STM32 course

Analog-to-Digital Converter and vice versa

Outline

- PWM
- DAC
- ADC

Digital vs Analog

- 1) Discrete logical levels (usually two)
- 2) Time is also discrete in most cases
- 3) All active elements work in switch mode
- 4) There is no finite spectrum

- 1) Continuous range of values
- 2) Continuous time
- 3) Active elements work in linear mode
- 4) There is finite spectrum

Digital to Analog Conversion

- 1) Time-based (sequential)
 - a) PWM (Pulse Width Modulation)
 - b) Delta-sigma Modulation
- 2) Level-based (parallel)
 - a) Binary-weighted DAC
 - b) Ladder DAC

- General idea is to convert variable (but discrete!) time period to a certain voltage level
- The simplest way to do it is integration

- Two main problems:
 - It is hard to construct an ideal integrator (due to resistance of the load)
 - It demands positive and negative logical levels
- The solution -- time proportioning control
- We can change duty cycle and filter the signal with common low-pass filter

Switch Mode

- 1) P = U*I (U = 12, I = 0) in case logic 0
- 2) P = U*I (U = 0, I = Imax) in case logic 1

TABLE 8.3 NORMALIZED FOURIER COEFFICIENTS $V_n/V_{
m dc}$ FOR BIPOLAR PWM

	$m_a = 1$	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
n = 1	1.00	0.90	0.80	0.70	0.60	0.50	0.40	0.30	0.20	0.10
$n = m_f$	0.60	0.71	0.82	0.92	1.01	1.08	1.15	1.20	1.24	1.27
$n=m_f\pm 2$	0.32	0.27	0.22	0.17	0.13	0.09	0.06	0.03	0.02	0.00

Pros:

- Easy to implement
- It takes only one pin
- In some applications (like motors) you don't even need a filter
- Switch mode

Cons:

- Due to discrete time, to get fine levelling frequency should be seriously decreased
- Filters are not perfect and you have a lot of high-frequency noise

Binary Weighted DAC

- General idea is to map each bit of digital register to analog value and sum them
- The simplest way to do it is a resistor based ladder

Binary Weighted DAC

- General idea is to map each bit of digital register to analog value and sum them
- The simplest way to do it is a resistor based ladder

Binary Weighted DAC

R2-R ladder

R2-R Ladder

R2-R Ladder

Pros:

- MUCH higher frequency
- Less noises (but still need a filter)
- Precision doesn't depend on frequency

Cons:

- Without external devices takes n pins
- Precision depends on resistors quality (it's better to use 1% resistors)
- Signal must be amplified
- Usually, n <= 8 bit.

Analog to Digital Conversion

Methods are the same!

Direct Conversion ADC

Direct Conversion ADC

Pros: Cons:

- The highest sampling rate (up to 1GSPS)
- There is no output noise

- Expensive
- 6-8 bit

SAR ADC

SAR ADC

Pros: Cons:

- Good resolution
- Cheap

- Low frequency
- Noise

Sigma-Delta ADC

http://www.analog.com/en/design-center/interactive-design-tools/sigma-delta-adc-tutorial.html

Sigma-Delta ADC

Pros: Cons:

- Good resolution
- Fast
- Low noise

Expensive

How to choose?

QUESTIONS?