Designing a flyback DC/DC converter

Video 3 Flyback converter design procedure I

Brigitte Hauke – Boost and Buck-Boost Controller Application Manager

Youhao Xi – Boost and Buck-Boost Controller Application Manager

June 2023

Outline of video series

- 1. Guidelines for topology selection
- 2. Fundamentals of flyback converters
- 3. Flyback converter design procedure I
- 4. Flyback converter design procedure II
- 5. Flyback transformer basics
- 6. Practical issues experienced with flyback converters

Flyback design procedure

- Demonstrated with the LM5155
- Summary of design steps
 - Identify the application's specs: V_{IN} range, V_{OUT} , max P_O , ripple voltages, switching frequency, etc.
 - Select a controller IC
 - Determine transformer specs and max duty cycle: turns ratio, primary inductance, peak current
 - Calculate key parameters: I_{pk}, V_{DSmax}, I_{rms}, PIV
 - Select MOSFET, current sense resistor, rectifier diode, input and output capacitors
 - Determine the loop compensation
 - Non-isolated
 - PSR
 - Isolated
 - Other external components
 - PCB design
 - Test and fine tune

Flyback design procedure – example specs

Table 1. Design Parameters

Parameter	
V _{SUPPLY}	18V to 36V
V _{LOAD}	5V
I _{LOAD}	4A
V _{AUX}	10V
I _{AUX}	20mA
P _{OUT_total}	20.2W
f _{sw}	250kHz

Applications with additional output rails will be covered in another video.

Different flyback types examples based on LM5155x(-Q1)

Non-Isolated Flyback

- Simplest
- Tight regulation (1~2%)
- Only non-isolated V_{OUT}

PSR Flyback

- Simpler for isolated V_{OUT}
- No optocoupler needed
- V_{OUT} cross regulated, 5~10%

Isolated Flyback

- Tight regulation for isolated V_{OUT} (1~2%)
- Complex, requiring optocoupler

IC selection

- Converter vs controller
 - V_{INmax} disqualifies the TPS55340 and LM5157x due to limited FET voltage
 - Max power disqualifies the LM500x family due to FET peak current limit
 - LM5155x/56x are a reasonable choice
 - Newer device, better performance
 - We recommend using the LM5155x/56x for new designs
 - LM5156x has optional spread spectrum option
 - LM5155x and LM5156x are drop in substitutes
 - Either LM515x or LM515x1 can be used: they have almost the same performance
 - LM5155/56 do not have hiccup OCP
 - Under OCP, it will continue switching with reduced duty cycle
 - LM51551/561 have hiccup OCP
 - Under OCP, it will run in hiccup mode
 - ON for 64 consecutive cycles, followed by OFF for 32k cycles, to prevent overheating

LM5155x (-Q1)

2.2MHz Wide VIN Non-synchronous Boost/SEPIC/Flyback Controller

Features

- AEC-Q100 grade 1 qualified ($T_A = -40^{\circ}$ C to 125°C, $T_J = -40^{\circ}$ C to 150°C)
- Wide input range : 3.5V~ 45V

(2.97V ~ 16V when BIAS=VCC, 1.5V~45V when BIAS≥2.97V)

- Programmable frequency 100kHz to 2.2MHz with clock synchronization
- Shutdown I_O ≤5uA
- Non-switching I_O ≤ 450uA
- · 1.5A peak gate driver
- 100mV current limit threshold with optional hiccup mode protection
- 1.0V +/-1% reference
- Adjustable slope compensation
- Programmable line UVLO
- Adjustable soft-start
- · PGOOD indicator
- OVP protection
- Thermal shutdown
- 12pin-WSON package (3mmx2mm); -Q1 has Wettable Flanks

Applications

- General purpose Boost / Sepic
- · Battery powered application
- · Automotive LED headlights
- Industrial Flyback power supply/ Primary side controlled flyback

Benefits

- Boost/SEPIC/Flyback(Non-isolated/isolated) configurable
- Wide VIN for a variety of power rails including 1-cell battery
- · Switching frequency out of AM band
- Small solution size at 2.2MHz
- Low shutdown I_O reduces battery drain in battery-powered application
- Low current limit threshold minimizes power loss

 V_{SUPPLY}

- · Optional hiccup mode for sustained overload / short-circuit protection
- Allows high step-up ratio using SYNC

THE FEE

PSR Flyback

Hiccup mode protection		
Disabled	Enabled	
LM5155 (-Q1)	LM51551 (-Q1)	

IC supply through bias winding

- Adding the bias winding to off-load the internal LDO and reduce IC power dissipation
 - Also applies to PSR and nonisolated designs

Switching frequency

- The targeted flyback is a hard switching circuit
 - faster switching causes greater switching losses
- 100 kHz to 400 kHz are commonly chosen frequencies
- 250 kHz is a good trade-off between solution size and efficiency

$$R_{T} = \frac{2.21 \times 10^{10}}{f_{SW}} - 955 = \frac{2.21 \times 10^{10}}{250 \text{kHz}} - 955 = 87.44 \text{k}\Omega$$

A standard value of $86.6k\Omega$ is chosen for R_T .

Determine Transformer – N_S: N_P

Transformer turns ratio

$$D = \frac{\frac{N_{P}}{N_{S}} \cdot V_{LOAD}}{V_{SUPPLY} + \frac{N_{P}}{N_{S}} \cdot V_{LOAD}}$$

This example targets a duty cycle close to 0.4.

Yes, you can use a different number as long as it is smaller than IC max duty. Try to avoid extreme values.

This is an iteration process until you find a proper value.

$$N_{\text{S_calc}} = \frac{\left(V_{\text{LOAD}}\right) \cdot \left(1 - D_{\text{MAX}}\right) \cdot N_{\text{P}}}{V_{\text{SUPPLY min}} \cdot D_{\text{MAX}}} = \frac{\left(5V\right) \cdot \left(1 - 0.4\right) \cdot 1}{18V \cdot 0.4} = 0.417$$

Choose an easy ratio of two integers: $N_S : N_P = 0.5 : 1$

Yes, you can choose N_S : N_P = 0.4 : 1 or other close number for the ratio of two integers. When designing for multiple rails, you need to get to the nearest integer ratios between all the windings.

Determine Transformer – D_{MAX} , N_{AUX}

Now: $N_S : N_P = 0.5$

$$D_{MAX} = \frac{\frac{N_{P}}{N_{S}} \cdot V_{LOAD}}{V_{SUPPLY_min} + \frac{N_{P}}{N_{S}} \cdot V_{LOAD}} = \frac{\frac{1}{0.5} \cdot 5V}{18V + \frac{1}{0.5} \cdot 5V} = 0.357$$

$$D_{MIN} = \frac{\frac{1}{0.5} \cdot 5V}{36V + \frac{1}{0.5} \cdot 5V} = 0.217$$

$$D_{MIN} = \frac{\frac{1}{0.5} \cdot 5V}{36V + \frac{1}{0.5} \cdot 5V} = 0.217$$

$$N_{AUX_calc} = N_S \cdot \frac{V_{AUX}}{V_{LOAD}} = 0.5 \cdot \frac{10V}{5V} = 1$$

Transformer turns ratio: $N_P : N_S : N_{AUX} = 1 : 0.5 : 1 = 2 : 1 : 2$

If you choose N_S : N_P = 0.4 : 1 in previous step, you will get N_{ALIX} = 0.8, or N_P : N_S : N_{ALIX} = 1 : 0.4 : 0.8.

Then, you have less options in designing the actual transformer. See next page.

Transformer turns ratio selection

N _P : N _S : N _{AUX}	1:0.5:1	1:0.4:0.8
Possible design options	 2:1:2 4:2:4 6:3:6 8:4:8 10:5:10 12:6:12 14:7:14 16:8:16 	 2.5:1:2 5:2:4 7.5:3:2 10:4:8 12.5:5:10 15:6:12 17.5:7:14 20:8:16

Determine Transformer – L_M

- **Primary inductance L_M**. This determines the inductor ripple current for CCM.
 - Recommended ripple current to be within 30% to 70%
 - Higher ratio leads to smaller L_M

$$\begin{split} \frac{\text{IL}_{RR}}{\text{IL}_{avg}} &= 60\% \text{ (selected)} \\ L_{M_calc} &= \frac{N_{P}^2 \cdot V_{SUPPLY_max}^2 \cdot V_{LOAD}^2}{\text{IL}_{RR} \cdot f_{SW} \cdot P_{OUT_total} \cdot \left(N_{S} \cdot V_{SUPPLY_max} + N_{P} \cdot \left|V_{LOAD}\right|\right)^2} \\ L_{M_calc} &= \frac{1^2 \cdot 36 V^2 \cdot 5 V^2}{0.6 \cdot 250 \text{kHz} \cdot 20.2W \cdot \left(0.5 \cdot 36 V + 1 \cdot \left|5 V\right|\right)^2} = 20.6 \mu \text{H} \end{split}$$

Choose
$$L_M = 21 \mu H$$

Parameters dependent on transformer

- Once the turns ratio and primary inductance are determined, the following key parameters can be calculated:
 - Primary peak current I_{PEAK} , determining R_s and the transformer I_{SAT}
 - Primary RMS current I_{RMS}, determining the conduction losses in MOSFET and transformer winding
 - V_{DS}, determining the MOSFET voltage rating
 - **PIV** (or V_R), determining the rectifier diode voltage rating

Primary peak current and saturation current

Peak current, determines the transformer min I_{SAT} specification

$$\Delta IL_{_M} = \frac{V_{_{SUPPLY}} \cdot D}{L_{_M} \cdot f_{_{SW}}} = \frac{18 V \cdot 0.357}{21 \mu H \cdot 250 kHz} = 1.224 A$$

$$IL_{PEAK} = \frac{P_{OUT_total}}{V_{SUPPLY_min} \cdot D} + \frac{\Delta IL_{M}}{2} = \frac{20.2W}{18V \cdot 0.357} + \frac{1.224A}{2} = 3.75A$$

Choose an I_{SAT} of 30% greater than IL_{PEAK} for operation margin

$$I_{SAT} \ge 1.3 \times 3.75A = 4.88A$$
 (Wurth 750317933 is selected, $I_{SAT} = 6A$)

• Summary of Transformer Selection

Parameter	Value
Turns Ratio (N _P :N _S :N _{AUX})	1:0.5:1 (2:1:2)
Primary winding inductance (L _M)	21µH
Primary winding saturation current (I _{SAT})	6A >4.88A

Video 1 to 3 Summary – Video 4 to 6 Outlook

We discussed

- Topology selection guidelines based on power level
 - Flyback and SEPIC topologies comparison and their suitable applications
- Fundamentals of flyback: operating modes and key parameters
- Design procedure of the transformer demonstrated with LM5155 example

We will discuss

- Design procedure ongoing demonstrated with LM5155 example, for non-isolated,
 PSR and isolated applications
- Flyback transformer basics, and the need of an air gap
- Frequently asked questions including multi rails, light load regulation, and high input voltage solutions, and commonly seen mistakes

Tools and application collaterals

Most important: E2E Forum https://e2e.ti.com/support/

All the following are available in the product folders on https://www.ti.com/

- 1. Flyback EVMs and user's guides
- 2. Excel design calculators
- 3. WEBENCH™ Power Designer support
- 4. PSpice® models
 - Transient model supports flyback
 - We are adding more average models for flyback loop simulation
- 5. Application notes
- 6. Reference designs
 - You can find many flyback reference designs at: https://www.ti.com/reference-designs/index.html