	Notas	
	1	
Nome: RA:	2	
3ª Prova - MA 211 - Turma 03 de dezembro de 2010.	3	
Faça figuras grandes e claras em todas as questões.	4	

1. [2,5 pontos] Determine a área delimitada no plano (Oxy) pela elipse

$$C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

- 2. [2,5 pontos] Determine a área da lâmina do cilindro circular $\Sigma : x^2 + y^2 = 4$ em \mathbb{R}^3 contida entre o plano (Oxy) e o cilindro parabólico P : $z = y^2$, no primeiro octante.
- 3. [2,5 pontos] Sejam A=(3,0), B=(1,1) e C=(0,3) pontos de \mathbb{R}^2 e γ a trajetória que vai em linha reta de A até B e em seguida de B até C. Determine o trabalho ao longo de γ do campo de forças

$$\begin{split} F: \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & F(x,y) = \left(-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}\right). \end{split}$$

4. [2,5 pontos] Sejam $E \subset \mathbb{R}^3$ uma região sólida simples com fronteira $S = \partial E$ e um campo vetorial $F: Dom(F) \subset \mathbb{R}^3 \to \mathbb{R}^3$ de classe C^1 tal que Dom(F) é uma região aberta contendo E. Mostre que

$$\iint_{S} (\nabla \times \mathsf{F}) \bullet dS = 0,$$

isto é, o fluxo do rotacional de F através de S é zero.