Business Case

Context:

Target is a globally renowned brand and a prominent retailer in the United States. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This particular business case focuses on the operations of Target in Brazil and provides insightful information about 100,000 orders placed between 2016 and 2018. The dataset offers a comprehensive view of various dimensions including the order status, price, payment and freight performance, customer location, product attributes, and customer reviews.

By analysing this extensive dataset, it becomes possible to gain valuable insights into Target's operations in Brazil. The information can shed light on various aspects of the business, such as order processing, pricing strategies, payment and shipping efficiency, customer demographics, product characteristics, and customer satisfaction levels.

Dataset: https://drive.google.com/drive/folders/1TGEc66YKbD443nslRi1bWgVd238gJCnb The data is available in 8 csv files:

- 1. customers.csv
- 2. sellers.csv
- 3. order_items.csv
- 4. geolocation.csv
- 5. payments.csv
- 6. reviews.csv
- 7. orders.csv
- 8. products.csv

The column description for these csv files is given below.

The customers.csv contain following features:

Features	Description
customer_id	ID of the consumer who made the purchase
customer_unique_id	Unique ID of the consumer
customer_zip_code_prefix	Zip Code of consumer's location
customer_city	Name of the City from where order is made
customer_state	State Code from where order is made (Eg. são paulo - SP)

The sellers.csv contains following features:

Features	Description
seller_id	Unique ID of the seller registered
seller_zip_code_prefix	Zip Code of the seller's location
seller_city	Name of the City of the seller
seller_state	State Code (Eg. são paulo - SP)

The order_items.csv contain following features:

Features	Description				
order_id	A Unique ID of order made by the consumers				
order_item_id	A Unique ID given to each item ordered in the order				
product_id	A Unique ID given to each product available on the site				
seller_id Unique ID of the seller registered in Target					
shipping_limit_date	shipping_limit_date The date before which shipping of the ordered product must be completed				
price	Actual price of the products ordered				
freight_value	Price rate at which a product is delivered from one point to another				

The geolocations.csv contain following features:

Features	Description			
geolocation_zip_code_prefix	First 5 digits of Zip Code			

geolocation_lat	Latitude
geolocation_lng	Longitude
geolocation_city	City
geolocation_state	State

The payments.csv contain following features:

Features	Description
order_id	A Unique ID of order made by the consumers.
payment_sequential	Sequences of the payments made in case of EMI
payment_type	Mode of payment used (Eg. Credit Card)
payment_installments	Number of installments in case of EMI purchase.
payment_value	Total amount paid for the purchase order

The orders.csv contain following features:

Features	Description
order_id	A Unique ID of order made by the consumers
customer_id	ID of the consumer who made the purchase
order_status	Status of the order made i.e. delivered, shipped, etc.
order_purchase_timestamp	Timestamp of the purchase
order_delivered_carrier_date	Delivery date at which carrier made the delivery
order_delivered_customer_date	Date at which customer got the product
order_estimated_delivery_date	Estimated delivery date of the products

The reviews.csv contain following features:

Features	Description		
review_id	ID of the review given on the product ordered by the order id		
order_id	A Unique ID of order made by the consumers		
review_score	Review score given by the customer for each order on a scale of 1-5		
review_comment_title	Title of the review		
review_comment_message	Review comments posted by the consumer for each order		
review_creation_date	Timestamp of the review when it is created		
review_answer_timestamp	Timestamp of the review answered		

The products.csv contain following features:

Features	Description
product_id	A Unique identifier for the proposed project.
product_category_name	Name of the product category
Inroduct name lenght	Length of the string which specifies the name given to the products ordered

product_description_lenght	Length of the description written for each product ordered on the site.
product_photos_qty	Number of photos of each product ordered available on the shopping portal
product_weight_g	Weight of the products ordered in grams
product_length_cm	Length of the products ordered in centimeters
product_height_cm	Height of the products ordered in centimeters
product_width_cm	Width of the product ordered in centimeters

Dataset schema:

Problem Statement:

Assuming you are a data analyst/ scientist at Target, you have been assigned the task of analysing the given dataset to extract valuable insights and provide actionable recommendations.

What does 'good' look like?

1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

1. Data type of all columns in the "customers" table

SELECT column_name, data_type FROM target_retailer.INFORMATION_SCHEMA.COLUMNS WHERE table_name = 'customers'

2. Get the time range between which the orders were placed.

SELECT MIN(order_purchase_timestamp) AS first_order_placed_date,
MAX(order_purchase_timestamp) AS last_order_placed_date
FROM target retailer.orders

3. Count the number of Cities and States in our dataset

```
SELECT COUNT (DISTINCT geolocation_city) AS number_of_cities, COUNT(DISTINCT geolocation_state) AS number_of_states
FROM target retailer.geolocation
```


2. In-depth Exploration:

1. Is there a growing trend in the no. of orders placed over the past years?

```
SELECT
EXTRACT(year FROM order_purchase_timestamp) AS year,
FORMAT_DATE('%b', order_purchase_timestamp) AS month,
COUNT(order_purchase_timestamp) AS total_orders
FROM target_retailer.orders
GROUP BY month, year
ORDER BY year, month;
```


2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
SELECT
FORMAT_DATE('%b', order_purchase_timestamp) AS month,
EXTRACT(month FROM order_purchase_timestamp) AS mon,
COUNT(order_purchase_timestamp) AS Total_orders
FROM target_retailer.orders
GROUP BY mon, month
ORDER BY mon;
```


3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

```
CASE

WHEN EXTRACT (HOUR FROM order_purchase_timestamp) BETWEEN 0 AND 6 THEN
'Dawn'

WHEN EXTRACT (HOUR FROM order_purchase_timestamp) BETWEEN 7 AND 12

THEN 'Mornings'

WHEN EXTRACT (HOUR FROM order_purchase_timestamp) BETWEEN 13 AND 18

THEN 'Afternoon'

WHEN EXTRACT (HOUR FROM order_purchase_timestamp) BETWEEN 19 AND 23

THEN 'Night'

END AS ordering_time

FROM target_retailer.orders

GROUP BY ordering_time

ORDER BY number_of_orders DESC
```


- 3. Evolution of E-commerce orders in the Brazil region:
 - 1. Get the month on month no. of orders placed in each state.

```
SELECT
EXTRACT(MONTH from order_purchase_timestamp) as Month,
EXTRACT(YEAR from order_purchase_timestamp) as Year,
COUNT(ord.order_id) AS Number_of_Orders,
cus.customer_state
FROM target_retailer.orders AS ord
JOIN target_retailer.customers AS cus
ON cus.customer_id = ord.customer_id
GROUP BY Month, Year, customer_state
ORDER BY Year, Month, customer_state;
```


2. How are the customers distributed across all the states?

```
SELECT customer_state, COUNT(DISTINCT customer_id) AS number_of_customers
FROM target_retailer.customers
GROUP BY customer_state
ORDER BY COUNT(DISTINCT customer_id)
LIMIT 10
```


4. Impact on Economy: Analyse the money movement by e-commerce by looking at order prices, freight and others.

1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

2. Calculate the Total & Average value of order price for each state.

```
SELECT c.customer_state, ROUND(SUM(oitem.price),2) AS total_price,
ROUND(AVG(oitem.price),2) AS average_price FROM
target_retailer.order_items oitem JOIN target_retailer.orders o
ON oitem.order_id = o.order_id
JOIN target_retailer.customers c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
LIMIT 10
```


3. Calculate the Total & Average value of order freight for each state.

```
SELECT c.customer_state, ROUND(SUM(oitem.freight_value),2) AS
total_freight_value, ROUND(AVG(oitem.freight_value),2) AS
average_freight_value FROM
target_retailer.order_items oitem JOIN target_retailer.orders o
ON oitem.order_id = o.order_id
JOIN target_retailer.customers c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
LIMIT 10
```


- 5. Analysis based on sales, freight and delivery time.
 - 1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- time_to_deliver = order_delivered_customer_date order_purchase_timestamp
- diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date

```
SELECT
order_id,
order_purchase_timestamp,
order_delivered_customer_date ,
order_estimated_delivery_date,
ABS(DATE_DIFF( order_delivered_customer_date,
order_purchase_timestamp,DAY)) AS time_to_deliver,
ABS(DATE_DIFF(order_estimated_delivery_date,order_delivered_customer_d
ate, DAY)) AS diff_estimated_delivery
FROM `may23-387016.Target_Project.orders` as o
WHERE order_status='delivered'
LIMIT 10;
```


2. Find out the top 5 states with the highest & lowest average freight value.

```
WITH state_freight_value
AS (
SELECT
customer_state AS state,
ROUND(AVG(freight_value),2) AS avg_freight_value ,
FROM target_retailer.orders AS o
INNER JOIN
target_retailer.customers AS c
ON o.customer_id= c.customer_id
INNER JOIN
target_retailer.order_items AS oi
ON o.order_id=oi.order_id
GROUP BY customer_state)
```

```
SELECT state,state_fv_rank ,avg_freight_value FROM (
SELECT state,avg_freight_value,
DENSE_RANK() OVER( ORDER BY avg_freight_value DESC ) AS state_fv_rank
FROM state_freight_value ) a
WHERE state_fv_rank<=5

UNION ALL

SELECT state,state_fv_rank ,avg_freight_value FROM (
SELECT state,avg_freight_value,
DENSE_RANK() OVER( ORDER BY avg_freight_value) AS state_fv_rank
FROM state_freight_value ) a
WHERE state_fv_rank<=5</pre>
```

Quer	y results					♣ SAVE RESULTS ▼	
JOB IN	FORMATION	RESULTS	JSON E	XECUTION DETAILS	EXECUTION GRAPH PREVIEW		
Row	state ▼	li .	state_fv_rank ▼	avg_freight_value 🔻			
1	SP		1	15.15			
2	PR		2	20.53			
3	RJ		4	20.96			
4	DF		5	21.04			
5	MG		3	20.63			
6	RR		1	42.98			
7	PI		5	39.15			
8	PB		2	42.72			
9	AC		4	40.07			
10	RO		3	41.07			

3. Find out the top 5 states with the highest & lowest average delivery time.

```
WITH state delivery time
AS (
SELECT
customer_state AS state,
ROUND(AVG(DATE_DIFF(order_delivered_customer_date,
order_purchase_timestamp,DAY)),2) AS avg_delivery_time ,
FROM target retailer.orders AS o
INNER JOIN
target_retailer.customers AS c
ON o.customer_id= c.customer_id
INNER JOIN
target retailer.order items AS oi
ON o.order id=oi.order id
GROUP BY customer_state)
SELECT state, state delivery time rank ,avg delivery time FROM (
SELECT state,avg_delivery_time,
```

```
DENSE_RANK() OVER( ORDER BY avg_delivery_time DESC ) AS
state_delivery_time_rank
FROM state_delivery_time ) a
WHERE state_delivery_time_rank<=5

UNION ALL

SELECT state,state_delivery_time_rank ,avg_delivery_time FROM (
SELECT state,avg_delivery_time,

DENSE_RANK() OVER(ORDER BY avg_delivery_time) AS
state_delivery_time_rank
FROM state_delivery_time ) a
WHERE state_delivery_time_rank<=5</pre>
```


4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

- 6. Analysis based on the payments:
 - 1. Find the month on month no. of orders placed using different payment types.

```
SELECT Year, Month, payment_type,
COUNT(order_id) as order_count_payment_type
FROM
   (SELECT
EXTRACT(MONTH FROM order_purchase_timestamp) AS Month,
EXTRACT(YEAR FROM order_purchase_timestamp) AS Year,
o.order_id,payment_type
FROM target_retailer.orders AS o
JOIN target_retailer.payments AS p
ON o.order id = p.order id) a
```

```
GROUP BY Year, Month, payment_type
ORDER BY Year, Month, payment type;
```


2. Find the no. of orders placed on the basis of the payment instalments that have been paid.

```
SELECT payment_installments,COUNT(order_id) AS number_of_orders
FROM target_retailer.payments
WHERE payment_installments = 1
GROUP BY payment installments
```


Actionable Insights and Recommendations

- There's an increasing trend in the number of orders placed month on month
- Delivery and Logistics in the state 'SP' is the most streamlined since the time taken to deliver the products is the least
- 'Afternoon' hours witness the peak traffic since maximum number of customers place orders during this time.
- August Fall season in the US has observed an increasing trend in the number of orders placed. This could be due to the intake of students in the universities who commence their semester programs
- Revenue has increased by more than double (~136%) from 2017 to 2018 in the months of January to August