FEUILLE 2 : DÉFINITION DES FONCTIONS HOLOMORPHES FORMULES DE CAUCHY-RIEMANN, INTÉGRATION SUR UN CHEMIN

Exercice 1. Les fonctions suivantes sont-elles holomorphes en z = x + iy?

(i)
$$f(z) = x^2 - y^2 + 2ixy$$
,

(ii)
$$f(z) = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}$$

(iii)
$$f(z) = \frac{y}{x^2 + y^2} - i\frac{x}{x^2 + y^2}$$
,

$$(iv) \ f(z) = x^2 y^2 + 2ix^2 y^2$$

$$(v) f(z) = e^{\bar{z}},$$

$$(vi) f(z) = e^{|z|^2}.$$

Exercice 2. 1. Soit f = P + iQ une fonction holomorphe dans un ouvert connexe non vide Ω de \mathbb{C} . Montrer que les assertions suivantes sont équivalentes :

- (i) f est constante, (ii) P est constante, (iii) Q est constante, (iv) \bar{f} est holomorphe dans U, (v) |f| est constant.
- 2. Soit f, g dans l'espace $H(\Omega)$ des fonctions holomorphes sur Ω . On suppose que g ne s'annule pas dans Ω et $f(z)\bar{g}(z) \in \mathbb{R}$ pour $z \in \Omega$. Montrer qu'il existe $c \in \mathbb{R}$ telle que f = cg.

Exercice 3. Pour z = x + iy, $x, y \in \mathbb{R}$, on pose $f(z) = x + iy^2$. Montrer que f est \mathbb{R} -différentiable sur \mathbb{C} et calculer sa différentielle. Existe-t-il un ouvert U de \mathbb{C} telle que $f_{|U}$ soit holomorphe sur U?

Exercice 4. 1. Soit $U = \{z = x + iy \in \mathbb{C} : -\pi < x < \pi, y \in \mathbb{R}\}$. Soit $P(x,y) = \frac{\sin x}{\cos x + \operatorname{ch} y}$ pour $z \in U$. Montrer qu'il existe f dans l'espace H(U) des fonctions holomorphes sur U, unique, telle que f(0) = 0 et $P = \operatorname{Re} f$.

2. Soit $a, b, c \in \mathbb{R}$. On pose $P(x, y) = ax^2 + 2bxy + cy^2$ pour $x, y \in \mathbb{R}$.

Donner une condition nécessaire et suffisante pour qu'il existe $f \in H(\mathbb{C})$ telle que $P = \operatorname{Re} f$. Sous cette condition trouver alors toutes les applications $f \in H(\mathbb{C})$ telles que $P = \operatorname{Re} f$.

Exercice 5. Soit f une fonction holomorphe sur un ouvert Ω , u sa partie réelle et v sa partie imaginaire. On suppose que les dérivées partielles secondes de u et v existent et sont continues sur Ω . Montrer que u (resp. v) est harmonique (c'est-à-dire $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$).

Exercice 6. On dit que deux fonctions réelles u(x, y) et v(x, y) sont conjuguées harmoniques si elles vérifient les équations de Cauchy-Riemann.

- 1. Montrer que si u et v sont conjuguées harmoniques, alors u et v sont harmoniques.
- 2. Trouver les conjuguées harmoniques des fonctions harmoniques suivantes dans les ouverts indiqués :
 - 1. $u(x,y) = x^2 y^2 + x \text{ sur } \mathbb{C}$.
 - 2. $u(x,y) = \frac{x}{x^2 + y^2}$ sur $\mathbb{C} \setminus \{0\}$.

3. $u(x,y) = \frac{1}{2} \log (x^2 + y^2)$ sur $\mathbb{C} \setminus \{x + iy; y = 0, x \leq 0\}$. (On raisonnera sur chaque ouvert $\{\pm y > 0\}$ et $\{x > 0\}$, et on utilisera suivant les cas que $\operatorname{Arctg} t$ et $-\operatorname{Arctg} (1/t)$ sont primitives de $(1 + t^2)^{-1}$).

Exercice 7. Soit f(z) = u + iv une fonction holomorphe dans un ouvert connexe Ω . Montrer que les familles de courbes $u(x,y) = c_1$ et $v(x,y) = c_2$ sont orthogonales ; plus précisément, montrer qu'en tout point d'intersection $z_0 = x_0 + iy_0$ de deux de ces courbes tel que $f'(z_0) \neq 0$, leurs normales respectives sont perpendiculaires.

Exercice 8. 1. Soit $\forall z \in \mathbb{C}, f(z) = z^2 - 1$. On considère les chemins paramétrés suivants:

- (i) $\forall t \in [0, 1], \gamma_1(t) = t + it^2,$
- (ii) $\forall t \in [0, 2\pi], \gamma_2(t) = 2e^{t+it},$
- (iii) $\forall t \in [0, 2\pi], \gamma_3(t) = \cos(t) + i\sin(2t).$

Montrer que l'intégrale de la fonction f sur chacun des chemins considérés est bien définie, et calculer sa valeur.

2. Soit

$$\forall t \in [0, 2\pi], \gamma(t) = e^{it}.$$

On considère les fonctions suivantes:

(i)
$$\forall z \in \mathbb{C} \setminus \{0\}, a(z) = \frac{1}{z}$$
, (ii) $\forall z \in \mathbb{C}, b(z) = |z|^2$, (iii) $\forall z \in \mathbb{C}, c(z) = z^2$,

(iv)
$$\forall z \in \mathbb{C} \setminus \{0\}, d(z) = \frac{z^3+1}{z^2}$$
, (v) $\forall z \in \mathbb{C}, e(z) = \operatorname{Re}(z^2) - (\operatorname{Im} z)^2$.

Montrer que l'intégrale sur le chemin paramétré γ de chacune des fonctions considérées est bien définie, et calculer sa valeur.