

•

to linear regression

 $cept + group\ intercept + residual$

MODEL IN R

```
data = data_set)
s?
```

3 A FITTED MODEL

MODEL IN R

```
data
tor, data = data_set)
s?
```

3 A FITTED MODEL

TING A FITTED

```
n) ~ mountain_range)
   3Q
           Max
.32208 1.18833
te Std. Error t value Pr(>|t
     0.01375 332.777 < 2e-
17
     0.02248
              3.433 0.0006
     0.01793
31
             9.165 < 2e-
55
     0.02125 10.237 < 2e-
'**' 0.01 '*' 0.05 '.' 0.1
58 on 4294 degrees of freedc
   Adjusted R-squared: 0.0
294 DF, p-value: < 2.2e-16
```

TING A FITTED

alues...

ut not universally

ts for specific hypotheses

NG A FITTED

(assumptions,

ata? (diagnostics, r^2)

/ meaningful? (p-values,

eaningful? (parameter

'REDICTOR WITH

still an ANOVA)

```
n
alue = 2.446e-05
difference in means is not e
1:
oup West
124.7842
```

MODELS

/A, t-test: they're all the

ıp for discrete predictors

3 THIS WORK?

or o

his is one reason R has

geShoshone mountain_rangeToi

0
1
0
0
0
0
0

REDICTOR

e x_i values don't have to

 $_3x_{i,3}$)

REDICTOR

dictor2 + predictor3)

redictor2	predictor3
78.99	20.8
67.31	17.1
64.27	16.7
64.27	16.7
144.02	15.8
235.46	6.2

REDICTOR

s matters

tinuous predictors

ors rs)

redictor3

- .00678496
- .32702139
- .25353344
- .08818554
- .67552534

DISCRETE

and discrete predictors in

```
+ continuous2 + discrete)
```

continuous2	discrete1	discre
78.99	0	
67.31	1	
64.27	0	
144.02	0	
235.46	0	

TORS: NEW

ıs as before

ımed to be

icollinearity

thly correlated the model

eareful predictor choice, ictors

ITY IN R

2)

or2	predictor3	predictor4
.34	0.43	-0.53
.00	0.20	-0.22
.20	1.00	-0.52
.22	-0.52	1.00

les until none are highly

or4 is a good option here

TORS:

TORS:

```
ion * mountain_range)
```

```
elevation * mountain_range)

3Q Max
03 202.73

Estimate Std. Error t
-2.104e+02 3.185e+01 -
1.364e-01 1.366e-02
1.842e+01 4.067e+01
```

```
9.473e+01 3.346e+01

1.798e+01 4.192e+01

one -3.521e-03 1.747e-02 -

be -3.089e-02 1.435e-02 -

ma -2.771e-03 1.767e-02 -

'**' 0.01 '*' 0.05 '.' 0.1

2 on 4290 degrees of freedom

Adjusted R-squared: 0.2083

290 DF, p-value: < 2.2e-16
```

TORS:

s on value of the other oth are continuous

higher-order interactions o interpret