Electrical Engineering 229A Lecture 14 Notes

Daniel Raban

October 12, 2021

1 Joint ε -Weak Typicality and the Slepian-Wolf Theorem

1.1 Properties of joint ε -weak typicality

Suppose $(X_1,Y_1),(X_2,Y_2),...$ are i.i.d. with $(X_i,Y_i) \in \mathscr{X} \times \mathscr{Y}$ finite and $(X_i,Y_i) \sim (p(x,y),x \in \mathscr{X},y \in \mathscr{Y})$. We think of the X_i s as being seen by Alice and the Y_i s as being seen by Bob.

Definition 1.1 (Joint ε -weak typicality). Define the set $A_{\varepsilon}^{(n)} \subseteq \mathscr{X}^n \times \mathscr{Y}^n$ to be the set of $(x_1^n, y_1^n) \in \mathscr{X}^n \times \mathscr{Y}^n$ such that

1.
$$\left| -\frac{1}{n} \log p(x_1^n) - H(X) \right| < \varepsilon$$

2.
$$\left| -\frac{1}{n} \log p(y_1^n) - H(Y) \right| < \varepsilon$$
,

3.
$$|-\frac{1}{n}\log p(x_1^n, y_1^n) - H(X, Y)| < \varepsilon$$
.

Here are some properties of this:

Theorem 1.1.

1.

$$\mathbb{P}((X_1^n, Y_1^n) \in A_{\varepsilon}^{(n)}) \xrightarrow{n \to \infty} 1.$$

Proof. Use the weak law of large numbers.

2.

$$|A_{\varepsilon}^{(n)}| \le 2^{nH(X,Y)} 2^{n\varepsilon}.$$

Proof. For all $(x_1^n, y_1^n) \in A_{\varepsilon}^{(n)}$,

$$p(x_1^n, y_1^n) \ge 2^{-nH(X,Y)} 2^{-n\varepsilon}$$

and

$$1 \ge \sum_{(x_1^n, y_1^n) \in A_{\varepsilon}^{(n)}} p(x_1^n, y_1^n). \qquad \Box$$

3. For all large enough n,

$$|A_{\varepsilon}^{(n)}| \ge (1-\delta)2^{nH(X,Y)}2^{-n\varepsilon}$$
.

Proof. For all $(x_1^n, y_1^n) \in A_{\varepsilon}^{(n)}$,

$$p(x_1^n, y_1^n) \le 2^{-nH(X,Y)} 2^{n\varepsilon}$$

and, for all large enough n,

$$\sum_{(x_1^n, y_1^n) \in A_{\varepsilon}^{(n)}} p(x_1^n, y_1^n) \ge 1 - \delta. \qquad \Box$$

4. If $(\widetilde{X}_1^n, \widetilde{Y}_1^n) \sim p(x_1^n)p(y_1^n)$, then

(a)
$$\mathbb{P}((\widetilde{X}_1^n, \widetilde{Y}_1^n) \in A_{\varepsilon}^{(n)}) \le 2^{nI(X;Y)} 2^{3n\varepsilon}.$$

Proof. The left hand side is

$$\begin{split} \sum_{(x_1^n, y_1^n)} p(x_1^n) p(y_1^n) &\leq |A_{\varepsilon}^{(n)}| 2^{-nH(X)} 2^{n\varepsilon} 2^{-nH(Y)} 2^{n\varepsilon} \\ &\leq 2^{nH(X, Y)} 2^{-nH(X)} 2^{-nH(Y)} 2^{3n\varepsilon}. \end{split}$$

(b) For all
$$\delta > 0$$
,
$$\mathbb{P}((\widetilde{X}_1^n, \widetilde{Y}_1^n) \in A_{\varepsilon}^{(n)}) > 2^{nI(X;Y)} 2^{-3n\varepsilon}.$$

Proof. The left hand side is

$$\sum_{(x_1^n, y_1^n)} p(x_1^n) p(y_1^n) \ge |A_{\varepsilon}^{(n)}| 2^{-nH(X)} 2^{-n\varepsilon} 2^{-nH(Y)} 2^{-n\varepsilon}$$

$$\ge (1 - \delta) 2^{nH(X,Y)} 2^{-nH(X)} 2^{-nH(Y)} 2^{-3n\varepsilon}.$$

1.2 The Slepian-Wolf theorem on distributed lossless compression

In this section, lossless is interpreted in the sense of asymptotically vanishing error probability. The scenario is that Alice sees X_1, \ldots, X_n and Bob sees Y_1, \ldots, Y_n . The pairs (X_i, Y_i) with $i = 1, \ldots, n$ are iidm and $(X_i, Y_i) \sim (p(x, y), x \in \mathcal{X}, y \in \mathcal{Y})$. Alice compresses X_1^n , and Bob compresses Y_1^n . A fusion centor sees the compressed representations and wants to recover (X_1^n, Y_1^n) with small probability of error (going to 0 as $n \to \infty$). The problem is: What region of (Alice's bits/symbol, Bob's bits/symbol) is achievable?

Definition 1.2. We say that the pair of rates (R_1, R_2) is **achievable** if there is a sequence $((e_n^{(1)}, e_n^{(2)}, d_n), n \ge 1)$ where

$$e_n^{(1)}: \mathscr{X}^n \to [M_n^{(1)}] = \{1, \dots, M_n^{(1)}\}, \quad \text{with} \quad \limsup_{n \to \infty} \frac{1}{n} \log M_n^{(1)} \le R_1,$$

$$e_n^{(2)}: \mathscr{X}^n \to [M_n^{(2)}], \quad \text{with} \quad \limsup_{n \to \infty} \frac{1}{n} \log M_n^{(2)} \le R_2,$$

$$d_n: [M_n^{(1)}] \times [M_n^{(2)}] \to \mathscr{X}^n \times \mathscr{Y}^n,$$

such that

$$\mathbb{P}(d_n(e_n^{(1)}(X_1^n), e_n^{(2)}(Y_1^n)) \neq (X_1^n, Y_1^n)) \xrightarrow{n \to \infty} 0.$$

Theorem 1.2 (Slepian-Wolf). The set of achievable rate pairs is

$$\{(R_1, R_2): R_1 \ge H(X \mid Y), R_2 \ge H(Y \mid X), R_1 + R_2 \ge H(X, Y)\}.$$

We will prove the achievability using the *probabilistic method*; i.e. we will show that a suitable $((e_n^{(1)}, e_n^{(2)}, d_n), n \ge 1)$ exists without explicitly demonstrating it. Here is an example of the probabilistic method.

Example 1.1. Suppose that $f:[0,1] \to \mathbb{R}_+$. To show "there exists some x such that f(x) > 10," it's enough to show that $\mathbb{E}[f(Z_1)] > 10$ where $Z \sim \text{Unif}([0,1])$.

Proof. Achievability: It is enough to show that for all $\varepsilon > 0$, if (R_1, R_2) is such that $R_1 \geq H(X \mid Y) + \varepsilon$, $R_2 \geq H(Y \mid X) + \varepsilon$, and $R_1 + R_2 \geq H(X, Y) + \varepsilon$, then (R_1, R_2) is achievable. We use a "random binning" argument: $(e_n^{(1)}, e_n^{(2)}, d_n)$ will be random variables with

- $e_n^{(1)}$: randomly assign each $x_1^n \in \mathcal{X}^n$ to one of $M_n^{(1)}$ bins uniformly, independently over x_1^n ,
- $e_n^{(2)}$: randomly assign each $y_1^n \in \mathscr{Y}^n$ to one of $M_n^{(2)}$ bins uniformly, independently over x_1^n
- $d_n(m_n^{(1)}, m_n^{(2)}) = (\widehat{x}_1^n, \widehat{x}_2^n)$ if there is exactly one $(\widehat{x}_1^n, \widehat{y}_1^n)$ with $e_n^{(1)}(\widehat{x}_1^n) = m_n^{(1)}$ and $e_n^{(2)}(\widehat{y}_1^n) = m_n^{(2)}$. Otherwise, $d_n(m_n^{(1)}, m_n^{(2)})$ can take any value.

Now we upper bound $\mathbb{P}(d_n(e_n^{(1)}(X_1^n), e_n^{(2)}(Y_1^n)) \neq (X_1^n, Y_1^n))$, where the randomness is in both (X_1^n, Y_1^n) and $(e_n^{(1)}, e_n^{(2)}, d_n)$. We have

$$\mathbb{P}(d_n(e_n^{(1)}(X_1^n), e_n^{(2)}(Y_1^n)) \neq (X_1^n, Y_1^n)) \leq \underbrace{\mathbb{P}(E_{0,n})}_{\stackrel{n \to \infty}{\longrightarrow} 0} + \mathbb{P}(E_{1,n}) + \mathbb{P}(E_{2,n}) + \mathbb{P}(E_{12,n}),$$

Here,

- $E_{0,n} = \{(X_1^n, Y_1^n) \notin A_n^{(\delta)}\}$ for some $\delta > 0$, and the corresponding probability goes to 0 as $n \to \infty$.
- $E_{1,n} = \{\exists \ \widetilde{x}_1^n \neq X_1^n \text{ with } e_n^{(1)}(\widetilde{x}_1^n) = e_n^{(1)}(X_1^n) \text{ and } (\widetilde{x}_1^n, y_1^n) \in A_n^{(\delta)} \}.$ Here,

$$\mathbb{P}(E_{1,n}) \leq \sum_{\substack{(x_1^n, y_1^n) \\ (\widetilde{x}_1^n, y_1^n) \in A_n^{(\delta)}}} p(x_1^n, y_1^n) \sum_{\substack{\widetilde{x}_1^n \neq X_1^n \\ (\widetilde{x}_1^n, y_1^n) \in A_n^{(\delta)}}} \underbrace{\mathbb{P}(e_n^{(1)}(\widetilde{x}_1^n) = e_n^{(1)}(X_1^n))}_{=1/M_n^{(1)}}.$$

Now $|\{\widetilde{x}_1^n : (\widetilde{x}_1^n, y_1^n) \in A_n^{(\delta)}\}| \le 2^{nH(X|Y)} 2^{2n\delta}$ because

$$\begin{split} 1 &\geq \sum_{\widetilde{x}_{1}^{n}: (\widetilde{x}_{1}^{n}, y_{1}^{n}) \in A_{n}^{(\delta)}} p(\widetilde{x}_{1}^{n} \mid y_{1}^{n}) \\ &= \sum_{\widetilde{x}_{1}^{n}: (\widetilde{x}_{1}^{n}, y_{1}^{n}) \in A_{n}^{(\delta)}} \frac{p(\widetilde{x}_{1}^{n}, y_{1}^{n})}{p(y_{1}^{n})} \\ &\geq |\{\widetilde{x}_{1}^{n}: (\widetilde{x}_{1}^{n}, y_{1}^{n}) \in A_{n}^{(\delta)}\}| 2^{-nH(X|Y)} 2^{-2n\delta}. \end{split}$$

So

$$\mathbb{P}(E_{1,n}) \le \sum_{(x_1^n, y_1^n)} p(x_1^n, y_1^n) 2^{nH(X|Y)} 2^{2n\delta} 2^{-nR_1}.$$

But $R_1 > H(X \mid Y) + \varepsilon$ by assumption, so if $2\delta < \varepsilon$, the right hand side goes to 0 as $n \to \infty$.

• $E_{2,n}$ is defined similarly to $E_{1,n}$, and $\mathbb{P}(E_{2,n}) \to 0$ as $n \to \infty$.

We are now left with $\mathbb{P}(E_{12,n})$, which we will examine next time.