Tercer problema per lliurar d'anàlisi real. El teorema $\pi - \lambda$ de Dynkin.

En aquest entregable demostrarem un teorema important de la branca de teoria de la mesura i en veurem alguna aplicació. Començarem amb les definicions bàsiques. Sigui X un conjunt. Siguin P, L famílies de subconjunts de X.

<u>Definició</u> 1 (π -Sistema). Direm que la família de conjunts P és un π -sistema si per tota parella de conjunts $A, B \in P$, es compleix que $A \cap B \in P$.

<u>Definició</u> 2 (λ -sistema). Direm que la família L és un λ -sistema si compleix les tres propietats següents:

- $(\lambda 1) \emptyset \in L$
- $(\lambda 2)$ Si $A \in L$ aleshores $\overline{A} \in L$
- ($\lambda 3$) L és tancat per unions numerables i <u>disjuntes</u>: si $\{A_i\}_{i\geq 1}\subseteq L$, i $A_i\cap A_j=\emptyset$ si $i\neq j$, aleshores $\cup_{i\geq 1}A_i\in L$.

El primer objectiu d'aquest entregable és demostrar el següent teorema, conegut com teorema $\pi - \lambda$ de Dynkin:

<u>Teorema</u> 1 (π - λ de Dynkin). Sigui P, un π -sistema. Sigui L un λ -sistema tal que $P \subseteq L$. Aleshores $\sigma(P) \subseteq L$.

El que ens diu és la σ -àlgebra generada per (recordeu que la σ -àlgebra generada per un conjunt és la σ -àlgebra més petita que conté el conjunt en qüestió) un π -sistema contingut en un λ -sistema no és més gran que el λ -sistema L.

- a) Demostreu que en un λ -sistema L, si $A,B\in L$, $B\subseteq A$, aleshores la seva diferència $A-B=\{x\in A:x\not\in B\}\in L$.
- b) Demostreu que si \mathcal{A} és, alhora, un π -sistema i un λ -sistema, aleshores és una σ -àlgebra. (*Indicació:* falta veure que la unió numerable, no necessariament disjunta, és de \mathcal{A} . Useu adequadament la propietat de π -sistema en aquest punt).
- c) Siguin L_1 i L_2 dos λ -sistemes. Demostreu que $L_1 \cap L_2$ també ho és. Generalitzeu-ho per una intersecció arbitraria de λ -sistemes.

Abans de passar a la demostració propiament del teorema $\pi - \lambda$ ens cal un pas més. Donat una família de conjunts P definits sobre X, definim l(P) com l'intersecció de tots els λ -sistemes que contenen P.

Ara anem al pas més complicat de tot plegat. Ara demostrarem el següent lema:

<u>Lema</u> 1. Sigui P un π -sistema definit sobre X. Aleshores l(P) és una σ -àlgebra.

Per a demostrar-lo, vegueu els següents punts:

- d) Donat $A \in l(P)$, el conjunt $\{B \subset X : A \cap B \in l(P)\}$ és un λ -sistema.
- e) Supossem que $A \in P$ i $B \in l(P)$. Demostreu que $A \cap B \in l(P)$.
- f) Si $A, B \in l(P)$, aleshores $A \cap B \in l(P)$. Concloqueu el lema.

Amb això ja tenim tots els ingredients, per tant:

g) Demostreu el teorema $\pi - \lambda$ de Dynkin.

Veguem per acabar la següent aplicació que és rellevant en el context de la mesura de Lebesgue:

- h) Considerem un espai mesurable (X, A). Sigui P un π -sistema. Demostreu que si tenim dues mesures μ_1 i μ_2 que coincideixen en P i amb $\mu_1(X) = \mu_2(X) < +\infty$, aleshores també coincideixen en $\sigma(P)$ (Indicació: demostreu que $L = \{A \in A : \mu_1(A) = \mu_2(A)\}$ és un λ -sistema).
- i) Què ens diu l'anterior en el cas de la mesura de Lebesgue? (Indicació: considereu els intervals (n, n+1))