Python for Geospatial Big Data and Data Science Using the FASRC

Robert Spang
Visiting Scholar, Centre for Geographic Analysis, Harvard University
Quality and Usability Lab, Technical University of Berlin, Germany

Devika Kakkar and Xiaokang Fu Centre for Geographic Analysis, Harvard University

Agenda

- Five chapters
 - Introduction
 - Case Study & Data Sets
 - Moving to the FASRC
 - Performance Optimization
 - Outro

Input

Hands on

Files & Data for the Workshop

Files

- Slides, exercises, command cheat sheet, and code files
- GitHub: https://github.com/cga-harvard/python-workshop-gis-big-data

Datasets

- All data we'll work with
- Publicly accessible on the cluster: /n/holyscratch01/cga/python-workshop-gis-big-data
- Google Drive: https://drive.google.com/drive/folders/
 1k6G9hu8liaZmMt3MgDw-3vBTtLTpyqdK?usp=sharing

Chapter 1 Introduction

Python for Geospatial Big Data and Data Science Using the FASRC

Introduction to Big Data Processing & HPC

- Big Data
 - Volume, Velocity, and Variety (3Vs)
 - Also: Veracity and Value
- Processing
 - Large dataset → aggregated results → smaller datasets
- Faculty of Arts and Sciences Research Cluster
 - Harvard's High-Performance Cluster (HPC)

Differences between a HPC & the Cloud

- Purpose
- Architecture
- Resource Allocation
- Usage and Applications
- Flexibility
- Economic Model
- Location

File Server

Shared Disks

Compute Nodes

Login Node

Structure of the FASRC – Structure

 Access the cluster through a "login node"

o ssh user@login.rc.fas.harvard.edu

 From there, connect to compute nodes to run apps

> Login nodes are not designed for anything compute/memory intensive

Structure of the FASRC – SLURM

- SLURM is a job scheduler
- Specify the resources needed, get a node allocated
 - Specify node-type, CPU cores, memory, and runtime
 - A job terminates after the designated time is up
 - SLURM ensures users do not exceed resource request
- Mostly used to queue jobs, but can also run an interactive session
 - o srun --pty -p test -mem 100 -t 0-01:00 /bin/bash

Structure of the FASRC – Partitions

- Partitions are the different node-classes
 - Each class comes with different attributes for different use-cases

Partitions:	shared	gpu	test	gpu_test	serial_requeue	gpu_requeue	bigmem	unrestricted	pi_lab	
Time Limit	7 days	7 days	8 hrs	1 hrs	7 days	7 days	no limit	no limit	varies	
# Nodes	530	15	16	1	1930	155	6	8	varies	
# Cores / Node	48	32 + 4 V100	48	32 + 4 V100	varies	varies	64	64	varies	
Memory / Node (GB)	196	375	196	375	varies	varies	512	256	varies	

Structure of the FASRC – Storage

- Two sites with different networks
- Consider where to up-/download data
 - Tools e.g. rsync, scp, ...
- Login-nodes are are suitable for most application (10Gb/s)
 - For large data sets, make sure to use a cable connection (instead of e.g. EDUROAM WiFi)

Structure of the FASRC – Storage

- Home directory is your primary, private space
 - o 100GB
 - Moderate performance, not suitable for heavy I/O
- Local (node) scratch
 - /scratch
 - 200-300GB/node (shared with all users on the node!)
 - Lives for job duration
- Global scratch
 - /n/\$SCRATCH
 - 2.4PB (shared with everyone on the cluster)
 - Lives for 90 days

	Home Directories	Lab Storage	Local Scratch	Global Scratch	Persistent Research Data	
Mount Point	/n/home#/ \$USER	/n/pi_lab	/scratch	/n/\$SCRATCH	/n/\$REPOS	
Size Limit	100GB	4TB+	200-300 GB/node	2.4PB total	3РВ	
Availability	Availability All cluster nodes + Desktop/laptop		Local compute node only.	All cluster nodes	All cluster nodes	
Retention Policy	Indefinite	Indefinite	Job duration	90 days	3-9 mo	
Backup	Backup Hourly snapshot + Daily Offsite		No backup	No backup	External Repos No backup	
Performance	Moderate. Not suitable for high I/O	Moderate. Not suitable for high I/O	Suited for small file I/O intensive jobs	Appropriate for large file I/O intensive jobs	Appropriate for large I/O intensive jobs	
Cost	Free 4TB Free + Expansion at a cos		Free	Free	Free	

Code of Conduct

- Shared resources
 - Expect > 800 users of the RC
 - Your actions might influence others' experiences
 - Request only the resources you need
- Login nodes only to login, to submit jobs and to receive data
- Consider the right storage space for each task

Exercise I - Web

- Login to the FASRC web interface
 - o https://rcood.rc.fas.harvard.edu/
 - Start an interactive Jupyter notebook session
 - Default settings are ok
 - In Jupyter, create a new Python Notebook, name it test.ipynb
 - Run a simple demo code (e.g. print ("Hello World"))

Exercise II - CLI

- Login to the cluster via SSH
 - ssh user@login.rc.fas.harvard.edu
- Setup a python environment
 - Load the Python / mamba module
 - module load Mambaforge/23.3.1-fasrc01
 - Create a new mamba environment
 - mamba create -n workshop python=3.9 --file requirements.txt

Exercise II - CLI

- Start an interactive shell on a compute node
 - o srun --pty -p test --mem 1000 -c 2 -t 0-01:00 /bin/bash
- Load Python module & start environment
 - module load Mambaforge/23.3.1-fasrc01
 - mamba activate workshop
- Run Python code
 - o jupytext --to py test.ipynb # converts .ipynb to .py
 - o python test.py

Exercise

Find the exercise document in the GitHub repo

Python for Geospatial Big Data and Data Science Using the

Exercise 1

1. Connect to the VPN using Cisco AnyConnect.

To interact with the FASRC from your laptop, you have to be connected to the VPN. Start the Cisco AnyConnect App. Upon click on "Connect", you'll be asked to provide two passwords. Password: your FASRC account password. Second Password: the six digit one-t password from your authenticator app, e.g., Google Authenticator

Summary of Chapter 1

- Web and CLI
 - The FASRC is accessible through the web and via the CLI
 - The command line is the main access channel

- SLURM
 - SLURM manages resource requests
 - Resources must be known beforehand

Chapter 1 Questions & Comments?

5min coffee break

Chapter 2 Case Study & Data Sets

Python for Geospatial Big Data and Data Science Using the FASRC

The Data Set

- Twitter Sentiment Geographical Index (TSGI)
 - Tweets with coordinates → sentiment analysis
 - Average per day, aggregated per county, state, or country
 - CGA, Harvard University & Sustainable Urbanization Lab, MIT
- Compare sentiments in regions across time
 - 164 countries, > 10 years coverage, ~ 83% accuracy
 - CSV files, one per year
- Links
 - https://www.globalsentiment.mit.edu/dataset
 - https://sdgstoday.org/dataset/twitter-sentiment-geographical-index

TSGI: Statistics

To the best of our knowledge, it is the first SWB dataset of this scale and granularity! In contrast to the previous works focusing on SWB, TSGI is not limited to a specific topic, period, or location.

The Data Set

2022-01-12

2022-09-09

2022-05-12

2022-03-02

2022-10-28

231971

4786320

2458829

1121073

5749926

,	<pre>✓ tweets_df.sample(10) ···</pre>											
		date	country	state	county	sentiment_score	tweets					
	6720731	2022-12-17	United Kingdom	England	Northumberland	0.606733	1549					
	2404880	2022-05-09	Japan	Shiga	Taga	0.720183	15					

Kaôh Kong

Oregon

Liaoning

North Carolina

2279265 2022-05-03

Cambodia

China

United States

United States

Philippines Bohol Japan Aomori

> Bom Princípio do Piauí 0.444439

Tagbilaran City

Botum Sakor

Noheji

Clatsop

Cabarrus

Ocamonte

Benxi

0.616437

0.772601

0.800125

0.671406

0.625170

0.594906

0.868015

72

4

38

481

28

100

6713367 2022-12-16 Colombia Santander 4305041 2022-08-16 Brazil Piauí Harvard University

The Case Study

Current research:

Wang, J., Guetta-Jeanrenaud, N., Palacios, J., Fan, Y., Kakkar, D., Obradovich, N., & Zheng, S. (2022). A global nonlinear effect of temperature on human sentiment. Nature Human Behavior (Under Review).

The Case Study

- Research question:
 Does rainfall influence public sentiment?
 - Hypothesis: Public sentiment is, on average, lower on rainy days compared to non-rainy days.
- Available data
 - Sentiment per region, per day (TSGI)
- Data needed
 - Precipitation for the same time span

Precipitation Data

- National Oceanic and Atmospheric Administration
 - Climate Prediction Center (CPC)
 - Global Unified Gauge-Based Analysis of Daily Precipitation
 - Temporal Coverage: Daily 1979/01/01 to 2023/09/21
 - Spatial Coverage: 0.5 degree lat x 0.5 degree lon (720x360)
 - NetCDF files, one per year
 - https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html


```
√ dataset.precip.values …
```

```
array([[[
               nan,
                           nan,
                                      nan, ...,
                                                       nan,
                           nan],
               nan,
                           nan,
                                      nan, ...,
               nan,
                                                       nan,
                           nan],
               nan,
                           nan,
                                      nan, ...,
               nan,
                                                       nan.
                           nan],
               nan,
        ... ,
        [0.
                  , 0. , 0.
        [0.
                  , 0. , 0.
        0.
                  , 0.
        [0.05244859, 0.05249586, 0.05254338, ..., 0.04819115,
        0.05235494, 0.05240161]],
```


Case Study Data

TSGI

date, country, state, county, sentiment_score, tweets
 Precipitation
 day of year, latitude, longitude

How to connect the two?

Join Table Needed

- Using a list of counties with coordinates
 - Initial idea: web search
 - https://en.wikipedia.org/wiki/User:Michael_J/County_table

Table of United States counties

Contents [hide]

Q Search Wikipedia Search	ch
---------------------------	----

Create account Log in •••

User:Michael J/County table

 $\dot{\mathbf{X}}_{\!\!\!/\!\!\!\!/}$ Add languages \checkmark

User page Talk Read Edit View history Tools ✓

From Wikipedia, the free encyclopedia

< User:Michael J

You have a new message (last change).

Table of United States counties [edit]

This is a table adapted from the U.S. Census Bureau's gazetteer of county populations and areas of, with April 1, 2010 population counts added from elsewhere of on the Census Bureau site. It has been augmented with county seats and a few explanatory footnotes.

Sort		State + FIPS +	County [2] +	County Seat(s) [3]	Population (2010)	Land	Land	Water	Water	Total	Total		
[1] \$	State +					Area ♦ km²	Area ♦	Area \$ km²	Area +	Area ♦ km²	Area ≑ mi²	Latitude +	Longitude +
1	AL	01001	Autauga	Prattville	54,571	1,539.582	594.436	25.776	9.952	1,565.358	604.388	+32.536382°	-86.644490°
2	AL	01003	Baldwin	Bay Minette	182,265	4,117.522	1,589.784	1,133.190	437.527	5,250.712	2,027.311	+30.659218°	-87.746067°
3	AL	01005	Barbour	Clayton	27,457	2,291.819	884.876	50.865	19.639	2,342.684	904.515	+31.870670°	-85.405456°
4	AL	01007	Bibb	Centreville	22,915	1,612.481	622.582	9.289	3.587	1,621.770	626.169	+33.015893°	-87.127148°
5	AL	01009	Blount	Oneonta	57,322	1,669.962	644.776	15.157	5.852	1,685.119	650.628	+33.977448°	-86.567246°
6	AL	01011	Bullock	Union Springs	10,914	1,613.057	622.805	6.057	2.338	1,619.113	625.143	+32.101759°	-85.717261°
7	AL	01013	Butler	Greenville	20,947	2,011.977	776.829	2.727	1.053	2,014.704	777.882	+31.751667°	-86.681969°
8	AL	01015	Calhoun	Anniston	118,572	1,569.190	605.868	16.624	6.419	1,585.814	612.287	+33.771706°	-85.822513°
9	AL	01017	Chambers	Lafayette	34,215	1,545.009	596.531	17.048	6.582	1,562.057	603.113	+32.917943°	-85.391812°
10	AL	01019	Cherokee	Centre	25,989	1,434.076	553.700	119.859	46.278	1,553.935	599.978	+34.069515°	-85.654242°
			1		Harvard Unive	reity							

Harvard University

Join Table Needed

- Using a list of counties with coordinates
 - Initial idea: web search

- Geocoding
 - "Geocoding refers to the assignment of geocodes or coordinates to geographically reference data provided in a textual format."
 - https://en.wikipedia.org/wiki/Geocode

Join Table

- 41,765 pairs
 - https://www.here.com/platform/geocoding
- Provides coordinates for each country-statecountry pair
- Different providers, "Here Maps" in this case
 - Demo code in repo geocoding example.py

-	
Afghanistan	

Afghanistan

Country

Badakhshan Badakhshan

Badakhshan

Badakhshan Badakhshan

Badghis

Badghis

Baghlan

Baghlan

Baghlan

Baghlan

Baghlan

Baghlan

Baghlan

Balkh

State

Baharak Ishkashim

County

Shighnan

Zebak

Burka

Doshi

Khinjan

Nahrin

Kishim

36.97669 36.82093

36.9624

lat

70.09848 71.48942

lon

70.86874

71.45003

63.593

37.5589

36.70442

71.57036 35.76058

Ghormach **Jawand** Andarab

35.07173 64.12571 35.62599

69.18434 68.72341

Baghlan City 36.14867 Baghlan Baghlani Jadid

36.14867 36.14867

36.14867 36.14867

68.72341 68.72341 68.72341

68.72341

68.72341

36.14867 35.96299 34.53313

68.70387 69.10221 69.10221

Afghanistan Afghanistan Afghanistan Afghanistan Afghanistan

Afghanistan

Balkh Balkh Balkh

Balkh Kaldar Khulm

Puli Khumri

Mazar-i-Sharif

34.53313 34.53313 36.70745

69.10221 67.10885

Case Study Data

- TSGI
 - date, country, state, county, sentiment_score, tweets

- Precipitation
 - o day of year, latitude, longitude
- How to connect the two?

Case Study Data

- TSGI
 - o date, country, state, county, sentiment score, tweets
- - o country, state, county, latitude, longitude
- Precipitationday of year, latitude, longitude

How to work with big data sets?

- Develop toy example locally
- 2. Move data & code to the Cluster

3. Scale example to use entire data set

Toy Example & Scaling

- Understand the problem & the how to use the data
- Develop a toy example
 - Vertical prototype
 - "Divide and conquer"
 - Solve the problem using a manageable subset of the data
 - Allows you to work on your local machine
 - Faster development iterations
 - Your favorite development environment

Toy Example & Scaling

- Transfer toy example to HPC environment
 - Test if everything works as expected
 - "Fail fast, fail often"
 - Note differences: stdout, error messages, results, ...
- Scale to the entire dataset
 - Allocate HPC resources

Exercise - Develop a Toy Example I

- Merge all datasets
 - Develop this locally on your device
 - Load one TSGI file
 - E.g. year 2022
 - E.g. only Massachusetts counties, only east coast counties, ...
 - Load one NOAA CPC file (same year)
 - Merge both using the join table

Exercise - Develop a Toy Example II

- Analyze the dataset
 - For each county
 - Collect all rainy days → compute average sentiment score
 - Collect all non-rainy days → compute average sentiment score
 - Return difference
 - Aggregate differences per country

Exercise

Find the exercise document in the GitHub repo

Python for Geospatial Big Data and Data Science Using the FA

Exercise 2

1. Merge all data sets

Start a new Python script on your local machine. You can also work on the FASRC, e.g., using Jupyter Notebook. In this case, all case study related data is publicly available under /n/holyscratch01/cga/rspang/workshop_data/. However, working in your go-

If you are working on your own device, ensure to have a copy of all data set files ready. Also, create a new Python environment, providing the same packages as we installed in Chapter 1. https://raw.githubusercontent.com/RGreinacher/python-workshop-gis-big-

Now, create a new Python file. You'll find the following average.

Summary of Chapter 2

- Openly available data sets
 - TSGI & NOAA CPC precipitation
 - Join both using a geocoding look-up table
 - Translate county coordinates to best-matching precipitation data
- Toy examples locally, full scale version remotely
- We now have a functional prototype for our research question

Chapter 2 Questions & Comments?

5min coffee break

Chapter 3 Moving to the FASRC

Python for Geospatial Big Data and Data Science Using the FASRC

Environment Differences: Local vs. HPC

- Parallelism
- Memory
- Storage
- Environment and Dependencies
- Batch Systems
- Data Transfer
- Error Handling and Debugging
- Optimizations
- Networking
- Code Scalability

Copy your Script to the FASRC

- Using the command line or the web interface
 - o scp -r ./* USER@login.rc.fas.harvard.edu:/DEST/
 - Replace USER and /DEST/
 - Alternatively: Use the Jupyter web interface to create a new Python file
- Test in an interactive session
 - Make sure you run code only on compute nodes
 - Use the workshop environment we created earlier

Feedback & Output

- Feedback is not as easy to obtain, especially when running asynchronously
 - Add print-statements to your code to log important events
 - Loaded dataset A, B, C
 - Finished augmenting tweets with coordinates
 - Finished analysis
 - Finished running
 - Write your results to a file
 - Can't be the dataset-source directory
 - Home folder is usable for results files

SLURM's sbatch Jobs

- Interactive shells good for testing, but submitting jobs is main way to run code
 - Write a script that defines what should be done
 - The script also defines the requirements (CPU, mem, ...)
 - Submit job via sbatch myscript.sh

https://docs.rc.fas.harvard.edu/kb/running-jobs/#articleTOC_8

SLURM's sbatch Jobs

```
#!/bin/bash
     # https://docs.rc.fas.harvard.edu/kb/running-jobs/#articleTOC_8
     #SBATCH -c 1 # Number of cores (-c)
     #SBATCH -t 0-00:10
                              # Runtime in D-HH:MM, minimum of 10 minutes
     #SBATCH -p test
                              # Partition to submit to
     #SBATCH --mem=4000
                              # Memory pool for all cores (see also --mem-per-cpu)
     #SBATCH -o /n/home01/rspang/results/job_stdout_%j.out # File to which STDOUT will be written, %j inserts jobid
     #SBATCH -e /n/home01/rspang/results/job errout %j.err # File to which STDERR will be written, %j inserts jobid
10
11
     # load modules
     module load Mambaforge/23.3.1-fasrc01
12
13
14
     # set python environmant
15
     mamba activate workshop
16
17
     # run code
18
     python precipitation sentiment toy example chap3.py
```

Harvard University

Monitoring

- Monitor the load on a system
 - Command: htop, or command: ps -U username
 - E.g. run a job in an interactive session;
 have a second SSH connection to monitor the load
- List running SLURM jobs
 - Command: squeue
 - Monitor if a job is (still) running from a login node

Exercise I

- Transfer your Python script to the FASRC
 - Copy your code to the FASRC
 - Adjust paths (to dataset files) to the FASRC locations
- Run your script in an interactive session
 - Write results to a file
 - Time the execution
 - Compare speed with local machine

Exercise II

- Run your script as a sbatch job
 - Submit your job for asynchronous execution
- Monitor multiple processes using htop
 - While the program is running on a compute-node, open https://rcood.rc.fas.harvard.edu/pun/sys/shell/ssh/COMPUTE_NODE.rc.fas.harvard.edu
 - in a browser; replace "COMPUTE_NODE" with the node-ID you are connected to

Exercise

Find the exercise document in the GitHub repo

Summary of Chapter 3

- Transferring scripts to remote environment requires small code changes
 - Paths to files
 - Logs
 - Results
- Running scripts interactively or asynchronously

Chapter 3 Questions & Comments?

1h lunch break

Chapter 4 Performance Optimization

Python for Geospatial Big Data and Data Science Using the FASRC

Compare Runtime: Local vs. FASRC

- Which system was faster?
 - My laptop: this script took 0:00:10.92sec to execute
 - FASRC: this script took 0:00:18.83sec to execute
- Why?

Environment Differences: Local vs. HPC

- Parallelism
- Memory
- Storage
- Environment and Dependencies
- Batch Systems
- Data Transfer
- Error Handling and Debugging
- Optimizations
- Networking
- Code Scalability

Code Optimization

- Optimize your code
 - o I/O
 - Memory
 - Storage
 - Use parallelization if possible
- Test locally first (toy example approach)

Code Efficiency: Dynamic Programming

Example: computing the Fibonacci sequence

```
from datetime import datetime
     # Naive, recursive implementation
     def fib(n):
         if n \leq 1:
 6
             return n
         else:
             return fib(n-1) + fib(n-2)
 8
     start = datetime.now()
10
     print(fib(41))
11
     end = datetime.now()
13
     print(end - start)
Fib(41) ~ 31sec
Fib(112) ~ age of the universe
```

```
from datetime import datetime
     # Dynamic Programming: Memoization (still recursive!)
     def fib(n, memo={}):
         if n \leq 1:
             return n
         elif n not in memo:
             memo[n] = fib(n-1, memo) + fib(n-2, memo)
         return memo[n]
 9
10
     start = datetime.now()
     print(fib(41))
12
     end = datetime.now()
13
     print(end - start)
14
Fib(41) ~ 0.000094sec
Fib(120) ~ 0.000112sec
```

Code Efficiency: Parallelization

- Use multi-core CPUs
 - By default, a Python script runs on a single core
 - Modern CPUs have multiple cores → distribute load

Simple example: summing a large list of numbers

```
[1] \rightarrow [2] \rightarrow [3] \rightarrow [4] \rightarrow [5] \rightarrow [6] \rightarrow ... \rightarrow [N] \___ Worker (CPU Core 1) moving sequentially, summing up.
```

```
      Segment 1
      Segment 2
      Segment 3
      Segment k

      [1] -> [2]
      [3] -> [4]
      [5] -> [6]
      [N-1] -> [N]

      \____ Worker 1
      \____ Worker 2
      \____ Worker 3
      \____ Worker k
```

Code Efficiency: Parallelization

Example: summing a large list of numbers

```
numbers = range(10000)
                                                                               Serial computing
    total = sum(numbers)
    from concurrent.futures import ProcessPoolExecutor
    numbers = range(10000)
    segment size = len(numbers) // 4 # assuming 4 CPU cores
5
                                                                              Parallel computing
    with ProcessPoolExecutor() as executor:
6
        segments = [numbers[i:i + segment_size] for i in
        range(0, len(numbers), segment_size)]
        partial_sums = list(executor.map(sum, segments))
        total = sum(partial_sums)
9
```

Code Efficiency: Parallelization

# Cores	Runtime in sec	Speedup
1	65.10	1.00
2	34.21	1.90
3	24.17	2.69
4	19.06	3.42
5	15.64	4.16
6	14.86	4.38
7	12.98	5.01
8	13.08	4.98

Scaling on a HPC

- Vertical scaling
 - Using more resources on a node
 - "scaling up"
- Horizontal scaling
 - Growing the system by connecting multiple hardware entities to distribute the load across nodes
 - "scaling out"

Exercise I

- Screen your code for optimization potential
 - Test which parts take the most time
 - Check if you run the same code repeatedly
 - Think about parallelization: which parts could profit from parallel execution?
 - What improvement might have the biggest impact on the performance of your script?

Exercise II

- Implement parallelization using joblib
 - When using more resources, adjust your toy example
 - E.g., run the analysis on data of the entire U.S.
 - https://joblib.readthedocs.io/en/stable/
- Run the precipitation analysis for the entire world
 - Use all the data of one year, or even all the data from 2012-2023
 - Which country is the most "weather-sensitive"?

Bonus Exercise I

- Parallelize loading & processing of the data set
 - So far: loading & initial processing using one core
 - Split the dataset into separate chunks
 - Load only a segment (total_rows // number_of_processes)
 - Pre-process each chunk in a separate process in parallel

Bonus Exercise II

- Improve the data analysis
 - Drop days with only very few tweets (e.g., having at least 10)
 - Include only such counties, that have at least 20 rainy days
 - Add a statistical analyses
 - effect size of difference (e.g., Cohen's *d*)
 - significance testing (e.g., Welch's p-test)
 - Only compare days with at least three days rain / no rain in a row

Reference for Bonus Exercises

- All bonus exercises are implemented and part of the course repository
 - Try solving each task on your own
 - Compare your solution with the reference file

```
Chapter 4/global_precipitation_sentiment.py
```


Exercise

Find the exercise document in the GitHub repo


```
Python for Geospatial Big Data and Data Science Using the FAS
     Exercise 4
      1. Screen your code for optimization potential
     1.1 Test which parts take the most time
Using the time taking functions from the previous exercise, find out which part of your script
takes the longest. Make sure your toy example is large enough, that the longest section runs a
few seconds (e.g., 10sec). Otherwise, it'll be hard to make differences visible.
     # take start time
    start_execution_timestamp = datotime
    a_long www.
```

Summary of Chapter 4

- Optimization is complex
 - Trade-off between code engineering and runtime
 - But: necessary to leverage a HPC!
- No off-the-shelf solution
 - Reducing I/O (loading data) & inspecting redundancies is always a good idea
 - Understanding the concept of parallelization
 (and looking for opportunities to use it) is worthwhile

Chapter 4 Questions & Comments?

5min coffee break

Chapter 5 Recap, Wrap-up & Outro

Python for Geospatial Big Data and Data Science Using the FASRC

Workshop Ad

Topics Covered:

- Fundamentals of High-Performance Computing, with a focus on FASRC
- Foundations of Data Science
- Big Data Concepts using Python
- Practical application: large social media data set

Learning Objectives:

- Learn how to analyze large data sets using Python and FASRC
- Various tools and techniques of Data Science and Big Data computation
- Prepare to work with your own data using the FASRC

Open Questions?

Get in touch via mail

Robert Spang: <u>spang@tu-berlin.de</u>

Devika Jain: <u>kakkar@fas.harvard.edu</u>

Xiaokang Fu: <u>xiaokang fu@fas.harvard.edu</u>

Our office

CGA, K00A, 1737 Cambridge Street

Inspirations: CGA's Big Data Projects

- Complex geospatial analysis
- Scale geospatial applications on cluster and cloud computing environments
- Geospatial databases (PostGIS, OmniSci)
- Visualization of large geospatial data using GPU databases
- → https://gis.harvard.edu/gis-data-science-big-data-workstream-cga

Feedback

Please take a moment to let us know how we could do better and what you liked about today

→ https://gis.harvard.edu/workshop-evaluation

Chapter 5 Questions & Comments?

Thank you for joining us!

