Problem Formulation

/* Terminal Constraints with lower bound */

$$\begin{split} & \underline{h}^{\rm e} \leq h^{\rm e}(x(T),p) + J_{\rm sh}^{\rm e} s_{\rm l,h}^{\rm e}, \\ & \underline{x}^{\rm e} \leq J_{\rm bx}^{\rm e} x(T) + J_{\rm sbx} s_{\rm l,bx}^{\rm e}, \\ & \underline{g}^{\rm e} \leq C^{\rm e} x(T) + J_{\rm sg}^{\rm e} s_{\rm l,g}^{\rm e} \leq \bar{g}^{\rm e}, \\ & s_{\rm l,h}^{\rm e}, s_{\rm l,bx}^{\rm e}, s_{\rm l,bu}^{\rm e}, s_{\rm l,g}^{\rm e} \geq 0, \end{split}$$

/* Terminal Constraints with upper bound */

$$\begin{split} &h^{\rm e}(x(T),p) - J_{\rm sh}^{\rm e} s_{\rm h}^{\rm e} \leq \bar{h}^{\rm e}, \\ &J_{\rm bx}^{\rm e} x(T) - J_{\rm sbx} s_{\rm bx}^{\rm e} \leq \bar{x}^{\rm e}, \\ &C^{\rm e} x(T) - J_{\rm sg}^{\rm e} s_{\rm g}^{\rm e} \leq \bar{g}^{\rm e} \\ &s_{\rm u,h}^{\rm e}, s_{\rm u,bx}^{\rm e}, s_{\rm u,bu}^{\rm e}, s_{\rm u,g}^{\rm e} \geq 0, \end{split}$$

with

- state vector $x: \mathbb{R} \to \mathbb{R}^{n_x}$
- control vector $u: \mathbb{R} \to \mathbb{R}^{n_{\mathrm{u}}}$
- algebraic state vector $z: \mathbb{R} \to \mathbb{R}^{n_z}$
- model parameters $p \in \mathbb{R}^{n_{\mathrm{p}}}$
- slacks for path constraints $s_l(t) = (s_{l,bu}, s_{l,bx}, s_{l,g}, s_{l,h}) \in \mathbb{R}^{n_s}$ and $s_u(t) = (s_{u,bu}, s_{u,bx}, s_{u,g}, s_{u,h}) \in \mathbb{R}^{n_s}$
- slacks for terminal constraints $s^{\mathrm{e}}_{\mathrm{l}}(t) = (s^{\mathrm{e}}_{\mathrm{l,bx}}, s^{\mathrm{e}}_{\mathrm{l,g}}, s^{\mathrm{e}}_{\mathrm{l,h}}) \in \mathbb{R}^{n^{\mathrm{e}}_{\mathrm{s}}}$ and $s^{\mathrm{e}}_{\mathrm{u}}(t) = (s^{\mathrm{e}}_{\mathrm{u,bx}}, s^{\mathrm{e}}_{\mathrm{u,g}}, s^{\mathrm{e}}_{\mathrm{u,h}}) \in \mathbb{R}^{n^{\mathrm{e}}_{\mathrm{s}}}$

Some of the following restrictions may apply to matrices in the formulation:

DIAG

Diagonal

SPUM

Horizontal slice of a permuted unit matrix

SPUME

Like SPUM, but with empty rows intertwined

1 Dynamics

The system dynamics can be formulated in different ways in acados.

Implicit Dynamics

The most general way to provide a continuous time ODE in acadosis to define the function $f_{\text{impl}}: \mathbb{R}^{n_x} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_z} \times \mathbb{R}^{n_p} \to \mathbb{R}^{n_x+n_z}$ which is fully implicit DAE formulation describing the system as:

$$f_{\text{impl}}(x, \dot{x}, u, z, p) = 0.$$

We offer to discretize f_{impl} with a classic implicit Runge-Kutta (irk) or a structure exploiting implicit Runge-Kutta method (irk_gnsf).

Explicit Dynamics

Alternatively, we offer an explicit Runge-Kutta integrator (erk), which can be used with explicit ODE models, i.e. models of the form

$$f_{\text{expl}}(x, u, p) = \dot{x}$$

Discrete Dynamics

Another option is to provide a discrete function that maps the state from shooting node i to the next shooting node, i.e. a function

$$x_{i+1} = f_{\rm disc}(x_i, u_i, p_i)$$

Mathematical Expression	string identifier	data type	required
$f_{\rm impl}$ respectively $f_{\rm expl}$	dyn_expr_f	CasADi expression	yes
$f_{ m disc}$	dyn_exp_phi	CasADi expression	yes
-	dyn_type	string (explicit or implicit)	yes

2 Cost

There are different acados modules to model the cost functions.

- $l: \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_z} \to \mathbb{R}$ is the Lagrange objective term.
- $m: \mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \to \mathbb{R}$ is the Mayer objective term.

to decide which one is used set $cost_type$ for l, $cost_type_e$ for m.

Setting the slack penalties is done in the same way for all cost modules, namely:

Mathematical Expression	string identifier	data type	required
$ $ $Z_{ m l}$	cost_Z1	double, DIAG	no
$ $ $Z_{ m u}$	cost_Zu	double, DIAG	no
$ z_{ m l} $	cost_zl	double	no
$ z_{ m u} $	cost_zu	double	no
$ Z_{ m l}^{ m e} $	cost_Zl_e	double, DIAG	no
$Z_{ m u}^{ m e}$	cost_Zu_e	double, DIAG	no
$ z_{ m l}^{ m e} $	cost_zl_e	double	no
$ z_{ m u}^{ m e} $	cost_zu_e	double	no

Moreover, you can specify $cost_Z$, to set Z_l , Z_u to the same values, i.e. use a symmetric L2 slack penalty. Similarly, $cost_Z_e$, $cost_Z_e$, $cost_Z_e$ can be used to set symmetric slack L1 penalties, respectively penalties for the terminal slack variables.

Cost module: auto

Set cost_type to auto (default). In this case we detect if the cost function specified is a linear least squares term and transcribe it in the corresponding form. Otherwise, it is formulated using the external cost module. Note: slack penalties are optional and we plan to detected them form the expressions in future versions.

Mathematical Expression	string identifier	data type	required
l	cost_expr_ext_cost	CasADi expression	yes
m	cost_expr_ext_cost_e	CasADi expression	yes

Cost module: external

Set cost_type to ext_cost.

Mathematical Expression	string identifier	data type	required
l	cost_expr_ext_cost	CasADi expression	yes
m	cost_expr_ext_cost_e	CasADi expression	yes

Cost module: linear least squares

Set cost_type to linear_ls.

The Lagrange cost term has the form

$$l(x, u, z) = \frac{1}{2} \left\| \underbrace{V_x x + V_u u + V_z z}_{y} - y_{\text{ref}} \right\|_{W}^{2}$$

with matrices V_x, V_u, V_z, W of appropriate dimensions. Similarly, the Mayer cost term has the form

$$m(x, u, z) = \frac{1}{2} \left\| \underbrace{V_x^{\text{e}} x}_{y^{\text{e}}} - y_{\text{ref}}^{\text{e}} \right\|_{W^{\text{e}}}^2$$

with matrices $V_x^{\rm e}, W^{\rm e}$ of appropriate dimensions.

Mathematical Expression	string identifier	data type	required
V_x	cost_Vx	double	yes
V_u	cost_Vu	double	yes
V_z	cost_Vz	double	yes
W	cost_W	double	yes
$y_{ m ref}$	$ $ cost_y_ref	double	yes
$V_x^{ m e}$	cost_Vx_e	double	yes
W^{e}	cost_W_e	double	yes
$y_{ m ref}^{ m e}$	cost_y_ref_e	double	yes

Cost module: nonlinear least squares

Set cost_type to nonlinear_ls.

The cost function has the same form as in the linear least squares module.

The only difference is that y, respectively y^e are defined as CasADi expressions, instead of the matrices V_x, V_u, V_z , respectively V_x^e

Mathematical Expression	string identifier	data type	required
y	cost_expr_y	CasADi expression	yes
W	cost_W	double	yes
$y_{ m ref}$	cost_y_ref	double	yes
y^{e}	cost_expr_y_e	CasADi expression	yes
$y_{ m ref}^{ m e}$	cost_y_ref_e	double	yes

3 Constraints

3.1 Initial State

Note: An initial state is not required. For example for MHE problems it should not be set.

Simple syntax for initial constraint $x(0) = \bar{x}_0$:

Mathematical Expression	string identifier	data type	required
\bar{x}_0	constr_x0	double	no

Extended syntax:

3.2 Path Constraints

Mathematical Expression	string identifier	data type	required
\underline{x}_0	constr_lbx_0	double	no
\bar{x}_0	constr_ubx_0	double	no
$J_{ m bx,0}$	constr_Jbx_0	double	no

Mathematical Expression	string identifier	data type	required
$J_{ m bx}$	constr_Jbx	double, SPUM	no
<u>x</u>	constr_lbx	double	no
$\frac{x}{\bar{x}}$	constr_ubx	double	no
$J_{ m bu}$	constr_Jbu	double, SPUM	no
\underline{u}	constr_lbu	double	no
\bar{u}	constr_ubu	double	no
C	constr_C	double	no
D	constr_D	double	no
g	constr_lg	double	no
$rac{g}{ar{g}}$	$constr_ug$	double	no
h	constr_expr_h	CasADi expression	no
$rac{ar{h}}{ar{h}}$	${\tt constr_lh}$	double	no
$ar{h}$	${\tt constr_uh}$	double	no
$J_{ m sbx}$	constr_Jsbx	double, SPUME	no
$J_{ m sbu}$	constr_Jsbu	double, SPUME	no
$J_{ m sg}$	constr_Jsg	double, SPUME	no
$J_{ m sbx}$	constr_Jsh	double, SPUME	no

3.3 Terminal Constraints

Mathematical Expression	string identifier	data type	required
$J_{ m bx}$	constr_Jbx_e	double, SPUM	no
$\underline{x}^{\mathrm{e}}$	constr_lbx_e	double	no
$ar{x}^{\mathrm{e}}$	constr_ubx_e	double	no
C^{e}	constr_C_e	double	no
$rac{ar{g}^{ m e}}{ar{g}^{ m e}}$	constr_lg	double	no
$ar{ar{g}}^{ m e}$	constr_ug	double	no
$h^{ m e}$	constr_expr_h_e	CasADi expression	no
$rac{ar{h}^{ m e}}{ar{h}^{ m e}}$	constr_lh_e	double	no
$ar{h}^{ m e}$	constr_uh_e	double	no
$J_{ m sbx}$	constr_Jsbx	double, SPUME	no
$J_{ m sg}^{ m e}$	constr_Jsg_e	double, SPUME	no
$J_{ m sbx}^{ m e}$	constr_Jsh_e	double, SPUME	no

3.4 External links

https://docs.google.com/spreadsheets/d/1rVRycLnCyaWJLwnV47u30Vokp7vRu68og30hlDbSjDU/edit?usp=sharing