Europäisches Patentamt

European Patent Office

Office européen des brevets

11) EP 1 018 508 A1

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 12.07.2000 Bulletin 2000/28

(51) Int Cl.7: C07D 233/61, A61K 7/13

(21) Numéro de dépôt: 99403168.0

(22) Date de dépôt: 16.12.1999

(84) Etats contractants désignés:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Etats d'extension désignés: AL LT LV MK RO SI

AL ET ET MIKTIO OF

(30) Priorité: 08.01.1999 FR 9900150

(71) Demandeur: L'OREAL 75008 Paris (FR)

(72) Inventeurs:

• Genet, Alain 93600 Aulnay Sous Bois (FR)

Lagrange, Alain
 77700 Coupvray (FR)

(74) Mandataire: Miszputen, Laurent L'OREAL-DPI

6 rue Bertrand Sincholle 92585 Clichy Cédex (FR)

(54) Nitrophenylenediamines cationiques monobenzéniques, leur utilisation pour la teinture des fibres kératiniques, compositions tinctoriales les renfermant et procédés de teinture

(57) L'invention concerne des nitrophénylènediamines cationiques monobenzéniques dont au moins une charge cationique est délocalisée sur un hétérocycle polyazoté insaturé à 5 chaînons, leur utilisation à titre

de colorant direct dans des compositions de teinture pour matières kératiniques, en particulier pour fibres kératiniques humaines telles que les cheveux, les compositions de teinture les renfermant, et les procédés de teinture mettant en oeuvre ces compositions.

EP 1 018 508 A1

Description

20

25

30

35

40

45

[0001] La présente invention concerne des nitrophénylènediamines monobenzéniques comportant au moins un groupement cationique choisi parmi des chaînes aliphatiques comportant au moins une charge cationique délocalisée sur un hétérocycle polyazoté insaturé à 5 chaînons, leur utilisation à titre de colorant direct dans les applications de teinture des matières kératiniques, en particulier des fibres kératiniques humaines, et notamment les cheveux, et plus particulièrement les compositions de teinture les renfermant.

[0002] Il est connu de teindre les fibres kératiniques, et en particulier les cheveux, avec des compositions tinctoriales contenant des colorants directs, c'est-à-dire des molécules colorantes ayant une affinité pour les dites fibres. Le procédé de teinture qui les met en oeuvre est un procédé dit de coloration directe qui consiste à laisser pauser les colorants directs sur les fibres, puis à les rincer. Les colorations qui en résultent sont des colorations temporaires ou semipermanentes, car la nature des interactions qui lient les colorants directs à la fibre kératinique, et leur désorption de la surface et/ou du coeur de la fibre sont responsables de leur faible puissance tinctoriale et de leur mauvaise tenue

[0003] Parmi les colorants directs connus, on a certes déjà décrit des nitrophénylènediamines cationiques mais leur charge cationique est localisée sur l'atome d'azote d'une chaîne aliphatique ou d'un hétérocycle monoazoté. De telles nitrophénylènediamines sont par exemple décrites dans les brevets anglais N° - 1 164 824 et américain N° - 4 018 556. [0004] Cependant, en teinture capillaire, on recherche en permanence des colorants directs qui présentent des caractéristiques toujours plus performantes.

[0005] C'est donc après d'importantes recherches menées sur la question que la demanderesse vient maintenant de découvrir de façon tout à fait inattendue et surprenante, de nouvelles nitrophénylènediamines cationiques monobenzéniques, dont au moins une charge cationique est délocalisée sur un hétérocycle polyazoté insaturé à 5 chaînons et comportant donc au moins un groupement cationique Z, Z étant choisi parmi des chaînes aliphatiques quaternisées, des chaînes aliphatiques comportant au moins un cycle saturé quaternisé et des chaînes aliphatiques comportant au moins un cycle insaturé quaternisé.

[0006] Cette nouvelle famille de colorants présente la particularité très avantageuse d'une plus grande solubilité dans les milieux de teinture, et ces nouveaux colorants engendrent des teintures, par coloration directe, dotées d'une puissance et d'une résistance (aux diverses agressions que peuvent subir les cheveux : lumière, frottement, intempéries, shampooings, transpiration) notablement améliorée, par rapport à celles des teintures réalisées avec des nitrophénylènediamines cationiques connues de l'art antérieur dont la charge cationique est localisée sur l'atome d'azote d'une chaîne aliphatique ou d'un hétérocycle monoazoté.

[0007] Cette découverte est à la base de la présente invention.

[0008] La présente invention a ainsi pour objet les nitrophénylènediamines cationiques monobenzéniques de formule (I) suivante :

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

formule dans laquelle,

R₁, R₂, R₃, et R₄, qui peuvent être identiques ou différents, représentent un atome d'hydrogène ; un groupement Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical monohydroxyalkyle en C_1 - C_6 ; un radical polyhydroxyalkyle 50 en C_2 - C_6 ; un radical alcoxy(C_1 - C_6)alkyle en C_1 - C_6 ; un radical aryle; un radical benzyle; un radical cyanoalkyle en C_1 - C_6 ; un radical carbamylalkyle en C_1 - C_6 ; un radical N-alkyl(C_1 - C_6)carbamylalkyle en C_1 - C_6 ; un radical N, N-dialkyl(C₁-C₆)carbamylalkyle en C₁-C₆; un radical thiocarbamylalkyle en C₁-C₆; un radical trifluoroalkyle en C_1 - C_6 ; un radical sulfoalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)carboxyalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6) sulfinylalkyle en C_1 - C_6 ; un radical aminosulfonylalkyle en C_1 - C_6 ; un radical N-Z-aminosulfonylalkyle en C_1 - C_6 ; 55 un radical N-alkyl(C_1 - C_6)aminosulfonylalkyle en C_1 - C_6 ; un radical N,N-dialkyl(C_1 - C_6)aminosulfonylalkyle en C_1 - C_6 ; un radical alkyl (C_1-C_6) carbonylalkyle en C_1-C_6 ; un radical aminoalkyle en C_1-C_6 dont l'alkyle est substitué

ou non substitué par un ou plusieurs radicaux hydroxy ; un radical aminoalkyle(C_1 - C_6) dont l'alkyle est substitué ou non substitué par un ou plusieurs radicaux hydroxy et dont l'amine est substituée par un ou deux radicaux, identiques ou différents, choisis parmi les radicaux alkyle, monohydroxyalkyle en C_1 - C_6 , polyhydroxyalkyle en C_2 - C_6 , alkyl(C_1 - C_6)carbonyle, carbamyle, N-alkyl(C_1 - C_6)carbamyle ou N,N-dialkyl(C_1 - C_6)carbamyle, alkyl(C_1 - C_6)sulfonyle, trifluoroalkyl(C_1 - C_6)carbonyle, alkyl(C_1 - C_6)carboxy, thiocarbamyle, ou par un groupement Z défini ci-après, ou pouvant former ensemble, avec l'atome d'azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, carboné, ou contenant un ou plusieurs hétéroatomes ;

- R₅, R₆, qui peuvent être identiques ou différents, représentent un atome d'hydrogène ; un atome d'halogène ; un groupement Z défini ci-après ; un radical alkyl(C1-C6) carbonyle ; un radical aminoalkyl(C1-C6)carbonyle ; un ra- $\label{eq:control_of_control} \mbox{dical N-Z-aminoalkyl}(C_1-C_6) \mbox{carbonyle} \; ; \; \mbox{un radical N-alkyl}(C_1-C_6) \mbox{aminoalkyl}(C_1-C_6) \mbox{carbonyle} \; ; \; \mbox{un radical N-N-alkyl}(C_1-C_6) \mbox{un radi$ $\label{eq:control_control_control} \mbox{dialkyl}(C_1-C_6) \mbox{aminoalkyl}(C_1-C_6) \mbox{aminoalkyl}(C_1-C_6) \mbox{aminoalkyl}(C_1-C_6) \mbox{ ; un radical minoalkyl}(C_1-C_6) \mbox{ aminoalkyl}(C_1-C_6) \mbox{ ; un radical minoalkyl}(C_1-C_6) \mbox{ ; un radical minoalkyl}(C_1-C$ $aminoalkyl(C_1-C_6) carbonylalkyle(C_1-C_6) \;; \; un \; radical \; N-alkyl(C_1-C_6) aminoalkyl(C_1-C_6) carbonylalkyle(C_1-C_6) \;; \; un \; radical \; N-alkyl(C_1-C_6) aminoalkyl(C_1-C_6) carbonylalkyle(C_1-C_6) \;; \; un \; radical \; N-alkyl(C_1-C_6) aminoalkyl(C_1-C_6) a$ $radical\ N, N-dialkyl(C_1-C_6) aminoalkyl(C_1-C_6) carbonylalkyle(C_1-C_6)\ ;\ un\ radical\ carboxy\ ;\ un\ radical\ alkyl(C_1-C_6)$ carboxy; un radical alkyl(C1-C6) sulfonyle; un radical aminosulfonyle; un radical N-Z-aminosulfonyle; un radical $N-alkyl(C_1-C_6) a minosulfonyle \ ; \ un \ radical \ N, N-dialkyl(C_1-C_6) a minosulfonyle \ ; \ un \ radical \ aminosulfonyle \ ; \ un \ radical \ a minosulfonyle \ ; \ un \ radical \ ; \$ $\textbf{C}_6) \text{ ; un radical N-Z-aminosulfonylalkyle} (\textbf{C}_1 - \textbf{C}_6) \text{ ; un radical N-alkyl} (\textbf{C}_1 - \textbf{C}_6) \text{ aminosulfonylalkyle} (\textbf{C}_1 - \textbf{C}_6) \text{ ; un radical N-alkyle} (\textbf{C}_1 - \textbf{C}_6)$ $N, N- dialkyl(C_1-C_6) a minosulfonylalkyle(C_1-C_6) \; ; \; un \; radical \; carbamyle \; ; \; un \; radical \; N- alkyl(C_1-C_6) carbamyle \; ; \; un \; radical \; carbamyle \; ; \; un \; radical \; N- alkyl(C_1-C_6) \; ; \; un \; radical \; carbamyle \; ; \; un \; radical \; N- alkyl(C_1-C_6) \; ; \; un \; radical \; carbamyle \; ;$ dical N,N-dialkyl(C₁-C₆)carbamyle; un radical carbamylalkyle(C₁-C₆); un radical N-alkyl(C₁-C₆)carbamylalkyle (C₁-C₆); un radical N,N-dialkyl(C₁-C₆)carbamylalkyle(C₁-C₆); un radical alkyle en C₁-C₆; un radical monohydroxyalkyle en C₁-C₆; un radical polyhydroxyalkyle en C₂-C₆; un radical alcoxy(C₁-C₆)alkyle en C₁-C₆; un radical trifluoroalkyle en C₁-C₆; un radical cyano; un radical aminoalkyle(C₁-C₆) dont l'alkyle est substitué ou non substitué par un ou plusieurs radicaux hydroxy et dont l'amine est substituée ou non substituée par un ou deux radicaux, identiques ou différents, choisis parmi les radicaux alkyle en C₁-C₆, monohydroxyalkyle en C₁-C₆, polyhydroxyalkyle en C₂-C₆, alkyl(C₁-C₆)carbonyle, carbamyle, N-alkyl(C₁-C₆)carbamyle ou N,N-dialkyl(C₁-C₆)carbamyle, alkyl (C1-C6)sulfonyle, formyle, trifluoroalkyl(C1-C6)carbonyle, alkyl(C1-C6)carboxy, thiocarbamyle, ou par un groupement Z défini ci-après ; un groupement OR, ou -SR, défini ci-après ; ou pouvant former ensemble, avec l'atome d'azote auquet ils sont rattachés, un cycle à 5 ou 6 chaînons, carboné, ou contenant un ou plusieurs hétéroatomes ;
- R₂ désigne un atome d'hydrogène ; un radical alkyle en C₁-C₆; un radical monohydroxyalkyle en C₁-C₆ ; un radical 30 polyhydroxyalkyle en C₂-C₆; un groupement Z; un radical alcoxy(C₁-C₆)alkyle en C₁-C₆; un radical aryle; un radical benzyle; un radical carboxyalkyle en C1-C6; un radical alkyl(C1-C6)carboxyalkyle en C1-C6; un radical cyanoalkyle en C₁-C₆; un radical carbamylalkyle en C₁-C₆; un radical N-alkyl(C₁-C₆)carbamylalkyle en C₁-C₆; un radical N,N-dialkyl(C_1 - C_6)carbamylalkyle en C_1 - C_6 ; un radical trifluoroalkyle en C_1 - C_6 ; un radical aminosulfonylalkyle en C_1 - C_6 ; un radical N-Z-aminosulfonylalkyle en C_1 - C_6 ; un radical N-alkyl(C_1 - C_6)aminosulfonylalkyle 35 en C₁-C₆; un radical N,N-dialkyl(C₁-C₆)aminosulfonylalkyle en C₁-C₆; un radical alkyl(C₁-C₆)sulfinylalkyle en C₁-C6; un radical alkyl(C1-C6)sulfonylalkyle en C1-C6; un radical alkyl(C1-C6)carbonylalkyle en C1-C6; un radical aminoalkyle en C1-C6 dont l'alkyle est substitué ou non substitué par un ou plusieurs radicaux hydroxy; un radical aminoalkyle en C1-C6 dont l'alkyle est substitué ou non substitué par un ou plusieurs radicaux hydroxy et dont l'amine est substituée par un ou deux radicaux, identiques ou différents, choisis parmi les radicaux alkyle(C₁-C₆), monohydroxyalkyle(C1-C6), polyhydroxyalkyle(C2-C6), alkyl(C1-C6)carbonyle, formyle, trifluoroalkyl(C1-C6)carbo- $\text{nyle, alkyl} (C_1 - C_6) \\ \text{carbamyle, N-alkyl} (C_1 - C_6) \\ \text{carbamyle, N,N-dialkyl} (C_1 - C_6) \\ \text{carbamyle, thiocarbamyle, alk-position} \\ \text{carbamyle, N-alkyl} (C_1 - C_6) \\ \text{carbamyle, N-alkyl}$ yl(C1-C6)sulfonyle, ou par un groupement Z défini ci-après ; ou pouvant former ensemble, avec l'atome d'azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, carboné, ou contenant un ou plusieurs hétéroatomes;
 - Z est choisi parmi les groupements cationiques insaturés de formules (II) et (III) suivantes, et les groupements cationiques saturés de formule (IV) suivante :

45

50

55

5

10

15

30 dans lesquelles

35

- D est un bras de liaison qui représente une chaîne alkyle comportant de préférence de 1 à 14 atomes de carbone, linéaire ou ramifiée pouvant être interrompue par un ou plusieurs hétéroatomes tels que des atomes d'oxygène, de soufre ou d'azote, et pouvant être substituée par un ou plusieurs radicaux hydroxyle ou alcoxy en C₁-C₆, et pouvant porter une ou plusieurs fonctions cétone;
- les sommets E, G, J, L et M, identiques ou différents, représentent un atome de carbone, d'oxygène, de soufre ou d'azote;
- n est un nombre entier compris entre 0 et 4 inclusivement;
 - m est un nombre entier compris entre 0 et 5 inclusivement;
- les radicaux R, identiques ou différents, représentent un second groupement Z identique ou diffèrent du premier groupement Z, un atome d'halogène, un radical hydroxyle, un radical alkyle en C₁-C₆, un radical cyanoalkyle en V₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical nitro, un radical cyano, un radical cyanoalkyle en C₁-C₆, un radical alcoxy en C₁-C₆, un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆, un radical amido, un radical C₁-C₆, un radical carboxyle, un radical alkylcarbonyle en C₁-C₆, un radical thio, un radical thioalkyle en C₁-C₆, aldéhydo, un radical carboxyle, un radical amino, un radical amino protégé par un radical alkyl(C₁-C₆)carbonyle, carun radical alkyl(C₁-C₆)thio, un radical amino, un radical amino protégé par un radical alkyl(C₁-C₆)carbonyle, carbonyle ou alkyl(C₁-C₆)sulfonyle; un groupement NHR" ou NR"R" dans lesquels R" et R", identiques ou différents, bamyle ou alkyl(C₁-C₆)sulfonyle; un groupement NHR" ou NR"R" dans lesquels R ou un radical polyhydroxyalkyle en C₂-C₆;
 - R₈ représente un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical cyanoalkyle en C₁-C₆, un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆, un radical alcoxy(C₁-C₆)alkyle en C₁-C₆, un radical carbamylalkyle C₁-C₆, un radical alkyl(C₁-C₆)carboxyalkyle en C₁-C₆, un radical benzyle, un second groupement Z identique ou différent du premier groupement Z;

- R₉, R₁₀ et R₁₁, identiques ou différents, représentent un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical alcoxy(C₁-C₆)alkyle en C₁-C₆, un radical cyanoalkyle en C₁-C₆, un radical aryle, un radical benzyle, un radical amidoalkyle en C₁-C₆, un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆ ou un radical aminoalkyle en C₁-C₆ dont l'amine est protégée par un radical alkyl(C₁-C₆)carbonyle, carbamyle, ou alkyl(C₁-C₆)sulfonyle; deux des radicaux R₉, R₁₀ et R₁₁ peuvent également former ensemble, avec l'atome d'azote auquel ils sont rattachés, un cycle saturé à 5 ou 6 chaînons, carboné, ou pouvant contenir un ou plusieurs hétéroatomes, tel que par exemple un cycle pyrrolidine, un cycle pipéridine, un cycle pipérazine ou un cycle morpholine, ledit cycle pouvant être ou non substitué par un atome d'halogène, un radical hydroxyle, un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical nitro, un radical cyano, un radical cyanoalkyle en C₁-C₆, un radical alcoxy en C₁-C₆, un radical trialkyl(C₁-C₆) silanealkyle en C₁-C₆, un radical amido, un radical aldéhydo, un radical carboxyle, un radical cétoalkyle en C₁-C₆, un radical thio, un radical thioalkyle en C₁-C₆, un radical alkyl(C₁-C₆)carbonyle, carbamyle ou alkyl(C₁-C₆)sulfonyle;
 l'un des radicaux R₉, R₁₀ et R₁₁ peut également représenter un second groupement Z, identique ou différent du
- R₁₂ représente un radical alkyle en C₁-C₆; un radical monohydroxyalkyle en C₁-C₆; un radical polyhydroxyalkyle en C₂-C₆; un radical aryle; un radical benzyle; un radical aminoalkyle en C₁-C₆, un radical aminoalkyle en C₁-C₆ dont l'amine est protégée par un radical alkyl(C₁-C₆)carbonyle, carbamyle ou alkyl(C₁-C₆)sulfonyle; un radical carboxyalkyle en C₁-C₆; un radical cyanoalkyle en C₁-C₆; un radical carbamylalkyle en C₁-C₆; un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆; un radical sulfonamidoalkyle en C₁-C₆; un radical alkyl(C₁-C₆)sulfonylalkyle en C₁-C₆; un radical alkyl(C₁-C₆)sulfonylalkyle en C₁-C₆; un radical alkyl(C₁-C₆)sulfonylalkyle en C₁-C₆; un radical N-alkyl(C₁-C₆)sulfonamidoalkyle en C₁-C₆; un radical N-alkyl(C₁-C₆)sulfonamidoalkyle en C₁-C₆;
- x et y sont des nombres entiers égaux à 0 ou 1; avec les conditions suivantes :
 - dans les groupements cationiques insaturés de formule (II) :
 - lorsque x = 0, le bras de liaison D est rattaché à l'atome d'azote,
 - lorsque x = 1, le bras de liaison D est rattaché à l'un des sommets E, G, J ou L,
 - y ne peut prendre la valeur 1 que :
 - 1) lorsque les sommets E, G, J et L représentent simultanément un atome de carbone, et que le radical R_s est porté par l'atome d'azote du cycle insaturé ; ou bien
 - 2) lorsqu'au moins un des sommets E, G, J et L représente un atome d'azote sur lequel le radical R₈ est fixé :
 - dans les groupements cationiques insaturés de formule (III):
 - lorsque x = 0, le bras de liaison D est rattaché à l'atome d'azote,
 - lorsque x = 1, le bras de liaison D est rattaché à l'un des sommets E, G, J, L ou M,
 - y ne peut prendre la valeur 1 que lorsqu'au moins un des sommets E, G, J, L et M représente un atome divalent, et que le radical R₈ est porté par l'atome d'azote du cycle insaturé;
 - dans les groupements cationiques de formule (IV) :
 - lorsque x = 0, alors le bras de liaison D est rattaché à l'atome d'azote portant les radicaux R₉ à R₁₁,
 - lorsque x = 1, alors deux des radicaux R₉ à R₁₁ forment conjointement avec l'atome d'azote auquel ils sont rattachés un cycle saturé à 5 ou 6 chaînons tel que défini précédemment; et le bras de liaison D est porté par un atome de carbone dudit cycle saturé;
- X⁻ représente un anion monovalent ou divalent et est de préférence choisi parmi un atome d'halogène tel que le chlore, le brome, le fluor ou l'iode, un hydroxyde, un hydrogènesulfate, ou un alkyl(C₁-C₆)sulfate tel que par exemple un méthylsulfate ou un éthylsulfate;

étant entendu :

5

10

15

25

30

35

45

50

55

premier groupement Z;

-que le nombre de groupements cationiques insaturés Z de formule (II), dans lesquels au moins un des sommets E, G, J et L représente un atome d'azote, est au moins égal à 1, et

-que, lorsque un et un seul des radicaux R_1 à R_4 ou R_7 désigne un groupement Z dans lequel le bras de liaison D représente une chaîne alkyle comportant une fonction cétone, alors ladite fonction cétone n'est pas directement rattachée à l'atome d'azote du groupement NR_1R_2 ou NR_3R_4 ou à l'atome d'oxygène du groupement OR_7 .

[0009] Les alkyles et alkoxy cités ci-avant dans les formules (I), (II) (III) et (IV) peuvent être linéaires ou ramifiés.

5

15

20

25

40

45

50

55

[0010] Les composés de formule (I) peuvent être éventuellement salifiés par des acides minéraux forts tels que HCI, HBr , $\mathrm{H}_2\mathrm{SO}_4$, ou des acides organiques tels qu'acétique, tartrique, lactique, citrique ou succinique.

[0011] Parmi les cycles des groupements insaturés Z de formule (II) ci-dessus, on peut notamment citer à titre d'exemple les cycles pyrrolique, imidazolique, pyrazolique, oxazolique, thiazolique et triazolique.

[0012] Parmi les cycles des groupements insaturés Z de formule (III) ci-dessus, on peut notamment citer à titre d'exemple les cycles pyridinique, pyrimidinique, pyrazinique, oxazinique et triazinique.

[0013] Les composés de formule (I) sont de préférence choisis parmi ceux de formules (I)₁ à (I)₁₅ suivantes :

C1
$$NH-(CH_2)_3$$
 $N+CH_3$ Br NO_2 NH_2

i.e. bromure du 1-[3-(4-amino-2-chloro-5-nitro-phénylamino)-propyl]-3-méthyl-3H-imidazol-1 -ium,

So
$$NH - (CH_2)_2 \longrightarrow N \longrightarrow N - CH_3$$

$$NH_2 \longrightarrow NH_2$$

i.e. chlorure du 1-[2-(4-amino-2-chloro-5-nitro-phénylamino)-éthyl]-3-méthyl-3H-imidazol-1-ium,

$$NH-(CH_2)_2$$
 $N \rightarrow N$
 $N \rightarrow CH_3$
 $N \rightarrow CH_3$

i.e. bromure du 1-[2-(4-amino-2-chloro-5-nitro-phénylamino)-éthyl]-3-méthyl-3H-imidazol-1 -ium,

i.e. bromure du 1-[2-(4-amino-2-méthyl-5-nitro-phénylamino)-éthyl]-3-méthyl-3H-imidazol-1 -ium,

$$\begin{array}{c} \text{NH-} \left(\text{CH}_{2} \right)_{2} \\ \text{NH-} \left(\text{CH}_{2} \right)_{2} \\ \text{NO}_{2} \\ \text{NH}_{2} \end{array}$$

i.e. bromure du 1-[2-(4-amino-2-méthylsulfanyl-5-nitro-phénylamino)éthyl]-3-méthyl-3H-imidazol-1-ium,

35
$$NH - (CH2)2 N + N - CH3 C1$$

$$NH2 NO2$$

$$NH2 NO2$$

$$NH2 NO2 NO2$$

i.e. chlorure du 1-[2-(4-amino-3-nitro-phénylamino)-éthyl]-3-méthyl-3H-imidazol-1-ium,

$$(C_2H_5)_2N \longrightarrow NO_2 \longrightarrow (I)_7$$

$$NH-(CH_2)_3 \longrightarrow N \longrightarrow N-CH_3 \longrightarrow CH_3SO_4$$

i.e. méthylsulfate du 3-[3-(4-diéthylamino-2-nitro-phénylamino]propyl]-1-méthyl-3H-imidazol-1-ium,

50

55

5

10

$$(HOCH_2CH_2)_2N$$
 $NH-(CH_2)_3$
 $N - CH_3$
 CH_3SO_4

i.e. méthylsulfate du 3-[3-{4-[bis-(2-hydroxyéthyl)-amino]-2-nitrophénylamino}-propyl]-1-méthyl-3H-imidazol-

$$NH-(CH_2)_{3}$$
 $N-CH_3$ CH_3SO_4

NH-CH₃

NH-CH₃

i.e. méthylsulfate du 1-méthyl-3-[3-(3-méthylamino-4-nitrophénylamino)-propyl]-3-H-imidazol-1-ium,

$$\begin{array}{c} \text{NH-(CH}_2)_3 - \text{N} \\ \text{NH-(CH}_2)_3 - \text{N} \\ \text{NH-(CH}_2)_3 - \text{N} \\ \text{NO}_2 \end{array} \qquad \begin{array}{c} \text{(I)}_{10} \\ \text{NNO}_2 \end{array}$$

i.e. disulfate acide de 3-(3-{2-chloro-5-[3-(3-méthyl-3H-imidazol-1-ium)-propylamino]-4-nitro-phénylamino}-propyl)-1-méthyl-3H-imidazol1-ium,

$$\begin{array}{c} + \\ NH-(CH_2)_3-N (CH_3)_3 \\ CI \\ NH-(CH_2)_3-N \\ NO_2 \end{array} \qquad \begin{array}{c} (CH_3 SO_4^{-7})_2 \\ N-CH_3 \end{array}$$

i.e. diméthylsulfate de 3-(3-{4-chloro-5-[3-(triméthyl-ammonium)propylamino]-2-nitro-phénylamino}-propyl)-1-méthyl-3H-imidazol-1-ium,

$$\begin{array}{c|c} & \text{NH-(CH}_2)_3 - \text{N} \\ & \text{+} & \text{N-CH}_3 \\ & \text{-} & \text{-} & \text{-} & \text{-} & \text{-} \\ & & \text{-} & \text{-} & \text{-} & \text{-} \\ & & \text{-} & \text{-} & \text{-} & \text{-} \\ & & \text{NO}_2 & \text{-} & \text{-} & \text{-} & \text{-} \\ & & \text{-} & \text{-} & \text{-} & \text{-} \\ & & \text{-} & \text{-} & \text{-} & \text{-} \\ & & \text{-} & \text{-} & \text{-} & \text{-} \\ & & \text{-} & \text{-} & \text{-} & \text{-} \\ & & \text{-} & \text{-} & \text{-} & \text{-} \\ & & \text{NO}_2 & \text{-} & \text{-} & \text{-} \\ & & \text{-} & \text{-} & \text{-} & \text{-} \\ & & \text{-} & \text{-} & \text{-} & \text{-} \\ & & \text{-} & \text{-} \\ & & \text{-} & \text{-} & \text{-} \\ & & \text{-} & \text{-} \\ & & \text{-} & \text{-} & \text{-} \\ & \text{-} & \text{-} \\ & \text{-} & \text{-} \\ & & \text{-} & \text{-} \\ & \text{-} & \text{-} & \text{-} \\ & \text{-$$

i.e. diméthylsulfate de 3-(3-{3-{2-(diéthyl-méthyl-ammonium)éthylamino}-4-nitro-phenylamino}-propyl)-1-méthyl-3H-imidazol-1-ium,

$$CI$$
 NH - $(CH2)2- N
 N
 $NO2$
 $NH2$
 $NO2$
 $NH2$
 $NO2$
 $NO2$
 $NO2$
 $NO2$
 $NO2$
 $NO2$
 $NO2$$

i.e. bromure du 1-[2-(4-amino-2-chloro-5-nitro-phénylamino)-éthyl]-2-méthyl-2H-pyrazol-1-ium,

$$H_3C-S$$
 $NH-(CH_2)_2-N$
 $+$
 NO_2
 NH_2
 NO_2
 NH_2
 NO_2
 NH_2
 NO_2
 NO_2

i.e. bromure du 1-[2-(4-amino-2-méthylsulfanyl-5-nitro-phénylamino)éthyl]-2-méthyl-2H-pyrazol-1-ium,

i.e. chlorure de 3-méthyl-1-{2-[méthyl-(4-méthylamino-3-nitro-phényl)-amino]-éthyl}-3H-imidazol-1-ium, mono-hydrate.

5

10

15

25

30

35

()0

45

50

[0014] Les composés de formule (I) conformes à l'invention peuvent être facilement obtenus selon des méthodes généralement bien connues de l'état de la technique pour l'obtention des amines quaternisées, par exemple :

- en un temps, par condensation d'une nitrophénylènediamine comportant un radical halogénoalkyle avec un composé porteur d'un radical amine tertiaire, ou par condensation d'une nitrophénylènediamine comportant un radical amine tertiaire avec un composé porteur d'un radical halogénoalkyle;
 - ou en deux temps, par condensation d'une nitrophénylènediamine comportant un radical halogénoalkyle avec un composé porteur d'une amine secondaire, ou par condensation d'une nitrophénylènediamine halogénée avec une amino(di-substituée)alkyleamine, suivie d'une quaternisation avec un agent alkylant.

[0015] L'étape de quaternisation est, généralement par commodité, la dernière étape de la synthèse, mais peut intervenir plus tôt dans la suite des réactions conduisant à la préparation des composés de formule (I).

[0016] L'invention a aussi pour objet une composition de teinture pour matières kératiniques, comprenant, dans un milieu approprié pour la teinture, une quantité efficace d'au moins une nitrophénylènediamine cationique monobenzénique de formule (I) décrite ci-avant.

[0017] L'invention a également pour objet une composition pour la teinture directe des fibres kératiniques humaines, telles que les cheveux, comprenant dans un milieu approprié pour la teinture, une quantité efficace d'au moins une nitrophénylènediamine cationique monobenzénique telle que définie ci-avant par la formule (I).

[0018] L'invention a pour autre objet l'utilisation des nitrophénylènediamines cationiques monobenzéniques de formule (I), à titre de colorants directs, dans des, ou pour la préparation de, compositions tinctoriales pour matières kératiniques, en particulier pour fibres kératiniques humaines telles que les cheveux.

[0019] Mais d'autres caractéristiques, aspects et avantages de l'invention apparaîtront encore plus clairement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets, mais nullement limitatifs, destinés à l'illustrer.

[0020] La ou les nitrophénylènediamine(s) cationique(s) monobenzénique(s) de formule (l) conformes à l'invention et/ou le ou leurs sels d'addition avec un acide représentent de préférence de 0,005 à 12% en poids environ du poids total de la composition tinctoriale, et encore plus préférentiellement de 0,05 à 6% en poids environ de ce poids.

[0021] Les nitrophénylènediamines cationiques monobenzéniques de formule (I) conformes à l'invention peuvent également servir, dans les procédés bien connus de teinture d'oxydation, utilisant des colorants d'oxydation (précurseurs de colorants d'oxydation et éventuellement des coupleurs), à nuancer ou enrichir de reflets les teintures obtenues avec les colorants d'oxydation.

[0022] La composition tinctoriale selon l'invention peut encore contenir, pour élargir la palette de nuances et obtenir des teintes variées, outre les nitrophénylènediamines cationiques monobenzéniques de formule (I), d'autre(s) colorant (s) direct(s) classiquement utilisés, et notamment, des colorants nitrés benzéniques autres que les nitrophénylènediamines cationiques de formule (I) selon la présente invention, les nitrodiphénylamines, les éthers de phénol nitrés ou les nitrophénols, des nitropyridines, des colorants anthraquinoniques, des nitroanilines, des colorants mono- ou diazoïques, triarylméthaniques, aziniques, acridiniques et xanthéniques, ou encore des colorants métallifères.

La proportion de tous ces autres colorants directs d'addition peut varier entre environ 0,05 et 10% en poids par rapport au poids total de la composition tinctoriale.

[0023] Le milieu approprié pour la teinture (ou support) est généralement constitué par de l'eau ou par un mélange d'eau et d'au moins un solvant organique pour solubiliser les composés qui ne seraient pas suffisamment solubles dans l'eau. A titre de solvant organique, on peut par exemple citer les alcanols inférieurs en C₁-C₄, tels que l'éthanol et l'isopropanol; le glycérol; les glycols et éthers de glycols comme le 2-butoxyéthanol, le propylèneglycol, le monométhyléther de propylèneglycol, ainsi que les alcools aromatiques comme l'alcool benzylique ou le phénoxyéthanol, les produits analogues et leurs mélanges

Les solvants peuvent être présents dans des proportions de préférence comprises entre 1 et 40% en poids par rapport au poids total de la composition tinctoriale, et plus préférentiellement encore entre 5 et 30% en poids environ. On peut également ajouter à la composition selon l'invention des amides gras tels que les mono- et di-éthanolamides des acides dérivés du coprah, de l'acide laurique ou de l'acide oléïque, à des concentrations comprises entre environ 0,05 et 10% en poids.

[0024] On peut encore ajouter à la composition selon l'invention des agents tensio-actifs bien connus de l'état de la technique et de type anionique, cationique, non-ionique, amphotère, zwittérionique ou leurs mélanges, de préférence en une proportion comprise entre environ 0,1 et 50% en poids et avantageusement entre environ 1 et 20% en poids par rapport au poids total de la composition. On peut également utiliser des agents épaississants dans une proportion allant d'environ 0.2 à 5%.

Ladite composition tinctoriale peut contenir en outre divers adjuvants usuels tels que des agents anti-oxydants, des parfums, des agents séquestrants, des agents des agents de conditionnement du cheveu, des agents conservateurs, des agents opacifiants, ainsi que tout autre adjuvant utilisé habituellement en teinture des matières

kératiniques.

10

15

30

35

45

Bien entendu, l'homme de l'art veillera à choisir le ou les éventuels composés complémentaires mentionnés ci-avant, de manière telle que les propriétés avantageuses attachées intrinsèquement à la composition tinctoriale selon l'invention ne soient pas, ou substantiellement pas, altérées par la ou les adjonctions envisagées.

[0025] La composition tinctoriale selon l'invention peut être formulée à pH acide, neutre ou alcalin, le pH pouvant varier entre 3 et 12 environ et de préférence entre 5 et 11 environ. Il peut être ajusté à la valeur désirée au moyen d'agents acidifiants ou alcalinisants ou de tampons habituellement utilisés en teinture des matières kératiniques.

[0026] Les agents acidifiants sont classiquement des acides minéraux ou organiques comme par exemple les acides chlorhydrique, orthophosphorique, sulfurique, les acides carboxyliques comme les acide acétique, tartrique, citrique, lactique et sulfonique.

Parmi les tampons, on peut citer par exemple, le phosphate diacide de potassium/hydroxyde de sodium.

Parmi les agents alcalinisants, on peut citer à titre d'exemple, l'ammoniaque, les carbonates alcalins, les alcanolamines telles que les mono- di- et tri- éthanolamines et leurs dérivés, les hydroxydes de sodium ou de potassium, et les composés de formule:

 $R_{13} \sim N - W - N < R_{15} < R_{16}$

dans laquelle, W est un reste propylène éventuellement substitué par un groupement hydroxyle ou un radical alkyle en C_1 - C_4 ; R_{13} R_{14} , R_{15} et R_{16} , simultanément ou indépendamment l'un de l'autre, représentent un atome d'hydrogène, un radical alkyle en C_1 - C_6 ou hydroxyalkyle en C_1 - C_6 .

[0027] La composition tinctoriale selon l'invention peut se présenter sous des formes diverses, telles que sous forme de liquide, de crème, de gel ou sous toute autre forme appropriée pour réaliser une teinture des matières kératiniques, et plus particulièrement des fibres kératiniques humaines et notamment des cheveux. En particulier, elle peut être conditionnée sous pression en flacon aérosol en présence d'un agent propulseur et former une mousse.

[0028] Un autre objet de la présente invention porte sur un procédé de teinture des fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux, par coloration directe, consistant à laisser agir une composition tinctoriale renfermant au moins une nitrophénylènediamine cationique monobenzénique de formule (I) sur les fibres kératiniques sèches ou humides. On peut utiliser la composition selon l'invention en tant que composition non rincée, c'est-à-dire qu'après application de la composition sur les fibres, on sèche sans rinçage intermédiaire.

Dans les autres modes d'application, on laisse agir la composition sur les fibres pendant un temps de pose variant entre 3 et 60 minutes environ, de préférence entre 5 et 45 minutes environ, on rince, éventuellement on lave, puis on rince à nouveau, et on sèche.

[0029] Des exemples concrets illustrant l'invention vont maintenant être donnés.

EXEMPLES DE PREPARATION

EXEMPLE 1: Préparation du composé de formule (i)₁ bromure de 1-[3-(4-amino-2-chloro-5-nitro-phénylamino)-propyl]-3-méthyl-3H-imidazol-1-ium,

(charge délocalisée dans le cycle imidazolique).

> 1ère étape:

synthèse du N-(4-amino-2-chloro-5-nitro-phényl)-N-(3-bromopropyl)-benzènesulfonamide.

[0030] Dans un réacteur, on a chauffé au bain marie bouillant la suspension de 98,3g (0,3 mole) de N-(4-amino-2-chloro-5-nitro-phényl)-benzènesulfonamide (RN 84741-80-0) et de 25,3g d'oxyde de calcium dans 250 ml de diméthylformamide. Sous agitation, on a ajouté d'un seul coup 61,2 ml (0,6 mole) de 1,3-dibromopropane et prolongé le chauffage pendant une heure.

Le milieu réactionnel a été filtré chaud et coulé dans 3kg d'eau glacée; la gomme qui a précipité a été décantée et extraite à l'acétate d'éthyle.

La phase acétate d'éthyle a été séchée sur sulfate de sodium, filtrée et évaporée à sec sous pression réduite. Le composé obtenu a été purifié par passage sur colonne de gel de silice (gradient d'heptane et d'acétate d'éthyle). On a obtenu 55,8g de cristaux jaunes qui fondaient à 116°C (Kofler) et dont l'analyse élémentaire calculée pour

C₁₅H₁₅N₃O₄SBrCl était :

CI Br Ν 0 S Н C % 7,90 17,81 7,15 14,26 9.36 3,37 40,15 Calculé 7,69 17,58 14.53 6,50 9,32 3,37 40,24 Trouvé

> 2ème étape:

5

20

25

30

35

40

synthèse du N1-(3-bromo-propyl)-2-chloro-5-nitro-benzène-1,4-diamine.

[0031] Le composé obtenu à l'étape 1 ci-dessus (55,8g - 0,125 mole) a été introduit par portions dans 170 ml d'acide sulfurique à 98% vivement agité et a été maintenu entre 15°C et 20°C par un bain de glace.

A la fin de l'addition, la solution a été agitée une heure supplémentaire à 15-20°C. On a ensuite versé la solution sur 1kg de glace et neutralisé en partie jusqu'à pH 5 avec de l'ammoniaque à 20%; le précipité cristallisé a été essoré, réempâté dans l'eau et séché sous vide à 40°C sur anhydride phosphorique.

On a obtenu 35,4g de cristaux rouges qui, après purification par recristallisation de l'acétate d'isopropyle bouillant, fondaient à 128°C (Kofler) et dont l'analyse élémentaire calculée pour C₉H₁₁N₃O₂BrCl était :

%	С	Н	N	0	Br	CI
Calculé	35,03	3,59	13,62	10,37	25,90	11,49
Trouvé	35,13	3,65	13,62	10,27	25,69	11,49

3ème étape:

quaternisation du composé préparé à la 2ème étape.

[0032] On a réalisé la suspension de 12,3g (0,04 mole) de N1-(3-bromo-propyl)-2-chloro-5-nitro-benzène-1,4-diamine obtenu à l'étape 2 et de 3,9g (0,048mole) de 1-méthyl-1H-imidazole (RN 616-47-7) dans 40 ml de toluène. On a chauffé sous agitation au reflux du toluène pendant 4 heures, essoré bouillant et réempâté deux fois dans l'acétate d'éthyle puis dans l'éthanol absolu. Après séchage à 40°C sous vide, on a obtenu 15,0g de cristaux rouge-foncé de bromure de 1-[3-(4-amino-2-chloro-5-nitro-phénylamino)-propyl]-3-methyl-3H-imidazol-1-ium fondant à plus de 260°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₃H₁₇N₅O₂BrCl était :

[%	С	н	N	0	Br	CI
	Calculé Trouvé	39,87 39,86	4,39 4,39	17,93 18,26	8,19 8,14		9,07 8,94

 $\underline{\text{EXEMPLE 2}}: \text{Préparation du composé de formule (I)}_2 \text{ chlorure de 1-[2-(4-amino-2-chloro-5-nitro-phénylamino)-6thyl]-3-méthyl-3H-imidazol-1-ium.}$

(charge délocalisée dans le cycle imidazolique).

> 1ère étape :

synthèse du N-(4-amino-2-chloro-5-nitro-phényl)-N-(2-chloro-éthyl)-benzènesulfonamide.

[0033] On a suivi le mode opératoire décrit à l'exemple 1 (1ère étape).

A partir de 98,3g (0,3 mole) de N-(4-amino-2-chloro-5-nitro-phényl)-benzènesulfonamide (RN 84741-80-0) et de 59,3g (0,6 mole) de 1,2-dichloroéthane on a obtenu 80,2g de cristaux jaunes qui, après purification par recristallisation de l'acétate d'éthyle bouillant, fondaient à 144°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₄H₁₃N₃O₄Cl₂ était :

%	С	н	N	0	Br	CI
Calculé	43,09	3,36	10,77	16,40	8,22	18,17
Trouvé	43,28	3,55	10,76	16,39	7,54	17,95

55

> 2ème étape :

synthèse du 2-chloro-N1-(2-chloro-éthyl)-5-nitro-benzène-1,4-diamine

[0034] On a suivi le mode opératoire décrit à l'exemple 1 (2ème étape).

A partir de 79,5g (0,203 mole) de N-(4-amino-2-chloro-5-nitro-phényl)-N-(2-chloro-éthyl)-benzènesulfonamide obtenu à l'étape précédente, on a obtenu 45,0g de cristaux brun-rouge qui, après purification par recristallisation du toluène au reflux, fondaient à 117°C (Kofler) et dont l'analyse élémentaire calculée pour C₈H₉N₃O₂Cl₂ était :

%	С	Н	N	0	Ö
Calculé	38,42	3,63	16,80	12,80	28,35
Trouvé	38,85	3,68	16,70	13,47	27,40

🍃 3ème étape:

10

15

25

30

35

45

50

55

quaternisation du composé obtenu à la 2ème étape

[0035] On a suivi le mode opératoire décrit à l'exemple 1 (3ème étape).

A partir de 10,0g (0,04 mole) de 2-chloro-N1-(2-chloro-éthyl)-5-nitro-benzène-1,4-diamine obtenu à la 2ème étape et de 3,9g (0,048 mole) de 1-méthyl-1H-imidazole (RN 616-47-7) on a obtenu 6,2g de cristaux rouge-brique qui fondaient à 221°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₂H₁₅N₅O₂Cl₂ + ½ H₂O était :

%	С	Н	N	0	Ö
Calculé	42,24	4,73	20,53	11,72	20,78
Trouvé	42,83	4,56	20,49	11,50	20,87

EXEMPLE 3: Préparation du composé de formule (I)₃ bromure de 1-[2-(4-amino-2-chloro-5-nitro-phénylamino)-éthyl]-3-méthyl-3H-imidazol-1-ium.

(charge délocalisée dans le cycle imidazolique).

> 1ère étape:

synthèse du N-(4-amino-2-chloro-5-nitro-phényl)-N-(2-bromo -éthyl)-benzènesulfonamide.

[0036] On a suivi le mode opératoire décrit à l'exemple 1 (1ère étape).

A partir de 145,5g (0,44 mole) de N-(4-amino-2-chloro-5-nitro-phényl)-benzènesulfonamide (RN 84741-80-0) et de 115 ml (1,32 moles) de 1,2-dibromo-éthane on a obtenu des cristaux jaunes qui, après purification par recristallisation de l'alcool éthylique 96° au reflux, fondaient à 115°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₄H₁₃N₃O₄BrCl était :

	%	С	Н	N	0 .	S
Ca	lculé	38,68	3,01	9,67	14,72	7,38
Tro	ouvé	38,83	3,15	9,55	14,87	6,55

> 2ème étape:

synthèse du N1-(2-bromo-éthyl)-2-chloro-5-nitro-benzène-1,4-diamine.

[0037] On a suivi le mode opératoire décrit à l'exemple 1 (2ème étape).

A partir de 191,0g (0,44 mole) de N-(4-amino-2-chloro-5-nitro-phényl)-N-(2-bromo-éthyl)- benzènesulfonamide obtenu à l'étape précédente, on a obtenu 114,5g de cristaux rouge-foncé qui, après purification par recristallisation de l'acétate d'isopropyle au reflux, fondaient à 120°C (Kofler) et dont l'analyse élémentaire calculée pour C₈H₉N₃O₂BrCl était :

%	С	н	N	0	Br	CI
Calculé	32,62	3,08	14,27	10,86	27,13	12,04
Trouvé	32,78	3,08	14,20	10,98	27,03	12,30

> 3ème étape:

5

10

15

20

25

35

40

quatemisation du composé obtenu à la 2ème étape.

[0038] On a suivi le mode opératoire décrit à l'exemple 1 (3ème étape).

A partir de 11,8g (0,04 mole) de N1-(2-bromo-éthyl)-2-chloro-5-nitro-benzène-1,4-diamine obtenu à l'étape précédente et de 3,9g (0,048 mole) de 1-méthyl-1H-imidazole (RN 616-47-7) on a obtenu 11,9g de cristaux rouge-brique qui fondaient à 224°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₂H₁₅N₅O₂BrCl était :

%	С	н	N	0	Br	CI
Calculé	38,27 38,11	4,01	18,59 18,33	8,50 8,79	,	9,41 9,48
Trouvé	30,11	7,0-	12,55			

EXEMPLE 4: Préparation du composé de formule (I)₄ bromure de 1-[2-(4-amino-2-méthyl-5-nitro-phénylami-no)-éthyl]-3-méthyl-3H-imidazol-1-ium.

(charge délocalisée dans le cycle imidazolique).

1ère étape:

synthèse du N-(4-amino-2-méthyl-5-nitro-phényl)-N-(2-bromoéthyl)-4-méthyl-benzènesulfonamide.

[0039] On a suivi le mode opératoire décrit à l'exemple 1 (1ère étape).

A partir de 57,0g (0,177 mole) de N-(4-amino-2-méthyl-5-nitro-phényl)-4-méthylbenzènesulfonamide (RN 82576-78-1) et de 38,2 ml (0,44 mole) de 1,2-dibromoéthane on a obtenu 66,0g de cristaux jaunes qui, après purification par recristallisation de l'acétate d'éthyle au reflux, fondaient à 159°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₆H₁₈N₃O₄SBr était :

%	С	Н	N	0	Br	CI
Calculé	44,87	4,24	9,81	14,94	7,49	18,66
Trouvé	44,79	4,25	9,62	14,93	7,05	18,48

> 2ème étape:

synthèse du N1-(2-bromo-éthyl)-2-méthyl-5-nitro-benzène-1,4-diamine.

[0040] On a suivi le mode opératoire décrit à l'exemple 1 (2ème étape).

A partir de 66,0g (0,154 mole) de N-(4-amino-2-méthyl-5-nitro-phényl)-N-(2-bromo-éthyl)-4-méthyl-benzènesulfonamide obtenu à l'étape précédente, on a obtenu 36,0g de cristaux brun-rouge qui, après purification par recristallisation de l'acétate d'isopropyle au reflux, fondaient à 120°C (Kofler) et dont l'analyse élémentaire calculée pour C₉H₁₂N₃O₂Brétait:

%	С	Н	N	0	Br
Calculé	39,44	4,41	15,33	11,67	29,15
Trouvé	38,55	4,44	5,00	11,60	29,37

55

> 3ème étape:

quaternisation du composé obtenu à la 2ème étape.

[0041] On a suivi le mode opératoire décrit à l'exemple 1 (3ème étape).

A partir de 11,0g (0,04 mole) de N1-(2-bromo-éthyl)-2-méthyl-5-nitro-benzène-1,4-diamine obtenu à l'étape précédente et de 3,9g (0,048 mole) de 1-méthyl-1H-imidazole (RN 616-47-7) dans l'isobutanol, on a obtenu 9,9g de cristaux brunrouge qui fondaient à 200°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₃H₁₈N₅O₂Br était:

-	%	С	Н	N	0	Br
1	Calculé	43,83	5,09	19,66	11,67	22,43
	Trouvé			19,45		

EXEMPLE 5: Préparation du composé de formule (I)₅ bromure de 1-[2-(4-amino-2-méthylsulfanyl-5-nitro-phénylamino)-éthyl]-3-méthyl-3H-imidazol-1-ium.

(charge délocalisée dans le cycle imidazolique).

o 🗦 <u>1^{ère} étape</u>:

10

30

35

45

50

55

synthèse du N-(4-amino-2-méthylsulfanyl-5-nitro-phényl)benzènesulfonamide.

[0042] Dans un réacteur, on a dissous à température ambiante 132g (0,662 mole) de 2-méthylsulfanyl-5-nitro-benzène-1,4-diamine (RN 171968-54-0) dans 400 ml de pyridine.

Sous agitation, on a coulé goutte à goutte 120,8g (0,684 mole) de chlorure de benzènesulfonyl en maintenant la réaction exothermique entre 40°C et 45°C; en ½ heure la solution rouge est devenu jaune-orangé; on l'a versée sur 2,7kg de glace et on a acidifié avec 400 ml d'acide chlorhydrique à 36%.

Le précipité cristallisé jaune-ocre obtenu a été essoré, réempâté dans l'eau à neutralité et séché sous vide à 40°C sur anhydride phosphorique. On a obtenu des cristaux jaunes qui, après recristallisation de l'acétonitrile au reflux, fondaient à 212°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₃H₁₃N₃O₄S₂ était :

%	С	Н	N	0	S
Calculé	46,01	3,86	12,38	18,86	18,89
Trouvé	45,94	3,86	12,35	18,61	18,24

> 2ème étape:

synthèse du N-(4-amino-2-méthylsulfanyl-5-nitro-phényl)-N-(2-bromo-éthyl)-benzènesulfonamide.

[0043] On a suivi le mode opératoire décrit à l'exemple 1 (1ère étape).

A partir de 116,0g (0,33 mole) de N-(4-amino-2-méthylsulfanyl-5-nitro-phényl)benzènesulfonamide obtenu à l'étape précédente et de 57,0 ml (0,66 mole) de 1,2-dibromo-éthane, on a obenu des cristaux jaunes qui, après purification par recristallisation de la méthyléthylcétone au reflux, fondaient à 216°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₅H₁₆N₃O₄S₂Br était :

%	С	Н	N	0	S	Br
Calculé	40,37	3,61	9,41	14,34	14,37	17,90
Trouvé	40,23	3,73	9,10	15,19	13,55	17,84

> 3ème étape :

synthèse du N1-(2-bromo-éthyl)-2-méthylsulfanyl-5-nitrobenzène-1,4-diamine.

[0044] On a suivi le mode opératoire décrit à l'exemple 1 (2ème étape).

A partir de 147,3g (0,33 mole) de N-(4-amino-2-méthylsulfanyl-5-nitro-phényl)-N-(2-bromo-éthyl)-benzènesulfonamide

obtenu à l'étape précédente, on a obtenu 72,0g de cristaux rouges qui, après purification par recristallisation de l'acétate d'éthyle au reflux, fondaient à 131°C (Kofler) et dont l'analyse élémentaire calculée pour C₉H₁₂N₃O₂SBr était :

%	С	н	N	0	S	Br
Calculé	35,31	3,95	13,72	10,45	10,47	26,10
Trouvé	35,56	4,06	13,72	10,57	10,14	26,39

4ème étape:

5

10

20

30

35

40

45

50

quaternisation du composé obtenu à la 3ème étape.

[0045] On a suivi le mode opératoire décrit à l'exemple 1 (3ème étape).

A partir de 12,2g (0,04 mole) de N1-(2-bromo-éthyl)-2-méthylsulfanyl-5-nitro-benzène-1,4-diamine obtenu à l'étape précédente et de 3,9g (0,048 mole) de 1-méthyl-1H-imidazole (RN 616-47-7) dans le toluène, on a obtenu 11,0g de cristaux rouge-brique qui fondaient à 196°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₃H₁₆N₅O₂SBr + ½ H₂O était :

%	С	н	N	0	S	Br
Calculé	39,30		17,63	10,07	8,07	20,11
Trouvé	40,44		17,49	9,44	8,56	18,96

EXEMPLE 6 : Préparation du composé de formule (I)6 chlorure de 1-[2-(4-amino-3-nitro-phényl-amino)-éthyl]-3-méthyl-3H-imidazol-1-ium. (charge délocalisée dans le cycle imidazolique).

> 1ère étape:

synthèse du N-(4-amino-3-nitro-phényl)-N-(2-chloro-éthyl)-4-méthyl- benzènesulfonamide.

[0046] On a suivi le mode opératoire décrit à l'exemple 1(1ère étape).

A partir de 23,0g (0,075 mole) de N-(4-amino-3-nitro-phényl)-4-méthylbenzènesulfonamide (RN 59457-54-4) et de 29,7g (0,3 mole) de 1,2-dichloroéthane on a obtenu des cristaux jaunes qui, après purification par recristallisation de l'alcool éthylique 96° au reflux, fondaient à 146°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₅H₁₆N₃O₄SCI était :

%	С	н	N	0	S	CI
Calculé	48,72	4,36	11,36	17,30	8,67	9,59
Trouvé	48,89	4,38	11,29	17,43	8,64	9,72

> 2ème étape:

synthèse du N4-(2-chloro-éthyl)-2-nitro-benzène-1,4-diamine et quaternisation.

[0047] On a suivi le mode opératoire décrit à l'exemple 1 (2ème étape).

A partir de 136,0g (0,365 mole) de N-(4-amino-3-nitro-phényl)-N-(2-chloro-éthyl)-4-méthyl-benzènesulfonamide obtenu à l'étape précédente, on a obtenu 75,7g de cristaux brun-rouge de N4-(2-chloro-éthyl)-2-nitro-benzène-1,4-diamine qui, après purification par recristallisation du benzène au reflux, fondaient à 107°C (Kofler).

[0048] Pour la quaternisation, on a suivi le mode opératoire décrit à l'exemple 1 (3ème étape).

A partir de 10,8g (0,05 mole) de N4-(2-chloro-éthyl)-2-nitro-benzène-1,4-diamine obtenu ci-avant et de 4,9g (0,06 mole) de 1-méthyl-1H-imidazole (RN 616-47-7) dans le toluène on a obtenu 11,5g de cristaux brun-rouge qui fondaient à 204°C et dont l'analyse élémentaire calculée pour $\rm C_{12}H_{16}N_5O_2CI + 1/4~H_2O$ était :

-	%	С	н	N	0	CI
	Calculé	47,69	5,50	23,17	11,91	11,73
- 1	02.50.0					

(suite)

Í	%	С	Н	Ν	0	CI
	Trouvé	47,52	5,50	23,20	11,98	11,85

EXEMPLE 7: Préparation du composé de formule (I)₇ méthylsulfate de 3-[3-(4-diéthylamino-2-nitro-phénylamino)-propyl]-1-méthyl-3H-imidazol-1-ium.

(charge délocalisée dans le cycle imidazolique).

> 1ère étape:

5

10

15

25

30

35

45

synthèse du diéthyl-(4-fluoro-3-nitro-phényl)-amine.

[0049] Dans un mélange chauffé à 65°C, comprenant 63,0g (0,5 mole) de 4-fluoro-3-nitro-phénylamine.(RN 364-76-1) et 110g de carbonate de calcium dans 150 ml de diméthylformamide, on a coulé en 2 heures, sous agitation, 197ml (1,5 moles) de diéthylsulfate; puis on a chauffé 2 heures à 85°C-90°C.

On a filtré chaud et coulé dans 2kg d'eau glacée.

L'huile qui a décanté a été extraite à l'acétate d'éthyle ; on a séché sur sulfate de sodium, filtré et évaporé à sec sous pression réduite.

On a obtenu 46,3g d'une huile rouge-orangé qui, après purification par passage sur une colonne de gel de silice (gradient d'heptane et d'acétate d'éthyle), a cristallisé ($F < 50^{\circ}C$ - Kofler) et dont l'analyse élémentaire calculée pour $C_{10}H_{13}N_2O_2F$ était :

%	С	Н	N	ŀ
Calculé	56,60	6,17	13,20	8,95
Trouvé	56,47	6,22	13,20	8,91

> 2ème étape:

synthèse du N4,N4-diéthyl-N1-(3-imidazol-1-yl-propyl)-2-nitro-benzène-1,4-diamine.

[0050] Sous agitation on a chauffé pendant 2 heures au reflux, un mélange de 8,8g (0,041 mole) de diéthyl-(4-fluoro-3-nitro-phényl)-amine obtenu à l'étape précédente, de 17,0g (0,136 mole) de 3-imidazol-1-yl-propylamine (RN 5036-48-6) et de 6,7ml de triéthylamine.

On a versé sur 100g d'eau glacée ; l'huile qui a décanté a été extraite à l'acétate d'éthyle. Puis on a séché sur sulfate de sodium, filtré et évaporé à sec sous pression réduite.

On a obtenu 12,8g d'une huile violette qui, après purification par passage sur une colonne de gel de silice (gradient d'heptane et d'acétate d'éthyle), a cristallisé ($F > 260^{\circ}C$ - Kofler) et dont l'analyse élémentaire calculée pour $C_{16}H_{23}N_5O_2$ était :

%	С	Н	N	0
Calculé	60,55	7,30	22,07	10,08
Trouvé	60,39	7,29	22,05	10,20

> 3ème étape:

quatemisation du composé obtenu à la 2ème étape.

[0051] On a réalisé la suspension de 6,3g (0,02 mole) de N4,N4-diéthyl-N1-(3-imidazol-1-yl-propyl)-2-nitro-benzène-1,4-diamine obtenu à l'étape précédente et 2,09 ml (0,022mole) de diméthylsulfate dans 100ml d'acétate d'éthyle et on a laissé 3 heures à température ambiante, sous agitation.

Le précipité cristallisé obtenu a été essoré, lavé plusieurs fois dans l'acétate d'éthyle et séché à 50°C sous vide. On a obtenu 8,2g de cristaux violet-foncé qui fondaient à 101°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₈H₂₉N₅O₆S était :

%	С	Н	N	0	S
Calculé	48,75	6,59	15,79	21,64	7,23
Trouvé	48,50	6,66	15,79	22,16	7,21

EXEMPLE 8 : Préparation du composé de formule (I)8

méthylsulfate de 3-(3-{4-[bis-(2-hydroxy-éthyl)-amino]-2-nitro-phénylamino}-propyl)-1-méthyl-3H-imidazol-

(charge délocalisée dans le cycle imidazolique).

> 1ère étape:

5

15

25

30

35

synthèse du 2-{(2-hydroxyéthyl)-[4-(3-imidazol-1-yl-propylamino)-3-nitro-phényl]-amino}-éthanol.

[0052] On a utilisé le mode opératoire décrit à l'exemple 7 (2ème étape).

A partir de 29,3g (0,12 mole) de 2-[(4-fluoro-3-nitro-phényl)-(2-hydroxyéthyl)amino]-éthanol (RN 29705-38-2) et de 50,0g (0,4 mole) de 3-imidazol-1-yl-propylamine (RN 5036-48-6) on a obtenu 39,0g de cristaux violets qui, après purification par recristallisation de l'alcool éthylique 96° au reflux, fondaient à 141°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₆H₂₃N₅O₄ était :

Ī	%	С	н	N	0
	Calculé Trouvé	55,00 54,77	6,64 6,37	20,04 20,35	18,32 18,39

> 2ème étape:

quatemisation du composé obtenu à la 1ème étape.

[0053] On a suivi le mode opératoire décrit à l'exemple 7 (3ème étape).

A partir de 14,0g (0,04 mole) de 2-{(2-hydroxyéthyl)-[4-(3-imidazol-1-yl-propylamino)-3-nitro-phényl]-amino}-éthanol obtenu à l'étape précédente et de 4,2 ml (0,044 mole) de diméthylsulfate, on a obtenu 17,9g d'une huile bleu-violet dont l'analyse élémentaire calculée pour $C_{18}H_{29}N_5O_8S+1/2H_2O$ était :

%	С	Н	N	0	S
	44,62 44,49		1	28,07 28,22	6,62 6,67

EXEMPLE 9 : Préparation du composé de formule (I)9 40 methylsulfate de 1-méthyl-3-[3-(3-méthylamino-4-nitro-phénylamino)-propyl]-3H-imidazol-1-ium. (charge délocalisée dans le cycle imidazolique).

> 1ère étape:

synthèse du N1-(3-imidazol-1-yl-propyl)-N3-méthyl-4-nitrobenzène-1,3-diamine.

[0054] On a suivi le mode opératoire décrit à l'exemple 7 (2ème étape).

A partir de 37,3g (0,2 mole) de (5-chloro-2-nitro-phényl)-méthyl-amine (RN 35966-84-8) et de 37,5g (0,3 mole) de 3-imidazol-1-yl-propylamine (RN 5036-48-6) on a obtenu des cristaux jaune (52,0g) qui, après purification par recristallisation de l'alcool éthylique 96° au reflux, fondaient à 145°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₃H₁₇N₅O₂ était :

Γ	%	С	н	N .	0
	Calculé	56,72	6,22	25,44	11,62
	Trouvé	56,64	6,34	25,37	11,66

> 2ème étape:

quaternisation du composé obtenu à la 1ème étape.

[0055] On a suivi le mode opératoire décrit à l'exemple 7 (3ème étape).

A partir de 8,2g (0,03 mole) de N1-(3-imidazol-1-yl-propyl)-N3-méthyl-4-nitro-benzène-1,3-diamine obtenu à l'étape précédente et de 3,2 ml (0,034 mole) de diméthylsulfate on a obtenu 11,9g de cristaux jaunes qui fondaient à 120°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₅H₂₃N₅O₆S était :

%	С	Н	N	0	S
Calculé Trouvé				23,91 24,12	

EXEMPLE 10 : Préparation du composé de formule (I)₁₀

disulfate acide de 3-(3-{2-Chloro-5-[3-(3-méthyl-3H-imidazol-1-ium)-propylamino]-4-nitro-phénylamino}-propyl)-1-méthyl-3H-imidazol-1-ium.

(charge délocalisée dans le cycle imidazolique).

0 > 1ère étape:

10

25

30

35

45

50

55

synthèse du 4-chloro-N1, N3-bis-(3-imidazol-1-yl-propyl)-6-nitro-benzène-1,3-diamine.

[0056] Sous agitation, on a chauffé pendant 9 heures au reflux, un mélange de 113,2g (0,5 mole) de 1,2,4-trichloro-5-nitrobenzène (RN 89-69-0), de 250,4g (2 moles) de 3-imidazol-1-yl-propylamine (RN 5036-48-6) et de 138g (1 mole) de carbonate de calcium dans 660 ml de dioxane.

On a versé dans 3,3 l d'eau glacée, essoré le précipité cristallisé, réempâté dans l'eau et séché sous vide à 50°C sur anhydride phosphorique.

Après purification par recristallisation de l'alcool absolu au reflux, on a obtenu 139,3g de cristaux jaunes qui fondaient à 108-110°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₈H₂₂N₇O₂Cl + 1,5 H₂O était :

%	С	Н	N	0	Ci
Calculé	50,17	5,85	22,75	13,00	8,23
Trouvé	50,57	6,07	22,85	13,10	8,00

> 2ème étape:

quaternisation du composé obtenu à la 1eme étape.

[0057] On a suivi le mode opératoire décrit à l'exemple 7 (3ème étape).

A partir de 21,5g (0,05 mole) de 4-chloro-N1, N3-bis-(3-imidazol-1-yl-propyl)-6-nitro-benzène-1,3-diamine cristallisé avec 1,5 molécule d'eau obtenu à l'étape précédente et de 14,3g (0,113 mole) de diméthylsulfate, et après réempâtage dans l'alcool absolu chauffé à 30°C, on a obtenu 12,0g de cristaux jaunes fondant à 188-190°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{20}H_{30}N_7O_{10}S_2CI$ était :

%	С	Н	N	0	CI	S
Calculé	38,25	4,81	15,61	25,47	5,64	10,21
	37,90					

EXEMPLE 11 : Préparation du composé de formule (I)₁₅

chlorure de 3-méthyl-1-(2-[méthyl-(4-méthylamino-3-nitro-phényl)-amino]-éthyl}-3H-imidazol-1-ium, monohydrate (charge délocalisée dans le cycle imidazolique).

[0058] On a suivi le mode opératoire décrit à l'exemple 1 (3ème étape).

A partir de 41,4g (0,17 mole) de N4-(2-chloro-éthyl)-N1,N4-diméthyl-2-nitro-benzène-1,4-diamine (RN14607-54-6) et de 41,8g (0,51 mole) de 1-méthyl-1H-imidazole (RN 616-47-7) dans 100ml de toluène, on a obtenu, après recristalli-

19

BNRDOCID- >EP 1018508A1 | 5

sation de l'éthanol au reflux, 37,8g de cristaux violets de chlorure de 3-méthyl-1-{2-[méthyl-(4-méthylamino-3-nitrophényl)-amino]-éthyl}-3H-imidazol-1-ium, monohydrate, qui fondaient à 135° C (Kofler) et dont l'analyse élémentaire calculée pour $C_{14}H_{20}N_5O_2$ Cl + H_2 O était :

5

%	С	Н	N	0	CI
Calculé	48,91	6,45	20,37	13,96	10,31
Trouvé	48,65	6,50	20,29	14,00	10,28

EXEMPLES DE COMPOSITIONS TINCTORIALES

EXEMPLE 1:

[0059] On a préparé la composition de teinture suivante : (toutes teneurs exprimées en grammes - M.A. désigne Matière Active)

(1	outes teneurs exprimees en granifies - M.A. Coorg.	0,344
Γ	Colorant de formule (I) ₉	0,72
-	Colorant de formule (I) ₉ Hydroxyéthylcellulose vendue sous la dénomination NATROSOL 250 MR par la société Aqualon	4
- 1	Alcool benzylique	6
	Polyéthylèneglycol à 6 oxyde d'éthylène Alkyl(C8-C10) polyglucoside en solution aqueuse à 60% M.A. vendu sous la dénomination ORAMIX	
	CG 110 par la	4,5 M.A
	société Seppic Tampon phosphate pH 9 (acide borique/chlorure de potassium/hydroxyde de sodium q.s.p	100

[0060] On a appliqué la composition ci-dessus sur des mèches de cheveux gris naturels ou permanentés à 90% de blancs et on a laissé poser pendant 20 minutes. Après rinçage à l'eau courante et séchage, les cheveux ont été teints dans une nuance violet irisé.

EXEMPLES 2 à 7:

[0061] On a préparé les six compositions de teinture suivantes : (toutes teneurs exprimées en grammes)

55	
40	
45	
50	
55	

30

35

	2	3	4	5	6	7
EXEMPLE						
Composé de formule (I) ₁	0,298	0.056				
Composé de formule (I) ₂		0,356	0,377			
Composé de formule (I)3			0,377	0,332		
Composé de formule (I) ₄			 	0,332	0,391	
Composé de formule (I) ₅				 	0,001	0,38
Composé de formule (I) ₆	10	10	10	10	10	10
Monoéthyléther d'éthylèneglycol			2	2	2	2
Mélange alcool cétylstéarylique/lauryl sulfate de sodium commercialisé sous la dénomination SINNOWAX SX par la	2	2	2	2		
société HENKEL	3	3	3	3	3	3
Alcool gras linéaire (C ₁₃ -C ₁₅) oxyéthyléné (30E) vendu sous la dénomination SYNPERONIC A3 par la société I.C.I				 	 	 _
Alacal gras lipégire (Cua-Cus) oxyéthyléné (70E) vendu sous	2	2	2	2	2	2
la dénomination SYNPERONIC A7 par la sociote non	1,5	1,5	1,5	1,5	1,5	1,
Bromure de triméthylcétylammonium	+	8	8	8	8	8
Monoéthanolamine qs pH 8 8	8	<u>°</u> _				

(suite)

EXEMPLE	2	3	4	5	6	7
Eau déminéralisée qsp	100	100	100	100	100	100

[0062] On a appliqué chacune des compositions ci-dessus sur des mèches de cheveux gris permanentés à 90% de blancs et on a laissé poser pendant 20 minutes. Après rinçage à l'eau courante et séchage, les cheveux ont été teints dans une nuance qui est exprimée dans le tableau ci-dessous.

Composition de l'exemple 2	légèrement violine
Composition de l'exemple 3	irisé légèrement rouge
Composition de l'exemple 4	cuivré rouge
Composition de l'exemple 5	cuivré rouge
Composition de l'exemple 6	irisé légèrement cuivré
Composition de l'exemple 7	cuivré

EXEMPLES 8 et 9:

5

10

15

25

30

.35

45

50

55

[0063] On a préparé les deux compositions de teinture suivantes : (toutes teneurs exprimées en grammes)

EXEMPLE	8	9
Composé de formule (I) ₈	0,356	
Composé de formule (i) ₉		0,344
Diéthanolamide oléïque	3	3
Acide laurique	1	1
Monoéthyléther de l'éthylèneglycol	5	5
Hydroxyéthylcellulose	2	2
2-amino-2-méthyl-1-propanol q.s pH.	9,5	9,5
Eau déminéralisée q.s.p	100	100

[0064] On a appliqué chacune des compositions ci-dessus sur des mèches de cheveux gris permanentés à 90% de blancs et on a laissé poser pendant 20 minutes. Après rinçage à l'eau courante et séchage, les cheveux ont été teints dans une nuance qui est exprimée dans le tableau ci-dessous.

Composition de l'exemple 8	violet
Composition de l'exemple 9	violet

Revendications

1. Nitrophénylènediamines cationiques monobenzéniques de formule (I) et leurs sels d'addition avec un acide :

$$\begin{array}{c|c}
R_5 & R_2 \\
R_6 & R_4
\end{array}$$

formule dans laquelle,

10

15

20

25

30

35

40

45

50

- R₁, R₂, R₃, et R₄, qui peuvent être identiques ou différents, représentent un atome d'hydrogène ; un groupement Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical monohydroxyalkyle en C_1 - C_6 ; un radical polynent Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical polynent Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical monohydroxyalkyle en C_1 - C_6 ; un radical polynent Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical polynent Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical polynent Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical polynent Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical polynent Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical polynent Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical polynent Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical polynent Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical polynent Z défini ci-après ; un radical alkyle en C_1 - C_6 ; un radical polynent Z defini ci-après ; un radical alkyle en C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical alkyle en C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical alkyle en C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definition C_1 - C_6 ; un radical polynent Z definiti hydroxyalkyle en C_2 - C_6 ; un radical alcoxy(C_1 - C_6)alkyle en C_1 - C_6 ; un radical aryle; un radical benzyle; un radical cyanoalkyle en C_1 - C_6 ; un radical carbamylalkyle en C_1 - C_6 ; un radical N-alkyl(C_1 - C_6)carbamylalkyle en C_1 - C_6 ; un radical N,N-dialkyl(C_1 - C_6)carbamylalkyle en C_1 - C_6 ; un radical thiocarbamylalkyle en C_1 - C_6 ; un radical trifluoroalkyle en C_1 - C_6 ; un radical sulfoalkyle en C_1 - C_6 ; un radical alkyl $(C_1$ - $C_6)$ carboxyalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6) sulfinylalkyle en C_1 - C_6 ; un radical aminosulfonylalkyle en C_1 - C_6 ; un radical N- $Z-aminosulfonylalkyle\ en\ C_1-C_6\ ;\ un\ radical\ N-alkyl(C_1-C_6) aminosulfonylalkyle\ en\ C_1-C_6\ ;\ un\ radical\ N,N-dialk-new properties and the sum of the$ $yl(C_1-C_6)$ aminosulfonylalkyle en C_1-C_6 ; un radical alkyl (C_1-C_6) carbonylalkyle en C_1-C_6 ; un radical aminoalkyle en C₁-C₆ dont l'alkyle est substitué ou non substitué par un ou plusieurs radicaux hydroxy; un radical aminoalkyle(C₁-C₆) dont l'alkyle est substitué ou non substitué par un ou plusieurs radicaux hydroxy et dont l'amine est substituée par un ou deux radicaux, identiques ou différents, choisis parmi les radicaux alkyle, $monohydroxyalkyle\ en\ C_1-C_6,\ polyhydroxyalkyle\ en\ C_2-C_6,\ alkyl(C_1-C_6) carbonyle,\ carbamyle,\ N-alkyl(C_1-C_6)$ $carbamyle \ ou \ N, N-dialkyl(C_1-C_6) carbamyle, \ alkyl(C_1-C_6) sulfonyle, \ trifluoroalkyl(C_1-C_6) carbonyle, \ tr$ $alkyl(C_1-C_6) carboxy, \ thio carbamyle, \ ou \ par \ un \ groupement \ Z \ defini \ ci-après, \ ou \ pouvant \ former \ ensemble,$ avec l'atome d'azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, carboné, ou contenant un ou plusieurs hétéroatomes;
- $\mathbf{R_5}$, $\mathbf{R_6}$, qui peuvent être identiques ou différents, représentent un atome d'hydrogène ; un atome d'halogène ; un groupement Z défini ci-après ; un radical alkyl (C_1-C_6) carbonyle ; un radical aminoalkyl (C_1-C_6) carbonyle; $un\ radical\ N-Z-aminoalkyl(C_1-C_6) carbonyle\ ;\ un\ radical\ N-alkyl(C_1-C_6) aminoalkyl(C_1-C_6) carbonyle\ ;\ un\ radi$ $N, N-dialkyl(C_1-C_6) a minoalkyl(C_1-C_6) carbonyle; un radical aminoalkyl(C_1-C_6) carbonylalkyle(C_1-C_6); un radical aminoalkyl(C_1-C_6) carbonylalkyle(C_1-C_6) carbonylalkyle($ $cal\ N-Z-aminoalkyl(C_1-C_6) carbonylalkyle(C_1-C_6)\ ;\ un\ radical\ N-alkyl(C_1-C_6) aminoalkyl(C_1-C_6) carbonylalkyle(C_1-C_6)\ ;$ $(C_1-C_6) \text{ ; un radical N,N-dialkyl} \\ (C_1-C_6) \text{aminoalkyl} \\ (C_1-C_6) \text{carbonylalkyle} \\ (C_1-C_6) \text{; un radical carboxy ; u$ $aminosulfonyle\ ; un\ radical\ N-alkyl(C_1-C_6) aminosulfonyle\ ; un\ radical\ N, N-dialkyl(C_1-C_6) aminosulfonyle\ ; un\ radical\ N, N$ dical aminosulfonylalkyle(C_1 - C_6); un radical N-Z-aminosulfonylalkyle(C_1 - C_6); un radical N-alkyl(C_1 - C_6)aminosulfonylalkyle(C_1 - C_6) $nosulfonylalkyle(C_1-C_6)\ ;\ un\ radical\ N,N-dialkyl(C_1-C_6)aminosulfonylalkyle(C_1-C_6);\ un\ radical\ carbamyle\ ;\ un\ ra$ $radical\ N-alkyl(C_1-C_6) carbamyle\ ;\ un\ radical\ N,N-dialkyl(C_1-C_6) carbamyle\ ;\ un\ radical\ carbamylalkyle(C_1-C_6)\ ;$ $un\ radical\ N-alkyl(C_1-C_6) carbamylalkyle(C_1-C_6)\ ;\ un\ radical\ N, N-dialkyl(C_1-C_6) carbamylalkyle(C_1-C_6)\ ;\ un\ radical\ N, N-dialkyl(C_1-C_6) carbamylalkyle(C_1-C_6)\ ;\ un\ radical\ N, N-dialkyl(C_1-C_6)\ ;\ un\ radical\ N, N-dialkyl($ dical alkyle en C_1 - C_6 ; un radical monohydroxyalkyle en C_1 - C_6 ; un radical polyhydroxyalkyle en C_2 - C_6 ; un radical alcoxy(C₁-C₆)alkyle en C₁-C₆; un radical trifluoroalkyle en C₁-C₆; un radical cyano; un radical ami $noalkyle(C_1-C_6) \ don't \ l'alkyle\ est\ substitu\'e\ ou\ non\ substitu\'e\ par\ un\ ou\ plusieurs\ radicaux\ hydroxy\ et\ don't\ l'amine$ est non substituée ou substituée par un ou deux radicaux, identiques ou différents, choisis parmi les radicaux $alkyle\ en\ C_1-C_6,\ monohydroxyalkyle\ en\ C_1-C_6,\ polyhydroxyalkyle\ en\ C_2-C_6,\ alkyl(C_1-C_6)carbonyle,\ carbamyle,\ polyhydroxyalkyle\ en\ C_2-C_6,\ poly$ $N-alkyl(C_1-C_6) carbamyle \ ou \ N, N-dialkyl(C_1-C_6) carbamyle, \ alkyl(C_1-C_6) sulfonyle, \ trifluoroalkyl(C_1-C_6) alkyl(C_1-C_6) sulfonyle, \ trifluoroalkyl(C_1-C_6) alkyl(C_1-C_6) sulfonyle, \ trifluoroalkyl(C_1-C_6) alkyl(C_1-C_6) alky$ C_6)carbonyle, alkyl(C_1 - C_6)carboxy, thiocarbamyle, ou par un groupement Z défini ci-après ; un groupement OR7 ou -SR7 défini ci-après ; ou pouvant former ensemble, avec l'atome d'azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, carboné, ou contenant un ou plusieurs hétéroatomes ;
 - $m R_7$ désigne un atome d'hydrogène ; un radical alkyle en $m C_1$ - $m C_6$; un radical monohydroxyalkyle en $m C_1$ - $m C_6$; un radical polyhydroxyalkyle en C_2 - C_6 ; un groupement Z; un radical alcoxy(C_1 - C_6)alkyle en C_1 - C_6 ; un radical aryle ; un radical benzyle ; un radical carboxyalkyle en C_1 - C_6 ; un radical alkyl $(C_1$ - $C_6)$ carboxyalkyle en C_1 -

 C_6 ; un radical cyanoalkyle en $C_1\text{-}C_6$; un radical carbamylalkyle en $C_1\text{-}C_6$; un radical N,-alkyl($C_1\text{-}C_6$)carbamylalkyle en $C_1\text{-}C_6$; un radical N,N-dialkyl($C_1\text{-}C_6$)carbamylalkyle en $C_1\text{-}C_6$; un radical N,N-dialkyl($C_1\text{-}C_6$)carbamylalkyle en $C_1\text{-}C_6$; un radical aminosulfonylalkyle en $C_1\text{-}C_6$; un radical N-Z-aminosulfonylalkyle en $C_1\text{-}C_6$; un radical N,N-dialkyl($C_1\text{-}C_6$)aminosulfonylalkyle en $C_1\text{-}C_6$; un radical alkyl($C_1\text{-}C_6$)aminosulfonylalkyle en $C_1\text{-}C_6$; un radical alkyl($C_1\text{-}C_6$)sulfonylalkyle en $C_1\text{-}C_6$; un radical alkyl($C_1\text{-}C_6$)sulfonylalkyle en $C_1\text{-}C_6$; un radical alkyl($C_1\text{-}C_6$)sulfonylalkyle en $C_1\text{-}C_6$; un radical aminoalkyle en $C_1\text{-}C_6$ dont l'alkyle est non substitué ou substitué par un ou plusieurs radicaux hydroxy; un radical aminoalkyle en $C_1\text{-}C_6$ dont l'alkyle est non substitué ou substitué par un ou plusieurs radicaux hydroxy et dont l'amine est substituée par un ou deux radicaux, identiques ou différents, choisis parmi les radicaux alkyle($C_1\text{-}C_6$), monohydroxyalkyle($C_1\text{-}C_6$), polyhydroxyalkyle($C_2\text{-}C_6$), alkyl($C_1\text{-}C_6$)carbonyle, formyle, trifluoroalkyl($C_1\text{-}C_6$)carbonyle, alkyl($C_1\text{-}C_6$)carboxy, carbamyle, N-alkyl($C_1\text{-}C_6$)carbamyle, N,N-dialkyl($C_1\text{-}C_6$)carbamyle, thiocarbamyle, alkyl($C_1\text{-}C_6$)sulfonyle, ou par un groupement Z défini ci-après; ou pouvant former ensemble, avec l'atome d'azote auquel ils sont rattachés, un cycle à 5 ou 6 chaînons, carboné, ou contenant un ou plusieurs hétéroatomes ;

• Z est choisi parmi les groupements cationiques insaturés de formules (II) et (III) suivantes, et les groupements cationiques saturés de formule (IV) suivante :

dans lesquelles :

5

10

15

30

35

45

50

- D est un bras de liaison qui représente une chaîne alkyle comportant de préférence de 1 à 14 atomes de carbone, linéaire ou ramifiée pouvant être interrompue par un ou plusieurs hétéroatomes tels que des atomes d'oxygène, de soufre ou d'azote, et pouvant être substituée par un ou plusieurs radicaux hydroxyle ou alcoxy en C₁-C₆, et pouvant porter une ou plusieurs fonctions cétone;
- les sommets E, G, J, L et M, identiques ou différents, représentent un atome de carbone, d'oxygène, de soufre ou d'azote;
- n est un nombre entier compris entre 0 et 4 inclusivement;
- m est un nombre entier compris entre 0 et 5 inclusivement;
- les radicaux R, identiques ou différents, représentent un second groupement Z identique ou différent du premier groupement Z, un atome d'halogène, un radical hydroxyle, un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical nitro, un radical cyano, un radical

cyanoalkyle en C_1 - C_6 , un radical alcoxy en C_1 - C_6 , un radical trialkyl(C_1 - C_6)silanealkyle en C_1 - C_6 , un radical amido, un radical aldéhydo, un radical carboxyle, un radical alkylcarbonyle en C1-C6, un radical thio, un radical thioalkyle en C_1 - C_6 , un radical alkyl(C_1 - C_6)thio, un radical amino, un radical amino protégé par un radical alkyl (C₁-C₆)carbonyle, carbamyle ou alkyl(C₁-C₆)sulfonyle; un groupement NHR" ou NR"R" dans lesquels R" et R^a, identiques ou différents, représentent un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆ ou un radical polyhydroxyalkyle en C2-C6;

- R_8 représente un radical alkyle en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 , un radical polyhydroxyalkyle en C_2 - C_6 , un radical cyanoalkyle en C_1 - C_6 , un radical trialkyl(C_1 - C_6)silanealkyle en C_1 - C_6 , un radical alcoxy (C_1-C_6) alkyle en C_1-C_6 , un radical carbamylalkyle C_1-C_6 , un radical alkyl (C_1-C_6) carboxyalkyle en C_1-C_6 , un radical benzyle, un second groupement Z identique ou différent du premier groupement Z;
- R_9 , R_{10} et R_{11} , identiques ou différents, représentent un radical alkyle en C_1 - C_6 , un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical alcoxy(C₁-C₆)alkyle en C₁-C₆, un radical cyanoalkyle en C₁-C₆, un radical aryle, un radical benzyle, un radical amidoalkyle en C₁-C₆, un radical trialkyl(C₁- C_6)silanealkyle en C_1 - C_6 ou un radical aminoalkyle en C_1 - C_6 dont l'amine est protégée par un radical alkyl (C_1-C_6) carbonyle, carbamyle, ou alkyl (C_1-C_6) sulfonyle; deux des radicaux R_9 , R_{10} et R_{11} peuvent également former ensemble, avec l'atome d'azote auquel ils sont rattachés, un cycle saturé à 5 ou 6 chaînons, carboné, ou pouvant contenir un ou plusieurs hétéroatomes, tel que par exemple un cycle pyrrolidine, un cycle pipéridine, un cycle pipérazine ou un cycle morpholine, ledit cycle pouvant être ou non substitué par un atome d'halogène, un radical hydroxyle, un radical alkyle en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 , un radical polyhydroxyalkyle en C2-C6, un radical nitro, un radical cyano, un radical cyanoalkyle en C1-C6, un radical alcoxy en C_1 - C_6 , un radical trialkyl(C_1 - C_6)silanealkyle en C_1 - C_6 , un radical amido, un radical aldéhydo, un radical carboxyle, un radical cétoalkyle en C_1 - C_6 , un radical thio, un radical thioalkyle en C_1 - C_6 , un radical $alkyl(C_1-C_6)thio$, un radical amino, un radical amino protégé par un radical alkyl (C_1-C_6) carbonyle, carbamyle l'un des radicaux R_9 , R_{10} et R_{11} peut également représenter un second groupement Z, identique ou différent
- du premier groupement Z; R_{12} représente un radical alkyle en C_1 - C_6 ; un radical monohydroxyalkyle en C_1 - C_6 ; un radical polyhydroxyalkyle en C_1 - C_6 ; un radical monohydroxyalkyle en C_1 - C_6 ; un radical polyhydroxyalkyle en C_1 - C_6 ; un radical monohydroxyalkyle en C_1 - C_2 - C_3 - C_4 - C_5 yle en C₂-C₆; un radical aryle; un radical benzyle; un radical aminoalkyle en C₁-C₆, un radical aminoalkyle 30 en C_1 - C_6 dont l'amine est protégée par un radical alkyl(C_1 - C_6)carbonyle, carbamyle ou alkyl(C_1 - C_6)sulfonyle, un radical carboxyalkyle en C_1 - C_6 ; un radical cyanoalkyle en C_1 - C_6 ; un radical carbamylalkyle en C_1 - C_6 ; un radical trifluoroalkyle en $C_1 - C_6$; un radical trialkyl $(C_1 - C_6)$ silanealkyle en $C_1 - C_6$; un radical sulfonamidoalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)carboxyalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)sulfinylalkyle en C_1 - C_6 ; un $\text{radical alkyl} (C_1 - C_6) \text{sulfonylalkyle en } C_1 - C_6 \text{ ; un radical alkyl} (C_1 - C_6) \text{cétoalkyle en } C_1 - C_6 \text{ ; un radical N-alkyle en } C_1 - C_6 \text{ ; un radical a$ 35 (C_1-C_6) carbamylalkyle en C_1-C_6 ; un radical N-alkyl (C_1-C_6) sulfonamidoalkyle en C_1-C_6 ;
 - x et y sont des nombres entiers égaux à 0 ou 1 ; avec les conditions suivantes :
 - dans les groupements cationiques insaturés de formule (II) :
 - lorsque x = 0, le bras de liaison D est rattaché à l'atome d'azote,
 - lorsque x = 1, le bras de liaison D est rattaché à l'un des sommets E, G, J ou L,
 - y ne peut prendre la valeur 1 que :

5

10

15

20

25

40

45

50

- 1) lorsque les sommets E, G, J et L représentent simultanément un atome de carbone, et que le radical R_8 est porté par l'atome d'azote du cycle insaturé ; ou bien 2) lorsqu'au moins un des sommets E, G, J et L représente un atome d'azote sur lequel le radical R₈ est fixé;
- dans les groupements cationiques insaturés de formule (III):
- lorsque x = 0, le bras de liaison D est rattaché à l'atome d'azote,
 - lorsque x = 1, le bras de liaison D est rattaché à l'un des sommets E, G, J, L ou M,
 - y ne peut prendre la valeur 1 que lorsqu'au moins un des sommets E, G, J, L et M représente un atome divalent, et que le radical R₈ est porté par l'atome d'azote du cycle insaturé;

- dans les groupements cationiques de formule (IV) :
 - lorsque x = 0, alors le bras de liaison D est rattaché à l'atome d'azote portant les radicaux R₉ à R₁₁,
 - lorsque x = 1, alors deux des radicaux R₉ à R₁₁ forment conjointement avec l'atome d'azote auquel ils sont rattachés un cycle saturé à 5 ou 6 chaînons tel que défini précédemment; et le bras de liaison D est porté par un atome de carbone dudit cycle saturé;
- X- représente un anion monovalent ou divalent,

10 étant entendu :

5

15

25

30

35

()0

45

50

- que le nombre de groupements cationiques insaturés Z de formule (II), dans lesquels au moins un des sommets
 E, G, J et L représente un atome d'azote, est au moins égal à 1, et
- que, lorsque un et un seul des radicaux R₁ à R₄ ou R₇ désigne un groupement Z dans lequel le bras de liaison D représente une chaîne alkyle comportant une fonction cétone, alors ladite fonction cétone n'est pas directement rattachée à l'atome d'azote du groupement NR₁R₂ ou NR₃R₄ ou à l'atome d'oxygène du groupement OR₇.
- Nitrophénylènediamines cationiques monobenzéniques selon la revendication 1, caractérisée par le fait que les cycles des groupements insaturés Z de formule (II) sont choisis parmi les cycles pyrrolique, imidazolique, pyrazolique, oxazolique, thiazolique et triazolique.
- 3. Nitrophénylènediamines cationiques monobenzéniques selon la revendication 1, caractérisée par le fait que les cycles des groupements insaturés Z de formule (III) sont choisis parmi les cycles pyridinique, pyrimidinique, pyrazinique, oxazinique et triazinique.
- 4. Nitrophénylènediamines cationiques monobenzéniques selon l'une quelconque des revendications précédentes, caractérisée par le fait que dans la formule (IV) deux des radicaux R₈, R₉ et R₁₀ forment un cycle pyrrolidinique, un cycle pipéridinique, un cycle pipéridinique, un cycle pipéridinique, un cycle pipérazinique ou un cycle morpholinique, ledit cycle pouvant être ou non substitué par un atome d'halogène, un radical hydroxyle, un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical nitro, un radical cyano, un radical cyanoalkyle en C₁-C₆, un radical alcoxy en C₁-C₆, un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆, un radical amido, un radical aldéhydo, un radical carboxyle, un radical alkylcarbonyle en C₁-C₆, un radical thio, un radical thioalkyle en C₁-C₆, un radical alkyl(C₁-C₆)thio, un radical amino, un radical amino protégé par un radical alkyl(C₁-C₆)carbonyle, carbamyle ou alkyl(C₁-C₆)sulfonyle.
- 5. Nitrophénylènediamines cationiques monobenzéniques selon l'une quelconque des revendications précédentes, caractérisées par le fait que X⁻ est choisi parmi un atome d'halogène, un hydroxyde, un hydrogènesulfate, ou un alkyl(C₁-C₆)sulfate.
- 6. Nitrophénylènediamines cationiques monobenzéniques selon l'une quelconque des revendications précédentes, caractérisées par le fait qu'elles sont choisies parmi celles de formules (I), à (I)₁₅ suivantes :

C1
$$NH - (CH2)3$$

$$N \longrightarrow N - CH3$$

$$N \longrightarrow N \rightarrow N \rightarrow N - CH3$$

$$N \longrightarrow N \rightarrow N \rightarrow N - CH3$$

$$N \longrightarrow N \rightarrow N \rightarrow N - CH3$$

$$N \longrightarrow N \rightarrow N \rightarrow N - CH3$$

$$N \longrightarrow N \rightarrow N \rightarrow N - CH$$

20 C1 $NH-(CH_2)_2$ $N \rightarrow CH_3$ Br NO_2 NH_2

15

30

40

50

 H_3C $NH-(CH_2)_2$ $N-CH_3$ NO_2 NO_2 NO_2

NH₂

55

$$\begin{array}{c} \text{NH-}\left(\text{CH}_{2}\right)_{2} \\ \text{NH-}\left(\text{CH}_{2}\right)_{2} \\ \text{NO}_{2} \\ \text{NH}_{2} \end{array}$$

$$\begin{array}{c}
NH - (CH_2)_2 \\
NH - CH_3
\end{array}$$

$$\begin{array}{c}
N + N - CH_3
\end{array}$$

(HOCH₂CH₂)₂N NO₂

$$NH-(CH2)3 N + CH3 CH2SO4$$
(I)₈

NO2

30

45

50

55

25 $NH-(CH_2)_3-N+N-CH_3$ $(H SO_4^*)_2$ $(I)_{10}$ $NH-(CH_2)_3-N+N-CH_3$

NH- $(CH_2)_3$ -N $(CH_3)_3$ (CH₃ SO₄)₂
(I)₁₁

NH- $(CH_2)_3$ -N $(CH_3)_3$ NH- $(CH_2)_3$ -N $(CH_3)_3$

•

()o

(i)₁₃ NH₂

$$H_3C-S$$
 $NH-(CH_2)_2-N$
 NH_2
 NH_2
 NH_3
 NH_3

25

30

35

40

45

50

- 7. Nitrophénylènediamines cationiques monobenzéniques selon l'une quelconque des revendications précédentes, caractérisées par le fait que les sels d'addition avec un acide sont choisis parmi les chlorhydrates, les bromhydrates, les sulfates, les citrates, les tartrates, les lactates et les acétates.
- 8. Utilisation des nitrophénylènediamines cationiques monobenzéniques de formule (I) telles que définies à l'une quelconque des revendications 1 à 7, à titre de colorants directs dans des, ou pour la fabrication de, compositions tinctoriales pour matières kératiniques, en particulier pour fibres kératiniques humaines et notamment les cheveux.
 - 9. Composition de teinture pour matières kératiniques, caractérisée par le fait qu'elle contient, dans un milieu approprié pour la teinture, une quantité efficace d'au moins une nitrophénylènediamine cationique monobenzénique de formule (I) définie à l'une quelconque des revendications 1 à 7.
 - 10. Composition de teinture directe pour fibres kératiniques humaines, et notamment les cheveux, caractérisée par le fait qu'elle contient, dans un milieu approprié pour la teinture, une quantité efficace d'au moins une nitrophény-lènediamine cationique monobenzénique de formule (I) définie à l'une quelconque des revendications 1 à 7.
 - 11. Composition selon les revendications 9 ou 10, caractérisée par le fait qu'elle a un pH compris entre 3 et 12.
 - 12. Composition selon l'une quelconque des revendications 9 à 11, caractérisée par le fait que les nitrophénylènediamines cationiques monobenzéniques de formule (I) sont présentes dans une concentration allant de 0,005 à 12% en poids par rapport au poids total de la composition.
 - 13. Composition selon la revendication 12, caractérisée par le fait que les nitrophénylènediamines cationiques monobenzéniques de formule (I) sont présentes dans une concentration allant de 0,05 à 6% en poids par rapport au poids total de la composition.
 - 14. Composition selon l'une quelconque des revendications 9 à 13, caractérisée par le fait qu'elle contient d'autres colorants directs, choisis parmi des colorants nitrés benzéniques autres que les nitrophénylènediamines cationiques de formule (I) selon l'invention et tels que les nitrodiphénylamines, les nitroanilines, les éthers de phénols nitrés ou les nitrophénols, des nitropyridines, des colorants anthraquinoniques, des colorants mono- ou di-azoiques, triarylméthaniques, aziniques, acridiniques, xanthéniques, ou des colorants métallifères.
 - 15. Composition selon l'une quelconque des revendications 9 à 14, caractérisée par le fait que le milieu approprié pour la teinture est un milieu aqueux constitué par de l'eau et/ou des solvants organiques choisis parmi les alcools, les glycols et les éthers de glycol, dans des proportions comprises entre 1 et 40% en poids par rapport au poids total de la composition.
 - 16. Procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, par coloration directe, caractérisé par le fait qu'on applique la composition tinctoriale définie à l'une quelconque des revendications 9 à 15, sur les fibres kératiniques sèches ou humides, et qu'on sèche ces fibres sans rinçage intermédiaire.
 - 17. Procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, par coloration directe, caractérisé par le fait qu'on applique la composition tinctoriale définie à l'une quel-

conque des revendications 9 à 15, sur les fibres kératiniques sèches ou humides, et qu'après avoir laissé agir la composition pendant 3 à 60 minutes environ, on rince les fibres, on les lave éventuellement, on les rince à nouveau puis on les sèche.

RAPPORT DE RECHERCHE EUROPEENNI

Numero de la demande EP 99 40 3168

DO	CUMENTS CONSIDERES (COMME PERTINEIN	Revendication	CLASSEMENT DE LA
avégorie	Citation du document avec indice des parties pertinentes	ation, en cas de bescur, s	concernée	DEMANDE (Int.CL.7)
4	EP 0 673 926 A (OREAL) 27 septembre 1995 (199 * revendications *		1-17	C07D233/61 A61K7/13
A	GB 909 700 A (THERACHE THERAPEUTISCHE G.M.B.H 31 octobre 1962 (1962- + le document en entic	i.) ·10-31)	1-17	
A	US 5 139 532 A (CHAN / 18 août 1992 (1992-08- * revendications *	A C ET AL)	1-17	
A	FR 2 520 358 A (OREAL 29 juillet 1983 (1983 * revendications *) -07-29)	1-17	
D,A	GB 1 164 824 A (OREAL 24 septembre 1969 (19 * revendications *	169-U9 - 24 <i>)</i>	1-17	DOMAINES TECHNIQUES RECHERCHES (IHLCLT)
D,A	US 4 018 556 A (KALOF 19 avril 1977 (1977- * revendications *			C07D A61K
P,A	FR 2 766 178 A (OREA 22 janvier 1999 (199 * revendications *	L) 9–01–22) 	1-17	
	Le présent rapport a été étabil pour to	utes les revendications		- Contribution III
_	Lieu de la recherche	Date d'achivement de la re		
8	LA HAYE	11 avril		Chouly, J
EPO FORM 1608 03.82 (P04002)	CATEGORIE DES DOCUMENTS CIT X: perticulibrement pertinent à lui seut Y: particulibrement pertinent en combinaies autre document de la même catégorie A: antère-plan technologique O: d'autigation non-écrits P: document intercalaire	E:do del on evec un D:di L:di	orie ou principe à la bas cument de brevet artisti le de dépôt ou après ce é dans le demande é pour d'autres raisons embre de la même tami	

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 99 40 3168

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Les dits members sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

11-04-2000

Document brevet cité au rapport de recherche			Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
EP	0673926 A 2		27-09-1995	FR 2717801 A		29-09-199!
				CA	2145343 A	25-09-199
				DE	69500217 D	15-05-1997
				DĒ	69500217 T	17-07-1997
				ES	2103144 T	16-08-1997
				JP	2672277 B	05-11-1997
				JP	7291920 A	07-11-199
				US	5735910 A	07-04-1998
				US	5874618 A	23-02-1999
GB	909700	Α		DE	1292784 B	
				LU	36853 A	
				NL	122875 C	
				NL	236431 A	
				US	3100739 A	13-08-196
US	5139532	Α	18-08-1992	CA	2080412 A	28-05-199
				DE	69209011 D	18-04-199
				DE	6920 90 11 T	07-11-1996
				EP	0544400 A	02-06-199
				ES	2085574 T	01-06-199
				US	5198584 A	30-03-199
FR	2520358	Α	29-07-1983	LU	83900 A	02-09-198
				LU	84391 A	24-04-198
				AT	387212 B	27-12-198
				AT	22083 A	15-05-198
				AU	556627 B	13-11-198
				AU	1076283 A	04-08-198
				AU	6683286 A	16-04-198
				BE	895697 A	25-07-198
				CA	1191849 A	13-08-198
				CH	661501 A	31-07-198
				DE	3302534 A	04-08-198
			;	ES	519237 D	16-07-198
				ES	8406187 A	01-11-198
				GB	2113685 A,B	10-08-198
				GB	2129022 A,B	10-05-198
				IT	1203664 B	15-02-198
				JP	58164553 A	29-09-198
				NL	8300267 A	16-08-198
				US	4888025 A	19-12-198
GB	1164824	A	24-09-1969	LU	51474 A	12-03-196
				BE Ch	684859 A 457491 A	30-01-196

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 99 40 3168

La présente annexe indique les membres de la familie de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé cl-dessus.

Les dits members sont contenus au fichier informatique de l'Officeeuropéen des brevets à la date du

Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

11-04-2000

Document brevet ché	Date de publication	Mem tamile	bre(s) de la de brevet(s)	Date de publication
au rapport de recherche		D.C.	1543810 A	26-02-1970
GB 1164824 A			1617698 A	22-04-1971
GD 1104021		<i>U</i> L		20-11-1967
			1491617 A	20-11-1967
		FR	1491677 A	24-09-1969
		GB	1164825 A	24-03-1303
		LÜ	49213 A	30-01-1967
		NL	6610757 A	31-01-1967
		NL	6610759 A	31-01-1967
		AT	277414 B	29-12-1969
		ΑŤ	278988 B	25-02-1970
			281222 B	25-05-1970
		ΑŢ	279053 B	25-02-1970
		AT	2/9053 D	30-01-1967
		BE	684863 A	31-07-1971
		CH	510624 A	15-12-1971
		CH	516507 A	
		CH	518096 A	31-01-1972
		CH	518902 A	15-02-1972
		CH	519465 A	29-02-1972
		CH	519466 A	29-02-1972
		CH	524370 A	30-06-1972
			1617699 A	29-07-1971
		DE	1569816 A	06-11-1969
		DE	1506350 A	07-03-1968
		FR	1500350 W	20-11-1980
		ΙT	1048380 B	14-01-1983
		JP	58002204 B	30-01-1967
		LÜ	49214 A	27-07-1967
		LU	50348 A	2/-0/-190/
		NL	130871 C	1070
		NL	7006131 A	25-08-1970
		ÜS	3867456 A	18-02-1975
		US	3665036 A	23-05-1972
	19-04-1977	LU	50894 A	13-10-1967
US 4018556 A	19-04-1977	ĹŬ	52201 A	08-05-1968
		BE	690591 A	02-06-1967
		CH	462187 A	
			462188 A	
		CH	467623 A	
•		CH		17-09-1970
		DE	1619615 A	09-07-197
		DE	1569817 A	10-09-197
		DE	1569818 A	20-03-196
		FR	1508405 A	50-02-130
		GB	1127080 A	
		ΪŤ	1048381 B	20-11-198
		ĹÜ	49990 A	05-06-196
			6616768 A	05-06-196
		NL	9010100 V	

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 99 40 3168

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé (:-dessus, Lesdits members sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

11-04-2000

an Labi	Document brevet cité au rapport de recherche		Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
US 4	US 4018556	A	······································	US US US	3904690 A 3560136 A 4155934 A	09-09-197 02-02-197 22-05-197
FR 2	766178	A	22-01-1999	AU EP WO	8735598 A 0928289 A 9903836 A	10-02-1999 14-07-1999 28-01-1999
			÷ .			
					-	

Pour tout renseignement concernant cette annexe ; voir Journal Officiel de l'Office européen des brevets, No.12/62

This Page Blank (uspto)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

inis Page Blank (uspto)