Contents

1	Lecture 1		1
	1.1	Basic ML Setup	1
	1.2	PAC Learning Framework	2
2	Lec	ture 2	3

1 Lecture 1

We define **machine learning** as a computational method to convert experience into expertise. We say that *experience* is past data, and *expertise* is the prediction of future outcomes.

Some standard learning tasks are: classification, regression, clustering, dimensionality reduction/manifold learning (find lower dimensional representation of data while preserving its properties).

In this course:

- 1. Theretical foundations and statistical learning theory. PAC learning framework, Rademacher complexity, VC-dimension.
- 2. Analysis of ML methods & algorithms (with applications of part 1).
 - (a) SVM & kernel methods
 - (b) Boosting
 - (c) Logistic regression
 - (d) SGD
 - (e) Neural networks (deep learning)

There may be a part 2 of this course.

1.1 Basic ML Setup

We have an **input space** X for example $X = \mathbb{R}^n$, $[0,1]^2$,.... We have an **output space** Y, which cna be for example $\{0,1\}$, \mathbb{R} ,.... We also have **training data**, which are tuples with the data and a label: (x_i, y_i) , i = 1, ..., m for labeled data, or unlabeled data given by simply a list $x_i, i = 1, ..., m$. We also have a **hypothesis class** \mathcal{H} , which is a set of functions $h: X \to Y$.

Now, the question is: what class of functions should we learn? Why do we need to choose \mathcal{H} ? We use the example of a papaya classification, and describe the natural way to iterate from overfit data to a simple rectangular classifier, on the inputs of softness and color as two axes (therefore the input space is $X = [0,1]^2$). This is described in some detail in the live notes, but does not warrant TeXed notes.

Now, there are several different types of learning that are sketched.

- 1. Supervised.
- 2. Unsupervised.
- 3. Semisupervised.
- 4. Online learning.
- 5. RL.
- 6. Active learning.

1.2 PAC Learning Framework

We now describe the **PAC learning framework**. Consider a supervised learning scenario for binary classification. We have X our input space, Y our output, and training data

$$S = ((x_1, y_1), \dots, (x_m, y_m)) \in (X \times Y)^m.$$
(1)

We make some assumptions.

- 1. x_i , i = 1, ..., m are drawn iid, according to some *unknown* probability distribution \mathcal{D} on X.
- 2. Labels are given $y_i = f(x_i), i = 1, ..., m$ for some map $f: X \to Y$.

Our goal is to find f (at least approximately). More generally (later), we will assume that (x_i, y_i) are drawn iid from \mathcal{D} on $X \times Y$.

The learner's output will be a prediction rule

$$h: X \to Y,$$
 (2)

and ideally h = f. The learner will select a hypothesis from

$$\mathcal{H} \subset \{g: X \to Y\} \tag{3}$$

and f may or may not be contained in \mathcal{H} .

Assumptions on measurable spaces: several assumptions are made, simply to remove pathological mathematical cases. For measurable spaces X, Y, Z, \ldots :

- 1. If the space is finite/countably infinite, it is equipped with the σ -algebra consisting of all subsets of the space.
- 2. Otherwise, assume it is a metric space, complete and separable, equipped with the corresponding Borel σ -algebra.
- 3. For products $X \times Y$, it carries the product σ -algebra of X and Y.

We can also define the **generalization error**.

Definition 1.2.1: Generalization Error/Risk

For $h: X \to Y = \{0,1\}$, the **generalization error** or **risk** of h is:

$$R(h) = \underset{x \sim \mathcal{D}}{\mathbb{P}}(h(x) \neq f(x)) = \mathbb{E}[\mathbb{1}_{\{x|h(x) \neq f(x)\}}]. \tag{4}$$

To see that this makes sense, note that

$$\mathbb{P}(A) = \mathbb{E}[\mathbb{1}_A],\tag{5}$$

since

$$\mathbb{P}(A) = \int_{A} 1 \, dP(\omega) \tag{6}$$

$$\mathbb{E}[\mathbb{1}] = \int_{\Omega} \mathbb{1}_A \, dP(\omega). \tag{7}$$

Also note that above, we assumed a fixed labeling function $f: X \to Y = \{0,1\}$ and probability distribution \mathcal{D} on X.

2 Lecture 2

Definition 2.0.1: Empirical Risk

Let $h: X \to Y = \{0,1\}$, the (true) labeling function is $f: X \to Y$, and sames $S = (x_1, \dots, x_m)$ (with $x_i \in X$). Then the **empirical risk** is

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{\{h(x_i \neq f(x_i))\}} = \frac{1}{m} \# \{i \in [m] : h(x_i) \neq f(x_i)\}$$
 (8)

where $[m] := \{1, \dots, m\}$; for a finite set A, we have that #A = |A|.

Drawing x_i, \ldots, x_m from \mathcal{D} means that we draw $S = (x_1, \ldots, x_m) \sim \mathcal{D}$. Consequently, we obtain a random variable which we also denote by $\hat{R}(h)$.

Lemma 2.0.2: Expectation of Empirical Risk equals Risk

If x_1, \ldots, x_m are drawn i.i.d. according to \mathcal{D} , then for any (measurable) $h: X \to \{0, 1\},$

$$\mathbb{E}[\hat{R}] = R(h). \tag{9}$$

Definition 2.0.3: Empirical Risk Minimization

Let $f: X \to Y = \{0,1\}$ be the true labeling function and let $\mathcal{H} \subset \{h: X \to Y\}$ be a hypothesis set. Given a sample $S = (x_1, \dots, x_m) \in X^m$ with corresponding labels $y_i = f(x_i)$, for $i \in \{1, \dots, m\}$, the **empirical risk minimization** consists of selecting a minimizer $h \in \mathcal{H}$ of \hat{R} , i.e. selecting an h realizing

$$\min_{h \in \mathcal{H}} \hat{R}(h) = \min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{h(x_i \neq f(x_i))}.$$
 (10)

An example of overfitting is provided: we can easily overfit with empirical risk minimization, see live notes.

Definition 2.0.4: PAC-learning, Consistent Case

A hypothesis class $\mathcal{H} \subset \{h: X \to Y = \{0,1\}\}$ is **PAC-learnable** if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm \mathcal{A} with the following property:

For every $\varepsilon, \delta \in (0,1)$, for all probability distributions \mathcal{D} over X, for every labeling function $f \in \mathcal{H}$, the following holds:

If $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ and $S = (x_1, \ldots, x_m)$ is an i.i.d. sample, $S \sim D^m$, then given the data $(x_i, y_i) = (x_i, f(x_i)), i = 1, \ldots, m$, the algorithm \mathcal{A} returns a hypothesis

$$h_S \in \mathcal{H}$$
 (11)

such that with probability of at least $1 - \delta$ (over $S \sim D^m$),

$$R(h_S) \le \varepsilon.$$
 (12)

Remarks.

- 1. There are analogous definitions of empirical risk, empirical risk minimization, PAC-learnable for any Y consisting of two elements.
- 2. The sample complexity $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ determines the number of required training data in order to learn \mathcal{H} . It will depend on the accuracy ε and the confidence δ and on properties of \mathcal{H} . Ideally, $m_{\mathcal{H}}$ should be bounded by a polynomial in $\frac{1}{\varepsilon}$ and $\frac{1}{\delta}$. (More precisely, the sample complexity should be defined as the minimal $m_{\mathcal{H}}$ satisfying the conditions in the definition.
- 3. The definition of PAC-learnable does not require that the algorithm \mathcal{A} be efficient; only the existence of a possibly slow (intractable) algorithm is assumed. If the runtime of the algorithm is polynomial (in $\frac{1}{\varepsilon}, \frac{1}{\delta}$, and

the "computational representation of $f \in \mathcal{H}$ "), then we call \mathcal{H} efficiently **PAC-learnable**.

- 4. Empirical risk minimization is a possible "algorithm", but it may not always be the optimal one. Depending on \mathcal{H} , it may be efficient or not.
- 5. In some cases, PAC-learnability may be shown directly (e.g., learning axisaligned rectangles, see Exercise Sheet 1).

Theorem 2.0.5: Finite \mathcal{H} , consistent case

Let $\mathcal{H} = \text{a finite set of functions } h: X \to y = \{0,1\}$. Assume that the labeling function f belongs to \mathcal{H} and let \mathcal{A} be an algorithm that for each i.i.d. sample $S = (x_1, \ldots, x_m)$ and labeled training data $(x_i, y_i) = (x_i, f(x_i)), i = 1, \ldots, m$ returns a consistent hypothesis $h_S \in \mathcal{H}$; i.e., $\hat{R}(h_S) = 0$. Then for $\varepsilon, \delta \in (0, 1)$, if

$$m \ge \frac{1}{\varepsilon} (\log |\mathcal{H}| + \log \left(\frac{1}{\delta}\right)$$
 (13)

the inequality

$$\mathbb{P}[R(h_S) \le \varepsilon] \ge 1 - \delta \tag{14}$$

holds.

In other words, with probability at least $1 - \delta$,

$$R(h_S) \le \frac{1}{m} (\log |\mathcal{H}| + \log \left(\frac{1}{\delta}\right).$$
 (15)

Proof. Proof in live notes. Please examine it carefully.

The theorem shows in its assumptions that \mathcal{H} is PAC-learnable with

$$m_{\mathcal{H}}(\varepsilon, \delta) = \frac{1}{\varepsilon} \lceil \log |\mathcal{H}| + \log \left(\frac{1}{\delta}\right) \rceil.$$
 (16)

Conclusion.

- 1. For finite hypothesis set \mathcal{H} , a consistent learning algorithm \mathcal{A} is a PAC learning algorithm with sample complexity polynomial (even linear) in $\frac{1}{\varepsilon}$, and logarithmic in $\frac{1}{\delta}$ and $|\mathcal{H}|$.
- 2. $\log |\mathcal{H}|$ may be interpreted as the number of bits to represent \mathcal{H} (up to a constant factor).
- 3. Note that $f \in \mathcal{H}$ guarantees that empirical risk minimization always returns an h_S with $\hat{R}(h_S)$.
- 4. Note: "consistent h" means that $\hat{R}(h) = 0$. The "consistent case" is where $f \in \mathcal{H}$.

Index

```
consistent, 5
consistent case, 5

efficiently PAC-learnable, 5
empirical risk, 3
empirical risk minimization, 4
generalization error, 3
hypothesis class, 1
input space, 1
machine learning, 1
output space, 1
PAC learning framework, 2
PAC-learnable, 4
risk, 3
sample complexity, 4
training data, 1
```