Sieve Methods

Bailey Whitbread

University of Queensland

August 21, 2020

A Classic Sieve

Sieve of Eratosthenes

Introduction to Arithmetic, Nicomachus (60-120 AD).

	2	3	4	5	6	7	8	9	10
		3	4	<u> </u>	U	1	0	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Idea of a Sieve Method

Given

- **1** a finite integer set $A \subset \mathbb{Z}$,
- \bigcirc a set of primes \mathcal{P} ,
- \odot an integer z > 1.

We remove elements from A that are divisible by primes $p \in \mathcal{P}$ with $p \leq z$.

This is called *sifting* A by P.

Define

$$P(z) = \prod_{\substack{p \in \mathcal{P} \\ p < z}} p,$$

then we say P sifts out $n \in A$ if gcd(n, P(z)) > 1.

The leftover after ${\mathcal A}$ is sifted by ${\mathcal P}$ is the set

$$S(\mathcal{A}, \mathcal{P}, z) = |\{a \in \mathcal{A} : (a, P(z)) = 1\}|$$

Sieve Formulation

Sieve of Eratosthene's: $\mathcal{A}=\{1,2,3,...,N\}$, $\mathcal{P}=\{\text{all primes}\}$ and $z=[N^{1/2}+1]$. Then we observe

$$S(\mathcal{A}, \mathcal{P}, z) = \sum_{\substack{a \in \mathcal{A} \\ (a, P(z)) = 1}} 1$$

$$= 1 + \sum_{\substack{1 < n \le N^{1/2} \\ (n, P(z)) = 1}} 1 + \sum_{\substack{N^{1/2} < n \le N \\ (n, P(z)) = 1}} 1$$

$$= 1 + \pi(N) - \pi(N^{1/2}).$$

Recall the Mobius function

$$\mu(\textit{m}) = \begin{cases} 0, & \text{if } \textit{m} \text{ not square-free}, \\ 1, & \text{if } \textit{m} \text{ square-free with even number of prime factors,}, \\ -1, & \text{if } \textit{m} \text{ square-free with odd number of prime factors.} \end{cases}$$

Lemma

If $f:[1,\infty) o \mathbb{R}$ is multiplicative and f(1)=1 then

$$\sum_{d|n} \mu(d)f(d) = \prod_{p|n} (1 - f(p)).$$

With
$$\mathcal{A}=\{1,2,3,...,N\}$$
, $\mathcal{P}=\{\text{all primes}\}$,
$$S(\mathcal{A},\mathcal{P},z)=\sum_{\substack{a\in\mathcal{A}\\(a,P(z))=1}}1$$

$$=\sum_{a\in\mathcal{A}}\sum_{\substack{d|a\\d|P(z)}}\mu(d)$$

$$=\sum_{a\in\mathcal{A}}\sum_{\substack{d|a\\d|P(z)}}\mu(d)$$

$$=\sum_{\substack{d|P(z)}}\mu(d)\Big[\sum_{\substack{a\in\mathcal{A}\\d|a}}1\Big]$$

$$=\sum_{\substack{d|P(z)}}\mu(d)|\mathcal{A}_d|, \text{ where } \mathcal{A}_d=\{a\in\mathcal{A}:d|a\}.$$

In our case,
$$|\mathcal{A}_d|=[N/d]=N/d-\{N/d\}$$
. Then
$$S(\mathcal{A},\mathcal{P},z)=\sum_{d|P(z)}\mu(d)|\mathcal{A}_d|$$

$$=\sum_{d|P(z)}\mu(d)(N/d-\{N/d\})$$

$$=N\sum_{d|P(z)}\frac{\mu(d)}{d}-\sum_{d|P(z)}\mu(d)\{N/d\}.$$

Our lemma with f(x) = 1/x tells us

$$\sum_{d|P(z)} \frac{\mu(d)}{d} = \prod_{p|P(z)} \left(1 - \frac{1}{p}\right)$$

Then

$$S(A, P, z) = N \prod_{p|P(z)} \left(1 - \frac{1}{p}\right) + R,$$

with

$$R = -\sum_{d|P(z)} \mu(d) \{ N/d \} = \sum_{d|P(z)} \mathcal{O}(1) = \mathcal{O}(2^{\pi(z)}).$$

Set $z = \log N$, then

$$2^{\pi(z)} = 2^{\pi(\log N)} \le 2^{\log N} = e^{\log N \log 2} = N^{\log 2}.$$

Then
$$R = \mathcal{O}(2^{\pi(z)}) = \mathcal{O}(N^{\log 2})$$
.

Notice

$$S(A, P, z) \ge 1 + \pi(N) - \pi(z) \ge \pi(N) - z.$$

Then

$$\pi(N) \le z + S(\mathcal{A}, \mathcal{P}, z)$$

$$= \log N + N \prod_{p \mid P(z)} \left(1 - \frac{1}{p} \right) + \mathcal{O}(N^{\log 2})$$

$$= N \prod_{p \mid P(z)} \left(1 - \frac{1}{p} \right) + \mathcal{O}(N^{\log 2}).$$

Lastly,

$$\prod_{p|P(z)} \left(1 - \frac{1}{p}\right)^{-1} = \prod_{p < z} \left(1 - \frac{1}{p}\right)^{-1}$$

$$= \prod_{p < z} \sum_{m \ge 0} \frac{1}{p^m}$$

$$> \sum_{n < z} \frac{1}{n}$$

$$> \int_1^z \frac{1}{x} dx$$

$$= \log z.$$

Finally,

$$\prod_{p \mid P(z)} \left(1 - \frac{1}{p}\right) < \frac{1}{\log z} = \frac{1}{\log \log N}.$$

Thus

$$\pi(N) = N \prod_{p \mid P(z)} \left(1 - \frac{1}{p} \right) + \mathcal{O}(N^{\log 2}) < \frac{N}{\log \log N} + \mathcal{O}(N^{\log 2}).$$