Contents

 $1 \ 05/25/21$

$1 \quad 05/25/21$

TODO Fill in the calculation of the inclination.

We start with the solution for the inner orbit's inclination

$$\mathcal{I}(t) = Ae^{ig_I t} + Be^{ig_{II} t},\tag{1}$$

where A and B are generally complex (A can be chosen to be real by choosing the initial phase). If we seek a CS with the frequency g_I , then we can go to the corotating frame, in which case

$$\mathcal{I}_{\text{rot}}(t) = I_0 + Be^{i(g_{II} - g_I)t}.$$
 (2)

With appropriate choice of initial time/phase, B can be chosen to be real as well. Define $g' = g_{II} - g_I$. Intuitively, there are four cases near CS2:

- If $I_0 > B$ and $g' \gg \omega_{\text{lib}}$, we should see small oscillations about CS2 (as $\hat{\mathbf{l}}_p$ effectively is "vibrating"), which average out.
- If $I_0 > B$ and $g' \ll \omega_{\text{lib}}$, then adiabatic resonance advection means that the trajectory should encircle CS2 with constant phase space area as CS2 moves around slightly.
- If $I_0 < B$ and $g' \gg \omega_{\text{lib}}$, note that $\hat{\mathbf{l}}_p$ is *circulating*; probably precesses about average.
- If $I_0 < B$ and $g' \ll \omega_{\text{lib}}$, then there should be no resonance, as CS2 itself is circulating; there is no librating resonant angle.