Subspaces

We call a nonempty subset \mathbb{W} of a vector space $(\mathbb{V}, +, \cdot, \mathbb{F})$, a subspace if \mathbb{W} with the same field \mathbb{F} and the same operations + and \cdot is a vector space in its own right, i.e. $\langle \mathbb{W}, +, \cdot, \mathbb{F} \rangle$ is a vector space. Notation:

Example 1

(a)
$$\mathbb{W} = \left\{ a \cdot t^2 + a \cdot t + a \mid a \in \mathbb{R} \right\} \sqsubseteq P_2(\mathbb{R})$$

(b)
$$\mathbb{W} = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \mid x, y \in \mathbb{R} \right\} \sqsubseteq \mathbb{R}^3$$

(c)
$$\mathbb{W} = \left\{ \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix} \mid a, b, c, d, e, f \in \mathbb{R} \right\} = \mathbb{U}_{3\times 3}(\mathbb{R}) \sqsubseteq \mathbb{M}_{3\times 3}(\mathbb{R})$$

Of course we could just simply check if all 8 properties of a vector space are true for W, but this is not really necessary, since most properties are inherited by virtue of $\mathbb{W}\subseteq\mathbb{V}$. The following theorem is sufficient:

Theorem 1

Let $\mathbb{W} \subseteq \mathbb{V}$. If $\langle \mathbb{V}, +, \cdot, \mathbb{F} \rangle$ is a vector space, and

- (a) $\vec{0}_{\mathbb{V}} \in \mathbb{W}$ (b) $\forall \vec{a}, \vec{b} \in \mathbb{W}: \vec{a} + \vec{b} \in \mathbb{W}$ (c) $\forall t \in \mathbb{F}, \vec{a} \in \mathbb{W}: t \cdot \vec{a} \in \mathbb{W}$

then $\langle \mathbb{W}, +, \cdot, \mathbb{F} \rangle$ is a vector space, i.e. $\mathbb{W} \sqsubseteq \mathbb{V}$.

Proof: We will check that all properties of a vector space are true for $\langle \mathbb{W}, +, \cdot, \mathbb{F} \rangle$

 $\begin{cases} \forall \ \vec{a}, \ \vec{b} \in \mathbb{W} : \ \vec{a} + \vec{b} \in \mathbb{W} \\ \forall \ t \in \mathbb{F}, \ \vec{a} \in \mathbb{W} : \ t \cdot \vec{a} \in \mathbb{W} \end{cases}$ Clearly the operations are closed:

Next we'll check all 8 properties. We'll see most properties are inherited from $\langle \mathbb{V}, +, \cdot, \mathbb{F} \rangle$

- (1) $\vec{v} + \vec{w} = \vec{w} + \vec{v}$ for all $\vec{v}, \vec{w} \in \mathbb{W}$, since it is true for all $\vec{v}, \vec{w} \in \mathbb{V}$, i.e. it is inherited.
- (2) $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$ for all $\vec{u}, \vec{v}, \vec{w} \in \mathbb{W}$, is inherited from \mathbb{V} .
- (3) There exists a unique $\vec{0} \in \mathbb{W}$ such that $\vec{w} + \vec{0} = \vec{w}$ for all $\vec{v} \in \mathbb{W}$: $\vec{0} = \vec{0}_{\mathbb{V}} \in \mathbb{W}$
- (4) Since scalar multiplication is closed: if $w \in \mathbb{W}$ then $-w = -1 \cdot w \in \mathbb{W}$. Hence \mathbb{W} contains all opposites, and $\vec{w} + (-\vec{w}) = \vec{0}$ for all $\vec{w} \in \mathbb{W}$ is inherited.
- (5) $1 \cdot \vec{w} = \vec{w}$ is inherited
- (6) $r \cdot (s \cdot \vec{w}) = (r \cdot s) \cdot \vec{w}$ for all $r, s \in \mathbb{F}$ and $\vec{w} \in \mathbb{W}$ is inherited.
- (7) $s \cdot (\vec{u} + \vec{w}) = s \cdot \vec{u} + s \cdot \vec{w}$ for all $s \in \mathbb{F}$ and $\vec{u}, \vec{w} \in \mathbb{W}$ is inherited.
- (8) $(r+s) \cdot \vec{w} = r \cdot \vec{w} + s \cdot \vec{w}$ for all $r, s \in \mathbb{F}$ and $\vec{w} \in \mathbb{W}$ is inherited.

Example 2 $\mathbb{W} = \left\{ p(t) \in P_2(\mathbb{R}) \mid p(0) = 0 \right\} \sqsubseteq P_2(\mathbb{R})$

W is the subspace of all polynomials of degree 2 or less, with zero constant term, i.e.

$$\mathbb{W} = \left\{ a t^2 + b t \mid a, b \in \mathbb{R} \right\}$$

It is clearly a subspace, since

- (a) $\vec{0}_{P_2(\mathbb{R})} = 0t^2 + 0t + 0 \in \mathbb{W}$
- (b) $\forall p_1(t), p_2(t) \in \mathbb{W}$: $p_1(t) + p_2(t) \in \mathbb{W}$, since $p_1(0) + p_2(0) = 0$.
- (c) $\forall s \in \mathbb{R}, \ p(t) \in \mathbb{W}$: $s \cdot p(t) \in \mathbb{W}$, since $s \cdot p(0) = s \cdot 0 = 0$.

Example 3 The subset of all differentiable real valued functions

$$D = \left\{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is differentiable } \right\}$$

is a subspace of the vector space of all real valued functions

$$\{f: \mathbb{R} \to \mathbb{R} \mid f \text{ is differentiable }\} \sqsubseteq \{f: \mathbb{R} \to \mathbb{R}\}$$

It is clearly a subspace, since

- (a) $f(x) \equiv 0 \in D$ since f'(x) = 0, i.e. $f(x) \equiv 0$ is differentiable.
- **(b)** $\forall f(x), g(x) \in D$: $f(x) + g(x) \in D$, since (f(x) + g(x))' = f'(x) + g'(x).
- (c) $\forall t \in \mathbb{R}, f(x) \in D$: $t \cdot f(x) \in D$, since $(t \cdot f(x))' = t \cdot f'(x)$.