

UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DCC511 – Lógica de Predicados (2022.2) Prof. Msc. Thais Oliveira Almeida

AULA 4:

ÁTOMOS E TERMOS

Consultas

- Na Linguagem da Lógica de Predicados ocorrem vários elementos básicos necessários à definição de fórmula:
 - "A capital de Roraima é Boa Vista?"
 - Deve retornar um símbolo de verdade;
 - Sentenças que representam símbolos de verdade, em Lógica de Predicados, são chamados de átomos.
 - "Qual a capital do Brasil?"
 - Deve retornar um objeto;
 - Sentenças que representam objetos são chamados de termos.

Termos

- São construídos a partir destas regras:
 - Variáveis são termos: representam objetos;
 - Se t_1 , t_2 , ..., t_n são termos: f é um símbolo de função n-ária, então $f(t_1, t_2, ..., t_n)$ também é um termo.

Exemplos:

- · +(9, 10)
 - Interpretado como: 9 + 10 = 19
- · -(9,5)
 - ∘ Interpretado como: 9 − 5 = 4
- Notação prefixa.

Exemplo de Termos

- x (variável);
- ❖a (constante, função zero-ária aplicada a zero termo);
- ❖f(x, a) se e somente se "f" é binária (pois "x" e "a" são termos);
- ❖g(y, f(x,a), c) se e somente se "g" é ternária, e "f" é binária;
- **⋄**x, 9, y, 10;

Átomos

- ❖São construídos a partir destas regras:
 - O símbolo de verdade false é um átomo;
 - Se t_1 , t_2 , ..., t_n são termos: p é um símbolo de predicado n-ário, então p(t_1 , t_2 , ..., t_n) é um átomo.

Exemplos:

- · >(10,9)
 - Interpretado como: 10>9
- 9 = +(5,4)
 - Interpretado como: 9 = 5+4
- Interpretados como T.
 - Abusos de linguagem:
 - > e = são predicados
 - + e são funções

Exemplos de Átomos

- p (símbolo proposicional, predicado zero-ário aplicado a zero termo);
- ❖p (f(x,a),x) se e somente se "p" é binário;
- q(x,y,z) considerado implicitamente como ternário;

Fórmulas

- A construção das fórmulas é feita a partir da concatenação de átomos e conectivos;
- ❖São construídas a partir destas regras:
 - Todo átomo é uma fórmula da Lógica de Predicados;
 - Porque os átomos sempre retornam um símbolo de verdade.
 - Se H é fórmula, então (¬H) também é;
 - Se H e G são fórmulas, então (H V G) também é;
 - Se H e G são fórmulas, então (H Λ G) também é;
 - Se H e G são fórmulas, então (H → G) também é;
 - Se H e G são fórmulas, então (H ↔ G) também é;
 - Se H é fórmula e x variável, então: $(\forall x)$ H e $(\exists x)$ H são fórmulas.

Equivalência Lógica

- Duas proposições H e G são logicamente equivalentes (H ≡ G), se ambas possuem tabelas-verdade idênticas.
- *Relembrando:
 - \circ H \rightarrow G
 - Denota (¬H ∨ G)
 - $(H \rightarrow false)$
 - Denota ¬H
 - \circ (H \leftrightarrow G)
 - Denota (H \rightarrow G) \land (G \rightarrow H)
 - (H ^ G)
 - Denota ¬(¬H ∨ ¬G)

Equivalência Lógica

- Duas proposições H e G são logicamente equivalentes (H ≡ G), se ambas possuem tabelas-verdade idênticas.
- *Relembrando:
 - \circ H \rightarrow G
 - Denota (¬H ∨ G)
 - H = V e G=F
 - \bullet H \rightarrow G = V \rightarrow F = F
 - \circ (\neg H \vee G) = \neg V \vee F = F \vee F = F