Calculus Notes

Camila Restrepo

Last updated February 29, 2024

1	Classifying Critical Points	2
2	Inverse Function Theorem and Implicit Function Theorem	5
3	IPFT Practice and Constraints 3.1 Constrained Extrema and Lagrange Multipliers	15 17
4	Constraint Problems 4.1 The integral in \mathbb{R}^n	21 23
5	Constructing the integral 5.1 Basic properties of integrals over rectangles	29 32
6	The integral over a bounded set	37
7	Computing higher-dimensional integrals 7.1 Fubini's Theorem	41

 $\it Note:$ Theorem numbers come from the order they are presented in lecture, and do not correspond to any textbook or written course material.

${f Week} \,\, 1$

Classifying Critical Points

Theorem 1.1 2nd Derivative Test

Let $f \in C^2(\Omega)$ and let $a \in \Omega(\Omega \subseteq \mathbb{R}^n)$ be a critical point of f.

- 1. If $H_f(a)$ is positive definite then f has a local minimum at a.
- 2. If $H_f(a)$ is negative definite then f has a local maximum at a.
- 3. If $H_f(a)$ is indefinite then f has a saddle point at a.

Recall: Any symmetric $n \times n$ matrix A can be diagonalized, i.e., \exists an orthonormal basis u_1, u_2, \ldots, u_n in \mathbb{R}^n and real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $Au_i = \lambda_i u_i \forall i = 1, 2, \ldots, n$.

Proposition 1.2

Let Q be the quadratic form associated with an $n \times n$ symmetric matrix A. Then:

- 1. Q is positive \iff all the eigenvalues of A are positive,
- 2. Q is negative \iff all the eigenvalues of A are negative,
- 3. Q is indefinite \iff A has both positive and negative eigenvalues.

Corollary 1.3

Let a be a critical point of a C^2 function $f: \Omega \to \mathbb{R}$. If det $H_f(a) \neq 0$, then f has either a local minimum or a local minimum or a saddle point at a.

Definition of degenerate critical points:

A critical point a of a C^2 function f is called non-degenerate if $\det H_f(a) \neq 0$ and degenerate otherwise.

Example of a degenerate critical point:

When $f(x,y) = x^3$ then (0,0) is a degenerate critical point of f, and f has neither a local extremum at (0,0) nor a saddle point.

Definition of the principal minors of a matrix:

Let $A = (a_{ij})_{i,j=1}^n$ be an $n \times n$ matrix. Given k = 1, 2, ..., n, we will denote by A_k the $k \times k$ submatrix $A_k = (a_{ij})_{i,j=1}^k$.

The determinants det A_k are called the **principal minors of A**.

Proposition 1.4

Let A be a symmetric $n \times n$ matrix with det $A \neq 0$. Then:

- 1. A is positive definite \iff det $A_k > 0 \forall k = 1, 2, ..., n$.
- 2. A is negative definite \iff $(-1)^k \det A_k > 0 \forall k = 1, 2, \dots, n$.
- 3. A is indefinite \iff A is neither positive definite nor negative definite.

Corollary 1.5

Let
$$A = \begin{bmatrix} \alpha & \beta \\ \beta & \gamma \end{bmatrix}$$
. Then:

- 1. A is positive definite $\iff \alpha > 0$ and $\alpha \gamma \beta^2 > 0$
- 2. A is negative definite $\iff \alpha < 0$ and $\alpha \gamma \beta^2 > 0$
- 3. A is indefinite $\iff \alpha \gamma \beta^2 < 0$

Example of classifying a critical point:

We found that the function $f(x,y) = xye^{-x^2-y^2}$ has 5 critical points: $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$, $\left(\pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}\right)$, and (0,0), with an absolute maximum at $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$ and an absolute minimum at $\left(\pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}\right)$.

Investigate the nature of (0,0),

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x} \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[y(1 - 2x^2)e^{-x^2 - y^2} \right] = -4xye^{-x^2 - y^2} - 2xy(1 - 2x^2)e^{-x^2 - y^2} \\ \frac{\partial^2 f}{\partial y^2} &= \frac{\partial}{\partial y} \left[x(1 - 2y^2)e^{-x^2 - y^2} \right] = -4xye^{-x^2 - y^2} - 2xy(1 - 2y^2)e^{-x^2 - y^2} \\ \frac{\partial^2 f}{\partial x \partial y} &= (1 - 2y^2)e^{-x^2 - y^2} - 2x^2(1 - 2y^2)e^{-x^2 - y^2} \end{split}$$

So $H_f(0,0) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is indefinite $\implies f$ has a saddle point at (0,0).

Example of non-degenerate critical points:

Find and classify the critical points of $f: \mathbb{R}^3 \to \mathbb{R}$ where $f(x, y, z) = x^3 - y^3 + 3xy + z^2 - 2z$.

$$\nabla f = (3x^2 + 3y, -3y^2 + 3x, 2z - 2) = 0 \implies x^2 = -y, y^2 = x, z = 1 \implies x^2 = -y, x^4 = x, z = 1 \implies x^2 = -y, x = 0 \text{ or } x = 1, z = 1 \implies (x, y, z) = (0, 0, 1), (1, -1, 1).$$

So
$$(0,0,1)$$
 and $(1,-1,1)$ are the critical points. We have $H_f(x,y,z) = \begin{bmatrix} 6x & 3 & 0 \\ 3 & -6y & 0 \\ 0 & 0 & 2 \end{bmatrix}$,

so $H_f(0,0,1) = \begin{bmatrix} 0 & 3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is clearly indefinite since the first principal minor is

0 and
$$H_f(1, -1, 1) = \begin{bmatrix} 6 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 is positive definite.

So we have non-degenerate critical points (as det $H_f \neq 0$). Hence, (0,0,1) is a saddle point; (1,-1,1) is a local minimum.

But f has no global extrema because $f(x, 0, 0) = x^3$ can take arbitrarily positive and negative values.

Example of a degenerate critical point:

Let
$$f(x,y) = x^4 + y^4$$
 (with $(x,y) \in \mathbb{R}^2$).
 $\nabla f = (4x^3, 4y^3) = 0 \iff (x,y) = (0,0)$.
 $H_f(x,y) = \begin{bmatrix} 12x^2 & 0 \\ 0 & 12y^2 \end{bmatrix}, H_f(0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

So (0,0) is a degenerate critical point and the 2nd derivative test does not apply. However, f has a global minimum at (0,0).

Week 2

Inverse Function Theorem and Implicit Function Theorem

Theorem 2.1

Let $I\subseteq \mathbb{R}$ be an interval and $f:I\to \mathbb{R}$ is a continuous injective function. Then:

- 1. f is either strictly increasing or strictly decreasing.
- 2. f(I) is an interval containing the same number of endpoints as I.
- 3. f is a homeomorphism of I onto f(I).

- Proof. 1. Let us first consider the case that I = [a, b](a < b). Since f is injective, either f(a) < f(b) or f(b) < f(a). Assume that f(a) < f(b) (the other case can be done symmetrically). Let's show that f is strictly increasing on [a,b], i.e., f(x) < f(y)whenever $a \le x < y \le b$. We argue by contradiction, supposing that f(x) > f(y) for some $a \le x < y \le b$. Note that f(y) > f(a), for otherwise f(y) < f(a) < f(b) and by the Intermediate Value Theorem (IVT), $\exists \alpha \in (y, b)$ such that $f(\alpha) = f(a)$, contradicting the injectivity of f. Therefore f(a) < f(y) < f(x) and so, again, by the IVT $\exists y' \in (a, x)$ such that f(y') = f(y), again contradicting the injectivity of f. Next, let I be any interval. Pick up any $a, b \in I$ with a < b. Suppose that f(a) < f(b) (the case f(a) > f(b) can be done symmetrically). By the previous paragraph, we know that f is strictly increasing on [a, b]. Now, if $x, y \in I$ and x < y, then with $\alpha = \min\{a, x\}, \beta = \max\{y, b\}, \text{ we have } [a, b], [x, y] \subset [\alpha, \beta] \subset I.$ Since f is strictly increasing on [a, b], we must have (using the
 - 2. Since f is continuous, J = f(I) is an interval. Suppose that f is strictly increasing. Note that the inverse function f^{-1} is then also strictly increasing.

 Now, if I contains its left endpoint a, then $\forall x \in I$, $f(a) \leq f(x)$, so f(a) is a left endpoint of J. Similarly, if I contains its right endpoint b, then f(b) is the right endpoint of J. Applying the same argument with f^{-1} in place of f, we conclude if I contains its left (respectively, right) endpoint c, then $f^{-1}(c)$ is the left (respectively, right) endpoint of I. It follows that I and J contain the same number of endpoints.

1st paragraph again) $f(\alpha) < f(\beta)$ and f is strictly increasing on $[\alpha, \beta]$. Hence, we conclude that f is strictly increasing on I.

3. If I = [a, b], then f is a homeomorphism of I onto f(I) because of our general result about continuous injective functions on compact sets. Otherwise, it follows that f|[a, b] is a homeomorphism onto f([a, b]) for any $a, b \in I$ with $a \leq b$. This implies that $f^{-1}: f(I) \to I$ is continuous (at any $y \in f(I)$). Indeed, let $y \in f(I)$ and consider any sequence (y_n) in f(I) with $y_n \to y$. Then the set $S = \{y\} \cup \{y_n : n \in N\}$ is compact, so it has both a smallest element c = f(a) and a largest element c = f(a) and a largest element c = f(a) and c = f(b). Assuming that c = f(a) is strictly increasing we must have c = f(a) and c = f(a) is a homeomorphism onto c = f(a) (i.e., c = f(a)) is continuous), we obtain c = f(a) (i.e., c = f(a)) and c = f(a) is continuous, we obtain c = f(a) is continuous at any c = f(a).

Theorem 2.2

Let f be a bijection of a non-zero interval $I \subseteq \mathbb{R}$ onto an interval $J \subseteq \mathbb{R}$. If f is differentiable at $a \in I$, $f'(a) \neq 0$, and f^{-1} is continuous at f(a) and $(f^{-1})'(f(a)) = \frac{1}{f'(a)}$

(Sketch).

Definition of a diffeomorphism:

Let f be a bijection of an open subset $U \subseteq \mathbb{R}^n$ onto an open subset $V \subseteq \mathbb{R}^n$. If both f and f^{-1} are differentiable (on U and V respectively), then f is called a **diffeomorphism** of U onto V. If both f and f^{-1} are C^k functions $(k = 1, 2, ..., \infty)$, then f is called a **diffeomorphism of class** C^k .

Corollary 2.3

Let f be a differentiable homeomorphism of an open subset $U \subseteq \mathbb{R}$ onto an open subset $V \subseteq \mathbb{R}$. If $f'(a) \neq 0$ for all $a \in U$, then f is a diffeomorphism of U onto V. Moreover, if $f \in C^k(U)$, then f is a C^k diffeomorphism.

Proof. If $b=f(a)\in V$ (where $a\in U$), then there exists an open interval $I\subseteq U$ such that $a\in I$. Then f(I) is another open interval and f|I is a homeomorphism onto f(I) (by the Inverse Function Theorem), and f|I satisfies the assumptions of the above theorem. Hence, $(f|I)^{-1}=f^{-1}|f(I)$ is differentiable at b. But this means that f^{-1} is differentiable at b. Since $b\in V$ is artbitrary, f^{-1} is differentiable on V and so f is a diffeomorphism.

We also have $(f^{-1})'(b) = \frac{1}{f^{-1}(a)} = \frac{1}{f'(f^{-1}(b))}$ for any $b = f(a) \in V$. Thus, $(f^{-1})' = \frac{1}{f'} \circ f^{-1}$. That f^{-1} is C^k when f is C^k follows by induction on $k = 1, 2, \ldots$: When k = 1, then $\frac{1}{f'}$ is continuous (as $f \in C^1(U)$), and f^{-1} is continuous, so $(f^{-1})' = \frac{1}{f'} \circ f^{-1}$ is continuous. Assuming that our claim is true for C^k functions, consider $f \in C^{k+1}(U)$. Then $f' \in C^k(U)$, and as $f \in C^k(U)$, $f^{-1} \in C^k(V)$ by induction. Hence, $(f^{-1})' = \frac{1}{f'} \circ f^{-1}$ is a C^k function as the composition of two C^k functions. Therefore $f^{-1} \in C^k(V)$

Let $I \subset \mathbb{R}$ be an open interval and $f: I \to \mathbb{R}$ a C^k function such that $f'(x) \neq 0$ for all $x \in I$. Then f is a C^k diffeomorphism of I onto f(I).

Proof. By the IVT either f'(x) > 0 for all $x \in I$ (i.e., f is strictly increasing) or f'(x) < 0 for all $x \in I$ (i.e., f is strictly decreasing). Hence, f is injective and is a homeomorphism of I onto an open interval J. The assumption of the previous corollary are satisfied, hence the conclusion.

Corollary 2.5 Inverse Function Theorem in 1 variable, local version $\,$

Let $U \in \mathbb{R}$ be open and $f: U \to \mathbb{R}$ be a C^k function. If $f'(a) \neq 0$ at some $a \in U$, then there exists an open interval I such that $a \in I \subseteq U$ and f|I is a C^k diffeomorphism of I onto f(I)

How do these results generalize to functions of n variables?

Theorem 2.6

Let $\Omega \subseteq \mathbb{R}^n$ be an open set and let $f: \Omega \to \mathbb{R}^n$ be injective. Then $f(\Omega)$ is open and f is a homeomorphism of Ω onto $f(\Omega)$.

Proof. Omitted due to high difficulty.

Lemma 2.7

If $T: \mathbb{R}^n \to \mathbb{R}^n$ is an invertible linear transformation then there exists a c > 0 such that for all $x \in \mathbb{R}^n$, $||T(x)|| \ge C||x||$

Proof. Recall that T^{-1} is a Lipschitz function, i.e., there exists M>0 such that $\|T^{-1}\left(x\right)\|\leq M\|x\|$ for all $x\in\mathbb{R}^n$. Hence, for all $x\in\mathbb{R}^n$, $\|x\|=\|T^{-1}\left(T\left(x\right)\right)\|\leq M\|T\left(x\right)\|$, so $\|T\left(x\right)\|\geq\frac{1}{M}\|x\|$.

Theorem 2.8

Let f be a bijection of an open subset $U \subseteq \mathbb{R}^n$ onto an open subset $V \in \mathbb{R}^n$. If f is differentiable at $a \in U$, $\det(D_f(a)) \neq 0$, and f^{-1} is continuous at b = f(a), then f^{-1} is differentiable at b and $D_{f^{-1}}(b) = (D_f(a))^{-1}$.

Proof. Let $T = D_f(a)$, b = f(a). It suffices to show that

$$\lim_{y \to b} \frac{f^{-1}(y) - f^{-1}(b) - T^{-1}(y - b)}{\|y - b\|} = 0$$

But,

$$\frac{f^{-1}(y) - f^{-1}(b) - T^{-1}(y - b)}{\|y - b\|} = -T^{-1}\left(\frac{y - b - T(f^{-1}(y) - f^{-1}(b))}{\|y - b\|}\right)$$

So it suffices to show that

$$\lim_{y \to b} \frac{y - b - T(f^{-1}(y) - f^{-1}(b))}{\|y - b\|} = 0$$

and this will be done if we show that

$$\lim_{k \to \infty} \frac{y_k - b - T\left(f^{-1}(y_k) - f^{-1}(b)\right)}{\|y_k - b\|} = 0$$

For every sequence $(y_k) \in V \setminus \{b\}$ with $y_k - b$. Let $x_k = f^{-1}(y_k) \in U \setminus \{a\}$ (i.e., $y_k = f(x_k)$). Then $x_k \to f^{-1}(b) = a$ because f^{-1} is continuous at b. Thus we need to show that

$$\lim_{k \to \infty} \frac{f(x_k) - f(a) - T(x_k - a)}{\|f(x_k) - f(a)\|} =$$

$$\lim_{k \to \infty} \left[\frac{\|x_k - x\|}{\|f(x_k) - f(a)\|} \frac{f(x_k) - f(a) - T(x_k - a)}{\|x_k - a\|} \right] = \lim_{k \to \infty} A_k B_k = 0$$

Now, as $T = D_f(a)$, $\lim_{k\to\infty} B_k = 0$ (by the definition of the derivative). So to complete the proof it is enough to show that the sequence (A_k) is bounded. But

$$\frac{1}{A_k} = \left\| \frac{f(x_k) - f(a) - T(x_k - a)}{\|x_k - a\|} + T\left(\frac{x_k - a}{\|x_k - a\|}\right) \right\| =$$

$$||B_k + T\left(\frac{x_k - a}{||x_k - a||}\right)|| \ge ||T\left(\frac{x_k - a}{||x_k - a||}\right)|| - ||B_k||$$

and by the lemma, there exists a c>0 such that $||T\left(\frac{x_k-a}{||x_k-a||}\right)|| \geq c$ for all k. As $B_k \to 0$, there exists a k_0 such that for all $k>k_0$ $\frac{1}{A_k} \geq \frac{c}{2}$ and so for all $k \in \mathbb{N}$ $\frac{1}{A_k} \geq \min\left\{\frac{c}{2}, \frac{1}{A_1}, \frac{1}{A_2}, \dots, \frac{1}{A_{k_0}}\right\} > 0$. Hence, (A_k) is bounded.

Corollary 2.9

Let f be a differentiable homeomorphism of an open subset $U \subseteq \mathbb{R}^n$ onto an open subset $V \subseteq \mathbb{R}^n$. If $\det(D_f(x)) \neq 0$ for all $x \in U$, then f is a diffeomorphism of U onto V. Moreover, if $f \in C^k(U)$ then f is a C^k diffeomorphism.

Proof. Clearly, the assumptions of the previous theorem are satisfied for each $a \in U$, so f^{-1} is differentiable at each b = f(a), and f is thus a diffeomorphism of U onto V.

Remark: The following example shows that the 1-dimensional Inverse Function Theorem cannot be generalized to n-dimensions.

Example of Polar Coordinate Mapping:

Let $f:(0,\infty)\times\mathbb{R}$ be given by f(s,t)

Theorem 2.10 Inverse Function Theorem (IFT)

Let $f: \Omega \to \mathbb{R}^n$ be a C^k function where $\Omega \subseteq \mathbb{R}^n$ is open (and $k = 1, 2, ..., \infty$). If $\det(D_f(a)) \neq 0$ for some $a \in \Omega$, then there exists an open set $U \in \Omega$ with $a \in U$ and an open set $V \subseteq \mathbb{R}^n$ with $f(a) \in V$ such that f|U is a C^k diffeomorphism of U onto V.

Corollary 2.11 Open Mapping Theorem

Let $F: \Omega \to \mathbb{R}^n$ be C^1 function where $\Omega \subseteq \mathbb{R}^n$ is open. If $\det(D_f(x)) \neq 0$ for all $x \in \Omega$, then f is an open wrapping, i.e., for every open subset $W \subseteq \Omega$, f(W) is open in \mathbb{R}^n .

Proof. Let $W \subseteq \Omega$ be open. To conclude that f(W) is open, it suffices to show that for all $b \in f(W)$ there exists an open V such that $b \in V \subseteq f(W)$. But b = f(a) for some $a \in W$ and f|W and $a \in W$ satisfy the assumption of the IFT. Thus, there exists open $U \subseteq W$ and open $V \subseteq \mathbb{R}^n$ such that $a \in U$, $b \in V$ and f(U) = (f|W)(U) = V. Clearly, $b \in V \subseteq f(W)$.

Corollary 2.12

Let $f: \Omega \to \mathbb{R}^n$ bw a C^k function where $\Omega \to \mathbb{R}^n$ is open. If f is injective and $\det(D_f(x)) \neq 0$ for all $x \in \Omega$, then $f(\Omega)$ is open and f is a C^k diffeomorphism of Ω onto $f(\Omega)$.

Proof. By a previous corollary, it suffices to show that $f(\Omega)$ is open and f is a homeomorphism of Ω onto $f(\Omega)$. But by the previous corollary, f is an open mapping, so, in particular, $f(\Omega)$ is open. Thus, it remains to prove that $f^{-1}:f(\Omega)\to\Omega$ is continuous. Recall that this will be true if for each open $U\subseteq R^n$, $\left(f^{-1}\right)^{-1}(U)$ is open relative to $f(\Omega)$, i.e., is open in \mathbb{R}^n because $f(\Omega)$ is open. But $\left(f^{-1}\right)^{-1}(U)=\left(f^{-1}\right)^{-1}(U\cap\Omega)=f(U\cap\Omega)$ is indeed open in R^n by the Open Mapping Theorem.

Example of determining a diffeomorphism:

The polar coordinate mapping $f(r,\theta) = (rcos\theta, rsin\theta)$ (considered on $(0,\infty) \times \mathbb{R}$), is an open mapping of $(0,\infty) \times \mathbb{R}$ onto $\mathbb{R}^2 \setminus \{(0,0)\}$ because $\det(D_f(r,\theta)) = r > 0$ for all $(r,\theta) \in (0,\infty) \times \mathbb{R}$.

Note that $\varphi = f|((0,\infty) \times (-\pi,\pi))$ is injective. Hence, by the last corollary φ is a C^{∞} diffeomorphism on $(0,\infty) \times (-\pi,\pi)$ onto $\varphi((0,\infty) \times (-\pi,\pi)) = \mathbb{R}^2 \setminus ((-\infty,0] \times \mathbb{R})$.

$$D_{\varphi^{-1}}\left(rcos\theta,rsin\theta\right) = \begin{bmatrix} cos\theta & -rsin\theta\\ sin\theta & rcos\theta \end{bmatrix}^{-1} = \frac{1}{r} \begin{bmatrix} rcos\theta & rsin\theta\\ -sin\theta & cos\theta \end{bmatrix}$$

Similarly $\varphi|((0,\infty)\times(a,b))$, where $b-a=2\pi$ is a c^{∞} diffeomorphism on $(0,\infty)\times(a,b)$ onto $\mathbb{R}^2\setminus\{r\left(\cos\theta,\sin\theta\right):r\geq 0\}$.

Definition of an implicit function:

Let $\Omega_n \subseteq \mathbb{R}^n$, $\Omega_m \subseteq \mathbb{R}^m$, $F: \Omega_n \times \Omega_m \to \mathbb{R}^m$, and $c \in \mathbb{R}^m$. Consider the equation

$$F(x,y) = c (x \in \Omega_n, y \in \Omega_m)(*)$$

which we suppose needs to solved for y. If for every $x \in \Omega_n$ this equation has a solution, then by choosing for each $x \in \Omega_n$ a solution $y \in \Omega_m$ and calling it f(x), we obtain a function $f: \Omega_n \to \Omega_m$ such that F(x, f(x)) = c for all $x \in \Omega_n$. Any such function is called an **implicit** function defined by Eq. (*).

Note: If for all $x \in \Omega_n$ there exists a unique $y \in \Omega_m$ such that F(x, y) = c, then Eq. (*) defines a unique implicit function, but in general, implicit functions are not unique.

Example of:

Let $n=m=1, \Omega_n=\Omega_m=[-1,1], F(x,y)=x^2+y^2, c=1$. Then the functions $f_{\pm}(x)=\pm\sqrt{1-x^2}$ are implicit functions defined by (*) (i.e., eg. $x^2+y^2=1$) and there are many other implicit functions.

If we replace Ω_m by [0,1], then f_+ will be the unique implicit function defined by (*) $(f_+(x) = \sqrt{1-x^2})$.

Question

Under what conditions does an implicit function exist; is unique; is it differentiable? If it is differentiable how can we obtain its derivative?

Note: Let $F: \Omega \to \mathbb{R}^m$ be a C^k function where $\Omega \subseteq \mathbb{R}n + m = \mathbb{R}^n \times \mathbb{R}^m$ is open. We will write the elements of $\mathbb{R}^n + m = \mathbb{R}^n \times \mathbb{R}^m$ as (x, y) where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$. Then

$$D_f(x,y) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1}(x,y) & \dots & \frac{\partial F_1}{\partial x_n}(x,y) & \frac{\partial F_1}{\partial y_1}(x,y) & \dots & \frac{\partial F_1}{\partial y_m}(x,y) \\ \vdots & & \vdots & & \vdots \\ \frac{\partial F_m}{\partial x_1}(x,y) & \dots & \frac{\partial F_m}{\partial x_n}(x,y) & \frac{\partial F_m}{\partial y_1}(x,y) & \dots & \frac{\partial F_m}{\partial y_m}(x,y) \end{bmatrix}$$

with the first $m \times n$ block will be named $\frac{\partial F}{\partial x}(x,y)$ and the second $m \times m$ block will be named $\frac{\partial F}{\partial y}(x,y)$.

Thus, we can write $D_F(x,y) = \begin{bmatrix} \frac{\partial F}{\partial x}(x,y) & \frac{\partial F}{\partial y}(x,y) \end{bmatrix}$

Theorem 2.13 Implicit Function Theorem (IPFT)

Let $F: \Omega \to \mathbb{R}^m$ be a C^k function where $\Omega \subseteq \mathbb{R}^{n+m} = \mathbb{R}^n \times \mathbb{R}^m$ is open. Suppose that for $(a,b) \in \Omega$ and $c \in \mathbb{R}^m$, F(a,b) = c and $\det \left(\frac{\partial F}{\partial y}(a,b)\right) \neq 0$. Then there exist open sets $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ that satisfy:

- 1. $(a,b) \in U \times V$,
- 2. for all $x \in U$, there exists a unique $y \in V$ such that F(x,y) = c.

Moreover, the unique implicit function $f: U \to V$ defined by the equation F(x, f(x)) = c $(x \in U, y \in V)$ is a C^k function.

Proof. Define $G: \Omega \to \mathbb{R}^{n+m}$ by G(x,y) = (x,F(x,y)). This is a C^k function, G(a,b) = (a,c) and

$$D_G(x,y) = \begin{bmatrix} I_n & 0\\ \frac{\partial F}{\partial x}(x,y) & \frac{\partial F}{\partial x}(x,y) \end{bmatrix}$$

Thus $\det (D_G(a,b)) = (\det I_n) \left(\det \left(\frac{\partial F}{\partial y}(a,b) \right) \right) \neq 0.$

Thus by the IFT, there exists an open subset $\Omega_1 \subseteq \Omega$ with $(a,b) \in \Omega_1$ and an open subset $\Omega \subseteq \mathbb{R}^{n+m}$ with $(a,c) = G(a,b) \in W$ such that $G|\Omega_1$ is a C^k diffeomorphism of Ω_1 onto W. Let $H = (G|\Omega_1)^{-1}: W \to \Omega_1$. Then H(x,y) = (j(x,y),k(x,y)) where $j:W \to \mathbb{R}^n$ and $k:W \to \mathbb{R}^m$ are C^k functions. Note that (x,y) = G(H(x,y)) = (j(x,y),F(k(x,y))) for all $(x,y) \in W$. Hence, j(x,y) = x and F(k(x,y)) = y for all $(x,y) \in W$. Thus H(x,y) = (x,k(x,y)) and so for all $(x,y) \in W$,

$$(x, k(x, y)) \in \Omega_1$$
 and $F(x, k(x, y)) = y$

Note that we may assume that $\Omega_1 = U' \times V$ where $U' \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ are open. [Indeed, $(a,b) \in \Omega_1$ and Ω_1 is open, so there exists an r > 0 such that $B_r^{n+m}(a,b) \in \Omega_1$. But $B_r^{n+m}(a,b) \supseteq B_{\frac{r}{2}}^n(a) \times B_{\frac{r}{2}}^m(b)$. So we can take $U' = B_{\frac{r}{2}}^n(a)$, $V = B_{\frac{r}{2}}^m(b)$ and replace Ω_1 with $U' \times V$ and W with $G(U' \times V)$.

Moreover, since $(a,c) \in W$, we can find an open set U such that $a \in U \subseteq U'$ and $U \times \{c\} \subseteq W$. Then for all $x \in U$, $(x,c) \in W$ and so F(x,k(x,c)) = c. Thus when $f:U \to V$ is given by f(x) = k(x,c), then f is an implicit function defined by the equation F(x,y) = c (for $x \in U, y \in V$). It is clear that f is a C^k function.

It remains to confirm that for all $x \in U$ there exists a unique $y \in V$ such that F(x,y) = c. But if $y_1, y_2 \in V$ and $F(x,y_1) = c = f(x,y_2)$, then $G(x,y_1) = (x,c) = G(x,y_2)$, and so $y_1 = y_2$ as $G|U \times V$ is injective.

Week 3

IPFT Practice and Constraints

Corollary 3.1

With the assumptions and notation of the IPFT, let $S=\{(x,y)\in\Omega: F(x,y)=c\}$. Then $S\cap (U\times V)=\{(x,y)\in\mathbb{R}^{n+m}: x\in U \text{ and } y=f(x)\}.$

Remark: Note that when m=1, then $\det\left(\frac{\partial F}{\partial y}\right)=\frac{\partial F}{\partial y}$. So if $\frac{\partial F}{\partial y}\left(a,b\right)\neq0$ then the level set $S=\left\{(x,y)\in\mathbb{R}^{n+1}:F\left(x,y\right)=c\right\}$ in a neighbourhood of (a,b) is the graph of the implicit function.

Example of:

(IPFT, level set, and graph) Consider the level set $S=\left\{(x,y)\in\mathbb{R}^2: x^3y^2+y^3(x-1)^2=1\right\}$ of $F\left(x,y\right)=x^3y^2+y^3(x-1)^2$.

- 1. Show that S is not the graph of any function y=f(x), i.e., $S\neq \left\{(x,y)\in\mathbb{R}^2:y=f\left(x\right)\right\}.$
- 2. Show that in a neighbourhood of (1,1), S is the graph of a smooth function f and find the slope of the tangent line to the graph of f at (1,1).

Solutions:

- 1. $(1,-1),(1,1) \in S$, so no such function exists.
- 2. $\frac{\partial F}{\partial y}(1,1) = 2x^3y + 3^2(x-1)^2\Big|_{x=1,y=1} = 2 \neq 0$. So by the IPFT (with a=b=c=1) and the corollary there exist open sets $U,V\in\mathbb{R}$ with $(1,1)\in U\times V$ and a smooth function $f:U\to V$ such that f(1)=1, $F(x,f(x))=1=x^3f(x)^2+f(x)^3(x-1)^2=1$ for all $x\in U$, and $S\cap (U\times V)=\{(x,y):x\in U \text{ and } y=f(x)\}.$

The slope is $f^{-1}(1)$: Since $x^3 f(x)^2 + f(x)^3 (x-1)^2 = 1$ for all $x \in U$, so $0 = \frac{d}{dx} \left[x^3 f(x)^2 + f(x)^3 (x-1)^2 \right] = 3x^2 f(x)^2 + 2x^3 f(x) f'(x) + 3f(x)^2 f'(x) (x-1)^2 + 2f(x)^3 (x-1)$. When x = 1, f(1) = 1, and so 0 = 3 + 2f'(1). Thus $f'(1) = \frac{3}{2}$

Example of:

(Finding the derivative without the function) Consider the problem of solving the system of equations: $\begin{cases} xy^2 + xzu + yv^2 = 3 \\ u^3yz + 2xv - u^2v^2 = 2 \end{cases}$ (*). for u and v in terms of x,y,z near x=y=z=u,v=1 and computing the partial $\frac{\partial u}{\partial z},\frac{\partial v}{\partial z}$.

Let $a = (1, 1, 1), b = (1, 1), c = (3, 2), \text{ and } F : \mathbb{R}^3 \to \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$F(x, y, z, u, v) = (xy^{2} + xzu + yu^{2}, u^{3}yz + 2xv - u^{2}v^{2}).$$

Then
$$F(a,b) = c$$
, $\frac{\partial F}{\partial (u,v)} = \begin{bmatrix} xz & 2yv \\ 3u^2yz - 2uv^2 & 2x - 2u^2v \end{bmatrix}$.

$$\det\left(\frac{\partial F}{\partial(u,v)}\left(a,b\right)\right)=\det\begin{bmatrix}1&2\\1&0\end{bmatrix}=-2\neq0.$$

Hence, by the IPFT there exists a smooth function $f(x,y,z)=(f_1(x,y,z),f_2(x,y,z))$ defined on a neighbourhood U of u=(1,1,1) such that F(x,y,z,f(x,y,z))=(3,2)=c for all $(x,y,z)\in U$ and f(1,1,1)=(1,1): $u=f_1(x,y,z),v=f_2(x,y,z)$ are the expressions of u and v in terms of x,y,z. To find $\frac{\partial u}{\partial z}$ and $\frac{\partial v}{\partial z}$ we differentiate Eqs(*) with respect to z, treating u and v as functions of x,y,z:

$$0 = \frac{\partial}{\partial z} (xy^2 + xzu + yv^2) = xu + xz\frac{\partial u}{\partial z} + 2yv\frac{\partial v}{\partial z}$$

$$0 = \frac{\partial}{\partial z} (u^3yz + 2xv - u^2v^2) = 3u^2\frac{\partial u}{\partial z}yz + u^3y + 2x\frac{\partial v}{\partial z} - 2u\frac{\partial u}{\partial z}v^2 - u^22v\frac{\partial v}{\partial z}$$

With (x, y, z) = (1, 1, 1), (u, v) = (1, 1) we get

$$1 + \frac{\partial u}{\partial z} + 2\frac{\partial v}{\partial z} = 0, \frac{\partial u}{\partial z} + 1 = 0.$$

Hence,
$$\frac{\partial f_1}{\partial z} = \frac{\partial u}{\partial z}(1,1,1) = -1, \frac{\partial f_2}{\partial z} = \frac{\partial v}{partialz}(1,1,1) = 0.$$

Proposition 3.2 Implicit Differentiation

Let $F: \Omega_n \times \Omega_m \to \mathbb{R}^m$ be a C^1 function where $\Omega_n \subset \mathbb{R}^n$ and $\Omega_m \subset \mathbb{R}^m$ are open and let $c \in \mathbb{R}^m$. If $f: \Omega_n \to \Omega_m$ is a differentiable function such that F(x, f(x)) = c for all $x \in \Omega_n$, then

$$\frac{\partial F}{\partial y}(x, f(x)) D_f(x) = -\frac{\partial F}{\partial x}(x, f(x))$$

and

$$D_{f}(x) = -\left[\frac{\partial F}{\partial y}(x, f(x))\right]^{-1} \frac{\partial F}{\partial x}(x, f(x))$$

provided det $\left(\frac{\partial F}{\partial y}(x, f(x))\right) \neq 0$.

Proof. Define $g: \Omega_n \to \Omega_n \times \Omega_m$ by g(x) = (x, f(x)). Then g is differentiable and

$$D_g\left(x\right) = \begin{bmatrix} I_n \\ D_f\left(x\right) \end{bmatrix}.$$

Since $(F \circ g)(x) = c$, the chain rule yields $0 = D_{F \circ g}(x) = D_F(g(x))D_g(x) = \left[\frac{\partial F}{\partial x}(g(x)) - \frac{\partial F}{\partial y}(g(x))\right] \begin{bmatrix} I_n \\ D_f(x) \end{bmatrix} = \frac{\partial F}{\partial x}(x, f(x)) + \frac{\partial F}{\partial y}(x, f(x))D_f(x).$ Hence, the result.

3.1 Constrained Extrema and Lagrange Multipliers

Let $\Omega \subseteq \mathbb{R}^n$ be open and $f, g_1, g_1, \ldots, g_m : \Omega \to \mathbb{R}$ be C^1 functions. Suppose that for some $c_1, c_2, \ldots, c_m \in \mathbb{R}$, $S = \{x \in \Omega : g_1(x) = c_1, g_2(x) = c_2, \ldots, g_m(x) = c_m\} \neq \emptyset$. The problem of finding the extreme values of f on the set S (i.e., the extrema of f|S) is referred to as the problem of of finding the extreme values of f subject to (or with) the constraints $g_1(x) = c_1, \ldots, g_m(x) = c_m$.

E.g., finding the extreme values of $f(x, y, z) = \sin(x + y)\cos(y + z)$ subject to the constraint $g(x, y, z) = x^2 + y^2 + z^2 = 1$ means finding the extreme values of f on the sphere $S_1(0, 0, 0) = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$.

Theorem 3.3

Let $f,g:\Omega\to\mathbb{R}$ be C^1 functions where $\Omega\subseteq\mathbb{R}^{n+1}$ and let $S=\{x\in\Omega:g(x)=c\}$ (where $c\in\mathbb{R}$). If f|S attains an extreme value at some $s\in S$ where $\nabla g(s)\neq 0$, then there exists an $x\in\mathbb{R}$ (called a Lagrange multiplier) such that $\nabla f(s)=\lambda\nabla g(s)$.

Proof. Since $\nabla g\left(s\right) \neq 0$, $\frac{\partial g}{\partial x_i}\left(s\right) \neq 0$ for some $i=1,2,\ldots,n+1$. Let us first consider the case that $\frac{\partial g}{\partial x_{n+1}}\left(s\right) \neq 0$. Let $a=(s_1,\ldots,s_n),$ $b=s_{n+1}$ (so s=(a,b)). Then $g\left(a,b\right)=c$ and $\frac{\partial g}{\partial x_{n+1}}\left(a,b\right) \neq 0$. Hence by the IPFT there exist open sets $U\in\mathbb{R}^n,\ V\in\mathbb{R}$ such that $s=(a,b)\in U\times V$ and a C^1 function $\varphi:U\to V$ such that $\varphi\left(a\right)=b$ and $g\left(x,\varphi x\right)=c$ (i.e., $\left(x,\varphi\left(x\right)\right)\in S$) for all $x\in U$. Define $\tilde{f}:U\to\mathbb{R}$ by $\tilde{f}\left(x\right)=f\left(x,\varphi\left(x\right)\right)$. Clearly, \tilde{f} is a C^1 function and \tilde{f} has an extremum at x=a, so $\nabla \tilde{f}\left(a\right)=0=D_{\tilde{f}}\left(a\right)$. Note that $\tilde{f}=f\circ h$ where $h:U\to S\subseteq\mathbb{R}^{n+1}$ is given by $h\left(x\right)=\left(x,\varphi\left(x\right)\right)$. Hence, by the Chain Rule

$$0 = D_{\tilde{f}}(a) = D_{f}(h(a)) D_{h}(a) = D_{f}(s) \begin{bmatrix} I_{n} \\ D_{\varphi}(a) \end{bmatrix}$$

or

$$0 = \frac{\partial f}{\partial x_i}(s) + \frac{\partial f}{\partial x_{n+1}} + \frac{\partial \varphi}{\partial x_i}(a) \,\forall i = 1, 2, \dots, n.$$

But by the Implicit Differentiation Formula,

$$D_{\varphi}(a) = -\left[\frac{\partial g}{\partial x_{n+1}}(a, \varphi a)\right]^{-1} \left[\frac{\partial g}{\partial x_{1}}(a, \varphi(a)), \dots, \frac{\partial g}{\partial x_{n}}(a, \varphi a)\right]$$
$$= -\left[\frac{\partial g}{\partial x_{n+1}}(s)\right]^{-1} \left[\frac{\partial g}{\partial x_{1}}(a, \varphi(a)), \dots, \frac{\partial g}{\partial x_{n}}(s)\right]$$

Therefore,

$$0 = \frac{\partial f}{\partial x_1}(s) - \frac{\partial f}{\partial x_{n+1}}(s) \left(\frac{\partial g}{\partial x_{n+1}}(s)\right)^{-1} \frac{\partial g}{\partial x_i}(s) \,\forall i = 1, 2, \dots, n$$

Note that this equality also trivially holds when i=n+1. Thus, with $\lambda=\frac{\partial f}{\partial x_{n+1}}\left(s\right)\left(\frac{\partial g}{\partial x_{n+1}}\left(s\right)\right)^{-1}$ we obtain $\nabla f\left(s\right)=\lambda\nabla g\left(s\right)$. If $\frac{\partial g}{\partial x_{n+1}}\left(s\right)=0$, we can choose $p=1,2,\ldots,n$ such that $\frac{\partial g}{\partial x_p}\left(s\right)\neq 0$. Define a linear isomorphism $T:\mathbb{R}^{n+1}\to\mathbb{R}^{n+1}$ by $T\left(x_1,x_2,\ldots,x_{n+1}\right)=\left(x_1,x_2,\ldots,x_{p-1},x_{n+1},x_p,x_{p+1},\ldots,x_n\right)$, and let $\Omega_*=T^{-1}\left(\Omega\right),\,S_*=T^{-1}\left(S\right),\,s_*=T^{-1}\left(s\right),\,f_*=f\circ T:\Omega_*\to\mathbb{R},\,g_*=g\circ T:\Omega_*\to\mathbb{R}.$ Then $S_*=\left\{x\in\Omega_*:g_*\left(x\right)=c\right\}$ and $f_*|S_*$ has an extremum at s_* . Moreover, $\frac{\partial g_*}{\partial x_{n+1}}\left(s_*\right)=\frac{\partial g}{\partial x_p(s)\neq 0}.$ So by the 1st part of the proof, there exists a $\lambda\in\mathbb{R}$ such that $\nabla f_*\left(s_*\right)=\lambda\nabla g_*\left(s_*\right).$ But

$$\frac{\partial f_*}{\partial x_i}(s*) = \begin{cases} \frac{\partial f}{\partial x_i}(s) & \text{for } i = 1, 2, \dots, p-1\\ \frac{\partial f}{\partial x_{i+1}}(s) & \text{for } i = p, p+1, \dots, n\\ \frac{\partial f}{\partial x_p}(s) & \text{for } i = n+1 \end{cases}$$

and similarly for g_* . Hence, $\nabla f(s) = \lambda \nabla g(s)$.

Example of Minimum distance with the Lagrange multiplier:

Find the minimum distance from the point (1,2,0) to the surface $z^2 = x^2 + y^2, z \ge 0$, using the Lagrange multiplier.

The distance from (1,2,0) to a point (x,y,z) is $d = \sqrt{(x-1)^2 + (y-2)^2 + z^2}$ and it suffices to minimize d^2 , i.e., the function $f(x,y,z) = (x-1)^2 + (y-2)^2 + z^2$ on the set $\tilde{S} = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 0, z \ge 0\}$. Recall that in Lecture 25 we solved this problem by eliminating z.

In particular, we found that f attains a global min value of \tilde{S} but there does not exist a global max. Note also that $z=0 \implies x^2+y^2=0$, and f(0,0,0)=5 while f(0,1,1)=3<5. So f attains a global min on $S=\left\{(x,y,z):x^2+y^2-z^2=0 \text{ and } z>0\right\}$ and does not have a global max on S. We can apply our theorem to:

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : z > 0\}. \ f: \Omega \to \mathbb{R}, \ f(x, y, z) = (x - 1)^2 + (y - 2)^2 + z^2, \ g: \Omega \to \mathbb{R}, \ g(x, y, z) = x^2 + y^2 - z^2, \ \text{and} \ S = \{(x, y, z) \in \Omega : g(x, y, z) = 0\} = \{(x, y, z) \in \Omega : x^2 + y^2 - z^2 = 0\} \ (c = 0).$$

Note that $\nabla g(x,y,z)=(2x,2y,-2z)\neq 0$ for all $(x,y,z)\in \Omega$, so by the theorem if a minimum occurs at $(x,y,z)\in S$ then $\nabla f(x,y,z)=(2(x-1),2(y-2),2z)=\lambda(2x,2y,-2z)$ for some $\lambda\in\mathbb{R}$. So we need to solve the system:

$$\begin{cases} 2(x-1) = 2\lambda x \\ 2(y-2) = 2\lambda y \\ 2z = -2\lambda z \\ x^2 + y^2 - z^2 = 0 \end{cases} \implies \lambda = -1 \implies x = \frac{1}{2}, y = 1 \implies z = \sqrt{\frac{5}{4}}$$

So a minimum occurs at
$$\left(\frac{1}{2}, 1, \sqrt{\frac{5}{4}}\right)$$
 and the min distance is $d_{\min} = \sqrt{f\left(\frac{1}{2}, 1, \sqrt{\frac{5}{4}}\right) = \sqrt{\frac{5}{2}}}$.

Example of Maximum volume with the Lagrange multiplier:

Consider rectangular boxes $[-x,x] \times [-y,y] \times [-z,z]$ (x,y,z) incubed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (i.e., with vertices on the ellipsoid). Find the values of x,y,z which maximize the volume of such a box and the maximum volume.

Intuitively, it seems clear that the maximum exists. Can we confirm this mathematically?

Note that $\tilde{S} = \left\{ (x,y,z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}$ is compact, so by the EVT f(x,y,z) = 8xyz attains its absolute maximum on \tilde{S} . It is clear that the maximum value is strictly positive, so (among other possibilities), it is attained at a point where x,y,z>0. Hence, our problem has a solution.

Formally we work with the open set $\Omega=\{(x,y,z):x,y,z>0\}$ with the constraint function $g:\Omega\to\mathbb{R}$ given by $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$, and the function to maximize is f(x,y,z)=8xyz. Note that $\nabla g(x,y,z)=\left(\frac{2x}{a^2},\frac{2y}{b^2},\frac{2z}{c^2}\right)\neq 0$ for all $(x,y,z)\in\Omega$. By the theorem, the max occurs at a point $(x,y,z)\in S$ where $\nabla f(x,y,z)=(8yz,8xz,8xy)=\lambda\left(\frac{2x}{a^2},\frac{2y}{b^2},\frac{2z}{c^2}\right)$ for some $\lambda\in\mathbb{R}$. So we need to solve the system:

$$\begin{cases} 8yz = \lambda \frac{2x}{a^2} \\ 8xz = \lambda \frac{2y}{b^2} \\ 8xy = \lambda \frac{2z}{c^2} \\ 8xy = \lambda \frac{2z}{c^2} \end{cases} \implies 4xyz = \lambda \frac{x^2}{a^2} \\ 4xyz = \lambda \frac{y}{b^2} \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \end{cases} \implies 2xyz = \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right) = \lambda$$

Given that x, y, z > 0, $\frac{1}{b} = \frac{x^2}{a^2} = \frac{y^2}{b^2} = \frac{z^2}{c^2} \implies x = \frac{a}{\sqrt{3}}, y = \frac{b}{\sqrt{3}}, z = \frac{c}{\sqrt{3}}$. The max volume is then $f\left(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}, \frac{c}{\sqrt{3}}\right) = \frac{8abc}{3\sqrt{3}}$.

Week 4

Constraint Problems

Theorem 4.1 Lagrange multipliers for m constraints

Let f, g_1, g_2, \ldots, g_m : $\Omega \to \mathbb{R}$ be C^1 functions where $\Omega \subseteq \mathbb{R}^{n+m} = \mathbb{R}^n \times \mathbb{R}^m$ is open and let $S = \{x \in \Omega : g_1(x) = c_1, g_2(x) = c_2, \ldots, g_m(x) = c_m\}$ (with $c_1, c_2, \ldots, c_m \in \mathbb{R}$). If f attains an extreme value at some $s \in S$ where $\nabla g_1(s), \ldots, \nabla g_m(s)$ are linearly independent then there exists $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$ (called Lagrange multipliers) such that $\nabla f = \lambda_1 \nabla g_1(s) + \lambda_2 \nabla g_2(s) + \cdots + \lambda_m \nabla g_m(s)$.

Proof. Let $g=(g_1,\ldots,g_m):\Omega\to\mathbb{R}^m$. Since $\nabla g_1(s),\ldots,\nabla g_m(s)$ are linearly independent, the matrix $D_g(s)=\left[\frac{\partial g_i}{\partial x_j}(s)\right]_{i=1,j=1}^{m,m+n}$ has m linearly independent rows, so also m linearly independent columns. Let us consider the case that columns $n+1,n+2,\ldots,n+m$ are linearly independent.

Write (x,y) for the elements of $\mathbb{R}^{n+m} = \mathbb{R}^n \times \mathbb{R}^m$ and let $a = (s_1, \ldots, s_n), b = (s_{n+1}, \ldots, s_{n+m}), c = (c_1, \ldots, c_m)$. Clearly, g(a,b) = c, and with the notation used in the IPFT, $\frac{\partial g}{\partial y}(a,b) = \left[\frac{\partial g_i}{\partial x_j}(a,b)\right]_{i=1,j=n+1}^{m,n+m}$, so $\det\left(\frac{\partial g}{\partial y}(a,b)\right) \neq 0$. Therefore by the IPFT there exists open sets $U \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^m$ such that s = (a,b) such that $U \times V$ and a C^1 function $\varphi : U \to V$ such that $\varphi(a) = b$ and $g(x,\varphi(x)) = c$ (i.e., $(x,\varphi(x)) \in S$) for all $x \in U$.

Define $\tilde{f}: U \to \mathbb{R}$ by $\tilde{f}(x) = f(x, \varphi(x))$. Clearly, \tilde{f} is a C^1 function and it has an extremum at a, so $D_{\tilde{f}}(a) = 0 = \nabla \tilde{f}(a)$. Using the Chain Rule and the implicit differentiation formula for φ , we obtain:

$$0 = D_{\tilde{f}}(a) = D_{f}(s) \begin{bmatrix} I_{n} \\ D_{\varphi}(a) \end{bmatrix} =$$

$$= \begin{bmatrix} \frac{\partial f}{\partial x}(s) & \frac{\partial f}{\partial y}(s) \end{bmatrix} \begin{bmatrix} I_{n} \\ D_{\varphi}(a) \end{bmatrix} =$$

$$= \frac{\partial f}{\partial x}(s) + \frac{\partial f}{\partial y}(s) D_{\varphi}(a) = \frac{\partial f}{\partial x}(s) - \frac{\partial f}{\partial y}(s) \left(\frac{\partial g}{\partial y}(s)\right)^{-1} \frac{\partial g}{\partial x}(s)$$

i.e.,

$$\frac{\partial f}{\partial x}\left(s\right) = \left(\frac{\partial f}{\partial y}\left(s\right)\left(\frac{\partial g}{\partial y}\left(s\right)\right)^{-1}\right)\frac{\partial g}{\partial x}\left(s\right)$$

Hence, with $\frac{\partial f}{\partial y}(s) \left(\frac{\partial g}{\partial y}(s)\right)^{-1} = [\lambda_1, \lambda_2, \dots, \lambda_m],$

$$\frac{\partial f}{\partial x_i}(s) = \sum_{j=1}^m \lambda_j \frac{\partial g_j}{\partial x_i}(s) \,\forall i = 1, 2, \dots, n.$$

But this equality also holds for $i = n + 1, \dots, n + m$. Indeed,

$$\sum_{j=1}^{m} \lambda_{j} \frac{\partial g_{j}}{\partial x_{i}}(s) = \sum_{j=1}^{m} \lambda_{j} \frac{\partial g_{j}}{\partial y_{i-m}}(s) = \left[\frac{\partial f}{\partial y}(s) \left(\frac{\partial g}{\partial y}(s)\right)^{-1} \frac{\partial g}{\partial y}(s)\right] =$$

$$= \left[\frac{\partial f}{\partial y}(s) I_{m}\right] = \frac{\partial f}{\partial y_{i-m}}(s) = \frac{\partial f}{\partial x_{i}}(s).$$

Therefore
$$\nabla f(s) = \sum_{j=1}^{m} \lambda_j \nabla g_j(s)$$
.

Example of two constraints:

THe planes x + z = 4 and 3x - y = 6 intersect in a line L. Use the Lagrange multipliers to find a point on the line L that is closest to the origin.

From geometry the minimum distance exists (and no maximum exists). We will minimize the square of the distance from the origin to a point (x, y, z) on L.

Let $f, g_1, g_2 : \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x, y, z) = x^2 + y^2 + z^2, g_1(x, y, z) = x + z, g_2(x, y, z) = 3x - y$. We look for the minimum of f|L, where $L = \{(x, y, z) : g_1(x, y, z) = 4, g_2(x, y, z) = 6\}$. We have

$$\nabla f(x, y, z) = (2x, 2y, 2z), \nabla g_1(x, y, z) = (1, 0, 1), \nabla g_2(x, y, z) = (3, -1, 0).$$

Clearly, $\nabla g_1(x, y, z)$ and $\nabla g_2(x, y, z)$ are linearly independent for all $(x, y, z) \in \mathbb{R}^3$. So the minimum occurs when $\nabla f(x, y, z) = \lambda_1 \nabla g_1(x, y, z) + \lambda_2 \nabla g_2(x, y, z)$ for some $\lambda_1, \lambda_2 \in \mathbb{R}$ and we need to solve the system:

$$2x = \lambda - 1 + 3\lambda_2$$

$$2y = -\lambda_2$$

$$2z = \lambda_1 \implies 2x = 2z - 6y \implies x + 3y - z = 0$$

$$x + z = 4$$

$$3x - y = 6$$

Solving the system, we get (x, y, z) = (2, 0, 2).

So the nearest point on L to the origin is (2,0,2) and the minimum distance is $\sqrt{8} = 2\sqrt{2}$.

Remark: When doing the method of Lagrange multipliers, it is important to investigate the points where the gradients are linearly dependent separately.

4.1 The integral in \mathbb{R}^n

Remark: The regular method for computing the integral in \mathbb{R} is by way of the antiderivative. But there is no analogue to the antiderivative in \mathbb{R}^n , so our method for finding the integral will also not be analogous to how it was in \mathbb{R} .

Definition of a rectangle:

A **rectangle** (rectangular box) R in \mathbb{R}^n is the cartesian product of intervals:

$$R = \prod_{i=1}^{n} [a_i, b_i] = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_b, b_n],$$

where $a_i < b_i$ for all $i = 1, 2, \ldots, n$.

The *n*-dimensional volume v(R) of R is

$$v(R) = \prod_{i=1}^{n} (b_i - a_i) = (b_1 - a_1) \dots (b_n - a_n).$$

Definition of a partition:

Let R be a rectangle in \mathbb{R}^n . By a **partition** of R, we mean a finite collection \mathcal{P} of subrectangles of R such that $\bigcup_{P \in \mathcal{P}} P = R$ and $R_1 \cap R_2 = \emptyset$ whenever $R_1, R_2 \in \mathcal{P}$ and $R_1 \neq R_2$.

The mesh (or norm) of of the partition \mathcal{P} is the number $\|\mathcal{P}\| = \max \{ \operatorname{diam}(P) : P \in \mathcal{P} \}$ where $\operatorname{diam}(P) = \max \{ \|x - y\| : x, y \in P \}$ is the diameter of P (if $P = \prod_{i=1}^{n} (\alpha_i, \beta_i)$, then $\operatorname{diam}(P) = \sqrt{\sum_{i=1}^{n} (\beta_i - \alpha_i)^2}$)

Definition of a refinement:

Let \mathcal{P} and \mathcal{Q} be partitions of a rectangle $R \subseteq \mathbb{R}^n$. We say that \mathcal{Q} is a refinement of \mathcal{P} (or is finer than \mathcal{P}) if for all $Q \in \mathcal{Q}$, there exists a $P \in \mathcal{P}$ such that $Q \subseteq P$.

Lemma 4.2

Let \mathcal{P} and \mathcal{Q} be partitions of a rectangle R. Then

- 1. Q is a refinement of P if and only if each $P \in P$ is the union of those $Q \in Q$ that are contained in P.
- 2. There exists a partition \mathcal{T} of R which refines both \mathcal{P} and \mathcal{Q} (e.g., $\mathcal{T} = \{P \cap Q : P \in \mathcal{P}, Q \in \mathcal{Q}, \text{ and } P \cap Q \text{ is a rectangle.}\})$

Lemma 4.3

If \mathcal{P} is a partition of a rectangle $R \subseteq \mathbb{R}^n$, then $v(R) = \sum_{P \in \mathcal{P}} v(P)$.

Definition of upper and lower sums:

Let $R \subset \mathbb{R}^n$ be a rectangle, $f : \mathbb{R} \to \mathbb{R}$ a bounded function, and \mathcal{P} be a partition of R. Given $P \in \mathcal{P}$ let

$$m_P = \inf \{ f(X) : x \in P \}, M_P = \sup \{ f(x) : x \in P \}.$$

The lower and upper (Darboux or Riemann) sums of f for \mathcal{P} are the numbers

$$L_{\mathcal{P}}\left(f\right) = \sum_{P \in \mathcal{P}} m_P v\left(P\right) \text{ and } U_{\mathcal{P}}\left(f\right) = \sum_{p \in \mathcal{P}} M_P v\left(P\right),$$

respectively. (where v(P) is the volume of P.)

Remark: v(R) inf $\{f(x): x \in R\} \le L_{\mathcal{P}}(f) \le U_{\mathcal{P}}(f) \le \sup\{f(x): x \in R\} \ v(R)$

Lemma 4.4

If Q is a refinement of P, then

$$L_{\mathcal{P}}(f) \leq L_{\mathcal{Q}}(f)$$
 and $U_{\mathcal{Q}}(f) \leq U_{\mathcal{P}}(f)$.

Proof. Each $P \in \mathcal{P}$ is the union of the subfamily $\mathcal{Q}_P \subseteq \mathcal{Q}$ where $\mathcal{Q}_{\mathcal{P}P} = \{Q \in \mathcal{Q} : Q \subseteq P\}$. Clearly, for all $Q \in \mathcal{Q}_P$,

$$m_P = \inf \{ f(x) : x \in P \} \le \inf \{ f(x) : x \in Q \} = m_Q.$$

Hence,

$$\sum_{Q \in \mathcal{Q}_{P}} m_{Q} v\left(Q\right) \geq \sum_{Q \in \mathcal{Q}_{P}} m_{p} v\left(Q\right) = m_{P} v\left(P\right)$$

But $Q_P \cap Q_{P'} = \emptyset$ when $P \neq P'$ and $\bigcup_{p \in P} Q_P = Q$. Therefore,

$$L_{Q}\left(f\right) = \sum_{Q \in \mathcal{Q}} m_{Q} v\left(Q\right) = \sum_{P \in \mathcal{P}} \left(\sum_{Q \in \mathcal{Q}_{P}} m_{Q} v\left(Q\right)\right) \ge \sum_{P \in \mathcal{P}} m_{P} v\left(P\right) = L_{\mathcal{P}}\left(f\right)$$

Similarly for the upper sums.

Corollary 4.5

For any two partitions \mathcal{P} and \mathcal{P}' of R,

$$L_{\mathcal{P}}(f) \leq U_{\mathcal{P}'}(f)$$

Proof. Let \mathcal{Q} be a common refinement of \mathcal{P} and \mathcal{P}' . Then

$$L_{\mathcal{P}}(f) \le L_{\mathcal{Q}}(f) \le U_{\mathcal{Q}}(f) \le U_{\mathcal{P}'}(f)$$

Let \mathbb{P} denote the collection of all partitions of the rectangle R.

Corollary 4.6

$$\sup \left\{ L_{\mathcal{P}}\left(f\right) : \mathcal{P} \in \mathbb{P} \right\} \leq \inf \left\{ U_{\mathcal{P}}\left(f\right) : \mathcal{P} \in \mathbb{P} \right\}.$$

Definition of lower and upper integrals:

The lower and upper (Darboux/Riemann) integrals of a bounded function $f: R \to \mathbb{R}$ are defined by

$$\int_{*R} f = \sup \left\{ L_{\mathcal{P}}\left(f\right) : \mathcal{P} \in \mathbb{P} \right\} and \int_{R}^{*} f = \inf \left\{ U_{\mathcal{P}}\left(f\right) : \mathcal{P} \in \mathbb{P} \right\},$$

respectively. If $\int_{*R} f = \int_R^* f$, then we say that f is (Darboux/Riemann) integrable over R. The number $\int_{*R} f = \int_R^* f$ is called the (Darboux/Riemann) integral of f pver R and is denoted by $\int_R f$ or $\int_R f(x) dx$ or $\int_R f(x_1, \ldots, x_n) dx_1 dx_2 \ldots dx_n$ or $\int \int \cdots \int_R f(x_1, \ldots, x_n) dx_1 dx_2 \ldots dx_n$. In particular, when n = 2 (resp. n = 3) then

$$\int \int_{R} f\left(x,y\right) dx fy (\int \int \int_{R} f\left(x,y,z\right) dx dy dz)$$

is called the double (respectively, triple) integral of f over R.

Example of lower and upper integrals:

When $f: R \to \mathbb{R}$ is constant, f(x) = c for all $x \in R$ then $U_{\mathcal{P}}(f) = L_{\mathcal{P}}(f) = cv(R)$ for any $\mathcal{P} \in \mathbb{P}$, and so F is integrable over R and $\int_{R} f = cv(R)$.

Theorem 4.7 The Riemann condition

Let $R \subseteq R^n$ be a rectangle and $f: R \to \mathbb{R}$ a bounded function. Then f is integrable over R if and only if for all $\varepsilon > 0$, there exists a $\mathcal{P} \in \mathbb{P}$ such that

$$U_{\mathcal{P}}(f) - L_{\mathcal{P}}(f) < \varepsilon.$$

Proof. \Longrightarrow : By the definition of the supremum and infimum, there exist $\mathcal{P}', \mathcal{P}'' \in \mathbb{P}$ such that

$$-\frac{\varepsilon}{2} + \int_{R} f < L_{\mathcal{P}'}(f) \le \int_{R} f \text{ and } \int_{R} f \le U_{\mathcal{P}''}(f) < \frac{\varepsilon}{2} + \int_{R} f(*)$$

Choosing a common refinement \mathcal{P} of \mathcal{P}' and \mathcal{P}'' , (*) will also hold with \mathcal{P}' and \mathcal{P}'' replaced by \mathcal{P} . Hence,

$$U_{\mathcal{P}}(f) - L_{\mathcal{P}}(f) < \left(\frac{\varepsilon}{2} + \int_{R} f\right) - \left(-\frac{\varepsilon}{2} + \int_{R} f\right) = \varepsilon.$$

 \iff : Note that

$$0 \le \int_{R}^{*} f - \int_{*R} f \le U_{\mathcal{P}}(f) - L_{\mathcal{P}}(f) < \varepsilon.$$

Since ε is arbitrary, $\int_{R}^{*} f = \int_{*R}$, i.e., f is integrable.

Corollary 4.8

If $f: R \to \mathbb{R}$ is integrable over $R \subseteq \mathbb{R}^n$ and $S \subseteq R$ is a subrectangle, then f|S is integrable over S.

Proof. Let $\varepsilon > 0$. By the theorem, there exists a partition $\mathcal{P} \in \mathbb{P}$ such that $U_{\mathcal{P}}(f) - L_{\mathcal{P}}(f) < \varepsilon$. But \mathcal{P} has a refinement \mathcal{Q} such that $\mathcal{Q}' = \{Q \in \mathcal{Q} : Q \subseteq S\}$ is a partition of S. Then

$$U_{\mathcal{Q}'}\left(f|S\right) - L_{\mathcal{Q}'}\left(f|S\right) = \sum_{Q \in \mathcal{Q}'} \left(M_Q - m_Q\right) v\left(Q\right) \le \sum_{Q \in \mathcal{Q}} \left(M_Q - m_q\right) v\left(Q\right)$$

$$=U_{\mathcal{Q}}\left(f\right)-L_{\mathcal{Q}}\left(f\right)\leq U_{\mathcal{P}}\left(f\right)-L_{\mathcal{P}}\left(f\right)<\varepsilon$$

Corollary 4.9

If $f: R \to \mathbb{R}$ is a continuous function on a rectangle $R \subseteq \mathbb{R}^n$ then f is integrable over R.

Proof. Since R is compact, f is bounded. Moreover, f is uniformly continuous. Thus, given $\varepsilon > 0$ there exists $\delta > 0$ such that $|f(x) - f(y)| < \frac{\varepsilon}{v(R)}$ whenever $x, y \in \mathbb{R}$ and $||x - y|| < \delta$.

Let \mathcal{P} be any partition with $||P|| < \delta$. Now, given $P \in \mathcal{P}$, by the EVT, $m_p = \inf \{f(x) : x \in P\} = f(x_P)$ and $M_p = \sup \{f(x) : x \in P\} = f(y_P)$ for some $x_P, y_P \in P$.

As diam $P \leq ||\mathcal{P}|| < \delta$, $M_P - m_P = f(y_P) - f(x_P) < \frac{\varepsilon}{v(R)}$. Hence,

$$U_{\mathcal{P}}\left(f\right) - L_{\mathcal{P}}\left(f\right) = \sum_{P \in \mathcal{P}} (M_P - m_P)v\left(P\right) < \sum_{P \in \mathcal{P}} \frac{\varepsilon}{v\left(R\right)}v\left(P\right) = \varepsilon$$

Therefore the Riemann condition is satisfied.

Example of an integrable function:

Let $R = [0, 1] \times [0, 1]$, and $g : R \to \mathbb{R}$ be given by $g(x, y) = \begin{cases} 1 \text{ when } (x, y) = (\frac{1}{2}, \frac{1}{2}) \\ 0 \text{ otherwise} \end{cases}$. Then g is integrable. Indeed given $\varepsilon > 0$, choose a partition \mathcal{P} of R where the subrectangle $P \in \mathcal{P}$ with $(\frac{1}{2}, \frac{1}{2}) \in P$ has $v(P) < \varepsilon$. Then $L_{\mathcal{P}}(g) = 0$ while $U_{\mathcal{P}}(g) = 1 \cdot v(P) < \varepsilon$. So the Riemann condition is satisfied.

Theorem 4.10

Let $f: R \to \mathbb{R}$ be an integrable function where $R \subseteq R^n$ is a rectangle. Then for all $\varepsilon > 0$ there exists $\mathcal{P}_{\varepsilon} \in \mathbb{P}$ such that the following holds: If $\mathcal{P} \in \mathbb{P}$ is a refinement of $\mathcal{P}_{\varepsilon}$ and for all $P \in \mathcal{P}$ a point $x_P \in P$ is chosen, then

$$\left| \sum_{P \in \mathcal{P}} f\left(x_P v\left(P\right) \right) - \int_R f \right| < \varepsilon(*)$$

Definition of a Riemann sum:

Given a partition \mathcal{P} of R, a choice of points $x_P \in P$ for all $P \in \mathcal{P}$ and a function $f: R \to \mathbb{R}$, the sum

$$\sum_{P \in \mathcal{P}} f(x_P) v(P)$$

is called the Riemann sum corresponding to the partition \mathcal{P} and the choice of points $x_P \in P$ for all $P \in \mathcal{P}$.

Week 5

Constructing the integral

Theorem 5.1

Let $f: R \to \mathbb{R}$ be integrable where $R \subseteq R^n$ is a rectangle. Then for all $\varepsilon > 0$, there exists a particular $\mathcal{P}_{\varepsilon}$ of R such that if \mathcal{P} us a partition that is finer than $\mathcal{P}_{\varepsilon}$ and if for all $P \in \mathcal{P}$ a point $x_P \in P$ is chosen, then

$$\left| \sum_{P \in \mathcal{P}} f(x_P) v(P) - \int_R f \right| < \varepsilon$$

Proof. Proof omitted, I came late!

Theorem 5.2

Let $f: R \to \mathbb{R}$ be a bounded function where $R \subseteq \mathbb{R}^n$ is a rectangle. Then f is integrable over $R \iff$ there exists a number s with the following property:

$$\forall \varepsilon > 0 \exists$$
 a partition \mathcal{P} of R such that $\left| \sum_{P \in \mathcal{P}} f(x_P) v(P) \right| < \varepsilon$

for any choice of points $x_P \in P$ for all $P \in \mathcal{P}$.

Proof. \Longrightarrow : V (last theorem with $s = \int_R f$ and $\mathcal{P} = \mathcal{P}_{\varepsilon}$) \Longleftrightarrow : We will show that the Riemann condition holds. Our assumption ensures that for all $\varepsilon > 0$ there exists a partition \mathcal{P} such that

$$s - \frac{\varepsilon}{4} < \sum_{P \in \mathcal{P}} f(x_P) v(P) < s + \frac{\varepsilon}{4}$$

for any choice of $x_P \in P$ for all $P \in \mathcal{P}$.

But from the definition of the supremum and infimum, we can choose $\xi_P, \eta_P \in P$ such that

$$m_P = \inf \{ f(x) : x \in P \} \le f(\xi_P) < m_P + \frac{\varepsilon}{4v(R)}$$

and
$$M_P = \sup \{ f(x) : x \in P \} \ge f(\eta_P) > M_P - \frac{\varepsilon}{4v(R)}$$
.

Then

$$L_{\mathcal{P}}\left(f\right) = \sum_{P \in \mathcal{P}} m_{P} v\left(P\right) > \sum_{P \in \mathcal{P}} \left(f\left(\xi_{P} - \frac{\varepsilon}{4v\left(R\right)}\right) \right) v\left(P\right) = \sum_{P \in \mathcal{P}} \left(f\left(\xi_{P}\right)\right) v\left(P\right) - \frac{\varepsilon}{4} > s - \frac{\varepsilon}{2},$$

and similarly,

$$U_{\mathcal{P}}\left(f\right) = \sum_{P \in \mathcal{P}} M_{P} v\left(P\right) < \sum_{P \in \mathcal{P}} \left(f\left(\eta_{P} + \frac{\varepsilon}{4v\left(R\right)}\right) \right) v\left(P\right) = \sum_{P \in \mathcal{P}} \left(f\left(\eta_{P}\right)\right) v\left(P\right) + \frac{\varepsilon}{4} < s - \frac{\varepsilon}{2}.$$

Consequently,

$$U_{\mathcal{P}}(f) - L_{\mathcal{P}}(f) < s + \frac{\varepsilon}{2} - \left(s - \frac{\varepsilon}{2}\right) = \varepsilon.$$

Remark: If the number s, as defined in the last theorem exists, then $s = \int_R f$. (exercise)

Definition of volume zero:

A subset $S \subseteq R^n$ is said to have *n*-dimensional volume zero, written v(S) = 0, if for all $\epsilon > 0$ there exist rectangles R_1, R_2, \ldots, R_n such that $S \subseteq \bigcup_{i=1}^n R_i$ and $\sum_{i=1}^n v(R_i) < \epsilon$.

Example of: \bullet Every finite subset of \mathbb{R}^n has the *n*-dimensional volume 0.

• The countable set $S = \mathbb{Q} \cap [0,1]$ does not have 1-dimensional volume 0. [Indeed, if $S \subseteq \bigcup_{i=1}^n R_i$ where R_i are closed interbals, then as $\bigcup_{i=1}^n R_i$ where R_i are closed intervals, then as $\bigcup_{i=1}^n R_i$ is closed, $[0,1] = \overline{S} \subseteq$

$$\bigcup_{i=1}^{n} R_{i}. \text{ Thus } \sum_{i=1}^{n} v\left(R_{i}\right) = \sum_{i=1}^{n} \operatorname{length}\left(R_{i}\right) \geq 1.$$

• If $R \subset \mathbb{R}^n$ is a rectangle then ∂R has n-dimensional volume 0. Indeed, if $R = \prod_{i=1}^n [a_i, b_i]$ then $\partial R = \bigcup_{i=1}^n \left(\{x \in R : x_i = a_i\} \cup \{x \in R : x_i = b_i\} \right)$. But for any $\eta > 0$, $\{x \in R : x_i = a_i\} \subseteq R_i = [a_i, b_i] \times \cdots \times [a_{i-1}, b_{i-1}] \times [a_i - \eta_i, b_i] \times [a_{i+1}, b_{i+1}] \times [a_n, b_n]$ where $v(R_i) = \eta \prod_{j=1, j \neq i}^n (b_j - a_j)$. Hence, $\{x \in R : x_i = a_i\}$ has volume zero. Similarly, $\{x \in R : x_i = b_i\}$ has volume zero, since the union of finitely many sets of zero volume is a set of zero volume, ∂R has volume zero.

Proposition 5.3

If $f: \Omega \to \mathbb{R}$ is continuous, where $\Omega \subseteq \mathbb{R}^n$ is compact, then graph $(f) = \{(x,y) \in \mathbb{R}^{n+1} : x \in \Omega \text{ and } y = f(x)\}$ has (n+1)-volume zero. More generally, for any $k = 1, 2, \ldots, n+1$, the set $S = \{(x+1, \ldots, x_{n+1}) : (x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n+1}) \in \Omega \text{ and } x_k = f(x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n+1})\}$ has (n+1)-dimensional volume zero.

Proof. Note that Ω is contained in a rectangle $R \subseteq \mathbb{R}^n$. As f is uniformly continuous, given $\varepsilon > 0$, there exists an s > 0 such that $|f(x) - f(x')| < \frac{\varepsilon}{4v(R)}$ whenever $x, x' \in \Omega$ and $||x - x'|| < \delta$. Choose a partition \mathcal{P} of R with $||\mathcal{P}|| < \delta$ and let $\mathcal{P}_* = \{P \in \mathcal{P} : P \cap \Omega \neq \emptyset\}$. Note $\Omega \subseteq \bigcup_{P \in \mathcal{P}_*} P$. Given $P \in \mathcal{P}$, choose some $x_P \in P \cap \Omega$ and let $R_P = P \times [f(x_P) - \frac{\varepsilon}{4v(R)}, f(x_P) + \frac{\varepsilon}{4v(R)}]$ which is a rectangle in \mathbb{R}^{n+1} with $v(R_P) = v(P) - \frac{\varepsilon}{2v(R)}$. Note that if $(x,y) \in \text{graph}(f)$ then $x \in P$ for some $P \in \mathcal{P}_*$. Since $||\mathcal{P}|| < \delta$, so $||x = x_P|| < s$ and so $f(x) \in [f(x_P) - \frac{\varepsilon}{4v(R)}, f(x_P) + \frac{\varepsilon}{4v(R)}]$. It follows that $(x,y) \in R_P$. Consequently, graph $(f) \subseteq \bigcup_{P \in \mathcal{P}_*} R_P$. But

$$\sum_{P \in \mathcal{P}_{+}} v\left(R_{P}\right) = \sum_{P \in \mathcal{P}_{+}} v\left(P\right) \frac{\varepsilon}{2v\left(R\right)} = \frac{\varepsilon}{2} < \varepsilon.$$

As $\varepsilon > 0$ is arbitrary, graph (f) has (n+1)-dimensional volume zero.

Theorem 5.4

Let $f: R \to \mathbb{R}$ be a bounded function where $R \subseteq R^n$ is a rectangle. If $D = \{x \in R : f \text{ is discontinuous at } x\}$ has n-dimensional volume zero, then f is integrable over R.

5.1 Basic properties of integrals over rectangles

Theorem 5.5 *1

Let $f,g:R\to\mathbb{R}$ be integrable over the rectangle $R\subseteq\mathbb{R}^n$ and let $c\in\mathbb{R}.$ Then:

- 1. cf is integrable over R, and $\int_R cf = c \int_R f$.
- 2. f + g is integrable over R and $\int_R f + g = \int_R f + \int_R g$.
- 3. If $g \le f$ on R, then $\int_R g \le \int_R f$.
- 4. |f| is integrable over R and $\left|\int_R f\right| \leq \int_R |f|$.

Proof. In the same order as before,

• We may assume that $c \neq 0$, let $\varepsilon > 0$. As f is integrable over R, there exists a partition \mathcal{P} of R such that for any choice of $x_P \in P$ for all $P \in \mathcal{P}$,

$$\left| \sum_{P \in \mathcal{P}} f(x_P) v(P) - \int_R f \right| < \frac{\varepsilon}{c}.$$

But then

$$\left| \sum_{P \in \mathcal{P}} cf(x_P) v(P) - c \int_{R} f \right| > \varepsilon.$$

Hence, cf is integrable and $\int_R cf = c \int_R f$ by the 2nd theorem about Riemann sums.

• We again use Riemann sums. Given $\varepsilon > 0$ there exists a partition $\mathcal{P}'_{\varepsilon}$ (respectively, $\mathcal{P}''_{\varepsilon}$) such that for every partition \mathcal{P} that is finer than $\mathcal{P}'_{\varepsilon}$ (respectively, $\mathcal{P}''_{\varepsilon}$) and for any choice of points $x_P \in P$ for all $P \in \mathcal{P}$,

$$\left| \sum_{P \in \mathcal{P}} f\left(x_{P}\right) v\left(P\right) - \int_{R} f \right| < \frac{\varepsilon}{2} \text{(respectively, } \left| \sum_{P \in \mathcal{P}} g\left(x_{P}\right) v\left(P\right) - \int_{R} g \right| < \frac{\varepsilon}{2} \text{)}$$

Let \mathcal{P} be a common refinement of $\mathcal{P}'_{\varepsilon}$ and $\mathcal{P}''_{\varepsilon}$. Then for any choice of points $x_P \in P$ for all $P \in \mathcal{P}$,

$$\left| \sum_{P \in \mathcal{P}} \left(f\left(x_{P} \right) + g\left(x_{P} \right) \right) v\left(P \right) - \left(\int_{R} f + \int_{R} g \right) \right| \leq \left| \sum_{P \in \mathcal{P}} f\left(x_{P} \right) v\left(P \right) - \int_{R} f \left| + \left| \sum_{P \in \mathcal{P}} g\left(x_{P} \right) v\left(P \right) - \int_{R} g \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

Hence, by the 2nd theorem about Riemann sums, f+g is integrable over R and $\int_R f + g = \int_R f + \int_R g$.

• Clearly, $f-g \geq 0$ and so for any partition $\mathcal P$ of R, $L_{\mathcal P}(f-g) \geq 0$. Hence, $\int_R f - g \geq L_{\mathcal P}(f-g) \geq 0$ (we used the first two parts). Then again by these first two parts, $\int_R f - \int_R g = \int_R f - g \geq 0$, so $\int_R f \geq \int_R g$

Proof. • We will use the Riemann condition. Let \mathcal{P} be a partition of R and given $P \in \mathcal{P}$, let $m_P = \inf \{f(x) : x \in P\}$ $M_P = \sup \{f(x) : x \in P\}$ $\bar{m}_P = \inf \{|f(x)| : x \in P\}$ $\bar{M}_P = \sup \{|f(x)| : x \in P\}$. Note that if $x, x' \in P$ then

$$||f(x)| - |f(x')|| \le |f(x) - f(x')| \le M_P - m_P.$$

Thus,

$$|f(x)| \le M_P - m_P + |f(x')|$$
.

Hence, keeping x' fixed, $\bar{M}_P = \sup\{|f(x)| : x \in P\} \leq M_P - m_P + |f(x')| \text{ for all } x' \in P, \text{ and so}$

$$\bar{M}_P - M_P + m_P \le |f(x')|$$
.

Hence, $\bar{M}_P - M_P + m_P \le \inf \{ |f(x')| : x' \in P \} = \bar{m}_P$, and so

$$\bar{M_P} - m_P \le M_P = m_P.$$

Therefore, $U_{\mathcal{P}}\left(|f|\right) - L_{\mathcal{P}}\left(|f|\right) = \sum_{P \in \mathcal{P}} \left(\bar{M}_P - \bar{m}_P\right) v\left(P\right) \le \sum_{P \in \mathcal{P}} \left(M_P - m_P\right) v\left(P\right) = U_{\mathcal{P}}\left(f\right) - L_{\mathcal{P}}\left(f\right).$

But by integrability of f and the Riemann condition, for any $\varepsilon > 0$, \mathcal{P} can be chosen so that $U_{\mathcal{P}}(f) - L_{\mathcal{P}}(f) < \varepsilon$. Therefore the Riemann condition is also satisfied by |f|, so that |f| is integrable over R.

Then as $-|f| \le f \le |f|$, $-\int_R |f| \le \int_R f \le \int_R |f|$ by the first two parts. Thus $\left|\int_R f\right| \le \int_R |f|$.

Theorem 5.6 *2

Let $f: R \to \mathbb{R}$ be a bounded function where $R \subseteq \mathbb{R}^n$ is a rectangle. If $E = \{x \in R : f(x) \neq 0\}$ has n-dimensional volume zero then f is integrable over R and $\int_R f = 0$.

Corollary 5.7 *3

Let $f, g: R \to \mathbb{R}$ be bounded functions where $R \subseteq \mathbb{R}^n$ is a rectangle. If f is integrable over R and $\{x \in R: g(x) \neq f(x)\}$ has zero volume, then g is integrable over R and $\int_R f = \int_R g$.

Proof. By theorem *2, g-f is integrable over R and $\int_R (g-f) = 0$. Hence, g = g-f+f is integrable $\int_R g = \int_R (g-f) + \int_R f = \int_R f$. \square

Let $R = [a_1,b_1] \times \cdots \times [a_n,b_n] = \prod_{i=1}^n [a_i,b_i]$ be a rectangle and $f:R \to \mathbb{R}$ a bounded function. Given a permutation σ of $\{1,2,\ldots,n\}$ and $x = (x_1,\ldots,x_n)$, $f\left(x_{\sigma(1)},x_{\sigma(2)},\ldots,x_{\sigma(n)}\right)$ is defined whenever $\left(x_{\sigma(1)},x_{\sigma(2)},\ldots,x_{\sigma(n)}\right) \in R$, i.e., whenever $x_{\sigma(i)} \in [a_i,b_i]$ for all $i=1,2,\ldots,n$, or equivalently whenever $x_i \in [a_{sigma^{-1}(i)},b_{sigma^{-1}(i)}]$ i.e., $x \in \Pi_{i=1}^n[a_{\sigma^{-1}(i)},b_{\sigma^{-1}(i)}] = R_{\sigma}$. Thus the formula,

$$f_{\sigma}(x_1,\ldots,x_n)=f\left(x_{\sigma(1)},\ldots,x_{\sigma(n)}\right)$$

defines a bounded function $f_{\sigma}: R_{\sigma} \to \mathbb{R}$. it is straightforward to see that we have a one-to-one correspondence between partitions of R and partitions of R_{σ} and that the corresponding lower and upper sums for f and f_{σ} have the same values. Hence,

Theorem 5.8

If $f: R \to \mathbb{R}$ is integrable over the rectangle $R = \prod_{i=1}^{n} [a_i, b_i]$, then for any permutation σ of $\{1, 2, \dots, n\}$, the function $f_{\sigma}: R_{\sigma} \to \mathbb{R}$ as defined above is integrable over R_{σ} and $\int_{R} f = \int_{R_{\sigma}} f_{\sigma}$, or

$$\int f(x_1, \dots, x_n) dx_1 \dots dx_n = \int f(x_{\sigma(1)}, \dots, x_{\sigma(n)}) dx_1 \dots dx_n.$$

Example omitted due to sleepiness.

Let $w=(w_1,\ldots,w_n)\in\mathbb{R}^n$ be fixed. Clearly, if $R=\Pi_{i=1}^n[a_i,b_i]$ is a rectangle then $R-w=\{x-w:x\in R\}=\Pi_{i=1}^n[a_i-w_i,b_i-w_i]$ is another rectangle and if $f:R\to\mathbb{R}$ is a bounded function, then the function f_w given by $f_w(x)=f(x+w)$ is defined for $x\in R-w$. We have a one-to-one correspondence between partitions of R and partitions of R-w and the corresponding lower and upper sums for f and f_w have the same values. Hence,

Theorem 5.9

If $f: R \to \mathbb{R}$ is integrable over the rectangle $R = \prod_{i=1}^n [a_i, b_i]$ then for any $w \in R^n$ the function $f_w: R - w \to \mathbb{R}$ defined above is integrable over R - w and

$$\int_{R} f = \int_{R-w} f_w,$$

or,

$$\int_{R} f(x) dx = \int_{R-w} f(x+w) dx$$

Suppose $\lambda \in (\mathbb{R} \setminus \{0\})^n = \{x \in \mathbb{R}^n : x_1, \dots, x_n \neq 0\}$. Then given a rect-

angle $R = \prod_{i=1}^{n} [a_i, b_i]$ the set $R_{\lambda} = \left\{ \left(\frac{1}{\lambda_1} x_1, \dots, \frac{1}{\lambda_n} x_n, \right) : (x_1, \dots, x_n) \in R \right\} = \prod_{i=1}^{n} \left[\min \left\{ \frac{a_i}{\lambda_i}, \frac{b_i}{\lambda_i} \right\}, \max \left\{ \frac{a_i}{\lambda_i}, \frac{b_i}{\lambda_i} \right\} \right]$ is another rectangle with $v(R_{\lambda}) = \left| \prod_{i=1}^{n} \lambda_i^{-1} \right| v(R)$ and if $f: R \to \mathbb{R}$ is a bounded function, then the function $f_{\lambda}: R_{\lambda} \to \mathbb{R}$, given by $f_{\lambda}(x_1, \dots, x_n) = f(\lambda x_1, \dots, \lambda_n x_n)$ is defined for $(x_1, \dots, x_n) \in R_{\lambda}$.

We have again a one-to-one correspondence between partitions of R and partitions of R_{λ} and the corresponding lower and upper sums for f and f_{λ} are related by:

(sum for
$$f$$
 over R) = $|\Pi_{i=1}^n \lambda_i| \cdot (\text{sum for } f_\lambda \text{ over } R_\lambda)$

Theorem 5.10

If f is integrable over $R = \prod_{i=1}^{n} [a_i, b_i]$ then for any $\lambda \in (\mathbb{R} \setminus \{0\})^n$ the function $f_{\lambda} : R_{\lambda} \to \mathbb{R}$ defined above is integrable over R_{λ} and

$$\int_{R} f = |\Pi_{i=1}^{n} \lambda_{i}| \int_{R_{\lambda}} f_{\lambda},$$

or

$$\int_{R} f(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n} = \left| \prod_{i=1}^{n} \lambda_{i} \right| \int_{R_{\lambda}} f(\lambda_{1} x_{1}, \dots, \lambda_{n} x_{n}) dx_{1} \dots dx_{n}.$$

Example of:

$$\int_{[0,2]\times[-3,6]} f(x,y) dx dy = 6 \int_{[0,1]\times[-2,1]} f(2x,-3y) dx dy.$$
 Here $\lambda = (2,-3)$.

Week 6

The integral over a bounded set

Let $f: \Omega \to \mathbb{R}$ be a bounded function where $\Omega \subseteq \mathbb{R}^n$ is a bounded set. Thus Ω is contained in a rectangle R. We can try to define

$$\int_{\Omega} f = \int_{R} \tilde{f}$$

where \tilde{f} is given by $\tilde{f}(x) = \begin{cases} f(x) & \text{when } x \in R \\ 0 & \text{otherwise} \end{cases}$.

Definition of the characteristic function of a set:

Let $\Omega \subseteq \mathbb{R}^n$. The characteristic (indicator) function χ_{Ω} of Ω is defined by $\chi_{\Omega}(x) = \begin{cases} 1 & \text{when } x \in \Omega \\ 0 & \text{otherwise} \end{cases}$.

Clearly, given a function $f:S\to\mathbb{R}$ where $\Omega\subseteq S,\ \tilde{f}=f\cdot\chi_\Omega$ is a function with $\tilde{f}(x)=f(x)$ for all $x\in\Omega$ and $\tilde{f}(x)=0$ for all $x\in S\backslash\Omega$. We will abuse this notation a bit and consider $f\cdot\chi_\Omega$ as the notation for the function $\tilde{f}:\mathbb{R}^n\to\mathbb{R}$ such that $\tilde{f}(x)=f(x)$ for all $x\in\Omega$ and $\tilde{f}(x)=0$ for all $x\in\mathbb{R}^n\backslash\Omega=\Omega^C$.

Our proposed definition of $\int_{\Omega} f$ is then

$$\int_{\Omega} = \int_{R} f \cdot \chi_{\Omega} \ (R \ge \Omega)$$

Lemma 6.1

Let R and S be rectangles in \mathbb{R}^n with $S \subseteq R$ and let $g: R \to \mathbb{R}$ be a bounded function with g(x) = 0 for all $x \in R \setminus S$. If g is integrable over S, then g is integrable over R and $\int_R g = \int_S g$.

Proposition 6.2

Let $f: \Omega \to \mathbb{R}$ be a bounded function where $\Omega \subseteq \mathbb{R}^n$ is bounded. If R_1 and R_2 are rectangles with $\Omega \subseteq R_1$ and $\Omega \subseteq R_2$, then $f \cdot \chi_{\Omega}$ is integrable over R_1 if and only if it is integrable over R_2 and $\int_{R_1} f \cdot \chi_{\Omega} = \int_{R_2} f \cdot \chi_{\Omega}$

Proof. Clearly, $\Omega \subseteq R_1 \cap R_2$.

• Case 1: R_1 and R_2 intersect along their boundaries. Then $R_1 \cap R_2$ is not a rectangle and has zero n-dimensional volume. But $\Omega \subseteq R_1 \cap R_2$ also has zero n-dimensional volume. Hence $\{x \in R_1 : (f \cdot \chi_{\Omega})(x) \neq 0\}$, $\{x \in R_2 : (f \cdot \chi_{\Omega})(x) \neq 0\} \subseteq \Omega$ must also have zero n-dimensional volume.

Hence, $f \cdot \chi_{\Omega}$ is integrable over both R_1 and R_2 and $\int_{R_1} f \cdot \chi_{\Omega} = 0 = \int_{R_2} f \cdot \chi_{\Omega}$.

• Case 2: $R_1 \cap R_2$ is a rectangle. Suppose $f : \chi_{\Omega}$ is integrable over R_1 . Then (as $R_1 \cap R_2 \subseteq R_1$) is integrable over $R_1 \cap R_2$ (by an earlier result) and as $(f \cdot \chi_{\Omega})(x) = 0$ for all $x \in R_1 \setminus (R_1 \cap R_2)$, the last lemma yields $\int_{R_1} f \cdot \chi_{\Omega} = \int_{R_1 \cap R_2} f \cdot \chi_{\Omega}$, the lemma shows that $f \cdot \chi_{\Omega}$ is integrable over R_2 and $\int_R f \cdot \chi_{\Omega} = \int_{R_1 \cap R_2} f \cdot \chi_{\Omega} = \int_{R_1} f \cdot \chi_{\Omega}$.

The proof of the converse is analogous

Definition of the integral over a bounded set:

Let $\Omega \subseteq \mathbb{R}^n$ be a bounded set and $f: \Omega \to \mathbb{R}$ a bounded function. We show that f is integrable over Ω if the function $f \cdot \chi_{\Omega}$ is integrable over (any) rectangle $R \supseteq \Omega$.

Then the integral of f over Ω is defined by

$$\int_{\Omega} f = \int_{R} f \cdot \chi_{\Omega}.$$

Notice that if Ω is a rectangle, then the new definition agrees with the old one.

Theorem 6.3

The basic properties of integrals established in theorems 1*, 2*, and corollary *3 for integration over rectangles remain true for integration over bounded sets.

Corollary 6.4 (to the new Theorem *2)

Let $f: \Omega \to \mathbb{R}$ be a bounded function where $\Omega \subseteq \mathbb{R}^n$ has zero volume. Then f is integrable over Ω and $\int_{\Omega} f = 0$.

Proof.
$$N = \{x \in \Omega : f(x) \neq 0\} \subseteq \Omega$$
 so it has zero volume.

Theorem 6.5

Let $\Omega_1, \Omega_2 \subseteq \mathbb{R}^n$ be bounded where $\Omega_1 \subseteq \Omega_2$ and let $f : \Omega_2 \to [0, \infty]$ be integrable over both Ω_1 and Ω_2 . Then

$$\int_{\Omega_1} f \le \int_{\Omega_2} f.$$

Proof. If
$$R$$
 is a rectangle with $\Omega_2 \subseteq R$, then $\Omega_1 \subseteq R$ and $f \cdot \chi_{\Omega_1} \le f \cdot \chi_{\Omega_2}$. So $\int_{\Omega_1} f = \int_R f \cdot \chi_{\Omega_1} \le \int_R f \cdot \chi_{\Omega_2} = \int_{\Omega_2} f$.

Lemma 6.6

If $\Omega_1, \Omega_2 \subseteq \mathbb{R}^n$ then

1.
$$\chi_{\Omega_1 \cap \Omega_2} = \chi_{\Omega_1} \cdot \chi_{\Omega_2} = \frac{1}{2} (\chi_{\Omega_1} + \chi_{\Omega_2} - |\chi_{\Omega_1} - \chi_{\Omega_2}|)$$

2.
$$\chi_{\Omega_1 \cup \Omega_2} = \chi_{\Omega_1} + \chi_{\Omega_2} - \chi_{\Omega_1 \cap \Omega_2}$$

3.
$$\chi_{\Omega_1 \setminus \Omega_2} = \chi_{\Omega_1} \setminus \chi_{\Omega_1 \cap \Omega_2}$$

Theorem 6.7

Let $\Omega_1, \Omega_2 \subseteq \mathbb{R}^n$ be bounded and let $f : \Omega_1 \cup \Omega_2 \to \mathbb{R}$ be integrable over Ω_1 and Ω_2 . Then f is integrable over $\Omega_1 \cup \Omega_2$, $\Omega_1 \cap \Omega_2$, and $\Omega_1 \setminus \Omega_2$ and

$$\begin{split} \int_{\Omega_1 \cup \Omega_2} f &= \int_{\Omega_1} f + \int_{\Omega_2} f - \int_{\Omega_1 \cap \Omega_2} f, \\ \int_{\Omega_1 \backslash \Omega_2} f &= \int_{\Omega_1} f - \int_{\Omega_1 \cap \Omega_2} f. \end{split}$$

Proof. First assume that $f \geq 0$. Then by the lemma

$$f \cdot \chi_{\Omega_1 \cap \Omega_2} = \frac{1}{2} \left(f \cdot \chi_{\Omega_1} + f \cdot \chi_{\Omega_2} - |f \cdot \chi_{\Omega_1} - f \cdot \chi_{\Omega_2}| \right) . (*)$$

If R is a rectangle with $\Omega_1 \cup \Omega_2 \subseteq R$, then $f \cdot \chi_{\Omega_1}$ and $f \cdot \chi_{\Omega_2}$ are integrable over R. Using (*), $f \cdot \chi_{\Omega_1 \cap \Omega_2}$ is integrable over R. So f is integrable over $\Omega_1 \cap \Omega_2$.

To obtain the same conclusion for general f, note that $f=f_+-f_-$ where $f_+=\frac{1}{2}(f+|f|), f_-=\frac{1}{2}(|f|-f)$ are non-negative. Note that f_+ and f_- are integrable over Ω_1 and Ω_2 . As $f_\pm\geq 0$, then from the 1st part of the proof $f=f_+-f_-$ is integrable over $\Omega_1\cap\Omega_2$.

The remaining is a statement of formulas:

$$f \cdot \chi_{\Omega_1 \cup \Omega_2} = f \cdot \chi_{\Omega_1} + f \cdot \chi_{\Omega_2} - f \cdot \chi_{\Omega_1 \cap \Omega_2}$$
, and
$$f \cdot \chi_{\Omega_1 \setminus \Omega_2} = f \cdot \chi_{\Omega_1} - f \cdot \chi_{\Omega_1 \cap \Omega_2}$$

and integration over a rectangle $R \supseteq \Omega_1 \cup \Omega_2$.

Recall that a continuous function on a rectangle R is always integrable over R. We also know that if f is integrable over and $S \subseteq R$ is a subrectangle then f is integrable over S; however, this is not always true with rectangles replaced by bounded sets.

Example of a non-integrable bounded set:

Let $\Omega = ([0,1] \times [0,1]) \cap (\mathbb{Q} \times \mathbb{Q})$. Then χ_{Ω} is not integrable over $R = [0,1] \times [0,1]$. Thus the constant function f(x) = 1 for all $x \in R$ is not integrable over Ω (as $f \cdot \chi_{\Omega} = \chi_{\Omega}$), but f is trivially integrable over R.

Lemma 6.8

If $\Omega \subseteq \mathbb{R}^n$, then $D = \{x \in \mathbb{R}^n : \chi_{\Omega} \text{ is discontinuous at } x\} = \partial \Omega$

Week 7

Computing higher-dimensional integrals

Corollary 7.1

Let $f: \bar{\Omega} \to \mathbb{R}$ be a bounded function where $\Omega \subseteq \mathbb{R}^n$ is simple. If f is integrable over one of the sets Ω^o, Ω , or $\bar{\Omega}$, then f is integrable over all of them and $\int_{\Omega^o} f = \int_{\Omega} f = \int_{\bar{\Omega}}$.

Proof. Note that f is integrable over $\partial\Omega$ and over $\partial\Omega\cup\Omega$ because $v\left(\partial\Omega\right)=v\left(\partial\Omega\cap\Omega\right)=0$, hence if f is integrable over Ω^o then it is also integrable over $\Omega^o\cup(\partial\Omega\cap\Omega)=\Omega$ and over $\bar{\Omega}=\Omega^o\cup\partial\Omega$. The remaining cases are exercises.

Then
$$\int_{\Omega} f = \int_{\Omega^o} f + \int_{\partial\Omega\cap\Omega} f = \int +\Omega^o f$$
 and similarly $\int_{\bar{\Omega}} = \int_{\Omega} f + \int_{\partial\Omega} f = \int_{\Omega} f$.

Theorem 7.2

Let $f:\Omega\to [0,\infty]$ be a bounded continuous function, where $\Omega\subseteq R^n$ is simple. If $\int_{\Omega}f=0$ then f(x)=0 for all $x\in\Omega^o$.

Proof. Argue by contradiction: suppose there exists an $x_o \in \Omega^o$ such that $f(x_o) > 0$. Then by the continuity of f and the openness of Ω^o , there exists a $\delta > 0$ such that $B_{\delta}(x_o) \subseteq \Omega^o$ and for all $x \in B_{\delta}(x_o)$, $f(x) > \frac{1}{2}f(x_o)$.

But $B_{\delta}(x_o)$ contains a rectangle. Hence,

$$\int_{\Omega} f \ge \int_{R} f \ge \int_{R} \frac{1}{2} f(x_{o}) = \frac{1}{2} f(x_{o}) v(r) \ge 0,$$

which is a contradiction.

Theorem 7.3 Mean Value Theorem for integrals

Let $f: \Omega \to \mathbb{R}$ be integrable over the simple set $\Omega \subseteq \mathbb{R}^n$. Then $\int_{\Omega} f = \lambda v(\Omega)$ where $\inf \{f(x) : x \in \Omega\} \le \lambda \le \sup \{f(x) : x \in \Omega\}$. If Ω is connected and f is continuous, then there exists $x_o \in \Omega$ such that $\int_{\Omega} f = f(x_o) v(\Omega)$.

Proof. We may assume that $v(\Omega) > 0$. Clearly,

$$mv\left(\Omega\right) = \int_{\Omega} m \le \int_{\Omega} f \le \int_{\Omega} M = Mv\left(\Omega\right)$$

where $m=\inf\left\{f\left(x\right):x\in\Omega\right\}$, $M=\sup\left\{f\left(x\right):x\in\Omega\right\}$. Hence, $\lambda=\frac{1}{v(\Omega)}\int_{\Omega}f$ will work.

Next, suppose that Ω is connected and f is continuous. If $\lambda = M$ then $\int_{\Omega} M - f = 0$ where M - f is a nonnegative continuous function. Hence, by the preceding theorem, f(x) = M for all $x \in \Omega^o$, so any $x_o \in \Omega^o$ will do. If = m, then $\int_{\Omega} f = mv(\Omega)$ and a similar argument applies.

If $m < \lambda < M$, then by the definition of the infemum and supremum, there exist $x_1, x_2 \in \Omega$ such that $f(x_1) < \lambda < f(x_2)$. Then $\lambda = f(x_o)$ by the IVT.

7.1 Fubini's Theorem

Suppose $f: R \to \mathbb{R}$ is a bounded function where $R = [a, b] \times [c, d]$ is a rectangle. Then for each $y \in [c, d]$ and for each $x \in [a, b]$, we can consider "partial" integrals

$$g(x) = \int_{c}^{d} f(x, y) \, dy$$

and $h(y) = \int_a^b f(x,y) dx$, and then the "iterated" integrals,

$$\int_{a}^{b} g\left(x\right) dx = \int_{a}^{b} \left(\int_{c}^{d} f\left(x,y\right) dy\right) dx \text{ and } \int_{c}^{d} h\left(y\right) dy = \int_{c}^{d} \left(\int_{a}^{b} f\left(x,y\right) dx\right) dy.$$

This approach can also be adapted to \mathbb{R}^n , e.g., when $n=3, R=[a,b]\times [c,d]\times [k,l]$ then we can consider integrated integrals

$$\int_{a}^{b} \left(\int_{c}^{d} \left(\int_{k}^{l} f\left(x,y,z\right) dz \right) dy \right) dx, int_{c}^{d} \left(\int_{k}^{l} \left(\int_{a}^{b} f\left(x,y,z\right) dx \right) dz \right) dy,$$

and the other four permutations of the order of the integrals.

Let $f: R \to \mathbb{R}$ be a bounded function where $R \subseteq \mathbb{R}^{n+k}$ is a rectangle. Elements of $\mathbb{R}^{n+k} = \mathbb{R}^n \times \mathbb{R}^k$ can be written as (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^k$, and we can write $R = X \times Y$ where X and Y are rectangles in \mathbb{R}^n and \mathbb{R}^k , respectively.

Theorem 7.4 Fubini's Theorem

Let $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^k$ be rectangles and let $f: X \times Y \to \mathbb{R}$ be integrable over $X \times Y$. Suppose that for each $x \in X$ the function $f_x: Y \to \mathbb{R}$, given by $f_x(y) = f(x,y)$, is integrable over Y. Then the function $g: X \to \mathbb{R}$, given by

$$g(x) = \int_{Y} f_x = \int_{Y} f(x, y) dy$$

is integrable over X, and

$$\int_{X\times Y} f = \int_{X} g = \int_{X} \left(\int_{Y} f(x, y) \, dy \right) dx.$$

Similarly, if for each $y \in Y$, the function $f^y : X \to \mathbb{R}$, given by $f^y (x) = f(x,y)$ is integrable over X, then the function $h: Y \to \mathbb{R}$, where

$$h(y) = \int_{X} f^{y} = \int_{X} f(x, y) dx$$

is integrable over Y, and

$$\int_{X\times Y} f = \int_{Y} h = \int_{Y} \left(\int_{X} f(x, y) \, dx \right) dy.$$

Proof. We will prove the first part of the theorem. Note that as f is a bounded function, the function g is also bounded, so $\int_{*X} g$ and $\int_X^* g$ exist. To prove the claim, it suffices to show that for all $\varepsilon > 0$,

$$-\varepsilon + \int_{X\times Y} \leq \int_{*X} g \leq \int_{X}^{*} g \leq \int_{X\times Y} f + \varepsilon.$$

Observe that if \mathcal{R} is a partition of X and \mathcal{S} is a partition of Y, the collection $\mathcal{T} = \{R \times S : R \in \mathcal{R}, S \in \mathcal{S}\}$ is a partition of $X \times Y$. Moreover, given any partition \mathcal{P} of $X \times Y$, there exists a partition \mathcal{R} of X and X of X such that X is a refinement of X.

Now, since f is integrable over $X \times Y$, given $\varepsilon > 0$, there exists a partition \mathcal{P} of $X \times Y$ such that

$$-\varepsilon + \int_{X \times Y} f \le L_{\mathcal{P}}(f) \le U_{\mathcal{P}}(f) \le \int_{X \times Y} f + \varepsilon.(*)$$

As pointed above, we can find a partition \mathcal{R} of X and \mathcal{S} of Y such that $\mathcal{T} = \{R \times S : R \in \mathcal{R}, S \in \mathcal{S}\}$ is a refinement of \mathcal{P} . Note that (*) will hold with \mathcal{P} replaced by \mathcal{T} and so we may as well assume that $\mathcal{P} = \mathcal{T}$.

Now,

$$L_{\mathcal{P}}\left(f\right) = \sum_{P \in \mathcal{P}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{R \times S}\left(f\right)v\left(R \times S\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{R \times S}\left(f\right)v\left(R\right)v\left(S\right) = \sum_{P \in \mathcal{P}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{R} \times \mathcal{S}} m_{P}\left(f\right)v\left(P\right) = \sum_{\left(R \times S\right) \in \mathcal{S}$$

Note that for a fixed $R \in \mathcal{R}$ and for any $x \in R$, $m_{R \times S}(f) = \inf \{ f(x', y') : x' \in R, y' \in S \} \le \inf \{ f(x, y') : y' \in S \} = m_S(f_x)$, so for any $x \in R$,

$$\sum_{S \in \mathcal{S}} m_{R \times S} (f) v(s) \leq \sum_{S \in \mathcal{S}} m_{S} (f_{x}) v(S) \leq \int_{*Y} f_{x} = \int_{Y} f_{x} = g(x).$$

Hence,

$$\sum_{S \in \mathcal{S}} m_{R \times S}(f) v(S) \le \inf \{g(x) : x \in R\} = m_R(g),$$

and thus using the previous,

$$L_{\mathcal{P}}\left(f\right) \leq \sum_{R \in \mathcal{R}} m_{R}\left(g\right) v\left(R\right) = L_{\mathcal{R}}\left(g\right) \leq \int_{*R} g.$$

An analogous argument shows that

$$U_{\mathcal{P}}\left(f\right) \geq U_{\mathcal{R}}\left(g\right) \geq \int_{R}^{*} g.$$

Consequently, using from before, we obtain

$$-\varepsilon + \int_{X \times Y} f \le L_{\mathcal{P}}(f) \le \int_{*R} g \le \int_{R}^{*} g \le U_{\mathcal{P}}(f) \le \int_{X \times Y} f + \varepsilon,$$

as required.

Corollary 7.5

Let $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^k$ be rectangles and let $f: X \times Y \to \mathbb{R}$ be continuous. Then

$$\int_{X\times Y}f=\int_{X}\left(\int_{Y}f\left(x,y\right)dy\right)dx=\int_{Y}\left(\int_{X}f\left(x,y\right)dx\right)dy.$$

Corollary 7.6

Let $R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subseteq \mathbb{R}^n$. If $f : \mathbb{R} \to \mathbb{R}$ is continuous, then

$$\int_{R} f = \int_{a_{1}}^{b_{1}} \left(\dots \left(\int_{a_{n-1}}^{b_{n-1}} \left(\int_{a_{n}}^{b_{n}} f(x_{1}, \dots, x_{n}) dx_{n} \right) dx_{n} \right) dx_{n-1} \dots \right) dx_{1} = \int_{a_{n}}^{b_{n}} \left(\dots \left(\int_{a_{1}}^{b_{1}} f(x_{1}, \dots, x_{n}) dx_{1} \right) dx_{n-1} \dots \right) dx_{1} dx_$$

Example of an iterated integral:

Let $R = [0, \pi] \times [1, 2]$ and let $f : R \to \mathbb{R}$ be the function $f(x, y) = x \sin(xy)$. Compute $\int_R f$ (i.e., find $\int_R x \sin(x, y) dxdy$).

$$\int_{R} f = \int_{1}^{2} \left(\int_{0}^{\pi} x \sin(xy) \, dx \right) dy = \int_{0}^{\pi} \left(\int_{1}^{2} x \sin(xy) \, dy \right) dx = \int_{0}^{\pi} -\cos(x,y)|_{y=1}^{y=2} dx = \int_{0}^{\pi} \cos(x) -\cos(2x) \, dx = \int_{0}^{\pi} \cos(xy) \,$$

So
$$\int_{R} f = 0$$
.

You can also do this integral in the opposite order, but it will require integration by parts, which is more error-prone and time consuming. Hence the choice of order of integration can be important. (done in lecture, omitted here.)

Example of integral of a polynomial:

Compute $\int_R f$ where $R = [0,1] \times [-1,2] \times [0,3]$ and $f(x,y,z) xyz^2$.

$$\int_{R} f = \int_{0}^{3} \left(\int_{-1}^{2} \left(\int_{0}^{1} xyz^{2} dx \right) dy \right) dz = \int_{0}^{3} \left(\int_{-1}^{2} \frac{1}{2} yz^{2} dy \right) dz = \int_{0}^{3} \frac{3}{4} z^{2} dz = \frac{27}{4}.$$

Clearly, Fubini's theorem can also be written as

$$\int_{X \times Y} f(x_1, \dots, x_n, x_{n+1}, \dots, x_{n+k}) dx_1 \dots dx_{n+k} = \int_X \left(\int_Y f(x_1, \dots, x_n, x_{n+1}, \dots, x_{n+k}) dx_{n+1} \dots dx_{n+k} \right) dx_1 \dots dx_{n+k}$$

Thus we are splitting the variables x_1, \ldots, x_{n+k} into two groups: x_1, \ldots, x_n and x_{n_1}, \ldots, x_{n+k} and integrating with respect to x_{n+1}, \ldots, x_{n+k} first and then with respect to x_1, \ldots, x_n or vice versa.

One can also obtain versions of the theorem where the variables are split into two groups in a different way:

Let σ be a permutation of $\{1, 2, \ldots, n+k\}$, $R = R_1 \times \cdots \times R_{n+k}$ a rectangle in R^{n+k} (where $R_1, R_2, \ldots, R_{n+k}$ are intervals in \mathbb{R}), and let f be integrable over R. Recall that then the function $f_{\sigma}: R_{\sigma} \to \mathbb{R}$ where $R_{\sigma} = R_{\sigma^{-1}(1)} \times \cdots \times R_{\sigma}$

 $R_{\sigma^{-1}(n+k)}$ and $f_{\sigma}(x_1,\ldots,x_{n+k})=f\left(x_{\sigma(1)},\ldots,x_{\sigma(n+k)}\right)$ is integrable over R_{σ} and $\int_R f=\int_{R_{\sigma}} f_{\sigma}$. Write $R_{\sigma}=X\times Y$ where $X=R_{\sigma^{-1}(1)}\times\cdots\times R_{\sigma^{-1}(n)},Y=R_{\sigma^{-1}(n+1)}\times\cdots\times R_{\sigma^{-1}(n+k)}$. Assuming that for all $x\in X$, the function $(f_{\sigma})_x$ is integrable over Y we then obtain

$$\int_{R} f = \int_{R_{\sigma}} f_{\sigma} = \int_{X} \left(\int_{Y} f_{\sigma}(x, y) \, dy \right) dx = \int_{X} \left(\int_{Y} f\left(x_{\sigma(1)}, \dots, x_{\sigma(n)}, x_{\sigma(n+1)}, \dots, x_{\sigma(n+k)}\right) dx_{n+1} \dots dx_{n+1} \right) dx_{n+1} \dots dx_$$

E.g., when
$$n=2, k=1, \sigma=\begin{bmatrix}1&2&3\\1&3&2\end{bmatrix}, R=R_1\times R_2\times R_3$$
, then $R_\sigma=$