

Curso DM "Regresiones"

Primavera 2023

Basado en las slides de Felipe Bravo

Metodología para el tratamiento de los datos

Múltiples fuentes de datos:
Temperatura, presión, lluvias, nubosidad, relieve, tendencias del cambio climático, etc...

Limpieza y preparación de los datos. Trabajo con datos faltantes, selección/generación de características relevantes

Poner el modelo en producción

Heladas en el valle central provocan pérdidas en la producción de frutales.

Solución: Predicción de Heladas

Exploración usando estadísticas de resumen (frecuencias, medidas de tendencia central y dispersión) y visualización.

Creación, evaluación y ajuste de modelos de Machine Learning

Retroalimentación: Evaluar el rendimiento del modelo desplegado en los nuevos datos. Reentrenar en caso que el modelo quede desactualizado.

Fuente: Repositorio Github Pablo Badilla. https://github.com/pbadillatorrealba/MDS7202

Machine Learning

- Machine Learning: Aprendizaje Automático, o Aprendizaje de Máquinas
- Estudio, diseño y desarrollo de algoritmos que permiten a los computadores aprender sin ser explícitamente programados (Arthur Samuel, 1959).

Tipos de aprendizaje y sus tareas:

- Técnica utilizada para modelar la relación entre una variable dependiente (objetivo) y una o más variables independientes (predictoras o explicativas).
- Se utiliza para predecir los valores numéricos de un conjunto de datos determinado.
- Viene del área de Machine Learning
- Método de "aprendizaje supervisado"

La regresión y la clasificación (ambas tareas predictivas) son bastante similares entre sí, con la diferencia que:

 En la clasificación las salidas son discretas, en la regresión son valores continuos.

Regression Data

X ₁	X ₂	X ₃	Xp	Y
				5.2
				1.3
				23.0
				7.4
				Numeric Target

Classification Data

X ₁	X ₂	Х3	Xp	Υ
				cat
				dog
				cat
				cat
			C	Categoric "Labels"

Fuente: https://www.sharpsightlabs.com/blog/regression-vs-classification/

La regresión y la clasificación (ambas tareas predictivas) son bastante similares entre sí, con la diferencia que:

 En la clasificación las salidas son discretas, en la regresión son valores continuos.

Classification

Regression

Fuente: https://www.sharpsightlabs.com/blog/regression-vs-classification/

Ejemplos de aplicación:

- Modelado medioambiental.
- Predicción del consumo energético.
- Predicción o pronóstico financiero.
- Proyección de ventas.
- Estimación de la demanda de productos para la gestión del stock.

Ejemplo: Predicción del precio de una propiedad

habitaciones_desde	bannos_desde	metros_construidos_desde	metros_terreno	precio_desde
4.0	3.0	105.0	120.0	3.051520e+08
3.0	3.0	95.0	113.0	1.928006e+08
4.0	3.0	120.0	137.0	2.663145e+08
2.0	2.0	72.0	86.0	1.886394e+08
4.0	3.0	120.0	130.0	2.912815e+08
***	***	***	***	

x = Variables independientes (o explicativas)

y = Variable dependiente

¿Qué hace un algoritmo de Machine Learning para resolver la tarea de regresión?

x1	x2		xd	y
•••	•••	•••	•••	•••

A partir de los datos, el algoritmo construye una función o modelo que estima ŷ dada una entrada x.

Algoritmo de aprendizaje

Utiliza una función de costo para medir la discrepancia (error) entre la predicción y el valor real.

Objetivo: Minimizar el error

$$x = (x1, x2, ..., xd)$$

Modelo de Regresión

ŷ = predicción

Modelo lineal vs no lineal

Fuente: https://www.analyticsvidhya.com/

Modelos de Regresión

- Un modelo de regresión se usa para modelar la relación de una variable dependiente y numérica con n variables independientes x₁, x₂, ..., x_n.
- A grandes rasgos queremos conocer el valor esperado de y a partir los valores de x:

$$\mathbb{E}(y|x_1,x_2,\ldots,x_n)$$

Usamos estos modelos cuando creemos que la variable de respuesta y puede ser modelada por otras variables independientes también conocidas como covariables o atributos.

Modelos de Regresión

- Para realizar este tipo de análisis necesitamos un dataset formado por m observaciones que incluyan tanto a la variable de respuesta como a cada uno de los atributos.
- Nos referimos al proceso de ajustar una función de regresión al proceso en que a partir de los datos inferimos una función de hipótesis h que nos permite predecir valores de y desconocidos usando los valores de los atributos.

Modelos de Regresión

- A este proceso de ajustar una función a partir de los datos se le llama en machine learning como entrenamiento.
- Se entiende que las funciones aprenden a partir de los datos.
- Como necesitamos observaciones donde el valor de y sea conocido para aprender la función, se le llama a este tipo de técnicas como técnicas de aprendizaje supervisado.
- Cuando y es una variable categórica hablamos de un problema de clasificación.

Tipos de modelos

Relación entre la variable objetivo y una variable independiente

netros_terreno	precio_desde
120.0	3.051520e+08
113.0	1.928006e+08
137.0	2.663145e+08
86.0	1.886394e+08
130.0	2.912815e+08

Relación entre la variable objetivo y dos o más variables independientes

bannos_desde	metros_terreno	precio_desde
3.0	120.0	3.051520e+08
3.0	113.0	1.928006e+08
3.0	137.0	2.663145e+08
2.0	86.0	1.886394e+08
3.0	130.0	2.912815e+08
***	***	

Cuantifica el impacto de un cambio en una variable sobre otra, es decir, cuantifica la relación. La correlación sólo indica si existe una asociación fuerte, moderada o débil.

Fuente: https://www.lennysnewsletter.com/

Se tiene una única variable independiente **x** para modelar la variable dependiente **y**. Se asume la siguiente relación lineal entre la variables:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \quad \forall i$$

- El parámetro β₀ representa el intercepto de la recta (el valor de y cuando x vale cero).
- El parámetro $\boldsymbol{\beta_1}$ es la pendiente y representa el cambio de \boldsymbol{y} cuando variamos el valor de \boldsymbol{x} . Entre mayor sea la magnitud de este parámetro mayor será la relación lineal entre las variables.
- Los valores ε, corresponden a los errores asociados al modelo.

• Tenemos que encontrar una función lineal o recta $\mathbf{h}_{\mathbf{\beta}}$ que nos permita encontrar una estimación de \mathbf{y} , $\hat{\mathbf{y}}$ para cualquier valor de \mathbf{x} con el mínimo error esperado.

$$h(x) = \beta_0 + \beta_1 x$$

Mínimos Cuadrados

- El método de mínimos cuadrados ordinarios se usa para estimar β_0 y β_1 minimizando la suma de los errores cuadráticos (SSE) de los datos observados.
- Supongamos que tenemos m observaciones de y y de x, calculamos la suma de los errores cuadráticos (SSE) o E de error de la siguiente forma:

$$E = \sum_{i=1}^{m} (y_i - h(x_i))^2 = \sum_{i=1}^{m} (y_i - \beta_0 - \beta_1 x_i)^2$$
 (1)

Mínimos Cuadrados

• Para encontrar los parámetros que minimizan el error calculamos las derivadas parciales de SSE respecto a β_0 y β_1 . Luego igualamos las derivadas a cero y resolvemos la ecuación para despejar los parámetros.

$$\frac{\partial E}{\partial \beta_0} = -2\sum_{i=1}^m (y_i - \beta_0 - \beta_1 x_i) = 0$$
 (2)

$$\frac{\partial E}{\partial \beta_1} = -2\sum_{i=1}^m (y_i - \beta_0 - \beta_1 x_i) x_i = 0 \tag{3}$$

Mínimos Cuadrados (2)

 Del sistema de ecuaciones anterior se obtienen las soluciones normales:

$$\hat{\beta}_1 = \frac{\sum_i^m (x_i - \overline{x})(y_i - \overline{y})}{\sum_i^m (x_i - \overline{x})^2} \tag{4}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} \tag{5}$$

 El modelo ajustado representa la recta de mínimo error cuadrático.

¿Cómo evaluar mi modelo de regresión?

Fuente: https://courses.lumenlearning.com/

Validación de la capacidad de generalización

El enfoque clásico de Minería de Datos mide la capacidad del modelo para **predecir correctamente** la salida para **nuevos** datos:

- 1. Separar dataset en **train** y **test.**
- 2. Entrenar el modelo en la partición **train**
- 3. Evaluar el modelo en la partición **test.** Por ejemplo, calculando el Error Absoluto Medio (MAE) o el Error Cuadrático Medio (RMSE) (predicción vs valor real).

$$MAE = \frac{1}{n} \sum_{\substack{\text{Sum} \\ \text{of}}} \frac{1}{n} \frac{1}{n}$$

Fuente: https://www.aionlinecourse.com/

Validación de la bondad de ajuste: Coeficiente de Determinación R²

- Una vez ajustado nuestro modelo lineal debemos evaluar la calidad del modelo.
- Una medida muy común es el coeficiente de determinación R².
 Para calcularlo debo calcular otros errores distintos a los errores cuadráticos SSE.
- Se define a la suma cuadrática total (SST) como el error predictivo cuando usamos la media y para predecir la variable de respuesta y (es muy similar a la varianza de la variable):

$$SST = \sum_{i}^{m} (y_i - \overline{y})^2$$

Coeficiente de Determinación R²

 Luego tenemos a la suma de los cuadrados explicada por el modelo (SSM) que nos indica la variabilidad de los valores predichos por el modelo respecto a la media.

$$SSM = \sum_{i}^{m} (\hat{y}_{i} - \overline{y})^{2}$$

 Se define el coeficiente de determinación para un modelo lineal R2 como:
 El coeficiente adquiere

$$R^{2} = \frac{\text{SSM}}{\text{SST}} = \frac{\sum_{i}^{m} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i}^{m} (y_{i} - \overline{y})^{2}}$$

El coeficiente adquiere valores entre 0 a 1, mientras más cercano a 1, mayor será la calidad del modelo.

El valor de R2 es equivalente a la correlación lineal (Pearsons) entre \mathbf{y} e $\hat{\mathbf{y}}$ al cuadrado.

 $R^2 = \operatorname{cor}(y, \hat{y})^2$

Consideraciones

- Introducir valores para X fuera del rango (visto en los datos) se consideraría extrapolación y puede ser muy arriesgado.
- No es recomendable utilizar un modelo para predecir fuera del rango de los datos observados sobre los que se construyó el modelo.

- Supongamos que tenemos n variables independientes:
 X₁, X₂, ..., X_n.
- Intuitivamente, estas variables en conjunto podrían explicar de mejor manera la variabilidad de la variable de respuesta y que un modelo simple.
- Se define un modelo lineal multivariado de la siguiente manera:

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \cdots + \beta_n x_{i,n} + \epsilon_i \quad \forall i \in \{1, m\}$$

- En el modelo multivariado se extienden todas las propiedades del modelo lineal simple.
- Se puede representar el problema de manera matricial:

$$Y = X\beta + \epsilon$$

• Donde Y es un vector de m×1 de variables de respuesta:

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

X es una matriz de m×(n + 1) con las variables explicativas. Tenemos m observaciones de las n variables. La primera columna es constante igual a 1, (x_{i,0} = 1 ∀i) para incluir la variable de intercepto β₀ de manera limpia.

$$X = \begin{pmatrix} x_{1,0} & x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ x_{2,0} & x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{m,0} & x_{m,1} & x_{m,2} & \cdots & x_{m,n} \end{pmatrix}$$

Luego, β es un vector de parámetros de (n + 1) x 1

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

• Finalmente, ε es un vector con los errores del modelo de dimensiones m × 1.

 $\epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \end{pmatrix}$

 Usando la notación matricial, podemos ver que la suma de los errores cuadráticos (SSE) se puede expresar como:

$$SSE = (Y - X\beta)^T (Y - X\beta)$$

 Minimizando esta expresión derivando el error en función de β e igualando a cero se llega a las ecuaciones normales:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Supuestos del Modelo Lineal

Cada vez que ajustamos un modelo lineal estamos asumiendo implícitamente ciertos supuestos sobre los datos.

01	Linealidad	La variable de respuesta se relaciona linealmente con los atributos.
02	Normalidad	Los errores tienen distribución normal de media cero: $\epsilon_{\rm i}$ ~ N(0, σ^2)
03	Homocedasticidad	Los errores tienen varianza constante (mismo valor de σ^2).
04	Independencia	Los errores son independientes entre sí.

Interpretación Probabilística

 Considerando los supuestos anteriores podemos ver que la densidad de probabilidad (PDF) de los errores ε se definen por una normal de media cero y varianza constante:

$$\mathsf{PDF}(\epsilon_i) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\epsilon_i^2}{2\sigma^2}\right)$$

Esto implica que:

$$PDF(y_i|x_i;\beta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - h_\beta(x_i))^2}{2\sigma^2}\right)$$

Interpretación Probabilística

- Lo que implica que la distribución de y dada los valores de x y parametrizada por β sigue una distribución normal.
- Luego si uno estima los parámetros de β usando una técnica de estimación llamada máxima verosimilitud llega a los mismos resultados que haciendo una estimación por mínimos cuadrados.
- Esto nos dice que cuando estimamos los parámetros del modelo usando mínimos cuadrados estamos realizando las mismas hipótesis probabilísticas mencionadas anteriormente.

Ejemplo

Rape~Assault+Murder

Machine Learning en Python

Python es considerado uno de los lenguajes de programación más populares que provee bibliotecas potentes para Data Science y ML. https://www.python.org/downloads/

Scikit-learn es una biblioteca de aprendizaje automático de código abierto que permite el aprendizaje supervisado y no supervisado. https://scikit-learn.org/stable/index.html

Machine Learning en Python

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition. **Algorithms:** Gradient boosting, nearest neighbors, random forest, logistic regression, and more...

Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency
Algorithms: PCA, feature selection, non-negative
matrix factorization, and more...

Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms:** Gradient boosting, nearest neighbors, random forest, ridge, and more...

Examples

Model selection

Comparing, validating and choosing parameters and models.

Applications: Improved accuracy via parameter tuning

Algorithms: grid search, cross validation, metrics, and more...

Examples

Clustering

tering, and more...

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, HDBSCAN, hierarchical clus-

Examples

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for use with machine learning algorithms.

Algorithms: preprocessing, feature extraction, and more...

Examples

Machine Learning en Python

Herramientas para:

- Preprocesamiento de datos
- Selección de modelos
- Ajuste de modelos
- Evaluación de modelos

- ...

www.dcc.uchile.cl

