Rappels d'algèbre linéaire/probabilité

Charlotte Pelletier (Basé sur le cours de N. Courty) 22 janvier 2020

Plan

Rappels d'Algèbre linéaire

Quantités

Opérations

Systèmes linéaires

Décomposition de matrices

Rappels de probabilité

Définitions

Exemples de lois

Système de v.a.

Algèbre linéaire

Ensemble d'outils mathématiques fonctionnant dans le domaine continu (par opposition aux mathématiques discrètes) essentiels à la compréhension des outils d'apprentissage automatique.

Nous discuterons entre autre de :

- valeurs scalaires, vectorielles matrices, tenseurs
- opérations basiques entre ces quantités (addition, produits)
- Espaces vectoriels engendrés par une base, indépendance
- diagonalisation, factorisation

Quantités

Variables scalaires : dénotées par une lettre en minuscule

- ullet ex. $x \in \mathbb{R}$ est la pente d'une droite
- ullet ex. $n\in\mathbb{N}$ est le nombre d'éléments dans un ensemble

Variables vectorielles : tableau de valeurs ordonnées, dénoté en minuscule gras

- $oldsymbol{v} \in \mathbb{R}^{256}$: point dans un espace réel à 256 dimensions
- $\mathbf{v}^T = [v_1 v_2 \dots v_i \dots v_n]$, chaque valeur du tableau est indexé par un entier $i \in \{1, n\}$
- ullet les valeurs v_i sont les coordonnées selon chaque axe de l'espace

Variables matricielles : tableau bi-dimensionel (2D) de valeurs ordonnées, dénoté en majuscule gras

- ullet $\mathbf{A} \in \mathbb{R}^{3 imes 3}$: matrice exprimant une application de $\mathbb{R}^3 o \mathbb{R}^3$
- ullet ces valeurs sont indexées par i (numéro de ligne) et j (numéro de colonne) : $A_{i,j}$

Tenseurs

Parfois des dimensions supplémentaires sont nécessaires pour traduire des relations complexes entre plusieurs élements

• ex. image 3D

tenseurs : tableau n-aire (n-D) de valeurs ordonnées (selon une grille régulière), dénoté en majuscule **gras**

- $\bullet \ T \in \mathbb{R}^{28 \times 28 \times 28}$: tenseur de $\mathbb{R}^{28 \times 28 \times 28}$
- ullet ces valeurs sont indexées par i,j,k,\ldots : $T_{i,j,k}$ dans le cas précédent

Addition/multiplications de matrices

Si A et B sont de même tailles (par ex. $m \times n$)

- $\mathbf{C} = \mathbf{A} + \mathbf{B} \equiv \mathbf{C}_{ij} = \mathbf{A}_{ij} + \mathbf{B}_{ij}, \ \forall i, j$
- ajout/multiplication par un scalaire : $\mathbf{C} = e\mathbf{A} + f \equiv \mathbf{C}_{ij} = e\mathbf{A}_{ij} + f$
- ajout d'un vecteur (notation non standard) : $C = A + v \equiv C_{ij} = A_{ij} + v^T{}_j$, aussi appelé *broadcasting* en anglais

Si ${\bf v}$ et ${\bf u}$ sont de même taille m alors

- ullet on note $\mathbf{v^T}\mathbf{u}$ le produit scalaire entre ces deux vecteurs
- $\mathbf{v}^{\mathbf{T}}\mathbf{u} = \sum_{k=1}^{m} \mathbf{v}_k \mathbf{u}_k$

Si ${\bf A}$ et ${\bf B}$ sont de tailles $m \times r$ et $r \times n$ alors

- C = AB est de taille $m \times n$
- $\mathbf{C}_{ij} = \sum_{k=1}^{r} \mathbf{A}_{ik} \cdot \mathbf{B}_{kj}$
- ullet \mathbf{C}_{ij} est le produit scalaire entre la ligne i de \mathbf{A} et la colonne j de \mathbf{B}

Propriétés du produit matriciel

- $\bullet\,$ Distributivité par rapport à l'addition : $\mathbf{C}(\mathbf{A}+\mathbf{B}) = \mathbf{C}\mathbf{A} + \mathbf{C}\mathbf{B}$
- Associativité : C(AB) = (CA)B
- ullet non-commutativité : en général AB
 eq BA
- \bullet mais le produit scalaire l'est : $\mathbf{v^T}\mathbf{u} = \mathbf{u^T}\mathbf{v}$
- $\bullet \;$ transposé d'un produit : $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T\mathbf{A}^T$

Systèmes linéaires

$$Ax = b$$

- Si A est de taille $m \times n$, x et b de tailles n, nous avons un système à m équations et n inconnues
- ullet cas où m=n. Alors la solution du système, si elle existe, est donnée par :

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

- \mathbf{A}^{-1} est l'inverse de \mathbf{A} , i.e. telle que $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$
- \mathbf{I}_n matrice identité de taille $n \times n$

résolution de systèmes linéaires

Pivot de Gauss

$$\begin{vmatrix} x+3y-2z=5\\3x+5y+6z=7\\2x+4y+3z=8 \end{vmatrix} = \begin{vmatrix} \mathbf{L_2 \cdot 3L_1 \Rightarrow L_2} & \mathbf{L_3 \cdot 2L_1 \Rightarrow L_3} & \mathbf{-L_2 / 4 \Rightarrow L_2} \\ \begin{vmatrix} 1 & 3 & -2 & 5\\3 & 5 & 6 & 7\\2 & 4 & 3 & 8 \end{vmatrix} \sim \begin{bmatrix} 1 & 3 & -2 & 5\\0 & -4 & 12 & -8\\2 & 4 & 3 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -2 & 5\\0 & -4 & 12 & -8\\0 & 0 & -1 & 2 & 7\\0 & 1 & 3 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -2 & 5\\0 & 1 & 3 & 2\\0 & -2 & 7 & -2 \end{bmatrix} \\ \sim \begin{bmatrix} 1 & 3 & -2 & 5\\0 & 1 & 3 & 2\\0 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -2 & 5\\0 & 1 & 0 & 8\\0 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 & 9\\0 & 1 & 0 & 8\\0 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 & 9\\0 & 1 & 0 & 8\\0 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -15\\0 & 1 & 0 & 8\\0 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 & 9\\0 & 1 & 0 & 8\\0 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -15\\0 & 1 & 0 & 8\\0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

- \bullet de nombreuses autres méthodes existent (LU, décomposition de Cholesky, avec des contraintes en plus sur la forme de A)
- $oldsymbol{f A}^{-1}$ ne dépend pas de $oldsymbol{f b}$, et peut être utilisée pour résoudre plusieurs problèmes
- cependant en pratique ${\bf A}^{-1}$ n'est jamais réellement calculée telle quelle ($o(n^3)$ opérations) et on utilise la valeur de ${\bf b}$ dans la résolution (en regardant par exemple la différence entre ${\bf b}$ et ${\bf A}{\bf x}$ à une itération donnée

$$\operatorname*{arg\,min}_{x}\left|\left|\mathbf{A}\mathbf{x}-\mathbf{b}\right|\right|^{2}$$

Espace engendré par un ensemble de vecteurs

L'espace engendré par un ensemble de vecteurs $\{{\bf v}_1,{\bf v}_2,\ldots,{\bf v}_n\}$ est l'ensemble des points formé par toutes les combinaisons linéaires de ces vecteurs, i.e. ${\bf p}=\sum_i \alpha_i {\bf v}_i$

- ullet savoir si $\mathbf{A}\mathbf{x}=\mathbf{b}$ admet une solution revient à savoir si \mathbf{b} se trouve dans l'espace engendré par \mathbf{A}
- si ${\bf A}$ est de taille $n \times n$, alors ${\bf A}$ doit être formée de vecteurs linéairement indépendants
- $\bullet \ \operatorname{rang}(\mathbf{A}) = n$

Pour des matrices de taille $m \times n$, le rang de ${\bf A}$ est au mieux m. D'autres méthodes d'inversion existent pour ce type de problème.

- ullet Exemple : pseudo inverse de Moore Penrose ${f A}^+$
- si rang(\mathbf{A}) = m, $\mathbf{A}^+ = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1}$
- si rang(\mathbf{A}) = n, $\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$?

Normes

Normes

Une fonction f utilisée pour mesurer la 'longueur' d'un vecteur. Elle respecte les 3 conditions suivantes :

- $f(\mathbf{v}) = 0 \implies \mathbf{v} = 0$
- $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ (inégalité triangulaire)
- $f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x})$

Exemples : norme $L^p: ||\mathbf{x}||_p = \sqrt[p]{\sum_i |\mathbf{x}_i|^p}$

- p=2 norme Euclidienne, aussi notez que $||\mathbf{x}||_2^2 = \mathbf{x}^T \mathbf{x}$
- ullet p=1 utile pour différentier des valeurs proches de 0
- $p = \infty$ norme max $||\mathbf{x}||_{\infty} = \max_i |\mathbf{x}_i|$

Cas particuliers de matrices

- \bullet Matrice diagonale : des entrées non-nulles seulement sur la diagonale. On note $V = \mathsf{diag}(\mathbf{v})$
- Matrice symétrique : $\mathbf{A} = \mathbf{A}^T$
- Matrice orthogonale : $\mathbf{A}^{-1} = \mathbf{A}^T$. Toutes les colonnes $\mathbf{a}_{\bullet i}$ sont orthogonales entre elles, i.e. $\forall i,j | i \neq j, \mathbf{a_{\bullet i}}^T \mathbf{a_{\bullet j}} = 0$

Décomposition de matrices

Les matrices peuvent être décomposées en facteurs (produit de matrices) pour gagner de la compréhension sur leurs structures.

- Décomposition spectrale, aussi appelée décomposition en valeurs/vecteurs propres
- un vecteur propre ${\bf v}$ d'une matrice ${\bf A}$ est telle qu'il existe un scalaire λ tel que ${\bf A}{\bf v}=\lambda{\bf v}$
 - ullet λ est la valeur propre associée à ${f v}$
 - ullet tous les multiples de ${f v}$ sont des vecteurs propres de ${f A}$, i.e. les $s{f v}$ pour $s\in \mathbb{R}$
- trouver les valeurs propres est équivalent à résoudre $det(\mathbf{A} \lambda \mathbf{I}) = 0$
- les racines de ce polynôme sont les valeurs propres de A

• exemple avec
$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Décomposition en vecteurs propres (eigendecomposition)

Si ${f A}$ a n vecteurs propres indépendants alors on peut l'écrire comme

$$\mathbf{A} = \mathbf{V} \mathsf{diag}(\lambda) \mathbf{V}^{-1}$$

- V : matrice des vecteurs propres
- ullet λ : vecteur des valeurs propres

Cas d'une matrice symétrique :

$$\mathbf{A} = \mathbf{Q} \mathsf{diag}(\lambda) \mathbf{Q}^T$$

- Q est une matrice orthogonale
- λ : vecteur des valeurs propres

Propriétés utiles de la décomposition en valeurs propres

- une matrice est singulière (non-inversible) ssi au moins une de ses valeurs propres est nulle
- le rang d'une matrice est égale au nombre de valeurs propres non nulles
- la décomposition en valeurs propres est utile pour résoudre certains problèmes d'optimisation
- $ex : f(x) = x^T Ax \text{ avec } ||x||_2 = 1$
 - forme quadratique
 - si x est un vecteur propre, alors f(x) est la valeur propre correspondante
 - $\min f = \min \lambda$, $\max f = \max \lambda$
- toutes les valeurs propres strictement positives : matrice positive
 - garantie que $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$
- toutes les valeurs propres positives ou nulles : matrice semi-définie positive (SDP)

Décomposition SVD

La décomposition SVD (Décomposition en Valeurs Singulières) est une décomposition plus générale qui s'adapte aux matrices non-carrées :

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

- Si ${\bf A}$ est de taille $m \times n$, alors $\dim({\bf U}) = m \times m$, $\dim({\bf D}) = m \times n$ et $\dim({\bf V}) = n \times n$
- les éléments de D sont appelées valeurs singulières
- les vecteurs de U et V sont respectivement vecteurs singuliers droits et gauches (resp. vecteurs propres de AA^T et A^TA)
- aspect pratique : calcul de pseudo-inverse avec SVD : $\mathbf{A}^+ = \mathbf{V}\mathbf{D}^+\mathbf{U}^T$, où \mathbf{D}^+ est formée avec la réciproque des éléments non nuls de \mathbf{D} .

Plan

Rappels d'Algèbre linéaire

Quantités

Opérations

Systèmes linéaires

Décomposition de matrices

Rappels de probabilité

Définitions

Exemples de lois

Système de v.a.

Définition de la probabilité

Espace des épreuves Ω

Ensemble de tous les évènements possibles issus d'une expérience donnée.

Définition de P(A)

Soit A un ensemble d'évènements inclus dans Ω ,

$$P(A) = \lim_{n \to \infty} \frac{n(A)}{n}$$
 si la limite existe,

avec

- n le nombre d'expériences réalisées,
- n(A) le nombre d'expériences où A s'est réalisé.

Exemple, dé à 6 faces

- $\Omega = \{ \text{faces } : 1, 2, 3, 4, 5, 6 \}$
- Si dé non pipé, alors $P(k)=1/6, \quad \forall k \in 1, \dots, 6$

Axiomes des probabilités

Premier axiome

Si
$$A\in\Omega$$
 alors

$$0 \le P(A) \le 1$$

Deuxième axiome

$$P(\Omega) = 1$$
 $P(\emptyset) = 0$

avec Ø l'ensemble vide

Union et intersection

Si $A \in \Omega$, $B \in \Omega$, alors

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Si $A \cap B = \emptyset$ alors

$$P(A \cup B) = P(A) + P(B).$$

$$A \cup B$$

Définitions

Variable Aléatoire

C'est un nombre (réel) X_{ω} dont la valeur est déterminée par le résultat ω d'une expérience aléatoire.

Exemple : dé à 6 faces

- L'évènement aléatoire (e.a.) est l'apparation d'une face.
- On associe un entier 1 à 6 à chaque face.

Fonction de répartition et dérivé

Fonction de répartition

La fonction de répartition $F_{\rm X}(x)$ d'une v.a.X est définie comme étant la probabilité que la v.a.X soit inférieur ou égale à x,

$$F_{\mathbf{X}}(x) = P(\mathbf{X} \le x)$$
 .

Densité de probabilité (d.d.p.)

Elle est définie comme la dérivée de la fonction de répartition,

$$p(x) = \frac{dF(x)}{dx}$$

Propriétés

Propriétés de la fonction de répartition

Propriétés

Propriétés de la fonction de répartition

$$F_{X}(-\infty) = 0 \qquad F_{X}(\infty) = 1$$

$$0 \le F_{X}(x) \le 1$$

$$P(x_{1} \le x \le x_{2}) = F_{X}(x_{2}) - F_{X}(x_{1})$$

Propriétés de la densité de probabilité

Propriétés

Propriétés de la fonction de répartition

$$F_{X}(-\infty) = 0 \qquad F_{X}(\infty) = 1$$

$$0 \le F_{X}(x) \le 1$$

$$P(x_{1} \le x \le x_{2}) = F_{X}(x_{2}) - F_{X}(x_{1})$$

Propriétés de la densité de probabilité

$$p(x) \ge 0 \qquad \qquad \int_{-\infty}^{+\infty} p(x) dx = 1$$

$$P(x \le x_1) = F_X(x_1) = \int_{-\infty}^{x_1} p(x) dx \qquad P(x_1 \le x \le x_2) = \int_{x_1}^{x_2} p(x) dx$$

Moments d'une v.a.(1)

Définition du moment

Le moment g(x) d'une v.a.est donné par l'espérance,

$$E(g(x)) = \int_{-\infty}^{+\infty} g(x)p(x)dx$$

Généralement $g(x)=x^m$, on parle alors de moment d'ordre m,

Moment d'ordre 1
$$m_X = E(X) = \int_{-\infty}^{+\infty} x p(x) dx$$

Moment d'ordre 2

$$m_X^{(2)} = E(\mathbf{X}^2) = \int_{-\infty}^{+\infty} x^2 p(x) dx$$

Le moment d'ordre 1 est aussi souvent appelé moyenne.

Propriété : linéarité de l'espérance

$$E(X+Y) = E(X) + E(Y), \qquad E(kX) = kE(X)$$

Pour k une constante.

Moments d'une v.a.(2)

Définition de la variance

La variance est l'espérance du carré des écarts par rapport à la valeur moyenne $m=E(\mathbf{X}),$

$$\sigma_X^2 = E\left(\left(X - m_X\right)^2\right) = \int_{-\infty}^{+\infty} (x - m_X)^2 p(x) dx ,$$

$$\sigma_X^2 = E\left(X^2\right) - E\left(X\right)^2 .$$

On utilise souvent aussi la notion d'écart-type σ ,

$$\sigma_X = \sqrt{\sigma_X^2}$$
 .

Caractérisation incomplète

On caractérise, de manière incomplète, une v.a.par sa moyenne et sa variance.

Loi uniforme $\mathcal{U}(a,b)$

• Densité de probabilité

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{ailleurs } . \end{cases}$$

• Fonction de répartition

$$F(x) =$$

Loi uniforme $\mathcal{U}(a,b)$

Densité de probabilité

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{ailleurs} \end{cases},$$

• Fonction de répartition

$$F(x) = \begin{cases} 0 & x < a, \\ \frac{x-a}{b-a} & \text{si } x \in [a,b] \\ 1 & x > b \end{cases},$$

• Espérance :

$$m_X = E(X) =$$

Densité de probabilité

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{ailleurs} \end{cases},$$

• Fonction de répartition

$$F(x) = \begin{cases} 0 & x < a, \\ \frac{x-a}{b-a} & \text{si } x \in [a,b] \\ 1 & x > b \end{cases},$$

• Espérance :

$$m_X = E(X) = \frac{b+a}{2}$$

Variance :

$$Var(X) = E((X - m_X)^2) = \frac{1}{12}(b - a)^2$$

Loi normale $\mathcal{N}(\mu, \sigma^2)$

• Densité de probabilité

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• Fonction de répartition

$$F(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right]$$

• Espérance :

$$m_X = E(X) =$$

Loi normale $\mathcal{N}(\mu, \sigma^2)$

• Densité de probabilité

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• Fonction de répartition

$$F(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right]$$

• Espérance :

$$m_X = E(X) = \mu$$

Variance :

$$Var(X) = E((X - m_X)^2) =$$

Loi normale $\mathcal{N}(\mu, \sigma^2)$

Densité de probabilité

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• Fonction de répartition

$$F(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right]$$

• Espérance :

$$m_X = E(X) = \mu$$

Variance :

$$Var(X) = E((X - m_X)^2) = \sigma^2$$

Loi uniforme discrète $\mathcal{U}(\{x_1,\ldots,x_n\})$

- $P(X = x_i) = \frac{1}{n}, \quad i \in 1, ..., n$
- x_i valeurs réelles.
- Densité de probabilité

$$p(x) =$$

Loi uniforme discrète $\mathcal{U}(\{x_1,\ldots,x_n\})$

- $P(X = x_i) = \frac{1}{n}, \quad i \in 1, ..., n$
- x_i valeurs réelles.
- Densité de probabilité

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i)$$

• Fonction de répartition

$$F(x) =$$

Loi uniforme discrète $\mathcal{U}(\{x_1,\ldots,x_n\})$

•
$$P(X = x_i) = \frac{1}{n}, \quad i \in 1, ..., n$$

- x_i valeurs réelles.
- Densité de probabilité

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i)$$

• Fonction de répartition

$$F(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{x \ge x_i}$$

• Espérance :

$$m_X = E(X) =$$

Loi uniforme discrète $\mathcal{U}(\{x_1,\ldots,x_n\})$

•
$$P(X = x_i) = \frac{1}{n}, \quad i \in 1, ..., n$$

- x_i valeurs réelles.
- Densité de probabilité

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i)$$

• Fonction de répartition

$$F(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{x \ge x_i}$$

• Espérance :

$$m_X = E(X) = \frac{1}{n} \sum_{i=1}^n x_i$$

Variance :

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - m_X)^2$$

Système de v.a.

- On est souvent amené à considérer un ensemble de v.a.dans la mesure où à chaque instant t_i est associé une v.a.
- Modélisation jointe de ces variables.

• Lorsque l'on a plusieurs v.a. X_1, X_2, \ldots, X_d il est intéressant de modéliser ces v.a.par un vecteur aléatoire $\mathbf{X} \in \mathbb{R}^d$

Fonction de répartition mutuelle Soit X et Y deux v.a.alors,

$$F(x, y) = P(X \le x, Y \le y)$$

Propriétés

Fonction de répartition mutuelle

Soit X et Y deux v.a.alors,

$$F(x,y) = P(\mathbf{X} \le x, \mathbf{Y} \le y)$$

Densité de probabilité jointe

Soit X et Y deux v.a.alors,

$$p(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$
$$p(x) = \int p(x,y) dy$$
$$p(y) = \int p(x,y) dx$$

p(x) et p(y) sont appelées lois marginales.

Propriétés

$$0 \le F(x, y) \le 1$$
$$F(-\infty, -\infty) = 0$$
$$F(\infty, \infty) = 1$$

Propriétés

Fonction de répartition mutuelle

Soit X et Y deux v.a.alors,

$$F(x,y) = P(\mathbf{X} \le x, \mathbf{Y} \le y)$$

Densité de probabilité jointe

Soit X et Y deux v.a.alors.

$$p(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$
$$p(x) = \int p(x,y) dy$$
$$p(y) = \int p(x,y) dx$$

p(x) et p(y) sont appelées lois marginales.

Propriétés

$$0 \le F(x, y) \le 1$$
$$F(-\infty, -\infty) = 0$$
$$F(\infty, \infty) = 1$$

Propriétés

$$p(x,y) \ge 0$$

$$\int \int p(x,y)dxdy = 1$$

$$p(A,B) = P(x \in A, y \in B)$$

$$= \int_{A} \int_{B} p(x,y)dxdy$$

Probabilité conditionnelle

- Loi jointe p(x, y).
- Probabilité d'une des variable sachant la valeur de la seconde.
- Notation : p(x|y).

Théorème de Bayes

$$\begin{array}{lcl} p(x|y) & = & \displaystyle \frac{p(x,y)}{p(y)} \\ \\ p(y|x) & = & \displaystyle \frac{p(x,y)}{p(x)} \\ \\ p(x,y) & = & \displaystyle p(y|x)p(x) = p(x|y)p(y) \end{array}$$

Covariance et corrélation

Pour caractériser l'interdépendance de deux variables, on introduit la notion de covariance.

Définitions

• Moments d'une loi jointe

$$E(g(x,y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) \ p(x,y) dx dy$$

Corrélation

$$R_{\rm XY} = E({\rm XY}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy \ p(x,y) dx dy$$

Covariance

$$C_{XY} = \sigma_{XY} = E\left((X - m_X)(Y - m_Y)\right)$$

$$C_{XY} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x - m_X)(y - m_Y) \ p(x, y) dx dy$$

• Coefficient de corrélation

$$r_{\rm XY} = \frac{C_{\rm XY}}{\sigma_{\rm X}\sigma_{\rm Y}}$$

Covariance et Corrélation

$$R_{XY} = E(XY) =$$

Covariance et Corrélation

$$R_{XY} = E(XY) = C_{XY} + m_X m_Y$$

Indépendance

 $\bullet \ \mathsf{Deux} \ \mathtt{v.a.} X \ \mathsf{et} \ Y \ \mathsf{sont} \ \mathsf{ind\'ependantes} \ \mathsf{si}$

$$p(x,y) = p(x)p(y)$$

• Si les variables sont indépendantes alors

$$R_{\rm XY} =$$

Covariance et Corrélation

$$R_{XY} = E(XY) = C_{XY} + m_X m_Y$$

Indépendance

 $\bullet \ \mathsf{Deux} \ \mathtt{v.a.} X \ \mathsf{et} \ Y \ \mathsf{sont} \ \mathsf{ind\'ependantes} \ \mathsf{si}$

$$p(x,y) = p(x)p(y)$$

• Si les variables sont indépendantes alors

$$R_{\rm XY} = m_{\rm X} m_{\rm Y}$$
 et $C_{XY} =$

Covariance et Corrélation

$$R_{XY} = E(XY) = C_{XY} + m_X m_Y$$

Indépendance

ullet Deux v.a.X et Y sont indépendantes si

$$p(x,y) = p(x)p(y)$$

• Si les variables sont indépendantes alors

$$R_{\rm XY} = m_{\rm X} m_{\rm Y}$$
 et $C_{XY} = 0$.

Loi uniforme multivariée

- $X \sim U(a_x, b_x)$ et $Y \sim U(a_y, b_y)$
- $\bullet \ \mathbf{X} = [X, Y]^{\top}$
- Densité de probabilité

$$p(x,y) = \begin{cases} \frac{1}{S} & \text{si } x \in [a_x, b_x], \\ & \text{et } y \in [a_y, b_y] \\ 0 & \text{sinon} \end{cases}$$

 $\bullet \ \, \mathsf{Surface} \,\, S = (b_x - a_x)(b_y - a_y)$

• Espérance :

$$\mathbf{m}_X = E(\mathbf{X}) =$$

Loi uniforme multivariée

- $X \sim U(a_x, b_x)$ et $Y \sim U(a_y, b_y)$
- $\bullet \ \mathbf{X} = [X, Y]^{\top}$
- Densité de probabilité

$$p(x,y) = \begin{cases} \frac{1}{S} & \text{si } x \in [a_x,b_x], \\ & \text{et } y \in [a_y,b_y] \\ 0 & \text{sinon} \end{cases}$$

• Surface $S = (b_x - a_x)(b_y - a_y)$

• Espérance :

$$\mathbf{m}_X = E(\mathbf{X}) = \begin{bmatrix} \frac{b_x + a_x}{2} \\ \frac{b_y + a_y}{2} \end{bmatrix}$$

$$Cov(\mathbf{X}) = E((\mathbf{X} - \mathbf{m}_X)(\mathbf{X} - \mathbf{m}_X)^{\top})$$

Loi uniforme multivariée

- $X \sim U(a_x, b_x)$ et $Y \sim U(a_y, b_y)$
- $\bullet \ \mathbf{X} = [X, Y]^{\top}$
- Densité de probabilité

$$p(x,y) = \begin{cases} \frac{1}{S} & \text{si } x \in [a_x, b_x], \\ \text{et } y \in [a_y, b_y] \\ 0 & \text{sinon} \end{cases}$$

• Surface $S = (b_x - a_x)(b_y - a_y)$

• Espérance :

$$\mathbf{m}_X = E(\mathbf{X}) = \begin{bmatrix} \frac{b_x + a_x}{2} \\ \frac{b_y + a_y}{2} \end{bmatrix}$$

$$Cov(\mathbf{X}) = E((\mathbf{X} - \mathbf{m}_X)(\mathbf{X} - \mathbf{m}_X)^{\top})$$
$$= \begin{bmatrix} Var(X) & 0\\ 0 & Var(Y) \end{bmatrix}$$

Loi gaussienne multivariée

- $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Densité de probabilité

$$p(x, y) =$$

Loi gaussienne multivariée

- $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Densité de probabilité

$$p(x,y) = Ke^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

 \bullet Coefficient $K = \frac{1}{(2\pi)^{N/2} |\mathbf{\Sigma}|^{1/2}}$

• Espérance :

$$\mathbf{m}_X = E(\mathbf{X}) =$$

Loi gaussienne multivariée

- $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Densité de probabilité

$$p(x,y) = Ke^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

 \bullet Coefficient $K = \frac{1}{(2\pi)^{N/2} |\mathbf{\Sigma}|^{1/2}}$

• Espérance :

$$\mathbf{m}_X = E(\mathbf{X}) = \boldsymbol{\mu}$$

$$Cov(\mathbf{X}) = E((\mathbf{X} - \mathbf{m}_X)(\mathbf{X} - \mathbf{m}_X)^{\top})$$
=

Loi gaussienne multivariée

- $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Densité de probabilité

$$p(x,y) = Ke^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

 \bullet Coefficient $K = \frac{1}{(2\pi)^{N/2} |\mathbf{\Sigma}|^{1/2}}$

• Espérance :

$$\mathbf{m}_X = E(\mathbf{X}) = \boldsymbol{\mu}$$

$$Cov(\mathbf{X}) = E((\mathbf{X} - \mathbf{m}_X)(\mathbf{X} - \mathbf{m}_X)^{\top})$$

= $\mathbf{\Sigma}$