

Numerical Computing

MEETING 2

Graph, Tabulation, Bisection, Regula Falsi

2024/2025

Comnum Week 2

What Will We Discover? <

O1 Comprehending the Foundations of Equations

Accolade Method; Graph, Tabulation, Bolzano (Bisection), Regula Falsi

03 Task 1

Objective

- Search:
 - solution of the equation
 - \circ Determine the value of X for f(X) = 0.
 - \circ The function f(x) intersects the x-axis.

find the root $f(x) = x^2 - x - 6$

$$(x-3)(x+2)=0$$

$$x = 3 \rightarrow f(x) = 0$$

$$x = -2 \rightarrow f(x) = 0$$

In a polynomial equation of degree two, for instance

$$f(x) = x^2 + x - 2$$

To determine x1 and x2, we can employ the ABC formula.

$$X_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Methods for determining the roots of an equation:

$$f(x) = x^4 - 3x - 2 = 0$$

$$f(x) = e^{-x} - x = 0$$

$$f(x) = x^3 + x^2 - 3x - 3 = 0$$

Methods for resolution

experimenting, inputting the value of x, so that f(x) equals 0

The results are sluggish and not guaranteed to be located.

In the upcoming two meetings, we will explore various methods for determining the roots of equations.

Comprehending the Equations

For polynomials of degree 2, there exists a remarkable formula known as "ABC," which can analytically assist in determining the roots of the equation.

Meanwhile, for polynomials of degree 3 or 4, the existing formulas are rather intricate. We must utter "gladium laviosa" numerous times before we can apply them. Nevertheless, these formulas can still be utilized analytically.

polynomial degree > 4?

All we can do is attempt to resolve it through a series of numerical approaches. For this purpose, there are various methods available for selection.

Comprehending the Foundations of Equations <

The most straightforward method for identifying the roots of a high-degree polynomial equation is to graph the function in Cartesian coordinates. Subsequently, determine the points of intersection of the function with the X-axis.

Another simple method?!...
Yes, but it requires patience. This involves trial and error.

Select any value of x and determine if you can achieve f(x) = 0.

If it fails, experiment with alternative values of x until you are fortunate enough to find f(x) = 0.

Both of these methods can indeed be classified as an approach effort, albeit not systematic.

Conversely, numerous approach techniques can be broadly categorized into two major groups, namely:

Akolade Method Group (this week)

Open Method Group (upcoming meeting)

1. Graphical Method

- Preliminary assessment
- Unable to compute Ea (approximate error); only Et (true error) can be calculated.
- First, create a table to construct the graph.
- The graph illustrates the points at which the function f(x) intersects the x-axis.
- This point signifies the value of x for which f(x) equals zero.

$$\% \text{ error} = \left| \frac{\text{\#experimental} - \text{\#actual}}{\text{\#actual}} \right| \times 100$$

determine the approximate roots of the equation $f(x) = x^3 + x^2 - 34x + 56$

First, establish a table.

X	f(x)
1	24
1,4	13,104
1,8	3,872
2,2	-3,312
2,6	-8,064
3	-10
3,4	-8,736
3,8	-3,888
4,2	4,928

The current price is established as x = 2.

Thus, we can compute Et, specifically:

Et =
$$\frac{2 - (2,2)}{2}$$
 * 100 % = 10 %

Et = error concerning the actual value

1. Graphical Method

- Preliminary assessment
- Unable to compute Ea (approximate error); only Et (true error) can be calculated.
- First, establish a table to construct the graph.
- The graph illustrates the points at which the function f(x) intersects the x-axis.
- This point signifies the value of x for which f(x) equals zero.

$$\% \text{ error} = \left| \frac{\text{\#experimental} - \text{\#actual}}{\text{\#actual}} \right| \times 100$$

determine the approximate roots of the equation

$$f(x) = e^{-x} - x$$

Of First, create a table using an Excel formula.

The precise value is established as x = 0.56714329.

Thus, we can compute Et, specifically:

Et = error concerning the actual price

1.2. Tabulation Technique =

• This tabulation method serves as an extension of the graphic method. While the graphic method yields only a rough approximation, the tabulation method allows for more precise results.

Example 1:

Obtain the approximate roots of the equation provided below.

$$f(x) = x^3 + x^2 - 34 x + 56$$

Х	f(x)
1,8	3,872
1,82	3,460968
1,84	3,055104
1,86	2,654456
1,88	2,259072
1,9	1,869
1,92	1,484288
1,94	1,104984
1,96	0,731136
1,98	0,362792
2	0
2,02	-0,35719
2,04	-0,70874

Fabulation Technique

Example 2: Obtain the approximate roots of the equation. $f(x) = e^{-x} - x$

x	f(x)	x	f(x)	x	f(x)
0	1	0.5	0.106531	0.56	0.011209
0.1	0.804837	0.51	0.090496	0.561	0.009638
0.2	0.618731	0.52	0.074521	0.562	0.008068
0.3	0.440818	0.53	0.058605	0.563	0.006498
0.4	0.27032	0.54	0.042748	0.564	0.004929
0.5	0.106531	0.55	0.02695	0.565	0.00336
0.6	-0.05119	0.56	0.011209	0.566	0.001792
0.7	-0.20341	0.57	-0.00447	0.567	0.000225
0.8	-0.35067	0.58	-0.0201	0.568	-0.00134
0.9	-0.49343	0.59	-0.03567	0.569	-0.00291
1	-0.63212	0.6	-0.05119	0.57	-0.00447

Fabulation Techniqué

• It is established that the actual price is x = 0.56714329.

Thus, we can compute Et, specifically:

• Et = error concerning the actual price

Welcome to Week Two.

1.3. The Bisection Method

Bolzano/Biseksi

- Refined estimates derived from graphs
- Also referred to as the half-interval method (interval halving), Bolzano's method, or bisection.
- Ea and Et can be computed.
- Algorithm:
- Select the initial estimates XL (Xlower) and Xu (Xupper), ensuring that f(XL) * f(Xu) < 0, indicating a sign change between f(XL) and f(Xu).

Bolzano Techniques

- The phrase "sign change" in this method carries significant implications. Given the continuous nature of the function, the presence of two function values, f(xi) and f(xi+n), with differing signs indicates that the function intersects the coordinate axis (at least once) between xi and xi+n.
- Remember, we are seeking the value of x for which f(x) equals zero.

The Bisection Technique

2. First estimation of roots :
$$Xr=rac{Xl+Xu}{2}$$

- 3. To find the next sub-interval
 - \circ If $f\left(Xl
 ight).$ $f\left(Xr
 ight)<0$
 - The root lies in the first subinterval,
 - Then -> Xu = Xr, continue to number 4

$$\circ$$
 If $f\left(Xl
ight) .$ $f\left(Xr
ight) >0$

- The roots lies in the second subinterval,
 - Then -> XL = Xr, continue to number 4

$$\circ$$
 If $f\left(Xl
ight)$. $f\left(Xr
ight)=0$ akar = Xr, stop

4. Compute the new estimated root:
$$Xr=rac{Xl+Xu}{2}$$

Example Question 1

Known,

$$f(x) = x^3 + 10x^2 - 7x - 196$$

Lower Bound (XL) = -5Upper Bound (Xu) = 8The actual value of X = 4

Find the root of x using the bisection method (value 24)

- notes:
 - each iteration look for Et and Ea
 - 2 digits after comma
 - look for iteration 1 to iteration 3
 - write the formula first

The Bisection Technique

Example

Known,

$$f(x) = x^3 + 10x^2 - 7x - 196$$

Lower Bound (XL) = -5

Upper Bound (Xu) = 8

Actual value of X = 4

Formula

Xr=	ΧI	+	Xu
		2	

The Bisection Method <</p>

Sample Inquiries

known,

$$f(x) = x^3 + 10x^2 - 7x - 196$$

Lower Bound(XL) = -5

Upper Bound (Xu) = 8

Actual value of X = 4

Formula

Xr=	ΧI	+	Xu
		2	

Bisection Method <</p>

Example Problem 2

Known,

$$f(x) = x^3 + x^2 - 34x - 56$$

Lower Bound (XL) = -2

Upper Bound (Xu) = 3

Actual value of X = 2

Find the root of x using the bisection method

- notes:
 - each iteration look for Et and Ea
 - 2 digits after comma
 - look for iteration 1 to iteration 3
 - write the formula first

Formula

Xr =	ΧI	+	Xu
		2	

Example Problem 2

Known,

$$f(x) = x^3 + x^2 - 34x - 56$$

Lower Bound (XL) = -2

Upper Bound (Xu) = 3

Actual value of X = 2

Find the root of x using the bisection method

- notes:
 - each iteration look for Et and Ea
 - 2 digits after comma
 - look for iteration 1 to iteration 3
 - write the formula first

Formula

Xr=	ΧI	+	Xu
		2	

Example Problem 2

Known,

$$f(x) = x^3 + x^2 - 34x - 56$$

Lower Bound (XL) = -2

Upper Bound (Xu) = 3

Actual value of X = 2

Find the root of x using the bisection method

- notes:
 - each iteration look for Et and Ea
 - 2 digits after comma
 - look for iteration 1 to iteration 3
 - write the formula first

Formula

Xr=	ΧI	+	Xu
		2	

The Bisection Method <</p>

Example Problem 2

Known:

$$f(x) = x^3 + x^2 - 34x - 56$$

Upper Bound (XL) = -2

Lower Bound (Xu) = 3

Actual Value of X = 2

Find the root of x using the bisection method (value 24)

- Note:
 - Calculate Et and Ea in each iteration
 - Precision to 2 decimal places
 - Find 1st to 3rd iteration
 - Note the formula

Formula

Xr=	ΧI	+	Xu
		2	

1112				
iterasi 3 XI =	1,75			
Xu =	3			
Au –	3			
Xr =	1,75	+	3	
		2		
V., _	2.275			
Xr =	2,375			
Et =	2	-	2,375	
		2		
F+ -	10.75			
Et =	18,75			
Ea =	2,375	-	1,75	
		2,375		
Ea =	26.22			
Ed –	26,32			
f(XI) = f (1,75) =	4,92			
f(Xr) = f (2,375) =	-5,71			
, , , , ,	•			
f(xl) x f(xu) =		4,92	X	-5,7
	< 0			
ma	ka ==> interval ke	1 (kiri)		

Regula Falsi (False Position) Method

taksiran lebih haws dr m. bagidua

m. regula falsi or m. interpolasi Linier

algoritma:

pilih taksiran interval XL & Xu

taksiran awal =

Xr = Xu - f(xu) (xl-xu)

Xr = Xu - f(xu) - f(xu)

u mencari sub interval berikutnya:

iden dgn m. 6agi dua

Regula Falsi (False Position) Method (

Known;

$$f(x) = x^3 + 10 x^2 - 7 x - 196$$

Example Problem

Lower bound (XI) = -5

Upper Bound (Xu) = 8

Actual value of X = 4

Find the root of x using the False Position Method (with a value of 24)

- Note:
 - Calculate Et and Ea in each iteration
 - Precision to 2 decimal places
 - Find 1st to 3rd iteration
 - Note the formula

Regula Falsi (False Position) Method (

Jawab:

$$Xr = Xu - \frac{f(Xu)(XL - Xu)}{f(XL) - f(Xu)}$$

$$f(x) = x^3 + 10 x^2 - 7 x - 196$$

Upper Bound (XI) = -5Lower Bound (Xu) = 8Actual value of X = 4

iterasi 1

$$XI = -5$$
 $f(XI) = -36$
 $Xu = 8$ $f(Xu) = 900$

$$Xr = 8 - \frac{900 \quad (-5 - 8)}{-36 - 900}$$

$$Xr = -4.50$$

$$f(XI) = -36$$

 $f(Xr) = -53.13$

$$f(xl) x f(xu) = -36 x -53.13$$

maka ==> interval ke 2 (kanan)

False Position Method <</p>

iterasi 2

$$XI = -4.50$$
 $f(XI) = -53.13$
 $Xu = 8.00$ $f(Xu) = 900$

$$Xr = 8 - \frac{900 \quad (-4.5 - 8)}{-53.13 - 900}$$

$$Xr = -3.80$$

$$f(XI) = -53.13$$

 $f(Xr) = -79.74$

f(xl) x f(xu) =
$$-53.13$$
 x -79.74
>0

maka ==> interval ke 2 (kanan)

iterasi 3

$$XI = -3.80$$
 $f(XI) = -79.74$
 $Xu = 8.00$ $f(Xu) = 900$

$$Xr = 8 - \frac{900 \quad (-3.80 - 8)}{-79.74 - 900}$$

$$Xr = -2.84$$

https://its.id/m/komnum25

Group Task

- 1. Create an example problem, you can make your own or search from the internet:
 - a. Graph = 2 groups
 - b. Tabulation = 2 groups
 - c. Bisection = 4 groups
 - d. Regula Falsi = 4 groups
- 2. PPT File + Group name and members
- 3. Provide examples of real life implementations of the methods used

Ditanya:

- Search for Et and Ea in every iteration
- Precision to 2 decimal places
- Find 1st to 3rd iteration
- Note the formula

Komnum Week 2

