Three-Phase Induction Machine Design

File: Setup1.res

GENERAL DATA

Given Output Power (kW): 1280 Rated Voltage (V): 1350 Winding Connection: Wye Number of Poles: 6 1520 Given Speed (rpm): Frequency (Hz): 78 Stray Loss (W): 12800 Frictional Loss (W): Windage Loss (W): 20 20 Operation Mode: Motor Type of Load: Constant Power Operating Temperature (C):

STATOR DATA

Number of Stator Slots:

Outer Diameter of Stator (mm): 748.65 Inner Diameter of Stator (mm): 639 Type of Stator Slot: Stator Slot hs0 (mm): 0.1 hs1 (mm): hs2 (mm): 0.1 23 bs0 (mm): 10 bs1 (mm): 19 bs2 (mm): 21.3 0.1 rs (mm):

Top Tooth Width (mm): 18.2054 Bottom Tooth Width (mm): 18.584

Length of Stator Core (mm): 482.3 Stacking Factor of Stator Core: 0.95 Type of Steel: D21_50 Number of lamination sectors Press board thickness (mm): 0 Magnetic press board No Number of Parallel Branches: Type of Coils: 21 Coil Pitch: 8 Number of Conductors per Slot: 10 Number of Wires per Conductor: Wire Diameter (mm): 2.588 Wire Wrap Thickness (mm): 0

 Wedge Thickness (mm):
 0

 Slot Liner Thickness (mm):
 0

 Layer Insulation (mm):
 0

 Slot Area (mm^2):
 468.471

 Net Slot Area (mm^2):
 466.296

Slot Fill Factor (%): 57.4548
Limited Slot Fill Factor (%): 75
Wire Resistivity (ohm.mm^2/m): 0.0217
Conductor Length Adjustment (mm): 0
End Length Correction Factor 1
End Leakage Reactance Correction Factor 1

ROTOR DATA

72 Number of Rotor Slots: Air Gap (mm): Inner Diameter of Rotor (mm): 523.15 Type of Rotor Slot: Rotor Slot hs0 (mm): 0.1 hs01 (mm): 0.1 hs1 (mm): 0.1 hs2 (mm): 8.2 bs0 (mm): bs1 (mm): 16 bs2 (mm): 13.5 0.1 rs (mm):

 Cast Rotor:
 Yes

 Half Slot:
 No

 Length of Rotor (mm):
 482.3

 Stacking Factor of Rotor Core:
 0.95

 Type of Steel:
 D21_50

 Skew Width:
 2

at 75 Centigrade (ohm.mm^2/m): 0.0172414
Resistivity of Rotor Ring

at 75 Centigrade (ohm.mm^2/m): Magnetic Shaft: MATERIAL CONSUMPTION Armature Copper Density (kg/m^3): Rotor Bar Material Density (kg/m^3): Rotor Ring Material Density (kg/m^3): Armature Core Steel Density (kg/m^3): Rotor Core Steel Density (kg/m^3): Armature Copper Weight (kg): Rotor Bar Material Weight (kg): Rotor Ring Material Weight (kg): Armature Core Steel Weight (kg): Rotor Core Steel Weight (kg): Total Net Weight (kg): Armature Core Steel Consumption (kg): Rotor Core Steel Consumption (kg): **RATED-LOAD OPERATION** Stator Resistance (ohm): Stator Resistance at 20C (ohm): Stator Leakage Reactance (ohm): Rotor Resistance (ohm): Rotor Leakage Reactance (ohm): Resistance Corresponding to Iron-Core Loss (ohm): Magnetizing Reactance (ohm): Stator Phase Current (A): Current Corresponding to Iron-Core Loss (A): Magnetizing Current (A): Rotor Phase Current (A): Copper Loss of Stator Winding (W): Copper Loss of Rotor Winding (W): Iron-Core Loss (W): Frictional and Windage Loss (W): Stray Loss (W): Total Loss (W): Input Power (kW): Output Power (kW): Mechanical Shaft Torque (N.m): Efficiency (%): Power Factor: Rated Slip: Rated Shaft Speed (rpm): NO-LOAD OPERATION No-Load Stator Resistance (ohm): No-Load Stator Leakage Reactance (ohm): No-Load Rotor Resistance (ohm): No-Load Rotor Leakage Reactance (ohm): No-Load Stator Phase Current (A): No-Load Iron-Core Loss (W): No-Load Input Power (W): No-Load Power Factor: No-Load Slip: No-Load Shaft Speed (rpm):

0.123877 0.152211 142.157 14053.9 28469.9 0.0471415 6.53127e-006 1559.99

BREAK-DOWN OPERATION

Break-Down Slip: 42796.6 Break-Down Torque (N.m): Break-Down Torque Ratio: 4.8777 Break-Down Phase Current (A): 4355.71

LOCKED-ROTOR OPERATION

Leakage Reactance (ohm):

Locked-Rotor Rotor

Locked-Rotor Rotor Resistance (ohm):

Locked-Rotor Torque (N.m): 42796.6 Locked-Rotor Phase Current (A): 4355.71 Locked-Rotor Torque Ratio: 4.8777 Locked-Rotor Current Ratio: 6.44965 Locked-Rotor Stator Resistance (ohm): 0.0251161 Locked-Rotor Stator

Leakage Reactance (ohm):

DETAILED DATA AT RATED OPERATION

Stator Slot Leakage Reactance (ohm):

Stator End-Winding Leakage Reactance (ohm):

0.0321689 0.018042

0.0556333

0.0424116

0.12508

0.0172414

8900

8933

8933

7820

7820

85.5145

39.2284

0.886537

337.539

339.732

875.268

1149.05

0.0251161

0.0751691 0.123891

0.109391

125.923

5.40788

675.34

5.93276

138.144

642.403

34365.1

153383 13296.5

33.7261

12800

213878

1493.83

1279.95 8773.93

85.6826

0.937881

0.107008

1393.07

0.0251161

0.07895

0.02066

802.9

Stator Differential Leakage	
Reactance (ohm):	0.0249529
Rotor Slot Leakage Reactance (ohm):	0.0114501
Rotor End-Winding Leakage	0.040=400
Reactance (ohm): Rotor Differential Leakage	0.0125192
Rotor Differential Leakage Reactance (ohm):	0.0308922
Skewing Leakage Reactance (ohm):	0.0545106
Stator Winding Factor:	0.945214
Stator-Teeth Flux Density (Tesla):	1.29871
Rotor-Teeth Flux Density (Tesla):	1.41611
Stator-Yoke Flux Density (Tesla):	2.21185
Rotor-Yoke Flux Density (Tesla):	1.43773
Air-Gap Flux Density (Tesla):	0.610459
Stator-Teeth Ampere Turns (A.T):	27.6198
Rotor-Teeth Ampere Turns (A.T):	15.428
Stator-Yoke Ampere Turns (A.T):	1329.4
Rotor-Yoke Ampere Turns (A.T):	113.624
Air-Gap Ampere Turns (A.T):	631.002
Correction Factor for Magnetic	
Circuit Length of Stator Yoke:	0.140457
Correction Factor for Magnetic	
Circuit Length of Rotor Yoke:	0.369139
Saturation Factor for Teeth:	1.06822
Saturation Factor for Teeth & Yoke:	3.3551
Induced-Voltage Factor:	0.958491
Stator Current Density (A/mm^2):	12.8382
Specific Electric Loading (A/mm):	72.6651
Stator Thermal Load (A^2/mm^3):	932.889
Rotor Bar Current Density (A/mm^2):	14.7034
Rotor Ring Current Density (A/mm^2):	279.121
Half-Turn Length of	
Stator Winding (mm):	845.625
WINDING ARRANGEMENT	
The 3-phase, 2-layer winding can be arrange	d in 9 slots as below

AAAZZZBBB

Angle per slot (elec. degrees): Phase-A axis (elec. degrees): First slot center (elec. degrees): 20 100 0

TRANSIENT FEA INPUT DATA

or	one	phase	of the	Stator	Winding:	

36

0.0251161

3.68139e-005

1.90601e-005

2.6462e-008

For one phase of the Stator Winding:
Number of Turns:
Parallel Branches:
Terminal Resistance (ohm):
End Leakage Inductance (H):
For Rotor End Ring Between Two Bars of One Side:
Equivalent Ring Resistance (ohm):
Equivalent Ring Inductance (H):
2D Equivalent Value:
Equivalent Model Depth (mm):
Equivalent Stator Stacking Factor:
Equivalent Rotor Stacking Factor:
Estimated Rotor Inertial Moment (kg m^2): 482.3 0.95 0.95 60.8092