AD	

AD-E400 954

TECHNICAL REPORT ARPAD-TR-81007

INCREASING THE CLARITY OF ULTRASONIC CRACK DETECTION SIGNALS FROM BASES MOUNTED ONTO LOADED 155-MM M483A1 PROJECTILES

HENRY HARTMANN

JANUARY 1983

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
PRODUCT ASSURANCE DIRECTORATE
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed. Do not return to the originator.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2.	GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Technical Report ARPAD-TR-81007		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
INCREASING THE CLARITY OF ULTRASONIC DETECTION SIGNALS FROM BASES MOUNTED		Final Sep 1981
155-mm M483A1 PROJECTILES		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(s)
Henry Hartmann		
9. PERFORMING ORGANIZATION NAME AND ADDRESS ARRADCOM, PAD		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Technology & Automation, Information Mathematics Div (DRDAR-QAS-T)	E	AREA & HORR OWN ROBBERS
Dover, NJ 07801		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
ARRADCOM, TSD		January 1983
STINFO Div (DRDAR-TSS)		54
Dover, NJ 07801 14. MONITORING AGENCY NAME & ADDRESS(If different for	rom Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distrib	ution unlimited	d.
Approved for public release; distrib 17. DISTRIBUTION STATEMENT (of the abatract entered in		
17. DISTRIBUTION STATEMENT (of the abstract entered in		
17. DISTRIBUTION STATEMENT (of the abstract entered in		
17. DISTRIBUTION STATEMENT (of the abstract entered in	Block 20, if different fro	om Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and	Block 20, if different fro	om Report)
17. DISTRIBUTION STATEMENT (of the abetract entered in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and adapters Ultrason Artillery ammunition Base	Block 20, if different fro	om Report)
17. DISTRIBUTION STATEMENT (of the abetract entered in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and adapters Ultrason Artillery ammunition Base Cracks	Block 20, if different fro	om Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and Adapters Artillery ammunition Base Cracks Projectiles	Block 20, if different fro	om Report)
17. DISTRIBUTION STATEMENT (of the abetract entered in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and adapters Ultrason Artillery ammunition Base Cracks Projectiles	Block 20, if different fro	om Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and Adapters Ultrason Artillery ammunition Base Cracks Projectiles	Identify by block number ic test dentify by block number on loaded 155-by contact between the mask the	mm M483Al projectiles can be detection signal from cracks

cracks in bases fastened to loaded projectiles.

CONTENTS

	Page
Introduction	1
Method of Attack	1
Investigation	1
General Parameters	1 2
Analysis	4
General Parameters	4
Conclusions	6
Recommendations	7
Distribution List	45

TABLES

		Page
1	Ultrasonic test data for a cracked base mounted in a simulated projectile body	9
2	Performance of transducers	15
	FIGURES	
1	155-mm M483Al projectile	17
2	Ultrasonic inspection setup for a cracked base	18
3	Ultrasonic C-scan showing distribution of crack and adapter signals	19
4.	Simulated projectile body	20
5	Clarity of ultrasonic echoes from a natural crack by use of transducer A (5 MHz, narrowband, 19-mm diameter active element, cylindrically focused at 102 mm)	21
6	Clarity of ultrasonic echoes from a natural crack by use of transducer B (10 MHz, wideband, 6.4-mm diameter active element, flat lens)	22
7	Clarity of ultrasonic echoes from a natural crack by use of transducer C (5 MHz, narrowband, 6.4 mm diameter active element, flat lens)	23
8	Clarity of ultrasonic echoes from a natural crack by use of transducer D (10 MHz, narrowband, 19 mm diameter active element, cylindrically focused at 102 mm)	24
9	Relationship of radial and circumferential component velocities of an offset ultrasonic beam	25
10	Ultrasonic C-scan showing peak signals from a cracked base mounted in the simulated projectile body by use of transducer B offset $0.5~\mathrm{mm}$ to the right	26
l 1	Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 1.5 mm to the right	27
12	Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 2.5 mm to the right	28
13	Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 3.5 mm to the right	29

14	Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 4.5 mm to the right	30
15	Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 5.5 mm to the right	31
16	Ultrasonic C-scan showing peak signals from a cracked base mounted in the simulated projectile body by use of transducer B offset 0.5 mm to the left	32
17	Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset $1.5\mathrm{mm}$ to the left	33
18	Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 2.5 mm to the left	34
19	Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset $3.5\ \mathrm{mm}$ to the left	35
20	Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 4.5 mm to the left	36
21	Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 5.5 mm to the left	37
22	Simulated ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of two transducers B spaced 1 mm apart and aimed at the same spot	38
23	Simulated ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of two transducers B spaced 3 mm apart and aimed at the same spot	39
24	Simulated ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of two transducers B spaced 5 mm apart and aimed at the same spot	40
25	Simulated ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of two transducers B spaced 7 mm apart and aimed at the same spot	41
26	Simulated ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of two transducers B spaced 9 mm apart and aimed at the same spot	42
27	Simulated ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of two transducers B spaced 11 mm apart and aimed at the same spot	43

INTRODUCTION

Cracked bases have been found on loaded 155-mm M483Al projectiles (fig. 1). A nondestructive inspection technique is needed to screen the involved portion of stockpile. Ultrasonic inspection provides the best capablity for inspecting bases that are still attached to loaded projectiles.

Initial ultrasonic inspection revealed unexpected reflection signals (called "adapter signals") coming from the forward surface of the base. These signals occurred where the adapters firmly pressed a shim against the forward surface of the base (fig. 2). These reflection signals can mask the presence of cracks (fig. 3). Reduction of amplitude of adapter signals relative to crack signals is needed for reliable ultrasonic inspection.

Seven ultrasonic inspection parameters were investigated for their impact upon the ultrasonic echo signals. In addition, the advantage of the use of dual, offset, ultrasonic inspection transducers is displayed.

METHOD OF ATTACK

The following parameters were investigated to determine their influence on crack signals versus adapter signals.

- 1. Angle-of-refraction of shear wave
- 2. Frequency of transducer
- 3. Filtering of echo signal
- 4. Tuning of receiver signal
- 5. Frequency bandwidth of ultrasound pulse
- 6. Focusing of ultrasound pulse
- 7. Direction of ultrasound pulse

INVESTIGATION

General

Ultrasonic laboratory scanners at ARRADCOM are not deep enough to accept a full-sized M483Al projectile standing on its nose. Therefore, only the rear portion of a projectile body was used. This assembly was made by cutting off the rear of a projectile body and welding it to a plate. The plate provided a means for retaining the contents as well as sealing the assembly. Inert grenades,

adapters, and shims were loaded into this assembly; and base CMC/KAAP 54 (containing a known crack) was tightened down to the proper torque (fig. 4). The resulting simulated projectile easily fit into the tank of the laboratory scanner.

The simulated projectile was centered on the turntable of the laboratory scanner. Water was placed inside the rear cavity of the base to act as a coupling. Ultrasonic data were recorded from both adapter signals and crack signals under many different conditions.

Four locations on the base were selected for monitoring. Two of these locations were where the adapter signals were most intense; the other two were where the crack signals were greatest. (The distribution of adapter signals is called "pressure patterns.") For the various conditions imposed, peak ultrasonic signals were recorded from these four locations. Several of the parameters were evaluated, one at a time, and data were recorded (table 1).

For each condition, an ultrasonic C-scan was made of the cracked base (which was part of the simulated projectile). The four prominent locations were identified on each C-scan, and their signal strengths were recorded. That is, the gain setting of the flaw detector was recorded when each signal was 50% of screen height. Thus, stronger signals have lower gain setting readings.

An S-80 Reflectoscope ultrasonic flaw detector was used, together with a UI- 450 Laboratory Scanner. The water tank was kept dry.

Parameters

Angle-of-Refraction of Shear Wave

Prior work had revealed that optimum sensitivity of detection and clarity of detection were produced by a 39 degree angle-of-refraction shear wave. These optimum sensitivities had been achieved with a 5.0 MHz, 6.4 mm (0.25 in.) diameter, flat lensed transducer. Since other transducers (both focused and unfocused) were to be investigated, refraction angles ranging from approximately 35 to 55 degrees were tried.

Frequency of Transducer

A peak frequency of 5 MHz is popular for the ultrasonic inspection of aluminum. In this investigation, both 5 MHz and 10 MHz peak frequencies were evaluated.

Filtering of Echo Signal

The S-80 Reflectoscope permits the filtering out of high frequency components from the received echo signal. The filter switch has four settings—off, 1, 2, and 3. The higher the numbered setting, the greater the filtering of the echo signal.

Tuning of Receiver Signal

The S-80 Reflectoscope permits tuning of its receiver for specific frequencies of interest; that is, the echo signal is filtered above and below the spectrum of interest. In addition, no tuning can be selected by setting the control switch on WB (wideband). For this investigation, 5-MHz transducers were evaluated at a tuned setting of 5 MHz and at an untuned setting of WB. Ten-MHz transducers were likewise evaluated at 10 MHz and at WB settings.

Frequency Bandwidth of Ultrasound Pulse

The transducer determines the bandwidth of the pulsed ultrasound signal. Highly damped transducers emit wideband pulses of ultrasound. Relatively undamped transducers emit narrowband pulses. Three narrowband and one wideband frequency transducers were used. Two transducers of each narrow and wide bandwidth would have been preferred but what was available had to be used.

Focusing of Ultrasound Pulse

A far field of ultrasound naturally focuses at a certain distance from an emitting transducer. A lens on a transducer can bring the focal zone closer and make it more intense. In this investigation, both focused (spherical lens) and nonfocused (flat lens) transducers were used. Focal distances were 102 mm (4 in.).

Gain

The minimum gain needed to detect the crack at 50% height-of-screen is listed for each transducer in table 2.

Direction of Ultrasound Pulse

Most of the data were obtained from ultrasound pulsed radially through the cracked base. Near the end of the investigation, the possibility of using

dual transducers was considered. Therefore, some data were obtained by offsetting a transducer from the center of the cracked base. In effect, this offset gave the ultrasound pulses a slight circumferential component of movement.

ANALYSIS

General

Most of the data in table 1 are plotted in figures 5 through 8. Some data where signal-to-noise ratios are low, such as highly filtered signals, were not included in these figures.

The word "clarity" normally refers to a signal-to-noise ratio. That is, a clear signal is one where very little or no noise exists. In this analysis, "noise" refers to adapter signals, since these signals are undesirable. Therefore, the plots show the ratio of crack detection signals to adapter detection signals.

The depth of the crack in the base was measured by use of 39 degree angle-of-refraction shear waves. A standard containing seven round-bottomed holes was used to calibrate the echo signals on the cathode-ray-tube screen of the flaw detector. The accuracy of calibration was within $0.5~\mathrm{mm}$ ($0.02~\mathrm{in.}$). The deepest section of crack was $1.0~\mathrm{mm}$ ($0.04~\mathrm{in.}$).

The best performance (greatest clarity) was demonstrated by transducers A and B (table 2; figs. 5 and 6). Both of these ultrasonic transducers achieved clarities of 17 decibels; that is, the ratio of crack detection signal to adapter detection signal is 7.1:1. Close behind, with a peak clarity of 16 decibels (crack-signal-to-adapter-signal ratio 6.3:1), was transducer C (fig. 7). Finally, with a peak performance of 15 decibels (crack-signal-to-adapter-signal ratio of 5.6:1), was transducer D (fig. 8).

Parameters

Angle-of-Refraction of Shear Waves

One of the top performances was accomplished by transducer A (fig. 5). Transducer A was quite selective in its shear wave angle-of-refraction. Peak performance occurred at a refracted angle-of-shear of 41 degrees.

An even better shear wave angle-of-refraction was evident in the performance of transducer B (fig. 6). The peak performance occurred at a refracted angle-of-shear between 39 and 41 degrees.

The other two transducers provided a more uniform level of performance over the complete range of angle-of-refraction of shear waves.

Frequency of Transducer

No relationship was established between frequency and clarity. (However, the lower frequency of 5 MHz peak produced stronger crack echoes.)

Filtering of Echo Signal

Slight filtering at setting fl provided the means by which transducer B produced its best performance. None of the other transducers needed any filtering for peak performance. (The addition of filtering caused a need for more gain.)

Tuning of Receiver Signal

Three of the four transducers, including the two with top performance, depended upon tuned receiver signals for greatest clarity of crack detection signals.

Frequency Bandwidth of Ultrasound Pulse

Insufficient evidence exists to determine the influence of highly damped versus relatively undamped transducers on the clarity of crack detection signals. One of the top performing transducers had a wideband pulse, whereas the other three transducers had narrowband pulses.

Focusing of Ultrasound Pulse

Evidence fails to pinpoint the merits of focused pulses of ultrasound. One of the two top performing transducers was focused, whereas the other one was not.

Direction of Ultrasound Pulse

Cracks in bases are rough surfaced separations that do not exactly follow circumferential orientations. Therefore, two transducers aimed at the same location of a crack and slightly to the left and right of a radial position, can obtain echo signals which, when superimposed, should be more descriptive of the presence of a crack than signals from only one transducer. At the same time, since neither of the two transducers is aimed normal to the machining ridges on the forward suface of the base, superimposed signals from the adapters (noise) should be less than one normally aimed signal.

C-scans were made from varying offsets, both left and right. The angle away from a radial position (α) varied inversely with the distance of the inspection zone away from the center of the base (fig. 9). That is, out near the rim of the base, a slight offset of the transducer would cause only a small change in the angular setting away from a radial position. However, as the ultrasonic inspection region approached the center of the base, the angle from a radial position increased until it finally reached 90 degrees. Any offset from a radial inspection position causes a circumferential inspection to occur in the base at the distance equal to that of the offset out from the center of the base.

Using figure 10 as a reference, when an additional offset of the transducer of only 1 mm (0.04 in.) was induced and another C-scan recorded (fig. 11), adapter signals decreased rapidly. The greatest reduction occurred toward the center of the base where the strongest signal (5 db on the center adapter) disappeared. Further out towards the perimeter, a portion of only a 1-decibel adapter signal still remains. This occurrence reveals that the inspection orientation with the metal machining ridges on the forward surface of the base affect the intensity of the adapter signals. If these tiny machined ridges were not present, chances are that ultrasonic signals from the pressure of the adapters would not be a problem. Since the orientation of most deep cracks is circumferential, a radial crack detection position of a transducer (which will be normal to these cracks) is the best orientation.

More ultrasonic C-scans at other distances of offset were produced (figs. 12 through 21).

Transparencies were made of each offset-transducer C-scan and these were superimposed for matching offset distances. The results reveal reductions in both adapter and crack signals. As expected, the superimposed echo signals (figs. 22 through 27) maintain the size of the crack image much better than they maintain the image of the adapters.

CONCLUSIONS

- l. The ultrasonic echo noise from unwanted adapter signals is greatest when pulsed in a radial direction.
- 2. Radially oriented ultrasonic inspection with sensitivity to reveal 1 $\mbox{\it mm}$ deep cracks will also reveal adapter signals.
- 3. A 41 degree angle-of-refraction of shear waves was most popular (three out of four) for maximum clarity (crack detection signal/adapter detection signal).
- 4. Tuning the receiver enhanced the clarity of three out of four transducers.
- 5. The 5 MHz focused ultrasonic transducer needed at least 30 db less gain than the other transducers.
- 6. Slight filtering enhanced the clarity of one out of four transducers.

- 7. Transducer bandwidths, focusing, and frequency parameters did not demonstrate significant improvements in clarity.
- 8. Superimposing ultrasonic flaw detection signals from dual transducers which are slightly angled (in order to inspect the same spot) can preserve crack signals while diminishing adapter signals.

RECOMMENDATIONS

It is recommended that at least 12 cracked bases be selected for further investigation. These bases should include cracks of various depths and locations. The amplitude of the crack detection signal should be compared to that of the maximum adapter signal. Features already proven desirable should be used in the future work. As part of this future investigation, the advantages of offsetting a transducer should be evaluated further.

Ultrasonic test data for a cracked base mounted in a simulated projectile body Table 1.

	l (db) Crack	For point 2		12	19	22	27	23	30	33	39	15	21	25	29	26	32	35	41
	height of signal (db)	For point 1		1	7	10	15	13	17	21	27	5	11	14	20	14	21	25	31
0 Reflectos	50% screen	For point 2	k Aa	17	24	27	31	25	31	35	39	20	26	28	33	27	33	36	41
Settings on	Gain for Adapter	For point 1	TRANSDUCER A ^a	14	21	23	27	23	29	32	37	15	21	24	28	24	30	33	38
		Filter			_	2	ım	1	-	5	ım	•	_	2	· co	,		2	(F)
	Frequency	(MHz)		ľ	,			WB	1			'n	•			E.)		
Transducer	angle-of-	(geb)		16	9							17.3	2				-		

a Peak frequency 5 MHz, narrowband, 19 mm (0.75 in.) active element diameter, cylindrically focused at 102 mm (4 in.).

b Peak frequency 10 MHz, wideband, 6.4 mm (0.25 in.) active element diameter, flat lens.

c More gain needed than was available.

d Peak frequency 5 MHz, narrowband, 6.4 mm (0.25 in.) active element diameter, flat lens.

e Peak frequency 10 MHz, narrowband, 19 mm (0.75 in.) active element diameter, cylindrically focused lens at 102 mm (4 in.).

Transducer			Settings on	n S-80 Reflectoscope	cope	
angle-of-			Gain	41	ht of signal	(qp)
incidence	Frequency		Adapt	ıe		Crack
(geb)	(MHz)	Filter	For point 1	For point 2	For point 1	For point 2
18	70		20	20	cr	17
		-	26	26	10	23
		2	28	29	12	27
		က	33	34	181	i E
	WB		26	29	13	29
		-	32	34	19	35
		2	36	38	23	37
		3	07	42	29	43
19	5		16	19	3	17
		-	22	25	11	23
		2	25	29	13	26
		3	29	33	18	30
	WB		25	27	13	29
		П	30	33	20	35
		2	33	37	23	37
		က	38	40	29	42
20	5		18	22	19	19
		-	25	28	25	26
		2	28	32	28	29
		က	30	37	32	33
	WB		28	30	29	31
		-1	33	36	34	37
		2	36	04	38	39
		က	41	77	42	45
			daoma da	qa a		
			AND DO CE.			
16	10		53	53	41	53
		1	62	62	65	62
		2	65	99	51	65
		ന		69	59	70
	WB		51	55	37	51
		1 6	58	61 63	77 77	58
		ıω	65	, <u>68</u>	36	λα

Table 1. (cont)

itansuucer angle-of-			Gain	for 50% screen	height of signal (db	(qp)
incidence	Frequency			Adapter		Crack
(deg)	(MHz)	Filter	For point 1	For point 2	For point 1	For point 2
17.3	10		50	67	36	43
		-	59	58	41	51
		2	61	09	48	56
		က	99	62	55	62
	WB		67	65	34	77
			56	57	42	51
		2	09	61	47	54
		က	63	65	55	61
	10		54	50	38	45
		1	63	09	43	53
		2	65	62	48	58
		က	89	63	26	9 9
	WB		51	67	36	48
		-	59	57	97	54
		2	62	61	20	26
		က	65	99	57	62
	10		- 55	20	39	55
			63	09	97	99
		. 2	99	62	65	89
		က	69	99	58	70
	WB		51	20	37	55
		-	58	57	77	62
		2	62	61	50	99
		က	29	65	58	(c)
	10		57	20	53	52
			99	59	51	61
Ξ.		2	29	62	54	99
		3	69	65	61	69
	WB		53	49	39	53
		-4	09	57	45	61
		2	65	62	50	63
		က	29	99	59	65

Table 1. (cont)

Transducer			Settings on	S-8	ope	
angle-of-			Gain	for 50% screen	height of signal	(dp)
incidence	Frequency		Ada	Adapter		Crack
(deg)	(MHz)	Filter	For point 1	For point 2	For point 1	For point 2
22	10		59	59	50	58
		-	29	29	59	99
		2	7.0	70	79	69
		e	(c)	(c)	89	(c)
	WB		56	57	53	59
			63	79	59	65
		2	69	70	49	(c)
		3	(c)	(c)	69	(c)
	d		TRANSDUCER	r c ^d		
16	5		41	42	26	38
		7	95	48	77	77
		2	67	51	97	87
		m	51	54	53	53
	WB		67	51	37	50
		1	55	57	32	56
		2	57	09	36	58
		က	09	79	41	65
17.3	5		37	39	24	32
		1	43	45	30	38
		2	95	65	33	70
		က	50	52	38	45
	WB		67	52	35	70
		1	53	56	41	95
		2	26	58	43	50
		m	09	61	50	57
18	2		39	40	25	07
		-	45	95	31	77
		2	84	65	34	84
		က	51	54	39	53
	WB		50	52	34	67
			55	58	41	54
	}	27	58	099	43	0.00 0.00
		r	10)	>)

Table 1. (cont)

1 (db) Grack	For point 2	47	52	54	59	54	09	79	7.1	777	20	52	57	57	63	99	69	97	51	54	58	57	79	99	71		77	20	45	50	43	20	44 52
ht of signa	For point 1	30	36	38	77	38	45	67	55	31	37	39	77	39	45	87	55	39	77	47	51	87	55	57	63		33	40	33	39	33	70	35 41
30 Reflectos 50% screen	For point 2	45	52	54	59	54	61	63	29	45	51	54	59	53	09	99	29	50	55	59	62	58	7 9	89	(c)	≀ D ^e	87	55	47	52	47	52	49 53
Settings on S-(Gain for Adapter	For point 1	46	52	56	59	55	61	65	89	97	52	54	57	53	09	62	29	50	54	58	63	09	29	70	(c)	TRANSDUCER	48	54	48	53	47	52	48 54
	Filter		-	2	3		1	2	3		-	2	က		7	2	က		7	2	ĸ		1	2	က								
Frequency	(ZHW)	Σ				WB				5				WB				5				WB					10	WB	10	WB	10	WB	10 WB
Transducer angle-of- incidence	(deg)	19								20								22									16		17.3		18		19

Table 1. (cont)

Transducer			Settings on	Settings on S-80 Reflectoscope	cope	
angle-of-			Gain for	for 50% screen h	50% screen height of signal (db)	(qp)
incidence	Frequency		Ada	Adapter	Cr	Crack
(deg)	(MHz)	Filter	For point 1	For point 2	For point 1	For point 2
20	10		51	52	36	47
	WB		56	56	42	54
22	10		58	58	45	53
		-	89	99	53	61
		2	69	69	56	63
		က	(c)	7.1	61	89
	WB		62	62	51	62

Table 2. Performance of transducers

Gain setting to detect crack at 50% height	(qp)	٣	41	34	33	
Peak clarity	adapter signal	7.1	7.1	6•3	5.6	
Pe	(qp)	17	17	16	15	
	focused lens*	×			×	
	Flat lens		×	×		
Active element	(mm) (in.)	0.75	0.25	0.25	0.75	
Active	diam (mm)	19	6.4	6.4	19	
	Bandwidth	narrow	wide	narrow	narrow	
Peak	frequency (MHz)	2	10	5	10	
	Transducer	Ą	В	ပ	D	

* 102 mm (4 in.)

Figure 1. 155-mm M483Al projectile

Figure 2. Ultrasonic inspection setup for a cracked base

Figure 3. Ultrasonic C-scan showing distribution of crack and adapter signals

Figure 4. Simulated projectile body

Figure 5. Clarity of ultrasonic echoes from a natural crack by use of transducer A (5 MHz, narrowband, 19-mm diameter active element, cylindrically focused at 102 mm)

Figure 6. Clarity of ultrasonic echoes from a natural crack by use of transducer B (10 MHz, wideband, 6.4-mm diameter active element, flat lens)

Figure 7. Clarity of ultrasonic echoes from a natural crack by use of transducer C (5 MHz, narrowband, 6.4 mm diameter active element, flat lens)

Figure 8. Clarity of ultrasonic echoes from a natural crack by use of transducer D (10 MHz, narrowband, 19 mm diameter active element, cylindrically focused at 102 mm)

Figure 9. Relationship of radial and circumferential component velocities of an offset ultrasonic beam

Figure 10. Ultrasonic C-scan showing peak signals from a cracked base mounted in the simulated projectile body by use of a transducer B offset 0.5 mm to the right

Figure 11. Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 1.5 mm to the right

Figure 12. Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 2.5 mm to the right

Figure 13. Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 3.5 mm to the right

Figure 14. Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 4.5 mm to the right

Figure 13. Ultrasonic C-scan of cracked base mounted in the simulated projectigure 15. Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 5.5 mm to the right

Figure 16. Ultrasonic C-scan showing peak signals from a cracked base mounted in the simulated projectile body by use of transducer B offset 0.5 mm to the left

Figure 17. Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 1.5 mm to the left

Figure 18. Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 2.5 mm to the left

Figure 19. Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 3.5 mm to the left

Figure 20. Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 4.5 mm to the left

Figure 21. Ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of transducer B offset 5.5 mm to the left

Figure 22. Simulated ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of two transducers B spaced l mm apart and aimed at the same spot

Figure 23. Simulated ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of two transducers B spaced 3 mm apart and aimed at the same spot

Figure 24. Simulated ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of two transducers B spaced 5 mm apart and aimed at the same spot

Figure 25. Simulated ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of two transducers B spaced 7 mm apart and aimed at the same spot

Figure 26. Simulated ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of two transducers B spaced 9 mm apart and aimed at the same spot

Figure 27. Simulated ultrasonic C-scan of cracked base mounted in the simulated projectile body by use of two transducers B spaced 11 mm apart and aimed at the same spot

DISTRIBUTION LIST

U.S. Army Armament Research and Development Command ATTN: DRDAR-QA DRDAR-QAS DRDAR-QAA DRDAR-QAF DRDAR-QAC DRDAR-QAR DRDAR-QAN DRDAR-QAM DRDAR-LCA DRDAR-LCE DRDAR-LCM DRDAR-LCW DRDAR-LCN DRDAR-SCP DRDAR-SCA DRDAR-SCS DRDAR-SCM DRDAR-TSE DRDAR-TSB DRDAR-TSS (5) DRDAR-TD DRDAR-TDS DRDAR-TDA DRDAR-TDC DRDAR-GCL Dover, NJ 07801 Project Manager Cannon Artillery Weapons Systems ATTN: DRCPM-CAWS Dover, NJ 07801 Project Manager Division Air Defense (DIVAD) Gun ATTN: DRCPM-ADG Dover, NJ 07801 Commander U.S. Army Munitions Production Base Modernization Agency ATTN: SARPM-PBM Dover, NJ 07801

Commander

Product Manager for 30mm Ammunition ATTN: DRCPM-AAH-30MM Dover, NJ 07801

Project Manager Tank Main Armament Systems ATTN: DRCPM-TMA Dover, NJ 07801

Commander
Aberdeen Proving Ground
ATTN: STEAP-MT-T, B. 525
Aberdeen Proving Ground, MD 21005

Commander, Code 33
Naval Weapons Station
ATTN: Engineering and Science Div,
Weapon Quality Engineering Center
Concord, CA 94520

Commander
Dahlgren Navy Weapons Laboratory
ATTN: G53 (Material Science Branch)
Dahlgren, VA 22448

Director
U.S. Army Defense Ammunition
Center and School
ATTN: SARWR-QA
Watervliet, NY 12189

Commander
Foreign Science and Technical Center
1220 Seventh Street, NE
ATTN: DRXST-IS3
Charlottesville, VA 22901

Commander
Hawthorne Army Ammunition Plant
DZB Box A
ATTN: Technical Services
Babbitt, NV 89416

Commander
Indiana Army Ammunition Plant
ATTN: SARIN-QA
Charlestown, IN 47111

Commander U.S. Navy Ordnance Station ATTN: Code 40 Indian Head, MD 20640

Commander
Iowa Army Ammunition Plant
ATTN: SARIO-QA
Middletown, IO 52638

Commander Jefferson Proving Ground ATTN: STEJP-MTD Madison, IN 47250

Commander U.S. Army White Sands Missile Range ATTN: STEWS-QA-E, B124 White Sands, NM 88002

Commander Kansas Army Ammunition Plant ATTN: SARKA-QA Parsons, KS 67357

Commander
Lake City Army Ammunition Plant
ATTN: SARLC-QA
E. Independence, MO 64050

Commander
Lone Star Army Ammunition Plant
ATTN: SARLS-QA
Texarkana, TX 75501

Commander Longhorn Army Ammunition Plant ATTN: SARLO-QA Marshall, TX 75670

Commander Louisiana Army Ammunition Plant ATTN: SARLA-QA Shreveport, LA 71130

Commander
McAlester Army Ammunition Plant
A'TTN: SARMC-QA
McAlester, OK 74501

Commander

Milan Army Ammunition Plant

ATTN: SARMI-QA Milan, TN 38358

Commander

U.S. Navy Research Laboratory 4555 Overlook Avenue ATTN: Code 5835

Washington, DC 20375

Commander

U.S. Navy Weapons Center

ATTN: Code 3682

China Lake, CA 93555

Commander

u.S. Navy Weapons Station

ATTN: Code 40

Charleston, SC 29408

Commander

U.S. Navy Weapons Station

ATTN: Code 401

Colts Neck, NJ 07722

Commander

U.S. Navy Weapons Station

ATTN: Code F321

Fallbrook, CA 92028

Commander

U.S. Navy Weapons Station

ATTN: Code 40

Yorktown, VA 23691

Commander

U.S. Navy Weapons Support Center

ATTN: Code 40

Crane, IN 47522

Commander

U.S. Army Pine Bluff Arsenal

ATTN: SARPB-QA

Pine Bluff, AR 71602

Commander

Red River Army Ammunition Plant

ATTN: SARRR-QA

Texarkana, TX 75501

Commander

U.S. Army Armament Materiel

Readiness Command

ATTN: DRSAR-LE

DRSAR-LEM-M

DRSAR-LEP-L

DRSAR-QA

Rock Island, IL 61299

Administrator

Defense Technical Information Center

ATTN: Accessions Division (12)

Cameron Station

Alexandria, VA 22314

Director

U.S. Army Materiel Systems

Analysis Activity

ATTN: DRXSY-MP

Aberdeen Proving Ground, MD 21005

Commander/Director

Chemical Systems Laboratory

U.S. Army Armament Research

and Development Command

ATTN: DRDAR-CLB-PA

DRDAR-CLJ-L

DRDAR-CLN

APG, Edgewood Area, MD 21010

Director

Ballistics Research Laboratory

U.S. Army Armament Research

and Development Command

ATTN: DRDAR-TSB-S

DRDAR-BLB

DRDAR-BLI

DRDAR-BLL

Aberdeen Proving Ground, MD 21005

Benet Weapons Laboratory, LCWSL

U.S. Army Armament Research

and Development Command

ATTN: DRDAR-LCB-TL

Watervliet, NY 12189

Director

U.S. Army TRADOC Systems

Analysis Activity

ATTN: ATAA-SL

White Sands Missile Range, NM 88002

Commander

U.S. Army Research and Technology Laboratories ATTN: DAVDL-EU Ft. Eustis, VA 23604

Director

U.S. Army Research and Technology Laboratories AMES Research Center ATTN: DAVDL-AS Moffett Field, CA 94035

Director

U.S. Defense Ammunition Center and School ATTN: SARAC-DEN Savanna, IL 61074