一、选择题(共10小题,每小题2分,共20分,答案请填入下表格中。)

题号	1	2	3	4	5	6	7	8	9	10
答案	A	В	C	D	C	В	В	C	A	D

1. 函数 $f(x) = \sin 3x$ 的全体原函数是(A.)

A.
$$-\frac{1}{3}\cos 3x + C$$
 B. $\frac{1}{3}\cos 3x + C$ C. $\sin 3x$ D. $\frac{1}{3}\cos 3x + C$

B.
$$\frac{1}{2}\cos 3x + C$$

C.
$$\sin 3x$$

$$D.\frac{1}{3}\cos 3x + C$$

2. (1) $\int (1-3x)^3 dx = (B)$

A.
$$-\frac{1}{4}(1-3x)^4 + C$$
; **B.** $-\frac{1}{12}(1-3x)^4 + C$

B.
$$-\frac{1}{12}(1-3x)^4 + C$$

C.
$$-\frac{1}{12}(1-3x)^3 + C$$

D.
$$\frac{1}{12}(1-3x)^4 + C$$

3. $\frac{\mathrm{d}}{\mathrm{d}x} \int_{0}^{x} t^{2} \mathrm{d}t = (C)$

A.
$$\frac{x^3}{3}$$
 B. t^2 C. x^2 D. $2x^2$

4. 函数 $f(x, y) = \frac{1}{1 - x^2 - y^2}$ 的定义域是(**D**)。

A.
$$\{(x,y) | x^2 + y^2 = 1\};$$
 B. $\{(x,y) | x^2 + y^2 > 1\};$

B.
$$\{(x, y) | x^2 + y^2 > 1\}$$

C.
$$\{(x,y) | x^2 + y^2 < 1\}$$

C.
$$\{(x,y) | x^2 + y^2 < 1\}$$
; D. $\{(x,y) | x^2 + y^2 \neq 1\}$.

5.微分方程 $\frac{dy}{dx} = \cos x$ 的通解为(C)

$$\mathbf{A.} \ y = \cos x + C$$

B.
$$y = \sin x$$

C.
$$y = \sin x + C(C)$$
 为任意常数)

D.
$$y = \cos x$$

6. 若 $f(x, y) = x^2 y - yx$ 则 $\frac{\partial f}{\partial x} = (\mathbf{B})$

$$A. xy - y$$

B.
$$2xy - y$$

B.
$$2xy - y$$
; C. $2x - yx$ D. $2x - y$

$$\mathbf{D}$$
. $2x - y$

7.设 $\int_0^3 f(x) dx = 2$, $\int_0^3 g(x) dx = 3$, 则 $\int_0^3 [2f(x) - 3g(x)] dx = (B)$

A. -6 B.-5 C.5 D. 6 8 若曲线 y = f(x) 在点 x 处的切线斜率为-x,且过点(1, 2),则该曲线方程为(C).

A.
$$y = \frac{1}{2}x^2 + \frac{5}{2}$$

B.
$$y = -\frac{1}{2}x^2 + 2$$

C.
$$y = -\frac{1}{2}x^2 + \frac{5}{2}$$

$$\mathbf{D}. \quad y = -x^2$$

$$(X-型)$$
的方法将二重积分 $\iint_D f(x,y) dx dy$ 化为二次积分为

(A).

B.
$$\int_{0}^{1} dx \int_{0}^{1-y} f(x, y) dy$$

C.
$$\int_{0}^{1-x} dx \int_{0}^{1} f(x, y) dy$$

D.
$$\int_{-1}^{0} dy \int_{0}^{x+1} f(x, y) dx$$

10.
$$y_n = n^2 + 2n$$
 差分 $\Delta y_n = ($ **D** $)$ A. $2n$ B. $2n+1$ C. $2n+2$ D. $2n+3$

B.
$$2n+1$$

$$\mathbb{C}$$
. $2n+2$

D.
$$2n+3$$

二、填空题(共9小题,每小题2分,共18分,请将答案写在答题栏内)

答题栏					
$1, \frac{30'}{\ln 30} + C$	$2 \cdot 3x^2 - 4y^3$				
3 、2	4, 3				
5, <u>8</u>	6, <u>1</u>				
7、 (1,1)	$8 \cdot \frac{-2 dx + dy}{}$				
9, 22.5					

1.
$$\int 6^t \cdot 5^t dt = \frac{30^t}{\ln 30} + C$$

2. 己知
$$z = x^2 + x^3y - y^4x$$
 则 $\frac{\partial^2 z}{\partial x \partial y} = 3x^2 - 4y^3$.

$$3. \int_0^\pi (\cos x + \sin x) \mathrm{d}x = \underline{2}$$

4.
$$\frac{\Gamma(4)\Gamma(\frac{3}{2})}{\Gamma(\frac{1}{2})} = \frac{3}{\Gamma(\frac{1}{2})}$$

6.广义积分
$$\int_{1}^{+\infty} \frac{1}{e^x} dx \underline{1}$$

7.函数
$$f(x, y) = 2(x - y) - x^2 + y^2$$
的驻点为(1,1)

9. 己知生产某种产品总收入的变化率是时间
$$t$$
 (单位: 年)的函数 $f(t) = t + 2(t \ge 0)$ 则第

一个五年的总收入为 22.5

三、计算题 I (共 4 小题, 每小题 6 分, 共 24 分)

1. 求不定积分
$$\int (x^4 + \frac{1}{x} + 3^x - 2\cos x + e^x) dx$$

2. 求不定积分 ∫ *xe*^xd*x*

解:
$$\int xe^{x} dx = \int xde^{x}$$

$$= xe^{-x} \int e^{-x} dx$$

$$= xe^{-x} - e^{-x} + C$$
6 分

3. 求定积分 $\int_{0}^{4} \frac{1}{1+\sqrt{x}} dx$

4. 求定积分 $\int_{0}^{5} x e^{x^{2}} dx$

解:
$$\int_{0}^{5} x e^{x^{2}} dx = \frac{1}{2} \int_{0}^{5} e^{x^{2}} dx^{2}$$

$$= \frac{1}{2} e^{x^{2}} \Big|_{0}^{5} = \frac{1}{2} (e^{5^{2}} - e^{0}) = \frac{1}{2} (e^{25} - 1)$$
6 分

四、计算题(共4小题,每小题6分,共24分)

1. 求由曲线 $y = -x^2$ 与 $y = -\sqrt{x}$ 所围成的面积,如图阴影部分所示.

解:所求面积为

$$A = \int_0^1 [-x^2 - (-\sqrt{x})] dx = \int_0^1 (\sqrt{x} - x^2) dx \qquad -----3 \text{ f}$$
$$= \int_0^1 (x^{\frac{1}{2}} - x^2) dx = (\frac{2}{3}x^{\frac{3}{2}} - \frac{1}{3}x^3) \Big|_0^1 = \frac{1}{3} ------6 \text{ ff}$$

2. 设方程 $x^2 + y^2 + z^2 = 4z$ 确定的隐函数导数 $z = f(x, y) \frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, . y = -x

解: 解: 方程变形为
$$x^2 + y^2 + z^2 - 4z = 0$$

设
$$F(x, y, z) = x^2 + y^2 + z^2 - 4z, \dots 1$$
 分 则 $F'_x = 2x, \dots 2$ 分 $F'_y = 2y, \dots 3$ 分

于是

$$\frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'} = \frac{y}{2-z} \dots 6 \, \text{f}$$

3. 求二重积分 $\iint_D y dx dy$, 其中 D 是由曲线 $x = y^2$ 及直线

x=4所围成的区域. 如图阴影部分所示

解: 选择先积
$$x$$
 得积分区域为 $D = \{(x, y) | -2 \le y \le 2, y^2 \le x \le 4\}$ 1 分

于是

4.求微分方程 xy'-y=4的通解

代入通解公式
$$y = e^{-\int p(x)dx} \left[\int q(x)e^{\int p(x)dx} dx + C \right]$$
4分

$$y = e^{-\int p(x)dx} \left[\int q(x)e^{\int p(x)dx} dx + C \right] = e^{\int_{-x}^{1} dx} \left[\int_{-x}^{4} e^{-\int_{-x}^{1} dx} dx + C \right]$$

$$= e^{\ln x} \left[\int_{-x}^{4} e^{-\ln x} dx + C \right] = x \left[\int_{-x}^{4} 4x + C \right] = x \left[\int_{$$

即通解为: y = -4 + xC

.....6分

(本题也可用可分离变量求)

五、应用题(共1小题,每小题10分,共10分)

10. 已知某工厂生产某种产品的数量Q与所投入劳动力的数量L和资本的数量K之间有关系式: $Q = L^{\frac{2}{3}}K^{\frac{1}{3}}$. 其中,劳动力(L)的价格为 2 元,资本 (K)的价格为 1 元.

如果工厂希望生产 800 个单位的产品,问应投入 K和 L各多少才能使成本最低?

解: 设成本为C = C(L, K),问题化为求C = C(L, K) = 2L + K在条件 $L^{\frac{2}{3}}K^{\frac{1}{3}} = 800$ 下的极值问题:

作拉格朗日函数 $F(x, y, \lambda) = 2L + K + \lambda (L^{\frac{2}{3}} K^{\frac{1}{3}} - 800)$ 4 分

$$\begin{cases}
F'_{L} = 2 + \frac{2}{3} \lambda L^{-\frac{1}{3}} K^{\frac{1}{3}} = 0 \\
F'_{K} = 1 + \frac{1}{3} \lambda L^{\frac{2}{3}} K^{-\frac{2}{3}} = 0 \\
F'_{\lambda} = L^{\frac{2}{3}} K^{\frac{1}{3}} - 800 = 0
\end{cases}$$

$$\begin{cases}
2 + \frac{2}{3} \lambda L^{-\frac{1}{3}} K^{\frac{1}{3}} = 0 \cdots (1) \\
1 + \frac{1}{3} \lambda L^{\frac{2}{3}} K^{-\frac{2}{3}} = 0 \cdots (2) \cdots (3)
\end{cases}$$

由(1),(2)将常数移到方程左边 $\frac{(1)}{(2)}$ 消去 λ ,得L=K,代入(3)解得驻点,

由于驻点唯一,且此问题一定存在最大值,因此在K和L上各应投入800元能使成本最低。

六、证明题(共1小题,每小题4分,共4分)

设
$$z = xy + xF(u)$$
, 而 $u = \frac{x}{y}$, $F(u)$ 为可导函数, 证明: $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z + xy$

$$i.e. \frac{\partial z}{\partial x} = y + F(u) + xF'(u) \frac{1}{y} = y + F(u) + \frac{x}{y}F'(u), \dots 2$$

$$\frac{\partial z}{\partial y} = x + xF'(u)(-\frac{x}{y^2}) = x - \frac{x^2}{y^2}F'(u) \dots 3$$

左边=
$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = x[y + F(u) + \frac{x}{y}F'(u)] + y[x - \frac{x^2}{y^2}F'(u)]$$
$$= xy + xF(x) + \frac{x^2}{y}F'(u) + xy - \frac{x^2}{y}F'(u)$$

$$= xy + xF(x) + xy = z + xy = 右边$$

即
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z + xy$$
4 分