

CERTIFICATE SPIKE ISOTOPIC REFERENCE MATERIAL IRMM-624

1.748 4 (42) · 10⁻⁴ mol (⁵⁰Cr) · kg⁻¹ (solution)

The Spike Isotopic Reference Material is supplied with an isotope amount content of ⁵⁰Cr certified as above.

The amount of other chromium isotopes present are related to the ⁵⁰Cr content through the following certified amount ratios:

$n(^{52}Cr)/n(^{50}Cr)$:	0.066 41(50)
<i>n</i> (⁵³ Cr)/ <i>n</i> (⁵⁰ Cr):	0.000 323(64)
$n(^{54}Cr)/n(^{50}Cr)$:	0.000 11(11)

This corresponds to an isotopic composition with the following abundances:

amount fraction (-100)		mass fraction (-100)	
$n(^{50}Cr)/n(Cr)$	93.735(46)	$m(^{50}Cr)/m(Cr)$	93.500(46)
$n(^{52}Cr)/n(Cr)$	6.225(44)	$m(^{52}Cr)/m(Cr)$	6.457(46)
<i>n</i> (⁵³ Cr)/ <i>n</i> (Cr)	0.0303(60)	$m(^{53}Cr)/m(Cr)$	0.032 0(64)
<i>n</i> (⁵⁴ Cr)/ <i>n</i> (Cr)	0.010(10)	$m(^{54}\mathrm{Cr})/m(\mathrm{Cr})$	0.011(11)

The molar mass of chromium in this sample is 50.071 51(98) g⋅mol¹

From the certified values, the following amount and mass contents are derived:

1.865 2 (46)
$$\cdot$$
 10⁻⁴ mol (Cr) \cdot kg⁻¹ (solution)
8.732 (20) \cdot 10⁻⁶ kg (⁵⁰Cr) \cdot kg⁻¹ (solution)
9.339 (23) \cdot 10⁻⁶ kg (Cr) \cdot kg⁻¹ (solution)

NOTES

- 1. All uncertainties indicated are expanded uncertainties $U = k \cdot u_c$ where u_c is the combined standard uncertainty estimated following the ISO/BIPM Guide to the Expression of Uncertainty in Measurement. They are given in parentheses and include a coverage factor k=2. They apply to the last two digits of the value. The values certified are traceable to the SI.
- 2. The Spike Isotopic Reference Material IRMM-624 comes in a flame-sealed quartz ampoule containing about 5 mL. The molarity is about 1 M HCl.
- 3. The molar masses, used in the calculations, are 1

⁵⁰Cr : 49.946 049 5 (28) g⋅mol¹
⁵²Cr : 51.940 511 5 (30) g⋅mol¹
⁵³Cr : 52.940 653 4 (30) g⋅mol¹
⁵⁴Cr : 53.938 884 6 (30) g⋅mol¹

4. This Spike Isotopic Reference Material is traceable to the SI in the shortest possible way. Measurements calibrated against these Isotopic Reference Materials have therefore the potential of being traceable to the SI.

The isotopic measurements required were performed by M Ostermann, M Berglund and D Liesegang using thermal ionization mass spectrometry (TIMS). The calibration was done using the isotopic reference material IRMM-012.

The chemical preparation was done by D Liesegang. B Dyckmans-Van Hout performed the metrological weighings required in the preparation and certification work. The ampoulation of this Spike Isotopic Reference Material was accomplished by G Van Baelen, M Ostermann, D Liesegang and M Berglund.

M Berglund co-ordinated the work leading to the establishment, certification and issuance of this Isotopic Reference Material. A Verbruggen was responsible for the preparation and issuance of the certificate.

B-2440 GEEL March 2000 Dr P Taylor IRMM Isotope Measurements

¹ G. Audi and A.H. Wapstra, The 1993 atomic mass evaluation, Nucl Phys A565 (1993) 1-65.