Atmospheric Pressure and Its American Unit

Kedar Mhaswade

December 2020

Practical Problem: How do you specify 1 atmospheric pressure in the USA?

Solution: We won't go into why the USA keeps the FPS system of measurement, but instead, focus on the problem as it is faced by a young and hapless student of science.

In the USA, pressure, which is force per unit area, is expressed in **pound-force/in²**, **lbf/in²**, or **psi** for short. Note that the 'p' in psi stands for *pound-force* and not pound, although informally it is taken that way (i.e. $pound/in^2$). If you ask a random American, they might say that the unit of pressure there is "psi, *pound* per square inch". Historical aspects of the mess resulting from such perceived equivalence are described in [1].

As if this were not confusing enough, the definition of **1 pound-force** or **1 lbf** was defined as the *weight* of 1 pound $mass^1$ on the surface of earth! This was really short-sighted. Anyway, the weight W in **lbf** of **1 pound mass** (or 454 g or

 $^{^{1}\}mathrm{We}$ feel sorry for those who were taught in a manner to treat mass and weight interchangeably.

0.454 kg) on the surface of earth, is

$$W = mg ...^{2}$$

= 1 × 9.8 lb m/s²
= 0.454 × 9.8 kg m/s²
= 4.4492 N...³

Thus, 1 lbf force is equivalent to 4.448 N. Then,

1 psi = 1 lbf/in²
=
$$4.4492 \text{ N/in}^2$$

= $4.4492 \times 39.37 \times 39.37 \text{ N/m}^2$
= 6896.246 Pa

Pascal: Pa is the SI unit of pressure. Since 1 atomospheric pressure is 101325 Pa, from the above we get:

$$1 \text{ atm} = \frac{101325}{6896.246} \text{ psi}$$

= 14.693 psi

That's it. 1 atmospheric pressure is 14.693 psi. It is enormous pressure that we have evolved to bear easily.

References

 François Cardarelli. Encyclopaedia of Scientific Units, Weights, and Measures: Their SI Equivalences and Origins. Springer. 2003.

 $^{^{2}}g$ on eath is 9.8 m/s² = 32.2 ft/s²

 $^{^3}$ SI unit of force is N (Newton) which is cleanly defined as the force required to accelerate 1 kg mass at 1 m/s 2