Raport proiect etapa 2

Rezultatele etapei anterioare:

	Precision	Recall	F1_score	Accuracy
Glioma_tumor	0.8613	0.9030	0.8817	
Meningioma_tumor	0.8273	0.6970	0.7566	0.9624
No_tumor	0.8750	0.8861	0.8805	0.8624
Pituitary_tumor	0.8846	0.9758	0.9280	

Cerința 1

În urma integrării validării de tip k-fold cross-validation în pipeline-ului de antrenare am obținut următoarele performanțe:

Evoluția metricilor pentru Fold 4

Putem observa ca modelul putea rula pe mai mult de 10 epoci dar din cauza limitărilor hardware timpul de așteptare era prea mare.

0.60

0.55

0.5

0.4

Testare	Media	Deviația standard
Accuracy	0.8369	0.0115
Precision	0.8388	0.0125
Recall	0.8369	0.0115
F1 score	0.8362	0.0119

Validare	Media	Deviația standard
Accuracy	0.8448	0.0121
Precision	0.8495	0.0145
Recall	0.8448	0.0121
F1_score	0.8441	0.0143

Din rezultatele obținute în urma evaluării modelului putem rezultate apropiate cu cele obținute înainte dar cu ușoară îmbunătățire pentru toate metricile. Mai putem observa faptul că rezultatele obținute pe Validare sunt cu ~1% mai bune decât cele obținute la Testare.

Cerința 2
În urma acestui experiment am obținut următoarele rezultate:

	No Balancing	Weighted loss	Oversampling	Augmented Oversampling
Accuracy	0.8380	0.8676	0.8693	0.8676
Precision	0.8404	0.8714	0.8714	0.8659
Recall	0.8380	0.8676	0.8693	0.8676
F1_score	0.8309	0.8672	0.8687	0.8651

Putem observa impactul pe care aceste metode de balansare îl are asupra performanței modelului. Se observă o creștere cu ~3% pentru fiecare metrică. Nu se observă diferențe mari între metodele folosite.

Tehnica de balansare ce foloseste *weighted loss function* pare a fi cea mai echilibrata soluție, deoarece îmbunătățește performanța fără a necesita modificări ale setului de date, precum *Oversampling-ul.*

Cerința 3

Graficele pentru setul 1 de augmentare:

Evoluția metricilor pentru Fold 2 și Setul de Augmentare 1

Evoluția metricilor pentru Fold 4 și Setul de Augmentare 1

Evoluția metricilor pentru Fold 5 și Setul de Augmentare 1

Graficele pentru setul 2 de augmentare:

Evoluția metricilor pentru Fold 1 și Setul de Augmentare 2

Evoluția metricilor pentru Fold 2 și Setul de Augmentare 2

Evoluția metricilor pentru Fold 3 și Setul de Augmentare 2

Evoluția metricilor pentru Fold 4 și Setul de Augmentare 2

Evoluția metricilor pentru Fold 5 și Setul de Augmentare 2

Graficele pentru setul 3 de augmentare:

Evoluția metricilor pentru Fold 4 și Setul de Augmentare 3

Validare	Media	Deviația standard
Accuracy	0.8164	0.0285
Precision	0.8196	0.0295
Recall	0.8164	0.0285
F1 score	0.8141	0.0293

Testare	Media	Deviația standard
Accuracy	0.8141	0.0210
Precision	0.8162	0.0197
Recall	0.8141	0.0210
F1 score	0.8122	0.0216

Din aceste rezultate putem observa faptul că augmentările aplicate au scăzut acuratețea cu \sim 5% și au crescut deviația standard cu \sim 1%. Acest lucru se datorează faptului că aceste transformările

aplicate asupra x-ray-urilor nu sunt cele mai bune pentru tumorile cerebrale din acest dataset. Consider că rezultate sunt influențate cel mai mult de transformarea RandomCrop care poate omite zonele cruciale din x-ray.