9.A. BIG -O NOTATION

DEFINITION: A function f(n) is said to be in O(g(n)), denoted $f(n) \in O(g(n))$, if f(n) is bounded above by some constant multiple of g(n) for all large n, i. e. if there exist some positive constant c and some nonnegative integer n_0 such that:

$$f(n) \le cg(n)$$
 for all $n \ge n_0$

ON THE ABOVE DIAGRAM 'STARTING FROM n_0 AND BEYOND ONLY MATTERS', BUT THE PORTION LESSER THAN AND WITHOUT THE STARTING POINT OF n_0 DOESN'T MATTER.

NOTE: THE BIG OH NOTATION FINDS OUT THE UPPER BOUND OF A POLYNOMIAL. AND f(n) AND g(n) ARE THEREFORE TWO POLYNOMIAL FUNCTIONS.

MORE DESCRIPTIVE WAY OF ABOVE DEFINITION:

Let f and g be two functions that map a set of natural numbers to a set of positive real numbers, that is, $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$.

(It mean function f contains Set of Natural Numbers \mathbb{N} which maps to real numbers \mathbb{R} which are greater than and equal to 0 i.e. **Positive Real Numbers**).

THE THINGS MAY LOOK LIKE:

SAY,
$$f(n) = n^3 + n^2 + 3$$
 [**POLYNOMIAL FUNCTION**]
if $n = 0$, $f = 0^3 + 0^2 + 3 = 3$
if $n = 1$, $f = 1^3 + 1^2 + 3 = 2 + 3 = 5$
if $n = 2$, $f = 2^3 + 2^2 + 3 = 8 + 4 + 3 = 15$

THEN WE HAVE SET:

$$\{(0,3),(1,5),(2,15)\}$$

HENCE:

Domain of Function $(D_f) = \{0,1,2\}$

Range of Function $(R_f) = \{3,5,15\}$

Now, Let O(g) be the set of all functions with similar rate of growth. i.e. if $f(n) = n^3 + n^2 + 3$, and $S(f(n)) = \{(0,3), (1,5), (2,15)\}$. Then O(g) will have same type of set of pairs may not be equal.

Then , the relation f(n) = O(g(n)) holds true , if there exist two positive constants c and n_0 such that $f(n) \le c \times g(n)$.

- The function f(n) is said to be in O(g(n)).
- This is denoted as $f(n) \in O(g(n))$.

i.e. f(n) belongs to O(g(n)). i.e. the elements in f(n) contains in O(g(n)). or simply as: f(n) = O(g(n))

- This implies that f(n) never takes more than approximately g(n) operations.
- This implies f(n) is in the order of g(n).
- Which implies f(n) having a growth rate that is less than or equal to that of g(n).
- This implies again that function f grows at a slower

rate than a constant time g(n) for all the values of a larger input of size n'.

MORE PRECISELY

We can distinguish f(n) and g(n) like say: $f(n) = 4n^2 + 5n + 3 \ and \ g(n) = 5n^2 \ , \text{ on a note we can see the}$

rate of growth:

n	$4n^2 + 5n + 3$	$5n^2$
1	12	5
2	29	20
3	54	45
4	87	80
5	128	125
6	177	180

Comparison of f(n) and g(n)

Some Points on Big-Oh Notation:

- 1. f(n) = O(g(n)) means at larger values of n, the the upper bound of f(n) is g(n). For example, if $f(n) = n^4 + 100n^2 + 10n + 50$ is the given algorithm, then n^4 is g(n).
- 2. g(n) gives the maximum rate of growth for f(n) at at larger values of n.
- 3. O(g(n))= $\{f : there \ exist \ positive \ constant \ c \ and \ n_0 \ such \ that \ 0 \le f(n) \le cg(n) \ for \ all \ n \ge n_0 \}.$

- 4. g(n) is an asymptotic tight upper bound for f(n).
- 5. n_0 is the point from which we need to consider the rate of growth for a given algorithm, hence n_0 is called threshold of the given function.
- 6. Generally, we discard lower values of n. That means the rate of growth at lower values of n is not important.