

Question 1

Mrs Hickey Mrs Quarles Miss Lau Mrs Stock Mrs Choong

PYMBLE LADIES' COLLEGE

YEAR 12

MATHEMATICS EXTENSION 1

HSC TRIAL EXAMINATION 2002

Time Allowed: 2 hours + 5 mins reading time

INSTRUCTIONS

- All questions should be attempted
- · Write your name and your teacher's name on each page
- Start each question on a new page
- DO NOT staple the questions together
- Only approved calculators may be used
- A standard integral sheet is attached
- Marks might be deducted for careless or untidy work.
- · Hand this question paper in with your answers
- · ALL rough working paper must be attached to the back of the last question
- · Staple a coloured sheet of paper to the back of each question
- . There are seven (7) questions in this paper
- · All questions are of equal value

(a) Evaluate 1 (b) The point P (7, -1) divides the interval AB externally in the ratio 3 : 2. If A is (-2, 5) find the coordinates of B. (c) Solve for x 2 (d) Find the gradient of the tangent to the curve $y = \tan^{-1}(2x)$ at the point where $x = \frac{1}{2}$. 2 (e) Evaluate $\int_{0}^{1} \frac{1}{\sqrt{9-x^2}} dx$ (f) On the same number plane, sketch the graphs of y = |2x - 1| and y = |x + 1|Hence, or otherwise, solve $|2x - 1| \le |x + 1|$

Marks

Question 2 (Start a new sheet of paper)

(a) Prove that
$$\frac{\sin 2\theta}{\sin \theta} - \sec \theta = \frac{\cos 2\theta}{\cos \theta}$$

2

3

(b) Evaluate $\int_{\frac{1}{2}}^{1} 4r(2t-1)^{3} dt$ by using the substitution u = 2t - 1

(c) The angle between the lines y = 3x and y = nex is 45°. Find the value(s) of m.

(d) Solve $\tan 2\theta - \cot \theta = 0$ where $0 \le \theta \le \pi$

,

Marks

(a) Evaluate
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^3\left(\frac{x}{2}\right) dx$$

Use Mathematical Induction to prove that

Question 3 (Start a new sheet of paper)

(i)
$$4(1^3+2^3+3^3+\cdots+n^3)=n^2(n+1)^3$$
, for $n=1,2,3...$

3

2

(ii) Hence find the value of
$$\lim_{n\to\infty} \left(\frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4} \right)$$

- (c) (i) Express $\sin x + \sqrt{3} \cos x$ in the form $R \sin(x + \alpha)$ where R > 0 and $0 \le \alpha \le \frac{\pi}{2}$
 - Hence sketch $y = \sin x + \sqrt{3}\cos x$ for $-2\pi \le x \le 2\pi$ showing any x and y intercepts.
 - (iii) Find the general solution to $\sin x + \sqrt{3}\cos x = \sqrt{2}$

Question 4 (Start a new sheet of paper)

Marks

Question 5 (Start a new sheet of paper)

Consider the function $f(x) = \frac{x-1}{x^2}$

Marks

3

- (a) α , β and γ are the roots of the equation $x^3 + 2x^2 3x + 5 = 0$
 - (i) State the values of $\alpha + \beta + \gamma$, $\alpha\beta + \alpha\gamma + \beta\gamma$
- 2

(ii) Find the value of α¹ + β¹ + γ¹

2

3

(b) If a polynomial P(x) is divided by (x + 1) the remainder is 5 and when P(x) is divided by (2x + 1) the remainder is 3. Find the remainder when P(x) is divided by (x + 1)(2x + 1).

- (c) From a point S the bearings of two points P and Q are found to be 331°T and 011°T respectively. From a point F, 7 km due north of S, the bearings of P and Q are 299°T and 020°T respectively.
 - (i) Show that $PF = \sin 29^{\circ} \times \frac{7}{\sin 32^{\circ}}$
 - (ii) By considering the triangle FPQ, show that if the distance between P and Q is d metres, then
 - $d^{2} = 49 \left(\frac{\sin^{2} 29^{\circ}}{\sin^{2} 32^{\circ}} + \frac{\sin^{3} 11^{\circ}}{\sin^{2} 9^{\circ}} 2 \frac{\sin 29^{\circ} \sin 11^{\circ} \cos 81^{\circ}}{\sin 32^{\circ} \sin 9^{\circ}} \right)$

(I) Show that there is only one stationary point and determine its nature	
---	--

- (ii) Determine the point of inflexion.
- (iii) What happens to f(x) as $x \to \pm \infty$?
- (iv) What happens to f(x) as $x \to 0$?
- (v) Sketch the curve showing all its essential features.

 2
 (Use at least half a page.)
- (b) (i) Prove that $\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \ddot{x}$
 - (ii) An object moving in a straight line has an acceleration given by £ = x(8 - 3x) where x metres is its position relative to a fixed point 0.

At x = 0, it has a speed of 4 m/s. Find its speed when it is 1 m on the positive side of 0.

Question 6	(Start a new sheet of paper)	Marks
displi	A particle is oscillating in simple harmonic motion such that its displacement x metres from the origin is given by the equation d^2x	
$\frac{dl^2}{dt^2}$	= -16x where t is time in seconds.	
6)	Show that $x = a \cos(4r + \alpha)$ is a solution of motion for this particle. (a and α are constants).	1
(ii)	When $t = 0$, $v = 4$ m/s and $x = 5$ m. Show that the amplitude of the oscillation is $\sqrt{26}$ metres.	2
(iii)	What is the maximum speed of the particle?	1
a > n =	h and h	
$x^{2} = 4$	(a, ap^2) and $Q(2aq, aq^2)$ are two points on the parabola. (aq) . The tangents at P and Q meet at T which is always on the pla $x^2 = -4ay$.	
(i)	Derive the equation of the tangent at P .	2
(ii)	Hence write down the equation of the tangent at Q .	1
(iii)	Show that T is the point $(a(q+p),apq)$.	1
(iv)	Show that $p^2 + q^2 = -6pq$	1
(v)	Find M, the midpoint of PQ.	1
(vi)	Hence, or otherwise, find the locus of \mathcal{M} .	2

Question 6 (Start a new short of

Ques	tion 7	(Start a new sheet of paper)	Marks
(a)	(i)	On the same number plane, sketch the graphs of $y = \cos^{-1} x$ and $y = \sin^{-1}(\frac{x}{2})$. Label the important features.	2
	(ii)	Show $y = \cos^{-1} x$ and $y = \sin^{-1}(\frac{x}{2})$ intersect at $x = \frac{2}{\sqrt{5}}$.	2
	(iii)	Find the inverse function of $y = \sin^{-1}(\frac{x}{2})$	ĭ
	(iv)	Hence or otherwise find the area bounded by the $x - axis$ and the graphs $y = \cos^{-1} x$ and $y = \sin^{-1}(\frac{x}{2})$ (answer correct to 2 decimal places.)	3

(b) Wheat is the only crop grown on Sandy's property in outback NSW. Per hectare the amount of water, W, in kilolitres, used during irrigation times is given by

$$W = Cg^3 + \frac{D}{g}$$

where g is the amount of grain produced in tonnes per hectare and C and D are positive constants. There is a limited amount of water available for irrigation.

 Show that, for maximum hectares under irrigation, production of grain per hectare, g, is given by

$$g = \left(\frac{D}{2C}\right)^{\frac{1}{2}}$$

2

(ii) Show that for maximum grain produced on Sandy's property, grain production per hectare needs to be about 59% more than that given in part (i) above.

Pymble ladies cultiedge 1027 a) lim sui 3x = 3 lim sui 3x b) Bis (1,3) Q) 10-3y = 1 -3y =-9 y = 3 x>5 or 2.<2

2x-1 + x+1 -2x+1 = x+1 x = 2 -3x + 0 x = 0

.. | 2x-1 | ≤ | x+1 | when 05 x ≤ 2.

2 cos @ - 1

2 cos20 -1

cos 20-

b) u = 2t -1 when t = 1 u = 1

du = 2 when t = 1 u = 0.

∫ 4 = (2t-1) dt = ∫ 2 (u+1) u xidu = 51 uh + u5 du = [4] + 4] = +++ = <u>13</u>

c) ban $\Phi = \left| \frac{3-m}{1+3m} \right|$

1 = 3-M $-1 = \frac{3-m}{1+3m}$

1+3m = 3-m 4m = 2 -1-3 m = 3-m -2m =4

m = 1

m = -2

d) tou 20 - coto= 0 0 < 0 &TT

2 tan 20 = 1 - tan 20 3 tour 0 = 1

tau 0 = + 1

0 = T 5TT

Check 0 - I 0-0 = 0 Time

.. Solns 0 = II, II, SIT

(3)

4

(1) Consider APFS

Similarly considering DQFS

QF = sin 11 × 7

Now considering APQF

sui 8 x 7 x cos 81

Q4

$$x^3 + 2x^2 - 3x + 5 = 0$$

(1) $x + \beta + \gamma = -\frac{b}{\alpha} = -2$

«β + «8 + βx = € = -3

$$= (\kappa + \beta + x)^{2} - 2 \kappa \beta - 2 \kappa x - 2 \beta x$$

$$= (\kappa + \beta + x)^{2} - 2 (\kappa \beta + \kappa x + \beta x)$$

$$= (\kappa + \beta + x)^{2} - 2 (\kappa \beta + \kappa x + \beta x)$$

b) P(x)=(4(x+1)x+1)+ax+b

O-B. -1 a

.. Remainder = -42c+1

(2)

(i)
$$\lim_{n \to \infty} \left(\frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4} \right) = \lim_{n \to \infty} \frac{n^2 (n+1)^2}{4n^4}$$

$$= \lim_{n \to \infty} \frac{n^4 + 2n^3 + n^2}{4n^4}$$

$$= \lim_{n \to \infty} \frac{1 + \frac{2}{n} + \frac{1}{n^2}}{4}$$

$$= \frac{1}{4}$$

cilet sin x + 13 cos x = R sin (x+x)

... sui x + J3 cos x = 2 sin (x+T_)

(III)
$$2 \sin(2x+\frac{\pi}{3}) = \sqrt{2}$$

 $\sin(2x+\frac{\pi}{3}) = \frac{1}{\sqrt{2}}$
 $x+\frac{\pi}{3} = n\pi + (-1)^n \pi$
 $x = n\pi + (-1)^n \pi - \pi$

b) let
$$S_n = 4(1^3 + 2^3 + \dots + n^2)$$

| Regulared to prove $S_n = n^2(n+1)^2$
| For $n = 1$ | LHS = $4(1^3) = 4$
| RHS = $1^2(1+1)^2 = 4$
| Statement to true for $n = 1$.

Assume statement is true for n=k $S_{L} = 4(1^{3}+2^{3}+\cdots+k^{3}) = k^{2}(k+1)^{2}$

When n=k+1 Sk+1 = 4 (13+23+ ... + k3+(k+1)3) = 4(13+23+...+h3)+4(k+1)3 = k2(k+1)2+4(k+1)3 = $(k+1)^{2}(k^{2}+k(k+1))$ = $(k+1)^{2}(k+2)^{2}$

Thus if it is true for n=k it is true for n=k+1 It is true for n=1 + hence it is true for n=2 + 50 on

```
- Q6.
   d2x = -16x
 (1) x = a cos(4+x)
    z +-4a sin(4++d)
  . it = -16a cos(4++K)
       = -16 %
  ... x = a 605 (4+ d) is a soln
 (1) When t=0 V=4
                                            (2)
      4 = -4 a em 2
   18. -1 = a sind 1
   when t20 x=5
        5 = a cos of (2)
   15 0 + ( 4 m = x + cos = x = 1)
       a = (-1)2+(5)2
         a2 = 26
         a = 126.
                   OR
   using V2 12(a2-22)
          16 = 16 (a2 - 25)
           1 = a2-25
            a2 = 26
            a = J26
(111) Max speed occurs when sin (4++x)=1.
      x = -4×126 2ci (4++x)
    speed = 1-4 Jas
```

```
Q6
 b. x = 4ay
    y = 42 x2
(1) dy = 1 x
   m +angp 2a
  eg" of trangent at P
    y-ap2 = p(x-2ap2).
y=px-ap2. 0
(1) y = 9, x - ag =
(11) Solving egns for tangents smult.
  P=(p-q,)x - a(p-q,)
    2 , a(p2-92) + a (p+q)(p-q)
   x = a(p+q/)
  (0y = ap(p+q) -ap2
  : T is (a(p+q), apq)
(IV) T lies on z=-4ay

12. a*(p+q) = -4 2*pq

(p+q) = -4pq

p+q+2pq=-4pq

p+q+2pq=-4pq
(r) M is (2 a (p+q), a(p+q))
            = (a(p+q), a(p+q2))
```

Q 5
$$\begin{cases}
(x) = \frac{x-1}{x^2} \\
(x) = \frac{x^2 - 1}{x^2}
\end{cases}$$

$$= \frac{x^2 - 2x^2 + 2x}{x^2}$$

$$= \frac{2-x}{x^2}$$

$$\begin{cases}
(x) = 0 \text{ when } x = 2
\end{cases}$$

$$\begin{cases}
(x) = \frac{x^3 - 1 - 3x^3(2-x)}{x^2}$$

$$= \frac{2x^2}{x^2}$$

$$= \frac{2x^2}{x^2}$$

$$= \frac{2x^3(x-3)}{x^2}$$
when $x = 2$ if i(x) < 0
i. Only stationary pt (2, t) which is a max

(ii) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iii) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

(iv) if i(x) = $\frac{2(x-3)}{x^4} = 0$ when $x = 3$

.. there is a pt of inflexion at (3, 7)

Q6

For M

x = a(p+q)

x² = a² (p²+q²+2pq)

= a² (-6pq+2pq)

x² = -4ppq (1)

y = a (p²+q²)

= a² x -6pq

y = -3apq

'` y = pq

Sub in (1)

x² = -4a² x -y

x² = 4ay

3x² = 4ay

(2)

OF :--.

y = cos = 3 3 JE

Also suiy= J=

Consider y = sin x

y = sin (2)

18 Sui V = 1

13. sui y = 1 True

· Curves intersect at x = 2

let cosocasin'x =

cosd = oc sind = =

Q7.

Solve x = cos y.

Area required same as

3-22.

Area = for x - 2 enix) dr.

Señ x + 2 cos x

[0.46...

[0.443... + 1.792. - 0 - 2.

= 0.24 units².

17 b To maximise hectares irrigated,

We need to minimise Hater per hecture. (w)

$$dW = 2(g - D)$$
 $dg = 0$
 $g = (D)$
 $dg = 0$
 $dg =$