THE Winter School

Promises and Perils of Machine Learning

Anthony Strittmatter

©Strittmatter Machine Learning 1/30

Course Outline

- 1. Introduction to Machine Learning for Economic and Business Research
- 2. Predictive Machine Learning: Regularized Regression
- 3. Causal Machine Learning: High-Dimensional Confounding

References

- Mullainathan and Spiess (2017): "Machine Learning: An Applied Econometric Approach", Journal of Economic Perspectives, 31 (2), pp. 87-106, download.
- ► Athey (2019): "Beyond Prediction: Using Big Data for Policy Problems", Science, 355 (6324), pp. 483-485, download.

©Strittmatter Machine Learning 3/30

What is Machine Learning (ML)?

- ▶ ML (or statistical learning) methods exist already since decades.
- Currently "Machine Learning" is a buzz word with no clear definition.
- ▶ Probably most people think of ML as some computational intensive methods that make data-driven modelling decisions and/or can deal with large data amounts.

Purpose of Machine Learning

Consider the linear model

$$Y = f(X) + \epsilon = X\beta + \epsilon$$

with $E[\epsilon] = 0$.

- Causal analysis has the purpose to estimate $\hat{\beta}$, with $plim(\hat{\beta}) = \beta$.
- ▶ Machine learning has the purpose to predict *Y*.
- There is a clear link between causal analysis and machine learning, because

$$\hat{Y} = \hat{f}(X) = X\hat{\beta}$$

is a potential predictor for Y.

▶ Parameter consistency has not the highest priority when it comes to predictions.

Potential Advantages and Disadvantages of ML

- ► ML methods can be very powerful to predict Y, even when $plim(\hat{\beta}) \neq \beta$.
- ► ML methods can incorporate many (or even high-dimensional) covariates *X* in a convenient way.
- lacktriangle ML methods can model $\hat{f}(\cdot)$ in a very flexible and data-driven way.
- ▶ Main disadvantage: ML is a black-box approach and we loose the interpretability of $\hat{f}(\cdot)$ or $\hat{\beta}$.

©Strittmatter Machine Learning 6/30

Causal vs. Predictive Questions

Predictive Questions:

- How will the oil price change tomorrow (forecasting)?
- How high is the current unemployment rate (nowcasting)?
- Which adolescents have a high probability of becoming addicted to drugs?

Causal Questions:

- What is the effect of a tweet by president Donald Trump on oil prices?
- How does inflation affect the unemployment rate?
- Can prevention programs reduce the probability of drug addiction among high risk youths?

Assessing the Model Accuracy

Causal Analysis:

- ightharpoonup True β is unobservable.
- ► Assess the model with asymptotic properties

$$\sqrt{N}(\hat{\beta}-\beta) \stackrel{d}{\rightarrow} N(0,\sigma^2).$$

Finite sample biases are mostly neglected.

Assessing the Model Accuracy

Prediction:

- ▶ We observe *Y* for each unit (e.g. individual).
- We can assess the model accuracy directly in the sample of our analysis, for example, using the mean-squared-error (MSE)

$$\frac{1}{N}\sum_{i=1}^{N}(Y_i-\hat{Y}_i)^2.$$

MSE accounts for finite sample biases.

Example: Prediction of Used Car Prices

- We have access to web-scraped data from the online advertisement platform myLemons.
- We want to predict asking prices of used cars based on observable characteristics.
- ► We observe around 40 covariates about car brand, mileage, age, emissions, maintenance certificate, seller type, guarantee, etc. (including several non-linear and interaction terms)

MSE in Training Sample

©Strittmatter Machine Learning 11/30

Predicted Car Prices in Training Sample

Number of Covariates	1	10	40
MSE	46.948	9.819	4.866

MSE in Test Sample

©Strittmatter Machine Learning 13/30

Predicted Car Prices in Test Sample

Number of Covariates	1	10	40
MSE	45.742	8.222	46.499

Estimation Procedure

In the training sample, we estimate the empirical model

$$Y_{tr} = \hat{f}_{tr}(X_{tr}) + \hat{\epsilon}_{tr} = X_{tr}\hat{\beta}_{tr} + \hat{\epsilon}_{tr}$$

In the test sample, we predict the fitted values

$$\hat{Y}_{te} = \hat{f}_{tr}(X_{te}) = X_{te}\hat{\beta}_{tr}$$

and calculate the MSE

$$\widehat{MSE}_{te} = \frac{1}{N_{te}} \sum_{i=1}^{N_{te}} (Y_{i,te} - \widehat{Y}_{i,te})^2.$$

Bias-Variance Trade-Off

When we assess the model for one randomly drawn individual from the test sample with fixed characteristics x_{te}, then we can decompose the MSE to

$$\begin{split} MSE_{te} = & E[(Y_{te} - \hat{Y}_{te})^2] \\ = & E[(f(x_{te}) + \epsilon_{te} - \hat{f}_{tr}(x_{te}))^2] \\ = & \underbrace{E[(f(x_{te}) - \hat{f}_{tr}(x_{te}))^2]}_{\text{Reducible}} + \underbrace{Var(\epsilon_{te})}_{\text{Irreducible}} \\ = & \underbrace{E[f(x_{te}) - \hat{f}_{tr}(x_{te})]^2}_{\text{Squared-Bias}} + \underbrace{Var(\hat{f}_{tr}(x_{te}))}_{\text{Variance}} + Var(\epsilon_{te}) \end{split}$$

▶ For i.i.d. data, $\hat{f}_{tr}(\cdot)$ and ϵ_{te} are independent of each other.

Simulation of Bias-Variance Trade-Off

- Only the first ten covariate have an impact on car prices in the simulation.
- ▶ Horizontal dashed line is the simulated noise $Var(\epsilon_{te})$.

©Strittmatter Machine Learning 17/30

Lasso Example

$$\arg\min_{\beta} \left\{ \sum_{i=1}^{N} \left(Y_i - \beta_0 - \sum_{j=1}^{p} X_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

	OLS	Lasso
Intercept	24.56	25.47
diesel	0.903	
other_car_owner	0.304	
pm_green	2.559	0.057
private_seller	-0.371	
guarantee	-9.126	-5.246
inspection	-0.476	
maintenance_cert	0.467	
mileage	-0.073	-0.055
age_car_years	-0.942	-0.840
R^2 training	0.563	0.521
R ² test	0.114	0.273

©Strittmatter Machine Learning 18/30

Stability of the Lasso Model

	Lasso 1	Lasso 2	Lasso 3	Lasso 4	Lasso 5
Intercept	25.47	22.94	21.59	20.03	23.29
diesel		2.290	2.077	0.805	
other_car_owner	•	0.058	•	0.903	
pm_green	0.057	•	•	2.078	
private_seller			0.256		-1.100
guarantee	-5.246	•	-0.592	1.516	•
inspection	•		0.465	•	0.475
maintenance_cert	•		•	-0.666	
mileage	-0.055	-0.039	-0.030	-0.031	-0.046
age_car_years	-0.840	-0.968	-1.327	-1.027	-0.897

- → We do not learn the "true" structural model from ML
- $\rightarrow\,$ ML is a black-box approach

Stability of the Lasso Predictions

Correlation of Predicted Car Prices in Test Sample:

	Lasso 1	Lasso 2	Lasso 3	Lasso 4
Lasso 2	0.92			
Lasso 3	0.92	0.99		
Lasso 4	0.88	0.97	0.95	
Lasso 5	0.95	0.97	0.95	0.96

©Strittmatter Machine Learning 20/30

Examples of Business and Economic Studies

Prediction Tasks:

- ► <u>Chandler, Levitt, and List (2011)</u> predict shootings among high-risk youth to target mentoring interventions.
- ► <u>Kleinberg, et al. (2018)</u> predict the crime probability of defendants released from investigative custody to improve judge decisions.

Generate New Data:

- ► Glaeser et al. (2016) use images from Google Street View to measure block-level income in New York City and Boston.
- ► Kang et al. (2013) use restaurant reviews on Yelp.com to predict the outcome of hygiene inspections.
- ► Kogan et al. (2009) predict volatility of firms from market-risk disclosure texts (annual 10-K forms).

©Strittmatter Machine Learning 21/30

Predictions vs. Causal Inference

- ► Outcome (e.g., earnings): Y
- ▶ Binary Treatment (e.g., participation in training program): $D \in \{0, 1\}$
- Potential Outcome:
 - \triangleright Y(1) potential earnings under participation
 - \triangleright Y(0) potential earnings under non-participation
 - → Only one potential earnings can be observed
- ightharpoonup Causal effect: $\delta = Y(1) Y(0)$
- \rightarrow Predictions have the observable estimation target \widehat{Y}
- ightarrow Causal inference has the (partly) unobservable estimation target $\widehat{\delta}$

Training of ML Algorithms

Out-of-Sample Mean-Squared-Error (MSE):

$$MSE_{\hat{\delta}} = E\left[(\hat{\delta} - \delta)^2\right] = \underbrace{E\left[(\hat{\delta} - E[\hat{\delta}])^2\right]}_{\text{Variance}} + \underbrace{E[\hat{\delta} - \delta]^2}_{\text{Squared Bias}}$$

 $ightarrow \delta$ is unobservable

Research Design

Causal Machine Learning (CML) Designs

 \Rightarrow Knaus, Lechner, Strittmatter (2018) provide a comparison of all designs.

©Strittmatter Machine Learning 25/30

Potentials of Causal Machine Learning (CML)

Four potential applications of CML:

- Account for (very) many instruments in IV or Heckit approach (prediction problem, issues with inference).
 References:
 - ▶ Belloni, Chen, Chernozhukov, and Hansen(2012)
 - ► Hansen and Kozbur (2014)
- 2. Account for confounders, e.g., in matching, IV, or difference-in-difference approaches:
 - ML enables the incorporation of (very) many covariates which can make the exclusion restriction more credible.
 - ► Some ML approaches make little functional form assumptions.

Reference:

► Chernozhukov et al. (2017)

Potentials of Causal Machine Learning (CML)

3. Heterogeneous effects:

- Principled approach makes it less likely to overlook important heterogeneity.
- Problems: Issues with interpretability and works only for the low-dimensional case.

References:

- ► Wager and Athey (2018)
- ► Chernozhukov, Demirer, Duflo, and Fernéndez-Val (2018)

4. Optimal policy rules:

► Focus on the (discrete) treatment decision instead on the effect size.

Reference:

► Athey and Wager (2019)

Limitations of Causal Machine Learning (CML)

- ML algorithms cannot distinguish between causation and correlation.
 - ightarrow CML will not select the relevant causal parameters automatically.
 - \rightarrow We have to provide some structure to the CML algorithm.
- ► CML can estimate causal effects only for a few (usually only one) endogenous variables.
 - \rightarrow We will not obtain the (complete) structural model.
- Identifying assumptions do not change, no matter if we use ML or conventional methods.
- We should resist the temptation to interpret prediction models in a causal way.

Applications of CML Methods

- ► Knaus (2018) estimates the effects of musical practice on student's skills and selects confounders with ML methods.
- ► Taddy et al. (2016) investigate the heterogeneous effects of A/B-experiments in online-auctions (EBay) on customer responses (experimental study).
- ► Bertrand et al. (2017) estimate heterogeneous employment effects of training programmes for unemployed persons.
- ► Strittmatter (2019) estimates heterogeneous labour supply effects of a welfare reform.
- ► Ascarza (2018) targets marketing campaigns.

Supervised vs. Unsupervised Machine Learning

Supervised Machine Learning:

- We observe data on Y and X and want to learn the mapping $\widehat{Y} = \widehat{f}(X)$
- ightharpoonup Classification when \widehat{Y} is discrete, regression when \widehat{Y} is continuous

Unsupervised Machine Learning:

- We observe only data on X and want to learn something about its structure
- Clustering: Partition data into homogeneous groups based on X

Factor analysis (e.g., principal component analysis)