# Math 1800-C Handout 6: Vector Fields and Recap on Integrals

#### Subhadip Chowdhury

#### Exercise 1

Fill the boxes with 'certainly', 'possibly', or 'certainly not'.

- (a) The plot of the vector field  $\vec{G}(x,y) = \vec{F}(2x,2y)$  is drawn by doubling the length of all the arrows in the plot of  $\vec{F}(x,y)$ .
- (b) If the flow lines for the vector field  $\vec{F}(x,y)$  are all concentric circles centered at the origin, then the dot-product  $\vec{F}(x,y) \cdot (x\hat{i} + y\hat{j})$  is equal to zero.
- (c) If the flow lines for the vector field  $\vec{F}(x,y)$  are all straight lines parallel to the constant vector  $\vec{v} = 3\hat{i} + 5\hat{j}$ , then  $\vec{F}(x,y)$  is equal to  $\vec{v}$ .
- (d) The flow lines of the vector field  $\vec{F}(x,y) = e^x \hat{i} + y \hat{j}$  cross the *X*-axis.

#### Exercise 2

Find a vector field whose flow lines are of the form  $\vec{r}(t) = t\hat{i} + t^2\hat{j}$ .

## Exercise 3

Match the following functions with their gradient vector fields.

- (a)  $x^2 + y^2$
- (b) x(x + y)
- (c)  $(x+y)^2$
- (d)  $\sin \sqrt{x^2 + y^2}$





## Exercise 4

Match the vector fields.

a)  $\langle y, 1 \rangle$ 

- b)  $\langle 0, 2y \rangle$
- c)  $\langle -x, -2y \rangle$
- d)  $\langle -2y, 3x \rangle$

- e)  $\langle 0, x^2 y \rangle$
- f)  $\langle -2y, -x \rangle$
- g)  $\langle x^2y, 0 \rangle$
- h)  $\langle -x, 0 \rangle$

- i)  $\langle -2y, 1 \rangle$
- j)  $\langle -y-x,x\rangle$
- k)  $\langle -y, x \rangle$
- l)  $\langle x^2, y^2 \rangle$



## Exercise 5

Is the line integral around the following curves A, B, C positive, negative or zero?



## Recap on Integrals

#### Exercise 1

Sketch the region of integration of the following iterated integral, switch the order to dydzdx and then evaluate the integral.

$$\int_0^{\pi} \left( \int_{\sqrt{z}}^{\sqrt{\pi}} \left( \int_0^x \sin(xy) dy \right) dx \right) dz$$

#### Exercise 2

Consider the surface given by the graph of the function

$$z = f(x,y) = \frac{100}{1 + (x^2 + y^2)^2} \arctan\left(\frac{\pi}{8}(x^2 + y^2)\right)$$

Find the volume under the surface and above the region  $x^2 + y^2 \le 16$ .

#### Exercise 3

Find the double integrals

a) 
$$\int_0^3 \int_y^3 \frac{\sin(2x)}{x} dx dy$$

b) 
$$\int_0^8 \int_{y^{1/3}}^2 \frac{y^2 e^{x^2}}{x^8} dx dy$$

### Exercise 4

Match the given regions.



a) 
$$r(t) \le |2 + \cos(3t)|$$

b) 
$$r(t) \le |\cos(5t) - 5\cos(t)|$$

c) 
$$r(t) \le |1 + \cos(t)\cos(7t)|$$

d) 
$$r(t) \le |\sin(11t) + \cos(t)/2|$$

e) 
$$r(t) \le |8 - \sin(t) + 2\sin(3t) + 2\sin(5t) - \sin(7t) + 3\cos(2t) - 2\cos(4t)|$$

## Exercise 5

Find the mas of the tetrahedron  $x + y + z \le 1$ ;  $x \ge 0$ ,  $y \ge 0$ ,  $z \ge 0$  with density function given by f(x, y, z) = 24x.

3