บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

แบบจำลองจักรกลเรียนรู้ (Machine Learning models) นั้นถูกใช้อย่างกว้างขวางในปัจจุบัน อย่างไรก็ตาม แบบ จำลองใดๆ นั้นอาจมีความผิดพลาดต่อการทำการโจมตีประสงค์ร้าย (Adversarial attacks) เพื่อจงใจให้ผลลัพธ์ที่แบบจำลอง นั้นคาดเดามีความผิดพลาดจากผลลัพธ์ที่ควรจะเป็น

ในการเรียนรู้เชิงตัวแปรเสริม (parameter-based learning) นั้น ตัวแปรเสริม (parameters) ค่าน้ำหนัก (weights) บนแบบจำลองการเรียนรู้เชิงลึก (deep Learning models) เป็นตัวกำหนดความฉลาดของแบบจำลอง อาจมีตัวแปรเสริม บางชุดที่ทำให้แบบจำลองมีช่องโหว่ต่อการโจมตีประสงค์ร้าย การโจมตีนั้นอาจเกิดจากการเพิ่มสัญญาณรบกวนซึ่งผ่านการ คำนวน (calculated artefacts) เข้าสู่ข้อมูลรับเข้า (inputs) ซึ่งทำให้ความผิดพลาดของแบบจำลองในการพยากรณ์คำ ตอบนั้นเปลี่ยนไปอย่างชัดเจน

โครงงานวิศวกรรมคอมพิวเตอร์นี้มุ่งหวังจะนำตัวแปรเสริมบนแบบจำลองมาสร้างภาพแสดง (visualise) ถึงจุดโหว่ ในการพยากรณ์ใดๆ ของแบบจำลอง เพื่อลดความเสียหายอันอาจเกิดขึ้นได้จากการโจมตีแบบจำลองขณะถูกใช้งานจริง

1.2 วัตถุประสงค์ของการศึกษา

โครงงานนี้มีวัตถุประสงค์และเป้าหมายดังนี้

- 1. สร้างแบบจำลองเชิงลึก (Deep Learning models) ซึ่งสามารถถูกโจมตีประสงค์ร้าย (Adversarial attacks) ได้
- 2. นำแบบจำลองในข้อ (1) มาสร้างเป็นรูปภาพแสดง (visualisation) เพื่อหาจุดโหว่ต่อการโจมตี รวมถึงคาดเดาแนว โน้มการโจมตีที่เป็นไปได้
- 3. ใช้ความรู้ในข้อ (2) สร้างแบบจำลองที่ทนทาน (prone) ต่อการโจมตีมากขึ้น

1.3 ขอบเขตของการทำโครงงาน

โครงงานนี้มีขอบเขตการดำเนินงานดังนี้

- 1. สร้างแบบจำลองเชิงลึก (Deep Learning models) ซึ่งสามารถถูกโจมตีประสงค์ร้าย (Adversarial attacks) ได้
- 2. นำแบบจำลองในข้อ (1) มาสร้างเป็นรูปภาพแสดง (visualisation) เพื่อหาจุดโหว่ต่อการโจมตี รวมถึงคาดเดาแนว โน้มการโจมตีที่เป็นไปได้
- 3. ใช้ความรู้ในข้อ (2) สร้างแบบจำลองที่ทนทาน (prone) ต่อการโจมตีมากขึ้น

1.4 ระยะเวลาและแผนดำเนินงาน

ในช่วงแรกของการทำโครงงาน แผนการดำเนินงานนั้นจะใช้ในรูปแบบของรบวนทวนซ้ำ (iteration) ตามกรรมวิธี การดำเนินงานแบบเอไจล์ (agile) ซึ่งประกอบไปด้วยขั้นตอนการวนทวนดังนี้...

1.5 ประโยชน์ที่คาดว่าจะได้รับ

- 1. เข้าใจถึงพื้นฐาน หลักการทำงาน และระบบจักรกลเรียนรู้แบบต่างๆ
- 2. เข้าใจถึงจุดอ่อนของระบบจักรกลเรียนรู้ในแต่ละกรณี
- 3. สามารถโจมตีระบบจักรกลเรียนรู้ เพื่อสร้างระบบจักรกลเรียนรู้ที่ทนทานต่อการโจมตีได้

1.6 คำนิยามศัพท์เฉพาะ

- จักรกลเรียนรู้ (machine learning) คือระบบ หรือโค้ด หรือโปรแกรมคอมพิวเตอร์ที่เรียนรู้โครงสร้างของชุดคำถาม และคำตอบโดยมิจำเป็นต้องทำการโปรแกรมลำดับการทำงานอย่างชัดแจ้ง (explicitly)
- การเรียนรู้เชิงโจมตี (adversarial learning) หมายถึงการศึกษาถึงการโจมตีแบบจำลอง (model) ของจักรกลเรียน รู้ (machine learning)

บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 จักรกลเรียนรู้

ระบบจักรกลเรียนรู้ (machine learning) อาจนิยามได้ว่าเป็นระบบที่ไม่ต้องมีการป้อนข้อมูล หรือวิธีทำงาน เข้าไป ยังโค้ดโปรแกรมอย่างชัดแจ้ง (explicitly) โดยระบบดังกล่าวจะถูกฝึกสอนด้วยชุดของข้อมูลหรือประสบการณ์ (experience) และปรับตัวเองให้ส่งออกคำตอบซึ่งอิงจากประสบการณ์ที่ตนเองเคยได้เรียนรู้มา

หากจะกล่าวให้ละเอียด เราสามารถนิยามโปรแกรมซึ่งสามารถทำการ*เรียน*ได้ดังนี้ [1]

บทนิยาม 2.1.1. โปรแกรมใดๆ เรียน (learn) จากประสบการณ์ (experience) E บนงาน (task) T และการวัดประสิทธิผล (performance measurement) P หากประสิทธิผลบน T ซึ่งถูกวัดโดย P เพิ่มขึ้นตามประสบการณ์ E

2.2 การเรียนรู้เชิงลึก

การเรียนรู้เชิงลึก (Deep Learning) คือความพยายามในการจำลองเซลล์ประสามของมนุษย์ให้อยู่ในรูปแบบจำลอง คณิตศาสตร์ ด้วยความเชื่อทางหลักประสาทวิทยา (neurosciences) ว่าความฉลาดของสมองมนุษย์เกิดขึ้นได้จากโครงข่าย ประสาทจำนวนมาก ที่เชื่อมเข้าถึงกัน [2]

2.2.1 เปอร์เซปตรอน (Perceptron)

เปอร์เซปตรอน (Perceptron) [3] เป็นแบบจำลองทางคณิตศาสตร์ของเซลล์สมองหนึ่งเซลล์ โดยมีคุณสมบัติดังนี้

- รับเข้าข้อมูลมาในเซลล์จากหลายแหล่ง และให้น้ำหนักกับข้อมูลนั้นต่างกันไป
- ส่งออกข้อมูลเพียงค่าเดียว

ดังนั้น แบบจำลองทางคณิตศาสตร์สามารถเขียนออกมาจากหลักการสองข้อดังกล่าวได้ด้วยสมการ

$$y = f\left(W^T X + b\right)$$

เมื่อ W และ X เป็นเมทริกซ์ขนาด $1\times n$ (โดย n เป็นจำนวนข้อมูลรับเข้า), b เป็นค่าสัมประสิทธิ์คงที่ (อคติ: bias) และ f เป็นฟังก์ชันกระตุ้น (activation function) ซึ่งอาจเขียนรูปร่างของเปอร์เซปตรอนให้มีลักษณะรูปคล้ายเซลล์ สมองได้ในลักษณะรูปที่ 2.1

ยกตัวอย่างการใช้เปอร์เซปตรอนในการแก้ปัญหาอย่างง่ายได้ในที่นี้

รูปที่ 2.1: เปอร์เซปตรอน

การคาดเดาราคาอสังหาริมทรัพย์

หากสำรวจราคาอสังหาริมทรัพย์แล้วพบว่า

- ราคาอสังหาริมทรัพย์จะเพิ่มขึ้นตามที่ดิน โดยเพิ่มขึ้นทุก 10,000 บาทต่อตารางวา
- ราคาอสังหาริมทรัพย์จะเพิ่มขึ้นตามจำนวนห้องนอน โดยเพิ่มขึ้นทุก 200,000 บาทต่อห้องนอน
- ราคาอสังหาริมทรัพย์จะลดลงตามจำนวนอายุปี โดยลดลงทุก 7,000 บาทต่ออายุของอสังหาริมทัพย์
- ราคากำหนดตรึง (fixed cost) ของอสังหาริมทรัพย์ อยู่ที่ 100,000 บาท

จะสามารถเขียนเปอร์เซปตรอนเพื่อคาดเดาราคาอสังหาริมทรัพย์ได้โดย

$$y = \sigma\left(W^T X\right)$$

เมื่อ W ซึ่งเป็นค่าสัมประสิทธิ์แสดงถึงความสัมพันธ์ข้อมูลรับเข้า ซึ่งเขียนได้จากความสัมพันธ์ดังแสดงด้านล่าง

$$W^T = \begin{bmatrix} 100000 & 10000 & 200000 & -7000 \end{bmatrix}$$

หากต้องการคาดเดาราคาบ้านที่มี 3 ห้องนอน เนื้อที่ 100 ตารางวา และมีอายุ 7 ปี จะสามารถเขียนเมทริกซ์ X ได้เป็น

$$X = \begin{bmatrix} 1\\3\\100\\7 \end{bmatrix}$$

โปรดสังเกตว่า $x_0=1$ เนื่องจากผลคูณของเทอม w_0 และ x_0 เป็นค่าที่เรียกว่าค่าอคติ (bias) ของแบบจำลอง เนื่องจากเปอร์เซปตรอนตัวนี้ถูกใช้ในการทำนายราคา ซึ่งกล่าวว่ามีความสัมพันธ์กันกับตัวแปรที่กำหนดข้างต้นใน เชิงเส้น ดังนั้นจะกล่าวได้ว่าฟังก์ชันกระตุ้น (activation function) ที่เลือกใช้ จะเลือกใช้ฟังก์ชันเส้นตรง (linear function) $\sigma(x)=x$

ดังนั้น ผลการทำนายราคาบ้านคำนวนได้จาก

$$y = \sigma \left(W^T X + b \right)$$

$$= \sigma \left(\begin{bmatrix} 100000 & 10000 & 200000 & -7000 \end{bmatrix} \times \begin{bmatrix} 1 \\ 3 \\ 100 \\ 7 \end{bmatrix} \right)$$

$$= \sigma (100000 + 30000 + 20000000 + (-49000)) = f(20981000)$$

$$= 20981000$$

การสร้างประตูสัญญาณตรรกะด้วยเปอร์เซปตรอน

เราสามารถสร้างประตูสัญญาณตรรกะ (logic gates) บางชนิดได้ด้วยเปอร์เซปตรอน เช่นการสร้าง AND และ OR gate

ยกตัวอย่างโครงสร้างของประตูสัญญาณและซึ่งสามารถสร้างได้ด้วยการกำหนดให้

ullet X เป็นเมทริกซ์ขนาด 1 imes 2 กล่าวคือเมื่อรับค่า x_1,x_2 เป็นค่า 0 หรือ 1 แทนสัญญาณจริงหรือเท็จแล้ว

$$X = \begin{bmatrix} 1 \\ a_1 \\ a_2 \end{bmatrix}$$

ullet กำหนดค่าของเมทริกซ์ W เป็น

$$W^T = \begin{bmatrix} -2 & 1 & 1 \end{bmatrix}$$

• กำหนดฟังก์ชัน $\sigma(x)$ เป็น step function กล่าวคือ

$$\sigma(x) = \begin{cases} 1; & x \ge 0 \\ 0; & \text{ในกรณีอื่น} \end{cases}$$

และการสร้างประตูสัญญาณหรือสามารถทำได้ในลักษณะเดียวกันโดยเปลี่ยนชุดน้ำหนัก เป็น

$$W^T = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}$$

2.2.2 เปอร์เซปตรอนแบบหลายชั้น (Multi Layer Perceptron)

เราอาจสังเกตว่าเปอร์เซพตรอนหนึ่งตัวนั้นทำหน้าที่ได้เพียนแยก (classify) หรือถดถอย (regress) ปัญหาที่เป็น ปัญหาเชิงเส้น (linear problems) ได้เท่านั้น อย่างในก็ตามหากเรากำหนดให้ฟังก์ชัน f เป็นฟังก์ชันที่ไม่ใช่ฟังก์ชันเส้นตรง แล้ว เราอาจสร้าง**เปอร์เซปตรอนแบบหลายชั้น** (Multi Layer Perceptron) ขึ้นมาได้โดยมีลักษณะดังรูปที่ 2.2

รูปที่ 2.2: เปอร์เซปตรอนแบบหลายชั้น

รูปที่ 2.3: เปอร์เซปตรอนแบบหลายชั้นซึ่งทำหน้าที่เป็นประตูสัญญาณเฉพาะหรือ

เราอาจเขียนแทนน้ำหนักของโครงข่ายจากเปอร์เซปตรอนชั้นที่ i ไปยังชั้นที่ j (j=i+1) ได้เป็น

$$\boldsymbol{W}_{ij} = \begin{bmatrix} w_{10} & w_{20} & \dots & w_{n_i0} \\ w_{11} & w_{21} & \dots & w_{n_i1} \\ w_{12} & w_{22} & \dots & w_{n_i2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{1n_j} & w_{2n_j} & \dots & w_{n_jn_i} \end{bmatrix}$$

เมื่อจำนวนเปอร์เซปตรอนในชั้นที่ k เขียนแทนด้วย n_k

ยกตัวอย่างเช่น เราจะสามารถสร้างประตูสัญญาณเฉพาะหรือ (XOR gate) ได้จากเปอร์เซปตรอนแบบหลายชั้น ดังแสดงในรูปที่ 2.3 โดยเลขในแต่ละเปอร์เซปตรอนแทนค่าอคติ (b) และเลขบนเส้นเชื่อมแทนค่าน้ำหนัก (w) และกำหนด ให้ฟังก์ชันกระตุ้น σ เป็นฟังก์ชันขั้นบันได (step function) กล่าวคือ

$$\sigma(x) = \begin{cases} 1; & x \ge 0 \\ 0; & \text{ในกรณีอื่น} \end{cases}$$

เปอร์เซปตรอนดังกล่าว เมื่อรับค่า A และ B เป็น 0 หรือ 1 จะส่งออกค่า $A\oplus B$

2.3 ฟังก์ชันกระตุ้นและความฉลาดของโครงข่ายประสาทเทียม

2.3.1 ทฤษฎีบทตัวประมาณฟังก์ชันครอบจักรวาล

เหตุผลที่โครงข่ายประสาทเทียมสามารถทำงานได้ดี เนื่องจากมีการพิสูจน์ว่าโครงข่ายประสาทเทียมนั้นสามารถทำ หน้าที่เป็นตัวประมาณฟังก์ชันครอบจักรวาล [4] (universal function approximator) กล่าวคือโครงข่ายประสาทเทียม $N:\mathbb{R}^k o \mathbb{R}^n$ ที่มีความซับซ้อนมากเพียงพอ (ซึ่งจะกล่าวถึงความซับซ้อนนี้ในภายหลัง) สามารถที่จะจำลองฟังก์ชัน $f:\mathbb{R}^k o \mathbb{R}^n$ (กล่าวคือฟังก์ชันที่มีโดเมน และเรนจ์ เป็นจำนวนจริงใดๆ ในมิติที่เหมือนกับมิติข้อมูลรับเข้าและข้อมูลส่ง ออกของโครงข่ายประสาทเทียม N) ได้ [5] [6] [7]

บทพิสูจน์ของทฤษฎีนี้ทั้งในรูปแบบของกรณีไม่ตีกรอบความกว้าง (unbounded width case) และกรณีตีกรอบ ความกว้าง (bounded width case) สามารถศึกษาได้จากแหล่งอ้างอิง รวมถึงแหล่งอ้างอิงเพิ่มเติมที่ใช้การแสดงทัศนภาพ (visualisation) เพื่อการพิสูจน์ทฤษฎีบทดังกล่าว [8]

2.3.2 ข้อสังเกตต่อฟังก์ชันกระตุ้นและความฉลาด

บทพิสูจน์ที่ได้กล่าวถึงไปก่อนหน้านี้สำหรับกรณีไม่ตีกรอบความกว้าง และตีกรอบความกว้าง เป็นบทพิสูจน์ที่ใช้ ฟังก์ชันกระตุ้นเป็นฟังก์ชันชิกมอยด์ (sigmoid) และฟังก์ชันรีลู (ReLU) ตามลำดับ

อย่างไรก็ดี หากพิจารณาโครงข่ายประสาทเทียมใดๆ ที่ใช้ฟังก์ชันกระตุ้นเป็นฟังก์ชันเชิงเส้น f(x)=x เราจะ พบว่าโครงข่ายประสาทเทียมใดๆ จะสามารถยุบให้อยู่ในรูปของเปอร์เซปตรอนเพียงตัวเดียว และทำให้ไม่สามารถตัดสินใจ ปัญหาได้มากกว่าปัญหาที่แบ่งแยกเชิงเส้นได้ (linearly separable problems)

ดังนั้น อาจกล่าวด้วยการพิจารณา (intuition) ในลักษณะดังกล่าวได้ว่า ส่วนหนึ่งของความเป็นไปได้ของการที่ โครงข่ายประสาทเทียมใดๆ สามารถทำหน้าที่เป็นตัวประมาณฟังก์ชันครอบจักรวาลได้ ส่วนหนึ่งมาจากการที่ฟังก์ชันกระตุ้น ทำหน้าที่เป็นตัวบีบ (sqeezer) ช่วงของข้อมูลรับเข้าบนโดเมนจำนวนจริงใดๆ ($\mathbb R$) ให้กลายไปเป็นช่วงจำกัดช่วงอื่น (เช่น ช่วง (0,1) ของฟังก์ชันซิกมอยด์ หรือช่วง $[0,\infty)$ ของฟังก์ชันรีลู)

2.4 โครงข่ายประสาทเทียมแบบสังวัฒนาการ

โครงข่ายประสาทเทียมแบบสังวัฒนาการ (Convolutional Neural Networks: CNN) [9] เป็นโครงข่ายประสาท เทียมซึ่งมักถูกใช้กับข้อมูลภาพ [10] โดยคร่าวแล้วโครงข่ายประสาทเทียมในลักษณะดังกล่าวมักประกอบด้วยชั้นประสาท เทียมในลักษณะดังนี้

- ชั้นสังวัฒนาการ (convolution layer) เป็นชั้นที่กระทำตัวดำเนินการสังวัฒนาการ (convolve) ตัวกรอง (filter) F บนข้อมูลนำเข้า I ด้วยระยะเคลื่อน (stride) S ผลลัพธ์จากการสังวัฒนาการนี้จะเรียกว่าแผนที่ลักษณะ (feature map) ยกตัวอย่างการสังวัฒนาการเพื่อหาเส้นเฉียงในรูปที่ 2.4 สังเกตว่าการสังวัฒนาการด้วยตัวกรองเส้นเฉียงบน เส้นเฉียงบริเวณข้อมูลนำเข้า จะให้ค่าส่งออกที่มากกว่าการสังวัฒนาการตัวกรอกเส้นเฉียงบนจุดพื้นที่อื่นของข้อมูลนำ เข้า (ในที่นี้เขียนแทนด้วยสีแดงเข้ม และสีแดงอ่อน)
- ชั้นบ่อรวม (pooling layer) เป็นชั้นที่ทำการสุ่มตัวอย่างแบบลดขนาด (downsampling) เพื่อลดขนาดของข้อมูล ในขณะที่ยังคงไว้ซึ่งชุดคุณสมบัติที่ข้อมูลรับเข้ามี ชั้นบ่อรวมอาจแบ่งเป็นสองประเภทหลัก
 - ชั้นบ่อรวมแบบมากสุด (maximum pooling layer) เป็นชั้นบ่อรวมที่พบได้บ่อยที่สุด

รูปที่ 2.4: ชั้นสังวัฒนาการ ซึ่งแสดงข้อมูลนำเข้าด้วยสีฟ้า และตัวกรองด้วยสีแดง

รูปที่ 2.5: ชั้นบ่อรวม ทั้งแบบบ่อรวมมากสุดและแบบบ่อรวมเฉลี่ย โดยพิจารณาบ่อตามขอบเขตสีเขียว

- ชั้นบ่อรวมแบบเฉลี่ย (average pooling layer) เป็นชั้นบ่อรวมที่พบในโครงข่ายประสาทเทียมแบบสังวัฒนา การบางรูปแบบ เช่น LeNet
- ชั้นเชื่อมต่อถึงกันหมด (fully connected layer) ซึ่งมีลักษณะเหมือนเปอร์เซปตรอนแบบหลายชั้นทั่วไป

การสังวัฒนาการของชั้นสังวัฒนาการในโครงข่ายประสาทเทียม ทำหน้าที่เป็นตัวตรวจจับคุณสมบัติ (feature detector) เช่นการตรวจจับขอบ (edge detection) และชั้นบ่อรวมทำให้ขนาดของผลัพธ์จากชั้นสังวัฒนาการมีขนาดเล็กลง เพื่อให้ จำนวนค่าน้ำหนักของโครงข่ายประสาทเทียมที่ต้องคำนวนนั้นน้อยลง

การเรียนรู้ด้วยวิธีก้าวเคลื่อนถอยหลัง (backpropagation learning) เป็นวิธีการเรียนรู้ที่ได้รับความนิยมมากที่สุด ในปัจจุบัน ทั้งนี้ เราอาจพิจารณาการเรียนรู้ถอยหลังได้โดยทำความเข้าใจถึงฟังก์ชันสูญเสีย (loss function) และการปรับ ค่าตัวแปรเสริม (parameters) ดังนี้

2.5 ค่าสูญเสีย

ค่าสูญเสีย (loss) เป็นค่าที่ใช้ในการบอกว่าแบบจำลองใดๆ ตอบผิดมากหรือน้อยเพียงใด โดยค่าสูญเสียยิ่งมาก หมายถึงแบบจำลองตอบผิดมากเท่านั้น

รูปที่ 2.6: การคำนวนค่าสูญเสีย

ยกตัวอย่างเช่น หากเราสร้างแบบจำลองที่ต้องการส่งออกค่าเป็นค่าในลักษณะของการเข้ารหัสแบบหนึ่งจุดร้อน (one-hot encoding) ของค่าที่เป็นไปได้ 3 ชั้น (classes) จากข้อมูลตัวที่ i บนชุดฝึกหัด ดังแสดงในรูปที่ 2.6 ซึ่งต้องการคำตอบ t_i ที่ถูกต้องเป็น

$$t_i = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

ทว่า แบบจำลองกลับให้คำตอบ o_i จากแบบจำลองเป็น

$$o_i = \begin{bmatrix} 0.1 & 0.7 & 0.2 \end{bmatrix}$$

เราอาจนิยามฟังก์ชันสูญเสียอย่างง่าย เพื่อยกตัวอย่างการคำนวนดังกล่าว โดยกำหนดให้ฟังก์ชันสูญเสียเป็นผลรวมของผล ต่างกำลังสอง

$$l_i(t_i, o_i) = \sum_{j=1}^{n} (t_i[j] - o_i[j])^2$$

ดังนั้น ในกรณีนี้ จะได้ค่าสูญเสียของจุดฝึกหัดนี้เป็น

$$l_i(t_i, o_i) = \sum_{j=1}^{n} (t_i[j] - o_i[j])^2$$
$$= ((0 - 0.1)^2 + (1 - 0.7)^2 + (0 - 0.2)^2)$$

จะเห็นว่า ยิ่งค่า t_i ใกล้เคียง o_i มากขึ้นเท่าใด ค่าสูญเสียก็จะน้อยลงเท่านั้น นอกจากนี้ เราจะนิยามค่าสูญเสียบนชุดฝึกหัดทั้งชุด เป็น

$$\mathcal{L}(T,O) = \sum_{i=1}^{N} l_i(t_i, o_i)$$

เมื่อ T และ O เป็นชุดคำตอบ และค่าส่งออกจากแบบจำลองของทั้งชุดฝึกหัด ซึ่งชุดฝึกหัดมีความยาวเป็น N อย่างไรก็ตาม ฟังก์ชันสูญเสียในลักษณะดังกล่าว เป็นฟังก์ชันอย่างง่าย ในการฝึกสอนแบบจำลองทั่วไปมักนิยม ใช้ฟังก์ชันอื่น เช่นค่าสูญเสียแบบความวุ่นวายข้ามชั้น (cross entropy loss) สำหรับการฝึกสอนแบบจำลองเพื่อการทำการ จำแนกหมวดหมู่ (classification)

2.5.1 ค่าสูญเสียเมื่อมองจากมุมมองของตัวแปรเสริม

สมการที่นำเสนอไปข้างต้น มองค่าสูญเสียเปลี่ยนไป เมื่อใส่ชุดของข้อมูลส่งออกจากแบบจำลอง O และค่าคำตอบ จริง T ต่างกันออกไป ทว่า หากพิจารณาว่า

- แบบจำลองใดๆ สามารถปรับค่าตัวแปรเสริม (parameters) ได้อย่างอิสระ
- ullet ค่าส่งออก O เป็นฟังก์ชันของค่ารับเข้า I โดย O=f(I) เมื่อ f เป็นฟังก์ชันของโครงข่ายประสาทเทียม
- ullet ความมุ่งหมายฝึกสอนแบบจำลองใดๆ ให้มีประสิทธิภาพ อยู่บนการฝึกสอนบนชุดของค่าคำตอบจริง T เดิม

เราจะสามารมองฟังก์ชันสูญเสีย เป็นฟังก์ชันที่รับค่าตัวแปรเสริม (กล่าวคือค่าน้ำหนักและอคติของแบบจำลอง) และส่งออก ค่าสูญเสียของชุดตัวแปรเสริมนั้น

กล่าวอีกนัย หากเรามีชุดของตัวแปรเสริม $heta_1, heta_2, \dots, heta_i$ บนโครงสร้างของแบบจำลองการเรียนรู้เชิงลึก (deep learning models) ที่มีโครงสร้างเหมือนกัน เราอาจพิจารณาค่าฟังก์ชันสูญเสีย $\mathcal{L}(heta_i)$ บนชุดตัวแปรเสริม $heta_i$ และกล่าว ว่าแบบจำลองที่ใช้ชุดตัวแปรเสริม $heta_i$ นั้นทำงานได้ดีกว่า $heta_j$ หาก $\mathcal{L}(heta_i) < \mathcal{L}(heta_j)$

2.6 การเรียนรู้ด้วยขั้นตอนวิธีเกรเดียนต์ลดหลั่น และขั้นตอนวิธีก้าวเคลื่อนถอยหลัง

2.6.1 ขั้นตอนวิธีเกรเดียนต์ลดหลั่น

บรรณานุกรม

- [1] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
- [2] I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learning*. MIT Press, 2016. http://www.deeplearningbook.org.
- [3] F. Rosenblatt, "The perceptron: A probabilistic model for information storage and organization in the brain.," *Psychological Review*, vol. 65, no. 6, p. 386–408, 1958.
- [4] K. Hornik, "Approximation capabilities of multilayer feedforward networks," *Neural Networks*, vol. 4, no. 2, p. 251–257, 1991.
- [5] G. Cybenko, "Approximation by superpositions of a sigmoidal function," *Mathematics of Control, Signals, and Systems*, vol. 2, pp. 303–314, Dec. 1989.
- [6] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function," *Neural Networks*, vol. 6, pp. 861–867, Jan. 1993.
- [7] A. Kratsios, "Universal approximation theorems," 2019.
- [8] M. A. Nielsen, "Neural networks and deep learning," Jan 1970.
- [9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," in *Proceedings of the IEEE*, vol. 86, pp. 2278–2324, 1998.
- [10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in *Proceedings of the 25th International Conference on Neural Information Processing Systems Volume 1*, NIPS'12, (USA), pp. 1097–1105, Curran Associates Inc., 2012.