Morphometric Relationships of Marine Fishes Common to Central California and the Southern California Bight

Chelsea M. Williams, 1* Jonathan P. Williams, 1 Jeremy T. Claisse, 1 Daniel J. Pondella II., 1 Michael L. Domeier, 2,3 and Laurel A. Zahn 1

Length-weight relationships have several applications in fish stock assessments and ecological studies (e.g., Ricker 1975, Newman et al. 2006). Particularly, they are important for visual surveys of fish populations where the estimated total lengths are converted to weights to estimate fish biomass (e.g., Hamilton et al. 2010, Sala et al. 2012). The available information on length-weight relationships and length-length conversions for marine fishes in California are mostly limited to commercial catch (RecFIN 2009) or the occasional ecological survey (Miller et al. 2008), and a recent compilation of these parameters (Cailliet et al. 2000) demonstrated many species are lacking this basic information. Fishes used in this study were collected in various large- and small-scale projects by the Vantuna Research Group, Occidental College and California State University Northridge from 1984 to 2012. These included state-mandated programs dedicated to assessing the biological and economic impacts of its stocking efforts (ORHEP) and localized fisheries surveys (San Diego and Morro Bay) where a variety of species were caught. Measurements of lengths and weights provide the opportunity to generate information on morphometric relationships that will be useful to other researchers. Here we provide standard length (SL) to total length (TL) conversions (Table 1) for 32 near-shore marine fish species (Class Actinopterygii) and length-weight equation parameters (Table 2) for 71 near-shore marine fish species (57 from Class Actinopterygii and 14 from Subclass Elasmobranchii), common to central and southern California (Miller and Lea 1972).

Fishes were collected by several methods. (White Seabass Gill Net Survey) Collections using monofilament gill nets were made at 19 stations dispersed throughout the Southern California Bight from 1995–2005 in shallow (5–14 m) depths at the edge of rocky reefs as part of the Nearshore Gill Net Sampling Program for White Seabass (Age I-IV). For detailed methods see Pondella and Allen (2000). (San Diego Bay Fisheries Inventory and Utilization Surveys) Fish assemblages in San Diego Bay were assessed using a variety of methods (large seine, small seine, square enclosure, purse seine, beam trawl and otter trawl) (Allen et al. 2002). The bay is divided into four unique ecoregions that were sampled in April and July of 2005, 2008 and 2012, and by purse seine and square enclosure only in June 2009. (Morro Bay Fish Survey) Fish populations were surveyed in Morro Bay using methods similar to the San Diego Bay Fisheries Inventory and

¹Vantuna Research Group, Department of Biology, Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA

²California Department of Fish and Wildlife, 1416 9th Street, 12th Floor, Sacramento, CA 95814, USA

³(Current affiliation) Marine Conservation Science Institute, 68-1825 Lina Poepoe Street, Waikoloa, HI 96738, USA

^{*}Corresponding author: cmunoz@oxy.edu

Table 1. Standard length (SL; in mm) to total length (TL; in mm) conversion parameters (see main text for equation description), sample size (N) and length characteristics of the sampled population for 32 fish species (Class Actinopterygii) common to southern and central California.

		length	characi	teristics	parameter	s of the	relationship
G: vC N	G	3.7	Min.	Max.		1	R^2
Scientific Name	Survey	N	(mm)	(mm)	а	b	K-
Clupeiformes							
Engraulidae - anchovies Anchoa compressa (Girard, 1858)	b	63	45	114	7.22	1.16	0.95
Anchoa delicatissima (Girard, 1854)	b	633	19	67	2.42	1.16	0.91
Aulopiformes							
Synodontidae - lizardfishes							
Synodus lucioceps (Ayers, 1955)	abc	20	68	193	-1.66	1.15	0.99
Batrachoidiformes							
Batrachoididae - toadfishes							
Porichthys myriaster Hubbs & Schultz, 1939	ab	23	16	327	-0.44	1.16	0.99
Atheriniformes							
Atherinopsidae - New World silversides							
Atherinops affinis (Ayers, 1860)	abc	1745	11	193	-0.02	1.19	> 0.99
Atherinopsis californiensis (Girard, 1854)	abc	11	31	282	-2.33	1.22	> 0.99
Leuresthes tenuis (Ayers, 1860)	bc	16	62	166	1.36	1.15	0.99
Beloniformes							
Hemiramphidae - halfbeaks	1	1.4	24	107	0.17	1.12	0.00
Hyporhamphus rosae (Jordan & Gilbert, 1880)	b	14	24	127	-0.17	1.13	0.99
Belonidae - needlefishes Strongylura exilis (Girard, 1854)	ab	3	51	337	1.22	1.08	> 0.99
Cyprinodontiformes							
Fundulidae - topminnows							
Fundulus parvipinnis Girard, 1854	bc	195	14	78	1.91	1.11	0.99
Gasterosteiformes							
Syngnathidae - pipefishes							
Syngnathus leptorhynchus Girard, 1854	bc	799	33	248	1.20	1.02	> 0.99
Scorpaeniformes							
Scorpaenidae - scorpionfishes							
Scorpaena guttata Girard, 1854	abd	3	85	230	1.15	1.23	> 0.99
Cottidae - sculpins							
Leptocottus armatus Girard, 1854	abc	763	11	119	0.63	1.16	0.99
Perciformes							
Polyprionidae – wreckfishes							
Stereolepis gigas Ayers, 1859	ag	35	336	1450	-10.87	1.21	0.99
Serranidae – sea basses	ak - J	70	10	165	1 21	1 10	0.00
Paralabrax clathratus (Girard, 1854) Paralabrax maculatofasciatus	abcd	76	19	165	1.31	1.19	0.99
(Steindachner, 1868)	abd	348	32	306	1.71	1.22	0.99
Paralabrax nebulifer (Girard, 1854)	abd	154	43	180	4.77	1.15	0.98
Haemulidae - grunts							
Anisotremus davidsonii (Steindachner, 1876)	abde	623	20	328	5.78	1.23	0.99
Sciaenidae – drums and croakers							
Atractoscion nobilis (Ayers, 1860)	abf	6513	71	1220	11.29	1.15	0.99

Table 1. Continued.

		length	characi	teristics	parameter	s of the	relationship
Scientific Name	Survey	N	Min. (mm)	Max. (mm)	а	b	R^2
Cheilotrema saturnum (Girard, 1858)	ab	6	35	178	1.40	1.19	> 0.99
Roncador stearnsii (Steindachner, 1876)	abe	493	138	542	11.85	1.20	0.99
Embiotocidae – sea perches							
Cymatogaster aggregata Gibbons, 1854	abc	828	26	112	1.83	1.24	0.98
Micrometrus minimus (Gibbons, 1854)	abc	43	21	113	3.35	1.19	0.99
Blenniidae – combtooth blennies							
Hypsoblennius gentilis (Girard, 1854)	bcd	20	44	109	3.99	1.15	0.99
Clinidae – kelp blennies							
Gibbonsia elegans (Cooper, 1864)	bd	10	23	106	-0.37	1.15	> 0.99
Heterostichus rostratus Girard, 1854	abcd	329	23	315	1.23	1.13	> 0.99
Gobiidae - gobies							
Clevelandia ios (Jordan & Gilbert, 1882)	bc	310	10	56	0.37	1.16	0.99
Quietula y-cauda (Jenkins & Evermann,							
1889)	bc	64	22	64	1.17	1.16	0.97
Pleuronectiformes							
Paralichthyidae – sand flounders							
Citharichthys stigmaeus Jordan &							
Gilbert, 1882	abc	263	22	101	0.65	1.17	0.99
Paralichthys californicus (Ayers, 1859)	abc	62	57	430	8.26	1.16	0.98
Pleuronectidae - right-eyed flounders							
Pleuronicthys guttulatus Girard, 1854	abc	48	17	204	2.31	1.21	> 0.99
Pleuronichthys ritteri Starks & Morris, 1907	abd	24	78	156	0.17	1.25	0.97
Cynoglossidae - tonguefishes							
Symphurus atricaudus (Jordan & Gilbert,							
1880)	ab	18	64	138	-0.88	1.08	> 0.99

a, White Seabass Gill Net Survey; b, San Diego Bay Fisheries Inventory and Utilization Survey; c, Morro Bay Fish Survey; d, Cryptic reef fish collections from King Harbor and Agua Hedionda; e, Heat Treatments from Encina Generating Station, Cabrillo Power Plant, and Huntington Beach Generation Station; f,Opportunistic non-scientific hook and line and spear catches; g, Data provided by Michael Domeier

Utilization Surveys in April, August and November of 2005–2007 and in May of 2008. (Cryptic reef fish collections from King Harbor, Redondo Beach and Agua Hedionda, San Diego) Collections of cryptic benthic fishes in King Harbor, Redondo Beach have been made periodically (1–12 times per year) since 1984 by divers using anesthetic and air lifts (Stephens et al. 1994). A similar collection was made from Agua Hedionda Lagoon in 2005. (Heat Treat and Impingement Surveys) Samples were also collected during heat treatments in 2005 at Encina Generating Station, Cabrillo Power Plant, and Huntington Beach Generating Station. For detailed methods see Pondella et al. (2008). Some white seabass (Atractoscion nobilis) specimens were also collected opportunistically by hook and line or spear. Additionally, data for giant sea bass (Stereolepis gigas) collected by hook and line was included (Michael Domeier, pers. comm.). While fishes caught during some of these studies were batch weighed by species, all individuals used here were measured individually: TL and/or SL or disc width (DW) were typically recorded to the nearest millimeter (mm) or occasionally centimeter (cm) and weight was recorded to the

Scientific Name Heterodontiformes				length characteristics	istics	parame	parameters of the relationship	tionship
Heterodontiformes	Survey	N	Type	Min. (mm)	Max. (mm)	а	9	R^2
Hotorodontidos bullhood shoules								
Heterodontus francisci (Girard, 1855)	ab	651	TL	170	870	1.18E-05	2.94	0.98
Lamniformes Alopiidae - thresher sharks								
Alopias vulpinus (Bonnaterre, 1788)	а	16	TL	870	2560	3.11E-04	2.36	0.90
Carcharhiniformes								
Scyliorhinidae - cat sharks Cenhaloscyllium ventriosum (Garman, 1880)	æ	307	Ē	33.5	950	3.00E-06	3.13	0.92
Triakidae - hound sharks								
Galeorhimus galeus (Linnaeus, 1758)	В	102	TL	250	1900	7.78E-06	2.93	0.95
Mustelus californicus Gill, 1864	ab	441	TL	345	1200	7.27E-07	3.22	0.95
Mustelus henlei (Gill, 1863)	а	387	TL	340	1100	8.07E-07	3.21	0.95
Triakis semifasciata Girard, 1855	а	736	TL	160	1545	5.95E-06	2.95	0.97
Hexanchiformes								
Hexanchidae - cow sharks Notorynchus cepedianus (Bonnaterre, 1788)	а	30	TL	1185	1900	8.61E-07	3.22	0.88
Squaliformes								
Squalidae - dogfish sharks								,
Squalus acanthias Linnaeus, 1758	в	191	IL	320	1200	8.29E-08	3.57	0.94
Squatiniformes								
Squatinidae - angel sharks	,	Š	į		9			
Squatina californica Ayers, 1859	ab	206	1	320	1200	7.81E-06	3.02	0.94

Table 2. Continued.

			1	length characteristics	stics	paramete	parameters of the relationship	ionship
Scientific Name	Survey	N	Type	Min. (mm)	Max. (mm)	a	q	R^2
Rajiformes Rhinobatidae – guitarfishes <i>Rhinobatos productus</i> Ayres, 1854	ab	111	TL	225	1340	3.43E-06	3.01	0.95
Myliobatiformes Urotrygonidae - American round stingrays Urobatis halleri (Cooper, 1863)	abc	556	DW	74	275	5.73E-05	3.02	96.0
Gymnuridae - butterfly rays Gymnura marmorata (Cooper, 1864)	ab	26	DW	250	1010	2.74E-06	3.20	86.0
Myliobatidae - eagle rays and mantas <i>Myliobatis californica</i> Gill, 1865	abc	270	DW	180	1000	2.32E-05	2.94	0.95
Albuliformes Albulidae - bonefishes Albula gilberti Pfeiler & Van der Heiden, 2011	ab	42	SL	55	360	2.05E-07	3.77	86.0
Clupeiformes Engraulidae - anchovies Anchoa compressa (Girard, 1858) Anchoa delicatissima (Girard, 1854)	ع م	63	SL	45	114	1.11E-05 7.55E-06	3.05	0.94
Clupeidae - herrings Sardinops sagax (Jenyns, 1842)	abc	247	TS	75	280	1.19E-05	3.02	0.91
Aulopiformes Synodontidae – lizardfishes Synodus lucioceps (Ayres, 1855)	abc	08	SL	61	360	2.12E-06	3.26	86.0
Batrachoidiformes Batrachoididae - toadfishes Porichthys myriaster Hubbs & Schultz, 1939 Porichthys notatus Girard, 1854	ab ab	328 77	TS ST	16	490 460	1.38E-05 2.21E-05	2.98	0.99

Table 2. Continued.

				length characteristics	istics	parameto	parameters of the relationship	tionship
Scientific Name	Survey	N	Type	Min. (mm)	Max. (mm)	a	9	R^2
Mugiliformes Mugilidae - mullets Mugil cephalus Linnaeus, 1758	abc	40	SL	53	520	2.96E-05	2.93	0.99
Atheriniformes Atherinopsidae - New World silversides Atherinops affinis (Ayers, 1860) Atherinopsis californiensis (Girard, 1854) Leuresthes tenuis (Ayers, 1860)	abc abc bc	1756 420 17	SL SL SL	11 31	193 360 166	3.83E-06 1.03E-05 8.25E-07	3.24 3.01 3.52	0.99
Beloniformes Hemiramphidae - halfbeaks Hyporhamphus rosae (Jordan & Gilbert, 1880) Belonidae - needlefishes Stronghus evilis (Girard 1854)	ئ خ	18	SL	24	127	6.23E-07	3.32	0.94
Cyprinodontiformes Fundulidae - topminnows Fundulus parvipinnis Girard, 1854	£ 26	198	TS	41	78	1.49E-05	3.08	66.0
Gasterosteiformes Syngnathidae - pipefishes Syngnathus leptorhynchus Girard, 1854	þç	814	SL	33	248	8.45E-08	3.35	0.95
Scorpaeniformes Scorpaenidae - scorpionfishes Scorpaenia guttata Girard, 1854 Sebastes atrovirens (Jordan & Gilbert, 1880) Sebastes carnatus (Jordan & Gilbert, 1880) Sebastes rastrelliger (Jordan & Gilbert, 1880)	abd a a ab	618 102 36 225	SL SL SL SL	30 125 110 52	305 270 240 350	3.66E-05 9.44E-06 1.72E-04 2.93E-05	2.98 3.22 2.68 3.01	0.94 0.92 0.91 0.91

Table 2. Continued.

			1	length characteristics	stics	paramet	parameters of the relationship	ionship
Scientific Name	Survey	N	Type	Min. (mm)	Max. (mm)	a	q	R^2
Hexagrammidae - greenlings Oxylebius pictus Gill, 1862	ad	17	ST	27	150	1.52E-05	3.11	0.98
Cottidae - sculpins Artedius corallinus (Hubbs, 1926)	р	20	SL	12	59	3.19E-05	2.88	0.99
Leptocottus armatus Girard, 1854	abc	827	SL	11	190	2.32E-05	2.98	0.99
Ruscarius creaseri (Hubbs, 1926)	р	174	SL	10	44	1.49E-05	3.17	0.99
Scorpaenichthys marmoratus (Ayres, 1854)	ad	136	$S\Gamma$	44	390	2.06E-05	3.06	0.95
Perciformes								
Polyprionidae - wreckfishes								
Stereolepis gigas Ayers, 1859	ag	96	$S\Gamma$	125	2003	1.07E-04	2.80	0.99
Serranidae - sea basses								
Paralabrax clathratus (Girard, 1854)	abcd	989	$S\Gamma$	19	575	2.09E-05	3.01	0.98
Paralabrax maculatofasciatus	abd	430	SL	32	350	2.16E-05	3.03	0.99
(Steindachner, 1868)								
Paralabrax nebulifer (Girard, 1854)	abd	635	$S\Gamma$	27	410	2.89E-05	2.95	0.99
Haemulidae - grunts								
Anisotremus davidsonii (Steindachner, 1876)	abde	750	$S\Gamma$	20	330	1.64E-05	3.13	86.0
Sciaenidae - drums and croakers								
Atractoscion nobilis (Ayres, 1860)	abf	6548	SL	71	1220	2.97E-05	2.87	96.0
Cheilotrema saturnum (Girard, 1858)	ab	344	$S\Gamma$	35	365	3.83E-05	2.91	0.92
Cynoscion parvipinnis Ayres, 1861	Ъ	10	SL	179	465	6.52E-05	2.74	0.99
Menticirrhus undulatus (Girard, 1854)	ab	432	$S\Gamma$	165	520	2.58E-05	2.91	0.94
Roncador stearnsii (Steindachner, 1876)	ape	577	SL	138	542	3.96E-05	2.91	96.0
Kyphosidae - sea chubs								
Hermosilla azurea Jenkins & Evermann, 1889	а	53	$^{ m ST}$	165	310	1.14E-05	3.21	0.85

Table 2. Continued.

				length characteristics	stics	paramete	parameters of the relationship	onship
Scientific Name	Survey	N	Type	Min. (mm)	Max. (mm)	a	q	R^2
Cymatogaster aggregata Gibbons, 1854	apc	879	$S\Gamma$	26	140	2.08E-05	3.07	0.97
Micrometrus minimus (Gibbons, 1854)	apc	88	$S\Gamma$	21	135	2.91E-05	3.02	96.0
Pomacentridae – damselfishes								
Chromis punctipinnis (Cooper, 1863)	ad	148	$S\Gamma$	24	210	2.69E-05	3.02	0.98
Hypsypops rubicundus (Girard, 1854)	а	139	$S\Gamma$	06	220	3.07E-05	3.11	0.88
Labridae - wrasses and parrotfishes								
Semicossyphus pulcher (Ayres, 1854)	а	194	$S\Gamma$	45	455	8.45E-05	2.80	0.92
Blenniidae - combtooth blennies								
Hypsoblennius gentilis (Girard, 1854)	pcq	30	$S\Gamma$	34	109	1.58E-05	3.10	0.95
Hypsoblennius jenkinsi (Jordan & Evermann,								
1896)	р	73	$S\Gamma$	13	80	8.64E-06	3.20	0.98
Clinidae - kelp blennies								
Gibbonsia elegans (Cooper, 1864)	pq	115	$S\Gamma$	16	107	4.80E-06	3.24	0.99
Heterostichus rostratus Girard, 1854	abcd	521	$S\Gamma$	23	400	3.97E-06	3.17	0.99
Labrisomidae - labrisomid blennies	-	400	č	(Č	į į	•	0
Paraclinus integripinnis (Smith, 1880)	pcq	489	SL	6	28	1.11E-05	3.10	0.98
Gobiesocidae - clingfishes								
Gobiesox rhessodon Smith, 1881	р	42	$S\Gamma$	7	25	2.11E-05	3.04	96.0
Gobiidae - gobies								
Clevelandia ios (Jordan & Gilbert, 1882)	рc	329	$S\Gamma$	9	99	2.55E-06	3.42	0.95
Quietula y-cauda (Jenkins & Evermann, 1889)	bc	2	$S\Gamma$	22	2	1.22E-05	3.05	0.95
Rhinogobiops nicholsii (Bean, 1882)	р	28	$S\Gamma$	24	98	6.28E-06	3.26	0.99
Sphyraenidae - barracudas Sphyraena argentea Girard, 1854	ab	436	SL	300	965	2.46E-05	2.76	0.94
Scombildae - mackerels Scomber japonicus Hottuyn, 1782	ab	274	SL	160	395	1.93E-05	2.93	0.92
								Ī

Table 2. Continued.

				length characteristics	istics	paramet	parameters of the relationship	tionship
Scientific Name	Survey	N	Type	Type Min. (mm) Max. (mm,	Max. (mm)	a	q	R^2
Pleuronectiformes								
Paralichthyidae - sand flounders								
Citharichthys stigmaeus Jordan & Gilbert, 1882	abc	285	$S\Gamma$	22	135	8.33E-06	3.20	0.98
Paralichthys californicus (Ayers, 1859)	abc	623	$S\Gamma$	57	810	2.55E-05	2.91	0.95
Xystreurys liolepis Jordan & Gilbert, 1880	ab	36	$S\Gamma$	105	400	3.07E-06	3.36	0.94
Pleuronectidae - right-eye flounders								
Pleuronicthys guttulatus Girard, 1856	abc	118	$S\Gamma$	17	340	5.80E-05	2.85	0.99
Pleuronichthys ritteri Starks & Morris, 1907	abd	107	$S\Gamma$	17	230	2.95E-05	2.98	96.0
Cynoglossidae - tonguefishes Symphurus atricaudus (Jordan & Gilbert, 1880)	ab	32	TS	34	185	1.07E-05	3.00	0.94

a, White Seabass Gill Net Survey; b, San Diego Bay Fisheries Inventory and Utilization Survey; c, Morro Bay Fish Survey; d, Cryptic reef fish collections from King Harbor and Agua Hedionda; e, Heat Treatments from Encina Generating Station, Cabrillo Power Plant, and Huntington Beach Generation Station; f,Opportunistic nonscientific hook and line and spear catches; g, Data provided by Michael Domeier nearest gram (g) either in the field or from frozen specimens that were brought back to the laboratory.

All statistical analyses were performed using R (R Core Development Team 2012). Standard length to total length conversion equations were established using linear regression analyses. Length-length models were fitted to the equation TL = a+bSL where SL is standard length (mm) and TL is total length (mm) (Table 1). Length-weight models were fitted to the equation $W = aL^b$, where W is the wet body weight (g) and L is the total length (mm) or disc width (mm) (Table 2) by log-transforming both the length and weight data, performing linear regression analyses. Estimated parameters were then backtransformed to the original scale for reporting. Obvious outliers were removed prior to model fitting. While some species had a low sample size (N < 30), we report parameters here for those where 1) the naturally occurring size range was adequately represented in the sample, 2) the models fit the data well (Tables 1, 2), and 3) the lack of published information on the species made the parameter estimates of high value (Froese 2006). Parameters for some species described here have been previously published (e.g. Miller et al. 2008, Love 2011). However, there is value in including parameters for all species that we had sufficient data for where sampling locations differ across studies and/or larger sample sizes were available, permitting future users of the parameters more options depending on their intended use.

Acknowledgements

Funding for data collection was provided by the following agencies: California Department of Fish and Wildlife's Ocean Resources Enhancement Hatchery Program (ORHEP), Port of San Diego, San Luis Obispo Science and Ecosystem Alliance (SLOSEA), and NRG Cabrillo Power Operations Inc.

Literature Cited

- Allen, L.G., A.M. Findlay, and C.M. Phalen. 2002. Structure and standing stock of the fish assemblages of San Diego Bay, California from 1994 to 1999. Bulletin, Southern California Academy of Sciences, 101:48–85.
- Cailliet, G.M., E.J. Burton, J.M. Cope, L.A. Kerr, R.N. Lea, D. Van Tresca, and E. Knaggs. 2000. Biological characteristics of nearshore fishes of California: a review of existing knowledge and proposed additional studies. Final report and Excel data matrix, Pacific States Marine Fisheries Commission. Available from the California Department of Fish and Wildlife as an Excel file (http://www.dfg.ca.gov/mrd/lifehistories/)
- Froese, R. 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. Journal of Applied Ichthyology, 22:241–253.
- Hamilton, S.L., J.E. Caselle, D.P. Malone, and M.H. Carr. 2010. Marine reserves special feature: Incorporating biogeography into evaluations of the Channel Islands marine reserve network. Proceedings of the National Academy of Sciences, 107:18272–18277.
- Love, M.S. 2011. Certainly more than you want to know about the fishes of the Pacific Coast, a postmodern experience. Really Big Press, Place, Published.
- Miller, D.J. and R.N. Lea. 1972. Guide to the coastal marine fishes of California. California Department of Fish and Game, Fish Bulletin, 157:249 pp.
- Miller, E.F., D.S. Beck, and W. Dossett. 2008. Length-weight relationships of select common nearshore southern California marine fishes. Bulletin, Southern California Academy of Sciences, 107:183–186.
- Newman, M.J.H., G.A. Paredes, E. Sala, and J.B.C. Jackson. 2006. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecology Letters, 9:1216–1227.
- Pondella, D.J. and L.G. Allen, 2000. The nearshore fish assemblage of Santa Catalina Island. In: Browne, D.R., Mitchell, K.L., and Chaney, H.W. (eds.). The proceedings of the fifth California Islands Symposium, Minerals Management Service and Santa Barbara Museum of Natural History, pp. 394–400.

- —, J.T. Froeschke, L.S. Wetmore, E. Miller, C.F. Valle, and L. Medeiros. 2008. Demographic parameters of yellowfin croaker, *Umbrina roncador* (Perciformes: Sciaenidae), from the Southern California Bight. Pacific Science, 62:555–568.
- R Core Development Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
- RecFIN. 2009. Pacific States Marine Recreational FIsheries Monitoring. http://www.recfin.org.
- Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada, 191:382.
- Sala, E., E. Ballesteros, P. Dendrinos, A. Di Franco, F. Ferretti, D. Foley, S. Fraschetti, A. Friedlander, J. Garrabou, H. Güçlüsoy, P. Guidetti, B.S. Halpern, B. Hereu, A.A. Karamanlidis, Z. Kizilkaya, E. Macpherson, L. Mangialajo, S. Mariani, F. Micheli, A. Pais, K. Riser, A.A. Rosenberg, M. Sales, K.A. Selkoe, R. Starr, F. Tomas, and M. Zabala. 2012. The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications. PLoS ONE, 7:e32742.
- Stephens, J., P. Morris, D. Pondella, T. Koonce, and G. Jordan. 1994. Overview of the dynamics of an urban artificial reef fish assemblage at King Harbor, California, USA, 1974–1991: A recruitment driven system. Bulletin of Marine Science, 55:1224–1239.