# Logistic regression

## Logistic regression

- When response variable is measured/counted, regression can work well.
- But what if response is yes/no, lived/died, success/failure?
- Model probability of success.
- Probability must be between 0 and 1; need method that ensures this.
- Logistic regression does this. In R, is a generalized linear model with binomial "family":

```
glm(y ~ x, family="binomial")
```

Begin with simplest case.

## **Packages**

```
library(MASS)
library(tidyverse)
library(marginaleffects)
library(broom)
library(nnet)
library(conflicted)
conflict prefer("select", "dplyr")
conflict prefer("filter", "dplyr")
conflict prefer("rename", "dplyr")
conflict_prefer("summarize", "dplyr")
```

## The rats, part 1

• Rats given dose of some poison; either live or die:

dose status

- 0 lived
- 1 died
- 2 lived
- 3 lived
- 4 died
- 5 died

#### Read in:

```
my_url <- "http://ritsokiguess.site/datafiles/rat.txt"
rats <- read_delim(my_url, " ")
rats</pre>
```

| 0 lived |      |        |
|---------|------|--------|
| 0       | dose | status |
| 1 4:44  | 0    | lived  |
| 1 alea  | 1    | died   |
| 2 lived | 2    | lived  |
| 3 lived | 3    | lived  |
| 4 died  | 4    | died   |
| 5 died  | 5    | died   |

## Basic logistic regression

• Make response into a factor first:

```
rats2 <- rats %>% mutate(status = factor(status))
```

• then fit model:

```
status.1 <- glm(status ~ dose, family = "binomial", data = rats2)
```

#### Output

```
summary(status.1)
##
## Call:
## glm(formula = status ~ dose, family = "binomial", data = rats2)
##
## Deviance Residuals:
##
## 0.5835 -1.6254 1.0381 1.3234 -0.7880 -0.5835
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.6841 1.7979 0.937 0.349
## dose -0.6736 0.6140 -1.097 0.273
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 8.3178 on 5 degrees of freedom
## Residual deviance: 6.7728 on 4 degrees of freedom
## AIC: 10.773
##
## Number of Fisher Scoring iterations: 4
```

## Interpreting the output

- ullet Like (multiple) regression, get tests of significance of individual x's
- Here not significant (only 6 observations).
- "Slope" for dose is negative, meaning that as dose increases, probability of event modelled (survival) decreases.

## Output part 2: predicted survival probs

```
# predictions(status.1)
cbind(predictions(status.1)) %>%
select(dose, estimate)
```

```
        dose
        estimate

        0
        0.8434490

        1
        0.7331122

        2
        0.5834187

        3
        0.4165813

        4
        0.2668878

        5
        0.1565510
```

```
# new <- tibble(dose = 0:5)
# new
# cbind(new, predictions(status.1, newdata = new))
# %>%
# select(dose, estimate)
```

# On a graph



#### The rats, more

- More realistic: more rats at each dose (say 10).
- Listing each rat on one line makes a big data file.
- Use format below: dose, number of survivals, number of deaths.

```
    dose
    lived
    died

    0
    10
    0

    1
    7
    3

    2
    6
    4

    3
    4
    6

    4
    2
    8

    5
    1
    9
```

- 6 lines of data correspond to 60 actual rats.
- Saved in rat2.txt.

#### These data

## Rows: 6 Columns: 3

## Delimiter: " "

rat2

```
my_url <- "http://ritsokiguess.site/datafiles/rat2.txt"
rat2 <- read_delim(my_url, " ")</pre>
```

## -- Column specification -----

```
## dbl (3): dose, lived, died
##
```

## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show\_col\_types = FALSE` to quiet this

 dose
 lived
 died

 0
 10
 0

 1
 7
 3

 2
 6
 4

 3
 4
 6

 4
 2
 8

 5
 1
 9

#### Create response matrix:

- Each row contains multiple observations.
- Create *two-column* response:
  - #survivals in first column,
  - #deaths in second.

```
response <- with(rat2, cbind(lived, died))
response</pre>
```

```
## lived died
## [1,] 10 0
## [2,] 7 3
## [3,] 6 4
## [4,] 4 6
## [5,] 2 8
## [6,] 1 9
```

Response is R matrix:

```
class(response)
```

```
## [1] "matrix" "array"
```

## Fit logistic regression

using response you just made:

```
rat2.1 <- glm(response ~ dose,
  family = "binomial",
  data = rat2
)</pre>
```

#### Output

```
summary(rat2.1)
##
## Call:
## glm(formula = response ~ dose, family = "binomial", data = rat2)
##
## Deviance Residuals:
##
## 1.3421 -0.7916 -0.1034 0.1034 0.0389 0.1529
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 2.3619 0.6719 3.515 0.000439 ***
## dose -0.9448 0.2351 -4.018 5.87e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 27.530 on 5 degrees of freedom
##
## Residual deviance: 2.474 on 4 degrees of freedom
## AIC: 18.94
##
```

### Predicted survival probs

```
new <- datagrid(model = rat2.1, dose = 0:5)</pre>
```

## Warning: Matrix columns are not supported as predictors and
## omitted. This may prevent computation of the quantities of
## can construct your own prediction dataset and supply it of
## the `newdata` argument.

```
cbind(predictions(rat2.1, newdata = new))
```

```
## Warning in data.table::setDT(modeldata): Some columns are a
column type
## (such as a matrix column): [1]. setDT will retain these col
is but
```

## subsequent operations like grouping and joining may fail. I
## as.data.table() instead which will create a new column for
rowid type estimate p.value conf.low conf.high dose

#### On a picture

```
# plot cap(rat2.1, condition = "dose", draw = FALSE)
cbind(predictions(rat2.1, newdata = new)) %>%
 select(estimate, conf.low, conf.high, dose) %>%
 ggplot(aes(x = dose, y = estimate, ymin = conf.low, ymax = o
 geom_ribbon(alpha = 0.3)
```

```
## Warning in data.table::setDT(modeldata): Some columns are
column type
## (such as a matrix column): [1]. setDT will retain these column
```

is but ## subsequent operations like grouping and joining may fail. I

## as.data.table() instead which will create a new column for



#### Comments

- Significant effect of dose.
- Effect of larger dose is to decrease survival probability ("slope" negative; also see in decreasing predictions.)
- Confidence intervals around prediction narrower (more data).

# Multiple logistic regression

- With more than one x, works much like multiple regression.
- Example: study of patients with blood poisoning severe enough to warrant surgery. Relate survival to other potential risk factors.
- Variables, 1=present, 0=absent:
  - survival (death from sepsis=1), response
  - shock
  - malnutrition
  - alcoholism
  - age (as numerical variable)
  - bowel infarction
- See what relates to death.

#### Read in data

```
my_url <-
   "http://ritsokiguess.site/datafiles/sepsis.txt"
sepsis <- read_delim(my_url, " ")</pre>
```

```
sepsis <- read_delim(my_url, " ")
## Rows: 106 Columns: 6</pre>
```

## Delimiter: " "
## dbl (6): death, shock, malnut, alcohol, age, bowelinf
##
## i Use `spec()` to retrieve the full column specification for

## i Specify the column types or set `show\_col\_types = FALSE`
sepsis

## -- Column specification ----

| death | shock | malnut        | alcohol         | age | bowelinf |
|-------|-------|---------------|-----------------|-----|----------|
| 0     | 0     | 0             | 0               | 56  | 0        |
| 0     | 0     | 0<br>Logistic | 0<br>regression | 80  | 0        |

# Make sure categoricals really are

```
sepsis %>%
  mutate(across(-age, \(x) factor(x))) -> sepsis
```

# The data (some)

#### sepsis

| death | shock | malnut   | alcohol    | age | bowelinf |
|-------|-------|----------|------------|-----|----------|
| 0     | 0     | 0        | 0          | 56  | 0        |
| 0     | 0     | 0        | 0          | 80  | 0        |
| 0     | 0     | 0        | 0          | 61  | 0        |
| 0     | 0     | 0        | 0          | 26  | 0        |
| 0     | 0     | 0        | 0          | 53  | 0        |
| 1     | 0     | 1        | 0          | 87  | 0        |
| 0     | 0     | 0        | 0          | 21  | 0        |
| 1     | 0     | 0        | 1          | 69  | 0        |
| 0     | 0     | 0        | 0          | 57  | 0        |
| 0     | 0     | 1        | 0          | 76  | 0        |
| 1     | 0     | 0        | 1          | 66  | 1        |
| 0     | 0     | 0        | 0          | 48  | 0        |
| 0     | 0     | 0        | 0          | 18  | 0        |
|       |       | Logistic | regression |     |          |

#### Fit model

```
sepsis.1 <- glm(death ~ shock + malnut + alcohol + age +
  bowelinf,
family = "binomial",
data = sepsis
)</pre>
```

#### Output part 1

```
summary(sepsis.1)
```

```
##
## Call:
## glm(formula = death ~ shock + malnut + alcohol + age + bow
##
      family = "binomial", data = sepsis)
##
## Deviance Residuals:
##
      Min 1Q Median
                                30
                                        Max
## -1.3277 -0.4204 -0.0781 -0.0274 3.2946
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
```

## shock1 3.67387 1.16481 3.154 0.001610 \*\*
## malnut1 1.21658 0.72822 1.671 0.094798 .

Logistic regression

## (Intercept) -9.75391 2.54170 -3.838 0.000124 \*\*\*

### Removing malnut

##

##

```
sepsis.2 <- update(sepsis.1, . ~ . - malnut)
summary(sepsis.2)

##
## Call:
## glm(formula = death ~ shock + alcohol + age + bowelinf, far
## data = sepsis)
##
## Deviance Residuals:</pre>
```

3Q

Max

## Coefficients: ## Estimate Std. Error z value Pr(>|z|) ## (Intercept) -8.89459 2.31689 -3.839 0.000124 \*\*\*

## -1.26192 -0.50391 -0.10690 -0.04112 3.06000

Min 10 Median

## shock1 3.70119 1.10353 3.354 0.000797 \*\*\*

Logistic regression

#### Comments

- Most of the original x's helped predict death. Only malnut seemed not to add anything.
- Removed malnut and tried again.
- Everything remaining is significant (though bowelinf actually became *less* significant).
- All coefficients are *positive*, so having any of the risk factors (or being older) *increases* risk of death.

# Another way to see

comparisons(sepsis.2) %>% summary()

| type     | term     | contrast             | estimate  | std.error | statistic | p.value   | conf.low  | conf.high |
|----------|----------|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| response | age      | mean(+1)             | 0.0074386 | 0.0019639 | 3.787769  | 0.0001520 | 0.0035895 | 0.0112877 |
| response | alcohol  | mean(1) -<br>mean(0) | 0.3059301 | 0.0679656 | 4.501252  | 0.0000068 | 0.1727201 | 0.4391402 |
| response | bowelinf | mean(1) -<br>mean(0) | 0.2415562 | 0.1009568 | 2.392668  | 0.0167264 | 0.0436845 | 0.4394279 |
| response | shock    | mean(1) -<br>mean(0) | 0.3985100 | 0.0962760 | 4.139246  | 0.0000348 | 0.2098125 | 0.5872074 |

- An additional year of age, all else equal, increases P(death) by 0.007 on average
- Having shock (vs. not), all else equal, increases P(death) by 0.399 on average
- The actual size of the effects depends on values of other variables (non-linear model)

#### Predictions from model without "malnut"

#### • A few (rows of original dataframe) chosen "at random":

```
sepsis %>% slice(c(4, 1, 2, 11, 32)) -> new new
```

| death | shock | malnut | alcohol | age | bowelinf |
|-------|-------|--------|---------|-----|----------|
| 0     | 0     | 0      | 0       | 26  | 0        |
| 0     | 0     | 0      | 0       | 56  | 0        |
| 0     | 0     | 0      | 0       | 80  | 0        |
| 1     | 0     | 0      | 1       | 66  | 1        |
| 1     | 0     | 0      | 1       | 49  | 0        |
|       |       |        |         |     |          |

```
cbind(predictions(sepsis.2, newdata = new)) %>%
select(estimate, conf.low, conf.high, shock:bowelinf)
```

| estimate  | conf.low  | conf.high | shock | malnut | alcohol | age | bowelinf |
|-----------|-----------|-----------|-------|--------|---------|-----|----------|
| 0.0014153 | 0.0000627 | 0.0310305 | 0     | 0      | 0       | 26  | 0        |
| 0.0205524 | 0.0041025 | 0.0965660 | 0     | 0      | 0       | 56  | 0        |
| 0.1534168 | 0.0560684 | 0.3560344 | 0     | 0      | 0       | 80  | 0        |
| 0.9312901 | 0.5490986 | 0.9934148 | 0     | 0      | 1       | 66  | 1        |
| 0.2130010 | 0.0763906 | 0.4696795 | 0     | 0      | 1       | 49  | 0        |

#### Comments

- Survival chances pretty good if no risk factors, though decreasing with age.
- Having more than one risk factor reduces survival chances dramatically.
- Usually good job of predicting survival; sometimes death predicted to survive.

#### Another way to assess effects

of age:

```
new <- datagrid(model = sepsis.2, age = seq(30, 70, 10))
new</pre>
```

| death | shock | alcohol | bowelinf | age |
|-------|-------|---------|----------|-----|
| 0     | 0     | 0       | 0        | 30  |
| 0     | 0     | 0       | 0        | 40  |
| 0     | 0     | 0       | 0        | 50  |
| 0     | 0     | 0       | 0        | 60  |
| 0     | 0     | 0       | 0        | 70  |

# Assessing age effect

```
cbind(predictions(sepsis.2, newdata = new)) %>%
  select(estimate, shock:age)
```

| estimate  | shock | alcohol | bowelinf | age |
|-----------|-------|---------|----------|-----|
| 0.0020261 | 0     | 0       | 0        | 30  |
| 0.0049603 | 0     | 0       | 0        | 40  |
| 0.0120925 | 0     | 0       | 0        | 50  |
| 0.0291792 | 0     | 0       | 0        | 60  |
| 0.0687298 | 0     | 0       | 0        | 70  |
|           |       |         |          |     |

# Assessing shock effect

```
new <- datagrid(shock = c(0, 1), model = sepsis.2)
new</pre>
```

| death | alcohol | age      | bowelinf | shock |
|-------|---------|----------|----------|-------|
| 0     | 0       | 51.28302 | 0        | 0     |
| 0     | 0       | 51.28302 | 0        | 1     |

```
cbind(predictions(sepsis.2, newdata = new)) %>%
  select(estimate, death:shock)
```

| estimate  | death | alcohol | age      | bowelinf | shock |
|-----------|-------|---------|----------|----------|-------|
| 0.0135497 | 0     | 0       | 51.28302 | 0        | 0     |
| 0.3574261 | 0     | 0       | 51.28302 | 0        | 1     |

# Assessing proportionality of odds for age

- An assumption we made is that log-odds of survival depends linearly on age.
- Hard to get your head around, but basic idea is that survival chances go continuously up (or down) with age, instead of (for example) going up and then down.
- In this case, seems reasonable, but should check:

# Residuals vs. age

```
sepsis.2 %>% augment(sepsis) %>%
  ggplot(aes(x = age, y = .resid)) +
  geom_point()
 3 -
 2-
resid
  0 -
 -1-
            25
                                 50
```

#### Comments

- No apparent problems overall.
- Confusing "line" across: no risk factors, survived.

# Probability and odds

• For probability p, odds is p/(1-p):

| Prob.  | Odds                   | log-odds | in words     |
|--------|------------------------|----------|--------------|
| 1 100. | Ouus                   | log-odus | III WOIUS    |
| 0.5    | 0.5/0.5 = 1/1 = 1.00   | 0.00     | "even money" |
| 0.1    | 0.1/0.9 = 1/9 = 0.11   | -2.20    | "9 to 1"     |
| 0.4    | 0.4/0.6 = 1/1.5 = 0.67 | -0.41    | "1.5 to 1"   |
| 0.8    | 0.8/0.2 = 4/1 = 4.00   | 1.39     | "4 to 1 on"  |

- Gamblers use odds: if you win at 9 to 1 odds, get original stake back plus 9 times the stake.
- Probability has to be between 0 and 1
- Odds between 0 and infinity
- Log-odds can be anything: any log-odds corresponds to valid probability.

#### Odds ratio

- Suppose 90 of 100 men drank wine last week, but only 20 of 100 women.
- Prob of man drinking wine 90/100 = 0.9, woman 20/100 = 0.2.
- Odds of man drinking wine 0.9/0.1 = 9, woman 0.2/0.8 = 0.25.
- Ratio of odds is 9/0.25 = 36.
- Way of quantifying difference between men and women: "odds of drinking wine 36 times larger for males than females".

#### Sepsis data again

Recall prediction of probability of death from risk factors:

```
sepsis.2.tidy <- tidy(sepsis.2)
sepsis.2.tidy</pre>
```

| term        | estimate   | std.error | statistic | p.value   |
|-------------|------------|-----------|-----------|-----------|
| (Intercept) | -8.8945899 | 2.3168948 | -3.839013 | 0.0001235 |
| shock1      | 3.7011932  | 1.1035347 | 3.353944  | 0.0007967 |
| alcohol1    | 3.1859040  | 0.9172457 | 3.473338  | 0.0005140 |
| age         | 0.0898318  | 0.0292153 | 3.074821  | 0.0021063 |
| bowelinf1   | 2.3864685  | 1.0722662 | 2.225631  | 0.0260389 |

Slopes in column estimate.

## Multiplying the odds

• Can interpret slopes by taking "exp" of them. We ignore intercept.

```
sepsis.2.tidy %>%
  mutate(exp_coeff=exp(estimate)) %>%
  select(term, exp_coeff)
```

| term        | exp_coeff  |
|-------------|------------|
| (Intercept) | 0.0001371  |
| shock1      | 40.4955951 |
| alcohol1    | 24.1891449 |
| age         | 1.0939902  |
| bowelinf1   | 10.8750206 |
|             |            |

#### Interpretation

| term        | exp_coeff  |
|-------------|------------|
| (Intercept) | 0.0001371  |
| shock1      | 40.4955951 |
| alcohol1    | 24.1891449 |
| age         | 1.0939902  |
| bowelinf1   | 10.8750206 |
|             |            |

- These say "how much do you multiply odds of death by for increase of 1 in corresponding risk factor?" Or, what is odds ratio for that factor being 1 (present) vs. 0 (absent)?
- Eg. being alcoholic vs. not increases odds of death by 24 times
- One year older multiplies odds by about 1.1 times. Over 40 years, about  $1.09^{40} = 31$  times.

#### Odds ratio and relative risk

- Relative risk is ratio of probabilities.
- Above: 90 of 100 men (0.9) drank wine, 20 of 100 women (0.2).
- Relative risk 0.9/0.2=4.5. (odds ratio was 36).
- When probabilities small, relative risk and odds ratio similar.
- Eg. prob of man having disease 0.02, woman 0.01.
- Relative risk 0.02/0.01 = 2.

#### Odds ratio vs. relative risk

Odds for men and for women:

```
(od1 <- 0.02 / 0.98) # men

## [1] 0.02040816

(od2 <- 0.01 / 0.99) # women

## [1] 0.01010101
```

- Odds ratio
- od1 / od2
- ## [1] 2.020408
  - Very close to relative risk of 2.

## More than 2 response categories

- With 2 response categories, model the probability of one, and prob of other is one minus that. So doesn't matter which category you model.
- With more than 2 categories, have to think more carefully about the categories: are they
- ordered: you can put them in a natural order (like low, medium, high)
- nominal: ordering the categories doesn't make sense (like red, green, blue).
- R handles both kinds of response; learn how.

#### Ordinal response: the miners

- Model probability of being in given category or lower.
- Example: coal-miners often suffer disease pneumoconiosis. Likelihood of disease believed to be greater among miners who have worked longer.
- Severity of disease measured on categorical scale: none, moderate, severe.

#### Miners data

#### • Data are frequencies:

| Exposure | None | Moderate | Severe |
|----------|------|----------|--------|
| 5.8      | 98   | 0        | 0      |
| 15.0     | 51   | 2        | 1      |
| 21.5     | 34   | 6        | 3      |
| 27.5     | 35   | 5        | 8      |
| 33.5     | 32   | 10       | 9      |
| 39.5     | 23   | 7        | 8      |
| 46.0     | 12   | 6        | 10     |
| 51.5     | 4    | 2        | 5      |

#### Reading the data

Data in aligned columns with more than one space between, so:

```
my_url <- "http://ritsokiguess.site/datafiles/miners-tab.txt"
freqs <- read_table(my_url)

##
## -- Column specification -------
## cols(
## Exposure = col_double(),</pre>
```

None = col\_double(),

Moderate = col\_double(),

##

##

#### The data

#### freqs

| Exposure | None | Moderate | Severe |
|----------|------|----------|--------|
| 5.8      | 98   | 0        | 0      |
| 15.0     | 51   | 2        | 1      |
| 21.5     | 34   | 6        | 3      |
| 27.5     | 35   | 5        | 8      |
| 33.5     | 32   | 10       | 9      |
| 39.5     | 23   | 7        | 8      |
| 46.0     | 12   | 6        | 10     |
| 51.5     | 4    | 2        | 5      |

## **Tidying**

```
freqs %>%
  pivot_longer(-Exposure, names_to = "Severity", values_to = "
  mutate(Severity = fct_inorder(Severity)) -> miners
```

#### Result

miners

| Exposure | Severity | Freq |
|----------|----------|------|
| 5.8      | None     | 98   |
| 5.8      | Moderate | 0    |
| 5.8      | Severe   | 0    |
| 15.0     | None     | 51   |
| 15.0     | Moderate | 2    |
| 15.0     | Severe   | 1    |
| 21.5     | None     | 34   |
| 21.5     | Moderate | 6    |
| 21.5     | Severe   | 3    |
| 27.5     | None     | 35   |
| 27.5     | Moderate | 5    |
| 27.5     | Severe   | 8    |
| 33.5     | None     | 32   |
| 33.5     | Moderate | 10   |
| 33.5     | Severe   | 9    |
| 39.5     | None     | 23   |
| 39.5     | Moderate | 7    |
| 39.5     | Severe   | 8    |
| 46.0     | None     | 12   |
| 46.0     | Moderate | 6    |
| 46.0     | Severe   | 10   |
| 51.5     | None     | 4    |
| 51.5     | Moderate | 2    |
| 51.5     | Severe   | 5    |

#### Plot proportions against exposure



# Reminder of data setup

miners

| Exposure    | Severity                   | Freq |
|-------------|----------------------------|------|
| 5.8         | None                       | 98   |
| 5.8         | Moderate                   | 0    |
| 5.8         | Severe                     | 0    |
| 15.0        | None                       | 51   |
| 15.0        | Moderate                   | 2    |
| 15.0        | Severe                     | 1    |
| 21.5        | None                       | 34   |
| 21.5        | Moderate                   | 6    |
| 21.5        | Severe                     | 3    |
| 27.5        | None                       | 35   |
| 27.5        | Moderate                   | 5    |
| 27.5        | Severe                     | 8    |
| 33.5        | None                       | 32   |
| 33.5        | Moderate                   | 10   |
| 33.5        | Severe                     | 9    |
| 39.5        | None                       | 23   |
| 39.5<br>Log | Moderate sistic regression | 7    |

#### Fitting ordered logistic model

Use function polr from package MASS. Like glm.

```
sev.1 <- polr(Severity ~ Exposure,
  weights = Freq,
  data = miners
)</pre>
```

### Output: not very illuminating

```
sev.1 <- polr(Severity ~ Exposure,</pre>
 weights = Freq,
 data = miners,
 Hess = TRUE
summary(sev.1)
## Call:
## polr(formula = Severity ~ Exposure, data = miners, weights = Freq,
      Hess = TRUE
##
##
## Coefficients:
            Value Std. Error t value
##
## Exposure 0.0959 0.01194 8.034
##
  Intercepts:
##
                  Value Std. Error t value
## None | Moderate 3.9558 0.4097 9.6558
## Moderate|Severe 4.8690 0.4411 11.0383
##
## Residual Deviance: 416.9188
## AIC: 422.9188
```

#### Does exposure have an effect?

Fit model without Exposure, and compare using anova. Note 1 for model with just intercept:

```
sev.0 <- polr(Severity ~ 1, weights = Freq, data = miners)
anova(sev.0, sev.1)</pre>
```

| Model    | Resid. df | Resid. Dev | Test   | Df | LR stat. | Pr(Chi) |
|----------|-----------|------------|--------|----|----------|---------|
| 1        | 369       | 505.1621   |        | NA | NA       | NA      |
| Exposure | 368       | 416.9188   | 1 vs 2 | 1  | 88.24324 | 0       |

Exposure definitely has effect on severity of disease.

#### Another way

• What (if anything) can we drop from model with exposure?

|          | Df | AIC      | LRT      | Pr(>Chi) |
|----------|----|----------|----------|----------|
|          | NA | 422.9188 | NA       | NA       |
| Exposure | 1  | 509.1621 | 88.24324 | 0        |

• Nothing. Exposure definitely has effect.

## Predicted probabilities

```
freqs %>% select(Exposure) -> new
new
```

```
5.8
15.0
21.5
27.5
33.5
39.5
46.0
51.5
```

```
cbind(predictions(sev.1, newdata = new)) %>%
  select(group, estimate, Exposure) %>%
  pivot_wider(names_from = group, values_from = estimate)
```

#### Plot of predicted probabilities

## The graph



#### Comments

- Model appears to match data well enough.
- As exposure goes up, prob of None goes down, Severe goes up (sharply for high exposure).
- So more exposure means worse disease.

#### Unordered responses

- With unordered (nominal) responses, can use generalized logit.
- Example: 735 people, record age and sex (male 0, female 1), which of 3 brands of some product preferred.
- Data in mlogit.csv separated by commas (so read\_csv will work):

```
my_url <- "http://ritsokiguess.site/datafiles/mlogit.csv"
brandpref <- read_csv(my_url)</pre>
```

```
## Rows: 735 Columns: 3
## -- Column specification ------
## Delimiter: ","
```

```
## dbl (3): brand, sex, age ##
```

## i Use `spec()` to retrieve the full column specification fo
## i Specify the column types or set `show\_col\_types = FALSE`

# The data (some)

 ${\tt brandpref}$ 

| brand  | sex         | age |
|--------|-------------|-----|
| 1      | 0           | 24  |
| 1      | 0           | 26  |
| 1      | 0           | 26  |
| 1      | 1           | 27  |
| 1      | 1           | 27  |
| 3      | 1           | 27  |
| 1      | 0           | 27  |
| 1      | 0           | 27  |
| 1      | 1           | 27  |
| 1      | 0           | 27  |
| 1      | 0           | 27  |
| 1      | 1           | 27  |
| 2      | 1           | 28  |
| Logist | ic regressi | on  |

## Bashing into shape, and fitting model

• sex and brand not meaningful as numbers, so turn into factors:

| brand   | sex               | age |
|---------|-------------------|-----|
| 1       | male              | 24  |
| 1       | male              | 26  |
| 1       | male              | 26  |
| 1       | female            | 27  |
| 1       | female            | 27  |
| 3       | female            | 27  |
| 1<br>Lo | gistic regression | 7   |

### Can we drop anything?

Unfortunately drop1 seems not to work:

```
drop1(brands.1, test = "Chisq", trace = 0)
```

```
## trying - age
```

## Error in if (trace)  $\{: argument is not interpretable as log$ 

 So, fall back on fitting model without what you want to test, and comparing using anova.

## Do age/sex help predict brand? 1/3

Fit models without each of age and sex:

brands.2 <- multinom(brand ~ age, data = brandpref)

## # weights: 9 (4 variable)

## initial value 807.480032

## iter 10 value 706.796323

## iter 10 value 706.796322

```
brands.3 <- multinom(brand ~ sex, data = brandpref)</pre>
```

## # weights: 9 (4 variable)
## initial value 807.480032
## final value 791.861266
## converged

## final value 706.796322

## converged

## Do age/sex help predict brand? 2/3

#### anova(brands.2, brands.1)

| Model     | Resid. df | Resid. Dev | Test   | Df | LR stat. | Pr(Chi)        |
|-----------|-----------|------------|--------|----|----------|----------------|
| age       | 1466      | 1413.593   | 1 0    | NA | NA       | NA<br>0.021005 |
| age + sex | 1464      | 1405.941   | 1 vs 2 | 2  | 7.651236 | 0.021805       |

#### anova(brands.3, brands.1)

| Model     | Resid. df | Resid. Dev | Test   | Df | LR stat. | Pr(Chi) |
|-----------|-----------|------------|--------|----|----------|---------|
| sex       | 1466      | 1583.723   | 1 vs 2 | NA | NA       | NA      |
| age + sex | 1464      | 1405.941   |        | 2  | 177.7811 | 0       |

## Do age/sex help predict brand? 3/3

- age definitely significant (second anova)
- sex significant also (first anova), though P-value less dramatic
- Keep both.
- Expect to see a large effect of age, and a smaller one of sex.

#### Another way to build model

• Start from model with everything and run step:

```
step(brands.1, trace = 0)
## trying - age
## trying - sex
## Call:
## multinom(formula = brand ~ age + sex)
##
## Coefficients:
##
     (Intercept) age sexmale
## 2 -11.25127 0.3682202 -0.5237736
## 3 -22.25571 0.6859149 -0.4658215
##
  Residual Deviance: 1405.941
## AIC: 1417.941
```

• Final model contains both age and sex so neither could be removed.

#### Making predictions

Find age 5-number summary, and the two sexes:

brandpref

| brand | sex               | age |
|-------|-------------------|-----|
| 1     | male              | 24  |
| 1     | male              | 26  |
| 1     | male              | 26  |
| 1     | female            | 27  |
| 1     | female            | 27  |
| 3     | female            | 27  |
| 1     | male              | 27  |
| 1     | male              | 27  |
| 1     | female            | 27  |
| 1     | male              | 27  |
| 1     | male              | 27  |
| 1     | female            | 27  |
| 2     | female            | 28  |
| ^ Lo  | gistic regression | ^^  |

#### **Combinations**

```
new <- datagrid(age = c(24, 30, 33, 35, 38),

sex = c("female", "male"), model = brands.1)
new
```

| brand | age | sex    |  |
|-------|-----|--------|--|
| 2     | 24  | female |  |
| 2     | 24  | male   |  |
| 2     | 30  | female |  |
| 2     | 30  | male   |  |
| 2     | 33  | female |  |
| 2     | 33  | male   |  |
| 2     | 35  | female |  |
| 2     | 35  | male   |  |
| 2     | 38  | female |  |
| 2     | 38  | male   |  |

#### The predictions

```
cbind(predictions(brands.1, newdata = new)) %>%
  select(group, estimate, age, sex) %>%
  pivot_wider(names_from = group, values_from = estimate)
```

| age | sex    | 1         | 2         | 3         |
|-----|--------|-----------|-----------|-----------|
| 24  | female | 0.9153281 | 0.0818834 | 0.0027886 |
| 24  | male   | 0.9479605 | 0.0502270 | 0.0018126 |
| 30  | female | 0.4995959 | 0.4071307 | 0.0932733 |
| 30  | male   | 0.6250637 | 0.3016944 | 0.0732418 |
| 33  | female | 0.2032060 | 0.4998037 | 0.2969903 |
| 33  | male   | 0.2963797 | 0.4317571 | 0.2718632 |
| 35  | female | 0.0840409 | 0.4317037 | 0.4842554 |
| 35  | male   | 0.1305674 | 0.3972445 | 0.4721880 |
| 38  | female | 0.0162307 | 0.2516401 | 0.7321292 |
| 38  | male   | 0.0259786 | 0.2385542 | 0.7354671 |

#### Comments

- Young males prefer brand 1, but older males prefer brand 3.
- Females similar, but like brand 1 less and brand 2 more.
- A clear brand effect, but the sex effect is less clear.

## Making a plot

# The graph



# Digesting the plot

- Brand vs. age: younger people (of both genders) prefer brand 1, but older people (of both genders) prefer brand 3. (Explains significant age effect.)
- Brand vs. sex: females (solid) like brand 1 less than males (dashed), like brand 2 more (for all ages).
- Not much brand difference between genders (solid and dashed lines of same colours close), but enough to be significant.
- Model didn't include interaction, so modelled effect of gender on brand same for each age, modelled effect of age same for each gender. (See also later.)

### Alternative data format

Summarize all people of same brand preference, same sex, same age on one line of data file with frequency on end:

#### brandpref

| brand  | sex                | age |
|--------|--------------------|-----|
| 1      | male               | 24  |
| 1      | male               | 26  |
| 1      | male               | 26  |
| 1      | female             | 27  |
| 1      | female             | 27  |
| 3      | female             | 27  |
| 1      | male               | 27  |
| 1      | male               | 27  |
| 1      | female             | 27  |
| 1      | male               | 27  |
| 1<br>L | ogistic regression | 77  |

### Getting alternative data format

```
brandpref %>%
  group_by(age, sex, brand) %>%
  summarize(Freq = n()) %>%
  ungroup() -> b
b
```

| age                 | sex    | brand | Freq |  |  |
|---------------------|--------|-------|------|--|--|
| 24                  | male   | 1     | 1    |  |  |
| 26                  | male   | 1     | 2    |  |  |
| 27                  | female | 1     | 4    |  |  |
| 27                  | female | 3     | 1    |  |  |
| 27                  | male   | 1     | 4    |  |  |
| 28                  | female | 1     | 6    |  |  |
| 28                  | female | 2     | 2    |  |  |
| 28                  | female | 3     | 1    |  |  |
| 28                  | male   | 1     | 4    |  |  |
| Logistic regression |        |       |      |  |  |

### Fitting models, almost the same

- Just have to remember weights to incorporate frequencies.
- Otherwise multinom assumes you have just 1 obs on each line!
- Again turn (numerical) sex and brand into factors:

```
b %>%
  mutate(sex = factor(sex)) %>%
  mutate(brand = factor(brand)) -> bf
b.1 <- multinom(brand ~ age + sex, data = bf, weights = Freq)
b.2 <- multinom(brand ~ age, data = bf, weights = Freq)</pre>
```

#### P-value for sex identical

anova(b.2, b.1)

| Model     | Resid. df | Resid. Dev | Test   | Df | LR stat. | Pr(Chi)  |
|-----------|-----------|------------|--------|----|----------|----------|
| age       | 126       | 1413.593   |        | NA | NA       | NA       |
| age + sex | 124       | 1405.941   | 1 vs 2 | 2  | 7.651236 | 0.021805 |

Same P-value as before, so we haven't changed anything important.

### Including data on plot

• Everyone's age given as whole number, so maybe not too many different ages with sensible amount of data at each:

```
b %>%
  group_by(age) %>%
  summarize(total = sum(Freq))
```

| age      | total      |
|----------|------------|
| 24       | 1          |
| 26       | 2          |
| 27       | 9          |
| 28       | 15         |
| 29       | 19         |
| 30       | 23         |
| 31       | 40         |
| 32       | 333        |
| 33       | 55         |
| 34       | 64         |
| 35       | 35         |
| 36       | 85         |
| 37       | 22         |
| 38       | 32         |
| Logistic | regressior |

79 / 89

#### Comments and next

- Not great (especially at low end), but live with it.
- Need proportions of frequencies in each brand for each age-gender combination. Mimic what we did for miners:

```
b %>%
group_by(age, sex) %>%
mutate(proportion = Freq / sum(Freq)) -> brands
```

## Checking proportions for age 32

brands %>% filter(age == 32)

| age | sex    | brand | Freq | proportion |
|-----|--------|-------|------|------------|
| 32  | female | 1     | 62   | 0.2883721  |
| 32  | female | 2     | 117  | 0.5441860  |
| 32  | female | 3     | 36   | 0.1674419  |
| 32  | male   | 1     | 48   | 0.4067797  |
| 32  | male   | 2     | 51   | 0.4322034  |
| 32  | male   | 3     | 19   | 0.1610169  |

- First three proportions (females) add up to 1.
- Last three proportions (males) add up to 1.
- So looks like proportions of right thing.

### Attempting plot

• Take code from previous plot and add geom\_point with correct data= and aes to plot data.

```
g + geom_point(\frac{data}{data} = brands, \frac{data}{data} = proportion, \frac{data}{data}
```

• Data seem to correspond more or less to fitted curves:

# The plot





#### But...

- Some of the plotted points based on a lot of people, and some only a few.
- Idea: make the *size* of plotted point bigger if point based on a lot of people (in Freq).
- Hope that larger points then closer to predictions.
- Code:

```
g + geom_point(
    data = brands,
    aes(x = age, y = proportion, colour = sex, size = Freq),
    inherit.aes = FALSE
) -> g2
```

# The plot



# Trying interaction between age and gender

```
brands.4 <- update(brands.1, . ~ . + age:sex)
## # weights: 15 (8 variable)
## initial value 807.480032
## iter 10 value 703.191146
## iter 20 value 702.572260
## iter 30 value 702.570900
## iter 30 value 702.570893
## final value 702.570893</pre>
```

anova(brands.1, brands.4)

## converged

| Model               | Resid. df | Resid. Dev | Test   | Df | LR stat.  | Pr(Chi)   |
|---------------------|-----------|------------|--------|----|-----------|-----------|
| age + sex           | 1464      | 1405.941   |        | NA | NA        | NA        |
| age + sex + age:sex | 1462      | 1405.142   | 1 vs 2 | 2  | 0.7996223 | 0.6704466 |

 No evidence that effect of age on brand preference differs for the two genders.

## Make graph again

# Not much difference in the graph





## Compare model without interaction

