Raster Data

Vector Data Review

- discrete objects
- geometry = points
 - by themselves
 - − connected → lines
 - closed → polygons
- attributes linked to feature ID
- explicit location
 - every point has coordinates

Fields in GIS

- continuous f(x, y)
- so how represent
 - geometry?
 - attributes?
 - location?

Approximating Fields

- Point set
 - regular
 - irregular
- Grid
- Polygons
- TIN
- Contours

Sampled Fields: Rasters

- Divide (part of) the world into square cells (aka pixels)
- Register the corners to the Earth
- Represent fields
 by assigning field values to cells
- Represent discrete objects as collections of one or more cells
- More commonly used to represent fields than discrete objects

Raster Data Model

- Cell size defines level of spatial detail
 - all variation within cells is lost
 - $\downarrow \rightarrow \uparrow \# cells \rightarrow \uparrow data volume$
- Cell value
 - field value w/in cell
 - average? total? modal?
 - central point?
- Implicit geometry
 - grid cell (pixel) coordinates

Raster Coordinates

- convert
 raster (row, column)
 to
 map (x, y)
 using affine transform
- transform parameters
 may be saved in "world file"
 - or embedded in raster formatslike GeoTIFF

Characteristics of Rasters (cont'd)

- Bands (channels)
 - single ("binary")

– single ("grayscale")

- multiple ("color composite")

0	0	0	0
0	64	128	255
255	255	255	255
64	64	64	64
0	64	128	255
128	255	128	128
128	128	128	0
0	64	128	255
64	64	64	0
255	255	255	255
0	64	128	255
0	0	0	0

Raster Examples

aerial image

scanned topo map

Vector ↔ Raster Conversion

• Rasterize = cells that intersect feature

 Vectorize = outline contiguous region

Note: Distance vs Buffering

Buffer: discrete

• Distance: continuous

Feature Representation in Rasters: Sub-pixel Features Coarsened

vector raster points lines polygons

Feature Representation in Rasters: Large Features Blurred

• Tree represented as varying values of "treeness", instead of as a crisp feature

Raster Operations

in order of increasing #input cells contributing to 1 output cell

- Local
- Focal
 - aka neighborhood
- Zonal
- Global

Raster Operations

Extent

- restrict processing to rectangular subset
 - explicit: (x_{min}, y_{min}, x_{max}, y_{max})
 - default: bounding box of inputs

Local Operations

- out(x_i , y_j) = f(in(x_i , y_j))
 - Neighbors don't influence
- Examples
 - reclassify
 - select
 - min/max
- Think of as:
 - Solve for all unique cell values; then
 - Reclassify

Local Operation Example: 1 Input

Reclassify (change values using lookup table)

Local Operation Example: Multiple Inputs

- shaded = NoData
 - NB: NoData in any input → NoData in output

Local Operation Example: Mask

 $1 \rightarrow pass$

 $0 \rightarrow 0$

NoData → NoData

Extract

Clip raster by mask layer (vector)

Focal (Neighborhood) Operations

- out $(x_i, y_j) = f(in(x_k, y_m) \forall k, m near i, j)$
 - single celland its neighbors
- Examples
 - smooth
 - sharpen
 - noise suppresion
- Think of as
 - weighted sumor
 - sort and pick

Focal Operation Example: Mean

	1	2	2	2	2
	1	2	2	2	3
(a)	1	2	1	3	3
	2	2	2	3	3
	2	2	2	2	3

(b)

1.56	2.00	2.22
1.67	2.11	2.44
1.67	2.11	2.44

Zonal Operations

- out $(x_i, y_j) =$ $f(in(x_k, y_m) \forall k, m \exists zone(x_k, y_m) = zone(x_i, y_j))$
 - like focal, but uses zone for neighborhood
 - replace cell value
 with some property
 of its neighbors
 in zone it overlaps

James Frew • ESM 263 • Winter 2022

Zonal Operation Example: Zonal Mean

1	2	2	1
1	4	5	1
2	3	7	6
1	3	4	4

1	1	2	2
1	1	2	2
1	1	3	3
ფ	3	3	3

2.17	2.17	2.25	2.25
2.17	2.17	2.25	2.25
2.17	2.17	4.17	4.17
4.17	4.17	4.17	4.17

input

zones

zonal mean (input, zones)

e.g. 2.17 = mean(zone 1: {1, 2, 1, 4, 2, 3})

Zones Can Be Discontiguous

• Zone = all cells with same value

2	1	4	4	4	1
2	2	1	15	5	1
2	2	1	5	5	1
1	2	4	1	2	1
3	3	3	1	2	1
1	1	3	4	4	4

Zonal Operations in QGIS

- supported statistics
 - majority, median, minority
 - maximum, range, minimum
 - sum, mean, standard deviation
 - count, variety (# distinct values)
- zonal operations produce tables, not rasters
 - -row = zone
 - column = statistic
- input zones can be a vector layer
 - output is a vector layer with zonal stats added to attribute table

Global Operations

- out $(x_i, y_j) = f(in(x_k, y_m) \forall k, m)$
- each output cell depends on ≤ all input cells
 - can be "computationally intensive"
- Examples
 - distance
 - variogram

Global Operation Example: Proximity

Euclidean distance to nearest target value(s)

Figure Credits

- ArcGIS 9: Using ArcGIS Spatial Analyst
- ArcMap Help
- Geographic Information Systems and Science, 2nd ed. ISBN 978-0470870013
- GIS Fundamentals, 6th ed. ISBN 978-1-59399-552-2
- GISGeography.com
- Introduction to Geographic Information Systems, 4th ed. ISBN 978-0-07-305115-2
- Modeling Our World. ISBN 1-879102-62-5