

Variational Bayesian Inference

Christoph Lienhard München, 26. Januar 2018

Outline

Introduction

What is Variational Bayesian (VB) Inference Applications

Basic Theory

Mixture Models

Introduction

Example with Normal Distribution

Application of VB Approach

Case Studies

Summary

What is Variational Bayesian Inference

Every Bayesian problem starts with:

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{\int p(\mathbf{y},\theta)d\theta}$$

Obstacle:

Complicated $p(y, \theta)$ and thereby intractable integral $\int p(y, \theta) d\theta$

Variational approach:

Approximate $p(\theta|\mathbf{y})$ with an easier distribution $q(\theta)$

Applications

Alternative to MCMC methods

In general: mixture models, e.g.

- model selection
- machine learning

Introduction

Basic Theory

Mixture Models

Case Studies

Summary

Basic Theory

Setup:

Data y

A model with likelihood $p(y|\theta_1, \theta_2)$ + prior $p(\theta_1, \theta_2)$

Parameters θ_1 , θ_2

Basic Theory

Goal:

Find posterior $p(\theta_1, \theta_2 | \mathbf{y})$

Find an approximation $q(\theta_1, \theta_2)$

⇒ minimize Kullback – Leibler divergence:

$$KL(q||p) = \int q(\theta_1, \theta_2) \log \left(\frac{q(\theta_1, \theta_2)}{p(\theta_1, \theta_2|\mathbf{y})} \right) d\theta_1 d\theta_2$$

Basic Theory – Variational Calculus

Assume $q(\theta_1, \theta_2) = q_{\theta_1}(\theta_1)q_{\theta_2}(\theta_2)$

Applying variational calculus to KL(q||p):

$$\begin{split} &0 \stackrel{!}{=} \frac{\delta \textit{KL}(q||p)}{\delta q_{\theta_1}}(\theta_1) \\ &= \int q_{\theta_2}(\theta_2) \, \left(1 + \log \left(\frac{q_{\theta_1}(\theta_1) q_{\theta_2}(\theta_2)}{p(\theta_1, \theta_2|\mathbf{y})}\right)\right) d\theta_2 \\ &= 1 + \log \left(q_{\theta_1}(\theta_1)\right) + \int q_{\theta_2}(\theta_2) \left(\log \left(q_{\theta_2}(\theta_2)\right) - \log \left(p(\theta_1, \theta_2|\mathbf{y})\right)\right) d\theta_2 \end{split}$$

Basic Theory – Variational Calculus

Finally:

$$\log (q_{\theta_1}(\theta_1)) = \mathbf{E}_{q_{\theta_2}}(\log(p(\theta_1, \theta_2|\mathbf{y}))) + const.$$

Accordingly:

$$\log (q_{\theta_2}(\theta_2)) = \mathbf{E}_{q_{\theta_1}} (\log (p(\theta_1, \theta_2 | \mathbf{y}))) + const.$$

Problem: q_{θ_1} dependent on q_{θ_2} and vice versa => Solution through iterative approach

Introduction

Basic Theory

Mixture Models

Introduction
Example with Normal Distribution
Application of VB Approach

Case Studies

Summary

Mixture Models Introduction

Subpopulations in overall population:

$$p(y_i|\lambda,\phi) = \sum_{j=1}^K \lambda_j p_j(y_i|\phi_j)$$

Mixture Models Introduction

Introduce z_i : if observation y_i belongs to component m then $z_i = m \in \{1, 2, ..., K\}$

And:

$$p(y_i, z_i | \lambda, \phi) = \prod_{j=1}^K \left(\lambda_j \ p_j(y_i | \phi_j) \right)^{z_{ij}}$$

where $z_{ij} \coloneqq \delta_{jm_i}$

Mixture Models Introduction

Introduce z_i : if observation y_i belongs to component m then $z_i = m \in \{1, 2, ..., K\}$

And:

$$p(y_i, z_i | \lambda, \phi) = \prod_{j=1}^K \left(\lambda_j \ p_j(y_i | \phi_j) \right)^{z_{ij}}$$

where $z_{ij} \coloneqq \delta_{jm_i}$

$$p(y_i, z_i | \lambda, \phi) = \prod_{j=1}^K \left(\lambda_j \ p_j(y_i | \phi_j) \right)^{z_{ij}}$$

Model Parameters:

$$\phi_j = \{\mu_j, \sigma_j^2\}$$

Set

$$p_i(y_i|\phi_i) = N(y_i:\mu_i,\sigma_i^2)$$

$$p(y_i, z_i | \lambda, \phi) = \prod_{j=1}^K (\lambda_j N(y_i; \phi_j))^{z_{ij}}$$

Model Parameters:

$$\phi_j = \{\mu_j, \sigma_j^2\}$$

Prior factorization:

$$p(\lambda, \phi) = p(\lambda)p(\mu, \sigma^2)$$
$$= p(\lambda)p(\mu|\sigma^2)p(\sigma^2)$$

$$p(y_i, z_i | \lambda, \phi) = \prod_{j=1}^K \left(\lambda_j N(y_i; \mu_j, \sigma_j^2) \right)^{z_{ij}}$$

Prior distributions:

$$p(\lambda) \propto \prod_{j=1}^{K} \lambda_i^{\alpha_j - 1}$$

$$p(\sigma^2) \propto \prod_{j=1}^{K} \sigma_j^{-\gamma_j - 2} \exp\left(-\frac{\delta_j}{2\sigma_j^2}\right)$$

$$p(\mu|\sigma^2) \propto \prod_{j=1}^{K} N(\mu_j : m_j, \beta_j^{-1} \sigma_j^2)$$

Goal:

find $p(\lambda, \phi, \mathbf{z}|\mathbf{y})$

Bayesian Analysis:

$$p(\lambda, \phi, \mathbf{z}|\mathbf{y}) = \frac{p(\mathbf{y}, \mathbf{z}|\lambda, \mu, \sigma^2)p(\lambda)p(\mu|\sigma^2)p(\sigma^2)}{\int \sum_{\mathbf{z}} p(\mathbf{y}, \mathbf{z}, \lambda, \mu, \sigma^2) d\lambda d\mu d\sigma^2}$$

Easy, right?

$$p(\mathbf{y}, \mathbf{z}, \lambda, \mu, \sigma^2) \propto \prod_{j=1}^K \lambda_j^{\alpha_j - 1 + \sum_{i=1}^N z_{ij}} \prod_{j=1}^K \left[\sigma_j^{-\gamma_j - 1 - \sum_{i=1}^N z_{ij}} \exp\left(-\frac{1}{2} \sum_{i=1}^N z_{ij} \frac{\left(y_i - \mu_j\right)^2}{\sigma_j^2} \right) \right] \times \exp\left(-\frac{1}{2} \sigma_j^2 \left(\beta_j \left(\mu_j - m_j \right)^2 + \delta_j \right) \right) \right]$$

The Variational Approach:

$$q(\mathbf{z}, \lambda, \mu, \sigma^2) = q_{\lambda}(\lambda) q_{\mu}(\mu | \sigma^2) q_{\sigma^2}(\sigma^2) \prod_{i=1}^{N} q_{z_i}(z_i)$$

From basic theory:

$$\log(q_i) = \mathbf{E}_{q_{j\neq i}} [\log(p(\mathbf{z}, \lambda, \mu, \sigma^2 | \mathbf{y}))] + const.$$

Turns out:

 q_i 's for model parameters same as priors, but updated parameters:

Parameter	Dependencies
α'	α , q_z
eta'	eta , $q_{f z}$
γ'	γ , q_z
m'	m, q_z, β, β', y
δ'	δ , q_z , β , β' , y , m , m'

Remaining question: What is q_z ?

$$\log(q_{\mathbf{z}}) = \mathbf{E}_{q_{\boldsymbol{\phi}}} \left[\log \left(p(\mathbf{z}, \mathbf{y}, \lambda, \mu, \sigma^2) \right) \right] + const.$$

Define $q_{ij} \coloneqq q_{z_i}(z_i = j)$

$$q_{ij} \propto \exp\left\{\mathbf{E}_{q_{\lambda}}[\log(\lambda_{j})] - \frac{1}{2}\mathbf{E}_{q_{\sigma^{2}}}[\log(\sigma_{j}^{2})] - \mathbf{E}_{q_{\mu},q_{\sigma^{2}}}\left[\frac{(y_{i} - \mu_{j})^{2}}{2\sigma_{j}^{2}}\right]\right\}$$

Use iterative algorithm:

```
Set initial number of components k

Set initial parameters \alpha, \beta, y, m, \delta

Set initial distribution q_{ij}

while not converged:

update \alpha', \beta', y', m', \delta'

update q_{ij}

eliminate unimportant components

check if converged

end while
```


Introduction

Basic Theory

Mixture Models

Case Studies

Pork Carcass Human Head

Summary

Case Studies

Dimensions:

148 x 218 pixels

i.e. N = 32264

Intensity Resolution:

256

Expected Components:

bone

fat

muscle

Histogram of pixel intensities

Dimensions:

148 x 218 pixels

i.e. $N = 32\ 264$

Intensity Resolution:

256

Expected Components:

bone

fat

muscle

Start with k = 15 components

Initial values for hyperparameters:

 $\alpha_i^{(0)}$: all weights the same

Start with k = 15 components

Initial values for hyperparameters:

 $\alpha_i^{(0)}$: all weights the same

$$\gamma_j^{(0)}$$
, $\delta_j^{(0)}$

Start with k = 15 components

Initial values for hyperparameters:

 $\alpha_i^{(0)}$: all weights the same

$$\gamma_i^{(0)}$$
, $\delta_i^{(0)}$

$$m_j^{(0)} = 125$$

 $\beta_i^{(0)} = 0.05$

Start with k = 15 components

Initial values for hyperparameters:

 $\alpha_i^{(0)}$: all weights the same

$$\gamma_i^{(0)}$$
, $\delta_i^{(0)}$

$$m_j^{(0)} = 125$$

$$\beta_i^{(0)} = 0.05$$

Normal Distribution for μ

Initial allocation for data y: Random with uniform distribution over k components

$$q(z_i = j)$$
:

$\lambda_j q_j(y_i | \mu_j, \sigma_j) = \lambda_j N(y_i; \mu_j, \sigma_j)$

6 Components

μ_j	σ_j	λ_j
88.1	10.1	0.18
89.1	37.8	0.28
119.2	7.0	0.10
134.3	5.0	0.38
215.3	19.3	0.03
244.2	2.4	0.04

6 Components

μ_j	σ_j	λ_j
88.1	10.1	0.18
89.1	37.8	0.28
119.2	7.0	0.10
134.3	5.0	0.38
215.3	19.3	0.03
244.2	2.4	0.04

6 Components

μ_j	σ_j	λ_j
88.1	10.1	0.18
89.1	37.8	0.28
119.2	7.0	0.10
134.3	5.0	0.38
215.3	19.3	0.03
244.2	2.4	0.04

$q(y_i|\mu,\sigma) = \sum_{j=1}^k \lambda_j N(y_i;\mu_j,\sigma_j)$

6 Components

μ_j	σ_j	λ_j
88.1	10.1	0.18
89.1	37.8	0.28
119.2	7.0	0.10
134.3	5.0	0.38
215.3	19.3	0.03
244.2	2.4	0.04

Case Study – Human Head

Case Study – Human Head Setup

Huge amount of data points => Use just one slice for approximation

Same initial parameters as pork data

μ_j	σ_j	λ_j
7.1	2.8	0.18
12.4	4.1	0.13
22.1	6.8	0.03
38.1	9.8	0.04
62.1	14.0	0.09
99.1	16.4	0.19
120.8	9.7	0.07
153.0	17.2	0.26
217.2	22.8	0.02

$$\lambda_j q_j(y_i|\mu_j,\sigma_j) = \lambda_j N(y_i:\mu_j,\sigma_j)$$

μ_j	σ_j	λ_j
7.1	2.8	0.18
12.4	4.1	0.13
22.1	6.8	0.03
38.1	9.8	0.04
62.1	14.0	0.09
99.1	16.4	0.19
120.8	9.7	0.07
153.0	17.2	0.26
217.2	22.8	0.02

μ_j	σ_j	λ_j
7.1	2.8	0.18
12.4	4.1	0.13
22.1	6.8	0.03
38.1	9.8	0.04
62.1	14.0	0.09
99.1	16.4	0.19
120.8	9.7	0.07
153.0	17.2	0.26
217.2	22.8	0.02

μ_j	σ_j	λ_j
7.1	2.8	0.18
12.4	4.1	0.13
22.1	6.8	0.03
38.1	9.8	0.04
62.1	14.0	0.09
99.1	16.4	0.19
120.8	9.7	0.07
153.0	17.2	0.26
217.2	22.8	0.02

$$q(y_i|\mu,\sigma) = \sum_{j=1}^k \lambda_j N(y_i:\mu_j,\sigma_j)$$

Introduction

Basic Theory

Mixture Models

Case Studies

Summary

Summary

Approximating a complicated posterior by using easy to calculate distributions and minimize the KL divergence

Much faster than MCMC

Not as accurate as MCMC

Summary

Thank you for your attention

