

CHAPITRE 1 RECONNAITRE LA STRUCTURE D'UN ALGORITHME

- 1. Définition d'un algorithme
- 2. Objets informatiques (variable, constante, type)
- 3. Structure d'un algorithme

Objets informatiques (variable, constante, type)

Un algorithme manipule des objets (données) pour obtenir un résultat

Un objet est composé de :

- Un identificateur : Il s'agit du nom unique qui désigne cet objet.
- Un type : Il sert à déterminer la nature de l'objet qu'il soit simple (entier, caractère, etc.) ou composé (tableau,...), en particulier les valeurs possibles de l'objet, la taille mémoire réservée à l'objet et les opérations primitives applicables à l'objet.
- Une valeur : détermine le contenu unique de l'objet

+ type

d'un identificateur +

type + valeur

Composition d'un objet informatique

Objets informatiques (variable, constante, type)

Les objets sont de deux natures: les constantes et les variables

- Une **constante** est un objet dont l'état **reste inchangé** durant toute l'exécution d'un programme. On ne peut jamais modifier sa valeur et celle-ci doit donc être précisée lors de la définition de l'objet
- Une variable est un objet dont le contenu (sa valeur) peut être modifié par une action

Exemple:

Types des objets informatiques

Objets informatiques (variable, constante, type)

Types des objets

- À chaque variable utilisée dans le programme, il faut associer un type qui permet de définir :
 - L'ensemble des valeurs que peut prendre la variable
 - L'ensemble des opérations qu'on peut appliquer sur la variable

Les principaux types utilisés en algorithmique sont :

- Entier
- Réel
- Caractère
- Chaîne de caractères
- Logique ou booléen

Type entier

• Une variable est dite entière si elle prend ses valeurs dans Z (ensemble des entiers relatifs)

Elle peut supporter les opérations suivantes :

Opération	Notation
Addition	+
Soustraction	-
Multiplication	*
Division entière	div
Modulo (reste de la division)	mod
Puissance	^

Exemples:

13 div 5 = 2 $13 \mod 5 = 3$

Objets informatiques (variable, constante, type)

Type réel ou décimal

Il existe plusieurs types de réels représentant chacun un ensemble particulier de valeurs prises dans R (ensemble des nombres réels)

Il existe deux formes de représentations des réels :

• La forme usuelle avec le point comme symbole décimal :

Exemples:

-3.2467 2 12.7 +36.49

• La notation scientifique selon le format aEb, où : a est la mantisse, qui s'écrit sous une forme usuelle, b est l'exposant représentant un entier relatif :

Exemples:

347 = 3.47E2 = 0.347E+3 = 3470E-1

Les opérations définies sur les réels sont :

Opération	Notation
Addition	+
Soustraction	-
Multiplication	*
Division (réelle)	/
Puissance	۸

Objets informatiques (variable, constante, type)

Type caractère

- Un caractère peut appartenir au domaine des chiffres de "0" à "9", des lettres (minuscules et majuscules) et des caractères spéciaux ("*", "/", "{", "\$", "#", "%" ...)
- Un caractère sera toujours noté entre des guillemets.
- Le caractère espace (blanc) sera noté " "
- Les opérateurs définis sur les données de type caractère sont :

Opération	Notation
Égal	=
Différent	#
Inférieur	<
Inférieur ou égal	<=
Supérieur	>
Supérieur ou égal	>=

• La comparaison entre les caractères se fait selon leur codes ASCII : Le code ASCII est une norme informatique de codage de caractères, dans laquelle chaque caractère alphabétique, numérique ou spécial est représenté par un nombre binaire sur 7 bits (une chaîne composée de sept 0 ou 1).

Exemple:

Objets informatiques (variable, constante, type)

Type logique ou booléen

- Une variable logique ne peut prendre que les valeurs "Vrai" ou "Faux"
- Elle intervient dans l'évaluation d'une condition
- Les principales opérations définies sur les variables de type logique sont : la négation (NON), l'intersection (ET) et l'union (OU)
- L'application de ces opérateurs se fait conformément à la table de vérité suivante :

А	В	NON (A)	A et B	A ou B
Vrai	Vrai	Faux	Vrai	Vrai
Vrai	Faux	Faux	Faux	Vrai
Faux	Vrai	Vrai	Faux	Vrai
Faux	Faux	Vrai	Faux	Faux

Table de vérité des opérateurs logiques

Objets informatiques (variable, constante, type)

Expressions

- Ce sont des combinaisons entre des variables et des constantes à l'aide d'opérateurs
- Elles expriment un calcul (expressions arithmétiques) ou une relation (expressions logiques)

Les expressions arithmétiques:

Ce sont des expressions simples construites avec des opérateurs arithmétiques et des constantes ou des références à des cellules.

Exemple: x * 53.4 / (2 + Pi)

- L'ordre selon lequel se déroule chaque opération de calcul est important
- Afin d'éviter les ambiguïtés dans l'écriture, on se sert des parenthèses et des relations de priorité entre les opérateurs arithmétiques :

Priorité	Opérateurs
1	- Signe négatif (opérateur unaire)
2	() Parenthèses
3	^ Puissance
4	* Et / Multiplication et division
5	+ et – addition et soustraction

En cas de conflit entre deux opérateurs de même priorité, on commence par celui situé le plus à gauche

Ordre de priorité des opérateurs arithmétiques

Objets informatiques (variable, constante, type)

Expressions

Les expressions logiques:

- Ce sont des expressions de type booléen, c'est à dire des expressions pouvant prendre la valeur vrai ou faux.
- Elles sont formées à partir des combinaisons entre des variables et des constantes à l'aide des opérateurs relationnels et logiques.
- Les opérateurs relationnels sont (=, <, <=, >, >=, #) et les opérateurs logiques sont (NON , ET, OU, etc.)
- On utilise les parenthèses et l'ordre de priorité entre les différents opérateurs pour résoudre les problèmes de conflits

Priorité	Opérateur
1	NON
2	ET
3	OU

Opérateurs logiques

Exemple:

$$5 + 2 * 6 - 4 + (8 + 2 ^ 3) / (2 - 4 + 5 * 2) = 15$$

On commence par calculer ce qui est entre les parentheses : $(8 + 2 ^3) = 16$ et (2-4+5*2) = 2

L'expression deviant : 5+2 * 6-4+8 = 15.

Priorité	Opérateur
1	la parenthèse () la plus interne
2	>
3	>=
4	<
5	<=
6	=
7	#

Opérateurs relationnels

Objets informatiques (variable, constante, type)

Déclaration d'une variable

- Toute variable utilisée dans un programme doit être l'objet d'une déclaration préalable
- En pseudo-code, la déclaration de variables est effectuée par la forme suivante :

Var liste d'identificateurs : type

Exemple:

Var

i, j, k : Entier x, y : Réel

OK: Booléen

C1, C2 : Caractère

Déclaration d'une constante

- En pseudo-code, la déclaration des constantes est effectuée par la forme suivante :
- Par convention, les noms de constantes sont en majuscules
- Une constante doit toujours recevoir une valeur dès sa déclaration

Const identificateur=valeur: type

Exemple: Const PI=3.14 : réel

Pour calculer la surface des cercles, la valeur de Pi est une constante mais le rayon est une variable

CHAPITRE 1 RECONNAITRE LA STRUCTURE D'UN ALGORITHME

- 1. Définition d'un algorithme
- 2. Objets informatiques (variable, constante, type)
- 3. Structure d'un algorithme

Structure d'un algorithme


```
Cercle
Const
 Pi = 3.14
Var
 r, p, s : Réel
Début
  Écrire ("Entrer le rayon du cercle : ")
  Lire (r)
   p:=2 * Pi * r
   s:=Pi*r^2
   Écrire ("Périmètre = ", p)
   Écrire ("Surface = ", s)
```

Fin