

NOTATKA ROBOCZA

Sterowniki i Regulatory

Zajęcia nr 4

Skład grupy:	Aleksander Łyskawa 275462 Daniel Malczyk 275424		
Wydział i kierunek studiów:	W12N, Automatyka i Robotyka		
Termin zajęć:	pon 17:05 – 18:45		
Prowadzący:	dr inż. Włodzimierz Solnik		
Data:	29.10.2024		

1 Konfiguracja sprzętowa

Na zajęciach w środowisku TIA Portal stworzono nowy projekt, w którym przeprowadzono konfigurację sterownika Siemens S7-1200. Na początku dodano urządzenie do projektu, korzystając z opcji "Unspecified CPU", co umożliwiło automatyczne wykrycie modelu sterownika podłączonego do sieci.

Rysunek 1: Wykrywanie urządzenia

Po nawiązaniu połączenia sprawdzono konfigurację sprzętową, a następnie przeprowadzono test komunikacji między TIA Portal a sterownikiem, aby upewnić się, że urządzenie zostało poprawnie zintegrowane z projektem.

Rysunek 2: Konfiguracja

2 Struktura programu w języku drabinkowym

2.1 Blok funkcyjny FC1 - mnozenie

Na początek do tabeli tagów dodano główne zmienne używane w programie wraz z ich typami danych oraz adresami

Rysunek 3: Zmienne do FC1

Następnie napisano blok funckyjny zgodnie ze schematem zawartym w instrukcji.

2.1.1 Network 1

Network 1 realizuje zliczanie zdarzeń, gdy wejście y (%I0.1) jest aktywne, a x (%I0.0) nieaktywne. Gdy warunek ten jest spełniony, licznik CTU (DB2) zwiększa swoją wartość. Wartość licznika można zresetować za pomocą sygnału Tag_1 (%M32.1). Następnie wynik zliczania (%MB10) jest przenoszony do wyjścia wyjscie (%Q0.0).

2.1.2 Network 2

Network 2 działa podobnie do Network 1, ale używa innego licznika (DB1). Również zlicza zdarzenia na podstawie wejść x i y oraz resetuje licznik sygnałem Tag_1. Wynik zliczania jest zapisywany w zmiennej yliczyc (%MB2) i przesyłany na wyjście wyjscie (%Q0.0).

Rysunek 4: Network 1 i 2

2.1.3 Netowork 3

Network 3 wykonuje operację mnożenia wartości xliczyc (%MB10) i yliczyc (%MB2) w bloku MUL. Wynik mnożenia jest zapisany w zmiennej z (%MD4) i przenoszony do wyjścia wyjscie (%Q0.0). Blok N_TRIG zapewnia reset za pomocą sygnału reset (%M32.0), działając jak impuls.

Rysunek 5: Network 3

2.2 Blok funkcyjny FC2 - licz

Do tabeli tagów dodano nowe zmienne wraz z ich typami danych oraz adresami

€0	Tag_3	Bool	%10.5		~	
401	Out	Bool	%Q0.0	✓	✓	
1	START/STOP	Bool	%10.2		~	
401	memory0	Bool	%M5.0		✓	
€1	memory2	Bool	%M5.2		✓	
1	memory1	Bool	%M5.1	✓	~	✓
-€01	reset1	Bool	%M5.3		~	✓
1	load	Bool	%M5.4		\checkmark	
€11	clock_1Hz	Bool	%M5.5		~	
€01	stop	Bool	%10.3	✓	~	✓
1	start	Bool	%10.4		\checkmark	
401	Tag4	Real	%MD34	\sim	~	
400	Tag5	Real	%MD44		✓	
€	Tag6	Int	%MW48	✓	~	
€1	Tag_4	Real	%MD36		✓	
1	Tag_5	Real	%MD54		✓	
	<add new=""></add>			~	~	~

Rysunek 6: Zmienne do FC2

Następnie napisano blok funckyjny 'licz' zgodnie ze schematem zawartym w instrukcji.

2.2.1 Network 1

Obsługuje licznik typu CTUD, który liczy impulsy przy wejściu CU i CD. Przy sygnale resetu (%M5.3) licznik się zeruje, a przy sygnale ładującym (%M5.4) jest ustawiany na wartość początkową (10). Zmienna %M5.2 pełni funkcję sygnału wyjścia.

Rysunek 7: Network 1

2.2.2 Network 2

Ustawia warunki start/stop dla sygnału wyjściowego (%Q0.0). Sygnały w pamięci (%M5.1, %M5.5) współpracują z sygnałem zegara i przełącznikiem start/stop (%I0.2), kontrolując stan wyjścia.

Rysunek 8: Network 2

2.2.3 Netowork 3

Przeprowadza normalizację i obliczenia na danych. Moduł NORMAL_X przetwarza wartość wejściową (%IW64), a wynik jest dalej przeliczany i konwertowany na liczbę całkowitą przez moduł CONV, zapisując wynik w %MW48.

Rysunek 9: Network 3

2.2.4 Netowork 4

Normalizuje i skaluje wartości. Dane wejściowe (%IW64) są normalizowane, a następnie skalowane do przedziału określonego przez SCALE_X. Końcowe obliczenie w module CAL-CULATE zapisuje wynik w %MD54.

Rysunek 10: Network 4