Lecture 8 - CNN Architectures

1. AlexNet

AlexNet

227 x 227 inputs5 Convolutional layersMax pooling3 fully-connected layersReLU nonlinearities

Used "Local response normalization"; Not used anymore

Trained on two GTX 580 GPUs – only 3GB of memory each! Model split over two GPUs

	Inpu	ıt siz	e.	Layer							
Layer	С	H /	W	filters	kernel	stride	pad				
conv1	3	3	227	64	11		1	2			

		Inpu	t si	ize	Layer				Output size							
Layer	С		Н	/ W	filters	kernel	strid	е	pad	С		н / w		memory (KB)	params (k)	flop (M)
conv1		3		227	64	. 1	1	4		2	64	5	6	784	23	73
pool1		64		56	j		3	2		0	64	2	27	182	. 0	0

• Convolutional Layer

- $\circ~$ Output channel number = number of filters --> C=64
- Output height (H') / width (W'): W' = (W K + 2P) / S + 1 = 227 11 + 2*2) / 4 + 1 = 220/4 + 1 = 56
- Memory (KB):

Number of output elements =
$$C * H' * W'$$

= $64*56*56 = 200,704$

Bytes per element = 4 (for 32-bit floating point)

• Number of parameters / weights:

Weight shape =
$$C_{out} \times C_{in} \times K \times K$$

= 64 x 3 x 11 x 11
Bias shape = C_{out} = 64
Number of weights = 64*3*11*11 + 64
= 23,296

• Number of flops (floating point operations --> multiply + add):

Number of floating point operations (multiply+add)

- = (number of output elements) * (ops per output elem)
- = $(C_{out} \times H' \times W') * (C_{in} \times K \times K)$
- = (64 * 56 * 56) * (3 * 11 * 11)
- = 200,704 * 363
- = 72,855,552

Pooling Layer

- \circ Output channel number = number of filters --> C=64
- Output height (H') / width (W'):

$$W' = floor((W - K) / S + 1) = floor(53 / 2 + 1) = floor(27.5) = 27$$

Memory (KB):

- Number of parameters / weights: Pooling layers have no learnable parameters!
- o Flops:

Floating-point ops for pooling layer

- = (number of output positions) * (flops per output position)
- = (C_{out} * H' * W') * (K * K)
- = (64 * 27 * 27) * (3 * 3)
- = 419,904
- **= 0.4 MFLOP**

• Fully-connected Layer

		Input	size		Laye	er		Outp	ut size			
Layer	С		H / W	filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	. 4	2	64	56	784	23	73
pool1		64	56		3	2	C	64	27	182		0
conv2		64	27	192	5	1	2	192	27	547	307	224
pool2		192	27	,	3	2	C	192	13	127	0	0
conv3		192	13	384	3	1	1	384	13	254	664	112
conv4		384	13	256	3	1	1	256	13	169	885	145
conv5		256	13	256	3	1	1	256	13	169	590	100
pool5		256	13		3	2	C	256	6	36	0	0
flatten		256	6					9216		36	0	0
fc6		9216		4096				4096		16	37,749	38
fc7		4096		4096				4096		16	16,777	17
fc8		4096		1000				1000		4	4,096	4

Output channel = flatten output size (number of all elements)

Flatten output size =
$$C_{in} imes H imes W$$
 = 256 * 6 * 6 = 9216

• Number of parameters / weights:

FC params =
$$C_{in} \times C_{out} + C_{out}$$
= 9216 $imes$ 4096 + 4096 = 37,725,832

Number of flops:

FC flops =
$$C_{in} \times C_{out}$$
 = 9216 \times 4096 = 37,748,736

Summary

- Most of the memory usage is in the early convolution layers
- Nearly all parameters are in the fully-connected layers
- Most floating-point ops occur in the convolution layers

2. ZFNet: A Bigger AlexNet

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

More trial and error =(

3. VGG: Deeper Networks, Regular Design

--> a much bigger network than AlexNet

- Design Rules:
 - o All conv are 3x3 stride 1 pad 1

Option 1: Option 2: Conv(5x5, C -> C) Conv(3x3, C -> C) Conv(3x3, C -> C)

Params: 25C² Params: 18C² FLOPs: 25C²HW FLOPs: 18C²HW

- ---> Two 3x3 conv has <u>same receptive field</u> as a single 5x5 conv, but has <u>fewer parameters and takes</u> <u>less computation!</u>
- All max pool are 2x2 stride 2
- After pool, double #channels

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Conv layers at each spatial resolution take the same amount of computation!

WC Memory: 2HWC Params: 36C²

FLOPs: 36HWC²

Input: 2C x H x W Conv(3x3, 2C -> 2C)

AlexNet

VGG16 VGG19

Memory: 4HWC N Params: 9C² P FLOPs: 36HWC² F

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

サルルC ネるネタンSimonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

4. GoogLeNet: Focus on Efficiency

--> reduce parameter count, memory usage, and computation

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Ir	าри	t size		er		Outp	ut size				
Layer	С	H	1 / W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
conv		3	224	64	7	2	3	64	112	3136	9	118
max-pool		64	112		3	2	. 1	64	56	784	0	2
conv		64	56	64	1	. 1	. 0	64	56	784	4	13
conv		64	56	192	3	1	. 1	192	56	2352	111	347
max-pool	1	92	56		3	2	1	192	28	588	0	1

Total from 224 to 28 spatial resolution:

Memory: 7.5 MB

Params: 124K MFLOP: 418 Compare VGG-16:

Memory: 42.9 MB (5.7x)

Params: 1.1M (8.9x) MFLOP: 7485 (17.8x)

GoogLeNet: Inception Module

Inception module

Local unit with parallel branches

Local structure repeated many times throughout the network

Uses 1x1 "Bottleneck" layers to reduce channel dimension before expensive conv (we will revisit this with ResNet!)

Szegedy et al, "Going deeper with convolutions", CVPR 2015

GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Input	size		Lay	er		Outpu	ıt size			
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
avg-pool	1024	7		7	1	0	1024	1	. 4	. 0	0
fc	1024		1000				1000		0	1025	1

Compare with VGG-16:

Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
flatten	512	7	1				25088		98		
fc6	25088			4096			4096		16	102760	103
fc7	4096			4096			4096		16	16777	17
fc8	4096			1000			1000		4	4096	4

5. Residual Networks

A deeper model can <u>emulate</u> a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an <u>optimization</u> problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

Solution: Change the network so learning identity functions with extra layers is easy!

Original ResNet block

"Pre-Activation" ResNet Block

• Properties:

- A residual network is a stack of many residual blocks
 Network is divided into stages: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels
- Use the same <u>aggressive stem</u> as GoogleNet to **downsample** the input 4x before applying residual blocks
- Use **global average pooling** and a single linear layer at the end (no fully-connected-layer)

6. Comparing Complexity

- Inception-v4: Resnet + Inception!
- VGG: Highest memory, most operations
- GoogLeNet: Very efficient!
- AlexNet: Low compute, lots of parameters
- ResNet: Simple design, moderate efficiency, high accuracy

