

PHOTOSYNTHESIS IN HIGHER PLANTS

INTRODUCTION

- Green plants synthesise their food by photosynthesis and all other organisms depend on plants for their needs.
- Photosynthesis is a physico-chemical process by which plants use light energy to drive the synthesis
 of organic compounds.
- The use of energy from sunlight by plants doing photosynthesis is the basis of life on Earth
- Photosynthesis is important due to two reasons: (a) It is the primary source of all food on earth and
 (b) It is also responsible for the release of oxygen into the atmosphere.
- Experiment for starch formation on variegated leaf or a leaf that was partially covered with black paper & exposed to light showed that photosynthesis occurred only in green part of leaves in the presence of light
- Experiment where a part of leaf is enclosed in a test-tube with some KOH soaked cotton (which absorbs CO₂), while other half is exposed to air and set-up kept in light proved that CO₂ is needed for photosynthesis.

EARLY EXPERIMENTS

1) Joseph Priestley

Using a burning candle, a mouse, mint plant and a bell jar for closed space, hypothesised that plants restore the air whatever burning candles or breathing animals remove

(2) Jan Ingenhousz

In an elegant experiment with an aquatic plant, showed that in bright sunlight plants produce oxygen.

(3) Julius Von Sachs

Found that glucose is made in green plant parts and stored as starch

(4) T W. Engelmann

Using a prism, green alga Cladophora and aerobic bacteria, described the action spectrum of photosynthesis, which roughly resembles the absorption spectrum of chlorophyll- a and b.

(5) Cornelius Van Niel

- Demonstrated that photosynthesis is essentially a light dependent reaction in which hydrogen from suitable oxidisable compound reduces CO₂ to carbohydrates.
- H₃S is hydrogen donor for purple & green sulphur bacteria H₃O the hydrogen donor in green plants which is oxidised to O₃.
- The oxidation product is sulphur or sulphate in purple & green sulphur bacteria and not O₂. Hence it Was inferred that O₂ evolved by green plants comes from H₂O and not from CO₂. This was later proved by using radioisotopic techniques. The correct equation, for the overall process.

$$6CO_2 + 12H_2O \xrightarrow{Light} C_6H_{12}O_6 + 6H_2O + 6O_2$$

WHERE DOES PHOTOSYNTHESIS TAKE PLACE

- · In green parts of the plants, mainly in the mesophyll cells in the leaves, which have large number of chloroplasts.
- Usually the chloroplasts align themselves along the walls of mesophyll cells to get optimum quantity of the incident light.

PARALLEL In low or optimum light intensity to get maximum incident light There is a clear division of labour within the chloroplast.

MEMBRANOUS SYSTEM STROMA (Grana + Stromal · Enzymatic reactions to synthesise sugar, which lamellae) Responsible for in turn forms starch, takes place trapping light & synthesis of ATP & NADPH · Dependent on Directly light driven, products of light called light reaction reactions (ATP & NADPH) (photochemical By convention called reactions) dark reactions (Carbon reactions) However, this does not to mean that the dark reaction occur in darkness or that they are not light-dependent

CHLOROPLAST

HOW MANY TYPES OF PIGMENTS ARE INVOLVED IN PHOTOSYTHESIS

Leaf-pigments of any green plant can be separated through paper chromatography

The colour in leaves is due to four pigments, that have the ability to absorb light, at specific wavelengths

COLOUR OF THE PIGMENTS IN THE CHROMATOGRAPHY

- ii. Chlorophyll-b = Yellow green
- iii. Xanthophyll = Yellow
- iv. Carotenoids = Yellow to yellow- orange

- The wavelength of light at which there is maximum absorption by chlorophyll-a i.e.. in blue and red regions, also shows higher rate of photosynthesis.
- Hence, we can conclude that Chl-a is the chief pigment associated with photosynthesis.
- Chl-b, carotenoids and xanthophyll are accessory pigments. They absorb light and transfer the energy to Chl-a. They enable a wider range of wavelength of incoming light to be utilised for photosynthesis and also protect chlorophyll-a from Photo-oxidation.

WHAT IS LIGHT REACTION?

- · Light reactions or the Photochemical phase include
- (a) Light absorption (b) Water splitting
- (c) Oxygen release, and (d) ATP and NADPH formation
- Several protein complexes are involved in the process
- The pigments are organised into two photosystems

Named the sequence of their discovery and not in the sequence of their function.

THE ELECTRON TRANSPORT

- The whole scheme of transfer of electrons starting from PS-II → uphill
 to the acceptor → down the ETC to PS-I → Excitation of electrons →
 transfer to another acceptor → finally downhill NADP+ → reducing
 it to NADPH → H⁺ is called the Z-scheme due to its characteristic shape.
- This shape is formed when all the carriers are placed in a sequence on a redox potential scale.

PS-II continuously supplies electrons which becomes available by splitting of water

Water splitting
complex is
associated with
PS-II which itself is
physically located
on inner side of
membrane of
thylakoid

SPLITTING OF WATER

This produces oxygen, one of the net products of photosynthesis

CYCLIC AND NON-CYCLIC PHOTO-PHOSPHORYLATION

- When both PS-1 and PS-II are involved the process is non-cyclic producing ATP, NADPH+ H+ and oxygen
- When only PS-I is functional, cycle flow of electron takes place to produce only ATP.
- A possible location for cyclic flow is the stroma lamellae membranes which lack PS-II and NADP reductase enzyme.

CHEMIOSMOTIC HYPOTHESIS

- ATP synthesis during photosynthesis is linked to the development of a proton gradient across the membranes of thylakoid and protons accumulate
 in the lumen of thylakoids
- · The proton gradient is caused by:
- (a) Protons or hydrogen ions produced by splitting of water, accumulate in the lumen of the thylakoids.
- (b) The primary acceptor of electron located towards outer side of membrane transfers its electron to a H carrier, which removes a proton from stroma while transporting an electron, to the electron carrier on the inner side of membrane
- (c) The NADP reductase enzyme located on stroma side of membrane removes protons from stroma, while reducing NADP* to NADPH + H*
- Within chloroplast, protons decrease in stroma and accumulate in lumen. This creates a proton-gradient across thylakoid membrane as well as a measurable decrease in pH in the lumen.
- Breakdown of this gradient leads to synthesis of ATP. When protons move across the membrane to the stroma through transmembrane channel of the CF_a of the ATP synthase.

ATP SYNTHASE

CF₀ = Embedded in the thylakoid membrane. A transmembrane channel for facilitated diffusion of protons

CF₁ = Protrudes on outer surface of thylakoid membrane on the side that faces stroma. It synthesize ATP

· Chemiosmosis requires - a membrane, a proton pump, a proton gradient and ATP synthase

WHERE ARE THE ATP AND NADPH USED?

Of the products of light reaction- ATP, NADPH and O₂. O₂ diffuses out of chloroplast while ATP and NADPH are used to synthesise sugars in the biosynthetic phase of photosynthesis Melvin Calvin used radioactive ¹⁴C in algal photosynthesis studies to discover the first CO₂ fixation product, the 3-C organic acid (3-PGA) (C₃- pathway).

In another group of plants, the first stable product was 4 carbon, oxaloacetic acid OAA(C4-pathway)

THE CALVIN CYCLE

- The Calvin cycle occurs in all photosynthetic plants whether they have C₃ or C₄ (or any other) pathways.
- Calvin cycle can be described under three stages.

CARBOXYLATION: Most crucial step

RuBP (5C) RuBisCo CO, + H,O 2 x 3 - PGA

REDUCTION: A series of reactions that lead to formation of glucose. Utilises 2 ATP and 2 NADPH per CO₂. (The fixation of 6CO₂, and 6 turns of the cycle are needed to form one molecule of glucose from the pathway)

REGENERATION: Regeneration of RUBP is crucial for the cycle to continue. This step require one ATP so, to produce one molecule of glucose in Calvin cycle an input of 6CO₂, 18 ATP & 12 NADPH are required.

THE C₄-PATHWAY

Plants adapted to dry tropical regions have the C_4 -pathway.

C₄-plants are special:
They have special type of leaf anatomy, tolerate higher temperatures show response to high light intensities, lack photorespiration & have greater biomass productivity.

C₄-plants have leaves showing kranz anatomy the, particularly have large cells around the vascular bundles, which may form several layers and are called bundle sheath cells characterised by having a large number of chloroplasts, thick walls impervious to gaseous exchange & no intercellular spaces.

The pathway is cyclic & called the Hatch and Slack Pathway. It is partly completed in mesophyll & partly in bundle sheath cell.

Photosynthesis is under the influence of severs' factors both internal (plant) & external

Light: Light saturation occurs at 10% of the full sunlight except for plants in shade or in dense forests, light is rarely a limiting factor in nature

 There is a linear relationship between incident light & CO₂ fixation rates at low light intensities. At higher light intensities, gradually the rate does not show further increase as other factors become limiting. CO₂ concentration: Major limiting factor. The concentration of CO₂ is very low in the atmosphere (0.03 & 0.04%). Increase in concentration upto 0.05% can cause increase in CO₂ fixation rates, beyond this levels can become damaging over longer periods.

At low light conditions neither group($C_3 \& C_4$) responds to high CO_3 conditions. C_4 plants show saturation at $360\mu lL^{-1} CO_2$ while in C_3 saturation is seen at $450 \mu lL^{-1}$ Some greenhouse crops like tomatoes and bell pepper show higher yields in CO_3 enriched atmosphere.

Temperature: Dark reactions being enzymatic are temperature controlled, Light reactions are also temperature sensitive but to much lesser extent C_4 -plants show higher yield at high temperature while C_3 -plants have a much lower temperature optimum.

Water: Effect of water as a factor is more through its effect on the plant rather than directly on photosynthesis. Water stress causes the stomata to close hence reducing CO₂, availability Water stress also makes leaves wilt, thus, reducing the surface area of leaves and their metabolic activity as well.