Solvency II

Un caso applicato: il property risk.

Fabio Lucidi

Università Ca' Foscari Venezia

24 febbraio 2012

Solvency II

Cos'è Solvency II?

Solvency II è il progetto comunitario di armonizzazione delle diverse normative nazionali in materia assicurativa.

Come si sviluppa Solvency II?

- Primo pilastro: criteri di valutazione e SCR
- Secondo pilastro: Corporate Governance, RM, ORSA, IA, SRP
- Terzo pilastro: Public Disclosure e Supervisory Reporting

Quando arriverà Solvency II?

Solvency II

Nuovi criteri di valutazione e Solvency Capital Requirement

Alcune novità introdotte

- Differenziazione dei rischi
 - 1 Hedgeable
 - 2 Non Hedgeable
- Nuovi Criteri
 - Risk Margin
 - 2 Best Estimate
- Prudent Person Principle
- Solvency Capital Requirement
 - Approccio modulare
 - 2 VaR, 1y, 99.5%
 - 6 Elementi di Risk mitigation

Property Risk

La classe dei rischi di mercato

Perché le assicurazioni sono esposte ai rischi di mercato?

Perché investono gli attivi a copertura – e con certi limiti patrimonio – in una gamma diversificata di attività. Il rischio di mercato nasce dalla volatilità dei prezzi di mercato degli strumenti finanziari in cui investono.

Quali sono i rischi di mercato?

Solvency II divide i rischi di mercato in sei aree:

Forex, Property, Interest, Equity, Spread e Concentration.

Cos'è il Property Risk?

«The sensitivity of the values of assets, liabilities and financial instruments to changes in the level or in the volatility of market prices of real estate.»

Property Risk

Principali aspetti valutativi

Quali grandezze coinvolge il property risk?

Immobili, terreni, diritti su immobili e – voce principale per volume – società e investimenti immobiliari.

L'approccio di Solvency II

Solvency II tratta il property risk con il cosiddetto Δ -Nav Approach*, cioè simulando uno shock – ad oggi – del 25% sul valore di riferimento (il Net Asset Value), o, analiticamente:

$$Mkt_{property} = max(\Delta NAV|_{25\%}, 0).$$

* il net asset value è la differenza fra attività e passività.

Il valore degli immobili

Il processo di formazione del valore

Cosa determina il valore di un immobile?

- ⇒ II mercato
- ⇒ Il rendimento atteso
- ⇒ I canoni di locazione
- ⇒ Variabili specifiche

Il valore degli immobili

Come elaborare le variabili principali?

Metodo dei discounted cash flows: può elaborare agevolmente le stime sull'andamento del mercato, sui canoni di locazione, sui rendimenti attesi e su altre variabili.

Principali caratteristiche

- + Duttile: si adatta a qualunque tipo di immobile
- + Componibile: con poche modifiche può comprendere molte variabili
- + Semplice: non richiede calcoli o interpretazioni complesse
- Dati in input: la precisione delle stime determina la qualità del risultato

Il valore degli immobili

Il modello DCF e il real estate: il modello utilizzato

Com'è costruito il modello dell'analisi?

Al modello DCF standard sono state aggiunte delle variabili: il vacancy rate (VR), l'interleasse discount rate (IDR), la variazione dei flussi di cassa (ΔCF). Il periodo considerato – com'è prassi – è di dieci anni.

$$V = \sum_{t=1}^{m} \frac{E_0[CF_1]}{(1 + E_0[r])^t} + \left(\frac{1}{(1 + E_0[i])^m}\right) \cdot \left(\sum_{t=1}^{n-1} \frac{E_0[CF_1]}{(1 + E_0[r])^1}\right) + \frac{E_0CF_n}{(1 + E_0[i])^n}$$

Dove:

$$E_0[CF_n] = E_0[RL_n \cdot (1 - VR_n) \cdot (1 - \Delta CF_n)]$$

$$E_0[i] \ge E_0[r], \forall t$$

L'input: i dati utilizzati

Ricerca e sistematizzazione dei dati del portafoglio

Data Source

- Scenari Immobiliari
- IPD
- Banca d'Italia & MEF

Data Kind

- ⇒ Prezzi e canoni
- ⇒ Vacancy Rates
- ⇒ Tassi (OCC e IDR)

Composizione Portafoglio

Venti immobili dislocati equamente fra Roma, Milano, Torino, Bologna e Padova. Per ipotesi ogni immobile comprende al suo interno venticinque uffici (dato medio).

La sistematizzazione

Preferendo lavorare per matrici, per ogni immobile è stato creato un semplice file di testo in cui rientrano tutti i valori delle variabili coinvolte.

Sensitività del portafoglio

Obiettivo

Quantificare la variazione di valore del portafoglio, calcolato secondo il modello DCF, rispetto alla variazione simulata indotta sulla variabile in analisi.

Ipotesi

Lo scenario di mercato utilizza ΔCF , IDR e VR nulli, ed un OCC pari alla media degli OCC osservata sul mercato (4.875%).

Shock simulati sullo SM

- Δ CF: \pm 25% (5%)
- IDR: + 8% (1%)
- VR: + 7% (1%)
- OCC: [-3%, +8%] (1%)

Reazione DCF in WCS

- \Rightarrow lineare ($\pm 25\%$)
- ⇒ decrescente (-25%)
- \Rightarrow lineare (-3.85%)
- \Rightarrow decrescente (-8%)

I risultati dell'analisi

Quali sono i driver del portafoglio?

Quali sono le variabili più influenti?

- 1 L'IDR, poiché sconta a tassi maggiori i flussi maggiori
- 2 L'OCC, per maggiori tassi di rendimento
- 3 Il VR, poiché agisce in pieno sul numeratore

Attenzione!!!

Il ΔCF analiticamente si comporta come il VR, ma è una variabile indipendente per ogni singolo immobile, al contrario il VR è un dato desumibile dal mercato: per questo motivo sarà tralasciato.

Analisi multivariata

Quali variabili muovere?

Obiettivo

Verificare il comportamento del portafoglio in scenari estremi e verificare se, in uno scenario di mercato, il coefficiente di shock del 25% ipotizzato in Solvency II sia verosimile.

Metodo

Simulare variazioni congiunte sulle variabili ritenute di interesse. Nella valutazione svolta sono il VR OCC. L'IDR è tenuto costantemente a 50bp sopra l'OCC.

Analisi multivariata

Scenari e risultati

Ipotesi

La costruzione degli scenari (in teoria infiniti) si è basata sull'analisi di alcuni driver che impattano su VR e OCC. Da quest'analisi si è ipotizzato uno spostamento di uguale segno e valore.

Magnitudo

$$da - 250bp$$

$$a + 250bp$$

Reazione DCF in WCS

$$\Rightarrow$$
 + 22%

$$\Rightarrow$$
 - 17.39%

E il 25% ipotizzato da Solvency II?

Si ottiene, per esempio, con un VR del 10.45%, un OCC del 9.83% e un IDR del 10.33%!

Il 25% è la soglia corretta?

Criticità della soglia scelta

- Eccessiva: con tassi al 9.5% fallisce il Paese, oltre alle IA
- Generica: è uguale per tutti i tipi di immobile
- Non basata su scenari: non si spiega cosa porta allo shock del 25%
- Unica: il mercato immobiliare è diverso in ogni area dell'UE

Perché un coefficiente così distorto?

Errore di campionatura. La soglia è stata creata sulla base di indici del solo mercato UK che è fra i più singolari dell'intera UE. Si pensi che l'IPD sull'area di Londra è costretta a sviluppare due indici solo per gli uffici, distinguendo fra quelli nella City e gli altri, evento unico negli indici sull'UE.