Tema nr. 6

Date (n+1) puncte distincte, x_0, x_1, \ldots, x_n $(x_i \in \mathbb{R} \ \forall i, x_i \neq x_j, i \neq j)$ și cele (n+1) valori ale unei funcții necunoscute f în aceste puncte, $y_0 = f(x_0)$, $y_1 = f(x_1), \ldots, y_n = f(x_n)$:

să se aproximeze funcția f în \bar{x} , $f(\bar{x})$, pentru un \bar{x} dat, $\bar{x} \neq x_i$, $i = 0, \dots, n$:

- utilizând forma Newton a polinomului de interpolare Lagrange şi schema lui Aitken de calcul al diferențelor divizate; să se afișeze $L_n(\bar{x})$ şi $|L_n(\bar{x}) f(\bar{x})|$;
- folosind aproximarea polinomială calculată cu metoda celor mai mici pătrate. Pentru calculul valorii polinomului obținut în punctul \bar{x} să se folosească schema lui Horner. Să se afișeze $P_m(\bar{x})$, $|P_m(\bar{x}) f(\bar{x})|$ și $\sum_{i=0}^{n} |P_m(x_i) y_i|$. Se vor folosi valori ale lui m mai mici decât 6.

Pentru rezolvarea sistemului liniar care apare în rezolvarea interpolării în sensul celor mai mici pătrate se poate folosi biblioteca utilizată la *Tema 2*.

Nodurile de interpolare $\{x_i, i=0,...,n\}$ se vor genera astfel: x_0 şi x_n se citesc de la tastatură sau dintr-un fișier astfel ca $x_0 < x_n$, iar x_i se generează aleator astfel ca $x_i \in (x_0, x_n)$ şi $x_{i-1} < x_i$; valorile $\{y_i, i=0,...,n\}$ se construiesc folosind o funcție f declarată în program (exemple de alegere a nodurilor x_0, x_n şi a funcției f(x) se găsesc la sfârșitul acestui document), $y_i = f(x_i), i=0,...,n$;

Bonus (15 pt): Să se facă graficul funcției f și al funcțiilor aproximative calculate L_n și P_m .

Interpolare numerică

Se cunosc valorile unei funcții într-un număr finit de puncte, x_0, x_1, \ldots, x_n :

$$x_i \neq x_j \forall i \neq j, y_i = f(x_i), i = \overline{0, n}$$

În cazul formei Newton a polinomului Lagrange, pentru a aproxima funcția f în \bar{x} , $f(\bar{x})$, $\bar{x} \neq x_i$ se construiește un polinom S(x) care satisface:

$$S(x_i) = y_i$$
, $i = \overline{0, n}$.

În cazul aproximării în sensul celor mai mici pătrate se construiește un polinom care satisface relația:

$$\min \left\{ \sum_{r=0}^{n} \left| S(x_r; a_0, a_1, \dots, a_m) - y_r \right|^2 ; \ a_0, a_1, \dots, a_m \in \mathbb{R} \right\}.$$

 $(a_0, ..., a_m \text{ sunt coeficienții polinomului } S)$

Valoarea aproximativă pentru $f(\bar{x})$ este $S(\bar{x})$:

$$f(\bar{x}) \approx S(\bar{x})$$

Polinomul de interpolare Lagrange

Unicul polinom de grad n, L_n , ce satisface relația de interpolare:

$$L_n(x_i) = y_i \quad , \quad i = \overline{0, n}$$

poate fi scris în mai multe feluri. O primă formă este următoarea:

$$L_n(x) = \sum_{i=0}^n \left(y_i \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j} \right)$$

O a doua formă este forma Newton a polinomului de interpolare Lagrange:

$$L_n(x) = y_0 + [x_0, x_1]_f(x - x_0) + [x_0, x_1, x_2]_f(x - x_0)(x - x_1) + \cdots$$
$$+ [x_0, \dots, x_n]_f(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

Această formă are avantajul că, dacă se mai adăugăm un nod (x_{n+1}, y_{n+1}) , valoarea polinomului Lagrange L_{n+1} se calculează simplu din L_n astfel:

$$L_{n+1}(x) = L_n(x) + [x_0, \dots, x_{n+1}]_f(x - x_0)(x - x_1) \cdots (x - x_n)$$

Coeficienții:

$$[x_0, x_1, ..., x_k]_f = \sum_{i=0}^k \frac{y_i}{\prod\limits_{j=0, j\neq i}^k (x_i - x_j)}$$

se numesc diferențe divizate de ordin k ale funcției f pe nodurile x_0, \ldots, x_k . Calculul diferențelor divizate este mai economic din punct de vedere numeric dacă se folosește definiția recursivă:

$$[x_0, x_1]_f = \frac{y_1 - y_0}{x_1 - x_0} \quad , \quad [x_0, x_1, x_2]_f = \frac{[x_2, x_1]_f - [x_1, x_0]_f}{x_2 - x_0}$$
$$[x_0, ..., x_{k+1}]_f = \frac{[x_{k+1}, ..., x_1]_f - [x_k, ..., x_0]_f}{x_{k+1} - x_0}$$

Schema lui Aitken de calcul a diferențelor divizate

Pas 1

Schema lui Aitken este un procedeu rapid, în n paşi, de calcul a diferențelor divizate necesare construirii polinomului Lagrange în forma Newton. Modul de calcul este ilustrat în tabelul de mai jos:

Pas 2

Pas n

La pasul k se calculează diferențele divizate de ordin k:

$$[x_0, x_1, \dots, x_k]_f, [x_1, x_2, \dots, x_{k+1}]_f, \dots, [x_{n-k}, \dots, x_n]_f$$

folosind doar diferențele divizate de la pasul anterior și nodurile x_i . La fiecare pas, calculele se pot face în același vector y. După calcularea diferențelor divizate de ordin k (pasul k), vectorul y are următoarea structură:

$$y = (y_0, [x_0, x_1]_f, [x_0, x_1, x_2]_f, \dots, [x_0, x_1, \dots, x_k]_f, \dots, [x_{n-k}, \dots, x_n]_f)$$

După pasul n vectorul y va conține toate diferențele divizate de care avem nevoie pentru a calcula L_n :

$$y = (y_0, [x_0, x_1]_f, [x_0, x_1, x_2]_f, \dots, [x_0, x_1, \dots, x_{n-1}]_f, [x_0, x_1, \dots, x_n]_f)$$

Valoarea funcției f în punctul \bar{x} se va aproxima prin $L_n(\bar{x})$.

Interpolare prin metoda celor mai mici pătrate

Fie $a = x_0 < x_1 < \dots < x_n = b$. Dat $\bar{x} \in [a, b]$ să se aproximeze $f(\bar{x})$ cunoscând cele n+1 valori y_i ale funcției f în nodurile de interpolare. Se caută un polinom de grad m:

$$P_m(x) = P_m(x; a_0, a_1, \dots, a_m) = a_m x^m + \dots + a_1 x + a_0 = \sum_{k=0}^m a_k x^k$$

Coeficienții $\{a_i; i=\overline{0,m}\}$ sunt soluția problemei de minimizare:

$$\min \left\{ \sum_{r=0}^{n} \left| P_m(x_r; a_0, a_1, \dots, a_m) - y_r \right|^2 ; \ a_0, a_1, \dots, a_m \in \mathbb{R} \right\}$$

și de asemenea, sunt soluția sistemului liniar:

$$Ba = f$$

$$B = (b_{ij})_{i,j=0,\dots,m} \in \mathbb{R}^{(m+1)\times(m+1)} \quad f = (f_i)_{i=0,\dots,m} \in \mathbb{R}^{m+1}$$

$$\sum_{j=0}^{m} \left(\sum_{k=0}^{n} x_k^{i+j}\right) a_j = \sum_{k=0}^{n} y_k x_k^i \quad , \quad i = 0,\dots,m$$

Acest sistem liniar se poate rezolva cu biblioteca numerică folosită la *Tema 2*.

Valoarea funcției f în punctul \bar{x} se aproximează prin valoarea polinomului P_m în punctul \bar{x} :

$$f(\bar{x}) \approx P_m(\bar{x}; a_0, a_1, \dots, a_m)$$

Valoarea polinomului $P_m(\bar{x})$ se va calcula folosind schema lui Horner.

Schema lui Horner de calcul a valorii $P(x_0)$

Fie P un polinom de grad p:

$$P(x) = c_0 x^p + c_1 x^{p-1} + \dots + c_{p-1} x + c_p , \quad (c_0 \neq 0)$$

Putem scrie polinomul P şi astfel:

$$P(x) = ((\cdots (((c_0x + c_1)x + c_2)x + c_3)x + \cdots)x + c_{p-1})x + c_p$$

Ținând cont de această grupare a termenilor obținem un mod eficient de a calcula valoarea polinomului P într-un punct $x_0 \in \mathbb{R}$ oarecare, procedeu numit $metoda\ lui\ Horner$:

În șirul de mai sus:

$$P(x_0) = d_p$$

iar ceilalți termeni calculați (d_i , $i=0,\ldots,p-1$), sunt coeficienții polinomului cât, Q, din împărțirea cu rest:

$$P(x) = (x - x_0)Q(x) + r ,$$

$$Q(x) = d_0x^{p-1} + d_1x^{p-2} \cdots + d_{p-2}x + d_{p-1} ,$$

$$r = d_p = P(x_0).$$

Pentru a calcula $P(x_0)$ (d_p) cu formulele (1) se poate folosi o singură valoare reală $d \in \mathbb{R}$ și nu un vector $d \in \mathbb{R}^p$.

Date de intrare - exemple

$$x_0 = a = 1$$
 , $x_n = b = 5$, $f(x) = x^2 - 12x + 30$
 $x_0 = a = 0$, $x_n = b = 1.5$, $f(x) = \sin(x) - \cos(x)$
 $x_0 = a = 0$, $x_n = b = 2$, $f(x) = 2x^3 - 3x + 15$