Regular Languages, Regular Expressions, and Pumping Lemma

The Chomsky Hierarchy

Non Turing-Acceptable

Turing-Acceptable

decidable

Context-sensitive

Context-free

Regular

Standard Representations of Regular Languages

When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

(DFA, NFA, or Regular Expression)

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Costas Busch - RPI

Are regular Languages

We say: Regular languages are closed under

Union:
$$L_1 \cup L_2$$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

2/14/14 Costas Busch - RPI

Take two languages

Regular language L_1

Regular language $\,L_2\,$

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

$$- M_1$$

NFA M_2

Single accepting state

Single accepting state

$$L_1 = \{a^n b\}$$

$$M_1$$

$$a$$

$$b$$

$$L_2 = \{ba\} \qquad \xrightarrow{b} \stackrel{a}{\longrightarrow} \bigcirc$$

Union

NFA for $L_1 \cup L_2$

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$a$$

$$L_{2} = \{ba\}$$

$$b$$

$$\lambda$$

$$b$$

$$a$$

Star Operation

NFA for L_1*

 $w = w_1 w_2 \cdots w_k$

NFA for
$$L_1^* = \{a^n b\}^*$$

2/14/14

Reverse

- 1. Reverse all transitions
- 2. Make initial state accepting state and vice versa

$$L_1 = \{a^n b\}$$

$$M_1$$

$$L_1^R = \{ba^n\}$$

Complement

- 1. Take the DFA that accepts L_1
- 2. Make accepting states non-final, and vice-versa

$$L_1 = \{a^n b\}$$

$$a \xrightarrow{a,b}$$

$$a \xrightarrow{a,b}$$

$$\overline{L_1} = \{a,b\} * -\{a^n b\}$$

$$a \xrightarrow{b} a,b$$

Intersection

 L_1 regular $L_1 \cap L_2$ L_2 regular regular

DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regular $\overline{L_1}$, $\overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular regular $\overline{L_1} \cap L_2$ regular

$$L_1 = \{a^nb\} \quad \text{regular} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regular} \\ \\ \text{regular}$$

Another Proof for Intersection Closure

Machine M_1

DFA for L_1

Machine M_2

DFA for L_2

Construct a new DFA M that accepts $L_1 \cap L_2$

M simulates in parallel $\,M_1\,$ and $\,M_2\,$

States in M

DFA M_1

DFA M_2

initial state

initial state

DFA M

New initial state

Both constituents must be accepting states

$$L_1 = \{a^n b\}$$

$$L_2 = \{ab^m\}$$

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

$\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

$$L(M) = L(M_1) \cap L(M_2)$$

Regular Languages and Regular Expressions

Regular Expressions

Regular expressions describe regular languages

Example:
$$(a+b\cdot c)^*$$

describes the language

$$\{a,bc\}^* = \{\lambda,a,bc,aa,abc,bca,...\}$$

Recursive Definition

Primitive regular expressions: \emptyset , λ , α

Given regular expressions r_1 and r_2

$$r_1 + r_2 \\ r_1 \cdot r_2 \\ r_1 * \\ (r_1)$$

Are regular expressions

A regular expression:
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression:
$$(a+b+)$$

Languages of Regular Expressions

$$L(r)$$
: language of regular expression r

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \dots\}$$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Regular expression: $(a + b) \cdot a^*$

$$L((a+b) \cdot a^*) = L((a+b))L(a^*)$$

$$= L(a+b)L(a^*)$$

$$= (L(a) \cup L(b))(L(a))^*$$

$$= (\{a\} \cup \{b\})(\{a\})^*$$

$$= \{a,b\}\{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Regular expression
$$r = (a+b)*(a+bb)$$

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

Regular expression
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression
$$r = (0+1)*00(0+1)*$$

$$L(r)$$
 = { all strings containing substring 00 }

Regular expression
$$r = (1+01)*(0+\lambda)$$

$$L(r) = \{ all strings without substring 00 \}$$

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if $L(r_1) = L(r_2)$

 $L = \{ all strings without substring 00 \}$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda) + 1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$

 r_1 and r_2 are equivalent regular expressions

Regular Expressions and Regular Languages

Theorem

Languages
Generated by
Regular Expressions

Regular
Languages

Proof:

Languages
Generated by
Regular Expressions

⊆ Regular Languages

Languages
Generated by
Regular Expressions

Regular Languages

Proof - Part 1

For any regular expression r the language L(r) is regular

Proof by induction on the size of r

Induction Basis

Primitive Regular Expressions: \emptyset , λ , α Corresponding

NFAS

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = \{\lambda\} = L(\lambda)$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

Inductive Hypothesis

Suppose

that for regular expressions r_1 and r_2 , $L(r_1)$ and $L(r_2)$ are regular languages

Inductive Step

We will prove:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1 *)$$

$$L((r_1))$$

Costas Busch - RPI

Are regular Languages

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1)) *$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know:

$$L(r_1)$$
 and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

Union
$$L(r_1) \cup L(r_2)$$

Concatenation $L(r_1)L(r_2)$
Star $(L(r_1))^*$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1)) *$$

$$L((r_1)) = L(r_1)$$

is trivially a regular language (by induction hypothesis)

Are regular languages

Using the regular closure of these operations, we can construct recursively the NFA M that accepts L(M) = L(r)

Example: $r = r_1 + r_2$

$$L(M_1) = L(r_1)$$

$$L(M_2) = L(r_2)$$

2/14/14

Proof - Part 2

For any regular language L there is a regular expression r with L(r) = L

We will convert an NFA that accepts Lto a regular expression

55

Since L is regular, there is a NFA M that accepts it

$$L(M) = L$$

Take it with a single final state

From M construct the equivalent Generalized Transition Graph

in which transition labels are regular expressions

Another Example:

Transition labels are regular expressions

Reducing the states:

Transition labels are regular expressions

59

Resulting Regular Expression:

$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

In General

Removing a state: \mathcal{C} q_{j} q q_i aae*d*ce***b ce* * *d* q_i q_i ae*b

By repeating the process until two states are left, the resulting graph is

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

 $L(r) = L(M) = L$

End of Proof-Part 2

Non-regular languages

(Pumping Lemma)

Non-regular languages

$$\{a^n b^n : n \ge 0\}$$

 $\{vv^R : v \in \{a,b\}^*\}$

Regular languages

$$a*b$$
 $b*c+a$ $b+c(a+b)*$ $etc...$

The Chomsky Hierarchy

Non Turing-Acceptable

Turing-Acceptable

decidable

Context-sensitive

Context-free

Regular

How can we prove that a language L is not regular?

Prove that there is no DFA or NFA or RE that accepts \boldsymbol{L}

Difficulty: this is not easy to prove (since there is an infinite number of them)

Solution: use the Pumping Lemma!!!

The Pumping Lemma

Take an infinite regular language L(contains an infinite number of strings)

There exists a DFA that accepts L

2/14/14

Take string
$$w \in L$$
 with $|w| \ge m$ (number of states of DFA)

then, at least one state is repeated in the walk of $\it w$

2/14/14 Costas Busch - RPI 69

There could be many states repeated

Take q to be the first state repeated

One dimensional projection of walk w:

Unique states

We can write w = xyz

One dimensional projection of walk w:

First

occurrence occurrence $\sigma_j = \sigma_j =$

$$x = \sigma_1 \cdots \sigma_i$$
 $y = \sigma_{i+1} \cdots \sigma_j$ $z = \sigma_{j+1} \cdots \sigma_k$

Second

In DFA:
$$W = X Y Z$$

Observation:

length $|xy| \le m$ number of states of DFA

Observation: le

length $|y| \ge 1$

Since there is at least one transition in loop

We do not care about the form of string z

z may actually overlap with the paths of x and y

Additional string:

The string XZ is accepted

Do not follow loop

Additional string:

The string x y y z is accepted

Additional string:

The string x y y y zis accepted

In General:

The string $x y^i z$ is accepted i = 0, 1, 2, ...

2/14/14

Costas Busch - RPI

Therefore:

$$x y^i z \in L$$

$i = 0, 1, 2, \dots$

Language accepted by the DFA

In other words, we described:

The Pumping Lemma!!!

The Pumping Lemma:

- \cdot Given a infinite regular language L
- there exists an integer m (critical length)
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^l z \in L$ i = 0, 1, 2, ...

In the book:

Critical length m = Pumping length p

Applications

of

the Pumping Lemma

Observation:

Every language of finite size has to be regular

(we can easily construct an NFA that accepts every string in the language)

Therefore, every non-regular language has to be of infinite size

(contains an infinite number of strings)

Suppose you want to prove that An infinite language $\,L\,$ is not regular

- 1. Assume the opposite: L is regular
- 2. The pumping lemma should hold for L
- 3. Use the pumping lemma to obtain a contradiction
- 4. Therefore, L is not regular

Explanation of Step 3: How to get a contradiction

- 1. Let m be the critical length for L
- 2. Choose a particular string $w \in L$ which satisfies the length condition $|w| \ge m$
- 3. Write w = xyz
- 4. Show that $w' = xy^i z \not\in L$ for some $i \neq 1$
- 5. This gives a contradiction, since from pumping lemma $w' = xy^iz \in L$

Note: It suffices to show that only one string $w \in L$

gives a contradiction

You don't need to obtain contradiction for every $w \in L$

Example of Pumping Lemma application

Theorem: The language
$$L = \{a^n b^n : n \ge 0\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Let m be the critical length for L

Pick a string w such that: $w \in L$

and length $|w| \ge m$

We pick
$$w = a^m b^m$$

From the Pumping Lemma:

we can write
$$w = a^m b^m = x y z$$

with lengths $|x y| \le m, |y| \ge 1$

$$w = xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{m}$$

Thus:
$$y = a^k$$
, $1 \le k \le m$

$$x y z = a^m b^m$$

$$y = a^k$$
, $1 \le k \le m$

From the Pumping Lemma:

$$x y^{i} z \in L$$

 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m$$
 $y = a^k$, $1 \le k \le m$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^2z = \underbrace{a...aa...aa...aa...ab...b}_{m+k} \in L$$

Thus:
$$a^{m+k}b^m \in L$$

$$a^{m+k}b^m \in L$$

$$k \ge 1$$

BUT:
$$L = \{a^n b^n : n \ge 0\}$$

$$a^{m+k}b^m \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

END OF PROOF

Non-regular language $\{a^nb^n: n \ge 0\}$

$$\{a^nb^n: n \ge 0\}$$

Regular languages

$$L(a^*b^*)$$