DEFINITION:

- A **isometry** of \mathbb{R}^2 is a bijective function $f: \mathbb{R}^2 \to \mathbb{R}^2$ that preserves distances between pairs of points; these include rotations around a point, translations, and reflections over a line.
- Let $X \subseteq \mathbb{R}^2$. A symmetry of X is an isometry of \mathbb{R}^2 such that f(X) = X as a set.
- The **dihedral group** D_n is the group of symmetries of a regular n-gon P_n in the plane, with composition of functions as the group operation.

THEOREM 1: The dihedral group D_n is indeed a group. It has exactly 2n elements consisting of:

- The identity map e,
- n-1 rotations r, r^2, \ldots, r^{n-1} , where r is counterclockwise rotation by $2\pi/n$ (so r^i is counterclockwise rotation by $2\pi i/n$),
- n reflections. More precisely,
 - when n is odd, there are n distinct reflections over a line between a vertex and an opposite edge;
 - when n is even, there are n/2 distinct reflections between opposite pairs of vertices, and another n/2 distinct reflections between opposite pairs of edges.

The reflection lines in D_3

The reflection lines in D_4

- (1) Why is the dihedral group a group? I.e., why are the group axioms true for this set and operation?
- (2) What is the order of the rotation r? What is the order of a reflection in D_n ?
- (3) Proof of Theorem 1:
 - (a) Show that if f is a symmetry of P_n and c is the center of P_n , then f(c) = c.
 - (b) Show that if f is a symmetry of P_n and v is a vertex of P_n , then f(v) is a vertex of P_n .
 - (c) Show that if f is a symmetry of P_n and v, v' are adjacent vertices, then f(v) and f(v') are adjacent vertices of P_n .
 - (d) Prove³ the Theorem.

¹Hint: After rescaling, we can assume that d(c, v) = 1 for any vertex v. Then observe that

⁽i) $d(c, x) \leq 1$ for any $x \in P_n$, and

⁽ii) if $q \in P_n$ is *not* the center, then d(q, x) > 1 for some $x \in P_n$.

²Hint: Again assume d(c, v) = 1 for any vertex v. Observe that v is a vertex of P_n if and only if d(c, v) = 1.

³You can use the following fact from geometry: if f, f' are two isometries of the plane, $p_1, p_2, p_3 \in \mathbb{R}^2$ are three points not on a line, and $f(p_i) = f'(p_i)$ for i = 1, 2, 3, then f = f'.

LEMMA: Let $v \in P_n$ be a vertex, and $s \in D_n$ the reflection through the axis containing v. Let $r \in D_n$ be counterclockwise rotation by $2\pi/n$. Then $srs = r^{-1}$.

THEOREM 2: Let $v \in P_n$ be a vertex, and $s \in D_n$ the reflection through the axis containing s. Let $r \in D_n$ be counterclockwise rotation by $2\pi/n$.

(1) Every element of D_n can be written uniquely in the form

$$r^{j}$$
 for $j = 0, ..., n - 1$, or $r^{j}s$ for $j = 0, ..., n - 1$.

- (2) D_n is generated by r, s.
- (3) D_n has the group presentation $\langle r, s \mid r^n = e, s^2 = e, srs^{-1} = r^{-1} \rangle$.
- **(4)** Prove the Lemma.
- **(5)** Use the Lemma to prove Theorem 2(1).
- **(6)** Use the Theorem 2(1) to prove Theorem 2(2).
- (7) Discuss Theorem 2(3).
- (8) Consider a circle in the plane.
 - (a) Compute the symmetry group G of the circle; give an answer in a similar form to Theorem 1.
 - (b) What are all of the possible orders of elements in this group?
 - (c) Find two elements of order 2 in ${\cal G}$ whose product has infinite order.
 - (d) Does G has a finite generating set?
- (9) Same as the previous with a line instead of a circle.