

PRESENTATION 3.0

TEAM FORGERS

GOALS ACHIEVED

- 1.PREDICTION OF SATELLITE EPHEMERIS USING TIME SERIES FORECASTING
- 2.INTERACTIVE WEB APPLICATION
- 3.NO CONSTRAINTS ON PREDICTION
- 4. VISUALIZATION ORBITAL SIMULATION (NO LIMIT ON TIMESTEPS)
- 5.CALCULATION OF ERROR USING DIFFERENCE IN X,Y,Z 3D COORDINATES IN ECEF FRAME
- 6.GRAPHICAL REPRESENTATION OF ALL THE PREDICTIONS
- 7.UTILTY OF ADDING .N FILES BY OPERATOR
- 8. RUNTIME SCRAPING OF ML CONTENT FROM .N

INSIGHTS DRAWN FROM DATA SET:

1.THE 6 KEPELRIAN COORDINATES ARE NOT COMPLETELY INDEPENDENT

- A strong correlation exists between cis, crs
- And also i0 and E

INSIGHTS DRAWN FROM DATA SET:

1.THE PREDICTION WE MAKE IS NOT FROM REAL DATA IT IS FROM EXPECTED DATA WHICH IS PRONE TO IRREGULARITIES

BEST PART :OUR PREDICTION IS CORRECTING THE EXPECTED AS WELL

SMART INDIA HACKATHON 2019

USER INTERFACE1:

- 1. RECR_ON_DATE
- 2. RECR OFF DATE
- 3.REQUIRED_DATE
- 4. SATELLITE NUMBER(V1.0)
- 5. UPLOAD MULTIPLE .N FILES

SMART INDIA HACKATHON 2019

SMART INDIA HACKATHON 2019

ECI FRAME

USER INTERFACE2:

INTERACTIVE GRAPHS IN RUNTIME SIGNIFYING ERROR RATES

USER INTERFACE2:

SMART INDIA
HACKATHON
2019

INTERACTIVE GRAPHS IN RUNTIME SIGNIFYING ERROR RATES

Mean anamoly

OUR BACKEND STRENGTH:

- 1.CUMULATING VARIOUS MACHINE LEARNING MODELS AND THEREBY INCREASING ACCURACIES
- MODELS INTEGRATED:
 - AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL(ARIMA)
 - MOVING AVERAGE MODEL
- ADDITIONAL ADVANTAGES GAINED:
 - ABILITY TO PREDICT WITH HISTORY DATA BEING GIVEN AS LESS AS 1,2, DAYS (WHICH NO OTHER ML ALGOS USUALLY PROVIDE)

TF MOVING AVG

PROBLEMS FACED AND ADDRESSED:

- 1.INCREASED ERROR AT PEAKS(I.E...IRREGULARITIES)
 - NOISY DATA SMOOTHING
 - USING DEPENDENCIES AMONG EPHEMERIS TO OVERCOME THIS
 - 2. ACCURACY DEPRECIATION DUE TO ERRORS LIKE

HIGH CONVERGENCE

SOME CHANGE OVER LARGE PERIOD OF TIME

EXAMPLE: CIC

BEFORE CONSIDERING DEPENDENCIES:
-Irregularities in the data effecting our prediction

AFTER CONSIDERING DEPENDENCIES:
-Irregularities in the data NO LONGER EFFECT

