> Utilization of gene of the present invention

The DNA of the present invention makes it possible to control the cellulose synthesis in prokaryotic cells such as acetobacterium and/or eukaryotic cells such as yeasts belonging to, for example, the genus <u>Saccharomyces</u>, cells of plant such as cotton plant, and cultured cells of mammals and the like.

Specifically, the cellulose synthesis in the cells as described above can be facilitated, for example, by connecting a promoter to an upstream region of the DNA of the present invention, inserting an obtained fragment into an appropriate vector to construct a recombinant vector, and introducing the vector into the cells. Alternatively, the cellulose synthesis in the cells can be suppressed by introducing an antisense gene of the DNA of the present invention into the cells.

The promoter and the vector may be selected from those ordinarily utilized to express heterogeneous genes, and the method ordinarily employed to express heterogeneous genes may be used as the transformation method. Specifically, in the case of yeast, it is possible to use a protein-expressing kit produced by Invitrogen, i.e., Pichia Expression Kit, and a vector pPIC9 contained in this kit. For example, COS7 cells may be used as mammalian cultured cells, and a vector CDM8 may be used therefor.

The present invention provides the DNA coding for cellulose synthase. The DNA provides a new method for controlling cellulose production by incorporating the DNA into prokaryotic cells and eukaryotic cells.

#### Brief Description of the Drawings

Fig. 1 shows a relationship between two clones of PcsA3 as an embodiment of the DNA of the present invention. Regions interposed between arrows indicate regions for which nucleotide sequences have been determined. A dotted line indicates a region for which no nucleotide sequence has been determined.

- Fig. 2 shows a structure of EcoRI adapter.
- Fig. 3 shows comparison between sequences of PcsA3-682 and PcsA3-3' (former half).
- Fig. 4 shows comparison between sequences of PcsA3-682 and PcsA3-3' (latter half). ":" indicates coincident nucleotides, and "*" indicates non-coincident nucleotides.

#### Best Mode for Carrying Out the Invention

5

15

20

25

30

35

45

50

55

Examples of the present invention will be explained below.

#### <1> Preparation of total RNA from cotton plant

Cotton plant (Gossypium hirsutum L.) Coker 312 was used as a material. Fiber cells on 16 to 18 days post anthesis

which 375 mg of DTT as a powder was added, followed by addition of 200 ml of XT buffer (obtained by adjusting 0.2 M sodium borate containing 30 mM EDTA and 1 % SDS to be pH 9.0, and then applying a diethylpyrocarbonate treatment, followed by autoclaving to obtain a solution to which vanadylribonucleoside was added to give a concentration of 10 mM) having been heated to 90 to 95 °C. An obtained solution was sufficiently agitated.

The solution was added with 100 mg of protease K, and it was agitated again. The solution was incubated at 40 °C for 2 hours, and then it was added with 16 ml of 2 M KCl. The solution was sufficiently agitated again, and it was left to stationarily stand in ice for 1 hour, followed by centrifugation for 20 minutes (4 °C) at 12,000 g by using a high speed refrigerated centrifuge.

An obtained supernatant was filtrated, and floating matters were removed. The solution was transferred to a measuring cylinder to measure the volume. The solution was transferred to another centrifuge tube, to which lithium chloride was added in an amount of 85 mg per 1 ml of the extract solution to give a final concentration of 2 M. The solution was left to stationarily stand at 4 °C overnight, and then precipitated RNA was separated by centrifugation for 20 minutes at 12,000 g. An obtained precipitate of RNA was washed and precipitated twice with cooled 2 M lithium chloride.

The obtained RNA was dissolved in 10 mM Tris buffer (pH 7.5) to give a concentration of about 2 mg/ml, to which 5 M potassium acetate was added to give a concentration of 200 mM. Ethanol was added thereto to give a concentration of 70 %, followed by cooling at -80 °C for 10 minutes. Centrifugation was performed at 4 °C for 10 minutes at 15,000 rpm, and then an obtained precipitate was suspended in an appropriate amount of sterilized water to give an RNA sample. As a result of quantitative measurement for the RNA sample, total RNA was obtained in an amount of 2 mg.

#### <2> Purification of mRNA

mRNA was purified as a poly(A)+ RNA fraction from the total RNA obtained as described above. Purification was performed by using Oligotex-dT30 <Super> (purchased from Toyobo) as oligo(dT)-immobilized latex for poly(A)+ RNA purification.

Elution buffer (10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.1 % SDS) was added to a solution containing 1 mg of the total RNA to give a total volume of 1 ml, to which 1 ml of Oligotex-dT30 <Super> was added, followed by heating at 65 °C for 5 minutes and quick cooling on ice for 3 minutes. The obtained solution was added with 0.2 ml of 5 M NaCl, and it was incubated at 37 °C for 10 minutes, followed by centrifugation at 15,000 rpm for 3 minutes. After that, a supernatant was carefully removed.

An obtained pellet was suspended in 2.5 ml of Washing Buffer (10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.5 M NaCl, 0.1 % SDS), and the suspension was centrifuged at 15,000 rpm for 3 minutes. After that, a supernatant was carefully removed. An obtained pellet was suspended in 1 ml of TE Buffer, and then it was heated at 65 °C 5 minutes. The suspension was quickly cooled on ice for 3 minutes, and then it was centrifuged at 15,000 rpm for 3 minutes to recover poly(A)+ mRNA contained in an obtained supernatant.

Thus, the poly(A)+ mRNA in an amount of about 10 μg was obtained from 1 mg of the total RNA. An aliquot of 5 μg thereof was used to prepare a cDNA library.

## <3> Preparation of cDNA library

#### (1) Synthesis of cDNA

The mRNA obtained as described above was used as a template to synthesis cDNA by using a  $\lambda$ ZAP cDNA synthesis kit produced by Stratagene. The following solution was prepared and mixed in a tube.

5.0  $\mu$ l 10 x 1st Strand Buffer (buffer for reverse transcription reaction); 3.0  $\mu$ l 10 mM 1st Strand Methyl Nucleotide Mix (5-methyl dCTP, dATP, dGTP, dTTP mixture); 2.0  $\mu$ l Linker-Primer (linker and primer); H₂O (adjusted to give a total volume of 50  $\mu$ l);

The respective components described above were contents of the kit. Linker-Primer had a sequence as shown in SEQ ID NO: 13. Methylated nucleotide was used because it was intended not to allow cDNA to be digested by the restriction enzyme reaction performed later on. The reaction solution was agitated well, and then 5.0 µg of poly(A)+ mRNA was added thereto, followed by being left to stand at room temperature for 10 minutes. Further, 2.5 µl of M-MuLV RTase (reverse transcriptase) was added (at this time, the total volume was 50 µl). The reaction solution was gently mixed, followed by centrifugation under a mild condition to allow the reaction solution to fall to the bottom of the tube. The reaction was performed at 37 °C for 60 minutes.

Next, the following solution was prepared and mixed in the tube in a certain order.

45.0  $\mu$ l reaction solution containing cDNA primary chain; 40.0  $\mu$ l 10 x 2nd Strand Buffer (buffer for polymerase reaction); 6.0  $\mu$ l 2nd Strand Nucleotide Mixture (A, G, C, T mixture); 302.0  $\mu$ l H₂O.

The following solution was further added. However, in order to allow RNase and DNA polymerase to simultaneously act, enzyme solutions were allowed to adhere to the wall of the tube. After that, a vortex treatment was promptly performed, and the reaction solutions were allowed to fall to the bottom of the tube by means of centrifugation to perform a reaction for synthesizing cDNA second strand at 16 °C for 150 minutes.

0.8 μl RNase H (RNA-degrading enzyme); 7.5 μl DNA polymerase I (10.0 u/μl).

1.0 µl RNase Block II (RNase inhibitor).

The reaction solution was added with 400 µl of a mixed solution of phenol: chloroform (1:1). Agitation was performed well, followed by centrifugation at room temperature for 2 minutes. An obtained supernatant was added with 400 µl of phenol: chloroform again, which was subjected to a vortex treatment and centrifugation at room temperature for 2 minutes. An obtained supernatant was added with the following solution to precipitate cDNA.

 $33.3 \,\mu l$  3 M sodium acetate solution;  $867.0 \,\mu l$  100 % ethanol.

The obtained solution was left to stand at -20 °C overnight, and it was centrifuged at room temperature for 60 minutes. After that, washing was gently performed with 80 % ethanol, followed by centrifugation for 2 minutes. A supernatant was removed. An obtained pellet was dried, and it was dissolved in 43.5  $\mu$ l of sterilized water. An aliquot (39.0  $\mu$ l) was added with the following solution to blunt-end cDNA terminals.

5.0  $\mu$ l 10 x T4 DNA Polymerase Buffer (buffer for T4 polymerase reaction); 2.5  $\mu$ l 2.5 mM dNTP Mix (A, G, C, T mixture); 3.5  $\mu$ l T4 DNA polymerase (2.9  $u/\mu$ l).

The reaction was performed at 37 °C for 30 minutes, to which  $50\,\mu l$  of distilled water was added, and then  $100\,\mu l$  of phenol: chloroform was added thereto, followed by a vortex treatment and centrifugation for 2 minutes. An obtained supernatant was added with  $100\,\mu l$  of chloroform, which was subjected to a vortex treatment, followed by centrifugation for 2 minutes. The supernatant was added with the following solution to precipitate cDNA.

7.0 μl 3 M sodium acetate solution; 226 μl 100 % ethanol.

The solution was left to stand on ice for 30 minutes or more, and it was centrifuged at 4 °C for 60 minutes. An obtained precipitate was washed with 150 µl of 80 % ethanol, followed by centrifugation for 2 minutes and drying. The cDNA pellet was dissolved in 7.0 µl of EcoRl Adaptor solution, to which the following solution was added to ligate the EcoRl adapter to both ends of the cDNA. Sequences of respective strands of the EcoRl adapter are shown in SEQ ID NO: 14 and Fig. 2.

5

10

15

20

25

30

35

40

45

50

- 1.0 µl 10 x Ligation Buffer (buffer for ligase reaction);
- 1.0 ul 10 mM ATP:

5

30

35

45

50

55

- 1.0 µl T4 DNA ligase.
- The reaction solution was centrifuged under a mild condition, and it was left to stand at 4 °C overnight or more. The solution was treated at 70 °C for 30 minutes, and then it was centrifuged under a mild condition, followed by being left to stand at room temperature for 5 minutes. The reaction solution was added with the following solution to phosphorylate 5'-terminals of the EcoRl adapter.
- 1.0 μl 10 x Ligation Buffer (buffer for ligase reaction);
  - 2.0 µl 10 mM ATP;
- The reaction was performed at 37 °C for 30 minutes, followed by a treatment at 70 °C for 30 minutes. The solution was centrifuged under a mild condition, and it was left to stand at room temperature for 5 minutes. The following solution was further added thereto to perform a reaction at 37 °C for 90 minutes so that the Xhol site introduced by Linker-Primer was digested with Xhol, followed by being left to stand at room temperature to perform cooling.
- 20 28.0 μl <u>Xho</u>l Buffer;3.0 μl <u>Xho</u>l (45 υ/μl).

The reaction solution was added with 5.0 µl of 10 x STE (10 mM Tris-HCl (pH 8.0), 100 mM NaCl, 1 mM EDTA), which was added into a centrifuge column for removing short fragments (Sephacryl Spin Column) to perform centrifugation at 600 g for 2 minutes to obtain an eluent which was designated as Fraction 1. This operation was further repeated three times to obtain Fractions 2, 3, and 4 respectively. Fractions 3 and 4 were combined, to which phenol: chloroform (1:1) was added and agitated well, followed by centrifugation at room temperature for 2 minutes. An obtained supernatant was added with an equal amount of chloroform, and an obtained mixture was agitated well. The mixture was centrifuged at room temperature for 2 minutes to obtain a supernatant to which a two-fold amount of 100 % ethanol was added, followed by being left to stand at - 20 °C overnight. The solution was centrifuged at 4 °C for 60 minutes, followed by washing with an equal amount of 80 % ethanol. The solution was centrifuged at 4 °C for 60 minutes to obtain a cDNA pellet which was suspended in 10 µl of sterilized water.

#### (2) Preparation of cDNA library

The double strand cDNA obtained as described above was ligated with  $\lambda$  phage expression vector to prepare a recombinant vector. The following solution was prepared and mixed in a tube to perform a reaction at 12 °C overnight, followed by being left to stand at room temperature for 2 hours to ligate cDNA with the vector.

- 40 2.5 μl cDNA solution;
  - 0.5 μl 10 x Ligation Buffer;
  - 0.5 μl 10 mM ATP;
  - 1.0  $\mu$ l λZAP vector DNA (1  $\mu$ g/ $\mu$ l);
  - 0.5 μl T4 DNA ligase (4 Weiss u/μl).

#### (3) Packaging of phage DNA into phage particles

The phage vector containing the cDNA was packaged into phage particles by using an <u>in vitro</u> packaging kit (Gigapack II Gold packaging extract: produced by Stratagene). The recombinant phage solution was added to Freeze/ Thaw extract immediately after dissolution, and the solution was placed on ice, to which 15 µl of Sonic extract was added to perform mixing well by pipetting. The reaction solution was centrifuged under a mild condition, and it was left to stand at room temperature (22 °C) for 2 hours. The reaction solution was added with 500 µl of Phage Dilution Buffer, to which 20 µl of chloroform was further added, followed by mixing. In order to measure the titer of the library, an aliquot (2 µl) of 500 µl of the aqueous phase was diluted in a ratio of 1:10 with 18 µl of SM buffer (5.8 g of NaCl, 2 g of MgSo₄*7H₂O, 50 ml of 1 M Tris-HCl (pH 7.5), and 5 ml of 2 % gelatin in 1 L). The diluted solution (1 µl) and the phage stock solution (1 µl) were plated respectively together with 200 p1 of a culture solution of <u>Escherichia coli</u> PLK-F' strain having been cultivated to arrive at a value of OD₆₀₀ of 0.5. That is, <u>Escherichia coli</u> PLK-F' strain was mixed with the phage solution to perform cultivation at 37 °C for 15 minutes. The obtained culture was added to 2 to 3 ml of top agar

(48 °C), which was immediately overlaid on NZY agar plate having been warmed at 37 °C. Cultivation was performed overnight at 37 °C, and appeared plaques were counted to calculate the titer. As a result, the titer was 1.2 x 106 pfu/ml.

#### (4) Amplification of library

10

15

20

25

30

35

40

45

A centrifuge tube was added with the packaging solution containing about 50.000 recombinant bacteriophages and 600 µl of a culture solution of Escherichia coli PLK-F¹ strain having been cultivated to have a value of OD₆₀₀ of 0.5, followed by cultivation at 37 °C for 15 minutes. The culture solution was added with 6.5 ml of top agar having been maintained at 48 °C after dissolution, which was overlaid on 150 mm NZY plate having been warmed at about 37 °C, followed by cultivation at 37 °C for 5 to 8 hours. The respective plates were added with 10 ml of SM Buffer to perform cultivation at 4 °C overnight with gentle shaking. SM Buffer in the respective plates was collected in a sterilized polypropylene tube. The respective plates were rinsed with 2 ml of SM Buffer, and the rinsing solutions were collected in the same tube. Chloroform in an amount corresponding to 5 % of the total amount was added and mixed, followed by being left to stand at room temperature for 15 minutes. Bacterial cells were removed by centrifugation at 4,000 g for 5 minutes. An obtained supernatant was added with chloroform in an amount corresponding to 0.3 % of the total amount, and it was stored at 4 °C. The titer of the library amplified as described above was measured in the same manner as described above. As a result, the titer was 2.3 x 109 pfu/ml.

#### (5) Excision of plasmid from phage DNA

<u>In vivo</u> excision of the plasmid portion from the recombinant phage DNA was performed. The following solution was mixed in 50 ml of a conical tube to cause infection at 37 °C for 15 minutes:

culture solution of Escherichia coli XL1-Blue (OD₆₀₀ = 0.1) 200  $\mu$ l; phage solution after amplification 200  $\mu$ l (> 1 x 10⁵ phage particles); helper phage R408 1  $\mu$ l (> 1 x 10⁶ pfu/ml).

The mixed solution was added with 5 ml of 2 x YT medium to perform cultivation at 37 °C for 3 hours with shaking. A heat treatment was applied thereto at 70 °C for 20 minutes, followed by centrifugation at 4,000 g for 5 minutes. An obtained supernatant was decanted and transferred to a sterilized tube. Centrifugation was performed to obtain a supernatant which was diluted 100 times to obtain a solution. An aliquot (20  $\mu$ l) of the solution was mixed with 200  $\mu$ l of a culture solution of Escherichia coli XL1-Blue having been cultivated to obtain a value of OD₆₀₀ of 1.0 to cause infection at 37 ° C for 15 minutes. Aliquots (1 to 100  $\mu$ l) of the culture solution were plated on LB plates containing ampicillin, followed by cultivation at 37 °C overnight. Appeared colonies were randomly selected. Selected colonies were added with glycerol, and they were stored at -80 °C.

#### (6) Preparation of plasmid

Plasmids were prepared by using Magic Mini-prep kit produced by Promega. The culture fluid of <u>Escherichia coli</u> harboring the plasmid having been stored at -80 °C was inoculated into 5 ml of 2 x YT medium, followed by cultivation at 37 °C overnight. Centrifugation was performed for 5 minutes (4,000 rpm, 4 °C), and a supernatant was removed by decantation. An obtained bacterial cell pellet was added with 1 ml of TE buffer, followed by a vortex treatment. An obtained bacterial cell suspension was transferred to an Eppendorf tube, followed by centrifugation for 5 minutes (5,000 rpm, 4 °C). A resultant supernatant was removed by decantation.

An obtained bacterial cell pellet was added with 300  $\mu$ l of Cell Resuspension Solution, and it was sufficiently suspended therein. An obtained suspension was transferred to an Eppendorf tube. The suspension was agitated for 2 minutes with a mixer, to which 300  $\mu$ l of Cell Lysis Solution was added, followed by agitation until the suspension became transparent. Neutralization Solution (300  $\mu$ l) was added thereto, and agitation was performed by shaking with the hand, followed by centrifugation for 10 minutes (15,000 rpm).

Only an obtained supernatant was transferred to a new Eppendorf tube (1.5 ml). A suction tube was prepared, to which a cock, a miniature column and a syringe (injector) were connected in this order. A resin in an amount of 1 ml was charged into the syringe. The supernatant was poured into the syringe, and agitation was performed well, followed by suction. Column Washing Solution in an amount of 2 ml was added, and washing was performed while performing suction. Suction was continued for 1 to 2 minutes in order to dry up. The miniature column was removed from the equipment, and it was set in a new Eppendorf tube (1.5 ml). Sterilized water in an amount of 100 µl having been warmed at 65 to 70 °C was poured into the miniature column, and the column and the Eppendorf tube were centrifuged together for 1 minute (5,000 rpm). An eluted solution was transferred to an Eppendorf tube, to which 5 µl of 3 M sodium acetate aqueous solution was added, and 250 µl of cold ethanol was added thereto. The solution was centrifuged (15,000 rpm,

25 minutes), and a supernatant was discarded. An obtained precipitate was added with 1 ml of 70 % ethanol, followed by centrifugation again (15,000 rpm, 3 minutes). Ethanol was completely removed, and the tube was vacuum-dried in a desiccator. The precipitate was sufficiently dissolved in 20 μl of sterilized water, and an obtained solution was stored at -20 °C. An aliquot (1 μl) of the solution was dispensed, and it was subjected to electrophoresis together with volume markers to quantitatively determine the plasmid DNA.

<4> Determination of nucleotide sequence of cDNA and homology search with gene data base

### (1) Determination of nucleotide sequence of cDNA

The nucleotide sequence of cDNA was analyzed by using DNA automatic sequencer 373A produced by Applied

was determined for about 750 clones which were randomly selected.

(2) Homology search

Partial sequences of about 750 clones were searched with a computer using BlastX. As a result, three clones appeared to be homologues of bacterial cellulose synthase subunit. Therefore, it was tried to isolate full length clones.

<5> Isolation of full length clones

#### (1) 5'-RACE

5

10

15

20

25

30

35

40

45

50

55

As a result of the homology search, the obtained homologue clones were found to be partial length clones. Therefore, primers were synthesized to make elongation toward the 5' upstream so that RT-PCR was performed by using mRNA as a template.

#### (1-a) Synthesis of first-strand DNA

The following solution was prepared and mixed in a tube.

0.5  $\mu$ l 10  $\mu$ mol gene-specific primer 1; 1 pg total RNA; DEPC-treated H₂O (adjusted to give a total amount of 9  $\mu$ l).

The following oligonucleotides were used as the gene-specific primer, 1. That is, an oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 15 was used for PcsA1. An oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 16 was used for PcsA2. An oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 17 was used for PcsA3

The reaction solution was gently mixed, and then it was centrifuged under a mild condition to allow the reaction solution to fall to the bottom of the tube. The solution was left to stand at 70 °C for 10 minutes, followed by immediate cooling on ice.

Next, the following solution was prepared and mixed in the tube.

5 x RT Buffer 5 p1; 25 mM MgCl₂ 2.5  $\mu$ l; 2 mM dNTP mix 5  $\mu$ l; 0.1 M DTT 2.5  $\mu$ l; H₂O (added to give a total amount of 24  $\mu$ l).

The solution was gently agitated, and then it was centrifuged under a mild condition to allow the reaction solution to fall to the bottom of the tube, followed by being left to stand at 42 °C for 1 minute. The solution was added with 1  $\mu$ l of SuperScriptll RT (reverse transcriptase, GIBCO BRL), and it was gently mixed. After that, the reaction was performed at 42 °C for 50 minutes. Subsequently, the reaction solution was left to stand at 70 °C for 15 minutes to stop the reaction. Centrifugation was performed under a mild condition to allow the reaction solution to fall to the bottom of the tube, followed by being left to stand at 37 °C. RNase H (produced by Toyobo) in an amount of 1  $\mu$ l was added thereto to perform a reaction at 37 °C for 30 minutes.

Subsequently, in order to remove excessive primers and nucleotides contained in the reaction solution, gel filtration was performed by using a purification column produced by Boehringer, Quick Spin Columns. At first, the tip of the column was removed, followed by centrifugation at 1,100 x g for 2 minutes to discard the buffer. The reaction solution was introduced into the central area of the column, followed by centrifugation at 1,100 x g for 4 minutes to recover the solution.

#### (1-b) Poly(dC) tailing

10

15

20

25

30

35

40

45

50

55

An aliquot (5 µl) was dispensed from the obtained solution, to which the following solution was added.

5 μl 5 x CoCl₂ Buffer;

2.5 µl 2 mM dCTP:

H₂O (adjusted to give a total amount of 24 μl).

The reaction solution was mixed well, and it was left to stand at 94 °C for 3 minutes. Centrifugation was performed under a mild condition to allow the reaction solution to fall to the bottom of the tube, followed by being left to stand on ice. Terminal transferase TdT (produced by Toyobo) was added thereto in an amount of 1 μl, followed by mixing under a mild condition to perform a reaction at 37 °C for 10 minutes. Subsequently, the reaction solution was left to stand at 65 °C for 10 minutes to stop the reaction.

#### (1-c) PCR reaction

An aliquot (2.5 µI) was dispensed from the reaction solution, to which the following solution was added.

2.5 µl 10 x PCR Buffer;

2.5 µl 2 mM dNTP mix;

0.5 µl Gene-specific primer 2;

0.5 µl Abridged Anchor Primer (GIBCO BRL);

0.5 µl Advantage Klentag Polymerase Mix (Clontech);

 $H_2O$  (adjusted to give a total amount of 25  $\mu$ I).

The following oligonucleotides were used as Gene-specific primer 2. That is, an oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 18 was used for PcsA1. An oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 19 was used for PcsA2. An oligonucleotide having a nucleotide sequence shown in SEQ ID NO: 20 was used for PcsA3.

The solution was introduced into a 0.2 ml tube to perform the PCR reaction under the following condition.

PAD	94 °C	90 seconds
30 cycles	94 °C	30 seconds
	60 to 68 °C	30 to 60 seconds
1	68 °C	180 seconds
Final	68 °C	7 minutes
Hold	4 °C	

The reaction solution was subjected to agarose gel electrophoresis to extract, from the gel, DNA's corresponding to portions having the largest size (about 1.8 K for PcsA1, about 2 K for PcsA2, and about 2.2 K for PcsA3). GENO-BIND produced by CLONTECH was used for the extraction, and the procedure was carried out in accordance with its protocol. The DNA thus obtained was subjected to Poly(dC)tailing, which was used as a template to perform the PCR reaction. The condition and the composition of the reaction solution were the same as those described above.

#### (2) Cloning

#### (2-a) 5'-RACE TA cloning

Starting from the obtained PCR reaction solution, cloning was performed by using TA Cloning Kit produced by Invitrogen in accordance with its protocol.

The following solution was added to an aliquot (1.5 µl) of the PCR reaction solution obtained as described above.

0.5 μl 10 x Ligation Buffer; 1 μl pCRII vector; 0.5 μl T4 DNA Ligase; 1.5 μl dH₂O.

5

10

The reaction was performed at 14 °C overnight. An aliquot (2 p1) of the reaction solution was added to 25 p1 of Escherichia coli competent cell (JM109) preparation, followed by being left to stand for 30 minutes on ice. After that, heat shock was applied at 42 °C for 30 seconds. The solution was stationarily left to stand on ice for 2 minutes, to which 450 µl of SOB medium was thereafter added to perform cultivation at 37 °C for 1 hour with shaking at 200 rpm. The culture was spread over Amp/Xgal/IPTG plate, followed by incubation at 37 °C overnight. The plasmid was extracted from obtained colonies in accordance with the method as described above.

15

20

The procedure was carried out by using DNA Sequencer 377 produced by ABI in accordance with its protocol. The sequencing reaction was performed by using M13 primer and synthetic oligomer as primers, based on the use of Dye Terminater Cycle Sequencing Kit produced by the same company. As a result of the sequencing, as for PcsA3, it was revealed that another clone also belonging to the group of PcsA3 but having a slightly different sequence (one position for amino acid) was isolated (see Figs. 3 and 4). A nucleotide sequence of a clone (PcsA3-682) containing the 3'-side region of PcsA3 and an amino acid sequence deduced from this nucleotide sequence are shown in SEQ ID NOs: 5 and 6. A nucleotide sequence deduced from this nucleotide sequence are shown in SEQ ID NOs: 7 and 8. A nucleotide sequence of a 3'-portion (PcsA3-3') of the clone and an amino acid sequence deduced from this nucleotide sequence are shown in SEQ ID NOs: 9 and 10.

25

As for PcsAl and PcsA2, primers for 5'-terminal and 3'-terminal of a region containing ORF were synthesized on the basis of the obtained sequences to perform the PCR reaction. Thus, complete length clones were isolated by means of TA cloning. The condition and the composition of the reaction solution were the same as those described above.

for PcsAl. Oligonucleotides shown in SEQ ID NO: 23 (5'-terminal) and SEQ ID NO: 24 (3'-terminal) were used as the

primers for PcsA2. Results are shown in SEQ ID NOs: 1 to 4.

Oligonucleotides shown in SEQ ID NO: 21 (5'-terminal) and SEQ ID NO: 22 (3'-terminal) were used as the primers

30

35

40

45

50

## Ann x to the description

5

# SEQUENCE LISTING

J	(1) GENERAL INFORMATION:
	(i) APPLICANT: NISSHINBO INDUSTRIES, INC.
	HAYASHI, Takahisa
10	(ii) TITLE OF INVENTION: CELLULOSE SYNTHASE GENE
	(iii) NUMBER OF SEQUENCES: 24
	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE:
15	(B) STREET:
	(C) CITY:
	(E) COUNTRY:
	(F) ZIP:
20	(v) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Floppy disk
	(B) COMPUTER: IBM PC compatible
	(C) OPERATING SYSTEM: PC-DOS/MS-DOS
25	(D) SOFTWARE: PatentIn Release #1.0, Version #1.30
	(vi) CURRENT APPLICATION DATA:
	(A) APPLICATION NUMBER:
20	(B) FILING DATE:
30	(C) CLASSIFICATION:
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: JP 9-83133
35	(B) FILING DATE: 1-APR-1997
	(viii) ATTORNEY/AGENT INFORMATION:
	(A) NAME:
	(B) REGISTRATION NUMBER:
40	(ix) TELECOMMUNICATION INFORMATION:
	(A) TELEPHONE:
	(B) TELEFAX:
45	(2) INFORMATION FOR SEQ ID NO: 1:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 3207 base pairs
	(B) TYPE: nucleic acid
50	(C) STRANDEDNESS: double
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: cDNA to mRNA
	(v1) ORIGINAL SOURCE:
55	(A) ORGANISM: Gossypium hirsutum L.

(C) INDIVIDUAL ISOLATE: Coker312

	Ki)	) FE	ATURI	Ξ:													
		(,	A) N	AME/I	ŒY:	$\cos$											
5		(	B) L	OCAT:	ION:	773	3001										
	(xi	) SE						EQ 1	D NO	): 1:							
	GGTTAGC											AAGA	AG G	AGAA	AGATA	60	
	AGTAATG															109	
10														is T			
				-	1				5				_	10			
	Cys Gly	Glu	His	val	GIV	Teu	ASO	Val.	ASIN	GIV	Glu	Pro	Pne	Vail-	Ala		
15	C12 011		15		J-3			20		•			2				
	TGC CAT	CAA			TTC	CCT	ATT	TCT	AAG	AGT	TGT	TTT	GAG	TAT	GAT	205	
	Cys His																
	0,0	30	_				35		•		-	4		_			
20	CTT AAG			CAA	AAA	GCT	TGC	TTG	CCT	TGT	GGT	ATT	$\infty$	TAT	GAT	253	
	Leu Lys																
	45		<b>U</b>		-,, -	50				•	- 5!			_			
	GAA AAC		באניני	GAC	САТ			AAG	œ	ACC	GGC	GAT	CAA	TCG	ACA	301	
25	Glu Asn																
	60			. Др	65			-1 -		70	_	•			75		
	ATG GCI	GCA	СЪТ	Jeff			יויטד	CAG	GAT			TTA	CAT	GCA	AGA	349	
	Met Ala																
30	PEC PAC			80		-7-			89		4				0		
	CAT ATC	AGC.	АСТ			ACA	TTG	GAT	AGT	GAA	ATG	ACT	GAA	GAC	AAT	397	
	His Ile																
			95					100					10	_			
35	GGG AAT	· ccc			AAG	AAC	AGG	GTG	GAA	AGT	TGG	AAA	GAA	AAG	AAG	445	
	Gly Asr																
	<b>4-2</b>	110			•		115				_	12					
•	AAC AAG			AAG	CCT	GCA	ACA	ACT	AAG	GIT	GAA	AGA	GAG	GCT	GAA	493	
40	Asn Lys																
	125		-3-	-4		130					13						
	ATC CC		GAG	CAA	CAA	ATG	GAA	GAT	AAA	$\infty$	GCA	$\infty$	GAT	GCT	TCC	541	
	Ile Pro																
45	140				145			•	•	150			_		155		
	CAG CCC	crc	TCG	ACT	ATA	ATT	CCA	ATC	$\infty$	AAA	AGC	AGA	CIT	GCA	CCA	589	
	Gln Pro																
	J			160					165			•		17			
50	TAC CGA	ACC	GIG			ATG	CGA	TTG			CTC	GGT	CIT	TTC	TTC	637	
	Tyr Arg																
	-1	, <del>-</del>					- 3		_	_		-					

	175								180	)				18	5		
	CAT	TAT	<b>OGA</b>			AAC	$\infty$	GTT	GAC	AGT	GCT	TTT	GGA	CIG	TGG	CTC	685
	His	Tyr	Arg	Val	Thr	Asn	Pro	Val	Asp	Ser	Ala	Phe	Gly	Leu	Trp	Leu	
5			190					195	5				20	0			
	ACT	TCA	GTC	ATA	TGT	GAA	ATC	TGG	TTT	GCT	TTT	TCC	TGG	GIG	TTG	GAT	733
	Thr	Ser	Val	Ile	Cys	Glu	Ile	Trp	Phe	Ala	Phe	Ser	Trp	Val	Leu	Asp	
		205					210	)				219	5				
10						TAT											781
	Gln	Phe	Pro	Lys	Trp	Tyr	Pro	Val	Asn	Arg	G1u	Thr	Tyr	Ile	Asp	Arg	
	220					225					230					235	
						GAA											829
15	Leu	Ser	Ala	Arg	Tyr	Glu	Arg	Glu	Gly	Glu	Pro	Asn	Glu	Leu			
					240					249					25		
						AGT											877
	Val	yab	Phe	Phe	Val	Ser	Thr	Val	Asp	Pro	Leu	Lys	Glu			Leu	
20				255					260					26			
						GIG											925
	Ile	Thr	Ala	Asn	Thr	Val	Leu			Leu	Ala	Leu			Pro	Val	
			270					275					280				050
25						TAT											973
	Asp	_	Val	Ser	Cys	TYT			Asp	Asp	Gly			Met	Leu	Thr	
	٠	285					290			_		29					1001
						GAA											1021
30		Glu	Ser	Leu	Val	Glu		Ala	Asp	Phe		_	Lys	Trp	vai		
	300					305					310					315	1000
						TCC											1069
	Phe	Cys	Lys	Lys		Ser	Ile	Glu	Pro			Pro	Glu	Phe			
35					320				~	325		~~	~~~		33		1117
						TAC											1117
	Ser	Gln	Lys			Tyr	Leu	Lys			var	GIN	PIO			var	
			~~	335				101	340		C3.3	CNC	mac.	34		CCR	1165
40						ATG											1100
	Lys	GIU	_	Arg	ATA	Met	rås			туг	GIU	GIU			TTE	ALG	
			350					355				~~	360		~~	m~~	1212
						GCA											1213
45	He		ATS	Leu	vaı	Ala			GШ	гуs	ш			GIU	GTĀ	ILD	
		365	~ ~	~~~	~~*	x com	370		~~	~~	n a a	375		سعب	CVW	CNC	1261
						ACT											1201
		met	GILD	wsp	GTĀ	Thr		тф	PLU	GTĀ			FLU	n.y	uzih	395	
50	380	~~	100	3.000	CAC	385		~mm	~~	mam	390		CCT	Cam	CNC		1300

	Pro	Gly	Met	Ile	Gln	Val	Phe	Leu	Gly	Tyr	Ser	Gly	Ala	His				
					400					405					410			
5		GGA															1357	
3	Glu	Gly	Asn	Glu	Leu	Pro	Arg	Leu	Val	Tyr	Val	Ser	Arg		_	Arg		
				415					420					42				
		GGC															1405	
10	Pro	Gly	Tyr	Gln	His	His	Lys			Gly	Ala	Glu			Leu	Val		
70			430					435					440			C2 T	1.450	
	AGG	GIG	TCT	GCA	GTT	CTT	ACA	AAT	CCT	$\infty$	TIC	ATC	CIC	AAT	CIT	GAT	1453	
							450											
15		445					450			~~~	~~~	459		~~	λπ <b>∵</b>	moc	1501	
7.5		GAC															1301	٠
		Asp	His	TYT	Vai			ser	rås	ALA		_	GIU	ма	MEC	475		
	460					465		~~	~~1	C) M	470		mam.	CITY.	CAG		1549	
20		TTG															1343	
20	Phe	Leu	Met	Asp			vaı	GLY	Arg		_	Cys	тұт	Vai	49			
					480			C a m		489	_	~~3	mam.	~			1597	
		CAA															1357	
25	Pro	Gln	Arg	_		GIĀ	116	ASP		_	ASp	AIG	TYL	50!	_	мg		
23				495		C3.00	C TOTAL	330	500		~~	Calian.	CATI		-	CAA	1645	
		ACA															1040	
	ASN	Thr			me	ASD	var	515		rys	GIY	Leu	7520		116	OLI I		
20	~~~	CT	510		~	~~*	NCN			Calan	مخلفان	חמא			CC.Y	ستت	1693	
30		Pro																
	GIĀ	525	var	TAT	vai	GTA	530		Cys	Val	1125	53!		<b></b>				
	mam	GGC	መልጥ	~~	CC3	CCTP.			CC3	ልርጥ	بلعلمك			TCA	TCC	TCC	1741	
35		Gly																
33	540		ıyı	GTÄ	110	545		. 20	110	-	550		-1-			555		
		TCT	arcc.	TYC:	יובאוי			œ	GGC	AAG			CCT	AAA	GAT	CCA	1789	
		Ser																
40	٠		O ₁ O	-	560		0,10		1	56!	_			•	- 57			
40	TYCA	GAG	СПТ	ТАТ			GCA	AAA	œ			CTT	GAT	GCT	$\infty$	ATC	1837	
		Glu																
				575				•	580				_	58				
45	Jalalı	AAC	CTT			ATT	GAC	AAT			GAG	TAT	GAA	AGA	TCA	ATG	1885	
,,,		Asn																
			590		-		-	595		_		-	60					
	TTG	ATC			ACA	AGC	TTT	GAG	AAA	ACT	TTT	GGC	TTA	TCT	TCA	GTC	1933	
50		Ile																
50		605					610		-			61						

	TTC	ATT	GAA	TCT	ACA	CTA	ATG	GAG	AAT	GGA	GGA	GTG	CCT	GAA	TCI	œc	1981
					Thr												
5	620					625					630					635	
5	AAC	CCT	TCC	ACA	CTA	ATC	AAG	GAA	GCA	ATT	CAT	GTC	ATC	œc	TGT	GGC	2029
	Asn	Pro	Ser	Thr	Leu	Ile	Lys	Glu	Ala	Ile	His	Val	Ile	Gly	Cys	Gly	
					640					645					65		
0					ACT												2077
U	Tyr	Glu	Glu	Lys	Thr	Ala	Trp	Gly	Lys	Glu	Ile	Gly	Trp	Ile	Tyr	Gly	
				655					660					66			
					GAT												2125
15	Ser	Val	Thr	Glu	Asp	Ile	Leu	Thr	Gly	Phe	Lys	Met	His	Cys	Arg	Gly	
5			670					675					68				
					TAC												2173
	Trp	Arg	Ser	Ile	Tyr	Cys	Met	Pro	Leu	Arg	Pro	Ala	Phe	Lys	Gly	Ser	
		685					690					699					2001
20					CIG												2221
	Ala	Pro	Ile	Asn	Leu			Arg	Leu	His			Leu	Arg	Trp		
	700					705					710					715	2260
					GAA												2269
?5	Leu	Gly	Ser	Val	Glu		Phe	Leu	Ser		_	Cys	Pro	Leu	_	_	
					720					72				~~	73		2217
					GGT												2317
	Gly	Phe	Gly		Gly	Arg	Leu	Lys			GIV	Arg	Leu			116	
30				735					740		~~	~~~	3 MM	74	_	mean.	2365
					TAT												2505
	Asn	Thr			Tyr	PTO	Pne			Leu	PIO	Leu		_	TYL	Cys	
	<b></b>	~~~	750		ATC	m~m	C TOTAL	755		CC3	***	للغلغك	760		CCA	MCC	2413
35					Ile												2110
	ser		PIO	ALG	116	cys	770		1111	GLY	Lys	77!		IIE	110	****	
	- CONCO	765	220	CTTC!	GCA	a Catt			بالغلفك	بانداني	ccc			بإملت	TYY	Αστ	2461
					Ala												2.02
10		Ser	ASII	reu	VIG	785		Leu	LIE	LEU	790		1185	بالمل		795	
	780	~~~	3 (VIII	COMI.	GTT			CIC.	CC3	TYY:			حلك	AGC	אייים	-	2509
					Val												
	TTE	AGT	ш	VIG	800		014	Deu	na g	805		<u></u>	•		81		
<del>1</del> 5	CAC	מידים	TYYC	CCT	AAC		CAG	dalah	TCC			GGT	GGC	त्याग			2557
					Asn												
	uah	144U	ייי	815		Ų.Lu	~	تد	820			1	1	82			
	ሮአጥ	Cut.	بإعلمك	-	GTC	יאוייף	CAA	(CTT)	_		AAG	ATG	CIT			ATT	2605
50					Val												
	UTD	4			4-4-4			~-1			-1-				1		

			830					835	5				84	0				
	GAC	ACC	AAC	TTT	ACT	GTC	ACT	$\infty$	AAA	GCA	CCT	GAT	GAT	GCA	GAT	LaLaL	2653	
_	Asp	Thr	Asn	Phe	Thr	Val	Thr	Ala	Lys	Ala	Ala	Asp	Asp	Ala	Asp	Phe		
5		845					850	)				859	5					
	CCT	GAG	CIC	TAC	ATT	GIG	AAA	TGG	ACT	ACA	CIT	CTA	ATC	$\infty$ r	CCA	ACA	2701	
	Gly	Glu	Leu	Tyr	Ile	Val	Lys	Trp	Thr	Thr	Leu	Leu	Ile	Pro	Pro	Thr		
	860					865					870	)				875		
10	ACA	CTC	CTC	ATC	GTC	AAC	ATG	GTT	CCT	GTC	GTT	$\infty$	GGA	TTC	TCC	GAT	2749	
	Thr	Leu	Leu	Ile	Val	Asn	Met	Val	Gly	Val	Val	Ala	Gly	Phe	Ser	Asp		
	$\infty$	CIC	AAC	AAA	GGG	TAC	GAA	GCT	TGG	GGA	CCA	CIC	TTT	GGC	AAA	GIG	2797	
15	Ala	Leu	Asm.	Lys	Gly	Tyr	Glu	Ala	Trp	Gly	Pro	Leu	Phe	Gly	Lys	Val		
				895					900	)				90	5			
	TTC	TTT	TCC	TTC	TGG	GTC	ATC	CTC	CAT	CTT	TAT	CCA	TTC	CTC	AAA	GGT	2845	
	Phe	Phe	Ser	Phe	Trp	Val	Ile	Leu	His	Leu	Tyr	Pro	Phe	Leu	Lys	Gly		
20			910					915	i				920	כ				
	CIT	ATG	GGA	$\infty$	CAA	AAC	AGG	ACA	CCA	ACC	ATT	GTT	GIC	CIT	TGG	TCA	2893	
	Leu	Met	Gly	Arg	Gln	Asn	Arg	Thr	Pro	Thr	Ile	Val	Val	Leu	Trp	Ser		
		925					930					935	5					
25	GTG	TTG	TTG	CCT	TCT	GTC	TIC	TCT	CTT	GTT	TGG	GTT	$\cos$	ATC	AAC	$\infty$	2941	
	Val	Leu	Leu	Ala	Ser	Val	Phe	Ser	Leu	Val	Trp	Val	Arg	Ile	Asn	Pro		
	940					945					950	)				955	÷,	
	TTT	GTC	AGC	ACC	$\infty$	GAT	AGC	ACC	ACC	GTG	TCA	CAG	AGC	TGC	ATT	TCC	2989	
30	Phe	Val	Ser	Thr	Ala	Asp	Ser	Thr	Thr	Val	Ser	Gln	Ser	Cys	Ile	Ser		
					960					965	i				97	ס		
	ATT	GAT	TGT	TGAT	GATA	A TT	TGTG	TTIC	T TA	GAAT	TGAA	ATC	ATTG	CAA			3038	
	Ile .	Asp	Cys															
<i>35</i>	GTAA	CTCC	AC I	GAAA	CATG	T CI	ATTG	ACTA	AGI	TTTG	AAC	agtt	TGTA	$\infty$ c	ATTT	TATTC	3098	
	TTAG	CAGI	GI G	TAAT	TITC	C TA	AACA	ATGC	TAT	GAAC	TAT	ACAT	ATTT	CA T	TGAT	ATTTA	3158	
	CATT	AAAT	GA A	ACTA	CATC	A GT	CTGC	AGAA	AAA	AAAA	AAA	AAAA	AAAA	A			3207	
40	(2)																	
		( <b>1</b> )	SEC	-														
			• -	A) Li					acio	is								
			•	3) T														
45			-	) TC														
45		(ii)	MOL	ECUI	E TY	PE:	prot	ein										
			SEC															
	Met 1	Met	Glu	Ser	Gly	Val	Pro	Val	Cys	His	Thr	Cys	Gly	Glu	His	Val		
	1				5					10	)				19	5		
50	Gly 1	Leu	Asn	Val	Asn	Gly	Glu	Pro	Phe	Val	Ala	Cys	His	Glu	Cys	Asn		

						20						25					30	
	P	æ	Pro	Il	e C	ys Ly	ys S	er	Cys	Ph	e Gl	u Ty	T As	p Le	u Ly	s Gl	u Gl	y Gln
5				3	5					4	40					45		
	L	/S	Ala	Cy:	s Le	eu Ai	ng C	ys ·			e Pr	ζΤ σ	nr As	p Gl	u As	n Le	u Le	u Asp
			50		_				5						60			
10	As	ap E	vaı	GI	u Ly	rs Al	la T		Gly	As	p Gl	n Se	er Th	r Me	t Al	a Ala	a Hi	s Leu
		55 ~	T	Cor	- 01			70 - 7						75				80
	56	т.	пŽ2	Sei	r GI	n As	Sp V	aı (	SIY	116	e Hi			g His	s Ile	e Sea	r Sea	r Val
	Se	~	ሙ~	Lou	, A-		85 C	1 <b>.</b>		<b></b>	. 63		90					95
15	56	·4.	****	Let	10	р se Ю	ur G.	IU P	net	Thi		u As OS	p Ası	n Gly	? Ası		) Ile 10	e Trp
	Ly	S	Asn	Arg	j Va	1 G1	u Se	er 7	ďτΊ	Lys	Gl:	ı Ly	s Ly:	s Ast	ı Lys	Lys	Lys	s Lys
				115	5					12	0				12	25		
20	Pr	0 2	Ala	Thr	Th	r Ly	s Va	al G	lu	Arg	, Gli	ı Ala	a Glu	ı Ile	Pro	Pro	Glu	Gln
			130						135					14	Ю			
	GL	ת מ	<b>let</b>	Glu	Ası	p Ly			la	Pro	Asp	Ala	a Ser	Gln	Pro	Leu	Ser	Thr
	14			_				50					15					160
25	116	<b>e</b> ]	те	Pro	Ile	e Pro	o Ly	rs S	er	Arg	Leu	Ala	Pro	Tyr	Arg	Thr	Val	Ile
	71.	_		•	_	16						17					17	75
	TTE	9 P	æt	Arg	Let	) ITe	≥ I1	e L	eu	Gly			Phe	His	Tyr	Arg	Val	Thr
30	λον		<b>~</b> ~	7701	180						18					19	0	
				195						200	)		Leu		20	5		
	Glu	ı I	le '	Imp	Phe	Ala	Ph	e Se	er '	Trp	Val	Leu	Asp	Gln	Phe	Pro	Lys	Trp
35		2	10					2	215					220	)		•	
00	Тут	P	ro 7	Val	Asn	Arg	Gl	u Ti	ur '	Tyr	Ile	Asp	Arg	Leu	Ser	Ala	Arg	Tyr
	225	1					23	0					23	5				240
	GIU	. A:	rg (	ilu	GLY	Glu	. Pro	) As	3U (	Glu	Leu	Ala	Ala	Val	Asp	Phe	Phe	Val
40	C	mi	<b></b> •	r_ <b>7</b>		245						250					25	5
	Ser	11	TE.	/aı	ASP	Pro	Let	ı Ly	rs (	Slu			Leu	Ile	Thr			Thr
	Val	T	311 C	or	260		<b>37</b> -				_265 					270	)	
	•		3 <b>u</b> 0	275	116	Leu	MIC	LE			JĀĽ	Pro	Val	Asp			Ser	Cys
45	Tvr	71			Δen	) Aen	Glv	, Al		280	14a+	T	mt.		285	j _	_	
	-1-	29	90	<u> </u>	· wp	rap	Gry		95	ща	Met	Leu	Thr	300		Ser	Leu	Val
	Glu	Th	r A	la i	Asp	Phe	Ala	Ar	g L	ys	Trp	Val	Pro	Phe	Cvs	Lvs	Lvs	Phe
50	305						310	)					315					320
	Ser	Il	e G	lu 1	Pro	Arg 325	Ala	Pro	o G	lu :	Phe	Tyr 330	Phe	Ser (	Gln :	Lys :		Asp
	Tyr	Le	u Ly	ys A	Asp		Val	Gli	n P	ro s	Ser		Val :	[ve (	21	<b>.</b>	335	, 71 -
55				;	3 <b>4</b> 0	-				- •	345		-	Jys (	<i>J</i> 14 <i>I</i>	350	ug /	arg

	Met	Lys	<b>Arg</b> 355	Asp	lyr	GIU	GIU	360	_	me	Arg	me	36!		Leu	var
5	Ala	Lys	Ala	Gln	Lys	Thr			Glu	Gly	Trp			Gln	Asp	Gly
	Thr	370 Pro	Trp	Pro	Gly	Asn	375 Asn		Arg	Asp	His	380 <b>Pro</b>		Met	Ile	Gln
	385					390					395					400
10	Val	Phe	Leu	Gly	Tyr 405		Gly	Ala	His	Asp 410		Glu	Gly	Asn	Glu 41	
	-10	2		4.10-3-		1.10-1-	-80-	-A	-01	Toron	-7	-8	<u> </u>	The same	<u> </u>	Ude
										,					J	
15	His	Lys	Lys 435	Ala	Gly	Ala	Glu	Asn 440		Leu	Val	Arg	Val 44		Ala	Val
	Leu	Thr 450	Asn	Ala	Pro	Phe	Ile 455		Asn	Leu	Asp	Cys 460	_	His	Tyr	Val
20	Asn	Asn	Ser	Lvs	Ala	Val			Ala	Met	Cvs			Met	ASD	Pro
	465	, ,		_,_		470	_	0_0		. 20	475					480
		Val	Gly	Arg	Asp	Val	Cys	Tyr	Val	Gln	Phe	Pro	Gln	Arg	Phe	Asp
					485					490	)				49	5
25	Gly	Ile	Asp	Arg 500		Asp	Arg	Tyr	Ala 505		Arg	Asn	Thr	Val 51		Phe
	Asp	Val	Asn 515	Met	Lys	Gly	Leu	<b>Asp</b> 520	_	Ile	Gln	Gly	Pro 52!		Tyr	Val
30	Gly	Thr 530	Gly	Cys	Val	Phe	Asn 535		Gln	Ala	Leu	Tyr 540		Tyr	Gly	Pro
	Pro	Ser	Met	Pro	Ser	Phe			Ser	Ser	Ser			Cys	Ser	Cys
35	545					550					555	5				560.
33	Cys	Cys	Pro	Gly	Lys 565	Lys	Glu	Pro	Lys	<b>Asp</b> 570		Ser	Glu	Leu	Tyr 57	
	Asp	Ala	Lys	Arg	Glu	Glu	Leu	Asp	Ala	Ala	Ile	Phe	Asn			Glu
40				580				_	585					590		
	Ile	Asp	<b>As</b> n 595	Tyr	Asp	Glu	Tyr	Glu 600	•	Ser	Met	Leu	Ile 60	_	Gln	Thr
45	Ser	Phe 610	Glu	Lys	Thr	Phe	Gly 615		Ser	Ser	Val	Phe 620		Glu	Ser	Thr
	Leu	Met	Glu	Asn	Gly	Gly	Val	Ala	Glu	Ser	Ala	Asn	Pro	Ser	Thr	Leu
	625				_	630					635	5				640
50	Ile	Lys	Glu	Ala	Ile	His	Val	Ile	Gly	Cys	Gly	Tyr	Glu	Glu	Lys	Thr
50					645					650					65	
	Ala	Trp	Gly		Glu	Ile	Gly	Trp			Gly	Ser	Val			Asp
	710	Leu	wh~	660	Dha	T szec	Ma+	u: ~	665		Gl vr	<b>Т</b>	λ <b>~~</b> ~	670		ጥነም
55	TTE	æu	HIT.	Этγ	FIR	nys	1.E.C	UTS	cγs	љу	GTÅ	тъ	лц	ær	TTE	1 X T

	675 680 685
	Cys Met Pro Leu Arg Pro Ala Phe Lys Gly Ser Ala Pro Ile Asn Leu
5	690 695 700
J	Ser Asp Arg Leu His Gln Val Leu Arg Trp Ala Leu Gly Ser Val Glu
	700 710 ===
	Ile Phe Leu Ser Arg His Cys Pro Leu Trp Tyr Gly Phe Gly Gly
10	725
	Arg Leu Lys Trp Leu Gln Arg Leu Ala Tyr Ile Asn Thr Ile Val Tyr
	740 745 750
	Pro Phe Thr Ser Leu Pro Leu Ile Ala Tyr Cys Ser Leu Pro Ala Ile
15	755 760 765
	Cys Leu Leu Thr Gly Lys Phe Ile Ile Pro Thr Leu Ser Asn Leu Ala
	770 775 780
_	Ser Val Leu Phe Leu Gly Leu Phe Leu Ser Ile Ile Val Thr Ala Val
* 20	700 700 700
	Leu Glu Leu Arg Trp Ser Gly Val Ser Ile Glu Asp Leu Trp Arg Asn
	805 810 815
25	Glu Gln Phe Trp Val Ile Gly Gly Val Ser Ala His Leu Phe Ala Val
25	820 825 830
	Phe Gln Gly Phe Leu Lys Met Leu Ala Gly Ile Asp Thr Asn Phe Thr
	835 840 845
30	Val Thr Ala Lys Ala Ala Asp Asp Ala Asp Phe Gly Glu Leu Tyr Ile
	855 860
	Val Lys Trp Thr Thr Leu Leu Ile Pro Pro Thr Thr Leu Leu Ile Val
	870 875 890
35	Asn Met Val Gly Val Val Ala Gly Phe Ser Asp Ala Leu Asn Lys Gly
	885 890 805
	Tyr Glu Ala Trp Gly Pro Leu Phe Gly Lys Val Phe Phe Ser Phe Trp
	900 905 910
40	Val Ile Leu His Leu Tyr Pro Phe Leu Lys Gly Leu Met Gly Arg Gln
	915 920 925
	Asn Arg Thr Pro Thr Ile Val Val Leu Trp Ser Val Leu Leu Ala Ser
45	935 940
45	Val Phe Ser Leu Val Trp Val Arg Ile Asn Pro Phe Val Ser Thr Ala
	950 955 060
	Asp Ser Thr Thr Val Ser Gln Ser Cys Ile Ser Ile Asp Cys
50	965 970
	(2) INFORMATION FOR SEQ ID NO: 3:
	(i) SEQUENCE CHARACTERISTICS:
55	(A) LENGTH: 3311 base pairs

	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: double
_	(D) TOPOLOGY: linear
5	(11) MOLECULE TYPE: cDNA to mRNA
	(vi) ORIGINAL SOURCE:
	(A) ORGANISM: Gossypium hirsutum 1
	(C) INDIVIDUAL ISOLATE: Coker312
10	(ix) FEATURE:

(A) NAME/KEY: CDS

		(xi	SEX	WENC	E DI	SOR	<b>(2) (</b> (	N: S	(E)	D N	): 3:						
15	CTT												GCC	GC1	GGC	TTT	52
							Me	t Al	a Se	ar Th	ır Th	ir Me	t Al	a Al	a Gl	y Phe	
								1				5				10	
					GIT												100
20	Gly	Ser	Leu	Ala	Val	Asp	Glu	Asn	Arg	Gly	Ser	Ser	Thr	His			
					15					20					_	5	1.10
					TCC												148
25	Ser	Thr	Lys		Cys	Arg	Val	Cys			Lys	Ile	Gly	_	_	Glu	
23		•		30					35					4	_		106
					TTC												196
	Asn	Gly		Pro	Phe	Val	Ala			Val	Cys	Ата			vaı	Cys	
30			45		~	<b></b>	~	50		<b>~11</b>	~~		5!	_	ىنىكىن	<b>~</b> ™	244
•					GAA												2
	Arg		Cys	TYT	Glu	ıyr			ser	GIU	GTĀ	ASI1		Cys	Cys	PIO	
	~~	60	220	» (TIII	œ	mam	65		CAC	222	بلتك		-	ACA	ידיינימ	TΥ	292
35					Arg												2,2
	75	Cys	nsi:	1111	мy	80		AL G	1113	L ₁ 3	85		110	9		90	
		ርኔልጥ	GAA	GAA	GAT			GAT	CAA	GAT		-	GAT	GAT	GAA	TTT	3 <b>4</b> 0
					Asp												
40	<b>0-1</b>				95					100			-	_	10		
	CAG	ATT	AAG	AAC	œ	AAG	GAT	GAC	TCC	CAT	CCA	CAA	CAT	GAA	AAT	GAG	388
					Arg												
			•	110		_	_		115					120			
45	GAA	TAT	AAT	AAT	AAT	AAT	CAT	CAA	TGG	CAT	$\infty$	AAT	GGT	CAA	GCT	TTC	436
	Glu	Tyr	Asn	Asn	Asn	Asn	His	Gln	Trp	His	Pro	Asn	Gly	Gln	Ala	Phe	
			125					130	)				135	5			
	TCA	GTT		GGA	AGC	ACG	$\cos$	GGG	AAG	GAT	TIG	GAA	GGG	GAT	AAA	GAG	484
50	Ser	Val	Ala	Gly	Ser	Thr	Ala	Gly	Lys	Asp	Leu	Glu	Gly	Asp	Lys	Glu	
		140					145					150	)				

	ATT	TAC	GGA	AGC	GAA	GAA	TGG	AAA	GAA	AGA	GTT	GAG	AAA	TGG	AAA	GTC	532		
															Lys				
	155	_	_			160					165	5				170			
5	AGG	CAA	GAA	AAA	AGA	CCT	TTG	GTA	AGC	AAC	GAT	AAT	GGC	GGA	AAT	GAT	580		
	Arg	Gln	Glu	Lys	Arg	Gly	Leu	Val	Ser	Asn	Asp	naA	Gly	Gly	Asn	Asp			
					175					180	)				18	5			
10	$\infty$ r	CCT	GAA	GAA	GAT	GAT	TAT	CTC	TTG	CCT	GAA	CCT	œc	CAG	CCT	CTA	628		
10	Pro	Pro	Glu	Glu	Asp	Asp	Tyr	Leu	Leu	Ala	Glu	Ala	Arg	Gln	Pro	Leu			
				190					195					20					
															œ		676		
15	Trp	Arg	Lys	Val	Pro	Ile	Ser	Ser	Ser	Leu	Ile	Ser			Arg	Ile			
,•			205					210					21				=		
															TTC		724		
	Val	Ile	Val	Leu	Arg	Phe	Phe	Ile	Leu	Ala	Phe		_	Arg	Phe	Arg			
20		220					225					230				~~~	777		
															TCT		772		
		Leu	Thr	Pro	Ala			Ala	TYL	Pro			Leu	116	Ser	250			
	235					240					245		0 h m	CNC	(TITIC)		820		
25															TTC		020		
	Ile	CAR	Glu	Val			ATA	Pne	Ser		_	Leu	ASP	GIII	Phe 26				
		maa	mma	~~	255		~~	CNA	الم	260		ርአጥ	œ	CMC.	TCC		868		
															Ser		000		
30	гĀЗ	пр	FIRE	270		1111	πy	Giu	275	_	Leu	Lup	. Lg	28	_				
	ACC:	dut.	CAA			GCA.	GAG	œ			Cilai	GGC	$\alpha \alpha c$		GAC	GTC	916		
															Asp				
	· ug		285	_	-	<b>4-1</b>		290					29		•				
35	TTC	GTC			GTT	GAC	CIT	CTC	AAG	GAA	$\infty$	$\infty$	ATC	ATA	ACC	GCC	964		
															Thr				
		300				_	305		_			310	1						
40	AAC	œ	GIT	CTA	TCG	ATC	TTG	$\infty$	GTC	GAT	TAC	$\infty$	GTC	GAG	AAA	GTG	1012		
40	Asn	Ala	Val	Leu	Ser	Ile	Leu	Ala	Val	Asp	Tyr	Pro	Val	Glu	Lys	Val			
	315					320					325	5				330			
	TGT	TGT	TAT	GTG	TCG	GAC	GAT	GGT	CCT	TCC	ATG	CIT	CTT	TTC	GAT	TCG	1060		
45	Cys	Cys	Tyr	Val	Ser	Asp	Asp	Gly	Ala	Ser	Met	Leu	Leu	Phe	Asp	Ser			
, ,					335					340	)				34	5			
	TTG	TCT	GAA	ACG	CCT	GAG	TTC	$\cos$	AGG	AGA	TGG	GIT	$\infty$	TIT	TGT	AAG	1108		
	Leu	Ser	Glu	Thr	Ala	Glu	Phe	Ala	Arg	Arg	Trp	Val	Pro	Phe	Cys	Lys			
50				350					355					36					
															GAG		1156		
	Lys	His	Asn	Val	Glu	Pro	Arg	Ala	Pro	Glu	Phe	Tyr	Phe	Asn	Glu	Lys			

•

		365					370						37	5				
	ATT	GAT			AAG	GAC	AAG	GTC	CAT	CCT	AGC	TTT	GIT	AAA	GAA	œ	1204	
_	Ile	Asp	Tyr	Leu	Lys	Asp	Lys	Val	His	Pro	Ser	Phe	Val	Lys	Glu	Arg		
5		380	•		_	_	385					390	_					
	AGA	œ	ATG	AAA	AGG	GAA	TAT	GAA	GAA	TTT	AAA	GTA	AGG	ATC	AAT	GCA	1252	
	Arg	Ala	Met	Lys	Arg	Glu	Tyr	Glu	Glu	Phe	Lys	Val	Arg	Ile	Asn	Ala		
	395					400	)				40	5				410		
10	TTA	GTA	GCA	AAA	GCT	CAG	AAG	AAA	CCA	GAA	GAA	GGA	TGG	GIG	ATG	CAA	1300	
	Leu	Val	Ala	Lys	Ala	Gln	Lys	Lys	Pro	Glu	Glu	Gly	Trp	Val	Met	Gln		
										,								
4.5	GAT	GGC	ACC	CCA	TGG	-coc	CEA	AAT	AAC	ACT	-CGI	CAT	CAST	UUT	-005-	-21110-		
15	Asp	Gly	Thr	Pro	Trp	Pro	Gly	Asn	Asn	Thr	Arg	Asp	His			Met		
				430					435	5				44	0			
	_	CAG															1396	
22	Ile	Gln		Tyr	Leu	Gly	Ser			Ala	Leu	yab			Gly	Lys		
20			445					450					45					
		CIG															1444	
	Glu	Leu	Pro	Arg	Leu	Val	-		Ser	Arg	Glu	_		Pro	GLY	Tyr		
05		460					465		010		~~	470	-	~~	~~~	morn.	1.400	
25		CAC															1492	
		His	HIS	ràs	rys			ATa	GIU	ASI		_	var	Arg	vair	490		
	475	GIG	CTDDD	3 CTT	a a m	480		mmc	BOTA	пито	489	_	CATT	للمحالة	CATT		1540	
20		Val															1340	
30	ALG	vai	Lesu	1111	495		FLO	FIE	116	500		Deu	rap	Cys	مور 50			
	TAC	ATC	AAC.	ААТ			GCC	ATG	AGG			ATG	TGC	Jalah			1588	
		Ile									_							
<i>35</i>	-2-			510					515				-1-	52				
	GAT	CCT	CAG		GGA	AAG	AAG	CIT	TGT	TAT	GIT	CAA	TTT	CCA	CAG	AGA	1636	
	Asp	Pro	Gln	Phe	Gly	Lys	Lys	Leu	Cys	Туг	Val	Gln	Phe	Pro	Gln	Arg		
			525					530	)				535	5				
40	TTT	GAT	GGT	TTA	GAT	CCT	CAT	GAT	CGA	TAT	CCT	AAT	CGA	AAT	GTT	GIC	1684	
	Phe	Asp	Gly	Ile	Asp	Arg	His	Asp	Arg	Tyr	Ala	Asn	Arg	Asn	Val	Val		
		540					545					550	)					
	TTC	TTT	GAT	ATC	AAC	ATG	TIG	GGA	TTA	GAT	GGA	CIT	CAA	GGC	$\infty$ T	GTA	1732	
45	Phe	Phe	Asp	Ile	Asn	Met	Leu	Gly	Leu	Asp	Gly	Leu	Gln	Gly	Pro	Val		
	555					560					565	5				570		
	TAT	GTA	œc	ACA	GGG	TGT	GIT	TTC	AAC	AGG	CAG	GCA	TTG	TAT	GGC	TAC	1780	
	Tyr	Val	Gly	Thr	_	Cys	Val	Phe	Asn	_		Ala	Leu	Tyr	_	_		
50					575					580					58			
	GAT	CCA	CCA	GIC	TCT	GAG	AAA	CGA	CCA	AAG	ATG	ACA	TGT	GAT	TGC	TGG	1828	

	Asp	Pro	Pro	Val	Ser	Glu	Lys	Arg	Pro	Lys	Met	Thr	Cys	Asp	Cys	Trp	
				590					595	5				60	0		
5	$\infty$ r	TCT	TGG	TGT	TGC	TGT	TGT	TGC	GGA	GCT	TCT	AGG	AAG	AAA	TCA	AAG	1876
	Pro	Ser	Trp	Сув	Cys	Cys	Cys	Cys	Gly	Gly	Ser	Arg	Lys	Lys	Ser	Lys	
			605					610					61				
					AAG												1924
10	Lys	Lys	Gly	Glu	Lys	Lys			Leu	Gly	Gly			Tyr	Gly	Lys	
		620					625					630			~~	~~*	1077
					ATG												1972
		Lys	Lys	Met	Met			Asn	TYX	Val			GTĀ	Ser	ATG		
15	635					640					645		~~1	m>0	<i>-</i>	650	2020
					GAA												2020
	Val	Phe	Asp	Leu	Glu		ITE	GLu	GLu			GIU	GIY	ığı	66.		
					655				~~	660		~~~~	010				2068
20					ACA												2000
	Leu	GIU	rås		Thr	Leu	Met	Ser		_	ASII	FIE	GIU	68 ₆		1185	
	~~~	<i>-</i>	mc13	670	GTT	mmc	N COME	~~	675		uais:	ATYS	CAA			GGC.	2116
					Val												
25	GIĀ	GIN		PIO	var	PIRE	116	690			Deu	PEC	69			OL _I	
	CONTO	~~	685	CC3	ACT	እልጥ	TYYY			CAIC	لملالا	444			ATT	CAC	2164
					Thr												
	Leu	700	Giu	GIY	114	ASI	705					710	_			,	
30	CTLY		ACC.	יובאני	GGT	ТАТ			AAA	ACT	GAG			AAA	GAG	ATC	2212
					Gly												
	715		-	O ₂ O	V2	720					725		-	-		730	
		TGG	ATT	TAT	GGG			ACG	GAA	GAT	АТА	TTA	ACA	CCT	TTC	AAG	2260
35					Gly												
				•	735					740					74		
	ATG	CAT	TGT	AGA	GGG	TGG	AAA	TCG	GTT	TAT	TGT	GTA	∞	AAA	AGA	œ	2308
					Gly												
40			-	750					755					76	_		
	GCA	TTC	AAA	GGG	TCC	CCT	CCA	ATC	AAT	CIC	TCG	GAT	∞	TTG	CAC	CAA	2356
	Ala	Phe	Lys	Gly	Ser	Ala	Pro	Ile	Asn	Leu	Ser	Asp	Arg	Leu	His	GJU	
45			765					770)				77	5			
45	GTT	TIG	AGA	TGG	GCA	CTT	GCT	TCT	GTA	GAA	ATT	TTC	CIT	AGT	α	CAC	2404
	Val	Leu	Arg	Trp	Ala	Leu	Gly	Ser	Val	Glu	Ile	Phe	Leu	Ser	Arg	His	
		780					785					790)				
50	TGT	∞ A	CTT	TGG	TAT	GGT	TAT	GGT	GGA	AAA	CIG	AAA	TGG	CTC	GAG	AGG	2452
	Cys	Pro	Leu	Trp	Tyr	Gly	Tyr	Gly	Gly	Lys	Leu	Lys	Trp	Leu	Glu	Arg	
	795					800					805	5				810	

	CIT	GCT	TAT	ATC	AAC	ACC	ATT	GIT	TAC	CCT	TTC	ACC	TOG	ATC	CT	TTA	2500	
	Leu	Ala	Tyr	Ile	Asn	Thr	Ile	Val	Tyr	Pro	Phe	Thr	Ser	Ile	Pro	Leu		
5					815	;				820)				82	5		
J	CTC	œ	TAT	TGT	ACT	ATT	CCA	GCT	GTT	TGT	CTT	CTC	ACC	GGC	AAA	TTC	2548	
	Leu	Ala	Tyr	Cys	Thr	Ile	Pro	Ala	Val	Cys	Leu	Leu	Thr	Gly	Lys	Phe		
				830					835	5				84	0			
10	ATC	ATT	CCA	ACT	CTA	AGC	AAC	CIT	ACA	AGT	GTG	TGG	TTC	TTG	GCA	CTT	2596	
70	Ile	Ile	Pro	Thr	Leu	Ser	Asn	Leu	Thr	Ser	Val	Trp	Phe	Leu	Ala	Leu		
			845					_850)				85	5				
15	Phe	Leu	Ser	Ile	Ile	Ala	Thr	Gly	Val	Leu	Glu	Leu	Arg	Trp	Ser	Gly		
,3			865	i				870	C									
	GTT	AGC	ATC	CAA	GAC	TGG	TGG	\cos	AAT	GAA	CAA	TTC	TGG	GTG	ATC	GGA	2692	
	Val	Ser	Ile	Gln	Asp	Trp	Trp	Arg	Asn	Glu	Gln	Phe	Trp	Val	Ile	Gly		
20	875					880)				885	5				890		
20	GGT	GTC	TCC	∞	CAT	CIT	TTT	CCT	GIC	TTC	CAG	GGC	CIC	CTC	AAA	GTC	2740	
	Gly	Val	Ser	Ala	His	Leu	Phe	Ala	Val	Phe	Gln	Gly	Leu	Leu	Lys	Val		
					895	;				900)				90	5		
25	CTA	CCT	GGA	GTA	GAC	ACC	AAC	TTC	ACC	GTA	ACA	GCA	AAA	GCA	GCA	GAC	2788	
23	Leu	Ala	Gly	Val	Asp	Thr	Asn	Phe	Thr	Val	Thr	Ala	Lys	Ala	Ala	Asp		
				910					915	5				92	0			
	GAT	ACA	GAA	TIC	CCT	GAA	CTT	TAT	CIC	TTC	AAA	TGG	ACA	ACT	CTC	TTA	2836	
30	Asp	Thr	Glu	Phe	Gly	Glu	Leu	Tyr	Leu	Phe	Lys	Trp	Thr	Thr	Leu	Leu		
•			925					930)				93	5				
													GGA				2884	
	Ile	Pro	Pro	Thr	Thr	Leu	Ile	Ile	Leu	Asn	Met	Val	Gly	Val	Val	Ala		
35		940					945					950	כ					
													TGG				2932	
	Gly	Val	Ser	Asp	Ala			Asn	Gly	Tyr	Gly	Ser	Trp	Gly	Pro			
	955					960					965					970		
40													CAT				2980	
	Phe	Gly	Lys	Leu			Ala	Phe	Trp			Leu	His	Leu	_			
					975					980					98		0000	
													∞				3028	
45	Phe	Leu	Lys	_		Met	GIĀ	Arg			Arg	Thr	Pro			val		
				990					995					100		~~~	0076	
													CTG			_	3076	
	Val	Leu	_		TTE	Leu	Leu			тте	Pne	ser	Leu		dri.	vaT		
50			1005			-	~~~	101			~~	~~-	101			C1.1	2124	
													GIT				3124	
	Arg	H	Asp	Pro	Phe	Leu	Pro	rys	GIN	LUL	GIA	LLO	Val	Leu	rås	GIN		

	1020 1025 1030													
	TGT GGC GTG GAG TGC TAAATGGTGT TTTACAAACC TTTCTTATTA TTTTATTTTC	3179												
5	Cys Gly Val Glu Cys													
	1035													
	OCT-THEFT ACTIVITIES AUTHOROPORT A TOPOLOGICAL ACTIVITIES AUTHOROPORT AND A TOPOLOGICA ACTIVITICA ACTIVITICA ACTIVI													
	CCTTTTGCC ACTACTGTG ATTTGCTGTG ATTCTAAAAG GGATTTATCT TGTTTGTAAA	3239												
	AAGTCTCCTA TGATTTTGTT GGTTCAATTT AATTTCTATA TGGTAAAAAA ATATTTCTTT	3299												
10	AAATTAACTA TA	3311												
	(2) ТЪПТОТТО ПТО 11													
	(2) INFORMATION FOR SEQ ID NO: 4:													
	(1) SEQUENCE CHARACTERISTICS:													
15	(A) LENGTH: 1039 amino acids													
	(B) TYPE: amino acid													
	(D) TOPOLOGY: linear													
	(ii) MOLECULE TYPE: protein													
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 4:													
20	Met Ala Ser Thr Thr Met Ala Ala Gly Phe Gly Ser Leu Ala Val Asp													
	L 5 10 -													
	15													
	Glu Asn Arg Gly Ser Ser Thr His Gln Ser Ser Thr Lys Ile Cys Arg													
25	= - 25 <u>3()</u>													
	Val Cys Gly Asp Lys Ile Gly Gln Lys Glu Asn Gly Gln Pro Phe Val													
	35 40 45													
	Ala Cys His Val Cys Ala Phe Pro Val Cys Arg Pro Cys Tyr Glu Tyr													
30	55 60													
00	Glu Arg Ser Glu Gly Asn Gln Cys Cys Pro Gln Cys Asn Thr Arg Tyr													
	70 75 80													
	Lys Arg His Lys Gly Ser Pro Arg Ile Ser Gly Asp Glu Glu Asp Asp													
	85													
35	Ser Asp Gln Asp Asp Phe Asp Asp Glu Phe Gln Ile Lys Asn Arg Lys													
	100													
	100													
	Asp Asp Ser His Pro Gln His Glu Asn Glu Glu Tyr Asn Asn Asn Asn 115													
40	125													
	His Gln Trp His Pro Asn Gly Gln Ala Phe Ser Val Ala Gly Ser Thr													
	100													
	Ala Gly Lys Asp Leu Glu Gly Asp Lys Glu Ile Tyr Gly Ser Glu Glu													
45	150 155 160													
43	Trp Lys Glu Arg Val Glu Lys Trp Lys Val Arg Gln Glu Lys Arg Gly													
	105 170 175													
	Leu Val Ser Asn Asp Asn Gly Gly Asn Asp Pro Pro Glu Glu Asp Asp													
	180													
50	Tyr Leu Leu Ala Glu Ala Arg Gln Pro Leu Trp Arg Lys Val Pro Ile													
	200 205													

	Ser	Ser 210	Ser	Leu	Ile	Ser	Pro 215		Arg	Ile	Val	11e 220		Leu	Arg	Phe	
	The		T 011	210	Phe	Pho	_		Dho	Δτος	Tla			Pm	Ala	Tvr	
5	225	116	ren	ALA	PIE	230		ALG	riæ	мy	235		11.11	110		240	
	Asp	Ala	Tyr	Pro	Leu 245		Leu	Ile	Ser	Val 250		Cys	Glu	Val	Trp 25!		
	3 10	Dho	Co=	m	Ile		λen	Gln	Pha			Tran	Dha	Pm			
10	ALG	PIE	Ser	260		Leu	vəħ	GII.	265		цуз	110		270			
	Arg	Glu	Thr	Tyr	Leu	Asp	Arg	Leu	Ser	Leu	Arg	Phe	Glu	Arg	Glu	Gly	_
15	Glu	Pro	Asn	Gln	Leu	Gly	Pro	Val	Asp	Val	Phe	Val	Ser	Thr	Val	Asp	
		290					295					300)				
	Leu	Leu	Lys	Glu	Pro	Pro	Ile	Ile	Thr	Ala	Asn	Ala	Val	Leu	Ser	Ile	
	305					310					315	5				320	
20	Leu	Ala	Val	Asp	Tyr	Pro	Val	Glu	Lys	Val	Cys	Cys	Tyr	Val	Ser	Asp	
					325					330)				33	5	
	Asp	Gly	Ala	Ser	Met	Leu	Leu	Phe	Asp	Ser	Leu	Ser	Glu	Thr	Ala	Glu	
	•	-		340					345					356			
25	Phe	Ala	Arg	Arg	Trp	Val	Pro	Phe	Cys	Lys	Lys	His	Asn	Val	Glu	Pro	
			355	_	_			360		_	_		365				
	Arq	Ala	Pro	Glu	Phe	Tyr	Phe	Asn	Glu	Lys	Ile	Asp	Tyr	Leu	Lys	Asp	
		370				_	375					380					
30	Lys		His	Pro	Ser	Phe	Val	Lys	Glu	Arg	Arg	Ala	Met	Lys	Arg	Glu	
	385					390				_	395					400	
		Glu	Glu	Phe	Lys	Val	Arg	Ile	Asn	Ala	Leu	Val	Ala	Lys	Ala	Gln	
25	-				405		_			410					41		
35	Lvs	Lvs	Pro	Glu	Glu	Gly	Trp	Val	Met	Gln	Asp	Gly	Thr	Pro	Trp	Pro	
	•	•		420		-	-		425		_	_		43			
	Gly	Asn	Asn		Arg	Asp	His	Pro	Gly	Met	Ile	Gln	Val	Tyr	Leu	Gly	
40	•		435	•		_		440					449				
,-	Ser	Ala		Ala	Leu	Asp	Val	Asp	Gly	Lys	Glu	Leu	Pro	Arg	Leu	Val	
		450	•			-	455		_	_		460					
	Tvr		Ser	Ara	Glu	Lys	Arq	Pro	Gly	Tyr	Gln	His	His	Lys	Lys	Ala	
45	465			•		470			_	_	475					480	
		Ala	Glu	Asn	Ala			Arg	Val	Ser	Ala	Val	Leu	Thr	Asn	Ala	
	U _1				485			•		490					49		
	Pm	Phe	Ile	Leu	Asn		ASD	Cvs	Asto			Ile	Asn	Asn	Ser	Lys	
50				500					505		•			510		_	
	Δla	Mat	Arr		Ala	Met	Cve	Phe			Asp	Pro	Gln			Lys	
		- ~~	515				-10	520					529		4	-	
	Tare	ī 🔎 I		ጥ	Val	Gln	Phe			Ara	Phe	Asp			Aso	Arg	
55	nya	كاتجه	-Ja	-1-	· ·					5		P	1		F	3	