

David R. Thompson

Jet Propulsion Laboratory, California Institute of Technology

## Nearest Neighbors and the Curse of Dimensionality

Copyright 2014 California Institute of Technology. All Rights Reserved. US Government Support Acknowledged.







## **Objectives**

- 1. Find nearest neighbors efficiently
- 2. Understand the curse of dimensionality and its implications for pattern recognition
- 3. Know some general approaches to solve it



Nearest neighbors



## Local pattern recognition





How to efficiently find nearest neighbors?

4

$$X = [10 \ 9 \ 14 \ 30 \ 100 \ 5 \ 32 \ -4 \ 3 \ 72]$$



How to efficiently find nearest neighbors?

Sequential search: linear time  $\otimes$   $X = \begin{bmatrix} 10 & 9 & 14 & 30 & 100 & 5 & 32 & -4 & 3 & 72 \end{bmatrix}$ 



How to efficiently find nearest neighbors?



$$X' = \begin{bmatrix} -4 & 3 & 5 & 9 & 10 & 14 & 30 & 32 & 72 & 100 \end{bmatrix}$$



How to efficiently find nearest neighbors?





### 2 to 8 dimensions: K-D Trees

Each node splits the space with a hyperplane

Which one? Cycle through axisaligned hyperplanes

Typical search is O(log n)

#### Split:







Source: Wikipedia

# > 8 dimensions: Use approximate nearest neighbors

Above 8-10 dimensions, even partitioning structures are little better than brute force.

Approximate nearest neighbor methods can improve computation by orders of magnitude.



Source: Wikipedia

## A more fundamental problem... When is nearest neighbor meaningful?





## The curse of dimensionality

#### Volume of an N-Ball

$$V_n(R) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2} + 1)} R^n,$$





## The curse of dimensionality

#### Volume of an N-Ball

$$V_n(R) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2} + 1)} R^n,$$



### Inscribed inside a hypercube







## The curse of dimensionality

#### As dimensions increase ...

- Euclidean distances become less meaningful
- Uniform distributions become exponentially harder to sample
- Many parameters become polynomially harder to estimate
- Data becomes more difficult to visualize



## **Face Recognition**

20 pixels x 20 pixels = 400 dimensions



## Reflectance Spectroscopy





Artigas & Yang, Urban Habitats 2004

## Solutions?

- Rely only on pattern recognition methods that are robust to high dimensions
- Represent the data differently
  - Hand-crafted features
  - Use a subset of features
  - Linear projections
  - Nonlinear projections



## **Summary**

Finding nearest neighbors is not trivial.

**1D?** Use a sorted list.

**2-8D?** Use a k-d tree

>8D? Use approximate nearest neghbors

High-dimensional problems are subject to the *curse of dimensionality* 



