## Prova Substitutiva de Teoria da Computação — 2018/2 Prof. José de Oliveira Guimarães — DComp — Campus de Sorocaba da UFSCar

Ao final da prova, entregue APENAS a folha de respostas. A folha de questões não será considerada. Utilize quantas folhas de reposta forem necessárias. Não é necessário entregar as questões em ordem. Utilize lápis ou caneta, mas faça letra legível. Na correção, símbolos ou palavras ilegíveis não serão considerados.

**Justifique** todas as respostas.

Se você estudou com algum colega para esta prova, não se sente ao lado dele pois é possível que acidentalmente vocês produzam respostas semelhantes para alguma questão. Provas de alunos que fizeram a prova próximos uns dos outros com respostas semelhantes caracterizam cópia de questões. Lembro-os de que todos os envolvidos na utilização de métodos ilegais na realização desta prova receberão zero de nota final da disciplina (e não apenas nesta prova).

Coloque o seu nome na folha de resposta, o mais acima possível na folha, seguido do número da sua coluna de carteiras. A primeira carteira é a mais perto da porta e a última a mais perto das janelas. Não precisa colocar o RA.

A menos de menção em contrário, usaremos o alfabeto  $\Sigma = \{0, 1\}$  nesta prova.

Primeira Parte da Matéria

- 1. (2,0) Sobre gramáticas, responda.
- (a) Uma gramática *G* tem as produções

$$S \longrightarrow aSb \mid A$$

$$A \longrightarrow A0 \mid 1$$
.

Faça um Autômato com Pilha M tal que L(M) = L(G). Obrigatoriamente construa o autômato de acordo com as regras do Sipser (com somente três estados).

- (b) Explique, sem uma prova formal, porque um autômato finito (sem pilha) não pode reconhecer L(G).
- 2. (2,0) Escolha e faça UM e APENAS UM dos itens abaixo.
- (a) Seja M um autômato finito. Mostre como obter um autômato que reconheça  $L(M) \cdot \{0\}^*$ . Faça apenas o desenho como está no Sipser, com retângulos com três círculos representando autômatos. Lembre-se de que, se A e B são linguagens,  $A \cdot B = \{ab : a \in A \text{ e } b \in B\}$ . E  $\{0\}$  é uma linguagem com um único elemento.
- (b) Usando o algoritmo dado em aula e no livro do Sipser, faça o Autômato Finito *Determinístico* que reconhece  $L(M_A) \cup L(M_B)$ , sendo  $M_A$  e  $M_B$  os autômatos dos diagramas dados abaixo.

Este algoritmo usa, para cada combinação de estados  $q_a$  de  $M_A$  e  $q_b$  de  $M_B$ , um estado  $(q_a, q_b)$ .



- 3. (2,0) Escolha e faça UM e APENAS UM dos itens abaixo.
- (a) Utilizando o Lema do bombeamento, prove que  $L = \{0^n 1^n | n \in \mathbb{N}\}$  não é linguagem regular.
- (b) Sendo  $M_A = (Q_A, \Sigma_A, \delta_A, q_A, F_A)$  um Autômato Finito Determinístico, dê o domínio e contradomínio de  $\delta_A$  (algo assim:  $\delta_A : X \longrightarrow Y$ , explicitando X e Y). Sendo  $M_B = (Q_B, \Sigma_B, \delta_B, q_B, F_B)$  um Autômato Finito Não-Determinístico, dê o domínio e contra-domínio de  $\delta_B$ . Sendo  $M_C = (Q_C, \Sigma_C, \Gamma_C, \delta_C, q_C, F_C)$  um Autômato com Pilha, dê o domínio e contra-domínio de  $\delta_C$ .
- (c) Defina linguagem de uma gramática  $G = (V, \Sigma, P, S)$ . Explique, usando um exemplo, porque gramáticas são não determinísticas.

## Segunda Parte da Matéria

- 4. (2,0) Escolha e faça UM e APENAS UM dos itens abaixo.
- (a) Prove que, se L e K são linguagens decidíveis,  $L \cap K$  é enumerável.
- (b) Prove que, se L e K são linguagens decidíveis,  $L \cup K^c$  é decidível.
- (c) Prove que, se L e K são linguagens decidíveis,  $L K^c$  é decidível.
- 5. (2,0) Sobre complexidade:
- (a) (1,0) explique porque  $TIME(f) \subset SPACE(f)$ . Dê detalhes, muitos detalhes, preferencialmente um exemplo;
- (b) (1,0) explique porque  $SPACE(n) \subset SPACE(n^2)$ .

- 6. (2,0) A MT P toma dois inteiros como parâmetros. O primeiro deles é uma codificação de uma MT M e o segundo uma entrada x para esta MT (assim P interpreta as suas entradas). P retorna 1 se  $M(x) \downarrow$  e 0 se  $M(x) \uparrow$ . Usando P, construimos a MT Q que toma dois inteiros m e x como parâmetros e:
- (a) simula a execução de *P* com os parâmetros *m* e *x*;
- (b) se *P* retorna 1, *Q* entra em um laço infinito, nunca terminando a sua execução;
- (c) se *P* retorna 0, *Q* termina a sua execução.

O que acontece se chamamos Q passando  $\langle Q \rangle$  e  $\langle Q \rangle$  como parâmetros? Explique a contradição e o que podemos deduzir dela.

## Resumo:

Uma expressão regular sobre um alfabeto  $\Sigma$  é descrita como: a) x é uma e.r. (expressão regular) se  $x \in \Sigma$ ; b)  $\varepsilon$  é uma e.r. c)  $\emptyset$  é uma e.r. d) x?,  $(x \cup y)$ , (xy) (concatenação de x e y) e  $(x^*)$  são e.r. se x, y são e.r. Assume-se que a ordem de precedência dos operadores seja, do maior para o menor:  $\star$ , ?, concatenação e união ( $\cup$ ). Parenteses podem ser removidos se forem redundantes. A concatenação de duas linguagens L e K é  $L \circ K = \{vw : v \in L \text{ e } w \in K\}$ . E  $L^* = \{w_1w_2 \dots w_n | n \geqslant 0\}$ .

O lema do bombeamento para linguagens regulares: se A é uma linguagem regular, então existe um inteiro p dependente de A tal que, se  $s \in A$  e  $|s| \ge p$ , então s pode ser dividida em três partes, s = xyz, satisfazendo (a)  $xy^iz \in A$  para todo  $i \ge 0$ ; (b) |y| > 0 e (c)  $|xy| \le p$ .

Uma máquina de Turing determinística (MT ou MTD) é uma quadrupla  $(Q, \Sigma, I, q)$  na qual Q e  $\Sigma$  são conjuntos chamados de conjuntos de estados e de símbolos, I é um conjunto de instruções,  $I \subset Q \times \Sigma \times Q \times \Sigma \times D$ ,  $D = \{-1,0,1\}$  e  $q \in Q$  é chamado de estado inicial. Há dois estados especiais:  $q_s$  e  $q_n$ , todos elementos de Q e todos diferentes entre si. Neste texto convenciona-se que o estado inicial será  $q_0$  a menos de menção em contrário. Exige-se que  $\{0,1,\triangleright,\sqcup,\Box\}\subset\Sigma$ . Uma instrução é da forma  $(q_i,s_j,q_l,s_k,d)$  na qual  $s_k\neq\Box$  e  $q_i\notin\{q_s,q_n\}$ . Se  $(q,s,q_0',s_0',d_0),(q,s,q_1',s_1',d_1)\in I$ , então  $q_0'=q_1',s_0'=s_1'$  e  $d_0=d_1$ . Q,  $\Sigma$  e I são conjuntos finitos.

O símbolo □ é o branco utilizado para as células ainda não utilizadas durante a execução e □ é utilizado para separar dados de entrada e saída.

Símbolos: Máquina de Turing Não Determinística (MTND), Máquina de Turing (MT), Máquina de Turing Determinística (MTD). A menos de menção em contrário, uma MT é uma MTD. Todas as linguagens utilizadas são subconjuntos de {0,1}\*.

Uma linguagem *L* é computável (recursiva) se existe uma MT *M* de decisão tal que

$$x \in L$$
 sse  $M(x) = 1$ 

Isto é, *M* decide *L*.

Uma linguagem L é ou computacionalmente enumerável, c.e. (recursivamente enumerável, r.e.) se existe uma MT M tal que se  $x \in L$  então M(x) = 1. Se  $x \notin L$ ,  $M(x) \uparrow$ . Dizemos que M aceita L.

Dizemos que uma MT M enumera os elementos de uma linguagem  $L \subset \Sigma^*$  (ou  $A \subset \mathbb{N}$ ) não vazia se:

(a) M despresa a sua entrada e imprime na fita um elemento de L, seguido de  $\sqcup$ , seguido de outro elemento de L, seguido de  $\sqcup$  e assim por diante;

- (b) dado  $x \in L$ , em algum momento da execução de Mx será impresso na fita;
- (c) M nunca pára a sua execução.

Note que os elementos impressos na fita por M podem ser repetidos e estar fora de ordem. Em particular, se L (ou A) for finito, haverá repetições.

Uma linguagem L pertence a TIME(f) se existe uma MT M de decisão que toma uma entrada x e que termina a sua execução depois de um número de passos menor ou igual a cf(n) tal que  $x \in L$  sse M(x) = 1. Ou seja, M executa em tempo cf(n). Uma linguagem L pertence a SPACE(f) se existe uma MT M que toma uma entrada x e que termina a sua execução depois de utilizar um número de células menor ou igual a cf(n) nas fitas de trabalho (todas exceto a de entrada e a de saída). Ou seja, M executa em espaço cf(n). NTIME(f) e NSPACE(f) têm definições análogas, mas que usam MTND´s.

$$P = \bigcup_{k \in \mathbb{N}} TIME(n^k)$$

$$NP = \bigcup_{k \in \mathbb{N}} NTIME(n^k)$$