Mass Discharge - Outlet Alteck. 2016

PAZ

27 octobre 2016

Purpose

This file computes the discharged mass observed at the outlet. To do that it imports the weekly discharge summary and lab results for isotopes (^{13}C) and s-metolachlor concentrations.

Imports:

- WeeklyHydro_R.csv (R generated)
- $fluxAlteck2016_R.csv$ (R generated)
- $\bullet \quad OutletConc_W0toW17.csv$
- MESAlteckWater.csv (Concentration in filters)
- $\bullet \ \ Outlet_Isotopes_W0toW17.csv$
- MESAlteck_FilterIsotopes.csv (Isotopes in filters)
- $\bullet \ \ Outlet_ESAOXA_W0toW17.csv$
- AO-Hydrochem.csv

Generates:

• WeeklyHydroContam_R.csv

Required R-packages:

```
library("stringr")
library("plyr")
library("dplyr")
library("zoo")
library("ggplot2")
library("plotly")
```

Working directory

```
# setwd("D:/Documents/these_pablo/Alteckendorf2016/R")
# setwd("/Users/DayTightChunks/Documents/PhD/Routput/Alteck/R")
# setwd("D:/Documents/these_pablo/Alteckendorf2016/00_TransparencyFolder")
getwd()
```

[1] "/Users/DayTightChunks/Documents/PhD/HydrologicalMonitoring"

Lab and reference values

```
# Pure and cuve isotope average

d13Co = -32.25

# Lab enrichment:
# epsilon = -1.61

# Lab enrichment:
# Alteck
#epsilon_max = -1.5 # +/- 0.3 (@ 20C, 20% vwc)
#epsilon_min = -2.0 # +/- 0.2 (@ 20C, 40% vwc)
#epsilon_mean = -1.75

# Essahn values:
epsilon_max = -1.8
epsilon_min = -2.6
epsilon_mean = -2.2 # ± 0.4
```

Outlet Data - Alteckendorf 2016

W0-2x

W1 - 1

W1-2

3

4

5

1. Hydrological data on a subweekly basis

```
weeklyhydro = read.csv2("Data/WeeklyHydro_R.csv", header = TRUE)
colnames(weeklyhydro)[colnames(weeklyhydro) == "ID"] <- "WeekSubWeek"
head(weeklyhydro)

## WeekSubWeek AveDischarge.m3.h Volume.m3 Sampled.Hrs Sampled
## 1 W0-0x 1.204775 14.41714 11.96667 Not Sampled
## 2 W0-1 1.213511 100.15508 82.53333 Sampled</pre>
```

37.63333 Not Sampled

Sampled

Sampled

27.26667

23.13333

```
## 6 W1-3x 9.107720 877.37700 96.33333 Not Sampled
weeklyflux = read.csv2("Data/fluxAlteck2016_R.csv", header = TRUE)
head(weeklyflux)
```

1.284719 48.34827

14.316647 390.36726

15.529299 359.24445

```
##
     WeekSubWeek
                                                             iflux
                                                                       fflux
                                  ti
                                                      tf
## 1
           WO-0x 2016-03-25 00:04:00 2016-03-25 12:02:00
                                                          1.248600
                                                                    1.129227
## 2
            WO-1 2016-03-25 12:04:00 2016-03-28 22:36:00
                                                          1.124382
                                                                    1.313125
## 3
           WO-2x 2016-03-28 22:38:00 2016-03-30 12:16:00
                                                          1.308100
## 4
           W1-1 2016-03-30 12:18:00 2016-03-31 15:34:00 1.456080 16.445436
## 5
            W1-2 2016-03-31 15:36:00 2016-04-01 14:44:00 16.334349 15.184536
           W1-3x 2016-04-01 14:46:00 2016-04-05 15:06:00 15.203629
## 6
                                                                    5.856380
     changeflux
                     maxQ
                               minQ
                                         dryHrs Duration.Hrs chExtreme Event
## 1 -0.1193728 1.248600
                                     0.01666667
                                                    11.96667 -0.1303036
                           1.118296
                                                                           NA
## 2 0.1887431
                1.380388
                           1.082199
                                     6.01666667
                                                    82.53333
                                                              0.2560062
                                                                           NΑ
                                                    37.63333 0.3296817
                                                                           NA
## 3 0.1482496 1.637782 0.929055 47.30000000
## 4 14.9893566 38.399790 1.448977 66.13333333
                                                    27.26667 36.9437102
                                                                            1
## 5 -1.1498131 18.668972 13.201113
                                    1.65000000
                                                    23.13333 -3.1332355
                                                                           NA
## 6 -9.3472489 15.895640 5.471042 6.26666667
                                                    96.33333 -9.7325862
                                                                           NA
##
      Markers TimeDiff
## 1
           NA
                  <NA>
## 2
                  <NA>
           NA
## 3
           NA
                  <NA>
```

```
## 4 16.88972
                     24
## 5
           NΑ
                   <NA>
## 6
           NA
                   <NA>
  2. Concentration data (dissolved and suspended solids) on a subweekly basis
outletConc = read.csv2("Data/OutletConc_WOtoW17.csv", header = T)
outletConc$ID4 <- as.character(outletConc$ID4)</pre>
outletConc <- outletConc[outletConc$ID4 != "J+7", ]</pre>
outletConc <- outletConc[,c("WeekSubWeek", "Conc.mug.L", "Conc.SD")]</pre>
head(outletConc)
     WeekSubWeek Conc.mug.L Conc.SD
## 1
           WO-1 0.2456594 0.01931
            W1-1 6.7882463 0.28942
## 2
            W1-2 6.5609982 0.19064
## 3
## 4
            W2-1 9.4443019 0.33354
## 5
            W2-2 1.0421883 0.03904
## 6
            W3-1 8.8357358 0.47086
filters = read.csv2("Data/MESAlteckWater.csv")
filters$MO.mg.L = ifelse(filters$MO.mg.L < 0, 0.0001, filters$MO.mg.L)
head(filters)
##
     WeekSubWeek MES.mg.L MES.sd MO.mg.L Conc.Solids.mug.gMES
                                NA 0.0000
## 1
            WO-1 53.44444
                                                      0.64472899
## 2
            W1-1 62.50000
                                NA 0.0010
                                                      0.12588974
            W1-2 22.50000
                                NA 0.0001
## 3
                                                      0.43578716
## 4
                                NA 0.0001
            W2-1 22.50000
                                                      0.07935267
## 5
            W2-2
                  5.00000
                                NA 0.0001
                                                      0.05075270
            W3-1 197.50000
                                NA 0.0058
## 6
                                                      0.08177487
##
    Conc.Solids.ug.gMES.SD
## 1
               0.023237548
## 2
                0.027063685
## 3
                0.123237064
## 4
                0.004683719
## 5
                0.001027205
## 6
                0.001343089
# MESA/MOXA data cleaning
outletESAOXA = read.csv2("Data/Outlet ESAOXA WOtoW17.csv", header = T)
outletESAOXA$ID <- as.character(outletESAOXA$ID)</pre>
split <- strsplit(outletESAOXA$ID, "-", fixed = TRUE)</pre>
outletESAOXA$ESAOXA_SD <- sapply(split, "[", 4)</pre>
split_vor <- strsplit(outletESAOXA$ID, "-SD", fixed = TRUE)</pre>
outletESAOXA$ESAOXA_Mean <- sapply(split_vor, "[", 1)</pre>
means_temp <- subset(outletESAOXA, is.na(outletESAOXA$ESAOXA_SD))</pre>
sd_temp <- subset(outletESAOXA, !is.na(outletESAOXA$ESAOXA_SD))</pre>
means_temp$ID <- NULL</pre>
sd_temp$ID <- NULL</pre>
head(sd_temp)
        MOXA.ugL MESA.ugL ESAOXA SD ESAOXA Mean
       1.1414453 3.4972206
## 2
                                   SD
                                           A0-W0-1
## 4 10.1852510 3.0369845
                                   SD
                                           AO-W1-1
```

```
## 6
       0.2430544 0.8533820
                                   SD
                                          A0-W1-2
## 8
                                   SD
                                          A0-W2-1
       1.1526489 2.8261924
## 10 0.6100011 0.1910419
                                   SD
                                          A0-W2-2
## 12 2.6589421 0.3268637
                                   SD
                                          A0-W3-1
head(means_temp)
##
        MOXA.ugL MESA.ugL ESAOXA_SD ESAOXA_Mean
## 1
        4.824094 18.05531
                                <NA>
                                         AO-WO-1
## 3
       30.531235 45.98364
                                <NA>
                                         AO-W1-1
## 5
       32.492465 41.28052
                                <NA>
                                         A0-W1-2
## 7 104.541255 98.56782
                                <NA>
                                         A0-W2-1
## 9
       26.885849 51.95245
                                <NA>
                                         A0-W2-2
## 11 45.080673 24.04717
                                <NA>
                                         AO-W3-1
outletESAOXA <- merge(means_temp, sd_temp, by = "ESAOXA_Mean", all = T)
outletESAOXA$ESAOXA_SD.x <- NULL
outletESAOXA$ESAOXA SD.y <- NULL
split_ID <- strsplit(outletESAOXA$ESAOXA_Mean, "AO-", fixed = T)</pre>
outletESAOXA$ID <- sapply(split_ID, "[", 2)</pre>
outletESAOXA$ESAOXA_Mean <- NULL
outletESAOXA <- outletESAOXA[, c("ID", "MOXA.ugL.x", "MOXA.ugL.y", "MESA.ugL.x", "MESA.ugL.y")]
colnames(outletESAOXA) <- c("WeekSubWeek", "OXA_mean", "OXA_SD", "ESA_mean", "ESA_SD")
outletESAOXA$WeekSubWeek <- as.factor(outletESAOXA$WeekSubWeek)
head(outletESAOXA)
     WeekSubWeek OXA_mean
                                 OXA_SD ESA_mean
            WO-1 4.824094 1.14144531 18.05531 3.4972206
## 1
## 2
            W1-1 30.531235 10.18525095 45.98364 3.0369845
## 3
            W1-2 32.492465 0.24305444 41.28052 0.8533820
           W10-1 21.311423 0.05168437 82.87549 1.8167218
           W10-2 13.095046 0.17703516 12.02387 0.3057521
## 5
           W10-3 45.605808 1.92663562 11.31492 0.1763479
  3. Isotope data
Isotopes selected where cleaned according to the following rules:
  a) The isotope shift was not largely beyond (2x) Streitwieser theoretical limits (i.e. > 10)
  b) Isotope shift was non-negative
  c) Nanograms of carbon > 2.0.
# Outlet isotope data:
outletIso = read.csv2("Data/Outlet_Isotopes_WOtoW17.csv", header = T, dec = ".")
if (length(outletIso) == 1){
  outletIso = read.csv("Data/Outlet_Isotopes_WOtoW17.csv", header = T)
}
head(outletIso)
     FileHeader..Filename ID Week Wnum SubWeek WeekSubWeek Repl d.13C.12C
##
## 1 AO W1 1-1 -0001.dxf AO
                                W1
                                      1
                                              1
                                                        W1 - 1
                                                               1
                                                                    -31.634
```

1

1

2

2

2

W1

W1

W1

W1

W1

1

1

1

1

1

2

3

3

-31.454

-31.447

-31.686

1 -31.501

2 -31.801

W1-1

W1 - 1

W1-2

W1 - 2

W1-2

2 AO_W1_1-2_-0001.dxf AO

3 AO_W1_1-3_-0001.dxf AO

4 AO W1 2-1 -0001.dxf AO

5 AO_W1_2-2_-0001.dxf AO

6 AO W1 2-3 -0001.dxf AO

```
DD13...32.25. Ave...STDEV
                                    Rt Ampl..44 Std.Ampl. ng..C.
## 1
             0.619
                                                       858 44.89510
                                2651.4
                                           1284
                                           1196
## 2
             0.799
                                2651.2
                                                       858 41.81818
                                                       858 41.36364
## 3
             0.806
                                2650.1
                                           1183
## 4
             0.752
                                2651.2
                                           1634
                                                       858 57.13287
## 5
                                2651.0
                                                       858 54.89510
             0.452
                                           1570
             0.567
                                2650.5
                                                       858 52.06294
## 6
                                           1489
colnames(outletIso)
  [1] "FileHeader..Filename" "ID"
                                                        "Week"
   [4] "Wnum"
##
                                "SubWeek"
                                                        "WeekSubWeek"
## [7] "Repl"
                                "d.13C.12C"
                                                        "DD13...32.25."
## [10] "Ave...STDEV"
                                "Rt"
                                                        "Ampl..44"
## [13] "Std.Ampl."
                                "ng..C."
colnames(outletIso)[colnames(outletIso) == "DD13...32.25."] <- "DD13"
colnames(outletIso)[colnames(outletIso) == "ng..C."] <- "ngC"</pre>
# Filter isotope data:
filtersIso = read.csv2("Data/MESAlteck_FilterIsotopes.csv", header = T, dec = ".")
#filtersIso <- filtersIso[filtersIso$Levl != "J+7", ]
if (length(filtersIso) == 1){
  filtersIso = read.csv("Data/MESAlteck_FilterIsotopes.csv", header = T)
colnames(filtersIso)
## [1] "ID"
                       "Week"
                                      "Wnum"
                                                      "Num"
## [5] "Levl"
                       "Repl"
                                      "d.13C.12C"
                                                      "DD13.32.253."
## [9] "ng..C."
filtersIso$WeekSubWeek = paste(filtersIso$Week, filtersIso$Num, sep = "-")
colnames(filtersIso)[colnames(filtersIso) == "DD13.32.253."] <- "DD13"</pre>
colnames(filtersIso)[colnames(filtersIso) == "ng..C."] <- "ngC"</pre>
head(filtersIso)
      ID Week Wnum Num Levl Repl d.13C.12C DD13
                                                         ngC WeekSubWeek
##
## 1 AFP
                               1
                                     -26.20 6.056 0.7300885
                                                                    W2-1
## 2 AFP
           W2
                                2
                                     -29.23 3.023 0.8296460
                                                                    W2-1
                 1
                     1
## 3 AFP
           W2
                 1
                     1
                                3
                                     -29.33 2.927 0.8296460
                                                                    W2-1
## 4 AFP
           W2
                 2
                     2
                                1
                                     -31.66 0.592 0.6637168
                                                                    W2-2
## 5 AFP
                 2
                     2
                                2
                                     -27.35 4.906 0.7300885
                                                                    W2-2
           W2
## 6 AFP
                                     -27.07 5.186 0.7300885
           W2
                 2
                     2
                                3
                                                                    W2-2
  4. Hydrochemistry Data
hydroChem = read.csv2("Data/AO-Hydrochem.csv", header = T)
hydroChem = hydroChem[, c("WeekSubWeek",
                           "NH4.mM",
                           "TIC.ppm.filt",
                           "Cl.mM",
                           "NO3...mM",
                           "PO4..mM",
                           "NPOC.ppm"
                           "TIC.ppm.unfilt",
```

```
"TOC.ppm.unfilt" )]
head(hydroChem)
                                       Cl.mM NO3...mM PO4..mM NPOC.ppm
     WeekSubWeek NH4.mM TIC.ppm.filt
                   0.05
## 1
           W1 - 1
                                51.8
                                        1.48
                                               616.00
                                                           NA
                                                                    4.0
## 2
           W1-2
                     NA
                                44.8 1574.00
                                               778.00
                                                           NA
                                                                    4.4
## 3
           W10-1
                     NA
                                60.1
                                        1.17
                                               964.00
                                                           NA
                                                                    2.0
## 4
           W10-2
                   9.00
                                57.1 1013.00 1174.00
                                                           13
                                                                    5.2
## 5
           W10-3
                     NA
                                58.2 858.00
                                                 1.23
                                                           NA
                                                                    5.0
           W10-4 15.00
                                26.4 355.00 1409.00
## 6
                                                           NA
                                                                    6.4
##
    TIC.ppm.unfilt TOC.ppm.unfilt
## 1
               44.8
## 2
               26.4
                               5.4
## 3
               63.2
                               2.0
## 4
               55.9
                               4.0
## 5
               60.4
                               4.3
## 6
               24.5
                               6.4
Summarizing IRMS data
outletIso <- outletIso[complete.cases(outletIso[ , "d.13C.12C"]), ]</pre>
isoOutSummary = ddply(outletIso, c("WeekSubWeek"), summarise,
                             = length(d.13C.12C),
                         diss.d13C = mean(d.13C.12C),
                         SD.d13C = sd(d.13C.12C),
                         se.d13C = SD.d13C / sqrt(N),
                         N_ngC.diss = length(ngC),
                         ngC.mean.diss = mean(ngC),
                         ngC.SD.diss = sd(ngC))
head(isoOutSummary)
##
     WeekSubWeek N diss.d13C
                               SD.d13C
                                          se.d13C N_ngC.diss ngC.mean.diss
## 1
         W1-1 3 -31.51167 0.1060016 0.06120004
                                                                 42.692308
## 2
           W1-2 3 -31.66267 0.1513550 0.08738484
                                                           3
                                                                 54.696970
## 3
           W10-1 2 -28.96100 0.2093036 0.14800000
                                                           2
                                                                  9.811304
## 4
           W10-2 5 -30.19240 0.6277900 0.28075623
                                                           5
                                                                 31.285472
## 5
           W10-3 3 -30.81267 0.3411749 0.19697744
                                                           3
                                                                 19.092646
## 6
           W10-4 3 -29.15667 0.4713240 0.27211905
                                                          3
                                                                 16.921348
##
    ngC.SD.diss
## 1
       1.9211688
## 2
       2.5407658
       4.3931602
## 3
## 4 27.6278167
## 5
      1.0603010
## 6
       0.2430709
sum(isoOutSummary$N ngC.diss == 2)
```

[1] 5

```
sum(isoOutSummary$N_ngC.diss > 2)
## [1] 22
sum(isoOutSummary$N_ngC.diss == 2) /(sum(isoOutSummary$N_ngC.diss == 2) + sum(isoOutSummary$N_ngC.diss
## [1] 0.1851852
isoFiltSummary = ddply(filtersIso, c("WeekSubWeek"), summarise,
                             = length(d.13C.12C),
                        filt.d13C = mean(d.13C.12C),
                        filt.SD.d13C = sd(d.13C.12C),
                        filt.se.d13C = filt.SD.d13C / sqrt(N),
                        N_ngC.fl = length(ngC),
                        ngC.mean.fl = mean(ngC),
                        ngC.SD.fl = sd(ngC))
head(isoFiltSummary)
    WeekSubWeek N filt.d13C filt.SD.d13C filt.se.d13C N_ngC.fl ngC.mean.fl
## 1
           W2-1 3 -28.25333
                                1.778942
                                            1.0270724
                                                           3 0.7964602
## 2
           W2-2 3 -28.69333
                                2.573020
                                            1.4855339
                                                           3 0.7079646
                                                            6 1.1946903
           W6-3 6 -29.90667
## 3
                                1.617698
                                            0.6604224
           W9-1 2 -27.83500
                                1.746554 1.2350000
                                                            2 4.1783217
## 4
## 5
           W9-2 3 -28.74000
                                2.011194 1.1611632
                                                            3 5.5594406
           W9-3 3 -27.99000
                                1.685111
                                            0.9728994
                                                            3 3.7645688
## 6
     ngC.SD.fl
##
## 1 0.05747956
## 2 0.03831971
## 3 0.15135072
## 4 0.56865231
## 5 0.54280331
## 6 0.51189257
```

Merging and data wrangling stepts

1. Merge all data sets by the WeekSubWeek column ID, icluding:

```
# Dissolved
out.CoIs = merge(outletConc, outletESAOXA, by = "WeekSubWeek", all = T)
out.CoIs = merge(out.CoIs, isoOutSummary, by = "WeekSubWeek", all = T)

# Filters (MES, Conc.MES)
out.CoIs = merge(out.CoIs, filters, by = "WeekSubWeek", all = T)
out.CoIs = merge(out.CoIs, isoFiltSummary, by= "WeekSubWeek", all = T)

# Remaining fraction
out.CoIs$DD13C.diss <- (out.CoIs$diss.d13C - (d13Co))
out.CoIs$DD13C.filt <- (out.CoIs$filt.d13C - (d13Co))
out.CoIs$f.diss <- (((10**(-3)*out.CoIs$diss.d13C + 1)/(10**(-3)*d13Co + 1))**(1000/(epsilon_mean)))
out.CoIs$f.filt <- (((10**(-3)*out.CoIs$filt.d13C + 1)/(10**(-3)*d13Co + 1))**(1000/(epsilon_mean)))
# epsilon_max = -1.8
# epsilon_min = -2.6</pre>
```

```
out.CoIsf.diss.min <- (((10**(-3)*out.CoIs$diss.d13C + 1)/(10**(-3)*d13Co + 1))**(1000/(epsilon_max)))
out.CoIsf.filt.min <-(((10**(-3)*out.CoIsfilt.d13C + 1)/(10**(-3)*d13Co + 1))**(1000/(epsilon_max)))
out.CoIsf.diss.max < (((10**(-3)*out.CoIs$diss.d13C + 1)/(10**(-3)*d13Co + 1))**(1000/(epsilon_min)))
out.CoIsf.filt.max <- (((10**(-3)*out.CoIsfilt.d13C + 1)/(10**(-3)*d13Co + 1))**(1000/(epsilon_min)))
out.CoIs$B.diss <- (1 - out.CoIs$f.diss)*100</pre>
out.CoIs$B.filt <- (1 - out.CoIs$f.filt)*100
out.CoIs$B.diss.max <- (1 - out.CoIs$f.diss.min)*100</pre>
out.CoIs$B.filt.max <- (1 - out.CoIs$f.filt.min)*100</pre>
out.CoIs$B.diss.min <- (1 - out.CoIs$f.diss.max)*100</pre>
out.CoIs$B.filt.min <- (1 - out.CoIs$f.filt.max)*100</pre>
#out.CoIs$invf <- 1/out.CoIs$f
# Discharge times
out.CoIs = merge(weeklyhydro, out.CoIs, by = "WeekSubWeek", all = T)
# Discharge summary
out.CoIs = merge(weeklyflux, out.CoIs, by = "WeekSubWeek", all = T)
# Hydrochemistrty
out.CoIs = merge(out.CoIs, hydroChem, by= "WeekSubWeek", all = T)
out.CoIs$tf <- as.POSIXct(out.CoIs$tf, "%Y-%m-%d %H:%M", tz = "EST")
out.CoIs$ti <- as.POSIXct(out.CoIs$ti, "%Y-%m-%d %H:%M", tz = "EST")
class(out.CoIs$tf)
## [1] "POSIXct" "POSIXt"
sum(is.na(out.CoIs$tf))
## [1] 7
# Temprarily remove Weeks 16 & 17 (need to get discharge data)
# No discharge data yet avaiable to multiply against...
out.CoIs <- out.CoIs[!is.na(out.CoIs$tf), ]</pre>
  2. Weekly Exported Solids (Kg)
# V[m3] * MES [mg/L] * 1000 [L/m3] * [1 Kg/10^6 mg]
out.CoIs$ExpMES.Kg = out.CoIs$Volume.m3*out.CoIs$MES.mg.L/1000
```

Fork! Prepare Data for C-Q Hysteresis curves

```
CQdata <- out.CoIs[with(out.CoIs, order(ti)), ]
CQdata$FlowType <- ifelse(is.na(CQdata$Event), "Fall", "Peak")
CQdata$Event[1:3] <- 0
CQdata$EventMark <- NA

CQdata$EventMark <- na.locf(CQdata$Event)</pre>
```

```
CQdata$EventMark <- ifelse(is.na(CQdata$Event), CQdata$EventMark, CQdata$EventMark*10)
CQdata$Row <- seq.int(nrow(CQdata))
cq1 <- subset(CQdata[1:6, ])</pre>
cq1 <- cq1[cq1$Sampled != 'Not Sampled', ]</pre>
str(cq1)
## 'data.frame':
                   3 obs. of 69 variables:
                           : Factor w/ 58 levels "WO-0x", "WO-1",...: 2 4 5
   $ WeekSubWeek
                           : POSIXct, format: "2016-03-25 12:04:00" "2016-03-30 12:18:00" ...
## $ ti
                          : POSIXct, format: "2016-03-28 22:36:00" "2016-03-31 15:34:00" ...
## $ tf
## $ iflux
                          : num 1.12 1.46 16.33
## $ fflux
                          : num 1.31 16.45 15.18
## $ changeflux
                         : num 0.189 14.989 -1.15
## $ maxQ
                          : num 1.38 38.4 18.67
## $ minQ
                          : num 1.08 1.45 13.2
## $ dryHrs
                          : num 6.02 66.13 1.65
## $ Duration.Hrs
                         : num 82.5 27.3 23.1
## $ chExtreme
                          : num 0.256 36.944 -3.133
                          : num 0 1 NA
## $ Event
## $ Markers
                         : num NA 16.9 NA
## $ TimeDiff : Factor w/ 18 levels "106","136","150",..: NA 10 NA ## $ AveDischarge.m3.h : num 1.21 14.32 15.53
                          : num 100 390 359
## $ Volume.m3
                       : num 82.5 27.3 23.1
## $ Sampled.Hrs
## $ Sampled
                         : Factor w/ 2 levels "Not Sampled",..: 2 2 2
                         : num 0.246 6.788 6.561
## $ Conc.mug.L
                         : num 0.0193 0.2894 0.1906
## $ Conc.SD
## $ OXA_mean
                        : num 4.82 30.53 32.49
## $ OXA_SD
                          : num 1.141 10.185 0.243
## $ ESA mean
                          : num 18.1 46 41.3
## $ ESA SD
                          : num 3.497 3.037 0.853
## $ N.x
                          : int NA 3 3
## $ diss.d13C
                         : num NA -31.5 -31.7
## $ SD.d13C
                          : num NA 0.106 0.151
## $ se.d13C
                          : num NA 0.0612 0.0874
## $ N ngC.diss
                          : int NA 3 3
## $ ngC.mean.diss
                          : num NA 42.7 54.7
                          : num NA 1.92 2.54
## $ ngC.SD.diss
## $ MES.mg.L
                          : num 53.4 62.5 22.5
## $ MES.sd
                          : num NA NA NA
## $ MO.mg.L
                           : num 0e+00 1e-03 1e-04
## $ Conc.Solids.mug.gMES : num 0.645 0.126 0.436
## $ Conc.Solids.ug.gMES.SD: num 0.0232 0.0271 0.1232
                           : int NA NA NA
## $ N.y
## $ filt.d13C
                           : num NA NA NA
                          : num NA NA NA
## $ filt.SD.d13C
## $ filt.se.d13C
                          : num NA NA NA
                          : int NA NA NA
## $ N_ngC.fl
                          : num NA NA NA
## $ ngC.mean.fl
## $ ngC.SD.fl
                           : num NA NA NA
```

```
$ DD13C.diss
                                   NA 0.738 0.587
                            : num
##
    $ DD13C.filt
                                   NA NA NA
                            : num
##
   $ f.diss
                            : num
                                   NA 0.707 0.759
  $ f.filt
##
                                   NA NA NA
                            : num
    $ f.diss.min
                            : num
                                   NA 0.655 0.714
   $ f.filt.min
                            : num NA NA NA
##
   $ f.diss.max
                            : num NA 0.746 0.792
   $ f.filt.max
                                   NA NA NA
##
                            : num
##
    $ B.diss
                                   NA 29.3 24.1
                            : num
## $ B.filt
                            : num
                                   NA NA NA
  $ B.diss.max
                                   NA 34.5 28.6
                            : num
##
   $ B.filt.max
                                   NA NA NA
                            : num
    $ B.diss.min
                                   NA 25.4 20.8
                            : num
## $ B.filt.min
                            : num
                                   NA NA NA
## $ NH4.mM
                                   NA 0.05 NA
                            : num
## $ TIC.ppm.filt
                                   NA 51.8 44.8
                            : num
## $ Cl.mM
                                   NA 1.48 1574
                            : num
## $ NO3...mM
                                   NA 616 778
                            : num
                            : int NA NA NA
## $ PO4..mM
## $ NPOC.ppm
                            : num
                                   NA 4 4.4
## $ TIC.ppm.unfilt
                            : num NA 44.8 26.4
## $ TOC.ppm.unfilt
                            : num NA 4.7 5.4
                            : num 5.35 24.4 8.08
## $ ExpMES.Kg
   $ FlowType
                                   "Fall" "Peak" "Fall"
##
                            : chr
## $ EventMark
                            : num 0 10 1
## $ Row
                            : int 2 4 5
p \leftarrow ggplot(cq1) +
  geom_point(aes(x=AveDischarge.m3.h, y=Conc.mug.L), colour="black") +
  geom_polygon(aes(x=AveDischarge.m3.h, y=Conc.mug.L), colour="black", fill = NA) +
  geom_text(data = cq1,
            aes(x=AveDischarge.m3.h, y=Conc.mug.L, label=FlowType), hjust=1.5, vjust=0.5, size = 2)
# p
#p <- ggplotly(p)</pre>
```

Section to UPDATE!!!

3. Weekly exported S-metolachlor mass (mg)

This section converts the observed S-metolachlor concentrations to [mg] in dissolved water and suspended solids. For non-sampled subsets a linear interpolation value based on the trailing and leading observed concentrations was assumed. An approximative model will be tested at a later stage.

To revise: SD for filtered samples!!

```
# Assume first observation is equivalent to second for all measured values
out.CoIs[1, c("Conc.mug.L")] <- out.CoIs[2, c("Conc.mug.L")]
out.CoIs[1, c("Conc.SD")] <- out.CoIs[2, c("Conc.SD")]
out.CoIs[1, c("OXA_mean")] <- out.CoIs[2, c("OXA_mean")]
out.CoIs[1, c("OXA_SD")] <- out.CoIs[2, c("OXA_SD")]</pre>
```

```
out.CoIs[1, c("ESA_mean")] <- out.CoIs[2, c("ESA_mean")]</pre>
out.CoIs[1, c("ESA_SD")] <- out.CoIs[2, c("ESA_SD")]</pre>
out.CoIs[1, c("Conc.Solids.mug.gMES")] <- out.CoIs[2, c("Conc.Solids.mug.gMES")]
out.CoIs[1, c("Conc.Solids.ug.gMES.SD")] <- out.CoIs[2, c("Conc.Solids.ug.gMES.SD")]</pre>
out.CoIs[1, c("ExpMES.Kg")] <- out.CoIs[2, c("ExpMES.Kg")]</pre>
# Assign linear approximation of trailing and leading observed values
out.CoIs <- out.CoIs[with(out.CoIs , order(ti)), ]</pre>
out.CoIs$Conc.mug.L <- na.approx(out.CoIs$Conc.mug.L)</pre>
out.CoIs$Conc.SD <- na.approx(out.CoIs$Conc.SD)</pre>
out.CoIs$OXA_mean <- na.approx(out.CoIs$OXA_mean)</pre>
out.CoIs$OXA_SD <- na.approx(out.CoIs$OXA_SD)</pre>
out.CoIs$ESA_mean <- na.approx(out.CoIs$ESA_mean)</pre>
out.CoIs$ESA_SD <- na.approx(out.CoIs$ESA_SD)</pre>
out.CoIs$Conc.Solids.mug.gMES <- na.approx(out.CoIs$Conc.Solids.mug.gMES)
out.CoIs$Conc.Solids.ug.gMES.SD <- na.approx(out.CoIs$Conc.Solids.ug.gMES.SD)</pre>
out.CoIs$ExpMES.Kg <- na.approx(out.CoIs$ExpMES.Kg)</pre>
```

4. Add the application dates and merge the total mass to the nearest discharge event

The 4 application dates were:

- 2016-03-20 (Friess, Beet) and 2016-03-25 (Matthis, Beet)
- 2016-04-13 and 2016-04-14 (Kopp and Burger, Beet)
- 2016-05-25 (Schmidt, Talweg, Corn)
- 2016-06-04 (Assumed Speich and Mahler, Corn not on transect, Except Speich N1)

So the total applied mass mass is merged at the nearest sampling time marker available :

```
ti = c(as.POSIXct('2016-03-25~00:04:00', tz="EST"),
        as.POSIXct('2016-04-05 15:08:00' , tz="EST"),
       as.POSIXct('2016-04-14 13:52:00', tz="EST"),
       as.POSIXct('2016-05-29 12:10:00' , tz="EST"),
       # as.POSIXct('2016-05-24 12:00:00', tz="EST"),
       as.POSIXct('2016-06-04 15:32:00', tz="EST"))
Appl.Mass.g = c(17319.059, 4744.571, 1891.742, 6826.825)
applics = as.data.frame(ti)
applics$Appl.Mass.g = Appl.Mass.g
out.CoIs = merge(out.CoIs, applics, by = "ti", all = T)
out.CoIs$Appl.Mass.g <- ifelse(is.na(out.CoIs$Appl.Mass.g), 0.0, out.CoIs$Appl.Mass.g)</pre>
out.CoIs$timeSinceApp <- NA
for (i in 1:length(out.CoIs$Duration.Hrs)){
  if (out.CoIs[i, ]['Appl.Mass.g'] != 0){
    out.CoIs[i,]['timeSinceApp'] = out.CoIs[i, ]['Duration.Hrs']
} else {
```

```
out.CoIs[i, ]['timeSinceApp'] = out.CoIs[i ,]['Duration.Hrs'] + out.CoIs[i-1,]['timeSinceApp']
 }
}
out.CoIs$Appl.Mass.g.NoSo <- out.CoIs$Appl.Mass.g</pre>
out.CoIs\$Appl.Mass.g.NoSo[which(out.CoIs\$ti == as.POSIXct('2016-05-23 18:02:00' , tz="EST"))] <- 0
out.CoIs$timeSinceApp.NoSo <- NA
for (i in 1:length(out.CoIs$Duration.Hrs)){
  if (out.CoIs[i, ]['Appl.Mass.g.NoSo'] != 0){
    out.CoIs[i,]['timeSinceApp.NoSo'] = out.CoIs[i, ]['Duration.Hrs']
  } else {
    out.CoIs[i, ]['timeSinceApp.NoSo'] = out.CoIs[i ,]['Duration.Hrs'] + out.CoIs[i-1,]['timeSinceApp.N
}
out.CoIs$timeSinceApp <- round(out.CoIs$timeSinceApp/24, 1) # Convert to days
out.CoIs$timeSinceApp.NoSo <- round(out.CoIs$timeSinceApp.NoSo/24, 1)</pre>
# Cumulative (Continous)
out.CoIs$CumAppMass.g = cumsum(out.CoIs$Appl.Mass.g)
```

Section to UPDATE!!!

5. This section is based on approximate carried-last-observation for the observed concentration data (if no model has been conducted yet).

Also, mass equivalent loads are calculated such that:

$$MEQ_{SMET} = SMET_{out} + OXA_{out} * (\frac{mw_{SMET}}{mw_{MOXA}}) + ESA_{out} * (\frac{mw_{SMET}}{mw_{MESA}})$$

```
# First simulate a mass out to deal with missing values
# Option 1, just assume 0.0
# Dissolved - [mg] S-metolachlor exported per sub-week
# Conc. [mu.g s-meto/L H20] * Vol[m3] * [10^3 L/m^3] * [1 mg/10^3 mu.g]
out.CoIs$DissSmeto.mg = out.CoIs$Conc.mug.L*out.CoIs$Volume.m3
out.CoIs$DissSmeto.mg.SD = out.CoIs$Conc.SD*out.CoIs$Volume.m3
out.CoIs$DissSmeto.g = out.CoIs$DissSmeto.mg/10^3
out.CoIs$DissSmeto.g.SD = out.CoIs$DissSmeto.mg.SD/10^3
out.CoIs$DissOXA.mg = out.CoIs$OXA_mean*out.CoIs$Volume.m3
out.CoIs$DissOXA.mg.SD = out.CoIs$OXA_SD*out.CoIs$Volume.m3
out.CoIs$DissOXA.g = out.CoIs$DissOXA.mg/10^3
out.CoIs$DissOXA.g.SD = out.CoIs$DissOXA.mg.SD/10^3
out.CoIs$DissESA.mg = out.CoIs$ESA_mean*out.CoIs$Volume.m3
out.CoIs$DissESA.mg.SD = out.CoIs$ESA_SD*out.CoIs$Volume.m3
out.CoIs$DissESA.g = out.CoIs$DissESA.mg/10^3
out.CoIs$DissESA.g.SD = out.CoIs$DissESA.mg.SD/10^3
# Solids - [mg] S-metolachlor in solids exported per sub-week
```

```
# Conc. [mu.g s-meto / g MES] * Kg MES * [10^3 g/Kg] * [1 \text{ mg}/10^3 mu.g]
out.CoIs$FiltSmeto.mg = out.CoIs$Conc.Solids.mug.gMES*out.CoIs$ExpMES.Kg
out.CoIs$FiltSmeto.mg.SD = out.CoIs$Conc.Solids.ug.gMES.SD*out.CoIs$ExpMES.Kg
out.CoIs$FiltSmeto.g = out.CoIs$FiltSmeto.mg/10^3
out.CoIs$FiltSmeto.g.SD = out.CoIs$FiltSmeto.mg.SD/10^3
# Total SM
out.CoIs$TotSMout.mg = out.CoIs$DissSmeto.mg + out.CoIs$FiltSmeto.mg
out.CoIs$TotSMout.mg.SD = sqrt(((out.CoIs$DissSmeto.mg.SD)^2 + (out.CoIs$FiltSmeto.mg.SD)^2)/2)
out.CoIs$TotSMout.g = out.CoIs$TotSMout.mg/10^3
out.CoIs$TotSMout.g.SD = out.CoIs$TotSMout.mg.SD/10^3
# Distribution dissolved vs suspended solids
out.CoIs$FracDiss = out.CoIs$DissSmeto.mg/out.CoIs$TotSMout.mg
out.CoIs$FracFilt = out.CoIs$FiltSmeto.mg/out.CoIs$TotSMout.mg
#out.CoIs$DissSmeto.q = ifelse(is.na(out.CoIs$DissSmeto.q), 0.0, out.CoIs$DissSmeto.q)
#out.CoIs$FiltSmeto.g = ifelse(is.na(out.CoIs$FiltSmeto.g), 0.0, out.CoIs$FiltSmeto.g)
#out.CoIs$TotSMout.q = out.CoIs$DissSmeto.q + out.CoIs$FiltSmeto.q
# Need to update this :
# out.CoIs$TotSMout.g.SD = out.CoIs$DissSmeto.g.SD
mw.SM <- 283.796 # g/mol
mw.MOXA <- 279.33 \# q/ml
mw.MESA <- 329.1 # q/mol
out.CoIs$MELsm.g <-</pre>
  out.CoIs$TotSMout.g +
 out.CoIs$DissOXA.g * (mw.SM/mw.MOXA) +
 out.CoIs$DissESA.g * (mw.SM/mw.MESA)
# How to sum a standard deviation
# http://stats.stackexchange.com/questions/25848/how-to-sum-a-standard-deviation
out.CoIs$MELsm.g.SD <-</pre>
  sqrt((out.CoIs$TotSMout.g.SD^2 +
     (out.CoIs$DissOXA.g.SD * (mw.SM/mw.MOXA))^2 +
     (out.CoIs$DissESA.g.SD * (mw.SM/mw.MESA))^2)/3)
# Cumulative OUT
out.CoIs$CumOutDiss.g = cumsum(out.CoIs$DissSmeto.g)
out.CoIs$CumOutFilt.g = cumsum(out.CoIs$FiltSmeto.g)
out.CoIs$CumOutSmeto.g = out.CoIs$CumOutDiss.g + out.CoIs$CumOutFilt.g
out.CoIs$CumOutMELsm.g = cumsum(out.CoIs$MELsm.g)
# Balance
out.CoIs$BalMassDisch.g = out.CoIs$CumAppMass.g - out.CoIs$CumOutMELsm.g
# Mass fraction
massOUT = tail(out.CoIs$CumOutSmeto.g, n=1)
MELsmOUT = tail(out.CoIs$CumOutMELsm.g, n=1)
TotAppl = tail(out.CoIs$CumAppMass.g, n=1)
```

```
out.CoIs$prctMassOut = (out.CoIs$TotSMout.g / massOUT)
out.CoIs$FracDeltaOut = (out.CoIs$TotSMout.g / massOUT)*out.CoIs$diss.d13C
out.CoIs$FracDeltaOut = ifelse(is.na(out.CoIs$FracDeltaOut), 0.0, out.CoIs$FracDeltaOut)
BulkDeltaOut = sum(out.CoIs$FracDeltaOut)
The total mass discharged (up to Week 15) and bulk isotope signature (up to week 11) was:
# Cummulative S-metolachlor [q] discharged (before correction)
cat("SM mass sampled: " , as.character(91.10687))
## SM mass sampled: 91.10687
# Cummulative S-metolachlor [q] discharged
cat("SM mass sampled and non-sampled: ", as.character(massOUT))
## SM mass sampled and non-sampled: 140.392784355072
# Cummulative MEL-sm [q] discharged
cat("MEL-sm [g] sampled and non-sampled: ", as.character(MELsmOUT))
## MEL-sm [g] sampled and non-sampled: 3096.82107110135
cat("% Mass applied in discahrge [MEL-sm]: ", (MELsmOUT/TotAppl)*100)
## % Mass applied in discahrge [MEL-sm]: 10.06043
# Bulk isotope signature
BulkDeltaOut
## [1] -18.87124
  6. Testing a regression tree (ommitted for now)
```

Save files

```
names(out.CoIs)[names(out.CoIs) == "Event"] <- "Peak"</pre>
out.CoIs$Events <- as.factor(c("0-1", "0-2", "0-3",
                          "1-1", "1-2", "1-3",
                          "2-1", "2-2", "2-3",
                          "3-1",
                          "4-1", "4-2", "4-3", "4-4", "4-5",
                          "5-1",
                          "6-1", "6-2", "6-3",
                          "7-1",
                          "8-1", "8-2", "8-3",
                          "9-1", "9-2", "9-3", "9-4", "9-5",
                          "10-1", "10-2", "10-3", "10-4", "10-5",
                          "11-1",
                          "12-1", "12-2", "12-3",
                          "13-1",
                          "14-1",
                          "15-1", "15-2", "15-3", "15-4",
                          "16-1", "16-2",
                          "17-1", "17-2",
                          "18-1", "18-2", "18-3", "18-4"))
```

```
# Adding a Weeks column for labelling
out.CoIs$WeekSubWeek <- as.character(out.CoIs$WeekSubWeek)</pre>
Split <- strsplit(out.CoIs$WeekSubWeek, "-", fixed = TRUE)</pre>
out.CoIs$Weeks <- sapply(Split, "[", 1)</pre>
Split2 <- strsplit(as.character(out.CoIs$Events), "-", fixed = T)</pre>
out.CoIs$Event <- as.factor(sapply(Split2, "[", 1))</pre>
out.CoIs$WeekSubWeek <- factor(out.CoIs$WeekSubWeek, levels = unique(out.CoIs$WeekSubWeek))</pre>
out.CoIs$Weeks <- factor(out.CoIs$Weeks, levels = unique(out.CoIs$Weeks))</pre>
out.CoIs$Events <- factor(out.CoIs$Events, levels = unique(out.CoIs$Events))</pre>
out.CoIs$Event <- factor(out.CoIs$Event, levels = unique(out.CoIs$Event))</pre>
head(out.CoIs)
##
                      ti WeekSubWeek
                                                               iflux
                                                                         fflux
## 1 2016-03-25 00:04:00
                               WO-0x 2016-03-25 12:02:00
                                                           1.248600
                                                                      1.129227
## 2 2016-03-25 12:04:00
                                W0-1 2016-03-28 22:36:00
                                                            1.124382
## 3 2016-03-28 22:38:00
                               WO-2x 2016-03-30 12:16:00
                                                           1.308100
## 4 2016-03-30 12:18:00
                               W1-1 2016-03-31 15:34:00
                                                           1.456080 16.445436
## 5 2016-03-31 15:36:00
                                W1-2 2016-04-01 14:44:00 16.334349 15.184536
## 6 2016-04-01 14:46:00
                                W1-3x 2016-04-05 15:06:00 15.203629
                                          dryHrs Duration.Hrs chExtreme Peak
     changeflux
                     maxQ
                                minQ
## 1 -0.1193728 1.248600
                           1.118296
                                      0.01666667
                                                     11.96667 -0.1303036
## 2 0.1887431 1.380388
                           1.082199
                                      6.01666667
                                                     82.53333 0.2560062
## 3 0.1482496 1.637782
                           0.929055 47.30000000
                                                     37.63333 0.3296817
                                                                            NA
## 4 14.9893566 38.399790
                          1.448977 66.13333333
                                                     27.26667 36.9437102
                                                                            1
## 5 -1.1498131 18.668972 13.201113
                                     1.65000000
                                                     23.13333 -3.1332355
                                                                            NA
## 6 -9.3472489 15.895640 5.471042 6.26666667
                                                     96.33333 -9.7325862
##
      Markers TimeDiff AveDischarge.m3.h Volume.m3 Sampled.Hrs
                                                                     Sampled
## 1
           NA
                  <NA>
                                1.204775 14.41714
                                                       11.96667 Not Sampled
## 2
           NΑ
                  <NA>
                                 1.213511 100.15508
                                                       82.53333
                                                                     Sampled
## 3
           NA
                  <NA>
                                1.284719
                                          48.34827
                                                       37.63333 Not Sampled
## 4 16.88972
                    24
                                14.316647 390.36726
                                                       27.26667
                                                                     Sampled
## 5
           NΑ
                  <NA>
                                15.529299 359.24445
                                                        23.13333
                                                                     Sampled
## 6
           NA
                  <NA>
                                 9.107720 877.37700
                                                       96.33333 Not Sampled
     Conc.mug.L Conc.SD OXA_mean
                                        OXA_SD ESA_mean
                                                           ESA SD N.x diss.d13C
## 1 0.2456594 0.019310 4.824094
                                    1.1414453 18.05531 3.497221
    0.2456594 0.019310 4.824094 1.1414453 18.05531 3.497221
                                                                             NA
     3.5169528 0.154365 17.677665 5.6633481 32.01948 3.267103
                                                                             NA
      6.7882463 0.289420 30.531235 10.1852510 45.98364 3.036985
                                                                    3 -31.51167
     6.5609982 0.190640 32.492465 0.2430544 41.28052 0.853382
                                                                    3 -31.66267
     8.0026500 0.262090 68.516860 0.6978517 69.92417 1.839787
                                                                   NΑ
##
                  se.d13C N_ngC.diss ngC.mean.diss ngC.SD.diss MES.mg.L
       SD.d13C
## 1
            NA
                       NA
                                   NA
                                                 NA
                                                              NA
## 2
            NA
                       NA
                                   NA
                                                 NA
                                                              NA 53.44444
            NΑ
                       NΑ
                                   NA
                                                 NΑ
                                                              NΑ
## 4 0.1060016 0.06120004
                                    3
                                           42.69231
                                                        1.921169 62.50000
## 5 0.1513550 0.08738484
                                    3
                                           54.69697
                                                        2.540766 22.50000
                                   NA
                                                              NA
                                                                       NA
                                                 NA
     MES.sd MO.mg.L Conc.Solids.mug.gMES Conc.Solids.ug.gMES.SD N.y filt.d13C
## 1
         NA
                 NA
                                0.6447290
                                                      0.02323755 NA
```

```
0.02323755
## 2
         NA
              0e+00
                                0.6447290
                                                                               NA
## 3
         NΑ
                 NΑ
                                0.3853094
                                                        0.02515062
                                                                    NΑ
                                                                               NΑ
                                                                               NA
## 4
         NA
               1e-03
                                0.1258897
                                                        0.02706369
                                                        0.12323706
                                                                               NΑ
## 5
         NA
              1e-04
                                0.4357872
                 NA
                                 0.2575699
                                                        0.06396039
     filt.SD.d13C filt.se.d13C N ngC.fl ngC.mean.fl ngC.SD.fl DD13C.diss
               NΑ
                             NA
                                       NA
                                                   NA
## 2
                             NA
                                       NA
                                                                          NA
               NA
                                                   NA
                                                              NA
## 3
               NA
                             NA
                                       NΑ
                                                   NA
                                                              NA
                                                                          NA
## 4
               NA
                             NA
                                       NA
                                                   NA
                                                              NA
                                                                  0.7383333
               NA
                             NA
                                       NA
                                                   NA
                                                                  0.5873333
## 6
               NA
                             NA
                                       NA
                                                   NA
                                                              NA
     DD13C.filt
                    f.diss f.filt f.diss.min f.filt.min f.diss.max f.filt.max
                                           NΑ
                                                       NA
## 1
             NA
                        NA
                               NΑ
## 2
             NA
                        NA
                               NA
                                           NA
                                                       NA
                                                                  NA
                                                                              NA
## 3
             NA
                        NA
                               NA
                                           NA
                                                       NA
                                                                   NA
                                                                              NA
## 4
             NA 0.7070472
                               NA
                                   0.6546249
                                                       NA
                                                                              NA
                                                           0.7457791
             NA 0.7589778
## 5
                                   0.7138605
                                                           0.7918727
                                                                              NA
## 6
             NΑ
                        NΑ
                               NΑ
                                           NΑ
                                                       NΑ
                                                                  NΑ
                                                                              NΑ
##
       B.diss B.filt B.diss.max B.filt.max B.diss.min B.filt.min NH4.mM
## 1
           NΔ
                  NΔ
                              NΔ
                                          NΔ
                                                     NΔ
                                                                 NΔ
                                                                         NΑ
## 2
           NA
                   NA
                                          NA
## 3
                  NA
                                          NA
                                                                 NA
                                                                         NA
           NA
                              NA
                                                      NA
## 4 29.29528
                  NA
                                          NA
                                               25.42209
                                                                  NA
                                                                       0.05
                        34.53751
## 5 24.10222
                        28.61395
                                          NA
                                               20.81273
                                                                 NΑ
                                                                         NΑ
                   NA
           NA
                   NA
                              NA
                                          NA
                                                     NA
##
     TIC.ppm.filt
                     Cl.mM NO3...mM PO4..mM NPOC.ppm TIC.ppm.unfilt
## 1
               NA
                        NA
                                 NA
                                          NA
                                                   NA
## 2
                        NA
                                 NA
                                          NA
                                                                    NA
               NA
                                                   NA
                                                                    NA
               NA
                        NA
                                 NA
                                          NA
                                                   NA
## 4
             51.8
                      1.48
                                616
                                          NA
                                                   4.0
                                                                  44.8
             44.8 1574.00
## 5
                                778
                                          NΑ
                                                   4.4
                                                                  26.4
                                 NA
## 6
               NA
                        NA
                                          NA
                                                   NA
                                                                   NA
     TOC.ppm.unfilt ExpMES.Kg Appl.Mass.g timeSinceApp Appl.Mass.g.NoSo
## 1
                 NA 5.352733
                                  17319.06
                                                      0.5
                                                                  17319.06
## 2
                 NA 5.352733
                                       0.00
                                                      3.9
                                                                       0.00
## 3
                 NA 14.875343
                                       0.00
                                                      5.5
                                                                       0.00
## 4
                4.7 24.397953
                                       0.00
                                                      6.6
                                                                       0.00
## 5
                5.4 8.083000
                                       0.00
                                                     7.6
                                                                       0.00
## 6
                 NA 7.935755
                                       0.00
                                                     11.6
                                                                       0.00
     timeSinceApp.NoSo CumAppMass.g DissSmeto.mg DissSmeto.mg.SD DissSmeto.g
## 1
                    0.5
                            17319.06
                                          3.541705
                                                          0.2783949 0.003541705
## 2
                            17319.06
                                         24.604033
                                                          1.9339946 0.024604033
                    3.9
## 3
                            17319.06
                                        170.038598
                                                          7.4632812 0.170038598
                    5.5
## 4
                            17319.06
                                       2649.909084
                                                        112.9800910 2.649909084
                    6.6
                   7.6
                                       2357.002211
                                                         68.4863626 2.357002211
## 5
                            17319.06
                            17319.06 7021.341115
                                                        229.9517390 7.021341115
## 6
                   11.6
     DissSmeto.g.SD DissOXA.mg DissOXA.mg.SD
                                                 DissOXA.g DissOXA.g.SD
                                                               0.01645637
## 1
       0.0002783949
                        69.54963
                                       16.45637 0.06954963
## 2
                       483.15756
       0.0019339946
                                      114.32155 0.48315756
                                                               0.11432155
## 3
       0.0074632812
                       854.68456
                                      273.81310 0.85468456
                                                               0.27381310
## 4
       0.1129800910 11918.39439
                                     3975.98846 11.91839439
                                                               3.97598846
## 5
       0.0684863626 11672.73795
                                      87.31596 11.67273795
                                                               0.08731596
## 6
       0.2299517390 60115.11746
                                      612.27900 60.11511746
                                                               0.61227900
```

```
DissESA.mg DissESA.mg.SD DissESA.g DissESA.g.SD FiltSmeto.mg
## 1
      260.3058
                    50.41991 0.2603058
                                          0.05041991
                                                         3.451062
## 2
     1808.3308
                   350.26441 1.8083308
                                          0.35026441
                                                         3.451062
## 3 1548.0863
                   157.95877 1.5480863
                                          0.15795877
                                                         5.731609
## 4 17950.5083
                  1185.53932 17.9505083
                                          1.18553932
                                                         3.071452
## 5 14829.7964
                   306.57276 14.8297964
                                          0.30657276
                                                         3.522468
                  1614.18699 61.3498588
## 6 61349.8588
                                          1.61418699
                                                         2.044012
    FiltSmeto.mg.SD FiltSmeto.g FiltSmeto.g.SD TotSMout.mg TotSMout.mg.SD
## 1
          0.1243844 0.003451062
                                  0.0001243844
                                                  6.992766
                                                                0.2156098
## 2
                                  0.0001243844
          0.1243844 0.003451062
                                                 28.055095
                                                                1.3703661
## 3
          0.3741240 0.005731609
                                0.0003741240
                                               175.770206
                                                                5.2839633
## 4
          0.6602985 0.003071452
                                  0.0006602985 2652.980536
                                                               79.8903528
## 5
          0.9961252 0.003522468
                                  0.0009961252 2360.524679
                                                               48.4322936
## 6
          0.5075740 0.002044012
                                  0.0005075740 7023.385126
                                                              162.6008301
##
     TotSMout.g TotSMout.g.SD FracDiss
                                            FracFilt
                                                         MELsm.g MELsm.g.SD
## 1 0.006992766  0.0002156098 0.5064812 0.4935188249
                                                       0.3021264 0.02689497
                 0.0013703661 0.8769898 0.1230101642
                                                       2.0783329 0.18683762
## 2 0.028055095
## 3 0.175770206
                 0.0052839633 0.9673915 0.0326085349
                                                      2.3790960 0.17885971
## 4 2.652980536
                 0.0798903528 0.9988423 0.0011577363 30.2413655 2.40621294
## 5 2.360524679
                 0.0484322936 0.9985078 0.0014922393 27.0082117 0.16340841
CumOutDiss.g CumOutFilt.g CumOutSmeto.g CumOutMELsm.g BalMassDisch.g
## 1 0.003541705 0.003451062
                                0.006992766
                                                0.3021264
                                                                17318.76
                  0.006902124
                                0.035047862
                                                2.3804594
     0.028145738
                                                                17316.68
## 3 0.198184336 0.012633733
                                0.210818068
                                                4.7595554
                                                                17314.30
## 4 2.848093419
                  0.015705185
                                2.863798604
                                               35.0009209
                                                                17284.06
## 5 5.205095630
                  0.019227652
                                5.224323282
                                               62.0091326
                                                                17257.05
## 6 12.226436745
                  0.021271664
                               12.247708409
                                              183.0131909
                                                                17136.05
     prctMassOut FracDeltaOut Events Weeks Event
## 1 4.980859e-05
                    0.000000
                                 0 - 1
                                        WO
                                               0
## 2 1.998329e-04
                    0.0000000
                                 0-2
                                        WO
                                               0
## 3 1.251989e-03
                    0.000000
                                 0 - 3
                                        WO
                                               0
## 4 1.889684e-02
                   -0.5954710
                                 1-1
                                        W1
                                               1
## 5 1.681372e-02
                   -0.5323671
                                 1-2
                                        W1
                                               1
## 6 5.002668e-02
                    0.000000
                                 1-3
                                        W1
                                               1
write.csv2(out.CoIs,
           'Data/WeeklyHydroContam_R.csv', row.names = F)
# out.CoIs = read.csv2("Data/WeeklyHydroContam_R.csv")
\# out.CoIs$ti = as.POSIXct(out.CoIs$ti, "%Y-\%m-\%d \%H:\%M", tz = "EST")
```