

Learning Finite-State Machines with Ant Colony Optimization

Daniil Chivilikhin and Vladimir Ulyantsev
St. Petersburg National Research University of Information Technologies,
Mechanics and Optics
Computer Technologies Department

Problem Definition

A finite-state machine (FSM) is a sextuple $\langle S, \Sigma, \Delta, \delta, \lambda, s_0 \rangle$, where:

- S set of states
- Σ set of input events
- Δ set of output actions
- δ : $S \times \Sigma \rightarrow S$ transition function
- λ : $S \times \Sigma \rightarrow \Delta$ actions function
- $s_0 \in S$ initial state

 $\tau=1$

 $\tau = 1$

- The input data consists of the number of states N, a set of events Σ , and set of actions Δ of the target FSM. Input data also specifies the **fitness function** (FF) f defined for any FSM and a boundary value of this function f_0
- The **goal** is to build an FSM with a value of $f \ge f_0$

Proposed algorithm

Search space representation

- Directed graph G
- Nodes FSMs
- Edges mutations of FSMs:
 - OChange transition end state
 - Change transition action

Algorithm

graph G = {generate random FSM} While (True)

Launch colony of ants on G Update pheromone values Check stop conditions

Each ant has a limited number of steps

Next node selection

 $P = (1 - P_0)$ – select next node with roulette method

 $P = P_0$ – generate mutated FSMs, select best

Pheromone update

- Path quality maximum fitness value of nodes
- Ants deposit pheromone along sub-path from start to best node
- Pheromone evaporation

Experiments: Inducting FSMs from tests

Set of tests

Input data:

- ullet number N and sets Σ and Δ
- set of test examples T

Each test example consists of an input sequence of events l_j and the corresponding reference output sequence of actions O_j

Goal: build an FSM which complies with all tests.

FSM

Induction

Algorithm

$$f' = \frac{1}{|T|} \sum_{j=1}^{|T|} \left(1 - \frac{ED(O_j, A_j)}{\max(len(O_j), len(A_j))} \right) \qquad f = 100 \cdot f' + \frac{1}{100} \cdot (100 - n_{trans})$$
Input sequences
FSM
Output sequences
Fitness function
Reference output sequences

Alarm clock control system induction

- input data: 38 tests for alarm, total length of input sequences 242, total length of answer sequences 195
- comparison with GA and GA+HC
- 1000 runs of each algorithm

Algorithm	Min	Max	Avg	Median
GA	32830	599022	117977	83787
GA+HC	26740	188509	53706	48106
ACO	2440	210971	53944	46293

Experiments: Inducting FSMs for John Muir Food Trail Problem

- An "ant" is placed in a two-dimensional toroidal field 32×32
- Some cells contain "food" (apples), a total of 89 pieces
- The ant can "see" if the next cell contains food (events F and !F)
- There are 200 steps, on each step the ant can turn left, turn right or move forward, possibly "eating" a piece of food (actions L, R, M)
- <u>Goal</u>: build an FSM controlling the ant so that it can eat all food in 200 steps

200 steps $200 - n_{steps}$

Classical FF: $f_1(A) = n + \frac{shp}{200}$ Modified – variable number of states: $f_2(A) = n + \frac{200 - n_{steps}}{200} + 0.1 \cdot (U - N)$

n – number of eaten apples
 n_{steps} – elapsed steps
 N – number of states in FSM
 U – number of used states

First experiment

Setup:

- Using fitness function f_1
- Searching among FSMs with seven states
- Comparing with GA

Results:

- GA result 160 and 250 million FF calculations
- ACO result 143 and 221 million
 FF calculations

Second experiment

Setup:

- Using fitness function f₂
- Searching among FSMs with
 12 states
- 30 runs of ACO algorithm

Results:

An average of 37 million FF calculations

Publications

- Chivilikhin D., Ulyantsev V., Tsarev F. Test-Based Extended Finite-State
 Machines Induction with Evolutionary Algorithms and Ant Colony Optimization /
 Proceedings of the 2012 GECCO Conference Companion on Genetic and
 Evolutionary Computation. NY.: ACM. 2012, pp. 603 606.
- Ulyantsev V., Tsarev F. Extended Finite-State Machine Induction using SAT-Solver / Proceedings of the Tenth International Conference on Machine Learning and Applications, ICMLA 2011, Honolulu, HI, USA, 18-21 December 2011. IEEE Computer Society, 2011. Vol. 2. P. 346–349.

Summary

- Intoduced an ACO-based method of FSM induction
- ACO is either better then GA or works just as well
- ACO does not use problem-specific data, only FSM structure

chivilikhin.daniil@gmail.com ulyantsev@rain.ifmo.ru