STATS 310B: Theory of Probability II

Winter 2016/17

Scribes: Kenneth Tay

Lecture 12: February 16

Lecturer: Sourav Chatterjee

12.1 Ergodic Theorems

Theorem 12.1 (Maximal Ergodic Theorem) Let (Ω, \mathcal{F}, P) be a probability space, φ a measure-preserving transform with invariant σ -algebra \mathcal{I} , and X a random variable in L^1 .

Let
$$X_j(\omega) := X(\varphi^j(\omega))$$
, $S_k(\omega) = X_0(\omega) + X_1(\omega) + \dots + X_k(\omega)$, and $M_k(\omega) = \max\{0, S_0(\omega), S_1(\omega), \dots, S_k(\omega)\}$.
Then $\mathbb{E}[X; M_k > 0] \ge 0$.

Proof: (Due to Garsia.)

Note that $X_0(\omega) = X(\omega)$. If $j \leq k$, then $M_k(\varphi(\omega)) \geq S_j(\varphi(\omega))$, which implies that

$$X(\omega) + M_k(\varphi(\omega)) \ge X(\omega) + S_j(\varphi(\omega)) = S_{j+1}(\omega).$$

Thus, $X(\omega) \geq S_{j+1}(\omega) - M_k(\varphi(\omega))$ for j = 0, 1, ..., k. Also, $X(\omega) \geq S_0(\omega) - M_k(\varphi(\omega))$ since $X = S_0$ and M_k is non-negative. Thus,

$$\mathbb{E}[X; M_k > 0] \ge \int_{\{\omega: M_k(\omega) > 0\}} \Big(\max\{S_0(\omega), \dots, S_k(\omega)\} - M_k(\varphi(\omega)) \Big) dP(\omega)$$

$$= \int_{\{\omega: M_k(\omega) > 0\}} \Big(M_k(\omega) - M_k(\varphi(\omega)) \Big) dP(\omega).$$

Since φ is measure-preserving, $\int Y dP = \int Y \circ \varphi dP$ for all Y. Applying this to M_k , $\int_{\Omega} (M_k(\omega) - M_k(\varphi(\omega))) dP(\omega) = 0$. But, by M_k 's non-negativity, on the set $\{M_k \leq 0\}$, $M_k(\omega) - M_k(\varphi(\omega))$ is ≤ 0 . Thus,

$$\mathbb{E}[X; M_k > 0] \ge \int_{\{\omega: M_k(\omega) > 0\}} \left(M_k(\omega) - M_k(\varphi(\omega)) \right) dP(\omega) \ge 0.$$

Theorem 12.2 (Birkhoff's Ergodic Theorem) Let (Ω, \mathcal{F}, P) be a probability space, φ a measure-preserving transform with invariant σ -algebra \mathcal{I} , and X a random variable in L^1 .

Then
$$\frac{1}{n} \sum_{m=0}^{n-1} X(\phi^m(\omega)) \to \mathbb{E}[X \mid \mathcal{I}]$$
 a.s. and in L^1 .

In particular, if φ is ergodic, then $\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m(\omega))\to \mathbb{E}X$ a.s. and in L^1 ("space average is equal to time average").

Proof:

Step 1: We may assume that $\mathbb{E}[X \mid \mathcal{I}] = 0$ a.s.

Note that if Y is \mathcal{I} -measurable, then $Y \circ \varphi = Y$ a.s., so $Y \circ \varphi^j = Y$ a.s. for all j. $\mathbb{E}[X \mid \mathcal{I}]$ is \mathcal{I} -measurable. Thus, if $X' = X - \mathbb{E}[X \mid \mathcal{I}]$, then for all j, $X' \circ \varphi^j = X \circ \varphi^j - \mathbb{E}[X \mid \mathcal{I}]$, implying that

$$\frac{1}{n}\sum_{m=1}^{n-1} \left(X \circ \varphi^m - \mathbb{E}[X \mid \mathcal{I}] \right) = \frac{1}{n}\sum_{m=1}^{n-1} X' \circ \varphi^m.$$

Also, $\mathbb{E}[X' \mid \mathcal{I}] = 0$ a.s., so it suffices to prove the result for X'.

As in the set-up of the Maximal Ergodic Theorem, let $X_n = X \circ \varphi^n$, $S_n = X_0 + X_1 + \cdots + X_n$.

Step 2: $S_n/n \to 0$ a.s.

We will show that $\limsup \frac{S_n}{n+1} \le 0$ a.s. A symmetric argument will show that $\liminf \frac{S_n}{n+1} \ge 0$ a.s., and so $\lim \frac{S_n}{n+1} = 0$ a.s.

Let $\bar{X} = \limsup \frac{S_n}{n+1}$. Note that \bar{X} is \mathcal{I} -measurable as $\bar{X} \circ \varphi = \bar{X}$. Take any $\varepsilon > 0$ and let $D = \{\omega : \bar{X}(\omega) > \varepsilon\}$. Then $D \in \mathcal{I}$.

Let $X^* = (X - \varepsilon)1_D$. Let $S_n^* = X^* + X^* \circ \varphi + \dots + X^* \circ \varphi^n$, and let $M_n^* = \max\{0, S_0^*, \dots, S_n^*\}$.

Let
$$F_n = \{\omega : M_n^*(\omega) > 0\}$$
, and let $F = \bigcup_{n=0}^{\infty} F_n$.

Step 2.1:
$$F = \left\{ \omega : \sup_{k \geq 0} \frac{S_k^*(\omega)}{k+1} > 0. \right\}$$
.

$$\omega \in F \quad \Leftrightarrow \quad \omega \in F_n \qquad \qquad \text{for some } n$$

$$\Leftrightarrow \quad M_n^*(\omega) > 0 \qquad \qquad \text{for some } n$$

$$\Leftrightarrow \quad S_j^*(\omega) > 0 \qquad \qquad \text{for some } 0 \le j \le n$$

$$\Leftrightarrow \quad S_j^*(\omega)/(j+1) > 0 \qquad \qquad \text{for some } 0 \le j \le n$$

$$\Leftrightarrow \quad \sup_{k \ge 0} \frac{S_k^*(\omega)}{k+1} > 0.$$

Step 2.2: F = D.

If $\omega \in F$, then $\frac{S_k^*(\omega)}{k+1} > 0$ for some k, implying that $S_k^*(\omega) > 0$ for some k. Since $S_k^* = X_0^* + \cdots + X_k^*$, it means that $X_j^*(\omega) > 0$ for some j. But by definition,

$$X_j^*(\omega) = X^*(\varphi^j(\omega)) = [X(\varphi^j(\omega)) - \varepsilon]1_D(\varphi^j(\omega)),$$

so, for some j,

$$\begin{split} X_j^*(\omega) > 0 & \Rightarrow & [X(\varphi^j(\omega)) - \varepsilon] 1_D(\varphi^j(\omega)) > 0 \\ & \Rightarrow & \varphi^j(\omega) \in D \\ & \Rightarrow & \omega \in \varphi^{-j}(D) \\ & \Rightarrow & \omega \in D. \end{split}$$
 (since $D \in \mathcal{I}$)

On the other hand, if $\omega \in D$, then $\varphi^j(\omega) \in D$ for all j (by definition of D and \bar{X}). This implies that

$$\begin{split} S_n^*(\omega) &= \sum_{i=0}^n X_i^*(\omega) = \sum_{i=0}^n X_i(\omega) - \varepsilon = S_n(\omega) - \varepsilon (n+1), \\ \sup \frac{S_n^*(\omega)}{n+1} &\geq \limsup \frac{S_n^*(\omega)}{n+1} \\ &= \limsup \frac{S_n(\omega)}{n+1} - \varepsilon \\ &> 0. \end{split}$$

i.e. $\omega \in F$.

Step 2.3: Use the Maximum Ergodic Theorem to conclude that P(D) = 0.

Note that $E|X^*| < \mathbb{E}|X| + \varepsilon < \infty$. The Maximum Ergodic Theorem implies that $\mathbb{E}[X^*; F_n] \ge 0$ for all n. Thus,

$$0 = \lim_{n \to \infty} \mathbb{E}[X^* 1_{F_n}] = \mathbb{E}\left[\lim_{n \to \infty} X^* 1_{F_n}\right] \qquad \text{(Dominated Convergence Theorem)}$$

$$= \mathbb{E}[X^*; F]$$

$$= \mathbb{E}[X^*; D] \qquad \text{(since } F = D)$$

$$= \mathbb{E}[(X - \varepsilon)1_D]$$

$$= \mathbb{E}[\mathbb{E}[(X - \varepsilon)1_D \mid \mathcal{I}]]$$

$$= \mathbb{E}[(\mathbb{E}[X \mid \mathcal{I}] - \varepsilon)1_D]$$

$$= -\varepsilon P(D),$$

hence P(D) = 0, as required.

Step 3: $S_n/n \to 0$ in L^1 .

Take any M > 0. Let $X_{M}' := X1_{\{|X| \le M\}}, X_{M}'' = X - X_{M}'$.

Then, by the a.s. part of Birkhoff's Ergodic Theorem (Step 2), $\frac{1}{n} \sum_{m=0}^{n-1} X_M'(\varphi^m(\omega)) \to \mathbb{E}[X_M' \mid \mathcal{I}]$ a.s. By the

Dominated Convergence Theorem, this convergence also holds in L^1 . If we can show that $\frac{1}{n}\sum_{m=0}^{n-1}X_M''(\varphi^m(\omega)) \to \mathbb{E}[X_M''\mid \mathcal{I}]$ in L^1 , we would be done.

Since φ is measure-preserving, $\mathbb{E}|X_M''\circ\varphi^m|=\mathbb{E}|X_M''|$ for all m, and so

$$\mathbb{E}\Big|\frac{1}{n}\sum_{m=0}^{n-1}X_M''\circ\varphi^m\Big|\leq \frac{1}{n}\sum_{m=0}^{n-1}\mathbb{E}|X_M''\circ\varphi^m|=\mathbb{E}|X_M''|.$$

By Jensen's inequality, we also have $\mathbb{E}|\mathbb{E}[X_M''\mid\mathcal{I}]|\leq \mathbb{E}|X_M''|$. Putting the two together, we get

$$\mathbb{E}\left|\frac{1}{n}\sum_{m=0}^{n-1}X_M''\circ\varphi^m-\mathbb{E}[X_M''\mid\mathcal{I}]\right|\leq 2\mathbb{E}|X_M''|$$

for all n, and so

$$\limsup_{n \to \infty} \mathbb{E} \left| \frac{1}{n} \sum_{n=0}^{n-1} X_M'' \circ \varphi^m - \mathbb{E}[X_M'' \mid \mathcal{I}] \right| \le 2\mathbb{E}|X_M''|. \tag{12.1}$$

In the above, M is arbitrary. As $M \to \infty$, $|X_M''| \to 0$ a.s. Since $|X_M''| < |X|$ for all M and $\mathbb{E}|X| < \infty$, we can use the Dominated Convergence Theorem to get $\lim \mathbb{E}|X_M''| = 0$. Thus, letting $M \to \infty$ in Equation 12.1, we get the desired result.