

Organizzazione della Lezione

- La conclusione di un (lungo) viaggio
- Calcolo scalabile su internet
- Modelli per il calcolo distribuito
- High Performance Computing
- Cloud Computing
- Conclusioni

La struttura del corso di PD

- Partendo dalla concorrenza...
 - necessaria per l'overlapping di comunicazione e computazione

La struttura del corso di PD

- Partendo dalla concorrenza...
 - necessaria per l'overlapping di comunicazione e computazione
- .. si esaminano i socket
 - soluzione efficiente, ma poco flessibile e con pochi servizi di supporto
- .. per poi passare a Remote Method Invocation
 - astrazione maggiore, familiare ai programmatori
- .. per esaminare le architetture Enterprise
 - che offrono integrazione di layer diversi (data, business, presentation, services)
- .. studiando la comunicazione orientata a messaggi (MOM)
- .. e le Architetture Orientate a Servizi
- Ed arrivare (alla fine!) a qualche cenno su HPC, Cloud e Microservices

Computazioni scalabili

- Cambiamenti nel paradigma di computazione:
 - da calcolo monolitico a calcolo distribuito
- Data-intensive e network centric
- Scalabilità il punto centrale:
 - da high performance computing
 - a high-throughput computing

High Performance Computing

- Guidato dalle richieste di calcolo scientifico
 - fisica, chimica, manufacturing
- Focus sulle prestazioni pure
 - operazioni in floating point
 - Linpack benchmarking
 - HPCG and graph benchamarking
- Supercomputers
 - Top 500 list
 - sistemi omogenei e strongly coupled
 - acceleratori (GPU, ...)

High Performance Computing Systems

Fugaku at RIKEN #1

158,976 nodes / 7,299,072 cores Manufacturer: Fujitsu CPU: A64FX 48C (48+8 cores) 2.2GHz with SVE vectorial instruction Network: TOFU interconnect D Rmax: 415 PFlop/s

HPC5 at ENI S.p.A. #6

1820 nodes / 669,760 cores Manufacturer: Dell EMC CPU: Intel Xeon Gold 6252 24C 2.1GHz Accelerators: 4x NVIDIA Tesla V100 GPUs Network: Mellanox HDR Infiniband Rmax: 35 PFlop/s

Marconi-100 at CINECA

#9

980 nodes / 347,776 cores Manufacturer: IBM CPU: 2x16 cores IBM POWER9 AC922 at 3.1 GHz Accelerators: 4x NVIDIA Volta V100 GPUs Network: Mellanox IB EDR DragonFly++ Rmax: 22 PFlop/s

High Performance Computing Applications

Identify oil reservoirs / ENI spa

Deep Learning / CINECA

Weather forecast / ECMWF

Naval design / CINECA

Drug discovery DOMPE spa

Dallara Automobili

"(...) The geophysical and seismic information we collect from all over the world is sent to HPC5 for processing. Using this data, the system develops extremely in-depth subsoil models, and on the basis of these, we can determine what is hidden many kilometres below the surface: indeed, this is how we found Zohr, the largest gas field ever discovered in the Mediterranean." Source ENI: https://www.eni.com/en-IT/operations/green-data-center-hpc5.html

High Performance Computing Programming

- Modelli di programmazione HPC
- Per multicore
 - Esempio: OpenMP

```
int *a, *b, *c;
// ...
#pragma omp parallel for shared(a, b, c) private(i) schedule(static, n_per_thread)
for(i=0; i<n; i++) {
   c[i] = a[i]+b[i];
}</pre>
```

- Per acceleratori
 - Esempio: OpenCL

```
__kernel void saxpy_kernel(float alpha, __global float *A, __global
float *B, __global float *C)
{
   int index = get_global_id(0);
   C[index] = A[index] + B[index];
}
```

High Performance Computing Programming

- Per comunicazione tra nodi
 - Esempio: MPI

```
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &total_proc);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
// . . .
// scatter phase
MPI_Scatter(a, n_per_proc, MPI_INT, ap, n_per_proc, MPI_INT, MASTER, MPI_COMM_WORLD);
MPI_Scatter(b, n_per_proc, MPI_INT, bp, n_per_proc, MPI_INT, MASTER, MPI_COMM_WORLD);
// compute vector add locally
for(i=0;i<n_per_proc;i++)
    cp[i] = ap[i]+bp[i];
// gather phase
MPI_Gather(cp, n_per_proc, MPI_INT, c, n_per_proc, MPI_INT, MASTER, MPI_COMM_WORLD);</pre>
```

Piattaforme di calcolo

- Reti P2P: file sharing
 - distribuite, non strutturate
 - calcolo cooperativo
 - best effort (at best!)
- Calcolo massivo con HPC
 - nodi omogenei
 - sistemi strettamente accoppiati
- Computational grid
 - verso cluster di nodi semi-eterogenei
 - il calcolo come utility
 - elettricità, acqua

High Throughput Computing

- Focus sulla quantità di dati che possono essere calcolati
- Ricerche su Internet e web services
 - audience e dimensione è quella di Internet
- Scalabilità estrema
- Goal: non i FLOPS ma il numero di tasks completati per unità di tempo
 - task vs data parallelism
 - il task e' un utente

Nuovi paradigmi di calcolo

- Service Oriented Architecture
 - disaccoppiamento ed eterogeneità
- RFID, GPS, sensori
 - Internet of Things (IoT)
- Internet cloud
 - 1984: The network is the computer (Sun)
 - 2008: The data center is the computer (D. Patterson)
 - Now: The cloud is the computer

Classificazioni del Calcolo

- Calcolo monolitico,
 - centralizzato
- Calcolo parallelo
 - strettamente accoppiato
- Calcolo distribuito
 - debolmente accoppiato
 - con nodi autonomi
- Calcolo su cloud
 - "utility/service computing"

Calcolo concorrente

Famiglie di sistemi distribuiti

- Computational grids
 - tipicamente per applicazioni scientifiche
 - strettamente accoppiate (grid) o no (P2P)
- Obiettivi di design di un sistema distribuito:
 - Efficienza (uso del parallelismo, FLOPS o Job throughput)
 - Affidabilità: QoS
 - Adattabilità a diversi workload di dimensioni variegate, e a difersi modelli di servizio
 - Flessibilità nella realizzazione di applicazioni in HPC (science) e HTC (business)

Applicazioni di HPC e HTC

Table :	1.1	Applications of	High-Performance	and High-Throughput Systems	,
---------	-----	-----------------	------------------	-----------------------------	---

Domain	Specific Applications
Science and engineering	Scientific simulations, genomic analysis, etc.
	Earthquake prediction, global warming, weather forecasting, etc.
Business, education, services	Telecommunication, content delivery, e-commerce, etc.
industry, and health care	Banking, stock exchanges, transaction processing, etc.
	Air traffic control, electric power grids, distance education, etc.
	Health care, hospital automation, telemedicine, etc.
Internet and web services,	Internet search, data centers, decision-making systems, etc.
and government applications	Traffic monitoring, worm containment, cyber security, etc.
	Digital government, online tax return processing, social networking, etc.
Mission-critical applications	Military command and control, intelligent systems, crisis management, etc.

Utility Computing

- Modello di business in cui il client riceve calcolo per un canone
- Cloud e Grid
- Convergenza tecnologica

Gartner Hype Cycle for Emerging Technologies, 2017

Table 1.2 Classification of Parallel and Distributed Computing Systems Computer Peer-to-Peer Data/ Functionality, Clusters Networks Cloud Platforms Computational **Applications** [10,28,38] [34,46] Grids [6,18,51] [1,9,11,12,30] Network of Flexible network Architecture. Heterogeneous Virtualized cluster of client machines Network compute nodes clusters of servers over Connectivity, and interconnected by interconnected by logically data centers via SAN, LAN, or connected by an high-speed SLA Size WAN network links over overlay network hierarchically selected resource sites Control and Homogeneous Autonomous Centralized Dynamic resource nodes with Resources client nodes, free control, serverprovisioning of Management distributed in and out, with oriented with servers, storage, control, running self-organization authenticated and networks UNIX or Linux security Applications and High-performance Most appealing to Distributed Upgraded web Network-centric business file search, utility computing. supercomputing, search engines. global problem Services sharing, content computing, and solving, and data and web services. delivery, and outsourced social networking center services computing etc. services Google search Gnutella, eMule, TeraGrid. Representative Google App Operational engine, SunBlade, BitTorrent. GriPhyN, UK Engine, IBM IBM Road EGEE, D-Grid, Bluecloud, AWS, Systems Napster, KaZaA, ChinaGrid, etc. and Microsoft Skype, JXTA Runner, Cray XT4, etc. Azure

Compute Clusters

- Integrati e strettamente accoppiati
- Gestione unica

Table 1.2 Clas	ification of Parallel and D	tributed Computing Systems			
Functionality, Applications	Computer Clusters [10,28,38]	eer-to-Peer letworks 34,46]	Data/ Computational Grids [6,18,51]	Cloud Platforms [1,9,11,12,30]	
Architecture, Network Connectivity, and Size	Network of compute nodes interconnected by SAN, LAN, or WAN hierarchically	lexible network f client machines gically onnected by an verlay network	Heterogeneous clusters interconnected by high-speed network links over selected resource sites	Virtualized cluster of servers over data centers via SLA	
Control and Resources Management	Homogeneous nodes with distributed control, running UNIX or Linux	utonomous ient nodes, free and out, with elf-organization	Centralized control, server- oriented with authenticated security	Dynamic resource provisioning of servers, storage, and networks	
Applications and Network-centric Services	High-performance computing, search engines, and web services, etc.	fost appealing to usiness file naring, content elivery, and ocial networking	Distributed supercomputing, global problem solving, and data center services	Upgraded web search, utility computing, and outsourced computing services	
Representative Operational Systems	Google search engine, SunBlade, IBM Road Runner, Cray XT4, etc.	inutella, eMule, itTorrent, apster, KaZaA, kype, JXTA	TeraGrid, GriPhyN, UK EGEE, D-Grid, ChinaGrid, etc.	Google App Engine, IBM Bluecloud, AWS, and Microsoft Azure	

Peer-to-Peer Networks

- Rete di sistemi molto debolmente connessi
- Calcolo tra peer, assolutamente collaborativo
- Basato su un overlay network

Table 1.2 Classification of Parallel		nd Distributed Computing		ystems		
Functionality, Applications	Computer Clusters [10,28,38]		Peer-to-Peer Networks [34,46]	ata/ omputational rids [6,18,51]	Cloud Platforms [1,9,11,12,30]	
Architecture, Network Connectivity, and Size	Network of compute nodes interconnected the SAN, LAN, or WAN hierarchically		Flexible network of client machines logically connected by an overlay network	eterogeneous usters terconnected by gh-speed etwork links over elected resource tes	Virtualized cluster of servers over data centers via SLA	
Control and Resources Management	Homogeneous nodes with distributed control, running UNIX or Linux	ı	Autonomous client nodes, free in and out, with self-organization	entralized ontrol, server- riented with uthenticated ecurity	Dynamic resource provisioning of servers, storage, and networks	
Applications and Network-centric Services	High-performand computing, search engines, and web service etc.		Most appealing to business file sharing, content delivery, and social networking	istributed upercomputing, obal problem olving, and data enter services	Upgraded web search, utility computing, and outsourced computing services	
Representative Operational Systems	Google search engine, SunBlac IBM Road Runner, Cray XT4, etc.		Gnutella, eMule, BitTorrent, Napster, KaZaA, Skype, JXTA	eraGrid, riPhyN, UK GEE, D-Grid, hinaGrid, etc.	Google App Engine, IBM Bluecloud, AWS, and Microsoft Azure	

Cosa si fa con il P2P

Table 1.5 Major Categories of P2P Network Families [46]					
System Features	Distributed File Sharing	Collaborative Platform	Distributed P2P Computing	P2P Platform	
Attractive Applications	Content distribution of MP3 music, video, open software, etc.	Instant messaging, collaborative design and gaming	Scientific exploration and social networking	Open networks for public resources	
Operational Problems	Loose security and serious online copyright violations	Lack of trust, disturbed by spam, privacy, and peer collusion	Security holes, selfish partners, and peer collusion	Lack of standards or protection protocols	
Example Systems	Gnutella, Napster, eMule, BitTorrent, Aimster, KaZaA, etc.	ICQ, AIM, Groove, Magi, Multiplayer Games, Skype, etc.	SETI@home, Geonome@home, etc.	JXTA, .NET, FightingAid@home, etc.	

Data/Computational Grids

- Infrastruttura che connette, computer, software, middleware, strumenti e utenti
- Piattaforme virtuali

Table 1.2 Classifica	Table 1.2 Classification of Parallel and Distributed Compu					
Functionality, Applications	Computer Clusters [10,28,38]	Peer-to-Peer Networks [34,46]		Data/ Computational Grids [6,18,51]	C	ud Platforms ,11,12,30]
Architecture, Network Connectivity, and Size	Network of compute nodes interconnected by SAN, LAN, or WAN hierarchically	Flexible network of client machines logically connected by an overlay network		Heterogeneous clusters interconnected by high-speed network links over selected resource sites	V od d S	ualized cluster ervers over a centers via
Control and Resources Management	Homogeneous nodes with distributed control, running UNIX or Linux	Autonomous client nodes, free in and out, with self-organization		Centralized control, server- oriented with authenticated security	D pi se ar	namic resource visioning of vers, storage, I networks
Applications and Network-centric Services	High-performance computing, search engines, and web services, etc.	Most appealing to business file sharing, content delivery, and social networking		Distributed supercomputing, global problem solving, and data center services	U se or or se	graded web rch, utility nputing, and sourced nputing vices
Representative Operational Systems	Google search engine, SunBlade, IBM Road Runner, Cray XT4, etc.	Gnutella, eMule, BitTorrent, Napster, KaZaA, Skype, JXTA		TeraGrid, GriPhyN, UK EGEE, D-Grid, ChinaGrid, etc.	G E B ar A	ogle App ine, IBM ecloud, AWS, I Microsoft ire

Cloud Platforms

- Cloud computing è realizzato da un pool di risorse offerte da computer virtualizzati
- Una cloud può offrire supporto a workload di tipo diverso
 - da batch style, backend
 - a workload interattivi e che gestiscono l'utente
- Caratteristiche:
 - calcolo ridondante
 - self-recovering
 - modelli di calcolo (e framework) altamente scalabili
 - tolleranti ai malfunzionamenti

Table 1.2 Classifica	ation of Parallel and I	Distributed Computing	g Systems	
Functionality, Applications	Computer Clusters [10,28,38]	Peer-to-Peer Networks [34,46]	Data/ Computational Grids [6,18,51]	Cloud Platforms [1,9,11,12,30]
Architecture, Network Connectivity, and Size	Network of compute nodes interconnected by SAN, LAN, or WAN hierarchically	Flexible network of client machines logically connected by an overlay network	Heterogeneous clusters interconnected by high-speed network links over selected resource sites	Virtualized cluster of servers over data centers via SLA
Control and Resources Management	Homogeneous nodes with distributed control, running UNIX or Linux	Autonomous client nodes, free in and out, with self-organization	Centralized control, server- oriented with authenticated security	Dynamic resource provisioning of servers, storage, and networks
Applications and Network-centric Services	High-performance computing, search engines, and web services, etc.	Most appealing to business file sharing, content delivery, and social networking	Distributed supercomputing, global problem solving, and data center services	Upgraded web search, utility computing, and outsourced computing services
Representative Operational Systems	Google search engine, SunBlade, IBM Road Runner, Cray XT4, etc.	Gnutella, eMule, BitTorrent, Napster, KaZaA, Skype, JXTA	TeraGrid, GriPhyN, UK EGEE, D-Grid, ChinaGrid, etc.	Google App Engine, IBM Bluecloud, AWS, and Microsoft Azure

Pool di risorse

I modelli del cloud: IaaS, Paas, SaaS

- Infrastructure as a Service (laaS):
 - l'utente noleggia un'infrastruttura

I modelli del cloud: IaaS, Paas, SaaS

- Infrastructure as a Service (laaS):
 - l'utente noleggia un'infrastruttura
- Platform as a Service (PaaS):
 - l'utente noleggia un ambiente per poter sviluppare e eseguire applicazioni su cloud
- Software as a Service (SaaS):
 - l'utente noleggia l'uso di software fornito (via web) dal cloud

SAAS, PAAS, IAAS

Un confronto

Email
CRM
Collaborative
ERP

CONSUME

PAAS
Platform
as a Service

Application Development
Decision Support

Web Streaming

BUILD ON IT

Infrastructure as a Service

Caching

Legacy File

Networking Technical

Security System Mgmt

MIGRATE TO IT

Separazione delle Responsabilita

Perché il cloud? 8 ragioni

- Spazi specificamente disegnati per il calcolo con protezione e efficienza energetica
- Condivisione di capacità di calcolo tra numerosi utenti, migliorando la utilizzazione
- Separazione del costo di manutenzione dal costo di sviluppo applicazioni
- Riduzione nel costo di calcolo, notevole rispetto al paradigma tradizionale
- 5. Ambienti di programmazione scalabili (big data)
- 6. Service discovery e content distribution
- Privacy e security
- Modelli di costo e di business ritagliati su necessità (on-demand)

Un approfondimento: Elasticity

- Fornire nuove risorse di calcolo da poter impiegare, in tempo brevissimo (minuti) invece che di settimane
- L'utilizzo delle macchine nei centri di calcolo nel mondo è tra il 5% e il 20%
 - Progettate per picchi di carico (fattore da 2 a 10 volte superiore al carico normale)
- Un esempio:
 - un servizio che richiede 500 server di picco (mezzogiorno) ma 100 a mezzanotte, con un carico normale di 300 server.
- Se paghiamo per poter gestire i picchi, paghiamo 500 x 24h al giorno, sottostimando l'uso delle risorse
 - normalmente di un fattore stimato intorno a 1.7 volte il costo pay-asyou-go

Esempio di non-elasticità (over- under-provisioning)

Mancanza di elasticita nel provisioning delle risorse

Cloud Computing e modelli di servizio

- Il Cloud come risorsa per l'economia
 - porta benefici a tutta la industria dei servizi
 - nuovo paradigma
 - particolare attenzione alla dinamicità della risposta alle necessità (altrettanto dinamiche)
- Nuovi player che entrano in gioco sul panorama mondiale grazie al Cloud
 - Da un lato, Microsoft, Apple, Oracle
 - Dall'altro, Google, Amazon ...

Public, Private e Hybrid Cloud

Il modello di utilizzo del Cloud

Classical Computing	Cloud Computing
(Repeat the following cycle every 18 months)	(Pay as you go per each service provided)
Buy and own	Subscribe
Hardware, system software, applications to meet peak needs	
Install, configure, test, verify, evaluate, manage	Use (Save about 80-95% of the total cost)
Use	(Finally)
	\$ - Pay for what you use
Pay \$\$\$\$\$ (High cost)	based on the QoS

Modelli di costo

- Il cloud sposta il costo da Capital expenses (CAPEX) a Operational Expenses (OPEX)
- CAPEX: costi fissi, investimenti notevoli, immobilizzazione di risorse
 - 1 utente o 100000 non fa (quasi) differenza
- OPEX: costi variabili che dipendono dal numero di utenti

Modelli di servizio: IaaS, PaaS e SaaS

Esempi di laaS

Table 4.1 Pub	lic Cloud Offerings of laaS [10,18]		
Cloud Name	VM Instance Capacity	API and Access Tools	Hypervisor, Guest OS
Amazon EC2	Each instance has 1–20 EC2 processors, 1.7–15 GB of memory, and 160–1.69 TB of storage.	CLI or web Service (WS) portal	Xen, Linux, Windows
GoGrid	Each instance has 1–6 CPUs, 0.5–8 GB of memory, and 30–480 GB of storage.	REST, Java, PHP, Python, Ruby	Xen, Linux, Windows
Rackspace Cloud	Each instance has a four-core CPU, 0.25–16 GB of memory, and 10–620 GB of storage.	REST, Python, PHP, Java, C#, .NET	Xen, Linux
FlexiScale in the UK	Each instance has 1-4 CPUs, 0.5-16 GB of memory, and 20-270 GB of storage.	web console	Xen, Linux, Windows
Joyent Cloud	Each instance has up to eight CPUs, 0.25–32 GB of memory, and 30–480 GB of storage.	No specific API, SSH, Virtual/Min	OS-level virtualization, OpenSolaris

Esempi di PaaS

Table 4.2 Five Public Cloud Offerings of PaaS [10,18]						
Cloud Name	Languages and Developer Tools	Programming Models Supported by Provider	Target Applications and Storage Option			
Google App Engine	Python, Java, and Eclipse-based IDE	MapReduce, web programming on demand	Web applications and BigTable storage			
Salesforce.com's Force.com	Apex, Edipse-based IDE, web-based Wizard	Workflow, Excel-like formula, Web programming on demand	Business applications such as CRM			
Microsoft Azure	.NET, Azure tools for MS Visual Studio	Unrestricted model	Enterprise and web applications			
Amazon Elastic MapReduce	Hive, Pig, Cascading, Java, Ruby, Perl, Python, PHP, R, C++	MapReduce	Data processing and e-commerce			
Aneka	.NET, stand-alone SDK	Threads, task, MapReduce	.NET enterprise applications, HPC			

Esempi di SaaS

- Software applicativo utilizzato via browser HTML
- Alcuni esempi:
 - Google Gmail, Docs, Photos, etc.
 - Microsoft Office365
 - Customer Relationship Management software da Salesforce.com

Conclusioni

- La conclusione di un (lungo) viaggio
- Calcolo scalabile su internet
- Modelli per il calcolo distribuito
- High Performance Computing
- Cloud Computing
- Conclusioni

Conclusioni

- La conclusione di un (lungo) viaggio
- Calcolo scalabile su internet
- Modelli per il calcolo distribuito
- High Performance Computing
- Cloud Computing
- Conclusioni