Graphical Method

Mathematical Programming Terminology

- Decision variables are quantities you can control, which completely describe the set of decisions to be made.
- Constraints are limitations on the values of the decision variables.
- The objective function is a measure that can be used to rank alternative solutions (e.g., cost, production rate, travel time).
 - The goal is to either maximize or minimize its value.
- A solution is any combination of values for all decision variables.
- A feasible solution is a solution that satisfies all of the constraints.
 - An infeasible solution doesn't satisfy some constraint(s).
- An optimal solution is the best feasible solution.

Linear Programming

General symbolic form

... where a_{ij}, b_j, c_j are the model **parameters** and $x_1, x_2 \dots x_n$ are the **decision variables**.

Linear Programming (2)

General restrictions

- All decision variables must be nonnegative
 - not strictly required anymore
- Constant terms cannot appear on the LHS of a constraint
- No variable can appear on the RHS of a constraint
- No variable can appear more than once in the objective function or in any constraint

Steps for formulating LP models

- Construct a verbal model
- Define the decision variables
- Construct the symbolic model

Linear Programming (3)

- Linear programming has several key assumptions:
 - ▶ The **proportionality assumption** is the first point in the previous slide.
 - ▶ The **additivity assumption** is the second point in the previous slide.
 - The divisibility assumption says that each decision variable is permitted to assume fractional values.
 - The certainty assumption says that all parameters (i.e., coefficients) are known with certainty.

Graphical Solution of LP Models

- Graphical solution is limited to linear programming models containing only two decision variables (can be used with three variables but only with great difficulty).
- Graphical methods provide visualization of how a solution for a linear programming problem is obtained.
- Graphical methods can be classified under two categories:
 - ▶ 1. Iso-Profit(Cost) Line Method
 - 2. Extreme-point evaluation Method.

- Product mix problem Beaver Creek Pottery Company
- How many bowls and mugs should be produced to maximize profits given labor and materials constraints?
- Product resource requirements and unit profit:

	Product		
	Bowl	Mug	Available Resources
Labor (Hrs./Unit)	1	2	40
Clay (Lb./Unit)	4	3	120
Profit (\$/Unit)	\$40	\$50	

Resource Availability: 40 hrs of labor per day

120 lbs of clay

Decision Variables: $x_1 = \text{number of bowls to produce per day}$

 x_2 = number of mugs to produce per day

► Objective Function: Maximize $Z = $40x_1 + $50x_2$

Where Z = profit per day

Resource Constraints: $1x_1 + 2x_2 \le 40$ hours of labor

 $4x_1 + 3x_2 \le 120$ pounds of clay

Non-Negativity Constraints: $x_1 \ge 0$; $x_2 \ge 0$

Complete Linear Programming Model:

Maximize

$$Z = $40 x_1 + $50 x_2$$

subject to:

$$1 x_1 + 2 x_2 \le 40$$

$$4 x_1 + 3 x_2 \le 120$$

$$x_1, x_2 \ge 0$$

	Product		
	Bowl	Mug	Available Resources
Labor (Hrs./Unit)	1	2	40
Clay (Lb./Unit)	4	3	120
Profit (\$/Unit)	\$40	\$50	

Feasible Solutions

A feasible solution does not violate any of the constraints:

Example:
$$x_1 = 5$$
 bowls $x_2 = 10$ mugs $Z = $40 x_1 + $50 x_2 = 700

Labor constraint check: 1(5) + 2(10) = 25 < 40 hours

Clay constraint check: 4(5) + 3(10) = 70 < 120 pounds

Infeasible Solutions

An *infeasible solution* violates *at least one* of the constraints:

Example:
$$x_1 = 10 \text{ bowls}$$

 $x_2 = 20 \text{ mugs}$
 $Z = \$40 \ x_1 + \$50 \ x_2 = \$1400$

Labor constraint check: 1(10) + 2(20) = 50 > 40 hours

Coordinate Axes Graphical Solution of Maximization Model

Labor Constraint Graphical Solution of Maximization Model

Graph of Labor Constraint

Labor Constraint Area Graphical Solution of Maximization Model

Clay Constraint Area Graphical Solution of Maximization Model

Both Constraints Graphical Solution of Maximization Model

Feasible Solution Area Graphical Solution of Maximization Model

Objective Function Solution = \$800 Graphical Solution of Maximization Model

Objective Function Line for Z = \$800

Alternative Objective Function Solution Lines Graphical Solution of Maximization Model

Alternative Objective Function Lines

Optimal Solution Graphical Solution of Maximization Model

Identification of Optimal Solution Point

Optimal Solution Coordinates Graphical Solution of Maximization Model

Extreme (Corner) Point Solutions Graphical Solution of Maximization Model

At A(0,20): Z = (40)(0)+(50)(20) = \$1,000

At B(24,8) : Z = (40)(24)+(50)(8) = \$1,360 Maximum

At C(30,0): Z = (40)(30)+(50)(0) = \$1,200

Solutions at All Corner Points

LP Optimal Solutions

- If an optimal solution exists, it occurs at a **corner point** of the feasible region.
- In two dimensions with all inequality constraints plotted, a corner point is a solution at which two (or more) constraints are **binding**.
- If a feasible solution exists, there is always an optimal solution that is a corner point solution.
- An optimal solution isn't necessarily unique.

	Product		Available Resources
	X	Y	
Machine A/Unit	4	3	12
Machine B/Unit	3	6	12
Machine C/Unit	5	12	10
Cost/Unit	\$6	\$10	

Minimize: Subject to:

$$C = 6 X + 10 Y$$
 $4 X + 3 Y \ge 12$
 $3 X + 6 Y \ge 12$
 $5 X + 12 Y \ge 10$
 $X, Y \ge 0$

A workshop has three (3) types of machines A, B and C; it can manufacture two (2) products W and P, and all products have to go to each machine and each one goes in the same order; First to the machine A, then to B and then to C. The following table shows:

The hours needed at each machine, per product unit

The total available hours for each machine, per week

The profit of each product per unit sold

	Product		
	W	Р	Available Resources
Machine A	1.5	1	15 hrs.
Machine B	1.0	1.0	12 hrs.
Machine C	0.4	0.5	5 hrs.
Profit (\$/Unit)	\$400	\$300	

Objective Function

$$max: profit = 400 \times w + 300 \times p$$

- Subject to
 - Machine A:

Machine C:

Non-negativity:

$$1.5 \times W + 1.0 \times p \le 15$$

$$1.0 \times W + 1.0 \times p \le 12$$

$$0.4 \times W + 0.5 \times p \le 5$$

$$p,w \ge 0$$

	Product		
	W	P	Available Resources
Machine A	1.5	1	15 hrs.
Machine B	1.0	1.0	12 hrs.
Machine C	0.4	0.5	5 hrs.
Profit (\$/Unit)	\$400	\$300	

Solving an LP Graphically

Solving an LP Graphically (2)

Solving an LP Graphically (3)

Solving an LP Graphically (4)

Solving an LP Graphically (4)

Solving an LP Graphically (7)

Solving an LP Graphically (8)

Solving an LP Graphically (9)

Solving an LP Graphically (10)

Solving an LP Graphically (11)

Solving an LP Graphically (12)

Solving LP Problems Graphically - Outcomes

4 possible outcomes:

