OPTICALLY COUPLED BILATERAL **SWITCH NON-ZERO CROSSING TRIAC**

APPROVALS

UL recognised, File No. E91231 under Package System 'KK'

'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead forms:
 - STD
 - G form
 - SMD approved to CECC 00802

DESCRIPTION

The MOC302_ series are optically coupled isolators consisting of a Gallium Arsenide infrared emitting diode coupled with a light activated silicon bilateral switch performing the functions of a triac mounted in a standard 6 pin dual-in-line package.

FEATURE

Options:-

10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.

- High Isolation Voltage $(5.3 \mathrm{kV}_{\mathrm{RMS}}, 7.5 \mathrm{kV}_{\mathrm{PK}})$ 400V Peak Blocking Voltage
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- **CRTs**
- Power Triac Driver
- Motors
- Consumer appliances
- **Printers**

ABSOLUTE MAXIMUM RATINGS (25 °C unless otherwise noted)

Storage Temperature	-55°C-+150°C
Operating Temperature	$-40^{\circ}\text{C} - +100^{\circ}\text{C}$
Lead Soldering Temperature	260°C
(1.6mm from case for 10 seconds	s)

INPUTDIODE

Forward Current	50mA
Reverse Voltage	6V
Power Dissipation	70mW
(derate linearly 0.93mW/°C above 25°)	C)

OUTPUT PHOTO TRIAC

Off-State Output Terminal Voltage	400V
Forward Current (Peak)	1A
Power Dissipation	300mW
(derate linearly 4.0mW/°C above 25°C)	

POWER DISSIPATION

Total Power Dissipation	330mW
(derate linearly 4.4mW/°C above 25°C))

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1YD Tel: (01429) 863609 Fax: (01429) 863581

DB91045m-AAS/A4 19/12/02

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F) Reverse Current (I_R)		1.2	1.5 100	V μA	$I_{F} = 10\text{mA}$ $V_{R} = 6V$
Output	Peak Off-state Current (I_{DRM}) Peak Blocking Voltage (V_{DRM}) On-state Voltage (V_{TM}) Critical rate of rise of off-state Voltage (dv/dt) (note 1) Critical rate of rise of commutating Voltage (dv/dt) (note 1)	400 0.1	1.5 10 0.2	100 3.0	n A V V V/μs V/μs	$V_{DRM} = 400 \text{V (note 1)}$ $I_{DRM} = 100 \text{nA}$ $I_{TM} = 100 \text{mA (peak)}$ $I \text{ load} = 15 \text{mA,}$ $V_{IN} = 30 \text{V (fig 1.)}$
Coupled	Input Current to Trigger (I _{FT})(note 2) MOC3020 MOC3021 MOC3022 MOC3023			30 15 10 5	mA mA mA	$V_D = 3V \text{ (note 2)}$
	Holding Current , either direction ($\rm I_{_{\rm H}}$)		100		μΑ	
	Input to Output Isolation Voltage $V_{\rm ISO}$	5300 7500			$egin{array}{c} V_{RMS} \ V_{PK} \end{array}$	See note 3 See note 3

Note 1. Test voltage must be applied within dv/dt rating. Note 2. Guaranteed to trigger at an I_F value less than or equal to max. I_{FT} , recommended I_F lies between Rated I_{FT} and absolute max. I_{FT} . Note 3. Measured with input leads shorted together and output leads shorted together.

FIGURE 1

19/12/02

RMS On-state Current vs. Ambient Temperature

Normalised Repetitive Peak Off-state Voltage vs. Ambient Temperature

Forward Current vs. Ambient Temperature

On-state Voltage vs. Ambient Temperature

Normalised Input Trigger Current vs. Ambient Temperature

19/12/02

On-state Current vs. On-state Voltage

