

Notes for General Topology

Zhao Wenchuan

September 6, 2021

Contents

1	Me	tric Spaces	2
	1.1	Metric Spaces	2
	1.2	Open Sets in Metric Spaces	4
	1.3	Restrictions and Metric Subspaces	7
2	Top	pological Spaces	9
	2.1	Basic Definitions	9
	2.2	Some Important Topologies	11
	2.3	Comparison of Topologies	11
	2.4	Interiors	12
	2.5	Limit Points and Isolated Points	15
	2.6	Closures	16
	2.7	Density	18
	2.8	Neighbourhood Systems	20
3	Seq	uences	21
	3.1	Convergent Sequences	21
	3.2	Accumulation Points of Sequences	22
4	Coı	untable Axioms	24
	4.1	Covers and Bases	24
	4.2	First-Countable Spaces	25
	4.3	Second-Countable Spaces	26
	4.4	Separable Spaces	27
	4.5	Lindelöf Space	29
5	Cor	ntinuous Mappings	31
	5.1	Continuous Mappings	31

Appendices
A Some Examples of Topological Spaces
A.1 Sorgenfrey line
A.2 Niemytzki Plane

Chapter 1.

Metric Spaces

§1.1 Metric Spaces

Definition 1.1.1. Let X be any set.

A function $d: X \times X \to \mathbb{R}_{\geq 0}$ is metric function, or, simply, metric on X iff it satisfies the metric axioms. That is, for any $x, y, z \in X$:

M1. d(x,y) = 0 iff x = y;

M2. d(x, y) = d(y, x);

M3. $d(x,z) \le d(x,y) + d(y,z)$.

Definition 1.1.2. Let X be any set and let d be a structure on X. The pair (X, d) is called a *metric space* iff d is a metric on X.

Definition 1.1.3. A $\mathbb{X} = (X, d)$ be a metric space, let $x \in X$ and let $\varepsilon \in \mathbb{R}_{>0}$. An *open* ε -ball, or just ε -ball, about x is defined to be the set

$$B_{\varepsilon}(x;d) := \{ y \in X : d(x,y) < \varepsilon \}.$$

A closed ball is defined to be the set

$$\overline{B}_{\varepsilon}(x;d) := \{ y \in X : d(x,y) \le \varepsilon \}.$$

Note 1.1.1. As

$$X_0 = (X, d_0), X_1 = (X, d_1), X_2 = (X, d_2), \dots$$

are different although they share the same set X, for any $x \in X$ and any $\varepsilon \in \mathbb{R}_{>0}$,

$$B_{\varepsilon}(x;d_1), B_{\varepsilon}(x;d_2), B(x;d_3), \ldots$$

are also different. However, if confusion is unlikely, we simply write " $B_{\varepsilon}(x)$ " for " $B_{\varepsilon}(x;d)$ ".

Example 1.1.1. The Euclidean metric space $\mathbb{X} = (X, d)$ is an n-dimensional set X equipped with the Euclidean metric d defined as

$$d(x, y) := \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{\frac{1}{2}}.$$

This is also called $standard\ Euclidean\ metric$, in contrast to the non-standard $Euclidean\ metrics$

$$d_p(x,y) := \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}, \quad p \ge 1.$$

In particular,

$$d_{\infty}(x,y) := \max_{1 \le i \le n} |x_i - y_i|.$$

Example 1.1.2. A discrete metric space $\mathbb{X} = (X, d)$ is a set X equiped with the discrete metric d_{dsic} defined as

$$d_{\text{disc}}(x,y) := \begin{cases} 0, & \text{if } x = y; \\ 1, & \text{else.} \end{cases}$$

This is an equivalent definition of the discrete metric:

$$d_{\operatorname{disc}}(x,y) := (\operatorname{sgn}(d(x,y)))^2$$

where $sgn(\cdot)$ is a sign function, and d is any metric on X.

Example 1.1.3. ¹ Let $\mathbb{I} = (C[a, b], d_p)$ be a metric space where C[a, b] denotes the set of all continuous mapping $\mathbb{R}_{[a,b]} \to \mathbb{R}$, and p > 0, and the metric d_p is defined as

$$d_p(f,g) := \left(\int_a^b |f(t) - g(t)|^p dt \right)^{\frac{1}{p}}.$$

In particular,

$$d_{\infty}(f,g) := \sup_{t \in \mathbb{R}_{[a,b]}} |f(t) - g(t)|.$$

¹ See Minkowski inequality.

Example 1.1.4. ² Let $\mathbb{X} = (X, d)$ be a metric space. The *Hausdorff metric* d_H on $2^X \setminus \{\emptyset\}$ is defined as

$$d_H := \max \left\{ \sup_{x \in X} d(x, Y), \sup_{y \in Y} d(y, X) \right\},\,$$

where

$$d(x,Y) := \inf_{y \in Y} (x,y), \text{ and } d(y,X) := \inf_{x \in X} (y,x).$$

§1.2 Open Sets in Metric Spaces

Definition 1.2.1. Let $\mathbb{X} = (X, d)$ be a metric space, and let $U \subseteq X$.

U is said to be *open in* \mathbb{X} , iff for any $y \in U$, there exists $\varepsilon \in \mathbb{R}_{>0}$, such that $B_{\varepsilon}(y) \subseteq U$.

Proposition 1.2.1. Let $\mathbb{X} = (X, d)$ be a metric space, let $x \in A$ and let $\varepsilon \in \mathbb{R}_{>0}$.

For any $y \in B_{\varepsilon}(x)$, there is a $\delta \in \mathbb{R}_{>0}$ such that $B_{\delta}(y) \subseteq B_{\varepsilon}(x)$.

Proof. For any $y \in B_{\varepsilon}(x)$, by the definition of open balls (Definition 1.1.3), we have $d(x, y) < \varepsilon$.

Let $\delta \in \mathbb{R}_{>0}$ such that $\delta + d(x,y) = \varepsilon$.

By M3 in metric axioms (Definition 1.1.1), for any $z \in A$ with $d(y,z) < \delta$, we have

$$d(x,z) \le d(y,z) + d(x,y) < \varepsilon$$
.

Thus, again, by the definition of open balls, we have $B_{\delta}(y) \subseteq B_{\varepsilon}(x)$.

Proposition 1.2.2. Let $\mathbb{X} = (X, d)$ be a metric space, and let $U \subseteq X$.

U is open in \mathbb{X} iff it is a union of open balls.

Proof. First, prove \Rightarrow .

As U is open, for any $y \in U$, there exists $\varepsilon_y \in \mathbb{R}_{>0}$ such that $B_{\varepsilon_y}(y) \subseteq U$. Therefore,

$$U = \bigcup_{y \in U} B_{\varepsilon_y}(y).$$

² See Hausdorff distance.

Now, prove \Leftarrow .

Aiming for a contradiction, suppose U is a union of open balls but not open.

As U is not open, there is a $y \in U$ such that for any $\varepsilon \in \mathbb{R}_{>0}$, $B_{\varepsilon}(y) \not\subseteq U$.

As U is a union of open balls, there is an $x \in U$ and $r \in \mathbb{R}_{>0}$ such that $y \in B_r(x)$.

By Proposition 1.2.1, there exists a $\delta \in \mathbb{R}_{>0}$ such that $B_{\delta}(y) \subseteq B_r(x)$.

This is a contradiction by the assumption.

Thus, U has to be open.

Proposition 1.2.3. Let $\mathbb{X} = (X, d)$ be any metric space.

 \mathbb{X} is *Hausdorff*. That is, For any distinct points $x, y \in X$, we can always find an $\varepsilon \in \mathbb{R}_{>0}$ such that

$$B_{\varepsilon}(x) \cap B_{\varepsilon}(y) = \emptyset.$$

Proof. Aiming for a contradiction, suppose there are $x, y \in X$ with $x \neq y$, such that for any $\varepsilon \in \mathbb{R}_{>0}$, we can always find a $z \in X$ such that

$$z \in B_{\varepsilon}(x) \cap B_{\varepsilon}(y)$$
.

Let r = d(x, y)/2, and let $z \in B_r(x) \cap B_r(y)$.

As $z \in B_r(x)$, by the definition of open balls (Definition 1.1.3), d(x, z) < r; as $z \in B_r(y)$, similarly, d(y, z) < r. Then we have

$$d(x,z) + d(y,z) < 2r = d(x,y).$$

This contradicts the metric axioms M3 (Definition 1.1.1).

Thus X is Hausdorff.

Definition 1.2.2. Let $\mathbb{X} = (X, d)$ be any metric space, and let $V \subseteq X$.

V is said to be *closed* in X, iff there is an open set U satisfies $X \setminus U = V$.

Proposition 1.2.4. In a metric space, any singleton is closed.

Proof. Let $\mathbb{X} = (X, d)$ be a metric space, let $x \in X$, and let $y \in X \setminus \{x\}$.

As M is Hausdorff (Proposition 1.2.3), there is an $\varepsilon \in \mathbb{R}_{>0}$ such that

$$0 < \varepsilon < d(x, y),$$

thus $X \setminus \{x\}$ is open, hence, by Definition 1.1.1, its complement $\{x\}$ is open.

Proposition 1.2.5. Let $\mathbb{X} = (X, d)$ be a metric space, denote \mathcal{T} for the family of open subsets of X.

Then \mathcal{T} satisfies the following conditions:

- **O1.** $X, \emptyset \in \mathcal{T}$;
- **O2.** For any $\mathcal{U} \subseteq \mathcal{T}$, $\bigcup \mathcal{U} \in \mathcal{T}$; in words, \mathcal{T} is closed under arbitrary union;
- **O3.** For any finite $V \subseteq \mathcal{T}$, $\bigcap V \in \mathcal{T}$; in words, \mathcal{T} is closed under finite intersection.

Proof.

- **O1.** As \emptyset is the subset of any set, $\emptyset \in \mathcal{T}$. $\bigcup \emptyset = \emptyset \in \mathcal{T}$. By Definition 1.2.2, $X = X \setminus \emptyset$.
- **O2.** Let $\mathcal{U} \subseteq \mathcal{T}$, and denote \mathcal{O} for the open balls in M. For any $U \in \mathcal{U}$, there is an $\mathcal{O}_U \subseteq \mathcal{O}$ such that $U = \bigcup \mathcal{O}_U$.

Then we have

$$\bigcup \mathcal{U} = \bigcup_{U \in \mathcal{U}} \left(\bigcup \mathcal{O}_U \right) = \bigcup_{U \in \mathcal{U}} \mathcal{O}_U.$$

By Proposition 1.2.2, $\bigcup \mathcal{U}$ is open.

O3. Let \mathcal{V} be a finite subset of \mathcal{T} .

Aiming for a contradiction, suppose $\bigcap \mathcal{V}$ is not open.

By Definition 1.2.1, there exists a $y \in \bigcap \mathcal{V}$ such that for any $\varepsilon \in \mathbb{R}_{>0}$, $B_{\varepsilon}(y) \setminus \bigcap \mathcal{V} \neq \emptyset$.

By De Morgan's law, we have

$$\bigcup_{V\in\mathcal{V}} (B_{\varepsilon}(y)\setminus V)\neq\emptyset.$$

Thus, there exists $V \in \mathcal{V}$ such that $B_{\varepsilon}(y) \setminus V \neq \emptyset$.

As $V \in \mathcal{T}$ and ε is arbitrarily given, by Proposition 1.2.1, $y \notin V$. This is a contradiction.

Thus, $\bigcap \mathcal{V}$ is open.

Thus, the theorem is proved.

Proposition 1.2.6. Infinite intersections of open sets in some metric spaces are not necessarily open.

Proof. Consider \mathbb{R} is a Euclidean metric space, and denote \mathcal{T} .

Clearly, for any $n \in \mathbb{N}_{>0}$ and for any $x \in X$, the open interval $B_{\frac{1}{n}}(x)$ is open, but

$$\bigcap \left\{ B_{\frac{1}{n}}\left(x\right):n\in \mathbb{N}_{>0}\right\} =\{x\}.$$

For any $\varepsilon \in \mathbb{R}_{>0}$, $B_{\varepsilon}(x) \setminus \{x\}$ is not empty, thus $\{x\}$ is not open.

§1.3 Restrictions and Metric Subspaces

Restriction of metric function is a useful tool to describe the relation between metric spaces with different sets but "same" metric function on the sets.

As a restriction of a relation R on $X \times Y$ to a subset $A \times B \subseteq X \times Y$ is defined to be

$$R \upharpoonright_{A \times B} := R \cap (X \times Y),$$

a restriction of a metric d on a set S to a subset $U \subseteq S$ is defined to be

$$d \upharpoonright_{(U \times U) \times \mathbb{R}_{>0}} := d \cap ((U \times U) \times \mathbb{R}_{>0}).$$

If B=Y, customarily, we simply write $R \upharpoonright_A$ for $R \upharpoonright_{A\times B}$. Similarly, as the codomain of a metric function is alway $\mathbb{R}_{>0}$, so we simply write $d \upharpoonright_{U\times U}$ instead of $d \upharpoonright_{(U\times U)\times \mathbb{R}_{>0}}$.

Definition 1.3.1. Let $\mathbb{X} = (X, d)$ be a metric space, and let $A \subseteq X$.

The metric on A induced by d, or the subspace metric of d with respect to A is defined to be

$$d_A := d \upharpoonright_{A \times A}$$
.

Proposition 1.3.1. Let $\mathbb{X} = (X, d)$ be a metric space, and let $A \subseteq X$ and let $d_A := d \upharpoonright_{A \times A}$.

Then $\mathbb{A} = (A, d_A)$ is a metric space.

Proof. As metric axioms (Definition 1.1.1) holds for any $x, y \in X$, and $A \subseteq X$, they also holds for any $a, b \in A$. As d_A is the subspace metric of d with respect to A, d_A is a metric on A.

Thus, \mathbb{A} is a metric space.

Definition 1.3.2. Let $\mathbb{X} = (X, d)$ be a metric space, and let $A \subseteq X$.

 $\mathbb{A}=(A,d_A)$ is a *metric subspace* of \mathbb{X} iff d_A is a subspace metric of d with respect to A.

Chapter 2.

$Topological\ Spaces$

§2.1 Basic Definitions

Definition 2.1.1. Let X be any set, and let $\mathcal{T} \subseteq 2^X$.

 \mathcal{T} is a topology on X iff it satisfies the open set axioms. That is,

O1. $X \in \mathcal{T}$;

O2. For any $\mathcal{U} \subseteq \mathcal{T}$, $\bigcup \mathcal{U} \in \mathcal{T}$; in words, \mathcal{T} is closed under arbitrary union.

O3. For any finite $V \subseteq \mathcal{T}$, $\bigcap V \in \mathcal{T}$; in words, \mathcal{T} is closed under finite intersection

A subset $U \subseteq X$ is said to be *open in* M iff it is an element of \mathcal{T} .

Definition 2.1.2. Let X be any set, and let \mathcal{T} be a structure on X.

The pair (X, \mathcal{T}) is called a topological space iff \mathcal{T} is a topology on X.

Proposition 2.1.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space.

Then $\emptyset \in \mathcal{T}$.

Proof. As empty set is an element of any set, it also an element of \mathcal{T} .

Therefore, we have

$$\emptyset = \bigcup \emptyset \in \mathcal{T}.$$

Definition 2.1.3. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space.

A subset $A\subseteq X$ is said to be closed in $\mathbb X$ iff there exists a $U\in\mathcal T$ such that $A=X\setminus U.$

Proposition 2.1.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and denote \mathcal{C} for the family of all closed sets in M.

Then C satisfies the following conditions:

- C1. $X, \emptyset \in \mathcal{C}$;
- **C2.** For any $A \subseteq C$, $\bigcap A \in C$;
- **C3.** For any finite $\mathcal{B} \subseteq \mathcal{C}$, $\bigcup \mathcal{B} \in \mathcal{C}$.

Proof.

- **C1.** As $\emptyset \in \mathcal{T}$ and $X = X \setminus \emptyset$, by Definition 2.1.3, X is closed. Similarly, as $X \in \mathcal{T}$ and $\emptyset = X \setminus X$, \emptyset is closed.
- **C2.** For any $A \subseteq \mathcal{C}$, there exists a $\mathcal{U} \subseteq \mathcal{T}$ such that

$$\forall A \in \mathcal{A} : \exists U \in \mathcal{U} : A = X \setminus U$$
. (Definition 2.1.3.)

Then we have

$$\mathcal{A} = \{X \setminus U : U \in \mathcal{U}\} \iff \bigcap \mathcal{A} = \bigcap_{U \in \mathcal{U}} X \setminus U$$
$$\iff \bigcap \mathcal{A} = X \setminus \bigcup \mathcal{U}.$$

As $\bigcup \mathcal{U} \in \mathcal{T}$ by Definition 2.1.1 O2, its complement $\bigcap \mathcal{A} \in \mathcal{C}$ by Definition 2.1.3.

C3. For any finite $\mathcal{B} \subseteq \mathcal{C}$, there exists a finite $\mathcal{U} \subseteq \mathcal{T}$ such that

$$\forall B \in \mathcal{B} : \exists U \in \mathcal{U} : A = X \setminus U$$
. (Definition 2.1.3.)

Then we have

$$\mathcal{B} = \{X \setminus U : U \in \mathcal{U}\} \iff \bigcup \mathcal{B} = \bigcup_{U \in \mathcal{U}} X \setminus U$$
$$\iff \bigcup \mathcal{B} = X \setminus \bigcap \mathcal{U}.$$

As $\bigcap \mathcal{U} \in \mathcal{T}$ by Definition 2.1.1 O3, its complement $\bigcup \mathcal{A} \in \mathcal{C}$ by Definition 2.1.3.

Thus, the proof is done.

§2.2 Some Important Topologies

Definition 2.2.1. Let X be any set.

A family $\mathcal{T} \subseteq 2^X$ is a discrete topology on X iff $\mathcal{T} = 2^X$.

Definition 2.2.2. Let X be any set.

A family $\mathcal{T} \subseteq 2^X$ is an indiscrete topology on X iff $\mathcal{T} = \{X, \emptyset\}$.

Definition 2.2.3. Let $\mathbb{X} = (X, d)$ be a metric space.

A family $\mathcal{T} \subseteq 2^X$ is a topology induced by d iff \mathcal{T} is the set of all open sets in \mathbb{X} .

§2.3 Comparison of Topologies

Definition 2.3.1. Let X be any set and let \mathcal{T}_1 and \mathcal{T}_2 be topologies on X. We say that \mathcal{T} is *coarser* than \mathcal{T}_1 , or \mathcal{T}_2 is *finer* than \mathcal{T}_1 , iff $\mathcal{T}_1 \subseteq \mathcal{T}_2$.

Note 2.3.1. By the definition of cardinality and inclusion mapping, if $\mathcal{T}_1 \subseteq \mathcal{T}_2$, it is certainly true that $|\mathcal{T}_1| \leq |\mathcal{T}_2|$. But, on the contrary, $|\mathcal{T}_1| \leq |\mathcal{T}_2|$ does not implies $\mathcal{T}_1 \subseteq \mathcal{T}_2$. It is easy to find counter-example about this.

Example 2.3.1. By Definition 2.3.1, for any set X, if a family \mathcal{U} of open sets is given, then we can find the coarsest topology on X containing \mathcal{U} by

$$\mathcal{T} = \left\{\bigcup \mathcal{I}, \bigcap \mathcal{I}, X: \mathcal{I} \subseteq \mathcal{U}\right\}.$$

For example, let $X = \{1, 2, 3, 4, 5\}$, and let

$$\mathcal{U} = \{\{1, 2\}, \{2, 3\}, \{4\}\}.$$

Then a topology on X contains at least these sets:

$$\{1, 2, 3, 4\}, \{\},$$

$$\{1, 2\}, \{2, 3\}, \{4\},$$

$$\{1, 2, 3\}, \{1, 2, 4\}, \{2, 3, 4\},$$

$$\{2\}.$$

Example 2.3.2. The discrete topology is the finest topology on any X, while the indiscrete topology is the coarsest.

§2.4 Interiors

Definition 2.4.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

The interior of A is defined as

$$\operatorname{Int}_{\mathcal{T}}(A) := \bigcup (\mathcal{T} \cap 2^A).$$

Note 2.4.1. Let $\mathbb{X}_1 = (X, \mathcal{T}_1)$, $\mathbb{X}_2 = (X, \mathcal{T}_2)$, and $A \subseteq X$. Then $\mathcal{T}_1 \neq \mathcal{T}_2$ iff $\operatorname{Int}_{\mathcal{T}_1}(A) \neq \operatorname{Int}_{\mathcal{T}_2}(A)$. In this case, the subscript for "Int" is necessary.

But, if the confusion is unlikely, we can also simply write Int(A) for $Int_{\mathcal{T}}A$. In this case, it is also common to write A° for Int(A).

Proposition 2.4.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

$$A \in \mathcal{T} \text{ iff } A = A^{\circ}.$$

Proof. First, prove \Rightarrow .

If $A \in \mathcal{T}$, then we have

$$\mathcal{T} \cap 2^A = \mathcal{T} \cap \{A\} \cap 2^A = \{A\} \cap 2^A = \{A\}.$$

By Definition 2.4.1,

$$A^{\circ} = \bigcup (\mathcal{T} \cap 2^A) = \bigcup \{A\} = A.$$

Now, prove \Leftarrow .

By Definition 2.4.1, we have

$$A = \bigcup (\mathcal{T} \cap 2^A).$$

As $\mathcal{T} \cap 2^A \subseteq \mathcal{T}$, thus, by open set axioms O2 (Definition 2.1.1 O2), $A \in \mathcal{T}$.

Thus, the proof is done.

Proposition 2.4.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \in \mathcal{T}$. For any $x \in A$, there is a $U \in \mathcal{T} \cap 2^A$ such that $x \in U$.

Proof.

$$x \in A \iff x \in A^{\circ}$$
 (Proposition 2.4.1)
 $\iff x \in \bigcup (\mathcal{T} \cap 2^{A})$ (Definition 2.4.1)
 $\iff \exists U \in \mathcal{T} \cap 2^{A} : x \in U.$

Proposition 2.4.3. Let X be any set, let I be an index set, and let $A_i \subseteq 2^X$ for any $i \in I$.

Then we have

$$\bigcup \left(\bigcap_{i\in I} \mathcal{A}_i\right) \subseteq \bigcap_{i\in I} \left(\bigcup \mathcal{A}_i\right).$$

Figure 2.1: Diagram of the relation in Proposition 2.4.3.

Proposition 2.4.4. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $\mathcal{A} \subseteq 2^X$.

Then we have

$$\left(\bigcap\mathcal{A}\right)^{\circ}\subseteq\bigcap_{A\in\mathcal{A}}A^{\circ}.$$

Proof.

$$\left(\bigcap \mathcal{A}\right)^{\circ} = \bigcup \left(\mathcal{T} \cap 2^{\bigcap \mathcal{A}}\right) \qquad \text{(Definition 2.4.1)}$$

$$= \bigcup \left(\mathcal{T} \cap \bigcap_{A \in \mathcal{A}} 2^{A}\right) \qquad \text{(intersection of power sets)}$$

$$= \bigcup \left(\bigcap_{A \in \mathcal{A}} \left(\mathcal{T} \cap 2^{A}\right)\right) \qquad \text{(intersection is idempotent}$$

$$= \bigcap_{A \in \mathcal{A}} \left(\bigcup \left(\mathcal{T} \cap 2^{A}\right)\right) \qquad \text{(Proposition 2.4.3)}$$

$$= \bigcap_{A \in \mathcal{A}} A^{\circ}. \qquad \text{(Definition 2.4.1)}$$

Example 2.4.1. The equality in Proposition 2.4.4 may not hold.

Let $\mathbb{T} = (\mathbb{R}, \mathcal{T})$ be a topological space with

$$\mathcal{T} = \{X, (0, 2), (1, 3), \emptyset\}.$$

Then we have

$$((0,2)\cap(1,3))^{\circ} = \emptyset \subseteq (0,2)^{\circ}\cap(1,3) = (1,2).$$

Proposition 2.4.5. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A, B \subseteq X$. If $A \subseteq B$, then $A^{\circ} \subseteq B^{\circ}$.

Proof.

$$\begin{split} A \subseteq B &\implies 2^A \subseteq 2^B & \text{(power set of subset)} \\ &\implies \mathcal{T} \cap 2^A \subseteq \mathcal{T} \cap 2^B \\ &\implies \bigcup (\mathcal{T} \cap 2^A) \subseteq \bigcup (\mathcal{T} \cap 2^B) \\ &\implies A^\circ \subseteq B^\circ & \text{(Definition 2.4.1)} \end{split}$$

Note 2.4.2. Note that, $A^{\circ} \subseteq B^{\circ}$ does not implies $A \subseteq B$. Consider \mathbb{R} as a Euclidean metric space, and let

$$A = \{0\}, \quad B \subseteq \mathbb{R} \setminus \{0\}.$$

As $A^{\circ} = \emptyset$, $A^{\circ} \subseteq B^{\circ}$, but $A \setminus B = \{0\}$, so $A \not\subseteq B$.

Definition 2.5.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$. A point $x \in X$ is a *limit point of* A iff for any $U \in \mathcal{T}$ with $x \in U$

$$A\cap U\setminus \{x\}\neq \emptyset.$$

The derived set of A is the set of all limit points of X.

Definition 2.5.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$. A point $x \in A$ is said to be *isolated* iff there is $U \in \mathcal{T}$ with $x \in U$, such that

$$A \cap U \setminus \{x\} = \emptyset.$$

Notations. The Derived set of A is usually denoted A'.¹ But sometime it is also necessary to know in which space (with its topology) the derived set of A is. For example, for topological spaces $\mathbb{X}_1 = (X, \mathcal{T}_1)$ and $\mathbb{X}_2 = (X, \mathcal{T}_2)$, if $\mathcal{T}_1 \neq \mathcal{T}_2$, the derived sets of a set A in \mathbb{X}_1 and \mathbb{X}_2 may be different. So, below, the notation A' is used only if the confusions are unlikely; else, we denote $L_{\mathcal{T}}A$ for A' with respect to the topology \mathcal{T} .

Sometime, the set of isolated points of A is denoted by A^i . For avoiding confusions, we denote $I_{\mathcal{T}}(A)$ for A^i with respect to the topology \mathcal{T} .

Proposition 2.5.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$. Then,

$$A \subseteq L(A) \sqcup I(A)$$
.

Proof. By Definition 2.5.1, $x \notin L(A)$ iff there exists a $U \in \mathcal{T}$ of $x \in U$ such that $A \cap N \setminus \{x\} = \emptyset$. This precisely satisfies Definition 2.5.2. Thus

$$A \subseteq L(A) \cup I(A)$$
.

As Definition 2.5.1 and 2.5.2 are precisely logical complement for each other, $x \in I(A) \cap L(A)$ always fails, i.e., $I(A) \cap L(A) = \emptyset$. Thus

$$A \subseteq L(A) \sqcup I(A)$$
.

¹See ProofWiki and Wikipedia.

Proposition 2.5.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

A is closed iff $L(A) \subseteq A$.

Proof. First, prove \Rightarrow .

Aiming for a contradiction, suppose A is closed but there exists a $y \in L(A) \setminus A$.

By Definition 2.1.3, as A is closed, then A^{\complement} is open.

As $y \in A^{\complement}$ and A^{\complement} is open, then, by Proposition 2.4.2, there exists a $U \in \mathcal{T}$ with $y \in U$, such that $U \subseteq A^{\complement}$.

As U is an open set containing y and $A \cap U \setminus \{y\} = \emptyset$, then $y \notin L(A)$. This contradicts the assumption.

Thus $L(A) \subseteq A$.

§2.6 Closures

Definition 2.6.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

The closure of A is defined as

$$Cl_{\mathcal{T}}(A) := A \cup L(A).$$

When the confusions are unlikely, we simply write $\mathrm{Cl}(A),\ \overline{A}$ or A^- for $\mathrm{Cl}_{\mathcal{T}}(A).$

Proposition 2.6.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

A is closed iff $A = A^-$

Proof.

 $A ext{ is closed} \iff A \supseteq \mathcal{L}(A)$ (Proposition 2.5.2) $\iff A = A \cup \mathcal{L}(A)$ $\iff A = A^{-}.$ (Definition 2.6.1)

Proposition 2.6.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

A is closed iff

 $A = I(A) \sqcup L(A)$.

Proof. As A is closed, we have

$$\begin{split} A &= \operatorname{Cl}(A) & \text{(Proposition 2.6.1)} \\ &= A \cup \operatorname{L}(A) & \text{(Definition 2.6.1)} \\ &= A \setminus \operatorname{L}(A) \sqcup \operatorname{L}(A) \\ &= \operatorname{I}(A) \sqcup \operatorname{L}(A). & \text{(Proposition 2.5.1)} \end{split}$$

Proposition 2.6.3. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

$$A^- = \bigcap \{K \supseteq A : K \text{ closed in } X\}.$$

Proof. By Proposition 2.6.1, A^- is closed. Thus, by Definition 2.1.3, $X \setminus A^-$ is open. Then we ahve

$$\begin{split} X \setminus (X \setminus A^-) &= X \setminus (X \setminus A^-)^\circ & \text{(Proposition: 2.4.1)} \\ &= X \setminus \bigcup \left(\mathcal{T} \cap 2^{X \setminus A^-}\right) & \text{(Definition: 2.4.1)} \\ &= X \setminus \bigcup \{U \subseteq A : U \text{ open in } \mathbb{X}\} \\ &= \bigcap \{X \setminus U \supseteq A : U \text{ open in } \mathbb{X}\} & \text{(De Morgan's Law)} \\ &= \bigcap \{K \supseteq A : K \text{ closed in } \mathbb{X}\}. & \text{(Definition: 2.1.3)} \end{split}$$

Proposition 2.6.4. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

Then we have

$$X \setminus A^{\circ} = (X \setminus A)^{-}.$$

Proof. First, we have

$$X \setminus A^{\circ} = X \setminus \bigcup (\mathcal{T} \cap 2^{A}) \qquad \text{(Definition 2.4.1)}$$
$$= \bigcap_{K \in \mathcal{T} \cap 2^{A}} (X \setminus K) \quad \text{(De Morgan's Law)}$$

For any $K, X \setminus K$ is a closed superset of $X \setminus A$.

As closed sets are closed under arbitrary intersection (Proposition 2.1.2), and $X \setminus A^{\circ}$ is the intersection of all closed superset of $X \setminus A$, by Proposition 2.6.3, $X \setminus A^{\circ} = (X \setminus A)^{-}$.

Proposition 2.6.5. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A, B \subseteq X$. If $A \subseteq B$, then $A^- \subseteq B^-$.

Proof.

$$A \subseteq B \iff X \setminus A \supseteq X \setminus B$$

$$\implies (X \setminus A)^{\circ} \supseteq (X \setminus B)^{\circ} \qquad \text{(Proposition 2.4.5)}$$

$$\iff X \setminus (X \setminus A)^{\circ} \subseteq X \setminus (X \setminus B)^{\circ}$$

$$\iff (X \setminus (X \setminus A))^{-} \subseteq (X \setminus (X \setminus B))^{-}. \quad \text{(Proposition 2.6.4)}$$

$$\iff A^{-} \subseteq B^{-}.$$

Proposition 2.6.6. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \in \mathcal{T}$ such that for any $x \in A$, there exists a $U \in \mathcal{T}$ such that $x \in U \subseteq A$.

Then A is open in \mathbb{X} .

Proof. Aiming for a contradiction, suppose for any $x \in A$, there exists a $U \in \mathcal{T}$ such that $x \in U \subseteq A$, but A is not open.

By Definition 2.1.3, as A is not open, $X \setminus A$ is not closed.

By Proposition 2.5.2, there exists $x \in L(A) \setminus (X \setminus A)$. Fix x.

As $x \notin X \setminus A$, $x \in A$.

By Definition 2.5.1, for $U \in \mathcal{T}$ with $x \in U$, $U \cap (X \setminus A) \neq \emptyset$, i.e., $U \setminus A \neq \emptyset$. This implies that $U \not\subseteq A$.

This contradicts the assumption we have.

Thus A has to be open.

§2.7 Density

Definition 2.7.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$. Then A is said to be *everywhere dense*, or simply *dense*, in \mathbb{X} iff

$$A^- = X$$
.

Proposition 2.7.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$. Then A is dense in \mathbb{X} iff for any $U \in \mathcal{T}$, $A \cap U \neq \emptyset$.

Proof. First, prove \Rightarrow .

Assume A is dense in X, then, by Definition 2.7.1, $A^- = X$.

By Definition 2.5.2, for any $x \in I(A)$, $x \in A$.

By Definition 2.5.1, for any $x \in L(A)$ and for any $U \in \mathcal{T}$ with $x \in U$, $U \cap A \neq \emptyset$.

As $A^- = X$, then, by Proposition 2.6.2, $X = I(A) \sqcup L(A)$.

Thus for any $U \in \mathcal{T}$, $A \cap U \neq \emptyset$.

Now, prove \Leftarrow .

Aiming for a contradiction, suppose for any $U \in \mathcal{T}$, $A \cap U \neq \emptyset$, but A is not dense in \mathbb{X} .

As, $A \subseteq X$, by Proposition 2.6.5, $A^- \subseteq X^-$. And, as X is closed in \mathbb{X} , by Proposition 2.6.1, $X = X^-$. Therefore, $A^- \subseteq X$.

As A is not dense in X, by Definition 2.7.1, $A^- \neq X$. Therefore, $A^- \subsetneq X$. This implies that $X \setminus A^-$ is non-empty. And, by Definition 2.6.1, $X \setminus A^- \in \mathcal{T}$.

By Proposition 2.4.2, for any $x \in X \setminus A^-$, there exists a $U \in \mathcal{T}$ with $x \in U$, such that $U \in X \setminus A^-$. Then $U \cap A = \emptyset$. This contradicts the assumption we have.

Therefore, A has to be dense in \mathbb{X} .

Thus, the proof is done.

Definition 2.7.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

Then A is said to be nowhere dense in X iff

$$(A^-)^\circ = \emptyset.$$

Proposition 2.7.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

Then A is nowhere dense in \mathbb{X} iff for any $U \in \mathcal{T} \setminus \{\emptyset\}$,

$$U \setminus A^- \neq \emptyset$$
.

Proof.

A is nowhere dense in \mathbb{X}

$$\iff (A^-)^\circ = \emptyset$$
 (Definition 2.7.2)

$$\iff (A^{-})^{\circ} = \bigcup (\mathcal{T} \cap 2^{A}) = \emptyset$$
 (Definition 2.4.1)

$$\iff (\forall U \in \mathcal{T} : U \subseteq A^-) \quad U = \emptyset.$$

20

§2.8 Neighbourhood Systems

Definition 2.8.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

A subset $N \subseteq X$ is a neighbourhood of A iff

$$(\exists U \in \mathcal{T}) \quad A \subseteq U \subseteq N.$$

If $A = \{x\}$, we simply call N a neighbourhood of x.

If $N \in \mathcal{T}$ also, then N is an open neighbourhood of A; and if N is closed, then N is a closed neighbourhood of A.

Proposition 2.8.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

 $A \in \mathcal{T}$ iff for any $x \in A$, A is a neighbourhood of x.

Proof. First, prove \Rightarrow .

If $A \in \mathcal{T}$, then, by Definition 2.8.1, for any $x \in A$, we have

$$x \in A \subseteq A$$
.

Now, prove \Leftarrow .

Aiming for a contradiction, suppose for any $x \in A$, A is a neighbourhood of x, but $A \notin \mathcal{T}$.

As $X \setminus A$ is not closed, (otherwise, by Definition 2.1.3, $A = X \setminus (X \setminus A)$ is open) by Proposition 2.5.2, there exists $x \in L(X \setminus A) \setminus (X \setminus A)$.

Then, for such an $x \in A$ (for $x \notin X \setminus A$), for any $U \in \mathcal{T}$ with $x \in U$,

$$U \cap (X \setminus A) \neq \emptyset$$
. (Definition 2.5.1)

By Definition 2.8.1, A fails to be a neighbourhood of x. This contradicts the assumption.

Thus A has to be open.

_

Chapter 3.

Sequences

§3.1 Convergent Sequences

Definition 3.1.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $u : \mathbb{N} \to X$. u converges to a limit $x \in X$ iff for any $U \in \mathcal{T}$ with $x \in U$,

$$(\exists k \in \mathbb{R}_{>0}) \quad u[\mathbb{N}_{>k}] \subseteq U.$$

Proposition 3.1.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $u : \mathbb{N} \to X$. u converges to a limit $x \in X$ iff for any $U \in \mathcal{T}$ with $x \in U$,

$$\mathbb{N} \setminus u^{-1}[U]$$
 is finite.

Proof. First, prove \Rightarrow .

By Definition 3.1.1, as u converges to x, let $U \in \mathcal{T}$ with $x \in U$, then there exists a $k \in \mathbb{R}_{>0}$ such that $u[\mathbb{N}_{>k}] \subseteq U$.

Then we have

$$\begin{split} u[\mathbb{N}_{>k}] \subseteq U &\implies u^{-1}[u[\mathbb{N}_{>k}]] \subseteq u^{-1}[U] \\ &\implies \mathbb{N}_{>k} \subseteq u^{-1}[U] \qquad \text{(image of inverse image)} \\ &\implies \mathbb{N} \setminus \mathbb{N}_{>k} \supseteq \mathbb{N} \setminus u^{-1}[U]. \end{split}$$

As $\mathbb{N} \setminus \mathbb{N}_{>k}$ is finite, its subset $\mathbb{N} \setminus u^{-1}[U]$ is finite.

Now, prove \Leftarrow .

By image of inverse image, we have

$$u[u^{-1}[U]] \subseteq U$$
.

As $u^{-1}[U]$ is a cofinite subset of \mathbb{N} , there exists a $k \in \mathbb{N}$ such that $I \supseteq \mathbb{N}_{>k}$. Then we have

$$U \supseteq u[\mathbb{N}_{>k}].$$

This precisely satisfies Definition 3.1.1.

Therefore the proof is done.

§3.2 Accumulation Points of Sequences

Definition 3.2.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $u : \mathbb{N} \to X$.

A point $x \in X$ is an accumulation point of u iff for any $U \in \mathcal{T}$ with $x \in U$, U contains infinitely many terms of u; i.e.,

$$\forall U \in \mathcal{T} : x \in U \implies (\exists I \subseteq \mathbb{N} : |I| = \aleph_0 \implies u[I] \subseteq U).$$

Note 3.2.1. Sometime, an accumulation point of a sequence is also a limit of the range of the sequence. But this not always holds.

Consider \mathbb{R} as a Euclidean, and let $u: \mathbb{N} \to \mathbb{R}$ be defined as

$$u(n) := \left| \sin \left(\frac{\pi n}{2} \right) \right|.$$

Then 1 is an accumulation point of $u[\mathbb{N}]$, but $u[\mathbb{N}] = (u[\mathbb{N}])^i = \{0,1\}$, so it has no limit point at all.

Proposition 3.2.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, let $u : \mathbb{N} \to X$, and let $x \in X$ be a limit of $u[\mathbb{N}]$.

Then x is an accumulation point of u.

Proof. Let $U \in \mathcal{T}$ with $x \in U$, then we have

$$u[u^{-1}[U]] \subseteq U$$
.

By Proposition 3.1.1, as u converges to $x, u^{-1}[U]$ is a cofinite subset of \mathbb{N} . Thus $u^{-1}[U]$ is infinite.

As $u^{-1}[U]$ is infinite and $x \in U \in \mathcal{T}$, by Definition 3.2.1, x is an accumulation point of u.

Definition 3.2.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

A point $x \in X$ is an ω -accumulation point of A iff for any $U \in \mathcal{T}$ with $x \in U$,

$$|U \cap A| \geq \aleph_0$$
.

Proposition 3.2.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, let $u : \mathbb{N} \to X$ be an injection, and let $x \in X$ be an accumulation point of u.

Then x is an ω -accumulation point of $u[\mathbb{N}]$.

Proof. By Definition 3.2.1, as x is an accumulation point of u, let $U \in \mathcal{T}$ with $x \in U$, there exists an infinite $I \subseteq \mathbb{N}$ such that $u[I] \subseteq U$.

As u is injective and I is infinite, u[I] is also infinite.

As $u[I] \subseteq U$ and $U \in \mathcal{T}$ with $x \in U$ is arbitrarily given, by Definition 3.2.2, x is an ω -accumulation point of $u[\mathbb{N}]$.

24

Chapter 4.

Countable Axioms

§4.1 Covers and Bases

Definition 4.1.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $A \subseteq X$.

Then a family $\mathcal{C} \subseteq 2^X$ is a cover for A iff $A \subseteq \bigcup \mathcal{C}$.

 \mathcal{C} is an open cover iff $\mathcal{C} \subseteq \mathcal{T}$.

Definition 4.1.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let \mathcal{C}, \mathcal{D} be covers for a subset $A \subseteq X$.

Then \mathcal{D} is a subcover of \mathcal{C} iff $\mathcal{D} \subseteq \mathcal{C}$.

Definition 4.1.3. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space.

A family $\mathcal{B} \subseteq 2^X$ is an analytic basis for \mathcal{T} iff

- (i) $\mathcal{B} \subseteq \mathcal{T}$;
- (ii) For any $U \in \mathcal{T}$, there is an $\mathcal{A} \subseteq \mathcal{B}$, such that $U = \bigcup \mathcal{A}$.

Proposition 4.1.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $\mathcal{B} \subseteq \mathcal{T}$.

Then \mathcal{B} is an analytic basis for \mathcal{T} iff for any $U \in \mathcal{T}$ and for any $x \in U$, there exists a $B \in \mathcal{B}$ such that $x \in B \subseteq U$.

Proof. First, prove \Rightarrow .

By Definition 4.1.3, as \mathcal{B} is an analytic basis for \mathcal{T} , let $U \in \mathcal{T}$, then there is an $\mathcal{A} \subseteq \mathcal{B}$ such that $U = \bigcup \mathcal{A}$.

Then, for any $x \in U$, there exists at least one $A \in \mathcal{A}$ such that $x \in A$. As $U = \bigcup \mathcal{A}, A \subseteq U$.

Now, prove \Leftarrow .

By Proposition 2.6.6, as for any $U \in \mathcal{T}$ and for any $x \in U$, there exists a $B \in \mathcal{B}$ such that $x \in B \subseteq U$, then there exists an $A \subseteq \mathcal{B}$ such that $\bigcup A = U$.

By Definition 4.1.3, \mathcal{B} is an analytic basis for \mathcal{T} .

Thus, the proof is done.

Definition 4.1.4. Let X be any set.

A family $\mathcal{B} \subseteq 2^X$ is a synthetic basis on X iff

- (i) \mathcal{B} is a cover fir X;
- (ii) For any $U, V \in \mathcal{B}$, there exists $\mathcal{A} \subseteq \mathcal{B}$, such that $U \cap V = \bigcup \mathcal{A}$.

Definition 4.1.5. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space, and let $x \in X$.

A family $\mathcal{B} \subseteq 2^X$ is a local basis at x iff

- (i) $\mathcal{B} \in \mathcal{T}$;
- (ii) For any $B \in \mathcal{B}$, $x \in B$;
- (iii) For any $U \in \mathcal{T}$ with $x \in U$, there exists a $B \in \mathcal{B}$ such that $B \subseteq U$.

§4.2 First-Countable Spaces

Definition 4.2.1. A topological space $\mathbb{X} = (X, \mathcal{T})$ is said to be *first-countable* iff any $x \in X$ has a countable basis.

Proposition 4.2.1. Metric spaces are first-countable.

Proof. Let $\mathbb{X} = (X, d)$ be a metric space.

For any $x \in X$, let $\mathcal{B}_x : \mathbb{N} \to \mathcal{T}$ be defined as

$$\mathcal{B}_x(n) := B_{1/n}(x).$$

Clearly, the image $\mathcal{B}_x[\mathbb{N}]$ is countable.

Let $U \in \mathcal{T}$. As U is open, and as $x \in U$, then there exists $\varepsilon \in \mathbb{R}_{>0}$ such that $B_{\varepsilon}(x) \subseteq U$.

By Archimedean Principle, there exists an $n \in \mathbb{N}$ such that $n > \frac{1}{\varepsilon}$. Then we have

$$\mathcal{B}_x(n) = B_{1/n}(x) \subseteq B_{\varepsilon}(x) \subseteq U.$$

As U is arbitrarily given, for any $x \in X$, $\mathcal{B}_x[\mathbb{N}]$ is a countable local basis at x.

Proposition 4.2.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a first-countable topological space, let $u : \mathbb{N} \to X$, and let $x \in X$ be an accumulation point of u.

Then x is a subsequential limit of u. That is, there exists an infinite $I \subseteq \mathbb{N}$, such that $u \upharpoonright_I$ converges to x (as a limit).

Proof.¹ By Definition 4.2.1, as \mathbb{X} is first-countable, there exists a countable local basis \mathcal{B} at x.

Let $\mathcal{B}_x : \mathbb{N} \to \mathcal{T}$ such that $\mathcal{B}_x[\mathbb{N}]$ is a local base at x and for any $n \in \mathbb{N}$,

$$\mathcal{B}_x(n) \supseteq \bigcup \mathcal{B}_x[\mathbb{N}_{>n}].$$

Let $w: I \to u[\mathbb{N}]$ (I infinite) such that for any $i \in I$, $w(i) \in \mathcal{B}_x(i)$.

Then, for any $k \in \mathbb{N}$, we have $w[I_{>k}] \subseteq \mathcal{B}_x(k)$. Thus, by Definition 3.1.1, w is a subsequence of u converging to x.

§4.3 Second-Countable Spaces

Definition 4.3.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space.

 \mathbb{X} is said to be *second countable* iff \mathcal{T} has a countable (analytic) basis.

Proposition 4.3.1. Second-countable spaces are first-countable.

Proof. Let $\mathbb{X} = (X, \mathcal{T})$ be a second-countable space.

By Definition 4.3.1, \mathcal{T} has a countable analytic basis.

Let $x \in X$ and let $U \in \mathcal{T}$ with $x \in U$. By Definition 4.1.3 there exists a countable $\mathcal{B} \subseteq \mathcal{T}$, such that for any $U \in \mathcal{T}$, there is an $\mathcal{A} \subseteq \mathcal{B}$, such that $U = \bigcup \mathcal{A}$.

¹ The detail of this proof is incomplete.

As $U \in \mathcal{T}$ and $U = \bigcup \mathcal{A}$, by Proposition 2.4.2, there exists a $A \in \mathcal{A}$ such that $x \in A \subseteq U$.

Let $\mathcal{C} \subseteq \mathcal{B}$ be the family of all such A containing x, then, by Definition 4.1.5, \mathcal{C} is a local basis at x. And as \mathcal{B} is countable, as a subset, \mathcal{C} is also countable.

Therefore C is a countable local basis at x.

As x is arbitrarily given, X is first-countable.

Example 4.3.1. Consider \mathbb{R} as a Euclidean metric space.

 \mathbb{R} is second-countable.

Proof. By Proposition 4.2.1, \mathbb{R} is first-countable.

For any $x \in \mathbb{Q}$, let $\mathcal{O}_x : \mathbb{N} \to \mathcal{T}$ be defined as

$$\mathcal{O}_x(n) := B_{1/n}(x).$$

For any $r \in \mathbb{R}$ and for any open set $U \ni r$, there exists $\delta \in \mathbb{R}_{>0}$ such that $B_{\delta}(r) \subseteq U$.

There exists some $q \in \mathbb{Q}$ such that $q \in B_{\delta}(r)$. As $B_{\delta}(r)$ is open, by Definition 1.2.1, there exists $\varepsilon \in \mathbb{R}_{>0}$ such that $B_{\varepsilon}(q) \subseteq B_{\delta}(r)$.

By Archimedean property, there exists $k \in \mathbb{N}$ such that $k > \frac{1}{\varepsilon}$. Then we have

$$\mathcal{O}_q(k) = B_{1/k}(q) \subseteq B_{\varepsilon}(q) \subseteq B_{\delta}(r).$$

[This proof is incomplete]

Example 4.3.2. Let $\mathbb{X} = (\mathbb{R}, \mathcal{T})$ be a discrete topological space.

X is first-countable but not second-countable.

§4.4 Separable Spaces

Definition 4.4.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space.

 \mathbb{X} is said to be *separable* iff there exists a countable subset $A \subseteq X$ such that A is dense in \mathbb{X} .

Proposition 4.4.1. Second-countable spaces are separable.

Proof. Let $\mathbb{X} = (X, \mathcal{T})$ be a second-countable topological space.

As $\mathbb X$ is second-countable, by Definition 4.3.1, there is a countable base $\mathcal B$ for $\mathcal T.$

Let $f: \mathcal{B} \to X$ such that for any $B \in \mathcal{B}$,

$$f(B) = a \text{ random } x \in B.$$

As \mathcal{B} is countable, then $f[\mathcal{B}]$ is countable.

Now, it suffices to show that $f[\mathcal{B}]$ is dense in \mathbb{X} .

Aiming for a contradiction, suppose $f[\mathcal{B}]$ is not dense in \mathbb{X} , then, there exists some $x \in X \setminus (f[\mathcal{B}])^-$.

By Definition 2.1.3, $X \setminus (f[\mathcal{B}])^- \in \mathcal{T}$; by Definition 2.4.2, there exists $U \in \mathcal{T}$ with $U \ni x$ such that $U \subseteq X \setminus (f[\mathcal{B}])^-$. That is, for any $B \in \mathcal{B}$, $f(B) \notin U$; i.e., $f[\mathcal{B}] \cap U = \emptyset$.

As $U \in \mathcal{T}$ and \mathcal{B} is a base for \mathcal{T} , by Definition 4.1.3, there exists $\mathcal{A} \subseteq \mathcal{B}$ such that $\bigcup \mathcal{A} = U$. Thus, $f[\mathcal{A}]$ must be a non-empty subset of U. This contradicts $f[\mathcal{B}] \cap U = \emptyset$.

Thus, $f[\mathcal{B}]$ has to be dense in \mathbb{X} . As $f[\mathcal{B}]$ is countable, therefore, \mathbb{X} is second-countable.

Example 4.4.1. Niemytzki plane is separable but not second-countable.²

Proposition 4.4.2. Let $\mathbb{X} = (X, \mathcal{T})$ be a discrete topological space which is separable.

Then X is countable.

Proof. Aiming for a contradiction, suppose X is uncountable.

As \mathbb{X} is separable, by Definition 4.4.1, there exists a countable subset $A \subseteq X$ being dense in \mathbb{X} .

By Definition 2.7.1, $A^- = X$.

As X is discrete, $A^- = A$.

Now, we have A = X. As A is countable but X is not, this is impossible.

This contradiction shows that X has to be countable.

Proposition 4.4.3. Separable metric spaces are second-countable.

Proof. Let $\mathbb{X} = (X, d)$ be a metric space which is separable. Denote \mathcal{T} for the topology on X induced by d.

² See ProofWiki.

By Definition 4.4.1, let $A \subseteq X$ be a countable set with $A^- = X$ (by Definition 2.7.1, A dense in \mathbb{X}).

Let $\mathcal{B}: \mathbb{N} \times A \to \mathcal{T}$ be defined as

$$\mathcal{B}(n,a) := B_{1/n}(a).$$

Let $\varepsilon \in \mathbb{R}_{>0}$ and let $x \in X$. Then $B_{\varepsilon}(x)$ defines an open ball in \mathbb{X} .

As $A^- = X$ and $x \in X$, $x \in A^-$ also. Thus, there exists an $a \in A \cap B_{\varepsilon}(x)$.

By Proposition 1.2.1, as $a \in B_{\varepsilon}(x)$, there exists a $\delta \in \mathbb{R}_{>0}$ such that $B_{\delta}(a) \subseteq B_{\varepsilon}(x)$.

By Archimedean property, let $k \in \mathbb{N}$ such that $k > \frac{1}{\delta}$, then we have

$$\mathcal{B}(k,a) = B_{1/k}(a) \subseteq B_{\delta}(a) \subseteq B_{\varepsilon}(x).$$

By Proposition 4.1.1, $\mathcal{B}[\mathbb{N} \times A]$ is an analytic basis for \mathcal{T} . As $\mathbb{N} \times A$ is countable, the image $\mathcal{B}[\mathbb{N} \times A]$ is also countable.

Therefore, $\mathcal{B}[\mathbb{N}\times A]$ is a countable analytic basis for \mathcal{T} . By Definition 4.3.1, \mathbb{X} is second-countable.

§4.5 Lindelöf Space

Definition 4.5.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a topological space.

Then $\mathbb X$ is said to be $\mathit{Lindel\"of}$ iff every open cover for X has a countable subcover.

Proposition 4.5.1. Let $\mathbb{X} = (X, \mathcal{T})$ be a second-countable topological space.

Then X is Lindelöf.

Proof. As X is second-countable, by Definition 4.3.1, there exists a countable basis \mathcal{B} for \mathcal{T} .

Let \mathcal{U} be an open cover of \mathbb{X} , no matter it is countable or not.

By Definition 4.1.3, for any $U \in \mathcal{U}$, there exists an $\mathcal{A} \subseteq \mathcal{B}$ such that $\bigcup \mathcal{A} = U$.

Let $f: \mathcal{B} \to \mathcal{U}$ be defined as

$$f(B) := a \text{ random } U \in \mathcal{B} \text{ with } U \supset B.$$

As \mathcal{B} is an open over of X and for any $B \in \mathcal{B}$, $f(B) \supseteq B$, thus $f[\mathcal{B}]$ is an open cover of \mathcal{B} .

As \mathcal{U} is the codomain of f, $f[\mathcal{B}] \subseteq \mathcal{U}$. Therefore, $f[\mathcal{B}]$ is a subcover of \mathcal{U} . As \mathcal{B} is countable, it image $f[\mathcal{B}]$ is countable. Therefore, $f[\mathcal{B}]$ is a countable subcover of \mathcal{U} . As \mathcal{U} is arbitrarily given, by Definition 4.5.1, \mathbb{X} is Lindelöf.

Example 4.5.1. Sorgenfrey line is a topological space which is Lindelöf but not second-countable. (See Section A.1.)

Chapter 5.

Continuous Mappings

§5.1 Continuous Mappings

Definition 5.1.1. Let $\mathbb{X} = (X, \mathcal{T}_X)$ and $\mathbb{Y} = (X, \mathcal{T}_Y)$ be topological spaces, let $f : \mathbb{X} \to \mathbb{Y}$, and let $A \subseteq X$ be a mapping.

Then f is said to be continuous on A iff there exists a $U_X \in \mathcal{T}_X$ with $A \subseteq U_X$, such that for any $U_Y \in \mathcal{T}_Y$,

$$f^{-1}[U_Y] \cap U_X \in \mathcal{T}_X.$$

f is a continuous mapping iff A = X; i.e., it is continuous on whole X.

Note 5.1.1. By Definition 5.1.1, f is continuous at a point $x \in X$, iff it is continuous on some $U_X \in \mathcal{T}$ with $x \in U_X$, as x here can be considered as a singleton $\{x\}$.

Note 5.1.2. There is a common error: if for any $U_X \in \mathcal{T}_X$, its image $f[U_X] \in \mathcal{T}_Y$ also, then f is continuous. But, this condition also holds for some discontinuous mappings.

For example, let $\mathbb{X} = (\mathbb{R}, \mathcal{T}_X)$ be a topological space where \mathcal{T} induced by Euclidean metric, and let $\mathbb{Y} = (\mathbb{R}, \mathcal{T}_Y)$ be a discrete topological space. Let $i: \mathbb{X} \to \mathbb{Y}$ be an identity mapping; i.e., it is defined as

$$i: \mathbb{X} \to \mathbb{Y}: x \mapsto x.$$

For any $A \subseteq \mathbb{R}$, clearly, $i[A] \in \mathcal{T}_Y$ holds. But for some (or for all) $B \in \mathcal{T}_Y \setminus \mathcal{T}_X$, $i^{-1}[B] \notin \mathcal{T}$. Thus, i is not a identity mapping.

Indeed, for any identity mapping $i:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y),\ i$ is continuous iff $\mathcal{T}_X\supseteq \mathcal{T}_Y.$

Example 5.1.1. Let $\mathbb{X} = (X, \mathcal{T}_X)$ be a topological space, where \mathcal{T}_X is the discrete topology on X. Let $\mathbb{Y} = (X, \mathcal{T}_Y)$ be any topological space. Then for any $f : \mathbb{X} \to \mathbb{Y}$, f is continuous.

Proposition 5.1.1. Let $\mathbb{X} = (X, \mathcal{T}_X)$ and $\mathbb{Y} = (X, \mathcal{T}_Y)$ be topological spaces, let $f : \mathbb{X} \to \mathbb{Y}$, and let $A \subseteq X$ be a mapping.

f is continuous on A iff for any $U_Y \in \mathcal{T}$ with $f[A] \subseteq U_Y$, there exists a U_X with $A \subseteq U_X$, such that $f[U_X] \subseteq U_Y$.

Proof. First, prove \Rightarrow .

Assume f is continuous on A, then, by Definition 5.1.1, let $U_Y \in \mathcal{T}$ with $f[A] \subseteq U_Y$, then there exists $U_X \in \mathcal{T}$ with $A \subseteq U_X$, such that

$$f^{-1}[U_Y] \cap U_X \in \mathcal{T}.$$

Then we have

$$U_X \subseteq f^{-1}[U_Y] \cap U_X$$

$$\Longrightarrow f[U_X] \subseteq f[f^{-1}[U_Y] \cap U_X]$$

$$\Longrightarrow f[U_X] \subseteq f[f^{-1}[U_Y]] \cap f[U_X]$$
(Image of Intersection under Mapping)
$$\Longrightarrow f[U_X] \subseteq U_Y \cap f[U_X].$$
(Image of Inverse Image)
$$\Longrightarrow f[U_X] \subseteq U_Y.$$

Proposition 5.1.2. Let $\mathbb{X} = (X, \mathcal{T}_Y)$, $\mathbb{Y} = (X, \mathcal{T}_Y)$ and $\mathbb{Z} = (X, \mathcal{T}_Z)$ be topological spaces, let $f : \mathbb{X} \to \mathbb{Y}$ and $g : \mathbb{Y} \to \mathbb{Z}$ be continuous mapping.

Then $f \circ g$ is continuous.

Proof. By Definition 5.1.1, as g is continuous, for any $U_Z \in \mathcal{T}_Z$, $g^{-1}[U_Z] \in \mathcal{T}_Y$. Similarly, $f^{-1}[g^{-1}[U_Z]] \in \mathcal{T}_X$.

As $U_Z \in \mathcal{T}_Z$ is arbitrarily given, $f \circ g$ is continuous.

§5.2 Homeomorphisms

33

Definition 5.2.1. Let $\mathbb{X} = (X, \mathcal{T}_X)$ and $\mathbb{Y} = (X, \mathcal{T}_Y)$ be topological spaces, and let $f : \mathbb{X} \to \mathbb{Y}$ be a mapping.

f is a homeomorphism iff

H1. f is bijective (injective and surjective);

H2. f is continuous;

H3. f^{-1} is continuous:

Definition 5.2.2. Let $\mathbb{X} = (X, \mathcal{T}_X)$ and $\mathbb{Y} = (X, \mathcal{T}_Y)$ be topological spaces.

 \mathbb{X} and \mathbb{Y} are said to be *homeomorphic*, denoted $\mathbb{X} \cong \mathbb{Y}$, iff there exists a homeomorphism between \mathbb{X} and \mathbb{Y} .

Proposition 5.2.1. Being homeomorphic is an equivalent relation.

Proof. Let $\mathbb{X} = (X, \mathcal{T}_Y)$, $\mathbb{Y} = (X, \mathcal{T}_Y)$ and $\mathbb{Z} = (X, \mathcal{T}_Z)$ be topological spaces.

Let $i: \mathbb{X} \to \mathbb{X}$ be an identity mapping.

For any $x_1, x_2 \in X$ with $x_1 \neq x_2$, $i(x_1) = x_2$ and $i(x_2) = x_2$, so $i(x_1) \neq i(x_2)$. Thus i is injective.

For any $x \in X$, there exists $i^{-1}(x) = x \in X$. Thus i is surjective.

As \imath is injective and surjective, it is bijective.

For any $U \in \mathcal{T}_X$, $i^{-1}[U] = U \in \mathcal{T}_X$. Thus, by Definition 5.1.1, i is continuous. Similarly, i^{-1} is continuous.

Therefore, by Definition 5.2.1, i is an homeomorphism between \mathbb{X} and \mathbb{X} . By Definition 5.2.2, \mathbb{X} is homeomorphic to itself, i.e., $\mathbb{X} \cong \mathbb{X}$.

Thus, being homeomorphic is reflexive.

Assume $\mathbb{X} \cong \mathbb{Y}$.

By Definition 5.2.2, there exists a homeomorphism $f: \mathbb{X} \to \mathbb{Y}$.

As f is bijective, then f^{-1} is also bijective.

By Definition 5.2.1, f and f^{-1} are both continuous.

As f^{-1} is bijective, continuous, and $(f^{-1})^{-1} = f$ is also continuous, then $f^{-1}: \mathbb{Y} \to \mathbb{X}$ is also a homeomorphism. By Definition 5.2.2, we have $\mathbb{Y} \cong \mathbb{X}$.

Thus, being homeomorphic is symmetric.

Assume $\mathbb{X} \cong \mathbb{Y}$ and $\mathbb{Y} \cong \mathbb{Z}$.

By Definition 5.2.2, we have $f: \mathbb{X} \to \mathbb{Y}$ and $g: \mathbb{Y} \to \mathbb{Z}$ as homeomorphisms.

By Definition 5.2.1 H1, f and g are bijective. Thus, $f \circ g$ is bijective.

By Definition 5.2.1 H2, f and g are continuous, so, by Proposition 5.1.2, $f \circ g$ is continuous. Similarly, $g^{-1} \circ f^{-1}$ is continuous. As $g^{-1} \circ f^{-1} = (f \circ g)^{-1}$ (see inverse of composite relation), $(f \circ g)^{-1}$ is also continuous.

As $f \circ g$ is bijective, $f \circ g$ is continuous and $(f \circ g)^{-1}$ is also continuous, $f \circ g : \mathbb{X} \to \mathbb{Z}$ is a homeomorphism. By Definition 5.2.2, $\mathbb{X} \cong \mathbb{Z}$.

Thus, being homeomorphic is transitive.

As being homeomorphic is reflexive, symmetric, and transitive, it is an equivalence relation.

Example 5.2.1. In Euclidean metric space \mathbb{R} , let $a, b, c, d \in \mathbb{R}$ with a < b and c < d, then we have:

- $[a,b] \cong [c,d];$
- $[a,b) \cong [c,d);$
- $[a,b) \cong (c,d];$
- $(a,b) \cong (c,d)$.

Example 5.2.2. A donut is homeomorphic to a cup, because they both have a hole.

Example 5.2.3. Consider $\mathbb{R}_{[0,1]}$ and \mathbb{R}^n as Euclidean metric spaces. For any α , let $f_{\alpha}: I \to X$ be a continuous and piece-wise smooth injection.

Then, for any $\alpha, \beta, f_{\alpha}[I] \cong f_{\beta}[I]$.

Figure 5.1: Homeomorphic curves in \mathbb{R}^3 .

Appendices

Chapter A.

$Some \ Examples \ of \ Topological \\ Spaces$

§A.1 Sorgenfrey line

- 1. Definition.
- 2. Sorgenfrey line is Lindelöf.
- 3. Sorgenfrey line is separable.
- 4. Sorgenfrey line is not second-countable.

§A.2 Niemytzki Plane