Math 6710 – Probability (3 pages)

Due: Thursday, September 6, 2012

Homework 2

Instructor: Nate Eldredge

Costandino Dufort Moraites

1, 2, 3, 4, 5

Problem 1. Suppose $\phi(x)$ is strictly convex, i.e.

$$\phi(tx + (1-t)y) < t\phi(x) + (1-t)\phi(y)$$

for all $x \neq y$ and $t \in [0,1]$. Show that under this assumption Jenson's inequality holds only in the trivial case when X is a constant. In particular, show if X and $\phi(X)$ are integrable and $E[\phi(X)] = \phi E[X]$ then EX = X a.s.

Proof. Let's say $\mathbb{E}[\phi(X)] = \phi \mathbb{E}[X]$ and let's let $c = \mathbb{E}[X]$. Suppose for contradiction that $X \neq EX$. Then we must have P(A), P(B) > 0 where $A = \{\omega | X(\omega) > c\}$ and $B = \{\omega | X(\omega) < c\}$. At least one event must have probability greater than 0 as X is assumed non-constant, if only one had probability greater than 0, then we could not have $c = \mathbb{E}[X]$, the 'average' value of X.

From the proof of Jensen's inequality I gave in class (I'm glad I had to do that presentation!) we know there exists m so that $\phi(x) \ge \phi(c) + m(x - c)$ and because ϕ is strictly convex, we can only have equality when x = c. Taking into account these facts we have:

$$\phi(x) - \phi(c) > m(x - c)$$

whenever $x \neq c$, so in particular, we have $\phi(X(\omega)) - \phi(c) > m(X(\omega) - c)$ for all $\omega \in A \cup B$, and $\phi(X(\omega)) - \phi(c) \geq m(X(\omega) - c)$ for $\omega \in \Omega \setminus (A \cup B)$.

Noting $EX = \int_{\Omega} X d\mu$, $\int_{\Omega} X d\mu = \int_{A \cup B} X d\mu + \int_{\Omega \setminus A \cup B} X d\mu$, and $P(A \cup B) > 0$, we can add the two inequalities from the previous paragraph and retain a strict inequality. So, taking expectations we find:

$$E(\phi(X)) - \phi(c) > mE(X(\omega) - c)$$

remembering c = EX we have:

$$E(\phi(X)) - \phi(EX) = \phi(EX) - \phi(EX) = 0 > m(EX - EX) = 0$$

which is a contradiction so our result is proved.

Problem 2. Suppose $X_n \to X$ in probability and $f : \mathbb{R} \to \mathbb{R}$ is continuous. Show that $f_n(X) \to f(X)$ in probability. (Don't use the double subsequence trick.)

Proof. We want to show that $P(\{|f(X_n) - f(X)| > \epsilon\}) \to 0$ as $n \to \infty$, so we break the event up into two parts:

$$P(\{|f(X_n) - f(X)| > \epsilon \text{ and } |X| \le M\}) + P(\{|f(X_n) - f(X)| > \epsilon \text{ and } |X| > M\})$$

For the first event, we know $|X| \leq M$ and [-M, M] is compact so we may choose an ϵ' so that for all $x, y \in [-M, M]$ $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \epsilon'$. In particular, we know that

 $P(|X_n - X| > \epsilon'/2) \to 0$ as $n \to \infty$ so $P(|X_n - X| > \epsilon$ and $|X| \le M) \to 0$ as $n \to \infty$, further for all ϵ we may choose M so that $P(\{|X| > M\}) < \epsilon$, so that

$$P(\{|f(X_n) - f(X)| > \epsilon \text{ and } |X| \le M\}) + P(\{|f(X_n) - f(X)| > \epsilon \text{ and } |X| > M\}) < \epsilon$$

for all $\epsilon > 0$ for sufficiently large n, M, thus $P(\{|f(X_n) - f(X)| > \epsilon\}) \to 0$ as $n \to \infty$, and $f(X_n) \to f(X)$ in probability.

Problem 3. Suppose $X_n \to X$ in probability. Show that, almost surely,

$$\liminf_{n \to \infty} X_n \le X \le \limsup_{n \to \infty} X_n$$

Show this either directly or using the double subsequence trick.

Proof. Let's try the double subsequence trick.

In particular applying this to the subsequence $\{X_n\}$ of $\{X_n\}$ we know that $\{X_n\}$ must have a subsequence $\{X_{n(m)}\}$ converging to X almost surely. Now we have a subsequence of X so that, a.s.,:

$$X = \lim_{n} X_{n(m)}$$

but $X_{n(m)}$ is a subsequence of X_n , \liminf is the least limit point of X_n and \limsup sup is the greatest limit point of X_n , so in particular, a.s. $\liminf X_n \leq \lim_n X_{n(m)} \leq \limsup_n X_n$, substituting this in to our equality above:

$$\liminf X_n < X < \limsup X_n$$

as desired. \Box

Problem 4. A set of random variables, S is called uniformly integrable or u.i. if for all $\epsilon > 0$ there exists an $M \geq 0$ such that for all $X \in S$

$$\mathbb{E}[|X|1_{|X| \geq M}] < \epsilon$$

Prove the crystal ball condition: Let \mathcal{S} be a set of random variables. If for p > 1 we have $\sup_{X \in \mathcal{S}} \mathbb{E}[|X|^p] < \infty$ then \mathcal{S} is uniformly integrable.

Proof. I admit that I was a little confused about the definition of uniformly integrable so I looked it up on the notes on the webpage. There was something similar to this problem in Bruce Driver's notes.

Let
$$C = \sup_{X \in \mathcal{S}} \mathbb{E}[|X|^p] < \infty$$
.
First notice that $p > 1$ so $|X|/|X|^p = 1/|X|^{p-1} \to 0$ as $X \to \infty$. Now:

 $\mathbb{E}[|X|1_{X\geq M}] = \mathbb{E}[(|X|/|X|^p)|X|^p1_{X\geq M}] \leq \mathbb{E}[(|M|/|M|^p)|X|^p1_{X\geq M}] \leq (|M|/|M|^p)\mathbb{E}[|X|^p] \leq |M|/|M|^pC$ and for given $\epsilon > 0$, we may choose M so that $0 < |M|/|M|^p < \epsilon/C$ so for any $X \in \mathcal{S}$ we have:

$$\mathbb{E}[|X|1_{X>M}] \le (|M|/|M|^p)C < \epsilon$$

showing S is uniformly integrable, as desired.

Problem 5. Let $\mathcal{S}, \mathcal{S}'$ be two sets of random variables. Suppose that \mathcal{S}' is u.i. and for every $X \in \mathcal{S}$ there exists a $Y \in \mathcal{S}'$ with $|X| \leq |Y|$ a.s. Show that \mathcal{S} is also ui.

Proof. Given $\epsilon > 0$ we want to find an $M \geq 0$ so that for all $X \in \mathcal{S}$ $\mathbb{E}[|X|1_{|X| \geq M}] < \epsilon$. Let M be the M for \mathcal{S}' given ϵ and let $Y \in \mathcal{S}'$ so that $|X| \leq |Y|$ a.s., then it suffices to show that $|X|1_{|X| \geq M} \leq |Y|1_{|Y| \geq M}$. If we have $|X|1_{|X| \geq M} > |Y|1_{|Y| \geq M}$ then either both $|X|, |Y| \geq M$ and $|X| \geq |Y|$, call this event A, or $|X| \geq M$ and |Y| < M, call this event A. Because $|X| \leq |Y|$ a.s. these are both probability A0 events, so A1 and A2 and A3 and we have:

$$\mathbb{E}[|X|1_{|X|>M}] \le \mathbb{E}[|Y|1_{|Y|>M}] < \epsilon$$

and so S is ui.