- 1. Let A be a set. $+_A: P(A) \times P(A) \to P(A)$ defined as $(B,C) \mapsto (B \cup C) \setminus (B \cap C)$. Then:
 - (a) Show that $(P(A), +_A)$ is an abelian group.
 - (b) Let $A' \subseteq A$, show that $B \mapsto B \cap A'$ is a homomorphism from $(P(A), +_A)$ to $(P(A'), +_{A'})$.
 - (c) Let $F = \{B \in P(A) : B \text{ is finite or } A \setminus B \text{ is finite} \}$. Show that \overline{B} is a subgroup of $(P(A), +_A)$.

(a). Pf.

associativity. given $R.S.T \in P(A)$

denote $A \setminus R$. $A \setminus S$. $A \setminus T$ by R. S. T. respectively $(R+_AS)+_AT = ((RUS) \setminus (RNS))+_AT$ $= ((RUS) \cap (RUS))+_AT \quad (de Morgan)$ $= ((RNR) \cup (SNR) \cup (SNS))+_AT$

 $= ((\overline{R}) \cup (R \cap \overline{S})) + T$ $= (((\overline{R} \cap S) \cup (R \cap \overline{S})) \cap \overline{T}) \cup ((R \cup \overline{S}) \cap (\overline{R} \cup S)) \cap \overline{T})$

=(RNSNT)U(RNSNT)U(RNSNT)U(RNSNT)

 $R+_{A}(S+_{A}T) = R+_{A}((S \cap T) \cup (\overline{S} \cap T))$ $= (R \cap ((S \cup T) \cap (S \cup T))) \cup (\overline{R} \cap ((S \cap T) \cup (\overline{S} \cap T)))$ $= (R \cap S \cap T) \cup (R \cap S \cap T) \cup (\overline{R} \cap S \cap T)$ $= (R+_{A}S) +_{A}T$

identity. it can be checked that
$$e_{p(A)} = \phi \in P(A)$$
 $\forall S \in P(A)$ $S +_A \phi = (S \cup \phi) \setminus (S \cap \phi)$
 $= (\phi \cup S) \setminus (\phi \cap S)$
 $= \phi +_A S$
 $= S$.

So ϕ is the identity in $(P(A) \cdot +_A)$

Inverse. it can be checked that S is an inverse of itself for all SEP(A).

$$S +_A S = (SUS) \setminus (SNS) = \phi = e_{P(A)}$$

abelian.
$$\forall S.T \in P(A)$$

 $S+_AT = (SUT) \setminus (SNT)$
 $= (TUS) \setminus (TNS)$
 $= T+_AS$

so by definition. (P(A). +A) is an abelian group.

旦

(b). Pf. denote this function by f: B→A'NB

Firstly I'll show that (P(A'). tai) is a group.

This instantly follows from the fact that A is arbitrary.

$$\begin{array}{l} \forall \, B.\, C \in \mathcal{P}(A) \\ f(B+A\,C) = \left(B+A\,C\right) \cap A' \\ = \left(\left(B\cap\left(A\backslash C\right)\right) \cup \left(\left(A\backslash B\right) \cap C\right)\right) \cap A' \\ = \left(\left(A'\cap B\right) \cap \left(A'\backslash C\right)\right) \cup \left(\left(A'\backslash B\right) \cap \left(A'\cap C\right)\right) \\ = \left(\left(A'\cap B\right) \cap \left(A'\backslash \left(A'\cap C\right)\right) \cup \left(\left(A'\backslash \left(A'\cap B\right)\right) \cap \left(A'\cap C\right)\right) \\ = \left(A'\cap B\right) +_{A'} \left(A'\cap C\right) \\ = f(B) +_{A'} f(C) \\ \text{So } B \mapsto B \cap A' \text{ is a homomorphism from } \left(\mathcal{P}(A), +_{A}\right) \text{ to } \left(\mathcal{P}(A'), +_{A}\right) \\ (c). \text{ pf.} \\ (c). \text{ pf.} \\ (i) \text{ identity.} \quad \mathcal{C}_{\mathcal{P}(A)} = \phi \in \mathcal{F} \text{ by definition.} \\ \text{(ii) } \text{ closed under operator.} \quad \forall \, S.\, T \in \mathcal{F} \\ \text{S+}_{A}T = \left(S\cup T\right) \setminus \left(S\cap T\right) \text{ let } \overline{S} := A\backslash S. \ \overline{T} := A\backslash T \\ = \left(S\cap \overline{T}\right) \cup \left(\overline{S}\cap T\right) \\ \text{ observe } \text{ +tot } \left|S\cap \overline{T}\right| \leq |S| |\overline{S}\cap T| \leq |T| \\ \text{ so } \left|S+_{A}T\right| \leq |S| + |T| < \infty \\ \end{array}$$

(iii) existence of inverse.

⇒ stat e F

$$\forall S \in F$$
. Sitself is the inverse.
 $S +_A S = \phi = e_{p(A)} = e_F$.

 \Box

by definition of subgroup.
$$F \leq P(A)$$

- 2. Let G be a group, H_1 , H_2 be two subgroups.
 - (a) Show that $H_1 \cap H_2 \leq G$.
 - (b) Show that $H_1 \cup H_2 \leq G$ iff $H_1 \leq H_2$ or $H_2 \leq H_1$.
 - (c) Let G be the group of integers and the group operation is addition. Write down two subgroups whose union is no longer a subgroup.

(a). Pf suppose a group operator of G is
$$*$$
 (G,*) is a group, identity: Since $H_1 \leq G$. $H_2 \leq G$ denote identity of G by e_G . $e_G \in H_1$. $e_G \in H_2$

So eae HINHZ

closed under X:

for
$$i=1.2$$
. $\forall x,y \in Hi$ $x \neq y \in Hi$
So take $\forall x,y \in H_1 \cap H_2$.

$$x \in H_1, y \in H_1 \Rightarrow x * y \in H_1$$
 $\Rightarrow x * y \in H_1 \cap H_2$ $x \in H_2, y \in H_2 \Rightarrow x * y \in H_2$

existence of inverse.

 $\forall x \in H_1 \cap H_2 \subset G$ $H_1 \leq G \Rightarrow x^{-1} \in H_1$ $H_2 \leq G \Rightarrow x^{-1} \in H_2$ Since $x \in G$. x^{-1} is unique.

So $x^{-1} \in H_1 \cap H_2$.

so HINH2 & G.

(b). Pf. Suppose HI = Hz.

by definition $H_1 \subset H_2$, $H_1 \cup H_2 = H_2 \leq G$.

Supprise HIUH2 ≤ G.

by definition (3). eg \in H, UH2

(ii) $\forall x, y \in H_1 \cup H_2$. $x * y \in H_1 \cup H_2$

(iii) VXEHIUHZ. XTEHIUHZ

If Hi= Hs then the proof is done

If Hi + Hz. W.L.O.G suppose Hz H1 + 0

I'll show that under this condition, $H_1 \mid H_2 = \phi$ if $H_1 \mid H_2 \neq \phi$ (this is my assumption)

Pick $\chi_1 \in H_1 \mid H_2 \subset H_1 \cup H_2$.

if x1-1∈Hz. since Hz is a group. Hz ≤G $\chi_1 = (\chi_1^{-1})^{-1} \in H_2$ contradiction So xi = Hi \Hz. similarly $\forall x_2 \in H_2 \setminus H_1$ $x_2^{-1} \in H_2 \setminus H_1$ pick XIEHI Hz. XZEHZ HI SINCE X1. X2 ∈ H1 UH2 ≤ G X1*X2 ∈ H1 UH2 if x1 * x2 = y & H1 $\chi_1^{-1} \star \chi_1 \star \chi_2 = \chi_2 = \chi_1^{-1} \star \chi \in H_1$ (by I) but by assumption $X_2 \in H_2 \setminus H_1$. contraduction. So $\chi_1 * \chi_2 \notin H_1$ similarly $\chi_1 * \chi_2 \notin H_2$ So HIUHz is not closed under * . thus not a group. Contradiction.

So my assumption is false. i.e. $H_1 \mid H_2 = \emptyset$.

Next I'll show that at this time $H_1 \leq H_2$ since $H_1 \mid H_2 = \emptyset$ $H_2 \mid H_1 \neq \emptyset$ $H_1 \subset H_1 \cup H_2 = H_2$

consider $x \in H_1$, $x * e_{H_1} = x = x * e_{H_2}$ by cancellation | aw. $e_{H_1} = e_{H_2}$

Since Hi itself is a group, the other two rules are automatically satisfied.

so H1 ≤ H2 (or H2 ≤ H1)

CC). Solution.
$$\langle 2 \rangle$$
, $\langle 3 \rangle$ are subgroups of $(\mathbb{Z}, +)$ respectively.
but $2 \in \langle 2 \rangle$, $3 \in \langle 3 \rangle$
 $2+3=5 \notin (\langle 2 \rangle \cup \langle 3 \rangle)$.

- 3. Show that the set of $n \times n$ matrices with integer entries and determinant 1 form a group under matrix multiplication. (These groups are denoted as $SL(n,\mathbb{Z})$.
- Pf. $\forall A.B \in SL(n.\mathbb{Z})$ with determinant 1. $|AB| = |A| \cdot |B| = 1 \times 1 = 1$ $(AB)_{\hat{y}} = \sum_{k=1}^{n} A_{ik} B_{kj} \in \mathbb{Z}$ is obvious.

So SL(N,Z) is closed under matrix multiplication.

- (i). Identity $I = drag(1, 1, \dots, 1) \in SL(n, \mathbb{Z})$ is the identity $M \in SL(n, \mathbb{Z})$, $M \cdot I = I \cdot M = M$
- (ii). Assocrativity. $\forall M.N.P \in SL(n.\mathbb{Z}).$ $(M \cdot N) \cdot P = M \cdot (N \cdot P)$

follows from the definition of matrix multiplication.

(îiì). Inverse.

$$\forall A \in SL(n, \mathbb{Z}).$$
 $A \cdot A^* = A^* \cdot A = A \cdot I = I$

by definition
$$A^*_{ij} = (-1)^{i}t^{j}$$
 Mij
Where Mij is the (i,j) -minor of A
by definition $M_{ij} \in \mathbb{Z}$
also $|A| \cdot |A^*| = |I| = 1 \Rightarrow |A^*| = 1$.
So A^* is the inverse of A in $SL(n.\mathbb{Z})$.

Pry définition SL(n. Z) is a group under matrix multiplication.

4. Let G be a group, show that G has only the identity element iff for any group H, Hom(H,G) has exactly one element.

Pf. if G is trivial. obviously the only possible map should be $f: H \to G$ $\chi \mapsto e$

if Hom (H. G) = 1.

If G has more than I element,

prok $g \in G$ where g is not the identity. Let H = (Z, +) $f_1: x \mapsto e$ (trivial homomorphism) and $f_2: n \mapsto g^n$ are two different mappings when $|G| \neq 1$. $f_2(n_1 + n_2) = g^{n_1 + n_2} = g^{n_1} * g^{n_2} = f_2(n_1) * f_2(n_2)$

5. Show that for any group G, any $g \in G$, there is a unique group homomorphism from $(\mathbb{Z}, +)$ to G, sending 1 to g.

Pf. Denote group
$$G$$
, by $(G, *)$

Let $f \in Hom(\mathbb{Z}, G)$ with $f(x) = g$,

Let $g \in Hom(\mathbb{Z}, G)$ $\forall x, y \in \mathbb{Z}$ $f(x+y) = f(x) * f(y)$

Let $g \in Hom(\mathbb{Z}, G)$ $\forall x, y \in \mathbb{Z}$ $f(x+y) = f(x) * f(y)$

Let $g \in Hom(\mathbb{Z}, G)$ $\forall x \in \mathbb{Z}$ $f(x+y) = f(x) * g$

If $g = e_G$ $\forall x \in \mathbb{Z}$ $f(x+y) = f(x)$

So $f : \mathbb{Z} \to G$ is unique (and obviously exists).

 $x \mapsto e_G$

If $g \neq e_G$ $\forall x \in \mathbb{Z}$ $f(x+y) = f(x) * g$.

If
$$g \neq e_{G}$$
. $\forall x \in \mathbb{Z}$. $f(x+i) = f(x) * g$
so $f(n) = g^n$ ($n \in \mathbb{Z}$) is such a homomorphism
if in this case $\exists h \in Hom(\mathbb{Z}, G)$ s.t. $h(x+i) = h(x) * g$
($\forall x \in \mathbb{Z}$)
let $x = 0$ $f(0) = h(0) = g$

It can be easily shown by induction that f = h. (Note. $\forall m \in \mathbb{N}$. $g^m := g \times g \times \cdots \times g$ (m thues)

- 6. Let M be a set, $*: M \times M \to M$ be a function, such that for any $a,b,c \in M$, *(a,*(b,c)) = *(*(a,b),c), *(a,b) = *(b,a), and there is an element $e \in M$ such that for any $a \in M$, *(e,a) = *(a,e) = a. Let $: (M \times M) \times (M \times M) \to M \times M$ be $((a,b),(c,d)) \mapsto (*(a,c),*(b,d))$, \sim a relation on $M \times M$ defined as $\sim = \{((a,b),(c,d)) \in (M \times M) \times (M \times M) :$ there exists $k \in M, *(*(a,d),k) = *(*(b,c),k)\}$
 - (a) Show that \sim is an equivalence relation.
 - (b) Let $G = (M \times M) / \sim$. Show that $([a], [b]) \mapsto [\cdot (a, b)]$ is a function from $G \times G$ to G. Denote it as \cdot' .

(a) Pf. Denote
$$\star(x,y)$$
 by $x \star y$
(a.b) $\kappa(c,d)$ iff $\exists k \in M$ $(a \star d) \star k = (b \star c) \star k$
reflexity. $\forall (x,y) \in M \times M$ take $k = e$
 $(x \star y) \star e = (x \star y) \star e \Rightarrow (x,y) \wedge (x,y)$
symmetry. $\forall (x_1,y_1).(x_2,y_2) \in M \times M$
 $(x_1,y_1) \wedge (x_2,y_2) \Leftrightarrow (x_1 \star y_2) \star e = (x_2 \star y_1) \star e$
 $\Leftrightarrow (x_2 \star y_1) \star e = (x_1 \star y_2) \star e$
 $\Leftrightarrow (x_2 \star y_2) \wedge (x_1,y_1)$

transitivity. $\forall (x_1, y_1) (x_2, y_2) (x_3, y_3) \in M \times M$

 $(x_1, y_1) \wedge (x_2, y_2) \wedge (x_2, y_2) \wedge (x_3, y_3)$ $(x_1, y_1) \wedge (x_2, y_2) \wedge (x_3, y_3)$ $(x_1, y_1) \wedge (x_2, y_2) \wedge (x_3, y_3)$

 \Leftrightarrow $(x, *y_2)*e = (x_2*y_1)*e. (x_2*y_3)*e = (x_3*y_2)*e.$

$$\Rightarrow y_3 + (x_1 * y_2) * e = y_3 * (x_2 * y_1) * e$$

$$\Rightarrow y_{3}*(x_{1}*y_{2}) = y_{3}*(x_{2}*y_{1})$$

$$= (x_{2}*y_{3})*y_{1}$$

$$= (x_{3}*y_{2})*y_{1}$$

$$(y_{3}*x_{1})*y_{2} = (x_{3}*y_{1})*y_{2}$$

$$\Leftrightarrow (x_{1},y_{1}) \sim (x_{3},y_{3})$$

$$(b). Pf. Given $A = [a] \in G_{1}. B = [b] \in G_{1}.$

$$\cdot'(A,B) = [\cdot(a,b)] = [(x_{a}*x_{b},y_{a}*y_{b})]$$

$$= \begin{cases} (x,y) \in M \times M \mid \exists k \in M. \ x_{a} \times x_{b} \times y \times k \\ = x \times y_{a} \times y_{b} \times k \end{cases}$$
We only need to show that "\cdot'' is well-defined.$$

We only need to show that "o" is well-defined

If $A_1 = [a_1] = [a_2] = A_2 \in G$. $B_1 = [b_1] = [b_2] = B_2 \in G$. $A_1 \cdot B_1 = \{(x,y) \in M \times M \mid (x,y) \land (x_{a_1} * x_{b_1}, y_{a_1} * y_{b_1})\}$ $A_2 \cdot B_2 = \{(x,y) \in M \times M \mid (x,y) \land (x_{a_2} * x_{b_2}, y_{a_2} * y_{b_2})\}$ We then only need to show that $(x_{a_1}, y_{a_1}) \cdot (x_{b_1}, y_{b_1}) \land (x_{a_2}, y_{a_2}) \cdot (x_{b_2}, y_{b_2})$ $(x_{a_1}, y_{a_1}) \cdot (x_{b_1}, y_{b_1}) \land (x_{a_2}, y_{a_2}) \cdot (x_{b_2}, y_{b_2})$ $\Rightarrow \exists k \in M \cdot (x_{a_1} * x_{b_1} * y_{a_2} * y_{b_2} * k) = y_{a_1} * y_{b_1} * x_{a_2} * x_{b_2} * k$

Since TKEM. XXXY az *K1 = Xaz * Yax K1

(I)

 $\exists k_z \in M \quad x_{b_1} * y_{b_2} * k_z = x_{b_2} * y_{b_1} * k_z$ $\text{Using the commutative rule and let } k = k_1 * k_z$ $(I) \quad \text{follows instantly}.$