Course Code	Course title		L	T	P	J	C
MAT-3004	Applied Linear Algebra		3	2	0	0	4
Pre-requisite	MAT2002 Applications of	Syllabus Version					
	Differential and Difference Equations						
			1	.0			
·	ves (CoB):1,2,3						
[1] understand	ing basic concepts of linear algebra to il	lustrate its _l	pov	ver	and	l ut	ility
through applica	tions to computer science and Engineering	5.					
[2] apply the o	concepts of vector spaces, linear transfor	mations, ma	tric	ces	and	ii	nne
product spaces in engineering.							
[3] solve problems in cryptography, computer graphics and wavelet transforms							
Course Outcome (CO): 1,2,3,4,5							
At the end of th	s course the students are expected to learn						
[1] the abstract	concepts of matrices and system of linear	equations usi	ing	dec	omj	osi	tior
methods							
[2] the basic notion of vector spaces and subspaces							
	ncept of vector spaces using linear transfo	rms which is	use	ed i	n co	mp	utei
graphics and inner product spaces							
graphics and in							
-	of inner product spaces in cryptography	[5] Use of wavelet in image processing.					
[4] applications	of inner product spaces in cryptography						

Student Learning	1,2,7				
Outcomes (SLO):					
[1] Harring on ability to apple by and also of \$4.00 and in Calonia and Engineering					

- [1] Having an ability to apply knowledge of Mathematics in Science and Engineering
- [2] Having a clear understanding of the subject related concepts and of contemporary issues
- [7] Having computational thinking

Module:1	System of Linear Equations:	6 hours	CO: 1
Gaussian elimination and Gauss Jordan methods - Elementary matrices- permutation			
matrix - inverse matrices - System of linear equations LU factorizations.			

Module:2 Vector Spaces 6 hours **CO: 2**

The Euclidean space \mathbb{R}^n and vector space-subspace -linear combination-span-linearly dependent-independent- bases - dimensions-finite dimensional vector space.

Module:3	Subspace Properties:	6 hours	CO: 2

Row and column spaces -Rank and nullity - Bases for subspace - invertibility-Application in interpolation.

77 1 1 4 71					
Module:4	Linear Transformations and applications	7 hours	CO: 3		
Linear transformations – Basic properties-invertible linear transformation - matrices of					

linear transformations - vector space of linear transformations - change of bases similarity **Module:5** Inner Product Spaces: 6 hours CO: 4 Dot products and inner products - the lengths and angles of vectors - matrix representations of inner products- Gram-Schmidt orthogonalisation **Module:6** | Applications of Inner Product Spaces: 6 hours CO: 4 QR factorization- Projection - orthogonal projections - relations of fundamental subspaces –Least Square solutions in Computer Codes **Module:7** | Applications of Linear equations : CO: 5 6 hours An Introduction to coding - Classical Cryptosystems - Plain Text, Cipher Text, Encryption, Decryption and Introduction to Wavelets (only approx. of Wavelet from Raw data) **Contemporary Issues:** 2 hours CO: 3, 4, 5 Module:8 **Industry Expert Lecture Total Lecture hours:** 45 hours A minimum of 10 problems to be worked out 30 hours CO: 3, 4, 5 **Tutorial** by students in every Tutorial Class Another 5 problems per Tutorial Class to be given as home work. Text Book(s) 1. Linear Algebra, Jin Ho Kwak and Sungpyo Hong, Second edition Springer (2004). (Topics in the Chapters 1,3,4 &5) 2. Introductory Linear Algebra- An applied first course, Bernard Kolman and David, R. Hill, 9th Edition Pearson Education, 2011. **Reference Books** 1. Elementary Linear Algebra, Stephen Andrilli and David Hecker, 5th Edition, Academic Press(2016) 2. Applied Abstract Algebra, Rudolf Lidl, Guter Pilz, 2nd Edition, Springer 2004. 3. Contemporary linear algebra, Howard Anton, Robert C Busby, Wiley 2003 4. Introduction to Linear Algebra, Gilbert Strang, 5th Edition, Cengage Learning (2015). **Mode of Evaluation** Digital Assignments (Solutions by using soft skills), Continuous Assessments, Final **Assessment Test** Recommended by Board of Studies 03-06-2019 Approved by Academic Council No. 55 13-06-2019 Date