Complex Analysis

Ikhan Choi

May 7, 2022

Contents

I	Holomorphic functions	3
1	Cauchy theory 1.1 Complex differentiability 1.2 Contour integral 1.3 Power series 1.4 Cauchy estimates	4 4 4 4
3	Singularities 2.1 Classification of singularities 2.2 Residue theorem	6 6 6 6 8 8
П	3.2 Weierstrass factorization theorem	8 8 9
4	Conformal mappings 4.1 Riemann sphere	10 10 10 10
5	Univalent functions 5.1 Bierbach conjecture	11 11 11
6	6.1 Riemann-Hilbert problem	12 12 12
III	Riemann surfaces	13
7	Analytic continuation 7.1 Monodromy	14 14 14

	7.4 Elliptic curves	
8	Differential forms	15
9	Uniformization theorem	16
IV	Several complex variables	17

Part I Holomorphic functions

Cauchy theory

1.1 Complex differentiability

1.2 Contour integral

Cauchy-Goursat theorem

1.3 Power series

Analyticity, Laurent series,

1.4 Cauchy estimates

- **1.1.** Let $p \in \mathbb{C}[z]$ with $p(z) = \sum_{k=0}^{n} a_k z^k$.
 - (a) $|p(z)| \lesssim |z|^n$.
 - (b) There is R > 0 such that $|p(z)| \gtrsim |z|^n$ for $|z| \ge R$.

Proof. If we take R > 0 such that

$$\sum_{k=0}^{n-1} \frac{|a_k|}{R^{n-k}} \le \frac{|a_n|}{2},$$

then $|z| \ge R$ implies

$$|p(z)| \ge |a_n||z|^n - \sum_{k=0}^{n-1} |a_k||z|^k$$

$$\ge |a_n||z|^n - \sum_{k=0}^{n-1} \frac{|a_k|}{R^{n-k}}|z|^n$$

$$\ge \frac{|a_n|}{2}|z|^n.$$

1.2. Let $f:\Omega\to\mathbb{C}$ be a holomorphic function on a domain. Then, $\overline{f(z)}=f(\overline{z})$ if and only if $f(z)\in\mathbb{R}$ for $z\in\Omega\cap\mathbb{R}$.

Exercises

- **1.3.** If a holomorphic function has positive real parts on the open unit disk then $|f'(0)| < 2 \operatorname{Re} f(0)$.
- **1.4.** If at least one coefficient in the power series of a holomorphic function at each point is 0 then the function is a polynomial.
- **1.5.** If a holomorphic function on a domain containing the closed unit disk is injective on the unit circle, then so is on the disk.
- **1.6.** For a holomorphic function f and every z_0 in the domain, there are $z_1 \neq z_2$ such that $\frac{f(z_1)-f(z_2)}{z_1-z_2}=f'(z_0)$.
- 1.7. For two linearly independent entire functions, one cannot dominate the other.
- **1.8.** The uniform limit of injective holomorphic function is either constant or injective.
- **1.9.** If the set of points in a domain $U \subset \mathbb{C}$ at which a sequence of bounded holomorphic functions converges has a limit point, then it compactly converges.
- **1.10.** Find all entire functions f satisfying $f(z)^2 = f(z^2)$.
- **1.11.** An entire function maps every unbounded sequence to an unbounded sequence is a polynomial.
- **1.12.** Let f be a holomorphic function on the open unit disk such that f(0) = 1 and f'(0) > 1
- 2. Then, there is z such that |z| < 1 and f(z) is pure imaginary.

Singularities

2.1 Classification of singularities

Riemann removable singularity theorem, Casorati-Weierstrass theorem, Picard's theorem

2.2 Residue theorem

$$\int_0^{2\pi} \frac{dx}{1 + a\cos x} = \frac{2\pi}{\sqrt{1 - a^2}}, \quad -1 < a < 1$$

2.1 (Semicircles). (a)

$$\int_0^\infty \frac{1}{1+x^2} \, dx =$$

(b)

$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

(c)

$$\int_0^\infty \frac{\log x}{1+x^2} \, dx =$$

(d)

$$\int_0^\infty \frac{x^{a-1}}{1+x} = \frac{\pi}{\sin \pi a}, \quad 0 < a < 1$$

- 2.2 (Computation of Fourier transforms).
- 2.3 (Laplace transforms).
- 2.4 (Gamma function).

2.3 Zeros and poles

2.5 (Argument principle). (a)

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = i \text{ winding number.}$$

(b)
$$\int_{\gamma} \frac{f'(z)}{f(z)} \, dz = 2\pi i \text{(number of zeros - number of poles)}.$$

- **2.6** (Rouché theorem). Let f be a meromorphic function on Ω . Let γ be a curve...
 - (a) If $h:[0,1]\times\Omega\to\mathbb{C}$ is continuous and

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{\gamma} \frac{g'(z)}{g(z)} dz.$$

(b) In particular, if |g(z)| < |f(z)| on $z \in \gamma$, then

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{\gamma} \frac{f'(z) + g'(z)}{f(z) + g(z)} dz.$$

2.7. Fundamental theorem of algebra, proof by the Liouville theorem, and proof by the Rouché theorem.

open mapping theorem

Polynomial approximation

- 3.1 Mittag-Leffler theorem
- 3.2 Weierstrass factorization theorem
- 3.3 Runge's approximation

Mergelyan

Part II Geometric function theory

Conformal mappings

- 4.1 Riemann sphere
- 4.2 Open unit disk
- 4.3 Riemann mapping theorem

Univalent functions

- 5.1 Bierbach conjecture
- 5.2 Harmonic functions

Maximum principle; Schwarz's lemma, Lindelöf principle,

6.1 Riemann-Hilbert problem

Hilbert transform

6.2 Quasi-conformal mappings

Beltrami equations and Teichmüler theory?

Part III Riemann surfaces

Analytic continuation

- 7.1 Monodromy
- 7.2 Covering surfaces
- 7.3 Algebraic functions
- 7.4 Elliptic curves

Differential forms

Uniformization theorem

Part IV Several complex variables