Assignment 1

Rushi Shah

January 23, 2018

Problem 1

```
Let X = \{1, 2, a\}. Find the power set of X, P(X).

P(X) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{a\}, \{1, a\}, \{2, a\}, \{1, 2, a\}\}
```

Problem 2

For each $n \in \mathbb{N}$, let $A_n = \{(n+1)k : k \in \mathbb{N}\}$

a)

What is $A_1 \cap A_2$?

 $A_1 = \{2k : k \in \mathbb{N}\}, A_2 = \{3k : k \in \mathbb{N}\}, \text{ so } A_1 \cap A_2 \text{ is the set of all natural numbers divisible by both 2 and 3. This is the set of all numbers that are divisible by 6, which can be represented by <math>\{6k = (5+1)k : k \in \mathbb{N}\} = A_5$.

b)

Determine the sets $\cup \{A_n : n \in \mathbb{N}\}\ and \cap \{A_n : n \in \mathbb{N}\}.$

 $\cup \{A_n : n \in \mathbb{N}\} = \mathbb{N} - \{1\}$ because every natural number greater than one can be written as mk where $m > 1 \in \mathbb{N}$ and $k \in \mathbb{N}$. Similarly, $\cap \{A_n : n \in \mathbb{N}\} = \emptyset$ because no natural number is divisible by every natural number.

Problem 3

Let A and B be two sets. Prove that $A \subseteq B$ iff $A \cap B = A$

First we will show that if $A \subseteq B$ then $A \cap B = A$. To do so, we must show that $A \subseteq A \cap B$ and $A \cap B \subseteq A$. Given any element $a \in A$, we know that $a \in B$ since $A \subseteq B$. Thus, $a \in A \cap B$, which implies that $A \subseteq A \cap B$. Similarly, given an element $a \in A \cap B$, it must also be in A by the definition of intersection, so $A \subseteq A \cap B$.

Second we will show that if $A \cap B = A$ then $A \subseteq B$. Given any element $a \in A$, we know that $a \in A \cap B$, which implies $a \in B$. Thus, $A \subseteq B$.

Problem 4

Let A, B, and C be arbitrary sets. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

First we will show that if an arbitrary $x \in A \cap (B \cup C)$ then $x \in (A \cap B) \cup (A \cap C)$. If $x \in A \cap (B \cup C)$, we know $x \in A$ and $x \in B \cup C$. $x \in B \cup C$ implies $x \in B$ or $x \in C$. Since in either case we know $x \in A$, we can conclude that $x \in (A \cap B) \cup (A \cap C)$.

Second we will show that if an arbitrary $x \in (A \cap B) \cup (A \cap C)$ then $x \in A \cap (B \cup C)$. $x \in (A \cap B) \cup (A \cap C)$ means that $x \in A \cap B$ or $x \in A \cap C$. In either case $x \in A$, and depending on the case $x \in B$ or $x \in C$. Thus we can conclude that $x \in (A \cap B) \cup (A \cap C)$.

Problem 5

Let \mathbb{N} be the set of natural numbers, and | be the relation of divisibility (i.e. we say $y \in \mathbb{N}$ divides $x \in \mathbb{N}$, denoted by y|x, if there exists an integer n such that x = ny). Prove that | is an ordering relation on \mathbb{N}

Reflexivity: Since 1 is the multiplicative identity in the natural numbers, $x = 1 \cdot x \forall x \in \mathbb{N}$. Therefore, 1 is the integer that shows that x = nx for all x. In other words $x | x \forall x \in \mathbb{N}$, so | is reflexive over the natural numbers.

Anti-symmetry: consider $x, y \in \mathbb{N}$ where x|y and y|x. x = my and y = nx for some $m, n \in \mathbb{Z}$. But by substituting we can see that x = my = mnx which implies mn = 1. Thus we know that x = y and | is anti-symmetric over the natural numbers.

<u>Transitivity</u>: Consider x, y, z such that x|y, y|z. Thus y = nx, and z = my for integers m, n. But by substituting we can see z = my = mnx, and $mn \in \mathbb{Z}$, so x|z. Thus | is transitive over the natural numbers.

Therefore, is an ordering relation because it satisfies reflexivity, anti-symmetry, and transitivity.

Problem 6

Let \leq be an ordering relation on the set X. We define the inverse of \leq , denoted by \geq , as follows: $\forall x, y \in X, x \geq y$ iff $y \leq x$. Prove that \geq is an ordering relation on X.

Reflexivity: Consider any $x \in X$. Since $x \le x$ by the reflexivity of \le , we know that $x \ge x$ by the def'n of \ge . Thus, \ge is reflexive over X.

Anti-symmetry: consider any $x,y\in X$ where $x\geq y$ and $y\geq x$. Note that $x\geq y\to y\leq x$ and $y\geq x\to x\leq y$. Since we know $x\leq y,y\leq x$ we can say x=y by the anti-symmetry of \leq . Thus we know that x=y and \geq is anti-symmetric over X.

<u>Transitivity</u>: Consider x, y, z such that $x \ge y, y \ge z$. Note that $x \ge y \to y \le x$, and $y \ge z \to z \le y$. By the transitivity of \le we know that $z \le x$, and by the def'n of \ge this shows that $x \ge z$. Since $x \ge z$ we know \ge is transitive over X.

Therefore, \geq is an ordering relation because it satisfies reflexivity, anti-symmetry, and transitivity.

Problem 7

Let (X, \leq) be a totally-ordered space and $Y \subseteq X$ an nonempty subset of X. Let α be a lower bound of Y and β an upper bound of Y. Prove that $\alpha \leq \beta$.

 α is a lower bound of Y if $\alpha \leq y \ \forall y \in Y$. Similarly β is an upper bound of Y if $y \leq \beta \ \forall y \in Y$. Since Y is nonempty, we know there exists some $y \in Y$ such that $\alpha \leq y$ and such that $y \leq \beta$. By the transitivity of \leq we can see that $\alpha \leq \beta$ \square .