SERIE SISTEMATICHE

PREVISIONE DELLA RESISTENZA AL MOTO

- Metodo sperimentale
- · Serie sistematiche
- Metodi statistici
- · Riferimento a schemi geometrici semplici
- · CFD

RIEPILOGO DI METODO DI FROUDE

- 1. IPOTESI DEL METODO: $R = R_F(forze \ viscose) + R_R(forze \ d'inerzia)$
- 2. $R_F(\text{forze viscose}) = f(R_N) e R_R(\text{forze d'inerzia}) = f(F_N)$
- 3. $R = 0.5 \cdot \rho \cdot v^2 \cdot S \cdot C_T \Rightarrow R = 0.5 \cdot \rho \cdot v^2 \cdot S \cdot C_F + 0.5 \cdot \rho \cdot v^2 \cdot S \cdot C_R$
- 4. $C_T = C_F + C_R$
- 5. Si calcola il coefficiente di resistenza d'attrito $C_{\rm F}$ con la formula ITTC 57
- 6. $C_R = C_T C_F$
- 7. $C_{\text{RMODEL}} = C_{\text{RSHIP}}$

$$R_{N} = \frac{v \cdot L_{M}}{v} F_{N} = \frac{v}{\sqrt{L_{M} \cdot g}} C_{F} = \frac{0.075}{(\log R_{N} - 2)^{2}} \frac{0.242}{C_{F}} = \log(C_{F} \cdot R_{N})$$

Marwood, Bailey: SERIE NPL

- British National Physical Laboratory, 1969
- 22 modelli di carene veloci dislocanti
- forma avviata, poppa a specchio
- una carena madre 100A con L/B=6.25
- dalla carena madre sono sviluppati altri quattro modelli con L/B=5.41, 4.54, 3.33 e 7.5
- $\, \cdot \,$ da questi cinque modelli dello stesso dislocamento, gli altri sono ottenuti variando l'immersione per ottenere variazione di $L/V^{1/3}$

PIANO DI COSTRUZIONE NPL 100A

PARAMETRI DELLA NPL

PARAMETRO	MIN	MAX
(M)	4.47	8.3
L _{WL} / B _{WL}	3.33	7.5
B _{WL} / T _M	1.72	6.80
C _B	0.397	0.397
C _P	0.693	0.693
XCB (%)	43.6	43.6
F _{NV}	0.6	3.6

SCHEMA DI VARIAZIONE DI MODELLI NPL

MODEL SET UP

- modelli fatti di legno o di poliuretano
- tutti i modelli avevano la stessa lunghezza al galleggiamento L_{WL} = 2.54m
- stimolazione di turbolenza con chiodini di 3 mm sul profilo di prua

RISULTATI DELLA SERIE SISTEMATICA

- **RESISTENZA** velocita', resistenza, angolo d'assetto dinamico, spostamento del baricentro verticale, F_N = 0.3 ÷ 1.19
- **PROPULSIONE** bielica, variazione di ϵ da $5 \div 12.5$ gradi, $F_N = 0.5 \div 1.05$, (M) = $5 \div 7$
- TENUTA AL MARE velocita', sussulto, beccheggio, accelerazioni verticali a FP e AP, MARE IRREGOLARE, F_N = 0.4 ÷ 1.2
- MANOVRABILITA' 100B, 2 eliche e 2 timoni, $F_N = 0.2 \div 0.5$

PRESENTAZIONE DEI DATI DI RESISTENZA

- · C_F secondo la linea di ITTC 57
- Superficie bagnata da fermo
- DIAGRAMMI $R_R/\Delta = f((M))$ per L/B
- Diagrammi $C_T = f(v/L^{0.5})$ per nave di lunghezza 30.5m per vari dislocamenti (L/B = const.)

DIAGRAMMA $R_R/\Delta = f((M))$ per L/B = 6.25

DIAGRAMMA $C_T = f(V/L)$ per L/B = 6.25

Blok & Buelkmann - Model 5

- Robson 1987 ha pubblicato i risultati della serie sistematica soltanto per la carena madre - Model 5
- $L_{WL} = 5m$
- $L_{WI}/B_{WI} = 8$
- B_{WI} /T=4
- $C_B = 0.396$, $C_M = 0.633$, $C_P = 0.626$
- · XCB=5.02%
- Stimolazione di turbolenza con striscia di sabbia
- · C_F secondo la linea di ITTC-57
- Risultati nel diagramma $C_R = f(F_{NV})$

PIANO DI COSTRUZIONE MODEL 5

Lahtiharju et al: NOVA

- VTT Ship Research Center of Finland, 1991
- carena madre NOVA-1 è sviluppata dalla serie NPL volendo diminuire l'immersione
- $(M) = 6.586 (\equiv NPL)$
- $L_{WI}/B_{WI} = 5.41$ (NPL: 6.25)
- $B_{WL}/T_M = 4.39$ (NPL: 2.90)
- $C_{\rm B} = 0.45 \, (NPL : 0.397)$
- $C_X = 0.6494$ (NPL: 0.5730)
- altri coefficienti della forma XCB, B_T/B_{MAX} , T_T/T , A_T/A_X sono rimasti identici come nella serie NPL
- dalla carena madre sono sviluppati altri quattro modelli avviati ed uno a spigolo

PIANO DI COSTRUZIONE NOVA

PARAMETRI DELLA NOVA

PARAMETRO	MIN	MAX
(M)	6.586	8.3
L _{WL} / B _{WL}	4.55	6.25
B _{WL} / T _M	4.39	6.90
C _B	0.45	0.65
C_{P}	0.693	0.693
XCB (%)	43.60	43.6
F _N	0.6	3.8

MODEL SET UP

- modelli fatti di legno
- tutti i modelli avevano la stessa lunghezza al galleggiamento L_{WL} = 2.8m
- stimolazione di turbolenza con chiodini attacchati sulle sezione 7.5, 8.5 e 9.5

RISULTATI DELLA SERIE SISTEMATICA

- **RESISTENZA** velocita', resistenza, angolo d'assetto dinamico, $F_N = 0.2 \div 1.19$
- VARIAZIONE DI IMMERSIONE: 130% e 80% di dislocamento di progetto
- TENUTA AL MARE NOVA II e NOVA IV velocita', sussulto, beccheggio, accelerazioni verticali a FP e AP, mare irregolare, F_N = 0.2 ÷ 0.8
- ANALISI DI REGRESSIONE PER LA RESISTENZA E TENUTA

PRESENTAZIONE DEI DATI DI RESISTENZA

- C_F secondo la linea di ITTC 57
- · Superficie bagnata da fermo
- Diagramma $C_R = f(F_{NV})$
- Diagramma $R_T = f(v)$ per nave di dislocamento 45.36t
- Diagramma $C_T = f(\Delta)$
- Diagramma $C_T = f(F_{NV})$ per variazione di angolo d'assetto

Figure 10 The total resistances of the NOVAmodels as 45.36 ton (100,000 lbs) vessels.

Figure 13 The effect of displacement on the total

Figure 11 The effect of trim on the total resistance of NOVA I.

Figure 12 The effect of appendages on the total resistance of NOVA I.

Figure 14 The effect of displacement on the total

Yeh: SERIE SISTEMATICA 64

- David Taylor Model Basin, 1964
- 27 modelli di carene veloci dislocanti
- forma avviata, poppa a specchio
- tre carene madri con $C_R = 0.35$; 0.45; 0.55
- Da ciascuna delle carene madri sono sviluppati altri otto modelli variando $\Delta/(0.01\cdot L)^3$ e B/T

S 64, CB = 0.55

S 64, CB = 0.45

S 64, CB = 0.35

PARAMETRI DELLA S 64

PARAMETRO	MIN	MAX
(M)	8.0	12.6
L _{WL} / B _{WL}	8.45	18.26
B _{WL} / T _M	2.0	4.0
C _B	0.35	0.55
C_{P}	0.63	0.63
XCB (%)	43.40	43.40
F _{NV}	0.6	3.8

SCHEMA DI SERIE SISTEMATICA S64

MODEL SET UP

- modelli fatti di legno
- tutti i modelli avevano la stessa lunghezza al galleggiamento L_{WL} = 3.048m
- · senza stimolazione di turbulenza

RISULTATI DELLA SERIE SISTEMATICA

• **RESISTENZA** - velocita', resistenza, angolo d'assetto dinamico, spostamento del baricentro verticale F_N = 0.2 ÷ 1.2

PRESENTAZIONE DEI DATI DI RESISTENZA

- · C_F secondo la linea di ATTC 47
- Superficie bagnata da fermo
- Diagramma $R_R/\Delta = f(\Delta/(0.01L)^3)$
- Diagramma $C_R = f(v/L^{0.5})$
- Tabella $C_R = f(v/L^{0.5})$

DIAGRAMMA $R_R/\Delta = f(\Delta/(0.01L)^3)$ per $C_B = 0.45$

DIAGRAMMA $C_R = f(V/L^{0.5})$ per $C_B = 0.45$

SERIE SISTEMATICA 62 E SUCCESIVE ESTENSIONI

- Clement e Blount , 1963 Serie 62 costituita da 5 carene a V caratterizzate da un valore costante dell'angolo di rialzamento di fondo β =12.5 gradi
- Hubble, 1974, aggiunge un sesto modello della serie e rielabora i risultati
- Keuning e Gerritsma, 1982, eseguono una estensione della serie realizzando e provando altri β modelli aventi β =25 gradi
- Keuning, Gerritsma e von Terwisga, 1993, eseguono una ulteriore estensione della serie realizzando e provando altri 4 modelli aventi β =30 gradi

Clement: SERIE 62

- · Clement e Blount, 1963
- Serie 62 costituita da 5 carene a V tutte con valore dell'angolo di rialzamento di fondo β =12.5 gradi
- ·Una carena madre con $L_P/B_{PX} = 4.09$
- •Altri quattro modelli sono ottenuti variando la distanza tra le sezioni in modo da realizare L_P/B_{PX} = 2.00; 3.06; 5.50 e 7.00

PIANO DI COSTRUZIONE DI CARENA MADRE

CARATTERISTICHE DI CARENA MADRE

· Lunghezza proiettata dallo spigolo

 $L_p = 2.436 \text{ m}$

· Larghezza tra gli spigoli allo specchio

 $B_{PX} = 0.596 \text{ m}$

Larghezza massima tra gli spigoli

 $B_{PX} = 0.596 \text{ m}$

· Larghezza media tra gli spigoli

 $B_{pq} = 0.487 \text{ m}$

· area racchiusa tra gli spigoli

 $A_{\rm p}$ = 1.182 m²

• angolo di rialzamento di fondo a $0.5 L_P$ $\beta = 12.5 gradi$

PARAMETRI DELLA S 62

PARAMETRO	MIN	MAX
L _P / B _{PX}	2.0	7.0
B _{PT} / B _{PX}	0.64	0.80
β	12.5	12.5
$A_P/V^{2/3}$	4.0	8.5
LCG/LP (%)	0.0	12.0
F _{NV}	1.0	6.0

MODEL SET UP

 per tutti i modelli e' stata determinata la piu' probabile linea d'azione di spinta, per svolgere prova con tiro nella appropriata direzione, mostrato nelle seguenti figure

· senza appendici

MODELLO 4667

MODELLO 4868

MODE/LO 4689

RISULTATI DELLE PROVE

- ullet lunghezze bagnate della chiglia L_K e dello spigolo $\mathsf{L}_\mathcal{C}$
- assetto dinamico

PRESENTAZIONE DEI RISULTATI

- elaborati a nave di dilocamento 100000 Libbre, assumendo la superficie bagnata WS = $(L_K + L_C) / 2 \cdot B_{Pa}$
- per ciascun modello e ciascuna condizione di prova e' stato presentato un grafico (in totale 15) $R_R/W = f(F_{NV})$

Hubble, 1974

- ha aggiunto un altro modello
- ha riportato i dati delle prove dei 5 modelli a quelli corrispondenti al caso di tiro orizzontale applicato nel baricentro del modello

y		200	 	
• lunghezza	proiettata dello	spigolo	 $L_P = 0.91$	2 m
 larghezza 	tra gli spigoli all	o specchio	 $B_{PT} = 0.29$	2 m
-	massima tra gli s	1 1 1	 1 / A	
	media tra gli spi			
C C	niusa tra gli spigo	The state of the s		
	rialzamento del f			
→ 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	rialzamento del l	to the second second	 	
_	lel centro di figur		 	
• L _P /B _{Pa}		*****************	 = 3.77	
 L_P/B_{PX} 			 = 3.06	
• L _{PX} /B _{Pa}			 = 1.23	
• B _{PT} /B _{PX}	***********		 = 0.98	

Keuning, Gerritsma, 1982

4. M	PARAMETRO	CARENA MADRE ORIGINARIA	SECONDA CARENA MADRE
	β	12.5°	25.0°
	L _P (metri)	2.436	1.50
	B _{pa} (metri)	0.487	0.300
	B _{PT} (metri)	0.381	0.253
	B _{PX} (metri)	0.596	0.367
1	L_P/B_{Pa}	5	5
	L_P/B_{PX}	4.090	4.087
	B_{PX}/B_{Pa}	1.220	1.220
	$\mathbf{B}_{\mathrm{PT}}/\mathbf{B}_{\mathrm{PX}}$	0.640	0.640
€	di A _P da specchio/L _P	0.448	0.488

PIANI DI COSTRUZIONE DI NUOVI MODELLI DELLA SERIE 62

PARAMETRI DEI NUOVI MODELLI-'82

	MOD.186	MOD.187	MOD.188	MOD.189	MOD:190
A _P (mq)	0,4297	0.4277	0.4500	0.3347	0.2628
L _P (m)	1.00	1.25	1.50	1.50	1.50
B _{Pa} (m)	0.4297	0.3422	0.3000	0.2230	0.1752
B _{PX} (m)	0.500	0.408	0.367	0.273	0.214
B _{PT} (m)	0.400	0.290	0.235	0.175	0.137
L _P /B _{Pa}	2.372	3.653	5.000	6.726	8.560
L _P /B _{PX}	2.000	3.064	4.087	5.494	7.010
B _{PX} /B _{Pa}	1.164	1.192	1.220	1.220	1.220
$B_{\rm PT}/B_{\rm PX}$	0.800	0.711	0.640	0.640	0.642
⊕ di A _P da specchio/L _P	47.113	47.879	48,800	48.800	48.800

RISULTATI DELLE PROVE

 per tutti i modelli e' stata determinata la piu' probabile linea d'azione di spinta, per svolgere prova con tiro nella appropriata direzione, come nel lavoro precedente

PRESENTAZIONE DEI RISULTATI

- tabelle relativamente ai modelli danno: velocita', lunghezza bagnata di chiglia, lunghezza bagnata a spigolo, superficie bagnata, assetto dinamico
- diagramma R/W = f (F_{NV}) e assetto dinamico τ = f(F_{NV}) per la nave da Δ =450000N

Keuning, Gerritsma, van Terwisga 1993

PARAMETRO	CARENA	SECONDA	TERZA
	MADRE ORIGINARIA	CARENA MADRE	CARENA MADRE
β	12.5°	25.0°	30.0°
L _p (metri)	2.436	1.50	1.50
B _{nz} (metri)	0.487	0.300	0.300
B _{PT} (metri)	0.381	0.235	0.235
B _{PX} (metri)	0.596	0.367	0.367
L_P/B_{Pa}	5	5	5
L_P/B_{PX}	4,090	4.087	4.087
B_{PX}/B_{Pa}	1.220	1.220	1.220
B_{PT}/B_{PX}	0.640	0.640	0.640
⊕ di A _P da specchio/L _P	0.448	0.488	0.488

PIANI DI COSTRUZIONE DI NUOVI MODELLI DELLA SERIE 62

Figure 1. Body plan of the 30° deadrise parent model.

Figure 2. Body plan for $L_p/B_{px} = 3.41$.

Figure 3. Body plan for $L_p/B_{px} = 5.5$.

Figure 4. Body plan for $L_p/B_{px} = 7$.

PARAMETRI DEI NUOVI MODELLI-'93

	MOD.1 carena madre	MOD.2	MOD.3	MOD.4
A _P (mq)	0.4500	0.3843	0.3346	0.2627
L _P (m)	1.50	1.50	1.50	1.50
B _{Ps} (m)	0.3000	0.30	0.223	0.175
B _{PX} (m)	0.367	0.367	0.273	0.214
B _{PT} (m)	0.235	0.260	0.175	0.137
L_P/B_{Pa}	5.000	4.170	6.726	8.571
L_P/B_{PX}	4.087	3.41	5.50	7.00
$\mathbf{B}_{\mathrm{PX}}/\mathbf{B}_{\mathrm{Pa}}$	1.220	1.220	1.220	1.220
B_{PT}/B_{PX}	0.640	0.71	0.64	0.64
⊕ di A _P da	48.8	47.9	48.6	48.6
specchio/L _P				

RISULTATI DELLE PROVE

 per tutti i modelli e' stata determinata la piu' probabile linea d'azione di spinta, per svolgere prova con tiro nella appropriata direzione, come nel lavoro precedente

PRESENTAZIONE DEI RISULTATI

- tabelle relativamente ai modelli danno: velocita', lunghezza bagnata di chiglia, lunghezza bagnata a apigolo, superficie bagnata, assetto dinamico, spostamento del baricentro verticale, resistenza totale
- · equazioni di regressione