

Einführung in die Theoretische Informatik

Martin Avanzini Christian Dalvit Jamie Hochrainer **Georg Moser** Johannes Niederhauser Jonas Schöpf

https://tcs-informatik.uibk.ac.at

universität innsbruck

Zusammenfassung

Zusammenfassung der letzten LVA

Beispiel

Wenn das Kind schreit, hat es Hunger

Das Kind schreit

Also, hat das Kind Hunger

Fakt

Korrektheit dieser Schlussfigur ist unabhängig von den konkreten Aussagen

Definition (Modus Ponens)

Wenn A, dann B

A gilt

Also, gilt B

Einführung in die Logik

Syntax & Semantik der Aussagenlogik, Kalkül des natürlichen Schließens, Konjunktive und Disjunktive Normalformen

Einführung in die Algebra

algebraische Strukturen, Boolesche Algebra

Einführung in die Theorie der Formalen Sprachen

Grammatiken und Formale Sprachen, Reguläre Sprachen, Kontextfreie Sprachen, Chomsky-Hierarchie, Anwendungen von formalen Sprachen

Einführung in die Berechenbarkeitstheorie und Komplexitätstheorie

Algorithmisch unlösbare Probleme, Turing Maschinen, Registermaschinen, Komplexitätstheorie

Einführung in die Programmverifikation

Prinzipien der Analyse von Programmen, Verifikation nach Hoare

Syntax der Aussagenlogik

Definition

Sei AT eine Menge von atomaren Formeln (oder Atomen), deren Elemente mit p, q, r, ... bezeichnet werden

Definition

Wahrheitswertsymbole:

True False

Junktoren:

Definition

Die Formeln der Aussagenlogik sind induktiv definiert:

- **1** Eine atomare Formel *p* ist eine Formel,
- ein Wahrheitswertsymbol (True, False) ist eine Formel, und
- wenn A und B Formeln sind, dann sind auch die Folgenden, Formeln:

$$\neg A$$
 $(A \land B)$ $(A \lor B)$ $(A \to B)$

Beispiel

Der folgende Ausdruck A ist eine Formel

$$((\mathsf{p} \to \neg \mathsf{q}) \to (\neg \mathsf{q} \to \neg \mathsf{p}))$$

Präzedenzen

Konvention

Wir verwenden die folgende Präzedenz:

$$\neg > \lor, \land > \rightarrow$$

 $\neg > \lor, \land > \rightarrow$ \rightarrow ist rechts-assoziativ: $p \rightarrow (q \rightarrow r)$

Beispiel

$$\neg p \wedge q \rightarrow r \vee s \quad \text{statt} \quad ((\neg p \wedge q) \rightarrow (r \vee s))$$

Wahrheitswertbelegung

Definition

- T und F bezeichnen die beiden betrachteten Wahrheitswerte
- **2** Belegung $v: AT \rightarrow \{T, F\}$ assoziiert Atome mit Wahrheitswerten

Beispiel

Betrachte die Atome p, q und r, sowie die folgende Belegung:

$$v(a) := \begin{cases} T & a = p \\ F & a = q \\ F & a = r \end{cases}$$

Wir schreiben auch v(p) = T, v(q) = F, v(r) = F

Definition

- 1 Atome sind Platzhalter für konkrete Aussagen
- 2 Junktoren sind formale Zeichen, die Aussagen verbinden

3 Die Bedeutung wird durch Wahrheitstafeln definiert

1			Т			Т		\rightarrow		
	F	Т	Т	F	T	Т	Т	T	Т	F
	Т	F	F	F	F	Т	F	F	Т	T

Beispiel

Der allgemeine Aussage "Wenn p, dann q" kann nun konzise ausgedrückt werden:

$$p \rightarrow q$$

Semantik der Aussagenlogik

Definition

Erweiterung der Belegung v zu einem Wahrheitswert für Formeln:

$$\overline{\mathbf{v}}(p) = \mathbf{v}(p) \qquad \overline{\mathbf{v}}(\mathsf{True}) = \mathsf{T} \qquad \overline{\mathbf{v}}(\mathsf{False}) = \mathsf{F}$$

$$\overline{\mathbf{v}}(\neg A) = \begin{cases} \mathsf{T} & \overline{\mathbf{v}}(A) = \mathsf{F} \\ \mathsf{F} & \overline{\mathbf{v}}(A) = \mathsf{T} \end{cases}$$

$$\overline{\mathbf{v}}(A \land B) = \begin{cases} \mathsf{T} & \overline{\mathbf{v}}(A) = \overline{\mathbf{v}}(B) = \mathsf{T} \\ \mathsf{F} & \mathsf{sonst} \end{cases}$$

$$\overline{\mathbf{v}}(A \lor B) = \begin{cases} \mathsf{F} & \overline{\mathbf{v}}(A) = \overline{\mathbf{v}}(B) = \mathsf{F} \\ \mathsf{T} & \mathsf{sonst} \end{cases}$$

$$\overline{\mathbf{v}}(A \to B) = \begin{cases} \mathsf{T} & \overline{\mathbf{v}}(A) = \mathsf{F} \mathsf{oder} \, \overline{\mathbf{v}}(B) = \mathsf{T} \\ \mathsf{F} & \mathsf{sonst} \end{cases}$$

Wahrheitstabelle

Beispiel

Sei v(p) = T, v(q) = F, dann $\overline{v}(A) = \overline{v}((p \to \neg q) \to (\neg q \to \neg p)) = F$

Definition

Sei A eine Formel; die Wahrheitstabelle von A listet alle relevanten Belegungen v zusammen mit dem Wahrheitswert $\overline{v}(A)$ auf

Beispiel

Betrachte die Formel:

$$(p \rightarrow \neg q) \rightarrow (\neg q \rightarrow \neg p)$$

Wir stellen die folgende Wahrheitstabelle auf:

р	q		$(\neg q \rightarrow \neg p)$	$(p ightarrow \neg q) ightarrow (\neg q ightarrow \neg p)$
Т	Т	F	Т	Т
	F		F	F
F	Т	Т	Т	Т
F	F	T	Т	T

Tenblopie

Definition

sei A eine Formel

- wenn Belegung v existiert, sodass $\overline{v}(A) = T$, heißt A erfüllbar
- wenn keine solche Belegung existiert, heißt A unerfüllbar
- wenn für alle Belegungen v, $\overline{v}(A) = T$, heißt A gültig oder Tautologie

Definition

Die Konsequenzrelation $\{A_1, \dots, A_n\} \models B$ gilt, gdw. für alle Belegungen v:

$$\overline{v}(A_1) = T, \dots, \overline{v}(A_n) = T \text{ implizient } \overline{v}(B) = T$$

- Wir schreiben \models A statt $\varnothing \models$ A; außerdem schreiben wir $A_1, \ldots, A_n \models$ B statt $\{A_1, \ldots, A_n\} \models$ B
- Gilt $\varnothing \models A$ dann ist A eine Tautologie

Satz

Eine Formel A ist eine Tautologie gdw. ¬A unerfüllbar

Beweis.

- Wir zeigen die Richtung von links nach rechts:
 - angenommen $\overline{v}(A) = T$, für alle Belegungen v
 - also $\overline{\mathsf{v}}(\neg A) = \mathsf{F}$, für alle Belegungen v
 - somit ist ¬A unerfüllbar
- Wir zeigen die Richtung von rechts nach links:
 - angenommen ¬A ist unerfüllbar
 - $\overline{\mathsf{v}}(\neg \mathsf{A}) = \mathsf{F}$, für alle Belegungen v
 - also $\overline{v}(A) = T$, für alle Belegungen v und somit gültig

Definition (Äquivalenz)

 $A \equiv B$, wenn $A \models B$ und $B \models A$ gilt

Satz

 $A \equiv B$ gilt gdw. $(A \rightarrow B) \land (B \rightarrow A)$ eine Tautologie

Beweis.

Wir zeigen die Richtung von links nach rechts:

- $(A \rightarrow B) \land (B \rightarrow A)$ gültig gdw. $(A \rightarrow B)$ gültig und $(B \rightarrow A)$ gültig
- Angenommen $A \models B$; dann gilt für alle Belegungen v:

$$\overline{\mathsf{v}}(A) = \mathsf{T}$$
 impliziert $\overline{\mathsf{v}}(B) = \mathsf{T}$

- $\overline{\mathsf{v}}(\mathsf{A} \to \mathsf{B}) = \mathsf{T} \text{ für alle } \mathsf{v}$
- $(A \rightarrow B)$ ist gültig
- ähnlich folgt aus $B \models A$, dass $(B \rightarrow A)$ gültig

Assoziativität und Kommutativität von Junktoren

- Konjunktion und Disjunktion sind assoziativ und kommutativ
- Wir unterscheiden nicht zwischen:

$$(A \wedge B) \wedge C$$

 $A \wedge B$

A \ (B \ C)

B \ A

Wheney here

Lepphore works

anti-Hoc Per und coll A \ B \ C

Definition

$$\bigwedge_{i=1}^{0} A_i = \text{True}$$

$$\bigvee_{i=1}^{n} A_i = A_1 \vee \cdots \vee A_n \qquad n \geqslant 1$$

Äquivalenzen I

Lemma (Elementare Äquivalenzen)

$$abla \neg A \equiv A \quad A \lor \text{True} \equiv \text{True} \quad A \land \text{True} \equiv A \quad A \to \text{True} \equiv \text{True}$$
 $A \lor \text{False} \equiv A \quad A \land \text{False} \equiv \text{False} \quad A \to \text{False} \equiv \neg A$
 $A \lor A \equiv A \quad A \land A \equiv A \quad \text{True} \to A \equiv A$
 $A \lor \neg A \equiv \text{True}$
 $A \to A \equiv \text{True}$

Lemma (Distributivgesetze und Andere)

$$A \to B \equiv \neg A \lor B \qquad \neg (A \to B) \equiv A \land \neg B$$
$$A \land (B \lor C) \equiv (A \land B) \lor (A \land C) \quad A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

Äquivalenzen II

Lemma (Absorptionsgesetze)

$$A \wedge (A \vee B) \equiv A$$
 $A \vee (A \wedge B) \equiv A$
 $A \wedge (\neg A \vee B) \equiv A \wedge B$ $A \vee (\neg A \wedge B) \equiv A \vee B$

Lemma (Gesetze von de Morgan)

$$\neg (A \land B) \equiv \neg A \lor \neg B \quad \neg (A \lor B) \equiv \neg A \land \neg B$$

Gleiches durch Gleiches Ersetzen

Definition

Eine Teilformel A einer Formel B ist ein Teilausdruck von B, der wiederum eine Formel ist

Satz

- 1 A, B Formeln und E, F Teilformeln von A, B
- **2** Gelte $E \equiv F$
- B ist das Resultat der Ersetzung von E durch F in A

Dann gilt $A \equiv B$

Beispiel

Wir betrachten die folgende Äquivalenz

$$p \rightarrow q \equiv \neg p \lor q$$

mit der folgenden Formel

$$(p \rightarrow q) \wedge r$$

Nun gilt

$$(\underline{p} \to \underline{q}) \wedge r \equiv (\underline{\neg p \vee q}) \wedge r$$