Métodos Estatísticos Básicos

Aula 3 - Medidas de Tendência Central e de Posição

Regis A. Ely

Departamento de Economia Universidade Federal de Pelotas

06 de julho de 2020

Conteúdo

Medidas de tendência central

Média aritmética

Média geométrica

Média harmônica

Moda

Mediana

Medidas de posição

Quartil

Decil

Percentil

Exemplo no R

Potência de veículos e medidas de posição

Medidas de tendência central

Medidas de tendência central são estatísticas que representam o ponto central de um conjunto de dados

- Média: os tipos mais comuns são a média aritmética, harmônica e geométrica
- Mediana: valor que separa a metade maior e a metade menor de um conjunto de dados
- Moda: valor mais frequente de um conjunto de dados

Média aritmética simples

Média aritmética: razão entre a soma dos valores e o número de observações de um conjunto de dados

- Para dados brutos, calculamos a média aritmética simples
 - $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$, onde n é o número de observações

Exemplo no R: média aritmética de um conjunto com 7 valores

$$x \leftarrow c(10, 14, 13, 15, 16, 18, 12)$$

mean(x)

[1] 14

Desvio em relação à média

Desvio em relação à média: é a diferença entre um valor específico dos dados e a média aritmética do conjunto de todos os dados

•
$$d_i = X_i - \overline{X}$$

Exemplo no R: desvios em relação à média do exemplo anterior

$$x - mean(x)$$

Média aritmética ponderada

Média aritmética ponderada: cada observação entra com um peso diferente no cálculo da média

- Para dados agrupados em uma tabela de frequência, calculamos a média aritmética ponderada¹
- $\overline{X} = \frac{\sum_{i=1}^{n} X_i f_i}{\sum_{i=1}^{n} f_i}$, onde f_i é o peso da observação i

Exemplo no R: dados utilizados na Aula 1 estão agrupados por classes

library(HistData)
DrinksWages

 $^{^{1}}$ Se os dados estiverem agrupados em intervalos de classe, X_{i} sempre será o ponto médio da classe.

Média aritmética ponderada

A média do salário semanal de todos os indivíduos é obtida ponderando o salário (wage) pelo número de pessoas em cada profissão (n)

• A função weighted.mean faz isso no R²:

```
library(tidyverse)
DrinksWages %>%
summarise("Salário Médio" = weighted.mean(wage, n))
```

```
Salário Médio
1 24.59782
```

²Para esse cálculo utilizaremos o operador %>%, que é carregado com o pacote tidyverse. O livro escrito pelo criador deste pacote pode ser obtido aqui.

Propriedades da média aritmética

A média aritmética sempre respeita as seguintes propriedades³:

1. A soma algébrica dos desvios em relação à média é nula:

•
$$\sum_{i=1}^{n} d_i = \sum_{i=1}^{n} (Xi - \overline{X}) = \sum_{i=1}^{n} Xi - n.\overline{X} = 0$$

2. Somando ou subtraindo uma constante *c* a todos os elementos do conjunto de dados, a média também aumentará em *c*:

•
$$\frac{\sum_{i=1}^{n}(Xi+c)}{n} = \frac{\sum_{i=1}^{n}Xi}{n} + \frac{n.c}{n} = \overline{X} + c$$

3. Multiplicando (ou dividindo) todos os valores por uma constante c, a média será multiplicada (ou dividida) por c:

$$\bullet \ \frac{\sum_{i=1}^{n} (c.Xi)}{n} = \frac{c \sum_{i=1}^{n} Xi}{n} = c.\overline{X}$$

³A média aritmética ponderada também respeita estas propriedades, porém deve-se sempre multiplicar as expressões pelos pesos f_i .

Propriedades da média aritmética

[1] TRUE

Exemplo no R: testando as propriedades da média aritmética

```
## Soma dos desvios em relação à média
sum(mtcars$hp - mean(mtcars$hp))
[1] 0
## Média de hp+10 é igual à média de hp mais 10?
all.equal(mean(mtcars$hp + 10), mean(mtcars$hp) + 10)
[1] TRUE
## Média de hp*10 é iqual à média de hp vezes 10?
all.equal(mean(mtcars$hp * 10), mean(mtcars$hp) * 10)
```

9/34

Média geométrica simples

Média geométrica: é a raíz n-ésima do produtório dos dados

•
$$\overline{X}_g = \sqrt[n]{\prod_{i=1}^n X_i}$$
, onde $\prod_{i=1}^n X_i = X_1 \times X_2 \times \cdots \times X_n$

O logaritmo da média geométrica é igual à média aritmética dos logaritmos:

•
$$log \overline{X_g} = \frac{1}{n} \sum_{i=1}^{n} log X_i$$

Logo, a média geométrica é uma média aritmética suavizada:

 É muita utilizada em finanças, para calcular médias de taxas de juros

Média geométrica ponderada

Média geométrica ponderada: cada observação tem um peso diferente no cálculo (útil para dados em tabela de frequência)

$$\bullet \ \overline{X}_g = \sum_{i=1}^n \sqrt[f]{\prod_{i=1}^n X_i^{f_i}} = \sum_{i=1}^n \sqrt[f]{X_1^{f_1} \times X_2^{f_2} \times \cdots \times X_n^{f_n}}$$

Exemplo no R: média geométrica simples da taxa Selic em 2020⁴

```
library(lubridate) # Para lidar com datas

library(psych) # Para calcular média geométrica

url_bcb <- "http://api.bcb.gov.br/dados/serie/bcdata.sgs.1178/dados?formato=csv"

selic <- read_csv2(url_bcb) %>% # Ler dados da taxa Selic anualizada

mutate(data = dmy(data)) %>% # Criar variável data com padrão dia/mês/ano
filter(data >= "2020-01-01") # Filtrar ano de 2020 em diante
geometric.mean(selic$valor) # Calcular média geométrica simples da taxa Selic
```

[1] 3.514823

⁴Ao invés de usar a função geometric.mean, pode-se obter o mesmo resultado com $prod(x)^{(1/length(x))}$

Propriedades da média geométrica

A média geométrica sempre respeita as seguintes propriedades:

- A média geométrica é sempre menor ou igual a média aritmética, sendo igual apenas no caso em que todas as observações tem o mesmo valor
- 2. O produtório dos dados permanece inalterado se todas as observações forem substituídas pelo valor da média geométrica
- 3. A média geométrica da razão das observações em duas séries é igual à razão de suas médias geométricas
- 4. A média geométrica da multiplicação de duas séries é igual a multiplicação de suas respectivas médias geométricas

Propriedades da média geométrica

Exemplo no R: propriedades da média geométrica para dados fictícios

```
x \leftarrow c(1, 4, 9, 12, 14, 19)
y \leftarrow c(2, 4, 7, 11, 20, 32)
geometric.mean(x) < mean(x)</pre>
[1] TRUE
all.equal(prod(x), prod(rep(geometric.mean(x), length(x))))
[1] TRUE
all.equal(geometric.mean(x/y), geometric.mean(x)/geometric.mean(y))
[1] TRUE
all.equal(geometric.mean(x*y), geometric.mean(x)*geometric.mean(y))
[1] TRUE
```

Média harmônica simples

Média harmônica: É o inverso da média aritmética dos inversos de cada observação

•
$$\overline{X}_h = (\frac{1}{n} \cdot \sum_{i=1}^n X_i^{-1})^{-1} = \frac{n}{\sum_{i=1}^n \frac{1}{X_i}}$$

- Algumas utilizações comuns da média harmônica incluem:
 - 1. Na física, com dados de velocidade e tempo
 - 2. No cálculo de scores padronizados de concursos
 - 3. Em finanças, para calcular médias de razões contábeis

Exemplo no \mathbf{R} : média harmônica simples da variável \mathbf{x} , criada no exemplo anterior

[1] 3.8253

Média harmônica ponderada e propriedades

Se os dados estiverem agrupados por distribuição de frequência, deve-se utilizar a *média harmônica ponderada*:

$$\bullet \ \overline{X}_h = \frac{\sum_{i=1}^n f_i}{\sum_{i=1}^n \frac{f_i}{X_i}}$$

A média harmónica é sempre menor ou igual a geométrica, valendo a igualdade apenas se todas observações forem iguais. Podemos testar isso no R:

[1] TRUE

Moda simples

Moda: valor que ocorre com maior frequência em uma série de dados

- Se nenhum valor ocorre mais vezes do que outro, a série é amodal
- Se há valores mais frequentes que se repetem o mesmo número de vezes, a série tem mais de um valor modal
- A média aritmética possui maior estabilidade que a moda

Dados agrupados: com dados agrupados em frequência simples, é possível determinar a moda apenas olhando o dado com a maior frequência. Para dados agrupados em intervalos de classe, teremos mais de uma alternativa

Moda simples

Exemplo no R: Na base de dados mtcars, os dados não estão agrupados em frequências, mas para calcular a moda do número de carburadores, podemos utilizar a função table para agrupar os dados e então verificar os valores com maior frequência

table(mtcars\$carb)

```
1 2 3 4 6 8
7 10 3 10 1 1
```

Pode-se ver que esta é uma série *bimodal*, sendo que o número de carburadores que aparece com mais frequência é 2 e 4

Moda simples

Exemplo no R: Na base de dados DrinksWages, os dados já estão agrupados em frequências, de acordo com as profissões dos indivíduos. Para calcular a moda dos salários, basta encontrar a linha com o maior valor da variável n

```
DrinksWages %>% filter(n == max(DrinksWages$n))
```

```
class trade sober drinks wage n
1 A general labourer 71 85 18.5 156
```

A profissão mais frequente é a de *general labourer*, com salário semanal de 18.5 xelins

Moda com intervalos de classe

Quando os dados estão agrupados em intervalos de classe, a classe com a maior frequência é a classe modal. A moda será um valor compreendido entre os limites da classe modal. Veremos duas alternativas para calcular a moda:

- 1. **Moda bruta**: $M_o = (\frac{I^* + L^*}{2})$, onde I^* é o limite inferior da classe modal e L^* o limite superior da classe modal
- 2. **Moda de Czuber**: $M_c = I^* + (\frac{d_1}{d_1 + d_2}).h^*$, onde d_1 é a frequência da classe modal menos a frequência da classe anterior a modal; d_2 é a frequência da classe modal menos a frequência da classe posterior a modal; e h^* é a amplitude da classe modal

Moda com intervalos de classe

Vamos calcular a moda bruta e a moda de Czuber utilizando o exemplo da Aula 2:

Idade	Frequência
21 - 23	4
23 - 25	7
25 - 27	5

A classe modal, que ocorre com maior frequência, é 23 | 25. Assim:

•
$$M_o = \frac{23+25}{2} = 24$$

•
$$M_c = 23 + \frac{(7-4)}{(7-4)+(7-5)} \times 2 = 24,2$$

Mediana simples

Mediana: é o valor que separa uma série (disposta em ordem crescente ou decrescente) em duas partes com o mesmo número de elementos

- Se a série tiver número ímpar de termos, a mediana será o elemento $\frac{n+1}{2}$
- Se a série tiver numero par de termos, a mediana será a média dos elementos $\frac{n}{2}$ e $\frac{n}{2}+1$
- Útil quando há valores extremos nos dados. Ex: salário

Considere os dados: {1, 3, 0, 0, 2, 4, 1, 2, 5}. Devemos:

- 1. Colocar a série em ordem crescente {0, 0, 1, 1, 2, 2, 3, 4, 5}
- 2. Como existem 9 elementos, a mediana será o elemento de número $\frac{n+1}{2}=\frac{10}{2}=5$. Assim, $M_e=2$

Mediana simples

Para dados agrupados em frequência simples, em ordem crescente:

- Se o somatório das frequências for ímpar, a mediana será o elemento $\frac{\sum_{i=1}^{n}fi+1}{2}$
- Se o somatório das frequências for par, a mediana será a média dos termos $\frac{\sum_{i=1}^n f_i}{2}$ e $\frac{\sum_{i=1}^n f_i}{2}+1$

Exemplo no R: mediana simples do número de carburadores

median(mtcars\$carb)

[1] 2

Mediana com intervalos de classe

Para calcularmos a mediana de dados agrupados em intervalos de classe, devemos:

- 1. Determinar as frequências acumuladas,
- 2. Calcular $\sum_{i=1}^{n} fi/2$,
- 3. Marcar a classe correspondente a frequência acumulada imediatamente superior a $\sum_{i=1}^{n} fi/2$. Essa será a classe mediana,
- 4. Calcular $M_e = I^* + \frac{[(\sum_{i=1}^n f_i/2 FAA).h^*]}{f_*}$, onde I^* é o limite inferior da classe mediana, FAA é a frequência acumulada da classe anterior à classe mediana, f^* é a frequência simples da classe mediana, e h^* é a amplitude do intervalo da classe mediana

Mediana com intervalos de classe

Considere os seguintes dados agrupados em intervalos de classe:

Classes	fi	Fi
50 ⊢ 54	4	4
54 ⊢ 58	9	13
58 ⊢ 62	11	24
62 ⊢ 66	8	32
66 ⊢ 70	5	37
70 ⊢ 74	3	40
Total	40	

Mediana com intervalos de classe

Vamos aplicar os passos 1 a 4 no exemplo anterior:

- 1. As frequências acumuladas são dadas na coluna F_i
- 2. $\frac{\sum fi}{2} = 20$
- 3. *Classe mediana*: 58 ⊢ 62
- 4. Temos $I^* = 58$, FAA = 13, $f^* = 11$, $h^* = 4$, logo, $M_e = 58 + \frac{[(20-13)\times 4]}{11} = 58 + \frac{28}{11} = 60,54$
 - Assim, a mediana é 60,54

Separatrizes

Medidas de posição são estatísticas que representam a tendência de concentração de um conjunto de dados ao redor de certos pontos

As medidas de posição mais usuais são chamadas *separatrizes* e incluem⁵:

- Quartil: são os valores que dividem os dados em quatro partes
 - São necessários 3 quartis para dividir os dados em quatro partes
- Decil: são os valores que dividem a série em dez partes
 - São necessários 9 decis para dividir os dados em dez partes
- Percentil: são os valores que separam a série em cem partes
 - São necessários 99 percentis para dividir os dados em cem partes

⁵Há uma equivalência entre as medidas de posição: $P_{50} = D_5 = Q_2 = M_e$

Quartil simples

Considere o seguinte conjunto de dados: {5, 2, 6, 9, 10, 13, 15}

- Para calcular os quartis, devemos:
 - 1. Ordenar a série {2, 5, 6, 9, 10, 13, 15}
 - 2. Calcular a mediana, que será o segundo quartil, $M_e = Q2 = 9$
 - 3. Dividir a série em dois grupos $\{2, 5, 6\}$ e $\{10, 13, 15\}^6$
 - 4. Calcular os outros quartis como sendo as medianas desses dois grupos, $Q_1=5$ e $Q_2=13$

Exemplo no R: quartis da potência dos veículos na base mtcars

quantile(mtcars\$hp)

```
0% 25% 50% 75% 100% 52.0 96.5 123.0 180.0 335.0
```

⁶A divisão é sempre feita com base no valor da mediana

Quartil com dados agrupados

- Se os dados forem *agrupados sem intervalos de classe*, utilizamos $\frac{\sum_{i=1}^n f_i}{2}$ e $\frac{\sum_{i=1}^n f_i}{2} + 1$ para calcular as posições dos quartis
- Se os dados forem agrupados com intervalos de classe, utilizamos a mesma fórmula da mediana para calcular os quartis, entretanto substituímos $\frac{\sum_{i=1}^{n} f_i}{2}$ por $k \frac{\sum_{i=1}^{n} f_i}{4}$, sendo k o número do quartil:

•
$$Q1 = I^* + \frac{\left[\left(\sum_{4}^{f} - FAA\right).h^*\right]}{f^*}$$

• $Q2 = I^* + \frac{\left[\left(2\sum_{4}^{f} - FAA\right).h^*\right]}{f^*}$
• $Q3 = I^* + \frac{\left[\left(3\sum_{4}^{f} - FAA\right).h^*\right]}{f^*}$

Quartil com intervalos de classe

Seguindo os passos no exemplo utilizado para a mediana:

•
$$\frac{\sum fi}{2} = 20 \rightarrow \textit{Classe mediana}$$
: 58 \vdash 62

• Temos
$$l*=58$$
, $FAA=13$, $f*=11$, $h*=4$, logo $M_e=Q_2=58+\frac{[(20-13)\times 4)}{11}=60,54$

•
$$\frac{\sum fi}{4} = 10 \rightarrow \textit{Classe mediana do } 1^{\textit{Q}} \textit{ grupo}$$
: 54 \vdash 58

• Logo,
$$Q1 = 54 + \frac{[(10-4)\times 4]}{9} = 56,66$$

•
$$\frac{3.\sum fi}{4} = 30 \rightarrow Classe mediana do 3^{\circ} grupo: 62 \vdash 66$$

• Logo,
$$Q3 = 62 + \frac{[(30-24)\times 4]}{8} = 65$$

Decil simples

O procedimento de cálculo dos decis é análogo aos quartis, porém agora o 5° decil será igual ao 2° quartil, que será igual à mediana **Exemplo no R**: calcular o segundo, terceiro e oitavo decis da potência dos veículos na base mtcars

```
quantile(mtcars$hp, c(.2, .3, .8))
20% 30% 80%
```

93.4 106.2 200.0

Decil com intervalos de classe

O procedimento de cálculo dos decis para dados com intervalos de classe é o mesmo utilizado para os quartis, basta alterar o valor de K pelo número do decil e dividir $\sum fi$ por 10 Exemplo: calcular o 3° decil da tabela com intervalos de classe utilizada nos exemplos da mediana e quartil

- Como K=3, temos 3. $\frac{\sum fi}{10} = 3.\frac{40}{10} = 12$, e a classe mediana é 54 \vdash 58
- Logo, $D_3 = 54 + \frac{[(12-4)\times 4]}{9} = 57,55$

Percentil

No caso dos percentis, teremos $P_{50}=M_e$, $P_{25}=Q_1$ e $P_{75}=Q_3$

• O cálculo é análogo ao do quartil e decil, mas utilizando $k.\frac{\sum fi}{100}$

Exemplo no R: calcular os percentis 34, 67 e 95 da potência dos veículos na base de dados mtcars

```
quantile(mtcars$hp, c(0.34, 0.67, 0.95))
```

34% 67% 95% 109.54 175.00 253.55

Exemplo no R

Podemos resumir todas as medidas de tendência central para a potência dos veículos na base mtcars usando um comando do R:

```
mtcars %>%
  summarise(
    `Média aritmética` = mean(hp),
    Média geométrica = geometric.mean(hp),
    'Média harmônica' = harmonic.mean(hp),
    `Moda` = which.max(tabulate(mtcars$hp)),
    `Mediana` = median(hp),
    'Quartil 1' = quantile(hp)[2],
    Quartil 3 = quantile(hp)[4],
    `Minimo` = min(hp),
    Máximo = max(hp)
```

Potência de veículos e medidas de posição

O resultado será:

	[,1]
Média aritmética	146.6875
Média geométrica	131.8837
Média harmônica	118.2289
Moda	110.0000
Mediana	123.0000
Quartil 1	96.5000
Quartil 3	180.0000
Mínimo	52.0000
Máximo	335.0000