수치해석(Numerical Methods)

Mathematical Modeling, Numerical Methods, and Problem Solving

CHAPTER OBJECTIVES

The primary objective of this chapter is to provide you with a concrete idea of what numerical methods are and how they relate to engineering and scientific problem solving. Specific objectives and topics covered are

- Learning how mathematical models can be formulated on the basis of scientific principles to simulate the behavior of a simple physical system.
- Understanding how numerical methods afford a means to generate solutions in a manner that can be implemented on a digital computer.
- Understanding the different types of conservation laws that lie beneath the models used in the various engineering disciplines and appreciating the difference between steady-state and dynamic solutions of these models.
- Learning about the different types of numerical methods we will be covering in this book.

Modeling

Abstraction


```
CALCULATE STATISTICS ON DATA FROM LOW SPEED READER
        SUMS@=0
        TYPE 100
        FORMAT ("ENTER THE NUMBER OF VALUES TO CACULATE STATISTICS ON"./)
100
        ACCEPT 10.N
        FORMAT(1)
10
        DO 200 1=1.N
        READ 1. 110. V
        FORMAT(E)
        SUM=SUM + V
        SUMSO=SUMSO + V+V
        TYPE 120. L. V
        FORMAT("VALUE", 1, "15", E,/)
        CONTINUE
200
        SAMP=N
        AVRG= SUM / SAMP
        STD=SOTF (SIMSO/SAMP - AVRG**2)
        TYPE 300. N. AVRG. STD
        FORMAT ("NUMBER OF VALUES", I, "MEAN", E, "STANDARD DEVIATION", E,/)
300
.R FORT
```

$$u \longrightarrow \underline{\dot{x}} = \underline{f}(\underline{x},\underline{u}) \qquad x \longrightarrow \underline{y} = \underline{c}(\underline{x})$$

$$a^x + b^y = c^z$$

Characteristics of mathematical models

- It describes a natural process (or system) in mathematical terms
- It represents an idealization and simplification of reality
- Finally, it yields reproducible results,
 - consequently, can be used for predictive purposes.

The time rate change of momentum of a body is equal to the resulting force acting on it.

ما د د د

where

F = m * a

F = net force acting on the body (N) m = mass of the object (kg)

Newton's second law of motion

a = its acceleration (m/s²)

Building Blocks of Mathematical Model

- Variables of the mathematical model
 - Decision (independent) variables
 - State (dependent) variables
 - represents system state and/or output variables
 - Exogenous variables
 - parameters or constants.

Maximize
$$P = p_{1}x_{1} + p_{2}x_{2} + \dots + p_{k}x_{k}$$
 Subject to:
$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1k}x_{k} \leq q_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2k}x_{k} \leq q_{2}$$

$$\vdots$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nk}x_{k} \leq q_{n}$$

$$x_{1}, x_{2}, \dots x_{k} \geq 0$$

- You need to buy some filing cabinets.
 Real World Problem
 - Cabinet X costs \$10 per unit, requires 6 square feet of floor space, and holds 8 cubic feet of files.
 - Cabinet Y costs \$20 per unit, requires 8 square feet of floor space, and holds 12 cubic feet of files.
 - You have been given \$140 for this purchase, though you don't have to spend that much.
 - The office has room for no more than 72 square feet of cabinets.
 - How many of which model should you buy, in order to maximize storage volume?
- Decision variables

- Mathematical Modeling
- x: number of model X cabinets purchased ($x \ge 0$)
- y: number of model Y cabinets purchased ($y \ge 0$)
- State variable
 - Maximize Volume(V) = 8x + 12y
- Parameters
 - Cost: $10x + 20y \le 140 \rightarrow y \le -0.5x + 7$
 - Space: $6x + 8y \le 72$ $\rightarrow y \le -0.75x + 9$

- Optimal solution
 - Test the corner points at (8, 3), (0, 7), and (12, 0),
 - Maximal volume of 100 cubic feet at (8,3)

Mathematical Modeling

Bungee Jumper Problem

 Develop the mathematical model for the rate of change of velocity with respect to time

 F_U = Force due to air resistance (c=drag coefficient) F_D = Force due to gravity

$$F = ma$$

$$a = \frac{F}{m}$$

$$\frac{dv}{dt} = \frac{F}{m}$$

$$F = F_D + F_U$$

$$F_D = mg$$

$$F_U = -cv^2$$

$$\frac{dv}{dt} = \frac{mg - cv^2}{m}$$

Analytical methods

$$v(t) = \sqrt{\frac{gm}{c_d}} \tanh \left(\sqrt{\frac{gc_d}{m}} t \right)$$

Numerical methods

- Numerical methods are those in which the mathematical problem is reformulated so it can be
- Solved by arithmetic operations.

$$\frac{dv}{dt} = \frac{mg - cv^2}{m}$$

$$\frac{dv}{dt} = g - \frac{c_d}{m}v^2$$

$$\frac{dv}{dt} \approx \frac{\Delta v}{\Delta t} = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i}$$

Parachutist Problem

When $Drag(F_U)$ is equal to $Weight(F_D)$, acceleration is zero. Velocity becomes constant (terminal velocity).

$$\frac{dv}{dt} = \frac{F}{m}$$

$$F = F_D + F_U$$

$$F_D = mg$$

$$F_U = -cv$$

$$\frac{dv}{dt} = \frac{mg - cv}{m}$$

Numerical vs. Analytical solutions

$$v(t) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right)$$

$$\frac{dv}{dt} \approx \frac{\Delta v}{\Delta t} = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i}$$

Euler's Method

$$v(t_{i+1}) = v(t_i) + \left[g - \frac{c_d}{m}v(t_i)^2\right](t_{i+1} - t_i)$$
 new = old + slope × step

Numerical vs. Analytical solutions

Analytical

VS.

Numerical solution

m=68.1 kg c=12.5 kg/s g=9.8 m/s

t (sec.)	V (m/s)
0	0
2	16.40
4	27.77
8	41.10
10	44.87
12	47.49
∞	53.39

$$\Delta t = 2 \text{ sec}$$

$$\Delta t = 0.5 \text{ sec}$$

$$.5 \sec \qquad \Delta t = 0.01 \sec$$

t (sec.)	V (m/s)	t
0	0	0
2	19.60	2
4	32.00	4
8	44.82	8
10	47.97	1
12	49.96	1
00	53.39	

t (sec.)	V (m/s)
0	0
2	17.06
4	28.67
8	41.94
10	45.60
12	48.09
∞	53.39

t (sec.)	V (m/s)
0	0
2	16.41
4	27.83
8	41.13
10	44.90
12	47.51
∞	53.39

$$v(t) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right)$$

$$v(t_{i+1}) = v(t_i) + \left[g - \frac{c}{m}v(t_i)\right]\Delta t$$

CONCLUSION: If you want to minimize the error, use a smaller step size, Δt

Numerical Methods

(a) Part 2: Roots

Solve f(x) = 0 for x

(b) Part 3: Linear algebraic equations

Given the a's and the b's, solve for the x's $a_{11}x_1 + a_{12}x_2 = b_1$ $a_{21}x_1 + a_{22}x_2 = b_2$

(c) Part 4: Curve fitting

(d) Part 5: Integration

$$I = \int_{a}^{b} f(x) dx$$

Find the area under the curve.

(e) Part 6: Differential equations

$$\frac{dy}{dt} \approx \frac{\Delta y}{\Delta t} = f(t, y)$$

solve for y as a function of t

$$y_{i+1} = y_i + f(t_i, y_i) \Delta t$$

THE END

Homework/Report

