

Kourosh Davoudi kourosh@uoit.ca

Anomaly Detection

CSCI 4150U: Data Mining

Learning Outcomes

- Understand the anomaly detection tasks:
 - Basic definitions
 - Importance, Challenges, Causes, Applications
- Explain different anomaly detection approaches:
 - Visual-based
 - Statistical
 - Distance-based
 - Density-based
 - Cluster-based

Anomaly/Outlier Detection

- What are anomalies/outliers?
 - The set of data points that are considerably different than the remainder of the data
- Natural implication is that anomalies are relatively rare
 - One in a thousand occurs often if you have lots of data
 - Context is important, e.g., freezing temps in July
- Can be important or a nuisance
 - 10 foot tall 2 year old
 - Unusually high blood pressure

Motivation

Anomalous events usually occur relatively infrequently

However, when they do occur, their consequences can be quite dramatic and quite often in a negative sense

Importance of Anomaly Detection

Ozone Depletion History

- In 1985 three researchers (Farman, Gardinar and Shanklin)
 were puzzled by data gathered by the British Antarctic
 Survey showing that ozone levels for Antarctica had
 dropped 10% below normal levels
- Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?
- The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!

Causes of Anomalies

- Data from different classes
 - Measuring the weights of oranges, but a few grapefruit are mixed in
- Natural variation
 - Unusually tall people
- Data errors
 - 200 pound 2 year old

Is noise always an outlier?

- A. Yes
- B. No

Distinction Between Noise and Anomalies

- Noise is erroneous, perhaps random, values or contaminating objects
 - Weight recorded incorrectly
 - Grapefruit mixed in with the oranges
- Noise doesn't necessarily produce unusual values or objects
- Noise is not interesting
- Anomalies may be interesting if they are not a result of noise!
- Noise and anomalies are related but distinct concepts

Anomaly Detection Challenges

- Defining a representative normal region is challenging
- Method is often unsupervised, so validation can be quite challenging
- How many outliers are there in the data?
- The boundary between normal and outlying behavior is often not precise
- The exact notion of an outlier is different for different application domains
- Availability of labeled data for training/validation
- Normal behavior keeps evolving

Working assumption:

 There are considerably more "normal" observations than "abnormal" observations(outliers/anomalies) in data

Applications of Anomaly Detection

- Insurance / Credit card fraud detection (e.g. abnormally high purchase made on a credit card, etc.)
- Network intrusion detection
- Telecommunication fraud detection
- Healthcare Informatics / Medical diagnostics
- Industrial Damage Detection
- Image Processing / Video surveillance
- Novel Topic Detection in Text Mining

Fraud Detection

Fraud detection refers to detection of criminal activities occurring in commercial organizations

Malicious users might be the actual customers of the organization or might be

posing as a customer (also known as identity theft).

Types of fraud

- Credit card fraud
- Insurance claim fraud

Challenges:

- Fast and accurate real-time detection
- Misclassification cost is very high

Money laundry detection is an example outlier detection task.

A. True

B. False

Healthcare Informatics

- Detect anomalous patient records
 - Indicate disease outbreaks, instrumentation errors, etc.
- Key Challenges
 - Only normal labels available
 - Misclassification cost is very high
 - Data can be complex: spatio-temporal

Industrial Damage Detection

 Industrial damage detection refers to detection of different faults and failures in complex industrial systems

- Example: Aircraft Safety
 - Anomalies in engine combustion data
- Key Challenges
 - Data is extremely huge, noisy and unlabelled
 - Most of applications exhibit temporal behavior
 - Detecting anomalous events typically require immediate intervention

Image Processing/Video Surveillance

- Detecting outliers in images monitored over time
- Detecting anomalous regions within an image
- Used in
 - mammography image analysis
 - video surveillance
 - satellite image analysis
- Key Challenges
 - Detecting collective anomalies
 - Data sets are often very large

Anomaly: Number of Attributes

- Many anomalies are defined in terms of a single attribute
 - Height
 - Shape
 - Color
- Can be hard to find an anomaly using all attributes
 - Noisy or irrelevant attributes
 - Object is only anomalous with respect to some attributes
- However, an object may not be anomalous in any one attribute

Anomaly: Scoring/Binary Categorization

- Many anomaly detection techniques provide only a binary categorization
 - An object is an anomaly or it isn't
 - This is especially true of classification-based approaches
- Other approaches assign a score to all points
 - This score measures the degree to which an object is an anomaly
 - This allows objects to be ranked
- In the end, you often need a binary decision
 - Should this credit card transaction be flagged?
 - Still useful to have a score

Variants of Anomaly Detection Problems

- Given a data set D, find all data points $x \in D$ with anomaly scores greater than some threshold t
- Given a data set D, find all data points $x \in D$ having the top-n largest anomaly scores

• Given a data set D, containing mostly normal (but unlabeled) data points, and a test point x, compute the anomaly score of x with respect to D

Model-Based Anomaly Detection

- Build a model for the data
 - Unsupervised
 - Anomalies are those points that don't fit well
 - Anomalies are those points that distort the model
 - Examples:
 - Statistical distribution
 - Clusters
 - Graph
 - Supervised
 - Anomalies are regarded as a rare class
 - Need to have training data

Additional Anomaly Detection Techniques

- Proximity-based
 - Anomalies are points far away from other points
 - Can detect this graphically in some cases
- Density-based
 - Low density points are outliers
- Pattern matching
 - Create profiles or templates of typical but important events or objects
 - Algorithms to detect these patterns are usually simple and efficient

Visual Approaches

- Boxplots or scatter plots
- Limitations
 - Not automatic
 - Subjective

Boxplots (Detail)

- 25 % of data is less than Q1
- 75 % of data is less than Q2
- IQR = Q3 Q2

Example:

$$IQR = Q3 - Q1$$

P is an Outlier if P > Q3 + 1.5 IQR

P is an Outlier if P < Q1 - 1.5 IQR

P is an Extreme Outlier if P > Q3 + 3 IQR

P is an Extreme Outlier if P < Q1 - 3 IQR

Statistical Approaches

- Probabilistic definition of an outlier:
 - An outlier is an object that has a **low probability** with respect to a probability distribution model of the data.

Usually assume a parametric model describing the distribution of the data (e.g., normal distribution)

- Approaches:
 - (1) Statistical test
 - Example: Grubbs' Test
 - Detect outliers in univariate data
 - Assume data comes from normal distribution
 - (2) Likelihood Approach
- Issues
 - Identifying the distribution of a data set
 - Heavy tailed distribution
 - Number of attributes
 - Is the data a mixture of distributions?

Statistical-based – Likelihood Approach

- Assume the data set D contains samples from a mixture of two probability distributions:
 - *M* (majority distribution)

$$D = (1 - \lambda) M + \lambda A$$

- A (anomalous distribution)
- General Approach:
 - ullet Initially, assume all the data points belong to M
 - Let $LL_t(D)$ be the log likelihood of D at time t (LL is log likelihood)
 - For each point x_t that belongs to M, move it to A
 - Let $LL_{t+1}(D)$ be the new log likelihood.
 - Compute the difference, $\Delta = LL_t(D) LL_{t+1}(D)$
 - If $\Delta > c$ (some threshold), then x_t is declared as an anomaly and moved permanently from M to A

Statistical-based – Likelihood Approach

- Data distribution, $D = (1 \lambda) M + \lambda A$
- M is a probability distribution estimated from data
 - Can be based on any modeling method
- A is initially assumed to be uniform distribution
- Likelihood at time t:

$$L_{t}(D) = \prod_{i=1}^{N} P_{D}(x_{i}) = \left((1 - \lambda)^{|M_{t}|} \prod_{x_{i} \in M_{t}} P_{M_{t}}(x_{i}) \right) \left(\lambda^{|A_{t}|} \prod_{x_{i} \in A_{t}} P_{A_{t}}(x_{i}) \right)$$

$$LL_{t}(D) = \left| M_{t} \middle| \log(1 - \lambda) + \sum_{x_{i} \in M_{t}} \log P_{M_{t}}(x_{i}) + \left| A_{t} \middle| \log \lambda + \sum_{x_{i} \in A_{t}} \log P_{A_{t}}(x_{i}) \right|$$

Strengths/Weaknesses of Statistical Approaches

- Firm mathematical foundation
- Can be very efficient
- Good results if distribution is known
- In many cases, data distribution may not be known
- For high dimensional data, it may be difficult to estimate the true distribution
- Anomalies can distort the parameters of the distribution

Proximity/Distance-Based Approaches

- Approach 1: A point x is an outlier if at least fraction p of the points in the dataset lies greater than distance d from the object x
 - You need to specify d and p

- Approach 2: The outlier score of an object is the distance to its k th nearest neighbor
 - You need to specify k

One Nearest Neighbor - One Outlier

One Nearest Neighbor - Two Outliers

0.55

In the The outlier score of an object is the distance to its k th NN. Clusters with less than or equal t points can have high score.

- A. True
- B. False

Five Nearest Neighbors - Small Cluster

Five Nearest Neighbors - Differing Density

Strengths/Weaknesses of Distance-Based Approaches

- Simple
- Expensive $O(n^2)$
- Sensitive to parameters
- Sensitive to variations in density
- Distance becomes less meaningful in high-dimensional space

Density-Based Approaches

- Density-based Outlier: The outlier score of an object is the inverse of the density around the object.
- Density definitions:
 - One definition: Inverse of distance to *k'th* neighbor
 - Another definition: Inverse of the average distance to k neighbors
 - DBSCAN definition
- If there are regions of different density, this approach can have problems

Relative Density

• Consider the density of a point relative to that of its k nearest neighbors

average relative density(
$$\mathbf{x}, k$$
) = $\frac{density(\mathbf{x}, k)}{\sum_{\mathbf{y} \in N(\mathbf{x}, k)} density(\mathbf{y}, k) / |N(\mathbf{x}, k)|}$. (10.7)

Algorithm 10.2 Relative density outlier score algorithm.

- 1: $\{k \text{ is the number of nearest neighbors}\}$
- 2: for all objects x do
- 3: Determine $N(\mathbf{x}, k)$, the k-nearest neighbors of \mathbf{x} .
- 4: Determine $density(\mathbf{x}, k)$, the density of \mathbf{x} , using its nearest neighbors, i.e., the objects in $N(\mathbf{x}, k)$.
- 5: end for
- 6: for all objects x do
- 7: Set the outlier $score(\mathbf{x}, k) = average \ relative \ density(\mathbf{x}, k)$ from Equation 10.7.
- 8: end for

Relative Density Outlier Scores

Strengths/Weaknesses of Density-Based Approaches

- Simple
- Expensive $O(n^2)$
- Sensitive to parameters
- Density becomes less meaningful in high-dimensional space

Clustering-Based Approaches

- Clustering-based Outlier: An object is a clusterbased outlier if it does not strongly belong to any cluster
 - For prototype-based clusters, an object is an outlier if it is not close enough to a cluster center
 - For density-based clusters, an object is an outlier if its density is too low
 - For graph-based clusters, an object is an outlier if it is not well connected
- Other issues include the impact of outliers on the clusters and the number of clusters

Distance of Points from Closest Centroids

Relative Distance of Points from Closest Centroid

Strengths/Weaknesses of Distance-Based Approaches

Simple

- Many clustering techniques can be used
- Can be difficult to decide on a clustering technique
- Can be difficult to decide on number of clusters

Outliers can distort the clusters

Participant Leaders

Points Participant Points Participant