Control & Teleoperation for a DARPA Robotics Challenge Humanoid Robot

Core Team: 5 people

Debris removal
Wall breaking
Door opening

Today's Presentation

Start to Critical Design Review (CDR)

HUBO2+ Low-level Software Control and Teleoperation Walking Results

CDR to Semi-Finals

DRC-HUBO
Walking
Operation Scheme
Lessons Learned
What Went Well

HUBO2+

37 DoFs
CAN
Position Control

3-axis IMU

3-axis F/T sensors

Real-time Architecture

Ach: IPC for Real-time control of robots^[1]

Achd: TCP/UDP communication

Daemons: Background processes

Major Contributions: Joint info parsing, balancing, walking daemon, UI

^[1] N. Dantam and M.Stilman. Robust and efficient Communication for real-time multi-process robot software. International Conference on Humanoid Robotics (Humanoids). 2012.

Balancing

Resist IMU

Comply with Moments

Balancing

Kinematics

Forward Kinematics:

Denavit-Hartenberg TFs

Inverse Kinematics:

Peiper [2] technique Ali et. al. [3]

^[2] D. L. Peiper, "The Kinematics of Manipulators Under Computer Control," Oct. 1968.

^[3] M. A. Ali, H. A. Park, and C. S. G. Lee, "Closed-form Inverse Kinematic Joint Solution for Humanoid Robots," pp. 704–709, 2010.

IK Solution Selection

Difficulties

Arm has 3 different types of singularity conditions
Arm and Leg IK have 8 solutions each
Limited workspace due to joint limits

Selection

Goal inside workspace:

Select solution that minimizes squared joint values

Goal outside workspace

Select solution with position closest to desired position

[4] Rowland O'Flaherty, Peter Vieira, M.X. Grey, Paul Oh, Aaron Bobick, Magnus Egerstedt, and Mike Stilman. *Kinematics and Inverse Kinematics for the Humanoid Robot HUBO2+*. no. GT-GOLEM-2013-001. Georgia Institute of Technology, Atlanta, GA. 2013.

Teleoperation

Polhemus Motion Tracker

6 DOF 240 Hz 3.5 ms latency

Teleoperation

Putting it all together

Setup

Hand & Drill Frames

Rectangle to cut out (15 x 10 cm)

Wall Breaking for TEPRA

ZMP Walking

$$p_y = y - \frac{z_c}{g}\ddot{y}$$
$$p_x = x - \frac{z_c}{g}\ddot{x}$$

ZMP Daemon

Real-time Continuous Walking

Walking - Simulation

Walking - The real thing

Critical Design Review

DRC-HUBO

Perception Suite

3 x Pt. Grey Flea3 cameras Hokuyo UTM-30LX-EW laser range-finder

Joint Compliance

Non-complimentary switching mode - PWM

Walking Controllers

Workspace Balance Controller: Hips

$$M\ddot{\theta} + Q\dot{\theta} + K\theta = \Delta \tau_x = \tau_{x_m} - \tau_{x_d}$$

Workspace Landing Controller

$$M \ddot{z} + Q \dot{z} + K z = \Delta F_z = F_{z_m} - F_{z_d}$$

Biped/Quadruped Walking

Biped/Quadruped Transition

Some Other Features

Numerical inverse kinematics

Interpolation

Collision Detection

Perception

Trajectory Management

Teleoperation in RViz

Trajectory Designer

Execution Manager

Debris Removal

Practice - 1/3 points, DRC - 0/3 points

Wall Breaking

Practice - 2/3 points DRC - 0/3 points

Door Opening

Practice - 2/3 points DRC - 0/3 points

Lessons Learned

Event-based task allocation

Managing complexity sporadic walking failures -> low-level-software

Walking and dynamic stability Several algorithms, but no responsibility

ROS

TF tree

Communications packet buffering, out-of-order packets

Hardware issues burnt motors and boards. Need safety systems

Successes

DRC Practice 5/9 points

General-purpose, usable operator software Same SW for all three events

Simple implementations

Limit complete planners and feedback controllers.

Agile development

Whiteboard of prioritized tasks

ROS

Point clouds, Dynamixels, GUI

Ach

Stable, low latency, configurable