1 Auswertung

Im Folgendem werden die erhobenen Messdaten ausgewertet und abschließend bezüglich ihrer Genauigkeit disskutiert.

1.1 Zählrohr-Chrakteristik

Anhand der gemessenen Teilchenanzahl und der zugehörigen Spannung kann die Charakteristik des verwendeten Geiger-Müller-Zählrohres.

Abbildung 1: Charakteristik des verwendeten Geiger-Müller-Zählrohres, $\Delta t = 60\,\mathrm{s}$

Die in 1 dargestellte Charakteristik zeigt die verwendete Apparatur bei einer Betriebsspannung zwischen 320 bis 700 V.

Die Plateau-Ebene ist deutlich zu erkennen, da in diesem Bereich das Verhältnis zwischen registrierter Teilchenanzahl pro Minute und der Spannung nahezu konstant ist. Die Plateau-Ebene beginnt bei ca. $380\,\mathrm{V}$ und endet bei ca. $630\,\mathrm{V}$.

Abbildung 2: Plateau-Ebene des Messgerätes mit linearer Regression

Die Regressionsgeraden an den Plateau-Bereich hat ungefähr die folgenden Daten.

$$\frac{N}{\Delta t}(U) = 6315 \cdot 10^{-5} \, \frac{1}{\text{V s}} + 5587 \cdot 10^{-1} \, \frac{1}{\text{s}} \tag{1}$$

Vor der Platreau-Ebene ist der Proportionalitätsbereich von $320\,\mathrm{V}$ bis $380\,\mathrm{V}$ vermessen worden.

An den Plateau-Bereich schließt sich der Entladungsbereich an, der bis 700 V gemessen wurde. In diesem Bereich nimmt die Steigung der registrierten Teilchenanzahl pro Minute im Bezug auf die angelegte Spannung exponentiell zu.

1.2 Qualitative Bestimmung der Totzeit

Die Nachentladungen konnten bei dem Messvorgang der Totzeit τ , über das Oszilloskop deutlich beobachtet werden. Es wurden insgesamt fünf Messungen bei unterschiedlicher Anodenspannung genommen.

Tabelle 1: Qualitativ bestimmte Totzeit

Spannung in volt	Totzeit in μ s
400	180
450	190
500	200
550	210
600	215

Aus den Daten der Tabelle 1 wurde der Mittelwert mit zugehöriger Standardabweichung bestimmt. Es ergibt sich der Wert $\tau = (2.39 \pm 0.08) \,\mu\text{s}$.

Gleichzeitig wurde auch die Erholungszeit qualitativ bestimmt. Die Messergebnisse sind in Tabelle ?? angegeben.

Tabelle 2: Qualitativ bestimmte Totzeit

Spannung in volt	Erholungszeit in ms
400	2,3
450	2,3
500	2,4
550	2,45
600	2,5

Für die Erholungszeit ergibt sich der Wert $t_{\rm Erholung}$

1.3 Bestimmung der Totzeit mithilfe der Zwei-Quellen-Methode

Die wahre Impulsrate $N_{\rm w}$ unterscheidet sich aufgrund der Totzeit τ von der gemessenen Impulsrate $N_{\rm r}$ um den Faktor $\frac{1}{1-\tau N_{\rm r}}$.

Aus diesem Grund wird die Zwei-Quellen-Methode verwendet, bei der zuerst die Impulsrate einer einzelnen Quelle gemessen wird. Daraufhin wird eine weitere Quelle hinzugefügt, die eine unterschiedliche Strahlungsrate besitzt. Im letzten Schritt wird die erste Quelle aus der Apparatur entnommen.

Aufgrund der genommenen Messwerte kann die Totzeit für $\tau^2 N_{\rm i}^2 << 1~(i=1,2,1+2)$ durch die Formel ?? approximiert werden.

$$\tau \approx \frac{N_1 + N_2 - N_{1+2}}{2N_1 N_2} \tag{2}$$

Die Messung ergaben die folgenden Werte.

 N_1 25692

 N_2 1109

 N_{1+2} 26775

Dabei sind die N_i (i=1,2,1+2) in registrierten Teilchen pro Minute bestimmt.

Aus den Messwerten ergibt sich mit der Formel ?? τ zu $(3 \pm 24) \cdot 10^{-5}$ s.

1.4 Messung der pro Teilchen vom Zählrohr freigesetzten Ladungsmenge

In dem Versuch wurde der vom Zählrohr freigesetzte Strom in Abhängigkeit von der angelegten Spannung gemessen. Die Messung wurde in 10 V Schritten von 320 V bis 700 V durchgeführt. Die Messdaten sind in Tabelle ?? dargestellt. Zwischen der Zählrate und der gemessenen Stromstärke besteht ein linearer Zusammenhang der wie folgt dazustellen ist.

$$I = \Delta Q \cdot N$$

Deshalb lässt sich die freigesetzte Ladung por Teilchen im Zählrohr über eine lineare Regression aus den Daten der Tabelle ?? ermitteln. Dafür wurde die registrierte Teilchenanzahl pro Minute der Stromstärke gegenübergestellt.

Die Ausgleichsgerade hat die folgenden Daten.

Abbildung 3: Teilchenanzahl pro Minute gegenüber der gemessenen Stromstärke mit linearer Regression

2 Diskussion

Die Steigung der Regressiongeraden, die an die Plateau-Ebene angelegt wurde besitzt eine sehr geringe Steigung (vgl. 1). Damit ist das Verhältnis zwischen registriertet Teilchenanzahl und Spannung im Rahmen der Messgenauigkeit als konstant anzusehen.

Die Totzeit konnte an der verwendeten Apparatur nicht über die Zwei-Quellen-Methode bestimmt werden, da die Probenhalterung beim einlegen der zweiten Quelle verwackelt ist, sodass keine zuverlässigen Messwerte erhoben werden konnten. Die verwendeten Messdaten entstammen den Messungen der parallel arbeitenden Gruppe Steven D. Becker und Stefan G. Grisard. Deshalb ist der Vergleich zwischen den Methoden zur Bestimmung der Totzeit nicht sinnvoll. Deshalb wird angenommen, dass die qualitativ bestimmte Totzeit tatsächlich die Totzeit der Apparatur genügend gut beschreibt.

3 Messdaten

In diesem Kapitel sind die