```
In [5]: %autosave 3600

Autosaving every 3600 seconds

In [1]: from datascience import *
    %matplotlib inline
    import matplotlib.pyplot as plots
    plots.style.use('fivethirtyeight')
    import numpy as np
```

Lecture 24

```
In [2]:
  births = Table.read_table('baby.csv')
  births
```

Out[2]:	Birth Weight	Gestational Days	Maternal Age	Maternal Height	Maternal Pregnancy Weight	Maternal Smoker
	120	284	27	62	100	False
	113	282	33	64	135	False
	128	279	28	64	115	T _{rue}
	108	282	23	67	125	True
	136	286	25	62	93	False
	138	244	33	62	178	False
	132	245	23	65	140	False
	120	289	25	62	125	False
	143	299	30	66	136	True
	140	351	27	68	120	False

... (1164 rows omitted)

```
In [3]:
babies = births.select('Birth Weight', 'Gestational Days')
babies
```

Out[3]:	Birth Weight	Gestational Days
	120	284
	113	282
	128	279
	108	282
	136	286
	138	244
	132	245
	120	289
	143	299
	140	351

... (1164 rows omitted)

```
babies = babies.with_column(
    'Weight per Day',
    babies.column('Birth Weight') / babies.column('Gestational Days'))
babies
```

Out[4]:	Birth Weight	Gestational Days	Weight per Day
	120	284	0.422535
	113	282	0.400709
	128	279	0.458781
	108	282	0.382979
	136	286	0.475524
	138	244	0.565574
	132	245	0.538776
	120	289	0.415225

Birth Weight	Gestational Days	Weight per Day
--------------	-------------------------	----------------

143	299	0.478261
140	351	0.39886

... (1164 rows omitted)

```
In [5]:
```

```
babies.hist('Weight per Day')
```



```
In [6]: percentile(50, babies.column('Weight per Day'))
```

Out[6]: 0.42907801418439717

```
In [7]: # Bootstrap for median

medians = make_array()

for i in np.arange(1000):
    resampled = babies.sample()
    median = percentile(50, resampled.column('Weight per Day'))
    medians = np.append(medians, median)
```

```
interval 95 = make array(percentile(2.5, medians), percentile(97.5, medians))
 In [8]:
          interval 95
Out[8]: array([0.42545455, 0.43262411])
 In [9]:
          Table().with column('Resampled median ratio', medians).hist()
          plots.plot(interval 95, [0, 0], color='gold', lw=8)
          print('95% Confidence Interval for Median Weight/Days ratio')
          print(interval 95)
         95% Confidence Interval for Median Weight/Days ratio
         [0.42545455 0.43262411]
             30000
             25000
         Percent per unit
             20000
             15000
             10000
              5000
                  0
                        0.424 0.426 0.428 0.430 0.432 0.434 0.436
                                Resampled median ratio
In [10]:
          interval 80 = make array(percentile(10, medians), percentile(90, medians))
          interval 80
Out[10]: array([0.42708333, 0.43060498])
In [11]:
          Table().with column('Resampled Median', medians).hist()
          plots.plot(interval 80, [0, 0], color='gold', lw=8)
          print('80% Confidence interval for median weight/days ratio in population:')
          print(np.round(interval 80, 3))
```

80% Confidence interval for median weight/days ratio in population:

In [12]: births

Maternal Smoker	Maternal Pregnancy Weight	Maternal Height	Maternal Age	Gestational Days	Birth Weight	Out[12]:
False	100	62	27	284	120	
False	135	64	33	282	113	
T _{rue}	115	64	28	279	128	
T _{rue}	125	67	23	282	108	
False	93	62	25	286	136	
False	178	62	33	244	138	
False	140	65	23	245	132	
False	125	62	25	289	120	
T _{rue}	136	66	30	299	143	
False	120	68	27	351	140	

... (1164 rows omitted)

```
In [13]: | births.hist('Maternal Age')
```

```
In [14]:
          np.mean(births.column('Maternal Age'))
         27.228279386712096
Out[14]:
In [15]:
          # Bootstrap for mean
          means = make_array()
          for i in np.arange(1000):
              resampled = births.sample()
              mean = np.mean(resampled.column('Maternal Age'))
              means = np.append(means, mean)
In [16]:
          interval_95 = make_array(percentile(2.5, means), percentile(97.5, means))
          interval 95
Out[16]: array([26.88415673, 27.57325383])
In [17]:
          Table().with_column('Resampled mean age', means).hist()
           plots.plot(interval_95, [0, 0], color='gold', lw=8)
```

```
print('95% Confidence Interval for Mean Age')
print(interval_95)
```


In []:

In []: