Course 2: Supervised Learning

Summary

Last session

- Al definition
- 2 Applications
- 3 Deep learning
- Open issues

Today's session

- Learning from labeled examples
- Challenges of supervised learning

Notations

Notations

Notations

Vector space (\mathbb{R}^d)

Definition

Supervised learning methods use **labels** $\hat{\mathbf{y}}$ associated with examples \mathbf{x} to learn a function f such as $\hat{\mathbf{y}} \approx f(\mathbf{x})$, with the aim of **generalizing** (\neq memorizing) to unlabeled examples.

- Regression (y is scalar)
- Classification (y is categorical)
- Tons of applications
 - Pattern recognition
 - Prediction...

Definition

Supervised learning methods use **labels** $\hat{\mathbf{y}}$ associated with examples \mathbf{x} to learn a function f such as $\hat{\mathbf{y}} \approx f(\mathbf{x})$, with the aim of **generalizing** (\neq memorizing) to unlabeled examples.

- **Regression** (**y** is scalar)
- Classification (y is categorical)
- Tons of applications:
 - Pattern recognition,
 - Prediction...

Definition

Supervised learning methods use **labels** $\hat{\mathbf{y}}$ associated with examples \mathbf{x} to learn a function f such as $\hat{\mathbf{y}} \approx f(\mathbf{x})$, with the aim of **generalizing** (\neq memorizing) to unlabeled examples.

- Regression (y is scalar)
- Classification (y is categorical)
- Tons of applications:
 - Pattern recognition,
 - Prediction...

Definition

Supervised learning methods use **labels** $\hat{\mathbf{y}}$ associated with examples \mathbf{x} to learn a function f such as $\hat{\mathbf{y}} \approx f(\mathbf{x})$, with the aim of **generalizing** (\neq memorizing) to unlabeled examples.

- Regression (y is scalar)
- Classification (y is categorical)
- Tons of applications:
 - Pattern recognition,
 - Prediction...

Definition

Supervised learning methods use **labels** $\hat{\mathbf{y}}$ associated with examples \mathbf{x} to learn a function f such as $\hat{\mathbf{y}} \approx f(\mathbf{x})$, with the aim of **generalizing** (\neq memorizing) to unlabeled examples.

- Regression (y is scalar)
- Classification (y is categorical)
- Tons of applications:
 - Pattern recognition,
 - Prediction...

Definition

Supervised learning methods use **labels** $\hat{\mathbf{y}}$ associated with examples \mathbf{x} to learn a function f such as $\hat{\mathbf{y}} \approx f(\mathbf{x})$, with the aim of **generalizing** (\neq memorizing) to unlabeled examples.

- Regression (y is scalar)
- Classification (y is categorical)
- Tons of applications:
 - Pattern recognition,
 - Prediction...

An ill-defined problem

- An infinity of potential solutions, one must be the "best one" but is unreachable,
- ⇒ requires **priors or constraints**.

An ill-defined problem

- An infinity of potential solutions, one must be the "best one" but is unreachable,
- ⇒ requires **priors or constraints**.

An ill-defined problem

- An infinity of potential solutions, one must be the "best one" but is unreachable,
- ⇒ requires **priors or constraints**.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

Bias/variance trade-off

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: **overfitting** problem.

Crossvalidation

- To detect overfitting, split training dataset in two parts:
 - A first part is used to train,
 - A second part is used to validate,

Curse of dimensionality

- Geometry is not intuitive in high dimension,
- Efficient methods in 2D are not necessarily still valid.

$$V_d^s = \frac{\pi^{d/2} R^d}{\Gamma(d/2 + 1)}$$
 versus $V_d^c = (2R)^d$

Curse of dimensionality

- Geometry is not intuitive in high dimension,
- Efficient methods in 2D are not necessarily still valid.

Linear separability and need for embedding

Linear separability and need for embedding

Computation time

Example on ImageNet, simply going through all images:

- $n = 10.000.000, d \approx 1.000.000,$
- ho pprox pprox pprox pprox pprox 10¹³ elementary operations,
- are pprox 2h45 on a modern processor.

Scalability

- Finding the best solution to a problem would be feasible with unlimited computation time,
- But searching through the space of possible functions is often untractable,
- Solutions must be computationally reasonable, which is the true challenge today.

Challenges of supervised learning (5/5)

Computation time

Example on ImageNet, simply going through all images:

- $n = 10.000.000, d \approx 1.000.000,$
- ho pprox ppr
- ightharpoonup pprox 2h45 on a modern processor.

Scalability

- Finding the best solution to a problem would be feasible with unlimited computation time,
- But searching through the space of possible functions is often untractable,
- Solutions must be computationally reasonable, which is the true challenge today.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the **maximum cardinality** of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The **VC dimension** is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Loss and targets

- Labels are encoded as one-hot-bit vectors and called targets,
- Outputs are **softmaxed**: $\mathbf{y}_i \leftarrow \exp(\mathbf{y}_i) / \sum_j \exp(\mathbf{y}_j)$,
- Loss is typically **cross-entropy**: $-\log(\hat{\mathbf{y}}^{\top}\mathbf{y})$.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Loss and targets

- Labels are encoded as one-hot-bit vectors and called targets,
- Outputs are **softmaxed**: $\mathbf{y}_i \leftarrow \exp(\mathbf{y}_i) / \sum_j \exp(\mathbf{y}_j)$,
- Loss is typically **cross-entropy**: $-\log(\hat{\mathbf{y}}^{\top}\mathbf{y})$.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Loss and targets

- Labels are encoded as one-hot-bit vectors and called targets,
- Outputs are **softmaxed**: $\mathbf{y}_i \leftarrow \exp(\mathbf{y}_i) / \sum_j \exp(\mathbf{y}_j)$,
- Loss is typically **cross-entropy**: $-\log(\hat{\mathbf{y}}^{\top}\mathbf{y})$.

Non-symmetric PyRat without walls / mud

Both players follow a deterministic greedy algorithm. Supervised learning - Two tasks

- Predict the outcome of a game from the start configuration.
- Learn the next move using a dataset of winners

Lab Session 2 and assignments for Session 3

TP Supervised Learning (TP1)

- Basics of machine learning using sklearn (including new definitions / concepts) and pytorch
- Tests on PyRat datasets using the two tasks (predicting winner and predicting moves to play)

Project 1 (P1)

You will choose a supervised learning method. You have to prepare a Jupyter Notebook on this method, including:

- A brief description of the theory behind the method,
- Basic tests on simulated data to show the influence of parameters and hyperparameters
- Tests on PyRat Datasets on at least ONE of the two tasks (predicting winner or playing)

During Session 3 you will have 7 minutes to present your notebook.