Inst. fysikk 2014

$\begin{array}{c} \mathbf{TFY4115} \ \mathbf{Fysikk} \ (\mathtt{MTEL/MTTK/MTNANO}) \\ \mathbf{Tips} \ \mathbf{for} \ \mathbf{\not{o}ving} \ \mathbf{10} \end{array}$

Oppgave 1. Varmekapasiteter.

Definisjonen av 1 calori er basert på oppvarming av 1 gram vann 1 grad. Luft består stort sett bare av toatomige molekyler, ca. 20 prosent oksygen og ca. 80 prosent nitrogen, $M_{\rm w}\approx 29$ g/mol er oppgitt. Fra forelesningene har vi molare varmekapasiteter 7R/2 for toatomige gasser ved romtemperatur og konstant trykk, og 3R for metaller. Pass på enhetene!

Oppgave 2. Tevann.

Likefram kalorimetrioppgave. 2,5 liter vann er svært likt 2,5 kg ved 12°C.

Oppgave 3. Smelting av is med varmt vann.

Ny kalorimetriopp
gave. Ved interpolering mellom oppgitte data er ved 75°: $\rho_{\text{vann}} = 0,969 \,\text{g/cm}^3$, slik at 2,5 liter vann utgjør 2,42 kg.

Oppgave 4. Fordampningsarbeid.

Isobar prosess. Ideell gasslov for vanndampen gir dampvolumet, vannvolumet beregnes fra oppgitt massetetthet.

Oppgave 5. Adiabatlikninger.

Ideell gasslov.

Oppgave 6. Atmosfære.

Temperatur og trykk er gitt, slik at det er gunstig å bruke adiabatligningene på form $T^{\gamma} p^{1-\gamma} = \text{konst}$ (bevist i forrige oppgave). Skriv om til form $T = T_0 \cdot (\text{noe})$, spar skrivearbeid ved å innføre $\kappa = (\gamma - 1)/\gamma$.

Du kan også finne ΔT uttrykt ved Δp . Da må du tilnærme ved å bruke rekkeutviklingen $(1+x)^n \approx 1+nx$ for små $x = \Delta p/p$.

Oppgave 7. Adiabatisk luftpumpe og ventiler.

- a. Bruk den mest kjente likningen for adiabatisk kompresjon. Pumpa har konstant tverrsnitt A.
- **b.** Bruk adiabatlikningen for T og V eller ideell gasslov.
- c. For en adiabatisk prosess er dW = -dU, det er derfor enklest å beregne arbeidet fra endring i indre energi. For en ideell gass betyr det derfor at vi må finne temperaturendringen (fra b.). Da antall mol er oppgitt betyr det at vi ikke trenger å vite antall repetisjoner for pumpa. Du kan i et ekstremt tilfelle tenke deg at $V_0 = \ell_0 A$ er så stor at pumpa ved start inneholder 20 mol luft slik at bare ett pump er nok.
- **d.** Kompresjonen skjer ved konstant trykk slik at $W_t = p_1 V_1$. Bruk videre ideell gasslov for å uttrykke $p_1 V_1$ med antall mol og temperatur.
- e. Atmosfæretrykket p_0 trykker på stempelet og gir derfor et arbeid $W_{\text{omg}} = p_0 V_0$ på pumpa. Netto arbeid blir derfor $W_{\text{netto}} = W_{\text{k}} + W_{\text{t}} W_{\text{omg}}.$

Også her er det nyttig å uttrykke svaret med temperatur(endring).