Travaux Dirigés de Physique Statistique

1 Loi binomiale

On considère une enceinte de volume V contenant N particules sans interactions mutuelles. Ces particules sont microscopiquement discernables et on s'intéresse à n le nombre de particules contenues dans une partie de l'enceinte de volume v. Le système est supposé à l'équilibre, ce qui se traduit par le fait que la probabilité, pour une particule donnée, d'être dans le volume v est $p \equiv v/V$.

- 1. Quelle est la probabilité d'avoir n particules d'« identité » donnée dans le volume v?
- 2. On s'intéresse maintenant aux « $macro-\acute{e}tats$ » qui sont uniquement définis par la seule donnée du nombre n de particules présentes dans le volume v. Quelle est la probabilité f(n) du macro-état caractérisé par n?
- 3. Calculer la valeur moyenne \bar{n} et l'écart-type Δn relatif à n. Pour ces calculs, on pourra éventuellement partir de l'expression de la fonction génératrice

$$F(x) = \sum_{n=0}^{N} f(n)x^{n}.$$

4. Donner l'allure de f(n) lorsque $N \to \infty$. En supposant $N \gg 1$, $n \gg 1$ et $N \gg n$ et en les assimilant à des variables continues, montrer que la moyenne \bar{n} précédemment trouvée coïncide avec la valeur la plus probable et qu'au voisinage de cette valeur, f(n) peut s'écrire sous une forme gaussienne :

$$f(n) = f(\bar{n}) \exp\left(-\frac{(n-\bar{n})^2}{2(\Delta n)^2}\right).$$

Quelle est la signification de Δn ?

5. Montrer que lorsque $v/V \to 0$ (avec $V \to \infty$ et à densité N/V constante), f(n) prend la forme d'une distribution de Poisson :

$$f(n) \simeq \frac{\bar{n}^n}{n!} e^{-\bar{n}}.$$

2 Élasticité du caoutchouc

On modélise une chaîne de polymères par une chaîne unidimensionnelle constituée de n segments articulés de longueur a. les orientations \to et \leftarrow de ces segments sont équivalentes du point de vue énergétique. La distance séparant les deux extrémités de la chaîne est notée L. Enfin cette chaîne est maintenue à longueur L et énergie fixées. La géométrie du problème est présentée en Figure 1.

- 1. Soit une configuration avec n_+ segments d'orientation \to et n_- segments d'orientation \leftarrow . Écrire les deux équations satisfaites par n_+ et n_- .
- 2. Déterminer l'entropie S(L, n) de la chaîne.
- 3. On définit la tension de la chaîne par :

$$\frac{F}{T} \equiv -\frac{\partial S}{\partial L}.$$

Montrer que la tension de la chaîne vaut :

$$F = \frac{Tk_{\rm B}}{2a} \ln \left(\frac{1 + L/(na)}{1 - L/(na)} \right).$$

FIGURE 1 – Modèle de chaîne de polymères.

4. Que donne cette expression dans la limite $L \ll na$? Montrer que, dans cette limite, on a :

$$\frac{1}{L} \left(\frac{\partial L}{\partial T} \right)_F = -\frac{1}{T}.$$

Commenter ce résultat. Pourquoi peut-on parler de « ressort entropique »?

3 Modèle de spins paramagnétique

On considère le modèle de spins paramagnétiques par l'Hamiltonien :

$$H({s_i}) = -h \sum_{i=1}^{N} s_i, \quad s_i = \pm 1,$$

où h est le champ magnétique.

Remarque : Comme les spins sont sans interaction, le modèle peut être défini en dimension arbitraire. Calculer la fonction de partition :

$$Z = \sum_{\{s_i = \pm 1\}} e^{-\beta H(\{s_i\})}.$$

En déduire l'énergie libre F, l'aimantation moyenne $M = \langle \sum_{i=1}^{N} s_i \rangle$ et les fluctuations de l'aimantation dans l'ensemble canonique.