Covidcast: Forecasting Aids for Delphi

August 11, 2021

Taha Bouhoun, Michelle Lee, Shilaan Alzahawi

Covidcast: Forecasting Aids for Delphi

Taha BouhounMinerva University

DSSG Fellow

Michelle Lee
Columbia University

DSSG Fellow

Stanford University

Technical mentor

Shilaan Alzahawi

Narasimhan
Stanford University
Faculty mentor

Balasubramanian

Daniel McDonaldUniversity of British
Columbia, Canada
Faculty mentor

Delphi Research Group

The Delphi Research Group at Carnegie Mellon University and is **one of the two** influenza forecasters in the United States

- The group's goal is to develop the theory and practice of epidemiological forecasting
- Prior to COVID-19, the group also worked on forecasting for influenza, dengue, and norovirus

Delphi Covidcast

Since March 2020, the Delphi research group has maintained **the largest public repository of real-time indicators of COVID-19 activity**, through a public API.

Every Monday, the Delphi Covidcast generates forecasts of cumulative COVID-19 cases and deaths in the U.S. These predictions are reviewed by the team and sent to the CDC COVID-19 Forecast Hub

National Forecast

What DELPHI would like to know

- How does our (Delphi's Covidcast) forecaster do compared to others?
- Assess new forecasters before they are deployed
- Are there periods of time that we do much worse or better?
- Are there areas of improvement we need to focus on?

Our project involves the creation of a report that answers these questions

Goals & Deliverables

Our Goal

Develop tools for comparing and evaluating COVID forecasters

Our Deliverables

- An interactive parameterized report that evaluates and compares the performance of several COVID-19 forecasters for cases, deaths, and hospitalizations
 - Along with the report, the user can download the underlying report-specific data
- The user can automatically generate a report according to their chosen parameters
 - The number of *epi-weeks ahead* that the forecasts are made
 - The specific *forecasters* to compare to
 - Whether to use a *colorblind-safe* palette for generating the plots
- A GitHub repository with fully documented code and vignettes

Outcomes of Interest & Data Sources

Covid-19 cases

Number of daily confirmed cases reported by state and local health authorities

• Covid 19- deaths

Official figures of death due to COVID-19 as confirmed by health authorities

Covid-19 hospitalizations

Daily Covid-19 related hospital admissions, estimated from health authorities' aggregated statistics and patient data

Metrics to Evaluate Forecasting Performance

Weighted Interval Score (WIS)

A proper score that combines a set of prediction interval scores. A smaller WIS indicates better performance

Coverage

An estimate of the probability that a forecaster's 80% interval correctly includes the actual value

Absolute Error

The difference between the actual value and the point forecast

Limitations of the Current Report

- Too specific
- API based:
 - Slow in knitting in R studio
 - Unable to run reports in case of API problems
- Unable to personalize
- Visually unappealing (many plots, colors of the graphs)

Project Architect: Generalizable Report

Functionality

Step 1: Generate (*cases*, *hospitalizations*, or *deaths*) report with chosen parameters

Functionality

Step 2: Explore interactive graphs in tabs

Functionality

Step 3 (optional): Download underlying data

To promote the flexibility to replicate the report, the data used in this report can be easily downloaded as a CSV file. By doing so, the user can generate customized plots or even include their own forecaster.

Code

■ Download Predictions Evaluation

Code

■ Download Raw Predictions

Colorblind-Safe Mode

Forecasts made over July 20, 2020 to July 19, 2021

Forecasts made over July 20, 2020 to July 19, 2021

After:

Identifying Discrepancies and Performances

A look inside...

Trajectory plots

The following plots show the predictions of the **CMU-TimeSeries** forecaster along with the confidence interval for each of the US states. The forecasts project 1, 2, 3, 4 weeks ahead.

Limitations of the Original Report

- 1. Too specific
- 2. API based:
 - a. Slow in knitting in R studio
 - b. Unable to run reports in case of API problems
- 3. Unable to personalize
- 4. Visually unappealing (many plots, colors of the graphs)

Solutions

- 1. Use parameters and helper functions that can change the markdown parameters
- 2. Allow download of preformatted data from AWS bucket and prediction data frame (avoid API call)
- 3. Add better interactivity to plots
- 4. Organize the plots into tabs for easier navigation

Project Artifacts

- Templated markdown files
- Auxiliary R scripts for manipulating markdowns and generating reports
- Example reports
- A GitHub repository with fully documented code and vignettes

Future Directions

- Shiny app that generates the report with the click of a button
- County-specific forecaster performance
- Docker solution for batch generation of reports

Thank you to our mentors and the DELPHI team!

Shilaan Alzahawi

Technical mentor

Balasubramanian Narasimhan

Faculty mentor

Daniel McDonald

Faculty mentor

Carnegie Mellon University
DELPHI GROUP