BB 101

MODULE: PHYSICAL BIOLOGY

Ambarish Kunwar

Lab No. 204
Department of Biosciences and Bioengineering
IIT Bombay

akunwar@iitb.ac.in

http://www.bio.iitb.ac.in/~akunwar/

Review

- Proteins and their structures
- Proteins are free energy minimizers
- Microstate and Macrostate
- Relations G = H TS, $G = -k_BT \ln Z$ and $S = k_B \ln W$
- HP models of protein folding

Another Toy Models of Protein Folding

- Consider a protein consisting of three amino acids A, B and C connected with bonds of equal length
- This protein is placed on a square grid such that only A and C are free to rotate in a plane due to thermal energy such that the bonds are always aligned along the grid lines
- Bending energy of the protein is given by

$$\epsilon = A(1 + \cos\theta_{AC})$$

- What is the energy of the straight conformation?
- What is the energy of the bent conformations?

Colored lines denote that space is inhomogeneous

What will be the structural state of the protein when A is small and when A is large?

Bent or straight?

Classical Mechanics: It will be found in straight state

Number of Straight and Bent conformations

- No. of straight conformations=4
- No. of bent conformations=8

Calculate Average Bending Energy

$$\epsilon = A(1 + \cos\theta_{AC})$$

$$\epsilon_{Straight} = 0$$

$$\epsilon_{bent} = A$$

Calculate Entropy

$$S = k_B \ln W$$

$$W_{Straight} = 4$$

$$S_{Straight} = k_B \ln 4 = 1.4 k_B$$

$$W_{bent} = 8$$

$$S_{bent} = k_B \ln 8 = 2.1 k_B$$

Calculate Free Energy

$$G_{Straight} = 0 - 1.4 k_B T$$

$$G_{bent} = A - 2.1 k_B T$$

Bent or Straight

$$G_{Straight} = 0 - 1.4 k_B T$$

$$G_{bent} = A - 2.1 k_B T$$

• When $A = 0.1 k_B$ T bent structure is preferred

• However, when $A = 1.5 k_B T$, straight structure is preferred

Protein folding in reality

So far we considered only toy models for protein folding However, in reality

- Protein monomers have many types of interaction: electrostatic, bending, Van der Waals etc
- Protein monomers interact with water (hydrophobic/hydrophilic)
- Energy/Enthalpy is more complicated than simple bending example we discussed
- One has to worry about entropy of the whole system (protein monomers+water+other ions like Na+ and CI-)

Protein folding in reality

Typical proteins "see" such a free energy landscape

"macro-states"

Protein folding in reality

THEORETICAL AND COMPUTATIONAL BIOPHYSICS GROUP

NIH Center for Macromolecular Modeling and Bioinformatics www.ks.uiuc.edu

presents

Six Microseconds of Protein Folding

Video Source: https://www.youtube.com/watch?v=sD6vyfTtE4U

Molecular Dynamics (MD) Simulations

- Calculates motion of atoms in a molecular assembly using Newtonian dynamics to determine the net force and acceleration experienced by each atom.
- Newton's law of motion: $\mathbf{F} = \mathbf{ma}$ where $\mathbf{F} = -\frac{d\mathbf{U}(\mathbf{r})}{d\mathbf{r}}$

$$U(r) = U_{bonded} + U_{non-bonded}$$

$$U_{bonded} = U_{bond} + U_{angle} + U_{torsion}$$

$$U_{\text{non-bonded}} = U_{\text{VDW}} + U_{\text{electrostatic}}$$

Figure taken from a talk by Dr. Suman Chakrabarty , National Chemical Laboratory, Pune, India

$$\Delta t \sim 10^{-15} s \; (fs)$$

Prof. G. N. Ramachandran, an Indian Physicist, made a famous discovery on proteins

Ramachandran and his colleagues said that, due to various constraints of arrangements of atoms in 3D, neighboring amino acids (protein monomer) in a protein can't fold into any shape — there are some constraints that their arrangements have to satisfy

Watch movie on legacy of Prof. G. N. Ramachandran https://www.youtube.com/watch?v=T_YgWjoaLXQ

Watch movie on legacy of Prof. G. N. Ramachandran https://www.youtube.com/watch?v=T_YgWjoaLXQ

Figure Sources: http://en.wikipedia.org/wiki/Ramachandran_plot

The set of "allowed" angles can be plotted: This plot is called the "Ramachandran Plot"

The red, brown, and yellow regions represent the favored, allowed, and "generously allowed" regions

Gene-Expression

Figure Source: https://downloads.safariltd.com/images/1000x1000/safariltd-human-organs-689304-1.jpg

All cells of a human body have **EXACTLY** the same DNA i.e. cells that form your eye, cells that form your kidney, cells that form your bone

Gene-Expression

- Same "genetic code" but works differently, how?
- We roughly know that each cell uses slightly different parts of DNA i.e. Cells in your eye "expresses" (reads) a set of different "genes" from cells in your skin

Gene-Expression

- Cells can "regulate" packaging and reading of DNA depending on many factors, including the external environment
- There are many proteins involved in regulating this; these proteins bind onto DNA to regulate "gene expression" (reading of genes)
- We can again use free-energy minimization to understand Protein-DNA binding and its dynamics

- Typically, proteins and DNA are oppositely charged
- Interaction energy favors binding; just like positive and negative charges to come together

Imagine a DNA with N binding sites (locations) where a certain protein can bind with high affinity

If you do an experiment, how many of those "locations" will be occupied by proteins?

Imagine a "state" with m proteins bound. (m<N)

In this picture m=2, N=4

- Assume each protein binding gives a constant energy change $-\varepsilon k_B T$
- If m proteins are bound then What is the total energy change?

$$U = -m\varepsilon k_B T = -N\rho\varepsilon k_B T$$

In other words, ${m \mathcal E}$ is the binding energy of a protein

Density of proteins
$$\rho = \frac{m}{N}$$

Imagine a "macro-state" with m proteins bound. (m<N)

What is the entropy?

"m" proteins, "N" binding locations

Number of arrangements ("micro-states")?

Let's calculate this for m=2, N=4

"m" proteins, "N" binding locations

Number of arrangements (number of "micro-states")

$$W = \frac{N!}{m! (N-m)!}$$

$$S = k_B \ln W = k_B \ln \left(\frac{N!}{m! (N - m)!} \right)$$

Use Sterling's Approximation

$$ln p! \approx plnp - p$$

With Stirling's approximation, one can rewrite entropy as

$$S = -k_B N[\rho ln\rho + (1 - \rho) ln(1 - \rho)]$$

$$G = U - TS$$

$$G = -N\rho\varepsilon k_B T - k_B T N[\rho \ln \rho + (1-\rho)\ln(1-\rho)]$$

$$\frac{G}{Nk_BT} = -\rho\varepsilon - \rho\ln\rho + (1-\rho)\ln(1-\rho)$$

The protein-DNA system would like to go to its minimum free energy "macro-state"

$$\frac{\partial G}{\partial \rho} = 0$$

$$\rho = \frac{e^{\varepsilon}}{1 + e^{\varepsilon}}$$

Summary So far..

- Proteins that bind on to the DNA control the "gene" expression in each cell
- Protein-DNA system minimizes its free energy
- Number of proteins bound to DNA will depend on the free energy of the protein-DNA system

Summary of Lecture 6

- Toy models of Protein-folding
- Ramachandran Plot
- Toy Model for Protein-DNA binding
- A simple model of Protein-DNA binding

 You can use combination of mass, spring and dashpots to understand some biological phenomenon-bacterial swimming and sedimentation of proteins

Swimming of a bacteria is different from swimming of a fish

- Motion at low-Reynolds number vs motion at high Reynolds number
- Motion at low-Reynolds number is dominated by viscous forces

 A low-Reynolds number microorganism can't swim by executing geometrically reciprocal motion

The Scallop Theorem

Thermal forces and Brownian motion

Figure Source: http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/ykl/report.html

 Thermal energy is comparable with other deterministic energy at molecular scales

Figure 5.1 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

- Diffusion and Diffusion Equation
- Why diffusion is not sufficient for transport

Einstein Relation

$$\gamma D = k_B T$$

Reaction-Diffusion System

- In presence of thermal energy, biological systems minimize free energy
- Concept of Macro-state and Micro-states
- How to calculate Entropy from Micro-states
- Toy models of Protein-folding and Ramachandra Plot
- Toy Model for Protein-DNA binding

End of Physical Biology Module

Physical biology or Biophysics exciting !!!

you realized that we can use the physics and mathematics you learned, to think about biological problems!

End of Physical Biology Module

Every time you see a biological phenomenon, think how to use your science/engineering knowledge to understand it

We know very little about what is going on in many biological processes

So, there is a great opportunity for you to go and make important discoveries!!!

Thank you!!!