Álgebra Clase 10

Tomás Ricardo Basile Álvarez 316617194

12 de octubre de 2020

■ Ejercicio 10.12

a) Encuentra un grupo infinito G y $H \leq G$ tales que $[G:H] < \infty$

Sea $G = (\mathbb{Z}, +)$ y sea $H = \{..., -4, -2, 0, 2, 4, ...\}$ el subconjunto formado por los múltiplos de 2. Vemos que H es un subgrupo de G porque es cerrado bajo sumas y cerrado bajo inversos.

Ahora bien, las clases laterales (derechas) de H son $H = \{... -4, -2, 0, 2, 4, ...\}$ y $H + 1 = \{..., -3, -1, 1, 3, ...\}$

Vemos que estas dos clases derechas forman juntas a todo G. Por lo que ya no podemos tener más clases laterales (porque deben de ser disjuntas entre sí) y concluimos que [G:H]=2.

b) Encuentra un grupo G y $H \leq G$ tales que $[G:H] = \infty$

Sea $G = GL_2(\mathbb{R})$ el grupo de matrices de 2×2 invertibles con entradas reales. Y sea H el conjunto de matrices con determinante igual a 1. Hemos probado ya en otros ejercicios que $H \leq G$.

Ahora bien, las clases laterales de H son los conjuntos de la forma $Ha = \{ha | h \in H\}$ que se consiguen a partir de una matriz $a \in GL_2(\mathbb{R})$

Vemos que si a es una matriz de determinante $\det(a) \in \mathbb{R}$, entonces el grupo Ha se compone de puras matrices de determinante $\det(a)$ (porque $\det(ha) = \det(h) \det(a) = 1 \det(a)$).

Entonces, para cada número real $d \in \mathbb{R} - \{0\}$, podemos tomar una matriz a_d con determinante d y construir la clase lateral Ha_d . Esta clase se compondrá de puras matrices de determinante d y nada más. Por lo que luego podemos construir otra clase lateral usando una matriz con determinante $d' \neq d$ y será distinta a la clase Ha_d y así sucesivamente . Entonces hay por lo menos tantas clases laterales de H como números reales.

a) Todo subgrupo de Q_8 es isomorfo a $\mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2$ o a \mathbb{Z}_4

En algún ejercicio habíamos calculado todos los subgrupos de Q_8 y se podría ir uno a uno probando que son isomorfos a alguno de los grupos mencionados.

Sin embargo, esto no es necesario. Sabemos que los subgrupos de Q_8 deben de tener una cardinalidad que divida a 8, es decir, cardinalidad 2 o 4.

Si un subgrupo tiene cardinalidad 2, entonces por la tabla vista en clase, es isomorfo a \mathbb{Z}_2 . Si tiene cardinalidad 4, entonces es isomorfo a \mathbb{Z}_4 o a $\mathbb{Z}_2 \times \mathbb{Z}_2$. Y ya se probó entonces el resultado.

c) El grupo $GL_2(\mathbb{Z}_2)$ es isomorfo a $D_{2(3)}$

Como vimos en la clase 6, este grupo está formado por las 6 matrices:

$$\begin{pmatrix} \overline{1} & \overline{0} \\ \overline{0} & \overline{1} \end{pmatrix}, \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{0} \end{pmatrix}, \begin{pmatrix} \overline{1} & \overline{0} \\ \overline{1} & \overline{1} \end{pmatrix}, \begin{pmatrix} \overline{1} & \overline{1} \\ \overline{1} & \overline{0} \end{pmatrix}, \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{1} \end{pmatrix}, \begin{pmatrix} \overline{1} & \overline{1} \\ \overline{0} & \overline{1} \end{pmatrix}$$

Entonces por la tabla que construimos en clase, sabemos que tiene que ser isomorfo a \mathbb{Z}_6 o a $D_{2(3)}$.

Sin embargo, \mathbb{Z}_6 es claramente abeliano, pero vemos ahora que $GL_2(\mathbb{Z}_2)$ no lo es, pues:

$$\begin{pmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{0} \end{pmatrix} \begin{pmatrix} \overline{1} & \overline{0} \\ \overline{1} & \overline{1} \end{pmatrix} = \begin{pmatrix} \overline{1} & \overline{1} \\ \overline{1} & \overline{0} \end{pmatrix} \neq \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{1} \end{pmatrix} = \begin{pmatrix} \overline{1} & \overline{0} \\ \overline{1} & \overline{1} \end{pmatrix} \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{0} \end{pmatrix}$$

Sin embargo, en el ejercicio 7.15 se pedía demostrar que si dos grupos son isomorfos y uno es abeliano, entonces también lo es el otro. Como $GL_2(\mathbb{Z}_2)$ no es abeliano, no puede ser isomorfo a \mathbb{Z}_6 que sí lo es. Y por eliminación, concluimos que $GL_2(\mathbb{Z}_2)$ es isomorfo a $D_{2(3)}$.

e) El grupo S_3 es isomorfo a $D_{2(3)}$

Vimos ya que el grupo S_3 tiene 3! = 6 elementos. Por lo que la tabla que tenemos de isomorfismos nos dice que debe de ser isomorfo a $D_{2(3)}$ o a \mathbb{Z}_6 .

Podemos ver ahora que S_3 no es abeliano, pues:

$$(2\ 1)(3\ 2) = (1\ 2\ 3) \neq (1\ 3\ 2) = (3\ 2)(2\ 1)$$

Por el mismo argumento del inciso anterior, S_3 tendría que ser abeliano para ser isomorfo a \mathbb{Z}_6 que es abeliano. Por eliminación, concluimos que S_3 es isomorfo a $D_{2(3)}$

f) Todo grupo no abeliano de orden ≤ 7 es un grupo diédrico

G	1	2	3	4	5	6	7	2p
$G \cong$	{e}	\mathbb{Z}_2	\mathbb{Z}_3	$\mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_2$	\mathbb{Z}_5	$D_{2(3)}, \mathbb{Z}_6$	\mathbb{Z}_7	$\mathbb{Z}_{2p}, D_{2(p)}$

En la tabla vemos todos los grupos de orden ≤ 7 . De estos grupos, los \mathbb{Z}_n son abelianos. También $\mathbb{Z}_2 \times \mathbb{Z}_2$ es abeliano (porque $(\overline{a_1}, \overline{a_2}) + (\overline{b_1}, \overline{b_2}) = (\overline{a_1} + \overline{b_1}, \overline{a_2} + \overline{b_2}) = (\overline{a_1} + \overline{b_1}, \overline{a_2} + \overline{b_2}) = (\overline{b_1} + \overline{a_1}, \overline{b_2} + \overline{a_2}) = (\overline{b_1}, \overline{b_2}) + (\overline{a_1} + \overline{a_2})$

Y entonces, las únicas opciones que quedan son $D_{2(p)}$ y $D_{2(3)}$ que son dihédricos

g) Enlista todos los grupos de orden 8 que conozcas ¿Son no-isomorfos entre sí?

Se me ocurren:

- El grupo dihédrico $D_{2(4)}$
- El grupo de los cuaterniones Q_8
- El grupo Z_8
- El grupo de las raíces octavas complejas de 1 (que denotaré por V_8)
- El grupo $\mathbb{Z}_4 \times \mathbb{Z}_2$
- $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

De estos grupos, se puede ver que V_8 es isomorfo a \mathbb{Z}_8 . Esto porque en V_8 podemos considerar al elemento $e^{\pi/4}$ y todas las demás raíces octavas de 1 son de la forma $e^{2\pi k/8} = e^{\pi k/4} = (e^{\pi/4})^k$ con k = 0, 1, ..., 7, Por lo que todos los elementos de V_8 son potencias de $e^{1/4 \pi}$. Y entonces el grupo es cíclico y por lo tanto isomorfo a Z_8 .

Por otro lado, podemos ver que $D_{2(4)}$ no es isomorfo a ningún otro grupo ya que: No es isomorfo a Q_8 porque $D_{2(4)}$ tiene dos elementos de orden 2 (r^2, s) mientras que Q_8 tiene solamente uno (-E) por lo que no tienen la misma estructura. No es isomorfo a $\mathbb{Z}_8, \mathbb{Z}_4 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ porque cada uno de estos es abeliano pero $D_{2(4)}$ no lo es.

Lo mismo sucede con Q_8 , que al ser no abeliano y no ser isomorfo con $D_{2(4)}$, no es isomorfo con ningún elemento de la lista.

Vemos ahora que $\mathbb{Z}_4 \times \mathbb{Z}_2$ no es isomorfo a \mathbb{Z}_8 . Esto se puede ver porque $(\overline{0}, \overline{1})$ y $(\overline{2}, \overline{0}) \in \mathbb{Z}_4 \times \mathbb{Z}_2$ son ambos elementos de orden 2.

Sin embargo, \mathbb{Z}_8 solamente tien a 4 como elemento de orden 2.

Si fueran isomorfos, tendrían la misma cantidad de elementos de orden 2.

Tambień $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ tiene por lo menos 2 elementos de orden 2, en particular $(\overline{1}, \overline{0}, \overline{0}), (\overline{0}, \overline{1}, \overline{0})$ por lo que no es isomorfo a \mathbb{Z}_8 .

Por último, $\mathbb{Z}_4 \times \mathbb{Z}_2$ tiene al elemento $(\overline{1}, \overline{0})$ que es de orden 4. Mientras que $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ claramente no tiene elementos de orden 4. Por lo que no son isomorfos.

h) Enlista los grupos de orden 9 que conozcas

Solamente se me ocurren los siguientes:

- \mathbb{Z}_9
- $\mathbb{Z}_3 \times \mathbb{Z}_3$
- V_9 el conjunto de raíces novenas de 1.

Por las mismas razones del inciso anterior, V_9 es isomorfo a \mathbb{Z}_9 .

Ahora, vemos que $(\overline{1}, \overline{0}), (\overline{0}, \overline{1}), (\overline{1}, \overline{1}) \in \mathbb{Z}_3 \times \mathbb{Z}_3$ son tres elementos de orden 3 en $\mathbb{Z}_3 \times \mathbb{Z}_3$.

Sin embargo, los únicos elementos de orden 3 en \mathbb{Z}_9 son los dos elementos $\overline{3}, \overline{6}$.

Si fueran isomorfos tendrían la misma cantidad de elementos de orden 3, por lo que no lo son.