# Versuch 101 "Das Trägheitsmoment"

Robert Konradi robert.konradi@tu-dortmund.de

Lauritz Klünder lauritz.kluender@tu-dortmund.de

Durchführung: 17.11.2017, Abgabe: 24.11.2017

TU Dortmund – Fakultät Physik

## Inhaltsverzeichnis

| 1 | Einleitung     | 3 |
|---|----------------|---|
| 2 | Theorie        | 3 |
| 3 | Versuchsaufbau | 4 |
| 4 | Durchführung   | 6 |

#### 1 Einleitung

Das Trägheitsmoment von verschiedene Körpern soll bestimmt werden und der Satz von Steiner verifiziert werden.

#### 2 Theorie

Das Drehmoment M, das Trägheitsmoment I als auch die Winkelbeschleunigung charakterisieren die Rotationsbewegung. Für eine punktförmige Masse kann das Trägheitsmoment mit  $I=m*r^2$  berechnen. Dabei ist m die Masse und r der Abstand zur Drehachse. Für ein ausgedehnten Körper um eine feste Achse kann das Gesamtträgheitsmoment als:

$$I = \sum_{i} r_{i}^{2} \cdot m_{i} \tag{1}$$

dargestellt werden. Das Drehmoment M ist von der Lage der Drehachse abhängig. Für geometrische Objekte, wie ein Kugel, Stab, Zylinder, lässt sich das Trägheitsmoment leicht bestimmen. In Abbildung 1 sind verschiedene Objekte mit deren Trägheitsmoment dargestellt.



**Abbildung 1:** Objekte mit deren Trägheitsmoment [1]

Ist die Drehachse nicht durch den Schwerpunkt eines Körpers sondern parallel mit einem Abstand a zur gehenden Achse verschoben, so lässt sich das Trägheitsmoment mithilfe von Satz des Steiners

$$I = I_0 + m * a^2 \tag{2}$$

erechnen. Dabei ist  $I_0$  das Trägheitsmoment der Drehachse durch den Schwerpunkt des Körpers. Greift eine Kraft mit einem Abstand r von der Achse auf ein drehenden Körper, so wirkt ein Drehmoment  $\vec{M} = \vec{F} \times \vec{r}$ . In einem Schwingungssystem wirkt auf ein Körper durch die Drehung um ein Winkel  $\phi$  aus seiner Ruhelage ein rücktreibenes Drehmoment durch eine Feder entgegen. Die harmonische Schwingung lässt sich mit der Schwingungsdauer

$$T = 2\pi \sqrt{\frac{I}{D}} \tag{3}$$

berechnen. I ist dabei das Trägheitsmoment und D die Winkelrichtsgröße.

$$D = \frac{M}{\phi} \leftrightarrow D = \frac{F \cdot r}{\phi} \tag{4}$$

Das harmonische Verhalten bei der Drehschwingung ist nur auf kleinen Winekl $\phi$  beschränkt.

### 3 Versuchsaufbau

Zur Bestimmung des Trägheitsmoments I wird zunächst die die Drillachse, siehe Abbildung 2, benötigt. Die Drillachse die über eine Spiralfeder mit einem Rahmen verbunden.



Abbildung 2: Schematische Darstellung des Versuchsaufbau

Auf die Achse können verschiedene Objekte angebracht werden.

## 4 Durchführung