Problem Set 9

Warren Kim

April 3, 2023

Question 2

Complete the following truth table:

P	Q	$\neg Q$	$P \wedge Q$	$P \lor Q$	$P \implies Q$	$P \iff Q$

Response

P	Q	$\neg Q$	$P \wedge Q$	$P \vee Q$	$P \implies Q$	$P \iff Q$
T	T	F	T	T	T	T
T	F	T	F	T	F	F
F	T	F	F	T	T	F
F	F	T	F	F	T	T

Question 3 part (e)

Given any two statements P and Q, and using C to denote a contradiction (i.e., a statement that is always false), prove that the following statements are tautologies (i.e., they are always true):

(e)
$$((P \land \neg Q) \implies C) \implies (P \implies Q)$$

Response

Proof.

P	Q	C	$P \land \neg Q$	$(P \land \neg Q) \implies C$	$P \implies Q$	$((P \land \neg Q) \implies C) \implies (P \implies Q)$
\overline{T}	T	F	F	T	T	T
T	F	F	T	F	F	T
F	T	F	F	T	T	T
F	F	F	F	T	T	T

Since the statement is true for all cases of P, Q, and C, it is a tautology.

Question 8

Convert the following statements into plain English:

$$\forall x \in \mathbb{Z} \ \exists y \in \mathbb{Z} : x + y = 0$$

$$\exists y \in \mathbb{Z} \ \forall x \in \mathbb{Z} : x + y = 0$$

Decide on the truth values of each statement and then provide a proof.

Response

$$\forall x \in \mathbb{Z} \ \exists y \in \mathbb{Z} : x + y = 0$$

"For every integer x, there exists an integer y such that x + y = 0".

Proof. This statement is true. Let $x \in \mathbb{Z}$. Since \mathbb{Z} is a field, there exists an additive inverse $-x \in \mathbb{Z}$. So, we have

$$\begin{aligned} x+y&=0\\ x+y&=x+-x\\ y&=-x \end{aligned} \qquad \text{existence of an additive inverse}$$

Substituting -x for y, we get x + y = x + -x = 0.

$$\exists y \in \mathbb{Z} \ \forall x \in \mathbb{Z} : x + y = 0$$

"There exists an integer y such that x + y = 0 for every integer x".

Proof. We will prove that this statement is false by counter-example. We want to prove that there exists at least one $x \in \mathbb{Z}$ such that $x+y \neq 0$. Let x=2 and y=-1. Then, $x+y=2+-1=1 \neq 0$. Therefore, the statement is false.

Question 10

- (a) Suppose $p \in \mathbb{N}$. Show that if p^2 is divisible by 5 then p is also divisible by 5.
- (b) Prove $\sqrt{5}$ is irrational.
- (c) Suppose you try the same argument to prove $\sqrt{4}$ is irrational. The proof must fail, but where exactly does it fail?

Response

(a) Proof. To prove the statement, it is equivalent to prove its contrapositive: If p is not divisible by 5, p^2 is not divisible by 5. Note that p can be rewritten as p = 5s + r, where $s, r \in \mathbb{N}$. By definition, $r \neq 0$ since $r \in \mathbb{N}$ and $0 \notin \mathbb{N}$. So, p is not divisible by 5. To prove p^2 is not divisible by 5,

$$p^{2} = (5s + r)^{2}$$

$$= 25s^{2} + 10sr + r^{2}$$

$$p^{2} = 5(5s^{2} + 2sr) + r(r)$$

Since $r \neq 0$, p^2 is not divisible by 5.

- (b) *Proof.* Assume by contradiction that $\sqrt{5}$ is rational. By the Rational Zeros Theorem, we can rewrite $\sqrt{5}$ as $x^2 5 = 0$, where $x \in \mathbb{Q}$. The only possible solutions are $\pm 1, \pm 5$, neither of which are solutions, which is a contradiction.
- (c) The proof fails when calculating $x^2 4 = 0$. $\pm 1, \pm 2, \pm 4$ are possible solutions, where $x = \pm 2$ is a valid solution and is written as (x + 2)(x 2) = 0.