EE 374 FUNDAMENTALS OF POWER SYSTEMS AND ELECTRICAL EQUIPMENT 2022-2023 SPRING TERM PROJECT

1 INTRODUCTION

This document presents the project definition of the EE 374 Fundamentals of Power Systems and Electrical Equipment course. Here are the important points about the project:

- This is not a group project. Each student must submit his/her own work.
- The project contains two phases. You will be given some tasks in the "Project Work" section
 of this document. Your code should accomplish these tasks. In Phase 1, you are expected
 to implement a PYTHON function. In Phase 2, an improved PYTHON function must be
 created. You will submit the final version of PYTHON function and a report.
- If you have a question concerning the project, contact course assistants via e-mail first. Please add both of the assistants as email recipients.
- Late submissions will not be accepted.

Important Dates:

- Phase-1 due date: May 14, 2023 until 23:59
- Phase-2 due date: June 11, 2023 until 23:59

Course Assistants:

- Kemal Parlaktuna, kemalp@metu.edu.tr
- İlhan Can Avcu, avcucan@metu.edu.tr

2 PROJECT INFORMATION

Electricity is generated in bulk and transmitted to consumption areas via HV overhead lines. Therefore, the selection of transmission line and tower plays an important role in transmission system planning. Geometry of the conductor positions plays an important role in the calculation of electrical parameters of a transmission line. In practice, there are many types of transmission towers.

Figure 1: 735 kV transmission lines carried on V-guyed towers, 4-bundle (Quebec, Canada)

Figure 2: Double circuit 6-bundle 765 kV transmission line

Figure 3: 380 kV transmission tower in Turkey during construction

Figure 4: Zhoushan Island overhead line with the tallest power pylon in the world with 380 m. (500 kV 4-bundle)

As it can be seen in figures, spacers are used in order to prevent the contact of conductors in a bundle. Those spacers also have an important role in the calculation of electrical parameters of transmission lines. The number of conductors in a bundle and the distance between them may vary as it can be seen in Figure 5 and Figure 6.

Figure 5: Spacer for a 6-bundle transmission line.

Figure 6: Spacer for an 8-bundle transmission line, 1100 kV China

The distance between phases, circuits and bundles may vary. For example, in Figure 2 you can see a double circuit line, where the electrical parameters are strongly related to the distances between circuits.

There are many other specifications in transmission line and transmission tower design. However, the most important properties in terms of power system analysis are explained above. Some extra information is given below:

- The purpose of colorful spheres or cone shaped indicators in transmission lines are to inform helicopter pilots about transmission lines.
- The purpose of the shape of insulators is to make the surface flashover path longer.
- The purpose of ground wires is to protect the phase conductors from lightning strokes. Also, they provide a path for return currents.
- The higher the system voltage, the longer the insulator length.

As you expect, there are more parameters that can affect the design of a tower; however, those are out of scope of this course. In this project, you will need only basic parameters as input that are listed here:

- number of circuits
- number of bundle conductors, where bundles form a regular polygon
- bundle distance, which is the length of the edges of the polygon that a bundles forms (in m)
- length of the line (in km)
- name of the ACSR conductor
- location of the phases with respect to the origin
- a library of ACSR conductors and their parameters

Note that the library parameters will be given in Imperial Unit System and you should convert those values to SI units. Also, note that the system is 50 Hz. With these raw input parameters, we expect students write a function to calculate the electrical parameters of a line in per unit. To compute these parameters, Geometric Mean Distance (GMD), Geometric Mean Radius (GMR) of the line are found first. You will be introduced with these concepts in the following weeks of the course. You are not required to know these information in the first phase of the project.

Figure 7: Definition of phase locations in input

In your input file you will be given x and y coordinates of bundle centre for each phase, where distances are given in meters with respect to origin. The definition of these x and y coordinates are described in Figure 7, i.e. position of dark green circles. In Figure 7 red circles are representing the conductors and dark green circles are representing the centre of each bundle.

3 PROJECT WORK

In this project you will be given a random transmission tower's specifications in a text file. Also, you will be provided with a library of ACSR conductors. In Phase 1, you are supposed to find a tool to preprocess the raw input data given in text format into a useful format for Phase 2 applications. In other words, you will create a function file that reads formatted data from text in PYTHON environment. In Phase 2, depending on these data your code should calculate the resistance (R), reactance (X) and susceptance (B) of the overhead line in per unit quantities.

These information will be valid for the transmission line to be modeled:

- You will be given only 3-phase systems (no single-phase systems)
- All phases consist of the same bundle orientation and same type of conductors
- Lines are transposed. The transposition rule is as follows.

Transposition cycle section	Position 1	Position 2	Position 3
1	Phase A	Phase B	Phase C
2	Phase C	Phase A	Phase B
3	Phase B	Phase C	Phase A

There will be no double circuits in this project.

3.1 Phase 1

Tasks:

- Create a PYTHON function that reads the raw input data, which are listed in the previous section, given in the text file.
- The code must find the conductor name that is given in the input text file from the library and extract the necessary information about the conductor type from there, namely outside diameter, AC resistance at 20°C, and GMR of the conductor.
- Your function must give the outputs in SI Units, i.e. all lengths in meters. So, make the necessary unit conversions.
- Your function must take the input file and library paths in string format as the inputs of the function.

Evaluation:

- You must parse all the raw input data correctly and in correct format. (string for the conductor name, double for other parameters, Ex: student ID = 1234567)
- You must submit your function in a way equivalent to this format. Note that the order of the input and output variables is important (-10 Points for wrong function format):

[Student ID, S_{base} , V_{base} , N_{bundle} , d_{bundle} , length, conductor name, outside diameter, R_{AC} , $GMR_{conductor}$] = termproject(text_path, library_path)

- The function is going to be called with two inputs and at the end, it must return a list in the above format.
- Upload .py file of your code to ODTUCLASS directly, first.
- Then, publish and upload the PDF format of your function on ODTUCLASS as Turnitin assignment. You may upload your .py files multiple times; however, the final .py file and PDF must be the same! Do not change your code after your Turnitin upload. Please beware that you have only one chance to submit the Turnitin assignment. (-20 points will be deducted from the total grade each time you request a re-submission.)

3.2 Phase 2

In this part, you are expected to submit a PYTHON function and a report. Your code must execute all the tasks in Phase 1, so refine your code.

Tasks:

- Your PYTHON function should calculate the electrical parameters of the line, i.e., series resistance & reactance (Ω), and shunt susceptance (\mathcal{U}). (Include the effect of earth on shunt capacitance calculations.)
- Then, you must calculate these quantities in per unit using the base values given in the raw input text file.
- Write a maximum 5-page report on your observations. The report should not include explanation of your code rather it should include the followings:
 - The employed method, why and how you used it.
 - Any method/assumption/etc. you used to improve accuracy performance.
 - Test results.
 - Your observations on how changing the inputs in the text file affects the line parameters.

Evaluation:

• You must submit your function in this format where the data type of the output variables is double. (Ex: student ID = 1234567) Note that the order of the input and output variables is important (-10 Points for wrong function format):

$$[Student\ ID, R_{pu}, X_{pu}, B_{pu}] = termproject(text_path, library_path)$$

- The function is going to be called with two inputs and at the end, it must return a list in the above format.
- Upload .py file of your code to ODTUCLASS.
- Save your python code as a pdf by following the steps. File → Print → Enable "color printing"
 → Click the "print" button → "Select Microsoft Print to PDF" under the printer tab.
- If you cannot do the above, save your code as a PDF using any method you want.
- Upload your report on ODTUCLASS as Turnitin assignment.
- Do not change your code after your Turnitin upload. You may upload your .py files multiple times; however, the final .py file and PDF must be the same. Please beware that you have only one chance to submit the Turnitin assignments. (-20 points will be deducted from the total grade each time you request a re-submission.)