Automatizac	cija	sus	tava	kor	ište	nj	em
	ESI	232	mikr	roko	ntr	ol	era

Branimir Ričko | branimir.ricko@fer.hr | Fakultet elektrotehnike i računarsktva | Automatizacija, ESP32, Mikrokontroleri

Sadržaj

1. Uvod.	1
2. Automatizacija	1
2.1. Definicija	1
2.2. Zašto	1
2.3. Kako	1
2.4. Prednosti	1
2.5. Nedostaci	1
3. Mikrokontroleri	2
3.1. Definicija	2
3.2. Zašto	2
3.3. Kako	2
3.4. Prednosti	2
3.5. Nedostaci	2
3.6. ESP32	2
3.6.1. Zašto	3
3.6.2. Kako	3
3.6.3. Usporedba s konkurencijom	3
3.6.4. Specifičnosti	3
3.6.5. UI	3
3.6.6. Potrošnja	4
3.6.7. API.	4
4. Realizacija sustava	4
4.1. Zahtijevi	4
4.2. Plan	4
4.3. Razrada	4
4.4. Usporedba s konkurencijom	4
5. Zaključak	4
6. Literatura	5
7 TI ·DR	5

1. Uvod

U ovom seminaru ćemo proučavati što je sve potrebno za uspiješnu automatizaciju nekog abstraknog sustava korištenjem ESP32 mikrokontrolera, a na kaju ćemo uzet neki realan sustav kao primijer. Postojanje ESP32 mikrontrolera dosta olakšava automatizaciju bolko kojeg sustava, zbog lakog programiranja, velik broj IO-a. Automatizacija sustava omogučuje lakše i jeftine upravljanje istim sustavom.

2. Automatizacija

2.1. Definicija

Automatizacija označava tijek prijenosa rada čovjeka na strojeve, obično kroz tehnički napredak. U industrijalizaciji nastavak je mehanizacije.

Npr. Neki sustav koji zahtijeva brojenje nekih predmeta na nekoj mehaniziranoj traci.

2.2. **Zašto**

Sustav je dobro mehanizirati zbog nekoliko glavnih razloga:

- · Otklananje ljudskog faktora
- Lakša kompozicija sustava
- Veća priciznost dokumentacije sustava

2.3. Kako

Sustav prije nego je automatiziran, mora biti mehaniziran. Mehanizacija sustava podrazumijeva mijenjanje ljudske radne snage strojevima. Nakon mehanizacije, još uvijek mora postojati ljudski faktor koji upravlja strojevima. Automatizacijom otklanjamo i taj ljudski faktor tako što logiku cijelog sustava enkapsuliramo i prilagodimo za izvođenje na nekom mikrokontroleru.

2.4. Prednosti

- · Otklananje ljudskog faktora
- Lakša kompozicija sustava
- Veća priciznost dokumentacije sustava

2.5. Nedostaci

- Ljudi koji rade na sustavu prije automatizacije gube posao
- Velika inicijalna cijena
- Ovisnost o firmi koja je automatizirala sustav

3. Mikrokontroleri

3.1. Definicija

Mikrokontroler je skup integriarnih krugova koji su ukomponirani na takav način da mogu funkcionirati kao mala računala, najčašće se programira kako bi izvršavao neku specifičnu zadaću.

3.2. **Zašto**

Mikrokontroleri se koriste kad je protreno izvršavati neku specifičnu zadaću koja je dovoljno komplesna da je izrada integriranog sklopa pre komplicirana, a opet nije toliko kompleksna da je potrebno računalo.

3.3. Kako

3.4. Prednosti

- Niska cijena
- Male dimenzije
- Niska potrošnja (1W-2W)
- Relativno velika procesna moć

3.5. Nedostaci

- Ponekad je api napisan na nelogičan način
- Relativno mala procesna moć u usporedbi s računalon
- Relativno velika potrošnja ukoliko ne koristimo svi procesnu moć

3.6. ESP32

Slika 1. ESP32

ESP32 je mikrokontroler sa integriranim Wi-Fi i bluetooth posdsustavom.

3.6.1. Zašto

ESP32 je

3.6.2. Kako

3.6.3. Usporedba s konkurencijom

	ESP32	ESP8266	Arduino
Napon napajanja	3.3v	3.3v	5.0v
Struja napajanja	5 μA - 200 mA	100mA	100mA
IO	I ² C, Spi, Wi-fi, Bluetooth, Ethernet, GPIO, PWM, UART, Senzor za temperaturu	I ² C, Spi, Wi-fi, GPIO, PWM, UART	I ² C, Spi, GPIO, PWM, UART
Procesor	Xtensa dual-core 32-bit LX6 microprocessor (240 MHz)	Xtensa Diamond Standard 106Micro (80 MHz)	Atmel 8-bit AVR (16 MHz)
Memorija	520 KiB SRAM	128Kib	2KiB - 8Kib
Flash	16 MiB	16 MiB	256KiB
SDK	Espressif IoT Development Framework, Espruino, Lua RTOS for ESP32, Mongoose OS, mruby, MicroPython	NodeMCU, ESP-Open- SDK, ESP-Open-RTOS, Mongoose OS, MicroPython	Arduino, OpenWRT

3.6.4. Specifičnosti

- Wi-Fi
- Bluetooth
- Ultra low power mode (15 μ W)
- Hardverski implemetirano AES, SHA-2, RSA, ECC, RNG
- Temperature sensor
- Hall efeket senzor
- Analogno predpojačalo

3.6.5. UI

- 12-bit SAR ADC
- 2 × 8-bit DACs
- 10 × GPIOs

- 4 × SPI
- 2 × I²S
- 2 × I²C
- 3 × UART
- SD/SDIO/CE-ATA/MMC/eMMC
- SDIO/SPI
- Ethernet
- CAN bus 2.0
- PWM

3.6.6. Potrošnja

Wi-Fi slanje	240 mA
Wi-Fi primanje	100 mA
240Mhz	30 mA
2MHz	2 mA
Ultra low power	5 μΑ - 150 μΑ

3.6.7. API

Postoji nekoliko načina programiranja za ESP32. Orginalni API za glavni procesor je napisan u c-u, dok je api za ULP suprocesor napisan u assembleru.

Postoje i implementacije api-a u višim programskim jezicima. Te implementacije mogu biti dosta sporije, no jako olakšavaju programiranje.

4. Realizacija sustava

4.1. Zahtijevi

4.2. Plan

4.3. Razrada

4.4. Usporedba s konkurencijom

5. Zaključak

6. Literatura

• Sva dokumentacija

7. TL;DR