

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	Automatizace IV
Popis sady vzdělávacích materiálů:	Automatizace IV, 4. ročník
Sada číslo:	E-15
Pořadové číslo vzdělávacího materiálu:	17
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_E-15-17
Název vzdělávacího materiálu:	Nespojité regulátory
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Jiří Miekisch

Nespojité regulátory

Nespojitý regulátor je regulátor, jehož výstupní signál neprobíhá spojitě v závislosti na vstupním signálu. Charakteristickou vlastností nespojitého regulátoru je to, že akční veličina může nabývat pouze omezených počtů hodnot. Nejčastěji v praxi používáme regulátory dvoupolohové. Vzácněji se používají i regulátory vícepolohové. Nespojité regulátory patří mezi nejrozšířenější hlavně z hlediska jednoduché konstrukce a v mnoha případech i dostatečné přesnosti regulace.

Dvoupolohový regulátor

Dvoupolohový regulátor se od spojitého liší tím, že neovládá akční člen spojitě, ale pouze jej přestavuje do jedné ze dvou krajních mezních poloh. Obecně má dvě stabilní polohy: například poloha A – poloha B, nebo otevřeno – zavřeno, nebo zapnuto – vypnuto. Regulátor je vybaven definovanou necitlivostí na změnu regulované veličiny v rozmezí $\pm \delta$ kolem žádané hodnoty. Pásmo necitlivosti je nutné proto, aby akční člen nekmital příliš rychle a často a tím pádem se rychle neopotřeboval nebo se zničil.

Regulační pochod s dvoupolohovým regulátorem

Nespojitý dvoupolohový regulátor se používá tam, kde nejsou kladeny vysoké nároky na přesnost regulace a určitá míra necitlivosti není na závadu. Předností regulátoru je jednoduchost a nízké pořizovací náklady.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Příklad

Jako příklad je znázorněna regulace teploty vody v nádrži. Jako měřící člen je použitý bimetalový spínač, který je ve chladném stavu sepnut. Tím pádem dochází k ohřevu vody a zároveň čidla. Při určité teplotě se bimetal prohne a rozepne napájecí obvod topného tělesa. Voda se ochlazuje až do okamžiku opětného sepnutí bimetalu a ohřevu vody.

Regulovanou veličinou je teplota v nádrži, akční veličinou je elektrický proud v topném tělese. Řídící veličinou je nastavení bimetalu.

Průběh teplot v soustavě se řídí podle funkcí – křivek. Tyto křivky mají technické pojmenování. Křivka zobrazující stoupající hodnotu teploty v soustavě se nazývá křivka ohřevu a křivka zobrazující klesající hodnotu teploty se nazývá křivka ochlazování nebo křivka chladnutí.

Při popisu chování soustavy při zapínání a vypínání akční veličiny se tyto křivky posunují v čase a umožňují sestavit graf průběhu teploty v soustavě.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Průběh regulované a akční veličiny

Otázky a úkoly pro zopakování učiva

- 1. Co je nespojitý regulátor?
- 2. Jaké jsou výhody a nevýhody nespojitého regulátoru?
- 3. Uveďte příklad nespojitého regulátoru z praxe?

Seznam použité literatury

MARŠÍK, A., KUBIČÍK, M.: AUTOMATIZACE – automatické řízení ve strojírenství. Praha: SNTL,
1980, typové číslo L26-C2-I-01/55536.