

OpenCore

Reference Manual (0.0.3.4)

[2019.07.21]

Contents

1			2
2	Gene	e ric Terms	3
	1.1	Generic Terms	3
2		**************************************	4
		Configuration Terms	4
			4
	2.3	Configuration Structure	5
3	Setuj		6
		Directory Structure	6
	$3.2 ext{ } 1$	Installation and Upgrade	
	3.3	Contribution	7
4	ACP	I s	9
	4.1 I	Introduction	9
	4.2]	Properties	9
	4.3	Add Properties	9
	4.6	Quirks Properties	1
	6.4	Block Properties	5
	$6.5 ext{ } 1$	Emulate Properties	5
	6.6 1	Patch Properties	5
	7.5	Security Properties	2
8	NVR	RAM 25	5
	8.1 I	Introduction	5
	8.2	Properties	5
11	Trou	bleshooting 3	9
		Windows support	9
		Debugging	0
		Ting and Thicks	0

1 Introduction

This document provides information on OpenCore user configuration file format used to setup the correct functioning of macOS operating system.

1.1 Known defects

For OpenCore issues please refer to Acidanthera Bugtracker.

2 Generic Terms

1.1 Generic Terms

- plist Subset of ASCII Property List format written in XML, also know as XML plist format version 1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this document may only be applied after plist is considered valid by running plutil -lint. External references: https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.
- plist type plist collections (plist array, plist dictionary, plist key) and primitives (plist string, plist data, plist date, plist boolean, plist integer, plist real).
- plist object definite realisation of plist type, which may be interpreted as value.
- plist array array-like collection, conforms to array. Consists of zero or more plist objects.
- plist dictionary map-like (associative array) collection, conforms to dict. Consists of zero or more plist keys.
- plist key contains one plist object going by the name of plist key, conforms to key. Consists of printable 7-bit ASCII characters.
- plist string printable 7-bit ASCII string, conforms to string.
- plist data base64-encoded blob, conforms to data.
- plist date ISO-8601 date, conforms to date, unsupported.
- plist boolean logical state object, which is either true (1) or false (0), conforms to true and false.
- plist integer possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer in two's complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in specific plist object description.
- plist real floating point number, conforms to real, unsupported.
- plist metadata value cast to data by the implementation. Permits passing plist string, in which case the result is represented by a null-terminated sequence of bytes (aka C string), plist integer, in which case the result is represented by 32-bit little endian sequence of bytes in two's complement representation, plist boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other types or larger integers invoke undefined behaviour.

2 OverviewConfiguration

2.1 Configuration Terms

- OC config OpenCore Configuration file in plist format named config.plist. It has to provide extensible way to configure OpenCore and is structured to be separated into multiple named sections situated in the root plist dictionary. These sections are permitted to have plist array or plist dictionary types and are described in corresponding sections of this document.
- valid key plist key object of OC config described in this document or its future revisions. Besides explicitly
 described valid keys, keys starting with # symbol (e.g. #Hello) are also considered valid keys and behave as
 comments, effectively discarding their value, which is still required to be a valid plist object. All other plist
 keys are not valid, and their presence yields to undefined behaviour.
- valid value valid plist object of OC config described in this document that matches all the additional requirements in specific plist object description if any.
- invalid value valid plist object of OC config described in this document that is of other plist type, does not conform to additional requirements found in specific plist object description (e.g. value range), or missing from the corresponding collection. Invalid value is read with or without an error message as any possible value of this plist object in an undetermined manner (i.e. the values may not be same across the reboots). Whilst reading an invalid value is equivalent to reading certain defined valid value, applying incompatible value to the host system may yield to undefined behaviour.
- optional value valid value of OC config described in this document that reads in a certain defined manner provided in specific plist object description (instead of invalid value) when not present in OC config. All other cases of invalid value do still apply. Unless explicitly marked as optional value, any other value is required to be present and reads to invalid value if missing.
- fatal behaviour behaviour leading to boot termination. Implementation must stop the boot process from going any further until next host system boot. It is allowed but not required to perform cold reboot or show any warning message.
- undefined behaviour behaviour not prescribed by this document. Implementation is allowed to take any
 measures including but not limited to fatal behaviour, assuming any states or values, or ignoring, unless these
 measures negatively affect system security in general.

2.2 Configuration Processing

OC config is guaranteed to be processed at least once if it was found. Depending on OpenCore bootstrapping mechanism multiple OC config files may lead to reading any of them. No OC Config may be present on disk, in which case all the values read follow the rules of invalid value and optional value.

OC config has size, nesting, and key amount limitations. OC config size does not exceed 16 MBs. OC config has no more than 8 nesting levels. OC config has up to 16384 XML nodes (i.e. one plist dictionary item is counted as a pair of nodes) within each plist object.

Reading malformed OC config file leads to undefined behaviour. Examples of malformed OC config cover at least the following cases:

- files non-conformant to plist DTD
- files with unsupported or non-conformant plist objects found in this document
- files violating size, nesting, and key amount limitations

It is recommended but not required to abort loading malformed OC config and continue as if no OC config was present. For forward compatibility it is recommended but not required for the implementation to warn about the use of invalid values. Recommended practice of interpreting invalid values is to conform to the following convention where applicable:

Type	Value
plist string	Empty string (<string></string>)
plist data	Empty data (<data></data>)

Type	Value
plist integer plist boolean plist tristate	0 (<integer>0</integer>) False (<false></false>) False (<false></false>)

2.3 Configuration Structure

OC config is separated into following sections, which are described in separate sections of this document. By default it is tried to not enable anything and optionally provide kill switches with Enable property for plist dict entries. In general the configuration is written idiomatically to group similar actions in subsections:

- Add provides support for data addition.
- Block provides support for data removal or ignorance.
- Patch provides support for data modification.
- Quirks provides support for specific hacks.

Root configuration entries consist of the following:

- ACPI
- DeviceProperties
- Kernel
- Misc
- NVRAM
- PlatformInfo
- UEFI

Note: Currently most properties try to have defined values even if not specified in the configuration for safety reasons. This behaviour should not be relied upon, and all fields must be properly specified in the configuration.

3 Setup

3.1 Directory Structure

Figure 1. Directory Structure

When directory boot is used the directory structure used should follow the description on Directory Structure figure. Available entries include:

- BOOTx64.efi
 - Initial booter, which loads OpenCore.efi unless it was already started as a driver.
- ACPI
 - Directory used for storing supplemental ACPI information for ACPI section.
- Drivers
 - Directory used for storing supplemental UEFI drivers for UEFI section.
- Kexts
 - Directory used for storing supplemental kernel information for Kernel section.
- Tools
 - Directory used for storing supplemental tools.
- OpenCore.efi

Main booter driver responsible for operating system loading.

• vault.plist
Hashes for all files potentially loadable by OC Config.

config.plistOC Config.

• vault.sig Signature for vault.plist.

• nvram.plist OpenCore variable import file.

• opencoreopencore-YYYY-MM-DD-HHMMSS.logtxt OpenCore log file.

Figure 1. Directory Structure

3.2 Installation and Upgrade

To install OpenCore reflect the Configuration Structure described in the previous section on a EFI volume of a GPT partition. While corresponding sections of this document do provide some information in regards to external resources like ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of this document. Information about kernel extensions may be found in a separate Kext List document available in OpenCore repository. Vaulting information is provided in Security Properties section of this document.

OC config, just like any property lists can be edited with any stock textual editor (e.g. nano, vim), but specialised software may provide better experience. On macOS the preferred GUI application is Xcode. For a lightweight cross-platform and open-source alternative ProperTree editor can be utilised.

For BIOS booting a third-party UEFI environment provider will have to be used. DuetPkg is one of the known UEFI environment providers for legacy systems. To run OpenCore on such a legacy system you can install DuetPkg with a dedicated tool: BootInstall.

For upgrade purposes refer to Differences.pdf document, providing the information about the changes affecting the configuration compared to the previous release, and Changelog.md document, containing the list of modifications across all published updates.

3.3 Contribution

OpenCore can be compiled as an ordinary EDK II. Since UDK development was abandoned by TianoCore, OpenCore requires the use of EDK II Stable. Currently supported EDK II release (potentially with patches enhancing the experience) is hosted in acidanthera/audk.

The only officially supported toolchain is XCODE5. Other toolchains might work, but are neither supported, nor recommended. Contribution of clean patches is welcome. Please do follow EDK II C Codestyle.

Required external package dependencies include EfiPkg, MacInfoPkg, and OcSupportPkg.

To compile with XCODE5, besides Xcode, one should also install NASM and MTOC. The latest Xcode version is recommended for use despite the toolchain name. Example command sequence may look as follows:

```
git clone https://github.com/acidanthera/audk UDK
cd UDK
git clone https://github.com/acidanthera/EfiPkg
git clone https://github.com/acidanthera/MacInfoPkg
git clone https://github.com/acidanthera/OcSupportPkg
git clone https://github.com/acidanthera/OpenCorePkg
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc
```

Listing 1: Compilation Commands

NOOPT or DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level debugging with GDB or IDA Pro is also available. For GDB check page. For IDA Pro you will need IDA Pro 7.3 or newer.

ACPI

4.1 Introduction

ACPI (Advanced Configuration and Power Interface) is an open standard to discover and configure computer hardware. ACPI specification defines the standard tables (e.g. DSDT, SSDT, FACS, DMAR) and various methods (e.g. _DSM, _PWRPRW) for implementation. Modern hardware needs little changes to maintain ACPI compatibility, yet some of those are provided as a part of OpenCore.

To compile and disassemble ACPI tables iASL compiler can be used developed by ACPICA. GUI front-end to iASL compiler can be downloaded from Acidanthera/MaciASL.

4.2 **Properties**

1. Add

Type: plist array Failsafe: Empty

Description: Load selected tables from OC/ACPI directory.

Designed to be filled with plist dict values, describing each block entry. See Add Properties section below.

Type: plist array Failsafe: Empty

Description: Remove selected tables from ACPI stack.

Designed to be filled with plist dict values, describing each block entry. See Block Properties section below.

3. Patch

Type: plist array Failsafe: Empty

Description: Perform binary patches in ACPI tables before table addition or removal.

Designed to be filled with plist dictionary values describing each patch entry. See Patch Properties section below.

4. Quirks

Type: plist dict

Description: Apply individual ACPI quirks described in Quirks Properties section below.

Add Properties 4.3

1. Comment

Type: plist string Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation

defined whether this value is used.

2. Enabled

Type: plist boolean Failsafe: false

Description: This ACPI table will not be added unless set to true.

3. Path

Type: plist string Failsafe: Empty string

Description: File paths meant to be loaded as ACPI tables. Example values include DSDT.aml, SubDir/SSDT-8.aml,

SSDT-USBX.aml, etc.

ACPI table load order follows the item order in the array. All ACPI tables load from OC/ACPI directory.

Note: All tables but tables with DSDT table identifier (determined by parsing data not by filename) insert new tables into ACPI stack. DSDT, unlike the rest, performs replacement of DSDT table.

6. Mask

Type: plist data Failsafe: Empty data

Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set

to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

7. OemTableId

Type: plist data, 8 bytes

Failsafe: All zero

Description: Match table OEM ID to be equal to this value unless all zero.

8. Replace

Type: plist data Failsafe: Empty data

Description: Replacement data of one or more bytes.

9. ReplaceMask

Type: plist data Failsafe: Empty data

Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

$10. \; {\tt Skip}$

Type: plist integer

Failsafe: 0

Description: Number of found occurrences to be skipped before replacement is done.

11. TableLength

Type: plist integer

Failsafe: 0

Description: Match table size to be equal to this value unless 0.

12. TableSignature

Type:

textttplist data, 4 bytes Failsafe: All zero

Description: Match table signature to be equal to this value unless all zero.

In the majority of the cases ACPI patches are not useful and harmful:

- Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices (e.g. EC and ECO), be unnecessary, or even fail to rename devices in select tables. For ACPI consistency it is much safer to rename devices at I/O Registry level, as done by WhateverGreen.
- Avoid patching _OSI to support a higher level of feature sets unless absolutely required. Commonly this enables a number of hacks on APTIO firmwares, which result in the need to add more patches. Modern firmwares generally do not need it at all, and those that do are fine with much smaller patches.
- Try to avoid hacky changes like renaming _PWRPRW or _DSM whenever possible.

Several cases, where patching actually does make sense, include:

- Refreshing HPET (or another device) method header to avoid compatibility checks by _OSI on legacy hardware. _STA method with if ((OSFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to always return 0xF by replacing AO 10 93 4F 53 46 4C 00 with A4 0A 0F A3 A3 A3 A3 A3.
- To provide custom method implementation with in an SSDT, for instance, to report functional key presses on a laptop, the original method can be replaced with a dummy name by patching _Q11 with XQ11.

Tianocore AcpiAml.h source file may help understanding ACPI opcodes.

4.6 Quirks Properties

1. FadtEnableReset

Type: plist boolean

Failsafe: Empty string

Description: Kext executable path relative to bundle (e.g. Contents/MacOS/Lilu).

5. MatchKernel

Type: plist string Failsafe: Empty string

Description: Blocks kernel driver on selected macOS version only. The selection happens based on prefix match with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

6. PlistPath

Type: plist string Failsafe: Empty string

Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

6.4 Block Properties

1. Comment

Type: plist string Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation defined whether this value is used.

2. Enabled

Type: plist boolean Failsafe: false

Description: This kernel driver will not be blocked unless set to true.

3. Identifier

Type: plist string Failsafe: Empty string

Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

4. MatchKernel

Type: plist string Failsafe: Empty string

Description: Blocks kernel driver on selected macOS version only. The selection happens based on prefix match with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

6.5 Emulate Properties

1. Cpuid1Data

Type: plist data, 16 bytes

Failsafe: All zero

Description: Sequence of EAX, EBX, ECX, EDX values in Little Endian order to replace CPUID (1) call in XNU kernel.

 $2. \ {\tt Cpuid1Mask}$

Type: plist data, 16 bytes

Failsafe: All zero

Description: Bit mask of active bits in Cpuid1Data. When each Cpuid1Mask bit is set to 0, the original CPU bit is used, otherwise set bits take the value of Cpuid1Data.

6.6 Patch Properties

1. Base

Type: plist string Failsafe: Empty string

Description: Selects symbol-matched base for patch lookup (or immediate replacement) by obtaining the address of provided symbol name. Can be set to empty string to be ignored.

2. Comment

Type: plist string

While OpenCore boot log already contains basic version information with build type and date, this data may also be found in NVRAM in opencore-version variable even with boot log disabled.

File logging will create a file named opencore-YYYY-MM-DD-HHMMSS.logtxt at EFI volume root with log contents (the upper case letter sequence is replaced with date and time from the firmware). Please be warned that some file system drivers present in firmwares are not reliable, and may corrupt data when writing files through UEFI. Log is attempted to be written in the safest manner, and thus is very slow. Ensure that DisableWatchDog is set to true when you use a slow drive.

7.5 Security Properties

1. ExposeSensitiveData

Type: plist integer

Failsafe: 2

Description: Sensitive data exposure bitmask (sum) to operating system.

- 0x01 Expose printable booter path as an UEFI variable.
- $\bullet\,$ 0x02 Expose OpenCore version as an UEFI variable.

Exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain booter path use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use booter path for mounting booter volume use the following command in macOS:

```
u=$(nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([^,]*\),.*/\1/'); \
if [ "$u" != "" ]; then sudo diskutil mount $u ; fi
```

To obtain OpenCore version use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:opencore-version

2. HaltLevel

Type: plist integer, 64 bit

Failsafe: 0x80000000 (DEBUG_ERROR)

Description: EDK II debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message of HaltLevel. Possible values match DisplayLevel values.

3. RequireSignature

Type: plist boolean

Failsafe: true

Description: Require vault.sig signature file for vault.plist in OC directory.

This file should contain a raw 256 byte RSA-2048 signature from SHA-256 hash of vault.plist. The signature is verified against the public key embedded into OpenCore.efi.

To embed the public key you should do either of the following:

- Provide public key during the OpenCore.efi compilation in OpenCoreVault.c file.
- Binary patch OpenCore.efi replacing zeroes with the public key between =BEGIN OC VAULT= and ==END OC VAULT== ASCII markers.

RSA public key 520 byte format description can be found in Chromium OS documentation. To convert public key from X.509 certificate or from PEM file use RsaTool.

Note: vault.sig is used regardless of this option when public key is embedded into OpenCore.efi. Setting it to true will only ensure configuration sanity, and abort the boot process when public key is not set but was supposed to be used for verification.

4. RequireVault

Type: plist boolean

8 NVRAM

8.1 Introduction

Has plist dict type and allows to set volatile UEFI variables commonly referred as NVRAM variables. Refer to man nvram for more details. macOS extensively uses NVRAM variables for OS — Bootloader — Firmware intercommunication, and thus supplying several NVRAM is required for proper macOS functioning.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID, representing which 'section' NVRAM variable belongs to. macOS uses several GUIDs, including but not limited to:

- 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
- 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)
- 8BE4DF61-93CA-11D2-AAOD-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)
- 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 (OC_VENDOR_VARIABLE_GUID)

Note: Some of the variables may be added by PlatformNVRAM or Generic subsections of PlatformInfo section. Please ensure that variables of this section never collide with them, as behaviour is undefined otherwise.

8.2 Properties

1. Add

Type: plist dict

Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable names and their values in plist metadata format. GUIDs must be provided in canonic string format in upper or lower case (e.g. 8BE4DF61-93CA-11D2-AAOD-00E098032B8C).

Created variables get EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes set. Variables will only be set if not present and not blocked. To overwrite a variable add it to Block section. This approach enables to provide default values till the operating system takes the lead.

Note: If plist key does not conform to GUID format, behaviour is undefined.

$2.\ {\tt Block}$

Type: plist dict

Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of variable names in plist string format.

3. LegacyEnable

Type: plist boolean Failsafe: false

Description: Enables loading of NVRAM variable file named nvram.plist from EFI volume root.

This file must have root plist dictionary type and contain two fields:

- Version plist integer, file version, must be set to 1.
- Add plist dictionary, equivalent to Add from config.plist.

Variable loading happens prior to Block (and Add) phases, and will not overwrite any existing variable. Variables allowed to be set must be specified in LegacySchema. Third-party scripts may be used to create nvram.plist file. Example An example of such script can be found in ToolsUtilities. The use of third-party scripts may require ExposeSensitiveData set to 0x3 to provide boot-path variable with OpenCore EFI partition UUID.

WARNING: This feature is very dangerous as it passes unprotected data to your firmware variable services. Use it only when no hardware NVRAM implementation is provided by the firmware or it is incompatible.

4. LegacySchema

Type: plist dict

Description: Allows setting select NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of variable names in plist string format.

You can use * value to accept all variables for select GUID.

WARNING: Choose variables very carefully, as nvram.plist is not vaulted. For instance, do not put boot-args or csr-active-config, as this can bypass SIP.

11 Troubleshooting

11.1 Windows support

Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared with Boot Camp are supposed to work. Third-party UEFI installations as well as systems partially supporting UEFI boot, like Windows 7, might work with some extra precautions. Things to keep in mind:

- MBR (Master Boot Record) installations are legacy and will not be supported.
- Installing Windows and macOS on the same drive is currently unsupported but will be addressed later.
- All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic, i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.
- macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout. While OpenCore does have a workaround for this, it is highly recommend not to rely on it and install properly.
- Windows may need to be reactivated. To avoid it consider leaving SystemUUID field empty, so that the original firmware UUID is used. Be warned, on old firmwares it may be invalid, i.e. not random. In case you still have issues, consider using HWID or KMS38 license. The nuances of Windows activation are out of the scope of this document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases you will need Windows support software from Boot Camp. For simplicity of the download process or when configuring an already installed Windows version a third-party utility, Brigadier, can be used successfully. Note, that you may have to download and install 7-Zip prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. In case you already have a previous version of Boot Camp installed you will have to remove it first by running msiexec /x BootCamp.msi command. BootCamp.msi file is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, sometimes you may have to address some of them manually:

- To invert mouse wheel scroll direction FlipFlopWheel must be set to 1 as explained on SuperUser.
- RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on SuperUser (this one is usually not needed).
- To access Apple filesystems like HFS and APFS separate software may need to be installed. Some of the known tools are: Apple HFS+ driver (hack for Windows 10), HFSExplorer, MacDrive, Paragon APFS, Paragon HFS+, TransMac, etc. Remember to never ever attempt to modify Apple file systems from Windows as this often leads to irrecoverable data loss.

Why do I see Basic data partition in Boot Camp Control Startup Disk control panel?

Boot Camp control panel uses GPT partition table to obtain each boot option name. After installing Windows separately you will have to relabel the partition manually. This can be done with many tools including open-source gdisk utility. Reference example:

```
PS C:\gdisk> .\gdisk64.exe \\.\physicaldrive0
GPT fdisk (gdisk) version 1.0.4

Command (? for help): p
Disk \\.\physicaldrive0: 419430400 sectors, 200.0 GiB
Sector size (logical): 512 bytes
Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12
Partition table holds up to 128 entries
```

Main partition table begins at sector 2 and ends at sector 33 First usable sector is 34, last usable sector is 419430366 Partitions will be aligned on 2048-sector boundaries Total free space is 4029 sectors (2.0 MiB)

Number	Start (sector)	End (sector)	Size	Code	Name
1	2048	1023999	499.0 MiB	2700	Basic data partition
2	1024000	1226751	99.0 MiB	EF00	EFI system partition
3	1226752	1259519	16.0 MiB	0C01	Microsoft reserved
4	1259520	419428351	199.4 GiB	0700	Basic data partition

Command (? for help): c Partition number (1-4): 4 Enter name: BOOTCAMP

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!

Do you want to proceed? (Y/N): Y OK; writing new GUID partition table (GPT) to $\.\$ Disk synchronization succeeded! The computer should now use the new partition table. The operation has completed successfully.

Listing 3: Relabeling Windows volume

How to choose Windows BOOTCAMP with custom NTFS drivers?

Third-party drivers providing NTFS support, such as NTFS-3G, Paragon NTFS, or Tuxera NTFS break certain macOS functionality, including Startup Disk preference pane normally used for operating system selection. While the recommended option remains not to use such drivers as they commonly corrupt the filesystem, and prefer the driver bundled with macOS (with optional write support), there still exist vendor-specific workarounds for their products: Tuxera, Paragon, etc.

11.2 Debugging

Similar to other projects working with hardware OpenCore supports auditing and debugging. The use of NOOPT or DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level debugging with GDB or IDA Pro is also available. For GDB check OcSupport Debug page. For IDA Pro you will need IDA Pro 7.3 or newer, refer to Debugging the XNU Kernel with IDA Pro for more details.

To obtain the log during boot you can make the use of serial port debugging. Serial port debugging is enabled in Target, e.g. 0xB for onscreen with serial. OpenCore uses 115200 baud rate, 8 data bits, no parity, and 1 stop bit. For macOS your best choice are CP2102-based UART devices. Connect motherboard TX to USB UART GND, and motherboard GND to USB UART RX. Use screen utility to get the output, or download GUI software, such as CoolTerm.

Remember to enable COM port in firmware settings, and never use USB cables longer than 1 meter to avoid output corruption. To additionally enable XNU kernel serial output you will need debug=0x8 boot argument.

11.3 Tips and Tricks

1. How to debug boot failure?

Normally it is enough to obtain the actual error message. For this ensure that:

- You have a DEBUG or NOOPT version of OpenCore.
- Logging is enabled (1) and shown onscreen (2): $Misc \rightarrow Debug \rightarrow Target = 3$.
- Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO (0x000000040) levels are visible onscreen: $Misc \rightarrow Debug \rightarrow DisplayLevel = 0x80000042$.
- Critical error messages, like DEBUG ERROR, stop booting: Misc → Security → HaltLevel = 0x80000000.