Struktury formalne, czyli elementy Teorii Modeli

Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17

1 Język

1.1 Sygnatura językowa

Sygnatura językowa: $L = (\{f_i\}_{i \in I}, \{P_j\}_{j \in J}, \{c_k\}_{k \in K})$

- f_i symbol funkcyjny
- P_j symbol relacji
- c_k symbol stałej

Dodatkowo mamy funkcje:

$$\alpha: I \mapsto \mathbb{N} \setminus \{0\}$$
$$\beta: J \mapsto \mathbb{N} \setminus \{0\}$$

Funkcja f_i jest $\alpha(i)$ -arna, a relacja P_j jest $\beta(i)$ -arna Sygnatura to L, α, β

Przykład

Teoria ciał uporządkowanych (ciało uporządkowane to np. $\mathbb R$) Jakie symbole używamy:

- Symbole funkcyjne $(+), (\cdot)$ funkcje binarne, (-), (-1) funkcje unarne
- \bullet Symbol relacyjny \leqslant relacja binarna
- Stałe 0,1

Czyli sygnatura języka ciał uporządkowanych jest następująca:

$$(\{+,\cdot,-,^{-1}\},\{\leqslant\},\{0,1\})$$

$$\alpha(+) = 2, \alpha(\cdot) = 2, \alpha(-) = 1, \alpha(^{-1}) = 1$$

$$\beta(\leqslant) = 2$$

Dodatkowo mamy symbole:

- logiczne: $\neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists, =$
- pomocnicze:),(
- zmiennych: x_0, x_1, x_2, \dots

1.2 Termy języka \mathcal{L} (o sygnaturze (L, α, β))

Definicja: Zbiór termów $\mathcal{T}_{\mathcal{L}}$ jest to najmniejszy zbiór spełniający warunki:

- $c_k \in \mathcal{T}_{\mathcal{L}}$, dla każdego $k \in K$
- $x_n \in \mathcal{T}_{\mathcal{L}}$, dla każdego $n \in \mathbb{N}$
- jeśli $\alpha(i) = n$ i $\tau_1, \tau_2, ... \tau_n \in \mathcal{T}_{\mathcal{L}}$, to $f_i(\tau_1, \tau_2, ... \tau_n) \in \mathcal{T}_{\mathcal{L}}$

Przykłady termów w języku teorii ciał uporządkowanych:

$$0, 1, x, y, z, +(x, y), \cdot (0, 0), -(+(+(x, y), ^{-1}(z)))$$

Wersja normalna (notacja infiksowa): $(x + y), (0 \cdot 0), -((x + y) + z^{-1})$

1.3 Formuły języka \mathcal{L}

Definicja: Zbiór formuł $\mathcal{F}_{\mathcal{L}}$ jest najmniejszym zbiorem spełniającym warunki:

- jeśli $\tau_1, \tau_2 \in \mathcal{T}_{\mathcal{L}}$, to $(\tau_1 = \tau_2) \in \mathcal{F}_{\mathcal{L}}$
- jeśli $\beta(j) = n$ i $\tau_1, \tau_2, ..., \tau_n \in \mathcal{T}_{\mathcal{L}}$, to $P_i(\tau_1, \tau_2, ..., \tau_n) \in \mathcal{F}_{\mathcal{L}}$
- jeśli $\varphi, \psi \in \mathcal{F}_{\mathcal{L}}$, to $\neg \varphi, (\varphi \land \psi), (\varphi \lor \psi), (\varphi \to \psi), (\varphi \leftrightarrow \psi), (\forall x_n) \varphi, (\exists x_n) \varphi \in \mathcal{F}_{\mathcal{L}}$

Przykłady formuł języka teorii ciał uporządkowanych:

$$(\exists x)(x+y=1+0)$$

$$(\forall x)(\exists y)(x+y \leqslant y^{-1})$$

1.4 Model języka \mathcal{L}

Jest to $\mathbb{M}=(M,\{f_i^M\}_{i\in I},\{P_j^M\}_{j\in J},\{c_k^M\}_{k\in K}),$ gdzie:

- M to niepusty zbiór (M nazywamy uniwersum struktury)
- $f_i^M: M^{\alpha(i)} \mapsto M$
- $P_i \subseteq M^{\beta(j)}$
- $c_k^M \in M$

1.5 Interpretacja termów (bez zmiennych) w modelu M

Konwencja: $\tau \in \mathcal{T}_{\mathcal{L}} \to \tau^M \in M$ $(\tau^M : \text{interpretacja termu } \tau)$

- $\bullet \ (c_k)^M = c_k^M$
- $(f_i(\tau_1, \tau_2, ..., \tau_n))^M = f_i^M(\tau_1, \tau_2, ..., \tau_n)$

Przykład

$$\tau=\cdot(+(1,1),1),$$
struktura $\mathbb{R}=(\mathbb{R},\ldots)$
 $\tau^{\mathbb{R}}=((1+1)^{\mathbb{R}}\cdot 1)^{\mathbb{R}}=2\cdot 1=2$

CEL: mając $\varphi \in \mathcal{F}_{\mathcal{L}}$ pokazać $\mathbb{M} \models \varphi$

Załóżmy, że φ jest zdaniem, tzn. w φ nie wystepują zmienne wolne. W formułach $(\forall x)\psi$, $(\exists x)\psi$ zmienna x występująca w ψ jest związana.

Przykład

 $(\exists y)((\forall x)(x \leq y) \land x = y)$ W formule x=y w powyższej formule, x jest wolny

Rozszerzamy język \mathcal{L} do $\mathcal{L}(M)$

W $\mathcal{L}(M)$ mamy dodatkowo stałe c_a , dla $a \in M$ Owe stałe interpretujemy naturalnie, tzn. $c_a^M = a$

Definicja: (M $\models \varphi$ dla zdań φ w języku $\mathcal{L}(M)$)

- $\mathbb{M} \models \tau_1 = \tau_2$ wtedy i tylko wtedy, gdy $\tau_1^M = \tau_2^M$
- $\mathbb{M} \models P_i(\tau_1, \tau_2, ... \tau_n)$ wtedy i tylko wtedy, gdy

$$(\tau_1^M, \tau_2^M, ..., \tau_n^M) \in P_j^M$$

- $\mathbb{M} \models \varphi \lor \psi$ wtedy i tylko wtedy, gdy $\mathbb{M} \models \varphi$ lub $\mathbb{M} \models \psi$
- $\mathbb{M} \models \neg \varphi$ wtedy i tylko wtedy, gdy nieprawda, że $\mathbb{M} \models \varphi$
- $\mathbb{M} \models (\exists x) \varphi(x)$ wtedy i tylko wtedy, gdy istnieje $a \in M$ takie, że $\mathbb{M} \models \varphi(c_a)$ (w $\varphi(x)$ mogą występować zmienne wolne, $\varphi(c_a)$ to formuła $\varphi(x)$ po zastąpieniu wszystkich wystąpień x przez c_a)
- $\mathbb{M} \models (\forall x)\varphi(x)$ wtedy i tylko wtedy, gdy dla każdego $a \in M \mathbb{M} \models \varphi(c_a)$

1.6 Spełnianie formuł

Niech $\varphi = \varphi(x_1,...,x_n)$ będzie formułą języka \mathcal{L} , w której występują zmienne wolne $x_1,...,x_n$

Domknięcie uniwersalne tej formuły to:

$$\overline{\varphi} = (\forall x_1)(\forall x_2)...(\forall x_n)\varphi(x_1, x_2, ..., x_n)$$

Definiujemy:

 $\mathbb{M} \models \varphi$, wtedy i tylko wtedy, gdy $\mathbb{M} \models \overline{\varphi}$

Przykład

$$\varphi = (\forall x)(x \geqslant 0 \rightarrow (\exists y)(y \cdot y))$$

 $\mathbb{R}\models\varphi,$ bo jeśli $a\geqslant0,$ to istnieje $b=\sqrt{a},$ takie, że $b\cdot b=a$ Ale $\mathbb{Q}\models\neg\varphi,$ bo nie istnieje $b\in\mathbb{Q},$ takie że $b\cdot b=2$

1.7 Teoria

Definicja: Ustalmy język \mathcal{L} . Teorią nazywamy zbiór $T \subseteq \mathcal{F}_{\mathcal{L}}$

Definicja: M jest modelem teorii T, jeśli $(\forall \varphi \in T)$ M $\models \varphi$ (Piszemy w skrócie M $\models T$)

Przykład

Niech \mathcal{L} będzie językiem teorii grup, tzn. jego sygnatura $L=(\{\cdot,^{-1}\},\emptyset,e)$ · jest binarna, $^{-1}$ jest unarna

$$GT = \{(x \cdot y) \cdot z = x \cdot (y \cdot z), \ x \cdot x^{-1} = x^{-1} \cdot x = e, \ x \cdot e = e \cdot x = x\}$$

Jeśli $\mathbb{M} \models GT$, to \mathbb{M} jest grupą.

Wiemy, że grupy istnieją, np. $(\mathbb{R}, \{+, -\}, \emptyset, 0), (S_n, \{\circ, -1\}, \emptyset, \{id\})$

1.8 Dowodzenie w teorii T

Co to znaczy, że $T \models \varphi$? (czytamy: teoria T dowodzi φ) Istnieje dowód, czyli ciąg formuł $\varphi_1, ..., \varphi_n \in \mathcal{F}_{\mathcal{L}}$

• $\varphi_i \in T \ (\varphi_i \text{ jest aksjomatem})$

lub

• φ_i jest tautologią Klasycznego Rachunku Logicznego, np.

$$\varphi_i = (\forall x)(\gamma(x) \land \delta(x)) \rightarrow (\forall x)(\gamma(x)) \land (\forall x)(\delta(x))$$

lub

• φ_i powstaje z $\varphi_1, \varphi_2, ..., \varphi_{i-1}$ przy pomocy reguł dowodzenia

Wyjaśnienie

 $\psi \in \mathcal{F}_{\mathcal{L}}$ jest tautologia KRL \iff dla dowolnego \mathcal{L} -modelu \mathbb{M} , mamy $\mathbb{M} \models \psi$

1.9 Reguly dowodzenia

 $\frac{\alpha_1,\alpha_2,...,\alpha_k}{\alpha}$ oznacza, że z przesłanek $\alpha_1,...,\alpha_k$ można wnioskować α

Poprawna reguła dowodzenia ma własność:

dla dowolnego modelu M: jeśli $\mathbb{M} \models \alpha_1, \mathbb{M} \models \alpha_2, ..., \mathbb{M} \models \alpha_k$, to $\mathbb{M} \models \alpha$ Wystarczą dwie reguły dowodzenia:

Modus Ponens: $\frac{\alpha, \alpha \to \beta}{\beta}$ Zasada generalizacji: $\frac{\varphi}{(\forall x)\varphi}$

1.10 Sprzeczność, niesprzeczność, zupełność

Definicja: Teoria T jest sprzeczna jeśli istnieje $\varphi \in \mathcal{F}_{\mathcal{L}}$, dla której $T \models \varphi$ i $T \models \neg \varphi$

Uwaga: Każdy program wyborczy jest sprzeczny. Dobry program wyborczy to taki, którego dowód sprzeczności jest długi i nieoczywisty.

Definicja: Teoria T jest niesprzeczna \iff T nie jest teoria sprzeczna.

Twierdzenie

Teoria T jest niesprzeczna $\iff (\forall T_0 \subseteq T)(T_0 \text{ skończona} \to T_0 \text{ niesprzeczna})$ Dowód:

- → oczywiste
- \leftarrow niewprost

Załóżmy, że T sprzeczna. Wtedy istnieje φ , takie że $T \models \varphi$ i $T \models \neg \varphi$. W dowodach wykorzystujemy skończony zbiór aksjomatów T_0 , zatem $T_0 \models \varphi$ i $T_0 \models \neg \varphi$

Twierdzenie (Gödel)

T jest niesprzeczna \iff T ma model $((\exists \mathbb{M})(\mathbb{M} \models T))$

Komentarz: Aby pokazać \leftarrow , zauważmy, że $T \models \varphi$ implikuje $\mathbb{M} \models \varphi$

Wniosek: Jeśli dowolny skończony $T_0 \subseteq T$ ma model, to T niesprzeczna.

Definicja: Teoria T jest zupełna $(T \subseteq \mathcal{F}_{\mathcal{L}})$, jeśli dla każdego $\varphi \in \mathcal{F}_{\mathcal{L}}$:

$$T \models \varphi \text{ lub } T \models \neg \varphi$$

Uwaga: Jeśli T nie jest zupełna, to istnieje φ , dla którego:

$$\neg (T \models \varphi) \land \neg (T \models \neg \varphi)$$

Mówimy wtedy, że φ jest niezalezne od T

Fakt: Jeśli $\neg T \models \varphi$ to $T \cup \{\neg \varphi\}$ jest niesprzeczna.

Oczywiście, jeśli $T \cup \{\neg \varphi\}$ jest niesprzeczna, to $\neg T \models \varphi$

Wniosek: Aby pokazać, że T nie jest zupełna wystarczy znaleźć $\varphi \in \mathcal{F}_{\mathcal{L}}$, takie, że $T \cup \{\varphi\}$ jest niesprzeczna i $T \cup \{\neg \varphi\}$ niesprzeczna.

Przykład: CH jest niezależna od ZFC.

Przykład 2: GT jest niesprzeczna i nie jest zupełna

Niech
$$\varphi$$
 = "jest n!+1 elementów"
$$\varphi_n = (\exists x_1)(\exists x_2)...(\exists x_{n!})(\exists x_{n!+1})(\bigwedge_{i\neq j} x_i \neq x_j)$$

$$\mathbb{R} \models \varphi, S_n \models \neg \varphi$$

Przykład 3: Rozważmy teorię GT_{∞} (teoria nieskończonych grup)

 $GT_{\infty}=GT\cup\{\varphi_n:n\in\mathbb{N}\},$ gdzie φ_n zdefiniowana jak w poprzednim przykładzie.

 GT_{∞} jest niesprzeczna i nie jest zupełna:

Niech $\psi = (\forall x, y)(x \cdot y = y \cdot x)$

 $\mathbb{R} \models \psi, S_{\infty} \models \neg \psi \ (S_{\infty}$ - grupa permutacji liczb naturalnych)

Dowód dla S_{∞} :

Używając twierdzenia Gódla wystarczy stwierdzić, że $S_n \models \neg \psi$, dla $n \geqslant 3$.

Zatem $GT_{\infty} \cup \{\neg \psi\}$ jest niesprzeczna \Box

1.11 Teoria modelu, podstruktury

Definicja: Niech M będzie modelem dla języka \mathcal{L} (\mathcal{L} -strukturą). Teorią modelu M nazywamy zbiór $\mathfrak{Th}(M) = \{ \varphi \in \mathcal{F}_{\mathcal{L}} : M \models \varphi \}$

Fakt: $\mathfrak{Th}(\mathbb{M})$ jest niesprzeczną, zupełną teorią.

Dowód:

 $\mathbb{M} \models \mathfrak{Th}(\mathbb{M})$, więc $\mathfrak{Th}(\mathbb{M})$ jest teorią niesprzeczną.

Weźmy dowolne $\varphi \in \mathcal{F}_{\mathcal{L}}$

Załóżmy, że $\varphi \notin \mathfrak{Th}(\mathbb{M})$ (w przeciwnym wypadku $\mathfrak{Th}(\mathbb{M}) \models \varphi$)

Wtedy nieprawda, że $\mathbb{M} \models \varphi$. Z definicji spełniania wtedy $\mathbb{M} \models \neg \varphi$

Definicja: Niech \mathbb{M} , \mathbb{N} będą \mathcal{L} -strukturami

- 1. M jest izomorficzne z N (M \cong N) jeśli istnieje izomorfizm $\varphi:M\to N,$ taki że:
 - $\bullet \ \varphi$ jest bijekcją

• φ zachowuje strukturę, tzn.

$$(\forall i)(\forall a_1, a_2, ..., a_n, b \in M)(f_i^M(a_1, a_2, ..., a_n) = b \iff f_i^N(\varphi(a_1), \varphi(a_2), ..., \varphi(a_n)) = \varphi(b))$$

$$(\forall j)(\forall a_1, a_2, ..., a_n)(P_j^M(a_1, a_2, ..., a_n) \iff P_j^N(\varphi(a_1), \varphi(a_2), ..., \varphi(a_n)))$$

$$(\forall k)(\varphi(c_k^M) = c_k^N)$$

2. M jest elementarnie równoważne \mathbb{N} , jeśli $\mathfrak{Th}(\mathbb{M}) \cong \mathfrak{Th}(\mathbb{N})$

Fakt: Jeśli $\mathbb{M} \cong \mathbb{N}$ to $\mathbb{M} \equiv \mathbb{N}$

1.12 Elementarne podstruktury

Definicja: $\mathbb{M} \preceq \mathbb{N}$ (\mathbb{M} jest elementarną podstrukturą (podmodelem) \mathbb{N}) oznacza, że $\mathbb{M} \subseteq \mathbb{N}$ oraz dla dowolnego $\varphi(x_1,...,x_n) \in \mathcal{F}_{\mathcal{L}}$ oraz $a_1,...a_n \in M$ mamy $\mathbb{M} \models \varphi(c_{a_1},...,c_{a_n}) \iff \mathbb{N} \models \varphi(c_{a_1},...,c_{a_n})$

Fakt: Jeśli $\mathbb{M} \preceq \mathbb{N}$ to $\mathbb{M} \equiv \mathbb{N}$

Dowód:

Weźmy dowolne zdanie $\varphi \in \mathcal{F}_{\mathcal{L}}$. Wtedy z definicji elementarnej podstruktury:

 $\mathbb{M} \models \varphi \iff \mathbb{N} \models \varphi \text{, czyli } \varphi \in \mathfrak{Th}(\mathbb{M}) \iff \varphi \in \mathfrak{Th}(\mathbb{N})$

Zatem $\mathfrak{Th}(\mathbb{M}) = \mathfrak{Th}(\mathbb{N})$, czyli $\mathbb{M} \equiv \mathbb{N} \square$

Twierdzenie (test Tarskiego-Vaughta)

Niech M będzie \mathcal{L} -strukturą oraz $A \subseteq M$.

Wtedy A jest uniwersum elementarnej podstruktury \mathbb{M} wtedy i tylko wtedy, gdy dla każdej formuły $\varphi(x_1, y_1, ..., y_n) \in \mathcal{F}_{\mathcal{L}}$ oraz elementów $a_1, ..., a_n \in A$:

$$\mathbb{M} \models (\exists x) \varphi(x, c_{a_1}, ..., c_{a_n}) \iff \text{istnieje } a \in A, \text{ że } \mathbb{M} \models \varphi(c_a, c_{a_1}, ..., c_{a_n})$$

Dowód:

- → Weźmy dowolne $\varphi \in \mathcal{F}_{\mathcal{L}}, a_1, ..., a_n \in A$ $\mathbb{M} \models (\exists x) \varphi(x, c_{a_1}, ..., c_{a_n}) \iff (\text{z elementarności})$ $\mathbb{A} \models (\exists x) \varphi(x, c_{a_1}, ..., c_{a_n}) \iff (\text{z definicji spełniania})$ istnieje $a \in A \ \mathbb{A} \models \varphi(c_a, c_{a_1}, ..., c_{a_n}) \iff (\text{z elementarności})$ istnieje $a \in A \ \mathbb{M} \models \varphi(c_a, c_{a_1}, ..., c_{a_n}) \ \square$
- ← A jest uniwersum podstruktury
 - 1. Relacje $P_j \text{ relacja } \beta(j)\text{-arna}$ $P_j^{\mathbb{A}} = P_j^{\mathbb{M}} \cap A^{\beta(j)}$
 - 2. Funkcje
 Trzeba sprawdzić, że $f_i^{\mathbb{M}} \upharpoonright A^{\alpha(i)} : A^{\alpha(i)} \mapsto A$ Niech $a_1, ..., a_n \in A$ Wtedy $\mathbb{M} \models (\exists x)(x = f_i(c_{a_1}, ..., c_{a_n}))$ Z założenia, istnieje $a \in A$, $\mathbb{M} \models (c_a = f_i(c_{a_1}, ..., c_{a_n}))$ A zatem $f_i^{\mathbb{M}}(c_{a_1}, ..., c_{a_n}) = a$

3. Stałe

$$\mathbb{M} \models (\exists x)(c_k = x)$$

Z założenia, istnieje
$$a \in A \mathbb{M} \models (c_a = c_k)$$
, co oznacza, że $a = c_k^{\mathbb{M}}$

Pokażemy, że $\mathbb{A} \preceq \mathbb{M}$

(dowód przez indukcję względem skomplikowania formuły ψ)

1. ψ – formuła atomowa

$$\mathbb{A} \models \psi \iff \mathbb{M} \models \psi \text{ (wynika z } \mathbb{A} \subseteq \mathbb{M})$$

2. $\psi = \varphi_1 \vee \varphi_2$

$$\mathbb{A} \models \varphi_1 \vee \varphi_2 \iff (\text{z założenia indukcyjnego})$$

$$\mathbb{M} \models \varphi_1 \text{ lub } \mathbb{M} \models \varphi_2 \iff \mathbb{M} \models \varphi_1 \vee \varphi_2$$

3. $\psi = \neg \varphi$ itp. analogicznie ...

4.
$$\psi = (\exists x)\varphi(x, c_{a_1}, ..., c_{a_n}), a_1, ..., a_n \in A \mathbb{M} \models (\exists x)\varphi(x, c_{a_1}, ..., c_{a_n}) \iff$$

(z założenia)

istnieje
$$a \in A \mathbb{M} \models \varphi(c_a, c_{a_1}, ..., c_{a_n}) \iff$$

istnieje
$$a \in A \ \mathbb{A} \models \varphi(c_a, c_{a_1}, ..., c_{a_n}) \iff$$

$$\mathbb{A} \models (\exists x) \varphi(x, c_{a_1}, ..., c_{a_n}) \ \Box$$

Twierdzenie: (dolne Löwenheima–Skolema)

Niech M będzie \mathcal{L} -strukturą, \mathcal{L} przeliczalny. Niech $A \subseteq M$, A przeliczalny.

Wtedy istnieje $\mathbb{M}' \preceq \mathbb{M}$, taki, że $A \subseteq M'$

Dowód:

Niech $A_0 = A$

Niech
$$\Phi_0 = \{ \varphi(x, c_{a_1}, ..., c_{a_n}) : \mathbb{M} \models (\exists x) \varphi(x, c_{a_1}, ..., c_{a_n}) \}$$

$$(\varphi(x, c_{a_1}, ..., c_{a_n}) \in \mathcal{F}_{\mathcal{L} \cup \{c_a : a \in A_0\}})$$

$$|\Phi_0| \leqslant \aleph_0$$

Niech $a_{\varphi} \in M$, że $\mathbb{M} \models \varphi(c_{a_n}, c_{a_1}, ..., c_{a_n})$, dla $\varphi \in \Phi_0$

$$A_1 = \{a_{\varphi} : \varphi \in \Phi_0\}, |A_1| \leqslant \aleph_0$$

$$\begin{array}{l} A_1 = \{a_{\varphi} : \varphi \in \Phi_0\}, \ |A_1| \leqslant \aleph_0 \\ \Phi_1 = \{\varphi(x, c_{a_1}, ..., c_{a_n}) : \mathbb{M} \models (\exists x) \varphi(x, c_{a_1}, ..., c_{a_n}) \\ (\varphi(x, c_{a_1}, ..., c_{a_n}) \in \mathcal{F}_{\mathcal{L} \cup \{c_a : a \in A_1\}}) \end{array}$$

$$(\varphi(x, c_{a_1}, ..., c_{a_n}) \in \mathcal{F}_{\mathcal{L} \cup \{c_a: a \in A_1\}})$$

Kontynuujemy, kładziemy $M' = \bigcup_{n \in \mathbb{N}} A_n$

M' jest przeliczalny, $A \subseteq M'$

M' spełnia test Tarskiego-Vaughta!

Twierdzenie: (górne Löwenheima–Skolema)

Niech M będzie \mathcal{L} -strukturą. Niech $\kappa > |M|, M$ nieskończony.

Wtedy istnieje $\mathbb{N} \geq \mathbb{M}, |N| \geq \kappa$

Dowód:

Niech
$$T = \mathfrak{Th}(\mathbb{M}, \{c_a, a \in M\})$$

(teoria modelu M w języku wzbogaconym o stałe c_a (dla $a \in M$))

Wzbogaćmy język o kolejne dodatkowe stałe : $\{c_{\alpha} : \alpha \in \kappa\}$

Niech $T' = T \cup \{c_{\alpha} \neq c_{\beta} : \alpha \neq \beta\}$

T' jest niesprzeczny, bo dowolny skończony fragment $T_0\subseteq T'$ ma model. W M interpretujemy stałe c_{α} (występujące w T_0), tak aby były parami różne.

Z twierdzenia Gödla istnieje $\mathbb{N}'\models T',\, |N'|\geqslant \kappa,$ bo $N'\supseteq\{c_\alpha^{\mathbb{N}'}:\alpha\in\kappa\}$ W \mathbb{N}' istnieje izomorficzna kopia modelu M $M'=\{c_\alpha^{\mathbb{N}'}:\alpha\in M\}$ (M' to "zielony" model M)

Fakt: DLO_0 jest zupełna (teoria gęstych liniowych porządków bez końców) Dowód: (lista 9)

Wiemy, że jeśli $\mathbb{M} \models DLO_0$ i $\mathbb{N} \models DLO_0$ oraz $|M| = |N| = \aleph_0$, to $\mathbb{M} \cong \mathbb{N}$

Przypuśćmy, że DLO_0 nie jest zupełna.

Wtedy istnieje φ , takie że $T=DLO_0\cup\{\varphi\}$ i $S=DLO_0\cup\{\neg\varphi\}$ są niesprzeczne. Niech $\mathbb{M}\models S, \mathbb{N}\models T$

Z dolnego twierdzenia Löwenheima–Skolema istnieją przeliczalne $\mathbb{M}', \mathbb{N}',$ że

$$\mathbb{M}' \preccurlyeq \mathbb{M}, \ \mathbb{N}' \preccurlyeq \mathbb{N}$$

Wtedy $\mathbb{M}'\cong\mathbb{N}$. Zatem $\mathfrak{Th}(\mathbb{M}')=\mathfrak{Th}(\mathbb{N}')$. Ale $\varphi\in\mathfrak{Th}(\mathbb{M}')$, a $\neg\varphi\in\mathfrak{Th}(\mathbb{N}')$ co jest sprzecznością z definicją teorii modelu. \square