Cost-Aware Bayesian Optimization with Adaptive Stopping via Gittins Indices

Qian Xie 谢倩 (Cornell ORIE)

INFORMS Annual Meeting 2025 Job Market Showcase

ML model training:

Training hyperparameters ------

Adaptive experimentation:

Decision/design variables ———

Revenue

Input $x \longrightarrow$

Performance metric f(x)

Training time

Compute credits

→ Accuracy

Revenue

Operational cost User experience

Adaptive experimentation:

Training hyperparameters

ML model training:

Decision/design variables ———

Input x

ML model training:

Training hyperparameters

Adaptive experimentation:

Decision/design variables

expensive-to-evaluate

Performance metric f(x)

Training time

Compute credits

Operational cost User experience

Revenue

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected best observed value $\mathbb{E}\max_{t=1,2,...,T} f(x_t)$

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected best observed value $\mathbb{E}\max_{t=1,2,...,T} f(x_t)$

Fewer #evaluations

the expected best observed value $\mathbb{E}\max_{t=1,2,...,T} f(x_t)$ Fewer #evaluations

Efficient framework: Bayesian optimization

Bayesian Optimization

Black-box function

Bayesian Optimization

Bayesian Optimization

10

Existing Design Principles

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- •Gittins Index

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- •Gittins Index

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- •Gittins Index

- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Under-explored Practical Considerations

Observable multi-stage feedback

Under-explored Practical Considerations

Observable multi-stage feedback

New design principle:
Gittins index

Smart stopping time

Observable multi-stage feedback

New design principle: Gittins index

Observable multi-stage feedback

New design principle: Gittins index

Optimal in related sequential decision problems

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback

New design principle: Gittins index

Optimal in related sequential decision problems

Varying evaluation costs

Features in Pandora's box

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback

Features in Markovian bandits

New design principle: Gittins index

Optimal in related sequential decision problems

- Improvement-based (e.g., LogEIPC)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- •Gittins Index (PBGI)

Why another principle?

- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Gittins Index vs Baselines on AutoML Benchmark

10/22/25 Qian Xie (Cornell ORIE)

- Improvement-based (e.g., LogEIPC)
- Entropy-based
- Confidence bounds
- Thompson sampling
- •Gittins Index

Why another principle?

- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Theoretical Guarantee and Empirical Validation

Theorem (No worse than stopping-immediately)

 $\mathbb{E}[R(\text{ours}; PBGI)] \le R[\text{stopping immediately}]$

Implication:

- Matches the best achievable performance in the worst case (evaluations are all very costly).
- Avoids over-spending a property many cost-unaware stopping rules lack.

Studied problem

Varying evaluation costs

Impact

Competitive empirical performance & interests from practitioners

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Key idea

Link to Pandora's Box problem & Gittins index theory

Ongoing work

Sharper theoretical guarantees & blackbox optimization w/ multi-stage feedback

"Cost-aware Stopping for Bayesian Optimization." Under review.

Recap: Bayesian Optimization

26

Ongoing: LLM-Driven Black-Box Optimization

Decision rule

(e.g., Softmax sampling)

Probabilistic model (large language model)

Ongoing: LLM-Driven RL Training Optimization

Mixed-autonomy traffic control:

deepseek * Claude

Decision rule (e.g., Softmax sampling)

Probabilistic model (large language model)