Федеральное агентство связи Сибирский Государственный Университет Телекоммуникаций и Информатики СибГУТИ

Лабораторная работа №1

Тема: Исследование электрических цепей постоянного тока Вариант № 4

Выполнил: студенты 2 курса группы ИП-013

Иванов.Л.Д, Клопот.А.А

Преподаватель, ведущий занятие: Гонцова Александра Владимировна

Цель работы: Экспериментальная проверка закона Ома и правил Кирхгофа при определении токов и напряжений в электрических цепях. Овладеть методами расчёта в разветвлённых электрических цепях.

Для согласованного включения источников:

1. Расчёт общего сопротивления цепи:

$$R_{O6u} = R_1 + R_2 + R_3 + R_4 = 5.8 \kappa O M$$

2. По закону Ома рассчитываем тока:

$$I = (E_1 + E_2)/R_{obju} = (8+4)/5.8 = 2.07 \text{ MA}$$

3. Определим падения напряжений на резисторах:

$$UR_1 = I * R_1 = 2.07 * 1 = 2.07 B$$

 $UR_2 = I * R_2 = 2.07 * 1.5 = 3.105 B$
 $UR_3 = I * R_3 = 2.07 * 2 = 4.14 B$
 $UR_4 = I * R_4 = 2.07 * 1.3 = 2.69 B$

4. Проверяем результаты расчёта по второму правилу Кирхгофа для контура:

$$UR_1+UR_2+UR_3+UR_4=E_1+E_2$$

2.07+3.105+4.14+2.69=4+8

Для встречного включения источников:

1. Расчёт общего сопротивления цепи:

$$R_{o 6 u \mu} = R_1 + R_2 + R_3 + R_4 = 1 + 1.5 + 2 + 1.3 = 5.8 \,\kappa O M$$

2. По закону Ома рассчитываем тока:

$$I = (E_2 - E_1) / R_{oбu} = 4/5.8 = 0.69 \text{ MA}$$

3. Определим падения напряжений на резисторах:

$$UR_1 = I * R_1 = 0.69 * 1 = 0.69 B$$

 $UR_2 = I * R_2 = 0.69 * 1.5 = 1.031 B$
 $UR_3 = I * R_3 = 0.69 * 2 = 1.38 B$
 $UR_4 = I * R_4 = 0.69 * 1.3 = 0.897 B$

4. Проверяем результаты расчёта по второму правилу Кирхгофа для контура:

$$UR_1+UR_2+UR_3+UR_4=E_2-\bar{E}_1$$

0.69+1.031+1.38+0.897=8-4
3.998B 4B

		I, mA	U_{R_1} , B	U_{R_2} , B	U_{R_3} , B	U_{R_4} , B
Согласов.	Рассчит.	2.07	2.07	3.105	4.14	2.69
E_1 и E_2	Измер.	2.069	2.069	3.103	4.138	2.69
Встреч.	Рассчит.	0.69	0.69	1.031	1.38	0.897
E_1 и E_2	Измер.	0.689	0.69	1.034	1.379	0.897

1. Сопротивление ветви R3, R4 равно:

$$R_{3,4} = R_3 + R_4 = 2 + 1.3 = 3.3 \,\kappa OM$$

2. Определим общее сопротивление ветвей R5 и R3, R4:

$$R = R_5 * R_{3.4} / (R_5 + R_{3.4}) = 1.5 * 3.3 / (1.5 + 3.3) = 1.03 \kappa OM$$

3. Находим ток I1 по закону Ома:

$$I_1 = E_1/(R_1 + R_2 + R) = 4/(1 + 1.5 + 1.03) = 1.13 \text{ mA}$$

4. По второму правилу Кирхгофа напряжение на сопротивлении R5 равно:

$$UR_5 = E_1 - (UR_1 + UR_2) = 4 - (1.13 * 1 + 1.13 * 1.5) = 1.17 B$$

5.Определяем токи в ветвях:

$$I_2 = UR_5/R_5 = 1.17/1.5 = 0.78 \text{ MA}$$

 $I_3 = UR_5/(R_3 + R_4) = 1.17/(2 + 1.5) = 0.35 \text{ MA}$

6.Проверим результат по первому правилу Кирхгофа:

$$I_1 = I_2 + I_3$$

 $1.13 = 0.78 + 0.35$
 $1.13 MA = 1.13 MA$

	I_1	I_2	I_3	UR_1	UR_2	UR_3	UR_4	UR_5
	мА	мА	мА	В	В	В	В	В
Рассчит.	1.13	0.78	0.35	1.13	1.7	0.7	0.46	1.17
Измер.	1.13	0.78	0.35	1.13	1.699	0.708	0.46	1.168

1. Определяем количество уравнений, которое необходимо составить по правилам Кирхгофа для токов и для напряжений:

$$N_y = 2; N_e = 3; N_m = 0$$

Для узлов: $K_y = 2 - 1 = 1$;

Для ветвей: $K_e = N_e - N_y + 1 - N_m = 2$

Для узла: $I_1 = I_2 + I_3$

Уравнение первого контура: $E_1 = I_1 R_1 + I_1 R_2 + I_2 R_5$

Уравнение второго контура: $E_2 = I_3 R_3 + I_3 R_4 - I_2 R_5$

Определение токов в ветвях:

Пусть $I_1 = x$; $I_2 = y$; $I_3 = z$, тогда:

$$\begin{cases} x = y + z \\ x + 1.5x + 1.5y = 4 \\ 2z + 1.3z - 1.5y = 8 \end{cases} \rightarrow \begin{cases} x = y + z \\ 2.5x + 1.5y = 4 \\ 3.3z - 1.5y = 8 \end{cases} \begin{cases} x = 1.84 \\ y = 0.4 \\ z = 2.24 \end{cases}$$

	I_1	I_2	I_3	UR_1	UR_2	UR_3	UR_4	UR_5
	мА	мА	мА	В	В	В	В	В
Рассчит.	1.84	0.4	2.24	2.03	3	5.5	3.6	1.05
Измер.	1.84	0.4	2.24	1.84	2.761	4.484	2.914	0.602

Расчёт токов методом наложения:

- 1. При E_2 =0, схема 3 приобретает вид аналогичный схеме 2, следовательно значения силы тока аналогичны: $I_1^{'}$ =1.13 мA, $I_2^{'}$ =0.78 мA, $I_3^{'}$ =0.35 мA.
- 2. Расчёты токов при $E_1 = 0$:

$$\begin{split} R_{1,2} &= R_1 + R_2 = 2.5 \, \text{kOm} \, R_{ab} = \frac{R_{12} * R_5}{R_{12} + R_5} = \frac{3.75}{4} = 0.94 \, \text{kOm} \, R_{\text{9KG}} = R_{ab} + R_3 + R_4 = 4.24 \, \text{kOm} \, R_{\text{9KG}} = \frac{E_2}{R_{\text{2KG}}} = 1.89 \, \text{mA} \, ; \\ U_{ab} &= I_3^{''} * R_{ab} = 1.77 \, BI_2^{''} = \frac{U_{ab}}{R_5} = 1.18 \, \text{mA} \, ; \\ I_1^{''} &= \frac{U_{ab}}{R_1 + R_2} = 0.71 \, \text{mA} \end{split}$$

3. Итоговые значения:

$$I_1 = I_1^{'} + I_1^{''} = 1.84 \text{ MA} I_2 = \left| I_2^{'} - I_2^{''} \right| = 0.4 \text{ MA} I_3 = I_3^{'} + I_3^{''} = 2.25 \text{ MA}$$

Вывод: Проверили закон Ома и правила Кирхгофа для цепей с согласованного и встречного включения источников тока, полученные значения равны теоретическим. Также определили силы токов в цепях, используя правила Кирхгофа и метод наложения.

Контрольные вопросы

1. Закон Ома для участка и для полной электрической цепи.

Определение: Сила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

$$I = \frac{U}{R}; U = IR; R = \frac{U}{I};$$
Определение: Сила тока в цепи пропорциональна

действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника

$$I = \frac{\varepsilon}{R+r}$$
;

2. Правила Кирхгофа (для узлов и для контуров).

Согласно первому закону Кирхгофа алгебраическая сумма токов ветвей, сходящихся в узле, равна нулю: $\sum I = 0$.

Согласно второму закону Кирхгофа алгебраическая сумма напряжений на резистивных элементах замкнутого контура равна алгебраической сумме ЭДС, входящих в этот контур: $\sum RI = \sum E$.

3. Порядок расчета цепи по правилам Кирхгофа.

Порядок выполнения расчета:

- 1. выделяют в электрической цепи ветви, независимые узлы и контуры;
- 2. с помощью стрелок указывают произвольно выбранные положительные направления токов в отдельных ветвях, а также указывают произвольно выбранное направление обхода контура;
 - 1. составляют уравнения по законам Кирхгофа, применяя следующее правило знаков:
 - 2. токи, направленные к узлу цепи, записывают со знаком «плюс», а токи, направленные от узла, со знаком «минус» (для первого закона Кирхгофа);
 - 3. ЭДС и напряжение на резистивном элементе (RI) берутся со знаком «плюс», если направления ЭДС и тока в ветви совпадают с направлением обхода контура, а при встречном направлении со знаком «минус»;
- 3. решая систему уравнений, находят токи в ветвях. При решении могут быть использованы ЭВМ, методы подстановки или определителей.

4. Эквивалентные преобразования электрической цепи.

Эквивалентным будет называться такое преобразование, когда токи через точки соединения преобразуемой части схемы и потенциалы в этих точках, после преобразования останутся равными токам и потенциалам, которые были до преобразования.

5. Мощность в электрической цепи. Баланс мощностей. Расчет мощностей.

Баланс мощностей — это выражение закона сохранения энергии, в электрической цепи. Определение баланса мощностей звучит так: сумма мощностей, потребляемых приемниками, равна сумме мощностей, отдаваемых источниками. То есть если источник ЭДС в цепи отдает 100 Вт, то приемники в этой цепи потребляют ровно такую же мощность.

$$\sum I^2 R = \sum EI$$

6. Принцип и порядок расчета цепей методом наложения.

Его суть заключается в том, что токи в ветвях определяются как алгебраическая сумма их составляющих от каждого источника. То есть каждый источник тока вносит свою часть в каждый ток в цепи, а, чтобы найти эти токи, нужно найти и сложить все составляющие. Таким образом, мы сводим решение одной сложной цепи к нескольким простым (с одним источником).

Порядок расчета:

- 1. Составление частных схем, с одним источником ЭДС, остальные источники исключаются, от них остаются только их внутренние сопротивления.
- 2. Определение частичных токов в частных схемах, обычно это несложно, так как цепь получается простой.
- 3. Алгебраическое суммирование всех частичных токов, для нахождения токов в исходной цепи.