Analyzing Performance of Covert Networks Using a Toughness-like Measure

Lynne L. Doty

Marist College Poughkeepsie, NY 12601

24th Cumberland Conference May 2011

In a graph model of a covert network

vertices represent members of covert group

In a graph model of a covert network

- vertices represent members of covert group
- edges indicate direct communication

In a graph model of a covert network

- vertices represent members of covert group
- edges indicate direct communication
- subvert a vertex means delete the closed neighborhood of vertex (following Gunther and Hartnell)

In a graph model of a covert network

- vertices represent members of covert group
- edges indicate direct communication
- subvert a vertex means delete the closed neighborhood of vertex (following Gunther and Hartnell)
- ASSUMPTION: each vertex is equally likely to be subverted (group members are uniformly exposed)

Measuring Secrecy and Information: Lindelauf

 SECRECY of graph G is measured as the expected fraction of the network to survive after subversion of a vertex:

$$\mathsf{TS} = \frac{1}{|V|} \cdot \sum_{V_i \in V} \frac{|V| - |N[v_i]|}{|V|}$$

where $N[v] = \{v\} \cup \{u \mid u \text{ is adjacent to } v\}.$

Measuring Secrecy and Information: Lindelauf

 SECRECY of graph G is measured as the expected fraction of the network to survive after subversion of a vertex:

$$\mathsf{TS} = \frac{1}{|V|} \cdot \sum_{v_i \in V} \frac{|V| - |N[v_i]|}{|V|}$$

where $N[v] = \{v\} \cup \{u \mid u \text{ is adjacent to } v\}.$

 INFORMATION is measured by the normalized reciprocal of total distance:

$$\mathsf{INF} = \frac{|V| \cdot (|V| - 1)}{\sum_{v_i \in V} td(v_i)}$$

where td(v) is the sum of distances of all vertices of G from v.

Measuring Overall Performance: Lindelauf

The overall performance of a graph is measured as:

$$PERF = TS \times INF$$

Measuring Overall Performance: Lindelauf

The overall performance of a graph is measured as:

$$PERF = TS \times INF$$

• Among all graphs with a fixed number of vertices, the star graph, $K_{1,p-1}$, is the best.

Measuring Overall Performance: Lindelauf

The overall performance of a graph is measured as:

$$PERF = TS \times INF$$

- Among all graphs with a fixed number of vertices, the star graph, $K_{1,p-1}$, is the best.
- But if any vertex of a star is subverted, the resulting graph either has no vertices s or has p-1 isolated vertices.

 Use a measure of secrecy that includes the number of components in the subverted graph.

- Use a measure of secrecy that includes the number of components in the subverted graph.
- Some notation: For any graph H, $\Omega(H)$ is the number of components in H.

- Use a measure of secrecy that includes the number of components in the subverted graph.
- Some notation: For any graph H, $\Omega(H)$ is the number of components in H.

0

$$SEC = \frac{1}{|V|^2} \cdot \sum_{v_i \in V} \frac{|V| - |N[v_i]|}{\Omega(G - N[v_i])}$$

- Use a measure of secrecy that includes the number of components in the subverted graph.
- Some notation: For any graph H, $\Omega(H)$ is the number of components in H.

0

$$SEC = \frac{1}{|V|^2} \cdot \sum_{v_i \in V} \frac{|V| - |N[v_i]|}{\Omega(G - N[v_i])}$$

 A variation on the parameter toughness defined by Chvátal.

Modified Performance Measure

• PERF* = SEC
$$\times$$
 INF

Modified Performance Measure

• PERF* = SEC
$$\times$$
 INF

$$\mathsf{PERF*} = \left(\frac{1}{|V|^2} \cdot \sum_{v_i \in V} \frac{|V| - |N[v_i]|}{\Omega(G - N[v_i])}\right) \cdot \left(\frac{|V| \cdot (|V| - 1)}{\sum_{v_i \in V} td(v_i)}\right)$$

• PERF*(
$$Star_n$$
) = $\frac{1}{2n}$

- PERF* $(Star_n) = \frac{1}{2n}$ PERF* $(C_n) = \frac{4(n-3)}{n(n+1)}$, for n odd

- PERF*($Star_n$) = $\frac{1}{2n}$
- PERF* $(C_n) = \frac{4(n-3)}{n(n+1)}$, for *n* odd
- PERF* $(C_n) = \frac{4(n-3)(n-1)}{n^3}$, for *n* even

- PERF*($Star_n$) = $\frac{1}{2n}$
- PERF* $(C_n) = \frac{4(n-3)}{n(n+1)}$, for *n* odd
- PERF* $(C_n) = \frac{4(n-3)(n-1)}{n^3}$, for *n* even
- PERF* $(P_n) = \frac{3(n^2 + n 8)}{2n^2(n+1)}$

- PERF*($Star_n$) = $\frac{1}{2n}$
- PERF* $(C_n) = \frac{4(n-3)}{n(n+1)}$, for *n* odd
- PERF* $(C_n) = \frac{4(n-3)(n-1)}{n^3}$, for *n* even
- PERF*(P_n) = $\frac{3(n^2 + n 8)}{2n^2(n+1)}$
- For large n, PERF*(C_n) > PERF*(P_n) > PERF*(Star_n)

• When 6 divides |V|, barbell graph is inflation of $C_{|V|/3}$ with diagonals

- When 6 divides |V|, barbell graph is inflation of $C_{|V|/3}$ with diagonals
- Modified barbell graphs exist for all |V| > 6

- When 6 divides |V|, barbell graph is inflation of $C_{|V|/3}$ with diagonals
- Modified barbell graphs exist for all |V| > 6
- Barbells and modified barbells achieve maximum toughness (Ferland & Doty)

- When 6 divides |V|, barbell graph is inflation of $C_{|V|/3}$ with diagonals
- Modified barbell graphs exist for all |V| > 6
- Barbells and modified barbells achieve maximum toughness (Ferland & Doty)
- Barbells achieve maximum neighbor connectivity (Gunther & Hartnell)

Perfomance of Barbell Graph

• PERF*(Barbell_n) =
$$\frac{36(n-4)(n-1)}{3n^3+38n^2-36n}$$

Perfomance of Barbell Graph

• PERF*(Barbell_n) =
$$\frac{36(n-4)(n-1)}{3n^3+38n^2-36n}$$

• For $n \ge 8$, PERF*($Barbell_n$) > PERF*(C_n) > PERF*(P_n) > PERF*($Star_n$)

Perfomance of Barbell Graph

- PERF*(Barbell_n) = $\frac{36(n-4)(n-1)}{3n^3+38n^2-36n}$
- For $n \ge 8$, PERF*($Barbell_n$) > PERF*(C_n) > PERF*(P_n) > PERF*($Star_n$)
- There are order 12 graphs with higher PERF* than Barbell₁₂.

Maximum Performance among Trees

A tree in which exactly one vertex has degree larger than 2 is called a ray tree. The vertex whose degree is larger than 2 is called the center. Note that the number of leaves in the tree equals the degree of the center.

Maximum Performance among Trees

- A tree in which exactly one vertex has degree larger than 2 is called a ray tree. The vertex whose degree is larger than 2 is called the center. Note that the number of leaves in the tree equals the degree of the center.
- A balanced ray tree is a ray tree in which

$$|dist(v_i, c) - dist(v_i, c)| \leq 1$$

for all leaves v_i, v_j .

Ray Trees-Some Results

Lemma

Among ray trees with n vertices and maximum degree Δ ,

- balanced ray tree has maximum SEC.
- balanced ray tree has maximum INF.
- balanced ray tree has maximum PERF*.

Ray Trees-Some Results

Lemma

Among balanced ray trees with n vertices,

- maximum SEC occurs when max degree $\Delta = \lfloor \frac{p-1}{3} \rfloor$.
- maximum PERF* occurs when max degree $\Delta = \lfloor \frac{p-1}{2} \rfloor$.

A Conjecture that Should be a Small Theorem

Conjecture

Among trees with n vertices, the balanced ray tree with max degree $\Delta = \lfloor \frac{p-1}{2} \rfloor$ has maximum PERF* .

Odd number of vertices

Even number of vertices