Ders Notlarının Creative Commons lisansı Feza BUZLUCA'ya aittir.

Lisans: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.tr

Boole Cebri

George Boole (1815-1864) İngiliz Matematikçi

 $a \cdot b \in B$

 $a \cdot b = b \cdot a$

- B={0,1} kümesi üzerinde tanımlı
- İkili işlemler: VEYA, VE { + , }
- Birli işlem: Tümleme { ' } Tümleme için diğer bir simge: a

(a • l)	a+b T			<u> Füml</u>	eme	?
Ъа	0	1	D a	0	1	α	a' (<u>a</u>)	
0	0	0	0	0	1	0	1	
1	0	1	1	1	1	1	0	

Ъа	0	1	а	a' (<u>a</u>)
0	0	1	0	1

Aksiyomlar:

- a, b ∈ B olmak üzere
- 1. Kapalılık (Closure): $a + b \in B$
- 2. Değişme (Commutative): a + b = b + a
- 3.Birleşme (Associative): a + (b + c) = (a + b) + c
- 4. Etkisiz eleman (Identity): a + 0 = a
- 5. Dağılma (Distributive): $a + (b \cdot c) = (a + b) \cdot (a + c)$
- 6. Tümleme (Inverse): $a + \overline{a} = 1$
- $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
- $a \cdot \overline{a} = 0$
- İşlemler arasındaki öncelik yüksekten öncelikten başlayarak şöyledir:
 - 1. Parantez,
- 2. Tümleme,
- 3. VE, 4. VEYA

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.1

Sayısal Devreler (Lojik Devreleri)

Özellikler ve Teoremler:

Burada gösterilen tüm özellikler ve teoremler Boole cebrinin tanımında yer alan işlemler ve aksiyomlar ile kanıtlanabilirler.

1. Yutma (Annihilator):

$$a + 1 = 1$$

$$a \cdot 0 = 0$$

2. Dönüşme (Involution):

- $(a')' = a \text{ veya } \overline{\overline{a}} = a$
- 3. Sabit kuvvet (Idempotency):

4. Soğurma (Absorption):

$$a + a \cdot b = a$$

$$a \cdot (a+b) = a$$

Augustus De Morgan (1806 - 1871) 5. De Morgan Teoremi:

$$\overline{(a+b)} = \overline{a} \cdot \overline{b}$$

$$\overline{(a \cdot b)} = \overline{a} + \overline{b}$$

5. Genel De Morgan Teoremi:

$$\overline{f(X1, X2, ..., Xn, 0, 1, +, \bullet)} = f(\overline{X1}, \overline{X2}, ..., \overline{Xn}, 1, 0, \bullet, +)$$

İkili işlemler (VE, VEYA) arasında ilişki sağlar: • ve + arasında

6. İkilik (Düalite) (Duality principle)

Bir lojik ifadenin düali, • yerine +, + yerine •, 0 yerine 1, 1 yerine 0, koyarak ve değişkenler değiştirilmeden elde edilir.

$$a + b + ... \Leftrightarrow a \cdot b \cdot ...$$

Kanıtlanan her teorem düali için de geçerlidir.

Örnek:

Soğurma (Absorption):

 $a + a \cdot b = a$ kanıtlanırsa düali de doğrudur. $a \cdot (a+b) = a$

Önceki yansılarda yer alan aksiyom ve teoremlerde düal ifadeler yan yana yazılmıştır.

Genelleştirilmiş düalite:

$$f(X1,X2,...,Xn,0,1,+,\bullet) \Leftrightarrow f(X1,X2,...,Xn,1,0,\bullet,+)$$

- De Morgan Teoreminden farklidir.
 - Teoremlerin kanıtları arasında ilişki sağlar.
 - Lojik ifadelerin dönüştürülmesini sağlayan bir yöntem değildir.

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.3

Sayısal Devreler (Lojik Devreleri)

Teoremlerin Kanıtlanması:

a) Aksiyomlar ile

Örnek:

Teorem: $X \cdot Y + X \cdot Y' = X$

Kanıt:

Dağılma $X \cdot Y + X \cdot Y' = X \cdot (Y + Y')$ Tümleme $= X \cdot (1)$

Etkisiz

Örnek:

Teorem: $X + X \cdot Y = X$ Soğurma (Absorption)

= X ✓

Kanıt:

Etkisiz X + X • Y = X • 1 + X • Y Dağılma = X • (1 + Y) Yutma = X • (1) Etkisiz = X ✓

http://www.akademi.itu.edu.tr/buzluca

©2000-2016 Feza BUZLUCA

Teoremlerin Kanıtlanması: b) Doğruluk Tablosu

Tümleme (değil) (NOT) işleminin gösterilmesinde A simgesi de kullanılır.

De Morgan Teoreminin kanıtı:

$$(X + Y) = \overline{X} \bullet \overline{Y}$$

$$\overline{(X \bullet Y)} = \overline{X} + \overline{Y}$$

Doğruluk tablolarında çok sayıda satır olsa da bunları bir bilgisayar programı yardımıyla kısa sürede sınamak mümkün olabilir.

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.5

Sayısal Devreler (Lojik Devreleri)

Lojik ifadelerin aksiyom ve teoremler ile sadeleştirilmesi:

Bir lojik ifadenin minimize edilmesi; mümkün olduğu kadar az değişken ve işlem içeren, aynı girişler için orijinal ifade ile aynı çıkış değerlerini üreten, en kısa ifadeyi bulmak anlamına gelir.

Örnek:

$$Z = A'BC + AB'C + ABC' + ABC$$

Orijinal ifade

$$= A'BC + AB'C + ABC' + ABC + ABC$$

$$=$$
 A'BC+ABC+AB'C+ABC'+ABC

$$= (A' + A) B C + A B' C + A B C' + A B C$$

$$= (1) BC + AB'C + ABC' + ABC$$

$$=$$
 BC + AB'C + ABC' + ABC + ABC

$$=$$
 BC + AB'C + ABC + ABC' + ABC

$$= BC + A(B' + B)C + ABC' + ABC$$

$$= BC + A(1)C + ABC' + ABC$$

$$= BC + AC + AB(C' + C)$$

$$= BC + AC + AB(1)$$

$$= BC + AC + AB$$

En sade ifade

http://www.akademi.itu.edu.tr/buzluca

©2000-2016 Feza BUZLUCA

Lojik İfadeler (Expressions)

Lojik ifade, değişkenlerin, sabitlerin ve işlemlerin kurallara uygun şekilde yazılmış sonlu kombinezonudur.

 $X = (x_1, x_2, ..., x_n)$, Her $x_i \in \{0,1\}$ olmak üzere E(X) şeklinde gösterilir.

 E_1 ve E_2 lojik ifade ise, E_1' , E_2' , E_1 + E_2 , E_1 • E_2 gibi tüm kombinezonlar da birer lojik ifadedir.

Lojik İfadelerin Yapıları:

Tek biçimli (Monoform) ifadelerde değişkenlerin sadece kendileri ya da sadece tümleyenleri bulunur.

İki biçimli (Biform) ifadeler belli bir x değişkenine göre tanımlanırlar. x'e göre biform bir ifadede hem x hem de tümleyeni bulunur.

Çarpım ifadeleri, değişkenlerin sadece lojik çarpımlarından oluşurlar.

Örnek: ab'cd Çarpım (product) yerine monom sözcüğü de kullanılır.

Toplam ifadeleri, değişkenlerin sadece lojik toplamlarından oluşurlar.

Örnek: a'+b'+c+d Toplam (sum) yerine monal sözcüğü de kullanılır.

Çarpım böleni, bir çarpımdan bir ya da daha fazla değişken kaldırıldığında elde edilen çarpım ifadesidir.

Örnek: ab'cd nin bazı bölenleri: a, b', c, d, ab', b'c, acd, b'd

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info @ <u>0</u> <u>9</u> <u>9</u>

©2000-2016 Feza BUZLUCA

2.7

Sayısal Devreler (Lojik Devreleri) İfadelerin yazılma şekilleri:

- ΣΠ: Lojik çarpımların lojik toplamı ya da "VE"lerin "VEYA"lanması Örnek: bc'+ad+a'b
- ΠΣ: Lojik toplamların lojik çarpımı ya da "VEYA"ların "VE"lenmesi Örnek: (a+b+c')(a+d)(a'+b)

Bir lojik ifadenin değeri:

E(X) ifadesi $X{=}(x_1,\,\dots\,x_n)$ giriş vektörünün her değeri için $B{=}\{0,1\}$ kümesinden bir çıkış değeri üretir.

Bu değerler ifadenin doğruluk tablosunu oluşturur.

Tüm giriş kombinezonları (X) uzayı 000 001 011 100 111 110

http://www.akademi.itu.edu.tr/buzluca

http://www.buzluca.info

Örnek: $E(X) = x_1x_2 + x_3$ ifadesinin doğruluk tablosu $x_1 \quad x_2 \quad x_3 \mid E(X)$

@ ⊕ ⊕

E(X)'nin '1' değeri

ürettiği (örttüğü)

kombinezonlar

©2000-2016 Feza BUZLUCA

Sıra bağıntısı:

Lojik ifadelerin bazı özelliklerini ortaya koymak için aşağıda tanımlanan sıra bağıntısı da kullanılır.

B={0,1} kümesinin elemanları arasında şu sıra bağıntısı tanımlanır: 0 < 1

0, 1'den "önce gelir" ya da "küçüktür" diye okunur.

Buna göre X vektörleri arasında da bir sıra bağıntısı tanımlanabilir.

Eğer X1 vektörünün tüm elemanları X2 vektörünün aynı sıradaki elemanlarından yukarıda tanımlandığı anlamda "küçük"se (önce geliyorsa) ya da eşitse $X1 \le X2$ sıralaması geçerlidir.

Örnek:

X1=1001 , X2=1101 ise

 $X1 \le X2 \text{ dir.}$

İki vektör arasında sıra bağıntısı olmayabilir.

Örneğin, X1=0011, X2=1001 ise

X1 ile X2 arasında sıra bağıntısı yoktur.

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.9

Sayısal Devreler (Lojik Devreleri)

İfadeler üzerinde sıra bağıntısı:

 $E_1(X) \le E_2(X)$ yazılışı, X'in tüm kombinezonları için E_1 'in alacağı değerlerin E_2 'nin alacağı değerlere eşit ya da küçük olduğunu belirtir.

Ô١	rn	e	k	:

X ₁	X_2	X_3	E ₁ (X)	$E_2(X)$
0	0	0	0	=	0
0	0	1	1	=	1
0	1	0	0	<	1
0	1	1	1	=	1
1	0	0	0	=	0
1	0	1	1	=	1
1	1	0	0	<	1
1	1	1	1	=	1

 $E_1(X)$ 'in 1 değerini aldığı her giriş kombinezonu için $E_2(X)$ de 1 değerini alır. (Bu özel bir durumdur.)

$$E_1(X) \leq E_2(X)$$
 ise:

1.
$$E_1(X) + E_2(X) = E_2(X)$$

2.
$$E_1(X) \bullet E_2(X) = E_1(X)$$

Tüm giriş kombinezonları (X) uzayı E₂(X)'nin '1' değeri ürettiği (örttüğü) kombinezonlar

E₁(X)'nin '1' değeri ürettiği (örttüğü) kombinezonlar

 $E_1(X) \leq E_2(X)$ ise

 $E_1(X)$, $E_2(X)$ 'yi gerektirir, $E_1(X) \Rightarrow E_2(X)$,

 $E_2(X)$, $E_1(X)$ 'i örter.

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info @ ⊕ ⊕

©2000-2016 Feza BUZLUCA

İki ifade arasında her zaman sıra bağıntısı (≤) geçerli olmaz.

E ve F lojik ifadeler olmak üzere, aşağıdaki eşitsizlikleri her zaman geçerlidir:

$$E \cdot F \le E \le E + F$$
 ve $E \cdot F \le F \le E + F$

Yutma özellikleri:

$$E+E\cdot F=E$$

ve düali

$$E(E+F) = E$$

Kanıt: E(E+F) = EE+EF = E+EF = E(1+F) = E

ve düali

$$E(E'+F) = E \cdot F$$

Kanıt: E+E'F = (E+E')(E+F) = 1(E+F) = E+F

Bu özellikler lojik ifadelerin sadeleştirilmesinde kullanılır.

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.11

Sayısal Devreler (Lojik Devreleri) Örnek: E(a,b,c,d) = abc', F(a,b,c,d) = bdE ile F arasında sıra bağıntısı yoktur. $E \cdot F = abc'd$ E + F = abc' + bdabcd E E·F E+F E·F < E ve E·F < F. 0000 0 0 0 0 Bu nednele 0001 0 0 0 0 $E \cdot F + E = E$ 0010 0 0 abc'd + abc' = abc'0011 0 0 0 0 0100 0 0 0 0 ve 0101 $E \cdot F + F = F$ 0 0 0 0110 0 abc'd + bd = bd0111 0 1 1 1000 0 0 1001 0 0 E < E + F ve F < E + F. 1010 Bu nednele 1011 0 $E \cdot (E + F) = E$ 1100 0 0 1 abc'(abc' + bd) = abc'1101 1110 0 ve 1111 0 0 $F \cdot (E + F) = F$ bd(abe' + bd) = bdhttp://www.akademi.itu.edu.tr/buzluca **@ ⊕ ⊕** ©2000-2016 Feza BUZLUCA 2.12

Konsensüs Teoremi:

 E_1 ve E_2 içinde x_1 olmayan iki ifade olsun: $E_1(x_2, ..., x_n)$ ve $E_2(x_2, ..., x_m)$

$$E=x_1E_1+x_1'E_2$$
 ve düali $E^D=(x_1+E_1^D)(x_1'+E_2^D)$

ifadeleri x_1 in biform kareleridir.

Örnek: $x_1(x_2+x_3')+x_1'(x_3+x_4)$, $x_1x_2x_3+x_1'x_4x_5$, $(x_1+x_2+x_3')(x_1'+x_3+x_4)$ ve $(x_1+x_2x_3')(x_1'+x_3x_4)$ x_1' in biform karelerine dair örneklerdir.

Konsensüs:

·Carpımların toplamı şeklinde yazılmış olan xE1 + x'E2 biform karesinde E1E2 çarpımına konsensüs adı verilir.

Örnek: abc + a'cd ifadesinin a ya göre konsensüsü: bccd = bcd

•Toplamların çarpımı şeklinde yazılmış olan $(x+E_1)(x'+E_2)$ biform karesinde E_1+E_2 toplamı konsensüstür.

Örnek: (a+b+c) (a'+c+d) ifadesinin a ya göre konsensüsü: b+c+c+d = b+c+d

Teorem: Biform kareler konsensüslerini yutarlar.

$$XE_1 + X'E_2 + E_1E_2 = XE_1 + X'E_2$$

$$(x+E_1)(x'+E_2)(E_1+E_2) = (x+E_1)(x'+E_2)$$

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.13

Sayısal Devreler (Lojik Devreleri)

Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Örnek: Konsensüs teoremi ile lojik ifadelerin indirgenmesi

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC'$$

Cyegöre konsensüs eklendi

$$= A'B'C + A'BC + AB'C + ABC + ABC' + \overline{AB}$$

= A'B'C + A'BC + AB'C + ABC + ABC' + AB Sogurma, yutma (Absorption)

$$= A'B'C + A'BC + AB'C + AB$$

B ye göre konsensüs eklendi

$$= A'B'C + A'BC + A'C + AB'C + AB$$

= A'B'C + A'BC + A'C + AB'C + ABSoğurma, yutma (Absorption)

$$= A'C + AB'C + AB$$

B ye göre konsensüs eklendi = A'C + AB'C + AB + ACSoğurma (Absorption)

= A'C + AB + ACA ya göre konsensüs eklendi

= A'C + AB + AC + C

Soğurma (Absorption)

= AB + C

Teorem: Biform kareler arasında dönüşme özelliği vardır.

$$xE_1 + x'E_2 = (x+E_2)(x'+E_1)$$

Tüm lojik ifadeler her iki şekilde de yazılabilir. $\Sigma\Pi\leftrightarrow\Pi\Sigma$

http://www.akademi.itu.edu.tr/buzluca

©2000-2016 Feza BUZLUCA

Lojik Fonksiyonların Gösterilişi

Aynı lojik fonksiyon farklı yöntemler ile gösterilebilir.

Bu fonksiyona ilişkin devre tasarlanırken bu gösterilimlerden uygun olanı kullanılır.

Doğruluk Tablosu İle Gösterilim

Tüm giriş kombinezonları için çıkışın (veya çıkışların) alacağı değerler tablo halinde yazılır.

Sayısal Gösterilim

Giriş kombinezonları 2'li sayılarla kodlandığına göre her kombinezona 10 tabanında bir numara verilir.

Fonksiyon hangi giriş kombinezonları için lojik "1" değeri (ya da lojik "0", " Φ ") üretiyorsa o kombinezonların numaraları listelenir.

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.19

Sayısal Devreler (Lojik Devreleri)

Örnek: Tümüyle tanımlanmış, yalın bir fonksiyonun gösterilimi:

	Gir	Çıkı	
No	X ₁	X_2	У
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	0

$$y = f(x_1, x_2) = \bigcup_1(0,2)$$
 \bigcup : Birleşme (union) veya "kümesidir"

Değişkenlerin sırası önemlidir. Doğruluk tablosundaki sıraya dikkat edilmelidir. Aksi durumda kombinezon numaraları değişecektir.

$$y = f(x_2, x_1) = \bigcup_1 (0, 1)$$

Aynı fonksiyon lojik "O" üreten kombinezonlar ile de gösterilebilir.

$$y = f(x_1, x_2) = \bigcup_0 (1,3)$$

Örnek: Tümüyle tanımlanmış, genel bir fonksiyonun gösterilimi:

Her çıkış için yukarıdaki gösterilim uygulanır.

No	X ₁	X ₂	y ₁ y ₂
0	0	0	1 1
1	0	1	0 1
2	1	0	1 0
3	1	1	0 0

$$y_1=f(x_1,x_2)=\cup_1(0,2)$$

$$y_2=f(x_1,x_2)=\cup_1(0,1)$$

Aynı fonksiyon lojik 0 üreten kombinezonlar ile de göste

$$y_1 = f(x_1, x_2) = U_0(1,3)$$

 $y_2 = f(x_1, x_2) = U_0(2,3)$

http://www.akademi.itu.edu.tr/buzluca

©2000-2016 Feza BUZLUCA

Örnek: Tümüyle tanımlanmamış, genel bir fonksiyonun gösterilimi: Bu durumda sadece lojik "1" veya lojik "0" üreten çıkışları göstermek yeterli değildir.

No	X ₁	X_2	У ₁	y_2		$y_1 = f(x_1, x_2) = \bigcup_1(0) + \bigcup_0(1,3)$
0	0	0	1	1		
1	0	1	0	Φ	veya	$y_1 = f(x_1, x_2) = \bigcup_1(0) + \bigcup_{\Phi}(2)$
2	1	0	Φ	0	veya	$y_1 = f(x_1, x_2) = \bigcup_0 (1,3) + \bigcup_{\Phi} (2)$
1 2 3	1	1	0	Φ		$y_2 = f(x_1, x_2) = \bigcup_1(0) + \bigcup_0(2)$
					veya	$y_2 = f(x_1, x_2) = \bigcup_1(0) + \bigcup_{\Phi}(1,3)$
					veya	$y_2 = f(x_1, x_2) = \mathcal{O}_0(2) + \mathcal{O}_{\Phi}(1,3)$

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.21

Sayısal Devreler (Lojik Devreleri)

Grafik Gösterilim

Girişi kombinezonları Bⁿ kümesinin elemanları olduklarına göre n boyutlu uzaydaki bir (çok boyutlu) hiperküpün köşelerini oluştururlar.

Fonksiyonun doğru noktalarını (lojik 1) üreten kombinezonlar küp üzerinde işaretlenir. Fonksiyonun giriş sayısı küpün boyutunu belirler.

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info @ 089

©2000-2016 Feza BUZLUCA

2-boyutlu

A B C F
0 0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1
1 1 1
1 1 0 1
1 1 1

Giriş sayısı arttıkça çizimin zorlaşması nedeniyle, Boole küpleri lojik fonksiyonların gösterilmesi için pratikte kullanılan bir yöntem değildir.

Grafik gösterilim lojik fonksiyonların anlaşılması ve bundan sonraki konuların anlatılması açısından yararlıdır.

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.23

Sayısal Devreler (Lojik Devreleri)

Karnaugh Diyagramları (Karnaugh Map)

Maurice Karnaugh (1924-), ABD, fizikçi

Boole küplerinin düzlem üzerindeki iz düşümleri olarak düşünülebilir.

No	Α	В	F	01.0 0.11	F B 0 1	F	A _	
0	0	0	1		0 1 0	B	0	1
1	0	1	0	В	0 1 1	veva	0 2	2
2	1	0	1	00 • 10	1 2 3 0	10,4	0	0
3	1	1	n	A				

Tabloların gözleri **Gray** koduna göre düzenlenir. Yan yana (ve alt alta) gözlere ait kombinezonların bitişik olması sağlanır.

Üç girişli bir fonksiyon için Karanaugh diyagramının biçimi:

Cebirsel Gösterilim (İfadeler) ve Kanonik Açılımlar

Gerçek dünyadaki bir problemin çözümü doğruluk tablosu ile ifade edilebilir.

Örneğin; giriş değişkeni A bir aracın kapısının açık olduğunu, B anahtarın yuvaya takılı olduğunu ifade ederse, alarmın çalıp çalmadığı gösteren (Z=1 ise alarm çalıyor) doğruluk tablosu aşağıdaki qibi oluşturulabilir.

Num.	Α	В	Z
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1

Ancak gerçek dünyadaki problemler çok daha fazla girişe sahip olduklarından doğruluk tabloları da daha karmaşıktır. Bu problemlerin çözümlerini basitleştirmek ve ilgili devreleri lojik kaplılar ile gerçeklemek için fonksiyonların **cebirsel ifadelerini** bulmak gerekir.

Lojik fonksiyonların ifadeleri doğruluk tablolarından **kanonik açılımlar** ile elde edilir.

İki tür kanonik açılım vardır:

- 1. kanonik açılım : Çarpımların toplamı (ΣΠ)
- "1" çıkışı üreten giriş kombinezonlarının çarpımlarının toplamından oluşur.
- 2. kanonik açılım : Toplamların çarpımı (ΠΣ)
- "O" çıkışı üreten giriş kombinezonlarının toplamlarının çarpımından oluşur.

1. Kanonik Açılım: Çarpımların toplamı

- 1. kanonik açılım, fonksiyonun "doğru" (1 çıkışı üreten) noktalarına ilişkin çarpımların toplamından oluşur
- n Değişkenli bir fonksiyonda n değişkenin hepsini sadece bir defa (ya kendisi ya da tümleyeni şeklinde) içeren çarpım ifadelerine minterim denir.
- Örneğin 3 değişkenli (a, b, c) bir fonksiyonun 8 adet minterimi vardır: a'b'c', a'b'c, a'bc', a'bc, ab'c', ab'c, abc', abc
- Her minterim doğruluk tablosunda sadece bir "doğru" satırı örter.
- Fonksiyonun 1. kanonik açılımı minterimlerin toplamından oluşur.
- · Minterimlerin oluşturulması,
 - Doğruluk tablosunda çıkışın "1" olduğu satırlar seçilir.
 - Bu satırlarda girişlerin 1 olduğu yerlere değişkenlerin kendileri (örneğin A, B, C) ve sıfır olduğu yerlere tümleyenleri (A', B', or C') yazılarak çarpımlar oluşturulur.
- Bir lojik fonksiyonun birden fazla cebirsel ifadesi vardır.
- Ancak bir fonksiyonun 1nci kanonik açılımı tektir.

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.27

Sayısal Devreler (Lojik Devreleri)

Örnek:

"Doğru" değer (1) üreten kombinezonlar: F = 001 011 101 110 111 Minterimlerin Toplamı: F = A'B'C + A'BC + AB'C + ABC' + ABC

Α	В	С	F F'
0	0	0	0 1
0	0	1	10///
0	1	0	0 1////////////////////////////////////
0	1	1	1/0 //
1	0	0	0 1
1	0	1	1/0/
1	1	0	1/0/
1	1	1	1/0

Fonksiyonun tümleyeni de benzer şekilde "yanlış" noktalardan hareket edilerek yazılır:

$$F' = A'B'C' + A'BC' + AB'C'$$

http://www.akademi.itu.edu.tr/buzluca

@ ⊕ ⊕ ⊕

©2000-2016 Feza BUZLUCA

Minterimlerin numaralanması:

Minterimler giriş kombinezonlarının sıraları dikkate alınarak numaralandırılırlar.

Α	В	С	minterimler
0	0	0	A'B'C' m0
0	0	1	A'B'C m1
0	1	0	A'BC' m2
0	1	1	A'BC m3
1	0	0	AB'C' m4
1	0	1	AB'C m5
1	1	0	ABC' m6
1	1	1	ABC m7

Yansı 2.27'deki Örnek F nin Kanonik açılımı:

```
F(A, B, C) = \Sigma m(1,3,5,6,7)
= m1 + m3 + m5 + m6 + m7
= A'B'C + A'BC + ABC' + ABC'
F = \Sigma_{A,B,C} (1,3,5,6,7) şeklinde de yazılabilir.
```

Kanonik açılım fonksiyonun en basit cebirsel ifadesi değildir. Çoğunlukla kanonik açılımlar yalınlaştırılabilir (basitleştirilebilir).

3 değişkenli mintérimlerin simgesel gösterilimi

Kanonik açılımın basitleştirilmesi

```
F(A, B, C) = A'B'C + A'BC + AB'C + ABC'

= (A'B' + A'B + AB' + AB)C + ABC'

= ((A' + A)(B' + B))C + ABC'

= C + ABC'

= ABC' + C

= AB + C
```

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.29

Sayısal Devreler (Lojik Devreleri)

2. Kanonik Açılım: Toplamların Çarpımı

- 2. kanonik açılım, fonksiyonun "yanlış" (O çıkışı üreten) noktalarına ilişkin toplamların çarpımlarından oluşur
- n Değişkenli bir fonksiyonda n değişkenin <u>hepsini</u> sadece <u>bir defa</u> (ya kendisi ya da tümleyeni şeklinde) içeren toplam ifadelerine <u>maksterim</u> denir.
- · Örneğin 3 değişkenli (a, b, c) bir fonksiyonun 8 adet maksterimi vardır:
 - a+b+c, a+b+c', a+b'+c, a+b'+c', a'+b+c, a'+b+c', a'+b'+c, a'+b'+c'
- Her maksterim doğruluk tablosundaki sade bir giriş kombinezonu için 0 değerini alır.
- Fonksiyonun 2. kanonik açılımı maksterimlerin çarpımlarından oluşur.
- Maksterimlerin oluşturulması,
 - Doğruluk tablosunda çıkışın "O" olduğu satırlar seçilir.
 - Bu satırlarda girişlerin "0" olduğu yerlere değişkenlerin kendileri (örneğin A, B, C) ve "1" yerlere tümleyenleri (A', B', or C') yazılarak toplamlar oluşturulur.
- · Bir lojik fonksiyonun 2nci kanonik açılımı tektir.

Örnek:

"Yanlış" değer (0) üreten kombinezonlar: F = 000 010 100Maksterimlerin Çarpımı: F = (A + B + C) (A + B' + C) (A' + B + C)

Fonksiyonun tümleyeninin 2.kanonik açılımı benzer şekilde "doğru" noktalardan hareket edilerek yazılır:

$$F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$$

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.31

Sayısal Devreler (Lojik Devreleri)

Maksterimlerin numaralanması:

Maksterimler giriş kombinezonlarının sıraları dikkate alınarak numaralandırılırlar.

Kanonik açılım fonksiyonun en basit cebirsel ifadesi değildir.

Çoğunlukla kanonik açılımlar indirgenebilir (sadeleştirilebilir).

Α	В	С	maksterimler		
0	0	0	A+B+C	MO	
0	0	1	A+B+C'	M1	
0	1	0	A+B'+C	M2	
0	1	1	A+B'+C'	М3	
1	0	0	A'+B+C	M4	
1	0	1	A'+B+C'	M5	
1	1	0	A'+B'+C	M6	
1	1	1	A'+B'+C'	<u>M</u> 7	

3 değişkenli maksterimlerin simgesel gösterilimi Örnek: 2.30'daki F nin kanonik açılımı:

$$F(A, B, C) = \Pi M(0,2,4)$$
= M0 • M2 • M4
= (A + B + C) (A + B' + C) (A' + B + C)

 $F = \Pi_{A,B,C}(0,2,4)$ şeklinde de yazılabilir.

İndirgeme:

$$F(A, B, C) = (A+B+C) (A+B'+C) (A'+B+C)$$

$$= ((A+C)+(B\cdot B')) (A'+B+C)$$

$$= (A+C) (A'+B+C)$$

$$= (A+C) (A'+B+C) (B+C) (konsensüs)$$

$$= (A+C) (B+C)$$

http://www.akademi.itu.edu.tr/buzluca

©2000-2016 Feza BUZLUCA

Kanonik Açılımların Dönüştürülmesi

- 1. kanonik açılımdan 2. kanonik açılıma (minterimden maksterime) dönüşüm
 - 1. kanonik açılımda yer almayan minterimlerin indisleri maksterim olarak seçilir.
 - $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$
- 2. kanonik açılımdan 1. kanonik açılıma (maksterimden minterime) dönüşüm
 - 2. kanonik açılımda yer almayan maksterimlerin indisleri minterim olarak seçilir.
 - $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$
- Minterimler ile tümleyen ifadenin bulunması
 - Açılımda yer almayan minterimler seçilir
 - $F(A,B,C) = \Sigma m(1,3,5,6,7)$ $F'(A,B,C) = \Sigma m(0,2,4)$
- Maksterimler ile tümleyen ifadenin bulunması
 - Açılımda yer almayan maksterimler seçilir
 - $F(A,B,C) = \Pi M(0,2,4)$ $F'(A,B,C) = \Pi M(1,3,5,6,7)$

http://www.akademi.itu.edu.tr/buzluca http://www.buzluca.info

©2000-2016 Feza BUZLUCA

2.33

Sayısal Devreler (Lojik Devreleri)

Kanonik Açılımlar ve De Morgan Teoremi

Çarpımların Toplamı (Fonksiyonun tümleyeni)

$$F' = A'B'C' + A'BC' + AB'C'$$

De Morgan

$$(\mathsf{F'})' = (\mathsf{A'B'C'} + \mathsf{A'BC'} + \mathsf{AB'C'})'$$

F = (A + B + C) (A + B' + C) (A' + B + C)

2. kanonik açılım elde edildi.

Toplamların Çarpımı (Fonksiyonun tümleyeni)

$$F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$$

De Morgan

$$(F')' = (\ (A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C)(A'+B'+C')\)'$$

$$F = A'B'C + A'BC + AB'C + ABC' + ABC$$

1. kanonik açılım elde edildi.