Extended Euclid's Algorithm

Dragan Marković

This algorithm find's coefficients (x,y) such that $a \cdot x + b \cdot y = gcd(a,b)$ for given a and b. Extended Euclid's Algorithms main use is in solving linear Diophantine equations, which are of the form $a \cdot x + b \cdot y = c$. It is easy to deduce from the algorithm that this equation has solution only if gcd(a,b)|c.

Standard Euclid's algorithm finds sequence $r_0, r_1, ..., r_k$ such that:

```
r_0 = a

r_1 = b

r_i = r_{i-2} \% r_{i-1}
```

Algorithm terminates when $r_{k+1} = 0$ and gcd(a, b) is stored in r_k . Here x % y denotes the remainder of dividing x by y.

We'd like to extend this algorithm by adding two numbers (t_i, s_i) such that $r_i = t_i \cdot a + s_i \cdot b$ at each iteration of the algorithm. Since $r_0 = a$ and $r_1 = b$ it's obvious that $a = 1 \cdot a + 0 \cdot b$ and $b = 0 \cdot a + 1 \cdot b$.

So it follows that $s_0 = 1, t_0 = 0, s_1 = 0$ and $t_1 = 1$. Let's try to generalize and find out s_k and t_k :

$$\begin{split} r_{k-1} &= a \cdot s_{k-1} + b \cdot t_{k-1} \\ r_k &= a \cdot s_k + b \cdot t_k \\ r_{k+1} &= ? \\ r_{k-1} &= r_k \cdot q + r_{k+1} \left(From \, defition \, of \, "r" \, sequence, \, r_i = r_{i-2} \% r_{i-1} \right) \\ r_{k+1} &= r_{k-1} - r_k \cdot q \\ r_{k+1} &= a \cdot s_{k-1} + b \cdot t_{k-1} - \left(a \cdot s_k + b \cdot t_k \right) \cdot q \\ r_{k+1} &= a \cdot \left(s_{k-1} - s_k \cdot q \right) + b \cdot \left(t_{k-1} - t_k \cdot q \right) \\ r_{k+1} &= a \cdot s_{k+1} + b \cdot t_{k+1} \end{split}$$

We finally have $s_{k+1} = s_{k-1} - q \cdot s_k$ and $t_{k+1} = t_{k-1} - q \cdot t_k$. If $r_{k+1} = 0$ Then $a \cdot s_k + b \cdot t_k = \gcd(a,b)$ so the solution to our equation for $a \cdot x + b \cdot y = c$ is $(x_0,y_0) = (s_k \cdot \frac{c}{r_k}, t_k \cdot \frac{c}{r_k})$. If Diophantine equation has one solution it has infinitely many!!! We can simply write $a \cdot x + b \cdot y = a \cdot (x - kb) + b \cdot (y + ka)$. Therefore the general solution for an equation is $(x_n,y_n) = (x_0 - n \cdot b, y_0 + n \cdot a)$.

Example : $2 \cdot x - 5 \cdot y = 1$

$$\frac{1}{-1} = -1$$

$$(x_0, y_0) = (-2, -1)$$

$$(x_n, y_n) = (-2 + 2 \cdot n, -1 + 5 \cdot n).$$

Example: $87 \cdot x - 64 \cdot y = 3$

i	q	r_i	s_i	t_i
0	0	87	1	0
1	0	-64	0	1
2	-1	23	1	1
3	-2	-18	2	3
4	-1	5	3	4
5	-3	-3	11	15
6	-1	2	14	19
7	-1	-1	25	34

$$\frac{3}{-1} = -3$$

$$(x_0, y_0) = (-75, -102)$$

$$(x_n, y_n) = (-75 + 64 \cdot n, -102 + 87 \cdot n).$$