

Indefinite Integrals of Exponential Functions

by Sophia

WHAT'S COVERED

In this lesson, you will find antiderivatives of exponential functions and incorporate them into the antiderivatives we already know (powers and trigonometric functions). Specifically, this lesson will cover:

- 1. Antiderivatives of Exponential Functions
- 2. Antiderivatives of Functions Containing Exponential Functions

1. Antiderivatives of Exponential Functions

Recall that $D[e^x] = e^x$ and $D[a^x] = a^x \cdot \ln a$, assuming a > 0. This leads to the following antiderivative formulas:

FORMULA TO KNOW

Antiderivatives of Exponential Functions

$$\int e^{x} dx = e^{x} + C$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C$$

2. Antiderivatives of Functions Containing Exponential Functions

Let's get into some examples.

 \approx EXAMPLE Find the indefinite integral: $\int (4e^x - 2x + 1)dx$

Note that the same properties can be used.

$$\int (4e^x - 2x + 1)dx$$
 Start with the original expression.

=
$$4\int e^{x}dx - 2\int xdx + \int 1dx$$
 Use the sum/difference properties and the constant multiple rule.

=
$$4(e^x) - 2\left(\frac{x^2}{2}\right) + x + C$$
 Apply exponential and power rules.

$$=4e^{x}-x^{2}+x+C$$
 Simplify.

Thus,
$$\int (4e^x - 2x + 1)dx = 4e^x - x^2 + x + C$$
.

 \Leftrightarrow EXAMPLE Find the indefinite integral: $\int (3^x - \frac{2}{3} \sin x) dx$

$$\int \left(3^{x} - \frac{2}{3}\sin x\right) dx$$
 Start with the original expression.

$$= \int 3^{x} dx - \frac{2}{3} \int \sin x dx$$
 Use the sum/difference properties and the constant multiple rule.

$$= \frac{3^{x}}{\ln 3} - \frac{2}{3}(-\cos x) + C \quad \text{Apply formulas for } \int a^{x} dx \text{ and } \int \sin x dx.$$

$$= \frac{3^x}{\ln 3} + \frac{2}{3}\cos x + C \quad \text{Simplify.}$$

Thus,
$$\int \left(3^{x} - \frac{2}{3}\sin x\right) dx = \frac{3^{x}}{\ln 3} + \frac{2}{3}\cos x + C$$
.

☑ TRY IT

Consider
$$\int (x^2 - 5e^x) dx$$
.

Find the indefinite integral.

$$\int (x^2 - 5e^x) dx = \int x^2 dx - \int 5e^x dx$$
$$= \frac{1}{3}x^3 - 5e^x + C$$

Consider
$$\int \left(10^x - \frac{6}{\sqrt{x}}\right) dx$$
.

Find the indefinite integral.

Start by splitting up the integrals and rewriting the radical as an exponent:

$$\int \left(10^{x} - \frac{6}{\sqrt{x}}\right) dx = \int 10^{x} dx - \int 6x^{-1/2} dx$$

Now apply the antiderivative rules, then simplify:

$$= \frac{10^{x}}{\ln 10} - 6\left(\frac{1}{\left(\frac{1}{2}\right)}x^{1/2}\right) + C = \frac{10^{x}}{\ln 10} - 12x^{1/2} + C$$

Thus,
$$\int \left(10^x - \frac{6}{\sqrt{x}}\right) dx = \frac{10^x}{\ln 10} - 12x^{1/2} + C$$
.

In radical form, this is written $\frac{10^x}{\ln 10} - 12\sqrt{x} + C$.

SUMMARY

In this lesson, you learned the formula for **antiderivatives of exponential functions**, expanding your abilities to find derivatives to include finding **antiderivatives of functions containing exponential functions**.

Source: THIS TUTORIAL HAS BEEN ADAPTED FROM CHAPTER 4 OF "CONTEMPORARY CALCULUS" BY DALE HOFFMAN. ACCESS FOR FREE AT WWW.CONTEMPORARYCALCULUS.COM. LICENSE: CREATIVE COMMONS ATTRIBUTION 3.0 UNITED STATES.

I FORMUL

FORMULAS TO KNOW

Antiderivatives of Exponential Functions

$$\int e^{x} dx = e^{x} + C$$
$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C$$