### ECN 7060, Cours 7

William McCausland

2019-10-10

# Fonction caractéristique d'une loi U(a, b)

$$\phi(t) = E[e^{itX}] = E[\cos tX + i\sin tX] = \frac{1}{b-a} \int_a^b \cos tx + i\sin tx \, dx$$

$$\phi(t) = \frac{1}{t(b-a)} \left[\sin tx - i\cos tx\right]_a^b = \frac{1}{it(b-a)} \left[\cos tx + i\sin tx\right]_a^b$$

$$\phi(t) = \frac{e^{itb} - e^{ita}}{it(b-a)}$$

Cas spécial, a = -1, b = 1:

$$\phi(t) = rac{\sin t}{t} \equiv \operatorname{sinc}(t).$$

# Fonction caractéristique d'une loi N(0,1)

▶ Puisque sin(tx) est impair,  $e^{-x^2/2}$  est pair,

$$\phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos tx \cdot e^{-x^2/2} \, dx$$
$$\phi'(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} -\sin tx \cdot x e^{-x^2/2} \, dx$$

Intégration par parties,  $u = -\sin tx$ ,  $dv = xe^{-x^2/2} dx$ ,  $du = -t\cos tx$ ,  $v = -e^{-x^2/2}$ , donne

$$\phi'(t) = [uv]_{-\infty}^{\infty} - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t \cos tx \cdot e^{-x^2/2} dx = -t\phi(t).$$

- La solution de l'équation différentielle  $\log \phi(0) = 0$ ,  $\frac{d \log \phi(t)}{dt} = -t$  est  $\log \phi(t) = \int_0^t -s \, ds = -t^2/2$ .
- Alors  $\phi(t) = e^{-t^2/2}$ .

## Continuité de la fonction caractéristique

$$|\phi_{x}(t+h) - \phi_{x}(t)| = \left| \int (e^{i(t+h)x} - e^{itx}) \mu(dx) \right|$$

$$\leq \int \left| e^{i(t+h)x} - e^{itx} \right| \mu(dx).$$

Deux bornes qui ne dépend pas de t

$$\left|e^{i(t+h)x}-e^{itx}\right| \leq h|x|, \qquad \left|e^{i(t+h)x}-e^{itx}\right| \leq 2.$$

Selon la deuxième, (convergence dominée)

$$\lim_{h\downarrow 0} E\left[\left|e^{i(t+h)x} - e^{itx}\right|\right] = E\left[\lim_{h\downarrow 0}\left|e^{i(t+h)x} - e^{itx}\right|\right]$$

Selon la première,

$$E\left[\lim_{h\downarrow 0}\left|e^{i(t+h)x}-e^{itx}\right|\right]\to 0.$$

## Dérivée de la fonction caractéristique

- ▶ Soit X une variables aléatoire,  $\phi(t)$  sa fonction caractéristique.
- ▶ Si  $E[|X|^k] < \infty$ , alors pour  $0 \le j \le k$ ,  $\phi^{(j)}(t) = E[(iX)^j e^{itX}]$ .
- ▶ Preuve par induction :
  - $E[(iX)^0 e^{itX}] = E[e^{itX}] = \phi(t) = \phi^{(0)}(t)$ , alors vrai pour j = 0.
  - Supposez que  $\phi^{(j-1)} = E[(iX)^{j-1}e^{itX}].$
  - $|(iX)^j e^{itX}| = |i|^j |X|^j |e^{itX}| = |X|^j$
  - $E[|X|^k] < \infty \Rightarrow E[|X|^j] < \infty$
- Génération des moments :

$$\phi^{(j)}(0) = i^j E[X^j]$$

# Propriétés de la fonction $(\sin \theta t)/t = \theta \operatorname{sinc}(\theta t)$

- 1. Pour  $\theta = 0$ ,  $(\sin \theta t)/t \equiv 0$ .
  - 2. Pour  $\theta \neq 0$ ,  $t = k\pi/\theta$ ,  $k = \pm 1, \pm 2, ...$

$$\frac{\sin \theta t}{t} = 0.$$

3. Pour  $\theta \neq 0$ ,

$$\lim_{t \to 0} \frac{\sin \theta t}{t} = \frac{\lim_{t \to 0} \theta \cos \theta t}{\lim_{t \to 0} 1} = \theta$$

$$\lim_{t \to \infty} \frac{\sin \theta t}{t} = 0.$$

- 4. Pour  $\theta \neq 0$ , la fonction est paire :
- $\frac{\sin\theta(-t)}{-t} = \frac{\sin\theta t}{t}$
- Selon le livre.

#### Théroème d'inversion I

Soit  $\mu$  une mesure borélienne,  $\phi(t)$  sa fonction caractéristique. Alors si a < b et  $\mu(\{a\}) = \mu(\{b\}) = 0$ ,

$$\mu([a,b]) = \frac{1}{2\pi} \lim_{T \to \infty} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt$$

Puisque

$$\left| \frac{e^{-ita} - e^{-itb}}{it} \right| = \left| \int_a^b e^{itr} \, dr \right| < \infty$$

l'intégral entre -T et T est fini.

Par Fubini,

$$\int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \int_{\mathbb{R}} e^{itx} \,\mu(dx) \,dt$$

$$= \int_{\mathbb{R}} \int_{-T}^{T} \frac{e^{it(x-a)} - e^{it(x-b)}}{it} \,dt \,\mu(dx).$$

#### Théorème d'inversion II

La partie imaginaire de l'intégrand est impair, l'intégral est réel,

$$\lim_{T \to \infty} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt + \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt + \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt + \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt + \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt + \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-b)}{t} dt \, \mu(t) dt$$

La valeur de l'intégral est

$$\frac{1}{2}(\mu(\{a\}) + \mu(\{b\}) + \mu((a,b)).$$

## Unicité de la fonction caractéristique

- ▶ Théorème d'unicité  $\mathcal{L}(X) = \mathcal{L}(Y) \Leftrightarrow \phi_X(t) = \phi_Y(t)$
- $\blacktriangleright\,\Rightarrow$  de la définition de la fonction caractéristique en termes de  $\mu$

#### Théorème de continuité

- ▶ Soit  $\mu, \mu_1, \mu_2, \ldots$  des mesures boréliennes,  $\phi, \phi_1, \phi_2, \ldots$ , leurs fonctions caractéristiques. Alors  $\mu_n$  converge en loi à  $\mu$  ssi  $\phi_n(t) \to \phi(t)$ ,  $t \in \mathbb{R}$ .
- ▶ Par la définition de convergence en loi et la continuité des fonctions  $\cos xt$  et  $\sin xt$  en x pour t donné, si  $\mu_n$  converge en loi à  $\mu$ ,  $\phi_n(t) \rightarrow \phi(t)$  pour  $t \in \mathbb{R}$ .
- L'autre direction est plus difficile.

#### Théorème centrale limite I

- ▶ Supposez que  $X_1, X_2, ...,$  sont iid, avec moyenne 0, variance 1.
- ▶ Soit  $Y_n = \sqrt{n \frac{1}{n}} \sum_{k=1}^n X_k$ . La fonction caractéristique de  $Y_n$  est

Soit 
$$Y_n = \sqrt{n_n^2} \sum_{k=1}^n X_k$$
. La fonction caracteristique de  $Y_n$  est  $\phi_n(t) = \phi_X^n \left(\frac{t}{\sqrt{n}}\right) = \left[1 + \frac{it}{\sqrt{n}} E[X_1] + \frac{1}{2} \left(\frac{it}{\sqrt{n}}\right)^2 E[X_1^2] + o(n^{-1})\right]^n$ 

• Avec 
$$E[X_1] = 0$$
,  $E[X_1^2] = 1$ ,

Avec 
$$L[X_1] = 0$$
,  $L[X_1] = 1$ 

$$\phi_{i}(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\phi_n(t) = \left(1 - \frac{1}{2}\right)$$

$$\phi_n(t) = \left(1 - \frac{1}{2} \frac{t^2}{n} + o(n^{-1})\right)^n.$$

$$\log \phi_n(t) 
ightarrow -rac{t^2}{2} \ \phi_n(t) 
ightarrow e^{-t^2/2}.$$

$$(n^{-1})$$
.

$$n^{-1})\bigg)$$
 .

$$\left(-\frac{1}{2}\frac{t^2}{t^2} + o(n^{-1})\right)$$

$$\left(\frac{t^2}{t^2} + o(n^{-1})\right)$$

$$\log \phi_n(t) = n \log \left( 1 - \frac{1}{2} \frac{t^2}{n} + o(n^{-1}) \right) = n \left( -\frac{1}{2} \frac{t^2}{n} + o(n^{-1}) \right)$$

#### Théorème centrale limite II

- Si Y est une variable aléatoire N(0,1), sa fonction caractéristique est  $\phi(t) = e^{-t^2/2}$ .
- ▶ Puisque  $\phi_n(t) \rightarrow \phi(t)$ ,  $\mathcal{L}(Y_n) \Rightarrow \mathcal{L}(Y)$ .