UNIVERSITE ABDELMALEK ESSAADI

ENSA AL HOCEIMA

Algèbre I, 2020-2021

TD1: Logiques & Relations et Applications

Prof. Younes ABOUELHANOUNE

Exercice 1:

- 1. Dans chacun des cas suivants, déterminer f(I) puis préciser f^{-1}
- 1. $f(x) = x^2 4x + 3$, $I =]-\infty; 2]$.
- 2. $f(x) = \frac{2x-1}{x+2}$, $I =]-2; +\infty]$.

Exercice 2:

Soient A, B, C et E des ensembles. Montrer les assertions suivantes :

- **1.** $\forall A, B \in P(E)$ $A \cap B = A \cup B \Rightarrow A = B$
- **2.** $\forall A, B, C \in P(E)$ $A \cap B = A \cap C$ et $A \cup B = A \cup C \Rightarrow B = C$.
- **3.** $[(A \cap B) \cup C] \cap B = B \cap (A \cup C)$

Exercice 3:

1. Soit la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0=4$ et $x_{n+1}=\frac{2x_n^2-3}{x_n+1}$ Montrer par récurrence que

$$\forall n \in \mathbb{N}; \quad x_n > 3$$

2. En utilisant le raisonnement par contraposition, Montrer que :

$$\mathbf{x} \neq \mathbf{2}$$
 et $\mathbf{y} \neq \mathbf{2} \Rightarrow \mathbf{x}\mathbf{y} - \mathbf{2}\mathbf{x} - \mathbf{2}\mathbf{y} + \mathbf{4} \neq \mathbf{0}$

3. Démontrer que si a et b sont deux entiers relatifs tels que $a+b\sqrt{2}=0$ alors a=b=0.

Exercice 4:

Soit X un ensemble. Pour $f \in F(X,X)$, on définit $f^0 = id$ et par récurrence pour $n \in \mathbb{N}$,

$$f^{n+1} = f^n o f$$
.

Montrer que $\forall n \in \mathbb{N}$, $f^{n+1} = f \circ f^n$

Exercice 5:

Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ telles que

$$f(x) = 3x + 1$$
 et $g(x) = x^2 - 1$.

Vérifier que $f \circ g = g \circ f$

Exercice 6:

Soient $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{2x}{(1+x^2)}$. 1. f est-elle injective ? surjective ?

- **2.** Montrer que $f(\mathbb{R}) = [-1, 1]$.

Exercice 7:

Soit l'application f définie comme suit :

$$f$$
: $\mathbb{R}\setminus\{\frac{1}{2}\}\to\mathbb{R}\setminus\{\frac{1}{2}\}$
 $x \to f(x) = \frac{x+1}{x}$

$$x \to f(x) = \frac{x+1}{2x-1}$$

- 1. f ainsi définie est-elle injective ? surjective ?
- 2. Donner l'expression de $(f \circ f)(x)$.
- 3. Déterminer l'expression de $f^{-1}(x)$
- 4. Soit T la relation définie sur $]1;+\infty[$ par :

$$xTy \Leftrightarrow \frac{y}{1+y^2} \le \frac{x}{1+x^2}$$

Montrer T que est une relation d'ordre.

Exercice 8:

Soit la relation définie sur $\mathbb R$ par

$$xRy \Leftrightarrow x^2 - y^2 = x - y$$

- 1. Montrer que R est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence de x de \mathbb{R} .