Universidade Federal do Ceará – Campus de Russas

$1^{\underline{a}}$ Questão (2,0) Calcule:

- a) $(0.5 \text{ pt}) 4^{\log_2 \frac{1}{32}}$
- **b)** $(0.5 \text{ pt}) \log_{0.008} 125$
- **c)** $(0.5 \text{ pt}) \log_{\sqrt[3]{8}} \sqrt[3]{4}$
- **d)** $(0.5 \text{ pt}) \log_{\sqrt{2}} 8 + \log_8 \sqrt{2}$

 $2^{\underline{a}}$ Questão (2,0) Se $\log 2 = a$ e $\log 3 = b$, calcule:

- **a)** (1,0 pt) log 0, 5
- **b)** $(1,0 \text{ pt}) \log_2 5$ (Dica: Mudança de base)

 $3^{\underline{a}}$ Questão (2,0) Resolva as equações:

- a) $(1.0 \text{ pt}) \ 2^{3x+2} \cdot 3^{2x-1} = 8$
- **b)** $(1.0 \text{ pt}) 2 \log_4^2 x + 2 = 5 \log_4 x$

Obs. 1: No item a, dê a solução numa forma simplificada do tipo $x = log_a b$, onde a e b são números.

Obs. 2: $\log_a^2 b = (\log_a b)^2$

 $4^{\underline{a}}$ Questão (2,0) Sabendo que cossec $x = -\frac{25}{24}$ e $\pi < x < 3\pi/2$, calcule sen x, cos x e tg x.

 $5^{\underline{a}}$ Questão (2,0) Mostre que

- a) (1,0) tg $x + \cot x = \sec x \cdot \csc x$.
- **b)** (1,0) $\sec x + \tan x = \frac{1}{\sec x \tan x}$