

Data Science

do Zero

O curso completo para você aprender a trabalhar com essa tecnologia revolucionária e alavancar sua carreira.

Aprenda técnicas de Análise de Dados, Machine Learning e muito mais através de aulas 100% práticas partindo do nível zero até o avançado.

Quero aprender

Data Science do ZERO

Capítulo 06 - Machine Learning K Nearest Neighboors – KNN

O que é K Nearest Neighboors - KNN

Vizinhos próximos

- Mais simples algoritmo de Machine Learning
- Método baseado em cálculo de distância.
- Pode ser utilizado para classificação quanto para regressão.
- Objetivo do KNN é determinar o rótulo de classificação de uma amostra baseado nas amostras vizinhas advindas de um conjunto de treinamento.

Conceitos sobre o KNN

- Hipótese é que dados semelhantes tendem a estar concentrados no mesmo espaço de dispersão.
- Considera a proximidade dos dados para realizar as predições.
- Pode trabalhar com diferentes medidas de distância.
 - Mais utilizada é a distância Euclidiana

Conceitos sobre o KNN

- O parâmetro K especifica quantos vizinhos serão comparados.
- Quanto maior o valor de K, maior será o número de amostras a serem comparadas.

Parâmetros e otimização

- A escolha do parâmetro K é de vital importância para o melhor resultado do modelo.
- O algoritmo se beneficia da possibilidade de utilização de diferentes métricas de distância:
 - Euclidiana
 - Manhattan
 - Minkowski
 - o etc.

Algoritmo K-NN

Pseudocódigo do funcionamento do algoritmo.

1 inicialização:

- 2 Preparar conjunto de dados de entrada e saída
- 3 Informar o valor de k;
- 4 para cada nova amostra faça
- 5 Calcular distância para todas as amostras
- 6 Determinar o conjunto das k's distâncias mais próximas
- 7 O rótulo com mais representantes no conjunto dos k's
- vizinhos será o escolhido
- 9 fim para
- 10 retornar: conjunto de rótulos de classificação

Dado o seguinte Dataset..

Altura (centimetros)	Peso (kilograma)	Tamanho Camisa
158	58	Р
158	59	Р
158	63	Р
160	59	М
160	60	М
163	60	M
163	61	M

Dado o seguinte Dataset...

Altura (centimetros)	Peso (kilograma)	Tamanho Camisa
158	58	Р
158	59	Р
158	63	Р
160	59	M
160	60	M
163	60	M
163	61	M

Nova amostra para fazer predição com os valores Altura 161 e Peso 61

Dado o seguinte Dataset...

Altura (centimetros)	Peso (kilograma)	Tamanho Camisa
158	58	Р
158	59	Р
158	63	Р
160	59	M
160	60	M
163	60	M
163	61	M

Nova amostra para fazer predição com os valores Altura 161 e Peso 61

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Dado o seguinte Dataset..

Altura (centimetros)	Peso (kilograma)	Tamanho Camisa	Distância
158	58	Р	4.242640687119285
158	59	Р	3.605551275463989
158	63	Р	3.605551275463989
160	59	M	2.23606797749979
160	60	M	1.4142135623730951
163	60	M	2.23606797749979
163	61	M	2.0

$$=SQRT((161 - 158)^2 + (61-58)^2)$$

Dado o seguinte Dataset..

Altura (centimetros)	Peso (kilograma)	Tamanho Camisa	Distância
158	58	Р	4.242640687119285
158	59	Р	3.605551275463989
158	63	Р	3.605551275463989
160	59	M	2.23606797749979
160	60	M	1.4142135623730951
163	60	M	2.23606797749979
163	61	М	2.0

Para K = 5

5

Dado o seguinte Dataset..

Altura (centimetros)	Peso (kilograma)	Tamanho Camisa	Distância
158	58	Р	4.242640687119285
158	59	Р	3.605551275463989
158	63	Р	3.605551275463989
160	59	М	2.23606797749979
160	60	М	1.4142135623730951
163	60	М	2.23606797749979
163	61	М	2.0

Para K = 3

3

4

Hands on!