

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

SET C

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2023-24 (EVEN)

Test: CLA-T1 Date: 19.02.2024

Year & Sem: II Year / IV Sem Max. Marks: 50

Course Articulation Matrix: (to be placed)

00012001	Course in treatment is not process.														
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	Program Specific Outcomes		
													PSO-1	PSO-2	PSO-3
CO1	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO2	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO3	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO4	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO5	2	1	2	1	-	-	-	-		3	-	3	3	1	-

	Part - A (1 x 10 = 10 Marks)					
Insti	ructions: Answer all					
Q.	Question	Marks	BL	CO	PO	PI
No						Code
1	Number of comparisons required to search an element	1	2	1	1,4	4.4.2
	x = 18 in the list A= [5, 44, 89, 22, 18, 9, 3, 15,8]					
	using linear search					
	a) 3					
	b) 1					
	c) 4					
	d) 5					
	Ans: 5					
2	What is the time complexity of following code.	1	4	1	2,3	2.8.2
	Assume that $n > 0$					
	int segment(int n) {					
	If(n==1)					
	return 1;					
	else					
	return (n+ segment(n-1)); }					
	a) O(n)					
	b) O(log n)					
	c) $O(n^2)$					
	d) O(n!)					
	Ans: a					
3	Which of the following functions provides the	1	2	1	2	2.8.2
	maximum asymptotic complexity?					
	a) $f1(n) = n^{4}(3/2)$					
	b) $f2(n) = n^{\wedge}(\log n)$					
	c) $f3(n) = nlogn$					
	d) $f4(n) = 2^n$.					
	Ans: d.					

4	Consider the following function.	1	2	1	4	4.6.2
	int fun(int n)					
	{					
	int i,j;					
	$for(i=1; i \le n; i++)$ {					
	$for(j=1; j < n; j += i)$ {					
	printf("%d %d", i , j)					
	}}					
	}					
	a) $\Theta(n \sqrt{n})$					
	b) $\Theta(n^2)$					
	c) Θ (nlogn)					
	d) Θ (n ² logn)					
	Ans: c					
5	Derive the recurrence relation for the following code:	1	1	1	1	1.2.1
	fact (int n)	1	1	1	1	1.2.1
	$ \begin{cases} if(n==0) \end{cases} $					
	return 1;					
	else					
	return fact(n-1)*n;					
	return ract(n-1) in,					
	$A = T(n) - T(n-1) + n\Delta 2$					
	A. $T(n) = T(n-1)+n^2$ B. $T(n) = T(n)+n$					
	C. $T(n) = T(n)+n$					
	D. $T(n) = T(n-1)+1$					
	Ans: C					
6	What is the worst case time complexity of a quick sort	1	1	2	2	2.8.2
	algorithm?	1	1			2.0.2
	a) O(N)					
	b) O(N log N)					
	c) $O(N^2)$					
	d) O(log N)					
	Ans: C					
7	Which of the following sorting algorithms provide the	1	3	2	2,4	4.4.3
′	best time complexity in the worst-case scenario?	1	3		2,4	7.7.5
	a) Merge Sort					
	b) Quick Sort					
	c) Bubble Sort					
	d) Selection Sort					
	Ans: a					
8	Solve the following recurrence using Master's	1	2	2	1	1.2.1
	theorem.		_	_	1	1.2.1
	$T(n) = 4T (n/2) + n^2$					
	a) $T(n) = O(n)$					
	b) $T(n) = O(\log n)$					
	c) $T(n) = O(\log n)$					
	d) $T(n) = O(n \log n)$					
	Ans: c					
9	Apply Quick sort on a given sequence 7 11 14 6 9 4 3	1	3	2	2	2.5.2
	12. What is the sequence after first phase, pivot is first	1	3			2.3.2
	element?					
	a) 6 4 3 7 11 9 14 12					
	b) 6 3 4 7 9 14 11 12					
	<u> </u>	j		<u> </u>	<u> </u>	

	c) 7 6 14 11 9 4 3 12 d) 7 6 4 3 9 14 11 12 Ans: b					
10	What is the time complexity of Largest subarray sum problem using naïve approach a) T(n) = O(n) b) T(n) = O(log n) c) T(n) = O(n ² log n) d) T(n) = O(n ²) Ans: d	1	1	2	2	2.8.2
	Part – B					
Insti	(5 x 4 = 20 Marks) ructions: Answer All the Questions					
11	Express the function $f(n) = n3/1000-100n2 - 100n + 3$ in terms of Theta notation. $ n^3/1000 - 100n^2 - 100n + 3 = \Theta(n^3) $ Ans:	5	2	1	1	1.2.1
	For c1=1/2000, c2=1, $f(n)=n3/1000 - 100n2 - 100n + 3$ and $g(n)=n^3$)					
	$c1*g(n) \le f(n) \le c2*g(n)$ for large values of n (Or)					
	The highest-order term in the function, which is $n^3/1000$. As n grows larger, the influence of the other terms in the function diminishes relative to $n^3/1000$. Therefore, for sufficiently large n, the function is dominated by the term $n^3/1000$. We can drop the lower-order terms and coefficients and write the function as $\Theta(n^3/1000)$.					
12	Analyze the order of growth. (i).F(n) = $2n^2 + 5$ and $g(n) = 7n$. Use the Ω ($g(n)$) notation Ans: f(n) = 2n2+5 and $g(n) = 7n$. We need to find the constant c such that $f(n) \ge c * g(n)$. Let $n = 0$, then $f(n) = 2n2+5 = 2(0)2+5 = 5$ $g(n) = 7(n) = 7(0) = 0$ Here, $f(n) > g(n)$ Let $n = 1$, then $f(n) = 2n2+5 = 2(1)2+5 = 7$ $g(n) = 7(n) = 7(1) = 7$ Here, $f(n) = g(n)$ Let $n = 2$, then $f(n) = 2n2+5 = 2(2)2+5 = 13$	5	3	1	1	1.2.1
	g(n) = 7(n) = 7(2) = 14 Here, $f(n) < g(n)$					

Thus, for n=1, we get $f(n) \ge c * g(n)$. This concludes that Omega helps to determine the					
"lower bound" of the algorithm's run-time.					
Illustrate the operation of merge sort on the array A = { 3, 41, 52, 26, 38, 57, 9, 49 } Ans: Have to explain the divide operation and then merge operation. (2 marks) Diagram (3 marks) 3 41 52 26 38 57 9 49 merge merge merge 3 41 52 9 38 49 57 merge 3 26 41 52 9 38 49 57	5	2	2	4	4.5.1
 i) Write the recurrence relation of Matrix Multiplication using divide and conquer approach and solve it to find time complexity (2 marks) ii) How Strassen Matrix Multiplication algorithms reduces time complexity of matrix multiplication (1 mark) iii) Write the recurrence relation of Strassen Matrix Multiplication and solve it to find its time complexity (2 marks) Ans: i)	5	4	2	4	4.6.2
$(2 \times 10 = 20 \text{ Marks})$					
	10	1	1	1	1.2.1
relation i) $T(n) = \{2T(n-1) \text{ if } n > 0 \\ 1 \text{ otherwise} \\ \text{ii)} \qquad T(n) = \{\ 2T(n/2) + 1 \text{ if } n > 1 \ \}$		•	•	•	1.2.1
	This concludes that Omega helps to determine the "lower bound" of the algorithm's run-time. Illustrate the operation of merge sort on the array $A = \{3, 41, 52, 26, 38, 57, 9, 49\}$ Ans: Have to explain the divide operation and then merge operation. (2 marks) Diagram (3 marks) 3 41 52 26 38 57 9 49 i) Write the recurrence relation of Matrix Multiplication using divide and conquer approach and solve it to find time complexity (2 marks) ii) How Strassen Matrix Multiplication algorithms reduces time complexity of matrix multiplication (1 mark) iii) Write the recurrence relation of Strassen Matrix Multiplication and solve it to find its time complexity (2 marks) Ans: i) $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$ Solving above recurrence relation we get $T(n): \Theta(n^3)$ ii) In Strassen Matrix Multiplication instead of performing eight recursive multiplications of $n/2 \times n/2$ matrices, it performs only seven. The cost of eliminating one matrix multiplication will be several new additions of $n/2 \times n/2$ matrices, it performs only seven. The cost of eliminating one matrix multiplication will be several new additions of $n/2 \times n/2$ matrices, but still only a constant number of additions. iii) $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$ Solving above recurrence relation we get $T(n): \Theta(n^{\log n}) \text{ Since } \log n \text{ list } \text{ between } 2:80 \text{ and } 2:81, \text{ Strassen's algorithm runs in } O(n^{2:81})$ Part – C $(2 \times 10 = 20 \text{ Marks})$ uctions: Answer All the Questions Find the time complexity of the below recurrence relation i) $T(n) = \{2T(n-1) \text{ if } n > 0$ otherwise	This concludes that Omega helps to determine the "lower bound" of the algorithm's run-time. Illustrate the operation of merge sort on the array $A = \{3, 41, 52, 26, 38, 57, 9, 49\}$ Ans: Have to explain the divide operation and then merge operation. (2 marks) Diagram (3 marks) 3 41 52 36 38 57 9 49 i) Write the recurrence relation of Matrix Multiplication using divide and conquer approach and solve it to find time complexity (2 marks) ii) How Strassen Matrix Multiplication algorithms reduces time complexity of matrix multiplication (1 mark) iii) Write the recurrence relation of Strassen Matrix Multiplication and solve it to find its time complexity (2 marks) Ans: ii) $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$ Solving above recurrence relation we get $T(n) : \Theta(n^3)$ ii) In Strassen Matrix Multiplication instead of performing eight recursive multiplications of $n/2 \times n/2$ matrices, it performs only seven. The cost of eliminating one matrix multiplication will be several new additions of $n/2 \times n/2$ matrices, it performs only seven. The cost of eliminating one matrix multiplication will be several new additions of $n/2 \times n/2$ matrices, but still only a constant number of additions. iii) $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$ Solving above recurrence relation we get $T(n) : \Theta(n^{1g/7}) \text{ Since } \lg 7 \text{ lies between } 2:80 \text{ and } 2:81, \text{ Strassen's algorithm runs in } O(n^{2:81})$ $Part - C$ $(2 \times 10 = 20 \text{ Marks})$ uctions: Answer All the Questions Find the time complexity of the below recurrence relation i) $T(n) = \{2T(n-1) & \text{if } n > 0$ $1 & \text{otherwise}$ ii) $T(n) = \{2T(n/2) + 1 & \text{if } n > 1 \end{cases}$	This concludes that Omega helps to determine the "lower bound" of the algorithm's run-time. Illustrate the operation of merge sort on the array $A = \{3, 41, 52, 26, 38, 57, 9, 49\}$ Ans: Have to explain the divide operation and then merge operation. (2 marks) Diagram (3 marks) Diagram (3 marks) Diagram (3 marks) In Write the recurrence relation of Matrix Multiplication using divide and conquer approach and solve it to find time complexity (2 marks) ii) How Strassen Matrix Multiplication algorithms reduces time complexity of matrix multiplication (1 mark) iii) Write the recurrence relation of Strassen Matrix Multiplication and solve it to find its time complexity (2 marks) Ans: i) $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$ Solving above recurrence relation we get $T(n): \Theta(n^3)$ ii) In Strassen Matrix Multiplication instead of performing eight recursive multiplications of $n/2 \times n/2$ matrices, it performs only seven. The cost of eliminating one matrix multiplication will be several new additions of $n/2 \times n/2$ matrices, it performs only seven. The cost of eliminating one matrix multiplication will be several new additions of $n/2 \times n/2$ matrices, it performs only seven. The cost of eliminating one matrix multiplication will be several new additions of $n/2 \times n/2$ matrices, it performs only seven. The cost of eliminating one matrix multiplication will be several new additions of $n/2 \times n/2$ matrices, it performs only seven. The cost of eliminating one matrix multiplication will be several new additions of $n/2 \times n/2$ matrices, it performs only seven. The cost of eliminating one matrix multiplication will be several new additions. III of the several new additions. III of the several new additions. The cost of eliminating one matrix multiplication instead of performing eight recursive multiplication instead of performs on	This concludes that Omega helps to determine the "lower bound" of the algorithm's run-time. Illustrate the operation of merge sort on the array $A = \{3, 41, 52, 26, 38, 57, 9, 49\}$ Ans: Have to explain the divide operation and then merge operation. (2 marks) Diagram (3 marks) Diagram (3 marks) 1	This concludes that Omega helps to determine the "lower bound" of the algorithm's run-time. Illustrate the operation of merge sort on the array $A = \{3, 41, 52, 26, 38, 57, 9, 49\}$ Ans: Have to explain the divide operation and then merge operation. (2 marks) Diagram (3 marks) I at 2 3 3 3 4 3 3 3 4 3 3 3 3 4 3 3 3 3 3 3

		Т	1		1	1
	Ans:					
	i) $T(n) = 2T(n-1)$					
	$T(n) = 2[2T(n-2)] = 2^2T(n-2)$					
	$T(n) = 2[2^{2}T(n-2)] = 2^{3}T(n-3)$					
	$T(n) = 2^k T(n-k)$					
	n-k = 0, n=k, T(0) = 1					
	$T(n) = O(2^n)$					
	ii) $a = 2$, $b = 2$ and $f(n) = 1$.					
	So $c = log_2 2 = 1$ and $O(n^1) > O(1)$,					
	-					
	which means that it fall in the third case and					
	therefore a complexity is O(n).					
	OR					
15.	Illustrate briefly on Big oh Notation, Omega Notation	10	1	1	1	1.6.1
B	and Theta Notations. Depict the same graphically and	10	_	-	-	1.0.1
	explain					
	Big-O					
	The Asymptotic Notation O(n) represents the upper					
	bound of an algorithm's running time					
	$O(g(n)) = \{f(n) \mid \text{there exist positive constants c and } \}$					
	n0, such that $0 \le f(n) \le cg(n)$ for all $n \ge n0$.					
	10, 5401 that 0 = 1(11) = 05(11) for all 11 = 110.					
	sale:					
	OX.					
	T ^V					
	7. 164-0665					
	For example, if an algorithm has a time complexity					
	of O(n), it means that the algorithm's running time					
	· · · · · · · · · · · · · · · · · · ·					
	will not exceed the linear growth rate, even if the input					
	size increases					
	Big- Ω					
	The Omega Asymptotic Notation O(n) represents the					
	lower bound of an algorithm's running time.					
	$\Omega(g(n)) = \{f(n) \mid \text{there exist positive constants c and } \}$					
	n0, such that $0 \le cg(n) \le f(n)$ for all $n \ge n0$.					
	no, such that $0 \le cg(n) \le r(n)$ for all $n \ge no$.					
	the state of the s					
	- upri					
	AT					
	noi - District					
	For example, if an algorithm has a time complexity					
	of $\Omega(n)$, it means that the algorithm's running time					
	will not be less than the linear growth rate, even if the					
	input size decreases					
	Big-Θ					
	The Theta Asymptotic Notation O(n) represents the					
	* *					
	both lower bound and upper bound of an algorithm's					
	running time.					
	$\Theta(g(n)) = \{f(n) \mid \text{there exist positive constants c1, c2,}$					
	and n0, such that $0 \le c1g(n) \le f(n) \le c2g(n)$ for all $n \ge c2g(n)$					
	n0					
	-	1	1	Ĭ	ı	1

		1				
16.	For example, if an algorithm has a time complexity of $\Theta(n)$, it means that the algorithm's running time will be proportional to the linear growth rate, even if the input size increases or decreases What is the closet pair problem? Explain the brute	10	3	2	4	4.4.1
A	force approach to solve closest-pair with an example ii) Derive its time complexity. The closest-pair problem calls for finding the two closest points in a set of n points. It is the simplest of a variety of problems in computational geometry that deals with proximity of points in the plane or higher-dimensional spaces. We assume that the points in question are specified in a standard fashion by their (x, y) Cartesian coordinates and that the distance between two points $pi(xi, yi)$ and $pj(xj, yj)$ is the standard Euclidean distance $d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}.$ The brute-force approach compute the distance between each pair of distinct points and find a pair with the smallest distance. we do not want to compute the distance between the same pair of points twice. To avoid doing so, we consider only the pairs of points (pi, pj) for which $i < j$. ALGORITHM BruteForceClosestPair(P) //Finds distance between two closest points in the plane by brute force //Input: A list P of n $(n \ge 2)$ points $p1(x1, y1), \ldots, pn(xn, yn)$ //Output: The distance between the closest pair of points $d \leftarrow \infty$ for $i \leftarrow 1$ to $n - 1$ do for $j \leftarrow i + 1$ to n do $d \leftarrow \min(d, sqrt((xi - xj))^2 + (yi - yj)^2))$ //sqrt is square root return d The number of times it will be executed can be computed as follows: $C(n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2 = 2 \sum_{i=1}^{n-1} (n-i)$ $= 2[(n-1) + (n-2) + \cdots + 1] = (n-1)n \in \Theta(n^2).$				+	4.4.1
	OR					
16. B	Devise an algorithm for Quick sort and derive its time complexity. For the above algorithm find the time	10	3	2	4	4.4.3

complexity if all the elements are arranged in ascending order. Illustrate with the help of recurrence tree.

Quicksort is based on the three-step process of divideand-conquer.

• To sort the subarrayA[p . . r]:

Divide: Partition A[p ... r], into two subarrays A[p ... q-1] and A[q+1... r], such that each element in the firstsubarray A[p ... q-1] is $\leq A[q]$ and A[q] is \leq each element in the second subarray A[q+1... r].

Conquer: Sort the two subarrays by recursive calls to OUICKSORT.

Combine: No work is needed to combine the subarrays, because they are sorted in place.

• Perform the divide step by a procedure PARTITION, which returns the index q that marks the position separating the subarrays.

```
QUICKSORT (A, p, r)
If p < r
then q \leftarrow PARTITION(A, p, r)
QUICKSORT (A, p, q - 1)
```

Initial call is QUICKSORT (A, 1, n)

QUICKSORT (A, q + 1, r)

Partitioning

Partition subarrayA [p . . . r] by the following procedure:

```
PARTITION (A, p, r)

x \leftarrow A[r]

i \leftarrow p - 1

for j \leftarrow p to r - 1 }

do if A[j] \le x

then i \leftarrow i + 1

swap (A[i] \leftrightarrow A[j])

}

Swap(A[i + 1] \leftrightarrow A[r])

return i + 1
```

Complexity Analysis:

```
T(n) = O(nlogn)
```

if all the elements are arranged in ascending order Worst case occurs

If N is the length of array and having current pivot at starting position of array, pivot at last index is identified only traversing array from start to end . After fixing pivot and splitting resultant sub arrays of length are (N-1),1 Again this (N-1) sub array finds next pivot at last index resulting array partitions with lengths (N-2),1.

This process repeats until the final sub arrays lengths are both 1,1.

Course Outcome (CO) and Bloom's Level (BL) Coverage in the Questions

