1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.

A. Data type of all columns in the "customers" table.

= Filter Enter property name or value			
	Field name	Туре	Mode
	customer_id	STRING	NULLABLE
	customer_unique_id	STRING	NULLABLE
	customer_zip_code_prefix	INTEGER	NULLABLE
	customer_city	STRING	NULLABLE
	customer_state	STRING	NULLABLE

B. Get the time range between which the orders were placed.

```
SELECT
MIN(order_purchase_timestamp) as start_date,
MAX(order_purchase_timestamp) as end_date
From `Target.orders`
```

Row	start_date ▼	end_date ▼
1	2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC

C. Count the Cities & States of customers who ordered during the given period.

```
SELECT

count(distinct customer_city) as city_dst_count,

count(distinct customer_state) as state_dst_count

From `Target.customers` c

join `Target.orders` o

ON c.customer_id= o.customer_id

where

o.order_purchase_timestamp BETWEEN '2017-01-01' and '2017-12-31'

and

o.order_purchase_timestamp is not NULL
```

Row	city_dst_count ▼	state_dst_count ▼
1	3287	27

2. In-depth Exploration:

A. Is there a growing trend in the no. of orders placed over the past years?

```
select
EXTRACT (YEAR FROM order_purchase_timestamp) as year,
COUNT (*) as order_count
FROM
`Target.orders`
Group By year
order by year
```

Row	year ▼	11	order_count ▼
1		2016	329
2		2017	45101
3		2018	54011

Insight: There is a significant increment of orders from 2016 to 2017. Overall: substantial growth in the number of Orders from 2016 to 2018.

B. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
select
EXTRACT (MONTH FROM order_purchase_timestamp) as month,
COUNT (*) as order_count
FROM
`Target.orders`
Group By month
order by order_count desc
limit 6
```

Row	month ▼	order_count ▼
1	8	10843
2	5	5 10573
3	7	7 10318
4	3	9893
5	6	5 9412
6	4	9343

We can see that monthly seasonality starting from March to August. Reason could be linked with some special kind of promotion or other elements which boost sales. To develop business, Marketing or any other operational planning can be done to take advantage of these months of high demand.

C. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

```
SELECT

count(order_id) as order_cnt,

(case when EXTRACT(hour from order_purchase_timestamp) between 0 and 6 then
'Dawn'

when EXTRACT(hour from order_purchase_timestamp) between 7 and 12 then 'Morning'
when EXTRACT(hour from order_purchase_timestamp) between 13 and 18 then
'Afternoon'
when EXTRACT(hour from order_purchase_timestamp) between 19 and 23 then 'Night'
END)as Day_Time
FROM 'Target.orders'
Group By Day_Time
```

Row	order_cnt ▼	Day_Time ▼
1	5242	Dawn
2	27733	Morning
3	28331	Night
4	38135	Afternoon

3. Evolution of E-commerce orders in the Brazil region:

A. Get the month on month no. of orders placed in each state.

customer_state ▼	order_month ▼	num_orders ▼
AC	1	8
AL	1	39
AM	1	12
AP	1	11
BA	1	264
CE	1	99
DF	1	151
ES	1	159
GO	1	164
MA	1	66
	AC AL AM AP BA CE DF ES GO	AC 1 AL 1 AM 1 AP 1 BA 1 CE 1 DF 1 ES 1 GO 1

B. How are the customers distributed across all the states?

```
SELECT
customer_state,
count(distinct customer_id) as unq_cust_id
FROM `Target.customers`
Group By customer_state
Order By unq_cust_id asc
```

Row	customer_state ▼	unq_cust_id ▼	
1	RR	46	
2	AP	68	
3	AC	81	
4	AM	148	
5	RO	253	
6	ТО	280	
7	SE	350	
8	AL	413	
9	RN	485	
10	PI	495	
		Results per page:	50 ▼ 1 – 27 of 2

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - A. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

```
select
Extract (month from o.order_purchase_timestamp) as month,
sum (case when EXTRACT(year from o.order_purchase_timestamp)= 2018 and
extract(month from o.order_purchase_timestamp) between 1 and 8 then
p.payment_value END)
sum (case when EXTRACT(year from o.order_purchase_timestamp)= 2017 and
extract(month from o.order_purchase_timestamp) between 1 and 8 then
p.payment_value END
))
(sum (case when EXTRACT(year from o.order_purchase_timestamp)= 2017 and
extract(month from o.order_purchase_timestamp) between 1 and 8 then
p.payment_value END))
)*100 as per_increment
from `Target.orders` o
JOIN `Target.payments` p
ON o.order_id=p.order_id
where extract(year from o.order_purchase_timestamp) in (2017,2018) and
extract(month from o.order_purchase_timestamp) between 1 and 8
Group By month
order by month
```

Row	month -	//	per_increment ▼
1		1	705.1266954171
2		2	239.9918145445
3		3	157.7786066709
4		4	177.8407701149
5		5	94.62734375677
6		6	100.2596912456
7		7	80.04245463390
8		8	51.60600520477

B. Calculate the Total & Average value of order price for each state.

```
select
c.customer_state,
sum(o_i.price) as total_price,
AVG(o_i.price) as avg_price
from `Target.orders` o
join `Target.order_items` o_i
ON o.order_id = o_i.order_id
join `Target.customers` c
ON c.customer_id = o.customer_id
Group by c.customer_state
```

Row	customer_state ▼ ↑	total_price ▼	avg_price ▼
1	AC	15982.94999999	173.7277173913
2	AL	80314.809999999	180.8892117117
3	AM	22356.84000000	135.49599999999
4	AP	13474.299999999	164.3207317073
5	BA	511349.9900000	134.6012082126
6	CE	227254.70999999	153.7582611637
7	DF	302603.9399999	125.7705486284
8	ES	275037.30999999	121.9137012411
9	GO	294591.9499999	126.2717316759
10	MA	119648.2199999	145.2041504854
		Results per page:	50 ▼ 1 - 27

C. Calculate the Total & Average value of order freight for each state.

```
select
c.customer_state,
sum(o_i.freight_value) as total_freight_value,
AVG(o_i.freight_value) as avg_freight_value
from `Target.orders` o
join `Target.order_items` o_i
ON o.order_id = o_i.order_id
join `Target.customers` c
ON c.customer_id = o.customer_id
Group by c.customer_state
order by c.customer_state
```

Row /	customer_state ▼	total_freight_value	avg_freight_value
1	AC	3686.749999999	40.07336956521
2	AL	15914.58999999	35.84367117117
3	AM	5478.889999999	33.20539393939
4	AP	2788.500000000	34.00609756097
5	BA	100156.6799999	26.36395893656
6	CE	48351.58999999	32.71420162381
7	DF	50625.499999999	21.04135494596
8	ES	49764.59999999	22.05877659574
9	GO	53114.97999999	22.76681525932
10	MA	31523.77000000	38.25700242718
11	MG	270853.4600000	20.63016680630
12	MS	19144.03000000	23.37488400488
13	MT	29715.43000000	28.16628436018

- 5. Analysis based on sales, freight and delivery time.
 - A. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

```
SELECT
order_id,
case when order_delivered_customer_date is not NULL then
date_diff(order_delivered_customer_date,order_purchase_timestamp, day) ELSE NULL
END
as days_to_deliver,
case when order_estimated_delivery_date is not NULL and
order_delivered_customer_date is not NULL then
```

```
ABS(date_diff(order_estimated_delivery_date,order_delivered_customer_date, day))
ELSE NULL END
as estimated_delivered_diff
FROM `Target.orders`
```

B. Find out the top 5 states with the highest & lowest average freight value.

```
select
distinct c.customer_state,
avg(i.freight_value) over (partition by c.customer_state) as avg_freight
from `Target.order_items` i
join `Target.orders` o
ON i.order_id = o.order_id
join `Target.customers` c
ON o.customer_id = c.customer_id
```

Row	order_id ▼	days_to_deliver ▼	estimated_delivered
1	770d331c84e5b214bd9dc70a	7	45
2	dabf2b0e35b423f94618bf965f	7	44
3	8beb59392e21af5eb9547ae1a	10	41
4	1a0b31f08d0d7e87935b819ed	6	29
5	cec8f5f7a13e5ab934a486ec9e	20	40
6	58527ee4726911bee84a0f42c	10	48
7	10ed5499d1623638ee810eff1	28	29
8	818996ea247803ddc123789f2	9	35
9	d195cac9ccaa1394ede717d38	10	41
10	64eeb35d3ade7fcdff9fbb1ca5	6	41
11	2691ae869f13b10f3d356461b	6	35
12	1cd147d1c0fe18f3b742a3533	8	35
13	b36d2e6b1781d380e140608a	12	42

```
Order By avg_freight asc limit 5
```

Row	customer_state ▼	avg_freight ▼
1	SP	15.14727539041
2	PR	20.53165156794
3	MG	20.63016680630
4	RJ	20.96092393168
5	DF	21.04135494596

```
select
distinct c.customer_state,
avg(i.freight_value) over (partition by c.customer_state) as avg_freight
from `Target.order_items` i
join `Target.orders` o
ON i.order_id = o.order_id
join `Target.customers` c
ON o.customer_id = c.customer_id
Order By avg_freight asc
limit 5
offset 22
```

Row	customer_state ▼	avg_freight ▼
1	PI	39.14797047970
2	AC	40.07336956521
3	RO	41.06971223021
4	РВ	42.72380398671
5	RR	42.98442307692

C. Find out the top 5 states with the highest & lowest average delivery time.

```
select
c.customer_state,
avg(date_diff(o.order_delivered_customer_date, o.order_purchase_timestamp,
day)) as avg_days_to_dilever
FROM `Target.orders` o
JOIN `Target.customers` c
ON o.customer_id = c.customer_id
where o.order_delivered_customer_date is not NULL
Group BY c.customer_state
order by avg_days_to_dilever asc
limit 5
```

Row	customer_state ▼	avg_days_to_dilever
1	SP	8.298061489072
2	PR	11.52671135486
3	MG	11.54381329810
4	DF	12.50913461538
5	SC	14.47956019171
		· · · · · · · · · · · · · · · · · · ·

```
select
c.customer_state,
avg(date_diff(o.order_delivered_customer_date, o.order_purchase_timestamp,
day)) as avg_days_to_dilever
FROM `Target.orders` o
JOIN `Target.customers` c
ON o.customer_id = c.customer_id
where o.order_delivered_customer_date is not NULL
Group BY c.customer_state
order by avg_days_to_dilever asc
limit 5
offset 22
```

Row	customer_state ▼	avg_days_to_dilever
1	PA	23.31606765327
2	AL	24.04030226700
3	AM	25.98620689655
4	AP	26.73134328358
5	RR	28.97560975609

D. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

```
SELECT
c.customer_state,
AVG(date_diff(o.order_estimated_delivery_date, o.order_delivered_customer_date,
day)) as avg_d_speed
FROM
`Target.orders` o
JOIN `Target.customers` c
ON o.customer_id = c.customer_id
Where o.order_delivered_customer_date IS NOT NULL
Group By c.customer_state
Order By avg_d_speed ASC
limit 5
```

	Row	customer_state ▼	avg_d_speed ▼
	1	AL	7.947103274559
	2	MA	8.768479776847
	3	SE	9.173134328358
	4	ES	9.618546365914
	5	ВА	9.934889434889
- 15			

6. Analysis based on the payments:

A. Find the month on month no. of orders placed using different payment types.

```
select
p.payment_type,
EXTRACT(month from o.order_purchase_timestamp) as month,
count(distinct o.order_id) as customer_distinct_count
from `Target.payments` p
join `Target.orders` o
on p.order_id = o.order_id
Group By p.payment_type, month
Order By p.payment_type, month
```

w /	payment_type ▼	month ▼	customer_distinct_co
1	UPI	1	1715
2	UPI	2	1723
3	UPI	3	1942
4	UPI	4	1783
5	UPI	5	2035
6	UPI	6	1807
7	UPI	7	2074
8	UPI	8	2077
9	UPI	9	903
10	UPI	10	1056
11	UPI	11	1509
12	UPI	12	1160
13	credit_card	1	6093

B. Find the no. of orders placed on the basis of the payment installments that have been paid.

```
select
p.payment_installments,
count(o.order_id) as order_cnt
from `Target.orders` o
Join `Target.payments` p
ON o.order_id = p.order_id
where order_status = 'canceled'
Group By p.payment_installments
order by p.payment_installments
```

Row	payment_installment	order_cnt ▼
1	1	362
2	2	60
3	3	69
4	4	42
5	5	30
6	6	22
7	7	6
8	8	29
9	9	6
10	10	36
11	11	1
12	13	1

Results per page: $50 \checkmark 1 - 12 \text{ of } 12$