R for Data Analysis

Session Content

Understanding Data

Installing R

Installing Rstudio Exploring Rstudio

Understanding Data

Data is increasingly being collected by devices to analyse via 'the cloud'

The 'Internet of things' has risen recently due to the ability to easily report vast amounts of data- often referred to as big data.

Data analysis is the practice of collecting data, converting it to useful information

Two procedures it must undergo 'data processing' and 'data cleaning'.

What is R?

Step 1: Install R

- https://cran.r-project.org/
- Choose for Windows/mac
- Choose install for first time
- Choose DOWNLOAD R
- When it is completed run the install wizard
- Choose to add core files, and 64 bit only in the select components
- Choose no (accept defaults)
- Choose a name E.g. R
- Choose additional create desktop icon
- Installation should now begin

https://www.datacamp.com/community/tutorials/installing-R-windows-mac-ubuntu

Step 2: Install RStudio

- https://rstudio.com/products/rstudio/ download/
- Scroll down the page choose the free installer
- Install the one for your device (Windows)
- Follow the install process
- Accept start name of rstudio

RStudio Cloud Version

- https://rstudio.cloud/
- This saves you installing any further software and saves PC space
- Set-up your free account

Exploring RStudio

Maximize/minimize

WOMEN IN DATA

ACADEMY

Drag Handle

Settings

- Tools > Global options
- Change the default working directory to one

of your choice

- Change the appearance settings,
- cobalt is the black screen.
- Use ctrl + L or on the console pane to clear
- Try typing in version you should now see your version in the console pane

Create First Script

- Choose File, new file
- Type in "print" in the code editor
- Add the ("hello world")
- Click run or Ctrl+Enter
- Should see the code in the console
- Ctrl+S will save the file

WOMEN IN DATA

ACADEMY

Session Content

Storing Values (Variables)

The way to assign a value in R is using <- shortcut = ALT -

name <- "username"</pre>

name <- "Satinder Sohal"

print (name)

Adding Comments

is used to add comments

Readline and Paste Commands

Readline is a built-in function that accepts a string argument within its parentheses to output as a prompt. It waits for user to type in the input to assign to that variable.

name <- readline("Enter your name: ")</pre>

The **paste** function concatenates a string and an assigned variable to be output.

hello <- paste ("Welcome", name, "!")

Why do we now need to print? Notice the global variables??

Data Types

Data Type	Description	Example
Character	A Text character or string	"R" "R string"
Double	A Decimal Place	3.14
Integer	A Whole number	5
Boolean	A logical value	TRUE

Data Types

- Unlike other programming languages R does not require you to explicitly specify the data type when you create a variable.
- R automatically generates the data type based on the value that is typed in.
- To find out the data type you can use the typeof() function.

Title <- "Women in Data"

Type <- paste("Type of title:", typeof(title))

Print (type)

TRY THIS:

```
pi<- 3.1415
dozen <- 12L
print(paste("Type of pi:", typeof(pi)))
print(paste("Type of dozen:", typeof(dozen)))
flag <-T
print(paste("is flag logical:", is.logical(flag)))
```


Vectors: storing multiple values

- Variables are vectors in R, similar to an array.
- They have elements E.g. day = c("Mon", "Tues", "Weds").
- Not zero indexed. E.g. day[1] would retrieve Mon. They can be numbers too, but they must be the same data type.
- You use the built-in function c() to setup the vector, which is assigned to a variable name
- To replace a value you would do day[3] = "Thurs" so Weds would become Thurs
- Vectors are flexible so expand easily, e.g. day [4] = "Fri" would automatically expand the vector
- length (day) would reveal all 4 elements

Store Mixed Data Types

• This is done using a **list** structure, so you can include **multiple** data types. "You cannot do this in a vector! "

 Lists are indexed to start at 1 like all other lists we have come across. Different values of data types are separated using commas.

For example, you can do this by

info <- list(21, 61.2, "Lisa", TRUE)

If you want to add names to the elements

info <- list(age=21, weight=61.2, name="Lisa", female=TRUE)

Plotting Stored Value

- Create two vectors
- x<- c(1, 2, 3, 4, 5)
- Y <- c(21, 5, 7, 9, 3)
- Add instruction to depict the vector values and then select all three lines. plot(x, y, type="o")
- Click Ctrl + Shift + S to run the script

Controlling Objects

When you create any R code to store data in any structure such as a variable or a list, a data structure object is created in the RStudio environment. You can use the built-in ls() function to call all objects/variables within the current console environment.

Create a list and two variables

airport.codesUK <-list ("Birmingham" = "BHX", "London Heathrow" = "LHR", "Bristol " = "BRS", "Manchester" = "MAN")

airport.dubai <-"DBX"

airport.sanfran <-"SFO"

- 1. Press CTRL + A to select the code then press CTRL + Enter to run the code and create the objects
- 2. Open the environment in list view and expand the list
- 3. Switch to grid view
- 4. Click the spyglass icon and expand the list
- 5. Return to the code editor and enter an instruction **Is()**
- 6. Add an instruction to remove some items **rm(airport.sanfran)**
- 7. Repeat the ls()
- 8. Select the three instructions then CTRL + Enter

Tasks

Install RStudio

Explore RStudio

- Change to ask the user to input their name and print it readline and paste commands (slide 14)
- Practical task (slide 16)
 - Have a go at storing mixed data types, plotting stored values and controlling objects (slides 18-20)

Home Learning Tasks

- 1. Write a R program to take input from the user (name and age) and display the values.
- 2. Write a R program to get the details of the objects in memory. Hint: how do you list all the local variables?
- 3. Write a R program to create a sequence of numbers from 20 to 50 and find the mean of numbers from 20 to 60 and sum of numbers from 51 to 91.
- 4. Write a R program to create a vector which contains 10 random integer values between -50 and +50

WOMEN IN DATA ACADEMY

TECH TALENT ACADEMY