CENG 463 Machine Learning

Lecture 05 - Multivariate Linear Regression

Multiple Variables

By 'multivariate', we mean there are multiple variables/features:

x ₁	x ₂	X ₃	X_4	У
Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	46	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Notation:

- n: number of features (4 in this example)
- o **x**⁽ⁱ⁾: input features of ith training example
- o $\mathbf{x_i}^{(i)}$: value of the feature j in the ith training example

Multiple Variables

Hypothesis for house pricing example:

• With new features:
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

• In general: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

• To vectorize our computations, we can define $x_0 = 1$.

$$\theta = \begin{vmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{vmatrix} \quad x = \begin{vmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{vmatrix} \quad h_{\theta}(x) = \theta^T \cdot x$$

Gradient Descent with Multiple Variables

Hypothesis:

Parameters:

$$\theta_0, \theta_1, \theta_2, \dots \theta_n \longrightarrow \theta$$

Cost function:

Gradient Descent:

$$\circ \quad \theta_j := \theta_j - \alpha \frac{\partial J(\theta)}{\partial \theta_j}$$

Gradient Descent with Multiple Variables

Previously (n=1):

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Simultaneous update

Now (n > 1):

$$x_0^{(i)} = 1$$
repeat until convergence {
$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$
...
$$\theta_n := \theta_n - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_n^{(i)}$$

Simultaneous update

Feature Scaling

- To make the gradient descent converge more quickly, we have to make sure the features are on a similar scale.
- Otherwise the cost function will have a <u>skewed</u> shape.
- Example:
 - $x_1 = \text{size } (0-2000 \text{ feet}^2)$
 - $x_2 = \text{number of bedrooms (1-5)}$

Feature Scaling

- When the features are scaled, cost function has a more 'balanced' shape, making the gradient descent converge more quickly.
- Example:

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$
 $x_2 = \frac{\text{number of bedrooms}}{5}$

Approximately $0 \le x_1 \le 1$ and $0 \le x_2 \le 1$

Mean Normalization

- In addition, mean normalization can be applied to the features.
- All we have to do is to replace x_i with $x_i \mu_i$ to make features have approximately zero mean. (except for $x_0 = 1$)
- In ideal case, you would have:

$$\circ$$
 -0.5 < x_1 , x_2 < 0.5 or -1 < x_1 , x_2 < 1

• E.g. size – mean(size) x1 = _____

max. size after subtracting the mean

Learning Rate

- How do you know that your gradient descent works?
 - \circ J(θ) should decrease after every iteration.

- Where to stop?
 - O Declare convergence when $J(\theta)$ decreases less than ε for one step. Typical value for ε might be 10^{-3} .

Learning Rate

 $J(\theta)$ # of iterations

Gradient descent is not working!

Gradient descent is not converging!

Try smaller α.

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial J(\theta)}{\partial \theta_{j}}$$

- But if α too small, it can be very slow to converge.
 - Best practice is to try different α, changing it by an order of 3, e.g.
 1, 0.3, 0.1, 0.03, 0.01...

Polynomial Regression

 We can model polynomial functions using linear regression.

We may want to fit a quadratic model:

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

or a cubic model:

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Polynomial Regression

 We modify our single variable (house size) hypothesis to cover polynomial models:

$$\begin{aligned} h_{\theta}(x) &= \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \dots \\ h_{\theta}(x) &= \theta_{0} + \theta_{1} \cdot \text{size} + \theta_{2} \cdot \text{size}^{2} + \theta_{3} \cdot \text{size}^{3} + \dots \\ h_{\theta}(x) &= \theta_{0} + \theta_{1} \cdot x_{1} + \theta_{2} \cdot x^{2} + \theta_{3} \cdot x^{3} + \dots \end{aligned}$$

- Algorithmically, it is still a multivariate linear regression.
- The new features we have are:
 - $x_1 = size$ $x_2 = size^2$
 - $x_3 = size^3$
 - 0 ...

Polynomial Regression

 Don't forget: Features do not have to be the terms of a regular polynomial.

$$\circ \quad \text{E.g. } \theta_0 + \theta_1 x + \theta_2 \sqrt{x}$$

Normal Equation

- There is another way to solve for θ analytically; i.e. we can estimate optimum parameters (θ) in one step using linear algebra.
- If there was one variable: $J(\theta) = a + b\theta + c\theta^2$, the solution would be easy using calculus:

$$\frac{\partial J(\theta)}{\partial \theta} = 0$$

- In multivariate case, it is not easy.
 - For all j:

$$\frac{\partial J(\theta)}{\partial \theta_j} = 0$$

Normal Equation

 Instead, we construct an equation and use linear algebra to solve it. For this example, assume m = 4.

x ₁	x ₂	X ₃	X_4	У
Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	46	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

$$X = \begin{vmatrix} 1 & 2104 & 5 & 1 & 45 & 460 \\ 1 & 1416 & 3 & 2 & 40 & 232 \\ 1 & 1534 & 3 & 2 & 30 & 315 \\ 1 & 852 & 2 & 1 & 36 & 178 \end{vmatrix} \quad y = \begin{vmatrix} 460 \\ 232 \\ 315 \\ 178 \end{vmatrix} \quad X \cdot \theta = y$$

Normal Equation

 Since our solution is an approximation, i.e. values contain noise, the following is not exactly true:

$$X \cdot \theta = y$$
 or $X \cdot \theta - y = 0$

- We need the best θ to minimize $X \cdot \theta y$.
- It is also called least-squares problem, solved by:

$$\theta = (X^T \cdot X)^{-1} \cdot X^T \cdot y$$

In PYTHON, this can be calculated using numpy:

Normal Equation: General Case

• For **m** samples, **n** variables/features:

$$(x^{(1)},y^{(1)}), \ldots, (x^{(m)},y^{(m)})$$

We design a matrix and a vector:

$$X = \begin{bmatrix} \dots & x^{(1)T} & \dots \\ \dots & x^{(2)T} & \dots \\ \dots & \dots & \dots \end{bmatrix} \quad y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(m)} \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

to be used in $\theta = numpy.linalg.pinv(X)*y$

Normal Equation vs. Gradient Descent

Gradient Descent

- Need to choose α.
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α.
- Don't need to iterate.
- No need feature scaling.
- Need to compute pinv(X)
 where X^T is nxm. It is slow
 if n is very large.

Summary

- We have learned about:
 - How to handle multiple variables for linear regression
 - Gradient descent with multiple variables
 - \circ How to choose learning rate (α)?
 - Polynomial Regression
 - Normal Equation
 - Normal Equation vs. Gradient Descent