Psych 131 Fall 2015

### Presentation 18: Processing and linguistic relativity

Topic 1: Language and time Topic 2: Language and perception

### Spatial metaphors for time

Space-time correspondences in language

| Space                      | Time                             |
|----------------------------|----------------------------------|
| at the corner              | at noon                          |
| from here to there         | from two o'clock to four o'clock |
| through the tunnel         | through the night                |
| He stood before the house  | it happened before evening       |
| He was running ahead of me | He arrived ahead of me           |

Two metaphors for time (Clark, 1973) Ego-moving Time-moving April is ahead of us April is ahead of May April April May front = future-ward front = past-ward

### Interference between perspectives

### Premise:

Ego-moving and time-moving metaphors should generate distinct representations of time

Ego-moving metaphor should interfere with timemoving metaphor, and vice versa

Delay when test sentence is inconsistent

808

Ego-moving test

sentence

### Test:

Three experiments [Experiments 1 and 3]

Gentner, Imai, & Boroditsky (2002)

Inconsistent metaphor is harder

334

Time-moving test

sentence

### Comprehension speed

### Step 1: Read time-moving metaphors

I will take the Math exam before the English exam. My birthday is ahead of John's birthday.

I will take two months vacation after graduation.

### Step 2: Test time-moving metaphor

Christmas is six days before New Years day. [consistent]

Gentner, Imai, & Boroditsky (2002)

### Step 1: Read ego-moving metaphors

I am looking forward to the concert.

In the weeks ahead of him, he wanted to finish this

We are coming into troubled

### Step 2: Test time-moving metaphor

Christmas is six days before New Years day. [inconsistent]

Boroditsky approached travelers at O'Hare Airport with watch (timer) on her wrist

E: "Hello, I'm on my way to Boston" (intro) "Is it later or earlier in Boston than it is here?" (setting question)

[time-moving metaphor]

- "It's later there"
- "So should I turn my watch forward or back?" (test question)

[ego-moving metaphor]

"Forward"

(response timed from end of test question)

"Great, thank you!"

### Test sentence



Gentner, Imai, & Boroditsky (2002)

### Inconsistent question is harder



Gentner, Imai, & Boroditsky (2002)

Gentner, Imai, & Boroditsky (2002)

900

800 700

600

300

200 100

### Space affects time conceptually



Premise:

English metaphors represent time in terms of space

### Therefore:

Even in a *non-linguistic* task, space should influence time, but not vice versa (Whorf)

### Test:

Six experiments

Casasanto & Boroditsky (2007)

**Presentation phase**Subjects watch lines grow over time

9 lengths X 9 durations



Test phase

Subjects place mouse on X to *reproduce* either:

- 1. length of line
- 2. duration of line

X

--

### Estimates were very accurate





,

### But: interference was asymmetrical

Effect of Space on Time



Effect of Time on Space



Asymmetry is consistent over different forms of presentation



Language shapes conceptions of time



12

### Observation:

Mandarin has both horizontal *and* vertical metaphors for time

"What is the year *before* the year of the tiger?"
"Tuesday is *above* Wednesday"

### Therefore:

Space should prime time differently in English and Mandarin speakers

### Test:

Reaction times

15

## Experiment

### Two pictures in succession

"What is relation of second object to first object?"

Button 1: earlier
Button 2: later

### Response buttons arranged ...

horizontally

canonical: left = earlier
(for both English and Mandarin)

vertically

"canonical": top = earlier

(for Mandarin, but not for English)





### Reaction times on horizontal/vertical buttons



## Two spatial metaphors for duration

|            | Distance<br>metaphors      | Quantity<br>metaphors |
|------------|----------------------------|-----------------------|
| English    | <i>long</i> time           | <i>much</i> time      |
| Indonesian | waktu panjang              | waktu banyak          |
| Greek      | makry kroniko<br>diatstima | poli ora              |
| Spanish    | largo tiempo               | mucho tiempo          |

Casasanto et al. (2004)

### Language shapes conceptions of time

### Observation:

English prefers distance metaphor (long time); Greek prefers quantity metaphor (much time)

### Therefore:

English and Greek speakers should show different interference in estimating time

Casasanto et al. (2004)

### Asymmetry reflects frequency of metaphor

### raw frequency of metaphors ■ Distance Metaphors S 0.9 ☐ Amount Metaphors g 0.7 8.0 g O.5 0.4 - 0.3 - 0.2 0.1 English Greek Casasanto et al. (2004)

### Asymmetry reflects frequency of metaphor



### Asymmetry reflects frequency of metaphor



Casasanto et al. (2004)

Pormpuraaw, an aboriginal language



Participants asked to lay cards out on the ground so that they were in the correct order (in English or Pormpuraaw).









Boroditsky & Gaby (2010)

### Two conceptions of time



Time goes left to right Americans: Time goes east to west Pormpuraawans:

### Tense and time in Indonesian





English He will kick/is about to kick the ball.

Boroditsky et al. (2003)

He kick the ball [soon].

He kick the ball [now].

He kicked the ball.

He kick the hall

### Tense and time in Indonesian

People habitually attend more to the things that are encoded obligatorily in their language

Habitual encoding should affect Ratings of similarity Recognition memory

Series of experiments

### How similar are these?





27 Boroditsky et al. (2003)

### Similarity ratings

# anne actor, different tense different actor, same tense Indonesian Topian speakers Indonesian speakers

### Similarity ratings in bilingual speakers



### Recognition test for pictures

Show people pictures of events in progress

Test recognition





Which one did you see?

### Recognition reflects language



### Topic 2: Does language shape pitch?



Farsi: naazok vs. koloft (thin vs. thick)

Dutch: hoog vs. laag (high vs. low)

Dolscheid, Shayan, Majid & Casasanto (2013)

### Does language shape pitch?

### Universalist position:

Linguistic metaphors may differ across languages, but underlying pitch representations are the same.

### Relativist position:

People who use different metaphors in their native languages should represent pitch differently.

Dolscheid, Shayan, Majid & Casasanto (2013)

33

### Cross-dimensional interference paradigms



### Cross-dimensional interference paradigms



### Cross-dimensional interference paradigms



### Trial structure



Dolscheid, Shayan, Majid & Casasanto (2013)

# Results a Farsi 6 - Dutch Thickness Height Interference Interference Dolscheid, Shayan, Majid & Casasanto (2013)

### Conclusion

- 1. Language shapes mental representations of musical pitch
- 2. Even when people are not using language!
- 3. Speakers of different languages tend to form different mental representations of the same physical stimuli

Dolscheid, Shayan, Majid & Casasanto (2013)

39

### Color perception (Regier, Kay, Cook, PNAS, 2005)



# Russian blues



Memory: "Same or different"



Learning "Russian" distinction increases accuracy in cross-color trials



Frank & Boroditsky

Perception: "Same or different"

Frank & Boroditsky

Basic format of second experiment



Learning "Russian" distinction produces no observable effects on reaction times or accuracies



### Perception: "Match to sample"



□ cross category 1200



Fig. 2. Russian speakers' (Left) and English speakers' (Right) reaction times (msec) shown for the no-interference, spatial-interference, and verbalinterference conditions. Both near-color and far-color comparisons are included in these graphs. Error bars represent one SE of the estimate of the two-way interaction between category and interference condition.

Winawer, Witthoft, Wu. Frank, Wade, & Boroditsky (2007)

### Perception: "Match to sample"



### Interference during judgments

- 1. No interference
- 2. Verbal interference Silently rehearsed strings of digits
- Spatial interference
   Maintained a spatial pattern in memory



"Which is the match?"

Winawer, Witthoft, Wu, Frank, Wade, & Boroditsky (2007)



Fig. 3. Category advantage is plotted for flussian speakers (Left) and English speakers (Right) as a function of comparison distance (linear colors a far color) and instrutement condition (none, speak), and weeball. Category advantage is caticulated as the difference between the average reaction time for within-category trains and that for conscitatopy traits freed, for the supervision 52 of the estimate of the three-way interaction among category, interaction exceeds an advantage of the section of the supervision of the

Whorfian hypothesis?

Language *does* affect thought
But effects are different in memory, perception, judgments

49

### Conclusion

When blues are from different Russian categories, Russians (compared to English speakers) are:

- 1. more accurate in memory (same or different)
- 2. no faster in perception (same or different)
- 3. faster in simple matching to sample
- 4. no faster in matching to sample with verbal interference

Hence: Linguistic codes affect color judgments, but *not* basic color perception