Projeto 3 - Efeito Estufa e Aquecimento Global

•••

IE323A - Tópicos em Eletrônica

Prof. Dr. Fabiano Fruett

Aluno: Victor Anthony Teixeira dos Santos - 206467

Tópicos:

- Resumo
- Objetivo
- Itens da BNCC contemplados
- Recursos utilizados
- Códigos
- Hardware
- Dashboard
- Experimento

Resumo

Projeto:

 Experimento que possibilita o aluno entender o efeito estufa e o aquecimento global, e suas consequências.

Objetivo:

 A ideia é que os professores possam usar a BitDogLab para complementar o que foi passado em aula, de forma que possa facilitar a melhor visualização do aluno sobre o conteúdo a ser estudado.

Resumo

Projeto:

 Experimento que possibilita o aluno entender o efeito estufa e o aquecimento global, e suas consequências.

Objetivo:

 A ideia é que os professores possam usar a BitDogLab para complementar o que foi passado em aula, de forma que possa facilitar a melhor visualização do aluno sobre o conteúdo a ser estudado.

Itens BNCC Contemplados - Habilidade

(EFO7CI12) Demonstrar que o ar é uma mistura de gases, identificando sua composição, e discutir fenômenos naturais ou antrópicos que podem alterar essa composição.

(EFO7CI13) Descrever o mecanismo natural do efeito estufa, seu papel fundamental para o desenvolvimento da vida na Terra, discutir as ações humanas responsáveis pelo seu aumento artificial (queima dos combustíveis fósseis, desmatamento, queimadas etc.) e selecionar e implementar propostas para a reversão ou controle desse quadro.

Recursos utilizados

Recursos on-board:

Display Oled

Botão

Matriz RGB

Buzzer

Recursos off-board:

2 x Sensores de Umidade e Temperatura BME680

16 x Cabos groove 20cm

2 x Conectores para cabo groove

1 x Sensor HC05

1 x PCB adapatada IDC HC05

Sensores - BME680 e HC05

O sensor BME680 é um dispositivo que combina sensores de temperatura, umidade relativa, pressão atmosférica, e um sensor de gás (para medir compostos orgânicos voláteis, ou VOCs).

O HC-05 é um módulo Bluetooth clássico que permite comunicação sem fio via tecnologia Bluetooth.

Códigos

Explicação do Código

Hardware

Dashboard

Experimento

Dois ambientes:

Arborizado x Sem árvore

Objetivo: Comparar a temperatura, antes e após a exposição no sol. A partir disso, fazer uma discussão sobre efeito estufa e aquecimento global.

Experimento - Preparação/Montagem

Experimento - Medição Inicial

Screen1

Leitura Dados BME680

Sensor: S1

Temp: 33.34 °C Umid: 41.64 % Pressao: 935.47 hPa

Gas: 69.52 kOhms

Sensor: S2

Temp: 32.13 °C Umid: 72.01 % Pressao: 935.77 hPa Gas: 66.48 kOhms

Conectar

Dispositivo Conectado

Experimento - Levar ambientes para o sol

Experimento - Medição após 30 minutos

Observações importantes:

- Não esquecer de carregar a biblioteca do BME680
- Ficar atento com os pinos da comunicação I2C.
- Ficar atento para conectar corretamente os sensores.
- Ficar atento ao ligar os pinos do I2C com os pinos do sensor BME680.
- Caso seja necessário aumentar fio, ficar atento para ligar Vcc o Vcc , GND o GND, SLC
 - \rightarrow SLC e SDA \rightarrow SDA
- Sensor HCO5 Alimentação 5V
- $\overline{-}$ $\overline{\mathsf{TX}} \rightarrow \overline{\mathsf{RX}} \times \overline{\mathsf{RX}} \rightarrow \overline{\mathsf{TX}} /$

I2C1 - GPIOS GPIO3 -SCL GPIO2- SDA VCC- 3.3V GND - GND

I2C0 - GPIOS GPIO0 - SDA GPIO1- SCL VCC- 3.3V GND - GND

FIM

Estou à disposição para dúvidas, questionamentos e sugestões!

Muito obrigado pela atenção!