uem-logo.png

Gabriel

Engenharia do Trabalho
Estudo de tempos e métodos em diferentes linhas de montagem

Maringá, Paraná

Novembro de 2020

Gabriel

Engenharia do Trabalho Estudo de tempos e métodos em diferentes linhas de montagem

LogoUEM. jpg
"Engenharia: onde os nobres semi-hábeis trabalhadores executam a visão daqueles que imaginam e sonham"

Universidade Estadual de Maringá - UEM

Maringá, Paraná Novembro de 2020

Sumário

LogoUEM.jpg

0.1 Introdução

O trabalho consiste em uma cronoanálise da confecção de um barco de papel comparando 3 tipos diferentes de linha de montagem. A primeira sendo operários separados, a segunda em linha de acordo com a melhor eficiencia e a terceira com uma linha desbalanceada já definida, todas com 3 funcionários. Os passos para montagem do barco se encontram na Figura ??.

Figura 1 – Montagem do barco de papel

Foram definidos os tempos padrões para as diversas linhas de montagem e calculados os lead times e takt times de acordo com certa demanda e por fim são comparadas as linhas de montagem. Assim, pode-se obter o resultado da melhor linha de produção e calcular a produtividade de tal de acordo com uma dada jornada de trabalho. Além disso, ainda foram estudadas as curvas de aprendizagem dos operários e discutidos os problemas das linhas.

0.2 Revisão de Literatura

Os operários foram separados de acordo com as etapas do processo, sendo que três tipos de processos foram testados e analisados para se calcular o mais eficiente, sendo esses tipos:

- **1.** Operários realizando a montagem de todas as etapas do produto individualmente em seu próprio ritmo;
- **2.** Montagem em linha buscando o máximo de eficiência de acordo com as habilidades de cada operário (balanceada);
 - 3. Montagem em linha com as etapas pré-determinadas (desbalanceada).

A metodologia de produção em linha dividiu o trabalho para os 3 trabalhadores de forma que o primeiro colaborador exercesse as etapas 1, 2 e 3; o segundo as etapas 4 e 5; e o terceiro operador o restante. Já na produção em linha pré-determinada os empregados deveriam realizar as seguintes etapas: 1 e 2 o primeiro operador; 3, 4, 5 e 6 o segundo; 7, 8 e 9 o terceiro.

Durante a avaliação dos processos e analise dos tempos de produção percebeu-se que a produção individual era a menos eficiente, e em linha desbalanceada ficava um pouco mais lenta que em linha balanceada, isso se justifica pelo melhor gestão dos funcionários em relação à suas habilidades nas diferentes etapas do processo, por exemplo a habilidade superior do operário 1 mostrou maior efetividade para realizate de para mais complexas em quanto o esforço do operário 2 se comportou melhor em etapas mais simples, enquanto o operário 3 funcionava em qualquer função de forma similar então foi preferido dar deixar a prioridade de escolha das etapas aos outros, utilizando o terceiro para as etapas restantes.

0.3 Metodologia

LogoUEM.jpg

0.4 Desenvolvimento

Os operadores repetiram a montagem do produto 10 vezes e geraram os tempos contidos na Tabela ??

	Tempos do 1º operário	Tempos do 2º operário	Tempos do 3º operário
1	67,1	91,3	140,3
2	67,5	117,7	127,3
3	65,4	108,7	137,1
4	58,3	108,9	138,8
5	67,2	122,1	95
6	59,2	117,4	132,5
7	62,8	140,2	123,2
8	57,3	99,9	141,3
9	67,3	109,3	108,9
10	67,7	110,9	111,1
Tempo Médio	63,98	112,64	125,55

Tabela 1 – Tempos durante treinamento dos colaboradores (seg)

O tempo médio de cada operador é dado como o ritmo de cada um. Sendo assim, podese notar uma diferença entre os 3 colaboradores, destacando-se o primeiro que detém uma habilidade maior e com isso manteve um ritmo mais constante e mais rápido. Enquanto os dois trabalhadores seguintes mesmo mantendo um ritmo consistente não possuem a técnica certa ou não passaram por treinamento e com isso, geraram um maior tempo médio.

Após a demarcação de todos os tempos com os trabalhadores em linha balanceada e desbalanceada foi possível calcular os tempos médios de cada modelo de produção. Além disso, obteve-se o tempo normal, padrão, lead time, tempo de ciclo, capacidade do processo e takt time segundo certa demanda.

Os tempos obtidos com os colaboradores em linha estão nas tabelas ?? e ??.

	Tempos do 1º operário	Tempos do 2º operário	Tempos do 3º operário
1	18,7	20,3	10,7
2	17,9	22,8	12,1
3	18,3	22,7	13,6
4	19,1	21,2	14,1
5	17	20,6	14
6	19,6	19,8	15
7	15	19,2	14,1
8	17,3	19,8	13,2
9	16,5	21,6	13,3
10	17,5	21,9	12,1
Tempo Médio	17,69	20,99	13,22

Tabela 2 – Tempos com colaboradores em linha balanceada (seg)

	Tempos do 1º operário	Tempos do 2º operário	Tempos do 3º operário
1	13,38	38,6	6,06
2	14,53	36,93	8,2
3	12,80	35,71	6,72
4	12,39	37,58	7,97
5	15,41	35,26	5,74
6	15,05	38,94	5,28
7	15,05	35,49	6,52
8	15,04	36	7,69
9	14,02	36,14	6,23
10	14,86	37,74	5,99
Tempo Médio	14,25	36,84	6,64

Tabela 3 – Tempos com colaboradores em linha desbalanceada (seg)

0.4.1 Tempo médio e confiabilidade

O tempo médio foi encontrado com a média aritmética dos tempos apresentados anteriormente e os resultados foram de:

 $n = \left(\frac{Z.R}{E.d.x}\right)^2$

(1)

n= número de vezes que deveria ser repetida a operação para se ter confiabilidade; Z= coeficiente de acordo com número de repetições; R= amplitude do sistema; E= erro agregado; d= coeficiente de acordo com número de repetições; x= valor médio das variáveis.

Com isso, obteve-se os seguintes resultados para n:

A confiabilidade, no entanto, advém da fórmula:

Tabela 5 – Números de repetições que deveriam ser realizadas

	Operador 1	Operador 2	Operador 3
Separados	6,58	29,04	30,61
Em linha balanceada	9,57	8,20	17,24
Em linha desbalanceada	5,84	1,25	18,66

Nota-se que boa parte dos resultados não são confiáveis pois necessitam de mais de 10 repetições, nesse caso seria necessário realizar novas demarcações de tempo para que o resultado seja considerado confiável. É importante salientar que quanto maior a amplitude dos dados mais repetições terão que ser realizadas, pois o grau de eficiencia é baixo.

0.4.2 Tempo normal e padrão

O tempo normal, basicamente, é a relação entre o tempo médio que cada operário realiza a atividade com o ritmo com que esse operário trabalha. Sendo aplicado pela seguinte forma:

$$Tn = Tm.k \tag{2}$$

Tn= tempo normal; Tm= tempo médio; k= coeficiente gerado do Westinghouse;

Na aplicação do tempo normal existem diversos fatores de avaliação, como por exemplo: desempenho do ritmo e avaliação objetiva por elementos. Existem também alguns sistemas de avaliação. Um dos sistemas mais utilizados é o Sistema de Westinghouse, que se baseia a partir de 4 fatores: habilidade, esforço, condições e consistência.

Então, o método de Westinghouse foi utilizado para descrever cada operador, mediante a sua habilidade e força, com isso, foi geradom propeficiente para cada operário de acordo com a Tabela ??.

Tabela 6 – Coeficientes de Westinghouse

	1º operário	2º operário	3º operário
Habilidade	0,11	-0,05	-0,05
Condições	-0,03	-0,03	-0,03
Esforço	0	0,08	0,05
Consistência	0,03	-0,02	-0,02
Soma	0,11	-0,02	-0,05

Os tempos normais calculados se encontram na Tabela ??.

Tabela 7 – Tempos normais (seg)

	1º operário	2º operário	3º operário
Separado	67,78	116,73	116,57
Em linha balanceada	19,65	20,48	11,66
Em linha desbalanceada	15,67	36,57	6,67
Tempo normal total	301,07	51,79	58,91

O tempo padrão nada mais é do que o tempo necessário para se realizar uma operação de acordo com método estabelecido, o operador deve estar apto e treinado, trabalhando todas as horas da jornada de trabalho em ritmo normal.

Para a descoberta do tempo padrão, existem também algumas variáveis que influenciam ele, como por exemplo, quando se tem um operário que não tem tanta habilidade, o tempo padrão sobe, pois acaba tendo uma margem de erro maior, agora ao contrario se o operário for preciso, o tempo padrão automaticamente diminui, pois neste caso quase não vai ter margem de erro. Outra variável que pode ser citada é o clima no ambiente de trabalho, se o clima for agradável, o tempo padrão também abaixa, ao contrario disso se o clima for desagradável, o operário estará mais propicio a erros e consequentemente o tempo padrão aumentará. A formula para aplicação do tempo padrão é dada por:

$$Tp = k.Tn (3)$$

Tp= tempo padrão; K= fator de tolerância; Tn= tempo normal;

Na confecção dos barquinhos, foi utilizado um fator de tolerância de apenas 6%, pois a atividade é uma atividade monótona e com muitos movimentos repetitivos, porém não exige um grande esforço físico e o ambiente em si estava agradável. Assim, os tempos padrões resultantes foram organizados na Tabela ??.

Tabela 8	Tabela 8 – Tempos padro		
Samuel Log	1º operário	2º operário	3º operário
Separado	71,84	123,73	123,56
Em linha balanceada	20,83	21,71	12,36
Em linha desbalanceada	16,61	38,77	7,07
Tempo padrão total	319,13	54,89	62,45

0.4.3 Lead time, tempo de ciclo e takt time

O lead time de uma operação consiste no tempo total desde o início até a finalização. Com isso, pode-se perceber que é o tempo mais completo, pois engloba tanto o tempo da fabricação como também o tempo das movimentações e finalizações.

SeparadosEm linha balanceadaEm linha desbalanceada1 Produto72,4755,1362,47Lote de 10 produtos724,67247,07413,62

Tabela 9 – Lead times (seg)

Comparando o lead time de 3 operários em relação a apenas um em treinamento é possível notar que há uma discrepância em torno de 20seg. A partir desse fato é notório que o plano de produção siga a metodologia de produção em linha, pois gera uma produtividade maior.

O tempo de ciclo, no entanto, é o tempo de "cuspida", ou seja, após a máquina ou os operadores pegarem ritmo é o tempo que conseguem produzir um novo barco. Tal intervalo de tempo é igual ao gargalo do processo já que é o maior período de tempo durante a fabricação.

Tabela 10 – Tempo de ciclo (seg)

	Separados	Em linha balanceada	Em linha desbalanceada
1 Produto	123,73	21,71	38,77

O takt time, no entanto, é referente ao tanto de tempo que a empresa possui para gerar um produto para que consiga atender toda sua demanda mensal ou semanal. Assim, para uma demanda de 2500 barcos e com uma jornada de trabalho de 48,75 min/h em 8h diárias, temos que:

Takt time =
$$\frac{390x60}{2500}$$

O takt time para tal demanda foi de 9,36seg.

0.4.4 Capacidade

A capacidade de uma empresa é o tanto que ela consegue produzir em um dado intervalo de tempo. Para calcular a capacidade é necessário saber o tempo de ciclo e o tempo de trabalho sem intervalos. Assim, é possível dividir os dois e quantificar o tamanho da produção que pode ser confeccionada em um dia.

$$Cap_1 = \frac{6.5 \times 60 \times 60}{21.71} = 1077.8 \text{ barcos} Cap_2 = \frac{6.5 \times 60 \times 60}{38.77} = 603.5 \text{ barcos}$$

A primeira capacidade é em relação à linha de produção balanceada e a segunda em relação à desbalanceada. Pode-se notar que a capacidade da empresa muda completamente por causa de uma separação errônea de atividades para cada operário em linha.

0.5 Conclusão

Os resultados são bem expressivos e nos mostram que uma produção por linha é mais eficiente que trabalhadores separados e que uma linha desbalanceada cria um gargalo que prejudica muito na produção, pois mesmo que o tempo padrão total seja similar ao de uma linha balanceada a capacidade da empresa é feita com base no tempo de ciclo e isso faz com que haja uma grande diferença entre a linha balanceada e a desbalanceada.

Além disso, foi possível notar que o processo de gestão vai além de cálculos frios e apenas números, já que durante a organização da linha de montagem balanceada foi necessário denotar as etapas condizente com as habilidades de cada operador, para que assim o gargalo da operação ficasse menor.

Em relação aos cálculos nota-se que os tempos padrões tendem a aumentar sempre que os operadores estão inseridos em atividades monótonas, que precisam de certa habilidade, em locais não tão propícios e entre outros fatores. Tudo pode alterar a produtividade de uma indústria, cabe ao engenheiro responsável ponderar quais são os fatores que mais influenciam e diminuir sua influência na linha de produção.

LogoUEM.jpg