Differentiation

Chain Rule (연쇄법칙)

소프트웨어 꼰대 강의

노기섭 교수 (kafa46@cju.ac.kr)

Course Overview

Topic	Contents
01. Orientation	Course introduction, motivations, final objectives
오리엔테이션	과정 소개, 동기부여, 최종 목표
02. Learning in deeplearning	How does the deeplearing learns knowledge from data
딥러닝 학습	어떻게 딥러닝은 데이터로부터 지식을 배우는가?
03. Principle of differentiation	Basics of differentiation (concepts, notation, operations)
미분의 원리	미분 기본지식 (개념, 표기, 연산)
04. Partial differentiation	Concept & operation of partial differenciation
편미분	편미분 개념, 연산
05. Gradient descent	Concept, interpretation and learning in gradient descent
경사 하강법	경사하강 알고리즘 개념, 해석 및 학습
06. Chain rule	Concept & operation of chain rule
연쇄법칙	연쇄법칙 개념 및 연산
07. Matrix differentiation	Partial differentiation in linear system
행렬미분	선형시스템에서의 편미분
08. Back propagation	The mechanism of back propagation
역전파 학습	역전파 학습의 작동 방법
09. Gradient vanishing 기울기 소실	Quick overview on activation function, cause root of gradient vanishing and its counter-measure 활성함수 간단 소개, 기울기 소실 근본원인과 대책

딥러닝에서의 Chain Rule

머리가 띵~~~ 해지는 수식이 등장합니다.

사실, 편미분을 안다면 매우 간단한 계산입니다.

사실... 여러분이 직접 계산할 일은 없습니다. 컴퓨터(프레임워크, 예: Pytorch, Tensorflow 등)가 해줍니다.

Chain Rule이 어떻게 쓰이는지 이해하는 것이 중요합니다 ^^.

합성 함수의 미분

Chain Rule in Deeplearning (1/4) → 손가락으로 해보는 미분

$$w_{22}^{(k+1)} \rightarrow 0$$
 값을 업데이트 하려면?

$$L(\theta)$$
를 $w_{22}^{(k+1)}$ 에 대하여 편미분 해본다.

$$\frac{\partial L(\theta)}{\partial w_{22}^{(k+1)}} = \frac{\partial L(\theta)}{\partial \hat{y}_2} \cdot \frac{\partial \hat{y}_2}{\partial w_{22}^{(k+1)}}$$

Chain Rule in Deeplearning (2/4): $\frac{\partial L(\theta)}{\partial \hat{y}_2}$ 손으로 구해보기

Chain Rule in Deeplearning (3/4): $\frac{\partial \hat{y}_2}{\partial w_{22}^{(k+1)}}$ 손으로 구해보기

$$\frac{\partial \hat{y}_2}{\partial w_{22}^{(k+1)}} = \frac{\partial}{\partial w_{22}^{(k+1)}} h_1^k w_{12}^{(k+1)} + h_2^k w_{22}^{(k+1)} + \dots + h_r^k w_{r2}^{(k+1)} = h_2^k$$

$$h_2^k = 0.1$$
 이라고 가정하면, $\dfrac{\partial \hat{\mathcal{Y}}_2}{\partial w_{22}^{(k+1)}} = 0.1$

Chain Rule in Deeplearning (4/4): 최종 업데이트 수행

$$w_{22}^{(k+1)} o$$
 업데이트 수행
$$\frac{\partial L(\theta)}{\partial w_{22}^{(k+1)}} = \frac{\partial L(\theta)}{\partial \hat{y}_2} \cdot \frac{\partial \hat{y}_2}{\partial w_{22}^{(k+1)}}$$
$$= -1.0 \times 0.1 = -0.01$$

$$w_{22}^{(k+1)} = w_{22}^{(k+1)} - (1) \times (-0.01)$$

Chain Rule이 필요한 상황 - Simple Path

교수님~~ 좀 더 멋있게... 하고 싶어요^^

딥러닝에 적용되는 Chain Rule을 정확히 이해하기 위해서는...

2가지를 더 공부해야 합니다 ^^.

1. 선형 시스템의 미분

다음 강의에서 설명해 드릴께요^^ (7강. 행렬 미분)

2. 일괄 미분 결과를 적용한 Back-propagation

> <mark>다음다음</mark> 강의에서 설명해 드릴께요 ^^ (8강. Back-propagation)

수고하셨습니다 ..^^..