Need an amazing tutor?

www.teachme2.com/matric

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE/SENIOR SERTIFIKAAT
NATIONAL SENIOR CERTIFICATE/
NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2020

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 27 pages. *Hierdie nasienriglyne bestaan uit* 27 *bladsye*.

DBE/November 2020

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die memorandum toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

GEOM	IETRY
q	A mark for a correct statement (A statement mark is independent of a reason)
S	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)
D	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)
R	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)
S/R	Award a mark if statement AND reason are both correct
	Ken 'n punt toe as die bewering EN rede beide korrek is

Mathematics P2/Wiskunde V2 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

2 018	2 175	2 182	2 215	2 254	2 263	2 267	2 271	2 293	2 323	2 334	2 346	l
-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	---

2.1	July / Julie		✓ answer	
				(1)
2.2	$\bar{x} = \frac{26941}{1000}$	A	✓ 26 941	
	12	Answer only: Full marks		
	$= 2\ 245,083 \approx 2\ 245,08$ aircraft land	ings	✓ answer	
	,			(2)
2.3	Standard deviation for landings at the Ki	ing Shaka International airport:	✓✓ answer	
	$\sigma = 86,30$			(2)
2.4	$(\bar{x} - \sigma; \bar{x} + \sigma) = (2\ 245,08 - 86,30; 2\ 245$	45,08 + 86,30)	$\sqrt{\bar{x}} - \sigma$	
	limit = (2 158,78 ; 2 331,38)		$\sqrt{\bar{x}} + \sigma$	
	There were 9 months when the aircraft a	rrivals at the King Shaka		
	International airport were within one star	<u> </u>	✓ answer	
	1			(3)
2.5	The standard deviation of the number of	<u> </u>		
	Airport will be higher than the standard			
	arrivals at the King Shaka International	Airport OR C.	✓ answer	
				(1)
				[9]

Mathematics P2/Wiskunde V2 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

QUESTION/VRAAG 3

3.1	$m_{\text{WP}} = \frac{4 - (-4)}{-4 - 0} = \frac{8}{-4}$ $m_{\text{WP}} = -2$	✓ substitution of W and P $\checkmark m_{\text{WP}}$ (2)
3.2	$m_{\text{ST}} = \frac{1}{2} \text{ (given)}$ $(m_{\text{WP}})(m_{\text{ST}}) = (-2)(\frac{1}{2})$ $= -1$ $\therefore \text{ST} \perp \text{WP}$	$ \checkmark (m_{\text{WP}})(m_{\text{ST}}) $ $ \checkmark (m_{\text{WP}})(m_{\text{ST}}) = -1 $ $ (2) $
3.3	$5y + 2x + 60 = 0$ $y = -\frac{2}{5}x - 12$ $-\frac{2}{5}x - 12 = \frac{1}{2}x + 6$ $-4x - 120 = 5x + 60$ $9x = -180$ $x = -20$ $y = -\frac{2}{5}(-20) - 12$ $y = -4$ $S(-20; -4)$	✓ equating ✓ x value ✓ substitution ✓ y value (4)
	OR	

K

Mathematics P2/Wiskunde V2

6

DBE/November 2020

Mathematics P2/Wiskunde V2

7

DBE/November 2020

_		
3.4	$y = -\frac{2}{5}(-4)-12$ OR $5y + 2(-4) + 60 = 0$	✓ substitution
	$y = -\frac{52}{5}$	✓ y value
	$\therefore R\left(-4; -\frac{52}{5}\right) \text{ OR } R(-4; -10,4)$	
	$\therefore WR = 4 - \left(-\frac{52}{5}\right) OR WR = \sqrt{(-4 - (-4))^2 + (4 - \left(-\frac{52}{5}\right))^2}$	✓ method or subst into distance formula
	$\therefore WR = \frac{72}{5} \text{ units or } WR = 14 \frac{2}{5} \text{ units}$	✓ answer (4)
	OR	
	WR = ST - SK	
	$= \frac{1}{2}x + 6 - \left(-\frac{2}{5}x - 12\right)$	✓ substitution
	$=\frac{9}{10}x+18$	✓ simplification
	$=\frac{9}{10}(-4)+18$	✓ subst $x = -4$
	= 14,4 units	✓ answer (4)
3.5	$m_{\rm SK} = -\frac{2}{5}$	✓ m _{SK}
	$\beta = 158,19^{\circ}$ (Ref. $\angle = 21,801^{\circ}$)	\checkmark size of β
	$MNS = 21,80^{\circ}$	
	$m_{\rm ST} = \frac{1}{2}$	
	NMS = 26,56°	✓ size of NMS
	$\theta = 21,80^{\circ} + 26,56^{\circ} \text{ [ext } \angle \text{ of } \Delta \text{]}$	✓ method
	$\theta = 48,366^{\circ} = 48,37^{\circ}$	✓ answer (5)
3.6	In ΔSRW:	
	$\perp h = -4 - (-20)$	
	$\perp h = 16$ units	$\downarrow \downarrow h$
	Area $\triangle SRW = \frac{1}{2} (\perp h)(WR)$	
	$=\frac{1}{2}\left(16\right)\left(\frac{72}{5}\right)$	✓ substitution
	=115,2 square units	✓ area Δ
	Area SWRL = 2Area ΔSRW	
	=2(115,2)	
	= 230,4square units	✓ answer
	OR	(4)
	-	

Mathematics P2/Wiskunde V2

DBE/November 2020

In ΔSRW:	
$\perp h = -4 - (-20)$	
$\perp h = 16$ units	$\checkmark \perp h$
Area SWRL = $16 \times \frac{72}{5}$	✓ ✓ substitution ✓ answer
= 230,40 square units	(4)
OR	\checkmark SW = $8\sqrt{5}$
SW = $\sqrt{(-20+4)^2 + (-4-4)^2} = 8\sqrt{5} = 17,89$	
$SR = \sqrt{(-20+4)^2 + \left(-4+10\frac{2}{5}\right)^2} = \frac{16\sqrt{29}}{5} = 17,23$	$\checkmark SR = \frac{16\sqrt{29}}{5}$
Area SWRL = $2 \times$ Area \triangle SRW	
$= 2\left(\frac{1}{2}SW \times SR \sin \theta\right)$	
$= 2\left(\frac{1}{2}8\sqrt{5} \times \frac{16\sqrt{29}}{5}\sin 48,37^{\circ}\right)$	✓substitution
=230,41square units	√answer
	(4)
	[21]

Mathematics P2/Wiskunde V2

9

DBE/November 2020

4.1	$x^{2} + y^{2} = r^{2}$ $\therefore r^{2} = (-3)^{2} + (4)^{2} = 25$	✓ substitution
	$x^2 + y^2 = 25$	✓ answer
		(2)
4.2	TM \perp TN [tangent \perp radius]	
	T(-11;4)	
	r = -3 - (-11) = 8	$\checkmark x_T = -11$
	$(x+3)^2 + (y-4)^2 = 64$	✓ LHS ✓ RHS
	(x+3)+(y+7)=0+	(3)
4.3	O(0;0) and $M(-3;4)$	
	$m_{\text{OM}} = \frac{4-0}{-3-0} = -\frac{4}{3}$ OR $\frac{0-4}{0-(-3)} = -\frac{4}{3}$	$\checkmark m_{\text{OM}} = -\frac{4}{3}$
	$m_{\text{NM}} = \frac{3}{4}$	$\checkmark m_{\text{OM}} = -\frac{4}{3}$ $\checkmark m_{\text{NM}} = \frac{3}{4}$
	$y-4=\frac{3}{4}(x-(-3))$ OR $y=\frac{3}{4}x+c$	✓ substitution of m and M
	$y-4=\frac{3}{4}x+\frac{9}{4}$ $4=\frac{3}{4}(-3)+c$	
	$\therefore y = \frac{3}{4}x + \frac{25}{4} \qquad c = \frac{25}{4}$	✓ equation
	$y = \frac{3}{4}x + \frac{25}{4}$	(4)

Mathematics P2/Wiskunde V2

2 10
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

4.4	N(-11; <i>p</i>)	
	$y = \frac{3}{4}x + \frac{25}{4}$ $p = \frac{3}{4}(-11) + \frac{25}{4} \qquad \text{OR} \frac{4-p}{-3-(-11)} = \frac{3}{4}$ $p = -2$ $\therefore N(-11;-2)$	✓ subst $x = -11$ into eq or gradient $\sqrt{p=-2}$
	$\frac{-3 + x_S}{2} = 0 \text{and} \frac{4 + y_S}{2} = 0$ $\therefore S(3; -4)$ $SN = \sqrt{(-11 - 3)^2 + (-2 - (-4))^2}$ $= 10\sqrt{2} \text{ units or } 14,14 \text{ units}$	$\checkmark x_S \checkmark y_S$ $\checkmark \text{ answer (CA)}$
		(5)
4.5	$B(-2; 5)$ $BM = \sqrt{2} \text{ units}$	$\checkmark \sqrt{2}$
	Radius of circle centred at $M = 8$ units	
	$k=8-\sqrt{2}$ or $k=8+\sqrt{2}$ = 6,59 units = 9,41 units = 6,6 units = 9,4 units	$ \checkmark \checkmark k = 6,6 $ $ \checkmark \checkmark k = 9,4 $ (5)
		[19]

Mathematics P2/Wiskunde V2 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

5.1	Period of $g = 360^{\circ}$	✓ answer	
		(1))
5.2	Amplitude of $f = \frac{1}{2}$		`
5.3	4	(1)	_
3.3	$f(180^{\circ}) - g(180^{\circ})$		
	$=\frac{1}{2}-\left(-\frac{1}{2}\right)$		
	$\begin{vmatrix} 2 & \langle 2 \rangle \\ = 1 \end{vmatrix}$	✓ 1	
		(1))
5.4.1	$x = 140.9^{\circ}$	$\checkmark x = 140.9^{\circ}$	
		(1))
5.4.2	$\sqrt{3}\sin x + \cos x \ge 1$		
	$\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x \ge \frac{1}{2}$	✓ dividing by 2	
	$\sin x \cos 30^\circ + \cos x \sin 30^\circ \ge \frac{1}{2}$	✓ cos 30°; sin 30°	
	$\sin(x+30^\circ) \ge \frac{1}{2}$	$\int \sin(x+30^\circ) \ge \frac{1}{2}$	
	$\sin(x+30^\circ) = \frac{1}{2}$ at $x = 0^\circ$ or $x = 120^\circ$		
	$\therefore x \in [0^{\circ}; 120^{\circ}] \text{ OR } 0^{\circ} \le x \le 120^{\circ}$	✓ interval	
		(4))
		[8]]

Mathematics P2/Wiskunde V2

12

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

6.1.1	$\tan \theta = -\frac{12}{5} \text{or} -2\frac{2}{5}$	✓ answer (1)
6.1.2	$(OP)^2 = (-5)^2 + (12)^2$ OP = 13	✓ Pythagoras ✓ OP
(1.2	$\cos\theta = -\frac{5}{13}$	✓ answer (3)
6.1.3	$\sin(\theta + 90^\circ) = \frac{b}{6.5}$ $b \qquad P(-5; 12)$	$\checkmark \sin(\theta + 90^\circ) = \frac{b}{6.5}$
	$\cos \theta = \frac{1}{6.5}$	$\checkmark \cos \theta$
	$\begin{vmatrix} -5 \\ 13 = \frac{b}{6.5} \\ b = -\frac{5}{2} \end{vmatrix}$	$\checkmark \frac{-5}{13} = \frac{b}{6,5}$
		\checkmark value of b (4)
	OR $\cos(90^{\circ} + \theta) = \frac{a}{6.5}$ $\sin(30^{\circ} + \theta) = \frac{a}{6.5}$	$\checkmark \cos(\theta + 90^\circ) = \frac{a}{6.5}$
	$-\sin\theta = \frac{a}{6.5}$	$\sqrt{-\sin\theta}$
	$-\frac{12}{13} = \frac{a}{6,5} \therefore a = -6$	✓ value of <i>a</i>
	$b = \sqrt{(6,5)^2 - (-6)^2} = -\frac{5}{2}$	\checkmark value of b (4)

Mathematics P2/wiskunae	2 13
	SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

6.2	$\frac{\sin 2x \cdot \cos(-x) + \cos 2x \cdot \sin(360^\circ - x)}{\sin(180^\circ + x)}$ $= \frac{\sin 2x \cos x + \cos 2x(-\sin x)}{-\sin x}$ $= \frac{\sin(2x - x)}{-\sin x}$	$\checkmark \cos(-x) = \cos x$ $\checkmark \sin(360^{\circ} - x) = -\sin x$ $\checkmark \sin(180^{\circ} + x) = -\sin x$	
	$= \frac{\sin x}{-\sin x}$ $= -1$	✓ numerator = $\sin x$ ✓ answer	(5)
6.3	$6\sin^2 x + 7\cos x - 3 = 0$ $6(1 - \cos^2 x) + 7\cos x - 3 = 0$	✓ identity	
	$6-6\cos^2 x + 7\cos x - 3 = 0$ $6\cos^2 x - 7\cos x - 3 = 0$ $(3\cos x + 1)(2\cos x - 3) = 0$	✓ standard form ✓ factors	
	$\cos x = -\frac{1}{3}$ or $\cos x = \frac{3}{2} (N/A)$ $\therefore x = 109,47^{\circ} + k.360^{\circ}; k \in \mathbb{Z} \text{ or}$	✓ both solutions of $\cos x$ ✓ $x = 109,47^{\circ} & 250,53^{\circ}$	
	$x = 250,53^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	$\sqrt{+k.360^{\circ}}$; $k ∈ Z$	(6)
6.4	$x + \frac{1}{x} = 3\cos A$ $(3\cos A)^{2} = \left(x + \frac{1}{x}\right)^{2}$ $9\cos^{2} A = x^{2} + \frac{1}{x^{2}} + 2$	✓ squaring both sides	
	$9\cos^2 A = 2 + 2$	$\checkmark 9\cos^2 A = x^2 + \frac{1}{x^2} + 2$	
	$\cos^2 A = \frac{4}{9}$ $\cos 2A = 2\cos^2 A - 1$ $= 2\left(\frac{4}{9}\right) - 1$	$\checkmark \cos^2 A = \frac{4}{9}$ $\checkmark \cos 2A = 2\cos^2 A - 1$	
	$=-\frac{1}{9}$ OR	✓ answer	(5)

Mathematics P2/Wiskunde V2

DBE/November 2020

$x^{2} - 2 + \frac{1}{x^{2}} = 0$ $\left(x - \frac{1}{x}\right)^{2} = 0$ $x^{2} = 1$ $x = \pm 1$ $3\cos A = 2 \text{or} 3\cos A = -2$ $\cos A = \frac{2}{3} \text{or} \cos A = -\frac{2}{3}$ $\cos 2A = 2\cos^{2} A - 1$ $= 2\left(\pm \frac{2}{3}\right)^{2} - 1$ $= -\frac{1}{9}$	$✓ x = \pm 1$ $✓ \cos A = \frac{2}{3}$ $✓ \cos A = -\frac{2}{3}$ $✓ double angle identity$	
	✓ answer	(5) [24]

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

7.1	$\tan 30^{\circ} = \frac{\sqrt{3} r}{\text{QS}}$ OR	$\tan 60^\circ = \frac{QS}{\sqrt{3}r}$	✓✓ trig ratio
	$QS = \frac{\sqrt{3}r}{\tan 30^{\circ}}$	$\sqrt{3} = \frac{QS}{\sqrt{3}r}$	✓ QS subject
	$=\frac{\sqrt{3}r}{\frac{1}{\sqrt{3}}} or \frac{\sqrt{3}r}{\frac{\sqrt{3}}{3}}$	QS = 3r	
	$ \begin{array}{ccc} \sqrt{3} & 3 \\ = 3r \end{array} $		(3)
7.2	Area of flower garden = $\pi (3r)^2 - \pi r^2$ = $9\pi r^2 - \pi r^2$		✓ substitution into difference of areas
	$=8\pi r^2$		✓ answer (2)
7.3	$RS^{2} = r^{2} + (3r)^{2} - 2(r)(3r)\cos 2x$ $= r^{2} + 9r^{2} - 6r^{2}\cos 2x$		✓ substitution into cosine rule correctly
	$=10r^2 - 6r^2 \cos 2x$		$\checkmark 10r^2 - 6r^2 \cos 2x$
	$= r^2 (10 - 6\cos 2x)$ $RS = r\sqrt{10 - 6\cos 2x}$		$\checkmark r^2(10 - 6\cos 2x) \tag{3}$
7.4	$RS = 10\sqrt{10 - 6\cos 2(56)}$		✓substitution
	= 34,9966 ≈ 35 m		✓ answer (2)
			[10]

8.1.1(a)	$\hat{O}_2 = 64^{\circ}$ [\angle at centre = 2 × \angle at circumference/	✓ S ✓ R	
	$Middelpts \angle = 2 \times \angle omtreks \angle$		(2)
8.1.1(b)	$\hat{M}_2 = 90^{\circ}$ [Line from centre to midpt of chord/lyn v midpt	✓ S ✓ R	, ,
	na midpt v koord]		
	$\hat{KON} = 90^{\circ} + 26^{\circ} = 116^{\circ} \text{ [ext } \angle \text{ of } \Delta/buite \angle van \Delta]$	✓ S	
	$\hat{O}_1 = 116^{\circ} - 64^{\circ} = 52^{\circ}$	✓ answer	
	OR		(4)
	$\hat{M}_2 = 90^{\circ}$ [Line from centre to midpt of chord/lyn v midpt	✓ S ✓ R	
	na midpt v koord]		
	$\hat{O}_3 = 64^{\circ}$ [sum of \angle s in Δ]	✓ S	
	$\hat{O}_1 = 52^{\circ}$ [\angle s on straight line/op 'n reguitlyn]	✓ answer	
			(4)
8.1.2	$\hat{P}KO + \hat{P} = 128^{\circ} \text{ [sum of } \angle \text{s in } \Delta/\text{som } \angle \text{e van } \Delta\text{]}$		
	$\hat{PKO} = \hat{P}$ [\(\setminus \text{ opp} = \text{sides} / \(\setminus \text{ teenoor} = \text{sye} \)]	✓ S	
	=64°	✓ S	
	$\therefore \hat{\mathbf{K}}_2 = 32^{\circ} or \ \hat{\mathbf{K}}_2 = \hat{\mathbf{K}}_1$	✓ S	(2)
	∴ KN bisects/halveer OKP		(3)
	OR		
	$\hat{K}_2 = K\hat{N}O \ [\angle s \ opp = sides/\angle e \ teenoor = sye]$	✓ S	
	$\hat{K}_2 + K\hat{N}O = 64^{\circ} [\text{sum of } \angle \text{s in } \Delta/\text{som } \angle e \text{ van } \Delta]$	√ S	
	$\therefore \hat{\mathbf{K}}_2 = 32^{\circ} or \ \hat{\mathbf{K}}_2 = \hat{\mathbf{K}}_1$	✓ S	
	∴ KN bisects/halveer OKP		(3)

Mathematics P2/Wiskunde V2 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

8.2

8.2.1	$\hat{F}_1 = \hat{D}_1$ [tan chord theorem/raaklyn koordst]	\checkmark S \checkmark R
	$\hat{\mathbf{D}}_1 = \hat{\mathbf{B}}$ [Given/Gegee]	
	$\therefore \hat{\mathbf{F}}_1 = \hat{\mathbf{B}}$	$\checkmark \hat{F}_1 = \hat{B}$
	\therefore FG BC [corresp \angle s =/Ooreenkomstige \angle e =]	√ R
		(4)
8.2.2	$\frac{GC}{AC} = \frac{FB}{AB}$ [line one side of $\Delta / lyn / l$ een sy $v \Delta$]	✓ S ✓ R
	$\frac{x+9}{2x-6} = \frac{5}{7}$	✓ substitution
	7x + 63 = 10x - 30	
	3x = 93 $x = 31$	✓ answer
	. 31	(4)
	OR	
	AG = 2x - 6 - (x+9) = x - 15	
	$\frac{AG}{GC} = \frac{AF}{FB} \qquad [\text{line } \text{ one side of } \Delta / lyn // \text{ een sy } v \Delta]$	✓ S ✓ R
	$\frac{x-15}{x+9} = \frac{2}{5}$	✓ substitution
	5x - 75 = 2x + 18	
	3x = 93	✓ answer
	x = 31	(4)
	OR	

Mathematics P2/Wiskunde V2 18 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne DBE/November 2020

$\frac{AF}{AB} = \frac{AG}{AC} [\text{line } \text{ one side of } \Delta / \text{lyn} \text{ een sy } v\Delta]$	✓ S ✓ R
$\frac{2}{7} = \frac{x-15}{2x-6}$	✓ substitution
7x - 105 = 4x - 12	
3x = 93	✓ answer
x = 31	(4)
	[17]

Mathematics P2/Wiskunde V2 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

QUESTION/VRAAG 9

9.1

9.1		iameter KS and draw KR iddellyn KS en verbind KR	✓ construction
	$Q\hat{S}T = 90^{\circ} - T\hat{S}K$	[radius \perp tangent/raaklyn]	✓ S/R
	$\hat{SRK} = 90^{\circ}$	$[\angle \text{ in semi circle}/halfsirkel}]$	✓ S/R
	$\therefore \hat{SRT} = 90^{\circ} - \hat{KRT}$		✓ S
	TŜK = TRK	[∠s same segment/∠e dieselfde segment]	✓ S/R
	$\therefore \hat{QST} = \hat{R}$	0 1	(5)

20

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

9.1	Construction: Draw radi	ii OS and OT	✓ construction
	Konstruksie: Trek radii	OS en OT	
	$\hat{QST} = 90^{\circ} - \hat{OST}$	[radius \perp tangent/raaklyn]	✓ S/R
	$\hat{OST} = \hat{STO}$	$[\angle s \text{ opp} = \text{sides}/\angle e \text{ teenoor} = sye]$	✓ S/R
	$\therefore \hat{SOT} = 180^{\circ} - 2\hat{OST}$	$[\angle s \text{ of } \Delta / \angle e van \Delta]$	✓ S
	$\hat{\mathbf{R}} = 90^{\circ} - \hat{\mathbf{OST}}$	$[\angle \text{ at centre} = 2 \times \angle \text{ circumf}/$	✓ S/R
		$midpts \angle = 2 \times omtreks \angle$	
	$\therefore \hat{QST} = \hat{R}$		(=)
			(5)

2 21
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

9.1	Construction: Draw diameter KS and join K to T. Konstruksie: Trek middellyn KS en verbind K tot T K	✓ construction
	$\hat{QST} = 90^{\circ} - \hat{TSK}$ [radius \perp tangent/raaklyn]	✓ S/R
	$\hat{STK} = 90^{\circ}$ [\angle in semi circle/halfsirkel] $\therefore \hat{K} = 90^{\circ} - \hat{TSK}$	✓ S/R ✓ S
	$\therefore \hat{QST} = \hat{K}$ but $\hat{R} = \hat{K}$ [\(\angle s\) same segment/\(\angle e\) dieselfde segment]	✓ S/R
	$\therefore \hat{QST} = \hat{R}$	(5)

22

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

9.1	Construction: Draw radii OT, OR and OS	✓ construction
	Konstruksie: Trek radiuse OT, OR en OS	
	$\hat{OST} = \hat{OTS}$ [\(\setminus \text{ opp} = \text{radii}/\(\setminus \text{ teenoor} = \text{radiuse} \)]	✓ S/R
	Also: $\hat{OTR} = \hat{ORT}$ and $\hat{ORS} = \hat{OSR}$	
	$2x + 2y + 2z = 180^{\circ} \ [\angle s \text{ of } \Delta]$	
	$x + y + z = 90^{\circ}$	
	$y + z = 90^{\circ} - x$	✓ S
	$\hat{OSQ} = 90^{\circ}$ [radius \perp tangent/raaklyn]	✓ S/R
	$\therefore \hat{TSQ} = 90^{\circ} - x$	✓ S
	$\therefore \hat{TSQ} = y + z = \hat{R}$	v 2
		(5)

9.1	Construction: Draw radii OT and OS, tangent QT	✓ construction
	Konstruksie: Trek radiuse OT en OS, raaklyn QT $\hat{OSQ} = 90^{\circ}$ [radius \perp tangent/raaklyn]	✓ S/R
	∴ $T\hat{S}Q = 90^{\circ} - T\hat{S}O$ ∴ $T\hat{S}O = S\hat{T}O$ [∠s opp = radii/∠e teenoor = radiuse]	✓ S
	$\hat{R} = 180^{\circ} - 2\hat{T}SO \ [\angle s \text{ of } \Delta]$ $\hat{R} = 90^{\circ} - \hat{T}SO \ [\angle \text{ at centre} = 2 \times \angle \text{ circumf/}$	✓ S
	$midpts \angle = 2 \times omtreks \angle]$ $\therefore \hat{TSQ} = \hat{R}$	✓ S/R
		(5)

9.2

9.2.1(a)	$\hat{\mathbf{N}}_2 = x$	[alt \angle s; PR NQ/verw. \angle e; PR NQ]	✓ S ✓ R	(2)
9.2.1(b)	$\hat{Q}_2 = x$ OR	[tan chord theorem/raaklyn koordstelling]	✓ S ✓ R	(2)
	$M_2 = x$	[tan chord theorem/raaklyn koordstelling]	✓ S/R	
	$\hat{\mathbf{Q}}_2 = x$	$[\angle s \text{ in same segment}/\angle e \text{ in dieselfde segm}]$	✓ S/R	(2)
9.2.2	$\frac{MN}{NR} = \frac{MS}{SP}$	[QN PR; Prop Th]	✓ S ✓ R	(2)
	$\hat{\mathbf{N}}_1 = \hat{\mathbf{N}}_2 = x$	[given]	✓ S ✓ S ✓ R	
	3	[∠s in same segment/∠e in dieselfde segm]		
	3 -2	[= x] [sides opp = \angle /sye teenoor = \angle e]	✓ R	
	$\frac{MN}{NR} = \frac{MS}{SQ}$			(6)
				[15]

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

10.1.1	$\hat{DBE} = 90^{\circ}$ [\(\neq \text{in semi-circle}/\neq \text{in halfsirkel}\)]	✓S ✓R	
	∴ DMA = 90° [AM ⊥ DE] ∴ FBDM is a cyclic quadrilateral/koordevh [converse opp ∠s cyclic quad/omgek teenoorst ∠e kvh]	✓ R	(3)
	OR $D\hat{B}E = 90^{\circ} \qquad [\angle \text{ in semi-circle}/\angle \text{ in halfsirkel}]$	✓S ✓R	
	$\hat{M}_2 = D\hat{B}E = 90^{\circ}$ \therefore FBDM is a cyclic quadrilateral/koordevh [converse ext \angle of cyclic quad/omgek buite \angle van kvh]	✓ R	(3)

$\hat{\mathbf{B}}_{3} = \hat{\mathbf{D}}_{2} [\text{tangent chord th}/\text{raaklyn koordst}] \qquad \checkmark \mathbf{S}$	
$\hat{\mathbf{F}}_1 = \hat{\mathbf{D}}_2 [\text{ext } \angle \text{ cyc quad/buite } \angle \text{ koordevh}]$	✓ R
$\therefore \hat{\mathbf{B}}_3 = \hat{\mathbf{F}}_1$	(4)
OR	
$\hat{B}_1 = \hat{E} = x$ [tangent chord th/raaklyn koordst]	
$\hat{\mathbf{F}}_1 = 90^{\circ} - x \left[\angle \text{ sum in } \Delta / \angle van \Delta \right]$ $\hat{\mathbf{F}}_1$	$= 90^{\circ} - x$
$\hat{D}_2 = 90^\circ - x \left[\angle \text{ sum in } \Delta / \angle van \Delta \right] $	$= 90^{\circ} - x$ \hat{D}_2
$\therefore \hat{\mathbf{F}}_1 = \mathbf{D}_2$	
$\hat{\mathbf{B}}_3 = \hat{\mathbf{D}}_2$ [tangent chord th/raaklyn koordst]	
$\therefore \hat{\mathbf{B}}_3 = \hat{\mathbf{F}}_1$	(4)
OR	
$\hat{\mathbf{B}}_1 = \hat{\mathbf{E}} = x$ [tangent chord th/raaklyn koordst]	√ R
$\hat{B}_3 = 90^\circ - x$ [straight line/reguitlyn]	· K
$\hat{F}_1 = 90^\circ - x [\text{sum of } \angle \text{s } \Delta / \text{som } van \angle e \ van \Delta]$	
$\therefore \hat{\mathbf{B}}_3 = \hat{\mathbf{F}}_1$	(4)
10.1.3 In ΔCDB and ΔCBE	` `
$\hat{C} = \hat{C}$ [common $\angle/gemeenskaplike \angle$]	
$\hat{CBD} = \hat{CEB}$ [tangent chord th/raaklyn koordst]	₹
$\widehat{CDB} = \widehat{CBE} [\angle \text{ sum in } \Delta / \angle \text{ van } \Delta]$	
ΔCDB ΔCBE	(3)
OR In ΔCDB and ΔCBE	
$ \begin{array}{c c} CBD = CEB & [tangent chord th/raaklyn koordst] & \checkmark S/F \\ \hat{C} = \hat{C} & [common \angle/gemeenskaplike \angle] & \checkmark S \end{array} $	<
$\Delta CDB \parallel \Delta CBE [\angle, \angle, \angle]$	
	(3)
10.2.1 BC _ DC _ [Ac]	
$\frac{BC}{EC} = \frac{BC}{BC} [\Delta s]$	io
$BC^2 = EC \times DC$	
	ostitution
$= 16$ $\checkmark ans$	wer
BC = 4	(3)

Mathematics/P2/Wiskunde/V2

27
SCE/SSE– Marking guidelines/Nasienriglyne

DBE/November 2020

10.2.2	$\frac{BC}{EC} = \frac{DB}{BE} \qquad [\Delta s]$ $\frac{DB}{BE} = \frac{4}{8} = \frac{1}{2}$ $BE = 2DB$ $DB^2 + BE^2 = DE^2 \qquad [Pyth theorem]$ $DB^2 + (2DB)^2 = 36$ $5DB^2 = 36$ $DB^2 = \frac{36}{5}$ $DB = \frac{6}{\sqrt{5}} = 2,68 \text{ units}$	✓ BE = 2DB ✓ substitution into Pyth theorem ✓ DB ² = $\frac{36}{5}$ ✓ answer
		(4) [17]

TOTAL/TOTAAL: 150