אקוהן ביום אוצה

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget Paperwork Reduction Project (0704-0188). Washington DC 20503.

and to the Office of Management and Budget, Pr	aperwork Reduction Project (0704-0188), Washing		
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED
	December 1989	professional p	aper
4. TITLE AND SUBTITLE		5. FUNDING NUMBER:	s
EXCIMER LASER-ASSISTED ETCHING OF SILICON USING CHLOROPENTAFLUOROETHANE		WU: DN307 3	PE: 0604363N WU: DN307 356
8. AUTHOR(S)		PN: WM23	i
S. D. Russell		1	}
7. PERFORMING ORGANIZATION NAME(S) AND	ADDRESS(ES)	8 PERFORMING ORGA	NIZATION
Naval Ocean Systems Center San Diego, CA 92152-5000	REPORT NUMBER		
9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MOI AGENCY REPORT	NITORING
Strategic Systems Project Office Washington, DC 20360		AGENCT REPORT	NUMBER
11. SUPPLEMENTARY NOTES			
12a DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; di	12b. DISTRIBUTION CO	DDE	
Approved for public release, dis	ĺ		
Laser-assisted phototh using a KrF laser at 248 nm. Et monitored by the change in silic is observed. Etch rates Apu	tching occurs only if the incident con reflectance at 633 nm. Above alse have been measured using both to fluence, ambient pressure, don't	en observed with silicon in a chlorope fluence exceeds the melt threshold (2.2 J/cm³) in the ablation threshold (2.2 J/cm³) in th stylus profilometer and SEM cross- ing concentration, crystal orientation licon devices in a non-corrosive environ-	9.75 JCm ²), and is acreased surface roughness sectional techniques. The
JAN1 2 1990			
			7
Published in the Proceedings Material Research Society, Fall 1989.			
14. SUBJECT TERMS			15. NUMBER OF PAGES
_			
			16. PHICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UNLIMITED
0140TUDDILIED		UNCLASSIFILD	OI TIMILITED

much more rapidly than the signal delay in packaged circuits. As a consequence of this the packaging delay times have had to be reduced drastically, which means that a greater packaging density has had to be implemented.

A novel planar packaging technique, used in the new SIEMENS main frame computer 7500 H/90 has led to considerable progress in solving this problem. An essential part of this system is a multi-chip-module which can hold up to 144 bare chips. The carrier of these IC's is a 16-layer high density multilayer printed circuit board, which is fabricated in a sequential process.

Interlayer contacts are formed by 80 um wide blind via-holes, which are generated by excimer-laser ablation of the dielectric. The process described in this paper shows that it is possible to produce blind via-holes with an aspect ratio of about one in an extremely reliable and reproducible way.

This process is already being successfully run on a production line. It is to our best know-ledge the first time excimentlasers have been used on a large-scale in an industrial environment

B6.2

UV LASER-INDUCED ETCHING OF FIRST-ROW TRANSPHON

George W. Tyndall IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120.

A quartz crystal microbalance (QCM) has been used to study the KrF* (248 nm) laser-induced etching of Ti, Cr. Fe, Ni and Cu by bromine. The experiment consists of focusing the pulsed output of an excimer laser at normal incidence onto the surface of a quartz crystal coated with the transition metal. Absolute etch rates are determined from the change in the resonant frequency of the QCM over time. Each of the metals studed can be etched by bromine at laser fluences significantly below those required for ablation of the pure metal. The dependence of the etch rate on bromine pressure and laser fluence was measured to ellucidate the etching mechanisms. The details of these etching mechanisms will be discussed.

B6.3

PHOTOCHEMICAL AREA-SELECTIVE ETCHING OF Si AND SiO USING SYNCHROTRON RADIATION.

<u>Judichi Takahashi</u>, Yuichi Utsumi, and Tsuneo Urisu. NTT LSI Laboratories. Kanagawa. Japan.

Material selectivity and the surface reaction scheme in the etching reaction are important factors for controllable area-selective processing. We have already reported [1,2] that photochemical etching using synchrotron radiation (SR) presents unique material selectivity, and that the surface reaction can be expressed as photo-stimulated reactive desorption. This report discusses in some detail the mechanism involved in SR-stimulated area-selective etching of Si and SiO₂ using SF₆ gas.

Photon energy dependence of SiO (thermal oxide) etching was studied to examine that kind of surface photo-excitation was dominant. Excitation wavelength range was selected by changing SR beam incident angles to Pt plane mirrors in the beam line. Experimental results indicate that the most important factor is core electron excitation of surface SiO, molecules. The influence of dopant in Si etching was also studied using H-doped. P-doped, and undoped poly-Si films. The etching rate decreased with increasing dopant concentration, independent of conduction type. This characteristic is quite different from the case for excimer laser or plasma etching. According to our reaction model this result can be

explained as active species quenching by majority carriers.

(1) T. Urisu et al. J. Vac. Sci. & Technol. B5 (1987) 1436. (2) J. Takahashi et al. Extended Abstracts 1988 Int. Conf. Solid State Devices & Mat. p. 73.

B6.4

EXCIMER LASER-ASSISTED ETCHING OF SILICON USING CHLORO-PENTAFLUOROETHANE. S. D. Russell, and D. A. Sexton, Solid State Electronics Division, Naval Ocean Systems Center, San Diego, CA.

Laser-assisted photothermal chemical reactions have been observed with silicon in a chloropentafluoroethane ambient using a KrF laser at 248 nm. Etching occurs only if the incident fluence exceeds the melt threshold (-0.75 J/cm²), and is monitored by the change in silicon reflectance at 633 nm. Above the ablation threshold (-2.2 J/cm²) increased surface roughness is observed. Etch rates -7 Å/pulse have been measured using both stylus profilometer and SEM cross-sectional techniques. The etch rate dependence on Incident fluence, ambient pressure, doping concentration, crystal orientation and substrate temperature will be presented. This process allows single step patterning of silicon devices in a non-corrosive environment.

B6.5

LOCALIZED LASER-ASSISTED ETCHING OF COPPER FILMS BY CHLORINE USING RAMAN SPECTROSCOPY FOR in situ FILM ANALYSIS. Nua Tang and Irving P. Herman, Department of Applied Physics and the Microelectronics Sciences Laboratories, Columbia University, New York, NY.

Etching of copper films on glass was studied by localized laser substrate heating (4880 Å) in the presence of chlorine gas. The spontaneous reaction of Cu with chlorine at room temperature forms a film [1], which was identified to be CuCl by Raman spectroscopy at 77/K. If the chlorine is then evacuated, laser heating can remove this CuCl film locally, down to the remaining copper film. If instead chlorine is present during laser heating, a bump is formed. In producing this feature, the CuCl layer and some of the underlying Cu film are converted to CuCl₂, as identified by in situ Raman analysis at room temperature. After removal of the chlorine, etched CuCl/Cu regions are formed with micron dimension patterns after subsequent in situ laser heating of these features or ex situ rinsing in solvents.

This work was supported by the Office of Naval Research and IBM.

[1] W. Sesselmann and T. J. Chuang, Syrrf. Sci. 176, 32 (1986).

B6.6

SELECTIVE TUNGSTEN CVD ON A-SI:H BY PULSED UV LASER MODIFICATION OF THE NATIVE OXIDE. Arthur T. Howe, K. V. Reddy, Darrell L. Wuensch and Jeff T. Niccum, Technology Division, Amoco Technology Company, PO Box 400, Naperville IL 60566; and Gerry W. Zajac, Analytical Division, Amoco Corporation, PO Box 000, Naperville IL 60566.

Laser patterning processes which use comparatively low laser intensities are of interest for applications requiring masks, or involving thermally sensitive devices. We have studied such a process involving the indirect control of tungsten chemical vapor deposition on a-Si:H by laser modification of the native oxide. The process has potential for use in the fabrication of active matrix flat panel displays.

Excimer laser pulses, of wavelengths 193, 248 and 308 nm, and fluences of approximately 100 mJ/cm², were shown to cause slight growth of the native oxide on a-Si:H, and XPS studies of the effect will be described. The oxide growth was sufficient

Excimer Laser-Assisted Etching of Silicon Using Chloropentafluoroethane

Stephen D. Russell and Douglas A. Sexton

Solid State Electronics Division Naval Ocean Systems Center Code 553 San Diego, CA 92152-5000

OUTLINE

- OVERVIEW of EXPERIMENTS
- II. DATA
 - * Pressure, Temperature, Orientation, Fluence, Repetition Rate, Doping Type and Concentration

III. SUMMARY

- * Etch Rate
- * Rate Limiting Mechanism
- * Processing Advantages

ETCHANT GAS

Chloropentafluoroethane

Chemical Formula: C2ClF5

Synonyms: Freon-115, Halocarbon-115, Genetron-115, etc.

Typical Uses: Refrigerant, Propellant, and Chemical Intermediate

Description: Chemically Stable, Irert, Nonflammable, Relatively Nontoxic

Vapor Pressure @ 294 K = P_0 = 804.6 kPa

SOURCE: D.E. Robbins, NASA-CR-154106 (1986)

- * $P \le 6$ kPa ... No Evidence of Etching
- * P ≥ 6 kPa ... Etch Rate increases with Pressure

- * No Etching Below Melt Fluence
- * Etch Rate has Linear Dependence with Fluence within the Melt Regime ... Consistent with 1D Thermal Model
- * Ablation Threshold ~2.2 J/cm²

 $\langle W(p^+) \rangle = 6.8 \pm 0.3$ Angstroms/pulse $\langle W(p,n,n^-) \rangle = 7.3 \pm 0.3$ Angstroms/pulse

- * Differences in Etch Rate not Experimentally Significant
- * Implies Thermally Activated Reaction, Not Field Enhanced

- * No Etch Rate Dependence Between Identically Processed (100) Si and (111) Si
- * Consistent with Thermal Reaction ... Etching Occurs
 During the Duration of the Melt (typically 30 to 80 nsec)

* Etch Rate Decreases with Increasing Temperature

- * W = W(P) Consistent with B-E-T Isotherm
- * Rate Limiting Mechanisms:

Adsorption

Laser Induced Desorption

- * W Decreases as Rep Rate Increases
- * Increased Steady-State Heating due to Increased Laser Duty Cycle
- * W Dependence Consistent with W = W(T)

SUMMARY

- * W not a Function of Orientation, Doping Type or Doping Concentration
- * W is Linearly Proportional to Fluence $(\sim 0.75 \text{ J/cm}^2 \le \phi \le \sim 2.2 \text{ J/cm}^2)$
- * W Increases with Pressure Consistent with B-E-T Adsorption
- * W = W(T,Rep Rate)
- * Mechanisms: Thermally Activated Etching, Rate Limited by Adsorption and Possibly Laser Induced Desorption

PROCESSING ADVANTAGES

- * Etch Rates of about 5 Angstroms/pulse (at 296 K, $\phi > \phi_{\rm MELT}$) (15 Å/pulse with sufficient cooling)
- * Non-Corrosive C_2ClF_5 Compatible with VLSI Materials and Processing