1

2

Время распространения

$$t = \frac{10}{3 \cdot 10^8} = 3.3 \cdot 10^{-8}c$$

Общее время, необходимое для получения всех объектов при параллельных непостоянных HTTP-соединениях

$$\left(\frac{3\cdot 200}{150} + \frac{100000}{150} + 4t\right) + \left(\frac{3\cdot 200}{15} + \frac{100000}{15} + 4t\right) \approx 7377c$$

Общее время для постоянных НТТР-соединений

$$\left(\frac{3 \cdot 200}{150} + \frac{100000}{150} + 4t\right) + 10 \cdot \left(\frac{200}{150} + \frac{100000}{150} + 2t\right) \approx 7351c$$

Разница по времени меньше процента, то есть ускорения почти нет

В клиент-серверном взаимодействии сервер передает $F\cdot N$ данных со скоростью u_s , кроме случая, когда у клиента скорость приема меньше. То есть при N=10 будет $\frac{F\cdot N}{N\cdot d_i}=\frac{15000}{2}=7500c$, при остальных $\frac{F\cdot N}{u_s}=500Nc$.

В одноранговом варианте скорость будет $max(u_s+N\cdot u,N\cdot d_i)$. То есть при N=10 или при $u=d_i=2/$ скорость $N\cdot d_i$, иначе скорость $u_s+N\cdot u$. То есть время $\frac{F\cdot N}{N\cdot d_i}=\frac{15000}{2}=7500c$ в первом случае и $\frac{F\cdot N}{u_s+N\cdot u}$ во втором

3

а. При передачи каждому со скоростью $\frac{u_s}{N}$

б. При передачи каждому со скоростью d_{min}

в. Пусть для каждого клиента скорость u_i .

Тогда $\sum u_i \le u_s$, то есть

 $u_{min} \le \frac{u_s}{N}$

И

 $u_i \le d_{min}$

Тогда

 $\frac{F}{u_{min}} \ge \frac{NF}{u_s}$

И

 $\frac{F}{u_{min}} \ge \frac{F}{d_{min}}$

То есть

$$\frac{F}{u_{min}} \ge max(\frac{NF}{u_s}, \frac{F}{d_{min}})$$