M62. 4. SYSTÈMES DIFFÉRENTIELS AUTONOMES. SUITE

O. GOUBET

- 1. Classification des systèmes différentiels autonomes $\text{linéaires sur } \mathbb{R}^2$
- 1.1. Classification. On discute ici de l'allure des trajectoires d'un système

$$\dot{Y} = AY$$
.

où A est une matrice deux fois deux à coefficients réels. Les solutions sont ici globales. Le seul point fixe du système est l'origine (0,0). La discussion dépend des valeurs propres complexes de A. Supposons que la matrice A soit inversible.

Définition 1.1 (Point fixe hyperbolique). L'origine (0,0) est hyperbolique si les valeurs propres de A ne rencontrent pas l'axe imaginaire pur $Re\lambda = 0$.

En dimension 2 le seul cas non hyperbolique correspond à deux valeurs propres de la forme ia et -ia où a est un réel. Les solutions du système différentiel sont alors de la forme $Y(t) = P^{-1} \begin{pmatrix} e^{iat} & 0 \\ 0 & e^{-iat} \end{pmatrix} P$ où P est une matrice inversible. Les trajectoires sont périodiques et tournent autour de l'origine. On dit que l'origine est un **centre**.

Quels sont les différents point fixes non hyperboliques ? Supposons que A a deux valeurs propres réelles de même signe et que A soit diagonalisable. Si

O. GOUBET

2

les deux valeurs propres sont négatives, on a $Y(t) = P^{-1} \begin{pmatrix} e^{-at} & 0 \\ 0 & e^{-bt} \end{pmatrix} P$, toutes les trajectoires convergent vers l'origine qui est alors un **noeud attractif**. Si les deux valeurs propres sont positives le noeud est **répulsif**.

Si A est non diagonalisable avec une valeur propre réelle négative on dit que l'on a un noeud dégénéré attractif.

Si A a deux valeurs propres réelles dont le produit est strictement négatif on a un $\operatorname{\mathbf{col}}$.

Si A a deux valeurs propres complexe conjuguées λ et $\bar{\lambda}$ tels que $\text{Re}\lambda < 0$ on dit qu'on a un **foyer attractif** les trajectoires convergeant vers l'origine en spirales. Si $\text{Re}\lambda > 0$ on a un foyer répulsif.

1.2. Application aux problèmes non linéaires. La classification des points fixes pour les systèmes généraux autonomes sur \mathbb{R}^2 qui s'écrivent $\dot{Y} = F(Y)$ obéissent à la règle suivante.

Si $F(y^*)=0$ alors par un développement limité en Y^* pour Y(t) voisin de Y^* on a en posant $V(t)=Y(t)-Y^*$

$$\dot{V} = DF(Y^*)V + o(||V||).$$

On reprend alors la classification donnée à la section précédente pour $A = DF(Y^*)$. On a donc soit un centre, soit un col, soit un foyer, soit un noeud pour le système linéarisé.

Définition 1.2. Le point Y^* est respectivement un centre, un col, un foyer, un noeud pour l'équation linéarisée si la matrice $A = DF(Y^*)$ donne un centre, un col, un foyer, un noeud pour l'équation $\dot{V} = AV$.

On a le résultat suivant

Théorème 1.3 (Hartman-Grobmann). Au voisinage d'un point fixe hyperbolique il y a un homéomorphisme entre solutions de $\dot{Y} = f(Y)$ et $\dot{Z} = Df(Y^*)Z$.

Donc sauf si le système linéarisé a un centre, le point fixe du problème non linéaire est de même nature que celui du linéarisé.

2. Le système de Van der Pol

On considère ici les solutions du système de Van der Pol dans \mathbb{R}^2 , i.e. les trajectoires Y(t) = (x(t), y(t)) solutions de

$$\dot{x} = y - x^3 + x,$$
$$\dot{y} = -x.$$

4

3. Premières remarques

3.1. Dans le cadre de Cauchy-Lipschitz. Nous sommes en présence d'une équation différentielle dans \mathbb{R}^2 de la forme $\dot{Y} = F(Y)$ avec une fonction F qui est polynomiale en ses coordonées. La fonction F est donc de classe C^1 donc localement lipschitzienne. Le théorème de Cauchy-Lipschitz s'applique donc.

3.2. Les solutions vivront éternellement.

Lemme 3.1. Les solutions Y(t) issues de n'importe quel point M_0 à t=0 existent jusqu'à $T_{max}=+\infty$.

Démonstration.

Introduisons la fonction $E(Y(t)) = x^2(t) + y^2(t)$ qui est le carré de la distance à l'origine. On a

$$\dot{E} = 2x\dot{x} + 2y\dot{y} = 2x^2(1 - x^2) \le 2E.$$

Par le lemme de Gronwall (voir ci-dessous), si $\dot{E} \leq 2E$ alors

$$(3.1) E(Y(t)) \le \exp(2t)E(M_0).$$

Rappelons le principe d'explosion inclus dans le théorème de Cauchy-Lipschitz: si T_{max} est le temps maximal d'existence dans le sens des t positifs, alors on a l'alternative suivante

- i) Soit $T_{max} = +\infty$.
- ii) Soit $T_{max} < +\infty$ et $\lim_{t \to T_{max}^-} ||Y(t)|| = +\infty$.

On applique alors (3.1) qui exclut ii)

3.3. Un lemme utile.

Lemme 3.2 (Lemme de Gronwall). Soient a, b deux fonctions continues de la variable t. Si $\dot{y} \leq ay + b$, alors

$$y(t) \le \exp(\int_0^t a(s)ds)y(0) + \int_0^t \exp(\int_s^t a(r)dr)b(s)ds.$$

Démonstration. Regardons la fonction auxiliaire

$$\varphi(t) = \exp(-\int_0^t a(s)ds)y(t) - y(0) - \int_0^t \exp(-\int_0^s a(r)dr)b(s)ds.$$

Il vient

$$\dot{\varphi}(t) = \exp(-\int_0^t a(s)ds)(-a(t)y(t) + \dot{y}(t)) - b(t)\exp(-\int_0^t a(s)ds) \le 0.$$

Donc $\varphi(t) \leq \varphi(0) = 0$. On conclut en mulitpliant par $\exp(\int_0^t a(s)ds)$.

3.4. Symétries, isoclines et point fixe. Observons que l'ensemble des trajectoires est symétrique par rapport à l'origine, car si Y(t) solution alors -Y(t) aussi.

L'isocline I_0 est l'axe x=0. Les tangentes aux champs de vecteurs sont positifs (de droite vers la gauche) si y>0, négatifs si y<0.

L'isocline I_{∞} est la courbe $y=x^3-x$. Les tangentes aux champs de vecteur vont de haut en bas si x>0, de bas en haut sinon.

Le seul point fixe est l'intersection des isoclines O=(0,0). Si on linéarise le champ de vecteurs au voisinage du point O on trouve $\dot{x}=y+x$ et $\dot{y}=-x$. Les valeurs propres du système linéarisé sont deux valeurs propres complexes conjuguées de partie réelle strictement positive: $\frac{1+i\sqrt{3}}{2}$ et $\frac{1-i\sqrt{3}}{2}$. D'après le théorème de Hartman-Grobman l'origine O est un point fixe hyperbolique de même nature que celui de linéarisé, i.e. un foyer instable.

4. Allure des trajectoires

On s'interesse à la trajectoire issue d'un point $A = (0, \sigma)$ (en t = 0) pour $\sigma > 0$. Le signe de la tangente indique que la trajectoire commence sa vie dans le demi-plan x > 0 vu que $Y(t) = A + t\dot{Y}(t) + o(t)$ et que $\dot{Y}(t) = (\sigma, 0)$.

On va démontrer rigoureusement que pour chaque $\sigma > 0$ il existe un temps fini T_{σ} tel que la trajectoire vient de nouveau couper la demi-droite x = 0 et y > 0 en $M(T_{\sigma})$ après avoir accomplit un tour dans le sens des aiguilles d'une montre autour de l'origine. L'application $\sigma \mapsto y_{M(T_{\sigma})}$ est appelée application de premier retour de Poincaré.

Rappelons que l'ensemble des trajectoires étant symétrique par rapport à O il suffit de montrer que la trajectoire issue d'un point $A=(0,\sigma)$ coupe la demi-droite inférieure x=0 et y<0 en temps fini en un point $C=C_{\sigma}$. On notera dans la suite $\Sigma: \sigma \mapsto y_{C_{\sigma}}$.

- 4.1. Cas de $\sigma \ll 1$. L'origine O étant un foyer instable la trajectoire va spiraler autour de O en s'éloignant de l'origine. Cela se voit aussi par le fait qu'au voisinage de O on est dans la région où E(Y(t)) est croissante.
- 4.2. L'application Σ est bien définie. On commence par définir un régionnement du demi-plan x > 0. On appelle région supérieure RS la partie du demi-plan qui se trouve au-dessus de l'isocline I_{∞} , i.e.

$$RS = \{M; x > 0 \text{ et } y > x^3 - x\}.$$

On appelle région inférieure RI la partie du demi-plan qui se trouve audessous de l'isocline I_{∞} , i.e.

$$RI = \{M; x > 0 \text{ et } y < x^3 - x\}.$$

Lemme 4.1. La trajectoire issue de A qui commence sa vie dans RS entre dans RI en temps fini.

Démonstration. Tant que la trajectoire Y(t) est dans RS on a x(t) est une fonction croissante et y(t) est une fonction décroissante. Si la trajectoire ne coupe pas l'isocline I_{∞} en temps fini alors la trajectoire est $pi\hat{e}g\hat{e}e$ dans la zone $Z = RS \cap \{y < \sigma\}$. L'ensemble Z est borné. Les deux fonctions croissantes x(t) et -y(t) admettent donc des limites quand t tend vers $+\infty$. Donc $Y(t) \mapsto M^*$ quand t tend vers $+\infty$. Rappelons un lemme du cours qui dit que dans ce cas M^* est un point fixe. Hors il n'y a pas de point fixe dans la région RS (sauf O qui ne peut être atteint car x(t) > 0 pour tout temps). D'où le résultat. Dès que la trajectoire coupe I_{∞} en un point B la tangente étant non nulle dirigée du haut vers le bas, elle entre dans RI.

Lemme 4.2. La trajectoire issue de B qui commence sa vie dans RI coupe I_0 en temps fini.

Tant que la trajectoire Y(t) est dans RS on a x(t) et y(t) sont des fonctions décroissantes. La trajectoire demeure dans la zone $RI \cap \{x < x_B\}$ qui n'est pas une région bornée la trajectoire pouvant a priori partir à l'infini par $y(t) \to -\infty$. Trois scénarios sont possibles

- (1) La trajectoire coupe I_0 en C_{σ} en temps fini
- (2) La trajectoire vérifie $\lim y(t) = -\infty$.
- (3) La trajectoire vérifie $\lim y(t) = y^* > -\infty$.

Dans le cas 3) on a que la trajectoire est piêgée dans un compact. Par conséquent comme dans la démonstration du lemme précédent on montre que Y(t) doit converger quand $t \to +\infty$ vers un poinf fixe, ce qui ne se peut.

Pour conclure la démonstration du lemme, il faut maintenant écarter le cas 2). Comme x(t) reste borné si y(t) diverge vers $-\infty$ alors $\dot{x}(t)$ aussi. Par l'inégalité des accroissements finis, on en déduit |x(t)| diverge vers $+\infty$. Contradiction.

4.3. L'application Σ est continue. Regardons

$$\Sigma:]0, +\infty[\rightarrow] -\infty, 0[, \sigma \mapsto y_{C_{\sigma}}.$$

Cette application est bien définie.

Deux trajectoires ne se coupant pas, si $\sigma_1 < \sigma_2$ alors $\Sigma(\sigma_2) < \Sigma(\sigma_1)$ (faire le dessin). L'application Σ est strictement décroissante.

Proposition 4.3. L'application Σ est une application continue.

Démonstration. On va procéder par une démonstration par l'absurde. Supposons qu'il existe une suite σ_n qui converge vers σ telle que $\Sigma(\sigma_n)$ ne converge pas vers $\Sigma(\sigma)$. On peut extraire de σ_n une sous-suite soit croissante soit décroissante. Supposons pour se fixer les idées qu'elle soit croissante. Alors par monotonie la suite $\Sigma(\sigma_n)$ converge vers une limite $l > \Sigma(\sigma)$. Regardons $C = (0, \frac{l+\Sigma(\sigma)}{2})$. Si on résout le système différentiel pour les temps négatifs la trajectoire issue de C demeure coincée entre les trajectoires issues (en temps négatif) de $\Sigma(\sigma_n)$ et $\Sigma(\sigma)$. Elle coupe par conséquent la demidroite (0,y); y > 0 en temps négatif finie entre σ_n et σ . Faire $n \to +\infty$ nous donne qu'elle coupe en $(0,\sigma)$ et donc que $\Sigma(\sigma) = l$.

Si on sait montrer que pour $\sigma >>> 1$ alors $-\Sigma(\sigma) <<<<\sigma$ alors par le théorème des valeurs intermédiaires (rappel au voisinage de 0 comme on a un foyer instable $-\Sigma(\sigma) > \sigma$) il existe un σ exceptionnel tel que $\Sigma(\sigma) = -\sigma$ soit une trajectoire périodique.

4.4. Fin de la démonstration. On va montrer le résultat évoqué dans le dernier paragraphe de la section précédente. On part donc d'un point $A = (0, \sigma)$ avec $\sigma >>>> 1$.

La trajectoire commence sa vie dans la région indiquée (1) sur le dessin cidessous. Nécessairement elle coupe l'axe x=1 en temps fini, et comme dans la zone (1) $t\mapsto y(t)$ est décroissante elle reste en deça du point $B=(1,\sigma)$. Ensuite dans la zone (2) c'est la fonction $t\mapsto E(t)$ qui est décroissante. Donc la trajectoire coupe l'isocline en rouge en temps fini en deça du point $C=(x_C,y_C)$ avec $x_C^6 = E = \sigma^2$ d'où $x_C = \sigma^{\frac{1}{3}}$. Dans la zone (3) c'est $t\mapsto x(t)$ qui est décroissante. La trajectoire coupe alors l'axe y=0 en temps fini en deça du point $D=(x_C,0)$. Ensuite dans la zone (4) c'est la

8 O. GOUBET

fonction $t \mapsto E(t)$ qui est décroissante. On recoupe alors l'axe x = 1 en temps fini au dessus du point $\tilde{E}=(1,y_E)$ avec $y_{\tilde{E}} \approx \sigma^{\frac{1}{3}}$. Il reste à étudier ce qui se passe dans la zone (5). On raisonne comme

suit. Soit la fonction V(t) = E(t) + 2y(t). Alors $\dot{V} = 2x^2(1-x^2) - 2x \le 0$.

On recoupe alors l'axe x=0 au dessus du point F qui vérifie $y_F^2+2y_F\leq$ $\operatorname{cst} + \sigma^{\frac{2}{3}}$. On conclut que $|y_F| \leq c\sigma^{\frac{1}{3}}$.

References

- [1] M. Artigue, V. Gautheron Systèmes différentiels, étude graphique, Cedic/Fernand Nathan, 1983.
- [2] S. Benzoni-Gavage, Calcul différentiel et équations différentielles, Dunod Paris 2010
- [3] J-P. Demaily, Analyse numérique et équations différentielles, Presses Universitaires de Grenoble, 1996

(Olivier Goubet) Laboratoire Paul Painlevé CNRS UMR 8524, et équipe pro-JET INRIA PARADYSE, UNIVERSITÉ DE LILLE, 59 655 VILLENEUVE D'ASCQ CEDEX.