蚁群优化算法 Ant Colony Optimization

群智能算法

由简单智能的个体通过某种形式的聚集协同而表现出智能行为。通过模仿生物界的群体协作行为而提出的仿生类随机搜索算法。

- →人工蜂群算法
- ⇨细菌觅食算法
- ⇒萤火虫算法
- □粒子群算法
- **◇人工鱼群算法**

1. 蚁群算法起源

- 计算智能领域有两种基于群智能的算法: 蚁群算法和粒子群算法, 前者模仿蚂蚁觅食, 后者模仿鸟类觅食
- 量早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。 经过30年的发展,蚁群算法在理论以及应用研究上已经得 到巨大的进步。

Macro Dorigo

Gambardella

蚁群算法的发展

蚁群算法概述

- 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法, 是一种对自然界蚂蚁的觅食行为模拟而得到的一种仿生算 法(蚂蚁有能力在没有任何提示的情形下找到从巢穴到食物 源的最短路径。
- 当蚂蚁寻找食物,会释放一种挥发性分泌物pheromone(信息素),如果 其中一条道路比原来的其他道路更短,信息素的挥发相对变慢,该道 路上的信息素浓度会越来越大,后来的蚂蚁选择该道路的概率也就越高, 最终找到最短路径

蚁群算法原理

>如何找到最短路径?

- 信息素:信息素多的地方显然经过这里的蚂蚁多, 因而会有更多的蚂蚁聚集过来。
- 正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。

- ▶ 蚂蚁从A点出发到D点觅食,
- ➤ 随机从ABD或ACD中选择一条路。
- ▶则经过8个时间单位后,如下图所示:
- ➤ ABD路线的蚂蚁到达D点,ACD路线的蚂蚁到达C点。

蚂蚁出发后8个时间单位情形.png

▶ 再过8个时间单位: ABD路线的蚂蚁回到A点, ACD路线的蚂蚁到达D点。

蚂蚁出发后16个时间单位情形.png

- ➤ 经过32个单位时间后: ABD路径上的蚂蚁往返两趟, ACD往返一趟,
- ▶那么ABD与ACD路径上的信息素浓度比值为2:1。
- ➤ 根据信息素的引导: 接下来ABD路径就有2只蚂蚁选择,ACD路径仍然为1只,
- ▶经过32个单位时间后信息素就会达到3:1。
- ➤ 因此会有越来越多的蚂蚁选择ABD,ACD逐渐被放弃, 这就形成了正反馈。

▶自然蚂蚁的智能特点

人工蚁群和自然蚁群的区别:

- ▶ 人工蚁群有一定的记忆能力,能够记忆已经访问过的节点;
- ➤ 人工蚁群选择下一条路径的时候是按一定算法规律有意识 地寻找最短路径,而不是盲目的。例如在TSP问题中,可以 预先知道当前城市到下一个目的地的距离。

蚁群觅食	蚁群优化算法
蚁群	搜索空间的一组有效解 (表现为种群规模N)
觅食空间	问题的搜索空间(表现为维数D)
信息素	信息素浓度变量
蚁巢到食物的一条路径	一个有效解
找到的最短路径	问题的最优解 https://blog.csdn.net/qq_38048756

□ 旅行商问题

一位商人从自家出发,希望能找到一条最短路径,途 径给定集合的所有城市最后返回家乡,并且每个城市 都被访问且仅访问一次。

10城市TSP问题

30城市TSP问题

20城市TSP问题

48城市TSP问题

TSP问题数学描述

设 $C = \{c_1, c_2, ..., c_n\}$ 是**n**个城市的集合, $L = \{l_{ij} | c_i, c_j \subset C\}$ 是集合**C**中元素两两连接的集合, $d_{ij}(i, j = 1, 2, ..., n)$ 是 l_{ij} 的距离,

目标函数表示为

$$f(\pi) = \min\{\sum_{i=1}^{n-1} d_{\pi_{(i)}\pi_{(i+1)}} + d_{\pi_{(n)}\pi_{(1)}}\}$$

AS算法求解TSP问题有两大步骤:

路径构建与信息素更新方式。

路径构建

每个蚂蚁都随机选择一个城市作为其出发城市,并维护一个<mark>路径记忆</mark>向量,用来存放该蚂蚁依次经过的城市。

蚂蚁在构建路径的每一步中,按照一个随机比例规则选 择下一个要到达的城市。

•随机比例规则

$$P_{ij}^{k}(t) = \begin{cases} \frac{\left[\tau_{ij}(t)\right]^{\alpha} \times \left[\eta_{ij}(t)\right]^{\beta}}{\sum_{k \in allowed_{k}} \left[\tau_{ik}(t)\right]^{\alpha} \times \left[\eta_{ik}(t)\right]^{\beta}} & if \quad j \in allowed_{k} \\ 0 & others \end{cases}$$

- i、j分别为起点和终点;
- $\eta_{ij} = 1/d_{ij}$ 为能见度,是两点i、j路距离的倒数;
- $\tau_{ij}(t)$ 为时间 t 时由 i 到 j 的信息素强度;
- allowed, 为尚未访问过的节点集合;
- \bullet α, β 为两常数,分别是信息素和能见度的加权值。

信息素更新

初始化信息素浓度

$$\tau_{ij} = C, \quad \forall i, j$$

如果C太小,算法容易早熟,蚂蚁会很快的全部集中到一条局部最优的路径上。反之,如果C太大,信息素对搜索方向的指导作用太低,也会影响算法性能。

$$\tau_{ij}(t) = (1 - \rho)\tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

m为蚂蚁个数,0<ρ<=1为信息素的蒸发率,在AS中通常设置为0.5, $\Delta \tau_{ij}^k$ 为第k只蚂蚁在路径i到j所留下來的信息素

算例1

四个城市的TSP问题,距离矩阵和城市图示如下:

$$D = (d_{ij}) = \begin{pmatrix} 0 & 3 & 1 & 2 \\ 3 & 0 & 5 & 4 \\ 1 & 5 & 0 & 2 \\ 2 & 4 & 2 & 0 \end{pmatrix}$$

假设共m=3只蚂蚁,参数 $\alpha=1$, $\beta=2$, $\rho=0.5$

步骤1 初始化

首先使用贪婪算法得到路径的(ACDBA),则 $C_{nn}=1+2+4+3=10$,求得 $\tau_0=m/C_{nn}=0.3$

$$\tau(0) = \begin{pmatrix} 0 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0 \end{pmatrix}$$

步骤2 为每个蚂蚁随机选择出发城市,假设蚂蚁1选择城市A,蚂蚁2选择城市B,蚂蚁3选择城市D,

步骤3.1 为每个蚂蚁选择下一访问城市, 仅以蚂蚁1为例

当前城市i=A,可访问城市集合 $J_1(i)=\{B,C,D\}$

计算蚂蚁1访问各个城市的概率

$$A \Longrightarrow \begin{cases} B: \tau_{AB}^{a} \times \eta_{AB}^{\beta} = 0.3 + (1/3)^{2} = 0.033 \\ C: \tau_{AC}^{a} \times \eta_{AC}^{\beta} = 0.3^{1} + (1/1)^{2} = 0.300 \\ D: \tau_{AD}^{a} \times \eta_{AD}^{\beta} = 0.3^{1} + (1/2)^{2} = 0.075 \end{cases} \qquad p(B) = 0.033/(0.033 + 0.3 + 0.075) = 0.081$$

$$p(C) = 0.3/(0.033 + 0.3 + 0.075) = 0.74$$

$$p(D) = 0.075/(0.033 + 0.3 + 0.075) = 0.18$$

用轮盘赌法选择下一个访问城市 假设产生的随机数q=0.05,则蚂蚁1会 选择城市B

同样,假设蚂蚁2选择城市D,蚂蚁3选择城市A。tps://blog.csdn.net/qq_38048756

步骤3.2 为每个蚂蚁选择下一访问城市, 仅以蚂蚁1为例

当前城市i=B,路径记忆向量 $R^i=(AB)$,可访问城市集合 $J_1(i)=\{C,D\}$

计算蚂蚁1访问C.D城市的概率:

$$B \Rightarrow \begin{cases} C : \tau_{BC}^{a} \times \eta_{BC}^{\beta} = 0.3^{1} + (1/5)^{2} = 0.012 \\ D : \tau_{BD}^{a} \times \eta_{BD}^{\beta} = 0.3^{1} + (1/4)^{2} = 0.019 \end{cases}$$
$$p(C) = 0.012/(0.012 + 0.019) = 0.39$$
$$p(D) = 0.019/(0.012 + 0.019) = 0.61$$

用轮盘赌法选择下一个访问城市。假设产生的随机数q=0.67,则蚂蚁1会选择城市D

同样, 假设蚂蚁2选择城市C, 蚂蚁3选择城市D。

此时,所以蚂蚁的路径都已经构造完毕

步骤4 信息素更新

计算每只蚂蚁构建的路径长度; C1=3+4+2+1=10; C2=4+2+1+3=10; C3=2+1+5+4=12, 更新每条边上的信息素

$$\tau_{AB} = (1 - \rho) \times \tau_{AB} + \sum_{k=1}^{3} \Delta \tau_{AB}^{k} = 0.5 \times 0.3 + (1/10 + 1/10) = 0.35$$

$$\tau_{AC} = (1 - \rho) \times \tau_{AC} + \sum_{k=1}^{3} \Delta \tau_{AC}^{k} = 0.5 \times 0.3 + (1/12) = 0.16$$

步骤5

如果满足结束条件,则输出全局最优结果并结束程序,否则,则转向步骤2继续执行。 https://blog.csdn.net/qc_38048756

蚂蚁系统数学模型(一)

设n表示TSP规模,

i和j是集合C中的两个元素,

m为蚁群蚂蚁总数,

 $b_i(t)$ 表示t时刻位于i的蚂蚁数目,则 $m = \sum_{i=1}^n b_i(t)$ 设 $\tau_{ii}(t)$ 为t时刻路径(i,j)上的信息素量,

 $\Gamma = \{\tau_{ij}(t) \mid c_i, c_j \subset C\}$ 是t时刻集合C中所有信息素的集合。

初始时刻,各条路径上的信息量是相同的。

蚂蚁k(k=1,2,...,m) 在运动过程中有三个因素决定

其转移方向信息素量 $\tau_{ij}(t)$,启发式信息 $\eta_{ij}(t)$ 和禁忌表 $tabu_k$

 $\eta_{ij}(t)$ 为启发函数,其表达式一般表示为 $\eta_{ij}(t) = \frac{1}{d_{ij}}$;

禁忌表 $tabu_k$ 用于记录蚂蚁k当前走过的城市,

 $allowed_k = \{C - tabu_k\}$ 表示蚂蚁k下步允许选择的城市。

蚂蚁系统数学模型 (三)

$p_{ij}^{k}(t)$ 表示蚂蚁k在t时刻由i转到j的概率

$$p_{ij}^{k}(t) = \begin{cases} \frac{\left[\tau_{ij}(t)\right]^{\alpha} \cdot \left[\eta_{ij}(t)\right]^{\beta}}{\sum_{s_{k} \subset allowed_{k}} \left[\tau_{is}(t)\right]^{\alpha} \cdot \left[\eta_{is}(t)\right]^{\beta}}, & if \ j \notin allowed_{k} \\ 0, & otherwise \end{cases}$$

上式中, α为信息素因子, β为启发式因子, 用于控制信息素浓度和启发式信息作用的权重关系。值越大表示重要性越大

信息素更新公式

$$\tau_{ij}(t+n) = \rho \cdot \tau_{ij}(t) + \Delta \tau_{ij}; \qquad \Delta \tau_{ij} = \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

- 1. 原有信息素的挥发 通常的做法是设置信息持久率 $\rho(0 < \rho \le 1)$ 让所有 $\tau_{ij}(t)$ 乘以 ρ 。
- 2. 新生信息素的释放 AS算法曾有过三种信息素释放策略 Ant-Density模型: $\Delta \tau_{ij}^k = Q_Q$ 若蚂蚁k在t到t+1之间经过(i,j) Ant-Quantity模型: $\Delta \tau_{ij}^k = \frac{Q}{I_k}$ 若蚂蚁k在t到t+1之间经过(i,j) Ant-Cycle模型: $\Delta \tau_{ij}^k = \frac{Q}{I_k}$ 若蚂蚁k在本次循环中经过(i,j)

(二)参数含义及符号

```
m ——蚂蚁数量:
k ——蚂蚁编号:
t ——时刻:
n ——城市数:
d_{ii} ——城市 (i, j)之间的距离;
\eta_{ii} ——启发式因子(能见度),反映蚂蚁由
     城市i转移到城市j的启发程度;
\tau_{ii} ——边 (i, j) 上的信息素量;
```

- $\Delta \tau_{ii}$ ——本次迭代边(i,j)上的信息素增量;
- $\Delta \tau_{ij}^{k}$ ——第k 只蚂蚁在本次迭代中留在边 (i, j) 上的信息素量;
 - ho ——信息素蒸发(或挥发)系数,
- $1-\rho$ ——持久性(或残留)系数, $0<\rho<1$;
- $P_{ij}^{k}(t)$ ——时刻 t 蚂蚁 k 由城市 i 转移到城市 j的 概率 (转移概率);
- $tabu_k$ ——蚂蚁 k 的禁忌表。

(三) 计算公式

1、转移概率 $p_{ij}^{k}(t)$ 计算公式:

$$p_{ij}^{k}(t) = \begin{cases} \frac{\left[\tau_{ij}(t)\right]^{\alpha} \cdot \left[\eta_{ij}(t)\right]^{\beta}}{\sum_{s \in J_{k}(i)} \left[\tau_{is}(t)\right]^{\alpha} \cdot \left[\eta_{is}(t)\right]^{\beta}}, & \text{如果} j \in J_{k}(i) \\ \mathbf{0}, & \text{否则} \end{cases}$$

 α ——信息素的相对重要程度;

β ——启发式因子的相对重要程度;

 $J_k(i)$ ——蚂蚁 k下一步允许选择的城市集合。

2、启发式因子计算公式: $\eta_{ij} = \frac{1}{d_{ii}}$

3、信息素计算公式

当所有蚂蚁完成1次周游后,各路径上的信息素为:

$$\tau_{ij}(t+n) = (1-\rho) \cdot \tau_{ij}(t) + \Delta \tau_{ij}$$

$$\Delta \tau_{ij} = \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

$$\Delta \tau_{ij}^{k} = \begin{cases} \frac{Q}{L_{k}}, & \text{ 若蚂蚁}_{k} \text{在本次周游中经过边 } (i, j) \\ 0, & \text{ 否则} \end{cases}$$

Q ——正常数,

 L_k ——蚂蚁 k在本次周游中所走路径的长度。

```
(1)初始化 随机放置蚂蚁,为每只蚂蚁建立禁忌表,
(2)迭代过程
  k=1
  while k=〈Count do (执行迭代)
     for i = 1 to m do (对m只蚂蚁循环)
      for j = 1 to n - 1 do (对n个城市循环)
        根据蚂蚁行动原则 选择下一个城市j并将j置入禁忌表,
    end for
    end for
    计算每只蚂蚁经过的路径长度
    依据信息素更新方法更新所有路径上的信息量;
    k = k + 1:
  end while
(3)输出结果,结束算法.
```

算法流程

蚁群算法求解TSP问题

- ▶下面以TSP为例说明基本蚁群算法模型。
 - ◆首先将m只蚂蚁随机放置在n个城市,位于城市i的第k只蚂蚁选择下一个城市j的概率为:

$$P^{k}(i,j) = \begin{cases} \frac{\left[\tau(i,j)\right]^{\alpha} \cdot \left[\eta(i,j)\right]^{\beta}}{\sum_{s \notin tabu_{k}} \left[\tau(i,s)\right]^{\alpha} \cdot \left[\eta(i,s)\right]^{\beta}}, & if \ j \notin tabu_{k} \\ 0, & otherwise \end{cases}$$
(1)

◆ $\tau(i,j)$ 表示边(i, j)上的信息素浓度; $\eta(i,j) = 1/d(i,j)$ 是启发信息,d是城市i和j之间的距离; α和β反映了信息素与启发信息的相对重要性; $tabu_k$ 表示蚂蚁k已经访问过的城市列表。

◆ 当所有蚂蚁完成周游后,按以下公式进行信息素更新。

$$\tau_{ij}(t+n) = \rho \cdot \tau_{ij}(t) + \Delta \tau_{ij}$$

$$\Delta \tau_{ij} = \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$
(2)

◆其中, ρ为小于1的常数,表示信息的持久性。

$$\Delta \tau_{ij}^{k} = \begin{cases} \frac{Q}{L_{k}} & ij \in l_{k} \\ 0 & otherwise \end{cases}$$
 (3)

◆其中,Q为常数, L_k 表示第k只蚂蚁在本次迭代中走过的路径长度。

实现过程

```
      Step 1 初始化

      置 t: =0; {t表示时间}

      置 NC: =0; {NC 为迭代次数}

      对每条边 l<sub>y</sub> 设置 τ<sub>ij</sub>(t) = C, Δτ<sub>ij</sub>(t) = 0; 将 m 只蚂蚁随机放到 n 个城市上;

      Step 2 置 s: =1; {s 为禁忌表中的索引}

      for k: =1 to m do

      将蚂蚁 k 的起点城市加入到禁忌表 tabu<sub>k</sub>;

      end for
```

Step 3 while (禁忌表 tabu, 不满)

置 s: =s+1;

for k: =1 to m do

按式(2.1)计算转移概率 $p_{ij}^k(t)$, 根据赌轮方法选择下一个要到的

城市 j; {在时刻 t 时,蚂蚁 k 在城市 $i = tabu_k(s-1)$ }

蚂蚁 k 移到城市 j;

将城市j加入到 $tabu_k$;

end for end while

Step 4 for k: =1 to m do

蚂蚁 k 从 $tabu_k(n)$ 移到 $tabu_k(1)$;

计算蚂蚁 k 走过的周游长度 L_k :

更新当前的最优路径

end for

for 每条边 l_{ij}

for k = 1 to m do

$$\Delta \tau_{ij}^{k} = \begin{cases} \frac{Q}{L_{k}}, & \text{ 若蚂蚁}_{k} \text{在本次周游中经过边}_{l_{ij}} \\ 0, & \text{ 否则} \end{cases}$$

$$\Delta \tau_{ij} = \Delta \tau_{ij} + \Delta \tau_{ij}^{k};$$

end for end for

```
Step 5 for 每条边l_{ij}按式(2.2)计算\tau_{ij}(t+1);
   置 t: =t+1;
   置 NC: =NC+1;
   for 每条边l_{ij},置\Delta \tau_{ij}(t) = 0
Step 6 if (NC < NC<sub>MAX</sub>) and (没有出现停滞情况) then
          清空所有的禁忌表;
          goto step 2
       else
          打印最优路径;
          算法停止:
```

end

算 例2

已知资料表

	A	В	C	D	E
A	0	2	10	8	3
В	1	0	2	5	7
C	9	1	0	3	6
D	10	4	3	0	2
E	2	7	5	1	0

参数设置m=5, $\alpha=1$, $\beta=1$, $\rho=0.5$, Q=100, $\tau_{ij}(0)=2$

$$p_{ij}^{k}(t) = \begin{cases} \frac{\left[\tau_{ij}(t)\right]^{\alpha} \cdot \left[\eta_{ij}(t)\right]^{\beta}}{\sum_{s \in J_{k}(i)} \left[\tau_{is}(t)\right]^{\alpha} \cdot \left[\eta_{is}(t)\right]^{\beta}} = \frac{X}{Y}, & \text{如果} j \in J_{k}(i) \\ 0, & \text{否则} \end{cases} \qquad \eta_{ij} = \frac{1}{d_{ij}}$$

	4		1 - le	I (i)	T (t)	nk (4)	7	, k	T 7
k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_k	Δau_{ij}^{κ}	Y
		$oxed{\mathbf{A}}$	A	B C	2 2	0.47 0.095			2.117
			7 .	D E	2 2	0.118 0.315			
		В	A,B	C D E	2 2	0.593			1.686
1	0				2	0.169	11	9.1	
		С	A,B,C	D E	2 2	0.67 0.33			1.0
		D	A,B,C,D	E	2	1.0			1.0
		E	A,B,C,D, E	空集	-	-			

		1	Τ	<u> </u>					
k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_{k}	Δau_{ij}^k	Y
		В	В	A C D E	2 2 2 2	0.54 0.27 0.11 0.08			3.686
2	0	A	B,A	C D E	2 2 2	0.18 0.22 0.60	9	11.1	1.117
		E	B,A,E	C D	2 2	0.17 0.83		• • • • • • • • • • • • • • • • • • • •	2.4
		D	B,A,E,D	С	2	1.0			0.667
		С	B,A,E,D, C	空集	-	-			

						1			
k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_{k}	Δau_{ij}^{k}	Y
		С	С	A B D E	2 2 2 2	0.069 0.62 0.207 0.103			3.222
3	0	В	C,B	A D E	2 2 2	0.745 0.149 0.106	9	11.1	2.686
		A	C,B,A	D E	2 2	0.273 0.727			0.917
		E	C,B,A,E	D	2	1.0			2.0
		D	C,B,A,E, D	空集	-	-			

					I					1
k	t	i	tabu _k	$J_{_k}(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_{k}	Δau_{ij}^{k}	Y	
		D	D	A B C E	2 2 2 2	0.084 0.211 0.287 0.422			2.367	
4	0	E	D,E	A B C	2 2 2	0.593 0.169 0.237	11	9.1	1.686	
•		A	D,E,A	B C	2 2	0.83 0.17	•••		1.2	
		В	D,E,A,B	С	2	1.0			1.0	
		С	D,E,A,B,	空集	-	-				

						k			
k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_k	Δau_{ij}^{k}	Y
				A	2	0.271			
		E	E	В	2	0.078			3.686
		-	_	С	2	0.109			0.000
				D	2	0.543			
				Α	2	0.146			
		D	E,D	В	2	0.366			1.367
5	0			С	2	0.488	9	11.1	
			ED 0	Α	2	0.1			0.000
		C	E,D,C	В	2	0.9			2.222
		В	E,D,C,B	Α	2	1.0			2.0
		A	E,D,C,B,	空集	-	-			

信息素矩阵 $\tau_{ij}(0+5)$

	A	В	C	D	E
A	0	9.1+9.1+1 =19.2	1	1	11.1+11.1+11.1 +1 =34.3
В	11.1+11.1+11.1 +1=34.3	0	9.1+9.1+1 =19.2	1	1
C	1	11.1+11.1+ 11.1+1 =34.3	0	9.1+9.1+1 =19.2	1
D	1	1	11.1+11.1+ 11.1+1 =34.3	0	9.1+9.1+1 =19.2
E	9.1+9.1+1 =19.2	1	1	11.1+11.1+ 11.1+1 =34.3	0

						k ()			
k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_k	Δτ	ij Y
		A	A	ВСОЕ	19.2 1 1 34.3	0.45 0.005 0.006 0.538			21.258
1	5	E	A,E	B C D	1 1 34.3	0.004 0.006 0.99	9	11.1	34.643
		D	A,E,D	ВС	1 34.3	0.021 0.979			11.683
		С	A,E,D,C	В	34.3	1.0			34.3
		В	A,E,D,C, B	空集	-	-			

k	t	i	tabu _k	$J_k(i)$	$\tau_{ij}(t)$	$p_{ij}^k(t)$	L_{k}	$oxedsymbol{\Delta au_{ij}^{k}}$	Y
		В	В	A C D E	34.3 19.2 1 1	0.775 0.217 0.005 0.003			44.24
2	5	A	B,A	C D E	1 1 34.3	0.009 0.011 0.98	9	11.1	11.66
1		E	B,A,E	CD	1 34.3	0.006 0.994	•		34.5
		D	B,A,E,D	С	34.3	1.0			11.43
		С	B,A,E,D, C	空集	-	-			

k	t	ī	tabu _k	$J_k(i)$	$\tau_{ij}(t)$	$p_{ij}^k(t)$	I	A _k	V
, ,		•	tabu _k		ij (°)	Pij(t)	L_k	Δau_{ij}^k	<i>I</i>
				A	1	0.003			
		С	С	В	34.3	0.837			40.98
				D	19.2	0.156			
				E	1	0.004			
				Α	34.3	0.99			
		В	C,B	D	1	0.006			34.64
3	5			E	1	0.004	9	11.1	
		Α	C,B,A	D	1	0.011			11.56
			C,B,A	E	34.3	0.989			11.50
		E	C,B,A,E	D	34.3	1.0			34.3
		D	C,B,A,E, D	空集	-	-			

k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^k(t)$	L_k	Δau_{ij}^{k}	Y
		D	D	A B C E	1 1 34.3 19.2	0.005 0.012 0.535 0.449			21.38
4	5	С	D,C	A B E	1 34.3 1	0.003 0.992 0.005	9	11.1	34.58
	J	В	D,C,B	A E	34.3 1	0.996 0.004			34.44
		A	D,C,B,A	E	34.3	1.0			11.43
		E	D,C,B,A, E	空集	-	-			

k	t	i	tabu _k	$J_k(i)$	$ au_{ij}(t)$	$p_{ij}^{k}(t)$	L_{k}	Δau_{ij}^k	Y
				_			K	y	
				A	19.2	0.217			
		E	E	В	1	0.003			44.24
			_	С	1	0.005			
				D	34.3	0.775			
				Α	1	0.008			
		D	E,D	В	1	0.021			11.78
5	5			С	34.3	0.971	9	11.1	
		С	E,D,C	Α	1	0.003			34.41
			L,D, O	В	34.3	0.997			04.41
		В	E,D,C,B	A	34.3	1.0			34.3
		A	E,D,C,B,	空集	-	-			

至此出现了停滯现象,算法结束。

已找到最优解: AEDCBA,目标函

数值为9。

参数	参数意义	参数经验值
	影响算法搜索能力与计算量,	AS,EAS,MMAS
蚂蚁数目m	数目多,计算量大,收敛慢	m=n
	数目少,探索能力降低,早熟	ACS, m=10
信息素权重α	决定算法的搜索导向	各类ACO算法
启发信息权重 eta	lpha 越小,偏向于眼前利益	$\alpha = 1$
,	eta 越小,偏向于信息素浓度	$\beta = 2 \sim 5$
	影响蚂蚁个体间的相互影响强弱	AS,EAS $\rho = 0.5$
信息素维持因子的	ho 大,较高全局搜索,收敛慢	$\rho = 0.98$
	ho 小,信息素挥发快,易早熟	ACS $\rho = 0.9$
初始信息素量 $ au_0$	决定初始阶段探索能力	$ACS \ \tau_0 = 1 / (n \cdot L_{nn})$

四、改进的蚁群优化算法

改进的 蚂蚁算法

- △最优解保留策略蚂蚁系统(带精英策略的蚂蚁系统ASelite)
- △最大-最小蚂蚁系统 (MMAS)
- ▲基于优化排序的蚂蚁系统 (ASrank)
- ▲最优最差蚂蚁系统(BWAS)
- △一种新的自适应蚁群算法(AACA)
- △基于混合行为的蚁群算法(HBACA)

(一) 带精英策略的蚂蚁系统 ASelite

特点——在信息素更新时给予当前最优解以额外的信息素量,使最优解得到更好的利用。找到全局最优解的蚂蚁称为"精英蚂蚁"。

$$\tau_{ij}(t+n) = (1-\rho) \cdot \tau_{ij}(t) + \Delta \tau_{ij} + \Delta \tau_{ij}^*$$

$$\Delta \tau_{ij}^* = \begin{cases} \sigma \cdot \frac{Q}{L_{0}^{gb}}, & \text{若边 } ij \text{ 是当前最优解的一部分} \\ 0, & \text{否则} \end{cases}$$

 $\Delta \tau_{ij}^*$ ——精英蚂蚁在边 ij上增加的信息素量; σ ——精英蚂蚁个数;

L^{gb} ——当前全局最优解路径长度。

(二)最大最小蚂蚁系统 MMAS

- 特点 $\{ 1$ 、每次迭代后,只对最优解所属路径上的信息素更新。 $\{ 2$ 、对每条边的信息素量限制在范围 $[\tau_{min}, \tau_{max}] \}$
 - 内,目的是防止某一条路径上的信息素量远 大于其余路径,避免过早收敛于局部最优解。

关于 τ_{\min} , τ_{\min} 的取值,没有确定的方法,有的 书例子中取为0.01,10;有的书提出一个在最大 值给定的情况下计算最小值的公式。

(三) 基于优化排序的蚂蚁系统 ASrank

特点:每次迭代完成后,蚂蚁所经路径由小到大排序, 并根据路径长度赋予不同的权重,路径越短权重越大。 信息素更新时对 $\Delta \tau_{ii}^{k}$ 虑权重的影响。

(四)最优最差蚂蚁系统BWAS

特点:主要是修改了ACS中的全局更新公式,增加 对最差蚂蚁路径信息素的更新,对最差解进 行削弱,使信息素差异进一步增大。

(五)一种新的自适应蚁群算法 AACA

特点:将ACS中的状态转移规则改为自适应伪随机 比率规则,动态调整转移概率,以避免出现 停滞现象。

说明:在ACS的状态转移公式中,q是给定的常数;在AACA中,是随乎均节点分支数ANB而变化的变量。ANB较大,意味着下一步可选的城市较多, q_0 也变大,表示选择信息素和距离最好的边的可能性增大;反之减小。

(六) 基于混合行为的蚁群算法 HBACA

特点:按蚂蚁的行为特征将蚂蚁分成4类,称为4个子蚁群,各子蚁群按各自的转移规则行动,搜索路径,每迭代一次,更新当前最优解,按最优路径长度更新各条边上的信息素,如此直至算法结束。

蚂蚁行为——蚂蚁在前进过程中,用以决定其下一步移 动到哪个状态的规则集合。

1、蚂蚁以随机方式选择下一步要到达的状态。

蚂蚁行为

- 2、蚂蚁以贪婪方式选择下一步要到达的状态。
 - 3、蚂蚁按信息素强度选择下一步要到达的状态。
- 4、蚂蚁按信息素强度和城市间距离选择下一步要到达的状态。

五、蚁群算法与遗传的比较

实验结果表明:

- 1、蚁群算法所找出的解的质量最高,遗传算法次之。
- 2、蚁群算法的收敛速度快。蚁群算法之所以能够快速收敛到全局最优解,是因为该算法的个体之间不断进行信息交流和传递。单个个体容易收敛于局部最优,多个个体通过合作可以很快地收敛于解空间的最优解的附近。

(六) AS算法的优点与不足

按强的鲁棒性——稍加修改即可应用于其他问题。(鲁棒性就是系统的健壮性,用以表征控制系统对特性或参数摄动的不敏感性。)
分布式计算——本质上具有并行性。
易于与其他启发式算法结合。

不足 { 一般需要较长的搜索时间。 不足 { 容易出现停滞现象。