In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.ticker as tic

In [2]: df=pd.read\_csv("cleaned\_rainfall")
 df

## Out[2]:

|      | index | SUBDIVISION                     | YEAR | JAN  | FEB   | MAR  | APR   | MAY   | JUN   | JUL   | AUG   | SEP   | ОСТ   |
|------|-------|---------------------------------|------|------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| 0    | 0     | ANDAMAN &<br>NICOBAR<br>ISLANDS | 1901 | 49.2 | 87.1  | 29.2 | 2.3   | 528.8 | 517.5 | 365.1 | 481.1 | 332.6 | 388.5 |
| 1    | 1     | ANDAMAN &<br>NICOBAR<br>ISLANDS | 1902 | 0.0  | 159.8 | 12.2 | 0.0   | 446.1 | 537.1 | 228.9 | 753.7 | 666.2 | 197.2 |
| 2    | 2     | ANDAMAN &<br>NICOBAR<br>ISLANDS | 1903 | 12.7 | 144.0 | 0.0  | 1.0   | 235.1 | 479.9 | 728.4 | 326.7 | 339.0 | 181.2 |
| 3    | 3     | ANDAMAN &<br>NICOBAR<br>ISLANDS | 1904 | 9.4  | 14.7  | 0.0  | 202.4 | 304.5 | 495.1 | 502.0 | 160.1 | 820.4 | 222.2 |
| 4    | 4     | ANDAMAN &<br>NICOBAR<br>ISLANDS | 1905 | 1.3  | 0.0   | 3.3  | 26.9  | 279.5 | 628.7 | 368.7 | 330.5 | 297.0 | 260.7 |
|      |       |                                 |      |      |       |      |       |       |       |       |       |       |       |
| 4111 | 4111  | LAKSHADWEEP                     | 2011 | 5.1  | 2.8   | 3.1  | 85.9  | 107.2 | 153.6 | 350.2 | 254.0 | 255.2 | 117.4 |
| 4112 | 4112  | LAKSHADWEEP                     | 2012 | 19.2 | 0.1   | 1.6  | 76.8  | 21.2  | 327.0 | 231.5 | 381.2 | 179.8 | 145.9 |
| 4113 | 4113  | LAKSHADWEEP                     | 2013 | 26.2 | 34.4  | 37.5 | 5.3   | 88.3  | 426.2 | 296.4 | 154.4 | 180.0 | 72.8  |
| 4114 | 4114  | LAKSHADWEEP                     | 2014 | 53.2 | 16.1  | 4.4  | 14.9  | 57.4  | 244.1 | 116.1 | 466.1 | 132.2 | 169.2 |
| 4115 | 4115  | LAKSHADWEEP                     | 2015 | 2.2  | 0.5   | 3.7  | 87.1  | 133.1 | 296.6 | 257.5 | 146.4 | 160.4 | 165.4 |

4116 rows × 20 columns

| ( | df["SUBDIVISION"].value_counts()   |     |  |  |  |  |  |  |  |
|---|------------------------------------|-----|--|--|--|--|--|--|--|
|   | GUJARAT REGION                     | 115 |  |  |  |  |  |  |  |
|   | EAST MADHYA PRADESH                | 115 |  |  |  |  |  |  |  |
|   | COASTAL KARNATAKA                  | 115 |  |  |  |  |  |  |  |
|   | MADHYA MAHARASHTRA                 | 115 |  |  |  |  |  |  |  |
|   | KERALA                             | 115 |  |  |  |  |  |  |  |
|   | EAST RAJASTHAN                     | 115 |  |  |  |  |  |  |  |
|   | NAGA MANI MIZO TRIPURA             | 115 |  |  |  |  |  |  |  |
|   | WEST RAJASTHAN                     | 115 |  |  |  |  |  |  |  |
|   | GANGETIC WEST BENGAL               | 115 |  |  |  |  |  |  |  |
|   | BIHAR                              | 115 |  |  |  |  |  |  |  |
|   | KONKAN & GOA                       | 115 |  |  |  |  |  |  |  |
|   | SOUTH INTERIOR KARNATAKA           | 115 |  |  |  |  |  |  |  |
|   | ORISSA                             | 115 |  |  |  |  |  |  |  |
|   | JAMMU & KASHMIR                    | 115 |  |  |  |  |  |  |  |
|   | TAMIL NADU                         | 115 |  |  |  |  |  |  |  |
|   | CHHATTISGARH                       | 115 |  |  |  |  |  |  |  |
|   | RAYALSEEMA                         | 115 |  |  |  |  |  |  |  |
|   | UTTARAKHAND                        | 115 |  |  |  |  |  |  |  |
|   | HARYANA DELHI & CHANDIGARH         | 115 |  |  |  |  |  |  |  |
|   | SUB HIMALAYAN WEST BENGAL & SIKKIM | 115 |  |  |  |  |  |  |  |
|   | ASSAM & MEGHALAYA                  | 115 |  |  |  |  |  |  |  |
|   | VIDARBHA                           | 115 |  |  |  |  |  |  |  |
|   | JHARKHAND                          | 115 |  |  |  |  |  |  |  |
|   | WEST UTTAR PRADESH                 | 115 |  |  |  |  |  |  |  |
|   | WEST MADHYA PRADESH                | 115 |  |  |  |  |  |  |  |
|   | TELANGANA                          | 115 |  |  |  |  |  |  |  |
|   | PUNJAB                             | 115 |  |  |  |  |  |  |  |
|   | MATATHWADA                         | 115 |  |  |  |  |  |  |  |
|   | SAURASHTRA & KUTCH                 | 115 |  |  |  |  |  |  |  |
|   | HIMACHAL PRADESH                   | 115 |  |  |  |  |  |  |  |
|   | NORTH INTERIOR KARNATAKA           | 115 |  |  |  |  |  |  |  |
|   | EAST UTTAR PRADESH                 | 115 |  |  |  |  |  |  |  |
|   | COASTAL ANDHRA PRADESH             | 115 |  |  |  |  |  |  |  |
|   | LAKSHADWEEP                        | 114 |  |  |  |  |  |  |  |
|   | ANDAMAN & NICOBAR ISLANDS          | 110 |  |  |  |  |  |  |  |
|   | ARUNACHAL PRADESH                  | 97  |  |  |  |  |  |  |  |
|   | Name: SUBDIVISION, dtype: int64    |     |  |  |  |  |  |  |  |

## **KERALA**

In [4]: dat1=df[df["SUBDIVISION"]=="KERALA"]
 dat1

## Out[4]:

|      | index | SUBDIVISION | YEAR | JAN  | FEB  | MAR  | APR   | MAY   | JUN    | JUL    | AUG   | SEP   | ОСТ   |
|------|-------|-------------|------|------|------|------|-------|-------|--------|--------|-------|-------|-------|
| 3887 | 3887  | KERALA      | 1901 | 28.7 | 44.7 | 51.6 | 160.0 | 174.7 | 824.6  | 743.0  | 357.5 | 197.7 | 266.9 |
| 3888 | 3888  | KERALA      | 1902 | 6.7  | 2.6  | 57.3 | 83.9  | 134.5 | 390.9  | 1205.0 | 315.8 | 491.6 | 358.4 |
| 3889 | 3889  | KERALA      | 1903 | 3.2  | 18.6 | 3.1  | 83.6  | 249.7 | 558.6  | 1022.5 | 420.2 | 341.8 | 354.1 |
| 3890 | 3890  | KERALA      | 1904 | 23.7 | 3.0  | 32.2 | 71.5  | 235.7 | 1098.2 | 725.5  | 351.8 | 222.7 | 328.1 |
| 3891 | 3891  | KERALA      | 1905 | 1.2  | 22.3 | 9.4  | 105.9 | 263.3 | 850.2  | 520.5  | 293.6 | 217.2 | 383.5 |
|      |       |             |      |      |      |      |       |       |        |        |       |       |       |
| 3997 | 3997  | KERALA      | 2011 | 20.5 | 45.7 | 24.1 | 165.2 | 124.2 | 788.5  | 536.8  | 492.7 | 391.2 | 227.2 |
| 3998 | 3998  | KERALA      | 2012 | 7.4  | 11.0 | 21.0 | 171.1 | 95.3  | 430.3  | 362.6  | 501.6 | 241.1 | 187.5 |
| 3999 | 3999  | KERALA      | 2013 | 3.9  | 40.1 | 49.9 | 49.3  | 119.3 | 1042.7 | 830.2  | 369.7 | 318.6 | 259.9 |
| 4000 | 4000  | KERALA      | 2014 | 4.6  | 10.3 | 17.9 | 95.7  | 251.0 | 454.4  | 677.8  | 733.9 | 298.8 | 355.5 |
| 4001 | 4001  | KERALA      | 2015 | 3.1  | 5.8  | 50.1 | 214.1 | 201.8 | 563.6  | 406.0  | 252.2 | 292.9 | 308.1 |

115 rows × 20 columns

```
In [5]: dat1.plot.bar("YEAR","JAN")
        plt.xlim(0,20)
        plt.figure(figsize=(60,30))
        plt.show()
        dat1.plot.box()
        plt.xlim(2,14)
        plt.ylim(0,2000)
        plt.show()
        dat1.plot.area()
        dat1.plot.scatter("YEAR","JAN")
        sns.stripplot(x=dat1["JAN"],y=dat1["YEAR"],jitter=True)
        plt.ylim(1900,2010)
        plt.xlim(0,145)
        plt.xticks(dat1["JAN"],rotation="vertical")
        plt.gca().xaxis.set_major_locator(tic.MultipleLocator(base=10))
        plt.show()
        dat1.plot.hist()
```



<Figure size 4320x2160 with 0 Axes>





Out[5]: <AxesSubplot:ylabel='Frequency'>



In [6]: sns.lineplot(x=dat1["JAN"],y=dat1["YEAR"])
plt.show()



## **SOUTH INTERIOR KARNATAKA**

In [7]: dat2=df[df["SUBDIVISION"]=="SOUTH INTERIOR KARNATAKA"]
 dat2

Out[7]:

|      | index | SUBDIVISION                    | YEAR | JAN | FEB  | MAR  | APR  | MAY   | JUN   | JUL   | AUG   | SEP   | ОСТ   | NC  |
|------|-------|--------------------------------|------|-----|------|------|------|-------|-------|-------|-------|-------|-------|-----|
| 3772 | 3772  | SOUTH<br>INTERIOR<br>KARNATAKA | 1901 | 4.9 | 31.8 | 3.0  | 32.7 | 109.6 | 106.0 | 210.0 | 109.2 | 140.8 | 170.1 | 72  |
| 3773 | 3773  | SOUTH<br>INTERIOR<br>KARNATAKA | 1902 | 1.9 | 0.5  | 6.7  | 42.6 | 97.7  | 91.7  | 210.0 | 82.1  | 138.4 | 219.1 | 44  |
| 3774 | 3774  | SOUTH<br>INTERIOR<br>KARNATAKA | 1903 | 0.3 | 0.0  | 1.1  | 11.6 | 125.1 | 129.7 | 284.4 | 155.7 | 197.1 | 154.2 | 186 |
| 3775 | 3775  | SOUTH<br>INTERIOR<br>KARNATAKA | 1904 | 1.0 | 0.5  | 5.2  | 43.5 | 144.7 | 167.9 | 197.1 | 73.2  | 89.6  | 120.4 | 2   |
| 3776 | 3776  | SOUTH<br>INTERIOR<br>KARNATAKA | 1905 | 1.7 | 7.9  | 14.2 | 23.6 | 118.6 | 95.9  | 148.4 | 140.6 | 43.1  | 142.8 | 22  |
|      |       |                                |      |     |      |      |      |       |       |       |       |       |       |     |
| 3882 | 3882  | SOUTH<br>INTERIOR<br>KARNATAKA | 2011 | 2.1 | 12.4 | 12.4 | 80.2 | 83.5  | 177.1 | 202.4 | 199.5 | 111.2 | 144.8 | 56  |
| 3883 | 3883  | SOUTH<br>INTERIOR<br>KARNATAKA | 2012 | 4.6 | 5.5  | 8.1  | 99.0 | 45.6  | 81.8  | 144.7 | 236.5 | 100.6 | 62.8  | 82  |
| 3884 | 3884  | SOUTH<br>INTERIOR<br>KARNATAKA | 2013 | 0.5 | 10.1 | 11.7 | 34.6 | 95.6  | 176.2 | 307.4 | 151.7 | 191.8 | 103.7 | 24  |
| 3885 | 3885  | SOUTH<br>INTERIOR<br>KARNATAKA | 2014 | 0.4 | 2.4  | 17.7 | 46.7 | 130.5 | 106.8 | 271.6 | 254.6 | 161.6 | 152.9 | 20  |
| 3886 | 3886  | SOUTH<br>INTERIOR<br>KARNATAKA | 2015 | 1.7 | 0.2  | 24.4 | 80.5 | 125.3 | 218.7 | 112.0 | 136.6 | 164.5 | 106.1 | 138 |

115 rows × 20 columns

```
In [8]:
        dat2.plot.bar("YEAR","JAN")
        plt.xlim(0,20)
        plt.figure(figsize=(60,30))
        plt.show()
        dat2.plot.box()
        plt.xlim(2,14)
        plt.ylim(0,2000)
        plt.show()
        dat2.plot.area()
        dat2.plot.scatter("YEAR","JAN")
        sns.stripplot(x=dat2["JAN"],y=dat2["YEAR"],jitter=True)
        plt.ylim(1900,2010)
        plt.xlim(0,145)
        plt.xticks(dat2["JAN"],rotation="vertical")
        plt.gca().xaxis.set_major_locator(tic.MultipleLocator(base=20))
        plt.show()
        dat2.plot.hist()
        plt.show()
```



<Figure size 4320x2160 with 0 Axes>





In [9]: sns.lineplot(x=dat2["JAN"],y=dat2["YEAR"])
plt.show()

