Zastosowanie metody elementów skończonych do rozwiązania przybliżonego równania potencjału grawitacyjnego

Karol Szustakowski

January 7, 2021

1 Wstęp

Celem opracowania jest rozwiązanie następującego równania:

$$\frac{d^2\phi(x)}{dx^2} = 4\pi G\rho(x)$$

Z następującymi warunkami brzegowymi:

$$\phi(0) = 5$$

$$\phi(3) = 4$$

Gdzie ϕ jest funkcją poszukiwaną taką, że:

$$[0,3] \ni x \to \phi(x) \in \mathbb{R}$$

Funkcja ρ jest dana:

$$\rho(x) = \begin{cases} 0, x \in [0, 1] \\ 1, x \in (1, 2] \\ 0, x \in (2, 3] \end{cases}$$

2 Wyprowadzenia sformułowania wariacyjnego

Pomnożono obustronnie równanie przez funkcję testową:

$$\frac{d^2\phi(x)}{dx^2}v = 4\pi G\rho(x)v$$

Następnie, po całkowaniu obustronnym na dziedzinie:

$$\int_{0}^{3} \frac{d^{2}\phi(x)}{dx^{2}} v(x) dx = 4\pi G \int_{0}^{3} \rho(x) v(x) dx$$

Całkowanie przez części:

$$\phi'(x)v(x)|_0^3 - \int_0^3 \phi'(x)v'(x)dx = 4\pi G \int_1^2 v(x)dx$$

Ponieważ obustronnie zadano warunek Dirichleta, funkcje testowe v zerują się na brzegu dziedziny:

$$-\int_{0}^{3} \phi'(x)v'(x)dx = 4\pi G \int_{1}^{2} v(x)dx$$

Będziemy poszukiwać rozwiązań w formie $\phi = w + u$, gdzie:

$$\phi(0) = 5$$

$$\phi(3) = 4$$

$$w(0) = 0$$

$$w(3) = 0$$

Przyjmujemy więc funkcję u:

$$u(x) = 5 - \frac{x}{3}$$

Oznaczmy:

$$B(\phi, v) = -\int_0^3 \phi'(x)v'(x)dx$$
$$L(v) = 4\pi G \int_0^2 v(x)dx$$

Korzystając z liniowości operatora całkowego:

$$B(\phi, v) = B(w + u, v) = B(w, v) + B(u, v)$$

Otrzymujemy więc:

$$B(w,v) = \bar{L}(v)$$

gdzie

$$\bar{L}(v) = L(v) - B(u, v)$$

3 Funkcje testowe

Obieramy N punktów podziałowych dla obszaru dziedziny, gdzie N zawiera również punkty brzegowe. Biorąc pod uwagę, że z każdej strony został określony brzeg Dirichleta, ostatnia oraz pierwsza funkcja testowa może zostać pominięta.

Niech $h = \frac{2}{(N-1)}$ oznacza długość przedziału.

Funkcje testowé definiujemy następująco:

Funkcje testujące
 testujące (gdzie $n \in \{1,2,...(N-2)\})$:

$$e_n(x) = \begin{cases} \frac{x}{h} - n + 1, x \in [h(n-1), hn] \\ n - \frac{x}{h} + 1, x \in (hn, h(n+1)] \end{cases}$$

4 Równanie w postaci macierzowej

Otrzymujemy więc następujące równanie macierzowe: $A \cdot W = X$

$$A = \begin{bmatrix} B(e_1, e_1) & B(e_2, e_1) & \dots & B(e_{N-2}, e_1)) \\ B(e_1, e_2) & B(e_2, e_2) & \dots & B(e_{N-2}, e_2)) \\ & & & \dots \\ B(e_1, e_{N-2}) & B(e_2, e_{N-2}) & \dots & B(e_{N-2}, e_{N-2})) \end{bmatrix}$$

W jest wektorem wag, a X wektorem wartości $\bar{L}(e_n)$, gdzie n jest numerem wiersza w wektorze.

5 Uproszczenie wartości B(u, v)

Warto zwrócić uwagę, że wartość całki w rozwinięciu B(u, v) nie zależy od granic całkowania.

Można więc zdefiniować:

$$B(e_1, e_1) = \dots = B(e_k, e_k)$$
, dla dowolnych $e(B(e_k, e_k)) = B(e_{k+1}, e_{k+1}) = \dots = B(e_{N-2}, e_{N-2})$.

Dla każdej całki $B(e_a, e_b)$, gdzie |a - b| > 1, mamy $B(e_a, e_b) = 0$, ponieważ iloczyny takich funkcji sprowadzają się do zera.

Dla dowolnego e_a i e_b zachodzi $B(e_a, e_b) = B(e_b, e_a)$, ponieważ jest to forma symetryczna.

Biorąc pod uwagę, że funkcje są wspólnie niezerowe tylko w niewielkich przedziałach, mając zadaną funkcję e_i , niezerową na przedziale [h(i-1), h(i+1)], oraz funkcję e_{i+1} , niezerową na analogicznym przedziale, wartość $B(e_i, e_{i+1})$ wystarczy obliczać całkując na przedziale [hi, h(i+1)].