Higher-genus GW theory of smooth CY hypersurfaces in weighted \mathbb{P}^4

Patrick Lei

April 1, 2025

Columbia University

Introduction

Mixed-Spin-P fields

Calculations

Introduction

Our goal is to understand the *Gromov-Witten theory* of a **Calabi-Yau threefold**, which in this talk will be called **Z**.

Our goal is to understand the *Gromov-Witten theory* of a **Calabi-Yau threefold**, which in this talk will be called **Z**.

Definition

The moduli space $\overline{\mathcal{M}}_{g,0}(Z,d)$ of genus g, degree d unmarked stable maps to Z has a virtual cycle in degree d. Define the d invariant

$$N_{g,d} \coloneqq \mathsf{deg}[\overline{\mathcal{M}}_{g,0}(Z,d)]^{\mathsf{vir}} \in \mathbb{Q}.$$

Our goal is to understand the *Gromov-Witten theory* of a **Calabi-Yau threefold**, which in this talk will be called **Z**.

Definition

The moduli space $\overline{\mathcal{M}}_{g,0}(Z,d)$ of genus g, degree d unmarked stable maps to Z has a virtual cycle in degree d. Define the d invariant

$$N_{g,d} \coloneqq \mathsf{deg}[\overline{\mathcal{M}}_{g,0}(Z,d)]^{\mathsf{vir}} \in \mathbb{Q}.$$

Goal: Calculate all $N_{q,d}$.

Our goal is to understand the *Gromov-Witten theory* of a **Calabi-Yau threefold**, which in this talk will be called **Z**.

Definition

The moduli space $\overline{\mathcal{M}}_{g,0}(Z,d)$ of genus g, degree d unmarked stable maps to Z has a virtual cycle in degree d. Define the d invariant

$$N_{g,d} \coloneqq \mathsf{deg}[\overline{\mathcal{M}}_{g,0}(Z,d)]^{\mathsf{vir}} \in \mathbb{Q}.$$

Goal: Calculate all $N_{a,d}$. This is too hard!

Our goal is to understand the *Gromov-Witten theory* of a **Calabi-Yau threefold**, which in this talk will be called **Z**.

Definition

The moduli space $\overline{\mathcal{M}}_{g,0}(Z,d)$ of genus g, degree d unmarked stable maps to Z has a virtual cycle in degree d. Define the d invariant

$$N_{g,d} \coloneqq \mathsf{deg}[\overline{\mathcal{M}}_{g,0}(Z,d)]^{\mathsf{vir}} \in \mathbb{Q}.$$

Goal: Say something about the behavior of the generating series of all $N_{g,d}$ when we fix the genus.

Mirror symmetry picture

One source of predictions in Gromov-Witten theory is *mirror symmetry*.

Mirror symmetry picture

One source of predictions in Gromov-Witten theory is *mirror symmetry*.

	A-model (<i>Z</i>)	B-model (Z ^v)		
Local deformations	$H^{1,1}(X)$	$H^{2,1}(X^{\vee})$		
g = 0 invariants	GW invariants	period integrals		
g = 1 invariants	GW invariants	analytic torsion		
g ≥ 2 invariants	GW invariants	???		

Mirror symmetry picture

One source of predictions in Gromov-Witten theory is *mirror symmetry*.

	A-model (<i>Z</i>)	B-model (Z ^v)		
Local deformations	$H^{1,1}(X)$	$H^{2,1}(X^{\vee})$		
g = 0 invariants	GW invariants	period integrals		
g = 1 invariants	GW invariants	analytic torsion		
g ≥ 2 invariants	GW invariants	???		

We will translate predictions from physics in the bottom right corner into Gromov-Witten theory and then try to prove them.

We are able to prove the following results for the threefolds $Z_6 \subset \mathbb{P}(1,1,1,1,2), Z_8 \subset \mathbb{P}(1,1,1,1,4),$ and $Z_{10} \subset \mathbb{P}(1,1,1,2,5)$:

We are able to prove the following results for the threefolds $Z_6 \subset \mathbb{P}(1,1,1,1,2), Z_8 \subset \mathbb{P}(1,1,1,1,4),$ and $Z_{10} \subset \mathbb{P}(1,1,1,2,5)$:

1. If $F_g = \sum_d N_{g,d}Q^d$ is the generating series of genus g invariants, we prove that a normalized version P_g is a polynomial in five generators $A = A_1, B = B_1, B_2, B_3, X$ defined using only genus-zero data.

We are able to prove the following results for the threefolds $Z_6 \subset \mathbb{P}(1,1,1,1,2), Z_8 \subset \mathbb{P}(1,1,1,1,4),$ and $Z_{10} \subset \mathbb{P}(1,1,1,2,5)$:

More precisely, Coates-Corti-Lee-Tseng proved that the genus-0 GW theory of Z is controlled by the series

$$\begin{split} I(q,z) &\coloneqq z \sum_{d \geq 0} q^d \frac{\prod_{m=1}^{6d} (6H + mz)}{\prod_{m=1}^{d} (H + mz)^4 \prod_{m=1}^{2d} (2H + mz)} \\ &= I_0(q)z + I_1(q)H + I_2(q)\frac{H^2}{z} + I_3(q)\frac{H^3}{z^2}. \end{split}$$

We are able to prove the following results for the threefolds $Z_6 \subset \mathbb{P}(1,1,1,1,2), Z_8 \subset \mathbb{P}(1,1,1,1,4),$ and $Z_{10} \subset \mathbb{P}(1,1,1,2,5)$:

3. Define $I_{11}(q) \coloneqq 1 + D\left(\frac{I_1(q)}{I_0(q)}\right)$, where $D = q \frac{d}{dq}$. Then define

$$A := \frac{DI_{11}}{I_{11}}, \qquad B_k := \frac{D^k I_0}{I_0}, \qquad X := 1 - \frac{1}{1 - \frac{6^6}{2^2} q}.$$

Also define Y = 1 - X.

We are able to prove the following results for the threefolds $Z_6 \subset \mathbb{P}(1,1,1,1,2), Z_8 \subset \mathbb{P}(1,1,1,1,4),$ and $Z_{10} \subset \mathbb{P}(1,1,1,2,5)$:

4. The first result, conjectured by Yamaguchi-Yau (2004), is that

$$P_{g,n} = \frac{(3Y)^{g-1} I_{11}^n}{I_0^{2g-2}} \left(Q \frac{d}{dQ} \right)^n F_g(Q) \in \mathbb{Q}[A, B, B_2, B_3, X]$$

after the substitution $Q = qe^{l_1/l_0}$.

We are able to prove the following results for the threefolds $Z_6 \subset \mathbb{P}(1,1,1,1,2), Z_8 \subset \mathbb{P}(1,1,1,1,4),$ and $Z_{10} \subset \mathbb{P}(1,1,1,2,5)$:

5. The second result is the equality

$$P_{1,1} = -\frac{1}{2}\mathbf{A} - \frac{21}{2}\mathbf{B} - \frac{1}{12}X - \frac{7}{4}.$$

We are able to prove the following results for the threefolds $Z_6 \subset \mathbb{P}(1,1,1,1,2), Z_8 \subset \mathbb{P}(1,1,1,1,4),$ and $Z_{10} \subset \mathbb{P}(1,1,1,2,5)$:

6. Consider the following Feynman rule (sum over stable graphs) defined by BCOV (1993) defining a power series $f_{g,m,n}$. First, introduce propagators $E_{\psi} = B$, $E_{\psi\psi} = A + 2B$, $E_{\psi\psi} = -B_2$, and $E_{\psi\psi} = -B_3 + (B - X)B_2 - \frac{13}{36}BX$.

We are able to prove the following results for the threefolds $Z_6 \subset \mathbb{P}(1,1,1,1,2), Z_8 \subset \mathbb{P}(1,1,1,1,4),$ and $Z_{10} \subset \mathbb{P}(1,1,1,2,5)$:

7. Place φ – $E_{\psi}\psi$ at the first m legs and ψ at the last n legs, place

$$E_{\varphi\varphi}\phi\otimes\varphi+E_{\varphi\psi}(\varphi\otimes\psi+\psi\otimes\varphi)+E_{\psi\psi}\psi\otimes\psi$$

at each edge, and place the linear map

$$\varphi^{\otimes m} \otimes \psi^{\otimes n} \mapsto P_{g,m,n} \coloneqq \frac{(2g-2+m+n-1)!}{(2g-2+m-1)!} P_{g,m}$$

at each vertex. Also, set $P_{1,0,1} = -\frac{19}{2}$.

We are able to prove the following results for the threefolds

$$Z_6 \subset \mathbb{P}(1,1,1,1,2), Z_8 \subset \mathbb{P}(1,1,1,1,4), \text{ and } Z_{10} \subset \mathbb{P}(1,1,1,2,5)$$
:

8. Our result is that the output $f_{g,m,n}$ is a polynomial of degree at most 3g-3+m in X. This implies the modular anomaly equations

$$\begin{split} -\partial_A P_g &= \frac{1}{2} \left(P_{g-1,2} + \sum_{g_1 + g_2 = g} P_{g_1,1} P_{g_2,2} \right), \\ \left(-2\partial_A + \partial_B + (A+2B)\partial_{B_2} - \left((B-X)(A+2B) - B_2 - \frac{13}{36} X \right) \partial_{B_3} \right) P_g &= 0. \end{split}$$

Past work

• Our first result (polynomiality) was proved for the quintic independently by Chang-Guo-Li and Guo-Janda-Ruan in 2018.

Past work

- Our first result (polynomiality) was proved for the quintic independently by Chang-Guo-Li and Guo-Janda-Ruan in 2018.
- Our genus-one formula was first proved for the quintic by Zinger (2007) and proved for complete intersections in projective space by Popa (2010).

Past work

- Our first result (polynomiality) was proved for the quintic independently by Chang-Guo-Li and Guo-Janda-Ruan in 2018.
- Our genus-one formula was first proved for the quintic by Zinger (2007) and proved for complete intersections in projective space by Popa (2010).
- The modular anomaly equations were proved for the quintic independently by Chang-Guo-Li and Guo-Janda-Ruan in 2018.

Mixed-Spin-P fields

Our approach

We use the approach of Mixed-Spin-P fields, which were introduced by Chang-Li-Li-Liu (2015, 2016) and Chang-Guo-Li-Li (2018).

Our approach

We use the approach of **Mixed-Spin-P fields**, which were introduced by Chang-Li-Li-Liu (2015, 2016) and Chang-Guo-Li-Li (2018).

The original geometric intuition was to implement the master space idea of Thaddeus, but in order to perform calculations we need to introduce a parameter N (which is a positive integer) to the theory.

Let $(\mathbb{C}^*)^3$ act on \mathbb{C}^{N+7} with the following weights:

Let $(\mathbb{C}^*)^3$ act on \mathbb{C}^{N+7} with the following weights:

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	р	<i>u</i> ₁	•••	u_N	
l	1	1	1	1	2	-6 0 1	1	•••	1	0
l	0	0	0	0	0	0	1	•••	1	1
	0	0	0	0	0	1	0		0	0

Let $(\mathbb{C}^*)^3$ act on \mathbb{C}^{N+7} with the following weights:

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	р	<i>u</i> ₁	•••	u_N	V]
l	1	1	1	1	2	-6 0	1	•••	1	0	
l	0	0	0	0	0	0	1	•••	1	1	
	0	0	0	0	0	1	0		0	0	

Let $W = W_{g,n,\mathbf{d}}$ be the stack of commutative diagrams

subject to a stability condition.

More explicitly, objects in W consist of:

• A prestable twisted curve (C, Σ^{C});

More explicitly, objects in **W** consist of:

- A prestable twisted curve (C, Σ^C) ;
- Line bundles \mathcal{L} , \mathcal{N} such that $\mathcal{L} \oplus \mathcal{N}$ is representable;

More explicitly, objects in W consist of:

- A prestable twisted curve (C, Σ^C) ;
- Line bundles \mathcal{L} , \mathcal{N} such that $\mathcal{L} \oplus \mathcal{N}$ is representable;
- Sections $x \in H^0(\mathcal{L}^{\oplus 4} \oplus \mathcal{L}^2)$, $p \in H^0(\mathcal{L}^{-6} \otimes \omega^{\log})$, $u \in H^0(\mathcal{L} \oplus \mathcal{N})^{\oplus N}$, and $v \in H^0(\mathcal{N})$

More explicitly, objects in W consist of:

- A prestable twisted curve (C, Σ^C) ;
- Line bundles \mathcal{L} , \mathcal{N} such that $\mathcal{L} \oplus \mathcal{N}$ is representable;
- Sections $x \in H^0(\mathcal{L}^{\oplus 4} \oplus \mathcal{L}^2)$, $p \in H^0(\mathcal{L}^{-6} \otimes \omega^{\log})$, $u \in H^0(\mathcal{L} \oplus \mathcal{N})^{\oplus N}$, and $v \in H^0(\mathcal{N})$

subject to the constraints that (x, u), (p, v), and (u, v) are all everywhere nonzero and that objects have finitely many automorphisms.

Virtual localization I

W is not proper, but it has a cosection localized virtual cycle $[W]^{vir}$ supported on a proper closed substack W^- .

Virtual localization I

 \mathcal{W} is not proper, but it has a cosection localized virtual cycle $[\mathcal{W}]^{\text{vir}}$ supported on a proper closed substack \mathcal{W}^- . This virtual cycle is equivariant with respect to the action of $(\mathbb{C}^*)^N$ on \mathcal{W} by scaling $(u_1, ..., u_N)$.

Virtual localization I

 \mathcal{W} is not proper, but it has a cosection localized virtual cycle $[\mathcal{W}]^{\text{vir}}$ supported on a proper closed substack \mathcal{W}^- . This virtual cycle is equivariant with respect to the action of $(\mathbb{C}^*)^N$ on \mathcal{W} by scaling $(u_1, ..., u_N)$.

Theorem (Chang-Kiem-Li, 2015) Indexing the fixed loci by Γ , we have

$$[\mathcal{W}]^{\text{vir}} = \sum_{\Gamma} \frac{[\mathcal{W}_{\Gamma}]^{\text{vir}}}{e(N\Gamma^{\text{vir}})}.$$

Fixed loci in the MSP moduli space \mathcal{W} are indexed by graphs Γ . There are three kinds (denoted by levels) of vertices:

1. Level **0** vertices contribute GW invariants of *Z*;

Fixed loci in the MSP moduli space \mathcal{W} are indexed by graphs Γ . There are three kinds (denoted by levels) of vertices:

- 1. Level **0** vertices contribute GW invariants of **Z**;
- 2. Level 1 vertices contribute Hodge integrals;

Fixed loci in the MSP moduli space \mathcal{W} are indexed by graphs Γ . There are three kinds (denoted by levels) of vertices:

- 1. Level **0** vertices contribute GW invariants of **Z**;
- 2. Level 1 vertices contribute Hodge integrals;
- 3. Level ∞ vertices contribute FJRW invariants.

Fixed loci in the MSP moduli space \mathcal{W} are indexed by graphs Γ . There are three kinds (denoted by levels) of vertices:

- 1. Level **0** vertices contribute GW invariants of *Z*;
- 2. Level 1 vertices contribute Hodge integrals;
- 3. Level ∞ vertices contribute FJRW invariants.

Theorem (Irregular vanishing)

If Γ has an edge between a level $\mathbf{0}$ and level ∞ vertex, then $[\mathcal{W}_{\Gamma}]^{\text{vir}} = \mathbf{0}$.

Irregular vanishing

Geometrically, a $\mathbf{0}\infty$ edge corresponds to the following picture:

Figure 1: Geometry of 0∞ edge.

Irregular vanishing

Geometrically, a $\mathbf{0}\infty$ edge corresponds to the following picture:

Figure 1: Geometry of 0∞ edge.

There are some such edges which are called *strings*. In the no-string case, the virtual dimension of W_{Γ} is negative.

Irregular vanishing

Geometrically, a 0∞ edge corresponds to the following picture:

Figure 1: Geometry of 0∞ edge.

There are some such edges which are called *strings*. In the no-string case, the virtual dimension of W_{Γ} is negative. The general case follows by a virtual pullback argument using the fact that the moduli of a 0∞ string has lci singularities.

Calculations

Genus zero MSP theory

Lemma

Genus zero MSP invariants equal genus zero Gromov-Witten invariants of a degree 6 hypersurface in $\mathbb{P}(1,1,1,1,2,1,...,1)$.

Genus zero MSP theory

Lemma

Genus zero MSP invariants equal genus zero Gromov-Witten invariants of a degree 6 hypersurface in $\mathbb{P}(1,1,1,2,1,...,1)$.

This implies that all genus zero MSP invariants are recovered from the *J*-function

$$z\sum_{d\geq 0}q^d\frac{\prod_{m=1}^{6d}(6p+mz)}{\prod_{m=1}^{d}(p+mz)^4\prod_{m=1}^{2d}(2p+mz)\prod_{m=1}^{d}((p+mz)^N-t^N)}.$$

Here, we specialize the equivariant parameters to $t_{\alpha} = \zeta_N^{\alpha} t$ for $\alpha = 1, ..., N$.

Genus zero MSP theory

Lemma

Genus zero MSP invariants equal genus zero Gromov-Witten invariants of a degree 6 hypersurface in $\mathbb{P}(1,1,1,1,2,1,...,1)$.

This implies that all genus zero MSP invariants are recovered from the *J*-function

$$z\sum_{d\geq 0}q^d\frac{\prod_{m=1}^{6d}(6p+mz)}{\prod_{m=1}^{d}(p+mz)^4\prod_{m=1}^{2d}(2p+mz)\prod_{m=1}^{d}((p+mz)^N-t^N)}.$$

Here, we specialize the equivariant parameters to $t_{\alpha} = \zeta_N^{\alpha} t$ for $\alpha = 1, ..., N$. Using this, we are able to compute the *S-matrix*, which controls the entire genus-zero theory.

MSP R-matrix

Define the R-matrix by the Birkhoff factorization

$$S^{MSP}(z)\Delta = R(z)S^{loc}(z)$$
,

where Δ comes from Quantum Riemann-Roch and S^{loc} is simply the direct sum of the S-matrix of Z and N copies of the S-matrix of a point.

MSP R-matrix

Define the *R*-matrix by the Birkhoff factorization

$$S^{MSP}(z)\Delta = R(z)S^{loc}(z)$$
,

where Δ comes from Quantum Riemann-Roch and S^{loc} is simply the direct sum of the S-matrix of Z and N copies of the S-matrix of a point.

Lemma Write

$$R(z) = R_0 + R_1 z + R_2 z^2 + \cdots$$

For each k, all entries of R_k lie in $\mathbb{Q}[A, B, B_2, B_3, X]$ (possibly after normalization). There are also explicit degree bounds for the entries coming from the N points, which are polynomials in X.

Definition

Define the MSP [0,1] theory by only considering the contributions of graphs without level ∞ vertices to the virtual localization formula.

Definition

Define the MSP [0,1] theory by only considering the contributions of graphs without level ∞ vertices to the virtual localization formula.

Theorem

The MSP [0, 1] theory is a cohomological field theory given by the action

$$R(z).\left(\Omega^Z \oplus \bigoplus_{\alpha=1}^N \Omega^{\mathsf{pt}_\alpha}\right)$$

of R(z) on the direct sum of the GW theory of Z and N copies of the GW theory of a point.

More precisely, we can calculate the MSP [0,1] as a sum over stable graphs with vertices labeled by either Z or pt_{α} :

· At each leg with insertion ϕ , place $R(z)^{-1}\phi$;

More precisely, we can calculate the MSP [0,1] as a sum over stable graphs with vertices labeled by either Z or pt_{α} :

- At each leg with insertion ϕ , place $R(z)^{-1}\phi$;
- · At each edge, place the bivector

$$\sum_{a} \frac{\phi_a \otimes \phi^a - R(z)^{-1} \phi_a \otimes R(w)^{-1} \phi^a}{z + w};$$

More precisely, we can calculate the MSP [0,1] as a sum over stable graphs with vertices labeled by either Z or pt_{α} :

- At each leg with insertion ϕ , place $R(z)^{-1}\phi$;
- · At each edge, place the bivector

$$\sum_a \frac{\phi_a \otimes \phi^a - R(z)^{-1} \phi_a \otimes R(w)^{-1} \phi^a}{z + w};$$

· At each vertex with label *Z*, compute

$$I_0^{-(2g_v-2+n_v)} \sum_d (qe^{I_1/I_0})^d \langle - \rangle_{g_v,n_v,d}^Z;$$

More precisely, we can calculate the MSP [0,1] as a sum over stable graphs with vertices labeled by either Z or pt_{α} :

- At each leg with insertion ϕ , place $R(z)^{-1}\phi$;
- · At each edge, place the bivector

$$\sum_{a} \frac{\phi_a \otimes \phi^a - R(z)^{-1} \phi_a \otimes R(w)^{-1} \phi^a}{z + w};$$

· At each vertex with label *Z*, compute

$$I_0^{-(2g_v-2+n_v)} \sum_d (qe^{l_1/l_0})^d \langle - \rangle_{g_v,n_v,d}^Z;$$

• At each vertex with label pt_α , compute a slight modification $\langle - \rangle_{g_v,n_v}^{\mathsf{pt},T}$ of the GW theory of a point.

Proof of polynomiality

Lemma

The MSP [0,1] correlator $\langle p^{a_1}, \dots, p^{a_n} \rangle_{g,n}^{[0,1]}$ is a polynomial in q of degree at most $g-1+\frac{3g-3+\sum a_i}{N}$.

Proof of polynomiality

Lemma

The MSP [0,1] correlator $\langle p^{a_1},\dots,p^{a_n}\rangle_{g,n}^{[0,1]}$ is a polynomial in q of degree at most $g-1+\frac{3g-3+\sum a_i}{N}$.

Proof.

The full invariants satisfy the same degree bound for virtual dimension reasons, and then the contributions coming from FJRW invariants are controlled by a degree counting argument.

Proof of polynomiality

Lemma

The MSP [0,1] correlator $\langle p^{a_1}, ..., p^{a_n} \rangle_{g,n}^{[0,1]}$ is a polynomial in q of degree at most $g-1+\frac{3g-3+\sum a_i}{N}$.

Proof.

The full invariants satisfy the same degree bound for virtual dimension reasons, and then the contributions coming from FJRW invariants are controlled by a degree counting argument.

Proof of polynomiality II

Corollary

$$P_{g,n} = \frac{(3Y)^{g-1} I_{11}^n}{I_0^{2g-2}} \left(Q \frac{d}{dQ} \right)^n F_g(Q) \bigg|_{Q = qe^{I_1/I_0}} \in \mathbb{Q}[A, B, B_2, B_3, X].$$

Proof of polynomiality II

Corollary

$$P_{g,n} = \frac{(3Y)^{g-1} I_{11}^n}{I_0^{2g-2}} \left(Q \frac{d}{dQ} \right)^n F_g(Q) \bigg|_{Q = qe^{l_1/l_0}} \in \mathbb{Q}[A, B, B_2, B_3, X].$$

Proof.

Using the fact that $Y^{g-1}\langle \rangle_{g,0}^{[0,1]}$ is a polynomial in Y=1-X of degree at most g-1 by the previous lemma, we induct on the genus using the fact that

$$D(P_{g,n}) = ((1 - g)(2B + X) + nA)P_{g,n} + P_{g,n+1}$$

and the earlier lemmas.

Edge contributions in the action of the MSP R-matrix look like the propagators $E_{\varphi\varphi}$, $E_{\varphi\psi}$, and $E_{\psi\psi}$. For example, the edge contribution between two level 0 vertices starts with

$$E_{\psi}(1\otimes H^2+H^2\otimes 1)+\frac{1}{2}\bigg(E_{\varphi\varphi}+\frac{13}{36}X\bigg)H\otimes H$$

up to a prefactor.

Definition

Consider the factorization

$$R(z) = R^{X}(z) \begin{pmatrix} R^{A}(z) & \\ & I_{N} \end{pmatrix},$$

where

$$R^{\mathbf{A}}(z)^{-1} = I - \begin{pmatrix} 0 & zE_{\psi} & z^{2}E_{\varphi\psi} & \cdots \\ & 0 & zE_{\varphi\varphi} & \cdots \\ & & 0 & zE_{\psi} \\ & & & 0 \end{pmatrix}.$$

Lemma Write

$$R^X(z) = R_0^X + R_1^X z + R_2^X z^2 + \cdots$$

For each k, all entries of R_k^X are polynomials in X with explicit degree bounds.

Lemma Write

$$R^X(z) = R_0^X + R_1^X z + R_2^X z^2 + \cdots$$

For each k, all entries of R_k^X are polynomials in X with explicit degree bounds.

Corollary (MSP Feynman rule)

Let $f_{g,\mathsf{m},\mathsf{n}}^{\mathbf{A}}$ be the generating functions of the cohomological field theory

$$R^{\mathbf{A}}(z).\Omega^{Z}$$
.

Then $f_{g,m,n}^{\mathbf{A}}$ is a polynomial in X of degree at most 3g - 3 + m.

Recall that we let $f_{g,m,n}$ be the output of the physics Feynman rule.

Recall that we let $f_{g,m,n}$ be the output of the physics Feynman rule.

Theorem We have

$$f_{g,m,n} = f_{g,m,n}^{\mathbf{A}} - \delta_{g,1} \delta_{m,0} (n-1)!.$$

Recall that we let $f_{g,m,n}$ be the output of the physics Feynman rule.

Theorem We have

$$f_{g,m,n} = f_{g,m,n}^{A} - \delta_{g,1} \delta_{m,0} (n-1)!.$$

As a corollary, we prove the physics Feynman rule.

Recall that we let $f_{g,m,n}$ be the output of the physics Feynman rule.

Theorem We have

$$f_{g,m,n} = f_{g,m,n}^{\mathbf{A}} - \delta_{g,1} \delta_{m,0} (n-1)!.$$

As a corollary, we prove the physics Feynman rule.

Corollary

We have the modular anomaly equations

$$-\partial_{A}P_{g} = \frac{1}{2} \left(P_{g-1,2} + \sum_{g_{1}+g_{2}=g} P_{g_{1},1} P_{g_{2},2} \right),$$

$$\left(-2\partial_{A} + \partial_{B} + (A+2B)\partial_{B_{2}} - \left((B-X)(A+2B) - B_{2} - \frac{13}{36}X \right) \partial_{B_{3}} \right) P_{g} = 0.$$