ASSIGNMENT-1

1. Use mesh analysis to find the current in each resistor in **Fig.1.1**.

[Ans. In $100 \Omega = 0.1 A$ Clockwise; in $20 \Omega = 0.4 A$ Anticlockwise; in $10 \Omega = 0.5 A$ downward)

Fig. 1.1

- Flg.1.2
- Using mesh analysis, find the voltage drop across the 1 kΩ resistor in Fig. 1.2

[50 V]

3. Using mesh analysis, find the currents in 50 Ω , 250 Ω and 100 Ω resistors in the circuit shown in Fig. 1.3 $[I(50 \Omega) = 0.171 \text{ A} \rightarrow ; I(250 \Omega) = 0.237 \text{ A} \leftarrow ; I(100 \Omega) = 0.408 \text{ A} \downarrow]$

Flg.1.3

For the network shown in Fig. 1.4 , find the mesh currents I1, I2 and I3.

[5 A, 1 A, 0.5 A]

Fig.1.4

In the network shown in Fig. 1.5, find the magnitude and direction of current in the various branches by mesh current method.
[FAB = 4 A; BF = 3 A; BC = 1 A; EC = 2 A; CDE = 3 A]

Fig. 1.5