Complexidade Assintótica

Norton T. Roman

Crescimento Assintótico de Funções

- Custo da solução aumenta com o tamanho n do problema
 - O tamanho n fornece uma medida da dificuldade para resolver o problema
 - Tempo necessário para resolver o problema aumenta quando n cresce
 - Exemplo: número de comparações para achar o maior elemento de um arranjo (array) ou para ordená-lo aumenta com o tamanho da entrada n.

Crescimento Assintótico de Funções

- Escolha do algoritmo não é um problema crítico quando n é pequeno.
 - O problema é quando n cresce.
- Por isso, é usual analisar o comportamento das funções de custo quando n é bastante grande.
 - Analisa-se o comportamento assintótico das funções de custo
 - Representa o limite do comportamento do custo quando n cresce

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10^{6}	10^{9}
n log n	200	3000	$4 \cdot 10^{4}$	$6 \cdot 10^{6}$	$9 \cdot 10^{9}$
n^2	104	10 ⁶	10 ⁸	10 ¹²	10^{18}
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$pprox 10^{10}$	$\approx 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07 \cdot 10^{301}$?	?	?

• 1 milhão (10⁶) de operações por segundo

Função de custo	10	20	30	40	50	60
n	0,00001s	0,00002s	0,00003s	0,00004s	0,00005s	0,00006s
n ²	0,0001s	0,0004s	0,0009s	0,0016s	0,0025s	0,0036s
n ³	0,001s	0,008s	0,027s	0,064s	0,125s	0,216s
n ⁵	0,1s	3,2s	24,3s	1,7min	5,2min	12,96min
2 ⁿ	0,001s	1,04s	17,9min	12,7dias	35,7 anos	366 séc.
3 ⁿ	0,059s	58min	6,5anos	3855séc.	10 ⁸ séc.	10 ¹³ séc.

- Influência do aumento de velocidade dos computadores no tamanho x do problema
 - Maior problema possível de se resolver em 1 hora:

Função de custo	Computador Atual (C)	Computador 100C	Computador 1000C
n	X	100 <i>x</i>	1000 <i>x</i>
n ²	X	10 <i>x</i>	31.6 <i>x</i>
n ³	X	4, 6 <i>x</i>	10 <i>x</i>
2 ⁿ	X	x + 6, 6	x + 10

- Influência do aumento de velocidade dos computadores no tamanho x do problema
 - Um aumento de 1.000 vezes resolve um problema 10 vezes maior para algoritmos n³
 - Para 2ⁿ, adiciona apenas 10 ao tamanho do problema

Função de custo	Computador Atual (C)	Computador 100C	Computador 1000C
n	x	100 <i>x</i>	1000 <i>x</i>
n ²	x	10 <i>x</i>	31.6 <i>x</i>
n ³	x	4, 6 <i>x</i>	10 <i>x</i>
2 ⁿ	x	x + 6, 6	x + 10

- Se f(n) é a função de complexidade de um algoritmo
 A
 - O comportamento assintótico de f (n) representa o limite do comportamento do custo (complexidade) de A quando n cresce.
- A análise de um algoritmo (função de complexidade)
 - Geralmente considera apenas algumas operações elementares ou mesmo uma operação elementar (e.g., o número de comparações).
- A complexidade assintótica relata crescimento assintótico das operações elementares.

Definição:

Uma função g(n) domina assintoticamente outra função f
 (n) se existem duas constantes positivas c e m tais que,
 para n ≥ m, tem-se |f(n)| ≤ c × |g(n)|.

- $g(n) = n e f(n) = n^2$
- Alguém domina alguém?
 - **????**

- $g(n) = n e f(n) = n^2$
- Alguém domina alguém?
 - $|n| \le |n^2|$ para todo $n \in N$.

- $g(n) = n e f(n) = n^2$
- Alguém domina alguém?
 - $|n| \le |n^2|$ para todo $n \in N$.
 - Para c = 1 e $m = 0 \Rightarrow |g(n)| \le |f(n)|$.
- Portanto, f (n) domina assintoticamente g(n).

- $g(n) = n e f(n) = -n^2$
- Alguém domina alguém?
 - **????**

- $g(n) = n e f(n) = -n^2$
- Alguém domina alguém?
 - $|n| \le |-n^2|$ para todo $n \in N$.
 - Por ser módulo, o sinal não importa
 - Para c = 1 e $m = 0 \Rightarrow |g(n)| \le |f(n)|$.
- Portanto, f (n) domina assintoticamente g(n).

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - **????**

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Vamos por em um gráfico

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Vamos por em um gráfico
 - Óbvio: $|n^2| \le |(n+1)^2|$, para $n \ge 0$
 - g(n) domina f(n)

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Será somente isso?
 - Não há como f(n) dominar g(n)?
 - **???**

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Não há como f(n) dominar g(n)?
 - Lembre que a definição envolve também uma constante.
 - Suponha que queremos $g(n) \le cf(n)$
 - Então $|(n+1)^2| \leq |cn^2|$
 - Mas, para isso, basta que $|(n+1)^2| \le |(\sqrt{c} n)^2|$,
 - ou $|n+1| \leq |\sqrt{c} n|$
 - Se $\sqrt{c} = 2$, ou seja, c=4, isso é verdade

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - $E |(n+1)^2| \le |4n^2|$, para n ≥ 0
 - f(n) domina g(n), para $n \ge 1$
- Nesse caso, dizemos que f(n) e g(n) dominam assintoticamente uma a outra.

- Knuth criou a notação O (O grande) para expressar que g(n) domina assintoticamente f(n)
 - Escreve-se f(n) = O(g(n)) e lê-se: "f(n) é da ordem no máximo g(n)".
- Para que serve isto para o bacharel em Sistemas de Informação?
 - Muitas vezes calcular a função de complexidade g(n) de um algoritmo A é complicado.
 - É mais fácil determinar que f (n) é O(g(n)), isto é, que assintoticamente f(n) cresce no máximo como g(n).

- Definição:
 - $O(g(n)) = \{f(n): existem constantes positivas c e n_0 tais$ que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$.
- Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto

g(n).

- Definição:
 - $O(g(n)) = \{f(n): \text{ existem constantes positivas c e } n_0 \text{ tais}$ $\text{que } 0 \le f(n) \le \text{cg}(n), \text{ para todo } n \ge n_0 \}.$
 - $-\frac{3}{2}n^2 2n \in O(n^2) ?$

???

- Definição:
 - $O(g(n)) = \{f(n): \text{ existem constantes positivas c e } n_0 \text{ tais}$ $\text{que } 0 \le f(n) \le \text{cg}(n), \text{ para todo } n \ge n_0 \}.$
 - $\frac{3}{2}n^2 2n \in O(n^2)?$
 - Fazendo c = 3/2, teremos $\left| \frac{3}{2} n^2 2n \right| \le \left| \frac{3}{2} n^2 \right|$, para $n_0 \ge 2$
 - Outras constantes podem existir, mas o que importa é que existe alguma escolha para as constantes

Operações com a notação O

```
f(n) = O(f(n))
c \times f(n) = O(f(n)), c \text{ \'e uma constante}
O(f(n)) + O(f(n)) = O(f(n))
O(O(f(n))) = O(f(n))
O(f(n)) + O(g(n)) = O(max(f(n), g(n)))
O(f(n))O(g(n)) = O(f(n)g(n)))
f(n)O(g(n)) = O(f(n)g(n))
```

Operações com a notação O

- A regra $O(f(n)) + O(g(n)) = O(\max(f(n),g(n)))$ pode ser usada para calcular o tempo de execução de uma seqüência de trechos de um programa
 - Suponha 3 trechos: O(n), O(n²) e O(nlogn)
 - Qual o tempo de execução do algoritmo como um todo?
 - **???**

Operações com a notação O

- A regra O(f(n)) + O(g(n)) = O(max(f(n),g(n))) pode ser usada para calcular o tempo de execução de uma seqüência de trechos de um programa
 - Suponha 3 trechos: O(n), O(n²) e O(nlogn)
 - Qual o tempo de execução do algoritmo como um todo?
 - Lembre-se que o tempo de execução é a soma dos tempos de cada trecho
 - $O(n) + O(n^2) + O(n\log n) = max(O(n), O(n^2), O(n\log n)) = O(n^2)$

Notação Ω

- Definição:
 - $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas c e } n_0 \text{ tais}$ $\text{que } 0 \le \text{cg}(n) \le f(n), \text{ para todo } n \ge n_0 \}.$
- Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

tamanho

• Note que se $f(n) \in O(g(n))$ define um limite superior para f(n), $\Omega(g(n))$ define um limite inferior

Notação Ω

- Definição:
 - $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas c e } n_0 \text{ tais}$ $\text{que } 0 \le \text{cg}(n) \le f(n), \text{ para todo } n \ge n_0 \}.$
 - $-\frac{3}{2}n^2 2n \in \Omega(n^2)$

???

Notação Ω

- Definição:
 - $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas c e } n_0 \text{ tais}$ $\text{que } 0 \le \text{cg}(n) \le f(n), \text{ para todo } n \ge n_0 \}.$
 - $-\frac{3}{2}n^2 2n \in \Omega(n^2)$
 - Fazendo c = 1/2, teremos $\left| \frac{3}{2} n^2 2n \right| \ge \left| \frac{1}{2} n^2 \right|$, para $n_0 \ge 2$

- Definição:
 - $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \text{ e } n_0$ tais que $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, para todo $n \ge n_0$
- Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

- Definição:
 - $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \text{ e } n_0$ tais que $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, para todo $n \ge n_0 \}$
 - $\frac{3}{2}n^2 2n \in \Theta(n^2)$

???

- Definição:
 - $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \text{ e } n_0 \}$ tais que $0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$
 - $\frac{3}{2}n^2 2n \in \Theta(n^2)$
 - Fazendo $c_1 = 1/2$ e $c_2 = 3/2$ teremos $\left| \frac{1}{2} n^2 \right| \le \left| \frac{3}{2} n^2 2n \right| \le \left| \frac{3}{2} n^2 \right|$ para $n_0 \ge 2$

Mas:

$$\frac{3}{2}n^2 - 2n \in O(n^2) \to \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

■
$$\frac{3}{2}n^2 - 2n \in \Omega(n^2) \to |\frac{1}{2}n^2| \le |\frac{3}{2}n^2 - 2n|$$

•
$$e^{-\frac{3}{2}n^2 - 2n} \in \Theta(n^2) \to |\frac{1}{2}n^2| \le |\frac{3}{2}n^2 - 2n| \le |\frac{3}{2}n^2|$$

- Será coincidência?
 - **???**

Mas:

$$\frac{3}{2}n^2 - 2n \in O(n^2) \to \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

■
$$\frac{3}{2}n^2 - 2n \in \Omega(n^2) \to |\frac{1}{2}n^2| \le |\frac{3}{2}n^2 - 2n|$$

•
$$e^{-\frac{3}{2}n^2 - 2n} \in \Theta(n^2) \to |\frac{1}{2}n^2| \le |\frac{3}{2}n^2 - 2n| \le |\frac{3}{2}n^2|$$

- Será coincidência?
 - Não!
 - Se $f(n) \in O(g(n))$ e $f(n) \in \Omega(g(n))$, então $f(n) \in \Theta(g(n))$

- Mas:
 - Será coincidência?
 - Não!
 - Se $f(n) \in O(g(n))$ e $f(n) \in \Omega(g(n))$, então $f(n) \in \Theta(g(n))$

- Definição:
 - $o(g(n)) = \{f(n): para toda constante positiva c, existe uma constante <math>n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0 \}$.
- Informalmente, dizemos que, se f(n) ∈ o(g(n)), então f(n) cresce mais lentamente que g(n).
 - Intuitivamente, na notação o, a função f(n) tem crescimento muito menor que g(n) quando n tende para o infinito

- $-1000 \, n^2 \in o(n^3)$
 - **???**

- $1000 \, n^{\mathsf{T}} \in o(n^3)$
 - Para todo valor de c, um n₀ que satisfaz a definição é:

$$n_0 = \left\lceil \frac{1000}{c} \right\rceil + 1$$

- Qual a diferença entre O e o?
 - O: <u>existem</u> constantes positivas c e n_0 tais que $0 \le f(n)$
 - \leq cg(n), para todo n \geq n₀
 - A expressão $0 \le f(n) \le cg(n)$ é válida para <u>alguma</u> constante c>0
 - o: **para toda** constante positiva c, existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0$
 - A expressão $0 \le f(n) < cg(n)$ é válida para toda constante c>0

Notação ω

- Definição:
 - $\omega(g(n)) = \{f(n): \text{ para toda constante positiva c, existe}$ uma constante $n_0 > 0$ tal que $0 \le cg(n) < f(n)$, para todo $n \ge n_0$.
- Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n).
 - Intuitivamente, na notação ω, a função f(n) tem crescimento muito maior que g(n) quando n tende para o infinito

Notação ω

- ω está para Ω , da mesma forma que o está para O
 - O e Ω são chamados de assintoticamente firmes

$$\frac{1}{1000}n^2 \in \omega(n)$$

???

Notação ω

- ω está para Ω , da mesma forma que o está para O
 - O e Ω são chamados de assintoticamente firmes

$$\frac{1}{1000}n^2 \in \omega(n)$$

Para todo valor de c, um n₀ que satisfaz a definição é:

$$n_0 = [1000 c] + 1$$

Definições equivalentes

$$f(n) \in o(g(n)) \quad \text{se} \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$f(n) \in O(g(n)) \quad \text{se} \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$f(n) \in \Theta(g(n)) \quad \text{se} \quad 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$f(n) \in \Omega(g(n)) \quad \text{se} \lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$$

$$f(n) \in \omega(g(n)) \quad \text{se} \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Propriedades das Classes

Reflexividade:

$$f(n) \in O(f(n)).$$

 $f(n) \in \Omega(f(n)).$
 $f(n) \in \Theta(f(n)).$

Simetria:

 $f(n) \in \Theta(g(n))$ se, e somente se, $g(n) \in \Theta(f(n))$.

Simetria Transposta:

 $f(n) \in O(g(n))$ se, e somente se, $g(n) \in \Omega(f(n))$. $f(n) \in o(g(n))$ se, e somente se, $g(n) \in \omega(f(n))$.

Propriedades das Classes

Transitividade:

```
Se f(n) \in O(g(n)) e g(n) \in O(h(n)), então f(n) \in O(h(n)).
Se f(n) \in \Omega(g(n)) e g(n) \in \Omega(h(n)), então f(n) \in \Omega(h(n)).
Se f(n) \in \Theta(g(n)) e g(n) \in \Theta(h(n)), então f(n) \in \Theta(h(n)).
Se f(n) \in o(g(n)) e g(n) \in o(h(n)), então f(n) \in o(h(n)).
Se f(n) \in \omega(g(n)) e g(n) \in \omega(h(n)), então f(n) \in \omega(h(n)).
```

Exercícios

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^n$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	f_1	f ₂	f ₃	f_4	f ₅	f ₆	f ₇	f ₈
f_1	Φ							
f_2		Θ						
f ₂ f ₃ f ₄ f ₅ f ₆ f ₇			Θ					
f_4				Θ				
<i>f</i> ₅					Θ			
f_6						Θ		
f ₇							Θ	
f ₈								Θ

Referências

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein. Algoritmos - Tradução da 2a. Edição Americana. Editora Campus, 2002 (Capítulo 3).
- Michael T. Goodrich & Roberto Tamassia.
 Estruturas de Dados e Algoritmos em Java. Editora Bookman, 4a. Ed. 2007 (Capítulo 4).
- Nívio Ziviani. Projeto de Algoritmos com implementações em C e Pascal. Editora Thomson, 2a. Edição, 2004 (Seção 1.3).