JGU

JOHANNES GUTENBERG
UNIVERSITÄT MAINZ

Programmiersprachen (08.079.030)
7 - Funktionale Programmierung

Tim Süß Institut für Informatik Johannes Gutenberg-Universität Mainz

Funktionale Programmierung

Themen

- Grundbegriffe und Notation von SML
- Rekursionsparadigmen: Induktion, Rekursion über Listen
- End-Rekursion und Programmiertechnik "akkumulierender Parameter"
- Berechnungsschemata mit Funktionen als Parameter
- Funktionen als Ergebnis und Programmiertechnik "Currying"

Functional Programming is Fun

Functional Programming is **Fun**ctional Programming is **Functional** Programming is **Fun**ctional Programming is **Fun**ctional Programmi

Übersicht zur funktionalen Programmierung

Grundkonzepte: Funktionen und Aufrufe, Ausdrücke **keine** Variablen, Zuweisungen, Ablaufstrukturen, Seiteneffekte

Elementare Sprachen (pure LISP) brauchen nur wenige Konzepte: Funktionskonstruktor, bedingter Ausdruck, Literale, Listenkonstruktor und -selektoren, Definition von Bezeichnern für Werte

Mächtige Programmierkonzepte durch Verwendung von: rekursiven Funktionen und Datenstrukturen, Funktionen höherer Ordnung als Berechnungsschemata

Höhere funktionale Sprachen (SML, Haskell):

statische Bindung von Bezeichnern und Typen, völlig orthogonale, höhere Datentypen, polymorphe Funktionen (Kapitel 6), modulare Kapselung, effiziente Implementierung

Funktionaler Entwurf: strukturell denken - nicht in Abläufen und veränderlichen Zuständen, fokussiert auf **funktionale Eigenschaften** der Problemlösung, Nähe zur Spezifikation, Verifikation, Transformation

Funktionale Sprachen: LISP, Scheme, Hope, SML, Haskell, Miranda, ... früher: Domäne der KI; heute: Grundwissen der Informatik, praktischer Einsatz

Sprachkonstrukte von SML: Funktionen

Funktionen können direkt notiert werden, ohne Deklaration und ohne Namen: Funktionskonstruktor (lambda-Ausdruck: Ausdruck, der eine Funktion liefert): fn FormalerParameter => Ausdruck

```
fn i => 2 * i Funktion, deren Aufruf das Doppelte ihres Parameters liefert fn (a, b) => 2 * a + b
```

Beispiel, unbenannte Funktion als Parameter eines Aufrufes:

```
map (fn i \Rightarrow 2 * i, [1, 2, 3])
```

Funktionen haben immer einen Parameter:

statt mehrerer Parameter ein Parameter-Tupel wie (a, b)

(a, b) ist ein Muster für ein Paar als Parameter

statt keinem Parameter ein leerer Parameter vom Typ unit, entspricht void

Typangaben sind optional. Trotzdem prüft der Übersetzer streng auf korrekte Typisierung. Er berechnet die Typen aus den benutzten Operationen (**Typinferenz**) Typangaben sind nötig zur **Unterscheidung von** int **und** real

```
fn i : int => i * i
```


Sprachkonstrukte von SML: Funktionen

allgemeine Form eines Aufrufes: Funktionsausdruck Parameterausdruck

Klammern können den Funktionsausdruck mit dem aktuellen Parameter zusammenfassen:

$$(fn i \Rightarrow 2 * i) (Dupl 3)$$

Parametertupel werden geklammert:

$$(fn (a, b) \Rightarrow 2 * a + b) (4, 2)$$

Auswertung von Funktionsaufrufen wie in Vorlesung 6 beschrieben. Parameterübergabe: **call-by-strict-value**

Sprachkonstrukte von SML: Funktionen

Eine **Definition** bindet den Wert eines Ausdrucks an einen Namen:

```
val four = 4;
val Dupl = fn i => 2 * i;
val Foo = fn i => (i, 2*i);
val x = Dupl four;
```

Eine Definition kann ein **Tupel von Werten** an ein **Tupel von Namen**, sog. **Muster**, binden:

allgemeine Form:

```
val Muster = Ausdruck;
val (a, b) = Foo 3;
```

Der Aufruf Foo 3 liefert ein Paar von Werten, sie werden gebunden an die Namen a und b im Muster für Paare (a, b).

Kurzform für Funktionsdefinitionen:

```
fun Name FormalerParameter = Ausdruck;
fun Dupl i = 2 * i;
fun Fac n = if n <= 1 then 1 else n * Fac (n-1);
   bedingter Ausdruck: Ergebnis ist der Wert des then- oder else-Ausdruckes</pre>
```


Rekursionsparadigma Induktion

Funktionen für induktive Berechnungen sollen schematisch entworfen werden: **Beispiele:**


```
rekursive Funktionsdefinitionen:

fun Fac n =
    if n <= 1
        then 1
        else n * Fac (n-1);

fun Power (n, b) =
    if n <= 0
        then 1.0
        else b * Power (n-1, b);
```

Schema:

Induktion - effizientere Rekursion

Induktive Definition und rekursive Funktionen zur Berechnung von Fibonacci-Zahlen:

induktive Definitionen:

$$Fib(n) = 0$$

$$Fib(n-1) + Fib(n-2)$$

$$für n = 0$$

$$für n = 1$$

$$Fib(n-1) + Fib(n-2)$$

$$für n > 1$$

rekursive Funktionsdefinitionen:

```
fun Fib n =

if n = 0

then 0

else if n = 1

then 1

else Fib(n-1)+Fib (n-2);
```

Fib effizienter:

```
Zwischenergebnisse als Parameter, Induktion aufsteigend (allgemeine Technik siehe "Akkumulierende Parameter"):

fun AFib (n, alt, neu) =

if n = 1 then neu

else AFib (n-1, neu, alt+neu);

fun Fib n = if n = 0 then 0 else AFib (n, 0, 1);
```


Funktionsdefinition mit Fallunterscheidung

Funktionen können übersichtlicher definiert werden durch

- Fallunterscheidung über den Parameter statt bedingter Ausdruck als Rumpf,
- Formuliert durch Muster
- Bezeichner darin werden an Teil-Werte des aktuellen Parameters gebunden

bedingter Ausdruck als Rumpf: fun Fac n = if n=1 then 1 else n * Fac (n-1); fun Power (n, b) = if n = 0 then 1.0

else b * Power (n-1, b);

Die Muster werden in der **angegebenen Reihenfolge** gegen den aktuellen Parametergeprüft. Es wird der erste Fall gewählt, dessen Muster trifft. Deshalb muss ein allgemeiner, **catch-all"-Fall am Ende** stehen.

Listen als rekursive Datentypen

```
Parametrisierter Typ für lineare Listen vordefiniert: (Typparameter 'a; polymorpher Typ)
    datatype 'a list = nil | :: of ('a * 'a list)
definert den 0-stelligen Konstruktor nil und den 2-stelligen Konstruktor ::
Schreibweisen für Listen:
                    eine Liste mit erstem Element x und der Restliste xs
    [1, 2, 3] für 1 :: 2 :: 3 :: nil
Nützliche vordefinierte Funktionen auf Listen:
    hd 1 erstes Element von 1
    tl 1 Liste 1 ohne erstes Element
    length 1 Länge von 1
    null 1 Prädikat: ist 1 gleich nil?
    11 @ 12 Liste aus Verkettung von 11 und 12
Funktion, die die Elemente einer Liste addiert:
    fun Sum 1 = if null 1 + then 0
                             else (hd 1) + Sum (tl 1);
Signatur:
                    Sum: int list -> int
```


Konkatenation von Listen

In funktionalen Sprachen werden Werte nie geändert.

Bei der Konkatenation zweier Listen wird die Liste des linken Operands kopiert.

Einige Funktionen über Listen

Liste[n,...,1] erzeugen:

Fallunterscheidung mit Listenkonstruktoren nil und :: in Mustern: Summe der Listenelemente:

```
fun Sum (nil) = 0
| Sum (h::t) = h + Sum t;
```

Prädikat: Ist das Element in der Liste enthalten?:

```
fun Member (nil, m)= false
| Member (h::t,m)= if h = m then true else Member (t,m);
```

Polymorphe Signatur: Member: ('a list * 'a) -> bool

Liste als Konkatenation zweier Listen berechnen (@-Operator):

```
fun Append (nil, r) = r
| Append (l, nil) = l
| Append (h::t, r) = h :: Append (t, r);
```

Die linke Liste wird neu aufgebaut!

```
Polymorphe Signatur: Append: ('a list * 'a list) -> 'a list
```


Rekursionsschema Listen-Rekursion

lineare Listen sind als **rekursiver Datentyp** definiert:

```
datatype 'a list = nil | :: of ('a * 'a list)
```

Paradigma: Funktionen haben die gleiche Rekursionsstruktur wie der Datentyp:

```
fun F l = if l=nil then nicht-rekursiver Ausdruck else Ausdruck über hd l und F(tl \ l);

fun Sum l = if l=nil then 0 else (hd l) + Sum (tl l);
```

Dasselbe in Kurzschreibweise mit Fallunterscheidung:

```
fun F (nil) = nicht-rekursiver Ausdruck
| F (h::t) = Ausdruck über h und F t

fun Sum (nil) = 0
| Sum (h::t) = h + Sum t;
```


Einige Funktionen über Bäumen

Parametrisierter Typ für Bäume:

```
datatype 'a tree = node of ('a tree * 'a * 'a tree) | treeNil
```

Paradigma: Funktionen haben die gleiche Rekursionsstruktur wie der Datentyp.

Beispiel: einen Baum spiegeln

```
fun Flip (treeNil) = treeNil
| Flip (node (1, v, r)) = node (Flip r, v, Flip l);
polymorphe Signatur: Flip: 'a tree -> 'a tree
```

Beispiel: einen Baum auf eine Liste der Knotenwerte abbilden (hier in Infix-Form)

```
fun Flatten (treeNil) = nil
| Flatten (node (1, v, r)) = (Flatten 1) @ (v :: (Flatten r));
polymorphe Signatur: Flatten: 'a tree -> 'a list
```

Präfix-Form: ...
Postfix-Form: ...

End-Rekursion

In einer Funktion f heißt ein **Aufruf** von f **end-rekursiv**, wenn er (als letzte Operation) das Funktionsergebnis bestimmt, sonst heißt er zentral-rekursiv.

Eine Funktion heißt end-rekursiv, wenn alle rekursiven Aufrufe end-rekursiv sind.

```
Member ist end-rekursiv:
  fun Member (1, a) =
    if null 1 then false
    else if (hd 1) = a
        then true
    else Member (tl 1, a);
```

```
Sum ist zentral-rekursiv:
fun Sum (nil) = 0
| Sum (h::t) = h + (Sum t);
```

 Parameter	Ergebnis
[1,2,3]	F
5	
 [2,3]	F
5	
[2,3]	F
 5	
[]	F
5	

Laufzeitkeller für Member ([1,2,3], 5)

Ergebnis wird durchgereicht - ohne Operation darauf

End-Rekursion entspricht Schleife

Jede imperative Schleife kann in eine end-rekursive Funktion transformiert werden. Allgemeines Schema:

```
while (p(x)) \{x = r(x);\} return q(x); fun While x = if p x then While (r x) else q x;
```

Jede **end-rekursive** Funktion kann in eine imperative Form transformiert werden: Jeder **end-rekursive Aufruf** wird durch einen **Sprung** an den Anfang der Funktion (oder durch eine **Schleife**) ersetzt:

```
fun Member (1, a) =
    if null 1 then false
    else if (hd 1) = a then true else Member (tl 1, a);

Imperativ in C:
    int Member (ElemList 1, Elem a) {
        Begin: if (null (1)) return 0 /*false*/;
        else if (hd (1) == a) return 1 /*true*/;
        else { 1 = tl (1); goto Begin;}
}
```

Gute Übersetzer leisten diese Optimierung automatisch - auch in imperativen Sprachen.

Technik: Akkumulierender Parameter

Unter bestimmten Voraussetzungen können zentral-rekursive Funktionen in end-rekursive transformiert werden:

Ein **akkumulierender Parameter** führt das bisher berechnete Zwischenergebnis mit durch die Rekursion. Die Berechnungsrichtung wird umgekehrt, z. B.:Summe der Elemente einer Liste **zentral-rekursiv**:

```
fun Sum (nil)= 0
| Sum (h::t)= h + (Sum t); Sum [1, 2, 3, 4] berechnet 1 + (2 + (3 + (4 + (0))))
```

transformiert in end-rekursiv:

```
fun ASum (nil, a:int) = a 
| ASum (h::t,a) = ASum (t, a + h);
fun Sum l = ASum (l, 0); 
| ASum ([1, 2, 3, 4], 0) berechnet (((0 + 1) + 2) + 3) + 4)
```

Die Verknüpfung (hier +) muß **assoziativ** sein. Initial wird mit dem **neutralen Element der Verknüpfung** (hier 0) aufgerufen.

Gleiche Technik bei AFib; dort 2 akkumulierende Parameter.

Liste umkehren

Liste umkehren:

```
fun Reverse (nil)= nil
| Reverse (h::t)= Append (Reverse t, h::nil);
```

Append dupliziert die linke Liste bei jeder Rekursion von Reverse, benötigt also k mal ::, wenn k die Länge der linken Liste ist. Insgesamt benötigt Reverse wegen der Rekursion (n-1) + (n-2) + ... + 1 mal ::, also Aufwand O(n²).

Transformation von Reverse führt zu linearem Aufwand:

```
fun AReverse (nil, a) = a
| AReverse (h::t,a) = AReverse (t, h::a);
fun Reverse l = AReverse (l, nil);
```


Funktionen höherer Ordnung: map

Berechnungsschemata mit Funktionen als Parameter

Beispiel: eine Liste elementweise transformieren

```
fun map(f, nil) = nil
| map(f, h::t) = (f h) :: map (f, t);
Signatur: map: (('a ->'b) * 'a list) -> 'b list
```

Anwendungen von Map, z. B.

```
map (fn i => i*2.5, [1.0,2.0,3.0]); Ergebnis: [2.5, 5.0, 7.5] map (fn x => (x,x), [1,2,3]); Ergebnis: [(1,1), (2,2), (3,3)]
```


Funktionen höherer Ordnung: foldl

foldl verknüpft Listenelemente von links nach rechts

foldl ist mit akkumulierendem Parameter definiert:

```
fun foldl (f, a, nil) = a
| foldl (f, a, h::t) = foldl (f, f (a, h), t);
Signatur: foldl: (('b * 'a) -> 'b * 'b * 'a list) -> 'b
```

```
Für foldl (f, 0, [1, 2, 3, 4])
wird berechnet f(f(f(0, 1), 2), 3), 4)
```

Anwendungen von foldl

assoziative Verknüpfungsfunktion und neutrales Element einsetzen:

```
fun Sum l = foldl (fn (a, h:int) => a+h, 0, 1);
```

Verknüpfung: Addition; Sum addiert Listenelemente

```
fun Reverse l = foldl (fn (a, h) => h::a, nil, l);
```

Verknüpfung: Liste vorne verlängern; Reverse kehrt Liste um

Polynomberechnung mit foldl

Ein **Polynom** $a_n x^n + ... + a_1 x + a_0$ sei durch seine **Koeffizientenliste** $[a_n, ..., a_1, a_0]$ dargestellt

Berechnung eines Polynomwertes an der Stelle x nach dem Horner-Schema:

$$(...((0 * x + a_n) * x + a_{n-1}) * x + ... + a_1) * x + a_0$$

Funktion Horner berechnet den Polynomwert für x nach dem Horner-Schema:

```
fun Horner koeff x = foldl (fn(h, a) = >a * x + h) 0.0 koeff;
```

Verknüpfungsfunktion $fn(a, h) = \lambda x + h$ hat freie Variable x, sie ist gebunden als Parameter von Horner

Aufrufe z. B.

```
Horner [1.0, 2.0, 3.0], 10.0;
Horner [1.0, 2.0, 3.0], 2.0;
```


Funktionen höherer Ordnung

Anwendung: z. B. Bildung einer benannten Funktion Hoch4

```
Einfaches Beispiel für Funktion als Ergebnis:

fun Choice true = (fn \ x \Rightarrow x + 1)
| Choice false = (fn \ x \Rightarrow x * 2);

Signatur Choice: bool -> (int -> int)

Meist sind freie Variable der Ergebnisfunktion an Parameterwerte der konstruierenden Funktion gebunden:

fun Comp (f, g) = fn \ x \Rightarrow f \ (g \ x); Hintereinanderausführung von g und f Signatur Comp: ('b->'c * 'a->'b) \rightarrow ('a->'c)
```


val Hoch4 = Comp (Sqr, Sqr);

Currying

Currying: Eine Funktion mit Parametertupel wird umgeformt in eine Funktion mit einfachem Parameter und einer **Ergebnisfunktion**; z. B. schrittweise Bindung der Parameter:

```
Parametertupel
                                       Curry-Form
           Add (x, y:int) = x + y; fun CAdd x = fn y:int => x + y;
    fun
Signatur Add: (int * int) -> int CAdd: int -> (int -> int)
                                               können die Parameter
In Aufrufen müssen alle Parameter(komponenten)
schrittweise sofort angegeben werden
                                               gebunden werden:
        Add (3, 5)
                                               (CAdd 3) 5
Auch rekursiv:
    fun CPower n = fn b \Rightarrow
        if n = 0 then 1.0 else b * CPower (n-1) b;
Signatur CPower: int -> (real -> real)
Anwendung:
   val Hoch3 = CPower 3; eine Funktion, die "hoch 3" berechnet
    (Hoch3 4) liefert 64
    ((CPower 3) 4) liefert 64
```


Kurzschreibweise: Funktionen in Curry-Form

```
Langform:
```

```
fun CPower n = fn b =>
    if n = 0 then 1.0 else b * CPower (n-1) b;
Signatur CPower: int -> (real -> real)
```

Kurzschreibweise für Funktion in Curry-Form:

```
fun CPower n b =
if n = 0 then 1.0 else b * CPower (n-1) b;
```

Funktion Horner berechnet den Polynomwert für x nach dem Horner-Schema, in Tupelform:

```
fun Horner (koeff, x:real) = foldl (fn(a, h)=>a*x+h, 0.0, koeff);
```

Horner-Funktion in Curry-Form:

CHorner liefert eine Funktion; die Koeffizientenliste ist darin gebunden:

```
fun CHorner koeff x:real = foldl (fn(a, h)=>a*x+h, 0.0, koeff);
Signatur CHorner: (real list) -> (real -> real)
```

```
Aufruf: val MyPoly = CHorner [1.0, 2.0,3.0]; ... MyPoly 10.0
```


Zusammenfassung

Mit den Vorlesungen und Übungen zu Kapitel 7 sollen Sie nun Folgendes können:

- Funktionale Programme unter Verwendung treffender Begriffe präzise erklären
- Funktionen in einfacher Notation von SML lesen und schreiben
- Rekursionsparadigmen Induktion, Rekursion über Listen anwenden
- End-Rekursion erkennen und Programmiertechnik "akkumulierender Parameter" anwenden
- Berechnungsschemata mit Funktionen als Parameter anwenden
- Programmiertechnik "Currying" verstehen und anwenden

