Equipamentos de Imagiologia Médica

2021/2022

Teresa Sousa

Aula 11

Princípios físicos

MRI

fMRI

Magnetic resonance imaging

- Conceitos gerais sobre ressonância magnética nuclear
- Funcionalidades

	F (Hz)	E (eV)	λ (cm)	
	10 ²⁰	10 ⁶	10 ⁻¹⁰	
X-rays	10 ¹⁹	10 ⁵	10 ⁻⁹	
	10 ¹⁸	10 ⁴	10-8	
	10 ¹⁷	10 ³	10-7	
UV	10 ¹⁶	10 ²	10 ⁻⁶	
Visible light	10 ¹⁵	10 ¹	10 ⁻⁵	
	1014	10°	10-4	
	1013	10-1	10-3	
Microwaves	10 ¹²	10-2	10 ⁻²	
	1011	10-3	10-1	
	10 ¹⁰	10-4	10°	
Radiowaves and TV	10 ⁹	10-5	10 ¹	
	10 ⁸	10 ⁻⁶	10 ²	MRI
	10 ⁷	10-7	10 ³	IVIIVI
	10 ⁶	10-8	104	
	10 ⁵	10 ⁻⁹	10 ⁵	

Porquê o hidrogénio?

N	Protons/kg*	Relative %*				
¹H	5.3*10 ²⁵	100				
²³ Na	4.8*10 ²²	0.09				
³¹ P	4.5*10 ²²	0.085				
¹⁷ O	9.6*10 ²¹	0.018				
¹⁹ F	5.3*10 ¹⁸	0.0000045				
*in soft tissue						

O que distingue a MRI

Vantagens

- > Não usa radiação ionizante
- > Excelente contraste para tecidos moles

Desvantagens

- > Preço e duração elevados
- > Elevada suscetibilidade a movimento do paciente

Campo magnético

Aplicações

https://www.statnews.com/2019/08/13/human-brain-in-unprecedented-detail/

Aplicações

Aplicações

Magnetic resonance imaging

Princípios básicos da ressonância magnética nuclear

Spin

Spin

Os momento angular e magnético intrínsecos de uma partícula são acoplados através de um fator giromagnético que depende da carga e do tipo de partícula. Uma partícula que tenha carga e spin não nulos terá um momento magnético não nulo.

Experimentalmente o momento magnético é mais acessível do que o momento angular, pelo que este último acaba muitas vezes por ser inferido a partir do momento magnético associado.

Spin Nuclear

Os núcleos atómicos agem como pequenos ímanes com momento magnético µ, devido ao seu spin.

O spin que partículas elementares, tais como os fotões, os elétrões e os quarks apresentam é uma propriedade física intrínseca, como a propriedade de carga elétrica e massa. O spin de partículas compostas, tais como o protão, depende da soma dos spins das partículas em órbita num determinado momento angular.

O spin de um protão ou neutrão é igual a ±1/2.

Net Spin

Precessão

Quando na presença de um campo magnético forte (*B*) o momento magnético do protão tende a alinhar com esse campo magnético levando à precessão do protão.

Precessão

Quando um momento magnético μ é colocado num campo magnético exterior Bo, este tende a alinhar com Bo.

No entanto, o alinhamento não é perfeito levando à precessão.

Frequência de precessão (de Larmor):

$$\omega_0 = \gamma \left| \vec{B}_0 \right|$$

Ressonância Nuclear

Se for aplicado um campo magnético B1 com a frequência de precessão W0, os átomos absorvem essa energia (hf=ΔE) o que dará origem a uma segunda precessão em fase que os afasta do eixo z com frequência:

$$\omega_1 = \gamma \left| \vec{B}_1 \right|$$

Precessão, ressonância e vetor de magnetização

Alinhamento paralelo e antiparalelo

Precessão em fase por absorção de energia

Excitação Relaxação

Precessão, ressonância e vetor de magnetização

$$f = \frac{\gamma B_0}{2\pi}$$

Frequência de precessão (de Larmor)

 $\gamma=$ razão giromagnética

$$\alpha = \gamma B_1 \tau_{B1}$$

ângulo de rotação ("flip angle")

 $au_{B1} = duração do pulso$

Polarização

hf =
$$\Delta E = \frac{\gamma h B_0}{2\pi}$$

 $\Rightarrow f = \frac{\gamma B_0}{2\pi}$ or $\omega = \gamma B_0$

$$N_{parallel} - N_{anti-parallel} = N_{total} \frac{\gamma h B_0}{4\pi k T}$$

$$M_0 = \sum_{n=1}^{N_{total}} \mu_{z,n} = \frac{\gamma h}{4\pi} \left(N_{parallel} - N_{anti-parallel} \right) = \frac{\gamma^2 h^2 B_0 N_{total}}{16\pi^2 kT}$$

no magnetic field

B₀ present

Y (índice giromagnético) = 267.5x10⁶ rad/s.T ou 42.58 MHz/T

h (constante de Plank) = 6.63×10^{-34} J.s

k (constante de Boltzmann) = 1.3807x10⁻²³ J/K

 $T \rightarrow$ temperature em Kelvin

M0 → magnetização de campo

Relaxação – libertação de energia sob forma de sinal RF

Proton Density (PD) weighted image

Os núcleos de hidrogénio que integram os tecidos humanos e que consistem apenas num protão, geram um sinal que é processado para formar uma imagem do corpo em termos da densidade desses núcleos numa região específica.

Como medir?

Relaxação – origem do sinal medido

O sinal medido após a aplicação do pulso RF é chamado de decaimento de indução livre (FID).

É o sinal de RMN observável gerado pela relaxação dos átomos ao longo do tempo (que leva a uma variação do valor de magnetização de campo).

É detetado por indução eletromagnética e decai para um valor de equilíbrio zero.

^{**}A indução eletromagnética é a produção de sinal como resultado da interação de um campo magnético com um condutor elétrico (Lei de Faraday).

Relaxação – origem do sinal medido

O sinal medido após a aplicação do pulso RF é chamado de decaimento de indução livre (FID).

É o sinal de RMN observável gerado pela relaxação dos átomos ao longo do tempo (que leva a uma variação do valor de magnetização de campo).

É detetado por indução eletromagnética e decai para um valor de equilíbrio zero.

^{**}A indução eletromagnética é a produção de sinal como resultado da interação de um campo magnético com um condutor elétrico (Lei de Faraday).

Relaxação – origem do sinal medido

O sinal medido após a aplicação do pulso RF é chamado de decaimento de indução livre (FID).

É o sinal de RMN observável gerado pela relaxação dos átomos ao longo do tempo (que leva a uma variação do valor de magnetização de campo).

É detetado por indução eletromagnética e decai para um valor de equilíbrio zero.

Qual a razão para apenas ser originado sinal no plano xy?

Decaimento T1 (relaxação longitudinal ou tempo de relaxação spin-rede)

Decaimento T1 (relaxação longitudinal ou tempo de relaxação spin-rede)

O sistema perturbado está em desequilíbrio e deve regressar progressivamente ao estado inicial (Mx,y=0).

Os protões retornam à sua posição original e a energia recebida do pulso RF é transferida para o ambiente. O decaimento T1 descreve o que acontece no eixo Z.

O tempo T1 é definido como o tempo necessário para atingir 63% da magnetização longitudinal original (no eixo Z).

Decaimento T1 (relaxação longitudinal ou tempo de relaxação spin-rede)

O sistema perturbado está em desequilíbrio e deve regressar progressivamente ao estado inicial (Mx,y=0).

Os protões retornam à sua posição original e a energia recebida do pulso RF é transferida para o ambiente. O decaimento T1 descreve o que acontece no eixo Z.

O tempo T1 é definido como o tempo necessário para atingir 63% da magnetização longitudinal original (no eixo Z).

Decaimento T1 (relaxação longitudinal ou tempo de relaxação spin-rede)

T1-weighted image

Dado que os protões são afetados por campos de outros átomos aos quais estão ligados, é possível separar as respostas do hidrogénio em compostos específicos.

Cada tecido tem seu próprio tempo de relaxação e curva T1 que dependem essencialmente da interação do spin dos protões com o meio.

Decaimento T2 (relaxação transversal ou tempo de relaxação spin-spin)

Os protões que giravam de forma síncrona (em fase) deixam de o fazer assim que o pulso RF é desligado.

Como resultado o campo de magnetização transversal vai diminuir ao longo do tempo – o decaimento T2 descreve o que acontece no eixo XY.

T2 é definido como o tempo necessário para que a magnetização em XY seja reduzida para 37% do seu valor.

Decaimento T2 (relaxação transversal ou tempo de relaxação spin-spin)

T2-weighted image

Cada tecido tem um decaimento T2 característico que depende das interações spin-spin.

Em comparação com a água, a gordura tem um T2 mais curto revelando um desfasamento mais rápido dos protões em precessão.

Decaimento T2 – fontes de ruído

Por razões inerentes ao processo, tais como não homogeneidade do campo *Bo* e diferente permeabilidade magnética dos tecidos, ocorrem perdas de coerência mais fortes que aquelas devido à interação spin-spin.

Estes processos ruidosos caracterizam-se por T2+ << T2.

Combinam-se ambos num tempo característico T2*.

$$\frac{1}{T_2^*} = \frac{1}{T_2^+} + \frac{1}{T_2}$$

Como o processo que leva a T2 é sistemático, os erros podem ser corrigidos.

Decaimento T1 vs. Decaimento T2

Bloch equations - descrevem a contribuição dos fenómenos de relaxação para a magnetização

$$\dot{M}_x - \gamma (M_y B_z - M_z B_y) + rac{1}{T_2} M_x = 0 \ \dot{M}_y - \gamma (M_z B_x - M_x B_z) + rac{1}{T_2} M_y = 0 \ \dot{M}_z - \gamma (M_x B_y - M_y B_x) + rac{1}{T_1} M_z = 0$$

after a 90° pulse the value of M_z is given by:

$$M_z(t) = M_0 \left(1 - e^{-\frac{t}{T_1}} \right)$$

$$M_y(t) = M_0 \sin \alpha \exp{-\left(\frac{t}{T_2}\right)}$$

Tissue	T ₁ (1.5 T)	T ₁ (3 T)	T ₂ (1.5 T)	T ₂ (3 T)
Brain (white matter)	790	1100	90	60
Brain (grey matter)	920	1600	100	80
Liver	500	800	50	40
Skeletal muscle	870	1420	60	30
Lipid (subcutaneous)	290	360	160	130
Cartilage	1060	1240	42	37

Bloch equations - descrevem a contribuição dos fenómenos de relaxação para a magnetização

$$\dot{M}_x - \gamma (M_y B_z - M_z B_y) + rac{1}{T_2} M_x = 0$$
 $\dot{M}_y - \gamma (M_z B_x - M_x B_z) + rac{1}{T_2} M_y = 0$
 $\dot{M}_z - \gamma (M_x B_y - M_y B_x) + rac{1}{T_1} M_z = 0$

after a 90° pulse the value of M_z is given by:

$$M_z(t) = M_0 \left(1 - e^{-\frac{t}{T_1}} \right)$$

$$M_y(t) = M_0 \sin \alpha \exp{-\left(\frac{t}{T_2}\right)}$$

Localização do sinal no espaço

Resumo de conceitos

Net Spin

Campo magnético estacionário

- > Polarização
- > Precessão

Ressonância

- > Precessão em fase
- > Rotação do vetor de magnetização

Relaxação

- > Decaimento T1
- > Decaimento T2

Gradientes de campo

Processos envolvidos na imagem por ressonância magnética (MRI)

Novos desenvolvimentos – hiperpolarização

Novos desenvolvimentos – hiperpolarização

Até sexta!