

Pertemuan 5

LOGIKA PROPOSISI

Pernyataan

- Logika proposisi berisi pernyataan-pernyataan (tunggal/majemuk)
- Pernyataan : kalimat deklarasi yang dinyatakan dengan huruf-huruf kecil.
- Pernyataan mempunyai sifat dasar yaitu benar atau salah tetapi tidak keduanya

Contoh pernyataan

Contoh:

- Bilangan biner digunakan dalam sistem digital
- 2. Sistem analog lebih akurat daripada sistem digital
- 3. Pentium IV lebih bagus kinerjanya dan lebih mahal harganya daripada pentium III

Kalimat yang <u>tidak</u> termasuk pernyataan: *kalimat perintah, pertanyaan, keheranan, harapan, kalimat* ... walaupun ...

Pernyataan Majemuk

□ Negasi

Sebuah pernyataan yang meniadakan pernyataan yang ada, dapat dibentuk dengan menulis 'adalah salah bahwa...' atau dengan menyisipkan kata 'tidak'

notasi: ~p, p'

Contoh:

p = keyboard merupakan output device

~ p = adalah salah bahwa keyboard merupakan output device

Tabel kebenaran negasi dan pernyataan konjungsi

- Kebenaran sebuah negasi adalah lawan dari kebenaran pernyataannya.
- Tabel kebenaran negasi:

р	~p
+	_
_	+

□ Konjungsi

Pernyataan gabungan dari dua pernyataan dengan kata hubung 'dan'

Notasi: p∧q , pq , p×q

Contoh Konjungsi

Contoh:

- p = sistem analog adalah suatu sistem dimana tanda fisik/kuantitas, dapat berbeda-beda secara terus menerus melebihi jarak tertentu.(benar)
- q = sistem digital adalah suatu sistem dimana tanda fisik/kuantitas, hanya dapat mengasumsikan nilai yang berlainan. (benar)
- r = sistem bilangan desimal adalah sistem bilangan yang digunakan dalam sistem digital. (salah)

Maka:

- p ∧ q adalah konjungsi yang benar
- q ^ r adalah konjungsi yang salah

Pernyataan disjungsi dan tabel kebenarannya

Disjungsi

Adalah pernyataan gabungan dari dua pernyataan dengan kata hubung 'atau'

Notasi: $p \vee q$, p + q

р	q	p ∧ q
+	+	+
+	_	_
_	+	_
_	_	_

р	q	$p \vee q$
+	+	+
+	_	+
_	+	+
_		_

Contoh disjungsi

- p = keyboard adalah input device (benar)
- q = harddisk adalah alat penentu kecepatan komputer (salah)
- r = processor adalah otak dari komputer (benar)

Maka:

- p v q adalah disjungsi yang benar
- p v r adalah disjungsi yang benar

Jointdenial (NOR)

Jointdenial(Not OR /NOR)

Adalah pernyataan gabungan yang dihasilkan dari menegasikan disjungsi.

Notasi: $p \downarrow q$, $\sim (p \lor q)$

р	q	p v q	p↓q
+	+	+	_
+	_	+	_
_	+	+	_
_	_	_	+

Not And (NAND)

■ Not And (NAND)

Adalah pernyataan gabungan yang dihasilkan dari menegasikan konjungsi.

Notasi: \sim (p \land q), p \uparrow q

р	q	(p ^ q)	p↑q
+	+	+	_
+	_	_	+
_	+	_	+
_	_	_	+

Exlusive OR (EXOR)

☐ Exlusive OR(EXOR)

Adalah pernyataan gabungan di mana salah satu p atau q (tidak keduanya) adalah benar

Notasi : p ⊕ q

р	q	p ⊕ q
+	+	_
+	_	+
_	+	+
_	_	_

Exlusive NOR(EXNOR)

Exlusive NOR(EXNOR)

Adalah pernyataan gabungan dimana nilai kebenarannya benar bila kedua pernyataannya benar atau salah.

Notasi : ~(p ⊕ q)

р	q	~(p ⊕ q)
+	+	+
+	1	1
1	+	1
_	_	+

Kesetaraan Logis

KESETARAAN LOGIS

Dua buah pernyataan yang berbeda dikatakan setara/equivalen bila nilai kebenarannya sama

Contoh:

- Tidak benar bahwa aljabar linier adalah alat matematika dasar untuk disain logika.(benar)
- 2. Aljabar boole adalah alat matematika dasar untuk disain logika.(benar)

Contoh Kesetaraan Logis

Contoh:

Selidiki apakah kedua proposisi di bawah ini setara:

- 1. Tidak benar bahwa sistem bilangan biner dipergunakan dalam sistem digital atau sistem digital hanya dapat mengasumsikan nilai yang berlainan.
- 2. Sistem bilangan biner tidak dipergunakan dalam sistem digital dan tidak benar bahwa sistem digital hanya dapat mengasumsikan nilai yang berlaianan.

(hint: buktikan : \sim (p \vee q) \equiv \sim p \wedge \sim q)

Aljabar Proposisi

Aljabar proposisi adalah hukum-hukum aljabar yang dapat digunakan dalam proposisi.

Hukum-hukum tersebut adalah:

1. Idempoten

$$p \lor p \equiv p$$

$$q \wedge q \equiv p$$

3. Distributif

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

$$p \wedge (q \wedge r) \equiv (p \wedge q) \vee (p \wedge r)$$

2. Assosiatif

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$(p \land q) \land r \equiv p \land (q \land r)$$

4. Komutatif

$$p \lor q \equiv q \lor p$$

$$p \wedge q \equiv q \wedge p$$

Hukum-hukum aljabar#2

5. Identitas

$$p \lor f \equiv p$$

 $p \lor t \equiv t$
 $p \land f \equiv f$
 $p \land t \equiv p$

7. Komplemen

$$p \lor \sim p \equiv t$$
 $p \land \sim p \equiv f$
 $\sim t \equiv f$
 $\sim f \equiv t$

6. Involution

8. De Morgan's

$$\sim (p \land q) \equiv \sim p \lor \sim q$$

 $\sim (p \lor q) \equiv \sim p \land \sim q$

Contoh pemakaian hukum aljabar

Contoh pemakaian hukum aljabar proposisi Sederhanakan proposisi berikut ini:

1. $p \wedge (p \vee q)$

$$p \land (p \lor q) \equiv (p \lor f) \land (p \lor q) \dots (hk.identitas)$$

$$\equiv p \lor (f \land q) \dots (hk.distribusi)$$

$$\equiv p \lor f \dots (hk.identitas)$$

$$\equiv p \dots (hk.identitas)$$

2. Sederhanakan proposisi: p ∨ (p ∧ q)

IMPLIKASI DAN BIIMPLIKASI

Implikasi

<u>Jika memakai Ms Word</u> **maka** <u>windows adalah sistem</u> <u>operasinya</u>

Artinya: Ms word tidak dapat digunakan tanpa windows tetapi windows dapat digunakan tanpa Ms word

Contoh pernyataan di atas disebut pernyataan beryarat (conditional statement)

Notasi: $p \rightarrow q$

Tabel kebenaran Implikasi dan contoh

Tabel kebenaran impilkasi

р	q	$p\toq$
+	+	+
+	_	_
_	+	+
_		+

Contoh: Misalkan pernyataan p adalah benar, q adalah salah dan r adalah benar, tentukan kebenaran proposisi berikut:

$$(p \lor q) \rightarrow \sim r$$

Variasi Implikasi

Jika implikasi: $p \rightarrow q$

Maka: Konversnya : $q \rightarrow p$

Inversnya : $\sim p \rightarrow \sim q$

Kontrapositipnya : $\sim q \rightarrow \sim p$

Contoh:

Tentukan konvers, invers, dan kontrapositif dari proposisi berikut:

Jika Ms Word aplikatifnya maka windows sistem operasinya

Tabel Kebenaran Variasi Implikasi

Tabel kebenaran variasi implikasi:

р	q	~p	~q	$p \rightarrow q$	$\sim q \rightarrow \sim p$	$q \rightarrow p$	$\sim p \rightarrow \sim q$
+	+	_	_	+	+	+	+
+	-	_	+	_	-	+	+
_	+	+		+	+	_	-
_	_	+	+	+	+	+	+

setara

setara

Proposisi yang saling kontrapositif memiliki nilai kebenaran yang sama Kesimpulan:

Proposisi yang saling kontrapositif mempunyai nilai kebenaran yang sama(equivalen)

Contoh:

Buktikan bahwa:

Jika x² bilangan genap, maka x juga bilangan genap

Jawab:

Kontrapositif dari implikasi di atas adalah:

Jika x bukan *bilangan genap*, maka x² juga bukan bilangan genap

Lanjutan jawaban proposisi kontrapositif

Setiap bilangan bulat bukan genap adalah ganjil, sehingga jika x ganjil ditulis sebagai

$$x = 2k + 1$$
 (k bil. Bulat) akibatnya:

$$X^{2} = (2k + 1)^{2}$$

$$= 4k^{2} + 4k + 1$$

$$= 2(2k^{2} + 2k) + 1$$

Karena kontrapositifnya benar akibatnya implikasinya juga benar.

Biimplikasi

Biimplikasi

Contoh pernyataan biimplikasi:

Ms word jika dan hanya jika ingin membuat dokumen

Notasi: $p \leftrightarrow q$

Kebenaran biimplikasi:

p	q	$p \leftrightarrow q$
+	+	+
+	_	_
	+	
_	_	+

Argumentasi

Argumentasi adalah kumpulan pernyataan – pernyataan atau premis-premis atau dasar pendapat serta kesimpulan(konklusi)

Notasi:

Q(p.g)	P,Q, masing-masing disebut premis
•	{P,Q,} bersama-sama disebut hipotesa
∴C(p,q,)	C adalah kesimpulan/konklusi

Contoh argumentasi

Contoh:

Jika biner maka disain logika Jika disain logika maka digital

:. Jika biner maka digital

Kebenaran/validitas Argumen

Nilai kebenaran argument tergantung dari nilai kebenaran masing-masing premis dan kesimpulannya.

Suatu argumen dikatakan benar bila masing-masing premisnya benar dan kesimpulannya juga benar.

Argumen dan notasi

Contoh 1:

Jika biner maka disain logika Jika disain logika maka digital

Jika biner maka digital

Argumen tersebut dapat ditulis dengan notasi:

$$p \rightarrow q$$
 disebut premis 1

$$q \rightarrow r$$
 disebut premis 2

$$\therefore$$
 p \rightarrow r disebut konklusi

Perhatikan Tabel kebenaran

Premis dan konklusi benar maka valid

р	q	r	p→q	$q \rightarrow p$	p →r
+	+	+	+	+	4
+	+	1	+	_	_
+	_	+	ı	+	+
+	_	1	I	+	-
_	+	+	+	-	+
_	+		+	_	+
_	_	+	+	+	+
_	_	_	+	+	4

Semua premis dan konklusi benar sehingga argumentasi di atas valid.

Bentuk-bentuk dasar menarik kesimpulan#1 Bentuk-bentuk dasar menarik kesimpulan

1. Conjunction

$$p$$
 q
 $\therefore p \wedge q$

2. Addition

3. Construction Dilemma

$$(p \rightarrow q) \wedge (r \rightarrow s)$$
 $p \vee r$

Bentuk-bentuk dasar menarik kesimpulan#2

4. Modus Ponens

$$p \rightarrow q$$
 p
 $\therefore q$

5. Modus Tollens

$$p \rightarrow q$$
 $\sim q$
 $\therefore \sim p$

6. Hypothetical syllogism

$$p \rightarrow q$$
 $q \rightarrow r$
 $\therefore p \rightarrow r$

8. Disjunctive syllogism

7. Simplification

$$\frac{p \wedge q}{\therefore p}$$

Bentuk-bentuk dasar menarik kesimpulan#3

9. Destructive Dilemma

$$\frac{(p \to q) \wedge (r \to s)}{\sim p \vee \sim s}$$

$$\therefore \sim p \vee \sim r$$

10. Absorption

$$\frac{p \to q}{\therefore p \to (p \land q)}$$

Contoh penarikan kesimpulan Contoh pemanfaatan:

Buatlah kesimpulan dari argumen di bawah ini sehingga argumen tersebut valid

- Jika hasilnya akurat maka sistemnya digital
- 2. Jika sistem digital maka menggunakan bil. Biner
- 3. Hasilnya akurat

∴ ?

Jawab:

Premis 1 : $p \rightarrow q$

Premis 2 : $q \rightarrow r$

Premis 3: p

: ?

Penarikan kesimpulan dengan hypothetical syllogism

Dengan hypothetical syllogism

$$p \to q$$

$$r$$

$$p \to r$$

Sehingga argumentasi dapat ditulis kembali:

$$\begin{array}{c}
p \rightarrow r \\
\hline
p \\
\hline
\cdot 2
\end{array}$$

Dengan Modus Ponen, konklusinya adalah r

Pembuktian dengan tabel kebenaran

р	q	r	p→q	q →r
+	+	+	+	+
+	+	_	+	_
+	_	+	_	+
+	_	_	_	+
_	+	+	+	+
_	+	_	+	_
_	_	+	+	+
_	_	_	+	+
		•	1	7

•

•

1

2