Los conceptos del Cálculo Integral

1.3. Funciones. Definición formal como conjunto de pares ordenados

En cálculo elemental tiene interés considerar en primer lugar, aquellas funciones en las que el dominio y el recorrido son conjuntos de números reales. Estas funciones se llaman **Funciones de variable real** o funciones reales.

Definición 1.1 (Par ordenado) Dos pares ordenados (a,b) y (c,d) son iguales si y sólo si sus primeros elementos son iguales y sus segundos elementos son iguales.

$$(a,b) = (c,d)$$
 si y sólo si $a = c$ y $b = d$

Definición 1.2 (Definición de función) Una función f es un conjunto de pares ordenados (x, y) ninguno de los cuales tiene el mismo primero elemento.

Debe cumplir las siquientes condiciones de existencia y unicidad:

- (i) $\forall x \in D_f, \exists y/(x,y) \in f(x) \text{ ó } y = f(x)$
- (ii) $(x,y) \in f \land (x,z) \in f \Rightarrow y=z$

Definición 1.3 (Dominio y recorrido) Si f es una función, el conjunto de todos los elementos x que aparecen como primeros elementos de pares (x,y) de f se llama el **dominio** de f. El conjunto de los segundos elementos y se denomina **recorrido** de f, o conjunto de valores de f.

TEOREMA 1.1 Dos funciones f y g son iguales si y sólo si

- (a) f y g tienen el mismo dominio, y
- **(b)** f(x) = g(x) para todo x del dominio de f.

Demostración.- Sea f función tal que $x \in D_f$, $\exists y \mid y = f(x)$ es decir (x, f(x)), g una función talque $\forall z \in D_g$, $\exists y \mid y = g(z)$ es decir (z, g(z)), entonces por definición de par ordenado tenemos que (x, f(x)) = (z, g(z)) si y sólo si x = z y f(x) = g(z) Definición 1.4 (Sumas, productos y cocientes de funciones) Sean f y g dos funciones reales que tienen el mismo dominio D. Se puede construir nuevas funciones a partir de f y g por adición, multiplicación o división de sus valores. La función u definida por,

$$u(x) = f(x) + g(x) \ si \ x \in D$$

se denomina suma de f y g, se representa por f+g. Del mismo modo, el producto v=fcdotg y el cociente w=f/g están definidos por las fórmulas

$$v(x) = f(x)g(x)$$
 si $x \in D$, $w(x) = f(x)/g(x)$ si $x \in D$ y $g(x) \neq 0$

1.5. Ejercicios

- **1.** Sea f(x) = x + 1 para todo real x. Calcular:
 - f(2) = 2 + 1 = 3
 - f(-2) = -2 + 1 = -1
 - -f(2) = -(2+1) = -3
 - $f\left(\frac{1}{2}\right) = \frac{1}{2} + 1 = \frac{3}{2}$
 - $\frac{1}{f(2)} = \frac{1}{3}$
 - f(a+b) = a+b+1
 - f(a) + f(b) = (a+1) + (b+1) = a+b+2
 - $f(a) \cdot f(b) = (a+1)(b+1) = ab+a+b+1$
- **2.** Sean f(x) = 1 + x y g(x) = 1 x para todo real x. calcular:
 - f(2) + g(2) = (1+2) + (1-2) = 2
 - f(2) g(2) = (1+2) (1-2) = 4
 - $f(2) \cdot g(2) = (1+2) \cdot (1-2) = 3 \cdot (-1) = -3$

$$f(2) = \frac{1+2}{g(2)} = \frac{3}{1-2} = -3$$

•
$$f[g(2)] = f(1-2) = f(-1) = 1 + (-1) = 0$$

$$g[f(2)] = f(1+2) = g(3) = 1-3 = -2$$

•
$$f(a) + g(-a) = (1+a) + (1-a) = 2$$

$$f(t) \cdot g(-t) = (1+t) \cdot (1+t) = 1+t+t+t^2 = t^2+2t+1 = (t+1)^2$$

3. Sea f(x) = |x-3| + |x-1| para todo real x. Calcular:

$$f(0) = |0-3| + |0-1| = 3+1=4$$

$$f(1) = |1-3| + |1-1| = 2$$

$$f(2) = |2-3| + |2-1| = -1 + 1 = 2$$

$$f(3) = |3-3| + |3-1| = 2$$

$$f(-1) = |-1-3| + |-1-1| = 4+2=6$$

$$f(-2) = |-2-3| + |-2-1| = 5+3 = 8$$

Determinar todos los valores de t para los que f(t+2) = f(t)

$$\begin{array}{rcl} |t+2-3|+|t+2-1| & = & |t-3|+|t-1| \\ |t-1|+|t+1| & = & |t-3|+|t-1| \\ |t+1| & = & t-3 \end{array}$$

Por lo tanto t=1

4. Sea $f(x) = x^2$ para todo real x. Calcular cada una de las fórmulas siguientes. En cada caso precisar los conjuntos de números erales x, y t, etc., para los que la fórmula dada es válida.

(a)
$$f(-x) = f(x)$$

Demostración.- Se tiene $f(-x) = (-x)^2 = x^2 = f(x) \ \forall x \in \mathbb{R}$

(b)
$$f(y) - f(x) = (y - x)(y + x)$$

Demostración.- $f(y) - f(x) = y^2 - x^2 = (x - y)(x + y), \ \forall x, y \in \mathbb{R}$

(c)
$$f(x+h) - f(x) = 2xh + h^2$$

Demostración.- $f(x+h) - f(x) = (x+h)^2 - x^2 = x^2 + 2xh + h^2 - x^2 = 2xh + h^2, \ \forall x \in \mathbb{R}$

(d)
$$f(2y) = 4f(y)$$

Demostración.-
$$f(2y) = (2y)^2 = 4y^2 = 4f(y), \forall y \in \mathbb{R}$$

(e)
$$f(t^2) = f(t)^2$$

Demostración.-
$$f(t^2) = (t^2)^2 = f(t)^2$$

(f)
$$\sqrt{f(a)} = |a|$$

Demostración.-
$$\sqrt{f(a)} = \sqrt{a^2} = |a|$$

5. Sea $g(x) = \sqrt{4 - x^2}$ para $|x| \le 2$. Comprobar cada una de las fórmulas siguientes e indicar para qué valores de x, y, s y t son válidas.

(a)
$$g(-x) = g(x)$$

Se tiene
$$g(-x) = \sqrt{2 - (-x)^2} = \sqrt{2 - (x)^2} = g(x)$$
, para $|x| \le 2$

(b)
$$g(2y) = 2\sqrt{1-y^2}$$

$$g(2y) = \sqrt{4-(2y)^2} = \sqrt{4(1-y^2)} = 2\sqrt{1-y^2}, \quad para \ |y| \le 1$$
 Se obtiene $|y| \le 1$ de $\sqrt{1-y^2}$ es decir $1-y^2 \ge 0$ entonces $\sqrt{y^2} \le \sqrt{1}$ y $|y| \le 1$

(c)
$$g\left(\frac{1}{t}\right) = \frac{\sqrt{4t^2 - 1}}{|t|}$$

 $g\left(\frac{1}{t}\right) = \sqrt{4 - \left(\frac{1}{t}\right)^2} = \sqrt{\frac{4t^2 - 1}{t^2}} = \frac{\sqrt{4t^2 - 1}}{|t|}, para |t| \ge \frac{1}{2}$

Para hallar los valores correspondientes debemos analizar $\sqrt{4t^2-1}$. Es decir

$$4t^2 - 1 \ge 0 \Rightarrow 4t^2 \ge 1 \Rightarrow t^2 \ge \frac{1}{2^2} \Rightarrow |t| \ge \frac{1}{2}$$

(d)
$$g(a-2) = \sqrt{4a-a^2}$$

$$g(a-2) = \sqrt{4-x^2} = \sqrt{4-(a-2)^2} = \sqrt{4a-a^2}$$
, para $0 \le a \le 4$. Basta probar $4a-a^2 \ge 0$

(e)
$$g\left(\frac{s}{2}\right) = \frac{1}{2}\sqrt{16 - s^2}$$

$$s\left(\frac{s}{2}\right) = \sqrt{4 - \left(\frac{s}{2}\right)^2} = \frac{\sqrt{16 - s^2}}{2}$$
, $para |s| \le 4$. ya que solo basta comprobar que $\sqrt{16 - s^2} \ge 0$

(f)
$$\frac{1}{2+g(x)} = \frac{2-g(x)}{x^2}$$

$$\frac{1}{2+g(x)} = \frac{1}{2+\sqrt{4-x^2}} \cdot \frac{2-\sqrt{4-x^2}}{2-\sqrt{4-x^2}} = \frac{2-g(x)}{x^2} \; para \; \; |x| \leq 2 \; y \; x \neq 0$$

Evaluemos $\sqrt{4-x^2}$. Sea $4-x^2 \ge 0$ entonce $\sqrt{x^2} \le 2$. Por otro lado tenemos que la función no puede ser 0 por $\frac{1}{x^2}$, por lo tanto debe ser $x^2 \ne 0$.

- **6.** Sea f la función definida como sigue: f(x) = 1 para $0 \le x \le 1$; f(x) = 2 para $1 < x \le 2$. La función no está definida si x < 0 ó si x > 2.
 - (a) Trazar la gráfica de f

(b) Poner g(x) = f(2x). Describir el dominio de g y dibujar su gráfica.

Debido a que $1 \le 2x \le 1$ y $1 < 2x \le 2$ el dominio de g(x) es $0 \le x \le 1$

(c) Poner h(x) = f(x-2). Describir el dominio de k y dibujar su gráfica.

Debido a que $1 \le x-2 \le 1$ y $1 < x-2 \le 2$ el dominio de h(x) es $2 \le x \le 4$

(d) Poner k(x) = f(2x) + f(x-2). Describir el dominio de k y dibujar su gráfica.

El dominio está vacío ya f(2x) que solo está definido para $0 \le x \le 1$ y f(x-2) solo está definido para $2 \le x \le 4$. Por lo tanto no hay ninguno x que satisfaga ambas condiciones.

7. Las gráficas de los dos polinomios g(x) = x y $f(x) = x^3$ se cortan en tres puntos. Dibujar una parte suficiente de sus gráficas para ver cómo se cortan.

8. Las gráficas de los dos polinomios cuadráticos $f(x) = x^2 - 2$ y $g(x) = 2x^2 + 4x + 1$ se cortan en dos puntos. Dibujar las porciones de sus gráficas comprendidas entre sus intersecciones.

- **9.** Este ejercicio desarrolla ciertas propiedades fundamentales de los polinomios. Sea $f(x) = \sum_{k=0}^{n} c_k x^k$ un polinomio de grado n. Demostrar cada uno de los siguientes apartados:
 - (a) Si $n \ge 1$ y f(0) = 0, f(x) = xg(x), siendo g un polinomio de grado n 1.

Para entender lo que nos quiere decir Apostol pongamos un ejemplo. Supongamos que tenemos un polinomio donde $f(x) = 2x^2 + 3x - x$ entonces notamos que f(x) = x(2x+3-1) donde g(x) = 2x+3-1, esto quiere decir que si $0 = f(0) = c_0 \Rightarrow c_1x + c_2x^2 + ... + c_nx^n = x(c_1 + c_2x + ... + c_nx^{n-1})$ Así que debemos demostrar que f(x) es un polinomio arbitrario de grado $n \ge 1$ tal que f(0) = 0, entonces debe haber un polinomio de grado n - 1, g(x), tal que f(x) = xg(x)

Demostración.- Sabemos que

$$f(0) = c_n \cdot 0^n + c_{n-1} \cdot 0^{n-1} + \dots + c_1 \cdot 0 + c_0 = c_0,$$

como f(0) = 0 se concluye que $c_0 = 0$. Así tenemos

$$f(x) = \sum_{k=1}^{n} c_k x^k.$$

Ahora crearemos una función g(x). Dada la función f(x) como la anterior, definamos,

$$f(x) = \sum_{k=0}^{n} c_k x^{k-1} = \sum_{k=1}^{n} c_k x^{k-1}$$

Ahora crearé una función g(x). Dada una función f(x) como la anterior, definamos

$$g(x) = \sum_{k=1}^{n} c_k x^{k-1}$$

donde c_k son los mismos que los dados por la función f(x). Primero notemos que el grado de g(x) es n-1. Finalmente, tenemos que

$$xg(x) = x \sum_{k=1}^{n} c_k x^{k-1} = \sum_{k=1}^{n} c_k x^k = f(x).$$

(b) Para cada real a, la función p dada por p(x) = f(x+a) es un polinomio de grado n.

Demostración.- Usando el teorema del binomio,

$$f(x+a) = \sum_{k=0}^{n} (x+a)^k c_k$$

$$= c_o + (x+a)c_1 + (x+a)^2 c_2 + \dots + (x+a)^n c_n$$

$$= c_o + c_1 \left(\sum_{j=0}^{1} {1 \choose j} a^j x^{1-j}\right) + c_2 \left(\sum_{j=0}^{2} {2 \choose j} a^j x^{2-j}\right) + \dots + c_n \left(\sum_{j=0}^{n} {n \choose j} a^j x^{n-j}\right)$$

$$= (c_o + ac_1 + a^2 c_2 + \dots + a^n c_n) + x(c_1 + 2ac_2 + \dots + na^{n-1} c_n)$$

$$= \sum_{k=0}^{n} \left(x^k \left(\sum_{j=k} {j \choose j-k} c_j aj - k\right)\right)$$

En la linea final reescribimos los coeficientes como sumas para verlos de manera más concisa. De cualquier manera, dado que todos los c_i son constantes, tenemos $\sum_{j=k}^{n} \binom{j}{j-k} c_j a^{j-k}$ es alguna constante para cada k, de d_k y tenemos,

$$p(x) = \sum_{k=0}^{n} d_k x^k$$

(c) Si $n \ge 1$ y f(a) = 0 para un cierto valor real a, entonces f(x) = (x-a)h(x), siendo h un polinomio de grado n-1. (considérese p(x) = f(x+a).)

Demostración.- Por la parte b) se sabe que f(x) es un polinomio de grado n, entonces p(x) = f(x+a) también es un polinomio del mismo grado. Ahora si f(a) = 0 entonces por hipótesis p(0) = f(a) = 0. Luego por la parte a), tenemos

$$p(x) = x \cdot q(x)$$

donde g(x) es un polinomio de grado n-1. Así,

$$p(x-a) = f(x) = f(x) = (x-a) \cdot q(x-a)$$

ya que p(x) = f(x + a). Pero, si g(x) es un polinomio de grado n - 1, entonces por la parte b) nuevamente, también lo es h(x) = g(x + (-a)) = g(x - a). Por lo tanto,

$$f(x) = (x - a) \cdot h(x)$$

para h un grado n-1 polinomial, según lo solicitado.

(d) Si f(x) = 0 para n + 1 valores reales de x distintos, todos los coeficientes c_k son cero y f(x) = 0 para todo real de x

Demostración.- La prueba se realizara por inducción. Sea n = 1, entonces $f(x) = c_o + c_1 x$. Dado que la hipótesis es que existen n + 1 distintos x de tal manera que f(x) = 0, sabemos que existen $a_1, a_2 \in \mathbb{R}$ tal que

$$f(a_1) = f(a_2) = 0, \quad a_1 \neq a_2,$$

Así,

$$c_0 + c_1 a_1 = 0 \Rightarrow c_1 a_1 - c_1 a_2 = 0$$

 $\Rightarrow c_1 (a_1 - a_2) = 0$
 $\Rightarrow c_1 = 0 \text{ ya que } a_1 \neq a_2$
 $\Rightarrow c_0 = 0 \text{ ya que } c_0 + c_1 a_1 = 0$

Por lo tanto, la afirmación es verdadera. Suponga que es cierto para algunos $n = k \in \mathbb{Z}^+$. Luego Sea f(x) un polinomio de grado k + 1 con k + 2 distintos de $0, a_1, ..., a_{k+2}$. ya que $f(a_{k+2}) = 0$, usando la parte c), tenemos,

$$f(x) = (x - a_{k+2})h(x)$$

donde h(x) es un polinomio de grado k. Sabemos que hay k+1 valores distintos $a_1, ... a_{k+1}$ tal que $h(a_i) = 0$. Dado que $f(a_i) = 0$ para 1 < i < k+2y y $(x-a_{k+2}) \neq 0$ para $x = a_i$ con 1 < i < k+1 ya que todos los a_1 son distintos), por lo tanto, según la hipótesis de inducción, cada coeficiente de h es 0 y h(x) = 0 para todo $x \in \mathbb{R}$. Así,

$$f(x) = (x - a_{k+2})h(x) = (x - a_{k+2}) \cdot \sum_{j=0}^{k} c_j x^j$$

$$= \sum_{j=0}^{k} (x - a_{k+2})c_j x^j$$

$$= c_k x^{k+1} + (c_{k-1} - a_k + 2c_k)x^k + \dots + (c_1 - a_{k+2}c_0)x + a_{k+2}c_0$$

Pero dado que todos los coeficientes de h(x) son cero y f(x) = 0 para todo $x \in \mathbb{R}$. Por lo tanto, la afirmación es verdadera para el caso k+1 y para todo $n \in \mathbb{Z}^+$

(e) Sea $g(x) = \sum_{k=0}^{m} b_k x^k$ un polinomio de grado m, siendo $m \ge n$. Si g(x) = f(x), para m+1 valores reales de x distintos, entonces m = n, $b_k = c_k$ para cada valor de k, y g(x) = f(x) para todo real x

Demostración.- Sea

$$p(x) = g(x) - f(x) = \sum_{k=0}^{m} b_k x^k - \sum_{k=0}^{n} c_k x^k = \sum_{k=0}^{m} (b_k - c_k) x^k$$

donde $c_k = 0$ para $n < k \le m$, cabe recordar que tenemos $m \ge n$.

Entonces, hay m+1 distintos reales x para los cuales p(x)=0. Dado que hay m+1 valores reales distintos para lo cuál g(x)=f(x), así en cada uno de estos valores p(x)=g(x)-f(x)=0. Por lo tanto, por la parte d), $b_k-c_k=0$ para k=0,...,m y p(x)=0 para todo $x \in \mathbb{R}$. Es decir

$$b_k - c_k = 0 \quad \Rightarrow \quad b_k = c_k \quad para \ k = 0, ..., m$$

у

$$p(x) = 0 \Rightarrow g(x) - f(x) = 0 \Rightarrow f(x) = g(x),$$

para todo $x \in \mathbb{R}$. Ademas desde $b_k - c_k = 0$ para k = 0, ..., m y por supuesto $c_k = 0$ para k = n + 1, ..., m, tenemos $b_k = 0$ para k = n + 1, ..., m. Pero entonces,

$$g(x) = \sum_{k=0}^{n} b_k x^k + \sum_{k=n+1}^{m} 0 \cdot x^k = \sum_{k=0}^{n} b^k x^k$$

significa que g(x) es un polinomio de grado n también.

10. En cada caso, hallar todos los polinomios p de grado ≤ 2 que satisfacen las condiciones dadas.

Sabemos que para un polinomio de grado ≤ 2 es:

$$p(x) = ax^2 + bx + c$$

para todo $a, b, c \in \mathbb{R}$.

(a)
$$p(x) = p(1-x)$$

Sea f(x) = p(x) - 1, entonces f es de grado como máximo 2 por la parte d) del problema 9 tenemos que todos los coeficientes de f son 0 y f(x) = 0 para todo $x \in \mathbb{R}$, así,

$$p(x) - 1 = 0 \implies p(x) = 1 \ \forall x \in \mathbb{R}$$

(b)
$$p(x) = p(1+x)$$

Tenemos $p(0)=1\Rightarrow c=1$ luego, $p(1)=1\Rightarrow a+b=0\Rightarrow b=-a$ y finalmente, con c=1 y b=-a, tenemos: $p(2)=2\Rightarrow 4a-2a=1\Rightarrow a=\frac{1}{2},\ b=-\frac{1}{2}$. por lo tanto

$$p(x) = \frac{1}{2}x^2 - \frac{1}{2}x + 1 = \frac{1}{2}x(x-1) + 1$$

(c)
$$p(x) = p(0) = p(1) = 1$$

Una vez mas, desde p(0) = 1 tenemos: $a + b = 0 \Rightarrow b = -a$ así, $p(x) = ax^2 - ax + 1 = ax(x - 1) + 1$

(d)
$$p(0) = p(1)$$

Simplemente sustituyendo estos valores que tenemos, $p(0) = p(1) \Rightarrow c = a + b + c \Rightarrow b = -a$ entonces,

$$p(x) = ax^2 - ax + c = ax(x - 1) + c$$

11. En cada caso, hallar todos los polinomios p de grado ≤ 2 que para todo real x satisfacen las condiciones que se dan. Como p es un polinomio de grado por lo mucho 2, podemos escribir

$$p(x) = ax^2 + bx + c$$
, $para a, b, c \in \mathbb{R}$

(a)
$$p(x) = p(1-x)$$

Sustituyendo se tiene $p(x) = p(1-x) = ax^2 + bx + c = a(1-x)^2 + b(1-x) + c \Rightarrow a - 2ax + ax^2 + b - bx + c$ por lo tanto

$$ax^{2} + (-2a - b)x + (a + b + c)$$

Así para $a=a,\,b=-2a-b\Rightarrow a=-b,\,c=a+b+c$ entonces

$$p(x) = -bx^{2} + bx + c = bx(1 - x) + c$$

(b)
$$p(x) = p(x) = p(1+x)$$

Una vez más sustituyendo, $p(x) = p(1+x) \Rightarrow ax^2 + bx + c = a(1+x)^2 + b(1+x) + c = ax^2 + (2a+b)x + (a+b+c)$. Luego, igualando como potencias de x, a = a, $b = 2a + b \Rightarrow a = 0$, $c = a + b + c \Rightarrow b = 0$. Por lo tanto p(x) = c donde c es una constante arbitraria.

(c)
$$p(2x) = 2p(x)$$

Sustituyendo, $p(2x)=2p(x)\Rightarrow 4ax^2+2bx+c=2ax^2+2bx+2c$. Igualando a las potencias de $x,\ 4a=2a\Rightarrow a=0,\ 2b=2b\Rightarrow b\ arbitrario,\ c=2c\Rightarrow c=0$. Así

$$p(x)bx$$
, b arbitrario

(d)
$$p(2x) = p(x+3)$$

Sustituyendo $p(3x) = p(x+3) \Rightarrow 9ax^2 + 3bx + c = ax^2 + (6a+b)x + (9a+3b+c)$. Igualando como potencias de x, $9a = a \Rightarrow a = 0$, $3b = 6a + b \Rightarrow b = 0$, $c = 9a + 3b + c = c \Rightarrow c$ arbitrario. Por lo tanto

$$p(x) = c$$
para c constante arbitrario.

Corolario 1.1 Probar que:

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \ parax \neq 1$$

Demostración.- Usando propiedades de suma,

$$(1-x)\sum_{k=0}^{n} x^{k} = \sum_{k=0}^{n} (x^{k} - x^{k+1}) = -\sum_{k=0}^{n} (x^{k+1} - x^{k}) = -(x^{n+1} - 1) = 1 - x^{n} + 1$$

En la penultima igualdad se deriva de la propiedad telescópica, por lo tanto nos queda,

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

Corolario 1.2 Probar la identidad

$$\prod_{k=1}^{n} \left(1 + x^{2^{k-1}} \right) = \frac{1 - x^{2^n}}{1 - x}, \ para \ x \neq 1$$

Demostración.- Para n = 1 a la izquierda tenemos,

$$\prod_{k=1}^{n} \left(1 + x^{2^{k-1}} \right) = \prod_{k=0}^{1} \left(1 + x^{2^{k-1}} = 1 + x^{2^0} = 1 + x \right)$$

Por otro lado a la derecha se tiene,

$$\frac{1-x^{2^n}}{1-x} = \frac{1-x^2}{1-x} = \frac{(1-x)(1+x)}{1-x} = 1+x$$

Concluimos que la identidad se mantiene para n=1. Ahora supongamos que es válido para algunos $n=m\in\mathbb{Z}^+$,

$$\prod_{k=1}^{m+1} = (+x^{2^m}) \cdot \prod_{k=1}^{m} (1+x^{2^{k+1}})$$

$$= (1+x^{2^m}) \cdot (\frac{1-x^{2^m}}{1-x})$$

$$= \frac{(1+x^{2^m})(1-x^{2^m})}{1-x}$$

$$= \frac{1-x^{2^{m+1}}}{1-x}$$

Por lo tanto, la afirmación es verdadera para m+1, y así para todo $n \in \mathbb{Z}^+$

12. Demostrar que las expresiones siguientes son polinomios poniéndolas en la forma $\sum_{k=0}^{m} a_k x^k$ para un valor de m conveniente. En cada caso n es entero positivo.

(a)
$$(1+x)^{2n}$$

Demostración.- Usando el teorema binomial $(1+x)^{2n} = \sum_{k=0}^{2} n \binom{2n}{k} x^k$, sea m=2n entonces $\sum_{k=0}^{m} \binom{m}{n} x^k$, por lo tanto $\sum_{k=0}^{m} c_k x^k$ si $c_k = \binom{m}{k}$ para cada k.

(b)
$$\frac{1-x^{n+1}}{1-x}, x \neq 1$$

Demostración.- Por el corolario anterior

$$\frac{1 - x^{n+1}}{1 - x} = \frac{(1 - x)(1 + x + \dots + x^n)}{1 - x}$$

$$= 1 + x + \dots + x^n$$

$$= \sum_{k=0}^{n} 1 \cdot x^k$$

(c)
$$\prod_{k=0}^{n} (1+x^{2^k})$$

Demostración.- Por le corolario anterior,

$$\prod_{k=0}^{n} \left(1 + x^{2^k} \right) = \frac{(1 - x^{2^{n+1}})}{1 - x}$$

$$= \frac{(1 - x^{2^n})(1 + x^{2^n})}{1 - x}$$

$$= \left(\frac{1 - x^{2^n}}{1 - x} \right) (1 + x^{2^n})$$

$$= (1 + x + \dots + x^{2^n + 1})(1 + x^{2^n})$$

$$= (1 + x + \dots + x^{2^n + 1})(x^{2^n} + x^{2^n + 1} + \dots + x^{2^{n+1} - 1})$$

$$= \sum_{k=0}^{2^{n+1} - 1} 1 \cdot x^k$$

$$= \sum_{k=0}^{m} 1 \cdot x^k \text{ si } m = 2^{n+1} - 1$$

Axioma .1 (Definición axiomática de área) Supongamos que existe una clase M de conjuntos del plano medibles y una función de conjunto a, cuyo dominio es M, con las propiedades siguientes:

- 1. Propiedad de no negatividad. Para cada conjunto S de M, se tiene $a(S) \ge 0$
- 2. Propiedad aditiva. Si S y T pertenecen a M, también pertenecen a M, $S \cup T$ y $S \cap T$, y se tiene

$$a(S \cup T) = a(S) + a(T) - a(S \cap T)$$

- 3. Propiedad de la diferencia. Si S y T pertenecen a M siendo $S \subseteq T$ entonces T S está en M, y se tiene a(T S) = a(T) a(S)
- 4. Invariancia por congruencia. Si un conjunto S pertenece a M y T es congruente a S, también T pertenece a M y tenemos a(S) = a(T)
- 5. Elección de escala Todo rectángulo R pertenece a M. Si los lados de R tienen longitudes h y k, entonces a(R) = hk
- **6.** Propiedad de exhaución. Sea Q un conjunto que puede encerrarse entre dos regiones S y T de modo que

$$S \subseteq Q \subseteq T$$
.

Si existe uno y sólo un número c que satisface las desigualdades

$$a(S) \le c \le a(T)$$

para todas la regiones escalonadas S y T que satisfacen $S\subseteq Q\subseteq T$, entonces Q es medible y a(Q)=c

1.7. Ejercicios

- 1. Demostrar que cada uno de los siguientes conjuntos es medible y tiene área nula:
 - (a) Un conjunto que consta de un solo punto.

Demostración.- Un sólo punto se puede medir con un área 0, ya que un punto es un rectángulo con h=k=0

(b) El conjunto de un número finito de puntos.

Demostración.- Demostraremos por inducción en n, el número de puntos. Para el caso de n=1 ya quedo demostrado en el anterior inciso. Supongamos que es cierto para algunos $n=k\in \mathbf{Z}^+$. Entonces, tenemos un conjunto $S\in M$ de k puntos en el plano y a(S)=0. Sea T un punto en el plano. Por (a) $T\in M$ y a(T)=0, por tanto por la propiedad aditiva,

$$S \cup T \in M$$
 y $a(S \cup T) = a(S) + a(T) - a(S \cap T)$.

pero $S \cap T \subseteq S$, entonces

$$a(S \cap T) \le a(S) \Rightarrow a(S \cap T) \le 0 \Rightarrow a(S \cap T) = 0.$$

El axioma 1 nos garantiza que $a(S \cap T)$ no puede ser negativo. Por lo tanto, $a(S \cup T) = 0$, Por tanto,

el enunciado es verdadero para k+1 puntos en un plano y, por tanto, para todo $n \in \mathbb{Z}_{>0}$

(c) La reunión de una colección finita de segmentos de recta en un plano.

Demostración.- Por inducción, sea n el número de segmentos en un plano. Para n=1, dejamos S ser un conjunto con una línea en un plano. Dado que una línea es un rectángulo y todos los rectángulos son medibles, tenemos $S \in M$ ademas, a(S)=0 ya que una línea es un rectángulo con h=0 ó k=0, y así en cualquier caso hk=0. Por lo tanto, el enunciado es verdadero para una sola línea en el plano, el caso n=1.

Asuma entonces que es cierto para $n=k\in {\bf Z}^+$. Sea S un conjunto de rectas en el plano. Luego, por la hipótesis de inducción, $S\in M$ y a(S)=0. Sea T una sola línea en el plano. Por el caso n=1 en $T\in M$ y a(T)=0. Por lo tanto $S\cup T\in M$ y $a(S\cup T)=0$ (ya que $a(S)=a(T)a(S\cap T)=0$). Por tanto, la afirmación es verdadera para k+1 líneas en un plano, y así para todos $n\in {\bf Z}^+$

2. Toda región en forma de triángulo rectángulo es medible pues puede obtenerse como intersección de dos rectángulos. Demostrar que toda región triangular es medible y que su área es la mitad del producto de su base por su altura.

Demostración.- Dado que cada triángulo rectángulo es medible, por el axioma 2 del área su unión es medible, denotando los dos triángulos rectángulos A y B, y la región triangular T, tenemos

$$a(T) = a(A) + a(B)$$

va que A y B son disjuntos $a(A \cap B) = 0$.

Dejando que la altitud de la región triangular se denote por h, y su base por b, tendremos,

$$a(A) = \frac{1}{2}(hb_1)$$
 $a(B) = \frac{1}{2}hb_2$ con $b_1 + b_2 = b$,

entonces

$$a(T) = \frac{1}{2}hb_1 + \frac{1}{2}hb_2 = \frac{1}{2}h(b_1 + b_2) = \frac{1}{2}hb$$

3. Demostrar que todo trapezoide y todo paralelogramo es medible y deducir las fórmulas usuales para calcular su área.

Demostración.- Todo trapecio es medible ya que, la unión de un rectángulo y dos triángulos rectángulos (disjuntos por pares y cada uno de los cuales es medible ppor los axiomas y el ejercicio anterior.) Luego su área es la suma de las áreas de los triángulos rectángulos y el rectángulo (dado que están separados por pares, su intersección tiene un área cero). Para calcular esta área, especificamos las longitudes de los dos lados desiguales del trapezoide para que sean b_1 y b_2 . La altura está indicada por a. Entonces, el área del rectángulo es de 1. El área de los triángulos es $\frac{1}{2}a \cdot b_3$ y $\frac{1}{2}a \cdot b_4$ dónde $b_1 + b_3 + b_4 = b_2$. Entonces, denotando el trapezoide por T, tenemos

$$a(T) = ab_1 + \frac{1}{2}ab_3 + \frac{1}{2}ab_4 = \frac{1}{2}ab_1 + \frac{1}{2}a(b_1 + b_3 + b_3) = \frac{1}{2}a(b_1 + b_2)$$

A continuación, un paralelogramo es solo un caso especial de un trapezoide, en el que $b_1 = b_2$; por lo tanto, por la fórmula anterior, y denotando el paralelogramo por P,

$$a(P) = \frac{1}{2}a(2b) = ab$$

- **4.** Un punto (x, y) en el plano se dice que es un punto de una red, si ambas coordenadas x e y son enteras. Sea P un polígono cuyos vértices son puntos de una red. El área de P es $I + \frac{1}{2}B 1$ donde I es el número de puntos de la red interiores a P, y B el de los de la frontera.
 - (a) Probar que esta fórmula es correcta para rectángulos de lados paralelos a los ejes coordenados.

Demostración.- Sea R un $h \times k$ rectángulo con lados paralelos a los ejes de coordenadas. Entonces, R es medible (ya que es un rectángulo) y a(R) = hk. A continuación, dado que los vértices están en puntos de celosía, B = 2(h+1) + 2(k+1) - 4 y I = (h-1)(k-1). Por lo tanto,

$$I + \frac{1}{2}B - 1 = (h-1)(k-1) + \frac{1}{2}[2(h+1) + 2(k+1) - 4] - 1$$
$$= hk - h - k + 1 + h + 1 + k + 1 - 2 - 1$$
$$= hk$$

(b) Probar que la fórmula es correcta para triángulos rectángulos y paralelogramos.

Demostración.- Sabemos que cualquier triángulo rectángulo puede encerrarse en un rectángulo con bordes cuyas longitudes sean iguales a las longitudes de los catetos del triángulo rectángulo. Además, este rectángulo está compuesto por dos triángulos rectángulos congruentes unidos a lo largo de su diagonal. Cada uno de estos triángulos rectángulos tiene un área la mitad de la del rectángulo y se cruzan a lo largo de la diagonal (que tiene un área cero (1.7, problema 1) ya que es una línea en el plano). Dado un triángulo rectángulo T, R sea tal rectángulo, y S sea el triángulo rectángulo que forma la otra mitad de R, entonces $S \cup T = R$.

Dado que R es un rectángulo, sabemos por la parte (a) que

$$a(R) = I_R + \frac{1}{2}B_R - 1.$$

Además, cualquier punto interior R será un punto interior de cualquiera S o T, o se acuesta sobre su frontera compartida. Por lo tanto,

$$I_R = I_S + I_T + H_P$$

donde H_P denota los puntos en la hipotenusa (compartida) de los dos triángulos rectángulos. Entonces, también tenemos para los puntos límite,

$$B_R = B_S + B_T - 2 - 2H_P.$$

Finalmente, dado que S y T son congruentes, conocemos $B_S = B_T$ y $I_S = I_T$. Entonces, poniendo todo esto junto, tenemos,

$$a(R) = I_R + \frac{1}{2}B_R - 1$$

$$= 2I_S + H_P + \frac{1}{2}(2B_S - 2 - 2H_P) - 1$$

$$= 2(I_S + \frac{1}{2}B_S - 1)$$

ó,

$$I_S + \frac{1}{2}B_S - 1 = \frac{1}{2}a(R).$$

Pero, sabemos que $\frac{1}{2}a(R) = a(S)$; por lo tanto,

$$a(S) = I_S + \frac{1}{2}B_S - 1.$$

Esto prueba el resultado para triángulos rectángulos con vértices en puntos de una red.

(c) Emplear la inducción sobre el número de lados para construir una demostración para polígonos en general.

Respuesta.- Ya tenemos esto de la parte (b) ya que podemos realizar cualquier polígono simple como la unión de un número finito de triángulos rectángulos (es decir, cada polígono simple es triangularizable)

5. Demostrar que un triángulo cuyos vértices son puntos de una red no puede ser equilátero.

Demostración.- Supongamos que existe tal triángulo equilátero T. Entonces,

$$T = A \ cup B$$

Para dos triángulos rectángulos congruentes y disjuntos A, B. Dado que los vértices de T están en puntos de una red, sabemos que la altitud desde el vértice hasta la base debe pasar por h puntos de red (donde h es la altura de T). Por lo tanto, al denotar los puntos de red en esta altitud por $V_B = h + 1$, tenemos

$$B_T = B_A + B_B - V_B + 2, \qquad I_T = I_A + I_B + V_B - 2.$$

Dado que T es un polígono con vértices de puntos de red, sabemos por el ejercicio anterior que $a(T) = I_T + \frac{1}{2}B_T - 1$. Además, por el problema 2, sabemos que $a(T) = \frac{1}{2}bh$. Así que,

$$I_{T} + \frac{1}{frm - e}B_{T} - 1 = (I_{A} + I_{B} + V_{B} - 2) + \frac{1}{2}(B_{A} + B_{B} - V_{B} + 2)$$

$$\Rightarrow I_{T} + \frac{1}{2}B_{T} - 1 = 2I_{A} + B_{A} - 2 + \frac{1}{2}V_{B} \qquad (B_{A} = B_{B}, I_{A} = I_{B})$$

$$\Rightarrow I_{T} + \frac{1}{2}B_{T} - 1 = 2I_{A} + B_{A} - 2 + \frac{1}{2}(h + 1) \qquad (V_{B} = h + 1)$$

$$\Rightarrow I_{T} + \frac{1}{2}B_{T} - 1 = 2(a(A)) + \frac{1}{2}(h + 1)$$

Pero,
$$\frac{1}{2}a(T) = a(A) = a(B)$$
 así,

$$I_T + \frac{1}{2}B_T - 1 = a(T) + \frac{1}{2}(h+1)$$
 \Rightarrow $a(T) = a(T) + \frac{1}{2}(h+1)$

Pero, h > 0 entonces esto es una contradicción. Por lo tanto, T no puede tener sus vértices en puntos de red y ser equilátero.

6. Sean $A = \{1, 2, 3, 4, 5\}$ y M la clase de todos los subconjuntos de A. (Son en número de 32 contando el mismo A y el conjunto vacio \emptyset .) Para cada conjunto S de M, representemos con n(S) el número de elemento distintos de S. Si $S = \{1, 2, 3, 4\}$ y $T = \{3, 4, 5\}$, calcular $n(S \cup T)$, $n(S \cup T)$, n(S - T) y $n(T_S)$. Demostrar que la función de conjunto n satisface los tres primeros axiomas del área.

Demostración.- Calculemos,

$$n(S \cup T) = n(\{1, 2, 3, 4, 5\}) = 5$$

 $n(S \cap T) = n(\{3, 4\}) = 2$
 $= n(\{1, 2\}) = 2$
 $= n(\{5\}) = 1$

Ahora demostremos que esto satisface los primeros tres axiomas de área.

Axioma 1. (Propiedad no negativa) Esto se satisface para cualquier conjunto, S ya que el número de elementos distintos en un conjunto no es negativo. Entonces, $n(S) \ge 0$ para todos S.

Axioma 2. (Propiedad aditiva) Primero, si $S, T \in mathcal M$, luego $S \subseteq A, T \subseteq A$ por definición de \mathcal{M} . Entonces, para cualquiera $x \in S$ que tengamos $x \in A$ y para cualquiera $y \in T$, tenemos $y \in A$.

Así, si $x \in S \cup T$, entonces $x \in A$; por lo tanto $S \cup T \subseteq A$, entonces $S \cup T \in \mathcal{M}$.

Entonces, $S \cap T \subseteq S$ implies $S \cap T \subseteq A$ (desde $S \subseteq A$). Por lo tanto, $S \cap T \in \mathcal{M}$.

Entonces, para cualquiera $S, T \in \mathcal{M}$ que tengamos $S \cup T \in \mathcal{M}$, $S \cap T \in \mathcal{M}$.

Luego, debemos mostrar $n(S \cup T) = n(S) + n(T) - n(S \cap T)$. Para cualquier $x \in S \cup T$ tenemos $x \in S$, $x \in T$, ó $x \in S$ y T. Entonces, esto significa $x \in (S - T)$, ó $x \in (T - S)$ ó $x \in (S \cap T)$. Por lo tanto,

$$n(S \cup T) = n(S - T) + n(T - S) + n(S \cap T)$$

Del mismo modo observamos,

$$n(S) = (S - T) + n(S \cap T) \quad \Rightarrow \quad n(S - T) = n(S) - s(S \cap T)$$

$$n(T) = n(T - S) + n(T \cap S) \quad \Rightarrow \quad n(T - S) = n(T) - n(S \cap T)$$

Así que,

$$\begin{array}{lcl} n(S \cup T) & = & n(S) - n(S \cap T) + n(T) - n(S \cap T) + n(S \cap T) \\ & = & n(S) + n(T) - n(S \cap T) \end{array}$$

Axioma 3 (Propiedades de la diferencia). Si $S, T \in \mathcal{M}$ y $S \subseteq T$, entonces desde arriba tenemos

$$n(T - S) = n(T) - n(T \cap S)$$

Pero porque $S \subseteq T$ sabemos $T \cap S = S$, entonces.

$$n(T - S) = n(T) - n(S)$$