

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Departamento de Ciência da Computação

Disciplina	Curso	Turno	Período			
Projeto e Análise de Algoritmos	Ciência da Computação	Manhã	5°			
Professor						
Felipe Cunha (felipe@pucminas.br)						

Ementa:

Notações para complexidade de algoritmos. Crescimento assintótico de funções e classes de complexidade. Análise de algoritmos iterativos e recursivos. Teorema Mestre. Técnicas de Projeto de Algoritmos: força-bruta, retrocesso, branch and bound, divisão e conquista, programação dinâmica e algoritmos gulosos. Tratabilidade de problemas. Teoria da Complexidade: classes de problemas P, NP, NP-Completo e NP-Difícil. Teorema de Cook.

Processo de Avaliação:

1a Avaliação – 25 Pontos

2a Avaliação – 25 Pontos

3a Avaliação – 25 Pontos

ADA - 5 Pontos

Trabalho Prático - 20 Pontos

Cronograma

		2018		
Agosto	Setembro	Outubro	Novembro	Dezembro
S T Q Q S S D	S T Q Q S S D	S T Q Q S S D	S T Q Q S S D	S T Q Q S S D
1 2 3 4 5	1 2	1 2 3 4 5 6 7	1 2 3 4	1 2
6 7 8 9 10 11 12	3 4 5 6 7 8 9	8 9 10 11 12 13 14	5 6 7 8 9 10 11	3 4 5 6 7 8 9
13 14 15 16 17 18 19	10 11 12 13 14 15 16	15 16 17 18 19 20 21	12 13 14 15 16 17 18	10 11 12 13 14 15 16
20 21 22 23 24 25 26	17 18 19 20 21 22 23	22 23 24 25 26 27 28	19 20 21 22 23 24 25	17 18 19 20 21 22 23
27 28 29 30 31	24 25 26 27 28 29 30	29 30 31	26 27 28 29 30	24 25 26 27 28 29 30
				31

Segunda-feira		Quarta-feira		
Fevereiro 6	1	8	2	
Apresentação da Disciplina		Complexidade de Algoritmos		
13		15	3	
Carnaval.	Carnaval.		Estimativa do tempo de processamento	
20	4	22	5	
Complexidade de tempo e espaço		Notações para complexidade de algoritmos		
27	6	Março 1°	7	
Crescimento assintótico de funções		Crescimento assintótico de funções		

^{*} A Reavaliação será uma prova no valor de 100 pontos com todo o conteúdo do semestre, dos quais 20 pontos são aproveitados do trabalho. A nota final do semestre para os alunos que fizerem a reavaliação será a média aritmética entre a nota obtida no semestre e a nota da reavaliação.

Segunda-feira	Quarta-feira	
6 8	8 9	
Crescimento assintótico de funções	Classes de complexidade	
13 10	15 11	
Limite inferior para classes de problemas	Complexidade de algoritmos iterativos	
20 12	22 13	
Complexidade de algoritmos recursivos	Complexidade de algoritmos recursivos	
27	29	
Semana Santa.	Semana Santa.	
Abril 3 14	5 15	
Teorema Mestre	Exercícios e Dúvidas	
10 16	12 17	
1ª Avaliação	Técnicas de Projeto de Algoritmos:	
	Redução e Transformação	
17 18	19 19	
Divisão e conquista	Programação dinâmica e Método guloso	
24 20	26 21	
Enumeração implícita	Técnicas de retrocesso e critérios de poda	
Maio 1°	3 22	
Dia do Trabalhador.	Branch and bound	
8 23	10 24	
Exercícios e Dúvidas	2ª Avaliação	
15 25	17 26	
Entrega e apresentação Trabalhos Práticos	Teoria da Complexidade: Algoritmos não	
	determinísticos	
22 27	24 28	
Teoria da Complexidade: Classe P e NP	Teoria da Complexidade: Classe	
	NP-Completo e NP-Difícil	
29 29	31	
Teorema de Cook	Corpus Christi.	
Junho 5 30	7 31	
Seminários	Seminários	
12 32	14 33	
3ª Avaliação	Prova de Reavaliação	

Bibliografia Básica:

- CORMEN, Thomas H. et al. Algoritmos: teoria e prática. Rio de Janeiro, RJ: Elsevier, Campus, c2012. xvi, 926 p. ISBN 9788535236996
- ZIVIANI, Nivio. Projeto de algoritmos: com implementações em Java e C++. São Paulo: Thomson Learning, c2007. xx, 621 p. ISBN 8522105251
- TOSCANI, Laira Vieira. Complexidade de algoritmos, v.13 UFRGS. 3. Porto Alegre Bookman 2012 ISBN 9788540701397.
- \bullet ASCENCIO, Ana Fernanda Gomes; Araújo, Graziela Santos de. Estrutura de Dados: algoritmos, análise da complexidade e implementações em Java e C/C++. Pearson 450 ISBN 9788576058816.