

Principal Components Analysis

High Dimensional Data Analysis

Anastasios Panagiotelis Lecture 3

Motivation

Motivation

- In marketing surveys we may ask a large number of questions about customer experience.
- In finance there may be several ways to assess the credit worthiness of firms.
- In economics the development of a country or state can be measured in different ways.

A real example

- Consider a dataset with the following variables for the 50 States of the USA
 - Income
 - Illiteracy
 - Life Expectancy
 - Murder Rate
 - High School Graduation Rate
- You can access this via moodle from the file StateSE.RData
- Let's do some exploratory data analysis

Life Exp v High School Grad.

Three dimensions

All five variables

- Can not do a scatter plot in five dimensions.
- Can we find a single variable to summarise the information in this data set?
- Going beyond that can we rotate the data to find a good 2-dimensional representation?
- Both of these ideas can be achieved using
 Principal Components

Summarising many variables

- Often we aim to combine many variables into a single index?
 - In finance a credit score summarises all the information about the likelihood of bankruptcy for a company.
 - In marketing we require a single overall measure of customer experience.
 - In economics the Human Development
 Index is a single measure that takes
 income, education and health into account.

Weighted linear combination

- A convenient way to combine variables is through a linear combination (LC)
 - For example, your grade for this unit:

$$w_1 ext{Assign. Marks} + w_2 ext{Exam Mark}$$

- Here w_1 and w_2 are called *weights*
- In this unit, the weight for the Assignments is 50% and for the Examination is 50%
- What is a good way to choose weights?

Maximise variance

- The purpose of grading students is to differentiate the best performing students from the weakest performing students
- The index should have large variance.
- The LC with the highest variance is the first
 Principal Component of the data.
- The first principal component is a new variable that explains as much variance as possible in the original variables.

Original Data

State	Income	Illiteracy	LifeExp	M
alabama	3624	2.1	69.05	
alaska	6315	1.5	69.31	
arizona	4530	1.8	70.55	
arkansas	3378	1.9	70.66	
california	5114	1.1	71.71	
colorado	4884	0.7	72.06	
connecticut	5348	1.1	72.48	•

First PC

State	PC1
alabama	-3.4736429
alaska	0.5523458
arizona	-0.3218179
arkansas	-2.3518240
california	0.9138319
colorado	1.7319349
connecticut	1.8293070
	0 0 0 0 0 0 0 0 0

First PC on Map

Second Principal Component

- Sometimes a single index still oversimplifies the data.
- The second principal component is an LC that
 - Is uncorrelated with the first PC.
 - Has the highest variance out of all LCs that satisfy condition 1.
- Since there is no need for PC2 to explain any variance already explained by PC1, PC2 and PC1 are uncorrelated.
- We can plot the first two principal components on a scatter plot.

Scatter-plot of PCs

The weights

	PC1	PC2
Income	0.3473146	0.7315324
Illiteracy	-0.4803318	0.0693093
LifeExp	0.4685523	-0.3243911
Murder	-0.4594049	0.4916219
HSGrad	0.4669687	0.3363552

 A high (low) weight indicates a strong positive (negative) association between a variable and the corresponding PC.

Biplot

- The weight vectors can be plotted on the same scatterplot as the data.
- This is called a biplot.
- We can do several useful things with a biplot
 - See how the observations relate to one another
 - See how the variables relate to one another
 - See how the observations relate to the variables

Types of biplot

- There are multiple ways to draw a biplot.
- We will look at two versions
 - Distance Biplot
 - Correlation Biplot

Distance Biplot

Distance Biplot

- The distance between observations implies similarity between observations
 - Louisiana (LA) and South Carolina (SC) are close therefore are similar.
 - Arkansas (AR) and California (CA) are far apart and therefore different.
- If the variables are ignored this is identical to a scatter plot of principal components.

Correlation Biplot

Correlations

	Income	Illiteracy	LifeExp	Murder	HSGrad
Income	1.000	-0.437	0.340	-0.230	0.620
Illiteracy	-0.437	1.000	-0.588	0.703	-0.657
LifeExp	0.340	-0.588	1.000	-0.781	0.582
Murder	-0.230	0.703	-0.781	1.000	-0.488
HSGrad	0.620	-0.657	0.582	-0.488	1.000

Correlation Biplot

- The angles between variables tell us something about correlation (approximately)
 - Income and HSGrad are highly positively correlated. The angle between them is close to zero.
 - LifeExp and Income are close to uncorrelated. The angle between them is close 90 degrees.
 - Murder and LifeExp are highly negatively correlated. The angle between them is close 180 degrees.

More comparison

- The biplot also allows us to compare observations to variables.
- Think of the variables as axes.
- Draw the shortest line from each point to the axis.
- The position along that axis gives an approximation to the actual value of the variable for that observation.

Usual scatter plot

Biplot

More PCs

- We can find a third PC, which has the highest variance, while being uncorrelated with PC1 and PC2.
- We cannot visualise this with a biplot, but there are alternatives depending on the structure of the data.
- Now a time series example where we consider 3 principal components.

A Time Series Example

- The Stock and Watson dataset contains data on 109 macroeconomic variables in the following categories
 - Output
 - Prices
 - Labour
 - Finance
- One cannot look at 109 time series plots to visualise general macroeconomic conditions.
- However, one can look at time series plots of the principal components of these variables.

Plots of PCs

All PCs

- There are as many principal components as there are variables.
- Together all p principal components explain all of the variation in all p original variables.

$$\sum_{j=1}^p \mathrm{Var}(C_j) = \sum_{j=1}^p \mathrm{Var}(Y_j)$$

• Where C_j is principal component j and Y_j is variable j

So why PCs

- However a small number of principal components can often explain a large proportion of the variance
 - In the first example, 2 PCs explain 84% of the total variation of 5 variables.
 - In our second example, 3 PCs explain 35% of the total variation of 109 variables.

Summary

- Principal components analysis is useful for
 - Creating a single index
 - Seeing how variables are associated with observations on a single biplot.
 - Visualising high-dimensional time series.
- How do we do it?

Implementation of PCA

Restriction

- Recall that the objective is to find an LC with a large variance. How could we 'cheat'?
 - For a single variable ${
 m Var}(wY)=w^2{
 m Var}(Y)$
 - The variance can be made large by choosing a huge value of w.
- For this reason the following restriction (normalization) is used

$$w_1^2 + w_2^2 \dots + w_p^2 = 1.$$

Standardisation

- A similar logic applies to the units that the variables are measured in.
- In the states dataset, income varies from \$3000 to \$6000, life expectancy varies from 67 years to 73 years.
 - Which variable will probably have the larger variance?
- Income likely to have a larger variance.

Different units

- If income is measured in \\$ '000s then it will vary from about 3 to 6, If Life Expectancy in measured in days rather than years it will vary from about 24800 days to 26900 days
 - Which variable will have the larger variance now?
- The weights can be influenced by the units of measurement.

Effect of standardisation

	Std	Unstd	DifUnits
Income	0.3473	1.0000	0.0004
Illiteracy	-0.4803	-0.0004	-0.0007
LifeExp	0.4686	0.0007	0.9999
Murder	-0.4594	-0.0014	-0.0059
HSGrad	0.4670	0.0081	0.0096

Standardise or not?

While the normalisation

$$w_1^2+w_2^2+\ldots+w_p^2=1$$
 is always implemented in any software that does PCA, the decision to standardise is up to you.

- If the variables are measured in the same units then
 - No need to standardise.
- If the variables are measured in the different units then
 - Standardise the data.

Principal Components in R

- There are several functions for doing Principal Components Analysis in R. We will use prcomp
- We can scale in two ways
 - Scale the data using the function scale
 - Include the option scale.=TRUE when calling the function prcomp
- Now we will do PCA on the states dataset using R

Principal Components in R

```
StateSE%>%
  select_if(is.numeric)%>% #Only use nume
  prcomp(scale. = TRUE)->pcaout #Do pca
summary(pcaout) #summary of information
```

```
## Importance of components:

## PC1 PC2 PC

## Standard deviation 1.7892 0.9686 0.631

## Proportion of Variance 0.6403 0.1876 0.079

## Cumulative Proportion 0.6403 0.8279 0.907
```

Principal Components in R

- The output of the prcomp function is a prcomp object.
- It is a list that contains a lot of information.
 Of most interest are
 - The principal components which are stored in x
 - The weights which are stored in rotation

Biplot

• The biplot can be produced by:

```
biplot(pca)
```

 To have the state abbreviations on the plot they need to be attached to the matrix pca\$x

```
rownames(pca$x)<-use_series(StateSE,State
biplot(pca)</pre>
```

Try it!

Correlation biplot

- By default biplot produces the distance biplot.
- To produce the correlation biplot try

```
biplot(pca,scale = 0)
```

Scree Plot

- Another plot that is easy to create is the Scree plot.
- Along the horizontal axis is the Principal Component.
- Along the vertical axis is the variance corresponding to each Principal Component.
- The Scree plot indicates how much each PC explains the total variance of the data.

```
screeplot(pca,type="lines")
```

Scree Plot

Selecting the number of PCs

- The Scree plot can be used to select the number of Principal Components.
- Look for a part where the plot flattens out also called the elbow of the Scree Plot.
- Another criterion used for standardised data is Kaiser's Rule. The rule is to select all PCs with a variance greater than 1.

Number of PCs

- The way PCs are selected depend on the nature of the analysis.
- For a visualisation via the biplot, two PCs must be selected.
- In this case check the proportion of variance explained by those PCs
- The higher this number the more accurate the biplot

Towards Factor Analysis

- For survey data it is often the case that multiple survey questions are measures of the same underlying factor.
- For example, at the end of semester you evaluate this unit.
- Typically you will be asked many questions.
- This is no different from any other customer satisfaction survey

Underlying factors

- Although you are asked many questions perhaps there are two underlying factors that drive
 - The quality of the course materials
 - The quality of the teaching staff
- Perhaps the quality of assessment is a third factor.
- For survey data, Scree plots and Kaiser's rule can be used to select the number of underlying factors.