# RELACIONES BINARIAS

Par Ordenado: Llamamos par ordenado al conjunto de dos elementos a y b, con un criterio de orden que indica cuál es el primer elemento y cuál es el segundo, lo indicamos ( a, b ).

**Producto Cartesiano:** Sean A y B dos conjunto, llamamos producto cartesiano y lo indicamos A x B al conjunto de todos los pares ordenados que pueden formarse entre A y B, o sea:

$$A \times B = \{ (x; y) / x \in A \land y \in B \}$$

**Ejemplo:** Sean A = { m, p, h } y B = { 1, 2 }

## Observación:

$$A \times B \neq B \times A$$

$$\Rightarrow$$
 Si A =  $\emptyset \lor$  B =  $\emptyset \Longrightarrow$  A x B =  $\emptyset$ 

❖ Si 
$$A \neq \emptyset \land B \neq \emptyset \Longrightarrow I \land X \land B \mid I = I \land A \mid . \mid B \mid$$

$$IAI = 3$$
  $IBI = 2 \Rightarrow IA \times BI = 3.2 = 6$ 



$$A \times B = \{ (m; 1), (m; 2), (p; 1), (p; 2), (h; 1), (h; 2) \}$$

#### **Relaciones**

**Definición:** Sean A y B dos conjuntos y sea A x B su producto cartesiano, llamamos relación R a R  $\subseteq$  A x B, que indicamos R: A  $\rightarrow$  B.

Si  $A = B \Rightarrow R \subseteq A2$  y se dice binaria en A

#### **COMO SE REPRESENTAN LAS RELACIONES**

Conjunto de pares ordenados:

$$R = \{ (p;1), (m;1), (m;2) \}$$

## Diagramas de Venn



## Grafico cartesiano



Dominio e Imagen: Sean A y B dos conjuntos y sea  $R \subseteq A \times B$ ,

Dominio de la relación al conjunto D<sub>R</sub> = { x ∈ A / (x, y ) ∈ R }.
 D<sub>R</sub> ⊆ A

El conjunto formado por los primeros elementos de los pares ordenados de la relación

Imagen de la relación al conjunto I<sub>R</sub> = { y ∈ B / (x, y) ∈ R }.
 I<sub>R</sub> ⊆ B

El conjunto formado por los segundos elementos de los pares ordenados de la relación

Ejemplo: Sea A = { 1, 2, 3, 4 } y B = { 2, 3, 4 } sea R 
$$\subseteq$$
 A x B / R: x < y R = { (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) }   
 $D_R$  = { 1, 2, 3 }  $\subseteq$  A  $I_R$  = { 2, 3, 4 }  $\subseteq$  B

Relación recíproca o inversa: Sean A y B dos conjuntos y R: A  $\rightarrow$  B una relación, llamamos relación recíproca o inversa de R, que indicamos R<sup>-1</sup>, a

$$R^{-1}$$
:  $B \to A / R^{-1} = \{ (y, x) / (x, y) \in R \}$ 

**Ejemplo:** En el ejemplo anterior, sea  $R \subseteq A \times B \Rightarrow R^{-1} \subseteq B \times A$ 

$$R = \{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}$$

$$R^{-1} = \{ (2,1), (3,1), (4,1), (3,2), (4,2), (4,3) \}$$

$$D_R^{-1} = \{ 2, 3, 4 \} \subseteq B$$
  $I_R^{-1} = \{ 1, 2, 3 \} \subseteq A$ 

#### Observación:

$$ightharpoonup$$
  $D_R^{-1} \subseteq B$   $I_R^{-1} \subseteq A$ 

$$> D_R^{-1} = I_R I_R^{-1} = D_R$$

**Relación complementaria:** Sean A y B dos conjuntos y R: A  $\rightarrow$  B una relación, llamamos relación complementaria de R, que indicamos  $\overline{R}$ 

$$\bar{R} = \{(x, y) \in Ax B/(x, y) \notin R\}$$

**Ejemplo** Sea A =  $\{ 1, 2, 3, 4 \}$  y B =  $\{ 2, 3, 4 \}$  sea R  $\subseteq$  A x B / R: x < y

$$R = \{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}$$

$$\overline{R} = \{(2,2), (3,2), (3,3), (4,2), (4,3), (4,4)\}$$

#### MATRIZ BOOLEANA . OPERACIONES

Una matriz es un arreglo bidimensional de números.

Una matriz se representa por medio de una letra mayúscula(A,B..) y sus elementos con la misma letra en minúscula (a,b...), con un doble subíndice donde el primero indica la fila y el segundo la columna a la que pertenece.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

**Matriz booleana**: Sean m y n dos números naturales, definimos como matriz booleana de elementos  $a_{ij}$  a la matriz  $A \in \{0, 1\}$ mxn, indicando así que la matriz tiene m filas y n columnas y los elementos  $a_{ij}$  son 0 y 1

#### MATRIZ DE UNA RELACIÓN

Sean A y B dos conjuntos finitos con I A I = m y I B I = n y sea R: A  $\rightarrow$  B una relación, llamamos matriz de la relación o matriz de adyacencia de R a la matriz  $M_R = ((mij)) \in \{0, 1\}^{mxn}$  donde

$$\mathbf{m}_{ij} = \begin{cases} \mathbf{1} & \text{si (ai, bj)} \in \mathbf{R} \\ \mathbf{0} & \text{si (ai, bj)} \notin \mathbf{R} \end{cases}$$

$$M_R = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

**Ejemplo:** Sean A =  $\{1, 2, 3\}$ , B =  $\{1, 2\}$  y R: A  $\rightarrow$  B / R =  $\{(1, 1), (3, 2)\}$ 

Sea  $\overline{R}$  la relación complementaria de  $R \Rightarrow M_{\overline{R}} = \overline{M_R}$ 

Sea  $R^{-1}$  la relación inversa de  $R \Rightarrow M_{R^{-1}} = (M_R)^t$ 

Sean R: A  $\rightarrow$  B y S: A  $\rightarrow$  B y M<sub>R</sub> y M<sub>S</sub> sus matrices  $\Rightarrow$  M<sub>RUS</sub> = M<sub>R</sub> V M<sub>S</sub>

Sean R: A  $\rightarrow$  B y S: A  $\rightarrow$  B y M<sub>R</sub> y M <sub>S</sub>sus matrices  $\Rightarrow$  M<sub>R $\cap$ S</sub> = M<sub>R</sub>  $\land$  M<sub>S</sub>

#### **Matriz Complementaria**

Dada  $A \in \{0, 1\}^{mxn}$  decimos que  $B \in \{0, 1\}^{mxn}$  es la complementaria de A si

$$\mathbf{b_{ij}} = \begin{cases} 0 & \text{si } \mathbf{a_{ij}} = 1 \ \forall i \ \forall j \\ 1 & \text{si } \mathbf{a_{ij}} = 0 \ \forall i \ \forall j \end{cases}$$

Si B es la matriz complementaria de A, lo indicamos  $B=\bar{A}$ 

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \qquad \overline{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

#### **Matriz Transpuesta**

Transponer significa cambiar filas por columnas.

Si  $A \in \{0, 1\}^{mxn}$  se define traspuesta de A a la matriz  $B \in \{0, 1\}^{nxm}$  / bij = aji  $\forall i: 1...m, \forall j: 1...n$ .

Se indica  $A^t = B$ 

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}^{(2x3)}$$

$$A^t = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}^{(3x2)}$$

## Suma booleana o disyunción. Operación "o"



La operación "o" tiene la misma definición que la disyunción.

| > | 0 | 1 |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 1 |

## **Ejemplo:**

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \Rightarrow A \lor B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

## Conjunción. Operación "y"



La operación "y" tiene la misma definición que la conjunción

| ^ | 0 | 1 |
|---|---|---|
| 0 | 0 | 0 |
| 1 | 0 | 1 |

#### **Ejemplo:**

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \Rightarrow A \land B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

## **Relaciones y Dígrafos**

Las relaciones definidas sobre un conjunto con un número finito de elementos permiten ser representadas por un gráfico llamado dígrafo o grafo dirigido. Tiene vértices, que son los elementos del conjunto, y aristas dirigidas, que representan los elementos de la relación.

