

Today:

- 1. Regular languages are closed under complement (-) and union (U)
- 2. NFAs
- 3. NFA-recognizable languages are closed under union (U), concatenation (o), and star (x)

Languages are sets of

Strings, which are finite sequences of charcters from finite alphabets.

DFAs take input strings from a fired alphabet, follow (->) one transition per character, and accept/reject.
DFAs can be written as 5-tuple: (Q, Z, S, go, F) accept states) States alphabet transition start state function Given a DFA D, L(D) denotes the set of strans D accepts, otherwise known as the language of / recognized by D
Regular Pec. by DFA non-regular? Regular Operations
2: If A is a regular language, is the complement A regular? (some DFA with respect to all strings over 5?
Prop. If A is regular, A is regular. Proof. Let DA be a DFA that recognizes A. Lif(Q, Z, S, 80, FA)

$$\{0,1\}^* = \{E, 0, 1, \infty, 01, 10, 11, 000, \dots\}$$

$$33^* = 5^* = 52$$

$$5e = 72$$

Know: A, B regular Will follow: (ANB)* B

Proposition. If A,B regular languages, AUB is regular,

Puzzle. $A = \begin{cases} x \in \{0, 1\}^* \mid x \text{ has af least one 0} \end{cases}$ $B = \{ x \in \{0, 1\}^* \mid |x| \text{ is even} \}$ $C = \{ x \in \{0, 1\}^* \mid x \text{ ends in } 1\}$

Q: Find a DFA for (1) AUB, (2) BUC, (3)* AUC.

Proof. If A, B regular languages, then AUB regular.

Let A, B be regular languages w/ DFAs

Will build a new DFA,

Main idea: One state for each pair in QxQ2.

Z some

for n: AND

For $(r_1, r_2) \in \mathcal{O}$, $a \in \mathbb{Z}$: $S((r_1, r_2), a) = (S(r_1, a), S(r_2, a))$.
Claim: If WEAUB, then DAUB accepts W.
say we A w. 1. o.g. then, the first coordinate of the sequence of states computed when Daub runs on w is the same as the sequence of states when Da runs on w. Since Da accepte w, Daub ends on pair whose first
computed when DAUB runs on w is the same as the
sequence of states when I rom on a. Size Da accepte w. Daub ends on pair whose first
element is on accept state for DA.
CI. If () & ADB VAUB (FIGHT W).
- $\omega \notin A$, so running D_{AUB} on ω ends at some state (r_1, r_2) - $\omega \notin B$, (r_1, r_2) with $r_1 \notin F_1$.
- W & B, W 12 & F2
So Daub on wends in state (r_1, r_2) with $r_1 \notin F_1, r_2 \notin F_2$ $(r_1, r_2) \notin F$.
Corollary for 1. By substituting AND
F = {(r, r ₂) r, eF, ox r ₂ eF ₂ }.
Now, we accept if and only if DA, DB both accept,
equivalently, we ANB.
Conclusion: The regular languages are closed under U, M.
Break until 3:10
Closur under concatenation (0)?
D or star (*)?
$\frac{D_2}{D_2}$
$\downarrow 0 \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad (2)$

•

Nondeterminism (NFAs.)

think: "making lucky guesses"
"try multiple options at once,
accept if anything works."

 $C = \{x \mid x \in \{1\}^{*}, |x| \text{ is odd or } |x| = 2\}$

branch death

NFA acceptance: An NFA accepts a string w if there exists some valid sequence of transitions that ends in an accept state.

(91,0)
92

Formally: we'll change $S: Q \times Z \rightarrow Q$ $\{8, 183\}$ $S: Q \times Z \rightarrow P(Q)$

P(Q) is the "power set" of Q: the set of all subsets of Q. $P(Q) = \{R \mid R \subseteq Q\}$ $P(\{a,b\}) = \{\{a\}, \{b\}, \{a,b\}, \emptyset\}\}$

(B) 1 >

(8) S(gr, 1) = B "The branch dies"

$$N = (Q, Z, S, v, F)$$

$$Q = \{v, S, t, u, p, r, \omega\}$$

$$Z = \{0, 1\}$$

$$F = \{u, p\}$$

$$\begin{cases} v & s & t & u & p & r & \omega \\ 0 & \emptyset & \{s\} & [u] & \{p\} & \emptyset & \{\omega\} & \{r\} \\ 1 & \emptyset & \{s, t\} & \{u\} & \{p\} & \emptyset & \{\omega\} & \{r\} \\ \xi & \{s, r\} & \emptyset & \emptyset & \emptyset & \emptyset \end{cases}$$

Theorem: If A, B are NFA-recognizable, AB = {xy | x \in A, y \in B} is NFA-recognizable.

Proof: Let A=L(NA), B=L(NB).

Well build NAB to recognize AB.

(1) Turn NA's accept states into regular states.

(2) Add E-transitions from NA's accept states to NB's start state.

Claim: If x e A, y e B, NAB accept xy.

Prof: Some branch reaches NA's accept state on x; then, some branch takes the E-transition and reaches

Claim: IF NAB accepts some string w, we AB. Nos accept state on y.

By definition, w= wow, wiewere wo, where

wo ... wi reaches an accept state in NB and with ... we reaches an accept state in NB

Bydef, wo. wieA, will. wneB, soweAB.

Summary:

- 1. Reg. languages closed under complement (-) and union (U)
- 2. NFAs: "lecky guessers" or "branching programs"
- 3. NFA-racognizable languages closed under concat (0). Next time: union (U) and star (x).

Remnders:

- My O hours 2 5:30, Zoom
- HWI Due Mon 2 17:59 PM

For
$$(r_1, r_2) \in Q$$
: $S(\underline{(r_1, r_2)}, \underline{a}) = (\underline{S_1(r_1, a)}, \underline{S_2(r_2, a)})$
 $Q \times Z$
 $Q \times Z$