Altimeter Data Fitting & Apogee Prediction

Tom Mattison
UBC Rocket Lunch
18 February 2018

No-Drag Case

If there were no drag, altitude would be parabolic with time

$$y(t) = vt - \frac{1}{2}gt^2$$

This is maximum at $t_{\text{max}} = v/g$, where the value is $y_{\text{max}} = v^2/2g$

We can then write
$$y(t - t_{\text{max}}) = y_{\text{max}} - \frac{1}{2}g \cdot (t - t_{\text{max}})^2$$

Add Drag

Drag adds to gravity a force proportional to velocity squared

$$F = -gm - cmv^2$$

The factor of *m* in the drag term is just for convenience.

Then the equation of motion is $F = ma \rightarrow -gm - cmv^2 = m\frac{dv}{dt}$

Doing the usual tricks we get $-dt = \frac{dv}{g + cv^2}$

Integrating both sides gives $t = -\frac{\tan^{-1}(\sqrt{c/g} \cdot v)}{\sqrt{cg}} + C$

Add Drag 2

Inverting this gives
$$v(t) = -\sqrt{\frac{g}{c}} \tan(\sqrt{cg} \cdot (t - C))$$

At apogee, we will have v = 0, which requires the argument of the tangent function to be zero, or t = C, so $C = t_{\text{max}}$.

$$v(t - t_{\text{max}}) = -\sqrt{\frac{g}{c}} \tan(\sqrt{cg} \cdot (t - t_{\text{max}}))$$

To get altitude vs time, we integrate the velocity.

$$y(t - t_{\text{max}}) = \frac{1}{c} \ln \left(\cos \left(\sqrt{cg} \cdot (t - t_{\text{max}}) \right) \right) + C$$

Add Drag 3

At $t = t_{\text{max}}$, the cosine is 1 so the log is zero, so we just have C, which must be y_{max} . So we have

$$y(t - t_{\text{max}}) = y_{\text{max}} + \frac{1}{c} \ln \left(\cos \left(\sqrt{cg} \cdot (t - t_{\text{max}}) \right) \right)$$

If we define $t_{\text{drag}} = 1/\sqrt{cg}$ we can write this as

$$y(t - t_{\text{max}}) = y_{\text{max}} + g \cdot t_{\text{drag}}^2 \ln \left(\cos \frac{t - t_{\text{max}}}{t_{\text{drag}}} \right)$$

This is the functional form for altitude vs time with drag proportional to velocity (reasonable if sub-sonic)

Meanings of Parameters

The meanings of t_{max} and y_{max} are pretty obvious: they are the time and altitude of the apogee.

The g parameter is the acceleration of gravity.

The t_{drag} parameter is the time scale away from the apogee where the velocity is high enough for drag to be important.

Expansion Around Apogee

The Taylor expansion of cos(x) around x = 0 is $1 - \frac{1}{2}x^2 + ...$

The Taylor expansion of ln(1+x) around x = 0 is x + ...

So the expansion of $\ln(\cos(x))$ is $-x^2/2 + ...$

Then the expansion of
$$\ln \left(\cos \frac{t - t_{\text{max}}}{t_{\text{drag}}} \right)$$
 is $-\frac{1}{2} \left(\frac{t - t_{\text{max}}}{t_{\text{drag}}} \right)^2$

That gives
$$y(t - t_{\text{max}}) = y_{\text{max}} - \frac{1}{2}g \cdot \left(\frac{t - t_{\text{max}}}{t_{\text{drag}}}\right)$$
 as expected.

Competition Data

The "Quantum 1" and "Quantum 2" altimeter files, in feet. "Quantum 2" is shifted by 0.4 seconds to match ejection time.

Log-Cos Fit to Quantum 2 (t > 5)

Residuals

Residuals for Fit of t > 15

Parameter Values

t > 15 fit

Final set of	of parameters	Asymptotic Sta	ndard Error
=========	=========	==========	========
amax	= 10050.1	+/- 0.4612	(0.004589%)
tmax	= 26.1366	+/- 0.0115	(0.04399%)
decel	= 27.9232	+/- 0.1033	(0.3699%)
tdrag	= 21.2891	+/- 0.4431	(2.081%)

t > 5 fit

Final set of parameters		Asymptotic Standard Error	
==========		==========	
amax	= 10043.7	+/- 1.014	(0.01009%)
tmax	= 25.9002	+/- 0.01196	(0.04619%)
decel	= 29.776	+/- 0.05792	(0.1945%)
tdrag	= 25.9245	+/- 0.0886	(0.3418%)

Excel Analysis of Velocity & Acceleration

Fit a parabola to ± -0.5 seconds around each point. Acceleration from t^2 term, velocity from t term

Altitude Dependence of Drag?

Acceleration after burnout should be $-(g + c\rho v^2)$ Plot accel vs v^2 and against $e^{-y/\lambda} \cdot v^2$

Data too noisy for any conclusion

Kalman Filter

Progressive fit to data stream for continuous apogeeprediction, usable for apogee-feedback.

Code written (Python), seems be working.

Start with Final Parameters

Start with 1.1 Times Apogee

Start with g = 32.2 and 1.1 Times Apogee

