UNIVERSITÉ LAVAL ÉCOLE D'ACTUARIAT

ACT 2003

Notes de cours Modèles linéaires en actuariat

David Beauchemin

Automne 2017

© 2017 David Beauchemin

Cette création est mise à disposition selon le contrat Attribution-Partage dans les mêmes conditions 4.0 International de Creative Commons. En vertu de ce contrat, vous êtes libre de :

- partager reproduire, distribuer et communiquer l'œuvre;
- remixer adapter l'œuvre;
- utiliser cette œuvre à des fins commerciales.

Selon les conditions suivantes :

Attribution — Vous devez créditer l'œuvre, intégrer un lien vers le contrat et indiquer si des modifications ont été effectuées à l'œuvre. Vous devez indiquer ces informations par tous les moyens possibles, mais vous ne pouvez suggérer que l'offrant vous soutient ou soutient la façon dont vous avez utilisé son œuvre.

Partage dans les mêmes conditions — Dans le cas où vous modifiez, transformez ou créez à partir du matériel composant l'œuvre originale, vous devez diffuser l'œuvre modifiée dans les mêmes conditions, c'est-à-dire avec le même contrat avec lequel l'œuvre originale a été diffusée.

Remerciements

Le document a été bâti à partir des notes de cours ACT-2003 manuscrites rédigées par Frédérick Guillot. Ce document est une reproduction améliorée de celle-ci. Je suis grandement reconnaissant de la confiance de Frédérick Guillot pour l'exécution de cette initiative de ma part.

Je remercie Thomas Landry de m'avoir laissé utiliser ses notes pour l'utilisation et l'explication de certains concepts du cours ACT-2000. De plus, je remercie Samuel Cabral Cruz pour le code LATEX des bulles d'informations qui à mon avis améliore la beauté de ce document. Finalement, je remercie Kaesey-Andrew Lépine qui a pris le temps de relire le document et de trouver de nombreuses erreurs typographiques.

Version et correction

Liste des corrections depuis la version 1.0 :

- (Section 2.2.1.3) Correction à la page 19, équation de la somme des résidus. Terme manquant de $\hat{\beta}_1 X_t$.
- (Section 2.6.2) Correction du terme de la variance, absence du symbole chapeau pour l'estimation.
- (Section 2.6.4) Correction du doublon de la question 2.
- (Section 2.6.4) Correction de la question 3, il s'agit d'un test unilatéral. Le terme $(1 - \alpha)$ ne doit pas être divisé par 2.
- (Section 2.6.4) Correction de l'erreur typographique de positionnement des degrés de liberté.
- (Section 3.2.1) Reformulation de l'expression R^2_{adj} . (Section 3.2.3) Correction de l'erreur typographique de Fisher partiel.
- (Section 3.2.4) Correction de l'erreur typographique de la solution du modèle avec la technique 1.
- (Section 2.5.1) Correction de l'erreur typographique de la décomposition de la variation.
- (Section 2.6.2) Reformulation des explications de la décomposition.

Table des matières

1	Intr	roduct	ion	7		
2	Rég	ressio	n linéaire simple	8		
	2.1		luction	8		
		2.1.1	Regression linéaire simple	9		
		2.1.2	Régression linéaire multiple	9		
		2.1.3		10		
		2.1.4		11		
	2.2	Le mo	odèle de régression linéaire simple	14		
		2.2.1		16		
		2.2.2		23		
	2.3	Propr		24		
		2.3.1	Estimateur sans biais	24		
		2.3.2	Variances et covariances des estimateurs	26		
		2.3.3		29		
	2.4	Régre	ession passant par l'origine	30		
	2.5	Analy	rse de la variance	32		
		2.5.1	Notions préliminaires : Somme des carrés	33		
		2.5.2	Notions préliminaires : Degrés de liberté	36		
		2.5.3	Tableau d'analyse de la variance	37		
	2.6 Intervalles de confiance (I.C.) et test d'hypothèses					
		2.6.1		38		
		2.6.2	Intervalle de confiance pour $\beta_1 \ldots \ldots \ldots \ldots$	39		
		2.6.3	Intervalle de confiance pour β_0	40		
		2.6.4	Tests d'hypothèses sur les paramètres	41		
		2.6.5		46		
	2.7	Prévis	sions et intervalles de confiance	48		
		2.7.1	I.C. pour la prévision de type I (Valeur moyenne)	50		
		2.7.2	I.C. pour la prévision de type II (Vraie valeur)	52		
3	Rég	gressio	n linéaire multiple	5 5		
	3.1	Le mo	odèle sous forme matricielle	57		
		3.1.1	Estimateur des moindres carrés (EMC)	59		

		3.1.2	Résidus et tableau ANOVA	62
		3.1.3	Estimateur de σ^2	63
		3.1.4	Intervalles de confiance et tests d'hypothèses	63
		3.1.5	Test de Student sur un seul paramètre	64
		3.1.6	Test de Fisher pour la validité globale de la régression	65
		3.1.7	Test de Fisher partiel	65
	3.2	Sélecti	on d'un modèle optimal	66
		3.2.1	Technique 1 : Essai de tous les modèles	67
		3.2.2	Technique 2 : Élimination régressive (Backward elimination)	68
		3.2.3	Technique 3 : Sélection progressive (forward selection)	69
		3.2.4	Technique 4 : Régression pas-à-pas (stepwise regression)	69
	3.3	Régres	ssion avec variables indicatrices	73
	3.4	Analys	se qualitative des résidus	75
		3.4.1	Problèmes possibles dans la distribution des résidus	75
		3.4.2	Quantiles normaux	78
		3.4.3	Exemple complet	78
4	Les	modèl	es linéaires généralisés	88
	4.1	Introd	uction	88
	4.2	Notion	ns préliminaires : La famille exponentielle	89
		4.2.1	Loi Normale	89
		4.2.2	Loi Poisson	90
		4.2.3	Loi Bernouilli	90
		4.2.4	Autres lois	91
	4.3	Généra	alités sur les modèles de régression avec la famille exponentielle	91
		4.3.1	Contexte	91
		4.3.2	Autres lois	91
		4.3.3	Structure du modèle	91
		4.3.4	Propriété de la fonction de lien	92
	4.4	Appro	che générale	93
		4.4.1	Procédure avec les GLM	93
		4.4.2	Estimation des paramètres	93
		4.4.3	Validation globale du modèle avec la déviance	95
		4.4.4	Validation locale du modèle avec des tests d'hypothèses et	
			intervalles de confiances	97
	4.5	Modèl	e de régression normale	98
		4.5.1		100
		4.5.2	Remarque sur la validation globale et locale du modèle sous la loi Normale	100
	4.6	Modèl	e de régression logistique	101
	1.0	4.6.1	Contexte motivant l'utilisation de ce modèle	101
		4.6.2	Conséquences	102
		4.6.3	Interprétations	103
		4.6.4	Optimisation	103
		4 6 5	-	107

		4.6.6	Test d'hypothèse général	107
		4.6.7	Intervalle de confiance	107
	4.7	Régres	sion de Poisson	108
		4.7.1	Contexte motivant l'utilisation de ce modèle	108
		4.7.2	Conséquences	109
		4.7.3	Interprétations	109
		4.7.4	Optimisation	110
	4.8	Autres	notions importantes avec les GLM	112
		4.8.1	Autres distributions	112
		4.8.2	Algorithme du Scoring	115
		4.8.3	Variable offset	118
		4.8.4	Ajout d'une interaction entre deux variables explicatives	119
		4.8.5	Analyse des résidus	122
Α	Cod	e sour	ce	123
			ole du chapitre 3	123

Chapitre 1

Introduction

L'établissement de prévisions joue un rôle central dans notre vie de tous les jours (prévisions météorologiques, horoscope, etc.), et plus particulièrement dans celle des actuaires.

Objectifs de la régression

Régulièrement en actuariat, on se questionne sur les effets de différentes variables sur d'autres. Par exemple,

- Quel est l'effet de l'âge sur la fréquence des sinistres automobiles?
- Quel est l'effet du sexe sur la mortalité?

On cherche à étudier et déterminer les relations entre des variables mesurables à partir de données.

Deux grandes classes de variables mesurables :

- Qualitatives : basées sur des opinions et/ou des intuitions.
- Quantitatives : basées sur des observations, un modèle et des arguments mathématiques.

Deux grandes étapes pour établir des prévisions quantitatives

- 1. Bâtir le modèle et estimer les paramètres :
 - ex : $F = M \times a$, qui représente un modèle déterministe.
 - ex : $Y=3\times X+6+\epsilon_t$;
où $\epsilon_t\sim N(0,10),$ qui représente un modèle probabiliste.
- 2. Calculer les prévisions à partir du modèle.

Dans le cadre du cours, seulement les modèles probabilistes linéaires seront étudiés.

Chapitre 2

Régression linéaire simple

2.1 Introduction

De façon générale, en régression, nous avons :

Y	Variable dépendante, ou de réponse		
$X_1, X_2,, X_n$	Soit n variables indépendantes ou explicatives, ou exogènes 1	Input	
$\beta_0, \beta_1,, \beta_n$	Les paramètres à estimer		

Voici une illustration du concept de régression linéaire.

^{1.} Les variables X_i sont indépendantes par rapport à y, mais pas nécessairement entre elles.

2.1.1 Regression linéaire simple

On cherche à prédire l'âge des passagers du Titanic selon le prix du billet à l'aide du modèle linéaire suivant,

Âge prédit des passagers du Titanic

2.1.2 Régression linéaire multiple

On cherche à prédire l'âge d'un cerisier noir en fonction de la hauteur du cerisier et de la circonférence de son tronc.

2.1.3 Régression exponentielle

On cherche à prédire la sévérité d'un sinistre automobile en fonction du temps à l'aide du modèle exponentiel suivant,

Modèle de prédiction de la sévérité des sinistres

2.1.3.1 Note

On remarque que la régression exponentielle est similaire à une régression linéaire simple.

$$\ln(Y) = \ln(\beta_0) + \beta_1 \times X + \ln(\varepsilon)$$
$$Y^* = \beta_0^* + \beta_1 \times X + \varepsilon^*$$

Qu'on appelle aussi une régression multiplicative ou log linéaire.

2.1.4 Régression quadratique

On cherche à prédire la sévérité d'un sinistre automobile en fonction du temps et du temps au carré à l'aide du modèle quadratique suivant,

$$Y=\beta_0+\beta_1\times X+\beta_2\times X^2+\varepsilon \text{ }$$
 Sévérité du Sinistre Temps Erreur aléatoire

Modèle de prédiction de la sévérité des sinistres

2.1.4.1 Note

On remarque que la régression quadratique est similaire à une régression linéaire multiple. En posant $X_1=X$ et $X_2=X^2$

$$Y = \beta_0 + \beta_1 \times X_1 + \beta_2 \times X_2 + \varepsilon$$

Soit une régression linéaire multiple.

Dans le cadre du cours, seulement les modèles linéaires seront à l'étude pour les différentes raisons suivantes :

- Plus simples
- Plusieurs modèles peuvent se ramener à un modèle linéaire simple ou multiple. (voir 2.1.3.1 et 2.1.4.1)
- Constituent souvent une très bonne approximation de la réalité qui peut être très complexe, telle que l'assurance.
- Se généralisent facilement, tels que les Generalized Linear Models.

Le principal problème de la modélisation linéaire est de trouver les différents paramètres $\beta_0, \beta_1, ..., \beta_n$ de telle sorte que

$$\varepsilon = Y - f(X_1, ..., X_n; \beta_0, \beta_1, ..., \beta_n)$$
(2.1)

soit minimisé.

Il existe plusieurs méthodes pour calculer l'erreur. Soit les erreurs suivantes :

- Erreur totale
- Erreur absolue
- Erreur quadratique

Quel type d'erreur est suffisante pour déterminer ε ?

2.1.4.2 Erreur totale

$$\sum_{t=1}^{n} \varepsilon_t = \sum_{t=1}^{n} \left(Y_t - (\beta_0 + \beta_1 \times X_t) \right) \tag{2.2}$$

- Manque de fiabilité à cause de la mise à zéro

2.1.4.3 Erreur absolue

$$\sum_{t=1}^{n} |\varepsilon_t| = \sum_{t=1}^{n} \left| Y_t - (\beta_0 + \beta_1 \times X_t) \right|$$
 (2.3)

- Très robuste
- Très compliquée mathématiquement, pour minimiser $\sum_{t=1}^{n} |\varepsilon_t|$ cela implique de dériver une fonction valeur absolue.

2.1.4.4 Erreur quadratique

$$\sum_{t=1}^{n} \varepsilon_t^2 = \sum_{t=1}^{n} \left[Y_t - (\beta_0 + \beta_1 \times X_t) \right]^2 \tag{2.4}$$

- Mathématiquement plus simple que l'erreur absolue
- Donne beaucoup de poids aux grandes erreurs

L'erreur quadratique semble donc l'option la plus simple due à la facilité mathématique et à sa fiabilité.

2.2 Le modèle de régression linéaire simple

Le modèle de régression linéaire simple tente d'expliquer le mieux possible la variable dépendante 2 Y à l'aide d'une variable indépendante 3 X . Si on dispose de n paires d'observations $(X_1,Y_1),(X_2,Y_2),...,(X_n,Y_n)$ alors, le modèle s'exprime comme suit :

$$Y_i = \beta_0 + \beta_1 \times X_i + \varepsilon_i, i = 1, \dots, n. \tag{2.5}$$

Où β_0 est le paramètre associé à l'ordonnée à l'origine du modèle; β_1 est le paramètre associé à la pente de la droite; et ε est le terme d'erreur.

Quelques remarques sur le modèle

Dans l'équation 2.5 du modèle, on remarque que :

- Les observations de Y_i son tirées d'une variable aléatoire;
- Les observations de X_i sont considérées comme des valeurs connues et non aléatoires :
- Les paramètres β_0 et β_1 sont inconnus au départ. Ils doivent être estimés;
- ε_i sont des réalisations inconnues d'une variable aléatoire.

^{2.} On appelle parfois la variable dépendante une variable endogène. Cette variable s'interprète comme étant une variable qui est due à une cause interne.

^{3.} On appelle parfois les variables indépendantes des variables exogène. Ces variables s'intreprètent comme étant extérieur à un système.

Exemple d'un modèle de régression

 X_t : Nombre d'années de scolarité de l'actuaire t

 Y_t : Salaire de l'actuaire t

Comment résoudre le modèle pour prédire les salaires des actuaires en fonction du nombre d'années de scolarité?

Raisonnement:

- Pour $X_t = 0$; on a $Y_t = \beta_0$. Autrement dit, le salaire avec un nombre d'années nulle de scolarité est en moyenne de β_0 . Par exemple, β_0 serait le salaire moyen d'un stagiaire.
- Par la suite, pour chaque année additionnelle de scolarité, le salaire augmente en moyenne de β_1 unitées.

Ainsi, en moyenne on a

$$\mathbf{E}[Y_t|X_t] = \beta_0 + \beta_1 \times X_t$$

Habituellement, la relation n'est pas parfaitement exacte dans la réalité. On se retrouve ainsi avec une différence dans notre variable exogène prédite. L'erreur est notée ε_t et est telle que mentionnée plus tôt, assumée aléatoire.

$$\varepsilon_t = Y_t - \mathbf{E}[Y_t | X_t]$$
$$= Y_t - (\beta_0 + \beta_1 \times X_t)$$

En réorganisant, on retrouve l'équation 2.5.

On doit maintenant trouver les paramètres β_0 et β_1 de manière à minimiser l'erreur ε_t .

Si ε_t est minimal, cela veut dire que $Y_t \approx \beta_0 + \beta_1 \times X_t$. Ce qui signifie que la droite de régression est une bonne approximation de Y_t .

En résumé

En résumé, on cherche à minimiser nos résidus en optimisant les paramètres β_i .

2.2.1 Coefficients de régression

Les paramètres β_0 et β_1 sont déterminés en minimisant l'erreur quadratique à l'aide de la méthode des moindres carrés.

$$S(\beta_0, \beta_1) = \sum_{t=1}^{n} \varepsilon_t^2$$

$$= \sum_{t=1}^{n} (Y_t - (\beta_0 + \beta_1 \times X_t))^2$$

$$= \sum_{t=1}^{n} (Y_t - \beta_0 - \beta_1 \times X_t)^2$$

Où $S(\psi)$ peut être considérée comme une mesure de la distance entre les données observées et le modèle théorique qui prédit ces données ⁴.

Afin de minimiser la fonction $S(\beta_0, \beta_1)$, on dérive la fonction partiellement en fonction de chacun des paramètres.

2.2.1.1 Minimisation de β_0

$$\begin{split} \frac{\partial S(\hat{\beta}_0, \hat{\beta}_1)}{\partial \beta_0} &= 0\\ \frac{\partial}{\partial \beta_0} \sum_{t=1}^n \left(Y_t - \hat{\beta}_0 - \hat{\beta}_1 \times X_t \right)^2 &= 0\\ -2 \sum_{t=1}^n \left(Y_t - \hat{\beta}_0 - \hat{\beta}_1 \times X_t \right) &= 0 \end{split}$$

$$\sum_{t=1}^{n} Y_t - n \times \hat{\beta}_0 - \hat{\beta}_1 \sum_{t=1}^{n} X_t = 0$$
 (2.6)

^{4.} Pour de plus amples informations sur la méthode des moindres carrés et la fonction de distance, la page Wikipédia contient une bonne explication sur le sujet.

2.2.1.2 Minimisation de β_1

$$\frac{\partial S(\hat{\beta_0}, \hat{\beta_1})}{\partial \beta_1} = 0$$

$$\frac{\partial}{\partial \beta_1} \sum_{t=1}^n (Y_t - \hat{\beta_0} - \hat{\beta_1} \times X_t)^2 = 0$$

$$-2 \sum_{t=1}^n (Y_t - \hat{\beta_0} - \hat{\beta_1} \times X_t) \times X_t = 0$$

$$\sum_{t=1}^{n} Y_t \times X_t - \hat{\beta}_0 \sum_{t=1}^{n} X_t - \hat{\beta}_1 \sum_{t=1}^{n} X_t^2 = 0$$
 (2.7)

À l'aide des équations 2.6 et 2.7, on peut trouver les deux inconnus β_0 et β_1 .

À partir de 2.6:

$$\begin{split} \sum_{t=1}^{n} Y_{t} - n \times \hat{\beta_{0}} - \hat{\beta_{1}} \sum_{t=1}^{n} X_{t} &= 0 \\ \sum_{t=1}^{n} Y_{t} - \hat{\beta_{1}} \sum_{t=1}^{n} X_{t} &= n \times \hat{\beta_{0}} \\ \sum_{t=1}^{n} Y_{t} & \sum_{t=1}^{n} X_{t} \\ \frac{t=1}{n} - \hat{\beta_{1}} \frac{t=1}{n} &= \hat{\beta_{0}} \end{split}$$

Et à partir de 2.7:

$$\sum_{t=1}^{n} Y_t \times X_t - \hat{\beta}_0 \sum_{t=1}^{n} X_t - \hat{\beta}_1 \sum_{t=1}^{n} X_t^2 = 0$$
$$\sum_{t=1}^{n} Y_t \times X_t - \hat{\beta}_0 \sum_{t=1}^{n} X_t = \hat{\beta}_1 \sum_{t=1}^{n} X_t^2$$

$$\hat{\beta}_1 = \frac{\sum_{t=1}^n Y_t \times X_t - \hat{\beta}_0 \sum_{t=1}^n X_t}{\sum_{t=1}^n X_t^2}$$
(2.9)

On utilise l'équation 2.8 de $\hat{\beta}_0$ avec l'équation 2.9 de $\hat{\beta}_1$, on développe l'équation résultante afin d'isoler $\hat{\beta}_1$.

$$\hat{\beta_1} = \frac{\displaystyle\sum_{t=1}^n Y_t \times X_t - (\overline{Y} - \hat{\beta_1} \overline{X}) \sum_{t=1}^n X_t}}{\displaystyle\sum_{t=1}^n X_t^2}$$

$$= \frac{\displaystyle\sum_{t=1}^n Y_t \times X_t - (\overline{Y} - \hat{\beta_1} \overline{X}) \times n \overline{X}}}{\displaystyle\sum_{t=1}^n X_t^2}$$

$$= \frac{\displaystyle\sum_{t=1}^n Y_t X_t - n \overline{Y} \overline{X} + \hat{\beta_1} \times \overline{X}^2 \times n}}{\displaystyle\sum_{t=1}^n X_t^2}$$

En isolant $\hat{\beta}_1$, on obtient la définition suivante

$$\hat{\beta}_{1} = \frac{\sum_{t=1}^{n} Y_{t} X_{t} - n \overline{Y} \overline{X}}{\sum_{t=1}^{n} X_{t}^{2} - n \overline{X}^{2}}$$
(2.10)

2.2.1.3 Remarques

1. On note $\hat{\varepsilon}_t$ les résidus générés par le modèle estimé :

$$\begin{split} \hat{\varepsilon}_t &= Y_t - \hat{Y}_t \\ \hat{\varepsilon}_t &= Y_t - (\hat{\beta}_0 - \hat{\beta}_1 X_t) \text{; pour t} = 1,2,...,n \end{split}$$

Si on illustre graphiquement les résidus, il s'agit du segment le plus court entre la droite de régression et la donnée observée.

Si on reprend le graphique de la section 2.1.1, on observe facilement les résidus sur cette représentation graphique :

Âge prédit des passagers du Titanic

2. Le centre de gravité 5 des données $(\overline{X},\overline{Y})$ se trouvent exactement sur la droite de régression.

On peut facilement effectuer cette preuve à partir de l'équation 2.8,

$$\begin{split} \hat{\beta_0} &= \overline{Y} - \hat{\beta_1} \overline{X} \\ \overline{Y} &= \hat{\beta_0} + \hat{\beta_1} \overline{X} + 0 \end{split}$$

On note ainsi une absence de résidus pour le centre de masse.

Si on reprend (encore) le graphique de la section 2.1.1, on observe facilement le centre de masse sur le graphique.

^{5.} Qu'on appelle parfois le centre de masse.

Représentation du centre de masse Âge du passager Prix du billet (\$)

3. La somme des résidus de tout modèle de régression linéaire est nulle.

$$\sum_{t=1}^{n} \hat{\varepsilon}_{t} = \sum_{t=1}^{n} \left(Y_{t} - (\hat{\beta}_{0} + \hat{\beta}_{1} X_{t}) \right)$$

$$\stackrel{2.8}{=} \sum_{t=1}^{n} \left(Y_{t} - (\overline{Y} - \hat{\beta}_{1} \overline{X}) - \hat{\beta}_{1} X_{t} \right)$$

$$= \sum_{t=1}^{n} Y_{t} - \sum_{t=1}^{n} \overline{Y} + \hat{\beta}_{1} \sum_{t=1}^{n} \overline{X} - \hat{\beta}_{1} \sum_{t=1}^{n} X_{t}$$

$$= n \overline{Y} - n \overline{Y} + \hat{\beta}_{1} + n \overline{X} - \hat{\beta}_{1} + n \overline{X}$$

$$= 0$$

2.2.1.4 Notation

Afin de faciliter l'écriture, on intègre la notation suivante; S_{xx} et S_{xy} . Les expressions précédantes sont appelées respectivement : la somme des carrés corrigée de x et la somme des produits croisés corrigée de x et de y. Voici le développement pour S_{xx} ,

$$S_{xx} = \sum_{t=1}^{n} (X_t - \overline{X})^2$$

$$= \sum_{t=1}^{n} (X_t - \overline{X})^2$$

$$= \sum_{t=1}^{n} (X_t^2 - 2X_t \overline{X} + \overline{X}^2)$$

$$= \sum_{t=1}^{n} X_t^2 - 2\overline{X} \sum_{t=1}^{n} X_t + n\overline{X}^2$$

$$= \sum_{t=1}^{n} X_t^2 - 2\overline{X}n\overline{X} + n\overline{X}^2$$

$$= \sum_{t=1}^{n} X_t^2 - n\overline{X}^2$$

On effectue le même type de développement pour S_{xy} ,

$$S_{xy} = \sum_{t=1}^{n} (X_t - \overline{X})(Y_t - \overline{Y})$$

$$\vdots$$

$$= \sum_{t=1}^{n} X_t Y_t - n \overline{XY}$$

À l'aide des sommes de carrés corrigés, on peut réécrire la définition de $\hat{\beta}_1$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} \tag{2.11}$$

2.2.1.5 Exemple

On poursuit avec un exemple pour assimiler l'information.

• On dispose des cinq observations suivantes du couple (X_t, Y_t) dans le tableau de gauche ainsi que les éléments calculés nécessaires pour trouver les paramètres dans le tableau de droite.

t	X_t	Y_t
1	2	2
2	3	5
3	6	3
4	9	6
5	12	5
Totaux:	32	21

t	X_t^2	X_tY_t
1	4	4
2	9	15
3	36	18
4	81	54
5	144	60
Totaux:	274	151

À partir des définitions 2.8 et 2.10, on trouve facilement la valeur de $\hat{\beta}_0$ et de $\hat{\beta}_1$.

$$\hat{\beta}_1 = \frac{\sum_{t=1}^n Y_t X_t - n \overline{YX}}{\sum_{t=1}^n X_t^2 - n \overline{X}^2}$$

$$= \frac{151 - (5)(\frac{21}{5})(\frac{32}{5})}{274 - (5)(\frac{32}{5})^2}$$

$$= \frac{83}{346}$$

$$\approx 0.2399$$

$$\begin{split} \hat{\beta_0} &= \overline{Y} - \hat{\beta_1} \overline{X} \\ &= \frac{21}{5} - (\frac{83}{346}) \times (\frac{32}{5}) \\ &\approx 2.6647 \end{split}$$

On obtient ainsi le modèle de régression suivant :

$$Y_t = 2.6647 + 0.2399X_t + \varepsilon_t$$

t	$Y_t = \hat{\beta}_0 + \hat{\beta}_1 X_t$	$\hat{arepsilon}_t$
1	3.1445	-1.1445
2	3.3844	1.6156
3	4.1041	-1.1041
4	4.8238	1.1762
5	5.5435	-0.5435

Exécution en R

```
3 > # Dataset
4 > x <- c(2,3,6,9,12); y <- c(2,5,3,6,5)
5 > # Estimations des parametres
6 > reg <- lm(y ~ x)
7 > # Resume de l'estimation
8 > summary(reg)
9 > # Valeurs de Yt
10 > fitted(reg)
11 > # Residus
12 > residuals(reg)
```

Listing 2.1 – Code source en R pour l'exemple

Astuce calculatrice

La calculatrice TI-30XS Multiview permet de créer un tableau de donnée et de sortir rapidement et facilement différentes informations sur une régression à partir des données. Tel que:

• \overline{X} et \overline{Y} ;

- $\sum_{t=1}^{n} X_t$, $\sum_{t=1}^{n} X_t^2$, $\sum_{t=1}^{n} Y_t$, $\sum_{t=1}^{n} Y_t^2$ et $\sum_{t=1}^{n} X_t Y_t$;
- $\hat{\beta}_0$ et $\hat{\beta}_1$

Pour de plus ample information, consulter le guide sur les calculatrices.

2.2.2 Caractéristiques du terme d'erreur

On rappelle que l'équation du modèle de régression correspond à

$$Y_t = \beta_0 + \beta_1 \times X_t + \varepsilon_t$$
 (2.5)

De plus, on sait qu'il s'agit des valeurs moyennes de Y_t en sachant X_t , soit

$$Y_t = \mathbf{E}[Y_t|X_t] + \varepsilon_t$$

On peut ainsi formuler les trois postulats ⁶ suivants,

 $^{6.\ \,}$ Le postulat est un principe non démontré, mais utilisé dans la construction d'une théorie mathématique.

- 1. $\mathbf{E}[\varepsilon_t] = 0$, par définition pour que $\mathbf{E}[Y_t] = \mathbf{E}[Y_t|X_t]$. Il s'agit de l'hypothèse de linéarité de la variable explicative. On dit qu'elle est exogène si elle n'est pas corrélée au terme d'erreur.
- 2. $Var(\varepsilon_t) = \sigma^2$, la variance des termes d'erreurs est supposée constante. Il s'agit de l'hypothèse d'homoscédasticité.
- 3. $\mathbf{Cov}(\varepsilon_t, \varepsilon_s) = 0$, pour $t \neq s$, il n'y a pas de corrélation entre les termes d'erreurs. Il s'agit de l'hypothèse d'indépendance des erreurs.

1 Quatrième postulat

Les hypothèses de linéarité et d'homoscédasticité sont très intéressantes, si on observe leurs définitions ensemble on remarque qu'il s'agit d'une distribution avec une espérance nulle et une variabilité supposée constante. Ce qui nous amène à une quatrième hypothèse, les résidus sont distribués selon une loi normale.

$$\hat{\varepsilon}_t | x_i \sim N(0, \sigma^2)$$

2.3 Propriétés de l'estimateur des moindres carrés (EMC)

2.3.1 Estimateur sans biais

On rappelle qu'un estimateur est dit sans biais lorsque son espérance est égale à la valeur vraie du paramètre, soit $\mathbf{E}[\hat{\theta}] = \theta \Leftrightarrow b(\hat{\theta}) = 0^7$.

$$\mathbf{E}[\hat{\beta}_1] = \mathbf{E}\left[\frac{\sum_{t=1}^{n} (X_t - \overline{X})(Y_t - \overline{Y})}{\sum_{t=1}^{n} (X_t - \overline{X})^2}\right]$$

^{7.} Notes de cours ACT-2000, chapitre 3, Thomas Landry, Hiver 2017.

$$= \frac{\sum_{t=1}^{n} (X_t - \overline{X}) \mathbf{E}[Y_t - \overline{Y}]}{\sum_{t=1}^{n} (X_t - \overline{X})^2}$$
$$= \frac{\sum_{t=1}^{n} (X_t - \overline{X}) (\mathbf{E}[Y_t] - \mathbf{E}[\overline{Y}])}{\sum_{t=1}^{n} (X_t - \overline{X})^2}$$

De l'équation 2.5, et avec le postulat 1, on sait que,

$$Y_t = \beta_0 + \beta_1 \times X_t + \varepsilon_t$$
$$\mathbf{E}[Y_t] = \mathbf{E}[\beta_0 + \beta_1 \times X_t] + \mathbf{E}[\varepsilon_t]$$
$$\stackrel{1}{=} \beta_0 + \beta_1 \times X_t + 0$$

On applique le même raisonnement pour l'espérance de \overline{Y} .

$$\mathbf{E}[\hat{\beta}_{1}] = \frac{\sum_{t=1}^{n} (X_{t} - \overline{X})(\mathbf{E}[Y_{t}] - \mathbf{E}[\overline{Y}])}{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}}$$

$$= \frac{\sum_{t=1}^{n} (X_{t} - \overline{X})(\beta_{0} + \beta_{1} \times X_{t} - \beta_{0} - \beta_{1}\overline{X_{t}})}{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}}$$

$$= \frac{\sum_{t=1}^{n} (X_{t} - \overline{X})\beta_{1}(X_{t} - \overline{X_{t}})}{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}}$$

$$= \beta_1 \frac{\sum_{t=1}^n (X_t - \overline{X})^2}{\sum_{t=1}^n (X_t - \overline{X})^2}$$
$$\mathbf{E}[\hat{\beta}_1] = \beta_1$$

Par conséquent,

$$\mathbf{E}[\hat{\beta}_0] = \mathbf{E}[\overline{Y} - \hat{\beta}_1 \overline{X}]$$

$$= \mathbf{E}[\overline{Y}] - \overline{X} \mathbf{E}[\hat{\beta}_1]$$

$$= \beta_0 + \beta_1 \overline{X} - \overline{X} \beta_1$$

$$\mathbf{E}[\hat{\beta}_0] = \beta_0$$

On peut ainsi conclure que les deux estimateurs des paramètres sont sans biais.

2.3.2 Variances et covariances des estimateurs

On s'intéresse aux variances et aux covariances des estimateurs, cette deuxième propriété ainsi que la première nous permettera de déduire une conclusion en lien avec le quatrième postulat.

$$\mathbf{V}\operatorname{ar}(\hat{\beta}_{1}) = \mathbf{V}\operatorname{ar}\left(\frac{\sum_{t=1}^{n}(X_{t}-\overline{X})(Y_{t}-\overline{Y})}{\sum_{t=1}^{n}(X_{t}-\overline{X})^{2}}\right)$$

$$= \frac{\mathbf{V}\operatorname{ar}\left(\sum_{t=1}^{n}(X_{t}-\overline{X})Y_{t}-\sum_{t=1}^{n}(X_{t}-\overline{X})\overline{Y}\right)}{\left(\sum_{t=1}^{n}(X_{t}-\overline{X})^{2}\right)^{2}}$$

$$= \frac{\mathbf{V}\operatorname{ar}\left(\sum_{t=1}^{n}(X_{t}-\overline{X})Y_{t}\right)+\mathbf{V}\operatorname{ar}\left(\sum_{t=1}^{n}(X_{t}-\overline{X})\overline{Y}\right)}{\left(\sum_{t=1}^{n}(X_{t}-\overline{X})^{2}\right)^{2}}$$

$$= \frac{\sum_{t=1}^{n} (X_t - \overline{X})^2 \mathbf{V} \operatorname{ar}(Y_t) + \mathbf{V} \operatorname{ar}(\overline{Y}(n\overline{X} - n\overline{X}))}{\left(\sum_{t=1}^{n} (X_t - \overline{X})^2\right)^2}$$
$$= \frac{\sum_{t=1}^{n} (X_t - \overline{X})^2 \mathbf{V} \operatorname{ar}(\beta_0 + \beta_1 X_t + \varepsilon_t) + 0}{\left(\sum_{t=1}^{n} (X_t - \overline{X})^2\right)^2}$$

$$= \frac{\sum_{t=1}^{n} (X_t - \overline{X})^2 \mathbf{V} \operatorname{ar}(\varepsilon_t)}{\left(\sum_{t=1}^{n} (X_t - \overline{X})^2\right)^2}$$

$$\stackrel{2}{=} \frac{\sum_{t=1}^{n} (X_t - \overline{X})^2 \sigma^2}{\left(\sum_{t=1}^{n} (X_t - \overline{X})^2\right)^2}$$

$$\mathbf{Var}(\hat{\beta_1}) = \frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2}$$
(2.12)

$$\begin{aligned} \mathbf{V}\mathrm{ar}(\hat{\beta}_{0}) &= \mathbf{V}\mathrm{ar}(\overline{Y} - \hat{\beta}_{1}\overline{X}) \\ &= \mathbf{V}\mathrm{ar}(\overline{Y}) + \mathbf{V}\mathrm{ar}(\hat{\beta}_{1}\overline{X}) - 2\mathbf{C}\mathrm{ov}(\overline{Y}, \hat{\beta}_{1}\overline{X}) \\ &= \mathbf{V}\mathrm{ar}\left(\frac{\sum_{t=1}^{n} Y_{t}}{n}\right) + \overline{X}^{2}\mathbf{V}\mathrm{ar}(\hat{\beta}_{1}) - 2\overline{X}\mathbf{C}\mathrm{ov}(\overline{Y}, \hat{\beta}_{1}) \\ &= \frac{n \times \mathbf{V}\mathrm{ar}(Y_{t})}{n^{2}} + \overline{X}^{2}\left(\frac{\sigma^{2}}{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}}\right) - 2\overline{X}\mathbf{C}\mathrm{ov}(\overline{Y}, \hat{\beta}_{1}) \end{aligned}$$

$$\operatorname{Cov}(\overline{Y}, \hat{\beta}_{1}) = \operatorname{Cov}\left(\frac{\sum_{t=1}^{n} Y_{t}}{n}, \frac{\sum_{s=1}^{n} (X_{s} - \overline{X})(Y_{s} - \overline{Y})}{\sum_{s=1}^{n} (X_{s} - \overline{X})^{2}}\right)$$

$$= \frac{1}{n} \frac{1}{\sum_{s=1}^{n} (X_{s} - \overline{X})^{2}} \operatorname{Cov}\left(\sum_{t=1}^{n} Y_{t}, \sum_{s=1}^{n} (X_{s} - \overline{X})Y_{s} - \overline{Y}\sum_{s=1}^{n} (X_{s} - \overline{X})\right)$$

$$= \frac{1}{n} \frac{1}{\sum_{s=1}^{n} (X_{s} - \overline{X})^{2}} \sum_{t=1}^{n} \sum_{s=1}^{n} (X_{s} - \overline{X})\operatorname{Cov}(Y_{t}, Y_{s})$$

$$= \frac{1}{n} \frac{1}{\sum_{s=1}^{n} (X_{s} - \overline{X})^{2}} \left(\sum_{t=1}^{n} \sum_{s=1}^{n} (X_{s} - \overline{X}) \times 0 + \sum_{t=1}^{n} \sum_{s=1}^{n} (X_{s} - \overline{X})\sigma^{2}\right)$$

$$= \frac{1}{n} \frac{1}{\sum_{s=1}^{n} (X_{s} - \overline{X})^{2}} \sigma^{2} \left(\sum_{t=1}^{n} (X_{t} - \overline{X})\right)$$

$$= \frac{1}{n} \frac{1}{\sum_{s=1}^{n} (X_{s} - \overline{X})^{2}} \sigma^{2} (n\overline{X} - n\overline{X})$$

$$= 0$$

$$\mathbf{Var}(\hat{\beta}_0) = \frac{\sigma^2}{n} + \overline{X}^2 \left(\frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2} \right)$$
 (2.13)

Finalement, pour la covariance entre $\hat{\beta}_0$ et $\hat{\beta}_1$

$$\begin{aligned} \mathbf{C}ov(\hat{\beta}_0, \hat{\beta}_1) &= \mathbf{C}ov(\overline{Y} - \hat{\beta}_1 \overline{X}, \hat{\beta}_1) \\ &= \mathbf{C}ov(\overline{Y}, \hat{\beta}_1) - \overline{X} \mathbf{V}ar(\hat{\beta}_1) \\ &= 0 - \overline{X} \frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2} \end{aligned}$$

$$\mathbf{Cov}(\hat{\beta}_0, \hat{\beta}_1) = -\overline{X} \frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2}$$
(2.14)

Résumé des propriétés des estimateurs

Les équations 2.13 et 2.12 ainsi que le postulat 4 à la section 2.2.2 nous permettent de conclure que

$$\hat{\beta_0} \sim N\left(\beta_0, \frac{\sigma^2}{n} + \overline{X}^2 \left(\frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2}\right)\right)$$

$$\hat{\beta_1} \sim N\left(\beta_1, \frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2}\right)$$

2.3.3 Optimalité

Le théorème de Gauss-Markor nous permet d'établit que l'estimateur des moindres carrés est l'estimateur non biaisé à variance minimale.

Notions importantes à retenir du théorème :

- 1. Considérer l'estimateur $\Theta^* = \sum_{t=1}^n C_t \times Y_t$
- 2. Minimiser $\mathbf{V}ar(\Theta^*)$ sous la contrainte que $\mathbf{E}[\Theta^*] = \beta$; où

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

2.4 Régression passant par l'origine

Dans certaines situations, il est possible que l'on souhaite forcer la droite de régression à passer par l'origine. Voici un exemple de situation où il est plus logique de forcer le modèle,

 X_t : Nombre de Km parcourut

 Y_t : Consommation d'essence en L d'une voituret

Il est plus logique d'avoir une consommation de $0\ L$ pour une distance de $0\ Km$. Dans ce cas, on peut postuler le modèle suivant :

$$Y_t = \beta \times X_t + \varepsilon_t \tag{2.15}$$

On peut démontrer par le même raisonnement qu'à la section 2.2.1 que de minimisation du paramètre β correspond à :

$$\hat{\beta} = \frac{\sum_{t=1}^{n} X_t Y_t}{\sum_{t=1}^{n} X_t^2}$$
 (2.16)

On reprend l'exemple énoncer plus haut, voici le modèle représenter graphiquement :

Modèle d'analyse de la consommation d'essence

Code R

Voici le code R permettant de créer un modèle linéaire simple avec une droite passant par l'origine.

Listing 2.2 – Code source en R pour l'exemple

2.5 Analyse de la variance

Un tableau d'analyse de la variance permet d'évaluer la qualité de l'ajustement du modèle aux observations.

Idée

- 1. Si on décide de modéliser Y_t sans la régression, autrement dit de l'analyse statistique 8 , alors Y est vue comme une variable aléatoire avec une certaine variance, soit Var(y).
- 2. En utilisant la régression pour modéliser Y_t en fonction de X_t une partie de la variance de Y_t est expliquée par la variance de X_t , alors que l'autre partie reste inexpliquée.
- 3. L'utilité de la régression est de trouver la proportion de la variance de Y_t qui est expliquée par la variance de X_t .

On voit que les résidus de l'échantillon 1 sont très mal expliqués par notre modèle, les résidus sont très élevés. Tandis que les résidus de l'échantillon 2 sont parfaitement expliqués par notre modèle.

^{8.} Cours ACT-2000

\$residusBonFit

Il y a peu d'intérêt de construire un modèle avec les données de l'échantillon 1 car,

Il est préférable dans ce cas-ci d'utiliser les modèles statistiques vus dans le cours ACT-2000.

Par contre, il y a un intérêt à utiliser un modèle avec les données de l'échantillon 2 car,

$$\mathbf{V}\mathrm{ar}(Y_t) = \mathbf{V}\mathrm{ar}(X_t)$$

Autrement dit, la variable X explique bien la variable Y.

Note

Noter que les modèles précédents ont été ajustés pour mieux représenter le concept, un modèle avec un fit parfait n'est pas réaliste dans la réalité.

2.5.1 Notions préliminaires : Somme des carrés

La variance totale de Y_t est décomposable sous le modèle de régression linéaire, cette décomposition permet d'analyser l'ajustement du modèle. On la représente ainsi :

$$SST = \sum_{t=1}^{n} (Y_t - \overline{Y})^2$$

Décomposition

$$(Y_t - \overline{Y}) = Y_t - \hat{Y}_t + \hat{Y}_t - \overline{Y}$$

$$(Y_t - \overline{Y}) = (Y_t - \hat{Y}_t) + (\hat{Y}_t - \overline{Y})$$

$$\underbrace{(Y_t - \overline{Y}) =}_{\text{Variation totale de } Y_t}$$

Résidu Variation inexpliquée par la régression

 $(Y_t - \hat{Y}_t) +$

Variation de
$$\hat{Y}_t$$

Variation expliquée
par la régression

Par conséquent, on a que

$$SST = \sum_{t=1}^{n} \left[(\hat{Y}_t - \overline{Y}) + (Y_t - \hat{Y}_t) \right]^2$$
$$= \sum_{t=1}^{n} (\hat{Y}_t - \overline{Y})^2 + \sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2 + 2\sum_{t=1}^{n} (\hat{Y}_t - \overline{Y})(Y_t - \hat{Y}_t)$$

$$= \underbrace{\sum_{t=1}^{n} (\hat{Y}_{t} - \overline{Y})^{2} + \sum_{t=1}^{n} (Y_{t} - \hat{Y}_{t})^{2} + 2 \sum_{t=1}^{n} (\hat{Y}_{t} - \overline{Y})(Y_{t} - \hat{Y}_{t})}_{SSR}$$
SSE
Régression
Erreur

Développement de ψ

$$2\sum_{t=1}^{n} (\hat{Y}_{t} - \overline{Y})(Y_{t} - \hat{Y}_{t}) \Rightarrow 2\sum_{t=1}^{n} (\hat{\beta}_{0} + \hat{\beta}_{1}X_{t} - \hat{\beta}_{0} - \hat{\beta}_{1}\overline{X})(Y_{t} - \overline{Y} + \overline{Y} - \hat{Y}_{t})$$

$$= 2\sum_{t=1}^{n} \hat{\beta}_{1}(\hat{X}_{t} - \overline{X})(Y_{t} - \overline{Y} + \hat{\beta}_{0} + \hat{\beta}_{1}\overline{X} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{t})$$

$$= 2\sum_{t=1}^{n} \hat{\beta}_{1}(\hat{X}_{t} - \overline{X})\left((Y_{t} - \overline{Y}) - \hat{\beta}_{1}(X_{t} - \overline{X})\right)$$

$$= 2\hat{\beta}_{1}\sum_{t=1}^{n} (\hat{X}_{t} - \overline{X})(Y_{t} - \overline{Y}) - 2\hat{\beta}_{1}^{2}\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}$$

$$= 2\hat{\beta}_{1}(S_{xy} - \hat{\beta}_{1}S_{xx})$$

$$\stackrel{2:11}{=} 2\hat{\beta}_{1}(S_{xy} - \frac{S_{xy}}{S_{xx}}S_{xx})$$

$$= 2\hat{\beta}_{1}(S_{xy} - S_{xy})$$

$$= 0$$

Ainsi,

$$SST = SSR + SSE$$
 (2.17)

Où SSR est la variation expliquée par le modèle de régression linéaire et SSE signifie la variation inexpliquée, ou résiduelle du modèle de régression linéaire.

Intuitivement,

- Dans un bon modèle de régression, on aimerait que
- $-SST \approx SSR$, soit que $Var(Y_t) \approx Var(X_t)$
- $SSE \approx 0$, soit que la variation résiduelle soit très faible
- On définit le coefficient de détermination par

$$R^{2} = Corr^{2}(Y, \hat{Y}) = \frac{SSR}{SST} \Leftrightarrow 1 - \frac{SSE}{SST}$$
(2.18)

Par rapport au ratio, $\frac{\text{SSR}}{\text{SST}}$ signifie le pourcentage de la variance dans Y_t expliqué par la régression et $1-\frac{\text{SSR}}{\text{SST}}$ signifie le pourcentage de la variance dans Y_t qui n'est pas expliquée par la régression.

- $-R^2 \in [0,1]$ Si $R^2 = 100\%$, la régression est parfaite et utile; si $R^2 = 0\%$, la régression n'est pas parfaite et elle est inutile.

2.5.2 Notions préliminaires : Degrés de liberté

Le nombre de degrés de liberté 9 d'une somme de carrés est :

- $\bullet\,$ Le nombre de composants indépendants dans la somme ;
- Le nombre minimal de fonctions de $Y_1, ..., Y_n$ qu'il faut connaître pour obtenir la somme:

011

ullet Pour SST et SSE seulement

 $d.l. = \Big(\text{Nombre de termes dans la somme} \Big) - \Big(\text{Nombre de paramètres estimés dans cette somme} \Big)$

•
$$SST = \sum_{t=1}^{n} (Y_t - \overline{Y})^2 \to \text{n termes - (1 paramètre estimé}^{10}) = (n-1) d.l.$$

•
$$SSE = \sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2$$

$$\sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2 = \sum_{t=1}^{n} (Y_t - \hat{\beta}_0 - \hat{\beta}_1 X_t)^2 \to \text{ n termes } -(2 \text{ paramètres estimés}^{11}) = \boxed{(n-2) \, d.l.}$$

•
$$SSR = \sum_{t=1}^{n} (\hat{Y}_t - \overline{Y})^2$$

$$\sum_{t=1}^{n} (\hat{Y}_{t} - \overline{Y})^{2} = \sum_{t=1}^{n} (\hat{\beta}_{0} + \hat{\beta}_{1} X_{t} - \hat{\beta}_{0} - \hat{\beta}_{1} \overline{X})^{2}$$

$$= \underbrace{\hat{\beta}_{1}^{2}}_{f(y_{1}, \dots, y_{n})} \times \underbrace{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}}_{f(x_{1}, \dots, x_{n})}$$

Soit une seule fonction des $Y_1,...,Y_n$ doit être connue pour obtenir $SSR \to \boxed{1~d.l.}$

Remarque

On sait que:

$$SST = SSE + SSR$$

On note aussi que

$$d.l.(SST) = d.l.(SSE) + d.l.(SSR)$$

 $(n-1) = (n-2) + (1)$

11.
$$\hat{\beta}_0$$
 et $\hat{\beta}_1$

^{9.} Couramment l'abréviation d.l. sera utiliser pour signifié degrés de liberté.

^{10.} \overline{Y}

On aurait donc pu retrouver d.l.(SST) = d.l.(SSE) + d.l.(SSR).

2.5.3 Tableau d'analyse de la variance

On appelle couramment le tableau d'analyse de la variance le tableau ANOVA. Ce type de tableau est utilisé dans tous les logiciels de régression pour évaluer la qualité d'un modèle.

Source de la	Somme des	Degrés de li-	Carrés	Ratio de Fi-
variance	carrés (SS)	berté $(d.l.)$	moyens	sher (F)
			(MS)	, ,
Régression	SSR	1	$MSR = \frac{SSR}{1}$	$F = \frac{MSR}{MSE}$
Erreur	SSE	n - 2	$MSE = \frac{S\dot{S}E}{n-2}$	11.52
Total	SST	n - 1		

Exemple

On pour suit avec un exemple pour assimiler l'information, on reprend l'exemple de la section 2.2.1.5.

t	X_t	Y_t	$\hat{Y}_t = \hat{\beta}_0 + \hat{\beta}_1 X_t$	$\hat{arepsilon}_t$
1	2	2	3.1445	-1.1445
2	3	5	3.3844	1.6156
3	6	3	4.1041	-1.1041
4	9	6	4.8238	1.1762
5	12	5	5.5435	-0.5435
Totaux:	32	21		

$$SSE = \sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2 = \sum_{t=1}^{n} \varepsilon_t^2 = 6.8179$$

$$SSR = \sum_{t=1}^{n} (\hat{Y}_t - \overline{Y})^2 = 3.9821$$

$$SST = SSE + SSR = 6.8179 + 3.9821 = 10.8000$$

ANOVA

Source	SS	d.l.	MS	F
Régression	3.9821	1	3.9821	1.7522
Erreur	6.8179	3	2.2726	
Totaux	10.8000	4		

$$R^{2} = \frac{SSR}{SST} = \frac{3.9821}{10.8000} = 36.87\%$$

$$R^{2} = 1 - \frac{SSE}{SST} = 1 - \frac{6.8179}{10.8000} = 36.87\%$$

Autrement dit, seulement 36.87 % de la variabilité des Y_t est expliquée par la variabilité des X_t . La régression n'est pas très efficace et utile.

Code R

Voici le code R permettant de créer un modèle linéaire simple avec une droite passant par l'origine.

```
3 > # Dataset

4 > y <- c(2, 5, 3, 6, 5); x <- c(2, 3, 6, 9, 12)

5 > # Estimation des betas

6 > reg <- lm(y \sim x)

7 > anova(reg)
```

Listing 2.3 – Code source en R pour l'exemple

2.6 Intervalles de confiance (I.C.) et test d'hypothèses

On poursuit l'objectif des sections 2.3 et 2.5, soit de valider la qualité du modèle de régression.

2.6.1 Distribution des variables aléatoires

On rappel qu'avec le postulat 4 (2.2.2), on suppose que les résidus suivent une loi normale d'espérance nulle et de variance de σ^2 .

$$\hat{\varepsilon}_t | x_i \overset{i.i.d.}{\sim} N(0, \sigma^2)$$

Les conséquences de ce postulat sont les suivantes :

1.
$$(Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t) \sim N(\beta_0 + \beta_1 X_t, \sigma^2)$$
 (Postulat 1)

2. Les propriétés de l'estimateur des moindres carrés avaient permis de démontrer que (section 2.3) :

$$\hat{\beta_0} \sim N\left(\beta_0, \frac{\sigma^2}{n} + \overline{X}^2 \left(\frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2}\right)\right)$$

$$\hat{\beta_1} \sim N\left(\beta_1, \frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2}\right)$$

$m{Alternative}$

On peut tirer la même conclusion à partir de la propriété des fonctions linéaires de $\hat{\beta}_0$ et $\hat{\beta}_1$.

3. L'estimateur sans biais pour σ^2 est :

$$\sigma^2 = S^2 = MSE$$

$$MSE = \frac{SSE}{d.l.(SSE)}$$

$$\frac{SSE}{d.l.(SSE)} = \frac{\sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2}{n-2}$$

$$\sigma^2 = \frac{\sum_{t=1}^n \varepsilon_t^2}{n-2} \tag{2.19}$$

4. On peut montrer que

$$\left[\left(\frac{SSE}{\sigma^2} \right) \sim \chi^2(n-2) \right] \tag{2.20}$$

2.6.2 Intervalle de confiance pour β_1

Attention de ne pas confondre avec $\hat{\beta}_1$.

Puisque $\hat{\beta}_1 \sim N(\beta_1, \mathbf{V}ar(\hat{\beta}_1))$, on a que

$$\left(\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\mathbf{Var}(\hat{\beta}_1)}}\right) \sim N(0, 1)$$

Si σ^2 était connu, l'intervalle de confiance serait de la forme suivante

$$\left[\hat{\beta}_1 \pm Z_{\alpha/2} \times \sqrt{\mathbf{Var}(\hat{\beta}_1)}\right]$$

Par contre, σ^2 n'est souvent pas connu et il est nécessaire de l'estimer. Tel que mentionné plus haut, l'estimateur non biaisé correspond à l'équation 2.19. Mais cet estimateur ne suit pas une distribution normale. À l'aide des notions acquises en ACT-2000, il est possible de démontrer que si on utilise l'estimateur de σ^2 , soit S^2 , dans la formule de $\mathbf{Var}(\hat{\beta}_1)$, c'est-à-dire :

$$\widehat{\mathbf{Var}}(\hat{\beta}_1) = \frac{S^2}{\sum_{t=1}^n (X_t - \overline{X})^2}$$

Alors, on peut conclure que:

$$\left(\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{\mathbf{Var}}(\hat{\beta}_1)}}\right) \sim t(n-2)$$

On obtient ainsi l'intervalle de confiance suivant au niveau $100 \times (1-\alpha)\%$ pour β_1 , soit :

$$\hat{\beta}_{1} \pm t_{\frac{\alpha}{2}}(n-2) \times \sqrt{\frac{S^{2}}{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}}}$$
(2.21)

2.6.3 Intervalle de confiance pour β_0

De manière similaire, un intervalle de confiance au niveau $100 \times (1-\alpha)\%$ pour β_0 est l'expression suivante :

$$\hat{\beta}_0 \pm t_{\frac{\alpha}{2}}(n-2) \times \sqrt{\frac{S^2}{n} + \frac{S^2 \overline{X}^2}{\sum_{t=1}^n (X_t - \overline{X})^2}}$$
 (2.22)

2.6.4 Tests d'hypothèses sur les paramètres

Principales questions auxquelles on aimerait répondre :

- 1. L'ordonnée à l'origine (β_0) est-elle significativement différente de 0? Sinon, on considère le modèle $Y_t = \beta_1 \times X_t + \varepsilon_t$.
- 2. La pente (β_1) est-elle significativement différente de 0? Sinon, on considère le modèle $Y_t = \beta_0 + \varepsilon_t$.

Pour tester la question 1 :

$$H_0: \beta_0 = 0$$

$$H_1: \beta_0 \neq 0$$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_0 - 0}{\sqrt{\widehat{\mathbf{Var}}(\hat{\beta}_0)}}$$

Pour tester la question 2 :

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_1 - 0}{\sqrt{\widehat{\mathbf{Var}}(\hat{\beta}_1)}}$$

On rejette H_0 au niveau de confiance $100\times(1-\alpha)\%$ pour β_0 si :

$$|t| > t_{\frac{\alpha}{2}(n-2)}$$

Voici une représentation graphique de la zone de rejet bilatéral :

Qui correspond à la probabilité de se tromper en rejetant H_0 .

Remarques

De manière générale, on utilise plutôt les tests d'hypothèses suivants pour nos deux questions:

Pour tester la question 1 :

$$H_0: \beta_0 = \beta_0^*$$

$$H_1: \beta_0 \neq \beta_0^*$$

$$H_1:\beta_0\neq\beta_0^*$$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_0 - \beta_0^*}{\sqrt{\widehat{\mathbf{Var}}(\hat{\beta}_0)}}$$

Pour tester la question 2 :

$$H_0: \beta_1 = \beta_1^*$$

$$H_1:\beta_1\neq\beta_1^*$$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_1 - \beta_1^*}{\sqrt{\widehat{\mathbf{Var}}(\hat{\beta}_1)}}$$

On rejette H_0 au niveau de confiance $100\times(1-\alpha)\%$ pour β_0 si :

$$|t| > t_{\frac{\alpha}{2}(n-2)}$$

On poursuit avec un exemple pour assimiler l'information.

Exemple

Dans une régression sur un ensemble de 14 observations, on a obtenu les informations suivantes :

$$\begin{split} \hat{Y}_t &= 68.494 - 0.468 X_t \\ \widehat{\mathbf{Var}}(\hat{\beta}) &= \widehat{\mathbf{Var}} \left(\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \right) \\ &= \begin{bmatrix} \widehat{\mathbf{Var}}(\hat{\beta}_0) & \widehat{\mathbf{Cov}}(\hat{\beta}_0, \hat{\beta}_1) \\ \widehat{\mathbf{Cov}}(\hat{\beta}_0, \hat{\beta}_1) & \widehat{\mathbf{Var}}(\hat{\beta}_1) \end{bmatrix} \\ &= \begin{bmatrix} 66.8511 & 1.2544 \\ 1.2544 & 0.0237 \end{bmatrix} \end{split}$$

Question 1

Tester si β_0 est significativement différent de 0 à un taux de confiance de 95 %.

$$H_0: \beta_0 = 0$$
 Hypothèse nulle $H_1: \beta_0 \neq 0$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_0 - 0}{\sqrt{\widehat{\mathbf{Var}}(\hat{\beta}_0)}}$$

$$= \frac{68.494 - 0}{\sqrt{66.8511}}$$

$$= 8.38$$

$$t_{\frac{0.05}{2}}(14 - 2) = 2.18$$

Étant donné que |8.38| > 2.18, on rejette H_0 au niveau de confiance de 95 %. Autrement dit, l'ordonnée à l'origine est significative.

Question 2

Tester si β_1 est significativement différent de 0 à un taux de confiance de 95 %.

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_1 - 0}{\sqrt{\widehat{\mathbf{Var}}(\hat{\beta}_1)}}$$
$$= \frac{-0.468 - 0}{\sqrt{0.0237}}$$
$$= -3.040$$
$$t_{\frac{0.05}{2}}(14 - 2) = 2.18$$

Étant donné que |-3.040| > 2.18, on rejette H_0 au niveau de confiance de 95 %. Autrement dit, il y a 95 % de chance que la régression soit utile.

Question 3

Tester si β_1 est significativement négatif à un taux de confiance de 95 %.

$$H_0: \beta_1 = 0$$

 $H_1: \beta_1 < 0$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_1 - 0}{\sqrt{\widehat{\mathbf{Var}}(\hat{\beta}_1)}}$$
$$= \frac{-0.468 - 0}{\sqrt{0.0237}}$$
$$= -3.040$$
$$-t_{0.05}(14 - 2) = -1.78$$

0.40.3
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0

Il s'agit d'un test unilatéral, la zone de rejet est la suivante

Étant donné que |-3.040| < -1.78, on rejette H_0 au niveau de confiance de 95 %. Autrement dit, la pente de la droite est significativement négative.

Х

Question 4

Obtenir un I.C. au niveau de confiance de 95 % pour β_0 .

$$\beta_0 \in \hat{\beta}_0 \pm t_{\frac{0.05}{2}} (14 - 2) \sqrt{\widehat{\mathbf{Var}}(\hat{\beta}_0)}$$

$$\in 68.494 \pm 2.18 \times \sqrt{66.8511}$$

$$\in]50.670, 86.318[$$

L' I.C. permet de valider le test d'hypothèse de la question 1, car il ne comprend pas la valeur zéro.

Question 5

Obtenir un I.C. au niveau de confiance de 95 % pour β_1 .

$$\beta_1 \in \hat{\beta}_1 \pm t_{\frac{0.05}{2}} (14 - 2) \sqrt{\widehat{\mathbf{Var}}(\hat{\beta}_1)}$$

$$\in -0.468 \pm 2.18 \times \sqrt{0.0237}$$

$$\in] -0.804, -0.132[$$

L'I.C. permet de valider le test d'hypothèse de la question 2 et 3, il ne comprend pas la valeur zéro et est strictement négatif.

2.6.5 Test de la validité globale de la régression

Une régression linéaire simple est valide, ou significative si $\beta_1 \neq 0$. Le tableau ANOVA obtenue en 2.5.3 peut être utilisé pour tester les hypothèses :

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 < 0$$

avec la statistique de Fisher,

$$F = \frac{MSR}{MSE}$$
$$= \frac{\frac{SSR}{1}}{\frac{SSE}{(n-2)}}$$

Sous H_0 , on a que $F \sim F(1, n-2)$.

On rejette donc H_0 au niveau $100 \times (1-\alpha)\%$ si

$$F > F_{\alpha}(1, n-2)$$
 (2.23)

En régression linéaire simple **seulement**, le test F est équivalent au test t pour $\beta_1=0$

$$F = \frac{\frac{SSR}{1}}{\frac{SSE}{(n-2)}} = \frac{SSR}{\sigma^2} = \frac{SSR}{S^2} = \frac{\sum_{t=1}^{n} (\hat{Y}_t - \overline{Y})^2}{S^2}$$

$$= \frac{\sum_{t=1}^{n} (\hat{\beta}_0 + \hat{\beta}_1 X_t - \hat{\beta}_0 - \hat{\beta}_1 \overline{X})^2}{S^2} = \frac{\hat{\beta}_1^2 \times \sum_{t=1}^{n} (X_t - \overline{X})^2}{S^2}$$

$$= \frac{\hat{\beta}_1^2}{\sum_{t=1}^{n} (X_t - \overline{X})^2}$$

$$= \frac{(\hat{\beta}_1 - 0)^2}{\widehat{\mathbf{Var}}(\hat{\beta}_1)}$$

$$= t^2$$

On poursuit avec un exemple pour assimiler l'information.

Exemple

Soit le tableau ANOVA suivant :

Source	SS	d.l.	MS	F
Régression	48.845	1	48.845	9.249
Erreur	63.374	12	5.281	
Total	112.219	13		

On cherche a vérifier la validité de la régression à l'aide du test ${\cal F}.$

On a que F = 9.249, par contre $F_{0.05}(1, 12) = 4.75$

Puisque $F > F_{0.05}(1, 12)$; on rejette H_0 . La régression est significative au niveau de confiance de 95 %.

2.7 Prévisions et intervalles de confiance

On peut utiliser la droite de régression pour faire des types de prévisions de Y^* en sachant X^* :

Type 1

Prévision pour la valeur moyenne de Y^*

$$\mathbf{E}[Y^*] = \beta_0 + \beta_1 X^*$$

Type 2

Prévision pour la $vraie\ valeur\ de\ Y^*$

$$Y^* = \beta_0 + \beta_1 X^* + \varepsilon$$

Remarques

1. Dans les deux types, la prévision est le point sur la droite de régression

$$\widehat{\mathbf{E}}[Y^*] = \hat{Y}^*$$

$$\hat{Y}^* = \hat{\beta}_0 + \hat{\beta}_1 X^*$$

2. La prévision est sans biais

$$\mathbf{E}[\hat{\beta}_0 + \hat{\beta}_1 X^*] = \mathbf{E}[\hat{\beta}_0] + \mathbf{E}[\hat{\beta}_1] X^*$$
$$= \beta_0 + \beta_1 X^*$$

- 3. Il y a deux sources d'erreur dans les prévisions,
 - Parameter risk : Incertitude sur les estimateurs. Autrement dit, la variance des estimateurs des paramètres.

• Process risk : Fluctuations autour de la droite de régression. Autrement dit, la variance des résidus.

Effet combiner des deux sources d'erreur dans les prévisions,

2.7.1 I.C. pour la prévision de type I (Valeur moyenne)

Aussi appelé intervalle de confiance pour la droite de régression.

Tel que vue à la section 2.6.1, on a que

$$\left(\widehat{\mathbf{E}}[Y^*] = \hat{\beta}_0 + \hat{\beta}_1 X^*\right) \sim N(\beta_0 + \beta_1 X^*; \mathbf{Var}(\hat{\beta}_0 + \hat{\beta}_1 X^*))$$

Par conséquent,

$$\frac{(\hat{\beta}_0 + \hat{\beta}_1 X^*) - (\beta_0 + \beta_1 X^*)}{\sqrt{\mathbf{Var}(\hat{\beta}_0 + \hat{\beta}_1 X^*)}} \sim N(0, 1)$$

En substituant σ^2 par S^2 dans la $\operatorname{Var}(\hat{\beta}_0 + \hat{\beta}_1 X^*)$; on a

$$\frac{(\hat{\beta}_0 + \hat{\beta}_1 X^*) - (\beta_0 + \beta_1 X^*)}{\sqrt{\widehat{\mathbf{Var}}(\hat{\beta}_0 + \hat{\beta}_1 X^*)}} \sim t(n-2)$$

Ainsi, un I.C. au niveau $100 \times (1 - \alpha)\%$ pour la valeur moyenne est

$$(\hat{\beta}_0 + \hat{\beta}_1 X^*) \pm t_{\frac{\alpha}{2}}(n-2) \times \sqrt{\widehat{\mathbf{Var}}(\hat{\beta}_0 + \hat{\beta}_1 X^*)}$$
(2.24)

On rappelle que comme σ^2 n'est souvent pas connu, il est nécessaire d'utiliser son estimateur $S^2.$

Or,

$$\mathbf{V}\mathrm{ar}(\hat{\beta}_{0} + \hat{\beta}_{1}X^{*}) = \mathbf{V}\mathrm{ar}(\overline{Y} - \overline{Y} + \hat{\beta}_{0} + \hat{\beta}_{1}X^{*})$$

$$= \mathbf{V}\mathrm{ar}(\overline{Y} - (\hat{\beta}_{0} + \hat{\beta}_{1}\overline{X}) + \hat{\beta}_{0} + \hat{\beta}_{1}X^{*})$$

$$= \mathbf{V}\mathrm{ar}(\overline{Y} + \hat{\beta}_{1}(X^{*} - \overline{X}))$$

$$= \mathbf{V}\mathrm{ar}(\overline{Y}) + \mathbf{V}\mathrm{ar}(\hat{\beta}_{1})(X^{*} - \overline{X})^{2}$$

$$= \frac{\sigma^{2}}{n} + \frac{\sigma^{2}}{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}} (X^{*} - \overline{X})^{2}$$

$$= \sigma^{2} \left(\frac{1}{n} + \frac{(X^{*} - \overline{X})^{2}}{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}}\right)$$

Et ainsi, on obtient,

$$\widehat{\mathbf{Var}}(\hat{\beta}_0 + \hat{\beta}_1 X^*) = S^2 \left(\frac{1}{n} + \frac{(X^* - \overline{X})^2}{\sum_{t=1}^n (X_t - \overline{X})^2} \right)$$
 (2.25)

L'I.C. est donc,

$$\left| (\hat{\beta}_0 + \hat{\beta}_1 X^*) \pm t_{\frac{\alpha}{2}} (n-2) \times \sqrt{S^2 \left(\frac{1}{n} + \frac{(X^* - \overline{X})^2}{\sum_{t=1}^n (X_t - \overline{X})^2} \right)} \right|$$
 (2.26)

Remarque

- 1. Plus X^* s'éloigne de \overline{X} , plus l'I.C. est large, parce que l'incertitude augmente.
- 2. Les limites de l'intervalle sont des hyperboles centrées en $(\overline{X}, \overline{Y})$
- 3. Cet I.C. peut être appelé :
 - I.C. pour la valeur moyenne;
 - I.C. pour la droite de régression;
 - I.C. pour la tendance.
- 4. Dans ce type d' I.C., on tient seulement compte du risque de paramètre.

2.7.2 I.C. pour la prévision de type II (Vraie valeur)

Aussi appelé I.C. pour les points de Y^* . Pour obtenir un I.C. pour la vraie valeur de

 Y^* , il faut tenir compte du parameter risk (\mathbf{V} ar($\hat{\beta}_i$)) ET du process risk (\mathbf{V} ar(ε_t)). On considère donc de manière équivalente à la section 2.7.1,

$$\frac{Y^* - \hat{Y}^*}{\sqrt{\mathbf{V}\mathrm{ar}(Y^* - \hat{Y}^*)}} \sim N(0, 1)$$

En substituant σ^2 par S^2 dans $\mathbf{V}\mathrm{ar}(Y^*-\hat{Y}^*),$ on a

$$\frac{Y^* - \hat{Y}^*}{\sqrt{\widehat{\mathbf{Var}}(Y^* - \hat{Y}^*)}} \sim t(n-2)$$

Ainsi, un I.C. au niveau $100 \times (1 - \alpha)\%$ pour β_1 pour la vraie valeur de Y^* est,

$$\hat{Y}^* \pm t_{\frac{\alpha}{2}}(n-2) \times \sqrt{\widehat{\mathbf{Var}}(Y^* - \hat{Y}^*)}$$

Or par hypothèse on a

$$\mathbf{V}\operatorname{ar}(Y^* - \hat{Y}^*) = \mathbf{V}\operatorname{ar}(Y^*) + \mathbf{V}\operatorname{ar}(\hat{Y}^*)$$

$$= \underline{\sigma^2} + \sigma^2 \left(\frac{1}{n} + \frac{(X^* - \overline{X}^*)^2}{\sum_{t=1}^{n} (X_t - \overline{X}^*)^2}\right)$$

Process risk Parameter risk

D'où

$$\widehat{\mathbf{Var}}(Y^* - \hat{Y}^*) = S^2 \left(1 + \frac{1}{n} + \frac{(X^* - \overline{X}^*)^2}{\sum_{t=1}^n (X_t - \overline{X}^*)^2} \right)$$
 (2.27)

L'I.C. est donc,

$$(\hat{\beta}_0 + \hat{\beta}_1 X^*) \pm t_{\frac{\alpha}{2}}(n-2) \times \sqrt{S^2 \left(1 + \frac{1}{n} + \frac{(X^* - \overline{X}^*)^2}{\sum_{t=1}^n (X_t - \overline{X}^*)^2}\right)}$$
(2.28)

Exemple en R

Il est possible d'obtenir le résultat des formules des sections 2.7.1 et 2.7.2 en R à l'aide de la fonction predict.

I.C. de type I pour tous les X dans les observations

	fit	lwr	upr
1	-0.97060710	-1.6373090	-0.30390522
2	-0.62976223	-1.1829706	-0.07655391
3	-0.54696256	-1.0810180	-0.01290709
4	-1.64746729	-2.6328489	-0.66208569
5	-0 08839415	-0 5988245	0 42203623

I.C. de type I pour un vecteur X^*

```
fit lwr upr

1 -0.16990702 -0.6735955 0.3337815

2 -0.01557322 -0.5359108 0.5047644

3 0.13876058 -0.4136850 0.6912062

4 0.29309438 -0.3044312 0.8906200

5 0.44742818 -0.2054679 1.1003243
```

I.C. de type II pour un vecteur X^*

```
fit lwr upr
1 -0.16990702 -2.177185 1.837371
2 -0.01557322 -2.027093 1.995947
3 0.13876058 -1.881303 2.158825
4 0.29309438 -1.739761 2.325949
5 0.44742818 -1.602385 2.497242
```

```
3 > # dataset
4 > x <- rnorm(15)
5 > y <- x + rnorm(15)
6 > xStar <- data.frame(x = seq(0, 2, by = 0.2))
7 > # Modele de regression
8 > fit <- lm(y ~x)
9 > # I.C. de type 1
10 > predict(fit, interval = "confidence") # I.C. pour tous les X dans les observations
11 > predict(fit, interval = "confidence", newdata = xStar) # I.C. pour un vecteur de X^*
12 > # I.C. de type 2
13 > predict(fit, interval = "prediction", newdata = xStar) # I.C. pour un vecteur de x^*
```

Listing 2.4 – Code source en R pour l'exemple

Chapitre 3

Régression linéaire multiple

Il n'est pas rare que plus d'une variable soit nécessaire pour expliquer un phénomène. Tel que vu à la section 2.1.2, voici un autre exemple de modèle de régression multiple :

De manière générale, la régression multiple considère le modèle général suivant :

$$Y_t = \beta_0 + \beta_1 X_{t,1} + \beta_2 X_{t,2} + ... + \beta_p X_{t,p} + \varepsilon_t$$
, pour $t = 1, ..., n$

- n observations
- p variables exogènes $(X_1,...,X_p)$
- (p+1) paramètres à estimer $(\beta_0, \beta_1, ..., \beta_p)$

Notions préliminaires

Voici quelques éléments d'algèbre matricielle pour les vecteurs et matrices aléatoires importante pour la bonne compréhension des modèles de régression linéaires multiple.

Soit $X_1,...X_n$ des variables aléatoires, le vecteur aléatoire X est donc défini de la façon suivante

$$\mathbb{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}_{n \times 1}$$

On définit le vecteur espérance de la façon suivante

$$\mathbf{E}[X] = \begin{bmatrix} \mathbf{E}[X_1] \\ \mathbf{E}[X_2] \\ \vdots \\ \mathbf{E}[X_n] \end{bmatrix}_{n \times 1}$$

et la matrice de variance-covariance

$$\mathbf{V}\mathrm{ar}(X) = \underbrace{\mathbf{E}\Big[(X - \mathbf{E}[X])(X - \mathbf{E}[X])^\intercal\Big]}_{\text{Produit matriciel}} = \begin{bmatrix} \mathbf{V}\mathrm{ar}(X_1) & \cdots & \mathbf{C}\mathrm{ov}(X_1, X_n) \\ \vdots \\ \mathbf{C}\mathrm{ov}(X_n, X_1) & \cdots & \mathbf{V}\mathrm{ar}(X_n) \end{bmatrix}_{n \times 1}$$

Théorème

Soit X, un vecteur aléatoire et A une matrice de constantes telle que :

$$\mathbb{X} = \mathbb{X}_{n \times 1}$$
 et $\mathbb{A} = \mathbb{A}_{p \times n}$

Alors,

$$\mathbf{E}[\mathbb{A}\mathbb{X}] = \mathbb{A}\mathbf{E}[\mathbb{X}]$$
 $\mathbf{V}\mathrm{ar}(\mathbb{A}\mathbb{X}) = \mathbb{A}\mathbf{V}\mathrm{ar}(\mathbb{X})\mathbb{A}^{\mathsf{T}}$

Exemple

$$\mathbb{A} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{2 \times 1}^{\mathsf{T}} = \begin{bmatrix} 1 & 1 \end{bmatrix}_{1 \times 2}$$

$$\mathbb{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}_{2 \times 1}$$

Intuitivement,

$$\begin{split} & \mathbb{A}\mathbb{X} = X_1 + X_2 \\ \Rightarrow & \mathbf{E}[\mathbb{A}\mathbb{X}] = \mathbf{E}[X_1 + X_2] = \mathbf{E}[X_1] + \mathbf{E}[X_2] \\ \Rightarrow & \mathbf{V}\mathrm{ar}(\mathbb{A}\mathbb{X}) = \mathbf{V}\mathrm{ar}(X_1 + X_2) = \mathbf{V}\mathrm{ar}(X_1) + \mathbf{V}\mathrm{ar}(X_2) + 2\mathbf{C}\mathrm{ov}(X_1, X_2) \end{split}$$

En calcul matriciel,

$$\mathbf{E}[\mathbb{A}\mathbb{X}] = \mathbb{A}\mathbf{E}[\mathbb{X}]$$

$$= \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{E}[X_1] \\ \mathbf{E}[X_2] \end{bmatrix}$$

$$= \mathbf{E}[X_1] + \mathbf{E}[X_2]$$

$$\mathbf{V}\mathrm{ar}(\mathbb{A}\mathbb{X}) = \mathbb{A}\mathbf{V}\mathrm{ar}(\mathbb{X})\mathbb{A}^{\mathsf{T}}$$

$$= \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{V}\mathrm{ar}(X_1) & \mathbf{C}\mathrm{ov}(X_1, X_2) \\ \mathbf{C}\mathrm{ov}(X_1, X_2) & \mathbf{V}\mathrm{ar}(X_2) \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} (\mathbf{V}\mathrm{ar}(X_1) + \mathbf{C}\mathrm{ov}(X_1, X_2)) & (\mathbf{C}\mathrm{ov}(X_1, X_2) + \mathbf{V}\mathrm{ar}(X_2)) \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \mathbf{V}\mathrm{ar}(X_1) + \mathbf{V}\mathrm{ar}(X_2) + 2\mathbf{C}\mathrm{ov}(X_1, X_2)$$

3.1 Le modèle sous forme matricielle

À partir du modèle général suivant,

$$Y_t = \beta_0 + \beta_1 X_{t,1} + \beta_2 X_{t,2} + ... + \beta_p X_{t,p} + \varepsilon_t, \ t = 1, ..., n$$

On représente les n formules suivantes

$$\begin{split} Y_1 &= \beta_0 + \beta_1 X_{1,1} + \ldots + \beta_p X_{1,p} + \varepsilon_1 \\ Y_2 &= \beta_0 + \beta_1 X_{2,1} + \ldots + \beta_p X_{2,p} + \varepsilon_2 \\ &\vdots \\ Y_n &= \beta_0 + \beta_1 X_{n,1} + \ldots + \beta_p X_{n,p} + \varepsilon_n \end{split}$$

Qu'il est possible de réécrire sous forme matricielle,

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} \beta_0 + \beta_1 X_{1,1} + \ldots + \beta_p X_{1,p} \\ \beta_0 + \beta_1 X_{2,1} + \ldots + \beta_p X_{2,p} \\ \vdots \\ \beta_0 + \beta_1 X_{n,1} + \ldots + \beta_p X_{n,p} \end{bmatrix}_{n \times 1} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}_{n \times 1}$$

Ou encore de la façon suivante,

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} 1 & X_{1,1} & \dots & X_{1,p} \\ 1 & X_{2,1} & \dots & X_{2,p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n,1} & \dots & X_{n,p} \end{bmatrix}_{n \times (p+1)} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix}_{(p+1) \times 1} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}_{n \times 1}$$

De manière plus compacte, on utilise la notation suivante

$$\mathbb{Y}=\mathbb{X}\beta+\varepsilon$$

, avec :

- Y est un vecteur de de dimension $n \times 1$ des variables réponses.
- X est une matrice schéma de dimension $n \times (p+1)$ qui correspond aux variables explicatives.
- β est un vecteur de dimension $(p+1) \times 1$ des coefficients à estimer.
- ε est un vecteur de dimension $n \times 1$ des erreurs de telle sorte que
- $-\mathbf{E}[\varepsilon] = \mathbb{O}_{n \times 1}$, où \mathbb{O} correspond à une matrice nulle.
- $-Var(\varepsilon) = \sigma^2 \mathbb{I}_{n \times n}$, où \mathbb{I} correspond à une matrice identité.

Remarques

- 1. On suppose que $(\mathbb{X}^{\intercal}\mathbb{X})^{-1}$ existe, que \mathbb{X} est de rang complet et que $\left((\mathbb{X}^{\intercal}\mathbb{X})^{-1}\right)^{\intercal} = (\mathbb{X}^{\intercal}\mathbb{X})^{-1}$
- 2. Pour un modèle de régression linéaire simple, il suffit de définir la matrice schéma de la façon suivante :

$$\mathbb{X} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}_{n \times 2}$$

3. Pour un modèle passant par l'origine, il n'y a pas de colonne de $\it 1$ dans la matrice schéma :

$$\mathbb{X} = \begin{bmatrix} X_{1,1} & \dots & X_{1,p} \\ X_{2,1} & \dots & X_{2,p} \\ \vdots & \vdots & \vdots \\ X_{n,1} & \dots & X_{n,p} \end{bmatrix}_{n \times (p)}$$

4. Pour un modèle du type $Y_t=\beta_0+\beta_1X_t+\beta_2X_t^2+\varepsilon_t,$ il ne suffit que de définir la

matrice schéma telle que :

$$\mathbb{X} = \begin{bmatrix} 1 & X_1 & \dots & X_1^2 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & X_n & \dots & X_n^2 \end{bmatrix}_{n \times (p)}$$
$$X_{t,1} = X_t$$
$$X_{t,2} = X_t^2$$

3.1.1 Estimateur des moindres carrés (EMC)

On peut démontrer que l'estimateur $\hat{\beta}$ de $\hat{\beta}$ qui minimise la somme résiduelle des carrés correspond à l'équation suivante :

$$S(\beta) = \sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2$$
$$= \sum_{t=1}^{n} \varepsilon_t^2$$
$$= \varepsilon^{\mathsf{T}} \varepsilon$$
$$= (\mathbb{Y} - \mathbb{X}\beta)^{\mathsf{T}} (\mathbb{Y} - \mathbb{X}\beta)$$

En isolant β , on obtient l'estimateur suivant :

$$\hat{\beta} = (\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}\mathbb{Y} \tag{3.1}$$

Exemple

On poursuit avec un exemple en régression linéaire simple pour assimiler l'information.

À l'aide des matrices suivantes, déterminer les paramètres de la droite de régression.

$$\mathbb{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}; \mathbb{X} = \begin{bmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}; \mathbb{X}^{\mathsf{T}} = \begin{bmatrix} 1 & \cdots & 1 \\ X_1 & \cdots & X_n \end{bmatrix}$$

$$\mathbb{X}^{\mathsf{T}}\mathbb{X} = \begin{bmatrix} 1 & \cdots & 1 \\ X_1 & \cdots & X_n \end{bmatrix} \begin{bmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}$$
$$= \begin{bmatrix} n & \sum_{t=1}^{n} X_t \\ \sum_{t=1}^{n} X_t & \sum_{t=1}^{n} X_t^2 \end{bmatrix}$$

$$(\mathbb{X}^\intercal\mathbb{X})^{-1} = \frac{1}{nX_t^2 - (n\overline{X})^2} \begin{bmatrix} \sum_{t=1}^n X_t^2 & n\overline{X} \\ n\overline{X} & n \end{bmatrix}$$

$$\mathbb{X}^{\mathsf{T}}\mathbb{Y} = \begin{bmatrix} 1 & \cdots & 1 \\ X_1 & \cdots & X_n \end{bmatrix} \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}$$
$$= \begin{bmatrix} \sum_{t=1}^n Y_t \\ \sum_{t=1}^n X_t Y_t \end{bmatrix}$$
$$= \begin{bmatrix} n\overline{Y} \\ \sum_{t=1}^n X_t Y_t \end{bmatrix}$$

Ainsi,

$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}$$
$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$$

$$=\begin{bmatrix} \frac{n\overline{Y}\sum_{t=1}^{n}X_{t}^{2}-n\overline{X}\sum_{t=1}^{n}X_{t}Y_{t}}{n\sum_{t=1}^{n}X_{t}^{2}-(n\overline{X})^{2}} \\ \frac{n\sum_{t=1}^{n}X_{t}Y_{t}-(n\overline{Y})(n\overline{X})}{n\sum_{t=1}^{n}X_{t}^{2}-(n\overline{X})^{2}} \end{bmatrix}$$

$$=\begin{bmatrix} \overline{Y}\sum_{t=1}^{n}X_{t}^{2}-\overline{X}\sum_{t=1}^{n}X_{t}Y_{t}+n\overline{X}^{2}\overline{Y}-n\overline{X}^{2}\overline{Y} \\ \frac{1}{n\sum_{t=1}^{n}X_{t}^{2}-(n\overline{X})^{2}} \\ \frac{1}{n\sum_{t=1}^{n}X_{t}^{2}-(n\overline{X})^{2}} \\ \frac{1}{n\sum_{t=1}^{n}X_{t}Y_{t}-n\overline{Y}}\overline{X} \\ \frac{1}{n\sum_{t=1}^{n}X_{t}^{2}-n\overline{X}^{2}} \end{bmatrix}$$

$$=\begin{bmatrix} \overline{Y}-\hat{\beta}_{1}\overline{X} \\ \hat{\beta}_{1} \end{bmatrix}$$

Qui correspond bien à l'estimateur de $\hat{\beta}_0$ (2.8) et de $\hat{\beta}_1$ (2.10) trouver précédemment.

Propriétés des estimateurs

1. Sans biais

$$\begin{split} \mathbf{E}[\hat{\beta}] &= \mathbf{E} \left[(\mathbb{X}^{\mathsf{T}} \mathbb{X})^{-1} \mathbb{X}^{\mathsf{T}} \mathbb{Y} \right] \\ &\stackrel{3}{=} (\mathbb{X}^{\mathsf{T}} \mathbb{X})^{-1} \mathbb{X}^{\mathsf{T}} \mathbf{E} [\mathbb{Y}] \\ &= (\mathbb{X}^{\mathsf{T}} \mathbb{X})^{-1} \mathbb{X}^{\mathsf{T}} (\mathbb{X} \beta) \\ &= (\mathbb{X}^{\mathsf{T}} \mathbb{X})^{-1} (\mathbb{X}^{\mathsf{T}} \mathbb{X}) \beta \\ &= \mathbb{I} \beta \\ &= \beta \end{split}$$

2. Variance-covariance

$$\begin{aligned} \mathbf{V}\mathrm{ar}\hat{\boldsymbol{\beta}}) &= \mathbf{V}\mathrm{ar} \big((\mathbb{X}^{\intercal}\mathbb{X})^{-1}\mathbb{X}^{\intercal}\mathbb{Y} \big) \\ &\stackrel{3}{=} (\mathbb{X}^{\intercal}\mathbb{X})^{-1}\mathbb{X}^{\intercal}\mathbf{V}\mathrm{ar}(\mathbb{Y}) \big[(\mathbb{X}^{\intercal}\mathbb{X})^{-1}\mathbb{X}^{\intercal} \big]^{\intercal} \\ &= (\mathbb{X}^{\intercal}\mathbb{X})^{-1}\mathbb{X}^{\intercal}\sigma^{2}\mathbb{I} \bigg[\mathbb{X} \big[(\mathbb{X}^{\intercal}\mathbb{X})^{-1} \big]^{\intercal} \bigg] \\ &\stackrel{1}{=} \sigma^{2}(\mathbb{X}^{\intercal}\mathbb{X})^{-1}\mathbb{X}^{\intercal} \bigg[\mathbb{X} \big[(\mathbb{X}^{\intercal}\mathbb{X})^{-1} \big] \bigg] \\ &= \sigma^{2}(\mathbb{X}^{\intercal}\mathbb{X})^{-1}(\mathbb{X}^{\intercal}\mathbb{X})(\mathbb{X}^{\intercal}\mathbb{X})^{-1} \\ &= \sigma^{2}\mathbb{I}(\mathbb{X}^{\intercal}\mathbb{X})^{-1} \\ &= \sigma^{2}(\mathbb{X}^{\intercal}\mathbb{X})^{-1} \end{aligned}$$

3.1.2 Résidus et tableau ANOVA

On définit les résidus comme ceci,

$$\varepsilon_{n \times 1} = \mathbb{Y} - \hat{\mathbb{Y}}$$

$$= \mathbb{Y} - \mathbb{X}\hat{\beta}$$

$$= \mathbb{Y} - \mathbb{X}(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}\mathbb{Y}$$

$$= \mathbb{Y}(\mathbb{I} - \mathbb{X}(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}})$$

$$= \mathbb{Y}(\mathbb{I} - \mathbb{H})$$

Où \mathbb{H} corresponds à la matrice de projection (Hat matrix).

Les sommes des carrés du tableau ANOVA sont données par les expressions suivantes :

$$\bullet SST = \sum_{t=1}^{n} (Y_t - \overline{Y})^2$$

$$= \sum_{t=1}^{n} Y_t^2 - n \overline{Y}^2$$

$$= \mathbb{Y}^{\mathsf{T}} \mathbb{Y} - n \overline{Y}^2$$

$$Avec (n-1) \text{ degr\'e de libert\'e}$$

$$\bullet SSE = \sum_{t=1}^{n} (Y_t - \hat{Y})^2$$

$$= \sum_{t=1}^{n} \varepsilon_t^2$$

$$= \varepsilon^{\mathsf{T}} \varepsilon$$

$$\text{Avec } (n - (p+1)) \text{ degr\'e de libert\'e}$$

$$\bullet SSR = \sum_{t=1}^{n} (\hat{Y}_t - \hat{Y})^2$$

$$= \sum_{t=1}^{n} \hat{Y}_t^2 - n\overline{Y}^2$$

$$= \hat{\mathbb{Y}}^{\mathsf{T}} \hat{\mathbb{Y}} - n\overline{Y}^2$$

$$\text{Avec } (p) \text{ degr\'e de libert\'e}$$

Dans le cas de régression multiple, le tableau ANOVA est le suivant :

Source de la	Somme des	Degrés de li-	Carrés	Ratio de Fi-
variance	carrés (SS)	berté $(d.l.)$	moyens	sher (F)
			(MS)	
Régression	SSR	р	$\frac{SSR}{p}$	$\frac{MSR}{MSE}$
Erreur	SSE	n - (p+1)	$\frac{{}^{p}_{SSE}}{n-(p+1)}$	
Total	SST	n - 1		

3.1.3 Estimateur de σ^2

Dans le cas de la régression multiple, on peut démontrer qu'un bon estimateur sans biais de σ^2 est S^2 sous la forme suivante :

$$S^{2} = MSE$$

$$= \frac{SSE}{n - (p+1)}$$

3.1.4 Intervalles de confiance et tests d'hypothèses

Essentiellement, on a la même chose qu'au chapitre 2 pour les tests t et F, sauf qu'il faut adapter les degrés de liberté.

On rappel qu'avec le postulat 4 (2.2.2), on suppose que les résidus suivent une loi normale d'espérance nulle et de variance de σ^2 .

$$\varepsilon_t \overset{i.i.d.}{\sim} N(0, \sigma^2)$$

$$\varepsilon_{n \times 1} \sim N(\mathbb{O}, \sigma^2 \mathbb{I}_{n \times n})$$

Ainsi on a que $(\mathbb{Y} = \mathbb{X}\beta + \varepsilon) \sim N_n(\mathbb{X}\beta; \sigma^2 \mathbb{I}_{n \times n})$ et que $\hat{\beta} \sim N_n(\beta; (\mathbb{X}^{\intercal}\mathbb{X})^{-1}\sigma^2)$.

3.1.5 Test de Student sur un seul paramètre

On effectue le test suivant,

$$H_0: \beta_i = \beta_i^*$$

$$H_1: \beta_i \neq \beta_i^*$$

Où β_i^* est une constante.

On teste l'hypothèse à l'aide de la statistique suivante,

$$t = \frac{\hat{\beta}_i - \beta_i^*}{\sqrt{[\mathbf{Var}(\hat{\beta})]_{(i+1)\times(i+1)}}} \sim N(0,1)$$

et en remplacant σ^2 par S^2 dans la matrice de la variance, on obtient

$$t = \frac{\hat{\beta}_i - \beta_i^*}{\sqrt{[\widehat{\mathbf{Var}}(\hat{\beta})]_{(i+1)\times(i+1)}}} \sim t(n - (p+1))$$

On rejette H_0 au niveau de confiance $100 \times (1 - \alpha)\%$ pour si :

$$|t| > t_{\frac{\alpha}{2}} \left(n - (p+1) \right)$$

Or, on a que \mathbf{V} ar $(\hat{\beta}) = (\mathbb{X}^{\intercal}\mathbb{X})^{-1}\sigma^2$.

Ainsi, on peut réécrire l'expression en fonction de l'estimateur S^2 ,

$$\widehat{\mathbf{Var}}(\hat{\beta}) = (\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}S^2$$
(3.2)

Avec un peu d'algèbre, on transforme ce test d'hypothèse en un intervalle de confiance pour β_i . L'I.C. marginal est donc le suivant :

$$\left| \hat{\beta}_i \pm t_{\frac{\alpha}{n}} \left(n - (p+1) \right) \times \sqrt{\left[(\mathbb{X}^{\mathsf{T}} \mathbb{X})^{-1} S^2 \right]_{(i+1) \times (i+1)}} \right| \tag{3.3}$$

3.1.6 Test de Fisher pour la validité globale de la régression

Dans le cas de la régression multiple, on teste

$$H_0:\beta_1=\beta_2=\ldots=\beta_p=0$$

 H_1 : Au moins un coefficient parmi $\beta_1, ..., \beta_p$ est $\neq 0$.

On teste l'hypothèse à l'aide de la statistique suivante,

$$F = \frac{MSR}{MSE} \sim F(\text{d.l. de SSR, d.l. de SSE})$$

$$F = \frac{MSR}{MSE} \sim F(p, n - (p+1))$$

On rejette H_0 au niveau de confiance $100 \times (1-\alpha)\%$ pour si :

$$F > F_{\alpha}(p, n - (p+1))$$

Remarque importante

De manière générale, avec p variables explicatives, on a que :

$$F \neq t^2$$

L'égalité ne survient que lorsque p = 1 (voir la section 2.6.5).

3.1.7 Test de Fisher partiel

À la section 3.1.6 on a testé si tous les $\beta_1, \beta_2, ..., \beta_p$ étaient nuls.

Dans cette section, on teste simultanément si certains β_i parmi $\beta_1, \beta_2, ..., \beta_p$ sont nuls.

On teste donc:

 H_0 : Un modèle $r\acute{e}duit$, noté M_0 dont certains $\beta_i=0$ parmi $\beta_1,\beta_2,...,\beta_p$ est acceptable.

 H_1 : On doit utiliser le modèle complet, noté M_1 avec les p variables.

On utilise la statistique de Fisher partielle suivante,

$$F^* = \frac{\frac{[SSE(M_0) - SSE(M_1)]}{[d.l.(SSE(M_0)) - d.l.(SSE(M_1))]}}{\frac{SSE(M_1)}{d.l.(SSE(M_1))}}$$
(3.4)

On rejette H_0 au niveau de confiance $100 \times (1 - \alpha)\%$ si :

$$F^* > F_{\alpha} \Big(d.l.(SSE(M_0)) - d.l.(SSE(M_1)); d.l.(SSE(M_1)) \Big)$$

Remarque

Si le modèle réduit de H_0 ne consiste qu'à $\beta_i = 0$, autrement dit un seul paramètre, alors on aura que $F^* = t^2$. Dans ce cas **seulement**, le test Fisher partiel est équivalent au test de Student.

Exemple

On poursuit avec un exemple pour assimiler l'information.

Soit le modèle de régression multiple suivant :

$$Y_t = \beta_0 + \beta_1 X_{t,1} + \beta_2 X_{t,2} + \beta_3 X_{t,3} + \beta_4 X_{t,4} + \varepsilon_t$$

On teste donc:

$$H_0: \beta_2 = \beta_3 = 0$$

 $H_1: \beta_2 \neq 0 \text{ et/ou } \beta_3 \neq 0$

Afin d'effectuer le test, on effectue les étapes suivantes :

Étape 1 Obtenir le tableau ANOVA pour le modèle sous le modèle complet M_0 . Extraire $SSE(M_0)$ et $d.l.(SSE(M_0)) \Rightarrow n-3$

Étape 2 Obtenir le tableau ANOVA pour le modèle sous le modèle complet M_1 . Extraire $SSE(M_1)$ et $d.l.(SSE(M_1)) \Rightarrow n-5$

Étape 3 Calculer la valeur de la statistique de Fisher partielle.

$$F^* = \frac{\frac{[SSE(M_0) - SSE(M_1)]}{[(n-3) - (n-5)]}}{\frac{SSE(M_1)}{(n-5)}}$$

Puis rejeter H_0 au niveau de confiance $100 \times (1-\alpha)\%$ si :

$$F^* > F_{\alpha}(2; n-5)$$

3.2 Sélection d'un modèle optimal

Lorsque l'on dispose de plusieurs variables explicatives $(X_1, X_2, ..., X_p)$, un modèle optimal est tel que :

- 1. Pouvoir prédictif maximal
- 2. Avec un nombre de variables minimal

En régression, il existe plusieurs algorithmes pou obtenir un modèle optimal.

3.2.1 Technique 1 : Essai de tous les modèles

La stratégie la plus simple consiste à examiner tous les modèles possibles, soit les 2^p combinaisons existantes.

On choisit le modèle ayant le plus grand R^2_{adj} , qui correspond à l'une des expressions suivantes :

$$R_{adj}^{2} = 1 - \frac{\frac{SSE}{(n-p-1)}}{\frac{SST}{(n-1)}}$$
$$= 1 - (1 - R^{2}) \left(\frac{n-1}{n-p-1}\right)$$

$$R_{adj}^2 = 1 - (1 - R^2) \left(\frac{n-1}{n-p-1} \right)$$
(3.5)

On note que contrairement au $\mathbb{R}^2,$ le \mathbb{R}^2_{adj} pénalise pour l'ajout de variables dans le modèle.

Exemple

Si on dispose de X_1, X_2 et X_3 , on a juste les 2^3 modèles possibles :

- 1. $Y = \beta_0 + \varepsilon$
- $2. Y = \beta_0 + \beta_1 X_1 + \varepsilon$
- 3. $Y = \beta_0 + \beta_1 X_2 + \varepsilon$
- 4. $Y = \beta_0 + \beta_1 X_3 + \varepsilon$
- 5. $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$
- 6. $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_3 + \varepsilon$
- 7. $Y = \beta_0 + \beta_1 X_2 + \beta_2 X_3 + \varepsilon$
- 8. $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$

On fait le calcul du R^2_{adj} pour chaque modèle et on choisit le modèle avec le plus grand R^2_{adj} .

Remarque

En pratique cette méthode n'est pas *efficiente*, car le temps d'exécution devient énorme lorsque p augmente :

p	2^p
1	2
2	4
3	8
:	
10	1024
:	
25	33554432
:	
100	1.26×10^{30}

3.2.2 Technique 2 : Élimination régressive ($Backward\ elimination$)

- Étape 1 : Débuter avec toutes les variables disponibles dans le modèle.
- **Étape 2 :** Chercher la variable qui génère la plus faible augmentation de SSE lorsqu'exclue du modèle. Autrement dit, la pire variable.
- **Étape 3 :** Utiliser le test de Fisher partiel (3.1.7) pour tester s'il est possible d'exclure la variable de l'étape 2.
- **Étape 4 :** Continuer les étapes 2 et 3 jusqu'à ce qu'il n'y ait plus de variables à éliminer selon le test Fisher partiel.

Voici une illustration de l'élimination régressive.

Remarque

Le principal inconvénient de cette technique est qu'une variable éliminée ne peut jamais être réintégrée.

3.2.3 Technique 3 : Sélection progressive (forward selection)

Étape 1 : Débuter avec le modèle $Y = \beta_0 + \varepsilon$

Étape 2 : Chercher la variable qui génère la plus grande diminution de SSE lors-qu'incluse dans le modèle. Autrement dit, la meilleure variable.

Étape 3 : Utiliser le test de Fisher partiel (3.1.7) pour tester s'il est possible d'inclure la variable de l'étape 2.

Étape 4 : Continuer les étapes 2 et 3 jusqu'à ce qu'il n'y ait plus de variables a inclures selon le test de Fisher partiel.

Remarque

Le principal inconvénient de cette technique est qu'une variable incluse ne peut jamais être éliminée par la suite.

3.2.4 Technique 4 : Régression pas-à-pas ($stepwise\ regression$)

Il s'agit d'une combinaison de l'élimination régressive et de la sélection progressive.

Étape 1 : Débuter avec le modèle $Y = \beta_0 + \varepsilon$

Étape 2 : Chercher la variable qui génère la plus grande diminution de SSE si incluse dans le modèle. Autrement dit, la meilleure variable.

Étape 3 : Utiliser le test de Fisher partiel (3.1.7) pour tester s'il est possible d'inclure la variable de l'étape 2.

Étape 4 : Chercher la variable qui génère la plus faible diminution de SSE si incluse dans le modèle. Autrement dit, la pire variable.

Étape 5 : Utiliser le test Fisher partiel (3.1.7) pour tester s'il est possible d'exclure la variable de l'étape 4.

Étape 6 : Continuer les étapes 2 à 5 jusqu'à ce que l'algorithme élimine la variable qui vient d'entrer.

Exemple

On poursuit avec un exemple pour assimiler l'information.

À partir des informations suivantes, on cherche à trouver le meilleur modèle de régression des 20 observations.

Variables dans le modèle	SSE	SSR	SST	R_{adj}^2
ϕ	10	0	10	0 %
X_1	5	5	10	47.2 %
X_2	9	1	10	5 %
X_3	8	2	10	15.5 %
X_1, X_2	4	6	10	55.3 %
X_1, X_3	3.9	6.1	10	56.4 %
X_2, X_3	8.5	1.5	10	5 %
X_1, X_2, X_3	3.8	6.2	10	54.9 %

Technique 1

Avec la technique 1 (3.2.1), on trouve le modèle suivant :

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_3 + \varepsilon$$

Technique 2

Avec la technique 2 (3.2.2), on débute avec le modèle initial suivant :

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \beta_3 X_3 + \varepsilon$$

La pire variable est X_2 , on effectue le test de Fisher partiel (3.4) avec modèle M_0 sans la variable X_2 et M_1 avec le modèle complet.

 H_0 : Modèle avec X_1 et X_3 H_1 : Modèle avec X_1 , X_2 et X_3

$$F = \frac{\frac{3.9 - 3.8}{1}}{\frac{3.8}{16}}$$

$$= 0.4211$$

$$F_{5\%}(1.16) = 4.49$$

$$0.4211 < 4.49$$

On accepte H_0 et on exclut X_2 .

La prochaine pire variable est la variable X_1 .

$$H_0$$
: Modèle avec X_3
 H_1 : Modèle avec X_1 et X_3
 $F=\frac{\frac{5-3.9}{1}}{\frac{3.9}{17}}$
 $=4.79$
 $F_{5\%}(1.17)=4.49$
 $4.79>4.45$

On rejette H_0 et on n'exclut pas X_3 .

On trouve le modèle suivant :

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_3 + \varepsilon$$

Exemple en R

À l'aide du jeu de donnée $mtcars^1$ de R, construise un modèle pour prédire la consommation en gallon par miles à l'aide de la technique de régression pas à pas. On utilise le code R suivant :

^{1.} Voici les informations sur les données.

```
3 > step (lm(mpg~wt+drat+disp+qsec+hp, data=mtcars), direction="both"
 Start: AIC=65.47
 mpg ~ wt + drat + disp + qsec + hp
        Df Sum of Sq
                        RSS
                                AIC
               3.974 174.10 64.205
 - disp 1
 <none>
                     170.13 65.466
              11.886 182.01 65.627
 - hp
              12.708 182.84 65.772
 - qsec 1
 - drat
              15.506 185.63 66.258
        1
              81.394 251.52 75.978
 - wt
         1
 Step: AIC=64.21
 mpg ~ wt + drat + qsec + hp
        Df Sum of Sq
                        RSS
                                AIC
               9.418 183.52 63.891
 - hp
         1
 - qsec 1
               9.578 183.68 63.919
 <none>
                      174.10 64.205
  - drat 1
              11.956 186.06 64.331
               3.974 170.13 65.466
 + disp 1
             113.882 287.99 78.310
 Step: AIC=63.89
 mpg ~ wt + drat + qsec
        Df Sum of Sq
                        RSS
                                AIC
 <none>
                     183.52 63.891
              11.942 195.46 63.908
 - drat 1
 + hp
               9.418 174.10 64.205
         1
 + disp 1
               1.506 182.02 65.627
              85.720 269.24 74.156
 - qsec 1
 - wt
             275.686 459.21 91.241
 lm(formula = mpg ~ wt + drat + qsec, data = mtcars)
 Coefficients:
  (Intercept)
                       wt
                                   drat
                                                qsec
     11.3945
                   -4.3978
                                 1.6561
                                              0.9462
```

On remarque que la variable disp et hp n'ont pas été retenue dans le modèle. On obtient le modèle suivant :

 $Y = 11.3945 - 4.3978 \times wt + 1.6561 \times drat + 0.9462 \times qsec$

i

Technique de sélection & R

Toutes les techniques présentées à la section 3.2 sont intégrées dans le système de base de R. Cette vignette sur la sélection des variables comprend les différentes méthodes ainsi que des exemples utiles.

3.3 Régression avec variables indicatrices

Permettent de traiter des variables explicatives catégoriques dans les modèles.

Exemples

- Couleur des yeux (bleu, brun, vert et autres)
- Type de véhicule (sport et autres)
- emploi (ACT, ETU, RTR, GOU et autres)

Pour inclure une variable catégorique ayant r valeurs possibles, on doit créer (r-1) variables indicatrices.

Exemple

• Couleur des yeux :

$$X_{t,1} = 1_{\{Couleur_t = Bleu\}}$$

 $X_{t,2} = 1_{\{Couleur_t = Brun\}}$
 $X_{t,3} = 1_{\{Couleur_t = Vert\}}$

• Type de véhicule :

$$X_{t,4} = 1_{\{Type_t = Sport\}}$$

• Emploi :

$$\begin{split} X_{t,5} &= \mathbbm{1}_{\{Emploi_t = ACT\}} \\ X_{t,6} &= \mathbbm{1}_{\{Emploi_t = ETU\}} \\ X_{t,7} &= \mathbbm{1}_{\{Emploi_t = RTR\}} \\ X_{t,8} &= \mathbbm{1}_{\{Emploi_t = GOU\}} \end{split}$$

; où

$$1_{\{A\}} = \left\{ \begin{array}{ll} 1 & \text{, si A vrai} \\ 0 & \text{, sinon} \end{array} \right.$$

Exemple

 $\grave{\mathbf{A}}$ l'aide des 5 observations suivantes, définissez la matrice des variables réponses et la matrice schéma.

Y_t	$Couleur_t$	$Type_t$	$Emploi_t$
70	Bleu	Autres	ETU
75	Brun	Sport	GOU
50	Vert	Autres	Autres
55	Autres	Autres	Autres
85	Brun	Sport	ACT

On utilise le modèle de régression multiple à partir du modèle d'indicatrice précédent. On obtient le modèle de régression suivant :

$$Y_{t} = \beta_{0} + \beta_{1}X_{t,1} + \beta_{2}X_{t,2} + \beta_{3}X_{t,3} + \beta_{4}X_{t,4} + \beta_{5}X_{t,5} + \beta_{6}X_{t,6} + \beta_{7}X_{t,7} + \beta_{8}X_{t,8} + \varepsilon_{t}$$

$$\mathbb{Y} = \mathbb{X}\beta + \varepsilon$$

La matrice des variables réponses correspond à :

$$\mathbb{Y} = \begin{bmatrix} 70\\75\\50\\55\\85 \end{bmatrix}$$

La matrice schéma correspond à :

$$\mathbb{X} = \begin{pmatrix} X_1 & X_2 & X_3 & X_4 & X_5 & X_6 & X_7 & X_8 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

3.4 Analyse qualitative des résidus

Même si les tests t et F sont concluants, le modèle choisi peut ne pas être adéquat. En effet, l'analyse qualitative des résidus est la principale façon de valider un modèle sélectionné.

Distribution uniforme

On remarque que les résidus sont uniformément distribués autour de l'axe des x. Il s'agit d'une situation idéale.

3.4.1 Problèmes possibles dans la distribution des résidus

Plusieurs problèmes de distribution des résidus peuvent être observés, voici leurs représentations graphiques et leurs possibles significations :

3.4.1.1 Distribution uniforme avec rotation

Cette distribution des résidus est très similaire à la distribution uniforme, par contre les résidus ne sont pas distribués autour de l'axe des x. La distribution semble avoir effectué une rotation. Il manque probablement un terme linéaire dans X.

${\bf 3.4.1.2}\quad {\bf Distribution}\ quadratique$

Cette distribution des résidus semble suivre une distribution quadratique. Il manque probablement une variable quadratique dans X.

3.4.1.3 Distribution conique

Cette distribution des résidus semble être distribuée dans un cône. La variance n'est probablement pas constante. Il y a violation de l'hypothèse 2.

3.4.2 Quantiles normaux

On appelle parfois le diagramme Quantile-Quantile ou Q-Q plot. Il s'agit d'un outil permettant d'évaluer la pertinence de l'ajustement d'une distribution.

On ajuste selon une loi normale la fonction empirique des résidus par rapport aux résidus.

On cherche à avoir une droite à 45°. Dans cette situation, cela signifie $\varepsilon_t \sim N(0,1)$.

3.4.3 Exemple complet

On poursuit avec un exemple complet pour synthétiser l'information du chapitre 3.

On reprend le scénario du Titanic de la section 2.1.1, cette fois on va utiliser un modèle complet multilinéaire avec des catégories et déterminer le meilleur modèle avec la technique de régression pas-à-pas 2 .

Tout d'abord, voici la signification des variables :

^{2.} Le code source complet de l'exemple est disponible à l'annexe A.1

Variable	Définition
Survival	Survie du passager au naufrage du Ti-
	tanic
Pclass	Catégorie du billet
Sex	Sexe
Age	${ m \hat{A}ge}$
sibsp	Nombre se frères et sœurs / époux à
	bord du Titanic
parch	Nombre de parents / enfants à bord du
	Titanic
ticket	Numéro du billet
fare	Prix du billet
cabin	Numéro de la cabine
embarked	Port d'embarquement

3.4.3.1 Analyse des données

L'étape suivante consiste à analyser notre jeu de donnée et de retirer les variables inutiles :

PassengerId	Survived	Pclass		
Min. : 1.0	Min. :0.0000	Min. :1.0	000	
1st Qu.:223.5	1st Qu.:0.0000	1st Qu.:2.0	000	
Median :446.0	Median :0.0000	Median :3.0	000	
Mean :446.0	Mean :0.3838	Mean :2.3	309	
3rd Qu.:668.5	3rd Qu.:1.0000	3rd Qu.:3.0	000	
Max. :891.0	Max. :1.0000	Max. :3.0	000	
		Name	Sex	Age
Abbing, Mr. Ant	hony		female:314	=
•	mony smore Edward			1st Qu.:21.00
•	anton (Rosa Hunt)		mare .orr	Median :28.00
Abelson, Mr. Sa		: 1		Mean :29.57
•		–		
	amuel (Hannah Wiz	•		3rd Qu.:37.00 Max. :80.00
	itz Nils Martin	: 885		Max. :00.00
(Other)	D			
SibSp	Parch	Ticket		
	Min. :0.0000			
	1st Qu.:0.0000			
	Median :0.0000			: 14.45
Mean :0.523	Mean :0.3816	3101295 :	6 Mean	: 32.20
3rd Qu.:1.000	3rd Qu.:0.0000	347088 :	6 3rd Qu.	: 31.00
Max. :8.000	Max. :6.0000	CA 2144 :	6 Max.	:512.33
		(Other) :85	52	
Cabin	Embarked			

:687 : 2 B96 B98 C:168 C23 C25 C27: 4 Q: 77 G6 4 S:644 C22 C26 3 D : 3 (Other) :186

On remarque que certaines variables ne sont d'aucun intérêt pour estimer l'âge d'un passager, tel que :

- PassengerId, car il s'agit d'un numéro unique pour chaque passager. (Max. : 891 pour 891 observations)
- *Name*, dans son état actuel le nom du passager n'est pas très utile, car il s'agit d'observation unique.
- Ticket, car il s'agit d'un numéro unique pour chaque passager.
- SibSP, Parch et Cabin sont retirer pour de fins de simplification.

On peut aussi observer le comportement de la variable âge avec les différentes variables explicatives.

```
> # Visualisation des variables en fct de l'âge
> plot(Age ~ Survived + Pclass + Sex + Fare + Embarked + Fare, data)
```


3.4.3.2 Traitement des données

On cherche maintenant à faire un traitement des données pour en tirer de l'information. On observe que le nom du passager est unique dans son format actuel, mais avec un peu de manipulation des données, il est très facile d'extraire son nom de famille à l'aide du code R suivant,

> # Visualiser les 6 premières observations par catégorie
> head(summary(data\$Surname))

Andersson Sage Carter Goodwin Johnson Panula 9 7 6 6 6 6

3.4.3.3 Optimisation du modèle

On peut maintenant trouver le meilleur modèle à l'aide de la méthode pas-à-pas,

Start: AIC=4706.83

Age ~ Survived + Pclass + Sex + Fare + Embarked + Surname

	Df	Sum of Sq	RSS	AIC
- Surname	665	104246	142974	4540.6
- Fare	1	5	38733	4704.9
<none></none>			38728	4706.8
- Pclass	1	213	38940	4709.7
- Embarked	2	316	39044	4710.1
- Sex	1	360	39088	4713.1
- Survived	1	2239	40967	4754 9

Step: AIC=4540.56

Age ~ Survived + Pclass + Sex + Fare + Embarked

	Df	Sum	of	Sq	RSS	AIC
<none></none>					142974	4540.6
- Sex	1		3	380	143354	4540.9
- Embarked	3		13	312	144286	4542.7
- Fare	1		17	708	144682	4549.1
- Survived	1		38	395	146869	4562.5
+ Surname	665	1	1042	246	38728	4706.8
- Pclass	1		315	502	174476	4716.0

Call:

lm(formula = Age ~ Survived + Pclass + Sex + Fare + Embarked,
 data = data)

Coefficients:

(Intercept)	Survived	Pclass	Sexmale	Fare	${\tt EmbarkedC}$
67.20295	-5.42894	-9.04418	1.64599	-0.03412	-15.33204
${\tt EmbarkedQ}$	EmbarkedS				
-11.38268	-14.89563				

On obtient le modèle suivant :

$$\begin{split} \hat{A}ge &= 67.20295 - 5.42894 \times Survived - 9.04418 \times Pclass + 1.64599 \times Sexmale - 0.03412 \times Fare \\ &- 11.38268 \times EmbarkedQ - 14.89563 \times EmbarkedQ \end{split}$$

3.4.3.4 Visualisation des résidus

Voici le Q-Q plot ainsi que le graphique de la réparitition des résidus.

On observe que la droite du Q-Q plot est à 45° et que les résidus suivent une répartition Normale. De plus, on observe une répartition uniforme des résidus.

3.4.3.5 Amélioration du modèle

On va maintenant tester une variable modifier pour tenter d'améliorer notre modèle, il s'agit de la variable le log-Fare. En appliquant un log à une valeur numérique, on réduit l'échelle entre les variables. Autrement dit, on normalise les données.

Modification des données

La modification des données permet de mieux répondre aux postulats de la régression multiple, en particulier le postulat 2.2.2. Permettant ainsi d'avoir un modèle plus solide et théoriquement viable.

Parmi les différentes modifications couramment utilisées, il y a entre autres le *Log-Variable*, le *Carré-variable* et le *Cube-variable*.

```
Start: AIC=4708.75
Age ~ Survived + Pclass + Sex + Fare + Embarked + Surname + LogFare
            Df Sum of Sq
                            RSS
                                   AIC
                  101710 140435 4526.6
- Surname
- LogFare
                       3 38728 4706.8
- Fare
                          38733 4706.9
<none>
                          38725 4708.8
- Pclass
                     212 38937 4711.6
             1
- Embarked
             2
                     313 39038 4711.9
- Sex
                          39088 4715.1
             1
                     363
- Survived
                    2235
                          40959 4756.7
Step: AIC=4526.6
Age ~ Survived + Pclass + Sex + Fare + Embarked + LogFare
            Df Sum of Sq
                            RSS
                                   AIC
- Fare
                       5 140440 4524.6
- Sex
                     112 140547 4525.3
<none>
                         140435 4526.6
- Embarked
             3
                    1182 141617 4528.1
- LogFare
             1
                    2538 142974 4540.6
                    3800 144235 4548.4
- Survived
             1
+ Surname
           665
                  101710 38725 4708.8
- Pclass
                   33088 173523 4713.1
Step: AIC=4524.63
Age ~ Survived + Pclass + Sex + Embarked + LogFare
            Df Sum of Sq
                            RSS
                                   AIC
```

114 140555 4523.4

- Sex

1

Step: AIC=4523.36

Age ~ Survived + Pclass + Embarked + LogFare

	Df	Sum	of	Sq	RSS	AIC
<none></none>					140555	4523.4
- Embarked	3		1:	128	141683	4524.5
+ Sex	1		:	114	140440	4524.6
+ Fare	1			8	140547	4525.3
- LogFare	1		46	390	145245	4550.6
- Survived	1		6:	118	146673	4559.3
+ Surname	665	-	1014	165	39090	4713.1
- Pclass	1		346	357	175212	4717.7

Call:

lm(formula = Age ~ Survived + Pclass + Embarked + LogFare, data = data)

Coefficients:

(Intercept)	Survived	Pclass	${\tt EmbarkedC}$	${\tt EmbarkedQ}$	EmbarkedS
80.000	-5.841	-10.368	-15.700	-12.328	-15.390
LogFare					
-3.147					

3.4.3.6 Visualisation des résidus

On obtient une légère amélioration de notre modèle et on retient ce modèle.

On cherche maintenant à prédire les âges des passagers à partir d'un second échantillon de donnée.

> head(predict(fitL, dataTest))

1 2 3 4 5 6 24.25105 21.54136 39.78953 26.71147 19.77053 20.67271

Segmentation des données

En analyse des données, il est primordial de fragmenter les données. On utilise habituellement réduit l'algorithme suivant :

- 1. 80 % des données pour l'entraı̂nement (training) et 20 % pour le test (testing);
- 2. 80 % des données de test pour l'entraı̂nement (training) et 20 % pour la validation (validation).

On segmente les données afin d'éviter le surapprentissage (overfitting). Il s'agit de la situation ou toutes les situations possibles sont incluses dans le modèle et celui-ci perd de la qualité prédictive sur de nouvelle données.

Dans le cadre du cours, seulement l'étape 1 est suffisante.

Des méthodes plus élaborée et complexe existent pour les données massives et l'apprentissage automatique.

Augmentation des données

L'augmentation des données (data augmentation) permet d'améliorer la qualité d'un jeu de donnée. En ajoutant des informations à partir de données interne ou externe, on améliore l'information présente dans le modèle. Diverses méthodes telles que le traitement des données, la modification des données et l'ajout de variable permettent d'augmenter les données.

Chapitre 4

Les modèles linéaires généralisés

4.1 Introduction

Le modèle de régression linéaire multiple étudié lors des derniers chapitres peut parfois avoir certaines limitations :

- On suppose une distribution normale. Dans la plupart des contextes, cette distribution est inappropriée, car elle permet des valeurs négatives. On comprend qu'en actuariat, cette situation n'est pas désirable.
- Hypothèse contraignante de variance constante.
- Le domaine des variables réponses permet des valeurs entre $-\infty$ et ∞ . Plusieurs contextes ne se retrouvent que dans un domaine non négatifs. De plus, certaines situations pourraient être une variable réponse discrète.

Le modèle linéaire généralisé, parfois appeler GLM pour *Generalized Linear Models*, est une généralisation de la régression linéaire multiple dont l'objectif est de palier aux limitations précédentes.

Reformulation

On peut voir le GLM comme une généralisation souple de la régression linéaire. Cette généralisation de la régression linéaire permet au modèle linéaire d'être relié aux variables réponses via une fonction de lien. De plus, le GLM autorise l'amplitude de la variance de chaque mesure en étant une fonction de sa valeur prévue.

4.2 Notions préliminaires : La famille exponentielle

De manière générale, une variable aléatoire y obéit à une distribution faisant partie de la famille exponentielle si :

$$f_Y(y) = \exp\left\{\frac{y \times \theta - b(\theta)}{a(\phi)} - c(y, \phi)\right\}$$

où,

• θ : Paramètre canonique

• ϕ : Paramètre de dispersion

• $a(\phi), b(\theta)$ et $c(y, \phi)$: 3 fonctions générales de y, θ et ϕ .

4.2.1Loi Normale

En posant,

 $\theta = \mu$ $\phi = \sigma^2$

 $b(\theta) = \frac{\theta^2}{2}$ $a(\phi) = \phi$

• $c(y,\phi) = -\frac{1}{2} \left(\frac{y^2}{\sigma^2} + \ln(2\pi\sigma^2) \right)$ alors.

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \times \left(\frac{y-\mu}{\sigma}\right)^2}$$

et

$$Y \sim N(\mu, \sigma^2)$$

Preuve

$$f_Y(y) = \exp\left\{\frac{y \times \mu - \frac{\mu^2}{2}}{\sigma^2} - \frac{1}{2}\left(\frac{y^2}{\sigma^2} + \ln(2\pi\sigma^2)\right)\right\}$$

$$= \exp\left\{\frac{-y^2}{2\sigma^2} + \frac{y \times \mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \frac{\ln(2\pi\sigma^2)}{2}\right\}$$

$$= \exp\left\{\frac{-1}{2\sigma^2}(y - \mu)^2 - \frac{1}{2}\ln(2\pi\sigma^2)\right\}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\times\left(\frac{y-\mu}{\sigma}\right)^2}$$

Loi Poisson 4.2.2

En posant,

- $\theta = \ln(\mu)$
- $\bullet \quad \phi = 1$
- $b(\theta) = e^{\theta}$
- $a(\phi) = \phi$
- $c(y, \phi) = -\ln(y!)$ alors,

$$f_Y(y) = \frac{e^{-\mu}\mu^y}{y!}$$

et

$$Y \sim \text{Poisson}(\mu)$$

Preuve

$$f_Y(y) = \exp\left\{\frac{y\ln(\mu) - e^{\ln(\mu)}}{1} + (-1)\ln(y!)\right\}$$
$$= \exp\left\{y\ln(\mu) - \mu + \ln\left(\frac{1}{y!}\right)\right\}$$
$$= \frac{e^{-\mu}\mu^y}{y!}$$

4.2.3 Loi Bernouilli

En posant,

- $\theta = \ln\left(\frac{\pi}{(1-\pi)}\right)$ $\phi = 1$
- $b(\theta) = \ln(1 + e^{\theta})$
- $a(\phi) = \phi$
- $c(y,\phi) = \emptyset$ alors,

$$f_Y(y) = \pi^y \times (1 - \pi)^{1 - y}$$

 et

$$Y \sim \mathrm{Bern}(\pi)$$

Preuve

$$f_Y(y) = \exp\left\{\frac{y \times \ln\left(\frac{\pi}{(1-\pi)}\right) - \ln\left(1 + e^{\ln\left(\frac{\pi}{(1-\pi)}\right)}\right)}{1} + 0\right\}$$
$$= \exp\left\{y \times \ln(\pi) - y\ln(1-\pi) + \ln(1-\pi)\right\}$$
$$= \exp\left\{y \times \ln(\pi) + (1-y)\ln(1-\pi)\right\}$$
$$= \pi^y \times (1-\pi)^{1-y}$$

4.2.4 Autres lois

- Loi beta
- Loi binomiale
- Loi gamma
- Loi inverse-Gaussienne
- Loi binomiale négative
- Loi pareto
- Loi weibull

sont aussi des distributions qui appartiennent à la famille exponentielle.

4.3 Généralités sur les modèles de régression avec la famille exponentielle

4.3.1 Contexte

Le contexte est très similaire à celui de la régression multiple :

4.3.2 Autres lois

- $\mathbb{Y}_{n\times 1}$: Vecteur des observations de Y_i , où i=1,...,n.
- $\mathbb{X}_{n\times(p+1)}$: Matrice schéma contenant n lignes d'observations et (p+1) colonnes de variables explicatives.
- $\beta_{(p+1)\times 1}$: Vecteur des (p+1) paramètres $\beta_0, \beta_1, ..., \beta_p$ à estimer.

4.3.3 Structure du modèle

On suppose maintenant que

 $(Y_i|X_i) \sim \text{ Famille exponentielle}$

et que

$$g(\mathbf{E}[Y_i|X_i]) = X_i\beta$$

= $\beta_0 + \beta_1 X_{i,1} + \dots + \beta_p X_{i,p}$

Où $g(\bullet)$ est une fonction continue appelée une fonction de lien.

4.3.4 Propriété de la fonction de lien

4.3.4.1 Domaine de $g(\bullet)$

Domaine des valeurs possible de $\mu = \varphi(\mu)$

Voici quelques exemples de domaine de la fonction de lien :

- Loi gamma $\Rightarrow \varphi(\mu) = [0, \infty[$
- Loi bernouilli $\Rightarrow \varphi(\mu) = [0, 1]$

4.3.4.2 Image de $g(\bullet)$

L'image de la fonction de lien est $\mathbb{R} =]-\infty,\infty[$

4.3.4.3 Conclusion

Le but de la fonction de lien est d'obtenir des valeurs de μ qui correspond bien au contexte du modèle à parti du prédicteur linéaire $X_i\beta$ qui peut prendre des valeurs dans \mathbb{R} . Autrement dit, on définit un domaine cohérent pour les valeurs réponses et on ne restreint pas les valeurs possibles des observations.

Ainsi, on obtient μ en inversant $g(\bullet)$:

$$g(\mathbf{E}[Y_i|X_i]) = X_i\beta$$

$$\mathbf{E}[Y_i|X_i] = g^{-1}(X_i\beta) \tag{4.1}$$

Il est donc nécessaire de choisir une fonction inversible pour la fonction de lien.

Reformulation

La fonction de lien fournit une relation linéaire entre le predicteur linéaire et la moyenne de la fonction de distribution.

4.4 Approche générale

4.4.1 Procédure avec les GLM

- Choisir une distribution pour Y dans la famille exponentielle.
- Choisir une fonction de lien $g(\bullet)$.
- Estimer les paramètres β et ϕ .
- Valider le modèle.

4.4.2 Estimation des paramètres

Dans le cas des GLM, on estime les paramètres en utilisant la méthode du maximum de vraisemblance.

On souhaite choisir $\tilde{\beta}$ qui maximise la fonction de vraisemblance suivante qui sera notre nouvelle métrique de distance :

$$l(\hat{\beta}) = \sum_{i=1}^{n} \ln \left(f_Y(y_i) \right)$$

En pratique, il est d'usage d'utiliser la méthode de Newton-Raphson pour maximiser numériquement $l(\beta)$.

Pour ce faire, on pose $\hat{\beta}^{(k)}$, le vecteur contenant les valeurs estimées pour β après la k^e itération de l'algorithme.

En supposant que l'algorithme ait convergé après l'itération (i+1), alors on a que :

$$\frac{\partial}{\partial \underline{\beta}} l(\underline{\beta}^{(i+1)}) = 0$$

ou encore que

$$S(\hat{\beta}^{(i+1)}) = 0$$
 (4.2)

où $S(\bullet)$ est appelé le vecteur score et est défini ainsi :

$$S(\hat{\beta}^{(i+1)}) = \begin{bmatrix} \frac{\partial}{\partial \beta_0} l(\hat{\beta}) \\ \frac{\partial}{\partial \beta_1} l(\hat{\beta}) \\ \vdots \\ \frac{\partial}{\partial \beta_p} l(\hat{\beta}) \end{bmatrix}_{(p+1) \times 1}$$

Pour obtenir un algorithme permettant d'obtenir un estimateur récursivement, à partir de $\hat{\beta}^{(i)}$, il faut développer $S(\hat{\beta}^{(i+1)})$ autour de $\hat{\beta}^{(i)}$ à l'aide d'une série de Taylor :

$$S(\hat{\beta}^{(i+1)}) = S(\hat{\beta}^{(i)}) + \left[\frac{\partial}{\partial \hat{\beta}} \left(S(\hat{\beta}^{(i)})\right)\right] \left(\hat{\beta}^{(i+1)} - \hat{\beta}^{(i)}\right)$$

En substituant cette expression dans l'équation 4.2, on obtient le développement suivant :

$$S(\hat{\beta}^{(i)}) + \frac{\partial}{\partial \beta} \Big(S(\hat{\beta}^{(i)}) \Big) \Big(\hat{\hat{\beta}}^{(i+1)} - \hat{\hat{\beta}}^{(i)} \Big) = 0$$

ou encore,

$$S(\hat{\beta}^{(i)}) + \left(-I(\hat{\beta}^{(i)})\right) \left(\hat{\beta}^{(i+1)} - \hat{\beta}^{(i)}\right) = 0$$

où $I(\beta)$ correspond à la matrice d'information de Fisher et est donnée par :

$$I(\beta) = \begin{bmatrix} \frac{\partial^2}{\partial \beta_0^2} l(\beta) & \frac{\partial^2}{\partial \beta_0 \partial \beta_1} l(\beta) & \cdots & \frac{\partial^2}{\partial \beta_0 \partial \beta_p} l(\beta) \\ \vdots & \vdots & \vdots \\ \frac{\partial^2}{\partial \beta_0 \partial \beta_p} l(\beta) & \frac{\partial^2}{\partial \beta_1 \partial \beta_p} l(\beta) & \cdots & \frac{\partial^2}{\partial \beta_p^2} l(\beta) \end{bmatrix}_{(p+1) \times (p+1)}$$

Ainsi, on peut réécrire l'expression de la façon suivante :

$$S(\hat{\beta}^{(i)}) = I(\hat{\beta}^{(i)}) \left(\hat{\beta}^{(i+1)} - \hat{\beta}^{(i)}\right)$$
$$I^{-1}(\hat{\beta}^{(i)})S(\beta^{(i)}) = \hat{\beta}^{(i+1)} - \hat{\beta}^{(i)}$$

$$\hat{\beta}_{z}^{(i+1)} = \hat{\beta}_{z}^{(i)} + I^{-1}(\hat{\beta}_{z}^{(i)})S(\hat{\beta}_{z}^{(i)})$$
(4.3)

Cette équation correspond à

Vecteur de paramètre mis à jour = Ancien vecteur de paramètre

+ Produit matriciel entre l'inverse de la matrice Fisher et le vecteur score

4.4.3 Validation globale du modèle avec la *déviance*

En réécrivant la fonction de vraisemblance $l(\beta)$ comme suit :

$$l(\hat{\beta}) = \sum_{i=1}^{n} \ln(f_Y(y_i))$$
$$= \sum_{i=1}^{n} \ln(f_Y(y_i; \mu_i)); \text{ où } \mu_i = g^{-1}(X_i \hat{\beta})$$
$$= l(y, \beta)$$

On peut définir la statistique de déviance $D(\beta)$ comme suit :

$$D(\underline{\beta}) = 2 \times \left(l(\underline{y},\underline{y}) - l(\underline{y},\underline{\beta})\right)$$
 Log vraisemblance sous un modèle parfait Log vraisemblance du modèle obtenu

On remarque que dans le cas de la famille exponentielle, on aura

$$D(\hat{\beta}) = 2 \times \sum_{i=1}^{n} \left\{ y_i \times \left(\theta(y_i) - \theta(\mu_i) \right) - b(\theta(y_i)) + b(\theta(\mu_i)) \right\}$$
(4.4)

4.4.3.1 Loi normale

$$D(\hat{\beta}) = 2 \times \sum_{i=1}^{n} \left\{ y_i (y_i - \mu_i) - \frac{y_i^2}{2} + \frac{\mu_i^2}{2} \right\}$$

$$= \sum_{i=1}^{n} \left\{ 2y_i^2 - y_i \times \mu_i - y_i^2 + \mu_i^2 \right\}$$

$$= \sum_{i=1}^{n} \left\{ y_i^2 - 2y_i \times \mu_i + \mu_i^2 \right\}$$

$$= \sum_{i=1}^{n} (y_i - \mu_i)^2$$

$$= \sum_{i=1}^{n} \varepsilon_t^2$$

$$= SSE$$

Conclusion

Dans le cas de la loi Normale, la déviance est égale à SSE.

De ce fait, $D(\hat{\beta})$ constitue une généralisation de SSE qui sera valide avec tous les sous-cas de la famille exponentielle.

4.4.3.2 Loi de Poisson

$$D(\hat{\beta}) = 2 \times \sum_{i=1}^{n} \left\{ y_i \ln \left(\frac{y_i}{\mu_i} \right) - (y_i - \mu_i) \right\}$$

$$\neq SSE$$

4.4.3.3 Loi binomiale (m_i, μ_i)

$$D(\hat{\beta}) = 2 \times \sum_{i=1}^{n} \left\{ y_i \ln \left(\frac{y_i}{\mu_i} \right) + (m_i - y_i) \times \ln \left(\frac{m_i - y_i}{m_i - \mu_i} \right) \right\}$$

$$\neq SSE$$

4.4.3.4 Loi gamma

$$D(\hat{\beta}) = 2 \times \sum_{i=1}^{n} \left\{ -\ln\left(\frac{y_i}{\mu_i}\right) + \frac{y_i - \mu_i}{\mu_i} \right\}$$

$$\neq SSE$$

4.4.3.5 Loi inverse Gausienne

$$D(\hat{\beta}) = \times \sum_{i=1}^{n} \frac{(y_i - \mu_i)^2}{\frac{\mu_i^2}{y_i}}$$

$$\neq SSE$$

Conclusion

La déviance correspond à SSE seulement pour la distribution Normale. Dans les autres cas, on a une mesure plus générale.

4.4.4 Validation locale du modèle avec des tests d'hypothèses et intervalles de confiances

4.4.4.1 Test d'hypothèse très général

On introduit ici une version généralisée des tests de Fisher partiels introduits à la section 3.1.7.

Hypothèses à considérer

 H_0 : Un modèle $r\acute{e}duit$, noté M_0 , qui est un sous-modèle de M_1 , le modèle complet, est statistiquement acceptable.

 H_1 : On doit utiliser le modèle plus *complet*, noté M_1 .

On utilise la statistique suivante pour tester les hypothèses,

$$\chi_{obs}^2 = D(\beta_{H_0}) - D(\beta_{H_1})$$

$$\tag{4.5}$$

$$\chi_{obs}^2 = 2 \times \left(l(\tilde{\beta}_{H_1}) - l(\tilde{\beta}_{H_0}) \right)$$
(4.6)

On rejette H_0 au niveau de confiance $100 \times (1-\alpha)\%$ si :

$$\chi_{obs}^2 \ge \chi_{\alpha}^2 \left(\text{Nombre de paramètres dans } M_1 - \text{Nombre de paramètres dans } M_0 \right)$$

$$(4.7)$$

4.4.4.2 Intervalles de confiances

Selon la théorie du maximum de vraisemblance, on a que la loi asymptotique de β est une loi normale multi-dimensionnelle :

$$\hat{\beta}_{(p+1)\times 1} \longrightarrow N_{p+1}\left(\tilde{\beta}; \mathbf{Var}(\hat{\beta})\right)$$

avec,

$$\mathbf{V}\mathrm{ar}(\hat{\beta}) = I^{-1}(\hat{\beta})$$

Qui correspond à la borne inférieure de Cramer-Rao.

Ainsi un intervalle de confiance au niveau $100 \times (1-\alpha)\%$ pour β_1 pour β_i est donné par :

$$\beta_i \pm Z_{1-\frac{\alpha}{2}} \times \sqrt{[\mathbf{Var}(\hat{\beta})]_{i+1,i+1}}$$
(4.8)

4.5 Modèle de régression normale

Sachant maintenant les résultats les plus généraux des GLM, il est intéressant de retrouver les concepts de la régression multiple.

Dans ce cas, on a que

$$(Y_i|\tilde{X}_i) \sim N(\mu, \sigma^2)$$

avec,

$$\mu_i = X_i \beta \Rightarrow g(x) = x$$

Soit la fonction de lien identité.

On obtient donc,

$$l(\beta) = \sum_{i=1}^{n} \ln (f_{Y_i}(y_i))$$

= $-\frac{1}{2} \sum_{i=1}^{n} \{ \ln(2\pi\sigma^2) + \frac{1}{\sigma^2} (Y_i - X_i\beta)^2 \}$

On remarque que de maximiser $l(\beta)$ revient à minimiser $\sum_{i=1}^{n} (Y_i - X_i\beta)^2$ qui correspond à SSE.

Par conséquent,

$$S(\underline{\beta}) = \frac{\partial}{\partial \beta} l(\underline{\beta}) = ?$$

On cherche le jieme élément de ce vecteur $S(\beta)$:

$$\begin{split} [S(\beta)]_j &= \frac{\partial}{\partial \beta_i} l(\beta) \\ &= \frac{2}{2\sigma^2} \sum_{i=1}^n (Y_i - X_i \beta)^2 X_{i,j} \\ &= \frac{1}{\sigma^2} \Bigg(\sum_{i=1}^n X_{i,j} Y_i - \bigg(\sum_{i=1}^n X_i \times X_{i,j} \bigg) \beta \bigg) \\ &= \frac{1}{\sigma^2} \Bigg(X_j^\intercal Y_i - X_j^\intercal X \beta \Bigg) \end{split}$$

Ainsi, on déduit que

$$S(\mathring{\beta}) = \frac{1}{\sigma^2} \bigg(\mathbb{X}^\intercal \mathbb{Y} - \mathbb{X}^\intercal \mathbb{X} \beta \bigg)$$

Et donc,

$$I(\beta) = \frac{-\partial^2}{\partial \underline{\beta}^2} l(\underline{\beta})$$
$$= \frac{-\partial}{\partial \underline{\beta}} S(\underline{\beta})$$
$$= ?$$

On cherche l'élément (j, k) de la matrice $I(\beta)$

$$\begin{split} [I(\beta)]_{j,k} &= \frac{-\partial^2}{\partial \beta_j \partial \beta_i} l(\beta) \\ &= \frac{-\partial}{\partial \beta_k} \bigg(\frac{-\partial}{\partial \beta_j} l(\beta) \bigg) \\ &= \frac{-\partial}{\partial \beta_k} \bigg([S(\beta)]_j \bigg) \\ &= \frac{1}{\sigma^2} \sum_{i=1}^n X_{i,j} \times X_{i,k} \\ &= \frac{1}{\sigma^2} (X_i^\mathsf{T} \times X_j) \end{split}$$

Ainsi, on déduit que :

$$I(\beta) = \frac{1}{\sigma^2} (\mathbb{X}^{\mathsf{T}} \mathbb{X})$$

En appliquant maintenant l'algorithme de Newton-Raphson (section 4.4.2), on a donc

$$\begin{split} \hat{\boldsymbol{\beta}}^{(i+1)} &= \hat{\boldsymbol{\beta}}^{(i)} + I^{-1}(\hat{\boldsymbol{\beta}}^{(i)})S(\hat{\boldsymbol{\beta}}^{(i)}) \\ &= \hat{\boldsymbol{\beta}}^{(i)} + \left[\frac{1}{\sigma^2}(\mathbb{X}^\mathsf{T}\mathbb{X})\right]^{-1}\frac{1}{\sigma^2}\bigg(\mathbb{X}^\mathsf{T}\mathbb{Y} - \mathbb{X}^\mathsf{T}\mathbb{X}\boldsymbol{\beta}\bigg) \\ &= \hat{\boldsymbol{\beta}}^{(i)} + \sigma^2(\mathbb{X}^\mathsf{T}\mathbb{X})^{-1}\frac{1}{\sigma^2}\bigg(\mathbb{X}^\mathsf{T}\mathbb{Y} - \mathbb{X}^\mathsf{T}\mathbb{X}\boldsymbol{\beta}\bigg) \\ &= \hat{\boldsymbol{\beta}}^{(i)} + (\mathbb{X}^\mathsf{T}\mathbb{X})^{-1}\mathbb{X}^\mathsf{T}\mathbb{Y} - (\mathbb{X}^\mathsf{T}\mathbb{X})^{-1}\mathbb{X}^\mathsf{T}\mathbb{X}\boldsymbol{\beta} \\ &= (\mathbb{X}^\mathsf{T}\mathbb{X})^{-1}\mathbb{X}^\mathsf{T}\mathbb{Y} \end{split}$$

4.5.1 Conclusion intéressante

L'approche GLM basée sur la méthode du maximum de vraisemblance et utilisant l'algorithme de Newton-Raphson donne le même résultat pour $\hat{\beta}$ que l'approche de la régression multiple basée sur la minimisation de la distance quadratique.

4.5.2 Remarque sur la validation globale et locale du modèle sous la loi Normale

Tel que vu à la section 4.4.3.1,

$$D(\hat{\xi}) = SSE$$

$$= \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}$$

$$= \text{Somme de } N(0, 1) \text{ au carr\'e}$$

$$\sim \chi^{2} (n - (p+1))$$

Ainsi, la statistique χ^2_{obs} est donnée par :

$$\chi_{obs}^2 = D(\beta_{H_0}) - D(\beta_{H_1})$$
$$= SSE(M_0) - SSE(M_1)$$

Or, puisque

$$SSE(M_0) \sim \chi^2 (n - (P_{H_0} + 1))$$
 et
 $SSE(M_1) \sim \chi^2 (n - (P_{H_1} + 1))$

On peut ainsi dire que cela revient à tester,

$$\chi_{obs}^2 \ge \chi_{\alpha}^2 ([n - (P_{H_0} + 1)] - [n - (P_{H_1} + 1)])$$

$$\Rightarrow \chi_{obs}^2 \ge \chi_{\alpha}^2 (P_{H_1} - P_{H_0})$$

Différence entre le nombre de paramètres entre M_0 et M_1

Ce qui revient a testé si :

$$F^* = \frac{\frac{[SSE(M_0) - SSE(M_1)]}{[P_{H_1} - P_{H_0}]}}{\frac{SSE(M_1)}{n - P_{H_1}}} \ge \chi_{\alpha}^2 (P_{H_1} - P_{H_0})$$

Soit le test de Fisher partiel de la section 3.1.7.

4.6 Modèle de régression logistique

4.6.1 Contexte motivant l'utilisation de ce modèle

On utilise la régression logistique lorsqu'il y a un phénomène dichotomique. C'està-dire que Y_i peut prendre seulement deux valeurs.

- Est-ce que l'assuré i avec les caractéristiques X_i va avoir des sinistres?
- Est-ce que ce même assuré va renouveler sa police avec nous?
- \bullet Est-ce qu'un individu ayant les caractéristiques X_i va décéder ou non dans la prochaine année ?

De façon pratique, il est d'usage de définir $Y_i \in \{0, 1\}$.

Dans ce cas, on a que

$$(Y_i|X_i) \sim \text{Bernouilli}(\pi_i)$$

Où π_i correspond à $\mathbf{E}[Y_i|\tilde{X}_i]$ et $g(\pi_i) = \tilde{X}_i\beta$.

Puisque $\pi_i \in]0,1[$, π_i est une probabilité, et que $X_i \beta \in \mathbb{R}$, il faut choisir la fonction de lien $g(\bullet)$ de telle sorte que

$$g:]0,1[\rightarrow \mathbb{R}$$

Bien que plusieurs candidats peuvent satisfaire cette condition, il est d'usage d'utiliser une fonction appelée logit dans ce contexte. Celle fonction est défini ainsi :

$$g(x) = logit(x)$$
$$= ln\left(\frac{x}{1-x}\right)$$

4.6.2 Conséquences

$$g(\pi_i) = \tilde{X}_i \tilde{\beta}_{\tilde{\lambda}}$$
$$\operatorname{logit}(\pi_i) = \tilde{X}_i \tilde{\beta}_{\tilde{\lambda}}$$
$$\operatorname{ln}\left(\frac{\pi_i}{1 - \pi_i}\right) = \tilde{X}_i \tilde{\beta}_{\tilde{\lambda}}$$

Il est donc possible d'exprimer π_i comme suit :

$$\frac{\pi_i}{1-\pi_i} = e^{\underbrace{\tilde{X}_i \tilde{\beta}}_{\sim}}$$

$$\frac{1-\pi_i}{\pi_i} = \frac{1}{\underbrace{\tilde{X}_i \tilde{\beta}}_{\sim}}$$

$$\frac{1}{\pi_i} - 1 = \frac{1}{\underbrace{\tilde{X}_i \tilde{\beta}}_{\sim}}$$

$$\frac{1}{\pi_i} = 1 + \frac{1}{\underbrace{\tilde{X}_i \tilde{\beta}}_{\sim}}$$

$$\pi_i = \frac{1}{1 + \frac{1}{\underbrace{\tilde{X}_i \tilde{\beta}}_{\sim}}}$$

$$\pi_{i} = \frac{\underbrace{X_{i} \hat{\beta}}_{i}}{\underbrace{X_{i} \hat{\beta}}_{i}}$$

$$1 + e$$

$$(4.9)$$

4.6.3 Interprétations

4.6.3.1

$$\ln\left(\frac{\pi_i}{1-\pi_i}\right) = X_i \beta_z$$

$$\ln\left(\frac{Pr(Y_i = 1|X_i)}{Pr(Y_i = 0|X_i)}\right) = X_i \beta_z$$

Le log du rapport de cote est linéaire.

4.6.3.2

 β_0 : le log du rapport de cote lorsque toutes les variables explicatives X_i sont égales à zéro.

4.6.3.3

 β_j : Si $X_{i,j}$ augmente de une unité, alors que les autres variables explicatives sont fixées, alors le log du rapport de cote augmente de β_j unité pour l'individu i.

4.6.4 Optimisation

Sous la méthode du maximum de vraisemblance, on a

$$l(\beta) = \sum_{i=1}^{n} \ln \left(Pr(Y_i = y_i | \bar{X}_i) \right)$$
$$= \sum_{i=1}^{n} \ln \left(\pi_i^{y_i} \times (1 - \pi_i)^{1 - y_i} \right)$$
$$= \sum_{i=1}^{n} \left(y_i \times \ln(\pi_i) + (1 - y_i) \times \ln(1 - \pi_i) \right)$$

$$= \sum_{i=1}^{n} \left(y_{i} \times \ln \left(\frac{e^{X_{i}\beta}}{X_{i}\beta} \right) + (1 - y_{i}) \times \ln \left(\frac{1}{X_{i}\beta} \right) \right)$$

$$= \sum_{i=1}^{n} \left(y_{i} \times \ln \left(e^{X_{i}\beta} \right) - y_{i} \ln \left(1 + e^{X_{i}\beta} \right) - (1 - y_{i}) \times \ln \left(1 + e^{X_{i}\beta} \right) \right)$$

$$= \sum_{i=1}^{n} \left(y_{i} \times X_{i}\beta - \ln \left(1 + e^{X_{i}\beta} \right) \right)$$

Par conséquent,

$$S(\beta) = \frac{\partial}{\partial \beta} l(\beta)$$
$$=?$$

On cherche le jieme élément du vecteur score, soit

$$\begin{split} S(\underline{\beta}) &= \frac{\partial}{\partial \beta_j} l(\beta) \\ &= \sum_{i=1}^n X_{i,j} Y_i - \left(X_{i,j} \times \frac{e^{\underbrace{X_i \beta}}}{1 + e} \right) \\ &= \sum_{i=1}^n X_{i,j} \left(Y_i - \frac{e^{\underbrace{X_i \beta}}}{1 + e} \right) \\ &= X_j^\intercal \left(Y - M(X_i \beta) \right) \end{split}$$

où $M(X_i\beta)$ correspond à

$$M(X_i\beta) = \begin{bmatrix} \frac{X_1\beta}{e} \\ \frac{e}{X_1\beta} \\ 1+e \end{bmatrix}$$

$$\vdots$$

$$X_n\beta$$

$$\frac{e}{X_n\beta}$$

$$1+e$$

Ainsi, on déduit que

$$S(\underline{\beta}) = \mathbb{X}^{\mathsf{T}} (\mathbb{Y} - M(\underline{X}_i \underline{\beta}))$$
(4.10)

On peut maintenant trouver $I(\beta)$,

$$I(\beta) = -\frac{\partial^2}{\partial \beta^2} l(\beta)$$
$$= -\frac{\partial}{\partial \beta} S(\beta)$$

On cherche l'élément (j, k) de cette matrice, soit :

$$\begin{split} &[I(\beta)]_{j,k} = -\frac{\partial^2}{\partial \beta^2} l(\beta) \\ &= -\frac{\partial}{\partial \beta_k} \left(\frac{\partial}{\partial \beta_j} l(\beta) \right) \\ &= -\frac{\partial}{\partial \beta_k} [S(\beta)]_j \\ &= \sum_{i=1}^n X_{i,j} X_{i,k} \times \left(\frac{e^{\underbrace{X_i \beta}}{\left(1 + e^{\underbrace{X_i \beta}}\right) - \left(e^{\underbrace{X_i \beta}}\right)^2}}{\left(1 + e^{\underbrace{X_i \beta}}\right)^2} \right) \\ &= \sum_{i=1}^n X_{i,j} X_{i,k} \times \frac{e^{\underbrace{X_i \beta}}{\left(1 + e^{\underbrace{X_i \beta}}\right)^2}}{\left(1 + e^{\underbrace{X_i \beta}}\right)^2} \\ &= \sum_{i=1}^n X_{i,j} \times X_{i,k} \times W_i \end{split}$$

où W_i correspond à

$$\frac{\underbrace{X_i\beta}_{e}}{\left(1+e^{\underbrace{X_i\beta}_{e}}\right)^2}$$

Ainsi, on arrive à la déduction que

$$I(\beta) = X^{\mathsf{T}}WX$$

avec,

$$\mathbb{W} = \begin{bmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & w_n \end{bmatrix}_{n \times n}$$

En appliquant maintenant l'algorithme de Newton-Raphson (section 4.4.2), on a

$$\begin{split} \hat{\beta}^{(i+1)} &= \hat{\beta}^{(i)} + I^{-1}(\hat{\beta}^{(i)})S(\hat{\beta}^{(i)}) \\ &= \hat{\beta}^{(i)} + (\mathbb{X}^{\mathsf{T}}\mathbb{W}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}\big(\mathbb{Y} - M(\tilde{X}_{i}\tilde{\beta})\big) \\ &\stackrel{\times I}{=} I\hat{\beta}^{(i)} + (\mathbb{X}^{\mathsf{T}}\mathbb{W}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}I\big(\mathbb{Y} - M(\tilde{X}_{i}\tilde{\beta})\big) \\ &= (\mathbb{X}^{\mathsf{T}}\mathbb{W}\mathbb{X})^{-1}(\mathbb{X}^{\mathsf{T}}\mathbb{W}\mathbb{X})\hat{\beta}^{(i)} + (\mathbb{X}^{\mathsf{T}}\mathbb{W}\mathbb{X})^{-1}(\mathbb{X}^{\mathsf{T}}\mathbb{W}\mathbb{X})^{-1}(\mathbb{Y} - M) \\ &= \left[(\mathbb{X}^{\mathsf{T}}\mathbb{W}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}\mathbb{W} \right] \left[\mathbb{X}\hat{\beta}^{(i)} + \mathbb{W}^{-1}(\mathbb{Y} - M) \right] \\ &= Z^{(i)} : \text{transformation sur } Y \end{split}$$

On obtient ainsi l'algorithme suivant :

$$\hat{\beta}^{(i+1)} = (\mathbb{X}^{\mathsf{T}} \mathbb{W} \mathbb{X})^{-1} \mathbb{X}^{\mathsf{T}} \mathbb{W} Z^{(i)}$$

$$(4.11)$$

4.6.4.1 Remarque

L'algorithme itératif permettant d'obtenir l'estimateur de $\hat{\beta}$ peut être vu comme une succession d'estimations de régressions linéaires de $Z^{(i)}$ sur X, pondérés par W.

4.6.5 Formule de déviance-régression logistique

$$D(\hat{\beta}) = 2 \times \sum_{i=1}^{n} \left\{ y_i \times \ln \left(\frac{y_i}{\pi_i} \right) + (1 - y_i) \times \ln \left(\frac{1 - y_i}{1 - \pi_i} \right) \right\}$$

οù,

$$\pi_i = \frac{e^{X_i \beta}}{1 + e^{X_i \beta}}$$

4.6.6 Test d'hypothèse général

$$\chi_{obs}^2 = D(\beta_{H_0}) - D(\beta_{H_1})$$

4.6.7 Intervalle de confiance

On obtient ainsi l'intervalle de confiance suivant au niveau $100 \times (1-\alpha)\%$ pour β_i ,

$$\hat{\beta_i} = Z_{1-\frac{\alpha}{2}} \times \sqrt{\left[\left(\mathbb{X}^{\mathsf{T}}\mathbb{W}\mathbb{X}\right)^{-1}\right]_{(i+1)\times(i+1)}}$$

$$\tag{4.12}$$

Illustration d'un GLM

Voici une représentation d'un modèle linéaire, d'un GLM logistique et d'un GLM probit ¹. Les trois modèles tentent de modéliser la probabilité de bris simultané des six joints d'étanchéité selon la température sur les navettes spatiales. Cet exemple permet de bien visualisé la différence entre un modèle linéaire et un GLM.

^{1.} Il s'agit d'un exemple tiré des notes de cours de modèle linéaire à l'automne 2014 donné et rédigé par Marie-Pier Côté.

4.7 Régression de Poisson

4.7.1 Contexte motivant l'utilisation de ce modèle

Phénomène ou la varaible aléatoire Y est positive et discrète $(Y_i \in \{0,1,2,\ldots\})$. Voici quelques exemples de contexte :

- Nombre de sinistres d'un assuré au cours de la prochaine année.
- Nombre de défauts de fabrication d'un produit.

Dans ce cas, on postule que,

$$(Y_i|X_i) \sim \text{Poisson}(\lambda_i)$$

Οù

$$\lambda_i = \mathbf{E}[Y_i | \tilde{X}_i]$$

avec,

$$g(\lambda_i) = X_i \beta$$

Puisque $\lambda_i \in [0, \infty[$ est non négatif et que $X_i \beta \in \mathbb{R}$, il faut utiliser une fonction $g(\bullet)$ telle que :

$$g:[0,\infty[\to \mathbb{R}$$

Bien que plusieurs candidats peuvent satisfaire cette condition, il est d'usage d'utiliser la fonction logarithmique dans le contexte de la régression de Poisson :

$$g(x) = \ln(x)$$

4.7.2 Conséquences

$$g(\lambda_i) = X_i \beta_i$$

$$\ln(\lambda_i) - X_i \beta_i$$

$$\lambda_i = e^{X_i \beta_i}$$

En conclusion, sous cette spécification on a que :

$$(Y_i|X_i) \sim \text{Poisson}\left(e^{X_i\hat{\beta}}\right)$$

Puisque $X_i \beta = \beta_0 + \beta_1 X_{i,1} + ... + \beta_p X_{i,p}$, on a que

$$(Y_i|X_i) \sim \text{Poisson}(e^{\beta_0 + \beta_1 X_{i,1} + \dots + \beta_p X_{i,p}})$$

 $(Y_i|X_i) \sim \text{Poisson}(e^{\beta_0 \times e^{\beta_1 X_{i,1}} \times \dots \times e^{\beta_p X_{i,p}}})$

Modèle multiplicatif

4.7.3 Interprétations

4.7.3.1

 $\ln(\lambda_i) = X_i \beta_i$, qui correspond au log de l'espérance est linéaire.

4.7.3.2

 β_0 : Lorsque toutes les variables explicatives X_i on une valeur de zéro, alors l'espérance de Y_i est e^{β_0} .

4.7.3.3

 β_i : Si $X_{i,j}$ augmente d'une unité, alors que les autres variables explicatives restent fixées, alors l'espérance de Y_i est multiplié par e^{β_j}

4.7.4 Optimisation

Sous la méthode du maximum de vraisemblance, on a que :

$$l(\beta) = \sum_{i=1}^{n} \ln \left(Pr(Y_i = y_i | \bar{X}_i) \right)$$

$$= \sum_{i=1}^{n} \ln \left(\frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!} \right)$$

$$= \sum_{i=1}^{n} \ln \left(y_i \times \ln(\lambda_i) - \lambda_i^- \ln(y_i!) \right)$$

$$= \sum_{i=1}^{n} \ln \left(y_i \times \bar{X}_i \beta - e^{-\lambda_i^* \lambda_i^*} - \ln(y_i!) \right)$$

Par conséquent,

$$S(\beta) = \frac{\partial}{\partial \beta} l(\beta) = ?$$

On cherche le jieme élément de ce vecteur $S(\beta)$:

$$\begin{split} [S(\beta)]_j &= \frac{\partial}{\partial \beta} l(\beta) \\ &= \sum_{i=1}^n \left(Y_i X_{i,j} - X_{i,j} e^{\overset{\overset{\textstyle X}{\underset{i}}}{\sum}} \right) \\ &= \sum_{i=1}^n X_{i,j} \left(Y_i - e^{\overset{\overset{\textstyle X}{\underset{i}}}{\sum}} \right) \\ &= X_j^\intercal \left(Y - M(\overset{\overset{\textstyle X}{\underset{i}}}{\sum}} \right) \end{split}$$

où $M(\tilde{X}_i\tilde{\beta})$ correspond à

$$M(X_i \tilde{\beta}) = \begin{bmatrix} X_1 \tilde{\beta} \\ e^{\tilde{z}} \\ \vdots \\ X_n \tilde{\beta} \\ e^{\tilde{z}} \end{bmatrix}$$

et donc,

$$S(\beta) = \mathbb{X}^{\mathsf{T}} \left(\mathbb{Y} - M(\tilde{X}_{i}\beta) \right)$$
(4.13)

On peut maintenant trouver $I(\beta)$,

$$I(\beta) = -\frac{\partial^2}{\partial \beta^2} l(\beta)$$
$$= -\frac{\partial}{\partial \beta} S(\beta)$$

On cherche l'élément (j, k) de cette matrice, soit :

$$\begin{split} [I(\beta)]_{j,k} &= -\frac{\partial^2}{\partial \beta^2} l(\beta) \\ &= -\frac{\partial}{\partial \beta_k} \left(\frac{\partial}{\partial \beta_j} l(\beta) \right) \\ &= -\frac{\partial}{\partial \beta_k} [S(\beta)]_j \\ &= \sum_{i=1}^n X_{i,j} X_{i,k} \times e^{\overset{X}{X}_i \overset{X}{\beta}_i} \\ &= \sum_{i=1}^n X_{i,j} \times X_{i,k} \times W_i \end{split}$$

où W_i correspond à

$$e^{\underset{i}{\tilde{X}}_{i}\underset{\sim}{\beta}}$$

Ainsi, on arrive à la déduction que

$$I(\beta) = \mathbb{X}^{\mathsf{T}} \mathbb{W} \mathbb{X}$$

avec,

$$\mathbb{W} = \begin{bmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & w_n \end{bmatrix}_{n \times n}$$

En utilisant une méthode similaire à celle qui a été appliquée pour le cas de la régression logistique à la section 4.6.4, on peut montrer que l'algorithme de Newton-Raphon est le suivant :

$$\hat{\beta}^{(i+1)} = \hat{\beta}^{(i)} + I^{-1}(\hat{\beta}^{(i)})S(\hat{\beta}^{(i)})$$

Qui peut être simplifié sous la forme suivante,

$$\hat{\beta}^{(i+1)} = (\mathbb{X}^{\mathsf{T}} \mathbb{W} \mathbb{X})^{-1} \mathbb{X}^{\mathsf{T}} \mathbb{W} \mathbb{Z}^{(i)}$$

où
$$\mathbb{Z}^{(i)} = \mathbb{X}\hat{\beta}^{(i)} + \mathbb{W}^{-1}(\mathbb{Y} - M(\tilde{X}, \beta))$$

4.8 Autres notions importantes avec les GLM

4.8.1 Autres distributions

La procédure illustrée aux sections 4.5, 4.6 et 4.6 s'applique à toutes les distributions de la famille exponentielle. Les cas les plus célèbres sont :

4.8.1.1 Loi Binomiale négative

Permets d'obtenir une variance plus grande que la moyenne, ce qui n'est pas possible avec la loi de Poisson.

• Fonction de log-vraisemblance

$$(Y_i|X_i,\Theta_i) \sim \text{Poisson}(\lambda_i\Theta_i)$$

οù

$$\ln(\lambda_i) = X \beta_{\tilde{\lambda}}$$

$$\lambda_i = e^{X \beta_{\tilde{\lambda}}}$$

et,

$$\Theta_i \sim \Gamma(\alpha, \alpha)$$

$$\mathbf{E}[\Theta] = 1$$

$$\mathbf{V}ar(\Theta) = \frac{1}{\alpha}$$

De plus, si $\alpha \to \infty$, alors NegBin \to Poisson.

$$\begin{split} P(Y_i = y_i | \Breve{X}_i) &= \int_0^\infty \frac{e^{-\lambda_i \theta} (\lambda_i \theta_i)^{y_i}}{y_i \,!} \times \frac{\alpha^\alpha \Theta^{\alpha - 1} e^{-\alpha \Theta}}{\Gamma(\alpha)} d\Theta \\ &= \frac{\alpha^\alpha \lambda^{y_i}}{\Gamma(\alpha) \Gamma(y_i + 1)} \int_0^\infty \Theta^{(y_i + \alpha) - 1} e^{-(\alpha + \lambda_i) \Theta} d\Theta \\ &= \frac{\alpha^\alpha \lambda^{y_i}}{\Gamma(\alpha) \Gamma(y_i + 1)} \times \frac{\Gamma(y_i + \alpha)}{(\alpha + \lambda_i)^{y_i + \alpha}} \\ &= \frac{\Gamma(y_i + \alpha)}{\Gamma(\alpha) \Gamma(y_i + 1)} \bigg(\frac{\alpha}{\alpha + \lambda_i}\bigg)^\alpha \bigg(\frac{\lambda_i}{\alpha + \lambda_i}\bigg)^{y_i} \end{split}$$

•
$$l(\beta) = \sum_{i=1}^{n} \ln \left(Pr(Y_i = y_i | X_i) \right)$$

• $S(\beta) = \frac{\partial}{\partial \beta} l(\beta)$

•
$$S(\beta) = \frac{\partial}{\partial \beta} l(\beta)$$

•
$$I(\beta) = \frac{\partial^2}{\partial \beta^2} l(\beta)$$

$$\hat{\beta}^{(i+1)} = \hat{\beta}^{(i)} + I^{-1}(\hat{\beta}^{(i)})S(\hat{\beta}^{(i)})$$

Test de surdispersion

 H_0 : Il n'y a pas de sur dispersion, la variance de Y est égale à l'espérance de Y.

 H_1 : Il y a de la surdispersion

$$\mathbf{V}\mathrm{ar}(Y) = \mathbf{E}[\mathbf{V}\mathrm{ar}(Y|\Theta)] + \mathbf{V}\mathrm{ar}(\mathbf{E}[Y|\Theta])$$

$$= \mathbf{E}[\lambda \times \Theta] + \mathbf{V}\mathrm{ar}(\lambda \times \Theta)$$

$$= \lambda \times 1 + \lambda^2 \times \frac{1}{\alpha}$$

$$= \lambda \times \left(1 + \frac{\lambda}{\alpha}\right)$$

Procédure

- 1. Obtenir $l_{Poisson}(\beta)$ avec une régression Poisson.
- 2. Obtenir $l_{NB}(\beta)$ avec une régression Binomiale négative.
- 3. Calculer $\chi_{obs}^2 = 2 \times \left(l_{NB}(\beta) l_{Poisson}(\beta)\right)$
- 4. On rejette H_0 au niveau de confiance $100 \times (1-\alpha)\%$ si

$$\chi^2_{obs} \ge \chi^2_{1-2 \times \alpha}(1)$$

Il s'agit d'un test unilatéral.

4.8.1.2 Loi Gamma

Permet de modéliser des cas où Y est continue, mais non-négative.

• Fonction de log-vraisemblance

$$f_{Y_i | \tilde{X}_i}(y_i) = \frac{\left(\frac{\alpha}{\mu_i}\right)^{\alpha} \times y_i^{\alpha - 1} e^{-\left(\frac{\alpha}{\mu_i} y_i\right)}}{\Gamma(\alpha)}$$

οù

$$\ln(\mu_i) = \underbrace{X}_{\tilde{\mathcal{L}}} \underbrace{\beta}_{\text{Lien}}$$

$$\stackrel{\log}{\Rightarrow} \mu_i = e$$

$$\frac{1}{\mu_i} = \underbrace{X}_{\tilde{\mathcal{L}}} \underbrace{\beta}_{\tilde{\mathcal{L}}}$$

Lien inverse
$$\mu_i = \frac{1}{X_j \tilde{\beta}}$$

$$\mathbf{E}[Y_i | \tilde{X}_i] = \mu_i$$

$$= g^{-1}(X_j \tilde{\beta})$$

$$\mathbf{Var}(Y_i | \tilde{X}_i) = \frac{\mu_i^2}{\alpha}$$

$$\begin{split} \bullet & \ l(\underline{\beta}) = \sum_{i=1}^n \ln \left(f_{Y_i | \underline{X}_i}(y_i) \right) \\ \bullet & \ S(\underline{\beta}) = \frac{\partial}{\partial \underline{\beta}} l(\underline{\beta}) \end{split}$$

•
$$S(\beta) = \frac{\partial}{\partial \beta} l(\beta)$$

•
$$I(\beta) = \frac{\partial^2}{\partial \beta^2} l(\beta)$$

$$\bullet \ \hat{\beta}^{(i+1)} = \hat{\beta}^{(i)} + I^{-1}(\hat{\beta}^{(i)})S(\hat{\beta}^{(i)})$$

4.8.2 Algorithme du Scoring

L'algorithme de Scoring est un algorithme itératif pour estimer les paramètres. Il peut parfois être une alternative à l'algorithme de Newton-Rahpson.

Pour obtenir l'algorithme du Scoring, il faut simplement remplacer $I(\beta)$ par $F(\beta)$ dans la formule d'optimisation des paramètres. Ce qui donne la formule suivante : $\hat{\beta}^{(i+1)} = \hat{\beta}^{(i)} + F^{-1}(\hat{\beta}^{(i)})S(\hat{\beta}^{(i)})$ où

$$F(\beta) = E_Y[I(\beta^{(i)})]$$

4.8.2.1Remarque

En pratique, il est d'usage d'utiliser cet algorithme pour alléger les formules lorsqu'il reste des termes en y_i dans la matrice $I(\beta)$.

Dans le cas de la loi Normale, Logistique et Poisson, il n'y a pas de y_i dans $I(\beta)$, mais ce n'est pas le cas avec la loi gamma ou avec la loi géométrie.

4.8.2.2 Exemple : Loi géométrique

•
$$Pr(Y_i = y_i | X_i) = P_i^{y_i - 1} \times (1 - P_i); \ y_i \in \{1, 2, ...\}$$

• Fonction de lien $g(x) = \ln(x-1)$

$$\ln(\mathbf{E}[Y_i|X_i] - 1) = X_i\beta$$

$$\mathbf{E}[Y_i|X_i] - 1 = e^{X_i\beta}$$

$$\mathbf{E}[Y_i|X_i] = 1 + e^{X_i\beta}$$

$$\frac{1}{1 - P_i} = 1 + e^{X_i\beta}$$

$$1 - P_i = \frac{1}{X_i\beta}$$

$$P_i = \frac{e}{X_i\beta}$$

$$1 + e^{X_i\beta}$$

• Fonction de log-vraisemblance

$$l(\beta) = \sum_{i=1}^{n} \ln\left(Pr(Y_i|X_i)\right)$$

$$= \sum_{i=1}^{n} \left\{ (y_i - 1) \ln(P_i) + \ln(1 - P_i) \right\}$$

$$= \sum_{i=1}^{n} \left\{ (y_i - 1) \ln\left(\frac{e^{\sum_{i} \beta}}{1 + e^{\sum_{i} \beta}}\right) + \ln\left(\frac{1}{1 + e^{\sum_{i} \beta}}\right) \right\}$$

$$= \sum_{i=1}^{n} \left\{ (y_i - 1) \left[X_i\beta - \ln\left(1 + e^{\sum_{i} \beta}\right)\right] - \ln\left(1 + e^{\sum_{i} \beta}\right) \right\}$$

$$= \sum_{i=1}^{n} \left\{ (y_i - 1)X_i\beta - y_i \times \ln\left(1 + e^{\sum_{i} \beta}\right) \right\}$$

• Vecteur Score

$$[S(\hat{\beta})]_j = rac{\partial}{\partial \beta} l(\beta)$$

$$= \sum_{i=1}^{n} \left\{ (y_i - 1) X_{i,j} - y_i X_{i,j} \times \frac{e^{X_i \beta}}{1 + e^{X_i \beta}} \right\}$$

$$= \dots$$

$$= \sum_{i=1}^{n} \left\{ \frac{y_i}{1 + e^{X_i \beta}} \right\} \times X_{i,j}$$

• Matrice d'information de Fisher

$$\begin{split} I(\beta) &= \frac{\partial^2}{\partial \beta_k^2} l(\beta) \\ &= -\frac{\partial}{\partial \beta_k} \left(\frac{\partial}{\partial \beta_j} l(\beta) \right) \\ &= -\frac{\partial}{\partial \beta_k} [S(\beta)]_j \\ &= \sum_{i=1}^n \left\{ y_i \times \frac{e^{\underbrace{X_i \beta}}}{1 + e^{\underbrace{X_i \beta}}} \times \frac{1}{1 + e^{\underbrace{X_i \beta}}} \times X_{i,j} \times X_{i,k} \right\} \end{split}$$

On remarque qu'il y a des y_i dans la matrice d'information de Fisher.

• Matrice F

$$\begin{split} [F(\beta)]_{j,k} &= E_Y \left[[I(\underline{\beta})]_{j,k} \right] \\ &= E_Y \left[\sum_{i=1}^n \left\{ y_i \times \frac{e^{\underbrace{X_i \beta}}}{1 + e} \times \frac{1}{1 + e^{\underbrace{X_i \beta}}} \times X_{i,j} \times X_{i,k} \right\} \right] \\ &= \sum_{i=1}^n \left\{ \mathbf{E}[y_i | \underline{X}_i] \times \frac{e^{\underbrace{X_i \beta}}}{1 + e} \times \frac{1}{1 + e^{\underbrace{X_i \beta}}} \times X_{i,j} \times X_{i,k} \right\} \\ &= \sum_{i=1}^n \left\{ \frac{1}{1 - P_i} \times \frac{e^{\underbrace{X_i \beta}}}{1 + e} \times \frac{1}{1 + e^{\underbrace{X_i \beta}}} \times X_{i,j} \times X_{i,k} \right\} \end{split}$$

$$\begin{split} &= \sum_{i=1}^{n} \left\{ (1 + e^{\underbrace{X_{i}\beta}}) \times \frac{e^{\underbrace{X_{i}\beta}}}{1 + e^{\underbrace{X_{i}\beta}}} \times \frac{1}{1 + e^{\underbrace{X_{i}\beta}}} \times X_{i,j} \times X_{i,k} \right\} \\ &= \sum_{i=1}^{n} \left\{ \frac{e^{\underbrace{X_{i}\beta}}}{1 + e^{\underbrace{X_{i}\beta}}} \times X_{i,j} \times X_{i,k} \right\} \\ &= \sum_{i=1}^{n} X_{i,j} \times W_{i} \times X_{i,k} \end{split}$$

Cette expression est plus simple, car elle n'est pas fonction des Y_i . On peut donc réécrire $F(\beta)$ comme suit :

$$F(\beta) = \mathbb{X}^{\mathsf{T}} \mathbb{W} \mathbb{X}$$

où $\mathbb W$ corresponds à la matrice suivante :

$$\begin{bmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & w_n \end{bmatrix}_{n \times n}$$

4.8.3 Variable offset

Il s'agit d'une variable explicative dont le β est d'une valeur unitaire.

4.8.3.1 Utilisation en actuariat

On utilise les variables offset pour effectuer la modélisation de la fréquence des sinistres à partir de la loi Poisson.

4.8.3.2 Exemple

i	U_i	N_i	$X_{i,1}$	$X_{i,2}$		$X_{i,p}$
1	0.5	1	:	:	:	•
2	1.0	2	:	:	:	:
3	1.0	0	:	:	:	:
4	0.25	1	:	:	:	•
5	0.05	0	:	:	:	:

- \bullet U_i : L'exposition au risque. Autrement dit, la portion d'une année ou l'assuré i a détenu une police en vigueur.
- N_i : Le nombre de sinistres de l'assuré i.

Le modèle GLM

$$(N_i|U_i, X_i) \sim \text{Poisson}(\lambda_i)$$

$$\lambda_i = U_i \times e^{X_i\beta}$$

Idée sous-jacente à ce modèle

Un assuré qui a détenu une police en vigueur pendant quelques jours a considérablement moins de chances d'avoir des sinistres qu'un assuré qui a conservé sa police en vigueur pendant toute l'année.

Interprétation

- $\begin{array}{ll} \bullet \ \, \lambda_i = U_i \times e^{\displaystyle \stackrel{\textstyle X_i\beta}{\underbrace{X}_i\beta}} : \text{Nombre de sinistres espérés pour l'assuré i.} \\ \bullet \ \, \frac{\lambda_i}{U_i} = e^{\displaystyle \stackrel{\textstyle X_i\beta}{\underbrace{X}_i\beta}} : \text{Fréquence de sinistre espéré pour l'assuré i.} \end{array}$

Variable offset

$$\begin{split} \lambda_i &= U_i \times e^{X_i \beta} \\ &= e^{\ln(U_i)} \times e^{\beta_0 + \beta_1 X_{i,1} + \ldots + \beta_p X_{i,p}} \\ &= e^{\ln(U_i) + \beta_0 + \beta_1 X_{i,1} + \ldots + \beta_p X_{i,p}} \end{split}$$

En posant, $0_i = \ln(U_i)$, alors on a que :

$$\lambda_i = e^{1 \times 0_i + \beta_0 + \beta_1 X_{i,1} + \dots + \beta_p X_{i,p}}$$

Ici, 0_i est la variable offset.

Ajout d'une interaction entre deux variables explica-4.8.4

Si on pense que l'effet combiné de deux variables explicatives doit être différent de l'addition des effets individuels de ces deux variables, on utilise une variable d'interaction.

4.8.4.1 Exemple

- X_1 : Âge de l'assuré au carré
- $\bullet \ X_2 :$ Indicateur que l'assuré est un homme

En pratique, on observe souvent la tendance suivante :

Or, il est impossible d'obtenir le graphique précédent avec une structure linéaire de la forme :

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Car le β_2 ne fait qu'induire un effet de translation sur les courbes sans jouer sur l'amplitude :

Qui correspond à la fonction suivante :

$$g(\mathbf{E}[Y|\mathcal{X}_i]) = \left\{ \begin{array}{cc} \beta_0 + \beta_1 X_1 & \text{, si une femme} \\ (\beta_0 + \beta_2) + \beta_1 X_1 & \text{, si un homme} \end{array} \right.$$

Pour permettre à l'amplitude de varier selon le sexe, il faut ajouter une interaction à la structure linéaire précédente, soit :

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \underbrace{\beta_3 \times X_1 \times X_2}_{} \times \underbrace{X_1 \times X_2}_{} \times \underbrace{X_1 \times X_2}_{} \times \underbrace{X_1 \times X_2}_{} \times \underbrace{X_1 \times X_2}_{} \times \underbrace{X_2 \times X_3 \times X_4}_{} \times \underbrace{X_3 \times X_4 \times X_2}_{} \times \underbrace{X_3 \times X_4 \times X_4}_{} \times \underbrace{X_4 \times X_4}_{} \times \underbrace{X_5 \times X_5}_{} \times \underbrace{X_5 \times X_5}_{$$

Partie d'interaction entre X_1 et X_2

Ainsi,

$$g(\mathbf{E}[Y|X_i]) = \left\{ \begin{array}{cc} \beta_0 + \beta_1 X_1 & \text{, si une femme} \\ (\beta_0 + \beta_2) + (\beta_1 + \beta_3) X_1 & \text{, si un homme} \end{array} \right.$$

4.8.4.2 Remarque importante

Tout comme le traitement des variables non numériques, l'ajout d'une interaction ne nécessite que de modifier la matrice schéma $\mathbb X$ et le vecteur β .

Sans interaction

$$\mathbb{X} = \begin{pmatrix} X_1 & X_2 \\ 1 & 60 & 0 \\ 1 & 30 & 1 \\ \vdots & \vdots & \vdots \end{pmatrix}$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

Avec interaction

$$\mathbb{X} = \begin{pmatrix} X_1 & X_2 & X_3 = X1 \times X_2 \\ 1 & 60 & 0 & 0 \\ 1 & 30 & 1 & 30 \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$$

4.8.5 Analyse des résidus

Toute la théorie introduite au chapitre 3 reste valide pour les GLM à l'exception du fait qu'il soit nécessaire de définir un résidu plus général.

4.8.5.1 Résidus de la déviance

$$\hat{\varepsilon}_D = signe(y_i - \hat{\mu}_i) \times \sqrt{2 \times \left(l(\underline{y}, \underline{y})_i - l(\underline{y}, \underline{\mu})_i\right)}$$

Annexe A

Code source

A.1 Exemple du chapitre 3

Voici le code source de l'exemple à la section 3.4.3.

```
3 > # Import data
4 > data <- read.csv('data/Titanic/train.csv', stringsAsFactors =
5 > summary(data)
6 > # Visualisation des variables en fct de l'age
7 > par(mfrow = c(3,2))
8 > plot (Age ~ Survived + Pclass + Sex + Fare + Embarked + Fare,
      data)
9 > # Ajout de la variable nom de famille
10 > data$Surname <- as.factor(sapply(as.character(data$Name),
                            function(x) strsplit(x, split = '[,]')
11 +
      [[1]][1])
12 > # Visualiser les 6 premieres observations par categorie
> head (summary (data $Surname))
14 > # Modele de regression stepwise
15 > fit <- step (lm (Age ~ Survived + Pclass + Sex + Fare + Embarked
       + Surname, data),
                 direction = "both")
17 > fit
18 > # Q-Q plot
_{19} > par(mfrow = c(1,2))
20 > plot (fit , which=2)
> # Graphe des residus
22 > plot(residuals(fit), main = "Residus")
23 > # Ajout de la variable Log - Fare
24 > data$LogFare <- log(data$Fare)
25 > data LogFare [data LogFare = -Inf] < 0
> # Nouveau modele
```

Listing A.1 – Code source en R pour l'exemple