Analysis für Informatik

Ass.Prof. Clemens Amstler

Tanja Kohler

10. Dezember 2018

1 Reelle und Komplexe Zahlen

Reelle Zahlen 1.1

Die reellen Zahlen \mathbb{R} erfüllen eine Reihe von Axiomen, die in drei Gruppen unterteilt werden können.

- I. Algebraische Axiome
- II. Anordnungsaxiome
- III. Vollständigkeitsaxiome

1.1.1 Algebraische Axiome

Die reellen Zahlen bilden mit der Addition $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $(a,b) \mapsto a+b$ und der Multiplikation $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $(a, b) \mapsto a * b$ einen Körper $(\mathbb{R}, +, *)$, der folgende Axiome erfüllt:

- 1) \mathbb{R} ist bzgl. der Addition eine Abelsche Gruppe. $(\mathbb{R}, +)$
- 2) $\mathbb{R} \setminus \{0\}$ ist bzgl der Multiplikation eine Abelsche Gruppe. $(\mathbb{R}, *)$
- 3) Das Distributivgesetz gilt: $\forall a, b, c \in \mathbb{R}$ a * (b + c) = a * b + a * c

Andere Beispiele von Körpern: \mathbb{C} , \mathbb{Q} , \mathbb{Z}_p für p prim. Die Natürlichen Zahlen $\mathbb{N} = \{1, \dots, \infty\}$ und die Ganzen Zahlen \mathbb{Z} bilden keinen Körper.

1.1.1. Proposition

 $\forall x \in \mathbb{R} \text{ gilt } 0 * a = 0.$

Beweis:
$$0+0=0$$
 $a(0+0)=a*0$ Distributivgesetz \Rightarrow $a*0+a*0=a*0$ \mathbb{R} assiozativ \Rightarrow $a*0+(a*0-a*0)=(a*0-a*0)$ additives Inverses \Rightarrow $a*0+0=0$ $0+0=0 \Rightarrow$ $a*0=0$

q.e.d.

1.1.2. Definition Potenzschreibweise
$$\text{F\"{u}r } a \in \mathbb{R} \text{ und } n \in \mathbb{Z} \text{ wird } a^n \text{ folgendermaßen induktiv definiert: } a^n = \begin{cases} 1 & n=0 \\ a(a^{n-1}) & n>0 \\ (a^{-1})^n & n<0 \ \forall a \neq 0 \end{cases}$$

1.1.3. Bemerkung

 $\forall a, b \in \mathbb{R} \setminus \{0\} \text{ und } \forall n, m \in \mathbb{Z} \text{ gilt:}$

(1)
$$a^n * a^m = a^{n+m}$$
 (2) $a^{n^m} = a^{n*m}$ (3) $a^n * b^n = (a*b)^n$

(1)
$$a^n * a^m \stackrel{\text{n. Def.}}{=} \underbrace{a \dots a}^{n\text{-mal}} * \underbrace{a \dots a}^{m\text{-mal}} = \underbrace{a \dots a}^{n+m\text{-mal}} \stackrel{\text{n. Def.}}{=} a^{n+m}$$

(2)
$$a^{n^m} = a^{\underbrace{n \cdot \dots n}_{m-\text{mal}}} = a^{m*n} = a^{n*m}$$

(3)
$$a^n * b^n = \overbrace{a \dots a}^{n-\text{mal}} * \overbrace{b \dots b}^{n-\text{mal}} = \overbrace{a \dots ab \dots b}^{n-\text{mal}} = (a * b)^n$$

1.1.2 Anordnungsaxiome

Die reellen Zahlen werden in positive Zahlen, negative Zahlen und 0 unterteilt. Dabei ist $x < 0 \Leftrightarrow -x > 0$ Und es gelten folgende Axiome:

- (1) $\forall x \in \mathbb{R}$ gilt genau eine der folgenden Bedingungen: x > 0, x = 0, x < 0
- (2) $\forall x, b \in \mathbb{R}$ x, b > 0 gilt: $a + b > 0 \land a * b > 0$

Wir schreiben für $a, b \in \mathbb{R}$ $a > b \Leftrightarrow a - b > 0$ und $a > b \Leftrightarrow a > b \vee a = b$

1.1.4. Proposition

 $\forall a, b \in \mathbb{R}$ gilt: a < b und $b < c \Rightarrow a < c$

Beweis: Sei a < b und $b < c \Rightarrow a - b < 0$ und $b - c < 0 \Rightarrow a - b + b - c < 0 \Rightarrow a - c < 0 \Rightarrow a < c$ q.e.d.

1.1.5. Bemerkung

 $\forall a, b, c \in \mathbb{R}$ gilt:

- a) $a < b \Rightarrow a + c < b + c$
- b) $a < b \text{ und } c > 0 \Rightarrow a * c < b * c$
- c) $a < b \text{ und } c < 0 \Rightarrow a * c > b * c$
- d) $a \neq 0 \Rightarrow a^2 > 0$ speziell 1 > 0
- e) $0 < a < b \text{ und } a < b < 1 \Rightarrow b^{-1} < a^{-1}$

1.1.6. Definition

Für $a \in \mathbb{R}$ und der Betrag |a| folgendermaßen definiert. $|a| = \begin{cases} a & a > 0 \\ -a & a < 0 \end{cases}$

1.1.7. Satz

 $\forall b \in \mathbb{R} \text{ gilt:}$

- (1) |a*b| = |a|*|b|
- (2) $|a+b| \le |a| + |b|$ (Dreiecksungleichung)
- (3) $|a-b| \ge ||a|-|b||$ (umgekehrte Dreiecksungleichung)

Beweis:

- (1) Beweis durch Falltunterscheidung.
- a < |a| und $b < |b| \Rightarrow a + b < |a| + |b|$
 - $-a \le |a|$ und $-b \le |b|$ \Rightarrow -a + -b \le |a| + |b|

 $\Rightarrow a + b \le |a| + |b| \text{ und } -(a + b) \le |a| + |b| \Rightarrow |a + b| \le |a| + |b|$

- (3) $\bullet |a| = |a-b+b| \le |a-b| + |b| \Rightarrow |a| |b| \le |a-b|$
 - $|b| = |a b a| \le |a b| + |a| \Rightarrow |b| |a| \le |a b|$
 - $\Rightarrow |a| |b| \le |a b| \text{ und } (|a| |b|) \le |a b|$ $\Rightarrow ||a| - |b|| \leq |a - b|$

1.1.8. Bemerkung Archimedisches Axiom

Für zwei positive Zahlen, a, b gibt es immer eine natürliche Zahln, sodass folgendes gilt: n * b > a Also:

$$\forall a, b > 0 \ \exists n \in \mathbb{N} \quad n * b > a$$

Als Folgerung erhalten wir: Setze b=1

$$\forall a > 0 \; \exists n \in \mathbb{N} \quad n > a$$

1.1.9. Satz Bernoullische Ungleichung

Sei a > -1 dann gilt

$$\forall n \in \mathbb{N} \ (1+a)^n \ge 1 + na$$

Beweis: IA
$$n = 0$$
: $n = 0$ $1 = (1 + a)^0 \ge 1 + 0 * a = 1$

IV $(1 + a)^n \ge 1 + na$

IS $n \mapsto n + 1n \mapsto n + 1$
 $(1 + a)^{n+1} = (1 + a)(1 + a)^n$
 $\stackrel{IV}{\ge} (1 + a)(1 + na)$
 $= 1 + na + a + \underbrace{na^2}_{>0}$
 $\ge 1 + (n + 1)a$

1.1.10. Korollar

Sei a > 0.

- (1) Ist $a > 1 \ \forall k > 0 \ \exists n \in \mathbb{N}$, sodass $a^n > k$.
- (2) $0 < a < 1 \ \forall \varepsilon > 0 \ \exists n \in \mathbb{N}$, sodass $a^n < \varepsilon$

Beweis:

- (1) Sei $a = x + 1 > 1 \Rightarrow a^n = (x + 1)^n \stackrel{\text{Bernoulli}}{\geq} 1 + nx$ $\forall n \in \mathbb{N} \ \exists x > 0 \ \text{mit} \ nx > k - 1 \Rightarrow a^n \geq 1 + nx > 1 + k - 1 = k$
- (2) Sei 0 < a < 1 und $b = \frac{1}{a} > 1 \stackrel{mit(1)}{\Rightarrow} \exists k \in \mathbb{R} \text{ mit } \left(\frac{1}{a}\right)^n = b^n > k = \frac{1}{\varepsilon}$ $\Rightarrow \left(\frac{1}{a}\right)^n > \frac{1}{\varepsilon} \Rightarrow \frac{1}{a^n} > \frac{1}{\varepsilon} \Rightarrow a^n < \varepsilon.$

q.e.d.

1.1.3 Vollständigkeitsaxiom

Die Zahlengerade \mathbb{R} hat keine Lücken.

1.1.11. Definition

Sei $M \subset \mathbb{R}$ eine Teilmenge.

- 1. $k \in \mathbb{R}$ heißt obere Schranke von M wenn gilt, $\forall x \in M$, $x \leq k$. M heißt nach oben beschränkt, wenn es eine obere Schranke gibt. zB \mathbb{N} ist nicht nach oben beskchränkt, nach dem Archimedischem Axiom.
- 2. $k \in \mathbb{R}$ heißt untere Schranke von M wenn gilt, $\forall x \in M, x \geq k$. M heißt nach unten beschränkt, wenn es eine untere Schranke gibt.
- 3. M heißt beschränkt, wenn eine obere und untere Schranke existiert. Äquivalente Definition für Beschränktheit: $\exists k \in \mathbb{R}, \mid x \mid \leq k \ \forall x \in M$
- 4. $a \in \mathbb{R}$ heißt Infimum von M, falls a größte untere Schranke von M ist. Das heißt a ist untere Schranke von M und ist k eine untere schranke von M, dann folgt $k \leq a$

Schreibweise:
$$a = inf(M)$$

5. $b \in \mathbb{R}$ heißt Supremum von M, falls b kleinste obere Schranke von M ist. Das heißt b ist obere Schranke von M und ist k eine obere schranke von M, dann folgt $k \geq a$

Schreibweise:
$$b = sup(M)$$

1.1.12. Beispiel

Sei a < b dann ist inf[a, b] = a = inf(a, b) und sup[a, b] = b = sup(a, b).

$$[a,b] = \{a \in \mathbb{R} : a \le x \le b\}$$
 heißt abgeschlossenes Intervall $(a,b) = \{a \in \mathbb{R} : a < x < b\}$ heißt offenes Intervall

1.1.13. Bemerkung zur Erinnerung

Definition der natürlichen Zahlen (Axiom des kleinsten Element (Pianoaxiome)) Jede Teilmenge der natürlichen Zahlen hat ein kleinstes Element.

1.1.14. Satz Vollständigkeitsaxiom

Jede nicht leere, nach unten beschränkte Teilmenge $M \subset \mathbb{R}$ besitzt ein Infimum $inf(M) \in \mathbb{R}$.

ohne Beweis.

1.1.15. Bemerkung

inf(M) muss kein Element von M sein.

1.1.16. Proposition

Jede nicht leere nach oben bescrhänkte Teilmenge $M \subset \mathbb{R}$ besitzt ein Supremum $sup(M) \in \mathbb{R}$.

Beweis: Seien M nach oben beschränkt und a eine obere Schranke von M.

$$\Rightarrow \forall x \in M \quad x \leq a \Rightarrow -a \leq -x \quad \forall x \in M \Rightarrow -a \text{ ist untere Schranke von } -M = \{-x \ : \ x \in M\}$$

 $\Rightarrow -M$ ist nach unten beschränkt. Nach dem Vollständigkeitsaxiom, existiert ein Infimum.

Sei
$$b = inf(-M) \Rightarrow -a \le b \Rightarrow -b \le a \text{ und } b \le -x \Rightarrow x \le -b \quad \forall x \in M.$$

Also -b ist obere Schranke und kleinste obere Schanke. $\Rightarrow -b = \sup(M)$

q.e.d.

1.1.17. Proposition

sup(M) und inf(M) sind eindeutig bestimmt.

Beweis: Seien m und m' Suprema von $M \Rightarrow m \leq m'$ und $m' \leq m \Rightarrow m = m'$. analog für Infimum.

q.e.d.

1.2 Komplexe Zahlen

Die Menge der komplexen Zahlen \mathbb{C} sind die Punkte der Ebene $\mathbb{R}^2 = \{(a,b) : a,b \in \mathbb{R}\}$

$$(a,b) = (a,0) + (0,b) = a(1,0) + b(0,1)$$

Wir setzen $1 = (1,0), i = (0,1) \Rightarrow z = (a,b) = a + ib$

zusätzlkich verlangen wir $i^2 = -1$ Also: $\mathbb{C} = \{z = a + ib : a, b \in \mathbb{R}, i^2 = -1\}$

1.2.1. Satz

Es gilt: $\mathbb C$ ist ein Körper.

Beweis: Sei $x, y, z \in \mathbb{C}$ und x = a + ib, y = c + id, z = e + if

- I) $\mathbb C$ ist eine abelsche Gruppe bezüglich der Addition:
 - i) $x + y = a + ib + c + id = (a + c) + i(b + d) \in \mathbb{C}$
 - ii) x + 0 = a + ib + 0 + i0 = a + ib = x
 - iii) $\exists -x \in \mathbb{C}$ mit x + -x = a + ib a ib = 0
 - iv) x + y = (a + c) + i(b + d) = (c + a) + i(d + b) = y + x
- II) $\mathbb C$ ist eine abelsche Gruppe bezüglich der Multiplikation:

i)
$$xy = (a+ib)(c+id) = (ac-bd) + i(ad-bc) \in \mathbb{C}$$

- ii) 1x = (1+i0)(a+ib) = a+ib = x
- iii) $\exists x^{-1} \in \mathbb{C} \text{ mit } xx^{-1} = (a+ib) \frac{a+ib}{a^2-b^2} = \frac{a^2-b^2}{a^2-b^2} = 1$
- iv) xy = (ac bd) + i(ad bc) = (ca bd) + i(da cb) = yx
- III) Das Distributivgesetz gilt:

$$\begin{split} z(x+y) &= (e+if)(a+c+ib+id) \\ &= ea + ec - fb - fd + ifa + ifc + ieb + ied \\ &= ea - fb + ifa + ieb + ec - fd + ied + ifc \\ &= xy + xz \end{split}$$

q.e.d.

1.2.2. Definition

Sei $z = a + ib \in \mathbb{C}$

- $\overline{z} = a ib$ heißt die konjungiert komplexe Zahl von z.
- $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$ heißt Betrag von z.
- a = Re(z) heißt Realteil von z.
- b = Im(z) heißt Imaginärteil von z.

1.2.3. Satz

Es gilt:

$$Re(z) = \frac{z + \overline{z}}{2}$$
 und $Im(z) = \frac{z - \overline{z}}{2i}$

Beweis:

q.e.d.

1.2.4. Proposition

Es gilt:

(i)
$$\overline{\overline{z}} = z$$
, $\overline{z_1} + \overline{z_2} = \overline{z_1 + z_2}$, $\overline{z_1} * \overline{z_2} = \overline{z_1 z_2}$, $|\overline{z}| = |z|$

(ii)
$$|z| \ge 0$$
, $|z| = 0 \Leftrightarrow z = 0$

(iii)
$$|z_1z_2| = |z_1||z_2|$$

(iv)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

Beweis:

(i)
$$\bullet \ \overline{\overline{z}} = \overline{\overline{a+ib}} = \overline{a-ib} = a+ib = z$$

•
$$\overline{z_1} + \overline{z_2} = a - ib + c - id = (a + c) - i(b + d) = \overline{z_1 + z_2}$$

•
$$\overline{z_1} * \overline{z_2} = (a - ib)(c - id) = (ac + bd) - i(ac + bc) = \overline{z_1}\overline{z_2}$$

$$\bullet \mid \overline{z} \mid = \sqrt{a^2 + b^2} = \mid z \mid$$

(ii)
$$\bullet |z| = a^2 + b^2 > 0$$

•
$$|z| = a^2 + b^2 = 0 \Leftrightarrow a^2 = -b^2 \Leftrightarrow a = b = 0$$

(iii)
$$|z_1 z_2|^2 = (z_1 z_2)(\overline{z_1 z_2}) = (z_1 \overline{z_1})(z_2 \overline{z_2}) = |z_1|^2 |z_2|^2 \Leftrightarrow |z_1 z_2| = |z_1| |z_2|$$

(iv) Sei
$$a, b \in \mathbb{R}$$
 $z \in \mathbb{C}$ $z = a + ib$

$$Re(z)^{2} = a^{2} \le a^{2} + b^{2} = |z|^{2} \Rightarrow Re(z) \le |Re(z)| = \sqrt{Re(z)} \le |z|$$

$$\Rightarrow Re(z_{1}\overline{z_{2}}) \le |z_{1}\overline{z_{2}}| = |z_{1}| |\overline{z_{2}}| = |z_{1}| |z_{2}|$$

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2})\overline{(z_{1} + z_{2})} = (z_{1} + z_{2})(\overline{z_{1}} + \overline{z_{2}})$$

$$= z_{1}\overline{z_{1}} + z_{2}\overline{z_{1}} + z_{1}\overline{z_{2}} + z_{2}\overline{z_{2}} \qquad \text{denn } z_{2}\overline{z_{1}} = \overline{z_{1}}\overline{z_{2}}$$

$$= |z_{1}|^{2} + z_{1}\overline{z_{2}} + \overline{z_{1}}\overline{z_{2}} + |z_{2}|^{2} \qquad \text{denn } z_{1}\overline{z_{2}} + \overline{z_{1}}\overline{z_{2}} = 2Re(z_{1}z_{2})$$

$$= |z_{1}|^{2} + 2Re(z_{1}\overline{z_{2}}) + |z_{2}|^{2} \qquad \text{denn } Re(z_{1}z_{2}) \le |z_{1}| |z_{2}|$$

$$\le |z_{1}|^{2} + 2|z_{1}| |z_{2}| + |z_{2}|^{2} = (|z_{1}| + |z_{2}|)^{2}$$

$$\Rightarrow |z_{1} + z_{2}| \le |z_{1}| + |z_{2}|$$

2 Folgen und Reihen

2.1 Folgen

2.1.1. Beispiel

Betrachte

Annahme: $\sqrt{2} \in \mathbb{R}$, aber $\sqrt{2} \notin \mathbb{Q}$

Beweis: Angenommen $\sqrt{2} \in \mathbb{Q}$

 $\sqrt{2} \in \mathbb{Q} \Rightarrow \frac{p}{q}$ mit $p \in \mathbb{Z}, q \in \mathbb{N}$ und p und q nicht beide durch 2 teilbar, sonst kürzen wir.

$$\begin{array}{lll} 2=\frac{p^2}{q^2} & \Rightarrow & \\ 2q^2=p^2 & \Rightarrow & \text{Also } 2|p^2\Rightarrow 2|p\Rightarrow \exists m \text{ mit } p=2m. \\ 2q^2=(2m)^2=4m^2 & \Rightarrow & \\ q^2=2m^2 & \text{d.h. } 2|q^2\Rightarrow 2|q \text{ Also p und q sind beide durch 2 teilbar.} \end{array}$$

Widerspruch! p und q sind nicht beide durch 2 teilbar. $\Rightarrow \sqrt{2} \notin \mathbb{Q} \Rightarrow \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ q.e.d.

2.1.2. Bemerkung

 $\sqrt{2}$ ist die positive Lösung von $a^2=2 \Leftrightarrow a=\frac{2}{a} \Leftrightarrow 2a=a+\frac{2}{a} \Leftrightarrow a=\frac{1}{2}\left(a+\frac{2}{a}\right)$ Betrachte die rechte Seite dieser Gleichung und berechne diese induktiv Setze zB

$$a_1 = 1$$

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$$

$$a_1 = 1$$

$$a_2 = 1,5$$

$$a_3 \approx 1.41$$

$$a_3 \approx 1,4142$$
 ...

Also a_n nähert sich mit wachsendem n immer mehr an $\sqrt{2}$. Dies führt zu dem Begriff **Grenzwert einer** Folge.

2.1.3. Definition

Eine Folge $(a_n)_{k=0}^{\infty}$ reeller Zahlen ist eine Abbildung $\mathbb{N}_0 \to \mathbb{R}$ mit $n \mapsto a_n$ Bezeichnung: Wir schreiben für Folgen

$$(a_n)_{k=0}^{\infty} \qquad (a_n)_{n\geq 0} \qquad (a_n)_{n\in\mathbb{N}} \qquad (a_n)$$

2.1.4. Definition

Eine Folge (a_n) heißt

- 1. (streng) monoton wachsend, wenn $\forall a \in \mathbb{N} \ a_n \leq a_{n+1} \quad (a_n) \nearrow \quad (a_n < a_{n+1} \quad (a_n) \uparrow)$
- 2. (streng) monoton fallend, wenn $\forall a \in \mathbb{N} \ a_n \geq a_{n+1} \quad (a_n) \searrow \quad (a_n > a_{n+1} \quad (a_n) \downarrow)$
- 3. (streng) monoton, sie (streng) monoton wachsend oder (streng) monoton fallend ist.

2.1.5. Beispiel

Ein paar Beispiele zu Folgen:

- (1) Die konstante Folge $a_n = k$ ist monoton fallend und steigend.
- (2) Die harmonische Folge $a_n = \frac{1}{n} \forall n \geq 1$ ist streng monoton fallend.
- (3) Die alternierende Folge $a_n = (-1)^n$ ist nicht monoton.
- (4) Die geometische Folge $a_n = a^n \ \forall n \ge 0$ Sei $a \in \mathbb{R}$ a^n ist $\begin{cases} \text{streng monoton wachsend} & a > 0 \\ \text{streng monoton fallend} & 0 < a < 1 \\ \text{monoton} & a = 1 \\ \text{nicht monoton} \end{cases}$
- (5) Die Fibonacci Folge ist monoton wachsend. $f_n = \begin{cases} 1 & \text{wenn } n = 0, n = 1 \\ f_{n-1} + f_{n-2} & \text{sonst} \end{cases}$

2.1.6. Definition der Konvergenz

Eine Folge reeller Zahlen $(a_n)_{n\in\mathbb{N}}$ heißt konvergent gegen $a\in\mathbb{R}$ wenn

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad |a_n - a| < \varepsilon$$

a heißt der Grenzwert oder Limes der Folge (a_n) . Die Folge (a_n) heißt divergent, wenn sie nicht konvergiert. Schreibweise: $\lim a_n = a$ oder $\lim_{n \to k} a_n = a$. Wobei $k \in \mathbb{R} \cup \{\infty, -\infty\}$

2.1.7. Bemerkung

Sei $a \in \mathbb{R}, \varepsilon > 0$. $U_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon) = \{x \in \mathbb{R} : a - \varepsilon < x < a + \varepsilon\}$ heißt ε -Umgebung von a.

$$a_n \in U_{\varepsilon}(a) \Leftrightarrow a - \varepsilon < a_n < a + \varepsilon \Leftrightarrow -\varepsilon < a_n - a < \varepsilon \Leftrightarrow |a_n - a| < \varepsilon$$

Also: Die Folge (a_n) konvergiert gegen $a \Leftrightarrow$ Die Folgenglieder a_n liegen ab einer Schwelle N alle in der ε -Umgebung von a. (a_n) konvergiert nicht gegen $a \Leftrightarrow \exists \varepsilon > 0 \forall N \in \mathbb{N} \ \exists n \geq N \ | \ a_n - a \ | \geq \varepsilon$.

9

2.1.8. Beispiel

Beispiele zur Konvergenz:

(1) Die harmonische Folge konvergiert: $a_n = \frac{1}{n} \Rightarrow \lim_{n \to \infty} \frac{1}{n} = 0$

$$\textbf{\textit{Beweis:}} \text{ Sei } \varepsilon > 0 \text{ und } N > \frac{1}{\varepsilon} \qquad |a_n - 0| = \left|\frac{1}{n} - 0\right| = \frac{1}{n} \leq \frac{1}{N} < \varepsilon \qquad \qquad q.e.d.$$

(2) Die alternierende Folge $b_n = (-1)^n$ ist divergent

Beweis: Angenommen
$$\exists a \in \mathbb{R}$$
 mit $\lim_{n \to \infty} b_n = b$
Wähle $\varepsilon = \frac{1}{2} > 0 \Rightarrow \exists N \in \mathbb{N} \ \forall n \geq N \ | \ b_n - b \ | < \frac{1}{2}$. Da $b_{n+1} - b_n = \pm 2$ ist $\forall n \geq N$
 $2 = |b_{n+1} - b_n| = |b_{n+1} - b - (b_n - b)| \leq |b_{b+1} - b| + |b_n - b| < \frac{1}{2} + \frac{1}{2} = 1 \Rightarrow 2 < 1$
Widerspruch! $\Rightarrow (b_n)$ ist divergent. $q.e.d.$

(3) Ob die geometsiche Folge $(a^n)_{n\geq 1}$ hängt davon ab, welchen Wert a hat.

Beweis: Durch Fallunterscheidung

$$\begin{aligned} & \text{Fall 1} \; \mid a \mid <1 \Rightarrow \lim_{n \to \infty} a^n = 0 \\ & \text{Sei } \varepsilon > 0 \overset{\text{Archimedisches Axiom}}{\Rightarrow} \; \exists N \in \mathbb{N} \quad \mid a \mid^N < \varepsilon \Rightarrow \forall n \geq N \quad \mid a^n - 0 \mid = \mid a \mid^n \leq \mid a \mid^N < \varepsilon \end{aligned}$$

Fall 3 $a = -1 \Rightarrow$ divergent weil alternierend.

Fall $4 \mid a \mid > 1 \quad \forall K > 0 \; \exists n \in \mathbb{N} \quad \mid a \mid^n > K \; d.h. \; (a^n) \text{ ist unbeschränkt.}$

q.e.d.

2.1.9. Definition

Eine Folge (a_n) heißt nach oben (unten) beschränkt, wenn es ein $A \in \mathbb{R}$ gibt mit

$$\forall n \in \mathbb{N} \quad a_n \le A \qquad (a_n \ge A)$$

 (a_n) heißt beschränkt, wenn (a_n) nach oben oder unten beschränkt ist. d.h.

$$\exists K \in \mathbb{R} \quad | \ a_n \ | \le K \lor | \ a_n \ | \ge K \quad \forall n \in \mathbb{N}$$

2.1.10. Satz

Jede konvergente Folge (a_n) ist beschränkt.

Beweis:
$$\lim_{n \to \infty} a_n = a$$
. Wähle $\varepsilon = 1 > 0 \Rightarrow \exists N \in \mathbb{N} \quad \forall n \ge N \quad |a_n - a| < 1$. $q.e.d.$

$$|a_n| = |a + (a_n - a)| \le |a| + |a_n - a| < |a| + 1 \quad \forall n \ge N$$
Sei $K = max\{|a_1|, |a_2|, \dots, |a_{n-1}|, |a| + 1\}$

$$|a_n| < K \quad \forall n \ge 1$$

2.1.11. Bemerkung

Die Umkehrung gilt nicht. Das heißt eine beschränkte Folge ist nicht konvergent. Gegenbeispiel: die alternierende Folge $(-1)^n$.

2.1.12. Satz Monotoniekriterium

Sei (a_n) eine Folge. Dann gilt:

- Ist (a_n) monoton wachsend und nach oben beschränkt, dann ist (a_n) konvergent.
- Ist (a_n) monoton fallend und nach unten beschränkt, dann ist (a_n) konvergent.

Beweis: Es reicht die erste Aussage zu zeigen, denn ist (a_n) monoton fallend und nach unten beschränkt $\Rightarrow (-a_n)$ ist monoton wachsend und nach oben beschränkt $\Rightarrow (a_n)$ ist konvergent.

Sei also $(a_n) \nearrow$ und nach oben beschränkt. Mit dem Vollständigkeitsaxiom $\Rightarrow \exists a = \sup\{a_n : n \in \mathbb{N}\}$. Und sei $\varepsilon > 0 \Rightarrow a - \varepsilon$ ist keine obere Schranke von $\{a_n : n \in \mathbb{N}\} \Rightarrow \exists N \in \mathbb{N} \quad a - \varepsilon < a_N \le a$.

$$\begin{aligned} \operatorname{Da} \left(a_{n} \right) \nearrow &\Rightarrow \forall n \geq N & a_{N} \leq a_{n} \\ &\Rightarrow a - \varepsilon < a_{N} \leq a_{n} \leq a < a + \varepsilon & \forall n \geq N \\ &\Rightarrow a - \varepsilon < a_{n} < a + \varepsilon & \forall n \geq N \\ &\Rightarrow |a_{n} - a| < \varepsilon & \forall n \geq N \\ &\Rightarrow \lim_{n \to \infty} a_{n} = a \end{aligned}$$

2.1.13. Bemerkung

Das Monotonie-Kriterium ist äquivalent zur Vollständigkeit.

2.1.14. Satz

Der Grenzwert einer Folge ist eindeutig bestimmt.

 $\Rightarrow |b-a| < |b-a|$ Widerspruch! $\Rightarrow a = b$

Beweis: Angenommen $\lim_{n\to\infty}a_n=a$ und $\lim_{n\to\infty}a_n=b$ und $a\neq b$. Sei $\varepsilon=\frac{1}{2}\mid b-a\mid\Rightarrow \exists N_1\;\forall n\geq N_1\mid a_n-a\mid<\varepsilon$ $\Rightarrow\exists N_2\;\forall n\geq N_2\mid a_n-b\mid<\varepsilon$ Sei $N=\max\{N_1,N_2\}\quad\forall n\geq N\quad\mid b-a\mid=\mid (b-a_n)+(a_n-a)\mid$ $\leq\mid b-a_n\mid+\mid a_n-a\mid$ $=\mid a_n-b\mid+\mid a_n-a\mid$ $<\frac{1}{2}\mid b-a\mid+\frac{1}{2}\mid b-a\mid$ $=\mid b-a\mid$

2.1.15. Satz Rechenregeln für konvergente Folgen

Seien (a_n) und (b_n) zwei konvergente Folgen. Dann gilt:

- 1. $(a_n \pm b_n)$ ist konvergent und $\lim_{n \to \infty} a_n \pm b_n = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$.
- 2. $\lambda(a_n)$ ist konvergent und $\lim_{n\to\infty} \lambda a_n = \lambda \lim_{n\to\infty} a_n$.
- 3. $(a_n b_n)$ ist konvergent und $\lim_{n\to\infty} a_n b_n = \lim_{n\to\infty} a_n \lim nb_n$.
- 4. Ist $(b_n) \neq 0 \ \forall n \geq n_0$ und $\lim_{n \to \infty} b_n \neq 0$. Dann ist $\left(\frac{a_n}{b_n}\right)$ konvergent und $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$.
- 5. $a_n \leq b_n$ dann ist $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n \ \forall n \geq n_0$.

Beweis: Sei $\lim_{n\to\infty} a_n = 0$ und $\lim b_n = b$.

1. Sei
$$\varepsilon > 0 \Rightarrow \exists N_1, N_2, \in \mathbb{N}$$
 $|a_n - a| < \frac{\varepsilon}{2} \quad \forall n \ge N_1 \quad \text{und} \quad |b_n - b| < \frac{\varepsilon}{2} \quad \forall n \ge N_2$

$$\Rightarrow \forall n \ge \max\{N_1, N_2\}$$

$$|(a_n \pm b_n) - (a \pm b)| = |(a_n - a) \pm (b_n - b)|$$

$$\leq |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

$$\Rightarrow (a_n \pm b_n) \text{ beschränkt und } \lim_{n \to \infty} a_n \pm b_n = a + b.$$

2. Sei
$$\varepsilon > 0 \Rightarrow \exists N \in \mathbb{N} \quad |a_n - a| < \frac{\varepsilon}{\lambda} \quad \forall n \ge N$$
$$|\lambda a_n - \lambda a| = |\lambda(a_n - a)| = |\lambda| |a_n - a| < \lambda \frac{\varepsilon}{\lambda} = \varepsilon$$

3. Jede konvergente Folge ist beschränkt
$$\Rightarrow \exists K \in \mathbb{R} \text{ mit } | a_K | \leq K \text{ und } | b | \leq K$$

$$\text{Sei } \varepsilon > 0 \Rightarrow \exists N_1, N_2 \in \mathbb{N} | a_n - a | < \frac{\varepsilon}{2K} \text{ und } | b_n - b | < \frac{\varepsilon}{2K}. \Rightarrow$$

$$\forall n \geq \max\{N_1, N_2\} | a_n b_n - a b | = | a_n b_n - a_n b + a_n b + a b | = | a_n (b_n - b) + b (a_n - a) |$$

$$\leq | a_n (b_n - b) | + | b (a_n - a) |$$

$$= \underbrace{| a_n |}_{\leq K} | b_n - b | + \underbrace{| b |}_{\leq K} | a_n - a | < K \frac{\varepsilon}{2K} + K \frac{\varepsilon}{2K} = \varepsilon$$

4. Zeige
$$\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{\lim_{n \to \infty} b_n} \implies ||b_n| - |b|| \le |b_n - b| < \frac{|b|}{2} \quad \forall n \ge n_0$$

$$\Rightarrow -\frac{|b|}{2} < |b_n| - |b| < \frac{|b|}{2} \Rightarrow \frac{|b|}{2} < |b_n| \implies \frac{1}{|b_n|} < \frac{2}{|b|} \quad \forall n \ge n_0$$
Sei $\varepsilon > 0 \Rightarrow \exists N \quad \forall n \ge N \quad |b_n - b| < \frac{\varepsilon |b|^2}{2} \Rightarrow$

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{b - b_n}{bb_n} \right| = \frac{1}{|b_n|} \frac{1}{|b|} |b - b_n| < \frac{2}{|b|} \frac{1}{|b|} |b_n - b| < \frac{2}{|b|^2} \frac{\varepsilon |b|^2}{2} = \varepsilon.$$

5. Sei
$$a_n \leq b_n \quad \forall n \geq n_0$$
. Angenommen $a > b$. Sei $\varepsilon = \frac{a-b}{2} > 0$

$$\Rightarrow \exists N_1, N_2 \in \mathbb{N} \quad | \ a_n - a \ | < \varepsilon \quad \forall n \geq N_1 \quad \text{und} \quad | \ b_n - b \ | < \varepsilon \quad \forall n \geq N_2$$

$$b_n < b + \varepsilon = b + \frac{a-b}{2} = \frac{2b+a-b}{2} = \frac{b+a}{2} = \frac{2a-a+b}{2}$$

$$= a - \frac{a-b}{2} = a - \varepsilon < a_n \quad \forall n \geq \max\{N_1, N_2\}$$

$$\Rightarrow b_n < a_n \quad \forall n \geq \max\{N_1, N_2\} \quad \text{Widerspruch!} \Rightarrow a \leq b$$

2.1.16. Satz Sandwich-Theorem

Sei (a_n) und (b_n) zwei konvergente Folgen mit der Eigenschaft, dass $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = a$. Sei (c_n) eine Folge mit der Eigenschaft, dass $a_n \le c_n \le b_n$ $\forall n \ge n_0$. Dann ist (c_n) konvergent und $\lim_{n\to\infty} c_n = a$.

Beweis: Sei
$$\varepsilon > 0 \Rightarrow \exists N_1, N_2 \in \mathbb{N}$$

$$a - \varepsilon < a_n < a + \varepsilon \quad \forall n \ge N_1$$

$$a - \varepsilon < b_n < a + \varepsilon \quad \forall n \ge N_2$$

$$\Rightarrow \forall n \ge \max\{N_1, N_2\} \text{ gilt:} \qquad a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon \quad \forall n \ge N$$

$$\Rightarrow |c_n - a| < \varepsilon \Rightarrow \lim_{n \to \infty} c_n = a$$

$$q.e.d.$$

2.1.17. Beispiel

Zwei Beispiele zum Sandwich-Theorem:

1. Sei
$$(a_n)$$
 eine Folge mit $0 \le a_n \le \frac{1}{n} \Rightarrow \lim_{n \to \infty} a_n = 0$

2.
$$a_n = \sqrt{2n} - \sqrt{n}$$
 ist divergent, denn
$$a_n = \frac{\left(\sqrt{2n} - \sqrt{n}\right)\left(\sqrt{2n} + \sqrt{n}\right)}{\left(\sqrt{2n} + \sqrt{n}\right)} = \frac{2n - n}{\sqrt{n}\left(\sqrt{2} - 1\right)} \ge \frac{n}{3\sqrt{n}} = \frac{\sqrt{n}}{3} \ge \sqrt{n} \xrightarrow{n \to \infty} \infty.$$

2.1.18. Definition

Eine Folge (a_n) heißt bestimmt divergent gegen $\pm \infty$ wenn gilt:

$$\forall K \in \mathbb{R} \quad \exists N \in \mathbb{N} \quad \forall n \ge N \quad a_n \leqslant K$$

Für jedes K aus \mathbb{R} gibt es ein N aus \mathbb{N} ab dem a_n größer/kleiner als K wird. Schreibweise: $\lim_{n\to\infty}a_n=\pm\infty$

2.1.19. Beispiel

Beispiele zu bestimmt divergenten Folgen:

- 1. Die Fibonacci Folge ist bestimmt divergent gegen $+\infty = \infty$
- 2. Sei $a_n = n$, dann folgt $\lim_{n \to \infty} a_n = \infty$
- 3. Sei $\lim_{n\to\infty} a_n = \infty \Leftrightarrow \lim_{n\to\infty} -a_n = -\infty$
- 4. Die Folge $a_n = (-1)^n$ ist divergent aber nicht bestimmt divergent.
- 5. Sei (a_n) bestimmt divergent und $a_n \neq 0 \quad \forall n \geq n_0$, dann folgt $\lim_{n \to \infty} \frac{1}{a_n} = 0$.

Beweis: Sei
$$\lim_{n\to\infty} a_n = \infty$$
 $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ a_n > \frac{1}{\varepsilon} > 0$
$$\Rightarrow \frac{1}{a_n} < \varepsilon \Rightarrow \left| \frac{1}{a_n} - 0 \right| < \varepsilon$$
 da $a_n > 0 \Rightarrow \lim_{n\to\infty} \frac{1}{a_n} = 0$.

q.e.d.

2.1.20. Definition

Sei (a_n) eine Folge reeller Zahlen und $n_0 < n_1 < n_2 < \cdots < n_k < \ldots$ eine Teilmenge von $\mathbb N$. Dann heißt die Folge $(a_{n_k})_{k \in \mathbb N}$ eine Teilfolge von $(a_n)_{n \in \mathbb N}$.

2.1.21. Bemerkung

Ist die Folge (a_n) konvergent, dann ist auch jede Teilfolge von (a_n) konvergent.

Beweis: Sei (a_n) konvergent gegen a. Also $\forall \varepsilon > 0 \exists N \in \mathbb{N} \quad |a_n - a| < \varepsilon \quad \forall n \geq N$. Da (a_{n_k}) eine Teilfolge von (a_n) mit $n_0 < n_1 < n_2 < \cdots < n_k < \ldots$ und da n_k monoton steigend ist, ist $k \leq n_k$ und $n_k \geq N \quad \forall k \geq N$ daraus folgt $|a_{n_k} - a| < \varepsilon \quad \forall n \geq N$.

2.1.22. Definition

Sei (a_n) eine Folge. Eine Zahl $a \in \mathbb{R}$ heißt Häufungspunkt (Häufungswert) der Folge (a_n) , wenn es eine Teilfolge von (a_n) gibt, die gegen a konvergiert.

2.1.23. Bemerkung

Beispiele zu Häufungspunkten:

- 1. Sei $\lim_{n\to\infty} a_n = a$, dann ist a der einzige Häufungspunkt der Folge (a_n) .
- 2. Eine bestimmt divergente Folge hat keinen Häufungspunkt.
- 3. Die Folge $a_n = \frac{1}{n} + (-1)^n$ besitzt die zwei Häufungspunkte ± 1 : $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} \frac{1}{2n} (-1)^{2n} = \lim_{n \to \infty} \frac{1}{2n} + 1 = 1$ $\lim_{n \to \infty} a_{2n+1} = \lim_{n \to \infty} \frac{1}{2n+1} (-1)^{2n+1} = \lim_{n \to \infty} \frac{1}{2n+1} 1 = -1$
- 4. Jede konvergente Folge ist beschränkt, aber jede beschränkte Folge muss nicht konvergent sein.

2.1.24. Satz von Bolzano-Weierstraß

Jede beschränkte Folge reeller Zahlen besitzt eine konvergente Teilfolge.

Beweis: $(a_n)_{n\in\mathbb{N}_0}$ ist beschränkt, d.h. $\exists A\in\mathbb{R}$ mit $-A\leq a_n\leq A \quad \forall n\geq 0$

Sei $A_k = \{a_m : m \geq k\}$. Beachte: dass jede der Mengen A_k beschränkt ist, durch A_k

Daraus folgt mit dem Vollständigkeitsaxiom $\exists inf(A_k) \quad \forall A_k \quad \text{Wähle } x_k = inf(A_k).$

$$\mathrm{Da}\ A_0\supset A_1\supset\cdots\supset A_k\supset A_{k+1}\supset\ldots\quad\Rightarrow\quad x_k\leq x_{k+1}\quad\forall k\geq 0.$$

Betrachte die Folge $(x_n)_{k\geq 0}$. (x_n) ist monoton wachsend und durch A beschränkt.

Mit dem Monotoniekritierium konvergiert (x_n) . Sei etwa $\lim_{k\to\infty} x_k = z$

zu zeigen: z ist Häufungspunkt von (a_n)

- 1. Sei $\varepsilon>0$, da $\lim_{k\to\infty}x_k=z\Rightarrow \exists N\in\mathbb{N}$ mit $\mid x_k-z\mid<\frac{\varepsilon}{2}\quad \forall n\geq N$
- 2. Da $x_k = \inf\{A_k\} = \inf\{a_m : m \ge k\} \Rightarrow \exists a_{k_m} \text{ mit } |x_k a_{k_m}| < \frac{\varepsilon}{2}.$ $\Rightarrow |a_{k_m} z| = |a_{k_m} x_k + x_k z| \le |a_{k_m} x_k| + |x_k z| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Also $\forall \varepsilon > 0 \exists N \in \mathbb{N} \quad \forall k \geq N \quad \exists a_{k_m} \in (a_n) \quad |a_{k_m} - z| < \varepsilon$

d.h. die Teilfolge $(a_{k_m})_{m\geq 0}$ ist konvergent gegen z

Also (a_{k_m}) ist eine konvergente Teilfloge von der beschränkten Folge (a_n) .

 $x_k \qquad a_{k_m} \qquad x_k + \frac{\varepsilon}{2}$

2.1.25. Bemerkung

Der Satz von Bolzano-Weierstraß ist äquivalent zum Vollständigkeitsaxiom. Andere äquivalente Formulierungen zu Bolzano-Weierstraß:

- Jede beschränkte Folge reeller Zahlen hat mindestens einen Häufungspunkt.
- Jede beschränkte Folge reeller Zahlen hat einen größten und einen kleinsten Häufungspunkt.

2.1.26. Definition Cauchy-Folge

Eine Folge $(a_n)_{n\geq 0}$ heißt CAUCHY-Folge, wenn gilt:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n, m \ge N \quad |a_n - a_m| < \varepsilon$$

2.1.27. Satz

Folgende Aussagen sind äquivalent

- 1. Die Folge (a_n) ist konvergent
- 2. Die Folge (a_n) ist eine Cauchy-Folge

Beweis: 1)
$$\Rightarrow$$
 2) Sei $\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0 \exists N \ \forall m \geq N \ | \ a_n a \ | < \frac{\varepsilon}{2} \Rightarrow \forall n, m \geq N$

$$| \ a_n - a_m \ | = | \ a_n - a + a - a_m \ | \leq | \ a_n - a \ | + | \ a_m - a \ | < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\Rightarrow a_n \text{ ist eine Cauchy Folge}$$

 $(2) \Rightarrow 1)$ Jede Cauchy Folge ist beschränkt.

Sei
$$\varepsilon = 1 \Rightarrow \exists N \in \mathbb{N} \ \forall n, m \geq N \ | \ a_n - a_m \ | < 1 \Rightarrow | \ a_n - a_N \ | < 1$$

$$\Rightarrow | \ a_n \ | = | \ a_n - a_N + a_N \ | \leq | \ a_n - a_N \ | + | \ a_N \ | < 1 + | \ a_N \ | \quad \forall n \geq N$$

$$\Rightarrow \forall n \in \mathbb{N} \ | \ a_n \ | \leq \max\{|\ a_0 \ |, \dots, |\ a_{N-1} \ |, |\ a_N \ | + 1\} \Rightarrow (a_n) \text{ ist beschränkt.}$$

Nach Bolzano-Weierstraß existiert eine konvergente Teilfolge: $(a_{n_k}) \stackrel{k \to \infty}{\longrightarrow} a$ zu zeigen: $\lim_{n \to \infty} a_n = a$.

Sei $\varepsilon>0$. Wähle m so groß, dass $|a_m-a_n|<\frac{\varepsilon}{2} \quad \forall n,m\geq N$ und $|a_{n_k}-a|<\frac{\varepsilon}{2} \quad \forall n_k\geq k\geq N$

$$\Rightarrow |a - a_n| = |a - a_{n_k} + a_{n_k} - a_n| \le |a - a_{n_k}| + |a_{n_k} - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2.1.28. Beispiel Verfahren zur Berechnung der Quadratwurzel

Seien a = 0, $a_0 > 0$ reelle Zahlen. Wir definieren die Folge (x_n) rekursiv.

$$x_0 = x_0$$

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

Wir zeigen: (x_n) ist konvergent und $\lim_{n\to\infty} x_n = x$ und $x^2 = a$.

Beweis: zu zeigen: nach unten durch 0 beschränkt: $x_n > 0 \quad \forall n \ge 0$

IA
$$n = 0$$
: $x_0 > 0$

$$IV x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

IS
$$n \mapsto n+1$$

Sei
$$x_n > 0 \Rightarrow x_{n+1} = \underbrace{\frac{1}{2}}_{>0} \left(\underbrace{x_n}_{>0} + \underbrace{\frac{a}{x_n}}_{>0}\right) > 0 \Rightarrow (x_n)$$
 ist n.u. durch 0 beschränkt.

zu zeigen: $x_n^2 \ge a \quad \forall n \ge 1 \text{ denn}$

$$\begin{aligned} x_{n+1}^2 - a &= \frac{1}{4} \left(x_n + \frac{a}{x_n} \right)^2 - a &= \frac{1}{4} \left(x_n^2 + 2x_n \frac{a}{x_n} + \frac{a^2}{x_n^2} \right) - a \\ &= \frac{1}{4} \left(x_n^2 + \frac{2ax_n}{x_n} + \frac{a^2}{x_n^2} - 4a \right) = \frac{1}{4} \left(x_n^2 + \frac{2ax_n}{x_n} + \frac{a^2}{x_n^2} - \frac{4ax_n}{x_n} \right) \\ &= \frac{1}{4} \left(x_n^2 - 2x_n \frac{a}{x_n} + \frac{a^2}{x_n^2} \right) = \frac{1}{4} \left(x_n - \frac{a}{x_n} \right)^2 \ge 0 \end{aligned}$$

 (x_n) ist monoton fallend

$$x_n - x_{n+1} = x_n - \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) = \frac{1}{2} \left(2x_n - x_n - \frac{a}{x_n} \right) = \frac{1}{(2x_n)(x_n^2 - a)} \ge 0$$

weil beides $\geq 0(x_n > 0) \Rightarrow x_> n >= x_{n+1}$

Nach dem Monotonie-Kriterium ist (x_n) konvergent.

Sei
$$x = \lim_{n \to \infty} x_n \Rightarrow x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) = \frac{1}{2} \left(\lim_{n \to \infty} x_n + \frac{a}{\lim_{n \to \infty} x_n} \right) = \frac{1}{2} \left(x + \frac{a}{x} \right) \Rightarrow 2x = x + x = \frac{a}{x} \Rightarrow x^2 = a$$

q.e.d.

Die positive Lösung der Gleichung $x^2 = a$ heißt die Quadratwurzeln von a. Wir Schreiben $x = \sqrt{a}$.

2.2 Reihen

2.2.1. Definition

Sei $(a_n)_{n\geq 0}$ eine Folge reeller Zahlen. Sei weiters $S_N=\sum_{n=0}^N a_n$ die N-te Partialsumme, dann heißt die Folge $(S_N)_{N\geq 0}$ der Partialsummen eine unendliche Reihe.

Schreibweise:
$$\sum_{n=0}^{\infty} a_n$$

Konvergiert die Folge (S_N) mit $\lim_{n\to\infty} S_N = s$, dann heißt $\sum_{n=0}^{\infty} a_n = s$ der Wert der Reihe. Man sagt: Die Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert.

Schreibweise:
$$\sum_{n=0}^{\infty} a_n < \infty$$

2.2.2. Beispiel

1. Die geometrische Reihe. Sei $|a| < 1 \Rightarrow \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Ist $|a| \ge 1$, dann ist $\sum_{n=0}^{\infty} a^n$ divergent.

16

Beweis: IA
$$n = 0$$
: $N = 0$: $a^0 = \frac{(1-a)}{(1-a)} = 1$

IV $\sum_{n=0}^{N} a^n = \frac{1-a^{N+1}}{1-a}$

IS $n \mapsto n+1$: $N \mapsto N+1$

$$\sum_{n=0}^{N+1} a^n = a^{N+1} + \sum_{n=0}^{N} a^n \stackrel{IV}{=} a^{N+1} + \frac{1-a^{N+1}}{1-a} = \dots \text{ selber}$$

Sei $S_N = \sum_{n=0}^{N} a^n = \frac{1-a^{N+1}}{1-a}$

Sei $|a| < 1$. Dann folgt $\lim_{n \to \infty} a^N = 0$

$$\Rightarrow \lim_{n \to \infty} S_N = \lim_{n \to \infty} \frac{1-a^{N+1}}{1-a} = \frac{1}{1-a}$$

Sei $a \ge 1 \Rightarrow \sum_{n=0}^{N} a^n \ge \sum_{n=0}^{N} 1 = N+1 \longrightarrow \inf$

Sei $a \le -1 \Rightarrow a = -b \text{ mit } b \ge 1 \Rightarrow \sum_{n=0}^{N} a^n \ge \sum_{n=0}^{N} (-1)^n b^n \text{ divergent}$

2. Die harmonische Reihe: $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$

$$\begin{aligned} \textit{Beweis:} \ S_{2^N} &= \sum_{n=1}^{2^N} \frac{1}{n} = 1 + \underbrace{\frac{1}{2}}_{=\frac{1}{2}} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{=\frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{=\frac{1}{2}} + \underbrace{\frac{1}{9} + \ldots + \frac{1}{16}}_{=\frac{1}{2}} + \ldots + \underbrace{\frac{1}{2^{N-1} + 1} + \ldots + \frac{1}{2^N}}_{=\frac{1}{2}} \\ &\geq 1 + n\frac{1}{2} > \frac{n}{2} \longrightarrow +\infty \end{aligned}$$

Würde $(S_N)_{N\geq 1}$ konvergieren, dann auch die Teilfolge $(S_{2^N})_{N\geq 1}$, da diese dievergiert, divergiert auch $(S_N)_N$

q.e.d.

3.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

Beweis:
$$S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N \frac{1}{n} - \frac{1}{n+1} = \sum_{n=1}^N \frac{1}{n} - \sum_{n=1}^N \frac{1}{n+1} = 1 + \sum_{n=2}^N \frac{1}{n} - \sum_{n=2}^{N+1} \frac{1}{n} = 1 + \sum_{n=2}^N \frac{1}{n} - \sum_{n=2}^N \frac{1}{n} + \frac{1}{N+1} = 1 + \frac{1}{N+1} \longrightarrow 1$$

q.e.d.

2.2.3. Satz

Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ zwei konvergente Reihen und $\lambda \in \mathbb{R}$, dann ist auch $\sum_{n=0}^{\infty} \lambda a_n + b_n$ konvergent und $\sum_{n=0}^{\infty} \lambda a_n + b_n = \lambda \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$

Beweis: folgt auf Grund der Rechenregeln für konvergente Folgen.

q.e.d.

2.2.4. Satz Cauchy-Kriterium für Reihen

Die Reihe $\sum_{k=0}^{\infty}a_k$ ist konvergent, genau dann wenn gilt:

$$\forall \varepsilon > 0 \; \exists N(\varepsilon) \in \mathbb{N} \quad \forall n \ge m \ge N \qquad \left| \sum_{k=m}^{n} a_k \right| < \varepsilon \qquad (\star)$$

 (\star) bedeutet die $(S_n)_n$ ist eine Cauchy-Folge $\Leftrightarrow (S_n)_n$ ist konvergent

Beweis:
$$S_n - S_m = \sum_{k=0}^n a_k - \sum_{k=0}^m a_k = \sum_{k=m}^n a_k$$
.

q.e.d.

2.2.5. Korollar

Ist $\sum_{k=0}^{\infty} a_k$ konvergent $\Rightarrow \lim_{k \to \infty} a_k = 0$.

Beweis:
$$a_n = \sum_{k=m}^n a_k$$
. Da $\sum_{k=0}^\infty a_k < \infty \overset{\text{Cauchy-Kriterium}}{\Rightarrow} \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \quad \forall n \geq N \ | \ a_N \ | = |\sum_{k=m}^n a_k \ | < \varepsilon \Rightarrow \lim_{n \to \infty} a_n = 0$

$$q.e.d.$$

2.2.6. Bemerkung

Die Umkehrung des Korrolars gilt nicht. z.B. $\lim_{n\to\infty}\frac{1}{n}=0$ aber $\sum_{n=0}^{\infty}\frac{1}{n}=\infty$ (harmonische Reihe).

2.2.7. Definition

Die Reihe $\sum_{k=0}^{\infty} a_k$ heißt absolut konvergent, wenn die Reihe $\sum_{k=0}^{\infty} |a_k|$ konvergiert.

2.2.8. Satz

Jede absolut konvergente Reihe ist auch konvergent.

Beweis: Sei
$$\sum_{k=0}^{\infty} |a_k| < \infty$$
 Cauchy-Kriterium $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge m \ge N \ |\sum_{k=m}^{n} |a_k|| < \varepsilon$ Dreiecksungleichung \Rightarrow $|\sum_{k=m}^{n} a_k| \le |\sum_{k=m}^{n} |a_k|| < \varepsilon$ gilt $\forall n \ge m \ge N$ Cauchy-Kriterium $\sum_{k=0}^{\infty} a_k$ ist konvergent.

q.e.d.

2.2.9. Bemerkung

Die Umkehrung des Satzes gilt nicht. zB kann man zeigen, dass die Reihe $\sum_{k=0}^{\infty} (-1)^k \frac{1}{k}$ konvergiert. Aber die Reihe $\sum_{k=0}^{\infty} \left| (-1)^k \frac{1}{k} \right| = \sum_{k=0}^{\infty} \frac{1}{k} = \infty$

2.2.10. Satz Majoranten-Kriterium

Sei $\sum_{k=0}^{\infty} b_k$ konvergent mit $b_k \geq 0 \forall k \geq N_0$. Sei $(a_k)_{k=0}^{\infty}$ eine Folge mit $|a_k| \leq b_k \forall k \geq N_0 \Rightarrow \sum_{k=0}^{\infty} a_k$ ist absolut konvergent.

Beweis: Sei $\sum_{k=0}^{\infty} b_k < \infty$ und $b_k > 0$ Cauchy-Kriterium $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \quad \forall n \geq m \geq N \quad |\sum k = mnb_k| < \varepsilon |a_k| \leq b_k |\sum k = mn|a_k| |\leq |\sum k = mnb_k| < \varepsilon \forall n \geq m \geq N$ Cauchy-Kriterium $\sum_{k=0}^{\infty} |a_k|$ ist konvergent. $\Rightarrow \sum_{k=0}^{\infty} a_k$ ist absolut konvergent. q.e.d.

2.2.11. Korollar Minoranten-Kriterium

Sei $\sum_{k=0}^{\infty} b_k$ divergent mit $b_k \ge 0 \forall k \ge N_0$. und $(a_k)_{k=0}^{\infty}$ eine Folge mit $|a_k| \ge b_k \forall k \ge N_0 \Rightarrow \sum_{k=0}^{\infty} a_k$ ist auch divergent.

Beweis: Wäre $\sum_{k=0}^{\infty} a_k$ konvergent, dann wäre nach dem Majoranten-Kriterium $\sum_{k=0}^{\infty} b_k$ konvergent, da $|b_k| \le a_k$. Widerspruch! q.e.d.

2.2.12. Satz Quotienten-Kriterium

Sei $\sum_{n=0}^{\infty} a_n$ eine Reihe mit $a_n \neq 0 \forall n \geq n_0$ Existiert eine reelle Zahl q mit 0 < q < 1 sodass $\left| \frac{a_{n+1}}{a_n} \right| \leq q < 1 \forall n \geq n_0 \Rightarrow \sum_{n=0}^{\infty} a_n$ ist absolut konvergent.

 $\begin{array}{l} \textbf{\textit{Beweis:}} \text{ Sei } \left| \left. \frac{a_{n+1}}{a_n} \right| \leq q < 1 \forall n \geq 0 \\ \text{(o.B.d.A.)} \Rightarrow \left| \left. a_{n+1} \right| \leq q \left| \left. a_n \right| \Rightarrow \left| \left. a_n \right| \leq q \left| \left. a_{n-1} \right| \leq q^2 \left| \left. a_{n-2} \right| \leq \\ \dots \leq q^n \left| \left. a_0 \right| \text{.Also } \left| \left. a_n \right| \leq q^n \left| \left. a_0 \right|, da \sum_{n=0}^{\infty} \left| \left. a_n \right| \leq \sum_{n=0}^{\infty} q^n \left| \left. a_0 \right| = \left| \left. a_0 \right| \sum_{n=0}^{\infty} q^n = \left| \left. a_0 \right| \frac{1}{1-q}, \text{ denn } 0 < \\ q < 1, \text{ geometrische Reihe.} \Rightarrow \text{ aus dem Majoranten-Kriterium folgt } \sum_{n=0}^{\infty} a_n \text{ ist absolut konvergent.} \end{array}$

2.2.13. Korollar einfaches Quotienten-Kriterium

Sei $a_n \neq 0 \ \forall n > n_0$ und existiert $\lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right|$ und ist $\lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right| < 1 \Rightarrow \sum_{n=0}^{\infty} a_n$ ist absolut konvergent.

Beweis: Sei $\lim_{n\to\infty} \left| \frac{a_n+1}{a_n} \right| = \alpha < 1$

Sei
$$\varepsilon = \frac{1-\alpha}{2} > 0 \Rightarrow \exists N \ \forall n \geq N \ \left| \left| \frac{a_{n+1}}{a_n} \right| - \alpha \right| < \varepsilon = \frac{1-\alpha}{2} \Rightarrow \left| \frac{a_(n+1)}{a_n} \right| < \frac{1-\alpha}{2} + \alpha = \frac{1+\alpha}{2} \operatorname{da} \ \alpha < 11 + \frac{1}{2} = 1 \operatorname{Sei} \ q = \frac{1+\alpha}{2} < 1 \operatorname{und} \left| \frac{a_(n+1)}{a_n} \right| < q < 1 \ \text{Nach dem Quotienten-Kriterium ist } \sum_{n=0}^{\infty} a_n \ \text{absolut konvergent}$$

$$q.e.d.$$

2.2.14. Beispiel 1. $\sum_{n=0}^{\infty} \frac{1}{n^k} < \infty$ $\forall k \geq 2$ [Bemerkung: Die Konvergenz gilt auch $\forall k \in \mathbb{R}, k > 1$ ohne Beweis]

 $\begin{array}{ll} \textit{Beweis:} \ \frac{1}{n^k} \leq \frac{1}{n^2} & \forall k \geq 2 \text{ und} \\ \frac{1}{n^2} \leq \frac{2}{n(n+1)}, \text{ denn } \Leftrightarrow 2n^2 \geq n(n+1) \Leftrightarrow n^2 \geq n \Leftrightarrow n \geq 1 \\ \Rightarrow \frac{1}{n^k} \leq \frac{2}{n(n+1)} \forall k \geq 2 \text{ und} \end{array}$

$$\sum_{n=0}^{\infty} \frac{2}{n(n+1)} = 2 \sum_{n=0}^{\infty} \frac{1}{n(n+1)} = 2 * 1 = 2 Majoranten - Kriterium \sum_{n=0}^{\infty} 1n^k < \infty \forall k \geq 2$$
Frage: Wie sind die Werte der Reihe $\sum_{n=0}^{\infty} 1/n^k$ für $k \geq 2$ Euler: $\sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, $\sum_{n=0}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$, ..., $\sum_{n=0}^{\infty} \frac{1}{n^{2k}} = C_k \pi^{2k}$ Aber: $\sum_{n=0}^{\infty} \frac{1}{n^3} \in \mathbb{R} \setminus \mathbb{Q}$, $\sum_{n=0}^{\infty} \frac{1}{n^5} = ?$, ..., $\sum_{n=0}^{\infty} \frac{1}{n^{2k+1}} = ?$ q.e.d.

2. Die Reihe $\sum_{n=0}^{\infty} \frac{n^2}{2^n}$ ist konvergent.

$$Quotienten-Kriterium. \ \left| \ \frac{a_{n+1}}{a_n} \ \right| = \frac{\frac{(n+1)^2}{2^{n+1}}}{\frac{n^2}{2^n}} = \frac{2^n(n+1)^2}{2^{n+1}n^2} = \frac{1}{2} * \left(\frac{n+1}{n}\right)^2 = \frac{1}{2} \left(\frac{1}{1+\frac{1}{n}}\right)^2 \longrightarrow \frac{1}{2} < 1 \qquad q.e.d.$$

3. Die Exponentialfunktion Die Reihe $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ ist für jedes $x \in \mathbb{R}$ absolut konvergent

$$\begin{aligned} &Quotienten\text{-}Kriterium. \ \left| \ \frac{a_{k+1}}{a_k} \ \right| = \left| \ \frac{\frac{x^{k+1}}{(k+1)!}}{\frac{x^k}{k!}} \ \right| = \frac{\left| \ x^{k+1} \ \right|*k!}{\left| \ x^k \ |*(k+1)!} = \frac{\left| \ x \ \right|}{k+1} k \xrightarrow{\longrightarrow} \infty 0 \ \forall x \in \mathbb{R} \\ &\Rightarrow \sum_{k=0}^{\infty} \frac{x^k}{k!} \ \text{ist absolut konvergent.} \end{aligned}$$

- **2.2.15. Bemerkung** 1. Für k=1 ist die harmonische Reihe $\sum_{n=0}^{\infty} \frac{1}{n}$ divergent.
 - 2. Das Quotienten-Kriterium ist hier nicht anwendbar, denn

$$\sum_{n=0}^{\infty} \frac{1}{n} \qquad \frac{a_{n+1}}{a_n} = \frac{1}{1 + \frac{1}{n}} \stackrel{n \to \infty}{\longrightarrow} n1 \not< 1$$

$$\sum_{n=0}^{\infty} \frac{1}{n^2} \qquad \frac{a_{n+1}}{a_n} = \left(\frac{1}{1 + \frac{1}{n}}\right)^2 \longrightarrow 1 \not< 1$$

2.2.16. Definition

Die Funktion $exp: \mathbb{R} \to \mathbb{R}$ mit $exp(x) \mapsto e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ heißt Exponentialfunktion. Die Zahl $e = exp(1) = \sum_{n=0}^{\infty} \frac{1^n}{n!}$ heißt Euler'sche Zahl.

2.2.17. Bemerkung

Wir werden später zeigen:

$$e = \frac{1^n}{n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2,71828...$$

2.2.18. Satz Cauchy-Produkt von Reihe

Seien die Reihen $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ absolut konvergent. Für $n \in \mathbb{N}$ definieren wir das Cauchy-Produkt folgendermaßen:

$$c_n = \sum_{k=0} n a_k b_{n-k} = a_0 b_n + \dots + a_n b_0$$

Dann gilt: Die Reihe $\sum_{n=0}^{\infty} c_n$ ist absolut konvergent und $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n) (\sum_{n=0}^{\infty} b_n)$

Beweisidee.

2.2.19. Korollar Funktionalgleichung der Exponentialfunktion

Sei $exp(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ die Exponentialfunktion. Dann gilt:

$$\exp(x+y) = \exp(x) \exp(y)$$

$$e^{x+y} = e^x e^y$$

Beweis: Wir bilden das Cauchy-Produkt, der absolut konvergenten Reihen e^x und e^y . Dafür verwenden

wir den Binomischen Lehrsatz:
$$(a+n)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n fracn! k! (n-k)! a^k b^{n-k}$$

$$e^x e^y = \left(\sum_{n=0}^\infty \frac{x^n}{n!}\right) \left(\sum_{n=0}^\infty \frac{y^n}{n!}\right) = \sum_{n=0}^\infty \sum_{k=0}^n \frac{x^k}{k!} \frac{y^{n-k}}{(n-k)!}$$

$$= \sum_{n=0}^\infty \frac{1}{n!} \left(\sum_{k=0}^n \frac{n!}{k! (n-k)!} x^k y^{n-k}\right) = \sum_{n=0}^\infty \frac{1}{n!} \left(\sum_{k=0}^n \binom{n}{k} x^k y^{n-k}\right)$$

$$q.e.d.$$

$$Binom.LS \sum_{n=0}^\infty \frac{1}{n!} (x+y)^n = e^{x+y}$$

3 Stetigkeit

Stetigkeit 3.1

3.1.1. Definition

Sei $D \subset \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ mit $x \mapsto f(x)$. ist eine Vorschrift, die jedes $x \in D$ genau einem WErt f(x) zuordnent.

3.1.2. Beispiel 1. Für $c \in \mathbb{R}$ $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = c$ heißt die konstante Funktion

- 2. $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = x$ heißt identische Funktion
- 3. $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = |x|$ heißt Betragsunktion
- 4. $f: \mathbb{R} \to \mathbb{R} \text{ mit } x \mapsto f(x) = |x|$
- 5. $f: \mathbb{R}_+ \to \mathbb{R}$ mit $x \mapsto f(x) = \sqrt{x}$ heißt Wurzelfunktion
- 6. $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = e^x$ heißt Exponentialfunktion
- 7. $p: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto p(x) = \sum_{k=0}^{\infty} n a_k x^k$ mit $a_k \in \mathbb{R}$ heißt Polynomfunktion

3.1.3. Definition

Seien $f, g: D \to \mathbb{R}$ Funktionen und $\lambda \in \mathbb{R}$. Wir definieren.

$$f+g,fg,\lambda f:D\to\mathbb{R}$$

$$(f+g)(x) = f(x) + g(x)$$

$$(fg)(x) = f(x)g(x)$$

$$(\lambda f)(x) = \lambda f(x)$$

Sei weiters $g(x) \neq 0 \forall x \in D \frac{f}{g}: D \to \mathbb{R}mit\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ Sei $f: D \to \mathbb{R}, g: E \to \mathbb{R}, mitf(D) \subset E(f(D) = \{f(x) : x \in D\}(g \circ f): D \to \mathbb{R}(g \circ f)(x) = g(f(x)).$

3.1.4. Beispiel 1. $f: \mathbb{R}_+ \to \mathbb{R}$ mit $f(x) = \sqrt{x}q: \mathbb{R} \to \mathbb{R}$ $f \circ g(x) = f(g(x)) = f(x^2) = \sqrt{x^2} = |x|$

2. $p(x) = \sum_{k=0} n a_k x^k q(x) = \sum_{k=0} n b_k x^k D := \{x \in \mathbb{R} : q(x) \neq 0\} r = \frac{p}{q} : D \to \mathbb{R} r(x) = 0$ $\frac{p(x)}{q(x)}$ heitrationale Funktion.

3.1.5. Definition Grenzwert einer Funktion

Sei $f: D \to \mathbb{R}$ eine Funktion, $a \in \mathbb{R}$ eine Zahl, sodass es mindestens eine Folge (a_n) gibt mit $a_n \in D$ mit $\lim_{n \to \infty} a_n = a$ gibt. Man definiert $\lim_{n \to \infty} f(x) = c$, wenn gilt: Für jede Folge $(x_n)_{n \ge 0}$ mit $\lim_{n \to \infty} x_n = a$ gilt $\lim f(x_n) = c.$

c heißt dann Grenzwert

3.1.6. Definition Stetigkeit

Sei $f:D\to\mathbb{R}$ und $a\in D$. f heißt stetig in a, wenn $\lim_{x\to a}f(x)=f(a)$. Das heißt für jede Folge (x_n) mit $\lim_{n \to \infty} x_n = a \text{ ist } \lim_{n \to \infty} f(x_n) = f(a).$

f heißt stetig in D, falls f in jedem Punkt $a \in D$ stetig ist.

3.1.7. Bemerkung

f ist in $a \in D$ nicht stetig $\Leftrightarrow \exists$ eine Folge (x_n) mit $\lim_{n \to \infty} x_n = a$ aber die Folge $(f(x_n))$ ist divergent oder $\lim_{n \to \infty} f(x_n) \neq f(a)$

- **3.1.8. Proposition** Recherregeln 1. Seien $f, g: D \to \mathbb{R}$ stetig $\lambda \in \mathbb{R} \Rightarrow f + g, fg, \lambda f: D \to \mathbb{R}$ ist stetig.
 - 2. Sei $g(x) \neq 0 \forall x \in D \Rightarrow \frac{f}{g} : D \to \mathbb{R}$ ist stetig.
 - 3. Seien $f: D \to \mathbb{R}$ und $g: E \to \mathbb{R}$ stetig, mit $f(D) \subset E \Rightarrow g \circ f: D \to \mathbb{R}$ ist stetig.

Beweis: $f+g: D \to \mathbb{R}$. Sei x_n einebeliebigeFolgemit $\lim_{n \to \infty} (x_n) = a$. $\lim_{n \to \infty} (f+g)(x_n) = nachDefinition = \lim_{n \to \infty} f(x_n) + g(x_n) = RechenregelnfFolgen = \lim_{n \to \infty} f(x_n) + \lim_{n \to \infty} g(x_n) = f(a) + g(a) = nachDefinition = (f+g)(a)$.

 $analog frmal, und \lambda und division.$

 $g \circ f: D \to \mathbb{R}.Seix_neine beliebige Folgemit \lim_{n \to \infty} (x_n) = a, dafstetigist folgt: \lim_{n \to \infty} (f(x_n) = f(a)Seiy_n = f(x_n)undb = f(a).Daf(D) \subset Efolgt \lim_{n \to \infty} y_n = b \in E$

Dagstetiginbist, $folgt \lim_{n \to \infty} g(x_n) = g(b)$

$$Also: \lim_{n \to \infty} (g \circ f)(x) = \lim_{n \to \infty} g(f(x_n)) = \lim_{n \to \infty} g(x_n) = g(b) = g(f(a)) = (g \circ f)(a)$$
 q.e.d.

3.1.9. Satz $\varepsilon - \delta$ Kriterium für Stetigkeit

Sei $f: D \to \mathbb{R}$ eine Funktion und $a \in D$. Dann gilt

f ist stetig in
$$a \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 : \forall x : |x - a| < \delta \text{ gilt } |f(x) - f(a)| < \varepsilon$$

- **Beweis:** \Leftarrow Sei (x_n) eine Folge mit $\lim_{n\to\infty} x_n = a$. zu zeigen: $\lim_{n\to\infty} f(x_n) = f(a)$ $Sei\varepsilon > 0 \exists \delta > 0 : \forall x : |x-a| < \delta \text{ gilt } |f(x)-f(a)| < \varepsilon$ $Da \lim x_n = a \Rightarrow \exists N = N(\delta) : \forall n \geq N(\delta) |x_n-a| < \delta \stackrel{\varepsilon-\delta Kriterium}{\Rightarrow} |f(x)-f(a)| < \varepsilon \forall n \geq N$ $N \Rightarrow \lim f(x_n) = f(a)$
 - $\Rightarrow \text{ Sei } f \text{ in } a \text{ stetig.} \quad \text{zu zeigen: ist } \text{das } \varepsilon \delta \text{-Kriterium. } Angenommen: \varepsilon \delta Kriterium giltnicht: } \\ \exists \varepsilon > 0 \forall \delta > 0: \exists x \in D: |x-a| < \delta \text{ und } |f(x)-f(a)| \geq \varepsilon. \Rightarrow \exists \varepsilon > 0 \forall n \in \mathbb{N} \\ \exists x_n \in D: |x_n-a| < \frac{1}{n} = \delta \text{und} |f(x_n)-f(a)| \geq \varepsilon Betrachtedie Folge(x_n), da |x_n-a| < \frac{1}{n} \Rightarrow (x_n) \xrightarrow{n \to \infty} a.Dafstetiginaist, folgt \lim_{n \to \infty} f(x_n) = f(a). \\ \text{Widerspruch! } zu |f(x_n)-f(a)| \geq \varepsilon \Rightarrow das\varepsilon \delta Kriterium gilt.$

- **3.1.10. Beispiel** 1. Die konstante Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = 1$ ist stetig für alle $x \in \mathbb{R}$ Sei $a \in \mathbb{R}$ und (x_n) eine Folge mit $\lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} f(x) = \lim_{n \to \infty} f(x) = 1$
 - 2. Die identische Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = x$ ist stetig für alle $x \in \mathbb{R}$ Sei $a \in \mathbb{R}$ und (x_n) eineFolgemit $\lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n = a = f(a)$
 - 3. Jede Polynomfunktion $p: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto p(x) = \sum_{k=0} n a_k x^k$ mit $a_k \in \mathbb{R}$ ist auf \mathbb{R} stetig. Dies folgt sofort aus den Rechenregeln.
 - 4. Jede rationale Funktion $r: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto r(x) = \frac{p(x)}{q(x)}$ ist auf ihrem Definitionsbereich stetig. Dies folgt auch sofort aus den Rechenregeln.

5. Die Betragsunktion
$$f: \mathbb{R} \to \mathbb{R}$$
 mit $x \mapsto f(x) = |x|$ ist stetig auf \mathbb{R} Denn $f(x) = \begin{cases} x & x > 0 & die identische Fund -x & x < 0 & (-1)xiststetig (Region of the following of the fol$

- 6. Die Funktion $|f|: \mathbb{R} \to \mathbb{R}$ ist stetig, wenn $f: D \to \mathbb{R}$ stetig ist. folgt aus den Rechenregeln
- 7. Sei $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$ ist in a = 0 nicht stetig. $denn: Sei(x_n) = \frac{1}{n} \Rightarrow \lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{n} = 0$ und $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 1 = 1$ $Sei(y_n) = -\frac{1}{n} \Rightarrow \lim_{n \to \infty} y_n = \lim_{n \to \infty} -\frac{1}{n} = 0$ $\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} -1 = -1 \Rightarrow fistnichtstetigina = 0$
- 8. Die Exponentialfunktion $exp: \mathbb{R} \to \mathbb{R}$ mit $exp(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ ist auf \mathbb{R} stetig.

Beweis: (a) exp ist in a = 0 stetig.

is: (a)
$$exp$$
 ist in $a=0$ stetig.
i) Sei $|x| < 1 \Rightarrow |a^x - 1| \le 2|x|$. $denn: esgilt(n+1)! \ge 2^n, da(n+1)! = \underbrace{(n+1)}_{\geq 2} \underbrace{n}_{\geq 2} \ldots \underbrace{2}_{n-mal} 1 \ge 2^n \forall n \ge 1$

$$Seim \geq 1$$

$$\left| \sum_{n=1}^{m} \frac{x^{n}}{n!} \right| \leq \sum_{n=1}^{m} \left| \frac{x^{n}}{n!} \right| = \sum_{n=1}^{m} \frac{|x|^{n}}{n!} = \sum_{n=0}^{m-1} \frac{|x|^{n+1}}{(n+1)!} \leq \sum_{n=0}^{m} \frac{|x|^{n+1}}{(n+1)!} = |x| \sum_{n=0}^{m} \frac{|x|^{n}}{(n+1)!} \leq |x| \sum_{n=0}^{m}$$

$$|x| \sum_{n=0}^{\infty} \left(\frac{|x|}{2}\right)^{n} = |x| \frac{1}{1 - \frac{|x|}{2}} = \frac{2|x|}{2 - |x|} \le 2|x|$$

- ii) Sei (x_n) eine Folge mit $\lim_{n\to\infty} x_n = 0 \Rightarrow \lim_{n\to\infty} |\exp(x_n) 1| \stackrel{i)}{\leq} \lim_{n\to\infty} 2|x_n| = 0 \Rightarrow \lim_{n\to\infty} \exp(x_n) = 1 = \exp(0)$
- (b) exp ist in $a \in \mathbb{R}$ stetig. $Seia \in \mathbb{R}und(x_n)eineFolgemit \lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} x_n a = a$ $0.Daexpstetigin0, folgt \lim_{n \to \infty} exp(x_n - a) = exp(0) = 1 \Rightarrow \lim_{n \to \infty} exp(x_n) = \lim_{n \to \infty} e^{x_n} = \lim_{n \to \infty} e^{(x_n - a) + a} Funktion = \lim_{n \to \infty} e^{x_n - a} e^a = e^a \lim_{n \to \infty} e^{x_n - a} = e^a 1 = e^a. \Rightarrow expistina \in \mathbb{R} stetig.$

q.e.d.

3.1.11. Bemerkung Wiederholung Stetigkeit

 $f: D \to \mathbb{R}$ heißt stetig in $x_0 \in D$ wenn gilt:

Für jede Folge (x_n) mit $\lim_{n\to\infty} x_n = x_0$ ist die Folge $(f(x_n))$ konvergent und $\lim_{n\to\infty} f(x_n) = f(x_0)$.

3.1.12. Satz Zwischenwertsatz

Sei $f:[a,b]\to\mathbb{R}$ stetig mit f(a)<0 und f(b)>0. Dann gibt es ein $x\in(a,b)$ mit f(x)=0.

Beweis: Wir konstruieren durch Intervallhalbierung eine Folge, deren Grenzwert eine Nullstelle von f

Wir definieren induktiv zwei Folgen (a_n) und (b_n) mit folgenden Eigenschaften:

$$\bullet \ \ 0 \le b_n - a_n \le \frac{b-a}{2^n}$$

$$\bullet \ f(a_n) < 0 < f(b_n)$$

IA
$$n = 0$$
: $a_0 = a$, $b_n = b$

IV Seien a_n und b_n schon konstruiert

Definiere den Mittelpunkt $M = \frac{a_n + b_n}{2}$. Ist f(M) = 0, dann setze x = M

IS $n \mapsto n+1$

Fall 1: Ist $f(M) < 0 : a_{n+1} = M, b_{n+1} = b_n$.

Fall 2: Ist f(M) > 0: $a_{n+1} = b_n, b_{n+1} = M$.

Nach Definition ist $f(a_{n+1}) < 0$ und $f(b_{n+1}) > 0$.

$$0 \le b_{n+1} - a_{n+1} \le \frac{b_n - a_n}{2}$$

Denn Fall 1:
$$b_{n+1} - a_{n+1} = b_n - \frac{a_n + b_n}{2} = \frac{2b_n + a_n - b_n}{2} = \frac{b_n - a_n}{2}$$
 und Fall 2: $b_{n+1} - a_{n+1} = \frac{a_n + b_n}{2} - a_n = \frac{b_n + a_n - 2a_n}{2} = \frac{b_n - a_n}{2} \le \frac{b_{n-1} - a_{n-1}}{2^2} \le \dots \le \frac{b-a}{2^n + 1}$

Nach Konstruktion ist die Folge (a_n) monoton wachsend und durch b nach oben beschränkt. Die Folge (b_n) ist monoton fallend und durch a nach unten beschränkt. Nach dem Monotoniekriterium konvergieren die beiden Folgen (a_n) und (b_n) . Sei $\lim_{n \to \infty} b_n$ und $\lim_{n \to \infty} a_n = a_0$

die beiden Folgen
$$(a_n)$$
 und (b_n) . Sei $\lim_{n\to\infty} b_n = b_0$ und $\lim_{n\to\infty} a_n = a_0$
Aus $0 \le b_n - a_n \le \frac{b-a}{2}$ folgt $0 \le b_0 - a_0 \le \lim_{n\to\infty} \frac{b-a}{2^n} = 0$ Dann folgt: $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_n = \lim_{$

3.1.13. Definition

Eine Funktion $f: D \to \mathbb{R}$ heißt beschränkt, wenn die Menge $f(D) = \{f(x) : x \in D\}$ beschränkt ist. d.h. $\exists M \in \mathbb{R}$ sodass $|f(x)| \leq M \quad \forall x \in D$

3.1.14. Satz vom Maximum u nd Minimum

Sei [a,b] ein abgeschlossenes Intervall. Dann ist jede stetige Funktion $f:[a,b]\to\mathbb{R}$ beschränkt und nimmt ihr Maximum und Minimum an.

$$\text{d.h. } \exists p,q \in [a,b] \text{ mit } f(p) = \sup \{ f(x) \ : \ x \in [a,b] \}) = \sup_{f} \inf \{ f(q) = \inf \{ f(x) \ : \ x \in [a,b] \}) = \inf_{f} \{ f(x) \ : \ x \in [a,b] \} = \inf_{f} \{ f(x) \$$

Beweis: Wir zeigen nur das Maximum. Denn das Minimum ist das Maximum von -f.

Sei
$$M = \sup\{\{f(x) : x \in [a, b]\}\} \in \mathbb{R} \cup \{\infty\}.$$

1. Ist f nicht nach oben beschränkt, dann gibt es $\forall n \in \mathbb{N}$ ein $f(x_n)$ mit $f(x_n) \geq n \Rightarrow \lim_{n \to \infty} f(x_n) = \infty = M$ 2. Ist f beschränkt $\Rightarrow M \in \mathbb{R}$ und $\forall n \in \mathbb{N}$ $\exists f(x_n)$ mit $M - \frac{1}{n} < f(x_n) \leq M \Rightarrow \lim_{n \to \infty} f(x_n) = M$ Also gibt es in beiden Fällen eine Folge (x_n) mit $x_n \in [a, b]$ mit $\lim_{n \to \infty} f(x_n) = M$.

Da $x_n \in [a, b]$ ist die Folge (x_n) beschränkt. Nach dem Satz von Bolzano-Weierstraß besitzt die Folge (x_n) eine konvergente Teilfolge (x_{n_k}) mit $\lim_{k\to\infty} x_{n_k} = p \in [a, b]$. Da $\lim_{n\to\infty} f(x_n) = M$ und jede Teilfolge eine konvergente Folge den selben Grenzwert hat folgt $\lim_{k\to\infty} f(x_{n_k}) = M$

Wir wissen $\lim_{k\to\infty} x_{n_k} = p$. Da f stetig ist, folgt $\lim_{k\to\infty} f(x_{n_k}) = f(p)$. Aber $\lim_{k\to\infty} f(x_{n_k}) = M \Rightarrow M = f(p)$. $\Rightarrow p$ ist Maximum der Funktion f.

3.1.15. Bemerkung

$$f:(0,1]\to\mathbb{R}$$
 mit $f(x)=\frac{1}{x}$

f ist stetig aber nicht nach oben beschränkt.

3.1.16. Definition

Eine Funktion $f: D \to \mathbb{R}$ heißt (streng) monoton wachsen wenn gilt: $\forall a, b \in D \quad a \leq b \quad (a < b) \Rightarrow f(a) \leq f(b) \quad (f(a) < f(b))$. Entsprechend für (streng) monoton fallend.

3.1.17. Satz von der stetigen Umkehrfunktion

Sei $f:[a,b]\to\mathbb{R}$ stetig und streng monoton wachsend (fallend). Sei A=f(a) und B=f(b). Dann ist

 $f:[a,b]\to [A,B]$ bijektiv und die Umkehrabbildung $f^{-1}:[A,B]\to [a,b]$ ist stetig und streng monoton wachsend (fallend).

Beweis: Sei $f:[a,b]\to\mathbb{R}$ stetig und streng monoton wachsend. f(a)=A und f(b)=B.

Sei $x \in [a, b]$ mit a < x < b

$$\stackrel{\nearrow}{\Rightarrow} f(a) < f(x) < f(b) \text{ also } A < f(x) < B \Rightarrow f(x) \in [A, B] \quad \forall x \in [a, b]$$

Injektiv: $x \neq x' \Rightarrow x < x' \Rightarrow f(x) < f(x') \Rightarrow f(x) \neq f(x') \Rightarrow f$ ist injektiv.

Surjektiv: Sei $C \in [A, B]$. Für C = A oder C = B wähle x = a oder x = b.

Sei also $C \in (A, B)$. Betrachte $g: [a, b] \to \mathbb{R}$ mit g(x) = f(x) - C Da f stetig ist, ist auch g stetig. q(a) = f(a) - C = A - C < 0 und q(b) = f(b) - C = B - C > 0 Aus dem Zwischenwertsatz folgt: $\exists p \in [a, b] \text{ mit } g(p) = 0 \text{ also } f(p) - C = 0 \Rightarrow f(p) = C. \Rightarrow f \text{ ist surjektiv.}$

 $\Rightarrow f: [a,b] \to [A,B]$ ist bijektiv.

Betrachte die Umkehrfunktion. $f^{-1}:[A,B] \to [a,b]$. 1. f^{-1} ist streng monoton wachsend: Sei y < ay'.zu zeigen: $f^{-1}(y) < f^{-1}(y')$. Angenommen $f^{-1}(y) \ge f^{-1}(y')$, da f streng monoton wachsend ist folgt $f(f^{-1}(y)) \ge f(f^{-1}(y')) \Rightarrow y \ge y'$ Widerspruch! $\Rightarrow f^{-1}(y) < f^{-1}(y')$

2. Noch zu zeigen: $g = f^{-1}: [A, B] \to [a, b]$ ist stetig. Sei $y \in [A, B]$ und (y_n) eine Folge mit $y_n \in [A, B]$ $\min \lim_{n \to \infty} y_n = y.$

zu zeigen: $\lim_{n \to \infty} f^{-1}(y_n) = f^{-1}(y)$

Angenommen, das gilt nicht.

Dann gibt es ein $\varepsilon > 0$, sodass $|f^{-1}(y_n) - f^{-1}(y)| \ge \varepsilon$ für unendlich viele n. d.h. es gibt eine Teilfolge (y_{n_k}) von (y_n) mit $|f^{-1}(y_{n_k}) - f^{-1}(y)| \ge \varepsilon$. Da $a \le f^{-1}(y_{n_k}) \le b$, also beschränkt ist. folgt aus dem Satz von Bolzano-Weierstraß, es gibt eine konvergente Teilfolge $(f^{-1}(y_{n_k}))_{k\geq 0}$ von $(f^{-1}(y_{n_k}))_{k\geq 0}$.

Wir können also annehmen. Es gibt eine konvergente Teilfolge $(f^{-1}(y_{n_{k_l}}))_{l\geq 0}$ von $(f^{-1}(y_n))_{n\geq 0}$ mit $(f^{-1}(y_{n_{k_l}}) = c \text{ und } | f^{-1}(y_{n_{k_l}}) - f^{-1}(y) | \ge \varepsilon \Rightarrow | c - f^{-1}(x) | \ge \varepsilon.$

Nach der Definition der Umkehrabbildung ist $f(f^{-1}(y_{n_k})) = y_{n_k}$. Aus der Stetigkeit von f folgt daher $y = \lim_{k \to \infty} y_{n_k} = \lim_{k \to \infty} f(f^{-1}(y_{n_k})) \stackrel{f \text{ stetig}}{=} f(c)$

 $\Rightarrow f^{-1}(y) = f^{-1}(f(c)) = c \Rightarrow |f^{-1}(y) - f^{-1}(y)| \ge \varepsilon > 0 \text{Widerspruch!} \Rightarrow f^{-1} : [A, B] \to [a, b] \text{ ist}$ stetig.

3.1.18. Beispiel

Beispiele zur...

1. Die Wurzelfunktion $\sqrt[k]{x}$

Sei $f: \mathbb{R}_+ \to \mathbb{R}_+$ mit $f(x) = x^k$ und $k \geq 2$. Für $x \in \mathbb{R}_+$ ist f stetig, streng monoton wachsend und $f(x) \in \mathbb{R}_+ \Rightarrow$ Es gibt eine streng monoton wachsende und stetige Umkehrfunktion $f^{-1}: \mathbb{R}_+ \Rightarrow$ $\mathbb{R}_+ \text{ mit } = \sqrt[k]{x}$

Für k ungerade sind f und f^{-1} auf $\mathbb{R} \to \mathbb{R}$ definiert.

2. Der natürliche Logarithmus ln(x)

Die Exponentialfunktion $exp: \mathbb{R} \to \mathbb{R}_+$ mit $exp(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ ist streng monoton wachsend und bijektiv von \mathbb{R} nach \mathbb{R}_+

Beweis:
$$e^x = e^{\frac{x}{2} + \frac{x}{2}} = e^{\frac{x}{2}} e^{\frac{x}{2}} = (e^{\frac{x}{2}})^2 \ge 0$$

Für $x > 0$ folgt: $e^x = 1 + \frac{x}{2} + \frac{x^2}{2} + \dots + \frac{x^n}{2} > 1$

Beweis:
$$e^x = e^{\frac{\pi}{2} + \frac{\pi}{2}} = e^{\frac{\pi}{2}}e^{\frac{\pi}{2}} = (e^{\frac{\pi}{2}})^2 \ge 0$$

Für $x > 0$ folgt: $e^x = 1 + \frac{x}{1} + \frac{x^2}{2} + \dots + \frac{x^n}{n!} > 1$, also $e^x > 1$
Sei $x < x' \Rightarrow y = x' - x > 0 \Rightarrow e^y > 1 \Rightarrow e^{x'} = e^{x + (x' - x)} = e^x + y = e^x$ $e^y > e^x \Rightarrow exp$ ist streng

monoton. d.h. exp ist auf jedem abgeschlossenen Intervall [a, b] stetig und bijektiv.

$$\forall n \in \mathbb{N} \quad exp(n) \ge 1 + n \stackrel{n \to \infty}{\longrightarrow} \infty$$

$$exp(-n) = \frac{1}{exp(n)} \le \frac{1}{1+n} \xrightarrow{n \to \infty} 0.$$

Also $\lim_{n\to\infty} exp(x) = \infty$ und $\lim_{n\to\infty} exp(x) = 0$ Es gibt daher eine stetige Umkehrfunktion $ln: \mathbb{R}_+ \to \mathbb{R}$ mit $x\mapsto ln(x)$ der natürliche Logarithmus. ln ist wieder stetig und streng monoton wachsend. q.e.d.

Es gilt:
$$ln(xy) = ln(x) + ln(y)$$

Beweis:
$$ln(x) = \xi$$
 und $ln(y) = \eta$
d.h. $e^{\xi} = x$ und $e^{\eta} = y$
 $\Rightarrow e^{\xi + \eta} = e^{\xi} e^{\eta} = xy$ | ln
 $\Rightarrow ln(e^{\xi + \eta}) = ln(xy)$
 $\Rightarrow \xi + \eta = ln(xy)$
 $\Rightarrow ln(x) + ln(y) = ln(xy)$ q.e.d.

3. Die allgmeine Potenz und der allgemeine Logarithmus.

Sei $a < 0, x \in \mathbb{R}$

$$a^x = e^{xln(a)}$$

Beweis: Sei
$$x = n \in N$$
 $e^{nln(a)} = \underbrace{e^{ln(a)} \dots e^{ln(a)}}_{n-\text{mal}} = a \dots a = a^n$ $q.e.d.$

Diese Funtkion $\mathbb{R} \to \mathbb{R}_+$ ist stetig, bijektiv und stereng monoton wachsend. Es gilt: $a^{x+y} = a^x a^y$ $(a^x)^y = a^{xy}$ $a^x b^x = (ab)^x$ $(\frac{1}{a})^x = \frac{1}{a^x} = a^{-x}$

Beweis: Übung. Die Umkehrfunktion $log_a: \mathbb{R}_+ \to \mathbb{R}$ mit $x \mapsto log_a(x)$ heißt der logarithmus zur Basis a.

Also $log_a(a^x) = x$ $_a log(x) = x$.

Es gilt:
$$log_a(x) = \frac{ln(x)}{ln(a)}$$

Beweis: Übung.

3.1.19. Definition

Sei (z_n) mit $z_n = a_n + ib_n$ eine Folge komplexer Zahlen.

$$\lim_{n \to \infty} z_n = z = a + ib \Leftrightarrow \forall \varepsilon > 0 \exists N \forall n \ge N \quad |z_n - z| < \varepsilon$$

Es gelten alle Sätze auch für komplexe Folgen. Nur das Monotonie-Kriterium gilt nicht, da \mathbb{C} nicht angeordnet ist.

3.1.20. Bemerkung

Speziell gilt: Sei $z_n=a_n+ib_n$. $\lim_{n\to\infty}z_n=z=a+ib\Leftrightarrow \lim_{n\to\infty}a_n=aund\lim_{n\to\infty}b_n=b$

Beweis: Sei
$$\lim_{n \to \infty} z_n = a + ib \Rightarrow \forall \varepsilon > 0 \exists N \forall n \ge N \quad |z_n - (a + ib)| < \varepsilon$$

 $\Rightarrow |a_n - a| = |Re(z_n - z)| \le |z_n - z| < \varepsilon \forall n \ge N$
 $|b_n - b| = |Im(z_n - z)| \le |z_n - z| < \varepsilon \forall n \ge N$
Sei $|z_n - z| = |a_n + ib_n - (a + ib)| = |a_n - a + i(b_n - b)| \le |a_n - a| + |i| |b_n - b| < \varepsilon$ q.e.d.

Weiters gilt: $\lim_{n\to\infty} \overline{z_n} = \overline{\lim_{n\to\infty} z_n}$

3.1.21. Definition

Sei $D \subset \mathbb{C}$. Eine Funktion $f: D \to \mathbb{C}$ heißt stetig in $z \in D$, wenn für jede komplexe Folge $(z_n), z_n \in \mathbb{C}$, mit $\lim_{n \to \infty} z_n = z$ gilt: $\lim_{n \to \infty} f(z_n) = f(z_n)$

3.1.22. Beispiel Die komplexe Exponentialfunktion

 $exp: \mathbb{C} \to \mathbb{C} \setminus \{0\}$ mit $exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ ist definiert $\forall z \in \mathbb{C}$ und stetig $\forall z \in \mathbb{C}$

Beweis: Analog zu dem Beweis der Exponentialfunktion im Reellen.

q.e.d.

Achtung: Die komplexe Exponentialfunktion $exp:\mathbb{C}\to\mathbb{C}\setminus 0$ ist nicht bijektiv \Rightarrow Schwierigkeiten beim Logarithmus im Komplexen.

3.1.23. Bemerkung

Es gilt: $\overline{e^z} = e^{\overline{z}} \qquad \forall z \in \mathbb{C}$

Beweis:
$$\overline{e^z} = \overline{\sum_{n=0}^{\infty} \frac{z^n}{n!}} = \overline{\lim_{N \to \infty} \sum_{n=0}^{n=N} \frac{z^n}{n!}} = \sum_{n=0}^{\infty} \frac{\overline{z}^n}{n!} = e^{\overline{z}}$$
 $q.e.d.$

3.1.24. Bemerkung

Wir betrachten für $x \in \mathbb{R}$

$$e^{ix} = Re(e^{ix}) + iIm(e^{ix})$$

3.1.25. Definition

Für $x \in \mathbb{R}$ heißt $\cos x = Re(e^{ix})$ der Kosinus von x und $\sin x = Im(e^{ix})$ der Sinus von x. Es gilt die Eulersche Formel: $e^{ix} = \cos x + i \sin x$

3.1.26. Bemerkung

Da
$$\overline{ix} = -ix \quad \forall x \in \mathbb{R} \text{ folgt } 1 = e^0 = e^{ix - ix} = e^{ix} e^{-ix} = e^{ix} e^{\overline{ix}} = e^{ix} \overline{e^{ix}} = \left| e^{ix} \right|^2$$

$$\Rightarrow 1 = \left| e^{ix} \right|$$

D.h. e^{ix} liegt auf dem Einheitskreis |z| = 1

3.1.27. Proposition 1. $\cos x = \frac{e^{ix} + e^{-ix}}{2}$

2.
$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

3.
$$\cos^2 x + \sin^2 x = 1$$

Beweis: Von a und b:

$$e^{ix} = Re(e^{ix}) + iIm(e^{ix}) = \cos x + i\sin x$$

$$e^{-ix} = e^{\overline{ix}} = \overline{e^{ix}} = Re(e^{ix}) - iIm(e^{ix}) = \cos x - i\sin x$$

Also
$$e^{ix} = \cos x + i \sin x$$

$$e^{-ix} = \cos -i \sin x$$

$$\Rightarrow e^{ix} + e^{-ix} = 2\cos x \text{ und } e^{ix} - e^{-ix} = 2i\sin x$$

von c

$$\cos^2 x + \sin^2 x = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^2 + \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^2 = \frac{1}{4}\left(e^{2ix} + 2e^{ix - ix} + e^{-2ix} - e^{2ix} + 2e^{ix - ix} - e^{-2ix}\right) = \frac{1}{4}(2+2) = 1$$
q.e.d.

3.1.28. Bemerkung

Die Funktionen cos und sin von $\mathbb R$ nach $\mathbb R$ sind stetig auf $\mathbb R$: Folgt aus den Rechenregeln für stetige Funktionen auf $\mathbb R$

3.1.29. Proposition Additionstheoreme

 $\forall x, y \in \mathbb{R}$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\sin(x+y) = \cos x \sin y + \sin x \cos y$$

Beweis: $\cos(x+y) + i\sin(x+y) = e^{i(x+y)} = e^{ix+iy} = e^{ix} + e^{iy} = (\cos x + i\sin x)(\cos y + i\sin y) = e^{i(x+y)}$ $\cos x \cos y - \sin x \sin y + i(\cos x \sin y + \sin x \cos y)$ Vergleich von Real- und Imaginärteil, folgt die Behauptung. q.e.d.

3.1.30. Proposition Reihendarstellung

 $\forall x \in \mathbb{R} \text{ gilt}$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Beide Reihen konvergieren absolut für alle $x \in \mathbb{R}$

Beweis: Absolute Konvergenz folgt aus der absoluten Konvergenz der Exponentialreihe. (oder aus dem Quotientenkriterium)

$$\cos x + i \sin x = e^{ix} = \sum_{k=0}^{\infty} \frac{(ix)^k}{k!} = \sum_{k=0}^{\infty} i^k \frac{x^k}{k!} = \sum_{n=0}^{\infty} i^{2n} \frac{x^{2n}}{(2n)!} + \sum_{n=0}^{\infty} i^{2n+1} \frac{x^{2n+1}}{(2n+1)!} i^2 \stackrel{?}{=} \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} i^n \frac{x^{2n+1}}{(2n+1)!} i^2 \stackrel{?}{=} \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} i^n \frac{x^{2n+1}}{(2n+1)!} i^2 \stackrel{?}{=} \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} i^n \frac{x^{2n+1}}{(2n+1)!} i^2 \stackrel{?}{=} \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n+1)!} i^2 \stackrel{?}{=} \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{$$

Die Formeln folgen durch Vergleich von Real- und Imaginärteil.

q.e.d.

3.1.31. Satz

Die Funktion $\cos : \mathbb{R} \to \mathbb{R}$ hat im Intervall von [0, 2] genau eine Nullstelle x_0 .

Beweis: 1.) Existenz: cos ist stetig, $\cos 0 = 1 > 0$ und $\cos 2 < 0$

zu zeigen: $\cos 2 < 0$

$$(a) \forall x \in [0,2], \forall n \ge 1 \text{ g ilt } -\frac{x^{2n}}{(2n)!} + \frac{x^{2n+2}}{(2n+2)!} < 0$$

denn
$$\forall n > 1$$
 $(2n+1)(2n+2) > 2 \cdot 2 > r^2$

zu zeigen:
$$.\cos 2 < 0$$

$$a) \forall x \in [0,2], \forall n \ge 1 \text{ g ilt } -\frac{x^{2n}}{(2n)!} + \frac{x^{2n+2}}{(2n+2)!} < 0$$

$$\text{denn } \forall n \ge 1 \quad (2n+1)(2n+2) > 2 \cdot 2 \ge x^2$$

$$\Rightarrow 1 > \frac{x^2}{(2n+1)(2n+2)} \Rightarrow 0 > (\frac{x^2}{(2n+1)(2n+2)} - 1) \cdot \frac{x_n^2}{(2n)!} = \frac{x^{2n+2}}{(2n+2)!} - \frac{x^{2n}}{(2n)!}b) \cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \sum_{n \ge 3, \text{nungerade}} \frac{x^{2n}}{(2n)!} + \frac{x^{2n+2}}{(2n+2)!} < 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$

$$\Rightarrow \cos 2 < 1 - \frac{2^2}{2!} + \frac{2^4}{4!} = 1 - \frac{4}{2} + \frac{16}{24} = 1 - 2 + \frac{2}{3} = -\frac{1}{3} < 0$$

$$Z^{wischenwertsatz} \Rightarrow \exists x_0 \in [0, 2] \text{ mit } \cos x_0 = 0. 2.) \text{ Eindeutigkeit:}$$

a)
$$\sin x > 0 \forall x \in (0, 2)$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \underbrace{\frac{x^5}{5!} + \frac{x^7}{7!}}_{>0} + \underbrace{\frac{x^9}{9!} + \frac{x^{11}}{11!}}_{>0} + \dots > x - \frac{x^3}{3!} = \frac{1}{6} (6x - x^3) = \underbrace{\frac{x}{6} (6x - x^2)}_{0 < x < 2} > 0$$

b) $\cos:(0,2)\to\mathbb{R}$ ist streng monoton fallend.

Seien
$$0 < x_1 < x_2 < 2$$

Setze
$$x = \frac{x_1 + x_2}{2} \in (0, 2)$$
 und $y = \frac{x_2 - x_1}{2} \in (0, 2)$

$$\Rightarrow x_2 = x + yundx_1 = x - y$$

Aus den Additionstheoremen folgt:

$$\cos x_2 = \cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos x_1 = \cos(x - y) = \cos x \cos(-y) + \sin x \sin(-y) \ qquad \cos -x = \frac{e^{-ix} + e^{ix}}{2} = \cos x \sin -x = \frac{e^{-ix} - e^{ix}}{2i} = -\frac{e^{ix} - e^{-ix}}{2i} = -\sin x$$

$$\Rightarrow \cos(x_2) - \cos(x_1) = -2\sin x \sin y = -2\underbrace{\sin(\frac{x_1 + x_2}{2})}_{>0} \underbrace{\sin(\frac{x_2 - x_1}{2})}_{>0} < 0$$

$$\Rightarrow \cos x_2 < \cos x_1 \Rightarrow \cos \text{ ist auf } (0, 2) \text{ streng monoton fallend, speziell injektiv.}$$

 $\Rightarrow \cos$ hat genau eine Nullstelle.

q.e.d.

3.1.32. Definition

 $\text{Sei}x_0 \in (0,2)$ die eindeutig bestimmte Nullstelle von $\cos:(0,2) \to \mathbb{R}$. Dann definieren wir die Kreiszahl

$$\pi = 2x_0$$

. Also
$$\cos(\frac{\pi}{2}) = 0$$

3.1.33. Bemerkung

 $\pi \approx 3,1415\dots$

 π und e sind irrational und transzendent, sind also keine Lösung einer algebraischen Gleichung. Wir werden später (Integralrechnung zeigen, dass π die Fläche des Einheitskreises ist.

3.1.34. Bemerkung Eigenschaften von π

$$\cos \frac{\pi}{2} = 0$$

$$Da\cos^2\frac{\pi}{2} + \sin^2\frac{\pi}{2} = 1 \Rightarrow \sin\frac{\pi}{2} = 1$$
, da $\sin\frac{\pi}{2} > 0$

Weiter gilt:

Weiter gilt:
$$e^{i\frac{\pi}{2}} = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = i$$

$$\Rightarrow -1 = i^2 = e^{i\frac{\pi}{2}}e^{i\frac{\pi}{2}} = e^{\pi i}$$

$$\Rightarrow -i = i^2 = e^{\frac{3\pi i}{2}}$$

$$\Rightarrow 1 = i^2 = e^{2\pi i}$$

$$\Rightarrow e^{i(x+2\pi)} = e^{ix+i2\pi} = e^{ix} + e^{i2\pi} = e^{ix}$$

$$\Rightarrow \cos(x+2\pi) + i\sin(x+2\pi) = e^{i(x+2\pi)} = e^{ix} = \cos x + i\sin x$$

Also cos und sin sind 2π -periodische Funktionen. Nullstellen von sin und cos:

$$\sin x = 0 \Leftrightarrow x = k\pi \quad (k \in \mathbb{Z})$$

$$\cos x = 0 \Leftrightarrow x = \frac{pi}{2} + k\pi \quad (k \in \mathbb{Z})$$

ohne Beweis.

3.1.35. Definition

Der Tangens und Kotangens sind definiert durch:

$$\tan : \mathbb{R} \setminus \{ \frac{\pi}{2} + k\pi : k \in \mathbb{Z} \} \to \mathbb{R} \text{ mit } \tan x = \frac{\sin x}{\cos x}$$

$$\cot : \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\} \to \mathbb{R} \text{ mit } \cot x = \frac{\cos x}{\sin x}$$

Die Umkehrfunktionen von sin, cos, tan, cot heißen:

$$\arccos: [-1,1] \to [0,\pi]$$

$$\arcsin: [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$$

$$\arccos: \mathbb{R} \to (-\frac{\pi}{2},\frac{\pi}{2})$$

$$\arccos: \mathbb{R} \to (0, \pi)$$

Diese Funktionen sind wieder stetig und streng monoton.

4 Differential- und Integralrechnung

4.1 Differential rechnung

4.1.1. Definition

Eien Funktion $f: D \to \mathbb{R}$ heißt differenzierbar in $x_0 \in D$, falls $\lim_{h \to 0} \frac{f(x+h) - f(x_0)}{h} = f'(x_0)$

- **4.1.2. Bemerkung** 1. f differenzierbar in x_0 bedeutet: Für jede Folge (h_n) mit $h_n \neq 0$ und $\lim_{n \to \infty} h_n = 0$ ist die Folge $\left(\frac{f(x_0 + h_n) f(x_0)}{h_n}\right)$ konverrgent. Ihren Grenzwert nennen wir $f'(x_0) = \frac{\mathrm{d}f}{\mathrm{d}x}(x_0) = \frac{\mathrm{d}f(x)}{\mathrm{d}x}\Big|_{x=x_0}$
 - 2. $f'(x_0) = \lim_{h \to 0} \frac{f(x+h) f(x_0)}{h} = \lim_{x \to x_0 \to 0} \frac{f(x) f(x_0)}{x x_0} = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$
 - 3. GRAFIK grenzwert mit annäherungen der Tangenten
- **4.1.3. Beispiel** 1. Die konstante Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = c \in \mathbb{R}$ oder $c \in \mathbb{C}$. $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x_0)}{h} = \lim_{h \to 0} \frac{c c}{h} = 0 \Rightarrow c' = 0$
 - 2. Eine lineare Funktion $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = ax $a \in \mathbb{R}$ oder $a \in \mathbb{C}$. $f'(x) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = \lim_{x \to x_0} \frac{ax ax_0}{x x_0} = \lim_{x \to x_0} \frac{a(x x_0)}{x x_0} = a \Rightarrow (ax)' = a$
 - 3. Eine quadratische Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^2$. $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x_0)}{h} = \lim_{h \to 0} \frac{(x+h)^2 (x_0)^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 x_0^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} 2x + h = 2x \Rightarrow (x^2)' = 2x$
 - 4. eine rationale Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \frac{1}{x}$. $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x_0)}{h} = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{x+h} \frac{1}{x_0} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{x_0 x + h}{xx_0 + hx_0} \right)$ und dann gleicher nenner und ausrechnen.. $\Rightarrow \left(\frac{1}{x} \right)' = -\frac{1}{x^2}$
 - 5. Die Exponentialfunktion. $\exp : \mathbb{R} \to \mathbb{R}$ mit $exp(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ Wir zeigen $\lim_{h\to 0} \frac{e^h 1}{h} = 1$

denn Sei
$$n \ge 0 \Rightarrow (n+2)! \ge 2 \cdot 3^n \Rightarrow \left| \frac{h^n}{(n+2)!} \right| \le \frac{|h|^n}{2 \cdot 3^n} = \frac{1}{2} \left(\frac{|h|}{3} \right)^n$$

Für $|h| < \frac{3}{2}$ folgt $|e^h - 1 - h| = \left| \sum_{n=0}^{\infty} \frac{h^n}{n!} - 1 - h \right| = \left| \sum_{n=2}^{\infty} \frac{h^n}{n!} \right| = \left| \sum_{n=0}^{\infty} \frac{h^{n+2}}{(n+2)!} \right| \le |h|^2 \sum_{n=0}^{\infty} \left| \frac{h^n}{(n+2)!} \right| \le |h|^2 \sum_{n=0}^{\infty} \left| \frac$

$$|h|^2 \sum_{n=0}^{\infty} \frac{1}{2} \left(\frac{|h|}{3}\right)^h = \frac{|h|^2}{2} \sum_{n=0}^{\infty} \underbrace{\left(\frac{|h|}{3}\right)^h}_{\leq 1} \text{ geometrische Reihe} = \frac{|h|^2}{2} \underbrace{\frac{1}{1 - \frac{|h|}{3}}}_{1 - \underbrace{\frac{1}{3}}} \leq |h^2|$$

$$\Rightarrow \left| \frac{e^h - 1}{h} - 1 \right| \le |h| \xrightarrow{n \to 0} 0 \Rightarrow \lim_{n \to 0} \frac{e^h - 1}{h} = 1$$

$$\Rightarrow (e^x)' = \lim_{h \to 0} \frac{e^{x + h} - e^x}{h} = \lim_{h \to 0} \frac{e^x e^h - e^x}{h} = \lim_{h \to 0} \frac{e^x (e^h - 1)}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x \cdot 1 = e^x$$

$$\Rightarrow (e^x)' = e^x$$

6. Die Ableitungsfunktion $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = |x| ist in x = 0 nicht differenzierbar. $\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{|h|}{h}$ $\lim_{h \to 0^+} \frac{|h|}{h} = 1 \neq -1 = \lim_{h \to 0^-} \frac{|h|}{h}$

4.1.4. Proposition

Sei $f: D \to \mathbb{R}$ in $a \in D$ differenzierbar $\Rightarrow f$ ist in a stetig.

Beweis: Wir definieren $\phi: D \to \mathbb{R}$ mit $\phi(x) = \frac{f(x) - f(a)}{x - a} - f'(a) \Rightarrow \lim_{x \to a} \phi(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} - f'(a) = f'(a) - f'(a) = 0.$

Also:
$$\phi(x) = \frac{f(x) - f(a)}{x - a} - f'(a) \Rightarrow \phi(x)(x - a) = f(x) - f(a) - f'(a)(x - a) \Rightarrow f(x) = f(a) + f'(a)(x - a) + \phi(x)(x - a) \xrightarrow{a \to \infty} \lim_{x \to a} f(x) = f(a) \Rightarrow f \text{ ist in } f \text{ stetig.}$$

$$q.e.d.$$

4.1.5. Satz Rechenregeln

Seien $f, g: D \to \mathbb{R}$ differenzierbar in $a \in D$ und $\lambda \in \mathbb{R}(\lambda \in \mathbb{C})$. Dann gilt

1. $f + g : D \to \mathbb{R}$ ist in a differenzierbar und

$$(f+g)'(a) = f'(a) + g'(a)$$

2. $\lambda f: D \to \mathbb{R}$ ist in a differenzierbar und

$$(\lambda f)'(a) = \lambda f'(a)$$

3. $fg: D \to \mathbb{R}$ ist in a differenzier
bar und

$$(fg)'(a) = f'(a)g(a) + f(a)g'(a)$$
 Produktregel

4. Ist $g(x) \neq 0 \ \forall x \in D$ so ist $\frac{f}{g}: D \to \mathbb{R}$ ist in a differentiar und

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(x))^2}$$
 Quotientenregel

Beweis: 1. Folgt direkt aus den Rechenregeln für Grenzwerte.

- 2. Folgt direkt aus den Rechenregeln für Grenzwerte.
- 3. $\frac{f(a+h)g(a+h)-f(a)g(a)}{h} = \frac{1}{h} \left(f(a+h)g(a+h) f(a+h)g(a) + f(a+h)g(a) f(a)g(a) \right) = f(a+h) \frac{g(a+h)-g(a)}{h} + g(a) \frac{f(a+h)-f(a)}{h} \xrightarrow{h\to 0} f(a) \lim_{h\to 0} \frac{g(a+h)-g(a)}{h} + g(a) \lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f(a)g'(a) + f'(a)g(a)$
- 4. Sei $f(x) = 1 \quad \forall x \in D \ \frac{1}{h} \left(\frac{1}{g(a+h)} \frac{1}{g(a)} \right) = \frac{g(a) g(a+h)}{hg(a+h)g(a)} = -\frac{g(a+h) g(a)}{h} \frac{1}{g(a+h)g(a)} \xrightarrow{h \to 0} -g'(a) \frac{1}{(g(a))^2}$ Sei f beliebig. Dann folgt aus der Produktregel: $\left(\frac{f}{g} \right)'(a) = \left(f \frac{1}{g} \right)'(a) = f'(a) \frac{1}{g}(a) - \frac{1}{(g(a))^2} f'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(x))^2}$

q.e.d.

4.1.6. Satz Kettenregel

Seien $f: D \to \mathbb{R}$ und $g: E \to \mathbb{R}$ zwei Funktionen mit $f(D) \subset E$

Ist f in $a \in D$ differenzierbar und g in $f(a) \in E$ differenzierbar, dann ist $g \circ f : E \to \mathbb{R}$ in a differenzierbar und

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

$$Beweisidee. \ \frac{g(f(a+h))-g(f(a))}{h} = \underbrace{\frac{g(f(a+h))-g(f(a))}{f(a+h)-f(a)}}_{\stackrel{h\to 0}{\longrightarrow} g'(f(a))} \underbrace{\frac{f(a+h)-f(a)}{h}}_{\stackrel{h\to 0}{\longrightarrow} f'(a)} \xrightarrow{h\to 0} h = g'(f(a))f'(a) \qquad q.e.d.$$

4.1.7. Beispiel

Weitere Beispiele

1. Sei
$$f(x) = x^n$$
 mit $n \in \mathbb{Z}$ ist $f'(x) = (x^n)' = nx^{n-1}$

Beweis: Sei n > 0

IA n = 0, n = 1: schon gezeigt.

IV
$$(x^n)' = nx^{n-1}$$

IS
$$n \mapsto n+1$$

$$(x^{n+1})' = (xx^n)' \stackrel{\text{Produktregel}}{=} 1x^n + x(nx^{n-1}) = x^n + nx^n = (n+1)x^n$$

Sei
$$n < 0$$
. Setze $n = -m$ mit $m > 0$
$$x^n = x^{-m} = \frac{1}{x^m} \overset{\text{Quotientenregel}}{\Rightarrow} (x^m)' = \left(\frac{1}{x^m}\right)' = \frac{0x^m - 1mx^{m-1}}{x^2m} = -\frac{mx^m m - 1}{x^m + m} = -\frac{mx^{m-1}}{x^m x^m} = -m\frac{1}{x^m}\frac{1}{x} = -m\frac{1}{m}x^{-1} = nx^nx^{-1} = nx^{n-1}$$
 $q.e.d.$

Seit
$$f(x) = e^{ax}$$
 mit $a \in \mathbb{R}, a \in \mathbb{C}$

$$\Rightarrow f'(x) = (e^{ax})' = ae^{ax}$$

Sei
$$g(x) = ax \stackrel{\text{Kettenregel}}{\Rightarrow} (e^{ax})' = (e^{g(x)})' = e^{g(x)}g'(x) = ae^{ax}$$

$$(\sin x)' = \cos x(\cos x)' = -\sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \begin{cases} \frac{1}{\cos^2 x} \\ 1 + \tan^2 x \end{cases}$$

$$(\sin^2 x)' = \sin(2x)$$

$$g(x) = x^2, f(x) = \sin x$$

$$(\sin^2 x)' = (g \circ f)'(x) = g'(f(x))f'(x) = 2\sin x \cos x = \sin(2x)$$

4.1.8. Satz Ableitung der Umkehrfunktion

Sei $f:[a,b]\to\mathbb{R}$ stetig und streng monoton, mit f([a,b])=[A,B]. Sei $f^{-1}:[A,B]\to\mathbb{R}$ die Umkehrfunktion. Ist f in $x \in [a, b]$ differenzierbar und $f'(x) \neq 0$ dann ist f^{-1} in y = f(x) differenzierbar und

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

Beweis: Wir wissen, schon f^{-1} ist stetig. Sei (y_n) eine Folge in [A, B] und $\lim_{n\to\infty} y_n = y$

Da f^{-1} stetig in y, folgt $\lim_{n \to \infty} f^{-1}(y_n) = f^{-1}(y)$

Sei
$$x_n = f^{-1}(y_n), x = f^{-1}(y)$$

Da f in x differenzierbar und $f'(x) \neq 0$ folgt $\lim_{n \to \infty} \frac{f^{-1}(y_n) - f^{-1}(y)}{x_n - y} = \lim_{n \to \infty} \frac{x_n - x}{f(x_n) - f(x)} = \frac{1}{\frac{f(x_n) - f(x)}{x_n - x}} = \frac{$ $\frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))}$

4.1.9. Beispiel

 $\ln : \mathbb{R}_+ \to \mathbb{R}$ ist die Umkehrfunktion von $\exp : \mathbb{R} \to \mathbb{R}_+$

$$(\ln x)' = \frac{1}{x}$$

Sei $f(x) = \exp(x)$, dann ist $f^{-1}(x) = \ln(y)$. Wir wissen $f'(x) = (\exp(x))' = \exp(x) = f(x) \Rightarrow (\ln(x))' = \exp(x)$ $(f^{-1}(y))' = \frac{1}{f'(f^{-1}(y))} = \frac{1}{\exp(\ln(y))} = \frac{1}{y}$

4.1.10. Bemerkung Anwendung

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Beweis:
$$(\ln x)' = \frac{1}{x}$$

$$(\ln 1)' = 1$$

$$(\ln 1)' = 1$$

$$\Rightarrow \lim_{n \to \infty} n \ln \left(1 + \frac{1}{n} \right) = \lim_{n \to \infty} \frac{\ln \left(1 + \frac{1}{n} \right)}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\ln \left(1 + \frac{1}{n} \right) - \ln 1}{\frac{1}{n}} = (\ln 1)' = 1$$

$$\left(1 + \frac{1}{n} \right)^n = e^{n \ln \left(1 + \frac{1}{n} \right)}$$

$$\begin{aligned}
(1+\frac{1}{n}) &= e^{\sin(1+\frac{1}{n})} \\
\text{Da exp setetig ist, folgt } \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n &= \lim_{n\to\infty} e^{n\ln\left(1+\frac{1}{n}\right)} = e^{\lim_{n\to\infty} n\ln\left(1+\frac{1}{n}\right)} = e^1 = e \\
q.e.d.
\end{aligned}$$