平成 29 年度 計算機科学実験及演習 3A (3 回生前期学生実験 HW 中間報告)

機能設計仕様書

提出期限:5月11日

提出日:5月11日

第 22 班

1029272870 谷 勇輝

目次

1	コンポーネント分割と担当	2
	1.1 コンポーネント分割	2
	1.2 担当	
0	bl 立p / L-14公	0
2	外部仕様	
	2.1 EX	
	2.1.1 概要	
	2.1.2 構造	
	2.1.3 動作	
	2.2 MA	
	2.2.1 概要	
	2.2.2 構造	
	2.2.3 動作	
	2.3 WB	9
	2.3.1 概要	9
	2.3.2 構造	9
	2.3.3 動作	10
	2.4 TestEnvironment	11
	2.4.1 概要	11
	2.4.2 構造	11
	2.4.3 動作	12
3	内部仕様	13
_	3.1 EX	
	3.1.1 構造	
	3.1.2 動作	
	3.2 MA	
	3.2.1 構造	
	3.2.2 動作	
	3.3 WB	
	3.3.1 構造	
	3.3.2 動作	
	3.4 Test Environment	
	3.4.1 構造	
	3.4.2 動作	18

1 コンポーネント分割と担当

1.1 コンポーネント分割

プロセッサは、最上位レベルの分割として、図1に示す8つのコンポーネントで構成される。各コンポーネント内部の設計(次レベルの分割等)はそれぞれの設計担当者が行う。

図 1 コンポーネント分割

1.2 担当

2017年5月11日現在、私が設計・実装を担当したプロセッサのコンポーネントは以下のとおりである。

- \bullet EX
- MA
- WB

また、本体プロセッサとは別に、以下の設計・実装も担当した。

● FPGA ボード入出力用環境 TestEnvironment

2 外部仕様

2.1 EX

2.1.1 概要

EX モジュールは、演算を担当する EX フェーズの一連の機能を提供する。 上流モジュール ID からの制御に応じて同期的に動作し、内包する ALU、 シフタを用いて下流モジュール MA へ演算結果を渡す。また、分岐の判断を 行い IF に結果を伝搬する。

2.1.2 構造

全体内の位置づけを図2に、入力構造を表1に、出力構造を表2に示す。

図 2 EX コンポーネントの位置づけ

表 1 入力構造 (EX)

入力信号名	bit 幅	接続	内容
clock	1		クロック信号
reset	1		リセット信号 (負論理)
PC	16	ID	プログラムカウンタ値+1
WBaddress	3	ID	レジスタ書き込みアドレス (or 分岐種類)

control	6	ID	制御信号
ALUcontrol 4 ID 演算器の機能		ID	演算器の機能制御コード
immediate	16	ID	即値(or 演算器の第2入力)
Rs_Ra	16	ID	演算器の第2入力(or メモリの指定アドレス)
Rd_Rb	16	ID	演算器の第1入力

表 2 出力構造 (EX)

出力信号名	bit 幅	接続	同期	内容
IMnextPC_	16	IF	×	分岐先プログラムカウンタ値
branch_	1	IF	×	分岐判定(0:分岐無し1:分岐有り)
WBaddress_	3	MA	0	レジスタ書き込みアドレス
control_	4	MA	0	制御信号
result_	16	MA	0	演算結果
Ra_	16	MA	0	メモリの指定アドレス
ConditonCode_	4	MA	0	コンディションコード (S,Z,C,V)

2.1.3 動作

分岐処理 (ID→EX→IF)

- PC (プログラムカウンタ+1 の値) + immediate (即値) を IMnextPC_(分岐先 PC アドレス) として出力
- control [4] (分岐制御信号 Branch) が 1 (分岐命令)であり、直前の演算のコンディションコードの状態が WBaddress(分岐種類コード cond)の示す分岐条件(表 3)に合致するならば、branch_(分岐判定)に 1 を出力

表 3 分岐コードと分岐条件の対応

		• • -
分岐コード	分岐条件	主な使用法
000	Z が1	直前の演算結果が0
001	S XOR V が 1	直前の減算結果が理論的に負
010	Zが1または	直前の減算結果が理論的に0以下
	S XOR V が 1	
011	Z が 0	直前の演算結果が0でない

演算処理(ID→EX→MA)

- control[5] (第 2 入力制御信号 ALUSrc)が 0 ならば演算に使用 する第 2 入力として Rs_Ra を選択
- control[5] (第2入力制御信号 ALUSrc)が1 ならば演算に使用する第2入力として immediate (即値)を選択
- 第1入力を Rd_Rb、第2入力を選択した信号として、 ALUControl (演算器機能制御コード) の値に従って演算を行い(表4)、clock と同期して演算結果を result_に出力

表 4 演算器の機能制御コード

機能コード	動作	代用コード
0000	加算 (+)	
0001	減算 (-)	0101
0010	論理積 (AND)	
0011	論理和 (OR)	
0100	排他的論理和 (XOR)	
0110	第2入力を出力	1100 ,1101 ,1111
1000	左論理シフト	
1001	左循環シフト	
1010	右論理シフト	
1011	右算術シフト	

● 演算結果に従って4つのコンディションコード(表5)を設定し、 clock と同期して ConditionCode に出力

表 5 コンディションコード

内容	例外
負ならば1	
0ならば1	
桁上げがあれば1	論理演算、第2入力出力、左循環シフト演算では0
	その他のシフト演算では最後
オーバーフローで 1	にシフトされた値で判定 シフト演算では 0
	負ならば1 0 ならば1

- WBaddress (レジスタ書き込みアドレス)を clock と同期して WBaddress_にそのまま出力
- Rs_Ra(メモリの書き込みアドレス)を clock と同期して Ra_に そのまま出力
- control のうち、使用していない下 4bit を clock と同期して control_に出力

リセット機構(外部→EX→MA)

● clock 同期時 reset が 0 であれば全ての同期式出力を 0 にする

2.2 MA

2.2.1 概要

MA モジュールは、データメモリの書き込み、読み出しを管理する MA フェーズの一連の機能を提供する。

上流モジュール EX を伝播してきた制御信号に応じて同期的に動作し、内包するメモリを操作して下流モジュール WB に結果を伝搬する。

2.2.2 構造

全体内の位置づけを図3に、入力構造を表6に、出力構造を表7に示す。

図 3 MA コンポーネントの位置づけ

表	6	ス	力構浩	$(M \Delta)$

入力信号名	bit 幅	接続	内容
clock	1		クロック信号
reset	1		リセット信号 (負論理)
WBaddress	3	EX	レジスタ書き込みアドレス
control	4	EX	制御信号
ALUresult	16	EX	演算の結果
Ra	16	EX	メモリの指定アドレス

表 7 出力構造 (MA)

出力信号名	bit 幅	接続	同期	内容
WBaddress_	3	WB	0	レジスタ書み込みアドレス
control_	2	WB	0	制御信号
ALUresult_	16	WB	0	演算結果
LDresult_	16	WB	0	メモリ読み出し結果

2.2.3 動作

メモリ処理 (EX→MA→WB)

- control[3](メモリ読み出し制 a 御信号 MemRead) が 1 なら ばメモリから Ra(メモリ指定アドレス)番地に格納されてい るデータを読み出し、clock と同期して LDresult に出力
- control[2](メモリ書き込み制御信号 MemWrite) が 1 ならば メモリの Ra(メモリ指定アドレス)番地に ALUresult を格納
- WBaddress (レジスタ書き込みアドレス)を clock と同期して WBaddress_にそのまま出力
- ALUresult (演算結果)を clock と同期して ALUresult_にそ のまま出力
- control のうち、使用していない下 2bit を clock と同期して control_に出力

リセット機構(外部→MA→WB)

● clock 同期時 reset が 0 であれば全ての同期式出力を 0 にする

2.3 WB

2.3.1 概要

WB モジュールは、レジスタ書き込みを行う WB フェーズの機能の一部を提供する。

上流モジュール MA を伝播してきた制御信号に応じて動作し、ID モジュールにメモリ書き込みを依頼する。クロックと書き込みの管理は ID モジュールに委任する。

2.3.2 構造

全体内の位置づけを図4に、入力構造を表8に、出力構造を表9に示す。

図 4 WB コンポーネントの位置づけ

-	_	 	構造	/τ	TTD	١
表	8	 7776	田 十二	- (\	ᄱ	1
1X	•	 	TH 1	٠,		,

入力信号名	bit 幅	接続	内容
clock	1		クロック信号 (拡張時用)
WBaddress	3	MA	レジスタ書き込みアドレス
control	2	MA	制御信号
ALUresult	16	MA	演算結果
LDresult	16	MA	メモリ読み出し結果

表 9 出力構造 (WB)

出力信号名	bit 幅	接続	同期	内容
RegWrite_	1	ID	×	レジスタ書き込み制御
WBaddress_	3	ID	×	レジスタ書み込みアドレス
WBdata_	16	ID	×	レジスタ書き込みデータ

2.3.3 動作

レジスタ書き込みデータの選択 (MA→WB→ID)

- control[0] (レジスタ書き込みデータ制御信号 MemtoReg)が 0 ならば、ALUresult(演算結果)を WBdata_に出力
- control[0] (レジスタ書き込みデータ制御信号 MemtoReg)が 1 ならば、LDresult(メモリ読み出し結果)を WBdata_に出力
- WBaddress (レジスタ書き込みアドレス)を WBaddress_にそ のまま出力
- control のうち、使用していない 1bit (第 1 番信号)を RegWrite_ に出力

2.4 TestEnvironment

2.4.1 概要

FPGA ボード (PowerMedusa MU500-RX/RK, 拡張 MU500-7SEG)のほぼ全ての入出力を簡易に利用できる環境を提供する。主な特徴は以下の3点である。

- 7segLEDは、信号線を擬似出力に接続するだけで16進数を表示可能。
- 拡張ボードを含む全ての 7segLED について、任意のパターンを独立に表示可能。(72 個の 7segLED が全て使用可能となる)
- 全ての入力と拡張 LED ランプを除く全ての出力が利用可能

各種入力は FPGA ボードの入力に、各種出力は FPGA ボードの出力に対応している。接続対象のモジュールを TestEnvironment モジュール(以下、環境モジュールと示す)の中に配置し、接続対象モジュールの入出力を環境モジュールの入出力や擬似入出力に接続することで、あたかも外部の入出力に直接繋いだような状態とできる。

2.4.2 構造

入力構造を表 10 に、出力構造を表 11 に示す。内部の擬似入出力について は内部仕様に記す。

表 10 入力構造(TestEnvironment)

入力名	幅	内容	接続ピン
clock	1	20MHz 固定クロック	A12
clock2	1	可変クロック	B12
dipSW_A	8	ディップスイッチ群A	G11,G10,F10,E10,D10,C10,B10,A10
dipSW_B	8	ディップスイッチ群B	F13,E13,D13,C13,B13,A13,F11,E11
rotSW_A	4	ローテーションスイッチA	F14,E14,B14,A14
rotSW_B	4	ローテーションスイッチB	D15,C15,B15,A15
pushSW_A	5	プッシュスイッチ群A行	A16,H15,G15,F15,E15
pushSW_B	5	プッシュスイッチ群B行	A17,G16,F16,E16,B16
pushSW_C	5	プッシュスイッチ群C行	B18,A18,D17,C17,B17
pushSW_D	5	プッシュスイッチ群D行	A20,D19,C19,B19,A19

表 11 出力構造(TestEnvironment)

出力名	幅	内容	接続ピン
LED7segA_D	8	UI ボード 7segLED,A~D	A3,B6,A6,A5,B4,B3,A4,B5
LED7segE_H	8	UI ボード 7segLED,E~H	C6,F7,E7,C7,B7,D6,A7,D7
slctA_D	4	UI 7seg セレクタ A~D	E6,E5,C4,C3
slctE_H	4	UI 7seg セレクタ E~H	G7,G8,G9,H10
LED	8	UI ボード LED ランプ群	F9,E9,B9,A9,F8,C8,B8,A8
BZ	1	UI ボード ブザー	B20
LED7ep0	8	拡張ボード 7segLED 0 列	Y6,AB5,W6,AB4,AA5,AA4,V5
LED7ep1	8	拡張ボード 7segLED 1 列	U8,AA7,T8,V7,Y7,U7,V6
LED7ep2	8	拡張ボード 7segLED 2 列	V9,AB8,U9,W8,AA8,V8,Y8,AB7
LED7ep3	8	拡張ボード 7segLED 3 列	AB10,W10,AA10,AB9,V10,AA9,U10,T9
LED7ep4	8	拡張ボード 7segLED 4 列	V13,V12,U13,V11,U12,U11,T12,Y10
LED7ep5	8	拡張ボード 7segLED 5 列	V14,R14,U14,Y13,AB13,W13,AA13,T13
LED7ep6	8	拡張ボード 7segLED 6 列	W15,T15,V15,AA14,R15,W14,AB14,T14
LED7ep7	8	拡張ボード 7segLED 7 列	AB16,U16,AA16,AB15,T16,AA15,R16,U15
slctEp	8	拡張ボード 7seg セレクタ	V16,AA17,W17,AB17,Y17,AB19,AA18,AA19

2.4.3 動作

FPGA ボードの使用(ボード入力→TestEnvironment→ボード出力)

● ボードの入力を環境モジュール内に取り込み、作成した内部機構の動作に応じてボードの出力に表示する。

3 内部仕様

3.1 EX

3.1.1 構造

ブロック図を図5に示す。

図 5 EX ブロック図

3.1.2 動作

① 分岐判断 (control, WBaddress → Branch_)

control[4]==1
$$\land$$
 judge(WBaddress, ConditionCode_)
 \rightarrow Branch_ = 1

bool 関数 judge を表 12 に示す。(ConditionCode_は CC と略記)

表 12 関数 judge

WBaddress(分岐コード)	関数値	内容
000	CC[2]	Zが1でtrue
001	CC[3] ^ CC[0]	S XOR V が 1 で true
010	CC[2] (CC[3]^CC[0])	上2つのいずれかでtrue
011	!CC[2]	Zが0でtrue

② 分岐先アドレス計算 (PC, immediate → IMnextPC)

IMnextPC = PC + immediate

③ 第2入力選択 (immediate, Rs_Ra, control → In2)

control == $0 \rightarrow In2 = Rs_Ra$ control == $1 \rightarrow In2 = immediate$

④ 演算 (Rd_Rb, In2, ALUcontrol → result_)

外部仕様の表 4(演算器の機能制御コード)に従う演算@の元で、 result = Rd_Rb @ In2

演算器は、加算、減算、各種論理演算を実装した **ALU** と表 4 内にある 4 種のシフト演算を提供する**バレルシフタ**から成る。

⑤ コンディションコード設定 (result → ConditionCode_)

外部仕様の表5 (コンディションコード) に従って設定する

ConditionCode [3] = S

 $ConditionCode_[2] = Z$

 $ConditionCode_[1] = C$

 $ConditionCode_[0] = V$

設定の詳細は SIMPLE の仕様による。

その他

 $control_= control [3..0]$

WBaddress = WBaddress

 $Ra_ = Rs_Ra$

3.2 MA

3.2.1 構造

ブロック図を図6に示す。

図 6 MA ブロック図

3.2.2 動作

①メモリ書き込み (control, Ra, ALUresult → Mem)

control [3] ==1
$$\rightarrow$$
 (ALUresult \Rightarrow Mem(Ra))

②メモリ読み出し (control, Ra → LDresult_)

control [2] ==1
$$\rightarrow$$
 LDresult_ = Mem(Ra)

その他

3.3 WB

3.3.1 構造

ブロック図を図7に示す。

図 7 WB ブロック図

3.3.2 動作

① データの選択 (ALUresult, LDresult, control \rightarrow WBdata_)

control
$$[0] == 0 \rightarrow WBdata_ = ALUresult$$

control $[0] == 1 \rightarrow WBdata_ = LDresult$

その他

3.4 Test Environment

3.4.1 構造

大きく分けて、①擬似入力生成部、②ユーザースペース、③擬似出力生成部の3つの領域からなる。環境モジュールの利用者は、②内部のみを編集し、実行を行う。(図9)

図 9 TestEnvironment の主な構成

擬似入力

環境モジュール内にて入力と同等の役割をもつ擬似入力を表 13 に示す。擬似入力のビット幅は全て 1 bit である。

表 13 擬似入力

* * * * * * * * * * * * * * * * * * * *		
擬似入力名	内容	実装
clock_x4	1/4倍速クロック信号	4 進カウンタに clock を通す
clock_x8	1/8倍速クロック信号	8進カウンタに clock を通す
clock_x10	1/10 倍速クロック信号	10 進カウンタに clock を通す
clock_x100	1/100 倍速クロック信号	100 進カウンタに clock を通す
clock_x1000	1/1000 倍速クロック信号	1000 進カウンタに clock を通す
clock_x2p16	1/(2 の 16 乗)倍速クロック信号	2^16 進カウンタに clock を通す
vdd	電源	恒久的に値が1のレジスタ

擬似出力

環境モジュール内にて出力と同等の役割をもつ擬似出力を表 14 に示す。擬似出力のビット幅は全て8 bit である。

擬似出力名	内容	実装
LED_A	7segLED (UI)	LED4set モジュールを使
LED_H	の独立表示	用して時間差表示
LED_exA[07]	7segLED (拡張)	LED8set モジュールを
LED_exH[07]	の独立表示	使用して時間差表示

3.4.2 動作

LED4set モジュール(7segLED の独立表示)

7segLED は、4つ(拡張ボードは8つ)の表示盤が組になっており、組につき1つの表示パターンしか指定できない。そのため通常は同じ組の表示盤には同じパターンしか表示できない。しかし、短い時間間隔で表示盤を指定するセレクタと表示パターンを切り替えていくことにより、あたかも同じ組の表示盤に別のパターンが表示されているように見せることはできる。この機構を提供するのがLED4set モジュールである。

- LED4set は、同組の 7segLED に表示したい4つの表示パターンと clock を入力すると、1clock ごとに切り替わる1つの表示パターンと同じタイミングで切り替わるセレクタ信号を出力する。
- TestEnvironment では入力クロックとして 5MHz クロックである擬似入力 clock_x4 を使用する。