

FCC RF Exposure Report

FCC ID: 2AHQM-3208WRFS

Report Reference No. 16FAB01005 71

Date of issue 2016-04-25

Testing Laboratory...... ATT Product Service Co., Ltd.

DongGuan City, GuangDong, China.

Applicant's name...... K-Rain Manufacturing Corporation.

Address 1640 Australian Ave., Riviera Beach, FL, Zip Code: 33404, USA.

Test item description Wireless Rain-Freeza Sensor

 Model/Type reference
 3208-WRFS

 Ratings
 I/P: 3.6Vdc

Standards FCC Part 2 (Section 2.1091)

KDB 447498 D03

Tested by

Lake Hu / Engineer)

Approved by

(Brown Lu / EMC Manager)

1. RF Exposure

1.1Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)^*$	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz *Plane-wave equivalent power density

1.2MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2. Classification

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So this device is classified as **Mobile Device**.

3. Calculation Test Result

3.1Antenna Gain

The antennas provided to the EUT, please refer to the following table:

Frequency Band (MHz)	Antenna Type	Connector	Gain(dBi)
433	External antenna	Soldering on the PCB board	2

3.2Calcualtion Result for Single antenna transmissions

Operation Frequency (MHz)	Target Power (dBm)	Max. Target Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)
433MHz	-7±1	-6	2	20	0.00008	0.289

4. Conclusion
Therefore the maximum calculations of above situations are less than the Power Density limit.