PSALTer results panel

$$S = \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} + \frac{1}{6} t_{1} (2 \ \mathcal{A}^{\alpha_{i}}_{\ \alpha} \ \mathcal{A}^{\theta}_{i} - 4 \ \mathcal{A}^{\theta}_{\alpha \theta} \ \partial_{i} f^{\alpha_{i}} + 4 \ \mathcal{A}^{\theta}_{i \theta} \ \partial^{i} f^{\alpha}_{\ \alpha} - 2 \ \partial_{i} f^{\theta}_{\ \theta} \partial^{i} f^{\alpha}_{\ \alpha} - 2 \ \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} + 4 \ \mathcal{A}^{\theta}_{\alpha \theta} \partial_{i} f^{\alpha_{i}} + 4 \ \mathcal{A}^{\theta}_{i \theta} \partial^{i} f^{\alpha_{i}}_{\ \alpha} - 2 \ \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} + 4 \ \mathcal{A}^{\theta}_{\alpha \theta} \partial^{i} f^{\alpha_{i}}_{\ \alpha} - 2 \ \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\ \alpha} - 2 \ \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} + 4 \ \mathcal{A}^{\theta}_{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\ \alpha} + 4 \ \mathcal{A}^{\theta}_{\alpha_{i}} \partial_{\theta}$$

Wave operator

	$^{0,^{+}}\mathcal{A}^{\parallel}$	$0.^+f^{\parallel}$	0.+ f ¹	$^{0}\mathcal{A}^{\parallel}$										
${}^{0,^{+}}\mathcal{H}^{\parallel}$ †	0	0	0	0										
0.+f †	0	0	0	0										
$0.^{+}f^{\perp}$ †	0	0	0	0										
^{0⁻} Æ [∥] †	0	0	0	-t. 1				$^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{A}^{\perp}{}_{lpha}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$	·		
				$\overset{1^{+}}{\cdot} \mathcal{R}^{\parallel} \dagger^{\alpha\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{i k t}{\sqrt{2}}$	0	0	0	0			
				$^{1.}^{+}\mathcal{A}^{\scriptscriptstyle \perp}\dagger^{^{lphaeta}}$	V 2	0	0	0	0	0	0			
				$1.^+f^{\parallel}$ † $^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	0	0	0	0	0	0			
				${}^{1}\mathcal{A}^{\parallel}\!\uparrow^{lpha}$	0	0	0	$k^2 r_{.5} + \frac{t}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$\frac{i kt.}{3}$			
				$\frac{1}{2}\mathcal{A}^{\perp} + \alpha$	0	0	0	$\frac{t_1}{3\sqrt{2}}$		0	$\frac{1}{3}i\sqrt{2}kt.$			
				$\frac{1}{2}f^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{3}ikt$.	$-\frac{1}{3}i\sqrt{2}kt.$	0	$\frac{2 k^2 t}{3}$	$^{2^{+}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$^{2,+}f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{H}^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\mathcal{A}^{\parallel}$ † lphaeta		$-\frac{i k t}{\sqrt{2}}$	0
											$2^+ f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	$k^2 t$.	0
											$\mathcal{F}^{\mathbb{F}}\mathcal{H}^{\mathbb{F}}$	0	0	$\frac{t}{2}$

Saturated propagator

 $0.^{+}\sigma^{\parallel 0.^{+}\tau^{\parallel 0.^{+}\tau^{\perp}}}$ $0.^{-}\sigma^{\parallel 0.^{-}\sigma^{\parallel 0.^{-}}}$

^{0,+} σ †	0	0	0	0										
$^{0.^{+}}\tau^{\parallel}$ +	0	0	0	0										
0. ⁺ τ [⊥] †	0	0	0	0										
⁰ σ †	0	0	0	$-\frac{1}{t}$	$1.^+\sigma^{\parallel}_{\alpha\beta}$	$^{1^+}\sigma^{\scriptscriptstyle\perp}{}_{lphaeta}$	$\overset{1,^{+}}{\cdot}\tau^{\parallel}{}_{\alpha\beta}$	$\overset{1}{\cdot}\sigma^{\parallel}{}_{\alpha}$	$1.\sigma_{\alpha}$	1 ⁻ τ α	$\frac{1}{2}\tau^{\perp}_{\alpha}$			
				$1.^+\sigma^{\parallel}$ †	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t\cdot +k^2t\cdot 1}$	0	0	0	0			
				$\overset{1^+}{\cdot}\sigma^{\scriptscriptstyle \perp} \stackrel{\alpha\beta}{\dagger}$	$-\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{-2 k^2 r.+t.}{(1+k^2)^2 t.^2}$	$-\frac{i(2k^3rkt.)}{51}(1+k^2)^2t.^2$	0	0	0	0			
				$1.^+ \tau^{\parallel} + ^{\alpha\beta}$	$\frac{i \sqrt{2} k}{t + k^2 t}$	$\frac{i(2k^3rkt.)}{(1+k^2)^2t.^2}$	$\frac{-2 k^4 r. + k^2 t.}{5 \frac{1}{(1+k^2)^2 t.^2}}$	0	0	0	0			
				$^{1}\sigma^{\parallel}$ † $^{\alpha}$	0	0	0	$\frac{1}{k^2 r_{.5}}$	$-\frac{1}{\sqrt{2} (k^2 r_5^+ + 2 k^4 r_5^-)}$	0	$-\frac{i}{kr.+2k^3r.}$			
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	$\frac{6k^2r.+t.}{2(k+2k^3)^2r.t.}$	0	$\frac{i (6 k^2 r. +t.)}{\sqrt{2} k (1+2 k^2)^2 r. t.}$			
				$1^{-}\tau^{\parallel} +^{\alpha}$	0	0	0	0	0	0	0			
				1. τ [⊥] † ^α	0	0	0	$\frac{i}{kr.+2k^3r.}$	$-\frac{i(6k^2r.+t.)}{\sqrt{2}k(1+2k^2)^2r.t.}$	0	$\frac{6 k^2 r.+t.}{(1+2 k^2)^2 r.t.}$	$^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
												$\frac{2}{(1+2k^2)^2t.}$		0
											$2.^{+}\tau^{\parallel} + \alpha^{\beta}$	$\frac{2i \sqrt{2} k}{(1+2k^2)^2 t}$	$\frac{4 k^2}{(1+2 k^2)^2 t}$	0
											$2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$\frac{2}{t}$

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0^{+}.\sigma^{\parallel} == 0$	$\partial_{\beta}\sigma_{\alpha}^{\alpha\beta} = 0$	1
$0^+_{\cdot} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$2ik \cdot 1\sigma^{\perp \alpha} + 1\tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1. t == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3
$\overline{i} k 1^+ \sigma^{\perp \alpha \beta} + 1^+ \tau^{\parallel \alpha \beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 2\partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2 i k 2^{+}_{.} \sigma^{\parallel}^{\alpha \beta} + 2^{+}_{.} \tau^{\parallel}^{\alpha \beta} == 0$	$-i\left(4\partial_{\sigma}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\partial_{\sigma}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi}_{\chi}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}-\right.$	5
	$3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+$	
	$3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon}+6ik^{\chi}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\beta\delta}+$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} - 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha \beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}^{\epsilon}) == 0$	
Total expected gauge of	generators:	17

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$-\frac{7}{r}$	$-\frac{2p^2}{t_1}$	$-\frac{4r_{5}p^{4}}{t_{1}^{2}} > 0$
Polarisations:	2		

Unitarity conditions

$$r_{.5} < 0 \&\& (t_{.1} < 0 || t_{.1} > 0)$$