This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: G01N 33/573, C12N 9/12, C07K 14/435

(11) International Publication Number:

WO 97/37224

(43) International Publication Date:

9 October 1997 (09.10.97)

(21) International Application Number:

PCT/GB97/00898

A1

(22) International Filing Date:

1 April 1997 (01.04.97)

(30) Priority Data:

9606765.7 9626362.9

30 March 1996 (30.03.96) GB

19 December 1996 (19.12.96) GB

(71) Applicant (for all designated States except US): MEDICAL RESEARCH COUNCIL [GB/GB]; 20 Park Crescent, London W1N 4AL (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): COHEN, Philip [GB/GB]; MRC Protein Phosphorylation, University of Dundee, Medical Sciences Institute, Dept. of Biochemistry, Dundee DD1 4HN (GB). COHEN, Patricia, Townsend, Wade [GB/GB]; MRC Protein Phosphorylation, University of Dundee, Dept. of Biochemistry, Medical Sciences Institute, Dundee DD1 4HN (GB). BARFORD, David [GB/GB]; University of Oxford, Laboratory of Molecular Biophysics, Rex Richards Building, South Parks Road, Oxford OX1 3QU (GB).

(74) Agent: BASSETT, Richard; Eric Potter Clarkson, St. Mary's Court, St. Mary's Gate, Nottingham NG1 1LE (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN PHOSPHATASE-I CATALYTIC SUBUNIT INTERACTIONS

(57) Abstract

A method of identifying a compound which modulates the interaction between a PPIc and a regulatory subunit thereof, the method comprising determining whether a compound enhances or disrupts the interaction between (a) a PP1c or a fragment, variant, derivative or fusion thereof or a fusion of a fragment. variant or derivative and (b) a regulatory subunit which is able to bind to PP1c or a PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative. A method of affecting cellular metabolism or function, the method comprising administering to a cell (a) a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or (c) a peptide capable of binding a PPIc and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakis
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	ΤD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	ΤG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali -	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE .	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

DVICUUCIU: </br>

WO 97/37224

5

10

15

20

PCT/GB97/00898

1

PROTEIN PHOSPHATASE-1 CATALYTIC SUBUNIT INTERACTIONS

The present invention relates to peptides and protein-protein interactions and to the use of peptides, peptide analogues and compounds which modulate protein-protein interactions in the control of cellular metabolism and function.

Cellular metabolism or function is controlled by a number of regulatory agents, which are affected by extracellular factors, for example the physical condition of the cell or the binding of a messenger molecule to a receptor located on the cell surface. The extracellular factor may then initiate a cascade of secondary messenger reactions within the cell itself, leading ultimately to changes in some aspects(s) of metabolism or cell function.

It is well recognised by those skilled in the art that phosphorylation or dephosphorylation reactions often play a key role in regulating the activity of the proteins affected. Dephosphorylation reactions are catalysed by phosphatase enzymes, the activity of which may themselves be controlled by phosphorylation and/or dephosphorylation events. Whilst a substantial amount of knowledge has been accumulated regarding protein phosphatases as a group, the number and variety of these enzymes is such that detailed information concerning the mode of action of a specific phosphatase is not always available. There remains a need to further elucidate and characterise particular key enzymes.

The reversible phosphorylation of proteins regulates most aspects of cell life. About a third of all mammalian proteins are now thought to contain covalently bound phosphate and, since protein kinases and phosphatases probably account for approximately 2-3% of all human gene products (Hunter, 1995), many of these enzymes must typically phosphorylate/dephosphorylate numerous proteins in vivo. However, it is becoming increasingly clear that some protein kinases

15

20

25

30

and phosphatases do not find their physiological substrates by simple diffusion within cells and that they are frequently directed to particular loci in the vicinity of their substrates by interaction with targeting subunits. In this way, the actions of protein kinases and phosphatases with inherently broad specificities are restricted and their properties tailored to the needs of a particular subcellular location, organelle or process (reviewed in Hubbard and Cohen, 1993; Faux and Scott, 1996).

Protein phosphatase-1 (PP1), one of the major protein serine/threonine phosphatases of eukaryotic cells, participates in the control of a variety of cellular functions that include glycogen metabolism, muscle contraction, the exit from mitosis (reviewed in [1,2]) and the splicing of mRNA [3]. However, evidence has been accumulating that different processes are regulated by distinct forms of PP1 in which the phosphatase catalytic subunit (PP1c) is complexed to specific "targeting subunits". These proteins not only direct PP1c to particular subcellular locations, but modify its specificity in unique ways and confer regulation by extracellular agonists (reviewed in [2,3]).

Several targeting subunits have been isolated and characterised, including the G_M -subunit that targets PP1c to both the glycogen particles and sarcoplasmic reticulum of striated muscles [4,5], the G_L subunit that targets PP1c to liver glycogen [6,7], the M-complexes responsible for the association of PP1c with the myofibrils of skeletal muscle [8,9] and smooth muscle [9-12], the p53 binding protein p53BP2 [13] and nuclear proteins such as sds22 [14] and NIPP1 [15,16]. PP1c is also reported to interact with other mammalian proteins such as the retinoblastoma gene product [17], ribosomal protein L5 [18], a 110 kDa nuclear protein that has yet to be identified [15] and two cytosolic proteins, termed inhibitor-1 and inhibitor-2. Inhibitor-1, and its homologue termed dopamine and cyclic AMP-regulated phosphoprotein (DARPP), become potent PP1 inhibitors after phosphorylation by cyclic AMP-dependent protein kinase

(PKA). Inhibitor-1 is thought to inactivate PP1c released from glycogen particles when G_M is phosphorylated by PKA [19]. Inhibitor-2 is present as a complex with PP1 in the cytosol, and there is evidence that one of its roles is to act like a molecular chaperone to ensure that the PP1 catalytic centre is folded correctly prior to its delivery to a specific targeting subunit [20]. It seems likely that many other PP1-targeting subunits will be identified over the next few years as a result of the introduction of powerful new techniques such as microcystin Sepharose affinity chromatography [8] and the yeast "two hybrid system" [13].

10

15

20

25

30

The forms of PP1c isolated so far each contain a single PP1c-binding subunit, implying that the interaction of different targeting subunits with PP1c may be mutually exclusive. This, in turn, suggests that the binding sites for targeting subunits may overlap, and that the proportion of PP1 directed to any particular location may be determined by the amounts of each targeting subunit synthesised and their relative affinities for PP1. However, the different targeting subunits show surprisingly little similarity to one another. G_M and G_L are structurally related, yet display only 23% amino acid sequence identity over the first 286 residues of G_M , while G_L lacks the C-terminal 750 residues of G_M [7]. p53BP2 [13] and the M_{110} subunits from smooth muscle [10,11] and skeletal muscle [8] contain ankyrin repeats, but no other similarities have so far been detected between other PP1 targeting subunits.

The paradigm for the targeting subunit concept is protein phosphatase-1 (PP1), one of the major serine/threonine specific protein phosphatases of eukaryotic cells (Stralfors et al., 1985). This enzyme is involved in controlling diverse cellular functions including glycogen metabolism, muscle contraction, the exit from mitosis and the splicing of RNA (Cohen, 1989; Shenolikar, 1994; Wera and Hemmings, 1995). These different processes appear to be regulated by distinct PP1 holo-enzymes in which the same catalytic subunit (PP1c) is

complexed to different targeting or regulatory subunits. The latter class of subunits act to confer *in vivo* substrate specificity not only by directing PP1c to the subcellular loci of its substrates, but also by enhancing or suppressing its activity towards different substrates. In addition, the regulatory subunits allow the activity of PP1 to be modulated by reversible protein phosphorylation and second messengers in response to extracellular stimuli.

4

Many regulatory subunits modulate the activity of PP1 towards its substrates. In the instance of the regulatory M_{110} subunit that targets PP1c to myosin, the region on the M_{110} subunit that enhances the dephosphorylation of myosin by PP1 has now been shown to be distinct from the region involved in targetting the PP1-M holoenzyme to myosin. These observations indicate that alterations in the substrate specificity of PP1c are likely to result from conformational changes induced by interactions with the targetting subunit and not simply as a direct result of targetting PP1c to its substrate. However, in the case of the glycogen binding subunit G_M , the dephosphorylation of glycogen phosphorylase and glycogen synthase was enhanced only under conditions when both the PP1- G_M complex and its substrates were bound to glycogen (Hubbard and Cohen, 1989) suggesting that targetting alone may be sufficient to enhance specificity.

Whilst the identity of the PP1-binding site(s) on any targeting subunit is unknown, it has now been realised that the control of the substrate specificity and activity of this key regulatory enzyme and its interactions are of therapeutic importance. Disruption of PP1-targeting subunit interactions provide a way of altering selectively the state of phosphorylation, and hence the activities, of particular PP1 substrates. We have now identified relatively small peptides from the G_M and M_{110} -subunits that interact with PP1, and which either disrupt or mimic the distinctive properties of myofibrillar and glycogen-associated forms of PP1. The binding of the G-subunit and the M-subunit of PP1 has also

10

15

20

25

10

15

been found to be mutually exclusive.

A first aspect of the invention provides a method of identifying a compound which modulates the interaction between a PP1c and a regulatory subunit thereof, the method comprising determining whether a compound enhances or disrupts the interaction between (a) a PP1c or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative and (b) a regulatory subunit which is able to bind to PP1c or a PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative.

Conveniently, the PP1c or a fragment, variant or derivative or fusion thereof or a fusion of a fragment, variant or derivative is one that is produced using recombinant DNA technology. By "fragment, variant, derivative or fusion of PP1c" we mean any such fragment, variant, derivative or fusion that retains the ability to interact with a regulatory subunit or a suitable PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative.

- By "regulatory subunit" we mean any such regulatory subunit. Further subunits are being identified all of the time. It is preferred if the regulatory subunit contains the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe as described below.
- By "PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative" we include any such fragments, variants, derivatives and fusions which are able to bind to PP1c. Conveniently, the fragments, variants, derivatives are made using recombinant DNA technology or, in the case of peptides and peptide derivatives and analogues they may be made using peptide synthetic methods.

The enhancement or disruption of the interaction between the said PP1c or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative and the said regulatory subunit or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative can be measured *in vitro* using methods well known in the art of biochemistry and including any methods which can be used to assess protein-protein, protein-peptide and protein-ligand interactions.

The said interaction can also be measured within a cell, for example using the yeast two-hybrid system as is well known in the art.

It should be appreciated that before the present invention the dissociation of a PP1c-regulatory subunit has not been achieved using a small molecule such as a peptide or a peptide analogue or derivative. Thus, it is preferred if the compounds screened in the method of the first aspect of the invention are small molecules and in particular that they are not intact regulatory subunits of PP1c.

By "small molecule" we include any compounds which have a molecular weight of less than 5000, preferably less than 2000 and more preferably less than 1000. Conveniently, the compounds screened are compounds which are able to enter a cell either passively *via* the cell membrane or *via* an active uptake system.

A second aspect of the invention provides a method of identifying a compound which mimics the effect of a regulatory subunit of PP1c, the method comprising contacting said compound with PP1c and determining whether, in the presence of the compound, PP1c adopts the function of properties of a PP1c in the presence of a given regulatory subunit.

30 By "mimics the effect of a regulatory subunit of PP1c" we include the meaning

5

15

20

WO 97/37224 PCT/GB97/00898

that the compound modifies a property of PPlc in such a way that PP1c acts, in at least one respect, like PP1c that is interacting with a regulatory subunit.

7

Examples of the properties of PP1c that may be modified, and examples of compounds which modify the properties of PP1c which are therefore identifiable in this method are given below.

Preferably, in the methods of the first and second aspects the said regulatory subunit of PP1c is any one of M_{110} , G_L , G_M , M-complexes, p53 BP2, sds22, NIPPI, L5, Inhibitor-1, Inhibitor-2, or DARPP.

More preferably, the regulatory subunit of PP1c is any one of M_{110} , G_L , G_M , M-complexes or p53BP2, and still more preferably the regulatory subunit of PP1c is M_{110} or G_M .

15

20

25

10

5

In relation to the method of the first aspect of the invention the fragment of a regulatory subunit which is able to bind to PP1c is any of the peptides [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] and peptide 63-80 of G_M or functional equivalents thereof or peptides comprising said peptide sequences provided that they are not the complete G_M regulatory subunit. Preferably the peptides are not [E2-R575] or [H100-P350].

As is described in more detail in the Examples, these peptides have been shown to bind to PP1c and it is convenient, in some circumstances, for the method to be carried out such that one of these peptide is displaced from, or the binding is enhanced to, PP1c. Suitably, the peptide may be labelled in a detectable manner to facilitate the detection of the interaction with PP1c. Conveniently, the peptide is labelled radioactively or fluorescently using methods well known in the art.

Also in relation to the method of the first aspect of the invention the fragment of a regulatory subunit which is able to bind to PP1c is any of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M_{110} or functional equivalents thereof or peptides comprising said peptide sequences provided that they are not the complete M_{110} regulatory subunit.

As is shown in more detail in the Examples these peptides have been shown to bind to PP1c.

- Also in relation to the first aspect of the invention the PP1c-binding fragment, variant or derivative of said regulatory subunit or a fusion of said fragment, variant or derivative comprises the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid.
- We have found that, surprisingly, many regulatory subunits that bind to PP1c contain the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid, preferably a naturally occurring amino acid. Typically, the PP1c-binding fragment, variant or derivative of said regulatory subunit or a fusion of said fragment, variant or derivative is a peptide (typically 8-400 amino acid residues, preferably 8-200, more preferably 8-10 and still more preferably 8-20 amino acid residues in length which comprises the given consensus peptide sequence).
- It is preferred if the PP1c-binding fragment, variant or derivative comprises, in addition to the said consensus peptide sequence, at least one basic residue in the four residues N-terminal of the consensus peptide sequence. Preferably, there are at least two basic residues in this position, more preferably at least three such residues.
- 30 It is also preferred wherein in the consensus peptide sequence Xaa is not Asp

WO 97/37224 PCT/GB97/00898 9

or Glu because the negative charge is believed to interfere with binding to PP1c. Similarly, it is preferred if Xaa is not a large hydrophobic residue such as Phe, Tyr, Trp, Ile or Leu.

- It is particularly preferred if the PP1c-binding fragment is a fragment of a 5 regulatory subunit comprising the said consensus peptide sequence and therefore the peptide sequences which flank the consensus peptide sequence are the same as in the native regulatory subunit.
- Preferably the PP1c-binding fragment is a fragment of any of the M₁₁₀, G_L, G_M, 10 M-complexes, p53BP2, sds22, NIPPI, L5, Inhibitor-1, Inhibitor-2 or DARPP regulatory subunits comprising said consensus sequence.

Although the methods of the first and second aspects of the invention do not rely on any particular mechanism whereby the modulation or mimicking occurs, 15 it is preferred if the compound binds to a PP1c. Alternatively, but still preferably, the compound binds to a regulatory subunit of PP1c.

A further aspect of the invention provides a compound identifiable by the 20 method of the first or second aspects of the invention.

A further aspect of the invention provides a compound which modulates the interaction between a PP1c and a regulatory subunit thereof said compound comprising any of the peptides [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] and peptide 63 to 80 of G_M or functional equivalents 25 or said compound comprising any of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M_{110} or functional equivalents thereof or said compound comprising the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any naturally occurring amino acid or functional equivalents thereof, provided that the said compound is not a complete regulatory subunit

of PP1c. Preferably, the peptides are not [E2-R575] or [H100-P350].

10

By "functional equivalent" we include the meaning that the compound, although having a different structure to the said peptides, modulates the interaction between a PP1c and a regulatory subunit thereof in substantially the same way. For example, a functional equivalent may be a peptide in which conservative substitutions have been made. By "conservative substitution" is intended combinations such as Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe, Tyr. A functional equivalent may also be a peptide with the given sequence which has been adapted to be more likely to enter a cell. For example, fatty acids or other hydrophobic moieties may be attached to the peptide.

By the term "peptide" we mean derivatives of peptides which are resistant to proteolysis, for example those in which the N or C termini are blocked, or both are blocked, and it includes molecules in which one or more of the peptide linkages are modified so that the molecule retains substantially the same molecular configuration in the linkage but the linkage is more resistant to hydrolysis than a peptide linkage.

20

25

30

15

5

10

It is particularly preferred if the compound consists of the peptides [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] or peptide 63 to 80 of G_M or functional equivalents thereof or if the compound consists of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M_{110} or functional equivalents thereof. Preferably, the peptide is not [E2-R575] or [H100-P350].

A still further aspect of the invention provides a method of identifying a compound which modulates the interaction between a PP1c and a regulatory subunit thereof, or binds PP1c or mimics the effect of a regulatory subunit, the

WO 97/37224 PCT/GB97/00898

11

method comprising selecting a compound which is capable of adopting the same or substantially the same conformation as a peptide bound to the regulatory subunit-binding site of PP1c or the same or substantially the same conformation as the portion of PP1c which binds to said peptide. Suitably, the peptide comprises the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid, preferably a naturally occurring amino acid. Conveniently, the said peptide consists of residues 63 to 75 of G_M .

It is particularly preferred if the conformation of the said peptide and the conformation of the said portion of PP1c is as defined by reference to the atomic coordinates given in Table A (see also Example 2). Example 2 provides further details of the peptide - PP1c interactions.

Table A provides the atomic coordinates for the given PP1c-peptide crystal structure.

A further aspect of the invention provides a compound identifiable by the aforementioned method of the invention.

- It will be appreciated that the aforementioned compounds and peptides will be useful in medicine and, accordingly, the invention includes pharmaceutical compositions of the said compounds in combination with a pharmaceutically acceptable carrier.
- The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient (compound of the invention) with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers

5

10

15

20

or finely divided solid carriers or both, and then, if necessary, shaping the product.

Formulations in accordance with the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets, each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste.

A tablet may be made by compression or moulding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder (eg povidone, gelatin, hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (eg sodium starch glycolate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethylcellulose in varying proportions to provide desired release profile.

25

30

Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavoured basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouth-washes comprising the active ingredient in a suitable liquid carrier.

WO 97/37224 PCT/GB97/00898

Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.

Preferred unit dosage formulations are those containing a daily dose or unit, daily sub-dose or an appropriate fraction thereof, of an active ingredient.

15

10

It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavouring agents.

20

25

9737994A1 I

BNISDOCID: < WO

A further aspect of the invention provides a method of affecting cellular metabolism or function, the method comprising administering to a cell (a) a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.

It will be appreciated that the said compounds are disclosed above with respect to specific compounds or with respect to methods of obtaining such compounds.

10

15

25

30

In particular, it is preferred if the compound administered to the cell is any one or more of the peptides [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] and peptide 63-80 of G_M or functional equivalents thereof or peptides comprising said peptide sequences or any one or more of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M_{110} or functional equivalents thereof or peptides comprising said peptide sequences. Preferably, the peptide is not [E2-R575] or [H100-P350].

In this embodiment it will be appreciated that functional equivalents include those compounds defined above as being functional equivalents, in particular, derivatives of peptides which are more readily able to enter a cell.

The compound may be administered to the cell in any suitable way, in particular in such a way that the compound will enter the cell in a suitable form to have its desired effect. Method of facilitating the entry of a compound into the cell are known in the art, for example, in relation to peptides the importins and penetrations may be used, or the peptides may be micro-injected or they may enter the cell in a suitable vehicle such as in a liposome.

20 Preferably, the cell is a cell in a mammalian body.

The aforementioned compounds of the invention or a formulation thereof may be administered by any conventional method including oral and parenteral (eg subcutaneous or intramuscular) injection. The treatment may consist of a single dose or a plurality of doses over a period of time.

Whilst it is possible for a compound of the invention to be administered alone, it is preferable to present it as a pharmaceutical formulation, together with one or more acceptable carriers. The carrier(s) must be "acceptable" in the sense of being compatible with the compound of the invention and not deleterious to

the recipients thereof. Typically, the carriers will be water or saline which will be sterile and pyrogen free.

A further aspect of the invention provides a method of treating a patient in need of modulation of PP1c activity or function the method comprising administering to the patient an effective amount of a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.

As will be apparent from what is described herein, protein phosphatase-1 (PP1) is one of the principal serine/threonine-specific protein phosphatases in human cells where it plays key roles in regulating a variety of physiological roles, including the metabolism of glycogen, the splicing of mRNA, the exit from mitosis and the contraction of smooth muscle. The different functions of PP1 are carried out by distinct species of this enzyme in which the same catalytic unit is complexed to different "targeting" subunits. The latter class of proteins direct PP1 to specific subcellular loci, tailor its properties to the needs of a particular locus and confer the ability to be regulated by extracellular signals (hormones, growth factors, neurotransmitters). Compounds as herein described that disrupt specific PP1-"targeting" subunits interactions or mimic the effect of a targeting subunit are likely to have a number of therapeutic uses as outlined below.

PP1 interacts with the M110-subunit which targets it to myosin in smooth muscle and enhances the rate at which PP1 dephosphorylates myosin. The dephosphorylation of myosin underlies the relaxation of smooth muscle. Thus compounds such as those disclosed herein which disrupt the interaction of PP1

5

10

15

20

25

with M110 in arterial muscle are expected to increase the phosphorylation of arterial myosin and elevate blood pressure.

The interaction of PP1 with M110 enhances the rate at which PP1 dephosphorylates myosin, but suppresses the rate at which it dephosphorylates glycogen phosphorylase. The disruption of the PP1-M110 interaction is therefore measured in a screen by looking for compounds which enhance the dephosphorylation of phosphorylase and/or suppress the dephosphorylation of the myosin P-light chain (see the Examples).

10

15

20

5

Compounds, such as those disclosed herein, that mimic the effect of the M110 subunit in stimulating myosin dephosphorylation are expected to be useful in lowering blood pressure. Such compounds are identified by their ability to stimulate the dephosphorylation of the myosin P-light chain by the catalytic subunit of PP1. An example of such an assay, which shows that the N-terminal 38 residues of the M110 subunit stimulate the dephosphorylation of the myosin P-light chain by PP1, is shown in the Examples.

The interaction of PP1 with G_L targets the phosphatase to liver glycogen. This interaction enhances the dephosphorylation glycogen synthase which stimulates the conversion of glucose to glycogen. A compounds, such as those disclosed herein, disrupts the interaction between PP1 and G_L is expected to be useful in treating hypoglycaemia. The interaction of G_L with PP1 strongly suppresses the rate at which PP1 dephosphorylates glycogen phosphorylase. A compound, such as those disclosed herein, which disrupts the interaction of PP1 with G_L can be screened for very simply by its ability to increase the phosphorylase phosphatase activity of PP1 G_L . This can be carried out, for example, using rat liver glycogen pellet as described in the Examples. There is no need to use the purified enzyme.

10

15

20

25

30

PP1 interacts with p53 BP2 (Helps et al, 1995) a protein which is known to interact with the tumour suppressor p53. The phosphorylation of p53 is known to enhance its ability to bind to DNA and hence its ability to function as a tumour suppressor. p53BP2 may be a protein which targets PP1 to p53 stimulating the dephosphorylation and inactivation of p53. A compound, such as those disclosed herein, which disrupts the interaction of PP1 with p53BP2 may enhance the phosphorylation of p53 and its ability to function as a tumour suppressor. Since p53BP2 suppresses the dephosphorylation of glycogen phosphorylase (Helps et al, 1995), compounds that disrupt the p53BP2-PP1 complex can be screened by measuring the increase in rate of dephosphorylation of glycogen phosphorylase.

The present invention provides peptides able to bind to the catalytic sub-unit of protein phosphatase-1 (hereinafter referred to as PP1c). Generally the peptides affect the ability of PP1c to bind to particular target(s) and/or the regulation of PP1c activity.

Peptides can be designed based on the sequences of regulatory subunits, especially in relation to the peptide consensus sequence found therein and its flanking sequences. Peptides can be synthesised by methods well known in the art. For example, peptides may be synthesised by the Fmoc-polyamide mode of solid-phase peptide synthesis as disclosed by Lu et al (1981) J. Org. Chem. 46, 3433 and references therein. Temporary N-amino group protection is afforded by the 9-fluorenylmethyloxycarbonyl (Fmoc) group. Repetitive cleavage of this highly base-labile protecting group is effected using 20% piperidine in N,N-dimethylformamide. Side-chain functionalities may be protected as their butyl ethers (in the case of serine threonine and tyrosine), butyl esters (in the case of glutamic acid and aspartic acid), butyloxycarbonyl derivative (in the case of cysteine) and 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative (in the case

10

15

20

of arginine). Where glutamine or asparagine are C-terminal residues, use is made of the 4,4'-dimethoxybenzhydryl group for protection of the side chain amido functionalities. The solid-phase support is based on a polydimethylacrylamide polymer constituted from the three monomers dimethylacrylamide (backbone-monomer), bisacryloylethylene diamine (cross linker) acryloylsarcosine methyl ester (functionalising agent). The peptide-to-resin cleavable linked agent used is the acid-labile 4-hydroxymethyl-phenoxyacetic acid derivative. All amino acid derivatives are added as their preformed symmetrical anhydride derivatives with the exception of asparagine and glutamine, which are added using a reversed N,N-dicyclohexyl-carbodiimide/1hydroxybenzotriazole mediated coupling procedure. All coupling and deprotection reactions are monitored using ninhydrin, trinitrobenzene sulphonic acid or isotin test procedures. Upon completion of synthesis, peptides are cleaved from the resin support with concomitant removal of side-chain protecting groups by treatment with 95% trifluoroacetic acid containing a 50% scavenger mix. Scavengers commonly used are ethanedithiol, phenol, anisole and water, the exact choice depending on the constituent amino acids of the peptide being synthesised. Trifluoroacetic acid is removed by evaporation in vacuo, with subsequent trituration with diethyl ether affording the crude peptide. Any scavengers present are removed by a simple extraction procedure which on lyophilisation of the aqueous phase affords the crude peptide free of Reagents for peptide synthesis are generally available from Calbiochem-Novabiochem (UK) Ltd, Nottingham NG7 2QJ, UK. Purification may be effected by any one, or a combination of, techniques such as size exclusion chromatography, ion-exchange chromatography and (principally) reverse-phase high performance liquid chromatography. Analysis of peptides may be carried out using thin layer chromatography, reverse-phase high performance liquid chromatography, amino-acid analysis after acid hydrolysis and by fast atom bombardment (FAB) mass spectrometric analysis.

BNSDOCID: <WO__

WO 97/37224 PCT/GB97/00898 19

The peptides may be derived from the targeting subunit(s) of PP1c, in particular from the subunits G_L , G_M , M_{110} and/or M_{21} . Additionally the peptides may be derived from other subunits such as different M-complexes, p53BP2, sds22, NIPP1, L5, Inhibitor-1, Inhibitor-2, DARPP or the like.

Functional equivalents or portions of these peptides may also be used. 5

In a further aspect the present invention provides the use of peptides derived from targeting subunit(s) of PP1c, functional equivalents or portions thereof to affect cellular metabolism or function.

10

15

In a further aspect the present invention provides a method of treatment of the human or non-human (preferably mammalian) animal body, said method comprising altering the levels of peptides derived from targeting subunit(s) of PP1c, functional equivalents or portions thereof to an extent that cellular metabolism or function is affected.

Aspects of cellular metabolism that may be affected include (but are not limited to) glycogen metabolism, muscle metabolism, physiology and function.

Generally the levels of peptides or their activity will be enhanced in cells and 20 this control may be achieved by causing higher levels of expression of nucleotides sequences encoding for such peptides (optionally linked to molecules which allow them to cross a cell membrane) or through the administration of such peptides or precursors thereof. Alternatively, in some circumstances, it may be more desirable to depress the levels of certain 25 peptides or at least to depress the level of peptides in active form.

Preferred peptides according to the present invention are derivatives of G_M, especially [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] and peptide 63 to 80, and derivatives of M_{110} , especially

[M1-E309], [M1-F38], [M1-A150], [L24-Y496]. Preferably, the peptide is not [E2-R575] or [H100-P350].

Particularly preferred peptides are those derived from amino acid nos. 63 to 93 (including 63-80 and 63-75) of G_M; or from amino acids 1 to 309 (including from 1-150 and 1-38) of M₁₁₀.

The sequence of G_M is given in Chen et al (1994) Diabetes 43, 1234-1241.

In yet further aspect the present invention provides chimeric proteins containing portions of other proteins or peptides or containing additional amino acids.

Additionally the present invention provides nucleotide sequences (optionally in the form of plasmids) encoding the peptides or chimeric proteins of interest. DNA which encodes the polypeptides or peptides of the invention or chimeric proteins can be made based on a knowledge of the peptide sequences disclosed herein. The DNA is then expressed in a suitable host to produce a polypeptide comprising the compound of the invention. Thus, the DNA encoding the polypeptide constituting the compound of the invention may be used in accordance with known techniques, appropriately modified in view of the teachings contained herein, to construct an expression vector, which is then used to transform an appropriate host cell for the expression and production of the polypeptide of the invention. Such techniques include those disclosed in US Patent Nos. 4,440,859 issued 3 April 1984 to Rutter et al, 4,530,901 issued 23 July 1985 to Weissman, 4,582,800 issued 15 April 1986 to Crowl, 4,677,063 issued 30 June 1987 to Mark et al, 4,678,751 issued 7 July 1987 to Goeddel, 4,704,362 issued 3 November 1987 to Itakura et al, 4,710,463 issued 1 December 1987 to Murray, 4,757,006 issued 12 July 1988 to Toole, Jr. et al, 4,766,075 issued 23 August 1988 to Goeddel et al and 4,810,648 issued 7 March 1989 to Stalker, all of which are incorporated herein by reference.

15

20

25

WO 97/37224 PCT/GB97/00898

21

The DNA encoding the polypeptide constituting the compound of the invention may be joined to a wide variety of other DNA sequences for introduction into an appropriate host. The companion DNA will depend upon the nature of the host, the manner of the introduction of the DNA into the host, and whether episomal maintenance or integration is desired.

Generally, the DNA is inserted into an expression vector, such as a plasmid, in proper orientation and correct reading frame for expression. If necessary, the DNA may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognised by the desired host, although such controls are generally available in the expression vector. The vector is then introduced into the host through standard techniques. Generally, not all of the hosts will be transformed by the vector. Therefore, it will be necessary to select for transformed host cells. One selection technique involves incorporating into the expression vector a DNA sequence, with any necessary control elements, that codes for a selectable trait in the transformed cell, such as antibiotic resistance. Alternatively, the gene for such selectable trait can be on another vector, which is used to co-transform the desired host cell.

- Host cells that have been transformed by the recombinant DNA of the invention are then cultured for a sufficient time and under appropriate conditions known to those skilled in the art in view of the teachings disclosed herein to permit the expression of the polypeptide, which can then be recovered.
- 25 Many expression systems are known, including bacteria (for example *E. coli* and *Bacillus subtilis*), yeasts (for example *Saccharomyces cerevisiae*), filamentous fungi (for example *Aspergillus*), plant cells, animal cells and insect cells.
- 30 The vectors include a prokaryotic replicon, such as the ColE1 ori, for

5

10

10

15

20

25

30

propagation in a prokaryote, even if the vector is to be used for expression in other, non-prokaryotic, cell types. The vectors can also include an appropriate promoter such as a prokaryotic promoter capable of directing the expression (transcription and translation) of the genes in a bacterial host cell, such as E. coli, transformed therewith.

A promoter is an expression control element formed by a DNA sequence that permits binding of RNA polymerase and transcription to occur. Promoter sequences compatible with exemplary bacterial hosts are typically provided in plasmid vectors containing convenient restriction sites for insertion of a DNA segment of the present invention.

Typical prokaryotic vector plasmids are pUC18, pUC19, pBR322 and pBR329 available from Biorad Laboratories, (Richmond, CA, USA) and pTrc99A and pKK223-3 available from Pharmacia, Piscataway, NJ, USA.

A typical mammalian cell vector plasmid is pSVL available from Pharmacia, Piscataway, NJ, USA. This vector uses the SV40 late promoter to drive expression of cloned genes, the highest level of expression being found in T antigen-producing cells, such as COS-1 cells.

An example of an inducible mammalian expression vector is pMSG, also available from Pharmacia. This vector uses the glucocorticoid-inducible promoter of the mouse mammary tumour virus long terminal repeat to drive expression of the cloned gene.

Useful yeast plasmid vectors are pRS403-406 and pRS413-416 and are generally available from Stratagene Cloning Systems, La Jolla, CA 92037, USA. Plasmids pRS403, pRS404, pRS405 and pRS406 are Yeast Integrating plasmids (YIps) and incorporate the yeast selectable markers HIS3, TRP1,

WO 97/37224 PCT/GB97/00898

23

LEU2 and URA3. Plasmids pRS413-416 are Yeast Centromere plasmids (YCps)

A variety of methods have been developed to operably link DNA to vectors via complementary cohesive termini. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.

Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors. The DNA segment, generated by endonuclease restriction digestion as described earlier, is treated with bacteriophage T4 DNA polymerase or *E. coli* DNA polymerase I, enzymes that remove protruding, 3'-single-stranded termini with their 3'-5'-exonucleolytic activities, and fill in recessed 3'-ends with their polymerizing activities.

The combination of these activities therefore generates blunt-ended DNA segments. The blunt-ended segments are then incubated with a large molar excess of linker molecules in the presence of an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules, such as bacteriophage T4 DNA ligase. Thus, the products of the reaction are DNA segments carrying polymeric linker sequences at their ends. These DNA segments are then cleaved with the appropriate restriction enzyme and ligated to an expression vector that has been cleaved with an enzyme that produces termini compatible with those of the DNA segment.

Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies Inc, New Haven, CN, USA.

20

25

20

25

A desirable way to modify the DNA encoding the polypeptide of the invention is to use the polymerase chain reaction as disclosed by Saiki et al (1988) Science 239, 487-491.

In this method the DNA to be enzymatically amplified is flanked by two specific oligonucleotide primers which themselves become incorporated into the amplified DNA. The said specific primers may contain restriction endonuclease recognition sites which can be used for cloning into expression vectors using methods known in the art. In relation to the above section on DNA expression the term "polypeptide" includes peptides and chimeric proteins.

Further the present invention provides host cells transformed with suitable expression vectors and able to express the peptides. The host cells may be prokaryotic (e.g. E. coli) or eukaryotic (e.g. yeast, mammalian cell cultures).

Bacterial cells are preferred prokaryotic host cells and typically are a strain of *E. coli* such as, for example, the *E. coli* strains DH5 available from Bethesda Research Laboratories Inc., Bethesda, MD, USA, and RR1 available from the American Type Culture Collection (ATCC) of Rockville, MD, USA (No ATCC 31343). Preferred eukaryotic host cells include yeast and mammalian cells, preferably vertebrate cells such as those from a mouse, rat, monkey or human fibroblastic cell line. Yeast host cells include YPH499, YPH500 and YPH501 which are generally available from Stratagene Cloning Systems, La Jolla, CA 92037, USA. Preferred mammalian host cells include Chinese hamster ovary (CHO) cells available from the ATCC as CCL61, NIH Swiss mouse embryo cells NIH/3T3 available from the ATCC as CRL 1658, and monkey kidney-derived COS-1 cells available from the ATCC as CRL 1650.

Transformation of appropriate cell hosts with a DNA construct of the present

invention is accomplished by well known methods that typically depend on the type of vector used. With regard to transformation of prokaryotic host cells, see, for example, Cohen et al (1972) Proc. Natl. Acad. Sci. USA 69, 2110 and Sambrook et al (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Transformation of yeast cells is described in Sherman et al (1986) Methods In Yeast Genetics, A Laboratory Manual, Cold Spring Harbor, NY. The method of Beggs (1978) Nature 275, 104-109 is also useful. With regard to vertebrate cells, reagents useful in transfecting such cells, for example calcium phosphate and DEAE-dextran or liposome formulations, are available from Stratagene Cloning Systems, or Life Technologies Inc., Gaithersburg, MD 20877, USA.

Electroporation is also useful for transforming cells and is well known in the art for transforming yeast cell, bacterial cells and vertebrate cells.

15

20

10

5

For example, many bacterial species may be transformed by the methods described in Luchansky et al (1988) Mol. Microbiol. 2, 637-646 incorporated herein by reference. The greatest number of transformants is consistently recovered following electroporation of the DNA-cell mixture suspended in 2.5X PEB using 6250V per cm at 25μ FD.

Methods for transformation of yeast by electroporation are disclosed in Becker & Guarente (1990) Methods Enzymol. 194, 182.

Successfully transformed cells, ie cells that contain a DNA construct of the present invention, can be identified by well known techniques. For example, cells resulting from the introduction of an expression construct of the present invention can be grown to produce the polypeptide of the invention. Cells can be harvested and lysed and their DNA content examined for the presence of the DNA using a method such as that described by Southern (1975) J. Mol. Biol.

98, 503 or Berent et al (1985) Biotech. 3, 208. Alternatively, the presence of the protein in the supernatant can be detected using antibodies as described below.

In addition to directly assaying for the presence of recombinant DNA, successful transformation can be confirmed by well known immunological methods when the recombinant DNA is capable of directing the expression of the protein. For example, cells successfully transformed with an expression vector produce proteins displaying appropriate antigenicity. Samples of cells suspected of being transformed are harvested and assayed for the protein using suitable antibodies.

Thus, in addition to the transformed host cells themselves, the present invention also contemplates a culture of those cells, preferably a monoclonal (clonally homogeneous) culture, or a culture derived from a monoclonal culture, in a nutrient medium.

In another aspect the present invention provides antibodies to PP1c which act in an analogous manner to the peptides of interest. Antibodies to the peptides themselves are also provided and these may themselves be used to affect cell metabolism or function.

Peptides in which one or more of the amino acid residues are chemically modified, before or after the peptide is synthesised, may be used providing that the function of the peptide, namely the production of specific antibodies in vivo, remains substantially unchanged. Such modifications include forming salts with acids or bases, especially physiologically acceptable organic or inorganic acids and bases, forming an ester or amide of a terminal carboxyl group, and attaching amino acid protecting groups such as N-t-butoxycarbonyl. Such modifications may protect the peptide from in vivo metabolism. The peptides

15

20

WO 97/37224 PCT/GB97/00898 27

may be present as single copies or as multiples, for example tandem repeats. Such tandem or multiple repeats may be sufficiently antigenic themselves to obviate the use of a carrier. It may be advantageous for the peptide to be formed as a loop, with the N-terminal and C-terminal ends joined together, or to add one or more Cys residues to an end to increase antigenicity and/or to allow disulphide bonds to be formed. If the peptide is covalently linked to a carrier, preferably a polypeptide, then the arrangement is preferably such that the peptide of the invention forms a loop.

According to current immunological theories, a carrier function should be 10 present in any immunogenic formulation in order to stimulate, or enhance stimulation of, the immune system. It is thought that the best carriers embody (or, together with the antigen, create) a T-cell epitope. The peptides may be associated, for example by cross-linking, with a separate carrier, such as serum albumins, myoglobins, bacterial toxoids and keyhole limpet haemocyanin. 15 More recently developed carriers which induce T-cell help in the immune response include the hepatitis-B core antigen (also called the nucleocapsid protein), presumed T-cell epitopes such as Thr-Ala-Ser-Gly-Val-Ala-Glu-Thr-Thr-Asn-Cys (SEQ ID No 1), beta-galactosidase and the 163-171 peptide of interleukin-1. The latter compound may variously be regarded as a carrier or as an adjuvant or as both. Alternatively, several copies of the same or different peptides of the invention may be cross-linked to one another; in this situation there is no separate carrier as such, but a carrier function may be provided by such cross-linking. Suitable cross-linking agents include those listed as such in the Sigma and Pierce catalogues, for example glutaraldehyde, carbodiimide and succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, the latter agent exploiting the -SH group on the C-terminal cysteine residue (if present).

If the peptide is prepared by expression of a suitable nucleotide sequence in a suitable host, then it may be advantageous to express the peptide as a fusion 30

5

20

product with a peptide sequence which acts as a carrier. Kabigen's "Ecosec" system is an example of such an arrangement.

The peptide of the invention may be linked to other antigens to provide a dual effect.

In a yet further aspect the present invention provides a method of diagnosis of abnormalities of cellular metabolism, said method comprising analysing the naturally occurring peptide(s) or the nucleotide sequences encoding therefore and comparing the results to the peptides described herein.

The peptides of the present invention may also be used in diagnosis and this aspect is also covered by the present invention.

The specificity of the catalytic subunit of protein phosphatase-1 (PP1c) is 15 modified by regulatory subunits that target it to particular subcellular locations. For the first time we have identified PP1c-binding domains on G_L and G_M, the subunits that target PP1c to hepatic and muscle glycogen, respectively, and on M₁₁₀, the subunit that targets PP1c to smooth muscle myosin. The peptide G_{M} -(G63-T93) interacted with PP1c and prevented G_{L} from suppressing the 20 dephosphorylation of glycogen phosphorylase, but it did not dissociate G_L from PP1c or affect other characteristic properties of the PP1_{GL} complex. These results indicate that G_L contains two PP1c-binding sites, the region which suppresses the dephosphorylation of glycogen phosphorylase being distinct from that which enhances the dephosphorylation of glycogen synthase. At higher 25 concentrations, G_{M} -(G63-N75) had the same effect as G_{M} -(G63-T93), but not if Ser67 was phosphorylated by cyclic AMP-dependent protein kinase. Thus phosphorylation of Ser67 dissociates G_M from PP1c because phosphate is inserted into the PP1c-binding domain of G_M . The fragments M_{110} -(M1-E309) and M_{110} -(M1-F38), but not M_{110} -(D39-E309), mimicked the M_{110} subunit in 30

WO 97/37224 PCT/GB97/00898 29

stimulating dephosphorylation of the smooth muscle myosin P-light chain and heavy meromyosin *in vitro*. However, in contrast to the M_{110} subunit and M_{110} -(M1-E309), neither M_{110} -(M1-F38) nor M_{110} -(D39-E309) suppressed the PP1c-catalysed dephosphorylation of glycogen phosphorylase. These observations suggest that the region which stimulates the dephosphorylation of myosin is situated within the N-terminal 38 residues of the M_{110} subunit, while the region which suppresses the dephosphorylation of glycogen phosphorylase requires the presence of at least part of the region 39-296 which contains seven ankyrin repeats. M_{110} -(M1-F38) displaced G_L from PP1c, while G_M -(G63-T93) displaced M_{110} from PP1c *in vitro*. These observations indicate that the region(s) of PP1c that interact with G_M/G_L and M_{110} overlap, explaining why different forms of PP1c contain just a single targeting subunit.

We also disclose the structure of PP1c in complex with a portion of a targeting subunit, and show that changing key amino acid residues in the subunit disrupts its interaction with PP1c. These studies identify a critical structural motif in targeting subunits involved in the interaction with PP1c as well as the recognition site on PP1c itself. These findings will facilitate the rational design of agents such as peptides or other forms of small cell-permeant molecules that act by disrupting PP1-targeting subunit interactions. Given the structural motif and the coordinates of the atoms in the crystal structure, it is within the scope of the abilities of a skilled molecular modeller to produce small cell-permeant molecules, which can enter cells naturally, and possess either the same motif, or an analogous structure to give the same functional properties to the molecule. Thus the small cell-permeant molecule can have a precise copy of the motif, or one which is functionally equivalent. The molecule can be a peptide, but other types of molecules, which are transferred across the plasma membrane of cells, may be preferred.

30 Several mammalian PP1c targeting subunits have been isolated and

10

15

20

10

15

20

characterised, including the G_M subunit that targets PP1c to both the glycogen particles and sarcoplasmic reticulum of striated muscles (Tang et al., 1991; Chen et al., 1994), the G_L subunit that targets PP1c to liver glycogen (Moorhead et al., 1995; Doherty et al., 1995), the M₁₁₀ subunits responsible for the association of PP1c with the myofibrils of skeletal muscle (Moorhead et al., 1994; Alessi et al., 1992) and smooth muscle (Alessi et al., 1992; Chen et al., 1994), the p53 binding protein p53BP2 (Helps et al., 1995) and the nuclear protein NIPP-1 (Jagiello et al., 1995; Van Eynde et al., 1995). PP1c is also reported to interact with other mammalian proteins such as the retinoblastoma gene product (Durphee et al., 1993), an RNA splicing factor (Hirano et al., 1996), ribosomal proteins L5 (Hirano et al., 1995) and RIPP-1 (Beullens et al., 1996), a 110 kDa nuclear protein yet to be identified (Jagiello et al., 1995), kinesin-like proteins and small cytosolic proteins, inhibitor-1, DARPP-32 and inhibitor-2 (Cohen, 1989; Cohen, 1992, Hubbard and Cohen, 1993). Moreover, a number of distinct PP1-regulatory subunits have been identified in yeast (reviewed by Stark, 1996). We attempted to identify which regions of the G_M and M₁₁₀ subunits were involved in binding to PP1c. These studies led to the identification of relatively small peptides from each targeting subunit that were capable of interacting with PP1c. Peptides comprising residues 63-93, 63-80 and 63-75 of G_M bound to PP1c, dissociating it from G_L , while the N-terminal 38 residues of the M_{110} subunit ($M_{110}[1-38]$) mimicked the intact M₁₁₀ subunit in enhancing the rate at which PP1c dephosphorylated the 20 kDa myosin light chain (MLC₂₀) subunit of smooth muscle myosin (Johnson et al., 1996).

25

The present invention thus provides peptides comprising the N-terminal 38 residues of the M_{110} subunit, and those comprising residues 63-93, 63-80 and 63-75 of G_M .

30 Phosphorylation of Ser 67 of G_M by protein kinase A (PKA) disrupts the

interaction of G_M with PP1c (Dent *et al.*, 1990) and a similar disruption is also observed following the phosphorylation of Ser 67 of the $G_M[63-75]$ peptide (Johnson *et al.*, 1996). The finding that $G_M[63-93]$ disrupted the interaction between PP1c and the M_{110} subunit, and prevented M_{110} from enhancing the MLC_{20} phosphatase activity of PP1c implies that the binding of M_{110} and G_M to PP1c are mutually exclusive.

Thus the invention contemplates the substitution or modification of an amino acid in any such peptide.

10

15

20

25

5

To understand the basis for the recognition by PP1c of regulatory subunits, and peptides derived from these subunits, we co-crystallised a complex of PP1c with the $G_M[63-75]$ peptide and determined the structure at 3.0 Å resolution. These experiments have demonstrated that residues 64 to 69 of the peptide are bound in an extended conformation to a hydrophobic channel within the C-terminal region of PP1c. The residues in $G_M[63-75]$ that interact with PP1c lie in an Arg/Lys-Val/Ile--Xaa-Phe motif common to $M_{110}[1-38]$ and almost all known mammalian PP1-binding proteins. Substituting Val or Phe by Ala in the $G_M[63-75]$ peptide, and deleting the VxF motif from the $M_{110}[1-38]$ peptide, abolished the ability of both peptides to interact with PP1c. These findings identify a recognition site on PP1c for a critical structural motif involved in the interaction of targeting subunits with PP1.

Particularly preferred peptides are derived from residues 63 to 69 of G_M and comprise the motif Arg/Lys-Val/Ile-Xaa-Phe. Peptides derived from M_{110} (or any other source) and also including the motif are also included in the scope of the invention.

Preferred peptides may also be substantially or wholly made up of hydrophobic residues.

15

The identification of this area of PP1c necessary for binding to the various subunits allows the design of agents to specifically disrupt the interaction at this area. Such disruption may, for example, increase the phosphorylation of the protein phospholamban in cardiac muscle and thus increase the force and rate of contraction of the muscle. This provides a possible treatment for congestive heart failure. Also, the specific disruption of the complex of PP1 and p53BP2 may prevent PP1 from dephosphorylating the tumour suppressor protein p53, thus enhancing phosphorylation of p53, its ability to bind to DNA, and thus its ability to act as a tumour suppressor.

The identification of the key motif in targetting subunits that bind to PP1 also provides the means to produce targetting subunits that can no longer interact with PP1. Over-expression of these mutant targetting subunits provides a powerful new way to determine the functions of different targetting subunits in vivo.

Abbreviations

20 PP1, protein phosphatase-1

PP1c, catalytic subunit of PP1

PP1, -isoform of PP1c

PP1_G, glycogen-associated form of PP1

PP1_M, myosin-associated form of PP1

25 G_M, glycogen-binding subunit of PP1 from striated muscle

G_L, glycogen-binding subunit of PP1 from liver

NIPP1, nuclear inhibitor of PP1

DARPP, dopamine and cyclic AMP-regulated phosphoprotein

 M_{21} and M_{110} , myofibrillar-binding subunits of PP1 with molecular masses of

30 21kDa and 110 kDa respectively.

PKA, cyclic AMP-dependent protein kinase
PhMeSO₂F, phenylmethylsuphonyl fluoride
GST, glutathione-S-transferase
MLC₂₀, myosin light chain of molecular mass 20 kDa.

5

10

15

25

The invention is now described in more detail by reference to the following Examples and Figures wherein:

Figure 1 shows that the N-terminal 118 residues of human G_M interact with PP1c.

GST- G_M fusion proteins were electrophoresed on 10% SDS/polyacrylamide gels and stained with Coomassie blue (lanes 1-3) or, after transfer to nitrocellulose, probed with digoxygenin-labelled PP1 γ (lanes 4-6) as in [9]. Lanes 1 and 4, GST- G_M -(E2-D118); Lanes 2 and 5, GST- G_M -(H100-P350); Lanes 3 and 6, GST. The positions of the marker proteins glycogen phosphorylase (97 kDa), bovine serum albumin (66 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa) and soybean trypsin inhibitor (20 kDa) are indicated.

Figure 2 shows that synthetic peptides between residues 63 and 93 of rabbit G_M stimulate the phosphorylase phosphatase activity of PP1_{GL}.

Hepatic glycogen particles were diluted in assay buffer to 0.6 phosphorylase phosphatase (PhP) mU per ml, incubated for 15 minutes at 30°C with G_{M} -(G63-T93) (closed circles), G_{M} -(G63-K80) (open circles) or G_{M} -(G63-N75) (closed triangles) and assayed as described in Example 1. The open triangles show the effect of G_{M} -(G63-N75) which had been phosphorylated at Ser67 by PKA (p G_{M} -(G63-N75)). Similar results were obtained in four experiments.

Figure 3 shows that removal of the M₂₁ subunit from smooth muscle PP1_M does

not affect its MLC₂₀ phosphatase:phosphorylase phosphatase activity ratio.

- (A) Purified smooth muscle $PP1_M$ was electrophoresed on a 12% SDS/polyacrylamide gel, and either stained with Coomassie blue (lane 1) or immunoblotted [32] with antibodies specific for the M_{21} subunit (lane 2) or the M_{110} subunit (lane 3). The positions of the M_{110} subunit, the M_{21} subunit and PP1c are marked.
- (B) Purified PP1_M (lane 1) or PP1_M lacking the M₂₁ subunit (lane 2) were electrophoresed on a 12% SDS polyacrylamide gel, transferred to nitrocellulose and immunoblotted with mixed, affinity-purified antibodies to the M₁₁₀ and M₂₁ subunits. The M₁₁₀ and M₂₁ subunits are marked. The activity ratio, MLC₂₀ phosphatase (MP):phosphorylase phosphatase (PhP) of the two preparations is also shown. Similar results were obtained in three different experiments. The activity ratio MP:PhP of PP1c is 0.07.
 - Figure 4 shows expressed fragments of the M_{110} subunit before and after cleavage of the GST-fusion proteins with thrombin.
- 15% electrophoresed Purified **GST-fusion** proteins were 20 SDS/polyacrylamide gel and stained with Coomassie blue. Lane 1, $GST-M_{110}-(D39-E309);$ $GST-M_{110}-(M1-A150)$; Lane 2, GST- M_{110} -(M1-E309); Lane 4, GST- M_{110} -(L24- Y496). Lanes 5-8 are the same as Lanes 1-4 except that the fusion proteins were cleaved with thrombin. The positions of the marker proteins glycogen phosphorylase (97 kDa), bovine 25 serum albumin (66 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa), GST (26 kDa) and soybean trypsin inhibitor (20 kDa) are marked.
- Figure 5 shows the effect of M_{110} subunit fragments on PP1c-catalysed dephosphorylation of MLC₂₀ and glycogen phosphorylase

BNSDOCID: <WO___9737224A1_

10

A,B; Effects of M_{110} -(M1-E309) (closed circles), M_{110} -(M1-F38) (open circles) and M_{110} -(D39-E309) (open triangles) on the MLC₂₀ phosphatase (B) and phosphorylase phosphatase (B) activities of PP1c were measured after incubating PP1c for 15 minutes at 30°C with each fragment. The results are presented as a percentage of those obtained in experiments where the M_{110} fragments were omitted.

C,D; The effect of M_{110} -(M1-A150) (open circles) and M_{110} -(L24-Y496) (closed circles) on the MLC₂₀ phosphatase (C) and phosphorylase phosphatase (D) activities of PP1c were measured as in A,B.

Figure 6 shows the effect of M_{110} -(M1-F38) and M_{110} -(M1-E309) on the dephosphorylation of glycogen synthase by PP1c.

- The glycogen synthase phosphatase activity of PP1c was measured after a 15 minute incubation at 30°C with the indicated concentrations of M₁₁₀-(M1-F38) and M₁₁₀-(M1-E309). Similar results were obtained in three different experiments.
- Figure 7 shows that G_{M} -(G63-T93) dissociates PP1_M.
 - (A) The phosphorylase phosphatase (PhP) activity of $PP1_M$ (closed circles) and its MLC_{20} phosphatase (MLCP) activity (open circles) were assayed after preincubation for 15 minutes at 30°C with the indicated concentrations of G_M -(G63-T93). Activities are shown relative to control incubations in which G_M -(G63-T93) was omitted. Similar results were obtained in three experiments.
- (B,C) PPIM was incubated for 15 minutes at 30° C in the absence (B) and presence (C) of 10 M G_M-(G63-T93), then passed through a 30 x 1 cm column

of Superose 12 equilibrated at ambient temperature in 50 mM Tris/HC1 pH 7.5, 0.2M NaC1, 0.1 mM EGTA, 0.1% (by vol) 2-mercaptoethanol, 0.03% (by mass) Brij 35 in the absence (B) or presence (C) of 1 μ M G_M-(G63-T93). Fractions (0.25 ml) were assayed for MLC₂₀ phosphatase (MLCP) in B and for phosphorylase phosphatase (PhP) activity in C. The arrows denote the position of ferritin (450 kDa) and ovalbumin (43 kDa).

Figure 8 shows that $G_{M^-}(G63-T93)$ prevents $M_{110^-}(M1-F38)$ or $M_{110^-}(M1-E309)$ from modulating the substrate specificity of PP1c.

10

- (A) The MLC₂₀ phosphatase activity of PP1c was assayed after incubation for 15 minutes at 30°C in the presence or absence of 1 μ M G_M-(G63-T93) and either 0.1 μ M M₁₁₀-(M1-F38) or 0.1 nM M₁₁₀-(M1-E309).
- 15 (B) The phosphorylase phosphatase activity of PP1c was assayed as in A in the presence or absence of 1 μ M G_M-(G63-T93) and 1.0 nM M₁₁₀-(M1-E309). The results are presented (SEM for three experiments) as a percentage of the PP1c activity measured in the absence of G_M-(63-T93), M₁₁₀-(M1-F38) or M₁₁₀-(M1-E309).

20

Figure 9 shows the location of PP1c-binding domains on the G_M and M_{110} targeting subunits and their effects on PP1 activity.

The hatched boxes in the M_{110} subunit denote the positions of the ankyrin repeats.

Figure 10 shows a stereo view of the electron density corresponding to the peptide. A: Initial 2-fold averaged electron map. B: map calculated using 3Fo-2Fc coefficients and phases calculated from the final refined model. Displayed using TURBO-FRODO.

WO 97/37224 PCT/GB97/00898

Figure 11 shows the structure of PP1- $G_M[63-75]$ peptide complex. A. Stereo view of a ribbons diagram of PP1c to indicate the position of the peptide binding channel at the interface of the two β -sheets of the β -sandwich. The peptide atoms are represented as ball-and-stick (MOLSCRIPT, Kraulis, 1991).

- 5
- B. View of the surface of PP1c to show the hydrophobic peptide binding channel. Residues 63' to 69' (GRRVSFA) (SEQ ID No 2) of the G_M [63 75] peptide are shown as sticks. Drawn with TURBO-FRODO.
- 10 C. Stereo view of the G_M[63-75] peptide at the recognition site of PP1 to indicate polar interactions between peptide and protein and the formation of the β-sheet between Ser 67' Ala 69' and 14 of PP1. Drawn with TURBO-FRODO.
- D. Solvent accessible surface and surface electrostatic potential of PP1-G_M[63 75] peptide complex calculated with PP1 coordinates alone and showing the peptide as a stick representation in the vicinity of the peptide binding site. The figure was created with GRASP (Nicholls and Honig, 1991). The protein surface is coloured according to electrostatic potential from red (most negative)
 to blue (most positive). The figure shows pronounced negative electrostatic potential in the region surrounding the N-terminus of the peptide binding site that results from seven conserved acidic residues.
- E. Details of the structure of the peptide binding site to show hydrophobic
 interactions between PP1c and Val 66', Phe 68' and Ala 69' of the G_M[68-75] peptide (MOLSCRIPT, Kraulis, 1991).
 - Figure 12 shows a sequence alignment of PP1-regulatory subunits in the vicinity of the (R/K)(V/I) x F motif. (A) mammalian PP1-binding subunits.
- 30 G_M, Tang et al., 1991; GL, Docherty et al., 1995; G_L-related protein, Doherty

et al., 1996; p53BP2, Helps et al., 1995; NIPP-1, Bollen et al., 1995; splicing factor PSF, Hirano et al., 1996; M₁₁₀ subunit, Chen et al., 1994; inhibitor-1, Aitken et al., 1982; DARPP-32, Williams et al., 1986. (B) PP1-binding proteins in S. cerevisiae. GAC1 (Francois et al., 1992); PIG2 GIP1, GIP2, YIL045W (Tu et al., 1996); REG1, REG2 (Tu and Carlson, 1995; Frederick and Tatchell, 1996); SCD5 (Nelson et al 1996; Tu et al 1996). The region homologous to the RRVSFA (SEQ ID No 3) motif in G_M which intersects with PP1c is boxed.

Figure 13 shows the disruption of the interactions between PP1c and the G₁ and 10 M₁₁₀ subunits by a synthetic peptide from p53BP2. (A) PP1_M from chicken gizzard smooth muscle (Alessi et al., 1992) was diluted and incubated for 15 m i n 3 0 ° C with a t t h e peptide (SEQ GKRTNLRKTGSERIAHGMRVKFNPLALLLDSC ID No corresponding to the sequence in p53BP2 that contains the RVxF motif. 15 Reactions were started with either ³²P-labelled MLC₂₀ or glycogen phosphorylase and the MLC₂₀ phosphatase (open circles) and phosphorylase phosphatase (PhP, closed circles) activities were determined. The results are expressed as a percentage of the activity determined in control incubations where the p53BP2 peptide was omitted (100%). Similar results were obtained 20 in three separate experiments. (B) same as (A) except that the peptide was incubated with diluted hepatic glycogen particles containing PP1-G_L before measuring the PhP activity. Similar results were obtained in three separate experiments.

25

30

Figure 14 shows the effect of $M_{110}[M1-F38]$ and $M_{110}[M1-K35]$ on the PP1c-catalysed dephosphorylation of MLC₂₀ $M_{110}[M1-F38]$ (1-38, open circles) or $M_{110}[M1-K35]$ (1-35, closed circles) were incubated with PP1c for 15 min at 30°C and reactions started with the ³²P-labelled MLC₂₀ substrate. The results are expressed as a % of the activity determined in control incubations where

WO 97/37224 PCT/GB97/00898

the M_{110} peptides were omitted (100%). Similar results were obtained in three separate experiments.

39

Figure 15 shows the effect of synthetic peptides derived from the M_{110} and G_M subunits on the phosphorylase phosphatase activity of PP1- G_L . (A) Hepatic glycogen protein particles containing PP1- G_L were diluted and incubated for 15 min at 30°C with the indicated concentrations of either $M_{110}[M1\text{-}F38]$ (open circles) or $M_{110}[M1\text{-}K35]$ (closed circles) and the phosphatase reactions were initiated by addition of ^{32}P -labelled glycogen phosphorylase. The results are expressed as a percentage of the activity determined in control incubations where the M_{110} peptides were omitted. Similar results were obtained in three separate experiments. (B) The experiment was carried out as in (A), except that the peptide $G_M[G63\text{-}N75]$ ("wild type", WT) and variants in which either Val 66 (V66A) (closed triangles) or Phe 68 (F68A) (closed circles) were changed to Ala, were used instead of the M_{110} peptides. Similar results were obtained in three separate experiments.

Figure 16 shows a stereo view of a ribbons diagram of a model of PP1-phospho-inhibitor-I complex. The side chains of Ile 10, Phe 12 and pThr 35 of phospho-inhibitor-I are shown with the main-chain atoms of residues 8 to 36 of the inhibitor indicated as a shaded ribbon. Drawn with MOLSCRIPT (Kraulis 1991).

Figure 17 shows a comparison of rat and chicken gizzard M_{110} and M_{21} subunits.

Vertical lines indicate identical residues, colons denote similar residues in the rat and chicken M_{110} sequences and deletions are shown by dots. (A) Comparison of M_{110} subunits. Underlined residues in the rat M_{110} subunit (Rat1) are deleted in some rat aorta forms and underlined residues in the

10

15

20

25

chicken M_{110} subunit (Ch1) are deleted in some chicken gizzard forms [5, 8]. Dashed lines above residues indicate amino acids deleted in the rat kidney M_{110} subunit [9]. The alternative C-terminal sequences of rat uterus M_{110} subunit are shown as Rat1 and Rat2. Leucine residues in the C-terminal leucine zipper motif are double underlined. (B). The C-terminal sequence of the M_{110} subunit is structurally related to the M_{21} subunit. The sequence of the chicken M_{21} subunit [5] is compared with the C-terminal sequences of Rat2 and Ch1 from A. Identities between Ch1 and Rat2 are shown in boldface type.

- Figure 18 shows immunoprecipitation and immunoblotting of PP1_M in extracts from chicken gizzard myofibrils.
 - A. Antibodies specific for the M_{110} and/or M_{21} subunits immunoprecipitate most of the myosin P-light chain phosphatase activity in myofibrillar extracts. PP1_M was immunoprecipitated with either control IgG, antibody raised against the PP1_M holoenzyme, antibody specific for the M₁₁₀ subunit or antibody specific for the M_{21} subunit, as described under Methods in Example 3. The figure shows activity present in the supernatant (S, open bars) or pellet (P, filled bars) as a percentage of that measured before centrifugation. The results shown are the average (± S.E.M.) for three separate experiments each assayed in duplicate. B, The M_{110} and M_{21} subunits are present in similar molar proportions in myofibrillar extracts and in purified PP1_M. 10 ng (track 1) or 3 ng (track 3) of purified PP1_M or 12 μ g (track 2) or 3.6 μ g (track 4) of myofibrillar extract was electrophoresed on a 12% SDS/polyacrylamide gel, transferred to nitrocellulose and immunoblotted with mixed affinity-purified antibodies to the M_{110} and M_{21} subunits as in [22]. The positions of the two subunits are marked. The results indicate that PP1_M comprises about 0.1% of the myofibrillar protein.
- 30 Figure 19 shows the identification of the region on the M₁₁₀ subunit that

15

20

20

25

interacts with the M₂₁ subunit.

A) PP1_M 5 μ g (track 1), 10 μ g bacterial extract containing M₁₁₀-(R714-I1004) (track 2), MBP-M₁₁₀-(R714-I1004) 1 μ g (track 3), MBP-M₁₁₀-(R714-L934) 1 μ g (track 4), MBP-M₁₁₀-(K933-I1004) 1 μ g (track 5), MBP 1 μ g (track 6), M₁₁₀-(M1-E309) 2 μ g (lane 7) and M₁₁₀-(M1-S477) 2 μ g (track 8) were run on a 12% SDS/polyacrylamide gel and stained with Coomassie Blue. B) same as A) except that 10-fold less protein was electrophoresed and after transfer to nitrocellulose the proteins were probed with digoxigenin-labelled M₂₁ subunit (0.2 μ g/ml). C) same as B) except that, after electrophoresis, the proteins were transferred to nitrocellulose and probed with digoxigenin-labelled M₂₁-(M1-L146) (0.2 μ g/ml).

Figure 20 shows the identification of the region of the M_{21} subunit involved in interaction with the M_{110} subunit and in dimerization.

A) GST-M₂₁ 5 μ g (track 1), M₂₁ 5 μ g (track 2), M₂₁-(M1-L146) 5 μ g (track 3), M₂₁-(M1-E110) 20 μ g (track 4) and M₂₁-(E110-K186) 5 μ g (track 5) were run on 16.5% polyacrylamide gels and stained with Coomassie Blue. The marker proteins ovalbumin (43 kDa) and carbonic anhydrase (29 kDa) are indicated.

B) GST-M₂₁ 0.5 μ g (track 1), M₂₁ 0.5 μ g (track 2), M₂₁-(M1-L146) 0.5 μ g (track 3), M₂₁-(M1-E110) 5 μ g (track 4) and M₂₁-(E110-K186) 5 μ g (track 5) were electrophoresed as in A) and after transfer to nitrocellulose the blots were probed with digoxigenin-labelled MBP-M₁₁₀-(K933-I1004) (0.2 μ g/ml). C) same as B) except that, after electrophoresis, the proteins were transferred to nitrocellulose and probed with digoxigenin-labelled M₂₁ subunit (0.2 μ g/ml).

Figure 21 shows that the M_{21} subunit and M_{21} -(M1-L146) interact with the M_{110} subunit and themselves, but not with PP1.

PP1_M (0.5 μ g) was electrophoresed on a 12% SDS/polyacrylamide gel, transferred to nitrocellulose and probed with digoxigenin-labelled M₂₁ subunit (0.2 μ g/ml) (track 1) or digoxigenin-labelled M₂₁-(M1-L146) (0.2 μ g/ml) (track 2). The positions of the M₁₁₀ subunit, the M₂₁ subunit and PP1c are marked.

5

10

15

Figure 22 shows that removal of the M_{21} subunit from smooth muscle $PP1_M$ does not prevent it from being pelleted with myosin.

The PP1 catalytic subunit (PP1c), PP1_M, or PP1_M lacking the M_{21} subunit, PP1_M(ΔM_{21}), each at 30 nM, were incubated for 15 min at 0°C with 1 μ M myosin and centrifuged (see Methods of Example 3). The figure shows the myosin P-light chain phosphatase activity present in the supernatant (S, open bars) or pellet (P, filled bars) as a percentage of that measured before centrifugation. The results shown are the average (\pm S.E.M.) for three separate experiments each assayed in duplicate.

Figure 23 shows the identification of a region of the M_{110} subunit which binds to myosin.

(A); PP1_M, M₁₁₀-(M1-S477) and GST-M₁₁₀-(M377-K976), each at 30 nM were incubated for 15 min at 0°C with 1 μM myosin and centrifuged. The supernatants (S), resuspended pellets (P) and the suspension before centrifugation (T, total) were electrophoresed on 12% SDS/polyacrylamide gels, transferred to nitrocellulose and immunoblotted with antibodies raised against the PP1_M holoenzyme. No protein was pelleted in the absence of myosin (not shown). The positions of the marker proteins myosin heavy chain (200 kDa), glycogen phosphorylase (97 kDa), bovine serum albumin (66 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa) and soybean trypsin inhibitor (20 kDa) are indicated. (B) The experiments were carried out as in (A), except that the M₁₁₀ fragments and M₂₁ subunit were used at 100 nM, the 8.5 kDa

WO 97/37224 PCT/GB97/00898

43

 M_{110} -(K933-I1004) fragment was electrophoresed on a 16.5% polyacrylamide gel and immunoblotting was carried out with affinity purified antibodies (see Methods). A small amount of M_{110} -(R714-I1004) pelleted in the absence of myosin. This was probably due to aggregation in the bacterial extract since this did not happen when it was complexed to the M_{21} subunit (data not shown). No other protein was pelleted in the absence of myosin.

Figure 24 shows that the isolated M_{21} subunit binds to myosin.

- (A); Myosin (1 μM) was mixed with 50 μM, 20 μM or 10 μM M₂₁ subunit to give the molar ratios M₂₁:myosin dimer indicated. After 15 min at 0°C, the solutions were centrifuged and the supernatants (S), resuspended pellets (P) and the suspension before centrifugation (T, total) were electrophoresed on 12% SDS/polyacrylamide gels and stained with Coomassie blue. The positions of the myosin heavy chain (MHC) and the M₂₁ subunit are indicated. The myosin light chains migrate faster than the M₂₁ subunit and are not visible at these loadings.
- (B); Myosin (track A) was purified from chicken gizzard, and the myosin "rod" domain (track B) and light meromyosin (track C) produced by digestion 20 of myosin with papain and chymotrypsin, respectively. These three proteins, all at 1 μ M, were then mixed with M_{21} subunit (track D) to give a molar ratio M₂₁:myosin dimer of 10:1 and, after 15 min at 0°C, the solutions were centrifuged and the supernatants (S), resuspended pellets (P) and the suspension 25 before centrifugation (T, total) were electrophoresed 12% SDS/polyacrylamide gels and stained with Coomassie blue. The slightly faster migrating band in the M21 subunit preparation was shown by amino acid sequencing to be N-terminally truncated commencing at residue 16. (C); same as (B), except that M_{21} -(M1-L146) (track D) replaced the M_{21} subunit.

Figure 25 gives a schematic representation of the regions on the M_{110} subunit from chicken gizzard that interact with PP1c, myosin and the M_{21} subunit.

PP1c binds to the KVKF (SEQ ID No 5) motif between residue 35 and 38, just N-terminal to the seven ankyrin repeats (hatched vertical lines) that suppress the dephosphorylation of substrates other than myosin. Residues 1-38 of the M_{110} subunit enhance the dephosphorylation of myosin. The M_{21} subunit binds to the C-terminal 72 residues of the M_{110} subunit which are 43% identical in amino acid sequence to residues 87-161 of the M_{21} subunit. The dephosphorylated form of myosin binds to M_{110} -(R714-I1004) but not to M_{110} -(K933-I1004), suggesting that myosin binds N-terminal to the M_{21} subunit.

Example 1: Identification of protein phosphatase 1-binding domains on the glycogen and myofibrillar targeting subunits

15

20

25

30

10

5

MATERIALS AND METHODS

Materials.

The myosin-associated form of PP1 (PP1_M) was from chicken gizzard [9] and the glycogen-associated form of PP1 (PP1_G) from rabbit skeletal muscle [21]. The β isoform of PP1c was released from PP1_G by incubation for 2 hours in 2M LiBr, then purified by gel-filtration on a 30 x 1 cm column of Superose 12 (Pharmacia, Milton Keynes, U.K.) in the presence of 0.5M LiBr. Glycogen protein particles from rat liver [22] were used as the source of hepatic PP1_G. Digoxygenin-labelled PP1c (γ_1 -isoform, hereafter termed PP1) was prepared as in [9]. G_L was expressed in *E. coli* as a glutathione-S-transferase (GST) fusion protein [7], termed GST-G_L. The catalytic subunit of PP2A from bovine heart (PP2AC) was provided by Dr R. MacKintosh in this Unit. The phosphorylatable myosin light chain (MLC₂₀) and heavy meromyosin from chicken gizzard were a gift from Dr M. Ikebe (Case Western Reserve

University, Cleveland, USA). Thrombin and benzamidine-Agarose were purchased from Sigma (Poole, UK).

Peptide synthesis.

Peptides were synthesised on an Applied Biosystems 430A peptide synthesiser 5 and their purity and concentration established by high performance liquid chromatography, mass spectrometry and amino acid analysis. The sequence of rabbit G_{M} -(G63-T93) is GRRVSFADNFGFNLVSVKEFDTWELPSVSTT (SEO ID No 6) and the sequence of M_{110} -(M1-F38) MKMADAKQKRNEQLKRWIGSETDLEPPVVKRQKTKVKF (SEQ ID No 10 The peptide G_M-(G63-T93) was cleaved with Lys-C endoproteinase (Boehringer) and the peptide G_M-(E81-T93) thus generated was purified on a C₁₈ column. The peptides G_{M} -(G63-K80) and G_{M} -(G63-N75), were synthesised, and the latter phosphorylated at Ser67 with the catalytic subunit of cyclic AMP-dependent protein kinase (PKA), then bound to a 1 ml C₁₈ column 15 equilibrated in 0.1% (v/v) trifluoroacetic acid, washed with 0.1% trifluoroacetic acid to remove excess ATP, eluted with 0.1% trifluoroacetic acid containing 70% acetonitrile, dried and dissolved in water. The peptide G_M-(S40-Y55) was a gift from Dr Bruce Kemp (St Vincent's Institute, 20 Australia).

Preparation of phosphorylated proteins and phosphatase assays.

³²P-labelled rabbit skeletal muscle phosphorylase a (containing 1.0 mol phosphate per mol subunit) was prepared by phosphorylation with phosphorylase kinase [23], ³²P-labelled rabbit skeletal muscle glycogen synthase (containing 1.5 mol/mol subunit in the sites 3 region) was prepared by phosphorylation with glycogen synthase kinase-3 [24]), ³²P-labelled chicken gizzard MLC₂₀ and ³²P-labelled chicken gizzard heavy meromyosin (containing 1.0 mol phosphate per mol subunit) were prepared by phosphorylation with smooth muscle myosin light chain kinase [9]. The dephosphorylation of

25

15

20

phosphorylase a (10 μ M), glycogen synthase (1 μ M) and MLC₂₀ (1 μ M) and heavy meromyosin (1 μ M) was carried out as in [24]. One unit of activity (U) was that amount which released 1 mole of phosphate in one minute.

Construction of vectors for the expression of N-terminal fragments of the G_M subunit as glutathione-S-transferase (GST) fusion proteins in E. coli.

 G_{M} -(E2-R575) was produced by inserting a SmaI-SmaI restriction fragment, encoding amino acids 2-575 of human G_{M} , from clone H1G11 [5] into the SmaI site of pGEX-KG (Pharmacia, Milton Keynes, U.K.). This resulted in the addition after residues 2-575 of amino acids EFPVVVVEF (SEQ ID No 8) before the stop codon. G_{M} -(E2-P243) was made by deleting an NcoI-HindIII fragment of the G_{M} -(E2-R575) construct, resulting in termination after residue 243. G_{M} -(E2-D118), encoding amino acids 2-118, with a C-terminal addition of QLNSS was produced by deleting a BglII-HindIII fragment of the G_{M} -(E2-R575) construct. G_{M} -(H100-P350) encoding amino acids 100-350 was made by inserting an EcoRI-HindIII digested PCR fragment prepared using primers

5' GCCGAATTCACACAGAAGAATATGTTTTAGCC 3' (SEQ ID No 9) and 5' GCCGAAGCTTATGGAAAATTGACTGGATCTGTTG 3' (SEQ ID No 10) into the same sites of pGEX-KG. Restriction sites in the primers are underlined.

Construction of vectors for the expression of the chicken gizzard M_{21} subunit in E. coli.

The entire coding region (M1-K186) of the M_{21} subunit [10] was amplified by PCR using primers

- 5' CGCGCATATGTCGTCGCTGTTCACCAGG 3' (SEQ ID No 11) and
- 30 5' GGCGGATCCCTACTTGGAGAGTTTGC 3' (SEQ ID No 12), containing

restriction sites NdeI and BamH1 (underlined). After cleavage with the restriction enzymes, the PCR fragment was cloned into the same sites of the bacterial expression vector pT7-7.

5 Production of fragments of the chicken gizzard and rat aorta M_{110} subunits.

The C-terminal 291 residues M_{110} -(R714-I1004) of the chicken gizzard M_{110} subunit were amplified by PCR using a primer

5' AGGAAGAATTCGTTCCACACGAAC 3' (SEQ ID No 13) containing an EcoRI restriction site (underlined) and a KS primer in the Bluescript vector of the cDNA clone [10]. The EcoRI digested PCR fragment was subcloned into the same site of pT7-7.

aorta M₁₁₀ fragments were produced as GST-fusion proteins. 15 M_{110} -(M1-A150) was amplified by PCR using primers A (5' CCTAGCCCGGGGATGAAGATGGCGGAC 3') (SEQ ID No 14) and B (5' GCGGAAGCTTATGCTTCCTCCTCTGCAATATC 3') (SEQ ID No 15), containing Smal and HindIII restriction sites (underlined) and the Smal-HindIII digested PCR fragment subcloned into the same sites of pGEX-KG. 20 M₁₁₀-(M1-E309) was produced by subcloning a SmaI-HindIII digested PCR fragment amplified using primers and CTAGAAGCTTCCATATTTGCTGTTGATTCAATC 3') (SEQ ID No 16) into the same sites of pGEX-KG. This resulted in one amino acid (A) being added after E309. M₁₁₀-(D39-E309) was produced by subcloning a SmaI-HindIII 25 digested **PCR** fragment amplified using primers D (5' CCTAGCCCGGGGACGATGGCGCCGTCTTCC 3') (SEQ ID No 17) and C into the same sites of pGEX-KG. An M₁₁₀-(L24-K976) was prepared by inserting a XhoI-XhoI restriction fragment of the entire M₁₁₀ cDNA in Bluescript into XhoI site of pGEX-KG, and M₁₁₀-(L24-Y496) expressed by deleting a NdeI-NdeI fragment of the L24-K976 construct and filling the 30

10

15

20

25

30

overhanging ends before ligating them. This resulted in the addition after Y496 of amino acids MVAD (SEQ ID No 18) before the stop codon. The sequence of all subclones produced after PCR amplification were verified using an Applied Biosystems 373A automated DNA sequencer and Taq dye terminator cycle sequencing according to the manufacturer's instructions.

Expression of proteins in E.coli.

All constructs were expressed in *E. coli* strain BL21(DE3)plysS. Cultures were grown at 37°C in Luria-Bertani medium in the presence of 100 μg/ml ampicillin and 30 μg/ml chloramphenicol to an A600 of 0.4-0.6, and induced with 50 μg/ml isopropylthiogalactoside for 8 hours at 25°C or overnight at ambient temperature. After centrifugation for 10 minutes at 7000 x g (4°C), cells from one litre of culture were resuspended in 20 ml of 50 mM Tris-HCl pH 8.0, 0.1 M NaCl, 1 mM EDTA, 0.1% (by vol) 2-mercaptoethanol, 0.2 mM phenylmethylsulphonylfluoride (PhMeSO₂F), 1 mM benzamidine (buffer A) and frozen at -80°C. After thawing, sodium deoxycholate (1 mg/ml), 8 mM MgSO4 and 10 g/ml DNAase I were added, the extract incubated until it was no longer viscous, then made 6 mM in EDTA, 1 mM in benzamidine and 0.2 mM in PhMeSO₂F and centrifuged for 10 minutes at 10,000 x g. The soluble GST-fusion proteins were then purified from the supernatant by affinity chromatography on glutathione-Sepharose (Pharmacia).

The M_{21} subunit and M_{110} -(R714-I1004) C-terminal fragment from chicken gizzard M_{110} subunit, which were used for affinity purification of the anti- M_{21} and anti- M_{110} antibodies (see below) were obtained in inclusion bodies and therefore recovered in the pellets after centrifuging E. coli extracts at 10,000 x g. M_{110} -(R714-I1004) was solubilised by resuspension in Buffer A containing 0.5% (by mass) Triton X-100 and was >95% pure. The M_{21} subunit was not solubilised by this procedure but, after washing the pellets in 0.5% Triton

X-100, was dissolved by sonication in 0.5% trifluoroacetic acid; its purity was about 20%.

M₁₁₀ GST-fusion proteins (1-9 mg/ml in 50 mM Tris/HCl, 2.5 mM CaCl2, 150 mM NaCl and 0.1% (by vol) 2-mercaptoethanol) were cleaved by incubation for 20 minutes at 30°C with 20 μg/ml thrombin. Benzamidine-Agarose (0.2 ml) was added and, after incubation (with rotation) for 30 minutes at ambient temperature, the benzamidine-Agarose containing the attached thrombin was removed, and the supernatant dialysed against 50 mM Tris-HCl pH 7.5, 0.1 mM EGTA, 0.1% (by vol) 2-mercaptoethanol, 10% glycerol and stored in aliquots at -80°C. After cleavage with thrombin, all fragments of the M₁₁₀ subunit, except M₁₁₀-(L24-Y496), commenced with the sequence GSPG (SEQ ID No 19) before the initiating residue of the GST-fusion proteins. The M₁₁₀-(24-Y496) was preceded by the sequence GSPGISGGGGGILDSMGR (SEQ ID No 20).

Production of antibodies that recognise the M_{110} and M_{21} subunits of chicken gizzard $PP1_{M}$.

Polyclonal sheep antibodies to the PP1_M holoenzyme were raised in the Scottish Antibody Production Unit (Carluke, Ayrshire, U.K.). Antibodies which recognise the M₁₁₀ subunit specifically were obtained by passing the antiserum down a 4 ml affinity column comprising 40 mg of M₁₁₀-(R714-I1004) coupled covalently to 1g of dried CNBr-activated Sepharose 4B (Sigma). After washing with 10 column volumes of 50 mM Tris/HCl pH 7.5, 1% (by mass) Triton X-100, 0.1 mM EGTA, 0.1% (by vol) 2-mercaptoethanol (Buffer B) plus 0.5 M NaCl, followed by 10 volumes of Buffer B plus 1 M LiBr, the anti-M₁₁₀ antibody was eluted with 50 mM glycine pH 2.0, neutralised immediately with 1 M Tris/HCl pH 8.0 and stored in aliquots at -80°C.

Antibodies which recognise the M_{21} subunit specifically were obtained in an

10

identical manner, except that the affinity column comprised about 40 mg of the expressed chicken gizzard M_{21} subunit coupled to 6 g (dry weight) of CNBr-activated Sepharose.

5 Removal of the M_{2l} subunit from $PP1_{M}$.

PP1_M (0.01 ml, 0.4U/ml) was dissociated by incubation for 30 minutes with 500 μ M arachidonic acid [25] and then for 30 minutes with 0.08 ml of packed Protein G-Sepharose coupled to 0.08 mg of affinity purified anti-M₂₁ antibody. The Protein G-Sepharose was pelleted, and the supernatant diluted at least 15-fold to allow the M₁₁₀ subunit and PP1c to recombine. The M₁₁₀-PP1c complex was further purified by gel filtration on Superose 12 (30 x 1 cm) to ensure complete removal of any free PP1c.

RESULTS.

15

20

25

30

10

Identification of a PP1c-interaction domain on the G_M -subunit of PP1_{GM}. The amino acid sequence of rat hepatic G_L is 23% identical (39% similar) to residues 1-286 of G_M from human skeletal muscle [7]. There is no homology over the first 63 residues but identity is >40% over the regions 63-86, 144-166 and 186-227 of G_M suggesting that one or more of these sequences comprise a PP1-binding domain. Fusion proteins in which GST was linked to fragments of G_M were therefore tested for their ability to bind to PP1c. GST-G_M-(E2-D118) (Fig 1) and GST-G_M-(E2-P243) (data not shown), but not GST-G_M- (H100-P350) or GST itself (Fig 1) interacted with PP1 in Far Western experiments, indicating that the first 118 residues of G_M contain a PP1c-binding domain. Moreover, a proteolytic fragment derived from GST-G_M-(E2-D118) whose molecular mass was 5 kDa less GST-G_M-(E2-D118), but not a proteolytic fragment that was 6 kDa smaller, also interacted with PP1c (Fig 1). Taken together, the observations suggested that the region comprising residues 63-86 was likely to bind to PP1c. We therefore synthesised G_{M} -(G63-T93) and examined its effect on the enzymatic properties of $PP1_{GL}$, the form of PP1 associated with rat hepatic protein-glycogen particles.

- The interaction of PP1c with G_L suppresses the dephosphorylation of muscle 5 glycogen phosphorylase by 80% and enhances the dephosphorylation of muscle glycogen synthase by 2-3 fold [21, 26]. Disruption of the characteristic properties of hepatic PP1_{GL} can therefore be monitored very simply by changes G_M-(G63-T93) induced a sixfold increase in the in its specificity. phosphorylase phosphatase activity of PP1_{GL}, the concentrations required for 10 50% activation being 30 nM (Fig 2). G_{M} -(G63-T93) also prevented bacterially expressed GST-G_L from suppressing the phosphorylase phosphatase activity of PP1c (data not shown). However, G_M-(G63-T93) had no effect on the glycogen synthase phosphatase activity of PP1_{GL}, nor was there any alteration of the other characteristic properties of PP1_{GL}, namely allosteric inhibition of the 15 glycogen synthase phosphatase activity by phosphorylase a and binding to glycogen (data not shown). Thus the interaction of G_M-(G63-T93) with PP1_{GL} does not displace G₁ from PP1c.
- G_M-(G63-T93) also increased the phosphorylase phosphatase activity of PP1c, indicating that it binds to PP1c, rather than to G_L. However, the maximal stimulation was only 37 + 1.4% (SEM for three experiments), establishing that far greater activation of PP1_{GL} is explained by the ability of G_M-(G63-T93) to overcome the suppressive effect of G_L on the phosphorylase phosphatase activity of PP1c. Several other peptides, including a 32 residue peptide related to the C-terminus of ribosomal protein S6([G245,G246]S6[218-249]), G_M-(S40-Y55) and G_M-(E81-T93) (data not shown), had no effect on the phosphorylase phosphatase activity of PP1_{GL} or PP1c at concentrations up to 10 μM.

20

25

30

The peptides G_{M} -(G63-K80) and G_{M} -(G63-N75) also increased the phosphorylase phosphatase activity of PP1_{GL}, but were less effective than G_{M} -(G63-T93) and higher concentrations were needed (Fig 2). G_{M} -(G63-K80) and G_{M} -(G63-N75) did not increase the phosphorylase phosphatase activity of PP1c significantly at concentrations up to 10 μ M (data not shown). The phosphorylation of G_{M} at Ser67 by cyclic AMP-dependent protein kinase (PKA) triggers the dissociation of PP1 from G_{M} in vitro and in vivo [18] and phosphorylation of the peptide G_{M} -(G63-N75) at Ser67 prevented it from increasing the phosphorylase phosphatase activity of PP1_{GL} (Fig 2A). The increase in phosphorylase phosphatase activity observed at the highest phosphopeptide concentrations (10 μ M) may be explained by trace contamination (<10%) with dephosphopeptide, resulting either from incomplete phosphorylation of Ser67 or slight dephosphorylation during the assay.

15 Identification of a PP1-interaction domain on the M_{110} subunit.

Antibodies were prepared that recognised either the M_{110} or M_{21} subunits of the myosin-associated form of PP1 (PP1_M) from chicken gizzard (Fig 3A). Removal of the M_{21} subunit using the M_{21} -specific antibody (Fig 3B and see Methods) did not affect the activity of PP1_M towards MLC_{20} or phosphorylase, the MLC_{20} phosphatase:phosphorylase phosphatase activity ratio (0.95 \pm 0.03) remaining 15-fold higher than PP1c (Fig 3B). The M_{21} subunit bound to M_{110} , but had no effect on the MLC_{20} phosphatase or phosphorylase phosphatase activity of PP1c and did not bind to PP1c (D. Johnson unpublished). Thus M_{110} is solely responsible for enhancing the dephosphorylation of MLC_{20} and suppressing the dephosphorylation of glycogen phosphorylase by PP1c [9].

In order to identify which region(s) of M_{110} modulates the specificity of PP1c, fusion proteins were constructed consisting of glutathione S-transferase (GST) followed by fragments of the M_{110} subunit. After expression in E. coli and

WO 97/37224 PCT/GB97/00898 53

purification by affinity chromatography on glutathione-Sepharose, the fusion proteins were cleaved with thrombin to release GST from fragments of the M_{110} subunit (Fig 4 and see Methods). M_{110} -(M1-E309), which contains seven 33 residue ankyrin repeats located between residues 39-296, modified the specificity of PP1c in a similar manner to M_{110} itself, increasing activity towards MLC_{20} about 3-fold (Fig 5A) and suppressing activity towards glycogen phosphorylase by about 80% (Fig 5B). The concentration of M_{110} -(M1-E309) required to activate the MLC_{20} phosphatase activity maximally (0.1 nM) was similar to the PP1c concentration in the assay, indicating an extremely high affinity for PP1c. M_{110} -(M1-A150) modified the specificity of PP1 similarly, but 10-fold higher concentrations were needed compared to M_{110} -(M1-E309) (Figs 5C and 5D).

If the GST tags were not cleaved with thrombin, a 10-fold higher concentration of M_{110} -(M1-E309) was needed to modulate the substrate specificity of PP1c, while M_{110} -(M1-A150) was unable to stimulate the MLC₂₀ phosphatase activity of PP1c at all (data not shown). GST itself did not interact with PP1c (Fig 1), had no effect on either the MLC₂₀ phosphatase or phosphorylase phosphatase activity of PP1c (data not shown), and therefore was not removed from the solution after cleavage of the fusion proteins with thrombin.

In contrast to M_{110} -(M1-E309), M_{110} -(D39-E309) failed to stimulate the MLC₂₀ phosphatase activity of PP1c, or to inhibit its phosphorylase phosphatase activity (Figs 5A and 5B), suggesting that the extreme N-terminus of the M_{110} subunit (i.e. before the start of the ankyrin repeats) might be important in modulating the specificity of PP1c. The peptide M_{110} -(M1-F38) was therefore synthesized and found to stimulate the MLC₂₀ phosphatase activity of PP1c to the same extent as M_{110} -(M1-E309), although the concentration required for half maximal activation (10 nM) was at least 100-fold higher (Fig 5A). M_{110} -(M1-F38) stimulated the dephosphorylation of heavy meromyosin in a

10

15

20

25

20

similar manner to the dephosphorylation of MLC_{20} (data not shown). However, like M_{110} -(D39-E309), M_{110} -(M1-F38) did not inhibit the phosphorylase phosphatase activity of PP1c (Fig 5B). These observations suggested that residues beyond 38 were needed to suppress phosphorylase phosphatase activity. Consistent with this, M_{110} -(L24-Y496) was less effective than M_{110} -(M1-A150) or M_{110} -(M1-E309) in stimulating the MLC_{20} phosphatase activity of PP1c, but inhibited the phosphorylase phosphatase activity of PP1c in a similar manner to M_{110} -(M1-A150) (Figs 5C and 5D).

Although M₁₁₀-(D39-E309) and M₁₁₀-(M1-F38) had no effect on the phosphorylase phosphatase activity of PP1c when each peptide was included individually in the assays at concentrations up to 1 μM (Fig 5), a 39 ± 2% inhibition (SEM n=4) was observed when both peptides were both present at 1 μM. Surprisingly, M₁₁₀-(D39-E309) prevented (IC50 = 0.1 M) M₁₁₀-(M1-F38) from stimulating the MLC₂₀ phosphatase activity of PP1c (data not shown). Thus M₁₁₀-(D39-E309) plus M₁₁₀-(M1-F38) do not faithfully mimic the effect of M₁₁₀-(M1-E309).

We have reported previously that the M_{110}/M_{21} complex suppresses the dephosphorylation of glycogen synthase by PP1c [9] and, consistent with this finding, the dephosphorylation of glycogen synthase was also inhibited by M_{110} -(M1-E309) (Fig 6B). However, the dephosphorylation of glycogen synthase was greatly enhanced by M_{110} -(M1-F38) (Fig 6A).

25 The binding of G_M and the M_{110} subunit to PP1c is mutually exclusive.

In order to investigate whether G_M binds to the same region of PP1c as M_{110} , we next examined the effect of G_M -(G63-T93) on the properties of PP1_M. G_M -(G63-T93) at 10 μ M increased the phosphorylase phosphatase activity of PP1_M by about 7-fold and suppressed its MLC₂₀ phosphatase activity by 60-65%

(Fig 7A), indicating that the distinctive properties of PP1_M had been disrupted. Gel-filtration experiments confirmed that G_{M} -(G63-T93) had displaced the M_{110} subunit from PP1_M, dissociating it to PP1c (Figs 7B and 7C). G_{M} -(G63-T93) also prevented M_{110} -(M1-F38) or M_{110} -(M1-E309) from stimulating the MLC₂₀ phosphatase activity of PP1c (Fig 8A), and prevented M_{110} -(M1-E309) from suppressing the phosphorylase phosphatase activity of PP1c (Fig 8B).

Conversely, the presence of $10 \mu M M_{110}$ -(M1-F38) increased the phosphorylase phosphatase activity of PP1_{GL} by 3.5- fold. This resulted from the partial dissociation to PP1c, because the enhanced phosphorylase phosphatase activity was not associated with glycogen, but recovered in the supernatant after centrifugation of the glycogen-protein particles (not shown).

DISCUSSION.

15

20

10

5

We have identified a region on G_M that binds to PP1c (Fig 9). The peptides G_M -(G63-T93), G_M -(G63-K80) and G_M -(G63-N75) all prevented G_L from suppressing the dephosphorylation of glycogen phosphorylase by PP1c and two lines of evidence indicate that these peptides interact with PP1c and not with G_L .

Firstly, the PP1c-catalysed dephosphorylation of glycogen phosphorylase is stimulated slightly by G_{M} -(G63-T93).

Secondly, PP1c crystallises in the presence of G_M-(G63-K80) or G_M-(G63-N75) in a different form than is observed in the absence of these peptides. PKA phosphorylates G_M at Ser67 and the introduction of a negative charge directly into the PP1c-binding domain explains why phosphorylation of Ser67 triggers the dissociation of G_M from PP1c [18]. Phosphorylation of G_M-(G63-N75) at Ser67 also prevented this peptide from interacting with PP1 in the PP1_{GL}

complex (Fig 2).

Although G_{M} -(G63-T93) prevented G_{L} from suppressing the dephosphorylation of glycogen phosphorylase by PP1c, it did not dissociate G_L from PP1c, nor did it affect the other characteristic properties of PP1_{GL}. Moreover, unlike G₁, 5 G_{M} -(G63-T93) did not itself suppress the phosphorylase phosphatase activity of PP1c, but actually enhanced it slightly. These observations demonstrate that another region(s) on G_1 must interact with PP1c and that this other region(s) may play an important role in modulating the substrate specificity of PP1c. The presence of a second PP1c binding site in G_M/G_L would be somewhat 10 analogous to the situation found in inhibitor-1 and DARPP which also contain two PP1-binding sites, high (nM) affinity binding being generated by the conjugation of two low affinity binding sites that, individually, only interact with PP1 at μ M concentrations [28]. The second PP1c-binding site on G_M/G_L might correspond to one of the other regions where G_M and G_L show >40% 15 identity (residues 144-166 and 186-227 of human G_M). G_{M} -(H100-P350) was not recognised by PP1c in Far Western experiments (Fig 1) this result is not definitive because G_{M} -(H100-P350) may only interact with PP1c weakly. Alternatively, G_M-(H100-P350) might not fold correctly or fail to renature after SDS/polyacrylamide gel electrophoresis. 20

However, it is also possible that residues 144-166 and 186-227 of G_M do not represent part of the second PP1c-binding domain, but part of the glycogen-binding domain. In this connection it should be recalled that residues 144-166 and 186-227 are the regions showing greatest similarity (25% identity) to GAC1, which appears to be a homologue of G_M/G_L in budding yeast [7, 27, 28]. Curiously, GAC1 does not contain a region homologous to residues 63-93 of G_M/G_L . It would clearly be of interest to compare the effect of GAC1 on the enzymatic properties of PP1c with those of G_M and G_L .

We have also identified a region on the M_{110} subunit that binds to PP1c. An N-terminal fragment, M100-(M1-E309), enhanced the PP1c-catalysed dephosphorylation of MLC₂₀ and suppressed the dephosphorylation of glycogen phosphorylase in a similar manner to M_{110} itself (Fig 5). However, unlike M_{110} , this fragment does not bind to myosin. Thus the region which enhances the dephosphorylation of MLC₂₀ is distinct from the myosin-binding domain.

The fragment M₁₁₀-(M1-E309) contains seven ankyrin repeats lying between However, M₁₁₀-(D39-E309) was ineffective as an residues 39 and 296. activator of the MLC₂₀ phosphatase activity of PP1c or as an inhibitor of the phosphorylase phosphatase activity, and this led to the finding that a peptide comprising the N-terminal 38 residues of the M₁₁₀ subunit enhances the dephosphorylation of MLC₂₀ to the same extent as M_{110} -(M1-E309), although with lower potency. However, M_{110} -(M1-F38) did not inhibit the dephosphorylation of glycogen phosphorylase by PP1c suggesting that residues beyond 38 are required to suppress this activity. This view was reinforced by the finding that, although neither M₁₁₀-(M1-F38) nor M₁₁₀-(D39-E309) inhibited the phosphorylase phosphatase activity of PP1c when present individually, inhibition was observed in the presence of both peptides. Moreover M_{110} -(D39-E309) actually prevented M_{110} -(M1-F38) from stimulating the dephosphorylation of MLC₂₀.

These observations suggest that M_{110} -(D39-E309) can bind to M_{110} -(M1-F38) and/or PP1c. An interaction with PP1c seems likely because it has been found that M_{110} -(D39-E309) can enhance the phosphorylase activity of PP1_{GL}. The presence of a second PP1-binding site in the ankyrin-repeat domain of the M_{110} subunit is also supported by the observation that higher concentrations of M_{110} -(M1-A150) and M_{110} -(M1-E309) are needed to inhibit the phosphorylase phosphatase activity of PP1c than are required to stimulate its MLC_{20} phosphatase activity (see Fig 5). The presence of at least two PP1-binding sites

5

10

15

20

25

10

15

may explain why the M_{110} subunit and PP1c interact at picomolar concentrations. The ankyrin repeat domain might suppress the dephosphorylation of some substrates (such as glycogen phosphorylase) by a steric mechanism, preventing them from gaining easy access to the catalytic centre. This scenario could explain why the dephosphorylation of glycogen synthase is greatly enhanced by M_{110} -(M1-F38) yet suppressed by M_{110} -(M1-E309) (Fig 6).

 G_{M} -(G63-T93) abolished the distinctive properties of PP1_M (Fig 7A), prevented M_{110} -(M1-F38) or M_{110} -(M1-E309) from modulating the substrate specificity of PP1c (Fig 8) and displaced the M_{110} subunit from PP1_M (Fig 7B). In addition, the peptide M_{110} -(M1-F38), was capable of displacing G_{L} from PP1_{GL}. These findings indicate that the binding site(s) on PP1c for G_{M} and the M_{110} subunit are likely to overlap, explaining why different forms of PP1 contain a single PP1-targeting subunit. The three-dimensional structure of PP1c isoforms have recently been solved to high resolution [29,30], and PP1c crystallises in different forms in the presence of G_{M} -(G63-N75) or G_{M} -(G63-K80) or M_{110} -(M1-F38) than in the absence of these peptides.

Consistent with the results presented here, Gailly et al [31] have recently shown that M₁₁₀-(M1-F38) or M₁₁₀(M1-E309) enhance the ability of PP1c to stimulate the relaxation of microcystin-contracted permeabilised portal vein, while G_M-(G63-T93) inhibits the ability of PP1_M to induce the relaxation of this smooth muscle. G_M-(G63-T93) also slowed the relaxation of permeabilised femoral artery, indicating that it competes with the endogenous M₁₁₀ subunit for PP1c [31]. Thus the PP1c-binding peptides described constitute useful pharmacological agents with which to explore the role and regulate the activity of PP1 in cell regulation.

Example 2: Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1

MATERIALS AND METHODS

5

10

15

20

25

Crystallisation and Data Collection

The catalytic subunit of PP1 1 was overproduced in Escherischia coli and purified as described previously (Alessi et al., 1993; Barford and Keller, 1994). The G_M[G63-N75] peptide, variants of this peptide in which Val 66' or Phe 68' were changed to Phe, and the peptides $M_{110}[1-38]$ and $M_{110}[1-35]$ were synthesised on an Applied Biosystems 430A peptide synthesiser and purified by chromatography on a C18 column (Johnson et al., 1996) by Mr F.B. Caudwell at Dundee. A three-fold molar excess of G_M[G63-N75] was added to the protein solution (8 mg/ml), which had been previously dialysed against 10 mM Tris-HC1 (pH 7.8), 0.3 M NaCl, 0.4 mM MnCl₂ and 2 mM DTT. complex was crystallised at 20°C using the hanging drop vapour diffusion method, by mixing 2 ml of the protein-peptide solution and 2 ml of the precipitant solution containing 2.0 M ammonium sulphate, 2% (w/v) polyethylene glycol 400,100 mM HEPES (pH 7.5) and 2 mM DTT. These conditions are very much in contrast to the relatively low ionic strength conditions from which the monoclinic PP1c crystals grew (Barford and Keller, 1994; Egloff et al., 1995). Crystals appeared after 3 months as a cluster. Individual crystals removed from the cluster had dimensions of $\sim 25 \mu m \times 25$ μ m x 5 μ m. Crystals were frozen in a 100 K nitrogen gas stream and stored. Prior to freezing, crystals were incubated in a cryoprotectant solution consisting of an equilibration buffer; 2.0 M ammonium sulphate, 2% (w/v) PEG 400, 100 mM HEPES (pH 7.5) with increasing amounts of glycerol in steps of 7%, 15%, 22% and 30% (v/v).

30 A partial data set to 3.0 Å was collected on Beam Line PX 9.6, SRS,

10

15

20

Daresbury, using a 30 cm diameter Mar Research image plate system. Data were processed and scaled using DENZO and SCALEPACK (Otwinowski, 1993). The crystal system is tetragonal with point group symmetry P422 and unit cell dimensions a = b = 62.50 Å, c = 361.30 Å. Systematic absences indicate a 21 screw axis along b. The Matthews coefficient was 2.38 Å₃ per Dalton, assuming 2 molecules per asymmetric unit. A second data-set was collected on BLA at the ESRF, Grenoble. Substantial radiation damage was observed during data collection requiring that three crystals were used in total. Data collected from four crystal at Daresbury and the ESRF were merged together in SCALEPACK. Details of the data collection and processing statistics are given in Table 1.

Structure determination

The structure of the PP1- $G_M[63-75]$ complex was solved by molecular replacement using as a model the protein atoms coordinates of the 2.5Å refined structure of the catalytic subunit of PP1 γ 1 determined by MAD methods (Egloff *et al.*, 1995). Rotation and translation functions searches were performed with AMORE (Navaza, 1992). Using data between 8 and 3 Å resolution, the peak in the rotation search was 6.7 standard deviations (SD) above the mean. The translation search was best performed using data between 8 and 3.5 Å, giving a maximal peak at 13.8 SD above the mean for the space group P41212. After the first rigid body refinement performed in AMORE, the R-factor was 0.494 and the correlation factor 0.30.

25

30

Crystallographic Refinement

The solution from molecular replacement was optimized by 20 cycles of rigid body refinement performed with X-PLOR version 3.1 (Brunger, 1992), using data between 8.0 Å and 3.0 Å resolution. After a round of conjugate gradient

15

20

25

positional refinement and simulated annealing molecular dynamics to 2000 K. followed by 25 cycles of grouped B-factor refinement (2 B-factor groups for each residue), the R factor (respectively free-R) was 0.295 (0.367). Fourier difference maps (Fo-Fc) and (3Fo-2Fc) revealed the presence of three strong peaks at (over three-times the sigma level of the map) at the catalytic site of From the previously refined PP1c-structure, we identified two as manganese and iron ions. The third one, occupying the position of the tungstate ion in the PP1c-WO4 complex, was identified as sulphate. The initial difference Fourier maps also revealed strong electron density near the N-terminus of β 14. The maps were improved by applying non-crystallographic symmetry 2-fold averaging using PHASES (Furey and Swaminathan, 1990). As shown in Fig. 1A, residues Val 66', Ser 67' and Phe 68' of the G_M[63-75] peptide were identified in the averaged map. These 3 residues, as well as the 2 metal and sulphate ions were built in each molecule, using the program TURBO-FRODO (Roussel and Cambillau, 1992). Refinement of this structure was performed by repeated rounds of manual rebuilding followed by conjugate gradient positional refinement and grouped B-factor refinement using X-PLOR. The final model contains protein residues Lys 6 to Ala 299 and peptide residues Arg 65' to Ala 69' in molecule 1, and protein residues Asn 8 to Lys 297 and peptide residues Gly 63' to Ala 69' in molecule 2. A few well defined water molecules were also observed in both initial (3Fo-2Fc) and (Fo-Fc) electron density maps. Eventually, 14 water molecules that were above 3 sigma in the (Fo-Fc) difference map, within hydrogen bond of the PP1-peptide complex or another solvent molecule and present in both molecules, were included in the model. The crystallographic and refinement data are summarized in Table 1. Representative electron density from the peptide before and after refinement is shown in Figure 10A and 10B, respectively. Solvent accessible surface areas were calculated using the method of Lee and Richards (1974).

Purification and assay of PP1.

PP1c was isolated from the rabbit skeletal muscle PP1- G_M complex as described previously (Johnson *et al*, 1996). Glycogen particles isolated from rat liver (Schelling *et al*, 1988) served as the source of PP1- G_L . The dephosphorylation of glycogen phosphorylase (10 μ M) and the isolated MLC₂₀ of smooth muscle myosin (1 μ M) by PP1c was carried out as described previously (Cohen *et al.*, 1988; Alessi *et al.*, 1992).

10 Table 1. Crystallographic data and refinement statistics

Crystallographic data:	
Space group	P4 ₁ 2 ₁ 2
Unit cell parameters (Å)	a = b = 62.50; c = 361.30
Number of molecules per asymmetric unit	2
Temperature (K)	100
Total measured reflection	s 290671
Number of unique reflect	ions 15509
0 Mean I/s(I)	7.5
Completeness (%)	87
Overall R-merge (%)	14.7
Refinement statistics:	
Number of reflections us refinement	ed for 13078
Resolution range (Å)	8.0-3.0
R-work	0.223
R-free	0.308
Number of residues	<u>protein</u> <u>peptide</u>

RNSDOCID: <WO 9737224A1 I

Molecule 1	294 (Lys 6 to 6 (ARVSFA) (SEQ ID No 21) Ala 299) 6 (RRVSFA) SEQ ID No 3)
Molecule 2	290 (Asn 8 to Lys 297)
R.m.s.d. from ideal bond lengths (Å)	0.012
R.m.s.d. from ideal angles (°)	1.863
Number of water molecules	
Molecule 1	7
Molecule 2	7

10 Table 2. PP1-peptide polar interactions

	Peptide atom	Protein atom	Water molecule	Distance (Å)
Molecule 1	Arg 65' O	-	7W	3.2
	Val 66' N	Asp 242OD2 (**)		3.0
	Ser 67' N	Leu 289 O		3.3
	Ser 67' OG		7W	2.7
	Ser 67' O	Cys 291 N (*)		3.2
	Ala 69' N	Cys 291 O (*)		2.8
Molecule 2	Arg 64' NH1	Glu 287 O		2.6
		(**)		·
	Arg 65' O		7W	2.8
	Val 66' N	Asp 242 OD2 (**)		3.2
	Ser 67' N	Leu 289 O (*)		3.1
·	Ser 67' OG		7W	2.6
	Ser 67'	Cys 291 N (*)		3.0

15

5

10

	Ala 69' N	Cys 291 O (*)	3.3
Table 2.	PP1-peptide hy	drophobic interactions	
	Peptide residues	Protein residues	
	Val 66'	Ile 169 (*), Leu 243 (*), D242 (**), Leu 289 (*), Cys 291 (*)	
	Phe 68'	Phe 257 (*), Cys 291 (*), Phe 293 (*)	
	Ala 69'	Met290 (**)	

The star (*) indicates residues absolutely conserved in all protein phosphatase 1 sequences available so far, the double start (**) the residues mostly conserved (from sequence alignment from Barton et al, 1994).

RESULTS AND DISCUSSION

Structure Determination.

15 Crystallographic data to 3.0 Å were measured at the ESRF beam-line BL4 at Grenoble and at PX9.6, Daresbury (Table 1). The relatively high merging R-factors and low I/(I values of the crystallographic data results from the weak diffraction observed from the PP1-G_M[63-73] crystals. This is attributable to both the small crystal size (~25 μm by 25 μm by 5 μm) and long c-axis of the unit cell. In addition, the high x-ray photon dose required to obtain usable diffraction images resulted in x-ray radiation damage to the crystals, despite being maintained at a temperature of 100 K during the course of the experiment. The structure was solve by the molecular replacement method using as a search model the 2.5 Å refined coordinates of PP1c (Egloff et al., 1995). Phases obtained from a single cycle of simulated annealing refinement

BNSDOCID: <WO 9737224A1 I

of the protein coordinates alone using X-PLOR Brunger, 1992), and improved by 2-fold non-crystallographic symmetry averaging and solvent flattening, were used to calculate an electron density map. This map revealed clear density corresponding to residues Val 66', Ser 67' and Phe 68' (where 'denotes residues of the peptide) of the G_M peptide and provided a starting point for further refinement of the PP1- G_M peptide complex (Fig. 10A). The final model of the complex was refined at 3.0 Å resolution with a crystallographic R-factor of 0.22 and R-free of 0.31 (Fig. 10B). The two molecules of PP1c within the asymmetric unit are similar with a root mean square deviation between main chain atoms of 0.6 Å. Residues 6 to 299 and 8 to 297 from molecules 1 and 2 respectively, are visible in the electron density map. Similar to the structures of native PP $_{\gamma l}$ (Egloff et al., 1995) and PP1 α in complex with microcystin LR (Goldberg et al., 1995), residues C-terminal to 299 are disordered.

15 Overall Structure of PP1

5

10

20

25

30

The conformation of PP1c in the PP1- G_M complex is virtually identical to that of native PP1c in complex with tungstate (Egloff et al., 1995) with a root mean square deviation between equivalent main-chain atoms of 1.0 Å. PP1c is folded into a single elliptical domain consisting of a central β -sandwich of two mixed β -sheets surrounded on one side by 7α -helices and on the other by a sub-domain consisting of 3α -helices and a 3 stranded mixed α -sheet (Fig. 2A, B). The interface of the three β -sheets at the top of the β -sandwich creates a shallow catalytic site channel. Three loops connecting β -strands with α -helices within a β - α - β - α - β motif in sheet 1 (strand order β 4- β 3- β 2- β 13- β 14) together with loops emanating from the opposite β -sheet (sheet 2; strand order, β 1- β 5- β 6- β 10- β 12- β 11) provide the catalytic site residues. The catalytic site of PP1 contains a binuclear metal site consisting of Mn²⁺ and Fe²⁺ (Egloff et al., 1995) and, in the PP1- G_M complex, oxygen atoms of a sulphate ion of crystallisation coordinate both metal ions, similar to that seen in the PP1-tungstate (Egloff et al., 1995) and PP2B-phosphate complexes (Griffith et

10

15

20

25

30

al, 1995).

$PP1c-G_{M}[63-75]$ Peptide Interactions

Six residues of the $G_M[63-75]$ peptide (Arg 64' to Ala 69') are clearly visible in the electron density map of the complex of molecule 2, the remaining residues are not visible and assumed to be disordered (Fig. 10B). Density is not visible for Arg 64' of the peptide bound to molecule 1, otherwise equivalent residues of the peptide are similar within the two complexes. The six residues (RRVSFA) (SEQ ID No 3) of the $G_M[63-75]$ peptide in complex 2 adopt an extended conformation and bind to a hydrophobic channel on the protein surface with dimensions 25 Å by 10 Å that is formed at the interface of the two β -sheets of the β -sandwich opposite to the catalytic site channel and therefore remote from the catalytic site (Fig. 11A). The residues that form this channel occur on three regions of PP1c, namely (i) the N-terminus of 5 and $\beta 5/\beta 6$ loop of sheet 2; (ii) the three edge β -strands of sheet 2: β 10, β 12, β 11 and (iii) β 13, the $\beta 13/\beta 14$ loop and $\beta 14$ of the edge of sheet 1 (Fig. 11A). The total solvent accessible surface area buried on formation of the complex is 980 Å2. Three residues of the peptide (Ser 67' to Ala 69') form a β -strand which is incorporated into β -sheet 1 of PP1c as a sixth β -strand parallel to the N-terminus of the edge β -strand, β 14 (residues Leu 289 to Leu 296) (Fig. Main-chain atoms of Ser 67' and Ala 69' form H-bonds to the main-chain atoms of residues of β 14. In addition, the main-chain nitrogen of Val 66' forms a H-bond with the side-chain of Asp 242. interactions include the guanidinium group of Arg 64' with the mainchain carbonyl of Glu 287 and a salt bridge to Asp 166. Both Asp 166 and Asp 242 are invariant in mammalian PP1 genes. A water molecule bridges the main-chain carbonyl of Arg 65' and side-chain hydroxyl of Ser 67' with the main-chain carbonyl of Thr 288 of PP1c (Fig. 11C). A notable feature of the peptide binding site is the presence of a negatively charged region created by seven acidic residues (with one Lys residue) surrounding the hydrophobic channel at the N-terminus of the peptide in the vicinity of Arg 64' and Arg 65' that includes Asp 166 and Asp 242 (Fig. 11D). This would suggest a favourable electrostatic environment for the side chains of Arg 64' and Arg 65'.

5

10

15

20

25

30

The predominant interactions between the peptide and PP1c involve hydrophobic contacts between the side chains of Val 66' and Phe 68' and solvent exposed, invariant, hydrophobic residues of PP1c that form the hydrophobic channel (Fig. 11C, E). In particular, the binding site for the side chain of Val 66' is formed from the side chains of Ile 169, Leu 243, Leu 289 and Cys 291, whereas that for the side chain of Phe 68' is formed from the side chains of Phe 257, Cys 291 and Phe 293. Details of peptide-PP1c contacts are given in Table 2. The structure of the $G_M[63-75]$ peptide binding site is likely to be conserved in other forms of PP1 from diverse species. Each hydrophobic residue of PP1c that interacts with the Val 66' and Phe 68' residues of the G_M[63-75] peptide are invariant and the acidic residues that surround the N-terminus of the peptide binding site are highly conserved amongst all isoforms of PP1 from species as diverse as yeast, Drosophila, mammals and higher plants (Barton et al., 1994). However, since these residues are not conserved within the PP2A and PP2B sequences, these proteins will not recognise PP1-regulatory subunits.

Presence of an (R/K) (V/I) x F Motif in other PP1c Regulatory Proteins

Over a dozen regulatory subunits of PP1c are now known which appear to bind to PP1c in a mutually exclusive manner that suggests either an overlapping binding site or sites. Sequence comparisons of these subunits reveals little similarity except for the motif (R/K) (V/I) x F, that is not only present in $G_M[63-75]$ but also in G_M , G_L , M_{110} , NIPP-1, p53BP2, and an RNA splicing factor (Fig. 12A). Moreover, a 38 residue peptide from the 110kDa M_{110} subunit that binds to PP1c contain this motif (Johnson et al, 1996), as do

10

15

20

25

30

fragments of NIPP-1 (Beullens et al., 1992; Van Eynde et al., 1995), an RNA splicing factor (Hirano et al., 1996) and p53BP2 (Helps et al., 1995). A 32 residue peptide from p53BP2, which contains this motif, disrupted the interaction of the M_{110} subunit with PP1c, as shown by a decrease in the rate of dephosphorylation of the MLC₂₀ subunit of smooth muscle myosin and by an increase in the rate of dephosphorylation of glycogen phosphorylase (Fig. 13A). This peptide also disrupted the interaction of the G_L subunit with PP1c, as shown by an increase in the rate of dephosphorylation of glycogen phosphorylase (Fig. 13B). Peptides comprising the motif (R/K) (V/I) x F are thus encompassed within the scope of the invention.

In further support of the notion of a common PP1c recognition motif present within PP1-binding proteins, previous studies had revealed that the sequence KIOF (SEQ ID No 22) (similar to the R/KVxF motif) at the N-terminus of inhibitor 1 and its homologue DARPP-32 (Fig. 12A) is necessary for mediating the inhibitory effects of these proteins. Loss of Ile 10 of the KIQF (SEQ ID No 22) motif of inhibitor 1 disrupts the inhibitory effects on PP1c by phospho-inhibitor-1 (Aitken and Cohen, 1984; Endo et al., 1996) and the binding of either dephospho-inhibitor-1 or phospho-inhibitor-1 to PP1c (Endo et al., 1996). A similar result was found on disrupting the equivalent residue (Ile 9) of DARPP-32 (Hemmings et al., 1990; Desdouits et al., 1995). These results were interpreted to indicate that inhibitor-1 and DARPP-32 bind to PP1 through two low affinity binding sites, one that encompasses the sequence KIQF (SEQ ID No 22) and another which includes the phosphorylated Thr residue (35 in I-1, 34 in DARPP-32) and which presumably binds at the catalytic site. Analysis of the PP1-G_M[63-75] complex structure suggests that an isoleucine residue could be readily accommodated within the peptide binding site in place of Val 66' such that the additional methyl group on Ile compared to Val would contribute to favourable van der Waals interactions between the peptide and Leu 243 and Cys 291 of PP1. More bulky hydrophobic residues

10

15

20

25

30

such as Leu, Met and Phe cannot be accommodated, however. It is interesting to note that as well as the (R/K) (V/I) x F motif shared by PP1-regulatory subunits, the four residues N-terminal to this motif contain an abundance of basic residues. These residues may provide further favourable interactions with the negative electrostatic surface potential at the N-terminus of the $G_M(63-75)$ peptide binding site of PP1c (Fig. 11D).

Mutagenesis of the R/K) (V/I) x F motif

The structural studies presented here suggest a dominant role for Val 66' and Phe 68' in stabilising the interaction between $G_M[63-75]$ and PP1c and this notion is further reinforced by the finding that other PP1-regulatory subunit sequences contain an (R/K)(V/I) x F motif yet share little overall sequence similarity. To test the hypothesis that Val 66' and Phe 68' are required for the interaction of $G_M[63-75]$ with PP1c and also that the KVKF (SEQ ID No 5) sequence present within the $M_{110}[M1-F38]$ peptide is important in mediating its interaction with PP1c, we synthesised variations of the G_M and M_{110} peptides where the R/KVxF motif was disrupted. The two variants of the G_M peptide were Val 66' and Phe 68' to Ala substitutions. In order to disrupt the (R/K)(V/I) x F present within the M_{110} peptide, a peptide corresponding to residues Met 1 to Lys 35 was synthesised which no longer contains the sequence VKF of the VxF motif, which is present at residues 36-38.

The results for the $M_{110}[1-38]$ and $M_{110}[1-35]$ peptides (Figs. 14, 15) are unequivocal. Whereas $M_{110}[1-38]$ stimulates the myosin light chain phosphatase activity of PP1c with a half-maximal effect at 10 nM reaching maximal (3-fold) activation at a peptide concentration of 1 μ M as reported previously (Johnson et al, 1996), the $M_{110}[1-35]$ peptide was at least 104-fold less effective at activating PP1c (Fig. 14). Unlike $M_{110}[1-38]$, the $M_{110}[1-35]$ peptide was also unable to activate the phosphorylase phosphatase activity of liver PP1- G_L . This latter result suggests two conclusions. Firstly, that although $M_{110}[1-38]$ is able

10

15

to bind to PP1c and disrupt the interactions between PP1c and the G_L -subunit, hence reversing the inhibitory effects of G_L on the ability of PP1c to dephosphorylate phosphorylase, loss of the VKF sequence in the $M_{110}[1-38]$ peptide abolishes the ability of the peptide to disrupt this interaction. Secondly, the recognition site on PP1c for the VKF sequence of the $M_{110}[1-38]$ peptide must overlap with the binding site for the G_L subunit, suggesting that the VKF sequence binds to the same site as the VSF sequence of G_L that is identical with that present in the $G_M[63-75]$ peptide. Similar conclusions may be reached from the results obtained from disrupting the VxF motif within the $G_M[63-75]$ peptide (Fig. 16B). Substitution of Phe 68' for Ala abolishes completely the ability of $G_M[63-75]$ to disrupt the PP1- G_L complex, whereas replacement of Val 66' with Ala reduced the effectiveness of the disruption 100-fold.

Thus preferred peptides may comprise analogues of G_M with substitutions at Val 66' and Phe 68' to some other amino acid such as Ala, so that binding of the PP1c to G_M does not occur and the PP1c is not suitably directed or controlled. Alternatively, suitable peptides could comprise peptides suitable to compete for the binding site(s) of Val 66' and Phe 68' on PP1c. Such peptides can be added in sufficient quantities to compete for the Phe 68' and Val 66' binding site(s) on the PP1c, thereby disrupting the interaction of PP1c and natural G_M . Such peptides could comprise structural analogues of G_M with Phe 68' and Val 66' in the same positions as G_M . Alternatively, other amino acids capable of mimicking the binding of Phe 68' and Val 66' could be used in these locations.

25

30

20

Regulation of the PP1- G_M Complex by Phosphorylation of Ser 67'

Phosphorylation of Ser 67', corresponding to x of the VxF motif, by PKA promotes dissociation of both G_M and $G_M[63-75]$ from PP1c. In vivo, this provides a mechanism of inhibiting PP1c during stimulation of skeletal muscle

10

15

20

by adrenalin (Dent et al., 1990). The sequence of G_M surrounding Ser 67' (RRVSFA) (SEQ ID No 3) conforms to a consensus PKA recognition sequence. Interestingly, the conformation of the peptide is similar to that of residues 18 to 23 corresponding to the pseudo-substrate sequence of PKI bound to the catalytic site of PKA (Knighton et al., 1990). Although the side chain of Ser 67' is exposed within the PP1c-peptide complex, overall the $G_{\rm M}$ peptide is buried, and it is unlikely that Ser 67' would be a substrate for PKA when the peptide is bound to PP1c. This would suggest that PKA phosphorylates Ser 67' when G_M is not associated with PP1c and that this phosphorylation prevents the re-association of PP1c with G_M. Since phosphorylation of Ser 67' promotes the dissociation of the PP1-G_M complex both in vivo and in vitro, it is most likely that PKA phosphorylates Ser 67' of G_M by competing with PP1c for the RRVSFA (SEQ ID No 3) sequence. This is consistent with a notion that the PP1- G_M complex exists in dynamic equilibrium with free PP1c and G_M subunits and that phosphorylation occurs on the regulatory subunit during transient dissociation from PP1c. In the PP1c-peptide complex, the side-chain of Ser 67' adopts the most favourable rotamer conformation. Analysis of the PP1c peptide complex structure suggests that incorporation of a phosphate group onto the side chain of Ser 67' with the same side-chain rotomer conformation would cause steric hindrance between the peptide and Met 290 of PP1 and also introduce a phosphate group into a region of negative charge at the PP1c surface (Fig. 11C, D). This may explain how phosphorylation of Ser 67' prevents peptide association with PP1c, although it should be noted that rotation of the side-chain of Ser 67' would relieve this steric clash.

25

30

A similar mechanism of control may also operate for other PP1-regulatory subunits. For example, NIPP-1 a nuclear inhibitor of PP1, inhibits PP1 with an inhibitory constant of 1 pM (Beullens et al., 1992). Phosphorylation of NIPP-1 by PKA and/or casein kinase 2 in vitro abolishes this inhibition (Beullens et al., 1993; Van Eynde et al., 1994). Although the sites of

10

phosphorylation on NIPP-1 that mediate these effects are not yet fully characterised it is known that these sites occur within the central ~120 residues of NIPP-1 that incorporates the (R/K)(V/I) x F motif (Van Eynde et al., 1995). Interestingly, a consensus phosphorylation site for PKA (RKNS) (SEQ ID No 23) occurs immediately N-terminal to this motif whereas one casein kinase 2 consensus phosphorylation site occurs between the Val and Phe of the motif and another occurs immediately C-terminal to the Phe residue (TFSEDDE) (SEQ ID No 24) (Van Eynde et al., 1995) (Fig. 12A). It is possible that PKA, casein kinase II or other kinases with similar specificity, release PP1c from inhibition by NIPP-1 by phosphorylating NIPP-1 at sites that block its interaction with the (R/K)(V/I) x F motif recognition site on PP1c.

Model of the PPIc-Phospho-Inhibitor 1 Complex

Our model for the interaction of a (R/K)(V/I) x F motif with PP1c, together 15 with previous kinetic data suggesting that the sequence KIQF (SEQ ID No 22) of inhibitor-1 (Aitken and Cohen, 1984; Endo et al., 1996) and DARPP-32 (Hemmings et al., 1990; Desdouits et al, 1995) interacts with PP1c, allowed us to construct a plausible model of a complex of PP1c with phospho-inhibitor 1. The major assumptions of this model were (1) the KIQF (SEQ ID No 22) 20 sequence of inhibitor-1 binds to the same site as RVSF (SEQ ID No 25) of the $G_{\rm M}[63-75]$ sequence and (2) that the phosphothreonine residue 35 of phospho-inhibitor 1 binds at the phosphate binding site of the PP1c-catalytic site. Secondary structure predictions of inhibitor 1 (Rost and Sander, 1993; Rost, 1996) suggested that residues 9 to 14 and 23 to 31 adopt β -strand and 25 α -helical conformations, respectively. The prediction of the sequence KIQF (SEO ID No 22) as a β -strand is consistent with our assumption that this region of inhibitor-1 adopts the same conformation as RVSF (SEQ ID No 25) of the G_M peptide when bound to the VxF recognition site of PP1c. We have positioned the residues RRPpTP (SEQ ID No 26) encompassing the pThr 35 30

BNSDOCID: <WO 9737224A1

site within the catalytic site channel in an extended conformation, with the phosphate group of the pThr 35 occupying the phosphate binding site of the catalytic site and the Oy-atom of Thr 35 equivalent to the solvent exposed oxygen of a dianion that forms a H-bond to the side-chain of the putative general acid His 125 (Egloff et al., 1995; Griffith et al., 1995). The four consecutive Arg residues N-terminal to pThr 35 interact with Asp and Glu residues within an acidic groove of PP1c formed from the $\beta7/\beta8$ loop on one side and the $\beta 10/\beta 11$ loop and $\beta 11$ strand on the other, similar to that proposed by Goldberg et al., (1995) for their model of DARPP-32 bound to PP1c. We propose that residues 20 to 30 of inhibitor-1 form an amphipathic helix which folds around the edge of the β -sandwich of PP1c. The N-terminus of this helix is disrupted by prolines at residues 19 and 23. Pro 19 and Pro 15 are probably responsible for introducing turns into the polypeptide chain that allows the β -strand encompassing the KIQF (SEQ ID No 22) sequence (residues 9 to 14) to connect with the α helix. The model of the phospho-inhibitor 1-PP1c complex is shown in Fig. 16.

Prediction of PPI Recognition Motifs in Yeast PPI-Binding Proteins

The residues in mammalian PP1c that interact with the sequence RRVSFA (SEQ ID No 3) are conserved in S. cerevisiae PP1 suggesting that the proteins in S. cerevisiae known to interact with PP1 (reviewed by Stark, 1996) probably bind to a similar hydrophobic groove on the surface of the enzyme. Examination of their amino acid sequences revealed that a number of PP1-binding proteins in S. cerevisiae contained putative PP1-binding motifs that were similar to those present in mammalian PP1-binding proteins (Fig. 12A, B). The S. cerevisiae PP1-binding proteins not only contain a V/I x F motif, but also a basic residue equivalent to Arg 64' of G_MV the residue that contacts Asp 166, Leu 289 and the main-chain carbonyl of Glu 287 of PP1c. Several of the S. cerevisiae proteins also contain a further basic residue (His or Lys) at the position equivalent to Arg 65' of G_M. Another striking feature of the

5

10

15

20

25

putative PP1-binding sequences in S. cerevisiae is the presence of a basic amino acid between the Val/IIe and Phe residues, as is also found in two mammalian PP1-regulatory subunits, the M_{110} subunit and the p53BP2 (Fig. 12A).

5

10

15

20

25

The S. cerevisiae proteins GAC1 and PIG2 show some homology to residues 140-230 of mammalian G_MV and there is genetic and biochemical evidence that they may function to regulate glycogen metabolism in budding yeast (Francois et al., 1992). GIP2 also shares sequence similarity with residues 140-230 of mammalian G_M, while YIL045W is an open reading frame in the S. cerevisiae genome whose predicted amino acid sequence shows 41% sequence identity to GIP2. YIL045W contains two putative PP1-binding motifs and site directed mutagenesis will be needed to establish which (if either) of these sequences binds to PP1c. REG1 and REG2 are PP1-binding proteins that play a role in cell growth and, in the case of REG1, glucose repression (Tu and Carlson, 1995; Tu et al., 1996; Frederick and Tatchell, 1996). GIP1, which also contains two putative PP1-binding motifs, is expressed specifically during meiosis, affects the transcription of late meiotic genes and is essential for sporulation (Tu and Carlson, 1996). SCD5 is a PP1-interacting protein (Tu et al., 1996) that was first isolated as a multicopy suppressor of the inviability of clathrin heavy chain-deficient yeast (Nelson et al., 1996).

The findings herein demonstrate that the short peptide sequence, the (R/K)(V/I)XF motif, is critical for PP1c to interact with its regulatory subunits. PP1c (when complexed to its targeting subunits) plays key roles in the control of many cellular processed and it is reasonable to predict that over 100 pp1-binding proteins may exist in mammalian cells. Protein sequence data-base searching has revealed that the (R/K)(V/I)XF motifs are found in 10% of proteins. Thus if ~ 100 PP1-binding proteins occur in mammalian cells, only 1% of proteins with the (R/K)(V/I)XF motif will be PP1-binding proteins. The

reasons why only a few proteins with the (R/K)(V/I)XF motif bind to PP1 are numerous. For example, not every residue may be tolerated at position X or immediately N-terminal or C- terminal to this motif. This study has shown that phosphoserine is not tolerated at position X and it is therefore likely that Asp or Glu will not be tolerated either. The structure of the PP1- G_M [63-75] complex suggests that large hydrophobic residues will also be excluded from position X. Moreover, the Val (or IIe) and Phe residues in many (R/K)(V/I)XFmotifs will be buried in the hydrophobic core of the protein and hence be unable to interact with PP1, since this motif is predicted to form an amphipathic β -strand conformation. Thirdly, many of the (R/K)(V/I)XF motifs will be in extracellular proteins or extracelluar domains of transmembrane proteins and hence be unable to bind to PP1. Particular feature so the tertiary structure of PP1-binding proteins may allow exposure of this motif on the surface to allow interaction with PP1. Finally, there is evidence that a second PP1-binding site exists on the G_M and M_{110} subunits (Johnson et al., 1996) and the high affinity interaction of PP1c with protein inhibitor-1 is generated by the binding of PP1c to two low affinity sites (Desdouits et al., 1995), one of which is the KIQF sequence belonging to the (R/K)(V/I)XF motif.

The question of how regulatory subunits modulate the substrate specificity of PP1c requires the co-crystallisation of PP1c with a diverse array of regulatory subunits and substrates and is beyond the scope of this paper. However, two models to account for this property of regulatory subunits are that these subunits either alter the conformation of PP1c or simply target PP1 to its substrates. Both mechanisms may operate *in vivo* depending on the regulatory subunits and substrates. For example, evidence for the former model has recently been reported for the enhancement of myosin dephosphorylation by a complex of PP1c and the M₁₁₀ subunit (Johnson *et al.*, 1996, 1997), whereas the enhancement of the dephosphorylation of glycogen phosphorylase and glycogen synthase by the PP1-G_M complex is more consistent with the second

5

10

10

15

20

25

model (Hubbard and Cohen, 1989).

The identification of the (R/K)(V/I)XF motif also suggests a new approach for determining the physiological roles of PP1-targeting subunits whose functions are unknown. Thus mutation of the (R/K)(I/V)XF motif should disrupt the interaction of many targeting subunits with PP1c without affecting their binding to the target locus. Expression of these mutated proteins under an inducible promoter should lead to displacement of the normal targeting subunit (complexed to PP1c) from its target locus, without disrupting the functions of any other PP1c-targeting subunit complex. Finally, the structural information described here will also facilitate the rational design of drugs that act by disrupting PP1-targeting subunit interactions.

Example 3: Identification of the regions on the M₁₁₀ subunit of protein phosphatase 1M that interact with the M21 subunit and with myosin

Abbreviations:- PP1_M, myofibril-associated form of protein phosphatase 1; PP1c, catalytic subunit of protein phosphatase-1; M_{110} and M_{21} , 110 kDa and 21 kDa regulatory subunits of PP1_M; MBP, maltose-binding protein; GST, glutathione-S-transferase.

SUMMARY

We have previously isolated a form of protein phosphatase-1 (PP1_M) from avian smooth muscle myofibrils which is composed of the catalytic subunit of PP1 (PP1c) bound to an M-complex consisting of 110 kDa (M_{110}) and 21 kDa (M_{21}) The interaction of PP1c with an N-terminal region of the M₁₁₀ subunit enhances the dephosphorylation of myosin and suppresses the dephosphorylation of other substrates [Alessi, D.R., MacDougall, L.K., Sola, M.M., Ikebe, M. and Cohen, P. (1992) Eur. J. Biochem 210, 1023-1035; 30.

10

15

20

Chen, Y.H., Chen, M.X., Alessi, D.R., Campbell, D.G., Shanahan, C., Cohen, P. and Cohen, P.T.W. (1994) FEBS Lett 356, 51-56; Johnson, D.F., Moorhead, G., Caudwell, F.B., Cohen, P., Chen, Y.H., Chen, M.X. and Cohen, P.T.W. (1996) Eur. J. Biochem. 239, 317-325]. In this Example we establish that PP1_M accounts for nearly all the myosin phosphatase activity in myofibrils, that the M_{110} and M_{21} subunits are present at similar concentrations in the myofibrillar fraction and that these subunits are entirely bound to PP1. We demonstrate that the M₂₁ subunit does not interact with PP1c, but with the C-terminal 72 residues of the M_{110} subunit, a region which is 43% identical to residues 87-161 of the M_{21} subunit. A fragment of the M_{21} subunit, M_{21} -(M1-L146), lacking the C-terminal leucine zipper, also bound to the M_{110} subunit, but two other fragments M_{21} -(M1-E110) and M_{21} -(E110-K186) did not. The M_{110} and M_{21} subunits were both found to be myosin-binding proteins. The C-terminal 291 residues of the M₁₁₀ subunit, but not the C-terminal 72 residues, bound to myosin, but the N-terminal fragments M_{110} -(M1-E309) and M_{110} -(M1-Thus the region of the M₁₁₀ subunit which stimulates the S477) did not. dephosphorylation of myosin by PP1c is distinct from the region which targets PP1_M to myosin. Remarkably, each myosin dimer was capable of binding about 20 moles of M_{21} subunit and many of the M_{21} -binding sites were located in the myosin "rod domain". The potential significance of this observation is discussed.

Introduction

Protein phosphatase-1 (PP1), one of the major serine/threonine-specific protein phosphatases in eukaryotic cells, is regulated by targetting subunits that direct it to particular subcellular loci, modify its substrate specificity and confer the ability to be regulated by extracellular signals (reviewed in [1, 2]). A significant proportion of the PP1 in vertebrate muscle extracts is associated with myofibrils and has enhanced activity towards the P-light chain of myosin and

5.

10

15

reduced activity towards other substrates, such as glycogen phosphorylase [3, 4]. When isolated from avian (chicken gizzard) [4, 5] or mammalian (pig bladder) [6] smooth muscle, this form of PP1 (PP1_M) was found to be composed of three subunits, namely the catalytic subunit of PP1 (PP1c) and two other proteins with molecular masses of 110 kDa and 21 kDa, termed the M_{110} and M_{21} subunits, respectively [4, 5]. The M_{110} subunit is complexed to both PP1c and the M_{21} subunit [4], and is the component which modulates the substrate specificity of PP1c because selective removal of the M_{21} subunit from PP1_M does not affect the rate at which either myosin or glycogen phosphorylase are dephosphorylated [7].

The M_{110} subunit has been cloned from rat aorta [5], chicken gizzard [8] and rat kidney [9] cDNA libraries. The N-terminus of the M_{110} subunit contains seven ankyrin repeats (residues 39-296 of the rat aorta protein), while alternative splicing in rat uterus [5] gives rise to two different C-termini (Fig 17A), termed Rat1 and Rat2. The C-terminus of Rat1 is virtually identical to the C-terminus of the M_{110} subunit from chicken gizzard (Fig 17A). The sequence of the M_{21} subunit from chicken gizzard is structurally related to the C-terminal region of the M_{110} subunit, the most striking similarities occurring from residues 76-141 of the M_{21} subunit and residues 921-984 of the chicken gizzard M_{110} subunit (54% identity, Fig 17B). However, the C-terminal 53 residues of the M_{21} subunit from chicken gizzard are strikingly similar (83% identity) to the C-terminal 53 residues of the rat aorta sequence, both terminating in a leucine zipper (Fig 17B, [5]).

25

30

20

Residues 1-309 of the M_{110} subunit from rat aorta, M_{110} -(M1-E309), mimic the intact M_{110} subunit in stimulating the dephosphorylation of myosin and in suppressing the dephosphorylation of glycogen phosphorylase by PP1c, but a slightly shorter construct M_{110} -(D39-E309) (which still contains the seven ankyrin repeats) is unable to modulate the specificity of PP1c [7]. This

WO 97/37224 PCT/GB97/00898

observation led to the finding that the N-terminal 38 residues, M_{110} -(M1-F38), bind to PP1c and enhance the dephosphorylation of myosin. However, M_{110} -(M1-F38) does not suppress the dephosphorylation of glycogen phosphorylase, suggesting that the ankyrin repeats either contain a second PP1c-binding site or prevent glycogen phosphorylase from binding to the active site of PP1c, perhaps by steric hindrance [7].

A 13 residue peptide G_{M} -(G63-N75) from the subunit (G_{M}) which targets PP1c to glycogen and the sarcoplasmic reticulum in striated muscle, has been co-crystallised with PP1c and the structure of the complex solved to $3\dot{A}$ resolution [2]. These studies showed that a hexapeptide sequence in G_{M} -(G63-N75) (Arg-Arg-Val-Ser-Phe-Ala) (SEQ ID No 3) binds to a small hydrophobic groove on the surface of PP1c forming a β -sheet which runs parallel to another β -sheet in PP1c. Moreover, inspection of other mammalian PP1c-binding proteins reveals that almost all contain an Arg/Lys-Val/Ile-Xaa-Phe motif that is likely to be critical for interaction with PP1c [2]. For example, a Lys-Val-Lys-Phe (SEQ ID No 5) motif is present between residues 35 and 38 of the M_{110} subunit and the deletion of residues 36-38 from M_{110} -(M1-F38) prevents this peptide from stimulating the dephosphorylation of myosin, and from disrupting the interaction of PP1c with other targetting subunits [2].

The finding that a region near the N-terminus of the M_{110} subunit binds to PP1c and modulates its specificity raised the question of which region on the M_{110} subunit interacted with the M_{21} subunit, and how the PP1_M complex is targeted to the myofibrils. In this Example we identify regions near the C-terminus of the M_{110} subunit that interact with the M_{21} subunit and with myosin, and demonstrate that the M_{21} subunit is also a myosin-binding protein. These findings indicate that the domain of the M_{110} subunit which enhances the dephosphorylation of the myosin P-light chain is distinct from the region which targets PP1c to the contractile apparatus.

10

15

20

25

MATERIALS AND METHODS

Materials

- PP1_M [4] and the dephosphorylated form of myosin [10] were isolated from chicken gizzard, and the rod-domain and light meromyosin were obtained by subdigestion of chicken gizzard myosin with papain and chymotrypsin, respectively [11]. PP1_G was purified from rabbit skeletal muscle by Dr G. Moorhead in this laboratory [12] and PP1c dissociated from the glycogen-binding subunit by incubation for 2 h in 2 M LiBr and then purified by gel-filtration on a 30 x 1 cm column of Superose 12 (Pharmacia, Milton Keynes, UK) in the presence of LiBr (0.5 M). All other chemicals were from BDH Chemicals (Poole, UK) or Sigma (Poole, UK).
- 15 Construction of vectors for the expression of fragments of the M_{110} subunit from rat aorta (rat2 sequence in Fig 17A) as glutathione-S-transferase (GST) fusion proteins in E. coli.
 - A construct pGEX-M₁₁₀-(M1-E309) for the expression of GST-M₁₁₀-(M1-E309) from rat aorta was produced as described previously [7]. A construct for the expression of GST-M₁₁₀-(M1-S477) was prepared by subcloning a *XhoI-HindIII* fragment (encoding L24-S477) of pKS-M₁₁₀-(M1-S477) described in [5] into the same sites of pGEX-M₁₁₀-(M1-E309). The resulting construct expressed a GST-M₁₁₀-(M1-S477) fusion protein with the additional amino acids SAANSISSLIHRD* (SEQ ID No 27) after S477. An expression construct for GST-M₁₁₀-(M377-K976) was produced by deleting a *NcoI-NcoI* fragment of the construct pGEX-M₁₁₀-(L24-K976) [7].
- Construction of vectors for the expression of C-terminal fragments of the M_{110} subunit from chicken gizzard (Ch1 sequence in Fig 17A, [5]) as maltose binding

20

10

20

protein (MBP) fusion proteins in E. coli.

A pT7.7 vector for the expression of the C-terminal 291 residues of the M₁₁₀ subunit from chicken gizzard, pT7-M₁₁₀-(R714-I1004) was described previously [7]. A construct for the expression of MBP-M₁₁₀-(R714-I1004) was produced by cloning an *NdeI-Bam*HI fragment of pT7-M₁₁₀-(R714-I1004) into the pMAL-HA vector (New England Biolabs). Removal of a *HindIII-HindIII* restriction fragment from pMBP-M₁₁₀-(R714-I1004) allowed expression of MBP-M₁₁₀-(R714-L934) with the sequence GTGRRFTTS (SEQ ID No 28) added to its C-terminus. Removal of a *NdeI-HindIII* restriction fragment from pMBP-M₁₁₀-(R714-I1004), followed by filling in the overhanging ends and religating them, allowed expression of MBP-M₁₁₀-(K933-I1004).

Construction of vectors for the expression in E. coli. of the M_{21} subunit from chicken gizzard [5], with and without the C-terminal leucine zipper domain.

A pT7.7 vector for the expression of the entire coding region (M1-K186) of the M_{21} subunit was described previously [7]. The leucine zipper motif of the M_{21} subunit was deleted by removing a *SacI-BamHI* restriction fragment from pT7.7 M_{21} , filling in the overhanging ends and religating them. The construct expressed M_{21} -(M1-R144) with an extra I and L after residue 144. The M_{21} -(M1-R144) protein was insoluble when expressed and was purified as described for the expressed M_{21} subunit [7].

Construction of vectors for the expression of the M_{21} subunit from chicken gizzard [5] and fragments of the M_{21} subunit as glutathione-S-transferase (GST) fusion proteins in E. coli.

A construct expressing GST-M₂₁ was produced by inserting a Ndel-HindIII fragment of pT7.7 M₂₁ encoding M1-K186 into the same sites of the pGEX

10

15

vector modified to include an *NdeI* site. A construct expressing GST-M₂₁-(M1-E110) plus an additional Ala residue at the C-terminus was constructed by deleting a *XhoI-HindIII* fragment of pGEX-M₂₁, filling in the overhanging ends and religating them. In order to express GST-M₂₁-(E110-K186), a *NdeI-XhoI* restriction fragment of pGEX-M₂₁ was deleted and the overhanging ends filled in and religated.

Expression of proteins in E. coli.

This was carried out essentially as described in [7], except that, after freezing the cells at -80°C and thawing, the lysates were not treated with DNAase but sonicated for 4 min on ice (ensuring that the temperature remained below 4°C) until the suspension was no longer viscous. The soluble GST-fusion proteins and MBP-fusion proteins were purified from the supernatant by affinity chromatography on glutathione-Sepharose (Sigma) and amylose resin (New England Biolabs), respectively, according to the instructions of the manufacturers. After expression in *E. coli* M₁₁₀-(R714-I1004) was the major soluble protein and all experiments with this fragment were performed using the bacterial extracts.

20

25

30

The chicken gizzard M₂₁ subunit was isolated from *E. coli* extracts as described [7]. M₂₁ subunit lacking the leucine zipper domain, M₂₁-(M1-L146), like the M₂₁ subunit itself, was obtained in inclusion bodies and therefore recovered in the pellet obtained after centrifugation of the bacterial lysates for 30 min at 28 000 x g. The inclusion bodies were washed three times in 50 mM Tris/HCl pH 7.5, 0.1M NaCl, 10 mM EDTA, 0.1% (by vol) 2-mercaptoethanol, 1 mM benzamidine, 0.2 mM phenylmethylsulphonyl fluoride and 0.5% (by mass) Triton X-100, then resuspended in 50 mM Tris/HCl pH 7.5, 1 mM EDTA, 1 mM EGTA, 0.03% (by mass) Brij-35, 0.1% (by vol) 2-mercaptoethanol. An aliquot (containing 3 mg protein) was made 0.5% (by vol) in trifluoroacetic

10

15

20

acid, sonicated, centrifuged for 2 min at 13,000 x g and the supernatant (containing the solubilised M_{21} subunit) loaded on to a Vydac C18 column (Separations Group, Hesperia, CA, USA) equilibrated in 0.1% (by vol) trifluoroacetic acid. The column was developed with a linear acetonitrile gradient at a flow rate of 1.0 ml / min with an increase in acetonitrile concentration of 1% per min. Homogeneous M_{21} subunit, which eluted at 42% acetonitrile, and M_{21} -(M1-L146) which eluted at 40% acetonitrile were dried in a vacuum concentrator redissolved in water, redried and then dissolved in 50 mM Tris/HCl pH 7.5, 0.1 mM EGTA, 0.03% (by mass) Brij-35, 0.1% (by vol) 2-mercaptoethanol.

Removal of GST and MBP tags from fusion proteins.

GST- M_{110} -(1-477) was cleaved with thrombin and the proteinase removed using benzamidine agarose [7]. GST- M_{21} -(E110-K186) (1mg / ml) was cleaved by incubation for 1 h at 30°C with 10 μ g/ml thrombin, while GST- M_{21} -(M1-E110) (1mg / ml) was cleaved by incubation for 3 h at 30°C with 1 μ g/ml thrombin, because it was more susceptible to degradation by thrombin. MBP- M_{110} (K933-I1004) (1 mg / ml) was cleaved by incubation for 8 h at 23°C with Factor Xa (10 μ g/ml). Other conditions and removal of Factor Xa were carried out as described for thrombin [7].

Preparation of phosphorylated myosin P-light chain and phosphatase assays.

32P-labelled myosin P-light chains containing 1.0 mol phosphate per mol subunit was prepared by phosphorylation with smooth muscle myosin light chain kinase [4]. The dephosphorylation of myosin P-light chain (1 μM) was carried out as in [4] and one unit of activity (U) was that amount which catalysed the release of 1 μmole of phosphate in one min. When assaying
 30 PP1_M in immunoprecipitates from the myofibrillar extracts, the tubes were

shaken continuously and 3 nM okadaic acid was included to inhibit any PP2A present.

Immunoprecipitation of PP1_M from myofibrillar extracts.

5

10

15

20

Antibodies raised against the PP1_M holoenzyme (1 μ g), which recognise both the M₁₁₀ and M₂₁ subunits, but not PP1c, affinity purified antibodies specific for either the M_{110} subunit or M_{21} subunit (5 μ g) [7], and control IgG (5 μ g) were conjugated separately to 10 μ l of pelleted protein G-Sepharose. After incubation for 30 min at 4°C, the Protein G-Sepharose-antibody conjugate was washed three times with 50 mM Tris/HCl pH 7.5, 0.1 mM EGTA, 0.03% (by mass) Brij-35, 0.3M NaCl, 0.1% (by vol) 2-mercaptoethanol before addition of a 100 µl of myofibrillar extract (prepared as in [4]) which had been diluted 10-fold in 50 mM Tris/HCl pH 7.5, 0.1 mM EGTA, 0.1% (by vol) 2mercaptoethanol, 0.2 mM phenylmethylsulphonyl fluoride, 1 mM benzamidine, 10 μ g/ml leupeptin containing 1 mg/ml bovine serum albumin. After incubation for 1 h at 4°C, with shaking, a 10 μ l aliquot of the suspension was removed to measure the total activity. The remaining 90 μ l was centrifuged for 1 min at 13,000 x g, the supernatant was removed, and the pellet washed twice in dilution buffer containing 0.2 M NaCl and 0.03% (by mass) Brij-35 (but no bovine serum albumin), once in dilution buffer and then resuspended in 90 μ l Myosin P-light chain phosphatase activity was then of dilution buffer. measured in the supernatant and the resuspended pellet at a further 30-fold final dilution.

25

30

Myosin binding assays. Myosin $(0.5 \text{ mg} / \text{ml}, 1 \mu\text{M} \text{ in terms of myosin heavy})$ chains) in 10 mM Hepes pH 7.5, 50 mM KCl, 5 mM MgCl2, 0.1% (by vol) 2-mercaptoethanol, was mixed with PP1_M, M₂₁ subunit, or fragments of the M₁₁₀ and M₂₁ subunits, at the concentrations indicated in figure legends. After incubation for 15 min at 0°C, the solutions were centrifuged for 2 min at

13,000 x g, the supernatants removed, and the pellets washed twice in 10 mM Hepes pH 7.5, 50 mM KCl, 5 mM MgCl2, 0.1% (by vol) 2-mercaptoethanol before resuspension in 50 mM Tris-HCl pH 7.5, 0.1 mM EGTA, 0.03% (by mass) Brij 35, 0.6 M NaCl, 0.1% (by vol) 2-mercaptoethanol. Aliquots of the supernatant, the resuspended pellet and the suspension before centrifugation were either assayed for myosin P-light chain phosphatase activity or denatured in SDS and analysed by SDS/polyacrylamide gel electrophoresis.

Preparation of a complex between GST- M_{21} and M_{110} -(R714-I1004).

10

15

25

5

GST- M_{21} (10 μ g) was mixed with 80 μ l of bacterial extract expressing M_{110} -(R714-I1004). After incubation for 15 min at ambient temperature the solution was added to 20 μ l (packed volume) of glutathione-Sepharose equilibrated in 50 mM Tris HCl pH 7.5, 0.1 mM EGTA, 0.03% (by mass) Brij 35, 0.1% (by vol) 2-mercaptoethanol, 0.2 mM phenylmethylsulphonyl fluoride, 1 mM benzamidine and 0.15 M NaCl. After incubation for 30 min at 4°C with shaking, the Sepharose was washed three times in the same buffer before eluting the complex with buffer containing 20 mM glutathione pH 8.0.

20 Other procedures.

Proteins were labelled with digoxigenin and Far Western analyses carried out as described [4], except that the digoxigenin-labelled probe was used at a concentration of 0.2 μ g/ml instead of 2 μ g/ml. SDS/polyacrylamide gel electrophoresis was carried out on 7.5-15% gels according to Laemmli [13] and on 16.5% gels according to Schagger and von Jagow [14]. Protein was estimated according to Bradford [15].

Results

 PPI_{M} accounts for nearly all the myosin phosphatase activity in extracts prepared from chicken gizzard myofibrils.

5

10

15

80-90% of the myosin phosphatase activity present in chicken gizzard homogenates is recovered in the myofibrils [4]. In the present study, we used antibodies that recognise the M_{110} and/or the M_{21} subunits of chicken gizzard PP1_M [7] to immunoprecipitate the myosin P-light chain phosphatase activity from the myofibrillar extracts. About 90% of the activity was immunoprecipitated by antibodies raised against the PP1_M holoenzyme (Fig 18A) which recognise both the M_{110} and M_{21} subunits in immunoblotting experiments, but not PP1c. Similarly, about 80% of the myosin P-light chain phosphatase activity in the myofibrillar extracts was immunoprecipitated by either the anti- M_{110} antibody or by the anti- M_{21} antibody (Fig 18A). Thus, most of the myosin P-light chain phosphatase activity in myofibrillar extracts is catalysed by PP1c present as a complex containing both the M_{110} and the M_{21} subunits.

25

20

Immunoblotting experiments demonstrated that the ratio M_{110} : M_{21} in myofibrillar extracts was identical to the ratio of these subunits in purified PP1_M (Fig 18B), which is 1:1 [4]. These immunoblotting experiments also demonstrated that PP1_M comprises 0.1% of the protein in the myofibrillar extract (see legend to Fig 18B), identical to the proportion estimated from the fold-purification needed to obtain pure PP1_M from this fraction (see Table 1 in Ref 4). These experiments imply that PP1_M accounts for virtually all the myosin phosphatase activity associated with myofibrils, and that neither the M_{110} nor the M_{21} subunit is present in a significant molar excess over PP1c in the myofibrils.

Identification of a region on the M_{110} subunit that binds to the M_{21} subunit.

PP1_M and several fragments of the M₁₁₀ subunit, were subjected to SDS/polyacrylamide gel electrophoresis (Fig 19A) and, after transfer to nitrocellulose, the blots were probed with digoxigenin-labelled M₂₁ subunit (Fig 19B). These experiments showed that the M₂₁ subunit recognised the full length M₁₁₀ subunit (Fig 19B, track 1), M₁₁₀-(R714-I1004) (Fig 19B, tracks 2 and 3) and M₁₁₀-(K933-I1004) (Fig 19B, track 5), but not M₁₁₀-(R714-L934) (Fig 19B, track 4), M₁₁₀-(M1-E309) (Fig 19B, track 7) or M₁₁₀-(M1-S477) (Fig 19B, track 8). Thus, the M₂₁ subunit binds to the C-terminal 72 residues of the M₁₁₀ subunit. The specificity of this interaction was indicated by the observation that digoxigenin-labelled M₂₁ subunit recognised only M₁₁₀-(R714-I1004) and no other protein in the *E. coli* extract (track 2 in Figs 19A and 19B), nor did it recognise the MBP or GST tags, PP1c (Figs 19A and 19B) or any of the molecular mass markers (data not shown).

Consistent with the results in Fig 19, digoxigenin-labelled MBP- M_{110} -(R714-I1004) (data not shown) and MBP- M_{110} -(K933-I1004) (Fig 20B), but not digoxigenin-labelled MBP- M_{110} -(R714-L934) (data not shown), recognised the full length M_{21} subunit and M_{21} (M1-L146) in Far Western blotting experiments.

The region of the M_{21} subunit that interacts with the M_{110} subunit.

Digoxigenin-labelled M_{21} -(M1-L146) recognised the same fragments of the M_{110} subunit as the full length M_{21} protein (Fig 19C), demonstrating that the C-terminal leucine zipper of the M_{21} subunit is not required for interaction with the M_{110} subunit. However, neither digoxigenin-labelled GST- M_{21} -(M1-E110) nor digoxigenin-labelled GST- M_{21} -(E110-K186) recognised M_{110} -(K933-I1004) in Far Western blotting experiments (data not shown). Consistent with these findings, digoxigenin-labelled M_{110} -(K933-I1004) recognised the full length M_{21}

10

15

20

25

protein and M_{21} -(M1-L146), but not M_{21} -(M1-E110) or M_{21} -(E110-K186) in Far Western blotting experiments (Figs 20A and B). However, digoxigenin-labelled M_{110} -(K933-I1004) did recognise a proteolytic fragment of the M_{21} subunit with an apparent molecular mass only slightly larger than M_{21} -(M1-E110) (Fig 20B, track 2 and compare tracks 2 and 4 in Fig 20A). These results are considered further under Discussion.

The isolated M_{21} subunit dimerizes and the region involved in dimerization is identical to that which interacts with the M_{110} subunit.

10

15

20

25

5

Although the M_{110} subunit binds to both PP1c and the M_{21} subunit [4], and removal of the M_{21} subunit does not alter the specificity of the PP1_M complex [7], an interaction between the M_{21} subunit and PP1c had not been excluded. In order to examine this point, PP1c and the M_{21} subunit were mixed together and subjected to gel filtration on Superose 12. The M_{21} subunit eluted just before the 37 kDa PP1c protein, demonstrating that they do not form a high affinity complex and suggesting that the isolated M_{21} subunit dimerizes (data not shown). These results were supported by the finding that digoxigenin-labelled full length M_{21} subunit recognised the M_{21} subunit as well as the M_{110} subunit, but not PP1c, in Far Western blotting experiments (Fig 21, track 1). Similar results were obtained with M_{21} -(M1-L146) (Fig 21, track 2). Digoxigenin-labelled M_{21} subunit, like digoxigenin-labelled M_{110} -(K933-I1004), recognised a fragment of the M_{21} subunit that migrated slightly more slowly than M_{21} -(M1-E110), but did not recognise M_{21} -(M1-E110) or M_{21} -(E110-K186) (Tracks 2, 4 and 5 in Figs 20B and 20C).

Identification of a region on the M_{110} subunit that binds to myosin.

When PP1_M (30 nM) was mixed with chicken gizzard myosin (1 μ M) and centrifuged to pellet the myosin, 85% of the myosin P-light chain phosphatase

10

15

20

25

*., .

was recovered in the pellet (Figs 22 and 23A). In contrast, neither PP1c (Fig 22) nor bovine serum albumin (data not shown) bound to myosin under these conditions. After removal of the M_{21} subunit from PP1_M [7], the M_{110} -PP1c complex (PP1_M(ΔM_{21}) still pelleted with myosin in a similar manner to PP1_M itself (Fig 22), indicating that the M_{110} subunit is a myosin-binding protein.

In order to identify the myosin-binding domain(s), several fragments of the M_{110} subunit were expressed and purified from $E.\ coli$ extracts and their binding to myosin was studied. GST- M_{110} -(M1-S477), like GST- M_{110} -(M1-E309) [7], stimulated the PP1c-catalysed dephosphorylation of the myosin P-light chain and inhibited the dephosphorylation of glycogen phosphorylase in a similar manner to the full length M_{110} subunit (data not shown). However, neither GST- M_{110} -(M1-S477) nor GST- M_{110} -(M1-E309) bound to myosin (data not shown), even after removal of the GST-tag from GST- M_{110} -(M1-S477) (Fig 23A).

A fragment comprising GST- M_{110} -(M377-K976) from rat aorta migrated as multiple bands on SDS/polyacrylamide gels after purification on glutathione-Sepharose (Fig 23A), indicating cleavage at multiple sites within the M_{110} subunit. Only the largest fragment, with an apparent molecular mass corresponding to undegraded GST- M_{110} -(M377-K976) bound to myosin (Fig 23A), suggesting that the myosin binding site(s) was located towards the C-terminus of the M_{110} subunit. Consistent with this finding, M_{110} -(R714-I1004) from chicken gizzard also bound to myosin (Fig 23B). However, M_{110} -(K933-I1004), which bound to the M_{21} subunit (Fig 20B), did not bind to myosin in these experiments (Fig 23B).

10

15

20

The M_{21} subunit, and a complex between M_{21} and M_{110} -(R714-11004) bind to myosin.

After purification on glutathione-Sepharose, GST- M_{21} migrated as four protein staining bands (track 1 in Fig 20A), the two species of highest apparent molecular mass being recognised by the anti- M_{21} antibody (Fig 23B). The apparent molecular mass of the slowest migrating band (47 kDa) corresponds to undegraded GST- M_{21} and this species bound to myosin (Fig 23B). The next most slowly migrating band had an apparent molecular mass of 38 kDa, slightly less than that of GST- M_{21} -(M1-E110) (data not shown) indicating that it corresponds to GST fused to about the first 100 residues of the M_{21} subunit; this fragment hardly bound to myosin (Fig 23B).

Bacterial extracts expressing M_{110} -(R714-I1004) were mixed with GST- M_{21} and the resulting complex was purified on glutathione-Sepharose. This complex bound quantitatively to myosin (Fig 23B). In contrast, the GST- M_{21} fragment of apparent molecular mass 38 kDa was not complexed to M_{110} -(R714-I1004) and did not bind to myosin (Fig 23B). The C-terminal fragment of the M_{21} subunit, M_{21} -(E110-K186) also did not bind to myosin under these conditions (data not shown).

Multiple binding sites for the M_{21} subunit on the myosin molecule.

The molar ratio myosin:PP1_M in chicken gizzard is about 80:1 in vivo [4] and the myosin binding experiments described above were therefore carried out using a large (ten fold) molar excess of myosin over either the M₂₁ or the M₁₁₀ subunit. However, further experiments carried out with the M₂₁ subunit in excess revealed that, remarkably, 20 or more moles of M₂₁ subunit could be bound to each myosin dimer (Fig 24A). Many of the binding sites were located in the region of myosin involved in filament formation, because the M₂₁

subunit was pelleted with the myosin "rod" domain even when the molar ratio M_{21} : myosin dimer was 10:1 (Fig 24B). A shorter portion of the rod, termed light meromyosin, also bound the M_{21} subunit avidly. However, a fragment of the M_{21} subunit lacking the first 15 residues from the N-terminus, which was a contaminant in this preparation, did not bind to light meromyosin (Fig 24B), although it bound to the longer myosin rod (Fig 24B). The M_{21} subunit lacking the C-terminal leucine zipper, M_{21} -(M1-L146), bound to both myosin and the rod domain, but fewer moles of M_{21} -(M1-L146) could be bound and this C-terminally truncated species did not bind to light meromyosin under the conditions studied (Fig 24C).

Multiple forms of the M₁₁₀ subunit

Comparison of two different clones encoding the M_{110} subunit from chicken gizzard revealed a 123 bp (41 amino acid) deletion/insertion after Asn-511 (Fig. 17, [8]). Since the rat aorta sequence [5] showed considerable variation from the chicken sequences in this region, compared to the high degree of sequence similarity throughout most of the rest of the molecule (Fig 17), it seemed probable that forms of the rat M_{110} subunit also existed that varied in this middle section of the protein. PCR of the "variable region" of several rat aorta clones gave fragments of either 608 bp or 776 bp. Direct sequencing of these fragments showed an in frame insertion of 168bp (56 amino acids) after Ser-552 (Fig. 1); i.e. a slightly different position from the deletion reported for the chicken gizzard M₁₁₀ subunit (Fig 17). Furthermore, a different 62 amino acid deletion/insertion in this section is apparent by comparison of the rat aorta sequences with that of the M_{110} protein from rat kidney (Fig. 1) [9]. While it is likely that most of these variations arise by alternative splicing of the mRNA. Southern blotting of rat genomic DNA revealed the presence of two closely related genes (data not shown).

5

10

15

20

Discussion

5

10

15

20

25

30

than PP1 [19]).

The contraction of smooth muscle is triggered by phosphorylation of the P-light chain of myosin catalysed by myosin light chain kinase. However, the identity of the myosin P-light chain phosphatase remained unclear for many years. In 1992 we reported that 80-90% of the myosin phosphatase activity in chicken gizzard homogenates was associated with myofibrils and purified a myosin phosphatase to homogeneity from this fraction [4]. This enzyme, termed PP1_M, was found to be composed of the β -isoform of PP1c (termed the δ -isoform in [16]) and an "M-complex" consisting of two other subunits [4] whose molecular masses were 21 kDa (M_{21}) [5] and 110 kDa (M_{110}) [5, 8], respectively. Further evidence that a form of PP1 was the major myosin

phosphatase in smooth muscle was indicated by the finding that tautomycin (a

much more potent inhibitor of PP1 than PP2A [17]) stimulated the contraction

of permeabilised mammalian smooth muscle fibres at much lower

concentrations than okadaic acid [18] (a much more potent inhibitor of PP2A

92

Two further pieces of evidence presented in this Example establish that $PP1_M$ accounts for most, if not all, of the myosin phosphatase activity associated with chicken gizzard myofibrils, reinforcing the view that it is likely to be the major myosin P-light chain phosphatase in vivo. Firstly, nearly all the myosin P-light chain phosphatase activity was immunoprecipitated by antibodies that recognise either the M_{110} or the M_{21} subunit specifically (Fig 18A). Secondly, $PP1_M$ was found to represent 0.1% of the protein in the myofibrillar extracts whether its concentration was calculated from the increase in specific activity needed for purification to homogeneity [4] or from immunoblotting experiments with the anti- M_{110} and anti- M_{21} antibodies (Fig 18B). Had another enzyme been the major myosin phosphatase in the myofibrillar extracts the enrichment estimated by immunoblotting with anti- M_{110} and anti- M_{21} antibodies would have been

BNSDOCID: <WO 9737224A1 I

10

15

20

much higher.

The experiments presented in Fig 18 also demonstrate that the M_{110} and M_{21} subunits are not present in myofibrillar extracts in a significant molar excess over PP1c and that all the M_{110} subunits are complexed to M_{21} subunit and vice versa. The M₂₁ subunit was found to bind to the C-terminal 72 residues of the chicken gizzard M₁₁₀ subunit (Figs 19 and 25), a region whose amino acid sequence is 43% identical to residues 87-161 of the M₂₁ subunit (Fig 17B). The C-terminal leucine zipper of the M_{21} subunit (residues 145-186) is not required for interaction with the M_{110} subunit, and the site on the M_{21} subunit which interacts with the M_{110} subunit lies within about the N-terminal 120 residues (Fig 20B). Interestingly, the same region is essential for the dimerisation of the M21 subunit (compare Figs 20B and 20C), suggesting that the region(s) involved in interaction is probably located between residues 60 and 120 of the M_{21} subunit and 906-965 of the M_{110} subunit from chicken gizzard; i.e. the regions with greatest amino acid identity between these two proteins (Fig 17). More digoxigenin-labelled M_{21} subunit bound to the M_{110} subunit than to the M₂₁ subunit in Far Western blotting experiments (Fig 21), consistent with the observation that M_{110}/M_{21} heterodimers form in vivo, but not M_{21}/M_{21} homodimers. The finding that the C-terminus of the M_{110} subunit interacts with the M₂₁ subunit explains why preparations of PP1_M comprising PP1c complexed to N-terminal fragments of the M₁₁₀ subunit do not contain the M_{21} subunit [8, 20].

PP1_M binds to the dephosphorylated form of myosin and our data demonstrate that the M₁₁₀ subunit (Fig 22) and the M₂₁ subunit (Fig 23B and Fig 24) are both myosin-binding proteins. The C-terminal 600 residues of the M₁₁₀ subunit from rat aorta, M₁₁₀-(M377-K976) (Fig 23A) and the C-terminal 291 residues of the M₁₁₀ subunit from chicken gizzard, M₁₁₀-(R714-I1004), bound to myosin, but the C-terminal 72 residues of the M₁₁₀ subunit, M₁₁₀-(K933-1004), did not

WO 97/37224

10

15

20

25

30

(Fig 23B), indicating that a myosin-binding domain is likely to be situated in the M_{110} subunit just N-terminal to the M_{21} -binding domain (Fig 25). In contrast, two N-terminal fragments of the M_{110} subunit M_{110} -(M1-S477) (Fig 23A) and M_{110} -(M1-E309) (data not shown) did not bind to myosin under the conditions studied. Since M_{110} -(M1-E309) [7] and M_{110} -(M1-S477) (data not shown) stimulate the dephosphorylation of myosin and inhibit the dephosphorylation of glycogen phosphorylase by PP1c, and in a similar manner to full length M_{110} subunit, these results show that the region of the M_{110} subunit which stimulates the dephosphorylation of the myosin P-light chain is distinct from that which binds the dephosphorylated form of myosin and thereby targets PP1_M to the contractile apparatus.

Digestion of chicken gizzard PP1_M with chymotrypsin cleaves the M₁₁₀ subunit to a fragment with an apparent molecular mass of 58 kDa and a form of PP1, termed here PP1_M*, can then be isolated by gel-filtration which appears to comprise just the 58 kDa fragment and PP1c in a 1:1 molar ratio [8]. The 58 kDa fragment, like the M_{110} subunit, has a blocked N-terminus and seven tryptic peptides isolated were located between residues 286 and 467, suggesting that the 58 kDa fragment corresponds to the N-terminal portion of the M₁₁₀ subunit [8]. PP1_M* was reported to bind to myosin, albeit less effectively than PP1_M [8], suggesting the presence of a myosin-binding domain within the 58 kDa fragment. This result is in apparent conflict with the present study, fragment M_{110} -(M1-S477), which also because the SDS/polyacrylamide gels with an apparent molecular mass of 58 kDa, did not bind to dephosphorylated myosin under conditions where 80-90% of the $PP1_M$ and M_{110} -(R714-I1004) was pelleted with myosin (Fig 23A). One possible explanation for this discrepancy is that PP1_M* also contains small myosinbinding fragments from the C-terminus of the M110 subunit which still interact with the N-terminal 58 kDa fragment, but are too small to be detected by SDS/polyacrylamide gel electrophoresis. In a separate study heavy meromyosin (50 μ g) was found to bind partially to 2 mg of M₁₁₀-(1-633) coupled to Affigel 15, at very low ionic strength but not at 150-200 mM NaCl [21]. The significance of this observation is unclear because of the extremely high concentration of the M₁₁₀-(1-633) used in these experiments. The average intracellular concentration of PP1_M in chicken gizzard is about 1 μ M, 100-fold lower than the concentration of myosin. In the present study, we analysed the binding of the M₁₁₀ subunit and its subfragments (30-100 nM) to myosin (1 μ M) using low concentrations of these proteins to try and ensure that only high affinity binding sites were identified.

10

15

20

5

The isolated M_{21} subunit also bound to myosin and up to 20 moles of M_{21} subunit could be bound to each myosin dimer (Fig 24). These observations indicate that each myosin molecule contains multiple binding sites for the M_{21} subunit, many of which are located within the "rod domain" (Figs 24B and 24C). *In vivo*, the molar ratio PP1_M: myosin is about 1:80 and yet, during muscle relaxation, all the myosin P-light chains can be dephosphorylated by PP1_M within seconds. This implies that PP1_M must be highly mobile within the myofibrils and move extremely rapidly from one myosin molecule to another. The "off rates" for binding of PP1_M to myosin must therefore be very fast as well as the "on rates". It is tempting to speculate that the presence of multiple binding sites on myosin for the M_{21} subunit (and perhaps for the M_{110} subunit as well) allows PP1_M to "slide" rapidly from one myosin molecule to another.

Example 4: Design of small molecules to modulate the properties of PP1

25

30

Table A is a print-out of the atomic coordinates of the protein phosphatase-1 peptide coordinates as deduced in Example 2. The format is Protein Data Bank. The structure of the protein phosphatase-1 catalytic subunit (PP1c) in complex with a 13-residue peptide (G_M peptide) corresponding to a site of interaction between PP1c and the glycogen targeting subunit provides a frame-

15

25

work for the rational design of small molecules to modulate the functions and properties of PP1 in vivo. Knowledge of the structural nature of the interactions between the G_M peptide and PP1c allows the design of inhibitors that mimic these interactions. These inhibitors may be designed for increased potency, cell permeability and with improved pharmokinetic properties.

Computer graphics systems may be used to design such inhibitors in conjunction with computer graphics modelling software such as SYBIL available from: Tripos Inc, 16995 S Hanley Road, St Louis, Missouri 63144-2913, USA and LUDI available from: Molecular Simulations Inc, 9685 Scranton Road, San Diego, CA 92121-3752, USA, and in conjunction with the atomic coordinates shown in Table A.

Example 5: Effect of peptide derived from p53BP2 binding site to PP1 in vivo

The function of p53BP2 is ascertained by examining the *in vivo* effect of peptides based on the sequence of the p53BP2 binding site to PP1. This may be done by reference to the consensus peptide sequence described in the previous Examples and by reference to the crystal structure in Example 2. The peptide is introduced into cultured cells using penetratin available from Appligene. Other importins may also be used. Alternatively cDNA specifying p53BP2 proteins mutant in the p53BP2 binding site to PP1 are transfected in cultured cells. The effect of these agents on the cell cycle and apoptosis are assessed by a number of methods, for example WAF1 ELISA and Nuclear Matrix Protein ELISA assays (Amersham).

The effect of the p53BP2 peptide is to modulate the interaction between PP1 and p53BP2 in vivo and affect cell regulation and apoptosis. The p53BP2 peptide may also be micro-injected into the cell.

					Table A		126	1 00 53 07	_
MOTA	1	N	LYS	6	-10.263 -9.182	46.372 46.177	91.126 90.159	1.00 53.07 1.00 53.07	0
ATOM	3 4	CA CB	LYS LYS	6 6	-9.220	47.277	89.092	1.00 45.20	ŏ
ATOM ATOM	5	CG	LYS	ő	-10.284	47.095	88.015	1.00 45.20	0
ATOM	6	CD	LYS	6	-9.809	46.200	86.868	1.00 45.20	0
ATOM	7	CE	LYS	6	-8.832	46.919	85.927	1.00 45.20	0
MOTA	8	NZ	LYS	6	-7.498	47.216 46.179	86.540 90.835	1.00 45.20 1.00 53.07	0
MOTA	12	C	LYS LYS	6 6	-7.814 -6.854	45.624	90.303	1.00 45.20	ŏ
MOTA MOTA	13 14	N O	LEU	7	-7.746	46.816	92.005	1.00 42.33	ŏ
ATOM	16	CA	LEU	Ż	-6.527	46.941	92.800	1.00 43.14	0
ATOM	17	CB	LEU	7	-6.840	47.599	94.141	1.00 24.45	0
MOTA	18	CG	LEU	7	-5.670	47.782	95.106	1.00 18.34 1.00 25.09	0
ATOM	19	CD1		7 7	-4.775 -6.186	48.881	94.589 96. 4 96	1.00 25.09 1.00 22.21	,0 0
ATOM ATOM	20 21	CD2 C	LEU	7	-5.892	45.594	93.063	1.00 42.81	ŏ
ATOM	22	o ·	LEU	Ż	-6.497	44.723	93.675	1.00 23.55	Ō
ATOM	23	N	ASN	8	-4.656	45.424	92.627	1.00 17.03	0
MOTA	25	CA	asn	8	-4.000	44.156	92.846	1.00 11.65	0
ATOM	26	CB	ASN	8 ·	-3.204	43.744 42.312	91.610 91.193	1.00 18.54 1.00 15.30	0.
ATOM	27	CG OD1	asn asn	8 8	-3.486 -4.643	41.903	91.068	1.00 14.53	ŏ
ATOM ATOM	28 29		ASN ASN	8	-2.429	41.538	90.993	1.00 7.61	ŏ
ATOM	32	C	ASN	š	-3.110	44.207	94.079	1.00 11.35	0
ATOM	33	ŏ	ASN	8	-1.906	44.515	93.985	1.00 12.23	0
MOTA	34	N	ILE	9	-3.716	43.900	95.232	1.00 12.56	0
MOTA	36	CA	ILE	9	-3.018	43.894	96.523 97.690	1.00 14.41 1.00 2.00	0
ATOM	37	CB CG2	ILE	9 9	-3. 95 5 -3. 15 5	43.439 42.828	98.812	1.00 2.00	ő
ATOM ATOM	38 39	CG2	ILE	9	-4.742	44.634	98.244	1.00 2.00	ŏ
ATOM	40	CD1	ILE	9	-3.865	45.837	98.581	1.00 2.00	0
ATOM	41	C	ILE	9	-1.796	42.996	96.501	1.00 10.07	0
ATOM	42	0	ILE	9	-0.759	43.351	97.045	1.00 2.00 1.00 2.00	0
ATOM	43	N	ASP	10	-1.916 -0.822	41.845	95.849 95.782	1.00 2.00 1.00 2.00	ŏ
MOTA	45 46	CA CB	ASP ASP	10 10	-1.336	39.562	95.208	1.00 45.77	ŏ
MOTA MOTA	47	CG	ASP	10	-2.234	38.801	96.191	1.00 46.34	0
ATOM	48	OD1	ASP	10	-3.054	39.444	96.879	1.00 50.94	0
ATOM	49	OD2	ASP	10	-2.123	37.558	96.281	1.00 55.84	0
MOTA	50	C	ASP	10	0.426 1.540	41.369	95.036 95.516	1.00 2.00 1.00 43.44	0
MOTA MOTA	51 52	O N	asp Ser	10 11	0.245	41.993	93.874	1.00 2.00	ŏ
ATOM	54	CA	SER	11	1.387	42.494	93.112	1.00 2.00	0
ATOM^	55	CB	SER	11	0.987	42.834	91.678	1.00 24.54	0
MOTA	56	OG	SER	11	-0.025	43.819	91.653	1.00 26.40	0
MOTA	58	C	SER	11	1.964	43.727	93.804 93.702	1.00 2.00 1.00 23.86	0
MOTA	59	0	SER ILE	11 12	3. 16 8 1. 09 9	44.010	94.493	1.00 19.26	ŏ
ATOM ATOM	60 62	N CA	ILE	12	1.536	45.641	95.226	1.00 19.26	0
ATOM	63	CB	ILE	12	0.345	46.351	95.878	1.00 2.00	0
ATOM	64	CG2	ILE	12	0.831	47.364	96.909	1.00 2.00	0
MOTA	65	CG1	ILE	12	-0.499	46.986	94.775	1.00 2.00 1.00 2.00	0
MOTA	66	CD1	ILE	12 12	-1.722 2.501	47.687 45.112	95.245 96.275	1.00 19.26	ŏ
ATOM ATOM	67 68	C O	ILE ILE	12	3.684	45.445	96.264	1.00 2.00	0
ATOM	69	N	ILE	13	1.987	44.246	97.141	1.00 2.00	0
ATOM	71	CA	ILE	13	2.764	43.605	98.199	1.00 2.00	0
MOTA	72	CB	ILE	13	1.899	42.504	98.897	1.00 2.00	0
ATOM	73	CG2	ILE	13	2. 74 7 0.764	41.645	99.810 99.691	1.00 2.00 1.00 2.00	0
ATOM ATOM	74 75	CG1 CD1	ILE ILE	13 13	-0.213	43.154	100.331	1.00 2.00	ő
ATOM	76	CDI	ILE	13	4.039	42.960	97.602	1.00 2.00	Ö
ATOM	77	Õ	ILE	13	5.142	43.099	98.158	1.00 2.00	0
ATOM	78	N	GLN	14	3.864	42.278	96.462	1.00 2.00	0
MOTA	80	CA	GLN	14	4.937	41.582	95.740	1.00 2.00	0
MOTA	81	CB	GLN	14 14	4.415 5.467	41.065	94.391 93.454	1.00 21.13 1.00 32.43	0
ATOM ATOM	82 83	CG CD	GLN GLN	14	5.655	41.284	92.171	1.00 28.89	Ö
01.7	0)	CD	GLIN	- *	2.023	· •			

MOTA	84	OE1	GT.N	14	4.726	41.428	91.363	1.00 30.84	0
MOTA	85	NE2		14	6.861	41.818	91.977	1.00 29.15	0
ATOM	88	C	GLN	14	6.088	42.519	95.515	1.00 2.00	0
ATOM	89	ŏ	GLN	14	7.206	42.249	95.934	1.00 24.80	0
ATOM	90	Ň	ARG	15	5. 78 9	43.625	94.848	1.00 15.16	0
ATOM	92	CA	ARG	15	6.776	44.638	94.552	1.00 15.16	0
MOTA	93	CB	ARG	15	6.122	45.812	93.846	1.00 8.83	0
ATOM	94	CG	ARG	15	6.530	45.981	92.388	1.00 8.83	0
ATOM	95	CD	ARG	15	5.543	46.882	91.684	1.00 8.83	0
ATOM	96	NE	ARG	15	4.195	46.322	91.761	1.00 8.83	0
MOTA	9 8	$\mathbf{C}\mathbf{z}$	ARG	15	3.094	46.998	91.465	1.00 8.83	0
MOTA	9 9	NH1		15	3.178	48.261	91.073	1.00 9.33	0
MOTA	102	NH2	ARG	15	1.907	46.413	91.567	1.00 8.83	0
MOTA	105	C	ARG	15	7.405	45.106	95.841	1.00 15.16	0
MOTA	106	0	ARG	15	8.622	45.124	95.952	1.00 13.09	0
MOTA	107	N	LEU	16	6.575	45.462	96.820	1.00 2.00 1.00 2.00	0
MOTA	109	CA	LEU	16	7.049	45.924	98.124 99.033	1.00 2.00 1.00 2.00	Ö
MOTA	110	CB	LEU	16	5.853	46.215	98.662	1.00 2.00	Ö
MOTA	111	CG	LEU	16	4.982	47.420	99.324	1.00 2.00	ŏ
MOTA	112	CD1		16	3.630	47.302 48.707	99.056	1.00 2.00	ŏ
MOTA	113		LEU	16	5.664	44.942	98.809	1.00 2.00	ŏ
MOTA	114	C	LEU	16	8.014 9.031	45.354	99.361	1.00 2.00	ŏ
MOTA	115	0	LEU	16 17	7.712	43.650	98.770	1.00 12.70	ŏ
MOTA	116	N	LEU	17	8.590	42.652	99.395	1.00 4.33	ŏ
MOTA	118	CA	LEU	17	7.812	41.387	99.780	1.00 4.50	ō
MOTA	119 120	CB CG	LEU	17	6.740		100.838	1.00 4.52	Ó
MOTA	121		LEU	17	6.338		101.302	1.00 11.14	0
MOTA MOTA	122		LEU	17	7.285		101.997	1.00 6.93	0
MOTA	123	C	LEU	17	9.796	42.225	98.548	1.00 7.39	0
ATOM	124	ŏ	LEU	17	10.751	41.652	99.086	1.00 15.30	0
ATOM	125	Ň	GLU	18	9.758	42.492	97.238	1.00 65.13	0
ATOM	127	CA	GLU	18	10.847	42.104	96.329	1.00 70.48	0
MOTA	128	CB	GLU	18	10.5 0 5	42.471	94.883	1.00 89.02	0
ATOM	129	CG	GLU	18	10.769	43.929	94.547	1.00 97.06	0
ATOM	130	CD	GLU	18	10.677	44.239	93.069	1.00 39.46	0
MOTA	131	OE1	GLU	18	11.030	43.351	92.256	1.00 39.46	0
ATOM	132	OE2	GLU	18	10. 26 5	45.375	92.727	1.00 39.46	0
ATOM	13 3	С	GLU	18	12.199	42.724	96.687	1.00 70.82	0
MOTA	134	0	GLU	18	13.244	42.249	96.240	1.00 88.34 1.00 28.97	Ö
MOTA	13 5	N	VAL	19	12.172	43.793	97.480	1.00 28.97	Ö
MOTA	137	CA	VAL	19	13.394	44.470	97.891 98.207	1.00 28.37	Õ
MOTA	138	CB	VAL	19	13.139	45.968	96.942	1.00 6.86	ŏ
MOTA	139	CG1		19	12.746	46.702	99.231	1.00 4.03	ŏ
MOTA	140	CG2		19	12.044 14.079	43.805	99.081	1.00-28.97	Ō
MOTA	141	C	VAL	19	15.134	44.258	99.514	1.00 13.23	0
ATOM	142	0	VAL	19 20	13.490	42.736	99.615	1.00 2.00	0
MOTA	143	N	ARG ARG	20	14.093	42.016	100.748	1.00 2.00	0
MOTA MOTA	145 146	CA CB	ARG	20	13.242	40.812	101.142	1.00 17.66	0
ATOM	147	CG	ARG	20	12.043	41.138	101.990	1.00 16.46	0
MOTA	148	CD	ARG	20	11.192	39.899	102.195	1.00 21.30	0
MOTA	149	NE	ARG	20	12.006	38.733	102.532	1.00 18.45	0
MOTA	151	cz	ARG	20	11.559	37.481	102.546	1.00 23.19	0
ATOM	152	NH1		20	10.288	37.232	102.249	1.00 28.11	0
ATOM .	155	NH2		20	12.383	36.477	102.836	1.00 21.96	0
ATOM	158	C	ARG	20	15.480	41.521	100.333	1.00 2.00	0
ATOM	159	Ó	ARG	. 20	15.609	40.778	99.353	1.00 20.52	0
ATOM	160	N	GLY	21	16. 514	41.956	101.047	1.00 61.97	0
ATOM	162	CA	GLY	21	17.863	41.527	100.718	1.00 65.49	0
ATOM	163	C	GLY	21	18.702	42.522	99.930	1.00 66.05	0
MOTA	164	0	GLY	21	19.933	42.409	99.889	1.00 13.74	0
MOTA	165	N	SER	22	18.055	43.490	99.290	1.00 19.66 1.00 17.08	Ö
ATOM	167	CA	SER	22	18.790	44.491	98.523 97.481	1.00 17.08	ŏ
MOTA	168	CB	SER	22	17.874	45.159	98.074	1.00 28.81	ŏ
MOTA	169	OG	SER	. 22	16.821	45.908 45.538	99.466	1.00 32.17	ŏ
MOTA	171	C	SER	22	19.371	45.558		1.00 21.05	ŏ
MOTA	172	0	SER	22	19.047	43.30	100.057	2.00 22.00	-

N TOOM	173	N	LYS	23	20.222	46.409	98.935	1.00 53.24	0
ATOM ATOM	175	CA	LYS	23	20.828	47.458	99.740	1.00 49.50	Ō
ATOM	176	CB	LYS	23	21.565	48.471	98.852	1.00 94.25	Ō
	177	CG	LYS	23	20.639	49.422	98.085	1.00 59.71	ŏ
ATOM		CD	LYS	23	21.341	50.716	97.688	1.00 94.25	ŏ
ATOM	178	CE	LYS	23	20.346	51.775	97.214	1.00 59.77	ŏ
MOTA	179		LYS	23	19.448	52.240	98.306	1.00 59.94	ŏ
MOTA	180	NZ	LYS	23	19.739	48.190		1.00 49.47	ŏ
ATOM	184	C		23	18.659	48.488	99.998	1.00 59.94	ŏ
MOTA	185	0	LYS		19.990		101.813	1.00 37.72	ŏ
MOTA	186	N	PRO	24	21.185		102.614	1.00 2.00	ŏ
MOTA	187	CD	PRO	24 24	18.987	49.165	102.613	1.00 36.73	ŏ
MOTA	188	CA	PRO	24	19.618	49.217		1.00 2.00	ŏ
MOTA	189	CB	PRO		21.109	49.208		1.00 2.00	ŏ
ATOM	190	CG	PRO	24	18.798	50.551		1.00 33.26	ŏ
ATOM	191	C	PRO	24	19.752	51.325	101.938	1.00 2.00	ŏ
MOTA	192	0	PRO	24	17.579	50.835	101.575	1.00 22.79	ŏ
ATOM	193	N	GLY	25		52.119	100.981	1.00 22.84	ŏ
ATOM	195	CA	GLY	25	17.275 16.653	51.904	99.624	1.00 18.00	ŏ
MOTA	196	C	GLY	25	16.098	52.827	99.037	1.00 28.24	ŏ
ATOM	197	0	GLY	25	16.750	50.679	99.116	1.00 2.00	ŏ
ATOM	198	N	LYS	26		50.351	97.817	1.00 2.00	ŏ
MOTA	200	CA	LYS	26	16.174	48.892	97.458	1.00 45.45	ŏ
ATOM	201	CB	LYS	26	16.469		96.110	1.00 55.13	ŏ
MOTA	202	CG	LYS	26	15.931	48.437	94.979	1.00 59.31	Ö
MOTA	203	CD	LYS	26	16.209	49.435			Ö
ATOM	204	CE	LYS	26	17.694	49.644	94.691	1.00 60.93 1.00 68.30	
ATOM	205	NZ	LYS	26	17.883	50.619	93.569		0
MOTA	209	С	LYS	26	14.674	50.624	97.856		
MOTA	210	0	LYS	26	13.916	49.964	98.566	1.00 42.74 1.00 2.00	0
MOTA	211	N	asn	27	14.278	51.648	97.111		
MOTA	213	CA	asn	27	12.894	52.086	97.027	1.00 2.00	0
MOTA	214	CB	ASN	27	12.836	53.526	96.517	1.00 50.37	0
MOTA	215	CG	asn	27	13.257	54.525	97.563	1.00 56.29	0
MOTA	216			27	12.929	54.381	98.740	1.00 61.45 1.00 59.50	Ö
MOTA	217	ND2	asn	27	13.982	55.551	97.142		Ö
ATOM	220	С	asn	27	11.964	51.219	96.183	1.00 2.00	
ATOM	221	0	asn	27	12.384	50.256	95.540	1.00 54.11	0
MOTA	222	N	VAL	28	10.689	51.590	96.209	1.00 12.34	0
MOTA	224	CA	VAL	28	9.646	50.910	95.473	1.00 12.71	Ö
MOTA	225	CB	VAL	28	9.126	49.693	96.283	1.00 2.00 1.00 2.00	0
MOTA	226	CG1		28	8.777	50.111	97.684		0
MOTA	227	CG2		28	7.932	49.053	95.599		0
MOTA	228	С	VAL	28	8.549	51.935	95.145		0
MOTA	229	0	VAL	28	7.757	52.363	96.000		0
MOTA	230	N	GLN	29	8.548	52.372	93.892	1.00 26.36	0
ATOM	232	CA	GLN	29	7.586	53.365	93.424	1.00 27.97	
MOTA	233	CB	GLN	29	8.203	54.239	92.325	1.00 11.00	0
ATOM	234	CG	GLN	29	7.479	55.543	92.080	1.00 8.47 1.00 11.72	0
ATOM	235	CD	GLN	29	7.684	56.541	93.201	1.00 11.72	. 0
ATOM	236	OE1		29	7.097	57.619	93.198	1.00 13.39	Ö
ATOM	237	NE2		29	8.525	56.195	94.159		Ö
MOTA	240	Ç	GLN	29	6.347	52.688	92.887	1.00 27.73 1.00 8.22	Õ
MOTA	241	0	GLN	29	6.401	51.934	91.926	1.00 2.00	Ö
MOTA	242	N	LEU	30	5.229	52.941	93.531	1.00 2.00	ő
ATOM	244	ÇA	LEU	30	3.978	52.359	93.087	1.00 18.06	Ö
MOTA	245	CB	LEU	30	3.157	51.859	94.279		Ö
MOTA	246	CG	LEU	30	3.381	50.416	94.729	1.00 18.06	Ö
MOTA	247		LEU	30	4.857	50.152	94.928	1.00 18.06	
ATOM	248		LEU	30	2.603	50.171	96.009	1.00 18.06	0
MOTA	249	C	LEU	30	3.223	53.441	92.348	1.00 2.00	0
MOTA	250	0	LEU	30	3.363	54.621	92.664	1.00 18.06	0
MOTA	251	N	GLN	31	2.441	53.050	91.355	1.00 75.78	0
MOTA	253	CA	GLN	31	1.679	54.026	90.599	1.00 80.15	0
MOTA	254	CB	GLN	31	0.782	53.336	89.593	1.00 2.00	0
ATOM	255	CG	GLN	31	1.448	52.204	88.883	1.00 2.00	. 0
ATOM	256	CD	GLN	31	0.498	51.469	87.976	1.00 2.00	0
MOTA	257		GLN	31	0.933	50.694	87.122	1.00 2.00	0
MOTA	258	NE2	GLN	3 1	-0.809	51.698	88.150	1.00 2.00	0

91.585 1.00 79.69 0 0.819 54.783 MOTA 261 C GLN 31 92.512 1.00 2.00 0 MOTA 31 0.276 54.187 262 O GLN 91.380 2.00 0.716 56.091 1.00 0 GLU MOTA 263 N 32 1.00 56.979 92.228 2.00 0 GLU 32 -0.074MOTA 265 CA 1.00 57.69 -0.236 58.333 91.523 0 MOTA 266 CB **GLU** 32 32 -1.206 59.320 92.181 1.00 62.36 0 MOTA 267 CG **GLU** 1.00 60.46 -1.652 60.426 91.226 0 MOTA 268 CD GLU 32 61.176 91.570 1.00 59.61 -2.596 0 OE1 GLU 32 269 MOTA -1.059 60.543 90.128 1.00 62.85 O OE2 GLU MOTA 270 32 56.370 GLU 32 -1.44992.539 1.00 2.00 0 MOTA 271 C -1.875 93.695 56.341 1.00 53.86 GLU 32 0 MOTA 272 0 1.00 N ASN 33 -2.12755.865 91.517 6.25 0 273 MOTA -3.445 55.278 91.714 1.00 ASN 7.45 O 275 CA 33 MOTA 30.19 CB ASN 33 -4.134 55.026 90.364 1.00 0 276 MOTA -3.291 54.199 89.412 1.00 30.49 0 277 CG asn 33 MOTA 53.261 278 OD1 ASN 33 -2.592 89.810 1.00 32.73 0 MOTA 88.141 1.00 33.00 54.551 0 -3.349MOTA 279 ND2 ASN 33 -3.448 -4.466 54.002 92.565 1.00 10.76 0 ASN 33 C MOTA 282 53.670 93.182 1.00 23.15 0 ASN 33 283 0 MOTA 53.292 -2.322 92.598 1.00 27.56 GLU 34 0 MOTA 284 N 1.00 24.54 -2.217 52.081 93.402 0 **GLU** 286 34 MOTA CA -1.005 -1.203 -0.120 92.985 1.00 23.44 51.251 0 GLU 34 287 CB MOTA 1.00 22.75 50.479 91.698 GLU 34 0 288 CG MOTA 1.00 28.72 49.438 91.479 0 MOTA 289 CD GLU 34 91.460 1.00 34.33 0 -0.44348.226 34 290 OE1 GLU MOTA 91.330 1.00 31.11 1.055 49.834 0 291 OE2 GLU 34 MOTA -2.106 -2.797 1.00 25.10 52.470 94.871 0 34 292 GLU MOTA C 95.716 1.00 19.23 0 51.923 34 MOTA 293 0 GLU 53.430 95.172 1.00 14.94 0 -1.244 35 ILE MOTA 294 N 1.00 28.22 96.541 0 296 ILE 35 -1.083 53.889 MOTA CA 54.888 96.632 1.00 2.00 0 0.045 35 MOTA 297 CB ILE 55.607 97.961 1.00 2.00 0 0.013 298 CG2 ILE 35 MOTA 1.354 54.154 96.395 1.00 2.00 0 35 299 CG1 ILE MOTA 1.00 96.414 2.00 0 55.045 300 CD1 ILE 35 2.554 MOTA -2.368 -2.794 54.536 97.034 1.00 13.21 0 35 MOTA 301 C ILE 2.00 98.172 1.00 0 35 54.302 302 0 ILE MOTA 1.00 2.00 0 -2.985 55.340 96.171 36 MOTA 303 N ARG 96.506 1.00 2.00 0 56.015 -4.237 305 CA ARG 36 MOTA -4.578 -5.725 57.082 56.703 8.06 95.446 1.00 O 36 306 CB ARG MOTA 94.502 1.00 14.08 307 CG ARG 36 MOTA 1.00 20.55 O 57.824 93.555 -6.059 308 CD ARG 36 MOTA 1.00 -6.465 -7.726 94.267 14.43 0 59.029 36 309 NE ARG MOTA 22.93 0 59.383 94.491 1.00 **ARG** 36 MOTA 311 CZ 94.064 22.80 1.00 0 -8.729 58.618 NH1 ARG 36 MOTA 312 0 -7.987 60.518 95.134 1.00 19.87 NH2 ARG 36 MOTA 315 1.00 96.657 2.00 0 -5.394 55.005 36 MOTA 318 C ARG 97.279 1.00 2.00 0 55.305 -6.415MOTA ARG 36 319 0 96.059 1.00 2.00 0 53.828 -5.240 37 MOTA 320 N GLY 96.177 1.00 0 2.00 37 -6.26452.814 CA GLY 322 MOTA 1.00 0 2.00 97.575 52.251 37 -6.118MOTA 323 C GLY 98.289 1.00 2.00 0 52.030 37 -7.106 324 0 GLY MOTA 1.00 97.975 8.88 -4.864 52.039 38 MOTA 325 N LEU 8.88 0 1.00 51.515 99.288 -4.558 MOTA 38 327 CA LEU 1.00 0 2.00 51.550 99.559 -3.061 38 MOTA 328 CB LEU 0 98.784 1.00 2.00 50.559 -2.202 MOTA 329 CG LEU 38 1.00 0 2.00 -0.765 50.804 99.171 CD1 LEU 38 MOTA 330 0 99.063 1.00 2.00 49.106 -2.614 CD2 LEU 38 MOTA 331 1.00 0 52.406 100.258 8.88 -5.278 38 MOTA 332 С LEU 101.002 1.00 2.00 0 51.928 333 0 LEU 38 -6.130 MOTA 2.00 O 1.00 53.705 -4.976 100.216 39 CYS MOTA 334 N 54.690 1.00 2.00 0 101.099 39 -5.613 336 CA CYS MOTA 2.00 0 1.00 -5.339 56.096 100.607 39 ATOM 337 CB CYS 56.686 100.830 1.00 2.00 0 -3.719338 SG CYS 39 MOTA -7.140 -7.708 0 54.555 101.201 1.00 2.00 339 **CYS** 39 ATOM C 54.580 102.296 1.00 2.00 0 39 340 0 CYS MOTA 0 54.412 100.053 1.00 2.00 -7.793 MOTA 341 N LEU 40 54.330 99.999 1.00 2.00 0 -9.233 40 MOTA 343 CA LEU 98.599 2.00 0 1.00 54.704 -9.735 40 344 LEU CB **ATOM**

ATOM ATOM	345 346	CG CD1	LEU LEU	40 40	-10.127 -9.020	56.184 57.095	98.419 98.939	1.00 1.00	2.00	0
MOTA	347		LEU	40	-10.401	56.484	96.960	1.00	2.00	0
ATOM	348	C	LEU	40	-9.817		100.426	1.00	2.00	0
MOTA	349	0	LEU	40	-10.853		101.071	1.00	2.00	0
MOTA	350	N	LYS	41	-9.174		100.081	1.00	7.31 7.31	0
MOTA	352 ·	CA	LYS	41	-9.721		100.468 99.5 9 8	1.00	2.00	0
ATOM	353	CB	LYS	41	-9. 12 3	49.517 48.157	99.336	1.00	2.00	0
MOTA	354	CG	LYS	41	-9.685 -11.188	48.216	99.923	1.00	2.00	Ö
MOTA	355	CD	LYS	41	-11.746	46.968		1.00	2.00	ŏ
MOTA	356	CE	LYS LYS	41 41	-11.198	45.721	99.910	1.00	2.00	ŏ
MOTA	357	NZ	LYS	41	-9.475	50.376		1.00	7.31	Ō
MOTA	361 362	C	LYS	41	-10.375	49.934		1.00	2.00	0
ATOM ATOM	363	N	SER	42	-8.266		102.440	1.00	3.34	0
MOTA	365	CA	SER	42	-7.935	50.477	103.844	1.00	3.34	0
MOTA	366	CB	SER	42	-6.496		104.094	1.00	2.00	0
ATOM	367	OG	SER	42	-6.315		103.766	1.00	2.00	0
ATOM	369	С	SER	42	-8.844		104.650	1.00	7.34	. 0
MOTA	370	0	SER	42 -	-9.504	50.955 1 52.671 1	105.600	1.00	2.00	0
ATOM	371	N	ARG	43	-8.906		104.247	1.00	2.00	Ö
ATOM	373	CA	ARG	43	-9. 74 6		104.325	1.00	2.00	Ö
MOTA	374	CB	ARG	43	-9.856 -10.530		104.917	1.00	2.00	ŏ
MOTA	375	CG	ARG	43 43	-11.541		104.097	1.00	2.00	ŏ
ATOM	376	CD	ARG ARG	43	-11.803		104.679	1.00	2.00	Ö
MOTA	3 7 7	NE CZ	ARG	43	-13.010		105.005	1.00	2.00	0
MOTA MOTA	380	NH1	ARG	43	-14.112		104.826	1.00	2.00	0
ATOM	383	NH2	ARG	43	-13.120		105.502	1.00	2.00	0
ATOM	386	C	ARG	43	-11.136		105.104	1.00	2.00	0
ATOM	387	ō	ARG	43	-11.800		106.083	1.00	2.00	0
ATOM	388	N	GLU	44	-11.574	52.321			19.11	o
MOTA	390	CA	GLU	44	-12.901		104.146		19.41	0
ATOM	391	СВ	GLU	44	-13.179	51.107			23.41 34.12	Ö
MOTA	392	CG	GLU	44	-14.599		102.542 101.532		38.72	ŏ
MOTA	393	CD	GLU	44	-14.711 -15.634		101.532		43.51	ŏ
MOTA	394		GLU	44	-13.886		101.576		35.90	ŏ
MOTA	395	OE2	GLU GLU	4 4 4 4	-12.987		105.260		20.56	Ó
ATOM ATOM	396 397	C	GLU	44	-13.967		106.007	1.00	24.61	0
MOTA	398	N	ILE	45	-11.945		105.379	1.00	8.30	0
MOTA	400	CA	ILE	45	-11.896		106.384	1.00	8.30	0
ATOM	401	CB	ILE	45	-10.720		106.133	1.00	2.00	0
ATOM	402	CG2		45	-10.79 5		107.049	1.00	2.00	0
MOTA	403	CG1	ILE	45	-10.774		104.698	1.00	2.00	0
ATOM	404	CD1	ILE	45	-9.55 9		104.285	1.00	2.00	0
MOTA	405	С	ILE	45	-11.775		107.784	1.00	8.30	Ö
MOTA	406	0	ILE	45	-12.249	48.819 50.550	100.736	1.00	2.00	ŏ
MOTA	407	N	PHE	46	-11.134 -11.013	51.154	109 214	1.00	2.00	ŏ
MOTA	409	CA	PHE	4 6 4 6	-10.076	52.352	109.176	1.00	2.00	Ō
MOTA MOTA	410 411	CB CG	PHE PHE	46	-8.665		108.843	1.00	2.00	0
ATOM	412	CD1		46	-7.829		108.223	1.00	2.00	, 0
ATOM	413	CD2		46	-8.168		109.151	1.00	2.00	0
MOTA	414	CE1		46	-6.516		107.915	1.00	2.00	0
MOTA	415	CE2		46	-6.859		108.845	1.00	2.00	0
MOTA	416	CZ	PHE	46	-6.027		108.227	1.00	2.00	0
MOTA	417	C	PHE	46	-12.396		109.686	1.00	2.00	0
ATOM	418	0	PHE	46	-12.840		110.731	1.00	2.00	0
MOTA	419	N	LEU	47	-13.106		108.896	1.00	2.00	0 0
MOTA	421	CA	LEU	47	-14.441		109.277 108.190	1.00	2.00	0
MOTA	422	CB	LEU	47	-15.043 -14.641		108.190	1.00	2.00	0
MOTA	423	CG	LEU	4 7 4 7	-14.041		109.462	1.00	2.00	Ö
ATOM	424		LEU	47	-13.619		107.030	1.00	2.00	ő
ATOM	425		LEU LEU	47	-15.424		109.578	1.00	2.00	ŏ
ATOM ATOM	426 427	C O	LEU	47	-16.432		110.243	1.00	2.00	Ō
ATOM	428	И	SER	48	-15.145		109.091	1.00	2.00	0
111011	720	• •	2211							

MOTA MOTA	430 431 432	CA CB	SER SER	48 48	-16.037 -16.121	48.483		1.00 2.00 1.00 23.35 1.00 30.63	0 0 0
ATOM ATOM	434	OG C	SER SER	48 48	-14.844 -15.624	48.045 48.473		1.00 30.63	0
ATOM	435	ŏ	SER	48	-16.184			1.00 28.70	ŏ
MOTA	436	N	GLN	49	-14.627		111.225	1.00 61.72	0
MOTA	438	CA	GLN	49	-14.175	48.193	112.394	1.00 63.25	0
ATOM ATOM	439 440	CB CG	GLN GLN	4 9 4 9	-12.763 -12.668	47.645 46.511		1.00 13.32 1.00 7.00	0
MOTA	441	CD	GLIN	49	-11.246		110.995	1.00 8.88	ő
MOTA	442		GLN	49	-10.251	46.640	111.258	1.00 9.23	0
MOTA	443	NE2	GLN	49	-11.151		110.573	1.00 7.45	0
MOTA	446	C	GLN GLN	4 9 4 9	-14.210 -13.864		113.540 113.357	1.00 63.04 1.00 14.61	0
ATOM ATOM	447 448	O N	PRO	50	-14.645		114.734	1.00 34.58	ŏ
ATOM	449	CD	PRO	50	-14.967		115.118	1.00 4.85	Ŏ
MOTA	450	CA	PRO	50	-14.728		115.901	1.00 34.58	0
ATOM	451	CB	PRO	50	-15.037		117.032	1.00 2.00	0
ATOM ATOM	45 2 45 3	CG C	PRO PRO	50 50	-14.496 -13.459		116.531 116.164	1.00 2.00 1.00 34.58	0
ATOM	454	ō	PRO	50	-12.356		115.884	1.00 2.95	ŏ
ATOM	455	N	ILE	51	-13.626	51.673	116.708	1.00 2.00	0
MOTA	457	CA	ILE	51	-12.499		117.015	1.00 2.00	0
MOTA	458	CB	ILE	51 51	-13.001		117.318	1.00 2.00 1.00 2.00	0
MOTA MOTA	459 460	CG2 CG1	ILE ILE	51 51	-13.642 -11.850		118.673 117.295	1.00 2.00	0
ATOM	461	CD1	ILE	51	-12.328		117.351	1.00 2.00	ŏ
ATOM	462	C	ILE	51	-11.650		118.172	1.00 2.00	0
MOTA	463	0	ILE	51	-10.456		118.283	1.00 2.00	0
MOTA	464	N	LEU	5 2 5 2	-12.284 -11.622		119.028 120.159	1.00 2.00 1.00 2.00	0
ATOM ATOM	466 467	CA CB	LEU	52 52	-12.391		121.473	1.00 2.00	ŏ
ATOM	468	CG	LEU	52	-11.655	50.518	122.808	1.00 2.00	0
MOTA	469	CD1		5 2	-12.559		123.944	1.00 2.00	0
ATOM	470	CD2		52	-11.233		122.973 119.770	1.00 2.00 1.00 2.00	0
ATOM ATOM	471 472	C 0	LEU LEU	52 5 2	-11.660 -12.652		120.006	1.00 2.00	ő
ATOM	473	N	LEU	5 3	-10.584		119.136	1.00 2.00	Ō
MOTA	475	CA	LEU	5 3	-10.464		118.667	1.00 2.00	0
MOTA	476	CB	LEU	53	-9. 06 6		118.069	1.00 2.00 1.00 2.00	0
MOTA	477	CG CD1	LEU	53 53	-8.802 -9.835		116.555 115.810	1.00 2.00 1.00 2.00	ő
MOTA MOTA	478 479	CD1		5 3	-7.401	47.550	116.353	1.00 2.00	Ŏ
ATOM	480	C	LEU	53	-10.686	46.230	119.792	1.00 2.00	0
MOTA	481	0	LEU	5 3	-10.365	46.522	120.937	1.00 2.00	0
MOTA	482	N	GLU	54	-11.251		119.472 120.474	1.00 19.77 1.00 20.13	0
ATOM ATOM	484 485	CA CB	GLU GLU	54 54	-11.465 -12.955		120.714	1.00 56.32	ŏ
ATOM	486	CG	GLU	54	-13.244		122.135	1.00 66.19	0
MOTA	487	CD	GLU	54	-14.668	42.873	122.346	1.00 69.64	0
MOTA	488		GLU	54	-15.613	43.627	122.024	1.00 78.06 1.00 73.27	0
MOTA	489		GLU	54 54	-14.839 -10.798	41.734 42.820	122.848 119.882	1.00 73.27	ŏ
MOTA MOTA	490 491	С 0	GLU GLU	54	-11.451	41.949		1.00 48.57	0
ATOM	492	Ň	LEU	5 5	-9.473	42.800	119.974	1.00 2.00	0
MOTA	494	CA	LEU	5 5	-8. 66 6	41.712		1.00 2.00 1.00 2.00	0
ATOM	495	CB	LEU	5 5	-7.245 -7.148	42.188 43.458		1.00 2.00 1.00 2.00	ŏ
MOTA MOTA	496 497	CG	LEU LEU	5 5 5 5	-5.695		117.961	1.00 2.00	0
ATOM	498	CD2	LEU	5 5	-8.024	43.298	117.108	1.00 2.00	0
MOTA	499	C	LEU	5 5	-8.624		120.456	1.00 2.00	0
MOTA	500	0	LEU	5 5	-8.724		121.664 119.961	1.00 10.45 1.00 2.00	0
MOTA	501	N	GLU	56 56	-8. 44 8 -8. 40 7	39.374 38.224		1.00 2.00	o o
MOTA MOTA	503 504	CA CB	GLU GLU	56	-9.741	37.467		1.00 18.79	0
MOTA	505	CG	GLU	5 6	-10.989	38.283	121.171	1.00 30.34	0
MOTA	506	CD	GLU	56	-11.012	38.677		1.00 42.94 1.00 44 .70	0
MOTA	507	OE1	GLU	56	-11.188	37.789	123.526	1.00 44.70	U

AVACUUCIO. 1810 UASSASSE

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	508 509 510 511 513 514 515 517 518 519 521 522 522 523 526 530 530 530 530 530 530 530 530 530 530	CONCACO NCACO CONCACO	LEU	5666777778888888999999999999999999999999	-10.872 -7.244 -6.292 -7.312 -6.336 -6.750 -4.543 -3.951 -4.109 -2.526 -1.852 -2.881 -2.176 -2.688 -1.284 -0.856 -1.842 -2.880 -2.117 0.510 1.030	37.343 1 37.839 1 36.062 1 35.026 1 34.434 1 35.474 1 36.519 1 34.632 1 34.632 1 33.645 1 32.926 1	119.501 118.711 118.672 117.540 118.975 117.895 117.895 118.993 118.706 120.339 118.351	1.00 47.48 1.00 2.00 1.00 3.40 1.00 65.90 1.00 62.88 1.00 26.61 1.00 68.03 1.00 14.05 1.00 9.23 1.00 9.23 1.00 9.23 1.00 9.49 1.00 2.00 1.00 9.23 1.00 17.05 1.00 17.05 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5335 5335 5335 5336 5339 5344 5546 5555 5555 5555 5555 5555 5555	O N CA CB CGC CD C C O N CA CB CGC CD C C C C C C C C C C C C C C C C	LEU LYS LYS LYS LYS LYS LYS LYS LLE ILE ILE ILE ILE ILE ILE	59 60 60 60 60 60 60 61 61 61 61 62	1.103 2.399 3.358 3.185 3.556 5.034 5.824 2.063 1.142 2.757 2.499 2.032 1.485 0.940 0.019 3.791 4.862 3.698	39.259 1 39.872 1 39.655 1 38.327 1 37.101 1 36.783 1 41.353 1 41.832 1 42.072 1 43.496 1 43.859 1 45.288 1 42.881 1 44.220 1 43.752 1 45.341 1	117.438 117.688 116.513 115.768 116.608 117.066 117.804 117.128 118.680 118.822 120.240 120.239 120.239 120.702 121.783 118.494 118.868	1.00 21.64 1.00 21.64 1.00 10.44 1.00 11.70 1.00 12.19 1.00 8.37 1.00 21.64 1.00 13.47 1.00 20.60 1.00 22.32 1.00 2.00 1.00 2.00 1.00 2.00 1.00 23.52 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	55555555555555555555555555555555555555	OD2 C O N CA CB		6222223333444444445555555556666666666666	4.874 5.147 5.439 4.607 3.451 5.6507 6.548 7.624 6.216 7.068 7.805 7.0064 9.221 7.619 8.471 7.763 8.609 6.871 7.723 9.135 9.1379 8.451 9.022	45.925 1 44.252 1 47.560 1 47.957 1 48.367 1 49.789 1 50.610 1 50.109 1 52.834 1 52.834 1 53.721 1 54.589 1 54.019 1 55.829 1 52.326 1 52.326 1 51.310 1 50.903 1	115.895 115.266 117.658 117.751 117.739 117.971 117.222 116.897 116.959 117.245 118.025 118.708 117.946 115.557 113.963 112.849 111.672 110.535 112.763 112.763 112.763 112.763	1.00 11.47 1.00 1.47 1.00 2.00 1.00 11.47 1.00 2.00 1.00 2.00 1.00 2.00 1.00 11.39 1.00 2.00 1.00 3.88 1.00 6.62 1.00 12.70 1.00 12.70 1.00 14.37 1.00 8.57 1.00 14.37 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	

ATOM ATOM	588 589	c o	HIS HIS	66 66	9.847 11.042	55.818	110.502 110.539	1.00 2.00 1.00 12.38	0
MOTA	590 591	CB CG	HIS HIS	6 6 6 6	9.846 9.040		112.881 113.782	1.00 8.25 1.00 8.25	0
MOTA MOTA	592	ND1		66	8.104	57.949	113.337	1.00 8.25	0
MOTA	594	CD2	HIS	66	9.001	57.109	115.133	1.00 8.25 1.00 8.25	0
MOTA	595 596	NE2 CE1		6 6 6 6	8.042 7.536	58.043 58.516	115.526 114.399	1.00 8.25 1.00 8.25	0
ATOM ATOM	597	N	GLY	67	9.197	55.195		1.00 11.52	0
MOTA	599	CA	GLY	67	9.835		108.078	1.00 11.52 1.00 11.52	0
ATOM	600	C O	GLY GLY	67 67	11.029 11.782	54.462	107.868 106.915	1.00 11.52	0
ATOM ATOM	601 602	N	GLN	68	11.214	53.272	108.730	1.00 18.96	Ö
Atom	604	CA	GLN	68	12.353	52.364 52.139	108.602 109.957	1.00 20.32 1.00 6.39	0
MOTA MOTA	605 606	CB CG	GLN GLN	68 68	13.007 13.261	53.407		1.00 4.06	Ö
ATOM	607	CD	GLN	68	14.315	53.239	111.757	1.00 7.01	0
MOTA	608	OE1		68	15.013 14.453	54.197 52.020		1.00 8.21 1.00 5.84	0
MOTA MOTA	609 612	NE2 C	GLN GLN	68 68	11.916	51.039	108.010	1.00 18.72	ŏ
MOTA	613	ō	GLN	68	12.018	49.975		1.00 10.73 1.00 5.70	0
MOTA	614 616	N CA	TYR TYR	69 69	11.450 10.959	51.119	106.777 106.054	1.00 5.70	Ö
MOTA MOTA	617	CB	TYR	69	10.807	50.313	104.587	1.00 2.00	0
MOTA	618	CG	TYR	69	9.988	49.322	103.841 104.187	1.00 2.00 1.00 2.00	0
MOTA MOTA	619 620	CD1 CE1	TYR TYR	69 69	8.658 7.873		103.477	1.00 2.00	ŏ
ATOM	621	CD2	TYR	69	10.526	48.611	102.762	1.00 2.00	0
MOTA	622	CE2	TYR	69	9.751 8.431		102.038 102.408	1.00 2.00 1.00 2.00	0
ATOM ATOM	623 624	CZ OH	TYR TYR	69 69	7.656	46.632	101.715	1.00 2.00	0
MOTA	626	c	TYR	69	-11.815	48.730		1.00 8.52 1.00 2.00	0
MOTA	627	0	TYR	69 70	11.284 13.132		106.393 106.093	1.00 2.00 1.00 2.00	ŏ
atom Atom	628 630	N CA	TYR TYR	70	13.992	47.703	106.186	1.00 2.00	0
MOTA	631	CB	TYR	70	15.420		105.741 104.231	1.00 64.80 1.00 70.91	0
MOTA	632 633	CG CD1	TYR TYR	70 70	15. 53 3 15.026	48.993	103.431	1.00 73.06	0
ATOM ATOM	634	CE1	TYR	70	15.082	48.924	102.041	1.00 68.38	0
MOTA	635	CD2		70 70	16.107 16.171	46.857	103.597 102.200	1.00 73.86 1.00 70.94	0
ATOM ATOM	636 637	CE2 CZ	TYR TYR	70	15.654	47.820	101.433	1.00 72.52	0
ATOM	638	OH	TYR	70	15.712	47.779 47.007	100.062 107.538	1.00 70.35 1.00 2.00	0
MOTA	640	C	TYR TYR	70 70	13.943 13.967	45.771	107.538	1.00 64.08	ŏ
atom Atom	641 642	O N	ASP	71	13.821	47.789	108.608	1.00 7.87	0 -
MOTA	644	CA	ASP	71	13.728 14.030	47.203 48.242	109.927 110.998	1.00 6.73 1.00 14.88	0
ATOM ATOM	645 646	CB CG	ASP ASP	71 71	15.514	48.600	111.054	1.00 25.87	0 -
MOTA	647		ASP	71	15.826		111.293	1.00 24.58 1.00 21.52	0
MOTA	648	OD2		71 71	16.375 12.331	47.714 46.622		1.00 6.73	ŏ
MOTA MOTA	649 650	С 0.	ASP ASP	71	12.116	45.697	110.826	1.00 14.14	0
MOTA	651	N	LEU	7 2	11.399	47.148 46.654		1.00 2.00 1.00 2.00	0
ATOM	653 654	CA CB	LEU LEU	72 72	10.015 9.094	47.613	108.456	1.00 2.00	0
MOTA MOTA	655	CG	LEU	72	7.771	46.946	108.067	1.00 2.00	0
MOTA	65 6		LEU	72	7.025 6.935	46.562 47.867		1.00 2.00 1.00 2.00	ŏ
ATOM ATOM	657 658	CD2 C	LEU LEU	72 72	10.014	45.320	108.476	1.00 2.00	0
MOTA	659	Ö	LEU	72	9.259	44.401		1.00 2.00 1.00 44.35	0
ATOM	660	N	LEU	. 73 73	10.848 10.968	45.231 44.005		1.00 44.35	ŏ
MOTA MOTA	662 663	CA CB	LEU LEU	73 73	11.846	44.218	3 105.460	1.00 2.00	0
MOTA	664	CG	LEU	7 3	11.248 12.324	44.759		1.00 2.00 1.00 2.00	0
ATOM	665	CD:	LEU LEU	73 73	10.052	43.920	103.725	1.00 2.00	0
MOTA MOTA	• 66 6 667	CD.	LEU	73	11.603		3 107.629	1.00 42.42	0

_BNSDOCID: <WO 9737224A1 I

ATOM	668	0	LEU	73	11.059	41.890 107.817	1.00 2.00	0
ATOM	669	N	ARG	74	12.729	43.354 108.241	1.00 2.00	0
ATOM	671	CA	ARG	74	13.462	42.494 109.179	1.00 2.00	0
ATOM	672	CB	ARG	74	14.591	43.285 109.840	1.00 31.22	0
MOTA	673	CG	ARG	74	15.809	43.478 108.958	1.00 31.18	0
MOTA	674	CD	ARG	74	16.944	44.146 109.710	1.00 37.63	0
MOTA	675	NE	ARG	74	17.250	43.459 110.960	1.00 37.44	0
MOTA	677	\mathbf{cz}	ARG	74	17.210	44.041 112.157	1.00 41.10	0
MOTA	67 8		ARG	74	16.888	45.327 112.265	1.00 39.99	0
MOTA	681	NH2	ARG	74	17.476	43.339 113.254	1.00 39.22	0
ATOM	684	C	ARG	74	12.569	41.896 110.259	1.00 2.00 1.00 29.18	0
MOTA	685	0	ARG	74	12.621	40.703 110.544 42.742 110.853	1.00 23.18	0
ATOM	686	N	LEU	75 75	11.747 10.818	42.331 111.901	1.00 2.00	Ö
ATOM	688	CA	LEU	75 75	10.069	43.580 112.407	1.00 2.00	ŏ
MOTA	689 690	CB CG	LEU	75	8.704	43.654 113.091	1.00 3.53	ŏ
ATOM ATOM	691		LEU	75	8.554	45.074 113.606	1.00 3.53	ŏ
ATOM	692		LEU	75	7.561	43.337 112.138	1.00 3.53	ŏ
ATOM	693	C	LEU	75	9.850	41.279 111.384	1.00 2.00	ō
ATOM	694	ŏ	LEU	75	9.594	40.284 112.043	1.00 3.53	Õ
ATOM	695	N	PHE	76	9.325	41.514 110.190	1.00 2.00	Ŏ
ATOM	697	CA	PHE	76	8.382	40.604 109.573	1.00 2.00	0
ATOM	698	CB	PHE	76	7.883	41.173 108.255	1.00 2.00	0
ATOM	699	CG	PHE	76	6.626	41.966 108.382	1.00 2.00	0
ATOM	700	CD1	PHE	76	6.447	43.124 107.642	1.00 2.00	0
ATOM	701	CD2	PHE	76	5.616	41.550 109.240	1.00 2.00	0
MOTA	702	CE1	PHE	7 6	5.2 7 7	43.852 107.753	1.00 2.00	0
ATOM	703	CE2	PHE	76	4.447	42.270 109.358	1.00 2.00	0
MOTA	704	CZ	PHE	7 6	4.272	43.423 108.615	1.00 2.00	0
MOTA	705	С	PHE	76	9.016	39.271 109.322	1.00 2.00	0
MOTA	706	0	PHE	7 6	8.339	38.260 109.363	1.00 2.00	0
MOTA	707	N	GLU	77	10.316	39.283 109.043	1.00 2.00	0
MOTA	709	CA	GLU	7 7	11.080	38.065 108.789	1.00 2.00 1.00 84.85	0
MOTA	710	CB	GLU	77	12.436	38.409 108.191	1.00 84.85	Ö
MOTA	711	CG	GLU	77	12.331 13.651	39.117 106.861 39.690 106.391	1.00 89.20	ŏ
ATOM	712	CD OF 1	GLU	7 7 7 7	13.627	40.493 105.434	1.00 98.04	Ö
ATOM	713 714	OE1 OE2	GLU GLU	77	14.709	39.345 106.973	1.00 0.97	ŏ
ATOM ATOM	715	C	GLU	77	11.262	37.316 110.100	1.00 2.00	ŏ
ATOM	716	0	GLU	77	11.469	36.103 110.099	1.00 80.75	ō
ATOM	717	N	TYR	78	11.182	38.045 111.216	1.00 15.29	0
ATOM	719	CA	TYR	78	11.325	37.449 112.538	1.00 15.29	0
ATOM	720	CB	TYR	78	11.945	38.455 113.514	1.00 67.13	0
ATOM	721	CG	TYR	78	12.459	37.828 114.796	1.00 69.14	0
ATOM	722	CD1	TYR	78	11.822	36.717 115.368	1.00 76.95	0
ATOM	723	CE1	TYR	78	12.278	36.142 116.548	1.00 77.96	0
MOTA	724	CD2	TYR	7 8	13.577	38.346 115.446	1.00 75.81	0
ATOM	725	CE2	TYR	78	14.044	37.775 116.638	1.00 77.77	0
MOTA	726	CZ	TYR	78	13.387	36.673 117.181	1.00 77.18	0
MOTA	727	ОН	TYR	78	13.826	36.115 118.365	1.00.87.14	0
MOTA	729	C	TYR	78	9.967	36.964 113.053	1.00 15.29	0
ATOM	730	0	TYR	78	9.811	35.796 113.403	1.00 62.78	ő
MOTA	731	N	GLY	79 79	8. 992 7.675	37.863 113.117 37.485 113.582	1.00 2.00 1.00 2.00	ŏ
ATOM	733 7 34	CA	GLY GLY	79 79	6.977	36.532 112.629	1.00 2.00	ŏ
ATOM ATOM	735	C O	GLY	79	6.226	35.649 113.052	1.00 34.11	Ö
ATOM	736	N	GLY	80	7.237	36.699 111.338	1.00 49.23	ŏ
ATOM	738	CA	GLY	80	6.601	35.870 110.330	1.00 48.34	0
MOTA	739	C	GLY	80	5.699	36.782 109.520	1.00 47.91	Ō
ATOM	740	Ö	GLY	80	4.955	37.572 110.097	1.00 15.83	Ō
ATOM	741	N	PHE	81	5.759	36.692 108.193	1.00 2.00	0
ATOM	743	CA	PHE	81	4.948	37.558 107.343	1.00 2.00	0
ATOM	744	CB	PHE	81	5.386	37.403 105.880	1.00 2.00	0 -
ATOM	745	CG	PHE	81	6.673	38.134 105.556	1.00 2.00	0
MOTA	746	CD1	PHE	81	7.899	37.506 105.685	1.00 2.00	0
MOTA	747	CD2		81	6.652	39.467 105.139	1.00 2.00	0
MOTA	748		PHE	81	9.082	38.193 105.405	1.00 2.00	0
ATOM	749	CE2	PHE	81	7.829	40.154 104.859	1.00 2.00	0

ATOM	750	CZ	PHE	81	9.044	39.517 104.992	1.00 2.00	0
ATOM	751	С	PHE	81	3.428	37.380 107.548	1.00 2.00	0
MOTA	75 2	0	PHE	81	2.918	36.257 107.636	1.00 2.00	0
MOTA	753	N	PRO	82	2.694	38.505 107.618	1.00 2.00 1.00 21.23	0
ATOM	754	CD	PRO -	82	3.317 1.261	39.807 107.337 38.702 107.820	1.00 21.23	Ö
MOTA	75 5	CA	PRO	82 82	0.996	39.979 107.079	1.00 20.78	ŏ
MOTA	756 757	CB CG	PRO PRO	82 82	2.144	40.765 107.502	1.00 22.98	ŏ
ATOM ATOM	758	C	PRO	82	0.273	37.623 107.490	1.00 2.00	0
ATOM	759	ŏ	PRO	82	-0.761	37.529 108.161	1.00 36.87	0
ATOM	760	N	PRO	83	0.501	36.841 106.423	1.00 27.66	0
ATOM	761	CD	PRO	83	1.439	36.880 105.290	1.00 2.85	0
MOTA	762	CA	PRO	83	-0.514	35.812 106.201	1.00 30.55	0
MOTA	763	CB	PRO	83	0.089	34.958 105.083	1.00 5.44 1.00 10.08	0
MOTA	764	ČG	PRO	83	1.550 -0. 7 91	35.427 104.971 34.990 107.460	1.00 10.08	Ö
ATOM	765	C	PRO	83 83	-1.947	34.863 107.882	1.00 5.06	ŏ
MOTA	766 7 6 7	O N	PRO GLU	84	0.284	34.504 108.080	1.00 63.06	ŏ
MOTA MOTA	769	CA	GLU	84	0.190	33.665 109.268	1.00 65.66	0
ATOM	770	CB	GLU	84	1.448	32.797 109.382	1.00 61.87	0
ATOM	771	ĊĠ	GLU	84	1.194	31.402 109.979	1.00 75.07	0
ATOM	772	CD	GLU	84	0.401	30.452 109.056	1.00 79.88	0
MOTA	773	OE1		84	1.015	29.508 108.504	1.00 76.25	0
MOTA	774	OE2		84	-0.832	30.635 108.891	1.00 74.31 1.00 66.47	0
MOTA	775	C	GLU	84	-0.066 -1.194	34.394 110.588 34.406 111.085	1.00 60.47	Ö
ATOM	776	0	GLU	84	0.984	34.978 111.161	1.00 66.52	ŏ
ATOM	777	N	SER SER	85 8 5	0.882	35.691 112.431	1.00 64.76	ŏ
MOTA MOTA	779 780	CA CB	SER	85	2.266	36.145 112.900	1.00 2.00	0
ATOM	781	OG	SER	8 5	3.198	35.078 112.871	1.00 2.00	0
ATOM	783	C	SER	85	-0. 01 3	36.917 112.349	1.00 62.83	0
MOTA	784	ō	SER	85	-0.005	37.633 111.341	1.00 2.00	0
MOTA	785	N	asn	86	-0.785	37.146 113.412	1.00 2.00	0
MOTA	7 87	CA	asn	86	-1.647	38.321 113.490 38.123 114.520	1.00 2.00 1.00 2.00	0
MOTA	788	CB	asn	86	-2.747 -3.887	37.283 113.994	1.00 10.84	ŏ
MOTA	789	CG	asn	86 86	-3.763	36.629 112.957	1.00 12.15	ŏ
MOTA	790 791	ND2	asn Asn	8 6	-5.017	37.300 114.705	1.00 6.45	0
ATOM ATOM	794	C	ASN	86	-0.742	39.467 113.912	1.00 2.00	0
ATOM	795	ŏ	ASN	86	0.363	39.229 114.423	1.00 2:00	0
ATOM	796	N	TYR	87	-1.183	40.703 113.723	1.00 2.00	0
MOTA	798	CA	TYR	87	-0.337	41.830 114.081	1.00 2.00 1.00 2.00	0
ATOM	79 9	CB	TYR	87	0.529	42.253 112.870 41.448 112.684	1.00 2.00 1.00 2.00	ő
MOTA	800	CG.	TYR	87 87	1.802 1.879	40.421 111.749	1.00 2.00	ŏ
MOTA	801	CD1	TYR TYR	87 87	3.039	39.689 111.598	1.00 2.00	-0
MOTA	802 803	CE1		87	2.930	41.714 113.458	1.00 2.00	0
MOTA MOTA	804	CE2		87	4.080	40.991 113.313	1.00 2.00	0
MOTA	805	CZ	TYR	87	4.127	39.986 112.384	1.00 2.00	0
ATOM	806	OH	TYR	87	5.280	39.281 112.259	1.00 2.00	0
ATOM	808	C	TYR	87	-1.104	43.029 114.588	1.00 2.00 1.00 2.00	ő
MOTA	809	0	TYR	87	-2.264	43.238 114.216 43.810 115.435	1.00 2.00	ŏ
MOTA	810	N	LEU	88	-0.440	45.026 115.987	1.00 2.00	Ō
MOTA	812	CA	LEU	88 88	-1.015 -1.615	44.766 117.375	1.00 2.00	0
MOTA	813 814	CB CG	LEU	88	-2.364	45.917 118.062	1.00 2.00	0
MOTA MOTA	815	CD1		88	-3.657	46.225 117.348		0
MOTA	816	CD2		88	-2.675	45.551 119.493	1.00 2.00	0
MOTA	817	C	LEU	88	0.119	46.034 116.084		0
ATOM	818	Õ	LEU	88	1.082	45.814 116.814		0
ATOM	819	N	PHE	89	0.061	47.108 115.309		0
MOTA	821	CA	PHE	89	1.114	48.117 115.393 48.599 114.004		ŏ
MOTA	822	CB	PHE	89	1. 567 2. 30 5	47.563 113.221		ŏ
MOTA	823	CG	PHE	89 89	1.617	46.543 112.578		0
MOTA	824 825	CD	PHE PHE	89	3.683	47.581 113.159	1.00 2.00	0
ATOM ATOM	825	CE.	PHE	89	2.284	45.547 111.889	1.00 2.00	0
ATOM	827	CE	2 PHE	89	4.379	46.586 112.464	1.00 2.00	0
	J							

	000	C E	PHE	89	3.673	45.565 111.82	6 1.00 2.00	0 0
MOTA MOTA	828 829	CZ C	PHE	8 9	0.495	49.250 116.19		0 0
ATOM	830	ŏ	PHE	89	-0.664	49.615 115.98	5 1.00 2.00	0
ATOM	831	N	LEU	90	1.271	49.797 117.12		-
ATOM	833	CA	LEU	90	0.810	50.856 118.01		_
MOTA	834	CB	LEU	9 0	1.519	50.702 119.37		
ATOM	835	CG	LEU	90	1.516	49.291 119.99		
ATOM	836	CD1		90	2.488	49.246 121.14		
ATOM	837	CD2		90	0.111	48.870 120.40 52.275 117.46		
MOTA	838	C	LEU	90	1.000	52.275 117.46 53.196 118.20	•	-
MOTA	839	0	LEU	90	1.382 0.734	52.459 116.17		
MOTA	840	N	GLY GLY	91 91	0.884	53.774 115.58		
MOTA	842 843	CA C	GLY	91	2.307	54.139 115.20		
ATOM ATOM	844	ò	GLY	91	3.220	53.312 115.26		
ATOM	845	N	ASP	92	2.471	55.400 114.82	0 1.00 2.00	
ATOM	847	CA	ASP	92	3.736	55.978 114.38		
ATOM	848	CB	ASP	92	4.670	56.170 115.57		
ATOM	849	CG	ASP	9 2	4.185	57.239 116.52		
MOTA	850	OD1	ASP	92	3.449	58.145 116.06		
MOTA	851	OD2	ASP	92	4.541	57.177 117.72		
MOTA	852	С	ASP	92	4.427	55.205 113.25		
MOTA	853	0	ASP	92	5.515	54.631 113.42 55.234 112.09		
MOTA	854	N	TYR	93	3.792 4.301	55.234 112.09 54.523 110.93		
ATOM	856	CA	TYR	93 93	3.149	53.907 110.17		
MOTA	857 858	CB CG	TYR TYR	93 93	2.122	53.226 111.02		
MOTA MOTA	859	CD1		93	0.875	53.801 111.22		0
ATOM	860	CE1	TYR	93	-0.086	53.176 112.00	4 1.00 2.00	0
ATOM	861	CD2	TYR	93	2.390	52.002 111.62		-
ATOM	862	CE2	TYR	9 3	1.445	51.362 112.40		
ATOM	863	CZ	TYR	93	0.204	51.951 112.59		
MOTA	864	OH	TYR	93	-0.736	51.315 113.37		_
ATOM	86 6	С	TYR	93	5.088	55.399 109.99		
MOTA	867	0	TYR	93	5.998	54.922 109.33 56.667 109.90	·	
MOTA	868	N	VAL	94	4.718 5.380	56.667 109.90 57.607 109.00		
ATOM	870	CA	VAL	94 94	4.322	58.340 108.11		
ATOM	871 872	CB	VAL VAL	94	3.365	57.315 107.52		_
MOTA MOTA	873	CG2	VAL	94	3.551	59.396 108.90		0 0
ATOM	874	C	VAL	94	6.253	58.614 109.78	0 1.00 2.00	
MOTA	875	ō	VAL	94	6.447	58.457 110.98		_
ATOM	876	N	ASP	9 5	6.774	59.629 109.09		
MOTA	878	CA	ASP	9 5	7.641	60.648 109.68		
MOTA	879	CB	ASP	95	6.967	61.356 110.86		
MOTA	880	CG	ASP	95	5.975	62.433 110.44 63.167 109.47		
MOTA	881		ASP	9 5	6.227 4.937	62.561 111.12		
ATOM	882		ASP	95 95	8.975	60.074 110.15		-
MOTA MOTA	883 884	С О	ASP ASP	95	9.092	58.877 110.42		9 0
MOTA	885	N	ARG	96	9.972	60.949 110.25	2 1.00 21.9°	70
ATOM	887	CA	ARG	96	11.322	60.589 110.68	5 1.00 27.3	9 0
ATOM	888	CB	ARG	96	11.285	59.989 112.09		
ATOM	889	CG	ARG	96	12.037	60.816 113.12		1 0
ATOM	890	CD	ARG	96	11.255	62.052 113.58	1 1.00 32.6	
MOTA	891	NE	ARG	96	10.551	61.833 114.85		-
MOTA	893	CZ	ARG	96 06	9.890	62.774 115.52 64.018 115.06		
ATOM	894	NH1		96 06	9.824	64.018 115.06 62.471 116.67		
ATOM	897	NH2		96 96	9.290 12.109	59.659 109.73		
ATOM	900 901	C	ARG ARG	96	13.114	60.072 109.13		
MOTA MOTA	901	О И	GLY	97	11.668	58.411 109.59		
ATOM	902	CA	GLY	97	12.359	57.480 108.71	6 1.00 20.4	5 0
ATOM	905	C	GLY	97	12.412	57.920 107.26	9 1.00 23.7	6'0.
ATOM	906	õ	GLY	97	11.516	58.617 106.77	13 1.00 84.6	
MOTA	907.		LYS	98	13.460	57.469 106.58		
MOTA	909	CA	LYS	98	13.698	57.806 105.18		
ATOM	910	CB	LYS	98	15.147	57.462 104.83	32 1.00 31.4	5 0

58.397 105.487 1.00 30.73 MOTA 911 CG LYS 98 16.169 58.061 105.087 59.089 105.627 1.00 32.79 912 MOTA 17.606 CD LYS 98 1.00 18.605 59.089 30.08 0 MOTA 913 CE LYS 98 58.743 105.315 1.00 31.54 20.036 MOTA 914 NZ LYS 98 57.196 57.707 56.120 1.00 44.78 12.741 104.146 MOTA 918 C LYS 98 103.040 104.517 12.613 12.059 1.00 31.43 0 ATOM 919 0 LYS 98 1.00 2.00 99 0 MOTA 920 GLN N 55.430 103.639 2.00 1.00 ATOM 922 GLN 99 11.132 0 CA 54.023 103.337 1.00 11.21 923 GLN 11.654 99 MOTA ÇВ 6.66 53.993 102.552 1.00 12.945 O MOTA 924 GLN 99 CG 52.586 102.177 51.805 103.031 13.361 13.802 1.00 11.01 99 0 MOTA 925 CD GLN 1.00 10.44 OE1 GLN 99 0 MOTA 926 52.247 100.895 55.328 104.245 54.238 104.317 56.460 104.657 13.229 1.00 99 8.18 0 MOTA 927 NE2 GLN 9.741 9.177 1.00 930 99 2.00 0 MOTA C GLN 1.00 6.66 99 0 MOTA 931 0 GLN 9.178 24.01 1.00 100 0 932 N SER MOTA 105.257 1.00 7.839 56.475 24.01 0 100 SER MOTA 934 CA 105.739 106.556 104.272 100 7.481 57.897 1.00 2.00 0 935 CB SER MOTA 8.479 6.749 5.703 58.490 1.00 2.00 0 SER 100 MOTA 936 **O**G 55.987 1.00 24.01 SER 100 0 938 MOTA С 55.463 104.680 1.00 2.00 939 SER 100 MOTA 0 56.153 102.977 55.786 101.913 56.416 100.599 57.224 99.721 1.00 27.83 0 940 101 7.015 LEU MOTA N 1.00 27.83 6.084 6.551 5.593 0 942 LEU 101 MOTA CA 101 1.00 3.66 0 943 CB LEU MOTA 1.00 3.66 0 944 LEU 101 MOTA CG 4.209 56.591 99.749 1.00 3.66 0 101 945 CD1 LEU MOTA 58.653 100.208 1.00 3.66 0 5.532 101 946 CD2 LEU MOTA 54.284 101.689 1.00 27.83 0 101 5.852 MOTA 947 LEU C 101.467 1.00 3.66 0 4.731 53.851 101 MOTA 948 0 LEU 53.480 101.725 52.055 101.490 6.901 1.00 2.00 0 102 949 GLU MOTA N 2.00 6.713 7.**97**6 1.00 0 GLU 102 951 CA MOTA 51.470 52.208 100.870 1.00 13.98 0 MOTA 102 952 CB GLU 1.00 13.98 9.211 101.294 0 102 953 GLU MOTA CG 10.116 52.539 100.136 1.00 13.98 0 954 955 CD GLU 102 MOTA 1.00 13.98 0 10.181 10.772 53.727 99.737 102 GLU MOTA OE1 51.599 51.324 50.263 99.643 102.763 102.729 1.00 13.98 0 956 OE₂ **GLU** 102 MOTA 2.00 1.00 102 6.307 5.686 0 957 **GLU** MOTA С 1.00 13.98 0 MOTA 958 0 **GLU** 102 51.901 51.330 52.098 2.00 0 1.00 6.664 103.897 103 959 MOTA N THR 6.293 6.923 8.313 105.173 106.309 1.00 2.00 0 MOTA 961 CA THR 103 1.00 2.00 0 103 CB THR MOTA 962 52.297 106.028 1.00 2.00 MOTA 963 OG1 THR 103 1.00 2.00 0 103 6.758 51.329 107.599 THR 965 CG2 MOTA 105.296 105.394 1.00 2.00 0 51.440 4.775 103 MOTA 966 С THR 2.00 0 4.081 1.00 50.428 103 MOTA 967 0 THR 52.667 105.257 1.00 2.00 0 104 MOTA 968 N ILE 52.873 105.363 54.389 105.300 54.965 103.956 2.00 1.00 0 2.824 104 970 MOTA CA ILE 1.00 12.72 0 2.486 104 MOTA 971 CB ILE 12.35 1.00 2.856 972 104 MOTA CG2 ILE 0.996 54.618 105.548 1.00 13.84 104 973 CG1 ILE MOTA 53.940 106.787 52.062 104.294 51.581 104.544 51.868 103.127 1.00 12.35 0.459 MOTA 974 CD1 ILE 104 2.074 1.00 2.00 0 104 975 ILE MOTA C 1.00 18.28 0.975 976 104 MOTA 0 ILE 1.00 23.45 0 2.690 105 MOTA 977 N **CYS** 51.092 102.042 51.458 100.708 52.958 99.957 1.00 21.74 0 2.080 979 **ATOM** CA CYS 105 20.76 0 1.00 2.722 980 CYS 105 CB MOTA 18.03 0 2.010 1.00 MOTA 981 SG CYS 105 49.563 17.08 102.214 1.00 2.061 982 105 MOTA C CYS 1.00 1.114 20.76 0 48.915 101.781 983 CYS 105 MOTA 0 48.982 102.833 1.00 2.00 106 3.089 984 LEU MOTA N 47.526 103.073 47.042 103.495 0 1.00 2.00 3.124 986 LEU 106 MOTA CA 1.00 2.00 4.519 106 987 LEU MOTA CB 45.544 103.802 1.00 2.00 0 4.680 ATOM 988 CG LEU 106 44.694 102.639 2.00 0 1.00 4.200 106 **ATOM** 989 CD1 LEU 6.133 45.247 47.179 104.053 1.00 2.00 0 990 CD2 LEU 106 MOTA 104.178 1.00 2.00 106 2.154 LEU **ATOM** 991 C 2.00 1.589 46.088 104.192 1.00 0 992 LEU 106 **ATOM** 0 48.107 105.116 1.00 2.00 1.992 LEU 107 993 MOTA N

MOTA MOTA MOTA MOTA MOTA	995 996 997 998 999	CB L		1.347 2.761 3.106	48.967 48.857 50.016	106.226 107.319 107.911 108.815 108.638	1.00 1.00 1.00 1.00	2.00 2.00 2.00 2.00 2.00	0 0 0 0
ATOM ATOM	1000 1001	C L	EU 107	-0.339 -1.153	48.035 47.125	105.683 105.873 104.971	1.00 1.00 1.00	2.00 2.00 2.00	0 0 0
MOTA MOTA	1002 1004 1005	CA L	,EU 108 ,EU 108 ,EU 108	-1.953 -2.020	49.340 50.666	104.394 103.637	1.00	2.00	0
ATOM ATOM	1006 1007	CG L CD1 L CD2 L		-2.244	53.164	104.499 103.618 105.433	1.00 1.00 1.00	2.00 2.00 2.00	0 0 0
ATOM ATOM ATOM	1008 1009 1010	C L	EU 108	-2.352	48.206	103.455 103.369	1.00 1.00	2.00	Ŏ O
ATOM ATOM	1011 1013	N A	LA 109 LA 109	-1.608	46.539	102.762 101.839	1.00	2.00	0
MOTA MOTA	1014 1015	C A	LA 109	-2.091	45.316	101.087 102.605 102.305	1.00 1.00 1.00	33.06 2.00 24.92	0
MOTA MOTA	1016 1017 1019	N T	LA 109 YR 110 YR 110	-1.311	44.929	102.303 103.609 104.452	1.00	5.11	0
ATOM ATOM	1020 1021	CB T	YR 110 YR 110	-0.495	43.564 42.771	105.438 104.922	1.00	2.00	0
MOTA MOTA	1022 1023	CE1 T	YR 110 YR 110	3.053	42.474	105.092 104.706	1.00 1.00 1.00	2.00 2.00 2.00	0 0 0
MOTA MOTA MOTA	1024 1025 1026	CE2 T	YR 110 YR 110 YR 110	1.578	40.743	104.340 103.950 104.139	1.00	2.00	0
ATOM ATOM	1027 1029	OH T	YR 110 YR 110	3.963 -2.948	43.940	103.779 105.215	1.00 1.00	2.00	0
MOTA MOTA	1030 1031	N L	YR 110 YS 111	-3.265	45.168	105.441 105.618 106.333	1.00 1.00 1.00	2.00 2.00 2.00	0 0 0
ATOM ATOM ATOM	1033 1034 1035	CB L	.YS 111 .YS 111 .YS 111	-4.619	46.904	106.333 106.708 107.393	1.00	2.00	0
MOTA MOTA	1036 1037	CD L	YS 111 YS 111	-6.085 -7. 41 0	46.501 46.743	108.685 109.354	1.00	2.00	0
MOTA	1038 1042	C L	YS 111 YS 111	-5. 69 8	45.051	110.428 105.465 105.951	1.00 1.00 1.00	2.00 2.00 2.00	0 0 0
ATOM ATOM ATOM	1043 1044 1046	N I	YS 111 LE 112 LE 112	-5.624	45.455	104.192 103.177	1.00	2.00	0
MOTA MOTA	1047 1048	CB I	LE 112 LE 112	-6.361 -7.414	45.978 45.656	101.875 100.814	1.00	25.04 25.04	0
MOTA	1049 1050	CD1 I			48.336	102.166 101.012 102.829	1.00 1.00 1.00	25.04 25.04 2.00	0 0 0
ATOM ATOM ATOM	1051 1052 1053	0 I	LE 112 LE 112 YS 113	-7.783	43.156 43.067	102.568 102.816	1.00	25.04 2.00	0
MOTA MOTA	1055 1056	CA L	YS 113 YS 113	-5. 44 7 -4.001	41.285	102.513	1.00	2.00 8.72 8.72	0 0 0
ATOM ATOM ATOM	1057 1058 1059	CD L	.YS 113 .YS 113 .YS 113	-2.780		101.596 100.521 99.975	1.00 1.00 1.00	8.72 8.72	0
ATOM ATOM	1060 1064	NZ L	YS 113	-3.952	37.873 40.780	99.637 103.667	1.00 1.00	8. 7 2 2.00	0
MOTA MOTA	1065 1066	O L N T	YS 113 YR 114	-5.744	41.200	103.435	1.00 1.00 1.00	8.72 9.02 8.11	0 0 0
ATOM ATOM ATOM	1068 1069 1070	CB T	YR 114 YR 114 YR 114	-5.122	39.580	106.068 106.666 105.689	1.00	12.47 12.47	0
MOTA MOTA	1071 1072	CD1 T	YR 114	-3.027 -2.111	39.715 39. 19 1	105.278 104.397	1.00 1.00	12.47 12.47	0
ATOM ATOM	1073 1074	CE2 T	YR 114 YR 114 YR 114	-3.395	37.168	105.188 104.302 103.908	1.00	12.47 12.47 12.47	0 0 0
MOTA MOTA	1075 1076		YR 114 YR 114			103.903	1.00	12.47	0

41.417 107.155 1078 114 1.00 9.78 **ATOM** C TYR -6.729 41.638 108.169 1.00 12.47 -6.058 1079 MOTA 0 TYR 114 41.985 106.968 41.845 105.826 -7.928 -8.843 MOTA 1.00 34.30 1080 N PRO 115 1.00 24.86 MOTA 1081 CD PRO 115 42.912 107.944 43.227 107.365 43.117 105.921 42.310 109.335 1.00 34.30 MOTA 1082 CA **PRO** 115 -8.488 1.00 24.86 -9.862 1083 CB **PRO** 115 MOTA -9.640 -8.586 1.00 24.86 MOTA 1084 CG PRO 115 1.00 34.30 MOTA 1085 **PRO** 115 0 С 1.00 24.86 -8.017 42.837 110.285 115 MOTA 1086 0 PRO 42.637 110.263 41.181 109.445 40.538 110.742 39.469 110.637 39.726 109.593 40.728 110.027 1.00 2.00 -9.275 MOTA 1087 **GLU** 116 Ω N -9.477 -10.577 1.00 2.00 CA **GLU** 116 MOTA 1089 1.00 35.30 1090 CB GLU 116 0 MOTA -11.673 1.00 37.08 116 **GLU** 0 ATOM 1091 CG -12.739 -13.060 -13.274 -8.213 -8.296 -7.054 1.00 43.38 1.00 47.93 1092 CD **GLU** 116 ATOM 41.641 109.235 40.599 111.147 0 1093 OE1 GLU 116 ATOM 1.00 48.80 OE2 116 0 1094 GLU MOTA 39.902 111.358 1.00 2.00 0 GLU 116 MOTA 1095 39.287 112.424 40.067 110.712 1.00 32.95 GLU 116 1096 0 MOTA 1.00 2.00 0 ASN MOTA 1097 N 117 39.455 111.211 38.220 110.375 37.174 110.353 37.351 109.700 36.071 111.048 40.372 111.211 39.952 111.506 -5.820 -5.457 1099 CA ASN 117 1.00 2.00 MOTA 1.00 6.12 0 ATOM 1100 CB **ASN** 117 ASN 117 -6.552 1.00 8.10 MOTA 1101 CG -7.584 -6.328 1.00 17.57 0 1102 OD1 ASN 117 MOTA ND2 ASN 117 1.00 14.33 0 1103 MOTA 2.00 117 117 1.00 0 1106 -4.613 ASN MOTA С -3.496 1.00 8.94 MOTA 1107 0 ASN -4.821 -3.715 41.620 110.862 1.00 2.00 n 118 1108 PHE MOTA N 42.559 110.815 42.617 109.395 1.00 2.00 118 MOTA 1110 CA PHE 1.00 2.00 0 -3.135 CB PHE 118 MOTA 1111 43.471 109.256 42.886 109.155 -1.902 1.00 2.00 118 MOTA 1112 CG PHE -0.647 1.00 2.00 0 1113 CD1 PHE 118 MOTA ~1.995 0.503 44.857 109.177 43.680 108.972 1.00 2.00 0 118 MOTA 1114 CD2 PHE 118 118 1.00 2.00 O 1115 CE1 PHE MOTA -0.857 45.647 108.997 1.00 2.00 MOTA 1116 CE2 PHE 1.00 2.00 0 45.060 108.894 118 0.393 PHE MOTA 1117 CZ 43.854 111.194 44.259 110.576 1.00 2.00 0 -4.392 MOTA 1118 PHE 118 С 2.00 -5.384 1.00 118 MOTA PHE 1119 O 44.483 112.240 45.700 112.721 45.400 114.022 44.355 113.889 -3.874 1.00 12.11 MOTA 1120 N PHE 119 -4.467 -5.174 -6.229 -5.903 1.00 12.11 0 119 CA PHE 1122 MOTA 2.00 1.00 0 MOTA 1123 CB PHE 119 2.00 1.00 119 MOTA 1124 CG PHE 43.008 113.975 1.00 2.00 119 MOTA 1125 CD1 PHE 1.00 44.716 113.655 2.00 119 -7.556 CD2 PHE 1126 MOTA 42.035 113.829 43.753 113.506 1.00 2.00 0 -6.881 MOTA PHE 119 1127 CE1 2.00 -8.546 -8.209 1.00 CE2 PHE 119 MOTA 1128 42.410 113.592 1.00 2.00 119 MOTA 1129 CZPHE 46.806 112.905 46.577 113.346 48.008 112.537 1.00 12.11 0 -3.472 119 MOTA 1130 PHE 1.00 2.00 0 -2.342 119 MOTA 1131 O PHE 2.00 1.00 -3.893 120 MOTA 1132 N LEU -3.043 49.179 112.672 1.00 2.00 LEU 120 MOTA 1134 CA 1.00 2.00 49.809 111.303 120 -2.770 MOTA 1135 CB LEU 0 48.910 110.259 1.00 2.00 -2.127 120 1136 CG LEU MOTA 49.623 108.924 48.539 110.685 2.00 -2.147 -0.731 1.00 CD1 LEU 120 MOTA 1137 2.00 0 1.00 CD2 LEU 120 MOTA 1138 50.176 113.559 50.401 113.375 50.730 114.542 51.714 115.415 2.00 0 1.00 -3.7**6**6 120 MOTA 1139 LEU 1.00 2.00 0 -4.963 120 1140 LEU MOTA 0 2.00 0 1.00 -3.069 MOTA LEU 121 1141 N 2.00 0 1.00 -3.670 121 LEU MOTA 1143 CA 51.428 116.890 0 -3.351 1.00 2.00 121 121 LEU MOTA 1144 CB 50.320 117.598 50.150 119.012 50.657 117.581 1.00 2.00 0 -4.142 1145 LEU MOTA CG 2.00 0 1.00 -3.648 1146 CD1 LEU 121 MOTA 1.00 2.00 -5.609 121 LEU ATOM 1147 CD2 -3.106 0 53.060 115.004 1.00 2.00 1148 LEU 121 MOTA C 1.00 2.00 53.148 114.166 121 -2.213MOTA 1149 0 LEU 54.118 115.592 1.00 2.00 0 -3.631 1150 **ARG** 122 N MOTA 1.00 2.00 -3.162 55.434 115.251 122 **ARG** MOTA 1152 CA 56.404 115.224 57.765 114.619 -4.336 1.00 2.00 0 1153 CB ARG 122 MOTA 1.00 2.00 -4.047 122 MOTA 1154 CG ARG

		•						1 00	2.00	^
MOTA	1155	CD	ARG	122	-5.298		114.683	1.00	2.00	0
MOTA	1156	NE	ARG	122	-5.207	59.851	114.014		2.00	0
MOTA	1158	CZ	ARG	122	-6.274	60.578	113.685	1.00	2.00	0
MOTA	1159	NH1		122	-7.512		113.956	1.00	2.00	0
MOTA	1162	NH2	ARG	122	-6.104	61.762	113.102	1.00		0
MOTA	1165	C	ARG	122	-2.104	55.942	116.208	1.00	2.00	0
MOTA	1166	0	ARG	122	-2.163	55.716	117.423	1.00	2.00	0
MOTA	1167	N	GLY	123	-1.135	56.635	115.631	1.00	2.00	0
MOTA	1169	CA	GLY	123	-0.073	57.235	116.399	1.00	2.00	0
ATOM	1170	С	GLY	123	-0.205	58.730	116.198	1.00	2.00	0
ATOM	1171	Ō	GLY	123	-0.865	59.177	115.262	1.00	86.19	0
ATOM	1172	N	ASN	124	0.437	59.508	117.058	1.00	2.00	0
ATOM	1174	CA	ASN	124	0.390	60.956	116.958	1.00	2.00	0
ATOM	1175	CB	ASN	124	1.003	61.584	118.199	1.00	4.11	e
	1176	CG	ASN	124	2.477	61.333	118.313	1.00	8.88	0
MOTA	1177	OD1		124	2.940	60.187	118.486	1.00	8.54	Ö
MOTA				124	3.240	62.400	118.236	1.00	6.38	ŏ
MOTA	1178	ND2			1.103	61.455	115.708	1.00	2.00	ŏ
MOTA	1181	C	ASN	124		62.664	115.430	1.00	5.53	ő
MOTA	1182	0	ASN	124	1.143					
MOTA	1183	N	HIS	125	1.678	60.515	114.963		18.81	0
MOTA	1 18 5	CA	HIS	125	2.372	60.815	113.723		19.06	0
MOTA	1186	CB	HIS	125	3.759	60.186	113.744		13.41	0
MOTA	1187	CG	HIS	125	4.790	61.072	114.362		13.65	0
MOTA	1188	CD2	HIS	125	4.765		115.493	1.00	8.85	0
ATOM	1189	ND1	HIS	125	6.006	61.322	113.772		14.49	0
MOTA	1191	CE1		125	6 .68 6	62.182	114.503	1.00	13.93	0
ATOM	1192	NE2		125	5.954	62.496	115.554	1.00	12.46	0
ATOM	1194	C	HIS	125	1.555	60.338	112.523	1.00	16.39	0
ATOM	1195	ŏ	HIS	125	2.090	59.905	111.513	1.00	13.34	0
	1196		GLU	126	0.241	60.382	112.686	1.00	2.00	0
MOTA		N	GLU	126	-0.731	60.018	111.664	1.00	2.00	ō
MOTA	1198	CA			-1.462	58.725	112.050	1.00	2.00	ŏ
MOTA	1199	CB	GLU	126			111.570	1.00	2.00	ŏ
MOTA	1200	CG	GLU	126	-0.783	57.443			2.00	ŏ
MOTA	1201	CD	GLU	126	0.578	57.217	112.190	1.00		
MOTA	120 2	OE1		126	1.615		111.504	1.00	2.00	0
MOTA	1203	OE2	GLU	126	0.610	56.898	113.385	1.00	2.00	0
MOTA	1204	С	GLU	126	-1.683		111.705	1.00	2.00	o
MOTA	1205	0	GLU	126	-2.903	61.073	111.837	1.00	2.00	0
MOTA	1206	N	CYS	127	-1.097	62.392	111.578	1.00	2. 0 0	0
ATOM	1208	CA	CYS	127	-1.860	63.608	111.681	1.00	2.00	0
ATOM	1209	CB	CYS	127	-2.037	63.960	113.167	1.00	26.08	0
ATOM	1210	SG	CYS	127	-3.052	65.420	113.546	1.00	39.49	0
ATOM	1211	c	CYS	127	-1.142	64.731	110.976	1.00	2.00	0
ATOM	1212	Ö	CYS	127	0.048		111.204	1.00	23.46	0
			ALA	128	-1.912	65.421	110.142	1.00	2.00	0
ATOM	1213	N		128	-1:489		109.335	1.00	2.00	Ö
ATOM	1215	CA	ALA		-2.686		109.031	1.00	2.00	ŏ
MOTA	1216	CB	ALA	128		67.412	109.910			ŏ
MOTA	1217	C	ALA	128	-0.385 0.690	67 456	109.346	1.00	2.00	ŏ
ATOM	1218	0	ALA	128					2.00	ŏ
MOTA	1219	N	SER	129	-0.649		111.021	1.00		ő
MOTA	1221	CA	SER	129	0.331		111.675	1.00	2.00	
MOTA	1222	CB	SER	129	-0.288		112.937		28.29	0
MOTA	122 3	OG	SER	129	-0.836		113.760		32.64	0
MOTA	1225	С	SER	129	1.671		112.042	1.00	2.00	0
MOTA	1226	0	SER	129	2.669		112.186		24.43	0
ATOM	1227	N	ILE	130	1.687	67.027	112.226	1.00	2. 0 0	0
ATOM	1229	CA	ILE	130	2.920		112.572	1.00	2.00	0
ATOM	1230	СВ	ILE	130	2.671		113.588	1.00	2.00	0
ATOM	1231	CG2	ILE	130	3.999		114.058	1.00	2.00	0
ATOM	1232			130	2.012		114.854	1.00	2.00	0
			ILE	130			115.554	1.00	2.00	ŏ
ATOM	1233	CD1					111.289	1.00	2.00	ŏ
ATOM	1234	C	ILE	130	3.563	65.049	111.113	1.00	2.00	ő
ATOM	1235	0	ILE	130	4.776					
MOTA	1236	N	ASN	131	2.751		110.397		15.50	0
ATOM	1238	CA	ASN	131	3.209		109.091		12.35	0
ATOM	1239	CB	ASN	131	2.027		108.231	1.00	2.00	0
MOTA	1240	CG	ASN	131	1.487	62.929	108.632	1.00	2.00	0
ATOM	1241	OD1	ASN	131	1.712	62.438	109.750	1.00	2 . 0 0	0

1.00 2.00 131 0.745 62.313 107.718 0 MOTA 1242 ND2 ASN 65.914 108.374 3.849 1.00 28.24 0 MOTA 1245 **ASN** 131 2.00 107.951 131 5.001 65.854 1.00 0 MOTA 1246 ASN 0 1.00 2.00 132 3.051 66.971 108.255 0 MOTA 1247 N ARG 2.00 1.00 132 3.386 68.234 107.627 0 1249 CA ARG MOTA 2.327 69.269 108.006 1.00 22.25 0 ARG 132 MOTA 1250 CB 1.00 26.48 70.673 107.477 1251 CG ARG 132 2.505 0 MOTA 2.505 70.734 105.962 1.00 27.28 132 0 MOTA 1252 CD ARG 1.00 36.02 70.533 105.434 3.849 1253 ARG 132 0 NE MOTA 71.479 104.852 72.697 104.711 4.577 1.00 34.03 0 ARG 132 MOTA 1255 CZ1.00 30.29 1256 4.080 NH1 ARG 132 0 MOTA 71.211 104.424 5.808 1.00 37.77 132 0 1259 NH2 ARG ATOM 68.731 107.990 69.477 107.225 68.324 109.127 4.768 1.00 2.00 132 0 1262 ARG C MOTA 5.359 1.00 27.60 0 1263 ARG 132 MOTA 0 5.314 1.00 2.00 ILE 133 MOTA 1264 N 68.801 109.457 6.652 1.00 2.00 0 MOTA 1266 CA ILE 133 69.644 110.746 1.00 20.12 ILE 133 6.652 0 CB MOTA 1267 6.215 5.761 5.687 71.055 110.441 1.00 19.34 1.00 21.76 0 CG2 ILE 1268 133 MOTA 68.999 111.800 69.792 113.065 0 CG1 ILE 133 MOTA 1269 1.00 22.74 O 1270 CD1 ILE 133 MOTA 67.779 109.553 7.794 1.00 2.00 0 MOTA 1271 ILE 133 68.073 109.127 1.00 21.74 0 8.915 1272 133 ILE 0 MOTA 7.521 8.571 8.330 66.583 110.080 65.567 110.270 1.00 2.00 1273 TYR 134 MOTA N 1.00 2.00 0 134 TYR 1275 CA MOTA 64.766 111.561 65.648 112.767 65.789 113.486 66.651 114.557 1.00 27.01 0 1276 CB TYR 134 MOTA 1.00 19.94 1.00 23.86 0 134 8.270 1277 CG TYR MOTA 7.092 0 1278 CD1 TYR 134 MOTA 1.00 24.86 0 7.016 134 MOTA 1279 CE1 TYR 9.380 66.392 113.160 1.00 24.55 0 1280 CD2 TYR 134 MOTA 67.254 114.228 67.384 114.925 68.259 115.984 1.00 23.33 0 134 9.312 TYR CE2 MOTA 1281 8.128 1.00 28.93 0 MOTA 1282 CZTYR 134 1.00 27.73 0 134 8.043 TYR MOTA 1283 OH 64.606 109.139 1.00 2.00 0 8.823 134 1285 C TYR MOTA 63.404 109.368 65.127 107.922 64.275 106.787 63.772 105.882 1.00 24.62 0 8.986 134 MOTA 1286 0 TYR 1.00 11.68 0 8.847 135 1287 N GLY mota 1.00 10.40 0 9.134 8.028 135 MOTA 1289 CA GLY 1.00 9.03 0 GLY 135 MOTA 1290 С 64.127 104.713 62.963 106.393 62.412 105.549 61.757 106.347 1.00 20.70 0 8.010 135 MOTA 1291 0 GLY 7.110 1.00 2.00 0 1292 136 PHE MOTA N 1.00 2.00 0 6.062 PHE 136 1294 CA MOTA 1.00 2.00 0 4.951 136 1295 PHE MOTA CB 1.00 2.00 0 60.831 105.524 4.091 136 1296 CG PHE MOTA 59.734 104.870 1.00 2.00 0 4.664 2.713 136 CD1 PHE 1297 MOTA 2.00 0 1.00 61.036 105.424 MOTA 1298 CD2 PHE 136 58.846 104.131 1.00 2.00 0 3.882 CE1 PHE 136 1299 MOTA 2.00 60.155 104.688 1.00 0 1.915 1300 PHE 136 MOTA CE2 1.00 2.00 0 59.050 104.037 2.507 PHE 136 1301 MOTA CZ63.358 104.563 1.00 2.00 0 5.421 1302 PHE 136 MOTA C 62.926 103.445 64.616 104.940 65.530 103.977 66.859 104.598 1.00 2.00 0 5.121 PHE 136 1303 0 MOTA 2.00 0 1.00 5.199 MOTA 1304 N TYR 137 1.00 2.00 0 4.606 137 1306 TYR CA MOTA 1.00 2.00 4.243 MOTA 1307 CB TYR 137 2.00 n 67.921 103.564 1.00 137 3.886 TYR 1308 MOTA CG 68.203 103.257 69.196 102.327 68.666 102.901 1.00 2.00 0 2.550 MOTA 1309 CD1 TYR 137 0 1.00 2.00 137 2.228 1310 TYR MOTA CE1 2.00 4.893 1.00 TYR 137 MOTA 1311 CD2 69.644 101.985 2.00 O 1.00 137 4.576 TYR MOTA 1312 CE2 0 69.903 101.707 2.00 3.247 1.00 137 1313 CZTYR MOTA 70.893 100.823 2.00 1.00 2.920 137 1314 OH TYR MOTA 65.785 102.822 2.00 0 5.566 1.00 137 1316 C TYR MOTA 65.669 101.646 2.00 1.00 137 5.187 1317 0 TYR MOTA 66.153 103.155 1.00 2.00 O 6.802 138 ASP MOTA 1318 N 1.00 2.00 0 66.439 102.147 7.822 138 1320 ASP MOTA CA 1.00 28.59 66.971 102.810 68.173 103.705 0 9.102 138 ASP ATOM 1321 CB 1.00 31.85 0 8.832 138 ASP MOTA 1322 CG 0 69.327 103.255 1.00 34.04 ASP 138 8.999 MOTA 1323 OD1 67.963 104.867 1.00 31.26 0 8.432 138 ASP MOTA 1324 OD2 1.00 65.203 101.308 2.00 0 8.118 ASP 138 MOTA 1325 C

ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1326 1327 1329 1330 1331 1332 1333		ASP GLU GLU GLU GLU GLU GLU	138 139 139 139 139 139	8.322 8.097 8.366 8.380 8.965 9.167 9.135	64.030 62.797 61.608 60.361 59.231 58.050	101.526 102.525 102.087	1.00 27.39 1.00 31.40 1.00 28.32 1.00 2.00 1.00 4.78 1.00 3.01 1.00 2.00	0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	1334 1335 1336 1337 1339 1340	OE2 C O N CA CB	GLU GLU CYS CYS CYS	139 139 139 140 140	9.372 7.323 7.660 6.055 4.981 3.625	62.572 62.419	103.738 100.117 98.941 100.511 99.553 100.221	1.00 4.61 1.00 30.47 1.00 2.00 1.00 12.32 1.00 3.99 1.00 18.56	0 0 0 0
ATOM ATOM ATOM ATOM ATOM	1341 1342 1343 1344 1346	SG C O N CA	CYS CYS CYS LYS LYS	140 140 140 141 141	3.313 5.128 5.117 5.305 5.446	61.308 63.346 62.961 64.616 65.696	101.477 98.416 97.257 98.763 97.786	1.00 23.54 1.00 12.32 1.00 21.26 1.00 41.55 1.00 40.86	0 0 0
ATOM ATOM ATOM ATOM	1347 1348 1349 1350 1351 1355	CB CG CD CE NZ	LYS LYS LYS LYS LYS	141 141 141 141 141	5.655 5.853 5.886 5.895 5.552 6.586	67.023 68.246 69.522 70.750 71.948 65.467	98.531 97.646 98.468 97.584 98.380 96.791	1.00 38.66 1.00 32.19 1.00 35.28 1.00 36.09 1.00 40.44 1.00 40.27	0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	1356 1357 1359 1360 1361	C N CA CB CG	LYS ARG ARG ARG ARG	141 142 142 142 142	6.431 7.731 8.912 10.097 11.368	65.642 65.073 64.834 64.566 64.101	95.582 97.319 96.512 97.444 96.778	1.00 28.60 1.00 23.84 1.00 23.84 1.00 22.75 1.00 24.10	0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	1362 1363 1365 1366 1369 1372	CD NE CZ NH1 NH2 C	ARG ARG ARG ARG ARG	142 142 142 142 142 142	12.474 12.099 12.464 13.224 12.060 8.732	64.073 63.283 62.018 61.404 61.363 63.689	97.799 98.963 99.150 98.249 100.234 95.519	1.00 33.58 1.00 37.62 1.00 46.30 1.00 44.23 1.00 42.22 1.00 23.84	0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	1373 1374 1376 1377 1378 1379	O N CA CB CG	ARG ARG ARG ARG ARG ARG	142 143 143 143 143	8.995 8.268 8.104 8.267 9.686	63.838 62.550 61.413 60.134 59.941 58.874	94.330 95.999 95.125 95.941 96.455 97.530	1.00 24.93 1.00 2.00 1.00 2.00 1.00 2.86 1.00 2.86 1.00 8.64	0 0 0 0
MOTA MOTA ATOM ATOM MOTA	1380 1382 1383 1386 1389	NE CZ NH1 NH2 C	ARG ARG ARG ARG ARG	143 143 143 143 143	9.490 9.492 9.782 9.203 6.796	57.527 56.439 56.527 55.257 61.411	97.049 97.816 99.115 97.287 94.367	1.00 4.03 1.00 6.91 1.00 7.13 1.00 12.97 1.00 2.00	0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	1390 1391 1393 1394 1395 1396	O N CA CB CG CD1	ARG TYR TYR TYR TYR TYR	143 144 144 144 144 144	6.707 5.791 4.459 3.509 3.902 4.946	60.818 62.097 62.120 61.150 59.689 59.203	93.295 94.897 94.274 95.021 94.953 95.716	1.00 12.04 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	1397 1398 1399 1400 1401 1403	CE1 CD2 CE2 CZ OH C	TYR TYR TYR TYR TYR TYR	144 144 144 144 144	5.336 3.248 3.633 4.683 5.113 3.789	57.885 58.804 57.483 57.034 55.738 63.502	95.635 94.102 94.017 94.786 94.703 94.169	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	1404 1405 1407 1408 1409	O N CA CB CG OD1	TYR ASN ASN ASN ASN	144 145 145 145 145 145	4.129 2.827 2.081 1.159 0.255 -0.823	64.316 63.750 65.000 65.078 63.861 63.826	93.297 95.058 95.083 93.867 93.748 94.329	1.00 2.00 1.00 2.00 1.00 2.00 1.00 7.57 1.00 5.76 1.00 9.42	0 0 0 0 0
ATOM ATOM ATOM ATOM	1411 1414 1415 1416	ND2	ASN ASN ASN ILE	145 145 145 145 146	0.702 1.229 0.760 1.001	62.851 65.137 64.143 66.391	93.007 96.354 96.938 96.737	1.00 9.42 1.00 5.88 1.00 2.00 1.00 11.61 1.00 2.00	0 0 0

MOTA	1418	CA	ILE	146	0.217	66.745	97.901	1.00 2.00	0
ATOM	1419	CB	ILE	146	0.168	68.278	98.048	1.00 2.00	0
ATOM	1420		ILE	146	-0.607	68.690	99.278	1.00 2.00	0
				146	1.591	68.798	98.201	1.00 2.00	0
MOTA	1421	CG1	ILE				98.360	1.00 2.00	ŏ
MOTA	1422		ILE	146	1.679	70.270			
ATOM	1423	С	ILE	146	-1.181	66.143	97.851	1.00 2.00	0
MOTA	1424	0	ILE	146	-1.805	65.927	98.881	1.00 2.00	0
ATOM	1425		LYS	147	-1.680	65.839	96.668	1.00 2.00	0
MOTA	1427		LYS	147	-3.000	65.241	96.594	1.00 2.00	0
			LYS	147	-3.412	65.007	95.131	1.00 15.32	Ŏ
MOTA	1428	CB					94.902	1.00 21.64	ő
MOTA	1429	CG	LYS	147	-4.880	64.643			-
ATOM	1430		LYS	147	-5.024	63.248	94.280	1.00 29.48	0
MOTA	1431	CE	LYS	147	-4.704	62.128	95.300	1.00 25.79	0
MOTA	1432	NZ	LYS	147	-4.388	60.777	94.716	1.00 22.31	0
MOTA	1436	С	LYS	147	-2.864	63. 92 8	97.345	1.00 2.00	0
MOTA	1437		LYS	147	-3.652	63.630	98.233	1.00 8.30	0
	1438		LEU	148	-1.815	63.180	97.023	1.00 9.36	0
MOTA					-1.582	61.892	97.651	1.00 9.36	Ŏ
MOTA	1440		LEU	148			97.037	1.00 2.00	ŏ
MOTA	1661		LEU	148	-0.360	61.202			
MOTA	1442	CG	LEU	148	-0.207	59.721	97.415	1.00 2.00	0
MOTA	1443	CD1	LEU	148	-1.398	58.910	96.924	1.00 2.00	0
MOTA	1444	CD2	LEU	148	1.078	59.168	96.835	1.00 2.00	0
ATOM	1445	C	LEU	148	-1.423	62.040	99.157	1.00 9.36	0
	1446	õ	LEU	148	-2.097	61.351	99.899	1.00 2.00	0
MOTA				149	-0.555	62.943	99.611	1.00 2.00	0
MOTA	1447	N	TRP		-0.360		101.042	1.00 2.00	Ŏ
MOTA	1669	CA	TRP	149				1.00 9.48	ŏ
MOTA	1450	CB	TRP	149	0.559	64.359	101.276		
MOTA	1451	CG	TRP	149	0.690		102.748	1.00 13.35	0
MOTA	1452	CD2	TRP	149	0.095	65.915	103.387	1.00 9.36	0
ATOM	1453	CE2	TRP	149	0.512	65.907	104.725	1.00 12.67	0
MOTA	1454	CE3	TRP	149	-0.751	66.946	102.951	1.00 9.36	0
MOTA	1455	CD1	TRP	149	1.415	64.135	103.713	1.00 12.84	0
	1456	NE1	TRP	149	1.315	64.811	104.895	1.00 14.40	0
MOTA			TRP	149	0.119	66.880	105.632	1.00 10.82	0
atom	1458	CZ2		169	-1.138		103.858	1.00 10.25	0
MOTA	1459	CZ3	TRP		-0.702		105.182	1.00 21.34	0
MOTA	1460	CH2	TRP	149		67.670	101.707	1.00 2.00	Ŏ
MOTA	1461	С	TRP	149	-1.712	63.42/	101.707		ŏ
MOTA	1462	0	TRP	149	-2.095	62.726	102.647		
MOTA	1463	N	LYS	150	-2.429		101.216	1.00 2.00	0
MOTA	1465	CA	LYS	150	-3.756		101.725	1.00 2.00	0
MOTA	1466	CB	LYS	150	-4.392		100.819	1.00 25.82	0
MOTA	1467		LYS	150	-3.695	67.135	100.844	1.00 27.78	0
	Z-u -	CG							
MOTA	1468	CG		150		67.981	99.67 6	1.00 24.78	0
	1468	CD	LYS	150 150	-4.145	67.981	99.67 6	1.00 24.78 1.00 28.33	0
ATOM	1469	CD	LYS LYS	150	-4.145 -4.236	67.981 69.442	99.676 100.053	1.00 28.33	
MOTA	1469 1470	CD CE NZ	LYS LYS LYS	150 150	-4.145 -4.236 -5.243	67.981 69.442 69.673	99.676 100.053 101.132	1.00 28.33 1.00 35.49	0
MOTA MOTA	1469 1470 1474	CD CE NZ C	LYS LYS LYS LYS	150 150 150	-4.145 -4.236 -5.243 -4.661	67.981 69.442 69.673 63.536	99.676 100.053 101.132 101.786	1.00 28.33 1.00 35.49 1.00 2.00	0 0 0
MOTA	1469 1470	CD CE NZ C	LYS LYS LYS LYS	150 150 150 150	-4.145 -4.236 -5.243 -4.661 -5.468	67.981 69.442 69.673 63.536 63.397	99.676 100.053 101.132 101.786 102.701	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71	0 0 0
MOTA MOTA	1469 1470 1474	CD CE NZ C	LYS LYS LYS LYS	150 150 150 150 151	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525	67.981 69.442 69.673 63.536 63.397 62.638	99.676 100.053 101.132 101.786 102.701 100.809	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00	0 0 0 0
MOTA MOTA MOTA MOTA	1469 1470 1474 1475	CD CE NZ C	LYS LYS LYS LYS	150 150 150 150 151	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315	67.981 69.442 69.673 63.536 63.397 62.638 61.403	99.676 100.053 101.132 101.786 102.701 100.809 100.758	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 2.00	0 0 0 0
MOTA MOTA MOTA MOTA MOTA	1469 1470 1474 1475 1476 1478	CD CE NZ C O N CA	LYS LYS LYS LYS LYS THR	150 150 150 150 151	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 2.00 1.00 18.71	0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA	1469 1470 1474 1475 1476 1478	CD CE NZ C O N CA CB	LYS LYS LYS LYS LYS THR	150 150 150 150 151	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.491	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 2.00 1.00 18.71 1.00 21.97	0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1469 1470 1474 1475 1476 1478 1479 1480	CD CE NZ C O N CA CB OG1	LYS LYS LYS LYS THR THR THR	150 150 150 150 151 151 151	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85	0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1469 1470 1474 1475 1476 1478 1479 1480 1482	CD CE NZ C O N CA CB OG1 CG2	LYS LYS LYS LYS THR THR THR THR	150 150 150 150 151 151 151 151	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.315 -5.491 -5.491	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00	0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1469 1470 1474 1475 1476 1478 1479 1480 1482 1483	CD CE NZ C O N CA CB OG1 CG2	LYS LYS LYS LYS THR THR THR THR	150 150 150 150 151 151 151 151 151	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00	0 0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1469 1470 1474 1475 1476 1478 1479 1480 1482 1483	CD CE NZ C O N CA CB OG1 CG2 C	LYS LYS LYS LYS THR THR THR THR THR	150 150 150 150 151 151 151 151 151 151	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.760	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487 59.773	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.00 14.71	0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1469 1470 1474 1475 1476 1479 1480 1482 1483 1484	CD CE NZ C O N CA CB OG1 CG2 C	LYS LYS LYS LYS THR THR THR THR THR THR THR	150 150 150 151 151 151 151 151 151 151	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.760 -3.645	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487 59.773 60.529	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.00 14.71 1.00 2.00	0 0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1469 1470 1474 1475 1476 1478 1479 1480 1482 1483	CD CE NZ C O N CA CB OG1 CG2 C	LYS LYS LYS LYS THR THR THR THR THR THR PHE PHE	150 150 150 151 151 151 151 151 151 151	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.760 -3.645 -3.161	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487 59.773 60.529 59.729	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.00 14.71 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1469 1470 1474 1475 1476 1479 1480 1482 1483 1484	CD CE NZ C O N CA CB OG1 CG2 C	LYS LYS LYS LYS THR THR THR THR THR THR PHE PHE	150 150 150 151 151 151 151 151 151 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.491 -5.964 -4.920 -3.645 -3.161 -1.638	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487 59.773 60.529 59.729	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.00 14.71 1.00 2.00 1.00 2.00 1.00 2.00 1.00 13.78	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1469 1470 1474 1475 1476 1479 1480 1482 1483 1484 1485	CD CE NZ C O N CA CB OG1 CG2 C O N CA	LYS LYS LYS LYS THR THR THR THR THR PHE PHE PHE	150 150 150 151 151 151 151 151 151 152 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.964 -4.920 -3.645 -3.161 -1.638 -0.956	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.437 60.529 59.773 60.529 59.759	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502 102.830	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 2.00 1.00 2.00 1.00 14.71 1.00 2.00 1.00 2.00 1.00 2.00 1.00 13.78 1.00 13.78	0 0 0 0 0 0 0 0 0 0 0 0 0
MOTA ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1469 1470 1474 1475 1476 1478 1489 1480 1483 1484 1485 1487 1488	CD CE NZ C O N CA CB CG2 C O N CA CB CG2 C	LYS LYS LYS LYS THR THR THR THR THR PHE PHE PHE	150 150 150 151 151 151 151 151 151 152 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.760 -3.645 -3.161 -1.638 -0.956 0.034	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.438 60.487 59.773 60.529 59.729 59.759	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502 102.830 101.864	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.01 4.71 1.00 2.00 1.00 13.78 1.00 13.78 1.00 13.78	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MOTA ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1469 1470 1474 1475 1476 1479 1480 1482 1483 1484 1485 1488 1489	CD CE NZ C O N CA CB OG1 CG2 C O N CA CB CG CD1	LYS LYS LYS LYS THR THR THR THR THR PHE PHE PHE PHE	150 150 150 151 151 151 151 151 151 152 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.964 -4.920 -3.645 -3.161 -1.638 -0.956	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487 59.773 60.529 59.729 59.759 58.586 58.792 57.277	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502 102.830 101.864 103.178	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.01 14.71 1.00 2.00 1.00 13.78 1.00 13.78 1.00 13.78 1.00 13.78	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1469 1470 1474 1475 1476 1479 1480 1483 1484 1485 1488 1489 1490 1491	CD CE NZ C O N CA CB OG1 CG2 C O N CA CB CG CD1 CD2	LYS LYS LYS LYS THR THR THR THR THR PHE PHE PHE PHE PHE	150 150 150 151 151 151 151 151 151 152 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.760 -3.645 -3.161 -1.638 -0.956 0.034	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.438 60.487 59.773 60.529 59.729 59.759	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502 102.830 101.864 103.178	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.01 4.71 1.00 2.00 1.00 13.78 1.00 13.78 1.00 13.78 1.00 13.78	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1469 1470 1474 1475 1476 1478 1480 1482 1483 1484 1485 1488 1489 1490 1491 1492	CD CE NZ C O N CA CB CG2 C O N CA CB CD1 CD2 CD1 CD2	LYS LYS LYS LYS THR THR THR THR THR PHE PHE PHE PHE PHE PHE PHE	150 150 150 151 151 151 151 151 151 152 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.491 -5.964 -4.920 -5.760 -3.645 -3.161 -1.638 -0.956 0.034 -1.289 0.679	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487 59.773 60.529 59.729 59.759 58.586 58.792 57.277	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502 102.830 101.864 103.178 101.260	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.00 14.71 1.00 2.00 1.00 13.78 1.00 13.78 1.00 13.78 1.00 13.78 1.00 13.78	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1469 1470 1474 1475 1476 1478 1480 1482 1483 1484 1485 1488 1489 1490 1491 1492 1493	CD CE NZ C O N CA CB OG1 CG2 C O N CA CB CCD1 CD2 CCD1 CD2 CCD1	LYS LYS LYS LYS THR THR THR THR PHE PHE PHE PHE PHE PHE PHE PHE PHE	150 150 150 151 151 151 151 151 152 152 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.760 -3.645 -3.161 -1.638 -0.956 0.034 -1.289 0.679 -0.648	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487 59.773 60.529 59.759 58.792 57.717 56.194	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502 102.830 101.864 103.178 101.260 102.578	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.00 14.71 1.00 2.00 1.00 13.78 1.00 13.78 1.00 13.78 1.00 13.78 1.00 13.78	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1469 1470 1474 1475 1476 1478 1480 1482 1483 1484 1485 1487 1498 1499 1499 1499 1493	CD CE NZ C O N CA CB OG1 CG2 C O N CA CB CD1 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC	LYS LYS LYS LYS THR THR THR THR PHE PHE PHE PHE PHE PHE PHE	150 150 150 151 151 151 151 151 152 152 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.760 -3.645 -3.161 -1.638 -0.956 0.034 -1.289 0.648 0.340	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487 59.773 60.529 59.759 58.792 57.717 56.194 56.417	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502 102.830 101.864 103.178 101.260 102.578 101.617	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.00 14.71 1.00 2.00 1.00 13.78 1.00 13.78 1.00 13.78 1.00 13.78 1.00 13.78 1.00 13.78 1.00 13.78	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1469 1470 1474 1475 1476 1478 1480 1483 1484 1485 1488 1489 1491 1492 1493 1494 1495	CD CE NZ C O N CA CB OG1 CG2 C O N CA CB CD1 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC	LYS LYS LYS LYS THR THR THR THR PHE PHE PHE PHE PHE PHE PHE PHE	150 150 150 151 151 151 151 151 152 152 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.760 -3.645 -3.161 -1.638 -0.956 0.0340 -1.289 0.648 0.340 -3.767	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487 59.773 60.529 59.759 58.792 57.277 57.277 56.194 60.246	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502 102.830 101.864 103.178 101.864 103.178 101.617 104.673	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.00 14.71 1.00 2.00 1.00 13.78 1.00 13.78	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1469 1470 1474 1475 1476 1478 1480 1482 1483 1484 1485 1487 1498 1499 1499 1499 1493	CD CE NZ C O N CA CB OG1 CG2 C O N CA CB CD1 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC	LYS LYS LYS THR THR THR THR PHE PHE PHE PHE PHE PHE PHE PHE	150 150 150 151 151 151 151 151 152 152 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.760 -3.645 -3.161 -1.638 -0.956 0.034 -1.289 0.679 -0.648 0.340 -3.767 -4.380	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487 59.773 60.529 59.729 59.729 59.729 59.729 57.277 57.717 56.147 60.246 69.470	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502 102.830 101.864 103.178 101.260 102.578 101.617 104.673 105.397	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.00 14.71 1.00 2.00 1.00 13.78 1.00 13.78	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1469 1470 1474 1475 1476 1478 1480 1483 1484 1485 1488 1489 1491 1492 1493 1494 1495	CD CE NZ C O N CA CB OG1 CG2 C O N CA CB CD1 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC	LYS LYS LYS THR THR THR THR PHE	150 150 150 151 151 151 151 151 152 152 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.760 -3.645 -3.161 -1.638 -0.956 0.034 -1.289 0.679 -0.648 0.340 -3.767 -4.380 -3.657	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.529 59.759 59.759 58.792 57.277 57.717 56.194 60.246 60.246 60.246	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502 102.830 101.864 103.178 101.260 102.578 101.617 104.673 105.397	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.00 14.71 1.00 2.00 1.00 13.78 1.00 13.78	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1469 1470 1474 1475 1476 1479 1480 1483 1484 1485 1488 1489 1490 1491 1492 1493 1494 1495	CD CE NZ C O N CA CB OG1 CC2 C C C C C C C C C C C C C C C C C	LYS LYS LYS THR THR THR THR PHE PHE PHE PHE PHE PHE PHE PHE	150 150 150 151 151 151 151 151 152 152 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.760 -3.645 -3.161 -1.638 -0.956 0.034 -1.289 0.679 -0.648 0.340 -3.657 -4.380 -3.657	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487 59.773 60.529 59.729 59.729 59.729 59.729 59.729 59.729 59.729 59.729 59.729 60.246 60.447	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502 102.830 101.864 103.178 101.260 102.578 101.617 104.673 105.397 104.944 106.192	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.00 14.71 1.00 2.00 1.00 13.78 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1469 1470 1474 1475 1476 1479 1480 1483 1484 1485 1488 1489 1490 1491 1492 1493 1496 1497	CD CE NZ C O N CA CB OG1 CCD CD1 CCD CCD CCD CCD CCD CCD CCD CC	LYS LYS LYS THR THR THR THR PHE	150 150 150 151 151 151 151 151 152 152 152 152 152	-4.145 -4.236 -5.243 -4.661 -5.468 -4.525 -5.315 -5.111 -5.964 -4.920 -5.760 -3.645 -3.161 -1.638 -0.956 0.034 -1.289 0.679 -0.648 0.340 -3.767 -4.380 -3.657	67.981 69.442 69.673 63.536 63.397 62.638 61.403 60.670 61.532 59.434 60.487 59.773 60.529 59.729 59.729 59.729 59.729 59.729 59.729 59.729 59.729 59.729 60.246 60.447	99.676 100.053 101.132 101.786 102.701 100.809 100.758 99.408 98.332 99.332 101.925 102.489 102.297 103.398 103.502 102.830 101.864 103.178 101.260 102.578 101.617 104.673 105.397	1.00 28.33 1.00 35.49 1.00 2.00 1.00 28.71 1.00 2.00 1.00 18.71 1.00 21.97 1.00 19.85 1.00 2.00 1.00 14.71 1.00 2.00 1.00 13.78 1.00 13.78	000000000000000000000000000000000000000

BNSDOCID: <WO 9737224A1_I_>

WO 97/37224 PCT/GB97/00898

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1501 1503 1504 1505 1506 1508 1509 1510 1512 1513 1514 1515 1517 1518 1519 1520 1521	CG2 C O N CA CB CG OD1 OD2 C O N CA CB SG C O N	THR THR ASP ASP ASP ASP ASP CYS CYS CYS CYS CYS PHE	153 153 153 154 154 154 154 155 155 155 155 155	-4.912 -2.739 -5.653 -6.054 -6.415 -7.801 -8.442 -9.965 -10.548 -7.889 -8.783 -6.968 -6.951 -5.904 -5.770 -6.627 -7.267 -7.267	56.741 58.273	105.265 106.293 106.348 107.414 105.276 105.332 103.945 103.987 105.018 105.801 106.569 105.319 105.691 104.865 105.254 107.178 107.931	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	24.34 23.93 2.00 29.22 2.00 21.48 21.21 27.37 20.95 2.00 11.19 2.00 2.00 2.00 2.00 2.00 8.58	000000000000000000000000000000000000000
MOTA MOTA	1524 1525	CA CB	PHE PHE	156 156	-5.172 -4.056	59.409	108.954 109.018	1.00	8.58 2.00	0
MOTA	1526 1527	CG CD1	PHE PHE	156 156	-2.766 -2.537	58.945 57.585	108.437 108.206	1.00	2.00	0
ATOM ATOM	1528		PHE	156	-1.756	59.847	108.160	1.00	2.00	0
MOTA	1529		PHE PHE	156 156	-1.309 -0.518	57.130 59.400	107.710 107.662	1.00	2.00	0
ATOM ATOM	1530 1531	CZ	PHE	156	-0.295	58.039	107.439	1.00	2.00	O
MOTA	1532	C	PHE	156	-6.287	58.743	109.931 110.974	1.00	8.58 2.00	0
MOTA MOTA	1533 1534	N O	PHE ASN	156 157	-6.463 -7.0 5 5	58.119 59.758	100.574	1.00	2.00	0
MOTA	1536	CA	ASN	157	-8.144	60.233	110.405	1.00	2.00	0
ATOM ATOM	1537 1538	CB CG	asn asn	157 157	8.811 -7.861	61.475 62.661	109.779 109.577	1.00 1.00	2.00	0
MOTA	1539		ASN	157	-8.226	63.629	108.922	1.00	2.00	0
MOTA	1540		ASN	157 157	-6.669 -9.230	62.601 59.179	110.143 110.631	1.00	2.00 2.00	0
ATOM ATOM	1543 1544	C O	asn asn	157	-10.242	59.489	111.240	1.00	2.00	ŏ
MOTA	1545	N	CYS	158	-9.064		110.120	1.00	2.00	0
MOTA MOTA	1547 1548	CA CB	CYS CYS	158 158	-10.074 -10.751	56.914 56.567	110.304 108.970	1.00 1.00	2.00	ŏ
MOTA	1549	SG	CYS	158	-11.898	57.864	108.331	1.00	2.00	0
MOTA MOTA	1550 1551	C O	CYS CYS	158 158	-9.482 -10.148	55.665 54.648	110.924 111.049	1.00	2.00	0
ATOM	1552	N	LEU	159	-8.216	55.772	111.304	1.00	2.00	0
MOTA	1554	CA	LEU	159	-7.433	54.714		1.00	2.00	0
ATOM ATOM	1555 1556	CB CG	LEU	1 5 9 159	-5.985 -4.747	55.219 54.363	112.037 111.781	1.00	2.00	Ö
MOTA	1557	CD1	LEU	159	-4.993	53.449	110.617	1.00	2.00	0
MOTA MOTA	1558 1559	CD2 C	LEU	159 159	-3.536 -8.010	55.269 54.454	111.503 113.361	1.00	2.00	0 0
MOTA	1560	ō	LEU	159	-8.548	55.367	113.980	1.00	2.00	0
ATOM	1561	N	PRO	160	-7.951	53.209	113.871	1.00	2.00	0 0
MOTA MOTA	1562 1563	CD CA	PRO PRO	160 160	-7. 504 -8. 47 3	51.978 52.896	113.208 115.209	1.00	2.00	Ö
MOTA	1564	CB	PRO	160	-8.398	51.375	115.269	1.00	2.00	0
MOTA MOTA	1565 1566	CG C	PRO PRO	160 160	-8. 41 6 -7.535	50.956 53.516	113.838 116.228	1.00	2.00	0
MOTA	1567	Ö	PRO	160	-6.329	53.463	116.031	1.00	2.00	0
MOTA	1568	N	ILE	161	-8.062	54.073	117.315 118.312		10.42	0 0
MOTA MOTA	1570 1571	CA CB	ILE ILE	161 161	-7.206 -7.862	54.717 55.995	118.312	1.00	2.00	0
MOTA	1572	CG2	ILE	161	~8. 49 3	56.837	117.823	1.00	2.00	0
ATOM	1573	CG1	ILE	161 161	-8. 899 -9. 42 8	55.612 56.766	119.987 120.775	1.00	2.00	. 0
MOTA MOTA	1574 1575	CD1	ILE ILE	161	-6.741		119.492		10.42	Ö
ATOM	1576	0	ILE	161	-5.808	54.254	120.193	1.00	2.00	0
MOTA MOTA	1577 1579	N CA	ALA Ala	162 162	-7.387 -7.036		119.720 120.837		16.67 16.67	0
ALON	X 3 1 3	CA				22.022	,			~

2000					7 500	52.409 122.120	1.00 2.00	0
MOTA	1580	CB	ALA	162	-7.580	50.414 120.637	1.00 16.67	Ö.
MOTA	1581	C	ALA	162	-7.567 -8.494	50.203 119.861	1.00 2.00	ŏ
MOTA	1582 1583	0	ALA ALA	162 163	-6.984	49.455 121.356	1.00 2.00	ŏ
MOTA MOTA	1585	N CA	ALA	163	-7.379	48.052 121.267	1.00 2.00	ō
MOTA	1586	CB	ALA	163	-6.559	47.374 120.197	1.00 14.80	ŏ
MOTA	1587	C	ALA	163	-7.232	47.283 122.604	1.00 2.00	ŏ
ATOM	1588	Ö	ALA	163	-6.373	47.620 123.425	1.00 8.24	Ö
ATOM	1589	Ň	ILE	164	-8.069	46.263 122.813	1.00 8.09	0
MOTA	1591	CA	ILE	164	-8.036	45.424 124.018	1.00 8.09	0
ATOM	1592	CB	ILE	164	-9.323	45.590 124.860	1.00 10.56	0
ATOM	1593	CG2	ILE	164	-9.200	44.830 126.150	1.00 10.56	0
ATOM	1594		ILE	164	-9.566	47.055 125.187	1.00 10.56	0
MOTA	1595	CD1	ILE	164	-10.886	47.285 125.837	1.00 10.56	0
MOTA	1596	С	ILE	164	-7.910	43.938 123.623	1.00 8.09	0
ATOM	1597	0	ILE	164	-8.866	43.328 123.127	1.00 10.56	0
MOTA	1598	N	VAL	165	-6.739	43.353 123.856	1.00 20.53	0
MOTA	1600	CA	VAL	165	-6.510	41.958 123.503	1.00 21.83	0
MOTA	1601	CB	VAL	165	-5.041	41.664 123.243	1.00 2.00	0
MOTA	1602	CG1		165	-4.905	40.241 122.717	1.00 2.00	0
MOTA	1603	CG2	VAL	165	-4.460	42.686 122.273 40.987 124.570	1.00 2.00 1.00 22.04	Ö
MOTA	1604	C	VAL	16 5	-6.973	40.987 124.570 41.064 125.728	1.00 22.04	ŏ
MOTA	1605	0	VAL	165	-6.546	40.066 124.163	1.00 2.00	ŏ
MOTA	1606	N	ASP	166	-7.841	39.057 125.046	1.00 16.73	ŏ
MOTA	1608	CA	ASP	166	-8.401 -7.348	37.980 125.337	1.00 24.26	ŏ
MOTA	1609	CB	ASP	166	-7.245	36.914 124.212	1.00 24.02	Ö
MOTA	1610	CG	ASP	166 166	-8.258	36.207 123.944	1.00 22.19	ŏ
MOTA	1611	OD1		166	-6.145	36.776 123.611	1.00 26.91	ō
MOTA	1612 1613	OD2 C	ASP ASP	166	-8.963	39.674 126.326	1.00 15.15	0
Mota Mota	1614	Ö	ASP	166	-9.139	39.006 127.336	1.00 12.89	О
MOTA	1615	N	GLU	167	-9.262	40.967 126.231	1.00 2.00	0
MOTA	1617	CA	GLU	167	-9.833	41.811 127.289	1.00 2.00	0
MOTA	1618	CB	GLU	167	-11.280	41.394 127.555	1.00 83.32	0
ATOM	1619	ĊĠ	GLU	167	-12.129	41.397 126.273	1.00 2.00	0
MOTA	1620	CD	GLU	167	-11.819	42.603 125.305	1.00 2.00	0
MOTA	1621	OE1	GLU	167	-11.133	42.398 124.242	1.00 2.00	0
MOTA	1622	OE2	GLU	167	-12.268	43.750 125.622	1.00 2.00	0
MOTA	1623	С	GLU	167	-9.056	41.981 128.585	1.00 2.00 1.00 74.79	0
MOTA	1624	0	GLU	167	-9.634	42.138 129.657	1.00 74.79 1.00 22.77	ŏ
MOTA	1625	N	LYS	168	-7.733	41.984 128.460	1.00 22.77	ŏ
MOTA	1627	CA	LYS	168	-6.829	42.154 129.589 40.844 129.910	1.00 21.81	ŏ
MOTA	1628	CB	LYS	168	-6.098	39.798 130.600	1.00 17.49	Ö
MOTA	1629	CG	LYS	168	-6.956 -7 .67 7	40.404 131.802	1.00 18.27	ō
Mota	1630	CD	LYS	168	-8.654	39.411 132.466	1.00 26.28	0
MOTA	1631	CE - NZ	LYS	168				
MOTA	1632	NZ.			_9 65R		1.00 29.04	0
MOTA	1636		LYS	168 168	-9.658 -5.811	40.080 133.373	1.00 29.04 1.00 11.04	0 0
	1636	C	LYS	168	-5.811	40.080 133.373 43.225 129.237		0
MOTA	1637	С 0	LYS LYS	168 168		40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131	1.00 11.04 1.00 17.06 1.00 2.00	0 0 0
MOTA MOTA	1637 1638	C O N	LYS LYS ILE	168 168 169	-5.811 -5.665	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00	0 0 0
MOTA MOTA MOTA	1637 1638 1640	C 0 N CA	LYS LYS ILE ILE	168 168	-5.811 -5.665 -5.109	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0
MOTA MOTA MOTA MOTA	1637 1638 1640 1641	C O N	LYS LYS ILE ILE ILE	168 168 169 169	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0
MOTA MOTA MOTA MOTA MOTA	1637 1638 1640	C N CA CB	LYS LYS ILE ILE ILE	168 169 169 169 169 169	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0
MOTA MOTA MOTA MOTA	1637 1638 1640 1641 1642	C N CA CB CG2	LYS LYS ILE ILE ILE ILE	168 169 169 169 169 169 169	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	1637 1638 1640 1641 1642 1643	C O N CA CB CG1 CD1	LYS LYS ILE ILE ILE ILE ILE ILE ILE	168 169 169 169 169 169 169 169	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691 -4.731	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297 45.144 126.964	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1637 1638 1640 1641 1642 1643 1644	C N CA CB CG1 CG1	LYS LYS ILE ILE ILE ILE ILE ILE ILE	168 169 169 169 169 169 169 169	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691 -4.731 -5.393	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297 45.144 126.964 44.973 125.938	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1637 1638 1640 1641 1642 1643 1644 1645 1646	CONCACACACACACACACACACACACACACACACACACAC	LYS LYS ILE	168 169 169 169 169 169 169 169 169	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691 -4.731 -5.393 -4.572	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297 45.144 126.964 44.973 125.938 46.337 127.524	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1637 1638 1640 1641 1642 1644 1645 1646 1647	C O N CA CG2 CG1 CD1 C O N CA	LYS LYS ILE ILE ILE ILE ILE ILE ILE ILE PHE PHE	168 169 169 169 169 169 169 169 170	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691 -4.731 -5.393 -4.572 -5.110	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297 45.144 126.964 44.973 125.938 46.337 127.524 47.525 126.877	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 17.81 1.00 19.78	0 0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1637 1638 1640 1641 1642 1644 1645 1645 1647 1649	C O N CA CG1 C O N CA CB CG2 CG1 C O N CA CB	LYS LYS ILE ILE ILE ILE ILE ILE ILE PHE PHE	168 169 169 169 169 169 169 169 170	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691 -4.731 -5.393 -4.572 -5.110 -5.486	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297 45.144 126.964 44.973 125.938 46.337 127.524 47.525 126.877 48.610 127.885	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 17.81 1.00 19.78 1.00 2.00	0 0 0 0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1637 1638 1640 1641 1642 1643 1644 1645 1647 1649 1650	C O N CA CG1 C O N CA CB CG2 CG1 CD1 C C C C C C C C C C C C C C C C C	LYS LYS ILE ILE ILE ILE ILE ILE PHE PHE PHE	168 169 169 169 169 169 169 169 170 170	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691 -4.731 -5.393 -4.572 -5.110 -5.486 -5.895	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297 45.144 126.964 44.973 125.938 46.337 127.524 47.525 126.877 48.610 127.885 49.920 127.252	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 17.81 1.00 19.78 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1637 1638 1640 1641 1642 1643 1644 1645 1647 1651 1651	C O N CA CG1 C O N CA CG CG1 C CG CG1 C CG CG1 C CG CG1 C CG CG CG1 C CG CG1 C CG CG1 C CG CG1 C	LYS LYS ILE ILE ILE ILE ILE PHE PHE PHE PHE	168 169 169 169 169 169 169 169 170 170 170	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691 -4.731 -5.393 -4.572 -5.110 -5.486 -5.895 -7.095	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297 45.144 126.964 44.973 125.938 46.337 127.524 47.525 126.877 48.610 127.885 49.920 127.252 50.028 126.538	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1637 1638 1640 1641 1642 1643 1644 1645 1647 1651 1652 1653	C O N CA CB C CD C C C C C C C C C C C C C C C C	LYS LYS ILE ILE ILE ILE ILE PHE PHE PHE PHE PHE	168 169 169 169 169 169 169 170 170 170 170	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691 -4.731 -5.393 -4.572 -5.110 -5.486 -5.895 -7.095 -5.092	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297 45.144 126.964 44.973 125.938 46.337 127.524 47.525 126.877 48.610 127.885 49.920 127.252 50.028 126.538 51.056 127.390	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 17.81 1.00 19.78 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1637 1638 1640 1641 1642 1643 1644 1645 1647 1651 1652 1653 1654	C O N CA CB CG1 CD1 CC	LYS LYS ILE ILE ILE ILE ILE PHE PHE PHE PHE PHE PHE PHE	168 169 169 169 169 169 169 170 170 170 170	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691 -4.731 -5.393 -4.572 -5.110 -5.486 -5.895 -7.095 -5.092 -7.493	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297 45.144 126.964 44.973 125.938 46.337 127.524 47.525 126.877 48.610 127.885 49.920 127.252 50.028 126.538 51.056 127.390 51.248 125.976	1.00 11.04 1.00 17.06 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 17.81 1.00 19.78 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1637 1638 1640 1641 1642 1643 1645 1647 1659 1651 1652 1653 1654	C O N CA CB CG1 CD1 CC	LYS LYS ILE ILE ILE ILE ILE PHE PHE PHE PHE PHE PHE PHE PHE PHE	168 169 169 169 169 169 169 170 170 170 170 170	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691 -4.731 -5.393 -4.572 -5.110 -5.486 -5.895 -7.095 -5.092 -7.493 -5.473	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297 45.144 126.964 44.973 125.938 46.337 127.524 47.525 126.877 48.610 127.885 49.920 127.252 50.028 126.538 51.056 127.390 51.248 125.976 52.282 126.836 52.377 126.127	1.00 11.04 1.00 17.06 1.00 2.00	00000000000000000
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1637 1638 1640 1641 1642 1643 1644 1645 1647 1659 1651 1653 1654	C O N CA CB CG1 C O N CA CB CG2 CG1 C C CC C	LYS LYS ILE ILE ILE ILE PHE PHE PHE PHE PHE PHE PHE PHE PHE PH	168 169 169 169 169 169 169 170 170 170 170 170	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691 -4.731 -5.393 -4.572 -5.110 -5.486 -5.895 -7.095 -7.095 -7.493 -5.473 -6.680	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297 45.144 126.964 44.973 125.938 46.337 127.524 47.525 126.877 48.610 127.885 49.920 127.252 50.028 126.538 51.056 127.390 51.248 125.976 52.282 126.836 52.377 126.127 47.992 126.038	1.00 11.04 1.00 17.06 1.00 2.00	0000000000000000000
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1637 1638 1640 1641 1642 1643 1645 1647 1659 1651 1652 1653 1654	C O N CA CB CG1 CD1 C C C C C C C C C C C C C C C C C	LYS LYS ILE ILE ILE ILE ILE PHE PHE PHE PHE PHE PHE PHE PHE PHE	168 169 169 169 169 169 169 170 170 170 170 170	-5.811 -5.665 -5.109 -4.093 -3.151 -1.989 -2.632 -1.691 -4.731 -5.393 -4.572 -5.110 -5.486 -5.895 -7.095 -5.092 -7.493 -5.473	40.080 133.373 43.225 129.237 44.214 129.947 43.015 128.131 43.950 127.663 43.267 126.648 44.184 126.302 41.952 127.215 41.218 126.297 45.144 126.964 44.973 125.938 46.337 127.524 47.525 126.877 48.610 127.885 49.920 127.252 50.028 126.538 51.056 127.390 51.248 125.976 52.282 126.836 52.377 126.127	1.00 11.04 1.00 17.06 1.00 2.00	000000000000000000000000000000000000000

ATOM .	1659 1661	N CA	CYS CYS	171 171	-4.208 -3.158	48.375 124.790 48.836 123.898		0
MOTA	1662	CB	CYS	171	-2. 95 2	47.843 122.766		0
MOTA	1663	SG	CYS	171	-2.524	46.203 123.305		0
MOTA	1664	Ç	CYS	171	-3.499	50.189 123.310		0
ATOM	1665	0	CYS	171	-4.652	50.453 122.943		0
ATOM	1666	N	CYS CYS	172 172	-2. 4 95 -2. 63 5	51.058 123.265 52.378 122.668		0
MOTA MOTA	1668 1669	CA CB	CYS	172	-3.403	53.356 123.597		0
ATOM	1670	SG	CYS	172	-2.593	53.995 125.094	1.00 15.67	ŏ
ATOM	1671	Č	CYS	172	-1.231	52.890 122.287		ŏ
MOTA	1672	ō	CYS	172	-0.227	52.277 122.657		ŏ
ATOM	1673	N	HIS	173	-1.154	53.951 121.488	1.00 2.00	0
MOTA	1675	CA	HIS	173	0.146	54.461 121.112	1.00 2.00	0
MOTA	1676	C	HIS	173	0.815	55.130 122.297	1.00 2.00	0
MOTA	1677	0_	HIS	173	1.893	54.707 122.722	1.00 2.00	0
ATOM	1678	CB	HIS	173	0.056	55.457 119.944	1.00 2.00	0
MOTA	1679	CG	HIS HIS	173 173	1.377 2.487	56.074 119.588 55.347 119.234	1.00 2.00 1.00 2.00	0
ATOM ATOM	1680 1682		HIS	173 173 -	1.774	57.372 119.585	1.00 2.00	0
ATOM	1683		HIS	173	3.123	57.441 119.241	1.00 2.00	ŏ
ATOM	1684		HIS	173	3.492	56.189 119.045	1.00 2.00	Ö
MOTA	1685	N	GLY	174	0.168	56.172 122.817	1.00 2.00	ō
MOTA	1687	CA	GLY	174	0.711	56.933 123.935	1.00 2.00	0
ATOM	1688	С	GLY	174	0.568	56.450 125.386	1.00 2.00	0
ATOM	1689	0	GLY	174	1.556	56.111 126.041	1.00 2.00	0
MOTA	1690	N	GLY	175	-0.648	56.453 125.913	1.00 16.98	0
ATOM	1692	CA	GLY	175	-0.830	56.028 127.283	1.00 16.98	0
MOTA	1693	C	GLY	175 175	-2.227 -3.190	56.343 127.763 56.231 126.99 9	1.00 16.98 1.00 66.77	0
ATOM ATOM	1694 1695	O N	GLY LEU	175 176	-2.341	56.764 129.021	1.00 00.77	Ö
ATOM	1697	CA	LEU	176	-3.637	57.063 129.604	1.00 11.28	ŏ
ATOM	1698	CB	LEU	176	-3.740	56.427 130.976	1.00 2.00	ŏ
MOTA	1699	ČĞ	LEU	176	-3.443	54.934 130.966	1.00 2.00	Ö
ATOM	1700		LEU	176	-3.469	54.407 132.374	1.00 2.00	0
MOTA	1701	_	LEU	176	-4.463	54.218 130.121	1.00 2.00	0
MOTA	1702	С	LEU	176	-3.876	58.545 129.692	1.00 11.28	0
MOTA	1703	0	LEU	176	-2.943	59.329 129.645	1.00 2.00	0
MOTA	1704	N	SER SER	1 7 7 1 7 7	-5.138 -5. 5 67	58.913 129.850 60.304 129.918	1.00 6.18 1.00 6.86	0
MOTA MOTA	1706 1707	CA CB	SER	177	-6.476	60.587 128.718	1.00 12.19	ő
ATOM	1708	OG	SER	177	-7.189	61.804 128.835	1.00 12.19	ŏ
MOTA	1710	c	SER	177	-6.356	60.573 131.193	1.00 7.79	Ō
ATOM	1711	ŏ	SER	177	-7.170	59.749 131.606	1.00 12.19	0
ATOM	1712	N	PRO	178	-6.150	61.736 131.824	1.00 2.00	0
MOTA	1713	CD	PRO	178	-5.223	62.827 131.505	1.00 29.89	0
MOTA	1714	CA	PRO	178	-6.895	62.054 133.041	1.00 2.00	0
ATOM	1715	CB	PRO	178	-6.231	63.337 133.518	1.00 25.57 1.00 21.36	0
ATOM ATOM	1716 1717	CG C	PRO PRO	178 178	-5.842 -8.394	63.973 132.274 62.266 132.757	1.00 21.36	0
ATOM	1718	Ö	PRO	178	-9. 14 0	62.740 133.617	1.00 24.04	ő
ATOM	1719	N	ASP	179	-8.821	61.933 131.543	1.00 38.94	Ō
MOTA	1721	CA	ASP	179	-10.206	62.078 131.129	1.00 37.05	0
MOTA	1722	CB	ASP	179	-10.264	62.870 129.837	1.00 33.34	0
MOTA	1723	CG	ASP	179	-9.964	64.320 130.048	1.00 30.55	0
MOTA	1724	OD1		179	-10.923	65.045 130.386	1.00 31.71	0
MOTA	1725		ASP	179	-8.786	64.728 129.889	1.00 32.17	0
ATOM	1726	C	ASP	179	-10.871	60.735 130.923	1.00 40.05 1.00 34.46	0
ATOM ATOM	1727 1728	0	ASP LEU	179 180	-12.096 -10.057	60.638 130.873 59.699 130.791	1.00 15.43	ő
MOTA	1730	N CA	LEU	180	-10.570	58.362 130.590	1.00 12.98	Ö
ATOM	1731	CB	LEU	180	-9.446	57.467 130.058	1.00 2.00	ŏ
ATOM	1732	CG	LEU	180	-9.867	56.186 129.338	1.00 2.00	ŏ
ATOM	1733		LEU	180	-10.706	56.511 128.110	1.00 2.00	0
MOTA	1734		LEU	180	-8.633	55.413 128.953	1.00 2.00	0
MOTA	1735	C	LEU	180	-11.157	57.806 131.902	1.00 14.43	0
ATOM	1736	0	LEU	180	-10.470	57.709 132.931	1.00 2.00	0
ATOM	1737	И	GLN	181	-12.448	57.492 131.862	1.00 5.88	0

ATOM	1739	CB	OT 81	101	12 104	56 017	122 002	1 00 5 00	•
MOTA	1740	CA CB	GLN	181	-13.184 -14.379		132.992 133.375	1.00 5.88	0
ATOM	1741	CG	GLN GLN	181 181	-14.002		133.900	1.00 32.99 1.00 36.07	0
ATOM	1742	CD	GLN	181	-15.101		133.676	1.00 38.35	Ö
ATOM	1743	OE1	GLN	181	-16.285	59.886	133.877	1.00 41.53	ő
MOTA	1744	NE2	GLN	181	-14.717		133.242	1.00 38.39	ŏ
ATOM	1747	c	GLN	181	-13.672	55.563	132.500	1.00 5.88	ŏ
ATOM	1748	ŏ	GLN	181	-13.572	54.554	133.205	1.00 24.31	ŏ
ATOM	1749	N	SER	182	-14.188	55.544	131.274	1.00 2.20	ŏ
ATOM	1751	CA	SER	182	-14.651	54.310	130.664	1.00 9.71	Ŏ
ATOM	1752	CB	SER	182	-16.174		130.614	1.00 15.80	ŏ
MOTA	1753	0G	SER	182	-16.668	54.856	129.433	1.00 17.25	ŏ
MOTA	1755	С	SER	182	-14.112		129.248	1.00 3.77	Ō
ATOM	1756	0	SER	182	-13.359	55.019	128.751	1.00 15.80	Ō
MOTA	1757	N	met	183	-14.526		128.615	1.00 2.00	0
MOTA	1759	CA	met	183	-14.156	52.780	127.251	1.00 2.00	0
MOTA	1760	CB	MET	183	-14.100		127.064	1.00 2.00	0
MOTA	1761	CG	MET	183	-13.171		128.048	1.00 2.00	0
MOTA	1762	SD	MET	183	-11.620		128.022	1.00 2.00	0
MOTA	1763	CE	MET	183	-10.520		127.900	1.00 2.00	0
MOTA	1764	C	MET	183	-15.204	53.373	126.326	1.00 2.00	0
MOTA	1765	0	MET	183	-14.959		125.129	1.00 2.00	0
MOTA	1766	N	GLU	184	-16.370		126.882	1.00 2.00	0
MOTA	1768	CA	GLU	184	-17.432		126.082	1.00 2.00	0
MOTA	1769	CB	GLU	184	-18.668	54.531		1.00 6.25	0
ATOM	1770	ÇG	GLU	184	-19.830		126.073	1.00 8.82	0
MOTA	1771	CD	GLU	184	-20.273	53.927		1.00 13.01	0
MOTA	1772		GLU	184	-19.846		125.181	1.00 14.09	0
MOTA	1773	OE2		184	-21.064 -16.978		124.164 125.481	1.00 20.29 1.00 2.00	0
ATOM ATOM	1774 1775	C	GLU GLU	184 184	-17.399		124.392	1.00 2.00	0
ATOM	1776	O N	GLN	185	-16.117		126.198	1.00 12.32	ŏ
ATOM	1778	CA	GLN	185	-15.599		125.714	1.00 14.30	ŏ
ATOM	1779	CB	GLN	185	-14.697		126.758	1.00 43.49	ŏ
ATOM	1780	CG	GLN	185	-15.454		127.990	1.00 47.40	ŏ
ATOM	1781	CD	GLN	185	-14.537		129.139	1.00 49.32	ŏ
ATOM	1782		GLN	185	-13.994		129.753	1.00 56.49	Ó
ATOM	1783		GLN	185	-14.350		129.437	1.00 49.76	0
ATOM	1786	C	GLN	185	-14.834	57.307	124.432	1.00 16.93	0
ATOM	1787	0	GLN	185	-14.973	58.053	123.461	1.00 43.79	0
MOTA	1788	N	ILE	186	-14.044		124.420	1.00 5.67	0
MOTA	1790	CA	ILE	186	-13.280		123.235	1.00 5.67	0
MOTA	1791	CB	ILE	186	-12.436		123.470	1.00 16.18	0
MOTA	1792	CG2	ILE	186	-11.675		122.208	1.00 11.85	0
MOTA	1793	CG1	ILE	186	-11.489		124.642	1.00 13.18	0
MOTA	1794	CD1		186			124.459	1.00 17.92	0
MOTA	1795	C	ILE	186	-14.294		122.143	1.00 5.67	0
ATOM	1796	0	ILE	186	-14.260			1.00 19.35	0
ATOM	1797	N	ARG	187	-15.207	54.655	122.471	1.00 17.59	0
MOTA	1799	CA	ARG	187	-16.243 -17.141	54.205	121.561 122.237	1.00 16.33 1.00 20.41	Ö
ATOM ATOM	1800 1801	CB CG	ARG ARG	187 187	-16.468		122.723	1.00 29.32	ŏ
ATOM	1802	CD	ARG	187	-17.497		123.447	1.00 31.43	ŏ
ATOM	1803	NE	ARG	187	-16.888	49 888	124.165	1.00 38.34	Ō
ATOM	1805	CZ	ARG	187	-16.311		123.580	1.00 34.30	Ō
MOTA	1806		ARG	187	-16.256		122.252	1.00 41.37	0
ATOM	1809	NH2	ARG	187	-15.783		124.322	1.00 34.50	0
ATOM	1812	С	ARG	187	-17.148		121.011	1.00 15.89	0
ATOM	1813	ŏ	ARG	187	-17.937		120.108	1.00 20.82	0
ATOM	1814	Ň	ARG	188	-17.071	56.524	121.529	1.00 2.00	0
ATOM	1816	CA	ARG	188	-17.964	57.557	121.012	1.00 2.00	0
ATOM	1817	CB	ARG	188	-18.878	58.105	122.106	1.00 31.38	0
ATOM	1818	CG	ARG	188	-18.184		123.228	1.00 29.44	0
MOTA	1819	CD	ARG	188	-19.202		124.034	1.00 31.32	0
MOTA	1820	NE	ARG	188	-20.410		124.237	1.00 33.18	0
MOTA	1822	CZ	ARG	188	-21.637		124.112	1.00 29.63	0
MOTA	1823		ARG	188	-21.827		123.777	1.00 36.26	0
MOTA	1826	NH2	ARG	188	-22.671	58.484	124.332	1.00 32.06	0

BNSDOCID: <WO 9737224A1 I >

MOTA		C	ARG	188	-17.255		120.332	1.00 2.00	0
ATOM	1830	0	ARG	188	-17. 75 8	59.804	120.250 119.846	1.00 31.89 1.00 17.06	0
ATOM ATOM	1831 1833	N CA	ILE ILE	189 189	-16.070 -15.263	59.333		1.00 17.00	0
ATOM	1834	CB	ILE	189	-13.759	59.043		1.00 16.67	ő
ATOM	1835	CG2	ILE	189	-12.924	59.973		1.00 17.43	ŏ
ATOM	1836	CG1	ILE	189	-13.411	59.205	120.826	1.00 17.65	Ō
MOTA	1837	CD1	ILE	189	-11.970		121.173	1.00 16.74	0
ATOM	1838	С	ILE	189	-15.620		117.65 6	1.00 19.51	0
ATOM	1839	0	ILE	189	-15.448	58.184		1.00 25.93	0
ATOM	1840	N	MET	190	-16.158	60.342		1.00 22.12 1.00 24.92	.0
ATOM	1842 1843	CA CB	MET MET	190 1 90	-16.514 -17.051	60.420 61.812		1.00 24.92	0
ATOM ATOM	1844	CG	MET	190	-17.366		113.826	1.00 46.97	Ö
ATOM	1845	SD	MET	190	-17.820		113.312	1.00 58.03	ŏ
ATOM	1846	CE	MET	190	-16.271		112.598	1.00 52.38	ŏ
MOTA	1847	С	MET	190	-15.1 7 3	60.194	115.015	1.00 25.36	0
ATOM	1848	0	MET	190	-14.287		115.106	1.00 32.57	Ó
MOTA	1849	N	ARG	191	-15.023		114.346		Ó
MOTA	1851	CA	ARG	191	-13.732		113.772	1.00 2.00	0
ATOM	1852	CB	ARG	191	-13.731		113.089	1.00 2.00	0
MOTA MOTA	1853	CG	ARG	191 191	-12.300 -11.978		112.821 113.752	1.00 11.31	0
ATOM	1854 1855	CD NE	ARG ARG	191	-13.139		113.762	1.00 2.00	ŏ
ATOM	1857	CZ	ARG	191	-13.124		113.416	1.00 2.00	ŏ
ATOM	1858	NH1		191	-11.985		113.047	1.00 2.00	ŏ
MOTA	1861	NH2	ARG	191	-14.263	52.984	113.430	1.00 2.00	0
MOTA	1864	С	ARG	191	-13.084		112.857	1.00 2.00	0
MOTA	1865	0	ARG	191	-11.995		113.202	1.00 6.10	0
MOTA	1866	N	PRO	192	-13.685		111.670	1.00 37.06	0
MOTA	1867	CD	PRO	192	-14.912		111.045	1.00 2.00	0
MOTA MOTA	1868 1869	CA	PRO	192 192	-13.048 -14.114		110.799 109.749	1.00 36.28 1.00 2.00	0
ATOM	1870	CB CG	PRO PRO	192	-14.743		109.602	1.00 2.00	ŏ
ATOM	1871	C	PRO	192	-12.787		111.693	1.00 37.24	ŏ
ATOM	1872	ŏ	PRO	192	-13.697		112.004	1.00 2.00	0
MOTA	1873	N	THR	193	-11.552	62.348	112.168	1.00 2.00	0
MOTA	1875	CA	THR	193	-11.182		113.089	1.00 2.00	0
MOTA	1876	CB	THR	193	-11.627		114.540	1.00 22.05	0
MOTA	1877	0G1	THR	193			115.392	1.00 31.69	0
ATOM ATOM	1879 1880	CG2	THR THR	193 193	-10.862 -9.700		115.089 113.152	1.00 21.46 1.00 2.00	ő
ATOM	1881	C	THR	193	-8. 86 5		112.860	1.00 17.62	ŏ
MOTA	1882	N	ASP	194	-9.394		113.572	1.00 2.00	ŏ
ATOM	1884	CA	ASP	194	-8.031		113.744	1.00 2.00	0
MOTA	1885	CB	ASP	194	-7.927	66.805	113.431	1.00 49.25	0
MOTA	1886	CG	ASP	194	-6.561		112.912	1.00 49.25	0
	1887	OD1		194	-6.132			1.00 49.25	0
ATOM	1888	OD2		194	-5.920		112.217	1.00 49.25	0
ATOM ATOM	1889 1890	C O	ASP ASP	194 194	-7.686 -8.571		115.216 116.077	1.00 2.00 1.00 54.62	0
ATOM	1891	N	VAL	195	-6.408		115.488	1.00 17.01	ŏ
ATOM	1893	CA	VAL	195	-5.948		116.839	1.00 12.88	ŏ
MOTA	1894	СВ	VAL	195	-4.509		116.818	1.00 9.98	0
MOTA	1895	CG1		195	-3.934	63.875	118.239	1.00 9.98	0
MOTA	1896		VAL	195	-4.532		116.124	1.00 9.98	0
ATOM	1897	C	VAL	195	-5.971		117.511	1.00 12.88	0
ATOM	1898	0	VAL	195	-5.343	66.934	117.038	1.00 9.98	0
	1899	N	PRO	196	-6.771 -7.005		118.567	1.00 16.08	0
ATOM ATOM	1900 1901	CD CA	PRO PRO	196 196	-7.805 -6.862	65.214	119.033 119.284	1.00 26.02 1.00 21.91	0
	1902	CB	PRO	196	-8.026		120.240	1.00 21.91	Ô
	1903	CG	PRO	196	-8.874		119.496	1.00 25.31	ŏ
	1904	Č	PRO	196	-5.560		120.027	1.00 24.64	Ö
MOTA	1905	0	PRO	196	-4.809	66.818	120.349	1.00 23.54	0
	1906	N	ASP	197	-5.291		120.302	1.00 39.93	.0
	1908	CA	ASP	197	-4.058		121.005	1.00 38.76	0
MOTA	1909	CB	ASP	197	-3.605	70.789	120.612	1.00 78.93	O

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1989 1990 1991 1992 1993 1995 1996 1997 1998 1999 2000	CE2 CE3 CD1 NE1 CZ2 CZ3 CH2 C	TRP TRP TRP TRP TRP SER	206 206 206 206 206 206 206 206 206 206	1.532 1.105 2.854 -0.616 -0.212 1.950 3.697 3.238 1.246 2.419 0.418	64.535 64.355 63.541 64.178 65.207 65.024 65.443 61.330 61.639 60.867	120.017 119.263 120.932 119.669 124.955 125.194 125.886	1.00 2.00 1.00 2.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2002 2003 2004 2006 2007 2008 2010 2011 2012 2013	CA CB OG C O N CA CB CG OD1	SER SER SER SER ASP ASP ASP	207 207 207 207 207 208 208 208 208 208	0.830 -0.363 -0.482 1.951 2.075 2.777 3.899 5.257 5.296 5.695	59.699 58.743 59.943 59.056 59.714 60.532 61.706	128.121 129.256 127.446 126.681 128.462 128.764 128.505 127.256 127.362	1.00 29.76 1.00 35.73 1.00 2.00 1.00 31.05 1.00 2.00 1.00 2.00 1.00 42.39 1.00 46.59 1.00 48.93	0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2014 2015 2016 2017 2018 2019 2020 2021 2022 2023	OD2 C O N CD CA CB CG C	ASP ASP PRO PRO PRO PRO PRO PRO PRO PRO	208 208 209 209 209 209 209 209 209	4.959 3.903 3.580 4.244 4.509 4.299 4.407 5.197 5.197 6.448	58.705 59.537 57.457 56.316 57.040 55.522 55.356 57.675	126.180 130.231 131.072 130.559 129.673 131.957 131.845 130.604 132.507 131.712	1.00 44.70 1.00 2.00 1.00 45.54 1.00 10.98 1.00 2.00 1.00 10.98 1.00 2.00 1.00 10.98 1.00 2.00	0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2024 2026 2027 2028 2029 2030 2031 2032 2033	N CA CB CG OD1 OD2 C O	ASP ASP ASP ASP ASP ASP ASP LYS	210 210 210 210 210 210 210 210 211	5.724 6.931 6.755 8.050 9.132 7.989 7.304 6.448 8.608	57.774 58.360 59.863 60.570 59.956 61.756 57.734 57.320 57.666	133.833 134.413 134.614 134.990 134.874 135.396 135.729 136.496 135.966 137.211	1.00 2.00 1.00 2.00 1.00 31.00 1.00 36.69 1.00 38.93 1.00 2.00 1.00 2.60 1.00 4.23 1.00 9.37	0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2035 2036 2037 2038 2039 2040 2044 2045 2046 2048	CB CG CD CE NZ C O N	LYS LYS LYS LYS LYS LYS LYS LYS ASP	211 211 211 211 211 211 211 212 212	10.647 10.941 12.451 12.852 14.336 9.100 8.746 9.456 9.468	56.760 55.441 55.184 53.831 53.616 58.157 57.803 59.414 60.483	137.024 136.345 136.403 135.809 135.852 138.367 139.481 138.093 139.101	1.00 17.66 1.00 29.60 1.00 32.82 1.00 42.70 1.00 41.45 1.00 7.69 1.00 18.85 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2049 2050 2051 2052 2053 2054 2055 2057 2058 2059	OD2 C O N CA CB CG1	ASP ASP ASP ASP VAL VAL VAL	212 212 212 212 212 212 213 213 213 213	10.322 11.483 11.823 12.051 8.074 7.943 7.040 5.669 5.137 3.652	61.254 62.030 60.166 61.033 62.164 60.250 60.690 61.376 61.247	138.624 137.754 136.834 137.987 139.412 139.903 139.124 139.340 138.050 137.922	1.00 39.78 1.00 46.31 1.00 41.85 1.00 2.00 1.00 41.82 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2060 2061 2062 2063 2065 2066 2067 2068	CG2 C O N CA CB CG CD1	VAL VAL LEU LEU LEU LEU LEU	213 213 213 214 214 214 214 214	5.505 4.767 5.007 3.748 2.815 2.742 2.371 3.507	59.526 58.356 59.844 58.830 58.809 57.438	138.076 139.763 139.390 140.564 141.022 142.543 143.097 142.816	1.00 2.00 1.00 2.00 1.00 2.00 1.00 21.53 1.00 19.34 1.00 14.66 1.00 15.86 1.00 9.71	0 0 0 0 0 0

MOTA 2069 2.109 57.530 144.588 1.00 17.44 0 CD2 LEU 214 1.433 MOTA 2070 C LEU 214 59.068 140.439 1.00 19.87 1.00 MOTA 2071 58.124 140.033 214 9.54 0 LEU 0 MOTA 2072 215 1.003 60.322 140.411 1.00 16.98 N **GLY** 0 MOTA 2074 215 -0.299 60.640 139.852 1.00 11.19 CA GLY 0 -0.081 0.772 61.255 138.487 60.796 137.739 MOTA 2075 215 1.00 12.07 C GLY 0 MOTA 2076 0 GLY 215 1.00 10.02 0 62.303 138.167 62.979 136.890 MOTA 2077 216 -0.824 1.00 2.00 N TRP 0 2079 -0.684 MOTA 216 1.00 2.00 CA TRP 0 -2.030 63.535 136.458 MOTA 2080 CB TRP 216 1.00 2.00 0 62.452 136.050 61.741 134.804 60.713 134.865 -2.903 1.00 MOTA 2081 CG TRP 216 2.00 216 -2.840 MOTA 2082 CD2 TRP 1.00 2.00 Ω -3.806CE2 TRP MOTA 2083 216 1.00 2.00 0 61.865 133.648 61.860 136.789 60.811 136.087 MOTA 216 -2.050 2084 CE3 TRP 1.00 2.00 0 -3.879 2085 1.00 MOTA CD1 TRP 216 2.00 216 -4.425 2086 NE1 TRP 1.00 2.00 MOTA 0 -4.005 59.812 133.809 MOTA 2088 CZ2 TRP 216 1.00 2.00 0 CZ3 TRP -2.251 60.970 132.605 2089 216 1.00 2.00 MOTA 0 -3.217 59.961 132.695 MOTA 2090 CH2 TRP 216 1.00 2.00 64.101 136.985 64.883 137.926 64.182 136.021 0.310 2.00 2091 216 1.00 TRP 0 MOTA C 2092 TRP 216 0.261 1.00 2.00 MOTA 0 1.213 1.00 12.63 MOTA 2093 N GLY 217 0 65.245 136.028 65.928 134.675 65.559 133.720 66.923 134.594 2.199 2.312 1.00 15.52 1.00 10.15 217 MOTA 2095 CA GLY 2096 217 O С MOTA GLY 1.627 2097 217 1.00 26.84 0 MOTA 0 GLY 1.00 23.86 218 3.189 0 2098 GLU MOTA N 67.686 133.364 68.978 133.729 2100 218 3.434 1.00 22.47 MOTA CA **GLU** 4.198 2101 GLU 218 1.00 65.82 0 MOTA CB 69.595 132.641 69.562 132.987 MOTA 5.082 1.00 67.96 2102 CG GLU 218 6.577 1.00 67.00 218 n MOTA 2103 CD **GL**U 1.00 68.41 2104 OE1 GLU 218 7.056 70.519 133.631 MOTA 68.589 132.616 1.00 63.29 7.276 0 MOTA 2105 OE2 GLU 218 4.232 66.841 132.371 65.820 132.750 218 1.00 25.48 0 2106 GLU MOTA C 1.00 67.07 MOTA 2107 0 GLU 218 4.808 n 4.253 67.245 131.103 1.00 21.19 **ASN** 219 MOTA 2108 N 66.510 130.108 1.00 21.18 O MOTA 2110 CA ASN 219 5.039 65.888 129.048 64.791 128.282 1.00 10.60 ASN 219 4.140 CB MOTA 2111 1.00 14.78 MOTA 2112 CG ASN 219 4.832 0 6.052 64.646 128.341 1.00 9.20 2113 OD1 ASN 219 MOTA 1.00 64.003 127.560 8.28 0 4.057 MOTA 2114 ND2 ASN 219 6.058 5.776 67.411 129.425 68.576 129.151 1.00 21.70 0 219 MOTA 2117 C ASN 9.52 0 1.00 MOTA 2118 0 ASN 219 2119 ASP 220 7.246 66.886 129.151 1.00 35.32 n N MOTA 67.690 128.485 1.00 34.19 0 8.266 MOTA 2121 CA ASP 220 66.900 128.358 65.673 127.447 1.00 48.55 ASP 220 9.585 0 2122 CB MOTA 1.00 92.38 9.469 MOTA 2123 ASP 220 CG 64.584 127.938 65.797 126.237 68.148 127.100 69.262 126.661 OD1 ASP 220 9.083 1.00 48.43 0 2124 MOTA 1.00 92.09 9.**77**8 7.**76**3 0 2125 OD2 ASP 220 MOTA 1.00 33.44 0 ASP 220 2126 MOTA С 1.00 47.84 0 ASP 220 8.045 MOTA 2127 О 1.00 22.98 67.287 126.444 **ARG** 221 6.986 MOTA 2128 N 1.00 22.11 67.552 125.127 O 2130 ARG 221 6.427 MOTA CA 66.382 124.672 65.056 124.739 5.578 1.00 2.00 0 CB ARG 221 MOTA 2131 1.00 2.00 221 6.251 MOTA 2132 CG ARG 63.981 124.421 62.658 124.590 0 221 5.241 1.00 2.00 CD MOTA 2133 ARG 5.828 6.785 7.255 1.00 2.00 0 **ARG** 221 2134 NE MOTA 62.154 123.811 62.866 122.790 1.00 2.00 0 MOTA 2136 CZ **ARG** 221 2.00 1.00 0 221 2137 NH1 ARG ATOM 221 7.285 60.947 124.064 1.00 2.00 MOTA 2140 NH2 ARG 68.776 125.109 1.00 18.96 0 2143 ARG 221 5.546 MOTA C 69.239 124.052 1.00 2.00 0 2144 ARG 221 5.164 MOTA 0 2.00 5.188 69.280 126.280 1.00 O GLY 222 2145 MOTA N 70.447 126.343 1.00 2.00 4.328 222 MOTA 2147 CA GLY 1.00 2.00 222 2.939 70.103 125.844 0 2148 GLY MOTA C 70.988 125.509 1.00 29.15 2.142 0 MOTA 2149 O GLY 222 1.00 2.00 VAL 223 2.658 68.804 125.776 0 2150 MOTA N 1.356 68.313 125.342 1.00 2.00 **ATOM** 2152 CA VAL 223 1.00 67.860 123.839 2.00 VAL 223 1.364 2153 MOTA CB

WO 97/37224 PCT/GB97/00898

MOTA MOTA	2154 2155 2156		VAL VAL VAL	223 223 223	-0.063 2.258 1.071	67.888 123.280 68.762 123.004 67.125 126.250	1.00 2.00	0 0 0
MOTA MOTA	2157	0	VAL	223	2.004	66.431 126.656	1.00 2.00	Ó
MOTA	2158	N	SER	224	-0.205	66.897 126.550	1.00 12.21	0
ATOM	2160	CA	SER	224 224	-0.661 -0.609	65.825 127.440 64.453 126.759		0
MOTA MOTA	2161 2162	CB OG	SER SER	224	0.713	64.003 126.546	1.00 10.80	ő
MOTA	2164	Č	SER	224	0.077	65.779 128.787	1.00 20.53	0
ATOM	2165	0	SER	224	0.814	66.706 129.153		0
ATOM	2166	N	PHE	225	-0.124 0.484	64.700 129.533 64.586 130.839		0
MOTA MOTA	2168 2169	CA CB	PHE PHE	225 225	-0.625	64.489 131.890	1.00 14.03	ŏ
ATOM	2170	CG	PHE	225	-1.670	65.552 131.758	1.00 11.21	0
MOTA	2171	CD1		225	-2.925	65.248 131.239		0
MOTA	2172	CD2	PHE	225 225	-1.396 -3.899	66.869 132.131 66.241 131.086		0 0
MOTA MOTA	2173 2174	CE1 CE2	PHE PHE	225 225	-2.363	67.869 131.983		ŏ
ATOM	2175	CZ	PHE	225	-3.618	67.553 131.458	1.00 16.73	0
MOTA	2176	С	PHE	225	1.405	63.392 130.957		0
MOTA	2177	0	PHE	225	1.902 1.663	62.850 129.966 63.022 132.203		0
MOTA MOTA	2178 2180	N CA	THR THR	226 226	2.473	61.872 132.509		ő
MOTA	2180	CB	THR	226	3.898	62.226 132.853	1.00 13.51	0
ATOM	2182		THR	226	4.607	61.012 133.094		0
MOTA	2184	CG2	THR	226	3.961	63.081 134.086 61.217 133.686		0
ATOM	2185 2186	C O	THR THR	226 226	1.809 1.039	61.861 134.394	1.00 2.00	ŏ
ATOM ATOM	2187	N	PHE	227	2.086	59.938 133.883	1.00 2.00	0
ATOM	2189	CA	PHE	227	1.466	59.191 134.957		0
MOTA	2190	CB	PHE	227	0.206	58.448 134.472		0 0
ATOM	2191 2192	CG	PHE PHE	227 227	0.362 0.717	57.793 133.131 56.453 133.034		ŏ
MOTA MOTA	2192		PHE	227	0.188	58.532 131.954	1.00 20.45	0
MOTA	2194		PHE	227	0.902	55.857 131.787		0
MOTA	2195	CE2	PHE	227	0.371	57.948 130.698 56.612 130.612	1.00 14.44	0
MOTA	2196 2197	CZ	PHE PHE	227 227	0.729 2. 42 7	58.224 135.562		ŏ
MOTA MOTA	2198	C O	PHE	227	3.282	57.668 134.888	1.00 20.11	0
MOTA	2199	N	GLY	228	2.294	58.066 136.867		0
MOTA	2201	CA	GLY	228 228	3.143 2.424	57.165 137.607 55.859 137.815	1.00 20.86 1.00 24.57	0 0
MOTA MOTA	2202 2203	C O	GLY GLY	228 228	1.365	55.615 137.223		Ö
MOTA	2204	N	ALA	229	2.974	55.041 138.704	1.00 2.00	0
ATOM	2206	CA	ALA	229	2.422	53.722 138.971		0
MOTA	2207	CB	ALA	229	3.372 1.055	52.924 139.835 53.706 139.576	1.00 2.00 1.00 2.00	0
MOTA MOTA	2208 2209	C O	ALA ALA	229 229	0.359	52.705 139.460		ŏ
ATOM	2210	N	GLU	230	0.666	54.802 140.220	1.00 2.00	0
MOTA	2212	CA	GLU	230	-0.648	54.881 140.875		0 0
MOTA	2213 2214	CB CG	GLU GLU	230 230	-0.787 -1.123	56.193 141.647 56.014 143.111		ŏ
MOTA MOTA	2214	CD	GLU	230	-2.376	55.175 143.337	1.00 2.00	0
MOTA	2216		GLU	230	-2.275	53.918 143.199	1.00 2.00	0
MOTA	2217	OE2	GLU	230	-3.448	55.773 143.663		0 0
MOTA MOTA	2218 2219	.C	GLU GLU	230 230	-1.769 -2.6 4 9	54.777 139.862 53.922 139.966		ő
MOTA	2220	N	VAL	231	-1.684	55.652 138.861		0
MOTA	2222	CA	VAL	231	-2.649	55.749 137.772		0
ATOM	2223	CB	VAL	231	-2.186	56.789 136.717		0 0
ATOM ATOM	2224 2225	CG1 CG2	VAL VAL	231 231	-3. 304 -1.728	57.063 135.718 58.077 137.396		Ö
MOTA	2226	CGZ	VAL	231	-2.816	54.393 137.102		0
MOTA	2227	ō	VAL	231	-3.937	53.966 136.849		0
MOTA	2228	N	VAL	232	-1.695	53.723 136.832 52.397 136.203		0 0
ATOM ATOM	2230 2231	CA CB	VAL VAL	232 232	-1.678 -0.2 4 5	51.817 136.151		0
ATOM	2232	CG1		232	-0.264	50.442 135.548		Ö

WO 97/37224

124

MOTA	2233		VAL	232	0.664	52.724	135.376	1.00 2.00	0
ATOM	2234	C	VAL	232	-2.533		136.992	1.00 2.00	0
MOTA MOTA	2235 2236	O	VAL ALA	232 233	-3.449	50.787 51.292		1.00 2.00 1.00 38.57	0
ATOM	2238	N CA	ALA	233 233	-2. 217 -2. 920	50.395		1.00 38.57	Ö
ATOM	2239	CB	ALA	233	-2.297	50.487		1.00 13.20	ŏ
ATOM	2240	C	ALA	233	-4.426	50.681		1.00 38.57	ō
ATOM	2241	0	ALA	233	-5.255	49.763		1.00 9.05	0
MOTA	2242	N	LYS	234	-4.780	51.954		1.00 2.00	0
ATOM	2244	CA	LYS	234	-6.177		139.477	1.00 2.00	0
MOTA	2245	CB	LYS	234	-6.270		139.803	1.00 22.96	0
MOTA	2246	CG	LYS LYS	234 234	-5. 77 6 -6. 66 7		141.205 142.257	1.00 31.42 1.00 42.09	0
MOTA MOTA	2247 2248	CD CE	LYS	234	-5.916		143.543	1.00 40.07	ő
MOTA	2249	NZ	LYS	234	-5.104		143.444	1.00 41.59	ŏ
ATOM	2253	C	LYS	234	-6.920	52.036	138.183	1.00 2.00	0
MOTA	2254	0	LYS	234	-7.936		138.206	1.00 20.45	0
ATOM	225 5	N	PHE	235	-6.389		137.061	1.00 14.37	O
ATOM	2257	CA	PHE	235	-6.973		135.733	1.00 14.37	0
ATOM	2258	CB	PHE	235	-6.055		134.640	1.00 2.00	0
MOTA MOTA	2259 2260	CG CD1	PHE	235 235	-6. 4 38 -7.352		133.249 132.502	1.00 2.00 1.00 2.00	0
ATOM	2261	CD2		235	-5.924		132.706	1.00 2.00	ŏ
MOTA	2262		PHE	235	-7.760		131.236	1.00 2.00	ŏ
ATOM	2263		PHE	235	-6.316		131.452	1.00 2.00	0
MOTA	2264	CZ	PHE	235	-7.242		130.710	1.00 2.00	0
ATOM	2265	С	PHE	235	-7.229		135.444	1.00 14.37	0
MOTA	2266	0	PHE	235	-8.312		134.977	1.00 2.00	0
MOTA	2267	N	LEU	236	-6.217 -6.339		135.690 135.447	1.00 3.08 1.00 5.72	0
ATOM ATOM	2269 2270	CA CB	LEU	236 236	-5.018		135.731	1.00 2.00	ŏ
ATOM	2271	CG	LEU	236	-3.915		134.710	1.00 2.00	ŏ
ATOM	2272		LEU	236	-2.699		135.096	1.00 2.00	0
ATOM	2273	_	LEU	236	-4.405		133.321	1.00 2.00	0
MOTA	2274	С	LEU	236	-7.452		136.278	1.00 10.30	0
MOTA	2275	0	LEU	236	-8.389		135.712	1.00 2.00	0
ATOM	2276	N	HIS	237	-7.368 -8.368		137.606 138.504	1.00 8.44 1.00 8.44	Ö
MOTA	2278	CA	HIS HIS	237 237	-8.368 -8.088		139.980	1.00 38.56	ŏ
MOTA MOTA	2279 2280	CB CG	HIS	237	-9.141		140.935	1.00 46.82	ŏ
ATOM	2281		HIS	237	-10.323		141.329	1.00 46.01	0
ATOM	2282	ND1		237	-9.035		141.599	1.00 46.38	0
MOTA	2284	CE1	HIS	237	-10.103		142.355	1.00 50.85	0
MOTA	2285		HIS	237	-10.900		142.210	1.00 49.26	0
MOTA	2287	C	HIS	237	-9.747	48.033 47.232	138.138 138.027	1.00 8.44 1.00 35.43	Ö
ATOM	2288	0	HIS	237 238	-10.672 -9.882		137.947	1.00 2.00	ŏ
ATOM ATOM	2289 2291	N	LYS LYS	238	-11.183		137.607	1.00 2.00	ō
MOTA	2292	CB	LYS	238	-11.071	51.424	137.327	1.00 28.00	0
MOTA	2293	C G	LYS	238	-12.427	52.103	137.104	1.00 29.80	0
MOTA	2294	CD	LYS	238	-12.322	53.628	136.829	1.00 36.02	0
MOTA	2295	CE	LYS	238	-11.917	54.444	138.083	1.00 32.99 1.00 30.09	0
MOTA	2296	NZ	LYS	238	-11.833 -11.776	55.925 49.215	137.845 136.403	1.00 2.00	ŏ
MOTA	2300 2301	C O	LYS LYS	238 238	-12.991	49.205	136.234	1.00 29.21	, 0
ATOM ATOM	2302	N	HIS	239	-10.913	48.607	135.584	1.00 2.00	0
MOTA	2304	CA	HIS	239	-11.340	47.897	134.384	1.00 2.00	0
MOTA	2305	CB	HIS	239	-10.784	48.603	133.148	1.00 2.00	0
MOTA	2306	CG	HIS	239	-11.125	50.056		1.00 2.00	0
MOTA	2307		HIS	239	-12.282	50.689		1.00 2.00	0
MOTA	2308		HIS	239	-10.217	51.046 52.225	133.397 133.284	1.00 2.00 1.00 2.00	0
ATOM	2310		HIS	239	-10.797 -12.052	52.225		1.00 2.00	ő
MOTA MOTA	2311 2313	NE2	HIS HIS	239 239	-10.946	46.417		1.00 2.00	ŏ
ATOM	2313	C 0	HIS	239	-10.938	45.798	133.295	1.00 2.00	0
ATOM	2315	N	ASP	240	-10.642	45.838	135.503	1.00 37.96	0
MOTA	2317	CA	ASP	240	-10.251			1.00 37.83	0
MOTA	2318	CB	ASP	240	-11.482	43.512	135.737	1.00 39.81	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2319 2320 2321 2322 2323 2324 2326 2327 2328 2329 2331 2333 2335 2335 2335 2337 2338 2339 2340	OD2 C O N CA CB CCD1 CD2 C O N CA CB CG OD1	ASP ASP LEU LEU LEU LEU LEU	240 240 240 241 241 241 241 241 241 242 242 242 242	-12.676 -12.687 -13.610 -9.393 -9.626 -8.417 -7.462 -7.086 -8.435 -6.225 -6.157 -5.235 -4.046 -3.963 -5.751 -4.683 -5.751 -2.711	43.919 134.870 43.571 133.666 44.578 135.396 43.985 134.385 42.933 133.797 44.823 134.040 44.551 132.955 45.858 132.229 46.590 131.429 48.047 131.224 45.899 130.087 43.925 133.601 43.832 134.818 43.534 132.817 42.895 133.380 41.455 132.915 40.511 133.822 40.853 134.365 39.404 133.976 43.506 133.033	1.00 50.73 1.00 47.58 1.00 37.76 1.00 40.81 1.00 2.00 1.00 2.00	
ATOM	2341	0	ASP	242	-1.702	43.214 133.671	1.00 25.69)
MOTA MOTA	2342 2344	N CA	LEU	243 243	-2.689 -1.440	44.317 131.994 44.899 131.539	1.00 23.97 0 1.00 18.84 0	
MOTA	2345	CB	LEU	243	-0.644	43.799 130.822	1.00 2.00 0	
ATOM ATOM	2346	CG	LEU	243 243	0.698 0.410	43.831 130.097 43.690 128.660	1.00 2.00 0	
ATOM	2347 2348		LEU	243	1.526	45.058 130.397	1.00 2.00 0 1.00 2.00 0	
MOTA	2349	C	LEU	243	-1.804	46.013 130.590	1.00 19.91 0	•
MOTA MOTA	2350 2351	O N	LEU ILE	243 244	-2.960 -0.834	46.149 130.183 46.849 130.283	1.00 2.00 Ö 1.00 24.04 O	
ATOM	2353	CA	ILE	244	-1.070	47.919 129.354	1.00 22.40 0	
MOTA	2354	CB	ILE	244	-1.164	49.269 130.067	1.00 2.00 0	
MOTA MOTA	2355 2356	CG2 CG1	ILE	244 244	-1. 23 5 -2. 39 5	50.405 129.026 49.255 130.994	1.00 2.00 0 1.00 2.00 0	
MOTA	2357	CD1	ILE	244	-2.607	50.530 131.803	1.00 2.00 0	
MOTA	2358	C	ILE	244	0.069	47.902 128.369	1.00 25.54 0	
MOTA MOTA	2359 2360	O N	ILE CYS	244 245	1.234 ~0.286	47.715 128.755 48.063 127.096	1.00 2.00 0 1.00 2.00 0	
MOTA	2362	CA	CYS	245	0.675	48.074 126.019	1.00 2.00 0	
MOTA MOTA	2363 2364	CB	CYS CYS	245 245	0.403.	46.930 125.077 45.913 124.986	1.00 7.03 0 1.00 12.49 0	
ATOM	2365	SG C	CYS	245 245	1.849 0.668	49.389 125.275	1.00 12.49 0 1.00 2.00 0	
ATOM	2366	ō	CYS	245	-0.362	49.842 124.782	1.00 8.03 0	
MOTA	2367	N	ARG	246	1.829	50.014 125.235 51.277 124.562	1.00 2.00 0	
MOTA MOTA	2369 2370	CA CB	ARG ARG	246 246	1.987 1.763	52.438 125.541	1.00 2.00 0 1.00 2.00 0	
MOTA	2371	CG	ARG	246	2.658	52.453 126.783	1.00 2.00 0	
MOTA MOTA	2372 2373	CD NE	ARG ARG	246 246	3.969 3.714	53.245 126.623 54.656 126.383	1.00 2.00 0 1.00 2.00 0	
ATOM	2375	CZ	ARG	246	4.610	55.622 126.519	1.00 2.00 0	
ATOM	2376	NH1	ARG	246	5.842	55.334 126.895	1.00 2.00 0	
MOTA MOTA	2379 2382	NH2 C	ARG ARG	246 246	4.263 3.374	56.881 126.289 51.342 123.938	1.00 2.00 0 1.00 2.00 0	
ATOM	2383	õ	ARG	246	4.216	50.471 124.168	1.00 2.00 0	
MOTA	2384	N	ALA	247	3.605	52.345 123.108	1.00 2.00 0	
MOTA MOTA	2386 2387	CA CB	ALA ALA	247 247	4.906 4.791	52.489 122.484 52.272 120.975	1.00 2.00 0 1.00 61.76 0	
MOTA	2388	c	ALA	247	5.351	53.902 122.819	1.00 2.00 0	
ATOM	2389	0	ALA	247	5.806	54.172 123.922	1.00 61.76 0	
MOTA MOTA	2390 2392	N CA	HIS HIS	248 248	5.187 5. 5 12	54.801 121.870 56.193 122.042	1.00 2.00 0 1.00 2.00 0	
MOTA	2393	c	HIS	248	6.959	56.579 122.361	1.00 2.00 0	
MOTA	2394	0	HIS	248	7.507	57.453 121.67 2	1.00 2.00 0	
ATOM ATOM	2395 2396	CB CG	HIS HIS	248 248	4.539 4.255	56.793 123.054 58.246 122.837	1.00 2.00 0 1.00 2.00 0	
ATOM	2397	ND1	HIS	248	5.262	59.147 122.594	1.00 2.00 0	
ATOM ATOM	2398 2399	CE1 CD2		248 248	4.67 7 3. 07 4	60.327 122.535 58.906 122.913	1.00 2.00 0 1.00 2.00 0	
0.4	- 3 / /	CUZ		~ - 0	5.074	ALC. 713	1.00 2.00 0	

MOTA	2400	NE2	HIS	248	3.359	60.234 1	122.721	1.00 2.00	0
ATOM	2402	N	GLN	249	7.588	55.942 1	L23.348	1.00 7.57	0
ATOM	2404	CA	GLN	249	8.967	56.283 1	L23.731	1.00 7.57	0
MOTA	2405	CB	GLN	249	9.010	56.722		1.00 30.82	Õ
					7.987		125.566	1.00 32.63	ŏ
MOTA	2406	CG	GLN	249			126.983	1.00 33.33	ŏ
MOTA	2407	CD	GLN	249	8.159				_
MOTA	2408		GLN	249	7.871	59.406 1		1.00 39.63	0
ATOM	2409	NE2	GLN	249	8.640	57.389 1		1.00 32.74	0
MOTA	2412	С	GLN	249	10.052	55.222 1		1.00 7.57	0
MOTA	2413	0	GLN	249	9.884	54.057 1		1.00 28.32	0
MOTA	2414	N	VAL	250	11.185	55.664 1		1.00 20.32	0
ATOM	2416	CA	VAL	250	12.339	54.805 1		1.00 20.32	0
ATOM	2417	CB	VAL	250	13.571	55.628 1	122.300	1.00 6.81	0
MOTA	2418	CG1		250	14.641	54.714 1		1.00 6.81	0
	2419			250	13.161	56.708 1		1.00 6.81	Ŏ
MOTA			VAL	250	12.733	54.034 1		1.00 20.32	ŏ
MOTA	2420	C			12.471	54.474 1		1.00 6.81	ŏ
MOTA	2421	0	VAL	250		52.887		1.00 2.00	ŏ
MOTA	2422	N	VAL	251	13.372				0
MOTA	2424	CA	VAL	251	13.820	52.023 1		1.00 2.00	
MOTA	2425	CB	VAL	251	12.655	51.150 1		1.00 9.99	0
MOTA	2426	CG1	VAL	251	11.778	51.967 1		1.00 9.99	0
MOTA	2627	CG2	VAL	251	11.803	50.661 1		1.00 9.99	0
ATOM	2428	С	VAL	251	14.960	51.167 1	L24.316	1.00 2.00	0
ATOM	2429	ŏ	VAL	251	14.792	50.470 1	L23.319	1.00 9.99	0
ATOM	2430	Ň	GLU	252	16.118	51.224 1		1.00 21.55	0
			GLU	252	17.312	50.509 1		1.00 19.34	0
MOTA	2432	CA		252	18.452	50.605 1		1.00 11.04	Õ
MOTA	2433	CB	GLU	252	19.819	50.220 1		1.00 18.95	ŏ
MOTA	2434	CG	GLU			49.966 1		1.00 20.82	ŏ
MOTA	2435	CD	GLU	252	20.926			1.00 20.32	ŏ
MOTA	2436		GLU	252	21.938	49.303 1		1.00 29.06	ŏ
MOTA	2437		GLU	252	20.782	50.422 1	127.126		0
MOTA	2438	С	GLU	252	17.144	49.055		1.00 19.22	
MOTA	2439	0	GLU	252	17.838	48.571	123.261	1.00 8.64	0
MOTA	2440	N	ASP	253	16.240	48.356	L24.815	1.00 2.00	0
MOTA	2442	CA	ASP	253	16.025	46.936 1	L24.544	1.00 2.00	0
ATOM	2443	CB	ASP	253	16.125	46.144	125.850	1.00 78.16	0
MOTA	2444	ĊĞ	ASP	253	17.543	46.106	126.401	1.00 84.05	0
MOTA	2445		ASP	253	18.060	44.995		1.00 89.15	0
	2446		ASP	253	18.148	47.181	126.598	1.00 87.62	0
MOTA			ASP	253	14.710	46.645	123.836	1.00 2.00	0
ATOM	2447	C		253 253	14.201	45.528		1.00 63.68	0
ATOM	2448	0	ASP	253 254	14.161	47.660		1.00 2.00	0
MOTA	2449	N	GLY		12.919	47.483		1.00 2.00	0
MOTA	2451	CA	GLY	254		47.547		1.00 2.00	0
MOTA	2452	С	GLY	254	11.715	48.124		1.00 43.70	Ö
MOTA	2453	0	GLY	254	10.694		124.516	1.00 2.00	ŏ
MOTA	2454	N	TYR	255	11.823				ő
MOTA	2456	CA	TYR	255	10.749	46.956	125.484		Ö
ATOM	2457	CB	TYR	255	10.047	45.614	125.5/1	1.00 2.00	-
MOTA	2458	CG	TYR	255	10.853	44.510	126.185	1.00 2.00	0
MOTA	2459	CD1	TYR	255	12.103	44.175	125.696	1.00 2.00	0
MOTA	2460	CE1	TYR	255	12.824	43.121	126.248	1.00 2.00	0
ATOM	2461	CD2	TYR	25 5	10.337	43.770		1.00 2.00	0
ATOM	2462	CE2		255	11.041	42.721	127.802	1.00 2.00	0
ATOM	2463	CZ	TYR	255	12.279	42.397	127.301	1.00 2.00	0
ATOM	2464	ОН	TYR	255	12.946	41.328	127.839	1.00 2.00	0
			TYR	255	11.262	47.375	126.847	1.00 2.00	0
MOTA	2466	C		255	12.453		127.150	1.00 2.00	0
MOTA	2467	0	TYR	256	10.336		127.656	1.00 2.00	0
MOTA	2468	N	GLU		10.632		128.979	1.00 2.00	0
ATOM	2470	CA	GLU	256			128.910	1.00 20.70	Ö
MOTA	2471	CB	GLU	256	11.092		130.269	1.00 27.98	ŏ
MOTA	2472	CG	GLU	256	11.264			1.00 27.38	ŏ
MOTA	2473	CD	GLU	256	11.485		130.179	1.00 31.28	Ö
MOTA	2474	OE1		256	10.726		130.834	1 00 30 03	
ATOM	2475	OE2	GLU	256	12.418		129.453	1.00 39.87	0
ATOM	2476	C	GLU	25 6	9.362		129.800	1.00 2.00	0
ATOM		-			8.299	AQ 7A3	129.420	1.00 18.74	0
		0	GLU	256					
	2477	0 N	GLU PHE	256 25 7	9.474	47.540	130.919	1.00 2.00	0
ATOM ATOM		0 N CA				47.540			

ATOM	2481	СВ	PHE	257	8.578	46 139	132.661	1.00 2.00	0
ATOM	2482	CG	PHE	257	8.222	44.865		1.00 2.00	ŏ
ATOM	2483		PHE	257	9.187		131.694	1.00 2.00	0
MOTA	2484	CD2	PHE	257	6.906	44.594	131.649	1.00 2.00	0
ATOM	2485		PHE	257	8.849	42.740		1.00 2.00	0
MOTA	2486	CE2	PHE	257	6.560	43.417		1.00 2.00	0
MOTA	2487	CZ	PHE	257	7.533		130.781	1.00 2.00	0
MOTA	2488	C	PHE	257	8.257	48.593	132.671	1.00 2.00 1.00 2.00	0
MOTA	2489	0	PHE	257 258	9.215 7.104		132.782 133.286	1.00 25.02	0
ATOM ATOM	2490 2492	N CA	PHE PHE	258	6.884		134.147	1.00 25.02	Ö
ATOM	2493	CB	PHE	258	6.417		133.299	1.00 2.00	ŏ
MOTA	2494	CG	PHE	258	5.831		134.072	1.00 2.00	ŏ
ATOM	2495	CD1		258	6.625	53.325	134.431	1.00 2.00	0
MOTA	2496		PHE	258	4.468		134.369	1.00 2.00	0
MOTA	2497	CE1		25 8	6.070	54.439	135.070	1.00 2.00	0
MOTA	2498	CE2	PHE	258	3.900		135.003	1.00 2.00	0
MOTA	2499	CZ	PHE	258	4.698		135.356	1.00 2.00 1.00 25.02	0
MOTA	2500	C	PHE	258 258 [*]	5.837 4.965		135.160 134.859	1.00 25.02	0
MOTA MOTA	2501 2502	O N	PHE ALA	25 9	5.953		136.368	1.00 13.61	ŏ
ATOM	2504	CA	ALA	25 9	5.027		137.457	1.00 11.22	ŏ
ATOM	2505	CB	ALA	25 9	3.626	50.318	137.122	1.00 2.00	ŏ
ATOM	2506	C	ALA	259	4.951	48.286	137.729	1.00 12.73	O
MOTA	2507	0	ALA	25 9	3.876		137.660	1.00 2.00	0
MOTA	250 8	N	LYS	26 0	6.091	47.657		1.00 2.00	0
MOTA	2510	CA	LYS	260	6.140		138.304	1.00 9.39	0
ATOM	2511	CB	LYS	260	5.594	45.925		1.00 20.75	0
ATOM	2512	CG	LYS	260	6.589	47.622	140.844 141.177	1.00 28.17 1.00 36.91	0 <u>°</u> 0
MOTA MOTA	2513 2514	CD	LYS LYS	260 260	6.797 7. 61 5	47.765		1.00 36.91	Ö
ATOM	2514 2515	NZ	LYS	26 0 -	6.919	47.158	143.633	1.00 29.33	ŏ
ATOM	2519	C	LYS	260	5.370		137.279	1.00 2.00	ŏ
ATOM	2520	ŏ	LYS	260	4.443	44.633	137.641	1.00 15.95	0
ATOM	2521	N	ARG	261	5.764	45.531	136.004	1.00 2.00	0
MOTA	2523	CA	ARG	261	5. 17 3	44.843	134.851	1.00 2.00	0
MOTA	2524	CB	ARG	261	5.410	43.335	134.964	1.00 21.35	0
ATOM	2525	CG	ARG	261	6.881	42.969	134.928	1.00 21.35 1.00 9.03	0
ATOM	2526	CD	ARG ARG	261 261	7.088 8.408	41.473	134.970 134.460	1.00 9.03 1.00 14.18	ő
ATOM ATOM	2527 2529	NE CZ	ARG	261	8.801	39.842		1.00 14.38	ŏ
ATOM	253 0	NH1	ARG	261	7.976	38.820		1.00 16.12	Ö
ATOM	253 3	NH2	ARG	261	10.018		133.729	1.00 18.11	0
ATOM	2536	C	ARG	261	3.692	45.136	134.592	1.00 2.00	0
MOTA	2537	0	ARG	261	3.009	44.343	133.933	1.00 21.35	0
MOTA	2538	N	GLN	262	3.215	46.283	135.092	1.00 7.73	0
ATOM	2540	CA	GLN	262	1.821		134.927	1.00 7.73	0
ATOM	2541	CB	GLN	262	1.379	47.620	136.100 137.434	1.00 2.00 1.00 2.00	0
ATOM ATOM	2542 2543	CG CD	GLN GLN	262 262	1.106 0.859	40.000	138.601	1.00 2.00	ŏ
ATOM	2544	OE1		262	-0.277		138.930	1.00 2.00	ŏ
ATOM	2545	-	GLN	262	1.922		139.237	1.00 2.00	0
ATOM	2548	С	GLN	262	1.635	47.495	133.628	1.00 7.73	0
MOTA	2549	0	GLN	26 2	0.526		133.154	1.00 2.00	0
MOTA	2550	N	LEU	263	2.730		133.078	1.00 2.00	0
ATOM	2552	CA	LEU	263	2.723		131.819	1.00 2.00	0
ATOM	2553	CB	LEU	263	2.754		132.069	1.00 2.00 1.00 2.00	0
ATOM	2554	CG	LEU LEU	263 263	3.070 2. 404		130.890 131.133	1.00 2.00 1.00 2.00	ő
ATOM ATOM	2555 2556		LEU	26 3	4.575		130.679	1.00 2.00	ŏ
ATOM	2557	CDZ	LEU	26 3	3.991		131.089	1.00 2.00	ŏ
ATOM	2558	Õ	LEU	263	5.018		131.736	1.00 2.00	ō
ATOM	2559	N	VAL	264	3.932	48.207	129.759	1.00 42.92	0
MOTA	2561	CA	VAL	264	5.105		128.949	1.00 41.59	0
MOTA	256 2	CB	VAL	264	5.014		128.433	1.00 2.00	0
ATOM	2563		VAL	264	3.952		127.372	1.00 2.00	0
ATOM	2564	CG2		264	6.349		127.929	1.00 2.00	. 0
ATOM	2565	Ċ	JAV	264	5.193	40.840	127.772	1.00 42.79	0

MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2566 2567 2569 2570 2571 2573 2574	O N CA CB OG1 CG2 C		264 265 265 265 265 265 265	4.164 6.409 6.639 7.420 6.534 8.021 7.405	49.261 127.242 49.237 127.400 50.177 126.292 51.412 126.789 52.253 127.531 52.191 125.648 49.523 125.132	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM	2575 2576 2578 2579 2580	O N CA CB CG	THR LEU LEU LEU LEU	265 266 266 266 266	8.612 6.712 7.330 6.338	49.245 125.246 49.280 124.019 48.653 122.857 47.721 122.176	1.00 2.00 1.00 7.19 1.00 7.19 1.00 2.00	0 0 0
ATOM ATOM ATOM	2581 2582 2583	CD1	LEU	266 266 266	5.815 4.859 6.955 7.898	46.505 122.948 45.733 122.057 45.599 123.368 49.618 121.819	1.00 2.00 1.00 2.00 1.00 2.00 1.00 7.19	0 0 0
ATOM ATOM ATOM	2584 2585 2587	O N CA	LEU PHE PHE	266 267 267	7.329 9.033 9.665	50.675 121.537 49.249 121.247 50.068 120.222	1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
ATOM ATOM ATOM ATOM	2588 2589 2590 2591	CB CG CD1 CD2	PHE PHE PHE PHE	267 267 267 267	10.763 10.937 9.985 12.021	50.960 120.821 52.260 120.091 53.261 120.206 52.468 119.255	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
ATOM ATOM ATOM	2592 2593 2594	CE1 CE2 CZ	PHE PHE PHE	267 267 267	10.108 12.146 11.187	54.445 119.493 53.652 118.540 54.636 118.661	1.00 2.00 1.00 2.00 1.00 2.00	0
ATOM ATOM ATOM ATOM	2595 2596 2597 2599	C O N CA	PHE PHE SER SER	267 267 268 268	10.246 11.418 9.387 9.707	49.076 119.227 48.693 119.321 48.638 118.302 47.648 117.267	1.00 2.00 1.00 2.00 1.00 12.94 1.00 12.94	0 0 0
MOTA MOTA MOTA	2600 2601 2603	CB OG C	SER SER SER	268 268 268	8.420 7.593 10.450	47.043 116.723 46.579 117.771 48.231 116.103	1.00 11.11 1.00 11.11 1.00 12.94	0
MOTA MOTA MOTA	2604 2605 2607 2608	O N CA CB	SER ALA ALA ALA	268 269 269 269	10.150 11.391 12.222 11.383	49.344 115.711 47.454 115.556 47.779 114.378 48.513 113.295	1.00 11.11 1.00 71.01 1.00 71.72 1.00 82.00	0 0 0
MOTA MOTA ATOM ATOM	2609 2610 2611 2612	С 0 И С D	ALA ALA PRO PRO	269 269 270 270	13.585 14.609 13.619 12.436	48.469 114.543 47.889 114.186 49.704 115.076 50.466 115.513	1.00 74.82 1.00 91.21 1.00 28.82 1.00 2.00	0 0 0
MOTA MOTA MOTA	2613 2614 2615	CA CB CG	PRO PRO PRO	270 270 270	14.788 14.340 13.034	50.542 115.316 51.374 116.502 51.783 116.023	1.00 31.86 1.00 2.00 1.00 2.00	0
ATOM ATOM ATOM ATOM	2616 2617 2618 2620	C O N CA	PRO PRO ASN ASN	270 270 271 271	16.254 16.716 16.928 18.346	50.192 115.428 49.072 115.272 51.318 115.593 51.621 115.754	1.00 29.52 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
MOTA MOTA MOTA	2621 2622 2623	CB CG OD1	ASN ASN ASN	271 271 271	19.168 18.483 17.605	50.935 114.663 50.953 113.300 51.787 113.034	1.00 35.96 1.00 61.96 1.00 36.11	0 0 0
ATOM ATOM ATOM ATOM	2624 2627 2628 2629	ND2 C O N	ASN ASN ASN TYR	271 271 271 272	18.872 18.199 19.072 17.039	50.015 112.432 53.143 115.475 53.807 114.915 53.638 115.930	1.00 36.31 1.00 2.00 1.00 61.69 1.00 2.00	0 0 0
ATOM ATOM ATOM ATOM	2631 2632 2633 2634	CA CB CG CD1	TYR TYR TYR TYR	272 272 272 272	16.489 15.772 14.528 13.458	54.978 115.793 55.358 117.090 56.208 116.897 55.769 116.105	1.00 2.00 1.00 17.33 1.00 10.41 1.00 11.86	0 0 0
MOTA MOTA MOTA	2635 2636 2637	CE1 CD2 CE2	TYR TYR TYR	272 272 272	12.313 14.421 13.287	56.571 115.917 57.454 117.493 58.256 117.312	1.00 14.32 1.00 10.66 1.00 15.43	0 0 0
ATOM ATOM ATOM ATOM	2638 2639 2641 2642	CZ OH C O	TYR TYR TYR TYR	272 272 272 272	12.243 11.143 17.332 18.356	57.813 116.529 58.636 116.375 56.132 115.299 56.471 115.888	1.00 9.40 1.00 17.38 1.00 2.00 1.00 29.84	0 0 0
ATOM ATOM ATOM	2643 2645 2646	N CA CB	CYS CYS	273 273 273	16.860 17.490 17.203	56.731 114.201 57.875 113.553 59.167 114.331	1.00 7.24 1.00 6.82 1.00 11.61	0

コノルンしいい・ くいい しょうよっちゃり ,

ATOM MOTA	2647 2648	SG C	CYS CYS	273 273	15.496 19.010	59.459 57.724	113.411	1.00 10.42 1.00 8.43	0
MOTA	2649	0	CYS	273	19.738	58.717		1.00 9.04	0
MOTA	2650	N CA	GLY GLY	274 274	19. 49 8 20.934	56.502 56.303	113.185 113.044	1.00 13.82 1.00 13.82	0
ATOM ATOM	2652 2653	CX	GLY	274	21.710	57.029	114.134	1.00 13.82	ŏ
ATOM	2654	ŏ	GLY	274	22.817	57.515	113.906	1.00 39.65	0
MOTA	2655	N	GLU	275	21.120	57.085	115.326	1.00 92.80	0
MOTA	2657	CA	GLU	275	21.719	57.764	116.467	1.00 91.32 1.00 25.01	0
ATOM ATOM	2658 2659	CB CG	GLU GLU	275 275	21.479 19.994	59.276 59.656	116.340 116.224	1.00 25.01	0
MOTA	2660	CD	GLU	275	19.730	61.158	116.060	1.00 30.92	ŏ
MOTA	2661	OE1	GLU	275	18.951	61.713	116.868	1.00 38.31	0
MOTA	2662	OE2		275	20.276	61.787	115.125	1.00 34.18	0
MOTA	2663	C	GLU	275 275	21.137 20.941	57.260 58.047	117.794 118.716	1.00 90.32 1.00 23.69	0
MOTA MOTA	2664 2665	O N	GLU PHE	275 276	20.868	55.958	117.901	1.00 18.78	ŏ
ATOM	2667	CA	PHE	276	20.303	55.412	119.134	1.00 17.07	ŏ
MOTA	2668	CB	PHE	276	18.774	55.551	119.125	1.00 37.20	0
MOTA	2669	CG	PHE	276	18.280	56.876	119.652	1.00 35.89	0
MOTA	2670		PHE	276 276	17.522 18.572	57.726 57.273	118.849 120.949	1.00 35.53 1.00 39.17	0
MOTA MOTA	2671 2672	CD2 CE1	PHE PHE	276 276	17.067	58.945	119.329	1.00 31.45	ő
ATOM	2673	CE2	PHE	276	18.123	58.485	121.434	1.00 36.03	Ō
MOTA	2674	CZ	PHE	276	17.367	59.324	120.621	1.00 39.75	0
MOTA	2675	C	PHE	276	20.681	53.992	119.597 120.772	1.00 17.79 1.00 38.38	0
ATOM	2676 2677	O N	PHE ASP	276 277	20.463 21.213	53.669 53.140	118.712	1.00 36.36	Ö
MOTA MOTA	2679	CA	ASP	277	21.638		119.093	1.00 27.89	ŏ
ATOM	2680	CB	ASP	277	22.884	51.848	120.018	1.00 0.27	0
MOTA	2681	CG	ASP	277	23.231		120.716	1.00 39.20	0
MOTA	2682		ASP	2 7 7	23.163 23.576	49.508	121.964 120.036	1.00 39.20 1.00 39.20	0
MOTA MOTA	2683 2684	C C	ASP ASP	277 2 7 7	20.560	50.892	119.742	1.00 26.41	ő
ATOM	2685	Ö	ASP	277	20.761	49.675	119.918	1.00 0.76	0
ATOM	2686	N	ASN	278	19.428	51.491		1.00 2.00	0
ATOM	2688	CA	ASN	278	18.344		120.722	1.00 2.00 1.00 2.00	0
ATOM ATOM	2689 2 69 0	CB CG	asn asn	278 278	17.142 16.394		120.920 119.639	1.00 2.00	ŏ
ATOM	2691	OD1	ASN	278	16.867	52.643	118.765	1.00 2.00	Ö
ATOM	2692	ND2	ASN	278	15.225	51.324	119.510	1.00 2.00	0
MOTA	2695	C	ASN	278	17.938	49.602	119.829	1.00 2.00	0
ATOM	2696	0	ASN	278 279	17.970 17.603	49.710 48.487	118.600 120.454	1.00 2.00 1.00 14.31	0
MOTA MOTA	2697 2 69 9	N CA	ALA ALA	279	17.133	47.320	119.734	1.00 14.31	ŏ
MOTA	2700	СВ	ALA	279	17.281	46.081	120.594	1.00 2.00	0
MOTA	2701	С	ALA	279	15.655		119.498	1.00 14.31	0
MOTA	2702	0	ALA	279	15.155 14.959		119.996 118.743	1.00 2.00 1.00 2.00	0
MOTA MOTA	2703 2705	N CA	GLY GLY	280 280	13.549	47.014	118.484	1.00 2.00	ŏ
ATOM	2706	c	GLY	280	12.864	45.783	118.992	1.00 2.00	0
MOTA	2707	0	GLY	280	13.381	44.698	118.799	1.00 9.35	0
MOTA	2708	N	ALA	281	11.725	45.906	119.643	1.00 2.00 1.00 2.00	0
MOTA MOTA	2710 2711	CA CB	ALA ALA	281 281	11.082 10.799	44.702 44.850	120.167 121.658	1.00 2.00 1.00 2.00	ő
MOTA	2712	C	ALA	281	9.815	44.345	119.437	1.00 2.00	0
MOTA	2713	Õ	ALA	281	9.451	44.992	118.473	1.00 2.00	0
MOTA	2714	N	MET	282	9.140	43.312	119.918	1.00 14.19	0
MOTA	2716	CA	MET	282 282	7.907 8.232	42.833	119.315 117.995	1.00 14.19 1.00 25.98	0
MOTA MOTA	2717 2718	CB CG	MET MET	282 282	7.056	42.115	117.060	1.00 23.98	0
ATOM	2719	SD	MET	282	7.304	40.449	115.980	1.00 25.45	0
ATOM	2720	CE	MET	282	9.044	40.644	115.525	1.00 21.20	0
ATOM	2721	C	MET	282	7.397	41.851	120.363	1.00 14.19	0
ATOM ATOM	2722 2723	O N	MET MET	282 283	8.142 6.148	40.972	120.790 120.788	1.00 24.98 1.00 2.00	0
ATOM	2725	N CA	MET	28 3	5.592		121.825	1.00 2.00	ŏ
ATOM	2726	CB	MET	283	4.940	41.991	122.925	1.00 19.29	0

MOTA MOTA	2727 2728	CG SD	MET MET	283 283	4.481 3.228	41.205 42.077	124.142 125.116	1.00 19.76 1.00 20.92	0
MOTA	2729	CE	MET	283	4.204	43.235	125.966	1.00 17.38	0
ATOM	2730	С	MET	283	4.592	40.125	121.339	1.00 2.00	0
MOTA	2731	0	MET	283	3.456		121.036	1.00 16.17	0
MOTA	2732	N	SER	284	5.012		121.291	1.00 2.00	0
ATOM ATOM	2734 2735	CA	SER	284	4.148		120.869	1.00 2.00	0
ATOM	2736	CB OG	SER	284 284	4.991 6.376		120.220 120.528	1.00 20.90	0
MOTA	2738	C	SER SER	284	3.275	36.771 37.202	120.528	1.00 23.67 1.00 2.00	0
MOTA	2739	ō	SER	284	3.777	36.595	122.978	1.00 26.24	0
ATOM	2740	N	VAL	285	1.967	37.402	121.894	1.00 2.00	ő
ATOM	2742	CA	VAL	285	0.979	36.940	122.859	1.00 2.00	ŏ
MOTA	2743	CB	VAL	285	-0.091		123.056	1.00 2.00	ŏ
MOTA	2744	CG1	VAL	285	-0.952	37.714	124.262	1.00 2.00	ŏ
MOTA	2745	CG2	VAL	285	0.572		123.171	1.00 2.00	0
MOTA	2746	C	VAL	285	0.274	35.644	122.417	1.00 2.00	0
MOTA	2747	0	VAL	285	-0.572	35.672	121.532	1.00 2.00	0
MOTA	2748	N	ASP	286	0.609	34.512	123.026	1.00 2.00	0
MOTA	2750	CA	ASP	286	-0.056		122.663	1.00 2.00	0
MOTA	2751	CB	ASP	286 286	0.771	32.019	123.071	1.00 22.05	0
ATOM ATOM	2752 2753	CG OD1	ASP ASP	286	1.192 0.578	32.020 32.742	124.531 125.344	1.00 24.93 1.00 32.49	0
MOTA	2754	OD2	ASP	286	2.152	31.285	124.866	1.00 32.49	Ö
MOTA	2755	C	ASP	286	-1.494	33.141		1.00 2.00	Ö
ATOM	2756	ŏ	ASP	286	-1.993	34.023	123.881	1.00 12.72	ŏ
ATOM	2757	N	GLU	287	-2.144		122.817	1.00 28.94	ŏ
ATOM	2759	CA	GLU	287	-3.543		123.153	1.00 28.07	0
MOTA	2760	CB	GLU	287	-3. 91 2	30.340	122.657	1.00 59.96	0
MOTA	2761	CG	GLU	287	-3.610	30.049	121.177	1.00 66.13	0
MOTA	2762	CD	GLU	287	-2.139		120.890	1.00 70.85	0
MOTA	2763	OE1	GLU	287	-1.712		119.723	1.00 75.38	0
MOTA	2764	OE2	GLU	287	-1.412		121.822	1.00 73.00	0
ATOM	2765	Č	GLU	287	-3.876		124.638	1.00 30.16	0
MOTA	2766	0	GLU	287	-5.017	32.074 31.654	125.029 125.455	1.00 62.37 1.00 41.83	0
MOTA MOTA	2767 2769	N CA	THR THR	288 288	-2.852 -2.995	31.665	126.894	1.00 41.63	Ö
ATOM	2770	CB	THR	288	-2.269	30.449	127.457	1.00 11.26	ŏ
ATOM	2771	OG1	THR	288	-0.865	30.552	127.171	1.00 11.65	ŏ
MOTA	2773	CG2	THR	288	-2.827		126.800	1.00 11.00	0
ATOM	2774	C	THR	288	-2.461	32.947	127.533	1.00 36.73	0
MOTA	2775	0	THR	288	-2.015	32.948	128.675	1.00 18.83	0
MOTA	2776	N	LEU	289	-2.492	34.034	126.776	1.00 6.34	0
MOTA	2778	CA	LEU	289	-2.027	35.334	127.232	1.00 2.00	0
MOTA	2779	CB	LEU	289	-3.081		128.155	1.00 2.00	0
MOTA	2780	CG	LEU	289	-4.282	36.465	127.346	1.00 2.00 1.00 2.00	0
MOTA	2781		LEU	289 289	-5.3 9 0 -3.817	36.9 7 3 37.593	128.263 126.412	1.00 2.00 1.00 2.00	Ö
MOTA MOTA	2782 2783	CD2	LEU LEU	289	-0.615	35.454	127.826	1.00 2.00	ő
ATOM	2784	Ö	LEU	289	-0.299	36.445	128.493	1.00 2.00	ŏ
ATOM	2785	Ň	MET	290	0.244	34.475	127.566	1.00 20.85	0
ATOM	2787	CA	MET	290	1.619	34.548	128.046	1.00 23.75	0
ATOM	2788	CB	MET	290	2.238	33.1 5 6	128.212	1.00 24.81	0
MOTA	2789	CG	MET	290	3.717	33.200	128.623	1.00 23.46	0
MOTA	2790	SD	MET	290	4.726	31.867	127.935	1.00 26.75	0
MOTA	2791	CE	MET	290	5.196	32.555	126.310	1.00 29.16	0
MOTA	2792	C	MET	290	2.430	35.332	127.015	1.00 19.20	0
ATOM	2793	0	MET	290	2.545	34.910	125.858 127.449	1.00 29.26 1.00 2.00	0
ATOM	2794	N	CYS	291 291	3.003 3.797	36.454 37.336	126.590	1.00 2.00	o
ATOM ATOM	2 79 6 2 79 7	CA CB	CYS CYS	291	3.624	38.773	127.062	1.00 2.00	ŏ
ATOM	2798	SG	CYS	291	1.913	39.123	127.404	1.00 13.14	ŏ
ATOM	2799	C	CYS	291	5.293	37.034	126.465	1.00 2.00	Ŏ
MOTA	2800	ŏ	CYS	291	5.958	36.694	127.448	1.00 23.09	0
ATOM	2801	N	SER	292	5.808	37.187	125.244	1.00 5.71	0
MOTA	2803	CA	SER	29 2	7.223	36.977	124.928	1.00 9.30	0
ATOM	2804	CB	SER	292	7.385	35.709	124.098	1.00 12.57	0
MOTA	2805	OC:	SER	292	6.548	34.675	124.593	1.00 20.05	O

ATOM	2807	С	SER	292	7.691	38.195	124.113	1.00 4.04	0
MOTA	2808	0	SER	29 2.	6.867	38.867	123.485	1.00 14.24	0
MOTA	2809	N	PHE	293	8.993 9.526	38.487 39.623	124.128 123.385	1.00 2.00 1.00 2.00	0
ATOM ATOM	2811 2812	CA CB	PHE PHE	293 293	10.077	40.676	124.337	1.00 17.01	ŏ
ATOM	2813	CG	PHE	293	9.063	41.244	125.270	1.00 19.48	ŏ
ATOM	2814		PHE	293	8.772	40.611	126.466	1.00 23.05	Õ
ATOM	2815	CD2	PHE	29 3	8.414	42.426	124.967	1.00 21.44	0
MOTA	2816	CE1	PHE	293	7.852		127.352	1.00 24.82	0
MOTA	2817	CE2	PHE	293	7.494	42.968	125.845 127.044	1.00 20.24	0
MOTA	2818	CZ	PHE	293 293	7.213 10.641	42.325 39.259	127.044	1.00 22.28 1.00 2.00	0
MOTA MOTA	2819 2820	C	PHE PHE	293	11.715	38.839	122.853	1.00 2.00	ő
ATOM	2821	N	GLN	294	10.390	39.418	121.104	1.00 2.00	ŏ
ATOM	2823	CA	GLN	294	11.404	39.162	120.060	1.00 2.00	Õ.
MOTA	2824	CB	GLN	294	10.748	38.742	118.743	1.00 14.58	0
MOTA	2825	C G	GLN	294	10.074	37.383	118.798	1.00 22.67	0
MOTA	2826	CD	GLN	294	8.684	37.387	118.179	1.00 24.62	0
MOTA	2827	OE1		294	7.835	38.206	118.535	1.00 27.17	0
MOTA	2828	NE2	GLN GLN	294 294	8.441 12.182	40.464	117.258 119.855	1.00 25.84 1.00 2.00	0 0
MOTA MOTA	2831 2832	C O	GLN	294	11.587	41.528	119.660	1.00 20.63	ŏ
MOTA	2833	N	ILE	295	13.507	40.379		1.00 11.23	ŏ
ATOM	2835	CA	ILE	295	14.356	41.569	119.772	1.00 12.32	Ö
MOTA	2836	CB	ILE	295	15.400	41.624	120.968	1.00 10.45	0
ATOM	2837	CG2	ILE	29 5	16.277	42.875	120.886	1.00 10.45	0
ATOM	2838	CG1	ILE	29 5	14.674	41.607		1.00 10.45	0
ATOM	2839	CD1		295 295	13.756 15.126	42.807 41.703		1.00 10.45 1.00 7.79	0
MOTA MOTA	2840 2841	C	ILE ILE	295 295	15.723		117.974	1.00 10.45	0
ATOM	2842	N	LEU	296	15.087		117.873	1.00 11.71	ŏ
ATOM	2844	CA	LEU	296	15.824		116.658	1.00 13.33	. 0
MOTA	2845	CB	LEU	296	14.987		115.717	1.00 24.46	0
ATOM	2846	CG	LEU	29 6	13.835		114.946	1.00 22.89	0
MOTA	2847	CD1		296	12.626		115.862	1.00 22.12	0
MOTA	2848	CD2		29 6	13.499		113.732 117.224	1.00 19.71 1.00 13.82	0
MOTA	2849	C	LEU	29 6 29 6	16.965 16.785		117.485	1.00 13.82	ŏ
MOTA MOTA	2850 2851	N	LYS	297	18.135		117.381	1.00 2.00	ŏ
ATOM	2853	CA	LYS	297	19.319		117.997	1.00 2.00	0
MOTA	2854	CB	LYS	297	20.224"	42.971	118.527	1.00 79.20	0
MOTA	285 5	CG	LYS	297	20.792	42.094	117.419	1.00 79.65	0
ATOM	2856	CD	LYS	297	21.898	41.187	117.915	1.00 76.76	0
MOTA	2857	CE	LYS	297	22.543		116.762 117.232	1.00 71.01 1.00 68.76	0
MOTA	2858	NZ C	LYS LYS	297 297	23.644 20.259	39.543 45.149	117.376	1.00 08.70	ŏ.
MOTA MOTA	2862 2863	0	LYS	297	21.255		118.013	1.00 94.11	ŏ
ATOM	2864	N	PRO	298	19.995		116.152	1.00 40.11	0
ATOM	2865	CD	PRO	298	18.942	45.297	115.188	1.00 2.00	0
MOTA	2866	CA	PRO	298	20.900		115.553	1.00.40.11	0
ATOM	2867	CB	PRO	298	20.220		114.227	1.00 2.00	0
ATOM	2868 2869	CG	PRO	298 298	19.570 21,264		113.886 116.312	1.00 2.00 1.00 40.11	0
ATOM ATOM	2870	C O	PRO PRO	298	21.264		117.514	1.00 2.00	ŏ
ATOM	2871	N	ALA	299	21.854		115.574	1.00 61.74	0
MOTA	2873	CA	ALA	299	22.276		116.101	1.00 61.74	0
ATOM	2874	CB "	ALA	29 9	23.627		116.799	1.00 2.00	0
MOTA	2875	C	ALA	299	22.373		114.973	1.00 61.74	0
ATOM	2876	0	ALA	29 9	21.893		115.105	1.00 2.00	0
MOTA	2877	N	ASN	508	41.191	29.848	91.500	1.00 48.97 1.00 48.97	0
ATOM ATOM	2879	CA	ASN ASN	508 508	39.902 38.951	30.150 30.831	90.89 6 91.88 7	1.00 48.97	0
ATOM	2880 2881	CB CG	ASN	508	37.666	31.359	91.203	1.00 0.74	Ö
ATOM	2882	OD1		508	36.879	30.587	90.592	1.00 0.74	Ō
ATOM	2883	ND2		508		32.682	91.290	1.00 0.74	0
MOTA	2886	С	ASN	508	40.096	31.041	89.687	1.00 48.97	.0
ATOM	2887	0	ASN	508	40.274	32.266	89.798	1.00 0.74	0
MOTA	2888	N	ILE	509	40.006	30.387	88.533	1.00 17.27	0

132

MOTA	2890	CA	ILE	509	40.188	30.983	87.224	1.00 18.75	0
MOTA	2891	CB	ILE	509	40.088	29.889	86.127	1.00 44.37	ō
MOTA	2892	CG2		509	38.650	29.7 0 0	85.673	1.00 52.59	0
MOTA	2893	CG1		509	41.013	30.238	84.966	1.00 44.31	0
MOTA	2894	CD1		509	42.489	30.093	85.305	1.00 44.07	0
MOTA	2895	C	ILE	509	39.196	32.089	86.957	1.00 18.83	0
MOTA	2896	0	ILE	509	39.463	32.956	86.131	1.00 44.94	0
MOTA	2897	N	ASP	510	38.070	32.071	87.670	1.00 2.00	0
ATOM	2899 2 90 0	CA	ASP	510 510	37.048	33.088	87.485	1.00 2.00	0
ATOM ATOM	2901	CB CG	ASP ASP	510 510	35.711	32.605	88.031	1.00 52.76	0
ATOM	2902		ASP	510	35.029 34.008	31.634 32.015	87.089 86.483	1.00 54.58	0
ATOM	2903	OD2	ASP	510	35.521	30.497	86.944	1.00 54.54 1.00 58.16	0
ATOM	2904	c	ASP	510	37.403	34.642	88.056	1.00 2.00	0
ATOM	2905	ŏ	ASP	510	37.016	35.464	87.490	1.00 52.34	0
ATOM	2906	N	SER	511	38.143	34.471	89.160	1.00 2.00	Ö
ATOM	2908	CA	SER	5 1 1	38.548	35.763	89.739	1.00 2.00	ŏ
MOTA	2909	СВ	SER	511	39.372	35.570	91.015	1.00 53.95	ŏ
MOTA	2910	OG	SER	511	38.631	34.907	92.020	1.00 50.17	ŏ
ATOM	2912	C	SER	511	39.447	36.379	88.690	1.00 2.00	ŏ
MOTA	2913	0	SER	51 1	39.228	37.488	88.203	1.00 59.62	ō
ATOM	2914	N	ILE	512	40.453	35.584	88.349	1.00 45.56	Ō
ATOM	2916	CA	ILE	512	41.462	35.892	87.361	1.00 40.32	0
ATOM	2917	CB	ILE	512	42.224	34.598	87.035	1.00 2.00	0
ATOM	2918	CG2	ILE	512	43.250	34.842	85.943	1.00 2.00	0
ATOM	2919	CG1	ILE	512	42.897	34.092	88.316	1.00 2.00	0
ATOM	2920	CD1	ILE	512	43.635	32.772	88.174	1.00 2.00	0
ATOM	2921	C	ILE	512	40.843	36.514	86.105	1.00 41.22	0
ATOM ATOM	2922 2923	0	ILE	512 513	41.051	37.700	85.848	1.00 2.00	0
ATOM	2925	N CA	ILE	51 3	40.061 39.408	35.728 36.195	85.358 84.136	1.00 2.00 1.00 2.00	0
MOTA	2926	CB	ILE	513 513	38.435	35.123	83.529	1.00 2.00 1.00 2.00	. 0
ATOM	2927	CG2	ILE	513	37.560	35.757	82.455	1.00 2.00	Ö
ATOM	2928	CG1	ILE	51 3	39.227	33.963	82.890	1.00 2.00	ŏ
ATOM	2929	CD1	ILE	51 3	38.365	32.796	82.367	1.00 2.00	ŏ
ATOM	2930	C	ILE	513	38.640	37.493	84.335	1.00 2.00	ŏ
ATOM	2931	ō	ILE	51 3	38.764	38.403	83.519	1.00 2.00	Ŏ
MOTA	2932	N	GLN	514	37.858	37.611	85.402	1.00 12.46	Ö
ATOM	2934	CA	GLN	514	37.117	38.853	85.581	1.00 12.46	0
MOTA	2935	CB	GLN	514	35.985	38.678	86.591	1.00 26.62	0
MOTA	2936	CG	GLN	514	36.384	38.251	87.972	1.00 26.62	0
ATOM	2937	CD	GLN	514	35.195	38.279	88.929	1.00 26.62	0
MOTA	2938	OE1	GLN	514	34.582	39.337	89.140	1.00 26.62	0
ATOM	2939	NE2	GLN	514	34.851	37.116	89.502	1.00 26.62	0
MOTA	2942	C	GLN	514	38.009	40.055	85.936	1.00 12.46	0
ATOM ATOM	2943 2944	0	GLN ARG	514 51 5	3 7.68 6 39. 14 7	41.205 39.773	85.613 86.564	1.00 26.62 1.00 6.50	0
ATOM	2946	N CA	ARG	515	40.090	40.810	86.937	1.00 7.53	0
ATOM	2947	CB	ARG	515	41.125	40.251	87.917	1.00 7.33	ŏ
ATOM	2948	CG	ARG	515	40.626	40.257	89.362	1.00 8.04	Ŏ
ATOM	2949	CD	ARG	515	41.182	39.117	90.212	1.00 8.04	Ö
MOTA	2950	NE	ARG	515	42.609	39.250	90.490	1.00 8.04	0
MOTA	2952	CŹ	ARG	51 5	43.355	38.276	90.998	1.00 8.04	0
ATOM	2953	NH1	ARG	515	42.805	37.103	91.275	1.00 8.04	0
MOTA	2956	NH2	ARG	515	44.646	38.478	91.228	1.00 8.04	0
MOTA	2959	C	ARG	51 5	40.745	41.325	85.669	1.00 12.92	0
MOTA	2960	0	ARG	515	40.840	42.537	85.464	1.00 8.04	0
MOTA	2961	N	LEU	516	41.167	40.398	84.810	1.00 8.93	0
ATOM	2963	CA	LEU	516	41.788	40.727	83.525	1.00 6.71	0
ATOM	2964	CB	LEU	516	42.172	39.431	82.786	1.00 2.00	0
MOTA	2965	CG	LEU	516	43.298	38.561	83.385	1.00 2.00	0
ATOM	2966	CD1		516 516	43.057	37.096	83.083	1.00 2.00 1.00 2.00	0
ATOM	2967	CD2		516 516	44.650 40.809	38.986 41.562	82.843 82.675	1.00 2.00 1.00 5.82	0
MOTA MOTA	2968 2969	C 0	LEU LEU	516	41.187	42.516	82.002	1.00 3.82	0
ATOM	2970	N	LEU	517	39.534	41.228	82.755	1.00 2.00	ő
ATOM	2972	CA	LEU	517	38.519	41.928	81.993	1.00 2.73	Ö
ATOM	2973	CB	LEU	517	37.336	40.993	81.752	1.00 7.08	Ċ

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2974 2977 2977 29778 29988 29988 29988 29989 29999 29999 29999 29999 29999 29999 29999 29999 29999 29999	CD2 C O N CA CB CG OE1 OE2 C O N CA CB CG CC O N CA CB CG CC	LEU LEU GLU GLU GLU GLU GLU	517 517 517 517 518 518 518 519 519 519 519 519 519 519 519 519 519	37.203 38.524 36.133 37.989 37.169 38.409 37.845 36.908 35.550 34.554 35.481 38.618 38.121 39.828 42.078 42.759 42.759 42.759 42.759 42.272 40.007 40.402 39.066 38.410 37.216 36.878 35.994	40.297 39.694 39.227 43.262 43.908 44.981 45.015 46.701 46.705 47.335 45.978 46.806 47.3378 46.806 45.488 47.307 48.229 46.495 45.534 45.534 45.534 45.534 45.534	80.398 79.950 80.518 82.536 81.858 83.728 85.699 86.231 85.526 86.262 84.252 83.677 83.729 83.166 82.428 83.771 81.684 81.196 80.493 80.815 79.515 79.480 78.086 78.116	1.00 3.18 1.00 12.86 1.00 9.89 1.00 9.79 1.00 16.46 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.50 1.00 40.73 1.00 42.53 1.00 42.53 1.00 42.53 1.00 42.53 1.00 42.53 1.00 42.53 1.00 42.53 1.00 42.53	000000000000000000000000000000000000000
ATOM ATOM	3002 3003 3005	NE CZ	ARG ARG	520 520 520	34.592 33.565	44.131	77.872 78.308	1.00 47.95 1.00 44.40 1.00 51.11	0
MOTA	3006	NH1	ARG	520	33. 767	42.298 43.778	79.022	1.00 48.24	0 :
MOTA MOTA	3009 3012	NH2 C	ARG ARG	520 520	32. 32 5 37. 94 6	43.778	78.026 79.147	1.00 28.36	0 0
MOTA	3013	0	ARG	520	37.881	48.247	77.964	1.00 46.63	0
MOTA MOTA	3014 3016	N CA	GLY GLY	521 521	37. 63 9 37. 18 6	48.703 50.056	80.158 79.905	1.00 27.79 1.00 30.97	0
ATOM	3017	Ċ	GLY	521	38.158	51. 09 9	80.400	1.00 32.39	0
ATOM	3018	0	GLY	52 1 52 2	37.739 39.451	52.124 50.840	80.940 80.225	1.00 54.55	0
MOTA MOTA	3019 3021	N CA	SER SER	522 522	40.495	51.761	80.663	1.00 46.95 1.00 47.91	0
ATOM	3022	CB	SER	522	41.300	51.146	81.801	1.00 33.41	0
MOTA MOTA	3023 3025	OG C	SER SER	522 522	40.459 41.436	50.694 52.094	82.844 79.517	1.00 32.38 1.00 49.38	0
ATOM	3026	Ö	SER	522	41.495	51.378	78.513	1.00 34.02	Ö
ATOM	3027	N	LYS	52 3	42.174	53.184	79.679	1.00 84.47	0
MOTA MOTA	3029 3 03 0	CA CB	LYS LYS	52 3 52 3	43.127 44.035	53.640 54.715	78.674 79.274	1.00 81.24 1.00 43.78	0
ATOM	3031	CG	LYS	52 3	43.307	55.987	79.619	1.00 44.40	ŏ
ATOM	3032	CD	LYS	523	44.206	56.990	80.322	1.00 68.84	0
MOTA MOTA	3033 3034	CE NZ	LYS LYS	523 523	43.493 42.092	58.336 58.186	80.458	1.00 44.38 1.00 44.06	0
MOTA	3038	C	LYS	52 3	44.000	52.501	78.173	1.00 80.03	Ö
MOTA MOTA	3039	0	LYS	523 524	44.314	51.584	78.937	1.00 43.77	0
ATOM	3040 3041	N CD	PRO PRO	524	44.360 43.901	52.514 53. 42 7	76.873 75.811	1.00 2.00 1.00 84.06	0
MOTA	3042	CA	PRO	524	45.218	51.459	76.316	1.00 2.00	0
ATOM ATOM	3043 3044	CB CG	PRO PRO	524 524	45.357 44.057	51.871 52. 574	74.850 74.576	1.00 82.26 1.00 78.74	0
MOTA	3045	C	PRO	524	46.576	51.489	77.063	1.00 2.00	ŏ
MOTA	3046	0	PRO	524	47.510	52.190	76.653	1.00 76.15	0
ATOM ATOM	3047 3049	N CA	GLY GLY	52 5 52 5	46.647 47.846	50.742 50.682	78.166 78.984	1.00 33.80 1.00 98.68	0 0
ATOM	3050	C	GLY	525	47.575	50.197	80.403	1.00 99.00	0
MOTA MOTA	3051	O	GLY	52 5	48.427	49.555	81.013	1.00 2.00	0
ATOM	3052 3054	N CA	LYS LYS	526 526	46.397 46.047	50.496 50.070	80.942 82.297	1.00 49.37 1.00 44.35	0
MOTA	3055	CB	LYS	52 6	44.537	50.226	82.505	1.00 - 0.79	ő
ATOM ATOM	3056 3057	CG CD	LYS LYS	526 526	44.013 44.370	49.851 50.915	83.911 84.950	1.00 0.82 1.00 .0.29	0
ATOM	3058	CE	LYS	526	44.413	50.312	86.354	1.00 .0.29	0

MOTA	3059	NZ	LYS	52 6	45.166	51.143	87.348	1.00 28.16	0
MOTA	3063	C	LYS	526	46.461	48.602	82.479	1.00 41.81	ŏ
MOTA	3064	0	LYS	526	45.984	47.727	81.760	1.00 0.75	0
ATOM	3065	N	ASN	527	47.372	48.337	83.412	1.00 6.60	0
ATOM ATOM	3067 3068	CA CB	asn asn	527 527	47.861 49.208	46.972 46.977	83.639 84.381	1.00 6.60 1.00 20.38	0
ATOM	3069	CG	ASN	527	50.300	47.733	83.645	1.00 20.38	0
ATOM	3070		ASN	527	50.695	48.820	84.068	1.00 29.99	Ö
MOTA	3071	ND2		527	50.818	47.148	82.561	1.00 30.17	ŏ
MOTA	3074	С	asn	527	46.895	46.135	84.463	1.00 6.60	0
MOTA	3075	0	ASN	52 7	45.866	46.628	84.924	1.00 23.47	0
MOTA	3076 3078	N	VAL VAL	528 528	47.271 46.541	44.866 43.874	84.647	1.00 26.67	0
MOTA MOTA	3078	CA CB	VAL	528	45.575	43.004	85.443 84.603	1.00 26.67 1.00 33.44	0
ATOM	3080	CG1		52 8	44.909	41.956	85.488	1.00 33.01	Ö
ATOM	3081	CG2	VAL	528	44.524	43.858	83.956	1.00 35.61	ŏ
MOTA	3082	С	VAL	52 8	47.607	42.940	86.018	1.00 26.67	Ö
MOTA	3083	0	VAL	52 8	48.054	42.003	85.348	1.00 36.85	0
MOTA	3084	N	GLN	52 9	48.048	43.231	87.239	1.00 2.00	0
ATOM ATOM	3086 3087	CA CB	GLN GLN	529 529	49.061 49.968	42.407 43.297	87.920 88.787	1.00 2.00 1.00 30.41	0
ATOM	3087	CG	GLN	529	51.142	42.569	89.428	1.00 30.41	0
ATOM	3089	CD	GLN	529	52.380	42.558	88.558	1.00 31.37	ŏ
ATOM	3090	OE1		52 9	53.436	43.035	88.962	1.00 35.47	ŏ
MOTA	3091	NE2	GLN	52 9	52 .25 9	42.014	87.361	1.00 30.69	0
MOTA	3094	С	GLN	52 9	48.350	41.347	88.792	1.00 2.00	0
ATOM	3095	0	GLN	52 9	47.545	41.689	89.663	1.00 32.29	0
MOTA	3096	N	LEU	530	48.624	40.072	88.536	1.00 2.00	0
MOTA	3098	CA	LEU	530 530	47.994 47.462	39.002 37.911	89.303 88.381	1.00 2.00 1.00 12.99	0
ATOM ATOM	3 09 9 3 1 00	CB CG	LEU	530	46.535	38.302	87.248	1.00 12.99	Ö
MOTA	3101		LEU	530	47.297	38.159	85.956	1.00 12.99	ŏ
MOTA	3102		LEU	530	45.313	37.403	87.243	1.00 12.99	Ó
ATOM	3103	C	LEU	530	49.002	38.365	90.236	1.00 2.00	0
MOTA	3104	0	LEU	53 0	50.207	38.543	90.067	1.00 12.99	0
MOTA	3105	N	GLN	531	48.516	37.622	91.221	1.00 2.00	0
MOTA	3107	CA	GLN	531 531	49.418 48.634	36.932 36.051	92.117 93.090	1.00 2.00 1.00 61.54	0
MOTA MOTA	3108 3109	CB CG	GLN GLN	531	48.376	36.639	94.465	1.00 62.91	ŏ
ATOM	3110	CD	GLN	531	47.221	37.603	94.487	1.00 63.71	ō
ATOM	3111	OE1	GLN	531	47.322	38.684	95.053	1.00 59.60	0
MOTA	3112	NE2	GLN	531	46.111	37.219	93.876	1.00 61.96	0
MOTA	3115	С	GLN	531	50.337	36.040	91.266	1.00 2.00	0
ATOM	3116	0	GLN	531	49.859	35.276	90.422	1.00 67.15 1.00 2.00	0
MOTA	3117	N	GLU	532	51.647 52.655	36.153 35.349	91.480 90.766	1.00 2.00 1.00 2.00	Ö
MOTA MOTA	3119 3120	CA CB	GLU GLU	532 53 2	54.056	35.623	91.336	1.00 19.01	Ö
MOTA	3121	CG	GLU	532	55.176	34.623		1.00 22.74	Ō
MOTA	3122	CD	GLU	532	56.496	34.871	91.746	1.00 25.50	0
MOTA	3123		GLU	532	56.845	36.042	92.058	1.00' 20.16	0
MOTA	3124	OE2	GLU	53 2	57.195	33.879	92.051	1.00 20.82	0
ATOM	3125	C	GLU	532	52.345	33.866	90.900	1.00 2.00 1.00 17.28	0
ATOM	3126 3127	0	GLU	53 2 53 3	52.833 51.568	33.059 33.509	90.116 91.918	1.00 17.28	ő
MOTA MOTA	3127	N CA	ASN ASN	53 3	51.181	32.120	92.127	1.00 27.69	Ö
ATOM	3130	CB	ASN	53 3	50.751	31.857	93.587	1.00 42.65	0
ATOM	3131	ĊĠ	ASN	53 3	49.834	32.944	94.154	1.00 49.17	0
ATOM	3132	OD1	ASN	53 3	50.274	34.070	94.392	1.00 50.06	0
ATOM	3133			53 3	48.568	32.605	94.387	1.00 50.92	0
MOTA	3136	C	ASN	53 3	50.053	31.770	91.165	1.00 26.24 1.00 41.80	0
MOTA	3137	0	ASN	53 3	49.918	30.615	90.747 90.815	1.00 41.80	Ö
MOTA	3138	N	GLU	534 534	49.253 48.146	32.777 32.592	89.893	1.00 24.70	ő
MOTA MOTA	3140 3141	CA CB	GLU	534	47.228	33.801	89.918	1.00 17.15	Ö
MOTA	3142	CG	GLU	534	46.509	33.924	91.239	1.00 23.75	0
MOTA	3143	CD	GLU	534	4 5. 59 8	35.132	91.323	1.00 25.22	0
MOTA	3144		GLU	534	44.490	34.997	91.890	1.00 24.06	0
MOTA	3145	OE2	GLU	534	45.991	36.215	90.837	1.00 29.17	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3146 3147 3148 3150 3151 3152 3153 3154 3155 3156 3157 3160 3161 3162 3163 3165 3165	C O N CA CB CG1 C O N CA CB CG CD NE CC NH1		534 534 535 535 535 535 535 536 536 536 536 536	48.7 49.7 50.3 51.4 52.0 50.7 51.5 51.0 50.7 51.9 52.4 53.8 55.0 55.1	35 31 47 33 889 32 42 34 550 33 693 35 37 36 688 30 188 31 183 29 188 29 195 29 195 29 195 29 195 29	2.365 1.500 3.122 2.942 1.023 3.784 5.411 5.488 1.565 1.256	88.510 87.779 88.156 86.859 86.570 85.190 86.641 85.849 86.797 85.876 87.778 87.778 87.778 87.474 91.132 90.876 90.920	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	21.16 14.12 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2	
ATOM ATOM ATOM ATOM	3169 3172 3173 3174 3176	C O N CA	ARG ARG ARG GLY GLY	536 536 536 537 537	56.2 51.5 51.8 50.4 49.3 48.6	62 28 06 27 06 29 45 28	7.032 3.811 7.778 3.033 3.046	90.576 87.742 87.126 88.363 88.340 86.970	1.00	44.45 2.00 37.01 2.00 2.00 2.00	0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	3177 3178 3179 3181 3182 3183	C O N CA CB CG	GLY GLY LEU LEU LEU LEU	537 537 538 538 538 538	48.0 48.2 48.5 47.9 47.9	92 26 74 29 79 29 30 30	924 164 276 736	86.512 86.319 84.977 84.513 84.772	1.00 1.00 1.00 1.00	2.00 9.51 7.63 2.00 2.00	0 0 0
ATOM ATOM ATOM ATOM ATOM	3184 3185 3186 3187 3188	CD1 CD2 C O N	LEU LEU LEU CYS	538 538 538 538 539	46.8 45.5 48.8 48.2 50.1	65 32 31 30 16 28 95 27 20 28	.966 .940 .472 .635	84.408 83.972 84.000 83.271 84.000	1.00 1.00	2.00 2.00 12.73 2.00 2.00	0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3190 3191 3192 3193 3194 3195	CA CB SG C O	CYS CYS CYS CYS CYS	539 539 539 539 539 540	51.0 52.4 52.7 50.9 50.8 50.9	73 28 13 30 57 26 54 25	.001 .494 .280 .501 .658	83.132 83.337 83.567 83.474 82.588 84.769	1.00 1.00 1.00	2.00 20.52 19.48 2.00 29.69 26.60	00000
MOTA MOTA ATOM ATOM ATOM	3197 3198 3199 3200 3201	CA CB CG CD1 CD2	LEU LEU LEU LEU	540 540 540 540 540	50.9 51.1 52.5 53.0 53.4	06 24 39 24 01 23 92 25	.819 .818 .770 .360	85.265 86.786 87.339 87.385 86.497	1.00 1.00 1.00 1.00	26.60 2.00 2.00 2.00 2.00 2.60	0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	3202 3203 3204 3206 3207 3208	C N CA CB CG	LEU LYS LYS LYS LYS	540 540 541 541 541 541	49.6 49.6 48.5 47.2 46.0 45.8	77 22 00 24 19 24 46 24	.061 .856 .756 .126 .964	84.899 84.619 84.901 84.561 85.108 86.624	1.00 1.00 1.00 1.00	2.00 13.81 17.46 14.61 22.53	0 0 0 0
ATOM ATOM ATOM ATOM ATOM	3209 3210 3211 3215 3216	CD CE NZ C	LYS LYS LYS LYS	541 541 541 541 541 542	44.7 45.1 44.1 47.0 46.8 47.1	75 27 47 28 47 23 62 22	.777 .201 .010 .891 .745	87.150 87.517 88.284 83.046 82.608 82.253	1.00	31.64 37.15 27.95 16.97 8.92 2.00	0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	3217 3219 3220 3221 3223 3224	N CA CB OG C	SER SER SER SER SER SER	542 542 542 542 542 542	47.1 46.9 47.1 48.4 47.9	75 24 65 26 99 26 15 23	.877 .256 .703 .870	80.791 80.150 80.298 80.107 79.377	1.00 1.00 1.00 1.00 1.00	2.00 2.00 2.00 2.00 2.00 2.00	0 0 0
ATOM ATOM ATOM ATOM ATOM	3225 3227 3228 3229 3230 3231	N CA CB CG CD NE	ARG ARG ARG ARG ARG	543 543 543 543 543	49.2 50.2 51.6 52.6 53.7 54.9	44 23 07 23 76 22 57 22	.016 .128 .381 .339 .313 .663	80.338 79.772 80.434 80.116 81.173 80.708	1.00 1.00 1.00 1.00 1.00	8.64 8.64 2.00 4.46 2.00 2.00	0 0 0 0 0

MOTA 3233 CZ ARG 543 20.395 80.952 55.326 1.00 2.00 MOTA 543 3234 NH1 ARG 3.99 54.523 19.606 81.656 1.00 0 MOTA 3237 543 NH2 **ARG** 56.483 19.915 80.508 1.00 2.00 MOTA 543 3240 С ARG 49.873 21.660 79.981 1.00 8.64 0 ATOM 3241 O ARG 543 50.187 20.806 79.148 1.00 5.52 21.352 MOTA 3242 N **GLU** 544 49.227 81.098 1.00 42.94 O 544 81.355 82.778 MOTA 3244 CA **GLU** 48.834 19.978 1.00 44.22 544 MOTA 3245 CB GLU 48.308 19.841 1.00 37.01 0 48.175 544 MOTA 3246 CG GLU 18.415 83.249 41.48 1.00 0 MOTA 3247 CD GLU 544 47.561 18.341 84.626 1.00 46.37 0 18.858 17.777 84.791 85.543 80.339 46.433 MOTA 3248 OE1 GLU 544 1.00 53.09 0 MOTA 3249 OE2 GLU 544 48.202 1.00 47.19 n 3250 47.763 MOTA C GLU 544 19.584 1.00 40.49 0 MOTA 3251 0 GLU 544 47.742 18.450 79.867 1.00 34.80 0 46.898 MOTA 3252 545 20.538 79.994 N ILE 1.00 2.00 0 MOTA 3254 CA ILE 545 45.823 20.315 79.017 1.00 2.00 0 3255 MOTA ILE 545 44.805 21.487 78.959 CB 1.00 11.87 0 3256 1.00 MOTA CG2 ILE 545 43.645 21.102 78.064 6.53 0 MOTA 545 3257 44.288 21.836 CG1 ILE 80.353 1.00 16.65 43.267 80.361 77.605 MOTA 3258 CD1 545 22.955 ILE 1.00 13.01 O 3259 MOTA C ILE 545 20.149 1.00 2.00 0 19.267 ATOM 3260 545 1.00 9.05 0 ILE 45.960 76.868 0 47.302 MOTA 546 77.227 3261 N PHE 21.018 1.00 2.00 546 20.945 1.00 2.00 MOTA 3263 CA PHE 47.895 75.918 0 546 21.906 MOTA 3264 CB PHE 49.058 75.816 1.00 2.00 0 3265 PHE 23.335 75.875 MOTA 546 48.653 2.00 CG 1.00 0 MOTA 3266 CD1 PHE 546 49.512 24.293 76.399 1.00 2.00 0 ATOM 1.00 546 47.411 23.730 75.426 3267 CD2 PHE 2.00 0 49.127 MOTA 3268 CE1 PHE 546 25.630 76.473 1.00 2.00 0 3269 546 47.023 25.050 75.496 CE₂ PHE 1.00 2.00 0 **ATOM** 26.006 19.538 MOTA 3270 CZ PHE 546 47.881 76.020 1.00 2.00 0 1.00 48.374 75.658 2.00 ATOM 3271 546 0 PHE С MOTA 3272 0 PHE 546 48.141 18.990 74.596 1.00 2.00 0 49.012 76.647 1.00 3273 547 18.935 2.00 MOTA N LEU 0 MOTA 3275 CA LEU 547 49.527 17.582 76.506 1.00 2.00 0 77.654 77.582 MOTA 547 50.499 17.289 1.00 6.91 0 3276 LEU CB MOTA 3277 CG LEU 547 51.754 18.159 1.00 8.40 0 3278 52.096 18.701 547 78.934 1.00 16.17 0 CD1 MOTA LEU MOTA 3279 CD2 LEU 547 52.905 17.363 77.029 1.00 11.72 0 48.422 547 16.526 76.434 1.00 2.00 0 MOTA 3280 C LEU 75.946 MOTA 3281 0 LEU 547 48.642 15.414 1.00 6.91 0 548 47.230 16.881 76.903 1.00 5.34 0 MOTA 3282 SER N MOTA 548 46.091 15.964 76.898 1.00 5.34 0 3284 CA SER 16.356 17.389 77.993 1.00 36.19 0 548 45.099 MOTA 3285 CB SER 45.611 78.821 1.00 39.64 0 MOTA 3286 OG SER 548 548 45.374 15.975 75.552 1.00 5.34 O MOTA 3288 C SER 548 44.299 15.381 75.406 1.00 36.66 0 MOTA 3289 0 SER 16.649 74.569 1.00 23.79 0 549 45.968 MOTA 3290 N GLN 549 16.754 73.242 1.00 23.94 0 MOTA 3292 GLN 45.384 CA 549 18.128 73.084 1.00 46.80 0 MOTA 3293 CB GLN 44.751 18.354 549 43.567 73.990 1.00 38.43 0 MOTA 3294 GLN CG 74.054 1.00 38.53 0 MOTA 3295 549 43.180 19.800 CD GLN MOTA 549 43.934 20.672 73.624 1.00 46.42 0 3296 OE1 GLN 1.00 39.54 74.595 0 549 42.002 20.074 MOTA 3297 NE₂ GLN 46.456 72.182 1.00 25.87 0 MOTA 3300 549 16.547 GLN C 1.00 42.01 16.766 16.105 0 MOTA 3301 0 GLN 549 47.634 72.451 46.068 **ATOM** 70.963 1.00 2.00 0 550 3302 PRO N Ω **ATOM** 3303 PRO 550 44.729 15.738 70.469 1.00 36.68 CD **5**50 47.075 15.894 69.921 1.00 2.00 MOTA 3304 CA PRO MOTA 550 46.253 15.350 68.750 1.00 36.68 0 3305 CB PRO 68.988 44.886 15.915 1.00 36.68 0 MOTA 550 3306 CG PRO 47.816 17.184 69.580 1.00 **ATOM** 3307 C PRO 550 2.00 0 69.840 1.00 47.318 18.280 36.68 550 MOTA 3308 0 PRO 1.00 69.015 2.00 0 MOTA 3309 N ILE 551 49.013 17.046 49.824 18.198 68.626 1.00 2.00 0 **5**51 MOTA 3311 CA ILE 1.00 68.510 ATOM 3312 CB ILE **55**1 51.293 17.788 2.00 0 51.490 16.914 67.292 1.00 2.00 0 **5**51 MOTA 3313 CG2 ILE 1.00 2.00 19.021 68.475 0 52.182 MOTA CG1 ILE 551 3314

MOTA MOTA MOTA MOTA MOTA	3315 3316 3317 3318 3320	CD1 C O N CA	ILE ILE ILE LEU LEU	551 551 551 552 552	53.648 49.295 49.596 48.514 47.896	18.701 18.705 19.807 17.863 18.202	68.468 67.281 66.840 66.627 65.369	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0
ATOM ATOM ATOM	3321 3322 3323	CB CG CD1	LEU LEU LEU	552 552 552	48.287 47.809 48.082	17.148 17.215 18.532	64.320 62.867 62.209	1.00 2.00 1.00 2.00 1.00 2.00	0
ATOM ATOM ATOM ATOM	3324 3325 3326 3327	CD2 C O N	LEU LEU LEU LEU	552 552 553	48.544 46.397 45.753 45.881	16.174 18.180 17.124 19.352	62.131 65.728 65.734 66.100	1.00 2.00 1.00 2.00 1.00 2.00 1.00 20.15	0 0 0
ATOM ATOM ATOM	3329 3330 3331	CA CB CG	LEU LEU LEU	553 553 553	44.485 44.240 44.374	19.512 20.926 21.262	66.517 67.055 68.543	1.00 20.15 1.00 2.00 1.00 2.00	. O
MOTA MOTA MOTA	3332 3333 3334	CD1 CD2 C	LEU LEU	553 553 553	45.224 44.942 43.495	20.282 22.639 19.229	69.290 68.638 65.410	1.00 2.00 1.00 2.00 1.00 20.15	0
ATOM ATOM ATOM ATOM	3335 3336 3338 3339	O N CA CB	LEU GLU GLU	553 554 554 554	43.604 42.524 41.476 41.135	19.780 18.375 17.983 16.492	64.309 65.724 64.786 64.956	1.00 2.00 1.00 14.62 1.00 13.80 1.00 57.31	0 0 0
ATOM ATOM ATOM	3340 3341 3342	CG CD OE1	GLU GLU	554 554 554	42.326 43.168 42.918	15.550 15.310 15.957	65.177 63.927 62.887	1.00 69.83 1.00 73.58 1.00 82.45	0
MOTA MOTA MOTA MOTA	3343 3344 3345 3346	OE2 C O N	GLU GLU LEU	554 554 554 555	44.090 40.241 39.253 40.296	14.465 18.823 18.311 20.112	63.988 65.105 65.638 64.792	1.00 79.54 1.00 12.33 1.00 51.99 1.00 2.00	0 0 0 -
ATOM ATOM ATOM	3348 3349 3350	CA CB CG	LEU LEU	55 5 55 5 55 5	39.176 39.628 40.660	21.007 22.456 22.840	65.077 64.911 65.972	1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
MOTA MOTA MOTA MOTA	3351 3352 3353 3354	CD1 CD2 C	LEU LEU LEU	555 555 555 555	41.274 39.959 37.932 37.862	24.194 22.839 20.734 19.731	65.697 67.294 64.237 63.537	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
ATOM ATOM ATOM	3355 3357 3358	N CA CB	GLU GLU GLU	556 556 556	36.933 35.716 35.028	21.603 21.460 20.115	64.345 63.569 63.846	1.00 2.00 1.00 2.00 1.00 32.90	0
MOTA MOTA MOTA MOTA	3359 3360 3361 3362	CG CD OE1 OE2	GLU GLU GLU	556 556 556 556	34.175 32.935 32.792 32.101	20.063 19.176 18.188 19.477	65.100 64.941 65.711 64.047	1.00 48.42 1.00 58.49 1.00 60.59 1.00 59.64	0 0 0
MOTA MOTA MOTA	3363 3364 3365	C 0 N	GLU GLU ALA	556 556 557	34.736 35.067 33.544	22.583 23.580 22.423	63.826 64.446 63.257	1.00 2.00 1.00 16.83 1.00 2.00	0 0 0
ATOM ATOM ATOM ATOM	3367 3368 3369 3370	CA CB C	ALA ALA ALA ALA	557 557 557 557	32.398 31.747 32.701 33.711	23.330 23.013 24.826 25.191	63.427 64.788 63.286 62.671	1.00 2.00 1.00 47.62 1.00 2.00 1.00 40.85	0 0 0
ATOM ATOM ATOM	3371 3372 3373	N CD CA	PRO PRO PRO	558 558 558	31.811 30.459 32.123	25.711 25.558 27.139	63.802 64.353 63.658	1.00 2.00 1.00 2.44 1.00 2.00	0 0 0
MOTA MOTA MOTA MOTA	3374 3375 3376 3377	CB CG C	PRO PRO PRO PRO	558 558 558 558	30.786 29.798 33.190 32.975	27.826 26.759 27.648 27.616	63.951 63.843 64.627 65.844	1.00 2.53 1.00 2.44 1.00 2.00 1.00 7.53	0 0 0 0
MOTA MOTA MOTA	3378 3380 3381	N CA CB	LEU LEU LEU	559 559 559	34.325 35.349 36.568	28.119 28.689 27.769	64.112 64.982 65.148	1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
ATOM ATOM ATOM ATOM	3382 3383 3384 3385	CG CD1 CD2 C	LEU LEU LEU	559 559 559 559	37.592 38.620 36.885 35.769	27.571 26.563 27.083 30.038	64.050 64.476 62.830 64.435	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
ATOM ATOM ATOM ATOM	3386 3387 3389 3390	O N CA CB	LEU LYS LYS	559 560 560 560	35.444 36.461 36.932 36.359	30.389 30.804 32.115 33.143	63.311 65.260 64.889 65.843	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 20.44	0 0 0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3391 3392 3393 3394 3398 3399 3400 3402 3403 3404 3405	CG CD CE NZ C O N CA CB CG2 CG1	LYS LYS LYS LYS LYS LYS LYS ILE ILE ILE	560 560 560 560 560 561 561 561	36.612 35.574 34.253 33.706 38.426 38.908 39.164 40.606 41.095 42.566 40.204	34.562 35.512 35.452 34.083 31.990 31.624 32.244 32.106 31.318 30.913 30.076	65.427 66.018 65.278 65.225 66.117 63.986 64.017 62.750 62.891 62.558	1.00 20.44 1.00 20.44 1.00 20.44 1.00 20.44 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	00000000000
ATOM ATOM	3406 3407	CD1 C	ILE ILE	561 561	40.806 41.247	28.940 33.488	61.761 64.102	1.00 2.00 1.00 2.00	0
MOTA	3408	0	ILE	561	40.703	34.450	63.543	1.00 2.00	0
MOTA MOTA	3409 3411	N CA	CYS CYS	562 562	42.365 43.124	33.586 34.829	64.833 65.001	1.00 2.00 1.00 2.00	0
ATOM	3412	CB	CYS	562	42.793	35.464	66.339	1.00 2.00 1.00 13.31	0
MOTA	3413	SG	CYS	562	41.073	35.733	66.574	1.00 13.31	0
MOTA MOTA	3414 3415	С 0	CYS CYS	562 562	44.642 45.151	34.589 33.551	64.928 65.373	1.00 2.00 1.00 13.31	0
ATOM	3416	Ň	GLY	563	45.362	35.540	64.348	1.00 13.31	0
MOTA	3418	CA	GLY	563	46.805	35.424	64.252	1.00 2.00	0
MOTA MOTA	3419 3420	C	GLY GLY	563 563	47.546 46.997	36.260 36.556	65.291 66.351	1.00 2.00 1.00 5.66	0
ATOM	3421	N	ASP	564	48.780	36.649	64.958	1.00 2.00	Ö
MOTA	3423	CA	ASP	564	49.657	37.452	65.811	1.00 2.00	0
MOTA MOTA	3424 3425	CB CG	ASP ASP	564 564	50.7 0 5 51.724	38.191 37.270	64.964 64.321	1.00 2.00 1.00 2.00	0
MOTA	3426		ASP	564	51. 39 0	36.585	63.334	1.00 2.00	ŏ
MOTA	3427		ASP	564	52.876	37.249	64.786	1.00 2.00	0
MOTA MOTA	3428 3429	C 0	ASP ASP	564 564	48.981 48.395	38.497 39.442	66.693 66.189	1.00 2.00 1.00 2.00	0
MOTA	3430	N	ILE	56 5	49.094	38.327	68.009	1.00 31.53	0
MOTA MOTA	3432 3433	CA CB	ILE ILE	56 5 56 5	48.537 47.810	39.294 38.612	68.953 70.135	1.00 35.54	0
ATOM	3434	CG2	ILE	56 5	47.139	39.664	70.135	1.00 9.39 1.00 9.39	0
MOTA	3435	CG1	ILE	56 5	46.710	37.685	69.622	1.00 9.39	0
MOTA MOTA	3436 3437	CD1 C	ILE ILE	56 5 56 5	45.611 49.681	38.424 40.168	68.906 69.489	1.00 9.39 1.00 32.16	0
MOTA	3438	Ö	ILE	56 5	49.491	41.356	69.756	1.00 32.16	Ö
MOTA	3439	N	HIS	566	50.859	39.560	69.637	1.00 14.33	0
MOTA MOTA	3441 3442	CA C	HIS HIS	566 566	52.082 51. 95 8	40.219 41.227	70.111 71.245	1.00 15.67 1.00 16.54	0
MOTA	3443	ò	HIS	566	52.427	42.359	71.127	1.00 15.89	ő
MOTA	3444	CB	HIS	566	52.811	40.882	68.943	1.00 9.53	Ō
ATOM ATOM	3445 3446	CG ND1	HIS	56 6 56 6	53. 65 2 54. 82 9	39.936 39.391	68.1 5 3 68.605	1.00 9.53 1.00 9.53	0
MOTA	3448	CD2		5 6 6	53.470	39.432	66.910	1.00 9.53	ŏ
MOTA	3449	NE2		566	54.525	38.582	66.589	1.00 9.53	0
MOTA MOTA	3450 3451	CE1 N	HIS GLY	566 567	55.3 1 2 51.3 3 7	38.600 40.808	67.6 5 2 72.345	1.00 9.53 1.00 2.00	0
MOTA	3453	CA	GLY	567	51.170	41.686	73.490	1.00 2.00	0
ATOM	3454	C	GLY	567	50.249	42.894	73.375	1.00 2.00 1.00 3.59	0
MOTA MOTA	3455 3456	O N	GLY GLN	567 568	50. 26 9 49. 45 5	43.764 42.973	74.254 72.314	1.00 3.59 1.00 36.66	Ö
MOTA	3458	CA	GLN	568	48.527	44.086	72.141	1.00 34.60	0
MOTA	3459	CB	GLN	568	48.164	44.236	70.667 69.715	1.00 2.50	0
MOTA MOTA	3460 3461	CG CD	GLN GLN	568 568	49.345 49.768	44.164 45.507	69.144	1.00 3.37 1.00 3.10	0
MOTA	3462	OE1	GLN	568	50. 95 8	45.769	68.974	1.00 4.87	Ö
MOTA	3463	NE2	GLN	568	48.800	46.349	68.813	1.00 18.91	0
MOTA MOTA	3466 3467	C O	GLN GLN	568 568	47.280 46.253	43.730 43.365	72.950 72.380	1.00 34.26 1.00 7.33	0
MOTA	3468	N	TYR	569	47.363	43.864	74.272	1.00 2.00	0
MOTA	3470	CA	TYR	569	46.263	43.485	75.161	1.00 2.00	0
ATOM ATOM	3471 3472	CB CG	TYR TYR	569 569	46.664 45.692	43.687 43.048	76.626 77.600	1.00 26.93 1.00 27.02	0
MOTA	3473	CD1		569	45.401	41.684	77.526	1.00 22.43	ő

MOTA MOTA MOTA	3474 3475 3476	CE1 CD2 CE2	TYR TYR TYR	569 569 569	44.496 45.049 44.139	41.097 43.807 43.223	78.393 78.575 79.449	1.00 24.12 1.00 24.68 1.00 24.01	0
MOTA	3477	CZ	TYR	569	43.866	41.869	79.352	1.00 28.35 1.00 35.43	0
ATOM ATOM	3478 3480	OH C	TYR TYR	569 569	42.950 44.888	41.282 44.085	80.197 74.946	1.00 33.43	0
ATOM	3481	0	TYR	569	43.885	43.374	75.015	1.00 29.07	0
MOTA	3482 3484	N CA	TYR TYR	570 570	44.817 43.515	45.384 45.999	74.710 74.510	1.00 11.04 1.00 14.25	0
ATOM ATOM	3485	CB	TYR	570	43.599	47.505	74.766	1.00 46.12	ŏ
MOTA	3486	CG	TYR	570	43.577	47.792	76.261	1.00 51.43	0
ATOM ATOM	3487 3488	CD1 CE1	TYR TYR	570° 570	44.749 44.715	47.743 47.952	77.025 78.398	1.00 48.11 1.00 52.04	0
ATOM	3489	CD2	TYR	570	42.375	48.063	76.917	1.00 49.50	ŏ
MOTA	3490	CE2	TYR	570	42.340	48.272	78.277	1.00 51.48	0
ATOM ATOM	3491 3492	CZ OH	TYR TYR	570 570	43.507 43.452	48.215 48.426	79.010 80.359	1.00 53.24 1.00 54.97	0
ATOM	3494	C	TYR	570	42.929	45.653	73.152	1.00 13.58	ŏ
MOTA	3495	0	TYR	570	41.708	45.654	72.967	1.00 43.14	0
MOTA MOTA	3496 3498	N CA	ASP ASP	571 571	43.813 43.402	45.311 44.903	72.217 70.891	1.00 12.28 1.00 11.58	0
MOTA	3499	CB	ASP	571	44.590	44.870	69.975	1.00 6.85	ŏ
MOTA	3500	CG	ASP	571	45.128	46.237	69.733	1.00 12.88	0
MOTA MOTA	3501 3502	OD1 OD2		571 571	46.254 44.402	46.522 47.044	70.185 69.110	1.00 19.21 1.00 16.01	0
ATOM	3503	C	ASP	571	42.818	43.539	71.062	1.00 14.93	0
MOTA	3504	0	ASP	571 572	41.775	43.247	70.507	1.00 19.59	0
ATOM ATOM	3505 3507	N CA	LEU	572 572	43.487 42.977	42.707 41.378	71.853 72.147	1.00 2.00 1.00 2.00	0
MOTA	3508	СВ	LEU	57 2	43.909	40.641	73.110	1.00 2.00	0
ATOM	3509	CG	LEU	5 7 2	43.302	39.416	73.820	1.00 2.00 1.00 2.00	0
ATOM ATOM	3510 3511	CD1		572 - 572	43.061 44.227	38.267 38.982	72.832 74.955	1.00 2.00 1.00 2.00	0
ATOM	3512	c	LEU	572	41.579	41.554	72.771	1.00 2.00	0
ATOM	3513	0	LEU	57 2 57 3	40.678 41.395	40.758 42.604	72.512 73.572	1.00 2.00 1.00 9.95	0
MOTA MOTA	3514 3516	N CA	LEU LEU	573 573	40.092	42.874	74.195	1.00 6.25	ŏ
MOTA	3517	CB	LEU	57 3	40.224	43.910	75.317	1.00 2.00	0
MOTA MOTA	3518 3519	CG CD1	LEU	573 573	40.807	43.360 44.416	76.625 77.717	1.00 2.00 1.00 2.00	0
ATOM	3520	CD2		57 3	40.079	42.053	77.033	1.00 2.00	ŏ
MOTA	3521	C	LEU	57 3	39.055	43.344	73.170	1.00 4.08	0
MOTA MOTA	3522 3523	O N	LEU ARG	57 3 574	37.865 39.518	42.974 44.153	73.260 72.203	1.00 2.00 1.00 13.12	0
ATOM	3 52 5	CA	ARG	574	38.682	44.665	71.115	1.00 12.30	Ö
MOTA	3526	CB	ARG	574	39.491	45.598	70.212	1.00 30.04	0
MOTA MOTA	3527 3528	CD	ARG ARG	574 574	39. 704 40.697	46.994 47.811	70.757 69.915	1.00 31.00 1.00 35.07	0
MOTA	3529	NE	ARG	574	40.294	47.989	68.514	1.00 36.10	ŏ
MOTA	3531	CZ	ARG	574	41.018	48.625	67.587	1.00 36.14	0
MOTA MOTA	3532 3535	NH1 NH2		574 574	42.198 40.565	49.162 48.713	67.890 66.341	1.00 35.84 1.00 40.46	0
MOTA	3538	C	ARG	574	38. 26 5	43.440	70.324	1.00 10.99	0
ATOM	3539	0	ARG	574	37.092	43.253	70.004	1.00 30.16	0 0
ATOM ATOM	3540 3542	N CA	LEU LEU	575 575	39.260 39.156	42.591 41.339	70.066 69.323	1.00 2.00 1.00 2.00	0
ATOM	3543	CB	LEU	57 5	40.471	40.578	69.502	1.00 18.14	0
ATOM	3544	CG	LEU	57 5 57 5	41.058	39.569	68.514 68.370	1.00 18.14 1.00 18.14	0
MOTA MOTA	3545 3546	CD1 CD2		57 5	40.112 41.355	38.378 40.249	67.176	1.00 18.14	0
MOTA	3547	С	LEU	57 5	37.970	40.494	69.801	1.00 2.00	0
ATOM ATOM	3548 3549	O N	LEU PHE	575 576	37.121 37.908	40.081 40.247	69.001 71.103	1.00 18.14 1.00 29.25	0 0
ATOM	3551	N CA	PHE	576	36.823	39.459	71.664	1.00 29.25	0
MOTA	355 2	CB	PHE	576	37.115	39.098	73.119	1.00 2.00	Ò
ATOM ATOM	3 5 53 3 5 54	CG CD1	PHE PHE	576 576	38.116 39.158	38.001 38.111	73.270 74.184	1.00 2.00 1.00 2.00	0
ATOM	3555	CD2		576	38.022	36.855	72.491	1.00 2.00	,o

ATOM 3574 CB TYR 578 35.208 41.834 66.564 1.00 35.56 0 ATOM 3575 CG TYR 578 35.703 43.245 66.356 1.00 40.25 0 ATOM 3577 CE1 TYR 578 35.598 43.865 65.111 1.00 40.27 0 ATOM 3577 CE1 TYR 578 36.062 45.168 64.917 1.00 44.74 0 ATOM 3577 CE2 TYR 578 36.062 45.168 64.917 1.00 44.74 0 ATOM 3578 CD2 TYR 578 36.062 45.168 64.917 1.00 44.74 0 ATOM 3579 CE2 TYR 578 36.062 45.168 64.917 1.00 42.53 0 ATOM 3580 CZ TYR 578 36.636 45.853 65.979 1.00 49.98 0 ATOM 3581 OH TYR 578 36.636 45.853 65.979 1.00 49.98 0 ATOM 3583 C TYR 578 33.467 40.303 67.458 1.00 54.82 0 ATOM 3583 C TYR 578 33.467 40.303 67.458 1.00 49.18 0 ATOM 3585 N GLY 579 34.271 39.307 67.797 1.00 2.60 0 ATOM 3587 CA GLY 579 33.787 37.949 67.713 1.00 6.22 0 ATOM 3588 C GLY 579 33.773 73.628 68.755 1.00 8.52 0 ATOM 3589 O GLY 579 31.555 37.446 68.437 1.00 39.88 0 ATOM 3590 N GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3593 C GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 12.63 0 ATOM 3597 CA PHE 581 33.307 37.067 73.348 1.00 12.63 0 ATOM 3598 CB PHE 581 33.307 37.067 73.348 1.00 12.63 0 ATOM 3599 CG PHE 581 33.857 37.263 75.744 1.00 2.00 0 ATOM 3599 C PHE 581 33.857 37.263 75.744 1.00 2.00 0 ATOM 3590 C PHE 581 34.16 36.500 74.432 1.00 12.63 0 ATOM 3600 CD1 PHE 581 34.16 36.500 74.432 1.00 12.63 0 ATOM 3600 CD1 PHE 581 34.16 36.500 74.432 1.00 12.63 0 ATOM 3600 CD1 PHE 581 34.16 36.500 74.432 1.00 12.63 0 ATOM 3600 CD PHE 581 34.884 40.941 75.687 1.00 2.00 0 ATOM 3600 CD PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3600 CD PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3600 CD PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3601 CD PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3602 CE PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3601 CD PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3601 CD PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3602 CP PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3601 CD PRO 582 35.021 34.243 74.371 1.00 86.40 0 ATOM 3601 CD PRO 582 35.021 34.243	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3570 3571	OE2 C O N	PHE PHE PHE GLU	576 576 576 576 577 577 577 577 577 577	40.097 38.960 40.000 35.479 34.433 35.504 34.273 34.561 35.032 35.688 36.439 35.461 33.654 32.435 34.509	37.098 35.828 35.953 40.164 39.517 41.484 42.259 43.731 44.001 45.347 45.522 46.224 42.091 42.156 41.901	74.324 72.621 73.540 71.573 71.648 71.421 71.307 71.566 72.971 73.113 74.099 72.245 69.928 69.772 68.928	1.00 2.00 1.00 2.00 1.00 2.00 1.00 29.95 1.00 2.00 1.00 21.04 1.00 23.58 1.00 40.21 1.00 50.88 1.00 55.67 1.00 63.14 1.00 25.67 1.00 44.83 1.00 51.92	00000000000000
ATOM 3576 CD1 TYR 578 35.703 43.245 66.356 1.00 40.25 0 ATOM 35776 CD1 TYR 578 35.598 43.865 65.311 1.00 40.27 0 ATOM 35778 CD2 TYR 578 36.062 45.168 64.917 1.00 44.74 0 ATOM 3578 CD2 TYR 578 36.062 45.168 64.917 1.00 44.71 0 ATOM 3578 CD2 TYR 578 36.062 45.168 64.917 1.00 42.53 0 ATOM 3580 CZ TYR 578 36.636 45.853 65.979 1.00 42.53 0 ATOM 3581 OH TYR 578 37.106 47.131 65.812 1.00 42.53 0 ATOM 3581 OH TYR 578 37.106 47.131 65.812 1.00 54.82 0 ATOM 3588 OH TYR 578 33.467 40.303 67.458 1.00 49.18 0 ATOM 3588 OH TYR 578 33.467 40.303 67.458 1.00 49.18 0 ATOM 3588 OH TYR 578 33.467 40.303 67.458 1.00 49.18 0 ATOM 3588 OH TYR 579 34.271 39.307 67.797 1.00 2.60 0 ATOM 3588 OH TYR 579 34.271 39.307 67.797 1.00 2.60 0 ATOM 3588 OH GLY 579 32.737 37.628 68.755 1.00 8.52 0 ATOM 3589 OH GLY 579 32.737 37.628 68.755 1.00 8.52 0 ATOM 3590 N GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3591 C GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3593 C GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 44.94 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 44.94 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 44.94 0 ATOM 3597 CA PHE 581 33.307 37.067 73.348 1.00 2.00 0 ATOM 3598 CB PHE 581 33.307 37.067 73.348 1.00 2.00 0 ATOM 3599 CG PHE 581 33.357 77.263 75.744 1.00 2.00 0 ATOM 3590 C PHE 581 34.116 36.500 74.432 1.00 12.00 0 ATOM 3601 CD2 PHE 581 34.116 36.500 74.432 1.00 12.00 0 ATOM 3603 CE2 PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.679 38.452 75.885 1.00 2.00 0 ATOM 3601 CD2 PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3603 CE2 PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3601 CD2 PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3603 CE2 PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3601 CD2 PHE 581 33.913 34.999 77.657 1.00 2.00 0 ATOM 3602 CD PHE 581 33.913 34.999 77.657 1.00 2.00 0 ATOM 3603 CE2 PHE 581 33.913 34.999 77.657 1.00 2.00 0 ATOM 3604 CZ PHE 581 33.913 34.999 77.657 1.00 2.00 0 ATOM 3608 CD PRO 582 33.9866 31.958 75.425 1.00 2.00 0 ATOM 3609 C PHE 583 39	ATOM ATOM	3573 3574	CA CB	TYR TYR	578 578	34.052 35.208	41.700	67.561 66.564	1.00 48.79	0
ATOM 3578 CD TYR 578 36.062 45.168 64.917 1.00 44.74 0 ATOM 3578 CD TYR 578 36.281 43.960 67.317 1.00 45.71 0 ATOM 3578 CD TYR 578 36.747 45.258 67.217 1.00 42.53 0 ATOM 3580 CZ TYR 578 36.636 45.853 65.979 1.00 42.53 0 ATOM 3581 C TYR 578 37.106 47.131 65.812 1.00 54.82 0 ATOM 3583 C TYR 578 33.467 40.303 67.458 1.00 49.18 0 ATOM 3583 C TYR 578 33.467 40.303 67.458 1.00 49.18 0 ATOM 3588 C TYR 578 33.467 40.303 67.458 1.00 35.27 0 ATOM 3588 C GLY 579 34.271 39.307 67.797 1.00 2.660 0 ATOM 3588 C GLY 579 32.737 37.628 68.755 1.00 8.22 0 ATOM 3589 O GLY 579 32.737 37.628 68.755 1.00 8.22 0 ATOM 3589 O GLY 579 31.555 37.446 68.437 1.00 39.88 0 ATOM 3590 N GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3593 C GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3595 N PHE 581 33.307 37.667 73.348 1.00 44.94 O ATOM 3595 N PHE 581 33.307 37.667 73.348 1.00 44.94 O ATOM 3595 C G PHE 581 33.307 37.667 73.348 1.00 12.63 O ATOM 3590 C GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3590 C GLY 580 33.991 36.491 72.151 1.00 2.00 0 ATOM 3595 C G PHE 581 33.307 37.667 73.348 1.00 12.63 O ATOM 3590 C G PHE 581 34.116 36.500 74.432 1.00 12.63 O ATOM 3590 C G PHE 581 33.307 37.667 73.348 1.00 12.63 O ATOM 3590 C G PHE 581 34.679 38.5415 71.853 1.00 2.00 0 ATOM 3590 C G PHE 581 34.679 38.5427 75.885 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.679 38.5427 75.885 1.00 2.00 0 ATOM 3603 C C2 PHE 581 34.679 38.499 74.611 1.00 2.00 0 ATOM 3603 C C2 PHE 581 34.679 38.499 74.611 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.679 38.499 74.611 1.00 2.00 0 ATOM 3603 C C2 PHE 581 36.979 77.799 74.611 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.679 38.499 74.611 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.679 38.499 74.611 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.679 38.499 74.611 1.00 2.00 0 ATOM 3601 CD2 PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3601 CD2 PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3602 C PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3601 CD2 PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3602 C PHE 581 33.91			CG	TYR	57 8	35.703	43.245	66.356	1.00 40.25	
ATOM 3578 CD2 TYR 578 36.281 43.960 67.399 1.00 45.71 0 ATOM 3580 CZ TYR 578 36.636 45.853 65.979 1.00 49.98 0 ATOM 3581 OH TYR 578 37.106 47.131 65.812 1.00 42.53 0 ATOM 3581 OH TYR 578 37.106 47.131 65.812 1.00 49.98 0 ATOM 3583 C TYR 578 32.316 40.124 67.081 1.00 35.27 0 ATOM 3585 N GLY 579 34.271 39.307 67.797 1.00 2.60 0 ATOM 3588 C GLY 579 33.787 37.628 68.755 70.006 1.00 2.00 0 ATOM 3589 O GLY 579 31.555 37.446 68.437 1.00 39.88 0 ATOM 3589 O GLY 579 31.555 37.446 68.437 1.00 39.88 0 ATOM 3590 N GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3595 N PHE 581 33.307 37.628 67.140 1.00 2.00 0 ATOM 3595 N PHE 581 33.307 37.667 73.348 1.00 15.06 0 ATOM 3599 C G HHE 581 33.307 37.667 73.348 1.00 15.06 0 ATOM 3599 C G HHE 581 33.367 37.263 75.744 1.00 2.00 0 ATOM 3599 C G HHE 581 33.367 37.263 75.744 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3600 CD2 PHE 581 34.136 39.983 75.557 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.867 39.864 0.00 CD PHE 581 34.679 38.497 76.348 1.00 12.63 0 ATOM 3600 CD2 PHE 581 34.867 39.867 76.346 1.00 2.00 0 ATOM 3600 CD2 PHE 581 34.867 39.863 75.557 1.00 2.00 0 ATOM 3600 CD2 PHE 581 34.867 39.867 76.346 1.00 2.00 0 ATOM 3600 CD2 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3600 CD2 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3600 CD2 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3600 CD2 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3600 CD2 PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3601 CD2 PHE 581 34.679 38.495 76.346 1.00 2.00 0 ATOM 3601 CD2 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3601 CD2 PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3601 CD2 PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3601 CD2 PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3601 CD2 PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3601 CD2 PHE 581 36.950 37.950 37.950 1.00 50.46 0 ATOM 3602 C PHE 581 32.950 37.950 37.950 1.00 50.46 0 ATOM 3602 C PHE 583 33.909 33.622 77.269 1.00 53.59 0 ATOM 3601 CD PRO 583 31.90 37.950 7										
ATOM 3580 CZ TYR 578 36.636 67.217 1.00 42.53 0 ATOM 3581 CZ TYR 578 36.636 65.979 1.00 49.98 0 ATOM 3583 C TYR 578 33.467 40.303 65.812 1.00 49.98 0 ATOM 3583 C TYR 578 33.467 40.303 67.458 1.00 49.18 0 ATOM 3585 N GLY 579 34.271 39.307 67.797 1.00 2.60 0 ATOM 3585 N GLY 579 34.271 39.307 67.797 1.00 2.60 0 ATOM 3588 C GLY 579 34.271 39.307 67.797 1.00 2.60 0 ATOM 3588 C GLY 579 31.555 37.446 68.437 1.00 49.18 0 ATOM 3589 O GLY 579 31.555 37.446 68.437 1.00 39.88 0 ATOM 3589 O GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3592 CA GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 12.63 0 ATOM 3598 C GLY 580 33.373 7.067 73.348 1.00 44.94 0 ATOM 3599 C G PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3598 C B PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3599 C G PHE 581 34.136 39.783 75.544 1.00 2.00 0 ATOM 3599 C G PHE 581 34.136 39.783 75.544 1.00 2.00 0 ATOM 3600 CDI PHE 581 34.3677 37.263 75.744 1.00 2.00 0 ATOM 3600 CDI PHE 581 34.3677 37.263 75.744 1.00 2.00 0 ATOM 3600 CDI PHE 581 34.3679 38.542 75.885 1.00 2.00 0 ATOM 3600 CDI PHE 581 34.3679 38.542 75.885 1.00 2.00 0 ATOM 3600 CDI PHE 581 34.3677 37.263 75.744 1.00 2.00 0 ATOM 3600 CDI PHE 581 34.363 97.783 75.575 1.00 2.00 0 ATOM 3600 CDI PHE 581 34.363 97.783 75.575 1.00 2.00 0 ATOM 3606 CD PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 CD PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 CD PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 CD PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 CD PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 CD PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 CD PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 CD PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 CD PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 CD PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 CD PHE 581 36.958 39.959 30.552 76.475 1.00 2.00 0 ATOM 3606 CD PHE 581 36.958 39.959 30.552	MOTA									
ATOM 3581 C TYR 578 37.106 47.131 65.812 1.00 54.82 0 ATOM 3583 C TYR 578 32.316 40.124 67.081 1.00 35.27 0 ATOM 3585 N GLY 579 34.271 39.307 67.777 1.00 2.60 0 ATOM 3587 CA GLY 579 32.737 37.628 68.755 1.00 89.18 0 ATOM 3588 C GLY 579 32.737 37.628 68.755 1.00 89.18 0 ATOM 3589 O GLY 579 31.555 37.446 68.437 1.00 39.88 0 ATOM 3590 N GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3591 C GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3592 CA GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 15.06 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 12.63 0 ATOM 3595 C PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3598 CB PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3599 CG PHE 581 34.136 39.783 75.574 1.00 2.00 0 ATOM 3599 CG PHE 581 34.136 39.783 75.574 1.00 2.00 0 ATOM 3600 CDJ PHE 581 34.136 39.783 75.574 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.136 39.783 75.574 1.00 2.00 0 ATOM 3600 CDJ PHE 581 34.33.857 37.263 75.744 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.33.857 76.346 1.00 2.00 0 ATOM 3604 CZ PHE 581 34.33 9.783 75.574 1.00 2.00 0 ATOM 3605 C PHE 581 34.33 40.975 76.346 1.00 2.00 0 ATOM 3606 CD PRO 582 36.304 40.941 75.687 1.00 2.00 0 ATOM 3606 CD PRO 582 36.398 32.675 75.744 1.00 2.00 0 ATOM 3606 CD PRO 582 36.398 32.675 75.774 1.00 2.00 0 ATOM 3606 CD PRO 582 36.398 32.675 75.777 1.00 86.40 0 ATOM 3606 CD PRO 582 36.398 32.675 75.777 1.00 86.40 0 ATOM 3606 CD PRO 582 36.398 32.675 75.777 1.00 86.40 0 ATOM 3607 N PRO 582 36.398 32.675 75.777 1.00 86.40 0 ATOM 3610 CB PRO 582 37.266 33.632 77.269 1.00 51.24 0 ATOM 3611 CG PRO 582 33.816 30.796 75.012 1.00 0.58 0 ATOM 3616 CB PRO 583 33.816 30.796 75.012 1.00 0.58 0 ATOM 3617 CB PRO 583 33.816 30.796 75.012 1.00 0.58 0 ATOM 3618 CG PRO 583 33.816 30.976 75.012 1.00 0.58 0 ATOM 3619 C PRO 583 33.816 30.976 75.012 1.00 0.58 0 ATOM 3620 C PRO 583 33.816 30.976 75.012 1.00 0.58 0 ATOM 3621 N PRO 583 33.816 30.976 75.012 1.00 0.58 0 ATOM 3622 C PRO 583 33.816 30.976 77.599 1.00 51.24 0 ATOM 3623 CA GLU 584 30.325 31.328 77.269 1.00 51							45.258	67.217	1.00 42.53	
ATOM 3583 C TYR 578 33.467 40.303 67.458 1.00 49.18 0 ATOM 3585 N GLY 579 34.271 39.307 67.797 1.00 2.60 0 ATOM 3587 CA GLY 579 33.787 37.628 68.757 1.00 2.60 0 ATOM 3589 C GLY 579 31.555 37.446 68.437 1.00 39.88 0 ATOM 3590 N GLY 580 32.314 37.557 70.006 1.00 2.00 0 ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 12.63 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 15.06 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 15.06 0 ATOM 3598 CB PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3598 CB PHE 581 34.416 36.500 74.432 1.00 12.63 0 ATOM 3590 C PHE 581 34.679 38.495 75.557 1.00 2.00 0 ATOM 3590 N PHE 581 34.679 38.495 75.557 1.00 2.00 0 ATOM 3590 N PHE 581 34.416 36.500 74.432 1.00 12.63 0 ATOM 3590 C PHE 581 34.416 39.783 75.557 1.00 2.00 0 ATOM 3590 C PHE 581 34.416 39.783 75.557 1.00 2.00 0 ATOM 3590 C PHE 581 34.416 39.783 77.263 75.744 1.00 2.00 0 ATOM 3590 C PHE 581 34.416 39.783 75.557 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.679 38.542 75.885 1.00 2.00 0 ATOM 3600 CD2 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.204 40.875 76.146 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.204 40.875 76.146 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.204 40.875 76.146 1.00 2.00 0 ATOM 3605 C PHE 581 36.204 40.875 76.146 1.00 2.00 0 ATOM 3605 C PHE 581 36.204 40.875 76.146 1.00 2.00 0 ATOM 3605 C PHE 581 36.204 40.875 76.146 1.00 2.00 0 ATOM 3606 CD PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3606 CD PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3606 CD PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3610 CB PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3610 CB PRO 582 36.360 34.852 77.769 1.00 2.00 0 ATOM 3610 CB PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3610 CB PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3610 CB PRO 582 36.360 34.852 74.861 1.00 13.00 0 ATOM 3610 CB PRO 583 31.616 32.765 75.737 1.00 85.20 0 ATOM 3610 CB PRO 583 31.616 32.765 75.737 1.00 85.81 0 ATOM 3610 CB PRO 583 31.616 30.997 77.550 1.00 53.59 0 ATOM 3610 CB PRO 583 31.616 31.283 7	-									
ATOM 3584 O TYR 578 32.316 40.124 67.081 1.00 35.27 0 ATOM 3585 N GLY 579 34.271 39.307 67.771 1.00 2.60 0 ATOM 3587 CA GLY 579 32.737 37.628 68.755 1.00 8.52 0 ATOM 3589 O GLY 579 32.737 37.628 68.755 1.00 8.52 0 ATOM 3590 N GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3591 C GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3592 CA GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 15.06 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 15.06 0 ATOM 3595 N PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3598 CB PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3598 CB PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3598 CB PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3602 CE1 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3603 CE2 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3603 CE2 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3606 O PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 O PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3606 O PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3606 O PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3606 O PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3606 O PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3606 O PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3606 O PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3606 O PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3606 O PHE 581 33.913 34.999 74.611 1.00 2.00 0 ATOM 3608 CD PRO 582 35.021 34.243 74.737 1.00 2.00 0 ATOM 3608 CD PRO 582 35.021 34.243 74.737 1.00 2.00 0 ATOM 3608 CD PRO 582 35.021 34.243 74.737 1.00 2.00 0 ATOM 3608 CD PRO 582 35.021 34.243 74.737 1.00 2.00 0 ATOM 3610 CB PRO 582 35.363 30.950 31.550 75.757 1.00 2.00 0 ATOM 3610 CB PRO 582 33.966 31.958 75.425 1.00 2.00 0 ATOM 3610 CB PRO 582 33.966 31.958 75.425 1.00 2.00 0 ATOM 3610 CB PRO 583 33.966 31.958 75.425 1.00	ATOM									-
ATOM 3587 CA CLY 579 33.787 37.949 67.713 1.00 6.22 0 ATOM 3588 C GLY 579 31.555 37.466 68.755 1.00 8.52 0 ATOM 3590 N GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3592 CA GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3595 N PHE 581 33.307 37.667 73.348 1.00 44.94 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 15.06 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 15.06 0 ATOM 3597 CA PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3598 C PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3598 C PHE 581 34.163 39.737 37.557 7.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MOTA			TYR		32.316	40.124	67.081	1.00 35.27	0
ATOM 3588 C GLY 579 32.737 37.628 68.755 1.00 8.52 0 ATOM 3599 N GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3592 CA GLY 580 32.342 37.236 71.140 1.00 2.00 0 ATOM 3593 C GLY 580 33.194 37.557 70.006 1.00 2.00 0 ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3594 O GLY 580 33.725 35.415 71.853 1.00 44.94 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 15.06 0 ATOM 3597 CA PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3598 CB PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3598 CB PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3590 CG PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.884 40.941 75.687 1.00 2.00 0 ATOM 3603 CE2 PHE 581 34.884 40.941 75.687 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3604 CZ PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3604 CZ PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 C PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3604 CZ PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 C PHE 581 32.782 34.521 74.647 1.00 2.00 0 ATOM 3606 C PHE 581 32.782 34.521 74.647 1.00 2.00 0 ATOM 3606 C PHE 581 32.782 34.521 74.647 1.00 2.00 0 ATOM 3607 N PRO 582 35.141 32.795 74.910 1.00 24.62 0 ATOM 3610 CB PRO 582 35.141 32.795 74.910 1.00 24.62 0 ATOM 3611 CG PRO 582 33.966 31.958 75.737 1.00 86.40 0 ATOM 3611 CG PRO 582 33.966 31.958 75.757 77.79 1.00 86.40 0 ATOM 3612 C PRO 583 33.900 33.632 77.569 1.00 53.59 0 ATOM 3616 CA PRO 583 33.900 33.632 77.599 1.00 53.59 0 ATOM 3618 CG PRO 583 33.900 33.632 77.504 1.00 13.55 0 ATOM 3618 CG PRO 583 33.900 33.632 77.504 1.00 13.55 0 ATOM 3618 CG PRO 583 33.900 33.632 77.504 1.00 90.41 0 ATOM 3621 C PRO 583 33.900 33.632 77.504 1.00 90.91 0 ATOM 3624 CB GLU 584 30.393 32.383 74.663 1.00 90.91 0 90.91 0 0 ATOM 3625 CG GLU 584 28.955 34.213 70.91 1.00 90.91 0 0 ATOM 3628 CC GLU 584 2								67.797		
ATOM 3589 O GLY 579 31.555 37.446 68.437 1.00 39.88 O ATOM 3590 N GLY 580 33.194 37.257 70.006 1.00 2.00 O ATOM 3593 C GLY 580 32.342 37.236 71.140 1.00 2.00 O ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 2.00 O ATOM 3594 O GLY 580 33.191 36.491 72.151 1.00 2.00 O ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 15.06 O ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 12.63 O ATOM 3599 CG PHE 581 34.116 36.500 74.32 1.00 12.63 O ATOM 3599 CG PHE 581 34.679 38.542 75.885 1.00 2.00 O ATOM 3599 CG PHE 581 34.679 38.542 75.885 1.00 2.00 O ATOM 3600 CD1 PHE 581 34.679 38.542 75.885 1.00 2.00 O ATOM 3601 CD2 PHE 581 34.894 40.941 75.687 1.00 2.00 O ATOM 3602 CE1 PHE 581 34.894 40.941 75.687 1.00 2.00 O ATOM 3602 CE1 PHE 581 36.757 39.659 76.475 1.00 2.00 O ATOM 3603 CE2 PHE 581 36.757 39.659 76.475 1.00 2.00 O ATOM 3605 C PHE 581 33.913 34.999 74.461 1.00 12.63 O ATOM 3605 C PHE 581 33.913 34.999 74.461 1.00 12.63 O ATOM 3605 C PHE 581 33.913 34.999 74.461 1.00 12.63 O ATOM 3605 C PHE 581 33.913 34.999 74.4647 1.00 2.00 O ATOM 3605 C PHE 581 33.913 34.999 74.4647 1.00 2.00 O ATOM 3607 N PRO 582 35.021 34.521 74.647 1.00 2.00 O ATOM 3608 CD PRO 582 35.021 34.423 74.737 1.00 21.81 O ATOM 3608 CD PRO 582 35.141 32.795 74.910 1.00 24.62 O ATOM 3610 CB PRO 582 36.360 34.852 74.820 1.00 85.20 O ATOM 3610 CB PRO 582 36.360 34.852 74.820 1.00 85.20 O ATOM 3610 CB PRO 582 33.966 31.958 75.025 1.00 85.20 O ATOM 3611 CG PRO 582 33.966 31.958 75.025 1.00 85.50 O ATOM 3610 CB PRO 582 33.966 31.958 75.025 1.00 85.50 O ATOM 3611 CB PRO 583 33.909 33.632 77.759 1.00 53.59 O ATOM 3612 C PRO 583 33.909 31.500 76.681 1.00 13.55 O ATOM 3612 C PRO 583 33.909 33.632 77.759 1.00 53.59 O ATOM 3616 CB PRO 583 33.909 33.632 77.550 1.00 53.59 O ATOM 3617 CB PRO 583 33.909 33.632 77.550 1.00 53.59 O ATOM 3618 CG PRO 583 33.909 33.500 77.550 1.00 53.59 O ATOM 3619 C PRO 583 33.909 33.500 77.550 1.00 53.59 O ATOM 3619 C PRO 583 33.909 33.500 77.550 1.00 53.59 O ATOM 3619 C PRO 583 33.909 33.500 77.550 1.00 53.59 O ATOM 3625 CG GLU 584 30.935 31.283 73	ATOM									
ATOM 3592 CA GLY 580 32.342 37.236 71.140 1.00 2.00 0 ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3594 O GLY 580 33.725 35.415 71.853 1.00 44.94 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 15.06 0 ATOM 3597 CA PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3599 CG PHE 581 33.857 37.263 75.744 1.00 2.00 0 ATOM 3599 CG PHE 581 34.679 38.542 75.885 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.679 38.542 75.885 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3602 CE1 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.757 39.659 76.476 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.204 40.875 76.146 1.00 2.00 0 ATOM 3605 C PHE 581 32.782 34.521 74.647 1.00 2.00 0 ATOM 3607 N PRO 582 35.021 34.243 74.737 1.00 21.63 0 ATOM 3608 CD PRO 582 36.360 34.852 74.820 1.00 24.62 0 ATOM 3608 CD PRO 582 36.398 32.675 75.708 1.00 24.62 0 ATOM 3610 CB PRO 582 36.398 32.675 75.708 1.00 85.20 0 ATOM 3610 CB PRO 582 37.266 33.636 75.708 1.00 87.84 0 ATOM 3611 CG PRO 582 37.266 33.636 75.708 1.00 87.84 0 ATOM 3611 CG PRO 582 37.266 33.636 75.708 1.00 87.84 0 ATOM 3612 C PRO 582 37.266 33.636 75.708 1.00 87.84 0 ATOM 3616 CB PRO 582 37.266 33.636 75.708 1.00 87.84 0 ATOM 3616 CB PRO 582 37.266 33.636 75.008 1.00 87.84 0 ATOM 3616 CB PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3616 CB PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3616 CB PRO 583 33.160 32.466 76.374 1.00 13.55 0 ATOM 3616 CB PRO 583 33.160 32.215 77.759 1.00 53.59 0 ATOM 3617 CB PRO 583 33.160 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3624 CB GLU 584 30.322 33.316 33.93 73.412 1.00 39.44 0 ATOM 3627 OE1 GLU 584 30.325 33.316 30.90 76.681 1.00 39.44 0 ATOM 3628 CB GLU 584 30.323 33.93 73.632 77.269 1.00 53.59 0 ATOM 3628 CB GLU 584 30.325 33.160 70.00 70.918 1.00 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.10 0 90.1							37.446			0
ATOM 3593 C GLY 580 33.191 36.491 72.151 1.00 2.00 0 ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 15.06 0 ATOM 3597 CA PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3599 CB PHE 581 34.679 38.542 75.885 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.679 38.542 75.885 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3603 CE2 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3604 CZ PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 O PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 C PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 C PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 C PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 C PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 C PHE 581 36.757 39.659 76.4647 1.00 2.00 0 ATOM 3606 C PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3606 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 C PHE 581 32.762 34.521 74.647 1.00 2.00 0 ATOM 3609 CA PRO 582 35.021 34.243 74.647 1.00 2.00 0 ATOM 3609 CA PRO 582 35.141 32.795 74.910 1.00 24.62 0 ATOM 3610 CB PRO 582 35.141 32.795 74.910 1.00 24.62 0 ATOM 3611 CG PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3610 CB PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3611 CG PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3612 C PRO 583 33.966 31.958 75.425 1.00 28.53 0 ATOM 3613 O PRO 583 33.966 31.958 75.425 1.00 28.53 0 ATOM 3614 N PRO 583 33.966 31.958 75.425 1.00 28.53 0 ATOM 3615 CD PRO 583 33.966 31.958 75.425 1.00 28.53 0 ATOM 3616 CD PRO 583 33.966 31.958 75.425 1.00 28.53 0 ATOM 3617 CB PRO 583 33.966 31.958 75.425 1.00 28.53 0 ATOM 3618 CG PRO 583 33.966 31.958 75.425 1.00 35.89 0 ATOM 3619 C PRO 583 33.966 31.958 75.425 1.00 35.89 0 ATOM 3620 C PRO 583 33.966 31.958 75.425 1.00 35.89 0 ATOM 3621 N GLU 584 30.955 30.152 77.759 1.00 50.46 0 ATOM 3622 CG GLU 584 30.333 32.439 73.412 1.00 95.41 0 ATOM 3628 CC GLU 584 30.333 32.439 70.918 1.00 95.41 0 ATOM 3628 CC GLU 584 28.862 35.712 72.224 1.00 95.41 0 ATOM 3629 C GLU 584 28.813 36.418 77.22										
ATOM 3595 N PHE 581 33.307 37.067 73.348 1.00 15.06 0 ATOM 3597 CA PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3598 CB PHE 581 33.857 37.263 75.744 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.679 38.542 75.885 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3601 CD2 PHE 581 35.999 38.495 76.346 1.00 2.00 0 ATOM 3602 CE1 PHE 581 35.999 38.495 76.346 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3604 CZ PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3605 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 O PHE 581 32.782 34.521 74.647 1.00 2.00 0 ATOM 3607 N PRO 582 35.021 34.243 74.737 1.00 21.81 0 ATOM 3608 CD PRO 582 35.141 32.795 74.820 1.00 85.20 0 ATOM 3610 CB PRO 582 37.266 33.636 75.008 1.00 86.40 0 ATOM 3611 CG PRO 582 33.916 31.958 75.425 1.00 28.53 0 ATOM 3613 O PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3614 N PRO 582 33.916 32.466 76.374 1.00 13.00 0 ATOM 3615 CD PRO 583 33.090 33.632 77.269 1.00 13.55 0 ATOM 3616 CA PRO 583 33.090 33.637 75.012 1.00 0.58 0 ATOM 3617 CB PRO 583 33.090 33.637 75.012 1.00 13.55 0 ATOM 3610 CB PRO 583 33.090 33.637 75.012 1.00 13.55 0 ATOM 3610 CB PRO 583 33.090 33.637 75.508 1.00 87.84 0 ATOM 3610 CB PRO 583 33.090 33.637 75.012 1.00 13.55 0 ATOM 3610 CB PRO 583 33.090 33.637 77.269 1.00 53.59 0 ATOM 3617 CB PRO 583 33.090 33.637 77.269 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3619 C PRO 583 31.281 32.215 77.759 1.00 48.29 0 ATOM 3619 C PRO 583 31.281 32.215 77.759 1.00 48.29 0 ATOM 3620 C PRO 583 31.286 31.283 75.389 1.00 14.03 0 ATOM 3620 C PRO 584 31.089 32.383 74.663 1.00 39.44 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 39.44 0 ATOM 3622 CG GLU 584 30.333 36.490 70.918 1.00 90.41 0 ATOM 3628 CE GLU 584 28.813 36.910 70.918 1.00 90.41 0 ATOM 3628 CE GLU 584 28.813 36.910 70.918 1.00 90.41 0 ATOM 3628 CE GLU 584 28.813 36.910 70.918 1.00 90.41 0 ATOM 3628 CE GLU 584 28.813 36.910 70.918 1.00 90.41 0	MOTA									-
ATOM 3597 CA PHE 581 34.116 36.500 74.432 1.00 12.63 0 ATOM 3598 CB PHE 581 33.857 37.263 75.744 1.00 2.00 0 ATOM 3599 CG PHE 581 34.679 38.542 75.885 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3602 CE1 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.204 40.875 76.146 1.00 2.00 0 ATOM 3605 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 C PHE 581 32.782 34.521 74.647 1.00 2.00 0 ATOM 3608 CD PRO 582 35.021 34.243 74.737 1.00 21.81 0 ATOM 3608 CD PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3609 CA PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3611 CG PRO 582 37.266 33.636 75.008 1.00 85.20 0 ATOM 3611 CG PRO 582 37.266 33.636 75.008 1.00 86.40 0 ATOM 3612 C PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3613 O PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3614 N PRO 583 33.816 30.796 75.012 1.00 28.53 0 ATOM 3615 CD PRO 583 33.816 30.796 75.012 1.00 13.55 0 ATOM 3616 CA PRO 583 33.816 30.796 75.012 1.00 13.55 0 ATOM 3616 CA PRO 583 33.816 32.466 76.374 1.00 13.00 0 ATOM 3617 CB PRO 583 33.816 32.466 76.374 1.00 13.55 0 ATOM 3618 CG PRO 583 33.816 32.466 76.374 1.00 13.55 0 ATOM 3616 CA PRO 583 33.816 32.466 76.374 1.00 13.55 0 ATOM 3617 CB PRO 583 33.816 32.466 75.75.775 1.00 53.55 0 ATOM 3617 CB PRO 583 33.816 32.466 76.374 1.00 13.55 0 ATOM 3618 CG PRO 583 33.816 32.466 75.775 1.00 53.55 0 ATOM 3619 C PRO 583 33.816 32.466 75.775 1.00 53.55 0 ATOM 3619 C PRO 583 33.816 32.466 75.775 1.00 53.55 0 ATOM 3619 C PRO 583 33.816 32.466 75.775 1.00 53.55 0 ATOM 3619 C PRO 583 33.816 32.466 75.775 1.00 53.55 0 ATOM 3620 C PRO 583 33.966 31.283 77.269 1.00 51.24 0 ATOM 3620 C PRO 583 31.281 32.215 77.755 1.00 33.55 0 ATOM 3620 C PRO 583 31.281 32.215 77.755 1.00 33.581 0 ATOM 3628 CG GLU 584 38.884 30.322 33.913 73.412 1.00 39.44 0 ATOM 3628 CG GLU 584 28.813 36.418 73.053 1.00 95.81 0 ATOM 3628 CG GLU	ATOM									
ATOM 3598 CB PHE 581 33.857 37.263 75.744 1.00 2.00 0 ATOM 3599 CG PHE 581 34.679 38.542 75.885 1.00 2.00 0 ATOM 3600 CD1 PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3601 CD2 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3602 CE1 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3605 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3605 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 CD PRO 582 35.021 34.243 74.737 1.00 21.81 0 ATOM 3608 CD PRO 582 35.021 34.243 74.737 1.00 21.81 0 ATOM 3608 CD PRO 582 35.3636 34.852 74.820 1.00 85.20 0 ATOM 3610 CB PRO 582 35.341 32.795 74.910 1.00 24.62 0 ATOM 3611 CG PRO 582 37.266 33.636 75.008 1.00 86.40 0 ATOM 3611 CG PRO 582 37.266 33.636 75.008 1.00 87.84 0 ATOM 3613 O PRO 582 33.916 30.796 75.012 1.00 0.85.30 0 ATOM 3614 N PRO 583 33.916 30.796 75.012 1.00 0.85.30 0 ATOM 3615 CD PRO 583 33.916 30.796 75.012 1.00 0.85.30 0 ATOM 3616 CA PRO 583 33.160 32.466 76.374 1.00 13.00 0.58 0 ATOM 3616 CA PRO 583 33.160 32.466 76.374 1.00 13.55 0 ATOM 3616 CB PRO 583 33.160 32.466 76.374 1.00 13.55 0 ATOM 3617 CB PRO 583 33.109 33.632 77.269 1.00 51.24 0 ATOM 3619 C PRO 583 33.1296 31.283 77.269 1.00 51.24 0 ATOM 3619 C PRO 583 33.1296 31.283 77.269 1.00 51.24 0 ATOM 3619 C PRO 583 31.281 32.215 77.759 1.00 50.46 0 ATOM 3619 C PRO 583 31.281 32.215 77.759 1.00 50.46 0 ATOM 3619 C PRO 583 31.281 32.215 77.759 1.00 50.46 0 ATOM 3620 O PRO 583 31.281 32.215 77.759 1.00 50.46 0 ATOM 3620 C PRO 583 31.283 32.399 77.550 1.00 50.46 0 ATOM 3621 CB PRO 583 31.283 32.399 77.550 1.00 50.46 0 ATOM 3622 CB GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3628 CB GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3628 CB GLU 584 28.8662 35.712 72.022 1.00 95.41 0 ATOM 3628 CB GLU 584 28.8662 35.712 72.022 1.00 95.41 0 ATOM 3628 CB GLU 584 28.8662 35.712 72.244 1.00 39.44 0 ATOM 36										
ATOM 3600 CD1 PHE 581 34.136 39.783 75.557 1.00 2.00 0 ATOM 3601 CD2 PHE 581 35.999 38.495 76.346 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3604 CZ PHE 581 36.204 40.875 76.146 1.00 2.00 0 ATOM 3605 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 O PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 CD PRO 582 35.021 34.243 74.737 1.00 21.81 0 ATOM 3608 CD PRO 582 35.021 34.243 74.737 1.00 21.81 0 ATOM 3600 CB PRO 582 35.141 32.795 74.910 1.00 24.62 0 ATOM 3610 CB PRO 582 36.398 32.675 75.737 1.00 86.40 0 ATOM 3611 CG PRO 582 37.266 33.636 75.008 1.00 87.84 0 ATOM 3612 C PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3614 N PRO 583 33.966 31.958 75.425 1.00 28.53 0 ATOM 3615 CD PRO 583 33.966 77.269 1.00 0.58 0 ATOM 3616 CA PRO 583 33.090 33.632 77.269 1.00 0.58 0 ATOM 3617 CB PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3618 CG PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3618 CG PRO 583 33.090 33.632 77.550 1.00 13.00 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 51.24 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3620 C PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3621 N GLU 584 30.333 32.439 73.412 1.00 35.81 0 ATOM 3622 CG GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3624 CB GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3626 CD GLU 584 28.955 34.213 72.217 1.00 90.10 0 ATOM 3628 CG GLU 584 28.955 34.213 72.217 1.00 90.10 0 ATOM 3629 C GLU 584 28.955 34.213 72.217 1.00 90.41 0 ATOM 3629 C GLU 584 28.955 34.213 72.216 1.00 95.81 0 ATOM 3629 C GLU 584 28.955 34.213 72.244 1.00 99.41 0 ATOM 3629 C GLU 584 28.955 34.213 72.244 1.00 99.41 0 ATOM 3629 C GLU 584 28.955 34.213 72.244 1.00 99.41 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 99.41 0	ATOM		_		581	33.857	37.263	75.744		
ATOM 3601 CD2 PHE 581 35.999 38.495 76.346 1.00 2.00 0 ATOM 3602 CE1 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3604 CZ PHE 581 36.204 40.875 76.146 1.00 2.00 0 ATOM 3605 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 O PHE 581 32.782 34.521 74.647 1.00 2.00 0 ATOM 3607 N PRO 582 35.021 34.243 74.737 1.00 21.81 0 ATOM 3608 CD PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3609 CA PRO 582 35.141 32.795 74.910 1.00 24.62 0 ATOM 3610 CB PRO 582 36.398 32.675 75.737 1.00 86.40 0 ATOM 3611 CG PRO 582 37.266 33.636 75.008 1.00 87.84 0 ATOM 3612 C PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3613 O PRO 582 33.816 30.796 75.012 1.00 0.58 0 ATOM 3615 CD PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3616 CA PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3616 CA PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3618 CG PRO 583 31.281 32.299 77.550 1.00 50.46 0 ATOM 3619 C PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3619 C PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3619 C PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3620 C PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 35.81 0 ATOM 3622 CG GLU 584 30.333 36.190 70.918 1.00 39.44 0 ATOM 3624 CB GLU 584 30.333 36.190 70.918 1.00 95.41 0 ATOM 3627 OE1 GLU 584 28.862 35.712 72.022 1.00 95.41 0 ATOM 3629 C GLU 584 28.813 36.190 70.918 1.00 90.41 0 ATOM 3629 C GLU 584 28.813 36.190 70.918 1.00 90.41 0 ATOM 3629 C GLU 584 28.823 36.1676 72.244 1.00 36.17 0	ATOM									
ATOM 3602 CE1 PHE 581 34.894 40.941 75.687 1.00 2.00 0 ATOM 3603 CE2 PHE 581 36.757 39.659 76.475 1.00 2.00 0 ATOM 3604 CZ PHE 581 36.204 40.875 76.146 1.00 2.00 0 ATOM 3605 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 O PHE 581 32.782 34.521 74.647 1.00 2.00 0 ATOM 3607 N PRO 582 35.021 34.243 74.737 1.00 21.81 0 ATOM 3608 CD PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3609 CA PRO 582 35.141 32.795 74.910 1.00 24.62 0 ATOM 3610 CB PRO 582 36.398 32.675 75.737 1.00 86.40 0 ATOM 3611 CG PRO 582 37.266 33.636 75.008 1.00 87.84 0 ATOM 3612 C PRO 582 33.816 30.796 75.012 1.00 0.58 0 ATOM 3613 O PRO 582 33.816 30.796 75.012 1.00 0.58 0 ATOM 3614 N PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3615 CD PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3616 CA PRO 583 33.099 31.500 76.681 1.00 13.55 0 ATOM 3617 CB PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3619 C PRO 583 31.281 32.215 77.759 1.00 48.29 0 ATOM 3620 O PRO 583 31.281 32.215 77.759 1.00 48.29 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 48.29 0 ATOM 3622 CG GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3624 CB GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3626 CD GLU 584 28.955 34.213 72.117 1.00 90.41 0 ATOM 3628 CG GLU 584 28.955 34.213 72.117 1.00 90.41 0 ATOM 3629 C GLU 584 28.975 31.676 72.244 1.00 36.17 0										
ATOM 3604 CZ PHE 581 36.204 40.875 76.146 1.00 2.00 0 ATOM 3605 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 O PHE 581 32.782 34.521 74.647 1.00 2.00 0 ATOM 3607 N PRO 582 35.021 34.243 74.737 1.00 21.81 0 ATOM 3608 CD PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3609 CA PRO 582 35.141 32.795 74.910 1.00 24.62 0 ATOM 3610 CB PRO 582 36.398 32.675 75.737 1.00 86.40 0 ATOM 3611 CG PRO 582 37.266 33.636 75.008 1.00 87.84 0 ATOM 3612 C PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3613 O PRO 582 33.816 30.796 75.012 1.00 0.58 0 ATOM 3614 N PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3615 CD PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3616 CA PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3617 CB PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3619 C PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3620 O PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3620 C PRO 583 31.283 75.389 1.00 14.03 0 ATOM 3620 C PRO 583 31.281 75.389 1.00 14.03 0 ATOM 3620 C PRO 583 31.281 77.250 1.00 50.466 0 ATOM 3620 C PRO 583 31.281 77.550 1.00 50.466 0 ATOM 3620 C PRO 583 31.281 75.389 1.00 14.03 0 ATOM 3620 C PRO 583 31.281 75.389 1.00 14.03 0 ATOM 3620 C PRO 583 31.281 77.250 1.00 50.466 0 ATOM 3620 C PRO 583 31.281 77.250 1.00 50.466 0 ATOM 3620 C PRO 583 31.281 77.250 1.00 50.466 0 ATOM 3620 C PRO 583 31.281 77.250 1.00 50.466 0 ATOM 3620 C PRO 583 31.281 77.250 1.00 50.466 0 ATOM 3620 C PRO 583 31.281 77.250 1.00 50.466 0 ATOM 3620 C PRO 583 31.281 77.250 1.00 50.466 0 ATOM 3620 C PRO 583 31.281 77.250 1.00 50.466 0 ATOM 3620 C PRO 583 31.281 77.250 1.00 50.466 0 ATOM 3620 C PRO 583 31.281 77.250 1.00 50.466 0 ATOM 3620 C PRO 583 31.281 77.250 1.00 50.466 0 ATOM 3620 C PRO 584 31.089 77.550 1.00 50.466 0 ATOM 3620 C PRO 584 31.089 77.550 1.00 50.466 0 ATOM 3620 C PRO 584 31.089 77.550 1.00 50.466 0 ATOM 3620 C PRO 584 31.089 77.500 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00	MOTA	3602	CE1	PHE	581	34.894	40.941	75.687		
ATOM 3605 C PHE 581 33.913 34.999 74.611 1.00 12.63 0 ATOM 3606 O PHE 581 32.782 34.521 74.647 1.00 2.00 0 ATOM 3607 N PRO 582 35.021 34.243 74.737 1.00 21.81 0 ATOM 3608 CD PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3609 CA PRO 582 35.141 32.795 74.910 1.00 24.62 0 ATOM 3610 CB PRO 582 36.398 32.675 75.737 1.00 86.40 0 ATOM 3611 CG PRO 582 37.266 33.636 75.008 1.00 87.84 0 ATOM 3612 C PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3613 O PRO 582 33.816 30.796 75.012 1.00 0.58 0 ATOM 3614 N PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3615 CD PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3616 CA PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3616 CA PRO 583 32.099 31.500 76.681 1.00 13.55 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3619 C PRO 583 31.281 32.215 77.550 1.00 50.46 0 ATOM 3620 O PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 35.81 O ATOM 3622 CB GLU 584 30.323 32.439 73.412 1.00 39.44 0 ATOM 3623 CA GLU 584 30.323 32.439 73.412 1.00 39.44 0 ATOM 3625 CG GLU 584 30.122 33.913 73.043 1.00 78.69 0 ATOM 3626 CD GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3628 CC GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3628 CC GLU 584 28.955 34.213 72.244 1.00 95.41 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0										
ATOM 3607 N PRO 582 35.021 34.243 74.737 1.00 21.81 0 ATOM 3608 CD PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3609 CA PRO 582 35.141 32.795 74.910 1.00 24.62 0 ATOM 3610 CB PRO 582 36.398 32.675 75.737 1.00 86.40 0 ATOM 3611 CG PRO 582 37.266 33.636 75.008 1.00 87.84 0 ATOM 3612 C PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3613 O PRO 582 33.816 30.796 75.012 1.00 0.58 0 ATOM 3614 N PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3615 CD PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3616 CA PRO 583 32.099 31.500 76.681 1.00 13.55 0 ATOM 3617 CB PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3619 C PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3619 C PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3620 O PRO 583 30.909 37.550 1.00 50.46 0 ATOM 3620 C PRO 583 30.909 32.383 74.663 1.00 35.81 0 ATOM 3620 C PRO 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3625 CG GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3626 CD GLU 584 30.333 32.439 73.412 1.00 90.10 0 ATOM 3627 OEI GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3628 CE GLU 584 28.955 34.213 72.117 1.00 90.41 0 ATOM 3628 OE2 GLU 584 28.913 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.975 31.676 72.244 1.00 36.17 0	ATOM									-
ATOM 3608 CD PRO 582 36.360 34.852 74.820 1.00 85.20 0 ATOM 3609 CA PRO 582 35.141 32.795 74.910 1.00 24.62 0 ATOM 3610 CB PRO 582 36.398 32.675 75.737 1.00 86.40 0 ATOM 3611 CG PRO 582 37.266 33.636 75.008 1.00 87.84 0 ATOM 3612 C PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3613 O PRO 582 33.816 30.796 75.012 1.00 0.58 0 ATOM 3614 N PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3615 CD PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3616 CA PRO 583 32.099 31.500 76.681 1.00 13.55 0 ATOM 3617 CB PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3619 C PRO 583 31.281 32.215 77.550 1.00 50.46 0 ATOM 3620 O PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 48.29 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3626 CD GLU 584 30.122 33.913 73.043 1.00 78.69 0 ATOM 3627 OE1 GLU 584 28.955 34.213 72.117 1.00 90.41 0 ATOM 3628 OE2 GLU 584 28.762 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0	MOTA		0							
ATOM 3610 CB PRO 582 35.141 32.795 74.910 1.00 24.62 0 ATOM 3611 CG PRO 582 37.266 33.636 75.037 1.00 86.40 0 ATOM 3612 C PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3613 O PRO 582 33.866 30.796 75.012 1.00 0.58 0 ATOM 3614 N PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3615 CD PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3616 CA PRO 583 32.099 31.500 76.681 1.00 13.55 0 ATOM 3617 CB PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3619 C PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3619 C PRO 583 31.281 32.215 77.550 1.00 50.46 0 ATOM 3620 O PRO 583 31.286 31.283 75.389 1.00 14.03 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 48.29 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3624 CB GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3625 CG GLU 584 28.955 34.213 72.117 1.00 90.10 ATOM 3627 OE1 GLU 584 28.955 34.213 72.117 1.00 90.10 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17										
ATOM 3610 CB PRO 582 36.398 32.675 75.737 1.00 86.40 0 ATOM 3611 CG PRO 582 37.266 33.636 75.008 1.00 87.84 0 ATOM 3612 C PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3613 O PRO 582 33.816 30.796 75.012 1.00 0.58 0 ATOM 3614 N PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3615 CD PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3616 CA PRO 583 32.099 31.500 76.681 1.00 13.55 0 ATOM 3617 CB PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3619 C PRO 583 31.281 32.215 77.550 1.00 50.46 0 ATOM 3620 O PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 48.29 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 35.81 0 ATOM 3624 CB GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3625 CG GLU 584 30.323 32.439 73.412 1.00 39.44 0 ATOM 3626 CD GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3626 CD GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3628 OE2 GLU 584 28.313 36.190 70.918 1.00 95.81 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17	ATOM								1.00 24.62	
ATOM 3612 C PRO 582 33.966 31.958 75.425 1.00 28.53 0 ATOM 3613 O PRO 582 33.816 30.796 75.012 1.00 0.58 0 ATOM 3614 N PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3615 CD PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3616 CA PRO 583 32.099 31.500 76.681 1.00 13.55 0 ATOM 3617 CB PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.616 33.699 77.550 1.00 50.46 0 ATOM 3619 C PRO 583 31.281 32.215 77.750 1.00 50.46 0 ATOM 3620 O PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 35.81 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3624 CB GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3625 CG GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3626 CD GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3628 OE2 GLU 584 28.313 36.190 70.918 1.00 95.81 0 ATOM 3629 C GLU 584 73.0975 31.676 72.244 1.00 36.17 0										
ATOM 3613 O PRO 582 33.816 30.796 75.012 1.00 0.58 0 ATOM 3614 N PRO 583 33.160 32.466 76.374 1.00 13.00 0 ATOM 3615 CD PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3616 CA PRO 583 32.099 31.500 76.681 1.00 13.55 0 ATOM 3617 CB PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.616 33.699 77.550 1.00 50.46 0 ATOM 3619 C PRO 583 31.281 32.215 77.759 1.00 50.46 0 ATOM 3620 O PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 48.29 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3624 CB GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3625 CG GLU 584 30.323 39.13 73.043 1.00 78.69 0 ATOM 3626 CD GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3626 CD GLU 584 28.662 35.712 72.022 1.00 95.41 0 ATOM 3628 OE2 GLU 584 28.313 36.190 70.918 1.00 90.41 0 ATOM 3629 C GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0										
ATOM 3615 CD PRO 583 33.090 33.632 77.269 1.00 51.24 0 ATOM 3616 CA PRO 583 32.099 31.500 76.681 1.00 13.55 0 ATOM 3617 CB PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.616 33.699 77.550 1.00 50.46 0 ATOM 3619 C PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3620 O PRO 583 30.950 30.152 75.043 1.00 48.29 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 35.81 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3624 CB GLU 584 30.333 32.439 73.043 1.00 78.69 0 ATOM 3625 CG GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3626 CD GLU 584 28.662 35.712 72.022 1.00 95.41 0 ATOM 3627 OEI GLU 584 28.662 35.712 72.022 1.00 95.41 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0	MOTA			PRO	582	33.816	30.796	75.012	1.00 0.58	0
ATOM 3616 CA PRO 583 32.099 31.500 76.681 1.00 13.55 0 ATOM 3617 CB PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.616 33.699 77.550 1.00 50.46 0 ATOM 3619 C PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3620 O PRO 583 30.950 30.152 75.043 1.00 48.29 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 35.81 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3624 CB GLU 584 30.122 33.913 73.043 1.00 78.69 0 ATOM 3625 CG GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3626 CD GLU 584 28.662 35.712 72.022 1.00 95.41 0 ATOM 3627 OEI GLU 584 28.313 36.190 70.918 1.00 90.41 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0										
ATOM 3617 CB PRO 583 31.281 32.215 77.759 1.00 53.59 0 ATOM 3618 CG PRO 583 31.616 33.699 77.550 1.00 50.46 0 ATOM 3619 C PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3620 O PRO 583 30.950 30.152 75.043 1.00 48.29 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 35.81 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3624 CB GLU 584 30.122 33.913 73.043 1.00 78.69 0 ATOM 3625 CG GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3626 CD GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3627 OEI GLU 584 28.662 35.712 72.022 1.00 95.41 0 ATOM 3628 OE2 GLU 584 28.313 36.190 70.918 1.00 90.41 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0										
ATOM 3619 C PRO 583 31.296 31.283 75.389 1.00 14.03 0 ATOM 3620 O PRO 583 30.950 30.152 75.043 1.00 48.29 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 35.81 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3624 CB GLU 584 30.122 33.913 73.043 1.00 78.69 0 ATOM 3625 CG GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3626 CD GLU 584 28.662 35.712 72.022 1.00 95.41 0 ATOM 3627 OE1 GLU 584 28.313 36.190 70.918 1.00 90.41 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0	MOTA	3617		PRO	58 3	31.281	32.215	77.759		
ATOM 3620 O PRO 583 30.950 30.152 75.043 1.00 48.29 0 ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 35.81 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3624 CB GLU 584 30.122 33.913 73.043 1.00 78.69 0 ATOM 3625 CG GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3626 CD GLU 584 28.662 35.712 72.022 1.00 95.41 0 ATOM 3627 OE1 GLU 584 28.313 36.190 70.918 1.00 90.41 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0								77.550		
ATOM 3621 N GLU 584 31.089 32.383 74.663 1.00 35.81 0 ATOM 3623 CA GLU 584 30.333 32.439 73.412 1.00 39.44 0 ATOM 3624 CB GLU 584 30.122 33.913 73.043 1.00 78.69 0 ATOM 3625 CG GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3626 CD GLU 584 28.662 35.712 72.022 1.00 95.41 0 ATOM 3627 OE1 GLU 584 28.313 36.190 70.918 1.00 90.41 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0								75.043		
ATOM 3624 CB GLU 584 30.122 33.913 73.043 1.00 78.69 0 ATOM 3625 CG GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3626 CD GLU 584 28.662 35.712 72.022 1.00 95.41 0 ATOM 3627 OE1 GLU 584 28.313 36.190 70.918 1.00 90.41 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0	MOTA	3621		GLU	584	31.089	32.383	74.663		
ATOM 3625 CG GLU 584 28.955 34.213 72.117 1.00 90.10 0 ATOM 3626 CD GLU 584 28.662 35.712 72.022 1.00 95.41 0 ATOM 3627 OE1 GLU 584 28.313 36.190 70.918 1.00 90.41 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0										
ATOM 3626 CD GLU 584 28.662 35.712 72.022 1.00 95.41 0 ATOM 3627 OE1 GLU 584 28.313 36.190 70.918 1.00 90.41 0 ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0								72.117	1.00 90.10	
ATOM 3628 OE2 GLU 584 28.782 36.418 73.053 1.00 95.81 0 ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0	MOTA	3626	CD	GLU	584	28.662	35.712	72.022		
ATOM 3629 C GLU 584 30.975 31.676 72.244 1.00 36.17 0										
								72.244	1.00 36.17	0
	MOTA	3630	O	GLU	584	30.780	30.466	72.106	1.00 78.35	0

ATOM	3631	N	SER	585	31.7	37 32	.381	71.406	1.00	12.28	0
ATOM	363 3	CA	SER	585	32.3		.779	70.245	1.00		0
ATOM	3634	CB	SER	58 5	32.7		.857	69.209	1.00	31.98	ō
MOTA	3635	OG	SER	58 5	31.5		. 556	68.809		27.38	0
ATOM	3637	С	SER	58 5	33.6		.995	70.539			0
MOTA	3638	0	SER	58 5	34.3		.258	71.502		35.35	0
MOTA	3639	N	ASN	586	33.9		.037	69.664	1.00		0
ATOM	3641	CA	ASN	58 6	35.1		.197	69.749	1.00		0
MOTA	3642	CB	ASN	58 6	34.9		.854	69.068	1.00		0
MOTA MOTA	3643 3644	CG OD1	ASN ASN	586 586	33.7. 33.4		.107 .960	69.625 69.265		10.37 11.13	0
ATOM	3645	ND2		586	32.9		.745	70.506	1.00		0
MOTA	3648	C	ASN	586	36.2		.937	69.029	1.00		. 0
ATOM	3649	õ	ASN	586	36.0		.574	68.007	1.00		ő
MOTA	3650	N	TYR	587	37.4		.858	69.564		13.99	ŏ
MOTA	3652	CA	TYR	587	38.5		. 554	68.966	1.00	13.99	0
MOTA	3653	CB	TYR	587	39.0		. 70 6	69.876	1.00		0
MOTA	3654	CG	TYR	587	38.1		.946	69.873	1.00		0
MOTA	365 5	CD1		587	36.99		.004	70.638	1.00		0
MOTA	3656	CE1		587	36.1		.138	70.624	1.00	2.00	0
ATOM ATOM	3657 3658	CD2 CE2		587 587	38.50 37.70		.061 .205	69.088 69.065	1.00	2.00	0
ATOM	3659	CZ	TYR	587	36.53		231	69.840	1.00	2.00	0
ATOM	3660	OH	TYR	587	35.74		352	69.838	1.00	2.00	0.
ATOM	3662	C	TYR	587	39.72		608	68.745	1.00		0
ATOM	3663	ŏ	TYR	587	39.81		562	69.392	1.00	2.00	ŏ
MOTA	3664	N	LEU	588	40.58		987	67.809	1.00	2.00	ŏ
MOTA	3666	CA	LEU	58 8	41.80	3 29.	261	67.493	1.00	2.00	0
MOTA	3667	CB	LEU	58 8	41.68		482	66.195		10.69	0
MOTA	3668	CG	LEU	588	43.03		907	65.781		10.69	0
ATOM	3669		LEU	5 8 8	43.56		073	66.912		10.69	0
MOTA	3670	CD2		58 8	42.91		079	64.533		10.69	0
MOTA MOTA	3671 3 67 2	C O	LEU	588 588	42.80 42.54		375	67.301 66.532	1.00	2.00	0
ATOM	367 3	Ŋ	PHE	589	43.92		301 333	68.026	1.00	10.69 2.00	0
ATOM	3675	CA	PHE	589	44.93		36 3	67.865	1.00	2.00	ŏ
ATOM	3676	CB	PHE	589	45.28		013	69.200	1.00	2.00	ŏ
MOTA	3 67 7	CG	PHE	589	44.27		026	69.652	1.00	2.00	Ŏ
MOTA	367 8	CD1	PHE	589	43.13		633	70.326	1.00	2.00	0
ATOM	3679	CD2	PHE	589	44.47			69.391	1.00	2.00	0
MOTA	3680	CE1	PHE	589	42.20		567	70.732	1.00	2.00	0
ATOM	3681	CE2	PHE	589	43.54			69.793	1.00	2.00	0
ATOM ATOM	3682 3683	CZ C	PHE PHE	589 589	42.40			70.463	1.00	2.00 2.00	0
MOTA	3684	Ö	PHE	589	46.14 46.53		717	67.219 67.602	1.00	2.00	0
ATOM	3685	N	LEU	590-	46.71			66.235	1:00	2.00	Ö
ATOM	3687	CA	LEU	590	47.84			65.459	1.00	2.00	ŏ
MOTA	3688	СВ	LEU	590	47.65			63.988	1.00		ŏ
MOTA	3689	CG	LEU	590	46.27			63.356	1.00	9.73	0
MOTA	3690		LEU	590	46.16			62.014	1.00	9.73	0
ATOM	3691		LEU	590	46.05			63.211	1.00	9.73	0
ATOM	3692	C	LEU	590	49.27			65.947	1.00	2.00	0
ATOM ATOM	3693 3694	0	LEU	590	50.26			65.296	1.00	9.73	0
ATOM	3696	N CA	GLY GLY	591 591	49.38			67.071	1.00	2.00	0
ATOM	3697	C	GLY	591	50.70 51.13			67.626	1.00	2.00	0
ATOM	3698	ō	GLY	591	50.36			67.923 67.769	1.00	2.00	ő
ATOM	3699	N	ASP	592	52.38			68.358	1.00	2.00	Õ
ATOM	3701	CA	ASP	592	53.03			68.707	1.00	2.00	Ö
ATOM	3702	CB	ASP	592	53.42			67.448	1.00	6.15	Õ
MOTA	3703	CG	ASP	592	54.52	1 35.6	051	66.686	1.00		ŏ
ATOM	3704	OD1	ASP	592	54.95	5 35.0	606	65.657	1.00	11.71	Ö
ATOM	3705		ASP	592	54.94	3 33.9	949	67.114	1.00		0
ATOM	3706	C	ASP	592	52.19			69.598	1.00	2.00	Ο.
ATOM	3707	0	ASP	592	51.81			69.211	1.00	6.68	0
ATOM ATOM	3708	N	TYR	59 3	51.92			70.800	1.00		0
ATOM ATOM	371 0 3711	CA	TYR TYR	593 593	51.12 50.60			71.822	1.00		0
	3111	CB	1114	593	50.60	2 35.0	OI,	72.827	1.00	2.00	0

ATOM 3713 CD1 TYR 593 50. 588 32.532 72.382 1.00 2.00 0 0 0 0 0 0 0 0 0	ATOM	3712	CG	TYR	59 3		49.994	33.790	72.200	1.00 2.00	0
ATOM 3716 CB2 TYR 593	ATOM			-				32.532	72.382	1.00 2.00	
ATOM 3716 CE2 TYR 593			CE1								
ATOM 3718 OH TYR 593	-										0
ATOM 3718 OH TYR 593 51.955 70.412 1.00 2.00 0 ATOM 3720 C TYR 593 51.526 38.079 72.981 1.00 2.00 0 ATOM 3721 O TYR 593 51.526 38.079 72.981 1.00 2.00 0 ATOM 3722 N VAL 594 53.270 36.660 72.982 1.00 2.00 0 ATOM 3724 CA VAL 594 54.238 37.463 73.420 1.00 2.00 0 ATOM 3725 CB VAL 594 54.238 37.463 73.420 1.00 2.00 0 ATOM 3726 CGI VAL 594 54.238 37.463 73.420 1.00 2.00 0 ATOM 3727 CG2 VAL 594 54.238 37.463 73.420 1.00 2.00 0 ATOM 3727 CG2 VAL 594 54.313 36.599 74.501 1.00 30.06 0 ATOM 3728 C VAL 594 55.385 35.785 75.241 1.00 30.06 0 ATOM 3729 O VAL 594 55.385 35.785 75.241 1.00 30.06 0 ATOM 3729 O VAL 594 55.385 35.785 75.241 1.00 30.06 0 ATOM 3729 O VAL 594 55.385 35.785 75.241 1.00 30.06 0 ATOM 3731 CB ASP 595 55.484 39.776 72.563 1.00 2.00 0 ATOM 3731 CB ASP 595 57.144 39.776 72.563 1.00 2.00 0 ATOM 3733 CB ASP 595 55.184 39.776 72.2861 1.00 2.00 0 ATOM 3734 CB ASP 595 55.891 37.890 72.502 1.00 42.03 0 ATOM 3735 ODI ASP 595 55.58, 911 37.890 72.502 1.00 42.03 0 ATOM 3737 C ASP 595 55.567 40.901 71.575 1.00 32.25 0 ATOM 3738 O ASP 595 55.567 40.901 71.575 1.00 29.29 0 ATOM 3739 N ASP 595 55.567 40.901 71.575 1.00 29.29 0 ATOM 3740 CA ASP 595 55.567 40.901 71.575 1.00 29.29 0 ATOM 3741 CA ASP 595 55.335 40.901 71.575 1.00 29.29 0 ATOM 3743 CB ASP 595 55.567 40.901 71.575 1.00 29.29 0 ATOM 3743 CB ASP 595 55.567 40.901 71.575 1.00 29.29 0 ATOM 3744 CD ASP 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3745 NE ARG 596 56.843 43.996 70.716 1.00 2.00 0 ATOM 3746 CB ARG 596 56.834 43.996 70.716 1.00 2.00 0 ATOM 3748 NE ARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3748 NE ARG 596 56.834 43.996 70.716 1.00 25.56 0 ATOM 3748 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3748 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3748 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3748 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3756 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3760 CE LYS 598 53.855 32.588 43.996 71.542 1.00 2.00 0 ATOM 3760 CE LYS 598 53.859 59.559 59.500 40.00 70.70 1.00 0 ATOM 3778 NE ARG 596											
ATOM 3721 O TVR 593 51.995 37.019 72.560 1.00 12.61 0 ATOM 3721 O TVR 593 51.526 38.079 72.981 1.00 2.00 0 ATOM 3724 CA VAL 594 53.270 36.660 72.692 1.00 2.00 0 ATOM 3724 CA VAL 594 54.238 37.463 73.420 1.00 2.00 0 ATOM 3725 CB VAL 594 54.913 36.599 74.501 1.00 30.06 0 ATOM 3726 CGI VAL 594 54.913 36.599 74.501 1.00 30.06 0 ATOM 3727 CG2 VAL 594 55.950 35.684 73.875 1.00 30.06 0 ATOM 3728 C VAL 594 55.950 35.684 73.875 1.00 30.06 0 ATOM 3728 C VAL 594 55.950 35.684 73.875 1.00 30.06 0 ATOM 3729 O VAL 594 55.309 38.154 72.563 1.00 2.00 0 ATOM 3730 N ASP 595 55.112 38.991 73.218 1.00 2.00 0 ATOM 3730 N ASP 595 55.112 38.991 73.218 1.00 2.00 0 ATOM 3731 CB ASP 595 55.112 38.991 73.218 1.00 2.00 0 ATOM 3733 CB ASP 595 55.112 38.991 73.218 1.00 2.00 0 ATOM 3735 ODI ASP 595 55.123 38.00 71.705 1.00 33.25 0 ATOM 3735 ODI ASP 595 55.260 38.140 73.679 1.00 46.45 0 ATOM 3737 C ASP 595 55.32 260 38.140 73.679 1.00 42.03 0 ATOM 3738 O ASP 595 55.32 260 38.140 73.679 1.00 42.03 0 ATOM 3738 O ASP 595 55.33 50.00 38.140 73.679 1.00 42.03 0 ATOM 3738 O ASP 595 55.33 50.00 38.140 73.679 1.00 46.45 0 ATOM 3738 O ASP 595 55.33 50.00 38.140 73.679 1.00 46.45 0 ATOM 3738 O ASP 595 55.33 50.00 38.140 73.679 1.00 42.03 0 ATOM 3738 O ASP 595 55.53 50.00 38.140 73.679 1.00 42.03 0 ATOM 3738 O ASP 595 55.33 50.00 38.140 73.679 1.00 0 2.00 0 ATOM 3738 O ASP 595 55.33 50.00 38.140 73.679 1.00 0 2.00 0 ATOM 3738 O ASP 595 55.53 50.00 38.140 73.679 1.00 0 2.00 0 ATOM 3738 O ASP 595 55.53 50.00 38.140 73.679 1.00 0 2.00 0 ATOM 3738 O ASP 595 55.53 50.00 38.140 73.679 1.00 0 2.00 0 ATOM 3738 O ASP 595 55.53 50.00 38.140 73.679 1.00 0 2.00 0 ATOM 3738 O ASP 595 55.53 50.00 38.140 73.679 1.00 0 2.00 0 ATOM 3738 O ASP 595 55.53 50.00 0 38.00 0 38.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
ATOM 3722 N VAL 594 53.270 36.666 72.592 1.00 2.00 0 ATOM 3724 CA VAL 594 54.238 37.463 73.420 1.00 2.00 0 ATOM 3725 CB VAL 594 54.238 37.463 73.420 1.00 2.00 0 ATOM 3726 CGI VAL 594 54.238 37.463 73.420 1.00 30.06 0 ATOM 3727 CG2 VAL 594 55.395 35.785 75.241 1.00 30.06 0 ATOM 3727 CG2 VAL 594 55.395 35.785 75.241 1.00 30.06 0 ATOM 3728 C VAL 594 55.395 35.785 75.241 1.00 30.06 0 ATOM 3729 O VAL 594 55.399 38.154 72.563 1.00 2.00 0 ATOM 3730 N ASP 595 56.112 38.991 73.218 1.00 2.00 0 ATOM 3731 CA ASP 595 56.112 38.991 73.218 1.00 2.00 0 ATOM 3731 CB ASP 595 56.112 38.991 73.218 1.00 2.00 0 ATOM 3733 CB ASP 595 55.807 38.107 73.218 1.00 2.00 0 ATOM 3731 CB ASP 595 55.807 38.907 72.502 1.00 33.25 0 ATOM 3733 CB ASP 595 55.807 38.907 72.502 1.00 33.25 0 ATOM 3736 ODZ ASP 595 55.592 30 38.147 73.679 1.00 30.26 0 ATOM 3737 C ASP 595 55.592 30 38.147 73.679 1.00 30.20 0 ATOM 3738 O ASP 595 55.55 59.240 38.147 73.679 1.00 40.72 0 ATOM 3738 O ASP 595 55.55 59.240 38.147 73.679 1.00 40.72 0 ATOM 3731 CA ASP 595 55.55 59.240 38.147 73.679 1.00 2.00 0 ATOM 3731 CA ASP 595 55.55 59.240 38.147 73.679 1.00 2.00 0 ATOM 3731 CA ASP 595 55.55 50.00 30.00 1.00 1.00 2.00 0 ATOM 3731 CA ASP 595 55.55 50.00 1.00 1.00 2.00 0 ATOM 3731 CA ASP 595 55.55 50.00 1.00 1.00 2.00 0 ATOM 3737 CA ASP 595 55.55 50.00 1.00 1.00 2.00 0 ATOM 3738 O ASP 595 55.55 50.00 1.00 1.00 2.00 0 ATOM 3741 CA ARG 596 56.346 40.901 71.575 1.00 2.00 0 ATOM 3742 CB ARG 596 56.346 40.901 71.575 1.00 2.00 0 ATOM 3743 CG ARG 596 56.146 42.658 69.416 1.00 2.00 0 ATOM 3744 CB ARG 596 56.146 42.658 69.416 1.00 2.00 0 ATOM 3745 NE ARG 596 56.146 42.658 69.416 1.00 2.00 0 ATOM 3746 CB ARG 596 55.146 42.658 69.416 1.00 2.00 0 ATOM 3747 CB ARG 596 55.146 42.658 69.416 1.00 2.00 0 ATOM 3748 NH ARG 596 58.803 40.954 67.407 1.00 2.566 0 ATOM 3758 N ARG 596 58.805 59.306 42.755 67.729 1.00 17.94 0 ATOM 3758 N ARG 596 58.805 59.306 42.755 67.729 1.00 17.90 0 ATOM 3758 N ARG 596 596 597.342 41.992 71.4600 1.00 32.00 0 ATOM 3758 N ARG 596 598 599 599 599 599 599 599 599 599 599											
ATOM 3724 CA VAL 594 53.270 36.660 72.692 1.00 2.00 0 ATOM 3725 CB VAL 594 54.913 36.599 74.501 1.00 30.06 0 ATOM 3726 CG1 VAL 594 54.913 36.599 74.501 1.00 30.06 0 ATOM 3727 CG2 VAL 594 55.950 35.684 73.875 1.00 30.06 0 ATOM 3728 C VAL 594 55.950 35.684 73.875 1.00 30.06 0 ATOM 3728 C VAL 594 55.950 35.684 73.875 1.00 30.06 0 ATOM 3729 O VAL 594 55.309 38.154 72.563 1.00 2.00 0 ATOM 3730 N ASP 595 56.112 38.991 73.218 1.00 2.00 0 ATOM 3731 CA ASP 595 55.184 39.776 72.601 1.00 30.06 0 ATOM 3733 CB ASP 595 58.911 37.890 72.502 1.00 32.20 0 ATOM 3733 CB ASP 595 58.911 37.890 72.502 1.00 42.03 0 ATOM 3735 ODI ASP 595 59.260 38.147 73.679 1.00 42.03 0 ATOM 3737 C ASP 595 55.5408 37.919 71.156 1.00 30.25 0 ATOM 3737 C ASP 595 55.56.73 40.901 71.575 1.00 32.25 0 ATOM 3738 O ASP 595 55.56.74 40.920 71.818 1.00 2.00 0 ATOM 3738 O ASP 595 55.56.74 40.920 71.818 1.00 2.00 0 ATOM 3738 O ASP 595 55.335 40.901 71.575 1.00 32.25 0 ATOM 3739 N ARG 596 57.342 41.927 71.460 1.00 2.00 0 ATOM 3740 CA ARG 596 56.843 43.906 70.716 1.00 29.29 0 ATOM 3741 CA ARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3743 CG ARG 596 56.843 43.906 70.716 1.00 22.00 0 ATOM 3744 CD ARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3743 CG ARG 596 56.843 43.906 70.716 1.00 2.00 0 ATOM 3743 CG ARG 596 56.843 43.906 70.716 1.00 2.00 0 ATOM 3748 NH ARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3748 CG ARG 596 58.325 40.301 41.863 68.457 1.00 13.06 0 ATOM 3758 CA ARG 596 59.293 42.081 67.407 1.00 13.06 0 ATOM 3758 CA ARG 596 59.293 42.081 67.407 1.00 13.06 0 ATOM 3758 CA ARG 596 59.595 59.293 42.081 67.407 1.00 13.06 0 ATOM 3758 CA GLY 597 53.169 44.603 74.062 1.00 35.68 0 ATOM 3758 CA GLY 597 53.689 59.595 59.898 40.991 71.575 1.00 13.06 0 ATOM 3758 CA GLY 597 53.689 59.599 59.599 59.599 1.00 17.94 0 ATOM 3758 CA GLY 597 53.689 59.599											
ATOM 3725 CB VAL 594 54.238 37.463 73.420 1.00 2.00 0 ATOM 3726 CGI VAL 594 54.313 36.599 74.501 1.00 30.06 0 ATOM 3727 CG2 VAL 594 55.365 35.785 75.241 1.00 30.06 0 ATOM 3728 C VAL 594 55.365 35.785 75.241 1.00 30.06 0 ATOM 3728 C VAL 594 55.309 38.154 72.563 1.00 2.00 0 ATOM 3729 O VAL 594 55.309 38.154 72.563 1.00 2.00 0 ATOM 3730 N ASP 595 56.112 38.991 73.218 1.00 2.00 0 ATOM 3731 CA ASP 595 55.5112 38.991 73.218 1.00 2.00 0 ATOM 3731 CB ASP 595 55.5112 38.991 73.218 1.00 2.00 0 ATOM 3733 CB ASP 595 55.5112 38.991 73.218 1.00 2.00 0 ATOM 3733 CB ASP 595 58.073 38.903 71.705 1.00 33.25 0 ATOM 3736 ODZ ASP 595 59.240 38.147 73.679 1.00 40.72 0 ATOM 3737 CC ASP 595 59.240 38.147 73.679 1.00 40.72 0 ATOM 3738 O ASP 595 59.240 38.147 73.679 1.00 40.72 0 ATOM 3737 CC ASP 595 55.55.35 40.920 71.818 1.00 2.00 0 ATOM 3737 CC ASP 595 55.55.57 1.00 2.00 1 1.00 2.00 0 ATOM 3731 CC ASP 595 55 56.547 40.920 71.818 1.00 2.00 0 ATOM 3731 CC ASP 595 55 56.547 40.920 71.818 1.00 2.00 0 ATOM 3731 CC ASP 595 55 55.354 40.920 71.818 1.00 2.00 0 ATOM 3731 CC ASP 595 55 55.354 40.920 71.818 1.00 2.00 0 ATOM 3731 CC ASP 595 55 55.355 40.920 71.818 1.00 2.00 0 ATOM 3731 CC ASP 595 55 55.354 40.920 71.818 1.00 2.00 0 ATOM 3731 CC ASP 595 55 55.354 40.920 71.818 1.00 2.00 0 ATOM 3741 CA ARG 596 56.146 42.658 69.416 1.00 2.00 0 ATOM 3741 CA ARG 596 56.146 42.658 69.416 1.00 2.00 0 ATOM 3741 CA ARG 596 56.146 42.658 69.416 1.00 2.00 0 ATOM 3743 CG ARG 596 56.146 42.658 69.416 1.00 2.00 0 ATOM 3743 CG ARG 596 56.146 42.658 69.416 1.00 31.06 0 ATOM 3744 CD ARG 596 56.29 40.954 66.709 1.00 17.94 0 ATOM 3745 NC ARG 596 59.402 40.954 66.709 1.00 17.94 0 ATOM 3745 NC ARG 596 59.402 40.954 66.709 1.00 17.94 0 ATOM 3746 NC ARG 596 59.402 40.954 66.709 1.00 17.90 0 ATOM 3758 NG ARG 596 59.402 40.954 66.709 1.00 0.00 0.00 0 ATOM 3758 NG ARG 596 59.402 40.954 66.709 1.00 0.00 0.00 0 ATOM 3758 NG ARG 596 59.402 40.954 66.709 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
ATOM 3726 CB VAL 594 54.913 36.599 74.501 1.00 30.06 0 ATOM 3727 CG2 VAL 594 55.950 35.684 73.875 1.00 30.06 0 ATOM 3728 C VAL 594 55.950 35.684 73.875 1.00 30.06 0 ATOM 3728 C VAL 594 55.950 35.684 73.875 1.00 30.06 0 ATOM 3728 C VAL 594 55.309 38.154 72.563 1.00 2.00 0 ATOM 3730 N ASP 595 55.408 37.919 71.356 1.00 30.06 0 ATOM 3730 N ASP 595 55.408 37.919 71.356 1.00 30.06 0 ATOM 3731 CB ASP 595 57.184 39.776 72.601 1.00 2.00 0 ATOM 3733 CB ASP 595 58.911 37.890 72.502 1.00 42.03 0 ATOM 3733 CD ASP 595 58.911 37.890 72.502 1.00 42.03 0 ATOM 3735 ODI ASP 595 59.266 36.831 71.941 1.00 46.45 0 ATOM 3737 C ASP 595 55.335 40.901 71.575 1.00 29.00 0 ATOM 3738 O ASP 595 55.335 40.901 71.575 1.00 29.00 0 ATOM 3739 N ARG 596 57.342 41.927 71.460 1.00 2.00 0 ATOM 3741 CA ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3742 CB ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3743 CG ARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3744 CD ARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 2.90 0 ATOM 3746 NE ARG 596 59.293 42.081 67.407 1.00 2.00 0 ATOM 3741 CA ARG 596 59.293 42.081 67.407 1.00 2.00 0 ATOM 3744 CD ARG 596 58.325 40.338 66.236 1.00 31.67 0 ATOM 3754 NE ARG 596 58.325 40.338 66.236 1.00 31.67 0 ATOM 3754 NE ARG 596 58.325 40.338 66.236 1.00 31.81 0 ATOM 3754 NE ARG 596 58.325 40.338 66.236 1.00 31.81 0 ATOM 3756 N GLY 597 53.694 33.996 71.547 1.00 2.00 0 ATOM 3756 N GLY 597 53.694 34.803 74.002 1.00 35.06 0 ATOM 3756 N GLY 597 53.694 34.803 74.002 1.00 35.06 0 ATOM 3756 N GLY 597 53.694 34.803 74.002 1.00 35.06 0 ATOM 3756 N GLY 597 54.692 43.521 71.847 1.00 32.20 0 ATOM 3766 N GLY 597 53.604 47.427 76.271 1.00 54.79 0 ATOM 3766 N GLY 599 59.295 59.296 50.294 37.547 1.00 2.00 0 ATOM 3766 N GLY 599 59.296 50.294 77.547 1.00 2.00 0 ATOM 3766 N GLY 599 59.296 50.294 77.547 1.00 2.00 0 ATOM 3766 N GLY 599 59.296 50.294 77.547 1.00 2.00 0 ATOM 3768 N GLY 599 59.296 50.294 77.547 1.00 2.00 0 ATOM 3768 N GLY 599 59.296 50.294 77.547 1.00 2.00 0 ATOM 3768 N GLY 599 59.296 50.294 77.											
ATOM 3726 CG1 VAL 594 53.855 35.785 75.241 1.00 30.06 0 ATOM 3728 C VAL 594 55.309 38.154 72.563 1.00 20.00 0 ATOM 3729 O VAL 594 55.309 38.154 72.563 1.00 20.00 0 ATOM 3730 N ASP 595 56.112 38.991 73.218 1.00 20.00 0 ATOM 3731 CB ASP 595 56.112 38.991 73.218 1.00 20.00 0 ATOM 3732 CA ASP 595 58.073 38.903 71.705 1.00 33.06 0 ATOM 3733 CB ASP 595 58.073 38.903 71.705 1.00 33.25 0 ATOM 3734 CG ASP 595 59.240 38.147 73.679 1.00 42.23 0 ATOM 3736 OD2 ASP 595 59.240 38.147 73.679 1.00 42.03 0 ATOM 3737 C ASP 595 59.256 36.831 71.7941 1.00 46.45 0 ATOM 3738 O ASP 595 56.547 40.920 71.818 1.00 2.00 0 ATOM 3738 O ASP 595 55.335 40.901 71.575 1.00 29.29 0 ATOM 3731 C ASP 595 57.342 41.927 71.460 1.00 2.00 0 ATOM 3731 C ASP 595 57.342 41.927 71.460 1.00 2.00 0 ATOM 3731 C ASP 595 59.540 38.147 73.679 1.00 46.45 0 ATOM 3741 CA ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3741 CA ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3741 CA ARG 596 56.464 42.658 69.416 1.00 7.10 0 ATOM 3742 CB ARG 596 57.342 41.927 71.460 1.00 2.00 0 ATOM 3743 CC BARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3744 CD ARG 596 58.035 42.755 67.729 1.00 17.94 0 ATOM 3745 RE ARG 596 59.402 40.954 66.709 1.00 31.66 0 ATOM 3746 NIL ARG 596 58.035 42.755 67.729 1.00 17.94 0 ATOM 3748 NIL ARG 596 58.035 42.755 67.729 1.00 17.94 0 ATOM 3754 C ARG 596 59.402 40.954 66.709 1.00 31.66 0 ATOM 3755 NIL ARG 596 55.289 43.35 40.338 66.236 1.00 31.66 0 ATOM 3756 N GLY 597 54.692 43.351 71.847 1.00 20.00 0 ATOM 3756 N GLY 597 54.692 43.351 71.847 1.00 20.00 0 ATOM 3756 N GLY 597 54.499 44.400 74.818 1.00 20.00 0 ATOM 3766 CD LYS 598 53.404 43.377 77.210 1.00 17.90 0 ATOM 3766 CD LYS 598 53.404 43.377 77.210 1.00 17.90 0 ATOM 3766 N GLY 597 54.199 44.400 74.720 1.00 20.00 0 ATOM 3766 N GLY 597 54.199 44.400 74.720 1.00 20.00 0 ATOM 3766 N GLY 599 55.120 43.976 77.100 1.00 10.94 79 0 ATOM 3766 N GLY 599 591 591.204 40.977 77.100 1.00 1.00 1.00 1.00 1.00 1.00	-										
ATOM 3728 C VAL 594 55,950 35,684 73,875 1,00 30,06 0 ATOM 3728 C VAL 594 55,309 38,154 72,563 1,00 30,06 0 ATOM 3730 N ASP 595 55,408 37,919 71,356 1,00 30,06 0 ATOM 3730 N ASP 595 56,112 38,991 73,218 1,00 2,00 0 ATOM 3733 C ASP 595 57,184 39,776 72,601 1,00 2,00 0 ATOM 3733 C ASP 595 58,911 37,890 72,502 1,00 42,03 0 ATOM 3735 ODI ASP 595 58,911 37,890 72,502 1,00 42,03 0 ATOM 3736 ODI ASP 595 59,266 36,831 71,941 1,00 46,45 0 ATOM 3737 C ASP 595 59,256 36,831 71,941 1,00 46,45 0 ATOM 3738 O ASP 595 55,335 40,920 71,818 1,00 2,40 0 ATOM 3738 O ASP 595 55,335 40,920 71,818 1,00 2,20 0 ATOM 3737 C ARG 596 55,335 40,920 71,818 1,00 2,20 0 ATOM 3741 C ARG 596 55,146 42,658 69,416 1,00 2,00 0 ATOM 3741 C ARG 596 55,146 42,658 69,416 1,00 7,00 0 ATOM 3744 C ARG 596 59,402 40,954 66,709 1,00 13,06 0 ATOM 3745 ARG 596 59,402 40,954 66,709 1,00 31,06 0 ATOM 3747 C ARG 596 59,402 40,954 66,709 1,00 31,06 0 ATOM 3751 ARG 596 59,402 40,954 66,709 1,00 35,66 0 ATOM 3751 ARG 596 59,402 40,954 66,709 1,00 31,66 0 ATOM 3758 C ARG 596 59,402 40,954 66,709 1,00 31,66 0 ATOM 3751 ARG 596 59,402 40,954 66,709 1,00 31,66 0 ATOM 3751 ARG 596 59,402 40,954 66,709 1,00 31,66 0 ATOM 3758 C ARG 596 59,402 40,954 66,709 1,00 31,66 0 ATOM 3758 C ARG 596 59,402 40,954 66,709 1,00 31,66 0 ATOM 3758 C ARG 596 59,402 40,954 66,709 1,00 31,66 0 ATOM 3758 C ARG 596 59,402 40,954 66,709 1,00 31,66 0 ATOM 3758 C ARG 596 59,402 40,438 66,466 1,00 31,66 0 ATOM 3758 C A											
ATOM 3729 O VAL 594 55.309 38.154 72.563 1.00 2.00 0 ATOM 3730 N ASP 595 55.408 37.919 71.356 1.00 30.06 0 ATOM 3730 N ASP 595 56.112 38.991 73.218 1.00 2.00 0 ATOM 3732 CA ASP 595 57.184 39.776 72.601 1.00 2.00 0 ATOM 3733 CB ASP 595 58.073 38.993 71.705 1.00 33.25 0 ATOM 3734 CB ASP 595 58.073 38.903 71.705 1.00 33.25 0 ATOM 3736 OD1 ASP 595 58.073 38.903 71.705 1.00 32.25 0 ATOM 3736 OD2 ASP 595 58.073 38.903 71.705 1.00 42.03 0 ATOM 3737 C ASP 595 59.240 38.147 73.679 1.00 40.72 0 ATOM 3737 C ASP 595 59.240 38.147 73.679 1.00 40.72 0 ATOM 3738 O ASP 595 55.352 60.831 71.941 1.00 46.45 0 ATOM 3738 O ASP 595 55.353 40.901 71.818 1.00 2.00 0 ATOM 3738 N ARG 596 57.342 41.927 71.460 1.00 2.00 0 ATOM 3741 CA ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3742 CB ARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3744 CD ARG 596 58.054 40.901 71.575 1.00 29.09 0 ATOM 3744 CD ARG 596 59.293 42.081 67.407 1.00 2.00 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 2.00 17.94 0 ATOM 3747 CZ ARG 596 59.293 42.081 67.407 1.00 2.00 17.94 0 ATOM 3748 NH 1 ARG 596 58.325 40.338 66.236 1.00 31.67 0 ATOM 3751 NH2 ARG 596 58.325 40.338 66.236 1.00 31.81 0 ATOM 3751 NH2 ARG 596 58.8325 40.338 66.236 1.00 31.81 0 ATOM 3758 C ARG 596 59.898 43.996 71.547 1.00 2.00 0 ATOM 3758 C ARG 596 59.898 43.996 71.547 1.00 2.00 0 ATOM 3758 C ARG 596 59.694 51.12 71.922 1.00 7.10 0 ATOM 3758 C ARG 596 59.898 43.996 71.547 1.00 2.00 0 ATOM 3758 C ARG 596 59.898 43.996 71.547 1.00 2.00 0 ATOM 3758 C ARG 596 59.898 43.996 71.547 1.00 2.00 0 ATOM 3758 C ARG 596 59.898 43.996 71.547 1.00 2.00 0 ATOM 3758 C ARG 596 59.898 43.996 71.547 1.00 2.00 0 ATOM 3758 C ARG 596 59.898 53.845 40.338 66.236 1.00 31.81 0 ATOM 3758 C ARG 596 59.898 43.996 71.547 1.00 2.00 0 ATOM 3758 C ARG 596 59.898 53.845 40.338 66.236 1.00 31.81 0 ATOM 3758 C ARG 596 59.898 53.845 40.338 66.236 1.00 31.81 0 ATOM 3758 C ARG 596 59.898 53.845 40.338 66.236 1.00 31.81 0 ATOM 3758 C ARG 596 59.898 53.845 40.338 66.236 1.00 31.81 0 ATOM 3760 C ARG 596 59.898 53.845 40.338 66.236 1.00									73.875		
ATOM 3730 N ASP 595 56.112 38.991 73.218 1.00 2.00 0 ATOM 3731 CB ASP 595 57.184 39.776 72.601 1.00 2.00 0 ATOM 3733 CB ASP 595 58.073 38.903 71.705 1.00 32.25 0 ATOM 3734 CG ASP 595 58.911 77.890 72.502 1.00 42.03 0 ATOM 3735 ODL ASP 595 59.240 38.147 73.679 1.00 40.72 0 ATOM 3736 OD2 ASP 595 59.240 38.147 73.679 1.00 40.72 0 ATOM 3737 C ASP 595 59.240 38.147 73.679 1.00 40.72 0 ATOM 3738 O ASP 595 59.256 36.831 71.941 1.00 46.45 0 ATOM 3738 O ASP 595 55.355 40.901 71.575 1.00 22.00 0 ATOM 3739 N ARG 596 55.335 40.901 71.575 1.00 22.00 0 ATOM 3740 CA ARG 596 56.841 40.920 71.818 1.00 2.00 0 ATOM 3741 CA ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3742 CB ARG 596 56.146 42.658 69.416 1.00 7.10 0 ATOM 3744 CD ARG 596 57.043 41.863 68.457 1.00 17.94 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 17.94 0 ATOM 3746 CD ARG 596 59.293 42.081 67.407 1.00 17.94 0 ATOM 3747 CZ ARG 596 58.325 40.338 66.236 1.00 31.67 0 ATOM 3751 NIZ ARG 596 58.325 40.338 66.236 1.00 31.67 0 ATOM 3755 N CARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3756 C ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3756 C ARG 596 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3756 C BLY 597 54.692 43.521 71.847 1.00 2.00 0 ATOM 3756 C BLY 597 54.692 43.521 71.847 1.00 2.00 0 ATOM 3756 C BLY 597 54.692 43.521 71.847 1.00 2.00 0 ATOM 3766 C BLY 598 53.520 45.539 74.720 1.00 2.71 0 ATOM 3766 C BLY 598 53.520 45.539 74.720 1.00 2.00 0 ATOM 3766 C BLY 598 53.604 47.477 76.271 1.00 54.79 0 ATOM 3766 C BLY 598 53.604 47.477 76.271 1.00 55.50 0 ATOM 3776 C BLY 598 53.184 48.259 75.655 1.00 30.866 0 ATOM 3776 C BLY 598 53.184 48.259 77.261 1.00 56.27 0 ATOM 3776 C BLY 598 53.184 48.259 77.261 1.00 56.50 0 ATOM 3777 C B GLN 599 49.820 44.244 77.839 1.00 56.50 0 ATOM 3778 C BLY 598 53.184 48.259 77.261 1.00 50.50 0 ATOM 3779 C BLY 598 53.184 48.259 77.566 1.00 2.00 0 ATOM 3779 C BLY 598 53.184 66.277 77.548 0 1.00 2.00 0 ATOM 3779 C BLY 598 53.184 66.277 77.548 0 1.00 2.00 0 ATOM 3780 OG SER 600 51.899 39.800 79.306 1.00 2.00 0 ATOM 3799 C BLEU 601 53.573 39.828 8					594		55.309		72.563	1.00 2.00	
ATOM 3733 CA ASP 595 57.184 39.776 72.601 1.00 2.00 0 ATOM 3733 CB ASP 595 58.073 38.903 71.705 1.00 33.25 0 ATOM 3735 ODI ASP 595 58.911 37.890 72.502 1.00 42.03 0 ATOM 3736 OD2 ASP 595 59.240 38.147 73.679 1.00 40.72 0 ATOM 3737 C ASP 595 59.240 38.147 73.679 1.00 40.72 0 ATOM 3738 O ASP 595 59.256 36.831 71.941 1.00 46.45 0 ATOM 3738 O ASP 595 55.335 M.091 71.575 1.00 29.29 0 ATOM 3737 N ARG 596 57.342 41.927 71.460 1.00 2.00 0 ATOM 3741 CA ARG 596 55.3435 M.091 71.575 1.00 29.29 0 ATOM 3741 CA ARG 596 55.843 31.096 70.716 1.00 2.00 0 ATOM 3744 CA ARG 596 56.146 42.6588 69.416 1.00 7.10 0 ATOM 3743 CG ARG 596 55.043 41.927 71.460 1.00 2.00 0 ATOM 3744 CA ARG 596 58.035 42.755 67.729 1.00 17.94 0 ATOM 3745 NE ARG 596 58.035 42.755 67.729 1.00 17.94 0 ATOM 3745 NE ARG 596 59.402 40.954 66.709 1.00 25.56 0 ATOM 3748 NH1 ARG 596 59.402 40.954 66.709 1.00 25.56 0 ATOM 3751 NH2 ARG 596 59.402 40.954 66.709 1.00 35.06 0 ATOM 3754 C ARG 596 58.325 40.338 66.236 1.00 31.67 0 ATOM 3755 O ARG 596 55.898 31.996 71.547 1.00 2.00 0 ATOM 3756 N GLY 597 54.692 43.521 71.922 1.00 7.10 0 ATOM 3756 N GLY 597 54.692 43.521 71.922 1.00 7.10 0 ATOM 3756 C LYS 598 53.763 44.323 72.632 1.00 30.86 0 ATOM 3760 O GLY 597 54.692 43.521 72.632 1.00 30.86 0 ATOM 3761 N LYS 598 53.520 45.539 74.7501 1.00 2.00 0 ATOM 3766 CD LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3766 CD LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3767 CE LYS 598 53.845 45.911 76.397 1.00 17.90 0 ATOM 3776 CA GLN 599 55.298 53.845 45.911 76.097 1.00 17.90 0 ATOM 3776 CB GLN 599 55.298 53.845 45.911 76.397 1.00 2.00 0 ATOM 3776 CB GLN 599 55.204 38.846 77.795 1.00 2.00 0 ATOM 3776 CB GLN 599 55.204 38.846 77.795 1.00 2.00 0 ATOM 3776 CB GLN 599 55.206 48.841 77.838 1.00 2.00 0 ATOM 3778 CB GLN 599 55.206 39.304 4.007 76.831 1.00 2.00 0 ATOM 3778 CB GLN 599 55.206 39.304 4.007 76.207 1.00 2.00 0 ATOM 3788 C G GLN 599 55.206 39.304 4.007 76.840 1.00 2.00 0 ATOM 3789 CB GLN 599 48.840 40.577 75.480 1.00 2.00 0 ATOM 3790 CB GLN 599 55.206 39.306 88.806 1.00 2.00 0 AT	ATOM	3729	0	VAL							0
ATOM 3734 CG ASP 595. 58.073 38.903 71.705 1.00 33.25 0 ATOM 3735 ODL ASP 595. 59.266 37.890 72.502 1.00 42.03 0 ATOM 3736 ODL ASP 595 59.266 36.831 71.941 1.00 46.45 0 ATOM 3737 OC ASP 595 59.256 36.831 71.941 1.00 46.45 0 ATOM 3738 O ASP 595 59.256 36.831 71.941 1.00 46.45 0 ATOM 3738 N ARG 596 595 55.335 40.901 71.575 1.00 29.29 0 ATOM 3739 N ARG 596 57.342 41.927 71.460 1.00 2.00 0 ATOM 3741 CA ARG 596 56.146 42.658 69.416 1.00 2.00 0 ATOM 3742 CB ARG 596 55.146 42.658 69.416 1.00 7.10 0 ATOM 3744 CD ARG 596 55.035 40.901 71.00 17.94 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 17.94 0 ATOM 3747 CZ ARG 596 59.293 42.081 67.407 1.00 17.94 0 ATOM 3748 NHI ARG 596 58.325 40.338 66.236 1.00 35.06 0 ATOM 3751 NHZ ARG 596 58.325 40.338 66.236 1.00 35.06 0 ATOM 3755 N ARG 596 55.883 43.996 71.547 1.00 2.00 0 ATOM 3756 C ARG 596 55.888 43.996 71.547 1.00 2.00 0 ATOM 3756 C ARG 596 55.888 43.996 71.547 1.00 2.00 0 ATOM 3758 CA ARG 596 55.88 40.34 4.203 66.486 1.00 31.81 0 ATOM 3756 C ARG 596 55.898 43.996 71.547 1.00 2.20 0 ATOM 3756 C ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3756 C ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3756 C ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3757 NE SPS 596 596 596 596 596 596 596 596 596 596	MOTA							38.991			
ATOM 3735 ODI ASP 595 59. 59. 59. 59. 340 38. 147 73. 679 1.00 40.72 0 0 0 0 0 0 0 0 0	MOTA										
ATOM 3736 OD1 ASP 595 59.240 38.147 73.679 1.00 40.72 0 ATOM 3736 OD2 ASP 595 59.256 36.831 71.941 1.00 46.65 0 ATOM 3737 C ASP 595 55.355 40.901 71.575 1.00 2.00 0 ATOM 3738 N ARG 596 55.335 40.901 71.575 1.00 29.29 0 ATOM 3741 CA ARG 596 55.335 40.901 71.575 1.00 2.00 0 ATOM 3742 CB ARG 596 56.146 42.658 69.416 1.00 7.10 0 ATOM 3742 CB ARG 596 56.146 42.658 69.416 1.00 7.10 0 ATOM 3743 CG ARG 596 55.043 41.863 68.457 1.00 13.06 0 ATOM 3744 CD ARG 596 59.293 42.755 67.729 1.00 17.94 0 ATOM 3745 NE ARG 596 59.8025 40.755 67.729 1.00 17.94 0 ATOM 3747 CZ ARG 596 59.402 40.954 66.709 1.00 25.56 0 ATOM 3747 CZ ARG 596 59.402 40.954 66.709 1.00 25.56 0 ATOM 3747 CZ ARG 596 58.325 40.338 66.236 1.00 31.67 0 ATOM 3751 NH2 ARG 596 58.825 40.338 66.486 1.00 31.67 0 ATOM 3755 N ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 N ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 N ARG 596 56.269 45.112 71.922 1.00 7.10 0 ATOM 3755 N ARG 596 56.269 45.112 71.922 1.00 7.10 0 ATOM 3756 N GLY 597 53.763 44.323 72.632 1.00 30.86 0 ATOM 3756 N LYS 598 53.520 45.539 74.720 1.00 20.00 0 ATOM 3756 N LYS 598 53.520 45.539 74.720 1.00 20.00 0 ATOM 3756 N LYS 598 53.520 45.539 74.720 1.00 20.01 0 ATOM 3766 CD LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3766 CD LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3766 CD LYS 598 53.684 47.427 76.271 1.00 2.00 0 ATOM 3776 CE LYS 598 53.684 47.427 76.271 1.00 54.79 0 ATOM 3776 CE LYS 598 53.384 45.911 76.097 1.00 17.90 0 ATOM 3777 CB LYS 598 53.384 45.911 76.097 1.00 17.90 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 26.31 0 ATOM 3778 CG GLN 599 50.183 41.866 77.795 1.00 2.00 0 ATOM 3779 CB LYS 598 53.384 45.911 76.097 1.00 17.90 0 ATOM 3779 CB CLN 599 50.183 41.515 77.626 1.00 2.00 0 ATOM 3788 CG GLN 599 50.183 41.515 77.514 1.00 2.00 0 ATOM 3788 CG GLN 599 50.183 41.515 77.546 1.00 2.00 0 ATOM 3789 CG SER 600 52.475 44.607 77.985 1.00 2.00 0 ATOM 3780 CG SER 600 52.475 40.180 77.955 1.00 2.00 0 ATOM 3780 CG SER 600 51.569 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.05											
ATOM 3736 OD2 ASP 595 59.256 36.831 71.941 1.00 46.45 0 0 ATOM 3738 O ASP 595 55.535 40.901 71.818 1.00 2.00 0 0 ATOM 3738 O ASP 595 55.335 40.901 71.575 1.00 29.29 0 ATOM 3739 N ARG 596 57.342 41.927 71.460 1.00 2.00 0 0 ATOM 3741 CA ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3743 CG ARG 596 56.146 42.658 69.416 1.00 7.10 0 ATOM 3743 CG ARG 596 55.033 41.863 68.457 1.00 13.06 0 ATOM 3744 CD ARG 596 58.035 42.755 67.729 1.00 17.94 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3748 NH1 ARG 596 58.035 42.755 67.729 1.00 17.94 0 ATOM 3751 NH2 ARG 596 55.843 40.934 66.296 1.00 31.81 0 ATOM 3751 NH2 ARG 596 55.898 43.996 71.547 1.00 25.56 0 ATOM 3755 NH2 ARG 596 55.898 43.996 71.547 1.00 25.06 0 ATOM 3755 NH2 ARG 596 55.898 43.996 71.547 1.00 20.00 0 ATOM 3755 NH2 ARG 596 55.293 45.112 71.922 1.00 7.10 0 ATOM 3758 CA GLY 597 54.692 43.521 71.847 1.00 32.20 0 ATOM 3758 CA GLY 597 54.692 43.521 71.847 1.00 32.20 0 ATOM 3758 CA GLY 597 54.692 43.521 71.847 1.00 32.20 0 ATOM 3763 CA LYS 598 53.845 45.911 76.097 1.00 20.71 0 ATOM 3763 CA LYS 598 53.845 45.911 76.097 1.00 20.71 0 ATOM 3763 CA LYS 598 53.845 45.911 76.097 1.00 20.71 0 ATOM 3766 CD LYS 598 53.845 45.911 76.097 1.00 20.71 0 ATOM 3766 CD LYS 598 53.845 45.911 76.097 1.00 20.71 0 ATOM 3776 CE LYS 598 53.845 45.911 76.097 1.00 20.71 0 ATOM 3776 CB LYS 598 53.845 45.911 77.838 1.00 53.66 0 ATOM 3776 CB LYS 598 53.845 45.911 77.838 1.00 53.66 0 ATOM 3776 CB LYS 598 53.845 45.911 77.838 1.00 53.66 0 ATOM 3776 CB LYS 598 53.845 45.911 77.838 1.00 54.79 0 ATOM 3776 CB LYS 598 53.845 45.911 77.838 1.00 54.79 0 ATOM 3776 CB LYS 598 53.845 45.911 77.838 1.00 55.60 0 ATOM 3778 CB LYS 598 53.845 45.911 77.838 1.00 53.66 0 ATOM 3778 CB LYS 598 53.848 44.440 77.838 1.00 53.69 0 ATOM 3778 CB LYS 598 53.845 45.911 77.838 1.00 53.69 0 ATOM 3778 CB GLN 599 50.183 44.5314 47.989 1.00 20.00 0 ATOM 3778 CB GLN 599 50.183 41.515 77.626 1.00 2.00 0 ATOM 3788 CB GLN 599 50.183 41.515 77.626 1.00 2.00 0 ATOM 37											
ATOM 3737 C ASP 595 56.547 40.920 71.818 1.00 2.00 0 ATOM 3738 N ARG 596 57.342 41.927 71.460 1.00 2.00 0 ATOM 3739 N ARG 596 57.342 41.927 71.460 1.00 2.00 0 ATOM 3741 CA ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3742 CB ARG 596 56.146 42.658 69.416 1.00 7.10 0 ATOM 3743 CG ARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3745 NE ARG 596 59.8025 42.755 67.729 1.00 17.94 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3747 CZ ARG 596 59.402 40.954 66.709 1.00 35.06 0 ATOM 3747 CZ ARG 596 59.802 40.954 66.709 1.00 35.06 0 ATOM 3748 NH1 ARG 596 58.835 40.338 66.236 1.00 31.67 0 ATOM 3751 NH2 ARG 596 58.835 40.338 66.486 1.00 31.81 0 ATOM 3755 N ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 O ARG 596 56.269 45.112 71.922 1.00 7.10 0 ATOM 3755 O ARG 596 56.269 45.112 71.922 1.00 7.10 0 ATOM 3756 N GLY 597 53.763 44.323 72.632 1.00 30.86 0 ATOM 3756 N LYS 598 53.520 45.539 74.720 1.00 2.00 0 ATOM 3760 O GLY 597 55.120 43.976 74.570 1.00 2.00 0 ATOM 3761 N LYS 598 53.520 45.539 74.720 1.00 2.00 0 ATOM 3765 CG LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3765 CG LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3766 CD LYS 598 53.686 47.427 76.271 1.00 53.06 0 ATOM 3767 CE LYS 598 53.684 47.427 76.271 1.00 53.06 0 ATOM 3767 CE LYS 598 53.684 47.427 76.271 1.00 54.79 0 ATOM 3767 CE LYS 598 53.064 47.427 76.271 1.00 54.79 0 ATOM 3776 CA GLN 599 51.244 43.666 77.795 1.00 56.50 0 ATOM 3777 CB GLN 599 49.820 44.244 77.838 1.00 55.50 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3778 CB GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3788 CG GLN 599 50.183 41.515 77.626 1.00 2.00 0 ATOM 3788 CG GLN 599 50.183 41.515 77.626 1.00 2.00 0 ATOM 3789 CB SER 600 52.475 44.603 77.956 1.00 2.00 0 ATOM 3780 CG SER 600 52.475 44.603 77.626 1.00 2.00 0 ATOM 3780 CG SER 600 52.475 40.881 40.807 77.514 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.0											-
ATOM 3738 O ASP 595 55.335 40.901 71.575 1.00 29.29 0 ATOM 3741 CA ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3741 CA ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3743 CG ARG 596 56.146 42.658 69.416 1.00 7.10 0 ATOM 3744 CD ARG 596 58.035 42.755 67.729 1.00 17.94 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3747 CZ ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3748 NH1 ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3748 NH2 ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3748 NH2 ARG 596 59.402 40.954 66.709 1.00 35.06 0 ATOM 3751 NH2 ARG 596 58.325 40.338 66.236 1.00 31.67 0 ATOM 3752 NH2 ARG 596 60.604 40.438 66.709 1.00 35.06 0 ATOM 3753 NH2 ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 O ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 N GLY 597 54.692 45.112 71.922 1.00 7.10 0 ATOM 3755 N GLY 597 54.692 45.112 71.922 1.00 7.10 0 ATOM 3758 CA GLY 597 54.692 44.603 72.647 1.00 32.20 0 ATOM 3759 C GLY 597 54.199 44.603 72.602 1.00 35.68 0 ATOM 3761 N LYS 598 53.686 47.427 76.271 1.00 20.71 0 ATOM 3764 CB LYS 598 53.845 45.911 76.097 1.00 10.00 20.71 0 ATOM 3765 CG LYS 598 53.686 47.427 76.271 1.00 20.71 0 ATOM 3766 CD LYS 598 53.686 47.427 76.271 1.00 54.79 0 ATOM 3766 CG LYS 598 56.120 48.417 77.838 1.00 53.59 0 ATOM 3767 CE LYS 598 53.064 45.179 77.210 1.00 54.79 0 ATOM 3768 NS LYS 598 56.120 48.421 77.838 1.00 53.59 0 ATOM 3768 NS LYS 598 56.120 48.431 76.359 1.00 56.27 0 ATOM 3768 NS LYS 598 53.064 45.179 77.210 1.00 18.19 0 ATOM 3776 CD GLN 599 49.800 44.244 77.839 1.00 20.71 0 ATOM 3776 CB GLN 599 49.800 44.200 77.895 1.00 20.77 0 ATOM 3776 CB GLN 599 49.800 44.200 77.895 1.00 20.00 0 ATOM 3778 N GLN 599 50.183 42.2163 77.514 1.00 2.00 0 ATOM 3778 CG GLN 599 49.800 44.200 77.895 1.00 2.00 0 ATOM 3788 CG SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CG SER 600 51.589 39.8153 77.514 1.00 2.00 0 ATOM 3799 OG SER 600 51.589 39.8153 77.856 1.00 2.00 0 ATOM 3799 OG SER 600 51.568 39.055 80.486 1.00 2.00 0 ATOM 3799 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3799 CG LEU											
ATOM 3741 CA ARG 596 55.843 43.096 70.716 1.00 2.00 0 ATOM 3741 CA ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3743 CG ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3743 CG ARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3744 CD ARG 596 58.035 42.755 67.729 1.00 17.94 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3747 CZ ARG 596 59.402 40.954 66.709 1.00 31.67 0 ATOM 3751 NH2 ARG 596 58.035 40.338 66.236 1.00 31.67 0 ATOM 3751 NH2 ARG 596 58.325 40.338 66.236 1.00 31.67 0 ATOM 3751 NH2 ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 0 ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 0 ARG 596 56.269 43.521 71.847 1.00 32.20 0 ATOM 3758 CA GLY 597 53.763 44.323 71.922 1.00 7.10 0 ATOM 3759 C GLY 597 53.763 44.323 71.814 1.00 32.20 0 ATOM 3760 C GLY 597 55.120 43.976 74.570 1.00 2.00 0 ATOM 3761 N LYS 598 53.866 47.427 76.271 1.00 2.00 0 ATOM 3763 CA LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3766 CD LYS 598 53.866 47.427 76.271 1.00 54.79 0 ATOM 3766 CD LYS 598 53.884 45.911 76.097 1.00 17.90 0 ATOM 3767 CE LYS 598 53.184 45.911 76.097 1.00 17.90 0 ATOM 3768 NZ LYS 598 53.184 45.911 76.097 1.00 17.90 0 ATOM 3767 CE LYS 598 53.184 45.179 77.210 1.00 54.79 0 ATOM 3768 NZ LYS 598 53.184 45.179 77.210 1.00 56.50 0 ATOM 3779 CB GLN 599 52.053 44.400 76.832 1.00 55.50 0 ATOM 3779 CB GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3779 CB GLN 599 49.780 44.244 77.839 1.00 2.00 0 ATOM 3779 CB GLN 599 49.780 45.179 77.514 1.00 2.00 0 ATOM 3779 CB GLN 599 49.780 45.179 77.514 1.00 2.00 0 ATOM 3786 N SER 600 52.371 41.602 77.598 1.00 2.00 0 ATOM 3786 N SER 600 51.88 39.055 80.486 1.00 2.00 0 ATOM 3799 CD GLN 599 50.183 41.515 77.546 1.00 2.00 0 ATOM 3799 CD GLN 599 51.244 41.602 77.198 1.00 2.00 0 ATOM 3798 CB SER 600 51.968 39.055 80.486 1.00 2.00 0 ATOM 3799 CD GLN 599 31.156 39.055 80.486 1.00 2.00 0 ATOM 3799 CB GLN 599 31.566 39.055 80.486 1.00 2.00 0 ATOM 3799 CB SER 600 51.589 39.055 80.486 1.00 2.00 0 ATOM 3799 CB LEU 601 51.566 39.055 8											
ATOM 3741 CA ARG 596 56.843 43.096 70.716 1.00 2.00 0 ATOM 3742 CB ARG 596 56.146 42.658 69.416 1.00 7.10 0 ATOM 3743 CG ARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3744 CD ARG 596 58.035 42.755 67.729 1.00 17.94 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3747 CZ ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3748 NH1 ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3748 NH1 ARG 596 59.293 42.081 67.407 1.00 35.06 0 ATOM 3751 NH2 ARG 596 59.402 40.954 66.709 1.00 35.06 0 ATOM 3751 NH2 ARG 596 60.604 40.438 66.486 1.00 31.67 0 ATOM 3755 O ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 N GLY 597 54.692 43.521 71.947 1.00 2.00 0 ATOM 3756 N GLY 597 54.692 43.521 71.947 1.00 2.00 0 ATOM 3759 C GLY 597 53.763 44.323 72.632 1.00 30.86 0 ATOM 3760 N GLY 597 55.120 43.976 74.570 1.00 20.71 0 ATOM 3761 N LYS 598 53.520 45.539 74.720 1.00 20.71 0 ATOM 3766 CB LYS 598 53.845 47.427 76.271 1.00 2.00 0 ATOM 3766 CB LYS 598 53.845 47.427 76.271 1.00 2.71 0 ATOM 3766 CB LYS 598 53.845 47.427 76.271 1.00 54.79 0 ATOM 3766 CB LYS 598 53.846 47.427 76.271 1.00 54.79 0 ATOM 3767 CE LYS 598 53.064 45.917 76.097 1.00 17.90 0 ATOM 3768 NZ LYS 598 53.846 47.427 76.271 1.00 54.79 0 ATOM 3760 CB LYS 598 53.846 47.427 76.271 1.00 54.79 0 ATOM 3760 CB LYS 598 53.846 47.427 76.271 1.00 55.50 0 ATOM 3761 N SS 598 53.846 47.427 76.271 1.00 54.79 0 ATOM 3762 CB LYS 598 53.846 47.427 76.271 1.00 54.79 0 ATOM 3763 CB LYS 598 53.846 47.427 76.271 1.00 54.79 0 ATOM 3766 CB LYS 598 53.846 47.427 76.271 1.00 54.79 0 ATOM 3768 NZ LYS 598 53.846 47.427 76.271 1.00 54.79 0 ATOM 3768 NZ LYS 598 53.846 47.427 76.271 1.00 54.79 0 ATOM 3768 NZ LYS 598 53.846 47.427 76.271 1.00 54.79 0 ATOM 3760 CB LYS 598 53.846 47.427 76.271 1.00 54.79 0 ATOM 3776 CB GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3778 CB GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3788 CG SER 600 52.444 40.807 77.898 1.00 2.777 0 ATOM 3789 CB SER 600 52.445 40.180 77.998 1.00 2.00 0 ATOM 3789 CB SER 600 51.889 39.781 76.547 1.00 2.00 0 ATOM 3798 CB LEU 601 51.99											
ATOM 3742 CB ARG 596 55.446 42.658 69.416 1.00 7.10 0 ATOM 3743 CG ARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3745 NE ARG 596 58.035 42.755 67.729 1.00 17.94 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3747 CZ ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3748 NH1 ARG 596 58.325 40.338 66.236 1.00 31.67 0 ATOM 3751 NH2 ARG 596 60.604 40.438 66.486 1.00 31.81 0 ATOM 3751 NH2 ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 N GLY 597 54.692 43.521 71.847 1.00 2.00 0 ATOM 3758 CA GLY 597 53.763 44.323 72.632 1.00 30.86 0 ATOM 3758 CA GLY 597 53.763 44.323 72.632 1.00 30.86 0 ATOM 3761 N LYS 598 53.520 45.539 74.720 1.00 20.71 0 ATOM 3763 CA LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3766 CG LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3766 CG LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3766 CG LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3767 CE LYS 598 53.384 45.911 76.097 1.00 53.06 0 ATOM 3767 CE LYS 598 53.384 45.791 76.271 1.00 54.79 0 ATOM 3768 NZ LYS 598 53.384 45.791 76.271 1.00 54.79 0 ATOM 3767 CG LYS 598 53.384 45.791 76.271 1.00 54.79 0 ATOM 3767 CG LYS 598 53.384 45.791 76.271 1.00 54.79 0 ATOM 3767 CG LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3767 CG LYS 598 53.384 45.791 76.271 1.00 54.79 0 ATOM 3767 CG LYS 598 53.384 45.791 76.271 1.00 54.79 0 ATOM 3767 CG LYS 598 53.384 45.791 76.271 1.00 56.50 0 ATOM 3767 CG LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3767 CG LYS 598 53.384 45.791 77.210 1.00 2.00 0 ATOM 3767 CG LYS 598 53.384 45.791 77.383 1.00 55.50 0 ATOM 3767 CG LYS 598 53.384 45.791 77.383 1.00 56.27 0 ATOM 3768 NZ LYS 598 53.384 45.791 77.383 1.00 56.27 0 ATOM 3767 CG LYS 598 53.384 45.791 77.383 1.00 56.20 0 ATOM 3768 NZ LYS 598 53.384 45.791 77.383 1.00 20.00 0 ATOM 3769 CA GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3769 CA GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3769 CA GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3769 CA GLN 599 51.245 40.00 76.822 1.00 2.00 0 ATOM 3788 CA SER 600 51.868 39.304 78.078 1.00 2.00 0 ATOM 3788 CA SER 600											
ATOM 3743 CG ARG 596 57.043 41.863 68.457 1.00 13.06 0 ATOM 3744 CD ARG 596 59.8035 42.755 67.729 1.00 17.94 0 ATOM 3745 NE ARG 596 59.293 42.081 67.407 1.00 25.56 0 ATOM 3747 CZ ARG 596 59.402 40.954 66.709 1.00 35.06 0 ATOM 3748 NH1 ARG 596 58.325 40.338 66.236 1.00 31.67 0 ATOM 3751 NH2 ARG 596 60.604 40.438 66.486 1.00 31.81 0 ATOM 3755 NG ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 NG ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 NG ARG 596 56.269 45.112 71.922 1.00 7.10 0 ATOM 3755 NG ARG 596 56.269 43.521 71.847 1.00 32.20 0 ATOM 3755 NG GLY 597 54.692 43.521 71.847 1.00 32.20 0 ATOM 3759 C GLY 597 54.199 44.603 74.062 1.00 35.68 0 ATOM 3760 NG CY 597 54.199 44.603 74.062 1.00 30.86 0 ATOM 3761 NLYS 598 53.563 44.323 72.632 1.00 30.86 0 ATOM 3761 NLYS 598 53.520 45.539 74.720 1.00 2.00 0 ATOM 3761 NLYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3766 CB LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3766 CB LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3766 CD LYS 598 53.845 45.911 76.391 1.00 54.79 0 ATOM 3766 CD LYS 598 53.845 47.77 1.00 55.70 0 ATOM 3766 CB LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3767 CE LYS 598 56.120 48.441 77.838 1.00 53.59 0 ATOM 3766 CD LYS 598 53.384 48.259 75.655 1.00 53.06 0 ATOM 3767 CE LYS 598 53.384 45.911 76.891 1.00 56.27 0 ATOM 3767 CE LYS 598 53.384 45.911 77.839 1.00 56.27 0 ATOM 3767 CE LYS 598 53.384 45.911 77.839 1.00 56.27 0 ATOM 3767 CB GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3773 O LYS 598 53.384 45.911 77.839 1.00 56.27 0 ATOM 3767 CB GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3776 CA GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3780 OBI GLN 599 50.183 41.515 77.626 1.00 27.73 0 ATOM 3780 NEER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3780 OBI GLN 599 50.183 41.515 77.626 1.00 24.492 0 ATOM 3780 OBI GLN 599 50.183 41.515 77.626 1.00 24.492 0 ATOM 3780 OBI GLN 599 50.183 41.515 77.626 1.00 2.00 0 ATOM 3789 CB SER 600 51.589 39.304 78.688 1.00 2.00 0 ATOM 3789 CB SER 600 51.589 39.3											
ATOM 3744 CD ARC 596											
ATOM 3745 NE ARG 596											0
ATOM 3747 CZ ARG 596							59. 29 3		67.407	1.00 25.56	0
ATOM 3751 NH2 ARG 596 60.604 40.438 66.486 1.00 31.81 0 ATOM 3754 C ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 O ARG 596 56.269 45.112 71.922 1.00 7.10 0 ATOM 3758 CA GLY 597 54.692 43.521 71.847 1.00 32.20 0 ATOM 3758 CA GLY 597 54.692 43.521 71.847 1.00 32.20 0 ATOM 3759 C GLY 597 54.199 44.603 74.062 1.00 35.68 0 ATOM 3750 O GLY 597 54.199 44.603 74.062 1.00 35.68 0 ATOM 3760 O GLY 597 55.120 43.976 74.570 1.00 2.00 0 ATOM 3761 N LYS 598 53.520 45.539 74.720 1.00 2.00 0 ATOM 3764 CB LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3764 CB LYS 598 53.866 47.427 76.271 1.00 54.79 0 ATOM 3766 CD LYS 598 54.813 48.259 75.655 1.00 53.06 0 ATOM 3766 CD LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3767 CE LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3767 CE LYS 598 53.064 45.179 77.210 1.00 18.19 0 ATOM 3772 C LYS 598 53.384 45.314 78.395 1.00 53.59 0 ATOM 3773 O LYS 598 53.384 45.314 78.395 1.00 55.50 0 ATOM 3773 O LYS 598 53.384 45.314 78.395 1.00 55.50 0 ATOM 3776 CA GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3779 CD GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.7.77 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 C GLN 599 49.780 45.701 78.304 1.00 2.7.77 0 ATOM 3788 C G GLN 599 50.183 41.515 77.548 1.00 2.00 0 ATOM 3788 C G GLN 599 50.183 41.515 77.548 1.00 2.00 0 ATOM 3788 C G GLN 599 50.183 41.515 77.548 1.00 2.00 0 ATOM 3788 C G GLN 599 50.183 41.515 77.548 1.00 2.00 0 ATOM 3788 C G GLN 599 50.183 41.515 77.548 1.00 2.00 0 ATOM 3790 C SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3790 C SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3790 C SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3790 C SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3791 C G GLEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3793 O SER 600 51.589 39.304 78.078 1.00 2.00 0 ATOM 3794 C G LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3799 C G LEU 601 51.566 39.055 8			CZ	ARG	596						_
ATOM 3754 C ARG 596 55.898 43.996 71.547 1.00 2.00 0 ATOM 3755 O ARG 596 56.269 45.112 71.922 1.00 7.10 0 ATOM 3755 N GLY 597 54.692 43.521 71.847 1.00 32.20 0 ATOM 3758 CA GLY 597 54.692 43.521 71.847 1.00 32.20 0 ATOM 3758 CA GLY 597 54.692 43.521 71.847 1.00 32.20 0 ATOM 3759 C GLY 597 54.199 44.603 74.652 1.00 35.68 0 ATOM 3761 N LYS 598 53.520 45.539 74.720 1.00 2.00 0 ATOM 3761 N LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3765 CG LYS 598 53.686 47.427 76.271 1.00 54.79 0 ATOM 3765 CG LYS 598 54.813 48.259 75.655 1.00 54.79 0 ATOM 3765 CG LYS 598 54.813 48.259 75.655 1.00 53.06 0 ATOM 3767 CE LYS 598 56.159 48.031 76.355 1.00 53.50 0 ATOM 3768 NZ LYS 598 56.120 48.441 77.838 1.00 56.27 0 ATOM 3768 NZ LYS 598 57.407 48.186 78.548 1.00 56.50 0 ATOM 3773 O LYS 598 53.384 45.314 78.395 1.00 56.50 0 ATOM 3774 N GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3779 CD GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3780 OE1 GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3785 O GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3786 N SER 600 52.445 40.180 76.921 1.00 2.00 0 ATOM 3788 CG SER 600 52.445 40.180 76.921 1.00 2.00 0 ATOM 3788 CA SER 600 52.445 40.180 76.921 1.00 2.00 0 ATOM 3789 CB SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3790 CB SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3791 CB SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3794 N LEU 601 51.969 39.830 79.306 1.00 2.00 0 ATOM 3796 CA LEU 601 51.969 39.830 79.306 1.00 2.00 0 ATOM 3797 CB GLEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3799 CB SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3799 CB SER 600 51.589 38.153 77.866 1.00 2.00 0 ATOM 3799 CB SER 600 51.589 38.153 77.866 1.00 2.00 0 ATOM 3799 CB SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3799 CB SER 600 51.589 38.153 77.866 1.0	MOTA	3748	NH1	ARG		•					
ATOM 3755 O ARG 596 56.269 45.112 71.922 1.00 7.10 O ATOM 3756 N GLY 597 54.692 43.521 71.847 1.00 32.20 O ATOM 3758 CG LYS 597 54.692 43.521 71.847 1.00 32.20 O ATOM 3750 C GLY 597 54.199 44.603 74.062 1.00 35.68 O ATOM 3760 O GLY 597 55.120 43.976 74.570 1.00 20.01 O ATOM 3761 CA LYS 598 53.520 45.539 74.720 1.00 20.71 O ATOM 3763 CA LYS 598 53.845 45.911 76.097 1.00 17.90 O ATOM 3764 CB LYS 598 53.845 45.911 76.097 1.00 17.90 O ATOM 3766 CD LYS 598 54.813 48.259 75.655 1.00 53.06 O ATOM 3766 CD LYS 598 56.159 48.031 76.359 1.00 56.27 O ATOM 3766 CD LYS 598 56.159 48.031 76.359 1.00 56.27 O ATOM 3767 CE LYS 598 57.407 48.186 78.548 1.00 56.50 O ATOM 3773 O LYS 598 53.384 45.179 77.210 1.00 18.19 O ATOM 3773 O LYS 598 53.384 45.179 77.210 1.00 18.19 O ATOM 3776 CA GLN 599 52.053 44.400 76.832 1.00 2.00 O ATOM 3776 CB GLN 599 52.053 44.00 76.832 1.00 2.00 O ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 2.00 O ATOM 3778 CG GLN 599 49.780 45.701 78.304 1.00 27.33 O ATOM 3778 CG GLN 599 49.780 45.701 78.304 1.00 27.33 O ATOM 3779 CD GLN 599 49.780 45.701 78.304 1.00 27.33 O ATOM 3780 OEI GLN 599 49.780 45.701 78.304 1.00 27.33 O ATOM 3781 NE2 GLN 599 49.780 45.701 78.304 1.00 27.33 O ATOM 3788 CG GLN 599 49.780 45.701 78.304 1.00 27.33 O ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 O ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 O ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 O ATOM 3780 OEI GLN 599 50.183 41.515 77.626 1.00 2.00 O ATOM 3780 CB SER 600 52.371 41.602 77.198 1.00 2.00 O ATOM 3780 CB SER 600 52.371 41.602 77.198 1.00 2.00 O ATOM 3780 CB SER 600 51.968 39.304 78.078 1.00 2.00 O ATOM 3790 OG SER 600 51.968 39.304 79.306 1.00 2.00 O ATOM 3793 O SER 600 51.968 39.304 79.306 1.00 2.00 O ATOM 3793 O SER 600 51.968 39.304 79.306 1.00 2.00 O ATOM 3794 N LEU 601 51.990 39.830 79.306 1.00 2.00 O ATOM 3795 CB LEU 601 51.566 39.055 80.486 1.00 2.00 O ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 O ATOM 3799 CB LEU 601 51.566 39.055 80.486 1.00 2.00 O ATOM 3799 CB LEU 601 51.566 39.055 80.				ARG							
ATOM 3756 N GLY 597 54.692 43.521 71.847 1.00 32.20 0 ATOM 3758 CA GLY 597 53.763 44.323 72.632 1.00 30.86 0 ATOM 3759 C GLY 597 54.199 44.603 74.062 1.00 35.68 0 ATOM 3761 N LYS 598 53.520 43.539 74.570 1.00 2.00 0 ATOM 3761 N LYS 598 53.520 45.539 74.720 1.00 20.71 0 ATOM 3763 CA LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3765 CG LYS 598 53.686 47.427 76.271 1.00 54.79 0 ATOM 3766 CD LYS 598 54.813 48.259 75.655 1.00 53.06 0 ATOM 3766 CD LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3768 NZ LYS 598 56.120 48.441 77.838 1.00 53.59 0 ATOM 3768 NZ LYS 598 56.120 48.441 77.838 1.00 53.59 0 ATOM 3772 C LYS 598 53.064 45.179 77.210 1.00 18.19 0 ATOM 3773 C LYS 598 53.384 45.314 78.395 1.00 55.50 0 ATOM 3776 CA GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 27.33 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 27.33 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 27.33 0 ATOM 3780 CE LYS 598 50.183 41.602 77.195 1.00 2.00 0 ATOM 3778 CG GLN 599 50.183 41.515 77.626 1.00 27.33 0 ATOM 3780 CE GLN 599 50.183 41.515 77.626 1.00 27.77 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CB SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CB SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3790 OG SER 600 54.381 40.577 75.480 1.00 2.00 0 ATOM 3791 CB SER 600 54.381 40.577 75.480 1.00 2.00 0 ATOM 3793 C SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3794 N LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB GLEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3799 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0											
ATOM 3758 CA GLY 597 53.763 44.323 72.632 1.00 30.86 0 ATOM 3759 C GLY 597 54.199 44.603 74.062 1.00 35.68 0 ATOM 3760 O GLY 597 55.120 43.976 74.570 1.00 2.00 0 ATOM 3761 N LYS 598 53.520 45.539 74.720 1.00 20.71 0 ATOM 3763 CA LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3764 CB LYS 598 53.686 47.427 76.271 1.00 54.79 0 ATOM 3766 CG LYS 598 54.813 48.259 75.655 1.00 53.06 0 ATOM 3766 CD LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3766 NZ LYS 598 56.150 48.031 76.359 1.00 56.27 0 ATOM 3768 NZ LYS 598 56.120 48.441 77.838 1.00 53.59 0 ATOM 3772 C LYS 598 53.064 45.179 77.210 1.00 18.19 0 ATOM 3773 O LYS 598 53.384 45.314 78.395 1.00 55.50 0 ATOM 3773 N GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3776 CA GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CG GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3780 OEI GLN 599 49.820 44.244 77.839 1.00 22.00 0 ATOM 3780 NE GLN 599 49.820 44.244 77.839 1.00 22.00 0 ATOM 3780 CG GLN 599 48.388 46.169 78.728 1.00 27.73 0 ATOM 3784 C GLN 599 49.820 44.244 77.839 1.00 26.31 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3790 OG SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3791 N LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3793 O SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3794 N LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0											
ATOM 3759 C GLY 597 54.199 44.603 74.062 1.00 35.68 0 ATOM 3760 O GLY 597 55.120 43.976 74.570 1.00 2.00 0 ATOM 3761 N LYS 598 53.520 45.539 74.720 1.00 20.71 0 ATOM 3763 CA LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3764 CB LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3765 CG LYS 598 54.813 48.259 75.655 1.00 53.06 0 ATOM 3766 CD LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3768 NZ LYS 598 56.120 48.441 77.838 1.00 53.59 0 ATOM 3768 NZ LYS 598 57.407 48.186 78.548 1.00 56.50 0 ATOM 3773 O LYS 598 53.064 45.179 77.210 1.00 18.19 0 ATOM 3774 N GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3776 CA GLN 599 49.820 44.244 77.839 1.00 55.50 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 27.33 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 27.33 0 ATOM 3778 CG GLN 599 49.820 77.821 1.00 27.33 0 ATOM 3778 CG GLN 599 49.820 77.821 1.00 27.33 0 ATOM 3780 OEI GLN 599 49.820 77.821 1.00 27.33 0 ATOM 3780 OEI GLN 599 49.820 77.821 1.00 27.33 0 ATOM 3780 OEI GLN 599 50.183 41.515 77.626 1.00 27.77 0 ATOM 3784 C GLN 599 50.183 41.515 77.626 1.00 24.92 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3790 OG SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3791 NEE GLN 599 50.183 41.515 77.626 1.00 24.92 0 ATOM 3792 C SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.968 39.304 78.078 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0											
ATOM 3760 O GLY 597 55.120 43.976 74.570 1.00 2.00 0 ATOM 3761 N LYS 598 53.520 45.539 74.720 1.00 20.71 0 ATOM 3763 CA LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3764 CB LYS 598 53.845 45.911 76.097 1.00 54.79 0 ATOM 3765 CG LYS 598 54.813 48.259 75.655 1.00 53.06 0 ATOM 3766 CD LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3766 NZ LYS 598 56.150 48.441 77.838 1.00 53.59 0 ATOM 3768 NZ LYS 598 56.120 48.441 77.838 1.00 56.27 0 ATOM 3772 C LYS 598 56.120 48.441 77.838 1.00 56.50 0 ATOM 3773 0 LYS 598 53.064 45.179 77.210 1.00 18.19 0 ATOM 3773 0 LYS 598 53.384 45.314 78.395 1.00 55.50 0 ATOM 3774 N GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3776 CA GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 49.80 45.701 78.304 1.00 2.00 0 ATOM 3778 CG GLN 599 49.80 45.701 78.304 1.00 2.00 0 ATOM 3778 CG GLN 599 49.80 45.701 78.304 1.00 2.00 0 ATOM 3778 CG GLN 599 49.780 45.701 78.304 1.00 20.31 0 ATOM 3780 OEI GLN 599 47.537 46.449 77.895 1.00 22.00 0 ATOM 3781 NE2 GLN 599 47.537 46.449 77.895 1.00 22.00 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3799 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3799 CB SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3799 CB SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3798 CB SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3798 CB SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.596 39.753 82.260 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.											
ATOM 3761 N LYS 598 53.520 45.539 74.720 1.00 20.71 0 ATOM 3763 CA LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3764 CB LYS 598 53.686 47.427 76.271 1.00 54.79 0 ATOM 3765 CG LYS 598 54.813 48.259 75.655 1.00 53.06 0 ATOM 3766 CD LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3767 CE LYS 598 56.120 48.441 77.838 1.00 53.59 0 ATOM 3768 NZ LYS 598 57.407 48.186 78.548 1.00 56.50 0 ATOM 3773 0 LYS 598 53.384 45.314 78.395 1.00 55.50 0 ATOM 3774 N GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CB GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CB GLN 599 49.820 44.244 77.839 1.00 22.00 0 ATOM 3780 0E1 GLN 599 49.820 44.244 77.839 1.00 22.00 0 ATOM 3781 NE2 GLN 599 48.398 46.169 78.728 1.00 27.33 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3798 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3790 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3791 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3792 C SER 600 51.589 38.153 77.656 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3795 CB LEU 601 51.568 39.356 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.568 39.356 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.568 39.356 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.568 39.058 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.568 39.358 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.568 39.358 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.568 39.358 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486											
ATOM 3763 CA LYS 598 53.845 45.911 76.097 1.00 17.90 0 ATOM 3764 CB LYS 598 53.686 47.427 76.271 1.00 54.79 0 ATOM 3765 CG LYS 598 54.813 48.259 75.655 1.00 53.06 0 ATOM 3766 CD LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3767 CE LYS 598 56.120 48.441 77.838 1.00 56.27 0 ATOM 3768 NZ LYS 598 56.120 48.441 77.838 1.00 53.59 0 ATOM 3772 C LYS 598 57.407 48.186 78.548 1.00 56.50 0 ATOM 3773 O LYS 598 53.064 45.179 77.210 1.00 18.19 0 ATOM 3774 N GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3777 CB GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CG GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3779 CD GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3778 CG GLN 599 48.398 46.169 78.728 1.00 27.33 0 ATOM 3780 OEI GLN 599 48.398 46.169 78.728 1.00 27.33 0 ATOM 3781 NE2 GLN 599 48.188 46.277 80.029 1.00 27.77 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3793 O SER 600 51.589 39.304 78.078 1.00 2.00 0 ATOM 3794 N LEU 601 51.589 39.304 78.078 1.00 2.00 0 ATOM 3795 CB LEU 601 51.589 39.304 78.078 1.00 2.00 0 ATOM 3797 CB LEU 601 51.589 39.304 78.078 1.00 2.00 0 ATOM 3797 CB LEU 601 51.589 39.304 78.078 1.00 2.00 0 ATOM 3798 CG LEU 601 51.589 39.304 78.078 1.00 2.00 0 ATOM 3799 CB LEU 601 51.589 39.304 78.078 1.00 2.00 0 ATOM 3799 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0											
ATOM 3764 CB LYS 598 53.686 47.427 76.271 1.00 54.79 0 ATOM 3765 CG LYS 598 54.813 48.259 75.655 1.00 53.06 0 ATOM 3766 CD LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3767 CE LYS 598 56.120 48.441 77.838 1.00 53.59 0 ATOM 3768 NZ LYS 598 57.407 48.186 78.548 1.00 56.50 0 ATOM 3772 C LYS 598 53.064 45.179 77.210 1.00 18.19 0 ATOM 3773 O LYS 598 53.064 45.314 78.395 1.00 55.50 0 ATOM 3774 N GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3776 CA GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CG GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3779 CD GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3780 OEI GLN 599 49.780 45.701 78.304 1.00 27.33 0 ATOM 3781 NE2 GLN 599 48.398 46.169 78.728 1.00 27.37 0 ATOM 3784 C GLN 599 51.215 42.163 77.514 1.00 2.00 0 ATOM 3785 O GLN 599 50.183 41.515 77.626 1.00 2.00 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3799 OG SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3791 N LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3797 CB LEU 601 51.590 39.855 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.590 39.628 81.801 1.00 2.00 0 ATOM 3797 CB LEU 601 51.590 39.628 81.801 1.00 2.00 0 ATOM 3797 CB LEU 601 51.590 39.628 81.801 1.00 2.00 0 ATOM 3797 CB LEU 601 51.590 39.628 81.801 1.00 2.00 0 ATOM 3797 CB LEU 601 51.590 39.628 81.801 1.00 2.00 0 ATOM 3797 CB LEU 601 51.590 39.628 81.801 1.00 2.00 0 ATOM 3797 CB LEU 601 51.590 39.628 81.801 1.00 2.00 0											0
ATOM 3765 CG LYS 598 54.813 48.259 75.655 1.00 53.06 0 ATOM 3766 CD LYS 598 56.159 48.031 76.359 1.00 56.27 0 ATOM 3767 CE LYS 598 56.120 48.441 77.838 1.00 56.50 0 ATOM 3768 NZ LYS 598 57.407 48.186 78.548 1.00 56.50 0 ATOM 3773 O LYS 598 53.064 45.179 77.210 1.00 18.19 0 ATOM 3774 N GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3776 CA GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CG GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3779 CD GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3779 CD GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3780 OE1 GLN 599 47.537 46.449 77.895 1.00 27.33 0 ATOM 3781 NE2 GLN 599 47.537 46.449 77.895 1.00 27.33 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3795 CB LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3797 CB LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0										1.00 54.79	0
ATOM 3767 CE LYS 598 56.120 48.441 77.838 1.00 53.59 0 ATOM 3768 NZ LYS 598 57.407 48.186 78.548 1.00 56.50 0 ATOM 3772 C LYS 598 53.064 45.179 77.210 1.00 18.19 0 ATOM 3773 O LYS 598 53.384 45.314 78.395 1.00 2.00 0 ATOM 3774 N GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3776 CA GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 24.444 0 ATOM 3778 CG GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3779 CD GLN 599 48.398 46.169 78.728 1.00 27.33 0 ATOM 3780 OE1 GLN 599 48.398 46.169 78.728 1.00 27.33 0 ATOM 3781 NE2 GLN 599 47.537 46.449 77.895 1.00 26.31 0 ATOM 3784 C GLN 599 51.215 42.163 77.514 1.00 2.00 0 ATOM 3785 O GLN 599 51.215 42.163 77.514 1.00 2.00 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3790 OG SER 600 54.381 40.577 75.480 1.00 2.00 0 ATOM 3791 OG SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 52.573 39.753 82.260 1.00 2.00 0					598			48.259	75.65 5		
ATOM 3768 NZ LYS 598 57.407 48.186 78.548 1.00 56.50 0 ATOM 3772 C LYS 598 53.064 45.179 77.210 1.00 18.19 0 ATOM 3773 O LYS 598 53.384 45.314 78.395 1.00 55.50 0 ATOM 3774 N GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3776 CA GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CG GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3779 CD GLN 599 48.398 46.169 78.728 1.00 27.33 0 ATOM 3780 OE1 GLN 599 47.537 46.449 77.895 1.00 27.33 0 ATOM 3781 NE2 GLN 599 48.188 46.277 80.029 1.00 27.77 0 ATOM 3784 C GLN 599 51.215 42.163 77.514 1.00 2.00 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.445 40.180 76.921 1.00 2.00 0 ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3790 OG SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 N SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3794 N LEU 601 51.589 38.153 77.856 1.00 2.00 0 ATOM 3797 CB LEU 601 51.590 39.830 79.306 1.00 2.00 0 ATOM 3797 CB LEU 601 51.590 39.830 79.306 1.00 2.00 0 ATOM 3797 CB LEU 601 51.590 39.830 79.306 1.00 2.00 0 ATOM 3797 CB LEU 601 51.590 39.830 79.306 1.00 2.00 0 ATOM 3797 CB LEU 601 51.560 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.560 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 53.573 39.753 82.260 1.00 2.00 0	MOTA	376 6	CD	LYS	59 8						
ATOM 3772 C LYS 598 53.064 45.179 77.210 1.00 18.19 0 ATOM 3773 O LYS 598 53.384 45.314 78.395 1.00 55.50 0 ATOM 3774 N GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3776 CA GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CG GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3779 CD GLN 599 48.398 46.169 78.728 1.00 27.33 0 ATOM 3780 OE1 GLN 599 47.537 46.449 77.895 1.00 26.31 0 ATOM 3781 NE2 GLN 599 48.188 46.277 80.029 1.00 27.77 0 ATOM 3784 C GLN 599 51.215 42.163 77.514 1.00 2.00 0 ATOM 3785 O GLN 599 51.215 42.163 77.514 1.00 2.00 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 52.445 40.180 76.921 1.00 2.00 0 ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3790 OG SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3794 N LEU 601 51.589 39.830 79.306 1.00 2.00 0 ATOM 3795 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 53.573 39.753 82.260 1.00 2.00 0	MOTA		CE								
ATOM 3773 O LYS 598 53.384 45.314 78.395 1.00 55.50 O ATOM 3774 N GLN 599 52.053 44.400 76.832 1.00 2.00 O ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 24.44 O ATOM 3778 CG GLN 599 49.780 45.701 78.304 1.00 31.08 O ATOM 3779 CD GLN 599 49.780 45.701 78.304 1.00 31.08 O ATOM 3780 OE1 GLN 599 47.537 46.449 77.895 1.00 27.33 O ATOM 3781 NE2 GLN 599 48.188 46.277 80.029 1.00 27.77 O ATOM 3784 C GLN 599 48.188 46.277 80.029 1.00 27.77 O ATOM 3785 O GLN 599 50.183 41.515 77.626 1.00 24.92 O ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 O ATOM 3789 CB SER 600 52.371 41.602 77.198 1.00 2.00 O ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 O ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 O ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 O ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 O ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 O ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 O ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 O ATOM 3793 C B LEU 601 51.596 39.055 80.486 1.00 2.00 O ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 O ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 O ATOM 3797 CB LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3797 CB LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3797 CB LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00	MOTA										
ATOM 3774 N GLN 599 52.053 44.400 76.832 1.00 2.00 0 ATOM 3776 CA GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CG GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3779 CD GLN 599 48.398 46.169 78.728 1.00 27.33 0 ATOM 3780 OE1 GLN 599 47.537 46.449 77.895 1.00 26.31 0 ATOM 3781 NE2 GLN 599 48.188 46.277 80.029 1.00 27.77 0 ATOM 3784 C GLN 599 48.188 46.277 80.029 1.00 27.77 0 ATOM 3785 O GLN 599 50.183 41.515 77.626 1.00 24.92 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 52.445 40.180 76.921 1.00 2.00 0 ATOM 3790 OG SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3790 OG SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3791 N LEU 601 51.589 38.153 77.856 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3797 CB LEU 601 53.573 39.753 82.260 1.00 2.00 0	-										
ATOM 3776 CA GLN 599 51.244 43.666 77.795 1.00 2.00 0 ATOM 3777 CB GLN 599 49.820 44.244 77.839 1.00 24.44 0 ATOM 3778 CG GLN 599 49.780 45.701 78.304 1.00 31.08 0 ATOM 3779 CD GLN 599 48.398 46.169 78.728 1.00 27.33 0 ATOM 3780 OE1 GLN 599 47.537 46.449 77.895 1.00 26.31 0 ATOM 3781 NE2 GLN 599 48.188 46.277 80.029 1.00 27.77 0 ATOM 3784 C GLN 599 51.215 42.163 77.514 1.00 2.00 0 ATOM 3785 O GLN 599 50.183 41.515 77.626 1.00 24.92 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 52.445 40.180 76.921 1.00 2.00 0 ATOM 3790 OG SER 600 54.381 40.577 75.480 1.00 2.00 0 ATOM 3790 OG SER 600 54.381 40.577 75.480 1.00 2.00 0 ATOM 3791 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3796 CA LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0		• •	-				53.384	44 400			
ATOM 3777 CB GLN 599											
ATOM 3778 CG GLN 599											
ATOM 3779 CD GLN 599 48.398 46.169 78.728 1.00 27.33 0 ATOM 3780 OE1 GLN 599 47.537 46.449 77.895 1.00 26.31 0 ATOM 3781 NE2 GLN 599 48.188 46.277 80.029 1.00 27.77 0 ATOM 3784 C GLN 599 51.215 42.163 77.514 1.00 2.00 0 ATOM 3785 O GLN 599 50.183 41.515 77.626 1.00 24.92 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3790 OG SER 600 54.381 40.577 75.480 1.00 2.00 0 ATOM 3792 C SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.589 38.153 77.856 1.00 2.00 0 ATOM 3796 CA LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0										1.00 31.08	. 0
ATOM 3780 OE1 GLN 599 47.537 46.449 77.895 1.00 26.31 O ATOM 3781 NE2 GLN 599 48.188 46.277 80.029 1.00 27.77 O ATOM 3784 C GLN 599 51.215 42.163 77.514 1.00 2.00 O ATOM 3785 O GLN 599 50.183 41.515 77.626 1.00 24.92 O ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 O ATOM 3788 CA SER 600 52.445 40.180 76.921 1.00 2.00 O ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 O ATOM 3790 OG SER 600 54.381 40.577 75.480 1.00 2.00 O ATOM 3792 C SER 600 51.968 39.304 78.078 1.00 2.00 O ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 O ATOM 3794 N LEU 601 51.590 39.830 79.306 1.00 2.00 O ATOM 3796 CA LEU 601 51.566 39.055 80.486 1.00 2.00 O ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 O ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 O										1.00 27.33	0
ATOM 3781 NE2 GLN 599 48.188 46.277 80.029 1.00 27.77 0 ATOM 3784 C GLN 599 51.215 42.163 77.514 1.00 2.00 0 ATOM 3785 O GLN 599 50.183 41.515 77.626 1.00 24.92 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.445 40.180 76.921 1.00 2.00 0 ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3790 OG SER 600 54.381 40.577 75.480 1.00 2.00 0 ATOM 3792 C SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.589 38.153 77.856 1.00 2.00 0 ATOM 3796 CA LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0											
ATOM 3784 C GLN 599 51.215 42.163 77.514 1.00 2.00 0 ATOM 3785 O GLN 599 50.183 41.515 77.626 1.00 24.92 0 ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.445 40.180 76.921 1.00 2.00 0 ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3790 OG SER 600 54.381 40.577 75.480 1.00 2.00 0 ATOM 3792 C SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.589 38.153 77.856 1.00 2.00 0 ATOM 3796 CA LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0			_				48.188				
ATOM 3786 N SER 600 52.371 41.602 77.198 1.00 2.00 0 ATOM 3788 CA SER 600 52.445 40.180 76.921 1.00 2.00 0 ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3790 OG SER 600 54.381 40.577 75.480 1.00 2.00 0 ATOM 3792 C SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.589 38.153 77.856 1.00 2.00 0 ATOM 3796 CA LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0			С		599						
ATOM 3788 CA SER 600 52.445 40.180 76.921 1.00 2.00 0 ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3790 OG SER 600 54.381 40.577 75.480 1.00 2.00 0 ATOM 3792 C SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.589 38.153 77.856 1.00 2.00 0 ATOM 3796 CA LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3797 CB LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0	MOTA	3785	0	GLN							
ATOM 3789 CB SER 600 53.875 39.781 76.547 1.00 2.00 0 ATOM 3790 OG SER 600 54.381 40.577 75.480 1.00 2.00 0 ATOM 3792 C SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3796 CA LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0			N								
ATOM 3790 OG SER 600 54.381 40.577 75.480 1.00 2.00 0 ATOM 3792 C SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3796 CA LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0											
ATOM 3792 C SER 600 51.968 39.304 78.078 1.00 2.00 0 ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3796 CA LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0											
ATOM 3793 O SER 600 51.589 38.153 77.856 1.00 2.00 0 ATOM 3794 N LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3796 CA LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0											
ATOM 3794 N LEU 601 51.990 39.830 79.306 1.00 2.00 0 ATOM 3796 CA LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0											
ATOM 3796 CA LEU 601 51.566 39.055 80.486 1.00 2.00 0 ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0											
ATOM 3797 CB LEU 601 52.120 39.628 81.801 1.00 2.00 0 ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0											
ATOM 3798 CG LEU 601 53.573 39.753 82.260 1.00 2.00 0											
54 200 30 404 93 339 1 00 3 00 0									82.260	1.00 2.00	
									82.228	1.00 2.00	0

MOTA	3800	CD2	LEU	601		54.244	40.799	81.399	1.00	2.00	0
ATOM	3801	C	LEU	601		50. 05 8	39.002	80.635	1.00	2.00	0
ATOM	3802	0	LEU	601		49.498	37.949	80.921	1.00	4.13	0
ATOM	3803	N	GLU	602		49.412	40.154	80.490	1.00	2.00	0
MOTA	3805	CA	GLU	602		47.969	40.227	80.608	1.00	2.00	0
MOTA	3806	CB	GLU	602		47.486	41.676	80.495	1.00	5.18	0
MOTA	3807	CG	GLU	602		47.752	42.552	81.739	1.00	5.18	0
ATOM	3808	CD	GLU	602		49.152	43.180	81.773	1.00	5.18	0
ATOM	3809		GLU	602		50.146	42.439	81.854	1.00	5.18	0
MOTA	3810		GLU	602		49.266	44.424	81.732 79.479	1.00	5.18 2.00	0 0
ATOM	3811	Ç	GLU	602		47.413	39.391 38.661	79.661	1.00	5.18	0
MOTA	3812	0	GLU	602		46.452	39.477	78.323	-	56.10	ő
ATOM	3813	N	THR	603		48.072 47.705	38.748	77.110		56.10	. 0
MOTA	3815	CA	THR	603		48.585	39.206	75.941	1.00	8.67	ŏ
MOTA	3816	CB	THR THR	603 603		48.197	40.527	75.557	1.00	8.67	ŏ
MOTA	3817		THR	603		48.437	38.272	74.748	1.00	8.67	ŏ.
ATOM	3819	CG2	THR	603		47.794	37.228	77.228		56.10	ŏ
ATOM	3820	C	THR	603		46.804	36.522	77.060	1.00	8.67	ŏ
MOTA	3821	0	ILE	604		48.980	36.713	77.505	1.00	2.00	ŏ
MOTA	3822	N CA	ILE	604		49.137	35.273	77.630	1.00	2.00	ŏ
MOTA	3824 3825	CB	ILE	604		50.643	34.900	77.738	1.00	2.00	ŏ
ATOM ATOM	3826	CG2	ILE	604		51.244	35.475	79.009	1.00	2.00	Ō
ATOM	3827		ILE	604		50.812	33.382	77.627	1.00	2.00	Ŏ
	3828		ILE	604		50.177	32.766	76.369	1.00	2.00	ŏ
MOTA	3829	CDI	ILE	604		48.314	34.710	78.808	1.00	2.00	ŏ
ATOM ATOM	3830	õ	ILE	604		47.886	33.565	78.779	1.00	2.00	Ō
ATOM	3831	N	CYS	605		48.057	35.526	79.821		17.68	0
MOTA	3833	CA	CYS	605		47.283	35.072	80.962	1.00	16.48	0
ATOM	3834	CB	CYS	605		47.434	36.026	82.138	1.00	12.63	0
ATOM	3835	SG	CYS	605		48.994	35.843	82.980	1.00	18.12	0
ATOM	3836	č	CYS	605		45.824	34.923	80.630	1.00	10.22	0
ATOM	3837	ō	CYS	605		45.185	33.963	81.068	1.00	8.59	0
ATOM	3838	N	LEU	606		45.280	35.856	79.861	1.00	2. 0 0	0
ATOM	3840	CA	LEU	606		43.874	35.771	79.504	1.00	2.0 0	0
ATOM	3841	CB	LEU	606		43.396	37.087	78.881	1.00	2.00	0
ATOM	3842	CG	LEU	606		41.886	37.223	78.636	1.00	2.00	0
MOTA	3843	CD1	LEU	60 6		41.081	36.7 1 6	79.867	1.00	2.00	0
MOTA	3844	CD2	LEU	606		41.551	38.688	78.326	1.00	2.00	0
ATOM	3845	С	LEU	60 6		43.589	34.599	78.559	1.00	2.00	0
ATOM	3846	0	LEU	60 6		42.503	34.012	78.612	1.00	2.00	0
MOTA	3847	N	LEU	607		44.562	34.246	77.713	1.00	9.59	0
MOTA	3849	CA	LEU	607		44.392	33.137	76.772	1.00	9.59	0
MOTA	3850	СB	LEU	607		45.394	33.246	75.604	1.00	9.66	0
MOTA	3851	CG	LEU	607		45.302	34.531	74.755	1.00	9.66 9.66	0
MOTA	3852		LEU	607		46.376	34.564	73.709	1.00	9.66	Ö
MOTA	3853		LEU	607		43.951	34.634 31.781	74.114 77.476	1.00 i.00	9.59	Ö
MOTA	3854	C	LEU	607		44.509		77.148	1.00	9.66	ŏ
MOTA	3855	0	LEU	607		43.772	30.841 31.688	78.452	1.00	67.56	ŏ
ATOM	3856	N	LEU	608 608		45.412 45.599	30.460	79.230	1.00	67.56	ŏ
MOTA	3858	CA	LEU	608		46.872	30.529	80.054	1.00	2.00	ŏ
MOTA	3859 3860	CB CG	LEU LEU	608		48.168	30.385	79.273	1.00	2.00	Ŏ
ATOM ATOM	3861		LEU	608		49.357	30.366	80.234	1.00	2.00	0
ATOM	3862		LEU	608		48.109	29.107	78.462	1.00	2.00	0
ATOM	3863	C	LEU	608		44.427	30.217	80.170	1.00	67.56	0
ATOM	3864	Ö	LEU	608	* *	44.097	29.059	80.477	1.00	2.00	0
ATOM	3865	И	ALA	609		43.833	31.313	80.653	1.00	2.00	. 0
ATOM	3867	CA	ALA	609		42.667	31.250	81.531	1.00	2.00	0
ATOM	3868	CB	ALA	609		42.322	32.637	82.044	1.00	2.00	0
ATOM	3869	C	ALA	609		41.496	30.677	80.734	1.00	2.00	0
ATOM	3870	Ö	ALA	609		40.833	29.747	81.162	1.00	2.00	. 0
ATOM	3871	N	TYR	610		41.263	31.231	79.552	1.00	2.00	0
ATOM	3873	CA	TYR	610		40.186	30.771	78.686	1.00	2.00	. 0
ATOM	3874	CB	TYR	610		40.046	31.717	77.504	1.00	2.00	0
ATOM	3875	CG	TYR	610		39.274	32.974	77.820	1.00	2.00	0
ATOM	3876	CDI		610		39.685	34.202	77.315	1.00	2.00	0
ATOM	3877	CEI		610		38. 95 2	35.359	77.558	1.00	2.00	0

MOTA	3878	CD2	TYR	610	38.108	32.933	78.589	1.00 2.00	0
ATOM	3879	CE2	TYR	610	37.367	34.091	78.841	1.00 2.00	0
MOTA	3880	CZ	TYR	610	37.797	35.298	78.319	1.00 2.00	0
MOTA	3881	ОН	TYR	610	37.086	36.452	78.533	1.00 2.00	0
ATOM	3883	C	TYR	610	40.431	29.342	78.205	1.00 2.00	0
MOTA	3884	0	TYR	610	39.481	28.575	78.006	1.00 2.00	0
MOTA	3885	N	LYS	611	41.703	28.991	78.017	1.00 2.00	0
MOTA	3887	CA	LYS	611	42.063	27.648	77.600	1.00 2.00	0
ATOM	3888	CB	LYS	611	43.551	27.532	77.308	1.00 3.53	0
ATOM	3889	CG	LYS	611	43.926	26.136	76.803	1.00 3.53	0
ATOM	3890	CD	LYS	611	43.240	25.837	75.467	1.00 3.53	0
ATOM	3891	CE	LYS	611	43.476	24.412	74.980	1.00 3.53	0
ATOM	3892	NZ	LYS	611	42.391	23.502	75.421	1.00 3.53	0
MOTA	3896	C	LYS	611	41.717	26.666	78.700	1.00 2.00	0
MOTA	3897	0	LYS	611	41.142	25.618	78. € 31	1.00 3.53	0
MOTA	3898 3900	N CA	ILE	612 612	42.084	26.990	79.938	1.00 26.02	0
ATOM	3900		ILE	612	41.780	26.115	81.069 82.336	1.00 26.02	0
ATOM	3902	CB CG2	ILE	612	42.543 42.232	26.535 25.576	83.475	1.00 2.00	0
MOTA MOTA	3902 3903	CG1	ILE	612	44.041	26.511	82.063	1.00 2.00 1.00 2.00	0
MOTA	3904	CD1	ILE	612	44.860	27.144	83.135	1.00 2.00	0
				612			81.365	1.00 26.02	
MOTA	3905	C	ILE	612	40.284	26.149		1.00 26.02	0
MOTA	3906	0	ILE		39.698	25.131	81.739		0
MOTA	3907	N	LYS	613 613	39.683 38.257	27.326	81.181	1.00 2.00	0
MOTA	3909	CA	LYS		38.257 37.966	27.556	81.414 81.402	1.00 2.00 1.00 10.53	0
MOTA	3910 3911	CB	LYS LYS	613 613	36.528	29.058 29.437	81.650	1.00 10.53	0
MOTA MOTA	3912	CG CD	LYS	613	36.070	29.072	83.035	1.00 10.53	ŏ
MOTA	3913	CE	LYS	613	34.717	29.693	83.364	1.00 10.53	ŏ
ATOM	3914	NZ	LYS	613	33.611	29.182	82.523	1.00 10.53	ŏ
ATOM	3918	C	LYS	613	37.379	26.847	80.384	1.00 2.00	ŏ
ATOM	3919	ŏ	LYS	613	36.335	26.293	80.739	1.00 10.53	ŏ
ATOM	3920	N	TYR	614	37.819	26.842	79.121	1.00 24.09	ŏ
MOTA	3922	CA	TYR	614	37.0 7 9	26.214	78.016	1.00 27.84	ŏ
ATOM	3923	CB	TYR	614	36.473	27.301	77.125	1.00 2.00	ŏ
ATOM	3924	ČĞ	TYR	614	35.679	28.363	77.855	1.00 2.00	Ô
ATOM	3925	CD1	TYR	614	36.123	29.689	77.892	1.00 2.00	0
ATOM	3926	CEI	TYR	614	35.409	30.671	78.567	1.00 2.00	0
ATOM	3927	CD2	TYR	614	34.490	28.048	78.516	1.00 2.00	0
MOTA	3928	CE2	TYR	614	33.766	29.020	79.199	1.00 2.00	0
MOTA	3929	CZ	TYR	614	34.232	30.330	79.227	1.00 2.00	0
MOTA	3930	OH	TYR	614	33.560	31.293	79.960	1.00 2.00	0
MOTA	3932	С	TYR	614	37.976	25.317	77.146	1.00 25.93	0
MOTA	393 3	0	TYR	614	38.012	25.474	75.935	1.00 2.00	0
MOTA	3934	N	PRO	61 5	38.641	24.310	77.733	1.00 21.49	0
MOTA	3935	CD.	PRO	61 5	38.494	23.854	79.123	1.00 11.83	0
ATOM	3936	CA	PRO	61 5	39.541	23.406	76.995	1.00 22.47	0
ATOM	3937	CB	PRO	61 5	39.950	22.384	78.055	1.00 11.83	0
MOTA	3938	CG	PRO	615	38.773	22.382	78.995	1.00 11.83	0
MOTA	3939	С	PRO	615	39.078	22.714	75.720	1.00 20.23	0
MOTA	3940	0	PRO	615	39.873	22.026	75.074	1.00 11.83	0
ATOM	3941	N	GLU	616	37.813	22.879	75.350	1.00 15.62	0
MOTA	3943	CA	GLU	616	37.296	22.213	74.159	1.00 16.61	0
MOTA	3944	CB	GLU	616	36.240	21.179	74.566	1.00 26.75	o
MOTA	3945	CG	GLU	6 16	36.644	20.253	75.695	1.00 30.68	ŏ
MOTA	3946	CD	GLU	616	37.872	19.416	75.382	1.00 40.71	Ö
MOTA	3947	OE1	GLU	616	38.747	19.294	76.273	1.00 39.65	ŏ
MOTA	3948	OE2	GLU	616	37.960	18.874	74.256	1.00 39.29 1.00 13.01	ő
ATOM	3949	C	GLU	616	36.681	23.175	73.140	1.00 13.01	Ö
ATOM	3950	0	GLU	616	36.276	22.765	72.046		0
MOTA	3951	N	ASN	617	36.620	24.453	73.499		0
ATOM	3953	CA	ASN	617	36.027	25.467	72.636		
MOTA	3954	CB	ASN	617	34.678	25.896	73.218	1.00 42.63 1.00 47.29	0
ATOM	3955	CG	ASN	617	33.743	24.720	73.456 74.500	1.00 47.29	0
ATOM	3956	OD1		617	33.800	24.064	72.485	1.00 53.65	0
MOTA	3957	ND2		617	32.883	24.443	72.405	1.00 33.03	Ö
MOTA	3960	C	ASN	617	36.941	26.686 27.747	72.476	1.00 2.00	C
MOTA	3961	0	ASN	617	36.505	21.141	12.032	1.00 43.01	v

ATOM 3964 CA PHE 618 39.192 27.596 72.736 1.00 14.67 0 ATOM 3965 CB PHE 618 39.146 28.387 74.044 1.00 2.00 0 ATOM 3966 CG PHE 618 40.042 29.585 74.073 1.00 2.00 0 ATOM 3967 CD1 PHE 618 39.501 30.871 74.058 1.00 2.00 0 ATOM 3968 CD2 PHE 618 41.422 29.441 74.147 1.00 2.00 0 ATOM 3969 CE1 PHE 618 40.322 32.007 74.119 1.00 2.00 0 ATOM 3970 CE2 PHE 618 42.254 30.562 74.209 1.00 2.00 0 ATOM 3971 CZ PHE 618 40.540 26.907 72.570 1.00 14.67 0 ATOM 3973 O PHE 618 40.540 26.907 72.570 1.00 14.67 0 ATOM 3974 N PHE 619 41.285 27.239 71.514 1.00 2.00 0 ATOM 3976 CA PHE 619 42.583 26.599 71.271 1.00 2.00 0 ATOM 3977 CB PHE 619 42.468 25.622 70.111 1.00 2.00 0 ATOM 3978 CG PHE 619 42.468 25.622 70.111 1.00 2.00 0 ATOM 3978 CG PHE 619 41.404 24.595 70.311 1.00 2.00 0 ATOM 3980 CD2 PHE 619 41.738 23.291 70.678 1.00 2.00 0 ATOM 3981 CE1 PHE 619 40.053 23.297 70.370 1.00 2.00 0 ATOM 3981 CE1 PHE 619 40.750 22.337 70.892 1.00 2.00 0 ATOM 3982 CE2 PHE 619 40.750 22.337 70.892 1.00 2.00 0 ATOM 3984 C PHE 619 43.719 27.566 71.005 1.00 2.00 0 ATOM 3985 O PHE 619 43.501 28.698 70.738 1.00 2.00 0 ATOM 3986 N LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3988 CA LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3989 CB LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3989 CB LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3990 CG LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3991 CD1 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3991 CD1 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3991 CD1 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3991 CD1 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3991 CD1 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3991 CD1 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3992 CD2 LEU 620 45.826 29.389 73.321 1.00 2.00 0	ATOM	3962	N	PHE	618	38.215	26.517	72.812	1.00	14.67	0
ATOM 9566 CC PHE 618				PHE	618	39.192		72.736			
ATOM 9567 CD1 PHE 618											
ATOM 9568 CD2 PHE 618											
ATOM 3969 CE1 PHE 618									1.00	2.00	
ATOM 3972 C PHE 618		-	CE1	PHE							
ATOM 3973 C PHE 618						42.254					
ATOM 3974 N PHE 618 40.893 26.066 73.394 1.00 2.00 0 0 0 0 0 0 0 0 0											-
ATOM 3976 CA PHE 619 41.285 27.239 71.514 1.00 2.00 0 ATOM 3976 CB PHE 619 42.268 26.599 71.271 1.00 2.00 0 ATOM 3978 CG PHE 619 42.468 25.622 70.111 1.00 2.00 0 ATOM 3978 CG PHE 619 41.404 24.595 70.311 1.00 2.00 0 ATOM 3978 CG PHE 619 41.404 24.595 70.311 1.00 2.00 0 ATOM 3980 CD1 PHE 619 40.063 24.936 70.159 1.00 2.00 0 ATOM 3981 CZ PHE 619 41.738 23.291 70.678 1.00 2.00 0 ATOM 3981 CZ PHE 619 40.750 22.337 70.892 1.00 2.00 0 ATOM 3982 CE2 PHE 619 40.750 22.337 70.892 1.00 2.00 0 ATOM 3983 CZ PHE 619 43.790 27.667 11.00 2.00 0 ATOM 3985 CD PHE 619 43.719 27.566 71.005 1.00 2.00 0 ATOM 3986 N LEU 620 44.936 70.554 1.00 2.00 0 ATOM 3988 CA LEU 620 46.18 77.92 71.57 71.282 1.00 2.00 0 ATOM 3989 CB LEU 620 46.647 27.933 71.282 1.00 2.00 0 ATOM 3989 CB LEU 620 45.826 29.389 73.521 1.00 2.00 0 ATOM 3989 CB LEU 620 45.826 29.389 73.521 1.00 2.00 0 ATOM 3999 CG LEU 620 45.826 29.389 73.521 1.00 2.00 0 ATOM 3999 CG LEU 620 45.826 29.389 73.521 1.00 2.00 0 ATOM 3999 CG LEU 620 45.826 29.389 73.521 1.00 2.00 0 ATOM 3999 C CLEU 620 45.826 29.389 73.521 1.00 2.00 0 ATOM 3999 C CLEU 620 45.826 29.389 73.521 1.00 2.00 0 ATOM 3999 C CLEU 620 45.826 29.389 73.521 1.00 2.00 0 ATOM 3999 C CLEU 620 45.826 29.389 73.221 1.00 2.00 0 ATOM 3999 C CLEU 620 45.826 29.389 73.221 1.00 2.00 0 ATOM 3999 C CLEU 620 45.826 29.389 73.221 1.00 2.00 0 ATOM 3999 C CLEU 620 45.826 29.389 73.221 1.00 2.00 0 ATOM 3999 C CLEU 620 45.826 29.389 73.221 1.00 2.00 0 ATOM 3999 C CLEU 620 45.826 29.389 73.221 1.00 2.00 0 ATOM 3999 C CLEU 620 45.826 29.89 73.221 1.00 2.00 0 ATOM 3999 C CLEU 620 45.826 29.89 73.221 1.00 2.00 0 ATOM 3999 C CLEU 621 47.255 27.093 70.438 1.00 2.00 0 ATOM 3999 C CLEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 C CLEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 C CLEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 C CLEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 C CLEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3909 C CLEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3909 C CLEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM											
ATOM 3978 CG PHE 619 42.468 25.622 70.111 1.00 2.00 0 ATOM 3978 CG PHE 619 41.604 24.955 70.311 1.00 2.00 0 ATOM 3978 CG PHE 619 41.604 24.955 70.311 1.00 2.00 0 ATOM 3980 CD2 PHE 619 41.738 23.291 70.678 1.00 2.00 0 ATOM 3981 CE1 PHE 619 39.068 23.997 70.370 1.00 2.00 0 ATOM 3981 CE2 PHE 619 40.750 22.337 70.892 1.00 2.00 0 ATOM 3982 CE2 PHE 619 40.750 22.337 70.892 1.00 2.00 0 ATOM 3983 CZ PHE 619 43.719 27.566 71.005 1.00 2.00 0 ATOM 3983 CZ PHE 619 43.719 27.566 71.005 1.00 2.00 0 ATOM 3985 O PHE 619 43.719 27.566 71.005 1.00 2.00 0 ATOM 3985 CD PHE 619 43.501 28.698 70.564 1.00 2.00 0 ATOM 3985 CD PHE 619 43.501 28.698 70.564 1.00 2.00 0 ATOM 3985 CB LEU 620 46.4936 27.115 71.282 1.00 2.00 0 ATOM 3989 CG LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3991 CDI LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3992 CD2 LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3998 CB LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CG LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CG LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CG LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3998 CB LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 4000 CD1 LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 4000 CD1 LEU 621 47.805 27.756 68.943 1.00 2.00 0 ATOM 4000 CD2 LEU 621 47.021 26.511 65.253 1.00 2.00 0 ATOM 4000 CD3 LEU 621 47.805 27.756 68.943 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.021 26.511 65.253 1.00 2.00 0 ATOM 4002 C LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4004 N ARG 622 55.806 67.162 1.00 2.00 0 ATOM 4009 CD ARG 622 55.802 67.992 68.774 1.00 5.18 0 ATOM 4001 CD2 LEU 621 50.162 57.830 25.553 71.557 1.00 5.18 0 ATOM 4002 C ARG 622 55.802 55.803 71.557 1.00 5.18 0 ATOM 4003 O LEU 623 55.802 57.800 66.702 1.00						41.285	27.239	71.514			0
ATOM 3979 CD1 PHE 619 41.404 24.595 70.311 1.00 2.00 0 ATOM 3990 CD2 PHE 619 40.653 24.936 70.159 1.00 2.00 0 ATOM 3981 CD1 PHE 619 41.738 23.291 70.678 1.00 2.00 0 ATOM 3981 CD1 PHE 619 39.668 23.291 70.678 1.00 2.00 0 ATOM 3982 CE2 PHE 619 39.408 22.337 70.892 1.00 2.00 0 ATOM 3983 CZ PHE 619 43.719 27.566 71.005 1.00 2.00 0 ATOM 3985 O PHE 619 43.719 27.566 71.005 1.00 2.00 0 ATOM 3986 N LEU 620 44.936 27.115 71.282 1.00 2.00 0 ATOM 3988 CA LEU 620 46.118 27.933 71.073 1.00 2.00 0 ATOM 3989 CB LEU 620 46.188 27.933 71.073 1.00 2.00 0 ATOM 3999 CG LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3990 CD2 LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3991 CD1 LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3993 C LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 CD2 LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 CD2 LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 CD2 LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 CD2 LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 CD2 LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 CD2 LEU 621 47.805 27.634 69.976 1.00 2.00 0 ATOM 3995 CD2 LEU 621 47.805 27.634 69.976 1.00 2.00 0 ATOM 3995 CD2 LEU 621 47.805 27.634 69.976 1.00 2.00 0 ATOM 3995 CD2 LEU 621 47.255 26.280 66.739 1.00 2.00 0 ATOM 3995 CD2 LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3997 CA LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3998 CB LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3998 CB LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3998 CB LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3090 CG LEU 621 50.121 28.937 69.285 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.121 28.937 69.285 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.121 28.937 69.285 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.121 28.937 69.285 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.121 28.937 69.285 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.121 28.937 69.285 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.121 28.937 69.285 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.121 28.937 69.285 1.00 2.00 0 ATOM 4001 NARG 622 55.802 55.802 56.803 1.00 2.00 0 ATOM 4001 NARG 622 57.830 25.			-								
ATOM 3990 CD1 PHE 619 40.063 24.936 70.159 1.00 2.00 0 ATOM 3991 CD1 PHE 619 39.068 23.997 70.370 1.00 2.00 0 ATOM 3992 CD2 PHE 619 40.750 22.337 70.370 1.00 2.00 0 ATOM 3982 CE PHE 619 40.750 22.337 70.370 1.00 2.00 0 ATOM 3983 CZ PHE 619 43.719 27.566 71.005 1.00 2.00 0 ATOM 3985 O PHE 619 43.719 27.566 71.005 1.00 2.00 0 ATOM 3986 N LEU 620 44.936 27.115 71.282 1.00 2.00 0 ATOM 3989 CB LEU 620 44.936 27.115 71.282 1.00 2.00 0 ATOM 3989 CB LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3990 CG LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3991 CD1 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3994 O LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CB LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CB LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CB LEU 621 48.577 26.929 67.162 1.00 2.00 0 ATOM 3999 CB LEU 621 48.577 26.929 67.162 1.00 2.00 0 ATOM 3999 CB LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CB LEU 621 48.577 26.929 67.162 1.00 2.00 0 ATOM 3999 CB LEU 621 48.577 26.929 67.162 1.00 2.00 0 ATOM 3999 CB LEU 621 48.577 26.929 67.162 1.00 2.00 0 ATOM 3999 CB LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3000 CD1 LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3000 CD2 LEU 621 48.577 26.929 67.162 1.00 2.00 0 ATOM 3000 CD3 LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.162 27.756 68.91 70.10 1.00 2.00 0 ATOM 4002 C ARG 622 51.593 27.690 69.013 1.00 2.00 0 ATOM 4003 O LEU 621 50.62 27.566 20.666 1.00 32.95 0 ATOM 4004 N ARG 622 51.503 27.690 69.013 1.00 2.00 0 ATOM 4004 N ARG 622 51.503 28.270 66.553 1.00 2.00 0 ATOM 4008 CB ARG 622 53.070 28.658 1.00 2.00											
ATOM 3980 CD2 PHE 619 41,738 23,291 70,678 1,00 2,00 0 ATOM 3981 CE1 PHE 619 39,068 23,397 70,370 1,00 2,00 0 0 ATOM 3983 CZ PHE 619 39,408 22,689 70,738 1,00 2,00 0 0 ATOM 3984 CZ PHE 619 41,738 27,566 71,005 1,00 2,00 0 0 ATOM 3985 O PHE 619 43,719 27,566 71,005 1,00 2,00 0 0 ATOM 3986 N LEU 620 44,936 27,115 71,282 1,00 2,00 0 0 ATOM 3988 CA LEU 620 46,118 27,933 71,073 1,00 2,00 0 0 ATOM 3989 CB LEU 620 46,846 29,389 73,321 1,00 2,00 0 0 ATOM 3990 CG LEU 620 45,826 29,389 73,321 1,00 2,00 0 0 ATOM 3991 CD1 LEU 620 45,826 29,389 73,321 1,00 2,00 0 0 ATOM 3993 CD2 LEU 620 45,826 29,389 73,321 1,00 2,00 0 0 ATOM 3993 CD2 LEU 620 47,548 25,987 70,931 1,00 2,00 0 0 ATOM 3995 CD2 LEU 620 47,548 25,987 70,910 1,00 2,00 0 ATOM 3995 CD2 LEU 620 47,548 25,987 70,910 1,00 2,00 0 ATOM 3995 CD3 LEU 621 47,805 27,634 69,971 68,669 1,00 2,00 0 ATOM 3995 CD3 LEU 621 47,805 27,634 69,971 68,669 1,00 2,00 0 ATOM 3995 CD3 LEU 621 47,256 26,280 66,739 1,00 2,00 0 ATOM 3998 CB LEU 621 47,256 26,280 66,739 1,00 2,00 0 ATOM 3998 CB LEU 621 47,256 26,280 66,739 1,00 2,00 0 ATOM 4000 CD1 LEU 621 47,256 26,280 66,739 1,00 2,00 0 ATOM 4001 CD2 LEU 621 47,256 26,280 66,739 1,00 2,00 0 ATOM 4001 CD2 LEU 621 47,256 26,280 66,739 1,00 2,00 0 ATOM 4001 CD2 LEU 621 47,256 26,280 66,739 1,00 2,00 0 ATOM 4001 CD2 LEU 621 50,121 28,937 69,285 1,00 2,00 0 ATOM 4001 CD2 LEU 621 50,121 28,937 69,285 1,00 2,00 0 ATOM 4001 CD2 LEU 621 50,121 28,937 69,285 1,00 2,											
ATOM 3981 CE1 PHE 619 39.068 23.997 70.370 1.00 2.00 0 ATOM 3982 CE2 PHE 619 39.408 22.689 70.738 1.00 2.00 0 ATOM 3983 CZ PHE 619 39.408 22.689 70.738 1.00 2.00 0 ATOM 3984 C PHE 619 43.719 27.566 71.005 1.00 2.00 0 ATOM 3986 N LEU 620 44.936 27.115 71.282 1.00 2.00 0 ATOM 3988 CA LEU 620 44.936 27.115 71.282 1.00 2.00 0 ATOM 3989 CB LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3999 CB LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3990 CG LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3991 CD1 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3994 O LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3997 CA LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3998 CB LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CC LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CC LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CC LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CB LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CB LEU 621 47.256 62.90 66.739 1.00 2.00 0 ATOM 3999 CB LEU 621 47.256 62.80 66.739 1.00 2.00 0 ATOM 3999 CB LEU 621 47.256 62.80 66.739 1.00 2.00 0 ATOM 3090 CB LEU 621 47.256 62.80 66.739 1.00 2.00 0 ATOM 4000 CD LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4000 CD ARG 622 51.593 27.690 69.013 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4002 C ARG 622 55.593 27.690 69.013 1.00 2.00 0 ATOM 4003 N LEU 621 50.162 27.756 68.971 1.00 5.18 0 ATOM 4001 CD2 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4002 C ARG 622 55.593 27.690 69.013 1.00 2.00 0 ATOM 4004 N ARG 622 55.891 70.996 69.285 1.00 2.00 0 ATOM 4006 CA ARG 622 55.891 70.996 69.285 1.00 2.00 0 ATOM 4007 CB ARG 622 55.891 70.996 68.286 1.00 19.04 0 ATOM 4001 DN E ARG 622 55.891 70.996 68.286 1.00 19.04 0 ATOM 4002 CD ARG 622 55.891 70.996 68.286 1.00 19.04 0 ATOM 4003 ND LEU 623 53.503 88.80 68.866 1.00 7.78											
TOM 3984 C PHE 619 39.408 22.689 70.738 1.00 2.00 0 ATOM 3985 O PHE 619 43.719 27.566 71.005 1.00 2.00 0 ATOM 3986 N LEU 620 44.936 27.115 71.282 1.00 2.00 0 ATOM 3988 C LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3989 CB LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3990 CG LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3991 CD1 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3992 CD2 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3994 O LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3996 CB LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3997 CA LEU 621 48.870 26.999 67.162 1.00 2.00 0 ATOM 3998 CB LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CG LEU 621 47.256 66.6971 68.669 1.00 2.00 0 ATOM 3999 CG LEU 621 47.256 66.891 68.669 1.00 2.00 0 ATOM 3999 CB LEU 621 47.256 68.991 68.669 1.00 2.00 0 ATOM 4000 CD1 LEU 621 47.256 6280 66.739 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.256 6280 66.739 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 67.092 68.774 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 67.092 68.774 1.00 2.00 0 ATOM 4004 N ARG 622 51.593 27.690 69.013 1.00 2.00 0 ATOM 4006 CA ARG 622 52.593 27.690 69.013 1.00 2.00 0 ATOM 4001 CD ARG 622 55.891 70.996 68.774 1.00 5.18 0 ATOM 4001 NE ARG 622 51.593 27.690 69.013 1.00 2.00 0 ATOM 4002 C ARG 622 55.892 57.095 68.211 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 24.240 71.525 1.00 6.18 0 ATOM 402 C ARG 622 57.890 69.285 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			CE1	PHE	619						
ATOM 3985 O PHE 619 43.719 27.566 71.005 1.00 2.00 0 ATOM 3986 N LEU 620 44.936 27.115 71.282 1.00 2.00 0 ATOM 3988 CA LEU 620 44.936 27.115 71.282 1.00 2.00 0 ATOM 3989 CB LEU 620 46.18 27.933 71.073 1.00 2.00 0 ATOM 3999 CG LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3991 CD1 LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3992 CD2 LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3993 C LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3993 CD LEU 620 45.827 70.937 70.930 1.00 2.00 0 ATOM 3993 CD LEU 620 45.247 30.563 72.565 1.00 2.00 0 ATOM 3993 C LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3995 CB LEU 621 48.880 26.971 68.669 1.00 2.00 0 ATOM 3997 CA LEU 621 48.880 26.971 68.669 1.00 2.00 0 ATOM 3999 CB LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3999 CB LEU 621 47.021 26.511 65.253 1.00 2.00 0 ATOM 3999 CB LEU 621 47.021 26.511 65.253 1.00 2.00 0 ATOM 4000 CD1 LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.261 28.937 69.285 1.00 2.00 0 ATOM 4002 C LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4003 D LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 27.092 68.774 1.00 2.00 0 ATOM 4006 CA ARG 622 51.296 27.092 68.774 1.00 2.00 0 ATOM 4007 CB ARG 622 51.296 27.092 68.774 1.00 2.00 0 ATOM 4008 CG ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4001 CD2 CRAG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4001 N R ARG 622 57.659 24.240 71.525 1.00 5.18 0 ATOM 4002 C ARG 622 57.850 25.891 70.996 1.00 2.00 0 ATOM 4003 O LEU 621 50.162 67.555 70.991 1.00 2.00 0 ATOM 4004 N RG 622 57.850 25.891 70.991 1.00 2.00 0 ATOM 4006 CA ARG 622 57.850 25.891 70.196 1.00 5.18 0 ATOM 4007 CB ARG 622 57.850 26.886 1.00 19.04 0.00 0 ATOM 4001 CD2 ARG 622 57.850 26.886 1.00 19.04 0.00 0 ATOM 4002 C ARG 622 57.850 26.886 1.00 19.04 0.00 0 ATOM 4003 O LEU 623 56.699 28.5553 71.557 1.00 6.18 0 ATOM 4010 NE ARG 622 57.850 26.886 6.566 1.00 7.00 0.00 0 ATOM 4020 C ARG 622 57.850 26.886 6.566 1.00 1.00 1.2650 0 ATOM 4030 C ARG 622 57.880 25.851 1.00 6.866 1.0											
ATOM 3986 N LEU 620 44.936 27.115 71.282 1.00 2.00 0 ATOM 3988 CA LEU 620 44.936 27.115 71.282 1.00 2.00 0 ATOM 3988 CA LEU 620 46.118 27.933 71.1073 1.00 2.00 0 ATOM 3989 CB LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3991 CD1 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3992 CD2 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3993 C LEU 620 45.247 30.563 72.565 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3994 O LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3997 CA LEU 621 48.880 26.971 68.669 1.00 2.00 0 ATOM 3998 CB LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3999 CG LEU 621 47.225 66.739 1.00 2.00 0 ATOM 3999 CG LEU 621 47.021 65.511 65.253 1.00 2.00 0 ATOM 3099 CG LEU 621 47.021 66.511 65.253 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.281 24.813 67.062 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.021 66.511 65.253 1.00 2.00 0 ATOM 4003 O LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 67.092 68.774 1.00 2.00 0 ATOM 4000 CD1 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4000 CD1 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.162 27.756 68.941 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 67.092 11.00 2.00 0 ATOM 4006 CA ARG 622 55.802 25.593 27.690 69.231 1.00 2.00 0 ATOM 4001 CD2 ARG 622 55.802 25.891 70.916 1.00 5.18 0 ATOM 4002 C LEU 623 53.620 26.578 69.231 1.00 5.18 0 ATOM 4004 N ARG 622 55.802 25.891 70.964 1.00 5.18 0 ATOM 4009 CD ARG 622 55.802 66.560 72.199 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 98.05 68.286 1.00 19.04 0 ATOM 4020 C ARG 622 58.867 26.056 72.199 1.00 5.18 0 ATOM 4020 C ARG 622 58.867 26.056 72.199 1.00 5.18 0 ATOM 4020 C ARG 622 58.867 26.056 72.199 1.00 5.18 0 ATOM 4020 C ARG 622 58.867 26.056 72.199 1.00 5.18 0 ATOM 4020 C ARG 622 58.867 26.056 72.199 1.00 5.18 0 ATOM 4020 C ARG 622 58.867 26.056 72.199 1.00 16.40 0 ATOM 4030 N ARG 624 58.773 33.31 1.00 2.00 0 ATOM 4040 C B											
ATOM 3988 CA LEU 620 44.936 27.115 71.282 1.00 2.00 0 ATOM 3988 CA LEU 620 46.618 27.933 71.073 1.00 2.00 0 ATOM 3989 CB LEU 620 46.647 28.507 72.393 1.00 2.00 0 ATOM 3990 CG LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3991 CD1 LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3992 CD2 LEU 620 45.247 30.563 72.565 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3993 C LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3997 CA LEU 621 48.880 26.971 68.669 1.00 2.00 0 ATOM 3998 CB LEU 621 48.880 26.971 68.669 1.00 2.00 0 ATOM 3999 CG LEU 621 47.256 66.739 1.00 2.00 0 ATOM 3999 CG LEU 621 47.256 66.739 1.00 2.00 0 ATOM 3999 CG LEU 621 47.256 66.933 1.00 2.00 0 ATOM 4000 CD1 LEU 621 47.256 66.280 66.739 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.256 66.939 67.162 1.00 2.00 0 ATOM 4002 CD LEU 621 47.281 65.511 65.253 1.00 2.00 0 ATOM 4003 O LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 70.92 68.774 1.00 2.00 0 ATOM 4006 CA ARG 622 52.559 27.690 69.013 1.00 2.00 0 ATOM 4006 CA ARG 622 52.5593 70.92 68.774 1.00 2.00 0 ATOM 4006 CA ARG 622 53.620 26.578 69.231 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4006 CA ARG 622 52.5593 27.690 69.013 1.00 2.00 0 ATOM 4006 CA ARG 622 53.620 26.578 69.231 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4006 CA ARG 622 53.620 26.578 69.231 1.00 2.00 0 ATOM 4006 CA ARG 622 53.620 66.739 10.00 2.00 0 ATOM 4007 CB ARG 622 53.620 66.739 10.00 2.00 0 ATOM 4008 CG ARG 622 53.620 65.78 69.231 1.00 2.00 0 ATOM 4009 CD ARG 622 53.620 65.78 69.231 1.00 2.00 0 ATOM 4009 CD ARG 622 53.620 66.739 10.00											
ATOM 3989 CB LEU 620 46.118 27.933 71.073 1.00 2.00 0 ATOM 3990 CG LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3991 CD1 LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3992 CD2 LEU 620 45.247 30.563 72.565 1.00 2.00 0 ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3994 O LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3997 CA LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 C LEU 621 47.805 26.280 66.739 1.00 2.00 0 ATOM 3999 C LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3999 C LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3999 C LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3999 C LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3090 C LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.281 24.813 67.062 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.281 24.813 67.062 1.00 2.00 0 ATOM 4003 O LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 67.092 68.774 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 67.092 68.774 1.00 2.00 0 ATOM 4007 CB ARG 622 52.593 27.690 69.013 1.00 2.00 0 ATOM 4008 CG ARG 622 53.620 26.578 69.235 1.00 2.00 0 ATOM 4009 CD ARG 622 55.892 77.0952 69.716 1.00 2.00 0 ATOM 4001 N E ARG 622 55.892 77.0952 69.716 1.00 5.18 0 ATOM 4010 N E ARG 622 55.892 66.357 70.941 1.00 5.18 0 ATOM 4011 N GRAG 622 57.659 69.36357 70.941 1.00 5.18 0 ATOM 4010 N E ARG 622 57.850 26.5553 71.557 1.00 5.18 0 ATOM 4010 N E ARG 622 57.659 69.3650 70.941 1.00 5.18 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 55.551 30.573 67.390 1.00 19.04 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 623 53.508 29.805 68.286 1.00 2.00 0 ATOM 4020 C ARG 623 53.508 29.805 68.286 1.00 10.01 10.04 0 ATOM 4020 C ARG 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4020 C ARG 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4020 C ARG 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4030 N BAS 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4030 C B ASN 624 58.345 31.543 66.55 31.00 2.00 0 ATOM 4030 C B ASN 624 58.260 31.988 67.721											
ATOM 3990 CG LEU 620 45.826 29.389 73.321 1.00 2.00 0 ATOM 3991 CD1 LEU 620 46.741 29.868 74.437 1.00 2.00 0 ATOM 3993 C LEU 620 47.548 25.987 70.931 1.00 2.00 0 ATOM 3993 C LEU 620 47.548 25.987 70.931 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3997 CA LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3998 CB LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CG LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3999 CG LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3999 CG LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3999 CG LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 4000 CD1 LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.261 24.813 67.062 1.00 2.00 0 ATOM 4003 0 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4003 0 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4003 0 LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 27.7092 68.774 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 27.092 68.774 1.00 2.00 0 ATOM 4006 CA ARG 622 52.593 27.690 69.013 1.00 2.00 0 ATOM 4007 CB ARG 622 53.620 26.578 69.231 1.00 2.00 0 ATOM 4008 CG ARG 622 53.620 26.578 69.231 1.00 5.18 0 ATOM 4000 CD ARG 622 55.892 25.891 70.196 1.00 5.18 0 ATOM 4001 NE ARG 622 55.892 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 57.830 25.557 71.557 1.00 5.18 0 ATOM 4010 NE ARG 622 57.830 25.557 71.557 1.00 5.18 0 ATOM 4010 NE ARG 622 57.830 25.557 71.557 1.00 5.18 0 ATOM 4010 NE ARG 622 57.830 25.557 71.557 1.00 5.18 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 40											0
ATOM 3991 CD1 LEU 620 45.247 30.563 72.565 1.00 2.00 0 ATOM 3992 CD2 LEU 620 45.247 30.563 72.565 1.00 2.00 0 ATOM 3994 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3994 O LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3997 CA LEU 621 48.880 26.971 68.669 1.00 2.00 0 ATOM 3999 CB LEU 621 48.880 26.971 68.669 1.00 2.00 0 ATOM 3999 CB LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3999 CG LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 4000 CD1 LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.281 24.813 67.062 1.00 2.00 0 ATOM 4002 C LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4003 O LEU 621 50.121 28.937 69.285 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 27.092 68.774 1.00 2.00 0 ATOM 4006 CA ARG 622 52.593 27.690 69.013 1.00 2.00 0 ATOM 4006 CA ARG 622 53.620 26.578 69.231 1.00 2.00 0 ATOM 4007 CB ARG 622 53.620 26.578 69.231 1.00 2.00 0 ATOM 4008 CG ARG 622 55.892 27.052 69.716 1.00 5.18 0 ATOM 4009 CD ARG 622 55.892 27.052 69.716 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 26.357 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 26.357 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 26.357 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 24.240 71.557 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 26.357 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 24.240 71.557 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 24.240 71.557 1.00 5.18 0 ATOM 4010 NE ARG 622 58.870 26.056 72.199 1.00 5.18 0 ATOM 4020 C ARG 622 53.070 28.615 77.0.196 1.00 5.18 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4022 C ARG 624 57.381 33.508 29.805 66.266 1.00 32.95 0 ATOM 4023 C A GLY 623 53.508 29.805 66.266 1.00 32.95 0 ATOM 4024 C GLY 623 55.551 30.573 67.390 1.00 2.00 0 ATOM 4025 N GLY 623 55.551 30.573 67.390 1.00 2.00 0 ATOM 4026 N ASN 624 58.343 31.544 66.566 1.00 7.73 0 ATOM 4027 C BASN 624 58.345 31.544 66.566 1.00 7.73 0 ATOM 4030 CG ASN 624 58.340 33.598 67.721 1.00 32.42 0 ATOM 4030 CG BASN 624 58.325 33.598 67.721 1.00 32.42 0 ATOM 4030 CG BASN 624 58.265 57.381 33.5											
ATOM 3992 CD2 LEU 620 45.247 30.563 72.565 1.00 2.00 0. ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0. ATOM 3994 O LEU 620 47.548 25.987 70.910 1.00 2.00 0. ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0. ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0. ATOM 3998 CB LEU 621 48.880 26.971 68.669 1.00 2.00 0. ATOM 3999 CG LEU 621 48.577 26.929 67.162 1.00 2.00 0. ATOM 4000 CD1 LEU 621 47.256 26.280 66.739 1.00 2.00 0. ATOM 4001 CD2 LEU 621 47.261 26.511 65.253 1.00 2.00 0. ATOM 4001 CD2 LEU 621 47.281 24.813 67.062 1.00 2.00 0. ATOM 4002 C LEU 621 47.281 24.813 67.062 1.00 2.00 0. ATOM 4003 0. LEU 621 50.162 27.756 68.943 1.00 2.00 0. ATOM 4004 N ARG 622 51.296 27.092 68.774 1.00 2.00 0. ATOM 4006 CA ARG 622 51.296 27.092 68.774 1.00 2.00 0. ATOM 4006 CA ARG 622 51.296 27.092 69.013 1.00 2.00 0. ATOM 4006 CA ARG 622 52.593 27.690 69.013 1.00 2.00 0. ATOM 4007 CB ARG 622 53.620 26.578 69.231 1.00 5.18 0. ATOM 4009 CD ARG 622 55.8602 25.891 70.196 1.00 5.18 0. ATOM 4010 NE ARG 622 55.802 25.891 70.196 1.00 5.18 0. ATOM 4010 NE ARG 622 55.802 25.891 70.196 1.00 5.18 0. ATOM 4010 NE ARG 622 57.659 24.240 71.555 1.00 6.18 0. ATOM 4010 NE ARG 622 57.659 24.240 71.555 1.00 5.18 0. ATOM 4010 NE ARG 622 53.070 28.615 67.894 1.00 2.00 0. ATOM 4010 NE ARG 622 57.659 24.240 71.555 1.00 6.18 0. ATOM 4011 NE ARG 622 57.659 24.240 71.555 1.00 5.18 0. ATOM 4012 CZ ARG 622 53.070 28.615 67.894 1.00 5.18 0. ATOM 4013 NH1 ARG 622 57.659 26.557 70.991 1.00 5.18 0. ATOM 4020 0. ARG 622 53.070 28.615 67.894 1.00 2.00 0. ATOM 4021 N. GLY 623 53.508 29.805 68.286 1.00 19.04 0. ATOM 4021 N. GLY 623 53.508 29.805 68.286 1.00 19.04 0. ATOM 4021 N. GLY 623 53.508 29.805 68.286 1.00 19.04 0. ATOM 4021 N. GLY 623 53.508 29.805 68.286 1.00 19.04 0. ATOM 4021 N. GLY 623 53.508 29.805 68.286 1.00 19.04 0. ATOM 4021 N. GLY 623 53.508 29.805 68.286 1.00 19.04 0. ATOM 4021 N. GLY 623 55.551 30.573 67.390 1.00 18.09 0. ATOM 4020 C. ARG 622 57.659 32.575 68.335 1.00 2.00 0. ATOM 4020 C. ARG 624 58.721 33.144 66.566 1.00 32.955 0. AT											
ATOM 3993 C LEU 620 47.225 27.093 70.438 1.00 2.00 0 ATOM 3994 O LEU 620 47.548 25.987 70.910 1.00 2.00 0 ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 0 ATOM 3997 CA LEU 621 48.880 26.971 68.669 1.00 2.00 0 ATOM 3999 CG LEU 621 48.877 26.929 67.162 1.00 2.00 0 ATOM 4000 CD1 LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 4000 CD1 LEU 621 47.021 26.511 65.253 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.281 24.813 67.062 1.00 2.00 0 ATOM 4002 C LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4003 O LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 27.092 68.774 1.00 2.00 0 ATOM 4006 CA ARG 622 51.593 27.690 69.013 1.00 2.00 0 ATOM 4007 CB ARG 622 53.620 26.578 69.231 1.00 2.00 0 ATOM 4008 CG ARG 622 53.620 26.578 69.231 1.00 5.18 0 ATOM 4009 CD ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4013 NH1 ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4013 NH1 ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4013 NH1 ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4013 NH1 ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4010 NE ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4013 NH1 ARG 622 57.830 28.815 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 57.830 28.815 67.894 1.00 2.00 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 57.830 29.805 68.286 1.00 19.04 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4022 C ARG 624 57.728 31.144 66.566 1.00 32.95 0 ATOM 4023 CA GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4024 C GLY 623 53.508 59.805 68.286 1.00 19.04 0 ATOM 4025 C GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4026 N ASN 624 58.345 31.266 66.530 1.00 32.06 0 ATOM 4027 N HIS 625 57.687 33.144 66.566 1.00 32.95 0 ATOM 4030 CG ASN 624 58.260 31.988 67.721 1.00 8.84 0 ATOM 4030 CG ASN 624 58.260 31.988 67.721 1.00 8.											
ATOM 3994 O LEU 620 47.548 25.987 70.910 1.00 2.00 O ATOM 3995 N LEU 621 47.805 27.634 69.376 1.00 2.00 O ATOM 3997 CA LEU 621 48.880 26.971 68.669 1.00 2.00 O ATOM 3998 CB LEU 621 48.577 26.929 67.162 1.00 2.00 O ATOM 3999 CG LEU 621 47.021 26.511 65.253 1.00 2.00 O ATOM 4000 CD1 LEU 621 47.021 26.511 65.253 1.00 2.00 O ATOM 4001 CD2 LEU 621 47.021 26.511 65.253 1.00 2.00 O ATOM 4002 C LEU 621 50.162 27.756 88.943 1.00 2.00 O ATOM 4003 O LEU 621 50.162 27.756 88.943 1.00 2.00 O ATOM 4004 N ARG 622 51.296 27.092 68.774 1.00 2.00 O ATOM 4006 CA ARG 622 51.296 27.092 68.774 1.00 2.00 O ATOM 4007 CB ARG 622 53.620 26.578 69.231 1.00 2.00 O ATOM 4009 CD ARG 622 53.620 26.578 69.231 1.00 5.18 O ATOM 4010 NE ARG 622 55.93 27.690 69.013 1.00 5.18 O ATOM 4010 NE ARG 622 56.969 26.357 70.941 1.00 5.18 O ATOM 4010 NE ARG 622 57.659 26.357 70.941 1.00 5.18 O ATOM 4012 CZ ARG 622 57.659 26.553 71.557 1.00 5.18 O ATOM 4012 CZ ARG 622 57.659 26.557 70.941 1.00 5.18 O ATOM 4012 CZ ARG 622 57.659 26.557 70.941 1.00 5.18 O ATOM 4012 CZ ARG 622 57.659 26.357 70.941 1.00 5.18 O ATOM 4012 N ARG 622 57.659 26.357 70.941 1.00 5.18 O ATOM 4012 CZ ARG 622 57.659 26.357 70.941 1.00 5.18 O ATOM 4012 CZ ARG 622 57.659 26.557 70.941 1.00 5.18 O ATOM 4012 CZ ARG 622 57.659 26.357 70.941 1.00 5.18 O ATOM 4012 CZ ARG 622 57.659 26.357 70.941 1.00 5.18 O ATOM 4020 O ARG 622 57.659 24.240 71.525 1.00 6.18 O ATOM 4020 C ARG 622 53.032 28.270 66.702 1.00 16.40 O ATOM 4020 C ARG 622 53.032 28.270 66.702 1.00 16.40 O ATOM 4020 C ARG 622 53.032 28.270 66.702 1.00 16.40 O ATOM 4020 C ARG 622 53.032 28.270 66.702 1.00 16.40 O ATOM 4020 C ARG 622 53.032 28.270 66.702 1.00 16.40 O ATOM 4020 C ARG 624 57.381 31.266 66.530 1.00 32.95 O ATOM 4020 C ARG 624 57.381 31.266 66.530 1.00 32.95 O ATOM 4020 C ARG 624 57.381 31.266 66.530 1.00 32.95 O ATOM 4020 C ARG 624 57.381 31.266 66.530 1.00 32.95 O ATOM 4020 C ARG 624 57.381 31.266 66.530 1.00 32.95 O ATOM 4020 C ARG 624 58.260 31.988 67.721 1.00 2.00 O ATOM 4031 OD1 ARN 624 58.260 31.988 67.721 1.00 8.50 O											0
ATOM 3997 CA LEU 621 48.880 26.971 68.669 1.00 2.00 0 ATOM 3998 CB LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 3999 CG LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 4000 CD1 LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.281 24.813 67.062 1.00 2.00 0 ATOM 4002 C LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4003 O LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 27.092 68.774 1.00 2.00 0 ATOM 4006 CA ARG 622 51.296 27.092 68.774 1.00 2.00 0 ATOM 4007 CB ARG 622 53.620 26.578 69.231 1.00 2.00 0 ATOM 4008 CG ARG 622 53.620 26.578 69.231 1.00 5.18 0 ATOM 4009 CD ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 26.357 70.941 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 26.357 70.941 1.00 5.18 0 ATOM 4010 NE ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4016 NH2 ARG 622 57.850 24.240 71.525 1.00 6.18 0 ATOM 4010 NE ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4010 NE ARG 622 53.032 28.270 66.702 1.00 16.40 0 ATOM 4020 O ARG 622 53.032 28.270 66.702 1.00 16.40 0 ATOM 4021 CC ARG 622 53.032 28.270 66.703 1.00 2.00 0 ATOM 4020 O ARG 622 53.032 28.270 66.703 1.00 10.40 0 ATOM 4021 CC ARG 624 58.3508 29.805 68.286 1.00 19.04 0 ATOM 4023 CA GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4024 C GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4027 CB ASN 624 58.325 31.544 66.566 1.00 32.95 0 ATOM 4030 CG ASN 624 58.326 31.588 67.721 1.00 8.50 0 ATOM 4031 DD1 ASN 624 58.326 31.588 67.721 1.00 8.50 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 9.47 1.00 8.50 0 ATOM 4037 N HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4042 CD2 HIS 625 57.668 37.3551 68.721 1.00 2.00 0						47.548	25.987				
ATOM 3998 CB LEU 621 48.577 26.929 67.162 1.00 2.00 0 ATOM 3999 CG LEU 621 47.256 26.280 66.739 1.00 2.00 0 ATOM 4000 CD1 LEU 621 47.021 26.511 65.253 1.00 2.00 0 ATOM 4001 CD2 LEU 621 47.281 24.813 67.062 1.00 2.00 0 ATOM 4003 O LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 27.092 68.774 1.00 2.00 0 ATOM 4006 CA ARG 622 51.296 27.092 68.774 1.00 2.00 0 ATOM 4007 CB ARG 622 53.620 26.578 69.285 1.00 2.00 0 ATOM 4008 CG ARG 622 53.620 26.578 69.231 1.00 5.18 0 ATOM 4009 CD ARG 622 53.620 26.578 69.231 1.00 5.18 0 ATOM 4010 NE ARG 622 55.892 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 55.802 25.891 70.941 1.00 5.18 0 ATOM 4010 NE ARG 622 57.830 25.555 71.00 5.18 0 ATOM 4013 NH1 ARG 622 57.830 25.555 71.00 5.18 0 ATOM 4016 NH2 ARG 622 57.830 25.555 71.00 5.18 0 ATOM 4019 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4019 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4019 C ARG 622 57.830 25.555 71.00 5.18 0 ATOM 4019 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 O ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 C ARG 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4020 C ARG 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4020 C ARG 624 58.345 31.543 65.220 1.00 16.40 0 ATOM 4020 C ARG 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4020 C ARS 624 57.728 31.144 66.566 1.00 32.95 0 ATOM 4021 N ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4022 C ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4032 ND2 ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4031 ND1 ASN 624 57.381 33.3754 66.566 1.00 2.00 0 ATOM 4032 ND2 ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4031 ND1 ASN 624 57.381 33.4714 66.566 1.00 32.95 0 ATOM 4032 ND2 ASN 624 57.381 33.4714 69.477 1.00 8.83 0 ATOM 4034 ND1 HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4042 CD2 HIS 625 57.030 34.987 69.320 1.00 2.00 0		399 5									
ATOM											
ATOM 4000 CD1 LEU 621 47.021 26.511 65.253 1.00 2.00 0 ATOM 4001 CD2 LEU 621 50.122 27.756 68.943 1.00 2.00 0 ATOM 4003 0 LEU 621 50.122 28.937 69.285 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 27.090 69.285 1.00 2.00 0 ATOM 4006 CA ARG 622 52.593 27.690 69.013 1.00 2.00 0 ATOM 4007 CB ARG 622 53.620 26.578 69.231 1.00 5.18 0 ATOM 4008 CG ARG 622 54.967 27.052 69.716 1.00 5.18 0 ATOM 4009 CD ARG 622 55.892 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 26.357 70.941 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 24.240 71.525 1.00 6.18 0 ATOM 4016 NH2 ARG 622 57.659 24.240 71.525 1.00 6.18 0 ATOM 4016 NH2 ARG 622 53.032 28.270 66.702 1.00 16.40 0 ATOM 4020 O ARG 622 53.032 28.270 66.702 1.00 16.40 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4024 C GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4025 O GLY 623 55.555 31.266 66.702 1.00 16.40 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.95 0 ATOM 4028 CA ASN 624 57.728 31.144 66.566 1.00 32.95 0 ATOM 4029 CB ASN 624 57.728 31.146 66.566 1.00 32.95 0 ATOM 4031 OD1 ASN 624 57.381 33.754 65.538 1.00 9.47 0 ATOM 4032 ND2 ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4031 CB HIS 625 57.369 32.757 68.335 1.00 2.00 0 ATOM 4031 CB HIS 625 57.369 32.757 68.335 1.00 2.00 0 ATOM 4031 CB HIS 625 57.369 32.757 68.335 1.00 2.00 0 ATOM 4034 CB HIS 625 57.369 35.988 68.656 1.00 2.00 0 ATOM 4034 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4001 CD2 LEU 621 47.281 24.813 67.062 1.00 2.00 0 ATOM 4002 C LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4003 O LEU 621 50.162 27.756 68.943 1.00 2.00 0 ATOM 4004 N ARG 622 51.296 27.092 68.774 1.00 2.00 0 ATOM 4006 CA ARG 622 52.593 27.690 69.285 1.00 2.00 0 ATOM 4007 CB ARG 622 52.593 27.690 69.013 1.00 2.00 0 ATOM 4008 CG ARG 622 53.620 26.578 69.231 1.00 5.18 0 ATOM 4009 CD ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4011 NE ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4012 CZ ARG 622 57.850 25.553 71.557 1.00 5.18 0 ATOM 4013 NH1 ARG 622 57.850 25.553 71.557 1.00 5.18 0 ATOM 4016 NH2 ARG 622 58.870 26.056 72.199 1.00 5.18 0 ATOM 4019 C ARG 622 53.030 25.553 71.557 1.00 5.18 0 ATOM 4010 NE ARG 622 57.659 24.240 71.525 1.00 6.18 0 ATOM 4011 N GLY 623 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 O ARG 622 53.030 28.270 66.702 1.00 16.40 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4022 C GLY 623 54.043 30.749 67.328 1.00 20.78 0 ATOM 4024 C GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4027 CR ASN 624 57.728 31.144 66.566 1.00 32.06 0 ATOM 4028 CA ASN 624 58.345 31.543 65.260 1.00 32.06 0 ATOM 4030 CG ASN 624 58.320 33.002 64.857 1.00 8.84 0 ATOM 4031 OD1 ASN 624 58.345 31.543 65.538 1.00 9.47 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.84 0 ATOM 4031 OD1 ASN 624 58.721 33.411 63.757 1.00 8.84 0 ATOM 4030 CG ASN 624 58.721 33.411 63.757 1.00 8.85 0 ATOM 4031 OD1 ASN 624 58.721 33.411 63.757 1.00 8.85 0 ATOM 4036 O ASN 624 58.721 33.411 69.477 1.00 8.83 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4040 CB HIS 625 57.367 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 CB HIS 625 57.667 33.51 68.721 1.00 2.00 0											
ATOM 4003 O LEU 621 50.121 28.937 69.285 1.00 2.00 O ATOM 4004 N ARG 622 51.296 27.092 68.774 1.00 2.00 O ATOM 4006 CA ARG 622 52.593 27.690 69.013 1.00 2.00 O ATOM 4007 CB ARG 622 53.620 26.578 69.231 1.00 5.18 O ATOM 4008 CG ARG 622 54.967 27.052 69.716 1.00 5.18 O ATOM 4009 CD ARG 622 55.802 25.891 70.196 1.00 5.18 O ATOM 4010 NE ARG 622 55.802 25.891 70.196 1.00 5.18 O ATOM 4010 NE ARG 622 55.802 25.891 70.196 1.00 5.18 O ATOM 4010 NE ARG 622 57.830 25.553 71.557 1.00 5.18 O ATOM 4013 NH1 ARG 622 57.830 25.553 71.557 1.00 5.18 O ATOM 4013 NH1 ARG 622 57.850 22.599 10.00 6.18 O ATOM 4016 NH2 ARG 622 58.870 26.056 72.199 1.00 5.18 O ATOM 4019 C ARG 622 53.070 28.615 67.894 1.00 2.00 O ATOM 4020 O ARG 622 53.032 28.270 66.702 1.00 16.40 O ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 O ATOM 4023 CA GLY 623 53.508 29.805 68.286 1.00 19.04 O ATOM 4024 C GLY 623 55.551 30.749 67.328 1.00 20.78 O ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 O ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 O ATOM 4028 CA ASN 624 56.281 31.266 66.530 1.00 32.06 O ATOM 4028 CA ASN 624 57.728 31.144 66.566 1.00 32.95 O ATOM 4029 CB ASN 624 58.345 31.543 65.220 1.00 18.09 O ATOM 4031 OD1 ASN 624 58.320 33.002 64.857 1.00 8.84 O ATOM 4031 OD1 ASN 624 58.320 33.002 64.857 1.00 8.84 O ATOM 4032 ND2 ASN 624 58.326 31.986 67.721 1.00 8.80 O ATOM 4031 OD1 ASN 624 58.326 31.986 67.721 1.00 8.80 O ATOM 4032 ND2 ASN 624 58.260 31.988 67.721 1.00 8.80 O ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 8.80 O ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 8.80 O ATOM 4037 N HIS 625 57.687 33.614 69.477 1.00 8.83 O ATOM 4040 CB HIS 625 57.687 33.614 69.477 1.00 8.83 O ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 O ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 O ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 O ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 O ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 O ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 O ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2										2.00	0
ATOM 4004 N ARG 622 51.296 27.092 68.774 1.00 2.00 0 ATOM 4006 CA ARG 622 52.593 27.690 69.013 1.00 2.00 0 ATOM 4007 CB ARG 622 53.620 26.578 69.231 1.00 5.18 0 ATOM 4008 CG ARG 622 54.967 27.052 69.716 1.00 5.18 0 ATOM 4009 CD ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4011 NA ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4016 NH2 ARG 622 57.659 24.240 71.525 1.00 6.18 0 ATOM 4019 C ARG 622 58.870 26.056 72.199 1.00 5.18 0 ATOM 4019 C ARG 622 53.032 28.270 66.702 1.00 16.40 0 ATOM 4020 O ARG 622 53.032 28.270 66.702 1.00 16.40 0 ATOM 4021 N GLY 623 53.032 28.270 66.702 1.00 16.40 0 ATOM 4022 C GLY 623 55.551 30.573 67.328 1.00 20.78 0 ATOM 4024 C GLY 623 55.551 30.573 67.329 1.00 18.09 0 ATOM 4025 O GLY 623 55.551 30.573 67.329 1.00 18.09 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4028 CA ASN 624 58.345 31.544 66.566 1.00 32.95 0 ATOM 4029 CB ASN 624 58.345 31.544 66.566 1.00 32.95 0 ATOM 4030 CG ASN 624 58.345 31.544 66.566 1.00 32.95 0 ATOM 4030 CG ASN 624 58.345 31.544 66.568 1.00 12.63 0 ATOM 4031 OD1 ASN 624 58.345 31.544 66.568 1.00 12.63 0 ATOM 4035 C ASN 624 58.365 31.988 67.721 1.00 8.84 0 ATOM 4036 O ASN 624 58.3260 31.988 67.721 1.00 8.84 0 ATOM 4037 N HIS 625 57.389 32.757 68.365 1.00 9.47 0 ATOM 4038 CB HIS 625 57.389 32.757 68.365 1.00 9.47 0 ATOM 4030 CB HIS 625 57.389 32.757 68.365 1.00 9.47 0 ATOM 4030 CB HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CD2 HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CD2 HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 CD2 HIS 625 57.668 37.351 68.721 1.00 2.00 0		4002									
ATOM 4006 CA ARG 622 52.593 27.690 69.013 1.00 2.00 0 ATOM 4007 CB ARG 622 53.620 26.578 69.231 1.00 5.18 0 ATOM 4008 CG ARG 622 54.967 27.052 69.716 1.00 5.18 0 ATOM 4009 CD ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4011 CZ ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4012 CZ ARG 622 57.659 24.240 71.525 1.00 6.18 0 ATOM 4016 NH2 ARG 622 58.870 26.056 72.199 1.00 5.18 0 ATOM 4019 C ARG 622 53.032 28.615 67.894 1.00 2.00 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4023 CA GLY 623 55.551 30.749 67.328 1.00 20.78 0 ATOM 4024 C GLY 623 55.551 30.749 67.328 1.00 20.78 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.95 0 ATOM 4028 CA ASN 624 56.281 31.266 66.530 1.00 32.95 0 ATOM 4029 CB ASN 624 58.323 1.144 66.566 1.00 32.95 0 ATOM 4030 CG ASN 624 58.323 1.144 66.566 1.00 32.95 0 ATOM 4031 OD1 ASN 624 58.323 1.144 66.566 1.00 32.95 0 ATOM 4030 CG ASN 624 58.323 1.144 66.566 1.00 32.95 0 ATOM 4030 CG ASN 624 58.323 1.144 66.566 1.00 32.95 0 ATOM 4030 CG ASN 624 58.323 1.341 66.5538 1.00 9.47 0 ATOM 4031 OD1 ASN 624 58.320 33.002 64.857 1.00 8.84 0 ATOM 4030 CG ASN 624 58.320 33.002 64.857 1.00 8.84 0 ATOM 4030 CG ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4031 OD1 ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 8.84 0 ATOM 4037 N HIS 625 57.367 33.757 68.335 1.00 9.47 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 8.83 0 ATOM 4040 CB HIS 625 57.369 32.757 68.335 1.00 7.73 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4007 CB ARG 622 53.620 26.578 69.231 1.00 5.18 0 ATOM 4008 CG ARG 622 54.967 27.052 69.716 1.00 5.18 0 ATOM 4009 CD ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 56.969 26.357 70.941 1.00 5.18 0 ATOM 4011 NH1 ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4013 NH1 ARG 622 57.659 24.240 71.525 1.00 6.18 0 ATOM 4016 NH2 ARG 622 57.659 24.240 71.525 1.00 6.18 0 ATOM 4016 NH2 ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 O ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4023 CA GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4026 N ASN 624 56.069 29.805 68.212 1.00 20.00 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.95 0 ATOM 4029 CB ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4030 CG ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4030 CG ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4031 OD1 ASN 624 58.120 33.002 64.857 1.00 8.84 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.84 0 ATOM 4030 CG ASN 624 58.721 33.411 63.757 1.00 8.80 0 ATOM 4031 OD1 ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4036 O ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4037 N HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4030 CB HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4030 CB HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 CB HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 CD HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 ND HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 ND HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 ND HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4008 CG ARG 622 54.967 27.052 69.716 1.00 5.18 0 ATOM 4009 CD ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 56.969 26.357 70.941 1.00 5.18 0 ATOM 4012 CZ ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4013 NH1 ARG 622 57.659 24.240 71.525 1.00 6.18 0 ATOM 4016 NH2 ARG 622 58.870 26.056 72.199 1.00 5.18 0 ATOM 4019 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 O ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4023 CA GLY 623 54.043 30.749 67.328 1.00 20.78 0 ATOM 4024 C GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4025 O GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4028 CA ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4028 CA ASN 624 57.728 31.144 66.566 1.00 32.95 0 ATOM 4029 CB ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4030 CG ASN 624 58.320 33.002 64.857 1.00 8.84 0 ATOM 4031 OD1 ASN 624 58.320 33.002 64.857 1.00 8.84 0 ATOM 4032 ND2 ASN 624 58.320 33.002 64.857 1.00 8.84 0 ATOM 4031 OD1 ASN 624 57.381 33.754 65.538 1.00 9.47 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.850 0 ATOM 4035 C ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CD HIS 625 57.030 35.854 67.933 1.00 2.00 0 ATOM 4040 CD HIS 625 57.030 35.854 67.933 1.00 2.00 0 ATOM 4040 CD HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 CD HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 CD HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4009 CD ARG 622 55.802 25.891 70.196 1.00 5.18 0 ATOM 4010 NE ARG 622 56.969 26.357 70.941 1.00 5.18 0 ATOM 4012 CZ ARG 622 57.659 24.240 71.525 1.00 6.18 0 ATOM 4016 NH2 ARG 622 58.870 26.056 72.199 1.00 5.18 0 ATOM 4019 C ARG 622 58.870 26.056 72.199 1.00 5.18 0 ATOM 4019 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 O ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4023 CA GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4024 C GLY 623 55.551 30.573 67.328 1.00 20.78 0 ATOM 4025 O GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4028 CA ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4029 CB ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4030 CG ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4031 OD1 ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4032 ND2 ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4032 ND2 ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4035 C ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 8.50 0 ATOM 4037 N HIS 625 57.381 33.754 65.538 1.00 9.47 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 8.50 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4042 CD2 HIS 625 57.030 35.854 67.933 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0										5.18	
ATOM 4012 CZ ARG 622 57.830 25.553 71.557 1.00 5.18 0 ATOM 4013 NH1 ARG 622 57.659 24.240 71.525 1.00 6.18 0 ATOM 4016 NH2 ARG 622 58.870 26.056 72.199 1.00 5.18 0 ATOM 4019 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4023 CA GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4024 C GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4025 O GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4028 CA ASN 624 57.728 31.144 66.566 1.00 32.95 0 ATOM 4029 CB ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4030 CG ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4031 OD1 ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.84 0 ATOM 4035 C ASN 624 58.260 31.988 67.721 1.00 9.47 0 ATOM 4035 C ASN 624 58.260 31.988 67.721 1.00 8.50 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4040 CB HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4041 CG HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0		4009		ARG	62 2						
ATOM 4013 NH1 ARG 622 57.659 24.240 71.525 1.00 6.18 0 ATOM 4016 NH2 ARG 622 58.870 26.056 72.199 1.00 5.18 0 ATOM 4019 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 O ARG 622 53.032 28.270 66.702 1.00 16.40 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4021 C GLY 623 54.043 30.749 67.328 1.00 20.78 0 ATOM 4024 C GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4025 O GLY 623 56.069 29.805 68.212 1.00 2.0	-	_									
ATOM 4016 NH2 ARG 622 58.870 26.056 72.199 1.00 5.18 0 ATOM 4019 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 O ARG 622 53.032 28.270 66.702 1.00 16.40 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4023 CA GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4025 O GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 22.00 0 ATOM 4028 CA ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4029 CB ASN 624 57.728 31.144 66.566 1.00 32.95 0 ATOM 4030 CG ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4031 OD1 ASN 624 57.381 33.754 65.538 1.00 9.47 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.84 0 ATOM 4035 C ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4042 CD2 HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4019 C ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4020 O ARG 622 53.070 28.615 67.894 1.00 2.00 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4023 CA GLY 623 54.043 30.749 67.328 1.00 20.78 0 ATOM 4024 C GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4025 O GLY 623 56.069 29.805 68.212 1.00 2.00 0 ATOM 4028 CA ASN 624 56.281 31.266 66.530 1.00 32.95 0 ATOM 4030 CG ASN 624 58.345 31.144 66.566 1.00 32.9											
ATOM 4020 O ARG 622 53.032 28.270 66.702 1.00 16.40 0 ATOM 4021 N GLY 623 53.508 29.805 68.286 1.00 19.04 0 ATOM 4023 CA GLY 623 54.043 30.749 67.328 1.00 20.78 0 ATOM 4024 C GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4025 O GLY 623 56.069 29.805 68.212 1.00 2.00 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4028 CA ASN 624 57.728 31.144 66.566 1.00 32.95 0 ATOM 4029 CB ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4030 CG ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4031 OD1 ASN 624 58.120 33.002 64.857 1.00 8.84 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.84 0 ATOM 4035 C ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4035 C ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4042 CD2 HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4042 CD2 HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0											-
ATOM 4023 CA GLY 623 54.043 30.749 67.328 1.00 20.78 0 ATOM 4024 C GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4025 O GLY 623 56.069 29.805 68.212 1.00 2.00 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4028 CA ASN 624 57.728 31.144 66.566 1.00 32.95 0 ATOM 4030 CG ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4031 OD1 ASN 624 58.120 33.002 64.857 1.00 8.84 0 ATOM 4031 OD1 ASN 624 57.381 33.754 65.538 1.00 9.47 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4035 C ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4039 CA HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4042 CD2 HIS 625 57.668 37.351 68.721 1.00 2.00 0					622		28.270	66.702			
ATOM 4024 C GLY 623 55.551 30.573 67.390 1.00 18.09 0 ATOM 4025 O GLY 623 56.069 29.805 68.212 1.00 2.00 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4028 CA ASN 624 57.728 31.144 66.566 1.00 32.95 0 ATOM 4029 CB ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4030 CG ASN 624 58.120 33.002 64.857 1.00 8.84 0 ATOM 4031 OD1 ASN 624 57.381 33.754 65.538 1.00 9.47 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4035 C ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4042 CD2 HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0							29.805				
ATOM 4025 O GLY 623 56.069 29.805 68.212 1.00 2.00 0 ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4028 CA ASN 624 57.728 31.144 66.566 1.00 32.95 0 ATOM 4029 CB ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4030 CG ASN 624 58.120 33.002 64.857 1.00 8.84 0 ATOM 4031 OD1 ASN 624 57.381 33.754 65.538 1.00 9.47 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4035 C ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4039 CA HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4042 CD2 HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4026 N ASN 624 56.281 31.266 66.530 1.00 32.06 0 ATOM 4028 CA ASN 624 57.728 31.144 66.566 1.00 32.95 0 ATOM 4029 CB ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4030 CG ASN 624 58.120 33.002 64.857 1.00 8.84 0 ATOM 4031 OD1 ASN 624 57.381 33.754 65.538 1.00 9.47 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4035 C ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4042 CD2 HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4028 CA ASN 624 57.728 31.144 66.566 1.00 32.95 0 ATOM 4029 CB ASN 624 58.345 31.543 65.220 1.00 12.63 0 ATOM 4030 CG ASN 624 58.120 33.002 64.857 1.00 8.84 0 ATOM 4031 OD1 ASN 624 57.381 33.754 65.538 1.00 9.47 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4035 C ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4036 O ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.81 0 ATOM 4039 CA HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4042 CD2 HIS 625 57.668 37.351 68.721 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4030 CG ASN 624 58.120 33.002 64.857 1.00 8.84 0 ATOM 4031 OD1 ASN 624 57.381 33.754 65.538 1.00 9.47 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4035 C ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4036 O ASN 624 59.442 31.926 68.066 1.00 7.81 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4042 CD2 HIS 625 59.042 35.854 67.933 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0				ASN		57. 72 8	31.144	66.566			
ATOM 4031 OD1 ASN 624 57.381 33.754 65.538 1.00 9.47 0 ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4035 C ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4036 O ASN 624 59.442 31.926 68.066 1.00 7.81 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4042 CD2 HIS 625 59.042 35.854 67.933 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4032 ND2 ASN 624 58.721 33.411 63.757 1.00 8.50 0 ATOM 4035 C ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4036 O ASN 624 59.442 31.926 68.066 1.00 7.81 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4042 CD2 HIS 625 59.042 35.854 67.933 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4035 C ASN 624 58.260 31.988 67.721 1.00 32.42 0 ATOM 4036 O ASN 624 59.442 31.926 68.066 1.00 7.81 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4042 CD2 HIS 625 59.042 35.854 67.933 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4036 O ASN 624 59.442 31.926 68.066 1.00 7.81 0 ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4042 CD2 HIS 625 59.042 35.854 67.933 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4037 N HIS 625 57.359 32.757 68.335 1.00 7.73 0 ATOM 4039 CA HIS 625 57.687 33.614 69.477 1.00 8.83 0 ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4042 CD2 HIS 625 59.042 35.854 67.933 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0					624	59.442	31.926	68.066	1.00	7.81	0
ATOM 4040 CB HIS 625 57.030 34.987 69.320 1.00 2.00 0 ATOM 4041 CG HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4042 CD2 HIS 625 59.042 35.854 67.933 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0	MOTA	4037	N	HIS	625						
ATOM 4041 CG HIS 625 57.909 35.998 68.656 1.00 2.00 0 ATOM 4042 CD2 HIS 625 59.042 35.854 67.933 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4042 CD2 HIS 625 59.042 35.854 67.933 1.00 2.00 0 ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0											
ATOM 4043 ND1 HIS 625 57.668 37.351 68.721 1.00 2.00 0											
			_				37.351	68.721			
						58.618	37.999	68.069	1.00	2.00	0

MOTA	4046	NE2	HIS	625	59.464	37.113	67.582	1.00 2.00	0
MOTA	4048	C	HIS	62 5	57.2 7 8	32.980	70.807	1.00 8.94	0
MOTA	4049	0	HIS	625	57. 18 8	33.644	71.825	1.00 2.00	0
MOTA	4050	N	GLU	62 6 62 6	56. 984 56. 62 9	31.691 30.914	70.767 71.945	1.00 2.00 1.00 2.00	0
MOTA MOTA	4052 4053	CA CB	GLU GLU	626	55.404	30.026	71.666	1.00 23.06	0
ATOM	4054	CG	GLU	626	54.051	30.627	72.039	1.00 18.70	Ö
MOTA	4055	CD	GLU	626	53.812	31.997	71.445	1.00 17.00	ŏ
MOTA	4056	OE1	GLU	626	53.516	32.922	72.217	1.00 20.31	Ö
MOTA	4057	OE2	GLU	626	53.911	32.165	70.214	1.00 23.26	. 0
MOTA	4058	C	GLU	626	57.888	30.068	72.029	1.00 2.00	0
MOTA	4059	0	GLU	626	57. 851 59. 01 5	28.841	71.921	1.00 23.50 1.00 2.00	0
MOTA	4060 4 06 2	N CA	CYS	627 62 7	60.290	30.748 30.067	72.184 72.218	1.00 2.00 1.00 2.00	0
MOTA MOTA	4063	CB	CYS	627	60.832	29.957	70.789	1.00 7.85	ŏ
ATOM	4064	SG	CYS	627	62.235	28.843	70.575	1.00 19.90	ŏ
ATOM	4065	Ċ	CYS	627	61.260	30.842	73.105	1.00 2.00	0
MOTA	4066	0	CYS	627	61. 35 5	32.066	73.008	1.00 8.12	0
MOTA	4067	N	ALA	628	61.971	30.116	73.970	1.00 19.49	0
MOTA	4069	CA	ALA	628	62.934	30.702	74.900	1.00 19.49	0
MOTA	4070	CB	ALA	628 628	63.704 63.890	29.601 31.662	75.567 74.206	1.00 2.00 1.00 19.49	0
MOTA	4071 4072	C O	ALA ALA	628	63.921	32.859	74.484	1.00 2.00	Ö
MOTA MOTA	4073	N	SER	629	64.660	31.101	73.291	1.00 10.83	ŏ
MOTA	4075	CA	SER	629	65.637	31.813	72.478	1.00 14.60	0
ATOM	4076	CB	SER	629	66.057	30.877	71.355	1.00 15.99	0
MOTA	4077	OG	SER	629	65.846	29.522	71.762	1.00 20.43	0
MOTA	4079	C	SER	629	65.119	33.131	71.899	1.00 19.16	0
MOTA	4080	0	SER	629	65.869 63.834	34.085 33.167	71.759 71.5 6 6	1.00 13.43 1.00 2.00	0
MOTA MOTA	4081 4083	N CA	ILE	630 630	63.198	34.354	71.022	1.00 2.00	ŏ
ATOM	4084	CB	ILE	630	62.076	33.973	70.017	1.00 2.00	0
MOTA	4085	CG2	ILE	630	61.675	35.174	69.202	1.00 2.00	0
MOTA	4086	CG1	ILE	630	62.604	32.998	68.980	1.00 2.00	0
MOTA	4087		ILE	630	63.664	33.598	68.080	1.00 2.00 1.00 2.00	0
MOTA	4088	C	ILE	63 0	62. 63 6 62. 86 6	35.281 36.492	72.131 72.068	1.00 2.00 1.00 2.00	ő
MOTA MOTA	4089 4090	И	ILE ASN	630 631	61.932	34.729	73.137	1.00 10.29	ō
ATOM	4092	CA	ASN	631	61.350	35.504	74.272	1.00 9.61	0
MOTA	4093	СВ	ASN	631	60.759	34.597	75.349	1.00 8.67	0
MOTA	4094	CG	ASN	631	59. 55 5	33.848	74.891	1.00 17.37 1.00 21.10	0
MOTA	4095		ASN	631	59.189 58. 92 6	33.896 33.124	73.722 75. 81 5	1.00 21.10	ő
MOTA MOTA	4096 4099	ND2 C	asn asn	631 631	62.367	36.370	75.003	1.00 6.75	ō
MOTA	4100	ŏ	ASN	631	62.059	37.486	75.438	1.00 6.80	0
MOTA	4101		ARG	632	63. 55 5	35.810	75.189	1.00 2.00	0
MOTA	4103	CA	ARG	632	64.635	36.492	75.867	1.00 2.00	. 0
MOTA	4104	CB	ARG	632	65.873	35.595	75.909	1.00 6.06 1.00 8.20	0
ATOM	4105	CG	ARG	632	66. 36 1 67. 43 6	35.244 36.202	77.316 77.839	1.00 8.20	ŏ
MOTA	4106 4107	CD	ARG ARG	632 632	67.003	37.598	77.918	1.00 11.75	ŏ
MOTA MOTA	4107	NE CZ	ARG	632	67.837	38.635	77.907	1.00 13.36	0
ATOM	4110		ARG	632	69.144	38.423	77.811	1.00 13.50	0
MOTA	4113	NH2	ARG	632	67.372	39.883	78.001	1.00 18.51	0
MOTA	4116	C	ARG	632	64.962	37.781 38.865	75.148 75.745	I.00 2.00 1.00 12.49	ő
MOTA	4117	0	ARG	632 63 3	64.930 65.234	37.658	73.852	1.00 21.20	ō
MOTA MOTA	4118 4120	N CA	ILE ILE	633	65.608	38.788	73.014	1.00 19.86	0
MOTA	4121	CB	ILE	633	66.085	38.308	71.610	1.00 32.61	0
MOTA	4122	CG2		633	66.132	39.471	70.625	1.00 29.80	0
ATOM	4123	CG1		633	67.490	37.716	71.700	1.00 28.84 1.00 35.23	0
MOTA	4124	CD1		633	67. 61 9 64. 55 0	36. 49 6 39. 86 6	72.594 72.815	1.00 33.23	ŏ
MOTA	4125 4126	C O	ILE	633 633	64.864	41.053	72.878	1.00 30.44	ō
MOTA MOTA	4120	N	TYR	634	63.303	39.473	72.588	1.00 32.62	0
MOTA	4129	CA	TYR	634	62. 27 6	40.471	72.316	1.00 31.19	0
ATOM	4130	CB	TYR	634	61.395	40.006	71.147	1.00 13.98 1.00 19.07	0
MOTA	4131	CG	TYR	634	62.231	39.755	69.941	1.00 19.07	U

WO 97/37224 PCT/GB97/00898

MOTA	4132	CD1		634	62.652	40.805	69.147	1.00 17.28	0
MOTA	4133	CE1	TYR	634	63.498	40.587	68.074	1.00 16.13	0
MOTA	4134	CD2	TYR	634	62. 66 8	38.474	69.639 68.571	1.00 15.20 1.00 18.14	0
MOTA	4135	CE2	TYR	634	63. 51 5 63. 93 5	38.236 39.296	67.786	1.00 21.41	0
MOTA	4136	CZ	TYR TYR	634 634	64.789	39.069	66.720	1.00 20.11	ő
ATOM	4137 4139	C OH	TYR	634	61.430	41.025	73.446	1.00 28.63	Ö
ATOM	4140	0	TYR	634	60.380	41.637	73.188	1.00 19.20	Ö
MOTA MOTA	4141	N	GLY	635	61.851	40.807	74.690	1.00 38.67	ŏ
ATOM	4143	CA	GLY	635	61.114	41.407	75.786	1.00 39.39	ŏ
ATOM	4144	C	GLY	635	60.270	40.658	76.780	1.00 41.31	0
ATOM	4145	ŏ	GLY	635	60.103	41.155	77.892	1.00 69.69	0
MOTA	4146	N	PHE	63 6	59.725	39.502	76.431	1.00 54.49	0
ATOM	4148	CA	PHE	63 6	58.905	38.786	77.404	1.00 56.26	. 0
MOTA	4149	CB	PHE	636	58.386	37.461	76.831	1.00 2.00	0
MOTA	4150	CG	PHE	636	57.275	36.845	77.639	1.00 2.00	0.
MOTA	4151	CD1		636	56.293	37.638 35. 4 78	78.208 77.824	1.00 2.00 1.00 2.00	0
ATOM	4152	CD2	PHE	636	57.214 55.276	37.076	78.942	1.00 2.00	Ö
MOTA	4153 4154	CE1 CE2	PHE PHE	63 6 63 6	56.210	34.919	78.549	1.00 2.00	ŏ
MOTA MOTA	4155	CZ	PHE	636	55.238	35.716	79.111	1.00 2.00	ŏ
ATOM	4156	C	PHE	636	59.761	38.522	78.646	1.00 55.84	ŏ
ATOM	4157	õ	PHE	636	59.321	38.728	79.791	1.00 2.00	0
ATOM	4158	Ň	TYR	637	61.005	38.114	78.415	1.00 2.00	0
MOTA	4160	CA	TYR	637	61.918	37.836	79.506	1.00 2.00	0
ATOM	4161	CB	TYR	637	63.266	37.419	78.947	1.00 18.03	0
MOTA	4162	CG	TYR	637	64.345	37.308	79.986	1.00 13.39	0
MOTA	4163	CD1		637	64.560	36.116	80.668	1.00 15.45	0
MOTA	4164	CE1	TYR	637	65.563	36.007	81.603	1.00 14.13 1.00 14.83	0
MOTA	4165	CD2	TYR	637	65.163 66.163	38.390 38.292	80.273 81.200	1.00 14.83 1.00 13.98	Ö
MOTA	4166	CE2	TYR TYR	637 637	66.363	37.101	81.863	1.00 14.88	ŏ
MOTA MOTA	4167 4168	CZ OH	TYR	637	67. 37 9	37.015	82.784	1.00 13.10	ŏ
ATOM	4170	C	TYR	637	62.091	39.056	80.411	1.00 2.00	Ō
MOTA	4171	ŏ	TYR	637	62.362	38.920	81.605	1.00 20.03	0
ATOM	4172	N	ASP	638	61.91 9	40.240	79.833	1.00 2.00	0
MOTA	4174	CA	ASP	63 8	62.086	41.484	80.554	1.00 2.00	0
MOTA	4175	CB	ASP	63 8	62.701	42.522	79.614	1.00 57.25	0
MOTA	4176	CG	ASP	638	64.049	42.053	79.046	1.00 66.80	0
MOTA	4177	OD1	ASP	638	64.078	41.539	77.905 79.750	1.00 65.06 1.00 69.12	0
MOTA	4178	OD2	ASP	638 638	65.077 60.816	42.175 41.961	81.245	1.00 03.12	ŏ
MOTA	4179 4180	C	ASP ASP	638	60.884	42.531	82.331	1.00 55.83	ŏ
MOTA MOTA	4181	N O	GLU	639	59.656	41.724	80.644	1.00 2.00	Õ
MOTA	4183	CA	GLU	639	58.405	42.074	81.317	1.00 2.00	0
ATOM	4184	CB	GLU	639	57.210	41.774	80.419	1.00 64.74	0
MOTA	4185	CG	GLU	639	57.051	42.726	79.261	1.00 71.70	0
ATOM	4186	CD	GLU	639	5 5. 90 0	42.349	78.3 5 5	1.00 66.55	0
MOTA	4187		GLU	639	54.748	42.718	78.667	1.00 65.31	0
ATOM	4188	OE2	GLU	639	56.152	41.684	77.329	1.00 72.66 1.00 2.00	0
ATOM	4189	C	GLU	639	58.372	41.145	82.547		0
ATOM	4190	0	GLU	639	58. 00 9 58. 78 7	41.550 39.895	83.654 82.314	1.00 65.95 1.00 15.74	ő
ATOM	4191 4193	N CA	CYS CYS	64 0 64 0	58.859	38.843	83.323	1.00 15.74	ŏ
ATOM ATOM	4194	CB	CYS	640	59.187	37.504	82.684	1.00 4.35	0
ATOM	4195	SG	CYS	640	57.734	36.587	82.208	1.00 13.44	0
ATOM	4196	C	CYS	640	59.859	39.081	84.426	1.00 15.74	0
MOTA	4197	ŏ	CYS	640	59. 59 0	38.723	85.564	1.00 11.73	0
ATOM	4198	N	LYS	641	61.028	39.631	84.110	1.00 2.00	0
ATOM	4200	CA	LYS	641	62.009	39.890	85.153	1.00 2.00	0
MOTA	4201	CB	LYS	641	63.425	39.454	84.721	1.00 32.33	0
MOTA	4202	CG	LYS	641	64.225	40.436	83.869 83.954	1.00 32.55 1.00 38.99	0
ATOM	4203	CD	LYS	641 641	65. 73 5 66. 28 1	40.154 40.198	85.386	1.00 38.99	0
ATOM ATOM	4204 4205	CE NZ	LYS LYS	641	66.228	41.554	86.007	1.00 38.23	Õ
ATOM	4203	C	LYS	641	61.950	41.371	85.568	1.00 2.00	Ö
ATOM	4210	0	LYS	641	62.948	42.106	85.548	1.00 35.25	Ö
ATOM	4211	И	ARG	642	60.750	41.801	85.945	1.00 17.38	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4213 4214 4215 4216 4217 4219 4220 4223 4226 4227 4228 4230 4231	CA CB CG CD NE CZ NH1 NH2 C O N CA CB	ARG ARG ARG ARG ARG	642 642 642 642 642 642 642 642 643 643	60.502 60.341 61.636 61.463 60.816 62.097 59.867 59.200 59.114 58.180 56.869 55.804	43.168 44.131 44.613 46.016 46.208 46.291 46.253 43.098 43.455 42.630 42.500 42.392	86.384 85.204 84.561 83.940 82.846 81.560 81.199 80.631 87.126 88.288 86.427 87.016 85.924	1.00 17.38 1.00 14.00 1.00 23.15 1.00 25.43 1.00 33.87 1.00 39.98 1.00 44.40 1.00 41.77 1.00 17.38 1.00 26.01 1.00 11.54 1.00 11.54 1.00 8.38	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4232 4233 4234 4236 4237 4244 4245 4247 4248 4249 4250	CG CD NE CZ NH1 NH2 C O N CA CB CG CD1	ARG ARG ARG ARG ARG ARG TYR TYR TYR TYR	643 643 643 643 643 643 644 644 644	55.526 54.377 53.121 51.939 51.869 50.825 56.841 56.156 57.703 56.784 55.338 54.695	43.749 43.745 43.351 43.569 44.187 43.157 41.304 41.309 40.285 39.052 37.972 38.378 38.723	85.304 84.341 84.949 84.390 83.218 84.985 87.939 88.969 87.565 88.333 87.741 87.740 86.554	1.00 8.38 1.00 8.38 1.00 8.38 1.00 8.38 1.00 8.38 1.00 11.54 1.00 8.38 1.00 2.00 1.00 2.00 1.00 2.00 1.00 14.67 1.00 14.67	0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4251 4252 4253 4255 4255 4255 4259 4261 4263 4263 4264		TYR TYR TYR TYR TYR TYR TYR ASN ASN ASN	644 644 644 644 645 645 645 645	53.359 54.617 53.289 52.665 51.349 59.160 60.062 59.399 60.753 61.103 60.081 59.466 59.916	39.140 38.453 38.866 39.209 39.629 38.598 39.412 37.321 36.794 36.147 35.097 34.378	86.548 88.922 88.929 87.739 87.741 88.330 88.575 88.028 88.021 89.379 89.846 89.054	1.00 14.67 1.00 14.67 1.00 14.67 1.00 14.67 1.00 2.00 1.00 14.67 1.00 2.00 1.00 2.00 1.00 2.00 1.00 16.19 1.00 16.19 1.00 16.19	0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4265 4268 4269 4270 4273 4273 4276 4277 4278 4279 4281	ND2 C O N CA CB CG2 CG1 CD1 C		645 645 646 646 646 646 647 647	61.916 60.156 62.342 62.856 64.390 64.917 65.054 66.492 62.214 61.875 62.031	35.009 35.809 35.217 35.648 34.716 34.593 33.316 35.814 35.955 33.339 32.675 32.918 31.614	91.150 86.927 86.333 86.678 85.689 85.830 85.196 85.221 85.666 85.886 84.915 87.137 87.411	1.00 16.19 1.00 2.00 1.00 2.00 1.00 2.81 1.00 2.59 1.00 2.59 1.00 8.72 1.00 2.00 1.00 6.42 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4282 4283 4284 4285 4286 4290 4291 4292 4294 4295 4297 4298		LYS LYS LYS LYS LYS LYS LYS LEU LEU LEU LEU LEU	647 647 647 647 647 647 648 648 648 648	61.347 62.714 63.727 65.157 66.029 60.083 59.751 59.322 58.300 55.802 55.145 55.206	31.387 31.450 30.622 31.090 30.668 31.478 30.426 32.563 32.599 33.918 33.929 32.777 35.262	88.920 89.594 88.804 89.028 87.886 86.738 86.187 86.763 86.136 86.136 86.178 86.951	1.00 79.29 1.00 84.06 1.00 88.57 1.00 86.67 1.00 91.44 1.00 2.00 1.00 74.01 1.00 25.02 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000
ATOM ATOM ATOM ATOM	4299 4300 4301 4303	C 0 N CA	LEU LEU TRP TRP	648 648 649 649	58.245 57.562 59.227 59.554	32.495 31.751 33.243 33.224	84.637 83.934 84.151 82.738	1.00 28.16 1.00 2.00 1.00 42.46 1.00 40.96	0 0 0

									_
MOTA	4304	CB	TRP	64 9	60.719	34.161	82.465	1.00 11.77	0
ATOM	4305	CG	TRP	649	61.206	34.051	81.081	1.00 14.98	0
MOTA	4306	CD2	TRP	649	62.393	33.394	80.653	1.00 14.05	0
MOTA	4307	CE2	TRP	649	62.460	33.527	79.246	1.00 12.39	0
ATOM	4308	CE3	TRP	649	63.412	32.703	81.320	1.00 25.06	0
ATOM	4309	CD1	TRP	649	60.607	34.546	79.951	1.00 17.81	0
ATOM	4310	NEI		649	61.356	34.232	78.846	1.00 15.30	0
MOTA	4312	CZ2		649	63.510	32.995	78.495	1.00 13.58	0
ATOM	4313	CZ3	TRP	649	64.456	32.174	80.576	1.00 15.93	0
MOTA	4314	CH2	TRP	649	64.497	32.323	79.175	1.00 16.10	0
	4315	C	TRP	649	59.900	31.802	82.292	1.00 40.42	Õ
MOTA	4316		TRP	649	59.392	31.315	81.285	1.00 12.84	Õ
ATOM		0		650	60.748	31.138	83.069	1.00 2.00	ŏ
MOTA	4317	N	LYS		61.179	29.776	82.796	1.00 2.00	ŏ
MOTA	4319	CA	LYS	650		29.371	83.795	1.00 19.18	ŏ
MOTA	4320	CB	LYS	650	62.257		83.820	1.00 4.52	٠٥
MOTA	4321	CG	LYS	650	63.420	30.343		1.00 3.83	Ö
ATOM	4322	CD	LYS	650	64.541	29.898	84.718		
MOTA	432 3	CE	LYS	650	65.148	28.593	84.221	1.00 11.09	0
MOTA	4324	NZ	LYS	650	66.096	27.974	85.202	1.00 11.03	0
MOTA	4328	C	LYS	650	59.976	28.851	82.892	1.00 2.00	0
ATOM	4329	0	LYS	650	59.926	27.80 5	82.239	1.00 5.16	0
ATOM	4330	N	THR	651	58.997	29.234	83.702	1.00 10.53	0
MOTA	4332	CA	THR	651	57.792	28.422	83.838	1.00 14.10	0
MOTA	4333	CB	THR	651	56.915	28.882	85.038	1.00 23. 5 5	0
MOTA	4334		THR	651	57.613	28.622	86.268	1.00 23.26	0
MOTA	4336	CG2	THR	651	55.582	28.150	85.047	1.00 24.53	0
MOTA	4337	C	THR	651	57.012	28.543	82.539	1.00 14.03	0
	4338	Ö	THR	651	56.599	27.534	81.951	1.00 23.01	0
MOTA			PHE	652	56.837	29.779	82.082	1.00 2.00	Ō
ATOM	4339	N		652	56.127	30.032	80.840	1.00 2.00	Ō
MOTA	4341	CA	PHE		56.225	31.511	80.440	1.00 2.00	ŏ
MOTA	4342	CB	PHE	652		32.320	80.821	1.00 2.00	ŏ
MOTA	4343	CG	PHE	652	55.027		81.536	1.00 2.00	ő
MOTA	4344	CD1		652	55.164	33.486			ŏ
MOTA	434 5	CD2		652	53.753	31.919	80.459		ŏ
MOTA	4346	CE1		652	54.039	34.245	81.884		
MOTA	4347	CE2	PHE	652	52.630	32.678	80.808	1.00 2.00	0
MOTA	4348	CZ	PHE	652	52.77 5	33.832	81.515	1.00 2.00	0
MOTA	4349	С	PHE	652	56. 71 7	29.160	79.743	1.00 2.00	0
MOTA	4350	0	PHE	652	55.981	28.456	79.067	1.00 2.00	0
ATOM	4351	N	THR	65 3	58.039	29.143	79.608	1.00 2.00	0
ATOM	4353	CA	THR	653	58.631	28.344	78.552	1.00 2.00	0
MOTA	4354	CB	THR	653	60.126	28.538	78.429	1.00 2.14	0
ATOM	4355	og1	THR	653	60.804	27.592	79.255	1.00 2.14	0
ATOM	4357	CG2	THR	653	60.499	29.945	78.787	1.00 2.14	0
ATOM	4358	C	THR	653	58.371	26.846	78.588	1.00 2.00	0
				653	58.452	26.196	77.555	1.00 4.20	0
ATOM	4359	0	THR		58.064	26.271	79.743	1.00 2.00	ō
ATOM	4360	N	ASP	654	57.803	24.839	79.749	1.00 2.00	ō
ATOM	4362	CA	ASP	654		24.039	81.119	1.00 25.83	ŏ
MOTA	4363	CB	ASP	654	58.083		81.018	1.00 26.00	ŏ
MOTA	4364	CG	ASP	654	58.607	22.794		1.00 29.22	Ö
MOTA	4365		ASP	654	59.163	22.420	79.960	1.00 28.12	ŏ
MOTA	4366		ASP	654	58.472	22.043	82.006		ŏ
MOTA	4367	С	ASP	654	56.367	24.603	79.332	1.00 2.00	
ATOM	4368	0	ASP	654	56.014	23.518	78.874	1.00 18.75	0
MOTA	4369	N	CYS	655	55.537	25.625	79.503	1.00 27.58	0
ATOM	4371	CA	CYS	655	54.146	25.546	79.095	1.00 27.58	0
ATOM	4372	CB	CYS	65 5	53.333	26.675	79.722	1.00 8.45	0
ATOM	4373	SG	CYS	655	51.756	26.978	78.901	1.00 8.45	0
ATOM	4374	C	CYS	65 5	54.162	25.683	77. 5 75	1.00 27.58	0
ATOM	4375	Õ	CYS	655	53.565	24.863	76.865	1.00 8.45	0
ATOM	4376	N	PHE	656	54.871	26.709	77.088	1.00 7.64	0
ATOM	4378	CA	PHE	656	55.018	26.966	75.653	1.00 7.64	0
			PHE	656	55.967	28.145	75.402	1.00 12.44	Ö
MOTA	4379	CB		656	55.384	29.483	75.747	1.00 12.44	Ŏ,
ATOM	4380	CG	PHE		54.073	29.591	76.242	1.00 12.44	Ö
MOTA	4381		PHE	656	56.144	30.641	75.594	1.00 12.44	Ö
ATOM	4382		PHE	656			76.585	1.00 12.44	Ö
MOTA	4383		PHE	656	53.525	30.840		1.00 12.44	0
ATOM	4384	CE2	PHE	656	55.614	31.891	75.929	1.00 12.44	O

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4385 4386 4387 4388 4390 4391 4392 4393 4394 4397 4398 4399 4401 4402	CZ CONCA CBCGOD1 ND2 CONCA CBCG	PHE PHE ASN ASN ASN ASN ASN ASN CYS CYS CYS	656 656 657 657 657 657 657 657 658 658	54.296 55.564 55.033 56.595 57.198 58.353 59.614 59.564 60.757 56.202 56.585 54.934 53.930 53.543 55.004	31.990 25.705 25.274 25.099 23.896 23.425 24.233 25.404 23.607 22.772 21.668 23.017 21.964 21.468 20.919	76.430 74.961 73.940 75.543 75.006 75.892 75.690 75.350 75.896 74.881 74.532 75.196 75.080 76.475 77.397	1.00 12.44 1.00 7.64 1.00 12.44 1.00 2.00 1.00 12.64 1.00 12.64 1.00 12.64 1.00 12.64 1.00 2.00 1.00 12.64 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
MOTA MOTA	4404 4405 4406	C 0 N	CYS CYS LEU	658 658 659	52.708 51.726 52.799	22.390 21.659 23.560	74.258 74.162 73.634	1.00 2.00 1.00 10.87 1.00 11.17	0
MOTA MOTA	440 8 440 9	CA CB	LEU LEU	659 659	51.739 51.998	24.085 25.569	72.781 72.470	1.00 11.17 1.00 2.00	0
MOTA	4410	CG	LEU	659	51.757	26.629	73.542	1.00 2.00	ő
MOTA MOTA	4411 4412	CD1 CD2	LEU	65 9 65 9	52.286 50.307	27.965 26.759	73.123 73.767	1.00 2.00 1.00 2.00	0
ATOM	4413	CD2	LEU	659	51.651	23.298	71.450	1.00 2.00 1.00 11.17	0
MOTA	4414	0	LEU	659	52.681	22.845	70.900	1.00 2.00	0
MOTA MOTA	4415 4416	N CD	PRO PRO	660 660	50.415 49.134	23.109 23.535	70.931 71.523	1.00 14.96 1.00 2.00	0
ATOM	4417	CA	PRO	660	50.166	22.398	69.680	1.00 14.96	ŏ
MOTA	4418	CB	PRO	660	48.640	22.381	69.590	1.00 2.00	0
MOTA MOTA	441 9 442 0	CG C	PRO PRO	660 660	48.194 50.796	22.472 23.248	71.028 68.579	1.00 2.00 1.00 14.96	0
MOTA	4421	ŏ	PRO	660	50.888	24.474	68.709	1.00 2.00	ō
MOTA	4422	N	ILE	661	51.195	22.603	67.488	1.00 28.66	0
MOTA MOTA	4424 4425	CA CB	ILE ILE	661 661	51.880 53.126	23.279 22.480	66.397 66.036	1.00 30.55 1.00 19.83	0
MOTA	4426	CG2	ILE	661	54.064	22.432	67.228	1.00 22.82	0
MOTA	4427 4428	CG1	ILE	661 661	52.728 53.896	21.050 20.161	65.669 65.299	1.00 24.89 1.00 29.65	0
MOTA MOTA	4429	CD1 C	ILE ILE	661	51.074	23.577	65.132	1.00 29.24	ŏ
MOTA	4430	0	ILE	661	51.428.	24.493	64.372	1.00 20.63	0
MOTA MOTA	4431 4433	N CA	ALA ALA	662 662	50.004 49.112	22.810 22.970	64.915 63.751	1.00 22.79 1.00 22.79	0
ATOM	4434	CB	ALA	662	49.652	22.187	62.529	1.00 2.00	ŏ
MOTA	4435	С	ALA	662	47.683	22.507	64.086	1.00 22.79	0
ATOM ATOM	4436 4437	0 N	ALA ALA	662 663	47.439 46.739	21.887 22.816	65.139 63.205	1.00 2.00 1.00 2.00	0
MOTA	4439	CA	ALA	663	45.347	22.438	63.410	1.00 2.00	0
MOTA	4440	CB	ALA	663	44.599	23.535	64.124	1.00 18.31	0
MOTA MOTA	4441 4442	С 0	ALA ALA	663 663	44.748 45.323	22.223 22.623	62.053 61.041	1.00 2.00 1.00 22.14	0
ATOM	4443	N	ILE	664	43.600	21.565	62.028	1.00 16.69	0
ATOM	4445	CA	ILE	664	42.892	21.300	60.788	1.00 16.69 1.00 9.81	. 0
MOTA MOTA	4446 4447	CB CG2	ILE ILE	664 664	43.240 42.396	19.885 19.597	60.208 58.976	1.00 9.81 1.00 9.81	0
ATOM	4448	CG1	ILE	664	44.724	19.810	5 9 .819	1.00 9.81	0
MOTA	4449	CD1	ILE	664	45.161	18.450	59.316	1.00 9.81 1.00 16.69	0
MOTA MOTA	4450 4451	C 0	ILE	664 664	41.408 40.880	21.397 20.603	61.118 61.899	1.00 10.09	ŏ
ATOM	4452	Ň	VAL	66 5	40.754	22.408	60.561	1.00 14.09	0
ATOM	4454	CA	VAL	665	39.332	22.608 24.091	60.777 60.742	1.00 14.09 1.00 2.00	0
MOTA MOTA	4455 4456	CB CG1	VAL VAL	66 5	38.954 37.450	24.091	60.710	1.00 2.00	ő
ATOM	4457	CG2	VAL	665	39.500	24.788	61.950	1.00 2.00	0
MOTA	4458	С	VAL	665	38.509 38.768	21.873 21.972	59.729 58.524	1.00 14.09 1.00 2.00	0
MOTA MOTA	4459 4460	И О	VAL ASP	66 5 66 6	38.766	21.372	60.219	1.00 2.00	ŏ
ATOM	4462	CA	ASP	66 6	36.595	20.345	59.407	1.00 2.00	0
MOTA	4463	CB	ASP	66 6	35.443	21.235	58.933	1.00 65.64	0

MOTA	4464	CG	ASP	666		34.545	21.675	60.081	1.00 73.26	0
MOTA	4465		ASP	666		33.763	20.838	60.578	1.00 71.65	0
ATOM	4466	OD2		66 6		34.623	22.851 19.577	60.493	1.00 75.52 1.00 2.00	0
MOTA	4467	C		666 666		37.234 36.648	19.467	58.235 57.158	1.00 2.00 1.00 57.66	0
MOTA MOTA	4468 4469	O N	ASP GLU	667		38.439	19.048	58.472	1.00 17.20	0
ATOM	4471	CA	GLU	667		39.203	18.270	57.489	1.00 17.69	Ö
ATOM	4472	CB	GLU	667		38.455	16.981	57.138	1.00 42.87	ŏ
ATOM	4473	CG	GLU	667		38.170	16.101	58.345	1.00 52.20	ŏ
ATOM	4474	CD	GLU	667		37.457	14.806	5 7.988	1.00 53.85	0
MOTA	4475		GLU	667		36.222	14.717	58.211	1.00 51.15	0
MOTA	4476		GLU	667		38.139	13.877	57.494	1.00 55.67	0
MOTA	4477	C	GLU	667		39.584	19.015	56.207	1.00 17.24	0
MOTA	4478	0	GLU	667		40.146	18.421	55.286	1.00 34.30	0
MOTA	4479	N CA	LYS LYS	668 668		39.314 39.615	20.319 21.133	56.172 55.002	1.00 26.53 1.00 20.22	0
MOTA MOTA	4481 4482	CB	LYS	668		38.318	21.709	54.410	1.00 20.22	Ö
MOTA	4483	CG	LYS	668		37.383	20.628	53.859	1.00 13.48	ŏ
MOTA	4484	CD	LYS	668		38.119	19.779	52.819	1.00 13.48	ŏ
ATOM	4485	CE	LYS	668		37.341	18.551	52.398	1.00 16.60	ō
MOTA	4486	NZ	LYS	668		38.247	17.564	51.739	1.00 18.66	0
MOTA	4490	С	LYS	668		40.636	22.244	55.240	1.00 19.61	0
ATOM	4491	0	LYS	66 8		41.676	22.264	54.584	1.00 13.48	0
MOTA	4492	N	ILE	669		40.356	23.166	56.158	1.00 2.00	0
MOTA	4494	CA	ILE	669		41.295	24.263	56.424	1.00 2.00	0
MOTA	4495	CB	ILE	669		40.617 41.521	25.456 26.680	57.183 57.166	1.00 2.00 1.00 2.00	0
MOTA MOTA	4496 4497		ILE	6 6 9 6 6 9		39.298	25.839	56.518	1.00 2.00 1.00 2.00	Ö
ATOM	4498		ILE	669		38.581	26.960	57.189	1.00 2.00	ŏ
ATOM	4499	C	ILE	669		42.439	23.721	57.279	1.00 2.00	ŏ
ATOM	4500	ō	ILE	669	_	42.201	23.034	58.269	1.00 2.00	Ó
ATOM	4501	N	PHE	67 0		43.673	24.010	56.892	1.00 2.00	0
MOTA	4503	CA	PHE	670	•	44.841	23.551	57.641	1.00 2.00	0
MOTA	4504	CB	PHE	670		45.804	22.801	56.718	1.00 2.00	0
ATOM	4505	CG	PHE	670		47.182	22.614	57.291	1.00 2.00	0
ATOM	4506		PHE	670		47.503	21.473	58.007	1.00 2.00	0
MOTA	4507		PHE	670 670		48.163 48.769	23.569 21.288	57.093 58.506	1.00 2.00 1.00 2.00	0
ATOM ATOM	4508 4509		PHE PHE	670		49.436	23.384	57.596	1.00 2.00	ŏ
ATOM	4510	CZ	PHE	670		49.737	22.241	58.302	1.00 2.00	ŏ
ATOM	4511	Č.	PHE	670		45.528	24.780	58.190	1.00 2.00	Ō
MOTA	4512	0	PHE	670		45.901	25.652	57.421	1.00 2.00	0
MOTA	451 3	N	CYS	671		45.725	24.839	59.501	1.00 2.00	0
MOTA	4515	CA	CYS	671		46.353	25.992	60.120	1.00 2.00	0
MOTA	4516	CB	CYS	671		45.395	26.596	61.136	1.00 14.45	0
MOTA	4517	SG	CYS	671 671		43.708	26.779	60.568	1.00 25.33 1.00 2.00	0
ATOM ATOM	4518 4519	C O	CYS CYS	671 671		47.685 47.921	25.701 24.589	60.816 61.310	1.00 2.00 1.00 8.01	0
ATOM	4520	N	CYS	672		48.546	26.714	60.845	1.00 2.00	ŏ
ATOM	4522	CA	CYS	672		49.845	26.666	61.515	1.00 2.00	Õ
ATOM	4523	CB	CYS	672		50.826	25.741	60.792	1.00 9.00	0
MOTA	4524	SG	CYS	672		51.494	26.372	59.265	1.00 11.24	0.
MOTA	4525	С	CYS	67 2		50.336	28.122	61.525	1.00 2.00	0
ATOM	4526	0	CYS	672		49.751	28.963	60.850	1.00 9.00	0
MOTA	4527	N	HIS	673		51.369	28.440	62.300	1.00 17.94	0
ATOM ATOM	4529 4530	CA	HIS	67 3 67 3		51.855	29.817 30.359	62.360 61.065	1.00 17.94 1.00 17.94	0 0
ATOM	4531	C 0	HIS HIS	673		52.456 51.960	31.349	60.514	1.00 17.94	0
ATOM	4532	CB	HIS	673		52.894	29.965	63.459	1.00 2.00	Ö
ATOM	4533	CG	HIS	67 3		53.283	31.383	63.724	1.00 2.00	ő
ATOM	4534	ND1		673		52.388	32.377	64.033	1.00 2.00	ŏ
ATOM	4536	CD2		673		54.503	31.975	63.718	1.00 2.00	Õ
ATOM	4537	NE2		67 3		54.371	33.330	64.019	1.00 2.00	0
MOTA	4538	CE1		67 3		53.072	33.512	64.199	1.00 2.00	0
MOTA	4539	N	GLY	674		53.545	29.721	60.626	1.00 2.00	0
ATOM	4541	CA	GLY	674		54.260	30.101	59.417	1.00 2.00	0
ATOM	4542	C	GLY	674		53.773	29.407	58.163	1.00 2.00	0
ATOM	4543	O	GLY	674		53.410	30.063	57.203	1.00 11.62	O

MOTA 4544 675 53.759 28.087 58.136 N GLY 1.00 6.25 0 MOTA 1.00 53.286 4546 27.440 6.25 CA GLY 675 56.931 MOTA 4547 675 53.823 26.061 56.604 1.00 C GLY 6.25 0 53.867 4548 675 MOTA 25.173 57.452 1.00 28.15 0 GLY 0 MOTA 4549 676 54.241 25.883 55.356 1.00 N LEU 2.00 n 54.723 24.591 1.00 2.00 MOTA 4551 676 54.886 CA LEU 53.418 53.244 MOTA 4552 CB LEU 676 54.336 24.409 1.00 2.00 O 52.827 676 24.625 MOTA 4553 CG LEU 1.00 2.00 0 24.556 51.777 MOTA 4554 CD1 LEU 676 52.412 1.00 2.00 0 52.100 56.207 56.981 54.075 23.575 1.00 4555 676 MOTA CD2 LEU 2.00 0 24.333 1.00 MOTA 4556 LEU 676 55.095 2.00 C 0 676 25.248 55.381 1.00 MOTA 4557 0 LEU 2.00 0 MOTA 4558 677 56.582 23.069 54.945 1.00 12.63 N SER 0 57.946 1.00 12.63 MOTA 4560 CA SER 677 22.617 55.141 0 21.985 1.00 MOTA 677 58.083 56.539 4561 CB SER 2.43 0 677 59.248 21.192 56.649 1.00 MOTA 4562 OG SER 2.03 0 21.556 1.00 12.63 4564 С 677 58.247 54.095 MOTA SER 0 57.405 59.449 60.474 677 20.684 53.838 1.00 10.72 MOTA 4565 0 SER 21.605 53.484 678 1.00 2.00 MOTA 4566 N **PRO** 0 22.638 1.00 15.59 MOTA 4567 CD PRO 678 53.681 0 59.887 2.00 678 20.647 52.469 1.00 MOTA 4568 CA PRO 0 MOTA 678 61.329 21.076 52.184 1.00 15.59 4569 CB PRO 0 61.299 1.00 15.59 22.517 52.416 MOTA 4570 CG PRO 678 0 19.234 53.032 MOTA 4571 PRO 678 59.859 1.00 2.00 0 C 52.293 678 59.990 18.269 1.00 15.59 MOTA 4572 0 PRO 0 679 59.685 19.112 54.342 1.00 2.00 MOTA 4573 N **ASP** 54.992 56.271 1.00 1.00 2.00 1.00 26.28 59.687 679 17.813 O MOTA 4575 CA ASP 60.510 61.766 679 17.926 0 MOTA 4576 CB **ASP** 679 18.758 56.073 1.00 24.05 0 MOTA 4577 CG ASP 4578 OD1 ASP 679 62.687 18.269 55.383 1.00 32.92 MOTA 19.902 1.00 28.53 56.586 0 679 61.826 MOTA 4579 OD2 ASP 55.314 55.576 679 58.303 17.278 1.00 2.00 0 4580 **ASP** MOTA С 16.094 1.00 24.04 O 58.129 MOTA 4581 **ASP** 679 0 18.149 LEU 680 57.315 55.279 1.00 2.00 0 MOTA **4582** N 17.747 55.622 1.00 2.00 0 55.970 ATOM 4584 CA LEU 680 55.147 19.000 55.916 1.00 4.45 0 MOTA CB LEU 680 4585 1.00 18.788 2.86 56.262 0 MOTA 53.683 4586 CG LEU 680 53.540 4587 17.791 57.398 1.00 2.86 0 680 MOTA CD1 LEU 1.00 2.86 0 53.085 56.582 ATOM 4588 LEU 680 20.134 CD2 16.862 17.331 55.262 54.588 1.00 2.00 0 MOTA 4589 LEU 680 С 53.814 1.00 15.95 0 MOTA 4590 LEU 680 54.421 0 55.588 15.578 54.561 1.00 2.00 0 4591 GLN 681 MOTA N 1.00 54.922 55.719 57.097 14.686 2.00 0 GLN 681 53.611 MOTA 4593 CA 13.410 53.385 1.00 36.**9**9 0 MOTA 4594 GLN 681 CB 1.00 36.99 0 13.620 52.863 GLN 681 MOTA 4595 CG 52.468 57.716 1.00 36.99 0 12.321 MOTA 4596 CD GLN 681 1.00 36.99 0 57.589 51.326 4597 OE1 GLN 681 11.894 MOTA 53.409 1.00 36.99 0 58.377 11.663 681 MOTA 4598 NE2 GLN 1.00 2.00 0 681 53.551 14.319 54.159 MOTA 4601 GLN С 53.445 52.547 14.392 1.00 11.55 0 MOTA 4602 0 GLN 681 1.00 39.00 0 55.423 682 53.505 13.923 4603 SER MOTA N 52.238 13.566 56.027 1.00 42.03 0 682 MOTA 4605 CA SER 2.00 0 CB 682 52.131 12.048 56.224 1.00 **ATOM** 4606 SER 53.198 56.993 1.00 2.00 0 11.507 682 MOTA 4607 OG SER 1.00 38.75 0 4609 682 52.003 14.284 57.343 SER MOTA C 14.742 1.00 2.00 0 52.941 58.009 682 MOTA 4610 SER 0 1.00 15.16 MET 683 50.730 14.397 57.698 MOTA 4611 N 50.338 15.029 58.938 1.00 15.16 0 **ATOM** 4613 CA MET 683 0 59.044 57.799 1.00 11.68 4614 CB 683 48.820 15.069 MET MOTA 48.099 15.565 1.00 12.75 0 683 MOTA 4615 CG MET 48.197 17.328 11.68 0 57.477 1.00 683 MET MOTA 4616 SD 56.200 1.00 12.61 49.486 17.429 683 **ATOM** 4617 CE MET 1.00 15.16 0 50.906 60.024 683 14.131 MOTA 4618 C MET 51.215 61.116 59.705 1.00 15.01 0 14.585 683 4619 MET ATOM 0 51.050 1.00 40.22 0 12.848 684 ATOM 4620 N GLU 60.644 1.00 41.85 51.597 11.881 MOTA 4622 GLU 684 CA 0 52.007 10.594 59.937 1.00 63.04 684 **ATOM** 4623 CB GLU 1.00 72.94 52.850 9.689 60.823 0 684 4624 GLU CG MOTA

ひんとうししょう・いかし ウナンナンシャル・・

						43	co 20C	1 00 77 43	_
ATOM	4625	CD	GLU	684	53.111	8.343	60.206	1.00 77.43	0
ATOM	4626	OE1	GLU	684	52.139	7.716	59.730	1.00 77.96	0
ATOM	4627	OE2	GLU	684	54.285	7.909	60.201	1.00 79.67	0
			GLU	684	52.819	12.471	61.297	1.00 40.42	0
MOTA	4628	Ċ	_			12.495	62.517	1.00 62.00	ŏ
MOTA	4629	0	GLU	684	52.932			1.00 2.00	
MOTA	4630	N	GLN	685	53.727	12.959	60.466		0
MOTA	4632	CA	GLN	685	54.945	13.559	60.952	1.00 2.00	0
ATOM	4633	СВ	GLN	685	55.703	14.200	59. 79 7	1.00 52.45	0
			GLN	685	56.162	13.188	58.775	1.00 57.01	Ō
MOTA	4634	CG				13.832	57.574	1.00 58.68	ŏ
ATOM	4635	CD	GLN	685	56.779				
ATOM	4636	OE1	GLN	685	56.258	13.728	56.471	1.00 68.68	0
MOTA	4637	NE2	GLN	685	5 7.89 5	14.510	57. 77 8	1.00 65.77	0
	4640	C	GLN	685	54.627	14.585	62.029	1.00 2.00	0
MOTA					55.312	14.631	63.056	1.00 54.77	ŏ
ATOM	4641	0	GLN	685					
ATOM	4642	N	ILE	6 86	53.579	15.387	61.816	1.00 16.80	0
MOTA	4644	CA	ILE	686	53.179	16.391	62.807	1.00 14.42	0
ATOM	4645	CB	ILE	686	51.990	17.270	62.307	1.00 2.00	0
				686	51.754	18.441	63.247	1.00 2.00	Ŏ
MOTA	4646	CG2	ILE						
MOTA	4647	CG1	ILE	68 6	52.304	17.869	60.944	1.00 2.00	0
MOTA	4648	CD1	ILE	68 6	51.139	18.668	60.369	1.00 2.00	0
MOTA	4649	C	ILE	686	52.761	15.633	64.079	1.00 13.83	0
				68 6	53.289	15.884	65.165	1.00 2.00	Ó
MOTA	4650	0	ILE						
MOTA	4651	N	ARG	687	51.856	14.669	63.914		0
MOTA	4653	CA	ARG	687	51.367	13.855	65.027	1.00 3.14	0
ATOM	4654	CB	ARG	687	50.307	12.835	64.564	1.00 23.50	0
				687	49.266	13.324	63.559	1.00 26.96	0
ATOM	4655	CG	ARG				63.083	1.00 35.95	ŏ
MOTA	4656	CD	ARG	687	48.288	12.211			_
ATOM	4657	NE	ARG	687	48.878	11.199	62.190	1.00 41.22	0
ATOM	4659	CZ	ARG	687	49.583	10.138	62.594	1.00 45.24	0
ATOM	4660		ARG	687	50.062	9.283	61.702	1.00 43.65	0
					49.827	9.922	63.887	1.00 36.26	Ō
MOTA	4663		ARG	687					
MOTA	4666	С	ARG	687	52.504	13.060	65.665	1.00 3.14	0
ATOM	4667	0	ARG	687	52.260	12.327	66.613	1.00 18.08	0
ATOM	4668	N	ARG	688	53.722	13.157	65.136	1.00 11.08	0
				688	54.841	12.402	65.694	1.00 10.97	0
MOTA	4670	CA	ARG					1.00 52.72	ŏ
MOTA	4671	CB	ARG	688	55.576	11.624	64.595		
ATOM	4672	CG	ARG	68 8	54.794	10.485	63.995	1.00 52.20	0
ATOM	4673	CD	ARG	688	54.421	9.463	65.035	1.00 55.85	0
ATOM	4674	NE	ARG	688	53.634	8.372	64.468	1.00 50.50	0
					54.145	7.254	63.956	1.00 54.57	0
MOTA	4676	CZ	ARG	688				1.00 53.02	Ö
MOTA	4677	NH1	ARG	68 8	53.335	6.326	63.465		-
MOTA	4680	NH2	ARG	688	55.457	7.056	63.931	1.00 50.07	0
ATOM	4683	С	ARG	688	55.853	13.257	66.457	1.00 9.37	0
	4684		ARG	688	56.771	12.719	67.084	1.00 54.51	0
ATOM		0					66.398	1.00 38.26	Ō
MOTA	4685	N	ILE	689	55.698	14.576			_
ATOM	4687	CA	ILE	689	56.614	15.487	67.081	1.00 36.62	0
MOTA	4688	CB	ILE	689	56.319	16.952	66.673	1.00 2.00	0
MOTA	4689		ILE	689	57.248	17.901	67.399	1.00 2.00	0
				689	56.493	17.119	65.160	1.00 2.00	0
ATOM	4690		ILE					1.00 2.00	ŏ
MOTA	4691	CD1	ILE	689	56.670	18.556	64.711		
MOTA	4692	С	ILE	689	56.552	15.347	68.620	1.00 42.28	0
MOTA	4693	0	ILE	689	55.468	15.462	69.226	1.00 2.00	0
MOTA	4694	N	MET	690	57.710	15.084	69.242	1.00 2.00	0
				690	57.794	14.930	70.704	1.00 2.00	0
ATOM	4696	CA	MET					_	ŏ
MOTA	4697	CB	MET	69 0	59.204	14.516	71.138		
ATOM	4698	CG	MET	69 0	59.657	13.160	70. 61 6	1.00 36.54	0
ATOM	4699	SD	MET	690	58.703	11.742	71.207	1.00 43.14	0
				690	59.784	10.411	70.721	1.00 40.70	0
MOTA	4700	CE	MET						ő
ATOM	4701	С	MET	690	57.491	16.313	71.227	1.00 2.00	
MOTA	4702	0	MET	69 0	58.189	17.269	70.864	1.00 21.20	0
ATOM	4703	N	ARG	691	56.489	16.441	72.092	1.00 59.62	0
				691	56.135	17.780	72.507	1.00 65.12	0
MOTA	4705	CA	ARG				72.869	1.00 2.00	ő
ATOM	4706	CB	ARG	691	54.678	17.879			
ATOM	4707	CG	ARG	691	54.077	19.116	72.206	1.00 2.00	0
ATOM	4,0,								
				691	52.598	19.166	72.384	1.00 2.00	0
	4708	CD	ARG					1.00 2.00 1.00 2.00	0
MOTA	4708 4709	CD NE	ARG ARG	691	52.082	17.820	72.551	1.00 2.00	0
	4708	CD	ARG						

ATOM	4715	MH2	ARG	691	50.482	16.273	73.046	1.00 2.00	0
ATOM	4718	C	ARG	691	56.930	18.632	73.458	1.00 64.88	ő
ATOM	4719	ŏ	ARG	691	57.176	19.794	73.100	1.00 2.00	ō
MOTA	4720	N	PRO	692	57.265	18.151	74.693	1.00 0.89	0
MOTA	4721	CD	PRO	692	56.930	16.947	75.482		0
MOTA	4722	CA	PRO	692	58.060	19.115	75.500	1.00 0.77	0
MOTA	4723	CB	PRO	692	58.305	18.357	76.811	1.00 21.87	0
MOTA	4724	CG	PRO	692	57.071	17.462	76.911	1.00 19.02	0
ATOM	4725	C	PRO	692	59.327	19.317	74.643	1.00 0.10	0
MOTA	4726	0	PRO	692	60.258	18.502	74.690 73.811	1.00 22.15	0
MOTA	4727	N	THR THR	693 693	59.310 60.395	20.362 20.605	72.896	1.00 2.00 1.00 2.00	0
ATOM ATOM	4729 4730	CA CB	THR	693	60.153	19.842	71.569	1.00 39.91	ŏ
ATOM	4731	OG1	THR	69 3	61.310	19.947	70.728	1.00 47.46	ŏ
ATOM	4733	CG2	THR	693	58.944	20.419	70.830	1.00 46.31	ŏ
ATOM	4734	c	THR	693	60.567	22.057	72.560	1.00 2.00	Ö
ATOM	4735	ŏ	THR	693	59.640	22.848	72.678	1.00 41.07	0
ATOM	4736	N	ASP	694	61.782	22.399	72.154	1.00 4.51	0
ATOM	4738	CA	ASP	694	62.075	23.747	71.736	1.00 4.51	0
MOTA	4739	CB	ASP	694	63.429	24.203	72.283	1.00 83.74	0
MOTA	4740	CG	ASP	694	63.337	25.520	73.041	1.00 83.74	0
MOTA	4741		ASP	694	63.231	25.484	74.285	1.00 83.74	0
ATOM	4742	OD2		694	63.366	26.594	72.400 70.201	1.00 83.74 1.00 4.51	0
MOTA	4743	C	ASP	694	62.101 62.403	23.682 22.632	69.629	1.00 4.31	ŏ
MOTA	4744 4745	0 N	ASP VAL	694 695	61.743	24.784	69.546	1.00 31.71	ŏ
ATOM ATOM	4747	CA	VAL	69 5	61.760	24.864	68.087	1.00 37.86	ŏ
ATOM	4748	CB	VAL	695	61.212	26.224	67.623	1.00 72.52	Ō
ATOM	4749		VAL	695	61.120	26.268	66.113	1.00 68.63	0
ATOM	4750	CG2	VAL	695	59.863	26.474	68.25 3	1.00 68.27	0
MOTA	4751	C	VAL	695	63.242	24.744	67.687	1.00 34.22	0
MOTA	4752	0	VAL	69 5 -	64.070	25.548	68.123	1.00 75.22	0
MOTA	4753	N	PRO	69 6	63.599	23.730	66.873	1.00 2.00	0
MOTA	4754	CD	PRO	696	62.777	22.616	66.373	1.00 5.25 1.00 2.00	0
MOTA	4755	CA	PRO	.696	64.998	23.549	66.462 65.803	1.00 2.00 1.00 5.25	ő
MOTA	4756	CB	PRO	696 696	64.997 63.768	22.163 21.486	66.381	1.00 5.25	ŏ
MOTA	4757 4758	CG	PRO PRO	696	65.570	24.612	65.536	1.00 2.00	ŏ
ATOM ATOM	4759	C O	PRO	696	64.878	25.556	65.137	1.00 5.25	0
MOTA	4760	Ň	ASP	697	66.850	24.431	65.214	1.00 34.70	0
MOTA	4762	CA	ASP	697	67.598	25.311	64.321	1.00 35.10	0
ATOM	4763	СВ	ASP	697	69.098	24.951	64.376	1.00 81.36	0
MOTA	4764	CG	ASP	697	69.630	24.774	65.825	1.00 81.80	0
MOTA	4765	OD1	ASP	697	69.612	23.613	66.347	1.00 0.89 1.00 0.05	0
MOTA	4766	OD2	ASP	697	70.075	25.792	66.436 62.894	1.00 0.05 1.00 36.63	ő
MOTA	4767	C	ASP	697	67.037 67.014	25.099 26.022	62.069	1.00 0.75	ŏ
MOTA	4768	O N	ASP	6 9 7 6 9 8	66.576	23.877	62.620	1.00 8.48	Ŏ
MOTA MOTA	4769 4771	CA	GLN GLN	698	65.997	23.510	61.335	1.00 2.00	0
ATOM	4772	CB	GLN	698	67.089	23.346	60.285	1.00 43.65	0
ATOM	4773	CG	GLN	698	68.191	22.376	60.649	1.00 44.93	0
ATOM	4774	CD	GLN	698	69.158	22.169	59.501	1.00 43.25	0
MOTA	4775	OE1	GLN	69 8	68.781	22.242	58.327	1.00 45.90	0
MOTA	4776	NE2		69 8	70.411	21.911	59.830	1.00 44.14 1.00 2.32	ő
ATOM	4779	Ç	GLN	698	65.211	22.216	61.482 62.452	1.00 2.32 1.00 42.62	ŏ
MOTA	4780	0	GLN	698	65.396 64.324	21.486 21.939	60.530	1.00 42.02	ŏ
MOTA	4781	N	GLY	699 699	63.510	20.728	60.576	1.00 2.00	ŏ
ATOM	4783	CA	GLY GLY	699 699	62.046	21.059	60.346	1.00 2.00	Ö
ATOM ATOM	4784 4785	C O	GLY	699	61.726	22.204	60.013	1.00 2.00	0
ATOM	4786	N	LEU	700	61.153	20.090	60.545	1.00 2.00	0
ATOM	4788	CA	LEU	700	59.700	20.297	60.352	1.00 2.00	0
ATOM	4789	CB	LEU	700	58.941	18.962	60.555	1.00 4.64	0
ATOM	4790	CG	LEU	700	57.436	18.836	60.273	1.00 8.84	0
MOTA	4791	CD1	LEU	700	57.219	18.881	58.793	1.00 8.28 1.00 5.23	0
MOTA	4792	CD2		700	56.879	17.536 21.400	60.803 61.247	1.00 5.23 1.00 2.00	0
MOTA	4793	C	LEU	700	59.086 58.365	22.261	60.763	1.00 8.77	Ö
MOTA	4794	O	LEU	700	, , , , , ,	22.203			_

MOTA MOTA	4795 4797	N CA	LEU LEU	701 701	59.394 58.860	21.381 22.362	62.540 63.477	1.00 12.05 1.00 11.21	0
ATOM	4798	CB	LEU	701	59.278	22.039	64.908	1.00 2.00	Õ
MOTA	4799	CG	LEU	701	58.156	21.874	65.942	1.00 2.00	0
MOTA	4800	CD1	LEU	701	58.759	21.879	67.354	1.00 2.00	0
MOTA	4801		LEU	701	57.124	22.994	65.800	1.00 2.00	0
MOTA	4802	С	LEU	701	59.339	23.747	63.153	1.00 6.49	0
MOTA	4803	0	LEU	701	58.562	24.691	63.157	1.00 2.00 1.00 2.00	0
MOTA	4804	N	CYS	702	60.626	23.881 25.191	62.890 62.572	1.00 2.00	0
ATOM	4806	CA	CYS	702 702	61.158 62.646	25.131	62.269	1.00 10.82	Ö
ATOM	4807	CB	CYS	702 702	63.290	26.639	61.543	1.00 10.82	ő
MOTA	4808 4809	SG C	CYS CYS	702 702	60.442	25.786	61.365	1.00 2.00	Ö
ATOM ATOM	4810	0	CYS	702	60.022	26.954	61.384	1.00 10.82	ŏ
ATOM	4811	N	ASP	703	60.292	24.980	60.316	1.00 2.00	· ō
ATOM	4813	CA	ASP	703	59.641	25.442	59.104	1.00 2.00	О
ATOM	4814	CB	ASP	703	59.790	24.391	58.010	1.00 9.22	0
MOTA	4815	CG	ASP	70 3	61.251	24.076	57.698	1.00 9.98	0
MOTA	4816	OD1	ASP	703	62.126	24.940	57.943	1.00 9.22	0
MOTA	4817	OD2	ASP	703	61.537	22.956	57.213	1.00 9.22	0
MOTA	4818	С	ASP	703	58.187	25.760	59.377	1.00 2.00	0
ATOM	4819	0	ASP	703	57.694	26.823	59.023	1.00 11.43	0
ATOM	4820	N	LEU	704	57.519	24.861	60.072 60.391	1.00 2.00 1.00 2.00	Ö
ATOM	4822	CA	LEU	704	56.113 55.630	25.051 23.9 4 2	61.338	1.00 22.47	Ö
ATOM	4823	CB	LEU	704 704	55.412	22.533	60.780	1.00 21.16	ŏ
MOTA	4824 4825	CG	LEU LEU	704	55.366	21.528	61.911	1.00 24.29	ŏ
ATOM ATOM	4826		LEU	704	54.132	22.489	59.973	1.00 22.40	ŏ
ATOM	4827	C	LEU	704	55.809	26.417	61.006	1.00 2.00	0
ATOM	4828	Õ	LEU	704	54.736	26.979	60.773	1.00 15.38	0
ATOM	4829	Ň	LEU	705	56.757	26.967	61.763	1.00 39.58	0
ATOM	4831	CA	LEU	705	56.538	28.248	62.439	1.00 39.58	0
ATOM	4832	CB	LEU	705	56.884	28.108	63.913	1.00 2.00	0
MOTA	483 3	CG	LEU	705	56.841	26.725	64.552	1.00 2.00	0
MOTA	4834	CD1	LEU	705	57.376	26.870	65.950	1.00 2.00	0
MOTA	4835	CD2	LEU	705	55.446	26.156	64.566	1.00 2.00	0
ATOM	4836	C	LEU	705	57.279	29.466	61.900	1.00 39.58 1.00 2.00	0
MOTA	4837	0	LEU	705	56.924	30.598 29.237	62.240 61.086	1.00 2.00 1.00 2.00	Ö
ATOM	4838	N	TRP	706 706	58.307 59.117	30.319	60.523	1.00 2.00	ŏ
ATOM	4840	CA	TRP TRP	706 706	60.594	30.025	60.777	1.00 23.95	Ö
ATOM ATOM	4841 4842	CB CG	TRP	706	61.025	30.261	62.165	1.00 23.95	0
MOTA	4843	CD2		706	61.380	31.520	62.742	1.00 23.95	0
MOTA	4844	CE2	TRP	706	61.735	31.278	64.083	1.00 23.95	0
MOTA	4845	CE3	TRP	706	61.434	32.832	62.254	1.00 23.95	0
ATOM	4846		TRP	706	61.173	29-329	63.150	1.00 23.95	0
MOTA	4847	NE1	TRP	706	61.599	29.932	64.307	1.00 23.95	0
MOTA	4849		TRP	706	62.141	32.303	64.946	1.00 23.95	0
MOTA	4850		TRP	706	61.835	33.850	63.108	1.00 23.95	0
ATOM	4851	CH2	TRP	706	62.184	33.580	64.439	1.00 23.95 1.00 2.00	0
ATOM	4852	Č	TRP	706 706	58.947	30.619	59.028 58.598	1.00 2.00 1.00 23.95	ŏ
ATOM	4853	0	TRP	706 707	59.186 58.564	31.751 29.604	58.249	1.00 17.80	ŏ
MOTA MOTA	4854 4856	N CA	SER SER	707	58.423	29.730	56.796	1.00 12.52	Ō
ATOM	4857	CB	SER	707	58.034	28.383	56.160	1.00 9.59	0
ATOM	4858	OG	SER	707	56.693	28.010	56.444	1.00 8.78	0
MOTA	4860	Ċ	SER	707	57.459	30.806	56.328	1.00 18.86	0
ATOM	4861	ŏ	SER	70 7	56.521	31.179	57.035	1.00 6.18	0
ATOM	4862	N	ASP	708	57. 70 0	31.303	55.124	1.00 7.67	0
MOTA	4864	CA	ASP	708	56.860	32.328	54.547	1.00 7.67	0
MOTA	4865	CB	ASP	708	57. 54 6	33.676	54.656	1.00 8.53	0
MOTA	4866	CG	ASP	708	57.720	34.104	56.079	1.00 10.12	0
ATOM	4867		ASP	708	58.844	34.049	56.597	1.00 10.18	0
ATOM	4868	OD2	ASP	708	56.717	34.483	56.689	1.00 10.95 1.00 7.67	0
MOTA	4869	C	ASP	708	56.609	31.998 31.432	53.104 52.444	1.00 7.67	0
ATOM	4870	0	ASP	708 709	57.461 55.425	32.328	52.596	1.00 11.43	ő
ATOM	4871	N	PRO PRO	709	54.346	33.006	53.302	1.00 2.00	Ö
ATOM	4872	CD	PRU	702	Ja . Ja U	33.000		-	~

ATOM 4817 CG PRO 709 53.507 32.936 31.283 1.00 2.00 0 ATOM 4878 CG PRO 709 55.5071 31.316 32.728 1.00 2.00 0 ATOM 4878 N ASP 710 56.306 33.346 31.00 2.00 0 ATOM 4880 CA ASP 710 56.306 33.046 49.393 1.00 2.00 0 ATOM 4881 CB ASP 710 56.306 33.046 48.537 1.00 18.70 0 ATOM 4881 CB ASP 710 58.279 34.215 48.537 1.00 18.70 0 ATOM 4882 CG ASP 710 58.824 35.611 48.303 1.00 26.53 0 ATOM 4883 OD1 ASP 710 58.824 35.611 48.303 1.00 26.63 0 ATOM 4884 OD2 ASP 710 58.824 35.611 48.303 1.00 26.53 0 ATOM 4885 C ASP 710 56.454 33.056 46.467 1.00 15.67 0 ATOM 4886 O ASP 710 56.454 33.056 46.467 1.00 5.37 0 ATOM 4887 N LYS 711 55.459 35.071 45.480 1.00 10.56 7 ATOM 4889 C LYS 711 55.458 35.071 45.480 1.00 10.56 7 ATOM 4889 C LYS 711 55.458 36.660 46.789 1.00 10.56 7 ATOM 4891 CB LYS 711 55.459 38.976 44.311 1.00 35.75 0 ATOM 4892 CD LYS 711 55.459 38.976 44.311 1.00 35.75 0 ATOM 4893 CE LYS 711 55.459 38.976 44.311 1.00 34.70 0 ATOM 4894 NZ LYS 711 55.459 38.976 44.311 1.00 34.70 0 ATOM 4898 C LYS 711 55.459 38.976 44.311 1.00 34.70 0 ATOM 4899 C LYS 711 55.459 38.976 44.311 1.00 54.70 0 ATOM 4890 C LYS 711 55.459 38.976 44.311 1.00 54.70 0 ATOM 4890 C LYS 711 55.459 38.976 44.311 1.00 54.70 0 ATOM 4890 C LYS 711 55.459 34.001 43.518 1.00 37.76 0 ATOM 4890 C LYS 711 55.459 34.001 43.518 1.00 37.76 0 ATOM 4900 N ASP 712 56.894 35.500 44.282 1.00 2.00 0 ATOM 4900 N ASP 712 58.653 34.877 44.331 1.00 16.03 0 ATOM 4900 C ASP 712 59.652 37.231 44.134 1.00 75.41 0 ATOM 4900 N ASP 712 59.652 37.231 44.334 1.00 6.03 0 ATOM 4900 C ASP 712 59.652 37.231 44.334 1.00 16.03 0 ATOM 4900 C ASP 712 59.662 37.231 44.334 1.00 16.03 0 ATOM 4900 C ASP 712 59.662 37.231 44.334 1.00 16.03 0 ATOM 4900 C ASP 712 59.662 37.231 44.334 1.00 16.03 0 ATOM 4900 C ASP 712 59.662 37.231 44.334 1.00 16.03 0 ATOM 4901 C ASP 712 59.662 37.231 44.334 1.00 16.03 0 ATOM 4901 C ASP 712 59.662 37.231 44.334 1.00 16.03 0 ATOM 4901 C ASP 712 59.662 37.231 44.334 1.00 16.03 0 ATOM 4901 C ASP 712 59.662 37.231 44.334 1.00 0 ATOM 4901 C ASP 712 59.663 34.866 44.866 660 1.00 77	MOTA	4873	CA	PRO	709	55.029	32.078	51.214	1.00 2.00	0
ATOM 4876 C PRO 709 55.475 33.269 50.406 1.00 2.00 0 ATOM 4878 N ASP 710 56.306 33.046 49.393 1.00 2.57 0 ATOM 4880 CA ASP 710 56.306 33.046 49.393 1.00 2.57 0 ATOM 4881 CB ASP 710 56.306 34.155 48.576 1.00 4.76 0 ATOM 4881 CB ASP 710 56.276 34.155 48.577 1.00 18.70 0 ATOM 4882 CG ASP 710 58.297 34.125 48.537 1.00 18.70 0 ATOM 4883 OD1 ASP 710 58.297 34.215 48.537 1.00 18.70 0 ATOM 4884 CD2 ASP 710 58.297 34.215 48.537 1.00 18.70 0 ATOM 4886 CD ASP 710 58.297 34.215 48.537 1.00 18.70 0 ATOM 4886 CD ASP 710 58.070 36.457 47.793 1.00 26.58 0 ATOM 4886 CD ASP 710 56.070 36.457 47.793 1.00 26.58 0 ATOM 4886 CD ASP 710 56.211 33.046 47.616 1.00 5.377 0 ATOM 4886 CD ASP 710 56.211 33.046 48.635 1.00 30.06 0 ATOM 4887 CD ASP 710 56.211 33.046 47.66 1.00 16.19 0 ATOM 4889 CD ASP 711 54.802 35.217 45.480 1.00 16.19 0 ATOM 4891 CG LYS 711 54.802 35.217 45.480 1.00 16.19 0 ATOM 4892 CD LYS 711 54.803 37.109 44.007 1.00 43.76 0 ATOM 4893 CE LYS 711 55.459 35.074 43.31 1.00 26.58 0 ATOM 4898 CL LYS 711 55.459 35.074 43.31 1.00 54.70 0 ATOM 4898 CL LYS 711 55.459 38.976 43.819 1.00 54.70 0 ATOM 4898 CL LYS 711 55.459 38.976 43.819 1.00 54.70 0 ATOM 4898 CL LYS 711 55.459 38.976 43.819 1.00 54.70 0 ATOM 4899 CL LYS 711 55.659 34.011 43.518 1.00 37.76 0 ATOM 4899 CL LYS 711 55.659 34.011 43.518 1.00 37.76 0 ATOM 4900 N ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4900 N ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4901 CB ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4903 CB ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4903 CB ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4903 CB ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4903 CB ASP 712 56.895 36.629 42.297 1.00 77.12 0 ATOM 4903 CB ASP 712 58.655 36.629 42.297 1.00 77.12 0 ATOM 4906 CD ASP 712 58.655 36.629 42.297 1.00 77.12 0 ATOM 4907 CR ASP 712 58.655 36.629 42.297 1.00 77.12 0 ATOM 4908 CD ASP 712 58.655 36.629 42.297 1.00 2.00 0 ATOM 4908 CD ASP 712 58.655 36.629 42.297 1.00 2.00 0 ATOM 4908 CD ASP 712 58.655 36.629 42.297 1.00 2.00 0 ATOM 4908 CD ASP 712 58.655 3	MOTA	4874	CB	PRO	709 709	53.507	32.036	51.283	1.00 2.00	0
ATOM 4878 N ASP 710										
ATOM 4881 CB ASP 710 56.769 34.155 48.576 1.00 4.760 0 ATOM 4882 CG ASP 710 58.824 35.631 48.303 1.00 26.43 0 ATOM 4883 OD1 ASP 710 58.070 36.497 47.793 1.00 26.58 0 ATOM 4884 OD2 ASP 710 56.070 36.497 47.793 1.00 26.58 0 ATOM 4884 OD2 ASP 710 56.070 36.497 47.793 1.00 26.58 0 ATOM 4885 C ASP 710 56.11 34.045 47.160 1.00 15.67 0 ATOM 4886 O ASP 710 56.454 33.056 46.467 1.00 15.67 0 ATOM 4887 N LYS 711 55.489 35.074 46.789 1.00 10.56 0 ATOM 4889 CA LYS 711 54.802 35.217 45.480 1.00 16.19 0 ATOM 4890 CB LYS 711 54.802 35.217 45.480 1.00 16.19 0 ATOM 4891 CG LYS 711 55.480 35.710 44.007 1.00 15.67 0 ATOM 4891 CG LYS 711 55.480 37.109 44.007 1.00 16.19 0 ATOM 4892 CL LYS 711 56.632 39.514 43.61 1.00 43.76 0 ATOM 4898 C LYS 711 55.480 37.109 44.007 1.00 43.76 0 ATOM 4899 O LYS 711 55.480 37.109 44.007 1.00 43.76 0 ATOM 4899 C LYS 711 55.480 37.109 44.007 1.00 43.76 0 ATOM 4899 C LYS 711 55.480 37.109 44.007 1.00 43.76 0 ATOM 4899 C LYS 711 55.480 37.109 44.007 1.00 43.76 0 ATOM 4899 C LYS 711 55.753 34.877 44.311 1.00 68.93 0 ATOM 4899 C LYS 711 55.459 34.001 43.518 1.00 37.96 0 ATOM 4900 N ASP 712 56.632 39.514 43.518 1.00 37.96 0 ATOM 4901 CB ASP 712 56.655 36.692 42.927 1.00 75.11 0 ATOM 4903 CB ASP 712 56.859 35.300 43.252 1.00 2.00 0 ATOM 4904 CG ASP 712 56.651 36.937 44.341 1.00 16.03 0 ATOM 4905 ODL ASP 712 56.865 36.699 42.927 1.00 75.12 0 ATOM 4906 N ASP 712 58.863 34.189 43.597 44.311 1.00 16.03 0 ATOM 4908 C ASP 712 58.655 36.699 42.927 1.00 75.12 0 ATOM 4908 C ASP 712 58.655 36.699 42.927 1.00 75.12 0 ATOM 4908 C ASP 712 58.660 37.231 48.888 1.00 37.96 0 ATOM 4908 C ASP 712 58.660 37.231 48.888 1.00 37.96 0 ATOM 4901 CB ASP 712 58.660 37.231 48.888 1.00 37.96 0 ATOM 4903 CB ASP 712 58.660 37.231 48.888 1.00 37.96 0 ATOM 4904 CG ASP 712 58.660 37.231 48.89 31.00 0 ATOM 4908 CO ASP 712 58.660 37.231 48.90 0 ATOM 4908 C ASP 712 58.660 37.231 48.90 0 ATOM 4908 C ASP 712 58.660 37.231 48.90 0 ATOM 4908 C C ASP 712 58.660 37.231 48.90 0 ATOM 4908 C C ASP 712 58.660 37.231 48.90 0 ATOM 4908 C C ASP 712 58.660 3		4877					34.393			
ATOM 4881 CB ASP 710 58.297 34.215 48.537 1.00 18.70 0 ATOM 4882 CG ASP 710 58.827 35.431 48.303 1.00 26.43 0 ATOM 4884 ODZ ASP 710 60.002 35.884 48.635 1.00 30.90 0 ATOM 4885 C ASP 710 60.002 35.884 48.635 1.00 30.90 0 ATOM 4886 O ASP 710 56.211 34.045 47.168 1.00 5.37 0 ATOM 4886 O ASP 710 56.211 34.045 47.168 1.00 5.37 0 ATOM 4887 N LYS 711 55.464 33.056 46.467 1.00 15.67 0 ATOM 4888 C LYS 711 55.480 35.074 46.789 1.00 10.56 0 ATOM 4889 CA LYS 711 54.862 35.217 45.480 1.00 16.19 0 ATOM 4890 CB LYS 711 54.862 35.217 45.480 1.00 16.19 0 ATOM 4891 CG LYS 711 54.863 37.750 44.007 1.00 43.76 0 ATOM 4893 CE LYS 711 54.863 37.750 44.007 1.00 43.76 0 ATOM 4893 CE LYS 711 55.459 38.976 43.819 1.00 58.75 0 ATOM 4894 NZ LYS 711 55.659 38.976 43.819 1.00 58.70 0 ATOM 4898 C LYS 711 55.559 38.976 43.819 1.00 58.70 0 ATOM 4890 CL LYS 711 55.559 38.016 43.518 1.00 37.96 0 ATOM 4890 C LYS 711 55.559 38.014 1.00 1.00 58.93 0 ATOM 4890 C LYS 711 55.559 38.014 1.00 1.00 58.93 0 ATOM 4890 C LYS 711 55.659 38.014 1.00 1.00 58.93 0 ATOM 4890 C LYS 711 55.659 38.014 1.00 1.00 58.93 0 ATOM 4890 C LYS 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4890 C ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4890 C ASP 712 58.783 34.014 1.00 75.41 0 ATOM 4900 C ASP 712 58.851 38.013 44.866 1.00 77.74 0 ATOM 4900 C ASP 712 58.853 34.188 13.34 1.00 16.03 0 ATOM 4900 C ASP 712 58.853 34.188 13.488 1.00 1.00 17.74 0 ATOM 4900 C ASP 712 60.083 34.486 33.597 1.00 2.00 0 ATOM 4910 C C ASP 712 68.853 38.013 44.866 1.00 27.09 0 ATOM 4910 C C ASP 712 68.853 38.013 44.866 1.00 27.09 0 ATOM 4910 C C ASP 712 68.863 31.198 43.597 1.00 2.00 0 ATOM 4910 C C ASP 712 68.863 31.198 43.597 1.00 2.00 0 ATOM 4910 C C ASP 712 68.863 31.198 43.597 1.00 2.00 0 ATOM 4910 C C ASP 712 68.863 31.198 31.00 1.00 2.00 0 ATOM 4910 C C ASP 712 68.863 31.198 31.00 1.00 2.00 0 ATOM 4910 C C ASP 712 68.863 31.198 31.00 1.00 2.00 0 ATOM 4910 C C ASP 712 68.863 31.90 31.00 1.00 2.00 0 ATOM 4910 C C ASP 712 68.863 31.90 31.00 1.00 2.00 0 ATOM 4910 C C C ASP 712 68.863 31.90 31.00 1.00										
ATOM 4883 ODI ASP 710 58.824 35.631 48.303 1.00 26.43 0 ATOM 4884 ODZ ASP 710 56.070 36.497 47.793 1.00 26.43 0 ATOM 4885 C ASP 710 56.070 36.497 47.793 1.00 26.58 0 ATOM 4886 O ASP 710 56.454 33.056 46.467 1.00 15.67 0 ATOM 4886 O ASP 710 56.454 33.056 46.467 1.00 15.67 0 ATOM 4887 N LYS 711 54.869 35.217 45.480 1.00 16.19 6 ATOM 4889 CA LYS 711 54.869 35.217 45.480 1.00 16.19 6 ATOM 4890 CB LYS 711 54.864 35.744 46.789 1.00 10.56 0 ATOM 4891 CG LYS 711 53.743 37.109 44.007 1.00 43.76 0 ATOM 4892 CD LYS 711 55.480 37.750 43.146 1.00 49.83 0 ATOM 4893 CE LYS 711 55.459 38.976 43.819 1.00 54.70 0 ATOM 4894 NZ LYS 711 55.459 34.807 1.00 54.70 0 ATOM 4898 C LYS 711 55.459 34.801 1.00 56.75 0 ATOM 4898 C LYS 711 55.459 34.801 1.00 54.70 0 ATOM 4898 C LYS 711 55.559 34.801 1.00 16.03 0 ATOM 4898 C LYS 711 55.559 34.801 1.00 37.96 0 ATOM 4900 N ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4903 CB ASP 712 58.655 36.629 42.927 1.00 75.12 0 ATOM 4903 CB ASP 712 58.655 36.629 42.927 1.00 75.12 0 ATOM 4905 ODI ASP 712 58.655 36.629 42.927 1.00 75.12 0 ATOM 4906 OZ ASP 712 58.656 36.629 42.927 1.00 77.74 0 ATOM 4907 C ASP 712 58.863 34.189 1.00 37.76 0 ATOM 4908 O ASP 712 58.863 34.189 1.00 37.76 0 ATOM 4907 C ASP 712 58.863 36.629 42.927 1.00 77.74 0 ATOM 4908 O ASP 712 58.863 34.189 1.00 37.76 0 ATOM 4907 C ASP 712 58.863 34.189 1.00 37.76 0 ATOM 4908 O ASP 712 58.863 34.189 1.00 37.76 0 ATOM 4907 C ASP 712 58.863 34.189 1.00 37.76 0 ATOM 4908 O ASP 712 60.681 36.937 44.341 1.00 84.37 0 ATOM 4907 C ASP 712 60.883 34.366 33.607 1.00 77.74 0 ATOM 4908 O ASP 712 60.883 34.366 33.607 1.00 77.74 0 ATOM 4908 O ASP 712 60.883 34.189 3.00 43.557 1.00 2.00 0 ATOM 4909 N VAL 713 59.166 31.579 43.31 1.00 15.32 0 ATOM 4911 CA WAL 713 59.166 31.579 43.31 1.00 15.32 0 ATOM 4911 CA WAL 713 59.166 31.579 43.31 1.00 15.32 0 ATOM 4911 CA WAL 713 59.166 31.579 43.31 1.00 15.32 0 ATOM 4911 CA WAL 713 59.166 31.579 40.341 1.00 2.00 0 ATOM 4911 CA WAL 713 59.166 31.579 40.341 1.00 2.00 0 ATOM 4920 CA REP 716 60.893 34.189 30.00 1.00 1.00 1.0										
ATOM 4884 ODZ ASP 710 56.070 36.497 47.793 1.00 26.58 0 ATOM 4885 C ASP 710 56.211 34.045 47.168 1.00 55.37 0 ATOM 4886 O ASP 710 56.454 33.056 46.467 1.00 15.67 0 ATOM 4887 N LYS 711 55.464 35.076 46.789 1.00 10.56 7 ATOM 4889 CA LYS 711 55.469 35.074 46.789 1.00 10.56 7 ATOM 4890 CB LYS 711 54.862 35.217 45.480 1.00 10.56 7 ATOM 4891 CG LYS 711 54.862 35.217 45.480 1.00 10.56 7 ATOM 4891 CG LYS 711 54.862 35.217 45.480 1.00 10.56 7 ATOM 4892 CD LYS 711 55.459 38.976 43.819 1.00 54.70 0 ATOM 4893 CE LYS 711 55.459 38.976 43.819 1.00 54.70 0 ATOM 4893 CE LYS 711 55.459 38.976 43.819 1.00 54.70 0 ATOM 4894 NZ LYS 711 55.459 38.976 43.819 1.00 58.93 0 ATOM 4898 C LYS 711 55.559 38.4877 44.331 1.00 16.03 0 ATOM 4899 C LYS 711 55.559 38.4877 44.331 1.00 16.03 0 ATOM 4890 N ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4902 CA ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4904 CG ASP 712 59.362 37.231 44.341 1.00 575.12 0 ATOM 4905 ODI ASP 712 58.655 36.699 42.927 1.00 75.12 0 ATOM 4906 N ASP 712 58.655 36.699 42.927 1.00 75.12 0 ATOM 4906 N ASP 712 58.655 36.699 43.927 1.00 75.12 0 ATOM 4908 O ASP 712 58.653 34.301 44.341 1.00 84.37 0 ATOM 4908 O ASP 712 58.653 36.699 42.927 1.00 75.12 0 ATOM 4908 O ASP 712 58.663 34.389 34.301 44.341 1.00 84.37 0 ATOM 4908 O NASP 712 58.683 34.389 34.301 34.386 1.00 27.09 0 ATOM 4908 O WAL 713 59.066 31.599 43.359 1.00 2.00 0 ATOM 4908 O WAL 713 59.066 31.814 4.386 1.00 75.12 0 ATOM 4908 O WAL 713 59.066 31.899 31.810 4.3866 1.00 77.74 0 ATOM 4912 CB WAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4913 CG WAL 713 59.066 32.9766 42.903 1.00 15.32 0 ATOM 4916 O WAL 713 59.066 32.9766 42.903 1.00 15.32 0 ATOM 4917 N LEU 714 58.62 27.057 31.811 4.888 1.00 17.774 0 ATOM 4918 CC WAL 713 59.066 32.9766 42.903 1.00 15.32 0 ATOM 4919 CA LEU 714 58.62 27.00 46.224 1.00 2.00 0 ATOM 4920 CB LEU 714 58.62 27.00 46.229 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		-, -								
ATOM 4885 C ASP 710 56.211 34.045 47.168 1.00 55.37 0 ATOM 4886 O ASP 710 56.454 33.056 46.467 1.00 15.67 0 ATOM 4887 N LYS 711 55.469 35.074 46.789 1.00 10.56 0 ATOM 4889 CA LYS 711 54.809 35.217 45.480 1.00 15.67 0 ATOM 4890 CB LYS 711 54.809 35.217 45.480 1.00 16.19 0 ATOM 4891 CG LYS 711 55.468 35.75 0 ATOM 4892 CD LYS 711 55.468 37.750 43.146 1.00 49.83 0 ATOM 4893 CE LYS 711 55.483 37.109 44.007 1.00 43.76 0 ATOM 4893 CE LYS 711 55.459 34.016 1.00 56.470 0 ATOM 4894 NZ LYS 711 55.459 34.016 1.00 56.470 0 ATOM 4898 C LYS 711 55.559 34.010 1.00 16.03 0 ATOM 4898 C LYS 711 55.559 34.010 1.00 16.03 0 ATOM 4899 C LYS 711 55.559 34.010 1.00 16.03 0 ATOM 4890 C LYS 711 55.559 34.010 1.00 16.03 0 ATOM 4900 N ASP 712 55.894 35.560 44.282 1.00 2.00 0 ATOM 4903 CB ASP 712 55.895 36.629 42.927 1.00 75.12 0 ATOM 4903 CB ASP 712 58.655 36.629 42.927 1.00 75.12 0 ATOM 4904 CG ASP 712 58.655 36.629 42.927 1.00 75.12 0 ATOM 4905 ODJ ASP 712 58.655 36.629 42.927 1.00 77.74 0 ATOM 4906 ODJ ASP 712 58.655 36.629 42.927 1.00 77.74 0 ATOM 4907 C ASP 712 58.655 36.629 42.927 1.00 77.74 0 ATOM 4908 O ASP 712 58.863 34.189 1.00 37.796 0 ATOM 4901 C ASP 712 58.655 36.629 42.927 1.00 77.74 0 ATOM 4901 C ASP 712 58.863 34.189 1.00 37.796 0 ATOM 4901 C ASP 712 58.863 34.189 1.00 37.796 0 ATOM 4901 C ASP 712 58.863 34.189 1.00 37.796 0 ATOM 4901 C ASP 712 58.863 34.189 1.00 37.796 0 ATOM 4901 C ASP 712 58.863 34.189 1.00 37.796 0 ATOM 4901 C ASP 712 58.655 36.629 42.927 1.00 77.712 0 ATOM 4901 C ASP 712 58.863 34.189 1.00 31.00 12.00 0 ATOM 4901 C ASP 712 60.851 36.937 44.341 1.00 0 ATOM 4901 C ASP 712 60.851 36.937 44.341 1.00 0 ATOM 4901 C ASP 712 60.851 36.937 44.341 1.00 0 ATOM 4901 C ASP 712 60.851 36.937 44.341 1.00 0 ATOM 4901 C ASP 712 60.851 36.937 44.866 1.00 1.00 77.74 0 ATOM 4901 C ASP 712 60.851 36.937 44.866 1.00 1.00 77.74 0 ATOM 4901 C ASP 712 60.851 36.937 44.866 1.00 1.00 77.71 0 ATOM 4901 C ASP 712 60.851 36.937 44.866 1.00 0.00 0 ATOM 4901 C C ASP 712 60.851 36.937 44.866 1.00 0.00 0 ATOM 4901 C C ASP 712 60.851 36										
ATOM 4886 O ASP 710 56.454 33.056 46.467 1.00 15.67 O ATOM 4887 N LYS 711 54.802 35.217 45.480 1.00 10.56 O ATOM 4889 CA LYS 711 54.802 35.217 45.480 1.00 16.156 O ATOM 4890 CB LYS 711 54.802 35.217 45.480 1.00 16.156 O ATOM 4891 CG LYS 711 54.802 35.217 45.480 1.00 16.156 O ATOM 4891 CG LYS 711 54.802 35.217 45.480 1.00 43.75 O ATOM 4892 CD LYS 711 54.843 37.109 44.007 1.00 43.75 O ATOM 4893 CE LYS 711 55.459 38.976 43.819 1.00 54.70 O ATOM 4894 NZ LYS 711 55.459 38.976 43.819 1.00 54.70 O ATOM 4898 C LYS 711 55.459 38.976 43.819 1.00 54.70 O ATOM 4898 C LYS 711 55.553 34.877 44.331 1.00 16.03 O ATOM 4899 O LYS 711 55.753 34.877 44.331 1.00 16.03 O ATOM 4900 N ASP 712 56.894 35.560 44.222 1.00 2.00 O ATOM 4902 CA ASP 712 56.894 35.560 44.222 1.00 2.00 O ATOM 4902 CA ASP 712 58.655 36.629 42.927 1.00 75.12 O ATOM 4903 CB ASP 712 58.655 36.629 42.927 1.00 75.41 O ATOM 4904 CG ASP 712 58.655 36.629 42.927 1.00 75.41 O ATOM 4904 CG ASP 712 58.655 36.629 42.927 1.00 75.41 O ATOM 4908 O ASP 712 58.655 36.629 42.927 1.00 75.41 O ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 2.00 O ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 84.37 O ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 84.37 O ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 84.37 O ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 84.37 O ATOM 4908 O ASP 712 60.858 33 0.16 43.866 1.00 77.74 O ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 17.74 O ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 17.74 O ATOM 4913 CC UAL 713 59.166 31.579 45.727 1.00 2.00 O ATOM 4913 CC UAL 713 59.166 31.579 45.727 1.00 2.00 O ATOM 4913 CC UAL 713 59.166 31.579 45.727 1.00 2.00 O ATOM 4913 CC UAL 713 59.166 31.579 45.727 1.00 2.00 O ATOM 4913 CC UAL 713 59.166 31.579 45.727 1.00 2.00 O ATOM 4913 CC UAL 713 59.166 31.579 45.727 1.00 2.00 O ATOM 4913 CC UAL 713 59.362 37.596 45.727 1.00 2.00 O ATOM 4922 CC UAL 713 59.362 37.596 37.31 31 44.866 1.00 2.00 O ATOM 4924 CC UAL 713 59.362 37.596 37.31 31.00 2.00 O O ATOM 4924 CC UAL 714 59.862 27.005 48.890 1.00 10.30 O O O ATOM 4924 CC UAL	ATOM		OD2	ASP					1.00 30.90	
ATOM 4889 C LYS 711					_					-
ATOM 4890 CB LYS 711 54.802 35.217 45.480 1.00 16.19 0 ATOM 4891 CG LYS 711 53.743 37.109 44.007 1.00 43.75 0 ATOM 4892 CD LYS 711 53.743 37.109 44.007 1.00 43.75 0 ATOM 4893 CE LYS 711 55.459 38.976 43.819 1.00 54.70 0 ATOM 4894 NZ LYS 711 55.459 38.976 43.819 1.00 54.70 0 ATOM 4898 C LYS 711 55.459 38.976 43.819 1.00 54.70 0 ATOM 4899 NZ LYS 711 55.753 34.877 44.331 1.00 16.03 0 ATOM 4890 N ASP 712 56.884 35.560 44.282 1.00 2.00 0 ATOM 4902 CA ASP 712 57.880 35.330 43.252 1.00 2.00 0 ATOM 4903 CB ASP 712 59.362 37.231 44.134 1.00 75.41 0 ATOM 4905 DD1 ASP 712 58.655 36.629 42.277 1.00 75.12 0 ATOM 4905 DD1 ASP 712 58.655 36.629 42.277 1.00 75.12 0 ATOM 4908 N ASP 712 60.561 36.937 44.341 1.00 84.37 0 ATOM 4908 O ASP 712 58.663 34.366 43.607 1.00 77.74 0 ATOM 4908 O ASP 712 58.663 34.366 43.607 1.00 77.74 0 ATOM 4908 N ASP 712 58.663 34.366 43.607 1.00 77.74 0 ATOM 4909 N VAL 713 58.298 33.016 43.866 1.00 77.74 0 ATOM 4909 N VAL 713 58.298 33.016 43.866 1.00 77.79 0 ATOM 4911 CA VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4912 CB VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4912 CB VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4913 CG VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4914 CG2 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4916 O VAL 713 58.319 30.653 43.538 1.00 2.00 0 ATOM 4916 O VAL 713 58.319 30.653 43.538 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4918 C C LEU 714 59.063 29.766 42.24 1.00 2.00 0 ATOM 4920 CB LEU 714 59.063 29.766 42.24 1.00 2.00 0 ATOM 4920 CB LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4921 CG LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4922 CD LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4922 CD LEU 714 59.068 29.753 44.861 1.00 48.70 0 ATOM 4930 C CB LEU 714 59.068 29.753 44.861 1.00 48.70 0 ATOM 4931 N TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4932 CD LEU 714 59.068 29.753 44.861 1.00 2.00 0 ATOM 4933 CD TRP 716 60.875 26.183 46.929 1.00 10.30 0 ATOM 4934 CB TRP 716 60.886 24.317 48.932 1.00 2.00 0 ATOM 4934 CB TRP 716 60.562 23										_
ATOM 4891 CG LYS 711 54.266 36.661 45.368 1.00 35.75 0 ATOM 4892 CD LYS 711 54.843 37.750 43.146 1.00 49.83 0 ATOM 4893 CE LYS 711 54.843 37.750 43.146 1.00 49.83 0 ATOM 4893 CE LYS 711 55.652 39.514 43.064 1.00 58.93 0 ATOM 4894 NZ LYS 711 55.652 39.514 43.064 1.00 58.93 0 ATOM 4898 C LYS 711 55.652 39.514 43.064 1.00 58.93 0 ATOM 4898 C LYS 711 55.459 34.001 43.518 1.00 37.96 0 ATOM 4898 C LYS 711 55.459 34.001 43.518 1.00 37.96 0 ATOM 4900 N ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4902 CA ASP 712 58.655 36.629 42.927 1.00 75.41 0 ATOM 4903 CB ASP 712 58.655 36.629 42.927 1.00 75.41 0 ATOM 4904 CG ASP 712 58.655 36.629 42.927 1.00 75.41 0 ATOM 4905 OD ASP 712 58.863 34.189 43.866 1.00 77.74 0 ATOM 4908 O ASP 712 60.861 36.937 44.41 1.00 84.37 0 ATOM 4908 O ASP 712 60.883 34.189 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 60.883 34.189 43.597 1.00 2.00 0 ATOM 4911 CA VAL 713 59.567 31.811 44.886 1.00 77.12 0 ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 77.12 0 ATOM 4913 CG1 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4913 CG1 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4913 CG1 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4913 CG1 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4913 CG1 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4915 C VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4915 C VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4915 C VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4915 C VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4920 CB LEU 714 59.282 20.567 43.533 1.00 2.00 0 ATOM 4921 CG LEU 714 59.282 20.567 43.533 1.00 2.00 0 ATOM 4921 CG LEU 714 59.285 28.147 41.078 1.00 48.90 0 ATOM 4921 CG LEU 714 59.285 28.147 41.078 1.00 48.90 0 ATOM 4922 CB LEU 714 59.285 28.147 41.078 1.00 42.00 0 ATOM 4924 C LEU 714 59.285 28.147 41.078 1.00 42.00 0 ATOM 4920 CB LEU 714 59.285 28.147 41.078 1.00 42.00 0 ATOM 4921 CG LEU 714 59.285 28.147 41.078 1.00 42.00 0 ATOM 4931 CG TRP 716 60.884 24.217 7.99 43.445 1.00 2.00 0 ATOM 4931 CG TRP 716 60.886 24.79 7.99 43.445 1.00 2.00 0 ATOM 4931 CG TRP 716 60.86										
ATOM 4893 CE LYS 711 54.843 37.750 43.146 1.00 49.83 0 ATOM 4894 NZ LYS 711 55.459 38.976 43.819 1.00 54.70 0 ATOM 4898 C LYS 711 55.459 34.001 43.518 1.00 16.03 0 ATOM 4899 O LYS 711 55.459 34.001 43.518 1.00 37.96 0 ATOM 4902 CA ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4903 CB ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4903 CB ASP 712 58.555 36.629 42.927 1.00 75.41 0 ATOM 4904 CG ASP 712 58.555 36.629 42.927 1.00 75.41 0 ATOM 4906 OD2 ASP 712 58.255 36.629 42.927 1.00 75.41 0 ATOM 4906 OD2 ASP 712 58.655 36.629 42.927 1.00 75.41 0 ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 77.12 0 ATOM 4909 O DI ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4911 CA VAL 713 58.298 33.016 43.866 1.00 27.09 0 ATOM 4912 CB VAL 713 59.166 31.579 45.721 1.00 2.00 0 ATOM 4912 CB VAL 713 59.166 31.579 45.721 1.00 2.00 0 ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4915 C VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4916 O VAL 713 58.319 30.653 43.538 1.00 21.93 0 ATOM 4916 O VAL 713 59.057 31.811 44.188 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 12.30 0 ATOM 4920 CB LEU 714 59.063 29.766 42.903 1.00 12.32 0 ATOM 4921 CG LEU 714 59.063 29.766 42.903 1.00 12.32 0 ATOM 4922 CD LEU 714 59.285 28.147 41.078 1.00 42.23 0 ATOM 4922 CD LEU 714 59.285 28.147 41.078 1.00 42.23 0 ATOM 4922 CD LEU 714 59.285 28.147 41.078 1.00 42.23 0 ATOM 4923 CD LEU 714 59.285 28.147 41.078 1.00 42.23 0 ATOM 4924 C LEU 714 59.285 28.147 41.078 1.00 42.23 0 ATOM 4924 C LEU 714 59.285 28.147 41.078 1.00 42.23 0 ATOM 4924 C LEU 714 59.285 28.147 41.078 1.00 42.23 0 ATOM 4925 O LEU 714 59.285 28.147 41.078 1.00 42.23 0 ATOM 4926 C LEU 714 59.285 28.147 41.078 1.00 42.20 0 ATOM 4939 CD LEU 714 59.285 28.147 41.078 1.00 42.20 0 ATOM 4939 CD TRP 716 60.867 27.315 48										_
ATOM 4894 NZ LYS 711 55.459 38.976 43.819 1.00 54.70 0 ATOM 4898 C LYS 711 55.753 34.877 44.331 1.00 16.03 0 ATOM 4898 C LYS 711 55.753 34.877 44.331 1.00 16.03 0 ATOM 4900 N ASP 712 55.459 34.001 43.518 1.00 37.96 0 ATOM 4902 CA ASP 712 55.459 35.350 44.282 1.00 2.00 0 ATOM 4903 CB ASP 712 55.459 35.350 44.282 1.00 2.00 0 ATOM 4904 CG ASP 712 58.655 36.629 42.927 1.00 75.12 0 ATOM 4905 DDI ASP 712 58.655 36.629 42.927 1.00 75.12 0 ATOM 4906 OD ASP 712 60.561 36.937 44.341 1.00 77.74 0 ATOM 4907 C ASP 712 60.561 36.937 44.341 1.00 77.74 0 ATOM 4908 O ASP 712 60.561 36.937 44.341 1.00 2.00 0 ATOM 4909 N VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4908 O ASP 712 60.083 34.366 43.607 1.00 77.12 0 ATOM 4901 CA VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4911 CA VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4913 CGI VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4916 O VAL 713 58.319 30.653 43.538 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 12.30 0 ATOM 4919 C A LEU 714 59.063 29.766 42.903 1.00 12.30 0 ATOM 4919 C A LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4920 C B LEU 714 59.265 28.147 41.078 1.00 42.23 0 ATOM 4921 C C LEU 714 59.265 28.147 41.078 1.00 42.23 0 ATOM 4922 C LEU 714 59.265 28.147 41.078 1.00 42.23 0 ATOM 4922 C LEU 714 59.265 28.147 41.078 1.00 42.23 0 ATOM 4923 CD LEU 714 59.265 28.147 41.078 1.00 42.23 0 ATOM 4924 C LEU 714 59.265 28.147 41.078 1.00 42.23 0 ATOM 4925 O LEU 714 59.265 28.147 41.078 1.00 42.23 0 ATOM 4926 N GLY 715 59.362 27.005 44.800 1.00 76.36 0 ATOM 4930 C LEU 714 59.265 28.147 41.078 1.00 42.20 0 ATOM 4931 N TRP 716 60.854 2.299 1.00 12.00 0 ATOM 4934 C LEU 714 59.265 28.147 41.078 1.00 42.20 0 ATOM 4936 C LEU 714 59.265 28.147 41.078 1.00 42.20 0 ATOM 4936 C LEU 714 59.265 27.005 48.800 1.00 76.36 0 ATOM 4937 C LEU 714 59.265 27.005 48.800 1.00 76.36 0 ATOM 4938 C S TRP 716 60.852 23.134 48.341 1.00 2.00 0 ATOM 4934 C C LEU 716 69.868 28.297 48.800 1.00 2.00 0 ATOM 4936 C C C C TRP 716 60.862 23.134										
ATOM 4898 C LYS 711 56.632 39.514 43.064 1.00 58.93 0 ATOM 4898 C LYS 711 55.459 34.001 43.518 1.00 37.96 0 ATOM 4899 O LYS 711 55.459 34.001 43.518 1.00 37.96 0 ATOM 4900 N ASP 712 56.894 35.560 44.282 1.00 2.00 0 ATOM 4903 CB ASP 712 58.655 36.629 42.927 1.00 75.12 0 ATOM 4903 CB ASP 712 58.655 36.629 42.927 1.00 75.41 0 ATOM 4905 OD1 ASP 712 58.655 36.629 42.927 1.00 75.41 0 ATOM 4906 OD2 ASP 712 58.723 38.013 44.866 1.00 77.74 0 ATOM 4906 OD2 ASP 712 58.863 34.189 43.597 1.00 75.41 0 ATOM 4906 OD2 ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 77.12 0 ATOM 4909 N VAL 713 58.298 33.016 43.866 1.00 77.71 0 ATOM 4911 CA VAL 713 58.298 33.016 43.866 1.00 17.74 0 ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4913 CG1 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4914 CG2 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4915 C VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4916 O VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.293 1.00 1.00 15.32 0 ATOM 4919 C B LEU 714 59.063 29.766 42.299 1.00 15.32 0 ATOM 4920 CB LEU 714 59.063 29.766 42.299 1.00 15.32 0 ATOM 4921 CG LEU 714 58.434 28.642 42.249 1.00 10.01 15.32 0 ATOM 4922 CD LEU 714 58.432 28.642 42.249 1.00 10.01 15.32 0 ATOM 4922 CD LEU 714 58.242 75.30 43.235 1.00 12.30 0 ATOM 4923 CD2 LEU 714 58.242 75.30 43.235 1.00 12.30 0 ATOM 4924 C LEU 714 58.242 75.30 43.235 1.00 12.00 0 ATOM 4924 C LEU 714 58.242 75.30 43.235 1.00 12.30 0 ATOM 4926 N GLY 715 59.630 26.620 42.249 1.00 42.23 0 ATOM 4926 N GLY 715 59.630 26.620 42.249 1.00 10.00 15.32 0 ATOM 4926 C LEU 714 58.242 75.30 43.235 1.00 12.00 0 ATOM 4926 C LEU 714 58.242 75.30 43.235 1.00 12.00 0 ATOM 4926 C LEU 714 59.265 25.995 44.80 1.00 2.00 0 ATOM 4926 C LEU 715 59.630 26.620 42.249 1.00 2.00 0 ATOM 4930 CG LEU 715 59.630 26.620 42.249 1.00 2.00 0 ATOM 4930 CG TRP 716 60.862 23.134 48.34 1.00 2.00 0 0 ATOM 4930 CG TRP										
ATOM 4898 C LYS 711 55.753 34.877 44.331 1.00 16.03 0 ATOM 4900 N ASP 712 56.894 35.560 44.202 1.00 2.00 0 ATOM 4902 CA ASP 712 57.890 35.310 43.518 1.00 175.41 0 ATOM 4903 CB ASP 712 57.890 35.330 43.252 1.00 75.12 0 ATOM 4904 CG ASP 712 59.362 37.231 44.134 1.00 77.40 ATOM 4905 DI ASP 712 58.723 38.013 44.866 1.00 77.40 ATOM 4906 DD ASP 712 58.8653 34.189 43.597 10.0 44.37 0 ATOM 4906 DD ASP 712 60.561 36.937 44.341 1.00 77.40 ATOM 4907 C ASP 712 58.863 34.189 43.597 10.0 2.00 0 ATOM 4908 D ASP 712 60.561 36.937 44.341 1.00 77.71 0 ATOM 4908 D ASP 712 60.061 36.3866 43.607 1.00 77.71 0 ATOM 4908 D ASP 712 60.083 34.189 43.597 1.00 2.00 D ATOM 4911 CA VAL 713 59.057 31.811 44.188 1.00 17.74 D ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 2.00 D ATOM 4913 CGI VAL 713 59.166 31.579 45.727 1.00 2.00 D ATOM 4914 CG2 VAL 713 59.166 31.579 45.727 1.00 2.00 D ATOM 4915 C VAL 713 59.063 30.653 34.3538 1.00 2.00 D ATOM 4915 C VAL 713 59.063 30.557 43.593 1.00 2.00 D ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 12.00 D ATOM 4919 CA LEU 714 58.434 28.642 42.249 1.00 10.30 D ATOM 4917 N LEU 714 58.434 28.642 42.249 1.00 10.30 D ATOM 4920 CB LEU 714 58.632 97.766 42.903 1.00 15.32 D ATOM 4920 CB LEU 714 58.622 70.05 40.272 1.00 42.23 D ATOM 4920 CB LEU 714 58.642 77.505 40.8272 1.00 42.23 D ATOM 4920 CB LEU 714 58.624 77.505 40.3272 1.00 42.23 D ATOM 4920 CB LEU 714 58.624 77.505 40.3272 1.00 42.23 D ATOM 4920 CB LEU 714 58.624 77.505 40.3272 1.00 42.23 D ATOM 4920 CB LEU 714 58.624 77.505 40.3272 1.00 42.23 D ATOM 4920 CB LEU 714 58.624 77.505 40.3272 1.00 42.23 D ATOM 4920 CB LEU 714 58.624 77.505 40.3272 1.00 42.23 D ATOM 4920 CB LEU 714 58.624 77.505 40.3272 1.00 42.23 D ATOM 4920 CB LEU 714 58.624 77.505 40.3272 1.00 42.23 D ATOM 4920 CB LEU 714 58.624 77.505 40.3272 1.00 42.23 D ATOM 4920 CB LEU 714 58.624 77.505 40.3272 1.00 42.23 D ATOM 4920 CB LEU 714 58.626 77.055 40.3272 1.00 42.23 D ATOM 4920 CB LEU 714 58.626 77.055 40.3272 1.00 42.23 D ATOM 4930 CD LEU 714 58.662 77.055 40.3272 1.00 42.23 D ATOM 4930 CD LEU										
ATOM 4900 N ASP 712 56.894 35.560 44.292 1.00 2.00 0 ATOM 4902 CA ASP 712 56.894 35.560 44.292 1.00 2.00 0 ATOM 4903 CB ASP 712 58.655 36.629 42.927 1.00 75.12 0 ATOM 4904 CG ASP 712 58.655 36.629 42.927 1.00 75.12 0 ATOM 4906 OD2 ASP 712 58.723 38.013 44.866 1.00 77.74 0 ATOM 4907 C ASP 712 58.723 38.013 44.866 1.00 77.74 0 ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 58.828 33.016 43.866 1.00 77.09 0 ATOM 4909 N VAL 713 58.298 33.016 43.866 1.00 77.09 0 ATOM 4911 CA VAL 713 59.057 31.811 41.88 1.00 17.74 0 ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4915 C VAL 713 58.319 30.653 43.538 1.00 2.00 0 ATOM 4916 O VAL 713 58.319 30.653 43.538 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4920 CB LEU 714 58.662 27.005 42.903 1.00 15.32 0 ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 10.30 0 ATOM 4920 CB LEU 714 58.662 27.005 40.272 1.00 10.30 0 ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 10.30 0 ATOM 4922 CD LEU 714 58.662 27.005 40.272 1.00 10.30 0 ATOM 4923 CD2 LEU 714 58.662 27.005 40.272 1.00 10.30 0 ATOM 4924 C LEU 714 59.263 25.954 48.800 1.00 42.86 0 ATOM 4925 O LEU 714 59.625 28.147 41.078 1.00 44.72 0 ATOM 4926 N GLY 715 59.630 25.976 42.909 1.00 43.72 0 ATOM 4926 N GLY 715 59.630 25.976 42.909 1.00 43.72 0 ATOM 4927 C LEU 714 59.478 26.753 39.909 1.00 43.72 0 ATOM 4928 CA GLY 715 59.630 25.975 44.800 1.00 76.36 0 ATOM 4930 N GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4930 N GLY 715 59.630 25.541 50.999 1.00 42.86 0 ATOM 4930 C GLY 715 59.630 25.957 48.940 1.00 2.00 0 ATOM 4930 C GLY 715 59.630 25.957 48.940 1.00 2.00 0 ATOM 4930 C GLY 715 59.630 25.959 44.800 1.00 76.36 0 ATOM 4930 C GLY 716 60.884 25.99 49.962 1.00 2.00 0 ATOM 4930 C GLY 717 60.862 25.977 48.940 1.00 2.00 0 ATOM 4930 C GLY 716 60.862 27.999 43.445 1.00 2.00 0 ATOM 4930 C GLY 716 60.862 27.999 43.451 1.00 2.00 0 ATOM 4930 C GLY 717 60.862 25.977 48.940 1.00 2.00 0 ATOM 4930 C GLY 717 60.862 25.917 49.941 1.00 2.00 0 ATOM 4940 C TRP 716 60.862 27.999 43.451 1.00 2.0										
ATOM 4903 CB ASP 712 57.890 35.330 43.252 1.00 2.00 0 ATOM 4904 CG ASP 712 58.655 36.629 42.927 1.00 75.12 0 ATOM 4906 OD2 ASP 712 58.655 36.629 42.927 1.00 75.41 0 ATOM 4906 OD2 ASP 712 58.853 36.13 44.866 1.00 84.37 0 ATOM 4906 OD2 ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4907 C ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4911 CA VAL 713 58.298 33.016 43.866 1.00 27.09 0 ATOM 4911 CA VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4913 CG1 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4914 CG2 VAL 713 59.124 30.098 46.069 1.00 2.00 0 ATOM 4915 C VAL 713 58.319 30.653 43.538 1.00 2.00 0 ATOM 4916 O VAL 713 58.319 30.653 43.538 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4919 CA LEU 714 58.442 28.642 42.249 1.00 10.30 0 ATOM 4920 CB LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4922 CD1 LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4924 C LEU 714 58.229 27.357 39.909 1.00 43.72 0 ATOM 4926 N GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4929 C GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4930 O GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4930 CG TRP 716 60.881 24.529 49.962 1.00 10.00 2.00 0 ATOM 4930 CG TRP 716 60.882 27.075 43.834 1.00 2.00 0 ATOM 4930 CG TRP 716 60.875 26.534 50.809 1.00 2.00 0 ATOM 4930 CG TRP 716 60.875 26.541 48.950 1.00 2.00 0 ATOM 4930 CG TRP 716 65.875 25.541 89.909 1.00 2.00 0 ATOM 4940 NEI TRP 716 65.876 27.394 48.940 1.00 2.00 0 ATOM 4940 CR2 TRP 716 65.875 26.338 51.783 1.00 2.00 0 ATOM 4940 CR2 TRP 716 65.875 25.438 51.783 1.00 2.00 0 ATOM 4940 CR2 TRP 716 65.876 27.315 48.940 1.00 2.00 0 ATOM 4940 CR2 TRP 716 65.876 27.315 48.940 1.00 2.00 0 ATOM 4940 CR2 TRP 716 65.876 27.315 48.940 1.00 2.00 0 ATOM 4940 CR2 TRP 716 65.876 27.315 48.940 1.00 2.00 0 ATOM 4940 CR2 TRP 716 65.896 27.315 48.940 1.00 2.00 0 ATOM 4940 CR2 TRP 716 65.				LYS	711	55.459				
ATOM 4904 CG ASP 712 58.655 36.629 42.927 1.00 75.12 0 ATOM 4905 OD1 ASP 712 58.723 38.013 44.134 1.00 75.41 0 ATOM 4906 OD2 ASP 712 60.561 36.937 44.341 1.00 77.74 0 ATOM 4907 C ASP 712 60.561 36.937 44.341 1.00 84.37 0 ATOM 4908 O ASP 712 60.083 34.189 43.597 1.00 2.00 0 ATOM 4908 N VAL 713 58.298 33.016 43.866 1.00 27.09 0 ATOM 4911 CA VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4912 CB VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4913 CG1 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4916 C VAL 713 59.124 30.098 46.069 1.00 2.00 0 ATOM 4915 C VAL 713 58.398 30.0567 43.593 1.00 2.00 0 ATOM 4916 O VAL 713 59.057 31.811 44.188 1.00 21.93 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4919 CR LEU 714 59.285 28.147 41.078 1.00 10.30 0 ATOM 4920 CB LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4921 CG LEU 714 59.285 28.147 41.078 1.00 48.90 0 ATOM 4923 CD2 LEU 714 59.948 26.753 39.095 1.00 42.23 0 ATOM 4923 CD2 LEU 714 59.948 26.753 39.909 1.00 43.72 0 ATOM 4923 CD2 LEU 714 59.948 26.753 39.909 1.00 43.72 0 ATOM 4923 CD2 LEU 714 59.948 26.753 39.909 1.00 42.23 0 ATOM 4926 C LEU 714 59.948 26.753 39.909 1.00 43.72 0 ATOM 4927 N DATOM 4928 CA GLY 715 59.322 27.075 43.834 1.00 21.00 10.30 0 ATOM 4928 CA GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4929 C CEY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4930 C GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4931 N TRP 716 60.855 26.503 47.918 1.00 4.87 0 ATOM 4930 C GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4931 CR TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4935 CG TRP 716 60.855 26.503 47.918 1.00 2.00 0 ATOM 4936 CD TRP 716 60.856 22.597 48.900 1.00 2.00 0 ATOM 4937 CE TRP 716 60.856 22.597 48.900 1.00 2.00 0 ATOM 4940 CC TRP 716 63.596 27.315 48.900 1.00 2.00 0 ATOM 4940 CC TRP 716 63.596 27.315 48.900 1.00 2.00 0 ATOM 4940 CC TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4940 CC TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4940 CC GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4940 CC GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4940 C										
ATOM 4905 OD1 ASP 712 59.362 37.231 44.134 1.00 75.41 0 ATOM 4906 OD2 ASP 712 58.823 38.013 44.866 1.00 77.74 0 ATOM 4907 C ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 58.863 34.366 43.607 1.00 77.72 0 ATOM 4908 O ASP 712 58.863 34.366 43.607 1.00 77.72 0 ATOM 4908 N VAL 713 58.298 33.016 43.866 1.00 27.09 0 ATOM 4911 CA VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4913 CG1 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4914 CG2 VAL 713 59.124 30.098 46.069 1.00 2.00 0 ATOM 4915 C VAL 713 59.124 30.098 46.069 1.00 2.00 0 ATOM 4916 O VAL 713 58.319 30.653 43.538 1.00 2.1.93 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4919 CA LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4920 CB LEU 714 59.285 28.147 41.078 1.00 48.90 0 ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4922 CD1 LEU 714 58.242 27.053 39.909 1.00 43.72 0 ATOM 4924 C LEU 714 58.242 27.530 343.235 1.00 13.32 0 ATOM 4929 C GLEU 714 58.242 27.530 343.235 1.00 13.32 0 ATOM 4920 CB LEU 714 58.242 27.530 343.235 1.00 13.32 0 ATOM 4921 CG LEU 714 58.242 27.530 343.235 1.00 13.32 0 ATOM 4922 CD1 LEU 714 58.242 27.530 343.235 1.00 42.86 0 ATOM 4922 CD1 LEU 714 58.242 27.530 343.235 1.00 43.72 0 ATOM 4928 CA GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4928 CA GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4930 C GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4930 CB TRP 716 60.875 26.183 46.583 1.00 2.00 0 ATOM 4931 N TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4930 CD TRP 716 60.884 22.597 48.940 1.00 2.00 0 ATOM 4930 CD TRP 716 60.884 22.597 48.940 1.00 2.00 0 ATOM 4930 CD TRP 716 60.862 27.099 43.451 1.00 40.87 0 ATOM 4940 NEI TRP 716 60.862 27.099 43.451 1.00 40.87 0 ATOM 4940 NEI TRP 716 60.862 27.999 43.451 1.00 2.00 0 ATOM 4940 CD TRP 716 60.862 23.134 48.932 1.00 2.00 0 ATOM 4940 CD TRP 716 60.862 23.134 48.933 1.00 2.00 0 ATOM 4940 CD TRP 716 60.862 23.134 48.931 1.00 2.00 0 ATOM 4940 CD TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4940 CD TRP 716										
ATOM 4905 OD1 ASP 712 58.723 38.013 44.866 1.00 77.74 0 ATOM 4906 OD2 ASP 712 60.561 36.937 44.361 1.00 84.37 0 ATOM 4908 O ASP 712 60.83 34.366 43.597 1.00 2.00 0 ATOM 4908 O ASP 712 60.083 34.366 43.607 1.00 77.12 0 ATOM 4909 N VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4911 CA VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4912 CE VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4913 CG1 VAL 713 59.124 30.098 46.069 1.00 2.00 0 ATOM 4913 CG1 VAL 713 59.124 30.098 46.069 1.00 2.00 0 ATOM 4916 O VAL 713 58.319 30.653 43.538 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.949 1.00 2.00 0 ATOM 4919 CA LEU 714 58.434 28.642 42.249 1.00 10.30 0 ATOM 4920 CB LEU 714 58.434 28.642 42.249 1.00 10.30 0 ATOM 4920 CB LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4922 CD1 LEU 714 59.285 28.147 41.078 1.00 42.20 0 ATOM 4923 CD2 LEU 714 58.662 27.005 40.272 1.00 42.86 0 ATOM 4924 C LEU 714 59.285 28.147 41.078 1.00 43.72 0 ATOM 4925 CD LEU 714 58.224 27.530 43.235 1.00 13.32 0 ATOM 4926 N GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4928 CA GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4931 N TRP 716 60.884 24.317 48.932 1.00 10.32 0 ATOM 4931 CR TRP 716 60.884 24.317 48.932 1.00 10.30 0 ATOM 4931 CR TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4931 CR TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4933 CA TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4934 CB TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4935 CG TRP 716 59.936 26.503 47.918 1.00 2.00 0 ATOM 4936 CD TRP 716 59.936 25.595 48.940 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.950 23.439 49.962 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.950 23.439 49.962 1.00 2.00 0 ATOM 4940 CD TRP 716 60.884 24.317 48.992 1.00 2.00 0 ATOM 4940 CD TRP 716 60.884 24.317 48.992 1.00 2.00 0 ATOM 4940 CD TRP 716 60.884 24.317 48.992 1.00 2.00 0 ATOM 4940 CD TRP 716 60.868 24.599 49.962 1.00 2.00 0 ATOM 4940 CD TRP 716 60.868 24.599 49.962 1.00 2.00 0 ATOM 4940 CD TRP 716 60.596 27.315 47.991 1.00 2.00 0 ATOM 4940 CD TRP 716 62.911 29.										
ATOM 4906 OD2 ASP 712 60.561 36.937 44.341 1.00 84.37 0 ATOM 4908 O ASP 712 58.863 34.189 43.597 1.00 2.00 0 ATOM 4908 N VAL 713 58.288 33.016 43.866 1.00 27.09 0 ATOM 4911 CA VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4911 CA VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4913 CG1 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4914 CG2 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4915 C VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4916 O VAL 713 59.124 30.098 46.069 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 12.93 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4919 CA LEU 714 58.434 28.642 42.249 1.00 10.30 0 ATOM 4920 CB LEU 714 58.644 28.642 42.499 1.00 10.30 0 ATOM 4921 CG LEU 714 58.644 28.642 42.499 1.00 10.30 0 ATOM 4922 CD1 LEU 714 59.285 28.147 41.078 1.00 48.90 0 ATOM 4922 CD1 LEU 714 59.285 28.147 41.078 1.00 42.23 0 ATOM 4923 CD2 LEU 714 58.622 27.005 40.272 1.00 42.23 0 ATOM 4924 C LEU 714 59.478 26.753 39.025 1.00 42.23 0 ATOM 4924 C LEU 714 58.242 27.530 43.235 1.00 13.23 0 ATOM 4925 O LEU 714 58.242 27.530 43.235 1.00 13.23 0 ATOM 4925 O LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4926 N GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4929 C GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 1.00 76.36 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 1.00 76.36 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 19.62 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 19.62 0 ATOM 4933 CD2 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4933 CD2 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4934 CD2 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4934 CD2 TRP 716 60.864 24.317 48.932 1.00 2.00 0 ATOM 4934 CD2 TRP 716 60.864 24.317 48.932 1.00 2.00 0 ATOM 4934 CD2 TRP 716 60.864 24.317 48.932 1.00 2.00 0 ATOM 4934 CD2 TRP 716 60.864 24.317 48.932 1.00 2.00 0 ATOM 4934 CD2 TRP 716 60.864 27.594 47.954 1.00 2.00 0 ATOM 4940 NEI TRP 716 60.867 27.594 47.954 1.00 2.00 0 ATOM 4940 NEI TRP 716 60.562 23.134 48.943 1.00 2.00 0 ATOM 4940 NEI TR										_
ATOM 4908 O ASP 712 60.083 34.366 43.607 1.00 77.12 0 ATOM 4911 CA VAL 713 58.298 33.016 43.866 1.00 27.09 0 ATOM 4912 CB VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4913 CG1 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4914 CG2 VAL 713 60.481 32.120 46.244 1.00 2.00 0 ATOM 4915 C VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4916 O VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 12.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4920 CB LEU 714 59.285 28.147 41.078 1.00 48.90 0 ATOM 4921 CG LEU 714 59.285 28.147 41.078 1.00 48.90 0 ATOM 4922 CD1 LEU 714 59.285 28.147 41.078 1.00 42.23 0 ATOM 4923 CD2 LEU 714 59.478 26.753 39.025 1.00 42.23 0 ATOM 4924 C LEU 714 59.478 26.753 39.025 1.00 42.86 0 ATOM 4925 O LEU 714 59.478 26.753 39.025 1.00 42.86 0 ATOM 4926 N GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4929 C GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4930 O GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 2.00 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4933 CA TRP 716 61.944 25.241 48.554 1.00 4.87 0 ATOM 4934 CB TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4935 CG TRP 716 69.884 24.317 48.932 1.00 2.00 0 ATOM 4936 CD2 TRP 716 69.884 24.317 48.932 1.00 2.00 0 ATOM 4937 CE2 TRP 716 69.884 24.317 48.932 1.00 2.00 0 ATOM 4938 CE3 TRP 716 69.884 24.317 48.932 1.00 2.00 0 ATOM 4939 CD1 TRP 716 69.884 24.317 48.932 1.00 2.00 0 ATOM 4930 CD2 TRP 716 69.562 23.134 48.343 1.00 2.00 0 ATOM 4930 CD2 TRP 716 69.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NEI TRP 716 69.562 23.134 48.343 1.00 2.00 0 ATOM 4940 CE2 TRP 716 69.562 23.134 48.343 1.00 2.00 0 ATOM 4940 CE2 TRP 716 69.562 23.134 48.343 1.00 2.00 0 ATOM 4940 CE2 TRP 716 69.562 23.134 48.343 1.00 2.00 0 ATOM 4940 CE2 TRP 716 69.562 23.134 48.343 1.00 2.00 0 ATOM 4940 CE2 TRP 716 69.562 23.134 48.343 1.00 2.00 0 ATOM 4940 CE2 TRP 716 69.562 23.134 48.343 1.00 2.00 0 ATOM 4940 CE2 TRP 716 69.562 23.134 48.343 1.00 2.00 0 ATOM 4940 CE2 TRP 716 69.562			OD2		712					
ATOM 4910 N VAL 713 58.298 33 016 43.866 1.00 27.09 0 ATOM 4911 CA VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4912 CB VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4913 CG1 VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4914 CG2 VAL 713 59.124 30.098 46.069 1.00 2.00 0 ATOM 4915 C VAL 713 59.124 30.098 46.069 1.00 2.00 0 ATOM 4916 O VAL 713 58.319 30.653 43.538 1.00 21.93 0 ATOM 4916 O VAL 713 57.092 30.567 43.593 1.00 21.93 0 ATOM 4919 CA LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4919 CA LEU 714 59.285 28.147 41.078 1.00 48.90 0 ATOM 4920 CB LEU 714 58.8662 27.005 40.272 1.00 42.23 0 ATOM 4921 CG LEU 714 58.8662 27.005 40.272 1.00 42.23 0 ATOM 4922 CD1 LEU 714 58.8662 27.005 40.272 1.00 42.23 0 ATOM 4923 CD2 LEU 714 59.285 28.147 41.078 1.00 42.23 0 ATOM 4923 CD2 LEU 714 59.478 26.753 39.025 1.00 42.86 0 ATOM 4924 C LEU 714 58.224 27.530 43.235 1.00 42.86 0 ATOM 4926 CB CLEU 714 58.224 27.530 43.235 1.00 42.86 0 ATOM 4926 CB CLEU 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4929 C GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4930 C GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4933 CG TRP 716 61.944 25.241 48.594 1.00 4.87 0 ATOM 4934 CB TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4934 CB TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4935 CG TRP 716 60.884 24.529 49.962 1.00 2.00 0 ATOM 4937 CE2 TRP 716 60.884 24.529 49.962 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.885 25.41 48.932 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.941 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.941 1.00 2.00 0 ATOM 4944 CH2 TRP 716 63.596 27.594 47.954 1.00 2.00 0 ATOM 4944 CH2 TRP 716 63.596 27.594 47.954 1.00 2.00 0 ATOM 4949 CA GLY 717 66.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717										
ATOM 4911 CA VAL 713 59.057 31.811 44.188 1.00 17.74 0 ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4913 CG1 VAL 713 59.124 30.098 46.069 1.00 2.00 0 ATOM 4914 CG2 VAL 713 60.481 32.120 46.224 1.00 2.00 0 ATOM 4915 C VAL 713 58.319 30.653 43.538 1.00 21.93 0 ATOM 4916 O VAL 713 57.092 30.567 43.593 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4919 CA LEU 714 59.063 29.766 42.249 1.00 10.30 0 ATOM 4920 CB LEU 714 58.434 28.642 42.249 1.00 10.30 0 ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4922 CD1 LEU 714 59.478 26.753 39.005 1.00 43.72 0 ATOM 4923 CD2 LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4924 C LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4926 N GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4928 CA GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4929 C GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4931 N TRP 716 60.884 24.317 48.932 1.00 19.62 0 ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4934 CB TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4935 CG TRP 716 69.936 24.529 49.962 1.00 2.00 0 ATOM 4936 CD2 TRP 716 69.842 23.334 50.830 1.00 2.00 0 ATOM 4938 CE3 TRP 716 69.852 23.134 48.343 1.00 2.00 0 ATOM 4939 CD1 TRP 716 69.862 23.134 48.343 1.00 2.00 0 ATOM 4930 CG2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4931 CC2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CE3 TRP 716 69.862 23.134 48.343 1.00 2.00 0 ATOM 4936 CD2 TRP 716 69.862 23.134 48.343 1.00 2.00 0 ATOM 4937 CC2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CC3 TRP 716 59.956 25.541 50.999 1.00 2.00 0 ATOM 4940 NEI TRP 716 69.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NEI TRP 716 69.862 23.134 48.343 1.00 2.00 0 ATOM 4940 NEI TRP 716 69.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NEI TRP 716 69.562 23.134 48.341 1.00 2.00 0 ATOM 4940 NEI TRP 716 69.562 23.134 48.341 1.00 2.00 0 ATOM 4940 CC2 TRP 716 69.968 28.837 48.067 1.00 2.00 0 ATOM 4940 CC2 TRP 716 69.562 23.134 48.067 1.00 2.00 0 ATOM 4940 CC GC CC TRP 716 69.968 28.837 48.067 1.00 2.00 0 ATOM 4940 CC CC							-			
ATOM 4912 CB VAL 713 59.166 31.579 45.727 1.00 2.00 0 ATOM 4913 CG1 VAL 713 60.481 32.120 46.224 1.00 2.00 0 ATOM 4915 C VAL 713 60.481 32.120 46.224 1.00 2.00 0 ATOM 4915 C VAL 713 58.319 30.653 43.538 1.00 21.93 0 ATOM 4916 O VAL 713 57.092 30.567 43.593 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4919 CA LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4920 CB LEU 714 59.285 28.147 41.078 1.00 48.90 0 ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4922 CD1 LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4923 CD2 LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4924 C LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4925 O LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4925 O LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4926 N GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4929 C GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4930 O GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4931 N TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4935 CG TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4935 CG TRP 716 61.944 25.241 48.554 1.00 2.00 0 ATOM 4938 CE3 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4938 CE3 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4938 CE3 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4938 CC TRP 716 59.950 23.339 49.943 1.00 2.00 0 ATOM 4938 CC TRP 716 59.950 23.339 49.943 1.00 2.00 0 ATOM 4938 CC TRP 716 59.950 25.541 50.999 1.00 2.00 0 ATOM 4938 CC TRP 716 59.950 25.541 50.999 1.00 2.00 0 ATOM 4938 CC TRP 716 59.950 25.541 50.999 1.00 2.00 0 ATOM 4940 CC TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CC TRP 716 58.715 25.438 51.743 1.00 2.00 0 ATOM 4940 CC TRP 716 62.406 27.594 47.954 1.00 2.00 0 ATOM 4940 CC TRP 716 62.406 27.594 47.954 1.00 2.00 0 ATOM 4940 CC TRP 716 62.406 27.594 47.954 1.00 2.00 0 ATOM 4940 CC TRP 716 62.406 27.594 47.954 1.00 2.00 0 ATOM 4940 CC TRP 716 62.406 27.594 47.954 1.00 2.00 0 ATOM 4940 CC TRP 716 62.406 27.594 47.954 1.00 2.00 0 ATOM 4940 CC CC TRP 716 62.406 27.594 47.										
ATOM 4914 CG2 VAL 713 60.481 32.120 46.224 1.00 2.00 0 ATOM 4915 C VAL 713 58.319 30.653 43.538 1.00 21.93 0 ATOM 4916 O VAL 713 57.092 30.567 43.593 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4919 CA LEU 714 58.434 28.642 42.249 1.00 10.30 0 ATOM 4920 CB LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4922 CD1 LEU 714 57.229 27.357 39.909 1.00 43.72 0 ATOM 4924 C LEU 714 58.26.753 39.025 1.00 42.86 0 ATOM 4925 O LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4926 N GLY 715 59.262 27.099 43.445 1.00 13.23 0 ATOM 4929 C GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4930 O GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 76.36 0 ATOM 4933 CA TRP 716 61.944 25.241 48.554 1.00 2.00 0 ATOM 4935 CG TRP 716 61.944 25.241 48.554 1.00 2.00 0 ATOM 4936 CD2 TRP 716 69.884 24.317 48.932 1.00 2.00 0 ATOM 4937 CE2 TRP 716 59.956 23.439 49.943 1.00 2.00 0 ATOM 4938 CB3 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4938 CB3 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4937 CE2 TRP 716 59.956 23.439 49.943 1.00 2.00 0 ATOM 4938 CB3 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4938 CB3 TRP 716 59.956 23.439 49.943 1.00 2.00 0 ATOM 4938 CB3 TRP 716 59.956 23.439 49.943 1.00 2.00 0 ATOM 4938 CB3 TRP 716 59.956 24.529 49.962 1.00 2.00 0 ATOM 4938 CB3 TRP 716 59.956 23.439 49.943 1.00 2.00 0 ATOM 4938 CB3 TRP 716 59.956 23.439 49.943 1.00 2.00 0 ATOM 4938 CB3 TRP 716 59.956 23.439 49.943 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.956 23.134 48.834 1.00 2.00 0 ATOM 4940 CB2 TRP 716 59.956 23.134 48.834 1.00 2.00 0 ATOM 4940 CB3 TRP 716 59.956 23.134 59.991 1.00 2.00 0 ATOM 4940 CB3 TRP 716 59.956 23.134 59.991 1.00 2.00 0 ATOM 4940 CB3 TRP 716 59.956 23.134 59.991 1.00 2.00 0 ATOM 4940 CB2 TRP 716 59.956 23.134 50.991 1.00 2.00 0 ATOM 4940 CB2 TRP 716 59.956 23.134 50.991 1.00 2.00 0 ATOM 4940 CB TRP 716 63.596 23.134 50.991 1.00 2.00 0 ATOM 4940 CB CB4 7717 63.991 29.997 48.940 1.00 2.00 0 ATOM 4940 CB CB4 7717 63.79									1.00 2.00	
ATOM 4915 C VAL 713 58.319 30.653 43.538 1.00 21.93 0 ATOM 4916 O VAL 713 57.092 30.567 43.593 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4919 CA LEU 714 58.434 28.642 42.249 1.00 10.30 0 ATOM 4920 CB LEU 714 58.642 27.005 40.272 1.00 42.23 0 ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4922 CD1 LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4923 CD2 LEU 714 58.224 27.530 39.909 1.00 43.72 0 ATOM 4923 CD2 LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4925 O LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4926 N GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4928 CA GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4929 C GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4930 O GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 19.62 0 ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4934 CB TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4936 CD2 TRP 716 61.365 26.503 47.918 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.960 23.439 49.943 1.00 2.00 0 ATOM 4937 CE2 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4938 CE3 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4938 CE3 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4940 CZ TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4940 CZ TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4940 CZ TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4940 CZ TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4940 CZ TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4940 CZ TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4940 CZ TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4940 CZ CZ TRP 716 50.950 23.439 49.943 1.00 2.00 0 ATOM 4940 CZ CZ TRP 716										
ATOM 4916 O VAL 713 57.092 30.567 43.593 1.00 2.00 0 ATOM 4917 N LEU 714 59.063 29.766 42.249 1.00 10.30 0 ATOM 4919 CA LEU 714 59.063 29.766 42.249 1.00 10.30 0 ATOM 4920 CB LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4922 CD1 LEU 714 59.478 26.753 39.099 1.00 43.72 0 ATOM 4923 CD2 LEU 714 59.478 26.753 39.025 1.00 42.86 0 ATOM 4924 C LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4926 N GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4928 CA GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4930 O GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 19.62 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4934 CB TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4935 CG TRP 716 61.365 26.503 47.918 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.943 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.946 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.946 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.946 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.946 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.946 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.946 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.946 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.946 1.00 2.00 0 ATOM 4938 CD3 TRP 716 59.936 24.529 49.946 1.00 2.00 0 ATOM 4934 CD3 TRP 716 59.936 24.529 49.946 1.00 2.00 0 ATOM 4934 CD3 TRP 716 59.936 24.529 49.946 1.00 2.00 0 ATOM 4934 CD3 TRP 716 59.936 25.531 49.941 1.00 2.00 0 ATOM 4934 CD3 TRP 716 59.936 29.938 49.943 1.00 2.00 0 ATOM 4934 CD3 TRP 716 59.936 29.938 49.943 1.00 2.00 0 ATOM 4934 CD3 TRP 716 59.936 29.938 49.943 1.00 2.00 0 ATOM 4934 CD3 TRP 716 59.936 29.938 49.943 1.00 2.00 0 ATOM 4934 CD3 TRP 716 59.936 29.938 49.943 1.00 2.00 0 ATOM 4934 CD3 TRP 71										-
ATOM 4917 N LEU 714 59.063 29.766 42.903 1.00 15.32 0 ATOM 4919 CA LEU 714 58.434 28.642 42.249 1.00 10.30 0 ATOM 4920 CB LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4922 CD1 LEU 714 57.229 27.357 39.909 1.00 43.72 0 ATOM 4923 CD2 LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4925 O LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4926 N GLY 715 59.322 27.075 40.845 1.00 44.72 0 ATOM 4928 CA GLY 715 59.322 27.075 44.800 1.00 76.36 0 ATOM 4929 C GLY 715 59.263 25.975 44.800 1.00 76.36 0 ATOM 4929 C GLY 715 59.263 25.975 44.800 1.00 76.36 0 ATOM 4930 O GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4934 CB TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4936 CD2 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4936 CD2 TRP 716 69.844 25.241 48.554 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.950 25.541 50.999 1.00 2.00 0 ATOM 4930 CD1 TRP 716 59.950 25.541 50.999 1.00 2.00 0 ATOM 4930 CD1 TRP 716 59.950 25.541 50.999 1.00 2.00 0 ATOM 4930 CD1 TRP 716 59.950 25.541 50.999 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.950 25.541 50.999 1.00 2.00 0 ATOM 4938 CC2 TRP 716 59.950 25.541 50.999 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 CC2 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4940 CC2 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4940 CA TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4940 CA CRP 717 66.3596 27.315 47.871 1.00 2.00 0 ATOM 4940 CA CRP 717 66.3596 27.315 47.871 1.00 2.00 0 ATOM 4940 CA CRP 717 66.3596 27.315 47.871 1.00 2.00 0 ATOM 4940 CA CRP 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4940 CA CRP 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4940 CA CRP 717 62.911 29.937 48.941 1.00 2.00 0 ATOM 4940 CA CRP 717 62										
ATOM 4919 CA LEU 714 58.434 28.642 42.249 1.00 10.30 0 ATOM 4920 CB LEU 714 59.285 28.147 41.078 1.00 48.90 0 ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4923 CD2 LEU 714 59.478 26.753 39.909 1.00 43.72 0 ATOM 4923 CD2 LEU 714 59.478 26.753 39.005 1.00 42.86 0 ATOM 4924 C LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4925 O LEU 714 57.096 27.099 43.445 1.00 44.72 0 ATOM 4926 N GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4928 CA GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4929 C GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4935 CG TRP 716 61.365 26.503 47.918 1.00 2.00 0 ATOM 4936 CD2 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4937 CE2 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4938 CE3 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.936 23.439 49.943 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.956 23.439 49.943 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.956 23.439 49.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.956 23.439 49.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.956 23.3134 48.343 1.00 2.00 0 ATOM 4939 CD2 TRP 716 59.956 23.3134 48.343 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.956 23.3134 48.343 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.956 23.3134 48.343 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.956 23.3134 48.343 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.956 23.3134 48.343 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.956 23.3134 48.343 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.956 23.3134 48.343 1.00 2.00 0 ATOM 4940 NEI TRP 716 57.843 23.334 50.830 1.00 2.00 0 ATOM 4940 NEI TRP 716 57.843 23.334 50.830 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.956 27.315 47.871 1.00 2.00 0 ATOM 4940 NEI TRP 716 57.843 29.343 50.404 1.00 2.00 0 ATOM 4940 NEI TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4940 NEI TRP 716 62.406 27.594 47.954 1.00 2.00 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4940 NEI TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4940 NEI									1.00 15.32	
ATOM 4921 CG LEU 714 58.662 27.005 40.272 1.00 42.23 0 ATOM 4922 CD1 LEU 714 57.229 27.357 39.909 1.00 43.72 0 ATOM 4923 CD2 LEU 714 59.478 26.753 39.025 1.00 42.86 0 ATOM 4924 C LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4925 O LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4926 N GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4928 CA GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4929 C GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4929 C GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4930 O GLY 715 58.814 26.974 46.929 1.00 19.62 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4935 CG TRP 716 61.944 25.241 48.554 1.00 2.00 0 ATOM 4935 CG TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 NE1 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.843 24.343 51.783 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.994 23.334 50.800 1.00 2.00 0 ATOM 4940 CZ TRP 716 57.994 23.334 50.800 1.00 2.00 0 ATOM 4940 CZ TRP 716 62.400 2.900		4919								
ATOM 4922 CD1 LEU 714 57.229 27.357 39.909 1.00 43.72 0 ATOM 4923 CD2 LEU 714 59.478 26.753 39.025 1.00 42.86 0 ATOM 4924 C LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4925 O LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4926 N GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4928 CA GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4929 C GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4930 O GLY 715 58.814 26.974 46.929 1.00 19.62 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4934 CB TRP 716 61.365 26.503 47.918 1.00 2.00 0 ATOM 4935 CG TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4936 CD2 TRP 716 69.884 24.529 49.962 1.00 2.00 0 ATOM 4937 CE2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CC3 TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.750 25.541 50.909 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.750 25.541 50.909 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 NE1 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4944 CH2 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4949 CA GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0										
ATOM 4923 CD2 LEU 714 59.478 26.753 39.025 1.00 42.86 0 ATOM 4924 C LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4925 O LEU 714 57.096 27.099 43.445 1.00 44.72 0 ATOM 4926 N GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4928 CA GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4929 C GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4930 O GLY 715 58.814 26.974 46.929 1.00 19.62 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4934 CB TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4935 CG TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4936 CD2 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CC3 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CC3 TRP 716 59.936 23.439 49.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 TRP 716 59.454 23.334 50.830 1.00 2.00 0 ATOM 4940 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4947 N GLY TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4947 N GLY TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4947 N GLY TRP 716 62.911 29.937 48.124 1.00 2.00 0 ATOM 4947 N GLY TRP 716 62.911 29.937 48.124 1.00 2.00 0 ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0					_					
ATOM 4924 C LEU 714 58.224 27.530 43.235 1.00 13.23 0 ATOM 4925 O LEU 714 57.096 27.099 43.445 1.00 44.72 0 ATOM 4926 N GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4928 CA GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4930 O GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4935 CG TRP 716 61.944 25.241 48.554 1.00 2.00 0 ATOM 4936 CD2 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.750 23.439 49.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.950 25.541 50.909 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 NEI TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 CZ2 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ2 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4940 CZ2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4940 CZ2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4940 CZ2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4940 CZ2 TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4940 CZ2 TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 662.406 27.594 47.954 1.00 4.87 0 ATOM 4947 N GLY 717 61.968 28.877 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4949 CA GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4949 CA GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717										
ATOM 4926 N GLY 715 59.322 27.075 43.834 1.00 76.36 0 ATOM 4928 CA GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4929 C GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4930 O GLY 715 58.814 26.974 46.929 1.00 19.62 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4934 CB TRP 716 61.944 25.241 48.554 1.00 2.00 0 ATOM 4935 CG TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.050 23.439 49.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4944 CH2 TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4950 C GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4951 O GLY 717 63.725 30.031 49.414 1.00 2.00 0					714					
ATOM 4928 CA GLY 715 59.263 25.995 44.800 1.00 76.36 0 ATOM 4929 C GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4930 O GLY 715 58.814 26.974 46.929 1.00 19.62 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4934 CB TRP 716 61.944 25.241 48.554 1.00 2.00 0 ATOM 4935 CG TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4937 CE2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.950 23.439 49.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NE1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4940 CD2 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4941 CH2 TRP 716 57.843 24.343 51.783 1.00 2.00 0 ATOM 4944 CH2 TRP 716 62.406 27.594 47.954 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.725 30.031 49.414 1.00 2.00 0										
ATOM 4929 C GLY 715 59.630 26.420 46.206 1.00 76.36 0 ATOM 4930 O GLY 715 58.814 26.974 46.929 1.00 19.62 0 ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 2.00 0 ATOM 4935 CG TRP 716 61.944 25.241 48.554 1.00 2.00 0 ATOM 4936 CD2 TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4937 CE2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.050 23.439 49.943 1.00 2.00 0 ATOM 4939 CD1 TRP 716 59.750 25.541 50.909 1.00 2.00 0 ATOM 4940 NE1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4942 CZ2 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4944 CH2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4949 CA GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.725 30.031 49.414 1.00 2.00 0										
ATOM 4930 O GLY 715 58.814 26.974 46.929 1.00 19.62 O ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 O ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 2.00 O ATOM 4935 CG TRP 716 61.944 25.241 48.554 1.00 2.00 O ATOM 4936 CD2 TRP 716 59.936 24.529 49.962 1.00 2.00 O ATOM 4937 CE2 TRP 716 59.936 24.529 49.962 1.00 2.00 O ATOM 4938 CE3 TRP 716 59.936 24.529 49.962 1.00 2.00 O ATOM 4938 CE3 TRP 716 59.750 25.541 50.909 1.00 2.00 O ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 O ATOM 4940 NEI TRP 716 59.454 22.597 48.940 1.00 2.00 O ATOM 4940 NEI TRP 716 59.454 22.597 48.940 1.00 2.00 O ATOM 4942 CZ2 TRP 716 57.994 23.334 50.830 1.00 2.00 O ATOM 4943 CZ3 TRP 716 57.994 23.334 50.830 1.00 2.00 O ATOM 4945 C TRP 716 57.843 24.343 51.783 1.00 2.00 O ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 O ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 O ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 O ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 O ATOM 4949 CA GLY 717 61.968 28.837 48.067 1.00 2.00 O ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 O ATOM 4949 CA GLY 717 63.725 30.031 49.414 1.00 2.00 O ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 O ATOM 4951 O GLY 717 63.725 30.031 49.414 1.00 2.00 O ATOM 4951 O GLY 717 63.725 30.031 49.414 1.00 2.00									1.00 76.36	
ATOM 4931 N TRP 716 60.875 26.183 46.583 1.00 4.87 0 ATOM 4933 CA TRP 716 61.365 26.503 47.918 1.00 4.87 0 ATOM 4934 CB TRP 716 61.944 25.241 48.554 1.00 2.00 0 ATOM 4935 CG TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4937 CE2 TRP 716 59.050 23.439 49.943 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.750 25.541 50.909 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NE1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4942 CZ2 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4944 CH2 TRP 716 57.843 24.343 51.783 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 2.00 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.725 30.031 49.414 1.00 2.00 0			_						1.00 19.62	
ATOM 4934 CB TRP 716 61.944 25.241 48.554 1.00 2.00 0 ATOM 4935 CG TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4937 CE2 TRP 716 59.050 23.439 49.943 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.750 25.541 50.909 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4942 CZ2 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4944 CH2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.443 29.343 50.404 1.00 2.00 0		4931		TRP						
ATOM 4935 CG TRP 716 60.884 24.317 48.932 1.00 2.00 0 ATOM 4936 CD2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4937 CE2 TRP 716 59.050 23.439 49.943 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.750 25.541 50.909 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4942 CZ2 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4944 CH2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4949 CA GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.433 29.343 50.404 1.00 2.00 0										
ATOM 4936 CD2 TRP 716 59.936 24.529 49.962 1.00 2.00 0 ATOM 4937 CE2 TRP 716 59.050 23.439 49.943 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.750 25.541 50.909 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4942 CZ2 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4944 CH2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.433 29.343 50.404 1.00 2.00 0										
ATOM 4937 CE2 TRP 716 59.050 23.439 49.943 1.00 2.00 0 ATOM 4938 CE3 TRP 716 59.750 25.541 50.909 1.00 2.00 0 ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4942 CZ2 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4944 CH2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4949 CA GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.433 29.343 50.404 1.00 2.00 0										
ATOM 4939 CD1 TRP 716 60.562 23.134 48.343 1.00 2.00 0 ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4942 CZ2 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4944 CH2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.443 29.343 50.404 1.00 2.00 0						59.050	23.439			
ATOM 4940 NE1 TRP 716 59.454 22.597 48.940 1.00 2.00 0 ATOM 4942 CZ2 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4944 CH2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.443 29.343 50.404 1.00 2.00 0										
ATOM 4942 CZ2 TRP 716 57.994 23.334 50.830 1.00 2.00 0 ATOM 4943 CZ3 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4944 CH2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.443 29.343 50.404 1.00 2.00 0										
ATOM 4943 CZ3 TRP 716 58.715 25.438 51.783 1.00 2.00 0 ATOM 4944 CH2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.443 29.343 50.404 1.00 2.00 0										
ATOM 4944 CH2 TRP 716 57.843 24.343 51.743 1.00 2.00 0 ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.443 29.343 50.404 1.00 2.00 0									1.00 2.00	0
ATOM 4945 C TRP 716 62.406 27.594 47.954 1.00 4.87 0 ATOM 4946 O TRP 716 63.596 27.315 47.871 1.00 2.00 0 ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.443 29.343 50.404 1.00 2.00 0					716					
ATOM 4947 N GLY 717 61.968 28.837 48.067 1.00 2.00 0 ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.443 29.343 50.404 1.00 2.00 0	MOTA									
ATOM 4949 CA GLY 717 62.911 29.937 48.124 1.00 2.00 0 ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.443 29.343 50.404 1.00 2.00 0										
ATOM 4950 C GLY 717 63.725 30.031 49.414 1.00 2.00 0 ATOM 4951 O GLY 717 63.443 29.343 50.404 1.00 2.00 0								48.124		
ATOM 4951 O GLY 717 63.443 29.343 50.404 1.00 2.00 0								49.414		
ATOM 4952 N GLU 718 64.752 30.880 49.387 1.00 4.99 0		4951		GLY	717					
	MOTA	4952	11	GLU	718	64.752	30.880	49.38/	1.00 4.99	()

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4954 4955 4955 4957 4958 4960 4961 4964 4967 4967 4977 4977 4977 4977 4977	ND2 C O N CA CB CG OD1		718 718 718 718 718 718 718 719 719 719 719 719 720 720 720 720 720 720 720 720	65.606 66.980 68.026 68.627 69.392 68.353 64.883 64.596 63.859 62.533 60.879 64.781 65.825 64.388 65.212 64.742 65.024 66.1024 66.255	31.113 31.619 31.716 30.371 30.358 29.336 32.182 33.269 31.863 32.804 32.965 33.912 32.676 33.855 33.529 35.117 36.222 37.535 37.574 38.071 37.094 36.352 36.986	50.538 50.092 51.211 51.633 52.624 50.986 51.340 50.828 52.590 53.444 54.591 55.296 55.983 55.110 54.007 54.566 53.878 54.351 53.706 55.869 56.370	1.00 8.49 1.00 86.14 1.00 89.35 1.00 87.67 1.00 95.59 1.00 88.92 1.00 9.60 1.00 90.23 1.00 33.93 1.00 14.30 1.00 14.30 1.00 14.30 1.00 14.30 1.00 14.30 1.00 42.61 1.00 47.00 1.00 77.30 1.00 90.51 1.00 39.89 1.00 74.64	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4981 4982 4984 4985 4988 4998 4998 4999 4999 4999	N CA CB CG CD NE CZ NH1 NH2 C O N CA CC C C C C C C C C C C C C C C C C	ARG ARG ARG ARG ARG ARG ARG ARG ARG GLY GLY VAL VAL	720 721 721 721 721 721 721 721 721 721 722 722	66.255 64.411 64.446 63.262 61.946 59.593 59.751 57.809 65.710 65.982 66.449 67.668 67.392 66.134 65.717 66.459 64.546	35.728 35.729 35.759 35.693 34.836 36.315 36.965 36.682 35.093 35.142 34.437 33.752 32.344 31.655 31.918 30.591 30.591 30.591 30.591 30.591 30.591 30.591	56.600 58.649 58.649 59.300 59.103 59.766 60.690 59.485 58.592 59.798 57.697 58.592 59.058 59.058 58.592 58.592 58.592 58.592 58.592 58.593 58.592 58.593	1.00 74.84 1.00 13.83 1.00 12.18 1.00 7.28 1.00 7.28 1.00 8.88 1.00 9.83 1.00 8.95 1.00 8.62 1.00 8.44 1.00 10.25 1.00 4.85 1.00 4.85 1.00 4.85 1.00 10.85 1.00 10.85 1.00 10.85 1.00 2.00 1.00 2.00 1.00 2.00 1.00 10.85	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5010 5011 50112 5014 5015 5016 5018 5019 5020 5022 5023 5024 5025 5026 5027 5029 5030 5031 5032 5033 5033 5033	ONCA CB CCD1 CCZ CONCA CB CCD1 CCZ CONCA CB CCD1 CCZ CONCA CCC CCC CCC CCC CCC CCC CCC CCC CCC	VAL SER SER SER SER PHE PHE PHE PHE PHE PHE PHE PHE PHE PHE	723 724 724 724 724 725 725 725 725 725 725 725 725 725 725	63.667 63.667 63.479 62.127 61.077 63.583 64.680 62.454 62.461 62.891 62.451 62.451 62.458 64.578 63.733 61.222 60.009 60.468 61.880 60.222	30.883 28.802 28.193 28.609 27.808 28.588 28.643 29.007 27.779 26.551 25.916 26.044 24.791 24.906 24.791 24.906 29.787 30.040 30.162 30.877 32.154 32.098 33.327	57.714 57.824	1.00 2.00 1.00 42.15 1.00 42.15 1.00 2.00 1.00 2.00	

MOTA	5039	С	THR	726	59.450	29.866	50.382	1.00 34.20	0
MOTA	5040	0	THR	726	60.201	29.208	49.684	1.00 2.00	0
MOTA	5041	N	PHE	727	58.144	29.685	50.375	1.00 2.00	Ö
ATOM	5043	CA	PHE	727	57.555	28.712	49.483		ŏ
ATOM	5044	CB	PHE	727	56.852	27.612	50.275	1.00 9.97	ő
ATOM	5045			727	55.698	28.096	51.105	1.00 15.33	-
		CG	PHE						0
MOTA	5046	CD1	PHE	727	54.394	27.922	50.666	1.00 9.89	0
ATOM	5047	CD2	PHE	727	55.916	28.726	52.323	1.00 15.65	0
ATOM	5048	CE1	PHE	727	53.338	28.360	51.418	1.00 11.89	0
ATOM	5049	CE2	PHE	727	54.852	29.171	53.087	1.00 6.87	0
MOTA	5050	CZ	PHE	727	53.563	28.986	52.631	1.00 11.72	0
ATOM	5051	С	PHE	727	56.580	29.398	48.553	1.00 2.00	0
MOTA	5052	0	PHE	727	55.848	30.312	48.982	1.00 18.77	Ó
ATOM	5053	N	GLY	728	56.576	28.956	47.289	1.00 13.14	Ŏ
ATOM	5055	CA	GLY	728	55.709	29.542	46.277	1.00 12.12	ŏ
	5056		GLY	728	54.348	28.894	46.174	1.00 13.69	ŏ
ATOM		C							
MOTA	5057	0	GLY	728	54.062	27.913	46.862	1.00 2.00	0
MOTA	5058	N	ALA	729	53.513	29.436	45.292	1.00 33.39	0
MOTA	50 60	CA	ALA	729	52.161	28.916	45.080	1.00 33.11	0
MOTA	5061	CB	ALA	729	51.37 5	29.862	44.200	1.00 16.31	0
MOTA	5062	С	ALA	729	52.139	27.507	44.485	1.00 31.34	0
ATOM	5063	0	ALA	729	51.143	26.796	44.600	1.00 16.31	0
ATOM	5064	N	GLU	730	53.221	27.105	43.831	1.00 22.53	0
MOTA	5066	CA	GLU	730	53.284	25.761	43.281	1.00 26.87	ŏ
	5067			730	54.622	25.551	42.570	1.00 59.75	ő
MOTA		CB	GLU			24.117		1.00 62.63	
MOTA	5068	CG	GLU	730	54.893		42.142		0
MOTA	5069	CD	GLU	730	56.138	23.984	41.283	1.00 68.00	0
MOTA	507 0	OE1	GLU	730	57.213	23.624	41.822	1.00 74.97	0
ATOM	5071	OE2	GLU	730	56. 034	24.238	40.063	1.00 67.31	0
MOTA	5072	С	GLU	730	53.140	24.781	44.446	1.00 24.85	0
MOTA	5073	0	GLU	730	52.285	23.899	44.425	1.00 58.27	0
ATOM	5074	N	VAL	731	53.9 5 8	24.989	45.477	1.00 24.13	0
MOTA	5076	CA	VAL	731	53.985	24.157	46.679	1.00 19.42	0
MOTA	5077	CB	VAL	731	55.079	24.628	47.645	1.00 19.11	0
	5078		VAL	731	55.159	23.699	48.824	1.00 19.11	ŏ
MOTA		CG1				24.691	46.942	1.00 19.11	ō
MOTA	5079	CG2	VAL	731	56.412				
MOTA	5080	С	VAL	731	52. 65 9	24.165	47.423		0
ATOM	5081	0	VAL	731	52.210	23.128	47.900	1.00 19.11	0
ATOM	5082	N	VAL	732	52.035	25.332	47.525	1.00 15.54	0
MOTA	5084	CA	VAL	73 2	50.750	25.449	48.209	1.00 15.54	0
MOTA	5085	CB	VAL	732	50.254	26.898	48.240	1.00 20.17	0
ATOM	5086	CG1	VAL	73 2	48.907	26.985	48.962	1.00 20.17	0
ATOM	5087	CG2	VAL	732	51.272	27.764	48.902	1.00 20.17	0
ATOM	5088	C	VAL	732	49.653	24.609	47.554	1.00 15.54	0
			VAL	732	49.011	23.791	48.222	1.00 20.17	0
MOTA	5089	0				24.822	46.253	1.00 16.29	Ö
MOTA	5090	N	ALA	73 3	49.437			1.00 16.29	ŏ
MOTA	5092	CA	ALA	73 3	48.408	24.109	45.501		Õ
MOTA	5093	CB	ALA	73 3	48.260			1.00 17.33	-
MOTA	5094	С	ALA	73 3	48.703	22.618	45.390	1.00 16.29	0
MOTA	5095	0	ALA	73 3	47. 77 6	21.795	45.349	1.00 17.78	0
ATOM	5096	N	LYS	734	49.996	22.287	45.348	1.00 2.00	0
MOTA	5098	CA	LYS	734	50. 49 9	20.905	45.259	1.00 2.00	0
ATOM	5099	CB	LYS	734	52.012	20.936	45.015	1.00 23.03	0
ATOM	5100	CG	LYS	734	52.507	20.244	43.759	1.00 25.55	0
ATOM	5101	CD	LYS	734	52.696	21.212	42.594	1.00 35.13	0
				734	53.613	20.608	41.521	1.00 40.96	0
MOTA	5102	CE	LYS			20.308	42.001	1.00 46.09	ő
MOTA	5103	NZ	LYS	734	55.006				ŏ
MOTA	5107	Ċ	LYS	734	50.222	20.146	46.578		ő
MOTA	5108	0	LYS	734	49.995	18.926	46.591	1.00 16.68	
ATOM	5109	N	PHE	73 5	50. 26 3	20.915	47.670	1.00 36.96	0
ATOM	5111	CA	PHE	73 5	50.036	20.478	49.047	1.00 33.73	0
MOTA	5112	CB	PHE	735	50.606	21.554	49.991	1.00 8.60	0
MOTA	5113	ČĞ	PHE	735	50.320	21.323	51.465	1.00 8.60	0
ATOM	5114	CD1		735	50.955	20.298	52.169	1.00 8.60	0
ATOM	5115	CD2		735	49.412	22.135	52.142	1.00 8.60	0
				735 735	50.690	20.086	53.512	1.00 8.60	Ō
MOTA	5116	CE1			49.143	21.929	53.483	1.00 8.60	ŏ
MOTA	5117	CE2		73 5			54.168	1.00 8.60	0
MOTA	5118	CZ	PHE	73 5	49.784	20.900	Ja. 100	3.00	J

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5119 5120 5121 5123 5124 5125 5126 5127 5128 5129 5130 5133 5134 5135	CD2 C O N CA CB	PHE PHE LEU LEU LEU LEU LEU HIS HIS HIS	735 735 736 736 736 736 736 736 737 737 737	48.54 48.15 47.73 46.28 45.59 45.31 45.41 45.74 44.98 46.14 46.42 46.63 47.77	1 19.181 1 21.281 9 21.208 9 22.451 7 23.760 4 24.887 5 23.743 1 20.014 19.206 7 19.906 7 18.818 3 19.037 8 17.784 9 17.169	49.801 49.075 49.299 48.770 49.456 48.689 50.896 48.567 49.308 46.427 45.057 44.263 43.868	1.00 34.15 1.00 8.60 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 25.73 1.00 25.73 1.00 69.97 1.00 68.65 1.00 71.13	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM	5136 5138 5139 514 1	CE1	HIS HIS HIS	737 737 737 737	45.60 46.09 47.41 46.08	3 15.974 2 16.046	43.783 43.129 43.166 47.037	1.00 76.45 1.00 76.42 1.00 74.54 1.00 25.73	0 0 0
ATOM ATOM ATOM ATOM	5142 5143 5145 5146	O N CA CB	HIS LYS LYS LYS	737 738 738 738	45.22 47.34 47.83 49.34	3 16.570 7 17.266 6 16.028	47.166 47.422 48.010 48.256	1.00 61.28 1.00 11.82 1.00 10.83 1.00 10.15	0 0 0
ATOM ATOM ATOM	5147 5148 5149	CG CD CE	LYS LYS LYS	738 738 738	49.999 51.510 52.278	9 15.111 6 15.253	49.119 49.005 50.274	1.00 13.96 1.00 16.98 1.00 14.10	0
ATOM ATOM ATOM	5150 5154 5155	NZ C O	LYS LYS LYS	738 738 738	52.154 47.123 47.038	13.362 1 15.655 3 14.473	50.650 49.301 49.640	1.00 13.23 1.00 17.32 1.00 16.32	0 .0
ATOM ATOM ATOM	5156 5158 5159	N CA CB	HIS HIS	739 739 739	46.598 45.935 46.689	16.319 16.965	50.028 51.284 52.460	1.00 2.00 1.00 2.00 1.00 9.90	0 0 0
ATOM ATOM ATOM ATOM	5160 5161 5162 5164		HIS HIS HIS	739 739 739 739	48.099 48.603 49.182 50.291	15.318 2 17.212	52.597 53.077 52.148 52.340	1.00 8.91 1.00 3.85 1.00 7.65 1.00 6.50	0 0 0
ATOM ATOM ATOM	5165 5167 5168	NE2 C O	HIS HIS HIS	73 9 73 9 73 9	49.966 44.442 43.913	15.364 2 16.598 3 16.722	52.901 51.378 52.477	1.00 3.85 1.00 2.00 1.00 18.58	0 0 0
ATOM ATOM ATOM ATOM	5169 5171 5172 5173	N CA CB CG	ASP ASP ASP	740 740 740 740	43.763 42.314 41.567 42.092	1 16.912 7 15. 69 5	50.236 50.191 50.758 50.206	1.00 2.00 1.00 2.00 1.00 37.08 1.00 45.58	0 0 0
ATOM ATOM ATOM	5174 5175 5176	OD1	ASP ASP ASP	740 740 740	42.974 41.622 41.900	13.754 2 13.932 18.170	50.856 49.129 50.955	1.00 45.42 1.00 41.93 1.00 2.00	0 0 0
MOTA MOTA MOTA MOTA	5177 5178 5180 5181	O N CA CB	ASP LEU LEU LEU	740 741 741 741	40.773 42.824 42.610 43.920	19.113 20.357	51.432 51.045 51.764 52.415	1.00 36.93 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
ATOM ATOM ATOM	5182 5183 5184	CG CD1 CD2	LEU LEU LEU	741 741 741	44.572 45.906 43.620	2 19.861 5 20.394 19.673	53.388 53.8 5 9 54.519	1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
MOTA MOTA MOTA	5185 5186 5187 5189	C O N CA	LEU LEU ASP ASP	741 741 742 742	42.122 42.261 41.588 41.080	21.301 22.510	50.818 49.611 51.385 50.607	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
MOTA MOTA MOTA	5190 5191 5192	CB CG OD1	ASP ASP	742 742 742	39.605 38. 71 7 39. 15 9	23.858	50.909 50.433 49.622	1.00 21.53 1.00 26.90 1.00 27.19	. 0
ATOM ATOM ATOM ATOM	5193 5194 5195 5196	OD2 C O N	ASP ASP ASP LEU	742 742 742 743	37.555 41.810 42.064 42.141	24.913 25.698	50.876 50.887 49.970 52.149	1.00 25.85 1.00 2.00 1.00 14.77 1.00 5.78	0 0 0
ATOM ATOM ATOM	5198 5199 5200	CA CB CG	LEU LEU	743 743 743	42. 78 5 41.7 4 4 41. 68 9	26.407 27.312 28.847	52.509 53.185 53.088	1.00 5.78 1.00 2.00 1.00 2.00	0 0 0
ATOM	5201	CD1	LEU	743	40. 94 7	29.364	54.297	1.00 2.00	0

ATOM	5202		LEU	743	43.051	29.469	53.053	1.00 2.00	0
MOTA	5203	C	LEU	743	43.919	26.152	53.483	1.00 5.78	0
MOTA	5204	0	LEU	743	43.973	25.091	54.088 53.599	1.00 2.00 1.00 2.00	0
MOTA	5205	N	ILE	744	44.837 45.916	27.104 27.031	54.574	1.00 2.00	0
MOTA	5207	CA	ILE	744	47.338	27.031	53.968	1.00 2.00	Ö
MOTA	5208	CB CG2	ILE ILE	744 744	48.360	27.214	55.089	1.00 2.00	Ö
ATOM	5209	CG2	ILE	744	47.637	25.754	53.204	1.00 2.00	Ö
ATOM	5210 5211	CD1	ILE	744	49.117	25.602	52.856	1.00 2.00	ŏ
ATOM ATOM	5211	CDI	ILE	744	45.770	28.330	55.356	1.00 2.00	ŏ
ATOM	5213	ŏ	ILE	744	45.830	29.423	54.788	1.00 2.00	Õ
ATOM	5214	N	CYS	745	45.557	28.226	56.655	1.00 71.57	ŏ
ATOM	5216	CA	CYS	745	45.426	29.418	57.462	1.00 66.70	Ō
MOTA	5217	CB	CYS	745	44.204	29.301	58.363	1.00 17.55	0
	5218	ŠG	CYS	745	43.454	30.878	58.703	1.00 23.65	0
ATOM	5219	C	CYS	745	46.700	29.572	58.281	1.00 69.12	0
ATOM	5220	Ō	CYS	745	47.093	28.667	59.017	1.00 21.37	0
ATOM	5221	N	ARG	746	47.363	30.706	58.121	1.00 2.00	0
ATOM	5223	CA	ARG	746	48.594	30.982	58.837	1.00 2.00	0
ATOM	5224	CB	ARG	746	49.810	30.672	57.944	1.00 2.00	0
ATOM	5225	CG	ARG	746	49.860	31.394	56.609	1.00 2.00	0
ATOM	5226	CD	ARG	746	50. 79 2	32.619	56.617	1.00 2.00	0
MOTA	5227	NE	ARG	746	52.220	32.293	56.560	1.00 - 2.00	0
MOTA	5229	CZ	ARG	746	53.212	33.184	56.626	1.00 2.00	0
MOTA	5230	NH1	ARG	746	52.956	34.479	56.738	1.00 2.00	0
ATOM	5233	NH2	ARG	746	54.468	32.778	56.603	1.00 2.00	0
ATOM	5236	С	ARG	746	48.597	32.439	59.271	1.00 2.00	0
MOTA	5237	0	ARG	746	47.739	33.220	58.847	1.00 2.00 1.00 2.00	0
MOTA	5238	N	ALA	747	49.524	32.802	60.146 60.595	1.00 2.00	Ö
MOTA	5240	CA	ALA	747	49.635	34.185	62.106	1.00 2.00	ő
MOTA	5241	CB	ALA	747	49.410 51.073	34.264 34.588	60.193	1.00 2.00	ŏ
MOTA	5242	C	ALA	747	51.073	34.658	58.999	1.00 2.00	ŏ
ATOM	5243	0	ALA	747 748	51.943	34.854	61.168	1.00 2.00	Õ
ATOM	5244	N CA	HIS HIS	748	53.359	35.168	60.939	1.00 2.00	0
MOTA	5246	_	HIS	748	53.812	36.462	60.309	1.00 2.00	0
MOTA MOTA	5247 5248	C O	HIS	748	54.820	37.004	60.744	1.00 2.00	0
ATOM	5249	CB	HIS	748	54.032	34.028	60.187	1.00 2.00	0
ATOM	5250	CG	HIS	748	55.503	33.916	60.429	1.00 2.00	0
MOTA	5251		HIS	748	56.023	33.803	61.694	1.00 2.00	0
ATOM	5252		HIS	748	57.308	33.548	61.526	1.00 2.00	0
ATOM	5253	CD2		748	56.493	33. 73 7	59.527	1.00 2.00	0
ATOM	5254	NE2	HIS	748	57.634	33.500	60.237	1.00 2.00	0
ATOM	5256	N	GLN	749	53.116	36.962	59.302	1.00 2.00	0
MOTA	5258	CA	GLN	749	53.556	38.197	58.677	1.00 2.00 1.00 27.13	ŏ
ATOM	525 9	CB	GLN	749	53.964	37.940	57.249	1.00 27.13 1.00 28.03	0
MOTA	5260	CG	GLN	749	55.257	37.222	57.143	1.00 28.03	Ö
MOTA	5261	CD	GLN	749	55.586	36.915	55.720 55.107	1.00 30.37	Õ
MOTA	5262		GLN	749	56.425	37.580 35.898	55.173	1.00 30.08	Ö
MOTA	5263	NE2		749	54. 92 8 52. 55 6	39.310	58.708	1.00 2.00	Õ
MOTA	5266	C	GLN	749	51.388	39.106	58.407	1.00 25.39	Ö
MOTA	5267	0	GLN	749 750	53.038	40.498	59.069	1.00 6.34	0
MOTA	5268	N	VAL	750 750	52.193	41.682	59.157	1.00 6.34	0
MOTA	5270	CA CB	VAL VAL	750 750	52.968	42.896	59.764	1.00 12.20	0
ATOM	5271			750 750	54.183	43.216	58.935	1.00 12.20	0
MOTA MOTA	527 2 527 3	CG1 CG2		750	52.055	44.109	59.872	1.00 12.20	0
ATOM	5274	CG2	VAL	750	51.672	42.018	57.771	1.00 6.34	0
ATOM	5275	0	VAL	750	52.471	42.219	56.850	1.00 12.20	0
MOTA	5276	N	VAL	751	50.343	42.001	57.617	1.00 25.10	0
ATOM	5278	CA	VAL	751	49.685	42.327	56.348	1.00 25.10	0
ATOM	5279	CB	VAL	751	48.617	41.298	55.902	1.00 2.00	0
MOTA	5280	CG1		751	49.271	39.971	55.524	1.00 2.00	0
ATOM	5281	CG2		751	47.570	41.138	56.976	1.00 2.00	0
ATOM	5282	C	VAL	751	48.996	43.654	56.540	1.00 25.10	0
ATOM	5283	ŏ	VAL	751	48.606	43.995	57.646	1.00 2.00	0
	2602	0							
MOTA		N	GLU	75 2	48.820	44.389	55.453	1.00 2.00	0
MOTA MOTA	5284 5286					44.389 45.709	55.453 55.526	1.00 2.00	0

ATOM	5287	СВ	GLU	752	48.430	46.435	54.190	1.00 39.24	0
ATOM	5288	ČĞ	GLU	752	49.867	46.349	53.628	1.00 75.32 1.00 75.31	0
MOTA	5289	CD	GLU	752	50.962 52.007	46.804 46.121	54.611 54.687	1.00 75.31 1.00 74.90	0
ATOM ATOM	5290 5291		GLU GLU	752 752	50.792	47.837	55.300	1.00 91.76	ŏ
ATOM	5292	C	GLU	752	46.744	45.716	55.913	1.00 2.00	0
ATOM	5293	Ō	GLU	752	46.326	46.469	56.796	1.00 38.94	0
ATOM	5294	N	ASP	7 5 3	45.968 44.527	44.860 44.776	55.259 55.491	1.00 31.76 1.00 34.73	0
ATOM ATOM	5296 5297	CA CB	ASP ASP	753 753	43.787	44.470	54.170	1.00 79.26	ŏ
MOTA	5298	CG	ASP	753	44.539	43.487	53.251	1.00 85.10	0
MOTA	529 9	OD1	ASP	753	44.040	43.240	52.130	1.00 88.01 1.00 92.40	0
ATOM	5300		ASP	753 753	45.613 44.028	42.960 43.853	53.619 56.606	1.00 32.40	0
ATOM ATOM	5301 5302	С 0	ASP ASP	753 753	42.824	43.759	56.835	1.00 64.64	ŏ
ATOM	5303	Ň	GLY	754	44.940	43.188	57.309	1.00 8.60	0
MOTA	5305	CA	GLY	754	44.535	42.309	58.393	1.00 5.10 1.00 3.66	0
MOTA	5306	C	GLY	754 754	44.577 44.781	40.849 39.959	58.007 58.853	1.00 3.80	0
MOTA MOTA	5307 5308	O N	GLY TYR	755 755	44.361	40.611	56.718	1.00 27.09	ŏ
ATOM	5310	CA	TYR	755	44.388	39.282	56.129	1.00 27.09	0
MOTA	5311	CB	TYR	755	43.004	38.632	56.128	1.00 28.14 1.00 25.47	0
ATOM	5312	CG	TYR	7 5 5 75 5	41.976 41.236	39.338 40.393	55.279 55.797	1.00 23.47	0
MOTA MOTA	5313 5314	CD1 CE1	TYR TYR	755 755	40.276	41.049	55.034	1.00 28.13	ŏ
ATOM	5315	CD2	TYR	755	41.736	38.949	53.964	1.00 30.24	0
MOTA	5316	CE2	TYR	755	40.774	39.601	53.187 53.732	1.00 27.11 1.00 32.27	0
MOTA	5317	CZ	TYR	75 5 75 5	40.046 39.086	40.653 41.311	52.996	1.00 32.27	0
MOTA MOTA	5318 5320	OH	TYR TYR	755 . 755	44.844	39.530	54.713	1.00 27.09	ŏ
ATOM	5321	ŏ	TYR	755	44.772	40.654	54.238	1.00 25.53	0
ATOM	5322	N	GLU	756	45.288	38.483	54.035	1.00 8.71 1.00 8.71	0
MOTA	5324	CA	GLU	756 756	45.787 47.170	38.617 39.251	52.676 52.740	1.00 5.76	ŏ
MOTA MOTA	5325 5326	CB CG	GLU GLU	756	47.832	39.557	51.436	1.00 16.72	0
ATOM	5327	CD	GLU	756	49.127	40.303	51.671	1.00 23.34	0
MOTA	5328	OE1	GLU	756	49.074	41.554	51.801 51.751	1.00 25.72 1.00 25.15	0
ATOM	5329	OE2	GLU GLU	756 756	50.194 45.853	39.636 37.2 4 0	52.044	1.00 23.13	ŏ
MOTA MOTA	5330 5331	С 0	GLU	756	46.400	36.306	52.638	1.00 6.14	0
ATOM	5332	Ň	PHE	757	45.269	37.105	50.858	1.00 28.33	0
MOTA	5334	CA	PHE	757	45.270	35.822	50.174 49.253	1.00 28.33 1.00 2.00	0
ATOM	5335 5336	CB CG	PHE PHE	757 757	44.055 42.748	35.683 35.612	49.98Ž	1.00 2.00	ŏ
MOTA MOTA	5337		PHE	757	41.961	36.747	50.137	1.00 2.00	0
ATOM	5338	CD2	PHE	757	42.306	34.407	50.535	1.00 2.00	0
ATOM	5339		PHE	757	40.751	36.695 34.337	50.833 51.238	1.00 2.00 1.00 2.00	0
ATOM ATOM	5340 5341	CE2	PHE PHE	757 757	41.092 40.315	35.489	51.385	1.00 2.00	ŏ
ATOM	5342	C	PHE	757	46.547	35.639	49.387	1.00 28.33	0
MOTA	5343	0	PHE	757	47.220	36.602	49.033	1.00 2.00	0
ATOM	5344	N	PHE	758 758	46.893 48.075	34.387 34.050	49.150 48.397	1.00 2.00 1.00 2.00	. 0
ATOM ATOM	5346 5347	CA CB	PHE PHE	758	49.241	33.789	49.317	1.00 10.52	0
ATOM	5348	CG	PHE	758	50.450	33.263	48.618	1.00 7.54	0
ATOM	5349		PHE	758	51.404	34.131	48.100	1.00 7.91 1.00 7.80	0 0
MOTA	5350 5351	CD2		758 758	50. 654 52. 54 6	31.895 33.642	48.492 47.467	1.00 7.80 1.00 11.14	ő
ATOM ATOM	5351 5352	CE1		758	51.796	31.398	47.858	1.00 11.57	Ö
ATOM	5353	CZ	PHE	758	52.741	32.272	47.347	1.00 10.83	0
ATOM	5354	C	PHE	758	47.725	32.786	47.636	1.00 2.00 1.00 13.46	0 0
ATOM	5355 5356	O N	PHE	758 759	46.826 48.415	32.034 32.573	48.042 46.518	1.00 13.46	0
ATOM ATOM	5356 5358	N CA	ALA ALA	759 759	48.196	31.407	45.673	1.00 17.63	0
ATOM	5359	CB	ALA	759	48.767	30.155	46.334	1.00 2.00	0
ATOM	5360	C	ALA	759	46.733	31.180	45.314	1.00 19.54 1.00 2.00	0
ATOM	5361	O O	ALA LYS	759 760	46.187 46.086	30.106 32.205	45.547 44.780	1.00 2.00	0
ATOM	5362	14	1713	700	40.000				-

ATOM	5364	CA	LYS	760	44 600	20 076	44 341	1 00 3 30	_
			-		44.699	32.076	44.341	1.00 3.38	0
MOTA	5365	CB	LYS	760	44.639	31.068	43.184	1.00 64.10	0
ATOM	5366	CG	LYS	760	45.654	31.316	42.062	1.00 64.10	0
MOTA	5367	CD	LYS	76 0	45.843	30.068	41.205	1.00 64.10	0
ATOM	5368	CE	LYS	760	44.506	29.540	40.699	1.00 64.10	ŏ
MOTA	5369	NZ	LYS	760	44.621	28.293	39.896	1.00 64.10	_
									0
MOTA	5373	С	LYS	760	43.715	31.659	45.432	1.00 3.38	0
ATOM	5374	0	LYS	760	42.953	30. 70 2	45.256	1.00 64.10	0
ATOM	537 5	N	ARG	761	43.751	32.376	46.557	1.00 16.83	Ö
MOTA	5377	CA	ARG	761 ·	42.869	32.139	47.721	1.00 16.83	ŏ
ATOM	5378	CB	ARG	761	41.399	32.154	47.274	1.00 38.86	
									0
MOTA	5379	CG	ARG	761	41.012	33.375	46.458	1.00 38.86	0
MOTA	5380	CD	ARG	761	40.550	34.493	47.334	1.00 38.86	0
MOTA	5381	NE	ARG	761	40.635	35.785	46.669	1.00 38.86	0
MOTA	5383	CZ	ARG	761	39.799	36.793	46.898	1.00 38.86	0
MOTA	5384		ARG	761	38.798	36.642	47.767	1.00 38.86	ŏ
ATOM	5387	NH2	ARG	761	39.988	37.963	46.291	1.00 38.86	
_						_			0
MOTA	5390	Ç	ARG	761	43.145	30.844	48.508	1.00 16.83	0
MOTA	5391	0	ARG	761	42.596	30.639	49.585	1.00 38.86	0
ATOM	5392	N	GLN	762 ⁻	44.021	30.002	47.971	1.00 24.54	0
MOTA	5394	CA	GLN	762	44.359	28.718	48.559	1.00 24.54	0
ATOM	5395	CB	GLN	762	45.167	27.908	47.553	1.00 19.81	ŏ
									_
MOTA	5396	CG	GLN	762	44.502	27.794	46.173	1.00 19.81	0
ATOM	5397	CD	GLN	762	45.309	26.959	45.196	1.00 19.81	0
MOTA	5398	OE1	GLN	762	45.111	25.745	45.097	1.00 19.81	0
MOTA	5 39 9	NE2	GLN	762	46.230	27.596	44.476	1.00 19.81	0
MOTA	5402	C	GLN	762	45.126	28.856	49.857	1.00 24.54	ŏ
				762	45.278	27.893	50.599	1.00 19.81	ŏ
MOTA	5403	0	GLN						
MOTA	5404	N	LEU	763	45.631	30.053	50.119	1.00 2.00	Q
MOTA	5406	CA	LEU	763	46.354	30. 32 6	51.353	1.00 2.00	0
ATOM	5407	CB	LEU	763	47.882	30.319	51.127	1.00 13.68	0
MOTA	5408	CG	LEU	763	48.847	30.427	52.335	1.00 13.68	0
ATOM	5409	CD1		763	50.117	29.641	52.066	1.00 13.68	ŏ
MOTA	5410	_	LEU	763	49.200	31.871	52.633	1.00 13.68	0
ATOM	5411	С	LEU	76 3	45.89 3	31.705	51.809	1.00 2.00	0
ATOM	5412	0	LEU	76 3	45.654	32. 59 5	50.981	1.00 13.68	0
MOTA	5413	N	VAL	764	45.741	31.869	53.118	1.00 13.21	0
ATOM	5415	CA	VAL	764	45.340	33.140	53.680	1.00 13.65	Ō
							53.953	1.00 2.00	ŏ
MOTA	5416	CB	VAL	764	43.825	33.165			
MOTA	5417		VAL	764	43.452	32.097	54.933	1.00 2.00	0
MOTA	5418	CG2	VAL	764	43.404	34.521	54.434	1.00 2.00	0
MOTA	5419	С	VAL	764	46.159	33.36 3	54.9 5 5	1.00 18.12	0
MOTA	5420	ō	VAL	764	46.396	32.437	55.737	1.00 2.00	.0
ATOM	5421		THR	765	46.646	34.587	55.111	1.00 2.00	0
		N					56.254	1.00 2.00	ŏ
MOTA	5423	CA	THR	765	47.453	34.992			
MOTA	5424	CB	THR	76 5	48.731	35. 6 60	55.798	1.00 2.00	0
MOTA	5425	OG1	THR	7 6 5	49.474	34.740	54.991	1.00 2.00	0
MOTA	5427	CG2	THR	765	49.542	36.119	56.973	1.00 2.00	0
ATOM	5428	C	THR	765	46.675	36.024	57.030	1.00 2.00	0
	5429		THR	765	46.201	37.016	56.454	1.00 2.00	0
ATOM		0							ŏ
ATOM	5430	N	LEU	766	46.549	35.797	58.333		
MOTA	543 2	CA	LEU	766	45.832	36.717	59.205	1.00 5.65	0
ATOM	543 3	CB	LEU	766	44.848	35.943	60.059	1.00 2.00	0
MOTA	5434	CG	LEU	766	43.964	34.922	59.372	1.00 2.00	0
ATOM	5435	CD1		766	43.703	33.794	60.327	1.00 2.00	0
				766	42.672	35.581	58.943	1.00 2.00	0
ATOM	5436	CD2	LEU						ŏ
MOTA	5437	С	LEU	766	46.826	37.382	60.142		
ATOM	5438	0	LEU	766	47.864	36.790	60.478	1.00 2.00	0
ATOM	5439	N	PHE	767	46.520	38.605	60.554	1.00 2.00	0
ATOM	5441	CA	PHE	767	47.342	39.320	61.530	1.00 2.00	0
	5442		PHE	767	48.259	40.328	60.864	1.00 2.00	0
MOTA		CB					61.649	1.00 2.00	. ŏ
MOTA	5443	CG	PHE	767	49.494	40.612			
MOTA	5444	CD1		767	50.523	39.678	61.695	1.00 2.00	0
ATOM	5445	CD2	PHE	767	49.647	41.811	62.317	1.00 2.00	0
ATOM	5446	CE1	PHE	7 67	51.689	39.935	62.389	1.00 2.00	0
ATOM	5447	CE2	PHE	767	50.813	42.078	63.018	1.00 2.00	0
			PHE	767	51.838	41.134	63.050	1.00 2.00	0
ATOM	5448	CZ				40.033	62.418	1.00 2.00	Ö
ATOM	5449	C	PHE	7 67	46.325	40.033	02.416	1.00 2.00	U

MOTA MOTA	5450 5451	0	PHE	767 768	45.957 45.850	41.184 39.317	62.171 63.432	1.00 2.00 1.00 2.00	0
ATOM	545 3	N CA	SER SER	768	44.833	39.819	64.334	1.00 2.00	ō
MOTA	5454	CB	SER	768	44.247	38.645	65.091	1.00 2.00	0
MOTA	5455	OG	SER	768	43.903	37.635	64.175	1.00 2.00	0
MOTA	5457	C	SER	768	45.261	40.872	65.336	1.00 2.00	0
MOTA	5458	0	SER	768	46.297	40.731	65.973	1.00 2.00	0
MOTA	5459	N	ALA	769	44.435	41.911	65.474	1.00 30.20 1.00 27.69	0
MOTA	5461	CA	ALA	769	44.619	43.009 42.454	66.428 67.786	1.00 27.69	0
ATOM	5462	CB	ALA	769 760	45.142 45.410	44.253	66.018	1.00 31.35	Ö
MOTA	5463 5464	C	ALA ALA	769 769	44.855	45.347	65.940	1.00 11.84	ŏ
ATOM ATOM	5465	N	PRO	770	46.717	44.109	65.786	1.00 14.07	ŏ
ATOM	5466	CD	PRO	770	47.556	42.904	65.939	1.00 2.00	Õ
ATOM	5467	CA	PRO	770	47.578	45.209	65.398	1.00 14.07	0
ATOM	5468	CB	PRO	7 70	48.615	44.494	64.540	1.00 2.00	0
ATOM	5469	CG	PRO	77 0	48.913	43.329	65.392	1.00 2.00	0
MOTA	5470	С	PRO	770	47.227	46.584	64.825	1.00 14.07	0
MOTA	5471	0	PRO	770	46.081	47.016	64.640	1.00 2.00	0
MOTA	5472	N	ASN	771	48.363	47.259	64.718	1.00 2.00	0
MOTA	5474	CA	ASN	771	48.703	48.578 49.664	64.220 65.022	1.00 2.00 1.00 40.66	0
MOTA	5475	CB	ASN	771	48.014 48.270	51.032	64.457	1.00 40.66	Ö
MOTA	5476 5477	CG	asn asn	771 771	49.382	51.557	64.550	1.00 40.36	ŏ
ATOM ATOM	5477 5478	OD1 ND2	ASN	771	47.249	51.617	63.841	1.00 43.79	ŏ
ATOM	5481	C	ASN	771	50.174	48.414	64.666	1.00 2.00	ō
ATOM	5482	õ	ASN	771	50.811	49.318	65.208	1.00 50.90	0
MOTA	5483	N	TYR	772	50.657	47.191	64.417	1.00 6.11	0
ATOM	5485	CA	TYR	772	51.955	46.645	64.768	1.00 6.11	0
MOTA	5486	CB	TYR	77 2	52.366	45.641	63.705	1.00 8.06	0
MOTA	5487	CG	TYR	77 2	53.253	44.546	64.228	1.00 8.06	0
ATOM	548 8	CD1	TYR	772	52.992	43.949	65.453	1.00 8.06	0
ATOM	5489	CE1	TYR	772	53.781	42.910	65.929	1.00 8.06 1.00 8.06	0
MOTA	5490	CD2	TYR	772	54.335	44.084 43.048	63.487 63.945	1.00 8.06 1.00 8.06	Ö
MOTA	5491	CE2	TYR	772 772	55.135 54.854	42.459	65.170	1.00 8.06	ŏ
ATOM ATOM	5492 5493	CZ OH	TYR TYR .	772	55.634	41.403	65.632	1.00 8.06	ŏ
ATOM	5495	C	TYR .	772	53.130	47.557	65.074	1.00 6.11	ō
ATOM	5496	Ö	TYR	772	53.499	48.428	64.271	1.00 19.22	0
ATOM	5497	Ň	CYS	773	53.724	47.335	66.244	1.00 15.64	0
ATOM	5499	CA	CYS	77 3	54.868	48.107	66.681	1.00 13.08	0
ATOM	550 0	CB	CYS	77 3	56.059	47.798	65.777	1.00 21.47	0
MOTA	5501	SG	CYS	77 3	56.646	46.112	65.891	1.00 23.28	0
MOTA	5502	С	CYS	77 3	54.624	49.617	66.685	1.00 16.93	0
MOTA	5503	0	CYS	773	55.573	50.398	66.832	1.00 20.82 1.00 2.00	0
MOTA	5504	N	GLY	774	53.362 53.059	50.031 51.452	66.545 66.482	1.00 2.00 1.00 2.00	0
MOTA	5506	CA	GLY GLY	774 774	53.039	52.023	65.288	1.00 2.00	ő
MOTA MOTA	5507 5508	С 0	GLY	774	54.051	53.233	65.188	1.00 60.37	ŏ
ATOM	5509	N	GLU	775	54.219	51.130	64.383	1.00 22.26	0
ATOM	5511	CA	GLU	775	54.973	51.500	63.211	1.00 18.01	0
MOTA	5512	CB	GLU	775	56.253	50.683	63.133	1.00 40.50	0
ATOM	551 3	CG	GLU	77 5	57. 10 3	50.811	64.357	1.00 44.10	0
ATOM	5514	CD	GLU	775	58.496	50.246	64.190	1.00 42.58	0
MOTA	5515	OE1	GLU	775	59.404	50.734	64.894	1.00 46.10	0
MOTA	5516	OE2	GLU	775	58.687	49.324	63.367	1.00 44.55	0
ATOM	5517	C	GLU	775	54.181	51.268	61.945	1.00 16.06	0
ATOM	5518	0	GLU	775 776	54.133 53.530	52.118 50.125	61.051 61.874	1.00 34.47 1.00 21.64	Ö
ATOM	5519	N	PHE	776 776	53.530	49.796	60.667	1.00 21.64	Ö
ATOM ATOM	5521 5522	CA CB	PHE PHE	776	52.809	48.279	60.517	1.00 7.64	ŏ
ATOM	5523	CG	PHE	776	54.213	47.739	60.363	1.00 6.06	ŏ
ATOM	5524	CD1	PHE	776	55.056	47.656	61.452	1.00 6.54	Ö
ATOM	5525	CD2	PHE	776	54.692	47.363	59.122	1.00 10.09	0
ATOM	5526	CE1	PHE	7 76	56.370	47.206	61.313	1.00 6.06	0
ATOM	5527	CE2	PHE	776	56.005	46.910	58.969	1.00 9.96	0
MOTA	5528	CZ	PHE	776	56.845	46.833	60.071	1.00 6.06	0
MOTA	5529	$\overline{}$	PHE	776	51.424	50.402	60.480	1.00 21.71	0

ATOM ATOM ATOM	5530 5531 5533	O N CA	PHE ASP ASP	776 777 7 7 7	50.979 50.757 49.427	50.601 50.720 51.322	59.346 61.584 61.532	1.00 9.78 1.00 47.34 1.00 47.73	0 0 0
MOTA	5534	CB	ASP	77 7	49.526	52.790	61.071	1.00 36.82	ŏ
ATOM	5535	CG	ASP	7 7 7	50.2 9 9 51.5 1 9	53.677 53.464	62.059 62.2 4 6	1.00 86.03 1.00 85.84	0
ATOM ATOM	5536 5537	OD1 OD2	ASP ASP	7 7 7 77 7	49.685	54.595	62.644	1.00 85.84	0
ATOM	5538	C	ASP	7 7 7	48.456	50.547	60.632	1.00 47.70	ŏ
MOTA	5539	0	ASP	777	47.458	51.095	60.164	1.00 37.69	0
MOTA	5540	N	asn asn	778 7 7 8	48.7 5 6 47. 94 8	49.268 48.373	60.419 59.584	1.00 12.97 1.00 3.97	0
MOTA MOTA	5542 5543	CA CB	ASN	778	48.760	47.123	59.221	1.00 17.34	ŏ
MOTA	5544	ĊĠ	asn	778	49.081	46.258	60.435	1.00 11.19	0
ATOM	5545	OD1		778 778	49.928 48.404	46.613 45.120	61.275 60.538	1.00 10.18 1.00 7.69	0
ATOM ATOM	5546 5549	ND2 C	asn Asn	778	46.672	47.945	60.296	1.00 4.32	Ö
ATOM	5550	ŏ	ASN	778	46.497	48.227	61.481	1.00 21.92	0
MOTA	5551	N	ALA	779	45.783	47.267	59.578	1.00 6.26	0
MOTA	5553 5554	CA CB	ALA ALA	779 779	44.537 43.404	46.799 46.923	60.168 59.174	1.00 6.26 1.00 78.54	0
MOTA MOTA	5555	C	ALA	779	44.727	45.344	60.580	1.00 6.26	ŏ
ATOM	5556	ŏ	ALA	779	45.537	44.626	59.988	1.00 86.19	0
MOTA	5557	N	GLY	780	43.998	44.925 43.560	61.606 62.077	1.00 2.00 1.00 2.00	0
MOTA MOTA	5559 5560	CA C	GLY GLY	780 780	44.091 42.800	42.848	61.747	1.00 2.00	Ö
ATOM	5561	o	GLY	780	41.725	43.433	61.869	1.00 21.77	0
MOTA	5562	N	ALA	781	42.880	41.587	61.345	1.00 2.00	0
MOTA	5564	CA CB	ALA ALA	781 781	41.670 41.671	40.870 40.567	60.984 59.492	1.00 2.00 1.00 14.58	0
ATOM ATOM	5565 5566	C	ALA	781	41.474	39.587	61.763	1.00 2.00	Ō
ATOM	5567	Ō	ALA	781	42.396	39.076	62.398	1.00 14.58	0
MOTA	5568	N	MET	782	40.263 39.857	39.061 37.833	61.660 62.319	1.00 2.00 1.00 2.00	0
MOTA MOTA	5570 5571	CA CB	MET MET	782 782	39.037	38.204	63.554	1.00 2.00	Ö
ATOM	5572	CG	MET	78 2	38.736	37.067	64.502	1.00 2.00	0
ATOM	5573	SD	MET	782	37.743	37.608	65.912 65.621	1.00 2.00 1.00 2.00	0
MOTA MOTA	5574 5575	CE	MET MET	782 782	37.595 39.010	39.370 37.029	61.306	1.00 2.00	ŏ
ATOM	5576	0	MET	782	38.090	37.570	60.688	1.00 2.00	0
ATOM	5577	N	MET	783	39.325	35.752	61.116 60.165	1.00 2.00 1.00 2.00	0
MOTA	5579 5 58 0	CA CB	MET MET	783 783	38.570 39.482	34.955 34.182	59.209	1.00 16.43	ŏ
MOTA MOTA	5581	CG	MET	783	38.688	33.363	58.165	1.00 19.34	0
MOTA	5582	SD	MET	783	39.689	32.337	57.060 5 7. 9 75	1.00 18.69 1.00 21.53	0
MOTA	5583	CE	MET	783 783	39.780 37.608	30.793 33.976	60.794	1.00 2.00	ŏ
MOTA MOTA	5584 5585	C O	MET	783	38.004	33.010	61.447	1.00 10.33	0
ATOM	5586	N	SER	784	36.335	34.221	60.542	1.00 2.00 1.00 2.00	0 0
MOTA	5588	CA	SER	784 784	35.276 34.033	33.374 34.220	61.034 61.308	1.00 2.00 1.00 16.25	ŏ
MOTA MOTA	5589 5590	CB OG	SER SER	784	34.385	35.392	62.020	1.00 16.25	0
MOTA	5592	Ċ	SER	784	34.953	32.301	59.990	1.00 2.00 1.00 19.28	0
MOTA	5593	0	SER	784	34.672 35.033	32.611 31.045	58.839 60.401	1.00 19.28 1.00 10.88	Ö
MOTA MOTA	5594 5596	N CA	VAL VAL	785 785	34.706	29.907	59.557	1.00 16.53	0
ATOM	5597	CB	VAL	78 5	35.649	28.739	59.792	1.00 11.43	0
ATOM	5598	CG1		785	35.183	27.538 29.153	58.975 59.477	1.00 11.43 1.00 11.43	ő
MOTA	5599 5600	CG2 C	VAL VAL	78 5 78 5	37.082 33.357	29.465	60.083	1.00 12.38	0
ATOM ATOM	5601	Ö	VAL	785	33.254	28.998	61.225	1.00 11.43	0
MOTA	5602	N	ASP	786	32.307	29.613	59.291 59.807	1.00 2.00 1.00 2.00	0
MOTA	5604	CA	ASP	786 786	31.024 29.874	29.200 30.008	59.807	1.00 24.90	ŏ
MOTA MOTA	5605 5606	CB CG	ASP ASP	786	29.403	29.458	57.842	1.00 30.71	0
ATOM	5607	OD1	ASP	78 6	28.245	29.765	57.474 57.163	1.00 33.80 1.00 32.56	0
ATOM	5608	OD2	ASP ASP	786 786	30.165 30.860	28.737 27.699	59.656	1.00 2.00	ŏ
MOTA MOTA	5609 5610	C O	ASP	786	31.677	27.025	59.031	1/00 23.30	O
		-	_						

MOTA	5611	N	GLU	787	29.803	27.195	60.268	1.00 7.48 0
MOTA	5613	CA	GLU	7 87	29.447	25.782	60.270	1.00 13.41 0
MOTA	5614	CB	GLU	78 7	27.983 27.174	25.636 26.963	60.696 60.747	1.00 2.00 0 1.00 2.00 0
MOTA	5615	CG	GLU	7 87 787	27.174	27.758	62.053	1.00 2.00 0
ATOM ATOM	5616 5617	CD	GLU GLU	787	26.858	27.319	63.117	1.00 2.00 0
MOTA	5618	OE2	GLU	787	28.070	28.817	62.024	1.00 2.00 0
ATOM	5619	C	GLU	787	29.665	25.015	58.965	1.00 11.86 0
ATOM	5620	ō	GLU	787	30.002	23.830	58.994	1.00 2.00 0
ATOM	5621	N	THR	78 8	29.492	25.698	57.836	1.00 56.74 0
ATOM	5623	CA	THR	788	29.616	25.092	56.513	1.00 52.70 0
MOTA	5624	CB	THR	788	28.369	25.402	55.700	1.00 6.46 0 1.00 4.65 0
ATOM	5625	0G1	THR	788	28.317 27.101	26.819 24.968	55.467 56.457	1.00 4.65 0 1.00 10.48 0
MOTA	5627 5628	CG2 C	THR THR	788 788	30.835	25.536	55.683	1.00 51.86 0
MOTA MOTA	5629	Ö	THR	788	30.751	25.628	54.449	1.00 12.46 0
ATOM	5630	N	LEU	789	31,946	25.823	56.364	1.00 10.40 0
ATOM	5632	CA	LEU	789	33.194	26.245	55.734	1.00 6.34 0
MOTA	563 3	CB	LEU	789	33.670	25.165	54.775	1.00 8.80 0
ATOM	5634	CG	LEU	7 89	34.458	24.017	55.405	1.00 15.93 0
MOTA	5635		LEU	78 9	35.879	24.487	55.677	1.00 11.55 0
MOTA	5636		LEU	789	33.785	23.525	56.682	1.00 14.98 0
MOTA	5637	C	LEU	789	33.173	27.619	55.042	1.00 4.53 0 1.00 8.97 0
MOTA	5638	0	LEU	789	34.065 32.165	27.948 28.430	54.248 55.336	1.00 8.97 0 1.00 2.00 0
MOTA	5639	N	MET MET	790 7 9 0	32.126	29.748	54.743	1.00 2.00 0
MOTA	5641 5642	CA CB	MET	790	30.698	30.267	54.636	1.00 19.79 0
ATOM	5643	CG	MET	790	30.588	31.572	53.882	1.00 19.37 0
ATOM	5644	SD	MET	790	28.979	31.708	53.134	1.00 18.51 0
ATOM	5645	CE	MET	790	28.359	33.110	53.992	1.00 23.23 0
ATOM	564 6	С	MET	79 0	32.945	30.667	55.627	1.00 2.00 0
MOTA	5647	0	MET	790 .	32.615	30.857	56.799	1.00 23.79 0
MOTA	5648	N	CYS	791	34.014	31.228	55.067	1.00 2.00 0 1.00 2.00 0
ATOM	5650	CA	CYS	791	34.882 36.325	32.133 31.793	55.803 55.516	1.00 2.00 0
ATOM	5651	CB	CYS CYS	791 791	36.570	30.052	55.766	1.00 15.43 0
MOTA MOTA	5652 5653	SG C	CYS	791	34.616	33.591	55.502	1.00 2.00 0
MOTA	5654	Ö	CYS	791	34.314	33.961	54.371	1.00 21.84 0
MOTA	5655	N	SER	792	34.697	34.412	56.540	1.00 2.00 0
ATOM	5657	CA	SER	792	34.480	35.849	56.430	1.00 2.00 0
MOTA	5658	CB	SER	79 2	33.073	36.221	56.903	1.00 2.93 0
MOTA	565 9	OG	SER	79 2	32.887	35.867	58.256	1.00 3.41 0
MOTA	5661	C	SER	792	35.539	36.518	57.303	1.00 2.00 0 1.00 2.56 0
MOTA	5662	0	SER	792 703	36.290	35.826 37.842	57.994 57.270	1.00 2.00 0
MOTA	5663	N	PHE	793 793	35.609 36.617	38.558	58.039	1.00 2.00 0
MOTA MOTA	5665 5666	CA CB	PHE PHE	793 793	37.765	39.025	57.129	1.00 38.05 0
ATOM	5667	CG	PHE	793		37.913	56.469	1.00 24.74 0
ATOM	5668		PHE	79 3	38.055	37.314	55.306	1.00 28.08 0
ATOM	5669		PHE	79 3	39.741	37.474	57.002	1.00 26.11 0
MOTA	5670		PHE	79 3	38.774	36.295	54.680	1.00 27.84 0
MOTA	5671		PHE	793	40.466	36.460	56.389	1.00 27.16 0
MOTA	5672	CZ	PHE	79 3	39.983	35.868	55.225 58.784	1.00 29.41 0 1.00 2.00 0
MOTA	5673	C	PHE	79 3 79 3	36.101 35.362	39.782 40.599	58.233	1.00 23.22 0
ATOM ATOM	5674 5675	O N	PHE GLN	793 794	36.480	39.893	60.051	1.00 67.38 0
MOTA	5677	CA	GLN	794	36.128	41.064	60.837	1.00 63.52 0
MOTA	5678	CB	GLN	794	35.608	40.713	62.238	1.00 31.74 0
ATOM	5679	CG	GLN	794	34.294	39.954	62.289	1.00 36.03 0
ATOM	5680	CD	GLN	794	34.506	38.455	62. 2 52	1.00 39.99 0
MOTA	5681		GLN	794	34.622	37.858	61.179	1.00 39.14 0
MOTA	5682	NE2	GLN	794	34.575	37.838	63.425	1.00 44.72 0
MOTA	5685	C	GLN	794	37.471	41.760	60.958	1.00 65.96 0
ATOM	5686	0	GLN	794	38.486	41.132	61.272 60.658	1.00 37.24 0 1.00 53.07 0
MOTA	5687	N	ILE	79 5 79 5	37. 49 8 38.732	43.045 43.790	60.748	1.00 54.05 0
MOTA MOTA	5689 5690	CA CB	ILE ILE	795	39.084	44.483	59.392	1.00 26.19 0
ATOM	5691		ILE	795	40.115	45.589	59.608	1.00 28.70 . 0
	, , , ,	COL			 -			

MOTA	5692	CG1	ILE	795	39.643	43.467	58.390 57.906	1.00 30.47 1.00 28.83	0
MOTA MOTA	5693 5694	CD1 C	ILE ILE	795 795	38.659 38.543	42.449 44.847	61.817	1.00 23.83	Ö
ATOM	5695	Ö	ILE	795	37.476	45.452	61.903	1.00 27.08	ŏ
MOTA	5696	N	LEU	796	39.544	45.008	62.674	1.00 30.60	0
MOTA	5 69 8	CA	LEU	796	39.521	46.054	63.686	1.00 34.91	0
MOTA	5699	CB	LEU	796	39.839	45.528 44.121	65.089 65.308	1.00 41.88 1.00 41.67	0
MOTA	5700	CG CD1	LEU	796 796	40.368 40.976	44.121	66.702	1.00 39.26	Ö
ATOM ATOM	5701 5702	CD2		796	39.242	43.114	65.119	1.00 42.51	ŏ
MOTA	5703	C	LEU	796	40.637	46.977	63.206	1.00 33.78	0
ATOM	5704	Ō	LEU	796	41.649	46.510	62.667	1.00 34.59	0
MOTA	5705	N	LYS	797	40.454	48.280	63.356	1.00 37.84	0
MOTA	5707	CA	LYS	797 797	41.475 40.805	49.207 50.354	62.902 62.154	1.00 40.12 1.00 0.26	0
MOTA MOTA	5708 5709	CB CG	LYS LYS	797	39.959	49.929	60.932	1.00 0.34	ŏ
ATOM	5710	CD	LYS	797	39.456	51.183	60.151	1.00 0.65	0
ATOM	5711	CE	LYS	797	39.134	50.875	58.662	1.00 0.12	0
MOTA	5712	NZ	LYS	797	38.852	52.117	57.851	1.00 0.70	0
MOTA	5716	C	LYS	797	42.356	49.727 50.809	64.053 63.985	1.00 50.42 1.00 0.89	0
MOTA	5717	0	LYS	797 400	42.961 -8.399	33.628		1.00 75.56	ŏ
MOTA MOTA	5718 5720	N CA	ALA ALA	400	-6.981		131.818	1.00 75.56	ŏ
ATOM	5721	CB	ALA	400	-6.134	33.160	130.576	1.00 21.27	0
MOTA	5722	Č	ALA	400	-6.530	34.922	132.352	1.00 75.56	0
MOTA	572 3	0	ALA	400	-7.350	35.762	132.744	1.00 21.27 1.00 2.00	0
MOTA	5724	N	ARG	401	-5.218 -4.619	36.351	132.374	1.00 2.00 1.00 2.00	ŏ
MOTA	5726 5727	CA	ARG ARG	401 401	-4.586		134.359	1.00 2.00	ŏ
ATOM ATOM	5728	CB CG	ARG	401	-5.638	37.360	134.956	1.00 2.00	0
MOTA	5729	CD	ARG	401	-5.639	37.340	136.471	1.00 2.00	0
MOTA	5730	NE	ARG	401	-6.285		137.058	1.00 2.00	0
MOTA	5732	CZ	ARG	401	-5.730	39.260	138.022 138.457	1.00 2.00 1.00 2.00	Ö
ATOM	573 3	NH1		401 401	-6.338 -4.527	38 949	138.511	1.00 2.00	ŏ
ATOM ATOM	5736 5739	NH2 C	ARG ARG	401	-3.216	36.446	132.267	1.00 2.00	0
ATOM	5740	Ö	ARG	401	-2.505	35.443	132.150	1.00 2.00	0
ATOM	5741	N	VAL	402	-2.822		131.898	1.00 2.00	0
MOTA	5743	CA	VAL	402	-1.516	•	131.311 131.042	1.00 2.00 1.00 2.00	Ö
ATOM	5744	CB	VAL	402 402	-1.331 -0.063		130.283	1.00 2.00	ō
ATOM ATOM	5745 5746	CG1 CG2	VAL VAL	402	-2.503		130.282	1.00 2.00	0
MOTA	5747	C	VAL	402	-0.398	37.376	132.223	1.00 2.00	0
MOTA	5748	ŏ	VAL	402	-0.548	37.369	133.444	1.00 2.00	0
ATOM	5749	N	SER	403	0.701	36.920	131.625 132.361	1.00 19.26 1.00 23.92	ő
ATOM	5751	CA	SER	403	1.882 1.894		132.528	1.00 22.54	ŏ
MOTA	5752 5753	CB OG	ser Ser	403 403	1.503	34.298	131.333	1.00 14.30	0
AOTA MOTA	57 5 5	C	SER	403	3.070	36.913	131.514	1.00 21.44	0
ATOM	5756	ō	SER	403	2.890		130.595	1.00 23.72	0
MOTA	5757	N	PHE	404	4.271	36.415	131.793 131.013	1.00 13.47 1.00 13.06	Ö
MOTA	5759	CA	PHE	404	5. 43 9 6. 10 1		131.647	1.00 2.00	Ō
MOTA	5760	CB	PHE PHE	404 404	5.228		131.627	1.00 2.00	0
MOTA MOTA	5761 5762	CG CD1		404	4.421	39.574	132.711	1.00 2.00	0
MOTA	5763	CD2		404	5.171	40.080	130.505	1.00 2.00	0
MOTA	5764	CE1	PHE	404	3.560	40.668	132.677	1.00 2.00 1.00 2.00	0
MOTA	5765	CE2		404	4.313	41.1/8	130.463 131.549	1.00 2.00	ŏ
MOTA	5766	CZ	PHE	404	3.507 6. 4 76	35.735	130.791	1.00 16.54	0
MOTA	5767 5768	C	PHE PHE	404 404	6.472	34.720	131.489	1.00 2.00	0
ATOM ATOM	5769	N	ALA	405	7.341	35.960	129.802	1.00 2.00	0
MOTA	5771	CA	ALA	405	8.420	35.054	129.414	1.00 2.00	0
MOTA	5772	CB	ALA	405	9.762	35.742	129.619 130.078	1.00 85.03 1.00 2.00	0
ATOM	5 7 73	C	ALA	405	8.434	33.682			
MOTA					0 300	32 654	129.401	1.00 85.03	0
	5774	0	ALA	405	8,380 32,968	32.654 17.226	129.401 49.661	1.00 85.03 1.00 95.94	0
MOTA MOTA					8, 38 0 32, 96 8 31,781	32.654 17.226 16.989	49.661		

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	5778 5779 5780 5782 5783 5784 5785 5786	CONCACBCCDNECZ	GLY GLY ARG ARG ARG ARG ARG ARG	899 899 900 900 900 900 900 900	31.215 30.022 32.090 31.732 31.110 30.578 30.080 31.005 31.111 30.361	18.274 18.368 19.260 20.569 20.432 21.718 21.488 20.664 20.691 21.512	51.038 51.338 51.193 51.722 53.110 53.694 55.120 55.120 55.237 57.963	1.00 95.94 1.00 32.75 1.00 42.23 1.00 42.23 1.00 22.01 1.00 22.01 1.00 22.01 1.00 22.01 1.00 22.01 1.00 22.01	0000000000
ATOM ATOM ATOM ATOM ATOM	5789 5792 5795 5796 5797	NH1 NH2 C O N	ARG ARG ARG ARG ARG	900 900 900 901	31.957 33.034 33.795 33.284	19.865 21.365 21.309 22.091	57.839 51.774 52.735 50.697	1.00 22.01 1.00 42.23 1.00 22.01 1.00 8.39	0 0 0
ATOM ATOM ATOM ATOM ATOM	5799 5800 5801 5802 5803	CA CB CG CD NE	ARG ARG ARG ARG ARG	901 901 901 901 901	34.490 34.793 34.504 34.584 34.278	22.880 23.036 21.810 22.175 21.012	50.542 49.045 48.186 46.699 45.863	1.00 8.39 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0000
ATOM ATOM ATOM ATOM ATOM	5805 5806 5809 5812 5813	CZ NH1 NH2 C	ARG ARG ARG ARG ARG	901 901 901 901 901	35.190 36.498 34.791 34.327 33.241	20.195 20.416 19.114 24.259 24.629	45.327 45.509 44.649 51.158 51.607	1.00 2.00 1.00 2.00 1.00 2.00 1.00 8.39 1.00 2.00	0 0 0
MOTA ATOM ATOM AOTA	5814 5816 5817 5818	N CA CB CG1	VAL VAL VAL	902 902 902 902	35.393 35.425 36.880 37.039 37.492	25.005 26.384 26.814 28.332 26.219	51.149 51.650 51.869 51.992 53.139	1.00 2.00 1.00 2.00 1.00 12.90 1.00 12.90 1.00 12.90	0 0 0 0
ATOM ATOM ATOM ATOM ATOM	5819 5820 5821 5822 5824	CG2 C O N CA	VAL VAL SER SER	902 902 902 903 903	34.782 34.737 34.288 33.673	27.324 27.031 28.438 29.487	50.627 49.435 51.120 50.271	1.00 2.00 1.00 12.90 1.00 2.00 1.00 2.00	0 0 0
ATOM ATOM ATOM ATOM ATOM	5825 5826 5828 5829 5830	CB OG C O N	SER SER SER SER PHE	903 903 903 903 904	32.173 31.477 33.871 34.386 33.482	29.205 28.917 30.814 30.866 31.903	50.008 51.209 50.991 52.115 50.376	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
ATOM ATOM ATOM ATOM ATOM	5832 5833 5834 5835 5836	CA CB CG CD1 CD2	PHE PHE PHE PHE PHE	904 904 904 904 904	33.683 34.894 36.184 36.511 37.034	33.188 33.898 33.109 32.067 33.426	51.034 50.455 50.672 49.805 51.738	1.00 2.00 1.00 17.14 1.00 17.14 1.00 17.14 1.00 17.14	0 0 0 0
ATOM ATOM ATOM ATOM	5837 5838 5839 5840	CE1 CE2 CZ	PHE PHE PHE PHE	904 904 904 904 904	37.690 38.216 38.544 32.491 31.716	31.343 32.704 31.662 34.080 33.994	49.994 51.927 51.054 50.894 49.926	1.00 17.14 1.00 17.14 1.00 17.14 1.00 2.00 1.00 17.14	0 0 0 0
ATOM ATOM ATOM ATOM ATOM	5841 5842 5844 5845 5846	O N CA CB C	PHE ALA ALA ALA ALA	905 905 905 905	32.386 31.311 30.042 31.646	34.912 35.857 35.128 36.940	51.874 51.949 52.370 52.962	1.00 70.83 1.00 69.99 1.00 2.00 1.00 69.85	0 0 0 0
ATOM ATOM ATOM ATOM	5847 5848 5850 5851 5852	O N CA CB C	ALA ALA ALA ALA ALA	905 907 907 907 907	30.981 37.374 36.215 35.317 36.637	37.068 34.312 33.651 34.681 32.568	53.993 47.285 46.695 46.008 45.699	1.00 2.00 1.00 23.39 1.00 23.39 1.00 41.64 1.00 23.39	0 0 0 0
ATOM ATOM ATOM ATOM ATOM	5853 5854 5856 5857 5858	O N CA CB C	ALA ALA ALA ALA ALA	907 908 908 908 908	35.850 37.875 38.378 39.439 38.961	31.680 32.643 31.663 32.296 30.466	45.370 45.215 44.253 43.337 44.992	1.00 41.64 1.00 83.90 1.00 83.90 1.00 22.84 1.00 83.90	0 0 0 0
ATOM ATOM ATOM ATOM	5859 5860 5863 5866	0 OW OW	ALA WAT WAT	908 1 103 101	38.459 62.869 57.039 7.257	30.074 37.982 39.062 66.194	46.046 63.341 61.228 118.365	1.00 22.84 1.00 20.00 1.00 20.00 1.00 20.00 1.00 20.00	0 0 0
ATOM ATOM	5869 5872	OM OM	TAW TAW	3	12.341 10.655	60.209 60.748	123.464 120.833	1.00 20.00	0

ATOM	5875	OW	WAT	104	55.432	36.306	63.901	1.00	20.00	0
ATOM	5878	OW	WAT	102	56. 78 2	40.457	58.333	1.00	20.00	0
ATOM		OW	TAW	4	5. 78 7	57.856	118.686	1.00	20.00	0
ATOM	:	OW	WAT	105	54.382	39.155	63.734	1.00	20.00	Ō
ATOM		OW	WAT	5	8.964	57.595	118.151		20.00	ō
MOTA		OW	WAT	106	38.565	47.423	74.959		20.00	ŏ
		OW	WAT	6	16.086	42.169	105.289		20.00	ŏ
MOTA		-		-	31.158	26.414	51.913		20.00	-
MOTA		OW	TAW	107						0
MOTA	5 89 9	OW	TAW	7	-0.781	32.787	131.574		20.00	0
MOTA	5902	MN	MN2	430	4.422	59.061	119.360		15.61	0
ATOM	5903	MN	MN2	431	7.458	57.875	117.661	1.00	16.53	0
ATOM		MN	MN2	930	56.038	34.500	63.727	1.00	16.67	0
ATOM		MN	MN2	931	54.402	37.798	64.756	1.00	15.40	Ō
ATOM		s	SO4	801	57.551	37.278	64.009	1.00	37.87	ō
ATOM		01	SO4	801	57.600	35.852	63.897		42.46	ŏ
				801	58.690	37.740	64.722		42.01	ŏ
MOTA		02	SO4			_				
ATOM		О3	SO4	801	56.3 5 5	37.648	64.705		45.08	0
ATOM	5910	04	S04	801	57.520	37.854	62.725		41.40	0
MOTA	5911	S	SO4	800	6.866	60.776	118.643	1.00	37.87	0
ATOM		01	SO4	800	7.710	60.635	119.773	1.00	42.46	0
ATOM		02	SO4	800	7.044	62.063	118.053	1.00	42.01	0
			SO4	800	5.496	60.612	119.046		45.08	ŏ
ATOM		03					117.703		41.40	ŏ
ATOM	5915	04	SO4	800	7.194	59.728	117.703	1.00	41.40	U

15

References for Example 3

- 1. Hubbard, M.J. and Cohen, P. (1993) Trends Biochem. Sci. 18, 172-177.
- Egloff, M.P., Johnson, D.F., Moorhead, G., Cohen, P.T., W., Cohen,
 P. and Barford, D., (1997) EMBO J. in press.
- 3. Dent, P., MacDougall, L.K., MacKintosh, C., Campbell, D.G. and Cohen, P. (1992) Eur. J. Biochem. 210, 1037-1044.
- Alessi, D.R., MacDougall, L.K., Sola, M.M., Ikebe, M. and Cohen,
 P. (1992) Eur. J. Biochem. 210, 1023-1035.
- Chen, Y-H., Chen, M-X., Alessi, D.R., Campbell, D.G., Shanahan,
 C., Cohen, P. and Cohen, P.T.W. (1994) FEBS Lett 356, 51-56.
 - Shirazi, A., Iizuka, K., Fadden, P., Mosse, C., Somlyo, A.P., Somlyo,
 A.V. and Haystead, T.A.J. (1994) J. Biol. Chem. 269, 31598-31606.
 - 7. Johnson, D.F., Moorhead, G., Caudwell, F.B., Cohen, P., Chen, Y.H., Chen, M.X. and Cohen, P.T.W. (1996) Eur. J. Biochem. 239, 317-325.
 - 8. Shimizu, H., Ito, M., Miyahara, M., Ichikawa, K., Okubo, S., Konishi, T., Naka, M., Tanaka, T., Hirano, K., Hartshorne, D.J. and Nakano, T. (1994) J. Biol. Chem. 269, 30407-30411.
- Haystead, C.M.M., Gailly, P., Somlyo, A.P. and Somlyo, A.V. and
 Haystead, T.A.J. (1995) FEBS Lett 377, 123-127.
 - 10. Ikebe, M. and Hartshorne, D.J. (1985) J. Biol. Chem. 260, 13146-13153.
 - 11. Margossian, S.S. and Lowey, S. (1982) Methods Enzymol. 85, 55-71.
 - 12. Hubbard, M.J. and Cohen, P. (1991) Methods Enzymol. 201, 414-427.
- 25 13. Laemmli, U.K. (1970) Nature 227, 680-685.
 - 14. Schagger H. and von Jagow, G. (1987) Anal. Biochem 166, 368-379.
 - 15. Bradford, M.M. (1976) Anal. Biochem 72, 248-254.
 - Sasaki, K., Shima, H., Kitagawa, Y., Irino, S., Sugimura, T. and
 Nagao, M. (1990) Jap. J. Cancer Res. 81, 1272-1280.
- 30 17. Takai, A., Sasaki, K., K., Nagai. H., Mieskes, G., Isobe, M., Isono,

- K. and Yasumoto, T. (1995) Biochem. J. 306, 657-665.
- Gong, M.C., Cohen, P., Kitazawa, T., Ikebe, M., Masuo, M., Somlyo,
 A.P. and Somlyo, A.V. (1992) J. Biol. Chem. 267, 14662-14668.
- 19. Cohen, P., Klumpp, S. and Schelling, D.L. (1989) FEBS Lett 250, 596-600.
- 20. Pato, M.D. and Kerc, E. (1985) J. Biol. Chem. 260, 12359-12366.
- 21. Ichikawa, K., Hirano, K., Tanaka, J., Nakano, T. and Hartshorne, D.J. (1996) Biochemistry 35, 6313-6320.
- 22. Traverse, S., Cohen, P., Paterson, H., Marshall, C., Rapp, U. and Grand, R.J.A. (1993) *Oncogene* 8, 3175-3181.

References (other than those numbered in square brackets or otherwise given in full):

- Aitken, A., Cohen, P. (1982) FEBS. Lett. 147, 54-58.
 Aitken, A., Bilham, T. and Cohen, P. (1982) Eur. J. Biochem. 126, 235-246.
 - Alessi D.R., McDougall, L.K., Sola, M.M., Ikebe, M. and Cohen, P. (1992) Eur. J. Biochem. 210, 1023-1035.
- 20 Alessi, D.R., Street, A.J., Cohen, P. and Cohen, P.T.W. (1993) Eur. J. Biochem. 213, 1055-1066.
 - Barford, D. and Keller, J.C. (1994) J. Mol. Biol. 235, 763-766.
 - Barton, G.J., Cohen, P.T.W. and Barford, D. (1994) Eur. J. Biochem. 220, 225-237.
- Brunger, A.T. (1992) X-PLOR: Yale University Press, New Haven, CT. Beullens, M., Van Eynde, A., Stalmans, W. and Bollen, M. (1992) J. Biol. Chem., 267, 16538-16544.
 - Beullens, M., Van Eynde, A., Bollen, M., Stalmans, W. (1993) J. Biol. Chem., 268, 13172-13177.
- Beullens, M., Stalmans, W., Bollen, M. (1996) Eur. J. Biochem., 239,

183-189.

Chen, Y.H., Chen M.X., Alessi, D.R., Campbell, D.G., Shanahan, C.,

Cohen, P. and Cohen, P.T.W. (1994) FEBS Lett. 356, 51-55.

Cohen, P., Alemany, S., Hemmings, B.A., Resink, T.J., Stralfors, P. and

5 Tung, H.Y.L. (1988) Methods Enzymol 159, 390-408.

Cohen, P. (1989) ANN. Rev. Biochem., 58, 453-508.

Cohen, P. (1992) Trends Biochem. Sci., 17, 408-413.

Dent, P., Lavoinne, A., Nakielny, S., Caudwell, F.B., Watt, P. and Cohen, P. (1990) *Nature* 348, 302-307.

Desdouits, F., Cheetham, J.J., Huang, H.B., Jwon, Y.G., de Cruz e Silba, E.F., Denefle, P., Ehrlich, P., Nairn, A.C., Greengard, P., Girault, J.A. (1995) *Biochem. Biophys. Res. Comm.*, 206, 653-658.

Derrick, J.P. and Wigley, D.B. (1992) Nature 359, 752-754.

Doherty, M.J., Moorhead G., Morrice, N., Cohen, P. and Cohen, P.T.W.

15 (1995) FEBS Lett. 375, 294-298.

Doyle, D.A., Lee, A., Lewis, J., Kim, E., Sheng, M., MacKinnon, R., (1996) *Cell* 85, 1067-1076.

Durfee, T., Becherer, K., Chen, P.L., Yeh, S.H., Yang, Y., Kilburn, A.E., Lee, W.H., Elledge, S.J. (1993) Genes and Development, 7, 555-569.

20 Endo, S., Zhou, X., Connor, J., Wang, B., Shnolikar, S. (1996) Biochemistry, 35, 5220-5228.

Faux, M.C., Scott, J.D. (1996) Trends Biochem, Sci., 21, 312-315.

Francois, J.M., Thompson-Jaeger, S., Skroch, J., Zellenka, U., Spevak, W., Tatchell, K. (1992) *EMBO J.*, 11, 87-89.

Frederick, D.L., Tatchell, K. (1996) *Mol Cell Biol.* 16, 2922-2931. The REG2 gene.

Furey, W. and Swaminathan, S. (1990) Am. Cryst. Acco. Meeting Summ. 18, 73.

Helps, N., Barker, H., Elledge, S.J. and Cohen, P.T.W. (1995) FEBS Lett.

30 377, 295-300.

- Hemmings, Jr., Nairn, A.C., Elliot, J.R., Greengard, P. (1990) J. Biol. Chem., 265, 20369-20376.
- Hirano, K., Ito, M., Hartshorne, D.J. (1995) J. Biol. Chem., 270, 19786-19790.
- 5 Hirano, K., Erdodi, F., Patton, J.G. and Hartshorne, D.J. (1996) FEBS Lett. 389, 191-194.
 - Hubbard, M.J., Cohen, P. (1993) Trends Biochem. Sci., 18, 172-177. Hunter, T. (1995) Cell, 80, 225-236.
 - Goldberg, J., Huang, H., Kwon, Y., Greengard, P., Nairn, A.C. and Kuriyan,
- 10 J. (1995) Nature, 376, 745-753.
 - Griffith, J.P., Kim, J.L., Kim, E.E., Sintchak, M.D., Thomson, J.A., Fitzgibbon, M.J., Fleming, M.A., Caron, P.R., Hsiao, K. and Navia, M.A. (1995) *Cell*, 82, 507-522.
 - Jagiello, I., Beullens, M., Stalmans, W., Bollen, M. (1995) J. Biol. Chem., 270, 17257-17263.
 - Kissinger C.R., Parge, H.E., Knighton, D.R., Lewis, C.T., Pelletier, L.A., Tempczyk, A., Kalish, V.J., Tucker, K.D., Showalter, R.E., Moomaw, E.W., Gastinel, L.N., Habuka, N., Chen, X., Maldonado, F., Barker, J.E., Bacquet, R. and Villafranca, J.E. (1995) *Nature*, 378, 641-644.
- Kraulis, P. (1991) J. Appl. Cryst., 24, 946-950.
 Johnson, D.F., Moorhead, G., Caudwell, F.B., Cohen, P., Chen, Y.H.,
 Chen, M.X., Cohen, P.T.W. (1996) Eur. J. Biochem., 239, 317-325.
 Knighton D.R., Zheng, J., Ten Eyck, L.F., Xuong, N.H., Taylor, S.S.,
 Sowadski, J.M., (1991) Science, 414-420.
- Kraulis, P.J. (1991) J. Appl. cryst. 24, 946-950.
 Kuehn, M.J., Ogg, D.J., Kihlberg, J., Slonim, L.N., Flemmer, K., Bergfors, T. and Hultgren, S.J. (1993) Science, 262, 1234-1241.
 Merrit, E.A., Murphy M.E.P., (1994) Acta. Cryst. D50, 869-873.
 Moorhead, G., MacKintosh, W., Morrice, N., Gallagher, T., MacKintosh, C.
 (1994) FEBS Lett., 356, 46-50.

Moorhead, G., MacKintosh, C., Morrice, N., Cohen, P. (1995) FEBS Lett., 362, 101-105.

Nassar, N., Horn, G., Herrman, C., Scherer, A., McCormick, F. and Wittinghofer, A. (1995) *Nature*, 375, 554-560.

Navaza, J. (1992). AMoRe: In proceedings of the CCP4 Study Weekend. (Dodson, E.J et al) pp87-91, SERC, Daresbury Laboratory, Warrington, U.K. Nelson, K.K., Holmes, M., Lemmon, S.K. (1996) Mol. Biol. Cell 7, 245-260. Nicholls, A. And Honig, B. (1991) Comput. Chem. 12, 435-445.

Otwinowski, Z. (1993) Denzo. In Data Collection and Processing. (Sawyer,

10 L., Isaacs, N. and Bailey, S. eds), pp. 56-62, SERC Daresbury Laboratory, Warrington, UK.

Rost, B., Sander, C. (1993) J. Mol. Biol., 232, 584-599.

Rost, B. (1996) Meth. in Enzym. 266, 525-539.

Schelling, D.L., Leader, D.P., Zammit, V.A. and Cohen, P. (1988) Biochim.

15 Biophys. Acta 927, 221-231.

Shenolikar, S. (1994) A M Rev. Cell. Biol., 10, 56-86.

Stralfors, P., Hiraga, A. and Cohen, P. (1986) Eur. J. Biochem, 149, 295-303.

Tang, P.M., Bondor, J.A., Swiderek, K.M. and dePaoli-Roach, A.A. (1991) J. Biol. Chem. 266, 15782-15789.

20 Tu, J., Carlson, M. (1996) EMBO J., 14, 5939-5946.

Tu, J. Song, W., Carlson, M. (1996) Mol. Cell. Biol. 16, 4199-4206.

Van Eynde, A., Beullens, M., Stalmans, W., Bollen, M. (1994) *Biochem. J.*, 297, 447-449.

Van Eynde, A., Wera, S., Beullens, M., Torrekens, S., Van Leuven, F.,

25 Stalmans, W. and Bollen, M. (1995) J. Biol. Chem. 270, 28068-28074.

Wera, S. and Hemmings, B.A. (1995) Biochem. J., 311, 17-29.

Williams, K.R., Hemmings, H.C., LoPresti, M.B., Konigsberg, W.H. and Greengard, P. (1986) J. Biol. Chem. 261, 1890-1903.

Zhou, M.M. et al., Fesik, S.W. (1995) Nature 378, 584-592.

25

References (given as numbers in square brackets, except in Example 3)

- 1. Hubbard, M.J. and Cohen, P. (1993) Trends Biochem. Sci. 18, 172-177.
- 2. Bollen, M. and Stalmans, W. (1992) Crit. Rev. Biochem. Mol. Biol. 27, 227-281.
- Mermoud, J.E., Cohen, P. and Lamond, A.I. (1992) Nuc. Acids, Res.
 20, 5263-5269.
- 4. Tang, P.M., Bondor, H.A., Swiderek, K.M. and dePaoli-Roach, A.A. (1991) J. Biol. Chem. 266, 15782-15789.
- 5. Chen, Y.H., Hansen, L., Chen, M.X., Bjorbaek, C., Vestergaard, H., Hansen, T., Cohen, P.T.W. and Pedersen, O. (1994) *Diabetes* 43, 1234-1241.
 - 6. Moorhead, G., MacKintosh, C., Morrice, N. and Cohen, P. (1995) FEBS Lett 362, 101-105.
- Doherty, M.J., Moorhead, G., Morrice, N., Cohen, P. and Cohen,
 P.T.W. (1995) FEBS Lett 375, 294-298.
 - 8. Moorhead, G., MacKintosh, R.W., Morrice, N., Gallagher, T. and MacKintosh, C. (1994) FEBS Lett. 356, 46-50.
- Alessi, D.R., MacDougall, L.K., Sola, M.M., Ikebe, M. and Cohen,
 P. (1992) Eur. J. Biochem. 210, 1023-1035.
 - Chen. Y-H., Chen, M-X., Alessi, D.R., Campbell, D.G., Shanahan,
 C., Cohen, P. and Cohen, P.T.W. (1994) FEBS Lett 356, 51-56.
 - 11. Shimizu, H., Ito, M., Miyahara, M., Ichikawa, K., Okubo, S., Konishi, T., Naka, M., Tanaka, T., Hirano, K., Hartshorne, D.J. and Nakano, T. (1994) J. Biol. Chem. 269-30407-30411.
 - 12. Shirazi, A., Iizuka, K., Fadden, P., Mosse, C., Somlyo, A.V. and Haystead, T.A.J. (1994) J. Biol. Chem. 269, 31598-31606.
 - 13. Helps, N., Barker, H., Elledge, S.J. and Cohen, P.T., W. (1995) *FEBS*Lett 377, 295-300.
- 30 14. Ohkura, H. and Yanagida, M. (1991) Cell 64, 149-157.

10

- Jagiello, I., Buellens, M., Stalmans, W. and Bollen, M. (1995) J. Biol.
 Chem. 270, 17257-17263.
- Van Eynde, A., Wera, S., Beullens, M., Torrekens, S., Van Leuven, F., Stalmans, W. and Bollen, M. (1995) J. Biol. Chem. 270, 28068-28074.
- 17. Durphee, T., Becherer, K., Chen, P-L., Yeh, S.H., Yang, Y., Kilburn, A.E., Lee, W.H. and Elledge, S.J. (1993) Genes and Development 7, 555-569.
- 18. Hirano, K., Ito, M. and Hartshorne, D.J. (1995) J. Biol. Chem. 270, 19786-19790.
 - 19. Cohen, P. (1992) Trends Biochem. Sci. 17, 408-413.
 - Alessi, D.R., Street, A.J., Cohen, P., and Cohen, P.T.W. (1993) Eur.
 J. Biochem 213, 1055-1066.
 - 21. Hubbard, M.J., and Cohen, P. (1991) Methods Enzymol. 201, 414-427.
- 15 22. Schelling, D.L., Leader, D.P., Zammit, V.A. and Cohen, P. (1988)

 Biochem. Biophys. Acta 927, 221-231.
 - 23. Cohen, P., Alemany, S., Hemmings, B.A., Resink, T.J., Stralfors, P. and Tung, H.Y.L. (1988) Methods Enzymol. 159, 390-408.
- Stewart, A.A., Hemmings, B.A., Cohen, P., Goris, J. and Merlevede,
 W. (1991) Eur. J. Biochem 115, 197-205.
 - Gong, M.C., Fuglsang, A., Alessi, D.R., Kobayashi, S., Cohen, P.,
 Somlyo, A.V. and Somlyo, A.P. (1992) J. Biol. Chem. 267, 21492-21498.
- Alemany, S., Pelech, S. and Brierley, C.H. and Cohen, P. (1986) Eur.
 J. Biochem. 156, 101-110.
 - Stuart, J.S., Frederick, D.L., Varner, C.M. and Tatchell, K. (1994)
 Mol. Cell. Biol. 14, 896-905.
 - Desdouits, F., Cheetham, J.J., Huang, H-B., Kwon, Y.G., da Cruz e Silva, E.F., Denefle, P., Ehrlich, M.E., Nairn, A.C., Greengard, P. and Girault, J.A. (1995) *Biochem. Biophys. Res. Commun.* 206, 652-

658.

- 29. Goldberg, J., Huang, H., Kwon, Y., Greengard, P., Nairn, A.C. and Kuriyan, J. (1995) *Nature* 376, 745-753.
- 30. Egloff, M-P., Cohen, P.T.W. and Renemer, P. and Barford, D. (1995)

 J. Mol. Biol. 254, 942-959.
- 31. Gailly, P., Somlyo, A.P. and Somlyo, A. (1996) submitted.
- 32. Traverse, S., Cohen, P., Paterson, H., Marshall, C., Rapp, U. and Grand, R.J.A. (1993) Oncogene 8, 3175-3181.

PAICCOCID: <WO 9737224A1

5

10

CLAIMS

- 1. A method of identifying a compound which modulates the interaction between a PP1c and a regulatory subunit thereof, the method comprising determining whether a compound enhances or disrupts the interaction between (a) a PP1c or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative and (b) a regulatory subunit which is able to bind to PP1c or a PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative.
- 2. A method of identifying a compound which mimics the effect of a regulatory subunit of PP1c, the method comprising contacting said compound with PP1c and determining whether, in the presence of the compound, PP1c adopts the function of properties of a PP1c in the presence of a given regulatory subunit.
- A method according to Claim 1 or 2 wherein said regulatory subunit of PP1c is any one of M₁₁₀, G_L, G_M, M-complexes, p53 BP2, sds22,
 NIPPI, L5, Inhibitor-1, Inhibitor-2, or DARPP.
 - 4. A method according to Claim 3 wherein the regulatory subunit of PP1c is any one of M_{110} , G_L , G_M , M-complexes or p53BP2.
- 25 5. A method according to Claim 4 wherein the regulatory subunit of PP1c is M_{110} or G_M .
- 6. A method according to Claim 1 wherein the fragment of a regulatory subunit which is able to bind to PP1c is any of the peptides [G63-T93], [G63-N75], [E2-P243], [E2-D118], and peptide 63-80 of G_M or

functional equivalents thereof or peptides comprising said peptide sequences provided that they are not the complete G_M regulatory subunit.

- 7. A method according to Claim 1 wherein the fragment of a regulatory subunit which is able to bind to PP1c is any of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof or peptides comprising said peptide sequences provided that they are not the complete M₁₁₀ regulatory subunit.
- 10 8. A method according to Claim 1 wherein the PP1c-binding fragment, variant or derivative of said regulatory subunit or a fusion of said fragment, variant or derivative comprises the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid.
- 15 9. A method according to Claim 8 wherein the PP1c-binding fragment, variant or derivative comprises, in addition to the said consensus peptide sequence, at least one basic residue in the four residues N-terminal of the consensus peptide sequence.
- 20 10. A method according to Claim 8 wherein in the consensus peptide sequence Xaa is not Asp or Glu or a large hydrophobic residue.
- 11. A method according to Claim 8 wherein the PP1c-binding fragment is a fragment of a regulatory subunit comprising the said consensus peptide sequence.
 - 12. A method according to Claim 10 wherein the PP1c-binding fragment is a fragment of any of the M₁₁₀, G_L, G_M, M-complexes, p53BP2, sds22, NIPPI, L5, Inhibitor-1, Inhibitor-2 or DARPP regulatory subunits comprising said consensus sequence.

_BNSDOCID: <WO ___9737224A1 _

PCT/GB97/00898

- 13. A method according to any one of the preceding claims wherein the compound binds to a PP1c.
- 14. A method according to Claim 1 wherein the compound binds to a regulatory subunit of PP1c.
 - 15. A compound identifiable by the method of any one of Claims 1 to 14.
- 16. A compound which modulates the interaction between a PP1c and a regulatory subunit thereof said compound comprising any of the peptides [G63-T93], [G63-N75], [E2-P243], [E2-D118], and peptide 63 to 80 of G_M or functional equivalents or said compound comprising any of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof or said compound comprising the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any naturally occurring amino acid or functional equivalents thereof, provided that the said compound is not a complete regulatory subunit of PP1c.
- A compound according to Claim 16 consisting of the peptides [G63-T93], [G63-N75], [E2-P243], [E2-D118], or peptide 63 to 80 of G_M or functional equivalents thereof or consisting of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof.

- 18. A peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.
- 30 19. A method of identifying a compound which modulates the interaction

PCT/GB97/00898

between a PP1c and a regulatory subunit thereof, or binds PP1c or mimics the effect of a regulatory subunit, the method comprising selecting a compound which is capable of adopting the same or substantially the same conformation as a peptide bound to the regulatory subunit-binding site of PP1c or the same or substantially the same conformation as the portion of PP1c which binds to said peptide.

- 20. A method according to Claim 19 wherein said peptide comprises the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid.
 - 21. A method according to Claim 20 wherein said peptide consists of residues 63 to 75 of G_M.
- 15 22. A method according to Claim 21 wherein the conformation of the said peptide and the conformation of the said portion of PP1c is as defined by reference to the coordinates in Table A.
 - 23. A compound identifiable by the method of any one of Claims 19 to 22.
 - 24. A compound according to any one of Claims 15 to 18 or 23 for use in medicine.
- 25. A pharmaceutical composition comprising a compound according to any one of Claims 15 to 18 or 23 and a pharmaceutically acceptable carrier.
 - 26. A method of affecting cellular metabolism or function, the method comprising administering to a cell (a) a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or

30

5

- (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.
- A method according to Claim 26 wherein any one or more of the peptides [G63-T93], [G63-N75], [E2-P243], [E2-D118], and peptide 63-80 of G_M or functional equivalents thereof or peptides comprising said peptide sequences are administered.
- A method according to Claim 26 wherein any one or more of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof or peptides comprising said peptide sequences are administered.
- 15 29. A method according to Claim 26 wherein a compound according to any one of Claims 15 to 18 or 23 are administered to the cell.
 - 30. A method according to any one of Claims 26 to 29 wherein the cell is in a mammalian body.

20

- A method of treating a patient in need of modulation of PP1c activity or function the method comprising administering to the patient an effective amount of a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.
- 30 32. Use of peptides derived from targeting subunits of PP1c, functional

5

10

equivalents or portions thereof to affect cellular metabolism.

- A method of treatment of a mammal said method comprising altering levels of peptides derived from a targeting subunit of PP1c, functional equivalents or portions thereof to an extent that cellular metabolism or function is affected.
- 34. A PP1c-regulating subunit that is modified so that it cannot interact with PP1c.
- 35. A PP1c-regulator subunit according to Claim 34 wherein the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe is missing or modified.

Fig. 1

Fig. 2

V.

BNSDOCID: <WO 9737224A1 L

Fig. 3A

MP:PhP 0-92 0-97

Fig 3B

Fig. 4

Fig 6

Fig 7A

Fig. 7B

Fig. 7C

PAISOCID: JAIO 0727224A1

BNSDOCID: <WO___9737224A1_I_>

Effect of fragment on PP1G_L and/or PP1M activity

Dissociation of PP1G_L

and/or PP1M by fragment

dephosphorylation of phosphorylase prevents G_L from suppressing the

displaces M₁₁₀ from PP1M

does not dissociate G_L from PP1G_L

G63 | N75

G63 T93

Š

Ξ

dephosphorylation of phosphorylase prevents G_L from suppressing the

displaces G_L from PP1G_L

stimulates dephosphorylation of

MLC₂₀ and suppresses

WILMSKE DASS 15309

MIL BESSE BESS

M110

MI TREES A 150

M1 | F38

dephosphorylation of phosphorylase dephosphorylation of phosphorylase stimulates dephosphorylation of MLC20 and suppresses

dephosphorylation of phosphorylase MLC₂₀ but does not suppress the stimulates dephosphorylation of

displaces G_L from PP1G_L

no effect on PP1C activity

D39 KWW KWW F.309

Fig. 10A

Fig 10B

Fig. 11A

Fig. 11B

Fig. 11C

Fig 11E

protein	putative PP1-binding motif	
		residues
GAC1	SPEKNVRFAIE	66-76
PIG2	SSGKSVRFAAH	50-60
GIP2	IRSKSVHFDQA	217-227
YIL045W	QRSKSVHFDRV	193-203
YIL045W	V F V K N I Y F S N A	412-422
REG1	TKNRHIHF NDR	461-471
REG2	PRERHIKF NDN	164-174
SCD5	FKSKKVRFSEH	270-280
GIP1	LSEKFIPFNNL	180-190
GIP1	K K K R C V N F R N K	441-451
SHP1	KVTREITFWKE	232-242

Fig. 12A

RECTIFIED SHEET (RULE 91)
ISA/EP

protein	Putative PP1-binding moti	f residues
GAC1	SPEKNVRFAIE	66-76
PIG2	SSGKSVRFAAH	50-60
GIP2	IRSKSVHFDQA	217-227
YIL045W	QRSKSVHFDRV	193-203
YIL045W	VFVKNIYFSNA	412-422
REG1	TKNRHIHFNDR	461-471
REG2	PRERHIKFNDN	164-174
SCD5	FKSKKVRFSEH	270-280
GIP1	WNLKFIPFNNL	180-190
GIP1	KKKRCVNFRNK	441-451

Fig 12B

Fig. 13A

Fig 13B

Fig 14

PNCOCID: <WO 9737224A1 I

Fig 15A

Fig. 15B

Fig 16

Rat Ch	MKMADAKOKRNEQLKRWIGSETDLEPPVVKRQKTKVKFDDGAVFLAACSS 50	* **	1 /
Rat	GDTDEVLKLLERGADINYANVDGLTALHOACT DDWDWYRFI YRGAMIN 100	Fig.	17
Ch	GDTEEVLELLERGADINYANVDGLTALRQACIDDNVDNVKFLVENGANIN 100	•	
Rat Ch	QPDNEGWIPLERAASCGYLDIAEFLIGQGAEVGAVNSEGDTPLDIAEEEA 150 		
Rat	MEELLQNEVNROGVDIEAARREERRINGEDAR ONG NEGETED WEELEGG 200		
СÞ	HEELLQNEVNRQGVDIEAARKEEERIMLRDARQWLNSGHINDVRHAKEGG 200		
Rat Ch	TALHVAAAKGYTEVLKLLIQAGYDVNIKDYDGWTPLHAAAHWGKEEACRI 250		
Rat	TÄLHVÄÄÄRGYTEVLELLIQARYDVNIKDYDGWTPLEARAHWGKZEACRI 250 LVDNLCDMETVNKVGGTAFDVADEDILGYLEZLQKKQNLLESZKRDKKSP 300		
CF	:		
Rat Ch	LIESTANMENNOPOKTPKNKETLIIEPEKNAS RIESLEGEKADEEREGKK 350		
Rat	DESSCSSEDEEDDSESEARTDETERMASUTWAGENERADEEREGEE 350		
СÞ			
Rat	SENQGTPTSPVKRPPTSTTKISPKEZERKDES PASWRLGLRKTGSYGALA 450		
Ch Rat	PITAGERACTER CONTROL C	•	
Ch			
Rat	IPRRLGSTSDIZZKENRES. SHLRTSSSTTRRKWEDDLKKNSSINEGST 548		
Ch Rat	17 RELESTED L DE RESERVE SA SER RESERVE SA SER SER SE SA SER SE		
CF	YRRSCSFGRRODDLISCSVPSTTSTPTYTSAAGLOKSFLSSTSTT 552/59	3	
Rat	AKTPPGSSPAGTOSST SHRLWARDSTERERDS APTRATILVAPTVVSAAR 587/64	13	
Ch Rat	1 AS 1 TUSTBAUVQUSTBURLWAEDSTEREKDS VPTAVTVPVAPSVVBAAA 642		
Ch	SSTTALTTTAGTLSSTSEVRERRRSTLTPVR DEESESQREARSRQARQS 637/69 : : :	3	
Rat	RRSTQGVTLTDLQEAEKTIGESESTRTREQEMEEKDEEKEKQDEEKQEE 687/74	3	
Ch Rat	ARBIQUETUTULQEABATIORBRETRTREQEN EEKEKEKQDKEKQEK 741		
CD.	KKESEVSREDEYKQKYSETYDETTARYRPVST 58585TP8588LSTLGSSL 737/79 ::: : : :	3	
Rat	YASSQLWRPHSLYGITSAYERGLTEDWEREGETTEREG	3	
CDs.			
Rat Ch	ERRRPREKRSTGVSFWTQDSDEWEGERQSDT EDGSSKRDTQTDSVSRTD 837/89: 	3	
Rat	SSSTSSSDRIDSLLGREASYSYLTERREDYG GDLFERRGEREFF TO	1	
CÞ	TGSLSVSSGDRTDSAQGRSGSQSYLEDREPYC SRLEKEDSTDFKKLYEQI 938	-	
Rat1/3 Rat2	LAENEKLKAQLEDTMELTDLKLQLEKATQRQZRFADRSLLEMEKRVTGK 935/991	1	
Ch.	LARMEELKAQLEDTHMELTDLELQLEETTQRQ ERFADRSLLEMEERVEGK 988		
Rat1/3 Rat2	LERRISEMEEELKHLPDLKADHQRLKDENGALIRVISKLSK 976/103 SQYLLGGTESSRKKHI 951	12	
CF	SQTLLGGRESSREEDI 1004		

Fig 18A

Fig 18B

Fig 19

Fig 20

Fig. 21

Fig 22

Α

Α

Fig. 24A

さいらうしつしている こうりゅうかんかく ご

B ---- LMM -----T S P В TS P D MHC -M₂₁ . Fig. 24B |--- myosin --- | rod ---- | |---- LMM ----| S $\cdot \mathbf{B}$ S P D MHC -

Fig 24C

 M_{21} – (1-146)

Fig 25

RNSDOCID--WO ' 9737224A1 | >

Int uonal Application No

Pui/GB 97/00898

			· /
A. CLASS IPC 6	GO1N33/573 C12N9/12 C07K14/	435	
According	to International Patent Classification (IPC) or to both national class	afication and IPC	
B. FIELDS	SSEARCHED		
Minimum d IPC 6	documentation, accided (classification system followed by classification GO1N C12N C07K	ition symbols)	
	tion searched other than minimum documentation to the extent that		
Electronic o	lata base consulted during the international search (name of data ba	se and, where practical, search terms used)	
	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to claim No.
Α	TRENDS IN BIOCHEMICAL SCIENCE, vol. 18, 1 May 1993, OXFORD UK, pages 172-177, XP002037474 M.J. HUBBARD ET AL.: "On target new mechanism for the regulation protein phosphorylation" cited in the application see the whole document		1-35
A	JOURNAL OF MOLECULAR BIOLOGY, vol. 254, 1995, NEW YORK NY USA, pages 942-959, XP002037475 M.P. EGLOFF ET AL.: "Crystal stitle catalytic subinit of human piphosphatase 1 and its complex wittingstate." see the whole document	rotein th	1-35
	•	-/	
X Furt	ner documents are listed in the continuation of box C.	Patent family members are listed in	in annex.
'A' docume	egories of cited documents : ent defining the general state of the art which is not ered to be of particular relevance	"T" later document published after the inte or priority date and not in conflict we cited to understand the principle or th	th the application but
"E" earlier o	document but published on or after the international	invention "X" document of particular relevance; the	claimed invention
Which i	nt which may throw doubts on priority claim(s) or	cannot be considered novel or cannot involve an inventive step when the do "Y" document of particular relevance; the	be considered to current is taken alone
'O' docume	ent referring to an oral disclosure, use, exhibition or	cannot be considered to involve an in document is combined with one or me	ventive step when the
other n 'P' docume later th	nt published prior to the international filing date but	ments, such combination being obvior in the art. *& document member of the same patent	•
Date of the	actual completion of the international search	Date of mailing of the international se	arch report
13	3 August 1997	2 1 -08- 1997	
Name and m	nailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Van Bohemen, C	

Form PCT/ISA/210 (second sheet) (July 1992)

INTER TIONAL SEARCH REPORT

	··	LI/GB 97/00898
	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	In days to also his
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 27, no. 3, 1992, BOCA RATON FL USA, pages 227-281, XP002037649 M. BOLLEN ET AL.: "The structure and role and regulation of type 1 protein phosphatase." cited in the application see the whole document	1-35
	EMBO JOURNAL, vol. 16, no. 8, 1997, HEIDELBERG FRG, pages 1876-1887, XP002037247 M.P. EGLOFF ET AL.: "Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1." see page 1876, column 2, line 10 - line 49	1-35
	•	
•		