Europäisches Patentamt European Patent Office Office européen des brevets

EP 0 802 199 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:22.10.1997 Bulletin 1997/43

(51) Int Cl.6: C07K 9/00, A61K 38/14

(11)

(21) Application number: 97302417.7

(22) Date of filing: 08.04.1997

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

Designated Extension States: **RO**

(30) Priority: 12.04.1996 US 15300 25.11.1996 US 31735

(71) Applicant: ELI LILLY AND COMPANY Indianapolis, Indiana 46285 (US)

(72) Inventors:

 Stack, Douglas Richard Fishers, Indiana 46038 (US)

• Thompson, Richard Craig 900 West Frankfort, Indiana 46041 (US)

(74) Representative: Hudson, Christopher Mark et al Lilly Industries Limited European Patent Operations Erl Wood Manor Windlesham Surrey GU20 6PH (GB)

(54) Covalently bound dimers of glycopetide antibiotics

(57) The present invention is directed to certain glycopeptide dimers in which two glycopeptide units are covalently linked to one another through their disaccharide amine, via a linking radical. This invention is also directed to the monomeric intermediates. All of these

compounds are useful as antibacterials, especially for the control of gram positive bacteria; the compounds are particularly useful for the control of resistant bacterial strains, such as vancomycin-resistant-enterococci ("VRE").

Description

5

10

15

20

25

The present invention is directed to certain glycopeptide dimers in which two glycopeptide units are covalently linked to one another through their disaccharide amine, via a linking radical. This invention is also directed to the monomeric intermediates. All of these compounds are useful as antibacterials, especially for the control of gram positive bacteria; the compounds are particularly useful for the control of resistant bacterial strains, such as vancomycin-resistant-enterococci ("VRE").

The compounds of the present invention are defined by the following Formulae I and II:

In the above formulae, each of G and G' is independently selected from the group consisting of deshydrovancomycin of the formula:

and deshydroA82846B of the formula:

wherein Y1 is OH or

30

45

50

35 and Y² is defined as follows:

(1) each Y2 independently represents

hydrogen,
alkyl of C_1 - C_{10} ,
cycloalkyl of C_5 - C_6 .
cycloalkenyl of C_5 - C_6 ,
naphthyl,
biphenylyl,

radical of the formula $-Y^3$ - $(Y^4)0$, 1, or 2, wherein Y^3 is loweralkyl of C_1 - C_6 optionally substituted by from one to three substituents, each of which is independently selected from the group consisting of halo, nitro, cyano, alkoxy, haloalkyl, and haloalkoxy; and Y^4 is

-N<\\

wherein each Y^5 is independently hydrogen or loweralkyl of C_1 - C_4 , or Y^4 is phenyl or phenyl substituted with from one to three substituents, each of which is independently

halo,
nitro,
loweralkyl of C₁-C₄,
cycloalkyl of C₅-C₆,

loweralkoxy of C₁-C₄, haloloweralkyl of C₁-C₄, or haloloweralkoxy of C₁-C₄; or

(2) one Y2 is hydrogen and the other Y2 is (2-furanon-3-yl); or

(3) both Y²s are taken together with the nitrogen and constitute a five- to seven-membered heterocyclic ring optionally containing in addition to the indicated nitrogen atom one additional hetero ring atom which is nitrogen, oxygen, or sulfur, and which heterocyclic radical can be unsubstituted or substituted with from one or two substituents, each of which is loweralkyl of C_1 - C_2 , loweralkoxy of C_1 - C_2 , phenyl, benzyl, or C_1 - C_6 -alkanoyl; and L is a divalent linking radical of the formula A:

A.
$$-\xi \frac{1}{R_{0-2}} R^1 - A - R^1 \frac{1}{R_{0-2}} \xi$$

wherein A is:

5

10

15

20

25

30

35

40

45

50

55

alkylene of C_1 - C_{16} , (alkylene of C_1 - C_4 -X') $_q$ -alkylene of C_1 - C_4 , wherein q is 1-3, alkylene of

$$C_1-C_8-X'$$
 $X'-alkylene$ R_0-2

of C₁-C₈; alkylene of

$$C_1-C_2-X-C$$

$$\begin{array}{c|c}
 & & & & & & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & \\
\hline
 & & &$$

of C₁-C₂, or alkylene of

$$C_1-C_2-C-X$$
 $X-C-alkylene$

of C₁-C₂;

each R1 is independently

15 CH_{2,} O, S,

5

10

 $\begin{array}{c} -N-\\ R^2 \end{array},$

25 O O II II -X-C- or -C-X-.

or

45 $-\frac{1}{8} \times -\frac{1}{8} - \frac{1}{8} \times -\frac{1}{8} - \frac{1}{8} \times \frac{1}{8}$

wherein each R independently represents halo, loweralkyl of C_1 - C_6 , loweralkoxy of C_1 - C_6 , phenyl, or phenyl substituted by from 1 to 2 substituents, each of which is independently halo, loweralkyl of C_1 - C_6 , or loweralkoxy of C_1 - C_6 ; each X is independently -O- or

-1 ! F

wherein R2 is H or loweralkyl of C1-C4; and each X' is independently -O-, -S-, or

-N-

wherein R2 is as defined above; or L is a divalent linking radical of the formula B:

B. -alkylene of C₁-C₈-R³-X*-R³-alkylene of C₁-C₈-wherein X* represents alkylene of C₁-C₄ or a phenylene of the formula

wherein R is as defined above; and each R3 is independently CH2 or O.

The present invention also includes salts of the foregoing compounds.

In compounds of Formula I, the glycopeptide units, G and G', may be identical or different. In compounds of both Formulae, linkage of the glycopeptide units is through the amine group of the disaccharide sugar. Any "alkylene" of C_2 or higher can be straight chain or branched.

Certain compounds of the present invention are preferred. Compounds of Formula I, and especially symmetrical compounds (G=G' and/or both R¹ are identical), are preferred for their more efficient synthesis.

Antibacterial activity is enhanced by employing preferred "L" groups. Preferences include the following, individually and in any combination:

L = a linking radical of formula A

L = a linking radical of formula B wherein the carbon attached to -CH2-G or to -CH2-G' is branched

 $R^1 = 0$

5

10

15

20

25

30

35

40

45

50

55

A = alkylene of C_1 - C_{16} , especially straight-chain and especially C_6 - C_{12} ;

A = (alkylene of C_1 - C_4 -X')q-alkylene of C_1 - C_4 , especially wherein X'=O; the alkylene is -(CH₂)₂-; and q=2;

R = phenyl and substituted phenyl, especially chlorophenyl; and especially when R has this value on a phenyl ring within "A".

Other preferences will be apparent from the further teachings herein.

Representative compounds of the present invention are set forth in following TABLES 1 and 2. TABLE 1 identifies dimers of Formula I; TABLE 2 identifies compounds of Formula II.

TABLE 1

Ex.	O	ò	7	Name
	Vanco	Vanco	-}<	1,2-ethanediyl-bis-{(oxy-4,1-phenylene)-bis-{vancomycin}
2	Vanco	Vanco	-{________\-_\\\\\\\\\\\\\\\\\	1,4-butanediyl-bis-{(oxy-2,1-phenylene) metlylene -bis-[vancomycin]
E.	Vanco	Vanco	-}{\\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	1,5-pentanediyl-bis- [(oxy-4,1-phenylene) methylene -bis- [vancomycin]
4	Vanco	Vanco	-{___\-_\-_\-_\-_\-\\\\\-\\\\\\\\	1,5-pentanediyl-bis- [(oxy-3,1-phenylene)- methylene]-bis- [vancomycin]
5	Vanco	Vanco	-}{_\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	1,6-hexanediyl-bis-[oxy-4,1-phenylene]- methylene]-bis- [vancomvcin]
9	Vanco	Vanco	$\{ \left\{ \right\} \circ - (C I_{2})^{2} - C I_{1} I_{2} - C I_{1} I_{1} - C I_{1} I_{1} I_{1} - C I_{1} I_{1} I_{1} - C I_{1} I_{1} I_{1} - C I_{1} I$	[3-methyl-1,5-pentanediyl-bis[(oxy-4,1-phenylene)-methylene]-bis-[vancomycin]
7	Vanco	Vanco	-}{_\-\o\(\alpha^{\infty}\)-\o\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1,7-heptanediyl-bis-[oxy-4,1-phenylene]- methylene]-bis- [vancomycin]
8	Vanco	Vanco	-{ \\co-\cH2\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	1,8-octanediyl-bis-[(oxy-4,1-phenylene)-methylene -bis-[vancomycin]

10	Name	1,9-nonanediyl-bis-((oxy-4,1-phenylene) methylene}-bis- (vancomycin)	1,2-ethanedly1-bis-loxy- 1,2-ethyleneoxy-4,1- phenylenel-methylenel bis-lvancomyoun],4-phenylene-bis- (carbonyloxy 1,2- ethylene-oxy-2,1- phenylene)}-methylene - bis-[vancomycin]	1,3-phenylene-bis-{(oxy-1,3-n-propyleneoxy-4,1-phenylene)}-methylene}	1,8-octanediyl-bis-[(oxy-4,1-phenylene)- methylene]- lvancomycin](A82846B)	1,3-propanedly1-bis- [(oxy-4,1-phenylene)- methylene]-bis-[A82846B]	1,4-butanadiyl-bis-[(oxy- 2,1-phenylene}- methylene}-bis-[A82846B]	l,5-pentanediyl-bis- [(oxy-4,1-phenylene)- methylene]-bis-[A82846B]
20		4		·	Ö	<u></u>		ine	~ ` ~
25	,	O-(CII,1)4-O	· (- (CH ₂) ₂ -0-(CH ₂) ₂ -0-(CH ₂) ₂ -0	0 - c - o c l l 2 1 2 - c - c	0-(cH ₂) ₃ -0	H ₂₎₈ -o-	0-(cH ₂) ₃ -0-	O-(CH ₂),-O	-0-(CH ₂) ₅ -0-
30		10)-0-(01	- (CH ₂)2-0-(CH) -0-(CH2)7-0-C	O-(CH ₂) ₃ -O	O—(CH ₂) ₁₈ -	10)-0-(01		(C)
35 40		**		21-0		₩	-~~	***	**
45	Ö	Vanco	Vanco	Vanco	Vanco	Vanco	A82846B	A82846B	A82846B
50	O	Vanco	Vanco	Vanco	Vanco	A82846B	A82846B	A82846B	A82846B
55	Ex. #	6	10	11	12	13	14	15	16

5	ø	1-bis- ylenel- -[A82846B]	-bis-[(oxy-	1,5- 11 hin(loxy enc)- -bis-(A828-16B)	1-bis- ylene). -{A82846B}	-bis-[{oxy- -methylene-	" .HCl salt	-bis-[(oxy- - -[A82846B]	-bis-[(oxy-4,1-	-bis-[(oxy-
10	Name	1,5-pentanediyl-bis- {(oxy-3,1-phenylene - methylene -bis-{A82846B}	1,6-bexanediyl-bis-[(oxy 4,1-phenylene) methylene]-bis-[A82840b]	[3-methyl-],5- pentanediyl hin(loxy 4,1-phenylenc)- methylene -bis-{A8284		1,8-octanediyl-bis-{(oxy-4,1-phenylene)-methylene-bis[A82846B]		1,8-octanediyl-bis-[(oxy 3,1-phenylene)- methylene]-bis-[A82846B]	1,8-octanediyl-bis-[(oxy-3-n-pentyloxy-4,1-phenylene)methylene bis[A82846B]	1,9-nonanedlyl-bis-[(oxy-4,1-phenylene;- methylene)-bis-[A82846b]
15		1,	, 4 A B	C 7 4 E	1, 1 () () () () () () () () () (1, 64,		3, m	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1, 4,
20			÷			, The state of the	t.		o o n-pentyl	
25	7	0-(cli,),-0	0-(CII ₂) ₆ -0-	OH3 -(-10) +10 -7(210) +0 -	0—(CH ₂),—0—	0-(CH ₂),-0-	. HCl salt	0-(CH ₂) ₁ -0	ЭН ₂)в — О—	O-(CH ₂), -O
30				7(7)(D) —)					0) n-pentyl	
<i>35</i>			<i>⊶</i>		~ <u>√</u> ~	~			→	<u>.</u>
	_						H			
45	,S	A82846B	A82846B	A82846B	· A82846B	A82846B	A82846B	A82846B	A82846B	. A82846B
50	O	A82846B	A82846B	A82846B	A82846B	A82846B	A82846B	A82846B	A82846B	A82846B
	#	17	18	19	20	21	22	23	24	25

5	Name	yl-bis- nylene)- s-[A82816b]	diyl-bis- mylene)- n-[A8264ob]	mediyl-bis- mylene) s-[A8264ub]	/1-bis-[(oxy-)xy-4,1- :hylenel	a-bis-[(oxy- sneoxy-4,1- thylene]	a-bis- /-1,2- 2,1- thylene)-	nylyl-bis- oropyleneoxy- o)methylenel-
10	Na	1,10-decanediyl-bis- (oxy-4,1-phenylene)- methylene]-bis-[A82846b]	1,12-dodecanediyl bis- [(oxy -4,1-phenylene) - methylene]-bis-[A8264cb]	1,16-hexadecunediyl-bis- [(oxy-4,1-phenylene). methylene]-bis-[A82640b]	1,2-ethanediyl-bis- (oxy- 1,2-ethyleneoxy-4,1- phenylene)methylene	1,3-phenylene-bis-[(oxy 1,3-n-propyleneoxy-4,1- phenylene)methylene] bis[A82846B]	1,4-phenylene-bis- [(carbonyloxy-1,2- sthyleneoxy-2,1- phenylene)methylene) bis[A82846B]	1,3-[5-biphenylyl-bis- [(oxy-1,3-n-propyleneoxy- 4,1-phenylene)methylene]- bis[A82846B]
15	H							
20				÷	CH ₂ 1,2-0	- 0- (CH ₂) ₃ -0-{}.	C-0(CH ₂)2-0	O-(CH ₂) ₃ -O-
25		ľ	ľ	ľ	٦	٩	ს = 0	j j
30 35	7	-\$	-}{_\-_\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	-{ \	-}-0-(CH ₂) ₁₂ -0-(CH ₂) ₁₂ -0-(CH ₂) ₁₂ -0	\$ \\ _\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ 0-(cH ₂), 0-0 \$	-\$-(CH ₂) ₃ -O
45	,5	A82846B	A82846B	A82846B	A82846B	A82846B	A82846B	A82846B
50	С	A82846B	A82846B	A82846B	A82846B	A82846B	A82846B	A92846B
55	Ex. #	26	27	28	29	30	31	32

5		ois (oxy- ene}- (A8284ob)	is (oxy-1, 5- [4, 1- ; lane] his	ois[oxy-4- anylene]- (A82846B)	bis-[(oxy-)-]	bis (oxy- ene]- -	bis-[(oxy- ylene]bis-
10	Name	1,6-hexanediylbisloxy [4,4'-biphenylene]- methylene]bis (A8284	1,3-phenylenebis(oxy- n-pentyleneoxy [4,1- phenylene methylene (A82846B)	l,8-octanediylbis[oxy-4 phenyl-{3,1-phenylene]- methylene]bis (A82846B)	1,8-octanediylbis-[(oxy- [3,1-phenylene]- nethylene]- bis[vancomycin]	<pre>1,6-hexanediylbisfoxy- [4,4'-biphenylene]- methylene]-bis- [vancomycin]</pre>	1,8-octanediylbis-[(oxy- 4-iodo-3,1- phenylene)methylene bis- [vancomycin]
15		1,6 [4,	1,3	1,8 phe met	1,8 [3, inet bis	1,6 [4, met	1,8 4-i phe [va
20			0-2	*	~ *		
25	L	O-(CII ₂) ₆ -O	0-(CII ₂) ₅ -0	-(CH ₂) ₆ -O-	0-(CH ₂) ₈ -0-	O9(²H2)O	0-(cH ₂) ₈ -0
30)-o-(c	O-(CII ₂) ₅ -O		0)-0-(0	0)-0-(9)-0-
40			}-°	~~		\$	~~~
45	ċ	A82846B	A82846B	A82846B	Vanco	Vanco	Vanco
50	U	A82846B	A82846B	A82846B	Vanco	Vanco	Vanco
	=	49	20	ហ	53	54	

5	me	lbis-{(oxy-phenylenelv	-bis-{oxy- hexylene] in]	lbis-{oxy- -hexylene}- in]	diyl-bis- nylene)- s-	-bis-[(oxy-neoxy-4,1- hylene]-bis- 3HCl salt	3-phenylene- n- 4,1- hylene]-bis-
10	Name	1,8-octanediylbis-{(oxy- {4-phenyl-3,1-phenylene} methylene}bis- [vancomycin]	1,3-phenylene-bis-{oxy- {5-methyl-5,1 hexylene} bis-{vancomycin]	1,4-butanediylbis-{oxy- {5-methyl-5,1-hexylene} bis-{vancomycin}	1,12-dodecanediyl-bis- [(oxy-4,1-phenylene)- methylene]-bis- (vancomyclu)	1,3-phenylene-bis-[(oxy-1,3-n-propyleneoxy-4,1-phenylene)methylene]-bis-[vancomycin].3HCl salt	5-n-pentyl-1,3-phenylene- bis (oxy-1,3-n- propyleneoxy-4,1- phenylene)methylene]-bis- (vancomycin]
15	\vdash			-	-		-
20			CH ₃	CH ₂),————————————————————————————————————	六	-0-(CH ₂) ₃ -0-	f ₁₁ •0-(cH ₂) ₃ -0-
05				Ī		3	B
30 35	, 7	-}-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	-\frac{CH_2}{CH_2}\frac{CH_2}{-}O	CH ₃ -{-d-(CH ₂) ₄ 0-(CH ₂) ₄ 0-(CH ₂) ₄ CH ₃	-{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)-0-(² HD)-0-{}	-0-(cH ₂)-0-(cH ₂)-0-(-1)-0-
45	Ğ,	Vanco	Vanco	Vanco	Vanco	Vanco	Vanco
50	ၓ	Vanco	Vanco	Vanco	Vanco	Vanco	Vanco
55	*	56	57	58	59	09	61

				100000		
5	Name	1,8-octanediylbis-[(oxy- 4-iodo-3,1- phenylene)mothylene bis [A82846B]	1,3-phenylene-bis-{oxy-5- methyl-5,1-hexylen¢}- bis[A82846b]	1,3-phenylene-bis-[(oxy- 1,7-n-heptyleneoxy-4,1- phenylene)methylenel-bis- [A82846B]	1,4-butanediylbis-(oxy-5- methyl-5,1-hexylene]-bis- [A82846B]	1,3-phenylene-bis(oxy- 1,3-n-propyleneoxy-4,1- phenylene)methylene]- bis(A82846B)
15		10 P			- E	4 + Q.D
20			CII., CII., —(CH ₂),————————————————————————————————————	,,-	CH ₃ 	0-(CH ₂) ₃ -0-
25			Ĭ	0-(CH ₂) ₇ -0) 0	(CH ₂)
30	L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	°	-0-(CH ₂) ₇ -0-	(14—0—(CH ₂)4—0—(CH ₂)	-0-(CH ₂) ₃ -0
<i>35</i>			CH)	0)-0-(CH ₃ -}- C— (CH ₂), CH ₃	0)-0-{
		a	ω	д	æ	m.
45	Ġ,	A82846B	A82846B	A82846B	A82846B	A82846B
50	ၓ	A82846B	A82846B	A82846B	A82846B	A82846B
	*	62	63	64		99

Name	1,3-phenylenebis(oxy-1,3- n-propylene.oxy-4,1- phenylene)methylene] A82846B/A82846B, (3- dimethylaminopycyyl)amide	1, 3-phenylenebis[oxy-1,3-n-propylene-oxy-4,1-phenylene)methylenelbis-[A82846B, (3-dimethylaminopropyl)]
, , , , , , , , , , , , , , , , , , ,	\$___\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ò	84	A82846B, (3- dimethy 1 amino propy 1)-
0	70 A82846B, (3-dimethyl amino propyl).	71 A82846B, (3 dimethy amino propyl) -
Ex.	0	71
- 1		I .

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

TABLE 2

× =	g	J	Name
33	Vanco		N ⁴ -(4-(2-(p-formylphenoxy)- ethcxylbenzyl)vancomycin
*	Vanco	-\${\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N4-(4-(3-(p-formylphenoxy)-n- propyloxy)benzyl)vancomycu
35	Vanco	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N4-(4-(4-(p-formylphenoxy)-n- butoxy)kerizyl)vancomycin
36	Vanco	-{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N4-(4-(5-(p-formylphenoxy)-n- pentyloxy)benzyl)vancomycin
37	Vanco	-{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N4~(4-(6-(p-formylphenoxy)-n- hexyloxy)benzyllvancomycin
38	Vanco	-}{\\ \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	N4-(4-(5-(p-formylphenoxy)-3- methyl-n-pentyloxy)benzyl)- vancomycin
39	Vanco	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N4-(4-(7-(p-formylphenoxy)-n- heptyloxylbenzyl)vancomycin
40	Vanco	-}{\\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	N4-(4-(8-(p-formylphenoxy)-n- octyloxylbenzyl)vancomycin
41	Vanco	.}<	N'-(4-(10-(p-formylphenoxy)-n-decyloxy)benzyl)vancomycin

55	H #	42 V	. 43 V	44 V	45 V	4 6	47	4.8
50	O	Vanco	Vanco	Vanco	Vanco	A82846B	A82846B	A82846B
45			Q-	o- { }-}-	\		·	
40			-701121-0-K	O-(CH ₂) ₂ -O-	0-(//I)-0			
35	a	0-24(31(3)-O	-0-(CII ₂)-0-(CII ₂); 0-(CII ₂);-0-			0-(6112)-0-	0-1(7)17)-0	0-(CII ₂) ₁₂ -0
30			-0-71°110)	0 -0-0-(7/10)-0-0-	0-(CH ₂) ₃ -0			$\tilde{\mathbb{Q}}$
25			T O					
20		N4-C	pher benz	N ⁴ -	D Propro	N4- pro	N. OCC	Pop Pop
15		[4-(12-(p-)	N ⁴ - (4-(2-(2-(2- phenoxy) et hoxy benzyl) 682846B	(4-(2-(4-(noxy)ethox ethoxy)be	(4-(3-(3-(poxy)-5-ph poxy)benzy	(4-(3-(p-f pyloxylben	(4-(8-(p-fy)oxy)benz	(4-(12-(p- ecyloxy)be
10	NaBo	N4-(4-(12-(p-formylphenoxy)-n dodecyloxylbenzyl)vancomycin	N ⁴ - (4 - (2 - (2 - (2 - (p - tormyl - phenoxy) ethoxy) ethoxy) ethoxy) ethoxy) ethoxy) benzyl) A82846B	N ⁴ - (4 - (2 - (4 - (2 - (p-formy) - phenoxy) ethoxycsrbonyl) benzoyl oxyl ethoxy) benzyl) vancomycin	N ⁴ -(4-(3-(3-(3-(p-formylphenory)ropoxyl-5-phenylphenoxyl-n-propoxylbenzyl)vancomycin	N ⁴ -(4-(3-(p-formylphenoxy)-n propyloxylbenzyl)A82846B	N ⁴ -(4-(8-(p-formylphenoxy)-n- octyloxy)benzyl)A82846B	N'-(4-(12-(p-formylphenoxy)-n- dodecyloxy)benzyl)A82846B
5		ny) -n- ny e 1 n	1- t hoxy)	1- benzoy l mycin	N ⁴ -(4-(3-(3-(3-(p-formylphenoxy)-n- propoxyl-5-phenylphenoxyl-n. propoxylbenzyllvancomycin	xy)-n- B	ку) -n-	oxy) -n- 6B
		1			1	1	1	1

The compounds of the present invention are prepared by reacting vancomycin or A82846B with a bisaldehyde of the formula:

to form an intermediate Schiff base, which is subsequently reduced to obtain the compounds of Formula I and II.

Many of the bisaldehydes to be employed as starting materials are known compounds. All of them can be prepared by techniques known to those skilled in the art, per various references;

J. Org. Chem., 26, 474, (1961)

J. Het. Chem., 27, 1007 (1990)

J.A.C.S., 73, 1872 (1951)

J.A.C.S., 109, 2260 (1987)

J. Chem. Soc. Perkin I, 189 (1983)

Syn. Comm., 18(12), 1379 (1988)

20 Chem. Letters, 587 (1995)

5

15

25

30

35

40

45

Macromolecules, 6045 (1992);

J. Chem. Soc. Chem. Comm. 1463 (1991)

J. Polym. Sci. Part A, Polymer Chem. 31(12) 2899 (1993)

J. Chem. Res. Synop. (8), 296 (1994)

Farmco Ed. Sci. 15, 468 (1960)

Makromol. Chem. 191 (4) 815 (1990)

J. Polym. Sci. Part A, Polymer Chem. 29(3) 361 (1991)

Makromol. Chem. 65, 54 (1963)

The reaction of bisaldehyde with vancomycin or A82846B is carried out in accordance with prior art condensations of amine and aldehyde to form Schiff bases, and their subsequent reduction.

Thus, the present condensation is typically conducted in a polar solvent, such as dimethylformamide or methanol, or a mixture of polar solvents. The reaction goes forward over a range of temperatures, such as from 25°C to 100°C, but is preferably conducted at temperatures of about 60°C to 70°C. The reaction is preferably conducted under an inert atmosphere, such as nitrogen or argon.

The reaction yields a Schiff base of the formula

G=CH-L-CH=G'

where both aldehyde groups have reacted with glycopeptide, or of the formula

G=CH-L-CHO

where only one aldehyde group has reacted with glycopeptide.

The Schiff base is subsequently reduced. Preferably, the reduction is conducted in the same reaction mixture in a polar solvent, and employing a chemical reducing agent. Metal borohydrides, such as sodium borohydride and sodium cyanoborohydride are preferred. The reaction goes forward over a range of temperatures, such as from about 25°C to about 100°C; preferably, the reaction is conducted at about 60°C to 70°C.

Depending somewhat on concentration of reagents, the condensation of bisaldehyde with vancomycin or A82846B and subsequent reduction will yield a dimer of Formula I, a monosubstituted derivative of Formula II, or a mixture of both. Generally, both products are produced. However, some control of the products can be achieved by the amount of reactants employed. A dimer of Formula I requires two molecular proportions of vancomycin or A82846B per molecular proportion of bisaldehyde, whereas a compound of Formula II requires equimolar amounts of the reactants. Preferably the reaction is continued through the reduction, and the respective products separated at that time.

The product, or mixture of products, can be isolated and purified if desired in a conventional manner, such as by HPLC. Characterization of products is best accomplished by Fast Atom Bombardment Mass Spectroscopy (FABMS).

In addition to the foregoing synthetic route, compounds of the present invention can be prepared in an alternate route. In this alternate route, a dimer is prepared by the foregoing synthetic route, and further changes to the structure of the glycopeptide are made subsequently. This approach to synthesizing the present dimers is illustrated by Preparations 7 and 8 below in which a dimer of the present invention is reacted with an amine to convert the acid of the glycopeptide to an amide

$$(Y^1 = {}^{-N} \stackrel{Y^2}{\searrow})$$

Other modifications of the glycopeptide portion of a dimer can likewise be made. Techniques for such modifications are known to those skilled in the art; see <u>Glycoceptide Antibiotics</u>, edited by Ramakrishnan Nagarajan (Marcel Dekker, Inc., New York, 1994), and references cited therein. This volume is incorporated herein by reference.

When it is desired to employ a salt, a compound of the present invention can be reacted with a mineral or organic acid or an inorganic base, in techniques well known to those skilled in the art. Pharmaceutically-acceptable salts are preferred.

The following examples report preparations of illustrative compounds of the present invention.

The HPLC procedures reported in these examples were as follows:

Analytical ("Conditions A"): Reactions were monitored by analytical HPLC using a Waters μ Bondapak C₁₈ column (3.9x300 mm) and UV detection at 280 nm. Elution was accomplished with a linear gradient of 5% CH₃CN - 95% buffer to 80% CH₃CN - 20% buffer over 30 minutes. The buffer used was 0.5% triethylamine in water, adjusted to pH 3 with H₃PO₄.

Preparative ("Conditions B"): Crude reaction mixtures were purified by preparative HPLC using a Waters C₁₈ Nova-Pak column (40x300 mm) and UV detection at 280 nm. Elution was accomplished with a linear gradient of 5% CH₃CN - 95% buffer to 80% CH₃CN - 20% buffer over 30 minutes. The buffer used was 0.5% triethylamine in water, adjusted to pH 3 with H₃PO₄. The desired fractions were subsequently desalted with a Waters C₁₈ Sep-Pak (35 cc) followed by lyophilization. Alternatively, a buffer containing 0.1% TFA in H₂O can be used, in which case the TFA salt is obtained directly after lyophilization.

Compounds were desalted as follows. A Waters Sep-Pak cartridge was pre-wet with methanol (2-3 column volumes) then conditioned with water (2-3 column volumes). The sample, dissolved in a minimum volume of water, was loaded onto the Sep-Pak column which was then washed with water (2-3 column volumes) to remove the unwanted salts. The product was then eluted with an appropriate solvent system, typically 1:1 CH₃CN/H₂O, CH₃CN, and/or methanol. The organic solvent component was removed *in vacuo* and the resulting aqueous solution lyophilized to give the final product.

Preparation 1:

10

15

20

30

35

40

45

50

Synthesis of Example 5, 1,6-hexanediylbis[(oxy-4,1- phenylene)methylene]bis[vancomycin]

(one-pot synthesis of vancomycin dimer)

A dry 100 mL round bottom flask was charged with vancomycin•HCl (250 mg, 0.168 mmol.), and 1,6-bis(4'-formyl-phenoxy)-n-hexane (101 mg, 0.310 mmol.). Anhydrous DMF (6 mL) was added to the flask and the resulting mixture was stirred under $\rm N_2$ and heated to 70°C. After 3.5 hours, sodium cyanoborohydride (80 mg, 1.3 mmol.) was added in one portion, and the reaction mixture was maintained at 70°C for one additional hour. The reaction mixture was cooled, and stored at 0°C overnight.

The reaction mixture was then concentrated in vacuo to give a residue which was re-dissolved in 1:1 H₂O:CH₃CN (5 mL) and HOAc (0.5 mL). The resulting solution was purified by preparatory HPLC (conditions B). The desired frac-

tions, as determined by analytical HPLC (conditions A), were concentrated in vacuo to ~ 1.5 mL, and desalted. After lyophilization, 1,6-hexanediylbis[(oxy-4,1-phenylene)methylene]bis [vancomycin] was obtained (24.3 mg, 0.008 mmol., 10.0 % yield) as a white powder.

HPLC (conditions A) retention time: 13.6 min.

FABMS shows peak of (M+6H) at 3195.

Preparation 2:

Synthesis of Example 25, 1,9-nonanediylbis[(oxy-4,1-phenylene)methylene]bis[A82846B]

(one-pot synthesis of A82846 dimer)

O-(CH₂)₉-0
A82846B
A82846B

20

25

15

5

10

A dry 100 mL round bottom flask was charged with A82846B-tri-acetate salt (278 mg, 0.157 mmol.), and 1,9-bis-(4'-formylphenoxy)-n-nonane (103.7 mg, 0.282 mmol.). Anhydrous DMF (15 mL) and anhydrous MeOH (15 mL) were added to the flask and the resulting mixture was stirred under N₂ and heated to 70°C. After 3.5 hours, sodium cyanoborohydride (68 mg, 1.08 mmol.) was added in one portion, and the reaction mixture was maintained at 70°C for one additional hour.

The reaction mixture was then concentrated in vacuo to give a residue which was re-dissolved in $1.1\,H_2O:CH_3CN$ (5 mL) and HOAc (0.5 mL). The resulting solution was purified by preparatory HPLC (conditions B). The desired fractions, as determined by analytical HPLC (conditions A), were concentrated in vacuo to $\sim 1.5\,\text{mL}$, and desalted. After lyophilization, 1,9-nonanediylbis[(oxy-4,1-phenylene)methylene]bis[epivancomycin] was obtained (25.7 mg, 0.007 mmol., 9.3 % yield) as a white powder.

HPLC (conditions A) retention time: 14.9 min.

FABMS shows peak of (M+5H)at 3522.

35 Preparation 3:

Synthesis of Example 47, N4-(4-(8-(p-formylphenoxy)-n-octyloxy)benzyl)A82846B

(synthesis of Formula II)

40

5**0**

45

A dry 100 mL round bottom flask was charged with A82846B-tri-acetate salt (278 mg, 0.157 mmol.), and 1,8-bis-(4'-formylphenoxy)-n-octane (100 mg, 0.19mmol.). Anhydrous DMF (15 mL) and anhydrous MeOH (15 mL) were added to the flask and the resulting mixture was stirred under N_2 and heated to 70 °C. After 3.5 hours, sodium cyanoborohydride (48 mg, 0.739mmol.) was added in one portion, and the reaction mixture was maintained at 70 °C for one additional hour.

55

The reaction mixture was then concentrated in vacuo to give a residue which was re-dissolved in 1:1 $H_20:CH_3CN$ (5 mL) and HOAc (0.5 mL). The resulting solution was purified by preparatory HPLC (conditions B). The desired fractions, as determined by analytical HPLC (conditions A), were concentrated in vacuo to ~ 1.5 mL, and desalted. After lyophilization, N⁴-(4-(8-(p-formylphenoxy)-n-octyloxy)benzyl)A82846B was obtained (26.3mg, 0.013 mmol., 8.6%

yield) as a white powder.

HPLC (conditions A) retention time: 19.9 min.

FABMS shows peak of (M+ 2H) at 1930.

Preparation 4:

Synthesis of Example 13, 1,8-octanediylbis((oxy-4,1-phenylene)methylene)[vancomycin][A82846B]

(synthesis of hybrid dimer)

10

15

25

30

35

A82

A dry round bottom flask was charged with vancomycin•HCl (75 mg, 0.052 mmol.), and N⁴-(4-(8-(p-formylphenoxy)-n-octyloxy)benzyl)A82846B (50 mg, 0.026 mmol.). Anhydrous DMF (6 mL) was added to the flask and the resulting mixture was stirred under N₂ and heated to 70°C. After 5 hours, sodium cyanoborohydride (59 mg, 0.93 mmol.) was added in one portion, and the reaction mixture was maintained at 70°C for one additional hour. The reaction mixture was cooled, and stored at 0°C overnight.

The reaction mixture was then concentrated in vacuo to give a residue which was re-dissolved in 1:1 $H_20:CH_3CN$ (5 mL) and HOAc (0.5 mL). The resulting solution was purified by preparatory HPLC (conditions B). The desired fractions, as determined by analytical HPLC (conditions A), were concentrated in vacuo to ~ 1.5 mL, and desalted. After lyophilization, 1,8-octanediylbis[(oxy-4,1-phenylene)methylene)[vancomycin] [A82846B] was obtained (5.2 mg, 0.002 mmol., 7.6 % yield) as a white powder.

HPLC (conditions A) retention time: 14.5 min.

FABMS shows peak of (M+6H) at 3364.

Preparations 5 & 6:

Synthesis of Example 47, N⁴-(4-(8-(p-formylphenoxy)-n-octyloxy)benzyl)A82846B, and Example 21, 1,8-octanediylbis [(oxy-4,1-phenylene)methylene]bis[A82846B]

(two-step synthesis of A82846 dimer)

40

45

A dry flask was charged with A82846B-tri-acetate salt (5.0 g, 0.003 mol.), and 1,8-bis(4'-formylphenoxy)-n-octane (1.93 g, 0.006 mol.). Anhydrous DMF (300 mL) and anhydrous MeOH (300 mL) were added to the flask and the resulting mixture was stirred under N_2 and heated to 70° C. After 3.75 hours, sodium cyanoborohydride (0.76 g, 0.012 mol.) was added in one portion, and the reaction mixture was maintained at 70° C for one additional hour. The reaction was cooled and stored at 0° C overnight.

The reaction mixture was then concentrated in vacuo to give a residue which was re-dissolved in 1:1 $H_20:CH_3CN$ (200 mL) and HOAc (5 mL). The resulting solution was purified by preparatory HPLC (conditions B). The desired fractions, as determined by analytical HPLC (conditions A), were concentrated in vacuo to ~ 1.5 mL, and desalted. After lyophilization, N⁴-(4-(8-(p-formylphenoxy)-n-octyloxy)benzyl)A82846B was obtained (387.4 mg, 0.2 mmol., 6.6 % yield) as a white powder.

HPLC (conditions A) retention time: 19.9 min.

FABMS shows peak of (M+3H)at 1932.

A dry flask was charged with N⁴-(4-(8-(p-formylphenoxy)-n-octyloxy)benzyl)A82846B (20.0 mg, 0.01 mmol), and A82846B (32.9 mg, 0.021 mmol). Anhydrous DMF (3 mL) and anhydrous MeOH (3 mL) were added to the flask and the resulting mixture was stirred under N₂ and heated to 70°C. After 2 hours, sodium cyanoborohydride (5.0 mg, 0.079 mmol) was added in one portion, and the reaction mixture stirred an additional 0.25 hours.

The reaction mixture was then concentrated in vacuo to give a residue which was redissolved in 1:1 H₂O:CH₃CN (5 mL). The resulting solution was purified by preparatory HPLC (conditions D). The desired fraction, as determined by analytical HPLC (conditions A), were concentrated in vacuo to ~1.5 mL, and desalted. After lyophilization, 1,8-octanediylbis[(oxy-4,1-phenylene)methylene]bis[A82846B] was obtained (3.0 mg, 0.001 mmol, 8.6 % yield) as a white powder.

HPLC (conditions A) retention time:

13.6 min.

FABMS shows peak of (M+5H) at 3508.

Preparations 7 & 8:

Synthesis of Example 70, 1,3-phenylenebis[oxy-1,3-n-propylene-oxy-4,1-phenylene)methylene]A82846B, (3-dimethylaminopropyl)amide, and Example 71, 1,3-phenylenebis[oxy-1,3-n-propylene-oxy-4,1-phenylene) methylene]bis[A82846B, (3-dimethylaminopropyl)amide]

A dry round bottom flask was charged with 1,3-phenylene-bis-[(oxy-1,3-n-propyleneoxy-4,1-phenylene)methylene]-bis[AB2846B] (50.0 mg, 0.014 mmol) and 1 mL DMSO. PyBOP (14.5 mg, 0.028 mmol) and 3-dimethylaminopropylamine (2.8 mg, 0.028 mmol) were added and the reaction was stirred at room temperature under nitrogen for one hour. The reaction mixture was then concentrated in vacuo to give a residue which was re-dissolved in 1:1 H₂O:CH₃CN (5 mL). The resulting solution was purified by preparatory HPLC (conditions B). The desired fractions, as determined by analytical HPLC (conditions A) were concentrated in vacuo to ~ 1.5 mL, and desalted as in previous examples. After lyopholization 1,3-phenylenebis[oxy-1,3-n-propylene-oxy-4,1-phenylene]bis[AB2846B,(3-dimethylaminopropyl)amide] (6.9 mg, 13.1% yield) and 1,3-phenylenebis[oxy-1,3-n-propylene-oxy-4,1-phenylene)-methylene] A82846B/(3-dimethylaminopropyl)amide (6.6 mg, 12.8% yield) were obtained as white powders.

30

35

20

25

1,3-phenylenebis[oxy-I,3-n-propylene-oxy-4,1-phenylene)methylene]bis[A82846B, (3-dimethylaminopropyl)-amidel

HPLC (conditions A) retention time: 13.2 min.

FABMS shows peak of (M+9H) at 3761.

1,3-phenylenebis[oxy-1,3-n-propylene-oxy-4,1-phenylene)-methylene]A828468/A82846B, (3-dimethylaminopropyl)amide

HPLC (conditions A) retention time: 13.7 min.

FABMS shows peak of (M+6H) at 3674.

Details concerning the synthesis of all of the compounds of TABLES 1 and 2, as well as identifying characteristics on the same compounds, are presented in TABLES 3 and 4.

45

50

TABLE 3

5	Ex. #		HPLC *	ૠ	FAB • MS	M+x
		Aldehyde	Retention	yield	M/Z	н
		-	Minutes	-		!
	1	1,2-bis(4-	11.5	1.86	3136	3
		formylphenoxy)-			1	1
10	1	n-ethane				
	2	1,4-bis(2-	11.8	0.79	3165	4
		formylphenoxy)-				
	l .	n-butane				
	3	1,5-bis(4-	12.9	5.42	3178	4
15		formylphenoxy)-	12.7	3110		1 - 1
		n-pentane				i i
	4	1,5-bis(3-	13.0	4.08	3179	4
	•	formylphenoxy)-	13.0	4.00		-
		n-pentane			1	ļ į
•	5	1,6-bis(4-	13.6	9.05	3195	6
20		formylphenoxy)-	13.0	5.05	1	
		n-hexane				1
	6	3-methy1-1,5-	13.5	4.54	3193	4
	ľ	bis(4-	13.3	4.54	1323] -
		formylphenoxy)-	1		1	1
25		n-pentane	ł i		l	ł
	7	1,7-bis(4-	14.7	5.00	3207	5
	'	formylphenoxy) -	19./	3.00	13207	
		n-heptane)]]
	8	1,8-bis(4-	15.5	3.91	3219	2
30	1 "	formylphenoxy) -	15.5	3.71	1 3213	
		n-octane				ŀ
	9	1,9-bis(4-	16.4	4.41	3235	4
		formylphenoxy)-	10.4	3.31	3233	'
	1	n-nonane				
35	10	1,2-bis(2-(4-	12.3	1.89	3226	4
	1 10	formylphenoxy)-	12.3	1.05	13220	1
	1	ethoxy) ethane			1	[
	11	1,4-bis(2-(p-	13.0	10.50	3331	6
	**	formylphenoxy) -	13.0	10.30	1 3331	ľ
40		ethoxy)carbonyl-			ł	1
-	1	benzene			/	1
	12	1,3-bis(3-(p-	15.5	3.10	3300	4
] **	formylphenoxy)-	13.3	3.10	3300	1 '
	1	n-propyloxy)-				
45		benzene			l	1
70	13	1,8-bis(4-	14.5	5.95	3364	4
	1	formylphenoxy)-	[**.]	3.33	1 3333	
	1	n-octane			1	
	14	1,3-bis(4-	9.4	14.29	3436	4
	1	formylphenoxy)-	· · · · ·	13.27	1	1
50	1	propane	ļ			1
	15	1,4-bis(2-	10.2	5.91	3452	5
	1	formylphenoxy)-	10.2	3.31]	1 1
	İ	n-butane	ļ			
			<u> </u>	L	I	ــــــــــــــــــــــــــــــــــــــ

55

	F	r				
	Ex. #		HPLC *	8	FAB•MS	M+x
]	Aldehyde	Retention	yield	M/Z	Н
_			Minutes			
5	16	1,5-bis(4-	10.4	3.86	3466	5
		formylphenoxy)-				l
		n-pentane				İ
	17	1,5-bis(3-	11.3	22.41	3465	4
	ł	formylphenoxy)-				
10		n-pentane				
	18	1,6-bis(4-	11.3	5.46	3478	4
		formylphenoxy)-				1
		n-hexane				1
	19	3-methyl-1,5-	11.3	8.14	3479	4
15		bis(4-				
		formylphenoxy)-				į
	1	n-pentane	/	\		l
	20	1,7-bis(4-	12.5	5.73	3494	5
		formylphenoxy)-	20.0	31,3	3151	_
20		n-heptane				
	21	1,8-bis(4-	14.0	13.31	. 3508	5
	1	formylphenoxy)-		20.01	. 3300	-
	l	n-octane				
	23	1,8-bis(3-	14.4	21.23	3508	5
		formylphenoxy)-	**.*	21.23	3300	'
25		n-octane				ł
	24	1,8-bis(4-	20.8	16.91	3680	5
		formyl-2-n-	20.8	10.91	3000	1 -
		pentyloxy-				1
		phenoxy)-n-				
30		octane				
	25	1,9-bis(4-	14.9	9.31	3522	5
		formylphenoxy)-	14.5	9.31	3522	'
		n-nonane				
	26	1,10-bis(4-	15.9	8.87	3535	5
35		formylphenoxy)-	15.5	0.07	3333	
		n-decane				
	27	1,12-bis(4-	17.7	1.32	3565	6
		formylphenoxy)-	1,.,	1.52	3363	ľ
		n-dodecane				1
40	28	1,16-bis(4-	20.4	4.05	3625	9
		formylphenoxy)-	20.4	4.05	3023	"
		n-hexadecane				İ
	29	1,2-bis(2-(4-	10.2	6.28	3511	4
		formylphenoxy)-	10.2	0.28	3311	1 *
45		ethoxy)ethane].
43	30	1,3-bis(3-(p-	15.2	22.96	3589	5
	~~	formylphenoxy)-	15.2	24.30	3303]]
		n-propyloxy)-				
		benzene				1
	31	1,4-bis(2-(p-	11.7	24.94	3615	5
50		formylphenoxy)-	11./	24.74	3015	
		ethoxy)carbonyl-				
		benzene				I
						<u> </u>

	Ex. #	1	HPLC *	8	FAB•MS	M+x
		Aldehyde	Retention	yield	M/Z	Н
5	32	5-phenyl-1,3-	Minutes 16.8	12.88	3664	5
	1	bis(3-(p-				
	1	formylphenoxy)-				
		n-propyloxy)-				l
	49	benzene 1,6-bis(4-(4-	16.3	11 50	2622	
10	137	formylphenyl)-	16.2	11.58	3633	5
		phenoxy) hexane				
	50	1,3-bis(5-(4-	17.0	9.31	3645	6
	'	formylphenoxy)-	1/.0	9.31	3043	°
	1	n-pentyloxy)-				
15	l	benzene				
	51	1,8-bis(2-	18.3	10.83	3662	6
	Ī	phenyl-5-		1000	3002	ľ
	}	formylphenoxy) -				ĺ
		octane				l
20	53	1,8-bis(3-	15.3	2.1	3221	4
		formylphenoxy)-	1			1
		n-hexane				
	54	1,6-bis(4-(4'-	18.2	6.1	3347	6
		formylphenoxy)-				
25		phenoxy)-n-	1			
	55	hexane				
	33	1,8-bis(3-	22.9	2.2	3471	3
		formy1-2- iodophenoxy)-n-	İ			
		hexane				
30	56	1,8-bis(2-	19.3	2.8	3374	
		phenyl-5-	17.3	2.0	33/4	4
		formylphenoxy)-	l l			
		n-octane	4			
	57	1,3-bis(6-(2-	15.5	8.2	3229	4
35		dimethyl)-1-				
		hexanaloxy)-		1		
		benzene				
	58	1,4-bis(6-(2-	13.5	6.1	3209	4
		dimethyl)-1-		·]		
40		hexanaloxy)-		•		
	59	butane 1,12-bis(4-	01.6			
	'	formylphenoxy) -	21.6	6.8	3278	5
		n-dodecane	1			
	60	1,3-bis(3-(p-	HCL SALT			
45		formylphenoxy-n-	MCD SADI			
		propyloxy)-				
		benzene		ļ		
	61	1,3-bis(3-(p-	36.6	12.7	3660	8
		formylphenoxy-n-	·			
50		propyloxy)-5-n-		1	1	İ
		pentylbenzene	·			
	62	1,8-bis(3-	17.1	5.4	3762	6
		formy1-2-		1	İ	
		iodophenoxy)-n-		ł		
55	LI	octane		1		

EP 0 802 199 A2

HPLC *

Retention

Minutes

13.3

19.3

13.5

13.7

13.2

HCL SALT

yield

15.5

1.4

24.8

12.8

13.1

FAB • MS

M/Z

3516

3701

3495

3674

3761

M+x

H

5

6

4

6

9

5

Ex. #

63

64

65

66

70

71

Aldehyde

1,3-bis(6-(2-dimethyl)-1-hexanaloxy)-benzene

1,3-bis(3-(p-

formylphenoxy-nheptyloxy)benzene

1,4-bis(6-(2-

dimethyl)-1hexanaloxy)-

butane

1,3-bis(3-(p-

formylphenoxy-npropyloxy)benzene

1,3-bis(3-(pformylphenoxy)n-propyloxy)benzene

1,3-bis(3-(p-

formylphenoxy)n-propyloxy)benzene

10

15

20

25

30

* Conditions A

TABLE 4

	Ex. #	Aldehyde	HPLC * Retention, Minutes	% Yield	FAB•MS M/Z	M+ xH
35	33	1,2-bis(4-formylphenoxy)-n- ethane	13.1	2.58	1706	5
	34	1,2-bis(4-formylphenoxy)-n- propane	15.2	13.08	1718	0
40	35	1,2-bis(4-formylphenoxy)-n- butane	14.7	8.12	1734	4
	36	1,2-bis(4-formylphenoxy)-n- pentane	17.1	21.89	1746	4
45	37	1,2-bis(4-formylphenoxy)-n- hexane	18.0	8.37	1760	2
	38	1,2-bis(4-formylphenoxy)- 3-methyl-n-pentane	17.7	5.81	1760	1
50	39	1,2-bis(4-formylphenoxy)-n- heptane	19.0	27.99	1774	2
	40	1,2-bis(4-formylphenoxy)-n- octane	18.5	11.89	1789	3
55	41	1,2-bis(4-formylphenoxy)-n- decane	21.7	0.85	1816	4

* Conditions A

TABLE 4 (continued)

	Ex. #	Aldehyde	HPLC * Retention, Minutes	% Yield	FAB•MS MZ	M+ xH
5	42	1,2-bis(4-formylphenoxy)-n- dodecane	23.4	12.53	1841	1
	43	1,2-bis(2-(4-formylphenoxy) ethoxyethane	14.4	5.57	1794	4
10	44	1,2-bis(2-(4-formylphenoxy) ethoxy-benzoate	16.5	5.64	1897	3
	45	1,2-bis(2-(4-formylphenoxy)- propyloxy)-5-phenylbenzene	21.0	4.96	1946	5
15	46	1,3-bis(4-formylphenoxy)- propane	15.2	4.90	1861	2
	47	1,3-bis(4-formylphenoxy)-octane	19.9	8.69	1930	1
	48	1,3-bis(4-formylphenoxy)- dodecane	23.3	1.19	1984	1
20	52	1,3-bis(3-(p-formylphenoxy)-n- propyloxy)-benzene	18.8	3.10	1871	5
	67	1,8-bis(3-formyl-2-iodophenoxy)- n-octane	21.3	4.5	2042	5
25	68	1,3-bis(6-(2-dimethyl)- 1-hexanaloxy)-benzene	18.3	13.2	1798	4
	69	1,3-bis(3-(p-formylphenoxy-n- propyloxy)-5-n-pentylbenzene	22.4	3	1940	5

* Conditions A

30

40

The compounds of Formulae I and II are useful for the treatment of bacterial infections. Therefore, in another embodiment, the present invention is directed to a method for controlling a bacterial infection in a host animal, typically a warm-blooded animal, which comprises administering to the host animal an effective, antibacterial amount of a compound of Formula I or II. In this embodiment, the compounds of the present invention can be used to control and treat infections due to various bacteria, but especially gram-positive bacteria. In a preferred embodiment, the compounds are used to control and treat infections due to bacteria resistant to existing antibacterials. For example, certain bacteria are resistant to methicillin, and yet others are resistant to vancomycin and/or teicoplanin. The present compounds provide a technique for controlling and treating infections due to such resistant bacterial species.

In carrying out this embodiment of the invention, the compounds can be administered by any of the conventional techniques, including the oral route and parenteral routes such as intravenous and intramuscular. The amount of compound to be employed is not critical and will vary depending on the particular compound employed, the route of administration, the severity of the infection, the interval between dosings, and other factors known to those skilled in the art. In general, a dose of from about 0.5 to about 100 mg/kg will be effective, and in many situations, lesser doses of from about 0.5 to about 50 mg/kg will be effective. A compound of the present invention can be administered in a single dose, but in the known manner of antibacterial therapy, a compound of the present invention is typically administered repeatedly over a period of time, such as a matter of days or weeks, to ensure control of the bacterial infection.

Also in accordance with known antibacterial therapy, a compound of the present invention is typically formulated for convenient delivery of the requisite dose. Therefore, in another embodiment, the present invention is directed to a pharmaceutical formulation comprising a compound of either Formula I or II, in combination with a pharmaceuticallyacceptable carrier. Such carriers are well known for both oral and parenteral routes of delivery. In general, a formulation will comprise a compound of the present invention in a concentration of from about 0.1 to about 90% by weight, and often from about 1.0 to about 3%.

The antibacterial efficacy of the present compounds is illustrated by following TABLES 5 and 6. The minimal inhibitory concentrations (MICs) were determined using a standard broth micro-dilution assay. TABLE 6 presents a comparison of the activity of illustrative compounds against representative vancomycin-resistant and vancomycin-sensitive enterococci (Enterococcus faecium and Enterococcus faecalis, mean geometric MIC (mcg/mL), as determined by the standard broth micro-dilution assay.

0

	Vitro Antimicrobial Activity	/ Compound	2 3 4 5 6 7		0.5 0.5 2 0.5 0.25 0.5		1 2 2 1 1 1	4 2 4 1 1 1	0.5 0.25 2 0.25 0.5 0.5	2 0.	4 32 4 2 4 1	0.125 0.5 1 0.25 0.5 0.25	Ą	4 8 8 2	_	>64 16 16 4 4 4	1 \$0.06 \$0.06 \$0.06 \$0.06 \$0.06	0.25 \$0.06	\$0.06	0.5	0.06 0.06 0.06 0.06 0.06		>64 >64 >64 >64 >64	0.06 0.06 0.06 0.06 0.06 0.06	
TABLE	Antimic	(mcg/ml)	1	4	0.5	16	1	1	0.5	2	4	0.5	4	8	16	8	0.25	0.5	50.06	0.25	0.06		>64	0.06	3
	In Vitro	MIC	A82846B	0.25	≥0.06	0.25	0.125	0.125	0.25	0.125	0.125	≥0.06	0.125	1	4	0.25	æ	0.125	0.25	0.125	0.25	>64	>64		
			Vancomycin	0.5	.0.125	0.5	0.5	0.5		0.5	0.5	0.125	0.5	16	8	16	>64	0.5	2	1	4	>64	>64	0.5	200
			Organism	Staphylococcus aureus 446	Staphylococcus aureus 489	Staphylococcus aureus 447	Staphylococcus aureus X400	Staphylococcus aureus X778	Staphylococcus aureus 491	Staphylococcus aureus S13E	Staphylococcus aureus SA1199	Staphylococcus aureus SA1199A	Staphylococcus aureus SA1199B	Staphylococcus haemolyticus 109	Staphylococcus haemolyticus 419	Staphylococcus epidermidis 270	Enterococcus faecium 180	Enterococcus faecium 180-1	Enterococcus faecalis 2041	Enterococcus faecalis 276	Enterococcus gallinarum 245	Haemophilus influenzae RD	Escherichia coli EC14	Streptococcus pyogenes C203	Ctrontococcion nacimento no

Э.
-

TABLE 5

				-					
Organism	8	6	10	11	12	13	14	15	16
Staphylococcus aureus 446	8	1	8	16	8	8	4	4	8
Staphylococcus aureus 489	4	1	4	4	2	2	1	0.25	~
Staphylococcus aureus 447	32	4	16	64	8	16	16	64	>64
Staphylococcus aureus X400	4	1	4	8	2	4	7	6.5	7
Staphylococcus aureus X778	4	1	Þ	16	2	7	1	0.5	2
Staphylococcus aureus 491	2	0.5	1	0.25	2	1	0.25	0.125	0.5
Staphylococcus aureus S13E	8	2	•	8	4	4	2	1	-
Staphylococcus aureus SA1199	16	1	5	16	4	9	4	-	4
Staphylococcus aureus SA1199A	2	0.25	1	1	1	0.5	0.125	\$0.06	0.5
Staphylococcus aureus SA1199B	8	0.5	4	32	Þ	Þ	7	4	2
Staphylococcus haemolyticus 10	8	0.5	4	64	Þ	. 1	4	80	-
Staphylococcus haemolyticus 41	89	4	16	64	Þ	8	16	>64	32
Staphylococcus epidermidis 270	8	2	16	32	4	æ	8	64	32
Enterococcus faecium 180	0.125	≥0.06	4	2	≥0.06	0.125	0.25	0.25	0.125
Enterococcus faecium 180-1	0.5	0.25	1	0.25		0.5	50.05	0.25	0.5
Enterococcus faecalis 2041	0.25	0.5	0.25	≥0.06	0.25	0.25	0.25	0.125	0.25
Enterococcus faecalis 276	2	1	-	0.5	1	1	0.5	0.5	1
Enterococcus gallinarum 245	0.25	0.06	0.125	0.06	90.0	0.06	0.06	0.06	0.25
Haemophilus influenzae RD	>64	>64	64			>64	>64		>64
Escherichia coli EC14	>64	>64	>64	>64	>64	>64	>64	>64	>64
Streptococcus pyogenes C203	8	0.06	0.06	90.0	0.06	0.06	0.06	90.0	1
Streptococcus pheumoniae Pl	P	0.06	0.06	0 06	0.06	90 0	90 0	0 125	-

TABLE 5

Organism	17	18	19	20	17	22	23	24	25
Staphylococcus aureus 446	4	8	4	Þ	8	4	2	2	7
Staphylococcus aureus 489	1	4	0.25	2	7	4	-	2	7
Staphylococcus aureus 447	>64	64	32	64	64	32	8	16	1.0
Staphylococcus aureus X400	1	2	0.5	2	2	4	_	2	.7
Staphylococcus aureus X778	2	2	0.5	1	1	-	0.25	2	2
Staphylococcus aureus 491	0.5	0.25	0.25	1	2	2	-	7	2
Staphylococcus aureus S13E	1	2	1	2	ι	7	2	2	4
Staphylococcus aureus SA1199	1	2	1	Þ	ī	2	2	2	4
Staphylococcus aureus SA1199A	0.125	0.25	0.125	0.25	0.25	0.5	0.5	-	0.5
Staphylococcus aureus SA1199B	1	1	2	2	1	4	-	2	4
Staphylococcus haemolyticus 105	0.5	0.5	8	7	16	4	4	2	2
Staphylococcus haemolyticus 419	80	16	32	3.2	8	16	4	4	16
Staphylococcus epidermidis 270	64	16	16	16	8	8	Þ	4	16
Enterococcus faecium 180	0.125	20.06	0.125	90·05	0.125	0.25	0.125		0.25
Enterococcus faecium 180-1	0.125	0.25	1	1	0.5	0.5		0.5	-
Enterococus faecalis 2041	0.125	0.25	0.25	50.08	0.5	0.5	0.5		-
Enterococcus faecalis 276	0.125	0.125	1	0.25	1	1	1	2	1
Enterococcus gallinarum 245.	0.06	0.06	0.06	0.06	90.0	0.06	0.125	5.0	0.25
Haemophilus influenzae RD	>64	>64		>64	>64	>64		>64	· Þ 9<
Escherichia coli EC14	>64	>64	>64	>64	>64	>64	>64	>64	>64
Streptococcus pyogenes C203	0.06	0.06	0.06	0.06	0.06	90.0	0.06	0.25	0.25
Streptococcus pneumoniae P1	90.0	0.06	90.0	90.0	90.0	90.0	90.0	90.0	0.125

Organism	92	27	28	29	30	31	32	33	34
Staphylococcus aureus 446	4	16	>64	16	1	1	16	0.25	≥0.06
7	2	8	64	1	1	1	4	≥0.06	≥0.06
3	>64	>64	>64	64	4	8	>64	0.5	\$0.06
ľ	-	16	32	1		0.5	7	≥0.06	\$0.06
×	2	8	32	2	0.5	0.25	2	0.125	\$0.06
1	2	8	16	\$0.08	0.25	≥0.05	2	50.06	\$0.06
S	2		64	4	0.5	0.25	8	0.125	\$0.06
1	2	8	64	2	1	0.5	8	0.25	\$0.06
ı	-	4	16	0.5	90.05	\$0.06	2	<0.06	50.08
1	2	8	64	4	-4	0.5	8	0.125	\$0.06
Staphylococcus haemolyticus 105	4	32	32	0.25	0.25	0.25	4	1	0.5
Staphylococcus haemolyticus 419	16	64	64	59 <	4	16	æ	89	2
Staphylococcus epidermidis 270	80	32	64	32	ι	2	16	0.5	0.25
Enterococcus faecium 180	0.5	1	8	0.25	0.125	1	1	16	0.5
Enterococcus faecium 180-1	-	1	8	0.5	0.125	\$0.05	2	0.125	S0.06
Enterococcus faecalis 2041	1	Þ	8	0.125	0.25	≥0.06	2	0.25	S0.06
faecalis 2	2	4	8	0.25	0.5	0.125	2	0.125	S0.06
Enterococcus gallinarum 245	1	2	Þ	0.06	0.125	0.06	1	2	1
102	>64	>64	\$9 <			>64	>64		
Escherichia coli EC14	>64	>64	>64	>64	>64	>64	>64	>64	>64
Streptococcus pyogenes C203	4	0.5	64	90.0	0.06	0.06	0.5	90.0	90.0
Strentococcis prejmoniae Pl	2	1	99	90.0	90.0	90.0	0.125	0.06	0.06

TABLE 5

							•		
Organism	35	36	37	38	39	40	41	42	43
Staphylococcus aureus 446	≥0.06	≥0.05	0.25	0.125	≥0.06	0.5	4	2	2
1	90 OS	\$0.05	≥0.06	50.05	≤0.06	0.125	2	2	-
ı	30.05	≥0.05	0.125	30.05	1	0.25	8	4	4
Staphylococcus aureus X400	30.05	≥0.05	20.05	≥0.05	0.5	0.125	4	2	2
l	≥0.06	≥0.06	≥0.06	0.125	0.5	S0.06	2		2
Staphylococcus aureus 491	\$0.06	\$0.05	30.05	S0.08	≤0.06	≥0.06	2	2	0.5
	\$0.05	90.05	30.05	≥0.06	0.5	0.25	4	4	7
ı	90.05	≥0.06	≥0.05	≥0.06	0.25	0.25	Ą	2	2
	\$0.06	≥0.06	30.0≥	S0.05	\$0.06	\$0.06	0.25	1	0.5
	30.0≥	\$0.06	50.05	≥0.06	≥0.06		æ	4	4
1	0.25	0.25	1	0.5	0.125	1	1	2	1
Staphylococcus haemolyticus 419	4	2	2	2	0.5	4	16	8	80
Staphylococcus epidermidis 270	≥0.06	50.05	≥0.06	≥0.06	0.25	0.25	4	4	4
Enterococcus faecium 180	2	0.25	0.5	0.5	1	1	16	0.5	8
	0.125	\$0.06	≥0.06	≥0.06	S0.06	≥0.06	2		0.5
Enterococcus faecalis 2041	0.125	≥0.06	≥0.06	≥0.06	≥0.05	0.125	4	2	-
Enterococcus faecalis 276	≥0.05	≥0.06	0.25	0.25	≥0.06	0.25	4	4	-
Enterococcus gallinarum 245	1	0.25	1	0.5	0.25	1	8		0.5
Haemophilus influenzae RD									>64
ı	>64	>64	>64	>64	>64	>64	>64	>64	>64
Streptococcus pyogenes C203	0.06	90.0	90.0	0.06	0.06	0.06	0.25	0.25	0.06
	90.0	90.0	0.06	90.0	90.0	0.06	0.25	-	0.06

TABLE 5

_	_	_				_			1					-								Г
53	8	2	16	4	4	1	4	æ	1	16	2	8	Þ	> .06	0.25	0.5	0.25	0.06	>64	>64	. 0.0ú	, ,
51	16	8	>64	4	4	2	80	32	æ	8	2	16	8	2	1	2	þ	1		>64	1	
50	2	2	2	1	1	0.5	-	2	0.5	2	5.0	2	1	6.5	0.25	0.125	0.5	0.25	>64	>64	≥0.06	38.
49	16	4	>64	8	4	4	8	8	4	16	7	8	8	1	2	2	2	0.5		>64	2	١
48	>64	32	>64	32	32	16	32	32	16	32	>64	>64	>64	64	8	8	32	>64	>64	>64	2	
47	8	4	8	8	8	8	16	16	0.5	8	8	16	4	0.5	1	2	8	16	>64	>64	50.05	
46	1	0.5	2	1	0.5	0.5	0.5	1	0.125	1	2	4	2	0.5	≥0.05	≥0.06	1	4		>64	20.06	;
45	1	2	1	0.5	0.5	0.5	0.5	0.5	S0.06	0.5	0.5	2	1	0.5		0.125	0.25	0.5		>64	90.0	,
44	0.125	0.125	0.125	50.05	≥0.06	50.05	90.05	50.05	≥0.05	S0.06	0.25	2	0.25	4	≥0.06	≥0.0€	≥0.06	0.25	>64	>64	90.0	,
Organism	Staphylococcus aureus 446	Staphylococcus aureus 489	Staphylococcus aureus 447	Staphylococcus aureus X400	Staphylococcus aureus X778	Staphylococcus aureus 491	Staphylococcus aureus S13E	Staphylococcus aureus SA1199	Staphylococcus aureus SA1199A	Staphylococcus aureus SA1199B	Staphylococcus haemolyticus 109	Staphylococcus haemolyticus 419	Staphylococcus epidermidis 270	Enterococcus faecium 180	Enterococcus faecium 180-1	Enterococcus faecalis 2041	Enterococcus faecalis 276	Enterococcus gallinarum 245	Haemophilus influenzae RD	Escherichia coli EC14	Streptococcus pyogenes C203	

TABLE 5

	•					
Organism	54	52	95	57	58	65
Staphylococcus aureus 446	8	8	>64	8	32	64
Staphylococcus aureus 489	2	2	>64	2		3.2
Staphylococcus aureus 447	16	32	>64	32	>64	,64
Staphylococcus aureus X400	2	4	>64	4	4	3.2
Staphylococcus aureus X778	2	4	>64	4	8	16
Staphylococcus aureus 491	1	2	>64	1	1	@
Staphylococcus aureus S13E	4	Þ	>64	8	8	>64
Staphylococcus aureus SA1199	4	Þ	>64	4	16	3.2
Staphylococcus aureus SA1199A	2	2	>64	1	8	16
Staphylococcus aureus SA1199B	2	4	>64	4	8	32
Staphylococcus haemolyticus 109	8	2	>64	2	2	16
Staphylococcus haemolyticus 41	- 16	16	>64	32	>64	64
Staphylococcus epidermidis 270	8	8	>64	8	32	32
Enterococcus faecium 180	1	2	80	0.25	2	2
Enterococcus faecium 180-1	,	1	8	0.5	1	4
Enterococcus faecalis 2041	2	2	16	<.06	0.25	4
Enterococcus faecalis 276	1	4	32	0.5	0.5	80
Enterococcus gallinarum 245	1	4	8	90.0	7	1
Haemophilus influenzae RD	>64	þ	>64		>64	
Escherichia coli EC14	>64	>64	>64	>64	>64	>64
Streptococcus pyogenes C203	1	16	æ	0.06	0.06	1
Streptococcus pneumoniae P1	-	œ	1,6	90 0	90 0	,

ţ		

TABLE 5

Organism	60	61	62	63	P9	65
Staphylococcus aureus 446	8	8	8	4	16	8
Staphylococcus aureus 489	1	4	2	1	8	0.5
Staphylococcus aureus 447	8	16	3.2	64	>64	3.2
Staphylococcus aureus X400	2	8	2	J	16	
Staphylococcus aureus X778	2	4	2	1	8	
Staphylococcus aureus 491	1	. 2	2	0.5	8	0.5
Staphylococcus aureus S13E	2	16	Þ	ī	32	4
SA1	2	8	2	1	16	4
Staphylococcus aureus SA1199A	0.5	1	1	0.125	4	5.0
Staphylococcus aureus SA1199B	2	91	2	ī	16	2
Staphylococcus haemolyticus 109	8	ĩ	4	1	8	4
Staphylococcus haemolyticus 419	8	8	4	32	8	32
Staphylococcus epidermidis 270	4	Þ	2	1	8	4
Enterococcus faecium 180	0.125	1	1	0.5	2	1
Enterococcus faecium 180-1	1	0.5	1	>.06	0.5	0.25
Enterococcus faecalis 2041	0.25	2	1	<.06	2	0.25
Enterococcus faecalis 276	0.25	2	1	0.5	2	0.125
Enterococcus gallinarum 245	0.06	1	, , ,	0.06	2	0.0د
Haemophilus influenzae RD	>64		2	>64	>64	>64
Escherichia coli EC14	>64	>64	>64	>64	>64	>64
Streptococcus pyogenes C203	0.06	1	8	90.0	2	90.0
Streptococcus pneumoniae Pl	90.0	2	Þ	90.0	1	0.06

5			71	
10			7.0	,
15			69	3
25	S.		89	-
30	TABLE 5		67	2
35			99	0.5
40				
45			Organism	aureus 446
50			Org	Vlococcus aureus

Organism	99	67	68	69	0.2	11
Staphylococcus aureus 446	0.5	2	1	32	2	Þ
Staphylococcus aureus 489	0.25	1	0.25	32	0.5	2
Staphylococcus aureus 447	1	Þ	0.25	64	2	4
Staphylococcus aureus X400	0.5	1	0.125	16	1	4
Staphylococcus aureus X778	0.5	2	0.125	32		2
Staphylococcus aureus 491	< .06	Ą	0.25	16	5.0	2
Staphylococcus aureus S13E		4	0.5	16	1	2
Staphylococcus aureus SA1199		Þ	0.25	32	1	4
Staphylococcus aureus SA1199A	0.5	0.5	> .06	4	0.25	2
Staphylococcus aureus SA1199B	1	7	0.25	32	1	7
Staphylococcus haemolyticus 109	1	. 2	0.5	4	5.0	2
Staphylococcus haemolyticus 419	2	2	Þ	64	1	2
Staphylococcus epidermidis 270	0.5	1	0.25	4	1	
Enterococcus faecium 180	0.25	1	1	2	1	2
Enterococcus faecium 180-1	<.06	0.5	> . 06	7	0.25	0.5
Enterococcus faecalis 2041	<.06	0.5	0.125	1	0.5	0.5
Enterococcus faecalis 276	0.25	2	0.125	æ	0.5	1
Enterococcus gallinarum 245	0.06	2	1	8	0.5	0.5
Haemophilus influenzae RD		ì				
Escherichia coli EC14	>64	>64	79 <	>64	19 <	>64
Streptococcus pyogenes C203	0.06	Þ	90.0	0.25	0.125	0.5
Streptococcus pneumoniae P1	90.0	Þ	90.0	1	90.0	2.0

TABLE 6

		TABLE	
		Vitro Activity Against	
		Vancomycin Resistant	Vancomycin Sensitive
-	Cpd. Number	Strains	Strains
5	Vancomycin	282	
	A82846B	29	0.22
	1	42	1.3
	2	27	1.0
	3	27	1.5
10	4	19	
	5	11	
	6 .	32	1.3
	7 :	8.0	
		9.5	
15		9.5	
		>90	
	10	38	
	11 '		1.7
	12		
	13	9.5	
20	14		
	15 :	23	
	16	38 1	
	17 :	4.8	
	18 !	19 !	
25	19	19 !	
	20	13	1.0
	21	2.8	0.87
	22 1	6.7	0.76
	23 i	1.7	0.5
30	24	4.8	1.2
30	25	6.7	1.2
	26	4.0	1.5
	27	3.4	
ĵ	28	9.5	
	29 :	38	1.3
35	30 :	1.7	0.38
i	31	27 :	0.66
	32 i	2.8	1.5
j	33 .	>128	1.3
į	34 1	53 !	0.87
40	35 !	>81	0.57
	36	6.7	0.29
	37 1	9.5	9.1
İ	38	4.8	1.1
1	39 1	5.7	1.0
45	40 1	11.3	0.19
70	41	3.4	1.1
}	42	4.5	1.1
	43	>128	4.6
ł	44	76	0.66
	45	2.8	0.33
50	46	4.8	0.17
	47	2.8	1.0
	48	8.0	5.2
}	49 1	2.0	1.5
ŀ	50 :	1.7	0.44
55			
ŧ	51 :	3.4	2.3

TABLE 6

	In V	tro Activity Agains	t Enterococci
Cpd. :	mber.	Strains	Strains
52	•	4.8	0.093
53		5.7	0.66
54		4.8	2.3
55	:	4.8	2.3
56	١	8	5.3
57	:	11.3	0.76
58		64	1
59	:	2.4	1.2
60	i	2.4	1.3
61		2	1.2
62	:	3.4	15
63	1	4.8	0:57
64		6.7	4
65	!	22	0.57
66		2	0.38
67	1	3.4	0.66
68	İ	9.5	0.25
69	1	5.7	2.3
70		3.4	0.38
71	1	2.4	0.38

Claims

35

45

50

55

1. A compound of the formula:

CH2—L—CH2 G G'

wherein each of G and G' is independently deshydrovancomycin of the formula:

or deshydroA82846B of the formula:

wherein Y1 is OH or

$$-N < \frac{Y^2}{V^2}$$

5 and Y² is defined as follows:

10

15

20

25

30

35

40

50

(1) each Y2 independently represents

hydrogen,

alkyl of C₁-C₁₀,

cycloalkyl of C5-C6.

cycloalkenyl of C5-C6,

naphthyl,

biphenylyl,

radical of the formula $-Y^3-(Y^4)0$, 1, or 2, wherein Y^3 is loweralkyl of C_1-C_6 optionally substituted by from one to three substituents, each of which is independently selected from the group consisting of halo, nitro, cyano, alkoxy, haloalkyl, and haloalkoxy; and Y^4 is

-N<\\^5

wherein each Y^5 is independently hydrogen or loweralkyl of C_1 - C_4 , or Y^4 is phenyl or phenyl substituted with from one to three substituents, each of which is independently

halo,

nitro,

loweralkyl of C₁-C₄,

cycloalkyl of C5-C6,

loweralkoxy of C1-C4,

haloloweralkyl of C1-C4, or

haloloweralkoxy of C1-C4; or

- (2) one Y2 is hydrogen and the other Y2 is (2-furanon-3-yl); or
- (3) both Y2s are taken together with the nitrogen and constitute a five- to seven-membered heterocyclic ring optionally containing in addition to the indicated nitrogen atom one additional hetero ring atom which is nitrogen, oxygen, or sulfur, and which heterocyclic radical can be unsubstituted or substituted with from one or two substituents, each of which is loweralkyl of C₁-C₂, loweralkoxy of C₁-C₂, phenyl, benzyl, or C₁-C₆-alkanoyl; and L is a divalent linking radical of the formula A:

A. $-\frac{1}{2}$ R^{1} R^{1} R^{1} $R_{0^{-2}}$ $R_{0^{-2}}$

wherein A is:

alkylene of C₁-C₁₆,
(alkylene of C₁-C₄-X')_q-alkylene of C₁-C₄, wherein q is 1-3,
alkylene of

$$C_1-C_8-X'$$
 $X'-alkylene$ R_0-2

5

15

20

25

30

35

55

 C_1-C_2-X-C C_1-C_2-X-C C-X-alkylene R_{C-2}

of C₁-C₂, or alkylene of

 C_1-C_2-C-X X-C-alkylene

of C₁-C₂;

each R1 is independently

40 CH₂, O, S,

45 -N-R²

o o ii ii -x-c- or -c-x-,

10 or

5

15

20

25

30

35

40

45

50

$$-\xi \frac{1}{R_{0-2}} x' - \xi - \text{or } -\xi - x' - \xi \frac{1}{R_{0-2}} \xi - x'$$

wherein each R independently represents halo, loweralkyl of C_1 - C_6 , loweralkoxy of C_1 - C_6 , phenyl, or phenyl substituted by from 1 to 2 substituents, each of which is independently halo, loweralkyl of C_1 - C_6 , or loweralkoxy of C_1 - C_6 ; each X is independently -O- or

wherein R2 is H or loweralkyl of C1-C4; and each X' is independently -O-, -S-, or

wherein R2 is as defined above; or L is a divalent linking radical of the formula B:

B. -alkylene of C_1 - C_8 - R^3 - X^* - R^3 -alkylene of C_1 - C_8 -wherein X^* represents alkylene of C_1 - C_4 or a phenylene of the formula

wherein R is as defined above, and each ${\rm R}^3$ is independently ${\rm CH_2}$ or O, or a salt thereof.

- ⁵⁵ 2. A compound of Claim 1 wherein both of G and G' are deshydro A82846B.
 - 3. A compound of Claim 1 or 2 wherein L is a linking radical of formula A, A is alkylene of C₁-C₁₆, and both R¹ are O.

- A compound of Claim 3 wherein A is straight-chain alkylene of C₆-C₁₂.
- A compound of Claim 1 or 2 wherein L is a linking radical of formula A, A is (alkylene of C₁-C₄-X')_q-alkylene of C₁-C₄, q=2, and both R¹ are O.
- 6. A compound of the formula:

5

10

40

45

50

55

G-CH₂-L-CHO

wherein G is selected from the group consisting of deshydrovancomycin of the formula:

and deshydroA82846B of the formula:

wherein Y1 is OH or

30

40

45

$$-N < \frac{Y^2}{V^2}$$

and Y2 is defined as follows:

(1) each Y2 independently represents

hydrogen, alkyl of C₁-C₁₀, cycloalkyl of C₅-C₆, cycloalkenyl of C₅-C₆, naphthyl, biphenylyl,

radical of the formula -Y³-(Y⁴)0, 1, or 2, wherein Y³ is loweralkyl of C₁-C₆ optionally substituted by from one to three substituents, each of which is independently selected from the group consisting of halo, nitro, cyano, alkoxy, haloalkyl, and haloalkoxy; and Y⁴ is

50 -N<Y

wherein each Y^5 is independently hydrogen or loweralkyl of C_1 - C_4 , or Y^4 is phenyl or phenyl substituted with from one to three substituents, each of which is independently

halo,
nitro,
loweralkyl of C₁-C₄,
cycloalkyl of C₅-C₆,

loweralkoxy of C₁-C₄, haloloweralkyl of C₁-C₄, or haloloweralkoxy of C₁-C₄; or

(2) one Y2 is hydrogen and the other Y2 is (2-furanon-3-yl); or

(3) both Y²s are taken together with the nitrogen and constitute a five- to seven-membered heterocyclic ring optionally containing in addition to the indicated nitrogen atom one additional hetero ring atom which is nitrogen, oxygen, or sulfur, and which heterocyclic radical can be unsubstituted or substituted with from one or two substituents, each of which is loweralkyl of C_1 - C_2 , loweralkoxy of C_1 - C_2 , phenyl, benzyl, or C_1 - C_6 -alkanoyl; and L is a divalent linking radical of the formula A:

wherein A is:

5

10

15

20

25

30

35

40

45

55

alkylene of C_1 - C_{16} , (alkylene of C_1 - C_4 -X') $_q$ -alkylene of C_1 - C_4 , wherein q is 1-3, alkylene of

$$C_1-C_8-X$$
' X '-alkylene R_0-2

of C₁ -C₈; alkylene of

$$C_1-C_2-X-C$$

$$R_{0-2}$$
O
II
C-X-alkylene

of C₁ -C₂, or alkylene of

$$C_1-C_2-C-X$$
 $X-C-alkylene$ R_0-2

of C₁ -C₂;

each R1 is independently

15 CH₂, O, S,

5

40

45

50

55

-Ŋ-R²,

0 0 || || || -X-C- or -C-X-

30 -\frac{\sqrt{\sq}\}}}\sqrt{\sq}}}}}}\sqrt{\sq}\sqrt{\sq}\sq}\sqrt{\sqrt{\sqrt{\sq}\signgta}}}}}\signt{\sintitingset\sqrt{\sint{\siniq}}}}}}}}

or

$$-\xi$$
 $X'-\xi$ or $-\xi$ $X'-\xi$ R_{0-2}

wherein each R independently represents halo, loweralkyl of C_1 - C_6 , loweralkoxy of C_1 - C_6 , phenyl, or phenyl substituted by from 1 to 2 substituents, each of which is independently halo, loweralkyl of C_1 - C_6 , or loweralkoxy of C_1 - C_6 ; each X is independently -O- or

wherein R^2 is H or loweralkyl of $\mathsf{C_1}\text{-}\mathsf{C_4}$; and each X' is independently -O-, -S-, or

-N-

5

wherein R^2 is as defined above; or L is a divalent linking radical of the formula B: B. -alkylene of C_1 - C_8 - R^3 - X^* - R^3 -alkylene of C_1 - C_8 -wherein X^* represents alkylene of C_1 - C_4 or a phenylene of the formula

10

15

- wherein R is as defined above; and each R³ is independently CH₂ or O, or a salt thereof.
 - 7. A pharmaceutical formulation comprising a compound of Claim 1 or 6 in combination with a pharmaceutically-acceptable diluent or carrier.
- 8. A method of treating a bacterial infection in a host comprising the step of administering to the host an effective amount of a compound of Claim 1 or 6.
 - 9. A method of Claim 8 wherein the bacterial infection is attributable to a vancomycin-resistant-enterococcus.
- 30 10. A compound of Claim 1 or 6 for use in antibacterial therapy.
 - 11. A compound of Claim 1 or 6 for use in antibacterial therapy against vancomycin-resistant-enterococcus.
- 12. A process for the preparation of a compound as claimed in any one of Claims 1-6 which comprises reducing a Schiff base corresponding to the desired compound of Claims 1-6, and if desired, thereafter forming a pharmaceutically-acceptable salt.

40

45

50