

Computer Vision

Image acquisition

27 August 2008

Copyright © 2001 – 2008 by

Noordelijke Hogeschool Leeuwarden and Van de Loosdrecht Machine Vision

All rights reserved

j.van.de.loosdrecht@tech.nhl.nl, jaap@vdlmv.nl

Image acquisition

Overview:

- Camera
- Lens
- Frame grabber
- Lighting
- Signal to Noise Ratio (*)

28-Aug-08

Image acquisition

Camera

Sensor type:

- · CCD
- · CMOS
- · Infra red
- X-rays
- Vidicon
- Radar
- Sound
- MRI
- · Radio telescope (astronomy)

28-Aug-08

Image acquisition

Sensor: array of pixels

- · Pixel size
 - · Important for the light sensitivity
 - Typical values: 3 12 μm
 - · Square: important by size measurements
- Pixel "depth" (dynamic range)
 - · Number of gray values
 - 8 bits = 256 (usually enough)
 - 10 bits = 1024
 - 12 bits = 4096
- · Gain and offset
 - Pixel value = offset + amount of light * gain
 - High gain -> more noise
- Spectral sensitivity (quantum efficiency)

Color sensor

- 1 chip
 - · Pattern with filters and interpolation
 - · Less sharpness than comparable grayscale camera
- 3 chips
 - · More expensive
 - · Less shockproof

28-Aug-08 Image acquisition

Raw format

Image is grayscale image with raw color sensor information

Demonstration:

- · Open image: raw_image.jl
- ConvertCFAtoRGB888Image image BayerGB

Sensor: CCD versus CMOS

- · CCD
 - Better signal / noise ratio better suitable in low light situations
- CMOS
 - · Cheaper
 - · Easy integration at chip level
 - · Pixel addressable
 - Windowing
 - · Sub sampling and binning
 - High Dynamical Range

28-Aug-08 Image acquisition

Pixel addressable

- Windowing
 - Part of sensor surface -> higher frame rate
 - · Multiple windows in one snapshot

- · Sub sampling and binning
 - n by n neighbour pixels are combined to 1 pixel image factor n smaller-> higher frame rate

Rolling shutter

Fokker Dr I, Stichting Vroege Vogels Lelystad

28-Aug-08

Image acquisition

25

Digitalization

From "continuous analogue light" to sampled digital image:

- · Spatial co-ordinates
- · Intensity value
- Time

Sensitive to a specific part of the spectrum

28-Aug-08

Image acquisition

Analogue CCD Camera

Analogue output

- Monochrome
 - (EIA) RS-170 Video, 30 fps, 640 x 480 lines
 - CCIR, 25 fps, 768 x 576 lines
 - · Frame grabber converts typically to 8-bit grey scale
- · Colour composite
 - · NTSC, 30 fps
 - · PAL, 25 fps
- · Non standard video

28-Aug-08 Image acquisition 2

Analogue CCD Camera

Scanning

- Interlaced
 - Cheap
 - · First, even, odd, both
- · Progressive scan
 - Expensive
 - · Motion applications
- · External triggering
- Pixel dimensions / dimensions of ccd chip square pixels are important for measurements
- Shutter speed (typical: 1 1/10.000 second)

Demonstration Interlaced versus Progressive Scan

- · Open image interlaced.jl
- DeInterlace image (from point menu)

_ IX

28-Aug-08

Image acquisition

Image acquisition

DeInterlace

Loosdrecht Machine Vision www.vdlmv.nl

User Help

To interlaced jt 22 (Int16Image)

30

28-Aug-08

Calculation 'real' pixel ratio for analogue camera (*)

Example

- WAT-505EX (old type):
 - · chip: 596 (V) x 795 (H) pixels
 - pixel: 6.5 ųm (V) x 6.25 ųm (H)
- Frame grabber (CCIR):
 - 576 lines of 768 pixels
- 'real' pixel width: (795 / 768) * 6.25 = 6.47 um squareness of pixel: (6.5 / 6.47) = 1.005
- 596 576 = 20 lines are not used

28-Aug-08 Image acquisition 3

Analogue frame grabber, RIO full version

Analogue frame grabber (*)

- · Host bus (PCI, AT)
- Spatial resolution (768 x 576 25 Hz)
- Intensity resolution (8 bit)
- · Video input
 - · Number of input channels
 - Type (RS-170, PAL, etc)
- Accuracy
- On board processing Input LUT's, ROI, scaling, etc
- Digital I/O
- · Video display
- · Software driver

28-Aug-08

Image acquisition

33

Analogue camera triggering (*)

- Analogue camera in free running mode example 25 frames (images) per second (fps)
 - · Triggering in software
 - · Triggering by frame grabber
- · Triggering of camera
 - · Asynchrone reset

28-Aug-08

Image acquisition

Digital CCD Camera

Digital output

- · Digital area scan
 - Larger image size possible (4k x 4k)
 - Higher resolution (8 .. 12 bit)
 - Fast acquisition (>100 Mbytes/s) example: 1k x 1k, 100 fps
 - Windowing
 - Binning
 - · Applications: machine vision, scientific
- · Digital line scan camera
 - 10k 100k lps
 - Processing
 - · Line by line
 - · Stitched together into 2D image
 - · Application: high speed motion

28-Aug-08 Image acquisition 35

Digital line scan camera White the scan camera and the scan camera are already as a scan camera and the scan camera are a scan camera are

Standards for digital camera interfaces

- · Camera link
 - · Highest performance
 - · Expensive frame grabber
- FireWire (IEEE 1394a and 1394b)
 - · Available on common main boards
 - · IIDC standard DCAM
 - · DV is for "handy cams"
- USB (1 and 2)
 - · Available on common main boards
- · GigE Vision
 - Gigalink ethernet

28-Aug-08 Image acquisition

Standards for digital camera interfaces: comparision

37

Standard	Max Length	Speed
CameraLink	10 m	6120 Mb/s
1394a (Firewire A)	4.5 m	400 Mb/s
1394b (Firewire B)	4.5 m	800 Mb/s
Future: 1394b (FireWire B)		3200 Mb/s
Gigabit Ethernet(GigE)	100 m	1000 Mb/s
USB 2.0	5 m	480 Mb/s
Future: USB 3.0		4800 Mb/s

- · The max length can be enlarged using repeaters
- The real speed (fps) is also depended on the overhead of the protocol used

Standards for digital camera interfaces

- · Gen<l>Cam
 - · One SDK for
 - · GigE Vision
 - IEEE 1394
 - · Camera Link
 - · GenApi: configuring the camera
 - SFNC: Standard Feature Naming Convention
 - GenTL: Transport Layer convention (under construction)

28-Aug-08 Image acquisition 3

Real time behaviour

- · Real time loop:
 - Acquisition image
 - · Process image, do measurement
 - · Activate outputs / log result
- Process time will fluctuate, buffering of images needed by:
 - · operating system
 - · frame grabber
 - · camera

Camera trends

- · Analogue cameras will be used less
- CMOS sensor will increase its market share, CCD will lose
- Digital FireWire and USB cameras have become cheaper and better
- Now: for best performance Camera Link
- Since 2005: FireWire IEEE 1394b camera's on the market
- · Since 2005: GigaE Vision
- · Gen<l>Cam

Lenses

28-Aug-08 Image acquisition 43

Lens

- · Lens mount: C, CS, F,
- Focal length (mm), fixed or zoom
- · Aperture or diaphragm (F)
- · Depth of field
- Minimum focal distance
- · Geometric distortion -> telecentric lenses
- · Field of view
 - · Size of CCD chip
 - Focal length
 - · Distance to object

Lighting

Requirements:

- · Homogeneous light over field of view
- · Maximum contrast for features of interest
- · Minimum contrast for features of non interest
- Minimum sensitivity to:
 - Environmental variations (ambient light)
 - · Feature variations

28-Aug-08 Image acquisition 45

Lighting techniques

- Natural ambient light
- · Direct light, creates shadows and reflection
- · Diffuse light, minimises shadows and reflection
- · Back lighting, high contrast
- Dark field lighting
- · Strobed light, freeze motion
- · Structured light, measurement
- · Polarised light, reduction of reflection
- Warning: using laser light can be dangerous !!!

Signal to Noise Ratio (*)

The amount of noise in an image is measured in the Signal to Noise Ratio (SNR)

Is measured by computing its value in a homogeneously illuminated background section of the image

First the standard deviation is measured:

$$\sigma^{2} = \frac{1}{N-1} \left[\sum_{i=1}^{N} b_{i}^{2} - \frac{1}{N} \left(\sum_{i=1}^{N} b_{i} \right)^{2} \right]$$

where b_i is the brightness of the image at position i

28-Aug-08

Image acquisition

47

Signal to Noise Ratio (*)

This can be rearranged to:

$$\sigma^2 = \frac{1}{N-1} \left[\sum_{i=1}^{N} \left(b_i - \frac{1}{N} \left(\sum_{i=1}^{N} b_i \right) \right)^2 \right]$$

The SNR is calculated as:

$$SNR = \frac{\max(b) - \min(b)}{\sigma} : 1$$

where max(b) and min(b) are the maximum and minimum possible brightness value in the image b.

28-Aug-08

Image acquisition

Signal to Noise Ratio (*)

Example:

If max(b) = 255, min(b) = 0, and stddev = 5.0, then SNR = 51:1.

The SNR is sometimes expressed in decibels as $SNR(dB) = 20 \log_{10}(SNR)$.

For the example, this would mean a SNR(dB) = 34.2 dB.

28-Aug-08 Image acquisition

Demonstration Calculation of SNR (*)

- open image card1.jl (low light, low contrast, extreme gain)
- roi 125 28 138 50 to get homogeneously illuminated background section
- Minmaxpixel is 8 21 (should normally be 0 .. 255 for 8 bit camera)
- standarddeviation on roi gives 1.75, so SNR = 13 / 1.75 = 7.4 : 1
- Calculation stddev "by hand": (no slides)
 - Convert roi to Int16Image (beware of overflow !!)
 - Calculate AveragePixel of roi (= 14)
 - Create new image with SetAllPixels 14 on roi (synthetic menu)
 - Subtract "image14" from roi
 - Multiply this result with itself
 - SumIntPixels on result of multiply (=23858)
 - stdev = sqrt(23858/(138*50-1)) = 1.86
 - (difference due to rounding error in AveragePixel)

Reduce noise by averaging images Noise can be reduced by averaging images avgImage = for each pixel: (Sum pixel of all images) / nr of images The SNR improves theoretically linear to the square root of the number of images

Exercise noise reduction by averaging images (*)

Exercise:

- average ten images card1.jl, ..., card10.jl and calculate SNR of result, use min/max pixel of ROI original image
- Explain why improved is not as good as could be expected in theory
- see for answer script card_noise.jls, examine variables
- answer exercise: stdev = 0.856, SNR = 15.2, so improvement is by factor 2

28-Aug-08 Image acquisition 53

Demonstration noise reduction by averaging images

- use script card_noisedemo.jls
- · average ten under exposed images card1.jl, ..., card10.jl

