Experiments

TABLE II: Performance comparison. ΔH and ΔS are the relative improvements (%) of CRIS over HGN and SML, respectively, with the statistical significance p < 0.001 computed using the paired t-test.

Recommendation Performance Analysis-Performance Comparison with Baseline Methods

Dataset	Metric	BPR	CML	SML	NTF	Caser	SASRec	TiSASRec	HGN	CRIS ^{reg}	$CRIS^{wt.}$	CRIS	Δ_H	Δ_S
Tools	H@10	0.3314	0.3649	0.3740	0.3449	0.3301	0.3044	0.3264	0.3605	0.3804	0.3953	0.4047	12.3	8.2
	N@10	0.1818	0.2009	0.2016	0.1951	0.1858	0.1660	0.1795	0.2061	0.2118	0.2190	0.2276	10.4	12.9
Toys	H@10	0.3586	0.3881	0.3906	0.3496	0.3426	0.3352	0.3352	0.3848	0.4275	0.4586	0.4602	19.6	17.8
	N@10	0.2155	0.2306	0.2343	0.197	0.1924	0.1870	0.1831	0.2269	0.2561	0.2656	0.2726	20.1	16.3
Cell Phones	H@10 N@10	0.4278 0.2675	0.4547 0.2825	0.4709 0.2901	$\frac{0.5315}{0.3190}$	0.4711 0.2899	0.4659 0.2790	0.4793 0.2930	0.4763 0.3037	0.5300 0.3203	0.4620 0.2863	0.5642 0.3416	18.5 12.5	19.8 17.8
Clothing	H@10 N@10	0.3657 0.2149	0.4073 0.2437	$\frac{0.4121}{0.2443}$	0.3809 0.2117	0.3443 0.1990	0.3421 0.1959	0.3340 0.1878	0.3912 0.2339	0.4254 0.2511	0.4016 0.2394	0.4473 0.2652	14.3 13.4	8.5 8.6
Sports	H@10 N@10	0.4458 0.2637	0.4909 <u>0.2891</u>	$\frac{0.4914}{0.2887}$	0.4256 0.2433	0.4366 0.2566	0.4250 0.2469	0.4216 0.2430	0.4659 0.2823	0.4877 0.2853	0.4857 0.2878	0.5171 0.3056	11.0 8.3	5.2 5.9
Health	H@10	0.4239	0.4713	0.4746	0.4431	0.4336	0.4272	0.4396	0.4586	0.4804	0.4728	0.4985	8.7	5.0
	N@10	0.2501	0.2843	0.2835	0.2717	0.2639	0.2487	0.2632	<u>0.2972</u>	0.2972	0.2825	0.3056	2.8	7.8
Kindle	H@10 N@10	0.7136 0.4672	$\frac{0.7235}{0.4829}$	$\frac{0.7235}{0.4834}$	0.5945 0.3541	0.6403 0.4019	0.6082 0.3748	0.6497 0.4141	0.7083 0.4759	0.7603 0.5171	0.7214 0.4805	0.7871 0.5462	11.1 14.8	8.8 13.0
CDs	H@10	0.6959	0.7104	0.7046	0.6426	0.5815	0.5826	0.6107	0.6591	0.7189	0.6727	0.7389	12.1	4.9
	N@10	0.4470	0.4610	0.4585	0.4003	0.3513	0.3563	0.3764	0.4289	0.4782	0.4404	0.4931	15.0	7.5
Movies	H@10	0.6938	0.7024	0.7020	0.6785	0.6421	0.6597	0.6553	0.6771	0.7056	0.6951	0.7250	7.1	3.3
	N@10	0.4504	0.4543	0.4544	0.4428	0.4111	0.4234	0.4244	<u>0.4549</u>	0.4582	0.4570	0.4686	3.0	3.1
Yelp	H@10 N@10	0.8715 0.6031	0.8853 0.6305	$\frac{0.8857}{0.6294}$	0.8348 0.5578	0.8052 0.5146	0.8383 0.5503	0.8701 0.5829	0.8658 0.5969	0.8928 0.6138	0.8861 0.6300	0.9070 0.6630	4.8 11.1	2.4 5.3
GoodReads	H@10	0.7442	0.7541	0.7518	0.7243	0.6997	0.6437	0.7219	0.7381	0.7559	0.7576	0.7920	7.3	5.3
	N@10	0.5005	0.5115	0.5105	0.4906	0.4892	0.4293	0.5067	<u>0.5308</u>	0.5032	0.5144	0.5377	1.3	5.3

Experiments

Recommendation Performance Analysis-Comparison with Variants of CRIS

- Training convergence for each loss in CRIS and CRIS^{reg} along with consumption-based loss ($L=L_{C}$) that is optimized without the ISS-based loss (CML).
- We can observe that losses of CRIS converge at a lower point that those of CRIS reg , which means the prototypes are indeed helpful to reduce the conflict between L_C and L_S .

(a) Convergence comparison of CRIS, $CRIS^{reg}$, and CML.