

EXERCISE #1 - Data

1.	What is data?
t	he collected obsevation we have about something
2.	Why do we use visualizations with data?
	helps people undestarnd data
3.	What is the difference between a population and a sample?
Ĭ	oopulation is the entire data, sample is just an extract of the population data
4.	Why do we use sampling?
(easy to work with
M	EASUREMENTS OF DATA
5.	What level of measurement describes an employee's education level?
C	Ordinal
6.	What level of measurement describes the time needed to complete a project?
F	Ratio

MATHEMATICAL SYMBOLS & SYNTAX

7. Set up and solve 5^3

8. Set up and solve 5!

$$5*(5-1)*(5-2)*(5-3)*(5-4) = 120$$

9. Set up and solve $\sum_{x=1}^{5} x$

$$1+2+3+4+5 = 15$$

MEASURES OF CENTRAL TENDENCY

10. Find the mean value of the series $\{6, 12, 8, 5, 10\}$

$$(6+12+8+5+10)/5 = 8.2$$

11. Find the median value of the series $\{7, 3, 11, 6, 9, 9\}$

$$3,6,7,9,9,11 = (7 + 9)/2 = 8$$

MEASURES OF DISPERSION

12. Find the standard deviation σ of the series $\{2, 10, 8, 6, 3, 7\}$

mean =
$$(2+3+6+7+8+10)/6 = 6$$

final = rootsqr($(sqr(2-6) + sqr(3-6) + sqr(6-6) + sqr(7-6) + sqr(8-6) + sqr(10-6))/6-1)$)
final = $sqrroot((16 + 9 + 0 + 1 + 4 + 16)/5)$
final = $sqrroot(9.2)$
final = 3.033

QUARTILES & INTERQUARTILE RANGE (IQR)

13. Divide the following series into quartiles. $\{5, 1, 6, 4, 2, 6, 7, 3, 1, 8, 4, 8\}$ What are the boundaries of the IOR?

1 quartile =
$$2.3 = (2+3)/2 = 2.5$$

2 quartile =
$$4.5 = (4+5)/2 = 4.5$$

3 quartile =
$$6.7 = (6+7)/2 = 6.5$$

14. In the above problem, where would the upper fence fall using the 1.5 IQR method?

BIVARIATE DATA

15. Calculate the Pearson Correlation Coefficient for the following table of values: We recommend using a spreadsheet!

Height	Weight	$(x-\overline{x})$	(<i>y</i> - <i>y</i> -)	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$	$(y-y\overline{)}^2$
5	143	-5	-7	35	25	49
7	145	-3	-5	15	9	35
11	147	1	-3	-3	1	9
12	157	2	7	14	4	49
15	158	5	8	40	25	64
50	750		Sum:	101	64	206

Sum:

Mean:
$$\bar{x} = 10$$
 $\bar{y} = 150$

$$\rho_{X,Y} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}} = \frac{101}{\sqrt{64} \sqrt{206}} = \frac{101}{8*14.352 = 114.816} \quad 0.879$$

16. Are these values correlated? Why or why not?

Yes, they are bewteen 1 and -1