§ 1 整式の計算 (p.1~p.15)

問1

(1) 与式 =
$$5x^2 - 3x^2 - x + 3x + 2 - 1$$

= $2x^2 + 2x + 1$

(2) 与式 =
$$-4x^2 + 7x^2 + 5x - 2x + 1 - 6$$

= $3x^2 + 3x - 5$

問2

(1)
$$A + B = (3x^2 + 2x + 1) + (x^2 - 7x + 2)$$

= $3x^2 + 2x + 1 + x^2 - 7x + 2$
= $3x^2 + x^2 + 2x - 7x + 1 + 2$
= $4x^2 - 5x + 3$

$$A - B = (3x^{2} + 2x + 1) - (x^{2} - 7x + 2)$$

$$= 3x^{2} + 2x + 1 - x^{2} + 7x - 2$$

$$= 3x^{2} - x^{2} + 2x + 7x + 1 - 2$$

$$= 2x^{2} + 9x - 1$$

(2)
$$A + B = (x^3 - x^2 + 4) + (2x^4 + x^3 - 3)$$

 $= x^3 - x^2 + 4 + 2x^4 + x^3 - 3$
 $= 2x^4 + x^3 - x^2 + x^2 + 4 - 3$
 $= 2x^4 + x^3 + 1$
 $A - B = (x^3 - x^2 + 4) - (2x^4 + x^3 - 3)$

$$A - B = (x^3 - x^2 + 4) - (2x^4 + x^3 - 3)$$

$$= x^3 - x^2 + 4 - 2x^4 - x^3 + 3$$

$$= -2x^4 + x^3 - x^2 - x^2 + 4 + 3$$

$$= -2x^4 + x^3 - 2x^2 + 7$$

問3

$$(1) A + B$$

$$= (x^3 + ax^2 + 4a^3) + (2x^4 + a^2x^2 - 3x)$$

$$= x^3 + ax^2 + 4a^3 + 2x^4 + a^2x^2 - 3x$$

$$= 2x^4 + x^3 + ax^2 + a^2x^2 - 3x + 4a^3$$

$$= 2x^4 + x^3 + (a^2 + a)x^2 - 3x + 4a^3$$

$$A - B$$

$$= (x^{3} + ax^{2} + 4a^{3}) - (2x^{4} + a^{2}x^{2} - 3x)$$

$$= x^{3} + ax^{2} + 4a^{3} - 2x^{4} - a^{2}x^{2} + 3x$$

$$= -2x^{4} + x^{3} + ax^{2} - a^{2}x^{2} + 3x + 4a^{3}$$

$$= -2x^{4} + x^{3} + (-a^{2} + a)x^{2} + 3x + 4a^{3}$$

$$(2) A + B$$

$$= (x^{2} + 2xy + y^{2}) + (-3x^{2} + 7xy + 2y^{2})$$

$$= x^{2} + 2xy + y^{2} - 3x^{2} + 7xy + 2y^{2}$$

$$= y^{2} + 2y^{2} + 2xy + 7xy + x^{2} - 3x^{2}$$

$$= 3y^{2} + 9xy - 2x^{2}$$

$$A - B$$

$$= (x^{2} + 2xy + y^{2}) - (-3x^{2} + 7xy + 2y^{2})$$

$$= x^{2} + 2xy + y^{2} + 3x^{2} - 7xy - 2y^{2}$$

$$= y^{2} - 2y^{2} + 2xy - 7xy + x^{2} + 3x^{2}$$

$$= -y^{2} - 5xy + 4x^{2}$$

問4

(1) 与式 =
$$(-5) \cdot (-5)$$

= **25**

(2) 与式 =
$$-(5 \cdot 5)$$

= -25

(3) 与式 =
$$-a^2 \cdot (-1)^3 \cdot b^3$$

= $-a^2 \cdot (-b^3)$
= a^2b^3

(4) 与式 =
$$(-3)^3 \cdot (a^2)^3 b^3 \times (-2)^2 \cdot a^2 (b^3)^2$$

= $-27a^6b^3 \times 4a^2b^6$
= $-108a^8b^9$

(5) 与式 =
$$ab^3 \cdot a^2 - ab^3 \cdot 5b^2$$

= $a^3b^3 - 5ab^5$

(6) 与式 =
$$x^3 + 2x^2$$

+ $5x^2 + 10x$
- $2x - 4$
= $x^3 + 7x^2 + 8x - 4$

問 5

(1) 与式 =
$$x^2 + (3+5)x + 3 \cdot 5$$

= $x^2 + 8x + 15$

(2) 与式 =
$$x^2 + (5y + 2y)x + 5y \cdot 2y$$

= $x^2 + 7xy + 10y^2$

(3) 与式 =
$$3 \cdot 2x^2 + \{3 \cdot 5 + (-1) \cdot 2\}x + (-1) \cdot 5$$

= $6x^3 + 13x - 5$

(4) 与式 =
$$(2x)^2 - (3y)^2$$

= $4x^2 - 9y^2$

問6

$$(a-b)^3 = \{a - (-b)\}^3$$
$$= a^3 + 3a^2 \cdot (-b) + 3a \cdot (-b)^2 + (-b)^3$$
$$= a^3 - 3a^2b + 3ab^2 - b^3$$

問7

(1) 与武 =
$$(2a)^3 + 3 \cdot (2a)^2 \cdot b + 3 \cdot 2a \cdot b^2 + b^3$$

= $8a^3 + 12a^2b + 6ab^2 + b^3$

(2) 与式 =
$$(3a)^3 + 3 \cdot (3a)^2 \cdot (-2b)$$

+ $3 \cdot 3a \cdot (-2b)^2 + (-2b)^3$
= $27a^3 - 54a^2b + 36ab^2 - 8b^3$

問8

(1)
$$(a+b) = A$$
 とおくと
左辺 = $\{(a+b)+c\}^2$
 $= A^2 + 2Ac + c^2$
 $= (a+b)^2 + 2(a+b)c + c^2$
 $= a^2 + 2ab + b^2 + 2ac + 2bc + c^2$
 $= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$
= 右辺

(2) 左辺 =
$$a^3 - a^2b + ab^2$$

 $+ a^2b - ab^2 + b^3$
 $= a^3 + b^3$
 $= 右辺$

(3) 左辺 =
$$a^3 + a^2b + ab^2$$

 $-a^2b - ab^2 - b^3$
= $a^3 - b^3$
= 右辺

問 9

(1) 与式 =
$$(2a)^2 + b^2 + (3c)^2$$

+ $2 \cdot 2a \cdot b + 2b \cdot 3c + 2 \cdot 3c \cdot 2a$
= $4a^2 + b^2 + 9c^2 + 4ab + 6bc + 12ca$

(2) 与式 =
$$(x+2y)\{x^2 - x \cdot 2y + (2y)^2\}$$

= $x^3 + (2y)^3$
= $x^3 + 8y^3$

問10

(1)
$$(x+2y) = X$$
 とおくと
与式 = $\{(x+2y) - 1\}\{(x+2y) - 3\}$
= $(X-1)(X-3)$
= $X^2 - 4X + 3$
= $(x+2y)^2 - 4(x+2y) + 3$
= $x^2 + 4xy + 4y^2 - 4x - 8y + 3$

(2)
$$(y+z) = Y$$
 とおくと
与式 = $\{x + (y+z)\}\{x - (y+z)\}$
= $(x+Y)(x-Y)$
= $x^2 - Y^2$
= $x^2 - (y+z)^2$
= $x^2 - (y^2 + 2yz + z^2)$
= $x^2 - y^2 - z^2 - 2yz$

(3)
$$(a+c) = A$$
 とおくと
与式 = $\{(a+c) + 2b\}\{(a+c) - 2b\}$
= $(A+2b)(A-2b)$
= $A^2 - (2b)^2$
= $(a+c)^2 - 4b^2$
= $a^2 + 2ac + c^2 - 4b^2$
= $a^2 - 4b^2 + c^2 + 2aa$

(4)
$$(a-b) = A$$
 とおくと
与式 = $\{3c + (a-b)b\}\{3c - (a-b)\}$
 $= (3c + A)(3c - A)$
 $= (3c)^2 - A^2$
 $= 9c^2 - (a-b)^2$
 $= 9c^2 - (a^2 - 2ab + b^2)$
 $= -a^2 - b^2 + 9c^2 + 2ab$

問 11

(1) 与式 =
$$a(a^2 - 6ab + 9b^2)$$

= $a(a - 3b)^2$

(2)
$$a$$
 について整理すると
与式 $= a(3b+2) - 3b - 2$
 $= a(3b+2) - (3b+2)$
 $(3b+2) = B$ とおくと
与式 $= aB - B$
 $= B(a-1)$
 $= (a-1)(3b+2)$

(3) 与式 =
$$2(x^2 - 9y^2)$$

= $2\{x^2 - (3y)^2\}$
= $2(x + 3y)(x - 3y)$

(4) 与式 =
$$a^2 - (b^2 - 4bc + 4c^2)$$

= $a^2 - (b - 2c)^2$
 $(b - 2c) = B$ とおくと
与式 = $a^2 - B^2$
= $(a + B)(a - B)$
= $\{a + (b - 2c)\}\{a - (b - 2c)\}$
= $(a + b - 2c)(a - b + 2c)$

(5) 与式 =
$$a^3 + 2^3$$

= $(a+2)(a^2 - a \cdot 2 + 2^2)$
= $(a+2)(a^2 - 2a + 4)$

(6) 与式 =
$$(x^2 - y^2) + (x^3 - y^3)$$

= $(x - y)(x + y) + (x - y)(x^2 + xy + y^2)$
 $(x - y) = X$ とおくと
与式 = $X(x + y) + X(x^2 + xy + y^2)$
= $X(x + y + x^2 + xy + y^2)$
= $(x - y)(x^2 + xy + y^2 + x + y)$

問 12

(1)
$$\exists \vec{x} = x^2 + (3+8)x + 3 \cdot 8$$

= $(x+3)(x+8)$

(2) 与式 =
$$x^2 + \{1 + (-6)\}x + 1 \cdot (-6)$$

= $(x+1)(x-6)$

問 13

与式 =
$$(5x+3)(x+2)$$

(2)
$$\frac{6 \quad -2 \quad 1}{3 \quad 2 \quad \longrightarrow \quad 4}$$
$$2 \quad -1 \quad \longrightarrow \quad -3$$
与式 = $(3x+4)(2x-1)$

問 14

(1)
$$x^2 = X$$
 とおくと
与式 = $X^2 - 13X + 36$
= $(X - 4)(X - 9)$
= $(x^2 - 4)(x^2 - 9)$
= $(x + 2)(x - 2)(x + 3)(x - 3)$

(2)
$$(a+b) = A$$
 とおくと
与式 = $A^2 - 2A - 3$
= $(A-3)(A+1)$
= $(a+b-3)(a+b+1)$

(3) x について整理すると

与式 =
$$x^2 + (2y - 1)x + (y^2 - y - 2)$$

= $x^2 + (2y - 1)x + (y - 2)(y + 1)$

$$\begin{array}{c|cccc}
1 & (y-2)(y+1) & 2y-1 \\
\hline
1 & & (y-2) & \longrightarrow & y-2 \\
1 & & (y+1) & \longrightarrow & y+1
\end{array}$$

与式 =
$$\{x + (y-2)\}\{x + (y+1)\}$$

= $(x + y - 2)(x + y + 1)$

(4) x について整理すると

与式 =
$$2x^2 + (5y + 5)x + (2y^2 + y - 3)$$

定数項を因数分解すると,

よって

与式 =
$$2x^2 + (5y + 5)x + (2y + 3)(y - 1)$$

したがって

与式 =
$$\{2x + (y-1)\}\{x + (2y+3)\}$$

= $(2x + y - 1)(x + 2y + 3)$

問 15

$$\begin{array}{r}
3x - 4 \\
x + 3 \overline{\smash)3x^2 + 5x - 10} \\
\underline{3x^2 + 9x} \\
-4x - 10 \\
\underline{-4x - 12} \\
2
\end{array}$$

商
$$3x-4$$
,余り 2

法等

$$3x^2 + 5x - 10 = (x+3)(3x-4) + 2$$

$$\begin{array}{r}
3x + 4 \\
2x - 5) 6x^2 - 7x + 15 \\
\underline{6x^2 - 15x} \\
8x + 15 \\
\underline{8x - 20} \\
35
\end{array}$$

商 3x+4,余り 35

等式

$$6x^2 - 7x + 15 = (2x - 5)(3x + 4) + 35$$

$$\begin{array}{c}
\frac{1}{3}x - \frac{2}{9} \\
3x + 2) x^{2} + 1 \\
\underline{x^{2} + \frac{2}{3}x} \\
-\frac{2}{3}x + 1 \\
\underline{-\frac{2}{3}x - \frac{4}{9}} \\
\underline{\frac{13}{3}}
\end{array}$$

商
$$\frac{1}{3}x-\frac{2}{9}$$
,余り $\frac{13}{9}$
等式
$$x^2+1=(3x+2)\left(\frac{1}{3}x-\frac{2}{9}\right)+\frac{13}{9}$$

[問 16]

ある整式を A とおくと, 題意より

$$A = (x-3)(x^{2} + x + 6) + 14$$

$$= x^{3} + x^{2} + 6x$$

$$-3x^{2} - 3x - 18 + 14$$

$$= x^{3} - 2x^{2} + 3x - 4$$

問 17

最小公倍数 abc

最大公約数 $2a^2bc$ 最小公倍数 $12a^3b^2c^3d$

$$(3)$$
 2 $x^2(x-1)^3(x+3)$ 2 3 x $(x-1)^2$ $(x+2)^2$ 最大公約数 = 2 x $(x-1)^2$ 最小公倍数 = 2 3 $x^2(x-1)^3(x+3)(x+2)^2$ よって 最大公約数 $2x(x-1)^2$ 最小公倍数 $6x^2(x-1)^3(x+3)(x+2)^2$

問 18

(1) 与式 =
$$(2x^3 - 3x^2 + 5x + 4)$$

+ $(-x^3 + x^2 - 2x + 2)$
= $2x^3 - 3x^2 + 5x + 4 - x^3 + x^2 - 2x + 2$
= $x^3 - 2x^2 + 3x + 6$

(2) 与式 =
$$3(2x^3 - 3x^2 + 5x + 4)$$

 $-2(-x^3 + x^2 - 2x + 2)$
= $6x^3 - 9x^2 + 15x + 12$
 $+2x^3 - 2x^2 + 4x - 4$
= $8x^3 - 11x^2 + 19x + 8$

(3) 与式 =
$$2 \cdot 1^3 - 3 \cdot 1^2 + 5 \cdot 1 + 4$$

= $2 - 3 + 5 + 4$
= 8

(4) 与式 =
$$-0^3 + 0^2 - 2 \cdot 0 + 2$$

= **2**

(5) 与式 =
$$-a^3 + a^2 - 2 \cdot a + 2$$

= $-a^3 + a^2 - 2a + 2$

(6) 与式 =
$$2 \cdot (-a)^3 - 3 \cdot (-a)^2 + 5 \cdot (-a) + 4$$

= $2 \cdot (-a^3) - 3 \cdot a^2 - 5a + 4$
= $-2a^3 - 3a^2 - 5a + 4$

問 19

(1)
$$A(x)$$
を $x-1$ で割ったときの余りは
$$A(1) = 1^3 - 2 \cdot 1^2 + 1 + 3$$
$$= 1 - 2 + 1 + 3 = 3$$

(2)
$$A(x)$$
を $x+1$ で割ったときの余りは
$$A(-1)=(-1)^4+(-1)^3-2\cdot(-1)^2 \\ +5\cdot(-1)-1$$

$$=1-1-2-5-1=-8$$

問 20

$$P(x) = x^3 - 2x^2 + 4x + 3$$

$$P(x)$$
 を $2x-1$ で割ったときの余りは,
$$P\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^3 - 2\cdot\left(\frac{1}{2}\right)^2 + 4\cdot\left(\frac{1}{2}\right) + 3$$

$$= \frac{1}{8} - \frac{1}{2} + 2 + 3 = \frac{37}{8}$$

$$P(x)$$
 を $2x+3$ で割ったときの余りは,
$$P\left(-\frac{3}{2}\right) = \left(-\frac{3}{2}\right)^3 - 2\cdot\left(-\frac{3}{2}\right)^2 \\ + 4\cdot\left(-\frac{3}{2}\right) + 3 \\ = -\frac{27}{8} - \frac{9}{2} - 6 + 3 = -\frac{87}{8}$$

問 21

$$P(1) = 1^{3} - 3 \cdot 1^{2} + 4$$

$$= 1 - 3 + 4 = 2 \neq 0$$

$$P(2) = 2^{3} - 3 \cdot 2^{2} + 4$$

$$= 8 - 12 + 4 = 0$$

$$P(3) = 3^{3} - 3 \cdot 3^{2} + 4$$

$$= 27 - 27 + 4 = 4 \neq 0$$

よって, P(x) は, x-2 で割り切れる.

問 22

$$P(x)=x^3+5x^2+kx+2$$
 とおくと, $P(x)$ が $x+2$ で割り切れるためには, $P(-2)=0$ となればよいので $(-2)^3+5\cdot(-2)^2+k(-2)+2=0$ $-8+20-2k+2=0$ $-2k=-14$ $m{k}=\mathbf{7}$

問 23

(1)
$$P(x)=x^3+x^2-3x+1$$
 とおくと
$$P(1)=1^3+1^2-3\cdot 1+1=0$$
 したがって, $P(x)$ は $x-1$ を因数にもつ.

$$\begin{array}{r} x^{2} + 2x - 1 \\ x - 1 \overline{\smash)x^{3} + x^{2} - 3x + 1} \\ \underline{x^{3} - x^{2}} \\ 2x^{2} - 3x \\ \underline{2x^{2} - 2x} \\ -x + 1 \\ \underline{-x + 1} \\ 0 \end{array}$$

[組み立て除法を利用]

よって
$$P(x) = (x-1)(x^2 + 2x - 1)$$

(2)
$$P(x)=x^3+2x^2-11x-12$$
 とおくと
$$P(-1)=(-1)^3+2\cdot(-1)^2-11\cdot(-1)-12=0$$
 よって, $P(x)$ は $x+1$ を因数にもつ.

$$\begin{array}{r} x^2 + x - 12 \\ x+1 \overline{\smash{\big)}\,x^3 + 2x^2 - 11x - 12} \\ \underline{x^3 + x^2} \\ \hline x^2 - 11x \\ \underline{x^2 + x} \\ -12x - 12 \\ \underline{-12x - 12} \\ 0 \end{array}$$

[組み立て除法を利用]

したがって

$$P(x) = (x+1)(x^2 + x - 12)$$
$$= (x+1)(x+4)(x-3)$$

(3)
$$P(x)=2x^3-7x^2+7x-2$$
 とおくと,
$$P(1)=2\cdot 1^3-7\cdot 1^2+7\cdot 1-2=0$$
 よって, $P(x)$ は $x-1$ を因数にもつ.

$$\begin{array}{r}
2x^2 - 5x + 2 \\
x - 1 \overline{\smash{\big)}\ 2x^3 - 7x^2 + 7x - 2} \\
\underline{2x^3 - 2x^2} \\
-5x^2 + 7x \\
\underline{-5x^2 + 5x} \\
2x - 2 \\
\underline{2x - 2} \\
0
\end{array}$$

[組み立て除法を利用]

したがって

$$P(x) = (x-1)(2x^2 - 5x + 2)$$
$$= (x-1)(x-2)(2x-1)$$

(4)
$$P(x)=x^4-x^3-6x^2+4x+8$$
 とおくと,
$$P(-1)=0$$
 よって, $P(x)$ は $x+1$ を因数にもつ.

$$\begin{array}{r}
x^{3} - 2x^{2} - 4x + 8 \\
x + 1 \overline{\smash{\big)}\,x^{4} - x^{3} - 6x^{2} + 4x + 8} \\
\underline{x^{4} + x^{3}} \\
-2x^{3} - 6x^{2} \\
\underline{-2x^{3} - 2x^{2}} \\
-4x^{2} + 4x \\
\underline{-4x^{2} - 4x} \\
8x + 8 \\
\underline{-8x + 8} \\
0
\end{array}$$

[組み立て除法を利用]

よって,

$$P(x) = (x+1)(x^3 - 2x^2 - 4x + 8)$$

$$Q(x) = x^3 - 2x^2 - 4x + 8$$
 とおくと, $Q(2) = 0$

よって, Q(x) はx-2 を因数にもつ.

$$x - 2$$
 に $x - 2$ を函数
$$x - 2$$
 を 函数
$$x - 2$$
 $x - 2$ $x - 2$

[組み立て除法を利用]

よって

$$Q(x) = (x-2)(x^2 - 4)$$

以上より

$$P(x) = (x+1)(x-2)(x^2-4)$$

$$= (x+1)(x-2)(x-2)(x+2)$$

$$= (x+1)(x+2)(x-2)^2$$