Noise-Induced Randomization in Regression Discontinuity Designs

Dean Eckles, Nikolaos Ignatiadis, Stefan Wager, Han Wu

Presented by: Sai Zhang

November 18, 2022

Outline

1 Introduction

Introduction

For potential outcomes $\{Y_i(0), Y_i(1)\}$: $Y_i = Y_i(W_i)$, a weighted causal effect can be identified as

$$\tau_c = \mathbb{E}\left[Y_i(1) - Y_i(0) \mid Z_i = c\right]$$

For potential outcomes $\{Y_i(0), Y_i(1)\}$: $Y_i = Y_i(W_i)$, a weighted causal effect can be identified as

$$\tau_c = \mathbb{E}\left[Y_i(1) - Y_i(0) \mid Z_i = c\right]$$
$$= \lim_{z \downarrow c} \mathbb{E}\left[Y \mid Z = z\right] - \lim_{z \uparrow c} \mathbb{E}\left[Y \mid Z = z\right]$$

For potential outcomes $\{Y_i(0), Y_i(1)\}$: $Y_i = Y_i(W_i)$, a weighted causal effect can be identified as

$$\tau_c = \mathbb{E}\left[Y_i(1) - Y_i(0) \mid Z_i = c\right]$$
$$= \lim_{z \downarrow c} \mathbb{E}\left[Y \mid Z = z\right] - \lim_{z \uparrow c} \mathbb{E}\left[Y \mid Z = z\right]$$

assuming

 \blacksquare the conditional response functions $\mu_w(z) = \mathbb{E}[Y(w) \mid Z = z]$ are continuous

Sai Zhang Eckles et al., 2020

For potential outcomes $\{Y_i(0), Y_i(1)\}$: $Y_i = Y_i(W_i)$, a weighted causal effect can be identified as

$$\tau_c = \mathbb{E}\left[Y_i(1) - Y_i(0) \mid Z_i = c\right]$$
$$= \lim_{z \downarrow c} \mathbb{E}\left[Y \mid Z = z\right] - \lim_{z \uparrow c} \mathbb{E}\left[Y \mid Z = z\right]$$

assuming

- \blacksquare the conditional response functions $\mu_w(z) = \mathbb{E}[Y(w) \mid Z=z]$ are continuous
- $\mu_w(z)$ to have a uniformly bounded 2nd derivative for Cls (Armstrong and Kolesár, 2018, 2020)

Sai Zhang Eckles et al., 2020

RD Identification: Problems of Continuity Argument

Assumption: continuous $\mu_w(z) = \mathbb{E}\left[Y(w) \mid Z=z\right]$

$$\tau_{c} = \lim_{z \downarrow c} \mathbb{E}\left[Y \mid Z = z\right] - \lim_{z \uparrow c} \mathbb{E}\left[Y \mid Z = z\right]$$

RD Identification: Problems of Continuity Argument

Assumption: continuous $\mu_w(z) = \mathbb{E}\left[Y(w) \mid Z=z\right]$

$$\tau_{c} = \lim_{z \downarrow c} \mathbb{E}\left[Y \mid Z = z\right] - \lim_{z \uparrow c} \mathbb{E}\left[Y \mid Z = z\right]$$

Where does this continuity come from?

RD Identification: Problems of Continuity Argument

Assumption: continuous $\mu_w(z) = \mathbb{E}\left[Y(w) \mid Z=z\right]$

$$au_c = \lim_{z \downarrow c} \mathbb{E}\left[Y \mid Z = z\right] - \lim_{z \uparrow c} \mathbb{E}\left[Y \mid Z = z\right]$$

Where does this continuity come from?

Lee (2008): continuous measurement error in the running variable by units

$$Z_i$$
running variable

$$W_i=\mathbf{1}(\{Z_i\geq c\})$$

$$\Rightarrow$$

$$Y_i$$
 outcome

test scores test results admission medication

outcomes outcomes

ability condition

test scores test results admission medication

outcomes outcomes

Why don't we take advantage of the <u>measurement error</u> itself for inference?

Sai Zhang Eckles et al., 2020

This Paper

$$U_i$$
 $\xrightarrow{Z_i = U_i + e_i}$ Z_i $\xrightarrow{W_i = \mathbf{1}(\{Z_i \ge c\})}$ W_i \Rightarrow Y_i outcome treatment outcome.

Weighted treatment effects can be estimated if the measurement error in Z_i

This Paper

$$U_i$$
 $\stackrel{Z_i=U_i+e_i}{\Longrightarrow}$ U_i $\stackrel{W_i=1(\{Z_i\geq c\})}{\Longrightarrow}$ U_i \Longrightarrow U_i \Longrightarrow U_i outcome

Weighted treatment effects can be estimated if the measurement error in Z_i

■ has a known distribution

This Paper

$$U_i$$
 $\stackrel{Z_i-U_i+U_i}{\Longrightarrow}$ Z_i $\stackrel{W_i-Y_i}{\Longrightarrow}$ W_i \Rightarrow Y_i outcome latent variable running variable

Weighted treatment effects can be estimated if the measurement error in Z_i

- has a known distribution
- \blacksquare is conditionally (on U_i) independent of potential outcomes

References L

- Armstrong, T. B., & Kolesár, M. (2018). Optimal inference in a class of regression models. Econometrica,
- Armstrong, T. B., & Kolesár, M. (2020). Simple and honest confidence intervals in nonparametric regression.
- Eckles, D., Ignatiadis, N., Wager, S., & Wu, H. (2020). Noise-induced randomization in regression discontinuity designs, arXiv preprint arXiv:2004.09458.
- Lee, D. S. (2008). Randomized experiments from non-random selection in us house elections. Journal of

Thank you!