

Alzheimer

Deep-learning model comparison

CONTENTS

FastCampus DataScience School 16th Seunghwan Ryu, Juyoung Lee **01** Purpose

02 Data

03 Model

04 Conclusion

01 Purpose

연구 배경

MRI 이미지 분류 예측에서 세가지 전처리를 이용하여 분류 모델 성능 향상

참고

Researchers enhance Alzheimer's disease classification through artificial intelligence

2. 안산시립전문병원 치매

영상의학과 전문의 이호성님 자문

Dementia NEWS

Dementia vs Alzheimer

치매(Dementia)는 특정 질병 명이 아닌, 특정한 조건에서 기억력을 비롯한 여러 인지기능 장애가 나타나는 증상

알츠하이머 (Alzheimer's Disease)는 특정한 뇌 질환으로 치매 질환 중 60-80% 구성

Alzheimer's Disease

독해 및 사고 등 고차원 뇌기능을 수행하는 데 중요한 역할을 하는 대뇌피질 수축

기억에 관여하는 해마 크게 수축

되 척수액으로 찼던 되의 내부 공간인 **뇌실 확대**

연구 방향

1. 전처리 기법 및 하이퍼 파라미터 튜닝을 통한 Alzheimer 예측 및 CNN 모델의 성능 향상

1. 최적의 Alzheimer 예측 CNN 모델 선택

1. Alzheimer 환자를 예측하는 보조적인 지표로 사용

02 Data

1. Data 구성

Normal

Alzheimer

Kaggle Alzheimer MRI Image Data

Alzheimer 49.07% (6,160) **Non – Alzheimer** 50.93% (6,393)

Image	Shape	Color Mode	Demension	Category	Data Type	Class Index	Class Name	Train/Validation/Test
						0	Alzheimer	
Info	[200,176]	GrayScale	2D	MRI	Unit 8	1	Non Alzheimer	80% / 10% / 10%

알츠하이머 MRI 이미지 from Kaggle

2. https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images

^{1.} https://www.kaggle.com/smiti14/alzheimer-binaryclassification

2. 성능 지표

Sensitivity

Accuracy

의료데이터 중요 지표

모델이 알츠하이머로 판단한 확률 실제 알츠하이머일 확률 모델이 정답을 맞힌 확률

참고

- 1. A Customized VGG19 Network with Concatenation of Deep and Handcrafted Features for Brain Tumor Detection
- 2. Evaluating deep learning techniques for dynamic contrast-enhanced MRI in the diagnosis of breast cancer
- 3. An overview of deep learning in medical imaging focusing on MRI
- 4. Radnet: Radiologist level accuracy using deep learning for hemorrhage detection in ct scans

03 Model

03-1 Invert

1. Invert

특징

- 중요한 영역이 주변보다 어두운 경우, 반전된 이미지를 이용하면 feature 추출이 용이
- 이미지 상 검은색 부위를 하얀색으로,
 하얀색 부분을 검은색 부분으로 변화

사용 이유

- 다수의 논문에서 조영술 및 x-ray image에 Invert를 적용한 사례가 있어서, Alzheimer 데이터에 적용시킴.
- 뇌실의 크기와 뇌실의 주름 색과 배경 색이 검은색으로 같기 때문에 detection할 때, 방해가 있어 <u>뇌의 크기를 이용하여 학습시키면</u> 성능이 올라갈 것이라 판단하여 사용

- 1. Usefulness of grayscale inverted images in addition to standard images in digital mammography
- Diagnostic accuracy of the inverted grayscale rib series for detection of rib fracture in minor chest trauma
- DEEP:PHI Preprocessing Information

참고

2. VGG19

특징

- 연산하여 발생하는 파라미터의 개수가 줄어드는 효과
- 작은 필터를 사용하여 네트워크의 깊이를 깊게 함.
- ReLu가 들어갈 수 있는 것이 많아짐

모델 선택 이유

- 영상 의료 데이터에서 다수의 논문에서 VGG모델을 사용
- VGG16보다 적지만 layer 추가로 인해 성능이 올라가므로 VGG19 선택하여 학습

Parameter

- epoch: 50
- batch size: 25 / 16
 - => VGG19 . batch size 25 논문 참고
- Dropout: Use / Not Use
- Optimizer: Adam / SGD
 - => 최근에 모델들 대부분 Adam을 사용
 - => Adam을 사용하였으나 성능이 낮아 SGD 사용 => 성능 향상

참고

- . Multi-classification of alzheimer disease on magnetic resonance images (MRI) using deep convolutional neural network (DCNN) approaches
- 2. A Customized VGG19 Network with Concatenation of Deep and Handcrafted Features for Brain Tumor Detection
- 3. Evaluating deep learning techniques for dynamic contrast-enhanced MRI in the diagnosis of breast cancer
- 4. Screening of Alzheimer's disease by facial complexion using artificial intelligence

SGD vs Adam | VGG19

SGD

- GD: 최적화 값을 찾아가는 것 정확하나 속도 느림
- SGD: GD 단점 보완, 최적화 값을 찾아가는 방향: 뒤죽박죽
- 한 스텝 나아가기 힘들다 ⇨ GD보다 빠르나 속도 느림

Adam

- 방향성과 스텝사이즈 둘다 고려하여 만든것
- 최근 인기 있는 **Optimizer**, 속도 빠름

SGD 사용 이유

- VGG19모델 사용 시 성능 낮음
- SGD만큼 탄력적으로 일반화 되지 않음, 학습 포화됨
- 일반화
 - 어떤 데이터든 성능의 격차가 크지 않게 하는 것의미
 - 실생활에 쓰는 데이터처럼 다양하고, 일정하지 않은 데이터를 다룰 때 꼭 필요한 특징
- So, 우리는 VGG19에서 Adam이 아닌 SGD를 optimizer로 설정하였다.

참고

- Machine Learning FAQ
- 2. An overview of gradient descent optimization algorithms

3. Model Evaluation

- 1. Invert 전처리 기법을 사용한 경우 기존 모델보다 성능이 좋다
- 2. Optimizer에서 SGD를 사용한 모델이 Adam을 사용한 모델보다 성능이 더 좋다
- 3. Drop Out를 사용한 모델은 사용하지 않은 모델보다 성능이 좋다
- 4. Batch Size 크기가 작은 모델은 크기가 큰 모델보다 성능이 좋다.
 - => 알츠하이머 예측을 주제로 한 의료 데이터(MRI)에 전처리 Invert 관련 논문 부족한 실정
 - => <u>Invert를 활용한 관련 연구 방안을 제언함</u>

3. Model Evaluation | VGG19

Preprocessing	Invert	Dropout	batch Size	Optimizer	Sensitivity	Accuracy	loss	Epoch Speed
	Optimizer	Compariso	n					
	T	F	16	SGD	0.995	0.994	0.124	130.977
Color	Т	F	16	Adam	1.000	0.486	8.223	132.408
to Grayscale	Т	F	25	SGD	0.805	0.782	0.453	129.026
	Т	F	25	Adam	0.000	0.508	0.693	138.725
♦ Morphological	F	F	25	SGD	0.957	0.875	0.303	124.962
Opening I	F	F	25	Adam	0.000	0.526	0.693	130.306
↓ Histogram	Drop Out	Compariso	n					
Equalization CLAHE	T	Т	25	SGD	0.998	0.997	0.000	1016.952
	Т	F	25	SGD	0.805	0.782	0.453	129.026
	F	Т	25	SGD	0.994	1.000	0.000	1016.729
	Т	F	25	SGD	0.957	0.875	0.303	124.962

3. Model Evaluation | VGG19

Preprocessing	Invert	Dropout	batch Size	Optimizer	Sensitivity	Accuracy	loss	Epoch Speed
	Batch Size	e Compariso	on					
	Т	F	25	SGD	0.805	0.782	0.453	129.026
Color to	Т	F	16	SGD	0.995	0.954	0.124	130.977
Grayscale	F	F	25	SGD	0.957	0.875	0.303	124.962
	F	F	16	SGD	0.997	0.997	0.000	164.708
Morphological Opening	Invert Cor	nparison						
	Т	F	16	SGD	0.995	0.994	0.124	130.977
Histogram	F	F	16	SGD	0.962	0.969	0.090	139.582
Equalization CLAHE	Т	F	25	SGD	0.805	0.782	0.453	129.026
	F	F	25	SGD	0.957	0.875	0.303	124.962
	Т	Т	25	SGD	0.998	0.997	0.015	1016.95
	F	Т	25	SGD	0.994	0.955	0.004	1016.729

3. Model Comparison

Preprocessing	Invert	resize (256x256)	Optimizer	Sensitivity	Accuracy	loss	Epoch Speed
	VGG19						
			Detail				
Color to	Т	F	Inception_resn	et_v2		0.015	1016.952
Grayscale	F	F	(1) 요약		0.004	1016.729	
	Efficient N	et B1		et_v2는 Inception-v4 5 을 적용한 모델입니다. Ir	민델에 ResNet의 residual		
Morphological	Т	F		·선생에서 높은 성능을 보였	0.013	264.684	
Opening 	F	F			0.014	278.116	
↓ Histogram	Efficient N	et B7	200	put image size shouluse another input size			
Equalization CLAHE	Т	F	parameters: (1) <u>[#1 Image]</u> -		0.004	429.111	
	F	F		ePooling2D] - pool_siz lecrease pool size)	<u>e</u> (if you want to use	0.004	474.377
Drop Out : T	Inception	resnet V2					
Batch Size : 25	Т	Т /	Adam	1.000	1.000	0.000	292.906
	F	Т	Adam	1.000	0.997	0.004	296.595

Color to Grayscale | VGG19

업로드 이미지

Channel: 3 즉, RGB type

Color to Grayscale

Channel 변경

모듈 이미지

Channel: 1 즉, **Gray** type 만 진행 가능

Morphological Opening | VGG19

특징

- Erosion 연산 다음에 Dilation연산을 적용하여 이미지 상의 노이즈(작은 흰색 물체) 제거

사용이유

- 뇌실의 수축과 대뇌피질 주름을 뚜렷하게 함.

Parameter

Kernel Shape

- Circle, **Retangular**, Corss
- Corss : 과도하게 이미지 삭제 또는 채움
- Circle: Dilation시 노이즈 발생

kernel_size

- **5x5 사용 시** 거의 완벽하게 노이즈 제거 (7x7 이미지 훼손 염려 있음)

iterations (반복횟수)

iterations 높으면 erode적용 시 이미지 소실량 큼 => 1로 설정

Histogram Equalization CLAHE

VGG19

특징

- 영상 밝기를 균일하게 함으로써 화질 개선

사용이유

- 뇌실 수축 정도 및 대뇌피질 주름 선명하게 함

Parameter

kernel_size

- **7 사용** (default로 사용)

limit

- **파라미터가 2**일때, 화질 개선 최대 (논문참고)

참고

- 1. The Clip Limit Decision of Contrast Limited Adaptive Histogram Equalization for X-ray Images using Fuzzy Logic
- $2. \qquad \text{https://opencv-python.readthedocs.io/en/latest/doc/20.imageHistogramEqualization/imageHistogramEqualization.htm} \\$
- . Image enhancement effect on the performance of convolutional neural networks

03-2 Merge (Overlap vs Multiply)

1. Smoothing

특징

- 원본 이미지에 특정 필터(평균값, 중간값, 가우시안) 적용
- 이미지가 부드러워짐
- 이미지를 목적에 맞게 보완하여 학습

Parameter

- smoothing type
 - => Average
 - => Median
 - => Gaussian
- kernel size: 11

사용 이유

- Merge를 사용하기 위함

2. Merge

- 의료데이터로 진행한 kaggle 대회에서 우승했던 Ben graham이 사용한 방법

- Overlap 방식의 merge기법과 성능 비교

참고

Ben graham's method

- Classification of Diabetic Retinopathy using Statistical Region Merging and Convolutional Neural Network

3. EfficientNetB1

Depth(d)

- 인공신경망의 깊이
- 신경망이 어느 수준까지 깊어지면 성능의 한계가 있음
- ResNet-1000은 ResNet-101과 비슷한 성능을 냄

Width(d)

- 기존의 연구에 따르면 width 를 넓게 할수록 세분화된 정보들을 더 담음

Resolution(d)

- 기존의 연구에서 CNN모델 학습에서 입력 크기가 224×224 인 모델보다 331x331 이미지를 사용했을 때, 더 좋은 성능을 보임

참고

- 1. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
- . Ensembles of Patch-Based Classifiers for Diagnosis of Alzheimer Diseases
- EfficientNet: Rethinking Model Scaling for CNN

3. EfficientNetB1

3. EfficientNetB1

특징

- 하나의 Layer에 conv가 병렬적으로 입력되어 연산량을 줄이고 속도가 빠름

Parameter

epoch: 20

- batch size: 32

Augmentation (T/F)

- drop out(0.25)
- Zoom
- Rotate

Optimizer

- ADAM

모델 선택 이유

- 최근에 성능이 좋은 모델로 평가
- EfficientNetB7은 할당받은 GPU로 실행하는데 제한적

참고

- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
- 2. MBConv

4. Processing Comparison

Preprocessing		Multiply Merge	Overlap Merge (4 / -4)	Overlap Merge (3 / -3)	Overlap Merge (2 / -2)	Overlap Merge (1 / -1)	Sensitivity	Accuracy	loss	Epoch Speed (Sec/Epoch)
		Т	F	F	F	F	0.998	0.999	0.004	3061.307
	Augmentation True	F	Т	F	F	F	0.995	0.990	0.045	3119.565
Resize		F	F	Т	F	F	0.997	0.998	0.063	3175.893
		F	F	F	Т	F	0.996	0.979	0.822	3165.331
Smoothing (Gaussian)		F	F	F	F	Т	0.998	0.946	0.200	3106.613
	Augmentation	Т	F	F	F	F	0.924	0.848	0.351	131.300
		F	T	F	F	F	0.718	0.691	0.594	135.639
		F	F	Т	F	F	0.721	0.788	0.631	144.274
	False	F	F	F	Т	F	0	0.501	6.683	136.006
		F	F	F	F	Т	0	0.508	7.785	150.630

5. Model Comparison

Preprocessing	Augmentat ion	resize (256x256)	Optimi Erro	or				×		
	VGG19		9		not Enough GPU Resour Reduce the Image Size o					
	Т	Т	SGE	2. or Ask	the Administrator for Ad	ditional GPU Resources.				
Resize	F	Т	SGL	aceback (most recent		in				
	Efficient Ne	t B1	c	File "/sources/applications/network.py", line 115, in cfg = network.run()						
\	Т	Т	Λ al a	le "/usr/local/lib/pytho rict=strict,	on3.7/dist-packages/hydra	/main.py", line 24, in deco	orated_main	•		
Smothing (Ones a line)	F	Т	Adar	. H. /s . (ho) / . o)	~ ~ / P · · · · · · · · · · · · · · · · · ·	/ · · · · · / · · · · · · · · · · · · ·				
Smothing (Gaussian)	Efficient Ne	t B7								
	Т	F	Adam	0.998	0.997	0.014	4153.300			
•	F	F	Adam	0.981	0.990	0.038	209.074			
Multiply Merge	Inception re	esnet V2								
	Т	Т	Adam	1.000	1.000	0.004	3687.373			
	F	Т	Adam	0.995	0.997	0.056	164.406			

6. Model Evaluation

MRI를 이용한 알츠하이머 분류 주제에서는,

첫 번째 사진과 두 번째 사진의 각각 가중치를 곱하여 더한 Overlap 방식의
Merge기법보다 같은 위치의 원소끼리 곱한 Multiply Merge기법의 성능이 더 좋다

2. <u>이미지를 Multiply 방식으로 merge하는 기법에 대한 연구방안을 제언함.</u>

Resize

208 x 176 Size

256 x 256 Size

특징

- 이중 선형 보간법(가장 인접한 4개의 픽셀 값에 가중치를 곱한 값의 합으로 계산)을 이용하면 이미지의 앨리어스 효과를 줄일 수 있다

Parameter

- 256 x 256

사용 이유

- 논문을 기반으로 설정하여 학습
- inception_resnet_v2 모듈 실행할 때,
 shape을 맞추기 위함

Resize 이중 선형 보간법

2차원 평면에서 이루어지는 이중 선형 보간법은 가장 인접한 **4**개의 픽셀 값에 가중치를 곱한 값의 합으로 계산됩니다

Resize | Aliasing

벽돌 벽의 적절하게 샘플링 된 이미지에는 모아레 패턴을 방지할 수 있는 충분한 해상도의 스크린이 필요합니다.

모아레 패턴 형태의 공간 앨리어싱

Overlap Merge

특징

- 첫 번째 사진과 두 번째 사진에
 각각 가중치를 곱하여 사진을 더함
 이 때, 가중치는 목적에 맞게 적용
- 사진의 밝기, 조명 상태 등을 개선
- 가중치가 낮아질수록 이미지가 밝아짐

Parameter

- data1_weight: (1 ~ 4)
- data2_weight : (-4 ~ -1)

사용 이유

- 의료데이터로 진행한 kaggle 대회에서 우승했던 Ben graham이 사용한 방법

Ben graham's method

Multiply Merge

<Multiply Merge>

특징

- 첫 번째 사진과 두 번째 사진을 같은 위치의 있는 원소들끼리 곱하여(np.Multiply) 합침
- 대뇌피질 크기의 수축 정도가 더 잘 표현됨

사용 이유

- Overlap 방식의 merge기법과 성능 비교

MnasNet

Factorized Hierarchical Search Space

- 가장 최근의 접근들은 몇 개의 cell을 반복적으로 쌓는 구조를 택해왔다 하지만 이 접근은 다양성에 한계를 불러일으켜 높은 정확도와 낮은 latency를 허용하지 않음
- 이전의 접근들과 다르게, CNN모델을 unique block으로 만들고 operation과 connection을 각각 찾아 다른 블록에서 다른 구조를 가질 수 있도록 한다

참고

MnasNet

MnasNet

MnasNet 구조와 Layer 다양성

성능이 좋은 구조를 살펴보면, 다양한 layer들로 구성되어있다.

- 위 구조는 제안하는 search space의 baseline 구조임
- CNN모델을 미리 정의된 block을 연결하여 만들었고, input resolution을 점진적으로 줄이며 filter size를 키웠다
- 각각의 block은 동일한 layer list를 가지며, per-block sub space에 의해 operation과 connection들이 블로별로 결정이 된다
- 이 때, sub search space는 다음과 같이 구성되어있다

2. Inception ResNet v2

특징

- Inception v4 모델에 ResNet 더한 모델
- ResNet의 Residual Connection 결합되어 빠른 학습 가능

-

Parameter

- epoch: 10

- batch size: 16

- Dropout: Not Use

- Optimizer : Adam

- Learning rate: 0.0001

- beta_1:0.9

- beta_2:0.999

모델 선택 이유

- 연산량을 줄이는 구조로 빠른 학습 가능
- inception module 사용 모델 중 가장 높은 성능

04 Conclusion

Conclusion

1. VGG19모델에서 전처리 기법인 Invert를 활용한 연구방안을 제언함

2. efficientNet뿐 아니라 Multiply Merge의 특징을 더 부각시킬 수 있는 모델을 찾아

성능을 개선시키는 연구를 제언함

Limitation

- 1. Kaggle에서 가져온 데이터지만, 정확한 출처가 명시가 되어있지 않아 신뢰성이 떨어질 수 있음
- 2. 한 사람의 3D MRI 이미지에서 여러 장의 2D 이미지가 생성 됐을 가능성이 있기 때문에 신뢰성이 떨어질수 있음
 - ▷ kaggle discussion에 데이터 출처와 환자 수의 대한 정보 요청하였으나 추후 공지 예정이라는 답변 받음
 - ⇒ Deepnoid에서 추천해준 ANDI Image 승인 대기 중
- 3. 시간과 GPU가 부족해 원하는 많은 모델을 학습시키는데 한정적임
- 4. Train result가 저장되지않아 추가 저장하지 않으면 유실될 가능성 있음
- 5. DEEP:PHI 내에서만 결과를 볼 수 있어 불편함
- 6. 모델을 돌리면 초기 입력한 Parameter 확인 불가

추후계획

- 1. 4 Class 다중분류
- 2. ADNI 데이터(3D) 이용하여 모델 학습

감사합니다

Q & A