Real Estate Report

1) Generate the summary statistics for each variable in the table. (Use Data analysis tool pack). Write down your observation.

CRIME_RATE		AGE	
Mean	4.871976285	Mean	68.57490119
Standard Error	0.129860152	Standard Error	1.251369525
Median	4.82	Median	77.5
Mode	3.43	Mode	100
Standard		Standard	
Deviation	2.921131892	Deviation	28.14886141
Sample Variance	8.533011532	Sample Variance	792.3583985
	-		-
Kurtosis	1.189122464	Kurtosis	0.967715594
Skewness	0.021728079	Skewness	-0.59896264
Range	9.95	Range	97.1
Minimum	0.04	Minimum	2.9
Maximum	9.99	Maximum	100
Sum	2465.22	Sum	34698.9
Count		Count	506
	506	Count	500
INDUS	300	NOX	300
	300		300
	11.13677866		0.554695059
INDUS		NOX	
INDUS Mean	11.13677866	NOX Mean	0.554695059
INDUS Mean Standard Error	11.13677866 0.304979888	NOX Mean Standard Error	0.554695059 0.005151391
INDUS Mean Standard Error Median	11.13677866 0.304979888 9.69	Mean Standard Error Median	0.554695059 0.005151391 0.538
INDUS Mean Standard Error Median Mode	11.13677866 0.304979888 9.69	Mean Standard Error Median Mode	0.554695059 0.005151391 0.538
INDUS Mean Standard Error Median Mode Standard	11.13677866 0.304979888 9.69 18.1	Mean Standard Error Median Mode Standard	0.554695059 0.005151391 0.538 0.538
INDUS Mean Standard Error Median Mode Standard Deviation	11.13677866 0.304979888 9.69 18.1 6.860352941 47.06444247	Mean Standard Error Median Mode Standard Deviation Sample Variance	0.554695059 0.005151391 0.538 0.538 0.115877676
INDUS Mean Standard Error Median Mode Standard Deviation	11.13677866 0.304979888 9.69 18.1 6.860352941	Mean Standard Error Median Mode Standard Deviation	0.554695059 0.005151391 0.538 0.538 0.115877676
INDUS Mean Standard Error Median Mode Standard Deviation Sample Variance	11.13677866 0.304979888 9.69 18.1 6.860352941 47.06444247	Mean Standard Error Median Mode Standard Deviation Sample Variance	0.554695059 0.005151391 0.538 0.538 0.115877676 0.013427636
INDUS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis	11.13677866 0.304979888 9.69 18.1 6.860352941 47.06444247 - 1.233539601	Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis	0.554695059 0.005151391 0.538 0.538 0.115877676 0.013427636
INDUS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness	11.13677866 0.304979888 9.69 18.1 6.860352941 47.06444247 - 1.233539601 0.295021568	Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness	0.554695059 0.005151391 0.538 0.538 0.115877676 0.013427636 - 0.064667133 0.729307923
INDUS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range	11.13677866 0.304979888 9.69 18.1 6.860352941 47.06444247 - 1.233539601 0.295021568 27.28	Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range	0.554695059 0.005151391 0.538 0.538 0.115877676 0.013427636 - 0.064667133 0.729307923 0.486
INDUS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	11.13677866 0.304979888 9.69 18.1 6.860352941 47.06444247 - 1.233539601 0.295021568 27.28 0.46	Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	0.554695059 0.005151391 0.538 0.538 0.115877676 0.013427636 - 0.064667133 0.729307923 0.486 0.385

DISTANCE		TAX	
Mean	9.549407115	Mean	408.2371542
Standard Error	0.387084894	Standard Error	7.492388692

Median	5	Median	330
Mode	24	Mode	666
Standard		Standard	
Deviation	8.707259384	Deviation	168.5371161
Sample Variance	75.81636598	Sample Variance	28404.75949
	-		-
Kurtosis	0.867231994	Kurtosis	1.142407992
Skewness	1.004814648	Skewness	0.669955942
Range	23	Range	524
Minimum	1	Minimum	187
Maximum	24	Maximum	711
Sum	4832	Sum	206568
Count	506	Count	506

PTRATIO		AVG_ROOM	
Mean	18.4555336	Mean	6.284634387
Standard Error	0.096243568	Standard Error	0.031235142
Median	19.05	Median	6.2085
Mode	20.2	Mode	5.713
Standard		Standard	
Deviation	2.164945524	Deviation	0.702617143
Sample Variance	4.686989121	Sample Variance	0.49367085
	-		
Kurtosis	0.285091383	Kurtosis	1.891500366
	-		
Skewness	0.802324927	Skewness	0.403612133
Range	9.4	Range	5.219
Minimum	12.6	Minimum	3.561
Maximum	22	Maximum	8.78
Sum	9338.5	Sum	3180.025
Count	506	Count	506

LSTAT		AVG_PRICE	
Mean	12.65306324	Mean	22.53280632
Standard Error	0.317458906	Standard Error	0.408861147
Median	11.36	Median	21.2
Mode	8.05	Mode	50
Standard		Standard	
Deviation	7.141061511	Deviation	9.197104087
Sample Variance	50.99475951	Sample Variance	84.58672359
Kurtosis	0.493239517	Kurtosis	1.495196944

Skewness	0.906460094	Skewness	1.108098408
Range	36.24	Range	45
Minimum	1.73	Minimum	5
Maximum	37.97	Maximum	50
Sum	6402.45	Sum	11401.6
Count	506	Count	506

- The mean and median values of tax is farther as the outskirts values are high it can impact mean value. So here we can go with median value for central tendency,
- Skewness for average price is 1.108 so it depicts that most of the values are present to the left of the average values.
- Avg_room has kurtosis value of 1.891 which represents high peakedness and indus has low value of -1.23 which represents its platy kurtosis.
- Range of tax is 524 which shows the high outskirts value.
- Average price has standard deviation of 9.19 where the spread is high.

2) Plot a histogram of the Avg_Price variable. What do you infer?

AVG PRICE	
AVO_TRICE	
Mean	22.53280632
Standard Error	0.408861147
Median	21.2

Mode	50
Standard Deviation	9.197104087
Sample Variance	84.58672359
Kurtosis	1.495196944
Skewness	1.108098408
Range	45
Minimum	5
Maximum	50
Sum	11401.6
Count	506

Here we can see that mean and median are almost closer to each other. Also we can see that most of the data present to the left of average value, so positive skewness and also shows high peakedness.

3) Compute the covariance matrix. Share your observations.

	CRIME_				DISTA		PTRAT	AVG_R		AVG_P
	RATE	AGE	INDUS	NOX	NCE	TAX	10	00M	LSTAT	RICE
CRIME_	8.51614									
RATE	79									
	0.56291	790.7								
AGE	52	9247								
	-									
	0.11021	124.2	46.97							
INDUS	5	6783	143							
	0.00062	2.381	0.605	0.0134						
NOX	53	2119	8739	011						
DISTAN	-	111.5	35.47	0.6157	75.66					
CE	0.22986	4996	9714	1022	6531					
	-									
	8.22932	2397.	831.7	13.020	1333.	28348.				
TAX	2	9417	1333	5024	1167	6236				
PTRATI	0.06816	15.90	5.680	0.0473	8.743	167.82	4.677			
0	89	5425	8548	0365	4025	0822	7263			
		-	-	-	-	-	-			
AVG_R	0.05611	4.742	1.884	0.0245	1.281	34.515	0.539	0.4926		
OOM	78	538	2254	5483	277	101	695	952		
								-		
	-	120.8	29.52	0.4879	30.32	653.42	5.771	3.0736	50.89	
LSTAT	0.88268	3844	1811	7987	5392	0617	3002	55	3979	
		-	-	-	-	-	-		-	
AVG_PR	1.16201	97.39	30.46	0.4545	30.50	724.82	10.09	4.4845	48.35	84.419
ICE	22	615	0505	1241	083	043	068	656	1792	56

Here in the above table, average price vs crime rate has positive relationship and average price vs average room has <u>positive relationship</u>. Tax vs average price has <u>strong negative relationship</u>. The <u>other X variables</u> with average price has <u>negative relationship</u>.

- 4) Create a correlation matrix of all the variables (Use Data analysis tool pack).
- a) Which are the top 3 positively correlated pairs and

	CRIME				DISTA		PTRATI	AVG_R		AVG_
	_RATE	AGE	INDUS	NOX	NCE	TAX	0	OOM	LSTAT	PRICE
CRIME										
_RATE	1									
	0.0068									
AGE	5946	1								
	-									
	0.0055	0.6447								
INDUS	107	78511	1							
	0.0018	0.7314	0.7636							
NOX	5098	70104	51447	1						
DICTA	-	0.4560	0.5054	0.6444						
DISTA	0.0090	0.4560	0.5951	0.6114	4					
NCE	55	22452	29275	40563	1					
	0.0167	0.5064	0.7207	0.6680	0.0102					
TAX	485	55594	6018	232	0.9102 28189	1				
PTRATI	0.0108	0.2615	0.3832	0.1889	0.4647	0.4608				
0	0.0108	15012	47556	32677	41179	53035	1			
U	0039	13012	4/330	32077	411/9	33033	_			
AVG_R	0.0273	0.2402	0.3916	0.3021	0.2098	0.2920	0.3555			
OOM	9616	64931	75853	88188	46668	47833	01495	1		
00	-	0 1301	75055	00100	10000	17000	01.55	_		
	0.0423	0.6023	0.6037	0.5908	0.4886	0.5439	0.3740	0.6138		
LSTAT	983	38529	99716	78921	76335	93412	44317	08272	1	
		-	-	-	-	-	-		-	
AVG_P	0.0433	0.3769	0.4837	0.4273	0.3816	0.4685	0.5077	0.6953	0.7376	
RICE	3787	54565	2516	20772	26231	35934	86686	59947	62726	1

b) Which are the top 3 negatively correlated pairs.

Top 3 p	ositive	Top 3 negative		
Tax Vs Distance		Avg prive vs		
	0.910228189	LSTAT	-0.737662726	
NOX vs Indus		LSTAT vs		
	0.763651447	average room	-0.613808272	
NOX vs Age		Avgprice vs		
	0.731470104	Ptratio	-0.507786686	

From the above table we can see that age vs other X variables are highly correlated.

- 5) Build an initial regression model with AVG_PRICE as 'y' (Dependent variable) and LSTAT variable as Independent Variable. Generate the residual plot. (8 marks)
- a) What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and the Residual plot?

	Coefficients	Standard Error	t Stat	P-value
Intercept	34.55384088	0.562627355	61.41514552	3.7431E-236
LSTAT	-0.950049354	0.038733416	-24.52789985	5.0811E-88

From the above regression, we get adjusted R^2 of 0.54, which is somewhat low value to get explained Y by X values.

The coefficient of LSTAT is in **negative** which means Y value decreases with LSTAT.

Intercept is 34.558 which indicates that when X is 0, Y takes the respective value.

Residual plot shows that no traces of patterns.

b) Is LSTAT variable significant for the analysis based on your model?

The regression model gives a p-value of 5.08110339438785E-88 which is significant for analysis.

- 6) Build a new Regression model including LSTAT and AVG_ROOM together as independent variables and AVG_PRICE as dependent variable.
- a) Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and

has a value of 20 for L-STAT, then what will be the value of AVG_PRICE? How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/Undercharging?

	Coefficients	Standard Error	t Stat	P-value
Intercept	-1.358272812	3.17282778	-0.428095348	0.668764941
AVG_ROOM	5.094787984	0.4444655	11.46272991	3.47226E-27
LSTAT	-0.642358334	0.043731465	-14.68869925	6.66937E-41
Adjusted R Square	0.637124475	·	•	

Average price Y=-1.358272812 +5.094787984*7(Avg_room) + -0.642358334*20(LSTAT)

Average price		
21.45808		
overcharging		

b) Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square and explain.

From the Adjusted R^2 we get to know that previous model has value of 0.543 which is less than 0.637

7) Build another Regression model with all variables where AVG_PRICE alone be the Dependent Variable and all the other variables are independent. Interpret the output in terms of adjusted Rsquare, coefficient and Intercept values. Explain the significance of each independent variable with respect to AVG_PRICE.

		Standard		
	Coefficients	Error	t Stat	P-value
Intercept	29.24131526	4.817125596	6.070282926	2.53978E-09
CRIME_RATE	0.048725141	0.078418647	0.621346369	0.534657201
AGE	0.032770689	0.013097814	2.501996817	0.012670437
INDUS	0.130551399	0.063117334	2.068392165	0.03912086
			-	
NOX	-10.3211828	3.894036256	2.650510195	0.008293859
DISTANCE	0.261093575	0.067947067	3.842602576	0.000137546
			-	
TAX	-0.01440119	0.003905158	3.687736063	0.000251247

			-	
PTRATIO	-1.074305348	0.133601722	8.041104061	6.58642E-15
AVG_ROOM	4.125409152	0.442758999	9.317504929	3.89287E-19
			-	
LSTAT	-0.603486589	0.053081161	11.36912937	8.91071E-27

Adjusted R Square 0.688298647

- From the above analysis we can see that adjusted R^2 value is nearer to 1.
- We can also infer that Avg_room has highest coefficient of 4.125 and Lstat has lowest coefficient of -0.603.
- Intercept value is 29.241 which means average price will be 29.241 when all X variables are zero.
- The p-value of crime rate is 0.534 which is not significant.
- The other X variable such as Age,Indus,NOX,distance,tax,ptratio,avg_room are <u>significant</u> as their values are less than 0.05 .
- **8)** Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked and answer the questions below:
- a) Interpret the output of this model.

	Coefficients	Standard Error	t Stat	P-value
Intercept	29.42847349	4.804728624	6.124898157	1.84597E-09
AGE	0.03293496	0.013087055	2.516605952	0.012162875
INDUS	0.130710007	0.063077823	2.072202264	0.038761669
NOX	-10.27270508	3.890849222	-2.640221837	0.008545718
DISTANCE	0.261506423	0.067901841	3.851242024	0.000132887
TAX	-0.014452345	0.003901877	-3.703946406	0.000236072
PTRATIO	-1.071702473	0.133453529	-8.030529271	7.08251E-15
AVG_ROOM	4.125468959	0.44248544	9.323400461	3.68969E-19
LSTAT	-0.605159282	0.0529801	-11.42238841	5.41844E-27

Adjusted R Square 0.688683682

Here the above model explains 68% of variance and has intercept values of 29.428 which describes that if all independent values are zero average price will be 29.428. Ultimately this model is acceptable as it has good r^2 value. The residual plot depicts no traces of pattern.

b) Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square?

Adjusted R Square 1	0.688299
Adjusted R Square 2	0.688684

There is no major difference in Adjusted R^2 of both models. But the value of F in previous model is 124.90 and 140.64 in recent model. So, from this we can say that the last model is better.

c) Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town?

NOX	-10.27270508
PTRATIO	-1.071702473
LSTAT	-0.605159282
TAX	-0.014452345
AGE	0.03293496
INDUS	0.130710007
DISTANCE	0.261506423
AVG_ROOM	4.125468959

From the above table we can predict that if <u>NOX value increases</u> average price will <u>decrease</u> as it is negatively correlated. So, for every one unit increase in NOX will show significant decrease of 10.27 in average price.

d) Write the regression equation from this model.

```
Y =29.428+0.03*age+0.13*indus+(-10.27*NOX) +0.261*distance+(-0.01*tax) +(-1.071*ptratio)+4.12*avgroom+(-0.605*ltstat)
```