

PyMCon Web Series #11

THE ONLY CONSTANT IS CHANGE

Bespoke Changepoint Modelling in PyMC

Abuzar Mahmood

Neuroscientist **Brandeis University**

About Me

- Swartz Foundation Computational Neuroscience Postdoctoral Fellow
- Katz Lab Dynamics of Neural Taste Processing
- Brandeis University, MA

katzlab.squarespace.com

Layout of talk

- Changepoint modelling use-cases:
 - Research (offline), and Industry (online) use-cases
 - My work:
 - What I study and how we use changepoint models
 - Why these are the appropriate types of models to use
- Finite and infinite mixtures
- Overview of changepoint models in shared code
 - Not going into detail on model construction

Offline example: Sleep-state segmentation from EEG

Onton, Julie A., et al. "Visualization of Whole-Night Sleep EEG From 2-Channel Mobile Recording Device Reveals Distinct Deep Sleep Stages with Differential Electrodermal Activity." *Frontiers in Human Neuroscience*, vol. 10, 2016. *Frontiers*, https://www.frontiersin.org/articles/10.3389/fnhum.2016.00605.

Offline example: Changes in number of COVID cases

Jegede, Segun Light, and Krzysztof J. Szajowski. "Change-Point Detection in Homogeneous Segments of COVID-19 Daily Infection." *Axioms*, vol. 11, no. 5, May 2022, p. 213. www.mdpi.com, https://doi.org/10.3390/axioms11050213.

Offline example: Detecting changes in forest cover

Figure 2: Observed SWIR2 and NDVI measurements of a 30×30 m location in Myanmar with a deforestation event identified on Feb 2, 2019.

Online example: Detecting bouts of activity from accelerometer data

Džaja, D., et al. "Accelerometer-Based Algorithm for the Segmentation and Classification of Repetitive Human Movements during Workouts." Automatika, vol. 64, no. 2, Apr. 2023, pp. 211–24. DOI.org (Crossref), https://doi.org/10.1080/00051144.2022.2121247.

Online example: Detecting network attacks

Figure 1: Number of packets in a sample period vs. time. Observe that the attack is not visible to the naked-eye.

Types of Changepoints

REFS:
Abuzar Mahmood (2022) Teachables [Source Code] https://github.com/abuzarmahmood/teachables/tree/main
https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/how-change-point-detection-works.htm

Caro-Martín, C.R., Delgado-García, J.M., Gruart, A. et al. Spike sorting based on shape, phase, and distribution features, and K-TOPS clustering with validity and error indices. Sci Rep 8, 17796 (2018). https://doi.org/10.1038/s41598-018-35491-4

Sadacca, Brian F., et al. "The Behavioral Relevance of Cortical Neural Ensemble Responses Emerges Suddenly." Journal of Neuroscience, vol. 36, no. 3, Jan. 2016, pp. 655–69. www.jneurosci.org, https://doi.org/10.1523/JNEUROSCI.2265-15.2016.

- Why use changepoint models:
 - Inspire and constrain theoretical models of processing in the brain.
 - Measure strength of coordination between brain regions over time.
- Why Bayesian?
 - Because we like uncertainty estimates.
- Why PyMC?
 - Rapid iteration for model-building
 - Easy extension of models for specific use-cases/needs
 - Powerful inference

Basolateral Amygdala (BLA) Responses

Layout of talk

- Changepoint modelling use-cases:
 - Research (offline), and Industry (online) use-cases
 - My work:
 - What I study and how we use changepoint models
 - Why these are the appropriate types of models to use
- Finite and infinite mixtures
- Overview of changepoint models in shared code

Finite Mixture Models: Intro

Finite Mixture Models: Intro

Beisemann, Marie, et al. "Comparison of Recent Acceleration Techniques for the EM Algorithm in One- and Two-Parameter Logistic IRT Models." *Psych*, vol. 2, no. 4, Dec. 2020, pp. 209–52. www.mdpi.com, https://doi.org/10.3390/psych2040018.

Finite Mixture Models: Model Structure

Figure 1: The graphical presentation of FGMM

Derivation of Gibbs Sampling for Finite Gaussian Mixture Model,

Xiaodong Yu,

University of Maryland, College Park, 2009,

https://yuxiaodong.files.wordpress.co m/2009/09/derivation_of_gibbs_samp ling gmm1.pdf

Finite Mixture Models: Mixture Weight Parameters

2

3

4

Concentration parameter

 $\pi \mid \alpha \sim Dir (\alpha / k, ..., \alpha / k)$

Mixture Weights

 $https://en.wikipedia.org/wiki/Dirichlet_distribution$

https://blog.shakirm.com/2015/12/machine-learning-trick-of-the-day-6-tricks-with-sticks/

Dirichlet Distribution

<u>Infinite Mixture Models : Mixture Weight</u> parameters

Dirichlet Process

Wiecki, Thomas V. Sequential Sampling Models in Computational Psychiatry: Bayesian Parameter Estimation, Model Selection and Classification. arXiv, 22 Mar. 2013. arXiv.org, https://doi.org/10.48550/arXiv.1303.5616. Beta distribution plot generated using: desmos.com

Clarifications:

- One model uses a finite mixture
- The other uses a Dirichlet Process (but not for an infinite mixture)

Layout of talk

- Changepoint modelling use-cases:
 - Research (offline), and Industry (online) use-cases
 - My work:
 - What I study and how we use changepoint models
 - Why these are the appropriate types of models to use
- Finite and infinite mixtures
- Overview of changepoint models in shared code
 - Simple Model
 - Model with automatic state number determination (Dirichlet Process)
 - Model which allows drift across trials (Mixture Model)

"Simple" Poisson Changepoint

Changepoint Location

"Simple" Poisson Changepoint

Layout of talk

- Changepoint modelling use-cases:
 - Research (offline), and Industry (online) use-cases
 - My work:
 - What I study and how we use changepoint models
 - Why these are the appropriate types of models to use
- Finite and infinite mixtures
- Overview of changepoint models in shared code
 - Simple Model
 - Model with automatic state number determination (Dirichlet Process)
 - Model which allows drift across trials (Mixture Model)

Dirichlet Process Changepoint

Dirichlet Process Changepoint

Layout of talk

- Changepoint modelling use-cases:
 - Research (offline), and Industry (online) use-cases
 - My work:
 - What I study and how we use changepoint models
 - Why these are the appropriate types of models to use
- Finite and infinite mixtures
- Overview of changepoint models in shared code
 - Simple Model
 - Model with automatic state number determination (Dirichlet Process)
 - Model which allows drift across trials (Mixture Model)

https://universeofdatascience.com/how-to-determine-if-data-are-unimodal-or-multimodal-in-r/

Mixture Changepoint

Mixture Changepoint

Wrap-up

- 1. Why changepoint models are useful
- 2. How they are used in the world
- 3. How PyMC allows easy iterative development of bespoke Bayesian models

<u>Acknowledgements</u>

- Ravin Kumar
- Purna Chandra Mansingh

- Donald B. Katz
- Narendra Mukherjee

$$P(\ Questions \ | \ Talk \) = \frac{P(Talk | \ Questions \) \ P(Questions)}{P(Talk)}$$