2.3 关系矩阵和关系图

- 1. 关系矩阵
- 2. 关系图
- 3. 集合

关系矩阵(matrix)

- 定义2.9 设 A={ $a_1,a_2,...,a_n$ }, R⊆A×A, 则R的 关系矩阵 M(R)=(r_{ij})_{n×n}, 其中 r_{ij} = $\begin{cases} 1, & a_iRa_j \\ 0, & 否则 \end{cases}$
- 例如,A={a,b,c}, R_1 ={<a,a>,<a,b>,<b,a>,<b,c>}, R_2 ={<a,b>,<a,c>,<b,c>},则 $M(R_1) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad M(R_2) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$

关系矩阵的性质

- R的集合表达式与R的关系矩阵可以唯一相互 确定
- M(R⁻¹) = (M(R))^T. (^T表示矩阵转置)
- $M(R_1 \bigcirc R_2) = M(R_2) \bullet M(R_1)$. (•表示矩阵"乘法", 其中加法使用逻辑加法∨, 乘法使用逻辑乘法∧.)

例2.4

设 A={a,b,c},
 R₁={<a,a>,<a,b>,<b,a>,<b,c>},
 R₂={<a,b>,<a,c>,<b,c>},
 用M(R₁), M(R₂)确定M(R₁⁻¹), M(R₂⁻²),
 M(R₁OR₁), M(R₁OR₂), M(R₂OR₁),
 从而求出它们的集合表达式。

例题2.4(解)

- $R_1 = \{ < a,a >, < a,b >, < b,a >, < b,c > \},$ $R_2 = \{ < a,b >, < a,c >, < b,c > \},$
- $M(R_1) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad M(R_2) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$

$$M(R_1^{-1}) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \qquad M(R_2^{-1}) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

$$R_1^{-1} = \{ \langle a,a \rangle, \langle a,b \rangle, \langle b,a \rangle, \langle c,b \rangle \}$$

 $R_2^{-1} = \{ \langle b,a \rangle, \langle c,a \rangle, \langle c,b \rangle \}$

例题2.4(解)

■解(续):

$$M(R_1) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad M(R_2) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$M(R_1 \circ R_1) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \bullet \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$R_1 \cap R_1 = \{\langle a,a \rangle, \langle a,b \rangle, \langle a,c \rangle, \langle b,a \rangle, \langle b,b \rangle\}.$$

例题2.4(解)

■ 解(续):
$$M(R_1) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $M(R_2) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.
$$M(R_1 \circ R_2) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \bullet \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
,
$$M(R_2 \circ R_1) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \bullet \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
,

$$R_1 \cap R_2 = \{ , \}.$$

 $R_2 \cap R_1 = \{ , , , \}.$

关系图(graph)

■ 定义2.10 设 A={ $a_1,a_2,...,a_n$ }, R⊆A×A, 则A中元素以"〇"表示(称为顶点), R中元素以"→"表示(称为有向边); 若 x_i R x_j , 则从顶点 x_i 向顶点 x_j 引有向边< x_i,x_j >, 这样得到的图称为R的关系图 G(R)=<V,E>,其中V表示顶点集合,E表示边集合。

关系图举例

■例如, A={a,b,c},

$$R_1 = \{ \langle a,a \rangle, \langle a,b \rangle, \langle b,a \rangle, \langle b,c \rangle \},$$

$$R_2 = \{ \langle a,b \rangle, \langle a,c \rangle, \langle b,c \rangle \},$$

$$R_1^{-1} = \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle c, b \rangle \}$$

$$R_2^{-1} = \{ , , \}$$

关系图举例(续)

$$R_1 \cap R_1 = \{ \langle a,a \rangle, \langle a,b \rangle, \langle a,c \rangle, \langle b,a \rangle, \langle b,b \rangle \}.$$

 $R_1 \cap R_2 = \{ \langle a,a \rangle, \langle a,c \rangle \}.$
 $R_2 \cap R_1 = \{ \langle a,b \rangle, \langle a,c \rangle, \langle b,b \rangle, \langle b,c \rangle \}.$

例 设 $A=\{1, 2, 3, 4\}$,用集合表示法、关系矩阵和关系图给出A上的整除关系 D_A 。

 μ : $D_A = \{\langle x,y \rangle | x,y \in A \land x$ 整除 $y \}$ = $\{\langle 1,1 \rangle,\langle 1,2 \rangle,\langle 1,3 \rangle,\langle 1,4 \rangle,\langle 2,2 \rangle,\langle 2,4 \rangle,\langle 3,3 \rangle,\langle 4,4 \rangle\}$

$$\boldsymbol{M}_{DA} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

注意:

- 1) R的集合表达式,关系矩阵,关系图三者均可以唯一互相确定。集合表达式便于书写,关系矩阵 便于存储,关系图直观清晰;
- 2) 对于R⊆A×B, |A|=n,|B|=m,关系矩阵M(R)是n×m阶的,关系图G(R)中的边都是从A中元素指向B中元素的. © Peking University

11

2.4 关系的性质

- 自反性(reflexivity)
- 反自反性(irreflexivity)
- 对称性(symmetry)
- 反对称性(antisymmetry)
- 传递性(transitivity)

自反性(reflexivity)

设A为一集合, R \subseteq A \times A, 对于任意的x \in A,均有 xRx, 说R是A上自反的(reflexive)二元关系 \forall x(x \in A \rightarrow xRx).

■ R是非自反的 ⇔ ∃x(x∈A ∧ ¬xRx)

自反性

■定理2.10: R是自反的

- $\Leftrightarrow I_A \subseteq R$
- ⇔ R-1是自反的
- ⇔ M(R)主对角线上的元素全为1
- ⇔ G(R)的每个顶点处均有环. #

自反性(举例)

例如,集合A上的全域关系 E_A 、恒等关系 I_A 、小于等于关系 I_A 、整除关系 I_A 和是A上的自反关系,包含关系(R_{\subseteq})、平面几何中的全等和相似关系也是自反关系。

反自反性(irreflexivity)

设A为一集合, R⊆A×A, 对于任意的x∈A,均有
 <x,x>∉R,则R是A上反自反的(irreflexive)
 二元关系

$$\forall x(x \in A \rightarrow \neg xRx).$$

■ R是非反自反的 ⇔ ∃x(x∈A ∧ xRx)

反自反性

■定理2.11: R是反自反的

- $\Leftrightarrow I_A \cap R = \emptyset$
- ⇔ R-1是反自反的
- ⇔ M(R)主对角线上的元素全为0
- ⇔ G(R)的每个顶点处均无环. #

反自反性(举例)

小于关系和真包含关系是反自反关系。

例 设 $A=\{1,2,3\}$, R_1 , R_2 , R_3 , 是A上的关系,其中

$$R_1 = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle\}$$

$$R_2 = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 1, 2 \rangle\}$$

$$R_3 = \{\langle 1, 3 \rangle\}$$

说明R₁, R₂, R₃, 是否为A上的自反关系和反自反关系.

解: R₂是自反的。

 R_3 是反自反的。

R₁既不是自反的,因为它不包含**<3,3>**; 也不是反自反的,因为它包含了**<1,1>,<2,2>**。 #

既是自反的又是反自反的?

Ø上的空关系

对称性(symmetry)

■ 对于任意的x,y∈A,若xRy,yRx,则称R为A上对称的(symmetric)二元关系

 $\forall x \forall y (x \in A \land y \in A \land x R y \rightarrow y R x).$

■ R非对称 ⇔ ∃x∃y(x∈A∧y∈A∧xRy∧¬yRx)

对称性

- 定理2.12: R是对称的
 - $\Leftrightarrow R^{-1}=R$
 - ⇔ R-1是对称的
 - ⇔ M(R)是对称的
 - ⇔ G(R)的任何两个顶点之间若有边,则 必有两条方向相反的有向边. #

对称性(举例)

- 恒等关系I_A、全域关系E_A是A上的对称关系。
- ■同学关系、几何中的相似关系是对称关系。

反对称性(antisymmetry)

- 设R⊆A×A, 说R是反对称的
 (antisymmetric),若
 ∀x∀y(x∈A∧y∈A∧xRy∧yRx→x=y)
- R非反对称 ⇔∃x∃y(x∈A∧y∈A∧xRy∧yRx∧x≠y)

反对称性

■ 定理2.13: R是反对称的

$$\Leftrightarrow R^{-1} \cap R \subseteq I_A$$

⇔ R-1是反对称的

⇔ 在M(R)中,
$$\forall i \forall j (i \neq j \land r_{ij} = 1 \rightarrow r_{ji} = 0)$$

⇔ 在G(R)中, $\forall x_i \forall x_j (i \neq j)$, 若有有向边

<x_i,x_j>,则必没有<x_j,x_i>. #

反对称性(举例)

小于等于(≤)关系是反对称关系。
非反对称关系
非对称关系

对称且反对称关系 ?

对称且反对称?

传递性(transitivity)

- 设A为一集合,R⊆A×A,对于任意的x,y,z∈A,若xRy且yRz,则xRz,则称R为A上传递的(transitive)二元关系
 ∀x∀y∀z(x∈A∧y∈A∧z∈A∧xRy∧yRz→xRz).
- R非传递⇔ ∃x∃y∃z(x∈A∧y∈A∧z∈A∧xRy∧yRz∧¬xRz)

■定理14: R是传递的

 $\Leftrightarrow R \bigcirc R \subseteq R$

⇔ 在 M(R○R) 中 , $\forall i \forall j$, 若 r_{ij} '=1,则 M(R)中相应的元素 r_{ij} =1.

 \Leftrightarrow 在**G**(R)中, $\forall x_i \forall x_j \forall x_k$, 若有有向边 $< x_i, x_j > , < x_j, x_k >$, 则必有有向边 $< x_i, x_k >$. #

传递性(举例)

例如,A上的全域关系、恒等关系和空关系都是A上的传递 关系。小于关系,小于等于关系、整除关系、包含关系和真 包含关系也是相应集合上的传递关系。

举例

- 在 N = {0,1,2,...} 上:
- ≤={<x,y>|x∈N∧y∈N∧x≤y}自反,反对称,传递
- ≥={<x,y>|x∈N∧y∈N∧x≥y}自反,反对称,传递
- <={<x,y>|x∈N∧y∈N∧x<y}反自反,反对称,传递
- >={<x,y>|x∈N∧y∈N∧x>y}反自反,反对称,传递
- |={<x,y>|x∈N∧y∈N∧x|y}反对称,传递,? (¬0|0)
- |_N={<x,y>|x∈N∧y∈N∧x=y}自反,对称,反对称,传递
- E_N={<x,y>|x∈N∧y∈N}=N×N自反,对称,传递. #

例2.5

A={a,b,c} $R_1 = \{ \langle a,a \rangle, \langle a,b \rangle, \langle b,c \rangle, \langle a,c \rangle \},$ $R_2 = \{ \langle a,a \rangle, \langle a,b \rangle, \langle b,c \rangle, \langle c,a \rangle \},$ $R_3 = \{ \langle a,a \rangle, \langle b,b \rangle, \langle a,b \rangle, \langle b,a \rangle, \langle c,c \rangle \},$ $R_{4} = \{ \langle a,a \rangle, \langle a,b \rangle, \langle b,a \rangle, \langle c,c \rangle \},$ $R_5 = \{ \langle a,a \rangle, \langle a,b \rangle, \langle b,b \rangle, \langle c,c \rangle \},$ $R_6 = \{ \langle a,b \rangle, \langle b,a \rangle, \langle b,c \rangle, \langle a,a \rangle \},$ 讨论以上各关系的性质

例2.5(续)

 R_1 ={<a,a>,<a,b>,<b,c>,<a,c>}反对称,传递 R_2 ={<a,a>,<a,b>,<b,c>,<c,a>}反对称

例2.5(续)

R₃={<a,a>,<b,b>,<a,b>,<b,a>,<c,c>} 自反,对称,传递

R₄={<a,a>,<a,b>,<b,a>,<c,c>}对称

例5(续)

R₅={<a,a>,<a,b>,<b,b>,<c,c>}自反,反对 称,传递

 R_6 ={<a,b>,<b,a>,<b,c>,<a,a>}没有以上5 种性质中的任何一种. #

关系运算的性质

- 定理2.15 设R₁,R₂⊆A×A
- (1)若 R_1 , R_2 是自反的,则 R_1^{-1} , R_2^{-1} , $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \cap R_2$, $R_2 \cap R_1$ 也是自反的;
- (2)若 R_1 , R_2 是反自反的,则 R_1^{-1} , R_2^{-1} , $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \cap R_2$, $R_2 R_1$ 也是反自反的;
- (3)若 R_1 , R_2 是对称的,则 R_1^{-1} , R_2^{-1} , $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 R_2$, $R_2 R_1$, $\sim R_1$, $\sim R_2$ 也是对称的;
- (4) 若 R_1 , R_2 是反对称的,则 R_1^{-1} , R_2^{-1} , $R_1 \cap R_2$, R_1 - R_2 , R_2 - R_1 也是反对称的;
- (5)若 R_1, R_2 是传递的,则 $R_1^{-1}, R_2^{-1}, R_1 \cap R_2$ 也是传递的.

	自反	反自反	对称	反对称	传递
R ₁ ⁻¹ , R ₂ ⁻¹	V	1	V	1	1
$R_1 \cup R_2$	V	1	$\sqrt{}$		
$R_1 \cap R_2$	V	√	V		$\sqrt{}$
$R_1 \cap R_2$,	$\sqrt{}$				
$R_2 \bigcirc R_1$					
R_1-R_2 , R_2-R_1					
$\sim R_1, \sim R_2$					

定理2.15(证明(1))

(1)
$$R_1, R_2$$
自反 \Rightarrow $R_1 \cap R_2$ 自反.
证明: $\forall x$, $x \in A$ $\Rightarrow xR_2 \times \wedge xR_1 \times \Rightarrow xR_1 \cap R_2 \times R_1 \cap R_2 \times R_1 \cap R_2 = R_1 \cap R_2 =$

定理2.15(证明(2))

```
(2) R_1, R_2反自反 \Rightarrow R_1 \cap R_2反自反. 证明: (反证) \exists x \in A, \  < x, x > \in (R_1 \cap R_2) \\ \Leftrightarrow x R_1 x \wedge x R_2 x \\ \vdash R_1, R_2 反自反矛盾! \\ \therefore R_1, R_2 反自反 \Rightarrow R_1 \cap R_2 反自反. #
```

定理2.15(证明(3))

(3)
$$R_1,R_2$$
对称 \Rightarrow R_1-R_2 对称.
证明: $\forall x,y \in A$,
 $< x,y > \in (R_1-R_2)$
 $\Leftrightarrow xR_1y \land \neg xR_2y$
 $\Leftrightarrow yR_1x \land \neg yR_2x$
 $\Leftrightarrow y(R_1-R_2)x$
 $\therefore R_1,R_2$ 对称 $\Rightarrow R_1-R_2$ 对称.

定理2.15(证明(3)续)

(3) R_1 对称 $\Rightarrow \sim R_1$ 对称. 证明: ∀x,y∈A, $x(\sim R_1)y \Leftrightarrow x(E_A-R_1)y$ $\Leftrightarrow \langle x,y \rangle \in E_{\Delta} \land \langle x,y \rangle \notin R_1$ $\Leftrightarrow \langle y, x \rangle \in E_{\Delta} \land \langle y, x \rangle \notin R_1$ $\Leftrightarrow y(E_{\Delta}-R_1)x \Leftrightarrow y(\sim R_1)x$ ∴ R_1 对称 $\Rightarrow \sim R_1$ 对称.

定理2.15(证明(4))

(4) R_1 反对称 $\Rightarrow R_1^{-1}$ 反对称. 证明: (反证) 若R₁-1非反对称,则 $\exists x,y \in A$, $XR_1^{-1}y \wedge yR_1^{-1}X \wedge X\neq y$ \Leftrightarrow $yR_1X \wedge xR_1y \wedge x\neq y$ ⇔R₁非反对称 与R₁反对称矛盾! ∴ R_1 反对称 $\Rightarrow R_1^{-1}$ 反对称.

定理2.15(证明(5))

(5) R₁,R₂传递 ⇒ R₁∩R₂传递. 证明:∀x,y,z∈A, $x(R_1 \cap R_2)y \wedge y(R_1 \cap R_2)z$ $\Leftrightarrow xR_1y \wedge xR_2y \wedge yR_1z \wedge yR_2z$ $\Leftrightarrow xR_1y \wedge yR_1z \wedge xR_2y \wedge yR_2z$ \Rightarrow $\langle x,z \rangle \in R_1 \land \langle x,z \rangle \in R_2$ $\Leftrightarrow x(R_1 \cap R_2)z$ ∴ R_1,R_2 传递 $\Rightarrow R_1 \cap R_2$ 传递. #

© Peking University

■ 2.5 关系幂(power)运算

关系的n次幂

■ 关系的n次幂(nth power): 设R_A×A, n∈N,则

(1)
$$R^0 = I_A$$
;
(2) $R^{n+1} = R^n \bigcirc R$, $(n \ge 1)$.

 $\mathbf{R}^{n} = \mathbf{R} \circ \mathbf{R} \circ \cdots \circ \mathbf{R}$ $\mathbf{R}^{n} \uparrow \mathbf{R}$

定理2.17 指数律

■ 指数律:

- (1) $R^m \bigcirc R^n = R^{m+n}$; (2) $(R^m)^n = R^{mn}$.
- 说明:

对一般关系R来说, m,n∈N.

定理2.17(证明(1))

- $\blacksquare (1) R^m \bigcirc R^n = R^{m+n};$
- 证明: (1) 给定m, 对n归纳.

$$n=0$$
时, $R^m \bigcirc R^n = R^m \bigcirc R^0 = R^m \bigcirc I_A = R^m = R^{m+0}$.

假设 $R^m \cap R^n = R^{m+n}$,则

$$R^{m} \bigcirc R^{n+1} = R^{m} \bigcirc (R^{n} \bigcirc R^{1}) = (R^{m} \bigcirc R^{n}) \bigcirc R^{1}$$
$$= R^{m+n} \bigcirc R = R^{(m+n)+1} = R^{m+(n+1)}.$$

(2) 同样对m归纳.

关系幂运算(举例)

■ 例: 设A={a,b,c}, R⊆A×A, R={<a,b>,<b,a>,<a,c>}, 求R的各 次幂. 。

关系幂运算(举例,续)

■解(续): R⁰ = I_Δ, $R^1 = R^0 \cap R = \{ \langle a,b \rangle, \langle b,a \rangle, \langle a,c \rangle \},$ $R^2 = R^1 \cap R = \{ \langle a,a \rangle, \langle b,b \rangle, \langle b,c \rangle \},$ $R^3 = R^2 \cap R = \{ \langle a,b \rangle, \langle b,a \rangle, \langle a,c \rangle \} =$ G(R) $G(R^2)$

关系幂运算(举例,续2)

```
■解(续): R^4 = R^3 \bigcirc R = R^1 \bigcirc R = R^2, R^5 = R^4 \bigcirc R = R^2 \bigcirc R = R^3 = R^1, 所以, R^{2k+1} = R^1 = R, k = 0, 1, 2, ..., R^{2k} = R^2, k = 1, 2, ..., #
```

定理2.16

- 定理2.16: 设 |A|=n, R⊆A×A, 则 ∃s,t∈N, 并且 O≤s<t≤2^{n²}, 使得 R^s = R^t.
- 证明: P(A×A)对幂运算是封闭的,即
 ∀R, R∈P(A×A) ⇒ R^k∈P(A×A), (k∈N).
 |P(A×A)| = 2^{n²}, 在R⁰,R¹,R²,..., R^{2n²}这 2^{n²} +1 个集合中,必有两个是相同的.
 所以∃s,t∈N,并且O≤s<t≤2^{n²}, 使得 R^s = R^t. #

定理2.18

定理2.18: 设 R⊆A×A, 若 ∃s,t∈N (s<t),使得R^s = R^t,则
 (1) R^{s+k} = R^{t+k};
 (2) R^{s+kp+i} = R^{s+i},其中k,i∈N, p=t-s;
 (3) 令S={R⁰,R¹,...,R^{t-1}},则∀q∈N, R^q∈S.

定理2.18(证明(2))

■ (2) R^{s+kp+i} = R^{s+i}, 其中k,i∈N, p=t-s; ■ 证明: k=0时,显然; k=1时,即(1); 设 **k≥2.**则 $R^{s+kp+i} = R^{s+k(t-s)+i} = R^{s+t-s+(k-1)(t-s)+i}$ $= R^{t+(k-1)(t-s)+i} = R^{s+(k-1)(t-s)+i} = ...$ $= R^{s+(t-s)+i} = R^{t+i} = R^{s+i}$.

定理2.18 (证明(3))

- (3) \diamondsuit S={R⁰,R¹,...,R^{t-1}},则 \forall q∈N,R^q∈S.
- 证明: 若q<t-1,结论显然成立;
 若 q>t-1≥s,则令 q=s+kp+i,
 其中 k,i∈N, p=t-s, s+i<t;
 于是 Rq = Rs+kp+i = Rs+i∈S.

幂指数的化简

- 方法: 利用定理16, 定理18.
- 例2.6: 设 R_CA×A, 化简R¹⁰⁰的指数. 已知 (1) R⁷ = R¹⁵; (2) R³ = R⁵; (3) R¹ = R³.
- 解:

(1)
$$R^{100}=R^{7+11\times8+5}=R^{7+5}=R^{12}\in\{R^0,R^1,...,R^{14}\};$$

(2)
$$R^{100} = R^{3+48\times 2+1} = R^{3+1} = R^4 \in \{R^0, R^1, \dots, R^4\};$$

(3)
$$R^{100} = R^{1+49 \times 2+1} = R^{1+1} = R^2 \in \{R^0, R^1, R^2\}.$$
 #

总结

- 关系表示: 关系矩阵和关系图
- 5种性质:
 - ■自反
 - ■反自反
 - ■对称
 - ■反对称
 - ■传递
- 幂运算

作业

■ P54: 16, 17, 19,

■ P55: 21, 22, 27, 28