AZWS - Lösung 1

Peter von Rohr 2018-04-12

Aufgabe 1: Kontrollfragen Zuchtprogramm

Kontrollfrage 1: Nennen Sie die sechs Bestandteile eines Zuchtprogramms und teilen Sie diese in die Kategorien *Planung* (P), *Informationsfluss* (I) und *Ausführung* (A) ein.

Kontrollfrage 2: Welche Arten von Zuchtprogrammen gibt es und wo sind diese anzutreffen (Regionen, Struktureigentschaften)?

Kontrollfrage 3: Aus welchen Gründen wurden die Stationsprüfung beim Schwein und die Milchleistungsprüfung beim Rind eingeführt?

Lösung

Antwort 1:

- 1. Zuchtziel (P)
- 2. Leistungsprüfung (I)
- 3. Zuchtwertschätzung (I)
- 4. Reproduktionstechniken (A)
- 5. Selektion und gezielte Anpaarung (A)
- 6. Selektionserfolg (I)

Antwort 2:

- Zuchtprogrammen, bei denen ___Zuchtfortschritt im Zentrum steht. Verbreitung: Regionen mit knappen Ressourcen, wenig Züchtungsinfrastruktur oder grossen Betriebsstrukturen
- Zuchtprogramme, bei denen wirtschaftliches Ergebnis der beteiligten Betriebe/Firmen/Organisationen im Zentrum steht.

Angwort 3:

- Die Stationsprüfung beim Schwein wurde zur Vereinheitlichung und zur besseren Standardisierung der Umweltbedingungen eingeführt. So konnten die Leistungen zwischen Prüfgruppen in konstanter Umwelt miteinander verglichen werden.
- Die Milchleistungsprüfung wurde zur Sicherung der Qualität und aus Managementgründen eingeführt.

Aufgabe 2: Einflussfaktoren Selektionserfolg

Füllen Sie in der folgenden Tabelle aus, welche Einflüsse die einzelnen Komponenten des Zuchtprogramms auf den Selelektionserfolg haben.

	i	r_{TI}	σ_a
Leistungsprüfung			
Zuchtwertschätzung			
Reproduktionstechniken			
Selektion und Anpaarung			

Lösung

	i	r_{TI}	σ_a
Leistungsprüfung	bei vielen Tieren günstig messbar. Verteilung nahe an Normalverteilung	möglichst hohe Genauigkeit der Messung. Messung besser als Bewertung	Merkmale mit ausreichender genetischadditiver Varianz und Erblichkeit
Zuchtwertschätzung	BLUP-Tiermodell, damit alle Tiere im Pedigree Zuchtwerte	Verwendung aller Ver- fügbarer Information (Pedigree und Daten) in BLUP-Tiermodell, damit Genauigkeit möglichst hoch	Verwendung korrekt geschätzter Vari- anzkomponenten in Zuchtwerschätzver- fahren
Reproduktionstechniken	Erhöhung der Anzahl Nachkommen pro El- terntier erhöht Selek- tionsintensität	überbetrieblicher Einsatz ermöglicht genauere Schätzung der Zuchtwerte, da Umwelt besser berück- sichtigt	bessere Schätzung der Umwelt erlaubt bessere Trennung zwischen genetisch- additiver Varianz und Restvarianz
Selektion und Anpaarung	Strenge Selektion und Anpaarung der besten Tiere erhöhen die Selek- tionsintensität	Selektion vieler junger Tiere verkürzt Gener- ationenintervall, aber Genauigkeit ist eher tiefer	Gezielte Paarung über Betriebe hinweg verbessert Schätzung der genetisch-additiven Varianz

Aufgabe 3:

In der nachfolgenden Tabelle sind Erblichkeiten (h^2) und phänotypische Standardabweichung $(S_p$ oder $\sigma_p)$ für eine Reihe von Merkmalen beim Schwein gegeben

Merkmal	h2	Sp
MTZ	0.32	74.79
FV	0.47	0.13
AwF	0.60	2.30
ImF	0.51	0.46
pH1	0.29	0.17
pH30	0.16	0.05
H30	0.22	3.37
FEZ	0.42	1.33

- a. Berechnen Sie die genetisch additive Varianz für alle Merkmale
- b. Angenommen, es wird mit einer Intensität von i=0.8 aufgrund einer Eigenleistung selektiert und das Generationeninterval betrage L=1.5 Jahre beim Schein. Wie gross ist der jährliche Selektionserfolg für jedes Merkmal?
- c. Wie lange dauert es bis sich der ImF vom aktuellen Populationsmittel von 1.6% auf 1.8% verbessert hat?

Lösung

a. Die additive-genetische Varianz V_g entspricht dem Produkt aus der Erblichkeit mal die phänotypische Varianz. Somit lautet das Resultat

Merkmal	Vg
$\overline{\text{MTZ}}$	1789.9341
FV	0.0079
AwF	3.1740
ImF	0.1079
pH1	0.0084
pH30	0.0004
H30	2.4985
FEZ	0.7429

b. Bei der Selektion mit einer Eigenleistung entspricht die Genauigkeit der Zuchtwertschätzung der Erblichkeit. Also ist die Korrelation r_{IT} gleich der Quadratwurzel aus der Erblichkeit h^2 . Aus dem Skript kennen wir die Formel für den jährlichen Selektionserfolg SR oder ΔG als

$$\Delta G = \frac{i * r_{IT} * \sigma_a}{L}$$

3

Somit lauten die Selektionserfolge

Merkmal	SR
MTZ	12.7649
FV	0.0329
AwF	0.7354
ImF	0.1257
pH1	0.0258
pH30	0.0043
H30	0.3952
FEZ	0.2972

c. Soll sich das Populationsmittel μ_{ImF} von 1.6% auf 1.8% verbessern, dann müssen wir den Unterschied zwischen dem aktuellen und dem neuen gewünschten Populationsmittel durch den Selektionsfortschritt pro Jahr teilen. Dann erhalten wir die Zeitdauer t, welche für diese Steigerung benötigt wird.

$$t = \frac{\mu_{ImF,neu} - \mu_{ImF,aktuell}}{\Delta G_{ImF}}$$

Eingesetzt erhalten wir

$$t = \frac{1.8 - 1.6}{0.1257} = 1.59$$

Das heisst es dauert rund 1.59 Jahre für die Verbesserung des ImF von aktuell 1.6% auf 1.8%.