Ejemplo

Sea J la matriz de 1's, entonces

$$Spec(J) = \begin{pmatrix} n & 0 \\ 1 & n-1 \end{pmatrix}$$

La matriz de adyacencia de K_n es J-I, entonces

$$Spec(K_n) = \left(egin{array}{cc} n-1 & -1 \ 1 & n-1 \end{array}
ight)$$

$$K_n$$
 es $n-1$ regular $\lambda = n-1$ $K=n-1$

Nótese que
$$\lambda = n-1 > -K = -(n-1)$$

 $\lambda = -1 > -K = -(n-1)$, $\lambda = -(n-1)$

$$\lambda + k - 2$$
: $\eta - 1 + \eta - 1 - 2 = 2\eta - 4$ es up de L(kn)
-1 + $\eta - 1 - 2 = \eta - 4$ es up de L(Kn)

Ejemplo

$$Spec(K_{m,n}) = \left(egin{array}{ccc} \sqrt{mn} & 0 & -\sqrt{mn} \\ 1 & m+n-2 & 1 \end{array}
ight)$$

$$K_{3,3}$$

$$P(\lambda) = (\lambda - 3)(\lambda + 3)\lambda^{4} = (\lambda^{2} - 3)\lambda^{4}$$

G: Grofo dicigido

A: Matriz de adjacencia de G

Volores propios: 21,2,..., 2 max

2 máx: Maximo valor propio de G.

Umáx: Vector propio asociado a máx en A^T.

C = Umax = 1 | Umax : Vector Propio de centralidad

Propredud: $C = \frac{1}{\lambda_1} A^T C$