Problem Sheet No. 5

 If block B has a leftward velocity of 1.2 m/s, determine the velocity of cylinder A

Ans. $v_A = 0.4 \text{ m/s down}$.

Figure-1

2. Determine the relationship that governs the velocities of the four cylinders. Express all velocities as positive down. How many degrees of freedom are there

Ans.
$$4v_A + 8v_B + 4v_C + v_D = 0$$

Figure -2

3. Under the action of force P, the constant acceleration of block B is 3 m/s² to the right, determine the velocity of B relative to A, the acceleration of B relative to A, and the absolute velocity of point C of the cable.

Ans. $\nu_{B/A}=0.5$ m/s, a $_{B/A}=0.75$ m/s 2 $\nu_{C}=1$ m/s, all to the right.

Figure-3

4. Neglect the diameter of the small pulley attached to body A and determine the magnitude of the total velocity of B in terms of the velocity v_A that body A has to the right. Assume that the cable between B and the pulley remains vertical and solve for a given value of x.

$$Ans.v_{B} = v_{A} \sqrt{\frac{2x^{2} + h^{2}}{x^{2} + h^{2}}}$$

Figure -4