Projet de Fin d'Étude (PFE)

Analyse et prédictions de matchs de la National Basketball Association (NBA) via un dashboard interactif

Sommaire

I. Introduction

II. Analyse

- A. Fonctionnement de la NBA
- B. Le jeu de données
- C. Analyse des variables

III. Modèles de machine learning

- A. Choix des variables d'entrées
- B. Création des modèles de prédiction
- C. Analyse et comparaison des résultats

IV. Le dashboard interactif

- A. Les librairies Plotly et Dash
- B. La structure du dashboard
- C. Démonstration

V. Améliorations et continuation

- A. Améliorations
- B. Travaux futurs

VI. Conclusion

VII. Bibliographie

I. Introduction

→ Pourquoi avoir choisi un dataset de la NBA?

Figure 1: Logo NBA

II.A Fonctionnement de la NBA

Figure 2: Logos des équipes NBA

- → 82 matchs de saison régulière
- → Deux conférences : Est et Ouest

- → 30 équipes réparties sur les deux conférences
- → Les Playoffs

II.B Le jeu de données

Le jeu de données est composé de 4 fichiers au format csv

games

- → Une ligne par match joué
- → Contient le nombre de points, rebonds, passes, etc. pour l'équipe à domicile et à l'extérieur
- → Contient une colonne indiquant quelle équipe a gagné (domicile ou extérieur)

teams

→ Contient toutes les informations de chaque équipe, leur nom, leur capacité de salle, etc.

games_details

- → Une ligne par joueur et par match
- → Contient les statistiques de chaque joueur pour chaque match

ranking

- → Contient les informations de victoire pour chaque équipe et chaque saison
- Contient une colonne indiquant la conférence de l' équipe

II.C Analyse des variables

Analyse de l'influence de la localisation du match (domicile / extérieur) sur les performances des équipes

II.C Analyse des variables

Analyse des statistiques des équipes et des joueurs qui les constituent

III.A Choix des variables d'entrées

- Inspiration de travaux réalisés et mis à disposition sur kaggle (lien dans bibliographie), l'auteur a choisi comme variables d'entrées les statistiques des équipes (points, rebonds, pourcentage au tir, etc.)
- → Le but du modèle de machine learning est de prédire le nombre de victoire de chaque équipe pour une saison régulière donnée en entraînant le modèle sur la saison précédente
- → Première approche "naïve" en choisissant une seule variable d'entrée : le pourcentage de victoire de l'année précédente
- → Deuxième approche en ajoutant l'efficacité de l'équipe calculée et le plus minus de la saison précédente

- → 5 modèles différents ont été créés afin d'en comparer les résultats en se basant sur la Root Mean Squared Error (RMSE)
- → Étude de corrélation entre les variables d'entrées et celle de sortie :

- → Régression linéaire
- → Régression lasso avec le facteur de "pénalité" alpha

1ère approche

2nde approche

- → Forêt aléatoire : ajustement des hyperparamètres avec GridSearch (le nombre d'arbres, leur profondeur, le nombre d'éléments par noeud et par feuille)
- → Algorithme des k plus proches voisins (KNN) :

1ère approche 2nde approche 1

Réseau de neurones (entraînement sur les deux dernières années) : deux couches cachées de 32 neurones avec fonction d'activation ReLu

1ère approche : Loss ~= 70 2nde approche : Loss ~= 50

III.C Analyse et comparaison des résultats

→ Avec la première approche

	Régression linéaire	Régression lasso	Forêt aléatoire	KNN	Réseau de neurones
RMSE	9.082	9.061	9.856	9.439	9.365
Kaggle RMSE	9.891	9.833	10.362	Not Done	Not Done

Figure 3: Tableau comparatifs des résultats

→ Avec la seconde approche

	Régression linéaire	Régression lasso	Forêt aléatoire	KNN	Réseau de neurones
RMSE	6.234	5.187	6.083	6.355	5.219
Kaggle RMSE	9.891	9.833	10.362	Not Done	Not Done

IV.A Les librairies Plotly et Dash

→ Plotly: Librairie graphique Python open source pour créer des graphiques interactifs

Figure 5: Logo Plotly

→ <u>Dash</u>: Framework Python permettant de créer des applications web interactives

Dash Python User Guide

Dash is the original low-code framework for rapidly building data apps in Python.

Quickstart

A Minimal Dash App

Dash in 20 Minutes Tutorial

Dash Fundamentals

Figure 6: Guide d'utilisateur de dash en Python

IV.B La structure du dashboard

→ Deux pages : Visualization et Prediction

IV.C Démonstration

Figure 7: Graphique des Callbacks

V.A Améliorations

- → Prendre en compte les retours de blessures
- → Prendre en compte les joueurs "rookies"

Figure 8: Image du rookie Français Victor Wembanyama

V.B Travaux futurs

→ Intégration du dashboard et des modèles de prédiction à la Google Cloud Platform (GCP)

Figure 9: Image de déploiement de dash sur la GCP

VI. Conclusion

Merci pour votre écoute!

VII. Références

- Figure 1: https://www.andyedge.com/articles/nba-logo
- Figure 2 : https://fr.dreamstime.com/illustration/nba-logos.html
- Figure 3 : Réalisé dans Google Slides
- Figure 4 : Réalisé dans Google Slides
- Figure 5 : https://dash.plotly.com/
- Figure 6 : https://dash.plotly.com/
- Figure 7: Réalisé avec dash
- Figure 8 : https://www.bbc.com/sport/africa/67156801
- Figure 9: https://datasciencecampus.github.io/deploy-dash-with-gcp/
- <u>Jeux de données</u>: https://www.kaggle.com/datasets/nathanlauga/nba-games
- <u>Travaux déjà réalisés sur le dataset</u>: https://www.kaggle.com/code/hqfang/drp-nba-game-wins-prediction
- Autres images et graphiques : Réalisés dans le notebook ou le dashboard