

И АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

JOURNAL REFERENCE
LIBRARY

BEST AVAILABLE COPY

69 SU 101123

(21) 3339705/23-04

(22) 21.09.81

(46) 15.04.83. Бюл. № 14

(72) В.И.Никонов, С.В.Адельсон,
Ф.Г.Жагфаров, Е.М.Рудых, Г.П.Крей-
нина и Т.Н.Мухина
(71) Московский ордена Октябрьской
Революции и ордена Трудового Крас-
ного Знамени институт нефтехими-
ческой и газовой промышленности
им. И.М.Губкина

(53) 66.097.3(088.8)

(56) 1. Авторское свидетельство СССР
№ 882597, кп. С 07 С 4/06, 1979.

2. Авторское свидетельство СССР
по заявке 3275768/23-04,
кп. В 01 Я 23/10, 1981.
3. Авторское свидетельство СССР
по заявке 2984901/23-04,
кп. С 01 Г 11/04, В 01 Я 23/22, 1980
(прототип).

(54) (57) КАТАЛИЗАТОР ДЛЯ ПИРОЛИЗА
УГЛЕВОДОРОДНОГО СЫРЬЯ, содержащий
вакансии калия, промотор и синтети-
ческий корунд, отлитый с целью снижения
с я тем, что, с целью снижения активности
коксуюемости и повышения активности
каталлизатора, в качестве промотора
он содержит окись бора при следую-
щем соотношении компонентов, мас.%:

Ванадат калия

Окись бора

Синтетиче-
ский корунд

Остальное

5,0~6,5

1,0~3,0

остальное

BEST AVAILABLE COPY

14,2 мас.% , бутациена 5,8 мас.% на сырье [1].
Недостатками этого катализатора являются низкий выход этилена и сравнительно большое образование в процессе пиролиза продуктов уплотнения, кокса 0,5(мас.% в расчете на сырье).

Известен катализатор для пиролиза углеводородного сырья, содержащий 8 - 12 мас.% окиси индия, 3-5 мас.% окиси калия и фаринсовый носитель [2].25
Недостатком этого катализатора является увеличенная коксуюемость (3,9 мас.% за 4 ч работы) в процессе пиролиза.

Наиболее близким по технической 30
сущности и достигаемому эффекту к предлагаемому является катализатор для пиролиза углеводородного сырья, содержащий ванадат калия, промотор, в качестве которого катализатор содержит углекислый калий, и синтетический корунд, при следующем соотношении компонентов мас.%:

Ванадат калия	3,5-6,5	40	Кальция	0,1-3,0	0,1-0,15
Сульфат калия			натрия		0,01-0,15
Синтетический корунд			Альфа - окись		
			алюминия		

Остальное [3].
Недостатки этого катализатора - высокая коксуюемость и низкая активность в процессе пиролиза. Так, при 780° С и времени контакта 0,1 с, мас-совом отношении водяной пар : бензин 1:1, выход этилена составляет 40,5 мас.% пропилен 13,8 мас.%, бутилена 5,0 мас.%, а содержание кокса катализатора 0,2 мас.% на пропущенное сырье или 1,5 мас.% на изначальном

15 по истечении 5 ч работы она составляет 0,06 - 0,07 или 0,5-1,1 мас.% на сырье или катализатор, соответственно. Для известного катализатора коксуюемость после 5 ч работы составляет 0,08 мас.% на сырье или 1,2 мас.% на катализатор.

Предлагаемый катализатор без регенерации и потери активности продолжал сыве 800 ч.

Катализатор готовят следующим образом.

Синтетический корундовый носитель, содержащий, мас.%:

Окись кремния	0,5-2,5
Окись железа	0,1-0,15
Окись титана	0,01-0,25
Капельная окись магния	0,01-0,15
Окись кальция	0,01-0,15

Полученную смесь загружают в водяный раствор, содержащий 20% ванадата калия и 0,4 - 3,7% борной кислоты и выдерживают в растворе 1,0 - 5,0 ч при 60-90° С с перемешиванием.

Полученную катализаторную массу

BEST AVAILABLE COPY

Катализатор, полученный указанным 15 способом имеет состав, мас. %:
 Ванадат калия 3,5
 Окись бора 0,1
 Синтетический корунд.

При м.р. 2. Условия приготовления аналогичны примеру 1 за исключением того, что корундовый носитель пропитывают в водной растворе, содержащем 20% KVO_3 и 1,3% борной кислоты.

Результаты каталитического пиролиза прямотонкого бензина $t = 780^\circ\text{C}$, время контакта 0,1 с, массовое соотношение водяной пар : бензин 1:1

Катализа- тор	Выход на пропущенное сырье, мас. %							
	H_2	CH_4	C_2H_6	C_2H_4	C_3H_8	C_2H_2	C_3H_6	C_4H_{10}
Известный 1								14,2
Известный 3	1,3	16,1	1,66	40,5	0,4	0,3	13,8	0,1
По примеру 1	1,2	14,8	2,3	37,0	0,4	0,1	13,0	0,2
По примеру 2	1,3	13,0	3,5	40,5	0,4	0,2	15,9	0,1
По примеру 3	1,2	14,6	2,2	40,9	0,4	0,2	14,9	0,2

Сравнительные примеры

5% KVO_3

BEST AVAILABLE COPY

известный	1	5,8	2,0	0,2
Известный	3,2	5,0	62,5	1,2
	3			0,08
По примеру	2,7	4,7	57,5	1,3
	1			0,13
По примеру	3,0	5,0	64,4	1,1
	2			0,07
По примеру	3,2	5,0	64,2	0,5
	3			0,06
5% K O -				
0,5% В О				
синтети-				
ческий ко-				
рунд - ос-				
тальное	2,5	4,5	55,7	0,3
6% K O -				
3,5% В О				
синтети-				
ческий ко-				
рунд - ос-				
тальное	3,2	4,9	62,3	0,1