SOLUÇÕES PARA O PROBLEMA DE CORTE EM EMPACOTAMENTO

INTRODUÇÃO AO PROBLEMA

- Problema comum em industrias
- Maximizar o uso de espaço
- Problemas de classe NP-difícil
- Soluções datadas da década de 60

• O problema consiste em posicionar estrategicamente as peças para evitar desperdício

FECHO CONVEXO

 O fecho convexo pode ser entendido como o menor poligono convexo que abrenge um determinado conjunto de pontos

- Uma meta-heurística
- A fase de contrução gera uma solução gulosa e aleatoria
- A fase de busca local tenta melhorar a solução encontrada

• Dataset de peças da LOCO (LABORATORY OF OPTIMIZATION AND COMBINATORICS) - Unicamp

NUMERO DE PEÇAS	DIMENSÕES DA AREA
12	38 x 34
25	40 x 13
25	70 x 28.2
43	40 x 63
43	40 x 59
28	15 x 27.3
16	100 x 138.12
10	100 x 134.05
24	49000 x 10122.63
30	60 x 65.6
20	2550 x 2058.6
24	104 x 83.6
	12 25 25 43 43 28 16 10 24 30

ALGORÍTIMO BASE VARREDURA

- Baseado na heuristica bottom-left-fill (BLF) [2]
- Busca a primeiro posição disponivel para a peça
- Percorre a área até encontrar a primeira posição disponível

PROBLEMA

- Não possui medidas avaliativas
- Depende de uma pré-ordenação

Ordenação por tamanho: 73%

Sem ordenação: 62%

PRIMEIRO ALGORÍTIMO

- Um aprofundamento da varredura
- Foi implementado um algoritimo guloso com uma função de custo [1]

- Dado uma peça base, o algoritimo começa a ser executado
- O algoritimo escolhe a peça que teve o maior preenchimento do fecho convexo

PROBLEMA

- O algoritimo cria uma pilha inicial com alto preenchimento do fecho convexo
- Após a primeira pilha, o algoritimo deixa de escolher a peça que melhor preenche o fecho convexo, e busca peças que menos aumentam o tamanho dele

SEGUNDO ALGORÍTIMO Greedy Column Generation

- Utiliza o que o segunda algoritimo ha de melhor: gerar colunas compactas
- Se baseia no conceito de geração de colunas [1] [3]
- Limita a area de varredura pela peça base

Função de Custo

• A função de custo é a multiplicação entre o preenchimento da coluna, o preenchimento do fecho convexo e o numero de peças posicionadas

ALGORÍTIMO

Note: cada peça posicionada é aquela que teve o maior preenchimento do fecho convexo

RESULTADOS

GCG_Instancias V					
Tτ Nome ~	Тт Área de Corte	% GCG ~	% GRASP 🗸	# Peças Disponíveis 🗸	
FU	34x38	100%	100%	12	
JACKOBS1	13x40	100%	100%	25	
JACKOBS2	28.2x70	100%	100%	25	
SHAPES2	27.3x15	89,28%	92,8%	28	
DIGHE1	138.13x100	93,75%	100%	16	
DIGHE2	134.05x100	100%	100%	10	
ALBANO	101x49	95,83%	95,83%	24	
DAGLI	65.6x60	96,66%	96,66%	30	
MAO	20.58x25.50	95%	100%	20	
MARQUES	83.6x104	87,5%	100%	24	

RESULTADOS

jackobs1

jackobs2

RESULTADOS

mao

dighe2

albano [4]

PROXIMO PASSO APRENDIZADO POR REFORÇO

REINFORCEMENT LEARNING

novo estado(s)

recompensa(r)

AGENTE

ação(a)

AMBIENTE

PROXIMAL POLICY OPTIMIZATION (PPO)

- Desenvolvido pela OpenAi em 2017
- Possui duas redes neurais, uma para a política e outra para a função valor
- Busca maximizar a recompensa esperada
- A política é a estratégia que o agente usa para tomar decisões

VANTAGEM DO APRENDIZADO POR REFORÇO

- Capaz de lidar com ambientes nunca vistos
- O resultado final é extremamente generalista
- Entretanto, mais dificil de implementar

NO MOMENTO

• O modelo posiciona 10/12 peças, preenchendo 75%

PLANOS

130x130

PLANOS

125x125

Referencias:

[1] Del Valle, A. M., Queiroz, T. A., Miyazawa, F. K., & Xavier, E. C. (2012). Heuristics for Two Dimensional Knapsack and Cutting Stock Problems with Items of Irregular Shape. Disponivel em: , 39(16), 12589-12598 Acesso em: 20 de maio de 2024.

[2] Xu, Y. (2016). An Efficient Heuristic Approach for Irregular Cutting Stock Problem in Ship Building Industry. Mathematical Problems in Engineering. Disponivel em: 2016, Article ID 8703782 Acesso em: 24 de maio de 2024.

[3] Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem. Acesso em: 23 de maio de 2024.

[4] ALBANO, Antonio (1980). Optimal allocation of two-dimensional irregular shapes using heuristic search methods. Acesso em 28 de julho de 2024