

Team Dosen PDA S1-TT

Lecture 10 : PD Linier dengan Koefisien Konstan Orde 2 Heterogen

Program Studi Teknik Telekomunikasi

September 17, 2019

Faculty of Electrical Engineering, Telkom University

Tujuan

Mahasiswa dapat menyelesaikan PD Linier dengan Koefisien Konstan Orde 2 (PDLKK Orde 2) heterogen

PDLKK tak homogen

PDLKK Heterogen (tak homogen) memiliki bentuk:

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$$

Dengan $f(x) \neq 0$ adalah fungsi dalam x. Berikut contoh-contoh PDLKK tak homogen

$$\bullet \ \frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 4y = 2$$

$$2\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = 2x$$

•
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 11y = x^2 + 3x + 1$$

$$\bullet \frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = e^{2x}$$

Solusi umum dan solusi partikular

Suatu PDLKK tak homogen orde 2:

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$$

memiliki dua bagian solusi: solusi umum y_u dan solusi partikular y_p .

Solusi total persamaan tak homogen adalah:

$$y_T = y_u + y_p$$

Solusi umum y_u diperoleh dari solusi homogen:

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

- Solusi umum telah dibahas pada slide sebelumnya
- Solusi khusus adalah solusi dari

$$d^2y$$
 dy

Metode koefisien tak tentu

Untuk beberapa bentuk f(x), solusi pertikular y_p mengambil bentuk yang serupa.

No.	bentuk $f(x)$	Pentuk y _p
1	f(x)=k	A
2	f(x)=ax+b	Ax+B
3	$f(x)=ax^2+bx+c$	$Ax^2 + Bx + C$
4	$f(x)=e^{ax}$	Ae ^{ax}
5	f(x)=sin ax	$A \sin ax + B \cos ax$
6	f(x)=cos ax	$A \sin ax + B \cos ax$
7	$f(x)=e^{bx}\sin ax$	$e^{bx}(A\sin ax + B\cos ax)$
8	$f(x)=e^{bx}\cos ax$	$e^{bx}(A\sin ax + B\cos ax)$

• koefisien A, B, · · · ditentukan dengan substitusi dan

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 5$$

Jawab:

Mula-mula ditentukan solusi umum dari PD homogennya:

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 0$$
. Persamaan karakteristik: $r^2 + 4r + 3 = 0 \implies (r+1)(r+3) = 0 \implies r_1 = -1$ dan $x_2 = -2$

- dengan demikian solusi umum adalah: $y_u = c_1 e^{-t} + c_2 e^{-3t}$
- Selanjutnya mencari solusi particular (y_p) . Oleh karena f(x) = 5, maka y_p kita misalkan $y_p = A$.
- Karena $y_P = A$, maka $\frac{dy_P}{dx} = 0$ dan $\frac{dy_P^2}{d^2x} = 0$. Substitusi ke PDLKK semula diperoleh:

$$\frac{d^2 y_P}{dx^2} + 4 \frac{dy_P}{dx} + 3 y_P = 5 \implies 0 + 4 \cdot 0 + 3 \cdot A = 5 \implies A = 5/3$$

- Solusi partikular: $y_P = 5/3$
- Solusi total: $y_T = y_U + y_P = c_1 e^{-t} + c_2 e^{-3t} + 5/3$

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 11$$

Jawab:

$$\frac{d^2y}{dx^2} + 4y = 5x$$

Jawab:

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 13y = e^x$$

Jawab:

•

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 13y = \cos 2x$$

Jawab:

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 10y = e^{-5x}\sin 2x$$

Jawab:

•

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 10y = 2x + e^{-5x}$$

Jawab:

LATIHAN

Tentukan solusi umum dari PDLKK heterogen:

$$\bullet \ \frac{d^2y}{dx^2} + \frac{dy}{dx} - 20y = 2x$$

•
$$\frac{d^2y}{dx^2} + 14\frac{dy}{dx} + 49y = 5x + 3 + e^{3x}$$

$$\bullet \ \frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 10y = \cos 4x$$

Tentukan solusi khusus dari PD heterogen berikut:

•
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 20y = 2x$$
 dengan : $y(0) = 1$ dan $y'(0) = 1$

•
$$\frac{d^2y}{dx^2} + 14\frac{dy}{dx} + 49y = 5x + 3 + e^{3x}$$
 dengan : $y(0) = 1$ dan $y'(0) = 3$

•
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 10y = \cos 4x$$
 dengan : $y(0) = 2$ dan $y'(0) = 5$.