py4kids (https://github.com/wgong/py4kids)

Python for Math - Number, Operation, Variable

In this lesson, we learn how python works with

- numbers,
- · operations
- · variables.

In [1]: from jyquickhelper import add_notebook_menu
add_notebook_menu()

Out[1]:

- Number System
 - Arithmetic Operations
 - Integer
 - Rational Numbers
 - Irrational Numbers
 - Floating-point number
 - Decimal when you need more precision
 - Scientific Notation
 - A few fundamental constants
 - Imaginary and Complex Numbers
 - Euler Equation
- ASCII how computer recognizes / represents numbers
- Python built-in functions
- What is variable?
 - Naming Rules
- · How about graph?
- Fun and Fancy Math
- Learn Math using Python YouTube

Number System

https://www.wikiwand.com/en/Number (https://www.wikiwand.com/en/Number)

Arithmetic Operations

Symbol	Operation	
+	Addition	
-	Subtraction	
1	division	
%	mod	
*	multiplication	
//	floor division	
**	to the power of	

Integer

{... -3, -2, -1, 0, 1, 2, 3, ...}

In [2]: 1+2+3

Out[2]: 6

In [3]: 5-5

Out[3]: 0

In [4]: 4*4

Out[4]: 16

In [5]: 12 / 3

Out[5]: 4.0

In [6]: 1 / 2

Out[6]: 0.5

In [7]: 11 % 10 # remainder

Out[7]: 1

In [8]: 3//2 # quotient

Out[8]: 1

In [9]: 3 ** 2 # 3 squared

Out[9]: 9

Rational Numbers

{1/3, 7/11, ...}

In [10]: 1/3

Out[10]: 0.33333333333333333

In [11]: -7/11

Out[11]: -0.6363636363636364

Irrational Numbers

 $\{\pi, e, \sqrt{2},\}$

In [12]: import math

For a circle,

$$\pi = \frac{c}{d}$$
$$A = \pi r^2$$

c - circumference, d - dimeter, r - radius, A - area

In [13]: math.pi

Out[13]: 3.141592653589793

In [14]: math.e

Out[14]: 2.718281828459045

What is square root of 2?

In [15]: math.sqrt(2)

Out[15]: 1.4142135623730951

Do you know the Golden Ratio?

$$R = \frac{1 + \sqrt{5}}{2}$$

In [16]: (1+math.sqrt(5))/2.0

Out[16]: 1.618033988749895

Floating-point number

Rational and Irrational numbers together are called Real Numbers.

In computer language, real number is often called Floating-point number, or double number (with more precision). Float/Double numbers carry a decimal point.

What Every Computer Scientist Should Know About Floating-Point Arithmetic (http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html)

```
In [17]: print(0.11 + 0.22 - 2*0.11)
```

0.110000000000000001

Question: why the above answer is not exactly 0.11?

Decimal - when you need more precision

decimal module (https://docs.python.org/3/library/decimal.html)

```
In [20]: print(3 * 0.1)
```

0.300000000000000004

```
In [21]: import math
  print(Decimal(math.pi))
```

3.141592653589793115997963468544185161590576171875

```
In [22]: print(math.pi)
```

3.141592653589793

Scientific Notation

· useful for very small and very large numbers

In [25]: a biggy**2

Out[25]: 1.5129000000000001e+246

In [26]: a_tiny = 0.9999e-234

In [27]: a_tiny**3

Out[27]: 0.0

In [28]: math.sqrt(a_tiny)

Out[28]: 9.999499987499374e-118

A few fundamental constants

speed of light (https://www.wikiwand.com/en/Speed_of_light) - Nothing can fly faster than light

$$c = 3.00 \times 10^8$$
 m/s

299792458.0

<u>Gravitational constant (https://www.wikiwand.com/en/Gravitational_constant)</u> - Newton's law of gravitation : Every matter is attactive to another matter.

$$G = 6.67408 \times 10^{-11} m^3 \cdot kg^{-1} \cdot s^{-2}$$

6.67e-11

Planck constant (https://www.wikiwand.com/en/Planck constant) - the unit of quantum universe

$$h = 6.62607004081 \times 10^{-34} J \cdot s$$

6.626e-34

<u>Planck length (https://www.wikiwand.com/en/Planck_length)</u> - when a ruler is so tiny, no one knows what you are measuring

$$l_p = 1.616229(38) \times 10^{-35} m$$

1.616e-35

Imaginary and Complex Numbers

$$i = \sqrt{-1}$$
$$c = 3 + 4i$$

In [33]: complex(3,4)

Out[33]: (3+4j)

In [34]: import math

In [35]: math.sqrt(abs(complex(3,4)*complex(3,-4)))

Out[35]: 5.0

Euler Equation

$$e^{i\pi} + 1 = 0$$

is claimed to be the most elegant math equation. Why?

It combines the most basic math symbols: $\{0, 1, e, \pi, i, +, =\}$ into one simple equation.

In [36]: import cmath

In [37]: abs(cmath.exp(complex(0,1)*cmath.pi)+1)

Out[37]: 1.2246467991473532e-16

ASCII - how computer recognizes / represents numbers

https://www.wikiwand.com/en/ASCII (https://www.wikiwand.com/en/ASCII)

In the digital world, everything is made up of bits: (0,1)

Dec Hex	Oct	Chr	Dec Hex	Oct	HTML	Chr	Dec Hex	Oct HTML	Chr	Dec	Hex	Oct	HTML	Chr
0 0	000	NULL	32 20	040		Space	64 40	100 @	@	96	60	140	`	
11	001	Start of Header	33 21	041	!	1	65 41	101 A	Α	97	61	141	a	а
2 2	002	Start of Text	34 22	042	"	"	66 42	102 B	В	98	62	142	b	b
3 3	003	End of Text	35 23	043	#	#	67 43	103 C	C	99	63	143	c	С
4 4	004	End of Transmission	36 24	044	\$	\$	68 44	104 D	D	100	64	144	d	d
5 5	005	Enquiry	37 25	045	%	%	69 45	105 E	E	101	65	145	e	е
6 6	006	Acknowledgment	38 26	046	&	&	70 46	106 F	F	102	66	146	f	f
7 7	007	Bell	39 27	047	'		71 47	107 G	G	103	67	147	g	g
8 8	010	Backspace	40 28	050	((72 48	110 H	Н	104	68	150	h	ĥ
9 9	011	Horizontal Tab	41 29	051))	73 49	111 I	I	105	69	151	i	i
10 A	012	Line feed	42 2A	052	*	*	74 4A	112 J	J	106	6A	152	j	j
11 B	013	Vertical Tab	43 2B	053	+	+	75 4B	113 K	K	107	6B	153	k	k
12 C	014	Form feed	44 2C	054	,	,	76 4C	114 L	L	108	6C	154	l	I
13 D	015	Carriage return	45 2D	055	-	-	77 4D	115 M	M	109	6D	155	m	m
14 E	016	Shift Out	46 2E	056	.		78 4E	116 N	N	110	6E	156	n	n
15 F	017	Shift In	47 2F	057	/	/	79 4F	117 O	0	111	6F	157	o	0
16 10	020	Data Link Escape	48 30	060	0	0	80 50	120 P	Р	112	70	160	p	р
17 11	021	Device Control 1	49 31	061	1	1	81 51	121 Q	Q	113	71	161	q	q
18 12	022	Device Control 2	50 32	062	2	2	82 52	122 R	R	114	72	162	r	r
19 13	023	Device Control 3	51 33	063	3	3	83 53	123 S	S	115		163	s	S
20 14	024	Device Control 4	52 34	064	4	4	84 54	124 T	Т	116	74	164	t	t
21 15	025	Negative Ack.	53 35	065	5	5	85 55	125 U	U	117	75	165	u	u
22 16	026	Synchronous idle	54 36	066	6	6	86 56	126 V	V	118	76	166	v	V
23 17	027	End of Trans. Block	55 37	067	7	7	87 57	127 W	W	119	77	167	w	W
24 18	030	Cancel	56 38	070	8	8	88 58	130 X	Χ	120	78	170	x	Х
25 19	031	End of Medium	57 39	071	9	9	89 59	131 Y	Υ	121	79	171	y	У
26 1A	032	Substitute	58 3A	072	:	:	90 5A	132 Z	Z	122	7A	172	z	Z
27 1B	033	Escape	59 3B	073	;	;	91 5B	133 [[123	7B	173	{	{
28 1C	034	File Separator	60 3C	074	<	<	92 5C	134 \	\	124	7C	174		I
29 1D	035	Group Separator	61 3D	075	=	=	93 5D	135]]	125	7D	175	}	}
30 1E	036	Record Separator	62 3E	076	>	>	94 5E	136 ^	٨	126	7E	176	~	~
31 1F	037	Unit Separator	63 3F	077	?	?	95 5F	137 _	_	127	7F	177		Del

hex() - from decimal to hexadecimal (4-bit binary)

```
In [38]:
          hex(49)
Out[38]:
          '0x31'
          oct() - from decimal to octal (3-bit binary)
In [39]:
          oct(49)
Out[39]: '0061'
          chr() - from integer to ASCII char
In [40]: chr(65), chr(122)
Out[40]: ('A', 'z')
          int() - from binary to decimal
In [41]: int('0x31',16)
Out[41]: 49
In [42]: int('0o61',8)
Out[42]: 49
```

asciitbl.com

Out[44]: 98

Python built-in functions

https://docs.python.org/3/library/functions.html (https://docs.python.org/3/library/functions.html)

		Built-in Functions		
abs()	dict()	help()	min()	setattr()
all()	dir()	hex()	next()	slice()
any()	divmod()	id()	object()	sorted()
ascii()	enumerate()	input()	oct()	staticmethod()
bin()	eval()	<pre>int()</pre>	open()	str()
bool()	exec()	isinstance()	ord()	sum()
bytearray()	filter()	issubclass()	pow()	super()
bytes()	float()	iter()	<pre>print()</pre>	tuple()
callable()	format()	len()	property()	type()
chr()	frozenset()	list()	range()	vars()
<pre>classmethod()</pre>	getattr()	locals()	repr()	zip()
compile()	globals()	map()	reversed()	import()
complex()	hasattr()	max()	round()	
delattr()	hash()	memoryview()	set()	

What is variable?

In algebra, we use a string label to represent number.

In computer, variable stores information of various types.

Computer language speaks of numbers, variables, operations.

```
In [45]: x = 3
         In [46]: | print(x)
         3
In [47]: | print(y)
        1e+26
In [48]:
         z = x*y
         print(z)
        3.0000000000000003e+26
In [49]: z1 = y/3
         print(z1)
        3.3333333333335e+25
In [50]: my_big_number = y**3
In [51]: print(my_big_number)
        1.00000000000000002e+78
In [52]: type(x)
Out[52]: int
In [53]: type(y)
Out[53]: float
In [54]: c = complex(3,4)
In [55]: type(c)
Out[55]: complex
In [56]: abs(c)
Out[56]: 5.0
```

Naming Rules

- · Name your variable nicely
- Variables can only contain letters, numbers, and underscores. Variable names can start with a letter or an underscore, but can not start with a number.
- Spaces are not allowed in variable names, so we use underscores instead of spaces. For example, use student_name instead of "student name".
- You cannot use <u>Python keywords</u>
 (http://docs.python.org/3/reference/lexical_analysis.html#keywords)
 as variable names.
- Variable names should be descriptive, without being too long. For example mc_wheels is better than just "wheels", and number_of_wheels_on_a_motorycle.
- Be careful about using the lowercase letter I and the uppercase letter O in places where they could be confused with the numbers 1 and 0.

How about graph?

```
In [59]: %matplotlib inline
   import numpy as np
   import matplotlib.pyplot as plt
```

```
In [60]: # plot sin(x), cos(x)
    x = np.linspace(0,10)
    y1 = np.sin(x)
    y2 = np.cos(x)
    plt.plot(x,y1,x,y2)
```


Fun and Fancy Math

```
In [61]: import sympy
sympy.init_printing(use_latex='mathjax')
x = sympy.symbols('x')
```

n = 10

$$x^{10} - 1$$
=
$$(x - 1)(x + 1)(x^4 - x^3 + x^2 - x + 1)(x^4 + x^3 + x^2 + x + 1)$$

Learn Math using Python - YouTube

In [63]: from IPython.display import Image, YouTubeVideo

In [64]:	YouTubeVideo('HfvQ607Di0g')	
Out[64]:	Learning Math and Science Using Python (D	
In [65]:	YouTubeVideo('XJOt4QQgx0A')	
Out[65]:	Doing Math with Python	
In []:		