Lecture 13

L-S coupling

Let's consider the non-central part of e^2/r_i term as Perturbation.

As the different configurations are for apart, in the perturbative approach to begin with we take the Stater det of spin orbitals corresponding to same config.

e.g. He atom

consider (15,25) configuration The degenerate central field Stater Statin

 $15^{+}25^{-}$: 141 $15^{-}25^{+}$: 142 & $15^{-}25^{+}$: 142 & $15^{+}25^{+}$: 143 & $15^{-}25^{-}$: 144

 $-\langle 2\mu | g_{12} | \pi \alpha \rangle$ If $|\phi_i\rangle$ is $\{ab\}$ then

 $(\phi_i \mid H \mid \phi_i) = \langle \alpha(h \mid a) + \langle b \mid h \mid b \rangle + \frac{1}{2}$ $(aa \mid g(t - P_{12}) \mid aa) + \langle ab \mid g(t - P_{12}) \mid ab)$ $+ \langle ba \mid g(t - P_{12}) \mid ba \rangle + \langle bb \mid g(t - P_{12}) \mid bb \rangle^{\circ}$

= hathb + (ab)glab> - (ab)glba>

= hathb + J - K&mgmsb

$$\begin{array}{l} \therefore \langle \phi_{1} | H | \phi_{1} \rangle = \langle \phi_{2} | H | \phi_{2} \rangle = h_{15} + h_{25} + J \\ \langle \phi_{3} | H | \phi_{3} \rangle = \langle \phi_{4} | H | \phi_{4} \rangle = h_{15} + h_{25} + J - K \\ \langle \phi_{1} | H | \phi_{2} \rangle = - | K \\ \langle \phi_{2} | H | \phi_{4} \rangle = - | K \\ = \langle \phi_{1} | H | \phi_{3} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{2} | H | \phi_{4} \rangle = \langle \phi_{2} | H | \phi_{4} \rangle \\ = \langle \phi_{2} | H | \phi_{4} \rangle = \langle \phi_{2} | H | \phi_{4} \rangle \\ = \langle \phi_{2} | H | \phi_{4} \rangle = \langle \phi_{2} | H | \phi_{4} \rangle \\ = \langle \phi_{2} | H | \phi_{4} \rangle = \langle \phi_{2} | H | \phi_{4} \rangle \\ = \langle \phi_{2} | H | \phi_{4} \rangle = \langle \phi_{2} | H | \phi_{4} \rangle \\ = \langle \phi_{2} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{2} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{2} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{2} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle \\ = \langle \phi_{1} | H | \phi_{4} \rangle = \langle \phi_{1} | H | \phi_{4} \rangle \\ =$$

He ground state

Under configuration with central field the He ground state is

(2's) = 18's> Call offer quantum nos.

If we bring other configurations u such

181s> = 1815Z + Zan [M1s>

This is called configuration mixing.

It correlates position of e's. The mixing unally happens with configurations loading to same multiplicity as et is diagonal for eigen states of [& 5]

Autoronization

The state (15,nl) for He converge as $n\to\infty$ on 1^{St} I.P. which corresponds to He^{t} (1s). The excited electron will have the energy E further if excited by more energy.

Now extend HF central field states to Include (18 Elmins)

I free & with angular mom.l. Spin comp. mg & K.E. E.

Consider doubly excited state of He (23)²: ¹S

It is deg. with [15, Ez > continuum state. In central field they are orthogonal but they can be coupled by the non central part of ez (config. mix)

By Fermi's Golden Rule, the populate of descrite level decaups into continuum of same eeurgy by rate

 $\Gamma_{\ell} = \frac{2\pi}{\pi} \left| (2s)^2 |s| \frac{e^2}{\gamma_{12}} \left| (1s \in_{\ell})^1 s \right|^2 f(\epsilon)$

where e(E) is density of states

I e-e corelation causes ejection of e-with spin opp to that of Het Ceft. This is accompanied with deexcitation of other electron. This is called "Autoionization"

The outcoming electron has l=0 making it a 's-wave' electron. This provides a finite width to the autoionizing states which correspond to their lifetime against such autoionization. There states are observed in ionization signal.

The ocut coming e has a specified 45 (ms) Knowing or measuring it we can know the spin of left one e - 1 simple example of entangle state!

Coming back to LS coupling! in central field approximation Hc= \ h; The two main corrections are Hy: non central part H2: LS coupling. H2 = > 7: [: s: n.(r;)=1 1 dv(r;) 2m2c2 r; dr; Total Parity & Total angular momentum] are conserved) If Hy>> H2 L-S coupling! that means all Is couple to give total orbital angular momentum & all ss couple to give total sipin angular momentum. I then LLS couple through H2 (f He >> H1 j-j coupling Individual les and 30 couple giverne Je as good Q. No. l'Her thuse je couple Hmys H1. most lighter atoms show L-s coupling scheme where as heavy ions are good candidates for j-j coupling.

Defermining possible terms under LS coupling 1. Equivalent electrons: (ès belonging to same substrell) L= 2=0 L=0 nshs S1=S2=1/0 S=1,0 but S=12 L=0 not possible due to Pauli's principle. $M_L=0$ $M_S=0$ the term: 15 This is true for all closed subshells. N = 1 $N_{1} = 1$ $N_{2} = 0, \pm 1$ $N_{2} = 0, \pm 1$ mo1= +1/2 mp= +1/2 Degeneracy: = 6×5=15 6 ways for ste 5 ways for 2 rde-1/2 indistinguishable Possible L=2,1,0 S = 1,0 Possible terms: 3D, 1D, 3P, 1P, 3s, 1s 3D not possible as mi=me= ±1 & m==m=+1 3s not possible as $m_{\ell_1} = m_{\ell_2} = 0$ $m_{s_1} = m_{s_2} = \pm 1/2$ 1p not possible as L=1 is antisymmetric for 2 pelectrons & Aingled is also anti sym maleine wave for symm.

	. Possik	ole terms	1D, 3P, 1s	
	MZMS	+ 1	<u>OK</u>	-1
1	+2	(1/2)	(1,1)	
	-1/	(1,0)	$(1,0)(\bar{1},0)$	(7,0)
	0	(1,-1)	(1,-7)(7,-1)(0,5)) (7,-1)
	-1 -2	(-1,0) (-)/1)	(-1,ō) (-1,0) (-1,-1)	(-1,5) (-1)(1)
	Possible comb. of MLR Ms are 1. $M_L = \pm 2, \pm 1, 0$ R $M_S = 0 \Rightarrow L = 2, 5 = 0 \Rightarrow 1$			
	(5) 2. $M_L = \pm 1,0$ $R_S = \pm 1,0$ $R_S = 1,0$ R_S			
	3. $M_{L}=0$, & $M_{S}=0$ \Rightarrow $L=0$, $S=0 \Rightarrow$ ^{1}S (1) (15)			
7	By Hund's Rule			
	1. Langerst S has lowest energy 2. If more than one term has same S then lowest L has largest energy.			
	: 3p < 'D < 'B			

j-j Coupling

H2>> H1

degeneracy for l+1/2=j is 2l+2degeneracy for l=1/2=j is 2l

HEACHA = Zhi+ ZM(ra) Ii. Si

ns ns $j_1 = 1/2$, $j_2 = 1/2$ J = 0Notath

Term (1/2, 1/2) (j_1, j_2) J

psnp $j_1 = 1/2, j_2 = 3/2, 1/2$

 $J_1 = I_2, J_2 = I_2$ J = 0,1 $(I_2, I_2)_0, (I_2, I_2)_1$

For more than 2 electrons either in LS conspling the procedure combe represented for every pair of 2 electrons and the subsequent the final terms can be evaluated.

Also for subshell which is can than half filled and that home than half filled the terms would be same if no of e in 1st care are same as no of notes in second.