第二十五單元 平面向量一

(甲)向量的基本概念

(1)以「位移」爲例:

某甲從A點出發,朝西北方前進,走了10公里到達B地。某乙從A點出發,朝北走了10公里到達C點,我們考慮從A點到B點與C點雖然路徑相同,但方向卻不一樣。有向線段AB的始點A其方向為西北方,其長度10公里。同樣的有向線段AC的始點A其方向為北方,長度為10公里。

(2)以「合力」爲例:

甲、乙兩人拔河,甲用大小 2F的水平力向右邊拉,乙用大小F的水平力向左邊拉,我們亦可用有向線段來表示這兩個力,其始點為施力點,方向分別是兩力的方向,而長度分別是兩力的大小。

像位移、力、速度等,這些物理量包含**大小**與**方向**雙重觀念,我們引進「**向量**」的觀念,將這些物理觀念(朝西北移動 10 公里、向右 2F的水平拉力)看成**有向線段**,而引入向量,物理觀念經數學化之後,便於物理觀念的溝通與物理量的計算。

- (3)向量的概念:
- (a)向量的表示:

以A爲始點,B爲終點的有向線段,稱之爲**向量**,符號: \overline{AB} ,它的方向是由A指向B,

大小爲AB, 記爲AB, 即AB =AB。

AB與BA長度相等,但方向相反,記爲: AB=-BA。

向量若不特別指名始點與終點,亦可用 a 、 b 、 u 、 ... 來表示。

(b)向量的相等:

兩個向量若大小相等,方向相同,則稱兩個向量相等。

AB = CD ⇔ AB, CD 方向相同且|AB|=|CD|

根據這個結果可知,向量可以自由的平行移動。

例如:右圖的平行四邊形ABCD, $\overrightarrow{AB} = \overrightarrow{DC}$, $\overrightarrow{AD} = \overrightarrow{BC}$ 。

(1)向量的加法:給定二個向量 a , b 如何定義 a + b 呢?

(a)三角形法(可以用位移爲例):

 $\frac{1}{a}$, $\frac{1}{b}$ 經由平移, 可設 $\frac{1}{a}$ = $\frac{1}{AB}$, $\frac{1}{b}$ = $\frac{1}{BC}$, 即 $\frac{1}{a}$ 的終點與 $\frac{1}{b}$ 的始點爲同一點,

則定義 a + b = AC。(a 的始點指向 b 的終點)

[討論]: 如右圖, AB+BC+CD+DE =?

(b)平行四邊形法(可以用合力爲例):

 \overrightarrow{a} 、 \overrightarrow{b} 經由平移,可設 \overrightarrow{a} = \overrightarrow{AB} , \overrightarrow{b} = \overrightarrow{AC} , 即 \overrightarrow{a} 與 \overrightarrow{b} 的始點爲同一點,

則定義 a + b = AD, ABDC為平行四邊形。

[說明]:因爲AC=BD,所以AB+AC=AB+BD=AD

(2)向量的減法:

給定兩個向量a,b,如何定義a-b呢?

 \overrightarrow{a} 、 \overrightarrow{b} 經由平移,可設 $\overrightarrow{a} = \overrightarrow{AB}$, $\overrightarrow{b} = \overrightarrow{AC}$,即 \overrightarrow{a} 與 \overrightarrow{b} 的始點爲同一點,

則定義 $\overline{a} - \overline{b} = \overline{a} + (-\overline{b}) = \overline{AB} - \overline{AC} = \overline{CB}$ (由 \overline{b} 的終點指向 \overline{a} 的終點)。 c [說明]:

設 $\vec{a} = \overrightarrow{AB}, \vec{b} = \overrightarrow{AC}$,我們定義 $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$

根據右圖可知 $\overrightarrow{AD} = -\overrightarrow{b}$,ADEB爲平行四邊形,

 $\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} + (-\overrightarrow{b}) = \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AE} = \overrightarrow{CB}$, $\square \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$

[結論]: 向量的拆解

(a)任何一個向量 \overrightarrow{BC} ,我們都可以把它拆解爲 $\overrightarrow{BA}+\overrightarrow{AC}$ 兩向量的和,其中A爲任一點。 即 $\overrightarrow{BC}=\overrightarrow{BA}+\overrightarrow{AC}$ 。(可以以位移爲例)

(b)任何一個向量 \overrightarrow{BC} ,我們都可以把它拆解爲 \overrightarrow{AC} - \overrightarrow{AB} 兩向量的差,其中A點爲任一點。即 \overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} 。(可以相對運動爲例)

(3)向量加法的性質:

(a)交換性: $\frac{1}{a} + \frac{1}{b} = \frac{1}{b} + \frac{1}{a}$

(b)結合性: (a+b)+c=a+(b+c)

(c)零向量: a + 0 = 0 + a , 0 表示起點與終點重合的向量,稱爲零向量。

(d)可逆性:對於任一向量 a ,若以AB表示 a ,則BA所表示的向量以一 a 表示,

由於
$$\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{0}$$
 , 故 $\overrightarrow{a} + (-\overrightarrow{a}) = -\overrightarrow{a} + \overrightarrow{a} = \overrightarrow{0}$

(4)向量的係數積

設 a 是一個向量,r是一個實數,則係數積r a 仍是一個向量,定義如下:

長度: | r a |=|r|| a |

例:|5 a |=____; |-100 a |=____

方向:

若a 爲非零向量且 $r\neq 0$:

若r=0 或 $\overline{a}=\overline{0}$,則 $r\overline{a}=\overline{0}$

注意: $0.\overline{a}$ 、 $r.\overline{0}$ 均爲零向量 $\overline{0}$,而不是0。

(5) 係數積與向量平行:

利用係數積可使向量在同向(r>0)或反向(r<0),伸縮向量的長度。

例如: 設A,B,C爲一直線上的三點,且 $\overline{AB}:\overline{BC}=3:2$,

$$\text{AB} = \frac{3}{5} \overrightarrow{AC} , \overrightarrow{BC} = \frac{-2}{3} \overrightarrow{BA} \circ \overrightarrow{A}$$

a 與 b 中有一個可以寫另一個的係數積,則稱這兩個向量 a 與 b 平行,

符號以 $\frac{1}{a}$ // $\frac{1}{b}$ 來表示。即

根據向量平行的定義,可知:

- (a)兩個非零向量平行的充要條件是兩向量同向或反向
- (b) 0 之方向不予限定,故 0 可視爲與任何向量均平行。

$$a // b \Leftrightarrow$$
可找到實數 t 或 s ,使得 $a = t$ b 或 $b = s$ a

(6)係數積的基本性質:

設r,s ∈ \mathbf{R} , $\stackrel{\blacktriangle}{a}$ 與 $\stackrel{\blacktriangle}{b}$ 爲二任意向量,則:

(a)分配律一:r(a+b)=ra+rb 分配律二:(r+s)a=ra+sb

[**例題**1] 在正六邊形ABCDEF中,令 $\overrightarrow{AB} = a$, $\overrightarrow{BC} = b$,試以 \overrightarrow{a} 和 \overrightarrow{b} 表示下列諸向量:

 $(1)\overrightarrow{AC}(2)\overrightarrow{BD}(3)\overrightarrow{CD}$ °

Ans: (1) a + b (2) 2b - a (3) -a + b

[例題2] 設相異三點A,B,C共線

若C爲線段 \overline{AB} 之中點,則 \overline{AC} =_____ \overline{AB} , \overline{CA} =____ \overline{CB} 若C在線段 \overline{AB} 上,且 \overline{AC} = $\frac{2}{3}\overline{CB}$,則 \overline{BC} =____ \overline{AC} , \overline{AB} =___ \overline{AC}

(練習1) 正六邊形 ABCDEF, $\overrightarrow{AB} = \overline{a}$, $\overrightarrow{BC} = \overline{b}$, 則

$$\stackrel{\frown}{\mathbb{E}} \overrightarrow{BD} = \overrightarrow{a} - 2 \overrightarrow{b} \circ \text{Ans} : (A)(B)(C)$$

(練習2) 如圖所示,設四邊形ABCD、EFGH、DCGH、ABFE、ADHE和BCGF

都是平行四邊形, $\overrightarrow{BA} = \overrightarrow{a}, \overrightarrow{BC} = \overrightarrow{c}, \overrightarrow{BF} = \overrightarrow{d}$,

試以 \overline{a} , \overline{c} , \overline{d} 表示 \overline{CE} 和 \overline{AG} 。

Ans: a - c + d, -a + d + c

(練習3) 已知 $3(\vec{x} - \frac{1}{2}\vec{a}) + \frac{1}{4}(2\vec{b} - 5\vec{x} + \vec{c}) + 4\vec{x} = \vec{0}$,請用 \vec{a} 、 \vec{b} 、 \vec{c} 表示 \vec{x} 。
Ans: $\vec{x} = \frac{6}{23}\vec{a} - \frac{2}{23}\vec{b} - \frac{1}{23}\vec{c}$

(練習4) 如圖 $A \cdot B \cdot C \cdot D \cdot E \cdot F$ 共線,且 $A \cdot B \cdot C \cdot D \cdot E \cdot F$ 所列敘述何者正確?

(A)
$$\overrightarrow{AB} = \frac{1}{5} \overrightarrow{AF}$$
 (B) $\overrightarrow{AB} = \frac{1}{3} \overrightarrow{CF}$ (C) $\overrightarrow{BE} = \frac{-3}{2} \overrightarrow{DB}$ (D) $\overrightarrow{AB} + 2 \overrightarrow{DE} = 3 \overrightarrow{BC}$
(E) $\overrightarrow{BD} - \overrightarrow{CB} = \overrightarrow{AF} \circ Ans : (A)(B)(C)(D)$

(丙)平面向量的坐標化

(1)平面向量的坐標表示:

 $\frac{1}{u}$ 爲一個平面向量,取定直角坐標平面,其中 \mathbf{O} 爲原點,如何用坐標來表示 $\frac{1}{u}$ 呢?

因爲向量可以自由移動,故可令 $\overrightarrow{OP} = \overrightarrow{u}$ 。如下圖,設 $\overrightarrow{u} = \overrightarrow{OP}$

,而P點的坐標爲(a,b),則我們用P的坐標(a,b)來表示向量u,

記爲 u = (a,b),其中a和b分別稱爲向量 u 的x-分量與y-分量。

記爲 u = (a,b),其中a和b分別稱爲向量 u 的x所以 u 的長度爲 $u = \overline{OP} = \sqrt{a^2 + b^2}$ 。

根據定義,平面向量 $\frac{1}{u}$ 用(a,b)來表示,它的方向是由原點O指向P(a,b),而它的大小 $\sqrt{a^2+b^2}$ 。因此坐標的表示方式可以同時呈現出向量的兩個要素—大小與方向。

結論:

(a)長度: $\overrightarrow{u} = (a,b)$,則 $\overrightarrow{u} = \sqrt{a^2 + b^2}$ 。

(b)相等:若u=(a,b),v=(c,d),則u=v $\Leftrightarrow a=c$ 且b=d

(c)兩點決定一向量:

若設 $\mathbf{A}(x_1,y_1)$ 、 $\mathbf{B}(x_2,y_2)$ 為坐標平面上的兩點,則 \mathbf{AB} 如何表示呢?

例如: $\mathrm{BA}(1,2) \cdot \mathrm{B}(-4,6)$, 試用坐標表示 $\overline{\mathrm{AB}}$ 。

作法:我們取一點P(x,y),使得 $\overrightarrow{OP} = \overrightarrow{AB}$,由向量相等的定義,可知四邊形ABOP為平行四邊形,平行四邊形對角線互相平分,所以AP的中點與OB的中點為同一點,故 $\frac{-4+0}{2} = \frac{x+1}{2}, \frac{0+6}{2} = \frac{y+2}{2},$

即x=-4-1=-5,y=6-2=4,所以 $\overrightarrow{AB}=(-5,4)$ 。

若設 $\mathbf{A}(x_1,y_1)$ 、 $\mathbf{B}(x_2,y_2)$ 為坐標平面上的兩點,則 $\overrightarrow{\mathbf{AB}}=(x_2-x_1,y_2-y_1)$ 。 [說明]:

我們取一點P(x,y),使得 $\overrightarrow{OP} = \overrightarrow{AB}$,由向量相等的定義,可知四邊形ABOP爲平行四邊形,因爲平行四邊形對角線互相平分,所以AP的中點與OB的中點爲同一點,

故
$$\frac{x_2+0}{2} = \frac{x+x_1}{2}$$
, $\frac{y_2+0}{2} = \frac{y+y_1}{2}$,即 $x=x_2-x_1$, $y=y_2-y_1$,所以 $\overrightarrow{AB} = (x_2-x_1, y_2-y_1)$ 。

用坐標表示的向量,我們稱爲**坐標向量**,將向量予以坐標化,即向量除了幾何表示(即有向線段)外,希望能利用代數法或代數式表示,使得向量在幾何問題的處理上能發揮更大的效益。

結論:

已知兩點 $A(x_1,y_1)$, $B(x_2,y_2)$, 則

(a)坐標化: $AB = (x_2-x_1,y_2-y_1)$

(b)求分量: \overrightarrow{AB} 的x分量爲 x_2-x_1 ,y分量爲 y_2-y_1 。

(c)求長度: $|\overrightarrow{AB}|^2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

(2)用長度、方向角決定一個向量:

將AB平移到OP,其中O爲原點,令|OP|=r

 \mathcal{C}_x 軸正向逆時針轉到 \overrightarrow{OP} 的有向角爲 θ ,我們稱爲方向角, $0 \le \theta < 2\pi$

 $| | \overrightarrow{AB} = \overrightarrow{OP} = (r\cos\theta, r\sin\theta)$

[說明]: 設A (x_1,y_1) 、B (x_2,y_2) \Rightarrow $\overrightarrow{OP} = (x_2-x_1,y_2-y_1)$,即P (x_2-x_1,y_2-y_1)

根據三角函數的定義,可知 $x_2-x_1=r\cos\theta$, $y_2-y_1=r\sin\theta$ 。 $\overrightarrow{AB}=\overrightarrow{OP}=(r\cos\theta,r\sin\theta)$ 。

結論: $A(x_1,y_1) \cdot B(x_2,y_2)$, $\overrightarrow{AB} = (x_2-x_1, y_2-y_1) = (r\cos\theta, r\sin\theta)$ 。

[**例題3**] 如圖,正六邊形ABCDEF的邊長為3單位長,且 $\cos\theta = \frac{2}{3}$

試問 \overrightarrow{AB} =? \overrightarrow{AC} =?

Ans: $\overrightarrow{AB} = (2,\sqrt{5})$, $\overrightarrow{AC} = (\frac{2\sqrt{3} - \sqrt{5}}{2}, \frac{\sqrt{15} + 2}{2})$

(練習5)如圖中,O(0,0),X(1,0), $\overline{OA} = 2$, $\overline{AB} = 4$, $\overline{BC} = 4$,

$$\angle AOX = 45^{\circ}$$

$$\angle OAB = 105^{\circ}, \ \angle ABC = 120^{\circ},$$

則 C 點的坐標爲_____

Ans : $(\sqrt{2},\sqrt{2}+4\sqrt{3})$

(丁)坐標向量的加減法與係數積

給定一個向量 $\overrightarrow{u}=\overrightarrow{OP}$,其中O為原點,取A(1,0)、B(0,1)兩點,並令 $\overrightarrow{i}=\overrightarrow{OA}$, $\overrightarrow{j}=\overrightarrow{OB}$

,因爲 \vec{i} 、 \vec{j} 兩向量不平行,所以可將 \vec{u} = \overrightarrow{OP} 唯一表示成 \vec{i} 、 \vec{j} 兩向量的線性組

合,可知 $\vec{u} = \overrightarrow{OP} = a\vec{i} + b\vec{j}$ 。

因此
$$\overline{u} = \overrightarrow{OP} = (a,b) = a \overrightarrow{i} + b \overrightarrow{j}$$
。

反過來說,

u = a i + b j, $m \otimes OP = a i + b j$, B LPLPMEN

結論:

$$u = (a,b) \Leftrightarrow u = a i + b j \circ$$

(1)向量的加減法:

若設
$$\overrightarrow{u} = (a,b)$$
, $\overrightarrow{v} = (c,d)$,則 $\overrightarrow{u} = a\overrightarrow{i} + b\overrightarrow{j}$, $\overrightarrow{v} = c\overrightarrow{i} + d\overrightarrow{j}$,
因此 $\overrightarrow{u} + \overrightarrow{v} = (a\overrightarrow{i} + b\overrightarrow{j}) + (c\overrightarrow{i} + d\overrightarrow{j}) = (a+c)\overrightarrow{i} + (b+d)\overrightarrow{j} = (a+c,b+d)$

$$\overrightarrow{u} - \overrightarrow{v} = (a\overrightarrow{i} + b\overrightarrow{j}) - (c\overrightarrow{i} + d\overrightarrow{j}) = (a-c)\overrightarrow{i} + (b-d)\overrightarrow{j} = (a-c,b-d)$$

由以上的討論,可得以下的結論:

若
$$u=(a,b)$$
、 $v=(c,d)$,

$$\text{II} \quad u + v = (a+c,b+d) \quad u - v = (a-c,b-d) \circ$$

(2)向量係數積:

設
$$u = (a,b)$$
, r 為 實數 ,則 r $u = r(a,b) = (ra,rb)$ 各分量乘以 r

(3)單位向量:若|u|=1,則稱u 爲單位向量。

例如:AB為非零向量,AB AB方向上的單位向量。

(4) 兩坐標向量平行:

$$\stackrel{\longrightarrow}{\mathbb{R}} a = (a_1, a_2) \cdot \stackrel{\longrightarrow}{b} = (b_1, b_2)$$

$$a // b \Leftrightarrow \Leftrightarrow a = t b \Leftrightarrow a_1b_2 = a_2b_1$$
 [分量成比例]

(5)位置向量:

設O爲坐標平面的原點,在坐標平面上每一個點P都可以決定向量 \overrightarrow{OP} ,反之,每一個向量 \overrightarrow{OP} 都可以指出P點的位置,我們稱 \overrightarrow{OP} 爲P點的位置向量。若P點的坐標爲(a,b),則P點的位置向量 \overrightarrow{OP} 的坐標表示法也是(a,b)。也就是說(a,b)既表示P點,也表示向量 \overrightarrow{OP} 。至於什麼時候表示一點?什麼時候表示向量?一般可以從上、下文看出來,若有混淆之虞,則可加以註明清楚,例如"(a,b)爲P點的坐標"或"(a,b)爲某一向量"

等,如果將數對(a,b),(c,d),…視爲向量,那麼就可以做加、減與係數積的運算。

[例題4] 設 \overline{a} =(2,-3), \overline{b} =(1,4),t為實數,試求| \overline{a} + \overline{t} \overline{b} |的最小値。Ans: $\frac{11}{\sqrt{17}}$

- [**例題5**] (1)求一向量 \vec{u} 使 $|\vec{u}|=1$ 且 \vec{u} 與 $\vec{v}=(5,6)$ 同方向。
 - (2) 求一向量 \overrightarrow{u} 使 $|\overrightarrow{u}|=1$ 且 \overrightarrow{u} 與 $\overrightarrow{v}=(5,6)$ 反方向。

Ans:
$$(1)(\frac{5}{\sqrt{61}}, \frac{6}{\sqrt{61}})(2)(-\frac{5}{\sqrt{61}}, -\frac{6}{\sqrt{61}})$$

- (練習6) 設 a = (-1,-1), b = (5,2),試求: (1)2 a +3 b (2)4 a -5 b (3)|-a+2 b|Ans: (1) (3,0) (2)(-9,-14) (3) $\sqrt{146}$
- (練習7) 設 $\vec{a} = (2,1)$, $\vec{b} = (3,4)$,當 $\vec{a} + t \vec{b}$ |最小時,t = ? Ans: -2
- (練習8) 設 \vec{a} =(1,2)、 \vec{b} =(3,4),若 $t\vec{a}$ + \vec{b} 與 \vec{a} + $t\vec{b}$ 平行,求實數 t=? Ans:t=1 或-1
- (練習9) 請求出與 \vec{a} =(4,-3)平行的單位向量。Ans: $\frac{1}{5}$ (4,-3)或 $\frac{-1}{5}$ (4,-3)
- (練習10) 設 \vec{a} =(3,1)、 \vec{b} =(-1,2)、 \vec{c} =(3,8),若 \vec{c} = \vec{x} \vec{a} + \vec{y} \vec{b} ,則實數對(x,y)=? Ans: (x,y)=(2,3)

(戊)向量的內積

物理學告訴我們:一個物體在定力f作用下,若在力f的方向上有一位移d,則該力對物體所作的 $\mathbf{W}=\mathbf{f}\cdot d$;但當力的方向與位移的方向有一夾角時,所作的功就不再單純的只是力與位移的乘積,而與夾角有關。

例子:

如下圖,對一個重物施以與水平方向成 θ 角太小5牛頓的力f使得重物沿水平方向移動

[解答]:因爲f的水平分力爲 $5\cos\theta$,因此所作的功W=($5\cos\theta$)·10(焦耳) [數學化]:

現在將力視爲向量 f ,位移視爲向量 d ,因爲力與水平方向夾角爲 θ ,則可視爲 f 與 d 的夾角爲 θ ,

所作的功W=(5 $\cos\theta$)·10=(| f | $\cos\theta$)·| d |=| f || d | $\cos\theta$, 其中 θ 爲 f 與 d 的夾角,這樣的概念數學化之後,就稱爲**向量** f 與 d 的內積。

(1)向量的夾角:

a、b 爲平面上的兩個**非零向量**,根據向量的意義,我們可以將兩個向量平行移動,使得 a 與 b 的起點重合(如圖),

即 $\overline{a} = \overline{OA}$, $\overline{b} = \overline{OB}$ 我們定義兩向量的夾角 θ 爲 $\angle AOB$ 。 $(0 \le \theta \le \pi$ 或 $0^\circ \le \theta \le 180^\circ)$

 θ =0 θ = π

因為 $\frac{1}{0}$ 之方向不予限定,因此我們規定 $\frac{1}{0}$ 與任何向量的夾角爲任意角度。

注意:

當 \overline{a} · \overline{b} >0 \Leftrightarrow 0<夾角 θ < $\frac{\pi}{2}$,當 \overline{a} · \overline{b} <0 \Leftrightarrow $\frac{\pi}{2}$ <夾角 θ < π

(2)向量的內積:

定義:

設 a 與 b 爲兩向量,θ爲其夾角,定義 a 與 b 的內積爲 a ॥ b $|\cos\theta$,符號記爲: a . b = a ॥ b $|\cos\theta$,"·"念成dot。

特別的, $\stackrel{-}{0}$ · $\stackrel{-}{a}$ = $\stackrel{-}{0}$ || $\stackrel{-}{a}$ || $\stackrel{-}{cos}\theta$ =0,因此 $\stackrel{-}{0}$ 與任何向量 $\stackrel{-}{a}$ 的內積都是 $\stackrel{-}{0}$ 。

 $\stackrel{-}{a} \cdot \stackrel{-}{b}$ 注意: $\stackrel{-}{a} \cdot \stackrel{b}{b}$ 是一個實數而非向量,就好像功是一個純量,而沒有方向。

例:設正三角形ABC之邊長為1,

求(1) \overrightarrow{AB} · \overrightarrow{AC} 之值;(2) \overrightarrow{AB} · \overrightarrow{BC} 之值。

[**例題**6] ΔABC之三邊長爲AB=4,BC =5,CA =6,

則求(1) $\overrightarrow{AB} \cdot \overrightarrow{AC} = ?$ (2) $\overrightarrow{AB} \cdot \overrightarrow{BC} = ?$ Ans : $(1)\frac{27}{2}$ (2) $\frac{-5}{2}$

(3)投影量與內積

(a) 當 $0 < \theta < \frac{\pi}{2}$

如圖,
$$|\overrightarrow{b}|\cos\theta = |\overrightarrow{AC}|\cos\theta = \overrightarrow{AD}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}|\cos\theta = |\overrightarrow{AB} \cdot \overrightarrow{AD}| > 0$$

$$(b)$$
當 $\frac{\pi}{2}$ < θ < π

如圖
$$, |\overrightarrow{b}|\cos\theta = |\overrightarrow{AC}|\cos\theta = -\overrightarrow{AD}|$$

$$\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}|\cos\theta = -\overrightarrow{AB} \cdot \overrightarrow{AD}| < 0$$
(c) 當 $\theta = \frac{\pi}{2} \Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0$

如圖,
$$|\overrightarrow{b}|\cos\theta = 0$$
 $\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}|\cos\theta = 0$

根據前面的說明,我們稱| \overrightarrow{b} | $\cos\theta$ 爲 \overrightarrow{b} 在 \overrightarrow{a} 方向上的<mark>投影量(不一定爲正)</mark>,向量 \overrightarrow{AD} 爲 \overrightarrow{b} 在 \overrightarrow{a} 方向上的 \cancel{Q} 影(或正射影)。因此(a)(b)(c)中投影量分別爲 \overrightarrow{AD} 、 $-\overrightarrow{AD}$ 、0。因爲 \overrightarrow{a} · \overrightarrow{b} =| \overrightarrow{a} | \overrightarrow{b} | $\cos\theta$ =(| \overrightarrow{b} | $\cos\theta$)·| \overrightarrow{a} | ,

故 $a \cdot b \stackrel{-}{=} b \stackrel{-}{=} a$ 方向上的**投影量**乘以 a 的長度。

另一方面, \overrightarrow{b} 在 \overrightarrow{a} 方向上的**投影量** $|\overrightarrow{b}|\cos\theta = |\overrightarrow{b}|(\frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|a||b|}) = \overrightarrow{b}\cdot(\frac{\overrightarrow{a}}{|a|}) = \overrightarrow{b}\cdot\overrightarrow{e}$

其中 $e = \frac{a}{a}$ 表示 a 方向的單位向量。

故 b 在 a 方向上的投影量亦可表爲「b 與 a 方向的單位向量之內積」。

(4)垂直的向量

當 $\frac{1}{a}$ 與 $\frac{1}{b}$ 之夾角爲直角時,我們稱 $\frac{1}{a}$ 與 $\frac{1}{b}$ 垂直,記爲 $\frac{1}{a}$ 上 $\frac{1}{b}$ 。

因爲一向量 a 與 a 之夾角可視爲任意角,爲了方便起見,**我們將任何向量與**

零向量都視爲垂直,於是 $\frac{1}{a}$ 」 $\frac{1}{b}$ 表示 $\frac{1}{a}$ = $\frac{1}{0}$ 或 $\frac{1}{b}$ = $\frac{1}{0}$ 或 θ = $\frac{\pi}{2}$,但不管是那一種情形,

$$\vec{a} \cdot \vec{b} = 0$$
 · 所以規定: $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$ ·

(5)向量的性質:

 $\begin{bmatrix} - & - & - \\ a & b \end{bmatrix}$, $\begin{bmatrix} c \\ c \end{bmatrix}$ 爲任意三向量, $\begin{bmatrix} r \\ c \end{bmatrix}$ 所

$$(a)$$
 \overline{a} · \overline{b} = \overline{b} · \overline{a} (交換性)

(b)
$$\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$$
 (分配性)

$$(c)r(\stackrel{\blacktriangle}{a} \cdot \stackrel{\blacktriangle}{b}) = (\stackrel{\blacktriangle}{r} \stackrel{\blacktriangle}{a}) \cdot \stackrel{\blacktriangle}{b} = \stackrel{\blacktriangle}{a} \cdot (\stackrel{\blacktriangle}{r} \stackrel{\blacktriangle}{b})$$

(e)
$$\begin{vmatrix} a \end{vmatrix}^2 = \begin{vmatrix} a \end{vmatrix} \cdot \begin{vmatrix} a \end{vmatrix} \ge 0$$
, $\begin{vmatrix} a \end{vmatrix}^2 = 0 \Leftrightarrow \begin{vmatrix} a \end{vmatrix} = 0$

注意: $|\overrightarrow{a}|^2 = \overrightarrow{a} \cdot \overrightarrow{a}$

這個性質可以讓我們在內積與長度之間轉換,是一個簡單但重要的性質。

(f)
$$|\overrightarrow{a} \pm \overrightarrow{b}|^2 = (\overrightarrow{a} \pm \overrightarrow{b}) \cdot (\overrightarrow{a} \pm \overrightarrow{b}) = |\overrightarrow{a}|^2 \pm 2\overrightarrow{a} \cdot \overrightarrow{b} + |\overrightarrow{b}|^2$$

[討論]:利用圖解法去說明(b)(c)(f)的性質。

性質(b)

性質(c)以 r=3 或 r=-3 爲例:

(f)

$$\Leftrightarrow \overrightarrow{a} = \overrightarrow{OA}, \overrightarrow{b} = \overrightarrow{OB}$$

$$\overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB} = \overrightarrow{a} - \overrightarrow{b}$$
,

$$|\overrightarrow{a} - \overrightarrow{b}|^2 = |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - 2\overrightarrow{a} \cdot \overrightarrow{b}$$

可以寫成:

 $|\overrightarrow{BA}|^2 = |\overrightarrow{OA}|^2 + |\overrightarrow{OB}|^2 - 2|\overrightarrow{OA}||\overrightarrow{OB}|\cos\theta$,當 \overrightarrow{a} 與 \overrightarrow{b} 不平行時,上式爲餘弦公式。

[例題7] 二向量 $\stackrel{-}{a}$, $\stackrel{-}{b}$, $\stackrel{-}{a}$ |=3, $\stackrel{-}{b}$ |=4, $\stackrel{-}{a}$ | $\stackrel{-}{a}$ + $\stackrel{-}{b}$ |= $\sqrt{13}$, 則(1) $\stackrel{-}{a}$ 與 $\stackrel{-}{b}$ 之夾角爲何? (2)|3 $\stackrel{-}{a}$ +2 $\stackrel{-}{b}$ |=? Ans: (1) $\frac{2\pi}{3}$ (2) $\sqrt{73}$

[**例題**8] 如圖,平面上兩個向量 \overline{a} 、 \overline{b} ,其夾角 θ 滿足 $\tan\theta = \frac{2}{5}$ 且 $|\overline{a}| = 2$, $|\overline{b}| = 3$,試求

$$(1)$$
 a 在 b 上的投影量。 (2) a 在 b 上的正射影。
Ans: $(1)\frac{15}{\sqrt{29}}$ (2) $\frac{5}{\sqrt{29}}$ b

[**例題9**] \overrightarrow{u} 、 \overrightarrow{v} 是二向量,試證明:

$$(1)|\overrightarrow{u} \cdot \overrightarrow{v}| \leq |\overrightarrow{u}||\overrightarrow{v}| \circ$$

$$(2)|\overrightarrow{u}+\overrightarrow{v}| \leq |\overrightarrow{u}|+|\overrightarrow{v}|$$

不等式 $|\hat{u} \cdot \hat{v}| \le |\hat{u}| |\hat{v}|$ 稱爲**柯西不等式**,我們將在後面再做進一步的討論。 不等式 $|\hat{u} + \hat{v}| \le |\hat{u}| + |\hat{v}|$ 稱爲**三角形不等式**。

[例題10] 設 |
$$\overrightarrow{a}$$
 | =3 , | \overrightarrow{b} | =5 , | \overrightarrow{c} | =7 , 且 \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$, 試求 : (1) \overrightarrow{a} · \overrightarrow{b} = ____ \circ (2) \overrightarrow{a} 與 \overrightarrow{b} 之夾角爲___ \circ Ans : (1) $\frac{15}{2}$ (2) $\frac{\pi}{3}$

(練習11) 設
$$\overline{a} \perp \overline{b}$$
,且 $|\overline{a}| = 3\sqrt{2}$, $|\overline{b}| = 1$,

若 $\overline{a} + (t^2 + 5)$ \overline{b} 與 $-\overline{a} + t\overline{b}$ 互相垂直,則實數 $t = \underline{\hspace{1cm}}$ Ans: t = 2

- (練習12) 正三角形ABC的邊長為 2,M為 \overline{BC} 的中點,試求 $(1)(\overline{BC}+\overline{AM})\cdot\overline{AC}=?$ $(2)(\overline{BC}-\overline{AM})\cdot(\overline{AB}+\overline{AM})=?$ Ans: (1)5 (2)-8
- (練習13) 一稜長爲a之正四面體ABCD, \overline{CD} 之中點爲M,則 \overline{AB} · \overline{AM} = ? Ans : $\frac{a^2}{2}$
- (練習14) 設 $\overline{OA} = 2$, $\overline{OB} = 3$, \overline{OA} 與 \overline{OB} 之夾角爲 60° ,試求: $(1)\overline{OA} \cdot \overline{OB} = ____ \circ (2) \mid 2\overline{OA} + \overline{OB} \mid = ____ \circ$ $(3) \mid \overline{OA} 2\overline{OB} \mid = ___ \circ$ $(4) \mid \overline{OA} + \overline{OB} \mid^2 + \mid \overline{OA} \overline{OB} \mid^2 = ___ \circ$ $Ans: (1)3(2)\sqrt{37}(3)2\sqrt{7}(4)26$

(己)坐標化的向量內積

(1)設
$$a = (a_1, a_2)$$
, $b = (b_1, b_2)$,我們如何用 a_1, a_2, b_1, b_2 表示 $a \cdot b$ 呢?

設 $\overrightarrow{OA}=(a_1,a_2)$ 和 $\overrightarrow{OB}=(b_1,b_2)$ 且兩向量的夾角爲 θ ,

因爲
$$\overrightarrow{OB}+\overrightarrow{BA}=\overrightarrow{OA}$$
, $\overrightarrow{BA}=\overrightarrow{OA}-\overrightarrow{OB}=(a_1-b_1, a_2-b_2)$

$$|\overrightarrow{BA}|^2 = |\overrightarrow{OA} - \overrightarrow{OB}|^2 = |\overrightarrow{OA}|^2 + |\overrightarrow{OB}|^2 - 2\overrightarrow{OA} \cdot \overrightarrow{OB}$$

根據前面的定義,

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = |\overrightarrow{OA}||\overrightarrow{OB}|\cos\theta = \frac{1}{2}(|\overrightarrow{OA}|^2 + |\overrightarrow{OB}|^2 - |\overrightarrow{BA}|^2)$$

$$= \frac{1}{2}[(a_1^2 + a_2^2) + (b_1^2 + b_2^2) - [(a_1 - b_1)^2 + (a_2 - b_2)^2]] = a_1b_1 + a_2b_2$$

故
$$\overline{a} \cdot \overline{b} = a_1b_1 + a_2b_2 \circ$$

$$a = 7 \frac{1}{b}$$
:

可令a=tb \Leftrightarrow $(a_1,a_2)=t(b_1,b_2)$ \Leftrightarrow $a_1=tb_1$ 且 $a_2=tb_2$

$$\overrightarrow{a} \cdot \overrightarrow{b} = (\overrightarrow{t} \overrightarrow{b}) \cdot \overrightarrow{b} = t |\overrightarrow{b}|^2 = t(b_1^2 + b_2^2)$$

 $a_1b_1+a_2b_2=(tb_1)b_1+(tb_2)b_2=t(b_1^2+b_2^2)$

故
$$\overline{a} \cdot \overline{b} = a_1b_1 + a_2b_2 \circ$$

根據前面的計算, $a \cdot b = a_1b_1 + a_2b_2$ 。

根據這個結果,可知當我們將 a 、 b 坐標化之後, a . b 就可以容易由分量計算出來,此時可以反過來向量的夾角與長度。

結論:設
$$\overline{a} = (a_1, a_2)$$
, $\overline{b} = (b_1, b_2)$

(a)
$$a \cdot b = a \cdot b \cos\theta = a_1b_1 + a_2b_2 \circ$$

(b)
$$a \perp b \Leftrightarrow a \cdot b = 0 \Leftrightarrow a_1b_1 + a_2b_2 = 0$$
 (向量與垂直的關係)

(c)若
$$\bar{a}$$
與 \bar{b} 皆不爲 $\bar{0}$,則 $\cos\theta = \frac{\bar{a} \cdot \bar{b}}{|\bar{a}||\bar{b}|} = \frac{a_1b_1 + a_2b_2}{\sqrt{a_1^2 + a_2^2} \cdot \sqrt{b_1^2 + b_2^2}}$ (**向量與角度**)

$$(d)$$
 a · $a = |a|$ $a |\cos 0 = |a|^2 \circ (向量與長度)$

由(c)與(d)可知內積與求角度、長度都有關係,這也是內積重要的地方。

[課內討論]:設 $a = (a_1, a_2)$ 、 $b = (b_1, b_2)$ 、 $c = (c_1, c_2)$,檢查下列內積的性質是對的:

$$(1^{\circ})$$
 \overrightarrow{a} · \overrightarrow{b} = \overrightarrow{b} · \overrightarrow{a} (交換性)

$$(2^{\circ})$$
 \overrightarrow{a} $\cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a}$ $\cdot \overrightarrow{b} + \overrightarrow{a}$ $\cdot \overrightarrow{c}$ (分配性)

[**例題**11] 設 Δ ABC 的三頂點爲 A(3,-2)、B(-1,-4)、C(6,-3),求內角 \angle A 的角度。 Ans:135°

[**例題12**] 設向量 a 與另一向量 b =($\sqrt{3}$,1)的夾角是 120° 且| a |=8,試求向量 a 。 Ans: a =(0,-8)或(-4 $\sqrt{3}$,4)

(練習15) 設 $\vec{u} = (k,1), \vec{v} = (2,3), 求 k 使:$

- (1) \vec{u} 和 \vec{v} 垂直 (2) \vec{u} 和 \vec{v} 平行 (3) \vec{u} 和 \vec{v} 的夾角爲 60° Ans : $(1)k = \frac{-3}{2}$ $(2)k = \frac{2}{3}$ $(3)k = -8 + \frac{13\sqrt{3}}{3}$
- (練習16) 設A(4,0),B(0,-3),動點P爲直線x+y=0上之一點。則 \overrightarrow{PA} . \overrightarrow{PB} 之最小值=____。Ans: $\frac{-49}{8}$
- (練習17) 設 A(1,-2)、B(0,2)、C(-3,4)為 ΔABC 之三頂點,求 $\sin A=?$ Ans: $\frac{5}{\sqrt{221}}$
- (練習18) 設 \overrightarrow{OA} =(3,1), \overrightarrow{OB} =(-1,2),若 \overrightarrow{OC} \bot \overrightarrow{OB} , \overrightarrow{BC} // \overrightarrow{OA} ,且 \overrightarrow{OD} + \overrightarrow{OA} = \overrightarrow{OC} ,则 \overrightarrow{OD} =? Ans: (11,6)

綜合練習

- (1) 由正五邊形的邊,可決定 個不同的向量。
- (2) 有一正立方體,其邊長爲 1,如果向量 a 的起點與終點都是此正立方體的頂點,且 a |=1,則共有多少個不相等的向量 a ? (A)3 (B) 6 (C)12 (D)24 (E)28 。 (86 學科)
- (3) 在坐標平面上,A(150,200)、B(146,203)、C(-4,3)、O(0,0),則下列敘述何者為真?
 - (A)四邊形 ABCO 是一個平行四邊形。
 - (B)四邊形 ABCO 是一個長方形。
 - (C)四邊形 ABCO 的兩對角線互相垂直。
 - (D)四邊形 ABCO 的對角線AC長度大於 251。
 - (E)四邊形 ABCO 的面積爲 1250。 (90 學科)
- (4) 在坐標平面上有四點O(0,0),A(-3,-5),B(6,0),C(x,y)。今有一質點在O點沿 \overline{AO} 方向前進 \overline{AO} 距離後停在P,再沿 \overline{BP} 方向前進 $\overline{2BP}$ 距離後停在Q。假設此質點繼續沿 \overline{CQ} 方向前進 $\overline{3CQ}$ 距離後回到原點O,則(x,y)=____。
 (2009 學科能力測驗)
- (5) 如右圖所示,O為正方形ABCD對角線的交點,且E、F、G、H分別為線段OA,

OB, OC, OD的中點。試問下列何者爲真?

- $(A)\overline{AB} + \overline{BC} = \overline{AE} + \overline{EF} + \overline{FG} + \overline{GC} (B)\overline{AB} = 2\overline{EF}$
- (C) \overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{DB} (D) \overrightarrow{AB} + \overrightarrow{BF} + \overrightarrow{FE} = \overrightarrow{GC} (E) \overrightarrow{AE} · \overrightarrow{BF} =0 (86 社)

C

- (6) 若| \overrightarrow{b} |=2| \overrightarrow{a} | $\neq 0$, 且(\overrightarrow{a} + \overrightarrow{b}) \perp (\overrightarrow{a} - $\frac{2}{5}$ \overrightarrow{b}), 則 \overrightarrow{a} 與 \overrightarrow{b} 之夾角爲何?
- (7) 坐標平面上A(2,-1)、B(3,2),若 $\overrightarrow{OC} \perp \overrightarrow{OB}$,且 $\overrightarrow{BC} / / \overrightarrow{OA}$,則C之坐標爲何?
- (8) 設 \vec{u} 、 \vec{v} 為兩非零向量,以 $|\vec{u}|$ 表示 \vec{u} 之長度,若 $|\vec{u}|$ =2 $|\vec{v}|$ = $|2\vec{u}+3\vec{v}|$,且 θ 表示 \vec{u} 與 \vec{v} 的夾角,則 $\cos\theta$ =_____。 (2006 指定甲)
- (9) 若向量 \overline{a} 與 \overline{b} 夾角爲 60°,且 $|\overline{b}|$ =4,(\overline{a} +2 \overline{b}).(\overline{a} -3 \overline{b})=-72,則 $|\overline{a}|$ =?

- (10) 引擎馬力的計算公式是 $P = \frac{1}{75} (\vec{F} \cdot \vec{v})$,其中 \vec{F} 是引擎所帶動物體的重量,單位是kgw, \vec{v} 是引擎帶動物體的速度,單位是m/sec。 現在有一貨車拉動軌道上重 1000 公斤的貨車,而纜線與水平線的夾角是 30° ,貨車的速度是 15m/sec,求貨車引擎的馬力。
- (11) 設正五邊形ABCDE之每一邊長均為1,則(a)AB·AE=? (b)AB·AD=?
- (12) 設ABCD是平行四邊形, \overline{AB} =2, \overline{BC} =3,則 \overline{AC} · \overline{BD} =?
- (13) ΔABC 中,設 A(-2,1),B(1,2),C(-4,3), 試求ΔABC 的垂心 H。
- (14) 設 \overline{a} 、 \overline{b} 均非零向量,若 \overline{a} 在 \overline{b} 方向的投影量爲 \overline{b} 的 3 倍,而 \overline{b} 在 \overline{a} 方向的投影量爲 \overline{a} 的 \overline{b} 色,則 \overline{a} 與 \overline{b} 之夾角爲何?
- (15) 三向量 \overline{a} , \overline{b} , \overline{c} , 若 \overline{a} + \overline{b} + \overline{c} = $\overline{0}$, 且| \overline{a} |=2, | \overline{b} |=3, | \overline{c} |=4, 則
 (a) \overline{a} . \overline{b} + \overline{b} . \overline{c} + \overline{c} . \overline{a} =? (b)求 \overline{a} 與 \overline{b} 之夾角 θ , $\cos\theta$ =?
- (16) 圓外切等腰梯形 ABCD, AB = 2, CD = 6, AB // CD,
 則 AC · BD = _____。
- (17) 一單位圓之內接 $\triangle ABC$,圓 $\triangle O$,若 $4\overrightarrow{OA}+5\overrightarrow{OB}+6\overrightarrow{OC}=\overrightarrow{O}$, 則(a) $\overrightarrow{OA}\cdot\overrightarrow{OB}=?$ (b) $\overrightarrow{AB}=?$
- (18) 如圖所示,一公路依地形迂迴而建,從 A 地到 B 地, B 地到 C,C 地到 D 地,距離分別是 $4\sqrt{3}$ 、11、6 公里, 而 AB 與 BC,BC 與 CD 間,兩公路的夾角分別是 90°、120°,試求 A 地到 D 地的直線距離。

進階問題

- (19) 空間中有A,B,C,D四點。已知ĀB=1, BC =2, CD =3, ∠ABC=∠BCD=120°而ĀB 與CD之夾角爲 60°,則ĀD之長爲何? (86 自)
- (20) \triangle ABC 中, $\overrightarrow{a} = \overrightarrow{OA}$, $\overrightarrow{b} = \overrightarrow{OB}$, $\overrightarrow{c} = \overrightarrow{OC}$, $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, $\overrightarrow{a} \cdot \overrightarrow{b} = -1$, $\overrightarrow{b} \cdot \overrightarrow{c} = -2$, $\overrightarrow{c} \cdot \overrightarrow{a} = -3$,則:
 (a) $|2\overrightarrow{a} + 3\overrightarrow{b} + 4\overrightarrow{c}| = \underline{} \circ (b) \triangle ABC$ 之面積爲

- (21) 若| \overrightarrow{a} | $|\overrightarrow{b}| \neq 0$,且| \overrightarrow{a} + $|\overrightarrow{b}|$ | $|\overrightarrow{a}|$ $|\overrightarrow{b}| = \sqrt{2}|\overrightarrow{a}|$,求 $|\overrightarrow{a}|$,求 $|\overrightarrow{a}|$, $|\overrightarrow{b}|$ 之夾角。
- (22) 坐標平面上, $A \times B \times C$ 三點不共線,若 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$, $|\overrightarrow{OA}| = 1$, $|\overrightarrow{OB}| = 2$, $|\overrightarrow{OC}| = \sqrt{2}$,求(a) $|\overrightarrow{OA}| = 0$ 及 (b) $|\overrightarrow{OA}| = 0$ (b) $|\overrightarrow{OA}| = 0$ (c) $|\overrightarrow{OA}| + 2|\overrightarrow{OB}| = 0$?

綜合練習解答

- 10 (1)
- (2) (B)
- (A)(B)(E)(3)
- (4) (-4,20)
- (5) (全)
- (6) 60°
- (7) $(\frac{-7}{2}, \frac{21}{4})$
- (8) $\frac{-7}{8}$
- (9) 6 (10) $100\sqrt{3}$
- (11) (a) $\frac{1-\sqrt{5}}{4}$ (b) $\frac{1}{2}$
- 5[提示: $\overrightarrow{AC} \cdot \overrightarrow{BD} = (\overrightarrow{AB} + \overrightarrow{BC}) \cdot (\overrightarrow{BC} + \overrightarrow{CD}) = (\overrightarrow{BC} + \overrightarrow{AB}) \cdot (\overrightarrow{BC} \overrightarrow{AB})]$ (12)
- (13) $(\frac{-5}{2}, \frac{-3}{2})$
- (14) 45° [提示: \overrightarrow{a} 對 \overrightarrow{b} 方向的投影量爲 \overrightarrow{a} | $\cos\theta$,其中 θ 爲 \overrightarrow{a} 與 \overrightarrow{b} 之夾角]
- (15) $(a)^{\frac{-29}{2}}$ $(b)^{\frac{1}{4}}$
- (16) -4
- (17) $(a)\frac{-1}{8}$ $(b)\frac{3}{2}$ [提示: $|\overrightarrow{OA}|=|\overrightarrow{OB}|=|\overrightarrow{OC}|=1$]
- (18) 7√7公里 [提示: AD=AB+BC+CD]
- (19) 5 [提示: $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$,再利用 $|\overrightarrow{AD}|^2 = |\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}|^2$ 求 $|\overrightarrow{AD}|$]
- (20) $(a)\sqrt{15}(b)\frac{3\sqrt{11}}{2}$

[提示: (a) $\overrightarrow{a} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = |\overrightarrow{a}|^2 + \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c} = 0 \Rightarrow |\overrightarrow{a}| = 2$ 同理可以求得 $|\overrightarrow{b}|$ $|=\sqrt{3}$, $|\overrightarrow{c}|=\sqrt{5}$,

再求 $|2\overrightarrow{a}+3\overrightarrow{b}+4\overrightarrow{c}|^2$ 的値。(b)ΔABC=ΔOAB+ΔOBC+ΔOCA]

- (21) $\frac{\pi}{6}$ [提示:可令 $\frac{1}{a}$, $\frac{1}{b}$ 之夾角 θ ,因爲 $\frac{1}{a}$ = $\frac{1}{b}$,所以 $\frac{1}{a}$ + $\frac{1}{b}$ =2| $\frac{1}{a}$ | $\cos\frac{\theta}{2}$. $|\overline{a} - \overline{b}| = |\overline{a}| \sin \frac{\theta}{2}$
- (22) $(a)\frac{\sqrt{7}}{4}$ $(b)\frac{3\sqrt{7}}{4}$ $(c)\sqrt{22}$