Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2022 EE3CO12 / EX3CO12 Power System -II

Branch/Specialisation: EE/EX Programme: B.Tech.

Maximum Marks: 60 Duration: 3 Hrs.

Q.1	i.	s) should be written in full instead of only a, b, c or d. Phase shifting transformer are used for-		1		
		(a) Reactive power flow control	(b) Real power flow control			
		(c) Voltage control	(d) Frequency control			
	ii.	Z bus is a-	•	1		
		(a) Sparse matrix	(b) Dense matrix			
		(c) Unity matrix	(d) None of these			
	iii.	Slack bus is needed in power stud	dies because-	1		
		(a) Losses are not known				
		(b) Real power load is not known	1			
		(c) Voltage at PV bus is not know	vn			
		(d) Power angle at slack bus is not known				
	iv.	In a two plant system, the load is	connected to plant no. 2. The loss co-	1		
		efficient are-				
		(a) B_{11} , B_{12} , B_{22} are nonzero				
		(b) B_{11} is nonzero but B_{12} and B_{22} are zero				
		(c) B_{11} and B_{12} are nonzero but B	22 is zero			
		(d) B_{11} and B_{22} are nonzero but B	₁₂ is zero			
	v. Time constant of turbine system, when compared to a generat					
		system is generally-				
		(a) Less (b) More (c)	Same (d) None of these			
	vi.	In a two-area case, area control e	rror is-	1		
		(a) Change in frequency				
		(b) Change in tie-line power				
		(c) Linear combination of both (a) and (b)			
		(d) None of these				
			P.T.	O.		

[2]

[2]	ı
9	ı

OR	iii.	Generate and explain the proportional plus integral control for load frequency control for a single area system. Also draw the block diagram.	7
Q.5	i.	Classify voltage control according to production & absorption of reactive power in power network.	3
	ii.	Derive for the transfer function of AVR system. Also, draw the block diagram. Explain the same.	7
OR	iii.	Explain and appraise in detail the static excitation system for alternator with block diagram.	7
Q .6		Attempt any two:	
	i.	Differentiate between steady state, dynamic and transient stability.	5
	ii.	Explain equal area criteria for transient stability analysis.	5
	iii.	A synchronous generator of reactance 1.2 pu is connected to an infinite	5
		bus bar (V =1.0 pu) through transformers and a line of total reactance of	
		0.60 pu. The generator no load voltage is 1.2 pu and its inertia constant	
		is H= 4 MW-s/MVA. The system frequency is 50 Hz. Neglect damping and resistive losses.	
		Evaluate the frequency of natural oscillations if the generator is loaded	
		to 50% of its maximum power limit.	

Marking Scheme

EE3CO12 / EX3CO12 Power System -II

		EESCOIL / EMSCOIL I OWE Syste	111 11	
Q.1	i.	(b) Real power flow control	1 Mark	1
	ii.	(b) Dense matrix	1 Mark	1
	iii.	(a) Losses are not known	1 Mark	1
	iv.	(b) B_{11} is nonzero but B_{12} and B_{22} are zero	1 Mark	1
	v.	(a) Less	1 Mark	1
	vi.	(c) Linear combination of both (a) and (b)	1 Mark	1
	vii.	(d) Exciting field winding of the main exciter	1 Mark	1
	viii.	(a) With fixed frequency	1 Mark	1
	ix.	(a) Increasing the excitation	1 Mark	1
	х.	(c) 3	1 Mark	1
Q.2	i.	Three features	1 Mark each	3
			(1 Mark*3)	
	ii.	Diagram	2 Marks	7
		Incidence matrix	2 Marks	
		Final answer	3 Marks	
OR	iii.	Advantages	3.5 Marks	7
		Problems	3.5 Marks	
Q.3	i.	Comparison any three	1 Mark each	3
			(1 Mark*3)	
	ii.	Derivation of FDLF method	4 Marks	7
		Advantages and disadvantages	3 Marks	
		(Two each)	(1.5 Marks*2)	
OR	iii.	ITL derivation	2 Marks	7
		Final derivation of exact coordination equation	5 Marks	
Q.4	i.	Classification of the area control error	3 Marks	3
	ii.	Calculation of load shared by two generators (G _{1 &} G ₂)		
			5 Marks	
		Evaluate the system frequency	2 Marks	
OR	iii.	Block diagram	3 Marks	7
		Explanation with equation	4 Marks	
Q.5	i.	Classification	1 Mark each	3
			(1 Mark*3)	

	ii.	Block diagram	2 Marks	7
		Derivation (Equation)	5 Marks	
OR	iii.	Block diagram	2 Marks	7
		Explanation with Equation	5 Marks	
Q.6		Attempt any two:		
	i.	Difference	5 Marks	5
	ii.	Diagram	2 Marks	5
		Formulation	3 Marks	
	iii.	Calculation of M	2 Marks	5
		Calculation of frequency	3 Marks	
