Table 1: Module Design – Complete Sequence Modeling

	Module	Learning Goals	Learning Objectives	Learning Activities	Instructional Materials	Delegate
Chapter 1 Deep Learning for Tabular Data	Module 1: Linear Transformations to Neural Networks	 Matrix operations & geometric intuition Nonlinearity necessity Layer composition power Universal approximation intuition SGD fundamentals 	Matrix-vector multiplication geometry XOR impossibility demonstration Biological neuron threshold analogy ReLU activation introduction Multilayer perceptron construction Grasp SGD as iterative parameter updates	Linear transformation visualization XOR failure analysis "Breaking linearity" experiment MLP implementation from scratch Conceptual SGD walk-through on a loss surface Function approximation playground	Framework: PyTorch D2L: 2.3, 3.1.4, 4.1, 5.1, 12.4 Materials: NumPy tutorials, geometric visualizers	
	Module 2: Backprop & Automatic Differentia- tion	5: Gradient computation mastery6: Computational graphs7: Modern autograd frameworks	Chain rule gradient calculations Computational graph construction Forward/backward pass mechanics Autograd for automatic differentiation Gradient checking verification PyTorch autograd mastery	Hand-calculated gradient exercise Computational graph drawing Gradient verification implementation Build mini-autograd system "Gradients without tears" coding	D2L: 2.4, 2.5, 5.3 Materials: PyTorch autograd guide, computational graph tools	
	Module 3: Training Deep MLP's & Controlling data and gradient flows	8: Core optimizers 9: Ablation studies 10: Paper analysis skills 11: Experiment tracking & HPO	 SGD, momentum, Adam basics Learning rate scheduling Ablation study methodology Reading ML papers effectively Introduce experiment tracking tools Systematic experimentation 	Optimizer comparison experiment Design ablation study for MLPs Log experiments with Weights & Biases Systematic hyperparameter search "Deconstructing a paper" workshop Research notebook practices	D2L: 3.6–3.7, Ch. 12, Ch. 19 Materials: Classic papers, ablation templates, W&B tutorials	
Chapter 2 Deep Learning for Image Data	Module 4: CNN Revolu- tion & Spatial Intelligence	 11: MLP limitations & spatial invariance 12: Parameter sharing power 13: CNN optimization 	 Analyze MLP failure (random features, poor generalization) Motivate convolution for spatial invariance Data augmentation for vision Dropout in conv layers 	 MLP vs CNN shifted-image demo CNN optimization ablation Data augmentation experiments Regularization placement study "What CNNs see" exploration Paper analysis: AlexNet 	D2L: 5.6, Ch. 7, 8.1, 14.1 Materials: Conv visualizers, AlexNet paper, augmentation tools	nued on next page

Table 1 – continued from previous page

Chapte	rModule	Learning Goals	Learning Objec-	Learning Activities	Instructional Materials	Delegate
	Module 5: Modern CNNs: Depth, Normalization & Transfer	14: Deep network challenges15: Normalization techniques16: Transfer learning	Gradient vanishing in deep CNNs Batch normalization mechanics ResNet skip connections Normalization comparisons Transfer learning methodology Architecture efficiency conducts	 Gradient flow study BatchNorm ablations ResNet reproduction Normalization comparison Transfer learning competition FLOPs vs accuracy tradeoffs 	D2L: 5.4.1, 8.2–8.6, 14.2 Materials: ResNet paper, normalization studies, model zoo	
Chapter 3 Deep Learning for Sequence Data	Module 6: Encoder- Decoder Architectures	17: Encoder- decoder framework 18: CNN encoders 19: U-Net archi- tecture	ciency analysis Compression as representation learning Fixed-size bottlenecks CNN-based encoders for images Skip connections in U-Net Encoder-decoder for sequences Applications: segmentation, translation	 Autoencoder from scratch CNN encoder-decoder U-Net implementation Skip connection ablation Bottleneck size experiments Seq2seq preview 	D2L: 10.6, 14.11 Materials: U-Net paper, encoder-decoder papers	
	Module 7: RNNs: Vanilla, LSTM & GRU	 20: Sequential processing 21: LSTM/GRU gates 22: Training challenges 	RNN hidden state evolution Vanishing/exploding gradients LSTM gate mechanisms GRU simplification Gradient clipping strategies Truncated BPTT	 Char-RNN implementation Gradient visualization LSTM from scratch Gate ablation studies LSTM vs GRU comparison BPTT length impact 	D2L: 9.1-9.7, 10.1-10.4 Materials: LSTM/GRU papers, gradient tools	
Chapter 4 Transformers	Module 8: Attention Revolution	23: Attention mechanism 24: Encoder-decoder 25: Alignment learning	 Attention as soft dictionary lookup Query-key-value framework Bahdanau attention Seq2seq with attention Attention weight interpretation Machine translation success 	 Implement attention Translation w/ attention Weight visualization "Where models look" analysis Attention ablation Translation demo 	D2L: 10.5–10.7, 11.1–11.4 Materials: Translation datasets, attention visualizers	
	Module 9: Transformers: Architecture & Optimiza- tion	 26: Self-attention mechanics 27: Transformer optimization 28: Scaling strategies 	 Multi-head self-attention Layer norm placement LR warm-up necessity Attention dropout Positional encoding ablations Efficiency tricks 	 Transformer from scratch Layer norm ablations Warm-up experiments Attention pattern analysis Reproduce "Attention is All You Need" Efficiency vs performance study 	D2L: 11.5–11.7 Materials: Original paper, implementation guides Contin	nued on next page

Table 1 – continued from previous page

Chapte	rModule	Learning Goals	Learning Objec-	Learning Activities	Instructional Materials	Delegate
	21.10 4.410		tives		111301 400101141 17140011413	Dologado
	Module 10: Vision Transformers & Cross-Modal Learning	29: Images as sequences30: Patch embeddings31: Unified architectures	 ViT design Patch tokenization CNN vs ViT comparison Cross-modal architectures CLIP-style training Attention in vision tasks 	 ViT from scratch Patch size experiments ViT vs ResNet comparison Attention map visualization "One architecture to rule all" Multimodal project 	D2L: 11.8 Materials: ViT papers, CLIP resources, vision tools	
	Module 11: Pretraining, Fine-tuning & Scale	32: Pretraining strategies33: BERT and GPT34: Scaling laws	 Self-supervised pretraining Masked language modeling GPT-style autoregressive training Fine-tuning methods Parameter-efficient FT Scaling laws & emergence 	 Fine-tune BERT Prompt engineering lab LoRA implementation "Size matters" study Efficient FT comparison Build task-specific model 	D2L: 11.9, 15.8–15.10, 16.6–16.7 Materials: Pretrained models, scaling papers	
Chapter 5 Generative Models	Module 12: Generative Models & Fu- ture Frontiers	35: Generation paradigms36: Diffusion models37: Ethical considerations	VAE latent space intuition GAN adversarial dynamics Diffusion forward/reverse Stable Diffusion architecture Evaluation metrics Bias, safety, ethics	 Train small GAN VAE latent exploration Diffusion demo Text-to-image generation "With great power" ethics Future directions brainstorm 	D2L: 4.7.5, 20.1–20.2 Materials: Generative demos, diffusion tutorials, ethics readings	