8 Funktionen

ö	Funkt	ionen	1
	8.1 De	efinition und Darstellung	2
		genschaften von Funktionen	
		Monotonie	
	8.2.2	Beschränktheit	5
	8.2.3	Symmetrie	5
	8.2.4	Periodizität	5
	8.2.5	Nullstellen	6
	8.2.6	Minimum und Maximum	6
		Umkehrfunktion	
		oordinatentransformationen	
		Parallelverschiebung eines kartesischen Koordinatensystems	
	8.3.2	,	
		Übergang Kartesische Koordinaten - Polarkoordinaten	
		enzwert und Stetigkeit	
		Grenzwerte von Funktionen	
		Stetigkeit von Funktionen	
		ementare Funktionen	
	8.5.1		
	8.5.2	•	
	8.5.3		
	8.5.4	Exponential- und Logarithmusfunktionen	
	8.5.5	Trigonometrische Funktionen	
	8.5.6	Zyklometrische Funktionen	
	8.5.7	Hyperbel-und Areafunktionen	44

Nachfolgend ist eine **Übersicht über die verschiedenen Funktionen** gegeben, die in diesem Kapitel angesprochen werden.

8.1 Definition und Darstellung

Definition 8.1: reelle Funktion einer reellen Variablen

Eine reelle **Funktion f** ist eine Vorschrift, die jedem Element x einer Menge $D \subseteq \mathbb{R}$ eindeutig eine reelle Zahl y einer Menge $B \subseteq \mathbb{R}$ zuordnet:

f:
$$D \rightarrow B$$

 $x \rightarrow y=f(x)$

x ist die unabhängige Variable, y die abhängige Variable.

Darstellungsformen einer Funktion:

- Verbale Beschreibung der Zuordnung
- tabellarische Darstellung
- graphische Darstellung

- analytische Beschreibung durch explizite oder implizite Gleichungen
- in kartesischen Koordinaten
- in Polarkoordinaten
- in Parameterdarstellung

Beispiel einer Funktion:

Definition 8.2: implizite/ explizite Funktionsdarstellung

Die Darstellung einer Funktion wird

- **implizit** genannt, wenn die Funktionsgleichung nicht nach einer Variablen x bzw. y aufgelöst ist, sondern in der Form F(x,y)=0 vorliegt.
- **explizit** genannt, wenn die Funktionsgleichung nach einer Variablen aufgelöst ist, z.B. y=f(x).

Definition 8.3: Verkettung von Funktionen

X, Y, Z seien nicht leere Mengen mit Funktionen f: $X \rightarrow Y$, g: $Y \rightarrow Z$.

Die durch $h(x) := g \circ f(x) = g(f(x))$ definierte Funktion $h: X \to Z$ ist eine **verkettete Funktion**. Dabei ist f die innere und g die äußere Funktion.

Im Vergleich andere Verknüpfungen von Funktionen:

Addition von Funktionen

f und g seien reelle Funktionen $f,g:D\subseteq\mathbb{R}\to\mathbb{R}$

Dann ist die Addition von Funktionen für alle $x \in D$ definiert

$$h := f + g : D \subseteq \mathbb{R} \rightarrow \mathbb{R} \quad mit(f+g)(x) := f(x) + g(x)$$

Multiplikationen von Funktionen

f und g seien reelle Funktionen $f,g:D\subseteq\mathbb{R}\to\mathbb{R}$

Dann ist die Multiplikation von Funktionen für alle $x \in D$ definiert

$$k := f \cdot g : D \subseteq \mathbb{R} \rightarrow \mathbb{R} \quad mit(f \cdot g)(x) := f(x) \cdot g(x)$$

8.2 Eigenschaften von Funktionen

8.2.1 Monotonie

Definition 8.4: Monotonie einer Funktion

Eine Funktion f heißt in einem Intervall $I \subseteq D$

- monoton steigend, wenn $\forall x_1, x_2 \in I \text{ mit } x_1 < x_2 \text{ gilt } f(x_1) \leq f(x_2)$,
- streng monoton steigend, wenn $\forall x_1, x_2 \in I \text{ mit } x_1 < x_2 \text{ gilt } f(x_1) < f(x_2)$,
- monoton fallend, wenn $\forall x_1, x_2 \in I \text{ mit } x_1 < x_2 \text{ gilt } f(x_1) \ge f(x_2)$,
- streng monoton fallend, wenn $\forall x_1, x_2 \in I \text{ mit } x_1 < x_2 \text{ gilt } f(x_1) > f(x_2)$.

8.2.2 Beschränktheit

Definition 8.5: Beschränktheit einer Funktion

Eine Funktion f heißt in einem Intervall $I \subseteq D$

- beschränkt nach unten, wenn es eine Konstante k gibt mit $f(x) \ge k \ \forall \ x \in I$,
- beschränkt nach oben, wenn es eine Konstante K gibt mit $f(x) \le K \ \forall \ x \in I$.
- Im Falle der Existenz einer Konstanten M mit $|f(x)| \le M \quad \forall x \in I$ heißt die Funktion **beschränkt** auf I.

8.2.3 Symmetrie

Definition 8.6: Symmetrie

Eine Funktion f heißt in einem zum Koordinatenursprung symmetrischen Intervall $[-a,a]=I\subseteq D$

• gerade oder achsensymmetrisch, wenn für jedes $x \in I$ gilt:

$$f(-x) = f(x)$$
,

• ungerade oder punktsymmetrisch, wenn für jedes $x \in I$ gilt:

$$f(-x) = -f(x)$$

8.2.4 Periodizität

Definition 8.7: Periodizität

Eine Funktion f mit dem Definitionsbereich $D = \mathbb{R}$ heißt **periodisch** mit der **Periode** p > 0, wenn für jedes $x \in D$ gilt f(x+p) = f(x).

Mit p ist auch jedes ganzzahlige Vielfache von p eine Periode. Die kleinste Periode wird auch primitive Periode genannt.

8.2.5 Nullstellen

Definition 8.8: Nullstelle

Eine Nullstelle der Funktion $f:D\to B$ ist ein $x\in D$ mit f(x)=0.

8.2.6 Minimum und Maximum

Definition 8.9: Minimum, Maximum

Eine Funktion $f:D \to B$ hat im Punkt $x_e \in D$

ein globales Maximum, wenn gilt $\forall x \in D : f(x) \le f(x_e)$,

ein globales Minimum, wenn gilt $\forall x \in D: f(x) \ge f(x_e)$,

ein lokales Maximum, wenn

$$\exists \varepsilon > 0: \forall x \in (x_e - \varepsilon, x_e + \varepsilon) \cap D \ gilt \ f(x) \leq f(x_e),$$

ein lokales Minimum, wenn

$$\exists \varepsilon > 0 \colon \forall x \in (x_e - \varepsilon, x_e + \varepsilon) \cap D \text{ gilt } f(x) \ge f(x_e).$$

8.2.7 Umkehrfunktion

Definition 8.10: Umkehrfunktion

Ist die Funktion $f:D\to B$ eine eineindeutige Zuordnung (d.h. bijektiv), so ist die Zuordnung $y\in B$ zu $x\in D$ wieder eine Funktion, die als Umkehrfunktion $x=f^{-1}(y)$ zu y=f(x) bezeichnet wird.

Formal erfolgt in der Regel in der Umkehrfunktion wieder die Umbennung von x und y.

Beispiel einer Funktion mit ihrer Umkehrfunktion:

- Funktion $f(x) = x^2$ mit Umkehrfunktion f-1(x) = sqrt(x) im Intervall $[0, \infty)$
- entspricht einer Spiegelung an der Geraden y = x

8.3 Koordinatentransformationen

8.3.1 Parallelverschiebung eines kartesischen Koordinatensystems

- Ein kartesisches (x,y)-Koordinatensystem geht durch Parallelverschiebung der Koordinatenachsen in ein ebenfalls rechtwinkliges (u,v)-Koordinatensystem über.
- Ein beliebiger Punkt P mit den Koordinaten (x,y) besitzt im neuen System die Koordinaten (u,v).
- Zwischen den Koordinaten bestehen dann die folgenden Transformationsgleichungen:

$$x = u + a$$
 bzw. $u = x - a$
 $y = v + b$ bzw. $v = y - b$.

• (a,b) ist der Ursprung des neuen (u,v)-Koordinatensystems im ursprünglichen (x,y)-Koordinatensystem.

8.3.2 Drehung eines kartesischen Koordinatensystems

- Ein kartesisches (x,y)-Koordinatensystem geht durch Drehung der Koordinatenachsen in ein ebenfalls rechtwinkliges (u,v)-Koordinatensystem über. Der Ursprung wird bei der Drehung nicht verändert.
- Ein beliebiger Punkt P mit den Koordinaten (x,y) besitzt im neuen System die Koordinaten (u,v). Die neuen Koordinaten lassen sich mit den folgenden Transformationsgleichungen berechnen.

Sei φ der Winkel, um den das Koordinatensystem gedreht wird, dann $u = x \cos \varphi + y \sin \varphi$ $v = -x \sin \varphi + y \cos \varphi$.

Seite 8-9

8.3.3 Übergang Kartesische Koordinaten - Polarkoordinaten

Definition 8.11: Polarkoordinaten

Die Polarkoordinaten (r, φ) eines Punktes P der Ebene bestehen aus einer **Abstandskoordinate** r und einer **Winkelkoordinate** φ .

r ist der Abstand des Punktes P vom Koordinatenursprung.

 φ ist der Winkel zwischen dem vom Koordinatenursprung zum Punkt P gerichteten Radiusvektor und der positiven x-Achse.

 Die Transformationsgleichungen zum Übergang von kartesischen Koordinaten auf Polarkoordinaten und umgekehrt sind nachfolgend dargestellt:

Kartesische Koordinaten → Polarkoordinaten

$$r = \sqrt{x^2 + y^2}$$
 und $\tan \varphi = \frac{y}{x} (+\pi \text{ im } 2./3.Quadranten})$

Polarkoordinaten → kartesische Koordinaten

$$x = r \cdot \cos \varphi$$
 und $y = r \cdot \sin \varphi$

8.4 Grenzwert und Stetigkeit

8.4.1 Grenzwerte von Funktionen

Definition 8.12: Grenzwert $x \rightarrow x_0$

Sei f eine reelle Funktion.

Wenn für jede Folge $(x_n)_{n\in\mathbb{N}}$ mit dem Grenzwert x_0 mit $x_n\in D$ und $x_n\neq x_0 \ \forall n\in\mathbb{N}$, die Folge $(f(x_n))_{n\in\mathbb{N}}$ den Grenzwert g besitzt (d.h. $\lim_{n\to\infty}f(x_n)=g$), dann heißt g der Grenzwert von f bei der Annäherung an x_0 .

Schreibweise: $\lim_{x \to x_0} f(x) = g$

Definition 8.13: weitere **Definitionsmöglichkeit für Grenzwert** $x \rightarrow x_0$

Die Zahl g heißt Grenzwert der reellen Funktion f bei der Annäherung an x_0 , also $\lim_{x\to x_0} f(x) = g$, wenn es zu jeder noch so kleinen Zahl $\varepsilon > 0$ eine Zahl $\delta > 0$ gibt, so dass stets

 $|f(x)-g|<\varepsilon$ gilt, wenn $|x-x_0|<\delta$ ist.

Definition 8.14: linksseitiger/ rechtsseitiger Grenzwert $x \rightarrow x_0$

Für jede von links gegen x_0 strebende Folge $(x_n)_{n \in \mathbb{N}}$ (d.h. $x_n < x_0 \ \forall n \in \mathbb{N}$) sei

$$\lim_{n \to \infty} f(x_n) = \lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = g_l \qquad \left(=: \lim_{x \to x_0^-} f(x) \right)$$

 g_l heißt linksseitiger Grenzwert von f(x) für $x \rightarrow x_0^-$.

Für jede von rechts gegen X_0 strebende Folge $(X_n)_{n\in\mathbb{N}}$ (d.h. $X_n>X_0$ $\forall n\in\mathbb{N}$) sei

$$\lim_{n\to\infty} f(x_n) = \lim_{\substack{x\to x_0\\x>x_0}} f(x) = g_r \qquad \left(=: \lim_{\substack{x\to x_0^+}} f(x) \right)$$

 g_r heißt rechtsseitiger Grenzwert von f(x) für $x \to x_0^+$.

Definition 8.15: Grenzwert $x \rightarrow \pm \infty$

Besitzt für alle Folgen $(x_n)_{n\in\mathbb{N}}$ mit $x_n\to\infty(-\infty)$ für $n\to\infty$ die Folge der Funktionswerte $(f(x_n))_{n\in\mathbb{N}}$ den gleichen Grenzwert g, so heißt g der **Grenzwert von** f(x) für $x\to\infty(-\infty)$.

Schreibweise: $\lim_{x\to\infty} f(x) = g$ (bzw. $\lim_{x\to-\infty} f(x) = g$)

Satz 8.1: Rechenregeln für Grenzwerte von Funktionen

Voraussetzung: Die jeweiligen Grenzwerte der Funktionen $\lim_{x\to x_0} f_1(x) = g_1$ und $\lim_{x\to x_0} f_2(x) = g_2$ existieren. $\lim_{x\to x_0} \left(C\cdot f_1(x)\right) = C\cdot \lim_{x\to x_0} f_1(x) \ (=C\cdot g_1)$ mit konstantem $C\in\mathbb{R}$

(1)
$$\lim_{x \to x_0} (f_1(x) \pm f_2(x)) = \lim_{x \to x_0} f_1(x) \pm \lim_{x \to x_0} f_2(x) = g_1 \pm g_2$$

(2)
$$\lim_{x \to x_0} (f_1(x) \cdot f_2(x)) = \lim_{x \to x_0} f_1(x) \cdot \lim_{x \to x_0} f_2(x) \ (= g_1 \cdot g_2)$$

(3)
$$\lim_{x \to x_0} \left(\frac{f_1(x)}{f_2(x)} \right) = \frac{\lim_{x \to x_0} f_1(x)}{\lim_{x \to x_0} f_2(x)} \left(= \frac{g_1}{g_2} \right) \text{ mit } g_2 \neq 0$$

(4)
$$\lim_{x \to x_0} \left(\sqrt[n]{f_1(x)} \right) = \sqrt[n]{\lim_{x \to x_0} f_1(x)} \ (= \sqrt[n]{g_1})$$

(5)
$$\lim_{x \to x_0} (f_1(x))^n = \left(\lim_{x \to x_0} f_1(x)\right)^n (= (g_1)^n)$$

(6)
$$\lim_{x \to x_0} \left(a^{f_1(x)} \right) = a^{\lim_{x \to x_0} f_1(x)} = a^{g_1}$$

(7)
$$\lim_{x \to x_0} (\log_a f_1(x)) = \log_a (\lim_{x \to x_0} f_1(x)) \cdot (= \log_a g_1)$$

Satz 8.2: Rechenregeln für Grenzwerte mit 0 und $\pm \infty$

Alle Grenzwerte gelten für $x \to x_0$ mit $x_0 \in \mathbb{R} \cup \pm \infty$.

(1)
$$f(x) \to +\infty$$
 \Leftrightarrow $-f(x) \to -\infty$

(2)
$$f(x) \to +\infty$$
, $g(x) \to t \in \mathbb{R} \cup +\infty$ \Rightarrow $f(x) + g(x) \to +\infty$

(3)
$$f(x) \to +\infty$$
, $g(x) \to t \Rightarrow f(x) \cdot g(x) \to \begin{cases} +\infty, & \text{für } 0 < t \le +\infty \\ -\infty, & \text{für } -\infty \le t < 0 \end{cases}$

(4)
$$g(x) \to \pm \infty \quad \Rightarrow \quad \frac{1}{g(x)} \to 0$$

(5)
$$0 < g(x) \to 0 \implies \frac{1}{g(x)} \to +\infty$$

Für $f(x) \to 0$, $g(x) \to +\infty$, $h(x) \to t$ gilt bei positiver Basis

$$f(x)^{h(x)} \to \begin{cases} 0, & \text{für } 0 < t \le +\infty \\ \infty, & \text{für } -\infty \le t < 0 \end{cases}$$

(6)
$$g(x)^{h(x)} \to \begin{cases} \infty, & \text{für } 0 < t \le +\infty \\ 0, & \text{für } -\infty \le t < 0 \end{cases}$$

$$h(x)^{g(x)} \to \begin{cases} 0, & \text{für } 0 < t < 1 \\ \infty, & \text{für } 1 < t \le +\infty \end{cases}$$

(7) Die folgenden noch unbestimmten Ausdrücke

 $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty - \infty, 0^0, \infty^0, 1^\infty$ können häufig mit den Regeln von

Bernoulli-l'Hospital(siehe Kapitel 6) bestimmt werden.

8.4.2 Stetigkeit von Funktionen

Definition 8.16: Stetigkeit

Eine in x_0 und einer gewissen Umgebung von x_0 definierte Funktion y = f(x) heißt **an der Stelle** x_0 **stetig**, wenn der Grenzwert an dieser Stelle vorhanden ist und mit dem Funktionswert übereinstimmt

$$\lim_{x\to x_0} f(x) = f(x_0).$$

Eine Funktion, die an jeder Stelle ihres Definitionsbereiches stetig ist, wird als **stetige Funktion** bezeichnet.

aus www.mathematik.de

Definition 8.17: Unstetigkeitsstellen

Eine in x_0 und einer gewissen Umgebung von x_0 definierte Funktion y = f(x) heißt **an der Stelle** x_0 **unstetig**, wenn eine der beiden Aussagen zutrifft:

- (1)Der Grenzwert von f(x) in x_0 ist vorhanden, aber verschieden von $f(x_0)$.
- (2) Der Grenzwert von f(x) in x_0 ist nicht vorhanden.

Definition 8.18: linksseitige/rechtseitige Stetigkeit

Eine Funktion y = f(x) heißt an der Stelle x_0

linksseitig stetig, wenn $\lim_{x \to x_0^-} f(x) = f(x_0)$,

rechtsseitig stetig, wenn $\lim_{x \to x_0^+} f(x) = f(x_0)$.

Definition 8.19: Stetigkeit im Intervall

Eine Funktion y = f(x) heißt **stetig im offenen Intervall** (a,b), wenn f(x) in jedem Punkt des Intervalls stetig ist.

Eine Funktion y = f(x) heißt **stetig im abgeschlossenen Intervall** [a,b], wenn f(x) im offenen Intervall (a,b) stetig ist, sowie in x = a rechtsseitig und in x = b linksseitig stetig ist.

Definition 8.20: stetig ergänzbar

Eine Funktion y = f(x) mit einer Definitionslücke ist **stetig ergänzbar**, wenn für diese Stelle der Grenzwert existiert. Der Grenzwert wird dann als Funktionswert eingesetzt.

Man spricht in diesem Fall auch von einer "hebbaren" Definitionslücke.

Satz 8.3: Rechenregeln für stetige Funktionen

Sind die Funktionen $f_1(x)$ und $f_2(x)$ bei $x = x_0$ stetig, so sind auch die folgenden zusammengesetzten Funktionen im Punkt $x = x_0$ stetig:

- (1) $C_1 \cdot f_1(x) \pm C_2 \cdot f_2(x)$ mit konstanten $C_1, C_2 \in \mathbb{R}$
- (2) $f_1(x) \cdot f_2(x)$
- (3) $\frac{f_1(x)}{f_2(x)}$ mit $f_2(x_0) \neq 0$
- (4) $f_1(x)^{f_2(x)}$ mit $f_1(x_0) > 0$

Satz 8.4: Zwischenwertsatz

Ist die Funktion y = f(x) im abgeschlossenen Intervall [a,b] stetig, so wird jeder y-Wert zwischen den Funktionswerten f(a) und f(b) für ein $x \in [a,b]$ als Funktionswert angenommen.

Satz 8.5: Nullstellensatz

Ist die Funktion y = f(x) im abgeschlossenen Intervall [a,b] stetig und gilt $f(a) \cdot f(b) < 0$ (d.h. die Funktionswerte am Rand enthalten einen Vorzeichenwechsel), so gibt es im Inneren von [a,b] mindestens eine Nullstelle der Funktion.

Satz 8.6:

Ist die Funktion y = f(x) im abgeschlossenen Intervall [a,b] stetig, so nimmt die Funktion in [a,b] ihr Maximum und Minimum an.

8.5 Elementare Funktionen

8.5.1 Ganzrationale Funktionen

Definition 8.21: ganzrationale Funktion/ Polynom

Funktionen $f: \mathbb{R} \to \mathbb{R}$ vom Typ

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

werden als **ganzrationale Funktionen** oder **Polynome** bezeichnet (Schreibweise auch $p_n(x)$).

Die reellen Zahlen $a_0, a_1, a_2, \ldots, a_n$ heißen **Polynomkoeffizienten**. Der höchste Exponent n in der Funktionsgleichung bestimmt den **Grad des Polynoms**.

Beispiele verschiedener Polynome:

Einfache Typen der ganzrationalen Funktionen:

Grad des Polynoms n=0: konstante Funktion

$$p_0(x) = a_0 \text{ mit } a_0 \neq 0 \ (a_0 = 0 : \text{Nullpolynom})$$

Grad des Polynoms n=1: lineare Funktion

$$p_1(x) = a_1 x + a_0$$

Grad des Polynoms n=2: quadratische Funktion

$$p_2(x) = a_2 x^2 + a_1 x + a_0$$

Grad des Polynoms n=3: kubische Funktion

$$p_3(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

Satz 8.7: Nullstellensatz

Besitzt das Polynom f(x) vom Grad n an der Stelle x_1 eine Nullstelle, d.h. $f(x_1) = 0$, so ist die Funktion auch in der Form

$$f(x) = (x - x_1)f_1(x)$$

darstellbar.

 $(x-x_1)$ heißt Linearfaktor. $f_1(x)$ heißt das 1.reduzierte Polynom vom Grad (n-1), das man durch Polynomdivision erhält.

Satz 8.8: Fundamentalsatz der Algebra

Ein Polynom f(x) vom Grad n besitzt in der Menge $\mathbb C$ der komplexen Zahlen genau n Nullstellen $x_1, x_2, x_3, \dots, x_n$, die nicht alle verschieden sein müssen.

f(x) besitzt dann eine Produktzerlegung in Linearfaktoren

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = a_n (x - x_1)(x - x_2) \dots (x - x_n)$$

Bemerkung:

- Die Nullstellen k\u00f6nnen auch bei reellen Koeffizienten schon komplex sein. In Bezug auf eine reelle Faktorzerlegung k\u00f6nnen somit quadratische irreduzible Faktoren auftreten.
- Komplexe Lösungen treten bei reellen Koeffizienten immer paarweise konjugiert komplex auf.
- Eine Polynomfunktion n-ten Grades besitzt höchstens n (reelle) Nullstellen.
- Bei einer mehrfachen Nullstelle, tritt der Linearfaktor mehrfach auf.

Satz 8.9: Wurzelsatz von Vieta

Zwischen den Nullstellen x_i (i = 1, 2, ..., n) und den Koeffizienten a_i für i = 1, 2, ..., n eines Polynoms f(x) mit normiertem höchsten Koeffizienten $a_n = 1$ bestehen die Beziehungen

$$x_{1} + x_{2} + \dots + x_{n} = (-1)^{1} a_{n-1}$$

$$x_{1}x_{2} + x_{1}x_{3} + \dots + x_{1}x_{n} + x_{2}x_{3} + \dots + x_{n-1}x_{n} \dots = (-1)^{2} a_{n-2}$$

$$\dots$$

$$x_{1}x_{2}x_{3} \cdot \dots \cdot x_{n} = (-1)^{n} a_{0}$$

8.5.1.1 Horner-Schema

- effiziente Methode f
 ür verschiedene Berechnungen bei Polynomen
- Umformung des Polynoms $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ in die Form $p(x) = x \Big(x \Big(... \Big(x \Big(x \Big(a_n x + a_{n-1} \Big) + a_{n-2} \Big) + a_{n-3} \Big) + ... + a_2 \Big) + a_1 \Big) + a_0$
- Realisierung in 3-zeiliger Tabelle

1.Zeile: Koeffizienten a_n a_{n-1} a_{n-2} a_1 a_0

2.Zeile: 1.Element ist 0, weitere Elemente während Berechnung ergänzt

3.Zeile: während Berechnung ergänzt

• Rechengang im Zickzack:

- von links nach rechts
- pro Spalte:

Addition der 1. + 2. Zeileneinträge und notieren in 3. Zeile,

Wert der 3. Zeile mit x_0 multiplizieren und in der 2. Zeile der nächsten Spalte notieren.

- In der letzten Spalte in der 3. Zeile steht das Ergebnis für $p(x_0)$
- Horner-Schema für n=4

• **Zwischenrechnungswerte** b_i (hier: b_3 , b_2 , b_1 , b_0) definieren ein Polynom vom Grad (n-1) und erfüllen die Gleichung:

$$p(x) = (x - x_0)(b_3x^3 + b_2x^2 + b_1x + b_0) + p(x_0)$$

Ist $p(x_0) = 0$, dann ist p(x) ohne Rest durch $(x - x_0)$ teilbar und x_0 ist Nullstelle. Somit ist die Abspaltung eines Linearfaktors $(x - x_0)$ durch Polynomdivision mit dem Horner-Schema durchführbar.

8.5.1.2 Polynom-Interpolation

 Problem: Von einer Funktion sind nur Punkte vorhanden, aber die Funktion selbst ist unbekannt.

Ziel: Näherungsfunktion (hier Polynom) finden, die mit der unbekannten Funktion in den Stützstellen übereinstimmt.

- Interpolationsaufgabe: Gegeben sind (n+1) Datenpaare (x_i, y_i) , i = 0, 1, ..., n, die als Stützstellen der Interpolation bezeichnet werden. Es wird ein Polynom $p_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ vom Grad n gesucht, welches über die Datenpaare interpoliert, d.h. die (n+1) Interpolationsbedingungen $y_i = p_n(x_i)$, i = 0, 1, ..., n erfüllt.
- **Ziel der Polynominterpolation**: Bestimmung der Polynomkoeffizienten $a_n, a_{n-1}, ..., a_1, a_0$ des Polynoms $p_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$.
- Lösungsansatz über das Interpolationspolynom von Newton: Das Newtonsche Interpolationspolynom n-ten Grades durch (n+1) vorgegebene Stützpunkte $P_i = (x_i, y_i), \ i = 0, 1, ..., n$ lautet $y = p_n(x) = \hat{a}_0 + \hat{a}_1(x x_0) + \hat{a}_2(x x_0)(x x_1) + ... + \hat{a}_n(x x_0)(x x_1) ...(x x_{n-1})$ Die Berechnung der Koeffizienten $\hat{a}_0, \hat{a}_1, ..., \hat{a}_{n-1}, \hat{a}_n$ erfolgt über das Schema der dividierten Differenzen.
- **Dividierte Differenzen** (rekursiv definiert):

$$\begin{split} & \left[x_{0}, x_{1} \right] = \frac{y_{0} - y_{1}}{x_{0} - x_{1}} \\ & \left[x_{1}, x_{2} \right] = \frac{y_{1} - y_{2}}{x_{1} - x_{2}} \\ & \vdots \\ & \left[x_{n-1}, x_{n} \right] = \frac{y_{n-1} - y_{n}}{x_{n-1} - x_{n}} \end{split}$$

$$[x_0, x_1, x_2] = \frac{[x_0, x_1] - [x_1, x_2]}{x_0 - x_2}$$
$$[x_1, x_2, x_3] = \frac{[x_1, x_2] - [x_2, x_3]}{x_1 - x_3}$$

$$[x_1, x_2, x_3] = \frac{[x_1, x_2] - [x_2, x_3]}{x_1 - x_3}$$

dividierte Differenzen 2.Ordnung

$$[x_{n-2}, x_{n-1}, x_n] = \frac{[x_{n-2}, x_{n-1}] - [x_{n-1}, x_n]}{x_{n-2} - x_n}$$

$$[x_i, x_{i+1}, x_{i+2}, x_{i+3}] = \frac{[x_i, x_{i+1}, x_{i+2}] - [x_{i+1}, x_{i+2}, x_{i+3}]}{x_i - x_{i+3}}$$
 dividierte Differenzen

3.Ordnung

$$[x_i, x_{i+1}, ..., x_{i+k}] = \frac{[x_i, x_{i+1}, ..., x_{i+k-1}] - [x_{i+1}, ..., x_{i+k}]}{x_i - x_{i+k}} \text{ dividierte Differenzen}$$

k.Ordnung

Schema der dividierten Differenzen:

Die gesuchten Koeffizienten $a_0, a_1, ..., a_{n-1}, a_n$ des Newtonschen Interpolationspolynoms stehen in der oberen Schrägzeile des Schemas der dividierten Differenzen.

Beispiel eines Newtonschen Interpolationspolynoms 3. Grades

durch die Punkte(0,-12), (2,16), (5,28), (7,-54)

8.5.2 Gebrochen rationale Funktionen

Definition 8.22: gebrochen rationale Funktion

Reelle Funktionen vom Typ

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \frac{Z(x)}{N(x)}$$

werden als gebrochen rationale Funktionen bezeichnet.

Das Polynom Z(x) heißt hierbei das **Zählerpolynom** und N(x) das **Nennerpolynom**.

Ist der Zählergrad kleiner dem Nennergrad, d.h. n < m, so heißt die Funktion **echt gebrochen**.

Ist der Zählergrad größer oder gleich dem Nennergrad, d.h. $n \ge m$, so heißt die Funktion **unecht gebrochen**.

Beispiel einer gebrochen rationalen Funktion

aus Bartels Uni-Frankfurt

Definition 8.23: Polstelle

Eine Stelle x_0 , in deren unmittelbarer Umgebung die Funktionswerte über alle Grenzen hinaus fallen oder wachsen heißen **Pole** bzw. **Polstellen**.

Pole mit Vorzeichenwechsel:

$$\lim_{x \to x_0^+} f(x) = +\infty, \lim_{x \to x_0^-} f(x) = -\infty \quad (bzw. \, umgekehrt)$$

Pole ohne Vorzeichenwechsel:

$$\lim_{x \to x_0} f(x) = +\infty \quad (bzw. - \infty)$$

Definition 8.24: Asymptote einer gebrochen rationalen Funktion

Eine Funktion h(x) heißt **Asymptote** einer gebrochen rationalen Funktion f(x), wenn gilt:

$$\lim_{|x|\to\infty} |f(x) - h(x)| = 0$$

d.h. für große x nähert sich die Funktion f(x) an die Funktion h(x) an.

Satz 8.10:

Jede unecht gebrochene rationale Funktion lässt sich durch Polynomdivision eindeutig in eine Summe aus einem Polynom und einer echt gebrochenen rationalen Funktion zerlegen.

$$f(x) = \frac{Z(x)}{N(x)} = h(x) + \frac{r(x)}{N(x)}$$

Hat Z(x) den Grad n und N(x) den Grad m, so ist (n-m) der Grad von h(x) . r(x) hat höchstens den Grad (m-1).

Satz 8.11:

Jede gebrochen rationale Funktion f besitzt eine Asymptote.

- (a) Ist f echt gebrochen, so ist die Asymptote von f die Nullfunktion.
- (b) Ist f unecht gebrochen, so ist die Asymptote von f das Polynom h, das bei der Polynomdivision entsteht.

Zusammenfassung: Gebrochen rationale Funktionen

Eigenschaften	$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \frac{Z(x)}{N(x)}$
Definitionsbereich	$\mathbb{R}\setminus\big\{x\big N(x)\neq0\big\}$
Bildbereich	\mathbb{R}
Beschränktheit	auf einem abgeschlossenen Intervall aus ihrem Definitonsbereich stets beschränkt
Monotonie	
Umkehrfunktion	
Symmetrie	
Periodizität	-
Stetigkeit	im gesamten Definitionsbereich stetig (aber nicht an den Nullstellen des Nennerspolynoms, die aber auch nicht zum Definitionsbereich gehören)
Asymptote	für jede rationale Funktion vorhanden
Nullstellen	$\left\{ x \in D \middle Z(x) = 0 \land N(x) \neq 0 \right\}$
Polstellen	$\{x \in \mathbb{R} \mid N(x) = 0 \land Z(x) \neq 0\}$ nicht hebbare Lücke
Minimum/Maximum	
Besonderheiten:	$\{x \in \mathbb{R} N(x) = 0 \land Z(x) = 0\}$ hebbare Lücke

Bemerkung: Nicht gefüllte Tabellenfelder bedeuten, dass hier keine allgemeingültige Aussage gemacht werden kann, d.h. es hängt von der einzelnen Funktion ab.

8.5.3 Potenz- und Wurzelfunktionen

Definition 8.25: Potenzfunktionen

mit natürlichem Exponenten:

Die Funktion $f(x) = x^n \ mit \ n \in \mathbb{N}$ ist die einfachste Potenzfunktion und wird auch **Potenzfunktion mit natürlichem Exponenten** genannt. mit rationalem Exponenten:

Die Funktion $f(x) = x^{\frac{n}{m}}$ mit $n \in \mathbb{Z}$ und $m \in \mathbb{N}$ heißt eine **Potenzfunktion mit rationalem Exponenten**. Es gilt hier: $f(x) = x^{\frac{n}{m}} = \left(\sqrt[m]{x}\right)^n$. mit reellem Exponenten:

Die Funktion $f(x) = x^a$ mit $a \in \mathbb{R}$, x > 0 ist eine **Potenzfunktion** mit reellem Exponenten, für die gilt: $f(x) = x^a = e^{\ln x^a} = e^{a \ln x}$, x > 0

Definition 8.26: Wurzelfunktion

Beschränkt man sich auf Funktionen $y = f(x) = x^n$ und $x \ge 0$, so existiert wegen der strengen Monotonie im gesamten Definitionsbereich die Umkehrfunktion $y = f^{-1}(x) = x^{\frac{1}{n}}$. Diese werden **Wurzelfunktionen** genannt.

Zusammenfassung: Potenzfunktion mit rationalem Exponenten

$$f(x) = x^{\frac{n}{m}} mit \ n \in \mathbb{Z} und \ m \in \mathbb{N}$$

Eigenschaften	n > 0 m ungerade	n > 0 m gerade	n < 0 m ungerade	n < 0 m gerade
Definitionsbereich	\mathbb{R}	$[0,\infty)$	$\mathbb{R}\setminus\{0\}$	$(0,\infty)$
Bildbereich	n gerade: \mathbb{R}_0^+ , n ungerade: \mathbb{R}_0^+	\mathbb{R}_0^+	n gerade: \mathbb{R}^+ , n ungerade: $\mathbb{R}\setminus\{0\}$,	\mathbb{R}^+
Beschränktheit	n gerade: un- tere Schranke 0 n ungerade: un- beschränkt	untere Schranke 0	n gerade: un- tere Schranke 0 n ungerade: un- beschränkt	untere Schranke 0
Monotonie	n gerade: für $x \ge 0$ streng monoton wachsend, für $x \le 0$ streng monoton fallend n ungerade: streng monoton wachsend	streng mo- noton wachsend	n gerade: für $x \ge 0$ streng monoton fallend, für $x \le 0$ streng monoton wachsend n ungerade: streng monoton fallend	streng mo- noton fal- lend
Umkehrfunktion	n gerade: in Teilintervallen vorhanden n ungerade: vorhanden	vorhanden	n gerade: in Teilintervallen vorhanden n ungerade: vorhanden	vorhanden
Symmetrie	n gerade: ach- sensymmet- risch n ungerade: punktsymmet- risch	-	n gerade: ach- sensymmet- risch n ungerade: punktsymmet- risch	-
Periodizität	-	-	-	-
Asymptoten	-	-	y=0	y=0
Nullstellen	x=0	x=0		
Polstellen	-	-	x=0	x=0

Eigenschaften	n > 0 m ungerade	n > 0 m gerade	n < 0 m ungerade	n < 0 m gerade
Minimum/Maximum	n gerade: Mini- mum bei x=0 n ungerade: -	x=0	-	-
Besonderheiten:	-	-	-	-

Beispiele für Potenzfunktionen mit rationalem Exponenten für m>n>0

Die schwarz dargestellten Funktionen entsprechen im ersten Quadranten den Wurzelfunktionen.

8.5.4 Exponential- und Logarithmusfunktionen

Definition 8.27: Exponentialfunktion

Eine reelle Funktion $f(x) = a^x$ mit a > 0 bezeichnet man als eine allgemeine **Exponentialfunktion zur Basis a** (Schreibweise auch $\exp_a(x)$).

Ist die Basis die Zahl e, so wird diese spezielle Exponentialfunktion $f(x) = e^x$ auch **e-Funktion** genannt.

Zusammenfassung: Exponentialfunktion

Eigenschaften	$f(x) = a^x \text{ mit } 0 < a < 1$	$f(x) = a^x \ mit \ a > 1$		
Definitionsbereich	\mathbb{R}	\mathbb{R}		
Bildbereich	$(0,\infty)$	$ig(0,\inftyig)$		
Beschränktheit	untere Schranke: 0	untere Schranke: 0		
Monotonie	streng monoton fallend	streng monoton steigend		
Umkehrfunktion	existiert	existiert		
Symmetrie	-	-		
Periodizität	-	-		
Asymptoten	$y = 0 \left(f \ddot{u} r \ x \to \infty \right)$	$y = 0 \left(f \ddot{u} r \ x \to -\infty \right)$		
Nullstellen	-	-		
Minimum/Maximum	-	-		
Besonderheiten:	fester Punkt: (0,1)	fester Punkt: (0,1)		

Beispiele einiger Exponentialfunktionen

Satz 8.12: Rechenregeln für Exponentialfunktionen

Für alle positiven a, b und alle reellen x, y gilt:

$$a^{x+y} = a^x \cdot a^y$$
 (Additionstheorem der Exponentialfunktion)

$$\left(a^{x}\right)^{y} = a^{x \cdot y}$$

$$\left(a\cdot b\right)^x = a^x \cdot b^x$$

Definition 8.28: Logarithmusfunktion

Die Umkehrfunktion der allgemeinen **Exponentialfunktion** $f(x) = a^x \ mit \ a > 1, x \in \mathbb{R}$ wird als Logarithmusfunktion zur Basis a bezeichnet:

$$y = f^{-1}(x) = \log_a x$$
.

Im Fall a = e wird die Funktion natürlicher Logarithmus genannt:

$$y = f^{-1}(x) = \ln x$$
.

Exponentialfunktion e^x mit Umkehrfunktion ln(x)

Exponentialfunktionen e^x und $e^{-x} (= \frac{1}{e^x})$ mit Umkehrfunktionen $\ln(x)$ und $-\ln(x)$

$$x = \ln(e^{x})$$
Es gilt: $x = -\ln(e^{-x})$ oder $x = \ln(\frac{1}{e^{x}}) = \ln(1) - \ln(e^{x}) = -\ln(e^{x})$

Satz 8.13: Rechenregeln für Logarithmusfunktionen

Für alle reellen x>0, y>0 gilt:

$$\log_{a}(x \cdot y) = \log_{a} x + \log_{a} y$$

$$\log_{a}\left(\frac{x}{y}\right) = \log_{a} x - \log_{a} y$$

$$\log_{a}\left(\frac{1}{y}\right) = -\log_{a} y$$

 $\alpha \log_a x = \log_a x^{\alpha}$, für alle $\alpha \in \mathbb{R}$

Satz 8.14: Umrechnung von Logarithmen

Jede Logarithmusfunktion zur Basis a kann durch einen andere Logarithmusfunktion zur Basis b ausgedrückt werden, in dem mit einer Konstanten $\frac{1}{\log_b a}$ multipliziert wird:

$$\log_a x = \frac{\log_b x}{\log_b a} \text{ für alle } x > 0$$
 z.B. $\log_a x = \frac{\ln x}{\ln a} \text{ für alle } x > 0$.

Beispiele einiger Logarithmusfunktionen

Zusammenfassung: Logarithmusfunktion

Eigenschaften	$f(x) = \log_a x$	
Definitionsbereich	\mathbb{R}^+	
Bildbereich	$\left(-\infty,\infty\right)$	
Beschränktheit	-	
Monotonie	streng monoton wachsend (a>1)	
Monotonie	streng monoton fallend (0 <a<1)< td=""></a<1)<>	
Umkehrfunktion	existiert	
Symmetrie	-	
Periodizität	-	
Asymptoten	-	
Nullstellen	x=1	
Minimum/Maximum	-	
Besonderheiten:	fester Punkt: (1,0)	

8.5.5 Trigonometrische Funktionen

Allgemeine Beziehungen am rechtwinkligen Dreieck:

Sinus und Cosinus am Einheitskreis

Zusammenhang Sinus und Cosinus am Einheitskreis mit den entsprechenden Funktionen:

Abbildung 1 Trigonometrische Funktionen Sinus und Cosinus

Zusammenfassung 1: Trigonometrische Funktionen sin(x) und cos(x)

Eigenschaften	$f(x) = \sin x$	$f(x) = \cos x$	
Definitionsbereich	\mathbb{R}	\mathbb{R}	
Bildbereich	[-1,1]	[-1,1]	
Beschränktheit	obere Schranke: 1 untere Schranke: -1	obere Schranke: 1 untere Schranke: -1	
Monotonie	nur im Intervall	nur im Intervall	
Umkehrfunktion	nur im Intervall	nur im Intervall	
Symmetrie	ungerade	gerade	
Periodizität	primitive Periode 2π	primitive Periode 2π	
Asymptoten	-	-	
Nullstellen	$x = k\pi, k \in \mathbb{Z}$	$x = \frac{\pi}{2}(2k+1), k \in \mathbb{Z}$	
Minimum/Maximum	lokale Maxima: $x = \frac{\pi}{2}(4k+1), k \in \mathbb{Z}$ lokale Minima: $x = \frac{\pi}{2}(4k+3), k \in \mathbb{Z}$	lokale Maxima: $x = \pi 2k, k \in \mathbb{Z}$ lokale Minima: $x = \pi (2k+1), k \in \mathbb{Z}$	
Besonderheiten	-	-	

Abbildung 2 Trigonometrische Funktionen Tangens und Cotangens

Zusammenfassung 2: Trigonometrische Funktionen tan(x) und cot(x)

Eigenschaften	$f(x) = \tan x$	$f(x) = \cot x$	
Definitionsbereich	$\mathbb{R}\setminus\left\{\frac{\pi}{2}(2k+1),k\in\mathbb{Z}\right\}$	$\mathbb{R}\setminus \left\{ k\pi,k\in\mathbb{Z} ight\}$	
Bildbereich	\mathbb{R}	\mathbb{R}	
Beschränktheit	-	-	
Monotonie	nur im Intervall	nur im Intervall	
Umkehrfunktion	nur im Intervall	nur im Intervall	
Symmetrie	ungerade ungerade		
Periodizität	primitive Periode π	primitive Periode π	
Asymptoten	-	-	
Nullstellen	$x = k\pi, k \in \mathbb{Z}$	$x = \frac{\pi}{2}(2k+1), k \in \mathbb{Z}$	
Pole	$x = (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$	$x = k\pi, k \in \mathbb{Z}$	
Minimum/Maximum	-	-	
Besonderheiten	-	-	

Werte für spezielle Winkel:

α	sin α	cos α	tan α	cot α
0°	0	1	0	±∞
30°	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	√3
45°	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$	1	1
60°	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$	√3	$\frac{1}{3}\sqrt{3}$
90°	1	0	± ∞	0
180°	0	-1	0	± ∞
270°	-1	0	± ∞	0

Satz 8.15: Beziehungen zwischen den trigonometrischen Funktionen

Die nachfolgend dargestellten Beziehungen stellen nur eine Auswahl dar.

(1)
$$\tan x = \frac{\sin x}{\cos x}$$
, $\cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$

(2) Verschiebung sin gegenüber cos

$$\cos x = \sin(x + \frac{\pi}{2}), \quad \sin x = \cos(x - \frac{\pi}{2})$$

(3) Trigonometrischer Pythagoras

$$\sin^2 x + \cos^2 x = 1$$

(4)Umrechnung der Winkelfunktionen untereinander

$$\sin x = \sqrt{1 - \cos^2 x}, \quad \cos x = \sqrt{1 - \sin^2 x}$$

$$\tan x = \frac{\sin x}{\sqrt{1 - \sin^2 x}} = \frac{\sqrt{1 - \cos^2 x}}{\cos x}$$

(5)Additionstheoreme

$$\sin(x_{1} \pm x_{2}) = \sin x_{1} \cos x_{2} \pm \cos x_{1} \sin x_{2}$$

$$\cos(x_{1} \pm x_{2}) = \cos x_{1} \cos x_{2} \mp \sin x_{1} \sin x_{2}$$

$$\tan(x_{1} \pm x_{2}) = \frac{\tan x_{1} \pm \tan x_{2}}{1 \mp \tan x_{1} \tan x_{2}}$$

$$\cot(x_{1} \pm x_{2}) = \frac{\cot x_{1} \cot x_{2} \mp 1}{\cot x_{2} \pm \cot x_{1}}$$

(6)
$$\sin x_1 + \sin x_2 = 2 \sin \frac{x_1 + x_2}{2} \cos \frac{x_1 - x_2}{2}$$

 $\cos x_1 + \cos x_2 = 2 \cos \frac{x_1 + x_2}{2} \cos \frac{x_1 - x_2}{2}$

8.5.6 Zyklometrische Funktionen

Die Umkehrfunktionen der trigonometrischen Funktionen werden zyklometrische Funktionen genannt.

Zur Bildung der Umkehrfunktionen muss der Definitionsbereich der trigonometrischen Funktionen eingeschränkt werden:

$$\sin : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \rightarrow \left[-1, 1 \right]$$

$$\arcsin y := \sin^{-1} y = \left\{ x \middle| \sin x = y \right\} \cap \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$\arcsin : \left[-1, 1 \right] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$\cos: [0, \pi] \to [-1, 1]$$

$$\operatorname{arc} \cos y := \cos^{-1} y = \{x | \cos x = y\} \cap [0, \pi]$$

$$\operatorname{arc} \cos: [-1, 1] \to [0, \pi]$$

$$\tan : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$$

$$\arctan y := \tan^{-1} y = \left\{x \middle| \tan x = y\right\} \cap \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$\cot: (0, \pi) \to \mathbb{R}$$

$$\operatorname{arc} \cot y := \cot^{-1} y = \{x | \cot x = y\} \cap (0, \pi)$$

$$\operatorname{arc} \cot: \mathbb{R} \to (0, \pi)$$

Satz 8.16: Beziehungen zwischen den zyklometrischen Funktionen

$$\arcsin x + \arccos x = \frac{\pi}{2}$$

$$\arctan x + \operatorname{arc} \cot x = \frac{\pi}{2}$$

$$\operatorname{arccos}(-x) = \pi - \operatorname{arccos} x$$

$$\operatorname{arc} \cot(-x) = \pi - \operatorname{arc} \cot x$$

Abbildung 3 Zyklometrische Funktionen

8.5.7 **Hyperbel-und Areafunktionen**

Hyperbelfunktionen verhalten sich zur Hyperbel analog wie sich die trigonometrischen Funktionen im Einheitskreis verhalten.

Einheitshyperbel: $x^2 - y^2 = 1$ Einheitskreis: $x^2 + y^2 = 1$

Definition 8.29: Hyperbelfunktionen

Hyperbelfunktionen sind wie folgt definiert:

Sinus hyperbolicus $\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right) \ mit \ D = \mathbb{R}, \ B = \left(-\infty, \infty \right)$

Cosinus hyperbolicus $\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right) \ mit \ D = \mathbb{R}, \ B = \begin{bmatrix} 1, \infty \end{bmatrix}$

Tangens hyperbolicus $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ mit $D = \mathbb{R}$, B = (-1,1)

Cotangens hyperbolicus

$$\coth x = \frac{\cosh x}{\sinh x} = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} \text{ mit } D = \mathbb{R} \setminus \{0\}, B = (-\infty, -1) \cup (1, \infty)$$

Abbildung 4 Hyperbelfunktionen

Satz 8.17: Beziehungen zwischen den Hyperbelfunktionen

$$\sinh x + \cosh x = e^x$$

$$\cosh^2 x - \sinh^2 x = 1$$

$$sinh(-x) = -sinh x$$

$$\cosh(-x) = \cosh x$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$$

$$\sinh(x+y) = \cosh x \sinh y + \sinh x \cosh y$$

Definition 8.30: Areafunktionen

Die Umkehrfunktionen der Hyperbelfunktionen werden Areafunktionen genannt und sind wie folgt definiert:

$$ar \sinh x := \ln(x + \sqrt{x^2 + 1}), \ x \in \mathbb{R}$$

$$ar \cosh x := \pm \ln(x + \sqrt{x^2 - 1}), \ x \ge 1$$

$$ar \tanh x := \frac{1}{2} \ln \frac{1+x}{1-x}, |x| < 1$$

$$ar \coth x := \frac{1}{2} \ln \frac{x+1}{x-1}, \ |x| > 1$$