

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1-9 (Canceled)

10. (Currently Amended) A two-component polyurethane composition ~~consisting of comprising:~~

- a) ~~in a first container, a first component comprising an addition compound of an aliphatic isocyanate and a blocking agent comprising a five-membered nitrogenous aromatic heterocycle containing a nitrogen-carbon-nitrogen sequence with the structure of $N(H)-C(-)=N$, wherein said heterocycle is substituted by at least one hydrocarbon chain exhibiting, on average, from 1 to 10 carbon atoms per heterocycle at least one blocked isocyanate; and~~
- b) ~~in a second container, a second component comprising at least one polyol, wherein said at least one blocked isocyanate is an addition product of at least one aliphatic isocyanate and at least one blocking agent of the formula~~

wherein R², R⁴ and R⁵, independently, are selected from the group consisting of hydrogen, a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group and a phenyl group,
with the proviso that at least one of said substituents is a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group or a phenyl group.

11. (Currently Amended) The composition as claimed in claim 10, wherein said substituent is situated on a carbon surrounded by two nitrogens so that said sequence becomes N(H)-C(R)=N-, wherein R is a hydrocarbon chain exhibiting from 1 to 10 carbon atoms R² is selected from the group consisting of a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group.

12. (Currently Amended) The composition as claimed in claim 10, wherein said hydrocarbon chain, contains from 2 to 5 carbon atoms per five membered nitrogenous aromatic heterocycle at least one of R², R⁴ and R⁵ is a linear or branched C₂-C₅ aliphatic or cycloaliphatic group.

13. (Currently Amended) The composition as claimed in claim 11, wherein R contains from 2 to 5 carbon atoms per five-membered nitrogenous aromatic heterocycle R² is a linear or branched C₁-C₅ aliphatic or cycloaliphatic group.

14. (Currently Amended) The composition as claimed in claim 10, wherein said addition compound at least one blocked isocyanate is an addition compound of an aliphatic isocyanate and a plurality of blocking agents, wherein at least one of the blocking agents is a blocking agent of the formula

where R², R⁴ and R⁵ are as defined in Claim 10, and
wherein the mean number of carbons of carbon atoms in the blocking agents per
blocked isocyanate functional group at least equal to 3.5.

15. (Previously Presented) The composition as claimed in claim 10, wherein the addition compound is prepared *in situ*.

16. (Currently Amended) The composition as claimed in claim 10, wherein the said at least one blocked isocyanate is an addition compound is a compound blocked by more than one blocking agent of an aliphatic isocyanate and a plurality of blocking

agents, wherein at least one of the blocking agents is a blocking agent of the formula

where R², R⁴ and R⁵ are as defined in Claim 10, and in that, among the blocking agents, said five-membered nitrogenous aromatic heterocycles said blocking agents of the above formula represent at least 50% in equivalents of all of the blocking agents.

17. (Currently Amended) A two-component polyurethane composition consisting of comprising:

- a) in a first container, a first component comprising at least partially aliphatic isocyanate; and a blocking agent comprising a five-membered nitrogenous aromatic heterocycle exhibiting a nitrogen-carbon-nitrogen sequence of -N(H)-C(-)=N; wherein said heterocycle is substituted with at least one hydrocarbon chain exhibiting from 1 to 10 carbon atoms per heterocycle at least one blocked isocyanate; and
- b) in a second container, a second component comprising at least one polyol, wherein said at least one blocked isocyanate is an addition product of at least one partially aliphatic isocyanate and at least one blocking agent of the formula

wherein R², R⁴ and R⁵, independently, are selected from the group consisting of hydrogen, a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group and a phenyl group,
with the proviso that at least one of said substituents is a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group or a phenyl group.

18. (Previously Presented) A coating composition produced using a two-component polyurethane as defined in claim 10.
19. (Currently Amended) A process for coating a substrate, comprising the steps of:
 - a) preparing a two-component polyurethane comprising:
 - i) supplying in a first container a first component comprising an addition compound of an aliphatic isocyanate and a blocking agent comprising a five-membered nitrogenous aromatic heterocycle containing a nitrogen-carbon-nitrogen sequence with the structure of N(H)-C(-)=N-, wherein said heterocycle is substituted by at least one hydrocarbon chain exhibiting, on average, from 1 to 10 carbon atoms per heterocycle at least one blocked isocyanate, wherein said

at least one blocked isocyanate is an addition product of at least one aliphatic isocyanate and at least one blocking agent of the formula

wherein R², R⁴ and R⁵, independently, are selected from the group consisting of hydrogen, a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group and a phenyl group,
with the proviso that at least one of said substituents is a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group or a phenyl group;

- ii) supplying in a second container a second component comprising at least one polyol; and
 - iii) forming a mixture of the two-component polyurethane by mixing together the contents of the first and second containers;
- b) providing a substrate;
- c) spreading a coat of a said mixture of the two-component polyurethane over said substrate, and
- d) subjecting the substrate coated with the two-component polyurethane to a temperature ranging from 50°C to 120°C, for a period of time at least equal to 1/2 hour.

20. (Previously Presented) A process according to claim 19, wherein the temperature ranges from 50°C to 100°C, for a period of time at most equal to 2 hours.

21. (Currently Amended) A method of preparing a two-component polyurethane comprising the step of mixing:

- a) ~~an addition compound of an aliphatic isocyanate and a blocking agent comprising a five-membered nitrogenous aromatic heterocycle containing a nitrogen-carbon-nitrogen sequence with the structure of N(H)-C(=)-N, wherein said heterocycle is substituted by at least one hydrocarbon chain exhibiting, on average, from 1 to 10 carbon atoms per heterocycle~~ at least one blocked isocyanate, wherein said at least one blocked isocyanate is an addition product of at least one aliphatic isocyanate and at least one blocking agent of the formula

wherein R², R⁴ and R⁵, independently, are selected from the group consisting of hydrogen, a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group and a phenyl group,

with the proviso that at least one of said substituents is a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group or a phenyl group; and with

b) at least one polyol,

wherein said addition compound of an aliphatic isocyanate and a blocking agent is provided in a first container and said at least one polyol is provided in a second container.

22. (Currently Amended) The method of claim 21, wherein ~~said substituent is situated on a carbon surrounded by two nitrogens so that said sequence becomes N(H)-CR=N~~, wherein R is a hydrocarbon chain exhibiting from 1 to 10 carbon atoms R² is selected from the group consisting of a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group and a phenyl group.

23. (Currently Amended) The method as claimed in claim 21, wherein ~~said hydrocarbon chain, contains from 2 to 5 carbon atoms per five membered nitrogenous aromatic heterocycle at least one of R², R⁴ and R⁵ is a linear or branched C₂-C₅ aliphatic or cycloaliphatic group.~~

24. (Currently Amended) The method as claimed in claim 22, wherein ~~R contains from 2 to 5 carbon atoms per five membered nitrogenous aromatic heterocycle R² is a linear or branched C₁-C₅ aliphatic or cycloaliphatic group.~~

25. (Currently Amended) The method as claimed in claim 21, wherein ~~said addition compound at least one blocked isocyanate~~ is an addition compound of an aliphatic

isocyanate and a plurality of blocking agents, wherein at least one of the blocking agents is a blocking agent of the formula

where R², R⁴ and R⁵ are as defined in Claim 10, and
where the mean number of carbon atoms in the blocking agents per blocked isocyanate functional group at least equal to 3.5.

26. (Previously Presented) The method as claimed in claim 21, wherein the addition compound is prepared *in situ*.

27. (Currently Amended) The method composition as claimed in claim 10, wherein the addition compound is a compound blocked by more than one blocking agent and in that, among the blocking agents, said five-membered nitrogenous heterocycles represent at least 50% in equivalents.

28. (Currently Amended) A method of preparing two-component polyurethanes comprising the step of mixing:

- a) ~~an addition compound of (i) an at least partially aliphatic isocyanate; and (ii) a blocking agent comprising a five-membered nitrogenous aromatic~~

~~heterocycle containing a nitrogen-carbon-nitrogen sequence with the structure of N(H)-C()=N~~, wherein said heterocycle is substituted by at least one hydrocarbon chain exhibiting, on average, from 1 to 10 carbon atoms per heterocycle; and at least one blocked isocyanate, wherein said at least one blocked isocyanate is an addition product of at least one partially aliphatic isocyanate and at least one blocking agent of the formula

wherein R², R⁴ and R⁵, independently, are selected from the group consisting of hydrogen, a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group and a phenyl group,

with the proviso that at least one of said substituents is a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group or a phenyl group; with

- b) at least one polyol.

29. (Currently Amended) A method of preparing a two-component polyurethane comprising:

- a) providing in a first container a first component comprising an addition compound of an aliphatic isocyanate and a blocking agent comprising a five membered

~~nitrogenous aromatic heterocycle containing a nitrogen-carbon-nitrogen sequence with the structure of N(H)-C(=)-N, wherein said heterocycle is substituted by at least one hydrocarbon chain exhibiting, on average, from 1 to 10 carbon atoms per heterocycle at least one blocked isocyanate, wherein said at least one blocked isocyanate is an addition product of at least one aliphatic isocyanate and at least one blocking agent of the formula~~

wherein R², R⁴ and R⁵, independently, are selected from the group consisting of hydrogen, a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group and a phenyl group,

with the proviso that at least one of said substituents is a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group or a phenyl group;

- b) providing in a second container a second component comprising at least one polyol; and
- c) mixing together the contents of the first and second containers.

30. (Currently Amended) The [[method]] method as claimed in claim 29, wherein said substituent is situated on a carbon surrounded by two nitrogens so that said

sequence becomes $N(H)-C(R)=N$, wherein R is a hydrocarbon chain exhibiting from 1 to 10 carbon atoms R^2 is selected from the group consisting of a linear or branched C_1-C_{10} aliphatic or cycloaliphatic group and a phenyl group.

31. (Currently Amended) The method as claimed in claim 29, wherein said hydrocarbon chain, contains from 2 to 5 carbon atoms per five membered nitrogenous aromatic heterocycle at least one of R^2 , R^4 and R^5 is a linear or branched C_2-C_5 aliphatic or cycloaliphatic group.

32. (Currently Amended) The method as claimed in claim 30, wherein R contains from 2 to 5 carbon atoms per five membered nitrogenous aromatic heterocycle R^2 is a linear or branched C_1-C_5 aliphatic or cycloaliphatic group.

33. (Currently Amended) The method as claimed in claim 29, wherein said addition compound at least one blocked isocyanate is an addition compound of an aliphatic isocyanate and a plurality of blocking agents, wherein at least one of the blocking agents is a blocking agent of the formula

where R^2 , R^4 and R^5 are as defined in Claim 29, and

wherein the mean number of carbons of carbon atoms in the blocking agents per blocked isocyanate functional group at least equal to 3.5.

34. (Previously Presented) The method as claimed in claim 29, wherein the addition compound is prepared *in situ*.

35. (Currently Amended) The method as claimed in claim 29, wherein the said at least one blocked isocyanate is an addition compound is-a compound blocked by more than one blocking agent of an aliphatic isocyanate and a plurality of blocking agents, wherein at least one of the blocking agents is a blocking agent of the formula

where R², R⁴ and R⁵ are as defined in Claim 29,
and in that, among the blocking agents, said five membered nitrogenous
aromatic heterocycles said blocking agents of the above formula represent at
least 50% in equivalents of all of the blocking agents.

36. (Currently Amended) A method of preparing two-component polyurethane comprising :

a) providing in a first container a first component comprising at least partially aliphatic isocyanate; and a blocking agent comprising a five-membered nitrogenous aromatic heterocycle exhibiting a nitrogen-carbon-nitrogen sequence of $N(H)-C(-)=N$; wherein said heterocycle is substituted with at least one hydrocarbon chain exhibiting from 1 to 10 carbon atoms per heterocycle at least one blocked isocyanate, wherein said at least one blocked isocyanate is an addition product of at least one aliphatic isocyanate and at least one blocking agent of the formula

wherein R², R⁴ and R⁵, independently, are selected from the group consisting of hydrogen, a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group and a phenyl group,

with the proviso that at least one of said substituents is a linear or branched C₁-C₁₀ aliphatic or cycloaliphatic group or a phenyl group;

- b) providing in a second container a second component comprising at least one polyol; and
- c) mixing together the contents of the first and second containers.