### **C S Sahil 19BCE2094**

### **Data Visualization**

Lab assignment - 2

PRAVAT KUMAR JENA

L27+28

#### **Cardio Good Fitness Case Study - Descriptive Statistics**

The market research team at AdRight is assigned the task to identify the profile of the typical customer for each treadmill product offered by CardioGood Fitness. The market research team decides to investigate whether there are differences across the product lines with respect to customer characteristics. The team decides to collect data on individuals who purchased a treadmill at a CardioGoodFitness retail store during the prior three months. The data are stored in the CardioGoodFitness.csv file.

#### The team identifies the following customer variables to study:

- product purchased, TM195, TM498, or TM798;
- gender;
- age, in years;
- education, in years;
- relationship status, single or partnered;
- annual household income :
- average number of times the customer plans to use the treadmill each week;
- average number of miles the customer expects to walk/run each week;
- and self-rated fitness on an 1-to-5 scale, where 1 is poor shape and 5 is excellent shape.

Perform descriptive analytics to create a customer profile for each CardioGood Fitness treadmill product line.

#### Load the necessary packages

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings('ignore') # To supress warnings
sns.set(style="whitegrid") # set the background for the graphs
```

#### **Load the Cardio Dataset**

```
mydata = pd.read_csv('CardioGoodFitness-1.csv')
```

#### Q1: Show few data from begin and end

```
mydata.head()
```

```
Product Age Gender Education MaritalStatus Usage Fitness Income Mile s
0 TM195 18 Male 14 Single 3 4 29562 11
```

| 2      |               |    |          |           |               |       |         |        |   |
|--------|---------------|----|----------|-----------|---------------|-------|---------|--------|---|
| 1 5    | TM195         | 19 | Male     | 15        | Single        | 2     | 3       | 31836  | 7 |
| 2      | TM195         | 19 | Female   | 14        | Partnered     | 4     | 3       | 30699  | 6 |
| 3      | TM195         | 19 | Male     | 12        | Single        | 3     | 3       | 32973  | 8 |
| 4<br>7 | TM195         | 20 | Male     | 13        | Partnered     | 4     | 2       | 35247  | 4 |
| myda   | mydata.tail() |    |          |           |               |       |         |        |   |
|        | Product       | Ag | e Gender | Education | MaritalStatus | Usage | Fitness | Income | \ |
| 175    | TM798         | 4  |          | 21        | Single        | 6     | 5       | 83416  | • |
| 176    | TM798         | 4  | 2 Male   | 18        | Single        | 5     | 4       | 89641  |   |
| 177    | TM798         | 4  | 5 Male   | 16        | _             | 5     | 5       | 90886  |   |
| 178    | TM798         | 4  | 7 Male   | 18        | Partnered     | 4     | 5       | 104581 |   |
| 179    | TM798         | 48 | 8 Male   | 18        | Partnered     | 4     | 5       | 95508  |   |
|        | Miles         |    |          |           |               |       |         |        |   |
| 175    | 200           |    |          |           |               |       |         |        |   |
| 176    | 200           |    |          |           |               |       |         |        |   |
| 177    | 160           |    |          |           |               |       |         |        |   |
| 178    | 120           |    |          |           |               |       |         |        |   |
| 179    | 180           |    |          |           |               |       |         |        |   |

# Q2: Give a statistical description of all varibales available in the datasets.

mydata.describe(include="all")

|          | Product | Age        | Gender  | Education  | MaritalStatus | Usage      | \ |
|----------|---------|------------|---------|------------|---------------|------------|---|
| count    | 180     | 180.000000 | 180     | 180.000000 | 180           | 180.000000 |   |
| unique   | 3       | NaN        | 2       | NaN        | 2             | NaN        |   |
| top      | TM195   | NaN        | Male    | NaN        | Partnered     | NaN        |   |
| freq     | 80      | NaN        | 104     | NaN        | 107           | NaN        |   |
| mean     | NaN     | 28.788889  | NaN     | 15.572222  | NaN           | 3.455556   |   |
| std      | NaN     | 6.943498   | NaN     | 1.617055   | NaN           | 1.084797   |   |
| min      | NaN     | 18.000000  | NaN     | 12.000000  | NaN           | 2.000000   |   |
| 25%      | NaN     | 24.000000  | NaN     | 14.000000  | NaN           | 3.000000   |   |
| 50%      | NaN     | 26.000000  | NaN     | 16.000000  | NaN           | 3.000000   |   |
| 75%      | NaN     | 33.000000  | NaN     | 16.000000  | NaN           | 4.000000   |   |
| max      | NaN     | 50.000000  | NaN     | 21.000000  | NaN           | 7.000000   |   |
|          | Fitn    | 055        | Income  | Miles      |               |            |   |
|          |         |            |         |            |               |            |   |
| count    | 180.000 |            | .000000 | 180.000000 |               |            |   |
| unique   |         | NaN        | NaN     | NaN        |               |            |   |
| top      |         | NaN        | NaN     | NaN        |               |            |   |
| freq Nal |         | NaN        | NaN     | NaN        |               |            |   |

```
mean
         3.311111
                   53719.577778 103.194444
std
         0.958869
                   16506.684226 51.863605
         1.000000
                   29562.000000
                                 21.000000
min
25%
         3.000000
                   44058.750000 66.000000
50%
         3.000000
                   50596.500000 94.000000
75%
         4.000000
                   58668.000000 114.750000
         5.000000 104581.000000 360.000000
max
```

<Figure size 720x720 with 0 Axes>

#### Q3: Which product of treadmill has been frequently used by male

```
plt.figure(figsize=(10,10))
prd_gender=pd.crosstab(mydata['Product'],mydata['Gender'] )
print(prd_gender)
ax=prd_gender.plot(kind='bar')
plt.title("PRODUCT BY GENDER")
Gender
         Female Male
Product
TM195
             40
                   40
             29
                   31
TM498
TM798
              7
                   33
Text(0.5, 1.0, 'PRODUCT BY GENDER')
```



## TM195 Has been most frequently used

### Q4: How many objects are there in the datasets

mydata.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

| # | Column        | Non-Null Count | Dtype  |
|---|---------------|----------------|--------|
|   |               |                |        |
| 0 | Product       | 180 non-null   | object |
| 1 | Age           | 180 non-null   | int64  |
| 2 | Gender        | 180 non-null   | object |
| 3 | Education     | 180 non-null   | int64  |
| 4 | MaritalStatus | 180 non-null   | object |
| 5 | Usage         | 180 non-null   | int64  |
| 6 | Fitness       | 180 non-null   | int64  |
| 7 | Income        | 180 non-null   | int64  |
| 8 | Miles         | 180 non-null   | int64  |

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

## There are 3 Objects in the database

Q5: What your intution says about the numeric attributes such as Age, Income, Miles, and usage are normally distributed? Justified through required graphic



## Education & Fitness Aproximately look normally distributed

### Q6: Find the outlier if any exists in the variable Age. Hint: calcualte the IQR and use to filter the ourlier

```
data = mydata['Age']
sort_data = np.sort(data)
sort_data
array([18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21,
     23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24,
     26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28,
     28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30,
     30, 31, 31, 31, 31, 31, 31, 32, 32, 32, 33, 33, 33, 33, 33, 33,
     33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 35, 36,
     37, 37, 38, 38, 38, 38, 38, 38, 38, 39, 40, 40, 40, 40, 40, 41, 42,
     43, 44, 45, 45, 46, 47, 47, 48, 48, 50], dtype=int64)
Q1 = np.percentile(data, 25, interpolation = 'midpoint')
Q2 = np.percentile(data, 50, interpolation = 'midpoint')
Q3 = np.percentile(data, 75, interpolation = 'midpoint')
IQR = Q3 - Q1
print('Interquartile range is', IQR)
Interquartile range is 9.0
low_lim = Q1 - 1.5 * IQR
up_lim = Q3 + 1.5 * IQR
outlier =[]
for x in data:
   if ((x> up_lim) or (x<low_lim)):</pre>
       outlier.append(x)
print(' outlier in the dataset is', outlier)
outlier in the dataset is [47, 50, 48, 47, 48]
```

### Q7: Which plot is required to display five statistics of the variables Income with respect to Age. Display the graphics

```
sns.boxplot(x=mydata['Age'],y=mydata['Income'])
<AxesSubplot:xlabel='Age', ylabel='Income'>
```



# Q8: How do you compare among the product of treadmill? or Which product is frequently used by gender-wise. Show your result through plot.

```
plt.figure(figsize=(10,10))
prd_gender=pd.crosstab(mydata['Product'],mydata['Gender'] )
print(prd gender)
ax=prd_gender.plot(kind='bar')
plt.title("PRODUCT BY GENDER")
Gender
         Female Male
Product
             40
TM195
                   40
TM498
             29
                   31
TM798
                   33
              7
Text(0.5, 1.0, 'PRODUCT BY GENDER')
<Figure size 720x720 with 0 Axes>
```



```
## TM195 model was equally bought my Male and Female
## Compared to females, male bought TM498 model .
## TM798 model is popular in Males than in female.
```

# Q9: Is maritial status affect the utiliation of the product of the treadmill? If so justify your results through the index matrix form

```
plt.figure(figsize=(12,7))
sns.catplot(x='MaritalStatus', y='Usage',hue='Product' ,kind="bar", data=myda
ta)
```

<seaborn.axisgrid.FacetGrid at 0x24f0b2acfa0>

<Figure size 864x504 with 0 Axes>



## Partnered Status had more usage for TM798 than Single
## Single has slightly higher usage for TM195
## TM498 Has equal usage for Singe and Partnered

## Q10: How do you explain the relation between the numeric attributes? Which variables are correlated and quatify the relation?

corr\_pairs = mydata.corr().unstack()
print( corr\_pairs[abs(corr\_pairs)>0.5])

| Age       | Age       | 1.000000 |
|-----------|-----------|----------|
|           | Income    | 0.513414 |
| Education | Education | 1.000000 |
|           | Income    | 0.625827 |
| Usage     | Usage     | 1.000000 |
|           | Fitness   | 0.668606 |
|           | Income    | 0.519537 |
|           | Miles     | 0.759130 |
| Fitness   | Usage     | 0.668606 |
|           | Fitness   | 1.000000 |
|           | Income    | 0.535005 |

```
Miles
                       0.785702
Income
                       0.513414
          Age
          Education
                       0.625827
                       0.519537
          Usage
                    0.535005
          Fitness
          Income
                     1.000000
          Miles
                     0.543473
Miles
                      0.759130
          Usage
                    0.785702
          Fitness
          Income
                     0.543473
          Miles
                      1.000000
dtype: float64
##Age and Income has some in significant correlation
##Education and Income has very little correlation
##There is some corelation between Usage and Income
##Fitness and miles are corelated
##TM798 model is correlated to Education, Usage, Fitness, Income and Miles.
##Miles and usage are positively correlated
```

### Q11: Develope a model which can predict distance in miles with respect to fitness and usage.

```
from sklearn import linear_model

regr = linear_model.LinearRegression()

y = mydata['Miles']
x = mydata[['Usage','Fitness']]

regr.fit(x,y)

LinearRegression()
regr.coef_
array([20.21486334, 27.20649954])
regr.intercept_
-56.74288178464856

## To use this model just use like predictedDistance = -56.74 + 20.21*Usage + 27.20*Fitness
```