Analytical lower bound on the number of queries to a black-box unitary operation in deterministic exact transformations of unknown unitary operations

Based on <u>arXiv:2405.07625</u>

Tatsuki Odake, <u>Satoshi Yoshida</u>, Mio Murao

Analytical lower bound on query complexity for universal transformations of unitary operations

Based on <u>arXiv:2405.07625</u>

Tatsuki Odake, Satoshi Yoshida, Mio Murao

Higher-order quantum operation

Higher-order function in classical information processing

Higher-order quantum operation in quantum information processing

Higher-order quantum operation = Transformation of quantum operation

Universal transformation of q. states and operations

Universal transformation of quantum states

This is NOT
$$|0\rangle \mapsto |\psi\rangle$$

Eg. State cloning $\rho\mapsto\rho\otimes\rho$

Universal NOT $\rho \mapsto \rho^{\perp}$

Universal transformation of quantum operations

In particular, we consider

$$-U_{
m in}- imes n$$
 $-f(U_{
m in})-$ Unknown unitary

Example: Unitary inversion

$$-U_{\rm in}$$
 $-U_{\rm in}^{-1}$ $-$

Simulation of "time inversion":

$$U_{\rm in} = e^{-iHt} \mapsto U_{\rm in}^{-1} = e^{iHt}$$

<u>Applications</u>

- Quantum control
- Learning (e.g. OTOC)

Quantum comb

Circuit implementation of higher-order quantum operation

Deterministic, exact and universal transformations

No-go theorems on universal transformations

States: <u>Impossible</u>, e.g., no-cloning theorem, no-universal-NOT theorem → Only prob./approx. How about universal transformations of unitary operations?

Other possible transformations

- Complex conjugation: $U_{\mathrm{in}}^{\otimes n} \mapsto U_{\mathrm{in}}^*$ for n=d-1
- Transposition: $U_{\mathrm{in}}^{\otimes n}\mapsto U_{\mathrm{in}}^{T}$ for $n=O(d^{2})$

Research question:

What is the fundamental limit of universal transformations of unitary operations?

- Problem setting:

Query complexity for universal transformation of unitary operations

- Main result:
 Lower bound of query complexity based on SDP
- Proof techniques
- Extension to relaxed situations: Subgroup and probabilistic settings
- Conclusion & outlook

Problem setting

Task: Universal transformation of unitary operations

Def: [Query complexity of $f: SU(d) \rightarrow SU(d)$] = min N

Problem setting

Question

What is the fundamental limit of universal transformation of unitary operations?

= Lower bound on the query complexity of $f: SU(d) \rightarrow SU(d)$

Assumption

Suppose f is differentiable, i.e., $f(e^{i\epsilon H}) = [I + i\epsilon g(H) + O(\epsilon^2)]f(I)$ holds for

- $-H \in \mathfrak{Su}(d)$: Hermitian (traceless) matrix
- $-g: \mathfrak{Su}(d) \to \mathfrak{Su}(d)$: linear map

Eg.
$$f(U) = U^{-1}, U^*, U^T, U^n$$

Previous works on query complexity

Polynomial method

$$F(|U\rangle)\langle\langle U|) = |f(U)\rangle\rangle\langle\langle f(U)|$$
 should have polynomial degree $\leq n$

Non-tight

e.g.
$$f(U) = U^{\dagger} \rightarrow \text{Polynomial degree } d - 1 \rightarrow n \geq d - 1$$

Topological method

J. Miyazaki et al. PRR 1, 013007 (2019).

Property on continuous function $\phi: \mathrm{SU}(d) o S^1$ to show no-go for controllization

Z. Gavorová et al. PRA 109, 032625 (2024).

Non-universal

Numerical method

Solve the optimization problem of fidelity for a given d, n

M. Quintino and D. Ebler, Quantum 6, 679 (2022).

Non-scalable

We need tight, universal, and scalable lower bound

- Problem setting:

 Query complexity for universal transformation of unitary operations
- Main result:
 Lower bound of query complexity based on SDP
- Proof techniques
- Extension to relaxed situations: Subgroup and probabilistic settings
- Conclusion & outlook

Main result

Theorem 1

```
Query complexity of f \geq \min \operatorname{tr} \beta  \text{s.t. } \beta \in \mathcal{L}(\mathbb{C}^d), J_g + \beta \otimes I \geq 0  where J_g := \sum_{i,j \neq (0,0)} X^i Z^j \otimes g(X^i Z^j): Choi matrix of g of f(e^{i\epsilon H}) = [I + i\epsilon g(H) + O(\epsilon^2)]f(I)  X, Z \text{: Generalized Pauli matrix}
```

Remark

- This result can be applied to <u>any</u> differentiable function $f: SU(d) \to SU(d)$
- RHS: semidefinite programming (SDP) which does not depend on $n \to \underline{Scalable}$
- This lower bound is **tight** for some cases (in next slide)

Main result

Theorem 2

Inversion: [Query complexity of $f(U) = U^{-1}$] $\geq d^2$

Transposition: [Query complexity of $f(U) = U^T$] $\geq 4(d=2), d+3(d\geq 3)$

Complex conjugation: [Query complexity of $f(U) = U^*$] $\geq d-1$

Tightness of the lower bound

Function	Lower bound	Minimum known	
$f(U) = U^{-1}$	$n \ge d^2$	$n \le 4 \ (d=2), \lesssim \frac{\pi}{2} d^2 \ (d \ge 3)$	Matching lower
$f(U) = U^T$	$n \ge 4 \ (d = 2), d + 3 \ (d \ge 3)$	$n \le 4 \ (d=2), \lesssim \frac{\pi}{2} d^2 \ (d \ge 3)$	\triangle Only tight for \hat{d}
$f(U) = U^*$	$n \ge d - 1$	$n \leq d-1$	✓✓ Tight

er bound

d=2

SY, A. Soeda, M. Murao, PRL 131, 120602 (2023).

Y.-A. Chen et al. arXiv:2403.04704.

J. Miyazaki et al. PRR 1, 013007 (2019).

Bonus result: No-go on catalytic transformation

Catalytic transformation

Unitary inversion for d=2

SY, A. Soeda, M. Murao, PRL 131, 120602 (2023). M. Quintino and D. Ebler, Quantum 6, 679 (2022)

Catalyst state

$$-U_{\mathrm{in}} - -U_{\mathrm{in}} - -U_{\mathrm{in}} - -U_{\mathrm{in}} - U_{\mathrm{in}} -$$

$$-U_{\rm in} - U_{\rm in}$$

Theorem 3

If the SDP lower bound is achievable, there is no catalytic transformation

 \rightarrow No catalytic transformation for $f(U) = U^*$

- Problem setting:

 Query complexity for universal transformation of unitary operations
- Main result:
 Lower bound of query complexity based on SDP
- Proof techniques
- Extension to relaxed situations: Subgroup and probabilistic settings
- Conclusion & outlook

Proof of Theorem 1

Idea: Differentiation

Differentiating $Z(e^{i\epsilon H})$ with respect to ϵ , we obtain

$$\mathscr{E}(H) = g(H) + \alpha(H)I,$$

 $\alpha(H) \in \mathbb{R}$: Global phase

where & is a CP map defined by

$$\mathscr{E}(H) = \sum_{s=1}^{N} \sum_{jk} M_{jk}^{(s)\dagger} H M_{jk}^{(s)}, \qquad \sum_{jk} M_{jk}^{(s)} \otimes |j\rangle\langle k| := V_s \cdots V_1$$

Proof of Theorem 1

$$\mathcal{E}(H) = g(H) + \alpha(H)I,$$

$$\mathcal{E}(H) = \sum_{s=1}^{N} \sum_{jk} M_{jk}^{(s)\dagger} H M_{jk}^{(s)}$$

$$\sum_{jk} M_{jk}^{(s)} \otimes |j\rangle\langle k| := V_s \cdots V_1$$

$$\mathcal{E}(H) = g(H) + \alpha(H)I$$

$$\mathcal{E} \text{ is CP}$$

$$\mathcal{E}(I) = NI$$

$$J_{\mathscr{E}} = J_g + \beta \otimes I \ge 0$$

$$N = \frac{1}{d} \operatorname{tr} \mathscr{E}(I) = \frac{1}{d} \operatorname{tr} J_{\mathscr{E}}$$
 SDP constraints!

Remark. Only considers necessary conditions \rightarrow Our argument does not imply achievability Similar technique is used in our concurrent work (H. Kristjánsson et al. arXiv:2409.18420. Poster No. 77 (Thursday))

- Problem setting:

 Query complexity for universal transformation of unitary operations
- Main result:
 Lower bound of query complexity based on SDP
- Proof techniques
- Extension to relaxed situations:
 Subgroup and probabilistic settings
- Conclusion & outlook

Extension to relaxed settings

Maybe overkilling for practical applications

- → Relaxed setting
- Probabilistic setting

- Partial information of input unitary is given

 $U \in G \subset SU(d)$ G: subgroup

We also obtain SDP lower bound for the query complexity in these relaxed settings

Example: Probabilistic unitary transposition

$$f(U) = U^T$$

Upper bound on the success probability

- Problem setting:

 Query complexity for universal transformation of unitary operations
- Main result:
 Lower bound of query complexity based on SDP
- Proof techniques
- Extension to relaxed situations: Subgroup and probabilistic settings
- Conclusion & outlook

Conclusion

- Non-trivial universal transformation of unitary operation is possible

$$\begin{array}{c|c} U & \bullet & \bullet & U \\ \hline N \text{ copies} \end{array}$$

- We provide tight, universal, and scalable SDP to bound N

Function	Lower bound	Minimum known
$f(U) = U^{-1}$	$n \ge d^2$	$n \le 4 \ (d=2), \lesssim \frac{\pi}{2} d^2 \ (d \ge 3)$
$f(U) = U^T$	$n \ge 4 \ (d = 2), d + 3 \ (d \ge 3)$	$n \le 4 \ (d=2), \lesssim \frac{\pi}{2} d^2 \ (d \ge 3)$
$f(U) = U^*$	$n \ge d - 1$	$n \leq d-1$

- Proof technique: differentiation
- Extend to probabilistic/partially-known settings

Outlook

- We derive the SDP lower bound based on the differentiation
- → Only considers local properties
 - Q1. Tighter lower bound by higher-order derivatives?
- Our lower bound for unitary transposition does not match the minimum known number

Lower bound: $N = \Omega(d)$

Minimum known: $N = O(d^2)$

Q2. Unitary transposition protocol with N = O(d)?

or

Q2'. Tighter lower bound for unitary transposition to provide $N = \Omega(d^2)$?

or something in between

Thank you!