Augmented Reality Library for the Web (tracking.js)

by

Eduardo A. Lundgren Melo

Submitted to the Center for Informatics in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

FEDERAL UNIVERSITY OF PERNAMBUCO

February 2013

© Eduardo A. Lundgren Melo, MMXIII. All rights reserved.

The author hereby grants to UFPE permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created.

Author	
	Center for Informatics
	Mar 20, 2013
Certified by	
	Silvio de Barros Melo
	Associate Professor
	Thesis Supervisor
Accepted by	
	Arthur C. Smith
Chairman, Depar	rtment Committee on Master Theses

Augmented Reality Library for the Web (tracking.js)

by

Eduardo A. Lundgren Melo

Submitted to the Center for Informatics on Mar 20, 2013, in partial fulfillment of the requirements for the degree of Master of Science in Computer Science

Abstract

In this thesis, I designed and implemented an Augmented Reality (AR) framework aiming to provide a common infrastructure to develop applications and to accelerate the use of those techniques on the web in commercial products. It runs on native web browsers without requiring third-party plugins installation. This involves the use of several modern browser specifications as well as implementation of different computer vision algorithms and techniques into the browser environment. These algorithms can be used to detect and recognize faces, identify objects, track moving objects, etc. The source language of the framework is JavaScript that is the language interpreted by all modern browsers. The majority of interpreted languages have limited computational power when compared to compiled languages, such as C. The computational complexity involved in AR requires highly optimized implementations. Some optimizations are discussed and implemented on this work in order to achieve good results when compared with similar implementations in compiled languages. A series of evaluation tests were made, to determine how effective these techniques were on the web.

Thesis Supervisor: Silvio de Barros Melo

Title: Associate Professor

Acknowledgments

This is the acknowledgements section. You should replace this with your own acknowledgements [4] foo [5].

This master thesis has been examined by a Committee as follows:
Professor Silvio de Barros Melo
Associate Professor
Professor Veronica Teichrieb
Chairman, Thesis Committee Associate Professor
Professor Alvo Dumbledore
Member, Thesis Committee Hogwarts School of Witchcraft and Wizardry

Contents

Li	List of Acronyms		15
1	Intr	$\mathbf{roduction}$	17
	1.1	Motivation	18
	1.2	Problem Definition	18
	1.3	Objectives	18
		1.3.1 Augmented Reality Library for the Web	19
	1.4	Thesis Structure	19
2	Bas	ic Concepts	21
	2.1	Web	21
		2.1.1 State of the Art	22
		2.1.2 Problems of Augmented Reality on the Web	22
	2.2	Augmented Reality	22
		2.2.1 State of the Art	23
	2.3	Tracking and Object Detection	23
		2.3.1 State of the Art	23
3	Aug	gmented Reality Library for the Web (tracking.js)	25
	3.1	Introduction	25
	3.2	Color Tracking Algorithm	25
	3.3	Marker-less Tracking Algorithm (Keypoints)	26
	3.4	Rapid Object Detection and Tracking Algorithm	26

4	Eva	luation	27
	4.1	Tools	27
	4.2	Scenario Description	27
	4.3	Evaluation Methodology	28
		4.3.1 Matching Robustness	28
		4.3.2 Oclusion Robustness	28
		4.3.3 FPS	28
	4.4	Results	28
۲	Con	nclusion	20
9	Con	ICIUSIOII	29
	5.1	Contributions	29
	5.2	Future Work	29

List of Figures

List of Tables

List of Acronyms

AJAX Asynchronous JavaScript and XML

BAST Bug Report Analysis and Search Tool

BTT Bug Report Tracker Tool

BRN Bug Report Network

CCB Change Control Board

Introduction

This section introduces this master thesis. It will briefly describe the motivation of the work itself, state the problem that we will focus on solving and shortly discuss the proposed solution. In the end, explain the structure of the next chapters.

Micro-optimization is a technique to reduce the overall operation count of floating point operations. In a standard floating point unit, floating point operations are fairly high level, such as "multiply" and "add"; in a micro floating point unit (μ FPU), these have been broken down into their constituent low-level floating point operations on the mantissas and exponents of the floating point numbers.

Chapter two describes the architecture of the μ FPU unit, and the motivations for the design decisions made.

Chapter three describes the design of the compiler, as well as how the optimizations discussed in section 1 were implemented.

Chapter four describes the purpose of test code that was compiled, and which statistics were gathered by running it through the simulator. The purpose is to measure what effect the micro-optimizations had, compared to unoptimized code. Possible future expansions to the project are also discussed.

1.1 Motivation

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Augmented Reality, Tracking and Detection, Web, Tracking on the Web

1.2 Problem Definition

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

1.3 Objectives

1.3.1 Augmented Reality Library for the Web

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

1.4 Thesis Structure

Basic Concepts

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

2.1 Web

Using concepts from existing hypertext systems, Tim Berners-Lee, computer scientist and at that time employee of CERN, wrote a proposal in March 1989 for what would eventually become the World Wide Web (WWW) [1].

The World Wide Web is a shared information system operating on top of the Internet. Web browsers retrieve content and display from remote web servers using a stateless and anonymous protocol called HyperText Transfer Protocol (HTTP). Web pages are written using a simple language called HyperText Markup Language (HTML). They may be augmented with other technologies such as Cascading Style Sheets (CSS), which adds additional layout and style information to the page, and JavaScript language, which allows client-side computation. Browsers typically provide other useful features such as bookmarking, history, password management, and

accessibility features to accommodate users with disabilities [3].

In the beginning of the web, plain text and images were the most advanced features available on the browsers. Companies behind web browser development together with the web community, were able to contribute to the World Wide Web Consortium (W3C) specifications [2]. Today's web is a result of the ongoing efforts of an open web community that helps define these technologies and ensure that they're supported in all web browsers. Those contributions transformed the web in a growing universe of interlinked pages and applications, with videos, photos, interactive content, 3D graphics processed by the Graphics Processing Unit (GPU), and other varieties of features without requiring any third-party plugins installation.

There are five major browsers used today: Internet Explorer, Firefox, Safari, Chrome and Opera. Currently, the usage share of Firefox, Safari and Chrome together is nearly 60%. The browser main functionality is to present a web resource, by requesting it from the server and displaying it on the browser window. The resource is usually a HTML document.

* Contextualization * Problems of augmented reality on the web * State of the art * History of web * W3C * Browsers * The browser's high level structure * The browser's main functionality * HTML5 * JavaScript * Language details * Typed arrays * requestAnimationFrame * getUserMedia * Canvas * Video * WebRTC * APIs

[1].

2.1.1 State of the Art

2.1.2 Problems of Augmented Reality on the Web

2.2 Augmented Reality

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure

dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

2.2.1 State of the Art

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

2.3 Tracking and Object Detection

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

2.3.1 State of the Art

Augmented Reality Library for the Web (tracking.js)

3.1 Introduction

Supported modules: color, keypoints, rapid object detection.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

3.2 Color Tracking Algorithm

3.3 Marker-less Tracking Algorithm (Keypoints)

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

BRIEF, FAST, RANSAC.

3.4 Rapid Object Detection and Tracking Algorithm

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Viola-Jones: Features, Integral images, Learning, Detection, Training a cascade of classifiers, Training data optimization for JavaScript.

Evaluation

4.1 Tools

OpenCV, JSFlartoolkit, Others. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

4.2 Scenario Description

4.3 Evaluation Methodology

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

4.3.1 Matching Robustness

4.3.2 Oclusion Robustness

4.3.3 FPS

4.4 Results

Conclusion

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

5.1 Contributions

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

5.2 Future Work

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud

exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Bibliography

- [1] World Wide Web Consortium. History of the world wide web w3c. http://www.w3.org/History.html, 2013. [Online; accessed 13-Marc-2013].
- [2] World Wide Web Consortium. World wide web consortium (w3c). http://www.w3.org/Consortium/, 2013. [Online; accessed 13-Marc-2013].
- [3] Alan Grosskurth and Michael W Godfrey. A reference architecture for web browsers. In *Software Maintenance*, 2005. *ICSM'05*. *Proceedings of the 21st IEEE International Conference on*, pages 661–664. IEEE, 2005.
- [4] Jeffrey N. Johnson and Paul F. Dubois. Issue tracking. Computing in Science and Engineering, 5(6):71–77, November 2003.
- [5] Jeffrey N. Johnson and Paul F. Dubois. Issue tracking. Computing in Science and Engineering, 5(6):71–77, November 2003.