Тема. Скалярний добуток векторів

<u>Мета:</u> ознайомитися з поняттями кута між векторами, скалярного добутку як способу множення векторів та властивостями цього добутку, вчитися знаходити скалярний добуток векторів

Пригадайте

- Що таке вектор, які він має характеристики?
- Які вектори називають колінеарними?
- Які дії з векторами ви вмієте виконувати?

Ознайомтеся з інформацією

Нехай \overline{a} і \overline{b} — два ненульових та неспівнапрямлених вектори (рис. 1). Від довільної точки O відкладімо вектори \overline{OA} і \overline{OB} , відповідно, рівні векторам \overline{a} і \overline{b} . Величину кута AOB називатимемо кутом між векторами \overline{a} і \overline{b} .

Кут між векторами \overline{a} і \overline{b} позначають так: $\angle(\overline{a,b})$. Наприклад, на рисунку $1 \angle(\overline{a,b}) = 120^\circ$, а на рисунку $2 \angle(\overline{a,b}) = 180^\circ$.

Рис. 2. Кут між протилежно напрямленими векторами

Якщо вектори \overline{a} і \overline{b} **співнапрямлені** (рис. 3), то вважають, що $\angle(\overline{a}, \overline{b}) = 0^\circ$. Якщо хоча б один із векторів \overline{a} або \overline{b} **нульовий**, то також вважають, що $\angle(\overline{a}, \overline{b}) = 0^\circ$.

Рис. 3. Кут між співнапрямленими векторами

Вектори \overline{a} і \overline{b} називають **перпендикулярними**, якщо кут між ними дорівнює 90° . Записують: \overline{a} $\perp \overline{b}$.

Отже, для будь-яких векторів \underline{a} і \underline{b} справджується нерівність: $0^{\circ} \le \angle(\overline{a}, \overline{b}) \le 180^{\circ}$.

Скалярним добутком двох векторів називають добуток їхніх модулів і косинуса кута між ними. Скалярний добуток векторів \overline{a} і \overline{b} позначають так: $\overline{a} \cdot \overline{b}$.

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \angle (\vec{a}, \vec{b})$$

Якщо хоча б один із векторів \overline{a} або \overline{b} нульовий, то їх добуток дорівнюватиме нулю, тобто $\overline{a}\cdot\overline{b}$ = 0.

Якщо обидва вектори рівні один одному, тобто кут між ними дорівнює нуль градусів, а модулі однакові, то їх добуток буде рівний квадрату модуля одного із векторів.

Нехай
$$\overline{a} = \overline{b}$$
. Тоді $\overline{a} \cdot \overline{b} = \overline{a} \cdot \overline{a} = |\overline{a}| |\overline{a}| \cos 0^{\circ} = |\overline{a}|^{2}$.

Скалярний добуток двох однакових векторів $\overline{a} \cdot \overline{a}$ називають **скалярним квадратом вектора** \overline{a} і позначають його як $\overline{a}^{\,2}$.

Скалярний квадрат вектора дорівнює квадрату його модуля. Тобто, $\bar{a}^{\,2} = |\; \bar{a}\;|^2.$

Однією з найважливіших теорем зі скалярним добутком векторів є **тео- рема про перпендикулярність**. Вона звучить так: скалярний добуток двох ненульових векторів дорівнює нулю тоді й тільки тоді, коли ці вектори перпендикулярні.

$$\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}| \cos 0^{\circ} = 0$$

Перегляньте відео за посиланням:

https://youtu.be/wpByXsgUH0k

Розв'язування задач

Задача 1

Визначте взаємне розміщення двох ненульових векторів \overline{a} і \overline{b} , якщо:

- 1) $\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}|$;
- 2) $\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}|$.

Розв'язання

- 1) $\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}|$. Оскільки $\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}| \cos \angle (\overline{a}, \overline{b})$, то звідси $\cos \angle (\overline{a}, \overline{b}) = 1$, тоді кут між векторами $\angle (\overline{a}, \overline{b}) = 0^\circ$, отже $\overline{a} \uparrow \uparrow \overline{b}$:
- 2) $\overline{a} \cdot \overline{b} = |\underline{a}| |\overline{b}|$. Оскільки $\underline{a} \cdot \overline{b} = |\underline{a}| |\overline{b}| \cos \angle (\overline{a}, \overline{b})$, то звідси $\cos \angle (\overline{a}, \overline{b}) = -1$, тоді кут між векторами $\angle (\overline{a}, \overline{b}) = 180^\circ$, отже $\overline{a} \leftrightarrow \overline{b}$.

Відповідь: 1) $\overline{a} \leftrightarrow \overline{b}$ — співнапрямлені; 2) $\overline{a} \leftrightarrow \overline{b}$ — протилежно напрямлені.

Приклад 2.

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cdot \cos \alpha$$

Дано:
$$|\overrightarrow{a}|=5$$
, $|\overrightarrow{b}|=6$, $<\left(\overrightarrow{a};\overrightarrow{b}\right)=120^o$

Знайти:
$$(2\vec{a}+3\vec{b})\cdot\vec{a}$$

$$egin{aligned} {m Po3e}$$
'язання: $\cos 120^\circ = \cos (180^\circ - 60^\circ) = -\cos 60^\circ = -rac{1}{2} \ \left(2 \vec{a} + 3 \vec{b}
ight) \cdot \vec{a} = 2 \vec{a}^2 + 3 \vec{a} \cdot \vec{b} \end{aligned}$

$$2\vec{a}^2 = 2 \cdot |\vec{a}|^2 = 2 \cdot 5^2 = 50$$

$$3\vec{a} \cdot \vec{b} = 3 \cdot |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha = 3 \cdot 5 \cdot 6 \cdot \left(-\frac{1}{2}\right) = -45$$

$$(2\vec{a}+3\vec{b})\cdot\vec{a}=50-45=5$$

Відповідь: 5

Приклад 3.

$$\vec{a} \cdot \vec{b} = x_1 \cdot x_2 + y_1 \cdot y_2$$

Дано:
$$\vec{a}(5;2)$$
 і $\vec{b}(-4;y)$

$$\vec{a} \perp \vec{b}$$

Знайти: у

Розв'язання:

Оскільки
$$\vec{a} \perp \vec{b}$$
 $\overrightarrow{a} \cdot \vec{b} = 0$

$$\vec{a} \cdot \vec{b} = 5 \cdot (-4) + 2y = 0$$

$$-20+2y=0$$

$$2y = 20$$
 $y = 10$

Відповідь: 10

Приклад 4.

$$\vec{a} \cdot \vec{b} = x_1 \cdot x_2 + y_1 \cdot y_2$$

Дано:
$$\vec{a}$$
 (-2; 3) і \vec{b} (3; -4)

$$\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}}$$

Знайти: cosa

Розв'язання:

$$|\vec{a}| = \sqrt{x^2 + y^2}$$

$$|\vec{a}| = \sqrt{(-2)^2 + 3^2} = \sqrt{13}$$

$$\left| \vec{b} \right| = \sqrt{3^2 + (-4)^2} = \sqrt{25} = 5$$

$$\vec{a} \cdot \vec{b} = -2 \cdot 3 + 3 \cdot (-4) = -6 - 12 = -18$$

$$\cos \alpha = \frac{-18}{5 \cdot \sqrt{13}} = \frac{-18}{5\sqrt{13}}$$

Пригадайте

- Як можна помножити два вектори?
- Як визначити кут між двома векторами?

Домашне завдання

- Опрацювати конспект і §10 підручника с.78-80
- Розв'язати (письмово): №395,404,406

Джерела

- Істер О.С. Геометрія: 9 клас. Київ: Генеза, 2017
- Всеукраїнська школа онлайн