hw2

1. 跟踪A*搜索算法用直线距离启发式求解从Lugoj到Bucharest问题的过程。按顺序列出算法扩展的节点和每个节点的f,g,h值。

结点	f	g	h
Timisoara	440	111	329
Mehadia	311	70	241

扩展Mehadia

结点	f	g	h
Dobreta	387	75+70=145	242
Timisoara	440	111	329
Craiova	425	265	160
Rimnicu Vilcea	604	411	193
Pitesti	499	401	98

扩展Dobreta

结点	f	g	h
Timisoara	440	111	329
Craiova	425	265	160

扩展Craiova

结点	f	g	h
Timisoara	440	111	329
Rimnicu Vilcea	604	411	193
Pitesti	499	401	98

扩展Timisoara

结点	f	g	h
Arad	595	229	366
Rimnicu Vilcea	604	411	193
Pitesti	499	401	98

扩展Pitesti

结点	f	g	h
Bucharest	502	502	0
Arad	595	229	366
Rimnicu Vilcea	604	411	193

搜索终止

2. 启发式路径算法是一个最佳优先搜索,它的目标函数是f(n)=(2-w)g(n)+wh(n)。算法中w取什么值能保证算法是最优的?当w=0时,这个算法是什么搜索?w=1呢?w=2呢?

$$w=0$$
: $f(n)=2g(n)$, 退化为一致代价搜索

w = 1:
$$f(n) = g(n) + h(n)$$
, 为A*搜索

$$w=2$$
: $f(n)=2h(n)$, 这是贪心搜索

原式可化为
$$f(n)=(2-w)(g(n)+rac{w}{2-w}h(n))$$

当w<=1时, f(n)是admissible的, 因此是最优的

3. 设计一个启发函数,使它在八数码游戏中有时会估计过高,并说明它在什么样的特殊问题下会导致非最优解。证明: 如果h被高估的部分从来不超过c,A*算法返回的解的耗散比最优解的耗散多出的部分也不超过 C.

如果把h设为h1+3*h2,分别是曼哈顿距离之和和一个特别的计分方式(中心块计1,在正确位置的计0,错误位置计2)

初始为

7	2	4
5		6
8	3	1

目标为

1	2	3
8		4
7	6	8

会得到一个次优解

证明:

设正确的估计为 $h^*(n)$,过高估计为h(n),有 $h(n) \leq h^*(n) + c$,G'是一个次优解,其cost比最优解大c以上

那么对于最优路径上的有

$$f(n) = g(n) + h(n) \ f(n) <= h^*(n) + c + g(n) <= C^*(n) + c <= g(G')$$

因此G'根本不会被扩展

4. 证明如果一个启发式是一致的,它肯定是可采纳的。构造一个非一致的可采纳启发式。

如果一个启发式函数是一致性的,那么对于所有n及其扩展出的n',都有

$$h(n) \leq c(n,a,n') + h(n')$$

若 init state是goal state,证明结束。

假设到goal state的前n的都有 $h(n) <= h^*(n)$

那么对于他的后一个n,有 $h(n) \leq c(n,a,n') + h(n') \leq c(n,a,n') + h^*(n) <= h^*(n)$,故后一个也满足可采纳,因此这个启发式函数是可采纳的

考虑这种情况

0->1->2->3

每一步的耗散都是1

$$h(0) = 3 h(1) = 2$$
, $h(2) = 0.5 h(3) = 0$

对于1和2有h(1) > h(2) + c(1,2)

这是非一致的, 但是却是可采纳的