El numero entre corchetes es la puntuación máxima de cada apartado.

EJERCICIO 1 - Resuelve las siguientes cuestiones

- [2] a) Determina la solución de la ecuación $tx' = x + \sqrt{t^2 + x^2}$ que pasa por el punto (1,0) e indica el mayor intervalo donde está definida.
- |2 | b) Sabiendo que $x_1(t) = te^t$ y $x_2(t) = (t-2)e^t$ son soluciones de la ecuación $tx'' (t+1)x' + x = (t-1)e^t$, halla la solución general de dicha ecuación.
- $[3 \mid c)$ Estudia la existencia de soluciones π -periódicas del sistema

$$x' = \left(\begin{array}{cc} 0 & 1 \\ -4 & 0 \end{array}\right) x + \left(\begin{array}{c} \sin 2t \\ a\cos 2t \end{array}\right),$$

en función del parámetro $a \in \mathbb{R}$.

EJERCICIO 2 - Se considera el sistema

$$\begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \qquad a, b, c, d \in \mathbb{R}. \tag{1}$$

[1] a) Demuestra que si $(x(t), y(t))^t$ es una solución de (1), entonces la función x(t) es una solución de la ecuación

$$x'' - (a+d)x' + (ad - bc)x = 0.$$
 (2)

- [1] b) Supongamos que $b \neq 0$ y sea $\{\varphi_1, \varphi_2\}$ un sistema fundamental de soluciones de la ecuación (2) Construye una matriz fundamental para (1) en términos de $\varphi_1, \varphi_2, a, b, c$ y d.
- [1] c). Utiliza los apartados anteriores para calcular e^{At} con

$$A = \left(\begin{array}{cc} 3 & -5 \\ 5 & -3 \end{array}\right).$$