20**- 20**学年第二学期《高等代数 Ⅱ》期中考试样题

(考试时间 20**年**月 ** 日)

我郑重承诺:在本次考试中,遵守考场纪律、自尊自爱、平等竞争,维护学校的荣誉和学生的尊严。

承诺人签字:

一、 判断题 (每小题 5 分, 共 25 分) 判断下列命题是否成立, 并说明理由。

- 1. 数域P上任意一个不可约多项式在复数域内没有重根.
- 2. 在P[x]中, f(x)的次数大于 0, 令g(x) = f(x + b), $b \in P$, 若f(x)在P上不可约, 那么g(x)在P上不可约.
 - 3. 如果 $f(x)|g_1(x)g_2(x), f(x)| g_1(x)$,那么 $f(x)|g_2(x)$.
- 4. $A_{s\times n}$ 是实矩阵,其秩为r < n, $x_{r+1}, ..., x_n$ 是Ax = 0的一个基础解系,将其扩充为 R^n 中的一组基 $x_1, ..., x_r, x_{r+1}, ..., x_n$,令 $B = (x_1, ..., x_r)$,那么矩阵AB列满秩.
- 5. 数域P上n维数组线性空间 P^n 的任一子空间V都是数域P上某个齐次线性方程组的解空间.

二、填空题(每小题 5 分, 共 25 分)

- 6. 写出多项式 $f(x) = 3x^4 + 8x^3 + 6x^2 + 3x 2$ 的全部有理根并标明其重数: _______.
- 8. 多项式 $f(x) = x^4 + x^3 3x^2 4x 1$, $g(x) = x^3 + x^2 2x 1$, 那么 (f(x), g(x)) =_______.

- 9. 在 R[x] 中,向量 $5x^3 12x^2 + 13x 4$ 在子空间直和 $L((x-1)^0, (x-1)^2)$ ⊕ $L((x-1), (x-1)^3)$ 中的分解式为
- 10. 设 $V = \{\begin{pmatrix} x_1 & x_2 + ix_3 \\ x_2 ix_3 & -x_1 \end{pmatrix} | x_1, x_2, x_3 \in R \}$,其中i表示虚数,请写出V的维数和一组基

三.解答题和证明题(50分)

- 11. (15 分)数域P上的多项式f(x)是 4 次多项式,如果x 2是f(x) + 5的三重因式,
- x + 3是f(x) 2的二重因式,求f(x).
- 12. (15 分) A为n阶实对称矩阵,秩为r,且 $A^2 = A$
- (1) 求证 $V = \{x \in R^n | x^T A x = 0\}$ 为 R^n 的子空间;
- (2) 求V的维数;
- (3) 给出V的一个直和补,即 R^n 的一个子空间 W,使得 $R^n = V \oplus W$.
- 13. (20 分) 在线性空间 $P[x]_n$ 中,
- (1) 证明: $1, x, x^2, ..., x^{n-1}$ 和 $1, x a, (x a)^2, ..., (x a)^{n-1}$ 都是 $P[x]_n$ 的基,其中 $a \in P \perp a \neq 0$;
- (2) 当n = 3, a = 2时,给出从基1, x, x^2 , ..., x^{n-1} 到基1, x a, $(x a)^2$, ..., $(x a)^{n-1}$ 的过渡矩阵及相应的坐标变换公式;
- (3) 求 $P[x]_n$ 的一组基,使得 $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} \in P[x]_n$ 在这组基下的坐标都是非负的.