

GEOMETRÍA Capítulo 12

ÁREAS DE REGIONES TRIANGULARES

MOTIVATING | STRATEGY

ÁREAS DE REGIONES TRIANGULARES

REGIÓN PLANA.-

porción del plano una limitada por una línea abierta o cerrada.

ÁREA.-Es la medida de una región. 12u² $A_{\triangle} = 12u^2$ **REGIONES EQUIVALENTES.- Son**

Aquellas regiones que tienen igual área 9u²

9u²

TEOREMAS

h

Teorema básico:

$$S_{ABC} = \frac{bh}{2}$$

Teorema trigonométrico:

$$S_{ABC} = \frac{bc}{2} \cdot sen\alpha$$

 Área de una región triangular equilátera (regular)

$$S_{ABC} = a^2 \frac{\sqrt{3}}{4}$$

HELICO | THEORY

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

En función al exradio

$$p=\frac{a+b+c}{2}$$

$$S = (p - a) \cdot r_a$$

En función al inradio

$$S = p \cdot r$$

En función al circunradio

$$S = \frac{abc}{R}$$

RELACIONES ENTRE ÁREAS DE REGIONES TRIANGULARES

1. Calcule el área de la región triangular ABC, si BE = 3, ED = 4 y EC = 3(AE).

Resolución

Aplicamos el teorema de cuerdas

$$S_{ABC} = \frac{8 \times 3}{2}$$

$$a^2 = 4$$

$$a = 2$$

$$S_{ABC} = 12u^2$$

2. Calcule el área de la región triangular equilátera si ED = $3\sqrt{3}$ y

3. Las longitudes de los lados de una región triangular son: 12; 17 y
 25. Calcule su área.

Por el teorema de Herón

Resolución

$$p = \frac{12 + 17 + 25}{2} = 27$$

$$S_{ABC} = \sqrt{27(27-12)(27-17)(27-25)}$$

$$S_{ABC} = \sqrt{27(15)(10)(2)}$$

$$S_{ABC} = \sqrt{9 \cdot 3 \cdot 5 \cdot 3 \cdot 5 \cdot 2 \cdot 2}$$

$$S_{ABC} = 3.3.5.2$$

$$S_{ABC} = 90 u^2$$

4. Calcule el área de una región triangular ABC si AB = $2\sqrt{5}$,

$$S_{ABC} = \frac{2\sqrt{5} \cdot 6\sqrt{5}}{2} \operatorname{sen37}^{\circ}$$

$$S_{ABC} = \cancel{5} \cdot 6 \cdot \frac{3}{\cancel{5}}$$

$$S_{ABC} = 18 u^2$$

5. Las longitudes de los lados de un triángulo son: 4; 6 y 6. Halle

la longitud de su inradio.

Resolución

ABC: Isósceles

•

■ BCH : T. Pitágoras

$$6^2 = (BH)^2 + 2^2$$

$$4\sqrt{2} = BH$$

$$S_{ABC} = \frac{4 \times 4 \sqrt{2}}{2}$$

$$S_{ABC} = 8\sqrt{2}$$

$$p = \frac{6+6+4}{2} = 8$$

$$p \cdot r = 8\sqrt{2}$$

$$8 \cdot r = 8\sqrt{2}$$

$$r = \sqrt{2}$$

HELICO | PRACTICE

6. En la figura el triángulo equilátero ABC, representa al contorno de un jardín y el \overline{DE} paralelo al \overline{AC} , representa a una cerca que divide al jardín en dos partes (regiones), de igual área. Si AB = L y BD = l; halle $\left(\frac{L}{l}\right)$

HELICO | PRACTICE

7. En el gráfico, se muestra una señal de tránsito donde la parte sombreada que se quiere pintar de color rojo, tiene en sus contornos, dos triángulos equiláteros de lados 60cm y 40cm.

Calcule el área de la franja roja.

Resolución

$$S_{X} = \frac{60^{2}\sqrt{3}}{4} - \frac{40^{2}\sqrt{3}}{4}$$

$$S_x = 900 \sqrt{3} - 400 \sqrt{3}$$

$$S_{X} = 500 \sqrt{3} \text{ cm}^{2}$$

Región triangular

equilátera

 $S_{ABC} = a^2 \frac{\sqrt{3}}{4}$