Selección de Modelos y Regularización Ciencia de Datos y Econometría Aplicada

Ignacio Sarmiento-Barbieri

Universidad de los Andes

Agenda

- 1 Recap: Predicción y Overfit
- 2 Selección de Modelos
 - Best Subset Selection
 - Stepwise Selection
- 3 Regularización
 - Lasso

▶ ML nos interesa la predicción fuera de muestra

- ML nos interesa la predicción fuera de muestra
- ▶ Overfit: modelos complejos predicen muy bien dentro de muestra, pero tienden a hacer un mal trabajo fuera de muestra
- ► Hay que elegir el modelo que "mejor" prediga
 - Métodos de Remuestreo
 - Enfoque del conjunto de validación
 - ► Loocy
 - ► Validación cruzada en K-partes (5 o 10)

Selección de Modelos: Motivación

- ightharpoonup Tenemos M_k modelos
- Queremos encontrar el que mejor predice fuera de muestra
- ► Hay distintas formas de enfrentarlo
- Las clásicas
 - Elección del mejor conjunto
 - Elección por pasos
 - ► Hacia adelante (Forward selection)
 - ► Hacia atras (Backward selection)

Model Subset Selection

- \blacktriangleright We have M_k models
- ▶ We want to find the model that best predicts out of sample
- ▶ We have a number of ways to go about it
 - Best Subset Selection
 - Stepwise Selection
 - ► Forward selection
 - Backward selection

Best Subset Selection

$$y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + u \tag{1}$$

- I Estimate **all** possible models with k = 0, 1, ..., p predictors.
- 2 Compute the prediction error using cross validation
- 3 Pick the one with the smallest prediction error

Best Subset Selection

- 1 Let M_0 denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2 For k = 1, 2, ..., p:
 - 1 Fit all $\binom{p}{k}$ models that contain exactly k predictors
 - 2 Pick the best among these $\binom{p}{k}$ models, and call it M_k . Where *best* is the one with the smallest *SSR*
- 3 Select a single best model from among M_0, \ldots, M_p using cross-validated prediction error.

Stepwise Selection

- ► For computational reasons, best subset selection cannot be applied with very large p.
- ▶ Best subset selection may also suffer from statistical problems when p is large
- ► An enormous search space can lead to overfitting and high variance of the coefficient estimates.
- ► For both of these reasons, stepwise methods, which explore a far more restricted set of models, are attractive alternatives to best subset selection.

Stepwise Selection

- 1 Forward Stepwise Selection
 - Start with no predictors
 - ► Test all models with 1 predictor. Choose the best model
 - ► Add 1 predictor at a time, without taking away.
 - ▶ Of the p+1 models, choose the one with smallest prediction error using cross validation
- 2 Backward Stepwise Selection
 - ▶ Same idea but start with a complete model and go backwards, taking one at a time.

Forward Stepwise Selection

- ► Computational advantage over best subset selection is clear.
- ▶ It is not guaranteed to find the best possible model out of all 2^p models containing subsets of the p predictors.
- ▶ Drawback: once a predictor enters, it cannot leave.

Backward Stepwise Selection

- Like forward stepwise selection, the backward selection approach searches through only 1 + p(p+1)/2 models
- ► However, unlike forward stepwise selection, it begins with the model containing all p predictors, and then iteratively removes the least useful predictor, one-at-a-time.
- ▶ Like forward stepwise selection, backward stepwise selection is not guaranteed to yield the best model containing a subset of the p predictors.
- ightharpoonup Backward selection requires that the number of observations (samples) n is larger than the number of variables p (so that the full model can be fit).
- ▶ In contrast, forward stepwise can be used even when n < p, and so is the only viable subset method when p is very large.

Regularización

Lasso

Para un $\lambda \geq 0$ dado, consideremos el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{i=1}^{p} |\beta_i|$$
 (2)

Lasso

Para un $\lambda > 0$ dado, consideremos el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (2)

- ► "LASSO's free lunch": selecciona automáticamente los predictores que van en el modelo $(\beta_i \neq 0)$ y los que no $(\beta_i = 0)$
- ▶ Por qué? Los coeficientes que no van son soluciones de esquina
- $ightharpoonup L(\beta)$ es no differentiable

Lasso Intuición en 1 Dimension

Lasso Intuición

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
(3)

- ► Un solo predictor, un solo coeficiente
- ightharpoonup Si $\lambda = 0$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 \tag{4}$$

▶ la solución es?

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (5)

la solución analítica es

$$\hat{\beta}_{lasso} = \begin{cases} 0 & \text{si } \lambda \ge \lambda^* \\ \hat{\beta}_{OLS} - \frac{\lambda}{2} & \text{si } \lambda < \lambda^* \end{cases}$$
 (6)

Intuición en 2 Dimensiones (OLS)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2$$
 (7)

Fuente: https://allmodelsarewrong.github.io

Intuición en 2 Dimensiones (Lasso)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } (|\beta_1| + |\beta_2|) \le c$$
 (8)

Intuición en 2 Dimensiones (Lasso)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } (|\beta_1| + |\beta_2|) \le c$$
 (9)

Comentarios técnicos

- ► Importante para aplicación:
 - Estandarizar los datos (media 0, y varianza 1)
 - ightharpoonup Como elegimos λ ?

Comentarios técnicos: selección de λ

- ▶ Como elegimos λ ?
- \triangleright λ es un parámetro y lo elegimos usando validación cruzada
 - 1 Partimos la muestra de entrenamiento en K Partes: $M_{train} = M_{fold\,1} \cup M_{fold\,2} \cdots \cup M_{fold\,K}$
 - 2 Cada conjunto $M_{fold\,K}$ va a jugar el rol de una muestra de evaluación $M_{eval\,k}$. Entonces para cada muestra
 - $ightharpoonup M_{train-1} = M_{train} M_{fold 1}$

 - $ightharpoonup M_{train-k} = M_{train} M_{fold\,k}$
 - 3 Luego hacemos el siguiente loop
 - 1 Para $\lambda_i = 0, 0.001, 0.002, \dots, \lambda_{max}$
 - Para k = 1, ..., K
 - Ajustar el modelo $m_{i,k}$ con λ_i en $M_{train-k}$
 - Calcular y guardar el $MSE(m_{i,k})$ usando M_{eval-k}
 - fin para k
 - Calcular y guardar $MSE_i = \frac{1}{K}MSE(m_{i,k})$
 - 2 fin para λ
 - 4 Encontrar el menor MSE_i y usar ese $\lambda_i = \lambda^*$

