Sinais e Sistemas - Trabalho 5 - Avaliação 9

Grupo 2

Leonardo Soares da Costa Tanaka Matheus Henrique Sant Anna Cardoso Theo Rudra Macedo e Silva 1.) Um SLIT relaxado é descrito pela equação a diferenças $y_{k+2} + \alpha y_k = \beta u_{k+1} + \gamma u_k$.

Os dados (α, β, γ) são: G2: (-1/4, 1, 2);

Utilizando as constantes do grupo, a equação torna-se: $y_{k+2} - \frac{1}{4}y_k = u_{k+1} + 2u_k$

- (a) Encontrar a função de transferência G(z);
- (b) encontrar polos e zeros e verificar a estabilidade;
- (c) encontrar as equações dinâmicas;
- (d) calcular, iterativamente, os 10 primeiros valores y_k para entrada em degrau unitário;
- (e) usando transformada em Z, encontrar uma expressão analítica para a y_k ;
- (f) comparar os resultados iterativo e analítico.

G2: 2.) Eis um "Problema de Algibeira": um vendedor de queijos efetua apenas transações do tipo vende metade de seu estoque mais meia peça. Pede-se o número inicial de peças, x_0 se após a $6^{\underline{a}}$ venda seus queijos acabam. Interpretar a filosofia de vendas por meio de uma equação a diferenças e calcular x_k , o saldo de estoque após a k-ésima venda. Dar a resposta ao problema de algibeira.

3.) Para a EDLIT $\tau \dot{y}(t) + y(t) = \beta u(t)$ com $y(0^-) = y_0$:

G2:
$$\tau = 2, \beta = 2$$
 e $y_0 = 1$.

Utilizando as constantes do grupo, a equação torna-se: $2\dot{y}(t) + y(t) = 2u(t)$ com $y(0^{-}) = 1$

- (a) Calcular a resposta à rampa unitária por Laplace, e traçar com precisão o seu gráfico para $t \in [0, 5\tau]$;
- (b) por Euler I, encontrar a equação que relaciona $y_k \leftrightarrow y(kT)$ e $u_k \leftrightarrow u(kT)$;
- (c) resolvê-la por transformada Z para entrada em rampa;
- (d) listar as sequências obtidas para $T = \tau$, $T = \tau/2$, $T = \tau/4$ e $T = \tau/8$;
- (e) plotar os valores de y(kT) no mesmo gráfico do ítem (a) e comparar as aproximações numéricas;
- (f) repetir (b), (c), (d) e (e) para Newton.
- 4.) Para a EDLIT $\ddot{y}(t) + 2\zeta\omega_n\dot{y}(t) = \alpha\dot{u}(t) + \beta u(t)$ com CIs nulas:

Os dados $(\zeta, \omega_n, \beta, \alpha)$ são G2: (1/3, 2, 3, -1).

Utilizando os dados do grupo, temos: $\ddot{y}(t) + \frac{4}{3}\dot{y}(t) = -\dot{u}(t) + 3u(t)$

- (a) para u(t) = 1, encontre, por Laplace, a solução e plote-a com precisão para $t \in [0, 8/(\zeta \omega_n)]$;
- (b) por meio de variáveis x_1 e x_2 apropriadas, expressá-la como $\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$ e $\boldsymbol{y}(t) = C\boldsymbol{x}(t) + D\boldsymbol{u}(t)$;
- (c) por Euler I, relacione $\boldsymbol{x}_k \leftrightarrow \boldsymbol{x}(kT), y_k \leftrightarrow y(kT)$ e $u_k \leftrightarrow u(kT)$ (o procedimento para vetores é o mesmo e leva a $\boldsymbol{x}_k = A_d \boldsymbol{x}_{k-1} + B_d \boldsymbol{u}_k$ e $\dot{\boldsymbol{y}}_k = C_d \boldsymbol{x}_k + D_d \boldsymbol{u}_k$) e obtenha y_k ;
- (d) plota as sequências obtidas para $T=T_0=1/(\zeta\omega_n),\,T=T_0/2,\,T=T_0/4$ e $T=T_0/8$ no gráfico de (a) e compare as aproximações numéricas.
- 5.) Seja EDVT $\dot{y}(t) + \alpha(t)y(t) = u(t)$ com u(t) = 1(t). Quando um sinal contínuo p tende a uma constante para

valores altos de t ($\lim p(t) = p_r =$ cte. para $t \to \infty$) esta é chamada de valor de regime do sinal.

- (a) sem resolver a equação calcular o valor de regime y_r , supondo que y(t) tende a ele;
- (b) por Euler I, relacione as sequências $u_k \leftrightarrow u(kT)$ e $y_k \leftrightarrow y(kT)$;
- (c) resolva, manualmente ou por meio de um script em alguma linguagem, para T=1, T=1/2, T=1/4 e T=1/10; a solução y(t) deve ser aproximada para $t \in [0, 10]$;
- (d) repetir (b) e (c) para Euler II.

Os dados a(t)a e $y(0^-)$ são: **G2:** $(t^2-1)/(t^2+1)$ e -1.