	Experiment No-02.
	Aim :-
	implementing to feedforward neural Network with Keras and Tensorflow
	Keras and Tensorflow
	Objective 3-
	a. import the necessary package's
	b. Load the training and testing data (MNIST).
	b. Load the training and testing data (MNIST). c. Define the network architecture using keras.
	d. Train the model using SGD.
	E Evaluate the Network.
	F. Plot the training less and accuracy.
	Theory:
	- to Demostrate how you can implement reed forward
	muti-tayer network and apply them to the MHIST
	and CITAR- La Datasets. Fred Simple neural Networks
	using the keras library.
	- Obtain bastine standard Nural Network which we
	Mill & later combare to courointion unal Hetmark
	MNISTS- import pandas as pd
	import numpy as . np
	import matplotlib. Pyplot as plt
	imbort rangow
	get-ipython (). run-line-magic (matplotlib',
	Inline')
	FOR EDUCATIONAL USE
ram	

MNIST 3-

- MNIST Stand or modified National Institute of Standard and Technology"
- It is a Dataset or 18,000 handwrite image each image is or 20 x 20 Pixels.

i-e about 184 Features.

eachfeaturs, each represent only one pixel intensity i.e from 0 (White) to 255 (black).

- these Database is further divided into 60,000 training and 10,000 testing image.
 - # import dataset and split into train and test & motist = EF, Keres, dataset monist (x_train, y_tarin), (x_test, y_test) = mnist. 10ad_ data ().
 - # shape of training daraset 60,000 images
 having 28 x28 size x-train. shape.

Metwork Architecture Using Keras:

I Tenserflow is an opensource set of libraries for Creating and Working with Neural Network, such as those dised in Mr. and Dr project.

- _ the Relu Function is one of the most; popular activation function's
- It Stand for reflected linear unit" mathamatically this runction is define as

FOR EDUCATIONAL USE

	- Y = max (0,x) The Relu Function returns «0" it the
	input is Nagative and is linear if.
	- The input is positive.
	- the softmax is another activation function.
	model = Keras. sequantial ([
	Keras. layers. flatten (input_shape = (28,28)),
	Keras. layers. Dense (128, Activation etelu?),
	Keras, layers. Dense (10, activation = (Softmax)
	J) '
	Graph # Train the model
	history = model. fit (x-train, y-train, validation, data
	(x_test, Y-test), & pochs = 10)
	Endinate the woder Hetmarks.
	Leet leet Occ - model over the contract
	test_105s, test_acc=model.evaluate (x_test, y_test)
	print ("10ss = 1., 3t" 1. test_10ss)
	print ("Accuracy = 1. 32"1. test-acc)
	- prediction of the data
	- prediction of the dard
	- plot graph - or accuracy and loss
	- plot graph tor Accuracy and loss get: ipythono. Tun-line_magic ('pinfoz', 'history. history')
	o history)
	history. history. keys()
	FOR EDUCATIONAL USE
	TORLEGO, MANAGER
11	

A STATE OF THE PROPERTY OF THE

Page No. Date graph representing the model's accuracy # IN [23]: PIT. Plot (history.history ['val. 1089'])

PIT. Plot (history.history ['val. 1089'])

PIT. title ('model 1088') pl +. xlabel ('cpoch') plt. legand ([train', 'validation'], loc = ' upper left') P14. Sh8w() # graph represent's the model's loss # In [24]: PIT. Plot Chistory. history[accuracy]) PIH. Plot (history. history Ceval-accardcy,]) PIT. Plot (history. history["loss"]).

PIT. title ["Training loss and accuracy") pit. ylabel (coccuracy 1665) PIL Xlabel (cepachi) pit-legend (['accuracy', 'val_accuracy', '1088% 'vale pit. show () conclusion :with above code we can see. that throughput With epocens, Our model accuracy increase and our model 1009 decreasses, that is good since our model gains considence Mith its prégletion.