פרק 8: משפטי גבול (סיכום)

(20416 / 4.3.09)

אי-שוויון מרקוב

$$P\{X \ge a\} \le \frac{E[X]}{a}$$

: מתקיים a חיובי ערך אז לכל אי-שלילי, אי מקרי מקרי הוא אם אם X

אי-שוויון צ׳בישב

: מתקיים a מתקיים אז לכל ערך חיובי σ^2 ושונותו שוחלתו מקרי שתוחלתו מקרי שתוחלתו מקרי שתוחלתו

$$P\{|X-\mu| \ge a\} \le \frac{\sigma^2}{a^2}$$

אי-שוויון צ׳בישב החד-צדדי

: מתקיים a מחובי אז לכל ערך חיובי σ^2 טופית, או לכל ערך חיובי מקרי שתוחלתו

$$P\{X \ge a\} \le \frac{\sigma^2}{\sigma^2 + a^2}$$

החוק החלש של המספרים הגדולים

אם תוחלת שלכל אחד מהם תוחלת התפלגות, שלכל אחד מהם תוחלת החלת היא סדרה של משתנים מקריים בלתי-תלויים ושווי-התפלגות, שלכל אחד מהם תוחלת $n\to\infty \quad \infty \quad P\{\mid \overline{X}_n-\mu\mid \geq \varepsilon\} \to 0$ כאשר כאשר $\varepsilon>0$

משפט הגבול המרכזי

אם הוחלת שלכל אחד מהם היא סדרה של משתנים בלתי-תלויים בלתי-תלויים שלכל אחד מהם תוחלת ... , X_2 , X_1

$$n o\infty$$
 כאשר $Pigg\{rac{\overline{X}_n-\mu}{\sigma/\sqrt{n}}\leq aigg\} o\Phi(a)$ כאשר ρ : כאשר ρ

. יש בקירוב התפלגות נורמלית סטנדרטית. איש אין $Y_n = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}}$ כלומר, כאשר n ייגדוליי, למשתנה המקרי

$$rac{\sum\limits_{i=1}^{n}X_{i}-n\mu}{\sqrt{n}\sigma}=rac{\overline{X}_{n}-\mu}{\sigma/\sqrt{n}}$$
 כמו כן, מתקיים השוויון:

כאשר מחשבים קירוב להסתברות של משתנה מקרי בדיד באמצעות התפלגות רציפה (ההתפלגות הנורמלית במקרה זה), נוהגים לבצע **תיקון רציפות**. (הסבר נוסף אפשר למצוא במדריך הלמידה בעמודים 105-106 ובאתר הקורס בפתרונות לקובץ התרגילים לפרק 5).

החוק החזק של המספרים הגדולים

אם הוחלת שלכל אחד מהם תוחלת התפלגות, שלכל אחד מהם תוחלת החלת היא סדרה של משתנים מקריים בלתי-תלויים ושווי-התפלגות, שלכל אחד מהם תוחלת $n \ge n^*$ לכל $n \ge n^*$ לכל $n \ge n^*$ שעבורו מתקיים $n \ge n^*$ שעבורו מתקיים אז לכל $n \ge n^*$

אי-שוויוו ינסו

אם $f(x) \geq f(E[X])$ אז $f(x) \geq 0$ כל אימת קמורה, דהיינו $f(x) \geq 0$ לכל אימת קמות ממשית קמורה, דהיינו שהתוחלות קיימות וסופיות.