D. Jzzhu and Numbers

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

Jzzhu have n non-negative integers $a_1, a_2, ..., a_n$. We will call a sequence of indexes $i_1, i_2, ..., i_k$ $(1 \le i_1 < i_2 < ... < i_k \le n)$ a group of size k.

Jzzhu wonders, how many groups exists such that a_{i_1} & a_{i_2} & ... & a_{i_k} = 0 (1 \leq k \leq n)? Help him and print this number modulo 1000000007 ($10^9 + 7$). Operation x & y denotes bitwise AND operation of two numbers.

Input

The first line contains a single integer n ($1 \le n \le 10^6$). The second line contains n integers $a_1, a_2, ..., a_n$ ($0 \le a_i \le 10^6$).

Output

Output a single integer representing the number of required groups modulo $100000007 (10^9 + 7)$.

Examples

```
input
3
2 3 3

output
0
```

```
input
4
0 1 2 3

output
10
```

```
input
6
5 2 0 5 2 1

output
53
```