

Feature Engineering & Data Exploration

Dr Srećko Joksimović

Feature Engineering

Applying domain knowledge to create new features that allow machine learning algorithms to improve performance (or work at all)

Why so important?

- More important than algorithm selection
- Algorithms have no deeper understanding of data
- Intuition is good, but risky remember to evaluate
 - For example, predicting health status or wellbeing:
 - Your weight in kilograms to the first decimal place (e.g., 86.4)
 - Your height in centimetres (e.g., 172).
 - Why not BMI, instead?

Example: Date/Time Fields

Example: Dummy variables

	Num	Num	Num
•••	higher_education	undergraduate	high_school
	1	0	0
	0	1	0
	0	0	1

Example: Text analysis

<u>Text</u> analysis, also known as <u>text</u> mining, is a machine learning technique used to automatically extract value from <u>text</u> data. With the help of natural language processing (NLP), <u>text</u> analysis tools are able to understand, analyze, and extract insights from your unstructured data.

TEXT appears 4 times

Example: Text analysis

Text analysis, also known as text mining, is a machine learning technique used to automatically extract value from text data. With the help of natural language processing (NLP), text analysis tools are able to understand, analyze, and extract insights from your unstructured data.

 text	learn	process
4	1	1

Example: Binning

 value	bin	
2	Low	
45	Mid	
3	Low	
85	High	
28	Low	

Example: Computed from Existing Features

debt	income
10,134	100,000
85,234	134,000
8,112	21,500
0	45,900
17,534	52,000

debt_income_ratio
0.10
0.64
0.38
0
0.34

Outliers

What are outliers?

An **outlier** is a data point that's significantly different from the remaining data

Detecting outliers

Using visualization plots

like **boxplot** and **scatterplot**

Detecting outliers

Using a normal distribution (mean and std)

Handling outliers

- **Trimming:** Simply removing the outliers from our dataset.
- Imputing: We treat outliers as missing data, and we apply missing data imputation techniques.
- Discretization: We place outliers in edge bins with higher or lower values of the distribution.
- Censoring: Capping the variable distribution at the maximum and minimum values.

Data Exploration

Data Exploration

- Variable identification
- Univariate analysis
- Bi-variate analysis

Variable identification

- Identify Predictor (Input) and Target (output) variables.
- Identify the data type and category of the variables.

Student_ID	Gender	Prev_Exam_Marks	Height (cm)	Weight Caregory (kgs)	Play Cricket
S001	M	65	178	61	1
S002	F	75	174	56	0
S003	M	45	163	62	1
S004	M	57	175	70	0
S005	F	59	162	67	0

Source: https://www.analyticsvidhya.com/blog/2016/01/guide-data-exploration/

Univariate analysis

- Exploring variables one by one
- Available methods depending on the variable category

Source: https://www.analyticsvidhya.com/blog/2016/01/guide-data-exploration/

Nominal data

Descriptive stats and visualisations

Ordinal data

Descriptive stats and visualisations

Interval data

Descriptive stats and visualisations

Ratio data

Descriptive stats and visualisations

Bi-variate analysis

- Exploring the association between two (or more) variables
- Common combinations:
 - Categorical & categorical
 - Continuous & continuous
 - Categorical & continuous

Source: https://www.analyticsvidhya.com/blog/2016/01/guide-data-exploration/

Two categorical variables

Table 6.1. Numerical Summary of Hometown Description

Hometown	Count	Proportion	Percent
Rural	75	75/555 = 0.14	0.14×100
Suburb	296	296/555 = 0.53	0.53×100
Small Town	139	139/555 = 0.25	0.25×100
Big City	45	45/555 = 0.08	0.08×100
Total	n = 555	555/555 = 1.0	1.0×100

Freshman	Sophomore	Junior	Senior	Total
42	55	76	81	254
58	45	24	19	146
100	100	100	100	400
	42 58	42 55 58 45	42 55 76 58 45 24	58 45 24 19

 High (over 20%)
 98
 418

 Low (under 10%)
 9
 301

 Total
 107
 719

Uneven Sidewalks Even Sidewalks

Contingency table

2x2 table

Numerical summary

Statistical analysis:

- » Chi-square test
- » Crammer's V

https://online.stat.psu.edu/stat100/lesson/6

Categorical and Continuous variable

Statistical analysis:

- » T-test/Z-test
- » ANOVA

Source: https://eagereyes.org/basics/data-continuous-vs-categorical

Two continuous variables

Statistical analysis:

- » Correlation
- » Regression

Source: https://chartio.com/learn/charts/what-is-a-scatter-plot/

Hands-on

Explore visualisations (individually or in groups)

Go to https://www.datawrapper.de/

Upload data or select a sample dataset

Choose one of the datasets provided in Slides and Other Resources folder

Explore

- Choose at least 2 Chart types to explore selected dataset.
- Explain why you selected these charts what kind of information they provide?
- Discuss (compare and contrast) insights you obtained with each of the selected chart types. What those charts tell you about your dataset?

INFS 5100 Predictive Analytics

A3Q