5.10b Do Now: Composition of two transformations

1. After a dilation with center (0,0), the image of \overline{MN} is $\overline{M'N'}$. If MN=4.5 and M'N'=18, find the scale factor of this dilation.

2. In the diagram below, $\triangle ABC$ with sides of 13, 15, and 16, is mapped onto $\triangle DEF$ by a rigid motion.

If DE = 2x - 1, what is the value of x?

3. In right triangle ABC shown below, point D is on \overline{AB} and point E is on \overline{BC} such that $\triangle ABC \sim \triangle DBE$.

If AB = 15, BC = 12, and EC = 7, what is the length of \overline{BD} ?

4. Line segment A'B', having a length of 12.8 cm, is the image of \overline{AB} after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of \overline{AB} ?

5. Given two parallel lines and a transversal, as shown below.

- (a) State the angle corresponding with $\angle 6$.
- (b) Why does $m \angle 5 + m \angle 6 = 180^{\circ}$? (justify)
- (c) Why does $m\angle 7 = m\angle 2$? (justify)
- (d) Given $m \angle 3 = 73^{\circ}$ and $m \angle 5 = (3x 1)^{\circ}$. Find x.

6. A translation maps $D(2,4) \to D'(-3,4)$. What is the image of E(5,-5) under the same translation?

7. The image of triangle ABC after a translation is $\triangle A'B'C'$. Is the area of the triangle greater, smaller, or the same after the translation? Justify your answer.

8. The triangle ABC, shown below, undergoes a rigid motion carrying it onto triangle XYZ. State the transformation. (be specific)

9. Triangle $\triangle ABC$ is graphed on the set of axes below. The vertices of $\triangle ABC$ have the coordinates A(2,-3), B(8,1), and C(-1,8).

Translate the triangle three units to the left and down one unit. Write down its coordinates in a table and plot and label it on the graph.

10. In $\triangle ABC$ shown below, side \overline{AC} is extended to point D with $m\angle DAB=122^\circ$, $m\angle C=(x+4)^\circ$, and $m\angle B=(4x+3)^\circ$.

What is $m \angle BAC$?

