Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu

JMLR 2020

오지은

- 1. 논문의 목적과 의의
- 2. baseline
- 3. 어떤 구조가 좋은가?
- 4. 어떻게 pre-train할 것인가?
- 5. 어떤 데이터셋이 좋은가?
- 6. 어떻게 fine-tune할 것인가?
- 7. 벤치마크 최대로 끌어올리기

논문의 목적과 의의

T5: 목표

- idea: 모든 NLP 문제(understanding, generation 무관)를 "text-to-text" 문제로 환원하겠다
- → 같은 모델, objective, training procedure, decoding process를 모든 문제에 적용할 수 있음
- → "unified" approach
- 이 접근법으로 여러 learning objective, dataset 등을 비교해볼 수 있음
- 비교를 통해 transfer learning의 한계를 탐구할 수 있음

T5: 목표

"As such, the bulk of our work comprises of a survey, exploration, and empirical comparison of existing techniques."

• 논문의 목적은 새로운 모델을 제시하는 것이 아니라 기존의 연구와 방법론을 통틀어 정리하고 조합하여 한계를 넓히는 것

Baseline

- 그간의 연구들을 비교하기 위해 알맞은 baseline을 정함
- "Our goal is to compare a variety of different approaches on a diverse set of tasks while keeping as many factors fixed as possible."
- 예를 들어, 같은 transformer 구조라도 enocder-only 모델과 decoder-only 모델을 곧바로 비교할 수는 없음
- architecture: **Transformer** (standard: encoder-decoder 구조)
 - 12 layer each
 - $d_{ff} = 3072$
 - d_model = 768
 - head = 12
 - 합해서 BERT-base의 2배 정도 parameter를 가지며, 2배인 것은 인코더와 디코더로 되어 있기 때문

• training:

- 2^19 = 524,288 step 동안 pre-train
- 2^18 = 262,144 step 동안 fine-tune

vocabulary

- sentencepiece 사용 → wordpiece token
- vocab size: 32K
- task들 중에 번역 문제도 있기 때문에, 영어 이외에 독일어, 프랑스어, 루마니아어 단어도 있음
- shared vocabulary (predetermined, fixed set of languages만 커버 가능)

- Unsupervised objective
 - pre-train은 unlabeled dataset을 사용하기 때문에 unsupervised objective 필요
 - 채택된 것: denoising objective → 입력 문장의 랜덤 15% 토큰을 drop

⟨x〉, ⟨y〉: sentinel token
'for', 'inviting'은 연속되므로
같은 토큰 ⟨x〉로 대체

target: 입력에서 삭제되었던 토큰들. sentinel token $\langle x \rangle$, $\langle y \rangle$, $\langle z \rangle$ 는 delimiter로 사용됨

	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Baseline average Baseline standard deviation No pre-training	83.28 0.235 66.22	$19.24 \\ 0.065 \\ 17.60$	80.88 0.343 50.31	71.36 0.416 53.04	26.98 0.112 25.86	39.82 0.090 39.77	27.65 0.108 24.04

- 열 번 학습(different initialization, shuffling)해서 평균한 결과와 표준편차
- 전반적으로 현존하는 다른 비슷한 크기의 모델들과 비슷한 결과를 보임
- (놀랍지 않게도) pre-training은 성능을 크게 올려준다
 - 예외: WMT en-fr. 데이터가 충분히 크기 때문에 pre-training의 효과가 별로 없음

어떤 구조가 좋은가?

architectural variants - structure

- prefix LM: language model은 일반적으로 텍스트 생성에 쓰이지만, 입력과 타겟을 concat함으로써 text-to-text 프레임워크로 쓰일 수 있음
- translate English to German: That is good. target: Das ist gut. 에서 시작~target까지를 prefix로 고정하면 LM은 Das ist gut.을 출력
- 그런데 트랜스포머 deocer를 LM으로 사용하는 사례에서, 이 prefix 부분에 look-ahead mask를 적용하는 것은 불필요함
- → prefix 부분에 masking을 적용하지 않고 fully-visible self attention을 적용하는 것 = prefix LM
- 이 prefix는 classification에서는 BERT의 CLS 토큰과 같은 역할을 수행함

architectural variants - config for comparing

- 두 모델이 같은 개수의 parameter를 갖거나 (입력, 타겟) 쌍을 처리하는 데 드는 계산량이 비슷하다면 두 모델은 같다고 할 수 있다
- 그렇지만 encoder-decoder 모델을 decoder-only 모델과 바로 비교할 수는 없다
 - enc-dec 모델은 decoder 모델의 2배 파라미터를 가지지만, 계산량은 비슷하기 때문
 - 계산량이 비슷한 이유: 디코더 모델은 디코더 스택에 대해 입력과 타겟이 모두 적용되지만, 인코더-디코더 모델은 인코더는 입력만, 디코더는 타겟만 처리하기 때문
- 타당한 비교를 위해 여러 가지 configuration을 고려해보겠다
 - BERT-base 크기 모델의 레이어 개수를 L, 파라미터 수를 P로 표기
 - 모델이 (입력, 타겟) 쌍을 처리하는 데 든 계산량을 M으로 표기

architectural variants

Architecture	Objective	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Encoder-decoder	Denoising	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	Denoising	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	Denoising	P	\dot{M}	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	Denoising	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39
Encoder-decoder	LM	2P	M	79.56	18.59	76.02	64.29	26.27	39.17	26.86
Enc-dec, shared	$_{ m LM}$	P	M	79.60	18.13	76.35	63.50	26.62	39.17	27.05
Enc-dec, 6 layers	$_{ m LM}$	P	M/2	78.67	18.26	75.32	64.06	26.13	38.42	26.89
Language model	$_{ m LM}$	P	\dot{M}	73.78	17.54	53.81	56.51	25.23	34.31	25.38
Prefix LM	$_{ m LM}$	P	M	79.68	17.84	76.87	64.86	26.28	37.51	26.76

- 1. 모든 문제에 대해, enc-dec에 denoising으로 학습한 모델이 가장 우수함
- 2. 인코더와 디코더의 파라미터를 공유한 경우도 1과 거의 비슷한 성능을 보임
- 3. 레이어 개수를 절반으로 줄일 때는 성능이 크게 떨어짐
- 4. 2는 deocder-only prefix LM 모델보다 성능이 좋음 → 명시적인 encoder-decoder attention이 성능에 유익
- 5. autoregressive LM보다 denoising으로 학습하는 쪽이 언제나 더 좋음

어떻게 pre-train할 것인가?

Unsupervised objective

- denoising objective가 LM objective보다 좋다면, noise를 어떻게 줄 것인가?
- high-level approaches
 - 1. prefix LM: 텍스트를 둘로 쪼갠 후, 하나를 입력으로 하나를 예측해야 할 타겟으로 함
 - 2. MLM: BERT 방식. MASK 토큰을 예측하되 BERT와 달리 타겟 문장 전체를 예측함
 - 3. deshuffling: 문장 내 토큰 순서를 뒤바꾼 뒤, 원래 순서의 문장을 예측함

Objective	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Prefix language modeling BERT-style [Devlin et al., 2018] Deshuffling	80.69 82.96 73.17	18.94 19.17 18.59	77.99 80.65 67.61	65.27 69.85 58.47	26.86 26.78 26.11	39.73 40.03 39.30	27.49 27.41 25.62

BERT-style이 가장 좋고 deshuffling이 가장 나쁨

denoising objective

- BERT-style objective가 가장 좋다면, 이것을 어떻게 개선할 것인가?
- 1. MASS-style: random 토큰을 제외하고, 15% 토큰을 마스크 토큰만으로 대체하며, uncorrupted sequence 전체를 재구성하도록 함
- 2. 타겟 전체를 예측하는 것은 너무 길다. 이러지 않을 방법이 있을까?
 - 1. consecutive span 전체를 a unique mask token으로 대체함 (앞에서 baseline에 사용된 그 방법)
 - 2. mask로 대체하는 것이 아니라 아예 삭제하고, 그 삭제된 부분을 예측하도록 함

Objective	Inputs	Targets
Prefix language modeling BERT-style Deshuffling	Thank you for inviting Thank you <m> <m> me to your party apple week. party me for your to. last fun you inviting week Thank Thank you <m> <m> me to your party <m> week.</m></m></m></m></m>	me to your party last week . (original text) (original text)
I.i.d. noise, mask tokens I.i.d. noise, replace spans I.i.d. noise, drop tokens Random spans	Thank you <m> <m> me to your party <m> week . Thank you <x> me to your party <y> week . Thank you me to your party week . Thank you <x> to <y> week .</y></x></y></x></m></m></m>	(original text) <pre> <x> for inviting <y> last <z> for inviting last <x> for inviting me <y> your party last <z> </z></y></x></z></y></x></pre>

denoising objective

Objective	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
BERT-style [Devlin et al., 2018]	82.96	19.17	80.65	69.85	26.78	40.03	27.41
MASS-style [Song et al., 2019]	82.32	19.16	80.10	69.28	26.79	39.89	27.55
★ Replace corrupted spans	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Drop corrupted tokens	84.44	19.31	$\bf 80.52$	68.67	27.07	39.76	27.82

- 전체적으로 비슷하지만, consecutive span 전체를 a unique mask token으로 대체하는 방식이 가장 나음
- 원래 문장 전체가 아닌 노이즈 부분만 예측하는 쪽이 타겟을 짧게 만들기 때문에 학습 속도에서 유리함

corruption rate

Corruption rate	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
10%	82.82	19.00	80.38	69.55	26.87	39.28	27.44
★ 15%	83.28	19.24	80.88	71.36	26.98	39.82	27.65
25%	83.00	19.54	80.96	70.48	27.04	39.83	27.47
50%	81.27	19.32	79.80	70.33	27.01	39.90	27.49

- BERT의 기본 비율인 15% 이외의 여러 가지를 실험
- 비율에 따라 성능 차이가 별로 발생하지 않으나, 50%에서는 성능이 떨어짐
- 노이즈의 비율이 크면 타겟의 길이가 길어지기 때문에 계산량 측면에서도 불리함
- BERT의 선례를 따라 계속 15%를 써도 무방하다는 결론

corruption span

- 예측해야 할 타겟의 길이를 줄임으로써 학습 속도를 올려야 함 → span 단위의 corruption
- baseline에선 각각의 토큰을 마스크할지 말지를 하나하나 정해서, 만일 마스크할 토큰이 연속적으로 나타나면 그것을 span으로 했음. 그러나 이런 식으로는 반드시 span이 생긴다는 보장이 없음
- contiguous, randomly-spaced spans of tokens를 corrupt하는 objective 필요
- 비율과 개수를 parameter로 두고 여기에 따라 span length가 정해짐

Span length	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Baseline (i.i.d.)	83.28	19.24	80.88	71.36	26.98	39.82	27.65
2	83.54	19.39	82.09	72.20	26.76	39.99	27.63
3	83.49	19.62	81.84	72.53	26.86	39.65	27.62
5	83.40	19.24	82.05	72.23	26.88	39.40	27.53
10	82.85	19.33	81.84	70.44	26.79	39.49	27.69

별 차이 없지만 length 3에서 비교적 좋고, 타겟이 짧아지기 때문에 학습 속도가 약간 빠름

- LM, deshufllling, denoising 중에서는 확연하게 denoising이 가장 나았음
- denoising 안에서 objective를 시도해 봤지만, 성능상으로 큰 차이는 없었음
- 유의미한 차이는 계산량과 학습 속도에서 나타남
- 이와 비슷한 방식의 objective를 더 탐구해봐도 성능상의 차이는 발견하기 힘들 것으로 보임

어떤 데이터셋이 좋은가?

dataset

- pre-training에서 데이터셋 자체가 중요한 요소임에도, 새로운 데이터셋은 일반적으로 중요한 contribution으로 취급되지 않았음
- pre-training에서 사용할 'standard' 데이터셋의 부재
- 데이터셋 간의 비교 연구도 많지 않음

- → 이 논문에서 사용된 데이터셋 C4와 다른 데이터셋을 비교해보겠다
- + C4 데이터셋 공개 (https://www.tensorflow.org/datasets/catalog/c4)

Unlabeled datasets

Dataset	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ C4	745GB	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	$6.1 \mathrm{TB}$	81.46	19.14	78.78	68.04	26.55	39.34	27.21
RealNews-like	35GB	83.83	19.23	80.39	72.38	26.75	39.90	27.48
WebText-like	17GB	84.03	19.31	81.42	71.40	26.80	39.74	27.59
Wikipedia	16GB	81.85	19.31	81.29	68.01	26.94	39.69	27.67
Wikipedia + TBC	20GB	83.65	19.28	82.08	73.24	26.77	39.63	27.57

- C4는 diverse한 데이터셋인데, 이에 따라 일부 task에서는 더 좁은 도메인의 데이터셋에서 더 우수 한 성능이 나오기도 한다
 - ex: Wikipedia + TBC의 SuperGLUE 점수는 C4보다 높은데, 이것은 MultiRC 문제에서의 점수가 높기 때문이다. MultiRC는 소설책 데이터로 이루어진 독해력 테스트인데 TBC가 소설책 데이터이다.
 - 즉, in-domain 데이터로 pre-train을 하면 downstream task에서 더 높은 점수를 낼 수 있다

Pre-training dataset size

Number of tokens	Repeats	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Full dataset	0	83.28	19.24	80.88	71.36	26.98	39.82	27.65
2^{29}	64	82.87	19.19	80.97	72.03	26.83	39.74	27.63
2^{27}	256	82.62	19.20	79.78	69.97	27.02	39.71	27.33
2^{25}	1,024	79.55	18.57	76.27	64.76	26.38	39.56	26.80
2^{23}	4,096	76.34	18.33	70.92	59.29	26.37	38.84	25.81

- single domain dataset은 종종 크기가 작음
- 데이터 크기에 따른 차이를 알아보기 위하여 인위적으로 C4의 크기를 줄여 실험
- (예상대로) 크기가 줄어들면 성능도 줄어듦
- 데이터셋이 작아질수록 모델의 loss가 현저히 줄어들며, 답을 암기했을 것으로 추정
- 가능한 한 큰 데이터셋을 사용하는 것이 언제나 좋다

어떻게 fine-tune할 것인가?

Training strategy

- 모델의 파라미터 전체를 fine-tuning하는 것은 (특히 low-resource 문제에서) 나쁜 결과를 낸다는 논란이 있음
- → 모델(인코더-디코더)의 일부만을 업데이트하는 접근에 집중하기로 함
- 1. Adapter layers: 각 블록의 끝에 추가적으로 붙는 additional feedforward network(dense-ReLU-dense). 원 모델의 대부분을 그대로 고정해두며, 이 추가 레이어와 layer normalization만 업데이트됨. 이 ffn의 차원 d가 파라미터
- 2. Gradual unfreezing: 맨 위부터 시작해서 인코더와 디코더를 병렬로 차근차근 unfreeze.

Training strategy

Fine-tuning method	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ All parameters	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Adapter layers, $d = 32$	80.52	15.08	79.32	60.40	13.84	17.88	15.54
Adapter layers, $d = 128$	81.51	16.62	79.47	63.03	19.83	27.50	22.63
Adapter layers, $d = 512$	81.54	17.78	79.18	64.30	23.45	33.98	25.81
Adapter layers, $d = 2048$	81.51	16.62	79.47	63.03	19.83	27.50	22.63
Gradual unfreezing	82.50	18.95	79.17	70.79	26.71	39.02	26.93

- SQuAD처럼 lower-resource task에서는 작은 d에서도 성능이 좋음
- 차원이 task 크기에 알맞게 scale된다면 적은 파라미터로 fine-tuning을 할 수 있음
- gradual unfreezing은 전반적으로 소폭 성능감소를 일으켰지만 어느 정도의 speedup이 있었음
- 더 optimal한 unfreezing schedule을 찾으면 성능 향상이 가능할 것으로 보임

multi-task learning

- multi-task learning: 한 모델을 여러 문제에 대해 한번에 학습하는 것
- 이 연구에서는 한 모델을 학습하되 downstream task에 따라 다른 checkpoint를 사용하는 것으로 함
- 이 text-to-text framework에서 multitask란 단순히 여러 데이터셋을 하나로 섞는 것을 말함
- → 데이터셋을 섞을 때 비율이 중요함
- 1. Examples-proportional mixing: 각 문제의 데이터셋 비율만큼 섞는 것. 단 특정 문제의 비중이 너무 커지지 않게 한도를 정함
- 2. Temperature-scaled mixing: 모델이 low-resource task에도 충분히 학습되도록 하는 것
- 3. Equal mixing: 모든 문제에 대해 같은 비율로 데이터셋을 섞는 것. 가장 나쁨
- multi-task learning 자체는 보통의 pre-train-then-fine-tune보다 성능 낮음

multi-task learning with fine-tuning

- 앞에서는 하나의 모델을 여러 문제에 학습한 후 각 문제에 맞는 checkpoint에서 성능을 평가했음
- 이제 모델이 모든 문제에 대해 pre-train된 후 각 문제에 맞게 fine-tune되는 케이스를 고려해보겠다 (MT-DNN에서 사용했던 방법)

- 1. Examples-proportional mixing 데이터셋으로 pre-train
- 2. 1과 같되, downstream task 중에 하나를 빼고 pre-train하고, 그 뺀 하나에 대해 fine-tune
- 3. 1에서 unsupervised pre-train task를 빼고 pre-train

multi-task learning with fine-tuning

Training strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Unsupervised pre-training + fine-tuning	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Multi-task training	81.42	19.24	79.78	67.30	25.21	36.30	27.76
Multi-task pre-training + fine-tuning	83.11	19.12	80.26	71.03	27.08	39.80	28.07
Leave-one-out multi-task training	81.98	19.05	79.97	71.68	26.93	39.79	27.87
Supervised multi-task pre-training	79.93	18.96	77.38	65.36	26.81	40.13	28.04

- multi-task training 후 fine-tuning을 하면 보통의 pre-train-then-fine-tune과 비슷한 성능이
 나옴
- leave-one-out의 성능 하락폭이 크지 않음 → 여러 문제에 대해 학습한 모델은 새로운 문제에 적응할 수 있음
- 데이터셋에서 unsupervised 부분을 뺀 결과 성능이 크게 떨어지지만 번역에서는 별로 떨어지지 않음 → english only pretrain은 번역에 별로 도움이 되지 않지만, 다른 문제들에서는 중요함

Scaling strategy

- 일반적으로, 학습의 규모를 키우면 성능은 올라간다
- 그 규모를 어떻게, 어느 방향으로 키울 것인가?
- 1. 모델 2배로 키우기
- 2. 모델 4배로 키우기
 - 1. 4배 학습하기
 - 2. 2배 학습하고 모델 2배 키우기
 - 3. 모델 4배 키우기
- 3. 각각 따로 학습한 모델 4개의 ensemble
- 4. pre-train은 한 번만 하고 fine-tune을 4가지로 한 ensemble (3에서 계산량을 절약함)

Scaling strategy

Scaling strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Baseline	83.28	19.24	80.88	71.36	26.98	39.82	27.65
$1 \times \text{size}, 4 \times \text{training steps}$	85.33	19.33	82.45	74.72	27.08	40.66	27.93
$1 \times \text{ size}, 4 \times \text{ batch size}$	84.60	19.42	82.52	74.64	27.07	40.60	27.84
$2 \times \text{ size}, 2 \times \text{ training steps}$	86.18	19.66	84.18	77.18	27.52	41.03	28.19
$4 \times \text{size}, 1 \times \text{training steps}$	85.91	19.73	83.86	78.04	27.47	40.71	28.10
$4\times$ ensembled	84.77	20.10	83.09	71.74	28.05	40.53	28.57
$4\times$ ensembled, fine-tune only	84.05	19.57	82.36	71.55	27.55	40.22	28.09

- 4배 더 학습하는 것과 batch를 4배 더 키우는 것 둘 다 비슷하게 유익함
- 모델 크기를 늘리는 것이 학습량만 늘리는 것보다 유익함
- ensemble 역시 도움이 됨 (특히 번역에서 다른 방법보다 나음)

벤치마크 최대로 끌어올리기

pushing the limit

- objective: baseline의 토큰 하나하나 noising하던 것을 앞에서 발견한 span-corruption으로 바꿈
- training: pre-training, batch size 키우기, step 수 늘리기 셋 모두 유익
- model size: 모델의 크기가 크면 좋지만, 자원이 한정되어 있다면 작은 모델도 유익
 - 1. small (transformer-base와 같음)
 - 2. base (기본. BERT-base와 같음)
 - 3. large, *d*model: 1,024, *d*ff = 4,096, *d*kv = 64, 16-headed attention, 12 layer
 - 4. 3B, 11B: *d*model = 1024, 24 layer, *d*ff = 16,384 with 32-head(3B), dff = 65,536 with 128-head(11B)
- beam search: baseline에는 greedy decoding을 사용했으므로, beam search 적용
- optimizer, learning rate, dropout rate 등의 hyperparameter는 baseline과 동일

results

	GLUE	CoLA	SST-2	MRPC	MRPC	STS-B	STS-B
Model	Average	Matthew'	s Accurac	y F1	Accuracy	Pearson	Spearman
Previous best	89.4^{a}	69.2^{b}	97.1	93.6^{b}	91.5^{b}	92.7^b	92.3^{b}
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	89.7	70.8	97.1	91.9	89.2	92.5	92.1
	QQP	QQP	MNLI-m	MNLI-mm	QNLI	RTE	WNLI
Model	F1	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	74.8^{c}	90.7^b	91.3^{a}	91.0^{a}	99.2^{a}	89.2^{a}	91.8^{a}
T5-Small	70.0	88.0	82.4	82.3	90.3	69.9	69.2
T5-Base	72.6	89.4	87.1	86.2	93.7	80.1	78.8
T5-Large	73.9	89.9	89.9	89.6	94.8	87.2	85.6
T5-3B	74.4	89.7	91.4	91.2	96.3	91.1	89.7
T5-11B	74.6	90.4	92.0	91.7	96.7	92.5	93.2
	SQuAD	SQuAD	SuperGLU	JE BoolQ	CB	CB	COPA
Model	EM	F1	Average	e Accurac	cy F1	Accuracy	Accuracy
Previous best	88.95^{d}	94.52^{d}	84.6^{e}	87.1 ^e	90.5^{e}	95.2^{e}	90.6 ^e
T5-Small	79.10	87.24	63.3	76.4	56.9	81.6	46.0
T5-Base	85.44	92.08	76.2	81.4	86.2	94.0	71.2
T5-Large	86.66	93.79	82.3	85.4	91.6	94.8	83.4
T5-3B	88.53	94.95	86.4	89.9	90.3	94.4	92.0
T5-11B	90.06	95.64	88.9	91.0	93.0	96.4	94.8
	MultiRC	MultiRC	ReCoRD	ReCoRD	RTE	WiC	WSC
Model	F1a	EM	F1	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	84.4^e	52.5^e	90.6^e	90.0^e	88.2^e	69.9^e	89.0^e
T5-Small	69.3	26.3	56.3	55.4	73.3	66.9	70.5
T5-Base	79.7	43.1	75.0	74.2	81.5	68.3	80.8
T5-Large	83.3	50.7	86.8	85.9	87.8	69.3	86.3
T5-3B	86.8	58.3	91.2	90.4	90.7	72.1	90.4
T5-11B	88.2	62.3	93.3	92.5	92.5	76.1	93.8
	WMT EnI				CNN/DM	CNN/DM	CNN/DM
Model	BLEU	BLE	EU I	BLEU F	ROUGE-1	ROUGE-2	ROUGE-L
Previous best	33.8^f	43.		38.5^g	43.47^{h}	20.30^{h}	40.63^{h}
T5-Small	26.7	36.	0	26.8	41.12	19.56	38.35
T5-Base	30.9	41.	2	28.0	42.05	20.34	39.40
T5-Large	32.0	41.	5	28.1	42.50	20.68	39.75
T5-3B	31.8	42.		28.2	42.72	21.02	39.94
T5-11B	32.1	43.	4	28.1	43.52	21.55	40.69

results

- 24 task 중 17개에서 SOTA
- (예상대로) 가장 큰 11B 모델이 가장 성능 좋음
 - 하지만 다른 SOTA 모델들도 많은 계산량을 요하는데, 예를 들어 ALBERT 모델은 T5-3B 모델과 크기가 비슷하며 ensemble에 사용하는 비용은 T5-11B 모델을 넘을 수도 있다
- 번역에 대해서는 아무것도 SOTA 성능이 나오지 않았음. pre-training에 영어 데이터만을 사용했기 때문으로 추정
- 또한 SOTA 번역 모델들은 backtranslation 등 정교한 기법을 사용하기 때문에 scale과 pretrain만으로는 그런 기법을 쫓아가지 못했을 것으로 추정

결론

- Text-to-text: 이 프레임워크는 하나의 모델로 많은 task에 대해 학습할 방법이다. 이 프레임워크로 classification, generation, regression까지 학습할 수 있다
- architecture: 원래의 encoder-decoder 구조가 가장 낫고, 인코더나 디코더 하나만을 쓰는 구조라고 해서 계산량이 줄어들지 않는다. 인코더와 디코더의 parameter를 공유하면 parameter를 반으로 줄이면서 성능은 조금만 낮아진다.
- objective: LM보다는 denoising이 좋고, denoising 안에서는 성능이 비슷하며, target sequence의 길이를 줄이는 span 방식이 비용이 적게 든다.
- dataset: 일부 task에서는 in-domain 데이터로 학습하는 게 유리하지만, 그럼에도 불구하고 큰 데이터셋(C4) 이 좋다.
- training: fine-tuning 단계에서 모델의 모든 parameter를 업데이트하는 편이 가장 좋지만 가장 비용이 크다.
- scaling: 큰 모델을 더 많은 데이터에 학습하고 ensemble을 사용하면 성능이 올라간다.

End of Document