AUTO

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 39 compute nodes are available.

Program started at Tue Aug 15 07:08:53 2017

Program finished at Tue Aug 15 14:34:24 2017 [Runtime:0000:07:25:31]

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 2716962937

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

1

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0 *

Order of parameters:

1 Θ_1 <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy:

Bayesian inference

-Population size estimation: Exponential Distribution

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Metropolis sampling
Divergence Metropolis sampling
Divergence Spread Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Prior Minimum MeanMaximum Delta Bins UpdateFreq
1 Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings:

Long chain

Number of chains1Recorded steps [a]50000Increment (record every x step [b]200Number of concurrent chains (replicates) [c]2

Visited (sampled) parameter values [a*b*c] 20000000

Number of discard trees per chain (burn-in) 10000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

1000000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: infile.0.9

Haplotyping is turned on:

Output file: outfile_0.9_0.6

Posterior distribution raw histogram file: bayesfile
Raw data from the MCMC run: bayesallfile_0.9_0.6

Print data:

Print genealogies [only some for some data type]:

Data summary

Data file:

Datatype:

Sequence data

Number of loci:

100

Mutationmodel:

Mutationmodel:				
Locus Sublocus		Mutationmodel	Mutationmodel parameters	
1	1	Jukes-Cantor	[Basefreq: =0.25]	
2	1	Jukes-Cantor	[Basefreq: =0.25]	
3	1	Jukes-Cantor	[Basefreq: =0.25]	
4	1	Jukes-Cantor	[Basefreq: =0.25]	
5	1	Jukes-Cantor	[Basefreq: =0.25]	
6	1	Jukes-Cantor	[Basefreq: =0.25]	
7	1	Jukes-Cantor	[Basefreq: =0.25]	
8	1	Jukes-Cantor	[Basefreq: =0.25]	
9	1	Jukes-Cantor	[Basefreq: =0.25]	
10	1	Jukes-Cantor	[Basefreq: =0.25]	
11	1	Jukes-Cantor	[Basefreq: =0.25]	
12	1	Jukes-Cantor	[Basefreq: =0.25]	
13	1	Jukes-Cantor	[Basefreq: =0.25]	
14	1	Jukes-Cantor	[Basefreq: =0.25]	
15	1	Jukes-Cantor	[Basefreq: =0.25]	
16	1	Jukes-Cantor	[Basefreq: =0.25]	
17	1	Jukes-Cantor	[Basefreq: =0.25]	
18	1	Jukes-Cantor	[Basefreq: =0.25]	
19	1	Jukes-Cantor	[Basefreq: =0.25]	
20	1	Jukes-Cantor	[Basefreq: =0.25]	
21	1	Jukes-Cantor	[Basefreq: =0.25]	
22	1	Jukes-Cantor	[Basefreq: =0.25]	
23	1	Jukes-Cantor	[Basefreq: =0.25]	
24	1	Jukes-Cantor	[Basefreq: =0.25]	
25	1	Jukes-Cantor	[Basefreq: =0.25]	
26	1	Jukes-Cantor	[Basefreq: =0.25]	
27	1	Jukes-Cantor	[Basefreq: =0.25]	
28	1	Jukes-Cantor	[Basefreq: =0.25]	
29	1	Jukes-Cantor	[Basefreq: =0.25]	
30	1	Jukes-Cantor	[Basefreq: =0.25]	
31	1	Jukes-Cantor	[Basefreq: =0.25]	
32	1	Jukes-Cantor	[Basefreq: =0.25]	
33	1	Jukes-Cantor	[Basefreq: =0.25]	
34	1	Jukes-Cantor	[Basefreq: =0.25]	

35	1	Jukes-Cantor	[Pagefreg: -0.25]
36	1 1	Jukes-Cantor	[Basefreq: =0.25] [Basefreq: =0.25]
37	1	Jukes-Cantor	[Basefreq: =0.25]
38	1	Jukes-Cantor	[Basefreq: =0.25]
39	1	Jukes-Cantor	[Basefreq: =0.25]
40	1	Jukes-Cantor	[Basefreq: =0.25]
41	1	Jukes-Cantor	[Basefreq: =0.25]
42	1	Jukes-Cantor	[Basefreq: =0.25]
43	1	Jukes-Cantor	[Basefreq: =0.25]
44	1	Jukes-Cantor	[Basefreq: =0.25]
45	1	Jukes-Cantor	[Basefreq: =0.25]
46	1	Jukes-Cantor	[Basefreq: =0.25]
47	1	Jukes-Cantor	[Basefreq: =0.25]
48	1	Jukes-Cantor	[Basefreq: =0.25]
49	1	Jukes-Cantor	[Basefreq: =0.25]
50	1	Jukes-Cantor	[Basefreq: =0.25]
51	1	Jukes-Cantor	[Basefreq: =0.25]
52	1	Jukes-Cantor	[Basefreq: =0.25]
53	1	Jukes-Cantor	[Basefreq: =0.25]
54	1	Jukes-Cantor	[Basefreq: =0.25]
55	1	Jukes-Cantor	[Basefreq: =0.25]
56	1	Jukes-Cantor	[Basefreq: =0.25]
57	1	Jukes-Cantor	[Basefreq: =0.25]
58	1	Jukes-Cantor	[Basefreq: =0.25]
59	1	Jukes-Cantor	[Basefreq: =0.25]
60	1	Jukes-Cantor	[Basefreq: =0.25]
61	1	Jukes-Cantor	[Basefreq: =0.25]
62	1	Jukes-Cantor	[Basefreq: =0.25]
63	1	Jukes-Cantor	[Basefreq: =0.25]
64	1	Jukes-Cantor	[Basefreq: =0.25]
65	1	Jukes-Cantor	[Basefreq: =0.25]
66	1	Jukes-Cantor	[Basefreq: =0.25]
67	1	Jukes-Cantor	[Basefreq: =0.25]
68	1	Jukes-Cantor	[Basefreq: =0.25]
69	1	Jukes-Cantor	[Basefreq: =0.25]
70	1	Jukes-Cantor	[Basefreq: =0.25]
71	1	Jukes-Cantor	[Basefreq: =0.25]
72	1	Jukes-Cantor	[Basefreq: =0.25]
73	1	Jukes-Cantor	[Basefreq: =0.25]
74	1	Jukes-Cantor	[Basefreq: =0.25]
75	1	Jukes-Cantor	[Basefreq: =0.25]
76	1	Jukes-Cantor	[Basefreq: =0.25]
77	1	Jukes-Cantor	[Basefreq: =0.25]
78	1	Jukes-Cantor	[Basefreq: =0.25]
79	1	Jukes-Cantor	[Basefreq: =0.25]

				AUTO 5
80	1	Jukes-Cantor	[Basefreq: =0.25]	
81	1	Jukes-Cantor	[Basefreq: =0.25]	
82	1	Jukes-Cantor	[Basefreq: =0.25]	
83	1	Jukes-Cantor	[Basefreq: =0.25]	
84	1	Jukes-Cantor	[Basefreq: =0.25]	
85	1	Jukes-Cantor	[Basefreq: =0.25]	
86	1	Jukes-Cantor	[Basefreq: =0.25]	
87	1	Jukes-Cantor	[Basefreq: =0.25]	
88	1	Jukes-Cantor	[Basefreq: =0.25]	
89	1	Jukes-Cantor	[Basefreq: =0.25]	
90	1	Jukes-Cantor	[Basefreq: =0.25]	
91	1	Jukes-Cantor	[Basefreq: =0.25]	
92	1	Jukes-Cantor	[Basefreq: =0.25]	
93	1	Jukes-Cantor	[Basefreq: =0.25]	
94	1	Jukes-Cantor	[Basefreq: =0.25]	
95	1	Jukes-Cantor	[Basefreq: =0.25]	
96	1	Jukes-Cantor	[Basefreq: =0.25]	
97	1	Jukes-Cantor	[Basefreq: =0.25]	
98	1	Jukes-Cantor	[Basefreq: =0.25]	
99	1	Jukes-Cantor	[Basefreq: =0.25]	
100	1	Jukes-Cantor	[Basefreq: =0.25]	
Sites per	locus	0.4		
Locus		Sites		
1		0000		
2	1	0000		

Locus	Sites
1	10000
2	10000
3	10000
4	10000
5	10000
6	10000
7	10000
8	10000
9	10000
10	10000
11	10000
12	10000
13	10000
14	10000
15	10000
16	10000
17	10000
18	10000
19	10000
20	10000

	10000	
21	10000	
22	10000	
23	10000	
24	10000	
25	10000	
26	10000	
27	10000	
28	10000	
29	10000	
30	10000	
31	10000	
32	10000	
33	10000	
34	10000	
35	10000	
36	10000	
37	10000	
38	10000	
39	10000	
40	10000	
41	10000	
42	10000	
43	10000	
44	10000	
45	10000	
46	10000	
47	10000	
48	10000	
49	10000	
50	10000	
51	10000	
52	10000	
53	10000	
54	10000	
55	10000	
56	10000	
57	10000	
58	10000	
59	10000	
60	10000	
61	10000	
62	10000	
63	10000	
64	10000	
65	10000	

66	10000				
67	10000				
68	10000				
69	10000				
70	10000				
71	10000				
72	10000				
73	10000				
74	10000				
75	10000				
76	10000				
77	10000				
78	10000				
79	10000				
80	10000				
81	10000				
82	10000				
83	10000				
84	10000				
85	10000				
86	10000				
87	10000				
88	10000				
89	10000				
90	10000				
91	10000				
92	10000				
93	10000				
94	10000				
95	10000				
96	10000				
97	10000				
98	10000				
99	10000				
100	10000				
	e variation and probab				
Locus S	Sublocus Region type	Rate of change	Probability	Patch size	
1	1 1	1.000	1.000	1.000	
2	1 1	1.000	1.000	1.000	
3	1 1	1.000	1.000	1.000	
4	1 1	1.000	1.000	1.000	
5	1 1	1.000	1.000	1.000	
6	1 1	1.000	1.000	1.000	

7	1	1	1.000	1.000	1.000	
8	1	1	1.000	1.000	1.000	
9	1	1	1.000	1.000	1.000	
10	1	1	1.000	1.000	1.000	
11	1	1	1.000	1.000	1.000	
12	1	1	1.000	1.000	1.000	
13	1	1	1.000	1.000	1.000	
14	1	1	1.000	1.000	1.000	
15	1	1	1.000	1.000	1.000	
16	1	1	1.000	1.000	1.000	
17	1	1	1.000	1.000	1.000	
18	1	1	1.000	1.000	1.000	
19	1	1	1.000	1.000	1.000	
20	1	1	1.000	1.000	1.000	
21	1	1	1.000	1.000	1.000	
22	1	1	1.000	1.000	1.000	
23	1	1	1.000	1.000	1.000	
24	1	1	1.000	1.000	1.000	
25	1	1	1.000	1.000	1.000	
26	1	1	1.000	1.000	1.000	
27	1	1	1.000	1.000	1.000	
28	1	1	1.000	1.000	1.000	
29	1	1	1.000	1.000	1.000	
30	1	1	1.000	1.000	1.000	
31	1	1	1.000	1.000	1.000	
32	1	1	1.000	1.000	1.000	
33	1	1	1.000	1.000	1.000	
34	1	1	1.000	1.000	1.000	
35	1	1	1.000	1.000	1.000	
36	1	1	1.000	1.000	1.000	
37	1	1	1.000	1.000	1.000	
38	1	1	1.000	1.000	1.000	
39	1	1	1.000	1.000	1.000	
40	1	1	1.000	1.000	1.000	
41	1	1	1.000	1.000	1.000	
42	1	1	1.000	1.000	1.000	
43	1	1	1.000	1.000	1.000	
44	1	1	1.000	1.000	1.000	
45	1	1	1.000	1.000	1.000	
46	1	1	1.000	1.000	1.000	
47	1	1	1.000	1.000	1.000	
48	1	1	1.000	1.000	1.000	
49	1	1	1.000	1.000	1.000	
50	1	1	1.000	1.000	1.000	
51	1	1	1.000	1.000	1.000	

52	1	1	1.000	1.000	1.000	
53	1	1	1.000	1.000	1.000	
54	1	1	1.000	1.000	1.000	
55	1	1	1.000	1.000	1.000	
56	1	1	1.000	1.000	1.000	
57	1	1	1.000	1.000	1.000	
58	1	1	1.000	1.000	1.000	
59	1	1	1.000	1.000	1.000	
60	1	1	1.000	1.000	1.000	
61	1	1	1.000	1.000	1.000	
62	1	1	1.000	1.000	1.000	
63	1	1	1.000	1.000	1.000	
64	1	1	1.000	1.000	1.000	
65	1	1	1.000	1.000	1.000	
66	1	1	1.000	1.000	1.000	
67	1	1	1.000	1.000	1.000	
68	1	1	1.000	1.000	1.000	
69	1	1	1.000	1.000	1.000	
70	1	1	1.000	1.000	1.000	
71	1	1	1.000	1.000	1.000	
72	1	1	1.000	1.000	1.000	
73	1	1	1.000	1.000	1.000	
74	1	1	1.000	1.000	1.000	
75	1	1	1.000	1.000	1.000	
76	1	1	1.000	1.000	1.000	
77	1	1	1.000	1.000	1.000	
78	1	1	1.000	1.000	1.000	
79	1	1	1.000	1.000	1.000	
80	1	1	1.000	1.000	1.000	
81	1	1	1.000	1.000	1.000	
82	1	1	1.000	1.000	1.000	
83	1	1	1.000	1.000	1.000	
84	1	1	1.000	1.000	1.000	
85	1	1	1.000	1.000	1.000	
86	1	1	1.000	1.000	1.000	
87	1	1	1.000	1.000	1.000	
88	1	1	1.000	1.000	1.000	
89	1	1	1.000	1.000	1.000	
90	1	1	1.000	1.000	1.000	
91	1	1	1.000	1.000	1.000	
92	1	1	1.000	1.000	1.000	
93	1	1	1.000	1.000	1.000	
94	1	1	1.000	1.000	1.000	
95	1	1	1.000	1.000	1.000	
96	1	1	1.000	1.000	1.000	

97	1	1	1.000	1.000	1.000	
98	1	1	1.000	1.000	1.000	
99	1	1	1.000	1.000	1.000	
100	1	1	1.000	1.000	1.000	
Population		·		11000	Locus	Gene copies
	nshorn_0				1	10
- Tromai	.0.1.0111_0				2	10
					3	10
					4	10
					5	10
					6	10
					7	10
					8	10
					9	10
					10	10
					11	10
					12	10
					13	10
					14	10
					15	10
					16	10
					17	10
					18	10
					19	10
					20	10
					21	10
					22	10
					23	10
					24	10
					25	10
					26	10
					27	10
					28	10
					29	10
					30	10
					31	10
					32	10
					33	10
					34	10
					35	10
					36	10
					37	10
					38	10
					39	10
					40	10
					· ·	-

41	10
42	10
43	10
44	10
45	10
46	10
47	10
48	10
49	10
50	10
51	10
52	10
53	10
54	10
55	10
56	10
57	10
58	10
59	10
60	10
61	10
62	10
63	10
64	10
65	10
66	10
67	10
68	10
69	10
70	10
71	10
72	10
73	10
74	10
75	10
76	10
77	10
78	10
79	10
80	10
81	10
82	10
83	10
84	10
85	10

	86	10	
	87	10	
	88	10	
	89	10	
	90	10	
	91	10	
	92	10	
	93	10	
	94	10	
	95	10	
	96	10	
	97	10	
	98	10	
	99	10	
	100	10	
Total of all populations	1	10	
	2	10	
	3	10	
	4	10	
	5	10	
	6	10	
	7	10	
	8	10	
	9	10	
	10	10	
	11	10	
	12	10	
	13	10	
	14	10	
	15	10	
	16	10	
	17 18	10	
		10	
	19	10	
	20	10	
	21	10	
	22	10	
	23	10	
	24	10	
	25	10	
	26	10	
	27	10	
	28	10	
	29	10	
	30	10	

31	10
32	10
33	10
34	10
35	10
36	10
37	10
38	10
39	10
40	10
41	10
42	10
43	10
44	10
45	10
46	10
47	10
48	10
49	10
50	10
51	10
52	10
53	10
54	10
55	10
56	10
57	10
58	10
59	10
60	10
61	10
62	10
63	10
64	10
65	10
66	10
67	10
68	10
69	10
70	10
71	10
72	10
73	10
74	10
75	10
. •	

	76	10
	77	10
	78	10
	79	10
	80	10
	81	10
	82	10
	83	10
	84	10
	85	10
	86	10
	87	10
	88	10
	89	10
	90	10
	91	10
	92	10
	93	10
	94	10
	95	10
	96	10
	97	10
	98	10
	99	10
1	100	10
Minuster F. O. On Johnson on favorably Investors via an 07:00:F21		

Bayesian Analysis: Posterior distribution table

ocus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.03100	0.04433	0.04790	0.04953	0.05160	0.04450	0.07992
2	Θ_1	0.02807	0.04200	0.04777	0.04967	0.05147	0.04323	0.07624
3	Θ_1	0.02820	0.04167	0.04770	0.04947	0.05140	0.04297	0.07473
4	Θ_1	0.02613	0.04060	0.04770	0.04947	0.05127	0.04197	0.06880
5	Θ_1	0.03007	0.04267	0.04777	0.04967	0.05147	0.04390	0.07524
6	Θ_1	0.03127	0.04333	0.04783	0.04973	0.05160	0.04457	0.08079
7	Θ_1	0.03073	0.04320	0.04777	0.04967	0.05153	0.04443	0.08176
8	Θ_1	0.02947	0.04273	0.04777	0.04960	0.05153	0.04403	0.07903
9	Θ_1	0.02993	0.04380	0.04777	0.04940	0.05147	0.04397	0.07558
10	Θ_1	0.02860	0.04240	0.04770	0.04940	0.05133	0.04310	0.07211
11	Θ_1	0.03280	0.04393	0.04783	0.04980	0.05167	0.04510	0.08111
12	Θ_1	0.03060	0.04380	0.04777	0.04947	0.05140	0.04397	0.07745
13	Θ_1	0.03273	0.04400	0.04770	0.04967	0.05167	0.04517	0.08346
14	Θ_1	0.02827	0.04180	0.04763	0.04953	0.05140	0.04310	0.07325
15	Θ_1	0.03133	0.04353	0.04790	0.04987	0.05167	0.04470	0.08022
16	Θ_1	0.03113	0.04420	0.04783	0.04933	0.05153	0.04437	0.07867
17	Θ_1	0.02513	0.04033	0.04763	0.04947	0.05133	0.04170	0.06766
18	Θ_1	0.02733	0.04133	0.04770	0.04953	0.05140	0.04263	0.07248

19	Θ_1	0.03053	0.04413	0.04790	0.04967	0.05153	0.04430	0.07948
20	Θ_1	0.02980	0.04260	0.04770	0.04960	0.05140	0.04390	0.07714
21	Θ_1	0.02773	0.04160	0.04770	0.04953	0.05140	0.04290	0.07218
22	Θ_1	0.03393	0.04420	0.04790	0.04980	0.05160	0.04537	0.08264
23	Θ_1	0.03113	0.04353	0.04777	0.04973	0.05153	0.04470	0.07913
24	Θ_1	0.02873	0.04293	0.04770	0.04940	0.05147	0.04310	0.07442
25	Θ_1	0.03173	0.04373	0.04783	0.04967	0.05160	0.04490	0.08247
26	Θ_1	0.02567	0.03987	0.04763	0.04920	0.05120	0.04130	0.06403
27	Θ_1	0.02940	0.04273	0.04770	0.04967	0.05153	0.04397	0.07873
28	Θ_1	0.03053	0.04300	0.04770	0.04960	0.05147	0.04423	0.07945
29	Θ_1	0.03227	0.04380	0.04803	0.04993	0.05167	0.04497	0.08242
30	Θ_1	0.02453	0.04000	0.04763	0.04933	0.05133	0.04143	0.07002
31	Θ_1	0.02773	0.03387	0.04763	0.05080	0.05140	0.04310	0.07222
32	Θ_1	0.03073	0.04313	0.04777	0.04967	0.05153	0.04437	0.07678
33	Θ_1	0.03047	0.04287	0.04777	0.04973	0.05160	0.04410	0.07744
34	Θ_1	0.02913	0.04213	0.04770	0.04953	0.05140	0.04343	0.07431
35	Θ_1	0.02667	0.04093	0.04757	0.04927	0.05133	0.04230	0.07154
36	Θ_1	0.02687	0.04187	0.04770	0.04960	0.05147	0.04310	0.07825
37	Θ_1	0.03167	0.04340	0.04783	0.04973	0.05153	0.04463	0.07942
38	Θ_1	0.02720	0.04147	0.04770	0.04953	0.05140	0.04277	0.07097
39	Θ_1	0.02673	0.04133	0.04770	0.04960	0.05147	0.04263	0.07288
40	Θ_1	0.03300	0.04420	0.04790	0.04993	0.05160	0.04537	0.08200
41	Θ_1	0.03340	0.04420	0.04777	0.04967	0.05160	0.04543	0.08496

_ocus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
42	Θ_1	0.02907	0.02907	0.04770	0.05147	0.05147	0.04357	0.07471
43	Θ_1	0.02773	0.04207	0.04770	0.04967	0.05140	0.04330	0.07575
44	Θ_1	0.02940	0.04347	0.04770	0.04940	0.05140	0.04363	0.07624
45	Θ_1	0.02460	0.04100	0.04757	0.04920	0.05127	0.04123	0.06635
46	Θ_1	0.02800	0.04187	0.04777	0.04967	0.05147	0.04310	0.07339
47	Θ_1	0.03067	0.04300	0.04783	0.04967	0.05160	0.04423	0.07840
48	Θ_1	0.02733	0.04120	0.04763	0.04947	0.05127	0.04250	0.06961
49	Θ_1	0.02587	0.04147	0.04757	0.04920	0.05133	0.04163	0.06787
50	Θ_1	0.02673	0.04100	0.04777	0.04953	0.05133	0.04230	0.07122
51	Θ_1	0.03093	0.04340	0.04770	0.04967	0.05153	0.04457	0.07866
52	Θ_1	0.01927	0.03640	0.04690	0.04860	0.05080	0.03743	0.05814
53	Θ_1	0.02620	0.04080	0.04770	0.04947	0.05140	0.04217	0.06885
54	Θ_1	0.02813	0.04267	0.04763	0.04927	0.05140	0.04283	0.07023
55	Θ_1	0.03100	0.04300	0.04783	0.04967	0.05160	0.04423	0.07741
56	Θ_1	0.03007	0.04300	0.04783	0.04980	0.05153	0.04417	0.07756
57	Θ_1	0.03080	0.04427	0.04783	0.04953	0.05153	0.04443	0.07706
58	Θ_1	0.02100	0.03773	0.04750	0.04867	0.05087	0.03843	0.05790
59	Θ_1	0.02700	0.04120	0.04763	0.04953	0.05133	0.04250	0.07121
60	Θ_1	0.02800	0.04193	0.04770	0.04960	0.05147	0.04317	0.07477
61	Θ_1	0.02613	0.03473	0.04757	0.05027	0.05133	0.04210	0.07080

62	Θ_1	0.02980	0.04367	0.04777	0.04947	0.05147	0.04383	0.07654
63	Θ_1	0.03007	0.04307	0.04770	0.04967	0.05147	0.04423	0.07875
64	Θ_1	0.03027	0.04287	0.04777	0.04960	0.05153	0.04410	0.07834
65	Θ_1	0.02947	0.04273	0.04770	0.04967	0.05153	0.04397	0.07758
66	Θ_1	0.02940	0.04273	0.04770	0.04947	0.05133	0.04357	0.07429
67	Θ_1	0.02973	0.04273	0.04777	0.04960	0.05153	0.04397	0.07751
68	Θ_1	0.02993	0.04253	0.04777	0.04967	0.05153	0.04377	0.07771
69	Θ_1	0.03013	0.04253	0.04770	0.04953	0.05147	0.04390	0.07578
70	Θ_1	0.02907	0.04260	0.04770	0.04980	0.05147	0.04370	0.07691
71	Θ_1	0.03160	0.04353	0.04783	0.04967	0.05160	0.04477	0.08088
72	Θ_1	0.02140	0.03860	0.04750	0.04893	0.05107	0.03923	0.06080
73	Θ_1	0.02173	0.03847	0.04710	0.04847	0.05087	0.03863	0.05757
74	Θ_1	0.02647	0.04107	0.04763	0.04953	0.05133	0.04230	0.07152
75	Θ_1	0.03033	0.04327	0.04783	0.04967	0.05160	0.04450	0.08060
76	Θ_1	0.02467	0.03987	0.04763	0.04940	0.05133	0.04130	0.06846
77	Θ_1	0.02327	0.03820	0.04757	0.04900	0.05107	0.03977	0.06026
78	Θ_1	0.02560	0.04107	0.04763	0.04960	0.05147	0.04237	0.07297
79	Θ_1	0.02640	0.04127	0.04770	0.04960	0.05147	0.04257	0.07426
80	Θ_1	0.03027	0.04293	0.04777	0.04967	0.05147	0.04410	0.07762
81	Θ_1	0.03033	0.04420	0.04790	0.04960	0.05160	0.04437	0.08195
82	Θ_1	0.02827	0.04213	0.04770	0.04960	0.05153	0.04337	0.07737
83	Θ_1	0.02753	0.04147	0.04770	0.04947	0.05133	0.04283	0.07212
84	Θ_1	0.03360	0.04433	0.04783	0.04987	0.05167	0.04543	0.08365

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
85	Θ_1	0.02573	0.04067	0.04763	0.04947	0.05133	0.04197	0.06876
86	Θ_1	0.02800	0.04267	0.04770	0.04940	0.05133	0.04283	0.07290
87	Θ_1	0.03173	0.04347	0.04777	0.04967	0.05160	0.04470	0.07868
88	Θ_1	0.03247	0.04360	0.04777	0.04973	0.05147	0.04477	0.07911
89	Θ_1	0.03040	0.04293	0.04777	0.04967	0.05160	0.04417	0.07748
90	Θ_1	0.03093	0.04440	0.04783	0.04947	0.05160	0.04457	0.08230
91	Θ_1	0.02893	0.04327	0.04770	0.04940	0.05140	0.04343	0.07554
92	Θ_1	0.03113	0.04347	0.04777	0.04967	0.05160	0.04470	0.08007
93	Θ_1	0.03393	0.04440	0.04797	0.04987	0.05160	0.04550	0.08349
94	Θ_1	0.02280	0.03807	0.04610	0.04873	0.05100	0.03923	0.05814
95	Θ_1	0.02767	0.04140	0.04770	0.04953	0.05133	0.04270	0.07164
96	Θ_1	0.03240	0.04387	0.04783	0.04967	0.05167	0.04510	0.08315
97	Θ_1	0.03153	0.04420	0.04783	0.04940	0.05153	0.04437	0.07822
98	Θ_1	0.03087	0.04293	0.04783	0.04973	0.05153	0.04417	0.07695
99	Θ_1	0.02680	0.04087	0.04770	0.04933	0.05133	0.04230	0.06813
100	Θ_1	0.02667	0.03920	0.04763	0.04967	0.05127	0.04203	0.06846
All	Θ_1	0.00360	0.00553	0.00683	0.00827	0.01127	0.00717	0.09689

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?							
In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,							
and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.							

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations: $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$

Locus	TI(1a)	BTI(1b)	SS(2)	HS(3)
1	-15163.49	-14804.11	-14858.71	-14913.79
2	-15089.53	-14755.72	-14813.01	-14866.04
3	-16348.51	-15782.80	-15808.14	-15861.09
4	-14867.89	-14623.74	-14687.33	-14749.05
5	-15091.26	-14731.86	-14780.65	-14837.26
6	-18256.77	-17173.99	-17121.71	-17169.85
7	-15691.85	-15223.59	-15265.16	-15314.47
8	-14977.00	-14694.76	-14761.38	-14813.81
9	-16510.53	-15540.57	-15481.48	-15539.56
10	-15440.08	-14933.39	-14955.87	-15017.39
11	-16161.06	-15565.33	-15584.95	-15635.29
12	-19697.42	-17505.04	-17237.19	-17290.02
13	-18338.36	-17329.13	-17295.17	-17341.66
14	-15373.62	-14897.99	-14925.72	-14982.98
15	-15318.19	-14876.80	-14916.05	-14968.03
16	-15034.44	-14691.09	-14745.93	-14799.23
17	-14544.87	-14300.29	-14362.66	-14424.39
18	-15137.16	-14703.39	-14734.84	-14793.65
19	-15311.99	-15002.18	-15067.27	-15119.85
20	-14951.10	-14665.76	-14730.19	-14784.47
21	-15041.53	-14667.55	-14712.30	-14769.71
22	-16430.36	-15644.94	-15629.91	-15679.04
23	-15639.33	-15085.97	-15104.97	-15159.77
24	-16594.83	-15740.23	-15705.53	-15762.45
25	-20822.23	-18143.04	-17791.35	-17841.85
26	-14541.97	-14294.72	-14355.93	-14417.61
27	-15248.87	-14854.34	-14900.83	-14954.98
28	-16728.04	-16106.74	-16130.14	-16179.18
29	-17182.17	-15998.10	-15910.48	-15959.98

30	-14636.79	-14396.44	-14461.54	-14524.19
31	-14859.29	-14500.79	-14545.77	-14605.01
32	-15372.55	-14894.07	-14925.40	-14979.39
33	-16993.77	-16220.60	-16211.02	-16265.50
34	-15899.00	-15055.70	-15015.31	-15071.50
35	-15571.81	-15098.54	-15128.45	-15186.56
36	-54880.82	-47346.17	-46392.25	-46439.63
37	-15148.15	-14825.59	-14888.19	-14940.48
38	-14835.95	-14515.55	-14567.39	-14626.59
39	-14651.33	-14401.39	-14467.18	-14524.79
40	-15847.39	-15206.89	-14939.05	-15263.41
41	-16778.53	-16081.92	-15031.09	-16137.58
42	-14995.36	-14631.01	-14679.00	-14735.35
43	-15897.52	-15331.48	-14368.72	-15404.56
44	-15420.65	-14907.52	-14573.78	-14986.32
45	-14776.50	-14419.89	-14459.74	-14522.62
46	-14856.28	-14497.66	-14544.60	-14601.10
47	-15739.96	-15293.69	-14374.84	-15388.77
48	-15051.24	-14670.05	-14471.81	-14771.95
49	-14962.85	-14657.44	-14472.17	-14772.25
50	-14672.77	-14391.61	-14449.61	-14508.58
51	-15633.51	-15033.71	-14759.58	-15097.97
52	-20317.52	-19505.78	-14713.58	-19569.92
53	-14627.71	-14384.02	-14448.71	-14508.85
54	-16236.89	-15326.88	-14920.95	-15334.20
55	-15373.78	-14861.85	-14885.71	-14940.35
56	-16887.00	-15673.28	-15482.39	-15625.71
57	-15073.29	-14702.30	-14747.62	-14805.48
58	-14254.21	-14054.43	-14117.13	-14186.14
59	-14607.17	-14337.39	-14395.92	-14456.90
60	-15037.12	-14652.49	-14695.46	-14751.97
61	-14808.48	-14516.59	-14571.95	-14631.34
62	-15941.59	-15403.61	-14813.59	-15482.67
63	-16430.42	-15658.38	-14967.03	-15696.16
64	-18247.96	-16925.13	-15107.63	-16871.45
65	-15605.31	-15002.68	-15010.76	-15067.88
66	-15003.88	-14618.05	-14662.39	-14717.99
67	-15284.90	-14835.65	-14871.54	-14924.79
68	-15358.05	-14954.75	-14999.34	-15056.80
69	-15969.41	-15181.00	-15154.28	-15209.98
70	-15853.56	-15439.04	-14863.48	-15543.68
71	-15917.65	-15279.67	-14902.83	-15338.36
72	-14327.32	-14115.11	-14174.60	-14242.34
73	-14246.20	-14044.92	-14107.66	-14173.85
74	-16236.58	-15373.94	-15331.21	-15390.32
L				

75	-16502.50	-15614.65	-15271.13	-15628.91
76	-14814.92	-14523.63	-14579.98	-14639.27
77	-14317.41	-14087.75	-14148.18	-14211.65
78	-16122.85	-15378.44	-14467.89	-15417.50
79	-15317.75	-14970.48	-14929.76	-15084.11
80	-14981.43	-14685.25	-14682.41	-14802.44
81	-22174.65	-20348.80	-14144.28	-20238.39
82	-15903.67	-15391.18	-14550.71	-15476.10
83	-14815.10	-14567.50	-14632.03	-14692.90
84	-16186.75	-15602.88	-14464.28	-15675.36
85	-15150.02	-14738.94	-14712.58	-14835.22
86	-14953.79	-14599.44	-14452.54	-14703.47
87	-16279.98	-15330.99	-14404.84	-15333.55
88	-15643.98	-15136.14	-14191.61	-15218.24
89	-15525.25	-15059.75	-15093.19	-15147.98
90	-15905.27	-15354.96	-15291.41	-15432.73
91	-16057.88	-15649.23	-14891.25	-15754.71
92	-15143.85	-14838.78	-14583.07	-14956.80
93	-16115.93	-15517.21	-15536.92	-15584.52
94	-14244.86	-14047.52	-14108.95	-14175.44
95	-14779.75	-14499.10	-14557.25	-14617.04
96	-15749.04	-15283.75	-15054.26	-15374.98
97	-16007.26	-15256.54	-14668.97	-15293.43
98	-15661.98	-15148.21	-15173.42	-15230.51
99	-15153.15	-14690.11	-14699.05	-14776.08
100	-15396.49	-14819.34	-14823.42	-14884.81
All	-1613498.39	-1550632.83	-1524090.92	-1556944.22

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures (1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 69.579551]

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets. In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods,

Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1 Genealogies	385501156/400042924 105752041/1599957076	0.96365 0.06610

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1 Genealogies	0.59672 0.25282	6782342.23 16265005.75

Average temperatures during the run

Chain Temperatures 1 0.00000 2 0.00000

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

3

4

0.00000

0.00000

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta
beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have
a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou
tes are estimated poorly because the data contains little or no information for that route. Increasing the range will
not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run