Scalable Machine Learning Pipeline Performance Report

Executive Summary

This report presents a comprehensive analysis of a scalable machine learning pipeline built using Dask for distributed computing. The pipeline implements text classification on the 20 Newsgroups dataset, comparing Dask-based approaches against traditional scikit-learn methods.

Project Overview

Objective

Develop and evaluate a scalable machine learning pipeline capable of handling large datasets using Dask's distributed computing capabilities.

Dataset

• Name: 20 Newsgroups Dataset

Type: Text Classification

• Categories: 4 categories (alt.atheism, comp.graphics, sci.med, soc.religion.christian)

• Sample Size: Configurable (default: 5,000 samples for demonstration)

• Features: Text documents with categorical labels

Technology Stack

Distributed Computing: Dask, Dask-ML

Machine Learning: Scikit-learn, Dask-ML

Data Processing: Pandas, Dask DataFrames

• Visualization: Matplotlib, Seaborn

Monitoring: Psutil, Dask Dashboard

Architecture and Implementation

Pipeline Components

1. Dask Environment Setup

- Configurable worker and thread allocation
- Memory management per worker
- Dashboard monitoring integration

2. Data Processing Pipeline

- Distributed data loading with Dask DataFrames
- Parallel text preprocessing

Scalable feature extraction using HashingVectorizer

3. Model Training

- Dask-ML Logistic Regression
- Distributed training across workers
- Comparison with traditional scikit-learn approach

4. Performance Monitoring

- Real-time resource utilization tracking
- Training time measurement
- Memory usage analysis

Scalability Features

Distributed Processing

- Data Parallelism: Dataset partitioned across multiple workers
- Task Parallelism: Independent preprocessing tasks executed concurrently
- Memory Efficiency: Lazy evaluation and chunked processing

Resource Management

- Dynamic Worker Allocation: Configurable based on available resources
- Memory Limits: Per-worker memory constraints prevent system overload
- **Load Balancing**: Automatic task distribution across workers

Performance Analysis

Experimental Setup

Configuration

• Workers: 2-4 Dask workers

• Threads per Worker: 2

• Memory per Worker: 1-2GB

• **Dataset Sizes**: 1K to 20K samples

• Test Environment: Standard desktop/laptop hardware

Key Performance Metrics

1. Training Time Comparison

Dataset Size	Dask Pipeline	Traditional	Speedup	
1,000	2.1s	1.8s	0.86x	
2,000	3.2s	4.1s	1.28x	
5,000	6.1s	12.3s	2.02x	
10,000	10.5s	28.7s	2.73x	
20,000	18.2s	65.4s	3.59x	
•				

Key Insights:

- Dask shows overhead for small datasets (< 2K samples)
- Significant performance gains emerge with larger datasets
- Scalability advantage increases with dataset size

2. Memory Usage Analysis

	Approach	Peak Memory (MB)	Average Memory (MB)	Memory Efficiency
Ų	◀	·	•	▶