Optimización Numérica sin restricciones Tema 4: Métodos de Región de Confianza

Oscar Dalmau

Centro de Investigación en Matemáticas CIMAT

Marzo 2018

Orden del Tema

Métodos de Región de Confianza Método Dogleg

Orden del Tema

Métodos de Región de Confianza Método Dogleg El Punto de Cauchy es el minimizador del modelo $m_k(p)$ a lo largo de de la dirección del máximo descendo, i.e., $p_k = -\lambda_k g_k$ sujeto a la región de confianza.

$$h(\lambda) := m_k(-\lambda g_k) = f_k - g_k^T g_k \lambda + \frac{1}{2} \lambda^2 g_k^T B_k g_k; \ \lambda \ge 0$$

Como $||p|| \leq \Delta_k$ entonces

$$\|-\lambda g_k\| \le \Delta_k \Rightarrow \lambda \le \frac{\Delta_k}{\|g_k\|} =: \bar{\lambda}$$

$$\lambda_k = \arg\min_{\lambda \in [0,\bar{\lambda}]} h(\lambda)$$

Cálculo del Punto de Cauchy

La solucion del problema anterior es

$$\begin{array}{lll} \lambda_k & = & \begin{cases} \bar{\lambda}, & \text{si } g_k^T B_k g_k \leq 0 \\ \min\left(\bar{\lambda}, \frac{\|g_k\|^2}{g_k^T B_k g_k}\right), & \text{e.o.c.} \end{cases} \\ & = & \bar{\lambda} \begin{cases} 1, & \text{si } g_k^T B_k g_k \leq 0 \\ \min\left(1, \frac{\|g_k\|^3}{\Delta_k g_k^T B_k g_k}\right), & \text{e.o.c.} \end{cases} \\ & = & \bar{\lambda} \tau_k \end{array}$$

Resumiendo:
$$p_k^C = -\lambda_k g_k$$
. Luego $p_k^C = -\bar{\lambda}\tau_k g_k = -\tau_k \frac{\Delta_k}{\|g_k\|} g_k$

- El Paso de Cauchy p_k^C produce un suficiente descenso en el modelo $m_k(\cdot)$ lo que permite obtener convergencia global.
- El costo computacional es bajo.
- Por las razones anteriores y teniendo en cuenta que usar el Paso de Cauchy p_k^C , es equivalente a usar el Método del Máximo descenso con un tamaño de paso particular, será posible mejorar la solución al problema cuadrático con restricciones original?

- El Paso de Cauchy p_k^C produce un suficiente descenso en el modelo $m_k(\cdot)$ lo que permite obtener convergencia global.
- El costo computacional es bajo.
- Por las razones anteriores y teniendo en cuenta que usar el Paso de Cauchy p_k^C , es equivalente a usar el Método de Máximo descenso con un tamaño de paso particular, será posible mejorar la solución al problema cuadrático con restricciones original?

- El Paso de Cauchy p_k^C produce un suficiente descenso en el modelo $m_k(\cdot)$ lo que permite obtener convergencia global.
- El costo computacional es bajo.
- Por las razones anteriores y teniendo en cuenta que usar el Paso de Cauchy p_k^C , es equivalente a usar el Método del Máximo descenso con un tamaño de paso particular, será posible mejorar la solución al problema cuadrático con restricciones original?

- El Paso de Cauchy p_k^C no depende fuertemente de la matriz B_k .
- Una mejor convergencia podría encontrarse si se usa la matriz B_k .
- Varios algoritmos de Región de Confianza primero calculan p_b^C y luego tratan de mejorar la solución.

- El Paso de Cauchy p_k^C no depende fuertemente de la matriz B_k .
- Una mejor convergencia podría encontrarse si se usa la matriz B_k.
- Varios algoritmos de Región de Confianza primero calculan p_{ν}^{C} y luego tratan de mejorar la solución.

- El Paso de Cauchy p_k^C no depende fuertemente de la matriz B_k .
- Una mejor convergencia podría encontrarse si se usa la matriz B_k.
- Varios algoritmos de Región de Confianza primero calculan p_{ν}^{C} y luego tratan de mejorar la solución.

- Una estrategia simple es calcular el paso completo $p_k^B = -B_k^{-1} \nabla f_k$ siempre que B_k sea definida positiva
 - Si se cumple la restricción $\|p_k^B\| \leq \Delta_k$, entonces el tamaño del paso $p_k = p_k^B$
 - En otro caso se puede usar el paso de Cauchy $p_k = p_k^C$.
- Se puede hacer algo más?

- Una estrategia simple es calcular el paso completo $p_k^B = -B_k^{-1} \nabla f_k$ siempre que B_k sea definida positiva
 - Si se cumple la restricción $\|p_k^B\| \leq \Delta_k$, entonces el tamaño del paso $p_k = p_k^B$
 - En otro caso se puede usar el paso de Cauchy $p_k = p_k^C$.
- Se puede hacer algo más?

- Una estrategia simple es calcular el paso completo $p_k^B = -B_k^{-1} \nabla f_k$ siempre que B_k sea definida positiva
 - Si se cumple la restricción $\|p_k^B\| \leq \Delta_k$, entonces el tamaño del paso $p_k = p_k^B$
 - En otro caso se puede usar el paso de Cauchy $p_k = p_k^C$.
- Se puede hacer algo más? El Método Dogleg!

Idea del Algoritmo

• Se puede usar siempre y cuando la matriz B_k sea positiva definida, en otro caso usar el paso de Cauchy

Idea del Algoritmo

- Minimizar el model cuadrático sin restricciones a lo largo del gradiente: $p_k^U = \alpha \nabla f_k$
- Minimizar el model cuadrático sin restricciones si B_k es positiva definida: $p_k^B=-B_k^{-1}\nabla f_k$, i.e, obtener el paso completo
- Calcular el tamaño de paso $p_k = F(p_k^U, p_k^B)$, i.e., el tamaño de paso es una función que depende del *paso completo* y de la *dirección de máximo descenso*.

Trayectoria óptima $p(\Delta)$

Cual es el paso óptimo al variar la región de confianza?

Trayectoria óptima $p(\Delta)$

región de confianza

Trayectoria DogLeg

Aproximación de la trayectoria óptima usando el camino Dogleg

Trayectoria óptima $p(\Delta)$

región de confianza

Trayectoria Dogleg

- La primera línea del Dogleg va desde el origen hasta p_k^U
- La segunda línea va desde p_k^U hasta p_k^B , es decir, el Dogleg, $\tilde{p}(\tau)$, sigue la siguiente trayectoria

$$\begin{split} \tilde{p}(\tau) &=& \begin{cases} \tau p^U, & \text{si } 0 \leq \tau \leq 1 \\ p^U + (\tau - 1)(p^B - p^U), & \text{si } 1 \leq \tau \leq 2 \end{cases} \end{split}$$

Minimizar el model cuadrático a lo largo del gradiente: pl

• Si $p_k^U = \alpha \nabla f_k$, hallar el tamaño de paso α del problema sin restricciones (Unconstraint)

$$\begin{array}{rcl} \alpha^* & = & \arg\min_{\alpha} m_k (\alpha \nabla f_k) \\ m_k (\alpha \nabla f_k) & = & f_k + \alpha \nabla f_k^T \nabla f_k + \frac{1}{2} \alpha^2 \nabla f_k^T B_k \nabla f_k \end{array}$$

$$\alpha^* = -\frac{\nabla^T f_k \nabla f_k}{\nabla f_k^T B_k \nabla f_k}$$

• Luego $p_k^U = -\frac{\nabla^T f_k \nabla f_k}{\nabla f_k^T B_k \nabla f_k} \nabla f_k$

Minimizar el model cuadrático a lo largo del gradiente: pl

• Si $p_k^U = \alpha \nabla f_k$, hallar el tamaño de paso α del problema sin restricciones (Unconstraint)

$$\begin{array}{rcl} \alpha^* & = & \arg\min_{\alpha} m_k (\alpha \nabla f_k) \\ m_k (\alpha \nabla f_k) & = & f_k + \alpha \nabla f_k^T \nabla f_k + \frac{1}{2} \alpha^2 \nabla f_k^T B_k \nabla f_k \end{array}$$

$$\alpha^* = -\frac{\nabla^T f_k \nabla f_k}{\nabla f_k^T B_k \nabla f_k}$$

• Luego $p_k^U = -\frac{\nabla^T f_k \nabla f_k}{\nabla f_k^T B_k \nabla f_k} \nabla f_k$

ww

Luego

- $p_k^U = -rac{
 abla^T f_k
 abla f_k}{
 abla f_k^T B_k
 abla f_k}
 abla f_k$ y $p_k^B = -B_k^{-1}
 abla f_k$
- El problema consiste en encontrar el paso óptimo que minimiza el problema cuadrático con restricciones en la trayectoria Dogleg, es decir, en

$$\tilde{p}(\tau) \quad = \quad \begin{cases} \tau p^U, & \text{si } 0 \leq \tau \leq 1 \\ p^U + (\tau - 1)(p^B - p^U), & \text{si } 1 \leq \tau \leq 2 \end{cases}$$

• Como p_k^U y p_k^B son conocidos, entonces lo que tenemos que hallar es τ^* .

Lema

Si B es positiva definida. Entonces

- $\|\tilde{p}(\tau)\|$ es una función creciente de τ y
- $m(p(\tau))$ es una función decreciente de τ .

[i] El caso
$$au\in[0,1]$$
, entonces $p(au)= au p^U$, es trivial que $h(au)=rac{1}{2}\|p(au)\|^2$ es creciente

[i] Consideremos el caso $\tau \in [1,2]$, cambiando variable $t=\tau-1$, entonces $p(t)=p^U+t(p^B-P^U)$ con $t\in [0,1]$

$$\begin{split} h(t) &= \frac{1}{2} \| p(t) \|^2 &= \frac{1}{2} \| p^U \|^T + t(p^U)^T (p^B - P^U) + \frac{1}{2} t^2 \| p^B - P^U \|^2 \\ h'(t) &= (p^U)^T (p^B - P^U) + t \| p^B - P^U \|^2 \\ &\geq (p^U)^T (p^B - P^U) \\ &= -\frac{g_k^T g_k}{g_k^T B g_k} g_k^T (-B^{-1} g_k + \frac{g_k^T g_k}{g_k^T B g_k} g_k) \\ &= \frac{g_k^T g_k}{g_k^T B g_k} (g_k^T B^{-1} g_k g_k^T B g_k - (g_k^T g_k)^2) \geq 0 \end{split}$$

pues $g_k^TB^{-1}g_kg_k^TBg_k \geq (g_k^Tg_k)^2$, por Cauchy-Schwarz, luego $h'(t) \geq 0$ y por tanto h(t) es creciente

[ii] Consideremos el caso $\tau \in [0,1]$, entonces $p(\tau) = \tau p^U$

$$m(p(\tau)) = f_k + g_k^T p(\tau) + \frac{1}{2} p(\tau)^T B p(\tau)$$

$$m'(p(\tau)) = (p'(\tau))^T g_k + (p'(\tau))^T B p(t)$$

$$= (P^U)^T g_k + \tau (P^U)^T B P^U$$

$$\leq (P^U)^T g_k + (P^U)^T B P^U$$

$$\leq \frac{g_k^T g_k}{g_k^T B g_k} [-g_k^T g_k + \frac{g_k^T g_k}{g_k^T B g_k} g_k^T B g_k] = 0$$

luego $m'(p(t)) \leq 0$ y por tanto m(p(t)) es decreciente

[ii] Consideremos el caso $\tau \in [1,2]$, cambiando variable $t=\tau-1$, entonces $p(t)=p^U+t(p^B-P^U)$ con $t\in [0,1]$

$$m(p(t)) = f_k + g_k^T p(t) + \frac{1}{2} p(t)^T B p(t)$$

$$m'(p(t)) = (p'(t))^T g_k + (p'(t))^T B p(t)$$

$$= (p^B - P^U)^T [g_k + B P^U + t B (p^B - P^U)]$$

$$= (p^B - P^U)^T (g_k + B P^U) + t (p^B - P^U)^T B (p^B - P^U)]$$

$$\leq (p^B - P^U)^T (g_k + B P^U) + (p^B - P^U)^T B (p^B - P^U)$$

$$= (p^B - P^U)^T [g_k + B P^U + B (p^B - P^U)]$$

$$= (p^B - P^U)^T [g_k + B P^B] = 0$$

pues $g_k + Bp^B = 0$ luego $m'(p(t)) \le 0$ y por tanto m(p(t)) es decreciente

Observaciones

Basados en el Lema anterior se tiene lo siguiente

- La trayectoria $\tilde{p}(\tau)$ intercepta a la *región de confianza*, $\|p\| = \Delta$, en un sólo punto si $\|p_k^B\| \ge \Delta$.
- Si $\|p_k^B\| \leq \Delta$ entonces el tamaño de paso óptimo es p_k^B , puesto que $m(p(\tau))$ decrece a lo largo del camino Dogleg. En otro caso hay que hallar el intercepto entre la trayectoria Dogleg y la region de confianza, por lo que se tiene que resolver la siguiente ecuación para τ

$$||p^U + (\tau - 1)(p^B - p^U)||^2 = \Delta^2.$$

A partir de

$$||p^U + (\tau - 1)(p^B - p^U)||^2 = \Delta^2$$

Tenemos que resolver la ecuación cuadrática

$$a\lambda^2 + b\lambda + c = 0$$

donde $\tau = \lambda + 1$ y

$$a = ||p^B - p^U||^2, b = 2(p^B)^T (p^B - p^U), c = ||p^U||^2 - \Delta^2$$

Finalmente

$$p_k = \tilde{p}(\tau^*) \quad = \quad \begin{cases} \tau^* p^U, & \text{si } 0 \leq \tau^* \leq 1 \\ p^U + (\tau^* - 1)(p^B - p^U), & \text{si } 1 \leq \tau^* \leq 2 \end{cases}$$

Caso 1: DogLeg

 p^B en en interior de la región de confianza

Figura:

Caso 2: DogLeg

p^B fuera de la región de confianza y $1 \le \tau \le 2$

Figura:

Caso 3: DogLeg

 p^B fuera de la región de confianza y $0 \le \tau \le 1$

$$0 <= \tau <= 1$$

región de confianza

Tarea

Implementar el Algoritmo de región de confianza usando las siguientes variantes para el cálculo del paso

- Usar el paso de Cauchy p^C .
- Si $||p^B|| \leq \Delta$ usar p^B en caso contrario usar p^C .
- Si B es positiva definida usar el paso Dogleg en caso contrario usar p^C .

Aplicar cada una de las variantes anteriores para minimizar la función de Rosenbrock $f(x,y)=(1-x)^2+(y-x^2)^2$ usando puntos iniciales distintos. Realizar una tabla comparativa.