CS 4TB3: Approximate Regular Expressions

Rumsha Siddiqui, Tasnim Noshin, and Umme Salma Gadriwala March 14, 2019

1 Description

A regular expression is a special text string for describing a search pattern. Let n be the length of the text, m be the length of a regular expression R for the alphabet \sum . Further, let d be the number of strings in R, where a string is a sequence of characters connected by concatenation.

The traditional technique to search for an exact regular expression in a text uses O(mn) worst case search time with a space requirement of O(m) states, by converting R into a non-deterministic finite automaton (NFA). An alternative algorithm converts the NFA into a deterministic finite automaton (DFA), and uses $O(2^m)$ states and O(n) search time.

Another interesting problem is approximate regular expression matching, that is searching for a given regular expression in a text allowing a limited number of errors k, where k might be an insertion, a deletion or a substitution of a character by another. There exists a solution for this problem in time O(mn) and a solution for the case k = 0 in time O(dn).

To compare the performance of exact regular expression matching to approximate matching, we will implement the NFA-based algorithm and the Myers and Miller's algorithm.

2 Resources

- https://users.dcc.uchile.cl/ gnavarro/ps/wae99.pdf
- $\bullet \ \ https://www.sciencedirect.com/science/article/pii/S1570866712001116?via.$
- https://www.data-essential.com/approximate-regular-expressions/

3 Division of Work

3.1 Individual Tasks

• Tasnim Noshin: Implement exact algorithm

- Umme Salma Gadriwala: Implement approximate algorithm
- Rumsha Siddique: Create test cases; Run the test cases; Look into literature to verify measuring techniquesr

3.2 Group Tasks

- Hypothesis
- Analyze results
- Final presentation and poster

4 Weekly Schedule

Week	Deliverable
week1	Implement algorithms and test cases
week2	Run test cases and tabulate results
week3	Analyze results; Write and submit report
week4	Prepare poster and presentation

Due date: April 10th