Logică și structuri discrete Grafuri

Casandra Holotescu casandra@cs.upt.ro

https://tinyurl.com/lecturesLSD

Teoria grafurilor și știința rețelelor

Teoria grafurilor.

studiul matematic al grafurilor (reprezentând relații între obiecte)

Teoria grafurilor și știința rețelelor

Teoria grafurilor.

studiul matematic al grafurilor (reprezentând relații între obiecte)

De aici a evoluat știința rețelelor (network science): studiul rețelelor complexe: de calculatoare, telecomunicații, energie, biologice, sociale...

"studiul reprezentărilor ca rețele a fenomenelor fizice, biologice și sociale, ducând la *modele predictive* ale acestor fenomene".

[US National Research Council]

Grafuri: definiție. Grafuri și relații

Definiția grafurilor

Informal, un graf reprezintă o mulțime de *obiecte* (*noduri*) între care există anumite *legături* (*muchii* sau *arce*).

Definiția grafurilor

Informal, un graf reprezintă o mulțime de *obiecte* (*noduri*) între care există anumite *legături* (*muchii* sau *arce*).

Formal, un graf e o pereche ordonată G = (V, E), unde V e mulțimea nodurilor și E (mulțimea muchiilor) e o mulțime de perechi $(u, v) \in V \times V$

Imagine: http://en.wikipedia.org/wiki/File:6n_graf.svg

Grafuri orientate și neorientate

Un graf e *orientat* dacă muchiile sale sunt perechi *ordonate*Un graf e *neorientat* dacă muchiile sale sunt perechi *neordonate*(nu contează sensul parcurgerii)

Imagini: http://en.wikipedia.org/wiki/File:Directed.svg
 http://en.wikipedia.org/wiki/File:Undirected.svg

Grafuri și relații

Mulțimea muchiilor unui graf formează o *relație* $E \subseteq V \times V$ pe multimea nodurilor.

Grafuri și relații

Mulțimea muchiilor unui graf formează o *relație* $E \subseteq V \times V$ pe multimea nodurilor.

Un graf *neorientat* poate fi reprezentat printr-o relație *simetrică* $\forall u, v \in V . (u, v) \in E \rightarrow (v, u) \in E$

Grafuri și relații

Mulțimea muchiilor unui graf formează o *relație* $E \subseteq V \times V$ pe multimea nodurilor.

Un graf *neorientat* poate fi reprezentat printr-o relație *simetrică* $\forall u, v \in V . (u, v) \in E \rightarrow (v, u) \in E$

Într-un graf *orientat*, *E* e o relație oarecare (nu trebuie să fie simetrică, dar poate fi)

Reciproc, orice relație binară poate fi văzută ca un graf orientat pentru $(u, v) \in E$ introducem o muchie $u \longrightarrow v$

Drumuri în graf

Drumuri în graf

Un drum (o cale) într-un graf e o secvență de muchii care leagă o secvență de noduri $x_0, \ldots x_n$ cu $n \ge 0$ astfel ca $(x_i, x_{i+1}) \in E$ pentru orice i < n.

$$x_0 \longrightarrow x_1 \longrightarrow \ldots \longrightarrow x_{n-1} \longrightarrow x_n$$

Drumuri în graf

Un drum (o cale) într-un graf e o secvență de muchii care leagă o secvență de noduri $x_0, \ldots x_n$ cu $n \ge 0$ astfel ca $(x_i, x_{i+1}) \in E$ pentru orice i < n.

$$x_0 \longrightarrow x_1 \longrightarrow \ldots \longrightarrow x_{n-1} \longrightarrow x_n$$

Putem defini un drum atât în grafuri orientate cât și neorientate

Un drum are un *nod inițial* x_0 și un *nod final* x_n .

Lungimea unui drum e numărul de muchii.

în particular, poate fi zero (un nod x_0 , fără niciun fel de muchii)

Drumuri și închiderea tranzitivă

Mulțimea tuturor drumurilor de *lungime nenulă* este *închiderea tranzitivă* a relatiei *E*:

$$E^+ = \bigcup_{k=1}^{\infty} E^k = E \cup E^2 \cup \dots$$

Drumuri și închiderea tranzitivă

Mulțimea tuturor drumurilor de *lungime nenulă* este *închiderea tranzitivă* a relației *E*:

$$E^+ = \bigcup_{k=1}^{\infty} E^k = E \cup E^2 \cup \dots$$

relația E^k ($k \ge 1$) corespunde drumurilor de lungime k

$$E^{2} = E \circ E = \{(u, v) \mid \exists w.(u, w) \in E \land (w, v) \in E\}$$

$$u \rightarrow w \rightarrow v$$

$$E^3 = E^2 \circ E = \{(u, v) \mid \exists w.(u, w) \in E \land (w, v) \in E^2\}$$
 etc.
 $u \to w \stackrel{2pasi}{\to} v \text{ adică } u \to w \to w' \to v$

Cicluri în graf

Un *ciclu* e un drum de *lungime nenulă* în care nodurile de început și sfârșit sunt identice (aceleași).

Adeseori, lucrăm cu *cicluri simple*: cicluri în care muchiile și nodurile *nu apar de mai multe ori* (cu excepția nodului inițial care e și cel final).

Grafuri & componente conexe

Grafuri și componente conexe

Un graf e *cone*x dacă are un drum *de la orice nod la orice nod.* (definiție generală, depinde de noțiunea de *drum*

- în graf orientat sau neorientat)

Grafuri și componente conexe

Un graf e *conex* dacă are un drum *de la orice nod la orice nod.* (definiție generală, depinde de noțiunea de *drum*– în graf orientat sau neorientat)

Pentru grafuri neorientate:

O componentă conexă e un subgraf conex maximal. deci are un drum între oricare două noduri nu s-ar mai putea adăuga alte noduri păstrând-o conexă

Grafuri și componente conexe

Un graf e *conex* dacă are un drum *de la orice nod la orice nod.* (definiție generală, depinde de noțiunea de *drum*– în graf orientat sau neorientat)

Pentru grafuri neorientate:

O componentă conexă e un subgraf conex maximal. deci are un drum între oricare două noduri nu s-ar mai putea adăuga alte noduri păstrând-o conexă

Un graf cu n noduri și e muchii are $\geq n - e$ componente conexe.

Demonstrăm prin inducție după e.

 $e=0 \Rightarrow$ fiecare nod e o componentă conexă.

e>1: stergem o muchie \Rightarrow obținem cel mult o componentă în plus

Grafuri orientate: slab conexe și tare conexe

Un graf *orientat* e *slab conex* dacă are un drum *neorientat* de la orice nod la orice nod,

Grafuri orientate: slab conexe și tare conexe

Un graf *orientat* e *slab conex* dacă are un drum *neorientat* de la orice nod la orice nod, și *tare conex* dacă are un drum *orientat* de la orice nod la orice nod.

Grafuri orientate: slab conexe și tare conexe

Un graf *orientat* e *slab conex* dacă are un drum *neorientat* de la orice nod la orice nod, și *tare conex* dacă are un drum *orientat* de la orice nod la orice nod.

O componentă tare conexă e un subgraf tare conex maximal.

Componentele tare conexe sunt disjuncte:

R(u,v): $drum(u,v) \wedge drum(v,u)$ e o relație de echivalență, și componentele tare conexe sunt clase de echivalență.

Graful orientat din figură e slab conex. Are trei componente tare conexe.

Componentele conexe sunt clase de echivalență

Componentele conexe sunt *clase de echivalență* orice nod e în componenta proprie

reflexivitate

Componentele conexe sunt *clase de echivalență* orice nod e în componenta proprie un drum de la *u* la *v* e si drum de la *v* la *u*

reflexivitate simetrie

Componentele conexe sunt clase de echivalență orice nod e în componenta proprie un drum de la u la v e și drum de la v la u $drum(u,v) \wedge drum(v,w) \rightarrow drum(u,w)$

reflexivitate simetrie tranzitivitate

Componentele conexe sunt clase de echivalență orice nod e în componenta proprie un drum de la u la v e și drum de la v la u $drum(u,v) \wedge drum(v,w) \rightarrow drum(u,w)$

reflexivitate simetrie tranzitivitate

Determinăm componentele conexe parcurgând muchiile grafului:

Componentele conexe sunt clase de echivalență orice nod e în componenta proprie un drum de la u la v e și drum de la v la u $drum(u,v) \wedge drum(v,w) \rightarrow drum(u,w)$

reflexivitate simetrie tranzitivitate

Determinăm componentele conexe parcurgând muchiile grafului: inițial, fiecare nod e în propria componentă

Componentele conexe sunt clase de echivalență orice nod e în componenta proprie un drum de la u la v e și drum de la v la u $drum(u,v) \wedge drum(v,w) \rightarrow drum(u,w)$

reflexivitate simetrie tranzitivitate

Determinăm componentele conexe parcurgând muchiile grafului: inițial, fiecare nod e în propria componentă pentru o muchie (u,v) unim componentele lui u și v

Drumuri Euleriene (în grafuri neorientate)

Gradul unui nod (într-un graf neorientat) e numărul de muchii care ating nodul.

Un *drum eulerian* e un *drum* care conține *toate* muchiile unui graf exact o dată.

Un *ciclu eulerian* e un *ciclu* care conține *toate* muchiile unui graf exact o dată.

Drumuri Euleriene (în grafuri neorientate)

Gradul unui nod (într-un graf neorientat) e numărul de muchii care ating nodul.

Un *drum eulerian* e un *drum* care conține *toate* muchiile unui graf exact o dată.

Un *ciclu eulerian* e un *ciclu* care conține *toate* muchiile unui graf exact o dată.

Un graf conex neorientat are un *ciclu* eulerian dacă și numai dacă *toate nodurile au grad par*.

Un graf conex neorientat are un *drum* (dar nu și un ciclu) eulerian dacă și numai dacă *exact două noduri au grad impar*.

(primul și ultimul nod din drum)

Exemple: hărțile ca și grafuri ponderate

Graf ponderat: fiecare muchie are asociată o valoare numerică numită *cost* (poate reprezenta lungime, capacitate, etc.)

Exemple: Graful fluxului de control (control flow graph)

reprezentarea programelor în compilatoare, analizoare de cod, etc. nodurile: *instrucțiuni*

sau secvențe liniare de instrucțiuni (basic blocks) muchiile: descriu secvențierea instrucțiunilor (fluxul de control)

Exemple: Graful de apel al funcțiilor (call graph)

Introducem o muchie $f \longrightarrow g$ dacă funcția f apelează pe g

 \Rightarrow graful de apel e ciclic dacă există funcții (direct sau indirect) recursive

```
let rec g n =
   if n = 0 then 0 else 1 + h (n-1)
and h n =
   if n = 0 then 1 else 2 * g (n-1)
let f n = g n + h n
```


Reprezentare și parcurgeri

Reprezentarea grafurilor

Dacă identificăm nodurile prin numere (consecutive), putem reprezenta graful ca *matrice de adiacență* pătratică M[i,j] = 1 dacă *există* muchie de la i la j

M[i,j] = 1 dacă există muchie de la i la jM[i,j] = 0 dacă nu există muchie de la i la j

Reprezentarea grafurilor

```
Dacă identificăm nodurile prin numere (consecutive), putem reprezenta graful ca matrice de adiacență pătratică M[i,j] = 1 \text{ dacă } \textit{există} \text{ muchie de la i la j} \\ M[i,j] = 0 \text{ dacă } \textit{nu există} \text{ muchie de la i la j} \\ \text{sau } M[i,j] \text{ poate conține lungimea/costul muchiei (graf ponderat)}
```

Reprezentarea grafurilor

```
Dacă identificăm nodurile prin numere (consecutive), putem reprezenta graful ca matrice de adiacență pătratică M[i,j] = 1 \; \text{dacă} \; \textit{există} \; \text{muchie de la i la j} \\ M[i,j] = 0 \; \text{dacă} \; \textit{nu există} \; \text{muchie de la i la j} \\ \text{sau } M[i,j] \; \text{poate conține lungimea/costul muchiei (graf ponderat)}
```

```
Reprezentarea prin liste de adiacență pentru fiecare nod u: lista/mulțimea nodurilor v cu muchii (u, v) putem păstra informația într-un dicționar: nod = cheie valoare = lista/mulțimea nodurilor adiacente
```

Parcurgerea în adâncime (depth-first)

e o traversare în *preordine*după vizitarea nodului se parcurg (recursiv)
toți vecinii (dacă nu au fost vizitați încă)
ca si cum vecinii ar fi introdusi într-o *stivă*

Fie graful de mai jos, cu listele de adiacență ordonate după litere Ordinea muchiilor parcurse de la *a* în adâncime e cea indicată:

O implementare: funcție recursivă, acumulând mulțimea nodurilor vizitate

Parcurgerea prin cuprindere (breadth-first)

vizitează nodurile în ordinea distanței minime de nodul de plecare (în "valuri" care se depărtează de la nodul de pornire) nodurile încă nevizitate se pun într-o *coadă*

În figura de mai jos, se indică distanța minimă de la nodul *a* (noduri cu distanță mai mare sunt parcurse mai târziu)

O implementare: funcție recursivă, acumulând: mulțimea tuturor nodurilor vizitate frontiera: multimea nodurilor noi atinse în runda curentă