

Kierunek: Informatyka, sem. 4

Przedmiot: Metody i narzędzia sztucznej inteligencji

Laboratorium nr 3

Temat: Operatory genetyczne - krzyżowanie

Opracował: A. Skakovski/I. Czarnowski

Podstawowymi operacjami algorytmu genetycznego (ewolucyjnego), które są uruchamiane przez ten algorytm w procesie ewolucji populacji są operacje krzyżowania i mutacji. Niekiedy stosuje się operację inwersji. Każda z tych operacji wiąże się z zaprojektowaniem odpowiedniego operatora. Operatory te mogą różnić się względem siebie nie tyle co do zasady, ale również z uwagi na przyjęty sposób kodowania.

W algorytmie genetycznym (ewolucyjnym) argumentem lub argumentami wejściowymi operatorów genetycznych są potencjalne rozwiązania, zwane chromosomami. W przypadku operacji krzyżowania, argumentami wejściowymi operatora są dwa potencjalne rozwiązania, które zwane są rodzicami. Natomiast na wyjściu tego operatora otrzymujemy tak zwane rozwiązania potomne.

Krzyżowanie

Zadaniem krzyżowania jest wymiana części genów pomiędzy dwoma rozwiązaniami w populacji. W wyniku krzyżowania na podstawie dwóch rozwiązań (rodzice) tworzone są dwa nowe osobniki potomne (dzieci). Docelowo w zaprojektowanym algorytmie genetycznym nie wszystkie rozwiązania muszą się ze sobą krzyżować. Liczbę krzyżowań określa tzw. współczynnik krzyżowania (zazwyczaj o wartości $0.5 \le p_k \le 1$), który określa prawdopodobieństwo z jakim każde rozwiązanie może wziąć udział w krzyżowaniu. Rozpatrzmy dwa rodzaje krzyżowania: jednopunktowe i wielopunktowe.

Krzyżowanie jednopunktowe

W przypadku binarnej reprezentacji chromosomu najprostsze krzyżowanie polega na podziale dwóch chromosomów (rodziców) na dwie części (niekoniecznie równe) i z nich tworzone są dzieci: pierwsze dziecko składa się z początkowej części pierwszego rodzica i końcówki drugiego natomiast drugie dziecko odwrotnie – początek drugiego rodzica i koniec pierwszego. Punkt krzyżowania losuje się z równym prawdopodobieństwem spośród dostępnych pozycji binarnych chromosomu.

Krzyżowanie wielopunktowe

Rozszerzeniem krzyżowania jednopunktowego jest krzyżowanie wielopunktowe, gdzie chromosomy rodziców dzieli się na kilka części a później dzieci tworzy się na podstawie przeplatanych wycinków rodziców.

Polecenia:

1. Dla funkcji $f(x_1, x_2) = -x_1^2 - x_2^2 + 2$, gdzie $-2 \le x_1 \le 2$ oraz $-2 \le x_2 \le 2$ utwórz w sposób losowy dwa rozwiązania (chromosomy) o reprezentacji binarnej spełniające warunki dopuszczalności oraz zakładając przy tym dokładność do 5 miejsca po przecinku dla wartości dekodowanych z tych rozwiązań. Niech dalej oba rozwiązania zwane będą rodzicami. Dla obu rozwiązań oblicz wartość funkcji f.

Następnie:

- a) Zaprojektuj operator krzyżowania jednopunktowego oraz wykonaj krzyżowanie dla utworzonych rodziców. Oblicz wartość funkcji f dla powstałych rozwiązań potomnych. Czy rozwiązania potomne różnią się od rozwiązań rodziców biorąc pod uwagę wartość funkcji f?
- b) Zaprojektuj operator krzyżowania dwupunktowego oraz wykonaj krzyżowanie dla utworzonych rodziców. Oblicz wartość funkcji f dla powstałych rozwiązań potomnych. Czy rozwiązania potomne różnią się od rozwiązań rodziców biorąc pod uwagę wartość funkcji f?
- 2. Wykonaj polecenie nr 1 dla funkcji Rastrigina.

$$f(x) = An + \sum_{i=1}^{n} [x_i^2 - A\cos(2\pi x_i)]$$
 (2)

Przyjmij, że A=10 oraz n=10, $-5.21 \le x_i \le 5.21$, i=1,...,n oraz przyjmując dokładność do 3 miejsca po przecinku.