Property of Lite-on Only

FEATURES

* Current transfer ratio

```
( CTR : MIN. 50% at I_F = 5mA, V_{CE} = 5V )
```

* Isolation voltage between input and output LTV-357T

(
$$Viso = 3,750Vrms$$
)

- * Employs double transfer mold technology
- * Subminiature type

(The volume is smaller than that of conventional DIP type by as far as 30%)

* Mini-flat package:

2.0mm profile: LTV-357T

- * UL approved (No. E113898)
- * CUL approved (No. E113898, 01SC19287)
- * CSA approved (No. 1243207)
- * FIMKO approved (No. FI-16420)
- * NEMKO approved (No. P01100403)
- * DEMKO approved (No. 310475-01)
- * SEMKO approved (No. 0109173 / 01-08)
- * VDE approved (No. 094722)

APPLICATIONS

- * Hybrid substrates that require high density mounting.
- * Programmable controllers

Part No.: LTV-357T Page: 1 of 9

Property of Lite-on Only

OUTLINE DIMENSIONS

LTV-357T:

- *1. 2-digit date code.
- *2. Factory identification mark shall be marked (Z: Taiwan, Y: Thailand, X: China).
- *3. Rank shall be or shall not be marked.

Part No.: LTV-357T Page: 2 of 9

Property of Lite-on Only

TAPING DIMENSIONS

Description	Symbol	Dimensions in mm (inches)
Tape wide	W	12 ± 0.3 (.47)
Pitch of sprocket holes	P ₀	4 ± 0.1 (.15)
Distance of compartment	F	$5.5 \pm 0.1 (.217)$
	P2	2 ± 0.1 (.079)
Distance of compartment to compartment	P 1	8 ± 0.1 (.315)

Part No.: LTV-357T Page: 3 of 9

BNS-OD-C131/A4

LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-on Only

ABSOLUTE MAXIMUM RATING

 $(Ta = 25^{\circ}C)$

	PARAMETER	SYMBOL	RATING	UNIT
Forward Current		I_{F}	50	mA
INPUT	Reverse Voltage	VR	6	V
	Power Dissipation	P	70	mW
	Collector - Emitter Voltage	Vceo	35	V
OUTPUT	Emitter - Collector Voltage	Veco	6	V
	Collector Current	Ic	50	mA
	Collector Power Dissipation	Pc	150	mW
Total Power Dissipation		Ptot	170	mW
*1 Isolation Voltage		Viso	3,750	Vrms
Operating Temperature		Topr	-55 ~ +100	°C
Storage Temperature		Tstg	-55 ~ +150	°C
*2 Soldering Temperature		Tsol	260	°C

*1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- *2. For 10 Seconds

Part No.: LTV-357T Page: 4 of 9

LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-on Only

ELECTRICAL - OPTICAL CHARACTERISTICS

 $(Ta = 25^{\circ}C)$

PAF	RAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
	Forward Voltage	VF	_	1.2	1.4	V	I _F =20mA
INPUT	Reverse Current	IR		_	10	μΑ	$V_R=4V$
	Terminal Capacitance	Ct		30	250	pF	V=0, f=1KHz
	Collector Dark Current	Iceo		_	100	nA	V _{CE} =20V, I _F =0
OUTPUT	Collector-Emitter Breakdown Voltage	BVceo	35	_	_	V	Ic=0.1mA I _F =0
	Emitter-Collector Breakdown Voltage BVECO 6 —	_	V	$I_{E}=10\mu A$ $I_{F}=0$			
	Collector Current	Ic	2.5	_	30	mA	I _F =5mA
	*1 Current Transfer Ratio	CTR	50	_	600	%	V _{CE} =5V
	Collector-Emitter Saturation Voltage	VCE(sat)	_		0.2	V	I _F =20mA I _C =1mA
TRANSFER CHARACTERISTICS	Isolation Resistance	Riso	5×10 ¹⁰	1×10 ¹¹	_	Ω	DC500V 40 ~ 60% R.H.
	Floating Capacitance	C_{f}		0.6	1	pF	V=0, f=1MHz
	Response Time (Rise)	tr		4	18	μs	Vce=2V, Ic=2mA
	Response Time (Fall)	tf		3	18	μs	$R_L=100\Omega$

$$*_1$$
 CTR = $\frac{I_C}{I_F} \times 100\%$

Part No.: LTV-357T Page: 5 of 9

LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-on Only

RANK TABLE OF CURRENT TRANSFER RATIO CTR

MODEL NO.	RANK MARK	CTR (%)
LTV-357T	A	80 ~ 160
	В	130 ~ 260
	С	200 ~ 400
	D	300 ~ 600
	Е	50 ~ 150
	F	100 ~ 300
	A or B or C or D or E or F or No mark	50 ~ 600

	IF = 5 mA
CONDITIONS	VCE = 5 V
	$Ta = 25 ^{\circ}C$

Part No.: LTV-357T Page: 6 of 9

Property of Lite-on Only

CHARACTERISTICS CURVES

Fig.1 Forword Current vs. Ambient Temperatute

Fig.3 Collector-emitter Saturation Voltage vs. Forward Current

Fig.5 Current Transfer Ratio vs.
Forward Current

Fig.2 Collector Power Dissiption vs. Ambient Temperature

Fig.4 Forward Current vs. Forward Voltage

Fig.6 Collector Current vs.

Collector-emitter Voltage

Part No.: LTV-357T Page: 7 of 9

Property of Lite-on Only

CHARACTERISTICS CURVES

Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature

Fig.9 Collector Dark Current vs.
Ambient Temperature

Fig.11 Frequency Response

Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature

Fig.10 Response Time vs. Load Resistance

Test Circuit for Response Time

Test Circuit for Frequency Response

Part No.: LTV-357T Page: 8 of 9

Property of Lite-on Only

TEMPERATURE PROFILE OF SOLDERING REFLOW

(1) One time soldering reflow is recommended within the condition of temperature and time profile shown below.

(2) When using another soldering method such as infrared ray lamp, the temperature may rise partially in the mold of the device.

Keep the temperature on the package of the device within the condition of above (1)

RECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)

Unit: mm

Part No.: LTV-357T Page: 9 of 9