Числовые ряды

1. Ряды с неотрицательными членами

Теорема (признак Даламбера). Пусть $a_n > 0$. Тогда

- 1) если $\frac{a_{n+1}}{a_n}\leqslant d<1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ сходится;
- 2) если $\frac{a_{n+1}}{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Даламбера в предельной форме).

Пусть $a_n > 0$ и $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = d$. Тогда

- 1) если d < 1, то $\sum_{n=1}^{\infty} a_n$ сходится;
- 2) если d>1, то $\sum_{n=1}^{\infty}a_{n}$ расходится;
- 3) если d=1, то $\sum_{n=1}^{\infty}a_{n}$ может как сходиться, так и расходиться.

Примеры:

ы:
$$\sum_{n=1}^{\infty} \frac{1}{(\ln n)^n}$$
, $\sum_{n=1}^{\infty} \frac{x^n}{n!}$, $\sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!(2n+1)}$.

Теорема (признак Раабе). Пусть $a_n > 0$.

1) Если
$$\left(1-\frac{a_{n+1}}{a_n}\right)n\geqslant r>1$$
 при $n\geqslant n_0,$ то $\sum_{n=1}^{\infty}a_n$ – сходится;

2) если
$$\left(1-\frac{a_{n+1}}{a_n}\right)n\leqslant 1$$
 при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ – расходится.

Теорема (признак Раабе в предельной форме). Пусть $a_n>0$ и пусть

$$\lim_{n \to \infty} \left(1 - \frac{a_{n+1}}{a_n} \right) \cdot n = r.$$

- 1) Если r > 1, то $\sum_{n=1}^{\infty} a_n$ сходится;
- 2) если r < 1, то $\sum_{n=1}^{\infty} a_n$ расходится;
- 3) если r=1, то $\sum_{n=1}^{\infty}a_n$ может как сходиться, так и расходиться.

Теорема (признак Коши–Маклорена (интегральный признак)). Пусть $a_n\geqslant 0$. Пусть на $[1,+\infty)$ определена функция f(x) такая, что

- a) $f(x) \geqslant 0$;
- b) f(x) невозрастающая;
- c) $f(n) = a_n;$
- d) интегрируема на [1, A] при любом A > 1.

Тогда, если

1) если
$$\exists \lim_{A \to +\infty} \int_1^A f(x) dx$$
, то $\sum_{n=1}^\infty a_n$ – сходится;

2) если
$$\lim_{A \to +\infty} \int_1^A f(x) \, dx = +\infty$$
, то $\sum_{n=1}^\infty a_n$ – расходится.

Пример:
$$\sum_{n=1}^{\infty} \frac{1}{n \ln(n+1)}.$$

Следствие (оценка остатка ряда). В условиях признака Коши-Маклорена

$$F(+\infty) - F(n+1) \leqslant r_n \leqslant F(+\infty) - F(n).$$

где
$$F(x) = \int_1^x f(t) dt$$
.

2. Знакопеременные ряды

Определение. Ряд $\sum_{n=1}^{\infty} a_n$ называется *абсолютно сходящимся*, если сходится ряд

$$\sum_{n=1}^{\infty} |a_n|.$$

Если $\sum_{n=1}^{\infty} |a_n|$ сходится, то $\sum_{n=1}^{\infty} a_n$ сходится.

Определение. Ряд $\sum_{n=1}^{\infty} a_n$ называется *условно сходящимся*, если ряд $\sum_{n=1}^{\infty} a_n$

сходится, а $\sum_{n=0}^{\infty} |a_n|$ расходится.

Теорема (признак Лейбница). Пусть $c_n\geqslant 0$ и $c_n\to 0$ монотонно. Тогда $\sum_{n=0}^{\infty} (-1)^{n-1} c_n$ сходится.

Следствие (оценка остатка ряда). В условиях признака Лейбница

$$|r_n| < c_{n+1}.$$