Definizione 1. Sia A insieme, naturalmente non vuoto, \mathcal{R} relazione su A. Si dice che \mathcal{R} è una relazione di equivalenza se è riflessiva, simmetrica e transitiva.

Esercizio 1. Sono di equivalenza le seguenti relazioni:

- (1) $\mathcal{R}_5 = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\beta, \alpha)\}$ su $A = \{\alpha, \beta, \gamma\}$
- (2) $\mathcal{R}_6 = \{(n,m) \in \mathbb{Z} \times \mathbb{Z} ; 2 | (n-m)\}$ (3) $\mathcal{R}_7 = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} ; a^2 = b^2\}$
- (4) $\mathcal{R}_8 = \{(x,y) \in \mathbb{Z}^* \times \mathbb{Z}^* ; x \cdot y > 0\}.$

Esercizio 2. Siano A un insieme non vuoto, $f:A\to B$ un'applicazione. La relazione \mathcal{R}_f così definita:

$$\forall x, y \in A \ (x, y) \in \mathcal{R}_f \Leftrightarrow f(x) = f(y)$$

è una relazione di equivalenza.

Definizione 2. Siano A un insieme, $\mathcal{A} = \{A_i; i \in I\}$ un sottoinsieme dell'insieme $\mathscr{P}(A)$ delle parti di A. Si dice unione degli degli elementi di A o unione degli A_i , $i \in I$, l'insieme

$$\bigcup_{i \in I} A_i := \{ a \in A; \exists i \in I \text{ tale che } a \in A_i \}$$

Osservazione 1. Ovviamente si ha

$$\bigcup_{i\in I} A_i \subseteq A.$$

Definizione 3. Siano A un insieme, \mathcal{R} una relazione di equivalenza su $A, a \in A$. Si dice classe di equivalenza di a il sottoinsieme di A:

$$[a]_{\mathcal{R}} = \{ x \in A; (a, x) \in \mathcal{R} \}.$$

Esempio 1. Considerata sull'insieme $A = \{a, b, c, d\}$ la relazione di equivalenza

$$\mathcal{R} = \{(a, a)(b, b), (c, c)(d, d), (a, b)(b, a), (a, c), (c, a), (b, c), (c, b)\}$$

si ha:
$$[a]_{\mathcal{R}} = [b]_{\mathcal{R}} = [c]_{\mathcal{R}} = \{a, b, c\}; [d]_{\mathcal{R}} = \{d\}.$$

Esempio 2. Sia Σ l'insieme delle rette di un piano fissato e \mathcal{E} la relazione su Σ così definita: per ogni $r, s \in \Sigma$, $(r, s) \in \mathcal{E} \Leftrightarrow r$ e s sono parallele. Sapendo che ogni retta è parallela a sè stessa, si si vede subito che \mathcal{E} è una relazione di equivalenza. Inoltre fissata una retta r, la sua classe di equivalenza è

$$[r]_{\mathcal{E}}$$
 = insieme di tutte le rette parallele ad r.

Esempio 3. Nella stessa situazione dell'Esempio 2, la perpendicolarità tra rette non è una relazione di equivalenza: infatti non è riflessiva ne' transitiva.

Proposizione 1. Siano A un insieme, R una relazione di equivalenza su A. Allora si ha:

- (1) $(\forall a \in A) ([a]_{\mathcal{R}} \neq \emptyset)$
- (2) $(\forall a, b \in A)$ $((a, b) \notin \mathcal{R} \iff [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} = \emptyset)$
- $(3) \ (\forall a, b \in A) \ ((a, b) \in \mathcal{R} \iff [a]_{\mathcal{R}} = [b]_{\mathcal{R}})$
- $(4) \bigcup_{a \in A} [a]_{\mathcal{R}} = A.$

Dimostrazione. (1) discende subito dalla riflessività: infatti

$$\forall a \in A, (a, a) \in \mathcal{R} \iff a \in [a]_{\mathcal{R}}$$

Per provare (2) si considerino $a, b \in A$ in modo che $(a, b) \notin \mathcal{R}$. Usando la tecnica di dimostrazione per assurdo, si suppone che esista $c \in [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}}$. Allora, per la definizione di classe di equivalenza, risulterebbe: $(a,c) \in \mathcal{R} \land (b,c) \in \mathcal{R}$ e quindi, per la simmetria di $\mathcal{R}(a,c) \in \mathcal{R} \land (c,b) \in \mathcal{R}$ da cui, per la transitività di $\mathcal{R}, (a,b) \in \mathcal{R}$, in contraddizione con $(a,b) \notin \mathcal{R}$.

Viceversa, se $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} = \emptyset$, non può essere $(a,b) \in \mathcal{R}$, altrimenti $a \in [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}}$ (si osservi che si è usata la tecnica di dimostrazione per contrapposizione).

Per dimostrare (3), si considerino $a, b \in A$, con $(a, b) \in \mathcal{R}$. Poichè si deve provare che i due insiemi $[a]_{\mathcal{R}}$ e $[b]_{\mathcal{R}}$ coincidono, si dimostrano le due inclusioni:

$$[a]_{\mathcal{R}} \subseteq [b]_{\mathcal{R}} \wedge [b]_{\mathcal{R}} \subseteq [a]_{\mathcal{R}}.$$

Sia $x \in [a]_{\mathcal{R}}$; questo vuol dire che $(a,x) \in \mathcal{R}$. Però anche $(a,b) \in \mathcal{R}$ e quindi, per la simmetria, $(b,a) \in \mathcal{R}$. Per la transitività di \mathcal{R} , $(b,x) \in \mathcal{R}$ e ciò significa che $x \in [b]_{\mathcal{R}}$, pertanto $[a]_{\mathcal{R}} \subseteq [b]_{\mathcal{R}}$. L'inclusione $[b]_{\mathcal{R}} \subseteq [a]_{\mathcal{R}}$ si prova nella stessa maniera.

Viceversa, se $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$, allora $a \in [a]_{\mathcal{R}} = [b]_{\mathcal{R}}$ e quindi $(a, b) \in \mathcal{R}$.

Infine per l'Osservazione 1, si ha $\bigcup_{a\in A}[a]_{\mathcal{R}}\subseteq A$. Per provare l'altra inclusione, si fissi $x\in A$; per $(1), x\in [x]_{\mathcal{R}}$ e quindi $x\in \bigcup_{a\in A}[a]_{\mathcal{R}}$. Pertanto le due inclusioni sono verificate e quindi vale (4).

Definizione 4. Siano A un insieme, \mathcal{R} una relazione di equivalenza su A. L'insieme

$$A/\mathcal{R} = \{[a]_{\mathcal{R}}; a \in A\}$$

si chiama insieme quoziente di A per \mathcal{R} .

Definizione 5. Siano A un insieme, $A = \{A_i; i \in I\}$ un sottoinsieme (non vuoto) dell'insieme $\mathcal{P}(A)$ delle parti di A. Si dice che A è una partizione se

- $\forall i \in I, A_i \neq \emptyset$
- $\forall i, j \in I, i \neq j, A_j \cap A_j = \emptyset$ $\bigcup_{i \in I} A_i = A.$

Osservazione 2. Sia A un insieme, \mathcal{R} una relazione di equivalenza su A. Per la Proposizione 1, sicuramente l'insieme quoziente di A rispetto ad una relazione di equivalenza \mathcal{R} è una partizione. Si può verificare anche il viceversa: sia $\mathcal{A} = \{A_i; i \in I\}$ una partizione sull'insieme A. Si definisce la relazione \mathcal{R} nel modo che segue:

$$(a,b) \in \mathcal{R} \iff \exists i \in I \text{ tale che } a,b \in A_i.$$

Si prova che \mathcal{R} è di equivalenza e che $A/\mathcal{R} = \mathcal{A}$.

Esercizio 3. È assegnata su \mathbb{Z} la relazione

$$\mathcal{R} = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} ; 5 \mid (4x + y)\}.$$

- (1) Verificare che \mathcal{R} è di equivalenza
- (2) determinare la classe di equivalenza di 2.

SOLUZIONE

1.(a) Si ricorda che se a, b, n sono numeri interi, $n \neq 0$ allora vale la proprietà:

$$(n \mid a \land n \mid b) \Rightarrow n \mid (a \pm b).$$

- Poichè per ogni $x \in \mathbb{Z}$, 5 | (4x + x), certamente $(x, x) \in \mathcal{R}$ e quindi la relazione è riflessiva.
- Sia $(x,y) \in \mathcal{R}$, ovvero $5 \mid (4x+y)$. Allora, poichè $5 \mid (5x+5y)$ si ha

$$5 \mid (4x + y - (5x + 5y)) \Rightarrow 5 \mid (-x - 4y) \Rightarrow 5 \mid (4y + x).$$

Pertanto $(y, x) \in \mathcal{R}$, cioè \mathcal{R} è simmetrica.

- Siano $(x,y) \in \mathcal{R}$ e $(y,z) \in \mathcal{R}$. Quindi

$$(5 \mid (4x+y) \land 5 \mid (4y+z)) \Rightarrow 5 \mid (4x+y+4y+z)$$

$$\Rightarrow 5 \mid (4x + 5y + z) \Rightarrow 5 \mid ((4x + 5y + z) - 5y) \Rightarrow 5 \mid (4x + z),$$

ovvero $(x,z) \in \mathcal{R}$. Si è pertanto provato che \mathcal{R} transitiva e quindi la relazione è di equivalenza.

1.(b)
$$x \in [2] \Leftrightarrow (2, x) \in \mathcal{R} \Leftrightarrow 5 \mid (8 + x) \Leftrightarrow (\exists h \in \mathbb{Z} \text{ tale che } x = -8 + 5h)$$

 $\Leftrightarrow (\exists k \in \mathbb{Z} \text{ tale che } x = 2 + 5k).$ Quindi
$$[2] = \{2 + 5k \; ; \; k \in \mathbb{Z}\}.$$