

Training, Tuning, and Serving on Vertex Al

Containerized Training

Level 0 → Level 1

Level 0: All in the notebook

Level 1: Containerized Training Cloud Serving

Level 2: ML Pipelines

Agenda

System and Concepts Overview

Create a Reproducible Dataset

Implement a Tunable Model

Build and Push a Training Container

Train and Tune a Model

Serve and Query a Model

ML model building process

Create the dataset

Build the model

Operationalize the model

Building and operationalizing the model

MLOps building blocks on Google Cloud in this module

Where we are going next

Agenda

System and Concepts Overview

Create a Reproducible Dataset

Implement a Tunable Model

Build and Push a Training Container

Train and Tune a Model

Serve and Query a Model

System overview

Field name	Туре		
Elevation	INTEGER		
Aspect	INTEGER		
Slope	INTEGER		
Horizontal_Distance_To_Hydrology	INTEGER		
Vertical_Distance_To_Hydrology	INTEGER		
Horizontal_Distance_To_Roadways	INTEGER		
Hillshade_Noon	INTEGER		
Hillshade_3pm	INTEGER		
Horizontal_Distance_To_Fire_Points	INTEGER		
Wilderness_Area	STRING		
Soil_Type	STRING		
Cover_Type	INTEGER		

Machine Learning Repository

Center for Machine Learning and Intelligent System

Covertype Data Set

Download: Data Folder, Data Set Description

Abstract: Forest CoverType dataset

Data Set Characteristics:	Multivariate	Number of Instances:	581012	Area:	Life
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	54	Date Donated	
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	289499

https://archive.ics.uci.edu/ml/datasets/covertype

Features

Target

Elevation	Aspect	Slope	Horizontal_Distance_To_Hydrology	Vertical_Distance_To_Hydrology	Horizontal_Distance_To_Roadways	Hillshade_9am	Hillshade_Noon	Hillshade_3pm	Horizontal_Distance_To_Fire_Points	Wilderness_Area	Soil_Type	Cover_Type
2067	0	21	270	9	755	184	196	145	900	Cache	C2702	5
2574	0	2	319	20	1419	216	235	156	1595	Commanche	C2703	4
2559	0	0	510	16	1113	218	238	156	1332	Commanche	C2703	2
2647	0	6	402	94	641	212	229	155	1104	Commanche	C2703	2
2651	0	3	335	103	488	215	233	156	1381	Commanche	C2703	2
2647	0	6	417	94	648	212	229	155	1082	Commanche	C2703	2
2639	0	10	366	80	589	206	222	154	1041	Commanche	C2703	2
2590	0	2	201	13	1200	216	235	156	1719	Commanche	C2703	1
2447	0	4	0	0	631	213	232	156	711	Commanche	C2705	5
2501	0	6	228	31	1012	211	228	155	930	Commanche	C2705	1
2500	0	4	30	3	1746	213	232	156	886	Commanche	C2705	5
2641	0	1	90	15	1518	217	236	156	182	Commanche	C2705	2

Split the dataset and experiment with models

Getting a random 80% of your dataset for training is easy

```
#standardSQL
SELECT
  date,
  airline,
  departure_airport,
  departure_schedule,
  arrival_airport,
  arrival_delay
FROM
  `bigquery-samples.airline_ontime_data.flights`
WHERE
  RAND() < 0.8
```

RAND will return a number between 0 and 1.

However, experimentation requires repeatability

You need to know which specific data was involved in training, validation, and testing.

Naive random splitting is not repeatable

The order of rows in BigQuery is not certain without ORDER BY.

Identifying and splitting the remaining 20% of data for validation and testing is difficult.

RAND() will return different results each time →


```
#standardSQL
SELECT
  date,
  airline,
  departure_airport,
  departure_schedule,
  arrival_airport,
  arrival_delay
FROM
  bigquery-samples.airline ontime data.flights`
WHERE
  MOD(ABS(FARM_FINGERPRINT(date)), 10) < 8
```

```
Note: Even though we
#standardSQL
SELECT
                              select date, our model
  date
                              wouldn't actually use it
  airline,
                              during training.
  departure_airport,
  departure_schedule,
  arrival_airport,
  arrival delay
FROM
 `bigquery-samples.airline_ontime_data.flights`
WHERE
  MOD(ABS(FARM FINGERPRINT(date)),10) < 8</pre>
```

Hash value on the date will always return the same value.

Then we use a modulo operator to pull only 80% of that data based on the last few hash digits.

```
Note: Even though we
#standardSQL
SELECT
                             select date, our model
  date
                             wouldn't actually use it
  airline,
                             during training.
  departure_airport,
  departure_schedule,
  arrival airport,
  arrival delay
FROM
 `bigquery-samples.airline ontime data.flights`
WHERE
  MOD(ABS(FARM FINGERPRINT(date)),10) == 8
                                                         Validation
```

```
Note: Even though we
#standardSQL
SELECT
                             select date, our model
  date,
                             wouldn't actually use it
  airline,
                             during training.
  departure_airport,
  departure_schedule,
  arrival airport,
  arrival delay
FROM
 `bigquery-samples.airline ontime data.flights`
WHERE
  MOD(ABS(FARM FINGERPRINT(date)),10) == 9
                                                         Testing
```

```
Note: Even though we
#standardSQL
SELECT
                             select date, our model
  date, ◀
                             wouldn't actually use it
  airline,
                             during training.
  departure_airport,
  departure_schedule,
  arrival airport,
  arrival delay
FROM
 `bigquery-samples.airline ontime data.flights`
WHERE
  MOD(ABS(FARM_FINGERPRINT(date)),10) == 9
```

1. Not correlated to label (otherwise, you'll leave valuable information out of the training set)

1. Not correlated to label (otherwise, you'll leave valuable information out of the training set)

2. Granular enough for your desired module split

Possible solution: Concatenate all the fields as a JSON string, and hash on that.

TO_JSON_STRING(cover)

```
bq query \ ←-----
                                        Create the training table in BigQuery.
 -n 0 \
 --destination_table covertype_dataset.training \
 --replace \
  --use_legacy_sql=false \
   'SELECT * \
    FROM `covertype_dataset.covertype` AS cover \
    WHERE \
    MOD(ABS(FARM_FINGERPRINT(TO_JSON_STRING(cover))), 10) IN (1, 2, 3, 4)'
                                       Export it to Cloud Storage as a CSV file.
--destination_format CSV \
 covertype_dataset.training \
 $TRAINING_FILE_PATH
```

```
bq query \ ←-----
                                          Create the training table in BigQuery.
  -n 0 \
  --destination_table covertype_dataset.training \
  --replace \
  --use_legacy_sql=false \
    'SELECT * \
    FROM `covertype_dataset.covertype` AS cover \
    WHERE \
    MOD(ABS(FARM_FINGERPRINT(TO_JSON_STRING(cover))), 10) IN (1, 2, 3, 4)'
                                         Export it to Cloud Storage as a CSV file.
bq extract \ ◄-----
  --destination_format CSV \
  covertype_dataset.training \
 $TRAINING_FILE_PATH
```

Do the same for the validation split

```
bq query \
  -n 0 \
  --destination_table covertype_dataset.validation \
  --replace \
  --use_legacy_sql=false \
    'SELECT * \
     FROM `covertype_dataset.covertype` AS cover \
    WHERE \
     MOD(ABS(FARM_FINGERPRINT(TO_JSON_STRING(cover))), 10) IN (8)'
bq extract \
  --destination_format CSV \
  covertype_dataset.validation \
 $VALIDATION_FILE_PATH
```

Do the same for the validation split

```
bq query \
  -n 0 \
  --destination_table covertype_dataset.validation \
  --replace \
  --use_legacy_sql=false \
    'SELECT * \
     FROM `covertype_dataset.covertype` AS cover \
    WHERE \
     MOD(ABS(FARM_FINGERPRINT(TO_JSON_STRING(cover))), 10) IN (8)'
bq extract \
  --destination_format CSV \
  covertype_dataset.validation \
 $VALIDATION_FILE_PATH
```

Agenda

System and Concepts Overview

Create a Reproducible Dataset

Implement a Tunable Model

Build and Push a Training Container

Train and Tune a Model

Serve and Query a Model

System overview

System overview

ML models are functions with parameters and hyperparameters


```
preprocessor = ColumnTransformer(
   transformers=[
        ('num', StandardScaler(), numeric_feature_indexes),
        ('cat', OneHotEncoder(), categorical_feature_indexes)
pipeline = Pipeline([
    ('preprocessor', preprocessor),
    ('classifier', SGDClassifier(loss='log', tol=1e-3))
])
pipeline.set_params(classifier__alpha=0.001, classifier__max_iter=200)
pipeline.fit(X train, y train)
accuracy = pipeline.score(X_validation, y_validation)
```

```
train.py
preprocessor = ColumnTransformer(
    transformers=[
        ('num', StandardScaler(), numeric_feature_indexes),
        ('cat', OneHotEncoder(), categorical_feature_indexes)
pipeline = Pipeline([
    ('preprocessor', preprocessor),
    ('classifier', SGDClassifier(loss='log', tol=1e-3))
])
pipeline.set_params(classifier__alpha=0.001, classifier__max_iter=200)
pipeline.fit(X train, y train)
accuracy = pipeline.score(X_validation, y_validation)
```

```
train.py
preprocessor = ColumnTransformer(
   transformers=[
        ('num', StandardScaler(), numeric_feature_indexes),
        ('cat', OneHotEncoder(), categorical_feature_indexes)
pipeline = Pipeline([
    ('preprocessor', preprocessor),
    ('classifier', SGDClassifier(loss='log', tol=1e-3))
pipeline.set_params(classifier__alpha=0.001, classifier__max_iter=200)
pipeline.fit(X train, y train)
accuracy = pipeline.score(X_validation, y_validation)
```

```
train.py
preprocessor = ColumnTransformer(
   transformers=[
        ('num', StandardScaler(), numeric_feature_indexes),
        ('cat', OneHotEncoder(), categorical_feature_indexes)
pipeline = Pipeline([
    ('preprocessor', preprocessor),
    ('classifier', SGDClassifier(loss='log', tol=1e-3))
])
pipeline.set_params(classifier__alpha=0.001, classifier__max_iter=200)
pipeline.fit(X train, y train)
accuracy = pipeline.score(X_validation, y_validation)
```

```
train.py
pipeline = Pipeline([
    ('preprocessor', preprocessor),
    ('classifier', SGDClassifier(loss='log', tol=1e-3))
pipeline.set_params(classifier_alpha=0.001, classifier_max_iter=200)
pipeline.fit(X_train, y_train)
accuracy = pipeline.score(X_validation, y_validation)
```

```
train.py
pipeline = Pipeline([
    ('preprocessor', preprocessor),
    ('classifier', SGDClassifier(loss='log', tol=1e-3))
pipeline.fit(X_train, y_train)
accuracy = pipeline.score(X_validation, y_validation)
```

```
train.py
pipeline = Pipeline([
    ('preprocessor', preprocessor),
    ('classifier', SGDClassifier(loss='log', tol=1e-3))
accuracy = pipeline.score(X_validation, y_validation)
```

```
train.py
preprocessor = ColumnTransformer(
    transformers=[
        ('num', StandardScaler(), numeric_feature_indexes),
        ('cat', OneHotEncoder(), categorical_feature_indexes)
pipeline = Pipeline([
    ('preprocessor', preprocessor),
    ('classifier', SGDClassifier(loss='log', tol=1e-3))
])
pipeline.set_params(classifier__alpha=0.001, classifier_max_iter=200)
pipeline.fit(X_train, y_train)
accuracy = pipeline.score(X_validation, y_validation)
```

```
preprocessor = ColumnTransformer(
   transformers=[
        ('num', StandardScaler(), numeric_feature_indexes),
        ('cat', OneHotEncoder(), categorical_feature_indexes)
pipeline = Pipeline([
    ('preprocessor', preprocessor),
    ('classifier', SGDClassifier(loss='log', tol=1e-3))
pipeline.set_params(classifier__alpha=0.001, classifier_max_iter=200)
pipeline.fit(X_train, y train)
accuracy = pipeline.score(X_validation, y_validation)
```

- 1. Make the hyperparameter a command-line argument.
- 2. Set up cloudml-hypertune to record training metrics.
- 3. Export the final trained model.
- 4. Supply hyperparameters to the training job.

- 1. Make the hyperparameter a command-line argument.
- 2. Set up cloudml-hypertune to record training metrics.
- 3. Export the final trained model.
- 4. Supply hyperparameters to the training job.

- 1. Make the hyperparameter a command-line argument.
- 2. Set up cloudml-hypertune to record training metrics.
- 3. Export the final trained model.
- 4. Supply hyperparameters to the training job.

- 1. Make the hyperparameter a command-line argument.
- 2. Set up cloudml-hypertune to record training metrics.
- 3. Export the final trained model.
- 4. Supply hyperparameters to the training job.

1. Make the hyperparameter a command-line argument

```
import fire
def train_evaluate(job_dir,
                  training_dataset_path,
                  validation_dataset_path,
                  alpha, max_iter, hptune):
                                python train.py \
   # [...]
                                  --job_dir $JOBDIR \
                                  --training_dataset_path $TRAINING_PATH \
if ___name__ == "__main__":
                                   --validation dataset path $VALID PATH \
   fire.Fire(train_evaluate)
                                  --alpha \
                                  --max_iter \
                                   --hptune
```

2. Set up cloudml-hypertune to record training metrics

train.py

```
import hypertune
def train_evaluate(job_dir,
                   training_dataset_path,
                   validation_dataset_path,
                   alpha, max_iter, hptune):
    # [...]
    if hptune:
        accuracy = pipeline.score(X_validation, y_validation)
        hpt = hypertune.HyperTune()
        hpt.report_hyperparameter_tuning_metric(
          hyperparameter_metric_tag='accuracy',
          metric_value=accuracy
if __name__ == "__main__":
   fire.Fire(train evaluate)
```

Import cloudml-hypertune.

2. Set up cloudml-hypertune to record training metrics

train.py

```
import hypertune
def train_evaluate(job_dir,
                   training_dataset_path,
                   validation_dataset_path,
                   alpha, max_iter, hptune):
    # [...]
    if hptune:
        accuracy = pipeline.score(X_validation, y_validation)
        hpt = hypertune.HyperTune()
        hpt.report_hyperparameter_tuning_metric(
          hyperparameter_metric_tag='accuracy',
          metric_value=accuracy
if __name__ == "__main__":
   fire.Fire(train evaluate)
```

Capture the metrics.

3. Export the final trained model

```
import pickle
def train_evaluate(job_dir,
                   training_dataset_path,
                   validation_dataset_path,
                   alpha, max iter, hptune):
    # [...]
    if not hptune:
        model filename = 'model.pkl'
        with open(model_filename, 'wb') as model_file:
            pickle.dump(pipeline, model file)
        gcs_model_path = "{}/{}".format(job_dir, model_filename)
        subprocess.check_call(['gsutil', 'cp', model_filename, gcs_model_path],
        stderr=sys.stdout)
if __name__ == "__main__":
    fire.Fire(train_evaluate)
```

3. Export the final retrain model when not tuning

```
import pickle
def train_evaluate(job_dir,
                   training_dataset_path,
                   validation_dataset_path,
                   alpha, max iter, hptune):
    # [...]
    if not hptune:
        model filename = 'model.pkl'
        with open(model_filename, 'wb') as model_file:
            pickle.dump(pipeline, model_file)
        gcs_model_path = "{}/{}".format(job_dir, model_filename)
        subprocess.check_call(['gsutil', 'cp', model_filename, gcs_model_path],
        stderr=sys.stdout)
if __name__ == "__main__":
    fire.Fire(train_evaluate)
```

3. Export the final retrain model when not tuning

```
import pickle
def train_evaluate(job_dir,
                   training_dataset_path,
                   validation_dataset_path,
                   alpha, max iter, hptune):
    # [...]
    if not hptune:
        model filename = 'model.pkl'
        with open(model_filename, 'wb') as model_file:
            pickle.dump(pipeline, model_file)
        gcs_model_path = "{}/{}".format(job_dir, model_filename)
        subprocess.check_call(['gsutil', 'cp', model_filename, gcs_model_path],
        stderr=sys.stdout)
if __name__ == "__main__":
    fire.Fire(train_evaluate)
```

3. Export the final retrain model when not tuning

```
import pickle
def train_evaluate(job_dir,
                   training_dataset_path,
                   validation dataset path,
                   alpha, max iter, hptune):
    # [...]
    if not hptune:
        model filename = 'model.pkl'
        with open(model_filename, 'wb') as model_file:
            pickle.dump(pipeline, model_file)
        gcs_model_path = "{}/{}".format(job_dir, model_filename)
        subprocess.check_call(['gsutil', 'cp', model_filename, gcs_model_path],
        stderr=sys.stdout)
if __name__ == "__main__":
    fire.Fire(train_evaluate)
```

4. Supply hyperparameters to the training job

config.yaml

```
studySpec:
 metrics:
  - metricId: accuracy
    goal: MAXIMIZE
  parameters:
  - parameterId: max_iter
    discreteValueSpec:
      values:
      - 10
      - 20
  - parameterId: alpha
    doubleValueSpec:
      minValue: 1.0e-4
      maxValue: 1.0e-1
    scaleType: UNIT_LINEAR_SCALE
  algorithm: ALGORITHM_UNSPECIFIED # results in Bayesian optimization
```

4. Supply hyperparameters to the training job

config.yaml

Agenda

System and Concepts Overview

Create a Reproducible Dataset

Implement a Tunable Model

Build and Push a Training Container

Train and Tune a Model

Serve and Query a Model

System overview

Create the training Docker container

Dockerfile

```
FROM gcr.io/deeplearning-platform-release/base-cpu
RUN pip install -U fire cloudml-hypertune scikit-learn==0.20.4 pandas==0.24.2
WORKDIR /app
COPY train.py .
ENTRYPOINT ["python", "train.py"]
```

gcloud builds submit --tag gcr.io/\$PROJECT/\$IMAGE:\$TAG \$TRAINING_APP_FOLDER

Agenda

System and Concepts Overview

Create a Reproducible Dataset

Implement a Tunable Model

Build and Push a Training Container

Train and Tune a Model

Serve and Query a Model

Start the hyper tuning job on Vertex Al

```
gcloud ai hp-tuning-jobs create \
    --region=$REGION \
    --display-name=$JOB_NAME \
    --config=$CONFIG_YAML \
    --max-trial-count=5 \
    --parallel-trial-count=5
```


Best Model

Query Vertex Al Training for the best hyperparameters

```
from google.cloud import aiplatform
def get_trials(job_name):
    jobs = aiplatform.HyperparameterTuningJob.list()
   match = [job for job in jobs if job.display_name == JOB_NAME]
   tuning_job = match[0] if match else None
    return tuning job.trials if tuning job else None
def get best trial(trials):
   metrics = [trial.final_measurement.metrics[0].value for trial in trials]
    best_trial = trials[metrics.index(max(metrics))]
    return best trial
def retrieve_best_trial_from_job_name(jobname):
   trials = get_trials(jobname)
    best_trial = get_best_trial(trials)
    return best_trial
```

Retrain with the best hyperparameters and export

```
WORKER_POOL_SPEC = f"""\
machine-type={MACHINE_TYPE},\
replica-count={REPLICA_COUNT},\
container-image-uri={IMAGE_URI}\
"""

ARGS = f"""\
--job_dir={JOB_DIR},\
--training_dataset_path={TRAINING_FILE_PATH},\
--validation_dataset_path={VALIDATION_FILE_PATH},\
--alpha={alpha},\
--max_iter={max_iter},\
--nohptune\
"""
```

Agenda

System and Concepts Overview

Create a Reproducible Dataset

Implement a Tunable Model

Build and Push a Training Container

Train and Tune a Model

Serve and Query a Model

Vertex Al Prediction makes deploying models easy

Uload the trained model

```
from google.cloud import aiplatform

uploaded_model = aiplatform.Model.upload(
    display_name=MODEL_NAME,
    artifact_uri=JOB_DIR,
    serving_container_image_uri=SERVING_CONTAINER_IMAGE_URI,
)
```

Deploy the uploaded model

```
endpoint = uploaded_model.deploy(
    machine_type=SERVING_MACHINE_TYPE,
    accelerator_type=None,
    accelerator_count=None,
)
```

Query the model

```
instance = [2841.0, 45.0, 0.0, 644.0, 282.0, 1376.0, 218.0, 237.0,
156.0, 1003.0, "Commanche", "C4758"]
endpoint.predict([instance])
```

Lab

Training, Tuning, and Serving in Vertex Al

kubeflow pipelines/walkthrough/labs/ kfp walkthrough vertex.ipynb cloud.google.com