Design of Wind Energy Systems

CIP Tutorial 6b Hints for the calculation of extreme loads

Prof. Dr. M. Kühn

ForWind – Wind Energy Systems

Topics

- Extreme loads
- Load analysis FAST
- Summary

No reproduction, publication or dissemination of this material is authorized, except with written consent of the author.

Oldenburg, June 2016

Prof. Dr. Martin Kühn

Extreme damage vs. fatigue damage

- Extreme damage leads to exceedance of strength durability
- Extreme loads lead in this case to the failure of a component or the whole structure
- Extreme loads table used for detailed component tests

Extreme load – safety factors

- Safety factor / design principles:
 - Fail-safe: component may fail without failure of the whole system (safe operation or can be brought to safe state in case of a failure)
 - Safe-life: Component will not fail until replaced after defined time
 - Damage-tolerant: component can sustain defects until repair is possible

Safety factor defined for both material and load side, depending on design

principle

Safety factor here: 1

Extreme load cases – combinations

		External conditions					
		Normal	Extreme	Other			
Operational conditions	Normal operation	Production (1.2),	Production (1.1, 1.3,1.5) Park (6.1-6.3), Start (3.2, 3.3), Stop (4.2)				
	Failure	Production (2.1, 2.2, 2.4)	Production (2.3), Park and fault (7.1)				
	Transport, assembly, maintenance			Designer selection (8.1)			

Load cases (IEC 61400-1)

DLC (design load cases) are formed by:

- Turbine operation status
 - Production, fault, start, stop, etc.
- Wind conditions
 - Normal, extreme (1-y,50-y return)
 - Turbulence, shear, direction
- Other conditions
 - Grid, control failure
- Type of analysis
 - Fatigue, extreme

Design situation	DLC	'	Vind condition	Other conditions	Type of analysis	Partial safety factor 8
1) Power production	1.1	NTM	$V_{in} < V_{hub} < V_{out}$	For extrapolation of extreme events	U	N
	1.2	NTM	$V_{in} < V_{hub} < V_{out}$		F	•
	1.3	ETM	$V_{in} < V_{hub} < V_{out}$		U	N
	1.4	ECD	$V_{rub} = V_r-2m/s$, V_r , V_r+2m/s		U	N
	1.5	EWS	$V_{in} < V_{hub} < V_{out}$		U	N
2) Power production plus occurrence of	2.1	NTM	$V_{in} < V_{hub} < V_{out}$	Control system fault or loss of electrical network	U	N
fault	2.2	NTM	$V_{in} < V_{hub} < V_{out}$	Protection system or preceding internal electrical fault	U	Α
	2.3	EOG	$V_{\text{bub}} = V_{r\pm}2m/s$ and V_{out}	External or internal electrical fault including loss of electrical network	U	Α
	2.4	NTM	$V_{in} < V_{hub} < V_{out}$	Control, protection, or electrical system faults including loss of electrical network	F	•
3) Start up	3.1	NWP	$V_{in} < V_{hub} < V_{out}$		F	•
	3.2	EOG	$V_{\text{hub}} = V_{\text{in}}, V_{r\pm}2m/s$ and V_{out}		U	N
	3.3	EDC	$V_{tub} = V_{in}, V_{r\pm}2m/s$ and V_{out}		U	N
4) Normal shut down	4.1	NWP	$V_{in} \leq V_{hub} \leq V_{out}$		F	•
	4.2	EOG	$V_{bub} = V_{r\pm}2m/s$ and V_{out}		U	N
5) Emergency shut down	5.1	NTM	$V_{\text{hub}} = V_{r\pm}2m/s$ and V_{out}		U	N
6) Parked (standing still or idling)	6.1	EWM	50 year recur. Period		U	N
	6.2	EWM	50 year recur. Period.	Loss of electrical network connection	U	Α
	6.3	EWM	1 year recur. Period	Extreme yaw misalignment	U	N
	6.4	NTM	V _{hub} < 0.7 V _{ref}		F	•
7) Parked and fault conditions	7.1	EWM	1 year recur. period		U	Α
Transport, assembly, mainte- nance and repair	8.1	NTM	V _{ment} to be stated by the manufacturer		U	Т
	8.2	EWM	1 year recur. period		U	Α

Extreme load cases – in CIP tutorial

Design situation	DLC	Wind condition	Wind speed	Other conditions	Type of analysis	Partial safety factors
Power production	1.5	EWS	Vin <vhub<vout< td=""><td></td><td>U</td><td>N</td></vhub<vout<>		U	N
Power production & fault	2.3	EOG	Vr±2 m/s & Vout	External or internal electrical fault including loss of electrical network	U	А

Extreme load – power production

- DLC 1.5 Load case requirements:
 - I. "In this design situation, a wind turbine is running and connected to the electric load..."
 - II. "... and DLC 1.5 specify transient cases that have been selected as potentially critical events in the life of a wind turbine."
 - III. Examples of extreme vertical wind shear:

Extreme load – power production & fault

- DLC 2.3 Load case requirements:
 - I. "This design situation involves a transient event triggered by a fault or the loss of electrical network connection while the turbine is producing power"
 - II. "For DLC 2.3 the potentially significant wind event, EOG, is combined with an internal or external electrical system fault (including loss of electrical network connection) and considered as an abnormal event"
 - ☐ We will stop the machine, and thus assume no significant fatigue damage

EOG – 1 year return period

EOG – 50 year return period

Extreme load case table

 Example of extreme load case table for tower top loads analysis

FAST manual

K₂-System (tower top, fixed yaw system), incl. Load safety factors

	Load case	F _x	F _y	F _z	M _×	M_{y}	M_z	$\mathbf{F}_{\mathbf{r}}$	M _r	TimeSer	$\mathbf{S}_{\mathrm{f_load}}$
]	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[kNm]		
Min	1.5	-496.92	-24.76	-1174.90	-13.34	-1651.40	-678.42			15_vr_y00_c_00	1.35
Max	1.5	491.70	-12.84	-1207.90	1714.90	104.09	-137.95			15_vr_Yp8_d_30	1.35
Min	6.1	26.16	-471.53	-1166.00	701.73	-645.26	1460.50			61_m08_05	1.35
Max	6.1	9.19	493.39	-1117.80	-604.94	-450.69	-296.17			61_p08_04	1.35
Min	8.1	12.87	22.39	-1387.30	815.93	-1146.80	90.84			81_646_120	1.50
Max	7.1	32.25	23.57	-789.70	-103.77	-52.62	-995.97			71m8_605_03	1.10
FRMax	1.5	-496.92	-24.76	-1174.90	-13.34	-1651.40	-678.42	497.5		15_vr_y00_c_00	1.35
Min	8.1	-25.71	-19.17	-1340.70	-1582.00	-1155.60	220.13			81_627	1.50
Max	8.2	14.18	-31.02	-936.36	2292.40	-832.08	66.76			82_5	1.10
Min	1.3	-118.83	74.05	-1195.20	400.06	-4645.80	-567.36			13_vr_dp_60_p8	1.35
Max	2.2	-52.20	-39.47	-935.38	75.13	3013.50	182.09			22_vr_m8_120	1.10
Min	2.2	-152.39	14.57	-943.79	-338.85	-561.57	-3825.00			22_vr_00_30	1.10
Max	2.2	69.87	-87.39	-986.14	456.04	-532.34	3893.80			22_vr_p8_210	1.10
MRMax	1.3	-118.83	74.05	-1195.20	400.06	-4645.80	-567.36		4662.99	13_vr_dp_60_p8	1.35

Example table

Extreme loads - CIP tutorial

- Example of extreme load case table in DoWES class
- Include:
 - Min / Max values
 - Forces / Moments
 - Load cases

Note: coordinate systems can be found in FAST users guide

Sensor	Unit	Min/Max	DLC x	DLC x	DLC x
RootMxc2	kNm	Min Max			
RootMyc2	kNm	Min Max			
RootMzc2	kNm	Min Max			
RootFxc2	kN	Min Max			
RootFxy2	kN	Min Max			
RootFxz2	kN	Min Max			
TwrBsMxt	kNm	Min Max			
TwrBsMyt	kNm	Min Max			
TwrBsMzt	kNm	Min Max			
TwrBsFxt	kNm	Min Max			
TwrBsFyt	kNm	Min Max			
TwrBsFzt	kN	Min Max			

Load analysis – FAST

- Overview
- Test case
- Load calculation

NREL National Renewable Energy Laboratory

Innovation for Our Energy Future

Technical Report NREL/EL-500-38230 August 2005

Test case - FAST (1/5)

- 1. Unpack zip folder as C:\ FASTextreme
- 2. Explore folder; it contains:
 - FAST.exe executable
 - *.fst main input file & reference to other input files
 - *_blade.dat & *_tower.dat, Pitch.ipt –other input files
 - *_AD.ipt Aerodynamics & reference to wind file
 - Folders with airfoils & wind files
 - Matlab script & folder with functions

FAST folder

Test case – FAST (2/5)

- 3. In DOS prompt go to directory where FAST has been installed (see 1)
 - a) Run input files one by one or...
 - b) Run input files in a batch mode, for example:

 FAST_extreme.bat

NOTE: for your own turbine, update wind files (\windExtreme\IEC.ipt) and run IECwind

- FAST, AeroDyn and IECwind user manuals
- Specific instructions in Stud.IP
- Windfiles: \windExtreme\IECwind.exe

Test case - FAST (3/5)

- Review results in folder:
 - Test_*.opt AeroDyn echo
 - Test_*.fsm FAST summary
 - Test_*.out FAST output file
- 5. Review results in Test_*.out file:
 - Results in columns: first one is time, followed by wind speed and all other outputs, at the bottom of input file
 Test *.fst

FAST output files in folder

5

FAST main output file

Test case - FAST (4/5)

- 6. Analyse results (timeseries) using Matlab script in folder:
 - PlotFastTimeseries.m
- 7. Timeseries statistics (a) & damage equivalent loads (b) can be read directly from Matlab workspace

Damage_Eq_Loads <1x1 struct> Field A Value RootMFlp_Req Workspace 606.9395 7b Value RootMFlp_m 10 RootMedg Reg 790.7247 ■ Damage_Eq_Loads <1x1 struct> FAST_output_file_... 'C:\FAST\Test_ RootMedg m FAST_results <1x1 struct> TwrBsMyt_Req 2.0539e+03 TwrBsMyt_m TwrBsMxt Rea 1.1630e+03 TwrBsMxt_m

7a

Field 📤	Value	Min	Max	Mean	Std
() header	<1x13 cell>				
☐ Time	<12001x1 double>	60	660	360	173.2267
→ WindVxi	<12001x1 double>	9.0490	21.8600	14.9613	1.9743
₩indVyi	<12001x1 double>	-5.1720	4.4750	-0.0479	1.3500
₩indVzi	<12001x1 double>	-3.5220	2.8440	-0.0060	0.8048
RootMFlp2	<12001x1 double>	31.5700	1482	802.9375	215.2980
RootMedg2	<12001x1 double>	-497.3000	572.4000	26.5339	316.1732
RotThrust	<12001x1 double>	97.3200	212.2000	151.6548	18.5404
RotSpeed	<12001x1 double>	19.4800	21.4500	20.4751	0.3443
TwrBsMyt	<12001x1 double>	4814	15330	9.9923e+03	1.6872e+0
TwrBsMxt	<12001x1 double>	-1110	2728	801.4473	543.3289
☐ GenPwr	<12001x1 double>	1294	1572	1.4818e+03	49.8799
☐ GenTq	<12001x1 double>	7.5900	8.3770	8.2679	0.1528
BldPitch2	<12001x1 double>	7.4160	20.5700	14.1270	2.7531

Test case – FAST (5/5)

Rated power

8. Rename folders simplify track of outputs (example with: EOG_50)

9. Description of outputs in Turbine_*.fst

Name	▼ Änderungsd
📗 airfoils	7/21/2014 7:
■ EOG_01	7/18/2014 11
■ EOG_50	7/21/2014 5:
■ EWSVR	7/18/2014 2:
MatlabFunctions	7/21/2014 7:
windExtreme	7/21/2014 7:
C FAST	2/22/2012 8:
FAST_extreme	7/21/2014 7:

Test case - FAST (5/5)

Rated power

8. Rename folders simplify track of outputs (example with: EOG_50)

9. Description of outputs in Turbine_*.fst

Name	▼ Änderungsd
📗 airfoils	7/21/2014 7:
■ EOG_01	7/18/2014 11
■ EOG_50	7/21/2014 5:
■ EWSVR	7/18/2014 2:
MatlabFunctions	7/21/2014 7:
windExtreme	7/21/2014 7:
C FAST	2/22/2012 8:
FAST_extreme	7/21/2014 7:

Test case - FAST (5/5)

Rated power

8. Rename folders simplify track of outputs (example with: EOG_50)

9. Description of outputs in Turbine_*.fst

Name	¥	Änderungsd
\mu airfoils		7/21/2014 7:
BEOG_01		7/18/2014 11
■ EOG_50		7/21/2014 5:
■ EWSVR		7/18/2014 2:
MatlabFunctions		7/21/2014 7:
windExtreme		7/21/2014 7:
C FAST		2/22/2012 8:
FAST_extreme		7/21/2014 7:

Test case - FAST (5/5)

Rated power

8. Rename folders simplify track of outputs (example with: EOG_50)

9. Description of outputs in Turbine_*.fst

Name	Änderungsd
🖟 airfoils	7/21/2014 7:
■ EOG_01	7/18/2014 11
■ EOG_50	7/21/2014 5:
■ EWSVR	7/18/2014 2:
MatlabFunctions	7/21/2014 7:
퉮 windExtreme	7/21/2014 7:
C FAST	2/22/2012 8:
FAST_extreme	7/21/2014 7:

Test case – FAST (5/5)

Rated power

Rename folders simplify track of outputs (example with: EOG_50)

Description of outputs in Turbine_*.fst

Name	-	Änderungsd
\mu airfoils		7/21/2014 7:
■ EOG_01		7/18/2014 11
■ EOG_50		7/21/2014 5:
■ EWSVR		7/18/2014 2:
MatlabFunctions		7/21/2014 7:
windExtreme		7/21/2014 7:
C FAST		2/22/2012 8:
FAST_extreme		7/21/2014 7:

8

note:

update brake torque in FAST input file *.fst: HSSBrTqF >> VS RtTq

210.0 210.5 9214.24 212.5

TimGenOf HSSBrMode THSSBrDp **HSSBrTqF** HSSBrDT

- Time to turn off the generator (s) [u:
- HSS brake model {1: simple, 2: user-d Time to initiate deployment of the HS:
- Fully deployed HSS-brake torque (N-m)
- Time for HSS-brake to reach full depl

Summary

- We reviewed the use of extreme loads
- We reviewed the main combinations that make the design load cases
- We ran two load cases to create an extreme load table

Extreme load in IEC standard

Extreme operating gust in the IEC standard:

$$V_{\text{Gust}} = Min \left\{ 1.35 \cdot \left(V_{e1} - V_{hub} \right); \ 3.3 \cdot \left(\frac{\sigma_1}{1 + 0.1 \cdot \left(\frac{D}{\Lambda_1} \right)} \right) \right\}$$

where

$$\sigma_1 = I_{ref} \left(0.75 \cdot v_{hub} + 5.6 \frac{m}{s} \right)$$

 Λ_1 = turbulence scale parameter = 42m for $z_{hub} \ge 60m$

D = rotor diameter

Extreme wind speed with 1 year / 50 years recurrence

$$V_{e50}(z) = 1.4 \cdot V_{ref} \cdot \left(\frac{z}{z_{hub}}\right)^{0.11}$$

where

 V_{ref} = reference wind speed according to IEC type class

$$V_{e1}(z) = 0.8 \cdot V_{e50}(z)$$

Extreme load in IEC standard

Wind speed during extreme operating gust:

$$V(z,t) = \begin{cases} V(z) - 0.37 \cdot V_{\text{gust}} \sin\left(\frac{3\pi \cdot t}{T}\right) \cdot \left(1 - \cos\left(\frac{2\pi \cdot t}{T}\right)\right) & \text{for } 0 \le t \le T \\ V(z) & \text{otherwise} \end{cases}$$

where

$$T = 10.5s$$

$$V(z) = V_{hub} \left(\frac{z}{z_{hub}}\right)^{\alpha}$$
 with $\alpha = 0.2$

