FIG. 1A

	*			•					
GGCTGCCGG TGCGGCGGGAGCCTCGAGCCGGCGGCGCTTCT	CCCA	-1 Arg AGG	CC	Asp GAC	06	Ile ATC	9	Ser	180
SCTG - CGCC	CTGC	Glu		Ala GCA		Leu CTC		Val GTA	
ງຄວວ ອ	CCCA	Leu CTG		Lys AAG	•	Leu	•	Ala GCT	
GCAG	TGGC	Asp Asp Leu Glu GAC GAT CTG GAG	•	Glu Gly Lys Ala GAA GGG AAG GCA		Thr Leu ACC CTC		Met	
TCGA	GGCTTGAAGAGCCGTGCCACCCAGTGGCCCCACTGCCCCA	Asp GAC				Leu		Cys TGC	
AGCC	CCAC	Ser Trp Tyr Asp TCC TGG TAC GAT		Ser TCA	7 0	Met Leu ATG CTG		Leu Val CTG GTG	
TGGA	CGTG	Tyr TAC		G1y GGG				Leu	
GAGC	GAGC	Trp TGG	*	Phe Asn TTC AAT		ALA	r	val GTG	
ວວວວ:	TGAA				<u>;</u>	TAC TAT	; (ASn val	
TGCG	CCCT	Leu		CCC	£	TAC		977 GGC	
TGGA	ATAT	* Asn AAC	20	Arg CGG	Acn	AAC	50 Pha	TTT	
TGCG	ວວວວ	Leu) ()	AGC	Tvr	TAC	Val	GTC	
ອວວອ	ວວວວ	Pro	ل ۲ ز	TGG	His	CAC	Ile	ATC	
AGGGGGCCGTGCA	CTGGCCCCGGCCCCATAT	Asp GAT	A A	CAG AAC TGG	Pro	၁၁၁	Ile	ATC	
AGG	CTG	Met ATG 1	G1n	CAG	Arg	AGĞ	Phe	TTT	

Ser	9 7 69	270 Ile ATT	120 Ala GCA	9	ש עו ל	C) LO
Val GTC	Pro	Arg AGG	66	Thr	· · · · · · · · · · · · · · · · · · ·	.
Ile ATA	Met ATG	Ser	(0.53	Tyr 1) ((ی
Leu TTG	Val l GTA	Phe S TTC /	ည ပာ	r GG T	HC	٦ ر
CH	and the second of the second o	• *	Me AT	44	Ω <	4
TA	Leu CTG	Lys AAA	Met ATG	Asp GAC	Tyr Tor	ď .
70 Asn AAC	Thr ACA	100 Trp TGG	Val	130 Ile ATT	Arg))
Thr	Ala GCC	Glu GAG	Asp GAT	Ser AGC	Thr ACA	
Thr	Val GTG	G1y GGT	Leu	le	Asn 3 AAC 7	
Thr	Leu CTG	Val	Thr]	Ala I GCC A	Tyr A TAT A	
Gln CAG	Leu	al IG	Val 1 GTC A	ys GT	- ch	
		0 K		OH	ŭ ŭ	
Leu TTG	A D	Glu	110 Phe TTT	Leu	140 Met Leu ATG CTC	
Ala GCT	Ala GCT	Leu	Ile ATC	Asn AAC	Pro	
Lys Ala AAG GCT	Val GTG	Tyr TAC	Asp GAC	Leu	Met	
G1u GAG	Ala GCT	Val GTC	Cys	Ile da ATC	Ala N GCA A	_ 0
Arg GCA	Leu CTT	Val GTT	His (Ser]	Val A	FIG. 1B
	٠.					

	Thr	180 Asn AAT	11 4	210 Ile ATC	630 Thr ACC	240 Leu	70 -
	Phe TTC	Gln	Ser	Tyr TAT	Asn AAC	Pro).
	Ser	Asp	Ser	Val GTC	Val	Thr	
	Leu	Thr	Tyr	Leu	Arg CGG	Lys	·
	Val GTC	Asn	Val GTC	Leu	Lys	Leu	
	160 Trp TGG	Asn	190 Val GTG	Thr	220 Arg CGG	Asn	
	Val GTC	Leu	Phe TTT	Val GTC	Arg	Ala GCC	
÷	Ile	G1y GGA	Ala GCC	Ile ATC	Lys	Arg AGA	
	Ala GCC	Phe TTC	Pro	Phe TTC	Arg	Phe	
	Ile	Leu	Asn	Pro	Leu	Ala GCT	
	Met ATG	170 Leu CTG	Ala GCC	200 Val GTG	Val GTC	230 Arg CGA	
	Val	Pro	Ile ATT	Tyr	Ile	Ser	
•	Thr	Cys TGC	Ile	Phe TTC	Tyr	Ser	()
	Val	Ser TCC	Cys TGT	Ser TCA	Ile	Arg	FIG. 1C
	Arg	Ile	Glu GAG	Val GTC	Lys AAA	Lys	FIG
	• **				:		

COCHEC CEPACE

Leu CTG	270 Pro CCT	ا سان	300 31y 3GG	0	,	16 90
Met	Ile ATC (His (3 Asn G AAT G	9 Glu I GAG A')	5
Glu GAG	Pro	His CAC (Lys AAAG A	Phe C TTT G		
Met ATG	Ser AGC	Ser	Gly GAG	Phe I TTC 1		
Glu GAA	Tyr	Pro	Pro	Lys AAG	Ser I))
250 Leu CTG	Arg	280 Asp GAT	Lys	310 Ala GCC	Thr	
Glu GAG	Thr	Pro	Ala GCC	Ile ATT	Arg	
Gln CAG	Arg	Leu CTC	Pro	Arg AGG	Thr	
Ala GCT	Glu GAG	Thr	Ser	Pro	Lys AAA	
Arg CGA	Pro	Leu CTC	Asp GAC	Asn	G1y GGC	
A Arg	260 Pro CCC		290 Pro CCT	Val	320 Asn AAT	
a Ala r GCC	Ser AGC	His	Asn	Ile ATT	Pro	
Ala F GCT	Thr	His CAC	Ser	Lys	Thr Met ACC ATG	Δ
s Asp G GAT	r Ser A AGC	Ser AGT	His CAT	Ala GCC	Thr	FIG. 1D
Lys	Ser TCA	Pro	Leu CTA	His	Gln ' CAG '	FIC

•					
Gln	36 Pr	08 11 AT	9 (S)	170 Phe TTC	ر. د.
Thr		Asn AAC	Val GTC	l Glu GAG	<u> Դ</u>
Ala GCC	Trp	Cys TGC	Tyr	Ile ATC	CCCC
Lys AAA	Cys	Asp GAT	G1y GGC	Asn	TCTG
Lys AAG	Ile	Cys TGT	Leu	Phe TTC	TGAGTCTG
340 Glu GAG	Ile ATC	370 His CAC	Trp TGG	400 Thr ACC	415 Cys TGC
Lys	Phe TTC	Ile ATA	Thr	Thr	His
Gln CAG	Val GTG	Asn	Phe TTC	Tyr	Leu
Gln	Gly GGT	Leu	Ala GCC	Ile ATC	Ile
Ser TCC	Leu	Ile	Ser AGC	Ile	Lys
Leu	350 Val GTT	His	380 Tyr TAC	Pro	410 Met ATG
Lys	Ile	Thr	Leu	Asn	Phe TTC
Arg AGA	Ala GCC	Ile ATC	Val GTC	Val	Ala GCC
Arg	Leu	Phe TTC	Pro	Ala GCC	Lys
Ser	Met ATG	Phe TTC	Pro	Ser	Arg
		•	•		-

FIG. 1E

TGGCCAGAAAGTGAACTTGGCCTTCTCGACCTGCAGGCCCTGCAGTGTTA GCTTGGCTCGATGCCCCTCTGCCCACACACCCTCATCCTGCCAGGGTAGGGCCAGGG CACAGCAGCTGCTTCCCACCTGCCTATGCAGGCCAGACCTCATCCCTGCAAGCTG

AGACTGGTATCTTACCAGCTCTGGGGTTGGACCCATGGCTCAGGGCCAGCTCACAGAGTGC 1502

TTCCTCTTGGGCACAGAACTAGCTCAGTGGTCGAGCACCCCTGATCGCTGGCTTGGCC

TGGCCCTTGCCTGTGCCGGATCAGGTGGTGGGAGGGAGCGACACGTTCTTACTTT

ATAGGAACCACATAGGAAAGCAGGGAACACGCCAAGTCCTCCAGGCACATCAGTGTCAGG 1740

AGACACACATAAACACCAGGTAGCTCCATGGACCCCAGAGAAACTGAGGCTGAAAAĀTC

TGTTTTCCACTCCAACTCTGTGAGTCCCTACTTTTCATAGCCATGGGTATTACTATG

TCCTACCTTGTTATAGTATCCCATGGGGTTTCTGTACCATTTGGGGGAAAAAACTCTA

ATCCTCAAGGCCCCCAAGAAATCTGTAAGGAGAAAAATAGGCTGATCTCCCTCTACTCT 1978 CCAATCCACTCCACTTCTTGATATACCTTGGATGTATCCATTCCTCACACAAATG

CTGGCCAGTCAGGCCTTGGAGCTGTTGGAGTTGAAGCTGGGATGTGGTAACTTGGGGGCT

CCTCTGCCTTAGAAGAGGCTGTGGATGGGGTGCTGGGACTGCTGATACCATTGGGCCTGG CCCTGAATGAGGGGGAAGCTGCAGTTTGGAGGGTTCTGGGATCCAACTCTGTAACAT

FIG. 1G

	FIG. 2		25-23 - 32 - 133 - 133	CC - (12 CC - (36 CC - (62 CR - (24 CC - (62
MD [PL MISWYDDDLERQNWSRPFNGSEGKADRPHYNYYAMI∏ILL]. IFI IVFGNVLVCMAVSREKALQTITINY MGP P GNDSDFLLTTNGSHV PDHDVTEERDEAWVVGMAI∏MELL. IFI IVFGNVLVCMAVSREKALQTITINY MGSLQ. PQA. GNASWNGTEAPG GGARATPYSLQVTLTLVCLAGLI). MLLIVFGNVLVI TAITAFERLQTVTNY MDVLS. LPGQ. QNNTTSPPAPFE TGGNTTGISDVTVSVOU.	MGACV. VMTDIMISSGLDSNATGITAFSMPGWQLALWTAAYLAL. SLATVINGNATUTI ISFKVNTELKTONVANY II LIVSLAMADIIVATLVMBWVVYI FRANZERANGERALWTAAYLAL. III	FIUSIA FIVSIA 110GSIA FILISIA FIUNIA	D6 VTWMIAIWW ISFITESC. FLLFGLNNTD. C6. RMW. ILMWMI VSGLTSFIPI QMHWYRATH. QKAIDCYHRETCCDFFTNQAYAIMSSIVSFYVPFI VTLLWYIK IYNI VLRKRRRRNNTKR. C6.21 ALT. SLT. WLIGFILESI FPMLGWRTPEDR. C6.21 ALT. SLT. WLIGFILESI FPMLGWRTPEDR. C7. ALT. SLT. WLIGFILESI FPMLGWRTPEDR. C8. C9. C9. C9. C9. C9. C9. C9.	VII - KEKKATOMIAIVIGMETICWLPFFITHITINIHCOCN IFPVLYSAFTWLGYVNSA VNPITYTENTERNAFTWITH - REKRFTFVIAVVIGMEVVCWEPFFITHITINIHOODNI IFREVYTILINMLGYVNSA VNPITYTENTERNAFTWITH - REKRFTFVIAVVIGMEVVCWEPFFITALVILANGCS VPRTHEKFFWEGYGNSS INPVITYA YENKOFONAFWKIII - REKRAARTISAILLAFIVIWII FYNILVEFFIVALVLPPGESSC VPRTHEKFFWEGYGNSS INPVITYA YENKOFONA FWKIIK - KEKKAARTISAILLAFIVIWII FYNILVETEKKOC VPRTHEFFITALINMLGYSNSL INPVITYA YENKOFONA FWKIIK - AKKKFVKTWYIVVTEAICWLPYHLYFIIGTFQEDIYCHKFIQQVYLALPWIA MSSTWYNPIILYCCINHRERSOFRLAPR
n	SK 2	NA G R	Deg g o E g	P. C. C. C. S. K. N. S. K. S.

RGB-2 Rat Striatum (+)-Butaclamol (-)-Butaclamol 0.83 (-)-Butaclamol 1.000 Haloperidol 3.0 Haloperidol 3.0 Dopamine + GTP 17,000 Sulpiride 80 high affinity SCH 23390 high affinity 1,000 Low affinity 1,000 Ketanserin 1,000 high affinity low affinity low affinity low affinity	DRUG		Ki (nM)
Transformed Ltk-Cells Rat Striature		RGB-2	
lamol 0.83 1.00 5.3 1.000 5.3 1.000 5.3 1.000 5.3 1.000 6.30			Rat Striatum
### 80 ### 80 ##########################	:lam :lam !ol + G		, 1, 1, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
high affinity low affinity anserin high affinity >1,000 >27 high affinity >1,000 >1,000	affini Efinit	80	67
affinity $>$ affinity $>1,000$	23390 high affini low affinit	1,000	
	Ketanserin high affinity low affinity	>	27,000,

FIG. 4C

FIG. 6B

FIG. 6C

CACULARA CABICA

FIG. 7A

GGT CGA5 Ser Pro Pro Glu Arg Thr Arg Tyr Ser Pro Ile Pro Pro Ser His Gln Leu GTC GGG TGG GCT CTC CTG GGC CAT GTC GGG GTA GGG TGG GTC GGT GGT CGA CAG CAG CCC ACC CAG CCA CCA GCC GTA CAG CCC CAT CCC ACC CAG CCA CCA GCT GIN Pro Thr Arg Glu Asp Pro Val Gln Pro His Pro Thr Gln Pro Pro Ala Pro Ala Thr Thr Ser Ala His Pro Arg Gly Pro Gly Thr Ala Pro Ser His 3'GTC GGG TGG GCT CTC 5'CAG CCC ACC CGA GAG

Leu Ser Pro Thr Arg Pro Thr MET Val Ser Thr Ala Leu Pro Thr Ala Pro Pro Thr Leu Pro Asp Pro Ser His His Gly Leu His Ser Thr Pro Asp Ser Pro Ala 108 GTC GGG GCG Gln Pro Arg CAG CCC CGC GGT GTC GTG AGG GCT CCA CAG CAC TCC CGA Ser Pro Arg Pro Val Pro Pro Trp Ser Pro Gln His Ser Arg CAG GGT GGT ACC AGA GTC CCA CCA TGG TCT AGA GGG GCT GGG CAG TCT CCC CGA CCC GTC Asp

135

Lys Pro Gľu Lys Asn Gly His Ála Lys Árg Thr Thr Pro Árg Ile Ála Lys Ile Asn Gln Árg Arg MET Gly MET Pro Lys Gly Pro Pro Gln Gly Leu Pro Arg Se

216 GTA CAT Gln Asp His GTT CTG C Lys Thr GGA Ser Leu Pro 189
SAA ACT CTA GGT CTG GTA CGG GTT ÁCC GTT TTG GGC CTG GAG
STT TGA GAT CCA GAC CAT GCC CAA TGG CAA AAC CCG GAC CTC
Seu . Asp Pro Asp His Ala Gln Trp Gln Asn Pro Asp Leu
Phe Glu Ile Gln Thr MET Pro Asn Gly Lys Thr Arg Thr Ser

COCKERS CERTICA

FIG. 7

TC GGC ATC CTT C6A G55 GGT CGT CTT CCT CTT TCG GTG AGT CTA CGA GCG
AG CCG TAG GAA G3T C44 CCA GCA GAA GGA GAA AGC CAC TCA GAT GCT CGC
IU Pro Glu C TT Pro Ala Glu Gly Glu Glu Ser His Ser Asp Ala Arg
Ser Arg Arg Lys Leu Phe Gln Gln Lys Glu Lys Lys Ala Thr Gln MET Leu Ala
Ala Val Gly Ser Arg Arg Arg Arg Arg Lys Pro Leu Arg Cys Ser Pro Glu Pro

Ser His Thr Ser TA 5CA AGA GCC GCA CAA GTA GTA GAC GAC CGA CGG GAA GAA GTA GTG TGT GTA AT 4GT TCT CGG CGT GTT CAT CAT CAT CTG CTG GCT GCC CTT CTT CAT CAC ACA CAT is T Ser Arg Val His His Leu Leu Ala Ala Leu Leu His His Ile ILE Val Leu Gly Val Phe Ile Ile Cys Trp Leu Pro Phe Phe Ile Thr His Ile Ile Phe Ser Ala Cys Ser Ser Ser Ala Gly Cys Pro Ser Ser His Thr Sel 297 CAT

Leu Asn Ile His Cys Asp Cys Asn Ile Pro Pro Val Leu Tyr Ser AĬa Phe Thr . Thr Tyr Thr Val Thr Ala Thr Ser Arg Leu Ser Cys Thr Ala Pro Ser Arg CTT GTA TGT GAC ACT GAC GTT GTA GGG CGG ACA GGA CAT GTC GCG GAA GTG GAA CAT ACA CTG TGA CAT CCC GCC TGT CCT GTA CAG CGC CTT CAC GLU His Thr Leu . Leu Gln His Pro Ala Cys Pro Val Gln Arg Leu His Pro

AC CGA CCC GAT ACA GTT GTC GCG GCA CTT GGG GTA GTA GAT GTG GTG GAA GTT TG GCT GGG CTA CAT CTA CAC CAC CTT CAA al Ala Gly Leu Cys Gln Gln Arg Arg Glu Pro His His Leu His Leu Gln Trp Leu Gly Tyr Val Asn Ser Ala Val Asn Pro Ile Ile Tyr Thr Thr Phe Asn Thr Pro Ser Ser Thr Pro Pro Ser Gly Trp Ala MET Ser Thr Ala Pro Val Ala

Arg Ser Ser Thr Ala Asp Ser Ala Ala Cys Ile Glu Phe Arg Lys Ala Phe Leu Lys Ile Leu His Cys STOPLeu Cys Cys Leu Leu Ser Ser Ala Arg Pro Ser . Arg Ser Ser Thr Ala Asp Ser Ala Ala Cy GTA ACT CAA CAT TGA GTT

Arg Thr Ala Ala Cys Phe Pro Pro Pro Cys Pro Val Pro Ala Ser Leu Thr Leu Pro His Ser Ser Leu Leu Pro Thr Ser Leu Pro Ser Ala Gly Gln Pro His Pro CGG CGT GTC GTC GGA CGA AGG GTG GGA CGG GTC ACG GCC GGT CGG AGT GGG GCC GCA CAG CAG CAG CTC CTC CCT GCC CAG TGC CGG CCA GCC TCA CCC Ala Ala Gln Gln Pro Ala Ser His Leu Pro Ala Gln Cys Arg Pro Ala Ser Pro

AAC GCT TGG CAC TCG TCC TTC CGG ACC CAC CTA GCC GGA GGA GAT CGG GGC TTG CGA ACC GTG AGG AGG GCC TGG GTG CAT CGG CCT CTT CTA GCC CCG CCG ATG CGA ACC GTG AGG AGG GCC TGG GTG GAT CGG CCT CTT CTA GCC CCG CCG ATG ATG Lys Ala Trp Val Asp Arg Pro Leu Leu Ala Pro Cys Glu Pro . Ala Gly Arg Pro Gly Trp Ile Gly Leu Leu Phe . Pro Arg Ala Asn Arg Glu Glu Gly Leu Gly Gly Ser Ala Ser Ser Ser Pro Gly

)
	FSK+DA	23.1	14%
+P.T.	FSK	26.7	
	BASAL	1.7	
TROL	K FSK+DA	.6 14.3 2 2.1	8-14
CONTROL	- FSK	22.6	
	BASAI	0.5	1
•		s. ⊩×ii	H
		12A	
		F1G.	

•	.•		CON	CONTROL			+P_T	 	
		BASAL	VIP	DA	VIP+DA	BASAL	VIP	DA	VIP+DA.
FIG. 12B	S. E. ≍	0.60	2.41	0.32	0.84	19.0	2.68	0.55	2.56
	Z I	-		53%	71%		ľ	% -	% %

			CONTROL	rrol			+P.T.	-	:	
		BASAL	VIP	DA	VIP+DA	BASAL	VIP	DA	VIP+DA	
FIG. 120	°E ×	0.78	5	0.25	0.76	0.64	5.29	0.66	4.76	
	HN	1	.	889	88%	1	1	%	12%	

-33 AGAGCCTGGCCACCCAGTGGCTCCACCGCCCTG

 ${\tt METAspProLeuAsnLeuSerTrpTyrAspAspAspLeuGluArgGlnAsnTrpSerArg}$ ATGGATCCACTGAATCTGTCCTGGTATGATGATCTGGAGGGCAGAACTGGAGCCGG ATGGATCCACTGAACCTGTCCTGGTACGATGACGATCTGGAGGCGGGGGGAGCCGG

ProPheAsnGlySerAspGlyLysAlaAspArgProHisTyrAsnTyrTyrAlaThrLeu CCCTTCAACGGGTCAGACGGGGGGGGGGCACCCCCCTACAACTACTATGCCACACTG CCCTTCAATGGGTCAGAAGGGAAGGCAGACAGGCCCCACTACAACTACTATGCCTG

FIG. 18A

LeuThrLeuLeuIleAlaValIleValPheGlyAsnValLeuValCysMETAlaValSer CTCACCCTGCTCATCGTCATCGTCTTCGGCAACGTGCTGTGCATGGCTGTGTCC CTCACCCTCCTCATCTTATCATCGTCTTTGGCAATGTGCTGTGTGCATGGCTGTATCC Phelle

ArgGluLysAlaLeuGlnThrThrAsnTyrLeuIleValSerLeuAlaValAlaAsp

CGCGAGAGGCGCTGCAGACCACCAACTACCTGATCGTCAGCCTCGCAGTGGCCGAC CGAGAGAAGGCTTTGCAGACCACCACTACTTGATAGTCAGCCTTGCTGTGGCTGAT

LeuLeuValAlaThrLeuValMETProTrpValValTyrLeuGluValVal IGlyGluTrp

CTTCTGGTGGCCACACTGGTAATGCCGTGGGTTGTCTACCTGGAGGTGGTGGTGAGTGG

FIG. 18B

	א מ
0	1
_	∜∀
	그
	عرا
	Ϊ́
	15
	16
Ξ	METC
	Li.
	$ \Sigma $
	1ETN
	田
	$ \Sigma $
	!
	[0]
٠.	l 뭐
÷	
	4
	الو ا
	۱۳۱
	ल
ı	>
0	he
ᅰ	된
	则
. 1	
T	<u> </u>
	S
	ď
	S
	Ö
	S)
,	7
1	<u> </u>
	٦.
i	⊣ .
•	80
• •	H
•	A
	Н
	a)
(ysrheserArglleHis(
•	Je
7). }
	7
*	<u>.</u>
	\sim

AAATTCAGCAGGATTCACTGTGACATCTTCGTCACTCTGGACGTCATGATGTGCACGCCG AAATTCAGCAGGATTCACTGTGACATCTTTGTCACTCTGGATGTCATGATGTGCACAGCA

AGCATCCTGAACTTGTGTGCCATCAGCATCGACAGGTACACAGCTGTGGCCATGCCCATG SerIleLeuAsnLeuCysAlaIleSerIleAspArgTyrThrAlaValAlaMETProMET AGCATCCTGAACCTGTGTGCCATCAGCATTGACAGGTACACAGCTGTGGCAATGCCCATG

LeuTyrAsnThrArgTyrSerSerLysArgArgValThrValMETIleSerIleValTrp

CTGTACAATACGCGCTACAGCTCCAAGCGCCGGGTCACCGTCATGATCTCCATCGTCTGG CTGTATAACACGCCACGCTCCAAGCGCCCGAGTTACTGTCATGATTGCCATTGTCTGG

FIG. 18C

ValLeuSerPheThrIleSerCysProLeuLeuPheGlyLeuAsnAsnAlaAspGlnAsn

 ${\tt GluCysIleIleAlaAsn} \overline{\tt ProAlaPheValValTyrSerSerIleValSerPheTyrVal}$

GAGTGCATCATTGCCAACCCGGCCTTCGTGGTCTACTCCTCCATCGTCTCTTCTACGTG GAGTGTATCATTGCCAACCCTGCCTTTGTGGTCTACTCCTCCATTGTCTCATTCTACGTG

ProPhelleValThrLeuLeuValTyrIleLysIleTyrIleValLeuArgArgArg

CCCTTCATCGTCACTCTGCTGGTCTATATCAAAATCTACATCGTCCTCCGGGAAGCGCCGG CCCTTCATTGTCACCCTGCTGGTCTACATCAAGATCTACATTGTCCTCCGCAGACGCCGC

FIG. 18D

240 ysArgValAsnThrLysArgSerSerArgAlaPheArgAlaHisLeuArgAlaProLeu	
AAGCGAGTCAACACCCAGCAGCCGAGCTTTCAGGGCCCCACCTGAGGGCTCCACTA 	720
* JS0 JysGlyAsnCysThrHisProGluAspMETLysLeuCysThrValIlleMETLysSerAsn AGGGCAACTGTACTCACCCCGAGGACATGAAACTCTGCACCGTTATCATGAAGTCTAAT	
YAG.	
280 31ySerPheProValAsnArgArgArgValGluAlaAlaArgArgArgAlaGluLeuGlu	
GGAGTTTCCCAGTGAACAGGCGAGGCTGCCCGGCGAGCCCAGGAGCTGGAGGTGAGGTTTTTTTT	840
FIG. 18E	

 ${\tt METG1uMETLeuSerSerThrSerProProG1uArgThrArgTyrSerProI1eProPro}$

 ${\bf Ser His His Gln Leu Thr Leu Pro Asp Pro Ser His His Gly Leu His Ser Thr Pro Asp}$

AspHisProLysIleAlaLys ${\tt SerProAlaLysProGluLysAsnGlyHisAlaLys}$

. GACCACCCCAAGATTGCCAAG **AGTCCTGCCAAACCAGAGAATGGGCACGCCAAGATTGTCAATCCCAGGATTGCCAAG** AGCCCCGCCAAACCAGAGAAGAATGGGCATGCCAAA...

FIG. 18F

IleValAsn

 $Ile Phe {\tt GluIleGlnThrMETProAsnGlyLysThrArgThrSerLeuLysThrMETSer}$

TTCTTTGAGATCCAGACCATGCCCAATGGCAAAACCCGGACCTCCCTTAAGACGATGAGC

ArgArgLysLeuSerGlnGlnLysGluLysLysAlaThrGlnMETLeuAlaIleValLeu

CGCAGAAAGCTCTCCCAGCAGAAGGAGAAAAGCCACTCAGATGCTTGCCATTGTTCTC

GlyValPhellelleCysTrOLeuProPhePhelleThrHisIleLeuAsnIleHisCys

GGCGTGTTCATCATCTGCTGCCCTTCTTCATCACACACATCCTGAACATACACTGT GCCGTCAACCCCATCATCTACACCCTTCAACATCGAGTTCCGCAAGGCCTTCATGAAG

FIG. 18G

EI

AspCysAsnIleProProValLeuTyrSerAlaPhéThrTrpLeuGlyTyrValAsnSer

GACTGCAACATCCCGCCTGTCCTGTACAGCGCCTTCACGTGGCTGGGCTATGTCAACAGC GATTGCAACATCCCAGTCCTCTACAGCGCCTTCACATGCCTGGGCTATGTCAACAGT

AlaValAsnProllelleTyrThrThrPheAsnIleGluPheArgLysAlaPheLeuLys

GCCGTCAACCCCATCATCTACACCACCTTCAACATCGAGTTCCGCAAGGCCTTCATGAAG IleLeuHisCys *

Arcticificates de la consecue de la c

ATCTTGCACTGCTGA

FIG. 18H

DOURTHE DEFINITION

CAGGCCGGCCAGCCTCACCCTTGCGAACCGTGAGGCAAGGCCTGGGTGGATCGGCCTC 1437

CTCTTCTTAGCCCCGGCAGGCCCTGCAGTGTTCGCTTGGCTCCATGCTCCTCACTGCCCG

CACACCCTCACTCTGCCAGGGCAGTGCTAGTGAGCTGGGCATGGTACCAGCCCTGGGGGT

GGCCCCAGCTCAGGGCTCATAGAGTCCCCCCTCCCACCTCCAGTCCCCTATCCTT

GGCACCAAAGATGCAGCCGCCTTCCTTGACCTTCCTCTGGGGCTCTAGGGTTGCTGGAGC 1677

CTGAGTCAGGGCCCAGAGGCTGAGTTTTCTCTTTGTGGGGCTTGGCGTGGAGCAGGCGGT

CGAGGAGCCAGGCAACTTCAGTCCTGGGAGACCCCATGTAAATACCAGACTGCAGGTTGGA

DOGUMENT OR THE

CTTTCCAGGCTAGTCCGGACCCACCTCACCCCGTTACAGCTCCCCCAAGTGGTTTCCACAT

GCTCTGAGAAGAGGCCCTCATCTTGAAGGGCCCAGGAGGGTCTATGGGGAGAGGTT 2037

CCTTGGCCTAGCCCACCCTGCCTTCTGACGGCCCTGCAATGTATCCCTTCTCACAGC

ACATGCTGGCCAGCCTGGCAGGCAGGTCAGGCCCTGGAACTCTATCTGGGCCT 2157

GGGCTAGGGACATCAGAGGTTCTTTGAGGGACTGCCTCTGCCACACTCTGACGCAAAACC

CTCTGCCTTAGAGGCCCACGGCTAAGAGGCTGCTGAAAACCATCTGGCCTGGCCTGGC

CCTGCCCTGAGGAAGGAGGCAAGCTGCAGCTTGGGAGGCCCCTGGGGCCTAGACTCTG 2397

TAACATCACTATCCGATGCACCAAACTAAAACTTTGACGAGTCACCTTC (A)_n 2449

The Hard Special State S

kb

—12.0

— 6.0

— 4.0

— 2.0

— 1.6

DRUG HUMAN D2 RAT D2	RAT STRIATI IM
7	
SPIPERONE 0.125 0.35	0.56
OL 0.94) () ()
) a
20	20.5
MIANSERIN (5-HT) 2685 4300	7600
	0004
>10.000	0000
,	0.40

	7	
•	exon	•
	. e	
	•	
36	rGG	
28	tccccagGTG(
*	ca	
	CCC	• • •
.*	, t	
	• .	, e*
	tronl	., .
	ıtr	
	in.	
	•	•
,	stg	
	ag{	
T	Ggtaggtg	
285	GĀ	200
•	<u>ن</u>	
	: -	
	on	:
	ex	• •
	,	
		•
23		
FIG. (
Ξ		. *.

cttgcagGTACexon3	533	cccccagACCAexon4	724	tccacagGGCAexon5
.intron2.		.intron3.		.intron4.
12ACAGgtgagcc	532	13GCAGgtacatt	723	14AAAGgtctcaa
exon2.		exon3		exon4

	9	
	u(•
	exon(
	6)	
•	•	
	•	• .
	S	. 68
_	A(
o •	.ggtgcagGAGG	
	aβ	
	ິດ	
	t Ø	
	60	
	90	
	•	
	• .	
	n C	
	0	·
. :	tron5	
٠	<u> </u>	
	·H	s.*
	•	
	8	
(τ̈́	
	g 8	
٠.	as	
· .	.AGTGgtaagtg	
	3	∞
4	H	<u>.</u> W
)	AG	11
* * * * .	7.	· .
• .	•	
*	5	
	\Box	·
	ехо	
	a	. ·

oecccagecelexon/	the putative initiator	
ron	ο£	12.
	A	년
	with	(see
.cregegagecIntrono	begins	nine codon
	$^{ m l}$ Numbering	methionine
,		