

Using SVM to determine critical temperature

Mateusz Bulanda-Gorol Mateusz Rokicki

2D Ising Model

Phase transition and parameters

Steps = 50 000

$$T = 0.1 - 4.0$$

 $\Delta T = 0.1$

Lattice size:

- 10
- 20
- 30
- 40
- 50

Methods

Method I

Analysis of the dependence of the average phase adjustment on the temperature. We can easily calculate critical temperature from this relationship, using linear regression.

Method II

Based on analysis Mean Square Error and temperature, critical temperature should appear at the point were this dependency increases rapidly. To accomplish this computations, necessary was to calculate the magnetization of the system.

Results

Method I

Results

Method I

System size L			30	40	50	
Critical temperature	2.3009	2.1407	2.2165	2.2390	2.2520	

Results

Method II

System size L			30	40	50
Critical temperature	2.7	2.5	2.4	2.3	2.3

Thank you for your attention