PART

(VERLET) INTEGRATION

Make that cloth dance in the spring! (haha very pun,

much fun)

For this part, we simulate cloth movement. First, we sum all forces acting on each point mass. This is achieved using physics, such as Newton's famous F=ma, along with Hooke's law (for springs):

$$F_s = k_s * (||p_a - p_b|| - l)$$

where ks is a spring constant, where larger values simulate "stiffer" springs (return to rest faster), p_a and p_b are the positions of masses attached to the springs, and l is the spring's rest length.

Then, we use Verlet integration to compute a point mass's position at each timestep of the simulation according to the forces applied to each mass.

Mathematically, this is

$$x_{t+dt} = x_t + (1-d) * (x_t - x_{t-dt}) + a_t * dt^2$$

where t+dt is the next time step, d is a damping constant (more means more damping/less movement), t-dt is the previous time step, a_t is acceleration (calculated using F=ma), and dt is the time step.

To prevent springs from becoming unreasonably deformed, we also add constraints to each spring so that its length is at most 10% greater than its rest_length at the end of any time step. We make sure that the spring's direction is preserved, for our implementation. After implementing this part, we can now simulate our sheet of cloth.

Here are various ks values (N/m):

KS	IMAGE	DIFFERENCE
		Cloth is less "stiff"
		and as a result there
		are barely any
1		wrinkles, since it just
		falls straight down
		without much
		constraints.

KS	IMAGE	DIFFERENCE
5,000		Default, looks pretty natural, with some folding and wrinkles.
100,000		Cloth is very "stiff" and thus it doesn't go as far from its starting position.

Here are various density values (g/cm 2):

KS	IMAGE	DIFFERENCE
1		Cloth is not "weighed down" as much, so there's barely a curve at the top, with it just slightly deforming.
15		Default, looks pretty natural, with some folding and wrinkles.
1,000		Cloth is "weighed down" much more, so the curve at the top is

KS	IMAGE	DIFFERENCE
		much more
		pronounced, with the
		wrinkles being smaller
		since the weight pulls
		it down and
		"stretches" it.
		Cloth is "weighed
		down" so much that it

100,000

down" so much that it looks flat, all the wrinkles are practically gone because of the sheer weight of the cloth, lol.

Here are various damping values (%):

KS	IMAGE	DIFFERENCE
1.15		Cloth's movements aren't as restricted, so it flutters. A lot. Like a butterfly, the slightest movement causes it
		to go fly away, back and

Pinned_4 was rendered using the model's normals and the default parameters (all spring types

enabled, density: 15 g/cm 2 , ks: 5000 N/m, damping: 0.2%, gravity vector: (0, -9.8, 0) m/s 2)

Here is pinned_4's top view:

Here is pinned_4's bottom view:

Here is pinned_4's side view:

© 2021 DIDDLY DOOFER. ALL LAUGHS RESERVED. DESIGN: HTML5 UP