#Exercise Week 1

Nguyen Duy Tinh – 1852797

Question 1.

a. Which processor has the highest performance expressed in instruction per second?

$$InstructionPerSecond = \frac{Clock\ Rate}{CPI}$$

$$InstructionPerSecond_1 = \frac{3 \times 10^9}{1.5} = \mathbf{2} \times \mathbf{10^9}\ (InstructionPerSecond)$$

$$InstructionPerSecond_2 = \frac{2.5 \times 10^9}{1}$$

$$= \mathbf{2.5 \times 10^9}\ (InstructionPerSecond)$$

$$InstructionPerSecond_3 = \frac{4 \times 10^9}{2.2}$$

$$= \mathbf{1.82 \times 10^9}\ (InstructionPerSecond)$$

- ⇒ From three results above, we can conclude that **P2 has the highest** performance.
- b. If the processors each execute a program in 10 seconds, find the number of cycles and the number of instructions.

$$\begin{aligned} NumberOfCycles &= Clock\ Rate \times Exe\ Time \\ NumberOfCycles_1 &= 3 \times 10^9 \times 10 = \textbf{30} \times \textbf{10}^9 \\ NumberOfCycles_2 &= 2.5 \times 10^9 \times 10 = \textbf{25} \times \textbf{10}^9 \\ NumberOfCycles_3 &= 4 \times 10^9 \times 10 = \textbf{40} \times \textbf{10}^9 \end{aligned}$$

NumberOfInstructions =
$$IC = \frac{Clock \ Rate \times Exe \ Time}{CPI}$$

$$IC_1 = \frac{(3 \times 10^9 \times 10)}{1.5} = \mathbf{20} \times \mathbf{10}^9$$

$$IC_2 = \frac{2.5 \times 10^9 \times 10}{1} = \mathbf{25} \times \mathbf{10}^9$$

$$IC_3 = \frac{4 \times 10^9 \times 10}{2.2} = \mathbf{18.182} \times \mathbf{10}^9$$

c. We are trying to reduce the time by 30% but this lead to an increase of 20% in the CPI. What clock rate should we have to get this time reduction?

$$Exe\ Time = \frac{IC \times CPI}{ClockRate}$$

New Exe Time = Exe Time
$$\times$$
 70% = $\frac{IC \times 120\% \times CPI}{NewClockRate}$

$$\Rightarrow$$
 0.7 = 1.2 $\times \frac{ClockRate}{NewClockRate}$

$$\Rightarrow NewClockRate = \frac{12}{7} \times ClockRate$$

$$\Rightarrow NewClockRate_1 = \frac{12}{7} \times 3 = \frac{36}{7}GHz$$

$$\Rightarrow NewClockRate_2 = \frac{12}{7} \times 2.5 = \frac{30}{7}GHz$$

$$\Rightarrow NewClockRate_3 = \frac{12}{7} \times 4 = \frac{48}{7}GHz$$

Question 2.

a. Find the IPC (instructions per cycle) for each processor.

$$IPC = \frac{1}{CPI} = \frac{IC}{Exe\ Time \times ClockRate}$$

$$IPC_1 = \frac{20 \times 10^9}{7 \times 3 \times 10^9} = \frac{20}{21} = \mathbf{0.952}$$

$$IPC_2 = \frac{30 \times 10^9}{10 \times 2.5 \times 10^9} = \mathbf{1.2}$$

$$IPC_3 = \frac{90 \times 10^9}{9 \times 4 \times 10^9} = \mathbf{2.5}$$

b. Find the clock rate for P2 that reduces its execution time to that of P1.

$$Exe\ Time_1 = \frac{IC_2 \times CPI_2}{NewClockRate_2}$$

$$\Rightarrow NewClockRate_2 = \frac{30 \times 10^9 \times 1.2^{-1}}{7} = 3.571 \times 10^9\ Hz = 3.571\ GHz$$

c. Find the number of instructions for P2 that reduces its execution time to that of P3.

New
$$IC_2 = \frac{Exe\ Time_3 \times ClockRate_2}{CPI_2} = \frac{9 \times 2.5 \times 10^9}{(1.2)^{-1}} = 27 \times 10^9$$

Question 3.

a. Given a program with 10^6 instructions divided into classes as follows: 10% class A, 20% class B, 50% class C, and 20% class D, which implementation is faster?

$$Exe\ Time_1 = 10^6 \times \frac{0.1 \times 1 + 0.2 \times 2 + 0.5 \times 3 + 0.2 \times 3}{2.5 \times 10^9} = \mathbf{1.04 \times 10^{-3}}(s)$$

Exe
$$Time_1 = 10^6 \times \frac{0.1 \times 2 + 0.2 \times 2 + 0.5 \times 2 + 0.2 \times 2}{3 \times 10^9} = \mathbf{0.667} \times \mathbf{10^{-3}}(s)$$

b. What is the global CPI for each implementation?

$$CPI_{P1} = 0.1 \times 1 + 0.2 \times 2 + 0.5 \times 3 + 0.2 \times 3 = 2.6$$

$$CPI_{P2} = 0.1 \times 2 + 0.2 \times 2 + 0.5 \times 2 + 0.2 \times 2 = 2$$

c. Find the clock cycles required in both cases.

$$ClockRate_1 = IC_1 \times CPI_{P1} = \mathbf{2.6} \times \mathbf{10^6}$$

 $ClockRate_2 = IC_2 \times CPI_{P2} = \mathbf{2} \times \mathbf{10^6}$

Question 4.

- What is the execution time of the above program?

Exe Time =
$$1000 \times \frac{0.2 \times 2.5 + 0.1 \times 1 + 0.2 \times 1.5 + 0.5 \times 2}{2 \times 10^9} = 9.5 \times 10^{-7} (s)$$

- What is the average CPI of the above the program?

Average CPI =
$$0.2 \times 2.5 + 0.1 \times 1 + 0.2 \times 1.5 + 0.5 \times 2 = 1.9$$

- Assume that we are trying to improve the loadstore instructions such that the execution time for this instructions type is reduced by a factor of 2. What is the speed-up of the program?

$$Speed-up = \frac{ExeTime}{NewExeTime} = \frac{0.2 \times 2.5 + 0.1 \times 1 + 0.2 \times 1.5 + 0.5 \times 2}{0.2 \times \frac{2.5}{2} + 0.1 \times 1 + 0.2 \times 1.5 + 0.5 \times 2} = \frac{38}{33} = 1,152$$

Question 5.

Assume that the two design alternatives are to decrease the CPI of FPSQR to 2 or to decrease the average CPI of all FP operations to 2.5. Compare these two design alternatives using the processor performance equation.

Consider the initial measurement:

$$4 \times 25\% = 20 \times 2\% + CPI_{FPnotSQR} \times 23\% \Longrightarrow CPI_{FPnotSQR} = \frac{60}{23}$$

Then, we compare two alternatives:

$$\frac{Exe\ Time_1}{Exe\ Time_2} = \frac{2 \times 2\% + \frac{60}{23} \times 23\% + 1.33 \times 75\%}{2.5 \times 25\% + 1.33 \times 75\%} = \mathbf{1.009} > 1$$

⇒ The second alternatives has a higher performance, compared to the first one

Question 6.

a. By how much must we improve the CPI of FP instructions if we want the program to run two times faster?

$$\frac{\textit{New Exe Time}}{\textit{Exe Time}} = \frac{(50 \times \textit{NewCPI}_{FP} + 110 \times 1 + 80 \times 4 + 16 \times 2) \times \frac{10^6}{2 \times 10^9}}{(50 \times 1 + 110 \times 1 + 80 \times 4 + 16 \times 2) \times \frac{10^6}{2 \times 10^9}}$$

$$\Rightarrow \frac{1}{2} = \frac{50 \times NewCPI_{FP} + 110 \times 1 + 80 \times 4 + 16 \times 2}{50 \times 1 + 110 \times 1 + 80 \times 4 + 16 \times 2}$$

$$\Rightarrow NewCPI_{FP} = -4.12$$

- ⇒ We can't just change the FPI of FP for the program to run 2 times faster
- b. By how much must we improve the CPI of L/S instructions if we want the program to run two times faster?

$$\frac{\textit{New Exe Time}}{\textit{Exe Time}} = \frac{\left(50 \times 1 + 110 \times 1 + 80 \times \textit{NewCPI}_{L/S} + 16 \times 2\right) \times \frac{10^6}{2 \times 10^9}}{\left(50 \times 1 + 110 \times 1 + 80 \times 4 + 16 \times 2\right) \times \frac{10^6}{2 \times 10^9}}$$

$$\Rightarrow \frac{1}{2} = \frac{50 \times 1 + 110 \times 1 + 80 \times NewCPI_{L/S} + 16 \times 2}{50 \times 1 + 110 \times 1 + 80 \times 4 + 16 \times 2}$$

$$\Rightarrow NewCPI_{\frac{L}{S}} = 0.8 \Rightarrow \frac{NewCPI_{\frac{L}{S}}}{CPI_{\frac{L}{S}}} = \frac{0.8}{4} = \mathbf{0.8}$$

c. By how much is the execution time of the program improved if the CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and Branch is reduced by 30%?

New Exe Time
$$= \frac{(50 \times 1 \times 0.6 + 110 \times 1 \times 0.6 + 80 \times 4 \times 0.7 + 16 \times 2 \times 0.7) \times \frac{10^{6}}{2 \times 10^{9}}}{(50 \times 1 + 110 \times 1 + 80 \times 4 + 16 \times 2) \times \frac{10^{6}}{2 \times 10^{9}}}$$

$$= 0.667$$