103 Conjugaison dans un groupe. Exemples de sousgroupes distingués et de groupes quotients. Applications.

Soit *G* un groupe.

I - Conjugaison dans un groupe

1. Action de conjugaison

Lemme 1. On a une action de *G* sur lui-même :

[ROM21] p. 19

$$\forall g, h \in G, g \cdot h = ghg^{-1}$$

Définition 2. L'action précédente est appelée **action de conjugaison**. Le morphisme structurel de G dans S(G) est noté Int :

$$\forall g, h \in G, \operatorname{Int}(g)(h) = ghg^{-1}$$

L'image de G par ce morphisme Int(G) est le groupe des **automorphismes intérieurs** de G.

Exemple 3. Le groupe additif d'un espace vectoriel est un groupe abélien dont le seul automorphisme intérieur est l'identité.

[**ULM21**] p. 20

Proposition 4. Muni de la composition, l'ensemble des automorphismes intérieurs de *G* est un groupe.

[**GOU21**] p. 21

2. Orbites et stabilisateurs

Définition 5. On considère l'action de conjugaison de *G*.

[PER]

- Ses orbites sont les **classes de conjugaison** de *G*.
- Le stabilisateur d'un élément est le **centralisateur** de celui-ci.
- Deux éléments sont dits conjugués s'ils appartiennent à la même classe de conjugaison.

Exemple 6. Les cycles de même ordre sont conjugués dans S_n .

Définition 7. On définit le **centre** de G noté Z(G) par

p. 12

$$Z(G) = \{g \in G \mid \forall h \in H, gh = hg\}$$

Autrement dit, Z(G) est l'intersection des centralisateurs des éléments de G.

Exemple 8. Si G est abélien, alors Z(G) = G.

[ULM2 p. 36

Proposition 9. Soit $g \in G$. Alors, $g \in Z(G)$ si et seulement si sa classe de conjugaison est réduite à un élément.

Ainsi, Z(G) est l'union des classes de conjugaison de taille 1.

II - Sous-groupes distingués et groupes quotients

1. Classes à gauche et à droite

Proposition 10. Soit H < G. On définit la relation $\sim_H \text{sur } G \text{ par } g_1 \sim_H g_2 \iff g_1^{-1} g_2 \in H$. Alors :

p. 24

- (i) \sim_H est une relation d'équivalence.
- (ii) La classe d'équivalence d'un élément $g \in G$ pour \sim_H est $\overline{g} = gH = \{gh \mid h \in H\}$ appelée classe à gauche de g modulo H.

Remarque 11. On définit de la même manière la classe à droite d'un élément $g \in G$ modulo H que l'on note Hg.

Exemple 12. Soit n > 2. On considère $\mathcal{D}_n = \langle r, s \rangle$ le groupe diédral d'ordre 2n. Alors,

$$r\langle s \rangle = \{r, rs\} \neq \{r, sr\} = \langle s \rangle r$$

Proposition 13. Soit H < G. Alors,

$$\forall g \in G, |hG| = |Gh| = |H|$$

2. Sous-groupes distingués

Définition 14. Soit H < G. On dit que H est **distingué** dans G si,

[ROM21] p. 3

$$\forall g \in G, gH = Hg$$

On note cela $H \triangleleft G$.

Exemple 15. $-\{e_G\} \triangleleft G, G \triangleleft G \text{ et } Z(G) \triangleleft G.$

- L'intersection de deux sous-groupes distingués dans G est distinguée dans G.
- Si *G* est abélien, tout sous-groupe de *G* est distingué dans *G*.

Remarque 16. Le symbole ⊲ n'est pas transitif.

[GOU21] p. 20

Proposition 17.

$$H \triangleleft G \iff \forall g \in G, gHg^{-1} \subseteq H$$

Proposition 18. Soient G_1 et G_2 deux groupes, et soient H_1 et H_2 deux sous-groupes respectivement de G_1 et de G_2 . Soit $\varphi: G_1 \to G_2$ un morphisme. Alors :

[**ULM21**] p. 16

- (i) Si $H_1 \triangleleft G_1$, alors $\varphi(H_1) \triangleleft \varphi(G_1)$.
- (ii) Si $H_2 \triangleleft G_2$, alors $\varphi^{-1}(H_2) \triangleleft G_1$.

En particulier, $Ker(\varphi) \triangleleft G_1$.

p. 43

Proposition 19. Soient K < H < G une suite de sous-groupes. Alors,

$$K \triangleleft G \Longrightarrow K \triangleleft H$$

Proposition 20. Soit H < G. Si (G : H) = 2 (voir sous-section suivante), alors $H \triangleleft G$.

p. 25

3. Groupes quotients

Définition 21. Soit H < G.

- On appelle **ensemble quotient** de G par la relation d'équivalence \sim_H de la Proposition 10, et on note G/H, l'ensemble des classes à gauche de G modulo H.
- On appelle **indice** de G dans H, et on note (G:H), le cardinal de G/H.

Proposition 22. Soit H < G. L'ensemble des classes à droite de G modulo H est aussi de cardinal égal à (G : H).

Théorème 23. Un sous-groupe H de G est distingué si et seulement si * définit une loi de groupe sur G/H par :

$$\forall g_1, g_2 \in G, g_1H * g_2H = (g_1g_2)H$$

telle que la surjection canonique

$$\pi_H: \begin{array}{ccc} G & \rightarrow & G/H \\ g & \mapsto & gH \end{array}$$

soit un morphisme de groupes. Dans ce cas, π_H est un morphisme surjectif de noyau H.

Définition 24. Soit $H \triangleleft G$. On appelle **groupe quotient** le groupe (G/H, *) définit dans le théorème précédent.

Exemple 25. Soit $m \in \mathbb{N}^*$. $m\mathbb{Z}$ est un sous-groupe du groupe abélien \mathbb{Z} . On peut définir le groupe quotient $\mathbb{Z}/m\mathbb{Z}$: c'est un groupe cyclique d'ordre m.

4. Théorèmes d'isomorphisme

Théorème 26 (Premier théorème d'isomorphisme). Soient G_1 et G_2 deux groupes et soit $\varphi: G_1 \to G_2$ un morphisme. Alors φ induit un isomorphisme

$$\overline{\varphi} : \begin{array}{ccc} G_1/\mathrm{Ker}(\varphi) & \to & \varphi(G_1) \\ g\mathrm{Ker}(\varphi) & \mapsto & \varphi(g) \end{array}$$

Exemple 27. — Tout groupe cyclique d'ordre n est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

—
$$G/Z(G)$$
 ≅ Int(G).

Théorème 28 (Deuxième théorème d'isomorphisme). Soient H < G et $K \triangleleft G$. On pose $N = H \cap K$. Alors,

$$N \triangleleft H$$
 et $H/N \cong HK/K$

Exemple 29. On note V le sous-groupe de S_4 d'ordre 4 isomorphe au groupe de Klein. Alors,

$$V/S_4 \cong S_3$$

p. 44

p. 80

p. 51

Théorème 30 (Troisième théorème d'isomorphisme). Soient $H, K \triangleleft G$ tels que $H \subseteq K$. Alors,

$$K/H \triangleleft G/H$$
 et $(G/H)/(K/H) \cong G/K$

Exemple 31.

$$(\mathbb{Z}/10\mathbb{Z})/(2\mathbb{Z}/10\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$$

III - Applications

1. Application aux p-groupes

Soit G un groupe fini opérant sur un ensemble fini X.

[ROM21] p. 22

Définition 32. On dit que G est un p-groupe s'il est d'ordre une puissance d'un nombre premier p.

Théorème 33 (Formule des classes). Soit Ω un système de représentants des orbites de l'action de G sur X. Alors,

$$|X| = \sum_{\omega \in \Omega} |G \cdot \omega| = \sum_{\omega \in \Omega} (G : \operatorname{Stab}_{G}(\omega)) = \sum_{\omega \in \Omega} \frac{|G|}{|\operatorname{Stab}_{G}(\omega)|}$$

Corollaire 34. Soit p un nombre premier. Si G est un p-groupe opérant sur X, alors,

$$|X^G| \equiv |X| \mod p$$

où X^G désigne l'ensemble des points fixes de X sous l'action de G.

Corollaire 35. On note $G \cdot h_1, \dots, G \cdot h_r$ les classes de conjugaison de G. Alors,

$$|G| = |Z(G)| + \sum_{\substack{i=1\\|G \cdot h_i| = 2}}^{r} |G \cdot h_i|$$

$$= |Z(G)| + \sum_{\substack{i=1\\|G \cdot h_i| = 2}}^{r} \frac{|G|}{|\operatorname{Stab}_G(h_i)|}$$

Corollaire 36. Soit p un nombre premier. Le centre d'un p-groupe non trivial est non trivial.

Corollaire 37. Soit p un nombre premier. Un groupe d'ordre p^2 est toujours abélien.

Application 38 (Théorème de Cauchy). On suppose G non trivial et fini. Soit p un premier divisant l'ordre de G. Alors il existe un élément d'ordre p dans G.

[DEV]

Application 39 (Premier théorème de Sylow). On suppose G fini d'ordre np^{α} avec $n, \alpha \in \mathbb{N}$ et p premier tel que $p \nmid n$. Alors, il existe un sous-groupe de G d'ordre p^{α} .

[GOU21] p. 44

2. Application au groupe symétrique

Lemme 40. Les 3-cycles sont conjugués dans A_n pour $n \ge 5$.

[**PER**] p. 15

Lemme 41. Le produit de deux transpositions est un produit de 3-cycles.

[**ROM21**] p. 49

Proposition 42. A_n est engendré par les 3-cycles pour $n \ge 3$.

[DEV]

Théorème 43. A_n est simple pour $n \ge 5$.

[**PER**] p. 28

Corollaire 44. Pour $n \ge 5$, les sous-groupes distingués de S_n sont S_n , A_n et {id}.

Application 45. A_5 est le seul groupe simple d'ordre 60 à isomorphisme près.

[**ULM21**] p. 92

3. Application au groupe linéaire d'un espace vectoriel

Dans cette partie, E désignera un espace vectoriel sur un corps $\mathbb K$ de dimension finie n.

a. Centre

Définition 46. Soit H un hyperplan de E et soit $u \in SL(E) \setminus \{id_E\}$. Posons $D = Im(u - id_E)$. On dit que u est une **transvection** d'hyperplan H et de droite D si $u_{|H} = id_H$ (et dans ce cas, $D \subset H$).

[**PER**] p. 97

Proposition 47. $u \in GL(E)$ est une transvection de droite D si et seulement si $u_{|D} = \mathrm{id}_D$ et le morphisme induit $\overline{u} : E/D \to E/D$ est l'identité.

Proposition 48. Soit τ une transvection de droite D et d'hyperplan H et soit $u \in GL(E)$. Alors $u\tau u^{-1}$ est une transvection de droite u(D) et d'hyperplan u(H).

Corollaire 49. (i) $Z(GL(E)) = {\lambda \operatorname{id}_E \mid \lambda \in \mathbb{K}^*}.$

(ii)
$$Z(SL(E)) = Z(GL(E)) \cap SL(E) \cong \mu_n(\mathbb{K}).$$

b. Conjugaison

Définition 50. Soit H un hyperplan de E et soit $u \in GL(E) \setminus SL(E)$. Posons $D = Im(u - id_E)$. On dit que u est une **dilatation de droite** D **et d'hyperplan** H si $u_{|H} = id_H$.

Le **rapport** de cette dilatation est le scalaire det(u).

Proposition 51. Deux dilatations sont conjuguées dans GL(E) si et seulement si elles ont le même rapport.

Proposition 52. Deux transvections sont toujours conjuguées dans GL(E). Si $n \ge 3$, elles le sont aussi dans SL(E).

c. Groupe projectif

Définition 53. Le quotient de GL(E) par son centre est appelé **groupe projectif linéaire** et est noté PGL(E). De même, le quotient de SL(E) par son centre est noté PSL(E).

Remarque 54. Soit $h_{\lambda}: x \mapsto \lambda x$, on a det $h_{\lambda} = \lambda^n$, de sorte qu'on a une suite exacte :

$$\{\overline{\mathrm{id}_E}\} \to \mathrm{PSL}(E) \to \mathrm{PGL}(E) \xrightarrow{\overline{\mathrm{det}}} \mathbb{K}^*/\mathbb{K}^{*n} \to \{\overline{\mathrm{id}_E}\}$$

où on a posé $\mathbb{K}^{*n} = \{\lambda \in \mathbb{K}^* \mid \exists \mu \in \mathbb{K}^*, \lambda = \mu^n\}$. En particulier, si \mathbb{K} est algébriquement clos, $PSL(E) \cong PGL(E)$.

Théorème 55. Le groupe PSL(E) est simple sauf si n = 2 et $\mathbb{K} = \mathbb{F}_2$ ou \mathbb{F}_3 .

4. Représentations linéaires de groupes finis

Dans cette partie, on suppose que G est d'ordre fini.

[**ULM21**] p. 144

Définition 56. — Une **représentation linéaire** ρ est un morphisme de G dans GL(V) où V désigne un espace-vectoriel de dimension finie n sur \mathbb{C} .

- On dit que n est le **degré** de ρ .
- On dit que ρ est **irréductible** si $V \neq \{0\}$ et si aucun sous-espace vectoriel de V n'est

stable par $\rho(g)$ pour tout $g \in G$, hormis $\{0\}$ et V.

Exemple 57. Soit $\varphi : G \to S_n$ le morphisme structurel d'une action de G sur un ensemble de cardinal n. On obtient une représentation de G sur $\mathbb{C}^n = \{e_1, \dots, e_n\}$ en posant

$$\rho(g)(e_i) = e_{\varphi(g)(i)}$$

c'est la représentation par permutations de G associé à l'action. Elle est de degré n.

Définition 58. La représentation par permutations de G associée à l'action par translation à gauche de G sur lui-même est la **représentation régulière** de G, on la note ρ_G .

Définition 59. On peut associer à toute représentation linéaire ρ , son **caractère** $\chi = \operatorname{trace} \circ \rho$. On dit que χ est **irréductible** si ρ est irréductible.

p. 150

- **Proposition 60.** (i) Les caractères sont des fonctions constantes sur les classes de conjugaison.
 - (ii) Il y a autant de caractères irréductibles que de classes de conjugaisons.

Définition 61. Soit $\rho: G \to \operatorname{GL}(V)$ une représentation linéaire de G. On suppose $V = W \oplus W_0$ avec W et W_0 stables par $\rho(g)$ pour tout $g \in G$. On dit alors que ρ est **somme directe** de ρ_W et de ρ_{W_0} .

Théorème 62 (Maschke). Toute représentation linéaire de *G* est somme directe de représentations irréductibles.

Théorème 63. Les sous-groupes distingués de G sont exactement les

[**PEY**] p. 231

$$\bigcap_{i\in I} \mathrm{Ker}(\rho_i) \ \mathrm{où} \ I \in \mathcal{P}([\![1,r]\!])$$

Corollaire 64. *G* est simple si et seulement si $\forall i \neq 1$, $\forall g \neq e_G$, $\chi_i(g) \neq \chi_i(e_G)$.

Annexes

FIGURE 1 – Illustration du premier théorème d'isomorphisme par un diagramme.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.

Cours d'algèbre [PER]

Daniel Perrin. Cours d'algèbre. pour l'agrégation. Ellipses, 15 fév. 1996.

 $\verb|https://www.editions-ellipses.fr/accueil/7778-18110-cours-d-algebre-agregation-9782729855529. \\ \verb|html.||$

L'algèbre discrète de la transformée de Fourier

[PEY]

Gabriel Peyré. *L'algèbre discrète de la transformée de Fourier. Niveau M1*. Ellipses, 15 jan. 2004. https://adtf-livre.github.io.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie*. 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$

Théorie des groupes

[ULM21]

Felix Ulmer. *Théorie des groupes. Cours et exercices.* 2e éd. Ellipses, 3 août 2021.

https://www.editions-ellipses.fr/accueil/13760-25304-theorie-des-groupes-2e-edition-9782340057241.html.