Conectividade em Sistemas Ciberfísicos

Lista de Exercícios I

Exercícios sobre Introdução a S.O, Processos e Threads

Exercício 1: Relacione corretamente as definições dos mecanismos de gerenciamento de recursos do S.O.

- Gerencia de Processos
- Gerencia de Memória
- 3. Gerencia de E/S
- Gerencia de Armazenamento
- 5. n.d.a

Exercício 2. Indique as afirmações corretas sobre o gerenciamento de processos

- Processos que efetuam operações de E/S, como leitura em disco, são colocados em estado de espera até que a operação seja completada.
- II. A recepção de pacotes pela rede, através de chamadas de sockets, são exemplos de operação que colocam processos em estado de espera.
- III. Processos que realizam muitas operações de E/S consomem muito tempo de CPU.
- IV. Processos relacionados a programas de inteligência artificial, como treinamento de redes neurais, realizam poucas operações de E/S e por isso consome muito tempo de CPU enquanto estão ativos.
- V. Programas que estão em estado de espera não consome CPU, mas eles consomem memória até que sejam terminados.

Exercício 3. Indique as afirmações corretas sobre a diferença entre escalonamento cooperativo e preemptivo

- I. O algoritmo que determina em um dado momento qual processo irá ganhar tempo de CPU é denominado <u>algoritmo de</u> escalonamento
- II. O termo <u>troca de contexto</u> refere-se a mudança de estado de uma CPU quando o processo que está sendo executado é substituído por outro.
- III. No escalonamento <u>cooperativo</u> (ou não preemptivo), a troca de contexto acontece apenas quando um processo executa uma operação de E/S.
- IV. No escalomanto <u>preemptivo</u>, a troca de contexto ocorre através de interrupções, que limitam o tempo que um processo pode ocupar tempo de CPU.
- V. O escalonamento <u>cooperativo</u> pode ser <u>mais eficiente</u> que o escalonamento preemptivo, uma vez que ocorrem menos trocas de contexto.

Exercício 4. Indique as diferenças entre processos e threads.

- 1. Processo
- 2. Thread
- 3. Ambos
- 4. Nenhum dos dois

Exercício 5. Considerando as características dos processos e threads relacione as colunas.

-) Desenvolver um servidor TCP onde o número de clientes conectados a cada instante é muito variável.) Desenvolver um programa com um número fixo de componentes (funções) que são executados de forma paralela.) Desenvolver um programa com um número fixo de componentes (funções) que são executados de forma paralela, e a falha de um componente não pode afetar os demais.) Utilizar os recursos de um processador com múltiplos cores.) Desenvoler um programa cujos componentes são executados de forma paralela em computadores diferentes.
- Apenas Threads
- Melhor Threads
- 3. Penas Processos
- 4. Apenas Processos
- 5. Indiferente
- 6. Nenhum dos dois