

UNIVERSITY EXAMINATIONS

MAIN CAMPUS

SECOND SEMESTER 2018/2019 ACADEMIC YEAR

EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS

PHYS 110 ELECTRICITY AND MAGNETISM

STREAM: Y2 S1 PART TIME TIME: 1:00-3:00PM

EXAMINATION SESSION: APRIL DATE: 9/04/2019

VENUE: SKILLS LAB COPIES: 15

INSTRUCTIONS:

- Answer Question **ONE** and any other **TWO** Questions. Question One carries **30marks** while each of the other Two Questions carry **20marks**.
- EXTRA Questions Answered WILL NOT be marked
- The following constants may be useful
 - o Permeability of free space $\mu_0 = 4\pi \times 10^{-7} \, Wb \, / \, A$
 - o Permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-12} \, C^2 / NM^2$
 - Resistivity of Iron $\rho = 9.68 \times 10^{-8} \Omega m$
 - Acceleration due to gravity $g = 9.8m/s^2$
 - \circ Charge of electron $e = 1.6 \times 10^{-19} C$

QUESTION ONE

- a) State ohm's law in words and give its mathematical expression. (2mks)
- b) State Kirchoff's voltage and current laws (2mks)
- c) A toroid core has N = 1200 turns, length L = 80cm, cross-sectional area A = 60cm², current I = 1.5A. Compute B and H. Assume an empty core. (5mks)

d) Show that for two resistors arranged in parallel the effective resistance (R) is given by (5mks)

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

- e) A charge of 240C is moved when energy of 45J is applied between two points. Find the voltage between the two points. (4mks)
- f) An RL circuit with an inductor of inductance 16H and resistor of 10Ω is connected to the terminals of a battery of e.m.f. 12V and negligible internal resistance. Find
- i. The initial rate of increase of current in the circuit

(3mks)

ii. The current 0.75s after the circuit was switched on

(4mks)

- g) State two similarities and two differences between electric force and magnetic force. (4mks)
- h) State two characteristics of magnetic flux

(2mks)

QUESTION TWO

- (a) i) What is meant by magnetic hysteresis? (2mks)
- ii) Sketch a typical hysteresis curve and explain. (12mks)
- (b) What are the desirable magnetic properties for the material of (6mks)
- (i) the core of an electromagnet
- (ii) a permanent magnet?

QUESTION THREE

a) i) Define capacitance.

(2mks)

ii) In the circuit below;

Calculate:

i.	Total capacitance	(5mks)
ii.	Total charge	(3mks)
iii.	Charge on capacitor C ₃	(7mks)
iv.	Voltage across the two capacitors in parallel	(3mks)

QUESTION FOUR

a) What is magnetic flux? (1mk)

- b) i)Consider a segment of conductor of length (L), cross sectional area (A), carrying current (I) placed in a uniform magnetic field (\mathbf{B}), derive the expression of magnetic force F_B experienced by the wire segment. (8mks)
- ii) A straight horizontal segment of copper wire carries a current I = 25A. What are the magnitude and direction of magnetic field needed to balance its weight? Given that it's linear mass density is 0.05kg/m. (4mks)
- c) Consider an electron of charge $1.6 \times 10^{-19} C$ being moved at a velocity of $2.5 \times 10^7 m/s$ in a uniform magnetic field of $4.2 \times 10^{-3} T$ at an angle of 30°.
 - i). Find the magnitude of magnetic force experienced by the proton (4mks)
- ii). What will be the acceleration of the electron given that its mass is $9.11 \times 10^{-31} Kg$ (3mks)

QUESTION FIVE

i) Consider the given resistor network circuit.

Calculate;

i. Total resistanceii. the total current in the circuit(6mks)(3mks)

- b) When a battery of e.m.f. 12V is connected to a load resistor of resistance 15Ω , the terminal voltage measured is 10V. Find the internal resistance of the battery. (6mks
- c) Consider the given resistor circuit network

Calculate; Total resistance (5mks)

Page 4 of 4