COMUNICACIÓN DIGITAL

UNIDAD 4

CODIFICACIÓN DE CANAL

una técnica utilizada en sistemas comunicación para mejorar la calidad y la fiabilidad de la transmisión de datos a través de un canal de comunicación propenso a errores.

En la codificación de canal, se agregan bits adicionales a los datos originales antes de transmitirlos.

Existen diferentes técnicas de codificación de canal, como la codificación de repetición, los códigos de paridad, los códigos de Hamming, los códigos Reed-Solomon, entre otros.

SEÑALIZACIÓN

- Señal que guía a la señal de información la ruta o camino correcto para llegar desde el transmisor al receptor.
- Esta no nos permite entregar mucha información por lo que la CCITT normaliza lo siguiente

TIPOS DE SEÑALIZACIÓN

CANAL COMÚN

 En este tipo de señalización, se utiliza un canal de señalización separado y compartido para controlar múltiples conexiones de comunicación. Este canal de señalización se comparte entre varias comunicaciones y se utiliza para enviar señales de control, mensajes de estado, solicitud de conexión, liberación de conexión, entre otros. El canal de señalización común puede ser un canal físico dedicado o puede compartir el mismo canal de comunicación utilizado para transmitir los datos.

CANAL ASOCIADO

 se utiliza un canal de señalización dedicado para controlar una conexión de comunicación específica. Este canal de señalización está asociado directamente con una conexión de datos y se utiliza para enviar señales de control y mensajes específicos para esa conexión en particular.

SISTEMA TDM

- es una técnica de multiplexación utilizada en sistemas de comunicación para transmitir múltiples señales simultáneamente a través de un único canal de transmisión.
- El proceso básico del TDM implica lo siguiente:
- Multiplexación
- Interleaving
- Transmisión

Orden		
	# de canales	Velocidad
1	24	1544Kbps
2	96	6312Kbps
3	672	44736Kbps
4	4032	274176 Kbps

ENTRELAZADO DE PALABRA DE CÓDIGO

- La señal 1 enviamos 8 bits
- La señal 2 seguida de 8 bits y así sucesivamente
- Grupo de bits de 8 en 8 bits
- Toma el grupo de 8 bits de cada señal.

ENTRELEZADO DE 8 BITS

- De la señal 1 enviamos 1 bit de la señal 2 enviamos 1 bit y así sucesivamente bit a bit.
- Tomamos 1 bit de cada señal.

SISTEMA FDM

• es una técnica utilizada en sistemas de comunicación para transmitir múltiples señales simultáneamente a través de un único canal de transmisión. A diferencia del TDM que divide el tiempo, el FDM divide el espectro de frecuencia del canal.

GRUPO PRIMARIO

Rango de frecuencia de 60 Khz a 108Khz.

Ancho de banda 48 Khz. GRUPO SECUNDARIO

60 canales telefónicos , 5 grupo básicos primarios

Ancho de banda 240 KHz.

Rango de frecuencia de 312 KHz a 552 KHz **GRUPO TERCIARIO**

300 canales.

5 grupos básicos secundarios.

Ancho de banda de 1.232 KHz GRUPO CUATERNARIO 900 canales. 3grupos terciarios Ancho de banda de 12388 MHz

SISTEMA MIC

La señal MIC modulada en amplitud y considerada hasta este momento es todavía una señal analógica; precisamente con un proceso de cuantificación se convertirá en una señal digital.

CONVERSION DE POLARIDAD:

se refiere a la capacidad de cambiar la polaridad de una señal de forma controlada durante la transmisión o el procesamiento de la misma. La polaridad de una señal se refiere a la dirección o sentido de la misma en relación con una referencia.

REGENERACION:

se refiere al proceso de restaurar y reconstruir una señal debilitada o distorsionada en su forma original. La regeneración es necesaria para mantener la calidad y la integridad de la señal a lo largo de una transmisión o enlaces de comunicación.

CONTROL DE ERRORES

DETECCION DE ERRORES

consiste en monitorear la información recibida y a través de técnicas implementadas en el Codificador de Canal ya descrito, determinar si un carácter, caso asincrónico, ó un grupo de datos, caso sincrónico, presentan algún ó algunos errores.

CODIFICACION DE CUENTA EXACTA

lo que se hace es configurar el código de manera que cada carácter esté representado por una secuencia de unos y ceros que contiene un número fijo de unos, por ejemplo, tres de ellos.

CHEQUEO DE PARIDAD VERTICAL

hace uso del agregado de bits de control. Se trata de la técnica más simple usada en los sistemas de comunicación digitales

REDUNDANCIA

significa transmitir cada carácter dos o tres veces, o si se emplea a nivel de mensaje repetir el mensaje dos o tres veces

CODIGO DE REDUNDANCIA CICLICA

Un grupo de métodos que cumplen con dichos requisitos son los llamados códigos de redundancia cíclica

CONTROL DE FLUJO

es un mecanismo utilizado en los sistemas de comunicación para regular la velocidad de transferencia de datos entre un transmisor y un receptor.

CONTROL DE ERRORES

es un conjunto de técnicas y mecanismos utilizados en los sistemas de comunicación para detectar, corregir y/o recuperarse de los errores que pueden ocurrir durante la transmisión de datos.

Se puede enviar una trama cada vez, encontramos dos posibles situaciones, definidas por el tiempo de transmisión y el tiempo de propagación.

TIEMPO DE TRANSMISIÓN

Es el tiempo que tarda la maquina en pasar una trama desde que sale el primer bit hasta el ultimo.

Tx=L/R

TIEMPO DE PROPAGACIÓN

Es el tiempo que tarda una unidad de informacion en pasar de un extremo del canal a otro.

Tpop= d/v

VENTANA DESLIZANTE

• es una técnica utilizada en el control de flujo y en el control de errores en sistemas de comunicación. Esta técnica permite controlar la cantidad de datos que se pueden enviar antes de recibir una confirmación o respuesta del receptor.

VENTANA DE RECEPCIÓN

- Buffer donde se almacenan las tramas.
- Esperan a ser procesadas
- Llegan a una máquina por alguno de sus enlaces.
- Devuelva el acuse de recibo
- Sin problemas a su destino

NÚMERO DE SECUENCIA DE RECEPCIÓN

- Posición que ocupa la trama recibida
- En el campo de control de la trama habrá 0 bits
- W= (2∧n)-1

VARIABLES DE VENTANA DESLIZANTE

- El tamaño de la ventana de transmisión (TVT)
- El número de secuencia del último ACK recibido (UAR).
- El número de secuencia de la última trama enviada (UTE)

VARIABLES EN EL RECEPTOR

- El tamaño de la ventana de recepción (TVR):
- El número de secuencia de la última trama aceptada (UTA):
- El número de secuencia de la siguiente trama esperable (ST)

DETECCIÓN Y CORRECCIÓN DE ERRORES

•El advenimiento de módems de más alta velocidad está vinculado a señalización multinivel, esto es consecuencia del siguiente análisis.

CAPACIDAD DE UNA LÍNEA TELEFÓNICA.

Una linea telefónica (circuito de voz) se aproxima a un canal Gaussiano de banda limitada (GBLC) con ruido Gaussiano aditivo, para ese caso es aplicable el Teorema de Shannon que establece que si la velocidad a que introducimos los datos en el canal es menor que su capacidad C

C = B log 2 (1 + S/N)

DETECCIÓN Y CORRECCIÓN DE ERRORES

MNP (Microcom Networking Protocol) se puede implementar en software ó en hardware

Cuando se implementa así el MNP cambia una serie de datos asincrónicos

Por una equivalente de datos sincrónicos CRC para detección de errores

COMPRESION

Holy Grail

Para voz y para video, esquemas como JPEG, QCIF, MPEG

Bibliografía

- Vega, C. (2015). Codificación de Canal. Universidad de Cantabria.
- Tamarit, J., & Iglesias, J. I. (2016). Los sistemas de señalización en España: El ERTMS y el ASFA Digital. *Revista Digital del Cedex*, (182), 27-27.
- Micolau, F. R., & Ruiz, F. T. (2010). Multiplexación y sistemas de acceso múltiple.
- Villalobos Vives, S., & Yepes Lopez, L. A. (2010). Modulación por impulsos codificados "MIC o PCM".
- Olguín Carvajal, M., Rivera Zárate, I., Chávez Morones, S. N., Mancilla Téllez, F., & Vázquez Rojas, I. (2005). Una Introducción al Control de Flujo en la Comunicación. *Polibits*, 32, 3-7.
- Baydal Cardona, M. E. (2016). Protocolos de ventana deslizante para transferencia fiable.
- Fúster, A., de la Guía, D., Hernández, L., Montoya, F., & Muñoz, J. (2001). Técnicas criptográficas de protección de datos. *Alfaomega, Grupo Editor*.
- Bernal García, J. J., Dolores, M. M., María, S., & Sánchez García, J. F. ENCRIPTACIÓN EN LA COMUNICACIÓN DE INFORMACIÓN ELECTRÓNICA. UNA PROPUESTA DIDÁCTICA.