

11-324/11-624/11-724 Human Language for AI

Phonological Features and Optimality Theory

David R. Mortensen September 29, 2021

Language Technologies Institute Carnegie Mellon University

Learning Objectives

At the end of this lectures, students will know:

- The motivations for phonological feature theory
- How segments are defined in terms of features
- Where to find complete feature vectors (PanPhon, PHOIBLE)
- The advantages and challenges of constraint-based phonology

- What Optimality Theory and Correspondence Theory are and how they work
- What the relationship between Markedness and Faithfulness is

Students will know how to do the following things:

- Identify a natural class using phonological features
- · Evaluate an OT tableau

Feature Theory

Vowel Place Features

	i	У	i	U	е	Ø	٨	0	æ	œ	α	α
high	+	+	+	+	_	_	_	_	_	_	_	_
low	_	_	_	_	_	_	_	_	+	+	+	+
back	_	_	+	+	_	_	+	+	_	_	+	+
round	_	+	_	+	_	+	_	+	_	+	_	+

Some Consonant Place Features

	р	ţ	t	fJ	t	С	k	q	۲	?
anterior	+	+	+	_	_	_	_	_	_	_
coronal	_	+	+	+	+	_	_	_	_	_
distributed		+	_	+	_					
high	_	_	_	_	_	+	+	_	_	_
back	_	_	_	_	_	_	+	+	+	_
low	_	_	_	_	_	_	_	_	+	_

Some Manner Features

	U	W	l	m	β	b
syllabic	+	_	_	_	_	_
consonantal	_	_	+	+	+	+
sonorant	+	+	+	+	_	_
continuant	+	+	+	_	+	_
nasal	_	_	_	+	_	_

Catalan Example I

MASC SG	FEM SG		MASC SG	FEM SG	
əkel ^j	əkel ^j ə	'that'	mal	malə	'bad'
siβil	siβilə	'civil'	əskerp	əskerpə	'shy'
∫op	∫opə	'drenched'	sεk	sεkə	'dry'
əspɛs	əspɛsə	'thick'	gros	grosə	'large'
ba∫	ba∫ə	'short'	ko∫	ko∫ə	'lame'
tot	totə	ʻall'	brut	brutə	'dirty'
pok	pokə	'little'	prəsis	prəsizə	'precise'
frənses	frənsezə	'French'	gris	grizə	'grey'
kəzat	kəzaðə	'married'	bwit	bwiðə	'empty'
rɔfʃ	rɔʒə	'red'	botJ	boʒə	'crazy'
orp	orβə	'blind'	l ^j ark	l ^j aryə	'long'
sek	seyə	'blind'	fə∫uk	fə∫uɣə	'heavy'
grok	groyə	'yellow'	puruk	puruyə	'fearful'
kandit	kandiðə	'candid'	fret	frɛðə	'cold'

Catalan Example II

MASC SG	FEM SG		MASC SG	FEM SG	
səγu	səyurə	'sure'	du	durə	'hard'
səyəðo	səɣəðorə	'reaper'	kla	klarə	'clear'
nu	nuə	'nude'	kru	kruə	'raw'
flɔɲd͡ʒu	flɔɲd͡ʒə	'soft'	dropu	dropə	'lazy'
əgzaktə	əgzaktə	'exact'	əlβi	əlβinə	'albino'
sa	sanə	'healthy'	pla	planə	'level'
bo	bonə	'good'	sərɛ	sərenə	'calm'
suβlim	suβlimə	'sublime'	al	altə	'tall'
for	fortə	'strong'	kur	kurtə	'short'
sor	sorðə	'deaf'	ber	bɛrðə	'green'
san	santə	'saint'	kəlεn	kəlɛntə	'hot'
prufun	prufundə	'deep'	fəkun	fəkundə	'fertile'
dəsen	dəsentə	'decent'	dulen	dulentə	'bad'
əstuðian	əstuðiantə	'student'	blaŋ	blaŋkə	'white'

PanPhon

PanPhon is an ontology and associated Python library for dealing with phonological feature representations.

- https://github.com/ dmort27/panphon
- Feature tables at https://github.com/ dmort27/panphon/blob/ master/panphon/data/ ipa_bases.csv and https://github.com/

dmort27/panphon/blob/
master/panphon/data/
ipa_all.csv

- · pip install panphon
- Python 2 and 3
- Compute subsumption relations among feature matrices
- Compute edit distance between feature vectors
- · Compatible with **Epitran** G2P

Panphon example

```
>>> import panphon
>>> ft = panphon.FeatureTable()
>>> ft.word_fts(u'swit')
[<Segment [-syl, -son, +cons, +cont, -delrel, -lat, -nas, 0strid, -voi, -sg,
>>> ft.word_fts(u'swit')[0].match({'cor': 1})
True
>>> ft.word_fts(u'swit')[0] >= {'cor': 1}
True
>>> ft.word_fts(u'swit')[1] >= {'cor': 1}
False
>>> ft.word_to_vector_list(u'sauu', numeric=False)
[[u'-', u'-', u'+', u'+', u'-', u'-', u'0', u'-', u'-', u'-', u'+', u'-'
```

PHOIBLE

PHOIBLE is a database of segment inventories for a large number (2186) of languages.

- https://phoible.org/
- https://github.com/
 phoible/dev

- Phonological feature for each segment in each inventory
- Somewhat different system that PanPhon

Constraint-based Phonology

Background: syllable structure

Optimality Theory Tableau: Maori

/hopuk/	NoCoda	MAX
a. ho.pu		*
b. ho.puk	*	

Optimality Theory Tableau: English

/bik/	MAX	NoCoda
a. bi	*	
🖻 b. bik		*

More Maori

/hopuk/	IDENT	DEP	NoCoda	MAX
a. ho.pu				*
b. ho				***
c. ho.puk			*	
d. ho.pu.kə		*		
e. ho.pu.i	*			

Markedness and Faithfulness

- Markedness constraints
 penalize dispreferred
 structures in the output
 (surface form). They tell you
 which sequences are
 malformed ("low
 probability")
 - · ONSET
 - NoCode
 - · *COMPLEX
 - · AGREE
 - · CODACOND
- Faithfulness constraints penalization differences

between the input and the output (the underlying representation and the surface representation). They tell you which mappings are dispreferred ("low probability")

- · IDENT
- · Max
- · DEP
- · LINEARITY
- · UNIFORMITY
- INTEGRITY

Correspondence Theory and the Noisy Channel Model

$$\hat{s} = \underset{s}{\arg \max} p(s|u)$$

$$= \underset{s}{\arg \max} \frac{p(u|s)p(s)}{p(u)}$$

$$= \underset{s}{\arg \max} \frac{p(u|s)p(s)}{p(u|s)}$$

MARKEDNESS

FAITHFULNESS

Source Model

Channel Model

Source \longrightarrow Surface \longrightarrow Channel \rightarrow Underlying

Advertising

