Departamento de Matemática - UFV MAT 131-Introdução a Álgebra

Terceira Avaliação - PER2020- GABARITO

QUESTÕES OBJETIVAS - MÚLTIPLA ESCOLHA

- 1. (1 pontos) Sejam A, B, D, F conjuntos não vazios quaisquer e seja $T \subset (A B) \times (D F)$. É correto afirmar:
 - (a) T é uma relação de B em F
 - (b) T é uma relação de A em F
 - (c) T é uma relação de A em D
 - (d) T é uma relação de B em D

SOLUÇÃO:

Note que, pelo enunciado, T é uma relação de A-B em D-F.

Agora, sabemos que $A-B \subset A$ e $D-F \subset D$. Assim, por propriedades do produto cartesiano, $(A-B) \times (D-F) \subset A \times D$. De onde, $T \subset A \times D$.

Portanto, T é uma relação de A em D.

- 2. (2 pontos) Sobre o conjunto $A = \{1, 2, 3, 4, 5\}$, são definidas as relações R e T, dadas por $R = \{(1,3), (2,4), (3,5), (1,1), (2,2), (4,2), (3,1)\}$ e $T = \{(x,y) \in A^2 : (y,x) \in R\}$. Considerando as afirmações abaixo. Marcar a sequencia correta:
 - (I) R não é transitiva e R não é simétrica
 - (II) $R \cap T = \{(1,1), (2,2), (4,2)\}$
 - (III) $Dom(R) Dom(T) \neq \emptyset$
 - (a) VVF (b) FVV (c) VFF (d) FFV

SOLUÇÃO:

A afirmação (I) é verdadeira.

R não é transitiva devido a fato de termos $(1,3) \in R$ e $(3,5) \in R$, mas $(1,5) \notin R$.

R não é simétrica, pois $(3,5) \in R$, mas $(5,3) \notin R$.

A afirmação (II) é falsa, pois de acordo com a definição de T dada, $T = \{(1,3), (2,4), (1,1), (2,2), (4,2), (3,2), (4,2), (4,2), (3,1)\} \neq \{(1,1), (2,2), (4,2)\}.$

A afirmação (III) é falsa, pois $Dom(R) = Dom(T) = \{1, 2, 3, 4\}$. De onde, $Dom(R) - Dom(T) = \emptyset$.

Portanto, a sequencia correta é VFF.

3. (2 pontos) Seja $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ dada por $f(x) = 4 - (x-1)^2$. É incorreto afirmar:

(a)
$$f(x-1) = 4 - (2-x)^2$$

(b)
$$f(1-x) < f(x-1) \iff x < 1$$

(c)
$$\exists x \in \mathbb{Z}/f(x+1) < 4$$

(d)
$$f(1-x) = f(x+1)$$

SOLUÇÃO: Pela forma da expressão que define f, temos:

(a)
$$f(x-1) = 4 - [(x-1)-1]^2 = 4 - (x-2)^2 = 4 - (2-x)^2$$

(b)
$$f(1-x) = 4 - [(1-x) - 1]^2 = 4 - x^2$$
. Assim,

$$f(1-x) < f(x-1) \iff 4-x^2 < 4-(x-2)^2 \iff 4x > 4 \iff x > 1.$$

(c)
$$f(x+1) = 4 - x^2$$
. Assim, $f(x+1) < 4$ equivale a $x^2 > 0$. Logo, existe algum $x \in \mathbb{Z}$ tal que $x^2 > 0$.

(d) Pelo visto antes,
$$f(1-x) = 4 - x^2$$
 e $f(x+1) = 4 - x^2$.

Portanto, é incorreto afirmar $f(1-x) < f(x-1) \iff x < 1$.

4. (2 pontos) Seja f uma função real dada por $f(x) = \frac{3x - 4a}{5}$. É correto afirmar:

(a) Se
$$a = 5$$
, então $f^{-1}(3) = 1$

(b) Se
$$a = 3$$
, então $f^{-1}(5) = -1$

(c) Se
$$f^{-1}(3) + f(3) = 1$$
, então $a = 87$

(d)
$$f^{-1}(-2a) = f(-2a) = -2a$$

SOLUÇÃO: Note que:

(i) f é injetora:

De fato, se $f(x_1) = f(x_2)$ para $x_1, x_2 \in \mathbb{R}$, temos que $\frac{3x_1 - 4a}{5} = \frac{3x_2 - 4a}{5}$. De onde, $x_1 = x_2$.

(ii)
$$f$$
 é sobrejetora: De fato, para cada $y \in \mathbb{R}$ existe, $x = \frac{5y + 4a}{3}$ tal que $f(x) = y$.

De (i) e (ii), f é bijetora e daqui possui inversa. Sua inversa é dada por $f^{-1}(x) = \frac{5x + 4a}{3}$. Com isto,

2

(a)
$$f^{-1}(3) = \frac{15+4a}{3}$$
 e quando $a = 5$, $f^{-1}(3) = \frac{15+20}{3} = \frac{35}{3} \neq 1$

(b)
$$f^{-1}(5) = \frac{25+4a}{3}$$
 e quando $a = 3$ $f^{-1}(5) = \frac{25+12}{3} = \frac{37}{3} \neq -1$.

(c)
$$f^{-1}(3) + f(3) = \frac{15 + 4a}{3} + \frac{9 - 4a}{5} = 1$$
, implies $a = -\frac{87}{8} \neq 87$.

(d)
$$f^{-1}(-2a) = \frac{-10a + 4a}{3} = -2a e f(-2a) = \frac{-6a - 4a}{5} = -2a.$$

Portanto, é correto afirmar que $f^{-1}(-2a) = f(-2a) = -2a$.

QUESTÕES DISCURSIVAS

1. (2 pontos) Sejam A, B, D, F conjuntos não vazios quaisquer e seja $T \subset (A - B) \times (D \cap F)$. Mostre que T é uma relação de A em F.

SOLUÇÃO: Sabemos que $A-B \subset A$ e $D \cap F \subset F$. Assim, $T \subset (A-B) \times (D \cap F) \subset A \times F$. Portanto, R é uma relação de A em F.

2. **(2 pontos)** Seja f uma função real dada por $f(x) = \frac{3x - 4a}{5}$, tais que $f^{-1}(3) = 2a - 3b$ e $f^{-1}(5) = 3a + 5b$. Determinar $f^{-1}(a - 3b)$.

SOLUÇÃO: De acordo com o feito na questão 4 das questões fechadas, temos que $f^{-1}(x) = \frac{5x + 4a}{3}$. Assim,

$$f^{-1}(3) = \frac{15+4a}{3} = 2a-3b$$
. De onde, $2a-9b = 15$ (I)

$$f^{-1}(5) = \frac{25+4a}{3} = 3a+5b$$
. De onde, $a+3b=5$ (II)

Resolvendo (I) e (II) obtemos, a = 6 e $b = -\frac{1}{3}$.

Agora,
$$f^{-1}(a-3b) = f^{-1}(7) = \frac{35+24}{3} = \frac{59}{3}$$
.

3. (2 pontos) Seja R uma relação definida no conjunto $A \neq \emptyset$. Mostre que se $R \cap R^{-1} \subset D(A)$, então R é antissimétrica.

SOLUÇÃO: Sejam $(x,y) \in R$ e $(y,x) \in R$, então $(x,y) \in R$ e $(x,y) \in R^{-1}$. Daqui, $(x,y) \in (R \cap R^{-1})$. Como, $R \cap R^{-1} \subset D(A)$, segue que $(x,y) \in D(A)$.

Sabemos que a diagonal de A, D(A), está formado unicamente por elementos da forma (x, x) para todo $x \in A$. Assim, x deve de ser igual a y. Isto é, x = y.

Portanto, R é antissimétrica.

4. (2 ponto) Sejam R_1, R_2, R_3 três relações definidas em \mathbb{Z} satisfazendo a seguinte propriedade: Se $(a,b) \in R_1$ e $(c,d) \in R_2$ então $(a-c,b-d) \in R_3$.

Mostre que se R_1 e R_2 são relações de equivalência, então R_3 também é uma relação de equivalência.

SOLUÇÃO: Vejamos:

- (i) R_3 é reflexiva: De fato, para todo $x \in \mathbb{Z}$, sabemos que $(x,x) \in R_1$ e $(x,x) \in R_2$, pois ambas são relações reflexivas. Da mesma forma, $(2x,2x) \in R_1$. Pela propriedade que as três relações satisfazem, temos $(2x,2x) \in R_1$ e $(x,x) \in R_2$, então $(2x-x,2x-x) \in R_3$. Ou seja, $(x,x) \in R_3$.
- (i) R_3 é simétrica: De fato, seja $(x,y) \in R_3$. Ora, (x,y) = (2x x, 2y y). Então pela propriedade que as três relações satisfazem, é suficiente que $(2x,2y) \in R_1$ e $(x,y) \in R_2$, para $(x,y) \in R_3$. Como R_1 e R_2 são simétricas, $(2y,2x) \in R_1$ e $(y,x) \in R_2$. Novamente, pela propriedade, $(2y y, 2x x) = (y,x) \in R_3$.
- (iii) R_3 é transitiva: De fato, sejam $(x,y) \in R_3$ e $(y,z) \in R_3$. Pelo mesmo argumento dado na simetria, é suficiente termos:
- (a) $(2x, 2y) \in R_1 \in (x, y) \in R_2$, para termos $(x, y) \in R_3$.

(b) $(2y,2z) \in R_1$ e $(y,z) \in R_2$, para termos $(y,z) \in R_3$.

Como R_1 e R_2 são transitivas, temos:

 $(2x,2z) \in R_1$ e $(x,z) \in R_2$. De onde, pela propriedade, $(x,z) \in R_3$.

Portanto, sendo R_3 reflexiva,
simétrica e transitiva, temos que R_3 é uma relação de equivalência.