End-to-End Memory Networks

권명하

▶ 핵심:CNN, RNN에서 벗어나자(by 김태훈)

활용 방법

- ▶ 1. Q&A
 - bAbl dataset

```
context Sam walks into the kitchen.
Sam picks up an apple.
Sam walks into the bedroom.
Sam drops the apple.
Q: Where is the apple?
A. Bedroom
```

2. Language modeling

Input: Context 문장들과 질문

Question q

 x_1 = Mary journeyed to the den.

 x_2 = Mary went back to the kitchen.

 x_3 = John journeyed to the bedroom.

 x_4 = Mary discarded the milk.

Q: Where was the milk before the den?

$$m_i = \sum_j \mathbf{A} x_{ij}$$

A: embedding matrix

Input

얼마나 집중할 것인지

$\hat{a} = Softmax(W(o+u))$

Weight tying:

- 1. Adjacent : A2=C1 ...
- 2. Layer-wise: A1=A2..

$$u_k+1 = o_k+Hu_k$$

Story (1: 1 supporting fact)	Support	Hop 1	Hop 2	Hop 3			
Daniel went to the bathroom.	377	0.00	0.00	0.03			
Mary travelled to the hallway.		0.00	0.00	0.00			
John went to the bedroom.		0.37	0.02	0.00			
John travelled to the bathroom.	yes	0.60	0.98	0.96			
Mary went to the office.	58	0.01	0.00	0.00			
Where is John? Answer: bathro	room Prediction: bathroom						

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3 0.00	
Brian is a frog.	yes	0.00	0.98		
Lily is gray.	587965	0.07	0.00	0.00	
Brian is yellow.	yes	0.07	0.00	1.00	
Julius is green.	50000	0.06	0.00	0.00	
Greg is a frog.	yes	0.76	0.02	0.00	
What color is Greg? Answer: y	tion: yel	ow	200000000000000000000000000000000000000		

Story (2: 2 supporting facts)	Support	Hop 1	Hop 2	Hop 3		
John dropped the milk.	F1000	0.06	0.00	0.00		
John took the milk there.	yes	0.88	1.00	0.00		
Sandra went back to the bathroom.	iñ (0.00	0.00	0.00		
John moved to the hallway.	yes	0.00	0.00	1.00		
Mary went back to the bedroom.	iñ.	0.00	0.00	0.00		
Where is the milk? Answer: hallway	Prediction: hallway					

Story (18: size reasoning)	Support	Hop 1	Hop 2	Hop 3	
The suitcase is bigger than the chest.	yes	0.00	0.88	0.00	
The box is bigger than the chocolate.	(5)(6)(1)	0.04	0.05	0.10	
The chest is bigger than the chocolate.	yes	0.17	0.07	0.90	
The chest fits inside the container.	(5,600)	0.00	0.00	0.00	
The chest fits inside the box.		0.00	0.00	0.00	
Does the suitcase fit in the chocolate	? Answer:	no Pre	diction: n	0	

	Baseline			MemN2N								
Task	Strongly Supervised MemNN [22]	LSTM [22]	MemNN WSH	BoW	PE	PE LS	PE LS RN	1 hop PE LS joint	2 hops PE LS joint	3 hops PE LS joint	PE LS RN joint	PE LS LW joint
1: 1 supporting fact	0.0	50.0	0.1	0.6	0.1	0.2	0.0	0.8	0.0	0.1	0.0	0.1
2: 2 supporting facts	0.0	80.0	42.8	17.6	21.6	12.8	8.3	62.0	15.6	14.0	11.4	18.8
3: 3 supporting facts	0.0	80.0	76.4	71.0	64.2	58.8	40.3	76.9	31.6	33.1	21.9	31.7
4: 2 argument relations	0.0	39.0	40.3	32.0	3.8	11.6	2.8	22.8	2.2	5.7	13.4	17.5
5: 3 argument relations	2.0	30.0	16.3	18.3	14.1	15.7	13.1	11.0	13.4	14.8	14.4	12.9
6: yes/no questions	0.0	52.0	51.0	8.7	7.9	8.7	7.6	7.2	2.3	3.3	2.8	2.0
7: counting	15.0	51.0	36.1	23.5	21.6	20.3	17.3	15.9	25.4	17.9	18.3	10.1
8: lists/sets	9.0	55.0	37.8	11.4	12.6	12.7	10.0	13.2	11.7	10.1	9.3	6.1
9: simple negation	0.0	36.0	35.9	21.1	23.3	17.0	13.2	5.1	2.0	3.1	1.9	1.5
10: indefinite knowledge	2.0	56.0	68.7	22.8	17.4	18.6	15.1	10.6	5.0	6.6	6.5	2.6
11: basic coreference	0.0	38.0	30.0	4.1	4.3	0.0	0.9	8.4	1.2	0.9	0.3	3.3
12: conjunction	0.0	26.0	10.1	0.3	0.3	0.1	0.2	0.4	0.0	0.3	0.1	0.0
13: compound coreference	0.0	6.0	19.7	10.5	9.9	0.3	0.4	6.3	0.2	1.4	0.2	0.5
14: time reasoning	1.0	73.0	18.3	1.3	1.8	2.0	1.7	36.9	8.1	8.2	6.9	2.0
15: basic deduction	0.0	79.0	64.8	24.3	0.0	0.0	0.0	46.4	0.5	0.0	0.0	1.8
16: basic induction	0.0	77.0	50.5	52.0	52.1	1.6	1.3	47.4	51.3	3.5	2.7	51.0
17: positional reasoning	35.0	49.0	50.9	45.4	50.1	49.0	51.0	44.4	41.2	44.5	40.4	42.6
18: size reasoning	5.0	48.0	51.3	48.1	13.6	10.1	11.1	9.6	10.3	9.2	9.4	9.2
19: path finding	64.0	92.0	100.0	89.7	87.4	85.6	82.8	90.7	89.9	90.2	88.0	90.6
20: agent's motivation	0.0	9.0	3.6	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2
Mean error (%)	6.7	51.3	40.2	25.1	20.3	16.3	13.9	25.8	15.6	13.3	12.4	15.2
Failed tasks (err. $> 5\%$)	4	20	18	15	13	12	11	17	11	11	11	10
On 10k training data Mean error (%) Failed tasks (err. > 5%)	3.2	36.4 16	39.2 17	15.4	9.4	7.2	6.6	24.5 16	10.9	7.9 6	7.5	11.0

Table 1: Test error rates (%) on the 20 QA tasks for models using 1k training examples (mean test errors for 10k training examples are shown at the bottom). Key: BoW = bag-of-words representation; PE = position encoding representation; LS = linear start training; RN = random injection of time index noise; LW = RNN-style layer-wise weight tying (if not stated, adjacent weight tying is used); joint = joint training on all tasks (as opposed to per-task training).

000

Position encoding :

$$l_{kj} = \left(1 - \frac{j}{J}\right) - (k - d)\left(1 - \frac{2j}{J}\right)$$

- $ightharpoonup J: # of words in <math>x_i, d: embedding size$
- ▶ 단어의 순서를 고려한다.

Temporal encoding:

- $ightharpoonup T_A$: encodes temporal information
- ▶ 문장의 순서를 고려한다.

▶ End-to-End의 의미 : supporting fact가 필요 없다.

- ▶ Language modeling 방법 :
 - ▶ 문장 대신 단어를 본다.
 - ▶ q는 o.1 값의 상수 벡터로 고정

Thank you.