第二届声纹识别研讨会

端到端声纹识别

End-to-end speaker recognition

张晓雷

西北工业大学 智能声学与临境通信研究中心

一、研究背景及问题

二、非端到端分类损失

三、端到端确认损失

四、总结

一、研究背景及问题

基于深度学习的声纹识别的三个分支

一、研究背景及问题

声纹识别的研究重点

分类损失1: Softmax with cross-entropy loss

- 1) 将开集问题当闭集问题处理
- 2) 只最大化类间距离,没有最小化类内方差

分类损失2: Angular softmax

$$L_{\text{modified}} = \frac{1}{N} \sum_{i} -\log \left(\frac{e^{\|\boldsymbol{x}_i\| \cos(\theta_{y_i,i})}}{\sum_{j} e^{\|\boldsymbol{x}_i\| \cos(\theta_{j,i})}} \right)$$

$$L_{\text{ang}} = \frac{1}{N} \sum_{i} -\log \left(\frac{e^{\|\boldsymbol{x}_i\| \cos(m\theta_{y_i,i})}}{e^{\|\boldsymbol{x}_i\| \cos(m\theta_{y_i,i})} + \sum_{j \neq y_i} e^{\|\boldsymbol{x}_i\| \cos(\theta_{j,i})}} \right)$$

$$\begin{cases} \psi(\theta_{y_i,i}) = (-1)^k \cos(m\theta_{y_i,i}) - 2k \\ \theta_{y_i,i} \in \left[\frac{k\pi}{m}, \frac{(k+1)\pi}{m}\right] \text{ and } k \in [0,m-1] \end{cases}$$

$$L_{\text{ang}} = \frac{1}{N} \sum_{i} -\log \left(\frac{e^{\|\boldsymbol{x}_i\| \psi(\boldsymbol{\theta}_{\boldsymbol{y}_i,i})}}{e^{\|\boldsymbol{x}_i\| \psi(\boldsymbol{\theta}_{\boldsymbol{y}_i,i})} + \sum_{j \neq \boldsymbol{y}_i} e^{\|\boldsymbol{x}_i\| \cos(\boldsymbol{\theta}_{j,i})}} \right)$$

优点:

- 1) 最小化类内方差 (通过增加类间的角度margin)
- 2) 与cosine similarity scoring匹配

分类损失2: Angular softmax

分类损失<mark>3:</mark> Additive margin softmax (AMS), Additive angular margin softmax(AAMS)

$$L_{\text{ang}} = \frac{1}{N} \sum_{i} -\log \left(\frac{e^{\|\boldsymbol{x}_i\| \psi(\boldsymbol{\theta}_{\boldsymbol{y}_i,i})}}{e^{\|\boldsymbol{x}_i\| \psi(\boldsymbol{\theta}_{\boldsymbol{y}_i,i})} + \sum_{j \neq \boldsymbol{y}_i} e^{\|\boldsymbol{x}_i\| \cos(\boldsymbol{\theta}_{j,i})}} \right)$$

$$\|\mathbf{x}_i\| = 1$$

$$\psi(\theta_{y_i,i}) \longrightarrow \frac{\cos(\theta_{y_i,i}) - m}{\cos(\theta_{y_i,i} + m)}$$

$$\mathcal{L}_{\text{AMS}} = -\frac{1}{N} \sum_{n=1}^{N} \log \frac{e^{s(\cos(\theta_{y_i,i}) - m)}}{e^{s(\cos(\theta_{y_i,i}) - m)} + \sum_{j \neq y_i} e^{s(\cos(\theta_{j,i}))}}$$

$$\mathcal{L}_{\text{AAMS}} = -\frac{1}{N} \sum_{n=1}^{N} \log \frac{e^{s(\cos(\theta_{y_i,i}+m))}}{e^{s(\cos(\theta_{y_i,i}+m))} + \sum_{j \neq y_i} e^{s(\cos(\theta_{j,i}))}}$$

分类损失总结: 物理含义

分类损失的正则项方法

正则项框架:

$$\mathcal{L} = \mathcal{L}_{S} + \lambda \mathcal{L}_{Regular}$$

类中心正则项 (Class-center loss):

$$\mathcal{L}_{C} = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{x}_{n} - \mathbf{c}_{l_{n}}||^{2}$$

环损失正则项 (Ring loss):

$$\mathcal{L} = \mathcal{L}_{AMS} + \lambda \times \frac{1}{N} \sum_{n=1}^{N} (||\mathbf{x}_n||_2 - R)^2$$

Gaussian prior:

$$\mathcal{L} = \mathcal{L}_{S} + \lambda \sum_{j} \sum_{\mathbf{e}_{n} \in \varepsilon(j)} ||\mathbf{e}_{n} - \mathbf{w}_{j}||$$

参考文献

Cai et al., Exploring the encoding layer and loss function in end-to-end speaker and language recognition system, Odyssy 2019,

优点	缺点
有效模型训练稳定	标签需要精确到每句话对应的说话人身份优化替代损失一softmax,可能并非最优输出层随说话人数量增加而变大

训练阶段

测试阶段

确认损失1: Pairwise loss

Binary cross-entropy loss

$$\mathcal{L}_{\text{BCE}} = -\sum_{n=1}^{N} \left[l_n \ln \left(p(\mathbf{x}_n^e, \mathbf{x}_n^t) \right) - \eta (1 - l_n) \ln \left(1 - p(\mathbf{x}_n^e, \mathbf{x}_n^t) \right) \right]$$

$$p(\mathbf{x}_n^e, \mathbf{x}_n^t) = \frac{1}{1 + \exp(-S(\mathbf{x}_n^e, \mathbf{x}_n^t))}$$

$$S(\mathbf{x}_n^e, \mathbf{x}_n^t) = (\mathbf{x}_n^e)^T \mathbf{x}_n^t - (\mathbf{x}_n^e)^T \mathbf{S} \mathbf{x}_n^e - (\mathbf{x}_n^t)^T \mathbf{S} \mathbf{x}_n^t + b$$
 PLDA

$$p(\mathbf{x}_n^e, \mathbf{x}_n^t) = \frac{1}{1 + \exp(-wS(\mathbf{x}_n^e, \mathbf{x}_n^t) - b)}$$

$$S(\mathbf{x}_n^e, \mathbf{x}_n^t) = \frac{\mathbf{x}_n^{e^T} \mathbf{x}_n^t}{\|\mathbf{x}_n^e\| \|\mathbf{x}_n^t\|}$$
Cosine

$$p(\mathbf{x}_n^e, \mathbf{x}_n^t) = \frac{1}{1 + \exp(-s_n^{e,t})}$$

$$s_n^{e,t} = S(\mathbf{x}_n^{e,t})$$
 Attention based

Contrastive loss

$$\mathcal{L}_{C} = \frac{1}{2N} \sum_{n=1}^{N} \left(l_n \cdot d_n^2 + (1 - l_n) \max(\rho - d_n, 0)^2 \right)$$
margin

确认损失2: Triplet loss

$$\mathcal{X}_{\text{trip}} = \{(\mathbf{x}_n^a, \mathbf{x}_n^p, \mathbf{x}_n^n) | n = 1, 2, \cdots, N\}$$

$$s_n^{an} - s_n^{ap} + \zeta \le 0$$

$$\mathcal{L}_{\text{trip}} = \sum_{n=1}^{N} \max(0, s_n^{an} - s_n^{ap} + \zeta)$$

- Li et al., Deep speaker: an end-to-end neural speaker embedding system, arXiv preprint arXiv:1705.02304.
- Zhang et al., Text-independent speaker verification based on triplet convolutional neural network embeddings, IEEE/ACM TASLP 2018

确认损失3: Quadruplet loss

$$pAUC = 1 - \frac{1}{IK} \sum_{\forall i: s_i \in \mathcal{P}} \sum_{\forall k: s_k \in \mathcal{N}_0} \left[\mathbb{I}(s_i < s_k) + \frac{1}{2} \mathbb{I}(s_i = s_k) \right]$$

$$\mathcal{P} = \{(s_i, l_i = 1) | i = 1, 2, \cdots, I\}$$

$$\mathcal{N}_0 = \{(s_k, l_k = 0) | k = 1, 2, \cdots, K\}$$

$$s_n = f(\mathbf{x}_n, \mathbf{y}_n) = \frac{\mathbf{x}_n^T \mathbf{y}_n}{||\mathbf{x}_n||||\mathbf{y}_n||}$$

$$\ell'_{\text{hinge}}(z) = \max(0, \delta - z)^2$$

$$\min \frac{1}{IK} \sum_{\forall i: s_i \in \mathcal{P}} \sum_{\forall k: s_k \in \mathcal{N}_0} \max(0, \delta - (s_i - s_k))^2$$

确认损失3: Quadruplet loss 的类中心学习算法

Fig2: a,Class-center learning; b, Random sampling.

确认损失3: Quadruplet loss 的实验性能

Table 1. Results on SITW.

Table 1. Results on S11 W.						
Name	Loss	EER(%)	$DCF10^{-2}$	DCF10 ⁻³		
Dev.Core	Softmax (kaldi)	3.0	-	-		
	Softmax	3.04	0.2764	0.4349		
	ArcSoftmax	2.16	0.2565	0.4501		
	pAUC-R	3.20	0.3412	0.5399		
	pAUC-L	2.23	0.2523	0.4320		
	AUC-L	4.27	0.4474	0.6653		
Eval.Core	Softmax (kaldi)	3.5	-	-		
	Softmax	3.45	0.3339	0.4898		
	ArcSoftmax	2.54	0.3025	0.5142		
	pAUC-R	3.74	0.3880	0.5797		
	pAUC-L	2.56	0.2949	0.5011		
	AUC-L	4.76	0.5005	0.7155		

Table 2. Results on the Cantonese language of NIST SRE 2016.

Back-end	Loss	EER(%)	DCF10 ⁻²	$DCF10^{-3}$
No-adaptation	Softmax (kaldi)	7.52	-	-
	Softmax	6.76	0.5195	0.7096
	ArcSoftmax	5.59	0.4640	0.6660
	pAUC-R	15.25	0.8397	0.9542
	pAUC-L	6.01	0.5026	0.7020
	AUC-L	7.92	0.5990	0.8072
Adaptation	Softmax (kaldi)	4.89	-	-
	Softmax	4.94	0.4029	0.5949
	ArcSoftmax	4.13	0.3564	0.5401
	pAUC-R	8.65	0.6653	0.8715
	pAUC-L	4.25	0.3704	0.5471
	AUC-L	5.36	0.4439	0.6480

Bai et al., Partial AUC optimization based deep speaker embeddings with class-center learning for text-independent speaker verification, in: ICASSP 2020

确认损失4: Prototypical network loss

$$-\uparrow$$
mini-batch $|S| = \{(\mathbf{x}_n, l_n) | n| = 1, 2, \cdots, N\}$

$$-\uparrow$$
Query set $Q = \{(\mathbf{x}_q, l_q)|q = 1, 2, \dots, Q\}$

在所有样本上
$$\mathbf{c}_j = \frac{1}{|\mathcal{S}_j|} \sum_{(\mathbf{x}_n, l_n) \in \mathcal{S}_j} \mathbf{x}_n, \quad j = 1, 2, \cdots, J$$

$$\mathcal{L}_{\text{PNL}} = -\sum_{(\mathbf{x}_q, l_q) \in Q} \log \frac{\exp(-d(\mathbf{x}_q, \mathbf{c}_{l_q}))}{\sum_{j'=1}^{J} \exp(-d(\mathbf{x}_q, \mathbf{c}_{j'}))}$$

确认损失4: Prototypical network loss

Table1: Equal Error Rates (EER, %) on the VoxCeleb1 test set, where CHNM denotes curriculum hard negative mining

Objective	Hyperparameters	VGG-M-40	Thin ResNet-34	Fast ResNet- 34
Softmax		10.14 ± 0.20	5.82 ± 0.47	6.46 ± 0.06
AM-Softmax	m = 0.1, s = 30	4.76 ± 0.10	2.59 ± 0.09	2.41 ± 0.01
AAM-Softmax	m = 0.2, s = 30	4.64 ± 0.04	2.36±0:04	2.38 ± 0.01
Triplet	m = 0.2, CHNM	4.67 ± 0.06	$2.60\pm0:02$	2.71 ± 0.06
GE2E	M = 3	4.40 ± 0.08	2.52 ± 0.07	2.37 ± 0.10
Prototypical	M = 2	4.59 ± 0.02	2.34 ± 0.08	2.32 ± 0.02
Angular Prototypical	M = 2	4.29 ± 0.07	2.21 ± 0.03	2.22 ± 0.05

四、总结

已有成果总结:

- 非端到端的分类损失需要引入减小类内方差的margin
- 端到端确认损失引入类中心学习可以增加训练稳定性、提高性能

可能的发展趋势:

- 新型的端到端确认损失
- 端到端确认损失与非端到端分类损失形成优势互补与融合
- 真正的端到端并不需要独立的back-end scoring

第二届声纹识别研讨会

谢谢!

张晓雷

西北工业大学 智能声学与临境通信研究中心