v	.10	.05	.025	α .01	.005	.001	.0005
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646

Central Limit Theorem (CLT)

Single tailed and Two tailed* CLT

student T – test is particularly for $n \le 30$

where

H_o = Original Hypothesis

H_a = Alternative Hypothesis

$$\begin{array}{lll} H_{o} & H_{a} \\ \mu \leq \mu_{o} & \mu > \mu_{o} & \rightarrow T \geq t_{\alpha,\,n-1} \\ \mu \geq \mu_{o} & \mu < \mu_{o} & \rightarrow T \leq t_{\alpha,\,n-1} \\ \mu = \mu_{o} & \mu \neq \mu_{o} & \rightarrow T \geq t_{\alpha/2\,,\,n-1} \ldots \end{array} \quad \text{Or} \\ \mu \neq \mu_{o} & \mu = \mu_{o} & \rightarrow T \leq -t_{\alpha/2\,,\,n-1} \end{array}$$

Formula :
$$T = \underline{x_{ave} - \mu_0}$$
 s/ \sqrt{n}

$$s^{2} = \frac{\sum x_{i}^{2} - \sum (x_{i})^{2}/n}{n-1}$$

Proposition: Let \overline{X}_i and S_i^2 (i = 1, ..., I) denote the sample mean and variance of the *i*th sample. Define the **between-samples estimator** $\hat{\sigma}_B^2$ by

$$\hat{\sigma}_B^2 = JS_{\overline{X}}^2 = \frac{J\sum_{i=1}^{I} (\overline{X}_{i.} - \overline{X}..)^2}{I - 1} = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} (\overline{X}_{i.} - \overline{X}..)^2}{I - 1}$$
(10.1)

and the within-sample estimator $\hat{\sigma}_W^2$ by

$$\hat{\sigma}_{W}^{2} = \frac{\sum_{i=1}^{I} S_{i}^{2}}{I} = \frac{1}{I} \left[\sum_{i=1}^{I} \frac{1}{J-1} \sum_{j=1}^{J} (X_{ij} - \overline{X}_{i}.)^{2} \right] = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \overline{X}_{i}.)^{2}}{I(J-1)}$$
(10.2)

Then $\hat{\sigma}_B^2$ is an unbiased estimator of σ^2 when H_0 is true, but $E(\hat{\sigma}_B^2) > \sigma^2$ when H_0 is false, while $\hat{\sigma}_W^2$ is unbiased for σ^2 whether or not H_0 is true.

For Anova if $f(calc) \ge F(table)$ then Ha is accepted, where Ho is when all μ_n are equal

	D	
33	A	
	dix	
	Tab	
	~	

n3/1	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	20
1	1614	199 5	2157	2246	230.2	2340	2368	2389	240.5	2419	2439	2459	2480	249 1	250 1	251 1	252.2	253 3	254 3
2	18.51	19,00	19.16	19.25	19 30	19 33	19 35	19 37	19 38	19.40	19 41	19 43	19 45	19 45	19 46	19 47	19 48	19 49	19 50
3	10.13	9.55	9 28	9 12	901	8.94	8 89	885	881	8 79	8 74	8 70	8 66	8 64	8 62	8 59	8 57	8 55	8 53
4	7.71	694	6 59	6.39	6.26	6 16	6 09	604	6 00	5.96	591	5 86	5 80	5 77	5 75	572	5 69	5 66	5 63
5	6.61	5 79	5 4 1	5 19	5 0 5	495	4 88	4 82	4 77	474	4 68	4 62	4 56	4 53	4 50	4 46	4 43	4 40	4 36
6	5 99	5 14	4 76	4.53	4 39	4.28	421	4 15	4 10	4 06	4 00	394	387	384	381	3 77	374	3 70	367
7	5 59	4 74	4 35	4 12	397	387	3 79	3 73	3 68	364	357	351	3 4 4	341	3 38	3 34	3 30	3.27	3 23
8	5 32	4 46	4 0 7	384	3 69	3 58	3 50	3 44	3 39	3 35	3 28	3 22	3 15	3 12	3 08	3 04	301	297	293
9	5 12	4.26	386	3 63	3 48	3 37	3 29	3 23	3 18	3 14	307	301	294	290	286	283	2 79	275	271
10	496	4 10	371	3 48	3 33	3 22	3 14	307	302	298	291	285	277	274	2 70	2 66	2 62	2 58	254
11	484	398	3 59	3 36	3 20	309	301	295	290	285	2 79	272	265	261	257	2 53	2 49	2 45	2 40
12	4.75	3 89	3.49	3 26	3 1 1	300	291	285	280	2.75	2 69	262	254	251	247	2 43	2 38	2 34	2 30
13	4 67	381	341	3 18	303	292	283	277	271	267	2 60	2.53	2 46	2 42	2 38	2 34	2 30	2 25	221
14	4.60	3.74	3 34	3.11	296	285	276	2 70	265	260	253	2.46	2 39	2 35	231	2 27	2 22	2 18	213
15	4 54	3 68	3 29	306	290	2 79	271	264	2 59	2 54	2 48	2 40	2 33	2 29	2 25	2 20	2 16	211	207
16	4.49	3 63	3 24	301	285	274	266	2 59	254	2 49	2 42	2 35	2 28	224	2 19	2 15	211	206	201
17	4 45	3 59	3 20	2.96	281	270	261	255	2 49	2.45	2 38	231	2 23	2 19	2 15	2 10	206	201	196
18	441	3 55	3 16	293	2.77	266	2 58	251	246	241	2 34	227	2 19	2 15	211	206	202	197	192
19	4 38	3 52	3 13	290	274	263	254	2 48	242	2 38	231	2 23	2 16	211	207-	203	198	193	188
20	4 35	3 49	3.10	287	271	260	251	2 45	2 39	2 35	2 28	2 20	2 12	2 08	204	1 99	195	190	184
21	4 32	347	307	2.84	268	257	2.49	242	237	2.32	2 25	2 18	2 10	205	201	196	192	187	181
22	4 30	3 4 4	3 0 5	282	266	255	2 46	2 40	234	2 30	2 23	2 15	207	203	198	194	1 89	184	1 78
23	4 28	3 42	303	280	2.64	2 53	2.44	237	232	227	2 20	2 13	205	201	196	191	1 86	181	1 76
24	4.26	3 40	301	2.78	262	2.51	242	2 36	2.30	2 25	2 18	211	203	198	194	1 89	184	1 79	173
25	4 24	3 39	299	276	2 60	2 49	2 40	2 34	2 28	224	216	2 09	201	196	192	187	182	1 7 7	1.71
26	4 23	3 37	298	2.74	259	247	2.39	2 32	227	2 22	2 15	207	199	195	190	1.85	1 80	1 75	1 69
27	421	3 35	296	2.73	257	2 46	237	231	2 25	2 20	213	2 06	1.97	193	1 88	184	1 79	173	1 67
28	4 20	3 34	295	271	256	2 45	2 36	2 29	2 24	2 19	212	204	196	191	187	182	1 77	171	1 65
29	4.18	3 33	293	2 70	255	2 43	2 35	2 28	2 22	2 18	2 10	203	194	190	185	1.81	1.75	1 70	1 64
30	4 17	3 32	292	2 69	253	242	2 33	2 27	221	2 16	2 09	201	1 93	1 89	184	1 79	174	1 68	162
40	4 08	3 23	284	261	2 45	2 34	2 25	2 18	2 12	2 08	200	192	184	1.79	174	1 69	164	1 58	151
60	4 00	3.15	276	253	2.37	2.25	2 17	2 10	2.04	1 99	192	184	1 75	1.70	165	1.59	1 53	1 47	1 39
20	392	307	2.68	2 45	2 29	217	209	202	196	1.91	183	1.75	166	161	155	1.59	1 43	1.47	
n	384	300	260	2.37	221	2 10	201	194	1.88	1 83	1 75	1 67	1 57	1.52	146	1 39	1.43	1 22	1 25

Table A.7 Critical Values F_{α,ν_1,ν_2} for the F Distribution (cont.)

-	œ	=	0

VI	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	00
1	4052	4999 5	5403	5625	5764	5859	5928	5981	6022	6056	6106	6157	6209	6235	6261	6287			6366
2	98.50				99.30					99 40	99 42	99.43	99 45	99.46	99.47	99.47	99.48	99 49	99
3	34 12			28.71	28 24	27.91	27 67	27.49		27 23	27 05		26.69	26 60	26 50	26.41	26.32	26.22	26
4	21.20		16.69	15.98	15.52		14 98	14.80		14.55	14.37		14.02	13.93	13.84	13.75	13 65	13.56	13
5	16.26	13 27	12.06	11.39	10 97	10.67	10 46	10.29	10.16	10.05	9.89	9.72	9 55	9.47	9.38	9.29	9 20		9
6	13.75	10.92	9.78	9.15	8 75	8.47	8 26	8.10	7.98	7.87	7.72		7.40	7.31	7.23	7.14	7.06		6
7	12.25	9.55	8 45	7.85	7.46	7.19	699	6.84	6.72	6.62	6 47	6.31	6.16	6.07		591	582		5
3	11.26	8.65	7.59	7.01	6 63	6 37	6 18	603	591	5.81	5 67	5 52	5 36	5.28	5 20	5.12	503		4
9	10.56		699	6 42	6 0 6	5 80	561	5 47	5 35	5.26	5.11	4.96	481	4.73	4 65	4.57	4 48	4 40	4
	10.04	7.56	6.55	5 99	5 64	5 39	5 20	5.06	4.94	4.85	4.71	4.56	441	4.33		4.17	4 08	4.00	3
	9 65	7.21	6.22	5 6 7	5 32	5.07	4 89	4.74	4 63	4 54	4 40	4 25	4 10	4.02		3 86	3.78	3 69	3
1	9 33	693	5.95	5 4 1	5 0 6	4.82	4 64	4.50	4.39	4.30	4.16	401	3.86	3.78		3 62	354		:
3	9 0 7	6.70	5 74	521	486	4.62	441	4 30	4 19	4.10	3.96	382	3.66	3.59		3.43	3.34		:
1	8 86	651	5 56	5.04	4 69	4.46	4 28	4.14	403	394	3 80	3.66	351	3.43	3.35	3.27	3 18	3.09	
5	8.68	6.36	5 42	4 89	4 56	4.32	4.14	4.00	3.89	3.80	3 67	3 52	3.37	3.29		3.13	3 0 5		
5	8 53	6.23	5 29	4.77	4.44	4.20	4.03	389	3.78	3.69	3.55	341	3 26	3 18		3 0 2	293		
7	8.40	6.11	5.18	4.67	4 34	4.10	393	3.79	3.68	3 59	3.46	331	3.16	3.08		2.92	283		- 1
3	8.29	6.01	5 09	4.58	4 25	4.01	384	371	3 60	3.51	3.37	3 23	3.08	3.00		2.84	2.75		2
)	8.18	5.93	5.01	4 50	4.17	3.94	3.77	3 63	3 5 2	3 43	3 30	3.15	3.00	2.92	284	2.76	2.67	2 58	1
)	8.10	5.85	494	4.43	4.10	387	3 70	3 56		3 37	3 23		294	2.86		2.69	261		- 1
ı	8.02	5.78	487	4 37	4 0 4	3.81	3.64	351	3.40	3.31	3 17	303	2.88	2.80		2.64	2.55		- 3
2	7.95	5.72	4.82	4.31	399	3 76	3 59	3.45	3 35	3.26	3.12	2.98	2.83	2.75		2.58	2 50		2
3	7 88	5.66	4.76	4 26	394	3.71	3 54	341	3 30	321	307	293	2.78	2.70		2.54	2.45		2
4	7.82	5.61	4.72	4.22	3 90	3.67	3 50	3 36	3 26	3 17	3 0 3	2 89	2.74	266	2 58	2 49	2.40	231	2
	7.77	5.57	4 68	4.18	385	3 63	3 46	3 32	3 22	3 13	2.99	285	2 70	2.62		2.45	2.36	2 27	1
5	7.72	5.53	4 64	4 14	382	3.59	3 42	3.29	3.18	3 09	296	2.81	2 66	2.58	2.50	2.42	2.33		
7	7.68	5.49	4.60	4.11	3.78	3 56	3 39	3 26	3.15	3 0 6	2.93	2.78	2.63	2.55	247	2.38	2.29	2 20	- 2
3	7.64	5.45	4.57	4.07	375	3.53	3 36	3 23	3.12	3.03	290	2.75	2.60	2.52		2.35	2.26	2 17	2
)	7.60	5.42	4.54	4.04	3 73	3.50	3 33	3 20	3 09	3.00	287	2.73	2.57	2.49	2.41	2.33	2.23	2.14	2
)	7.56	5.39	4.51	4 02	3.70	3.47	3.30	3 17	3.07	2.98	2.84	2.70	2.55	2.47	2 39	2.30	2.21	2 11	2
)	7 31	5.18	4.31	3.83	351	3 29	3.12	2 99	2.89	2.80	2.66	2 52	2.37	2.29	2.20	2.11	202	192	1
)	7.08	4.98	4.13	3.65	3 34	3.12	2.95	282	2.72	2.63	2.50	2 35	2 20	212	203	194	184	173	1
0	6.85	4.79	395	3 48	3 17	2.96	2.79	2.66	2.56	2.47	2.34	2.19	2.03	195	1.86	1.76	1.66	1.53	1
	6 63	461	3 78	3 32	302	280	264	2.51	2.41	2.32	2.18	204	1.88	1.79	1.70	1.59	1.47	1 32	1

$$F = \frac{\hat{\sigma}_B^2}{\hat{\sigma}_W^2} = \frac{J \sum (\overline{X}_i ... - \overline{X}..)^2 / (I - 1)}{\sum \sum (X_{ij} - \overline{X}_i .)^2 / I(J - 1)}$$
(10.3)

Definition: The total sum of squares (SST), treatment sum of squares (SSTr), and error sum of squares (SSE) are given by

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \overline{X}_{..})^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} X_{ij}^{2} - \frac{1}{IJ} X^{2}_{..}$$

$$SSTr = \sum_{i=1}^{I} \sum_{j=1}^{J} (\overline{X}_{i}_{.} - \overline{X}_{..})^{2} = \frac{1}{J} \sum_{i=1}^{I} X_{i}^{2}_{..} - \frac{1}{IJ} X^{2}_{..}$$

$$SSE = \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \overline{X}_{i}_{..})^{2}, \text{ where } X_{i}_{..} = \sum_{j=1}^{J} X_{ij}, X_{..} = \sum_{i=1}^{I} \sum_{j=1}^{J} X_{ij}$$

The fundamental identity of single-factor ANOVA:

$$SST = SSTr + SSE \tag{10.6}$$

$$MSTr = \frac{SSTr}{I-1}$$
, $MSE = \frac{SSE}{I(J-1)}$, $F = \frac{MSTr}{MSE}$ (10.9)

Table 10.3: Tests Concerning Means

H_0	Value of Test Statistic	H_1	Critical Region
$\mu = \mu_0$	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}; \sigma \text{ known}$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$z<-z_{\alpha} \ z>z_{\alpha} \ z<-z_{\alpha/2} \text{ or } z>z_{\alpha/2}$
$\mu = \mu_0$	$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}; v = n - 1,$ σ unknown	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$t < -t_{\alpha}$ $t > t_{\alpha}$ $t < -t_{\alpha/2}$ or $t > t_{\alpha/2}$
$\mu_1 - \mu_2 = d_0$	$z = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}};$ σ_1 and σ_2 known	$\mu_1 - \mu_2 < d_0$ $\mu_1 - \mu_2 > d_0$ $\mu_1 - \mu_2 \neq d_0$	$z>z_{lpha}$
$\mu_1 - \mu_2 = d_0$	$t = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{s_p \sqrt{1/n_1 + 1/n_2}};$ $v = n_1 + n_2 - 2,$ $\sigma_1 = \sigma_2 \text{ but unknown},$ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	$\mu_1 - \mu_2 < d_0$ $\mu_1 - \mu_2 > d_0$ $\mu_1 - \mu_2 \neq d_0$	
$\mu_1 - \mu_2 = d_0$	$t' = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{\sqrt{s_1^2/n_1 + s_2^2/n_2}};$ $v = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}};$ $\sigma_1 \neq \sigma_2 \text{ and unknown}$	$\mu_1 - \mu_2 < d_0$ $\mu_1 - \mu_2 > d_0$ $\mu_1 - \mu_2 \neq d_0$	44
$\mu_D = d_0$ paired observations	$t = \frac{\overline{d} - d_0}{s_d / \sqrt{n}};$ $v = n - 1$	$\mu_D < d_0$ $\mu_D > d_0$ $\mu_D \neq d_0$	$t < -t_{\alpha}$ $t > t_{\alpha}$ $t < -t_{\alpha/2}$ or $t > t_{\alpha/2}$

Table A.8 Critical Values $\mathcal{Q}_{\alpha,m,
u}$ for the Studentized Range Distribution

		STATISTICS.			Nobal Parties	m					
-	T	Τ.	Τ .	T	T	T	Т	T	Т	Т	
ν	α	2	3	4	5	6	7	8	9	10	11
5	.05	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99	7.17
	.01	5.70	6.98	7.80	8.42	8.91	9.32	9.67	9.97	10.24	10.48
6	.05	3.46	4.34	4.90	5.30	5.63	5.90	6.12	6.32	6.49	6.65
	.01	5.24	6.33	7.03	7.56	7.97	8.32	8.61	8.87	9.10	9.30
7	.05	3.34	4.16	4.68	5.06	5.36	5.61	5.82	6.00	6.16	6.30
	.01	4.95	5.92	6.54	7.01	7.37	7.68	7.94	8.17	8.37	8.55
8	.05	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.77	5.92	6.05
	.01	4.75	5.64	6.20	6.62	6.96	7.24	7.47	7.68	7.86	8.03
9	.05	3.20 4.60	3.95 5.43	4.41 5.96	4.76 6.35	5.02 6.66	5.24 6.91	5.43 7.13	5.59 7.33	5.74 7.49	5.87 7.65
10	.05	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.60	5.72
	.01	4.48	5.27	5.77	6.14	6.43	6.67	6.87	7.05	7.21	7.36
11	.05	3.11	3.82	4.26	4.57	4.82	5.03	5.20	5.35	5.49	5.61
	.01	4.39	5.15	5.62	5.97	6.25	6.48	6.67	6.84	6.99	7.13
12	.05	3.08	3.77	4.20	4.51	4.75	4.95	5.12	5.27	5.39	5.51
	.01	4.32	5.05	5.50	5.84	6.10	6.32	6.51	6.67	6.81	6.94
13	.05	3.06	3.73	4.15	4.45	4.69	4.88	5.05	5.19	5.32	5.43
	.01	4.26	4.96	5.40	5.73	5.98	6.19	6.37	6.53	6.67	6.79
14	.05	3.03	3.70	4.11	4.41	4.64	4.83	4.99	5.13	5.25	5.36
	.01	4.21	4.89	5.32	5.63	5.88	6.08	6.26	6.41	6.54	6.66
15	.05	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.20	5.31
	.01	4.17	4.84	5.25	5.56	5.80	5.99	6.16	6.31	6.44	6.55
16	.05	3.00 4.13	3.65 4.79	4.05 5.19	4.33 5.49	4.56 5.72	4.74 5.92	4.90 6.08	5.03 6.22	5.15 6.35	5.26 6.46
17	.05	2.98 4.10	3.63 4.74	4.02 5.14	4.30 5.43	4.52 5.66	4.70 5.85	4.86 6.01	4.99 6.15	5.11 6.27	5.21 6.38
18	.05	2.97 4.07	3.61 4.70	4.00 5.09	4.28 5.38	4.49 5.60	4.67 5.79	4.82 5.94	4.96 6.08	5.07 6.20	5.17 6.31
19	.05	2.96 4.05	3.59 4.67	3.98 5.05	4.25 5.33	4.47 5.55	4.65 5.73	4.79 5.89	4.92 6.02	5.04 6.14	5.14 6.25
20	.05	2.95 4.02	3.58 4.64	3.96 5.02	4.23 5.29	4.45 5.51	4.62 5.69	4.77 5.84	4.90 5.97	5.01 6.09	5.11 6.19
24	.05	2.92 3.96	3.53 4.55	3.90 4.91	4.17 5.17	4.37 5.37	4.54 5.54	4.68 5.69	4.81 5.81	4.92 5.92	5.01 6.02
30	.05	2.89 3.89	3.49 4.45	3.85 4.80	4.10 5.05	4.30 5.24	4.46 5.40	4.60 5.54	4.72 5.65	4.82 5.76	4.92 5.85
40	.05	2.86 3.82	3.44 4.37	3.79 4.70	4.04 4.93	4.23 5.11	4.39 5.26	4.52 5.39	4.63 5.50	4.73 5.60	4.82 5.69
60	.05	2.83	3.40	3.74	3.98	4.16	4.31	4.44	4.55	4.65	4.73
	.01	3.76	4.28	4.59	4.82	4.99	5.13	5.25	5.36	5.45	5.53
120	.05	2.80	3.36	3.68	3.92	4.10	4.24	4.36	4.47	4.56	4.64
	.01	3.70	4.20	4.50	4.71	4.87	5.01	5.12	5.21	5.30	5.37
∞	.05	2.77	3.31	3.63	3.86	4.03	4.17	4.29	4.39	4.47	4.55
	.01	3.64	4.12	4.40	4.60	4.76	4.88	4.99	5.08	5.16	5.23

Source: This table is abridged from Table 29 in Biometrica Tables for Statisticians, vol. 1, 3rd ed., by E. S. Pearson and H. O. Hartley (eds.). Reproduced with the kind permission of the Trustees of Biometrica, 1966.

Table A.8 Critical Values $Q_{\alpha,m,
u}$ for the Studentized Range Distribution (cont.)

				m						
12	13	14	15	16	17	18	19	20	α	ν
7.32 10.70	7.47 10.89	7.60 11.08	7.72 11.24	7.83 11.40	7.93 11.55	8.03 11.68	8.12 11.81	8.21 11.93	.05 .01	5
6.79 9.48	6.92 9.65	7.03 9.81	7.14 9.95	7.24 10.08	7.34 10.21	7.43 10.32	7.51 10.43	7.59 10.54	.05 .01	6
6.43 8.71	6.55 8.86	6.66	6.76 9.12	6.85 9.24	6.94 9.35	7.02 9.46	7.10 9.55	7.17 9.65	.05 .01	7
6.18	6.29 8.31	6.39 8.44	6.48 8.55	6.57 8.66	6.65 8.76	6.73 8.85	6.80 8.94	6.87 9.03	.05 .01	8
5.98 7.78	6.09 7.91	6.19	6.28 8.13	6.36 8.23	6.44 8.33	6.51 8.41	6.58 8.49	6.64 8.57	.05 .01	9
5.83 7.49	5.93 7.60	6.03 7.71	6.11	6.19	6.27 7.99	6.34 8.08	6.40 8.15	6.47 8.23	.05 .01	10
5.71 7.25	5.81 7.36	5.90 7.46	5.98 7.56	6.06 7.65	6.13 7.73	6.20 7.81	6.27 7.88	6.33 7.95	.05 .01	11
5.61 7.06	5.71 7.17	5.80 7.26	5.88 7.36	5.95 7.44	6.02 7.52	6.09 7.59	6.15 7.66	6.21 7.73	.05 .01	12
5.53	5.63 7.01	5.71 7.10	5.79 7.19	5.86 7.27	5.93 7.35	5.99 7.42	6.05 7.48	6.11 7.55	.05 .01	13
6.90 5.46.	5.55 6.87	5.64 6.96	5.71 7.05	5.79 7.13	5.85 7.20	5.91 7.27	5.97 7.33	6.03 7.39	.05 .01	14
6.77 5.40	5.49	5.57	5.65 6.93	5.72 7.00	5.78 7.07	5.85 7.14	5.90 7.20	5.96 7.26	.05 .01	15
6.66 5.35	6.76 5.44	5.52	5.59	5.66 6.90	5.73 6.97	5.79 7.03	5.84 7.09	5.90 7.15	.05 .01	16
6.56 5.31	6.66 5.39	5.47	5.54 6.73	5.61 6.81	5.67 6.87	5.73 6.94	5.79 7.00	5.84 7.05	.05	17
6.48 5.27	5.35	6.66 5.43 6.58	5.50 6.65	5.57 6.73	5.63 6.79	5.69	5.74 6.91	5.79 6.97	.05 .01	18
6.41 5.23	6.50 5.31	5.39	5.46 6.58	5.53 6.65	5.59 6.72	5.65 6.78	5.70 6.84	5.75 6.89	.05 .01	19
6.34 5.20	6.43 5.28	5.36	5.43 6.52	5.49 6.59	5.55 6.65	5.61 6.71	5.66 6.77	5.71 6.82	.05 .01	20
6.28 5.10	6.37 5.18	6.45 5.25	5.32 6.33	5.38 6.39	5.44 6.45	5.49	5.55 6.56	5.59 6.61	.05	24
5.00	5.08	5.15	5.21	5.27 6.20	5.33 6.26	5.38	5.43 6.36	5.47 6.41	.05	30
5.93 4.90	6.01 4.98	6.08 5.04	5.11	5.16	5.22	5.27	5.31	5.36 6.21	1	40
5.76 4.81	5.83	5.90 4.94	5.96 5.00	6.02 5.06	5.11	5.15	5.20	5.24	1	60
5.60 4.71	5.67 4.78	5.73 4.84		5.84 4.95	5.89	5.04	5.09	5.13	.05	120
5.44 4.62	5.50 4.68	5.56 4.74	4.80	5.66 4.85		4.93	4.97	5.01	.05	∞
5.29	5.35	5.40	5.45	5.49	5.54	5.57	5.61	3.03	.01	