Structured Code Generation

Alex Zinenko - Google DeepMind Nicolas Vasilache - Google Research

Structured Code Generation is...

- ... too complicated.
- ... difficult to generalize.
- ... too "researchy".
- ... is a dogmatic all-or-nothing approach.
- ... not ready yet.
- ..

Structured Code Generation

(you are already using it)

Alex Zinenko - Google DeepMind Nicolas Vasilache - Google Research

Structured Code Generation

Finding Structure

Not much structure here...

Code: c = a + b

AVX2: vaddss

MLIR: arith.addf:f32

Disclaimer: all code in the slides is pseudo code. Disclaimer 2: our code is in MLIR, but the concepts generalize.

Code: c[0:8] = a[0:8] + b[0:8]

for i in 0:8 c[i] = a[i] + b[i]

Structure: repetition

AVX2: vadd**p**s

MLIR: arith.addf: vector<8xf32>

Code: c[0:8][0:32] = a[0:8][0:32] + b[0:8][0:32]

for i in 0:8 for j in 0:32

c[i][j] = a[i][j] + b[i][j]

AVX2: vaddps

vaddps

... 29 more ... also, splitting

vaddps

MLIR: arith.addf: vector<8x32xf32>

Code: c[0:8][0:32] = a[0:8][0:32] + b[0:8][0:32]

for i in 0:8 for j in 0:32

c[i][j] = a[i][j] + b[i][j]

AVX2: vaddps

vaddps

... 29 more ... also, splitting

vaddps

MLIR: arith.addf: vector<8x32xf32>

LLO: vaddf32

Google Research

Code: c[0:8][0:32][0:4] = a[0:8][0:32][0:4] + b[0:8][0:32][0:4]

for i in 0:8 for j in 0:32

for k in 0:4

c[i][j][k] = a[i][j][k] + b[i][j][k]

AVX2: vaddps

vaddps

... 125 more ... also, shuffle

vaddps

MLIR: arith.addf: vector<8x32x4xf32>

LLO: vaddf32 plus some reshuffling

Google Research

Structure 1: Uniform Repetition

Finding Structure: Vector Broadcast

Code: c[0:8] = a[0:8] + b

for i in 0:8 c[i] = a[i] + b

AVX2: vbroadcastss

vaddps

Naming things: broadcast

MLIR: vector.broadcast: f32 to vector<8xf32>

arith.addf: vector<8xf32>

Finding Structure: Vector Broadcast

Code:

c[0:8][0:8] = a[0:8][0:8] + b[0:8]

for i in 0:8 for j in 0:8 c[i][j] = a[i][j] + b[i]

AVX2:

vbroadcastss

vaddps

... 7 more ...

MLIR:

vector.broadcast:vector<8xf32> to vector<8x8xf32>

arith.addf: vector<8x8xf32>

Finding Structure: Vector Broadcast

f32

Code:
$$c[0:8][0:8] = a[0:8][0:8] + b[0:8]$$

for i in 0:8 for j in 0:8 c[i][j] = a[i][j] + b[j]

vbroadcastss AVX2:

... 7 more ...

vaddps

... 7 more ...

MLIR: vector.broadcast: vector<8xf32> to vector<8x8xf32>

vector.transpose: vector<8x8xf32>

arith.addf: vector<8x8xf32>

Google Research


```
for i c, a: (i,j) \rightarrow (i,j)
for j b: (i) \rightarrow (j)
c[i][j] = a[i][j] + b[j]
```

Google Research

```
for i c, a: (i) -> (i) c[i] = a[i] + b b: (i) -> ()
```

```
for i c, a: (i,j) \rightarrow (i,j)
for j b: (i) \rightarrow (j)
c[i][j] = a[i][j] + b[j]
```

Google Research

Structure 2: Dimensionality Increase

Finding Structure: Vector Reduction

Code: c += a[0:8][0:2]

for i in 0:2 c += a[i]

AVX2: vhaddps

vhaddps + vpshufd

vhaddps

MLIR: vector.reduction<add>: vector<8xf32> into f32

Finding Structure: Vector Reduction

Code:

$$c[0:2] += a[0:8][0:2]$$

AVX2:

vhaddps ... 4 more ... vhaddps

for i in 0:2 for j in 0:8 c[i] += a[i][i]

MLIR:

vector.reduction<add>: vector<8xf32> into f32

vector.reduction<add>: vector<8xf32> into f32

What if I told you that we can reuse the same structure?

Finding Structure: Vector Red Contraction

Structure 2b: Dimensionality Decrease

Code: c[0:8] = load(&p)

for i in 0:8 c[i] = load(&p + i)

AVX2: vmovaps

or vmovups

MLIR: memref.load: memref<?xvector<8xf32>>

or vector.load: memref<?xf32>, vector<8xf32>

Intermezzo: Memory Reference Type

Base pointer, offset, sizes along each dimension, strides (# of elements) along each dimension. Strides allow for transposed access.

Elemental types may be vectors to guarantee contiguity.

Google Research

Code: c[0:8] = load(&p)

AVX2:

vgatherqps

MLIR: memref<!avector<8xf32>>

or vector.load: memref<?xf32>, vector<8xf32>

vector.transfer_read

: memref<?x?xf32>, vector<8xf32>

{ permutation_map = affine_map<(i,j)->(j,i)> }

for i in 0:8

c[i] = load(&p + 42*i)

Structure 3: Multidimensional memory

Recap: Structure in Computations

- Elementwise extension to nD vectors.
- Dimensionality mismatch (broadcast or reduction) with explicit access maps and combinators.
- Similar structures in memory access.

- 1D and 2D vector operations are a special case of structured computations!
- Various HLO flavors are a special case of structured computations!

Extracting Common Structure

```
%0 = vector.load : memref<4x8xf32>, vector<4x8xf32>
%1 = vector.load : memref<4x8xf32>, vector<4x8xf32>
%2 = vector.broadcast 0 : f32 to vector<4x8xf32>
%3 = arith.addf %0, %1 : vector<4x8xf32>
%4 = arith.maxf %2, %3 : vector<4x8xf32>
vector.store %4 : memref<4x8xf32>, vector<4x8xf32>
```

Extracting Common Structure

```
%0 = vector.load : memref<4x8xf32>, vector<4x8xf32>
%1 = vector.load : memref<4x8xf32>, vector<4x8xf32>
%2 = vector.broadcast 0 : f32 to vector<4x8xf32>
%3 = arith.addf %0, %1 : vector<4x8xf32>
%4 = arith.maxf %2, %3 : vector<4x8xf32>
vector.store %4 : memref<4x8xf32>, vector<4x8xf32>
```

for i. i

store(%p3 + h(i,j), %4[i][j])

```
for i, j
                                                 for i, j
                                                                                                    for i, j
 0[i][j] = load(p1 + f(i,j))
                                                   0[i][i] = load(p1 + f(i,i))
                                                                                                     \%0 = load(\%p1 + f(i,j))
for i, j
                                                   %1[i][j] = load(%p1 + g(i,j))
                                                                                                      %1 = load(%p1 + g(i,j))
 %1[i][j] = load(%p1 + g(i,j))
                                                   %2[i][j] = 0
                                                                                                      %2 = 0
                                                   3[i][j] = 0[i][j] + 1[i][j]
for i, j
                                                                                                      %3 = %9 + %1
 %2[i][j] = 0
                                                   %4[i][j] = maxf(%2[i][j], %3[i][j])
                                                                                                      %4 = \max(%2, %3)
for i. i
                                                   store(%p3 + h(i,j), %4[i][j])
                                                                                                      store(%p3 + h(i,j), %4)
 3[i][j] = 0[i][j] + 1[i][j]
for i. i
 %4[i][j] = maxf(%2[i][j], %3[i][j])
```

Extracting Common Structure

- Indexing can be elementwise, expansions, contractions, combinations (i+j).
- Iterators can be parallel or reduction.
- Output element is provided to allow for accumulation.

Operating on Subsets

Google Research

Reify common structure

We identify and name different forms of structure. (Naming things is one of the two hard problems in computer science.)

Finding Structure in SSA / Functional*

* SSA is functional programming

Values are immutable. Mutation (such as inserting an element) produces a new value.

Code: c[1] = 42

AVX512: vinsertf32x8

MLIR: vector.insert : f32 into vector<8xf32>

LLVM IR: insertelement <8 x f32>, f32, i32

Finding Structure in SSA / Functional

Same works on MLIR tensors combined with "strided subset" abstraction from memref.

MLIR: tensor.insert_slice %small, %big[offsets][sizes][strides]

: tensor<...xf32> into tensor<...xf32>

Structured Everything on Tensors

Structured Everything on Tensors

```
%in1 = memref.subview %source1[offsets][sizes][strides] : memref<...xf32> to memref<...xf32>
%in2 = memref.oubview %source2[offsets][sizes][strides] : memref<...xf32> tensor.extract_slice %source1[offsets][sizes][strides] : tensor<...xf32>
tensor.extract_slice %source2[offsets][sizes][strides] : tensor<...xf32>
%out = linalg.generic {...}
    ins(tensor<...xf32>, tensor<...xf32>, f32)
    outs(tensor<...xf32>) {
        /bb0(%0: f32, %1: f32, %2: f32, %2: f32, %out_init: f32):
        // a arith.addf %0, %1 : f32
        // a arith.maxf %2, %3 : f32
        linalg.yield %4 : f32
} : tensor<...xf32>
%full_result = tensor.insert_slice %out into %result[offset][sizes][strides]
        : tensor<...xf32> into tensor<...xf32>
```

Structure 4: Immutable sliceable objects

Structured Code Generation


```
linalg.generic {
  indexing_maps = [...],
  iterator_types = ["parallel", "parallel"],
} ins(tensor<4x8xf32>, tensor<4x8xf32>, f32)
  outs(tensor<4x8xf32>) {
   ...
}
```

```
linalg.generic {
  indexing_maps = [...],
  iterator_types = ["parallel", "parallel"],
} ins(tensor<4x8xf32>, tensor<4x8xf32>, f32)
  outs(tensor<4x8xf32>) {
    ...
}
```

```
scf.forall %i, %j in (0:4, 0:8)
linalg.generic {
    indexing_maps = [...],
    iterator_types = ["parallel", "parallel"],
} ins(tensor<4x8xf32>, tensor<4x8xf32>, f32)
outs(tensor<4x8xf32>) {
    ...
}
scf.forall %i, %j in (0:4, 0:8)
{
tensor.extract_slice %source1[%i, %j][1, 1][1, 1]
tensor.extract_slice %source2[%i, %j][1, 1][1, 1]
}
```

```
linalg.generic {
  indexing_maps = [...],
  iterator_types = ["parallel", "parallel"],
} ins(tensor<4x8xf32>, tensor<4x8xf32>, f32)
  outs(tensor<4x8xf32>) {
  ...
}
```

```
linalg.generic {
  indexing_maps = [...],
  iterator_types = ["parallel", "parallel"],
} ins(tensor<4x8xf32>, tensor<4x8xf32>, f32)
  outs(tensor<4x8xf32>) {
   ...
}
```

Leveraging Structure for Tiling

```
linalg.generic {
  indexing_maps = [...],
  iterator_types = ["parallel", "parallel"],
} ins(tensor<4x8xf32>, tensor<4x8xf32>, f32)
  outs(tensor<4x8xf32>) {
   ...
}
```

Leveraging Structure for Fusion

```
linalg.generic {
  indexing_maps = [...],
  iterator_types = ["parallel", "parallel"],
} ins(tensor<4x8xf32>, tensor<4x8xf32>, f32)
  outs(tensor<4x8xf32>) {
   ...
}
```

Code Generation is a Choice*

*actually, lots of choices.

Structured code generation clearly separates the mechanics from decision making. Mechanics is simple thanks to abstractions being designed for transformation.

Google Research

Code Generation is a Choice*

*actually, lots of choices.

Same as before, we name transformations that are a part of code generation.

Google Research

Code Generation is Controllable

With a dialect, because everything in MLIR is a dialect.

Specifies which of the operations gets fused, scalarized, vectorized, etc. and with what parameters.

Code Generation is Controllable

With a dialect, because everything in MLIR is a dialect.

```
transform.scalarize %fused
scf.fortransform.vectorize %tiledrall
linalg.generic
scf.for
vector.reduction
%fused = transform.tile %generic1inalg.generic
%fused = transform.fuse %generic2 into %loop

linalg.generic
linalg.generic
```

Specifies which of the operations gets fused, scalarized, vectorized, etc. and with what parameters. A dialect => exchange/storage format, verifiable, interpretable (no need to recompile the compiler).

Structured Code Generation

Structured Code Generation is...

- ... based on observations about preexisting structure
 (1d vectors, dimensionality change, non-flat memory, immutability).
- ... generalizing that structure to higher-dimensional objects.
- ... simplifying transformations by preserving the structural information (types, operations) and gives more control over them.
- ... is not limited to dense hyper-rectangular computation.
- ... nothing to be afraid of, you are likely already using a version of it!
 (in MLIR: Ilvm, memref, vector, tensor follow the same patterns)
 (outside: various vector programming models, Triton, etc.)

