K.G.C.E. Karjat - Raigad

Tutorial Noi-2.

Page No.:

KGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCE	Date:
Aim: To understand state space be problem Formation of AI problem problem solving Agent can be a	ased s so that
Name: - Rutija Kamlakar Sawant	
class: - BELIT Sem = JII	
Roll no :- 57 Batch :- I-	3
Sub ;- Is Lab.	
DOP BOC Remark Sign	
911	

K.G	C.E.
	Raigad

Tutorial No; - 2.

Page	No.	:
Date	:	

EKGC	KGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCE
	Aim: To understand state space based
	problem formation of Al Problems so that
	problem solving Agent can be applied.
A	
	Theory - First we understand the problem
	solving agent Algorithm show in Figure shows
	agent program for problem solving agent.
	Agent first Formulates goal & problem, then
	determines or rather searches an action
	sequence, after which it returns the next
	action to be executed in a sequential
	manner.
	Engline STOADLE DOODLESS COUNTRIE ACEPUITABLE ON
	Function STMPLE-PROBLEM-SOLVINE-AGENT (Perecept.
	Statici seg, an action sequence, initially empty
	state, some description of the current
	world state goal, a goal, initially real
	Problem, a problem formulation
	State - UPDATE-STATE (State, Precept)
	if seq is empty then ado
	goal - FORMULATE - GOAL (Steete)
	Problem = FORMULATE - PROBLEM (State, go al)
	Seq = SEAR(H (Problem)
	action = FIRST (seq)
	Seg < REST (seg)
	return action.
	Figure: Problem solving Agent Architecture.

H.G.C.E. Page No.: Karjat - Raigad Defining the Problem is referred to as Problem for mulation. It involves defining following five things ;-Initial State: It is the starting state that the problem is in. Actions - It defines all possible action available to the agent, given it is in same steete 3 currently. It is a function Action(s) that returns list of all possible actions Transition Model: Also known as successor Function which define which state is the system tend to move to when a particular action is executed by the agent successive application of transaction model gives vise to what is known as state space. Goal Test: This act as a stopping condition when the state passed to this function is goal state it will return true and searching. Puth Cost; It is accumulated cost of performing certain sequence of actions. This can help in determining weather the action sequence under consideration is optimal Thus a problem can formally specified by identifying initial state, actions (operators), transition model (sucessor function) goal test & path cost. In term of problem solving

agent solution is the lowest path cost of all

solutions. Process of finding a so is called search

KGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCE	KGCE
Working: Based on understanding of	
problem formulation students need to	
Formulate problems. They will clearly show	0
state space up to depth level 3 or till	
goal node which ever is shallowest.	
I' Navigate to KGICE workshop from HOD IT	
cabin with minimum number of moves.	
can be climbing or alighting staircase,	
turning left, right, walking throug a	
Costigos.	
2. 8 Puzzle Problem.	
3. The missionaries and cannibals problem.	
There are three missionaries and three	
cannibals who must cross a river using a	
bout which can carry at most two peopl	e,
under the constraint that, for both banks	,_
they cannot be authorial and it	ok
they cannot be authnumbered by cannibate if they were, the cannibals would eat the	
missionaries, The bout cannot cross the	7
river by itself with no people on board.)
4. N. Queen's problem Arrange M queen on	
N COOSS N Chess board where no two	
queens affack each other.	
5. Two room vacrum cleaner World	
6. Mater Jug Problem.	
Resources i- Refer to second chapter from	
Artifical Intelligence: A modern Approach	
July 60 aux	<u> </u>