

Electronic Stability Control (ESC)

Automation and Control in Vehicles

Sergio M. Savaresi

http://move.dei.polimi.it/

"Stability-control" is mainly referred to the automatic control of

- -Yaw-dynamics (main)
- Lateral dynamics

Correct (generic) Acronym:

Electronics Stability Control (ESC)

During cornering a car has: A not-zero rotation speed *r* A (possibly not-zero) drift angle β («SIDE-SLIP angle»)

Both of these quantities must be controlled in order to give the driver the "control" (feeling) of the vehicle

SINCE

Large drift angles (> 2-3°) make it very difficult to control the car for a (standard) driver

The yaw control can not however "per se", increase the maximum lateral grip of the vehicle

Lateral/yaw dynamics control: control problem

Provide

- -a lateral force
- -a yaw torque

To achieve

- -Minimization of the drift (side-slip) angle
- -a rotation speed consistent with the curvature radius (given by steer angle) of the road and the vehicle speed

Problem: actuators?

Two categories:

- 1. Use road-tire contact forces:
 - Active differential brake (ESP-like)
 - Active differentials
 - **Active Steering**
- 2. Use aerodynamic forces

Prof. Sergio Savaresi, Dipartimento di Elettronica, Informazione e Bioingegneria

- the model can be easily extended to all-wheel-steering architecture

Rear wheel

Front wheel

We assume
$$F(\lambda, \alpha, F_z) = \alpha C(\lambda, F_z)$$

 (λ, F_{τ}) fixed

We calculate tire drift-angles (not-zero in order to develop lateral forces)

$$F_r = C_r \alpha_r$$
 $\alpha_r = \beta + \frac{l_r r}{v}$

$$F_f = C_f \alpha_f$$
 $\alpha_f = \beta + \delta - \frac{l_f r}{v}$

 C_f, C_r : "drift-stiffness"

$$F_f = C_f \alpha_f$$
 $\alpha_f = \beta + \delta - \frac{l_f r}{v}$

$$F_r = C_r \alpha_r$$
 $\alpha_r = \beta + \frac{l_r r}{v}$

$$\beta + \gamma = \psi \qquad \boxed{a = v\dot{\gamma}}$$

$$a = v(r - \dot{\beta})$$

(Assumption: no change in modulus of the velocity)

We can rewrite the dynamic system in function of the state variables $\,eta\,\,$ and r

$$\begin{cases} ma = F_r + F_f \\ J\dot{r} = l_f F_f - l_r F_f \end{cases}$$

$$\begin{cases} mv(r - \dot{\beta}) = C_r \left(\beta + \frac{l_r r}{v}\right) + C_f \left(\beta + \delta - \frac{l_f r}{v}\right) \\ J\dot{r} = l_f C_f \left(\beta + \delta - \frac{l_f r}{v}\right) - l_r C_r \left(\beta + \frac{l_r r}{v}\right) \end{cases}$$

State-space – Normal form – 2nd order linear system (time-varying if v is slowly-varying)

$$\begin{cases} \dot{\beta} = \left(-\frac{C_r + C_f}{mv}\right) \beta + \left(1 + \frac{C_f l_f - C_r l_r}{mv^2}\right) r + \left(-\frac{C_f}{mv}\right) \delta \\ \dot{r} = \left(\frac{C_f l_f - C_r l_r}{J}\right) \beta + \left(-\frac{C_f l_f^2 + C_r l_r^2}{vJ}\right) r + \left(\frac{C_f l_f}{J}\right) \delta \end{cases}$$

Example values for parameters:

m = weighs from till 1400

If = 1.30m

Ir = 1.25m

 $J = 2000 kgm ^ 2$

Cf = Cr = 90000N/rad

v = 30m / s

Simplified model (Cf = Cr = C, If = Ir = I):

$$\begin{cases} \dot{\beta} = \left(-\frac{2C}{mv}\right)\beta + r + \left(-\frac{C}{mv}\right)\delta \\ \dot{r} = \left(-\frac{2Cl^2}{vJ}\right)r + \left(\frac{Cl}{J}\right)\delta \end{cases}$$

$$\begin{cases} \dot{\beta} = \left(-\frac{2C}{mv}\right)\beta + r + \left(-\frac{C}{mv}\right)\delta \\ \dot{r} = \left(-\frac{2Cl^2}{vJ}\right)r + \left(\frac{Cl}{J}\right)\delta \end{cases}$$

Transfer function from steering angle to yaw speed:

$$F_{\delta r}(s) = \frac{\frac{Cl}{J}}{s + \frac{2Cl^2}{vI}}$$

Transfer function from steering angle to side-slip:

$$F_{\delta\beta}(s) = \frac{-\frac{C}{mv}\left(s + \frac{2Cl^2 - mv^2l}{vJ}\right)}{\left(s + \frac{2Cl^2}{vJ}\right)\left(s + \frac{2C}{mv}\right)}$$

Gain:
$$\frac{v}{2l}$$
 Pole: $s = -\frac{2Cl^2}{vJ}$

Poles:
$$S = -\frac{2Cl^2}{vJ}$$
 $S = -\frac{2C}{vm}$

$$M = M_f + M_r$$
 $M_f l_f = M_r l_r$

$$M_f = \frac{Ml_r}{l_r + l_f} \quad M_r = \frac{Ml_f}{l_r + l_f}$$

$$\dot{\psi}R = V \quad \dot{\psi} = \frac{V}{R} \quad a_y = \dot{\psi}V$$

$$\delta = \frac{L}{R}\tau + \left(\frac{M_f}{C_f} - \frac{M_r}{C_r}\right)\frac{V^2}{R}\tau$$
 Steering-pad equation

Assuming (for simplicity) steer ratio $\tau = 1$

$$\delta = \frac{L}{R} + \left(\frac{M_f}{C_f} - \frac{M_r}{C_r}\right) \frac{V^2}{R}$$

Under-Steering Gain:
$$K_{US} = \left(\frac{M_f}{C_f} - \frac{M_r}{C_r}\right)$$

 $\delta_0 = \frac{L}{L}$ Low-speed steer angle:

$$\delta = \delta_0 + a_y K_{US}$$

$$K_{US} = \left(\frac{M_f}{C_f} - \frac{M_r}{C_r}\right)$$

$$F(\lambda, \alpha, F_z, \gamma) \approx C(\lambda, F_z, \gamma)\alpha$$

$$C \propto \frac{1}{\lambda}, F_z$$

Effect of load transfer on equivalent Kus?

Effect of high-lambda?

Trade-off between:

Smooth and long non-linear region

Short and steep non-linear region

Sensitivity around the limit Early-warning High-slip-angle region

Remark: KUS estimation from data (single speed) - Example

Test on a proving ground; constant speed = 60 km/h.

- 1) Only the samples with speed in the range 58km/h 62 km/h, AND lateral acceleration smaller than 0.6g are considered.
- 2) Plot on a steer-angle vs. yaw-rate map.
- Linear fitting; estimation of k, from the estimated k -> K_{us}

$$\delta = \delta_0 + a_y K_{US}$$

$$\delta = \frac{L}{R} + \dot{\psi}VK_{US}$$

$$\delta = \frac{L}{\frac{V}{\psi}} + \dot{\psi}VK_{US}$$

$$\delta = \frac{\dot{\psi}L}{V} + \dot{\psi}VK_{US} = \left[\frac{L + K_{US}V^2}{V}\right]\dot{\psi}$$

$$\dot{\psi} = \left[\frac{V}{L + K_{US}V^2}\right]\delta = k\delta$$

$$K_{US} = \frac{V - kL}{kV^2}$$

Estimated K_{us}= 47°/g

Remark: KUS estimation from data (single speed) - Validation

Estimated $K_{us} = 47^{\circ} /g$.

Reference model for yaw rate?

$$\begin{cases} \dot{\beta} = \left(-\frac{C_r + C_f}{mv}\right) \beta + \left(1 + \frac{C_f l_f - C_r l_r}{mv^2}\right) r + \left(-\frac{C_f}{mv}\right) \delta \\ \dot{r} = \left(\frac{C_f l_f - C_r l_r}{J}\right) \beta + \left(-\frac{C_f l_f^2 + C_r l_r^2}{vJ}\right) r + \left(\frac{C_f l_f}{J}\right) \delta \end{cases}$$

if
$$\beta \approx 0$$
, $\dot{r} = 0$

$$\begin{cases} \dot{\beta} = \left(-\frac{C_r + C_f}{mv}\right)\beta + \left(1 + \frac{C_f l_f - C_r l_r}{mv^2}\right)r + \left(-\frac{C_f}{mv}\right)\delta \\ \dot{\kappa} = \left(\frac{C_f l_f - C_r l_r}{J}\right)\beta + \left(-\frac{C_f l_f^2 + C_r l_r^2}{vJ}\right)r + \left(\frac{C_f l_f}{J}\right)\delta \end{cases}$$

$$0 = \left(-\frac{C_f l_f^2 + C_r l_r^2}{vJ}\right) r + \left(\frac{C_f l_f}{J}\right) \delta$$

$$\bar{r} = \frac{vC_f l_f}{C_f l_f^2 + C_r l_r^2} \delta$$

SENSORS:

- steering angle
- speed
- yaw rate
- -estimate side-slip angle

ACTUATORS \bar{F} \bar{T}

- -Brakes (ESP/VDC/...)
- -differentials
- -Active Steering
- -active aerodynamic surfaces

Modulation of each individual wheel slip

Assuming some knowledge of:

vertical load tire side-slip angle road conditions

it is possible to modulate the longitudinal+lateral forces of the 4 wheels

by changing the longitudinal slip through the braking action

Lateral force and yaw torques modulation with active brake control

b=vehicle track

$$F_{y} = \sum_{i=1}^{4} F_{y_{i}}(\lambda_{i}) \equiv \overline{F}$$

$$F_{x} = \sum_{i=1}^{4} F_{x_{i}}(\lambda_{i})$$

$$T = -F_{x_{FL}}(\lambda_{FL}) \frac{b}{2} + F_{x_{FR}}(\lambda_{FR}) \frac{b}{2} +$$

$$-F_{x_{RL}}(\lambda_{RL}) \frac{b}{2} + F_{x_{RR}}(\lambda_{RR}) \frac{b}{2} +$$

$$+F_{y_{FL}}(\lambda_{FL}) l_f + F_{y_{FR}}(\lambda_{FR}) l_f +$$

$$-F_{y_{RL}}(\lambda_{RL}) l_r - F_{y_{RR}}(\lambda_{RR}) l_r \equiv \overline{T}$$

4 control variables (lambda)

2 equations

Lateral force and yaw torques modulation with active brake control Example: ESP (Bosch)

7 Hydraulic modulator with primary-pressure sensor,

ESP - Complete closed-loop control system (component locations)

- 1 Wheel brakes.
- 2 Wheel-speed sensors,
- 3 ECU.
- 4 Primer pump (eVLP),
- 5 Steering-wheel sensor,

lateral-acceleration sensor.

8 Yaw sensor with

Main sensors: yaw speed lateral acceleration sensor (for the estimation of β) steering angle angular wheel speed

Main actuators: 4 brake pressures

Lateral force and yaw torques modulation with active brake control Example: ESP (Bosch)

source: Boschtech-25d

Lateral force and yaw torques modulation with active brake control Example: ESP (Bosch)

Lateral force and yaw torques modulation with active traction control

The logic used is exactly symmetric: it modulates the motor torque instead of the braking torque (negative coefficients slip instead of positive).

Reqires electronicallycontrolled differentials

Taken from: Boschteh-25d

Lateral force and yaw torques modulation with active traction control

A traditional passive differential tries to distribute engine torque 50% -50% on the two drive shafts.

"active" differentials: the torque split can be electronically varied

Lateral force and yaw torques modulation with active traction control

There are several possible configurations

Unlike ESP, does not require a braking condition (works well even at low speed, in acceleration, on low-grip surface)

Suitable mainly for off-road vehicles

Does not dissipate energy by braking, but dissipates energy on differentials

Requires components (differentials) that are not built-in

Lateral force and yaw torques modulation with active steer

-The most natural and intuitive way to control yaw and lateral dynamics

-Precondition: "steer-by-wire"

-Steering angle conceptually consists of two terms: $d\delta + \delta$

-Is modulated by the controller only $d\delta$ [with amplitude and bandwidth constraints] -With or without feedback on the driver (discussion)

Lateral force and yaw torques modulation with active steer

Possible configurations:

-2WS (BMW 5-Series MY03)

-4WS

-Feedforward (*Honda Prelude*)

- 4WS rear-active feedback (Renault, 2008)

Not to be confused with passive rear steering-wheels

Lateral force and yaw torques modulation with active aerodynamic-surfaces

aerodynamic forces

$$F_{Drag} = \frac{1}{2} \rho C_x A v^2$$

$$F_{Lift} = \frac{1}{2} \rho C_z A v^2$$

Both significant only at high speeds

Architectures

Lateral force and yaw torques modulation: summary

Type	Current status	Notes	Expected development
Active	In production (large	Can use ABS actuators	Consolidation
Brakes (ESP)	volumes)		
Active	In production	Requires active differentials	niche
Differentials	(niche)		
Active	In production	Requires a steer-by-wire systems	?
steering	(niche)		
Active	Only R&D	Only high-speed applications	(niche)
aerodynamic			
surfaces			

Remark: Powered Two Wheelers (PTW): stability-control approaches (actuators)

