

Road Map of our Project

CONTEXT

- Covid-19 in Central India
- Problem Overview

Context

Covid-19 in India

- India is composed of 28 states, with 1.45 billion of people (24 times of italian population)
- First case reported on 30 January 2020, at this moment 4-th place in world
- OxCGRT gave a score of 100 at the end of June for the swift emergency policy

Problem Overview

- Focus on central states of India
- Build a predictive model over the daily confirmed cases of the pandemic
- Build a predictive model over the cumulative confirmed cases of the pandemic

1° PHASE

- Pre-processing data
- Data visualization

1° Phase: Pre-processing data

^{*} These datasets are taken from Kaggle website

^{*} Some chosen covariates are used for data visualization and prediction

^{*} Last phase is valid for every kind of analysis

- Total population
 divided by rural and
 urban and density for
 each state
- Focus on Maharashtra and West Bengal, they are the most populous

- Confirmed cases in each region, they are concentrated on Maharashtra.
- Also according the percentage scale, it is the most critical state

- Plot shows cumulative confirmed cases, cured and death trends
- Interesting note: apparently Cured+Deaths lags behind confirmed of about 14 days

- Counting of test responses for each state
- Lots of missing data for positive/negative swabs

20 -

0 -

May

- Difference between the total swabs, and number of positive and negative
- Difference should be zero, so there is noise in data
- For some points we observed negative values (Maharashtra)

Daily Analysis

- Daily swabs vs daily confirmed
- Few irregular points where found in daily swabs count and also in daily confirmed cases
- Those points were handled setting them to zero

2° PHASE

- Model building
- Model assessment

2° Phase: Model Building

Daily Analysis

Excluded

- State specific constants (Population, Healthcare and Testing facilities)
- Positive and Negative swabs
- Cured and Deaths

GLM poisson

- Integer values
- Range $[0, +\infty]$

Model's hypothesis

Covariates

- Yesterday Tot samples
- Yesterday confirmed
- Num day
- Num day^2

Daily Confirmed_i ~ Poisson(λ_i)

 $\log(\lambda_i) = \beta_0 + \beta_1 \cdot Num \ Day_i + \beta_2 \cdot Num \ Day_i^2 + \beta_3 \cdot Yest \ Confirmed_i + \beta_4 \cdot Yest \ Tot \ Samples_i$

Daily Analysis

- Scaled residuals vs fitted values plot (Maharashtra)
- We used the AER package for dispersion test over poisson model
- P-value is very close to zero and we reject the equidispersion null hiphotesys
- We switched to quasi-poisson model

Daily Analysis

- Backward selection: we discard the covariates with p-value over 0,05
- F-Test: p-value over 0,05 means pick the simplest model otherwise reject it

MODELS (Maharashtra)	
M1	$Num\ Day + Num\ Day^2 + Yest\ Confirmed + Tot\ Samples$
M2	$Num\ Day + Num\ Day^2 + Yest\ Confirmed$
МЗ	Num Day + Yest Confirmed
M4	Yest Confirmed

RES DEV	F-TEST
4217	0,68
4224	0,19
4299	<<
42000	-

^{*} F-test was performed considering sequential models (eg. M1~M2, M2~M3, ...)

Daily Analysis

Gujarat

Chhattisgarh

Jharkhand

Odisha

Maharashtra

West Bengal

Madhya Pradesh

Intercept	
X	
-	
-	
-	
X	
-	
X	

Num Day
X
-
X
-
X
X
X

Num Day^2
Х
-
Х
Х
-
Х

Yest Confirmed
X
X
X
X
X
-
Х

t ned	Yest Tot Samples	
	X	
	X	
	X	
	-	
	-	
	X	
	-	

RES DEV
1311
650,07
521,52
573
4373
1084,8
2948,9

2° Phase: Model Building

- One idea is extending daily models to cumulative cases, simply by summing them
- Second idea is using tscount package (i.e. modeling of count time series following glm), because it is a flexible class of models which can describe serial correlation in a parsimonious way

2° Phase: Model Building

Cumulative Analysis 2

Excluded

- State specific constants (Population, Healthcare and Testing facilities)
- Positive and Negative swabs

GLM poisson

- Cumulative count values
- Range $[0, +\infty]$

Model's hypothesis

Covariates

- Previous confirmed cases
- Mean of past 14 confirmed cases
- **Total Sample**
- Previous daily confirmed cases
- **Previous Cured and Deaths**

 λ_t : estimated mean condition on previous process history

> Cumulative Confirmed_t ~ Poisson(λ_t) $\log(\lambda_t) = \beta_0 + \beta_1 \cdot Cumulative\ Confirmed_{t-1} + \alpha \cdot \log(\lambda_{t-14}) + \eta_i \cdot Cov_{i,t}$

Cumulative Analysis 2

- Diagnostics ACF and Residuals (Maharashtra)
- To assess a model we checked the residuals and we tried to observe not auto-correlated, random residuals

ACF of Pearson residuals

Pearson residuals over time

Cumulative Analysis 2

- We choose the model which has lowest MSE on both train and test sets
- Information criteria were excluded because of small and discording differences

MODELS (Maharashtra)	
M1	$\beta_0 + \beta_1 \cdot y_{t-1} + \alpha \cdot \lambda_{t-14} + \eta_1 \cdot Tot \ Samples + \eta_2 \cdot Yest \ Daily \ Confirmed + \eta_3 \cdot Yest \ Cured + \eta_4 \cdot Yest \ Death$
M2	$\beta_0 + \beta_1.y_{t-1} + \alpha \cdot \lambda_{t-14} + \eta_1 \cdot Tot \ Samples \ + \eta_2 \cdot Yest \ Daily \ Confirmed \ + \\ \eta_3 \cdot Yest \ Cured$
М3	$\beta_0 + \beta_1 \cdot y_{t-1} + \alpha \cdot \lambda_{t-14} + \eta_1 \cdot Tot \ Samples + \eta_2 \cdot Yest \ Daily \ Confirmed$
M4	$\beta_0 + \beta_1 \cdot y_{t-1} + \alpha \cdot \lambda_{t-14} + \eta_1 \cdot \text{Tot Samples}$

TOT MSE

1247406

151067

98448

86735

Cumulative Analysis 2

Gujarat

Chhattisgarh

Jharkhand

Odisha

Maharashtra

West Bengal

Madhya Pradesh

Yest Cured	
-	
-	
X	
-	
-	
X	
-	

Yest Death	Yest Daily Confirmed
-	X
-	-
-	X
-	X
-	-
X	X
-	X

Tot Samples	
Х	
Х	
Х	
X	
X	
Х	
Х	

TOT MSE
9576
13179
2613
425
86736
9274
19415

3° PHASE

- Prediction
- Evaluation

3° Phase: Prediction

Daily Analysis

- Final predictive plot by using the selected models
- For some states the observations are very noisy
- Models fit well less noisy data

3° Phase: Evaluation

Daily Analysis

- Residuals plot for each state
- Residuals distributions show no systematic pattern
- Heteroskedasticity is observed but less than in Poisson case

3° Phase: Prediction

- Final cumulative predictive plot by using the Daily Model
- Apparently good fit on data

3° Phase: Evaluation

- Standardized residuals vs fitted values
- Residuals performance
 is not satisfying and shows
 systematic behaviour

3° Phase: Prediction

- Final predictive plot by using the selected models
- Chhattisgarh and Jharkhand show an aberrant behaviour on test data

3° Phase: Evaluation

- Standardized residuals vs predicted values
- Most of the states show a trending behaviour on test

CONCLUSION

- Comments
- Next steps

Conclusion: Comments

PROS

- Residuals distributions in daily models show no systematic pattern
- Gives acceptable predictions for spread and noisy data

CONS

- Need to predict covariates for future predictions
- Cumulative prediction from daily model shows deterministic residuals pattern

Conclusion: Next steps

- Study can be extended by using multilevel / hierarchical model instead of choosing different models for each state
- Bayesian models can be considered to combine prior information with data
- Other models such as logistic or Gompertz Curve can be tried especially for cumulative part

References

- Leonardo Egidi, "Covid-19 spreading outbreak Italy", https://www.leonardoegidi.com/covid-19
- Tobias Liboschik, Konstantinos Fokianos and Roland Fried, "tscount: An R Package for Analysis of Count Time Series Following Generalized Linear Models", https://cran.r-project.org/web/packages/tscount/vignettes/tsglm.pdf
- Kaggle, "COVID-19 in India", https://www.kaggle.com/sudalairajkumar/covid19-in-india?select=covid_19_india.csv

