Introduction
BSDE
Solving BSDE's
onditional Expectation: numerical solutions
Simulations
American Option
What's next now
Acknowledgements

Backward Stochastic Differential Equation

Majdi Rabia

January 23, 2017

- Introduction
- 2 BSDE
- Solving BSDE's
- 4 Conditional Expectation : numerical solutions
- Simulations
- 6 American Option
- What's next now

Introduction
BSDE
Solving BSDE's
Expectation: numerical solutions
Simulations
American Option
What's next now
Acknowledgements

Motivation

Example of a Stock Graph

American Option

Objective

- Let $t \in [0, T]$
- Payoff at time T:

$$V_T = (S_T - K)^+$$

- We can exercise at any stopping time between [0, T]
- Hence, we would like, with $g: x \to (x K)^+$, to maximize $\mathbb{E}[g(S_t)]$ from today to maturity.

$$V_0 = \sup_{t \in au} \mathbb{E}[g(S_t)]$$

with au the set of stopping times

- Introduction
- 2 BSDE
- Solving BSDE's
- 4 Conditional Expectation: numerical solutions
- Simulations
- 6 American Option
- What's next now

Forward Diffusion

Model

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$$

Forward Diffusion

Model

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$$

Backward

Model

$$dX_{t} = \mu(t, X_{t})dt + \sigma(t, X_{t})dB_{t}$$
$$-dY_{t} = f(t, X_{t}, Y_{t}, Z_{t})dt - Z_{t}dB_{t}$$
$$Y_{T} = \xi(X_{T})$$

Backward

Model

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$$
$$-dY_t = f(t, X_t, Y_t, Z_t)dt - Z_tdB_t$$
$$Y_T = \xi(X_T)$$

Where:

- f is called the driver
- Z_t is a stochastic process related to $u(t, X_t) = Y_t$ by :

$$Z_t = \sigma(t, X_t) Du_{\mathsf{x}}(t, X_t)$$

• ξ is a measurable function

Backward

Example: European Option

The driver for a European Option with a Geometric Brownian motion model for X_t and using risk neutral measure :

$$f(t, X_t, Y_t, Z_t) = -rY_t \tag{1}$$

Proof

$$dY_{t} = \underbrace{\phi_{t}}_{\text{amount invested in stock}} \frac{dX_{t}}{X_{t}} + (Y_{t} - \phi_{t})rdt$$

$$dY_{t} = r\phi dt + \sigma dB_{t} + (Y_{t} - \phi_{t})rdt$$

$$dY_{t} = rY_{t}dt + \sigma \phi dB_{t}$$

$$-dY_{t} = -rY_{t}dt - Z_{t}dB_{t}$$
(2)

- Introduction
- 2 BSDE
- Solving BSDE's
- Conditional Expectation : numerical solutions
- Simulations
- 6 American Option
- What's next now

Acknowledgements

Discretization

$$egin{aligned} Z_{t_i} &= rac{1}{\Delta t_i} \mathbb{E}[Y_{t_{i+1}} \Delta B_{t_i} | \mathcal{F}_{t_i}] \ Y_{t_i} &= \mathbb{E}[Y_{t_{i+1}} | \mathcal{F}_{t_i}] + f(t_i, S_{t_i}, Y_{t_{i+1}}, Z_{t_i}) \Delta t_i \end{aligned}$$

- Introduction
- 2 BSDE
- Solving BSDE's
- 4 Conditional Expectation : numerical solutions
- Simulations
- 6 American Option
- What's next now

Mesh Method: Glasserman

Mesh Method: Glasserman

Propositon

$$\mathbb{E}[Y_{t_{i+1}}^j|(X_{t_{i+1}})] = \sum_{j=1}^N W_{i,k}^j Y_{t_{i+1}}^j$$

the weights being given by the properties of the diffusion

Tree Regression: Random Forest

Tree Regression : Gradient Boosting

Statistical view on boosting

• \Rightarrow Generalization of boosting to arbitrary loss functions

Residual fitting

Using BSDE properties

 $Z_{t_i} = \frac{1}{\Delta t_i} \mathbb{E}[Y_{t_{i+1}} \Delta B_{t_i} | \mathcal{F}_{t_i}]$ includes a very noisy process to approximate.

Using BSDE properties

 $Z_{t_i} = \frac{1}{\Delta t_i} \mathbb{E}[Y_{t_{i+1}} \Delta B_{t_i} | \mathcal{F}_{t_i}]$ includes a very noisy process to approximate.

We make use of :
$$Z_t = \sigma(t, X_t) Du_x(t, X_t)$$
 where $u(t, X_t) = Y_t$

Using BSDE properties

 $Z_{t_i} = \frac{1}{\Delta t_i} \mathbb{E}[Y_{t_{i+1}} \Delta B_{t_i} | \mathcal{F}_{t_i}]$ includes a very noisy process to approximate.

We make use of : $Z_t = \sigma(t, X_t) Du_x(t, X_t)$ where $u(t, X_t) = Y_t$

- 1 : $Z_{t_i} = \frac{1}{\Delta t_i} \mathbb{E}[Y_{t_{i+1}} \Delta B_{t_i} | \mathcal{F}_{t_i}]$ with one of previous methods
- 2: $Y_{t_i} = \mathbb{E}[Y_{t_{i+1}}|\mathcal{F}_{t_i}] + f(t_i, S_{t_i}, Y_{t_{i+1}}, Z_{t_i})\Delta t_i$

We use then a Picard Iteration (considering this as a Markovian case):

- 3 : We approximate $Y_{t_i} = \hat{h}(t_i, X_{t_i})$
- 4: $Z_{t_i} = \sigma(t_i, X_{t_i}) \nabla \hat{h}(t_i, X_{t_i})$

This gives a more stable Z_t process at time t.

- Introduction
- 2 BSDE
- Solving BSDE's
- 4 Conditional Expectation : numerical solutions
- Simulations
- 6 American Option
- What's next now

Bid-ask Spread Option

driver in this case

$$\begin{cases} f(t, Y_t, Z_t) = -Z_t \theta - rY + (R - r)(Y - \frac{Z_t}{\sigma})^- \\ \theta = \frac{\mu - r}{\sigma} \\ \xi(X_T) = (X_T - K_1) - 2(X_T - K_2) \end{cases}$$

European combination with different interest rates

We again consider a one dimensional Black-Scholes model with parameters

μ	σ	r	R	T	S_0	K_1	K_2
0.05	0.2	0.01	0.06	0.25	100	95	105

Gobet use of Hypercubes regression

Ex.1: bid-ask spread for interest rates

- Black-Scholes model and $\Phi(\mathbf{S}) = (S_T K_1)_+ 2(S_T K_2)_+$.
- $f(t, x, y, z) = -\{yr + z\theta (y \frac{z}{\sigma})^{-}(R r)\}, \ \theta = \frac{\mu r}{\sigma}.$

Acknowledgements

• Parameters

	μ	σ	r	R	T	S_0	K_1	K_2
•	0.05	0.2	0.01	0.06	0.25	100	95	105

	$N=5, \delta=5$	$N=20,\delta=1$	$N = 50, \delta = 0.5$
M	D = [60, 140]	D = [60, 200]	D = [40, 200]
128	3.05(0.27)	3.71(0.95)	3.69(4.15)
512	2.93(0.11)	3.14(0.16)	3.48(0.54)
2048	2.92(0.05)	3.00(0.03)	3.08(0.12)
8192	2.91(0.03)	2.96(0.02)	2.99(0.02)
32768	2.90(0.01)	2.95 (0.01)	2.96(0.01)

Our Results

	stat parameter	values	
LSM	mean	2.9381	
LSM	std	0.0154	
LSM	95% confidence interval	[2.9366, 2.9396]	
LSM	min	2.9159	
LSM	max	2.9787	
Mesh	mean	2.841	
Mesh	std	0.0711	
Mesh	95% confidence interval	[2.834, 2.848] N=1000 might be too small	
Mesh	min	2.6986	
Mesh	max	2.9682	
Derivative	mean	2.9403	
Derivative	std	0.1441	
Derivative	95% confidence interval	[2.9121, 2.9685]	
Derivative	min	2.7534	
Derivative	max	3.2832	
RandomForest	mean	2.8007	
RandomForest	std	0.0508	
RandomForest	95% confidence interval	[2.7957, 2.8057] Parameters of the method	
RandomForest	min	2.7281	
RandomForest	max	2.8888	

- Introduction
- 2 BSDE
- Solving BSDE's
- Conditional Expectation : numerical solutions
- Simulations
- 6 American Option
- What's next now

Model

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$$
$$-dY_t = f(t, X_t, Y_t, Z_t)dt - Z_tdB_t + dL_t$$
$$Y_T = \xi(X_T)$$
$$\int_0^T (Y_t - \xi(X_t))dL_t = 0$$

 L_t controls Y to stay above the barrier ξ

- Introduction
- BSDE
- Solving BSDE's
- 4 Conditional Expectation: numerical solutions
- Simulations
- 6 American Option
- What's next now

Introduction
BSDE
Solving BSDE's
conditional Expectation : numerical solutions
Simulations
American Option
What's next now
Acknowledgements

 High dimension with Random Forest currently looks good, need to optimize the parameters and use multithreading to get competitive simulations and publish.

- High dimension with Random Forest currently looks good, need to optimize the parameters and use multithreading to get competitive simulations and publish.
- Adapt the Process to 2-BSDE, which requires more computation!

- High dimension with Random Forest currently looks good, need to optimize the parameters and use multithreading to get competitive simulations and publish.
- Adapt the Process to 2-BSDE, which requires more computation!
- ullet Create a mapping non-linear PDE o to 2-BSDE

- High dimension with Random Forest currently looks good, need to optimize the parameters and use multithreading to get competitive simulations and publish.
- Adapt the Process to 2-BSDE, which requires more computation !
- ullet Create a mapping non-linear PDE o to 2-BSDE
- Clean the code, comment and put on Github for open source.

- Introduction
- BSDE
- Solving BSDE's
- 4 Conditional Expectation : numerical solutions
- Simulations
- 6 American Option
- What's next now

Introduction
BSDE
Solving BSDE's
onditional Expectation: numerical solutions
Simulations
American Option
What's next now
Acknowledzements

Thanks to:

Alexandre Thiery (NUS, Department of Applied Probability and Statistics)

Zhou Chao (NUS, Department of Mathematics) for supporting me throughout this research.