

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

doi: 10.18637/jss.v000.i00

fairadapt: Causal Reasoning for Fair Data Pre-processing

Drago Plecko ETH Zürich Nicolas Bennett ETH Zürich Nicolai Meinshausen ETH Zürich

Abstract

Machine learning algorithms are useful for various predictions tasks, but they can also learn how to discriminate, based on gender, race or some other sensitive attribute. This realization gave rise to the field of fair machine learning, which aims to measure and mitigate such algorithmic bias. This manuscript describes the implementation of the **fairadapt** R-package, a causal inference pre-processing method, which, using the causal graphical model, answers hypothetical questions of the form "What would my salary have been, had I been of a different gender/race?". Such counterfactual reasoning can help eliminate discrimination and help justify fair decisions.

Keywords: algorithmic fairness, causal inference, machine learning.

1. Introduction

Machine learning algorithms are now used for decision-making in socially sensitive situations, such as predicting credit-score ratings or recidivism during parole. Important early works noted that algorithms are capable of learning societal biases, for example with respect to race (Larson, Mattu, Kirchner, and Angwin 2016) or gender (Blau and Kahn 2003; Lambrecht and Tucker 2019). This realization started an important debate in the machine learning community about fairness of algorithms and their impact on decision-making.

The first step of fairness is defining and measuring discrimination. Some inuitive notions have been statistically formalized in order to provide fairness metrics. For example, the notion of demographic parity (Darlington 1971) requires the protected attribute A (gender/race/religion etc.) to be independent of a constructed classifier or regressor \hat{Y} . Another notion, termed equality of odds (Hardt, Price, Srebro et al. 2016), requires the false positive and false negative rates of classifier \hat{Y} between different groups (females and males for example), written mathematically as $\hat{Y} \perp \!\! \perp \!\! A \mid Y$. To this day, various different notions of fairness exist, which are

sometimes incompatible (Corbett-Davies and Goel 2018), meaning not of all of them can be achieved for a predictor \hat{Y} simultaneously. There is no consensus on which notion of fairness is the correct one.

The discussion on algorithmic fairness is, however, not restricted to the machine learning domain. There are many legal and philosophical aspects that have arisen. For example, the legal distinction between disparate impact and disparate treatment (McGinley 2011) is important for assessing fairness from a judicial point of view. This in turn emphasizes the importance of the interpretation behind the decision-making process, which is often not the case with black-box machine learning algorithms. For this reason, research in fairness through a causal inference lens has gained more attention.

There are several ways causal inference can help us understand and measure discrimination. The first is counterfactual reasoning (Galles and Pearl 1998), which allows us to argue what might have happened under different circumstances which did not occur. For example, we might ask whether a female candidate would had been employed, had she been male? This motivated another notion of fairness, termed counterfactual fairness (Kusner, Loftus, Russell, and Silva 2017), which states that the decision made should stay the same, even if we hypothetically changed someone's race or gender (written succintly as $\hat{Y}(a) = \hat{Y}(a')$ in the potential outcome notation). Further, important work has been done in order to decompose the parity gap measure (used for assesing demographic parity), $\mathbb{P}(\hat{Y}=1 \mid A=a) - \mathbb{P}(\hat{Y}=1 \mid A=a')$, into the direct, indirect and spurious components. Lastly, the work of Kilbertus, Carulla, Parascandolo, Hardt, Janzing, and Schölkopf (2017) introduces the so-called resolving variables, in order to relax the possibly prohibitively strong notion of demographic parity. This manuscript describes the details of the fair data adaptation method (Plecko and Meinshausen 2020). The approach aims to combine the notions of counterfactual fairness and resolving variables and to explicitly compute counterfactul values of individuals. The implementation is available on CRAN as the **fairadapt** package.

We note that as of the day of writing of the manuscript, there are only 4 CRAN packages related fair machine learning. The **fairml** package implements the non-convex method of Komiyama, Takeda, Honda, and Shimao (2018). Packages **fairness** and **fairmodels** serve as diagnostic tools for measuring algorithmic bias, together with an implementation of several pre and post-processing methods for bias mitigation. However, the **fairadapt** package is the only causal method. Even though many papers on the topic have been published, the fairness domain is still lacking good quality implementations of the existing methods.

The rest of the manuscript is organized as follows. In Section 2 we describe the methodology behind **fairadapt**, together with quickly reviewing some of the important concepts of causal inference. In Section 3 we discuss the implementation details and guide the user as to how to use the package. In Section 4 we illustrate the usage of **fairadapt** by using a large, real-world dataset for a hypothetical fairness application. In Section 5 we explain some important extensions, such as Semi-Markovian models and resolving variables.

2. Methodology

We start by describing the basic idea of **fairadapt** in a nutshell, followed by the precise mathematical formulation.

2.1. Example: university admission

Consider the following example. Variable A is the protected attribute, in this case gender (A = a corresponding to females, A = a' to males). Let E be educational achievement (measured for example by grades achieved in school) and T the result of an admissions test for further education. Let Y be the outcome of interest (final score) upon which admission to further education is decided. Edges in the graph indicate how variables affect each other.

Attribute A, gender, has a causal effect on variables E, T and Y, and we wish to eliminate this effect. For each individual with observed values (a, e, t, y) we want to find a mapping

$$(a, e, t, y) \longrightarrow (a^{(fp)}, e^{(fp)}, t^{(fp)}, y^{(fp)}),$$

which finds the value the person would have obtained in a world where everyone is female. Explicitly, for a male person with education value e, we give it the transformed value $e^{(fp)}$ chosen such that

$$\mathbb{P}(E \ge e \mid A = a') = \mathbb{P}(E \ge e^{(fp)} \mid A = a).$$

The main idea is that the relative educational achievement within the subgroup would stay the same if we changed someone's gender. If you are male and you have a higher educational achievement than 60% of all males in the dataset, we assume you would be better than 60% of females had you been female¹. After computing everyone's education (in the 'female' world), we continue by computing the transformed test score values $T^{(fp)}$. The approach is again similar, but this time we condition on educational achievement. That is, a male with values (E,T)=(e,t) is assigned a test score $t^{(fp)}$ such that

$$\mathbb{P}(T \ge t \mid E = e, A = a') = \mathbb{P}(T \ge t^{(fp)} \mid E = e^{(fp)}, A = a),$$

where the value $e^{(fp)}$ was obtained in the previous step. The step can be visualized as follows²

¹This assumption is empirically untestable, since it is impossible to observe both a female and a male version of the same individual.

²In the visualization, the test scores of male applicants have higher values. We emphasize this is in no way a view implied by the authors, simply a currently observed societal bias in certain university admission datasets.

In the last step, the outcome variable Y needs to be adjusted. The adaptation is based on the values of education and the test score. The transformed value $y^{(fp)}$ of Y = y would satisfy

$$\mathbb{P}(Y \ge y \mid E = e, T = t, A = a') = \mathbb{P}(Y \ge y^{(fp)} \mid E = e^{(fp)}, T = t^{(fp)}, A = a). \tag{1}$$

This way of counterfactual correction is known as *recursive substitution* (Pearl 2009, Chapter 7).

We next describe the approach from above formally. The reader who is not interested in the mathematical detail is encouraged to go straight to Section 3. We start by introducing an important causal inference concept, related to our discussion, namely the *structural causal model*. A structural causal model (SCM) is a 4-tuple $\langle V, U, \mathcal{F}, P(u) \rangle$, where

- $V = \{V_1, ..., V_n\}$ is the set of observed (endogeneous) variables
- $U = \{U_1, ..., U_n\}$ are latent (exogeneous) variables
- $\mathcal{F} = \{f_1, ..., f_n\}$ is the set of functions determining $V, v_i \leftarrow f_i(\operatorname{pa}(v_i), u_i)$, where $\operatorname{pa}(V_i) \subset V, U_i \subset U$ are the functional arguments of f_i
- P(u) is a distribution over the exogeneous variables U.

We note that any particular SCM is accompanied by a graphical model \mathcal{G} (a directed acyclic graph), which summarizes which functional arguments are necessary for computing the values of each V_i (that it is, how variables affect each other). We assume throughout, without loss of generality, that

- (i) $f_i(pa(v_i), u_i)$ is increasing in u_i for every fixed $pa(v_i)$
- (ii) exogeneous variables U_i are uniformly distributed on [0,1]

We first discuss the so-called Markovian case in which all exogeneous variables U_i are mutually independent. Some relevant extensions, like the Semi-Markovian case (where U_i variables are allowed to have mutual dependencies) and the case of so called *resolving variables*, are discussed in Section 5.

2.2. Basic formulation - Markovian SCMs

Suppose that Y taking values in \mathbb{R} is an outcome of interest and A the protected attribute taking two values a, a'. Our goal is to describe a pre-processing method which transform the entire data V into its fair version $V^{(fp)}$. This is done by computing the counterfactual values V(A=a) which would have been obtained by the individuals, had everyone had the same protected attribute A=a.

More precisely, going back to the *university admission* example above, we want to "equate" the distributions

$$V_i \mid \operatorname{pa}(V_i), A = a \text{ and } V_i \mid \operatorname{pa}(V_i), A = a'.$$
(2)

In words, we want the distribution of V_i to be the same for the female and male applicants, for every variable V_i . Since each function f_i of the original SCM is reparametrized so that $f_i(pa(v_i), u_i)$ is increasing in u_i for every fixed $pa(v_i)$, and also that U_i variables are uniformly

```
Input: V, causal graph \mathcal{G} set A \leftarrow a for everyone for V_i \in \operatorname{de}(A) in topological order do

| learn the assignment function V_i \leftarrow f_i(\operatorname{pa}(V_i), U_i) infer the quantiles U_i associated with the variable V_i transform the values of V_i by using the quantile and the transformed parents (obtained in previous steps) V_i^{(fp)} \leftarrow f_i(\operatorname{pa}(V_i)^{(fp)}, U_i) end

return V^{(fp)}

Algorithm 1: FAIR DATA ADAPTATION
```

distributed on [0, 1]. Then the U_i variables can be seen as the latent quantiles. Our algorithm proceedes as follows:

The f_i assignment functions of the SCM are of course unknown, but are learned non-parametrically at each step. Notice that Algorithm 1 is computing the counterfactual values V(A=a) under the do(A=a) intervention for each individual, while keeping the latent quantiles U fixed. In the case of continuous variables, the latent quantiles U can be determined exactly, while for the discrete case, this is more subtle and described in detail in the original fair data adaptation manuscript (Plecko and Meinshausen 2020, Section 5).

3. Implementation

The implementation is based on the main function fairadapt(), which returns an S3 object of class "fairadapt". We list the most important arguments of the function and then show how these should be specified:

- formula, argument of type formula specifies the dependent and explanatory variables
- adj.mat argument of type matrix encodes the adjacency matrix
- train.data, test.data of type data.frame
- protect. A of type character is of length one and names the protected attribute.

```
R> uni.adj.mat <- array(0, dim = c(4, 4))
R> colnames(uni.adj.mat) <- rownames(uni.adj.mat) <-
+ c("gender", "edu", "test", "score")
R>
R> uni.adj.mat["gender", c("edu", "test")] <-
+ uni.adj.mat["edu", c("test", "score")] <-
+ uni.adj.mat["test", "score"] <- 1L
R>
R> nsamp <- 200
R>
R> FA.basic <- fairadapt(score ~ .,
+ train.data = uni_admission[1:nsamp, ],
+ test.data = uni_admission[(nsamp+1):(2*nsamp), ],
+ adj.mat = uni.adj.mat, protect.A = "gender", res.vars = NULL,
+ visualize.graph = F, quant.method = fairadapt:::rangerQuants)</pre>
```

```
R> R> FA.basic
```

Fairadapt result

Call:

score ~ .

Protected attribute: gender
Protected attribute levels: 0, 1
Number of training samples: 200
Number of test samples: 200
Number of independent variables: 3

Total variation (before adaptation): -0.6757414 Total variation (after adaptation): -0.04207103

The "fairadapt" S3 class has several associated generics and methods. For instance, print(FA.basic) shows some information about the object call, such as number of variables, the protected attribute and also the total variation before and after adaptation, defined as (Y denoting the outcome variable)

$$\mathbb{E}[Y \mid A = a] - \mathbb{E}[Y \mid A = a']$$
 and $\mathbb{E}[Y^{(fp)} \mid A = a] - \mathbb{E}[Y^{(fp)} \mid A = a']$,

respectively. The total variation, in the case of binary Y, corresponds to the parity gap.

3.1. Specifying the graphical model

The **fairadapt** supposes the underlying graphical model \mathcal{G} is known. The model is specified by the adjacency matrix. For example, suppose we take the causal graph \mathcal{G} of the university admission example above. For such a graph, we construct the adjacency matrix and the graph with the **GraphModel()** convenience function that builds on top of the **igraph** package.

```
R> toy.graph <- graphModel(uni.adj.mat)
R> plot(toy.graph, vertex.size = 40, vertex.label.cex = 0.5,
+ vertex.label.color = "black")
```


3.2. Quantile learning step

We describe the training step using the fairadapt() function. The fairadapt() function can be used in two slightly distinct ways. The first option is by specifying training and testing data at the same time. The data adaptation is then applied to the combination of train and test data, in order to learn the latent quantiles as precisely as possible (with the exception of label Y which is unavailable on the test set). The second option is use only the train.data argument when calling fairadapt(), after which the predict() function can be used to adapt test data at a later stage.

We note that train.data and test.data need to have column names which appear in the names of the adjacency matrix colnames(adj.mat). The protected attribute A is given as a character vector protect. A of length one.

The quantile learning step in Algorithm 1 can be done using three different methods:

- Quantile Regression Forests (Meinshausen 2006)
- Non-crossing quantile neural networks (Cannon 2018)
- Linear Quantile Regression (Koenker and Hallock 2001)

The summary of the various differences between the methods is given in Table 1.

The choice of quantile learning method is done by specifying the quant.method argument, which is of class function and constructs the quantile regression object. For more details and an example, see ?rangerQuants. Together with the quant.method constructor, S3-dispatch is used for inferring the quantiles. This allows the user to specify their own quantile learning methods easily.

We quickly discuss the quantile learning methods included in the package. Using the linear quantile method is the fastest option. However, it cannot handle the non-parametric case. For a non-parametric approach and mixed data, the RF approach is well-suited. The neural network approach is, comparatively, substantially slower than the forest/linear case and does

	Random Forests	Neural Networks	Linear Regression	
R-package	ranger	mcqrnn	quantreg	
quant.method	rangerQuants	mcqrnnQuants	linearQuants	
complexity	$O(np\log n)$	$O(npn_{\text{epochs}})$	$O(p^2n)$	
		2-layer fully	"br" method of	
default parameters	ntrees = 500	connected	Barrodale and	
default parameters	$mtry = \sqrt{p}$	feed-forward	Roberts used for	
	·	network	$\operatorname{fitting}$	
T(200,4)	0.4 sec	89 sec	$0.3 \; \mathrm{sec}$	
T(500,4)	0.9 sec	$202 \sec$	$0.5 \sec$	

Table 1: Summary table of different quantile regression methods. n is the number of samples, p number of covariates, n_{epochs} number of training epochs for the NN. T(n,4) denotes the runtime of different methods on the university admission dataset, with n training and testing samples.

not scale well to large sample sizes. Generally, we recommend using the forest based approach, because of the non-parametric nature and computational speed. However, we note that for smaller sample sizes, the neural network approach might in fact be the best option.

3.3. Fair-twin inspection

The university admission example presented in Section 2 demonstrates how we can compute counterfactual values for an individual while preserving their relative educational achievement. In particular, for a male student with values (a, e, t, y), we compute his "fair-twin" values $(a^{(fp)}, e^{(fp)}, t^{(fp)}, y^{(fp)})$ - the values the student would have obtained, had he been female. To explicitly compare a person to their hypothetical fair-twin, we use the fairTwins() function, applied to an object of class "fairadapt":

R> fairTwins(FA.basic, train.id = seq.int(1L, 5L, 1L))

```
score score_adapted
 gender
                                       edu edu_adapted
                                                              test
         1.9501728
                      1.71311662
                                 1.3499572
                                           0.67999501
                                                       1.617739679
2
      0 - 2.3502495
                     -2.35024955 -1.9779234 -1.97792341 -3.121796235
3
         0.6285619
      1
                     0.530034686
4
         0.7064857
                     0.13173095
                                 0.8142112 -0.04845526
                                                       0.004573003
      1
5
      1
         0.3678313
                     0.29684574 1.8415242 0.94042590
                                                       1.193677123
 test_adapted
    0.9450420
1
2
   -3.1217962
3
   -0.3345859
4
   -0.7898907
    0.5555573
```

In this example, we compute the values in a "female" world. Therefore, for female applicants, the values stay the same, while for male applicants the values are adapted, as can be seen from the output.

4. Illustration

Here we describe an example of a possible real-world use of **fairadapt**. Suppose that after a legislative change the US government has decided to adjust the salary of all of its female employees in order to remove both disparate treatment and disparate impact effects. To this end, the government wants to compute the counterfactual salary values of all female employees, that is the salaries that female employees would obtain, had they been male.

To do this, the government is using the from the 2018 American Community Survey by the US Census Bureau. We load the pre-processed version of the dataset:

```
R> dat <- gov_census
R> print(head(dat))
```

```
sex age race hispanic_origin citizenship nativity marital family_size
1:
     male 64 black
                                                 1
                                                     native
                                                             married
                                   no
2: female 54 white
                                                                                 3
                                                 1
                                                     native
                                                              married
                                   no
3:
     male 38 black
                                                 1
                                                     native
                                                              married
                                                                                 3
                                   no
4: female
          41 asian
                                   no
                                                 1
                                                     native
                                                              married
                                                                                 3
5: female 40 white
                                                 1
                                                     native
                                                             married
                                                                                 4
                                   no
                                                                                 3
6: female 46 white
                                                 1
                                                     native divorced
   children education_level english_level salary hours_worked weeks_worked
1:
          0
                           20
                                             43000
                                                               56
                                             45000
2:
          1
                           20
                                           0
                                                               42
                                                                             49
3:
          1
                           24
                                           0 99000
                                                               50
                                                                             49
          1
                                                               50
4:
                           24
                                             63000
                                                                             49
          2
                                                               40
                                                                             49
5:
                           21
                                             45200
6:
          1
                           18
                                             28000
                                                               40
                                                                             49
   occupation industry economic_region
      13-1081
1:
                   928P
                               Southeast
2:
      29-2061
                   6231
                               Southeast
3:
      25-1000
                  611M1
                               Southeast
      25-1000
4:
                  611M1
                               Southeast
5:
      27-1010
                               Southeast
                  611M1
      43-6014
                               Southeast
6:
                   6111
R> # group the columns
R> protect.A <- "sex"
R> dmgraph <- c("age",</pre>
                        "race", "hispanic_origin", "citizenship", "nativity",
    "economic region")
R> fam <- c("marital", "family_size", "children")</pre>
R> edu <- c("education_level", "english_level")</pre>
R> work <- c("hours_worked", "weeks_worked", "occupation", "industry")
R> out <- "salary"
```

The hypothesized causal graph for the dataset is given in Figure 1. We construct the causal graph and the confounding matrix:

```
R> col.names <- c(protect.A, dmgraph, fam, edu, work, out)
R>
R> adj.mat <- cfd.mat <- array(0, dim = c(length(col.names), length(col.names)))</pre>
R> colnames(adj.mat) <- rownames(adj.mat) <-</pre>
    colnames(cfd.mat) <- rownames(cfd.mat) <-</pre>
    col.names
R>
R> adj.mat[protect.A, c(fam, edu, work, out)] <-</pre>
    adj.mat[dmgraph, c(fam, edu, work, out)] <-</pre>
    adj.mat[fam, c(edu, work, out)] <-</pre>
    adj.mat[edu, c(work, out)] <-</pre>
    adj.mat[work, out] <-</pre>
    cfd.mat[protect.A, dmgraph] <- cfd.mat[dmgraph, protect.A] <- 1L</pre>
R>
R> census.graph <- graphModel(adj.mat, cfd.mat)</pre>
R> plot(census.graph, vertex.size = 20, vertex.label.cex = 0.5,
    vertex.label.color = "black")
```


Before applying fairadapt(), we first log-transform the salaries and look at the densities by

Figure 1: The causal graph for the Government-Census dataset. D are demographic features, A is gender, F is marital and family information, E education, E work-related information, E the salary, which is also the outcome of interest.

gender group

There is a clear shift between the two genders, meaning that male employees are currently treated better than female employees. However, there could be differences in salary which are not due to gender inequality, but have to do with the economic region in which the employee works. This needs to be accounted for as well, i.e. the difference between economic regions is not to be removed. To solve the problem, the US government applies fairadapt:

After applying the adaptation, we inspect whether the problem has improved. The densities after adaptation can be plotted using the autoplot() function:

If we obtain additional testing data, and wish to adapt it as well, we can use the predict() function:

```
R> new.test <- dat[seq.int(nsamples + 1L, nsamples + 10L, 1L)]
R> adapt.test <- predict(FA.govcensus, newdata = new.test)
R> head(adapt.test)
```

	sex	age	race	hispanio	c_origin	citize	ensh	ip na	ativity	marital	family_size
1:	${\tt female}$	52	${\tt white}$		no			1	${\tt native}$	married	. 3
2:	${\tt female}$	31	white		no			1	${\tt native}$	married	. 5
3:	${\tt female}$	53	white		no			1	${\tt native}$	married	. 2
4:	${\tt female}$	53	black		no			1	${\tt native}$	married	. 2
5:	${\tt female}$	23	${\tt white}$		no			1	${\tt native}$	married	. 2
6:	${\tt female}$	49	${\tt white}$		yes			1	${\tt native}$	married	. 7
	children education_level english_level salary hours_worked weeks_worked										
1:		1		21.000		0	11.	91839	9	40	49
2:		3		22.000		0	10.	77896	3	40	49
3:		0		22.000		0	11.	40756	5	40	49
4:		0		21.000		0	11.	28978	3	40	49

5:	0	22	2.000	0 10.46310	20	49
6:	4	21	1.266	0 10.69194	40	39
	occupation	${\tt industry}$	economic_region			
1:	13-1082	92M2	Southeast			
2:	25-2020	6111	Southeast			
3:	25-1000	611M1	Southeast			
4:	11-91XX	928P	Southeast			
5:	25-1000	5413	Southeast			
6:	25-2020	113M	Southeast			

Finally, we can do fair-twin inspection using the fairTwins() function, to see how feature values of individual employees have changed:

```
R> inspect.cols <- c("sex", "age", "education_level", "salary")
R> fairTwins(FA.govcensus, train.id = 1:5, cols = inspect.cols)
```

	sex	age	age_adapted	education_level	education_level_adapted	salary			
1	male	64	64	20	19	10.66896			
2	${\tt female}$	54	54	20	20	10.71442			
3	male	38	38	24	24	11.50288			
4	${\tt female}$	41	41	24	24	11.05089			
5	${\tt female}$	40	40	21	21	10.71885			
	salary_adapted								
1	1	10.20	359						
2	1	10.71	1442						
3	1	11.60	0824						
4	1	11.05	5089						
5	1	10.71	1885						

The values are unchanged for the female individuals. Note that age does not change for any individual, since it is not a descendant of A. However, variables education_level and salary do change for males, as they are descendants of A.

The variable hours_worked is also a descendant of A. However, one might argue that this variable should not be adapted in the procedure, that is, that it should remain the same, even if we hypothetically change the person's gender. This is the idea behind $resolving\ variables$, introduced in the next section.

5. Extensions

5.1. Adding resolving variables

Kilbertus *et al.* (2017) discuss that in some situations the protected attribute A can affect variables in a non-discriminatory way. For instance, in the Berkeley admissions dataset (Bickel, Hammel, and O'Connell 1975) we observe that females often apply for departments with lower admission rates and consequently have a lower admission probability. However, we perhaps

would not wish to account for this difference in the adaptation procedure if we were to argue that department choice is a choice everybody is free to make. This motivated the following reasoning, found in Kilbertus $et\ al.\ (2017)$. A variable R is called resolving if

- (i) $R \in de(A)$, where de(A) are the descendants of A in the causal graph \mathcal{G}
- (ii) the causal effect of A on R is considered to be non-discriminatory

In presence of resolving variables, we compute the counterfactual under a more complicated intervention do(A = a, R = R(a')). The potential outcome value V(A = a, R = R(a')) is obtained by setting A = a and computing the counterfactual while keeping the values of resolving variables to those they *attained naturally*. This is a nested counterfactual and the difference in Algorithm 1 is simply that resolving variables R are skipped over in the forloop. We run the following code to compute the fair adaptation with the variable test being resolving in the uni_admission dataset

```
R> FA.resolving <- fairadapt(score ~ .,
    train.data = uni_admission[1:nsamp, ],
    test.data = uni_admission[(nsamp+1):(2*nsamp), ],
    adj.mat = uni.adj.mat, protect.A = "gender", res.vars = "test",
    visualize.graph = F)
R.>
R> FA.resolving
Fairadapt result
Call:
 score ~ .
Protected attribute:
                                       gender
Protected attribute levels:
                                       0, 1
Resolving variables:
                                       test
Number of training samples:
                                       200
Number of test samples:
                                       200
Number of independent variables:
                                       3
Total variation (before adaptation):
                                       -0.6757414
Total variation (after adaptation):
                                       -0.4332679
```

We note that the total variation in this case is larger than in the FA.basic example from Section 3, with no resolvers. The intuitive reasoning here is that resolving variables allow for some discrimination, so we expect to see a larger total variation between the groups. Finally, we can visualize the graph

```
R> plot(graphModel(uni.adj.mat, res.vars = "test"),
+ vertex.size = 40, vertex.label.cex = 0.5,
+ vertex.label.color = "black")
```


which shows a different color for the resolving variable test. The resolving variables are red-colored in order to be distinguished from other variables.

5.2. Semi-Markovian and topological ordering variant

In Section 2 we were concerned with the Markovian case, which assumes that all exogeneous variables U_i are mutually independent. However, in practice this need not be the case. If there are mutual dependencies between the U_i s, we are dealing with a so-called Semi-Markovian model. These dependencies between latent variables are represented by dashed, bidirected arrows in the causal diagram. In the university admission example, suppose we had that $U_{\text{test}} \not\perp U_{\text{score}}$, meaning that latent variables corresponding to variable test and final score are correlated. Then the graphical model would be represented as

There is an important difference in the adaptation procedure for Semi-Markovian case: when inferring the latent quantiles U_i of variable V_i , in the Markovian case, only the direct parents $pa(V_i)$ are needed. In the Semi-Markovian case, due to correlation of latent variables, using only the $pa(V_i)$ can lead to biased estimates of the U_i . Instead, the set of direct parents needs to be extended, described in detail in (Tian and Pearl 2002). We briefly sketch the argument. Let the C-components be a partition of the set V, such that each C-component contains a set of variables which are mutually connect by bidirected arrows. Let $C(V_i)$ denote the whole C-component of variable V_i . We then define the set of extended parents

$$\operatorname{Pa}(V_i) := (C(V_i) \cup pa(C(V_i))) \cap \operatorname{an}(V_i),$$

where $\operatorname{an}(V_i)$ are the ancestors of V_i . The adaptation procedure in the Semi-Markovian case remains the same as in Algorithm 1, with the difference that the set of direct parents $\operatorname{pa}(V_i)$ is replaced by $\operatorname{Pa}(V_i)$ at each step.

To include the bidirected confounding arcs in the adaptation, we use the cfd.mat argument of type matrix such that

- cfd.mat has the same dimension, column and row names as adj.mat
- cfd.mat is symmetric and setting cfd.mat["Vi", "Vj"] <- cfd.mat["Vj", "Vi"] <- 1L indicates that there is a bidirected edge between variables V_i and V_j .

Alternatively, instead of using the extended parent set $Pa(V_i)$, we can use the "largest possible" set of parents, namely the ancestors $an(V_i)$. This approach is implemented, and the user only needs to specify the topological ordering. This is done by specifying the top.ord argument which is a character vector, containing the correct ordering of the names appearing in names(train.data).

The following code runs the adaptation in the Semi-Markovian case:

We visualize the graph that was used for the adaptation.

```
R> plot(FA.semimarkov, graph = T, vertex.size = 40,
+ vertex.label.cex = 0.5, vertex.label.color = "black")
```


5.3. Questions of identifiability

So far, we have not discussed whether it is always possible to do the counterfactual inference described in the paper. In the causal literature, an intervention is *identifiable* if it can be

computed uniquely using the data and the assumptions encoded in the graphical model \mathcal{G} . The important result by Tian and Pearl (2002) states that an intervention do(X = x) on a singleton variable X is identifiable if and only if there is no bidirected path between X and ch(X). Therefore, the intervention is identifiable if

- the model is Markovian
- the model is Semi-Markovian and
 - there is no bidirected path between A and ch(A), and
 - there is no bidirected path between R_i and $ch(R_i)$ for any resolving variable R_i .

Based on this, the fairadapt() function sometimes returns a error, if the specified intervention is not possible to compute. One additional limitation is that **fairadapt** currently does not support *front-door identification* (Pearl 2009, Chapter 3), but we hope to include this in a future version.

References

- Bickel PJ, Hammel EA, O'Connell JW (1975). "Sex bias in graduate admissions: Data from Berkeley." *Science*, **187**(4175), 398–404.
- Blau FD, Kahn LM (2003). "Understanding international differences in the gender pay gap." Journal of Labor economics, 21(1), 106–144.
- Cannon AJ (2018). "Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with application to rainfall extremes." Stochastic environmental research and risk assessment, 32(11), 3207–3225.
- Corbett-Davies S, Goel S (2018). "The measure and mismeasure of fairness: A critical review of fair machine learning." arXiv preprint arXiv:1808.00023.
- Darlington RB (1971). "ANOTHER LOOK AT "CULTURAL FAIRNESS" 1." Journal of Educational Measurement, 8(2), 71–82.
- Galles D, Pearl J (1998). "An axiomatic characterization of causal counterfactuals." Foundations of Science, 3(1), 151–182.
- Hardt M, Price E, Srebro N, et al. (2016). "Equality of opportunity in supervised learning." In Advances in neural information processing systems, pp. 3315–3323.
- Kilbertus N, Carulla MR, Parascandolo G, Hardt M, Janzing D, Schölkopf B (2017). "Avoiding discrimination through causal reasoning." In *Advances in Neural Information Processing Systems*, pp. 656–666.
- Koenker R, Hallock KF (2001). "Quantile regression." Journal of economic perspectives, 15(4), 143–156.
- Komiyama J, Takeda A, Honda J, Shimao H (2018). "Nonconvex optimization for regression with fairness constraints." In *International conference on machine learning*, pp. 2737–2746. PMLR.

- Kusner MJ, Loftus J, Russell C, Silva R (2017). "Counterfactual fairness." In Advances in Neural Information Processing Systems, pp. 4066–4076.
- Lambrecht A, Tucker C (2019). "Algorithmic bias? an empirical study of apparent gender-based discrimination in the display of stem career ads." *Management Science*, **65**(7), 2966–2981.
- Larson J, Mattu S, Kirchner L, Angwin J (2016). "How we analyzed the COMPAS recidivism algorithm." *ProPublica* (5 2016), **9**.
- McGinley AC (2011). "Ricci v. DeStefano: Diluting Disparate Impact and Redefining Disparate Treatment." Nev. LJ, 12, 626.
- Meinshausen N (2006). "Quantile regression forests." Journal of Machine Learning Research, 7(Jun), 983–999.
- Pearl J (2009). Causality. Cambridge University press.
- Plecko D, Meinshausen N (2020). "Fair Data Adaptation with Quantile Preservation." *Journal of Machine Learning Research*, **21**, 1–44.
- Tian J, Pearl J (2002). "A general identification condition for causal effects." In *Aaai/iaai*, pp. 567–573.

Affiliation:

Drago Plecko ETH Zürich

Seminar for Statistics Rämistrasse 101 CH-8092 Zurich

E-mail: drago.plecko@stat.math.ethz.ch

Nicolas Bennett ETH Zürich

Seminar for Statistics Rämistrasse 101 CH-8092 Zurich

E-mail: nicolas.bennett@stat.math.ethz.ch

Nicolai Meinshausen

ETH Zürich

Seminar for Statistics Rämistrasse 101 CH-8092 Zurich

E-mail: meinshausen@stat.math.ethz.ch

Journal of Statistical Software

published by the Foundation for Open Access Statistics

MMMMMM YYYY, Volume VV, Issue II

doi:10.18637/jss.v000.i00

http://www.jstatsoft.org/ http://www.foastat.org/

> Submitted: yyyy-mm-dd Accepted: yyyy-mm-dd