Package 'arqas'

November 12, 2013

Title Aplication in R for Queueing Analisis and Simulation

Type Package

Version 1.0	
Date 01-09-2013	
Author Borja Varela	
Maintainer Borja Varela 	
Depends R (>= 1.8.0), distr, reshape, ggplot2	
Suggests testthat	
Description This package implements the main characteristics of the following queueing models: M/M/1, M/M/s, M/M/1/k, M/M/s/k, M/M/1/Inf/H, M/M/s/Inf/H, M/M/s/Inf/H with Y replacements, M/M/Inf, Open Jackson Networks and Closed Jackson Networks. Moreover, it is also possible to simulate similar queueing models with any type of arrival or service distribution: G/G/1, G/G/s, G/G/1/k, G/G/s/k, G/G/1/Inf/H, G/G/s/Inf/H, G/G/s/Inf/H with Y replacements, Open Networks and Closed Networks.	ŗ-
License GPL (>= 2)	
LazyData yes	
R topics documented:	
ClosedJacksonNetwork ClosedNetwork exportToUI FW FWq G_G_1 G_G_1_INF_H G_G_1_K G_G_INF	2 3 4 4 6 7 8 9 10

2 ClosedJacksonNetwork

	MarkovianModel	5
	maxCustomers	5
	$M_{}M_{}1$	6
	M_M_1_INF_H	7
	M_M_1_K	8
	M_M_INF	8
	M_M_S	9
	M_M_S_INF_H	0
	M_M_S_INF_H_Y	1
	M_M_S_K	2
	node	3
	OpenJacksonNetwork	3
	OpenNetwork	4
	P0i	5
	Pi 20	6
	Pn	6
	Qn	8
	summary.MarkovianModel	9
	summary.SimulatedModel	9
	summaryPnQn	0
	summaryWtWqt	0
Index	3:	1

ClosedJacksonNetwork Obtains the main characteristics of a Closed Jackson Network model

Description

Obtains the main characteristics of a Closed Jackson Network model

Usage

```
ClosedJacksonNetwork(mu = c(5, 5, 10, 15),

s = c(2, 2, 1, 1),

p = array(c(0.25, 0.15, 0.5, 0.4, 0.15, 0.35, 0.25, 0.3, 0.2, 0.2, 0.15, 0.25, 0.4, 0.3, 0.1, 0.3)
```

Arguments

mu	Vector of mean service rates
s	Vector of servers at each node
p	Routing matrix, where p_{ij} is the routing probability from node i to node j
n	Number of customers in the network

ClosedNetwork 3

Value

Returns the next information of a Closed Jackson Network model:

rho	Traffic intensity ρ
1	Expected number of customers in the system ${\cal L}$
lq	Expected number of customers in the queue \mathcal{L}_q
W	Expected waiting time in the system ${\cal W}$
wq	Expected waiting time in the queue \mathcal{W}_q
eff	Efficiency of the system $Eff = W/(W - W_q)$

See Also

 $O ther Analitical Models: \verb|M_M_1, \verb|M_M_1| INF_H, \verb|M_M_1, \verb|M_M_INF, \verb|M_M_S, \verb|M_M_S| INF_H, \verb|M_M_S_INF_H, \verb|M_M_S_INF_H$

ClosedNetwork	Obtains the main characteristics of a Closed Network model by simu-
	lation

Description

Obtains the main characteristics of a Closed Network model by simulation

Usage

```
ClosedNetwork(serv.distr, s, p, staClients, nClients,
  transitions, historic = FALSE)
```

Arguments

serv.distr	Service distributions for the nodes of the network
S	Vector of servers at each node
р	Routing matrix, where p_{ij} is the routing probability from node i to node j
staClients	Number of customers used in the stabilization stage
nClients	Number of customers in the system
transitions	Number of transitions between nodes used in the simulation stage
historic	Parameter to activate/deactivate the historic information

Value

Returns the next information of a Closed Network model:

pn	Vector of steady-state probabilities of having n customers in the system $P(n)$
1	Vector of expected number of customers in the nodes L
lq	Vector of expected number of customers in the queues of the nodes \mathcal{L}_q
lqt	Expected number of customers in the all queues
W	Vector of expected waiting times in the nodes W

4 FW

wq Vector of expected waiting times in the queues of the nodes W_q

eff Efficiency of the system Eff = W/(W - Wq)

rho Traffic intensity ρ

historic Optional parameter that stores the evolution of L, Lq, W and Wq during the

simulation.

See Also

 $Other\ Simulated\ Models:\ G_G_1,\ G_G_1_INF_H,\ G_G_1_K,\ G_G_INF,\ G_G_S,\ G_G_S_INF_H,\ G_G_S_INF_H_Y,\ G_G_S_K,\ Open\ Network$

exportToUI

Exports a function to the UI

Description

Exports a function to the UI

Usage

exportToUI(fun, name, types, class)

Arguments

fun	Function of the model
name	Name of the model

types Type of each parameter of the function (numerical, character, vector, matrix)

class A string to agrupate funtions in the same menu option

FW

Distribution function of the waiting time in the system

Description

Returns the value of the cumulative distribution function of the waiting time in the system for a queueing model

$$W(x) = P(W \le x)$$

FW 5

Usage

```
FW(qm, x)
## S3 method for class 'MarkovianModel'
FW(qm, x)
## S3 method for class 'M_M_1'
FW(qm, x)
## S3 method for class 'M_M_S'
FW(qm, x)
## S3 method for class 'M_M_1_K'
FW(qm, x)
## S3 method for class 'M_M_S_K'
FW(qm, x)
## S3 method for class 'M_M_1_INF_H'
FW(qm, x)
## S3 method for class 'M_M_S_INF_H'
FW(qm, x)
## S3 method for class 'M_M_S_INF_H_Y'
FW(qm, x)
## S3 method for class 'M_M_INF'
FW(qm, x)
```

Arguments

qm Queueing model x Time

Details

FW. MarkovianModel implements the default method (generates a message)

FW.M_M_1 implements the method for a M/M/1 queueing model

FW. M_M_S implements the method for a M/M/S queueing model

FW.M_M_1_K implements the method for a M/M/1/K queueing model

FW.M_M_S_K implements the method for a M/M/S/K queueing model

FW. M_M_1_INF_H implements the method for a M/M/1/∞/H queueing model

FW.M_M_S_INF_H implements the method for a M/M/s/\infty/H queueing model

FW.M_M_S_INF_H_Y implements the method for a M/M/s/ ∞ /H/ with Y replacements queueing model

FW.M_M_INF implements the method for a $M/M/\infty$ queueing model

FWq

Value

W(x)

FWq

Distribution function of the waiting time in the queue

Description

Returns the value of the cumulative distribution function of waiting time in the queue

$$W_q = P(W_q \le x)$$

Usage

```
FWq(qm, x)
## S3 method for class 'MarkovianModel'
FWq(qm, x)
## S3 method for class 'M_M_1'
FWq(qm, x)
## S3 method for class 'M_M_S'
FWq(qm, x)
## S3 method for class 'M_M_1_K'
FWq(qm, x)
## S3 method for class 'M_M_S_K'
FWq(qm, x)
## S3 method for class 'M_M_1INF_H'
FWq(qm, x)
## S3 method for class 'M_M_S_INF_H'
FWq(qm, x)
## S3 method for class 'M_M_S_INF_H_Y'
FWq(qm, x)
## S3 method for class 'M_M_INF'
FWq(qm, x)
```

Arguments

qm Queueing model

x Time

G_G_1 7

Details

FWq.MarkovianModel implements the default method (generates a message)

FWq.M_M_1 implements the method for a M/M/1 queueing model

FWq.M_M_S implements the method for a M/M/S queueing model

FWq.M_M_1_K implements the method for a M/M/1/K queueing model

FWq.M_M_S_K implements the method for a M/M/S/K queueing model

FWq.M_M_1_INF_H implements the method for a M/M/1/\infty/H queueing model

FWq.M_M_S_INF_H implements the method for a M/M/s/∞/H queueing model

FWq.M_S_INF_H_Y implements the method for a M/M/s/ ∞ /H with Y replacements queueing model

FWq.M_M_INF implements the method for a M/M/∞ queueing model

Value

 $W_q(x)$

G_G_1

Obtains the main characteristics of a G/G/1 model by simulation

Description

Obtains the main characteristics of a G/G/1 model by simulation

Usage

```
G_G_1(arr.distr = Exp(1), serv.distr = Exp(1),
    staClients = 100, nClients = 1000, historic = FALSE)
```

Arguments

arr.distr	Arrival distribution
serv.distr	Service distribution
staClients	Number of customers used in the stabilization stage
nClients	Number of customers used in the simulation stage
historic	Parameter used to activate/deactivate the historic information

Value

Returns the next information of a G/G/1 model:

pn	Stores all the positives steady-state probabilities of having n customers, with n from 0 to staClients+nClients $$
1	Expected number of customers in the system L
lq	Expected number of customers in the queue L_q
W	Expected waiting time in the system W

 $G_G_1_{INF_H}$

wq	Expected waiting time in the queue W_q
eff	Efficiency of the system $Eff = W/(W - Wq)$
rho	Traffic intensity ρ
historic	Optional parameter that stores the evolution of L , Lq , W and Wq during the simulation

See Also

 $Other\ Simulated\ Models:\ Closed\ Network,\ G_G_1_INF_H,\ G_G_1_K,\ G_G_INF,\ G_G_S,\ G_G_S_INF_H,\ G_G_S_INF_H,\ G_G_S_K,\ Open\ Network$

 $\textit{G_G_1_INF_H} \qquad \textit{Obtains the main characteristics of a G/G/1/} \\ \text{\sim/H model by simulation}$

Description

Obtains the main characteristics of a $G/G/1/\infty/H$ model by simulation

Usage

```
G_G_1_INF_H(arr.distr = Exp(1), serv.distr = Exp(1),
H = 2, staClients = nClients * 0.5, nClients = 1000,
historic = FALSE)
```

Arguments

arr.distr	Arrival distribution
serv.distr	Service distribution
Н	Population size
staClients	Number of customers used in the stabilization stage
nClients	Number of customers used in the simulation stage
historic	Parameter to activate/deactivate the historic information

Value

Returns the next information of a G/G/1/∞/H model:

pn	Vector of steady-state probabilities of having n customers in the system $P(n)$
1	Expected number of customers in the system L
lq	Expected number of customers in the queue L_q
W	Expected waiting time in the system W
wq	Expected waiting time in the queue W_q
eff	Efficiency of the system $Eff = W/(W - Wq)$
rho	Traffic intensity ρ
historic	Optional parameter that stores the evolution of L,Lq,W and Wq during the simulation

```
Other\ Simulated\ Models:\ Closed\ Network,\ G\_G\_1,\ G\_G\_1\_K,\ G\_G\_INF,\ G\_G\_S,\ G\_G\_S\_INF\_H,\ G\_G\_S\_INF\_H\_Y,\ G\_G\_S\_K,\ Open\ Network
```

G_G_1_K

Description

Obtains the main characteristics of a G/G/1/K model by simulation

Usage

```
G_G_1_K(arr.distr = Exp(1), serv.distr = Exp(1), K = 2,
    staClients = 100, nClients = 1000, historic = FALSE)
```

Arguments

arr.distr	Arrival distribution
serv.distr	Service distribution
K	Maximun size of the queue
staClients	Number of customers used in the stabilization stage
nClients	Number of customers used in the simulation stage
historic	Parameter to activate/deactivate the historic information

Value

Returns the next information of a G/G/1/K model:

pn	Vector of steady-state probabilities of having n customers in the system $P(n)$
1	Expected number of customers in the system L
lq	Expected number of customers in the queue L_q
w	Expected waiting time in the system W
wq	Expected waiting time in the queue \mathcal{W}_q
eff	Efficiency of the system $Eff = W/(W - Wq)$
rho	Traffic intensity ρ
historic	Optional parameter that stores the evolution of L,Lq,W and Wq during the simulation.

```
Other\ Simulated Models:\ Closed Network,\ G\_G\_1,\ G\_G\_1\_INF\_H,\ G\_G\_INF,\ G\_G\_S,\ G\_G\_S\_INF\_H,\ G\_G\_S\_INF\_H\_Y,\ G\_G\_S\_K,\ Open Network
```

 G_G_{INF}

G_G_INF	Obtains the main characteristics of a $G/G/\infty$ model by simulation
	·

Description

Obtains the main characteristics of a $G/G/\infty$ model by simulation

Usage

```
G_G_INF(arr.distr = Exp(1), serv.distr = Exp(1),
    staClients = 100, nClients = 1000, historic = FALSE)
```

Arguments

arr.distr	Arrival distribution
serv.distr	Service distribution
staClients	Number of customers used in stabilization stage
nClients	Number of customers used in the simulation stage
historic	Parameter to activate/deactivate the historic information

Value

Returns the next information of a $G/G/\infty$ model:

pn	Vector of steady-state probabilities of having n customers in the system $P(n)$
1	Expected number of customers in the system L
lq	Expected number of customers in the queue L_q
w	Expected waiting time in the system W
wq	Expected waiting time in the queue \mathcal{W}_q
eff	Efficiency of the system $Eff = W/(W-Wq)$
rho	Traffic intensity ρ
historic	Optional parameter that stores the evolution of L,Lq,W and Wq during the simulation

```
Other\ Simulated Models:\ Closed Network,\ G\_G\_1,\ G\_G\_1\_INF\_H,\ G\_G\_1\_K,\ G\_G\_S,\ G\_G\_S\_INF\_H,\ G\_G\_S\_INF\_H,\ G\_G\_S\_K,\ Open Network
```

G_G_S 11

G_G_S	Obtains the main characteristics of a G/G/s model by simulation

Description

Obtains the main characteristics of a G/G/s model by simulation

Usage

```
G_G_S(arr.distr = Exp(1), serv.distr = Exp(1), s = 2,
    staClients = 100, nClients = 1000, historic = FALSE)
```

Arguments

arr.distr	Arrival distribution
serv.distr	Service distribution
s	Number of servers
staClients	Number of customers used in the stabilization stage
nClients	Number of customers used in the simulation stage
historic	Parameter used to activate/deactivate the historic information

Value

Returns the next information of a G/G/S model:

pn	vector of steady-state probabilities of having n customers in the system $P(n)$
1	Expected number of customers in the system L
lq	Expected number of customers in the queue L_q
W	Expected waiting time in the system W
wq	Expected waiting time in the queue W_q
eff	Efficiency of the system $Eff = W/(W-Wq)$
rho	Traffic intensity ρ
historic	Optional parameter that stores the evolution of L,Lq,W and Wq during the simulation

```
Other\ Simulated\ Models:\ Closed\ Network,\ G\_G\_1,\ G\_G\_1\_INF\_H,\ G\_G\_1\_K,\ G\_G\_INF,\ G\_G\_S\_INF\_H,\ G\_G\_S\_INF\_H,\ G\_G\_S\_K,\ Open\ Network
```

 $G_GS_INF_H$

\sim	\sim	\sim	TNIC	- 1 1
(-	(1	``	TNF	Н

Obtains the main characteristics of a G/G/S/ ∞ /H model by simulation

Description

Obtains the main characteristics of a G/G/S/∞/H model by simulation

Usage

```
G_G_S_INF_H(arr.distr = Exp(1), serv.distr = Exp(1),
  s = 2, H = 2, staClients = 100, nClients = 1000,
  historic = FALSE)
```

Arguments

arr.distr	Arrival distribution
serv.distr	Service distribution
s	Number of servers
Н	Population size
staClients	Number of customers used in the stabilization stage
nClients	Number of customers used in the simulation stage
historic	Parameter to activate/deactivate the historic information

Value

Returns the next information of a $G/G/S/\infty/H$ model

pn	Vector of steady-state probabilities of having n customers in the system $P(n)$
1	Expected number of customers in the system L
lq	Expected number of customers in the queue L_q
W	Expected waiting time in the system W
wq	Expected waiting time in the queue \mathcal{W}_q
eff	Efficiency of the system $Eff = W/(W-Wq)$
rho	Traffic intensity ρ
historic	Optional parameter that stores the evolution of L,Lq,W and Wq during the simulation

```
Other\ Simulated\ Models:\ Closed\ Network,\ G\_G\_1,\ G\_G\_1\_INF\_H,\ G\_G\_1\_K,\ G\_G\_INF,\ G\_G\_S,\ G\_G\_S\_INF\_H\_Y,\ G\_G\_S\_K,\ Open\ Network
```

 $G_G_S_INF_H_Y$ 13

G_G_S_INF_H_Y	Obtains the main characteristics of a G/G/S/ ∞ /H with Y replacements model by simulation

Description

Obtains the main characteristics of a $G/G/S/\infty/H$ with Y replacements model by simulation

Usage

```
G_G_S_INF_H_Y(arr.distr = Exp(1), serv.distr = Exp(1),
  s = 2, H = 2, Y = 3, staClients = 100, nClients = 1000,
  historic = FALSE)
```

Arguments

arr.distr	Arrival distribution
serv.distr	Service distribution
S	Number of servers
Н	Population size
Υ	Number of replacements
staClients	Number of customers used in the stabilization stage
nClients	Number of customers used in the simulation stage
historic	Parameter to activate/deactivate the historic information

Value

Returns the next information of a G/G/1/S/∞/H/Y model:

pn	Vector of steady-state probabilities of having n customers in the system $P(n)$
1	Expected number of customers in the system L
lq	Expected number of customers in the queue L_q
W	Expected waiting time in the system W
wq	Expected waiting time in the queue W_q
eff	Efficiency of the system $Eff = W/(W - Wq)$
rho	Traffic intensity ρ
historic	Optional parameter that stores the evolution of L,Lq,W and Wq during the simulation

```
Other\ Simulated\ Models:\ Closed\ Network,\ G\_G\_1,\ G\_G\_1\_INF\_H,\ G\_G\_1\_K,\ G\_G\_INF,\ G\_G\_S,\ G\_G\_S\_INF\_H,\ G\_G\_S\_K,\ Open\ Network
```

 $G_{-}G_{-}S_{-}K$

_	_	_	
G	G	5	K

Obtains the main characteristics of a G/G/s/K model by simulation

Description

Obtains the main characteristics of a G/G/s/K model by simulation

Usage

```
G_G_S_K(arr.distr = Exp(1), serv.distr = Exp(1), s = 2,
  K = 3, staClients = 100, nClients = 1000,
  historic = FALSE)
```

Arguments

arr.distr	Arrival distribution
serv.distr	Service distribution
s	Number of servers
K	Maximun size of the queue
staClients	Number of customers used in the stabilization stage
nClients	Number of customers used in the simulation stage
historic	Parameter to activate/deactivate the historic information

Value

Returns the next information of a G/G/S/K model:

pn	Vector of steady-state probabilities of having n customers in the system $P(n)$
1	Expected number of customers in the system L
lq	Expected number of customers in the queue L_q
W	Expected waiting time in the system W
wq	Expected waiting time in the queue \mathcal{W}_q
eff	Efficiency of the system $Eff = W/(W-Wq)$
rho	Traffic intensity ρ
historic	Optional parameter that stores the evolution of L,Lq,W and Wq during the simulation

```
Other\ Simulated\ Models:\ Closed\ Network,\ G\_G\_1,\ G\_G\_1\_INF\_H,\ G\_G\_1\_K,\ G\_G\_INF,\ G\_G\_S,\ G\_G\_S\_INF\_H,\ G\_G\_S\_INF\_H\_Y,\ Open\ Network
```

MarkovianModel 15

Description

Constructor for MarkovianModel class.

Usage

```
MarkovianModel(arr.distr = Exp(1), serv.distr = Exp(1))
```

Arguments

```
arr.distr Arrival distribution (object of S4-class distr defined in distr package)
serv.distr Service distribution (object of S4-class distr defined in distr package)
```

Value

An object of class MarkovianModel, a list with the following components:

arr.distr Arrival distribution serv.distr Service distribution

maxCustomers

Returns the maximun value for n that satisfies P(n) > 0

Description

Returns the maximun value for n that satisfies P(n) > 0

Usage

```
maxCustomers(qm)

## S3 method for class 'MarkovianModel'
maxCustomers(qm)

## S3 method for class 'M_M_1_K'
maxCustomers(qm)

## S3 method for class 'M_M_S_K'
maxCustomers(qm)

## S3 method for class 'M_M_1_INF_H'
maxCustomers(qm)

## S3 method for class 'M_M_S_INF_H'
maxCustomers(qm)

## S3 method for class 'M_M_S_INF_H'
maxCustomers(qm)
```

 $M_{-}M_{-}16$

Arguments

qm object MarkovianModel

Details

maxCustomers.MarkovianModel implements the default method. Returns infinite. maxCustomers.M_M_1_K implements the method for a M/M/1/K queueing model maxCustomers.M_M_S_K implements the method for a M/M/S/K queueing model maxCustomers.M_M_1_INF_H implements the method for a M/M/1/ ∞ /H queueing model maxCustomers.M_M_S_INF_H implements the method for a M/M/s/ ∞ /H queueing model maxCustomers.M_M_S_INF_H_Y implements the method for a M/M/s/ ∞ /H/Y queueing model

M_M_1

Obtains the main characteristics of a M/M/1 queueing model

Description

Obtains the main characteristics of a M/M/1 queueing model

Usage

```
M_M_1(lambda = 3, mu = 6)
```

Arguments

1ambda Mean arrival ratemu Mean service rate

Value

Returns the next information of a M/M/1 model:

rho	Traffic intensity ρ
cn	Constant coefficients used in the computation of $P(n)$
p0	Probability of empty system P_0
1	Expected number of customers in the system ${\cal L}$
lq	Expected number of customers in the queue \mathcal{L}_q
W	Expected waiting time in the system \boldsymbol{W}
wq	Expected waiting time in the queue W_q
eff	Efficiency of the system $Eff = W/(W - W_a)$

See Also

 $\label{thm:convergence} Other Analitical Models: {\tt ClosedJacksonNetwork}, {\tt M_M_1_INF_H}, {\tt M_M_1_K}, {\tt M_M_S}, {\tt M_M_S_INF_H}, {\tt M_M_S_INF_H_Y}, {\tt M_M_S_K}, {\tt OpenJacksonNetwork}$

 $M_{M_1INF_H}$

M_M_1_INF_H	Obtains the main characteristics of a M/M/1/ ∞ /H queueing model

Description

Obtains the main characteristics of a M/M/1/∞/H queueing model

Usage

```
M_M_1INF_H(lambda = 3, mu = 6, h = 5)
```

Arguments

lambda	Mean arrival rate
mu	Mean service rate
h	Population size

Value

Returns the next information of a M/M/1/∞/H model:

rho	Constant λ/ρ	
barrho	Traffic intensity $\bar{\rho}$	
barlambda	Mean service rate $\bar{\lambda}$	
cn	Constant coefficients used in the computation of $P(n)$	
p0	Probability of empty system P_0	
1	Expected number of customers in the system ${\cal L}$	
lq	Expected number of customers in the queue \mathcal{L}_q	
W	Expected waiting time in the system ${\cal W}$	
wq	Expected waiting time in the queue ${\cal W}_q$	
eff	Efficiency of the system $Eff=W/(W-W_q)$	

See Also

 $\label{lem:other-analitical-Models: Closed-JacksonNetwork, M_M_1, M_M_1, M_M_1, M_M_INF, M_M_S, M_M_S_INF_H, M_M_S_INF_H_Y, M_M_S_K, Open-JacksonNetwork$

 M_M_{INF}

 $M_M_1_K$

Obtains the main characteristics of a M/M/1/K queueing model

Description

Obtains the main characteristics of a M/M/1/K queueing model

Usage

```
M_M_1_K(lambda = 3, mu = 6, k = 2)
```

Arguments

1ambda Mean arrival ratemu Mean service rate

k Maximun size of the queue

Value

Returns the next information of a M/M/1/K model:

rho	Constant coefficient λ/ρ
barrho	Traffic intensity $\bar{\rho}$
barlambda	Effective arrival rate $\bar{\lambda}$
1	Expected mean number of customers in the system ${\cal L}$
lq	Expected mean number of customers in the queue \mathcal{L}_q
W	Expected waiting time in the system ${\cal W}$
wq	Expected waiting time in the queue W_q
eff	Efficiency of the system $Eff = W/(W - W_q)$

See Also

 $\label{lem:other-analitical-Models: Closed-JacksonNetwork, M_M_1, M_M_1 = INF_H, M_M_INF, M_M_S, M_M_S_INF_H, M_M_S_INF_H_Y, M_M_S_K, Open-JacksonNetwork$

M_M_INF

Obtains the main characteristics of a $M/M/\infty$ queueing model

Description

Obtains the main characteristics of a $M/M/\infty$ queueing model

Usage

```
M_M=1NF(lambda = 3, mu = 6)
```

M_M_S 19

Arguments

1ambda Mean arrival ratemu Mean service rate

Value

Returns the next information of a $M/M/\infty$ model:

rho	Constant coefficient λ/ρ
barrho	Traffic intensity $\bar{\rho}$
p0	Probability of empty system P_0
1	Expected number of customers in the system L
lq	Expected number of customers in the queue L_q ($L_q = 0$ in this model)
W	Expected waiting time in the system W
wq	Expected waiting time in the queue W_q ($W_q = 0$ in this model)
eff	Efficiency of the system $Eff = W/(W - W_q)$

See Also

 $Other Analitical Models: Closed Jackson Network, M_M_1, M_M_1_INF_H, M_M_1_K, M_M_S, M_M_S_INF_H, M_M_S_INF_H_Y, M_M_S_K, Open Jackson Network$

 M_M_S

Obtains the main characteristics of a M/M/s queueing model

Description

Obtains the main characteristics of a M/M/s queueing model

Usage

```
M_M_S(lambda = 3, mu = 6, s = 2)
```

Arguments

lambda	Mean arrival rate
mu	Mean service rate
S	Number of servers

Value

Returns the next information of a M/M/s model:

rho	Traffic intensity ρ
cn	Constant coefficients used in the computation of $P(n)$ C_n
p0	Probability of empty system P_0
1	Expected number of customers in the system L
lq	Expected number of customers in the queue L_q
W	Expected waiting time in the system W
wq	Expected waiting time in the queue W_q
eff	Efficiency of the system $Eff = W/(W - W_q)$

 $M_M_S_INF_H$

See Also

 $Other Analitical Models: {\tt ClosedJacksonNetwork}, {\tt M_M_1}, {\tt M_M_1}. {\tt INF_H}, {\tt M_M_1}. {\tt K}, {\tt M_M_INF}, {\tt M_M_S}. {\tt INF_H}, {\tt M_M_S}. {\tt K}, {\tt OpenJacksonNetwork}$

M_M_S_INF_H

Obtains the main characteristics of a M/M/s/\infty/H queueing model

Description

Obtains the main characteristics of a M/M/s/ ∞ /H queueing model

Usage

```
M_M_S_INF_H(lambda = 3, mu = 6, s = 3, h = 5)
```

Arguments

lambda	Mean arrival rate
mu	Mean service rate
S	Number of servers
h	Population size

Value

Returns the next information of a M/M/s/ ∞ /H model:

rho	Constant coefficient λ/ρ
barrho	Traffic intensity $\bar{\rho}$
barlambda	Mean effective arrival rate $\bar{\lambda}$
cn	Constant coefficients used in the computation of $P(n)$
p0	Probability of empty system P_0
1	Expected number of customers in the system ${\cal L}$
lq	Expected number of customers in the queue \mathcal{L}_q
W	Expected waiting time in the system \boldsymbol{W}
wq	Expected waiting time in the queue \mathcal{W}_q
eff	Efficiency of the system $Eff = W/(W - W_q)$

See Also

 $M_M_S_INF_H_Y$ 21

M_M_S_INF_H_Y	Obtains the main characteristics of a M/M/s/ ∞ /H with Y replacements queueing model

Description

Obtains the main characteristics of a M/M/s/ ∞ /H with Y replacements queueing model

Usage

```
M_M_S_INF_H_Y(lambda = 3, mu = 6, s = 3, h = 5, y = 3)
```

Arguments

lambda	Mean arrival rate
mu	Mean service rate
S	Number of servers
h	Population size
У	Number of replacements

Value

Returns the next information of a M/M/s/ ∞ /H/Y model:

rho	Constant coefficient λ/ρ
barrho	Traffic intensity $\bar{\rho}$
barlambda	Effective arrival rate $\bar{\lambda}$
cn	Constant coefficients used in the computation of $P(n) \ C_n$
p0	Probability of 0 customers in the system P_0
1	Expected number of customers in the system ${\cal L}$
lq	Expected number of customers in the queue \mathcal{L}_q
W	Expected waiting time in the system ${\cal W}$
wq	Expected waiting time in the queue \mathcal{W}_q
eff	Efficiency of the system $Eff = W/(W - W_q)$

See Also

 $\label{lem:optimized} Other Analitical Models: {\tt ClosedJacksonNetwork}, {\tt M_M_1}, {\tt M_M_S}, {\tt M_M_S_K}, {\tt OpenJacksonNetwork}$

 $M_M_S_K$

 $M_M_S_K$

Obtains the main characteristics of a M/M/S/k queueing model

Description

Obtains the main characteristics of a M/M/S/k queueing model

Usage

```
M_M_S_K(lambda = 3, mu = 6, s = 2, k = 3)
```

Arguments

lambda	Mean arrival rate
mu	Mean service rate
S	Number of servers
k	Maximun size of the queue

Value

Returns the next information of a M/M/S/K model:

rho	Constant coefficient λ/ρ
barrho	Traffic intensity $\bar{\rho}$
barlambda	Effective arrival rate $\bar{\lambda}$
cn	Constant coefficients used in the computation of $P(n)$
pks	Probability of $K+s$ customers in the system ${\cal P}_{K+s}$
р0	Probability of empty system P_0
1	Expected number of customers in the system ${\cal L}$
lq	Expected number of customers in the queue L_q
w	Expected waiting time in the system ${\cal W}$
wq	Expected waiting time in the queue \mathcal{W}_q
eff	Efficiency of the system $Eff = W/(W-W_q)$

See Also

 $\label{lem:other-model} Other Analitical Models: {\tt ClosedJacksonNetwork}, {\tt M_M_1}, {\tt M_M_1}, {\tt M_M_1}, {\tt M_M_1}, {\tt M_M_1}, {\tt M_M_1}, {\tt M_1}, {\tt$

node 23

node	Returns the queueing model which corresponds to the node i of the network
	network

Description

Returns the queueing model which corresponds to the node i of the network

Usage

```
node(net, i)
```

Arguments

net	Network
i	Node

Value

MarkovianModel object

OpenJacksonNetwork

Obtains the main characteristics of an Open Jackson network model

Description

Obtains the main characteristics of an Open Jackson network model

Usage

```
OpenJacksonNetwork(lambda = c(20, 30), mu = c(100, 25), s = c(1, 2), p = matrix(c(0.2, 0.25, 0.1, 0), nrow = 2, ncol = 2))
```

Arguments

lambda	Vector of arrival rates at each node
mu	Vector of mean service rates
S	Vector with the number of servers at each node
р	Routing matrix, where p_{ij} is the routing probability from node i to node j

OpenNetwork OpenNetwork

Value

Returns the next information of an Open Jackson network model:

rho	Traffic intensity ρ
1	Vector with the expected number of customers in the nodes \boldsymbol{L}
lq	Vector of expected number of customers in the queue of each node \mathcal{L}_q
W	Vector of expected waiting time in each node \boldsymbol{W}
wq	Vector of expected waiting time in the queue of each node \boldsymbol{W}_q
lt	Expected number of customers in the network
lqt	Expected number of customers in all queues
wt	Total expected waiting time in the network
wqt	Total expected waiting time in all queues
eff	Efficiency $Eff = W/(W-W_q)$

See Also

```
Other Analitical Models: {\tt ClosedJacksonNetwork}, {\tt M\_M\_1}, {\tt M\_M\_1}. {\tt INF\_H}, {\tt M\_M\_1}. {\tt K}, {\tt M\_M\_INF}, {\tt M\_M\_S}, {\tt M\_M\_S}. {\tt INF\_H}, {\tt M\_M\_S}. {\tt INF\_H}, {\tt M\_M\_S}. {\tt K}
```

OpenNetwork	Obtains the main characteristics of an Open Network model by simulation
OpenNetwork	J I

Description

Obtains the main characteristics of an Open Network model by simulation

Usage

```
OpenNetwork(arr.distr, serv.distr, s, p, staClients,
   transitions, historic = FALSE)
```

Arguments

arr.distr	PairList indicating the arrival distribution and the node that uses it.
serv.distr	Vector of service distribution in each node
S	Vector of servers in each node
p	Routing matrix, where p_{ij} is the routing probability from node i to node j
staClients	Number of customers used in the stabilization stage
transitions	Number of transitions between nodes used in the simulation stage
historic	Parameter to activate/deactivate the historic information

P0i 25

Value

Returns the next information of an Open network model:

pn	Vector of steady-state probabilities of having n customers in the system $P(n)$
1	Vector of expected number of customers in the nodes L
lq	Vector of expected number of customers in the queues of the nodes \mathcal{L}_q
lqt	Expected number of customers in all queues
W	Vector of expected waiting times in the nodes W
wq	Vector of expected waiting time in the queues of the nodes $\boldsymbol{W_q}$
eff	Efficiency of the system $Eff = W/(W - Wq)$
rho	Traffic intensity ρ
historic	Optional parameter that stores the evolution of L, Lq, W and Wq during the simulation.

See Also

```
Other\ Simulated\ Models:\ Closed\ Network,\ G\_G\_1,\ G\_G\_1\_INF\_H,\ G\_G\_1\_K,\ G\_G\_INF,\ G\_G\_S\_INF\_H,\ G\_G\_S\_INF\_H,\ G\_G\_S\_K
```

P0i	Steady-state probability of 0 customers in the system on the node i of
	an Open Jackson Network.

Description

Returns the value of the probability of 0 customers in node i of an Open Jackson Network.

Usage

```
P0i(net, i)
## S3 method for class 'OpenJackson'
P0i(net, i)
```

Arguments

net	Network
i	Node

Details

 ${\tt P0i.OpenJackson}$ implements the method for an Open Jackson Network model

Value

26 Pn

Ρi

Steady-state probability of n customers in the node i of a network.

Description

Returns the value $P_i(n)$ in the node i of a network

Usage

```
Pi(net, n, node)
## S3 method for class 'ClosedJackson'
Pi(net, n, node)
```

Arguments

net Network
n Customers
node Node

Details

Pi.ClosedJackson implements the method for a Closed Jackson Network model

Value

P(n) in the selected node

Pn

Steady-state probability of having n customers in the system

Description

Returns the probability of having n customers in the given queueing model

Usage

```
Pn(qm, n)

## S3 method for class 'MarkovianModel'
Pn(qm, n)

## S3 method for class 'M_M_1'
Pn(qm, n)

## S3 method for class 'M_M_S'
Pn(qm, n)

## S3 method for class 'M_M_1_K'
```

Pn 27

```
Pn(qm, n)

## S3 method for class 'M_M_S_K'
Pn(qm, n)

## S3 method for class 'M_M_1_INF_H'
Pn(qm, n)

## S3 method for class 'M_M_S_INF_H'
Pn(qm, n)

## S3 method for class 'M_M_S_INF_H_Y'
Pn(qm, n)

## S3 method for class 'M_M_INF'
Pn(qm, n)

## S3 method for class 'OpenJackson'
Pn(qm, n)

## S3 method for class 'ClosedJackson'
Pn(qm, n)
```

Arguments

qm Queueing model
n Customers

Details

Pn.MarkovianModel implements the default method (generates a message)

Pn.M_M_1 implements the method for a M/M/1 queueing model

Pn.M_M_S implements the method for a M/M/S queueing model

Pn.M_M_1_K implements the method for a M/M/1/K queueing model

Pn.M_M_S_K implements the method for a M/M/S/K queueing model

Pn.M_M_1_INF_H implements the method for a M/M/1/∞/H queueing model

Pn.M_M_S_INF_H implements the method for a M/M/s/∞/H queueing model

Pn.M_M_S_INF_H_Y implements the method for a M/M/s/\infty/H/Y queueing model

Pn.M_M_INF implements the method for a M_M_INF queueing model

Pn.OpenJackson implements the method for an Open Jackson Network model In this function n, should have the same length than the number of nodes in the network.

Pn.ClosedJackson implements the method for a Closed Jackson Network model In this function n, should have the same length than the number of nodes in the network.

Value

28 Qn

Qn Steady-state probability of finding n customers in the system when a new customer arrives

Description

Returns the probability of n customers in the system in the moment of the arrival of a customer.

Usage

```
Qn(qm, n)

## S3 method for class 'MarkovianModel'
Qn(qm, n)

## S3 method for class 'M_M_1_K'
Qn(qm, n)

## S3 method for class 'M_M_S_K'
Qn(qm, n)

## S3 method for class 'M_M_1_INF_H'
Qn(qm, n)

## S3 method for class 'M_M_S_INF_H'
Qn(qm, n)

## S3 method for class 'M_M_S_INF_H'
Qn(qm, n)
```

Arguments

qm Queueing model n Customers

Details

Qn.MarkovianModel implements the default method (generates a message).

Qn.M_M_1_K implements the method for a M/M/1/K queueing model

Qn.M_M_S_K implements the method for a M/M/S/K queueing model

Qn.M_M_1_INF_H implements the method for a M/M/1/∞/H queueing model

 $Qn.M_M_S_INF_H$ implements the method for a M/M/s/ $\!\infty$ /H queueing model

 $\label{eq:linear_equation} \mbox{Qn.M_M_S_INF_H_Y implements the method for a $M/M/s/$$$ /M with Y replacements queueing model} \mbox{ } \mbox{A/M/$}$ / \mbox{A/M/$}$

Value

```
summary.MarkovianModel
```

Shows the main graphics of the parameters of a Markovian Model

Description

Shows the main graphics of the parameters of a Markovian Model

Usage

```
## S3 method for class 'MarkovianModel'
summary(object,
   t = list(range = seq(object$out$w, object$out$w * 3, length.out = 100)),
   n = c(0:5), ...)
```

Arguments

object	Markovian Model
t	Range of t
n	Range of n
	Further arguments passed to or from other methods.

```
summary.SimulatedModel
```

Shows the main graphics of the parameters of a Simulated Model

Description

Shows the main graphics of the parameters of a Simulated Model

Usage

```
## S3 method for class 'SimulatedModel'
summary(object, range = NULL,
...)
```

Arguments

```
object Simulated Model
range Range of the graphics
... Further arguments passed to or from other methods.
```

30 summaryWtWqt

summary	/Pn0n
Sullillai	yı niçii

Shows a plot of P(n) and Q(n) values of a Markovian Model

Description

Shows a plot of P(n) and Q(n) values of a Markovian Model

Usage

```
summaryPnQn(object, n, graphics = "ggplot2")
```

Arguments

object Markovian Model

n Range of n

graphics Type of graphics: "graphics" use the basic R plot and "ggplot2" the library gg-

plot2

summaryWtWqt

Shows a plot of W(t) and Wq(t) values of a Markovian Model

Description

Shows a plot of W(t) and Wq(t) values of a Markovian Model

Usage

```
summaryWtWqt(object, t, graphics = "ggplot2")
```

Arguments

object Markovian Model

t Range of t

graphics Type of graphics: "graphics" use the basic R plot and "ggplot2" the library gg-

plot2

Index

```
ClosedJacksonNetwork, 2, 16-22, 24
ClosedNetwork, 3, 8-14, 25
exportToUI, 4
FW, 4
FWq, 6
G_G_1, 4, 7, 8–14, 25
G_G_1_INF_H, 4, 8, 8, 9–14, 25
G_G_1_K, 4, 8, 9, 10–14, 25
G_G_INF, 4, 8, 9, 10, 11–14, 25
G_G_S, 4, 8–10, 11, 12–14, 25
G_G_S_INF_H, 4, 8–11, 12, 13, 14, 25
G_G_S_INF_H_Y, 4, 8–12, 13, 14, 25
G_G_S_K, 4, 8–13, 14, 25
M_M_1, 3, 16, 17-22, 24
M_M_1_INF_H, 3, 16, 17, 18-22, 24
M_M_1_K, 3, 16, 17, 18, 19–22, 24
M_M_INF, 3, 16–18, 18, 20–22, 24
M_M_S, 3, 16–19, 19, 20–22, 24
M_M_S_INF_H, 3, 16-20, 20, 21, 22, 24
M_M_S_INF_H_Y, 3, 16-20, 21, 22, 24
M_M_S_K, 3, 16-21, 22, 24
MarkovianModel, 15
maxCustomers, 15
node, 23
OpenJacksonNetwork, 3, 16-22, 23
OpenNetwork, 4, 8-14, 24
P0i, 25
Pi, 26
Pn, 26
Qn, 28
summary.MarkovianModel, 29
summary.SimulatedModel, 29
summaryPnQn, 30
summaryWtWqt, 30
```