11. feladatsor: Lnko, lkkt, euklideszi algoritmus, lineáris diofantikus egyenletek és kongruenciák

1. feladat

Határozza meg a 18 és 24 egész számok legnagyobb közös osztóit valamint legkisebb közös többszöröseit. Mi lesz lnko(18, 24) illetve lkkt[18, 24]?

2. feladat

A módosított kanonikus alak felhasználásával határozza meg meg lnko(350, 16500) és lkkt[350, 16500] értékeket.

3. feladat

- (a) Határozza meg az euklideszi algoritmussal a következő egész számok legnagyobb közös osztóját.
- (b) Írja fel ezt a legnagyobb közös osztót a két szám lineáris kombinációjaként.
- (c) Határozza meg a számok legkisebb közös többszörösét.
 - (1) 30 és 70
 - (2) 126 és 150
 - (3) 105 és 231
 - (4) 60 és -739
 - (5) -182 és 390
 - (6) 132 és 275
 - (7) 616 és 1155
 - (8) -33 és 21
 - (9) 33 és 21

4. feladat

Határozza meg az lnko(6, 10, 18) és lkkt[6, 10, 18] értékeket.

5. feladat

Döntse el, hogy igazak-e a következő kongruenciák.

$7 \equiv 3 \pmod{3}$	$7 \equiv 3 \pmod{2}$	$7 \equiv 3 \pmod{1}$
$8 \equiv 10 \pmod{5}$	$2 \equiv -1 \pmod{3}$	$6 \equiv 6 \pmod{100}$
$11 \equiv 8 \pmod{3}$	$8 \equiv 5 \pmod{3}$	$11 \equiv 5 \pmod{3}$
$6 \equiv 2 \pmod{4}$	$3 \equiv -5 \pmod{4}$	$18 \equiv -10 \pmod{4}$
$160 \equiv 80 \pmod{16}$	$16 \equiv 8 \pmod{8}$	

6. feladat

Mutassa meg, hogy a $R \subseteq \mathbb{Z} \times \mathbb{Z}$, $aRb \iff a \equiv b \pmod{5}$ reláció ekvivalencia
reláció. Mik lesznek az ekvivalencia
osztályok?

7. feladat

Oldja meg a következő kongruencia egyenleteket.

- (a) $2x \equiv 3 \pmod{4}$
- (b) $x \equiv 2 \pmod{3}$
- (c) $x \equiv 7 \pmod{2}$
- (d) $12x \equiv 8 \pmod{20}$
- (e) $22x \equiv 8 \pmod{10}$
- (f) $15x \equiv -1 \pmod{7}$

8. feladat

Oldja meg a következő lineáris diofantikus egyenleteket.

- (a) 3x + 10y = 9
- (b) 15x + 25y = -70
- (c) 14x + 22y = 21
- (d) 12x + 10y = 62

9. feladat

Bontsuk fel a 812-t két egész szám összegére úgy, hogy az egyik szám osztható legyen 12-vel illetve a másik 32-vel.

10. feladat

A konténerboltban kicsi és nagy méretű konténereket árulnak. Szeretnénk 40 hűtőszekrényt konténerekben elszállítani. A kicsi konténerbe 3, a nagy konténerbe 4 hűtőszekrény fér el. Hány kicsi illetve nagy konténerre van szükségünk ha az összes hűtőszekrényt el szeretnénk szállítani?

11. feladat

Legyen $a_1, a_2, b, c, m \in \mathbb{Z}$. Igazolja, hogy ha $a_1 \cdot a_2 \equiv b \pmod{m}$ és $a_2 \equiv c \pmod{m}$ akkor $a_1 \cdot c \equiv b \pmod{m}$.

12. feladat (*)

Írjon fel két olyan egész számot, amelyekre az euklideszi algoritmus (a) legfeljebb 50 (b) pontosan 50 (c) pontosan 100

lépésben befejeződik.

Koch-Gömöri Richárd, kgomoririchard@inf.elte.hu, kgomori.richard@gmail.com