Trazadores Lección 15

Dr. Pablo Alvarado Moya

CE3102 Análisis Numérico para Ingeniería Área de Ingeniería en Computadores Tecnológico de Costa Rica

I Semestre 2018

Contenido

- Introducción
- 2 Trazadores básicos
 - Trazadores lineales
 - Trazadores cuadráticos
- Trazadores cúbicos
 - Derivación directa
 - Derivación optimizada
- 4 Interpolación multidimensional

• Métodos anteriores: **un** polinomio de n-ésimo orden que pasa por **todos** n+1 puntos.

- Métodos anteriores: **un** polinomio de n-ésimo orden que pasa por **todos** n+1 puntos.
- Splines o Trazadores usa polinomios de grado inferior en subconjuntos de puntos.

- Métodos anteriores: **un** polinomio de n-ésimo orden que pasa por **todos** n+1 puntos.
- Splines o Trazadores usa polinomios de grado inferior en subconjuntos de puntos.
- Ventaja: eliminan oscilaciones entre puntos muestreados.

- Métodos anteriores: **un** polinomio de n-ésimo orden que pasa por **todos** n+1 puntos.
- Splines o Trazadores usa polinomios de grado inferior en subconjuntos de puntos.
- Ventaja: eliminan oscilaciones entre puntos muestreados.
- Objetivo es lograr que subconjuntos adyacentes usen polinomios que además se conectan "suavemente", esto es, que tienen igual(es) derivada(s) en los puntos de conexión.

• Unen los puntos (o **nodos**) por segmentos de recta:

$$x_0 \to f(x_0)$$
 $x_1 \to f(x_1)$ $x_2 \to f(x_2)$ \cdots $x_n \to f(x_n)$

Unen los puntos (o nodos) por segmentos de recta:

$$x_0 \to f(x_0)$$
 $x_1 \to f(x_1)$ $x_2 \to f(x_2)$ \cdots $x_n \to f(x_n)$

• El segmento entre x_i y x_{i+1} sigue el patrón de la interpolación lineal:

$$f(x) = f(x_i) + \underbrace{\left(\frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}\right)}_{m_i} (x - x_i)$$

• Unen los puntos (o **nodos**) por segmentos de recta:

$$x_0 \to f(x_0)$$
 $x_1 \to f(x_1)$ $x_2 \to f(x_2)$ \cdots $x_n \to f(x_n)$

• El segmento entre x_i y x_{i+1} sigue el patrón de la interpolación lineal:

$$f(x) = f(x_i) + \underbrace{\left(\frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}\right)}_{m_i} (x - x_i)$$

• Todos los segmentos en conjunto aproximan a f(x)

Unen los puntos (o nodos) por segmentos de recta:

$$x_0 \to f(x_0)$$
 $x_1 \to f(x_1)$ $x_2 \to f(x_2)$ \cdots $x_n \to f(x_n)$

• El segmento entre x_i y x_{i+1} sigue el patrón de la interpolación lineal:

$$f(x) = f(x_i) + \underbrace{\left(\frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}\right)}_{m_i} (x - x_i)$$

- Todos los segmentos en conjunto aproximan a f(x)
- Desventaja: Solo la función es contínua; la primera derivada es discontinua en los nodos.

Trazadores cuadráticos

- En general, para que m-ésima derivada sea contínua, se requieren polinomios de (m+1)-ésimo orden.
- Trazadores cuadráticos: Permiten que tanto la función como la primera derivada sean continuas.
- Desventaja: discontinuidad de la segunda derivada es perceptible.
- Ventaja: permiten comprender el principio de operación de los trazadores.
- En cada intervalo $[x_{i-1}, x_i]$ la función se interpola con

$$f_i(x) = a_i x^2 + b_i x + c_i$$

Hay n+1 datos, n intervalos c/u con tres incógnitas (a_i, b_i, c_i) \Rightarrow hay 3n incógnitas.

 Los valores de la función en los nodos (dos polinomios adyacentes) deben ser iguales.

$$a_i x_i^2 + b_i x_i + c_i = f(x_i)$$

$$a_{i+1} x_i^2 + b_{i+1} x_i + c_{i+1} = f(x_i)$$

para $i = 1 \dots n - 1$. Esto proporciona $2 \times (n - 1)$ ecuaciones.

Las evaluaciones en los extremos proveen dos ecuaciones más:

$$a_1x_0^2 + b_1x_0 + c_1 = f(x_0)$$

 $a_nx_n^2 + b_nx_n + c_n = f(x_n)$

• (hasta ahora, 2n ecuaciones).

 Las primeras derivadas en los nodos deben ser iguales, y como la derivada en el i-ésimo intervalo es

$$f'(x) = 2a_i x + b_i$$

entonces

$$2a_ix_i + b_i = 2a_{i+1}x_i + b_{i+1}$$

con $i = 1 \dots n-1$ que provee otras n-1 condiciones.

- (Total hasta ahora: 3n-1 ecuaciones)
- Falta una condición más. Arbitrariamente se elige $f''(x_0) = 0$ que produce:

$$2a_1 = 0$$

y por tanto $a_1 = 0$

¿Cómo se puede plasmar lo anterior en un sistema de ecuaciones lineal?

Sistema de ecuaciones

Trazadores cúbicos

• Cada intervalo entre dos nodos se interpola con un polinomio

$$f_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i$$

- Para n + 1 datos hay n intervalos y por tanto en total hay 4n incógnitas.
- Se necesitan plantear 4n ecuaciones

• Función en límite común a dos polinomios debe ser igual (2n-2 ec.)

$$f_i(x_i) = f(x_i)$$
 $f_{i+1}(x_i) = f(x_i)$

2 Función pasa por puntos extremos (2 ec.)

$$f_1(x_0) = f(x_0) \qquad f_n(x_n) = f(x_n)$$

3 Primeras derivadas en nodos interiores son iguales (n-1 ec.)

$$f_i'(x_i) = f_{i+1}'(x_i)$$

o Segundas derivadas en nodos interiores son iguales (n-1 ec.)

$$f_i''(x_i) = f_{i+1}''(x_i)$$

Arbitraria: segunda derivada en extremos es cero (2 ec.)

Solución directa

Con lo anterior se plantea sistema de ecuaciones utilizando n+1 puntos con 4n ecuaciones.

Ejercicio

Plantee el sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$

El sistema se resuelve empleando cualquiera de los métodos analizados.

Optimizando los trazadores cúbicos

- Sistema anterior usa matrices de $4n \times 4n$
- Algoritmos de solución de $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$ son $\mathcal{O}\left(n^3\right)$
- Se replanteará otro algoritmo $\mathcal{O}\left(n^2\right)$, que produce además una matríz tridiagonal
- Factor de aceleración será 64n

Replanteamiento Trazadores cúbicos

• El polinomio cúbico es

$$f_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i$$

Tiene como primera derivada

$$f_i'(x) = 3a_i x^2 + 2b_i x + c_i$$

y segunda derivada

$$f_i''(x) = 6a_i x + 2b_i$$

que tiene forma de ecuación lineal

Se desea que la segunda derivada sea contínua en los nodos

Replanteamiento Trazadores cúbicos

 La segunda derivada está dada por segmentos de recta, que se interpolan con polinomios de Lagrange:

$$f_i''(x) = f_i''(x_{i-1}) \frac{x - x_i}{x_{i-1} - x_i} + f_i''(x_i) \frac{x - x_{i-1}}{x_i - x_{i-1}}$$

Integrando lo anterior se obtiene:

$$f_i'(x) = \left[f_i''(x_{i-1})\frac{(x-x_i)^2}{2(x_{i-1}-x_i)} + C\right] + \left[f_i''(x_i)\frac{(x-x_{i-1})^2}{2(x_i-x_{i-1})} + D\right]$$

Replanteamiento Trazadores cúbicos

Integrando de nuevo se obtiene:

$$f_i(x) = \left[f_i''(x_{i-1}) \frac{(x - x_i)^3}{6(x_{i-1} - x_i)} + C(x - x_i) \right] + \left[f_i''(x_i) \frac{(x - x_{i-1})^3}{6(x_i - x_{i-1})} + D(x - x_{i-1}) \right]$$

• Considerando que $f(x) = f(x_{i-1})$ en x_{i-1} y $f(x) = f(x_i)$ en x_i se obtiene:

$$C = \frac{f(x_{i-1})}{x_{i-1} - x_i} - \frac{f_i''(x_{i-1})(x_{i-1} - x_i)}{6}$$

$$D = \frac{f(x_i)}{x_i - x_{i-1}} - \frac{f_i''(x_i)(x_i - x_{i-1})}{6}$$

• Finalmente se tiene el siguiente polinomio cúbico:

$$f_{i}(x) = f_{i}''(x_{i-1}) \frac{(x - x_{i})^{3}}{6(x_{i-1} - x_{i})} + f_{i}''(x_{i}) \frac{(x - x_{i-1})^{3}}{6(x_{i} - x_{i-1})} + \left[\frac{f(x_{i-1})}{x_{i-1} - x_{i}} - \frac{f_{i}''(x_{i-1})(x_{i-1} - x_{i})}{6} \right] (x - x_{i}) + \left[\frac{f(x_{i})}{x_{i} - x_{i-1}} - \frac{f_{i}''(x_{i})(x_{i} - x_{i-1})}{6} \right] (x - x_{i-1})$$

que tiene solo dos términos desconocidos: $f_i''(x_{i-1})$ y $f_i''(x_i)$

Replanteamiento Trazadores cúbicos

Para encontrar dichos términos se utiliza

$$f_i'(x_i) = f_{i+1}'(x_i)$$

Se sabe que

$$f_{i}'(x) = f_{i}''(x_{i-1}) \frac{(x - x_{i})^{2}}{2(x_{i-1} - x_{i})} + \frac{f(x_{i-1})}{x_{i-1} - x_{i}} - \frac{f_{i}''(x_{i-1})(x_{i-1} - x_{i})}{6} + f_{i}''(x_{i}) \frac{(x - x_{i-1})^{2}}{2(x_{i} - x_{i-1})} + \frac{f(x_{i})}{x_{i} - x_{i-1}} - \frac{f_{i}''(x_{i})(x_{i} - x_{i-1})}{6}$$

Con lo anterior se obtiene finalmente

$$(x_{i} - x_{i-1})f''(x_{i-1}) + 2(x_{i+1} - x_{i-1})f''(x_{i}) + (x_{i+1} - x_{i})f''(x_{i+1})$$

$$= 6\frac{f(x_{i+1}) - f(x_{i})}{x_{i+1} - x_{i}} - 6\frac{f(x_{i}) - f(x_{i-1})}{x_{i} - x_{i-1}}$$

Plantee el sistema de ecuaciones lineales considerando que en ambos extremos la segunda derivada se hace (arbitrariamente) cero

Sistema de ecuaciones para trazadores bicubicos Planteamiento general

$$\begin{bmatrix} x_1-x_0 & 2(x_2-x_0) & x_2-x_1 \\ & x_2-x_1 & 2(x_3-x_1) & x_3-x_2 \\ & & x_3-x_2 & 2(x_4-x_2) & x_4-x_3 \\ & & \ddots & \ddots & \ddots \\ & & & x_{n-1}-x_{n-2} & 2(x_n-x_{n-2}) & x_n-x_{n-1} \end{bmatrix} \begin{bmatrix} f''(x_0) \\ f''(x_1) \\ f''(x_2) \\ \vdots \\ f''(x_n) \end{bmatrix} =$$

$$\begin{bmatrix} 6\frac{f(x_2)-f(x_1)}{x_2-x_1} - 6\frac{f(x_1)-f(x_0)}{x_1-x_0} \\ 6\frac{f(x_3)-f(x_2)}{x_3-x_0} - 6\frac{f(x_2)-f(x_1)}{x_2-x_1} \\ 6\frac{f(x_4)-f(x_3)}{x_4-x_3} - 6\frac{f(x_3)-f(x_2)}{x_3-x_2} \\ \vdots \\ 6\frac{f(x_n)-f(x_{n-1})}{x_n-x_{n-1}} - 6\frac{f(x_{n-1})-f(x_{n-2})}{x_{n-1}-x_{n-2}} \end{bmatrix}$$

El sistema así planteado tiene n-1 ecuaciones pero n+1 incógnitas.

Sistema de ecuaciones para trazadores bicubicos

Planteamiento para segundas derivadas extremas igual a cero

$$\begin{bmatrix} 2(x_{2}-x_{0}) & x_{2}-x_{1} & & & & & \\ x_{2}-x_{1} & 2(x_{3}-x_{1}) & x_{3}-x_{2} & & & & \\ & x_{3}-x_{2} & 2(x_{4}-x_{2}) & x_{4}-x_{3} & & & & \\ & & \ddots & & \ddots & & \\ & & & x_{n-1}-x_{n-2} & 2(x_{n}-x_{n-2}) \end{bmatrix} \begin{bmatrix} f''(x_{1}) \\ f''(x_{2}) \\ \vdots \\ f''(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 6\frac{f(x_{2})-f(x_{1})}{x_{2}-x_{1}} & 6\frac{f(x_{1})-f(x_{0})}{x_{1}-x_{0}} \\ \vdots \\ f''(x_{n-1}) \end{bmatrix}$$

$$\begin{bmatrix} 6\frac{f(x_2)-f(x_1)}{x_2-x_1} - 6\frac{f(x_1)-f(x_0)}{x_1-x_0} \\ 6\frac{f(x_3)-f(x_2)}{x_3-x_2} - 6\frac{f(x_2)-f(x_1)}{x_2-x_1} \\ 6\frac{f(x_4)-f(x_3)}{x_4-x_3} - 6\frac{f(x_3)-f(x_2)}{x_3-x_2} \\ \vdots \\ 6\frac{f(x_n)-f(x_{n-1})}{x_n-x_{n-1}} - 6\frac{f(x_{n-1})-f(x_{n-2})}{x_{n-1}-x_{n-2}} \end{bmatrix}$$

El sistema así planteado tiene n-1 ecuaciones y n-1 incógnitas, pues se asumieron las segundas derivadas en los extremos como nulas.

Aspectos de implementación

Se calculan primero las segundas derivadas resolviendo sistema de ecuaciones y con ellas los coeficientes en:

$$f_{i}(x) = f_{i}''(x_{i-1}) \frac{(x - x_{i})^{3}}{6(x_{i-1} - x_{i})} + f_{i}''(x_{i}) \frac{(x - x_{i-1})^{3}}{6(x_{i} - x_{i-1})} + \left[\frac{f(x_{i-1})}{x_{i-1} - x_{i}} - \frac{f_{i}''(x_{i-1})(x_{i-1} - x_{i})}{6} \right] (x - x_{i}) + \left[\frac{f(x_{i})}{x_{i} - x_{i-1}} - \frac{f_{i}''(x_{i})(x_{i} - x_{i-1})}{6} \right] (x - x_{i-1})$$

② Con coeficientes precalculados se interpolan cuantos valores sean necesarios

Interpolación multidimensional

- Extensiones de los métodos unidimensionales a mayor número de dimensiones.
- Extensiones separables bidimensionales: se aplica interpolación primero a lo largo de una dimension, y luego en la otra
- Casos usuales en dos dimensiones:
 - Interpolación bilineal
 - Interpolación bicúbica

Interpolación bilineal

Se determina valor de función $f(x_i, y_i)$ a partir de cuatro puntos $f(x_1, y_1)$, $f(x_1, y_2)$, $f(x_2, y_1)$, $f(x_2, y_2)$

Concepto de interpolación bilineal

1 Se estima interpolación lineal en x con $y = y_1$ fijo

$$f(x_i, \mathbf{y_1}) = \frac{x_i - x_2}{x_1 - x_2} f(x_1, \mathbf{y_1}) + \frac{x_i - x_1}{x_2 - x_1} f(x_2, \mathbf{y_1})$$

② Se estima interpolación lineal en x con $y = y_2$ fijo

$$f(x_i, y_2) = \frac{x_i - x_2}{x_1 - x_2} f(x_1, y_2) + \frac{x_i - x_1}{x_2 - x_1} f(x_2, y_2)$$

Entre ambos puntos interpolados, se aplica interpolación lineal en y:

$$f(x_i, y_i) = \frac{y_i - y_2}{y_1 - y_2} f(x_i, y_1) + \frac{y_i - y_1}{y_2 - y_1} f(x_i, y_2)$$

Interpolación bilineal en una ecuación

Las tres ecuaciones anteriores se sintentizan en una sola con:

$$f(x_i, y_i) = \frac{x_i - x_2}{x_1 - x_2} \frac{y_i - y_2}{y_1 - y_2} f(x_1, y_1) + \frac{x_i - x_1}{x_2 - x_1} \frac{y_i - y_2}{y_1 - y_2} f(x_2, y_1)$$
$$\frac{x_i - x_2}{x_1 - x_2} \frac{y_i - y_1}{y_2 - y_1} f(x_1, y_2) + \frac{x_i - x_1}{x_2 - x_1} \frac{y_i - y_1}{y_2 - y_1} f(x_2, y_2)$$

Resumen

- Introducción
- 2 Trazadores básicos
 - Trazadores lineales
 - Trazadores cuadráticos
- Trazadores cúbicos
 - Derivación directa
 - Derivación optimizada
- 4 Interpolación multidimensional

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2005-2018 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica