Weighted Model Counting with Conditional Weights for Bayesian Networks

Paulius Dilkas

27th November 2020

Boolean Algebras and Propositional Logic

Let $U = \{a, b\}$. Then 2^{2^U} is a Boolean algebra with the following Hasse diagram $(x \le y \text{ if } x \subseteq y \text{ or, equivalently, } x = x \land y)$.

- ▶ A measure is a function μ : $2^{2^U} \to \mathbb{R}_{\geq 0}$ such that:
 - $\qquad \mu(\bot) = 0;$
 - $\mu(x \lor y) = \mu(x) + \mu(y)$ whenever $x \land y = \bot$.

- ▶ A measure is a function $\mu: 2^{2^U} \to \mathbb{R}_{\geq 0}$ such that:
 - \blacktriangleright $\mu(\bot)=0$;
 - $\mu(x \vee y) = \mu(x) + \mu(y)$ whenever $x \wedge y = \bot$.
- ▶ A weight function is any function $\nu: 2^U \to \mathbb{R}_{\geq 0}$.

- ▶ A measure is a function $\mu: 2^{2^U} \to \mathbb{R}_{\geq 0}$ such that:
 - \blacktriangleright $\mu(\bot)=0$;
 - $\mu(x \vee y) = \mu(x) + \mu(y)$ whenever $x \wedge y = \bot$.
- ▶ A weight function is any function $\nu: 2^U \to \mathbb{R}_{\geq 0}$.
 - It is factored if

$$\nu = \prod_{\mathsf{x} \in U} \nu_\mathsf{x}$$

for some functions $\nu_x \colon 2^{\{x\}} \to \mathbb{R}_{>0}$, $x \in U$.

- ▶ A measure is a function $\mu: 2^{2^U} \to \mathbb{R}_{\geq 0}$ such that:

 - $\mu(x \vee y) = \mu(x) + \mu(y)$ whenever $x \wedge y = \bot$.
- ▶ A weight function is any function $\nu: 2^U \to \mathbb{R}_{\geq 0}$.
 - ► It is factored if

$$\nu = \prod_{\mathsf{x} \in U} \nu_\mathsf{x}$$

for some functions $\nu_x \colon 2^{\{x\}} \to \mathbb{R}_{\geq 0}$, $x \in U$.

 \blacktriangleright We say that ν induces μ if

$$\mu(x) = \sum_{\{u\} \le x} \nu(u)$$

for all $x \in 2^{2^U}$.

- ▶ A measure is a function $\mu: 2^{2^U} \to \mathbb{R}_{\geq 0}$ such that:
 - \blacktriangleright $\mu(\bot)=0$;
 - $\mu(x \vee y) = \mu(x) + \mu(y)$ whenever $x \wedge y = \bot$.
- ▶ A weight function is any function $\nu: 2^U \to \mathbb{R}_{\geq 0}$.
 - It is factored if

$$\nu = \prod_{\mathsf{x} \in U} \nu_\mathsf{x}$$

for some functions $\nu_x \colon 2^{\{x\}} \to \mathbb{R}_{>0}$, $x \in U$.

 \blacktriangleright We say that ν induces μ if

$$\mu(x) = \sum_{\{u\} \le x} \nu(u)$$

for all $x \in 2^{2^U}$.

A measure μ is factorable if there exists a factored weight function ν that induces μ .

WMC as a Measure on a Boolean Algebra

▶ Weighted model count (WMC) of a theory Δ , i.e.,

$$\mathrm{WMC}(\Delta) = \sum_{\omega \models \Delta} \prod_{\omega \models I} w(I)$$

computes $\mu(x)$ for some $x \in 2^{2^U}$.

WMC as a Measure on a Boolean Algebra

▶ Weighted model count (WMC) of a theory Δ , i.e.,

$$\mathrm{WMC}(\Delta) = \sum_{\omega \models \Delta} \prod_{\omega \models I} w(I)$$

computes $\mu(x)$ for some $x \in 2^{2^U}$.

- ► WMC with weights on literals can only compute factorable measures (c.f. independent probability distributions).
- Traditional workaround: expanding the Boolean algebra.

WMC as a Measure on a Boolean Algebra

▶ Weighted model count (WMC) of a theory Δ , i.e.,

$$\mathrm{WMC}(\Delta) = \sum_{\omega \models \Delta} \prod_{\omega \models I} w(I)$$

computes $\mu(x)$ for some $x \in 2^{2^U}$.

- ► WMC with weights on literals can only compute factorable measures (c.f. independent probability distributions).
- Traditional workaround: expanding the Boolean algebra.
 - ▶ But we don't need to do that!
 - ► Instead, we can use conditional weight functions in the spirit of conditional probabilities.
 - Intuition: $Pr(a, b) = Pr(a) Pr(b \mid a)$ instead of Pr(a, b) = Pr(a) Pr(b) (when appropriate).

Example: Encoding Bayesian Networks

Figure: A Bayesian network with its conditional probability tables

Example: Encoding Bayesian Networks

Figure: A Bayesian network with its conditional probability tables

Let $U = \{\lambda_{A=1}, \lambda_{B=1}\}$. The weight function $\nu \colon 2^U \to \mathbb{R}_{\geq 0}$ for this network can be defined as $\nu \coloneqq \nu_A \cdot \nu_B$, where $\nu_A = 0.5$, and

$$\begin{aligned} \nu_B &= 0.6[\lambda_{B=1}] \cdot [\lambda_{A=1}] + 0.4 \overline{[\lambda_{B=1}]} \cdot [\lambda_{A=1}] \\ &+ 0.1[\lambda_{B=1}] \cdot \overline{[\lambda_{A=1}]} + 0.9 \overline{[\lambda_{B=1}]} \cdot \overline{[\lambda_{A=1}]}. \end{aligned}$$

Experimental Results

