

LIEB AND LOSS CHAPTER 2

 L^p is the space of all p^{th} power summable functions.

Let Ω be a measure space with a positive measure μ and let $1 \leq p < \infty$. Then

$$L^p(\Omega,\mu) \coloneqq \left\{f \mid f \ : \ \Omega \to \mathbb{C}, \ f \text{ is μ-summable and } \ \left|f\right|^p \text{ is μ-summable}\right\}.$$

The norm of
$$L^p$$
 is given by $||f||_{L^p} = \left(\int_{\Omega} |f|^p d\mu\right)^{\frac{1}{p}}$.
For $p = \infty$,

$$L^{\infty}(\Omega, \mu) := \{ f \mid f : \Omega \to \mathbb{C}, \text{ fis } \mu\text{-measurable and } \exists \text{ constant } K \text{ such that } |f(x)| < K \text{ for } \mu \text{ almost every } x \in \Omega \}$$

with norm $\|f\|_{L^{\infty}} = \inf \{ K \mid |f(x)| < K \text{ for } \mu \text{ almost every } x \in \Omega \}.$

If
$$f \in L^p \cap L^\infty$$
, then $f \in L^q$ for all $q > p$ and $||f||_{\infty} = \lim_{p \to \infty} ||f||_p$.

- A convex set $K \subset \mathbb{R}^n$ is one for which $\lambda x + (1 \lambda)y \in K$ for all $x, y \in K$ and $0 \le \lambda \le 1$.
- A convex function f on a convex set K is a real-valued function satisfying $f(\lambda x + (1 \lambda)y) \leq \lambda f(x) + (1 \lambda)f(y)$ for all $x, y \in K$ and $0 \leq \lambda \leq 1$.
- A function is strictly convex if equality never holds whenever $x \neq y$ and $0 < \lambda < 1$.
- A function is concave if the inequality is reversed.
- If K is open then convex functions are continuous.

Let $J: \mathbb{R} \to \mathbb{R}$ be a convex function and f a real-valued function on some finite measurable set Ω . Define $\langle \cdot \rangle$ to be the average of a function, i.e.

$$\langle f \rangle \coloneqq \frac{1}{\mu(\Omega)} \int_{\Omega} f.$$

Then

- (i) $[J \circ f]_{-} \in L^{1}(\Omega);$
- (ii) $\langle F \circ f \rangle \geq J(\langle f \rangle)$.

In English,

- (i) The negative part of the composition is absolutely summable;
- (ii) The average of the composition is at least the composition of the average.

Let $1 \le p \le \infty$ and let q be the dual index of p. Then if $f \in L^p$ and $g \in L^q$, then $fg \in L^1$ and

$$||fg||_1 \le ||f||_p ||g||_q.$$

The Schwarz Inequality is the special case when p = q = 2. We have

$$||fg||_1 \le ||f||_2 ||g||_2$$

To generalize, for $i=1,2,\ldots,n,$ let $f_i\in L^{p_i}$ and $\frac{1}{p_1}+\cdots+\frac{1}{p_n}=1.$ Then

$$\prod_{i=1}^{n} f_i \in L^1 \quad \text{and} \quad \left\| \prod_{i=1}^{n} f_i \right\|_1 \le \prod_{i=1}^{n} \|f_i\|_{p_i}$$

Let $f, g \in L^p$. If $1 \le p \le 2$, then (Parallelogram Identity)

$$||f+g||_p^p + ||f-g||_p^p \le (||f||_p + ||g||_p)^p + ||f||_p - ||g||_p|^p$$

and

$$\Big(\|f+g\|_p + \|f-g\|_p\Big)^p + \Big|\|f+g\|_p - \|f-g\|_p\Big|^p \leq 2^p \Big(\|f\|_p^p + \|g\|_p^p\Big).$$

If $2 \le p < \infty$, the inequalities are reversed.

Yes. Let $1 \leq p \leq \infty$ and let (f_i) be a Cauchy sequence in L^p , i.e. $||f_i - f_j||_p \to 0$ as $i, j \to \infty$. Then there is a unique function $f \in L^p$ such that $||f_i - f||_p \to 0$ as $i \to \infty$, i.e.

 $f_i \to f$ say " f_i converges strongly to f".

Let $1 and let K be a convex subset of <math>L^p$. Let $f \in L^p$ such that $f \notin K$ and define

$$D\coloneqq \mathrm{dist}\,(f,K)\inf_{g\in K}\|f-g\|_p.$$

Then $\exists h \in K$ such that

$$\|f - h\|_p = D.$$

Let (f_i) be a sequence in L^p . If $L(f_i) \to L(f)$ for every bounded linear functional L on L^p , then we say $f_i \to f$, or f_i weakly converges to f. It can be shown that for $1 \le p < \infty$, $(L^p)^* \cong L^q$, where q is the dual index of p, and that every bounded linear functional $L \in (L^p)^*$ can be represented as integration against a unique L^q function, i.e. $\forall L \in (L^p)^*$, $\exists ! g \in L^q$ such that

$$L(f) = \int fg$$

for every $f \in L^p$. Thus, (f_i) converges weakly in L^p if

$$\int f_i g \to \int f g$$

for every $g \in L^q$.

Suppose $f \in L^p$ with L(f) = 0 for all $L \in (L^p)^*$. Then f = 0.

Consequently, if $f_i \rightharpoonup g$ and $f_i \rightharpoonup h$, then g = h.

Let (f_i) be a sequence in L^p such that $\forall L \in (L^p)^*$ the sequence $(L(f_i))$ is bounded in \mathbb{C} . Then $(\|f_i\|_p)$ is a bounded sequence in \mathbb{R} .

For $f, g : \mathbb{R}^n \to \mathbb{C}$, we define the convolution of f and g, denoted f * g, as

$$(f * g)(x) := \int_{\mathbb{R}^n} f(x - y)g(y)dy.$$

Let $j \in L^1(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} j = 1$. For $\varepsilon > 0$, define j_{ε} as

$$j_{\varepsilon}(x) \coloneqq \frac{1}{\varepsilon^n} j\left(\frac{x}{\varepsilon}\right).$$

so that $||j_E||_1 = ||j||_1$ and $\int_{\mathbb{R}^n} j_{\varepsilon} = 1$.

Define the mollification of a function $f \in L^p(\mathbb{R}^n)$ for some $1 \leq p < \infty$, denoted f_{ε} , as the convolution of f and j_{ε} for some ε , that is,

$$f_{\varepsilon} = f * j_{\varepsilon}.$$

Then $f_{\varepsilon} \in L^p(\mathbb{R}^n)$ and $||f_{\varepsilon}||_p \le ||f||_p ||j||_1$. Also, $f_{\varepsilon} \to f$ strongly in L^p , that is, $||f_{\varepsilon} - f||_p \to 0$.

In addition, if $j \in C_C^{\infty}$, then $f_{\varepsilon} \in C^{\infty}$. This is a concrete construction which shows that C^{∞} functions are dense in L^p .

Yes, $L^p(\mathbb{R}^n)$ is separable. This means there is a countable dense subset of $L^p(\mathbb{R}^n)$, that is, $\exists \Phi = \{\phi_1, \phi_2, \dots\} \subset L^p(\mathbb{R}^n)$ such that $\forall f \in L^p$ and $\varepsilon > 0$, $\exists \phi_j \in \Phi$ such that $\|f - \phi_j\|_p < \varepsilon$.

Let $\Omega \subset \mathbb{R}^n$ be a measurable set and consider $L^p(\Omega)$ with $1 . Let <math>(f_i)$ be a bounded sequence in L^p . Then there exists a subsequence (f_{i_j}) and $f \in L^p$ such that $f_{i_j} \rightharpoonup f$ in L^p . That is, bounded sets in L^p are weakly compact.

How does Urysohn's Lemma give that C_C^{∞} is dense in L^p ?
Lieb and Loss Chapter 2
What is special about convolutions of functions in dual L^p spaces? Lieb and Loss Chapter 2

Let $\Omega \subset \mathbb{R}^n$ be an open set and let $K \subset \Omega$ be compact. Then there is a function $J_K \in C_C^{\infty}(\Omega)$ such that $0 \leq J_K(x) \leq 1$ for all $x \in \Omega$ and $J_K(x) = 1$ for all $x \in K$.

As a consequence, there is a sequence of functions $(g_i) \in C_C^{\infty}$ that take values in [0,1] and such that $\lim_{j \to \infty} g_j(x) = 1$ for every $x \in \Omega$.

As a second consequence, given a sequence of functions $(f_i) \in C^{\infty}$ such that f_i converges strongly to a function $f \in L^p$, the sequence $(h_i) = (g_i f_i) \in C_C^{\infty}$ and $h_i \to f$ strongly.

This shows, since C^{∞} is dense in L^p , that C_C^{∞} is dense in L^p .

If $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, where q is the dual index of p, then f * g is continuous and (f * g) tends to 0 at infinity.