EXHIBIT 7

Expert Report of Sheldon V. Masters, Ph.D. (Bellwether 3)

In Re Flint Water Cases,U.S. District Court for the Eastern District of Michigan Civil Action No. 5:16-cv-10444-JEL-MKM (coordinated docket)

Walters, et al. v. Snyder, et al., Civil Action No. 5:17-cv-10164-JEL-MKM "Bellwether 3 Trial"

July 26th, 2023

Ιá	able of	Con	tents	
S	COPE (OF E	NGAGEMENT	5
E	XPERT	QU	ALIFICATIONS	5
St	JMMA	RY.		6
1 R			ATORY AGENCIES' FAILURES AND SAMPLING, MONITORING AS DEFICIENCIES IN FLINT	
	1.1	Lead	d and Copper Rule Overview	. 12
	1.2	Cor	rosion Control Requirements	. 12
	1.2.2	l	Large Systems Must Install CCT by January 1997	. 12
	1.2.2	2	Exception to CCT Installation by 1997	. 13
	1.2.3 thei		MDEQ's Interpretation of the LCR Caused OCCT to be Interrupted asponse Delayed Public Health Intervention	
	1.2.4	1	EPA Region 5 Did Not Exercise its Oversight Authority and Tools	. 17
	1.3	City	of Flint's Monitoring and Reporting Deficiencies, 2014-2015	. 19
	1.3.2	l	Sample Site Selection Criteria	. 19
	1.3.2	2	Monitoring the Same Sites	. 23
	1.3.3 Change		Reduced Monitoring and Sample Size Requirement after Populat 25	ion
1.3.4		1	Sample Invalidation	. 28
	1.3.5	5	Water Quality Parameters	. 33
	1.3.6	6	Late Reporting in 2014 and 2015	. 35
	1.4	Sam	pling Deficiencies	. 36
	1.4.7	[Pre-Stagnation Flushing	. 37
	1.4.2	2	Pre-Sample Stagnation Time	. 38
	1.4.3	3	Sample Bottle Type	. 39
	1.5	Flin	t, MI Lead Compliance Results	. 39
	1.6	Con	clusions	. 41
2	TIM	ELI	NE OF LEAD RELEASE IN FLINT, MI	. 43
	2.1	Cha	llenges with Using Compliance Data to Assess Lead Release in Flint	. 43
	2.2	Lead	d Release after Switch to Flint River (April 2014 to August 2015)	. 43
	2.3	Tren	nds in Water Lead Levels (August 2015 to September 2019)	. 45
3 M			DCCURRENCE IN LARGE BUILDINGS AND THE UNIVERSITY FLINT	
	3.1	Intr	oduction	. 48
	3.2	Lead	d Exposure in Large Buildings Compare to Homes	. 50
	3.3	Flor	vated Lead Levels in Large Buildings	. 50

3.4 Comparison of UM-Flint Lead Results in Early 2015 to Lead Found in Detroit Schools
4 VISUAL INSPECTION OF PIPE SAMPLES FROM FLINT HOMES53
APPENDIX56
REFERENCES
KLI LKLI VCLS
Table of Figures
Figure 1. A portion of an email exchange between Patrick Cook and Miguel Del Toral (April 24, 2015). Sentences have been highlighted in yellow for emphasis
Figure 3. Percentage of service line composition for Flint LCR monitoring sites by year, 1992-2015
Figure 4. Explanation of boxplots
Figure 5. Comparison of lead concentrations based on FAST data service line materials for the 2014 LCP manifesting period.
for the 2014 LCR monitoring period
for the 2015 LCR monitoring period
Figure 7. Bar plot showing the number of times individual compliance sites were sampled
since the promulgation of the LCR for a) all sites and b) only sites with LSLs
Figure 8. Percentage of sites resampled from the previous monitoring period
Figure 9. Draft Lead and Copper Report and Consumer Notice of Lead Result Certificate for Community Water Supply for the monitoring period from 1/1/15 to 6/30/15 27
Figure 10. Flint raw water temperature between June 2014 and July 2015
Figure 11. A portion of an email from Marc Edwards inquiring about sample invalidation.
A sentence has been highlighted in yellow for emphasis
Figure 12. Impact of different compliance scenarios on lead 90th percentile based on
different sample exclusion criteria. Scenarios where the lead action level are exceeded are
highlighted
Figure 13. Portion of MDEQ LCR sampling protocol used by the City of Flint. Sections have been highlighted for emphasis
Figure 14. Boxplot of the City of Flint's lead compliance results. The 90 th percentile
calculations may vary slightly from MDEQ or City of Flint calculations
Figure 15. Flint 2014 and 2015 LCR samples compared to Virginia Tech sampling without
sampling deficiencies
Figure 16. Mass of lead in biosolids over time along with several events. Blue shading = Period on Flint River, Green shading = Period of VNA involvement, Red shading =
period of pH and alkalinity decrease
Figure 17. Monthly 90th percentile lead concentration
Figure 18. Lead levels from Tier 1 sites from Flint and two of cities (Washington, DC and
Philadelphia, PA) supplied by surface water treatment with orthophosphate 47
Figure 19. Comparison of lead release from UM-Flint campus building and Detroit Public
School buildings. Red dash line indicates that EPA lead action level of 15 ppb. Detection limit set to 0.5 ppb52
limit set to 0.5 ppb
2.5 daily is 2 from 30

54
m
m
54
55
10
13
18
18 18
18
18 18
18 18 il, 19
18 18 il,
]

4 VISUAL INSPECTION OF PIPE SAMPLES FROM FLINT HOMES

On December 7th, 20<u>22. I conducted a visual</u> inspection of pipe specimens taken from two

homes in Flint. MI: and were upplemental report by the plaintiffs' expert (Russell, 2022). The pipes were removed from the homes in February 2022 and included copper and galvanized iron pipes and brass fittings. In general, the copper pipes from both homes were in good condition with no apparent pipe thinning or pitting. Most of the copper pipes that were cut longitudinally had a thin blue-green scale layer which is consistent with the appearance of malachite scales (Arnold Jr. et al., 2012). Sample B from had inconsistent scratches which a rom a sharp tool (Figure 20).

Figure 20. Sample B from

Most sections of the galvanized iron pipes from both homes were heavily tuberculated which is typical of galvanized iron pipes that have been in service for more than half a century (Edwards et al., 2022). An example of this is shown in Figure 21. Similar kinds of tuberculation can be seen in Figure 22 which shows the cross section of galvanized iron pipe from a Midwest surface water supply that has used blended phosphate for more than 20 years (Wasserstrom et al., 2017). Between 1999 and 2010, this system also had an average lead 90th percentile of 6 ppb (Del Toral et al., 2013).

For the vast majority of galvanized iron pipe sections there was no apparent thinning of the walls. However, wall thinning and failure was apparent at threaded sections. Failure at pipe threads typically occurs because cutting the threads during the manufacturing process removes the galvanized iron coating. Wearing can also increase significantly when streamlines are curved (e.g., at elbows) which results in centrifugal acceleration (Roy, 2018). For example, Figure 23 shows an elbow from a home in Cincinnati, OH where the wall has been penetrated likely due to this phenomenon. However, this kind of wearing was not apparent at of the elbows taken from the two Flint homes. Sample G (galvanized pipe a tee) and Sample H (galvanized iron pipe) from both had through-wall pits which were likely caused by deposition the upstream copper pipe. In both of these cases the pits appear to be sealed due to autogenous repair (Tang et al., 2015). Overall, for the age of the pipe specimens that I examined, there did not appear to be significant pipe wall thinning or pitting. Furthermore, most of the corrosion associated with these pipes and fittings occurred prior to 2014.

Figure 21. Galvanized iron Sample D from

Figure 22. Cross sectional image depicts a) macro-scale image and b) the in-situ scale from a large midwestern city with optimized corrosion control. Image modified from Wasserstrom et al. (2017).

Figure 23. Galvanized iron elbow harvested from home in Cincinnati, OH.

I provide the foregoing opinions to a reasonable degree of engineering and scientific certainty.

Sheldon V. Masters, Ph.D.

Date: July 26th, 2023