中山大学

2018 年港澳台人士攻读硕士学位研究生入学考试试题

	全部答案一律写在答题纸
科目名称: 生物化学 (A)	上,答在试题纸上的不计分!答
考试时间: 4月15日上午	题要写清题号,不必抄题。
一、选择题(每题 2 分, 共 20 分)	
1. 各种分解途径中,放能最多的途径是: () A、糖酵解 B、三羧酸循环 C、氧化 D、氧化脱氨基	ξ β
2. 对于植物来说 NH ₃ 同化的主要途径是: () A、氨基甲酰磷酸酶	
$NH_3+CO_2 \longrightarrow H_2N-C-OPO_3^{2^{-1}}$	
2ATP+H ₂ O 2ADP+Pi 氨基甲酰磷酸。 B、 谷氨酰胺合成酶。	
NH ₃ +L−谷氨酸 L−谷氨酰胺-	
\downarrow	
ATP ADP+Pi	
C、α-酮戊二酸+NH ₃ +NAD(P)H ₂ L-谷氨酸+NAD(P)+ D、嘌呤核苷酸循环	+H ₂ O
 3. 三羧酸循环的限速酶是: () A、丙酮酸脱氢酶 B、顺乌头酸酶 D、异柠檬酸脱氢酶 E、延胡羧酸酶 	C、琥珀酸脱氢酶
4. 双链 DNA 的 Tm 较高是由于下列哪组核苷酸含量较高所A、A+G B、C+T C、G+C D、A+T	
5. 2,4一二硝基苯酚抑制细胞的功能,可能是由于阻断下列 A、NADH 脱氢酶的作用 B、电子传递过程 C D、三羧酸循环 E、以上都不是	
6. 盐析沉淀蛋白质的原理是() A. 与蛋白质结合成不溶性蛋白盐 B. 中和电荷 C. 降低蛋白质溶液的介电常数 D. 调节蛋白质溶液 E. 使蛋白质溶液的 pH 值等于蛋白质等电点	

科目代码: 373

7. tRNA 结构与功能紧密相关,下列叙述哪一项不恰当() A、tRNA 的二级结构均为"三叶草形" B、tRNA3′-末端为受体臂的功能部位,均有 CCA 的结构末端 C、TyC 环的序列比较保守,它对识别核糖体并与核糖体结合有关 D、D 环也具有保守性,它在被氨酰-tRNA 合成酶识别时,是与酶接触的区域之一	
8. 下面哪一项不属于逆转录酶的功能: () A、指导合成 RNA B、以 DNA 为模板合成 DNA C、水解 RNA 一 DNA 杂交分子中的 RNA 链 D、以 RNA 为模板合成 DNA	
9. 合成嘌呤环的氨基酸为: () A、甘氨酸、天冬氨酸、谷氨酸 B、甘氨酸、天冬氨酸、谷氨酰胺 C、甘氨酸、天冬酰胺、谷氨酰胺 D、蛋氨酸、天冬酰胺、谷氨酸 E、蛋氨酸、天冬氨酸、谷氨酰胺	
10.在生理条件下,膜脂主要处于什么状态? () A、液态 B、固态 C、液晶态 D、凝胶态	
二、填空题(每空2分,共40分)	
1. 真核生物电子传递是在进行的,原核生物生物氧化是在进行的。	
2. 含氧的碱基有烯醇式和酮式两种互变异构体,在生理 pH 条件下,主要以	
3. 请指出下列各图属于哪种形式的酶作用动力学曲线	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
A 是	
4. 蛋白质的二级结构类型主要有、、、和。	
5. 20 中基本氨基酸中,能够经过转氨基一步反应生成己糖二磷酸-三羧酸循环途径中间代谢物的氨基酸是、	
6. 根据蛋白酶作用肽键的位置,蛋白酶可分为	
7	
8. 精氨酸的 pK ₁ =2.17、pK ₂ =9.04(α-NH ₃)pK ₃ =12.48(胍基),其 pI=。	
9. 脂肪酸 β-氧化中有三种中间产物: 甲、羟脂酰-CoA; 乙、烯脂酰-CoA 丙、酮脂酰- CoA, 按反应顺序排序为。	
10.脱氧核糖核酸合成的途径是:。	

三、是非题(用"对"、"错"表示,每题1分,共10分)

- 1. 因为 DNA 的两条链是双向平行的, 在双向复制中一条链按 5'→3'方向合成, 另一条链按 3'→5'方向合成。
- 2. 由于 RNA 聚合酶不具备核酸外切酶的活性,因此 RNA 合成的保真度比 DNA 低。
- 3. 一种酶作用于不同的底物,其最适底物的 Km 值是最小的。
- 4. 双缩脲反应是肽和蛋白质特有的反应,因此二肽也有双缩脲反应。
- 5. 在动植物体内所有脂肪酸的降解都是从羧基端开始。
- 6. L-谷氨酸脱氨酶不仅可以使 L-谷氨酸脱氨基,同时也是联合脱氨基作用不可缺少的重要酶。
- 7. 剧烈运动后肌肉发酸是由于丙酮酸被还原为乳酸的结果。
- 8. NADPH/NADP+的氧化还原电势稍低于 NADH/NAD+, 更容易经呼吸链氧化。
- 9. 生物膜是由极性脂和蛋白质通过非共价键形成的片状聚集体,膜脂和膜蛋白都可以自由地进行侧向扩散和翻转扩散。
- 10. 当底物处于饱和水平时,酶促反应的速度与酶浓度成正比。

四、名词解释 (每题 4 分, 共 20 分)

1. 中心法则; 2. 呼吸链; 3. 米氏常数; 4. 蛋白质的一级结构; 5. 葡萄糖异生

五、问答题与计算题(60分)

- 1. 举例说明原核生物基因表达的调节。(8分)
- 2. 简述化学渗透学说(4分)。
- 3. 物质的跨膜运输有那些主要类型? 各种类型的要点是什么? (6分)
- 4. 简述 DNA 和 RNA 分子的立体结构,它们各有哪些特点?稳定 DNA 结构的力有哪些? (8分)
- 5. 什么是磷酸戊糖途径? 有何生物学意义? (6分)
- 6. 已知有一 mRNA 分子, 你怎样才能使它翻译出相应的蛋白质? 简述其过程。(5分)
- 7. 列举出5种可引发蛋白质变性的化学因素。(5分)
- 8. 为什么吃糖多了人体会发胖(写出主要反应过程)? 脂肪能转变成葡萄糖吗? 为什么? (5分)
- 9. DNA 双螺旋结构与蛋白质 α-螺旋结构各有何特点? (8分)
- 10. 简述几种测定蛋白质分子量的方法及原理。(5分)