WORKSHOP 13: §7.1-7.2 FEBRUARY 23, 2017

Name:		

- (1) Compute the following
 - (a) 123 div 7
 - (b) 123 mod 7
 - (c) $-12 \operatorname{div} 7$
 - (d) $-12 \mod 7$
- (2) Use the Division Algorithm to prove that every integer is either even or odd. [I said earlier that we would have to wait for induction to prove this fact. That's sort of right, because the proof of the Division Algorithm relies on induction.]
- (3) Use the Division Algorithm and cases to prove: for every odd integer $n, n^2 \equiv 1 \pmod{8}$. [Hint: consider $n \pmod{4}$.]
- (4) In \mathbb{R} and \mathbb{Z} , we have the zero product rule: xy = 0 if and only if x = 0 or y = 0. Does the zero product rule hold in \mathbb{Z}_2 ? \mathbb{Z}_3 ? \mathbb{Z}_4 ? \mathbb{Z}_5 ? \mathbb{Z}_6 ? Conjecture an answer to the question: for which n does \mathbb{Z}_n have the zero product rule?