

Computer Architecture (Fall 2022)

Introduction

Dr. Duo Liu (刘铎)

Office: Main Building 0626

Email: liuduo@cqu.edu.cn

Course Introduction What is Computer Architecture? 3 The History of C&A 4 What is Computer? The Trends of C&A

2017 Turing Award

John L. Hennessy

David A. Patterson

计算机体系结构进入新的黄金时代!

A New Golden Age for Computer Architecture

Who Knows What ARM is?

- Q: How many of you have an ARM computer?
 - A: All of you

What Exactly Are They Doing?

- What is big.LITTLE?
- Big cores for high performance
- Little cores for low power

Why is ARM Doing This?

Power Efficiency = calculations/energy

The Details

Why **Should** They Do This?

Can't increase power:

Need to improve power officier

What are Others Doing?

GPUs: Lots and lots of very small cores

This is Computer Architecture

- Understanding performance and efficiency
- Design tradeoffs in executing instructions
- Building the hardware
- Making it programmable

So, Why Should You Care?

- Computers are evolving very fast
- Need to understand how they work to understand why they are changing
- Computer Architecture is critical to performance and efficiency
- Not just about designing hardware:
 - How does big.LITTLE affect software?
 - How easy is it to program a GPU?

Example-1

How to select a proper processor? What are your concerns?

- Price?
- Performance?
- Reliability?
- CPU, Memory, Storage, GPU?

- - -

排	研制厂	型号	安装地点	安装年份	应用	CPU	Linpack值	Linpack	Linpack峰值
名	商/单位	土力	又衣地氚	又衣牛切	领域	核数	(Tflops)	来源	(Tflops)
1	国家并行 计算机工 程技术研 究中心	神威太湖之光,40960*Sunway SW26010 260C 1.45GHz,自主网络	国家超级计算无锡中心	2016	超算中心	10649600	93015.0	Q	125436.0
2	国防科大	天河二号升级系统(Tianhe-2A),TH-IVB-MTX Cluster + 35584*Intel Xeon E5-2692v2 12C 2.2GHz+35584*Matrix-2000,TH Express-2	国家超级计算广州中心	2017	超算中心	427008	61445.0	Q	100679.0
3	联想	深腾8800系列,3800*Intel Xeon Gold 6133 20C 2.5GHz,25GbE	网络公司	2019	互联网/ 大数据	76000	3089.0	С	6080.0
4	联想	深腾8800系列,3680*Intel Xeon Gold 6133 20C 2.5GHz,25GbE	网络公司	2019	互联网/ 大数据	73600	2994.0	С	5888.0
5	联想	深腾8800系列,3600*Intel Xeon Gold 6133 20C 2.5GHz,25GbE	网络公司	2019	互联网/ 云计算	72000	2932.0	С	5760.0
6	联想	深腾8800系列,3400*Intel Xeon Gold 6133 20C 2.5GHz,25GbE	网络公司	2019	互联网/ 视频	68000	2780.0	С	5440.0
7	联想	深腾8800系列,612*Intel Xeon Gold 6240 18C 2.6GHz,EDR	信息中心	2019	科学计算	11016	2745.0	С	5201.0
8	联想	深腾8800系列,3200*Intel Xeon Gold 6133 20C 2.5GHz,25GbE	网络公司	2019	互联网/ 云计算	64000	2621.0	С	5120.0
9	国防科大	天河一号A,14336*Intel Hexa Core Xeon X5670 6C 2.93GHz,私有高速网络80Gb	国家超级计算天 津中心	2010	超算中心	202752	2566.0	Q	4701.0
10	国家并行 计算机工 程技术研 究中心	神威E级原型原型系统,1024*SW26010+ 260C 1.5GHz,SW-Net	国家超级计算济南中心	2018	超算中心	266240	2556.0	C	3130.0

Data Explosion

[Source: Cisco Global Cloud Index, 2016-2021]

I Review: Some Basic Definitions

Metric prefixes								
Prefix	Symbol	1000 ^m	10 ⁿ	Decimal	Short scale	Long scale	Since ^[n 1]	
yotta	Υ	1000 ⁸	10 ²⁴	1 000 000 000 000 000 000 000 000	septillion	quadrillion	1991	
zetta	Z	1000 ⁷	10 ²¹	1 000 000 000 000 000 000 000	sextillion	trilliard	1991	
exa	Е	1000 ⁶	10 ¹⁸	1 000 000 000 000 000 000	quintillion	trillion	1975	
peta	Р	1000 ⁵	10 ¹⁵	1 000 000 000 000 000	quadrillion	billiard	1975	
tera	T	1000 ⁴	10 ¹²	1 000 000 000 000	trillion	billion	1960	
giga	G	1000 ³	10 ⁹	1 000 000 000	billion	milliard	1960	
mega	M	1000 ²	10 ⁶	1 000 000	mill	ion	1960	
kilo	k	1000 ¹	10 ³	1 000	thou	sand	1795	
hecto	h	1000 ^{2/3}	10 ²	100	hund	dred	1795	
deca	da	1000 ^{1/3}	10 ¹	10	te	en	1795	
		1000 ⁰	10 ⁰	1	or	ne	8 <u>80</u>	

Review: Some Basic Definitions

Metric prefixes									
Prefix	Symbol	1000 ^m	10 ⁿ	Decimal	Short scale	Long scale	Since ^{[n 1}		
		1000 ⁰	10 ⁰	1	0	ne	-		
deci	d	$1000^{-1/3}$	10 ⁻¹	0.1	te	nth	1795		
centi	С	$1000^{-2/3}$	10 ⁻²	0.01	hund	lredth	1795		
milli	m	1000^{-1}	10^{-3}	0.001	thous	andth	1795		
micro	μ	1000 ⁻²	10 ⁻⁶	0.000 001	milli	onth	1960		
nano	n	1000^{-3}	10 ⁻⁹	0.000 000 001	billionth	milliardth	1960		
pico	р	1000^{-4}	10 ⁻¹²	0.000 000 000 001	trillionth	billionth	1960		
femto	f	1000 ⁻⁵	10 ⁻¹⁵	0.000 000 000 000 001	quadrillionth	billiardth	1964		
atto	а	1000 ⁻⁶	10 ⁻¹⁸	0.000 000 000 000 000 001	quintillionth	trillionth	1964		
zepto	z	1000 ⁻⁷	10 ⁻²¹	0.000 000 000 000 000 000 001	sextillionth	trilliardth	1991		
yocto	у	1000-8	10 ⁻²⁴	0.000 000 000 000 000 000 000 001	septillionth	quadrillionth	1991		
1. ^ TI	ne metric sys	tem was introd	duced in 1	795 with six prefixes. The other dates relate to recognit	ion by a resolution o	of the CGPM.			

Review: Some Basic Definitions

- □ Kilobyte -2^{10} or 1,024 bytes
- Megabyte 2²⁰ or 1, 024 Kilobytes
 - sometimes "rounded" to 10⁶ or 1,000,000 bytes
- □ Gigabyte 2³⁰ or 1, 024 Megabytes
 - sometimes rounded to 10⁹ or 1,000,000,000 bytes
- □ Terabyte 2⁴⁰ or 1, 024 Gigabytes
 - sometimes rounded to 10¹² or 1,000,000,000,000 bytes
- □ Petabyte 2⁵⁰ or 1024 Terabytes
 - sometimes rounded to 10¹⁵ or 1,000,000,000,000,000 bytes
- Exabyte 2⁶⁰ or 1024 Petabytes
 - Sometimes rounded to 10¹⁸ or 1,000,000,000,000,000,000 bytes
- □ Zettabyte 2⁷⁰ or 1024 Exabytes
 - 1 Sometimes rounded to 10²¹ or 1,000,000,000,000,000,000, 000 bytes

How a computer is built

- Logic->circuits->datapath
- How a computer is controlled
- Basic operations->micro architecture->instructions (ISA)->
 assembly
- Contents (in-order)
- MIPS assembly
- Logic design(adders,ALU,control)
- Performance analysis
- Data path and pipelining
- Input/Output
- Caches
- Virtual memory

01 Introduction » Educational Goals

Understand how modern computers are designed and implemented

- computer architecture principles
- design and implementation trade-offs
 - performance, cost, energy, design complexity
- role of technology and market trends
 - not just microprocessor, but also servers and embedded systems
 - the arrival of multi-core architectures
- case studies
 - not only classic processors, but also state-of-the art computers

"SW-oriented students"

- write better software applications
- write better system's software
 - · operating systems, compilers

01 Introduction » Prerequisites

- Course in computer organization
 - processor organization, instruction set architecture
 - programming with an assembly language
 - ideally, basics of pipelining and caches
- Course on digital logic
 - logic gates, truth tables, Karnaugh maps
 - combinational vs. sequential logic, FSMs
- Background in programming and data structure
 - background in at least one high-level language
 - programming (C, C++, Java...)

01 Introduction » Major parts

- Introduction
 - Chapters 1.1-1.6
- Principles of Quantitative Analysis; MIPS
 - Chapters 1.8-1.12
- Pipelining, Hazards, Implementation Issues
 - Chapters A.1-A.7, A.9, A.12, C.1-C.4
- Instruction-Level Parallelism (ILP), Tomasulo
 - Chapters C.5-C.9, 3.1, 3.2, 3.7
- Memory-Hierarchy Design, Cache Optimization
 - Chapters B.1-B.3, 2.1, 2.3
- ILP: Branch Prediction, Superscalars
 - Chapters 3.3-3.6, 3.8, 3.9
- Memory Hierarchy Design, Virtual Memory
 - Chapters 2.4, B.4
- Mostly covered by the textbook Appendix A, B, C and Chapter 1, 2, 3

01 Introduction » Required Textbook

- Computer Architecture: A Quantitative Approach, 5th ed.," John L. Hennessey and David A. Patterson, Morgan Kaufman, 2011
- Additional readings will be assigned in class:
 - journal and conference papers
 - excerpts from other books
 - technical manuals

01 Introduction » Optional Textbooks

 D. Patterson and J. Hennessy, "Computer Organization & Design," Morgan Kaufmann, 2008

 D. Harris and S. Harris,
 "Digital Design and Computer Architecture,"
 Morgan-Kaufmann, 2007

01 Introduction » Grading & Attendance

- Grades will be based on
 - Homework (about 15%)
 - In class quizzes (about 10%)
 - In class presentation (about 5%)
 - Midterm exam (about 10%)
 - Project / Experiments (about 20%)
 - Final exam (about 40%)
- Any material covered in class, assigned readings, handouts may appear in exam questions
- Class Attendance:
 - You are responsible for all material presented in class lectures
 - At times, lectures will diverge from the textbook
 - Regular class attendance is the best way to insure that you learn the material

01 Introduction » Grading & Policies

Homework is due <u>at the beginning of class</u> on the due date

Late policy

If you hand in something after the due date without the <u>explicit written</u> <u>approval</u> of an instructor or course TA, you might receive zero credit. In emergency only, contact the instructor <u>in advance</u> for an extension.

General policy

 Collaboration on solutions, or sharing or copying of solutions, is not allowed. No cooperation is allowed on exams. This policy will be strictly enforced Welcome to come to my office during the office hours:

Office: Main Building 0626

Email: liuduo@cqu.edu.cn

Office hours: Wednesday 3-5pm or by appointment (send email)

Teaching Assistant of Prof. Duo Liu

- Haorui He (何浩睿)
 - Office: A区主教0414
 - Email: hehaorui@outlook.com
 - Phone: 15182706383
 - Office Hours
 - Saturday 3:00—5:00pm

- Mingfeng Jiang (蒋铭峰)
 - Office: A区主教0600
 - Email: 942513309@qq.com
 - Phone: 15320363541
 - Office Hours
 - Saturday 3:00—5:00pm