MULTIPLE CORRECT (OBJECTIVE QUESTIONS) Exercise – II

(A) isosceles

(C) obtuse angled

1. If one vertex of an equilateral triangle of side 'a' lies at the origin and the other lies on the line

 $x - \sqrt{3}$ y = 0 then the co-ordinates of the third vertex are

- (A) (0, a) (B) $\left(\frac{\sqrt{3} \text{ a}}{2}, -\frac{\text{a}}{2}\right)$ (C) (0, -a) (D) $\left(-\frac{\sqrt{3} \text{ a}}{2}, \frac{\text{a}}{2}\right)$
- 2. If one diagonal of a square is the portion of the line

 $\frac{x}{a} + \frac{y}{b} = 1$ intercepted by the axes, then the extremities of the other diagonal of the square are

(A)
$$\left(\frac{a+b}{2}, \frac{a+b}{2}\right)$$

(A)
$$\left(\frac{a+b}{2}, \frac{a+b}{2}\right)$$
 (B) $\left(\frac{a-b}{2}, \frac{a+b}{2}\right)$

(C)
$$\left(\frac{a-b}{2}, \frac{b-a}{2}\right)$$
 (D) $\left(\frac{a+b}{2}, \frac{b-a}{2}\right)$

(D)
$$\left(\frac{a+b}{2}, \frac{b-a}{2}\right)$$

3. If $\frac{x}{c} + \frac{y}{d} = 1$ is a line through the intersection of

 $\frac{x}{a} + \frac{y}{h} = 1$ and $\frac{x}{h} + \frac{y}{a} = 1$ and the lengths of the perpendiuclars drawn from the origin to these lines are equal in lengths then

(A)
$$\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2} + \frac{1}{d^2}$$
 (B) $\frac{1}{a^2} - \frac{1}{b^2} = \frac{1}{c^2} - \frac{1}{d^2}$

(C)
$$\frac{1}{a} + \frac{1}{b} = \frac{1}{c} + \frac{1}{d}$$

- (D) none
- 4. A and B are two fixed points whose co-ordinates are (3, 2) and (5, 4) respectively. The co-ordinates of a point P if ABP is an equilateral triangle, is/are

(A)
$$(4-\sqrt{3}, 3+\sqrt{3})$$
 (B) $(4+\sqrt{3}, 3-\sqrt{3})$

(B)
$$(4+\sqrt{3},3-\sqrt{3})$$

(C)
$$(3-\sqrt{3}, 4+\sqrt{3})$$

(C)
$$(3-\sqrt{3}, 4+\sqrt{3})$$
 (D) $(3+\sqrt{3}, 4-\sqrt{3})$

5. Straight lines 2x + y = 5 and x - 2y = 3 intersect at the point A. Points B and C are chosen on these two lines such that AB = AC. Then the equation of a line BC passing through the point (2, 3) is

(A)
$$3x - y - 3 = 0$$

(B)
$$x + 3y - 11 = 0$$

(C)
$$3x + y - 9 = 0$$

(D)
$$x - 3y + 7 = 0$$

6. The straight lines x + y = 0, 3x + y - 4 = 0 and

(B) right angled

(D) equilateral

x + 3y - 4 = 0 form a triangle which is