

Ou: o que fazer caso seus dados não sejam normais?

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Métodos não paramétricos Felipe

Figueiredo

Normandade

Transformaçõe

paramétricos

Resumo

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos Felipe

Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

Resumo

Discussão da aula passada

Métodos não paramétricos Felipe

Figueiredo

Normalidade

Tanoiormaçõe

paramétrico

Resumo

Aprofundamer

Discussão da leitura obrigatória da aula passada

Na prática...

Pathol Oncol Res. 2018 Apr;24(2):289-296. doi: 10.1007/s12253-017-0232-4. Epub 2017 May 4.

Expression of Hypoxia-Associated Protein HIF-1α in Follicular Thyroid Cancer is Associated with Distant Metastasis.

Klaus A¹, Fathi O¹, Tatjana TW², Bruno N³, Oskar K⁴.

Author information

Abstract

Follicular thyroid carcinomas (FTCs) are the second most common malignant neoplasia of the thyroid and in general its prognosis is quite favorable. However, the occurrence of metastases or non-responsiveness to radiolodine therapy worsens the prognosis considerably. We evaluated immunohistochemically the expression of hypoxia-associated proteins by hypoxia-induced factor 1α (HIF-1α), the stromaremodeling marker Tenascin C, as well as markers for the epithelial-mesenchymal transition (EMT), namely E-cadherier and slug in a series of 59 sporadic FTCs. In addition, various clinicopathologic parameters were assessed like ThM-staging, age, tumor size as well as tumor characteristics like desmoplasia, necrosis, and calcification. Overexpression of HIF-1α was seen in 29 of 59 tumors (49.2%) including 21 (35.8%) FTC with strong expression of tumor cell groups. HIF-1α correlated significantly with metastasis (p < 0.001; Mann-Whitney U test), degree of desmoplasia (p = 0.042, Kruskal-Wallis test), hencrosis (p = 0.002), age (p = 0.011, Kruskal-Wallis test) and tumor stage UICC (p = 0.022, Kruskal-Wallis test). Furthermore, metastasis was associated with the degree of desmoplasia (p = 0.014; Fisher's exact test), and age (p = 0.001, Mann-Whitney U test), in a Cox proportional hazards model, only metastasis remained as an independent risk factor for overall survival (hazard rate: 10.2 [95% CI, 02.19 to 47.26]; p = 0.003). Our data suggest that HIF-1α plays a critical role in the remodeling of the extracellular matrix as well as metastasizing process of follicular thyroid carcinoma and targeting hypoxia-associated and -regulated proteins may be considered as potential targets for personalized medicine.

KEYWORDS: Desmoplastic stroma reaction; Follicular thyroid cancer; HIF-1α; Hypoxia-associated proteins; Metastasis; Tenascin

PMID: 28474313 DOI: 10.1007/s12253-017-0232-4

Métodos não paramétricos Felipe

Figueiredo

Normalidade

Tuanafaunaaä

Métodos não paramétricos

Resumo

A hipótese da normalidade

 Todos os métodos que vimos até aqui presumem que os dados são normalmente distribuídos

Desvios da normalidade precisam ser contornados¹

Veremos duas maneiras: transformações e alternativas

Mas antes...

... como identificar essa necessidade?

Métodos não paramétricos Felipe

Figueiredo

Normanuaue

Normalidade

Tanolomaçõe

parametri

Resumo

há controvérsias:

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

> Felipe Figueiredo

Normalidad

Visualização Normalidade

Transformaçõe

paramétrio

Resumo

Dados normais

Métodos não paramétricos

Felipe Figueiredo

Normalida

Visualização

Normalidade

Transformaçõe

paramétri

Resumo

Dados não normais

Métodos não paramétricos

Felipe Figueiredo

Normalidac Visualização

Normalidade
Transformaçã

Métodos não

Pocumo

Dados normais

Métodos não paramétricos

Felipe Figueiredo

Normalida
Visualização
Normalidade

Transformaçõe

paramétri

Resumo

Dados não normais

Métodos não paramétricos

Felipe Figueiredo

Normalidac
Visualização
Normalidade

Transformaçõe

paramétrio

Resumo

Felipe Figueiredo

Normalida
Visualização
Normalidade

Transformaçõe

paramétrio

Resumo

Visualização - boxplot

Métodos não paramétricos

Felipe Figueiredo

Normalidae
Visualização
Normalidade

Transformaçõe

paramétri

Resumo

O Q-Q plot

 Gráfico que compara os quantis da amostra com os quantis teóricos

Adicionalmente uma reta "ideal" é sobreposta, como referência

Dados normalmente distribuídos ficam próximos da reta

Princípio

Quanto maior o desvio da normalidade...

... maior a distância à reta

Métodos não paramétricos

> Felipe Figueiredo

Normalidad Visualização

Transformaçõe

paramétric

Resumo

Visualização - QQ plot

Métodos não paramétricos

Felipe Figueiredo

Normalidad Visualização Normalidade

Transformaçõe

paramétrio

Resumo

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

> Felipe Figueiredo

Visualização

Normalidade

Transformaçõe

paramétrio

Resumo

> Felipe Figueiredo

Visualização

Normalidade

oaramétri

Resumo

Aprofundamen

Objetivo: é possível determinar se uma amostra veio de uma

população normalmente distribuída?

Felipe Figueiredo

Visualização Normalidade

Transformaçõ

paramétr

Resumo

Aprofundamen

Resposta curta: NÃO.

Objetivo: é possível determinar se uma amostra veio de uma população normalmente distribuída?

Felipe Figueiredo

Visualização Normalidade

Transformaçõe

paramétr

Resumo

Aprofundamen

 Objetivo: é possível determinar se uma amostra veio de uma população normalmente distribuída?

Resposta curta: NÃO.

> Felipe Figueiredo

Visualização Normalidado

Transformaçõe

oaramétri

Resumo

Aprofundamen

Objetivo: é possível determinar se uma amostra veio de uma população normalmente distribuída?

Resposta curta: NÃO.

Resposta longa: podemos examinar se há evidências para "aceitar" esta hipótese²

Alguns testes contra a normalidade

Métodos não paramétricos

Felipe Figueiredo

Visualização Normalidade

Transformaçõe

paramétri

Regumo

- Shapiro-Wilk
- Anderson-Darling
- Kolmogorov-Smirnov

Alguns testes contra a normalidade

Métodos não paramétricos

Felipe Figueiredo

Visualização Normalidade

Transformaçõe

paramétri

Regumo

- Shapiro-Wilk
- Anderson-Darling
- Kolmogorov-Smirnov

Felipe Figueiredo

Visualização Normalidade

Transformaçõe

paramétri

Resumo

p-value = 0.7766

Métodos não paramétricos

Felipe Figueiredo

Visualização

Normalidade

Transformaçõe

paramétri

Resumo

Felipe Figueiredo

Visualização

Normalidade

Transformaçõe

paramétri

Resumo

Métodos não paramétricos Felipe

p-value = 1.657e-09

Figueiredo

Normalidade
Transformaçõe

nanoiormaçõe

Desimo

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformações

Métodos não

Resumo

Transformações

 Podemos aplicar uma transformação nos dados, para coagi-los a se aproximar das premissas requeridas

Transformações usuais incluem:

- logaritmo
- exponencial
- raiz quadrada
- potências

Geralmente envolve tentativa e erro ³

Hipóteses sobre o problema ou desenho experimental ajudam

Métodos não paramétricos Felipe

Figueiredo

Normalidade

Transformações

Métodos não paramétricos

Resumo

³Mas a transformação de Box-Cox pode ajudar!

Métodos não paramétricos Felipe

Figueiredo

Normalidade

Transformações
Transformações

Métodos não

Resumo

Aprofundament

Transformação sugerida: logaritmo.

Histogram of log(x2)

Dados normais x dados log-transformados

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformações

Métodos não

Resumo

> Felipe Figueiredo

Normalidade

Transformações

Métodos nao paramétricos

Resumo

Aprofundame

(p-valor S-W: 1.657e-09) x (p-valor S-W: 0.05032)

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo
- 5 Aprofundamento
 - Aprofundamento

Métodos não paramétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

Intro

l amostra

3+ amostras Correlação

Resumo

usam a distribuição dos dados^a...

...para possibilitar cálculos simples como média e DP.

^aGeralmente distribuição Normal

Métodos não paramétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

Intro

amostra

+ amostras

orrelação

Resumo

Aprofundament

Métodos não paramétricos

Não presumem nada sobre a distribuição dos dados.

Métodos não paramétricos Felipe

Figueiredo

Normalidade

Iransformaçõe

Métodos não paramétricos

Intro

1 amostra

2 amostras

3+ amostra Correlação

Resumo

Aprofundamen

Sem média e DP⁴, a única coisa que resta para comparar...

... é a **ordem** dos dados (*ranks*).

⁴ tendência central e dispersão, respectivamente

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo
- 5 Aprofundamento
 - Aprofundamento

Métodos não paramétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

1 amostra

2 amostras

3+ amostras Correlação

Resumo

Teste para 1 amostra

Desvios da normalidade severos impactam os testes paramétricos

Nesses casos, tenta-se transformar os dados, se possível

Caso n\(\tilde{a}\)o seja, deve-se usar um teste n\(\tilde{a}\)o param\(\tilde{e}\)trico⁵

Teste para uma amostra

Ao invés do teste t, usar o teste de Wilcoxon (Capítulo 25)

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

1 amostra

2 amostras

s+ amostras Correlação

Resumo

⁵Sem transformação!

Quais são as variáveis?

- Dependente:
 - categórica ordinal
 - numérica discreta
 - numérica contínua (não-normal)
- Independente: parâmetro fixo

Exemplo

escore HHS mediano ~ 70

Exemplo

escore ASA mediano \sim II

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

Intro

1 amostra

2 amostras

3+ amostras Correlação

Resumo

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos Felipe

Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos Intro

2 amostras

3+ amostras Correlação

Resumo

Dados normais

- amostras independentes ⇒ t-teste não pareado
- amostras pareadas ⇒ t-teste pareado

Dados não normais

- amostras independentes ⇒ Mann-Whitney (Capítulo 24)
- amostras pareadas ⇒ Wilcoxon (Capítulo 25)

Métodos não paramétricos Felipe

Figueiredo

rvormandado

Transformaçõe:

paramétricos Intro

> 1 amostra 2 amostras

3+ amostras Correlação

Resumo

Quais são as variáveis?

- Dependente:
 - categórica ordinal
 - numérica discreta
 - numérica contínua (não-normal)
- Independente:
 - categórica ordinal
 - numérica discreta
 - numérica contínua (não-normal)

Esta relação pode ser expressa como

escore HHS tratamento ~ escore HHS controle

Métodos não paramétricos

Felipe Figueiredo

Normandade

Iransformaçõe

paramétricos Intro

> 1 amostra 2 amostras

3+ amostra Correlação

Resumo

Em termos práticos...

P: Estas amostras são significativamente diferentes?

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

1 amostra 2 amostras

3+ amostra:

Resumo

Exemplo

- Assumindo⁶ que elas são
 - normalmente distribuídas, e
 - independentes,

poderíamos fazer um teste t não pareado.

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformaçõe

paramétricos

1 amostr

2 amostras 3+ amostra:

3+ amostra Correlação

Resumo

Exemplo

Assumindo⁶ que elas são

normalmente distribuídas, e

independentes,

poderíamos fazer um teste t não pareado.

Resultado: p-valor = 0.259

Pergunta

Isto significa que as amostras não são significativamente diferentes?

Métodos não paramétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

paramétricos

1 amostra 2 amostras

3+ amostra:

Resumo

⁶ pelo desenho experimental

Exemplo

Assumindo⁶ que elas são

normalmente distribuídas, e

independentes,

poderíamos fazer um teste t não pareado.

Resultado: p-valor = 0.259

Pergunta

Isto significa que as amostras não são significativamente diferentes?

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformaçõe

paramétricos

1 amostra 2 amostras

3+ amostra: Correlação

Resumo

⁶ pelo desenho experimental

Novamente...

Métodos não paramétricos Felipe

Figueiredo

Normandade

Iransformaçõe

paramétricos

1 amostra 2 amostras

3+ amostra

Resumo

Χ

0 5 10 15 20

Métodos não paramétricos

Felipe Figueiredo

Normandade

Transformaçõe

Métodos não paramétricos

Intro 1 amostra

2 amostras 3+ amostras

Correlação

Resumo

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

1 amostra 2 amostras

3+ amostra:

Resumo

Teste t

p-valor = 0.259 (não significativo)

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformações

Métodos não paramétricos

1 amostra 2 amostras

2 amostras 3+ amostra

3+ amostra Correlação

Resumo

Teste t

p-valor = 0.259 (não significativo)

Aplicando o teste de Shapiro-Wilk em x e y

x: p-valor = 5.515e-16

y: p-valor = 5.274e-09

Métodos não paramétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos Intro

1 amostra 2 amostras

3+ amostra

Resumo

Teste t

p-valor = 0.259 (não significativo)

Aplicando o teste de Shapiro-Wilk em x e y

- Devemos rejeitar a hipótese de normalidade.
- Então o teste t não é apropriado!
- Substituto: teste de Mann-Whitney

Métodos não paramétricos Felipe

Figueiredo

Normalidade

Transformações

paramétricos Intro

1 amostra 2 amostras

3+ amostra:

Resumo

Teste t

p-valor = 0.259 (não significativo)

Aplicando o teste de Shapiro-Wilk em x e y

```
x: p-valor = 5.515e-16y: p-valor = 5.274e-09
```

- Devemos rejeitar a hipótese de normalidade.
- Então o teste t não é apropriado!
- Substituto: teste de Mann-Whitney

Teste de Mann-Whitney

```
p-value = 0.0001346 (significativo)
```

Métodos não paramétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

paramétricos Intro

1 amostra 2 amostras

3+ amostra: Correlação

Resumo

Na prática...

J Complement Integr Med, 2016 Jun 1;13(2):189-93. doi: 10.1515/jcim-2014-0079.

Effect of 6 months intense Yoga practice on lipid profile, thyroxine medication and serum TSH level in women suffering from hypothyroidism: A pilot study.

Nilakanthan S, Metri K, Raghuram N, Hongasandra N,

Abstract

BACKGROUND: A significant number of women in India are suffering from hypothyroidism. Hypothyroidism is characterized by elevated lipid profiles and thyroid stimulation hormone (TSH). It leads many comorbid conditions such as coronary artery disease, obesity, depression, osteoporosis, sleep apnea, and etc. Yoga is proven to be effective in reducing weight, dyslipidemia, depression and it brings the balance in autonomous nervous system. We aimed to study the effect of 6 months yoga practice on lipid profile, thyroxine requirement and serum TSH in women suffering from hypothyroidism.

METHODS: Twenty-two household women suffering from hypothyroidism between the age range of 30 and 40 (mean±SD; 36.7±3.2) years, with average 4±1.12-year history of hypothyroidism were included in this study. Subjects with known cardiac issues, hypothyroidism kere excluded from this study, None of the subjects were on any other medication except thyroxine which was kept during the intervention phage (mean 65.78±22.74 mcg). All the subjects underwent 6 months of yoga practice 1 h daily for 4 days a week. Lipid profile, thyroxine dosage and serum TSH level were assessed before and after intervention. Data was analyzed using paired sample t test & Wilcoxon's signed rank test.

RESULTS: The paired sample 1-test showed significant reduction in total cholesterol (p=0.006; -8.99 %), low-density lipporportein (LDL) (p=0.002; -9.81 %) and triglycerides (p=0.013; -7.6 %), and there was a significant improvement in high-density lipporportein (HDL) (p=0.02; +9.65 %) along with nonsignificant reduction in TSH level (p=0.452; -9.72 %). Wilcoxon signed-rank test showed significant reduction in thyroxine medication score (p=0.029; -15.30 %) from.

CONCLUSION: 6 months practice of yoga may help in improving cholesterol level, serum TSH, may also help in reducing the thyroxine requirement in female patients suffering from hypothyroidism. However, further randomized controlled studies need to be conducted to confirm the present finding.

PMID: 27054602 DOI: 10.1515/jcim-2014-0079

Métodos não paramétricos Felipe

Figueiredo

ivormalidade

Transformaçõe

Métodos não paramétricos

1 amostra 2 amostras

3+ amostras

Resumo

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

1 amostra 2 amostras

3+ amostras

Jorrelação

Resumo

Relembrando

Métodos não paramétricos Felipe

Figueiredo

3+ amostras

- Para testar a diferença nas médias de 3 ou mais amostras
 - Análise de Variâncias (ANOVA)
 - Leva em conta as variâncias entre os grupos (inter)
 - Leva em conta a variância em cada grupo (intra)
 - H₀: Todos os grupos são =
 - H₁: pelo menos um grupo é significativamente ≠

P: Estas amostras são significativamente diferentes?

Medições de qualidade do ar em NY

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

Intro 1 amostra

2 amostras 3+ amostras

+ amostras orrelação

Resumo

Quais são as variáveis?

- Dependente:
 - categórica ordinal
 - numérica discreta
 - numérica contínua (não-normal)
- Independente:
 - grupo (categórica nominal 3+ níveis)

Esta relação pode ser expressa como

Ozônio ~ Mês

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformações

Métodos não paramétricos

1 amostra

amostras

3+ amostras

orrelação

Resumo

Kruskal-Wallis

ANOVA

p-valor = 0.0776 (não significativo)

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

1 amostra

2 amostras

3+ amostras

Resumo

Kruskal-Wallis

ANOVA

p-valor = 0.0776 (não significativo)

• Shapiro-Wilk (Ozônio por mês (Maio - Setembro):

< 0.0001, 0.0628, 0.86689, 0.090325, < 0.0001

Métodos não paramétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

Intro

1 amostra 2 amostras

3+ amostras

+ amostras

Resumo

Kruskal-Wallis

ANOVA

p-valor = 0.0776 (não significativo)

- Shapiro-Wilk (Ozônio por mês (Maio Setembro):
 < 0.0001, 0.0628, 0.86689, 0.090325, < 0.0001
- Devemos rejeitar a hipótese de normalidade.
- Então o ANOVA não é apropriado!
- Substituto: teste de Kruskal-Wallis (Capítulo 30)

Métodos não paramétricos Felipe

Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

1 amostra

2 amostras

3+ amostras

Resumo

ANOVA

p-valor = 0.0776 (não significativo)

- Shapiro-Wilk (Ozônio por mês (Maio Setembro):
 < 0.0001, 0.0628, 0.86689, 0.090325, < 0.0001
- Devemos rejeitar a hipótese de normalidade.
- Então o ANOVA não é apropriado!
- Substituto: teste de Kruskal-Wallis (Capítulo 30)

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformações

Métodos não paramétricos

1 amostra

2 amostras 3+ amostras

rrelação

esumo

Aprofundament

Teste de Kruskal-Wallis

p-value = 6.901e-06 (significativo)

Métodos não paramétricos Felipe

Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

Intro

1 amostra

3+ amostras

- amostras orrelação

Resumo

Aprofundamen

Mais quais são os meses diferentes?

Mês x Mês (correção de Bonferroni)

- 5 x 6: p = 1.0000
- 5 x 7: p = 0.0003
- 5 x 8: p = 0.0012
- 5 x 9: p = 1.0000
- 6 x 7: p = 0.1414
- 0 x 7. p = 0.141
- 6 x 8: p = 0.2591 6 x 9: p = 1.0000
- 7 x 8: p = 1.0000
- 7 x 9: p = 0.0074
- 8 x 9: p = 0.0325

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transfermessä

Métodos não

parametrico Intro

1 amostra

3+ amostras

orrelação

Resumo

Na prática...

Int J Health Sci (Qassim), 2017 Apr-Jun;11(2):28-34.

Comparative evaluation of different histoprocessing methods.

Singla K1, Sandhu SV2, Pal RAGK3, Bansal H4, Bhullar RK2, Kaur P2.

Author information

Abstract

OBJECTIVES: Tissue processing for years is carried out by the conventional method, which is a time-consuming technique resulting in 1-day delay in diagnosis. However, in this area of modernization and managed care, rapid diagnosis is increasingly desirable to fulfill the needs of clinicians. The objective of the present study was to compare and determine the positive impact on turnaround times of different tissue processing methods by comparing the color intensity, cytoplasmic details, and nuclear details of the tissues processed by three methods.

METHODS: A total of sixty biopsied tissues were grossed and cut into three equal parts. One part was processed by conventional method, second by rapid manual, and third by microwave-assisted method. The slides obtained after processing were circulated among four observers for evaluation. Sections processed by the three techniques were subjected to statistical analysis by Kruskal-Wallis test. Cronbach's alpha reliability test was applied to assess the reliability among observers. One-way analysis of variance (ANOVA) was used for comparing mean shrinkage before and after processing.

RESULTS: All observers were assumed to be reliable as the Cronbach's reliability test was statistically significant. The results were statistically non-significant as observed by Kruskal-Walilis test. One-way ANOVA revealed a significant value on comparison of the tissue shrinkage processed by the three techniques. The histological evaluation of the tissues revealed that the nuclear-cytoplasmic contrast was good in tissues processed by microwave, followed by conventional and rapid manual processing techniques. The color intensity of the tissues processed by microwave was crisper, and there was a good contrast between the hematoxylin and eosin-stained areas as compared to manual methods.

CONCLUSION: The overall quality of tissues from all the three methods was similar. It was not feasible to distinguish between the three techniques by observing the tissue sections. Microwave-assisted tissue processing has reduced the time from sample reception to diagnosis, thus enabling the same-day processing and diagnosis.

KEYWORDS: Conventional; fixation; kitchen microwave; rapid manual; tissue processing

PMID: 28539860 PMCID: PMC5426407

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformação

Métodos não

paramétricos

2 amostras

3+ amostras

esumo

esumo

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos Felipe

Figueiredo

Normalidade

Transformaçõe

Métodos não paramétricos

1 amostra

3+ amostras

Correlação

Resumo

Correlação não-paramétrica

A correlação de Pearson

- associa dados numéricos (contínuos);
- mede a direção e força desta associação.

Correlação de Spearman

Ao invés da correlação linear de Pearson...

... usar a correlação de ranks de Spearman (Capítulo 17).

Métodos não paramétricos Felipe

Figueiredo

Hormandado

Métodos não

paramétricos Intro

1 amostra

2 amostras

3+ amostras Correlação

Resumo

Na prática...

Biomed Res Int. 2015;2015:615034. doi: 10.1155/2015/615034. Epub 2015 Feb 1.

The intergenerational effects on birth weight and its relations to maternal conditions, São Paulo, Brazil.

Costa e Silva LI¹, Gomes FM¹, Valente MH¹, Escobar AM¹, Brentani AV², Grisi SJ².

Author information

Abstract

BACKGROUND AND OBJECTIVES: Parents' birth weight acts as a predictor for the descendant birth weight, with the correlation more strongly transmitted through maternal line. The present research aims to study the correlation between the child's low or increased birth weight, the mother's birth weight, and maternal conditions.

METHODS: 773 mother-infant binomials were identified with information on both the baby's and the mother's birth weight recorded. Group studies were constituted, dividing the sample according to birth weight (<2,900 grams (g)) and ≥3,500 grams (g)). The length at birth was also studied in children ≤47.5 cm (lower quartile). Chi(2) test or Fisher's exact test, Spearman's Rho, and odds ratio were performed in order to investigate the relation between the children's weight and length at birth and the mothers' and children's variables.

RESULTS: The glrls were heavier at birth than their mothers, with an average increase at birth weight between the generations of 79 g. The child's birth weight <2,500 g (hisher 0.264, Sparaman's Rho 0.048; OR 2.1 and OR lower 0.7) or with maternal stature below the lower quartile (<157 cm) (Chi (2) sig 0.323; with Sparaman's Rho 0.036; OR 1.5 and OR lower 0.7). The child's low birth weight (<2,500 g) was lightly correlated with drug use by the mother during pregnancy (Fisher 0.083; Sparaman's Rho 0.080; OR 4.9 and OR lower 1.0). The child's birth weight <2,500 showed increased correlation with gestational age lower than 38 weeks and 3 days (Chi (2) sig 0.002; Sparaman's Rho 0.113; OR 3.2 and OR lower 1.5). The child's weight at birth ≥3,500 g showed strong correlation with maternal weight at birth ≥3,500 g (Chi (2) sig 0; Sparaman's Rho +0.142; OR 0.5 and OR upper 0.7). It was also revealed that the higher the maternal prepregnancy BMI, the stronger the correlation with child's birth weight ≥3,500 g (maternal prepregnancy BMI > 25.0 with Chi (2) sig 0.013; Sparaman's Rho 0.95; OR 1.5 and OR upper 2.17) and (maternal prepregnancy BMI > 30.0 with Chi (2) sig 0.013; Sparaman's Rho 0.05; OR 1.5 and OR upper 3.25 and 0.00 signarman's Rho 0.105; OR 4.3 and OR upper 3.25 and 0.00 signarman's Rho 0.105; OR 4.3 and OR upper 3.25 and 0.00 signarman's Rho 0.105; OR 4.3 and OR lower 1.55.

CONCLUSIONS: The mother's increased weight at birth and the prenatal overweight or obesity were correlated with increased weight and length at birth of the newborn, coupled with the tendency of increasing birth weight between generations of mothers and daughters. Also, descendants with smaller length at birth are the children of women with the lowest statures.

Métodos não paramétricos

Felipe Figueiredo

Normalidade

Transformaçã

Métodos não paramétricos

Intro

2 amostras

3+ amostras

Correlação

Resumo

Número de resultados no PUBMED7

• t-test: 61488

ANOVA: 431252

Wilcoxon: 19881

Mann-Whitney: 25571

Kruskal-Wallis: 11943

Shapiro-Wilk: 519

Kolmongorov-Smirnoff: 0

Anderson-Darling: 49

Ohi-square: 107277

OR: 221034

RR: 344996

Métodos não paramétricos Felipe

Figueiredo

Normalidade

Transformaçõe

Métodos nao paramétricos

Resumo

⁷ Levantamento feito em 2017-11-30

Na prática...

Pathol Oncol Res. 2018 Apr;24(2):289-296. doi: 10.1007/s12253-017-0232-4. Epub 2017 May 4.

Expression of Hypoxia-Associated Protein HIF-1α in Follicular Thyroid Cancer is Associated with Distant Metastasis.

Klaus A¹, Fathi O¹, Tatjana TW², Bruno N³, Oskar K⁴.

Author information

Abstract

Follicular thyroid carcinomas (FTCs) are the second most common malignant neoplasia of the thyroid and in general its prognosis is quite favorable. However, the occurrence of metastases or non-responsiveness to radiolodine therapy worsens the prognosis considerably. We evaluated immunohistochemically the expression of hypoxia-associated proteins by hypoxia-induced factor 10 (HiF-10), the stroma-remodeling marker Tenascin C, as well as markers for the epithelial-mesenchymal transition (EMT), namely E-cadherin and slug in a series of 95 eporation FTCs. In addition, various clinicopathologic parameters were assessed like ThM-staging, age nor size as well as tumor characteristics like desmoplasia, necrosis, and calcification. Overexpression of HiF-10 was seen in 29 of 59 tumors (49.2%) including 21 (35.6%) FTC with strong expression of tumor cell groups. HiF-10 correlated significantly with metastasis (p < 0.001; Mann-Whitney U test), degree of desmoplasia (p = 0.042, Kruskal-Wallis test), tenascin C expression (p = 0.042, Kruskal-Wallis test), calcification (p < 0.025, Kruskal-Wallis test), necrosis (p = 0.002), age (p = 0.011, Kruskal-Wallis test) and tumor stage UICC (p = 0.022, Kruskal-Wallis test), Furthermore, metastasis was associated with the degree of desmoplasia (p = 0.014; Fisher's exact test), tumor size (p = 0.015, Mann-Whitney U test), and age (p = 0.001, Mann-Whitney U test), in a Cox proportional hazards model, only metastasis remained as an independent risk factor for overall survival (hazard rate: 10.2 [95% Cl, 0.219 to 47.26]; p = 0.003). Our data suggest that HIF-10 plays a critical role in the remodeling of the extracellular matrix as well as metastasizing process of follicular thyroid carcinoma and targeting hypoxia-associated and -regulated proteins may be considered as potential targets for personalized medicine.

KEYWORDS: Desmoplastic stroma reaction; Follicular thyroid cancer; HIF-1α; Hypoxia-associated proteins; Metastasis; Tenascin

PMID: 28474313 DOI: 10.1007/s12253-017-0232-4

Métodos não paramétricos Felipe

Figueiredo

ivormalidade

Transformaçõ

Métodos não paramétricos

Resumo

Resumo (teste oftálmico)

Table 37.1. Selecting a Statistical Test

Goal	Type of Data				
	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)	Binomial (Two Possible Outcomes)	Survival Time	
Describe one group	Mean, SD	Median, interquartile range	Proportion	Kaplan Meier survival curve	
Compare one group to a	One-sample t test	Wilcoxon test	Chi-square	_	
hypothetical value			or		
G	Manager day and	Maria Walia	Binomial test**		
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	Fisher's test (chi-square for large samples)	Log-rank test or Mantel-Haenszel*	
Compare two paired groups	Paired t test	Wilcoxon test	McNemar's test	Conditional proportional hazards regression**	
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test	Chi-square test	Cox proportional hazard regression*	
Compare three or more matched groups	Repeated-measures ANOVA	Friedman test	Cochrane Q**	Conditional proportional hazards regression**	
Quantify association between two variables	Pearson correlation	Spearman correlation	Contingency coefficients**		
Predict value from another measured variable	Simple linear regression or Nonlinear regression	Nonparametric regression**	Simple logistic regression*	Cox proportional hazard regression*	
Predict value from several measured or binomial variables	Multiple linear regression* or Multiple nonlinear regression**		Multiple logistic regression*	Cox proportional hazard regression*	

^{*}Only briefly mentioned in this book.

^{**}Not discussed in this book.

Resumo (agora sim)

Goal	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)
Describe one group	Mean, SD	Median, interquartile range
Compare one group to a hypothetical value	One-sample t test	Wilcoxon test
Compare two unpaired groups	Unpaired t test	Mann-Whitney test
Compare two paired groups	Paired t test	Wilcoxon test
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test
Compare three or more matched groups	Repeated-measures ANOVA	Friedman test
Quantify association between two variables	Pearson correlation	Spearman correlation

Métodos não paramétricos

Felipe Figueiredo

vormandade

ransiormaçõe:

paramétricos

Resumo

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

> Felipe Figueiredo

Normalidade

Transformaçõ

Métodos não paramétricos

Resun

Aprofundamento

Aprofundamento

Aprofundamento

Leitura obrigatória

- Capítulo 37
- Capítulo 38

Leitura recomendada

- Parte VI Designing Clinical Trials
- Trechos de testes não paramétricos que pulamos dos caps:
 - 17
 - 24
 - 25
 - 30

Métodos não paramétricos

Felipe Figueiredo

Normandade

Iransformaçõe

Métodos não paramétricos

Resumo