Inferencia Estadística - Guia 5

Nicolas Ferrer e-mail: nicolas.ferrer.747@gmail.com

Agosto 2020

1 Ejercicio 1

Sea $X|\theta \sim \text{Pois}(\theta)$, $P(\theta = 2) = 1/3$ y $P(\theta = 3) = 2/3$. Supón que observamos $x_1 = 2$ y $x_2 = 4$. Queremos calcular la probabilidad a posteriori de θ :

$$P(\theta|X_1 = 2, X_2 = 4) = \frac{P(X_1 = 2, X_2 = 4|\theta)}{P(X_1 = 2, X_2 = 4)}P(\theta)$$

Recordar que para el modelo Poisson:

$$P(\mathbf{X}|\theta) = \frac{\theta^{\sum x_i} e^{-n\theta}}{\prod x_i!} \Rightarrow P(X_1 = 2, X_2 = 4|\theta) = \frac{\theta^6 e^{-2\theta}}{2 * 4!}$$

Por otro lado, usando la ayuda provista:

$$P(X_1 = 2, X_2 = 4) = P(X_1 = 2, X_2 = 4 | \theta = 2) P(\theta = 2) + P(X_1 = 2, X_2 = 4 | \theta = 3) P(\theta = 3)$$

$$= \frac{2^6 e^{-2*2}}{2*4!} * \frac{1}{3} + \frac{3^6 e^{-2*3}}{2*4!} * \frac{2}{3}$$

$$\approx 0.033$$

Por lo tanto, podemos escribir la probabilidad a posteriori de θ como:

$$P(\theta|X_1=2,X_2=4) = \frac{P(\theta)}{P(X_1=2,X_2=4)} \frac{\theta^6 e^{-2\theta}}{2*4!}$$

Notar que $P(X_1 = 2, X_2 = 4)$ es independiente de θ , por lo tanto, podemos escribir:

$$P(\theta|X_1 = 2, X_2 = 4) \propto \theta^6 e^{-2\theta} P(\theta)$$

Para realizar inferencia sobre θ , podemos reportar θ_{MAP} , el valor que maximiza la probabilidad a posteriori. Calculando los valores de $P(\theta|\mathbf{X})$ para cada caso:

$$P(\theta = 2|X_1 = 2, X_2 = 4) \propto 2^6 e^{-2*2} * \frac{1}{3} \approx 0.39$$

 $P(\theta = 3|X_1 = 2, X_2 = 4) \propto 3^6 e^{-2*3} * \frac{2}{3} \approx 1.2$

Por lo tanto, $\theta_{MAP} = 3$.

2 Ejercicio 2

Definimos la probabilidad a posteriori de θ condicional en haber observado $\{\mathbf{x}_1,\mathbf{x}_2\}$ como:

$$\pi(\theta|\mathbf{x}_1,\mathbf{x}_2) \propto L(\theta|\mathbf{x}_1,\mathbf{x}_2)\pi(\theta)$$

Si las observaciones provienen de una secuencia de variables aleatorias independientemente distribuidas, podemos escribir $L(\theta|\mathbf{x}_1,\mathbf{x}_2) = L(\theta|\mathbf{x}_1)L(\theta|\mathbf{x}_2)$. Por lo tanto:

$$\pi(\theta|\mathbf{x}_1, \mathbf{x}_2) \propto L(\theta|\mathbf{x}_2) \underbrace{L(\theta|\mathbf{x}_1)\pi(\theta)}_{\pi(\theta|\mathbf{x}_1)}$$
$$\propto L(\theta|\mathbf{x}_2)\pi(\theta|\mathbf{x}_1)$$

Que era lo que queríamos mostrar. Intuitivamente, la independencia entre variables aleatorias nos permite calcular la probabilidad a posteriori de toda la muestra "actualizando" secuencialmente probabilidades a posteriori.

3 Ejercicio 3

3.1 Inciso a

Queremos calcular:

$$\pi(\theta|\mathbf{X}) \propto L(\theta|\mathbf{x})\pi(\theta)$$

Para el modelo Poisson(θ):

$$L(\theta|\mathbf{X}) \propto \theta^{\sum x_i} e^{-n\theta}$$

Por lo tanto, utilizando que $\theta \sim \Gamma(\alpha, \beta)$:

$$\pi(\theta|\mathbf{X}) \propto \theta^{\sum x_i} e^{-n\theta} \frac{\theta^{\alpha-1} e^{-\theta/\beta}}{\Gamma(\alpha)\beta^{\alpha}}$$
$$\propto \theta^{(\alpha+\sum x_i)-1} e^{-\theta(n+1/\beta)}$$
$$\propto \theta^{\alpha_n-1} e^{-\theta/\beta_n}$$

Esta expresión corresponde (por proporcionalidad) a la verosimilitud de una variable $\Gamma(\alpha_n, \beta_n)$. En el segundo paso, podemos eliminar el denominador porque α , β están dados. Para el último paso, notar que:

$$n + \frac{1}{\beta} = \frac{\beta n + 1}{\beta} = \frac{1}{\beta_n}$$

3.2 Inciso b

Para $\theta \sim \Gamma(\alpha_n, \beta_n)$ definida como en la consigna, tenemos:

$$E(\theta) = \alpha_n \beta_n$$
$$V(\theta) = \alpha_n \beta_n^2$$

Notar que podemos escribir $\alpha_n = \alpha + n\bar{x}$. Por lo tanto:

$$\lim_{n \to \infty} E(\theta) = (\alpha + n\bar{x}) \left(\frac{\beta}{\beta n + 1}\right) = \bar{x} = \hat{\theta}_{MLE}$$

$$\lim_{n \to \infty} V(\theta) = (\alpha + n\bar{x}) \left(\frac{\beta}{\beta n + 1}\right)^2 = 0$$

Puede verse entonces que a medida que n crece la distribución a priori "pierde peso" a favor de la información contenida en la muestra.

3.3 Inciso c

A la hora de elegir valores de α , β , querríamos comunicar nuestra creencia previa respecto a la distribución de los posibles valores de la media de crímenes diarios. Dado que observamos $\bar{x}=14$, resulta razonable alguna combinación de $\{\alpha,\beta\}$ tal que $\alpha*\beta=14$. No obstante, existen infinitas combinaciones que satisfacen dicha condición, por lo tanto, debemos tomar cierta postura respecto a la varianza del parámetro. Si consideramos que existe un amplio rango de valores posibles para θ , favoreceríamos una mayor valor de β . Presentamos por ejemplo los histogramas asociados a dos muestras generadas con diferentes parametrizaciones:

La primera parametrización resulta en una media igual pero mayor varianza, por lo tanto, la elegiríamos si considerásemos que existe mayor "incertidumbre" sobre θ . Si quisiesemos una prior cercana a ser "no informativa", elegiríamos un valor de β muy grande en relación a α . Para resolver el resto del ejercicio elegimos arbitrariamente $\alpha = 14$ y $\beta = 1$.

Dado lo visto en el inciso a, sabemos que la distribución a posteriori de θ será $\Gamma(\alpha_n, \beta_n)$. Reemplazando nuestros valores a priori para (α, β) y la información de la muestra:

$$\pi(\theta|\mathbf{x}) \propto \Gamma(\alpha_n = 154, \beta_n = 1/11)$$

3.4 Inciso d

Por lo visto en el inciso b):

$$E(\theta) = \alpha_n \beta_n = \frac{154}{11} = 14$$

 $V(\theta) = \alpha_n \beta_n^2 = \frac{154}{11^2} \approx 1.272$

3.5 Inciso e

En este inciso, queremos encontrar el intervalo de credibilidad de mayor densidad a posteriori, es decir el highest posterior density (HPD) credible set. Este conjunto puede definirse como:

$$HPD = \{ \theta \in \Theta : \pi(\theta | \mathbf{x}) \ge \nu_{\alpha} \}$$

Donde ν_{α} es el valor más alto tal que:

$$P(\theta \in HPD(\nu_{\alpha})|\mathbf{x}) = 1 - \alpha$$

Existen diferentes maneras en las cuales podríamos aproximar el intervalo de credibilidad HPD. Si la distribución es unimodal pero no simétrica, podríamos por ejemplo computar todos los intervalos que acumulan $(1 - \alpha)\%$ de las observaciones y elegir el más estrecho¹.

No obstante, si la distribución es unimodal y aproximadamente simétrica (como en este caso) alrededor de la moda M, será suficiente buscar los cuantiles $\alpha/2$ y $(1-\alpha/2)$ de la distribución, ya que estos concentrarán $(1-\alpha)\%$ de los valores posibles con la mayor densidad. En este caso, para una variable $\Gamma(154, 11^{-1})^2$

$$HPD_{95\%} = [q_{0.025}, q_{0.975}] = [11.876, 16.295]$$

 $HPD_{99\%} = [q_{0.005}, q_{0.995}] = [11.264, 17.076]$

Bajo el enfoque bayesiano, podemos afirmar que la probabilidad a posteriori condicional en haber observado \mathbf{x} de que θ caiga en el intervalo HPD de cobertura $(1 - \alpha)$ es igual a $(1 - \alpha)\%$.

4 Ejercicio 4

Una vez más, queremos obtener:

$$\pi(\theta|\mathbf{X}) \propto L(\theta|\mathbf{x})\pi(\theta)$$

El modelo $Ber(\theta)$ se puede representar con la verosimilitud:

$$L(\theta|\mathbf{X}) = \theta^{\sum x_i} (1-\theta)^{n-\sum x_i}$$

Para la distribución uniforme continua, $\pi(\theta) = 1$ para todo θ , por lo tanto:

$$\pi(\theta|\mathbf{X}) \propto \theta^{\sum x_i} (1-\theta)^{n-\sum x_i} = \theta^{n\bar{x}} (1-\theta)^{n(1-\bar{x})}$$

4.1 Inciso a

En este caso, utilizar una prior U(0,1) resultaría no informativo, en tanto asignamos probabilidad equivalente a todos los valores posibles de θ . Notar, entonces, que toda la información referente a la distribución de θ contenida en la probabilidad a posteriori es la proveniente de la muestra.

4.2 Inciso b

Recordar que la función de densidad de una variable aleatoria $X \sim \text{Beta}(\alpha, \beta)$ es igual a:

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$

Donde $B(\alpha, \beta)$ es la función beta incompleta que no depende de x. Por lo tanto, la probabilidad a posteriori calculada anteriormente es equivalente a una distribución Beta $(n\bar{x}+1, n(1-\bar{x})+1)$.

Para una variable aleatoria $X \sim \text{Beta}(\alpha, \beta)$:

$$E(X) = \frac{\alpha}{\alpha + \beta}$$

$$V(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

Por lo tanto, reemplazando α y β por los valores obtenidos anteriormente:

$$E(\theta|\mathbf{X}) = \frac{n\bar{x} + 1}{n+2}$$
$$V(\theta|\mathbf{X}) = \frac{n^2\bar{x}(1-\bar{x}) + n + 1}{(n+2)^2(n+3)}$$

¹Si quieren ver un ejemplo de esto, adjunto un código de R en el campus.

²En R puede calcular los cuantiles con la funcion qgamma. Recuerde que R parametriza el modelo Gamma como $\Gamma(\alpha, 1/\beta)$.

5 Ejercicio 5

$$\pi(\theta|\mathbf{x}) \propto \exp\left\{-\frac{1}{2\tau_0^2}(\theta - \mu_0)^2 - \frac{1}{2\sigma_0^2} \sum_{i=1}^n (\theta - x_i)^2\right\}$$

$$\propto \exp\left\{-\frac{1}{2\tau_0^2}(\theta^2 - 2\theta\mu_0 + \mu_0^2) - \frac{1}{2\sigma_0^2} \sum_{i=1}^n (\theta^2 - 2\theta x_i + x_i^2)\right\}$$

$$\propto \exp\left\{-\frac{1}{2\tau_0^2}(\theta^2 - 2\theta\mu_0 + \mu_0^2) - \frac{1}{2\sigma_0^2} \left(n\theta^2 - 2\theta \sum_{i=1}^n x_i + \sum_{i=1}^n x_i^2\right)\right\}$$

$$\propto \exp\left\{-\frac{1}{2\tau_0^2}(\theta^2 - 2\theta\mu_0 + \mu_0^2) - \frac{1}{2\sigma_0^2} \left(n\theta^2 - 2\theta n\bar{x} + \sum_{i=1}^n x_i^2\right)\right\}$$

Cualquier término dentro del exponencial que no incluya θ puede ser considerado un factor de proporcionalidad, por lo cual:

$$\pi(\theta|\mathbf{x}) \propto \exp\left\{-\frac{1}{2\tau_0^2}(\theta^2 - 2\theta\mu_0) - \frac{n}{2\sigma_0^2}(\theta^2 - 2\theta\bar{x})\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left(\frac{1}{\tau_0^2}(\theta^2 - 2\theta\mu_0) + \frac{n}{\sigma_0^2}(\theta^2 - 2\theta\bar{x})\right)\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left(\theta^2\frac{\sigma_0^2 + n\tau_0^2}{\tau_0^2\sigma_0^2} - 2\theta\frac{\mu_0\sigma_0^2 + n\bar{x}\tau_0^2}{\tau_0^2\sigma_0^2}\right)\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left[\theta^2\left(\frac{1}{\tau_0^2} + \frac{n}{\sigma_0^2}\right) - 2\theta\left(\frac{\mu_0}{\tau_0^2} + \frac{n\bar{x}}{\sigma_0^2}\right)\right]\right\}$$

Reemplazando las definicionnes de μ_n y σ_n^2 :

$$\pi(\theta|\mathbf{x}) \propto \exp\left\{-\frac{1}{2\sigma_n^2} \left(\theta^2 - 2\theta\mu_n\right)\right\}$$

Dado que μ_n y σ_n^2 no dependen de θ , podemos completar el cuadrado con un factor de proporcionalidad:

$$\pi(\theta|\mathbf{x}) \propto \exp\left\{-\frac{1}{2\sigma_n^2} \left(\theta^2 - 2\theta\mu_n + \mu_n^2\right)\right\}$$
$$\propto \exp\left\{-\frac{1}{2\sigma_n^2} \left(\theta - \mu_n\right)^2\right\}$$

Que era el resultado que queríamos obtener.

5.1 Inciso a

Notar que:

$$\lim_{n \to \infty} \mu_n = \bar{x}$$
$$\lim_{n \to \infty} \sigma_n^2 = 0$$

5.2 Inciso b

Este resultado nos indica que a medida que crece n, la distribución a posteriori del parámetro θ se degenera a la información provista en la muestra, en este caso, a través de \bar{x} .

5.3 Inciso c

Recordar que la distribución normal resulta ser unimodal, simétrica y que su moda coincide con su esperanza. Entonces, dado que θ sigue una distribución a posteriori $N(\mu_n, \sigma_n)$, podemos afirmar que el intervalo de credibilidad HPD estará dado por:

$$HPD_{95\%} = \mu_n \pm \sigma_n z_{0.975}$$

Donde z_{α} es el cuantil α de la distribución N(0,1).

6 Ejercicio 6

6.1 Inciso a

Tal como en escenarios anteriores en los cuales analizamos el desempleo, podemos plantear el parámetro de interés θ como la probabilidad de éxito asociada a una secuencia de variables aleatorias $\{X_i\} \sim \text{Ber}(\theta)$.

Tal como en el ejercicio 3, una opción no informativa sería utilizar una distribución U(0,1) como prior para θ . No obstante, ello resulta poco razonable, dado que sabemos que la tasa de desempleo suele encontrarse entre 5% y el 15%. Por lo tanto, otra alternativa sería utilizar una distribución U(a,b) con límites que consideremos razonables, por ej., en base a datos históricos.

Otra opción sería utilizar una prior $\text{Beta}(\alpha, \beta)$. Esta elección tiene la ventaja de que forma un modelo *conjugado*, lo cual significa que la distribución a posteriori también será un modelo Beta. Además, nos permite ajustar los parámetros α y β para definir cuan informativa queremos que sea nuestra prior. Para el resto de este ejercicio, elegimos esta distribución y trabajamos sin fijar valores de α y β .

6.2 Inciso b

Para $\pi(\theta) = \text{Beta}(\alpha, \beta)$:

$$\pi(\theta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Por otro lado, la verosimilitud para el modelo Bernouilli es:

$$L(\theta|\mathbf{X}) = \theta^{\sum x_i} (1-\theta)^{n-\sum x_i}$$

Por lo tanto, la distribución a posteriori será:

$$\pi(\theta|\mathbf{X}) \propto \theta^{\alpha + \sum x_i - 1} (1 - \theta)^{\beta + n - \sum x_i - 1}$$
$$\propto \theta^{\alpha_n - 1} (1 - \theta)^{\beta_n - 1}$$

Entonces, $\pi(\theta|\mathbf{X}) = \text{Beta}(\alpha_n, \beta_n)$, con:

$$\alpha_n = \alpha + n\bar{x}$$
$$\beta_n = \beta + n(1 - \bar{x})$$

6.3 Inciso c

Dado que sabemos que la distribución a posteriori es Beta (α_n, β_n) , podemos expresar sus momentos como:

$$E(\theta|\mathbf{X}) = \frac{\alpha_n}{\alpha_n + \beta_n} = \frac{\alpha + n\bar{x}}{\alpha + \beta + n}$$

$$M(\theta|\mathbf{X}) = \frac{\alpha_n - 1}{\alpha_n + \beta_n - 2} = \frac{\alpha + n\bar{x} - 1}{\alpha + \beta + n - 2}$$

$$V(\theta|\mathbf{X}) = \frac{\alpha_n \beta_n}{(\alpha_n + \beta_n)^2 (\alpha_n + \beta_n + 1)} = \frac{(\alpha + n\bar{x})(\beta + n(1 - \bar{x}))}{(\alpha + \beta + n)^2 (\alpha + \beta + n + 1)}$$

La expresión utilizada para la moda es válida para valores de α, β mayores a uno, de lo contrario, la distribución sería bimodal.

6.4 Inciso d

Si consideramos que la distribución de la tasa de desempleo es unimodal, elegiríamos valores de α , β mayores a 1 para nuestra prior . No obstante, la distribución β sólo preserva la simetría en tanto $\alpha = \beta$. Por lo tanto, preservar la simetría implica que la distribución se centre alrededor de 1/2, lo cual no resulta razonable para la tasa de desempleo.

No obstante, si graficamos la distribución por ejemplo para $\alpha=20, \beta=180,$ vemos que la misma es aproximadamente simétrica alrededor del 10%:

Figure 2: Función de densidad para Beta(20, 180)

Entonces, una posible metodología es elegir valores de α y β tales que la distribución se centre alrededor de algún valor de θ que consideremos razonable. Luego, si escalamos ambos factores en forma equivalente, podemos

modificar la dispersión y simetría de la distribución³.

Una vez elegidos los valores de nuestra prior, podemos calcular los valores a posteriori y analizar si los mismos resultan en una distribución razonablemente simétrica y unimodal. De ser así, podríamos simplemente reportar los cuantiles de la distribución:

$$HPD_{95\%} = [q_{0.025}, q_{0.975}]$$

Alternativamente, si la distribución resulta ser muy asimétrica, podemos aplicar la metodología comentada en el inciso 3.e.

6.5 Inciso e

Si nuestro amigo eligió una prior considerablemente diferente a la nuestra, ya sea por ser más o menos informativa o encontrarse centrada en algún valor diferente de θ , los resultados reportados podrían diferir.

6.6 Inciso f

Al incrementar el tamaño de la muestra, el valor de los parámetros de la distribución a posteriori tenderán a verse más influenciados por lo observado en los datos que por la elección de prior. Por lo tanto, esperaríamos que la "distancia" entra las conclusiones obtenidas sea menor.

³Valores más grandes resultarán en una distribución con menor varianza pero más simétrica.