	TP1 Supervision - Lothmann Feyrit	Pt		АВС	D Note
I	Création du process virtuel				
1	Ajouter un bloc SIM sur votre programme, il simulera le fonctionnement d'un procédé réel. Donner lui un nom.	2,5	Α		2,5
2	Procéder à son paramètrage en respectant les valeurs suivantes	2,5	Α		2,5
II.	Etude du procédé				
1	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures.	2	Α		2
2	En déduire le gain statique du procédé autour du point de fonctionnement. On prendra une consigne de 70%.	1	Α		1
3	En déduire le sens d'action à régler sur le régulateur.	1	Α		1
4	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	В		2,25
Ш	Etude du régulateur				
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	1,5	D		0,075
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	1,5	C		0,525
IV	Performances et optimisation				
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	D		0,05
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de	1 5	Ь		0.075
2	réponse à 10%, la valeur du premier dépassement et la précision relative.	1,5	D		0,075
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des	1	D		0.05
3	paramètres modifiés.	1	U		0,05
4	Mesurer à nouveau les perfomances de votre régulation, comparer les avec celles obtenues à la question précédente.	1,5	D		0,075
			No	te sur : 2	0 12,1

I. Création du process virtuel

	TagName	sim1		LIN Name	sim1
	Туре	SIM		DBase	<local> 0</local>
	Task	3 (110ms)		Rate	
	Mode	AUTO		Alarms	
	Fallback	AUTO		NoiseMax	0.0
	PV	0.0	%	Lag1	10.00
				Lag2	12.00
	Bias	0.0	%	TimeBase	Secs
	Track	0.0	%		12
				Intgr	FALSE
HR_PV		100.0	%	Invert	FALSE
	LR_PV	0.0	%		
ОР				Init	TRUE
		0.0	Eng2		
				SelTrack	FALSE
	HR_OP	100.0	Eng2		
	LR_OP	0.0	Eng2		
	HL_OP	100.0	Eng2		
	LL_OP	0.0	Eng2		

II. Étude du procédé

1-	B4		<u>▼</u> fω ∑ = OP					
		А			;	С		
	1		30		30,1			
	2		60		59,8 89,9			
	3		90		89,9			
	4	PV		OP				
	5							
	6							
	7							

2-Le Gain statique se calcule par $\Delta S/\Delta E=70/70=1$

3-Le procédé est direct car Op fait augmenter PV donc le régulateur est en sens inverse,

4-gain statique K=
$$\Delta$$
X/ Δ Y=1 retard T :2,8(t1-t0)-1,8(t2-t0)=2,8(10)-1,8(15)=28-27=1s constante de temps t:5,5(t2-t1)=5,5(5)=27,5s

$$H(P)=K.e^{-Tp/1+tp=1.e^{-1p/1+27}},5p=0,01$$

III. Étude du régulateur

1-T/t=0,3 notre régulateur est donc un PID mixte.

2-A=0,83/K*(0,4+1/kr)=0,83*(0,4+1/0,3)=3,1 XP=100/A=100/3,1=32,25

Ti=t+0,4T=27,5+0,4=27,9s

Td=T/(kr+2,5)=1/(0,3+2,5)=0,35s

IV. Performances et optimisation

1-

- 2-je ne sais pas
- 3-je ne sais pas
- 4-je ne sais pas