Math 501 Homework 9

Trevor Klar

November 7, 2017

1. A space X is called functionally normal if for all pairs of disjoint closed sets A and B in X, there is a continuous function $f: X \to [0,1]$ with f(a) = 0 for all $a \in A$ and f(b) = 0 for all $b \in B$.

Prove that if X is functionally normal, then X is normal.

PROOF Suppose X is functionally normal, and let A and B be two disjoint closed sets in X. Consider $f^{-1}\left([0,\frac{1}{\pi})\right)$. Since f is continuous and $[0,\frac{1}{\pi})$ is open in [0,1], then $f^{-1}\left([0,\frac{1}{\pi})\right)$ is open in X. Since f(a)=0 for all $a\in A$, then $A\subset f^{-1}\left([0,\frac{1}{\pi})\right)$. Similarly, $B\subset f^{-1}\left((\frac{2}{\pi},1]\right)$. Since f is continuous and $[0,\frac{1}{\pi})\cap(\frac{2}{\pi},1]=\emptyset$, then $f^{-1}\left([0,\frac{1}{\pi})\right)\cap f^{-1}\left((\frac{2}{\pi},1]\right)=\emptyset$.

Thus, for all disjoint sets A and B in X, there exist disjoint open sets $f^{-1}\left([0,\frac{1}{\pi})\right)$ and $f^{-1}\left((\frac{2}{\pi},1]\right)$ such that $A \subset f^{-1}\left([0,\frac{1}{\pi})\right)$ and $B \subset f^{-1}\left((\frac{2}{\pi},1]\right)$.

2. Let X be a space. Prove that X is normal if and only if for any closed set A and open set U with $A \subset U$, there is an open set V with $A \subset V \subset \overline{V} \subset U$.

PROOF (\Longrightarrow) Let X be normal, with A closed and U open such that $A \subset U$. Consider the closed set $U^{\complement} = X - U$. Since $A \subset U$, then $A \cap U^{\complement} = \emptyset$. Now since X is normal, there exist open sets V, V', with $A \subset V$, $U^{\complement} \subset V'$, and $V \cap V' = \emptyset$. Currently, we have shown that $A \subset V \subset U$.

Claim: $\overline{V} \cap V' = \emptyset$.

To see this, suppose for contradiction that $x \in \overline{V} \cap V'$. Now, $x \notin V \cap V'$, because $V \cap V' = \emptyset$. So, $x \in V^{\ell} \cap V'$. Since x is a limit point of V and V' is an open set containing x, then $V \cap (V' - \{x\}) \neq \emptyset$, which is a contradiction.

Since $\overline{V} \cap V' = \emptyset$, then $\overline{V} \cap U^{\complement} = \emptyset$, so $\overline{V} \subset U$. Thus, $A \subset V \subset \overline{V} \subset U$.

PROOF (\Leftarrow) Suppose that for any closed set A and open set U with $A \subset U$, there is an open set V with $A \subset V \subset \overline{V} \subset U$. Let A and B be closed sets in X with $A \cap B = \emptyset$.

Since $A \subset B^{\complement}$, and B^{\complement} is open, then there exists an open set U with $A \subset U \subset \overline{U} \subset B^{\complement}$. Similarly, since $B \subset \overline{U}^{\complement}$, and $\overline{U}^{\complement}$ is open, then there exists an open set V with $B \subset V \subset \overline{V} \subset \overline{U}^{\complement}$. Since $V \subset \overline{U}^{\complement}$, then $V \cap \overline{U} = \emptyset$, so $V \cap U = \emptyset$.

Thus,
$$A \subset U$$
, $B \subset V$, and $U \cap V = \emptyset$.

3. Let X be a normal space. Prove for each pair of disjoint closed sets A and B, there are disjoint open sets U and V with $A \subset U$, $B \subset V$, and $\overline{U} \cap \overline{V} = \emptyset$.

PROOF Let A and B be closed sets in X with $A \cap B = \emptyset$. By exercise $(2)(\Longrightarrow)$, since X is normal, it satisfies the hypotheses for $(2)(\longleftarrow)$. By $(2)(\longleftarrow)$, there exist open sets U,V such that $A \subset U$, $B \subset V$, and $\overline{V} \subset \overline{U}^{\complement}$. Thus, $\overline{U} \cap \overline{V} = \emptyset$ and we are done.

4. Prove that the Tietze Extension Theorem implies Urysohn's Lemma. (Remark: There exist proofs of the Tietze Extension Theorem which do not rely on Urysohn's Lemma. Thus the Tietze Extension Theorem and Urysohn's Lemma are equivalent.)

PROOF Let X be a normal space, with A, B disjoint closed subsets of X. We will prove that there exists a continuous function $\varphi: X \to [0,1]$ such that $\varphi(a) = 0$ for all $a \in A$, and $\varphi(b) = 1$ for all $b \in B$.

Let $S = A \cup B$. Let $f: S \to \mathbb{R}$ be

$$f(a) = 0 \quad \forall a \in A$$

 $f(b) = 1 \quad \forall b \in B.$

Now, $f|_A$, $f|_B$ are constant functions on compact domains, so they are continuous. Thus, by the Piecing Lemma, f is continuous. Now, by Tietze's Extension Theorem, there exists a continuous function $F: X \to \mathbb{R}$ such that f(x) = F(x) for all $x \in S$.

Now, define $\varphi: X \to [0,1]$ by

$$\varphi(x) = \begin{cases} 0 & F(x) \le 0 \\ F(x) & F(x) \in [0, 1] \\ 1 & F(x) \ge 1 \end{cases}$$

Note that since F is continuous, $F^{-1}((-\infty,0])$ and $F^{-1}([1,\infty))$ are closed. So, since φ is constant on the above closed sets, it is continuous on them, and it is equivalent to the continuous function F on [0,1]. Thus, by the Piecing Lemma, φ is continuous. Therefore, we have shown that there exists continuous $\varphi: X \to [0,1]$ such that $\varphi(a) = 0$ for all $a \in A$, and $\varphi(b) = 1$ for all $b \in B$.

- 5. Let X be a compact Hausdorff space, and let $\{U_{\alpha}\}_{{\alpha}\in\Gamma}$ be an open cover of X. Prove that there exists a finite subcover $U_{\alpha_1},\ldots,U_{\alpha_n}$ of X and a collection of functions $\varphi_{\alpha_1},\ldots,\varphi_{\alpha_n}:X\to[0,1]$ such that
 - (i) For each i=1,...,n, there exists a compact set $K_{\alpha_i}\subset U_{\alpha_i}$ such that $\varphi_{\alpha_i}(x)=0$ for $x\in X-K_{\alpha_i};$
 - (ii) For each $x \in X$, $\sum_{i=1}^{n} \varphi_{\alpha_i}(x) = 1$.

(Remark: The φ_{α_i} and U_{α_i} are called a partition of unity subordinate to the cover $\{U_{\alpha}\}$. Hints: X is normal. Use Urysohn's Lemma to find functions f_{α_i} satisfying (i.). Let $\varphi_{\alpha_i} = \frac{f_{\alpha_i}}{\sum_i f_{\alpha_i}}$.)

PROOF of (i) Since X is compact, then there exists a finite subcover $\{U_{\alpha_i}\}_{i=1}^n$. Let $\{K_{\alpha_i}\}_{i=1}^n$ be a collection of closed sets such that for each $i \in \{1, ..., n\}$,

$$K_{\alpha_i} \subset U_{\alpha_i}$$

and $\{K\alpha_i\}_{i=1}^n$ covers X. Let $\{V_{\alpha_i}\}_{i=1}^n$ be closed sets with $V_{\alpha_i} \subset \operatorname{int}(K_{\alpha_i}) \subset K_{\alpha_i}$ for each $i \in \{1, \ldots, n\}$ (We know that these closed sets exists because X is Hausdorff, so even a singleton is closed). Now, $X - \operatorname{int}(K_{\alpha_i})$ and V_{α_i} are both closed and $X - \operatorname{int}(K_{\alpha_i}) \cap V_{\alpha_i} = \emptyset$ for every $i \in \{1, \ldots, n\}$. This means that by Urysohn's Lemma, for each $i \in \{1, \ldots, n\}$, there exists a continuous function $f_{\alpha_i} : X \to \mathbb{R}$ such that

$$f_{\alpha_i}(x) = \begin{cases} 0 & \text{if} \quad x \in X - \text{int}(K_{\alpha_i}) \\ > 0 & \text{if} \quad x \in \text{int}(K_{\alpha_i}) \\ 1 & \text{if} \quad x \in V_{\alpha_i} \end{cases}$$

Thus, we have (i), since $f_{\alpha_i}(x) = 0$ for all $x \in X - \operatorname{int}(K_{\alpha_i})$, and $(X - K_{\alpha_i}) \subset (X - \operatorname{int}(K_{\alpha_i}))$.

PROOF of (ii) For each $i \in \{1, ..., n\}$, let $\varphi : X \to [0, 1]$ be

$$\varphi_{\alpha_i} = \frac{f_{\alpha_i}}{\sum_{j=1}^n f_{\alpha_j}}$$

Remark: Since $\{K\alpha_j\}_{j=1}^n$ covers X, then for all $x \in X$, there exists some $k \in \{1, \ldots, n\}$ such that $x \in \text{int}(K\alpha_k)$. Thus, $\sum_{i=1}^n f_{\alpha_i} \neq 0$, and so φ_{α_i} is defined everywhere.

Thus, $\{\varphi_{\alpha_i}\}_{i=1}^n$ satisfies (i) and (ii), since $f_{\alpha_i}(x) = 0 \iff \varphi_{\alpha_i}(x) = 0$, and

$$\sum_{i=1}^{n} \varphi_{\alpha_i} = \sum_{i=1}^{n} \left(\frac{f_{\alpha_i}}{\sum_{j=1}^{n} f_{\alpha_j}} \right) = \frac{\sum_{i=1}^{n} f_{\alpha_i}}{\sum_{j=1}^{n} f_{\alpha_j}} \equiv 1.$$

3