Hugo Amorim Martins

Definição do produto de software

São Paulo

Hugo Amorim Martins

Definição do produto de software

Universidade Presbiteriana Mackenzie Faculdade de Computação e Informática

Orientador: Leandro Nunes de Castro

São Paulo 2022

${\sf Hugo}\ {\sf Amorim}\ {\sf Martins}$

Definição do produto de software/ Hugo Amorim Martins. – São Paulo, 2022-15p. : il. (algumas color.) ; 30 cm.

Orientador: Leandro Nunes de Castro

Tipo do Trabalho (PIBIC) – Universidade Presbiteriana Mackenzie Faculdade de Computação e Informática, 2022.

1. Palavra-chave1. 2. Palavra-chave2. 2. Palavra-chave3. I. Orientador. II. Universidade xxx. III. Faculdade de xxx. IV. Título

Lista de ilustrações

Lista de quadros

Lista de tabelas

Lista de abreviaturas e siglas

ABNT Associação Brasileira de Normas Técnicas

abnTeX — ABsurdas Normas para TeX

Lista de símbolos

 Γ Letra grega Gama

Sumário

1	INTRODUÇÃO 9
2	DEFINIÇÃO DA DEMANDA
3	REQUISITOS 11
4	WIREFRAMES
5	MODELAGEM
6	ARQUITETURA
	REFERÊNCIAS

1 Introdução

Sistemas L ou Lindenmayer uma formalização matemática desenvolvida pelo biólogo Aristid Lindenmayer, utilizado originalmente para representar o comportamento de fungos, algas e plantas, hoje em dia, devido a sua natureza recursiva é utilizado para representação de diversas formas que possuem similaridade em sí mesmas. Um Sistema L consiste em uma tupla de 3 elementos, sendo eles o alfabeto do sistema(V) que contém todos os simbolos que serão interpretados pelo mesmo, o estado inicial(ω) ou axioma, que neste também representaremos como S_0 é a primeira sequencia de simbolos a ser interpretada pelo sistema, e as regras de produção(P) que consistem em regras de re-escrita, contento o símbolo que será substituído e por qual sequência substituiremos o mesmo. Sendo assim, se considerarmos R como uma função que aplica o máximo de regras de produção possível, cada iteração i é fromada como: $S_{i+1} = R(S_i)$.

2 Definição da demanda

A solução busca aplicar algorítimos genéticos para a evolução automática de plantas descritas por um sistema L, tal evolução se torna uma oportunidade quando tratamos um sistema L fractal como uma gramática regular qualquer, e identificamos que com a aplicação desse processo de evolução de uma maneira com a qual os seres geradores sejam esteticamente parecidos com os gerados, podemos também tentar imlementar tais conceitos levando para outros tipos de gramatica.

3 Requisitos

4 Wireframes

5 Modelagem

6 Arquitetura

Referências