Iteraciones de punto fijo lineales

Métodos Iterativos

Método de Gauss-Seidel

Métodos Numéricos

Prof. Juan Alfredo Gómez

Conferencia 15

- Iteraciones de punto fijo lineales
- 2 Método de Jacobi
- Método de Gauss-Seidel
- Resultados de convergencia

Metodología

Iteraciones de punto fijo lineales

Transformación a problema de punto fijo

Para resolver un sistema Ax = b con una técnica iterativa se reformula el problema como la búsqueda del punto fijo de una aplicación lineal

Método de Gauss-Seidel

$$x = Tx + c$$

y se aplica el algoritmo:

$$x^{(k+1)} = Tx^{(k)} + c$$

Ejemplos

Si queremos resolver Ax = b podemos usar

$$x = (A + I)x - b$$

ó en caso A = K + S con $det(K) \neq 0$, también

$$x = -K^{-1}Sx + K^{-1}b$$

Iteraciones de punto fijo lineales

Reducción al problema de punto fijo

Si en un sistema Ax = b se cumple que $a_{ii} \neq 0, \forall i = 1 \dots n$, entonces podemos reformular el sistema como:

Método de Gauss-Seidel

$$x_i = \sum_{j=1}^{i-1} \frac{-a_{ij}}{a_{ii}} x_j + \sum_{j=i+1}^{n} \frac{-a_{ij}}{a_{ii}} x_j + \frac{b_i}{a_{ii}}, i = 1 \dots n$$

Ejemplo

Formulación del método

Pseudocódigo (Método de Jacobi para resolver Ax = b)

DATOS: $A = a_{ij}, 1 \le i, j \le n, b_i, 1 \le i, j \le n$

 $x^{(0)} = (x_1^{(0)}, \dots, x_n^{(0)}) \in \mathbb{R}^n$: punto inicial;

TOL: tolerancia; MAX: máximo de iteraciones

Método de Gauss-Seidel

Solución aproximada $x^{(k)}$, o falla del algoritmo. RESULTA:

PASO 1: k = 1

PASO 2: Si k > MAX, STOP("FALLO")

PASO 3: Para $i = 1 \dots n$ calcular:

$$x_i^{(k)} = \sum_{j=1}^{i-1} \frac{-a_{ij}}{a_{ii}} x_j^{(k-1)} + \sum_{j=i+1}^{n} \frac{-a_{ij}}{a_{ii}} x_j^{(k-1)} + \frac{b_i}{a_{ii}}$$

PASO 4: Si $||x^{(k)} - x^{(k-1)}|| < TOL$, STOP $(x^{(k)})$

PASO 5: k = k + 1 e IR A PASO 2

Ejemplo del Método de Jacobi

Solución $\bar{x}^T = (1, 2, -1, 1)$

Método de Gauss-Seidel

Iteraciones

k	$x_{1}^{(k)}$	$x_2^{(k)}$	$\chi_{3}^{(k)}$	$x_{4}^{(k)}$	$ x^{(k)} - \bar{x} $	$ x^{(k)} - x^{(k-1)} $
0	0.0000	0.0000	0.0000	0.0000	2.6458	
1	0.6000	2.2727	-1.1000	1.8750	1.0050	3.2017
2	1.0473	1 7159	-0.8052	0.8852	0.3661	1.2556
3	0.9326	2.0533	-1.0493	1.1309	0.1641	0.4969
4	1.0152	1.9537	-0.9681	0.9738	0.0638	0.2191
5	0.9890	2.0114	-1.0103	1.0214	0.0285	0.0897
6	1.0032	1.9922	-0.9945	0.9944	0.0115	0.0393
7	0.9981	2.0023	-1.0020	1.0036	0.0051	0.0163
8	1.0006	1.9987	-0.9990	0.9989	0.0021	0.0071
9	0.9997	2.0004	-1.0004	1.0006	0.0009	0.0030
10	1.0001	1.9998	-0.9998	0.9998	0.0004	0.0013

Motivación

Fórmula utilizada en el método de Jacobi

Resolver Ax = b (si $a_{ii} \neq 0, \forall i = 1 \dots n$) mediante la iteración:

$$x_i^{(k)} = \sum_{j=1}^{i-1} \frac{-a_{ij}}{a_{ii}} x_j^{(k-1)} + \sum_{j=i+1}^{n} \frac{-a_{ij}}{a_{ii}} x_j^{(k-1)} + \frac{b_i}{a_{ii}}, i = 1 \dots n$$

Método de Gauss-Seidel

Observación

Al calcular x_i^k se pueden utilizar los valores "nuevos" $x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ (que ya han sido calculados) en lugar de los valores anteriores $x_1^{(k-1)},\dots,x_{i-1}^{(k-1)}$

Fórmula utilizada en el método de Gauss-Seidel

Resolver Ax = b (si $a_{ii} \neq 0, \forall i = 1 \dots n$) mediante la iteración:

$$x_i^{(k)} = \sum_{j=1}^{i-1} \frac{-a_{ij}}{a_{ii}} x_j^{(k)} + \sum_{j=i+1}^n \frac{-a_{ij}}{a_{ii}} x_j^{(k-1)} + \frac{b_i}{a_{ii}}, i = 1 \dots n$$

Ejemplo de iteraciones de Jacobi y Gauss-Seidel

Sistema a resolver

Iteración de Jacobi

Iteración de Gauss-Seidel

Formulación del método

Pseudocódigo (Método de Gauss-Seidel para resolver Ax = b)

DATOS: $A = a_{ij}, 1 \le i, j \le n, b_j, 1 \le i, j \le n$

 $x^{(0)} = (x_1^{(0)}, \dots, x_n^{(0)}) \in \mathbb{R}^n$: punto inicial;

TOL: tolerancia; MAX: máximo de iteraciones

RESULTA: Solución aproximada $x^{(k)}$, o falla del algoritmo.

PASO 1: k = 1

PASO 2: Si k > MAX, STOP("FALLO")

PASO 3: Para $i = 1 \dots n$ calcular:

$$x_i^{(k)} = \sum_{j=1}^{i-1} \frac{-a_{ij}}{a_{ii}} x_j^{(k)} + \sum_{j=i+1}^{n} \frac{-a_{ij}}{a_{ii}} x_j^{(k-1)} + \frac{b_i}{a_{ii}}$$

PASO 4: Si $||x^{(k)} - x^{(k-1)}|| < TOL$, STOP $(x^{(k)})$

PASO 5: k = k + 1 e IR A PASO 2

Ejemplo del Método de Gauss-Seidel

Solución $\bar{x}^T = (1, 2, -1, 1)$

Iteraciones

k	$x_1^{(k)}$	$x_{2}^{(k)}$	×3(k)	× ₄ ^(k)	$ x^{(k)} - \bar{x} $	$ x^{(k)} - x^{(k-1)} $
0	0.0000	0.0000	0.0000	0.0000	2.6458	
1	0.6000	2.3273	-0.9873	0.8789	0.5310	2.7429
2	1.0302	2.0369	-1.0145	0.9843	0.0522	0.5303
3	1.0066	2.0036	-1.0025	0.9984	0.0081	0.0448
4	1.0009	2.0003	-1.0003	0.9998	0.0010	0.0071
5	1.0001	2.0000	-1.0000	1.0000	0.0001	0.0009

Notación:

Consideremos $A \in \mathbb{R}^{n \times n}$ como la siguiente suma A = D + L + U:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1,n} \\ a_{2,1} & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{bmatrix} \quad D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n,n} \end{bmatrix}$$

Observación

Si $a_{ii} \neq 0$, $\forall i = 1 \dots n$ entonces existen D^{-1} y $(D + L)^{-1}$.

Formulación Matricial

Fórmula utilizada en el método de Jacobi

$$x_i^{(k)} = \sum_{j=1}^{i-1} \frac{-a_{ij}}{a_{ii}} x_j^{(k-1)} + \sum_{j=i+1}^n \frac{-a_{ij}}{a_{ii}} x_j^{(k-1)} + \frac{b_i}{a_{ii}}, i = 1 \dots n$$

De manera equivalente

$$a_{ii}x_i^{(k)} = -\sum_{j=1}^{i-1} a_{ij}x_j^{(k-1)} - \sum_{j=i+1}^n a_{ij}x_j^{(k-1)} + b_i, i=1\dots n$$

En forma matricial

$$Dx^{k} = -Lx^{(k-1)} - Ux^{(k-1)} + b = -(L+U)x^{(k-1)} + b$$

Iteración de punto fijo (Método de Jacobi)

$$x^{k} = T_{J}x^{(k-1)} + c_{J} \longrightarrow \begin{cases} T_{J} = -D^{-1}(L+U) \\ c_{J} = D^{-1}b \end{cases}$$

Formulación Matricial

Fórmula utilizada en el método de Gauss-Seidel

$$x_i^{(k)} = \sum_{j=1}^{i-1} \frac{-a_{ij}}{a_{ii}} x_j^{(k)} + \sum_{j=i+1}^n \frac{-a_{ij}}{a_{ii}} x_j^{(k-1)} + \frac{b_i}{a_{ii}}, i = 1 \dots n$$

De manera equivalente

$$\sum_{j=1}^{i} a_{ij} x_{j}^{(k)} = - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} + b_{i}, i = 1 \dots n$$

En forma matricial

$$(D+L)x^k = -Ux^{(k-1)} + b$$

Iteración de punto fijo (Método de Gauss-Seidel)

$$x^{k} = T_{GS}x^{(k-1)} + c_{GS} \longrightarrow \begin{cases} T_{GS} = -(D+L)^{-1}U \\ c_{GS} = (D+L)^{-1}b \end{cases}$$

Convergencia para iteraciones de punto fijo lineales

Teorema (Caracterización de la convergencia)

La sucesión $\{x^{(k)}\}_{k=0}^n$ generada por la iteración de punto fijo

$$x^{(k+1)} = Tx^{(k)} + c, \quad k \ge 1$$

converge para todo punto inicial $x^{(0)} \in \mathbb{R}^n$ a la única solución de x = Tx + c si y solo si $\rho(T) < 1$.

Proposición (Cotas de proximidad de la solución)

Si ||T|| < 1 para alguna norma matricial inducida, entonces la sucesión $x^{(k+1)} = Tx^{(k)} + c$, $k \ge 1$ converge desde todo punto inicial $x^{(0)}$ a la única solución de x = Tx + c y se cumple que:

(i)
$$||x^{(k)} - x|| \le ||T||^k ||x^{(0)} - x||$$

(ii)
$$||x^{(k)} - x|| \le \frac{||T||^k}{1 - ||T||} ||x^{(1)} - x^{(0)}||$$

Ejercicios

Realice 5 iteraciones de los métodos de Jacobi y Gauss-seidel y determine el error cometido.

$$\begin{cases} x - 5y - z &= -8 \\ 4x + y - z &= 13 \\ 2x - y - 6z &= -2 \end{cases}$$