ICP-OES

The Optima[™] Series of ICP-OES Spectrometers

Revolutionizing ICP Performance

¹ H		51 Sb — Atomic Number, Element 206.836 — Wavelength I — Ionization States							Detection Limit Ranges < 0.1 ppb < 0.1-1 ppb 1-10 ppb 									
³ Li 670.784 I	⁴ Be 313.107 II							 ■ > 10 ppb Wavelength (nm) Ionization States 				⁵ B 249.772 I	6 C 193.030 I	⁷ N	8 O	⁹ F	¹⁰ Ne	
¹¹ Na 589.592	¹² Mg 280.271 II							I = Neutral Atom II = +1 ion				¹³ Al 396.153 I	¹⁴ Si 251.611 I	15 P 213.617	16 S 180.669 I	¹⁷ Cl 725.670 I	¹⁸ Ar	
¹⁹ K 766.490 I	²⁰ Ca 393.366 II	²¹ Sc 361.383 II	²² Ti 334.940 II	²³ V 290.880 I	²⁴ Cr 267.716 II	²⁵ Mn 257.610 II	²⁶ Fe 238.204 II	²⁷ Co 228.616 II	²⁸ Ni 231.604 II	²⁹ Cu 327.393 I	³⁰ Zn 206.200 II	³¹ Ga 417.206 I	³² Ge 265.118 I	³³ As 188.979 I	³⁴ Se 196.026 I	³⁵ Br 863.866 I	³⁶ Kr	
³⁷ Rb 780.023	³⁸ Sr 407.771 II	³⁹ Y 371.029 I	⁴⁰ Zr 343.823 II	⁴¹ Nb 309.418 II	⁴² Mo 202.031 II	⁴³ Tc 249.677 II	⁴⁴ Ru 240.272 II	⁴⁵ Rh 343.489 I	⁴⁶ Pd 340.458 I	⁴⁷ Ag 328.068 I	⁴⁸ Cd 228.804 I	⁴⁹ In 230.606 I	⁵⁰ Sn 189.927 II	⁵¹ Sb 206.836 I	⁵² Te 214.281 I	⁵³ I 178.215 I	⁵⁴ Xe	
⁵⁵ Cs 455.531 I		⁵⁷ La 408.672 II	⁷² Hf 264.141 II	⁷³ Ta 226.230 II	⁷⁴ W 207.912 II	⁷⁵ Re 197.248 I	⁷⁶ Os 228.226 II	⁷⁷ Ir 224.268 II	⁷⁸ Pt 214.423 I	⁷⁹ Au 267.595	⁸⁰ Hg 194.168 II	⁸¹ Tl 190.801 II	82 Pb 220.353 II	83 Bi 223.06 I	84 Po	85 At	86 Rn	
⁸⁷ Fr	88 Ra	⁸⁹ Ac														,	•	

⁵⁸ Ce 413.764 II	⁵⁹ Pr 414.311 II	⁶⁰ Nd 406.109 II	⁶¹ Pm		⁶³ Eu 381.967 II		⁶⁵ Tb 350.917 II		ПО				⁷¹ Lu 261.542 II
⁹⁰ Th 283.730 II	⁹¹ Pa 385.958 II	⁹² U 385.958 II	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cm	⁹⁷ Bk	⁹⁸ Cf	⁹⁹ Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr

PerkinElmer Instruments: 710 Bridgeport Avenue, Shelton, CT 06484 USA Phone: 800-762-4000 or (+1) 203-925-4600

