ECCS-3241 Embedded Hardware-Software Codesign

Embedded Platform & Memory Interfacing

Dr. Ahmed Oun

Embedded platform components

DMA: Direct Memory Access

Simpler representation of embedded platform

- •Clock provides synchronization.
- •R/W is true when reading (R/W' is false when writing).
- Address is a-bit bundle of address lines (bus).
- Data is n-bit bundle of data lines.
- Data ready signals when n-bit data is ready.

Memory Structure

Several different types of memory used in the system:

- DRAM.
- SRAM.
- Flash.
- EEPROM.

Each type of memory comes in varying:

- Capacities.
- Widths.

- •The memory of a computer consists of a large number of 1-bit storage devices organized into words.
- The number of bits in a word varies with the computer design.
- In modern computers, the memory word size is a power of two (8, 16, 32, or 64)
- The structure of memory can be described by specifying the number of bits in a word, and the number of words.
- The next slide shows the organization of a 16 x 32 memory.

16 x 32 memory

- The word length is 16, and the number of words is 32.
- For each bit position in the word, a data line connects the memory to the Memory Data Register in the CPU.
- The data line for a bit position carries data to or from one of the bits in the corresponding bit position.
- To specify a particular word in the memory, the *address* of the word is given in binary.
- In the example shown, the words are numbered 0 to 31, which in binary.
- Five lines, called address lines, carry the address from the CPU's Memory Address Register to the memory.

Data lines (to/from CPU MDR)

In general:

- If a memory contains words that are n bits long, then n data lines are required.
- If a memory contains 2^k words, then k address lines are required.
- The following terminology is commonly used to refer to sizes of computer memories:
 - kilobyte (K) = 2^{10} = 1,024 bytes
 - megabyte (M) = 2^{20} = 1,048,576 bytes
 - gigabyte (G) = 2^{30} = 1,073,741,824 bytes

How does the computer access a memory location corresponds to a particular address?

We observe that 4M can be expressed as $2^2 \times 2^{20} = 2^{22}$ words.

The memory locations for this memory are numbered 0 through $2^{22} - 1$.

Thus, the memory bus of this system requires at least 22 address lines.

• The address lines "count" from 0 to $2^{22} - 1$ in binary. Each line is either "on" or "off" indicating the location of the desired memory element.

- Physical memory usually consists of more than one RAM chip.
- Access is more efficient when memory is organized into banks of chips with the addresses interleaved across the chips
- With low-order interleaving, the low order bits of the address specify which memory bank contains the address of interest.
- Accordingly, in high-order interleaving, the high order address bits specify the memory bank.

Example: Suppose we have a memory consisting of 16 2K x 8 bit chips.

- Memory is $32K = 2^5 \times 2^{10} = 2^{15}$
- 15 bits are needed for each address.
- We need 4 bits to select the chip, and 11 bits for the offset into the chip that selects the byte.

- In high-order interleaving the high-order 4 bits select the chip.
- In low-order interleaving the low-order 4 bits select the chip.

Random-access memory

Dynamic RAM is dense, requires refresh.

- SDRAM: synchronous DRAM.
- EDO DRAM: extended data out.
- FPM DRAM: fast page mode.
- DDR DRAM: double-data rate.

Static RAM is faster, less dense, consumes more power.

Flash memory

- Non-volatile memory
- Read operations are fast and byte/word addressable.
- Write operations takes time. Typically done in blocks.

SDRAM Read Operation

RAS&CAS: Row and Column Address strobes

Memory packaging

SIMM: single in-line memory module.

DIMM: dual in-line memory module.

Memory systems and memory controllers

•Memory has complex internal organization.

•Memory controller hides details of memory interface, schedules transfers to maximize performance.

Channels and banks

- Channels provide separate connections to parts of memory.
- Banks are separate memory arrays.

512 Megabit SDRAM (Micron)

Table 2: Addressing

Parameter	128 Meg x 4	64 Meg x 8	32 Meg x 16	
Configuration	32 Meg x 4 x 4 banks	16 Meg x 8 x 4 banks	8 Meg x 16 x 4 banks	
Refresh count	8K	8K	8K	
Row address	8K (A0-A12)	8K (A0-A12)	8K (A0-A12)	
Bank address	4 (BA0, BA1)	4 (BA0, BA1)	4 (BA0, BA1)	
Column address	4K (A0-A9, A11, A12)	2K (A0-A9, A11)	1K (A0-A9)	

Table 3: Speed Grade Compatibility

Marking	PC3200 (3-3-3)	PC2700 (2.5-3-3)	PC2100 (2-2-2)	PC2100 (2-3-3)	PC2100 (2.5-3-3)	PC1600 (2-2-2)
-5B ¹	Yes	Yes	Yes	Yes	Yes	Yes
-6	-	Yes	Yes	Yes	Yes	Yes
-6T	-	Yes	Yes	Yes	Yes	Yes
-75E	-	-	Yes	Yes	Yes	Yes
-75Z	-	-	-	Yes	Yes	Yes
-75	-	-	-	-	Yes	Yes
	-5B	-6/-6T	-75E	-75Z	-75	-75

Notes: 1. The -5B device is backward compatible with all slower speed grades. The voltage range of -5B device operating at slower speed grades is V_{DD} = V_{DDO} = 2.5V ± 0.2V.

References

- W. WOLF COMPUTERS AS COMPONENTS
- WWW.MICRON.COM