

Linear Algebra 3

Industrial AI Lab.

Prof. Seungchul Lee

System of Linear Equations

- Well-determined linear systems
- Under-determined linear systems
- Over-determined linear systems

Well-Determined Linear Systems

System of linear equations

$$egin{array}{cccc} 2x_1+3x_2&=7&&&x_1^*=2\ x_1+4x_2&=6&&x_2^*=1 \end{array}$$

Geometric interpretation

Well-Determined Linear Systems

System of linear equations

$$egin{array}{cccc} 2x_1+3x_2&=7\ x_1+4x_2&=6 \end{array} \implies egin{array}{c} x_1^*=2\ x_2^*=1 \end{array}$$

Generalization

$$egin{aligned} a_{11}x_1 + a_{12}x_2 &= b_1 & ext{Matrix form} \ a_{21}x_1 + a_{22}x_2 &= b_2 & \Longrightarrow & egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} b_1 \ b_2 \end{bmatrix} \end{aligned}$$

$$AX = B$$

$$X^* = A^{-1}B$$
 if A^{-1} exists

Under-Determined Linear Systems

System of linear equations

$$2x_1 + 3x_2 = 7 \implies \text{Many solutions}$$

• Geometric interpretation

Under-Determined Linear Systems

System of linear equations

$$2x_1 + 3x_2 = 7 \implies \text{Many solutions}$$

Generalization

$$egin{aligned} a_{11}x_1 + a_{12}x_2 &= b_1 \end{aligned} egin{aligned} \operatorname{Matrix form} \ &\Longrightarrow \end{aligned} egin{aligned} \left[egin{aligned} a_{11} & a_{12} \end{array}
ight] \left[egin{aligned} x_1 \ x_2 \end{array}
ight] = b_1 \end{aligned}$$

$$AX = B$$

 \therefore Many Solutions when A is fat

Over-Determined Linear Systems

• System of linear equations

$$egin{array}{lll} 2x_1+3x_2&=7\ x_1+4x_2&=6&\Longrightarrow& ext{No solutions}\ x_1+x_2&=4 \end{array}$$

• Geometric interpretation

Over-Determined Linear Systems

System of linear equations

$$egin{array}{lll} 2x_1+3x_2&=7\ x_1+4x_2&=6&\Longrightarrow& ext{No solutions}\ x_1+x_2&=4 \end{array}$$

Generalization

$$egin{aligned} a_{11}x_1 + a_{12}x_2 &= b_1 \ a_{21}x_1 + a_{22}x_2 &= b_2 \ a_{31}x_1 + a_{32}x_2 &= b_3 \end{aligned} \qquad egin{aligned} \operatorname{Matrix form} & egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} &= egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix} \end{aligned}$$

$$AX = B$$

 \therefore No Solutions when A is skinny

Summary of Linear Systems

$$AX = B$$

• Square: Well-determined

$$egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} b_1 \ b_2 \end{bmatrix}$$

Fat: Under-determined

$$egin{bmatrix} \left[egin{array}{cc} a_{11} & a_{12} \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \end{array}
ight] = b_1$$

Skinny: Over-determined

$$egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix}$$

Least-Norm Solution

• For Under-Determined Linear System

$$\left[egin{array}{ccc} a_{11} & a_{12} \end{array}
ight] \left[egin{array}{ccc} x_1 \ x_2 \end{array}
ight] = b_1 \quad ext{ or } \quad AX = B$$

- Find the solution of AX = B that minimize ||X|| or $||X||^2$
- *i.e.*, optimization problem

$$\begin{array}{ll}
\min & ||X||^2 \\
\text{s. t. } AX = B
\end{array}$$

Least-Norm Solution

• Optimization problem

$$\begin{array}{ll}
\min & ||X||^2 \\
\text{s. t. } AX = B
\end{array}$$

• Geometric interpretation

- Select one solution among many solutions
- Often control problem

$$X^* = A^T ig(AA^Tig)^{-1} B$$
 Least norm solution

Least-Square Solution

For Over-Determined Linear System

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \neq \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \quad \text{or} \quad AX \neq B \quad x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} \neq \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- Find X that minimizes ||E|| or $||E||^2$ (error)
- *i.e.* optimization problem

$$\min_{X}\left\Vert E
ight\Vert ^{2}=\min_{X}\left\Vert AX-B
ight\Vert ^{2}$$

Least-Square Solution

• *i.e.* optimization problem

$$egin{aligned} \min_{X} \left\| E
ight\|^2 &= \min_{X} \left\| AX - B
ight\|^2 \ X^* &= \left(A^T A
ight)^{-1} A^T B \ B^* &= AX^* &= A ig(A^T A ig)^{-1} A^T B \end{aligned}$$

• Geometric interpretation

• Often estimation problem

Vector Projection onto Y

The vector projection of a vector X on (or onto) a nonzero vector Y is the orthogonal projection of X
onto a straight line parallel to Y

$$W = \omega \hat{Y} = \omega \frac{Y}{\|Y\|}, \text{ where } \omega = \|W\|$$

$$\omega = \|X\| \cos \theta = \|X\| \frac{X \cdot Y}{\|X\| \|Y\|} = \frac{X \cdot Y}{\|Y\|}$$

$$W = \omega \hat{Y} = \frac{X \cdot Y}{\|Y\|} \frac{Y}{\|Y\|} = \frac{X \cdot Y}{\|Y\| \|Y\|} Y = \frac{X^T Y}{Y^T Y} Y = \frac{\langle X, Y \rangle}{\langle Y, Y \rangle} Y$$

$$= Y \frac{X^T Y}{Y^T Y} = Y \frac{Y^T X}{Y^T Y} = \frac{Y Y^T}{Y^T Y} X = PX$$

Vector Projection onto Y

• Another way of computing ω and W

$$egin{aligned} Y \perp (X-W) \ \Longrightarrow Y^T (X-W) &= Y^T \left(X - \omega rac{Y}{\|Y\|}
ight) = 0 \ \Longrightarrow \omega &= rac{Y^T X}{Y^T Y} \|Y\| \ W &= \omega rac{Y}{\|Y\|} &= rac{Y^T X}{Y^T Y} Y = rac{\langle X,Y
angle}{\langle Y,Y
angle} Y \end{aligned}$$

Orthogonal Projection onto a Subspace

- Projection of B onto a subspace U of span of A_1 and A_2
- Orthogonality

