2019 年北京工业大学《数据结构与算法分析》期末考试试卷 《数据结构与算法分析》 考试试卷 A 卷

考试说明:	考证	式时间: 95	分钟	半开剂	\	
承诺:						
本人已学习	了《北京工》	业大学考场	杨规则》和	印《北京	工业大学学	:生违纪处分
条例》,承诺在	E考试过程中自	一觉遵守有	关规定,	服从监	考教师管理	, 诚信考试,
做到不违纪、不	下作弊、不替 表	善 若有违	反,愿接	受相应的	的处分。	
承诺人:		学号: _			班号:_	
00000000000000000000000000000000000000	m 1-85 1			000000000		
注:本试卷共	<u>四</u> 大趣, チ	· <u>5</u> 贝,	两分 10	0分。		
		戏绩汇总	100 000	Dr.		
_	题号 一	=	三	四	总成绩	
	满分 10	60	15	15		
	得分			3		
★ 请将所有答案	写在答题纸上					
復厶		1 mm - 25		A) \		
	填空题(每	小脚 2 分	,共10	分)		
1. 后缀表达式 2	21_15+2 * 6_3 -	/4+的计算	结果为(下划线'_'	表示空格)_	
	ME OF			7		
2. 已知一棵二叉	【树的前序周游序	序列是ABDI	ECFGH, ‡	序周游序	列是DEBAF	CHG,该二叉
树对应的森林	中包含的树的数	数量是		۰		
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
3. 已知一个长度	医为13的顺序表L	, 其元素按	关键字非边	递减有序 排	非列,若采用.	二分检索法在
该顺序表L中	查找一个存在的	元素,最多	比较的次	数为		۰
W11884 E3-11-		, -, -, -, -, -, -, -, -, -, -, -, -, -,				7
4. 设有向图G中	有向边的集合E	={<1, 2>,	<2, 3>, <	<1, 4>, <	<4, 2>, <4,	3>}, 则该图
的拓扑序列是	=					
	2				- New York	
5. 广义表 ((a),	(b, c), (d, (a, e	, t), g), h) H	大度与深	度分别是		0

一 二、简答题 (每小题 10 分, 共 60 分)

- 1、一段英文文本"BCDEDABBEDACEEAAEDDEDE",包含 5 个字符 'A', 'B', 'C', 'D', 'E', 以字符出现的次数作为权值,回答下列问题:
 - (1) 画出为这些字符构造的哈夫曼树,构造过程中,约定左子树权值小于右子树权值。
 - (2) 给出每个字符各自对应的哈夫曼编码,约定左分支为'0',右分支为'1'。
 - (3) 计算带权路径长度 WPL 值。
- 2、已知关键字序列{28,32,53,47,18,20,13,9,49},请回答如下问题。
 - (1) 按照关键字出现次序, 画出构造的二叉搜索树, 求出其平均检索长度;
 - (2) 按照关键字出现次序, 画出构造的平衡二叉搜索树, 求出其平均检索长度。
- 3、已知带权图 G, 其相邻矩阵如下所示:

	A	В	C	D	E	F	G
A	0	0	5	3	0	7	9
В	0	0	0	6	2	0	0
C	5	0	0	4	8	0	0
D	3	6	4	0 .	0	2	0
E	0	2	8	0	0	0	0
F	7	0	0	2	0	0	1
G	9	. 0	0	0	0	1	0

请回答下列问题:

- (1) 请分别列出该图从顶点 A 开始进行深度优先周游和广度优先周游时得到的顶点序列。
- (2) 按照 Prim 算法, 画出以 A 为起点得到的最小生成树。
- 4、已知有向图 G,如下图所示,填写表格,根据 Dijkstra 算法计算以 V_0 为源点到其他各个顶点的最短路径长度的过程。说明:len 当前最短路径长度,pre 为路径序列上到达终点之前最后经过的顶点编号。

资料由公众号【工大喵】收集整理并免费分享

迭代步数	S	V ₀	$\mathbf{V_1}$	V ₂	V ₃	V_4	V ₅	V ₆	V ₇
初始状态	$\{V_0\}$	len:0 pre:0	len:10 pre:0	len:∞ pre:0	len:5 pre:0	len:50 pre:0	len:∞ pre:0	len:∞ pre:0	len:∞ pre:0
1	{	len:0 }pre:0	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:
2	{	len:0 }pre:0	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:
3	{	len:0 }pre:0	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:
4	{	len:0 }pre:0	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:
5	{	len:0 }pre:0	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:
6	{	len:0 }pre:0	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:
7	{	len:0 }pre:0	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:	len: pre:

5、已知由9个关键字组成的序列{24,7,37,23,10,29,42,20,16},构造一个长度是13的散列表,散列函数Hash(key) = key %13,用闭散列线性探测法解决冲突。

(1) 画出构造的散列表。

0	1	2	3	4	5	6	7	8	9	10	11	12
							1					
8	2											

- (2) 计算等概率情况下查找成功的平均检索长度 ASL。
- (3) 简述删除 24 后 (删除位置用墓碑表示), 在此表中查找 11 所进行比较的关键字序列。

6、对于关键字序列 (32, 68, 45, 42, 59, 21, 14, 39, 75, 62), 试在答题纸上按照下列 格式,写出利用堆排序方法将其重新排列为非递增顺序的前 3 个堆的状态。

初始状态

	0	1	2	3	4	5	6	7	8	9
3	52	68	45	42	59	21	14	39	75	62

第1个堆(初始堆)

0	1	2	3	4	5	6	7	8	9
			7						

第2个堆。

0	1	2	3	4	5	6	7	8	9

第3个堆。

()	1	2	3	4	5	6	7	8	9
										. *
			2.3*				. 10			

得分

三、算法设计(15分)

给定一个有向图 G=(V,E),以及一个顶点 Vi(顶点编号为 i),设计算法,求出 Vi 的出度和入度的差。要求该算法的设计与存储结构无关,可以既适用于相邻矩阵又适用于邻接表。图 G 的基类声明如下,其中的方法可以在算法实现中直接使用:

```
class Graph{
public:
```

int* Mark; //标记图中的顶点是否被访问过

Graph(int vertex_num); //构造函数,参数为图中顶点数

virtual~Graph(); //析构函数

int GetVerticesNum(); //获得图中顶点的数量int GetEdgeNum(); //获得图中边的数量

void Visit(int vertex); //访问编号为 vertex 的顶点信息 Edge FirstEdge(int vertex); //获得依附顶点 vertex 的第一条边

Edge NextEdge(Edge preEdge); //获得与 preEdge 具有相同顶点的下一条边bool IsEdge(Edge oneEdge); //判断给定 edge 是否为图中的一条边

int FromVertex(Edge oneEdge); // 返回 oneEdge 的起始点int ToVertext(Edge oneEdge); // 返回 oneEdge 的终点

Edge 的声明如下: class Edge { public: int from to we

int from, to, weight; Edge(); //构造函数

Edge(int f, int t, int w); //带参数的构造函数

};

算法原型: int DegreeDifferent (Graph& G, int i); //i 为顶点编号

得分

四、数据结构设计(15分)

教育部对不同的学科按照分类进行不同层次的编号,如:"08"代表"工学",该类别下的"0812"代表"计算机科学与技术",继续深入下一层,"081201"代表"计算机系统结构","081202"代表"计算机软件与理论","081203"代表"计算机应用技术"。在此基础上,可以按照编号进行快速的检索。回答下列问题。

- (1) 这些数据采用什么数据结构组织? (文字描述相应的逻辑结构即可)
- (2) 写出主要数据结构的抽象数据类型的类定义。