Relaciones de orden, parte II

Elementos maximales y minimales

Los elementos de un poset(A,R) que tienen ciertas propiedades relacionadas con su carácter de extremos son importantes en muchas aplicaciones.

Definición. Sea (A,R) un conjunto parcialmente ordenado. Un elemento $a \in A$ es un **maximal** si no existe ningún $b \in A$ tal que $(a,b) \in R$. Similarmente, un elemento $c \in A$ es un **minimal** si no existe ningún $d \in A$ tal que $(d,c) \in R$.

Los minimales y maximales son los elementos «más bajos» y «más altos», respectivamente, en el diagrama de Hasse de (A,R).

Ejemplo 1. Dado el diagrama de Hasse del poset (A,R), determine los elementos minimales y maximales.

1 es un minimal

 \triangle Si A es finito, entonces **siempre** tiene minimales y/o maximales.

Definición. Sea (A,R) un *poset*. Un elemento $a \in A$ es el **máximo de** A si $(b,a) \in R$ para todo $b \in A$. Análogamente, un elemento $c \in A$ es el **mínimo de** A si $(c,d) \in R$ para todo $d \in A$.

Los elementos mínimo y máximo, si existen, son únicos.

Ejemplo 2. Encuentre, si existen, el mínimo y el máximo del poset $(P(\{a,b,c\}), \subseteq)$ cuyo diagrama de Hasse se muestra en la figura.

Para todo $X \in P(A)$, $\emptyset \subseteq X$, entonces el conjunto \emptyset es el mínimo del *poset* $(P(\{a,b,c\}), \subseteq)$.

Para todo $X \in P(A)$, $X \subseteq \{a,b,c\}$, entonces el conjunto $\{a,b,c\}$ es el máximo del *poset* $(P(\{a,b,c\}),\subseteq)$.

Ejemplo 3. Dado el diagrama de Hasse del poset (A, |), determine los elementos mínimo y máximo.

Para todo $a \in A$, 1 | a, entonces el elemento 1 es el mínimo del *poset* (A, |).

El poset(A, |) no tiene un elemento máximo.

Ejercicio 4. Para los siguientes diagramas de Hasse de un poset (A, R), identifique:

- (a) Los elementos maximales y minimales
- (b) Los elementos máximo y mínimo (si existen)

- i) Minimal: a & mínimo: a, maximales: b, c, d & máximo: no hay.
- ii) Minimales: a, b & mínimo: no hay, maximales: d, e & máximo: no hay.

- iii) Minimales: a, b & mínimo: no hay, maximal: d & máximo: d.
- iv) Minimal: a & mínimo: a, maximal: d & máximo: d.

Cotas superiores e inferiores

A veces podemos encontrar un elemento que es «mayor» (o «menor») que todos los elementos de un subconjunto S de un poset (A,R).

Definición. Sea (A,R) un *poset* y $S \subseteq A$. Si existe $a \in A$ tal que $(s,a) \in R$ para todo $s \in S$, entonces decimos que a es una **cota superior de** S. Similarmente, si existe $b \in A$ tal que $(b,s) \in R$ para todo $s \in S$, entonces decimos que b es una **cota inferior de** S.

Ejemplo 5. Determine las cotas inferiores y superiores de los subconjuntos {a, b, c} y {a, c, d, f} del poset cuyo diagrama de Hasse se muestra en la figura.

! Tenemos, por ejemplo, $(b,d) \in R$ y $(a,d) \in R$ pero $(c,d) \notin R$. Entonces d no es una cota superior del subconjunto $\{a,b,c\}$.

Por otro lado $(b,e) \in R$, $(a,e) \in R$ y $(c,e) \in R$. Entonces e sí es una cota superior del subconjunto $\{a,b,c\}$.

Las cotas superiores de $\{a,b,c\}$ son: e,f,h,j.

La cota inferior de $\{a,b,c\}$ es: a

Las cotas superiores de $\{a,c,d,f\}$ son: f, h, jLa cota inferior de $\{a,c,d,f\}$ es: a

Definición. Se dice que $a \in A$ es el **supremo** de $S \subseteq A$, si a es cota superior y es menor que cualquier otra cota superior de S.

👰 El término en inglés 🚅 para referirse al supremo es least upper bound.

Similarmente, se dice que $b \in A$ es el **ínfimo** de $S \subseteq A$, si b es cota inferior y es mayor que cualquier otra cota inferior de S.

El término en inglés para referirse al ínfimo es greatest lower bound.

 \triangle En símbolos escribimos inf S y sup S para representar al ínfimo y supremo del conjunto S, respectivamente. Ejemplo 6. Encuentre el supremo e ínfimo (si existen) del subconjunto $\{3,9,12\}$ en el poset $(\mathbb{Z}^+, |)$. Las cotas inferiores de $S = \{3, 9, 12\}$ son: 1 y 3. Así, inf S = 3. El número 3 es el máximo común divisor de 3, 9 y 12. Las cotas superiores de $S = \{3, 9, 12\}$ son: 36, 72, 108, ... (son todos los múltiplos de 36). Así, sup S = 36. El número 36 es el mínimo común múltiplo de 3, 9 y 12. *Ejercicio* 7. Encuentre el supremo e ínfimo (si existen) del subconjunto $\{1,2,4,5,10\}$ en el *poset* (\mathbb{Z}^+ , |). La cota inferior de $S = \{1, 2, 4, 5, 10\}$ es: 1. Entonces, inf S = 1. El número 1 es el máximo común divisor de 1, 2, 4, 5 y 10. Las cotas superiores de $S = \{1, 2, 4, 5, 10\}$ son: 20, 40, 80, ... (son todos los múltiplos de 20). Entonces, $\sup S = 20.$ El número 20 es el mínimo común múltiplo de 1, 2, 4, 5 y 10. 體MAC