Enhancing Reactive Ion Etching Control with Real-Time Laser Interferometry

Jenna Jang ¹, Benjamin Schmidt ²

¹ Department of Neuroscience, Vanderbilt University

² Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University

VINSE

Introduction

Diagram inside the process

chamber

What is Reactive Ion Etching?

- Microfabrication technique used to remove material with chemically reactive plasma
- Direction dependent anisotropic etching process
- Ionizes gas mixture with radio frequency (RF) power source to create plasma that chemically reacts with material on substrate
- Control gas composition, pressure, temperature, RF power for precise etching process

✓ A Camera ►

Figure 2: Laser Interferometry (A) Laser (670nm) centered at pattern of interest (B) Diagram light (C) reflected Diagram with excessive over-etch

Photoresist

Introducing Laser Interferometry

- Monitors etching/deposition processes by measuring interference patterns created by a laser
- Laser detects changes in optical path as material is removed, resulting in variations in reflected light intensity that correspond to constructive and destructive interferences
- Variations of light intensity provide real-time information on etch rate and material thickness

Objective

- Establish baseline operating parameters for laser interferometry as an etchstop method for transparent thin film plasma etch processing
- Optimize endpoint detection parameters to etch the layer of interest

Methodology

Material: SiO₂, S1813

Photoresist

Results

Etch Rate With Different Times

Endpoint Status from Light Intensity Endpoint Parameters Closed

- Closed: Endpoint processing ignored
- Confirmation: Cross threshold and capture timer starts
- Active: Does not cross threshold
- Endpoint: Threshold satisfy capture

Definition Set Parameters **Parameters** Percentage of maximum **Normalization** signal value used for normalization

	Endpoint Closed Time	before endpoint process starts	10 seconds
	Threshold Value	Percentage from normalization value	5%
	Endpoint Capture Time	Time period which condition must be satisfied for endpoint confirmation	10 seconds
	Overetch	Time to continue process	10 seconds

after endpoint confirmed

10 seconds

Derivative Endpoint Type

Overetch

Figure 4: Inference patterns in the RIE etch process Etch process was done on a 1300nm thick S1813 photoresist 3 inch silicon wafer. The process stops as the absolute value of the reflected light intensity (signal) derivative falls less than the threshold value during the endpoint capture time duration. This suggests the photoresist layer has been completely etched.

Discussion & Conclusion

- Laser interferometry effective in enhancing reactive ion etch control through real time monitoring
- For transparent materials with different refractive indices, interference pattern would change and trigger endpoint

Things to Consider

- Material and substrate need noticeably different refractive index
- Camera used to ensure laser on pattern of interest

Figure 5: Laser on Pattern of Interest

Future Directions

Optical Emission Spectroscopy (OES)

- Plasma emits light at characteristic wavelengths
- Measure intensity for all wavelengths of emitted light
- Analyze changes in light intensity that correspond to different materials to determine when a material is present

Other Directions

- Find optimal parameters to thickness certain within a layer
- Explore other materials (SiO_2, SiN_x)
- endpoint different types (DeltaZ, Signal)

References

HORIBA Jobin Yvon. 'LEM Camera User Manual.' 2006. PDF (Figure 1)

PlasmaPro 100 Cobra ICP RIE Etch, Oxford Instruments, 2024. (Figure 2)

Acknowledgments

This project was possible through the Summer Tech Crew Program of the Vanderbilt Institute of Nanoscale Science and Engineering. I would like to thank Dr. Christina McGahan, Megan Dernberger, and Owen Meilander for their cleanroom guidance/support.