

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Лабораторная работа №4»

Студентка 315 группы А. Б. Толеутаева

Pуководитель практикума к.ф.-м.н., доцент П. А. Точилин

Содержание

1	Постановка задачи	3
2	Решение задачи с помощью разностной схемы и преобразования Фурье	4
3	Решение уравнения	6
4	Иллюстрация решений уравнения	9

1 Постановка задачи

Дана краевая задача для $(x,y) \in [0,1] \times [0,1]$:

$$\begin{cases} u_{xx}''(x,y) + u_{yy}'' - \mu u(x,y) = f(x,y), & f \in C^1([0,1] \times [0,1]), \ \mu > 0, \\ u(x,0) \equiv u(x,1) \equiv \xi(x), & \xi \in C^1([0,1]), \\ u(0,y) \equiv u(1,y) \equiv \eta(y), & \eta \in C^1([0,1]), \\ \xi(0) = \xi(1) = \eta(0) = \eta(1) = \gamma. \end{cases}$$

Для данной задачи введём разностную схему:

$$\frac{y_{k+1,l} - 2y_{k,l} + y_{k-1,l}}{h_x^2} + \frac{y_{k,l+1} - 2y_{k,l} + y_{k,l-1}}{h_y^2} - \mu y_{k,l} = f_{k,l} = f(x_k, y_l),$$

$$y_{k0} = y_{kN} = \xi_k, = \eta_l, \ k = \overline{0, M-1}, \ l = \overline{0, N-1}.$$

Обозначения:

- $h_x = 1/M$, $h_y = 1/N$ шаги сеток;
- y_{kl} аппроксимация функции u(x,y) в узлах сетки $x_k=k/M,\,y_l=l/N;$
- $f_{kl} = f(x_k, y_l)$;
- $\xi_k = \xi(x_k) = y_{k0} = y_{kN}$ краевые условия для u(x,0) = u(x,1);
- $\eta_l = \eta_l(y_l) = y_{0l} = y_{Ml}$ краевые условия для u(0,y) = u(1,y);
- $k = \overline{0, M-1}$;
- $l = \overline{0, N 1}$.

Дана функция

$$f(x,y) = x^2 e^x + 2\cos(3x) + 2ye^y \sin(y)$$

- 1. Вычислить точное аналитическое решение для f(x,y) с промежуточными выкладками.
- 2. Получить аппроксимацию решения задачи с помощью разностной схемы и преобразования Фурье п $F(\lambda)$ при помощи быстрого преобразования Фурье (БПФ).
- 3. Привести иллюстрации для данной формулы, соответствующие аналитическому и численным решениям, разности между этими решениями при разных значениях μ, M, N, u_1^0, u_2^0 , где $u_1^0 = u_1(0) = u_1(1), \ u_2^0 = u_2(0) = u_2(1)$ краевые условия для искомой функции u(x,y), представимой в виде $u(x,y) = u_1(x) + u_2(y)$.

Привести иллюстрации, соответствующие численным решениям задачи для некоторых произвольных функций $f(x,y),\xi(x),\eta(y)$ так, что u(x,y) не обязательно представима в виде суммы $u_1(x)+u_2(y)$.

2 Решение задачи с помощью разностной схемы и преобразования Фурье

[2] Формула быстрого преобразования Фурье fft:

$$F_n = \sum_{k=0}^{N-1} f_k e^{-2\pi i n k/N}$$

Формула обратного быстрого преобразования Фурье ifft:

$$f_n = \frac{1}{N} \sum_{k=0}^{N-1} F_k e^{2\pi i n k/N}.$$

[2] Если $f(x) \leftrightarrow F(\lambda)$, то справедливы формулы дифференцирования:

- 1. $f'(x) \leftrightarrow \lambda F(\lambda)$;
- **2.** $f^{(n)}(x) \leftrightarrow (i\lambda)^{(n)} F(\lambda);$

Введем сетку x с шагом $h_x = 1/M$ и сетку y с шагом $h_y = 1/N$. Допустим, f_{kl} и y_{kl} образы b_{sp} и a_{sp} , т. е. получаются после преобразования Фурье:

$$y_{kl} = \sum_{s=0}^{M-1} \sum_{p=0}^{N-1} a_{sp} e^{-2\pi i (ks/M + lp/N)} = \text{fft2}(a_{sp}),$$

$$f_{kl} = \sum_{s=0}^{M-1} \sum_{p=0}^{N-1} b_{sp} e^{-2\pi i(ks/M + lp/N)} = \text{fft2}(b_{sp}).$$

Тогда разностную схему можно переписать в виде:

$$a_{sp} \left(\frac{e^{2\pi i s/M} - 2 + e^{-2\pi i s/M}}{(1/M)^2} + \frac{e^{2\pi i p/N} - 2 + e^{-2\pi i p/N}}{(1/N)^2} \right) - \mu a_{sp} = b_{sp},$$

$$\underbrace{\left(-4\left(M^2\sin^2\left(\pi is/M\right)+N^2\sin^2\left(\pi ip/N\right)\right)-\mu\right)}_{c_{sp}}a_{sp}=b_{sp}\Rightarrow a_{sp}=\frac{b_{sp}}{c_{sp}}.$$

Так как $f_{kl} = \text{fft2}(b_{sp})$, то b_{sp} можно выразить через обратное преобразование Фурье:

$$b_{sp} = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f_{kl} e^{2\pi i (ks/M + lp/N)} = ifft2(f_{kl}).$$

Итого:

- $f_{kl} = \mathbf{fft2}(b_{sp}) \in \mathbb{R}^{M \times N}, \ b_{sp} = \mathbf{ifft2}(f_{kl}) \in \mathbb{R}^{M \times N};$
- $y_{kl} = \text{fft2}(a_{sp}) \in \mathbb{R}^{M \times N}, \ a_{sp} = \text{ifft2}(y_{kl}) \in \mathbb{R}^{M \times N};$
- $y_{k0} = y_{k(N-1)} = \xi_k = \mathbf{fft}(a_{s0}) = \mathbf{fft}(a_{s(N-1)}) \in \mathbb{R}^N;$
- $y_{0l} = y_{Ml} = \eta_l = \mathbf{fft}(a_{0p}) = \mathbf{fft}(a_{(M-1)p}) \in \mathbb{R}^N$;
- $k, s = \overline{0, M 1}, l, p = \overline{0, N 1}.$

Найдем $f_{k0}, f_{0l}, f_{k(N-1)}$ и $f_{(M-1)l}$ через краевые условия:

$$b_{sp} = \frac{1}{MN} \left(\sum_{k=0}^{M-1} \left(f_{k0} + f_{k(N-1)} \right) e^{2\pi i k s/M} + \sum_{l=0}^{N-1} \left(f_{0l} + f_{(M-1)l} \right) e^{2\pi i l p/N} - f_{00} - f_{(N-1)(M-1)} \right) + \tilde{b}_{sp},$$

где \tilde{b}_{sp} — обратное преобразование Фурье от \tilde{f}_{kl} (значения функции внутри сетки):

$$\tilde{f}_{kl} = \begin{bmatrix} 0 & 0 & \dots & 0 & 0 \\ 0 & f_{22} & \dots & f_{2(N-2)} & 0 \\ \dots & \dots & \dots & \dots \\ 0 & f_{(M-1)2} & \dots & f_{(M-2)(N-2)} & 0 \\ 0 & 0 & \dots & 0 & 0 \end{bmatrix}.$$

Для краевых условий выполняются сотношения:

$$a_{0p} = \frac{b_{0p}}{c_{0p}} = a_{(M-1)p} = \frac{b_{(M-1)p}}{c_{(M-1)p}}, \ a_{s0} = \frac{b_{s0}}{c_{s0}} = a_{s(N-1)} = \frac{b_{s(N-1)}}{c_{s(N-1)}}.$$

Учитывая это, распишем краевые условия и составим СЛАУ относительно $f_{0l}, f_{k0}, f_{(M-1)l}, f_{k(N-1)}, f_{(M-1)(N-1)}$ и f_{00} .

$$\begin{cases} \eta_{l} = \mathbf{fft}(a_{0p}) = \sum_{p=0}^{N-1} a_{0p} e^{-2\pi i l p/N} = \sum_{p=0}^{N-1} \frac{e^{-2\pi i l p/N}}{c_{0p}} \left(\frac{1}{MN} \left(\sum_{\tilde{l}=0}^{N-1} f_{0l} e^{2\pi i \tilde{l} p/N} - f_{00} \right) + \tilde{b}_{0p} \right) = y_{0l}, \\ \xi_{k} = \mathbf{fft}(a_{s0}) = \sum_{s=0}^{M-1} \frac{e^{-2\pi i k s/M}}{c_{s0}} \left(\frac{1}{MN} \left(\sum_{\tilde{k}=0}^{M-1} f_{k0} e^{2\pi i \tilde{k} s/M} - f_{00} \right) + \tilde{b}_{s0} \right) = y_{k0}, \\ \xi_{k} = \sum_{s=0}^{M-1} \frac{e^{-2\pi i k s/M}}{c_{k(N-1)}} \left(\frac{1}{MN} \left(\sum_{\tilde{k}=0}^{M-1} f_{k(N-1)} e^{2\pi i \tilde{k} s/(M-1)} - f_{MN} \right) + \tilde{b}_{s(N-1)} \right) = y_{k(N-1)}, \\ \eta_{l} = \sum_{p=0}^{N-1} \frac{e^{-2\pi i l p/N}}{c_{(M-1)p}} \left(\frac{1}{MN} \left(\sum_{\tilde{l}=0}^{N-1} f_{(M-1)l} e^{2\pi i \tilde{l} p/N} - f_{(M-1)(N-1)} \right) + \tilde{b}_{(M-1)p} \right) = y_{(M-1)l}. \end{cases}$$

Выразим f_{00} и $f_{(N-1)(M-1)}$ (то есть k=0,) учитывая значение суммы ряда: $\sum_{s=0}^{M-1} e^0 = \sum_{s=0}^{M-1} 1 = M$.

$$\begin{split} \xi_0 &= \sum_{s=0}^{M-1} \frac{e^{-2\pi i k s/M}}{c_{00}} \left(\frac{1}{MN} \left(\sum_{\tilde{k}=0}^{M-1} f_{00} e^{2\pi i \tilde{k} s/M} - f_{00} \right) + \tilde{b}_{00} \right) = \\ &= \sum_{s=0}^{M-1} \frac{1}{\mu} \left(\frac{f_{00}}{MN} \left(\sum_{\tilde{k}=0}^{M-1} e^{2\pi i \tilde{k} s/M} - 1 \right) + \tilde{b}_{00} \right) = \\ &= \frac{f_{00}}{MN\mu} \sum_{s=0}^{M-1} \left(\sum_{\tilde{k}=0}^{M-1} e^{2\pi i \tilde{k} s/M} - 1 \right) + \sum_{s=0}^{M-1} \frac{\tilde{b}_{00}}{\mu} = \frac{f_{00}}{MN\mu} \sum_{s=0}^{M-1} \left(\sum_{\tilde{k}=0}^{M-1} e^{2\pi i \tilde{k} s/M} - 1 \right) + \frac{M\tilde{b}_{00}}{\mu}. \end{split}$$

Итоговая формула для f_{00} :

$$f_{00} = \frac{MN\mu \left(\xi_0 - \frac{M\tilde{b}_{00}}{\mu}\right)}{\sum\limits_{s=0}^{M-1} \left(\sum\limits_{\tilde{k}=0}^{M-1} e^{2\pi i \tilde{k} s/M} - 1\right)}.$$

Аналогично выразим $f_{(M-1)(N-1)}$ при k=M-1.

$$\begin{split} \xi_{M-1} &= \sum_{s=0}^{M-1} \frac{e^{-2\pi i(M-1)s/M}}{c_{(M-1)(N-1)}} \left(\frac{1}{MN} \left(\sum_{\tilde{k}=0}^{M-1} f_{(M-1)(N-1)} e^{2\pi i \tilde{k} s/M} - f_{(M-1)(N-1)} \right) + \tilde{b}_{(M-1)(N-1)} \right) = \\ &= \sum_{s=0}^{M-1} \frac{e^{-2\pi i s}}{\mu} \left(\frac{f_{(M-1)(N-1)}}{MN} \left(\sum_{\tilde{k}=0}^{M-1} e^{2\pi i \tilde{k} s/M} - 1 \right) + \tilde{b}_{(M-1)(N-1)} \right) = \\ &= \frac{f_{(M-1)(N-1)}}{MN\mu} \sum_{s=0}^{M-1} e^{-2\pi i s(M-1)/M} \left(\sum_{\tilde{k}=0}^{M-1} e^{2\pi i \tilde{k} s/M} - 1 \right) + \sum_{s=0}^{M-1} \frac{e^{-2\pi i s(M-1)/M} \tilde{b}_{(M-1)(N-1)}}{\mu}. \end{split}$$

Итоговая формула для $f_{(M-1)(N-1)}$:

$$f_{(M-1)(N-1)} = \frac{MN\mu^2 \left(\xi_0 - \sum\limits_{s=0}^{M-1} \frac{e^{-2\pi i s} \tilde{b}_{(M-1)(N-1)}}{\mu}\right)}{\tilde{b}_{(M-1)(N-1)} \sum\limits_{s=0}^{M-1} e^{-2\pi i s} \left(\sum\limits_{\tilde{k}=0}^{M-1} e^{-2\pi i \tilde{k} s/M} - 1\right)}.$$

Выразим f_{k0} .

$$\xi_k = f_{k0} \underbrace{\sum_{s=0}^{M-1} e^{-2\pi i k s/M} \left(\frac{1}{MN} \left(\sum_{\tilde{k}=0}^{M-1} e^{2\pi i \tilde{k} s/M} - f_{00} \right) + \tilde{b}_{s0} \right)}_{(*)} \Rightarrow f_{k0} = \frac{\xi_k}{(*)}.$$

Остальные неизвестные величины выражаются аналогично. Подставляем их в b_{sp} , затем находим $a_{sp}=b_{sp}/c_{sp}$ и $y_{kl}={\rm fft2}(a_{sp})$ — искомую аппроксимацию.

3 Решение уравнения

По условию, $u(x,y)=u_1(x)+u_2(y), f(x,y)=f_1(x)+f_2(y)$. Тогда учитывая $u_{1yy}''(y)=u_{2xx}''(y)=0$ разобьем исходную задачу на 2 подзадачи:

1.

$$\begin{cases} u_{1xx}''(x) - \mu u_1(x) = f_1(x) = x^2 e^x + 2\cos(3x), \\ u_1(0) = u_1(1) = u_1^0. \end{cases}$$

2.

$$\begin{cases} u_{2yy}''(y) - \mu u_2(y) = f_2(y) = 2ye^y \sin(y), \\ u_2(1) = u_2(0) = u_2^0. \end{cases}$$

[1] Для обоих случаев характеристическое уравнение $\lambda^2 - \mu = 0$ имеет корни $\pm \sqrt{\mu}$. По условию $\mu > 0$, поэтому общие решения равны

$$u_1 = C_1 e^{\sqrt{\mu}x} + C_2 e^{-\sqrt{\mu}x}, u_2 = C_3 e^{\sqrt{\mu}y} + C_4 e^{-\sqrt{\mu}y}.$$

Найдем частное решение для u_2 методом неопределенных коэффициентов. Оно ищется в виде

$$u_2 = y^2 e^{\alpha y} (R_m(y) \cos(\beta y) + T_m(y) \sin(\beta y)) = e^y ((Cy + D) \sin(y) + (Ay + B) \cos(y)).$$

Вычислим производную, подставим в исходное уравнение и найдем коэффициенты.

$$u_2'' = e^y(-2y + 2C - 2B - 2A)\sin y + e^y(2Cy + 2D + 2C + 2A)\cos y.$$

$$\begin{cases} -C\mu - 2A = 2 \\ -D\mu + 2C - 2B - 2A = 0 \\ 2C - A\mu = 0 \\ -B\mu + 2D + 2C + 2A = 0 \end{cases} \Rightarrow \begin{cases} A = -4/(\mu^2 + 4) = -4(\mu^2 + 4)/(\mu^2 + 4)^2 \\ B = -(4\mu^2 + 16\mu - 16)/(\mu^2 + 4)^2 \\ C = -2\mu/(\mu^2 + 4) = -2(\mu^3 + 4\mu)/(\mu^2 + 4)^2 \\ D = -(4\mu^2 - 16\mu - 16)/(\mu^2 + 4)^2 \end{cases}$$

Решение уравнения — сумма общего и частного решения.

$$u_2 = C_3 e^{\sqrt{\mu}y} + C_4 e^{-\sqrt{\mu}y} - \frac{\sin y e^y y(2\mu)}{\mu^2 + 4} - \frac{4\sin y e^y (\mu^2 - 4\mu - 4)}{(\mu^2 + 4)^2} - \frac{4\cos y e^y y}{\mu^2 + 4} - \frac{4\cos y e^y (\mu^2 + 4\mu - 4)}{(\mu^2 + 4)^2}$$

Используем краевые условия

$$\begin{cases} u_2(0) = C_3 + C_4 + \cos(1)(-4\mu^2 - 16\mu + 16)/(\mu^2 + 4)^2 = u_2^0 \\ u_2(1) = C_3 e^{\sqrt{\mu}} + C_4 e^{-\sqrt{\mu}} + \sin 1e(-4\mu^2 + 16\mu + 16 - 2\mu^3 - 8\mu)/(\mu^2 + 4)^2 + \cos 1e(-4\mu^2 - 16\mu + 16 - 4\mu^3 - 16\mu)/(\mu^2 + 4)^2 = u_2^0 \end{cases}$$

$$\begin{cases} C_3 = -C_4 - \cos(1)(-4\mu^2 - 16\mu + 16)/(\mu^2 + 4)^2 + u_2^0 \\ C_4 = \left[-\sin 1e(-4\mu^2 + 16\mu + 16 - 2\mu^3 - 8\mu)/(\mu^2 + 4)^2 - \right. \\ -\cos 1e(-4\mu^2 - 16\mu + 16 - 4\mu^3 - 16\mu)/(\mu^2 + 4)^2 + u_2^0 + \\ + e^{\sqrt{\mu}}\cos(1)(-4\mu^2 - 16\mu + 16)/(\mu^2 + 4)^2 + e^{\sqrt{\mu}}u_2^0 \right]/(e^{-\sqrt{\mu}} - e^{\sqrt{\mu}}) \end{cases}$$

Аналогично найдем частное решение для u_1 в виде

$$u_1 = e^x (Ax^2 + Bx + C) + D\sin(3x) + E\cos(3x)$$

$$\begin{cases}
A = -1/(\mu - 1) = (-\mu^2 + 2\mu - 1)/(\mu - 1)^3 \\
B = -4(\mu - 1)^2 = (-4\mu + 4)/(\mu - 1)^3 \\
C = (2\mu + 6)/(\mu - 1)^3 \\
D = -2/(\mu + 9) \\
E = 0
\end{cases}$$

Решение уравнения — сумма общего и частного решения

$$u_1 = -\frac{2\cos(3x)}{\mu + 9} + C_1 e^{\sqrt{\mu}x} + C_2 e^{-\sqrt{\mu}x} - \frac{e^x x^2}{\mu - 1} - \frac{4e^x x}{(\mu - 1)^2} - \frac{6e^x + 2\mu e^x}{(\mu - 1)^3}$$

Используем краевые условия.

$$\begin{cases} u_1(0) = C_1 + C_2 - \frac{2}{\mu + 9} + \frac{2\mu + 6}{(\mu - 1)^3} = u_1^0 \\ u_1(1) = -\frac{2\cos(3)}{\mu + 9} + C_1 e^{\sqrt{\mu}} + C_2 e^{-\sqrt{\mu}} + e^{\frac{\mu^2 + 4\mu - 3}{(\mu - 1)^3}} = u_1^0 \end{cases}$$

$$\begin{cases} C_1 = -C_2 + \frac{2}{\mu + 9} - \frac{2\mu + 6}{(\mu - 1)^3} + u_1^0 \\ C_2 = \left[u_1^0 + \frac{2\cos(3)}{\mu + 9} - e^{\frac{\mu^2 + 4\mu - 3}{(\mu - 1)^3}} - e^{\sqrt{\mu}} (\frac{2}{\mu + 9} + \frac{2\mu + 6}{(\mu - 1)^3} - u_1^0) \right] / (e^{\sqrt{\mu}} + e^{-\sqrt{\mu}}) \\ \begin{cases} C_1 = \left[-b - \frac{e}{\mu - 1} - \frac{4e}{(\mu - 1)^2} - \frac{2e(\mu + 3)}{(\mu - 1)^3} - e^{\sqrt{\mu}} (-u_1^0 - \frac{2e(\mu + 3)}{(\mu - 1)^3} - \frac{2}{\mu + 9}) \right] / (e^{\sqrt{\mu}} + e^{-\sqrt{\mu}}) \\ C_2 = \left[-2\mu^3 + 4\mu^2 - 30\mu + (9b - \mu^4 u_1^0 - 6\mu^3 u_1^0 + 24\mu^2 u_1^0 - 26\mu u_1^0)(1 - e^{\sqrt{\mu}}) + (27 + \mu^3 + 13\mu^2 + 39\mu)e^{\sqrt{\mu} + 1} + 2e^{\sqrt{\mu}}\cos(3)(\mu - 1)^3 - 52 \right] / (\mu - 1)^3 (\mu + 9)(e^{2\sqrt{\mu}} - 1) \end{cases}$$

Иллюстрация решений уравнения

Формула квадрата ошибки:

$$\sum_{k=0}^{M} \sum_{l=0}^{N} \left(u_{analytical} \left(\frac{k}{M}, \frac{l}{N} \right) - u_{numerical} \left(\frac{k}{M}, \frac{l}{N} \right) \right)^{2},$$

где $u_{analytical}(x,y)$ — аналитическое решение, $u_{numerical}(x,y)$ — численное решение, полученное с помощью аппроксимации.

Пример 4.1. Рассмотрим примеры работы программы. Аппроксимация данной функции (Рис. 1.а) и аналитическое решение (Рис. 1.б) при равных краевых условиях практически полностью идентичны.

Параметры:

• $u_1^0=u_2^0=90,$ • $\mu=50,$ • $M=30,\,N=20.$ Модуль разности решений имеет порядок 10^{-3} (Рис. 1.в). Максимальное значение разности решений 3.5×10^{-3} . Итоговый квадрат ошибки равен 11.

Рис. 1. Решения краевой задачи при равных краевых условиях. а) Численная аппроксимация решения. б) Аналитическое решение. в) Невязка.

Пример 4.2. Рассмотрим исходную задачу при разных краевых условиях. Параметры:

- $u_1^0 = -u_2^0 = -90$,
- $\mu = 100$,
- M = 30, N = 20.

Аппроксимация данной функции (Рис. 2.а) и аналитическое решение (Рис. 2.б) почти совпадают, аналогично предыдущему случаю. Модуль разности решений имеет порядок 10^{-2} (Рис. 2.в). Максимальное значение разности решений 0.02. Итоговый квадрат ошибки равен 19.

Рис. 2. Решения краевой задачи при разных краевых условиях. а) Численная аппроксимация решения. б) Аналитическое решение. в) Невязка.

Пример 4.3. Аппроксимация данной функции при увеличении сетки: численное (Рис. 3.a) и аналитическое (Рис. 3.б) решения. Параметры:

- $u_1^0 = u_2^0 = 10$,
- $\mu = 100$,
- M = 100, N = 50.

Итоговый квадрат ошибки равен 0.4. Видно, что при увеличении сетки квадрат ошибки и величина невязки (Рис. 3.в) уменьшаются.

Рис. 3. Решения краевой задачи при увеличении сетки.
а) Численная аппроксимация решения. б) Аналитическое решение. в) Невязка.

Пример 4.4. Аппроксимация данной функции при увеличении функции и разных краевых условиях (Рис. 4). Параметры:

- $u_1^0 = -u_2^0 = -10$,
- $\mu = 100$,
- M = 100, N = 50.

Величина невязки имеет порядок 10^{-4} . Итоговый квадрат ошибки равен 3.

Рис. 4. Решения краевой задачи при разных краевых условиях и увеличении сетки. а) Численная аппроксимация решения. б) Аналитическое решение. в) Невязка.

Пример 4.5. Аппроксимация функции (Рис. 5). $\begin{cases} \mathbf{u}" - \mathbf{u} = 0, \\ \mathbf{u}(0, \, \mathbf{k}) = \mathbf{u}(\mathbf{k}, \, 0) = \mathbf{u}(\mathbf{M}, \, \mathbf{k}) = \mathbf{u}(\mathbf{k}, \, \mathbf{N}) = 1, \\ \Rightarrow \text{ аналитическое решение } u = (e^x + e^{-x+1})/(1+e). \\ M = 5, \, N = 10. \, \text{Итоговый квадрат ошибки равен 6.} \end{cases}$

Рис. 5. Решения краевой задачи.
а) Численная аппроксимация решения. б) Аналитическое решение. в) Невязка.

Пример 4.6. Аппроксимация функции (Рис. 6) $\begin{cases} u"-u=1,\\ u(0,\,k)=u(k,\,0)=u(M,\,k)=u(k,\,N)=0,\\ \Rightarrow$ аналитическое решение $u=(e^x-e-1+e^{-x+1})/(1+e). \end{cases}$

 $M=5,\,N=10.$ Итоговый квадрат ошибки равен 0.7.

Рис. 6. Решения краевой задачи. а) Численная аппроксимация решения. б) Невязка.

Список литературы

- [1] Денисов А. М., Разгулин А. В., ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ВМК МГУ, Москва, 2009 г.
- [2] Кандидов В. П., Чесноков С. С., Шленов С. А., ДИСКРЕТНОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ. Физический факультет МГУ, 2019. (https://ofvp.phys.msu.ru/wp-content/uploads/2021/03/diskretnoe-preobrazovanie-fure.pdf)