Kinetika zložitých reakcií - pokračovanie

Priebeh zložitejších reakcií je daný rôznymi elementárnymi reakciami, ktoré môžu prebiehať.

Najčastejšie sa sleduje kinetický priebeh:

- reťazových reakcií
- polymerizačných reakcií
- fotochemických reakcií

Reťazové reakcie

Reťazové reakcie - zvláštny druh postupných reakcií

- v každom elementárnom kroku vzniká jedna alebo viacej častíc so zvýšenou chemickou reaktivitou, ktoré hneď reagujú ďalej za vzniku ďalších reaktívnych častíc atď.

Voľné radikály (voľné atómy alebo atómové skupiny): \varTheta

- aktívne častice podmieňujúce rozvoj reakcie
- majú jeden alebo viac nespárených valenčných elektrónov
 - ⇒ vysoká reaktivita

Cyklus - súhrn reakcií vedúcich k regenerácii východiskového radikálu (vznik chlorovodíka)

$$Cl \cdot + H_2 \rightarrow HCl + H \cdot$$

 $H \cdot + Cl_2 \rightarrow HCl + Cl \cdot$

Dĺžka reakčnej reťaze - počet cyklov spôsobených jedným primárne vzniknutým radikálom

Ret'azové reakcie:

- sú urýchľované iniciátormi, spomaľované inhibitormi
- na nadobudnutie normálnej rýchlosti potrebujú určitý čas, tzv. indukčnú periódu

Fázy reťazovej reakcie - vznik, rozvoj a ukončenie reťaze

Príklad:

$$Br_2 + H_2 \rightarrow 2 HBr$$

I. Vznik (iniciácia) reťaze:

- vznik primárnych aktívnych častíc 👄
- energeticky najnáročnejší dej

$$Br_2 \rightarrow 2 Br^{\bullet}$$

II. Rozvoj (propagácia) reťazí:

- striedanie interakcie radikálu s molekulami

$$Br^{\bullet} + H_2 \rightarrow HBr + H^{\bullet}$$

 $H^{\bullet} + Br_2 \rightarrow HBr + Br^{\bullet}$

III. Ukončenie (terminácia) reťazí:

 voľný radikál zanikne reakciou - medzi radikálmi, so stenami nádoby, inhibítorom

$$\mathbf{H} \bullet + \mathbf{H}\mathbf{B}\mathbf{r} \rightarrow \mathbf{H}_2 + \mathbf{B}\mathbf{r} \bullet$$

$$2 \mathbf{B}\mathbf{r} \bullet \rightarrow \mathbf{B}\mathbf{r}_2$$

Schematické znázornenie mechanizmu reakcie medzi vodíkom a brómom

Ret'azové reakcie:

1) Nerozvetvené - pri každej interakcii radikálu s molekulou vzniká jeden nový radikál

$$Cl \cdot + CO \rightarrow \cdot COCl$$

 $\cdot COCl + Cl_2 \rightarrow COCl_2 + Cl \cdot$

- 2) Rozvetvené pri jednom elementárnom deji vzniknú najmenej dve aktívne častice
- a) zriedkavo rozvetvené vetvenie prebieha len v niektorom cykle
- b) <u>nepretržite rozvetvené</u> v každom cykle vznikajú najmenej dva nové radikály, z ktorých každý môže začať osobitnú reťaz umožňujú mimoriadne vysokú reakčnú rýchlosť ⇒ často prebiehajú <u>explozívne</u>
- c) <u>degenerované vetvenie</u> prebiehajú za vzniku medziproduktu, ktorý sa môže ďalej rozpadať na radikály

a) Schéma nepretržite vetvenej reťazovej reakcie

b) Schéma zriedkavo (degenerovane) vetvenej reťazovej reakcie

Polymerizačné reakcie

Osobitným prípadom reťazových reakcií sú *polymerizačné* reakcie - pri ktorých vznikajú makromolekulové látky

- v jednotlivých cykloch sa voľný radikál neregeneruje, ale vzniká radikál s vyššou molekulovou hmotnosťou
- napr. radikálova polymerizácia vinylchloridu

L. Iniciácia – benzoylperoxid sa rozpadne na radikály

$$C_6H_5COO-OOC-C_6H_5 \rightarrow 2 C_6H_5COO$$

II. Propagácia – reakcia s vinylchloridom

$$C_6H_5COO \cdot + CH_2=CHCl \rightarrow C_6H_5COO \cdot CH_2CHCl$$
 $C_6H_5COO \cdot CH_2CHCl + CH_2=CHCl \rightarrow$
 $C_6H_5COO \cdot CH_2CH(Cl)CH_2CHCl \Rightarrow$
atd'.

III. Terminácia

$$R_x$$
- $CH_2CHCl_2 + CH_2=CH-R_y$

Polymerizačné reakcie - reťazové - krokové

V ret'azovej polymerizácii - aktivovaný monomér M atakuje d'alší monomér, pripája sa k nemu, potom táto častica atakuje d'alší monomér, ...

V *krokovej polymerizácii -* ľubovoľné dva monoméry sa môžu spojiť v ľubovoľnom čase, pričom rast nie je obmedzený na reťazce, ktoré sa už formujú

Spájanie monomérov pri polymerizačnej reakcii:

1 – reťazovej2 – krokovej

Fotochemické procesy

Fotochemické reakcie – chemické reakcie vyvolané alebo urýchľované svetelným žiarením alebo sprevádzané vysielaním svetla, istý druh reťazových reakcií

Fotochémia - sa zaoberá procesmi, pri ktorých sa mení svetelná energia na chemickú a naopak

Fotochemická reakcia má 2 stupne:

- primárny dej bezprostredne vyvolaný pohlteným svetlom 😑
- sekundárne deje už bez účasti svetla

Atómy látky A prejdú po pohltení fotónu do stavu s vyššou energiou = *vzbudený (excitovaný)* stav = prechod elektrónov na vyššie energetické hladiny (ionizácia atómu)

$$A + fotón \rightarrow A^*$$

V nasledujúcom sekundárnom procese sa môže A* svojej nadbytočnej energie zbaviť:

- chemickou reakciou s inou časticou fotochemická reakcia
- vyžiarením energie fluorescencia
- rozptýlením zrážkami s inými atómami alebo molekulami

Platia – FOTOCHEMICKÉ ZÁKONY

Základné typy fotochemických reakcií:

- fotochemická *izomerizácia*, napr. premena *cis-trans*

$$\begin{array}{ccc} HOOC-C-H & H-C-COOH \\ & | & \rightarrow & | | \\ H-C-COOH & H-C-COOH \end{array}$$

- <mark>fotochemická *syntéza*, napr. tvorba ozónu vplyvom UV žiarenia</mark>

primárny stupeň
$$O_2$$
 + fotón $\to O_2^*$ sekundárne reakcie O_2 * + O_2 $\to O_3$ + O_2 + O_3 + O_3

celkove $3 O_2 + fotón \rightarrow 2 O_3$

- fotochemický rozklad (fotolýza), napr. rozpad jodovodíka

primárny stupeň
$$HI+fotón \rightarrow H+I$$
 sekundárne reakcie $H+HI \rightarrow H_2+I$ $I+I \rightarrow I_2$ celkove $2 HI+fotón \rightarrow H_2+I_2$

- fotochemické ret'azové reakcie, napr. syntéza HCl

primárny stupeň
$$Cl_2 + fotón \rightarrow Cl + Cl$$

 fotochemická iónová reakcia, napr. pri osvetlení kryštalických halogenidov

$$Ag+Cl^- + fotón \rightarrow Ag + Cl$$

Fotosenzibilizované reakcie – sú vyvolané pridaním tzv. senzibilizátorov, ktoré v danej oblasti vlnových dĺžok svetlo pohlcujú a potom pohltenú energiu odovzdávajú reagujúcim časticiam

Asimilácia uhlíka rastlinami

$$n \operatorname{CO}_2 + n \operatorname{H}_2 \operatorname{O} + x h v \rightarrow (\operatorname{CH}_2 \operatorname{O})_n + n \operatorname{O}_2$$

- senzibilizátorom je chlorofyl

Chemiluminiscencia – chemické reakcie sú sprevádzané vysielaním svetla (oxidácia P na vzduchu)

Fotografický proces – na osvetlených miestach sa vyredukuje Ag

KONIEC