

	WAERSWIII
	$\frac{1}{\pi} \frac{1}{1^2} = \frac{4}{3^2} \left[\frac{1}{10000000000000000000000000000000000$
	π 12 32 52
	(i) Now f(x) is discontinuous at x=0,
	But at a point of discontinuity x=C
	$\frac{1}{2} \left[\lim_{x \to c} f(x) + \lim_{x \to c+} f(x) \right]$
•	$\frac{1}{2}\left(\frac{\pi}{2}+\frac{\pi}{2}\right)=\frac{\pi}{2}$
	Putting x=0, in (2)
	$\frac{\pi}{2} = \frac{4 \left[1 + 1 + 1 + \dots \right]}{112 \cdot 3^2 \cdot 5^2}$
	12 32 52 8
	(1) Using Persevalis identity in (-11,11)
	$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left[f(x) \right]_{0}^{2} x = 00^{2} + 1 + \frac{2}{2} \left(an^{2} + bn^{2} \right) - (3)$
10	Here, as = 0 and lon = 0
	$\frac{1}{2\pi} \left[f(x) \right]_{0}^{2} dx = \frac{1}{2\pi} \left[\int_{0}^{\pi} (x + \pi)^{2} dx + \int_{0}^{\pi} (\pi + \pi)^{2} dx \right]$
	$= \frac{1}{2\pi \left[\frac{1}{2} \left(\frac{1}{x_{5}} + \frac{1}{2} + \frac{1}{2} \right) dx + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \right) \right]}$
	$=\frac{1}{2\pi \left[\left(\frac{x^{3}}{3} + \frac{\pi x^{2}}{2} + \frac{\pi^{2}x}{4} \right)^{-1} + \left(\frac{\pi^{2}x}{4} - \frac{\pi^{2}x}{3} + \frac{x^{3}}{3} \right) \right]}$
	$= \frac{2\pi^3}{2\pi} \left[\frac{1}{4} - \frac{1}{2} + \frac{1}{4} \right]$
	$\frac{1}{2\pi} \int \left[\left(t(x) \right)^2 dx = \pi^2$
	27 -7 12 Page

	MAEER'S MIT
	Substituting the values of an in (3) $\frac{\pi^2}{12} = 1.16 \left[\frac{1}{1} + \frac{1}{34} + \frac{1}{54} \right]$
	76 14 34 IV
	14 34 54 96
Q · 3>	: noitulos
	Here 2L=2, L=1
	$f(x) = a_0 + \frac{\mathcal{E}}{\mathcal{E}} \left(a_0 \cos(nx\pi) + b_0 \sin(nx\pi) \right)$
	1) - (κππ) 200 n = 1 (κππ) 200 n (πππ) - (1)
	where $a_0 = \frac{1}{2} \int_{0}^{2} f(x) dx = \frac{1}{2} \int_{0}^{2} (4 - x^2) dx = \frac{1}{2} \left[(u \times - x^2) \right]^2$
<u>)</u>	:. ao = 8
	$av = \frac{1}{2} \int f(x) \cos(v \cdot u \cdot x) dx = \frac{1}{2} \int \frac{1}{2} (u - x_5) (\cos v \cdot u \cdot x) dx$
	$= \left[\frac{U_{\pm}}{(4-x_5)(\sin v_{\pm}x)} - \frac{U_{\pm}y_{\pm}}{(\cos v_{\pm}x)} + \frac{1}{5} \frac{\sin v_{\pm}y_{\pm}}{\sin v_{\pm}x} \right]_{5}$
	$= \left[0 - 4 + 0 \right) - (0) \right]$
	$a_n = -4$
	$u_{u} = -h$
	Page

Page 3

$$= \begin{bmatrix} v_3 \mu_3 \\ 0 - 5 \end{bmatrix} - \begin{cases} v \mu & v_3 \mu_3 \\ - 5 - 7 - 5 \end{bmatrix}$$

$$= \begin{bmatrix} (n - \kappa_5) & (-\cos v \mu_X) - (5\kappa) & (3|v v \mu_X) \\ - 5 & (\cos v \mu_X) \end{bmatrix} = \begin{bmatrix} v_3 \mu_3 \\ (\cos v \mu_X) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + (\kappa) & (2v v \mu_X) & (2v v \mu_X) \\ - 5v & (2v v \mu_X) \end{bmatrix} = \begin{bmatrix} v_3 \mu_3 \\ (v_3 \mu_3) \end{bmatrix} = \begin{bmatrix} v_3 \mu_3 \\ (v_3 \mu_$$

$$f(x) = 8 - 4 \left[\frac{1}{1} \cos \pi x + 1 \cos 2x + \cdots \right] + 4 \left[\frac{1}{8} \sin x + \frac{1}{2} \sin 2x + \cdots \right]$$

Since
$$f(x)$$
 is discortinuous at $x = 0,2,4,6...$ we find its value as
$$f(x) = \frac{1}{2} \left[\lim_{x \to c^{-}} f(x) + \lim_{x \to c^{+}} f(x) \right]$$

$$f(0) = \frac{1}{1} \left[\lim_{x \to 0^{-}} f(x) + \lim_{x \to 0^{+}} f(x) \right] = 0 + 4 = 2$$

$$f(2) = \frac{1}{2} \left[\lim_{x \to 2T} f(x) + \lim_{x \to 2T} f(x) \right] = \frac{2+0}{2} = \frac{2}{2}$$

Now, at
$$x=1$$
, the function is continuous. ... $f(1)=4-1=3$
Also at $x=1$, the function is continuous ... $f(1)=3$
 $f(1)=3$

Page 4

Q	MAEER'S MIT
	Put $x=0$ and $x=2$ in eq (2)
	$4-0=8-4\left[1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+$
	$\frac{1}{3} = \frac{1}{\pi^2} \left[\frac{1+1+1+1}{1+2+3^2} - \frac{1}{3} \right]$
	$\frac{4 - 4 - 8 - 4}{3} = \frac{1}{\pi^2} \left[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} \right]$
	$\frac{1}{3} = \frac{-1}{\pi^2} \left[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} \right] $ (4)
	Adding (3) and (4), we get $\frac{-1 = -2}{3} \prod_{1}^{2} \begin{bmatrix} 1 + 1 + 1 + \cdots \\ 1^{2} & 2^{2} & 3^{2} \end{bmatrix}$
	$\frac{6}{12} = \frac{1}{1} + \frac{3}{1} + \frac{3}{1} + \cdots$
Q · u>	Solution:
	$f(x) = \sum_{n=1}^{\infty} b_n s_n^n nx \qquad (x = \pi)$
	where $bn = 2 \int_{0}^{\pi} f(x) \sin nx dx = 2 \int_{0}^{\pi} 2x \sin(nx) dx + \frac{\pi}{10} \int_{0}^{\pi} 3$
	$\frac{\int (\pi - x) \sin(nx) dx}{\pi s }$
	$= \frac{2}{3\pi} \left[\frac{5(2x)(-\cos nx) + (2\sin nx)}{n^2} \right] + \frac{5(\pi-x) - (\cos nx)}{n^2} - \frac{3\pi}{13}$
	$\frac{3\pi}{3} \frac{n^2}{n^2} = \frac{2}{3} \frac{\sin n\pi}{2} = \frac{2}{3} \frac{\sin n\pi}{3}$
	Page 5

MAEER'S MIT

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{2} \frac{1}{2} \frac{1}{1} \frac{$$

$$\frac{1}{\pi} \left[\frac{1}{2} \frac{3 \sin x + 1}{2} \cdot \frac{13 \sin x - 1}{4^2 \cdot 2} \cdot \frac{13 \sin x - 1}{5^2 \cdot 2} \right]$$

Page 6