PATENT ABSTRACTS OF JAPAN

(11) Publication number:

10-074429

(43) Date of publication of application: 17.03.1998

(51)Int.Cl.

HOIH 13/70 606F 3/02 6118 15/10

(21) Application number: 08-232354

(71)Applicant: AWA CO LTD

(22) Date of filing:

02.09.1996

(72)Inventor: NAKADA KANAME

(54) JOGGING PAD, AND INFORMATION INPUT DEVICE

(57) Abstract

PROBLEM TO BE SOLVED: To provide an operating terminal realizing miniaturization, light weight, the reduction of the number of part items and a cost, and the improvement of reliability and resolution. SOLUTION: In a jogging pad 10, a thin resistor 14 and a thin conductor 16 are printed on one side inner side of a sheet 12 folded by the center line Pland in a position in accordance with the resistor 14 and a thickness direction on the other side inner side respectively. That, is the jogging pad 10 has airtight structure, and is thinly formed by a few parts. The conductor 16 is electrically connected to the end part 14B of the resistor. 14, and when the sheet 12 is pressed a resisting value between both the ends of the resistor 14 is changed because a pressed part is pressed down and the resistor 14 is brought into contact with the conductor 16 in a position corresponding to the pressed part. Also, the resistant value: changes following the movement of the pressed part, and in accordance with the movement direction and the movement quantity. Thus, an electric change is caused in accordance with the pressing motion or movement action of the sheet 12 in this constitution.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-74429

(43)公開日 平成10年(1998) 3月17日

(51) Int.Cl. ⁶	經別記号	广内整理番号	FI	技術表示箇所
HO 1 H 13/70		4235-5G	H 0 1 H 13/70	E
G 0 6 F 3/02	3.1.0		G 0 6 F 3/02	3 1 0 A
G 1 1 B 15/10	5 1 1	9198-51)	G 1 1 B 15/10	5 1 1 A

審査請求 未請求 請求項の数7 OL (全14頁)

(21)出國番号 特顯平8-232354

(22)出題日 平成8年(1996)9月2日

(71)出腹人 000000491

アイワ株式会社

東京都台東区池之端1丁月2番11号

(72) 発明者 中田 要

東京都台東区池之端1 1日2番11日 アイ

77株式会社内

(74)代理人 弁理士 中島 淳 (外4名)

(54) 【発明の名称】 ジョグバッド及び情報人力装置

(57)【要約】

【課題】 小型化、軽量化、部品点数の削減、コストの低減、信頼性向上及び分解能の向上を図ることができる操作端末を提供する。

【解決手段】 ショグパッド10では中心線Pで折り曲げられるシート12の一方の内側に薄い抵抗体14が、他方の内側における抵抗体14と厚さ方向に対応する位置に薄い導体16が、各々印刷されている。即ち、ジョグパッド10は気密構造であり且つ少ない部品で薄く成形されている。導体16は抵抗体14の端部14Bに電気的に接続されており、シート12を押圧すると、押圧部が凹み該押圧部に対応する位置で抵抗体14と導体16とが接触するため、抵抗体14の両端間の抵抗値が変化する。また、該抵抗値は押圧部の移動に伴い、移動方向及び移動量に応じて変化する。このようにシート12の押圧動作又は押圧部の移動動作に応じて電気的変化が発生する構造になっている。

【特許請求の範囲】

【請求項1】 対向した一対の平面部を有するシート状の絶縁体で構成され、一方の平面部が他方の平面部側へ押圧された場合押圧部分が凹み弾性力で元に復帰するよう構成された支持部材と、

両端が近接するようにループ状に成形され、前記一対の 平面部の一方の対向面に配置された薄板状の抵抗体と、 一端が前記抵抗体の一端に導通状態とされ、前記一対の 平面部の他方の対向面に前記抵抗体と対向し且つ非押圧 状態で離れて配置された薄板状の導体と、

を有し、

前記一方の平面部が押圧された場合押圧部分に対応した 位置で前記抵抗体と導体とが直接接触し、前記平面部が 押圧されたまま押圧部分が抵抗体の配置に沿って移動し た場合押圧部分の移動に応じて前記抵抗体と導体との接 触部分が移動することで、前記接触部分で直列に接続された抵抗体と導体とで構成される電気回路に寄与する前 記抵抗体の抵抗値が変化する、

ことを特徴とするジョグパッド。

【請求項2】 前記一対の平面部の隙間における導体又は抵抗体の配置部分以外の部分にスペーサが設置されている。

ことを特徴とする請求項目記載のジョグパッド。

【請求項3】 前記抵抗体は、一方の端部の外周側に第 1の突出部を有し、他方の端部の内周側に、前記第1の 突出部と幅方向に重なりをもって形成された第2の突出 部を有する、

ことを特徴とする請求項1又は請求項2に記載のジョグパッド。

【請求項4】 所定のジョグパッドの表面を押圧する又 30 は押圧したまま押圧部分を移動させることによって、予め該押圧動作又は移動動作に対応して設定された情報を入力するための情報入力装置であって、

対向した一対の平面部を有するシート状の絶縁体で構成され、一方の平面部が他方の平面部側へ押圧された場合 押圧部分が凹み弾性力で元に復帰するよう構成された支持部材と、

両端が近接するようにループ状に成形され、前記一対の 平面部の一方の対向面に配置された薄板状の抵抗体と、

一端が前記抵抗体の一端に導通状態とされ、前記一対の 40 平面部の他方の対向面に前記抵抗体と対向し且つ非押圧 状態で離れて配置された薄板状の導体と、

を含んで構成されたジョグパットと、

前記抵抗体の両端に所定の電位差が設けられた状態で前記したの平面部が押圧された場合に、前記抵抗体の両端の電位を検出する検出手段と、

前記検出手段で検出された電位に基づいて、入力された情報を特定する入力情報特定手段と、

を有する情報入力装置。

【請求項5】 前記入力情報特定手段は、

前記検出手段で検出された電位に基づいて、前記一方の平面部が押圧されたまま押圧部分が移動したか否かを判定する判定手段と、

前記判定手段により押圧部分が移動したと判定された場合、前記検出された電位に基づいて移動動作に対応した情報を特定する移動動作特定手段と、

を含むことを特徴とする請求項4記載の情報入力装置。 【請求項6】 前記入力情報特定手段は、

前記検出手段で検出された電位に基づいて、前記一方の 10 平面部が押圧されたまま押圧部分が移動したか否かを判 定する判定手段と、

前記判定手段により押圧部分が移動していないと判定された場合、前記検出された電位に基づいて押圧動作に対応した情報を特定する押圧動作特定手段と、

を含むことを特徴とする請求項4記載の情報入力装置。 【請求項7】 前記押圧動作特定手段は、前記検出された電位が変化し該変化した電位が所定時間以上持続した場合のみ前記情報を特定する、

ことを特徴とする請求項6記載の情報入力装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ジョグパッド及び情報入力装置に係り、より詳しくは、表面を押圧する又は押圧したまま押圧部分を移動させることによって、予め該押圧動作又は移動動作に対応して設定された情報を入力する操作部としてのジョグパッド、及び該ジョグパッドを備えた情報入力装置に関する。

[0002]

【従来の技術】近年、ミニディスクが情報記憶媒体として広く用いられるようになってきた。このミニディスクには、音声データのみならず、表題やコメント等の文字データも1700文字程度記録することができる。これに伴い、近年のミニディスク録音再生機等には、文字入力機能を備えたものが多い。

【0003】このような文字入力機能を備えたミニディスク録音再生機では、文字入力のためにキーボードでなく通常は図11に示すジョグダイヤル96及び図16に示すディスプレイ44を備えている。ジョグダイヤル96には回転つまみ97が設けられており、この回転つまみ97を矢印V1又は矢印V2方向に回転させることにより、図16のディスプレイ44に所定の配列で表示された文字列に対してカーソル72を矢印W1又は矢印W2方向に移動させて所望の文字を選択し、別に設けられた図11の確定キー98を操作することで文字を入力していた(図16の文字列74は入力された文字列を示す)。

【0004】ところで、上記ジョグダイヤルには通常ロータリーエンコーダが使用されている。このロータリーエンコーダの構造は通常の回転ボリュームとほぼ同一で50 あり、例えば、図12に示す絶縁体のシート90に印刷

された2つの抵抗パターン92、94の各々に摺動子が回転摺動することで図13に示すような出力A、出力Bを得、これら出力A、出力Bの和(A+B)が変化することで1ステップを検出する。さらに、図13の例では、A+Bが「0、1、3、2、0」と変化するか「0、2、3、1、0」と変化するかによって回転方向を検出することができる。なお、出力A、出力Bの和(A+B)は、出力Aの値を1の位、出力Bの値を2の位に設定した2進数のデシマル値を示している。
[0005]

【発明が解決しようとする課題】しかしながら、上記ロータリーエンコーダは、通常のボリュームとほとんど同じ形状をしており、5㎜~10㎜程度の厚みがあった。【0006】また、ロータリーエンコーダは基本的に単機能部品であるため、文字入力モードに入るための操作やミニディスクの再生開始、ミニディスクへの録音開始等の操作は、別に設けられた操作キーを用いて実行指示していた。前述した確定キーや操作キーはオペレータが押して操作するため、タクトスイッチと呼ばれている。即ち、従来のミニディスク録音再生機等には、ジョグダイヤルとタクトスイッチの両方が設けられていた。

【0007】また、ロータリーエンコーダで構成された ジョグダイヤルでは、操作するための回転つまみが別途 必要であった。さらに、部品の内部構成として、抵抗パ ターン、摺動子接点、回転軸、軸受等の機構部品が必要 であった。

【0008】上記の要因により、従来のロータリーエンコーダで構成されたジョグダイヤルを有するミニディスク録音再生機では、小型化及び軽量化が困難であり、部品定数を減らし装置コストを低減することが困難であった。

【0009】また、抵抗パターンに摺動子が摺動することで得られる電気出力を検出していた、即ち検出を摺動による接触に頼っていたため、誤作動を無くすことは困難であり装置の信頼性向上のネックになっていた。

【0010】一方で、回転角に対する分解能はロータリーエンコーダ内部の印刷分解能に依存していた。例えば、一般的に用いられる小型の直径1.5cm~2.0cmのもので、10~30ステップ程度の分解能が限界であった。即ち、小型化を図るにあたり、分解能の向上に限 40 界があった。

【0011】本発明は上記問題点を解消するために成されたものであり、文字等の情報の入力や機能選択を行うためのジョグパッドであり、小型化、軽量化、部品点数の削減、コストの低減、信頼性向上及び分解能の向上を図ることができるジョグパッドを提供することを第1の目的とし、このようなジョグパッドが操作部として設けられた情報入力装置を提供することを第2の目的とする。

[0012]

【課題を解決するための手段】上記の第1の目的を達成 するために、請求項1記載のジョグパッドは、対向した 一対の平面部を有するシート状の絶縁体で構成され、一 方の平面部が他方の平面部側へ押圧された場合押圧部分 が凹み弾性力で元に復帰するよう構成された支持部材 と、両端が近接するようにループ状に成形され、前記一 対の平面部の一方の対向面に配置された薄板状の抵抗体 と、一端が前記抵抗体の一端に導通状態とされ、前記一 対の平面部の他方の対向面に前記抵抗体と対向し且つ非 10 押圧状態で離れて配置された薄板状の導体と、を有し、 前記一方の平面部が押圧された場合押圧部分に対応した 位置で前記抵抗体と導体とが直接接触し、前記平面部が 押圧されたまま押圧部分が抵抗体の配置に沿って移動し た場合押圧部分の移動に応じて前記抵抗体と導体との接 触部分が移動することで、前記接触部分で直列に接続さ れた抵抗体と導体とで構成される電気回路に寄与する前 記抵抗体の抵抗値が変化する、ことを特徴とする。

【0013】また、請求項2記載のジョグパッドは、請求項1記載のジョグパッドにおいて、前記一対の平面部 20 の隙間における導体又は抵抗体の配置部分以外の部分に スペーサが設置されていることを特徴とする。

【0014】また、請求項3記載のジョグパッドでは、 請求項1又は請求項2に記載のジョグパッドにおいて、 前記抵抗体は、一方の端部の外周側に第1の突出部を有 し、他方の端部の内周側に、前記第1の突出部と幅方向 に重なりをもって形成された第2の突出部を有する、こ とを特徴とする。

【0015】また、上記の第2の目的を達成するため に、請求項4記載の情報入力装置は、所定のジョグパッ 30. ドの表面を押圧する又は押圧したまま押圧部分を移動さ せることによって、予め該押圧動作又は移動動作に対応 して設定された情報を入力するための情報入力装置であ って、対向した一対の平面部を有するシート状の絶縁体 で構成され、一方の平面部が他方の平面部側へ押圧され た場合押圧部分が凹み弾性力で元に復帰するよう構成さ れた支持部材と、両端が近接するようにループ状に成形 され、前記一対の平面部の一方の対向面に配置された薄 板状の抵抗体と、一端が前記抵抗体の一端に導通状態と され、前記一対の平面部の他方の対向面に前記抵抗体と 対向し且つ非押圧状態で離れて配置された薄板状の導体 と、を含んで構成されたジョグパッドと、前記抵抗体の 両端に所定の電位差が設けられた状態で前記一方の平面 部が押圧された場合に、前記抵抗体の両端の電位を検出 する検出手段と、前記検出手段で検出された電位に基づ いて、入力された情報を特定する入力情報特定手段と、 を有することを特徴とする。

【0016】また、請求項5記載の情報入力装置では、 請求項4記載の情報入力装置において、前記入力情報特 定手段は、前記検出手段で検出された電位に基づいて、 50 前記一方の平面部が押圧されたまま押圧部分が移動した か否かを判定する判定手段と、前記判定手段により押圧 部分が移動したと判定された場合、前記検出された電位 に基づいて移動動作に対応した情報を特定する移動動作 特定手段と、を含むことを特徴とする。

【0017】また、請求項6記載の情報入力装置では、 請求項4記載の情報入力装置において、前記入力情報特定手段は、前記検出手段で検出された電位に基づいて、 前記一方の平面部が押圧されたまま押圧部分が移動した か否かを判定する判定手段と、前記判定手段により押圧 部分が移動していないと判定された場合、前記検出され た電位に基づいて押圧動作に対応した情報を特定する押 圧動作特定手段と、を含むことを特徴とする。

【0018】また、請求項7記載の情報入力装置では、 請求項6記載の情報入力装置において、前記押圧動作特 定手段は、前記検出された電位が変化し該変化した電位 が所定時間以上持続した場合のみ前記情報を特定する、 ことを特徴とする。

【0019】上記請求項1記載のジョグパッドは、対向した一対の平面部を有するシート状の絶縁体で構成された支持部材を備えている。この支持部材は、対向した一対のシート状の絶縁体で構成しても良いし、1枚のシート状の絶縁体をリ字状に屈曲させて成形しても良い。また、支持部材は、一方の平面部が他方の平面部側へ押圧された場合押圧部分が凹み弾性力で元に復帰するよう構成されている。

【0020】このような支持部材における一対の平面部の一方の対向面には、両端が近接するようにループ状に成形された薄板状の抵抗体が配置され、一対の平面部の他方の対向面には、抵抗体と対向し且つ非押圧状態で離れるように薄板状の導体が配置されている。この導体の一端は抵抗体の一端に導通状態とされている。

【0021】このような構成のジョグパッドの表面を押圧すると(即ち、一方の平面部が他方の平面部側へ押圧されると)、押圧部分が凹み押圧部分に対応した位置で抵抗体と導体とが直接接触する。これにより、抵抗体において、導体との接触部分と導体に接続された一端とが電気的に短絡し、その接触部分で直列に接続された一端とが体と導体とで構成される電気回路に寄与する抵抗体の抵抗体の両端間の抵抗値を抵抗値限は、非接触状態での抵抗体の両端間の抵抗値を抵抗値限。とすると、抵抗値限は抵抗値限。から接触部分の位置(押圧部分の位置)に応じて低下する。即ち、抵抗値限の抵抗値限。からの変化量に基づいて押圧部分の位置を特定することが可能となる。なお、押圧した直後での抵抗値限を抵抗値限。とする。

【0022】また、ジョグパッドの表面を押圧したまま 抵抗体の配置に沿って、導体に接続された一端に接近す る方向へ移動させると、抵抗体における導体との接触部 分と導体に接続された一端とが接近することになり、抵 50

抗値Rは抵抗値Riから徐々に高くなり、押圧部分の移動量に応じた変化量だけ抵抗値が上昇する。

【0023】一方、ジョグパッドの表面を押圧したまま抵抗体の配置に沿って、導体に接続された一端から遠ざかる方向へ移動させると、抵抗体における導体との接触部分と導体に接続された一端とが遠ざかることになり、抵抗値Rは抵抗値Riから徐々に低くなり、押圧部分の移動量に応じた変化量だけ抵抗値が低下する。

【0024】このように抵抗値Rの抵抗値R1からの変化傾向及びその変化量に基づいて、押圧部分の移動方向及び移動量を特定することが可能となる。

【0025】なお、抵抗体は両端が近接するようにループ状に成形されている。具体的には、図1の抵抗体14のように円形としても良いし、図14(A)の抵抗体14Tのように楕円形としたり、図14(B)の抵抗体14Uのように多角形としても良い。このように抵抗体を両端が近接したループ状に成形することにより、上記のように押圧部分を抵抗体の配置に沿って移動させる場合に、ループ状の抵抗体に沿って繰り返し何度も同じ軌道を移動させることができる。即ち、押圧部分を移動させる際の移動量の制約が無く、自由度が高い。

【0026】以上のように、請求項1記載のジョグパッドでは、ジョグパッドの押圧時に抵抗体と導体とで構成された電気回路に寄与する抵抗体の抵抗値Rの変化傾向及び変化量を検出することにより、ジョグパッド表面の押圧部分の位置、該押圧部分の移動方向及び移動量を特定することが可能となる。

【0027】従って、例えば、ジョグパッド表面の押圧部分の位置や押圧部分の移動方向・移動量に対応して予め各種の情報を設定しておき、所望の情報に対応して押圧動作又は移動動作を行えば、上記抵抗値Rを検出し、検出した抵抗値Rの変化に基づいて押圧部分の位置、該押圧部分の移動量を特定し、特定した押圧部分の位置、該押圧部分の移動量を特定し、特定した押圧部分の位置、該押圧部分の移動方向及び移動量に対応した上記所望の情報を特定することが可能となる。このように請求項1記載のジョグパッドを用いて、従来のジョグダイヤル並びにタクトスイッチと同等の情報入力を行うことが可能となる。

【0028】その一方で請求項1記載のジョグパッドは、薄板状の抵抗体、導体及びシート状の支持部材のみで構成されており、回転つまみやその回転軸等の部品を別途設ける必要が無いので、全体を非常に薄く成形することができ、小型化・軽量化を図ることができる。また、部品点数を少なくすることができるので、コストの低減を図ることができる。

【0029】また、請求項1記載のジョグパッドでは、一対の平面部の一方の対向面に抵抗体を、他方の対向面に導体を、それぞれ設置しているので、気密構造にすることができる。これにより、抵抗体の両端間の抵抗値R等を検出する際に、当該検出において埃、ガス、粉塵等

の影響で誤差・ばらつきが生じることを防止できる。また、従来のように摺動子の電気的接点を抵抗体に沿って 摺動させるのではなく、予め対向させて配置した導体と 抵抗体とを接触させるだけなので、検出を摺動による接 触に頼っていた従来に比べ、検出の信頼性を向上させる ことができる。

【0030】さらに、請求項1記載のジョグパッドでは、予め押圧部分の移動量を細かく分類し分類した多数の移動量の各々に情報を設定しておくことにより、容易に検出分解能を向上させることができる。

【0031】以上説明した請求項1記載のジョグパッドにおいて、請求項2記載の発明のように、一対の平面部の隙間における導体又は抵抗体の印刷部分以外の部分にスペーサを設置することにより、ジョグパッドが押圧されていないときに導体と抵抗体とをより確実に離れた状態にすることができ、検出の信頼性をさらに向上させることができる。

【0032】また、請求項3記載の発明では、例えば、 図9(A)、(B)に示すように、抵抗体14Sにおいて、一方の端部の外周側に第1の突出部を設け、他方の端部の内周側に第1の突出部を認けることにより、抵抗体の両端部を近接して配置することができる。これにより、抵抗体の一方の端部から他方の端部へ押圧部分を移動させるときに、ジョグパッドを押圧しているにもかかわらず抵抗体と導体とが非接触状態になることを回避でき、例えば、抵抗体を押圧していないと誤って判定してしまうことを防止することができる。

【0033】次に、上記請求項4記載の情報入力装置は ジョグパッドを備えており、このジョグパッドは、対向 した一対の平面部を有するシート状の絶縁体で構成され た支持部材を備えている。また、支持部材は、一方の平 面部が他方の平面部側へ押圧された場合押圧部分が凹み 弾性力で元に復帰するよう構成されている。

【0034】このような支持部材における一対の平面部の一方の対向面には、両端が近接するようにループ状に成形された薄板状の抵抗体が配置され、一対の平面部の他方の対向面には、抵抗体と対向し且つ非押圧状態で離れるように薄板状の導体が配置されている。この導体の一端は抵抗体の一端に導通状態とされている。

【0035】このような構成のジョグパッドの表面を押圧すると(即ち、一方の平面部が他方の平面部側へ押圧されると)、押圧部分が凹み押圧部分に対応した位置で抵抗体と導体とが直接接触する。これにより、抵抗体において、導体との接触部分と導体に接続された一端とが電気的に短絡し、接触部分で直列に接続された抵抗体と導体とで構成される電気回路に寄与する抵抗体の抵抗値Rが変化する。具体的には、非接触状態での抵抗体の両端間の抵抗値を抵抗値R。とすると、抵抗値Rは抵抗値R。から接触部分の位置(押圧部分の位置)に応じて低50

下する。即ち、抵抗値Rの抵抗値R。からの変化量に基づいて押圧部分の位置を特定することが可能となる。なお、押圧した直後での抵抗値Rを抵抗値Riとする。

【0036】また、ジョグパッドの表面を押圧したまま抵抗体の配置に沿って、導体に接続された一端に接近する方向へ移動させると、抵抗体における導体との接触部分と導体に接続された一端とが接近することになり、抵抗値Rは抵抗値R1から徐々に高くなり、押圧部分の移動量に応じた変化量だけ抵抗値が上昇する。

【0037】一方、ジョグパットの表面を押圧したまま抵抗体の配置に沿って、導体に接続された一端から遠ざかる方向へ移動させると、抵抗体における導体との接触部分と導体に接続された一端とが遠ざかることになり、抵抗値Rは抵抗値Rにから徐々に低くなり、押圧部分の移動量に応じた変化量だけ抵抗値が低下する。

【0038】このように抵抗値Rの抵抗値Riからの変化傾向及びその変化量に基づいて、押圧部分の移動方向及び移動量を特定することが可能となる。

【0039】ところで、請求項4記載の情報入力装置で は、予め押圧動作又は移動動作に対応して情報が設定されている。また、情報入力装置には、抵抗体の両端の電位を検出する検出手段が設けられており、この検出手段によって、抵抗体の両端に所定の電位差が設けられた状態でジョグパットを押圧した場合(一方の平面部が押圧された場合)に、抵抗体の両端の電位を検出することができる。

【0040】前述したように、検出される電位は、最初の押圧部分の位置に応じて変化し、その後押圧部分の移動方向及び移動量に応じて変化するので、入力情報特定手段によって前記検出された電位から電位の変化を求め、求めた電位の変化に対応した最初の押圧部分の位置、押圧部分の移動方向及び移動量を特定し、特定した最初の押圧部分の位置、押圧部分の移動方向及び移動量に対応した情報(即ち入力された情報)を特定することができる。このように請求項4記載の情報入力装置によれば、従来のジョグダイヤル並びにタクトスイッチと同等の情報入力を行うことができる。

【0041】また、請求項4記載の情報入力装置には、 前述した請求項1記載のジョグパッドと同等のジョグパ 40 ッドが操作部として設けられているので、請求項1記載 のジョグパッドと同等の効果、即ち小型化、軽量化、部 品点数の削減、コストの低減、信頼性向上及び分解能の 向上といった効果を得ることができる。

【0042】上記入力情報特定手段は、具体的には請求 項5記載の発明のように、判定手段と移動動作特定手段 とを含んで構成することができる。まず、判定手段によって前記検出された電位に基づいて、一方の平面部が押 圧されたまま押圧部分が移動したか、否か(押圧部分が 移動することなく押圧が中止されたか)を判定する。ここで、押圧部分が移動したと判定された場合、移動動作 特定手段によって前記検出された電位から電位の変化を 求め、求めた電位の変化に対応した押圧部分の移動動作 (押圧部分の移動方向及び移動量)を特定し、該移動動 作に対応した情報を特定することができる。

【0043】一方、上記入力情報特定手段は、具体的には請求項6記載の発明のように、判定手段と押圧動作特定手段とを含んで構成することができる。まず、判定手段によって前記検出された電位に基づいて、一方の平面部が押圧されたまま押圧部分が移動したか否かを判定する。ここで、押圧部分が移動していない、即ち押圧部分が移動することなく押圧が中止されたと判定された場合、押圧動作特定手段によって前記検出された電位から電位の変化を求め、求めた電位の変化に対応した押圧動作(押圧部分の位置)を特定し、該押圧部分の位置に対応した情報を特定することができる。

【0044】但し、ジョグパッドに不意に接触して押圧することもありうる。そこで、請求項7記載の発明のように押圧動作特定手段は、検出された電位が変化し該変化した電位が所定時間以上持続した場合のみ情報を特定するよう構成すれば、ジョグパッドへの不意な接触等の場合に押圧動作特定手段が毎回動作するといった無駄な動作を防止することができる。

[0045]

【発明の実施の形態】

[第1実施形態]以下、図面を参照して第1実施形態を 説明する。以下の第1実施形態では、ミニディスク録音 再生機等で文字入力を行うための情報入力装置に本発明 を適用した例を示す。

【0046】図1には、情報入力装置における操作部としてのジョグパッド10の構成を示す。ジョグパッド10の構成を示す。ジョグパッド10には、弾性を有する薄板状の絶縁体で構成された略長方形のシート12と、全体的に円弧状で円弧の一部を切り欠いた形状とされた抵抗体14と、該抵抗体14の端同一の大きさの円弧状の導体16と、抵抗体14の端部14Bと導体16とを電気的に接続し且つ外部への端子18Aが形成された配線18と、一端が抵抗体14の端部14Aに接続され他端が外部への端子20Aとされた配線20と、が設けられている。

【0047】これらシート12、抵抗体14、導体16、配線18、20は全て薄く成形されており、シート12は破線Pで示す中心線において折り曲げられる。図2に示すように抵抗体14はシート12の折り曲げられた一方の内側に印刷されており、導体16はシート12の折り曲げられた他方の内側における抵抗体14の印刷位置に対応する位置に印刷されている。

【0048】また、図2に示すようにジョグパッド10では、スペーサーシート22を間に挟んで折り曲げられ、折り曲げたシート12の内側両面とスペーサーシート22の上下面とを接着剤24で接着している。これらスペーサーシート22及び接着剤24の厚みによって、

抵抗体14と導体16とは離れた状態で保持される。 【0049】なお、スペーサーシート22は図2に示す

1004.9 なお、人ペーサーシート2.2 は図2に示すように抵抗体14及び導体16の印刷位置に対応する位置では孔2.3 が設けられており、抵抗体1.4 と導体16とは間に何も挟まない状態で対向している。

【0050】また、ジョグパッド10は非常に薄く成形されており、厚さF1は一例として約0.3mに、抵抗体14と導体16との間隔F2は約0.1~0.2mに、それぞれ設定されている。

【0051】また、図15(A)に示すように、折り曲げられた状態のジョグパッド10の表面には、抵抗体14が印刷された位置を示すライン80が表記されており、内側のラインと外側のラインとの間の領域が操作領域84となる。また、外側のライン80の近傍には所定角度間隔でマーク82が印刷されており、このマーク82の間隔は従来のロータリエンコーダの1ステップに相当する。

【0052】ところで、シート12は弾性を有するので、指等で押圧した場合に押圧部分が凹み、押圧を止めた場合押圧部分は元に戻る。これにより、図15(A)に示す操作領域84を指等で図2に矢印Qで示すように押圧した場合、シート12における押圧部分が凹み該押圧部分に対応する導体16と抵抗体14とが接触することになる。また、押圧したままその押圧部分を操作領域84内で移動させた場合、その移動に伴って導体16と抵抗体14との接触部も移動することになる。

【0053】次に、図3を用いて、情報入力装置11の 構成を説明する。図3に示すように、ジョグパッド10 の端子18Aは接地されており、もう一方の端子20A 30には、抵抗28の一端と電圧検出端子30とが接続されている。抵抗28の他端には一定の直流電圧(Bボルト)が印加された定電圧印加端子32が接続されている。電圧検出端子30には電圧計36が接続されており、この電圧計36は電圧検出端子30の直流電圧を測定する。この測定結果はマイクロコンピュータ(マイコン)40へ出力される。マイコン40にはミニディスク記録再生装置等の動作部42とディスプレイ44とが接続されている。なお、抵抗28の抵抗値をR1、抵抗体14の抵抗値をR2とする。

0 【0054】このような情報入力装置11において、ジョグパット10を押圧していない状態では、定電圧印加端子32〜端子18A間の抵抗値は(R1+R2)となり、電圧検出端子30の電圧は(B×R2/(R1+R2))となる。この電圧を解放電圧Cとする。

【0055】ジョグパッド10を押圧し導体16と抵抗体14とを接触させた場合、抵抗体14における接触点と端子18Aとが電気的に短絡するため、端子20A~端子18A間の抵抗値はR2よりも低下する。その低下量は抵抗体14における接触点の位置、即ち端部14

50 A、14B間のどこに位置するかによって変化する。こ

のように、端子20A~端子18A間の抵抗値がR2よ りも低下するに伴い、電圧検出端子30の電圧は解放電 圧Cよりも低くなる。なお、ジョグパッド10を押圧し ている状態での電圧検出端子30の電圧を動作電圧Vと する。

【0056】即ち、押圧後の端子20A~端子18A間 の抵抗値をR2Xとすると、動作電圧Vは(B×R2X / (R1+R2X)) となる。R2>R2Xであるの で、解放電圧C>動作電圧Vとなる。

【0057】また、ジョグパッド10における押圧部分 10 させると、動作電圧Vは移動量に応じて徐々に増加し、 を移動させた場合、その移動方向及び移動量に応じて端 子20A~端子18A間の抵抗値が変化し、これに伴い 動作電圧Vが変化する。

【0058】例えば、押圧部分を図1の矢印Y2方向に 移動させると、端子20A~端子18A間の抵抗値は移 動量に応じて低下し、これに伴い動作電圧Vも移動量に 応じで低下する。逆に、押圧部分を図1の矢印Y1方向 に移動させると、端子20A~端子18A間の抵抗値は 移動量に応じて増加し、これに伴い動作電圧Vも移動量 に応じて増加する。

【0059】マイコン40は、電圧計3.6で検出された 動作電圧Vの情報を時々刻々と取り込み、上記のような 動作電圧Vの変化を検出する。そして、この動作電圧V の変化に基づいて、押圧部分の移動方向及び移動量を検 出する。

【0060】さらに、図16に示すように文字入力モー ド時にディスプレイ44に表示された文字列に対して、 マイコン40は押圧部分の移動方向及び移動量に応じ て、カーソル72を矢印W1又は矢印W2方向に移動さ せる。具体的には、図15(A)の操作領域84でマー ク82に対応する位置を横切った回数だけカーソル72 を移動させる。その移動方向は、押圧部分を図15

(A) の矢印Y1方向に移動させた場合、図16におけ る矢印W1方向とし、押圧部分を図15 (A)の矢印Y 2方向に移動させた場合、図16における矢印W2方向 とする。

【0061】そしてカーソル72の移動完了後に、該力 ーソル72で指示された文字を入力された文字情報とし て特定する機能を有する。さらにマイコン40は、特定 した文字情報をディスプレイ 4 4 の領域 4 4 Aに表示す ると共に、所定のタイミング(文字入力完了時等)で動 作部4.2~出力する。動作部4.2では、例えば、特定さ れた文字情報をミニディスグに記録する等の動作を行 う。

【0062】次に、第1実施形態における作用を説明す る。まず、ジョグパッド10の押圧部分を図15 (A) の矢印Y2方向に移動させた場合の電圧検出端子30の 電圧変化を、図4を用いて説明する。

【0063】図4に示すように、ジョグパッド10の押 圧を開始する時間T1までは電圧検出端子30の電圧は 50

解放電圧Cで一定であるが、時間T」にジョグパッドI 0を押圧すると急に低下する。その後、時間T2に押圧 部分を矢印Y2方向に移動させると、動作電圧Vは移動 量に応じて徐々に増加し、押圧部分が端部14Bに達し た時間T。には解放電圧Cに戻る。ところが、その直後 押圧部分が端部14Aに移ると、端子20Aと端子18 Aとが電気的に短絡されるので動作電圧Vは「O」とな る。

【0064】以後、押圧部分を矢印Y2方向に再度移動 押圧部分が端部14Bに達した時間T。には上記時間T っのときと同様に解放電圧Cに戻る。これ以後は、時間 T: ~T. のように動作電圧 Vは (0~解放電圧 C) の 範囲で押圧部分の移動に応じた増加を繰り返す。

【0065】次に、図5を用いてマイコン40による入 力情報特定処理を説明する。図5のステップ10.2では 電圧計36によって電圧検出端子30の電圧を検出し、 次のステップ104では検出された電圧が解放電圧Cか ら変化したか否かを判定する。ここで、検出された電圧 20 が解放電圧でから変化していない場合はジョグパッド1 0が押圧されていないと判断することができるので、ス テップ102へ戻り電圧の検出を繰り返す。

【0066】一方、ステップ104で電圧が解放電圧C から変化した場合はジョグパッド10が押圧されたと判 断するごとができ、ステップ106へ進む。ステップ1 06では再度電圧計36によって電圧検出端子30の電 圧 (ここでは動作電圧V) を検出し、次のステップ10 8では検出された動作電圧Vが解放電圧Cに戻ったか否 かを判定する。但し、このステップ108では図4の時 間T・、T・の状態のように一瞬だけ動作電圧Vが解放 電圧Cに戻った場合を除外するよう、解放電圧Cに戻っ た状態が所定時間以上継続したときのみ肯定判定する。 【0067】こでで動作電圧Vが解放電圧Cに戻ってい ない場合はジョグパッド10が引き続き押圧されている と判断することができるので、ステップ110へ進み、 上記ステップ106で検出した動作電圧Vに基づいて動

作電圧Vの変化方向及び変化量を求め、求めた動作電圧 Vの変化方向及び変化量に応じて、図1.6に示すように ディスプレイ44に表示された文字列に対してカーソル 40 72を矢印W1又は矢印W2方向に移動させる。その後 ステップ106へ戻る。

【0068】一方、ステップ108で動作電圧Vが解放 電圧Cに戻った場合はステップ112へ進み、上記ステ ップ110で移動させたカーソル72で指示された文字 を入力された文字情報として特定する。

【0069】さらに、次のステップ11.4では、特定し た文字情報をディスプレイ 4 4 の所定の領域 4 4 A に表 示する。そして、所定のタイミング(例えば、所望の文 字全てを入力完了した時点)で動作部42へ出力する。 動作部4.2では、例えば、上記のようにして入力された

文字情報をミニディスクに記録する等の動作を行う。

【0070】以上説明した第1実施形態によれば、ジョ グパッド10が押圧されその押圧部分が抵抗体14に沿 って移動した場合、マイコン40が電圧検出端子30の 電圧の変化に基づいて押圧部分の移動方向及び移動量を 求め、求めた移動方向及び移動量に応じてディスプレイ 4.4上のカーソル7.2を移動させ、最終的にカーソル7 2で指示された文字を入力された文字情報として特定す ることができる。即ち、従来のジョグダイヤルと同等の 文字情報入力を行うことができる。

【0071】また、その一方でジョグパッド1.0は、全 体を非常に薄く成形することができるので、小型化・軽 量化を図ることができる。また、従来のジョグダイヤル のように回転つまみやその回転軸等の部品は必要無いの で、部品点数を少なくすることができ、コストの低減を 図ることができる。

【0072】また、ジョグパッド10では、折り曲げた シート12の内側に導体16と抵抗体14とを設置した ので、気密構造にすることができる。これにより、動作 電圧Vの検出において埃、ガス、粉塵等の影響で誤差・ ばらつきが生じることを防止できる。また、従来のよう に電気的接点を抵抗体に沿って摺動させるのではなく、 予め対向させて設置した導体16と抵抗体14とを接触 させるだけなので、検出を摺動による接触に頼っていた 従来に比べ、検出の信頼性を向上させることができる。 【0073】さらに、第1実施形態のジョグパッド10 では、図15(A)に16個のマーク82を付したよう。 に、1周当たり16ステップの分解能を持たせている。 が、押圧部分の移動量をさらに細分化することにより3 2ステップにする等、分解能を容易に向上させることが 30 できる。

【0074】なお、上記第1実施形態では、図1に示す ように抵抗体14の形状が円弧状の例を示したが、抵抗 体14の形状はこれに限定されるものではなく、両端が 近接した長尺状であれば良い。例えば、図14(A)に 示すような楕円形状の抵抗体14Tを用いても良いし、 図14(B)に示すような多角形状の抵抗体14Uを用 いても良い。

【0075】 第2実施形態 次に、第2実施形態とし クトスイッチの機能を持たせた例を説明する。

【0076】第2実施形態における情報入力装置11及 びショグパッド10の構成は第1実施形態と同様である ので、説明を省略する。但し、図6に示すように電圧検 出端子30の電圧値に対し4つの電圧範囲が設定され、 各電圧範囲に前方スキップ(F-SKIP)、後方スキ ップ (B-SKIP)、再生 (PLAY) 及び停止 (S TOP)の4つの機能情報がそれぞれ割り当てられてい る。具体的には、電圧O~V1を停止の電圧範囲、電圧 V₁ ~ V₂ を再生の電圧範囲、電圧 V₂ ~ V₃を後方ス

キップの電圧範囲、電圧V。~V.を前方スキップの電 圧範囲と割り当てている。

【0077】これに伴い、ジョグパッド10の表面には 図1.5 (B) に示すように、上記各電圧範囲に対応した 位置に、前方スキップ(F-SKIP)、後方スキップ (B-SKIP)、再生(PLAY)、及び停止(ST OP) の4つの機能表示がなされている。一方、第1実 施形態のようなマーク82(ダイヤルの目盛り)は上記 機能表示の外側に表示されている。

【0078】前述したようにジョグパッド10を押圧す ると、その押圧部分の位置に応じて電圧検出端子3.0の 電圧が解放電圧Cから変化する。マイコン40は、この ときの解放電圧Cから変化した直後の動作電圧(以下、 動作電圧Vaと称する)を検出し、検出した動作電圧V に基づいて押圧部分の位置を特定し、該押圧部分の位 置に対応した機能情報を特定する機能を有する。

[0079] 次に、第2実施形態の作用としてマイコン 40による人力情報特定処理を、図7を用いて説明す る。なお、図7では、第1実施形態で説明した図5と同 20 一の処理にはステップ番号の末尾に「A」を付してい る。

【0080】図7のステップ102A、104Aでは電 圧検出端子30の電圧が解放電圧Cから変化したごと、 即ちジョグパッド1.0が押圧されたことを検知してい る。ジョグパッド1-0が押圧されると、ステップ1-0 4 Aで肯定判定され、ステップ106Aへ進む。ステップ 106Aでは動作電圧Vを検出し、次のステップ107 では解放電圧Cから変化した直後の動作電圧VAが所定 時間以上継続したか否かを判定する。

【0081】例えば、ジョグパッド10を押圧したまま 移動せずに所定時間以上持続させると、ステップ107 で肯定判定されステップ113へ進む。ステップ113 では、動作電圧V、が停止の電圧範囲、再生の電圧範 囲、後方スキップの電圧範囲、前方スキップの電圧範囲 のどの範囲内にあるかを判定することにより、動作電圧 Va に対応する機能情報を特定する。例えば、変化した 直後の電圧値がV₁ ~ V₂ の範囲内にある場合、機能情 報として「再生」を特定する。

【0082】さらに、次のステップ114Aでは、上記 てジョグパッド10に、ジョグダイヤルの機能に加えタ 40 特定した情報、例えば、「再生」をディスプレイ4.4の 所定の領域 4-4 Aに表示すると共に、動作部 4-2 个出力 する。動作部42では、例えば、特定された機能情報 「再生」に基づいてミニディスクの再生動作を行う。

> 【0083】ところで、本第2実施形態の情報入力装置 11は、第1実施形態で説明したジョグダイヤルの機能 も有する。図示しないモート設定キーで文字入力モード とし、図16に示すようにディスプレイ44に文字列を 表示させる。この状態で図15 (B) のジョグパッド1 0を押圧しその押圧部分を矢印Y1又は矢印Y2方向に 回転させると、図7のステップ107、108Aをいず

は内側に突出部14Cが設けられており、端部14Bでは外側に突出部14Dが設けられている。突出部14 C、14Dは、図9(B)に示す幅Dだけ環状の抵抗体

148の半径方向に重なりを持っている。

16

れも否定判定され、以後ステップ106Aでの動作電圧 Vの検出と、ステップ110Aでの検出した動作電圧 Vの変化に応じたカーソル72(図16参照)の移動とを繰り返す。そして、押圧を止めると、動作電圧 Vは解放電圧 Cに戻るので、ステップ108Aで肯定判定され、ステップ112Aでは第1大変を形態と同様に、カーソル72で指示された文字を入力で指示された文字情報をディスプレイ44の所定の領域44Aに表示し、所定のタイミング(例えば、所望の文字全でを入力完了した時点)で動作部42へ出力する。動作部42では、例えば、上記のようにして入力された文字情報をミニディスクに記録する等の動作を行う。

【0089】このように端部14A、14Bの間隔を狭くした抵抗体14Sを用いた場合、電圧検出端子30の電圧は図10に示すように変化する。この図10から明らかなように、動作電圧Vが所定時間以上解放電圧Cで継続することは無くなる。これにより、誤ってジョグパッド10への押圧が終了したと判断することを防止できる。なお、図9(A)、(B)に示す抵抗体14Sを用いた場合、指が突出部14Dの先端に達する前に突出部14Cの先端に接触するため、動作電圧Vが解放電圧Cに達する前に(解放電圧Cよりも若干低い電圧Eのときに)指が突出部14Cの先端に接触し(図10の時間T・)、動作電圧Vが「0」となる。

【0084】以上説明した第2実施形態によれば、所望の機能情報に対応した位置でジョグパッド10を所定時間以上押圧すると、電圧検出端子30の電圧が変化し、変化した直後の動作電圧VAに基づいて押圧部分の位置を特定し、該押圧部分の位置に対応した機能情報を特定することができる。即ち、従来のタクトスイッチと同等 20の情報入力を行うことができる。

[0090]

【0085】なお、第2実施形態では、ジョグダイヤルの機能とタクトスイッチの機能とを兼ね備えたジョグパッド10を説明したが、もちろんタクトスイッチの機能のみを備えたジョグパッドを実現できることは言うまでもない。例えば、図7の制御ルーチンでステップ110A、112Aの処理を省略することにより、タクトスイッチの機能のみの入力情報特定処理を実行することができる。

【発明の効果】請求項1又は請求項4に記載の発明によれば、ジョグパッドの押圧時に抵抗体と導体とで構成された電気回路に寄与する抵抗体の抵抗値Rを検出すれば、該抵抗値Rの変化に基づいて押圧部分の位置、該押圧部分の移動方向及び移動量を特定し、特定した押圧部分の位置、該押圧部分の移動方向及び移動量に対応した情報を特定することが可能となる。

【0086】ところで、図1に示すジョグパッド10に 30 おいて、抵抗体14の端部14A、14Bの間隔が指による1回の押圧範囲よりも広い場合には、指で抵抗体14に沿って押圧部分を移動させ端部14Bに達して端部14Aに移る時、指が一時的にジョグパッド10から離れることになる。このとき図8に示すように、電圧検出端子30の電圧は、指が端部14Bから離れた時間Taから端部14Aに接触した時間T。までの間、解放電圧Cで一定に維持される。

【0091】また、回転つまみやその回転軸等の部品を 別途設ける必要が無いため、全体を非常に薄く成形する ことができ、小型化・軽量化を図ることができる。ま た、部品点数を少なくすることができ、コストの低減を 図ることができる。

【0087】上記第1、第2実施形態では、図5のステップ108及び図7のステップ108Aにおいて動作電 40 圧Vが所定時間以上解放電圧Cに戻っている場合のみジョグパッド10への押圧が終了したと判断するようにしているが、上記時間T。、T:の間隔が上記所定時間以上になると、誤ってジョグパッド10への押圧が終了したと判断するおそれがある。

10092]また、一対の平面部の一方の対向面に抵抗体を、一対の平面部の他方の対向面に導体を、それぞれ設置しているので、気密構造にすることができ、抵抗体の両端間の抵抗値R等を検出する際に、当該検出において埃、ガス、粉塵等の影響で誤差・ばらつきが生じることを防止できる。また、従来のように摺動子の電気的接点を抵抗体に沿って摺動させるのではなく、予め対向させて配置した導体と抵抗体とを接触させるだけなので、検出を摺動による接触に頼っていた従来に比べ、検出の信頼性を向上させることができる。

【0088】そこで、ジョグパッド10では抵抗体14 の端部14A、14Bの間隔を狭くすることが望まし い。図9(A)、(B)には端部14A、14Bの間隔 を狭くした抵抗体14Sの構成例を示す。環状の抵抗体 14Sにおいて、図9(B)に示すように端部14Aで 50

2 【0093】更に、予め押圧部分の移動量を細かく分類 し分類した多数の移動量の各々に情報を設定しておくこ とにより、容易に検出分解能を向上させることができ る。

【0094】また、請求項2記載の発明によれば、ジョ グパッドが押圧されていないときに導体と抵抗体とをよ り確実に離れた状態にすることができ、検出の信頼性を さらに向上させることができる。

【0095】また、請求項3記載の発明によれば、ジョ グパッドを押圧しているにもかかわらず抵抗体と導体と が非接触状態になることを回避することができる。 【0096】また、請求項7記載の発明によれば、押圧動作特定手段は、検出された電位が変化し該変化した電位が所定時間以上持続した場合のみ情報を特定するので、ジョグパッドへの不意な接触等の場合に押圧動作特定手段が毎回動作するといった無駄な動作を防止することができる。

【図面の簡単な説明】

【図1】ジョグパットの内部構造を示す概略図である。

【図2】ジョグパッドの厚さ方向の断面図である。

【図3】ジョグパットを操作部として用いた情報入力装 10 示す図である。 置のプロック図である。 【図15】 (人

【図4】第1実施形態における電圧検出端子の電圧の時間的変化を示すグラフである。

【図5】第1実施形態における入力情報特定処理の制御 ルーチンを示す流れ図である。

【図6】第2実施形態における電圧検出端子の電圧の時間的変化を示すグラフである。

【図7】第2実施形態における入力情報特定処理の制御 ルーチンを示す流れ図である。

【図8】抵抗体の両端が所定値以上離れている場合の電 20 圧検出端子の電圧の時間的変化を示すグラフである。

【図9】(A)は両端間の距離が短くなるよう改造した 抵抗体の全体図であり、(B)は抵抗体の両端付近の構 造を示す拡大図である。

【図10】図9(A)の抵抗体を用いた場合の電圧検出*

*端子の電圧の時間的変化を示すグラフである。

【図11】従来のジョグダイヤル及び確定キーの一例を示す図である。

【図12】従来のロータリーエンコーダの一例を示す図である。

【図13】図12のロータリーエンコーダを用いた場合の出力の時間的変化を示すグラフ及び表である。

【図14】(A)は抵抗体の形状を楕円形にした例を示す図であり、(B)は抵抗体の形状を四角形にした例を示す図である。

【図15】(A) は第1実施形態におけるジョグパッドの表面を示す図であり、(B) は第2実施形態におけるジョグパッドの表面を示す図である。

【図16】文字入力モードのときのディスプレイの表示 例を示す図である。

【符号の説明】

10 ジョグパッド

11 情報入力装置

1.2 シート (支持部材)

1.4 抵抗体

1-4 A、1 4 B 突出部

1.6 導体

22 スペーサーシート (スペーサ)

3.0 電圧検出端子

4.0 マイクロコンピュータ

[図14]

[図1.5]

[図1.6]

