APELLIDO Y NOMBRE:

COMISIÓN:____

10	1	2	3	4	Total

Ejercicio 1: Demostrar la siguiente afirmación, donde a, x e y son números reales. Justificar cada uno de los pasos dados en la demostración indicando qué axioma aplica:

- a) (1.2 puntos) $a \cdot 0 = 0$.
- b) (1.3 puntos) Si x < y, entonces $x < \frac{x+y}{2}$.

Ejercicio 2: Demostrar por inducción:

- a) (1.5 puntos) Si $x, y \in \mathbb{R}, y \neq 0$, entonces $\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$, para todo $n \in \mathbb{N}$.
- b) $(1.5 \ puntos)^- \sum_{i=1}^n \frac{1}{i(i+1)} = \frac{n}{n+1}$, para todo $n \in \mathbb{N}$.

Ejercicio 3: (2 puntos) Sean b y d números enteros no nulos. Probar que si $d \mid b$ y $b \mid d$, entonces d = b o d = -b.

Ejercicio 4:

- a) (1.2 puntos) Encontrar el máximo común divisor entre 481 y -195.
- b) (1.3 puntos) Determinar si existen números enteros a y b tales que

 $481 \cdot a - 195 \cdot b = 39.$

PARER

GURI LaBisagra

