Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri reali \mathbb{R} è totalmente ordinato.

1.V

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di f(-x).

2.F

x

Enunciato 3. $\{x \in \mathbb{R} : |x| < a\} = (-a, a)$

3.V

Enunciato 4. L'altezza di un triangolo equilatero di lato unitario misura $\sqrt{2}$.

4.F

Enunciato 5. $\tan\left(\frac{\pi}{6}\right) = \sqrt{3}$

5.F

Enunciato 6. Se $z \in \mathbb{C}$, allora $\overline{z^n} = -(\overline{z})^n$.

6.F

Enunciato 7. Se quello riportato di seguito è il grafico della funzione f allora $\lim_{x\to x_0^-} f(x) = f(x_0)$.

7.F

Enunciato 8. La funzione tangente non è continua nel suo dominio di definizione.

8.F

Enunciato 9. Se $\{a_n\}_n$ e $\{c_n\}_n$ convergeno ad L e $a_n \leq b_n \leq c_n$, allora anche $\{b_n\}_n$ converge ad L.

9.V

Enunciato 10. Se $a_n, b_n > 0$, $\sum_{n \ge 1} a_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora nulla si può dire della convergenza di $\sum_{n \ge 1} b_n$.

10.F

Enunciato 11. Se $f:(a,b) \to \mathbb{R}$ è continua, $\lim_{x\to a} f(x) = +\infty$ e $\lim_{x\to b} f(x) = -\infty$, allora esiste $x_0 \in (a,b)$ tale che $f(x_0) = 0$.

11.V

Enunciato 12. $\frac{d}{dx}\cos(x) = -\sin(x)$

12.V

Enunciato 13. Per la regola di De L'Hôpital si ha che

13.F

$$\lim_{x \to +\infty} \frac{x}{\arctan(x)} = \lim_{x \to +\infty} \frac{1}{\frac{1}{1+x^2}} = \lim_{x \to +\infty} (1+x^2) = +\infty$$

Enunciato 14. Se $f:[a,b] \to \mathbb{R}$ è integrabile, allora esiste $c \in [a,b]$ tale che

$$\int_{a}^{b} f(x) dx = (b-a)f(c).$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *L'insieme dei numeri naturali* \mathbb{N} *è totalmente ordinato.*

2.F

1.V

Enunciato 2. $f: A \to B$ è strettamente crescente se per ogni $x_1, x_2 \in A$ si ha

 $x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$.

Enunciato 3. $\{x \in \mathbb{R} : |x| < a\} = (-a, a)$

3.V

Enunciato 4. $\sin(x+2\pi) = \sin(x)$

4.V 5.V

Enunciato 5. $\cot\left(\frac{\pi}{4}\right) = 1$

Enunciato 6. Se $z \in \mathbb{C}$, allora $\overline{z^n} = -(\overline{z})^n$.

6.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = -\infty$ se

7.*V*

 $\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) < -M \; \forall x \in (x_0 - \delta, x_0).$

Enunciato 8. $\lim_{x \to 0} \frac{\sin(x)}{x} = \frac{1}{2}$

8.F

Enunciato 9. Ogni successione numerica limitata è convergente.

9.F

Enunciato 10. La serie telescopiche convergono.

10.F

Enunciato 11. Se $f:(a,b) \to [a,b]$ è continua ed invertibile, allora anche $f^{-1}:[a,b] \to (a,b)$ è continua.

11.V

Enunciato 12. Tutte le funzioni derivabili sono continue.

12.V

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed f(a) = f(b), allora esiste $x_0 \in (a,b)$ tale che $f'(x_0) = 0$.

13.V

Enunciato 14.

 $\int \frac{\mathrm{d}x}{\cos(x)^2} = \tan(x) + c$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri reali \mathbb{R} è totalmente ordinato.

1.V

Enunciato 2. Se $n \in \mathbb{N}$ è dispari allora $f(x) = x^n$ è una funzione pari nel suo dominio di definizione.

2.F

Enunciato 3. Siano $a,b,c \in \mathbb{R}$ con a > 0. Se $\Delta = b^2 - 4ac > 0$, allora

Enunciato 3. Siano
$$a, b, c \in \mathbb{R}$$
 con $a > 0$. Se $\Delta = b^2 - 4ac > 0$, altora
$$\{x \in \mathbb{R} : ax^2 + bx + c > 0\} = (-\infty, x_1) \cup (x_2, +\infty),$$

dove $x_1 = \frac{-b - \sqrt{\Delta}}{2a} e x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

3.V

Enunciato 4.

4.*F*

tan(-x) = -tan(x)Enunciato 5.

5.V

Enunciato 6. Se $z \in \mathbb{C}$, allora $\overline{z^n} = (\overline{z})^n$.

6.V

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = +\infty$ se $\forall M > 0 \ \exists \delta = \delta(M) > 0 \ t.c. \ f(x) > M \ \forall x \in (x_0 - \delta, x_0).$

7.*V*

$$\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) > M \; \forall x \in (x_0 - \delta, x_0).$$

Enunciato 8. La funzione tangente non è continua nel suo dominio di definizione.

8.F 9.F

Enunciato 9. Se esiste una sottosuccessione di $\{a_n\}_n$ che converge ad L, allora $\lim_{n \to \infty} a_n = L$.

10.V

Enunciato 10. Se
$$\sum_{n\geq 1} b_n$$
 converge $e\ 0 \leqslant a_n \leqslant b_n$, allora anche $\sum_{n\geq 1} a_n$ converge.

11.V

Enunciato 11. *Se* $f: \mathbb{R} \to \mathbb{R}$ *è monotona ed* f([a,b]) *è un intervallo, allora* f *è continua in* [a,b].

Enunciato 12.
$$\frac{d}{dx}\cos(x) = \sin(x)$$

12.F

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed $x_0 \in (a,b)$ è tale che $f'(x_0) = 0$, allora x_0 è un punto di massimo o di minimo.

13.F

Enunciato 14.

$$\int \sin(x) \, \mathrm{d}x = -\cos(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri naturali \mathbb{N} è totalmente ordinato.

1.V

Enunciato 2. Quello riportato di seguito è il grafico di una funzione.

2.*F*

Enunciato 3.
$$\sqrt{p(x)} \geqslant \sqrt{q(x)} \Longleftrightarrow \begin{cases} p(x) \geqslant 0 \\ q(x) \geqslant 0. \end{cases}$$

3.F

Enunciato 4. Ciascun angolo di un quadrato misura $\pi/2$.

4.V

 $\cot\left(\frac{\pi}{4}\right) = 0$ Enunciato 5.

 $x \in (a,b)$.

5.F

Enunciato 6. Se $z, w \in \mathbb{C}$ ed $n \in \mathbb{N}$, allora $\overline{z+w} = \overline{z} + \overline{w}$

6.V

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = L$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$

7.*V*

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0)$$

8.V

 $\lim_{x \to 0} \frac{\sqrt[a]{1+x}-1}{x} = \frac{1}{a} \,\forall a > 0$ Enunciato 8.

Enunciato 9. Ogni successione numerica limitata ammette una sottosuccessione convergente.

9.V

Enunciato 10. Se $\sum_{n\geqslant 1} a_n$ converge e $0 \leqslant a_n \leqslant b_n$, allora anche $\sum_{n\geqslant 1} b_n$ converge.

10.F

Enunciato 11. Se $f:(a,b)\to\mathbb{R}$ è continua, $\lim_{x\to a}f(x)=+\infty$ e $\lim_{x\to b}f(x)=+\infty$, allora $f(x)\geqslant 0$ per ogni

11.F

Enunciato 12. Tutte le funzioni integrabili sono derivabili.

12.F

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed $x_0 \in (a,b)$ è tale che $f'(x_0) = 0$, allora x_0 è un punto di massimo o di minimo.

13.F

Enunciato 14. $\int \cos(x) \, \mathrm{d}x = \sin(x) + c$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri razionali \mathbb{Q} è un campo.

1.V

Enunciato 2. $f(x) = x^2$ è monotona nel suo dominio di definizione.

2.*F*

Enunciato 3. Se C è l'estremo superiore di $A \subset \mathbb{R}$, allora C è il massimo di A.

3.F

Enunciato 4. $\cos\left(\frac{\pi}{6}\right) = \frac{1}{2}$ *4.F*

 $\cot(x) = \frac{\cos(x)}{\sin(x)}$ Enunciato 5.

5.V

Enunciato 6. *Se* $z \in \mathbb{R}$, *allora* $z \notin \mathbb{C}$.

6.F

7.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = -\infty$ se $\exists M > 0 \ t.c. \ \forall \delta = \delta(M) > 0 \ \exists x \in (x_0 - \delta, x_0) \ t.c. \ f(x) > -M.$

8.F

 $\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = 1$ Enunciato 8.

Enunciato 9. Ogni successione numerica limitata ammette una sottosuccessione convergente.

9.V

Enunciato 10. $\sum_{p\geqslant 1} a_p$ converge se e solo se $\exists \varepsilon > 0$ t.c. $\forall N = N(\varepsilon) \in \mathbb{N} \ \exists n > m > N$ t.c. $\left| \sum_{p=m+1}^n a_p \right| < \varepsilon$.

10.F

Enunciato 11. Se $f:[a,b] \to \mathbb{R}$ è continua, allora essa ammette massimo e minimo assoluti.

11.V 12.F

 $f'(x_0) = \lim_{t \to 0} \frac{f(x_0) - f(x_0 + t)}{t}$ Enunciato 12.

Enunciato 13. La differenza di funzioni convesse è una funzione convessa.

13.F

Enunciato 14.

$$\int \frac{\mathrm{d}x}{\sqrt{1+x^2}} = \arctan(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri reali \mathbb{R} è ordinato e completo.

Enunciato 2. Una funzione iniettiva è strettamente monotona.

2.F

1.V

Enunciato 3. $\sqrt{p(x)} \geqslant \sqrt{q(x)} \Longleftrightarrow \begin{cases} q(x) \geqslant 0 \\ p(x) \geqslant q(x). \end{cases}$

_---

3.V

Enunciato 4. cos(0) = 1

4.V

Enunciato 5. Quello riportato di seguito è il grafico di $f(x) = \arccos(x)$.

5.F

 $\pi/2$ -1 1_x $-\pi/2$

(F

Enunciato 6. L'equazione $x^2 + 1 = 0$ non ha soluzioni in \mathbb{C} .

6.F

Enunciato 7. Se quello riportato di seguito è il grafico della funzione f allora $\lim_{x \to x_0^+} f(x) = f(x_0)$.

7.F

$$x_0$$

Enunciato 8. Se f(x) > 0 per ogni $x \in \mathbb{R}$ e $\lim_{x \to x_0} f(x) = a \in \mathbb{R}$, allora a > 0.

8.F

Enunciato 9. Se esiste una sottosuccessione di $\{a_n\}_n$ che converge ad L, allora $\lim_{n \to +\infty} a_n = L$.

9.F

Enunciato 10. Se $\sum_{n\geqslant 1} a_n$ converge, allora anche $\sum_{n\geqslant 1} |a_n|$ converge.

10.F

Enunciato 11. Se $f:(a,b) \to \mathbb{R}$ è continua, $\lim_{x \to a} f(x) = +\infty$ e $\lim_{x \to b} f(x) = -\infty$, allora esiste $x_0 \in (a,b)$

11.V

tale che $f(x_0) = 0$.

12.V

Enunciato 12. $\frac{\mathrm{d}}{\mathrm{d}x}\ln(|x|) = \frac{1}{x} \ per \ ogni \ x \neq 0$

13.F

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed $x_0 \in (a,b)$ è tale che $f'(x_0) = 0$, allora x_0 è un punto di massimo o di minimo.

13.1

Enunciato 14. Se $f: [a,b] \to \mathbb{R}$ è decrescente, allora è integrabile secondo Riemann.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *L'insieme dei numeri razionali* \mathbb{Q} *è un campo.*

1.V

Enunciato 2. Quello riportato di seguito è il grafico di $f(x) = a^x con a > 1$.

2.F

Enunciato 3. L'estremo inferiore di un insieme è il più piccolo dei minoranti.

3.F

Enunciato 4. $\sin(x+\pi) = -\sin(x)$

4.V

Enunciato 5. *Quello riportato di seguito è il grafico di* $f(x) = \cot(x)$.

5.F

Enunciato 6. Se $z = \rho(\cos(\theta) + i\sin(\theta))$ e $w = r(\cos(\varphi) + i\sin(\varphi))$ sono due numeri complessi in forma trigonometrica, allora

6.F

$$z \cdot w = \rho r (\cos(\theta - \varphi) + i\sin(\theta - \varphi)).$$

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = -\infty$ se

7.F

$$\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) > M \; \forall x \in (x_0 - \delta, x_0).$$

Enunciato 8. $\lim_{x \to -\infty} \sqrt[x]{x} = +\infty$

8.F

Enunciato 9. Se esiste una sottosuccessione di $\{a_n\}_n$ che converge ad L, allora $\lim_{n \to \infty} a_n = L$.

9.F

Enunciato 10. Se $\sum_{n\geqslant 1} a_n$ converge $e\ 0\leqslant a_n\leqslant b_n$, allora anche $\sum_{n\geqslant 1} b_n$ converge.

10.F

 $n\geqslant 1$ $n\geqslant 1$

11.F

Enunciato 11. Se $f:(a,b)\to\mathbb{R}$ è continua, $\lim_{x\to a}f(x)=+\infty$ e $\lim_{x\to b}f(x)=+\infty$, allora $f(x)\geqslant 0$ per ogni $x\in(a,b)$.

12.F

Enunciato 12. Tutte le funzioni integrabili sono derivabili.

Enunciato 13. Il polinomio di Taylor è un polinomio.

13.V

14.V

Enunciato 14. Se $f: [a,b] \to \mathbb{R}$ è continua, allora $f(x) = -\frac{d}{dx} \int_{a}^{b} f(x) dx$.

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri reali \mathbb{R} è totalmente ordinato.

2.*F*

Enunciato 2. $f: A \rightarrow B$ è crescente se per ogni $x_1, x_2 \in A$ si ha

$$x_1 < x_2 \Longrightarrow f(x_1) \geqslant f(x_2).$$

Enunciato 3. $\{x \in \mathbb{R} : |x| > a\} = (-a, a)$

3.F

1.V

 $\cos\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$ Enunciato 4.

4.F

 $\sin(2x) = 2\sin(x)\cos(x)$ Enunciato 5.

5.V

Enunciato 6. *Se* $z, w \in \mathbb{C}$, *allora* $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$. 6.V

Enunciato 7. *Data* $f: \mathbb{R} \to \mathbb{R}$, *si ha che* $\lim f(x) = L$ *se*

7.F

 $\exists \varepsilon > 0 \text{ t.c. } \forall \delta = \delta(\varepsilon) > 0 \exists x \in (x_0 - \delta, x_0) \text{ t.c. } |f(x) - L| > \varepsilon.$

8.V

Enunciato 8. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = +\infty$ se $\forall M > 0 \ \exists \delta = \delta(M) > 0 \ t.c. \ f(x) > M \ \forall x \in (x_0 - \delta, x_0).$

$$\forall M > 0 \ \exists \delta = \delta(M) > 0 \ t.c. \ f(x) > M \ \forall x \in (x_0 - \delta, x_0).$$

9.V

Enunciato 9. Ogni successione numerica limitata ammette una sottosuccessione convergente.

10.V

Enunciato 10. Se $\sum_{n\geq 1} |a_n|$ converge, allora anche $\sum_{n\geq 1} a_n$ converge.

11.F

Enunciato 11. Se $f: [a,b] \to \mathbb{R}$ è continua, allora f([a,b]) = [f(a),f(b)].

Enunciato 12. Tutte le funzioni integrabili sono derivabili.

12.F

Enunciato 13. La somma di funzioni convesse è una funzione convessa.

13.V

Enunciato 14.

$$\int \cos(x) \, \mathrm{d}x = \sin(x) + c$$

14.V

Enunciato 9 11 12 1 2 3 4 5 7 8 10 13 14 6 V F

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri naturali \mathbb{N} è ordinato e completo.

1.F

Enunciato 2. Una funzione iniettiva è strettamente monotona.

2.F

Enunciato 3. L'estremo superiore di un insieme è il più grande dei maggioranti.

3.F

Enunciato 4. *Quello riportato di seguito è il grafico di* $f(x) = \sin(x)$.

4.V

Enunciato 5.

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

5.V

Enunciato 6. *Se* $z \in \mathbb{C}$ *ed* $n \in \mathbb{N}$, *allora*

6.V

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to \infty} f(x) = -\infty$ se $\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) > M \; \forall x \in (x_0 - \delta, x_0).$

7.F

$$0 > 0$$
 per ogni $x \in \mathbb{R}$ e $\lim_{x \to a} f(x) = a \in \mathbb{R}$ allora $a > 0$

Enunciato 9. Se esiste $\{x_n\}_n$ convergente ad x_0 tale che $\lim_{n \to +\infty} f(x_n) = f(x_0)$, allora f è continua in x_0 .

8.V

Enunciato 8. Se $f(x) \ge 0$ per ogni $x \in \mathbb{R}$ e $\lim_{x \to x_0} f(x) = a \in \mathbb{R}$, allora $a \ge 0$.

9.F

Enunciato 10. La serie telescopiche convergono.

10.F

Enunciato 11. *Se* $f: \mathbb{R} \to \mathbb{R}$ *è monotona ed* f([a,b]) *è un intervallo, allora* f *è continua in* [a,b].

11.V

Enunciato 12. *Le funzioni pari sono derivabili in* x = 0.

12.F

Enunciato 13. *Se* $f:(a,b) \to \mathbb{R}$ *è continua e convessa, allora ammette un minimo.*

13.F

14.F

Enunciato 14. Se $f: [a,b] \to \mathbb{R}$ è continua, allora $f(x) = \frac{d}{dx} \int_{x}^{b} f(x) dx$.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *Se* $a, b \in \mathbb{R}$ *sono tali che* $a \cdot b = 0$, *allora* a = 0 *oppure* b = 0.

1.V

Enunciato 2. Una funzione $f: A \rightarrow B$ è iniettiva se per ogni $x_1, x_2 \in A$ si ha

2.V

$$f(x_1) = f(x_2) \Longrightarrow x_1 = x_2.$$

Enunciato 3. L'estremo inferiore di un insieme è il più piccolo dei minoranti.

3.F

4.V

Enunciato 4.

Enunciato 5. cos(x+y) = cos(x)cos(y) - sin(x)sin(y)

5.V

Enunciato 6. Se $z \in \mathbb{C}$ ed $n \in \mathbb{N}$, allora $\overline{n \cdot z} = n/\overline{z}$.

6.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = +\infty$ se

7.F

$$\exists M > 0 \text{ t.c. } \forall \delta = \delta(M) > 0 \exists x \in (x_0 - \delta, x_0) \text{ t.c. } f(x) < M.$$

8.F

Enunciato 8.
$$\lim_{x \to 0^+} x^a \log_b(x) = 1 \ \forall a, b > 0$$

9.V

Enunciato 9. Tutte le successioni numeriche monotone sono regolari.

· · ·

10.F

Enunciato 10. Se $a_n, b_n > 0$, $\sum_{n \ge 1} a_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora nulla si può dire della convergenza di $\sum_{n \ge 1} b_n$.

11.V

Enunciato 11. Se $f:(a,b) \to \mathbb{R}$ è continua, $\lim_{x \to a} f(x) = +\infty$ e $\lim_{x \to b} f(x) = -\infty$, allora esiste $x_0 \in (a,b)$ tale che $f(x_0) = 0$.

12.F

Enunciato 12. $\frac{d}{dx} \ln(|x|) = \frac{1}{|x|} per ogni x \neq 0$

Enunciato 13. Se $f'(x_0) = 0$ ed $f''(x_0) < 0$, allora x_0 è un punto di massimo locale.

13.V

Enunciato 14.

 $\int \frac{\mathrm{d}x}{x\sqrt{x^2-1}} = \arccos(x) + c$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri complessi \mathbb{C} è ordinato e completo.

1.F

2.*F*

3.F

4.V

5.V

Enunciato 2. L'immagine di $Y \subseteq B$ tramite una funzione $f : A \rightarrow B$ è dato da

$$f^{-1}(Y) = \{x \in A : \exists y \in Y \ t.c. \ y = f(x)\} = \{x \in A : f(x) \in Y\}.$$

Enunciato 3. $\{x \in \mathbb{R} : |x| < a\} = (-\infty, -a) \cup (a, +\infty)$

Enunciato 4.
$$\sin(x+\pi) = -\sin(x)$$

Enunciato 5. $\sin\left(\frac{\pi}{2}\right) = 1$

Enunciato 6. Se
$$z \in \mathbb{C}$$
, allora $\Re e(z) = \frac{z + \overline{z}}{2}$.

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = -\infty$ se

$$\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) > M \; \forall x \in (x_0 - \delta, x_0).$$

Enunciato 8. La funzione tangente è continua nel suo dominio di definizione.

Enunciato 9. Ogni successione numerica divergente è limitata.

Enunciato 10. Se
$$\sum_{n \ge 1} (-1)^n a_n$$
 converge, allora $a_n \downarrow 0$.

Enunciato 11. Se $f:(a,b) \to \mathbb{R}$ è continua, $\lim_{x \to a} f(x) = +\infty$ e $\lim_{x \to b} f(x) = -\infty$, allora esiste $x_0 \in (a,b)$ tale che $f(x_0) = 0$.

Enunciato 12.
$$\frac{d}{dx} \arccos(x) = -\frac{1}{\sqrt{1-x^2}}$$

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed ha in $x_0 \in (a,b)$ un punto di minimo, allora $f'(x_0) = 0$.

Enunciato 14.
$$\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arccos(x) + c$$

7.F

9.F

8.V

10.F

11.V

12.V

13.V

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. Per il principio di induzione si ha che

- P(1) e P(2) sono vere $se\ P(n)$ e P(n+1) sono vere, allora anche P(n+2) è vera \Longrightarrow allora P(n) è vera per $ogni\ n\in\mathbb{N}$.
- **Enunciato 2.** $f: A \to B$ è strettamente crescente se per ogni $x_1, x_2 \in A$ si ha 2.*F* $x_1 < x_2 \Longrightarrow f(x_1) > f(x_2).$
- **Enunciato 3.** *L'estremo inferiore di un insieme è il più grande dei minoranti.*
- **Enunciato 4.** La somma degli angoli interni di un quadrilatero è 2π . 4.V
- **Enunciato 5.** Quello riportato di seguito è il grafico di $f(x) = \arccos(x)$.

- **Enunciato 6.** Se $z \in \mathbb{C}$, allora $\mathfrak{I}m(z) = \frac{z \overline{z}}{2i}$.
- **Enunciato 7.** Se quello riportato di seguito è il grafico della funzione f allora $\lim_{x\to x_0^-} f(x) = f(x_0)$.

- $\lim_{x \to 0} \frac{\sin(x)}{x} = \frac{1}{2}$ Enunciato 8.
- **Enunciato 9.** $\{a_n\}_n$ converge se e solo se $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} \ t.c. \ |a_n a_m| < \varepsilon \ \forall n, m > N.$
- **Enunciato 10.** Se $\sum_{n\geq 1} a_n$ converge, allora anche $\{a_n\}_n$ converge.
- **Enunciato 11.** *Se* $f: [a,b] \to \mathbb{R}$ *è continua, allora essa ammette massimo e minimo assoluti.*
- **Enunciato 12.** Tutte le funzioni derivabili sono continue.
- **Enunciato 13.** Se $f'(x_0) = 0$ ed $f''(x_0) < 0$, allora x_0 è un punto di massimo locale.
- **Enunciato 14.** $\int \sin(x) \, \mathrm{d}x = -\cos(x) + c$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

- Enunciato 1. Per il principio di induzione si ha che

 - P(1) e vera $se\ P(n)$ è vera, allora anche P(n+2) è vera P(n) è vera per ogni $n \in \mathbb{N}$ pari.

1.F

2.*F*

3.F

4.F

5.V

6.V

7.F

8.F

9.F

10.V

11.F

12.F

13.F

Enunciato 2. La controimmagine di $Y \subseteq B$ tramite una funzione $f: A \to B$ è dato da

$$f(X) = \{ y \in B : \exists x \in X \text{ t.c. } y = f(x) \} = \{ f(x) : x \in X \}.$$

- **Enunciato 3.** L'estremo inferiore di un insieme è il più piccolo dei minoranti.
- Enunciato 4. $\sin(x+\pi) = \sin(x)$
- $\sin\left(\frac{\pi}{2}\right) = 1$ Enunciato 5.
- **Enunciato 6.** Sia $w = r(\cos(\varphi) + i\sin(\varphi))$ un numero complesso in forma trigonometrica ed $n \in \mathbb{N}$, allora l'equazione nell'incognita z

$$z^n = w$$

ha per soluzioni

$$z_k = \sqrt[n]{r} \left(\cos \left(\frac{\varphi}{n} + \frac{2\pi}{n} k \right) + i \sin \left(\frac{\varphi}{n} + \frac{2\pi}{n} k \right) \right), \qquad k \in \{0, 1, \dots, n-1\}.$$

Enunciato 7. Se quello riportato di seguito è il grafico della funzione f allora $\lim_{x \to x_0^+} f(x) = f(x_0)$.

- $\lim_{x \to 0} \frac{\sqrt[a]{1+x}-1}{x} = 1 \ \forall a > 0$ Enunciato 8.
- **Enunciato 9.** Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L > 1$ allora $a_n \downarrow 0$.
- **Enunciato 10.** Se $\sum_{n\geq 1} a_n$ diverge e $0 \leq a_n \leq b_n$, allora anche $\sum_{n\geq 1} b_n$ diverge.
- **Enunciato 11.** Se $f: [a,b] \rightarrow [a,b]$ è invertibile, allora f è continua in [a,b].
- $(f^{-1})'(y) = -\frac{f'(f^{-1}(y))}{f^{-1}(y)^2}$
- **Enunciato 13.** Se $f:[a,b] \to \mathbb{R}$ è derivabile ed ha in $x_0 \in [a,b]$ un punto di minimo, allora $f'(x_0) = 0$.
- $\int \frac{\mathrm{d}x}{\sqrt{1+x^2}} = \arctan(x) + c$ Enunciato 14. 14.F

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

1.F

2.*F*

3.V

4.V

5.V

6.V

7.F

8.V

9.F

10.F

11.V

12.F

13.V

Enunciato 1. *Se*
$$a,b,c \in \mathbb{R}$$
 sono tali che $a \cdot b = b \cdot c$, *allora* $a = c$.

Enunciato 2.
$$f(x) = x^2$$
 è monotona nel suo dominio di definizione.

Enunciato 3.
$$\sqrt{p(x)} \geqslant \sqrt{q(x)} \Longleftrightarrow \begin{cases} q(x) \geqslant 0 \\ p(x) \geqslant q(x). \end{cases}$$

Enunciato 4.
$$cos(x+\pi) = -cos(x)$$

Enunciato 5.
$$\tan(-x) = -\tan(x)$$

Enunciato 6.
$$e^{i\pi} + 1 = 0$$

Enunciato 7.
$$\lim_{x \to x_0} f(x) = L$$
 se $\exists \varepsilon > 0$ t.c. $\forall \delta = \delta(\varepsilon) > 0 \ \exists x \in D \ con \ 0 < |x - x_0| < \delta \ t.c. \ |f(x) - L| > \varepsilon$.

Enunciato 8.
$$\lim_{x\to 0} \frac{\sqrt[a]{1+x}-1}{x} = \frac{1}{a} \,\forall a>0$$

Enunciato 9. Se
$$a_n > 0$$
 per ogni $n \in \mathbb{N}$ $e \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L > 1$ allora $a_n \downarrow 0$.

Enunciato 10. Se
$$a_n, b_n > 0$$
, $\sum_{n \ge 1} a_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora nulla si può dire della convergenza di $\sum_{n \ge 1} b_n$.

Enunciato 11. Se
$$f: \mathbb{R} \to \mathbb{R}$$
 è una funzione strettamente crescente, allora $\lim_{x \to +\infty} f(x) = \sup\{f(x) : x \in \mathbb{R}\}$.

Enunciato 12.
$$\frac{d}{dx} \arctan(x) = \frac{1}{\cos(x)^2}$$

$$\lim_{x \to +\infty} \frac{x + 2\cos(x)}{x^2 + \sin(x)} = \lim_{x \to +\infty} \frac{1 - 2\sin(x)}{2x + \cos(x)} = 0$$

Enunciato 14.
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2 - 1}} = \arccos(x) + c$$

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri razionali \mathbb{Q} è un campo.

1.V

Enunciato 2. Se $f: A \rightarrow B$ è una funzione periodica, allora è una funzione trigonometrica.

2.*F*

Enunciato 3. $\{x \in \mathbb{R} : |x| < a\} = (-a, a)$

3.V

Enunciato 4. Ciascun angolo di un triangolo equilatero misura $\pi/3$.

4.V

Enunciato 5. *Quello riportato di seguito è il grafico di* $f(x) = \cot(x)$.

5.V

Enunciato 6. *Se* $z \in \mathbb{C}$ *ed* $n \in \mathbb{N}$, *allora*

$$\overline{n \cdot z} = n \cdot \overline{z}$$

6.V

Enunciato 7. *Data* $f: \mathbb{R} \to \mathbb{R}$, *si ha che* $\lim_{x \to \infty} f(x) = -\infty$ *se*

7.F

$$\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) > M \; \forall x \in (x_0 - \delta, x_0).$$

Enunciato 8.

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = 1$$

8.F

Enunciato 9. Se esiste $\{x_n\}_n \subset \mathbb{R} \setminus \{x_0\}$ convergente ad x_0 tale che $\lim_{n \to +\infty} f(x_n) = L$, allora $\lim_{x \to x_0} f(x) = L$.

9.F

Enunciato 10. Se $\sum_{n\geq 1} b_n$ diverge $e\ 0 \leq a_n \leq b_n$, allora anche $\sum_{n\geq 1} a_n$ diverge.

10.F

11.F

Enunciato 11. *Se* $f: [a,b] \rightarrow [a,b]$ *è invertibile, allora* f *è continua in* [a,b].

Enunciato 12. Tutte le funzioni derivabili sono continue.

12.V

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed $x_0 \in (a,b)$ è tale che $f'(x_0) = 0$, allora x_0 è un punto di massimo o di minimo.

13.F

Enunciato 14.
$$\int \cos(x) \, \mathrm{d}x = \sin(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri complessi \mathbb{C} è ordinato e completo.

1.F

Enunciato 2. Quello riportato di seguito è il grafico di $f(x) = a^x con \ a \in (0,1)$.

2.*F*

3.F

Enunciato 3. Siano $a,b,c \in \mathbb{R}$ con a > 0. Se $\Delta = b^2 - 4ac > 0$, allora $\{x \in \mathbb{R} : ax^2 + bx + c > 0, \ allora \\ dove \ x_1 = \frac{-b - \sqrt{\Delta}}{2a} \ e \ x_2 = \frac{-b + \sqrt{\Delta}}{2a}.$

$$\{x \in \mathbb{R} : ax^2 + bx + c > 0\} = (x_1, x_2)$$

4.V

Enunciato 4. L'altezza di un triangolo equilatero di lato unitario misura $\sqrt{3}/2$.

Enunciato 5. *Quello riportato di seguito è il grafico di* $f(x) = \cot(x)$.

Enunciato 6.

$$\overline{1} = 1$$

6.V

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = +\infty$ se $\exists M > 0$ t.c. $\forall \delta = \delta(M) > 0 \ \exists x \in (x_0 - \delta, x_0)$ t.c. f(x) < M.

Enunciato 8. La funzione tangente è continua nel suo dominio di definizione.

8.V

7.F

Enunciato 9. Se $a_n = f(n)$ $e \lim_{x \to +\infty} f(x) = L$, allora $\lim_{n \to +\infty} a_n = L$.

9.V

Enunciato 10. Se $\sum_{n>1} (-1)^n a_n$ converge, allora $a_n \downarrow 0$.

10.F

Enunciato 11. Se $f: [a,b] \to \mathbb{R}$ è continua, allora essa ammette massimo e minimo assoluti.

11.V

 $(f^{-1})'(y) = -\frac{f'(f^{-1}(y))}{f^{-1}(y)^2}$ Enunciato 12.

12.F

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed ha in $x_0 \in (a,b)$ un punto di massimo, allora $f'(x_0) = 0$.

13.V

 $\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arccos(x) + c$ Enunciato 14.

14.F

Enunciato 1 2 3 7 9 10 11 12 13 14 4 5 6 8 F

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *Se*
$$a,b,c \in \mathbb{R}$$
 sono tali che $a+b=b+c$, *allora* $a=c$.

Enunciato 2.
$$f: A \to B$$
 è strettamente decrescente se per ogni $x_1, x_2 \in A$ si ha 2. F

1.V

3.F

9.F

11.V

12.F

13.V

$$x_1 < x_2 \Longrightarrow f(x_1) < f(x_2).$$

Enunciato 3.
$$\{x \in \mathbb{R} : |x| < a\} = (-\infty, -a) \cup (a, +\infty)$$

Enunciato 4.
$$\cos\left(\frac{\pi}{4}\right) = \frac{1}{2}$$

Enunciato 5.
$$\sin(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$
 5. F

Enunciato 6.
$$e^{i\pi} + 1 = 0$$
 6. *V*

Enunciato 7. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to x_0^+} f(x) = -\infty$ se
$$\exists M > 0 \text{ t.c. } \forall \delta = \delta(M) > 0 \exists x \in (x_0, x_0 + \delta) \text{ t.c. } f(x) > -M.$$

Enunciato 8. Se
$$f(x) > 0$$
 per ogni $x \in \mathbb{R}$ e $\lim_{x \to x_0} f(x) = a \in \mathbb{R}$, allora $a > 0$.

Enunciato 9. Se esiste
$$\{x_n\}_n$$
 convergente ad x_0 tale che $\lim_{n\to+\infty} f(x_n) = f(x_0)$, allora f è continua in x_0 .

Enunciato 10. Se
$$\sum_{n\geq 1} (-1)^n a_n$$
 converge, allora $a_n \downarrow 0$.

Enunciato 11. *Se*
$$f: \mathbb{R} \to \mathbb{R}$$
 è continua, allora l'immagine di un intervallo chiuso è un intervallo chiuso.

Enunciato 13. Il polinomio di Taylor è un polinomio.

Enunciato 14. Se
$$f: [a,b] \to \mathbb{R}$$
 è integrabile, allora esiste $c \in [a,b]$ tale che
$$\int_a^b f(x) dx = (b-a)f(c).$$
 14.F

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *L'insieme dei numeri naturali* \mathbb{N} *è ordinato e completo.*

1.F

Enunciato 2. Quello riportato di seguito è il grafico di una funzione strettamente crescente.

2.F

Enunciato 3. L'estremo superiore di un insieme è il più piccolo dei maggioranti.

3.V

Enunciato 4. $\sin(x+2\pi) = \sin(x)$

4.V

Enunciato 5. $\nexists \cot(0)$

5.V

Enunciato 6. Se $z = \rho(\cos(\theta) + i\sin(\theta))$ e $w = r(\cos(\varphi) + i\sin(\varphi))$ sono due numeri complessi in forma trigonometrica, allora

6.V

 $z \cdot w = \rho r (\cos(\theta + \varphi) + i\sin(\theta + \varphi)).$

7.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to +\infty} f(x) = -\infty$ se $\exists M > 0 \text{ t.c. } \forall X = X(M) > 0 \ \exists x \in D \text{ con } x > X \text{ t.c. } f(x) < -M.$

Enunciato 8. Se $f(x) \ge 0$ per ogni $x \in \mathbb{R}$ e $\lim_{x \to x_0} f(x) = a \in \mathbb{R}$, allora $a \ge 0$.

8.V

Enunciato 9. Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \sqrt[n]{a_n} = L < 1$ allora $a_n \downarrow 0$.

9.V

Enunciato 10. $\sum_{p\geqslant 1} a_p$ converge se e solo se $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N}$ t.c. $\Big|\sum_{n=m+1}^n a_p\Big| < \varepsilon \ \forall n > m > N$.

10.V

Enunciato 11. Se $f: [a,b] \to \mathbb{R}$ è continua, allora f([a,b]) = [f(a), f(b)].

11.F

Enunciato 12. $\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}$

12.V

Enunciato 13. La differenza di funzioni convesse è una funzione convessa.

13.F

Enunciato 14.

 $\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$

14.V

Enunciato 12 1 2 3 4 5 7 8 9 10 11 13 14 6 F

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri complessi \mathbb{C} è totalmente ordinato.

1.F

Enunciato 2. Quello riportato di seguito è il grafico di una funzione.

2.*F*

3.V

4.V

6.F

11.V

$$\sum_{x}^{y}$$

Enunciato 3. Siano $a,b,c \in \mathbb{R}$ con a > 0. Se $\Delta = b^2 - 4ac > 0$, allora

Enumerato 3. Stano
$$a, b, c \in \mathbb{R}$$
 con $a > 0$. Se $\Delta = b^{-} - 4ac > 0$, attora
$$\{x \in \mathbb{R} : ax^{2} + bx + c > 0\} = (-\infty, x_{1}) \cup (x_{2}, +\infty),$$

$$dove \ x_{1} = \frac{-b - \sqrt{\Delta}}{2a} \ e \ x_{2} = \frac{-b + \sqrt{\Delta}}{2a}.$$

 $\sin(x+2\pi) = \sin(x)$ Enunciato 4.

Enunciato 5.
$$cos(x+y) = cos(x)sin(y) + sin(x)cos(y)$$
 5.F

Enunciato 6. *Se*
$$z, w \in \mathbb{C}$$
, *allora* $\overline{z \cdot w} = -\overline{z} \cdot \overline{w}$.

ciato 7. *Data*
$$f: \mathbb{R} \to \mathbb{R}$$
, *si ha che* $\lim_{x \to \infty} f(x) = L$ *se* 7.*V*

Enunciato 7. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to x_0^+} f(x) = L$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$

Enunciato 8.
$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$
 8. V

Enunciato 9. Se
$$a_n > 0$$
 per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L < 1$ allora $a_n \downarrow 0$.

Enunciato 10.
$$\sum_{p\geqslant 1} a_p$$
 converge se e solo se $\exists \varepsilon > 0$ t.c. $\forall N = N(\varepsilon) \in \mathbb{N} \ \exists n > m > N$ t.c. $\Big|\sum_{p=m+1}^n a_p\Big| < \varepsilon$.

Enunciato 11. *Se*
$$f: \mathbb{R} \to \mathbb{R}$$
 è monotona ed $f([a,b])$ *è un intervallo, allora* f *è continua in* $[a,b]$.

Enunciato 12.
$$\frac{d}{dx}\cos(x) = \sin(x)$$
 12. F

Enunciato 13. Se
$$f'(x_0) = 0$$
 ed $f''(x_0) < 0$, allora x_0 è un punto di minimo locale.

Enunciato 14.
$$\int \frac{\mathrm{d}x}{1+x^2} = \arctan(x) + c$$
 14. V

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri complessi \mathbb{C} è un campo.

1.V

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di |f(x)|.

2.*F*

Enunciato 3. L'estremo inferiore di un insieme è il più piccolo dei minoranti.

3.F

 $\sin(-x) = -\sin(x)$ Enunciato 4.

4.V

Enunciato 5. Quello riportato di seguito è il grafico di $f(x) = \arcsin(x)$.

5.V

7.F

8.F

6.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to +\infty} f(x) = L$ se $\exists \varepsilon > 0 \text{ t.c. } \forall X = X(\varepsilon) > 0 \ \exists x \in D \text{ con } x > X \text{ t.c. } |f(x) - L| > \varepsilon.$

Enunciato 8. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = L \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$$

Enunciato 9. Se $\{a_n\}_n$ e $\{c_n\}_n$ convergeno ad L e $a_n \leq b_n \leq c_n$, allora anche $\{b_n\}_n$ converge ad L.

9.V

Enunciato 10. $\sum_{p\geq 1} a_p$ converge se e solo se $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N}$ t.c. $\Big|\sum_{p=m+1}^n a_p\Big| < \varepsilon \ \forall n > m > N$.

10.V

Enunciato 11. *Se* $f: \mathbb{R} \to \mathbb{R}$ *è continua, allora l'immagine di un intervallo aperto è un intervallo aperto.*

11.F

 $\frac{\mathrm{d}}{\mathrm{d}x}\ln(|x|) = \frac{1}{|x|} per \ ogni \ x \neq 0$ Enunciato 12.

12.F

Enunciato 13. Se $f: \mathbb{R} \to \mathbb{R}$ è derivabile n volte in x_0 e $P: \mathbb{R} \to \mathbb{R}$ è il suo polinomio di Taylor di ordine *n in* x_0 , *allora* $P(x_0) = f(x_0)$.

13.V

Enunciato 14. $\int \cos(x) \, \mathrm{d}x = -\sin(x) + c$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

1.F

2.*V*

3.F

4.V

5.V

6.F

7.F

8.V

9.V

10.V

11.F

12.V

Enunciato 1. *Se*
$$a,b,c \in \mathbb{R}$$
 sono tali che $a \cdot b = b \cdot c$, *allora* $a = c$.

Enunciato 2. Se
$$f$$
 è invertibile e crescente, allora f^{-1} è strettamente crescente.

Enunciato 3.
$$\{x \in \mathbb{R} : |x| < a\} = (-\infty, -a) \cup (a, +\infty)$$

Enunciato 4.
$$\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

Enunciato 5.
$$\cot\left(\frac{\pi}{6}\right) = \sqrt{3}$$

Enunciato 6. Se
$$z \in \mathbb{C}$$
, allora $\overline{z^n} = -(\overline{z})^n$.

Enunciato 7. Se quello riportato di seguito è il grafico della funzione
$$f$$
 allora $\lim_{x \to x_0^+} f(x) = f(x_0)$.

$$x_0$$

Enunciato 8.
$$\lim_{x \to +\infty} \sqrt[x]{a^x + b^x} = \max\{a, b\} \ \forall a, b > 0$$

Enunciato 9. Se
$$a_n > 0$$
 per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L < 1$ allora $a_n \downarrow 0$.

Enunciato 10. Se
$$a_n, b_n > 0$$
, $\sum_{n \ge 1} a_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora anche $\sum_{n \ge 1} b_n$ converge.

Enunciato 11. Se
$$f:(a,b) \to \mathbb{R}$$
 è continua, allora essa ammette massimo e minimo assoluti.

Enunciato 12.
$$\frac{d}{dx} \ln(|x|) = \frac{1}{x} per ogni x \neq 0$$

Enunciato 13. Se
$$f: \mathbb{R} \to \mathbb{R}$$
 è derivabile n volte in x_0 e $P: \mathbb{R} \to \mathbb{R}$ è il suo polinomio di Taylor di ordine n in x_0 , allora $P(x_0) = f(x_0)$.

Enunciato 14.
$$\int \frac{\mathrm{d}x}{1+x^2} = \arctan(x) + c$$
 14.V

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri razionali \mathbb{Q} è ordinato e completo.

1.F

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di -f(x).

2.*F*

Enunciato 3. $\sqrt{p(x)} \geqslant \sqrt{q(x)} \Longleftrightarrow \begin{cases} q(x) \geqslant 0 \\ p(x) \geqslant q(x). \end{cases}$

3.V

Enunciato 4.
$$\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

4.V 5.F

Enunciato 5.
$$\tan\left(x+\frac{\pi}{2}\right) = \tan(x)$$

Enunciato 6. Se
$$z \in \mathbb{C}$$
, allora $\Re e(z) = \frac{z + \overline{z}}{2}$.

6.V

Enunciato 7. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to x_0^-} f(x) = -\infty$ se $\forall M > 0 \ \exists \delta = \delta(M) > 0 \ t.c. \ f(x) < -M \ \forall x \in (x_0 - \delta, x_0).$

7.*V*

$$\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) < -M \; \forall x \in (x_0 - \delta, x_0)$$

8.F

Enunciato 8.
$$\lim_{x \to 0^+} x^a \log_b(x) = 1 \ \forall a, b > 0$$

9.V

Enunciato 9. Se tutte le sottosuccessioni di
$$\{a_n\}_n$$
 convergono ad L, allora $\lim_{n\to+\infty} a_n = L$.

10.V

Enunciato 10. Se
$$a_n, b_n > 0$$
, $\sum_{n \ge 1} a_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora anche $\sum_{n \ge 1} b_n$ converge.

11.V

Enunciato 11. Se
$$f: [a,b] \to \mathbb{R}$$
 è crescente, allora $f([a,b]) = [f(a),f(b)]$.

12.V

Enunciato 12.
$$\frac{d}{dx}\sin(x) = \cos(x)$$

13.V

Enunciato 13. Se
$$f'(x_0) = 0$$
 ed $f''(x_0) < 0$, allora x_0 è un punto di massimo locale.

Enunciato 14.
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2-1}} = \arccos(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *Se* $a \in \mathbb{R}$ *è tale che* $a \cdot 0 = 0$, *allora* $a \neq 0$.

1.F

Enunciato 2. Quello riportato di seguito è il grafico di $f(x) = \log_a(x)$ con $a \in (0,1)$.

2.*F*

Enunciato 3. $\{x \in \mathbb{R} : |x| > a\} = (-\infty, -a) \cup (a, +\infty)$

3.V

Enunciato 4. $\cos(x+\pi) = -\cos(x)$

4.V

 $\tan\left(x + \frac{\pi}{2}\right) = \tan(x)$ Enunciato 5.

5.F

 $-\overline{z}$ $\Im m$ zEnunciato 6.

6.V

7.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = -\infty$ se $\exists M > 0 \text{ t.c. } \forall \delta = \delta(M) > 0 \exists x \in (x_0, x_0 + \delta) \text{ t.c. } f(x) > -M.$

8.V

 $\lim_{x \to 0^+} x^a \log_b(x) = 0 \ \forall a, b > 0$ Enunciato 8.

9.V

Enunciato 9. Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \sqrt[n]{a_n} = L < 1$ allora $a_n \downarrow 0$.

Enunciato 10. Se $\sum_{n\geqslant 1} a_n$ diverge e $0 \leqslant a_n \leqslant b_n$, allora anche $\sum_{n\geqslant 1} b_n$ diverge.

10.V

Enunciato 11. *Se* $f: [a,b] \rightarrow [a,b]$ *è invertibile, allora* f *è continua in* [a,b].

11.F

 $\frac{\mathrm{d}}{\mathrm{d}x}\sin(x) = \cos(x)$ Enunciato 12.

12.V

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed $x_0 \in (a,b)$ è tale che $f'(x_0) = 0$, allora x_0 è un punto di massimo o di minimo.

13.F

Enunciato 14. Se $f: [a,b] \to \mathbb{R}$ è continua ed F è una sua primitiva, allora $\int_a^b f(x) dx = F(b) - F(a)$.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri interi \mathbb{Z} è totalmente ordinato.

1.V

Enunciato 2. $f: A \to B$ è strettamente crescente se per ogni $x_1, x_2 \in A$ si ha

 $x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$.

2.*V*

Enunciato 3. Siano $a, b, c \in \mathbb{R}$ con a > 0. Se $\Delta = b^2 - 4ac > 0$, allora $\{x \in \mathbb{R} : ax^{2} + bx + c > 0\} = (x_{1}, x_{2}),$ $dove \ x_{1} = \frac{-b - \sqrt{\Delta}}{2a} \ e \ x_{2} = \frac{-b + \sqrt{\Delta}}{2a}.$

$${x \in \mathbb{R} : ax^2 + bx + c > 0} = (x_1, x_2),$$

4.V

3.F

Enunciato 4. Quello riportato di seguito è il grafico di $f(x) = \cos(x)$.

Enunciato 5. $\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$

6.V

5.V

7.F

8.V

Enunciato 6. Se $z \in \mathbb{C}$, allora $z \in \mathbb{R} \iff z = \overline{z}$.

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = -\infty$ se

 $\exists M > 0 \text{ t.c. } \forall \delta = \delta(M) > 0 \exists x \in (x_0, x_0 + \delta) \text{ t.c. } f(x) > -M.$

Enunciato 8. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = L \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$

Enunciato 9. Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \sqrt[n]{a_n} = L < 1$ allora $a_n \downarrow 0$.

9.V

Enunciato 10. $\sum_{n\geq 1} (-1)^n = -\frac{1}{2}$

10.F

Enunciato 11. *Se* $f: \mathbb{R} \to \mathbb{R}$ *è tale che* f([a,b]) *è un intervallo, allora* f *è continua in* [a,b].

11.F

 $\frac{\mathrm{d}}{\mathrm{d}x}\tan(x) = \frac{1}{1+x^2}$ Enunciato 12.

12.F

13.F

Enunciato 13. Per la regola di De L'Hôpital si ha che

 $\lim_{x \to +\infty} \frac{x^2 + \sin(x)}{x + 2\cos(x)} = \lim_{x \to +\infty} \frac{2x + \cos(x)}{1 - 2\sin(x)} = +\infty$

Enunciato 14.

 $\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin(x) + c$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri complessi \mathbb{C} è totalmente ordinato.

1.F

Enunciato 2. Se $n \in \mathbb{N}$ è pari allora $f(x) = x^n$ è una funzione pari nel suo dominio di definizione.

2.*V*

Enunciato 3. $\{x \in \mathbb{R} : |x| > a\} = (-\infty, -a) \cup (a, +\infty)$

3.V

Enunciato 4. Ciascun angolo di un quadrato misura $\pi/3$.

4.*F*

Enunciato 5.

Enunciato 8.

$$\cot\left(\frac{\pi}{6}\right) = \sqrt{3}$$

5.V

Enunciato 6. *Se* $z \in \mathbb{C}$, *allora*

$$\overline{z^n} = (\overline{z})^n$$
.

7.F

6.V

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to +\infty} f(x) = +\infty$ se $\exists M > 0 \text{ t.c. } \forall X = X(M) > 0 \ \exists x \in D \text{ con } x > X \text{ t.c. } f(x) > M.$

$$\lim_{x \to 0} \frac{\sqrt[a]{1+x}-1}{x} = 1 \ \forall a > 0$$

8.F

Enunciato 9. Se per ogni $\{x_n\}_n$ convergente ad x_0 si ha che $\lim_{n\to +\infty} f(x_n) = f(x_0)$, allora f è continua in

9.V

Enunciato 10. Se $a_n, b_n > 0$, $\sum_{n \ge 1} a_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 0$, allora anche $\sum_{n \ge 1} b_n$ converge.

10.F

Enunciato 11. Se $f:(a,b)\to\mathbb{R}$ è continua, $\lim_{x\to a}f(x)=+\infty$ e $\lim_{x\to b}f(x)=+\infty$, allora $f(x)\geqslant 0$ per ogni $x \in (a,b)$.

11.F

Enunciato 12.

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

12.V

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed ha in $x_0 \in (a,b)$ un punto di massimo, allora $f'(x_0) = 0$.

13.V

Enunciato 14.

$$\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$$

14.V

Enunciato 12 1 2 3 4 7 8 9 10 11 13 14 5 6 V F

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

- Enunciato 1. Per il principio di induzione si ha che

• P(1) è vera • se P(n) è vera, allora anche P(n+2) è vera P(n) è vera per ogni $n \in \mathbb{N}$ dispari.

Enunciato 2. $f: A \rightarrow B$ è strettamente monotona se non è né strettamente crescente, né strettamente decrescente.

2.*F*

1.V

Enunciato 3. $\{x \in \mathbb{R} : |x| < a\} = (-\infty, -a) \cup (a, +\infty)$

3.F

 $\cos\left(\frac{\pi}{2}\right) = 1$ Enunciato 4.

4.F

Enunciato 5. Quello riportato di seguito è il grafico di $f(x) = \arccos(x)$.

5.F

- Enunciato 6. La moltiplicazione tra numeri complessi è un'operazione binaria commutativa.

6.V

7.F

9.V

Enunciato 7. $\lim_{x \to x_0} f(x) = -\infty se$

 $\exists M > 0 \text{ t.c. } \forall \delta = \delta(M) > 0 \exists x \in D \text{ con } 0 < |x - x_0| < \delta \text{ t.c. } f(x) > -M.$

Enunciato 8. La funzione tangente non è continua nel suo dominio di definizione. 8.F

Enunciato 9. $\{a_n\}_n$ converge se e solo se $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} \ t.c. \ |a_n - a_m| < \varepsilon \ \forall n, m > N.$

- **Enunciato 10.** Se $a_n, b_n > 0$, $\sum_{n \ge 1} b_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 0$, allora anche $\sum_{n \ge 1} a_n$ converge. 10.V
- **Enunciato 11.** Se $f: [a,b] \to \mathbb{R}$ è crescente, allora f([a,b]) = [f(a),f(b)].

11.V

 $\frac{\mathrm{d}}{\mathrm{d}x}\tan(x) = \frac{1}{\cos(x)^2}$ Enunciato 12.

12.V

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed ha in $x_0 \in (a,b)$ un punto di massimo, allora $f'(x_0) = 0$.

13.V

 $\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arccos(x) + c$ Enunciato 14.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *Se* $a,b,c \in \mathbb{R}$ *sono tali che* $a \cdot b = b \cdot c$, *allora* a = c.

1.F

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di f(x+a).

2.*V*

Enunciato 3. L'estremo superiore di un insieme è il più grande dei maggioranti.

3.F

4.V

5.V

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

6.V

Enunciato 6. Se
$$z \in \mathbb{C}$$
, allora $z \in \mathbb{R} \iff z = \overline{z}$.

$$z \in \mathbb{R} \iff z = \overline{z}$$

7.*V*

Enunciato 7. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to +\infty} f(x) = -\infty$ se $\forall M > 0 \ \exists X = X(M) > 0 \ t.c. \ f(x) < -M \ \forall x \in D \ con \ x > X.$

$$\forall M > 0 \; \exists X = X(M) > 0 \; t.c. \; f(x) < -M \; \forall x \in D \; con \; x > X.$$

Enunciato 8.

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

8.V

Enunciato 9. Se $\{a_n\}_n$ e $\{c_n\}_n$ convergeno ad L e $a_n \leq b_n \leq c_n$, allora anche $\{b_n\}_n$ converge ad L.

9.V

10.V

Enunciato 10. Se
$$a_n, b_n > 0$$
, $\sum_{n \ge 1} b_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora anche $\sum_{n \ge 1} a_n$ diverge.

Enunciato 11. Se $f:(a,b) \to [a,b]$ è continua ed invertibile, allora anche $f^{-1}:[a,b] \to (a,b)$ è continua.

11.V

Enunciato 12.
$$\frac{d}{dx} \arctan(x) = \frac{1}{\cos(x)^2}$$

12.F

Enunciato 13. Il polinomio di Taylor è un polinomio.

13.V

Enunciato 14.
$$\int \sin(x) \, \mathrm{d}x = \cos(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri naturali \mathbb{N} è ordinato e completo.

1.F

Enunciato 2. Se il grafico di $f: [a,b] \to \mathbb{R}$ e la retta y = c sono come in figura, allora $\{x \in [a,b]: f(x) \le c\} = [x_1,x_2] \cup [x_3,x_4] \cup [x_5,b].$

2.*V*

Enunciato 3. $\{x \in \mathbb{R} : |x| > a\} = (-a, a)$

3.F

Enunciato 4. $\sin(-x) = -\sin(x)$

4.V

Enunciato 5. $\cos(2x) = 1 - 2\sin(x)^2$

5.*V*

Enunciato 6. *Se* $z \in \mathbb{C}$ *ed* $n \in \mathbb{N}$, *allora* $\overline{n \cdot z} = n/\overline{z}$.

6.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = -\infty$ se

7.F

$$\exists M > 0 \ t.c. \ \forall \delta = \delta(M) > 0 \ \exists x \in (x_0 - \delta, x_0) \ t.c. \ f(x) > -M.$$

8.V

Enunciato 8. $\lim_{x \to +\infty} \sqrt[x]{x} = 1$

9.V

Enunciato 9. Se per ogni $\{x_n\}_n \subset \mathbb{R} \setminus \{x_0\}$ convergente ad x_0 si ha che $\lim_{n \to +\infty} f(x_n) = L$, allora $\lim_{x \to x_0} f(x) = L$.

10.F

Enunciato 10. Se $\sum_{n\geqslant 1} (-1)^n a_n$ converge, allora $a_n \downarrow 0$.

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è monotona ed f([a,b]) è un intervallo, allora f è continua in [a,b].

11.V

Enunciato 12. $f'(x_0) = \lim_{t \to 0} \frac{f(x_0 + t) - f(x_0)}{t}$

12.V

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed f(a) = f(b), allora esiste $x_0 \in (a,b)$ tale che $f'(x_0) = 0$.

13.V

Enunciato 14. $\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri reali \mathbb{R} è ordinato e completo.

1.V

Enunciato 2. $f: A \rightarrow B$ è monotona se è crescente o decrescente.

2.V

Enunciato 3. L'estremo superiore di un insieme è il più piccolo dei maggioranti.

3.V

Enunciato 4. L'altezza di un triangolo equilatero di lato unitario misura $\sqrt{2}$.

4.F

Enunciato 5.

$$\cot\left(\frac{\pi}{3}\right) = \sqrt{3}$$

5.F

6.F

Enunciato 6. *Se*
$$z \in \mathbb{C}$$
, *allora*

$$\overline{(\overline{z})} = -z$$

7.*V*

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to +\infty} f(x) = L$ se

, · ·

$$\forall \varepsilon > 0 \; \exists X = X(\varepsilon) > 0 \; t.c. \; |f(x) - L| < \varepsilon \; \forall x \in D \; con \; x > X.$$

8.V

Enunciato 8.
$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x}\right)^x = e$$

9.V

Enunciato 9. Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L < 1$ allora $a_n \downarrow 0$.

10.V

Enunciato 10. Se $\sum_{n\geqslant 1} a_n$ converge, allora anche $\{a_n\}_n$ converge.

11.V

Enunciato 11. Se $f: [a,b] \to \mathbb{R}$ è crescente, allora f([a,b]) = [f(a),f(b)].

Enunciato 12. Tutte le funzioni derivabili sono integrabili.

12.V

Enunciato 13. La differenza di funzioni concave è una funzione concava.

13.F

Enunciato 14.
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2-1}} = \arcsin(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *L'insieme dei numeri naturali* \mathbb{N} *è un campo.*

1.F

Enunciato 2. La controimmagine di $Y \subseteq B$ tramite una funzione $f: A \to B$ è dato da

 $f^{-1}(Y) = \{x \in A : \exists y \in Y \ t.c. \ y = f(x)\} = \{x \in A : f(x) \in Y\}.$

Enunciato 3. $\{x \in \mathbb{R} : |x| > a\} = (-\infty, -a) \cup (a, +\infty)$

3.V

2.*V*

Enunciato 4. L'arco di una circonferenza di raggio r e corrispondente a α radianti misura $\alpha\pi$.

4.F

Enunciato 5. $tan(x + \pi) = tan(x)$ 5.V

Enunciato 6. *Se* $z \in \mathbb{C}$, *allora*

6.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = L$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$

7.*V*

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è continua ed f(a) = f(b), allora esiste $x_0 \in (a,b)$ tale che $f'(x_0) = 0$.

Enunciato 8.

 $\lim_{x \to \pm \infty} \left(1 + \frac{1}{x}\right)^x = e$

8.V

Enunciato 9. Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L < 1$ allora $a_n \downarrow 0$.

9.V

Enunciato 10. Se $\sum_{n\geq 1} b_n$ diverge $e\ 0 \leq a_n \leq b_n$, allora anche $\sum_{n\geq 1} a_n$ diverge.

10.F

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è tale che f([a,b]) è un intervallo, allora f è continua in [a,b].

11.F

12.V

Enunciato 12. Tutte le funzioni derivabili sono continue.

13.F

Enunciato 14.

 $\int \frac{\mathrm{d}x}{\sqrt{1+x^2}} = \arctan(x) + c$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *Se* $a,b,c \in \mathbb{R}$ *sono tali che* $a \cdot b = b \cdot c$, *allora* a = c.

1.F

Enunciato 2. Quello riportato di seguito è il grafico di una funzione strettamente crescente.

2.*V*

Enunciato 3. $\sqrt{p(x)} \geqslant \sqrt{q(x)} \Longleftrightarrow \begin{cases} q(x) \geqslant 0 \\ p(x) \geqslant q(x). \end{cases}$

3.V

Enunciato 4. Quello riportato di seguito è il grafico di $f(x) = \cos(x)$.

4.V

Enunciato 5.

$$\sin(2x) = 2\sin(x)\cos(x)$$

5.V 6.F

Enunciato 6. *Se* $z \in \mathbb{C}$, *allora*

$$\overline{(\overline{z})} = -z$$
.

7.*V*

Enunciato 7.
$$\lim_{x \to x_0} f(x) = +\infty$$
 se

Enunciato 7.
$$\lim_{x \to x_0} f(x) = +\infty$$
 se $\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) > M \; \forall x \in D \; con \; 0 < |x - x_0| < \delta.$

Enunciato 8.

 $x \in (a,b)$.

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \frac{1}{2}$$

8.F

Enunciato 9. Tutte le successioni numeriche monotone sono regolari.

9. V

Enunciato 10. Se
$$a_n, b_n > 0$$
, $\sum_{n \ge 1} a_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = +\infty$, allora anche $\sum_{n \ge 1} b_n$ diverge.

10.F

Enunciato 11. Se
$$f:(a,b)\to\mathbb{R}$$
 è continua, $\lim_{x\to a}f(x)=+\infty$ e $\lim_{x\to b}f(x)=+\infty$, allora $f(x)\geqslant 0$ per ogni

11.F

12.F

Enunciato 13. Per la regola di De L'Hôpital si ha ci

13.V

$$\lim_{x \to +\infty} \frac{x + 2\cos(x)}{x^2 + \sin(x)} = \lim_{x \to +\infty} \frac{1 - 2\sin(x)}{2x + \cos(x)} = 0$$

Enunciato 14.
$$\int \sin(x) \, dx = \cos(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri interi \mathbb{Z} è totalmente ordinato.

1.V

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di f(|x|).

2.*F*

Enunciato 3. $\{x \in \mathbb{R} : |x| < a\} = (-\infty, -a) \cup (a, +\infty)$

3.F

 $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$ Enunciato 4.

4.V

 $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$ Enunciato 5.

5.V

Enunciato 6. Sia $w = r(\cos(\varphi) + i\sin(\varphi))$ un numero complesso in forma trigonometrica ed $n \in \mathbb{N}$, allora l'equazione nell'incognita z

6.V

$$z^n = w$$

ha per soluzioni

$$z_k = \sqrt[n]{r} \left(\cos \left(\frac{\varphi}{n} + \frac{2\pi}{n} k \right) + i \sin \left(\frac{\varphi}{n} + \frac{2\pi}{n} k \right) \right), \qquad k \in \{0, 1, \dots, n-1\}.$$

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to +\infty} f(x) = -\infty$ se

$$f: \mathbb{R} \to \mathbb{R}$$
, st ha che $\lim_{x \to +\infty} f(x) = -\infty$ se $\exists M > 0 \text{ t.c. } \forall X = X(M) > 0 \ \exists x \in D \text{ con } x > X \text{ t.c. } f(x) < -M.$

 $\lim_{x \to 0} \frac{\tan(x)}{x} = 1$ Enunciato 8.

8.V

7.F

Enunciato 9. Ogni successione numerica limitata ammette una sottosuccessione convergente.

9.V

Enunciato 10. La serie telescopiche convergono.

10.F

Enunciato 11. *Se* $f: \mathbb{R} \to \mathbb{R}$ *è monotona ed* f([a,b]) *è un intervallo, allora* f *è continua in* [a,b].

11.V

Enunciato 12. *Le funzioni dispari non sono derivabili in* x = 0.

12.F

Enunciato 13. Se $f'(x_0) = 0$ ed $f''(x_0) < 0$, allora x_0 è un punto di massimo locale.

13.V

Enunciato 14. Se $f: [a,b] \to \mathbb{R}$ è continua, allora $f(x) = \frac{d}{dx} \int_a^b f(x) dx$.

$$f(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_{x}^{b} f(x) \, \mathrm{d}x$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri razionali \mathbb{Q} è un campo.

1.V

Enunciato 2. $f: A \to B$ è strettamente crescente se per ogni $x_1, x_2 \in A$ si ha

2.*F*

 $x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$.

3.F

Enunciato 3. L'estremo superiore di un insieme è il più grande dei maggioranti.

Enunciato 4. $\cos(-x) = \cos(x)$ 4.V

 $\cot(0) = 0$ Enunciato 5.

5.F

Enunciato 6. L'equazione $x^2 + 1 = 0$ non ha soluzioni in \mathbb{R} .

- 6.V
- **Enunciato 7.** Se quello riportato di seguito è il grafico della funzione f allora $\lim_{x\to x_0^-} f(x) = f(x_0)$.
 - 7.*V*

 $\lim_{x \to 0} \frac{\sin(x)}{x} = \frac{1}{2}$ Enunciato 8.

- 8.F
- **Enunciato 9.** Se $\{a_n\}_n$ che $\{c_n\}_n$ sono convergenti e $a_n \leq b_n \leq c_n$, allora anche $\{b_n\}_n$ convergente.
- 9.F

10.V

Enunciato 10. Se $a_n \downarrow 0$, allora $\sum_{n \geqslant 1} (-1)^n a_n$ converge.

Enunciato 11. *Se* $f: [a,b] \rightarrow [a,b]$ *è invertibile, allora* f *è continua in* [a,b].

11.F

 $\frac{d}{dx} \arccos(x) = \frac{1}{\sqrt{1-x^2}}$ Enunciato 12.

- 12.F
- **Enunciato 13.** Se $f:[a,b] \to \mathbb{R}$ è derivabile ed f(a) = f(b), allora esiste $x_0 \in (a,b)$ tale che $f'(x_0) = 0$.
- 13.V

- **Enunciato 14.** Se $f: [a,b] \to \mathbb{R}$ è continua, allora $f(x) = \frac{d}{dx} \int_{a}^{b} f(x) dx$. 14.F

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *Se* $a,b,c \in \mathbb{R}$ *sono tali che* a+b=b+c, *allora* a=c.

1.V

Enunciato 2. Quello riportato di seguito è il grafico di $f(x) = x^n$ con $n \in \mathbb{N}$ dispari.

2.*V*

$$\xrightarrow{y}$$

Enunciato 3. $\{x \in \mathbb{R} : |x| > a\} = (-a, a)$

3.F

 $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$ Enunciato 4.

4.V

Enunciato 5. $\sin(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$

5.F

 $z \in \mathbb{R} \iff z = \overline{z}$. **Enunciato 6.** *Se* $z \in \mathbb{C}$, *allora*

6.V

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = -\infty$ se $\forall M > 0 \ \exists \delta = \delta(M) > 0 \ t.c. \ f(x) > M \ \forall x \in (x_0 - \delta, x_0).$

7.F

 $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$ Enunciato 8.

8.V

Enunciato 9. Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \sqrt[n]{a_n} = L < 1$ allora $a_n \downarrow 0$.

9.V

Enunciato 10. Se $\sum_{n\geqslant 1} b_n$ diverge $e\ 0\leqslant a_n\leqslant b_n$, allora anche $\sum_{n\geqslant 1} a_n$ diverge.

10.F

Enunciato 11. Se $f:(a,b)\to\mathbb{R}$ è continua, $\lim_{x\to a}f(x)=+\infty$ e $\lim_{x\to b}f(x)=-\infty$, allora esiste $x_0\in(a,b)$ tale che $f(x_0) = 0$.

11.V

Enunciato 12. La derivata di un polinomio è un polinomio.

12.V

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed ha in $x_0 \in [a,b]$ un punto di massimo, allora $f'(x_0) = 0$.

13.F

Enunciato 14.

 $\int \frac{\mathrm{d}x}{\cos(x)^2} = \tan(x) + c$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri reali \mathbb{R} è un campo.

1.V

Enunciato 2. Se $n \in \mathbb{N}$ è dispari allora $f(x) = x^n$ è una funzione dispari nel suo dominio di definizione.

2.*V*

Enunciato 3. L'estremo superiore di un insieme è il più piccolo dei maggioranti.

3.V

Enunciato 4. La diagonale di un quadrato di lato unitario misura $\sqrt{2}$.

4.V

Enunciato 5.

$$\sin\left(\frac{\pi}{2}\right) = 1$$

5.V

Enunciato 6. *Se* $z \in \mathbb{C}$, *allora* $z \notin \mathbb{R}$.

6.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = -\infty$ se $\exists M > 0$ t.c. $\forall \delta = \delta(M) > 0$ $\exists x \in (x_0 - \delta, x_0)$ t.c. f(x) > -M.

7.F

$$\exists M > 0 \text{ t.c. } \forall \delta = \delta(M) > 0 \ \exists x \in (x_0 - \delta, x_0) \text{ t.c. } f(x) > -M$$

8.F

Enunciato 8. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = L \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0 - \delta, x_0).$

$$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 \; t.c. \; |f(x) - L| < \varepsilon \; \forall x \in (x_0 - \delta, x_0)$$

9.F

Enunciato 9. Tutte le successioni numeriche monotone sono convergenti.

10.F

Enunciato 10. Se $a_n, b_n > 0$, $\sum_{n \ge 1} a_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora nulla si può dire della convergenza $di \sum_{n \geq 1} b_n$.

11.F

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è una funzione strettamente crescente, allora $\lim_{x \to +\infty} f(x) = +\infty$.

Enunciato 12. Tutte le funzioni integrabili sono derivabili.

12.F

Enunciato 13. Se $f: \mathbb{R} \to \mathbb{R}$ è derivabile n volte in x_0 e $P: \mathbb{R} \to \mathbb{R}$ è il suo polinomio di Taylor di ordine *n in* x_0 , *allora* $P(x_0) = f(x_0)$.

13.V

Enunciato 14. *Se* $f: [a,b] \to \mathbb{R}$ *è limitata, allora è integrabile secondo Riemann.*

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. Per il principio di induzione si ha che

• P(1) è vera • $se\ P(n)$ e P(n+1) sono vere, allora anche P(n+2) è vera P(n) è vera per ogni $n\in\mathbb{N}$.

Enunciato 2. Quello riportato di seguito è il grafico di una funzione.

Enunciato 3.
$$\{x \in \mathbb{R} : |x| < a\} = (-\infty, -a) \cup (a, +\infty)$$

Enunciato 4. L'arco di una circonferenza di raggio r e corrispondente a α radianti misura $\alpha\pi$.

Enunciato 5. Quello riportato di seguito è il grafico di $f(x) = \arcsin(x)$.

Enunciato 6. *Se* $z \in \mathbb{R}$, *allora* $z \notin \mathbb{C}$.

Enunciato 7. Se quello riportato di seguito è il grafico della funzione f allora $\lim_{x \to x_0^-} f(x) = f(x_0)$.

$$x_0$$

Enunciato 8. Se $f(x) \ge 0$ per ogni $x \in \mathbb{R}$ e $\lim_{x \to x_0} f(x) = a \in \mathbb{R}$, allora $a \ge 0$.

Enunciato 9. Se $\{a_n\}_n$ che $\{c_n\}_n$ sono convergenti e $a_n \leq b_n \leq c_n$, allora anche $\{b_n\}_n$ convergente.

Enunciato 10. Se $\sum_{n\geqslant 1} b_n$ converge e $0 \leqslant a_n \leqslant b_n$, allora anche $\sum_{n\geqslant 1} a_n$ converge.

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è una funzione strettamente crescente, allora $\lim_{x \to +\infty} f(x) = \sup\{f(x) : x \in \mathbb{R} \}$ \mathbb{R} }.

 $(f^{-1})'(y) = -\frac{f'(f^{-1}(y))}{f^{-1}(y)^2}$ Enunciato 12.

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed ha in $x_0 \in [a,b]$ un punto di massimo, allora $f'(x_0) = 0$.

Enunciato 14. Se $f: [a,b] \to \mathbb{R}$ è continua, allora $f(x) = -\frac{d}{dx} \int_a^b f(x) dx$.

11.V

1.F

2.*V*

3.F

4.F

5.F

6.F

7.F

8.V

9.F

10.V

12.F

13.F

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

1.V

2.*V*

3.V

4.V

5.V

6.F

7.F

8.F

9.F

10.F

11.V

12.V

13.V

14.F

Enunciato 1. *Se*
$$a, b \in \mathbb{R}$$
 sono tali che $a \cdot b = 0$, *allora* $a = 0$ *oppure* $b = 0$.

Enunciato 2.
$$f: A \to B$$
 è una funzione pari se per ogni $x \in A$ si ha $f(-x) = f(x)$.

Enunciato 3. *Se C* è *l'estremo superiore di A*
$$\subset \mathbb{R}$$
 e C \in *A, allora C* è *il massimo di A.*

Enunciato 4. L'arco di una circonferenza di raggio
$$r$$
 e corrispondente a α radianti misura αr .

Enunciato 5.
$$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

Enunciato 6.
$$\mathbb{C} \setminus \mathbb{R} = \{i\}$$

Enunciato 7. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to x_0^+} f(x) = +\infty$ se $\exists M > 0 \ t.c. \ \forall \delta = \delta(M) > 0 \ \exists x \in (x_0, x_0 + \delta) \ t.c. \ f(x) < M.$

$$\exists M > 0 \text{ t.c. } \forall \delta = \delta(M) > 0 \ \exists x \in (x_0, x_0 + \delta) \text{ t.c. } f(x) < M$$

Enunciato 8.
$$\lim_{x\to 0^+} x^a \log_b(x) = 1 \ \forall a,b>0$$

Enunciato 10. Se
$$a_n > 0$$
 $e \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$, allora $\sum_{n \ge 1} a_n$ diverge.

Enunciato 11. *Se*
$$f: [a,b] \to \mathbb{R}$$
 è continua, allora essa ammette massimo e minimo assoluti.

Enunciato 12.
$$f'(x_0) = \lim_{t \to 0} \frac{f(x_0 + t) - f(x_0)}{t}$$

Enunciato 13. Se
$$f:[a,b] \to \mathbb{R}$$
 è derivabile, allora esiste $x_0 \in (a,b)$ tale che $f'(x_0) = \frac{f(b) - f(a)}{b-a}$.

Enunciato 14. *Se* $f: [a,b] \to \mathbb{R}$ *è integrabile, allora esiste* $c \in [a,b]$ *tale che*

$$\int_{a}^{b} f(x) dx = (b - a)f(c).$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri interi \mathbb{Z} è un campo.

1.F

2.*F*

Enunciato 2. Quello riportato di seguito è il grafico di una funzione.

Enunciato 3. L'estremo superiore di un insieme è il più piccolo dei maggioranti.

3.V

Enunciato 4. $cos(x + \pi) = cos(x)$

4.F

 $\tan\left(x+\frac{\pi}{2}\right) = \tan(x)$ Enunciato 5.

5.F

Enunciato 6. L'equazione $x^2 + 1 = 0$ non ha soluzioni in \mathbb{R} .

6.V

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = L$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$

7.*V*

8.F

Enunciato 8. La funzione tangente non è continua nel suo dominio di definizione.

9.F

Enunciato 9. Tutte le successioni numeriche non limitate divergono.

10.F

Enunciato 10. *La serie armonica a segno alterno diverge.*

Enunciato 11. *Se* $f: [a,b] \to \mathbb{R}$ *è crescente, allora* f([a,b]) = [f(a),f(b)].

11.V

12.F

 $\frac{\mathrm{d}}{\mathrm{d}x}\tan(x) = \frac{1}{1+x^2}$ Enunciato 12.

Enunciato 13. Il polinomio di Taylor è un polinomio.

13.V

Enunciato 14.

$$\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *Se* $a,b,c \in \mathbb{R}$ *sono tali che* $a \cdot b = b \cdot c$, *allora* a = c.

1.F

Enunciato 2. $f: A \to B$ è decrescente se per ogni $x_1, x_2 \in A$ si ha $x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$.

2.F

Enunciato 3. L'estremo inferiore di un insieme è il più piccolo dei minoranti.

3.F

Enunciato 4. Ciascun angolo di un triangolo equilatero misura $\pi/3$.

4.V

5.V

Enunciato 5.

$$\overline{OA} = \overline{AP} \cdot \cot(x),$$

$$\overline{AP} = \overline{OA} \cdot \tan(x).$$

P

Enunciato 6. *Se* $z \in \mathbb{C}$, *allora*

$$\overline{z^n} = (\overline{z})^n$$
.

6.V

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = -\infty$ se

$$\exists M > 0 \ t.c. \ \forall \delta = \delta(M) > 0 \exists x \in (x_0, x_0 + \delta) \ t.c. \ f(x) > -M.$$

7.F

Enunciato 8. La funzione tangente non è continua nel suo dominio di definizione.

8.F

Enunciato 9. Se
$$a_n > 0$$
 per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L > 1$ allora $a_n \downarrow 0$.

9.F

Enunciato 10. Se $\sum_{n\geqslant 1} a_n$ diverge e $0 \leqslant a_n \leqslant b_n$, allora anche $\sum_{n\geqslant 1} b_n$ diverge.

10.V

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è una funzione strettamente crescente, allora $\lim_{x \to +\infty} f(x) = \sup\{f(x) : x \in \mathbb{R}\}$.

11.V

Enunciato 12. Tutte le funzioni derivabili sono integrabili.

12.V

Enunciato 13. Se $f,g:[a,b] \to \mathbb{R}$ sono continue su [a,b], allora esiste $x_0 \in (a,b)$ tale che $(g(b)-g(a)) f'(x_0) = (f(b)-f(a)) g'(x_0)$.

13.F

Enunciato 14. Se $f: [a,b] \to \mathbb{R}$ è continua, allora

 $f(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_{x}^{b} f(x) \, \mathrm{d}x.$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *L'insieme dei numeri naturali* \mathbb{N} *è un campo.*

1.F

Enunciato 2. $f: A \rightarrow B$ è monotona se non è né crescente, né decrescente.

2.*F*

Enunciato 3. *Se C* è *l'estremo superiore di A* $\subset \mathbb{R}$, *allora C* è *il massimo di A*.

3.F

Enunciato 4. L'altezza di un triangolo equilatero di lato unitario misura $\sqrt{3}/2$.

4.V

Enunciato 5.
$$\tan\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{3}$$

5.F

Enunciato 6. Se
$$z \in \mathbb{C}$$
, allora $\Re e(z) = \frac{z - \overline{z}}{2}$.

$$\Re e(z) = \frac{z-z}{2}$$

6.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = +\infty$ se $\forall M > 0 \ \exists \delta = \delta(M) > 0 \ t.c. \ f(x) > M \ \forall x \in (x_0 - \delta, x_0).$

7.V

$$\forall M > 0 \ \exists \delta = \delta(M) > 0 \ t.c. \ f(x) > M \ \forall x \in (x_0 - \delta, x_0).$$

Enunciato 8.

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$$

8.V

Enunciato 9. Se $\{a_n\}_n$ che $\{c_n\}_n$ sono convergenti e $a_n \le b_n \le c_n$, allora anche $\{b_n\}_n$ convergente.

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed ha in $x_0 \in [a,b]$ un punto di minimo, allora $f'(x_0) = 0$.

9.F

Enunciato 10.
$$\sum_{n \ge 1} (-1)^n = -\frac{1}{2}$$

10.F

Enunciato 11. *Se* $f:(a,b) \to \mathbb{R}$ *è continua, allora essa ammette massimo e minimo assoluti.*

11.F

Enunciato 12. Tutte le funzioni integrabili sono derivabili.

12.F

13.F

Enunciato 14. Se
$$f: [a,b] \to \mathbb{R}$$
 è continua, allora $f(x) = \frac{d}{dx} \int_x^b f(x) dx$.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. Per il principio di induzione si ha che

Enunciato 5.

•
$$P(1)$$
 è vera
• se $P(n)$ e $P(n+1)$ sono vere, allora anche $P(n+2)$ è vera $P(n)$ è vera per ogni $n \in \mathbb{N}$.

$$\Rightarrow$$
 \Longrightarrow allora $P(n)$ è vera per ogni $n \in \mathbb{N}$.

Enunciato 2. $f: A \to B$ è una funzione periodica se esiste $x \in A$ tale che per ogni T > 0 si ha f(x+T) =f(x).

2.*F*

1.F

Enunciato 3. L'estremo inferiore di un insieme è il più piccolo dei minoranti.

5.V

6.F

7.*V*

8.V

9.F

10.V

Enunciato 4.
$$\cos\left(\frac{\pi}{2}\right) = 0$$

$$\tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$$

Enunciato 6. Se
$$z = a + ib \in \mathbb{C}$$
, allora $z \cdot \overline{z} = a^2 - b^2$.

Enunciato 7.
$$\lim_{x \to r_0} f(x) = -\infty se$$

Enunciato 7.
$$\lim_{x \to x_0} f(x) = -\infty se$$
 $\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) < -M \; \forall x \in D \; con \; 0 < |x - x_0| < \delta.$

Enunciato 8. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = +\infty$ se

$$\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) > M \; \forall x \in (x_0 - \delta, x_0).$$

Enunciato 9. Se $\{a_n\}_n$ che $\{c_n\}_n$ sono convergenti e $a_n \leq b_n \leq c_n$, allora anche $\{b_n\}_n$ convergente.

Enunciato 10. Se
$$a_n, b_n > 0$$
, $\sum_{n \ge 1} b_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora anche $\sum_{n \ge 1} a_n$ converge.

Enunciato 11. Se
$$f:(a,b)\to\mathbb{R}$$
 è continua, $\lim_{x\to a}f(x)=+\infty$ e $\lim_{x\to b}f(x)=+\infty$, allora $f(x)\geqslant 0$ per ogni $x\in(a,b)$.

Enunciato 12.
$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

Enunciato 13. Se
$$f'(x_0) = 0$$
 ed $f''(x_0) < 0$, allora x_0 è un punto di massimo locale.

Enunciato 14.
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2 - 1}} = \arccos(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri naturali \mathbb{N} è totalmente ordinato.

1.V

Enunciato 2. Quello riportato di seguito è il grafico di $f(x) = \log_a(x)$ con $a \in (0,1)$.

2.F

Enunciato 3. *Se* C *è l'estremo superiore di* $A \subset \mathbb{R}$ *e* $C \in A$, *allora* C *è il massimo di* A.

3.V

Enunciato 4.
$$cos(-x) = cos(x)$$

4.V 5.V

Enunciato 5.
$$\cot\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{3}$$

Enunciato 6. Se
$$z, w \in \mathbb{C}$$
, allora $\overline{z \cdot w} = -\overline{z} \cdot \overline{w}$.

6.F

Enunciato 7.
$$\lim_{x \to x_0} f(x) = -\infty$$
 se $\exists M > 0$ *t.c.* $\forall \delta = \delta(M) > 0 \ \exists x \in D \ con \ 0 < |x - x_0| < \delta \ t.c. \ f(x) > -M.$

7.F

Enunciato 8. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to x_0^+} f(x) = L \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0 - \delta, x_0).$

8.F

9.V

Enunciato 10. Se
$$a_n, b_n > 0$$
, $\sum_{n \ge 1} b_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 0$, allora anche $\sum_{n \ge 1} a_n$ converge.

10.V

Enunciato 11. Se $f:(a,b) \to [a,b]$ è continua ed invertibile, allora anche $f^{-1}:[a,b] \to (a,b)$ è continua.

11.V

Enunciato 12.
$$\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}$$

12.V

Enunciato 13. La somma di funzioni convesse è una funzione convessa.

13.V

Enunciato 14.
$$\int \frac{\mathrm{d}x}{1+x^2} = \arctan(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

1.F

2.*V*

3.F

4.V

5.V

6.F

7.F

8.F

9.V

10.F

11.F

12.F

13.F

Enunciato 1. Per il principio di induzione si ha che

- P(1) è vera • $se\ P(n)\ e\ P(n+1)$ sono vere, allora anche P(n+2) è vera P(n) è vera per ogni $n\in\mathbb{N}$.
- **Enunciato 2.** Se f è invertibile e decrescente, allora f^{-1} è strettamente decrescente.
- **Enunciato 3.** *Se C è l'estremo superiore di A* $\subset \mathbb{R}$, *allora C è il massimo di A*.
- **Enunciato 4.** La somma degli angoli interni di un triangolo è π .
- **Enunciato 5.** *Quello riportato di seguito è il grafico di* $f(x) = \arcsin(x)$.

- **Enunciato 6.** *Se* $z \in \mathbb{R}$, *allora* $z \notin \mathbb{C}$.
- Enunciato 7. Quello riportato di seguito è il grafico di una funzione continua.

- Enunciato 8. La funzione tangente non è continua nel suo dominio di definizione.
- Enunciato 9. Ogni successione numerica convergente è limitata.
- Enunciato 10. La serie telescopiche convergono.
- **Enunciato 11.** *Se* $f: [a,b] \rightarrow [a,b]$ *è invertibile, allora* f *è continua in* [a,b].
- **Enunciato 12.** $\frac{d}{dx} \ln(|x|) = \frac{1}{|x|} per \ ogni \ x \neq 0$
- **Enunciato 13.** Se $f,g: [a,b] \to \mathbb{R}$ sono continue su [a,b], allora esiste $x_0 \in (a,b)$ tale che $(g(b)-g(a)) f'(x_0) = (f(b)-f(a)) g'(x_0)$.
- **Enunciato 14.** $\int f(x) g'(x) dx = f(x) g(x) + \int f'(x) g(x) dx$ 14. *F*

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *Se* $a, b \in \mathbb{R}$ *sono tali che* $a \cdot b = 0$, *allora* a = 0 *oppure* b = 0.

1.V

Enunciato 2. Quello riportato di seguito è il grafico di una funzione.

2.*F*

$$\sum_{x}$$

Enunciato 3. L'estremo inferiore di un insieme è il più grande dei minoranti.

3.V

Enunciato 4. $\sin(0) = 0$ 4.V

Enunciato 5. $\cot(x+\pi) = \cot(x)$

5.V

Enunciato 6. Se $z \in \mathbb{C}$ ed $n \in \mathbb{N}$, allora $\overline{n \cdot z} = n/\overline{z}$.

6.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = -\infty$ se $\forall M > 0 \ \exists \delta = \delta(M) > 0 \ t.c. \ f(x) < -M \ \forall x \in (x_0 - \delta, x_0).$

7.V

8.V

Enunciato 8. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = L \in \mathbb{R}$ se

 $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$

Enunciato 9. Se $a_n = f(n)$ $e \not\equiv \lim_{x \to +\infty} f(x)$, allora $\not\equiv \lim_{n \to +\infty} a_n$.

9.F

Enunciato 10. Se $a_n, b_n > 0$, $\sum_{n \ge 1} a_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora nulla si può dire della convergenza di

10.F

 $\sum_{n\geq 1}b_n$.

Enunciato 11. Se $f: [a,b] \to \mathbb{R}$ è continua, allora f([a,b]) = [f(a),f(b)].

11.F

 $f'(x_0) = \lim_{t \to 0} \frac{f(x_0) - f(x_0 + t)}{t}$ Enunciato 12.

12.F

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed ha in $x_0 \in [a,b]$ un punto di minimo, allora $f'(x_0) = 0$.

13.F

Enunciato 14.

 $\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arccos(x) + c$

14.F

Enunciato 12 1 2 3 4 5 7 8 9 10 11 13 14 6 F

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri complessi \mathbb{C} è un campo.

1.V

Enunciato 2. $f: A \rightarrow B$ è strettamente crescente se per ogni $x_1, x_2 \in A$ si ha

$$x_1 < x_2 \Longrightarrow f(x_1) < f(x_2).$$

- Enunciato 3. L'estremo inferiore di un insieme è il più grande dei minoranti.
- Enunciato 4. $\sin(x+2\pi) = \sin(x)$
- Enunciato 5. 5.V

$$\overline{OA} = \overline{AP} \cdot \cot(x),$$

$$\overline{AP} = \overline{OA} \cdot \tan(x).$$

- **Enunciato 6.** $e^{i\pi} + 1 = 0$ 6. *V*
- **Enunciato 7.** Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to +\infty} f(x) = L$ se $\exists \varepsilon > 0 \text{ t.c. } \forall X = X(\varepsilon) > 0 \ \exists x \in D \text{ con } x > X \text{ t.c. } |f(x) L| > \varepsilon.$
- Enunciato 8. $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$
- **Enunciato 9.** Tutte le successioni numeriche monotone sono regolari. 9.V
- **Enunciato 10.** Se $a_n, b_n > 0$, $\sum_{n \ge 1} a_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora anche $\sum_{n \ge 1} b_n$ converge.
- **Enunciato 11.** Se $f:(a,b) \to \mathbb{R}$ è continua, $\lim_{x \to a} f(x) = +\infty$ e $\lim_{x \to b} f(x) = -\infty$, allora esiste $x_0 \in (a,b)$ 11.V tale che $f(x_0) = 0$.
- **Enunciato 12.** $\frac{d}{dx} \tan(x) = \frac{1}{1+x^2}$ 12.*F*
- **Enunciato 13.** La somma di funzioni convesse è una funzione convessa. 13.V
- Enunciato 14. $\int f(x) g'(x) dx = f(x) g(x) \int f'(x) g(x) dx$ 14.V

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. Per il principio di induzione si ha che

- F(2) e vera $se\ P(n)$ è vera, allora anche P(n+2) è vera $\}$ \Longrightarrow allora P(n) è vera per ogni $n\in\mathbb{N}$ dispari.

1.F

2.*V*

3.F

5.F

6.F

7.V

9.V

10.V

11.F

12.V

13.V

Enunciato 2. L'immagine di $X \subseteq A$ tramite una funzione $f : A \rightarrow B$ è dato da

$$f(X) = \{ y \in B : \exists x \in X \ t.c. \ y = f(x) \} = \{ f(x) : x \in X \}.$$

- **Enunciato 3.** $\{x \in \mathbb{R} : |x| > a\} = (-a, a)$
- **Enunciato 4.** La somma degli angoli interni di un triangolo è π . 4.V
- **Enunciato 5.** Quello riportato di seguito è il grafico di $f(x) = \arcsin(x)$.

- **Enunciato 6.** *Se* $z \in \mathbb{R}$, *allora* $z \notin \mathbb{C}$.
- Enunciato 7. $\lim_{x \to x_0} f(x) = L$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0$ t.c. $|f(x) L| < \varepsilon \ \forall x \in D \ con \ 0 < |x x_0| < \delta$.
- **Enunciato 8.** Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = +\infty$ se $\forall M > 0 \ \exists \delta = \delta(M) > 0 \ t.c. \ f(x) < -M \ \forall x \in (x_0 \delta, x_0).$ 8.F
- **Enunciato 9.** Ogni successione numerica limitata ammette una sottosuccessione convergente.
- **Enunciato 10.** Se $a_n, b_n > 0$, $\sum_{n \ge 1} b_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora anche $\sum_{n \ge 1} a_n$ diverge.
- **Enunciato 11.** *Se* $f: \mathbb{R} \to \mathbb{R}$ *è continua, allora l'immagine di un intervallo aperto è un intervallo aperto.*
- $\frac{\mathrm{d}}{\mathrm{d}x}\arctan(x) = \frac{1}{1+x^2}$ Enunciato 12.
- **Enunciato 13.** Se $f: \mathbb{R} \to \mathbb{R}$ è derivabile n volte in x_0 e $P: \mathbb{R} \to \mathbb{R}$ è il suo polinomio di Taylor di ordine *n in* x_0 , *allora* $P(x_0) = f(x_0)$.
- $\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin(x) + c$ Enunciato 14. 14.V

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. Per il principio di induzione si ha che

- P(1) è vera $se\ P(n)$ e P(n+1) sono vere, allora anche P(n+2) è vera P(n) è vera per ogni $n\in\mathbb{N}$.

1.F

Enunciato 2. Una funzione iniettiva è strettamente monotona.

2.*F* 3.V

- **Enunciato 3.** *L'estremo inferiore di un insieme è il più grande dei minoranti.*
- **Enunciato 4.** *Quello riportato di seguito è il grafico di* $f(x) = \cos(x)$. **4.***F*

 $\sin(2x) = 1 - 2\sin(x)^2$ Enunciato 5.

6.V

5.F

7.F

8.V

10.V

- **Enunciato 6.** $e^{i\pi} + 1 = 0$
- **Enunciato 7.** $\lim_{x \to x_0} f(x) = +\infty$ *se* $\exists M > 0 \text{ t.c. } \forall \delta = \delta(M) > 0 \ \exists x \in D \text{ con } 0 < |x x_0| < \delta \text{ t.c. } f(x) < M.$
- **Enunciato 8.** Se $f(x) \ge 0$ per ogni $x \in \mathbb{R}$ e $\lim_{x \to x_0} f(x) = a \in \mathbb{R}$, allora $a \ge 0$.
- Enunciato 9. Tutte le successioni numeriche non limitate divergono. 9.F
- **Enunciato 10.** Se $a_n, b_n > 0$, $\sum_{n \ge 1} b_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora anche $\sum_{n \ge 1} a_n$ diverge.
- **Enunciato 11.** Se $f: [a,b] \to \mathbb{R}$ è crescente, allora f([a,b]) = [f(a),f(b)]. 11.V
- $\frac{d}{dx} \arctan(x) = \frac{1}{1+x^2}$ Enunciato 12.
- **Enunciato 13.** Se $f:[a,b] \to \mathbb{R}$ è derivabile ed ha in $x_0 \in (a,b)$ un punto di minimo, allora $f'(x_0) = 0$. 13.V
- $f(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{b} f(x) \, \mathrm{d}x.$ **Enunciato 14.** *Se* $f: [a,b] \rightarrow \mathbb{R}$ *è continua, allora* 14.F

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri naturali \mathbb{N} è un campo.

1.F

Enunciato 2. Quello riportato di seguito è il grafico di una funzione strettamente crescente.

2.F

Enunciato 3.
$$\sqrt{p(x)} \geqslant \sqrt{q(x)} \Longleftrightarrow \begin{cases} p(x) \geqslant 0 \\ q(x) \geqslant 0. \end{cases}$$

3.F

Enunciato 4. $\sin\left(\frac{\pi}{3}\right) = \frac{1}{2}$

4.F

Enunciato 5.
$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

5.V

Enunciato 6. Se $z = \rho(\cos(\theta) + i\sin(\theta))$ e $w = r(\cos(\varphi) + i\sin(\varphi))$ sono due numeri complessi in forma trigonometrica, allora

6.V

$$z \cdot w = \rho r (\cos(\theta + \varphi) + i\sin(\theta + \varphi)).$$

7.F

Enunciato 7. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to x_0^+} f(x) = L$ se $\exists \varepsilon > 0 \text{ t.c. } \forall \delta = \delta(\varepsilon) > 0 \ \exists x \in (x_0, x_0 + \delta) \text{ t.c. } |f(x) - L| > \varepsilon.$

8.F

Enunciato 8.
$$\lim_{x\to 0} \frac{\sqrt[a]{1+x}-1}{x} = 1 \ \forall a > 0$$

Enunciato 9. Se esiste una sottosuccessione di $\{a_n\}_n$ che converge ad L, allora $\lim_{n\to+\infty} a_n = L$.

9.F 10.F

Enunciato 10. Se
$$\sum_{n\geq 1} a_n$$
 converge, allora anche $\sum_{n\geq 1} (-1)^n a_n$ converge.

Enunciato 11. *Se* $f: [a,b] \rightarrow [a,b]$ *è invertibile, allora* f *è continua in* [a,b].

11.F

Enunciato 12.
$$\frac{d}{dx}\sin(x) = -\cos(x)$$

12.F

Enunciato 13. Per la regola di De L'Hôpital si ha che

13.F

$$\lim_{x \to +\infty} \frac{x^2 + \sin(x)}{x + 2\cos(x)} = \lim_{x \to +\infty} \frac{2x + \cos(x)}{1 - 2\sin(x)} = +\infty$$

Enunciato 14. $\int \cos(x) \, \mathrm{d}x = \sin(x) + c$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

1.F

2.*F*

3.F

4.F

5.F

6.V

7.F

8.F

9.V

10.F

11.F

12.V

13.F

Enunciato 1. *Se*
$$a \in \mathbb{R}$$
 è tale che $a \cdot 0 = 0$, *allora* $a \neq 0$.

Enunciato 2. Se
$$f$$
 è invertibile e crescente, allora f^{-1} è strettamente decrescente.

Enunciato 4.
$$\cos\left(\frac{\pi}{2}\right) = 1$$

Enunciato 5.
$$\cot\left(\frac{\pi}{4}\right) = 0$$

Enunciato 6. Se
$$z \in \mathbb{C}$$
, allora $\overline{(\overline{z})} = z$.

$$\xrightarrow{y}$$

Enunciato 8. Se
$$f(x) > 0$$
 per ogni $x \in \mathbb{R}$ e $\lim_{x \to x_0} f(x) = a \in \mathbb{R}$, allora $a > 0$.

Enunciato 9. Se
$$a_n = f(n)$$
 $e \lim_{x \to +\infty} f(x) = L$, allora $\lim_{n \to +\infty} a_n = L$.

Enunciato 10. Se
$$a_n, b_n > 0$$
, $\sum_{n \ge 1} b_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora nulla si può dire della convergenza $di \sum_{n \ge 1} a_n$.

Enunciato 11. Se
$$f: [a,b] \rightarrow [a,b]$$
 è invertibile, allora f è continua in $[a,b]$.

$$\lim_{x \to +\infty} \frac{x}{\arctan(x)} = \lim_{x \to +\infty} \frac{1}{\frac{1}{1+x^2}} = \lim_{x \to +\infty} (1+x^2) = +\infty$$

Enunciato 14.
$$\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri razionali \mathbb{Q} è totalmente ordinato.

1.V

Enunciato 2. Quello riportato di seguito è il grafico di $f(x) = a^x con \ a \in (0,1)$.

2.*F*

Enunciato 3. $\{x \in \mathbb{R} : |x| < a\} = (-\infty, -a) \cup (a, +\infty)$

3.F

Enunciato 4.
$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$

4.V

Enunciato 5.
$$\nexists \cot(0)$$

5.V

Enunciato 6. *Se*
$$z \in \mathbb{C}$$
, *allora* $z \notin \mathbb{R}$.

6.F

Enunciato 7. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to +\infty} f(x) = -\infty$ se $\exists M > 0$ t.c. $\forall X = X(M) > 0 \ \exists x \in D \ con \ x > X \ t.c. \ f(x) < -M$.

7.F

$$\exists M > 0 \text{ t.c. } \forall X = X(M) > 0 \ \exists x \in D \text{ con } x > X \text{ t.c. } f(x) < -M$$

8.V

Enunciato 8. La funzione tangente è continua nel suo dominio di definizione.

10.F

Enunciato 9.
$$\{a_n\}_n$$
 converge se e solo se $\exists \varepsilon > 0 \text{ t.c. } \forall N = N(\varepsilon) \in \mathbb{N} \ \exists n, m > N \text{ t.c. } |a_n - a_m| > \varepsilon.$

9.F

Enunciato 10. Se
$$\sum_{n\geqslant 1} (-1)^n a_n$$
 converge, allora anche $\sum_{n\geqslant 1} a_n$ converge.

11.V

Enunciato 11. Se
$$f: [a,b] \to \mathbb{R}$$
 è crescente, allora $f([a,b]) = [f(a), f(b)]$.

Enunciato 12.
$$(f^{-1})'(y) = -\frac{f'(f^{-1}(y))}{f^{-1}(y)^2}$$

12.F

Enunciato 13. La somma di funzioni concave è una funzione concava.

13.V

$$\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri naturali \mathbb{N} è ordinato e completo.

1.F

Enunciato 2. $f: A \to B$ è una funzione pari se per ogni $x \in A$ si ha f(-x) = f(x).

2.*V*

Enunciato 3. L'estremo superiore di un insieme è il più piccolo dei maggioranti.

3.V

Enunciato 4.

4.V

 $\sin(2x) = 1 - 2\sin(x)^2$ Enunciato 5.

5.F

Enunciato 6. Se $z \in \mathbb{C}$ ed $n \in \mathbb{N}$, allora $\overline{n \cdot z} = n/\overline{z}$.

6.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = -\infty$ se $\forall M > 0 \ \exists \delta = \delta(M) > 0 \ t.c. \ f(x) > M \ \forall x \in (x_0 - \delta, x_0).$

7.F

Enunciato 8. Se f(x) > 0 per ogni $x \in \mathbb{R}$ e $\lim_{x \to x_0} f(x) = a \in \mathbb{R}$, allora a > 0.

8.F

Enunciato 9. Ogni successione numerica limitata ammette una sottosuccessione convergente.

9.V

Enunciato 10. Se $a_n, b_n > 0$, $\sum_{n \ge 1} b_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora nulla si può dire della convergenza

10.F

 $di \sum_{n\geqslant 1} a_n$.

Enunciato 11. *Se* $f: [a,b] \to \mathbb{R}$ *è continua, allora essa ammette massimo e minimo assoluti.*

11.V

Enunciato 12. *Le funzioni pari sono derivabili in* x = 0.

12.F

14.F

Enunciato 13. Se $f'(x_0) = 0$ ed $f''(x_0) < 0$, allora x_0 è un punto di minimo locale.

13.F

Enunciato 14. Se $f: [a,b] \to \mathbb{R}$ è continua, allora $f(x) = \frac{d}{dx} \int_{x}^{b} f(x) dx$.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri complessi \mathbb{C} è un campo.

1.V

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di f(x+a).

2.*V*

Enunciato 3. *Se C* è *l'estremo superiore di A* $\subset \mathbb{R}$ *e C* \in *A, allora C* è *il massimo di A.*

3.V

Enunciato 4.
$$\cos(x)^2 + \sin(x)^2 = 1$$

4.V

Enunciato 5.
$$\sharp \cot(0)$$

Enunciato 8.

5.V

Enunciato 6. *Se*
$$z \in \mathbb{C}$$
, *allora* $\overline{(\overline{z})} = z$

6.V

Enunciato 7. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to x_0^+} f(x) = +\infty$ se $\exists M > 0 \text{ t.c. } \forall \delta = \delta(M) > 0 \ \exists x \in (x_0, x_0 + \delta) \text{ t.c. } f(x) < M.$

7.F

$$\lim_{x \to 0^+} x^a \log_b(x) = 1 \ \forall a, b > 0$$

8.F

Enunciato 9. Ogni successione numerica divergente è limitata.

9.F

Enunciato 10. Se
$$a_n > 0$$
 $e \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$, allora $\sum_{n \ge 1} a_n$ diverge.

10.F

11.V

Enunciato 12.
$$\frac{d}{dx}\sin(x) = \cos(x)$$

12.V

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed $x_0 \in (a,b)$ è tale che $f'(x_0) = 0$, allora x_0 è un punto di massimo o di minimo.

Enunciato 11. *Se* $f: \mathbb{R} \to \mathbb{R}$ *è monotona ed* f([a,b]) *è un intervallo, allora* f *è continua in* [a,b].

13.F

Enunciato 14. *Se* $f: [a,b] \to \mathbb{R}$ *è continua, allora è integrabile secondo Riemann.*

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri complessi \mathbb{C} è totalmente ordinato.

1.F

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di -f(x).

2.F

Enunciato 3. L'estremo inferiore di un insieme è il più grande dei minoranti.

3.V

4.V

Enunciato 5.
$$\cot\left(\frac{\pi}{3}\right) = \sqrt{3}$$

5.F

Enunciato 6. Se
$$z = a + ib \in \mathbb{C}$$
, allora $z \cdot \overline{z} = a^2 + b^2$.

6.V

Enunciato 7.
$$\lim_{x \to x_0} f(x) = -\infty$$
 se $\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) < -M \; \forall x \in D \; con \; 0 < |x - x_0| < \delta.$

7.*V*

Enunciato 8.
$$\lim_{x\to 0} \frac{\arctan(x)}{x} = \frac{1}{2}$$

8.F

Enunciato 9. Se
$$a_n > 0$$
 per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \sqrt[n]{a_n} = L < 1$ allora $a_n \downarrow 0$.

9.V

Enunciato 10. Se
$$a_n, b_n > 0$$
, $\sum_{n \ge 1} a_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora anche $\sum_{n \ge 1} b_n$ converge.

10.V

11.F

Enunciato 11. *Se*
$$f: [a,b] \to \mathbb{R}$$
 è continua, allora $f([a,b]) = [f(a),f(b)]$.

12.V

Enunciato 12. Tutte le funzioni derivabili sono integrabili.

Enunciato 13. Per la regola di De L'Hôpital si ha che

13.F

$$\lim_{x \to +\infty} \frac{x}{\arctan(x)} = \lim_{x \to +\infty} \frac{1}{\frac{1}{1+x^2}} = \lim_{x \to +\infty} (1+x^2) = +\infty$$

Enunciato 14. *Se*
$$f: [a,b] \to \mathbb{R}$$
 è continua, allora

 $f(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_{x}^{b} f(x) \, \mathrm{d}x.$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri razionali \mathbb{Q} è un campo.

1.V

Enunciato 2. Una funzione $f: A \rightarrow B$ è un processo che ad ogni elemento y di B associa uno ed un solo elemento x di A.

2.*F*

Enunciato 3. Siano $a,b,c \in \mathbb{R}$ con a > 0. Se $\Delta = b^2 - 4ac > 0$, allora

3.V

 $\{x \in \mathbb{R} : ax^2 + bx + c > 0\} = (-\infty, x_1) \cup (x_2, +\infty),$ dove $x_1 = \frac{-b - \sqrt{\Delta}}{2a} e x_2 = \frac{-b + \sqrt{\Delta}}{2a}.$

Enunciato 4. L'arco di una circonferenza di raggio r e corrispondente a α radianti misura αr .

4.V5.V

 $\tan(x+\pi) = \tan(x)$ Enunciato 5.

Enunciato 6. Se $z = a + ib \in \mathbb{C}$, allora $z \cdot \overline{z} = a^2 - b^2$.

6.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to +\infty} f(x) = L$ se

7.F

 $\exists \varepsilon > 0 \text{ t.c. } \forall X = X(\varepsilon) > 0 \ \exists x \in D \text{ con } x > X \text{ t.c. } |f(x) - L| > \varepsilon.$

8.V

Enunciato 8. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = +\infty$ se $\forall M > 0 \ \exists \delta = \delta(M) > 0 \ t.c. \ f(x) > M \ \forall x \in (x_0 - \delta, x_0).$

Enunciato 9. Se tutte le sottosuccessioni di $\{a_n\}_n$ convergono ad L, allora $\lim_{n\to+\infty} a_n = L$.

9.V

Enunciato 10. $\sum_{n\geq 1} (-1)^n = -\frac{1}{2}$

10.F

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è una funzione strettamente crescente, allora $\lim_{x \to +\infty} f(x) = \sup\{f(x) : x \in \mathbb{R} \}$ \mathbb{R} }.

11.V

Enunciato 12.

 $(f^{-1})'(y) = -\frac{f'(f^{-1}(y))}{f^{-1}(y)^2}$

- 12.F
- **Enunciato 13.** Se $f:[a,b] \to \mathbb{R}$ è continua, allora esiste $x_0 \in (a,b)$ tale che $f'(x_0) = \frac{f(b)-f(a)}{b-a}$.

13.F

Enunciato 14. Se $f: [a,b] \to \mathbb{R}$ è continua ed F è una sua primitiva, allora $\int_a^b f(x) dx = F(b) - F(a)$.

14.V

Enunciato 12 1 2 3 4 5 7 8 9 10 11 13 14 6 F

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. Per il principio di induzione si ha che

• P(1) e vera • $se\ P(n)$ è vera, allora anche P(n+2) è vera \Longrightarrow allora P(n) è vera per ogni $n \in \mathbb{N}$ pari.

1.F

2.*F*

3.F

4.F

5.V

6.F

7.F

8.F

9.V

10.V

11.F

12.F

13.V

14.F

Enunciato 2. Quello riportato di seguito è il grafico di $f(x) = \log_a(x)$ con a > 1.

Enunciato 3. $\{x \in \mathbb{R} : |x| > a\} = (-a, a)$

 $\cos\left(\frac{\pi}{2}\right) = 1$ Enunciato 4.

Enunciato 5. Quello riportato di seguito è il grafico di $f(x) = \cot(x)$.

Enunciato 6. *Se* $z \in \mathbb{C}$, *allora*

$$\Im m(z) = \frac{z + \overline{z}}{2i}.$$

Enunciato 7.
$$\lim_{x \to x_0} f(x) = +\infty$$
 se $\exists M > 0 \text{ t.c. } \forall \delta = \delta(M) > 0 \ \exists x \in D \text{ con } 0 < |x - x_0| < \delta \text{ t.c. } f(x) < M.$

Enunciato 8.

$$\lim_{x \to 0} \frac{\sqrt[a]{1+x}-1}{x} = 1 \ \forall a > 0$$

Enunciato 9. Se $\{a_n\}_n$ e $\{c_n\}_n$ convergeno ad L e $a_n \leq b_n \leq c_n$, allora anche $\{b_n\}_n$ converge ad L.

Enunciato 10. La serie armonica a segno alterno converge.

Enunciato 11. *Se* $f:(a,b) \to \mathbb{R}$ *è continua, allora essa ammette massimo e minimo assoluti.*

 $\frac{\mathrm{d}}{\mathrm{d}x}\sin(x) = -\cos(x)$ Enunciato 12.

Enunciato 13. Per la regola di De L'Hôpital si ha che

$$\lim_{x \to +\infty} \frac{x + 2\cos(x)}{x^2 + \sin(x)} = \lim_{x \to +\infty} \frac{1 - 2\sin(x)}{2x + \cos(x)} = 0$$

Enunciato 14. Se $f: [a,b] \to \mathbb{R}$ è integrabile, allora esiste $c \in [a,b]$ tale che

$$\int_{a}^{b} f(x) dx = (b - a)f(c).$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri interi \mathbb{Z} è ordinato e completo.

1.F

Enunciato 2. *Quello riportato di seguito è il grafico di* $f(x) = x^n$ *con* $n \in \mathbb{N}$ *dispari.*

2.F

$$\bigvee_{x}$$

Enunciato 3.
$$\{x \in \mathbb{R} : |x| > a\} = (-a, a)$$

3.F

Enunciato 4. La somma degli angoli interni di un triangolo è 2π .

4.F

Enunciato 5.
$$\sin\left(\frac{\pi}{2}\right) = 1$$

5.V

Enunciato 6. Se
$$z \in \mathbb{C}$$
, allora $\overline{z^n} = (\overline{z})^n$.

6.V

Enunciato 7. Se quello riportato di seguito è il grafico della funzione f allora $\lim_{x\to x_0^-} f(x) = f(x_0)$.

7.F

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = 1 \,\,\forall a > 0$$

8.F

Enunciato 9. Tutte le successioni numeriche monotone sono convergenti.

9.F

Enunciato 10. La serie telescopica $\sum_{n\geq 1} (a_{n+1}-a_n)$ converge se e solo se $\lim_{n\to +\infty} a_n = L \in \mathbb{R}$.

10.V

Enunciato 11. Se $f:(a,b) \to \mathbb{R}$ è continua, $\lim_{x \to a} f(x) = +\infty$ e $\lim_{x \to b} f(x) = -\infty$, allora esiste $x_0 \in (a,b)$ tale che $f(x_0) = 0$.

11.V

Enunciato 12. $\frac{d}{dx}\tan(x) = \frac{1}{\cos(x)^2}$

12.V

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile, allora esiste $x_0 \in (a,b)$ tale che $f'(x_0) = \frac{f(b) - f(a)}{b-a}$.

13.V

Enunciato 14.

$$\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri naturali \mathbb{N} è ordinato e completo.

1.F

Enunciato 2. Quello riportato di seguito è il grafico di una funzione strettamente crescente.

2.*V*

Enunciato 3. L'estremo inferiore di un insieme è il più grande dei minoranti.

3.V

Enunciato 4.
$$\sin(x+\pi) = -\sin(x)$$

4.V

Enunciato 5.
$$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$$

5.V

Enunciato 6. *Se*
$$z \in \mathbb{R}$$
, *allora* $z \notin \mathbb{C}$.

6.F

Enunciato 7. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to +\infty} f(x) = -\infty$ se $\forall M > 0 \; \exists X = X(M) > 0 \; t.c. \; f(x) < -M \; \forall x \in D \; con \; x > X.$

7. V

Enunciato 8. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to x_0^-} f(x) = L \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$

8.F

9.F

10.V

Enunciato 10. Se
$$\sum_{n\geqslant 1} a_n$$
 diverge e $0 \leqslant a_n \leqslant b_n$, allora anche $\sum_{n\geqslant 1} b_n$ diverge.

11.F

Enunciato 11. Se
$$f: \mathbb{R} \to \mathbb{R}$$
 è una funzione strettamente crescente, allora $\lim_{x \to +\infty} f(x) = +\infty$.

12.V

Enunciato 12.
$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

121

13.F

$$\lim_{x \to +\infty} \frac{x}{\arctan(x)} = \lim_{x \to +\infty} \frac{1}{\frac{1}{1+x^2}} = \lim_{x \to +\infty} (1+x^2) = +\infty$$

Enunciato 14.
$$\int \sin(x) \, dx = \cos(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri razionali \mathbb{Q} è ordinato e completo.

1.F

Enunciato 2. $f: A \to B$ è decrescente se per ogni $x_1, x_2 \in A$ si ha

$$x_1 < x_2 \Longrightarrow f(x_1) \leqslant f(x_2).$$

Enunciato 3. $\{x \in \mathbb{R} : |x| < a\} = (-\infty, -a) \cup (a, +\infty)$

3.F

2.*F*

Enunciato 4. La diagonale di un quadrato di lato unitario misura $\sqrt{3}/2$.

4.*F*

 $\sin\left(\frac{\pi}{2}\right) = 1$ Enunciato 5.

5.V

 $\overline{1} = 1$ Enunciato 6.

6.V

7.V

Enunciato 7.
$$\lim_{x \to x_0} f(x) = +\infty$$
 se $\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) > M \; \forall x \in D \; con \; 0 < |x - x_0| < \delta.$

8.F

Enunciato 8. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to \infty} f(x) = L \in \mathbb{R}$ se

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0, x_0 + \delta).$$

9.V

Enunciato 9. Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L < 1$ allora $a_n \downarrow 0$.

10.F

Enunciato 10. La serie telescopiche sono regolari.

11.F

Enunciato 11. Se $f:(a,b)\to\mathbb{R}$ è continua, $\lim_{x\to a}f(x)=+\infty$ e $\lim_{x\to b}f(x)=+\infty$, allora $f(x)\geqslant 0$ per ogni $x \in (a,b)$.

12.V

Enunciato 12. *La derivata di un polinomio è un polinomio.*

Enunciato 13. La somma di funzioni convesse è una funzione convessa.

13.V

 $\int f(x) g'(x) dx = f(x) g(x) + \int f'(x) g(x) dx$ Enunciato 14.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri reali \mathbb{R} è totalmente ordinato.

1.V

Enunciato 2. Se f è invertibile e crescente, allora f^{-1} è strettamente crescente.

2.*V*

Enunciato 3. *L'estremo inferiore di un insieme è il più piccolo dei minoranti.*

3.F

Enunciato 4. *Quello riportato di seguito è il grafico di* $f(x) = \cos(x)$.

4.V

Enunciato 5.

$$\cot\left(\frac{\pi}{3}\right) = \sqrt{3}$$

5.F

Enunciato 6. Se $z = a + ib \in \mathbb{C}$, allora $z \cdot \overline{z} = a^2 + b^2$.

$$z \cdot \overline{z} = a^2 + b^2$$
.

6.V

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = L$ se $\exists \varepsilon > 0 \text{ t.c. } \forall \delta = \delta(\varepsilon) > 0 \ \exists x \in (x_0, x_0 + \delta) \text{ t.c. } |f(x) - L| > \varepsilon.$

7.F

$$\exists \varepsilon > 0 \text{ t.c. } \forall \delta = \delta(\varepsilon) > 0 \exists x \in (x_0, x_0 + \delta) \text{ t.c. } |f(x) - L| > \varepsilon.$$

Enunciato 8.

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$$

8.V

Enunciato 9. Se per ogni $\{x_n\}_n$ convergente ad x_0 si ha che $\lim_{n\to+\infty} f(x_n) = f(x_0)$, allora f è continua in

9.V

Enunciato 10. La serie telescopiche convergono.

10.F

Enunciato 11. Se $f:(a,b) \to [a,b]$ è continua ed invertibile, allora anche $f^{-1}:[a,b] \to (a,b)$ è continua.

11.V

 $\frac{\mathrm{d}}{\mathrm{d}x}\sin(x) = -\cos(x)$ Enunciato 12.

12.F

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed ha in $x_0 \in (a,b)$ un punto di massimo, allora $f'(x_0) = 0$.

13.V

Enunciato 14.

$$\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$$

14.V

Enunciato 12 14 1 2 3 4 7 8 9 10 11 13 5 6 F

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri razionali \mathbb{Q} è un campo.

1.V

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di f(x-a).

2.*F*

3.V

Enunciato 3.
$$\{x \in \mathbb{R} : |x| < a\} = (-a, a)$$

4.V

Enunciato 4.
$$cos(x+\pi) = -cos(x)$$

5.V

Enunciato 5.
$$\sin(2x) = 2\sin(x)\cos(x)$$

6.F

Enunciato 6.
$$\mathbb{C} \setminus \mathbb{R} = \{i\}$$

Enunciato 7. Se quello riportato di seguito è il grafico della funzione f allora $\lim_{x \to x_0^-} f(x) = f(x_0)$.

7.F

$$\underbrace{\hspace{1cm}}_{x_0}$$

Enunciato 8. La funzione tangente è continua nel suo dominio di definizione.

8.V

Enunciato 9. Tutte le successioni numeriche monotone sono convergenti.

9.F

Enunciato 10.
$$\sum_{p\geqslant 1} a_p$$
 converge se e solo se $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N}$ t.c. $\left| \sum_{p=m+1}^n a_p \right| < \varepsilon \ \forall n > m > N$.

11.V

10.V

Enunciato 11. *Se* $f: \mathbb{R} \to \mathbb{R}$ *è monotona ed* f([a,b]) *è un intervallo, allora* f *è continua in* [a,b].

Enunciato 12.
$$\frac{d}{dx}\cos(x) = \sin(x)$$

12.F

Enunciato 13. Per la regola di De L'Hôpital si ha che

13.F

$$\lim_{x \to +\infty} \frac{x^2 + \sin(x)}{x + 2\cos(x)} = \lim_{x \to +\infty} \frac{2x + \cos(x)}{1 - 2\sin(x)} = +\infty$$

 $\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$ Enunciato 14.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *Se*
$$a \in \mathbb{R}$$
 è tale che $a \cdot 0 = 0$, *allora* $a \neq 0$.

$$x_1, x_2 \in A \text{ si } ha$$
 2.F

Enunciato 2.
$$f: A \rightarrow B$$
 è crescente se per ogni $x_1, x_2 \in A$ si ha

$$x_1 < x_2 \Longrightarrow f(x_1) \geqslant f(x_2).$$

Enunciato 4.
$$cos(x+\pi) = cos(x)$$

1.F

3.V

Enunciato 5.
$$\cos(x+y) = \cos(x)\sin(y) + \sin(x)\cos(y)$$

Enunciato 6. Se
$$z \in \mathbb{C}$$
, allora $\Re e(z) = \frac{z+z}{2}$.

$$\Re e(z) = \frac{z + \overline{z}}{2}$$

Enunciato 7. Data
$$f: \mathbb{R} \to \mathbb{R}$$
, si ha che $\lim_{x \to x_0^-} f(x) = +\infty$ se

$$\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) > M \; \forall x \in (x_0 - \delta, x_0).$$

$$\lim_{x \to 0} \frac{\arctan(x)}{x} = \frac{1}{2}$$

Enunciato 10. Se
$$a_n, b_n > 0$$
, $\sum_{n \ge 1} a_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora anche $\sum_{n \ge 1} b_n$ diverge.

10.V

Enunciato 11. Se
$$f: \mathbb{R} \to \mathbb{R}$$
 è una funzione strettamente crescente, allora $\lim_{x \to +\infty} f(x) = +\infty$.

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile, allora esiste $x_0 \in (a,b)$ tale che $f'(x_0) = \frac{f(b)-f(a)}{b-a}$.

Enunciato 12.
$$f'(x_0) = \lim_{t \to 0} \frac{f(x_0) - f(x_0 + t)}{t}$$

Enunciato 12.
$$f'(x_0) = \lim_{t \to 0} \frac{f'(x_0)}{t}$$

Enunciato 14.
$$\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri razionali \mathbb{Q} è un campo.

1.V

Enunciato 2. Se f è invertibile e crescente, allora f^{-1} è strettamente decrescente.

2.F

Enunciato 3. $\{x \in \mathbb{R} : |x| < a\} = (-a, a)$

3.V

Enunciato 4. $\cos\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$

4.F

Enunciato 5. $\nexists tan(0)$

5.F

Enunciato 6. Se $z \in \mathbb{C}$, allora $\Re e(z) = \frac{z + \overline{z}}{2}$.

6.V

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = L$ se

7.*V*

 $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0 - \delta, x_0).$

8.V

Enunciato 8. $\lim_{x\to 0} \frac{1-\cos(x)}{x^2} = \frac{1}{2}$

Enunciato 9. Se esiste $\{x_n\}_n \subset \mathbb{R} \setminus \{x_0\}$ convergente ad x_0 tale che $\lim_{n \to +\infty} f(x_n) = L$, allora $\lim_{x \to x_0} f(x) = L$.

9.F

Enunciato 10. Se $a_n, b_n > 0$, $\sum_{n \ge 1} a_n$ converge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora anche $\sum_{n \ge 1} b_n$ converge.

10.V

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è monotona ed f([a,b]) è un intervallo, allora f è continua in [a,b].

11.V

Enunciato 12. $f'(x_0) = \lim_{t \to 0} \frac{f(x_0) - f(x_0 + t)}{t}$

12.F

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed f(a) = f(b), allora esiste $x_0 \in (a,b)$ tale che $f'(x_0) = 0$.

13.V

Enunciato 14. $\int \sin(x) \, dx = -\cos(x) + c$

14.V

Enunciato 12 1 2 3 4 7 8 9 10 11 13 14 5 6 V F

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *Se* $a, b \in \mathbb{R}$ *sono tali che* $a \cdot b = 0$, *allora* a = 0 *oppure* b = 0.

1.V

Enunciato 2. Quello riportato di seguito è il grafico di $f(x) = x^n$ con $n \in \mathbb{N}$ pari.

2.*V*

Enunciato 3. *Se C* è *l'estremo superiore di A* $\subset \mathbb{R}$ *e C* \in *A, allora C* è *il massimo di A.*

3.V

Enunciato 4. Ciascun angolo di un triangolo equilatero misura $\pi/2$.

4.F

Enunciato 5. $\cot\left(\frac{\pi}{6}\right) = \sqrt{3}$

5.V

Enunciato 6. Se $z, w \in \mathbb{C}$, allora $\overline{z \cdot w} = -\overline{z} \cdot \overline{w}$.

6.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_{-}} f(x) = -\infty$ se

7.*V*

$$\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) < -M \; \forall x \in (x_0 - \delta, x_0).$$

8.F

Enunciato 8. Se f(x) > 0 per ogni $x \in \mathbb{R}$ e $\lim_{x \to x_0} f(x) = a \in \mathbb{R}$, allora a > 0.

9.V

Enunciato 9. $\{a_n\}_n$ converge se e solo se $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} \ t.c. \ |a_n - a_m| < \varepsilon \ \forall n, m > N.$

10.F

Enunciato 10. Se $\sum_{n\geqslant 1} (-1)^n a_n$ converge, allora $a_n \downarrow 0$.

11.F

Enunciato 11. *Se* $f:(a,b) \to \mathbb{R}$ *è continua, allora essa ammette massimo e minimo assoluti.*

12.V

Enunciato 12.

 $\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}$

Enunciato 13. Se $f,g:[a,b] \to \mathbb{R}$ sono derivabili su [a,b], allora esiste $x_0 \in (a,b)$ tale che $(g(b)-g(a)) f'(x_0) = (f(b)-f(a)) g'(x_0)$.

13.V

Enunciato 14.

$$\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. Per il principio di induzione si ha che

• $F_{(1)}$ e vera • $se\ P(n)\ e\ P(n+1)$ sono vere, allora anche $P(n+2)\ \grave{e}\ vera$ $\bigg\} \Longrightarrow allora\ P(n)\ \grave{e}\ vera\ per\ ogni\ n\in\mathbb{N}.$

1.F

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di -f(x).

2.*V*

Enunciato 3. $\{x \in \mathbb{R} : |x| > a\} = (-\infty, -a) \cup (a, +\infty)$

3.V

4.V

Enunciato 5. $\sin(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$

5.F

Enunciato 6. Se
$$z \in \mathbb{C}$$
, allora $\Re e(z) = \frac{z + \overline{z}}{2}$.

6.V

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to \infty} f(x) = -\infty$ se

7.V

$$\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) < -M \; \forall x \in (x_0 - \delta, x_0).$$

8.F

Enunciato 8.
$$\lim_{x\to 0} \frac{\arctan(x)}{x} = \frac{1}{2}$$

9.F

Enunciato 9. *Ogni successione numerica limitata è convergente.*

10.F

Enunciato 10. La serie telescopiche convergono.

Enunciato 11. Se $f:(a,b) \to [a,b]$ è continua ed invertibile, allora anche $f^{-1}:[a,b] \to (a,b)$ è continua.

11.V

 $f'(x_0) = \lim_{t \to 0} \frac{f(x_0+t)-f(x_0)}{t}$ Enunciato 12.

12.V

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile ed $x_0 \in (a,b)$ è tale che $f'(x_0) = 0$, allora x_0 è un punto di massimo o di minimo.

13.F

 $\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$ Enunciato 14.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri reali \mathbb{R} è un campo.

1.V

Enunciato 2. Quello riportato di seguito è il grafico di una funzione.

2.*F*

Enunciato 3. L'estremo superiore di un insieme è il più grande dei maggioranti.

3.F

Enunciato 4. L'arco di una circonferenza di raggio r e corrispondente a α radianti misura $\alpha\pi$.

4.F

Enunciato 5.
$$\cot(x+\pi) = \cot(x)$$

5.V

Enunciato 6. Sia $w = r(\cos(\varphi) + i\sin(\varphi))$ un numero complesso in forma trigonometrica ed $n \in \mathbb{N}$, allora l'equazione nell'incognita z

6.V

$$z^n = w$$

ha per soluzioni

 \mathbb{R} $\}$.

$$z_k = \sqrt[n]{r} \left(\cos \left(\frac{\varphi}{n} + \frac{2\pi}{n} k \right) + i \sin \left(\frac{\varphi}{n} + \frac{2\pi}{n} k \right) \right), \qquad k \in \{0, 1, \dots, n-1\}.$$

7.F

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = -\infty$ se $\exists M > 0 \ t.c. \ \forall \delta = \delta(M) > 0 \ \exists x \in (x_0 - \delta, x_0) \ t.c. \ f(x) > -M.$

8.V

Enunciato 8.
$$\lim_{x\to 0^+} x^a \log_b(x) = 0 \ \forall a,b>0$$

9.V

Enunciato 9. Ogni successione numerica limitata ammette una sottosuccessione convergente.

10.V

Enunciato 10. Se $\sum_{n\geqslant 1} a_n$ converge, allora anche $\{a_n\}_n$ converge.

11.V

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è una funzione strettamente crescente, allora $\lim_{x \to +\infty} f(x) = \sup\{f(x) : x \in \mathbb{R} \}$

 $\frac{\mathrm{d}}{\mathrm{d}x}\tan(x) = \frac{1}{\cos(x)^2}$ Enunciato 12.

12.V

Enunciato 13. La somma di funzioni concave è una funzione concava.

13.V

 $\int \frac{\mathrm{d}x}{\sqrt{1+x^2}} = \arctan(x) + c$ Enunciato 14.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri interi \mathbb{Z} è un campo.

1.F

2.*V*

Enunciato 2. Se il grafico di $f: [a,b] \to \mathbb{R}$ e la retta y = c sono come in figura, allora

 ${x \in [a,b] : f(x) \le c} = [x_1,x_2] \cup [x_3,x_4] \cup [x_5,b].$

3.V

Enunciato 3. L'estremo inferiore di un insieme è il più grande dei minoranti.

4.*F*

Enunciato 4. Quello riportato di seguito è il grafico di $f(x) = \sin(x)$.

Enunciato 5. cot(0) = 0 5.F

Enunciato 6. Se $z \in \mathbb{C}$, allora $\Re e(z) = \frac{z + \overline{z}}{2}$.

7.V

6.V

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^-} f(x) = -\infty$ se

 $\forall M > 0 \; \exists \delta = \delta(M) > 0 \; t.c. \; f(x) < -M \; \forall x \in (x_0 - \delta, x_0).$

Enunciato 8.

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

8.V

Enunciato 9. Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \sqrt[n]{a_n} = L > 1$ allora $a_n \downarrow 0$.

9.F

Enunciato 10. Se $a_n, b_n > 0$, $\sum_{n \ge 1} b_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora nulla si può dire della convergenza di $\sum_{n\geq 1}a_n$.

10.F

Enunciato 11. Se $f:(a,b)\to\mathbb{R}$ è continua, $\lim_{x\to a}f(x)=+\infty$ e $\lim_{x\to b}f(x)=-\infty$, allora esiste $x_0\in(a,b)$ 11.V

tale che $f(x_0) = 0$.

Enunciato 12.

$$f'(x_0) = \lim_{t \to 0} \frac{f(x_0+t) - f(x_0)}{t}$$

12.V

Enunciato 13. Se $f:[a,b] \to \mathbb{R}$ è derivabile, allora esiste $x_0 \in (a,b)$ tale che $f'(x_0) = \frac{f(b)-f(a)}{b-a}$.

13.V

 $\int \cos(x) \, \mathrm{d}x = -\sin(x) + c$ Enunciato 14.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri naturali \mathbb{N} è totalmente ordinato.

1.V

2.*F*

Enunciato 2. $f: A \rightarrow B$ è crescente se per ogni $x_1, x_2 \in A$ si ha

$$x_1 < x_2 \Longrightarrow f(x_1) \geqslant f(x_2).$$

Enunciato 3. $\{x \in \mathbb{R} : |x| < a\} = (-a, a)$

3.V

Enunciato 4. cos(0) = 1

4.V

Enunciato 5. cos(x+y) = cos(x)cos(y) - sin(x)sin(y)

5.V

Enunciato 6. *Se* $z \in \mathbb{C}$, *allora*

 $\Re e(z) = \frac{z - \overline{z}}{2}.$

6.F

7.*V*

Enunciato 7. $\lim_{x \to x_0} f(x) = L \ se$

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in D \ con \ 0 < |x - x_0| < \delta.$$

Enunciato 8. $\lim_{x \to +\infty} \sqrt[x]{a^x + b^x} = \max\{a, b\} \ \forall a, b > 0$

8. V

Enunciato 9. Se per ogni $\{x_n\}_n$ convergente ad x_0 si ha che $\lim_{n\to+\infty} f(x_n) = f(x_0)$, allora f è continua in x_0 .

9.V

Enunciato 10. Se $\sum_{n\geq 1} (-1)^n a_n$ converge, allora anche $\sum_{n\geq 1} a_n$ converge.

10.F

11.V

Enunciato 11. Se $f: [a,b] \to \mathbb{R}$ è crescente, allora f([a,b]) = [f(a),f(b)].

Enunciato 12. $\frac{d}{dx} \ln(|x|) = \frac{1}{x} per ogni x \neq 0$

12.V

Enunciato 13. Se $f,g: [a,b] \to \mathbb{R}$ sono continue su [a,b], allora esiste $x_0 \in (a,b)$ tale che $(g(b)-g(a)) f'(x_0) = (f(b)-f(a)) g'(x_0)$.

13.F

Enunciato 14. $\int \frac{\mathrm{d}x}{1+x^2} = \arctan(x) + c$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. *Se* $a,b,c \in \mathbb{R}$ *sono tali che* $a \cdot b = b \cdot c$, *allora* a = c.

1.F

Enunciato 2. Se il grafico di $f: [a,b] \to \mathbb{R}$ e la retta y = c sono come in figura, allora ${x \in [a,b] : f(x) \le c} = [x_1,x_2] \cup [x_3,x_4] \cup [x_5,b].$

2.*V*

$$[a,b]: f(x) \leqslant c\} = [x_1,x_2] \cup [x_3,x_4] \cup [x_5,b].$$

Enunciato 3. $\sqrt{p(x)} \geqslant \sqrt{q(x)} \Longleftrightarrow \begin{cases} p(x) \geqslant 0 \\ q(x) \geqslant 0. \end{cases}$

3.F

4.V

5.F

Enunciato 5.
$$\cot(x+\frac{\pi}{2})=\cot(x)$$

Enunciato 6. Se
$$z \in \mathbb{C}$$
 ed $n \in \mathbb{N}$, allora $\overline{n \cdot \overline{z}} = n \cdot \overline{z}$

6.V

Enunciato 7.
$$\lim_{x \to x_0} f(x) = -\infty se$$

7.F

Enunciato 7.
$$\lim_{x \to x_0} f(x) = -\infty$$
 se $\exists M > 0$ *t.c.* $\forall \delta = \delta(M) > 0 \ \exists x \in D \ con \ 0 < |x - x_0| < \delta \ t.c. \ f(x) > -M$.

8.V

Enunciato 8.
$$\lim_{x\to 0} \frac{\tan(x)}{x} = 1$$

9.F

10.F

Enunciato 10. Se
$$\sum_{n\geqslant 1} a_n$$
 converge, allora anche $\sum_{n\geqslant 1} (-1)^n a_n$ converge.

11.V

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è una funzione strettamente crescente, allora $\lim_{x \to +\infty} f(x) = \sup\{f(x) : x \in \mathbb{R} \}$ \mathbb{R} }.

Enunciato 12.
$$\frac{d}{dx}\tan(x) = \frac{1}{\cos(x)^2}$$

12.V

Enunciato 13. La differenza di funzioni convesse è una funzione convessa.

13.F

Enunciato 14.
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2-1}} = \arccos(x) + c$$

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Indicare nella griglia finale quali enunciati sono veri e quali falsi.

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. L'insieme dei numeri razionali
$$\mathbb{Q}$$
 è un campo.

1.V

Enunciato 2. $f(x) = x^2$ è monotona nel suo dominio di definizione.

2.F

Enunciato 3. L'estremo superiore di un insieme è il più piccolo dei maggioranti.

3.V

Enunciato 4. $\sin\left(\frac{\pi}{3}\right) = \frac{1}{2}$

4.F

Enunciato 5. $\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$

5.V

Enunciato 6. Se $z \in \mathbb{C}$, allora $\overline{(\overline{z})} = -z$.

6.F

Enunciato 7. $\lim_{x \to x_0} f(x) = L \ se$

7.*V*

 $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 \; t.c. \; |f(x) - L| < \varepsilon \; \forall x \in D \; con \; 0 < |x - x_0| < \delta.$

8.F

Enunciato 8. $\lim_{x\to 0} \frac{\sqrt[a]{1+x}-1}{x} = 1 \ \forall a > 0$

Enunciato 9. Ogni successione numerica divergente è limitata.

9.F

Enunciato 10. Se $a_n > 0$ $e \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$, allora $\sum_{n \ge 1} a_n$ diverge.

10.F

Enunciato 11. Se $f:(a,b) \to \mathbb{R}$ è continua, allora essa ammette massimo e minimo assoluti.

11.F

Enunciato 12. $(f^{-1})'(y) = -\frac{f'(f^{-1}(y))}{f^{-1}(y)^2}$

12.F

Enunciato 13. Se $f'(x_0) = 0$ ed $f''(x_0) < 0$, allora x_0 è un punto di massimo locale.

13.V

Enunciato 14. *Se* $f: [a,b] \to \mathbb{R}$ *è continua, allora è integrabile secondo Riemann.*

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

Risposta corretta: +0.5. Risposta mancante: -0.1. Risposta errata: -0.2.

Enunciato 1. Per il principio di induzione si ha che

- P(1) e vera $se\ P(n)$ e P(n+1) sono vere, allora anche P(n+2) è vera $\} \Longrightarrow allora\ P(n)$ è $vera\ per\ ogni\ n\in\mathbb{N}.$

Enunciato 2. Se quello riportato a sinistra è il grafico di f(x), allora quello a destra è il grafico di f(x+a).

Enunciato 3.
$$\sqrt{p(x)}\geqslant\sqrt{q(x)}\Longleftrightarrow \begin{cases} p(x)\geqslant0\\ q(x)\geqslant0. \end{cases}$$

- $\sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ Enunciato 4.
- Enunciato 5.

$$\overline{OA} = \overline{AP} \cdot \cot(x),$$

$$\overline{AP} = \overline{OA} \cdot \tan(x).$$

Enunciato 6. Se $z \in \mathbb{C}$, allora $\mathfrak{I}m(z) = \frac{z - \overline{z}}{2i}$.

$$\Im m(z) = \frac{z - \overline{z}}{2i}.$$

Enunciato 7. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = -\infty$ se

$$\exists M > 0 \text{ t.c. } \forall \delta = \delta(M) > 0 \exists x \in (x_0, x_0 + \delta) \text{ t.c. } f(x) > -M.$$

Enunciato 8. Data $f: \mathbb{R} \to \mathbb{R}$, si ha che $\lim_{x \to x_0^+} f(x) = L \in \mathbb{R}$ se

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ t.c. \ |f(x) - L| < \varepsilon \ \forall x \in (x_0 - \delta, x_0).$$

Enunciato 9. Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to +\infty} \sqrt[n]{a_n} = L < 1$ allora $a_n \downarrow 0$.

Enunciato 10. Se
$$a_n, b_n > 0$$
, $\sum_{n \ge 1} b_n$ diverge $e \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$, allora nulla si può dire della convergenza di $\sum_{n \ge 1} a_n$.

Enunciato 11. Se $f: \mathbb{R} \to \mathbb{R}$ è una funzione strettamente crescente, allora $\lim_{x \to +\infty} f(x) = +\infty$.

Enunciato 12.
$$\frac{d}{dx} \arcsin(x) = -\frac{1}{\sqrt{1-x^2}}$$

Enunciato 13. Per la regola di De L'Hôpital si ha ci

$$\lim_{x \to +\infty} \frac{x + 2\cos(x)}{x^2 + \sin(x)} = \lim_{x \to +\infty} \frac{1 - 2\sin(x)}{2x + \cos(x)} = 0$$

 $\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arccos(x) + c$ Enunciato 14.

Enunciato	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V														
F														

1.F

2.*V*

3.F

4.F

5.V

6.V

7.F

8.F

9.V

10.F

11.F

12.F

13.V