

Programa De Proyectos Computacionales Aplicados a la Ingeniera Electrónica.

Código: 980	Créditos: 4	
Escuela: EIME	Área a la que pertenece: Electrónica	
Pre requisito: curso prerrequisito y cantidad de créditos	Post requisito: No aplica	
Categoría: Obligatorio		
Catedrático : Ing. Jaime Ariel Chitay Bautista		
Edificio: T3	Sección: N	
Salón del curso: 316, 312	Salón del laboratorio:	
Horas por semana: 3 periodos	Horas por semana del laboratorio: Según programa	
Días que se imparte el curso: Martes y Jueves	Días que se imparte el laboratorio: Según horario específico	
Horario del curso: 18:10-19:00y 18:10-19:50 Email: jasda@ingenieria.usac.edu.gt	Horario del laboratorio: Según horario específico	

DESCRIPCIÓN DEL CURSO: Este curso está diseñado para proporcionar a los estudiantes una comprensión sólida de los conceptos fundamentales y las técnicas avanzadas de análisis de datos utilizando Python. A lo largo del curso, los estudiantes aprenderán a manipular, analizar y visualizar datos, así como a aplicar métodos estadísticos y de aprendizaje automático para resolver problemas del mundo real. El curso está orientado tanto a principiantes como a aquellos con conocimientos previos en programación y análisis de datos.

OBJETIVOS GENERALES:

- Proporcionar a los estudiantes una base sólida en el uso de Python para el análisis de datos.
- Desarrollar habilidades en la manipulación y limpieza de datos utilizando bibliotecas como Pandas y NumPy.
- Enseñar técnicas de visualización de datos con Matplotlib y Seaborn.
- Introducir conceptos básicos y avanzados de estadística aplicada al análisis de datos.
- Implementar y evaluar modelos de aprendizaje automático utilizando Scikit-Learn.
- Capacitar a los estudiantes para que puedan resolver problemas prácticos mediante proyectos y ejercicios aplicados.

METODOLOGÍA: El curso se impartirá utilizando una combinación de métodos teóricos y prácticos para asegurar una comprensión profunda y aplicada de los conceptos, con clases virtuales y exámenes presenciales donde se les pedirá a los estudiantes que lleven su PC. La metodología incluye:

Clases Magistrales: Presentación de conceptos teóricos y demostraciones en vivo de código.

Talleres Prácticos: Sesiones prácticas donde los estudiantes implementarán lo aprendido en ejercicios y proyectos.

Estudios de Caso: Análisis de casos reales para aplicar las técnicas aprendidas a situaciones del mundo real.

Proyectos Individuales y en Grupo: Desarrollo de proyectos que aborden problemas específicos de análisis de datos.

Evaluaciones: Pruebas y tareas para evaluar el entendimiento y la aplicación de los conocimientos adquiridos.

Asesorías y Soporte: Sesiones de preguntas y respuestas, y soporte continuo para resolver dudas y dificultades.

De acuerdo con el Normativo de Evaluación y Promoción del estudiante de pregrado de la Facultad de Ingeniería, se procederá así:

Procedimiento Evaluaciones parciales	Instrumento De Evaluación Prueba escrita	Ponderación 30%
Tareas y actividades Laboratorio clase	Informes manuscritos, proyecto y asistencia Prácticas y exámenes	30% 15%
Total de la Zona Evaluación Final Nota de Promoción		75% 25% 100%

Contenido y calendarización:

Sección 1: Introducción a Python y Herramientas de Manipulación de Datos

Instalación de Python y Jupyter Notebook Fundamentos de programación en Python Introducción a Pandas Manipulación y limpieza de datos Operaciones avanzadas con DataFrames

Sección 3: Estadística Aplicada y Modelos de Regresión

Fundamentos de estadística descriptiva Pruebas de hipótesis Análisis de correlación y regresión

Sección 4: Introducción al Aprendizaje Automático y Proyecto Final

Conceptos básicos de machine learning Modelos supervisados y no supervisados Evaluación y validación de modelos

Sección 2: Análisis Numérico y Visualización de Datos

Conceptos básicos de NumPy
Operaciones matemáticas y estadísticas
Manipulación de arrays
Fundamentos de Matplotlib
Visualización de datos con Seaborn
Creación de gráficos interactivos

Desarrollo de un proyecto final de análisis de datos

Aplicación de técnicas de aprendizaje automático a un conjunto de datos real

Revisión de los conceptos clave

Exploración de recursos adicionales para continuar aprendiendo

NOTAS IMPORTANTES:

Los exámenes parciales se realizaran día indicado.

- ES OBLIGATORIO PRESENTAR IDENTIFICACIÓN EL DÍA DE LOS EXÁMENES PARCIALES Y FINAL.
- Cualquier copia (exámenes, tareas, cortos y/o proyectos) se sancionarán con cero para los involucrados. No se aceptarán excusas de ninguna índole.
- Utilizar Lapiceros de color Azul, Apagar teléfonos de cualquier tipo.
- Las tareas que se dejen en clase deberán ser hechas en computadora. Se recibirán tareas tarde con 20% de puntos menos ni se reponen exámenes cortos. Si por algún motivo no se realiza algún examen parcial, la nota del examen final se validara por la nota no realizada de algún examen parcial faltante. (Debe avisar al catedrático en el examen final y presentar constancia por la falta al parcial)
- Grupo de telegram https://t.me/+DkLEPOMssEdhNmMx

Bibliografía

Repositorio de Glthub del profesor

i. ii.

Calendarización:

Evaluaciones Parciales: 1er. Parcial: Tema 1..3 2do. Parcial: Tema 4..6

Examen Final, según calendario de exámenes finales. Se evalúa todo el contenido de la clase.

Calendario de actividades.

Fecha	▼ Contenido ▼
3 de junio	Instalación de Python y Jupyter Notebook
4 de junio	Fundamentos de programación en Python
5 de junio	Introducción a Pandas
6 de junio	Manipulación y limpieza de datos con Pandas
7 de junio	Operaciones avanzadas con DataFrames
10 de junio	Conceptos básicos de NumPy
11 de junio	Operaciones matemáticas y estadísticas con NumPy
12 de junio	Manipulación de arrays con NumPy
13 de junio	Fundamentos de Matplotlib
14 de junio	Visualización de datos con Seaborn
17 de junio	Creación de gráficos interactivos
18 de junio	Fundamentos de estadística descriptiva
19 de junio	Pruebas de hipótesis
20 de junio	Análisis de correlación
21 de junio	Análisis de regresión
24 de junio	Conceptos básicos de machine learning
25 de junio	Modelos supervisados y no supervisados
26 de junio	Evaluación y validación de modelos
27 de junio	Desarrollo de un proyecto final de análisis de datos
28 de junio	Aplicación de técnicas de aprendizaje automático a un conjunto de datos real / Revisión y recursos