CS & IT

Discrete Mathematics Graph Theory

Lecture No. 08

TOPICS TO BE COVERED

- 01 Annalysis In
- Connectivity
- 02 Various definition in Connectivity
- 03 Edge Connectivity

- 04 Vertex Connectivity
- 05 Largest inequality theorem

R.V/RXE.

Euler ckt

Closed Trail: Trail + Starting = ending verten

Ce uler circuit: Closed Trail+ covers all edges exactly once.

Pw

Euler CKt -> Euler Graph.

D. C.G. Degrees of all are 2. > Trivial Graph isolated verten.

Graph is Euler Graph iff degrees gauvertices are even.

(non Trivial Connected Graph)

Euler Graph:

note: line Graph of euler Graph will always be Euler Graph.

Degrees of an vertices

are even -> 2,4,6...

Trail:

Euler line.

Euler line.

Euler path.

+

covers au edges

enactly once.

Gwaph contains Euler path iff it has enactly 2) odd degree vertex.

Path

Graph - Hamiltonian ckt
Hamiltonian Graph.

Closed Path: Path + st = ending vertex.

Hamiltonianckt: Sclosed Path.

cover all verbices enactly once.

all cn

F.GV H.GV

(Km,n.

wn.

E.GX H.GV Eulev Graph (m=n=even m.n.z.2). Hamiltonian Graph.

$$k_{1,1}$$
 $k_{2,2}(EG)$
 $k_{3}(Odd)$
 $k_{3}(Odd)$
 k_{4}
 k_{5}
 $k_$

$$Km,n$$
 $(m=n)$
 $m,n>2$

no of distinct Hamiltonian ckt in kn.

$$(n-1)\times(n-2)\cdots I$$

of diff Hamiltonian ckt in Kn.n (n.2)

Hamiltonian Path.

open path that covers.

all vertices.

X closed Vall vertices should be cover

Every H.c contains H.P. but viceversa is not true.

covering.

closed open

li Hamiltonian

ckt Path.

