Analysis on Manifolds Homework

Deadline: 20/1/2020 at 12:00

(I) Let $F: \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{R}^6$ be such that

$$F(x_1, x_2, x_3) = (x_1^2, x_2^2, x_3^2, x_1x_2, x_1x_3, x_2x_3).$$

- (a) Prove that F is an immersion.
- (b) Is F injective? Justify your answer.
- (c) Determine the fibers of $F|_{S^2}$, then prove that

$$F(x_1:x_2:x_3) = \frac{(x_1^2, x_2^2, x_3^2, x_1x_2, x_1x_3, x_2x_3)}{x_1^2 + x_2^2 + x_3^2}$$

defines a injective immersion from \mathbb{RP}^2 to \mathbb{R}^6 .

- (II) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be such that f(x, y, z) = xy + z and let M be the zero set of f. Consider the vector field $V = -x\frac{\partial}{\partial x} y\frac{\partial}{\partial y} + (z + 3xy)\frac{\partial}{\partial z}$
 - (i) Prove that M is a manifold.
 - (ii) Show that V restricts to a vector field on M (i.e. a section of the tangent bundle of M).
 - (iii) Denote by W the restriction of V to M. Does W have fixed points? Are they locally stable?
- (III) Let $M = \{((x,y),[v:w]) \in \mathbb{C}^2 \times \mathbb{CP}^1 : xw = yv\}$ and let $\pi: M \to \mathbb{C}^2$ be such that $\pi((x,y),[v:w]) = (x,y)$.
 - (a) Prove that M is a complex manifold.
 - (b) Prove that $\pi|_{M\setminus\pi^{-1}\{(0,0)\}}$ is a biholomorphism onto $\mathbb{C}^2\setminus\{(0,0)\}$.
 - (c) Show that the map $p: M \to \mathbb{CP}^1$ given by $\pi((x,y),[v:w]) = [v:w]$ is a holomorphic line bundle over \mathbb{CP}^1 , hence equivalent to a (possibly negative) power of the tautological bundle $\mathcal{O}(-1)^k = \mathcal{O}(-k)$ for $k \in \mathbb{Z}$. Which one?
- (IV) Consider the differential 1-form $\omega = A(x,y,z)dx + B(x,y,z)dy + C(x,y,z)dz$ on \mathbb{R}^3 , where $A,B,C:\mathbb{R}^3\to\mathbb{R}$ are smooth functions without common zeros.
 - (a) Show that $\xi = \ker \omega$ is a 2-dimensional vector bundle over \mathbb{R}^3 .
 - (b) Suppose $C \equiv 1$, A = A(x, y) and B = B(x, y) (i.e. A and B do not depend on z). Find conditions on A and B such that ξ is integrable.
 - (c) Additionally assume that there exists $F: \mathbb{R}^3 \to \mathbb{R}$ such that $dF = \omega$, then determine the integral manifolds of ξ .
 - (d) Let $\omega = dz + xdy$. Find a basis of ξ and show that their commutator does not belong to ξ .

Use of computer is allowed, collaboration with colleagues is forbidden. Please include and sign the following statement: I declare that I solved the homework problems by myself.

You can send the solutions via email to riccardo.ugolini@fmf.uni-lj.si or place them in my mailbox at the ground floor of Jadranska 19.