Nick Watters

PhD candidate, MIT Department of Brain and Cognitive Sciences nwatters@mit.edu

Education & Employment

2019 - present Doctor of Philosophy, Massachusetts Institute of Technology, Cambridge MA

Department of Brain and Cognitive Sciences

2016 - 2019 **Research Engineer**, Google Deepmind, London UK

2012 - 2016 Bachelor of Arts, Harvard College, Cambridge, MA

Mathematics and Computer Science major, Neurobiology minor Magna cum laude with highest honors

Research Experience

2019 - present MIT Brain & Cognitive Sciences

Graduate student, advised by Mehrdad Jazayeri & Joshua Tenenbaum

Primate neurophysiology and **cognitive science** research. Collected, analyzed, and modeled non-human primate neural data and human behavioral data.

Ongoing projects:

- Working memory of multiple objects in prefrontal cortex
- Kinematics prediction and intuitive physics in the brain
- Neural mechanisms of real-world scene understanding and object manipulation

2016 - 2019 Google Deepmind

Research engineer, neuroscience team

Machine learning research involving model-building, theory, and robotics. Full stack software engineering of production-level codebases.

Led research projects on:

- Few-shot learning and generalization in model-based reinforcement learning
- Variational autoencoders for learning disentangled visual representations
- Robust robotic control via unsupervised action space representations
- A relational neural physics engine for video prediction

2014 - 2016 Harvard University

Undergraduate researcher

Senior thesis, advised by Dr. Shing-Tung Yau: Derived applications of information geometry to backpropagation and expectation-maximization algorithms

Harvard-Amgen Scholar, advised by Dr. Leslie Valiant: Developed neural network models of stable memory allocation in hippocampus. Derived theoretical bounds on model stability and continuity.

Research Intern, Olveczky Lab, Center for Brain Science: Inferred causality from zebra finch electrophysiology data to determine connectivity of brain areas.

2014 Janelia Research Campus

Janelia Undergraduate Scholar, advised by Dr. Shaul Druckmann

Theoretical neuroscience. Investigate theoretical derivations of random matrix eigenvalue distributions using statistical mechanics and computational modeling.

2011 - 2013 The Rockefeller University

Research Assistant, advised by Dr. George Reeke

Computational neuroscience. Developed novel model-based methods for neuronal spike train entropy estimation. Analyzed the effects of b-estradiol on mouse locomotor behavior and restlessness.

Technical Skills

Biological:

- Acute electrophysiology in nonhuman primates
- Neurosurgery in nonhuman primates
- Animal care and training of nonhuman primates

Computational and theoretical expertise:

- Neuroscience: Statistical methods for latent variable modeling in neural data
- Machine learning: Deep learning, reinforcement learning, generative modeling
- Mathematics: Algebraic topology, differential geometry, dynamical systems

Software engineering:

- Programming languages: Python, Java, Matlab, HTML, C++, C#., Bash, OCAML
- Example software engineering project: Website, GitHub repo, and paper for Modular Object-Oriented Games library.

Fellowships & Awards

2020 - present	National Science Foundation Graduate Research Fellow
2020 - present	Computationally Enabled Integrative Neuroscience Training Program
2022	Angus McDonald Award for Excellence in Undergraduate Teaching, MIT
2020 - 2021	Brain and Cognitive Sciences Killian Graduate Fellowship
2020	Champions of the Brain Fellow, MIT
2019	Presidential Graduate Fellow, MIT
2016	Magna cum laude with highest honors, Harvard
2016	Navid Saheb Kashaf Mathematics Prize
2015	Herchel-Smith Undergraduate Research Fellow

Publications

Li J, Watters N, et al. Modeling human eye movements with neural networks in a maze-solving task. *Proceedings of Machine Learning Research*, 2022.
 Watters N, et al. Modular object-oriented games: A task framework for reinforcement

learning, psychology, and neuroscience. *arXiv*, 2021.

Full publication list: https://scholar.google.com/citations?user=2OSq4Q0AAAAJ

2019 Greff K, [and 6 others, including **Watters**, **N**]. Multi-object representation learning with iterative variational inference. *ICML*, 2019.

Watters N, et al. Cobra: Data-efficient model-based RL through unsupervised object discovery and curiosity-driven exploration. *arXiv*, 2019.

2019 Burgess C, [and 6 others, including Watters, N]. Monet: Unsupervised scene decomposition

	and representation. arXiv, 2019.
2019	Watters N , et al. Spatial broadcast decoder: A simple architecture for learning disentangled representations in VAEs. <i>arXiv</i> , 2019.
2019	Duan S, Watters N , et al. A heuristic for unsupervised model selection for variational disentangled representation learning. <i>arXiv</i> , 2019.
2018	Burgess C, [and 6 others, including Watters, N]. Understanding disentangling in β-VAE. arXiv, 2018.
2018	Achille A, [and 5 others, including Watters, N]. Life-long disentangled representation learning with cross-domain latent homologies. <i>NeurIPS</i> , 2018
2017	Watters N , et al. Visual interaction networks: Learning a physics simulator from video. NeurIPS, 2017.
2014	Watters N , et al. Neuronal spike train entropy estimation by history clustering. <i>Neural Computation</i> , 2014.
	Conference Presentations & Invited Talks
06/2023	McGill MountAIN seminar. Neural mechanisms of multi-object representation and prediction in the primate brain.
03/2023	COSYNE. Multi-object memory and prediction in the primate brain.
11/2022	Society for Neuroscience. Multi-object memory and prediction in the primate brain.
09/2022	Montreal Institute for Learning Algorithms Neuro-Al seminar. <i>Multi-object memory and prediction in the primate brain.</i>
08/2022	Conference on Cognitive Computational Neuroscience. Modeling human eye movements with neural networks in a maze-solving task.
04/2022	Simons Center for the Global Brain. Factorized representations for robust dynamics.
01/2022	BIRS Dynamical Principles of Biological & Artificial Neural Networks. Factorized representations for generalization.
11/2019	MIT Center for Brains, Minds, and Machines colloquium, 2019. Unsupervised learning and compositional representations.
08/2019	Hudson River Trading research seminar, 2019. Unsupervised learning and compositional representations.
10/2019	IBM Watson research seminar, 2019. Unsupervised learning and compositional representations.
07/2019	Max Planck Institute Tübingen research seminar, 2018. Unsupervised learning and compositional representations.
	Mentorship & Teaching
2021 - 2022	Mentored undergraduate researcher Jason Li. Co-authored publication and conference presentations.
2020 - 2021	Mentored undergraduate researcher Erica Chiu.
2021	Mentored summer undergraduate research fellow Dagim Belete.
2021	Teaching Assistant, 9.49 Neural Circuits for Cognition.

2020	Teaching Assistant, 9.014 Quantitative Methods in Neuroscience.
------	---

Teaching Assistant, undergraduate and graduate applied algebra courses.