

Technische Spezifikation 2

Automatische Balkonbewässerung

Autor: Mohammad Abuosba

Letzte Änderung: 11. Juli 2025

Dateiname: Automatische_Balkonbewässerung_technische_Spezifikation

Ó htw-Berlin

Technische SpezifikationAutomatische Balkonbewässerung

Version: 1

Inhaltsverzeichnis

1	Vorhandene Dokumente	4
2	Prozessüberblick	5
2.1	Fachlicher Workflow	5
2.2	Technischer Workflow	6
2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9	Sensor misst Spannung (analog) → ESP32 ESP32 berechnet Feuchtigkeitswert MQTT Publish App abonniert auf MQTT-Topic Automatische Entscheidung auf ESP Manuelle Steuerung über App ESP abonniert auf Steuer-Topic MQTT Logging Fehlerhandling Technische Spezifikation SW	66 66 66 66
3.1	Überblick Komponenten	
3.2	Beschreibung der Implementierung	8
3.2.1 3.2.2 3.3	Funktion 1: Zeitplan einstellen	11
3.4	Erweiterungen Sprint 2 – Software	15
3.4.1 3.4.2 3.4.3 3.4.4 3.4.5	Push-Benachrichtigungen (Flutter Local Notifications) Hintergrundfunktionalität MQTT-Verbindungseinstellungen Verlauf erweitert Bugfixes & Optimierungen Technische Spezifikation Konstruktion	15 15 16
4.1	Baugruppen	16
5	Modul Abhängigkeiten	16

Technische SpezifikationAutomatische Balkonbewässerung

Abbildungsverzeichnis

Abbildung 1: Fachlicher Workflow	6
Abbildung 2: Komponentendiagramm	
Abbildung 3: Klassendiagramm Zeitplan	
Abbildung 4: Klassendiagramm Verlauf	
Abbildung 5: Klassendiagramme aller Systeme	
Abbildung 6: Systeminfrastruktur	
Abbildung 7: Pinout des µCs	
Abbildarig 7.1 modt dog pog	

1 Vorhandene Dokumente

Alle für die vorliegende Spezifikation ergänzenden Unterlagen müssen hier aufgeführt werden

Dokument	Autor	Datum
Last_Lastenheft.pdf	Dzaid, Johannes, Zul	25.04.2025
Automatische_Balkonbewässerung_Pflichtenheft.pdf	Dzaid, Johannes, Zul	23.05.2025
Technische_Spezifikation.pdf	Dzaid, Johannes, Zul	13.06.2025

2 Prozessüberblick

2.1 Fachlicher Workflow

Abbildung 1: Fachlicher Workflow

Ablaufschema z.B.:

- Nutzer öffnet App → Dashboard → Navigation zu Verlauf/Zeitplan
- Manuelle/Automatische Bewässerung starten
- Ereignisse werden pro Wochentag gespeichert

2.2 Technischer Workflow

2.2.1 Sensor misst Spannung (analog) \rightarrow ESP32

- Der Bodenfeuchtesensor liefert ein analoges Spannungssignal.
- Der ESP32 liest über einen ADC-Pin regelmäßig den Wert (z. B. alle 30 Sekunden).

2.2.2 ESP32 berechnet Feuchtigkeitswert

• Der ADC-Wert wird kalibriert und in einen Prozentwert (0–100 %) umgerechnet.

2.2.3 MQTT Publish

Der ESP32 veröffentlicht den Feuchtigkeitswert an den Broker auf dem Topic:

2.2.4 App abonniert auf MQTT-Topic

- Die App ist mit demselben Broker verbunden und erhält die Sensordaten.
- Die UI zeigt den aktuellen Zustand

2.2.5 Automatische Entscheidung auf ESP

- Der ESP prüft lokal: Wenn value < threshold dann: GPIO High (Pumpe aktivieren)
- Alternativ: Prüfung gegen Zeitplan

2.2.6 Manuelle Steuerung über App

- Die App sendet MQTT-Befehl an
- "Jetzt Bewässern"

2.2.7 ESP abonniert auf Steuer-Topic

• Wenn Nachricht empfangen, GPIO High (Pumpe aktivieren wie eingestellt)

2.2.8 MQTT Logging

• Jede Aktion (Start, Stoppt, Fehler) wird an einem bestimmten Topic publiziert.

2.2.9 Fehlerhandling

- Wenn Sensor nicht lesbar (invalid), Fehlermeldung über MQTT publizieren
- App zeigt Fehlermeldung an

3 Technische Spezifikation SW

3.1 Überblick Komponenten

IT-Komponente	Funktion aus Pflichtenheft
Navigation	Drawer mit Seiten: Hauptmenü, Verlauf, Zeitplan
Verlauf	Anzeige pro Tag mit Icons und Dialog
Zeitplan	Zeitauswahl mit Schalter für automatische Bewässerung
Manuelle Steuerung	"Jetzt bewässern"-Button
UI-Komponenten	CustomScaffold, Popup-Dialoge

Abbildung 2: Komponentendiagramm

3.2 Beschreibung der Implementierung

3.2.1 Funktion 1: Zeitplan einstellen

#	Komponentendetail	Erforderliche Arbeiten
T1	GUI	Flutter ZeitplanScreen, Switch & TimePicker
T2	Logik	State Management (setState), Zeit speichern
Т3	Unterfunktion	_selectTime() – öffnet Zeitwahl

T1: GUI

Was wird implementiert?

- · Startbildschirm mit aktuellem Sensorstatus
- · Navigation durch mehrere Sensoren via PageView
- "Jetzt bewässern"-Button

Elemente:

- Überschrift (Text)
- Menü-Button ≡ für Drawer
- · Sensoranzeige in Slideshow
- Indikatoren (• ○)
- · Bewässerungsbutton (ElevatedButton)

Verwendete Widgets/Bibliotheken:

- · PageView.builder
- ElevatedButton
- · Text, Row, Column, Spacer
- · Icons, Material3, AnimatedPositioned

Interaktionen:

- Swipe → Sensor wechseln
- Klick auf Menü → Drawer mit Seiten

Fehlerbehandlung:

- Sensorwerte = null → Anzeige: "Daten nicht verfügbar"
- Kein Sensor → leerer Zustand mit Hinweis

T2: Logik

Ablauflogik:

- Beim Öffnen der App werden die Sensordaten geladen (lokal oder via API).
- Bei Wechsel der PageView wird der aktuelle Index gespeichert.
- Daten werden als List<Map<String, String>> verwaltet

Technische Spezifikation

Automatische Balkonbewässerung

Pseudocode:

```
PageView.builder(
itemCount: sensors.length,
onPageChanged: (i) => _currentIndex = i;
```

State Management:

· StatefulWidget mit setState

Fehlerfälle:

• Ungültiger Wert → Farbliche Markierung (z. B. rot < 20 % Feuchtigkeit)

T3: Unterfunktion: "Jetzt bewäsern"

GUI:

- Grüner Button, abgerundet
- Auf voller Breite, mittig

Funktionalität:

- Sendet manuellen Befehl zur Bewässerung (z. B. POST an API)
- Feedback via Snackbar oder Animation

Pseudocode:

```
onPressed: () {
  sendWateringCommand();
  showSnackbar("Wasser gesendet");
}
```

Fehlerfälle:

Keine Verbindung → Snackbar mit "Fehler beim Senden"

Abbildung 3: Klassendiagramm Zeitplan

3.2.2 Funktion 2: Verlauf anzeigen

#	Komponentendetail	Erforderliche Arbeiten
T4	GUI	VerlaufScreen mit Buttons je Wochentag
T5	Dialoge	Tagesbezogene Detaildialoge mit Icons
Т6	Animation	Übergangsanimation zwischen Tagen
T7	Datenmodell	Map <string, list<map<string,="" string="">>> für Events</string,>

T4: GUI & Dialoge

- Verlauf-Bildschirm mit 7 Wochentags-Buttons
- · Jeder Button öffnet Dialog mit Eventverlauf
- · Icons je nach Ereignistyp

Elemente im Dialog:

- Titel: "Samstag 29. April"
- · Liste von Events mit Uhrzeit, Icon & Beschreibung
- Schließen-Button (oben links)

Widgets:

- · Wrap, GestureDetector, Dialog
- · ListView, Icon, Text, Row

T5: Animation

- · showDialog nutzt Fade-In
- Neu: animierter Übergang zwischen Tagen (AnimatedSwitcher oder FadeTransition)

Fehlerbehandlung:

Kein Eintrag \rightarrow "Keine Einträge für diesen Tag" Formatfehler \rightarrow Standard-Icon und grauer Text

T6: Datenmodell

```
Modell für Events:
```

```
{
"time": "11:00",
"event": "Automatisch bewässert (100 ml)"
}
Tabelle:
```

Feld	Тур	Beschreibung
time	String	Uhrzeit im HH.mm-Format
event	String	Bschreibung mit Kontext
type	Enum	(intern): moisture, water, error

Zuordnung Icon/Typ:

- Wasserstand → Flcons.water drop

Technische Spezifikation

Automatische Balkonbewässerung

Logik zur Erkennung:

if (event.contains("bewässert")) => lcons.water else if (event.contains("Fehler")) => lcons.error_outline

Animation (zwischen Tagen im Dialog):

AnimatedSwitcher(duration: Duration(milliseconds: 300), child: EventListWidget(day),

Abbildung 4: Klassendiagramm Verlauf

Abbildung 5:Klassendiagramm aller Systeme

3.3 System Infrastruktur

- Plattform: Flutter (iOS, Android)
- Lokale Tests mit: iPhone Simulator, Android Emulator
- API-Kommunikation: (Wenn vorhanden, z. B. REST oder MQTT)
- · App benötigt Netzwerkzugang
- Code verwaltet via GitLab Repository

Abbildung 6: Systeminfrastruktur

3.4 Erweiterungen Sprint 2 – Software

In Sprint 2 wurden mehrere Funktionalitäten erweitert und neue Features hinzugefügt, um die Nutzbarkeit und Automatisierung der Balkonbewässerung zu verbessern.

3.4.1 Push-Benachrichtigungen (Flutter Local Notifications)

- **Beschreibung**: Die App benachrichtigt den Benutzer automatisch bei kritischen Ereignissen wie:
 - Niedrige Bodenfeuchtigkeit (unter 20 %)
 - Niedriger Wasserstand (unter 20 %)
 - o **V** Automatische Bewässerung wurde durchgeführt
- Technologien: flutter_local_notifications, Android Notification Channels, iOS permission requests
- Benutzersteuerung:
 - Ein Toggle in den Einstellungen ermöglicht das Aktivieren/Deaktivieren von Benachrichtigungen (Standard: aus)
 - Speicherung der Benutzerauswahl via SharedPreferences

3.4.2 Hintergrundfunktionalität

- **Funktion**: Zeitplan-Bewässerung und MQTT-Kommunikation funktionieren auch, wenn die App im Hintergrund oder nicht geöffnet ist (sofern vom System erlaubt).
- Umsetzung:
 - o Timer.periodic in Kombination mit SharedPreferences zur Zeitplanprüfung
 - o MQTT bleibt verbunden, wenn loadAndConnectFromPrefs() erfolgreich war

3.4.3 MQTT-Verbindungseinstellungen

- Neue Features im Einstellungs-Screen:
 - o Felder für: Broker-Adresse, Port, Username, Passwort, TLS-Option
 - Buttons:

 - "X Verbindung trennen"
 - Link zum Erstellen eines MQTT-Accounts: HiveMQ Cloud

3.4.4 Verlauf erweitert

- **Beschreibung**: Ereignisse wie niedrige Feuchtigkeit oder Wasserstand werden ebenfalls im Verlauf gespeichert.
- Darstellung: Neue Icons und Einträge für Warnungen

Ereignis	Icon	Beschreibung
Niedrige Feuchtigkeit	7	z.B. "Sensor 1: nur 18 %"
Niedriger Wasserstand	۵	z. B. "Wasserstand: 15 %"
Automatische Bewässerung	8	z.B. "Zeitplan: Sensor 2 bewässert"

3.4.5 Bugfixes & Optimierungen

- Echtzeitaktualisierung auf Android stabilisiert (z. B. reconnect bei Verbindungsabbruch)
- Fehlerbehandlung verbessert bei fehlerhafter Sensorübertragung (z. B. MQTT JSON Parsing)

4 Technische Spezifikation Konstruktion

4.1 Baugruppen

Abbildung 6: Pinout des μCs

Die Baugruppen sollen in diesem Abschnitt detailliert beschrieben werden.

- Eine Baugruppe erhält einen eigenen Namen o Bauteile, die in mehreren Ästen der Struktur vorkommen, werden mehrfach genannt
- Die Baugruppe beinhaltet o Einzelteile o Unterbaugruppen
- Bei der Strukturstückliste ist der gesamte Aufbau des Produkts erkenntlich Bei der Baukastenstückliste werden Unterbaugruppen nicht weiter aufgegliedert, die Struktur ist nur einstufig

5 Modul Abhängigkeiten

- Flutter App
 ⇔ Backend/Server (wenn vorhanden)
- Flutter App ↔ Plattformen (iOS, Android SDK)

4/5 Pmh