Professor: Sleiman, A Date: 09/21/2017

1- For Figure Shown, if the open-loop gain is finite, (a) Show that the closed-loop gain is given by the expression shown in the Equation given.

$$\frac{V_{o}}{V_{I\!N}} = -\frac{\left(1 + R_{2}/R_{1}\right)}{1 + \left(1 + R_{2}/R_{1}\right)\!/A}$$

(b) If R_2 = 100K Ohms and R_1 = 0.5K Ohms, plot the percentage error in the magnitude of the closed-loop gain for open-loop gains of 10^2 , 10^4 , 10^6 and 10^8 .

- 2- For the figure shown:
- (a) Derive the transfer function.
- (b) Use MATLAB to find the poles and zeros.
- (c) Plot the magnitude and phase response, assume that $C_1 = 0.1 \text{uF}$, $C_2 = 1000 \ 0.1 \text{uF}$, $R_1 = 10 \text{K}$ Ohms, and $R_2 = 10$ Ohms.

3- An op amp has an open-loop dc gain of 10^7 , the unity gain bandwidth of 10^8 Hz. For an op amp connected in an inverting configuration Figure, plot the magnitude response of the closed-loop gain. If $R_2/R_1 = 100$, 600, 1100.

