1) a) For the circuit shown in Figure 1 draw the DC load line and indicate the Q point on this line.

(Use the supplied transistor curve and label the X and Y axis' values)

- b) Also determine the ac voltage gain (Av) of this transistor amplifier? Av =
- c) Is this a stiff voltage divider bias circuit? (Show work no guessing is allowed!)

Figure 1

I_{CQ} = ______ V_{CEQ} = ______

Name:	Student Number:

2) For the circuit shown in Figure 2, Q1 and Q2 have identical electrical characteristics:

$$V_{BE} = 0.7 \text{ V},$$

$$\beta = 100$$
.

$$\begin{split} V_{BE} &= 0.7 \ V, & \beta = 100, & I_{CBO} &= 0. \\ Also \ you \ may \ assume \ that \ I_C &= I_E \ for \ this \ circuit. \end{split}$$

Find the Tail current (I_{Tail}), the voltage from terminal A to ground (V_A) the voltage from terminal A to terminal B (V_{AB}) as well as the differential gain (A_{dm}).

 $I_{Tail} = \underline{\hspace{1cm}}$

$$V_{\Lambda} =$$

$$V_{AB} = \underline{\hspace{1cm}}$$

 $A_{dm} =$

Figure 2

Name:	Student Number:

3) a) For the two stage amplifier shown in Figure 3, calculate the input impedance, Zin, output impedance, Zout, and the overall voltage gain $A_{V(Total)}$.

Assume β = 100, $|V_{BE}|$ = 0.7V, $V_{CE(sat)}$ = 0.3 V, I_{CBO} = 0, and that the amplifiers are biased properly.

$$Zin =$$
 $Zout =$ $A_{V(Total)} =$

b) What would the output voltage be in volts peak to peak if the input generator had a source resistance of 1k816 Ω and a level of 10 mV_{RMS} and the amplifier was driving an external 23 k Ω load?

Figure 3

Name:	Student Number:
-------	-----------------

4) a) Using the diagram shown in Figure 4, design a JFET common source amplifier that has the following specifications:

$$V_{DD} = 30 \text{ V},$$

$$Zin_{(Min)} = 1M \Omega,$$

 $Zin_{(Max)} = 1M1 \Omega.$

Zout =
$$4k5 \Omega$$
,

$$|Av| = 20$$
,

b) With RD = RS, what voltage level would V_{DD} need to be if we want V_{DSQ} to be in the middle of the V_{DS} load line?

$$V_{DD} = \underline{\hspace{1cm}}$$

Figure 4

Name:	Student Number:

5) For the circuit shown in Figure 5, Q1 and Q2 are matched transistors and therefore have identical electrical characteristics:

$$V_{BE} = 0.7 \text{ V}, \qquad \qquad V_{CE(Sat)} = 0.3 \text{ V}, \qquad \qquad \beta = 100, \qquad \qquad I_{CBO} = 0 \qquad \quad \text{as well } I_{B1} = I_{B2}.$$

Determine the voltage across (VLoad) and the current through (ILoad) if RLoad is 10 k Ω and 40 k Ω .

RLoad $10 \text{ k}\Omega$ $40 \text{ k}\Omega$ VLoad ILoad

Figure 5

Name:	Student Number: