

Joint Audio and Speech Understanding

Alexander H. Liu¹ James Glass¹ Yuan Gong¹ Hongyin Luo¹ Leonid Karlinsky² ¹ MIT CSAIL ² MIT-IBM Watson AI Lab

Introduction

Background

- Conventional Audio Recognition and ASR model can perceive sounds but cannot understand sounds.
- LLMs already encode knowledge about audio and speech understanding but cannot perceive sounds.
- Audio events, speech paralinguistics, and speech content should to be understood jointly.

Our Goal

Develop Audio and Speech LLM that can perceive and understand audio events, speech paralinguistics, and speech content jointly.

Key Methods

- Combine pretrained audio model and large language model
- A new GPT-Assisted method to generate open-ended training data

Open-Source Code and Data: https://github.com/YuanGongND/ltu

Model - LTU-AS

(Listen to, Think of, and Understand Audio and Speech)

- LLM fine-tune LLaMA 7B with (Audio, Q, A) data
- Encoding audio Whisper encoder encodes both audio and speech paralinguistic information [1].
- Encoding speech Whisper decoder transcribed speech to text, and input to LLM.

- Training standard next token prediction; only audio encoder, projection layer, and LoRA Adapters are trained.
- Percept-to-Understand Learning curriculum Guide the model to attend to the audio input in early stages to mitigate hallucination.

Stage	Tr. Params	Tr. Task	Tr. Samples	LR	# Epochs
1	Proj.	Cla.	2.1M	1e-3	2
2	Proj. + TLTR + LoRA	Cla.	2.1M	2e-4	2
3	Proj. + TLTR + LoRA	All	9.6M	2e-4	1

[1] Whisper-AT: Noise-Robust Automatic Speech Recognizers are Also Strong General Audio Event Taggers, Interspeech 2023

Dataset – Open-ASQA

(Open-Ended Joint Audio and Speech AQA)

Dataset	Audio Event	Audio Caption	Spoken Text*	Speaker Gender	Speaker Age	Speech Style	Speaker Emotion	Music Genre	# Audio Clips	# Closed- Ended QAs	# Open- Ended QAs
Audio Dataset	s (OpenAQA	1)									
AS-Strong	Х	х	х	X	_	_	_	_	102k	683k	901k
AudioSet	X	-	X	X	-	-	-	X	500k	538k	184k
VGGSound	X	-	X	X	-	-	-	X	184k	367k	907k
FSD50K	X	-	X	X	-	-	-	X	41k	82k	403k
AudioCaps	X	X	X	X	-	-	-	X	46k	97k	478k
FreeSound	-	X	X	-	-	-	-	-	91k	91k	791k
Clotho	-	X	X	-	-	-	-	-	5k	48k	89k
Sound Bible	-	X	X	-	-	-	-	-	1.2k	12k	10k
Sum									845k	1,918k	3,763k
Speech Datase	ets										
IEMOCAP	-	-	X	X	_	X	X	_	4.3k	26k	83k
LibriTTS	-	_	X	X	_	X	_	_	22k	167k	418k
VoxCeleb2	-	_	X	X	X	X	_	_	107k	194k	926k
MOSEI	-	_	X	_	_	X	X	_	18k	554k	355k
Sum									151k	941k	1,784k
Joint Audio ar	nd Speech D	atasets									
AudioSet	Х	_	X	X	_	_	_	Х	82k	-	747k
FMA	-	_	X	_	_	-	_	X	93k	93k	396k
Sum									175k	93k	1,143k
Total (9,641k Question Answer Pairs)								1,089k	2,951k	6,690k	

- **Scale -** 9.6M Audio-QA pairs of \sim 1M audio clips from mixture of datasets
- Closed-ended AQAs Q: templates generated by GPT-3.5-Turbo; A: metadata
- Open-ended AQAs Q&A: GPT-3.5-Turbo generated, with metadata as prompt
- Joint Audio and Speech Understanding: 1.2M AQAs generated from AudioSet and FMA datasets that have both audio and speech metadata

Closed-Ended QA Samples:

- Q: Identify the sound from the clip? A: Dog, Animal.
- Q: Write an audio caption describing the sound?
- A: An engine revving and then tires squealing. Q: What emotion does the speaker convey?
- A: Happy, with a sentiment score of 2 (positive).
- Q: Can you determine the music genre? A: Folk, Pop.

GPT Prompt for Open-Ended QA Generation:

GPT Prompt*: Based on the following audio/speech, generate 10 different types of complex open-ended questions that require step-by-step thinking, and corresponding answers. Questions can be e.g., How are speech content and background sounds related? ... etc. Format each QA pair in a single line as a JSON dictionary. (varies for each task/dataset)

GPT Generated QA Sample:

GPT-Input: In the recording, background sound of explosion and speech of "Flames engulfed the tank and began to heat the propane inside. Twenty volunteer firefighters..." is heard.

GPT-Output: Q: Why do the speech content and explosion sound create a tense atmosphere? A: The speech content describes a tragic event and the explosion sound adds intensity and suspense to the narrative.

GPT-Input: Speech: "Hi, my name is Jamie and I'm a Master Sales Consultant here at Northline Volkswagen..."; Speaker gender: Male; Pitch: low; Volume: very high; Speed: very slow; Emotion: happy. GPT-Output: Q: What can we infer from the speech content and emotion? A: The speaker seems happy to introduce himself and his company, and he is delivering his words in a slow and clear manner to make sure everyone understands what he is saying.

Results

	Audio Classif.	Audio Caption	Speech Recognition	Emotion Recognition	Gender Classif.	Age Pred. Voxceleb2 (MAE ↓)	Music Genre Classif. GTZAN (ACC ↑)
Model	ESC-50 (ACC \(\gamma\))	AudioCaps (SPICE ↑)	Librispeech (test-clean WER↓)	IEMOCAP (ACC ↑)	Voxceleb2 (macro-F1 ↑)		
Best specialized models trained su	pervisedly on e	ach dataset. No	t generalizable to unseen lab	el sets and tasks	•	81.7%	
Best Supervised & Specialized	97.0	17.7	1.4	70.6	98.3	9.4	93.9
CLIP-like audio-text model. Gene	ralizable to unse	een labels, but a	pre-defined label set is requ	ired for inference	ce		
AudioClip	69.4	<u>-</u>	-	-	-	_	-
CLAP	82.6	-8	-	-	-	-	25.2
(Proposed) One single model for a	ll tasks. Directl	y output label n	ames, no pre-defined label so	et is needed at in	nference.		
LTU-AS	80.8 ^{zs-}	15.0	4.9	65.2	90.8	7.3	50.3 ^{zs}
Ablation Study 1 - Train with only	speech or audi	o data					
LTU (Audio Training Only)	82.8	17.0	104.2	38.2	77.0	Fail*	29.8
LTU (Speech Training Only)	10.9	0.5	12.9	69.8	90.1	7.9	23.5
Ablation Study 2 - Inference with	missing modali	y					
LTU-AS (Audio Input Only)	81.9	14.9	97.2	58.6	95.6	8.2	48.2
LTU-AS (Spoken Text Input Only)	7.7	3.5	20.0	45.4	42.0	11.9*	21.5

Open-ended Audio QA (Please play with the interactive demo)

- Q: What did you hear? A: Subway, metro, underground.
- Q: What spoken text is heard?
- A: The spoken text is "This is the transfer point for the Metro Purple Line to Wilshire Western. Boarding platform is located downstairs..."
- Q: What can be inferred from the sound and announcement?
- A: The subway sound suggests that it is a busy station with many people coming and going, while the announcement provides information about the train schedule.
- Q: Where is the boarding platform located?
- A: The boarding platform is located downstairs.
- Q: Which line does this station transfer to?
- A: The transfer point is to the Metro Purple Line.
- Q: What should I do if I hear this?
- A: You should board the next train and proceed to your destination.

Conclusion

We built an audio and speech LLM called LTU-AS - the first model that can simultaneously recognize and jointly understand spoken text, speech paralinguistics, and non-speech audio events - almost everything perceivable from audio signals.

