

Integrales de Riemann

Version 1

Dr Euloge KOUAME © UVCI

Novembre 2017

Table des matières

Objectifs	5
Introduction	7
I - Interprétation géométrique de l'intégrale	9
A. Définition	
B. méthode des rectangles	1
C. Exercice	12
II - Principales propriétés de l'intégrale	13
A. Propriétés	13
B. Exercice	14
Conclusion	15
Solution des exercices	17
Bibliographie	19
Webographie	21

À la fin de cette leçon, vous serez capable de :

- **comprendre** l'interprétation géométrique d'une intégrale
- connaître les proprietes des intégrales

Introduction

Dans ce ours nous limiterons à la notion d'intégrale de Riemann qui estybasée sur une appro he géométrique. Il y a d'autres moyens de définir une intégrale

(omme l'intégrale de Lebesgue) qui donnent des résultats totalement ompatibles ave les résultats obtenues dans la théorie de Riemann.

Bernhard RIEMANN 1826-1866 (Allemagne):

Non satisfait de la théorie de l'intégration de Cauchy portant sur les fonctions continues qui lui paraît insuffisante pour manipuler certaines séries de Fourier (pour des fonctions « peu » régulières), il publie (1854) une rigoureuse théorie de l'intégration pour les fonctions bornées (continues ou non) sur un intervalle fermé.

D'autres théories de l'intégration ont vu le jour plus tard : intégrale de Stiltjes, intégrale de Lebesgue...

On sait depuis Mercator (1620-1687) et Leibniz (1646-1716), que si une fonction est positive, l'intégrale de cette fonction sur un intervalle [a;b] évalue l'aire « sous la courbe ».

L'idée de Riemann a été de repartir de cette évaluation de l'aire en montrant qu'elle pouvait se faire même pour des fonctions non continues... et qui donc ne possèdent pas de primitive.

Interprétation géométrique de l'intégrale

Définition	9
méthode des rectangles	11
Exercice	12

A. Définition

La définition de l'**intégrale de Riemann** est directement reliée à la notion d'aire dans le plan.

Définition : (intégrale de Riemann)

Soit $f: [a, b] \rightarrow R$ une fonction continue sur un intervalle borné [a, b] alors

 $\int_a^b f(x)dx = \text{"l'intégrale de a à b de } f(x) \text{ par rapport à } x \text{"est le nombre réel définit}$

$$\mathscr{A}ire\left\{(x,y)\in\mathbb{R}^2\,\middle|\, \begin{array}{c} a\leq x\leq b\\ 0\leq y\leq f(x) \end{array}\right\}-\mathscr{A}ire\left\{(x,y)\in\mathbb{R}^2\,\middle|\, \begin{array}{c} a\leq x\leq b\\ f(x)\leq y\leq 0 \end{array}\right\}.$$

Par convention $\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$

définition géométrique de l'intégrale de Riemann

Exemple : Calculer une intégrales par un calcul d'aire

La fonction $f(x) = \sqrt{1-x^2}$ a pour ourbe représentative sur l'intervalle [0, 1] un quart du cercle de rayon 1 et de entre (0, 0), sont intégrale sur cet intervalle est donc le quart de l'aire du disque correspondant :

$$\int_0^1 \sqrt{1 - x^2} dx = \frac{1}{4} Aire \ du \ disque = \frac{\pi}{4}$$

la fonction g(t) = t a pour courbe représentative une droite.

l'intégrale de g sur l'intervalle [0, x] est donc l'aire du triangle donné par les points (0, 0) (0, x) et (x, x)

d'où :
$$\int_0^x t dt = \frac{1}{2} base \times hauteur = \frac{x^2}{2}$$

Interprétation géométrique de l'intégrale

Remarque

Il n'est donc pas nécessaire de connaître de primitive pour calculer une intégrale ! Cette remarque nous permettra de faire du calcul approché d'intégrales lorsqu'on ne peut pas trouver de primitive

Définition

Pour une fonction en escalier comme ci-dessous, son intégrale est :

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} c_{i}(x_{i} - x_{i-1})$$

Remarque

Notez que chaque terme $c_i(x_i - x_{i-1})$ est l'aire du rectangle compris entre les abscisses x_{i-1} et x_i et de hauteur c_i .

Il faut juste prendre garde que l'on compte l'aire avec un signe * + * si c_i > 0 et un signe * ?? * si c_i < 0.

B. méthode des rectangles

Il découle directement de la définition de l'intégrale de Riemann une méthode de calcul approché d'intégrales : la méthode des rectangles.

Proposition

Soit $f:[a, b] \to R$ une fonction continue sur un intervalle borné [a, b] et x_k un découpage de l'intervalle [a, b] en n segments $([x_0, x_1], ... [x_{n-1}, x_n])$ dont la largeur tends vers 0.

$$\lim_{n\to\infty} \max_{k=1,\dots,n} x_k - x_{k-1} = 0$$

alors

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) (x_k - x_{k-1}) = \int_a^b f(x) dx.$$

Méthode des rectangles pour un découpage régulier de l'intervalle en n sousintervalles

Remarque

Dans la somme $f(x_k)(x_k - x_{k-1})$ est l'aire du rectangle de base l'intervalle $[x_k, x_{k-1}]$

Exemple

Pour calculer $\int_0^1 x dx$ si on découpe l'intervalle [0, 1] en n segments de tailles

égales (donc 1/n) on a alors $x_k = k/n$ et $(x_k - x_{k-1}) = 1/n$

on peut donc calculer la somme en utilisant la formule de la série arithmétique $\sum_{n=0}^{\infty} k = n(n+1)/2$:

$$\sum_{k=1}^{n} f(x_k) (x_k - x_{k-1}) = \sum_{k=1}^{n} \frac{k}{n} \frac{1}{n} = \frac{1}{n^2} \sum_{k=1}^{n} k = \frac{n(n+1)}{2n^2} \xrightarrow[n \to \infty]{} = \frac{1}{2} = \int_0^1 t dt$$

C. Exercice

Question

[Solution n°1 p 19]

Soit $f: [1, 4] \rightarrow R$ définie par f(x) = 1 si $x \in [1, 2[, f(x) = 3 \text{ si } x \in [2, 3[\text{ et } f(x) = -1 \text{ si } x \in [3, 4].$

Calculer
$$\int_{1}^{2} f(x) dx$$
, $\int_{1}^{3} f(x) dx$, $\int_{1}^{4} f(x) dx$

Principales propriétés de l'intégrale

Propriétés	13
Exercice	14

A. Propriétés

propriétés de base des intégrales

Les principales propriétés des intégrales se déduisent des propriétés basiques des aires dans le plan .

Soient $u, v : [a, b] \rightarrow R$ deux fonctions continues par morceaux sur un intervalle borné [a, b] alors :

Relation de Chasles

$$\forall c \in [a, b], \quad \int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$

Positivité de l'intégrale

$$\forall x \in [a, b], f(x) \le g(x) \text{ alors } \int_a^b f(x) dx \le \int_a^b g(x) dx$$

En particulier l'intégrale d'une fonction positive est positive

Linéarité de l'intégrale

$$[a,b] \to \mathbb{R}, \lambda, \mu \in \mathbb{R}, \quad \int_a^b \lambda f(x) + \mu g(x) dx = \lambda \int_a^b f(x) dx + \mu \int_a^b g(x) dx$$

Remarque

Pour vérifier qu'on ne s'est pas trompé lors d'un calcul d'intégrale d'une fonction positive il est souvent utile de vérifier que le résultat est bien positif.

Quelques preuves

relation de Chasles découle du fait que l'aire associée à l'intervalle $[a, b] = [a, c] \cup [c, b]$ est la somme des aires associées à [a, c] et [c, b]

positivité dans le cas de fonction positives $0 \le f(x) \le g(x)$ il est clair que l'aire associée à g est plus grande que celle associée à f :

B. Exercice

Question

[Solution n°2 p 19]

On donne
$$\int_0^1 x^2 \, dx = \frac13 \, \operatorname{et} \int_0^1 e^x \, dx = e-1, \qquad \text{calculer}$$

$$\int_0^1 \left(7x^2 - e^x\right) dx.$$

Conclusion

Après avoir introduit l' intégrale de Reimann et les propriétés de bases de l'intégrale , nous allons dans la leçon suivante, calculer les intégrales a l'aide de la notion de primitive d'une fonction.

O

Solution des exercices

> Solution n°1 (exercice p. 13)

Il s'agit d'une fonction en fonction. en utilisant la formule correspondante on :

- première intégrale : 1x(2-1) = 1

- deuxieme integrale : 1x(2-1) + 3x(3-2) = 4

-troisième intégrale : 1x(2-1) + 3x(3-2) - 1x(4-3) = 6

> Solution n°2 (exercice p. 16)

en utilisant la propriété de linéarité on obtient : $\int_0^1 (7x^2 - e^x) dx = 7 \int_0^1 x^2 dx - \int_0^1 e^x dx = 7 \frac{1}{3} - (e - 1) = \frac{10}{3} - e$

Bibliographie

[04] François Liret, Maths en pratique à l'usage des étudiants Cours et exercices, Dunod, 2006

[04] Wieslawa J. Kaczor, Maria T. Nowak, PROBLÈMES D'ANALYSE I, Exercices et corrigés, EDP Sciences, 2008.

Webographie

[04] http://www.discmath.ulg.ac.be/