

Pharmacology of the heart (congestive heart failure, ischemic heart disease)

László Drimba M.D.

University of Debrecen

Department of Pharmacology and Pharmacotherapy

Cardiac output (CO)

• Frequency (HR)

- Contractility
- Preload

Afterload

Congestive heart disease

- Definition!
- acute vs. chronic
- Left ventricular failure vs. Right ventricular failure
- Systolic:
 - myocarditis
 - arrhythmia
 - myocardial infarct
 - cardiomyopathia (dilatative)
 - stenosis of aortae, hypertension
- Diastolic:
 - pericardial tamponade
 - cardiomyopathia (restrictive)
- Combination

Symptoms

Forward failure:

- (LVF)
 - confusion
 - hypotension
 - dizziness
 - ischaemic heart disease
- -(RVF)
 - cyanosis, (dyspnoe)

Backward failure:

- (LVF)
 - Dyspnoe (PND, Asthma cardiale, Pulmonary edema)
- -(RVF)
 - hepato-splenomegalia
 - dilated jugular veins
 - diuresis ↑
 - acral edema

Therapeutical ways

- Contractility 1:
 - positive inotropic drugs: cardiac glycosides, bipiridines,
 Ca²⁺ sensitizers,
- Preload ↓:
 - diuretics: furosemide
 - nitric oxide
- Afterload ↓:
 - diuretics: thiazides
 - antihypertensive agents
- Frequency: -

- History
 - ancient Egypt,
 - 18th century William Withering
- digoxin, digitoxin
- Digitalis lanata, Digitalis purpurea, Strophantus species
- active after drying, enzyme: digipurpidase
- Structure
 - steroid ring
 - 3C digitoxose
 - 17C lactone ring

• Mechanism of action:

- blocking Na⁺/K⁺ ATPase in cardial myocytes
- Na⁺/Ca²⁺ exchange
- i.c. $Ca^{2+} \uparrow \rightarrow CICR$

• Cardial effects:

- (+) inotropic \rightarrow contractility \uparrow
- (-) chronotropic → HR ↓ -

sensitizing atrial area to the effect of Ach

- (-) dromotropic \rightarrow AV block!
- arrhythmic effect (esp. in ventricles) (ES, bigeminia,VT,VF!)

Late after depolarisation – LAD (etiology of arrhytmias)

- Vessels
 - i.c. Ca $2+ \rightarrow$ vasoconstriction blood pressure \uparrow
- GIT
 - i.c. Ca $2+ \rightarrow$ vomitus, diarrhea, colica abd.
- CNS
 - hallucinations, visual disturbances
 - convulsions
 - dizziness

Pharmacokinetics:

	digoxine	digitoxine
Oral availability (percentage of absorbed)	75	>90
PPB	20-40	>90
Metabolized by	kidney	liver

- Therapeutical indications:
 - congestive heart disease
 - atrial flutter \rightarrow atrial fibrillation
 - arrhytmias (SVES, SVT)
- Digitalis intoxication
 - TI ↓, therapeutic dose, toxic dose
 - provoked by hypercalcemia, hypokalemia, CRF, IHD
 - bradycardia, block, bigeminia, ST alterations (depression),
 - Th.: atropin!, K+, lidocaine, amidarone, AB

Digoxin

- cumulative dose: 1mg/day 2 days long
- maintenance dose: 0,25mg-0,5mg/day

• Digitoxin:

- cumulative dose: 1mg/day
- maintenance dose: 0,1 mg/day

Phosphodiesterase inhibitors

- Mechanism of action: blocking PDE, cAMP↑
- Type of PDEs:
 - PDE I: brain, inhibited by vinpocetin (Cavinton®)
 - PDE III: heart, vessels (inodilatators)
 - PDE IV: retina, inhibiting→blue vision
 - PDE V: corpus cavernosum, inhibited by sildenafil, tadalafil
- PDE III inhibition:
 - heart: $cAMP↑ \rightarrow PKA \rightarrow Ca2+ channels-P \rightarrow Ca2+↑ \rightarrow CICR$
 - vessels: cAMP↑→MLCK-P, K+channels-P, K+↑→vasodilation

Phosphodiesterase inhibitors

• Bipiridines

- amrinone, milrinone
 - CAST: thrombocytopenia, morbidity, mortality
- vesnarinone
 - VEST: mortality↑

Positive inotropic drugs

- Ca²⁺ senzitizers:
 - pimobendane, levosimendane
 - mechanism of action:
 - increase the binding rate of Ca²⁺ to troponin C
 - senzitizing myofibrilles to Ca²⁺
- Direct sympathomimetic drugs:
 - Dopamine:
 - 1-3 μg/kg/min D₁, D₂ receptors renal! art.aff., GFR↑, RBF↑
 - 3-5 μ g/kg/min β_1 , β_2 cardial! cardiogen shock
 - post AMI
 - 5-10 μ g/tskg/min α_1 vessels! RR \uparrow
 - Dobutamine:
 - 5-20 μ g/tskg/min β_1 , β_2 heart! cardiogen shock

Ischaemic heart disease

Ischaemic heart disease

Clinical types:

- stable AP
- unstable AP (preinfarct st.)AMI

Diagnosis:

- chest pain!, dyspnoe, dizziness, nausea, weakness
- ECG
- necroenzymes (troponin, LDL, etc.)

Pharmacological management of AMI

Ischaemic heart disease

- Therapeutical applications:
 - O_2
 - nitric oxide
 - NSAID (aspirin)
 - maior analgetics (morphine, etc.)
 - atropine (if necessary..)
 - antiarrhytmic drugs (metoprolol, lidocaine)
 - anticoagulant drugs
 - thrombolytics
 - Ca²⁺ channel blocking drugs
 - ACE inhibitors
 - Positive inotropic drugs (CAVE: digoxin)
 - K+, Mg2+

Nitric oxide

Mechanism of action:

NO: sGC act.
$$\rightarrow$$
 cGMP $\uparrow \rightarrow$ PKG \rightarrow Ca2+ $\downarrow \rightarrow$ (art./ven.) vasodilation \rightarrow BP \downarrow

enzymatic NO donors: nitroglycerin, ISMN, ISDN non enzymatic NO donors: Na-nitroprusside

Coronary steal effect:

- conductive arteries (enzymatic NO donors)
- resistant arteries collaterals (arterioles, D<100 um)

Coronary steal effect

Coronary steal effect

enzymatic NO donors

non enzymatic NO donors

