Winter School on GenAl CSE, IIT Jodhpur

Neural Networks for Sequential Data

Anand Mishra

Recap: Feed Forward Neural Network

Recap

- Neural network (Network of Perceptron/MLP) can:
- model any Boolean function
- model any decision boundary
- Model any continuous valued function

156

Recap

Input

Output

157

Recap

Input

Output

Recap: CNN

Why worry about sequential data?

Sequence as Input, Sequence as Output

Sequence as Output

Sequence as input, Sequence as Output

Sequence as input

Sequence as input

slido

Give an example of sequential data problem that we have not discussed so far?

(i) Start presenting to display the poll results on this slide.

A Sequence Modeling Problem: Next Word Prediction

I woke up in the morning.

I woke up in the morning.

Let us try solving this problem using simple feed forward neural networks.

I woke up in the morning.

Let us try solving this problem using simple feed forward neural networks.

How to represent language to a neural network?

1. Define a vocabulary

```
Vocab = {"I", "woke", "up", "in", "the", "morning"}
```

- 1. Define a vocabulary
- 2. Assign unique index to each word in the vocabulary

```
Vocab = {"I", "woke", "up", "in", "the", "morning"}
Index={"I"(1), "woke"(2), "up"(3), "in"(4), "the"(5),
"morning"(6)}
```

- 1. Define a vocabulary
- 2. Assign unique index to each word in the vocabulary
- 3. Represent words using one-hot or learned vector

```
Vocab = {"I", "woke", "up", "in", "the", "morning"}

Index={"I"(1), "woke"(2), "up"(3), "in"(4), "the"(5),
"morning"(6)}

Morning: [0 0 0 0 0 1]
```

177 Woke: [0 1 0 0 0 0]

I woke up in the morning.

Idea 1: Input words from fixed window

I woke up in the morning.

Idea 1: Input words from fixed windowProblem: Does not capture long-term dependencies.

Odisha is where I grew up, but now I live in Rajasthan. I speak fluent Rajasthani as well as ????

I woke up in the morning.

Idea 2: Input entire string.

I woke up in the morning.

Idea 2: Input entire string.

BoW representation: [0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0]

slido

What will be the BoW representation for the following sentences: Ram is a good boy. Sita is a good girl. Assume vocabulary=[Ram, Sita, is, a, good, boy, girl]

(i) Start presenting to display the poll results on this slide.

I woke up in the morning.

Idea 2: Input entire string.

Problem: Representation can be misleading

I woke up in the morning.

Idea 2: Input entire string.

Problem: Representation can be misleading

Example:
Good movie, not bad at all
Vs
Bad movie, not good at all

Sequence Modeling: Design Criteria

- 1. Variable-length sequence
- 2. Parameter-sharing
- 3. Long-term dependencies
- 4. Order of words

Recurrent Neural Network

Recurrent Neural Network

$$h_t = f_w(h_{t-1}, x_t)$$

$$h_t = f_w(h_{t-1}, x_t)$$

$$h_t = f_w(h_{t-1}, x_t)$$

$$h_t = tanh(W_{hh}^T h_{t-1} + W_{xh}^T x_t)$$

$$h_t = f_w(h_{t-1}, x_t)$$

$$h_t = tanh(W_{hh}^T h_{t-1} + W_{xh}^T x_t)$$
Non-linearity Learnable Matrix

slido

Suppose hidden states has size h X 1 and input has size d X 1. Then, what should be the size of W_{hh} and W_{xh} respectively?

(i) Start presenting to display the poll results on this slide.

$$egin{aligned} h_t &= f_w(h_{t-1}, x_t) \ h_t &= tanh(W_{hh}^T h_{t-1} + W_{xh}^T x_t) \ \hat{y}_t &= W_{hy}^T h_t \end{aligned}$$

slido

In the context of h_t consider the following statements:

- (i) size of h_{t-1} and h_{t} are same.
- (ii) h_{t} contains values between -1 to 1.
- (iii) h_{t} is scalar.
- (iv) size of h_{t} and x_{t} has to be same.

Which among the above are TRUE?

(i) Start presenting to display the poll results on this slide.

RNN: few line of implementation

```
my_rnn=RNN()
hidden_state=[0,0,0,0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    pred, hidden_state = my_rnn(word,hidden_state)
next_word = pred
```

RNN as python code

```
class myrnn(tf.keras.layers.Layer):
    def __init__(self,rnn_units,input_dim,output_dim):
        super(myrnn,self).__init__()
        #initalize weight matrix
        self.W_xh=self.add_weight([rnn_units, input_dim])
        self.W_hh=self.add_weight([rnn_units, rnn_units])
        self.W_hy=self.add_weight([output_dim, rnn_units])
        #initialize hidden state with zeros
        self.h=tf.zeros([rnn_units, 1])
```

RNN as python code

```
def call(self,x):
    #update hidder state
    self.h=tf.math.tanh(self.W_hh*self.h + self.W_xh*x
    #comput output
    output=self.W_hy*self.h
    return output, self.h
```

RNN as Computation Graph

Backpropagation Through Time (BPTT)

RNN: Backprop through Time (BPTT)

Problem with RNN

Exploding Gradient

1. Computing gradient wrt h_0 requires many factors of Whh and repeated gradient computation

If Many values > 1

exploding gradients

Exploding Gradient

1. Computing gradient wrt h_0 requires many factors of Whh and repeated gradient computation

If Many values > 1 exploding gradients

Solution: Gradient Clipping

- 1. Computing gradient wrt h₀ requires many factors of Whh and repeated gradient computation
 - If Many values < 1 = vanishing gradients

Why Vanishing gradient is a problem?

Why Vanishing gradient is a problem?

Multiply many small numbers together.

Why Vanishing gradient is a problem?

Multiply many small numbers together.

→ Errors due to further back time steps have smaller and smaller gradients

Why Vanishing gradient is a problem?

Multiply many small numbers together.

- \rightarrow Errors due to further back time steps have smaller and smaller gradients
- → Bias parameters to capture short-term dependencies.

Short-term dependency is not always bad.

For example: I wake up early in the morning.

But also recall the following example:

Odisha is where I grew up, but now I live in Rajasthan. I speak fluent Rajasthani as well as ????

Solution-1 (activation function)

Solution-2 (Initialization)

Initialize weight matrix to Identity matrix and bias to zero.

→ This helps prevent weights from shrinking to zero.

Solution-3 (Gated Cell)

Solution-3 (Gated Cell)

Gates in recurrent cells control the information flow.

→ LSTMs, GRU, etc.

LSTM

6

Long Short Term Memory Network

Back to RNN (as a computational cell)

LSTM as Gated Cell

What is Gate?

Information either pass or obstructed through a gate

- 1. Forget
- 2. Store
- 3. Update
- 4. Output

- 1. Forget
- 2. Store
- 3. Update
- 4. Output

LSTMs forget irrelevant part of previous hidden state

- 1. Forget
- 2. Store
- 3. Update
- 4. Output

LSTMs stores relevant new information into cell state

- 1. Forget
- 2. Store
- 3. Update
- 4. Output

LSTMs selectively update cell state values

- 1. Forget
- 2. Store
- 3. Update
- 4. Output

Output gate controls what information to send to next time stamp

Gradient Flow

LSTMs: Summary

- 1. Use gates to control the flow of information
 - (i) Forget
 - (ii) Store
 - (iii) Update
 - (iv) Output
- 2. BPTT with uninterpreted gradient flow

Summary

- Why sequential data
- RNNs for sequence modeling
- Backpropagation through time
- LSTMs for long-term dependencies

References

https://d2l.ai/chapter_recurrent-neural-networks/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Few slide contents are taken from : <u>Ava Amini (MIT)</u> and <u>CS231n</u>

Thank you!

https://anandmishra22.github.io/