UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

Cálculo Numérico (521230)

Pauta-Certamen 1-Tema 1

Nombre y apellidos	
Matrícula	
Profesor	

Pregunta		Altern	ativas	
1	(a)	b	С	d
2	a	(D)	С	d
3	a	(D)	c	d
4	a	b	С	@
5	a	b	c	d
6	a	b	c	@
7	(a)	b	c	d
8	a	b	\odot	d
9	a	b	\odot	d
10	a	b	c	d
11	a	b	c	@
12	a	b	\odot	d
13	a	(D)	С	d
14	a	b	С	@
15	a	(D)	С	d

la correce	Reservado para la corrección No rellenar				
	1				
В					
M					
NR					
Cal.					
	1				

- Marque sólo una alternativa, en caso contrario la pregunta no será evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontará un tercio del valor de una respuesta correcta; es decir:

Calificación =
$$1 + \max \left\{ 0, \frac{6}{15} \left(\text{Buenas} - \frac{\text{Malas}}{3} \right) \right\}.$$

- Cualquier intento de copia será castigado.
- Duración de la prueba: 100 minutos.

RRS/CV.

09-Junio-10.

Tema 1 2

CERTAMEN DE CALCULO NUMERICO 521230

Miercoles 09 de Junio de 2010

COMISION: CAROLINA VIDAL L.

ROBERTO RIQUELME S.

Tema 1

1. El comando Matlab

$$>> [eye(2) \ 2*ones(2,4);tril(-ones(4,4)) \ [zeros(2,2);diag([1\ 2])]]$$

genera la matriz:

a)
$$\begin{pmatrix} 1 & 0 & 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 & 2 & 2 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & -1 & 0 & 2 \end{pmatrix}; b) \begin{pmatrix} 2 & 0 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 1 & 1 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & -1 & 0 & 2 \end{pmatrix};$$
c)
$$\begin{pmatrix} 1 & 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ -1 & -1 & -1 & -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 2 \end{pmatrix};$$
d) ninguna de las anteriores.

2. Indique cuáles son los factores L y U que se obtienen si se aplica el método de Gauss con pivoteo parcial a la matriz $A = \begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix}$:

(a)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$;

(b)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 0.5 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 2 & 6 \\ 0 & -1 \end{pmatrix}$;

(c)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 0.5 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$;

- (d) ninguna de las anteriores.
- 3. Se desean aproximar los valores dados en la tabla:

X	-2	-1	0	1	2
у	9	3	0	2	10

a una función en el sentido de los mínimos cuadrados. Según su criterio cúal sería la función más aconsejable dentro de las que siguen:

(a)
$$f(x) = ae^{bx}$$
;

(b)
$$f(x) = ax^2 + b;$$

(c)
$$f(x) = ax^3 + bx;$$

(d)
$$f(x) = ax^5 + bx.$$

4. Consideremos la matriz A de orden 4 definida por

$$\begin{bmatrix}
1 & -1 & 1 & 0 \\
1 & 0 & -3 & -1 \\
1 & 0 & 0 & 2 \\
1 & -1 & -2 & 3
\end{bmatrix}$$

Entonces $||A||_{\infty}$ está dada por:

- (a) 2;
- (b) 4;
- (c) 6;
- (d) ninguna de las anteriores.

5. Se aplica el método de eliminación de Gauss, con estrategia de pivoteo parcial, a una matriz \boldsymbol{A} de la forma

$$\mathbf{A} = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ 4 & \cdot & \cdot & \cdot \\ 3 & \cdot & \cdot & \cdot \\ -5 & \cdot & \cdot & \cdot \end{pmatrix} \in \mathbb{R}^{4 \times 4}.$$

Indique cuál de los siguientes es el elemento u_{11} de la matriz triangular superior U que se obtiene:

- (a) $u_{11} = -5$;
- (b) $u_{11} = 1$;
- (c) $u_{11} = 1/5$;
- (d) ninguno de los anteriores.
- 6. El criterio

$$\|oldsymbol{x}^{(k+1)} - oldsymbol{x}^{(k)}\| \leq \mathtt{TOL}$$

con TOL un nivel de tolerancia prefijado del error y $\|M\|$ una norma de la matriz de iteración $M = N^{-1}P$, es un buen criterio de detención para:

- (i) el método de Jacobi;
- (ii) el método de Gauss-Seidel;

La respuesta correcta es:

- (a) sólo (i);
- (b) (i) y (ii);
- (c) sólo (ii);
- (d) ninguna de las anteriores.

7. Considere la tabla

$oldsymbol{x}_i$	-2	-1	0	1	2	3
$oldsymbol{y}_i$	-1	-1	-1	3	1	1

Llamemos por ℓ_0 , ℓ_1 , ℓ_2 , ℓ_3 , ℓ_4 y ℓ_5 a sus correspondientes polinomios de Lagrange. El gráfico de $2\ell_1-\ell_3$ es:

8. La mejor aproximación, en el sentido de los mínimos cuadrados, por polinomios de la forma $a+bx^2$ del conjunto de puntos

x_i	-1.0	0.0	1.0
y_i	2.0	-1.0	3.0

está dada por:

(a)
$$-1 - \frac{7}{2}x^2$$
;

(b)
$$\frac{7}{2} - x^2$$
;

(c)
$$-1 + \frac{7}{2}x^2$$
;

(d) ninguna de las anteriores.

- 9. ¿Cuál de los siguientes polinomios corresponde al polinomio de interpolación de spline de los siguientes puntos: (-1,1), (0,2) y (1,0) (se consideró que la segunda derivada en los extremos es nula)?
 - (a) $q(x) = \begin{cases} -\frac{3}{4}x^3 \frac{9}{4}x^2 \frac{1}{2}x + 2, & -1 \le x \le 0 \\ \frac{3}{2}x^3 3x^2 \frac{1}{2}x + 2, & 0 \le x \le 1 \end{cases}$;
 - (b) $q(x) = \begin{cases} -\frac{3}{2}x^3 3x^2 \frac{1}{2}x + 2, & -1 \le x \le 0 \\ \frac{3}{4}x^3 \frac{9}{4}x^2 \frac{1}{2}x + 2, & 0 \le x \le 1 \end{cases}$;
 - (c) $q(x) = \begin{cases} -\frac{3}{4}x^3 \frac{9}{4}x^2 \frac{1}{2}x + 2, & -1 \le x \le 0\\ \frac{3}{4}x^3 \frac{9}{4}x^2 \frac{1}{2}x + 2, & 0 \le x \le 1 \end{cases}$;
 - (d) ninguna de las anteriores.
- 10. Considere las matrices

$$A = \begin{pmatrix} \frac{1}{100} & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & -1 & 100 & -1\\ 0 & 0 & 0 & \pi \end{pmatrix} \; ; \qquad \qquad A^{-1} = \begin{pmatrix} 100 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & \frac{-1}{100} & \frac{1}{100\pi}\\ 0 & 0 & 0 & \frac{1}{\pi} \end{pmatrix}$$

Al resolver el sistema Ax = b con $b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, en la solución se comete un error en norma

- 1, $\|\delta x\|_1$ estrictamente mayor al 1% con respecto de $\|x\|_1$, debido a un error δb en el término del lado derecho. Suponga que no hay errores en los coeficientes de la matriz ni errores de redondeo. Entonces necesariamente,
- (a) $\|\delta b\|_1 > 4 \times 10^{-6}$;
- (b) $0 < \|\delta b\|_1 \le 4 \times 10^{-6}$;
- (c) $\|\delta b\|_1 = 0;$
- (d) ninguna de las anteriores.
- 11. Considere la tabla

x_i	-3	-2	-1	0	1	2	3
y_i	-1	-1	-1	a	1	1	1

- ξ Para qué valores del parámetro a **no** existe el polinomio de interpolación de Lagrange asociado a dicha tabla ?.
- (a) a = 0:
- (b) a = -1:
- (c) a = 1;
- (d) ninguna de las anteriores.

Tema 1 6

12. Dado el siguiente sistema de ecuaciones lineales:

$$\begin{pmatrix} 4 & -1 & 0 & -1 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ -1 & 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 3 \\ 0.5 \end{pmatrix}.$$

Considere las siguientes iteraciones:

(i) resolver
$$\begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} x_1^{k+1} \\ x_2^{k+1} \\ x_3^{k+1} \\ x_4^{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1^k \\ x_2^k \\ x_3^k \\ x_4^k \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \\ 3 \\ 0.5 \end{pmatrix};$$
(ii) resolver
$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1^{k+1} \\ x_2^{k+1} \\ x_3^{k+1} \\ x_4^{k+1} \end{pmatrix} = \begin{pmatrix} -4 & 1 & 0 & 1 \\ 0 & -4 & 1 & 0 \\ 0 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 \end{pmatrix} \begin{pmatrix} x_1^k \\ x_2^k \\ x_3^k \\ x_4^k \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \\ 3 \\ 0.5 \end{pmatrix};$$

$$\begin{pmatrix} 4 & 0 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1^{k+1} \\ x_2^{k+1} \\ x_3^{k+1} \\ x_4^{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 \end{pmatrix} \begin{pmatrix} x_1^k \\ x_2^k \\ x_3^k \\ x_4^k \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \\ 3 \\ 0.5 \end{pmatrix};$$

$$(\text{iii) resolver} \left(\begin{array}{ccc} 4 & 0 & 0 & 0 \\ -1 & 4 & 0 & 0 \\ 0 & -1 & 4 & 0 \\ -1 & 0 & -1 & 4 \end{array} \right) \left(\begin{array}{c} x_1^{k+1} \\ x_2^{k+1} \\ x_3^{k+1} \\ x_4^{k+1} \end{array} \right) = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right) \left(\begin{array}{c} x_1^k \\ x_2^k \\ x_3^k \\ x_4^k \end{array} \right) + \left(\begin{array}{c} -1 \\ 0 \\ 3 \\ 0.5 \end{array} \right).$$

Son convergentes:

- (a) Sólo (i) y (ii);
- (b) Sólo (ii) y (iii);
- (c) Sólo (i) y (iii);
- (d) ninguna de las anteriores.
- 13. Dados dos vectores x e y de la misma longitud m, el comando Matlab polyfit determina los coeficientes c_i del polinomio de grado n

$$p(x) = c_1 x^n + c_2 x^{n-2} + \dots + c_n x + c_{n+1},$$

cuya gráfica ajusta los puntos $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$, por:

- (a) cuadrados mínimos cuando m = n + 1;
- (b) interpolación cuando m = n + 1;
- (c) interpolación cuando n m = 1;
- (d) ninguna de las anteriores.

Tema 1 7

14. Considere los siguientes datos:

\boldsymbol{x}	1	2	3
f(x)	2	-4	6

y la función definida por tramos:

$$s(x) = \begin{cases} x^3 + 1 & , & 0 \le x \le 1, \\ -x^3 + x + 2 & , & 1 < x \le 2, \\ 2x^2 - 12 & , & 2 < x \le 3. \end{cases}$$

Entonces, se tiene:

- (a) la función s(x) es una spline cúbica debido a que en cada tramo la función es un polinomio de grado a lo mas tres y además interpola a la función f;
- (b) la función s(x) es una interpolada de f, pero no es una spline cúbica debido a que en el intervalo (2,3], s(x) es un polinomio de grado 2;
- (c) la función s(x) es una spline cúbica natural;
- (d) ninguna de las anteriores.
- 15. Es sabido que las potencias de la razón áurea $r^n = \left(\frac{\sqrt{5}-1}{2}\right)^n$ verifican la relación de recurrencia: $r^{n+1} = r^{n-1} r^n$. Esto nos permite generar dichas potencias mediante el algoritmo implementado en Matlab

$$\begin{array}{l} r = zeros(1,100); \\ r(1) = 1; \\ r(2) = (sqrt(5)-1)/2; \\ for n = 2:100 \\ r(n+1) = r(n-1)-r(n); \\ end \end{array}$$

que nos entrega como resultado r(84)=-8.718579874757182. A partir del programa Matlab y este resultado podemos afirmar que:

- (a) el algoritmo esta mal programado;
- (b) el algoritmo es inestable;
- (c) no se puede opinar, pues se desconoce el error;
- (d) ninguna de las anteriores.

UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

Cálculo Numérico (521230)

Pauta-Certamen 1-Tema 2

Nombre y apellidos	
Matrícula	
Profesor	

Pregunta		Altern	ativas	
1	a	b	С	@
2	(a)	b	С	d
3	a	b	c	@
4	a	b	\odot	d
5	a	(D)	c	d
6	a	(D)	c	d
7	a	b	\odot	d
8	(a)	b	c	d
9	a	b	С	@
10	a	b	\odot	d
11	a	(D)	c	d
12	a	b	c	@
13	a	(D)	С	d
14	a	b	С	d
15	a	b	\odot	d

Reservado para la corrección				
No relle	enar			
В				
M				
NR				
Cal.				
	I			

- Marque sólo una alternativa, en caso contrario la pregunta no será evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontará un tercio del valor de una respuesta correcta; es decir:

Calificación =
$$1 + \max \left\{ 0, \frac{6}{15} \left(\text{Buenas} - \frac{\text{Malas}}{3} \right) \right\}.$$

- $\bullet\,$ Cualquier intento de copia será ${\bf castigado}.$
- Duración de la prueba: 100 minutos.

RRS/CV.

09-Junio-10.

Tema 2 2

CERTAMEN DE CALCULO NUMERICO 521230

Miercoles 09 de Junio de 2010

COMISION: CAROLINA VIDAL L.

ROBERTO RIQUELME S.

1. Consideremos la matriz A de orden 4 definida por

$$\begin{bmatrix}
1 & -1 & 1 & 0 \\
1 & 0 & -3 & -1 \\
1 & 0 & 0 & 2 \\
1 & -1 & -2 & 3
\end{bmatrix}$$

Entonces $||A||_{\infty}$ está dada por:

- (a) 2;
- (b) 4;
- (c) 6;
- (d) ninguna de las anteriores.

2. Se aplica el método de eliminación de Gauss, con estrategia de pivoteo parcial, a una matriz \boldsymbol{A} de la forma

$$\mathbf{A} = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ 4 & \cdot & \cdot & \cdot \\ 3 & \cdot & \cdot & \cdot \\ -5 & \cdot & \cdot & \cdot \end{pmatrix} \in \mathbb{R}^{4 \times 4}.$$

Indique cuál de los siguientes es el elemento u_{11} de la matriz triangular superior U que se obtiene:

- (a) $u_{11} = -5$;
- (b) $u_{11} = 1$;
- (c) $u_{11} = 1/5$;
- (d) ninguno de los anteriores.
- 3. El criterio

$$\|oldsymbol{x}^{(k+1)} - oldsymbol{x}^{(k)}\| \leq exttt{TOL}$$

con TOL un nivel de tolerancia prefijado del error y ||M|| una norma de la matriz de iteración $M = N^{-1}P$, es un buen criterio de detención para:

- (i) el método de Jacobi;
- (ii) el método de Gauss-Seidel;

La respuesta correcta es:

- (a) sólo (i);
- (b) (i) y (ii);
- (c) sólo (ii);
- (d) ninguna de las anteriores.

Tema 2 3

4. El comando Matlab

$$>> [eye(2) \ 2*ones(2,4);tril(-ones(4,4)) \ [zeros(2,2);diag([1\ 2])]]$$

genera la matriz:

a)
$$\begin{pmatrix} 1 & 0 & 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 & 2 & 2 \\ -1 & -1 & -1 & -1 & 0 & 0 \\ 0 & -1 & -1 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 2 \end{pmatrix}; b) \begin{pmatrix} 2 & 0 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 1 & 1 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & -1 & 0 & 2 \end{pmatrix}; c) \begin{pmatrix} 1 & 0 & 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & -1 & 0 & 2 \end{pmatrix}; d) \text{ ninguna de las anteriores.}$$

5. Se desean aproximar los valores dados en la tabla:

X	-2	-1	0	1	2
у	9	3	0	2	10

a una función en el sentido de los mínimos cuadrados. Según su criterio cúal sería la función más aconsejable dentro de las que siguen:

(a)
$$f(x) = ae^{bx}$$
;

(b)
$$f(x) = ax^2 + b;$$

(c)
$$f(x) = ax^3 + bx;$$

$$(d) f(x) = ax^5 + bx.$$

6. Indique cuáles son los factores \boldsymbol{L} y \boldsymbol{U} que se obtienen si se aplica el método de Gauss con pivoteo parcial a la matriz $\boldsymbol{A} = \begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix}$:

(a)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$;

(b)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 0.5 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 2 & 6 \\ 0 & -1 \end{pmatrix}$;

(c)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 0.5 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$;

(d) ninguna de las anteriores.

4

- 7. ¿Cuál de los siguientes polinomios corresponde al polinomio de interpolación de spline de los siguientes puntos: (-1,1), (0,2) y (1,0) (se consideró que la segunda derivada en los extremos es nula)?
 - (a) $q(x) = \begin{cases} -\frac{3}{4}x^3 \frac{9}{4}x^2 \frac{1}{2}x + 2, & -1 \le x \le 0\\ \frac{3}{2}x^3 3x^2 \frac{1}{2}x + 2, & 0 \le x \le 1 \end{cases}$;
 - (b) $q(x) = \begin{cases} -\frac{3}{2}x^3 3x^2 \frac{1}{2}x + 2, & -1 \le x \le 0 \\ \frac{3}{4}x^3 \frac{9}{4}x^2 \frac{1}{2}x + 2, & 0 \le x \le 1 \end{cases}$;
 - (c) $q(x) = \begin{cases} -\frac{3}{4}x^3 \frac{9}{4}x^2 \frac{1}{2}x + 2, & -1 \le x \le 0\\ \frac{3}{4}x^3 \frac{9}{4}x^2 \frac{1}{2}x + 2, & 0 \le x \le 1 \end{cases}$;
 - (d) ninguna de las anteriores.
- 8. Considere las matrices

$$A = \begin{pmatrix} \frac{1}{100} & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & -1 & 100 & -1\\ 0 & 0 & 0 & \pi \end{pmatrix} \; ; \qquad \qquad A^{-1} = \begin{pmatrix} 100 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & \frac{-1}{100} & \frac{1}{100} & \frac{1}{100\pi}\\ 0 & 0 & 0 & \frac{1}{\pi} \end{pmatrix}$$

Al resolver el sistema Ax = b con $b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, en la solución se comete un error en norma

- 1, $\|\delta x\|_1$ estrictamente mayor al 1% con respecto de $\|x\|_1$, debido a un error δb en el término del lado derecho. Suponga que no hay errores en los coeficientes de la matriz ni errores de redondeo. Entonces necesariamente,
- (a) $\|\delta b\|_1 > 4 \times 10^{-6}$;
- (b) $0 < \|\delta b\|_1 \le 4 \times 10^{-6}$;
- (c) $\|\delta b\|_1 = 0;$
- (d) ninguna de las anteriores.
- 9. Considere la tabla

x_i	-3	-2	-1	0	1	2	3
y_i	-1	-1	-1	a	1	1	1

- $\ddot{\epsilon}$ Para qué valores del parámetro a **no** existe el polinomio de interpolación de Lagrange asociado a dicha tabla $\ddot{\epsilon}$.
- (a) a = 0;
- (b) a = -1;
- (c) a = 1;
- (d) ninguna de las anteriores.

Tema 2 5

10. Dado el siguiente sistema de ecuaciones lineales:

$$\begin{pmatrix} 4 & -1 & 0 & -1 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ -1 & 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 3 \\ 0.5 \end{pmatrix}.$$

Considere las siguientes iteraciones:

$$\begin{array}{c} \text{(i) resolver} \left(\begin{array}{cccc} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array} \right) \left(\begin{array}{c} x_1^{k+1} \\ x_2^{k+1} \\ x_3^{k+1} \\ x_4^{k+1} \end{array} \right) = \left(\begin{array}{ccccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array} \right) \left(\begin{array}{c} x_1^k \\ x_2^k \\ x_3^k \\ x_4^k \end{array} \right) + \left(\begin{array}{c} -1 \\ 0 \\ 3 \\ 0.5 \end{array} \right);$$

$$(\text{iii) resolver} \left(\begin{array}{cccc} 4 & 0 & 0 & 0 \\ -1 & 4 & 0 & 0 \\ 0 & -1 & 4 & 0 \\ -1 & 0 & -1 & 4 \end{array} \right) \left(\begin{array}{c} x_1^{k+1} \\ x_2^{k+1} \\ x_3^{k+1} \\ x_4^{k+1} \end{array} \right) = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right) \left(\begin{array}{c} x_1^k \\ x_2^k \\ x_3^k \\ x_4^k \end{array} \right) + \left(\begin{array}{c} -1 \\ 0 \\ 3 \\ 0.5 \end{array} \right).$$

Son convergentes:

- (a) Sólo (i) y (ii);
- (b) Sólo (ii) y (iii);
- (c) Sólo (i) y (iii);
- (d) ninguna de las anteriores.

11. Dados dos vectores x e y de la misma longitud m, el comando Matlab polyfit determina los coeficientes c_i del polinomio de grado n

$$p(x) = c_1 x^n + c_2 x^{n-2} + \dots + c_n x + c_{n+1},$$

cuya gráfica ajusta los puntos $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$, por:

- (a) cuadrados mínimos cuando m = n + 1;
- (b) interpolación cuando m = n + 1;
- (c) interpolación cuando n m = 1;
- (d) ninguna de las anteriores.

Tema 2 6

12. Considere los siguientes datos:

x	1	2	3
f(x)	2	-4	6

y la función definida por tramos:

$$s(x) = \begin{cases} x^3 + 1 & , & 0 \le x \le 1, \\ -x^3 + x + 2 & , & 1 < x \le 2, \\ 2x^2 - 12 & , & 2 < x \le 3. \end{cases}$$

Entonces, se tiene:

- (a) la función s(x) es una spline cúbica debido a que en cada tramo la función es un polinomio de grado a lo mas tres y además interpola a la función f;
- (b) la función s(x) es una interpolada de f, pero no es una spline cúbica debido a que en el intervalo (2,3], s(x) es un polinomio de grado 2;
- (c) la función s(x) es una spline cúbica natural;
- (d) ninguna de las anteriores.
- 13. Es sabido que las potencias de la razón áurea $r^n = \left(\frac{\sqrt{5}-1}{2}\right)^n$ verifican la relación de recurrencia: $r^{n+1} = r^{n-1} r^n$. Esto nos permite generar dichas potencias mediante el algoritmo implementado en Matlab

r=zeros(1,100);
r(1)=1;
r(2)=(sqrt(5)-1)/2;
for n=2:100

$$r(n+1)=r(n-1)-r(n);$$

end

que nos entrega como resultado r(84)=-8.718579874757182. A partir del programa Matlab y este resultado podemos afirmar que:

- (a) el algoritmo esta mal programado;
- (b) el algoritmo es inestable;
- (c) no se puede opinar, pues se desconoce el error;
- (d) ninguna de las anteriores.

14. Considere la tabla

$oldsymbol{x}_i$	-2	-1	0	1	2	3
$oldsymbol{y}_i$	-1	-1	-1	3	1	1

Llamemos por ℓ_0 , ℓ_1 , ℓ_2 , ℓ_3 , ℓ_4 y ℓ_5 a sus correspondientes polinomios de Lagrange. El gráfico de $2\ell_1-\ell_3$ es:

15. La mejor aproximación, en el sentido de los mínimos cuadrados, por polinomios de la forma $a+bx^2$ del conjunto de puntos

x_i	-1.0	0.0	1.0
y_i	2.0	-1.0	3.0

está dada por:

(a)
$$-1 - \frac{7}{2}x^2$$
;

(b)
$$\frac{7}{2} - x^2$$
;

(c)
$$-1 + \frac{7}{2}x^2$$
;

(d) ninguna de las anteriores.

UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

Cálculo Numérico (521230)

Pauta-Certamen 1-Tema 3

Nombre y apellidos	
Matrícula	
Profesor	

Pregunta		Alternativas					
1	a	b	С	@			
2	a	b	C	d			
3	a	(D)	c	d			
4	(a)	b	С	d			
5	a	b	(C)	d			
6	a	b	c	@			
7	a	b	c	@			
8	(a)	b	С	d			
9	(a)	b	С	d			
10	(a)	b	c	d			
11	a	b	(C)	d			
12	(a)	b	c	d			
13	a	b	С	@			
14	a	b	\odot	d			
15	a	(D)	c	d			

Reservado para la corrección					
No relle	enar				
В					
M					
NR					
Cal.					
	1				

- Marque sólo una alternativa, en caso contrario la pregunta no será evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontará un tercio del valor de una respuesta correcta; es decir:

Calificación =
$$1 + \max \left\{ 0, \frac{6}{15} \left(\text{Buenas} - \frac{\text{Malas}}{3} \right) \right\}.$$

- Cualquier intento de copia será castigado.
- Duración de la prueba: 100 minutos.

RRS/CV.

09-Junio-10.

Tema 3 2

CERTAMEN DE CALCULO NUMERICO 521230

Miercoles 09 de Junio de 2010

COMISION: CAROLINA VIDAL L.

ROBERTO RIQUELME S.

Tema 3 2

1. Considere los siguientes datos:

x	1	2	3
f(x)	2	-4	6

y la función definida por tramos:

$$s(x) = \begin{cases} x^3 + 1 & , & 0 \le x \le 1, \\ -x^3 + x + 2 & , & 1 < x \le 2, \\ 2x^2 - 12 & , & 2 < x \le 3. \end{cases}$$

Entonces, se tiene:

- (a) la función s(x) es una spline cúbica natural;
- (b) la función s(x) es una spline cúbica debido a que en cada tramo la función es un polinomio de grado a lo mas tres y además interpola a la función f;
- (c) la función s(x) es una interpolada de f, pero no es una spline cúbica debido a que en el intervalo (2,3], s(x) es un polinomio de grado 2;
- (d) ninguna de las anteriores.
- 2. Es sabido que las potencias de la razón áurea $r^n = \left(\frac{\sqrt{5}-1}{2}\right)^n$ verifican la relación de recurrencia: $r^{n+1} = r^{n-1} r^n$. Esto nos permite generar dichas potencias mediante el algoritmo implementado en Matlab

r=zeros(1,100);
r(1)=1;
r(2)=(sqrt(5)-1)/2;
for n=2:100

$$r(n+1)=r(n-1)-r(n)$$
;
end

que nos entrega como resultado r(84)=-8.718579874757182. A partir del programa Matlab y este resultado podemos afirmar que:

- (a) no se puede opinar, pues se desconoce el error;
- (b) el algoritmo esta mal programado;
- (c) el algoritmo es inestable;
- (d) ninguna de las anteriores.

3. Se desean aproximar los valores dados en la tabla:

X	-2	-1	0	1	2
У	9	3	0	2	10

a una función en el sentido de los mínimos cuadrados. Según su criterio cúal sería la función más aconsejable dentro de las que siguen:

- (a) $f(x) = ae^{bx}$;
- (b) $f(x) = ax^2 + b$;
- (c) $f(x) = ax^3 + bx$;
- (d) $f(x) = ax^5 + bx.$
- 4. El comando Matlab

$$>> [eye(2) \ 2*ones(2,4);tril(-ones(4,4)) \ [zeros(2,2);diag([1\ 2])]]$$

genera la matriz:

a)
$$\begin{pmatrix} 1 & 0 & 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 & 2 & 2 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & -1 & 0 & 2 \end{pmatrix}; b) \begin{pmatrix} 2 & 0 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 1 & 1 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & -1 & 0 & 2 \end{pmatrix};$$
c)
$$\begin{pmatrix} 1 & 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ -1 & -1 & -1 & -1 & 0 & 0 \\ 0 & -1 & -1 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 2 \end{pmatrix}; d) \text{ ninguna de las anteriores.}$$

5. Indique cuáles son los factores \boldsymbol{L} y \boldsymbol{U} que se obtienen si se aplica el método de Gauss con pivoteo parcial a la matriz $\boldsymbol{A} = \begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix}$:

(a)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 0.5 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$;

(b)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$;

(c)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 0.5 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 2 & 6 \\ 0 & -1 \end{pmatrix}$;

(d) ninguna de las anteriores.

6. El criterio

$$\| {oldsymbol x}^{(k+1)} - {oldsymbol x}^{(k)} \| \leq \mathtt{TOL}$$

con TOL un nivel de tolerancia prefijado del error y $\|M\|$ una norma de la matriz de iteración $M = N^{-1}P$, es un buen criterio de detención para:

- (i) el método de Jacobi;
- (ii) el método de Gauss-Seidel;

La respuesta correcta es:

- (a) sólo (i);
- (b) (i) y (ii);
- (c) sólo (ii);
- (d) ninguna de las anteriores.
- 7. Consideremos la matriz A de orden 4 definida por

$$\begin{bmatrix}
1 & -1 & 1 & 0 \\
1 & 0 & -3 & -1 \\
1 & 0 & 0 & 2 \\
1 & -1 & -2 & 3
\end{bmatrix}$$

Entonces $||A||_{\infty}$ está dada por:

- (a) 2;
- (b) 4;
- (c) 6;
- (d) ninguna de las anteriores.
- 8. Se aplica el método de eliminación de Gauss, con estrategia de pivoteo parcial, a una matriz \boldsymbol{A} de la forma

$$\mathbf{A} = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ 4 & \cdot & \cdot & \cdot \\ 3 & \cdot & \cdot & \cdot \\ -5 & \cdot & \cdot & \cdot \end{pmatrix} \in \mathbb{R}^{4 \times 4}.$$

Indique cuál de los siguientes es el elemento u_{11} de la matriz triangular superior U que se obtiene:

- (a) $u_{11} = -5$;
- (b) $u_{11} = 1$;
- (c) $u_{11} = 1/5;$
- (d) ninguno de los anteriores.

2

9. Considere la tabla

$oldsymbol{x}_i$	-2	-1	0	1	2	3
$oldsymbol{y}_i$	-1	-1	-1	3	1	1

Llamemos por ℓ_0 , ℓ_1 , ℓ_2 , ℓ_3 , ℓ_4 y ℓ_5 a sus correspondientes polinomios de Lagrange. El gráfico de $2\ell_1-\ell_3$ es:

c)-1
-2
-3
-2
-1
0
1
2
3
-2.5
-2
-1
0

10. La mejor aproximación, en el sentido de los mínimos cuadrados, por polinomios de la forma $a+bx^2$ del conjunto de puntos

x_i	-1.0	0.0	1.0
y_i	2.0	-1.0	3.0

está dada por:

(a)
$$-1 + \frac{7}{2}x^2$$
;

(b)
$$-1 - \frac{7}{2}x^2$$
;

(c)
$$\frac{7}{2} - x^2$$
;

(d) ninguna de las anteriores.

11. ¿Cuál de los siguientes polinomios corresponde al polinomio de interpolación de spline de los siguientes puntos: (-1,1), (0,2) y (1,0) (se consideró que la segunda derivada en los extremos es nula)?

(a)
$$q(x) = \begin{cases} -\frac{3}{4}x^3 - \frac{9}{4}x^2 - \frac{1}{2}x + 2, & -1 \le x \le 0\\ \frac{3}{2}x^3 - 3x^2 - \frac{1}{2}x + 2, & 0 \le x \le 1 \end{cases}$$
;

(b)
$$q(x) = \begin{cases} -\frac{3}{2}x^3 - 3x^2 - \frac{1}{2}x + 2, & -1 \le x \le 0\\ \frac{3}{4}x^3 - \frac{9}{4}x^2 - \frac{1}{2}x + 2, & 0 \le x \le 1 \end{cases}$$
;

(c)
$$q(x) = \begin{cases} -\frac{3}{4}x^3 - \frac{9}{4}x^2 - \frac{1}{2}x + 2, & -1 \le x \le 0 \\ \frac{3}{4}x^3 - \frac{9}{4}x^2 - \frac{1}{2}x + 2, & 0 \le x \le 1 \end{cases}$$
;

- (d) ninguna de las anteriores.
- 12. Considere las matrices

$$A = \begin{pmatrix} \frac{1}{100} & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & -1 & 100 & -1\\ 0 & 0 & 0 & \pi \end{pmatrix} \; ; \qquad A^{-1} = \begin{pmatrix} 100 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & \frac{-1}{100} & \frac{1}{100} & \frac{1}{100\pi}\\ 0 & 0 & 0 & \frac{1}{\pi} \end{pmatrix}$$

Al resolver el sistema Ax = b con $b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, en la solución se comete un error en norma

- 1, $\|\delta x\|_1$ estrictamente mayor al 1% con respecto de $\|x\|_1$, debido a un error δb en el término del lado derecho. Suponga que no hay errores en los coeficientes de la matriz ni errores de redondeo. Entonces necesariamente,
- (a) $\|\delta b\|_1 > 4 \times 10^{-6}$;
- (b) $0 < \|\delta b\|_1 \le 4 \times 10^{-6}$;
- (c) $\|\delta b\|_1 = 0;$
- (d) ninguna de las anteriores.
- 13. Considere la tabla

x_i	-3	-2	-1	0	1	2	3
y_i	-1	-1	-1	a	1	1	1

- \mathcal{E} Para qué valores del parámetro a **no** existe el polinomio de interpolación de Lagrange asociado a dicha tabla ?.
- (a) a = 0;
- (b) a = -1;
- (c) a = 1;
- (d) ninguna de las anteriores.

Tema 3 7

14. Dado el siguiente sistema de ecuaciones lineales:

$$\begin{pmatrix} 4 & -1 & 0 & -1 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ -1 & 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 3 \\ 0.5 \end{pmatrix}.$$

Considere las siguientes iteraciones:

$$(\text{iii) resolver} \left(\begin{array}{cccc} 4 & 0 & 0 & 0 \\ -1 & 4 & 0 & 0 \\ 0 & -1 & 4 & 0 \\ -1 & 0 & -1 & 4 \end{array} \right) \left(\begin{array}{c} x_1^{k+1} \\ x_2^{k+1} \\ x_3^{k+1} \\ x_4^{k+1} \end{array} \right) = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right) \left(\begin{array}{c} x_1^k \\ x_2^k \\ x_3^k \\ x_4^k \end{array} \right) + \left(\begin{array}{c} -1 \\ 0 \\ 3 \\ 0.5 \end{array} \right).$$

Son convergentes:

- (a) Sólo (i) y (ii);
- (b) Sólo (ii) y (iii);
- (c) Sólo (i) y (iii);
- (d) ninguna de las anteriores.
- 15. Dados dos vectores x e y de la misma longitud m, el comando Matlab polyfit determina los coeficientes c_i del polinomio de grado n

$$p(x) = c_1 x^n + c_2 x^{n-2} + \dots + c_n x + c_{n+1},$$

cuya gráfica ajusta los puntos $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$, por:

- (a) cuadrados mínimos cuando m = n + 1;
- (b) interpolación cuando m = n + 1;
- (c) interpolación cuando n m = 1;
- (d) ninguna de las anteriores.

UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

Cálculo Numérico (521230)

Pauta-Certamen 1-Tema 4

Nombre y apellidos	
Matrícula	
Profesor	

Pregunta	Alternativas			
1	a	(D)	С	d
2	(a)	b	c	d
3	(a)	b	c	d
4	a	(D)	c	d
5	a	b	c	@
6	a	b	c	@
7	(a)	b	c	d
8	a	b	\odot	d
9	a	b	\odot	d
10	a	(D)	c	d
11	a	b	c	@
12	a	(D)	c	d
13	a	b	С	d
14	a	b	С	@
15	a	b	(C)	d

Reservado para la corrección No rellenar			
	1		
В			
M			
NR			
Cal.			
	1		

- Marque sólo una alternativa, en caso contrario la pregunta no será evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontará un tercio del valor de una respuesta correcta; es decir:

Calificación =
$$1 + \max \left\{ 0, \frac{6}{15} \left(\text{Buenas} - \frac{\text{Malas}}{3} \right) \right\}.$$

- Cualquier intento de copia será castigado.
- Duración de la prueba: 100 minutos.

RRS/CV.

09-Junio-10.

Tema 4 2

CERTAMEN DE CALCULO NUMERICO 521230

Miercoles 09 de Junio de 2010

COMISION: CAROLINA VIDAL L.

ROBERTO RIQUELME S.

Tema 4

1. El comando Matlab

$$>> [eye(2) 2*ones(2,4);tril(-ones(4,4)) [zeros(2,2);diag([1 2])]]$$

genera la matriz:

a)
$$\begin{pmatrix} 2 & 0 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 1 & 1 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & -1 & 0 & 2 \end{pmatrix}; b) \begin{pmatrix} 1 & 0 & 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 & 2 & 2 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & -1 & 0 & 2 \end{pmatrix};$$
 c)
$$\begin{pmatrix} 1 & 0 & 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 & 2 & 2 \\ -1 & -1 & -1 & -1 & 0 & 0 \\ 0 & -1 & -1 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 2 \end{pmatrix};$$
 d) ninguna de las anteriores.

2. Se desean aproximar los valores dados en la tabla:

X	-2	-1	0	1	2
у	9	3	0	2	10

a una función en el sentido de los mínimos cuadrados. Según su criterio cúal sería la función más aconsejable dentro de las que siguen:

(a)
$$f(x) = ax^2 + b$$
;

(b)
$$f(x) = ax^3 + bx;$$

(c)
$$f(x) = ax^5 + bx$$
.

(d)
$$f(x) = ae^{bx}$$
;

3. Indique cuáles son los factores \boldsymbol{L} y \boldsymbol{U} que se obtienen si se aplica el método de Gauss con pivoteo parcial a la matriz $\boldsymbol{A} = \begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix}$:

(a)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 0.5 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 2 & 6 \\ 0 & -1 \end{pmatrix}$;

(b)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$;

(c)
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 0.5 & 1 \end{pmatrix}$$
, $\boldsymbol{U} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$;

(d) ninguna de las anteriores.

4. Se aplica el método de eliminación de Gauss, con estrategia de pivoteo parcial, a una matriz \boldsymbol{A} de la forma

$$\mathbf{A} = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ 4 & \cdot & \cdot & \cdot \\ 3 & \cdot & \cdot & \cdot \\ -5 & \cdot & \cdot & \cdot \end{pmatrix} \in \mathbb{R}^{4 \times 4}.$$

Indique cuál de los siguientes es el elemento u_{11} de la matriz triangular superior U que se obtiene:

- (a) $u_{11} = 1/5$;
- (b) $u_{11} = -5;$
- (c) $u_{11} = 1$;
- (d) ninguno de los anteriores.
- 5. Consideremos la matriz A de orden 4 definida por

$$\begin{bmatrix}
1 & -1 & 1 & 0 \\
1 & 0 & -3 & -1 \\
1 & 0 & 0 & 2 \\
1 & -1 & -2 & 3
\end{bmatrix}$$

Entonces $||A||_{\infty}$ está dada por:

- (a) 2;
- (b) 4;
- (c) 6;
- (d) ninguna de las anteriores.
- 6. El criterio

$$\|oldsymbol{x}^{(k+1)} - oldsymbol{x}^{(k)}\| < exttt{TOL}$$

con TOL un nivel de tolerancia prefijado del error y ||M|| una norma de la matriz de iteración $M = N^{-1}P$, es un buen criterio de detención para:

- (i) el método de Jacobi;
- (ii) el método de Gauss-Seidel;

La respuesta correcta es:

- (a) sólo (i);
- (b) (i) y (ii);
- (c) sólo (ii);
- (d) ninguna de las anteriores.

7. Considere la tabla

$oldsymbol{x}_i$	-2	-1	0	1	2	3
$oldsymbol{y}_i$	-1	-1	-1	3	1	1

Llamemos por ℓ_0 , ℓ_1 , ℓ_2 , ℓ_3 , ℓ_4 y ℓ_5 a sus correspondientes polinomios de Lagrange. El gráfico de $2\ell_1-\ell_3$ es:

8. La mejor aproximación, en el sentido de los mínimos cuadrados, por polinomios de la forma $a+bx^2$ del conjunto de puntos

0

2

x_i	-1.0	0.0	1.0
y_i	2.0	-1.0	3.0

está dada por:

(a)
$$-1 - \frac{7}{2}x^2$$
;

(b)
$$\frac{7}{2} - x^2$$
;

(c)
$$-1 + \frac{7}{2}x^2$$
;

(d) ninguna de las anteriores.

0

2

5

- 9. ¿Cuál de los siguientes polinomios corresponde al polinomio de interpolación de spline de los siguientes puntos: (-1,1), (0,2) y (1,0) (se consideró que la segunda derivada en los extremos es nula)?
 - (a) $q(x) = \begin{cases} -\frac{3}{4}x^3 \frac{9}{4}x^2 \frac{1}{2}x + 2, & -1 \le x \le 0\\ \frac{3}{2}x^3 3x^2 \frac{1}{2}x + 2, & 0 \le x \le 1 \end{cases}$;
 - (b) $q(x) = \begin{cases} -\frac{3}{2}x^3 3x^2 \frac{1}{2}x + 2, & -1 \le x \le 0 \\ \frac{3}{4}x^3 \frac{9}{4}x^2 \frac{1}{2}x + 2, & 0 \le x \le 1 \end{cases}$;
 - (c) $q(x) = \begin{cases} -\frac{3}{4}x^3 \frac{9}{4}x^2 \frac{1}{2}x + 2, & -1 \le x \le 0 \\ \frac{3}{4}x^3 \frac{9}{4}x^2 \frac{1}{2}x + 2, & 0 \le x \le 1 \end{cases}$;
 - (d) ninguna de las anteriores.
- 10. Considere las matrices

$$A = \begin{pmatrix} \frac{1}{100} & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & -1 & 100 & -1\\ 0 & 0 & 0 & \pi \end{pmatrix} ; \qquad A^{-1} = \begin{pmatrix} 100 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & \frac{-1}{100} & \frac{1}{100} & \frac{1}{100\pi}\\ 0 & 0 & 0 & \frac{1}{\pi} \end{pmatrix}$$

Al resolver el sistema Ax = b con $b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, en la solución se comete un error en norma

- 1, $\|\delta x\|_1$ estrictamente mayor al 1% con respecto de $\|x\|_1$, debido a un error δb en el término del lado derecho. Suponga que no hay errores en los coeficientes de la matriz ni errores de redondeo. Entonces necesariamente,
- (a) $0 < \|\delta b\|_1 < 4 \times 10^{-6}$;
- (b) $\|\delta b\|_1 > 4 \times 10^{-6}$;
- (c) $\|\delta b\|_1 = 0;$
- (d) ninguna de las anteriores.
- 11. Considere la tabla

x_i	-3	-2	-1	0	1	2	3
y_i	-1	-1	-1	a	1	1	1

- \mathcal{E} Para qué valores del parámetro a **no** existe el polinomio de interpolación de Lagrange asociado a dicha tabla ?.
- (a) a = 0;
- (b) a = -1;
- (c) a = 1;
- (d) ninguna de las anteriores.

Tema 4 6

12. Dado el siguiente sistema de ecuaciones lineales:

$$\begin{pmatrix} 4 & -1 & 0 & -1 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ -1 & 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 3 \\ 0.5 \end{pmatrix}.$$

Considere las siguientes iteraciones:

$$\begin{array}{l} \text{(i) resolver} \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & -1 & 0 \end{array} \right) \left(\begin{array}{c} x_1^{k+1} \\ x_2^{k+1} \\ x_3^{k+1} \\ x_4^{k+1} \end{array} \right) = \left(\begin{array}{ccccc} -4 & 1 & 0 & 1 \\ 0 & -4 & 1 & 0 \\ 0 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 \end{array} \right) \left(\begin{array}{c} x_1^k \\ x_2^k \\ x_3^k \\ x_4^k \end{array} \right) + \left(\begin{array}{c} -1 \\ 0 \\ 3 \\ 0.5 \end{array} \right);$$

$$\text{(ii) resolver} \left(\begin{array}{cccc} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array} \right) \left(\begin{array}{c} x_1^{k+1} \\ x_2^{k+1} \\ x_3^{k+1} \\ x_4^{k+1} \end{array} \right) = \left(\begin{array}{ccccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array} \right) \left(\begin{array}{c} x_1^k \\ x_2^k \\ x_3^k \\ x_4^k \end{array} \right) + \left(\begin{array}{c} -1 \\ 0 \\ 3 \\ 0.5 \end{array} \right);$$

$$(iii) \ \ \text{resolver} \left(\begin{array}{cccc} 4 & 0 & 0 & 0 \\ -1 & 4 & 0 & 0 \\ 0 & -1 & 4 & 0 \\ -1 & 0 & -1 & 4 \end{array} \right) \left(\begin{array}{c} x_1^{k+1} \\ x_2^{k+1} \\ x_3^{k+1} \\ x_4^{k+1} \end{array} \right) = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right) \left(\begin{array}{c} x_1^k \\ x_2^k \\ x_3^k \\ x_4^k \end{array} \right) + \left(\begin{array}{c} -1 \\ 0 \\ 3 \\ 0.5 \end{array} \right).$$

Son convergentes:

- (a) Sólo (i) y (ii);
- (b) Sólo (ii) y (iii);
- (c) Sólo (i) y (iii);
- (d) ninguna de las anteriores.
- 13. Dados dos vectores x e y de la misma longitud m, el comando Matlab polyfit determina los coeficientes c_i del polinomio de grado n

$$p(x) = c_1 x^n + c_2 x^{n-2} + \dots + c_n x + c_{n+1},$$

cuya gráfica ajusta los puntos $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$, por:

- (a) interpolación cuando m = n + 1;
- (b) cuadrados mínimos cuando m = n + 1;
- (c) interpolación cuando n m = 1;
- (d) ninguna de las anteriores.

Tema 4 7

14. Considere los siguientes datos:

x	1	2	3
f(x)	2	-4	6

y la función definida por tramos:

$$s(x) = \begin{cases} x^3 + 1 & , & 0 \le x \le 1, \\ -x^3 + x + 2 & , & 1 < x \le 2, \\ 2x^2 - 12 & , & 2 < x \le 3. \end{cases}$$

Entonces, se tiene:

- (a) la función s(x) es una spline cúbica debido a que en cada tramo la función es un polinomio de grado a lo mas tres y además interpola a la función f;
- (b) la función s(x) es una interpolada de f, pero no es una spline cúbica debido a que en el intervalo (2,3], s(x) es un polinomio de grado 2;
- (c) la función s(x) es una spline cúbica natural;
- (d) ninguna de las anteriores.
- 15. Es sabido que las potencias de la razón áurea $r^n = \left(\frac{\sqrt{5}-1}{2}\right)^n$ verifican la relación de recurrencia: $r^{n+1} = r^{n-1} r^n$. Esto nos permite generar dichas potencias mediante el algoritmo implementado en Matlab

r=zeros(1,100);
r(1)=1;
r(2)=(sqrt(5)-1)/2;
for n=2:100

$$r(n+1)=r(n-1)-r(n)$$
;
end

que nos entrega como resultado r(84)=-8.718579874757182. A partir del programa Matlab y este resultado podemos afirmar que:

- (a) no se puede opinar, pues se desconoce el error;
- (b) el algoritmo esta mal programado;
- (c) el algoritmo es inestable;
- (d) ninguna de las anteriores.