

WORKSHOP 2: ANONYMISIERUNG

27.09.2017

CONTINUOUS (STREAMING) DATA ANONYMIZATION

Problems and Solution Approaches

Basics

Traditional data is

- * finite
- * persistent

Streaming data is

- * continuous
- * potentially infinite
- * time varying (concept drift !?)
- => Generally we want to analyze (almost) in real time

General streaming problems

- * Unordered (out-of-sequence)
- * Delays
- * High latency
- * Multiple streams
- * "Skew": Delay between event & and processing time
- * If a person appears more than k times, and their 'packages' arrive immediately in sequence, they could fill up an equivalence class without being generalized at all, increasing the risk of re-identification significantly

Streaming anonymization problems

- * local recoding incurs less information loss, although still not mathematically optimal
 - since k-anonymization is combinatorial optimization
- and the number of possible combinations is exponential (k-anonym. even NP hard)
 - but greedy clustering is still polynomial (O(n^2))
- * determining a global generalization level incurs more information loss
 - but can be done in (near) linear time
 - phase 1: observation and determination
 - phase 2: generalizing while instances are coming in

Criteria achievable via greedy streaming

- * k-anonymity: Yes, if we simply 'fill buckets'
- can't do it one-by-one => generalization level would depend on instance arrival order
 - but we will definitely over-generalize
- * I-diversity: Yes, same as k-anonymity
- but it will compound our data loss problem by forcing us to observe the l-criterion immediately
- * t-closeness: Not precisely, as we do not know the global distribution of attribute values yet

Algorithm 1: CASTLE (adaptive clustering)

- * n-bucket approach
- * Basic ideas:
 - sequential cluster creation (inverse to SaNGreeA)
 - guarantees on time delay (e.g. for outlier detection)
- * infinite append-only sequence of tuples
- * QI attributes define a metric space, such that tuples can be considered points in this space
- * cluster C over input is defined as a set of intervals, called range intervals, in the quasi-identifier attribute domains

Algorithm 1: CASTLE - cont'd

- * In case a new tuple cannot be added to an existing cluster, a new cluster is formed with this instance
- * also, tuples cannot exceed a certain age.. if they do & a cluster has already reached size = k, the whole cluster is output as equivalence class
- * else the cluster is merged with similar clusters & output
- * threshold parameter **t** can also be used to adapt to stream distribution => well clustered tuples will force the stream into lower-generalized clusters

Algorithm 2: FAANST (numerical streaming)

- 1. fill up a window of samples first
- 2. then run k-means clustering on the initial windows
 - clusters which reach size >= k are output immediately
- clusters which reach information loss < threshold are called 'accepted clusters' and memorized
- 3. fill up new cluster
- instances that fall into accepted clusters are generalized the same way instantly
 - others: run k-means again

A third idea...

- 1. start computing gen-hierarchies after cold-start / starting window / last-day heuristics
- 2. generalize incoming instances according to that metric
- 3. Keep a hash-map in which new instances are recorded according to their QI's gen level
 - has all QI's in their generalized form together
 - the value to each key is an array
 - this collision list forms a natural equivalence class
- 4. Once a 'bucket' reaches size=k, output and remove it

SOLUTION FOR DISCRETE SAMPLES - SANGREEA DEMO W/ WEIGHTS

classical k-anonymization

```
## MAIN LOOP
for node in adults:
    if node in added and added[node] == True:
        continue
    # Initialize new cluster with given node
    cluster = CL.NodeCluster(node, adults, adj list, gen hierarchies)
    # Mark node as added
    added[node] = True
    # SaNGreeA inner loop - Find nodes that minimize costs and
    # add them to the cluster since cluster size reaches k
    while len(cluster.getNodes()) < GLOB.K FACTOR:</pre>
        best cost = float('inf')
        for candidate, v in ((k, v) for (k, v) in adults.items() if k > node):
            if candidate in added and added[candidate] == True:
                continue
            cost = cluster.computeNodeCost(candidate)
            if cost < best cost:</pre>
                best cost = cost
                best candidate = candidate
        cluster.addNode(best candidate)
        added[best candidate] = True
    # We have filled our cluster with k entries, push it to clusters
    clusters.append(cluster)
```


PRIVACY AWARE MACHINE LEARNING

Anonymization for a purpose

Classifier performance on education

Classifier performance on marital status

Classifier on outliers (=variance) removed

F1 score dependent on random data points removed

Classifiers on outliers removed => anon

Comparison: simple data deletion

Different preferences for data preservation

Please move the data record to one cluster (up or down) with the more relevant data

age	education-num	hours-per-week	workclass	native-country	sex	race	relationship	occupation	income
[31,31]	[10,10]	[40,40]	Private	United-States	Male	*	*	manual-labor	<=50K
[31,31]	[10,10]	[40,40]	Private	United-States	Male	*	*	manual-labor	<=50K

age	education-num	hours-per-week	workclass	native-country	sex	race	relationship	occupation	income
31	10	40	Private	United-States	Male	White	Husband	Handlers-cleaners	<=50K

age	education-num	hours-per-week	workclass	native-country	sex	race	relationship	occupation	income
[31,31]	[10,10]	[40,40]	Private	United-States	*	White		*	<=50K
[31,31]	[10,10]	[40,40]	Private	United-States	*	White		*	<=50K

		native-			
age	workclass	country	sex	race	marital-status
0.1667	0.1667	0.1667	0.1667	0.1667	0.1667

age	workclass	native-country	sex	race	marital-status
0.95	0.01	0.01	0.01	0.01	0.01

Adult data anonymized distribution

Contact: Peter Kieseberg & Bernd Malle

SBA Research gGmbH
Favoritenstraße 16, 1040 Wien
[pkieseberg, bmalle]@sba-research.org

