Projet - Wave

Un procédé de signature à base de codes correcteurs

Suzanne LANSADE, Eva PALANDJIAN

Encadrant: Gilles ZEMOR

Master CSI, Université de Bordeaux, France

Mardi 25 Février 2020

- Introduction
- Schéma de signature Wave
- Operation of the second of
- Uniformisation des sorties
- **5** Sécurité EUF-CMA
- 6 Implémentation et résultats
- Références

Introduction

- Éventualité de l'arrivée de l'ordinateur quantique:
 - → On cherche des alternatives à RSA et DH
 - → Appel du NIST
- Utilisation des codes correcteurs
 - → Sont quantiquement sûrs
 - → Déjà des systèmes de chiffrement les utilisant
 - → Peu (pas) utilisés pour les signatures

	Proportion	Échange de clefs	Signature
Réseaux	46%	9	3
Codes	28%	7	0
Fonctions de hachage	4%	0	1
Multi-varié	15%	0	4
Isogénies	4%	1	0
Preuves ZK	4%	0	1

Figure: Comparaison des soumissions au NIST du second tour.

Introduction

- Difficile de faire un système de signature à base de codes
 - → Difficile de se placer dans l'ensemble des syndromes facilement et uniquement décodables
 - $\,\rightarrow\,$ Tous les systèmes existant sont cassés ou inutilisable dans la pratique
- Le système Wave
 - → Enlève la restriction au mot le plus proche
 - ightarrow Décodage en grande distance

- Introduction
- 2 Schéma de signature Wave
- Operation of the second of
- 4 Uniformisation des sorties
- 5 Sécurité EUF-CMA
- Implémentation et résultats
- Références

Soient n un entier pair, U et V deux codes aléatoires de dimension respectives k_U et k_V . Le code(U, U + V)-généralisé C correspond à l'ensemble :

$$C := \{(a.u + b.v, c.u + d.v) \text{ tel que } u \in U \text{ et } v \in V\}$$

où x.y est le produit coordonnée par coordonnée des x_i et y_i et a,b,c,d sont quatre vecteurs de $\mathbb{F}_q^{n/2}$.

• Le système Wave utilise la fonction qui a un vecteur ${\bf e}$ de poids ω associe son syndrome par ${\bf H}$:

$$f_{\omega,\mathbf{H}}: \mathbf{e} \longrightarrow \mathbf{e}H^T = s$$

comme fonction à sens unique

- Il utilise un algorithme InvertAlg permettant d'inverser la fonction syndrome à l'aide de la trappe ${\cal T}$
- La trappe T correspond à la structure du code (U,U+V)-généralisé

```
Sign<sup>sk</sup>(s):

\mathbf{e} \leftarrow \text{InvertAlg}(s, T)

renvoie \mathbf{e}

Verify<sup>pk</sup>(s, e'):

Si \mathbf{e}'H^T = s et |\mathbf{e}'| = \omega

renvoie 1

renvoie 0
```

Soit

$$\begin{array}{ccccc} \varphi_{\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}} & : & \mathbb{F}_q^{n/2} \times \mathbb{F}_q^{n/2} & \to & \mathbb{F}_q^{n/2} \times \mathbb{F}_q^{n/2} \\ & & (\mathbf{x},\mathbf{y}) & \mapsto & (a.\mathbf{x}+b.\mathbf{y},c.\mathbf{x}+d.\mathbf{y}) \end{array}$$

et soient \mathbf{e}_U et \mathbf{e}_V de $\mathbb{F}_q^{n/2}$ tels que

$$(\mathbf{e}_U,\mathbf{e}_V)=\varphi_{a,b,c,d}^{-1}(\mathbf{e}).$$

Proposition

Inverser $f_{\omega,\mathbf{H}}$ pour un certain $\mathbf{s} \in F_q^{n-k}$ est équivalent à trouver $\mathbf{e} \in \mathbb{F}_q^n$ tel que:

$$\mathbf{e}_U \mathbf{H}_U^T = \mathbf{s}^U$$
 et $\mathbf{e}_V \mathbf{H}_V^T = \mathbf{s}^V$

où
$$\mathbf{s} = (\mathbf{s}^U, \mathbf{s}^V)$$
 avec $\mathbf{s}^U \in \mathbb{F}_q^{n/2 - k_U}$ et $\mathbf{s}^V \in \mathbb{F}_q^{n/2 - k_V}$.

- poids haut -> conditions sur les coordonnées de e_U avant le décodage
- alors e aura un grand poids

Figure: Comparaison des distances w/n avec et sans trappe en fonction du rendement.

Uniformisation des sorties

fuite d'info m1 donne les info sur la permutation

La méthode du rejet

Algorithme 1 DecodeUV $(\varphi, \mathbf{s}, \mathbf{H}_V, \mathbf{H}_U)$

Entrées: φ , $\mathbf{s} \in \mathbb{F}_q^{n-k}$ un syndrome, $\mathbf{H}_V \in \mathbb{F}_q^{(\frac{n}{2}-k_V) \times \frac{n}{2}}$, $\mathbf{H}_U \in \mathbb{F}_q^{(\frac{n}{2}-k_U) \times \frac{n}{2}}$ Sortie: $\mathbf{e} = \varphi(e_U, e_V)$ avec $\mathbf{e}_U \mathbf{H}_U^T = \mathbf{s}^U$ et $\mathbf{e}_V \mathbf{H}_V^T = \mathbf{s}^V$

- 1: $\mathbf{e}_V \leftarrow \mathrm{DecodeV}(\mathbf{s}^V, \mathbf{H}_V)$
- 2: Faire
- 3: $\mathbf{e}_U \leftarrow \text{DecodeU}(\varphi, \mathbf{e}_V, \mathbf{s}^U, \mathbf{H}_U)$
- 4: $\mathbf{e} \leftarrow \varphi(\mathbf{e}_U, \mathbf{e}_V)$
- 5: **Tant que** rand([0,1]) > $r(m_1(\mathbf{e}), |\mathbf{e}_V|)$
- 6: Retourne e

preuve générique rejet

application à nous

Algorithme 4 $Init(\lambda)$

- 1: $(pk, sk) \leftarrow \text{Gen}(1^{\lambda})$
- 2: $\mathbf{H}_{pk} \leftarrow pk$
- 3: $(\varphi, \mathbf{H}_U, \mathbf{H}_V) \leftarrow sk$
- 4: Retourne \mathbf{H}_{pk}

Algorithme 5 $\operatorname{Sign}(s)$

- 1: $\mathbf{e} \leftarrow \mathcal{D}_{\varphi, \mathbf{H}_U, \mathbf{H}_V}(\mathbf{s})$
- 2: Retourne e

Algorithme 6 Fin((s, e))

1: Retourne $(\mathbf{e}\mathbf{H}_{pk}^T = s) \wedge (|\mathbf{e}| = \omega)$

Le jeu EUF-CMA se déroule comme suit. \mathcal{A} fait appel à Init. Il peut ensuite faire N_{sign} requêtes à sign. Le jeu est dit réussi si \mathcal{A} est capable de donner (s,e) accepté par Fin et tel que s n'est jamais été demandé à Sign. On définit alors le succès EUF-CMA comme :

$$Succ_{Wave}^{EUF-CMA}(t, N_{sign}) := \max_{\mathcal{A}: |\mathcal{A}| \leq t} (\mathbb{P}(\mathcal{A} \text{ réussit le jeu EUF-CMA de Wave})).$$

Le protocole est alors sûr au sens EUF-CMA si ce succès est négligeable.

Sécurité EUF-CMA

Le problème DOOM. Soient des paramètres (n, q, k, ω, N) , où N est un entier.

I: **H** une matrice uniforme de $\mathbb{F}_q^{(n-k)\times n}$ et $(\mathbf{s}_1,...,\mathbf{s}_N)$ une liste de N syndromes.

Q : Décoder l'un des syndromes à la distance $w := |\omega n|$.

On définit alors le succès de DOOM comme :

$$Succ^{DOOM(n,q,k,N)}(t) := \max_{\mathcal{A}: |\mathcal{A}| \leq t} (\mathbb{P}(\mathcal{A}(\mathbf{H},\mathbf{s}_1,...,\mathbf{s}_n) = \mathbf{e} \text{ tel que}$$

$$\mathbf{eH}^T = \mathbf{s}_j$$
 pour un certain $j \in \{1, ..., N\})$.

nombre d'itérations	d	nombre de rejets	ratio
100	0	6	6%
100	1	3	3%
100	2	6	6%
100	3	3	3%
100	4	6	6%
100	5	4	4%

nombre d'itérations	d	nombres de rejets	ratio
400	3	19	\sim 5%
400	5	17	\sim 4%

Ratio moyen de l'article : ${\sim}10\%$

- [1] Thomas Debris-Alazard. *Cryptographie fondée sur les codes : nouvelles approches pour constructions et preuves ; contribution en cryptanalyse.* 2019.
- [2] Jean-Pierre Tillich, Thomas Debris-Alazard, Nicolas Sendrier. Wave: A new family of trapdoor one-way preimage sampleable functions based on codes. 2018.