Hello!

Members:

Willie Xia - xiaw@rpi.edu

Iris Liu - liui2@rpi.edu

Min Yue - yuem@rpi.edu

Helen Yuan - yuanh2@rpi.edu

Our Updates is Included in the Latter Portion of our Presentation

Utilizing Deep Learning To Classify Tweets

TextBlob

NLTK (**N**atural **L**anguage **T**ool**K**it)

scikit-learn

spaCy

pytext

VADER (Valence Aware Dictionary and sEntiment Reasoner)

Rule-based

Automatic

Hybrid

The Approach...

A Pseudo-Text Blob Network

https://monkeylearn.com/sentiment-analysis/

Naive Bayes Classification

The Advantages...

- Flexible and can work around multiple parameters
- Easily modifiable to calculate different properties
- Intuitive and not as "black-box" as other sentiment models

The Disadvantage...

- Is not in depth with one property
- Not as accurate as other pre-built sentiment models
- Vulnerable to vocabulary that the model wasn't trained with

Tweet 1: "This steak is great." Tokens: [THIS, STEAK, IS, GREAT]

Predetermined Sentiment: 1 (positive)

"THIS"	1
"STEAK"	1
"IS"	1
"GREAT"	1

Tweet 2: "this steak is bad" ———— Tokens: [THIS, STEAK, IS, BAD]

Predetermined Sentiment: -1 (negative)

"THIS"	1, -1
"STEAK"	1, -1
"IS"	1, -1
"GREAT"	1
"BAD"	-1

Result:

"THIS"	1, -1	Average value: 0 (neutral)
"STEAK"	1, -1	Average value: 0 (neutral)
"IS"	1, -1	Average value: 0 (neutral)
"GREAT"	1	Average value: 1 (positive)
"BAD"	-1	Average value: -1 (negative)

Result:

"THIS"	1, -1
"STEAK"	1, -1
"IS"	1, -1
"GREAT"	1
"BAD"	-1

"I don't like" Tokens: [I, DONT, LIKE]

Predetermined Sentiment: -1 (negative)

"["	"DONT"	-1
	"LIKE"	-1
		-1
"DONT"	"["	-1 011
	"LIKE"	-1
		-1
"LIKE"	"]"	-1
	"DONT"	-1
		-1

"I like" — Tokens: [I, LIKE]

Predetermined Sentiment: 1 (positive)

"["	"DONT"	-1
	"LIKE"	-1, 1
		-1, 1
"DONT"	"["	-1 011
	"LIKE"	-1
		-1
"LIKE"	"["	-1, 1
	"DONT"	-1
		-1, 1

"I", "DONT"
"I", "LIKE"
"I"
"DONT", "I"
"DONT", "LIKE"
"DONT"
"LIKE", "I"
"LIKE", "DONT"
"LIKE", "DONT"

average value: -1 average value: 0 average value: 0 average value -1 average value -1 average value 0 average value 0 average value 0

"["	"DONT"	-1
	"LIKE"	-1, 1
		-1, 1
"DONT"	"["	-1 011
	"LIKE"	-1
		-1
"LIKE"	"["	-1, 1
	"DONT"	-1
		-1, 1

The performance of our model's sentiment analysis all depends on the data we train it with.

- Accuracy
- Balance (bias)
- Amount
- Optional: multiple sources?

Current state of Naive Bayes Sentiment Analysis

- More/Deeper Layers
- Weighting, and Smoothing
- Word definitions
- True understanding of words/topics

Filtration using Panda framework

Naive Bayes model

The Sentiment Scale

Sample Output 1 (stay home, and stay safe!)

STAY

STAY: 0.32551282051282066

STAY, AND: 0.3387962962962965

STAY, HOME: 0.4065000000000002

STAY, SAFE: 0.5

Sample Output 1 (stay home, and stay safe!)

AND

AND: 0.14948988511488512

AND, STAY: 0.3387962962965

AND, HOME: 0.3048648648648651

Sample Output 1 (stay home, and stay safe!)

SAFE

SAFE: 0.5

SAFE, STAY: 0.5

SAFE, HOME: 0.5

sentence sentiment: 0.381602887263304

Sample Output 2 (coronavirus is so bad and I hate it)

CORONAVIRUS

CORONAVIRUS: 0.15625

CORONAVIRUS, AND: 0.25

CORONAVIRUS, I: 0.25

Sample Output 2 (coronavirus is so bad and I hate it)

IS

IS: 0.08925246512746521

IS, AND: 0.28905935613682093

IS, IT: -0.008189655172413792

IS, I: 0.36215277777777777

IS, SO: 0.36

Sample Output 2 (coronavirus is so bad and I hate it)

BAD

BAD: -0.41025641025641024

BAD, AND: -0.5374999999999999

BAD, SO: -0.69999999999998

sentence sentiment: -0.02017079669635011

"Weather is so gorgeous but we still have Corona out here..."

44

"Weather is so gorgeous but we still have Corona out here..."

TextBlob sentence sentiment: 0.7

Our sentence sentiment:

0.3802296180222242

Issue: Dataset Problems

- Sentiment ratings in the training data is skewed positive
- Some Tweets appear as neutral when they should be negative or positive
- Examples:
 - "Kill it with fire" 0.0
 - "if corona gets sean payton ima k*** myself" **0.0**

Next Step

Achieve by Aug 21st

Graph representation

Using recent tweets to test our Al

Feature: Tweet prediction (month, who, topics)

Further Goals

- Build our own training datasets
- Confidence level of positive, negative, and neutral posts
- Input a topic and will show the sentiment of the topic from Twitter
- Add GUI
- Remove stopwords/Learn word weight
- Add deeper layers to the model

Thanks!

Any questions?

References

- https://github.com/sloria/TextBlob
- https://www.softwareadvice.com/resources/w hat-is-text-analytics/
- https://monkeylearn.com/sentiment-analysis/

Changes Made Since 8/17

- Implemented word weight distribution in order to achieve more accurate values, as some words may have higher sentimental impact to the sentence than others.
- Created plots demonstrating our model and its output.
- Included substantially more data to train and test our model.
- Was able to execute more testing with more data.
- Added a tag system, where words could be related to tags given in training

Results

- Achieved a fully functional model that determines the sentiment value of a sentence; it accounts for word weight and previously encountered word pairings.
- Included a tag predictor to our model, which estimates what tag a sentence belongs to based off of what tags were given during training.

Data Visualization

Data Visualization

Comparisons

Tweet	TextBlob	NLTK	Google Cloud Natural Language API	Public Emotions
Weather is so gorgeous but we still have Corona out here	0.7	0.4693	0.3	0.513980579743 914
corona is destroying everything and I'm so sad	-0.4833333 33	-0.822	-0.8	-0.097291788774 5161
Kill it with fire	0	-0.7964	-0.5	0.110075443266 489

Responsibilities

Willie Xia

Planned and initialized the training method - focused mostly on parsing and tokenization.

Managed group work spaces.

Iris Liu

Crafted the datasets and helped out through various small tasks like comparing our group's result to other existing sentiment analyzers

Min Yue

Planned and wrote the training method, the analysis method, and the tag system for the Naive Bayes model

Helen Yuan

Crafted the datasets, created data visualizations, manage GitHub repo, helped out with the analysis method, and worked on documented our work

Future Goals

- Deeper layers
- Better of understanding english
- Nouns? Adjectives? Etc.
- Big one: Word definitions
- Sentence formulation