

Web Mining Lecture 3: Similarity Search

Manish Gupta 7th Aug 2013

Slides borrowed (and modified) from

http://infolab.stanford.edu/~ullman/mining/2009/

http://cmp.felk.cvut.cz/~chum/papers/chum-minhash-BMVC08.ppt

http://infolab.stanford.edu/~ullman/mining/cs345-lsh.ppt

Recap of Lecture 2: Relevance Ranking

Term frequency		Document frequency		Normalization	
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{\mathit{N}-\mathrm{d} f_t}{\mathrm{d} f_t}\}$	u (pivoted unique)	1/u
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$				

- Vector Space Model
 - Cosine similarity
 - Index Elimination
 - Champion Lists
 - Static Quality Scores
 - High and Low Lists
 - Impact-Ordered Postings
 - Cluster Pruning
 - Parametric and Zone Indexes
 - Tiered Indexes
 - Query Parsers

- Evaluation Measures
 - Precision
 - Recall
 - Prec@k
 - Interpolated Precision
 - AUC
 - MAP
 - NDCG
 - Kappa
 - A/B tests

Today's Agenda

- Shingling
- Min-hash
- Locally Sensitive Hashing (LSH)
- Applications of LSH

Today's Agenda

- Shingling
- Min-hash
- Locally Sensitive Hashing (LSH)
- Applications of LSH

Goals

- Many web-mining problems can be expressed as finding "similar" sets
 - Pages with similar words, e.g., for classification by topic.
 - NetFlix users with similar tastes in movies, for recommendation systems.
 - Movies with similar sets of fans.
 - Images of related things.

Example Problem: Comparing Documents

- Goal: common text, not common topic.
- Special cases are easy, e.g., identical documents, or one document contained character-by-character in another.
- General case, where many small pieces of one doc appear out of order in another, is very hard.

Similar Documents

- Given a body of documents, e.g., the Web, find pairs of documents with a lot of text in common, e.g.:
 - Mirror sites, or approximate mirrors.
 - Application: Don't want to show both in a search result.
 - Plagiarism, including large quotations.
 - Similar news articles at many news sites.
 - Application: Cluster articles by "same story."

Three Essential Techniques for Similar Documents

- *Shingling*: convert documents, emails, etc., to sets.
- *Minhashing*: convert large sets to short signatures, while preserving similarity.
- Locally Sensitive Hashing (LSH): Find pairs of documents (or signatures) likely to be similar

The Big Picture

Shingles

- A k -shingle (or k -gram) for a document is a sequence of k characters that appears in the document.
- Example: k=2; doc = abcab. Set of 2-shingles = {ab, bc, ca}.
 - Option: regard shingles as a bag, and count ab twice.
- Represent a doc by its set of k-shingles.

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order.
- Careful: you must pick k large enough, or most documents will have most shingles.
 - -k = 5 is OK for short documents; k = 10 is better for long documents.

Shingles: Compression Option

- To compress long shingles, we can hash them to (say) 4 bytes.
- Represent a doc by the set of hash values of its k-shingles.
- Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.

Today's Agenda

- Shingling
- Min-hash
- Locally Sensitive Hashing (LSH)
- Applications of LSH

Jaccard Similarity of Sets

• The *Jaccard similarity* of two sets is the size of their intersection divided by the size of their union.

$$-Sim(C_1, C_2) = |C_1 \cap C_2|/|C_1 \cup C_2|.$$

3 in intersection. 8 in union. Jaccard similarity = 3/8

From Sets to Boolean Matrices

- Rows = elements of the universal set.
- Columns = sets.
- 1 in row e and column S if and only if e is a member of S.
- Column similarity is the Jaccard similarity of the sets of their rows with 1.
- Typical matrix is sparse.

$$\begin{array}{c|c}
 C_1 & C_2 \\
 \hline
 0 & 1 \\
 1 & 0 \\
 1 & 1 \\
 0 & 0 \\
 1 & 1 \\
 0 & 1
 \end{array}$$

Sim $(C_1, C_2) = 2/5 = 0.4$

Outline: Finding Similar Columns

- 1. Compute signatures of columns = small summaries of columns.
- 2. Examine pairs of signatures to find similar signatures.
 - Essential: similarities of signatures and columns are related.
- 3. Optional: check that columns with similar signatures are really similar.

Warnings

- 1. Comparing all pairs of signatures may take too much time, even if not too much space.
 - A job for Locality-Sensitive Hashing.
- 2. These methods can produce false negatives, and even false positives (if the optional check is not made).

Signatures

- Key idea: "hash" each column C to a small signature Sig (C), such that
 - Sig (C) is small enough that we can fit a signature in main memory for each column.
 - Sim (C₁, C₂) is the same as the "similarity" of Sig (C₁) and Sig (C₂).

Four Types of Rows

Given columns C₁ and C₂, rows may be classified as:

- Also, a = # rows of type a, etc.
- Note Sim $(C_1, C_2) = a/(a+b+c)$.

Minhashing

- Imagine the rows are permuted randomly.
- Define "hash" function h (C) = the number of the first (in the permuted order) row in which column C has 1.
- Use several (e.g., 100) independent hash functions to create a signature.

Minhashing Example

Input matrix

1	4	3	1	0
3	2	4	1	0
7	1	7	0	1
6	3	6	0	1
2 5	6	1	0	1
5	7	2	1	0
4	5	5	1	0

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Surprising Property

- The probability (over all permutations of the rows) that $h(C_1) = h(C_2)$ is the same as $Sim(C_1, C_2)$.
- Both are a/(a+b+c)!
- Why?
 - Look down the permuted columns C_1 and C_2 until we see a 1.
 - If it's a type-a row, then $h(C_1) = h(C_2)$. If a type-b or type-c row, then not.

Min Hashing – Example

• The *similarity of signatures* is the fraction of the hash functions in which they agree.

()

Input matrix

1	4	3	1	0	1	
3	2	4	1	0	0	
7	1	7	0	1	0	
6	3	6	0	1	0	
2	6	1	0	1	0	
5	7	2	1	0	1	
4	5	5	1	0	1	

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

Minhash Signatures

- Pick (say) 100 random permutations of the rows.
- Think of Sig (C) as a column vector.
- Let *Sig* (C)[i] =

according to the *i* th permutation, the number of the first row that has a 1 in column *C*.

Implementation – (1)

- Suppose 1 billion rows.
- Hard to pick a random permutation from 1...billion.
- Representing a random permutation requires
 1 billion entries.
- Accessing rows in permuted order leads to thrashing.

Implementation – (2)

- A good approximation to permuting rows: pick 100 hash functions.
- For each column c and each hash function h_i
 , keep a "slot" M (i, c).
- Intent: M (i, c) will become the smallest value of h_i (r) for which column c has 1 in row r.
 - I.e., $h_i(r)$ gives order of rows for i th permuation.

Implementation – (3)

```
for each row r

for each column c

if c has 1 in row r

for each hash function h_i do

if h_i(r) is a smaller value than M(i, c) then

M(i, c) := h_i(r);
```

Example

$$h(1) = 1$$
 1 - $g(1) = 3$ 3 -

C2
$$h(2) = 2 \quad 1 \qquad 2$$

$$g(2) = 0 \quad 3 \qquad 0$$
1
1

$$h(3) = 3$$
 1 2 $g(3) = 2$ 0

$$h(4) = 4$$
 1 2 0 0

$$h(x) = x \mod 5$$

 $g(x) = 2x+1 \mod 5$
 $h(5) = 0 \quad 1$
 $g(5) = 1 \quad 2$

Finding Similar Pairs

- Suppose we have, in main memory, data representing a large number of objects.
 - May be the objects themselves.
 - May be signatures as in minhashing.
- We want to compare each to each, finding those pairs that are sufficiently similar.

Checking All Pairs is Hard

- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- Example: 10⁶ columns implies 5*10¹¹ column-comparisons.
- At 1 microsecond/comparison: 6 days.

Today's Agenda

- Shingling
- Min-hash
- Locally Sensitive Hashing (LSH)
- Applications of LSH

Locality-Sensitive Hashing

- General idea: Use a function f(x,y) that tells whether or not x and y is a candidate pair: a pair of elements whose similarity must be evaluated.
- For minhash matrices: Hash columns to many buckets, and make elements of the same bucket candidate pairs.

Candidate Generation From Minhash Signatures

- Pick a similarity threshold s, a fraction < 1.
- A pair of columns c and d is a candidate pair if their signatures agree in at least fraction s of the rows.
 - I.e., M(i, c) = M(i, d) for at least fraction s values of i.

LSH for Minhash Signatures

- Big idea: hash columns of signature matrix M several times.
- Ensure that (only) similar columns are likely to hash to the same bucket.
- Candidate pairs are those that hash at least once to the same bucket.

Partition Into Bands

Partition into Bands – (2)

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
 - Make k as large as possible.
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band.
- Tune b and r to catch most similar pairs, but few nonsimilar pairs.

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band.
- Hereafter, we assume that "same bucket" means "identical in that band."

Example: Effect of Bands

- Suppose 100,000 columns.
- Signatures of 100 integers.
- Therefore, signatures take 40Mb.
- Want all 80%-similar pairs.
- 5,000,000,000 pairs of signatures can take a while to compare.
- Choose 20 bands of 5 integers/band.

Suppose C₁, C₂ are 80% Similar

- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$.
- Probability C_1 , C_2 are *not* similar in any of the 20 bands: $(1-0.328)^{20} = .00035$.
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives.

Suppose C₁, C₂ Only 40% Similar

- Probability C_1 , C_2 identical in any one particular band: $(0.4)^5 = 0.01$.
- Probability C_1 , C_2 identical in ≥ 1 of 20 bands: $\leq 20 * 0.01 = 0.2$.
- But false positives much lower for similarities
 40%.

LSH Involves a Tradeoff

- Pick the number of minhashes, the number of bands, and the number of rows per band to balance false positives/negatives.
- Example: if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up.

Analysis of LSH – What We Want

What One Band of One Row Gives You

What b Bands of r Rows Gives You

Example: b = 20; r = 5

5	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Analysis of the Banding Technique

- The probability that the signatures agree in all rows of one particular band is s^r .
- The probability that the signatures do not agree in at least one row of a particular band is $1 s^r$.
- The probability that the signatures do not agree in all rows of any of the bands is $(1 s^r)^b$.
- The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is $1 (1 s^r)^b$.

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.

Today's Agenda

- Shingling
- Min-hash
- Locally Sensitive Hashing (LSH)
- Applications of LSH

Entity Resolution

- The entity-resolution problem is to examine a collection of records and determine which refer to the same entity.
 - Entities could be people, events, etc.
- Typically, we want to merge records if their values in corresponding fields are similar.

Customer Records – (1)

- Step 1: Design a measure ("score") of how similar records are:
 - E.g., deduct points for small misspellings ("Jeffrey" vs. "Jeffery") or same phone with different area code.
- Step 2: Score all pairs of records; report high scores as matches.

Customer Records – (2)

- Problem: (1 million)² is too many pairs of records to score.
- Solution: A simple LSH.
 - Three hash functions: exact values of name, address, phone.
 - Compare iff records are identical in at least one.
 - Misses similar records with a small differences in all three fields.

Duplicate News Articles

- Problem: the same article, say from the Associated Press, appears on the Web site of many newspapers, but looks quite different.
- Each newspaper surrounds the text of the article with:
 - It's own logo and text.
 - Ads.
 - Perhaps links to other articles.
- A newspaper may also "crop" the article (delete parts).

New Shingling Technique

- News articles have a lot of stop words, while ads do not.
 - "Buy Sudzo" vs. "I recommend that you buy Sudzo for your laundry."
- Define a shingle to be a stop word and the next two following words.

Why it Works

- By requiring each shingle to have a stop word, the mapping gets biased from documents to shingles so it picked more shingles from the article than from the ads.
- Pages with the same article, but different ads, have higher Jaccard similarity than those with the same ads, different articles.

Take-away Messages

- Computing similarity between two sets of objects is a core functionality needed by multiple components of a "web mining system"
- We studied a technique for similarity search for dataset with large number of objects ("big data"). This involves three steps: shingling, minhashing and locality sensitive hashing

Further Reading

- Chapter 3: "Finding Similar Items" from Mining of Massive Datasets
 - http://infolab.stanford.edu/~ullman/mmds.html
- Chapter 3 (Web Search and Information Retrieval) from Mining the Web
 - http://www.cse.iitb.ac.in/soumen/mining-the-web/
- http://en.wikipedia.org/wiki/MinHash#CITEREFBr oder1997
- http://en.wikipedia.org/wiki/Locality_sensitive_h ashing

Preview of Lecture 4: Link Analysis Algorithms

- PageRank
- HITS (Hypertext-Induced Topic Selection)
- Topic-Specific Page Rank
- Spam Detection Algorithms: TrustRank

Disclaimers

- This course represents opinions of the instructor only. It does not reflect views of Microsoft or any other entity (except of authors from whom the slides have been borrowed).
- Algorithms, techniques, features, etc mentioned here might or might not be in use by Microsoft or any other company.
- Lot of material covered in this course is borrowed from slides across many universities and conference tutorials. These are gratefully acknowledged.

Thanks!

Fingerprint Comparison

- Represent a fingerprint by the set of positions of minutiae.
 - These are features of a fingerprint, e.g., points
 where two ridges come together or a ridge ends.

LSH for Fingerprints

- Place a grid on a fingerprint.
 - Normalize so identical prints will overlap.
- Set of grid points where minutiae are located represents the fingerprint.
 - Possibly, treat minutiae near a grid boundary as if also present in adjacent grid points.

Discretizing Minutiae

Applying LSH to Fingerprints

- Make a bit vector for each fingerprint's set of grid points with minutiae.
- We could minhash the bit vectors to obtain signatures.
- But since there probably aren't too many grid points, we can work from the bit-vectors directly.

LSH/Fingerprints – (2)

- Pick 1024 sets of 3 grid points, randomly.
- For each set of points, fingerprints with 1 for all three points are candidate pairs.
- Suppose typical fingerprints have minutiae in 20% of the grid points.
- Suppose fingerprints from the same finger agree in at least 80% of their points.
- Probability two random fingerprints each have 1 in all three points = $(0.2)^6$ = .000064.

First image has 1 in a point

Example: Continued

Second image of same finger also has 1.

- Probability two fingerprints from the same finger each have 1's in three given points = $((0.2)(0.8))^3 = .004096$.
- Prob. for at least one of 1024 sets of three points = $1-(1-.004096)^{1024} = .985$. The negatives
- But for random fingerprints: $1-(1-.000064)^{1024} = .063$.

6.3% false positives

Alternative Interpretation

- Given 2 sets A and B, we want to estimate Jaccard(A,B), i.e. J(A,B).
- A,B \subset {1,2,...,n}
- Let π be a random permutation from $\{1,2,...,n\}$ to $\{1,2,...,n\}$ (i.e., one of the n! permutations)
- $P(\min\{\pi(A)\} = \min\{\pi(B)\}) = J(A, B)$
- Given enough permutations, can estimate J(A,B) accurately
- The proof follows on the next slide

Estimating Jaccard using Minhash

- What is $P(\min\{\pi(A)\} = \min\{\pi(B)\})$
- What fraction of n! permutations satisfy $\min(\pi(A)) = \min(\pi(B))$?
- If $x = \min(\pi(A)) = \min(\pi(B))$, then $\pi^{-1}(x)$ must belong to $A \cap B$
- Pick the range to which $A \cup B$ is mapped in $\binom{n}{|A \cup B|}$ ways
- Remaining $n |A \cup B|$ elements not chosen may be permuted every way: $(n |A \cup B|)!$
- Element to be mapped to the minimum value in the range can be chosen in $|A \cap B|$ ways
- Remaining elements in $A \cup B$ can be permuted in $(|A \cup B| 1)!$ ways
- $\binom{n}{|A \cup B|} (n |A \cup B|)! |A \cap B| (|A \cup B| 1)! = \frac{|A \cap B|}{|A \cup B|} n!$

Word Weighting for min-Hash

- For minhash over word sets, the hash functions π should be chosen such that each word has an equal chance of being a minhash.
 - Such a scheme helps minhash result into Jaccard similarity

$$-P(\min\{\pi(A)\} = \min\{\pi(B)\}) = \frac{|A \cap B|}{|A \cup B|}$$

- For minhash over weighted word sets, i.e., when each word \boldsymbol{w} has a weight $\boldsymbol{d}_{\boldsymbol{w}}$
 - Hash functions h should be chosen such that the probability of word w being a minhash is proportional to $d_{\it w}$

$$-P(\min\{\pi(A)\} = \min\{\pi(B)\}) = \frac{\sum_{w \in A \cap B} d_w}{\sum_{w \in A \cup B} d_w}$$

Thought Question

- Why is it better to hash 9-shingles (say) to 4 bytes than to use 4-shingles?
- Hint: How random are the 32-bit sequences that result from 4-shingling?

LS Families of Hash Functions

- Suppose we have a space S of points with a distance measure d.
- A family **H** of hash functions is said to be
 (d₁,d₂,p₁,p₂)-sensitive if for any x and y in S
 :
 - 1. If $d(x,y) \le d_1$, then prob. over all h in H, that h(x) = h(y) is at least p_1 .
 - 2. If $d(x,y) \ge d_2$, then prob. over all h in H, that h(x) = h(y) is at most p_2 .

LSH for other Distance Functions

- Let S = sets, d = Jaccard distance, \mathbf{H} is formed from the minhash functions for all permutations. For Jaccard similarity, minhashing gives us a $(d_1, d_2, (1-d_1), (1-d_2))$ -sensitive family for any $d_1 < d_2$.
 - Prob[h(x)=h(y)] = 1-d(x,y).
- d=Cosine Distance. Random hyperplanes or random projections. $(d_1,d_2,(1-d_1/180),(1-d_2/180))$ sensitive family
 - If x is data and v is random hyperplane, $h_v(x) = +1$ if v.x > 0; = -1 if v.x < 0
 - Prob[h(x)=h(y)] = 1 (angle between x and y divided by 180).
- D=Euclidean distance.
 - Hash functions are derived by choosing random lines and projecting points onto those lines.
 - Each line is broken into fixed-length intervals, and the function answers "yes" to a pair of points that fall into the same interval.