$a_2(1320)$

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

a₂(1320) MASS

VALUE (MeV)

DOCUMENT ID

1318.3^{+0.5}_{-0.6} **OUR AVERAGE** Includes data from the 4 datablocks that follow this one. Error includes scale factor of 1.2.

3π MODE

 VALUE (MeV)
 EVTS
 DOCUMENT ID
 TECN
 CHG
 COMMENT

The data in this block is included in the average printed for a previous datablock.

1319.0 + 1.0 OUR	AVERAGE	Error includes s	cale f	actor of	1.4. S	See the ideogram
below.						
$1321 \ \pm \ 1 \ \begin{array}{c} +0 \\ -7 \end{array}$	420k	ALEKSEEV	10	COMP		$190 \pi^{-} Pb \to \atop \pi^{-} \pi^{-} \pi^{+} Pb'$
$1326 \ \pm \ 2 \ \pm 2$		CHUNG	02	B852		$18.3 \frac{\pi}{\pi} \stackrel{\pi}{p} \rightarrow \frac{\pi}{\pi} \stackrel{\pi}{\pi} \stackrel{\pi}{p} \rightarrow \frac{\pi}{\pi} \stackrel{\pi}{p}$
$1317 \ \pm \ 3$		BARBERIS	98 B			$450 pp \rightarrow p_f \pi^+ \pi^- \pi^0 p_s$
1323 ± 4 ±3		ACCIARRI	97T	L3		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$1320 \ \pm \ 7$		ALBRECHT	97 B	ARG		$e^{+}e^{-} \xrightarrow{e} e^{+}e^{-}\pi^{+}\pi^{-}\pi^{0}$
$1311.3 \pm 1.6 \pm 3.0$	72.4k	AMELIN	96	VES		$36 \pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{0} n$
$1310 \ \pm \ 5$		ARMSTRONG	90	OMEG	0	$300.0pp \rightarrow pp\pi + \pi - \pi 0$
1323.8± 2.3	4022	AUGUSTIN	89	DM2	\pm	$J/\psi ightarrow ho^{\pm} a_{2}^{\mp}$
$1320.6 \pm \ 3.1$	3562	AUGUSTIN	89	DM2	0	$J/\psi \rightarrow \rho^0 a_2^0$
1317 ± 2	25k	¹ DAUM	80 C	SPEC	_	63,94 $\pi^- p \to 3\pi p$
1320 ± 10	1097	$^{ m 1}$ BALTAY	78 B	HBC	+0	$15 \pi^+ p \rightarrow p4\pi$
1306 ± 8		FERRERSORIA	78	OMEG	_	$9 \pi^- p \rightarrow p 3\pi$
1318 ± 7	1.6k	1 EMMS	75	DBC	0	$4 \pi^{+} n \rightarrow p(3\pi)^{0}$
1315 ± 5		$^{ m 1}$ ANTIPOV	73 C	CNTR	_	25,40 $\pi^- p \rightarrow$
						$p\eta\pi^{-}$
1306 ± 9	1580	CHALOUPKA	73	HBC	_	$3.9 \; \pi^- p$
• • • We do not u	se the follov	ving data for aver	ages,	fits, lim	its, etc	5. ● ● ●
$1300 \ \pm \ 2 \ \pm 4$	18k	² SCHEGELSKY	06	RVUE	0	$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$
1305 ± 14		CONDO	93	SHF		$\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$
$1310 \ \pm \ 2$		¹ EVANGELIS	81	OMEG	_	$12 \pi^- p \rightarrow 3\pi p$
1343 ± 11	490	BALTAY	78 B	HBC	0	15 $\pi^+ p \rightarrow \Delta 3\pi$
1309 ± 5	5k	BINNIE	71	MMS	_	$\pi^- p$ near a_2 threshold
$1299 \ \pm \ 6$	28k	BOWEN	71	MMS	_	5 π ⁻ p
$1300 \ \pm \ 6$	24k	BOWEN	71	MMS	+	5 π ⁺ p
$1309 \ \pm \ 4$	17k	BOWEN	71	MMS	_	7 π ⁻ p
1306 ± 4	941	ALSTON	70	HBC	+	$7.0 \pi^+ p \rightarrow 3\pi p$

² From analysis of L3 data at 183–209 GeV.

 $a_2(1320)$ mass, 3π mode (MeV)

$K\overline{K}$ MODE

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

The data in this block is included in the average printed for a previous datablock.

1318.1 \pm 0.7 OUR AVERAGE

1319	\pm	5	4700	^{1,2} CLELAND	82B	SPEC	+	$50 \pi^+ p \rightarrow K_S^0 K^+ p$
1324	\pm	6	5200	^{1,2} CLELAND	82B	SPEC	_	$50 \pi^- p \rightarrow K_S^{0} K^- p$
1320	\pm	2	4000	CHABAUD	80	SPEC	_	$17 \pi^- A \rightarrow K_S^0 K^- A$
1312	\pm	4	11000	CHABAUD	78	SPEC	_	9.8 $\pi^- p \to K^- K_S^0 p$
1316	\pm	2	4730	CHABAUD	78	SPEC	_	18.8 $\pi^- p \to K^- K_S^0 p$
1318	\pm	1		1,3 MARTIN	78 D	SPEC	_	$10 \pi^- p \rightarrow K_S^0 K^- p$
1320	\pm	2	2724	MARGULIE	76	SPEC	_	$23 \pi^- p \rightarrow K^- K_S^0 p$
1313	\pm	4	730	FOLEY	72	CNTR	_	20.3 $\pi^- p \to K^- K_S^0 p$
1319	\pm	3	1500	³ GRAYER	71	ASPK	_	$17.2 \ \pi^- p \rightarrow \ K^- K_5^{0} p$

• • • We do not use the following data for averages, fits, limits, etc. • • •

1304		870	⁴ SCHEGELSKY	06A	RVUE	0	$\gamma \gamma \rightarrow \kappa_S^0 \kappa_S^0$
1330	± 11	1000	^{1,2} CLELAND	82B	SPEC	+	30 $\pi^+ p \to K_S^0 K^+ p$
1324	\pm 5	350	HYAMS	78	ASPK	+	12.7 $\pi^+ p \to K^+ K_S^0 p$

 $^{^{1}}$ From a fit to $J^{P}=2^{+}$ partial wave. 2 Number of events evaluated by us.

 $^{^1}$ From a fit to $J^P=2^+$ $ho\pi$ partial wave.

³ Systematic error in mass scale subtracted.

⁴ From analysis of L3 data at 91 and 183–209 GeV.

$\eta\pi$ MODE

VALUE (MeV) ___EVTS __DOCUMENT_ID __TECN __CHG __COMMENT_

The data in this block is included in the average printed for a previous datablock.

1317.7± 1.4 OUR AVERAGE

1308 ± 9	BARBERIS	00н		$450 pp \rightarrow p_f \eta \pi^0 p_s$
1316 ± 9	BARBERIS	00н		450 <i>pp</i> →
				$\Delta_f^{++} \eta \pi^- ho_{\mathcal{S}}$
$1317 \pm 1 \pm 2$	THOMPSON	97 N	ЛPS	$18 \pi^- p \rightarrow \eta \pi^- p$ $0.0 \overline{p} p \rightarrow \pi^0 \pi^0 \eta$
1315 \pm 5 \pm 2	¹ AMSLER	94D C	BAR	$0.0 \overline{p} p \rightarrow \pi^0 \pi^0 \eta$
1325.1 ± 5.1	AOYAGI	93 B	BKEI	$\pi^- p \rightarrow \eta \pi^- p$
$1317.7 \pm 1.4 \pm 2.0$	BELADIDZE	93 V	/ES	$37\pi^- N \rightarrow \eta \pi^- N$
$1323 \pm 8 \qquad 1000$	² KEY	73 C	SPK –	$6 \pi^- p \rightarrow p \pi^- \eta$

• • • We do not use the following data for averages, fits, limits, etc. • •

1315 ± 12		³ ADOLPH	15	COMP		$191 \pi^- p \rightarrow \eta^{(\prime)} \pi^- p$
1309 ± 4		ANISOVICH	09	RVUE		<u></u> <i>p</i> ρ, π <i>N</i>
1324 ± 5		ARMSTRONG	93 C	E760	0	$\overline{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma$
1336.2 ± 1.7	2561	DELFOSSE	81	SPEC	+	$\pi^{\pm} p \rightarrow p \pi^{\pm} \eta$
1330.7 ± 2.4	1653	DELFOSSE	81	SPEC	_	$\pi^{\pm} p \rightarrow p \pi^{\pm} \eta$
1324 ± 8	6200	^{2,4} CONFORTO	73	OSPK	_	$6 \pi^- p \rightarrow pMM^-$

¹ The systematic error of 2 MeV corresponds to the spread of solutions.

$\eta'\pi$ MODE

VALUE (MeV) DOCUMENT ID TECN COMMENT

The data in this block is included in the average printed for a previous datablock.

1322 ± 7 OUR AVERAGE

$1318 \pm 8 \begin{array}{c} +3 \\ -5 \end{array}$	IVANOV	01	B852	18 $\pi^- p \rightarrow \eta' \pi^- p$
1327.0 ± 10.7	BELADIDZE	93	VES	$37\pi^- N \rightarrow \eta' \pi^- N$

a₂(1320) WIDTH

DOCUMENT ID TECN CHG COMMENT

Created: 5/30/2017 17:20

VALUE ((MeV)	EVTS

 3π MODE

105.0^{+}_{-} $\stackrel{1.6}{1.9}$ OUR AVERAGE			
$110 \pm 2 \begin{array}{c} + 2 \\ -15 \end{array}$ 420k	ALEKSEEV	10 COMP	$190 \stackrel{\pi^- Pb}{\pi^- \pi^+ Pb'}$
$108 \pm 3 \pm 15$	CHUNG	02 B852	$18.3 \pi^{-} p \rightarrow \\ \pi^{+} \pi^{-} \pi^{-} p$
120 ±10	BARBERIS	98B	$ \begin{array}{ccc} \pi & \pi & \pi & p \\ 450 & p p \rightarrow & & \\ p_f & \pi + \pi - \pi^0 p_s \end{array} $
105 ± 10 ± 11	ACCIARRI	97⊤ L3	$e^{+}e^{-} \xrightarrow{e^{+}e^{-}} \pi^{+}\pi^{-}\pi^{0}$
120 ±10	ALBRECHT	97в ARG	$e^{+}e^{-} \xrightarrow{e^{+}e^{-}} \pi^{+}\pi^{-}\pi^{0}$

HTTP://PDG.LBL.GOV

Page 3

² Error includes 5 MeV systematic mass-scale error.

 $^{^3}$ ADOLPH 15 value is derived from a Breit-Wigner fit with mass-dependent width taking the $\eta\pi$ and $\rho\pi$ channels into account.

⁴ Missing mass with enriched MMS = $\eta \pi^-$, $\eta = 2\gamma$.

103.0	$0 \pm 6.0 \pm 3.3$	72.4k	AMELIN	96	VES		36 $\pi^- p \rightarrow$
120	± 10		ARMSTRONG	90	OMEG	0	$\pi^+\pi^-\pi^0$ n 300.0pp \rightarrow
							$pp\pi^+\pi^-\pi^0$
107.0	0 ± 9.7	4022	AUGUSTIN	89	DM2	\pm	$J/\psi ightarrow ho^{\pm} a_2^{+}$
118.	5 ± 12.5	3562	AUGUSTIN	89	DM2	0	$J/\psi ightarrow ho^{\pm} a_2^{\mp} \ J/\psi ightarrow ho^0 a_2^0$
97	± 5		¹ EVANGELIS	81	OMEG	_	$12 \pi^- p \rightarrow 3\pi p$
96	± 9	25k	$^{ m 1}$ DAUM	80C	SPEC	_	63,94 $\pi^- p \rightarrow 3\pi p$
110	± 15	1097	$^{ m 1}$ BALTAY	78 B	HBC	+0	$15 \pi^+ p \rightarrow p4\pi$
112	± 18	1.6k	$^{ m 1}$ EMMS	75	DBC	0	$4 \pi^{+} n \rightarrow p(3\pi)^{0}$
122	± 14	1.2k	^{1,2} WAGNER	75	HBC	0	$7 \pi^+ p \rightarrow$
							$\Delta^{++}(3\pi)^{0}$
115	± 15		$^{ m 1}$ ANTIPOV	73 C	CNTR	_	25,40 $\pi^- p \rightarrow$
							$p\eta\pi^-$
99	± 15	1580	CHALOUPKA	73	HBC		3.9 $\pi^{-}p$
105	\pm 5	28k	BOWEN	71	MMS	_	5 π ⁻ p
99	\pm 5	24k	BOWEN	71	MMS	+	$5 \pi^+ p$
103	\pm 5	17k	BOWEN	71	MMS	_	$7 \pi^- p$
• •	• We do not us	se the foll	lowing data for aver	ages,	fits, lim	its, etc	5. ● ● ●
117	\pm 6 \pm 20	18k	³ SCHEGELSKY	06	RVUE	0	$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$
120	± 40		CONDO	93	SHF		$\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$
115	± 14	490	BALTAY	78 B	HBC	0	$15 \pi^+ p \rightarrow \Delta 3\pi$
72	± 16	5k	BINNIE	71	MMS	_	$\pi^- p$ near a_2 thresh-
70	. 10	0.41	ALCTON.	70	LIDG		old _
79	± 12	941	ALSTON	70	HBC	+	$7.0 \pi^+ p \rightarrow 3\pi p$

\overline{K} AND $\eta\pi$ MODES

VALUE (MeV) DOCUMENT ID

107 ±5 OUR ESTIMATE

110.4±1.7 OUR AVERAGE Includes data from the 2 datablocks that follow this one.

$K\overline{K}$ MODE

DOCUMENT ID TECN CHG COMMENT

The data in this block is included in the average printed for a previous datablock.

109.8± 2.4 OUR AVERAGE

			-				
112	± 20	4700	^{1,2} CLELAND	82 B	SPEC	+	$50 \pi^+ p \rightarrow K_S^0 K^+ p$
120	± 25	5200	^{1,2} CLELAND	82 B	SPEC	_	$50 \pi^- p \rightarrow K_S^{0} K^- p$
106	\pm 4	4000	CHABAUD	80	SPEC	_	$17 \pi^- A \rightarrow K_S^0 K^- A$
126	± 11	11000	CHABAUD	78	SPEC	_	9.8 $\pi^- p \to K^- K_S^0 p$
101	± 8	4730	CHABAUD	78	SPEC	_	18.8 $\pi^- p \to K^- K_S^0 p$
113	\pm 4		^{1,3} MARTIN	78 D	SPEC	_	$10 \ \pi^- p \rightarrow \ K_S^0 K^- p$
105	± 8	2724	³ MARGULIE	76	SPEC	_	$23 \pi^- p \rightarrow K^- K^0_S p$
113	± 19	730	FOLEY	72	CNTR	_	20.3 $\pi^- p \to K^- K_S^0 p$
123	± 13	1500	³ GRAYER	71	ASPK	_	$17.2 \pi^- p \rightarrow K^- K_S^{0} p$

 $^{^1}$ From a fit to $J^P=2^+~\rho\pi$ partial wave. 2 Width errors enlarged by us to $4\Gamma/\sqrt{N};$ see the note with the $K^*(892)$ mass.

³ From analysis of L3 data at 183–209 GeV.

• • • We do not use the following data for averages, fits, limits, etc. • • •

120	± 15	870	⁴ SCHEGELSKY	06A	RVUE	0	$\gamma \gamma \rightarrow \kappa_S^0 \kappa_S^0$
121	± 51	1000	^{1,2} CLELAND	82 B	SPEC	+	$30 \pi^+ p \rightarrow K_S^0 K^+ p$
110	± 18	350	HYAMS	78	ASPK	+	12.7 $\pi^+ p \to K^+ K_S^0 p$

¹ From a fit to $J^P = 2^+$ partial wave.

$\eta\pi$ MODE

DOCUMENT ID TECN CHG COMMENT VALUE (MeV) The data in this block is included in the average printed for a previous datablock.

111 1+ 24 OUR AVERAGE

111.11 2.7 00	N AV LIVAG	_			
115 ± 20		BARBERIS	00H		450 $pp \rightarrow p_f \eta \pi^0 p_s$
112 ± 14		BARBERIS	00H		450 <i>pp</i> →
					$\Delta_f^{++} \eta \pi^- \rho_S^{}$
$112 \pm 3 \pm 2$		¹ AMSLER	94D	CBAR	$0.0 \overline{p}p \rightarrow \pi^0 \pi^0 \eta$
$103 ~\pm~ 6 ~\pm 3$		BELADIDZE	93	VES	$37\pi^- N \rightarrow \eta \pi^- N$
112.2 ± 5.7	2561	DELFOSSE	81		$\pi^{\pm} p \rightarrow p \pi^{\pm} \eta$
116.6 ± 7.7	1653	DELFOSSE	81	SPEC -	$\pi^{\pm} p \rightarrow p \pi^{\pm} \eta$
108 ± 9	1000	KEY	73	OSPK -	$6 \pi^- p \rightarrow p \pi^- \eta$
• • • We do no	t use the fo	llowing data for av	erages	s, fits, limits,	etc. • • •
119 ± 14		² ADOLPH	15	COMP	191 $\pi^- p \rightarrow$
				5) (1) 5	$\eta^{(\prime)}\pi^-p$
110 + 4		ANISOVICH	09	RVUF	$\overline{\mathbf{p}}\mathbf{p}$, $\pi \mathbf{N}$

⁴ CONFORTO 73 6200 OSPK $6 \pi^- p \rightarrow pMM^ 104 \pm 9$ ¹ The systematic error of 2 MeV corresponds to the spread of solutions.

³ THOMPSON 97

ARMSTRONG 93C E760

MPS

18 $\pi^- p \rightarrow \eta \pi^- p$

Created: 5/30/2017 17:20

 $\overline{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma$

 ± 2

$\eta'\pi$ MODE

 127 ± 2

 118 ± 10

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
119±25 OUR AVERAGE				
$140 \pm 35 \pm 20$	IVANOV	01	B852	$18 \pi^- p \rightarrow \eta' \pi^- p$
106 ± 32	BELADIDZE	93	VES	$37\pi^- N \rightarrow \eta' \pi^- N$

 $^{^{2}\,\}mathrm{Number}$ of events evaluated by us.

³ Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

⁴ From analysis of L3 data at 91 and 183–209 GeV.

²ADOLPH 15 value is derived from a Breit-Wigner fit with mass-dependent width taking the $\eta\,\pi$ and $\rho\,\pi$ channels into account.

 $^{^3}$ Resolution is not unfolded. 4 Missing mass with enriched MMS $= \eta \, \pi^-$, $\eta = 2 \gamma.$

a₂(1320) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
$\overline{\Gamma_1}$	3π	(70.1 \pm 2.7) %	S=1.2
Γ_2	$ ho$ (770) π		
Γ ₃	$f_2(1270)\pi$		
Γ_4	$ ho$ (1450) π		
Γ_5	$\eta\pi$	(14.5 ± 1.2) %	
Γ_6	$\omega \pi \pi$	(10.6 \pm 3.2) %	S=1.3
Γ_7	$K\overline{K}$	(4.9 \pm 0.8) %	
Γ ₈	$\eta'(958)\pi$	(5.5 ± 0.9) $ imes$ 10	₎ –3
Γ9	$\pi^{\pm}\gamma$	$(2.91\pm0.27)\times10$	₎ –3
Γ_{10}	$\gamma \gamma$	(9.4 ± 0.7) $ imes$ 10	₎ –6
Γ ₁₁	e^+e^-	< 5 × 10	$^{-9}$ CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to 5 branching ratios uses 18 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=9.3$ for 15 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

$a_2(1320)$ PARTIAL WIDTHS

$\Gamma(\eta\pi)$						Γ ₅
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT	
ullet $ullet$ We do not use	the following	g data for averages, fits	s, limits,	etc. •	• •	
$18.5 \!\pm\! 3.0$	870	¹ SCHEGELSKY 06A	RVUE	0	$\gamma \gamma \rightarrow \kappa_S^0 R$	$\langle {}^0_S$
¹ From analysis of L and SU(3) relation		. and 183–209 GeV, usi	ng Γ(<i>a</i> ₂ (1320) -	$\rightarrow \gamma \gamma) = 0.9$	1 keV
$\Gamma(K\overline{K})$						Γ ₇
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT	
ullet $ullet$ We do not use	the following	g data for averages, fits	s, limits,	etc. •	• •	
$7.0_{-1.5}^{+2.0}$	870	¹ SCHEGELSKY 06A	RVUE	0	$\gamma\gamma \rightarrow \kappa_S^0 H$	⟨° 5
¹ From analysis of L and SU(3) relation		. and 183–209 GeV, usi	ng Γ(<i>a</i> ₂ (1320) -	$\rightarrow \gamma \gamma) = 0.9$	1 keV
HTTP://PDG.LBI	GOV	Page 6	Creat	ted: 5	/30/2017 1	7:20

$\Gamma(\pi^{\pm}\gamma)$		Γο			
VALUE (keV) EVTS	DOCUMENT ID	TECN CHG COMMENT			
311± 25 OUR AVERAG		TECN CHG COMMENT			
358± 6±42	¹ ADOLPH 14	COMP - $190 \pi^- Pb \rightarrow \pi^+ \pi^- \pi^- Pb'$			
$284\pm\ 25\pm25$ 7.1k	MOLCHANOV 01	SELX $600 \pi^{-} A \rightarrow \pi^{+} \pi^{-} \pi^{-} A$			
295 ± 60	CIHANGIR 82	SPEC + 200 π^+ A			
• • • We do not use the	following data for averag	ges, fits, limits, etc. • • •			
461 ± 110	² MAY 77	SPEC \pm 9.7 γ A			
¹ Primakoff reaction us	sing $a_2(1320) ightarrow 3\pi$ bran	aching ratio of 70.1%			
² Assuming one-pion e	xchange.				
, 1000					
$\Gamma(\gamma\gamma)$		Γ ₁₀			
VALUE (keV) EVTS	DOCUMENT ID	TECN CHG COMMENT			
1.00±0.06 OUR AVERA	GE				
$0.98\!\pm\!0.05\!\pm\!0.09$	ACCIARRI 97	T L3 $e^+e^- \rightarrow + - 0$			
$0.96 \pm 0.03 \pm 0.13$	ALBRECHT 97	B ARG $e^{+}e^{-}\pi^{+}\pi^{-}\pi^{0}$ $e^{+}e^{-}\rightarrow$ $e^{+}e^{-}\pi^{+}\pi^{-}\pi^{0}$			
$1.26 \pm 0.26 \pm 0.18$ 36	BARU 90	MD1 $e^+e^- \rightarrow e^+e^- \pi^+\pi^-\pi^0$			
$1.00\pm0.07\pm0.15$ 415	BEHREND 90	C CELL 0 $e^+e^- \rightarrow e^+e^- \pi^+\pi^-\pi^0$			
$1.03 \pm 0.13 \pm 0.21$	BUTLER 90				
$1.01\pm0.14\pm0.22$ 85	OEST 90	JADE $e^+e^- \rightarrow e^+e^-\pi^0\eta$			
$0.90 \pm 0.27 \pm 0.15$ 56	¹ ALTHOFF 86	TASS 0 $e^+e^- \rightarrow e^+e^-3\pi$			
$1.14 \!\pm\! 0.20 \!\pm\! 0.26$	² ANTREASYAN 86	CBAL 0 $e^+e^- \rightarrow e^+e^-\pi^0\eta$			
$1.06\!\pm\!0.18\!\pm\!0.19$	BERGER 84	C PLUT 0 $e^+e^- \rightarrow e^+e^-3\pi$			
• • • We do not use the	following data for averag	ges, fits, limits, etc. • • •			
$0.81\pm0.19^{+0.42}_{-0.11}$ 35	¹ BEHREND 82	C CELL 0 $e^+e^- \rightarrow e^+e^-3\pi$			
$0.77 \pm 0.18 \pm 0.27$ 22	² EDWARDS 82	F CBAL 0 $e^+e^- \rightarrow e^+e^-\pi^0\eta$			
1 From $ ho\pi$ decay mode 2 From $\eta\pi^{0}$ decay mode					
Γ(e ⁺ e ⁻)		Г ₁₁			
	<u>CL%</u> <u>DOCUMENT II</u>				
< 0.56	90 ACHASOV	00К SND $e^+e^- ightarrow\pi^0\pi^0$			
• • • We do not use the	following data for averag	ges, fits, limits, etc. • • •			
<25	90 VOROBYEV	88 ND $e^+e^- \rightarrow \pi^0 \eta$			
$a_2(1320) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$					
$\Gamma(3\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_1\Gamma_{10}/\Gamma$					
VALUE (keV)	EVTS DOCUMENT II	D TECN COMMENT			
• • • We do not use the	following data for averag	ges, fits, limits, etc. • • •			
$0.65 \pm 0.02 \pm 0.02$	18k ¹ SCHEGELSK	XY 06 RVUE $\gamma\gamma \rightarrow \pi^{+}\pi^{-}\pi^{0}$			
$^{ m 1}$ From analysis of L3 $_{ m C}$	lata at 183–209 GeV.				

$\Gamma(\eta\pi) \times \Gamma(\gamma\gamma)/V$	Γ _{total}	$\Gamma_5\Gamma_{10}/\Gamma_{0}$
	the follow	ing data for averages, fits, limits, etc. ● ●
$0.145 ^{igoplus 0.097}_{-0.034}$		1 UEHARA 09A BELL $e^{+}e^{-} ightarrow$ $e^{+}e^{-}\eta\pi^{0}$
1 From the D_{2} -way	e. The fra	ction of the D_0 -wave is $3.4 {+2.3 \atop -1.1}\%$.
$\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)$ VALUE (keV)		Γ ₇ Γ ₁₀ /Γ
$0.126 \pm 0.007 \pm 0.028$		¹ ALBRECHT 90G ARG $e^+e^- \rightarrow e^+e^-K^+K^-$
		ing data for averages, fits, limits, etc. • • •
$0.081 \pm 0.006 \pm 0.027$		² ALBRECHT 90G ARG $e^+e^- \rightarrow e^+e^-K^+K^-$
¹ Using an incohere ² Using a coherent	ent backgro backgroun	d.
	a ₂ (1	320) BRANCHING RATIOS
$\left[\Gamma(f_2(1270)\pi) + \right]$	-	
<u>∨ALUE</u> <0.12	<u>CL%</u> 90	ADDAMOVI 700 UDC 2.03
₹0.12	90	ABRAMOVI 70B HBC $-$ 3.93 $\pi^- p$
$\Gamma(\eta\pi)/\Gamma(3\pi)$		Γ_5/Γ_1
<u>VALUE</u> 0.207±0.018 OUR F	<u>EVTS</u>	DOCUMENT ID TECN CHG COMMENT
0.213±0.020 OUR A		
0.18 ± 0.05		FORINO 76 HBC $11 \pi^- p$
$0.22\ \pm0.05$	52	ANTIPOV 73 CNTR – 40 $\pi^- p$
0.211 ± 0.044	149	CHALOUPKA 73 HBC $-$ 3.9 $\pi^- p$
0.246 ± 0.042	167	ALSTON 71 HBC + 7.0 $\pi^{+}p$
0.25 ± 0.09	15	BOECKMANN 70 HBC + 5.0 $\pi^+ p$
0.23 ± 0.08	22	ASCOLI 68 HBC $-$ 5 $\pi^- p$
0.12 ± 0.08 0.22 ± 0.09		CHUNG 68 HBC $-$ 3.2 π^{-} p CONTE 67 HBC $-$ 11.0 π^{-} p
0.22 ±0.09		CONTE 67 HBC $-$ 11.0 $\pi^- p$
$\Gamma(\omega\pi\pi)/\Gamma(3\pi)$		Γ_6/Γ_1
VALUE	EVTS	DOCUMENT ID TECN CHG COMMENT
0.15±0.05 OUR FIT		cludes scale factor of 1.3.
0.15±0.05 OUR AVE		rror includes scale factor of 1.3. See the ideogram below.
0.28 ± 0.09	60	DIAZ 74 DBC 0 $6\pi^{+}n$
0.18 ± 0.08	070	¹ KARSHON 74 HBC Avg. of above two
0.10±0.05	279	2 CHALOUPKA 73 HBC − 3.9 π^{-} p ing data for averages, fits, limits, etc. • • •
0.29 ± 0.08	140	¹ KARSHON 74 HBC 0 4.9 $\pi^+ p$
0.10 ± 0.04	60	¹ KARSHON 74 HBC + $4.9 \pi^+ p$
0.19 ± 0.08		DEFOIX 73 HBC 0 $0.7 \overline{p}p$

² Decays to $b_1(1040)\pi$, $b_1 \rightarrow \omega \pi$. Error increased to account for possible systematic errors of complicated analysis.

$\Gamma(K\overline{K})/\Gamma(3\pi)$							Γ_7/Γ_1
VALUE	EVTS	DOCUMENT ID		TECN	CHG	<u>COMMENT</u>	
$0.070 \pm 0.012 \; \text{OUR}$	FIT						
0.078 ± 0.017		CHABAUD	78	RVUE			
• • • We do not u	se the foll	owing data for ave	rages,	fits, lim	its, etc	C. • • •	
0.011 ± 0.003		$^{ m 1}$ BERTIN	98 B	OBLX		$0.0 \; \overline{p} p \rightarrow$	$K^{\pm}K_{s}\pi^{\mp}$
0.056 ± 0.014	50	² CHALOUPKA	73	HBC	_	3.9 $\pi^{-}p$	3
0.097 ± 0.018	113	² ALSTON	71	HBC	+	7.0 $\pi^{+}p$	
0.06 ± 0.03		² ABRAMOVI	70 B	HBC	_	3.93 π^{-} p	
0.054 ± 0.022		² CHUNG	68	HBC	_	$3.2 \pi^{-} p$	
111-1	(DED	TIN 07D					

¹Using 4π data from BERTIN 97D.

 $^{^2}$ Included in CHABAUD 78 review.

$\Gamma(K\overline{K})/\Gamma(\eta\pi)$				Γ_7/Γ_5
VALUE	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the follow	ving data for averages	, fits, limits,	etc. • • •	
0.08 ± 0.02	$^{ m 1}$ BERTIN	98B OBLX	$0.0 \; \overline{p} p \rightarrow k$	$\kappa^{\pm} \kappa_{s} \pi^{\mp}$

¹Using $\eta \pi \pi$ data from AMSLER 94D.

 $^{^1}$ KARSHON 74 suggest an additional I=0 state strongly coupled to $\omega\pi\pi$ which could explain discrepancies in branching ratios and masses. We use a central value and a systematic spread.

$\Gamma(\eta\pi)/[\Gamma(3\pi)+\Gamma(\eta)]$	π) + Γ (κ	$(\overline{K})]$			1	$\Gamma_5/(\Gamma_1+1)$	Γ ₅ +Γ ₇)
VALUE	<i>EVTS</i>	DOCUMENT ID		TECN	<u>CHG</u>	<u>COMMENT</u>	
0.162±0.012 OUR FIT							
0.140±0.028 OUR AVER	RAGE	FCDICAT	70	LIDG		0 0 -	
0.13 ± 0.04	2.4	ESPIGAT	72	HBC	±	1 1	
0.15 ± 0.04	34	BARNHAM	71	HBC	+	3.7 $\pi^{+} p$	
$\Gamma(K\overline{K})/[\Gamma(3\pi)+\Gamma(3\pi)]$	$\eta\pi)+\Gamma($	κ <u>κ</u>)]				$\Gamma_7/(\Gamma_1+1)$	Γ ₅ +Γ ₇)
	<u>EVTS</u>	DOCUMENT ID		TECN	<u>CHG</u>	<u>COMMENT</u>	
0.054±0.009 OUR FIT							
0.048±0.012 OUR AVER	RAGE					1	
0.05 ± 0.02		TOET	73	HBC		•	
0.09 ± 0.04	_	TOET	73	HBC	0	$5 \pi^+ p$	
0.03 ± 0.02		¹ DAMERI	72	HBC	_	$11 \pi^- p$	
0.06 ± 0.03	17	BARNHAM	71	HBC	+	3.7 $\pi^{+} p$	
• • • We do not use the			, fits,	limits, e	etc. ●	• •	
0.020 ± 0.004		² ESPIGAT	72	HBC	\pm	0.0 p p	
¹ Montanet agrees. Vla	ada.						
² Not averaged because	e of discrep	ancy between m	asses	from $K^{\overline{I}}$	\overline{K} and	$ ho\pi$ modes	
E(//0E0) \/E							- /-
$\Gamma(\eta'(958)\pi)/\Gamma_{total}$							Γ_8/Γ
VALUE	· · ·	DOCUMENT ID				<u>COMMENT</u>	
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. ●	• •	
< 0.006	95	ALDE	92 B	GAM2		38,100 π	
< 0.02	97	BARNHAM	71	HBC	+	$3.7 \pi^{+} p$	
0.004 ± 0.004		¹ BOESEBECK	68	HBC	+	$8 \pi^+ p$	
$^{ m 1}$ No longer valid since	$\Gamma(\overline{K}\overline{K})/\Gamma($	(3π) value has cl	nange	d (MOR	RISOI	N 71).	
$\Gamma(\eta'(958)\pi)/\Gamma(3\pi)$							Γ_8/Γ_1
VALUE	C1 %	DOCUMENT ID		TECN	CUC	COMMENT	-, -
		•				<u>COMMENT</u>	
• • • We do not use the	_	_			etc. •	• •	
< 0.011	90	EISENSTEIN	73	HBC	_	$5 \pi^- p$	
< 0.04		ALSTON	71	HBC	+	7.0 $\pi^{+}p$	
$0.04 \begin{array}{l} +0.03 \\ -0.04 \end{array}$		BOECKMANN	70	HBC	0	5.0 $\pi^{+}p$	
$\Gamma(\eta'(958)\pi)/\Gamma(\eta\pi)$							Γ ₀ /Γ ₋
, , ,		DOCUMENT ID		TECN	CO141	4ENT	Γ_8/Γ_5
<u>VALUE</u> 0.038±0.005 OUR AVER	PAGE	DOCUMENT ID		TECN	COMIN	VIENI	
0.05 ± 0.02	UIGE	ADOLPH	15	COMP	101 -	$ \tau^- p \rightarrow \eta$	(/) _— — p
$0.03^{\circ} \pm 0.02^{\circ}$ 0.032 ± 0.009			07 <i>C</i>	CBAR	191 /	$5p \rightarrow \pi^0 \pi$	$0_{n}^{\prime\prime}$
		4					
$0.047 \pm 0.010 \pm 0.004$		BELADIDZE				_	
$0.034 \pm 0.008 \pm 0.005$		BELADIDZE				_	
1 Using B($\eta' ightarrow \pi^+ \pi$ 0.236.	$(-\eta) = 0.4$	441, B($\eta \rightarrow \gamma \gamma$	·) = (0.389 an	d B(η	$\rightarrow \pi^+\pi$	$-\pi^{0}) =$

 $\Gamma(\pi^{\pm}\gamma)/\Gamma_{\text{total}}$ Γ_9/Γ DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • $0.005 \,{}^{+\, 0.005}_{-\, 0.003}$ ¹ EISENBERG 72 HBC 4.3,5.25,7.5 γp ¹ Pion-exchange model used in this estimation. $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ Γ_{11}/Γ VALUE (units 10^{-9}) CL% DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • $e^+e^- \rightarrow \pi^0\pi^0$ 00к SND <6 90 **ACHASOV**

a₂(1320) REFERENCES

ADOLPH	15	PL B740 303	M. Adolph et al.	(COMPASS Collab.)
ADOLPH	14	EPJ A50 79	C. Adolph <i>et al.</i>	(COMPASS Collab.)
ALEKSEEV	10	PRL 104 241803	M.G. Alekseev et al.	(COMPASS Collab.)
ANISOVICH	09	IJMP A24 2481	V.V. Anisovich, A.V. Sa	
UEHARA	09A	PR D80 032001	S. Uehara <i>et al.</i>	(BELLE Collab.)
SCHEGELSKY	06	EPJ A27 199	V.A. Schegelsky <i>et al.</i>	(32222 66.162.)
SCHEGELSKY	06A	EPJ A27 207	V.A. Schegelsky et al.	
CHUNG	02	PR D65 072001	S.U. Chung et al.	(BNL E852 Collab.)
IVANOV	01	PRL 86 3977	E.I. Ivanov et al.	(BNL E852 Collab.)
MOLCHANOV	01	PL B521 171	V.V. Molchanov et al.	(FNAL SELEX Collab.)
ACHASOV	00K	PL B492 8	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
BARBERIS	00H	PL B488 225	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BARBERIS	98B	PL B422 399	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BERTIN	98B	PL B434 180	A. Bertin <i>et al.</i>	(OBELIX Collab.)
ABELE	97C	PL B404 179	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ACCIARRI	97T	PL B413 147	M. Acciarri <i>et al.</i>	(L3 Collab.)
ALBRECHT	97B	ZPHY C74 469	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
THOMPSON	97	PRL 79 1630	D.R. Thompson et al.	(BNL E852 Collab.)
AMELIN	96	ZPHY C70 71	D.V. Amelin <i>et al.</i>	(SERP, TBIL)
AMSLER	94D	PL B333 277	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AOYAGI	93	PL B314 246	H. Aoyagi <i>et al.</i>	(BKEI Collab.)
ARMSTRONG		PL B307 394	T.A. Armstrong <i>et al.</i>	(FNAL, FERR, GENO+)
BELADIDZE	93	PL B313 276	G.M. Beladidze et al.	(VES Collab.)
CONDO	93	PR D48 3045	G.T. Condo <i>et al.</i>	(SLAC Hybrid Collab.)
ALDE	92B	ZPHY C54 549	D.M. Alde et al.	(SERP, BELG, LANL, LAPP+)
BELADIDZE	92	ZPHY C54 235	G.M. Beladidze <i>et al.</i>	(VES Collab.)
ALBRECHT	90G	ZPHY C48 183	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ARMSTRONG	90	ZPHY C48 213		nayoun, W. Beusch (WA76 Coll.)
BARU	90	ZPHY C48 581	S.E. Baru <i>et al.</i>	(MD-1 Collab.)
BEHREND	90C	ZPHY C46 583	H.J. Behrend <i>et al.</i>	(CELLO Collab.)
BUTLER	90	PR D42 1368	F. Butler <i>et al.</i>	(Mark II Collab.)
OEST	90	ZPHY C47 343	T. Oest <i>et al.</i>	(JADE Collab.)
AUGUSTIN	89	NP B320 1	J.E. Augustin, G. Cosmo	,
VOROBYEV	88	SJNP 48 273	P.V. Vorobiev <i>et al.</i>	(NOVO)
		Translated from YAF 48		(*****)
ALTHOFF	86	ZPHY C31 537	M. Althoff et al.	(TASSO Collab.)
ANTREASYAN	86	PR D33 1847	D. Antreasyan et al.	(Crystal Ball Collab.)
BERGER	84C	PL 149B 427	C. Berger et al.	(PLUTO Collab.)
BEHREND	82C	PL 114B 378	H.J. Behrend <i>et al.</i>	(CELLO Collab.)
Also		PL 125B 518 (erratum)	H.J. Behrend et al.	(CELLO Collab.)
CIHANGIR	82	PL 117B 123	S. Cihangir <i>et al.</i>	(FNAL, MINN, ROCH)
CLELAND	82B	NP B208 228	W.E. Cleland et al.	(DURH, GEVA, LAUS+)
EDWARDS	82F	PL 110B 82	C. Edwards et al.	(CIT, HARV, PRIN+)
DELFOSSE	81	NP B183 349	A. Delfosse et al.	(GEVA, LAUS)
EVANGELIS	81	NP B178 197	C. Evangelista et al.	(BARI, BÔNN, CERN+)
CHABAUD	80	NP B175 189	V. Chabaud et al.	`(CERN, MPIM, AMST)
DAUM	80C	PL 89B 276	C. Daum <i>et al.</i>	(AMST, ČERN, CRAC, MPIM+) JP
BALTAY	78B	PR D17 62	C. Baltay <i>et al.</i>	(COLU, BING)
CHABAUD	78	NP B145 349	V. Chabaud et al.	(CERN, MPIM)

MARTIN MAY FORINO MARGULIE EMMS 7 WAGNER DIAZ KARSHON ANTIPOV ANTIPOV CHALOUPKA CONFORTO DEFOIX EISENSTEIN KEY TOET DAMERI EISENBERG ESPIGAT FOLEY ALSTON BARNHAM BINNIE BOWEN GRAYER ABRAMOVI 7 ALSTON 7 BOECKMANN 7 BOECKMANN 7 BOESEBECK CHUNG 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	78 78 78 78 77 76 76 76 77 77 73 73 73 73 73 73 73 77 71 71 71 71 70 70 70 68 68 68 68	PL 74B 287 NP B146 303 PL 74B 417 PR D16 1983 NC 35A 465 PR D14 667 PL 58B 117 PL 58B 201 PRL 32 260 PRL 32 852 NP B63 175 NP B63 153 PL 44B 211 PL 45B 154 PL 43B 141 PR D7 278 PRL 30 503 NP B63 248 NC 9A 1 PR D5 15 NP B36 93 PR D6 747 PL 36B 257 PRL 26 1663 PL 34B 333 NP B23 466 PL 33B 607 NP B16 221 PRL 20 1321 NP B4 501 PR 165 1491 NC 51A 175	A. Ferrer Soria et al. B.D. Hyams et al. A.D. Martin et al. E.N. May et al. A. Forino et al. M. Margulies et al. M.J. Emms et al. F. Wagner, M. Tabak, D. J. Diaz et al. U. Karshon et al. Y.M. Antipov et al. V. Chaloupka et al. G. Conforto et al. C. Defoix et al. L. Eisenstein et al. A.W. Key et al. D.Z. Toet et al. M. Dameri et al. Y. Eisenberg et al. R. J. Foley et al. M. Alston-Garnjost et al. K.W.J. Barnham et al. D.M. Binnie et al. D.R. Bowen et al. M. Alston-Garnjost et al. M. Boeckmann et al. G. Ascoli et al. K. Boesebeck et al. S.U. Chung et al. F. Conte et al.	(ORSAY, CERN, CDEF+) (CERN, MPIM, ATEN) (DURH, GEVA) JP (ROCH, CORN) (BGNA, FIRZ, GENO, MILA+) (BNL, CUNY) (BIRM, DURH, RHEL) JP M. Chew (CASE, CMU) (REHO) (CERN, SERP) JP (CERN, CERN) (EFI, FNAL, WISC) (NIJM, BONN, DURH, TORI) (GENO, MILA, SACL) (REHO, SLAC, TELA) (CERN, CDEF) (BNL, CUNY) (LRL) (LOIC, SHMP) (NEAS, STON) (CERN, MPIM) (CERN, MPIM) (CERN, JP (LRL) (BONN, DURH, NIJM+) (ILL) JP (AACH, BERL, CERN) (LRL) (GENO, HAMB, MILA, SACL)
---	--	---	--	---