PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL ESCOLA POLITÉCNICA

Machine Learning Theory and Applications Lab

Aprendizado de Máquina

Paradigma baseado em Otimização Redes Neurais I

Prof. Me. Otávio Parraga

 Para muitas invenções, nos baseamos na biologia

 Para muitas invenções, nos baseamos na biologia

 Qual o melhor exemplo de inteligência na natureza?

- Formulado matematicamente por McCulloch e Pitts (1943)
- Desenvolvido por Rosenblatt (1958)

Estrutura do Neurônio

Paradigma de Aprendizado Supervisionado

Estrutura do Neurônio

• Lembrar do termo independente (bias)

- Função de Ativação -> Função Sinal
- $\hat{y} = sign(Xw)$ -1 ou 1

• Fronteira de decisão linear

- Como o Perceptron era treinado?
 - Perceptron Learning Algorithm (PLA)
 - Inicializar os pesos w aleatoriamente
 - Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$
 - Atualizar os pesos: $w = w + y^{(n)}x^{(n)}$

x_1	x_2	y
-1	-1	-1
-1	1	1
1	-1	1
1	1	1

- Inicializar os pesos w aleatoriamente
- Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$
 - Atualizar os pesos: $w = w + y^{(n)}x^{(n)}$

$$w^T = [-1, -1, -1]$$

- Como nós sabemos a fronteira de decisão:
- $EqReta = b + w_1x_1 + w_2x_2$
- $b + w_1x_1 + w_2x_2 = 0$
- $w_2 x_2 = -w_1 x_1 b$

$$\bullet \quad x_2 = -\frac{w_1 x_1}{w_2} - \frac{b}{w_2}$$

•
$$coef = -\frac{w_1x_1}{w_2}$$

• $intercept = -\frac{b}{w_2}$

- Inicializar os pesos w aleatoriamente
- Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$
 - Atualizar os pesos: $w = w + y^{(n)}x^{(n)}$

$$w^T = [-1, -1, -1]$$

- Inicializar os pesos w aleatoriamente
 - Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$
 - Atualizar os pesos: $w = w + y^{(n)}x^{(n)}$

$$w^T = [-1, -1, -1]$$

- Inicializar os pesos w aleatoriamente
- Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$
 - Atualizar os pesos: $w = w + y^{(n)}x^{(n)}$

$$w^T = [-1, -1, -1]$$

- Inicializar os pesos w aleatoriamente
- Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$

$$w^{T} = [-1, -1, -1]$$

 $w = [-1, -1, -1] + [1, -1, 1]$

- Inicializar os pesos w aleatoriamente
 - Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$
 - Atualizar os pesos: $w = w + y^{(n)}x^{(n)}$

$$w^T = [0, -2, 0]$$

- Inicializar os pesos w aleatoriamente
- Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$
 - Atualizar os pesos: $w = w + y^{(n)}x^{(n)}$

$$w^T = [0, -2, 0]$$

- Inicializar os pesos w aleatoriamente
- Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$

$$w^T = [0, -2, 0]$$

 $w = [0, -2, 0] + [1, 1, 1]$

- Inicializar os pesos w aleatoriamente
 - Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$
 - Atualizar os pesos: $w = w + y^{(n)}x^{(n)}$

$$w^T = [1, -1, 1]$$

- Inicializar os pesos w aleatoriamente
- Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$
 - Atualizar os pesos: $w = w + y^{(n)}x^{(n)}$

$$w^T = [1, -1, 1]$$

- Inicializar os pesos w aleatoriamente
- Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$

Atualizar os pesos:
$$w = w + y^{(n)}x^{(n)}$$

$$w^T = [1, -1, 1]$$

 $w = [1, -1, 1] + [1, 1, -1]$

- Inicializar os pesos w aleatoriamente
 - Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$
 - Atualizar os pesos: $w = w + y^{(n)} r^{(n)}$

$$w^T = [2,0,0]$$

- Inicializar os pesos w aleatoriamente
- Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$

- Atualizar os pesos: $w = w + y^{(n)} Y^{(n)}$

$$w^T = [2,0,0]$$

- Inicializar os pesos w aleatoriamente
- Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$

Atualizar os pesos:
$$w = w + y^{(n)} r^{(n)}$$

$$w^T = [2,0,0]$$

 $w = [2,0,0] + (-1)[1,-1,-1]$

- Inicializar os pesos w aleatoriamente
- Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$

Atualizar os pesos:
$$w = w + y^{(n)}x^{(n)}$$

$$w^T = [1,1,1]$$

- Inicializar os pesos w aleatoriamente
 - Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$
 - Atualizar os pesos: $w = w + y^{(n)}x^{(n)}$

$$w^T = [1,1,1]$$

- Inicializar os pesos w aleatoriamente
- Enquanto existirem observações sendo classificadas de forma errada:
 - Selecionar observação $x^{(n)}$ tal que: $sign(x^{(n)}w) \neq y^{(n)}$
 - Atualizar os pesos: $w = w + y^{(n)}x^{(n)}$

$$w^T = [1,1,1]$$

• E se o nosso problema não for linearmente separável?

• XOR

• E se o nosso problema não for linearmente

separável?

XOR

• E se o nosso problema não for linearmente

separável?

XOR

• E se o nosso problema não for linearmente

separável?

XOR

Como poderíamos resolver?

- XOR
 - Duas portas AND
 - Uma porta OR
- Conseguimos fazer isso com um Perceptron?

Como poderíamos resolver?

Porta AND

x_1	x_2	У
-1	-1	
-1	1	
1	-1	
1	1	

Como poderíamos resolver?

Porta AND

x_1	x_2	У
-1	-1	-1
-1	1	-1
1	-1	-1
1	1	1

Como poderíamos resolver?

Porta OR

x_1	x_2	У
-1	-1	
-1	1	
1	-1	
1	1	

Como poderíamos resolver?

Porta OR

x_1	x_2	У
-1	-1	-1
-1	1	1
1	-1	1
1	1	1

Perceptron Multi-Camada

 Agora conseguimos aproximar problemas não lineares.

Perceptron Multi-Camada

• O problema é: como treinamos esse modelo?

Inverno de IA

- Como treinar uma MLP é algo difícil
- Livro de Marvin Minsky e Seymour Papert
 - Apontava as limitações do Perceptron
 - Traz o conceito de função de ativação

Inverno de IA

- Década de 70 foi marcada como o primeiro inverno de IA
 - -1974 1980
- Limitações do Perceptron
- Limitações de outras áreas de ML:
 - Falta de avanço em tradução de máquina
 - Falta de avanço em reconhecimento / compreensão de fala

Inverno de IA

 De acordo com Minsky e Papert Perceptrons Multi-camadas nunca seriam capazes de replicar a inteligência humana...

Referências

- HAYKIN, Simon. Neural networks and learning machines, 3/E. Pearson Education India, 2010.
- ABU-MOSTAFA, Yaser S.; MAGDON-ISMAIL, Malik; LIN, Hsuan-Tien. Learning from data. New York, NY, USA:: AMLBook, 2012.
- Slides adaptados dos originais dos profs. André Carvalho (ICMC-USP), Ricardo Campello (ICMC-USP), Andrew Ng (Stanford), Rodrigo C. Barros (PUCRS) e Lucas S. Kupssinskü (PUCRS)