



# **Loss functions and Optimization**

A. Maier, K. Breininger, S. Vesal, N. Maul, Z. Pan, L. Reeb, F. Thamm, M. Hoffmann, C. Bergler, F. Denzinger, W. Fu, V. Christlein, M. Gu, Z. Yang, T. Würfl Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg November 4. 2019





# **Outline**

**Loss Functions** 

Optimization





# Loss Functions





# Regression vs. classification

- Classification: Estimate a discrete variable for every input.
- Regression: Estimate a continuous variable for every input.







Regression



### Loss function vs. last activation function in a network

#### The last activation function

- is applied on individual samples
   x<sub>m</sub> of the batch
- is present at training and testing
- produces the output, or prediction
- generally produces a vector

#### The loss function

- combines all M samples and labels
- is only present at training
- produces the loss
- generally produces a scalar



#### **Maximum Likelihood Estimation Reminder**

#### Assume a

- · Training set with
  - Observations:  $\mathbf{X} = \mathbf{x}_1, \cdots, \mathbf{x}_M$
  - and associated labels  $\mathbf{Y} = \mathbf{y}_1, \cdots, \mathbf{y}_M$
- and a model for a conditional probability density function p(y|x)



### **Maximum Likelihood Estimation Reminder**

#### Assume a

- Training set with
  - Observations:  $\mathbf{X} = \mathbf{x}_1, \dots, \mathbf{x}_M$
  - and associated labels  $\mathbf{Y} = \mathbf{y}_1, \cdots, \mathbf{y}_M$
- and a model for a conditional probability density function p(y|x)

#### **Dataset**

- Probability to observe  $\mathbf{y}_m$  given observation  $\mathbf{x}_m$  is  $p(\mathbf{y}_m|\mathbf{x}_m)$
- Joint probability is  $p(\mathbf{y}_m|\mathbf{x}_m) \cdot p(\mathbf{y}_i|\mathbf{x}_i)$  if they are:
  - Independent
  - and Identically Distributed
- probability to observe **Y** is  $\prod_{m=1}^{M} p(\mathbf{y}_m | \mathbf{x}_m)$



#### Likelihood function

p governed by parameters w

$$\max_{\mathbf{w}} \left\{ \prod_{m=1}^{M} \rho(\mathbf{y}_{m} | \mathbf{x}_{m}, \mathbf{w}) \right\}$$

#### Likelihood function

p governed by parameters w

$$\max_{\mathbf{w}} \left\{ \prod_{m=1}^{M} p(\mathbf{y}_{m} | \mathbf{x}_{m}, \mathbf{w}) \right\}$$

- Maximum not affected by a monotonous transformation
- · Maximization to minimization by flipping the sign
- minimize  $\left\{-\ln\left(\mathit{L}(\mathbf{w})\right)\right\} = \min_{\mathbf{w}} \left\{\sum_{m=1}^{M} -\ln\left(\mathit{p}(\mathbf{y}_{m}|\mathbf{x}_{m},\mathbf{w})\right)\right\}$



### Regression

Assume a univariate Gaussian model:

$$p(y|\mathbf{x},\mathbf{w},eta) = \mathcal{N}(\hat{y}(\mathbf{x},\mathbf{w}), \quad \frac{1}{eta} \quad )$$



### Regression

Assume a univariate Gaussian model:

$$p(y|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(\underbrace{\hat{y}(\mathbf{x}, \mathbf{w})}_{\mu}, \underbrace{\frac{1}{\beta}}_{\sigma})$$



### Regression

Assume a univariate Gaussian model:

$$p(y|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(\underbrace{\hat{y}(\mathbf{x}, \mathbf{w})}_{\mu}, \underbrace{\frac{1}{\beta}}_{\sigma})$$
$$= \frac{\sqrt{\beta}}{\sqrt{2\pi}} e^{\beta \frac{-(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2}{2}}$$



$$L(\mathbf{w}) = \sum_{m=1}^{M} - \ln \left( \frac{\sqrt{\beta}}{\sqrt{2\pi}} e^{\beta \frac{-(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2}{2}} \right)$$



$$L(\mathbf{w}) = \sum_{m=1}^{M} -\ln\left(\frac{\sqrt{\beta}}{\sqrt{2\pi}}e^{\beta\frac{-(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2}{2}}\right)$$
$$= \sum_{m=1}^{M} -\ln\left(\frac{\sqrt{\beta}}{\sqrt{2\pi}}\right) + \frac{\beta}{2}(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2$$



$$L(\mathbf{w}) = \sum_{m=1}^{M} -\ln\left(\frac{\sqrt{\beta}}{\sqrt{2\pi}}e^{\beta\frac{-(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2}{2}}\right)$$

$$= \sum_{m=1}^{M} -\ln\left(\frac{\sqrt{\beta}}{\sqrt{2\pi}}\right) + \frac{\beta}{2}(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2$$

$$= \sum_{m=1}^{M} \frac{1}{2}\left(\ln(2\pi) - \ln(\beta)\right) + \frac{\beta}{2}(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2$$



$$L(\mathbf{w}) = \sum_{m=1}^{M} -\ln\left(\frac{\sqrt{\beta}}{\sqrt{2\pi}}e^{\beta\frac{-(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2}{2}}\right)$$

$$= \sum_{m=1}^{M} -\ln\left(\frac{\sqrt{\beta}}{\sqrt{2\pi}}\right) + \frac{\beta}{2}(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2$$

$$= \sum_{m=1}^{M} \frac{1}{2}\left(\ln(2\pi) - \ln(\beta)\right) + \frac{\beta}{2}(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2$$

$$= \frac{M}{2}\ln(2\pi) - \frac{M}{2}\ln(\beta) + \frac{\beta}{2}\sum_{m=1}^{M}(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2$$



$$\frac{M}{2}\ln(2\pi) - \frac{M}{2}\ln(\beta) + \frac{\beta}{2}\sum_{m=1}^{M}(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2$$



$$\frac{M}{2}\ln(2\pi) - \frac{M}{2}\ln(\beta) + \frac{\beta}{2}\underbrace{\sum_{m=1}^{M}(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2}_{\text{Depends on } \mathbf{w}}$$



$$\frac{M}{2}\ln(2\pi) - \frac{M}{2}\ln(\beta) + \frac{\beta}{2}\underbrace{\sum_{m=1}^{M}(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2}_{\text{Depends on }\mathbf{w}}$$

When optimizing for  $\boldsymbol{w}$  - eliminate constants and factors:

$$\frac{1}{2}\sum_{m=1}^{M}(y_m-\hat{y}(\mathbf{x}_m,\mathbf{w}))^2$$



$$\frac{M}{2}\ln(2\pi) - \frac{M}{2}\ln(\beta) + \frac{\beta}{2}\underbrace{\sum_{m=1}^{M}(y_m - \hat{y}(\mathbf{x}_m, \mathbf{w}))^2}_{\text{Depends on }\mathbf{w}}$$

When optimizing for  $\boldsymbol{w}$  - eliminate constants and factors:

$$\frac{1}{2}\sum_{m=1}^{M}(y_{m}-\hat{y}(\mathbf{x}_{m},\mathbf{w}))^{2}$$

This can be generalized to vectors  $\mathbf{y}_m$ ,  $\hat{\mathbf{y}}$ :

$$\frac{1}{2} \sum_{m=1}^{M} \|\mathbf{y}_m - \hat{\mathbf{y}}(\mathbf{x}_m, \mathbf{w})\|_2^2$$



# Classification using an L-norm

# $L_2$ -loss and $L_1$ -loss can be applied for classification

- They correspond to variants of minimizing the expected misclassification probability
- They cause slow convergence because they don't penalize heavily misclassified probabilities
- They might be advantageous in situations with extreme label noise



### Classification

Assume our network provides us with a probabilistic output p.



#### Classification

Assume our network provides us with a probabilistic output *p*.

#### Bernoulli distribution

$$\mathfrak{B}(y|p) = \begin{cases} p^y (1-p)^{1-y} & \text{if } y \in \{0,1\} \\ 0 & \text{otherwise} \end{cases}$$



#### Classification

Assume our network provides us with a probabilistic output p.

#### Bernoulli distribution

$$\mathfrak{B}(y|p) = \begin{cases} p^y (1-p)^{1-y} & \text{if } y \in \{0,1\} \\ 0 & \text{otherwise} \end{cases}$$

### Multi-class generalization: Multinoulli (Categorical, $\mathfrak C$ ) distribution

• y, which is one-hot encoded

$$\mathfrak{C}(\mathbf{y}|\mathbf{p}) = \begin{cases} \prod_{k=0}^{K} p_k^{y_k} & \text{if } y_k \in \{0,1\} \\ 0 & \text{otherwise} \end{cases}$$



$$\mathfrak{C}(\mathbf{y}|\mathbf{p}) = \begin{cases} \prod_{k=0}^K p_k^{y_k} & \text{if } y_k \in \{0,1\} \\ 0 & \text{otherwise} \end{cases}$$

### Coin example

• We encode head as  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and tail as  $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 



$$\mathfrak{C}(\mathbf{y}|\mathbf{p}) = egin{cases} \prod_{k=0}^K p_k^{y_k} & \text{if } y_k \in \{0,1\} \\ 0 & \text{otherwise} \end{cases}$$

### Coin example

- We encode head as  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and tail as  $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- We have an unfair coin:  $\mathbf{p} = \begin{pmatrix} 0.3 \\ 0.7 \end{pmatrix}$  and observe  $\mathbf{y} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$



$$\mathfrak{C}(\mathbf{y}|\mathbf{p}) = \begin{cases} \prod_{k=0}^{K} p_k^{y_k} & \text{if } y_k \in \{0,1\} \\ 0 & \text{otherwise} \end{cases}$$

### Coin example

- We encode head as  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and tail as  $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- We have an unfair coin:  $\mathbf{p} = \begin{pmatrix} 0.3 \\ 0.7 \end{pmatrix}$  and observe  $\mathbf{y} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- The probability of this is  $\mathfrak{C}(\mathbf{y}|\mathbf{p}) = p_0^0 \cdot p_1^1 = 1 \cdot 0.7 = 0.7$



$$\mathfrak{C}(\mathbf{y}|\mathbf{p}) = \begin{cases} \prod_{k=0}^K p_k^{y_k} & \text{if } y_k \in \{0,1\} \\ 0 & \text{otherwise} \end{cases}$$

### Coin example

- We encode head as  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$  and tail as  $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- We have an unfair coin:  $\mathbf{p}=\begin{pmatrix}0.3\\0.7\end{pmatrix}$  and observe  $\mathbf{y}=\begin{pmatrix}0\\1\end{pmatrix}$
- The probability of this is  $\mathfrak{C}(\mathbf{y}|\mathbf{p}) = p_0^0 \cdot p_1^1 = 1 \cdot 0.7 = 0.7$
- So the probability to observe  $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$  which is tail for this unfair coin is 70%.



We convert the scores  $\hat{\boldsymbol{y}}$  to probabilistic vectors using the Softmax function.



We convert the scores  $\hat{y}$  to probabilistic vectors using the Softmax function.

- Assume our labels are categorically distributed
- · with probabilities given by our predictions:

$$p(\mathbf{y}|\hat{\mathbf{y}}(\mathbf{x},\mathbf{w})) = \mathcal{C}(\mathbf{y},\hat{\mathbf{y}}(\mathbf{x},\mathbf{w}))$$



We convert the scores  $\hat{y}$  to probabilistic vectors using the Softmax function.

- · Assume our labels are categorically distributed
- · with probabilities given by our predictions:

$$\rho(\mathbf{y}|\hat{\mathbf{y}}(\mathbf{x},\mathbf{w})) = \mathcal{C}(\mathbf{y},\hat{\mathbf{y}}(\mathbf{x},\mathbf{w}))$$

$$L(\mathbf{w}) = -\sum_{m=1}^{M} \ln \rho(\mathbf{y}_{m}|\hat{\mathbf{y}}(\mathbf{x}_{m},\mathbf{w}))$$



We convert the scores  $\hat{y}$  to probabilistic vectors using the Softmax function.

- · Assume our labels are categorically distributed
- · with probabilities given by our predictions:

$$\rho(\mathbf{y}|\hat{\mathbf{y}}(\mathbf{x},\mathbf{w})) = \mathcal{C}(\mathbf{y},\hat{\mathbf{y}}(\mathbf{x},\mathbf{w}))$$

$$L(\mathbf{w}) = -\sum_{m=1}^{M} \ln \rho(\mathbf{y}_m | \hat{\mathbf{y}}(\mathbf{x}_m, \mathbf{w})) = -\sum_{m=1}^{M} \ln \prod_{k=0}^{K} \hat{y}_k(\mathbf{x}_m, \mathbf{w})^{y_{k,m}}$$



We convert the scores  $\hat{y}$  to probabilistic vectors using the Softmax function.

- · Assume our labels are categorically distributed
- · with probabilities given by our predictions:

$$\rho(\mathbf{y}|\hat{\mathbf{y}}(\mathbf{x},\mathbf{w})) = \mathcal{C}(\mathbf{y},\hat{\mathbf{y}}(\mathbf{x},\mathbf{w}))$$

$$L(\mathbf{w}) = -\sum_{m=1}^{M} \ln p(\mathbf{y}_m | \hat{\mathbf{y}}(\mathbf{x}_m, \mathbf{w})) = -\sum_{m=1}^{M} \ln \prod_{k=0}^{K} \hat{y}_k(\mathbf{x}_m, \mathbf{w})^{y_{k,m}}$$
$$= -\sum_{m=1}^{M} \sum_{k=0}^{K} \ln \left( \hat{y}_{k,m}^{y_{k,m}} \right)$$



We convert the scores  $\hat{\mathbf{y}}$  to probabilistic vectors using the Softmax function.

- · Assume our labels are categorically distributed
- · with probabilities given by our predictions:

$$\rho(\mathbf{y}|\hat{\mathbf{y}}(\mathbf{x},\mathbf{w})) = \mathcal{C}(\mathbf{y},\hat{\mathbf{y}}(\mathbf{x},\mathbf{w}))$$

$$L(\mathbf{w}) = -\sum_{m=1}^{M} \ln \rho(\mathbf{y}_m | \hat{\mathbf{y}}(\mathbf{x}_m, \mathbf{w})) = -\sum_{m=1}^{M} \ln \prod_{k=0}^{K} \hat{y}_k(\mathbf{x}_m, \mathbf{w})^{y_{k,m}}$$
$$= -\sum_{m=1}^{M} \sum_{k=0}^{K} \ln \left( \hat{y}_{k,m}^{y_{k,m}} \right) = -\sum_{m=1}^{M} \sum_{k=0}^{K} y_{k,m} \ln \left( \hat{y}_{k,m} \right)$$
Crossentropy



We convert the scores  $\hat{\mathbf{y}}$  to probabilistic vectors using the Softmax function.

- · Assume our labels are categorically distributed
- · with probabilities given by our predictions:

$$\rho(\mathbf{y}|\hat{\mathbf{y}}(\mathbf{x},\mathbf{w})) = \mathcal{C}(\mathbf{y},\hat{\mathbf{y}}(\mathbf{x},\mathbf{w}))$$

$$L(\mathbf{w}) = -\sum_{m=1}^{M} \ln \rho(\mathbf{y}_{m}|\hat{\mathbf{y}}(\mathbf{x}_{m},\mathbf{w})) = -\sum_{m=1}^{M} \ln \prod_{k=0}^{K} \hat{y}_{k}(\mathbf{x}_{m},\mathbf{w})^{y_{k,m}}$$

$$= -\sum_{m=1}^{M} \sum_{k=0}^{K} \ln \left(\hat{y}_{k,m}^{y_{k,m}}\right) = -\sum_{m=1}^{M} \sum_{k=0}^{K} y_{k,m} \ln \left(\hat{y}_{k,m}\right)$$
Crossentropy

$$=-\sum_{m=1}^{M}\ln(\hat{y}_k(\mathbf{x}_m,\mathbf{w}))|_{y_{k,m}=1}$$



# **Relation to the Kullback Leibler Divergence**

$$\mathsf{KL}(p,q) = \int_{-\infty}^{+\infty} p(x) \ln \frac{p(x)}{q(x)} dx$$



# **Relation to the Kullback Leibler Divergence**

$$KL(p,q) = \int_{-\infty}^{+\infty} p(x) \ln \frac{p(x)}{q(x)} dx$$
$$= \int_{-\infty}^{+\infty} p(x) \ln p(x) - \int_{-\infty}^{+\infty} p(x) \ln q(x) dx$$



# **Relation to the Kullback Leibler Divergence**

$$\mathsf{KL}(p,q) = \int_{-\infty}^{+\infty} p(x) \ln \frac{p(x)}{q(x)} dx$$

$$= \underbrace{\int_{-\infty}^{+\infty} p(x) \ln p(x)}_{-\text{Entropy H}(p)} - \underbrace{\int_{-\infty}^{+\infty} p(x) \ln q(x) dx}_{\text{Cross Entropy H}(p,q)}$$



# **Relation to the Kullback Leibler Divergence**

$$\mathsf{KL}(p,q) = \int_{-\infty}^{+\infty} p(x) \ln \frac{p(x)}{q(x)} dx$$

$$= \underbrace{\int_{-\infty}^{+\infty} p(x) \ln p(x)}_{-\text{Entropy H}(p)} - \underbrace{\int_{-\infty}^{+\infty} p(x) \ln q(x) dx}_{\text{Cross Entropy H}(p,q)}$$

We know that our ML estimation for a single sample has the form of cross-entropy:

$$-\sum_{k=0}^{K}\ln\left(\hat{y}_{k}^{y_{k}}\right)=\mathsf{H}(\mathbf{y},\hat{\mathbf{y}})$$

and therefore is equal to minimizing the KL-divergence.



# Can we also use cross-entropy for regression?



# Can we also use cross-entropy for regression?

- Of course. We just have to make sure  $\hat{y}_k \in [0, 1] \forall k$
- This can be achieved using a sigmoid activation function
- y is simply no longer one-hot encoded
- As we've seen before this is equivalent to minimizing KL-divergence





- L2-loss can be used for **regression**
- Cross-entropy-loss can be used for classification



- L<sub>2</sub>-loss can be used for **regression**
- Cross-entropy-loss can be used for classification
- L<sub>2</sub>-loss and Cross-entropy-loss can be derived as ML-Estimators from strict probabilistic assumptions
- In absence of more domain knowledge they are your first choices
- They are both intrinsically multi-variate



How does the Perceptron criterion fit into this?

minimize 
$$\left\{L(\mathbf{w}) = -\sum_{\mathbf{x}_m \in \mathcal{M}} y_m \cdot (\mathbf{w}^\mathsf{T} \mathbf{x}_m)\right\}$$

• Remember that here  $y_m \in -1, 1$  instead of  $y_m \in 0, 1$ 



minimize 
$$\left\{L(\mathbf{w}) = -\sum_{\mathbf{x}_m \in \mathcal{M}} y_m \cdot (\mathbf{w}^\mathsf{T} \mathbf{x}_m)\right\}$$

- Remember that here  $y_m \in -1, 1$  instead of  $y_m \in 0, 1$
- Note that the sign function does not appear in the criterion



minimize 
$$\left\{L(\mathbf{w}) = -\sum_{\mathbf{x}_m \in \mathcal{M}} y_m \cdot (\mathbf{w}^\mathsf{T} \mathbf{x}_m)\right\}$$

- Remember that here  $y_m \in -1, 1$  instead of  $y_m \in 0, 1$
- Note that the sign function does not appear in the criterion
- What if it was in?



minimize 
$$\left\{L(\mathbf{w}) = -\sum_{\mathbf{x}_m \in \mathcal{M}} y_m \cdot (\mathbf{w}^\mathsf{T} \mathbf{x}_m)\right\}$$

- Remember that here  $y_m \in -1, 1$  instead of  $y_m \in 0, 1$
- Note that the sign function does not appear in the criterion
- What if it was in?
- Than we would just count the number of misclassifications



minimize 
$$\left\{L(\mathbf{w}) = -\sum_{\mathbf{x}_m \in \mathcal{M}} y_m \cdot (\mathbf{w}^\mathsf{T} \mathbf{x}_m)\right\}$$

- Remember that here  $y_m \in -1, 1$  instead of  $y_m \in 0, 1$
- Note that the sign function does not appear in the criterion
- What if it was in?
- Than we would just count the number of misclassifications
- ... and the gradient would vanish almost everywhere



minimize 
$$\left\{L(\mathbf{w}) = -\sum_{\mathbf{x}_m \in \mathcal{M}} y_m \cdot (\mathbf{w}^\mathsf{T} \mathbf{x}_m)\right\}$$

- Remember that here  $y_m \in -1, 1$  instead of  $y_m \in 0, 1$
- Note that the sign function does not appear in the criterion
- What if it was in?
- Than we would just count the number of misclassifications
- ... and the gradient would vanish almost everywhere
- Sounds familiar?
- What did we do about that last time?



# **Hinge loss**



$$L(\mathbf{w}) = \sum_{m=1}^{M} \max(0, 1 - y_m \hat{y}(\mathbf{x}_m, \mathbf{w}))$$

- · Classification depends only on the sign
- If the signs match we get a positive value and classify correct
- Hinge loss is a convex approximation to the misclassification loss
  - But what about the gradient?



Suppose we have a convex, differentiable function. Than we have:

$$f(\mathbf{x}) \ge f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) \quad \forall \mathbf{x} \in \mathcal{X}$$



Suppose we have a convex, differentiable function. Than we have:

$$f(\mathbf{x}) \ge f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) \quad \forall \mathbf{x} \in \mathcal{X}$$

In words: If we follow the gradient from any point of a convex function and check against the function, its value at the same  $\mathbf{x}$  will be higher.



Suppose we have a convex, differentiable function. Than we have:

$$f(\mathbf{x}) \ge f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) \quad \forall \mathbf{x} \in \mathcal{X}$$

In words: If we follow the gradient from any point of a convex function and check against the function, its value at the same  $\mathbf{x}$  will be higher.





 We now define something which just keeps this property but is not necessarily a gradient



- We now define something which just keeps this property but is not necessarily a gradient
- A vector **g** is a subgradient of a **convex** function f at point  $\mathbf{x}_0 \in \mathcal{X}$  if:

$$f(\mathbf{x}) \ge f(\mathbf{x}_0) + \mathbf{g}^T(\mathbf{x} - \mathbf{x}_0) \quad \forall \mathbf{x} \in \mathcal{X}$$



- We now define something which just keeps this property but is not necessarily a gradient
- A vector **g** is a subgradient of a **convex** function f at point  $\mathbf{x}_0 \in \mathcal{X}$  if:

$$f(\mathbf{x}) \ge f(\mathbf{x}_0) + \mathbf{g}^T(\mathbf{x} - \mathbf{x}_0) \quad \forall \mathbf{x} \in \mathcal{X}$$

 This is not unique! We get a set of subgradients which we call a subdifferential:

$$\partial f(\mathbf{x}_0) \coloneqq \{\mathbf{g}\}$$



- We now define something which just keeps this property but is not necessarily a gradient
- A vector **g** is a subgradient of a **convex** function f at point  $\mathbf{x}_0 \in \mathcal{X}$  if:

$$f(\mathbf{x}) \ge f(\mathbf{x}_0) + \mathbf{g}^T(\mathbf{x} - \mathbf{x}_0) \quad \forall \mathbf{x} \in \mathcal{X}$$

 This is not unique! We get a set of subgradients which we call a subdifferential:

$$\partial f(\mathbf{x}_0) \coloneqq \{\mathbf{g}\}$$

If f is differentiable at x<sub>0</sub>:

$$\partial f(\mathbf{x}_0) = \{\nabla f(\mathbf{x}_0)\}\$$





- We already used this for the ReLU!
- Gradient descent was implicitly generalized to the subgradient algorithm





- Subgradients are a generalization of gradients for convex, non-smooth functions
- The gradient descent algorithm is replaced by the subgradient algorithm for these functions



- Subgradients are a generalization of gradients for convex, non-smooth functions
- The gradient descent algorithm is replaced by the subgradient algorithm for these functions
- For piecewise continuous functions you just choose a particular subgradient and don't even notice a difference
- This is basically just the solid math why this works



- Subgradients are a generalization of gradients for convex, non-smooth functions
- The gradient descent algorithm is replaced by the subgradient algorithm for these functions
- For piecewise continuous functions you just choose a particular subgradient and don't even notice a difference
- This is basically just the solid math why this works
- We use this for the ReLU and Hinge loss so far



#### **SVM** reminder



$$min \quad \frac{1}{2} \|\mathbf{w}\|_2^2$$

s.t. 
$$\forall m : -(y_m \cdot (\mathbf{w}^T \mathbf{x}_m) - 1) \leq 0$$

$$) \leq 0$$



#### **SVM** reminder



$$min \quad \frac{1}{2} \|\mathbf{w}\|_2^2 + \gamma \sum \xi$$

min 
$$\frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \gamma \sum_{m} \xi_{m}$$
  
s.t.  $\forall m : -(y_{m} \cdot (\mathbf{w}^{T} \mathbf{x}_{m}) - 1 + \xi_{m}) \leq 0$   
 $\forall m : -\xi_{m} < 0$ 



· We construct the Lagrangian dual function

$$L(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||_2^2 + \gamma \sum_{m=1}^{M} \xi_m + \sum_{m=1}^{M} \lambda_m (-y_m \cdot (\mathbf{w}^T \mathbf{x}_m) + 1 - \xi_m) - \sum_{m=1}^{M} \nu_m \xi_m$$



· We construct the Lagrangian dual function

$$L(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \gamma \sum_{m=1}^{M} \xi_{m} + \sum_{m=1}^{M} \lambda_{m} (-y_{m} \cdot (\mathbf{w}^{T} \mathbf{x}_{m}) + 1 - \xi_{m}) - \sum_{m=1}^{M} \nu_{m} \xi_{m}$$

$$= \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{m=1}^{M} (\gamma \xi_{m} - \nu_{m} \xi_{m} - \lambda_{m} \xi_{m}) + \sum_{m=1}^{M} \lambda_{m} (1 - y_{m} \cdot (\mathbf{w}^{T} \mathbf{x}_{m}))$$



- · We construct the Lagrangian dual function
- Remember:  $\lambda_m > 0$

$$L(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \gamma \sum_{m=1}^{M} \xi_{m} + \sum_{m=1}^{M} \lambda_{m} (-y_{m} \cdot (\mathbf{w}^{T} \mathbf{x}_{m}) + 1 - \xi_{m}) - \sum_{m=1}^{M} \nu_{m} \xi_{m}$$

$$= \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{m=1}^{M} (\gamma \xi_{m} - \nu_{m} \xi_{m} - \lambda_{m} \xi_{m}) + \sum_{m=1}^{M} \lambda_{m} (1 - y_{m} \cdot (\mathbf{w}^{T} \mathbf{x}_{m}))$$



- · We construct the Lagrangian dual function
- Remember:  $\lambda_m > 0$

$$L(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \gamma \sum_{m=1}^{M} \xi_{m} + \sum_{m=1}^{M} \lambda_{m} (-y_{m} \cdot (\mathbf{w}^{T} \mathbf{x}_{m}) + 1 - \xi_{m}) - \sum_{m=1}^{M} \nu_{m} \xi_{m}$$

$$= \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{m=1}^{M} (\gamma \xi_{m} - \nu_{m} \xi_{m} - \lambda_{m} \xi_{m}) + \sum_{m=1}^{M} \lambda_{m} (1 - y_{m} \cdot (\mathbf{w}^{T} \mathbf{x}_{m}))$$

$$\approx \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \gamma \sum_{m=1}^{M} \max(0, 1 - y_{m} \cdot (\mathbf{w}^{T} \mathbf{x}_{m}))$$



- · We construct the Lagrangian dual function
- Remember:  $\lambda_m \geq 0$
- Equivalent "up to an overall multiplicative constant"[1]

$$L(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \gamma \sum_{m=1}^{M} \xi_{m} + \sum_{m=1}^{M} \lambda_{m} (-y_{m} \cdot (\mathbf{w}^{T} \mathbf{x}_{m}) + 1 - \xi_{m}) - \sum_{m=1}^{M} \nu_{m} \xi_{m}$$

$$= \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{m=1}^{M} (\gamma \xi_{m} - \nu_{m} \xi_{m} - \lambda_{m} \xi_{m}) + \sum_{m=1}^{M} \lambda_{m} (1 - y_{m} \cdot (\mathbf{w}^{T} \mathbf{x}_{m}))$$

$$\approx \frac{1}{2} \underbrace{\|\mathbf{w}\|_{2}^{2}}_{L2 \text{ regularizer}} + \gamma \sum_{m=1}^{M} \underbrace{\max(0, 1 - y_{m} \cdot (\mathbf{w}^{T} \mathbf{x}_{m}))}_{\text{Hinge loss}}$$



# **Open points**



# **Open points**

**Outliers are punished linearly** 



### **Open points**

#### **Outliers are punished linearly**

A variant of the hinge loss which penalizes outliers more strongly [4]:

$$L(\mathbf{w}) = \sum_{m=1}^{M} (\max(0, 1 - y_m \hat{y}(\mathbf{x}_m, \mathbf{w})))^2$$



## **Open points**

### **Outliers are punished linearly**

A variant of the hinge loss which penalizes outliers more strongly [4]:

$$L(\mathbf{w}) = \sum_{m=1}^{M} (\max(0, 1 - y_m \hat{y}(\mathbf{x}_m, \mathbf{w})))^2$$

How to apply SVMs to multi-class problems?



## **Open points**

#### **Outliers are punished linearly**

• A variant of the hinge loss which penalizes outliers more strongly [4]:

$$L(\mathbf{w}) = \sum_{m=1}^{M} (\max(0, 1 - y_m \hat{y}(\mathbf{x}_m, \mathbf{w})))^2$$

#### How to apply SVMs to multi-class problems?

A Hinge loss for multi-class problems [9]:

$$L(\mathbf{w}) = \sum_{m=1}^{M} \sum_{k \neq c}^{K} \max(0, 1 - \hat{y}_{c}(\mathbf{x}_{m}, \mathbf{w}) + \hat{y}_{k}(\mathbf{x}_{m}, \mathbf{w}))$$



### **Summary**

- We have seen we can incorporate an SVM into a neural network
- See [4] for a reference using this
- We've learned before how to deal with the non-smooth objective





# Optimization





#### **Gradient Descent revisited**

Goal: Optimize empirical risk:

$$\mathbb{E}_{\mathbf{x},\mathbf{y}\sim\hat{\rho}_{\mathrm{data}}(\mathbf{x},\mathbf{y})}\big[L(\mathbf{w},\mathbf{x}_{m},\mathbf{y}_{m})\big] = \frac{1}{M}\sum_{m=1}^{M}L(\mathbf{w},\mathbf{x},\mathbf{y})$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \nabla L(\mathbf{w}^{(k)}, \mathbf{x}, \mathbf{y})$$

- Step size defined by learning rate  $\eta$
- Gradient with respect to every sample
- Guaranteed to converge to a local minimum





For each iteration...

• Batch Gradient Descent: Use all *M* samples



- Batch Gradient Descent: Use all *M* samples
  - Preferred option for convex problems
  - Updates are guaranteed to **decrease** the error



- Batch Gradient Descent: Use all *M* samples
  - Preferred option for convex problems
  - Updates are guaranteed to decrease the error
  - Problem non-convex anyway & memory limitations



- Batch Gradient Descent: Use all *M* samples
  - Preferred option for convex problems
  - Updates are guaranteed to decrease the error
  - Problem non-convex anyway & memory limitations
- Stochastic (Online) Gradient Descent (SGD): Use 1 sample
  - No longer necessarily decreases the empirical risk in every iteration
  - Inefficient because of transfer latency to GPU



- Batch Gradient Descent: Use all *M* samples
  - Preferred option for convex problems
  - Updates are guaranteed to decrease the error
  - Problem non-convex anyway & memory limitations
- Stochastic (Online) Gradient Descent (SGD): Use 1 sample
  - No longer necessarily decreases the empirical risk in every iteration
  - Inefficient because of transfer latency to GPU



- Batch Gradient Descent: Use all *M* samples
  - Preferred option for convex problems
  - Updates are guaranteed to decrease the error
  - Problem non-convex anyway & memory limitations
- Stochastic (Online) Gradient Descent (SGD): Use 1 sample
  - No longer necessarily decreases the empirical risk in every iteration
  - Inefficient because of transfer latency to GPU
- Mini-Batch SGD: Use B 

  ≪ M random samples

$$\mathbf{g}^{(k)} := \nabla L(\mathbf{w}^{(k)}) = \frac{1}{B} \nabla \sum_{b=1}^{B} L(\mathbf{w}^{(k)}, \mathbf{x}_b)$$



- Batch Gradient Descent: Use all *M* samples
  - Preferred option for convex problems
  - Updates are guaranteed to decrease the error
  - Problem non-convex anyway & memory limitations
- Stochastic (Online) Gradient Descent (SGD): Use 1 sample
  - No longer necessarily decreases the empirical risk in every iteration
  - Inefficient because of transfer latency to GPU
- Mini-Batch SGD: Use B 

  ≪ M random samples

$$\mathbf{g}^{(k)} := \nabla L(\mathbf{w}^{(k)}) = \frac{1}{B} \nabla \sum_{b=1}^{B} L(\mathbf{w}^{(k)}, \mathbf{x}_b)$$

- Small batches offer regularization effect  $\Rightarrow$  need smaller  $\eta$
- Regains efficiency → the standard case in deep learning



### How can this even work?

- Optimization problem is non-convex
- Exponential number of local minima



#### How can this even work?

- Optimization problem is non-convex
- · Exponential number of local minima

## Possible Answers (Choromanska et al. 2015, Dauphin et al. 2014)

- High dimensional function
- Local minima exist but very close to global minima
- ... and many of those are equivalent
- → Presumably more critical: saddle points
  - Local minimum might be better than global minima (overfitting!)



Source: https://upload.wikimedia.org/wikipedia/commons/1/1e/Saddle\_point.svg



## Another possible answer

### Possible answer (Percy Liang, NIPS 2016)

- "overprovisioning"
- Many different ways how a network can approximate the desired relationship
- Only needs to find one
- This has been verified experimentally by learning random labels [10]



## **SGD – Learning Rate Choice**





Large learning rate



- $\eta$  too small: long training time
- $\eta$  too large: miss optima
- Practice: "learning rate decay": adapt  $\eta$  gradually (e.g.: start with  $\eta=0.01$  and divide every x epoch by 10)





By performing line search?



### By performing line search?

- Multiple evaluations necessary, while we could take multiple steps
- The direction is extremely noisy anyway
- Still people have presented methods [8]



### By performing line search?

- Multiple evaluations necessary, while we could take multiple steps
- The direction is extremely noisy anyway
- · Still people have presented methods [8]

#### By second order methods?

$$\mathbf{w}^{k+1} = \mathbf{w}^{(k)} - H(L(\mathbf{w}^{(k)}))^{-1} \nabla L(\mathbf{w}^{(k)})$$



### By performing line search?

- Multiple evaluations necessary, while we could take multiple steps
- The direction is extremely noisy anyway
- · Still people have presented methods [8]

#### By second order methods?

$$\mathbf{w}^{k+1} = \mathbf{w}^{(k)} - H(L(\mathbf{w}^{(k)}))^{-1} \nabla L(\mathbf{w}^{(k)})$$

- The Hessian matrix  $H\Big(\mathit{L}(\mathbf{w}^{(k)})\Big)$  is too expensive to calculate



### By performing line search?

- Multiple evaluations necessary, while we could take multiple steps
- The direction is extremely noisy anyway
- Still people have presented methods [8]

#### By second order methods?

$$\mathbf{w}^{k+1} = \mathbf{w}^{(k)} - H(L(\mathbf{w}^{(k)}))^{-1} \nabla L(\mathbf{w}^{(k)})$$

- The Hessian matrix  $H\Big(L(\mathbf{w}^{(k)})\Big)$  is too expensive to calculate
- L-BFGS doesn't perform well outside of batch settings
- · A report on this was presented by Google [7]



### What can we do?

Idea: Accelerate in directions with persistent gradients



#### What can we do?

Idea: Accelerate in directions with persistent gradients





Parameter update based on current and past gradients:

$$\begin{aligned} \mathbf{v}^{(k)} &= \underbrace{\mu}_{\text{momentum}} \mathbf{v}^{(k-1)} - \eta \, \nabla L(\mathbf{w}^{(k)}) \\ \mathbf{w}^{(k+1)} &= \mathbf{w}^{(k)} + \mathbf{v}^{(k)} \end{aligned}$$



Parameter update based on current and past gradients:

$$\mathbf{v}^{(k)} = \underbrace{\mu}_{ ext{momentum}} \mathbf{v}^{(k-1)} - \eta \, \nabla L(\mathbf{w}^{(k)})$$
 $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \mathbf{v}^{(k)}$ 

• commonly:  $\mu = \{0.9, 0.95, 0.99\}$  (or adaptive: small  $\rightarrow$  large)



Parameter update based on current and past gradients:

$$\mathbf{v}^{(k)} = \underbrace{\mu}_{ ext{momentum}} \mathbf{v}^{(k-1)} - \eta \, \nabla L(\mathbf{w}^{(k)})$$
 $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \mathbf{v}^{(k)}$ 

- commonly:  $\mu = \{0.9, 0.95, 0.99\}$  (or adaptive: small  $\rightarrow$  large)
- + Overcomes poor Hessian & variance in SGD  $\rightarrow$  dampened oscillations
- + Acceleration



Parameter update based on current and past gradients:

$$\mathbf{v}^{(k)} = \underbrace{\mu}_{ ext{momentum}} \mathbf{v}^{(k-1)} - \eta \, \nabla L(\mathbf{w}^{(k)})$$
 $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \mathbf{v}^{(k)}$ 

- commonly:  $\mu = \{0.9, 0.95, 0.99\}$  (or adaptive: small  $\rightarrow$  large)
- + Overcomes poor Hessian & variance in SGD  $\rightarrow$  dampened oscillations
- + Acceleration
- Still learning rate decay needed!



# Nesterov Accelerated Gradient (NAG) / Nesterov Momentum

"Look ahead" - compute the gradient in the direction we're going anyway!

$$\begin{aligned} \mathbf{v}^{(k)} &= \mu \mathbf{v}^{(k-1)} - \eta \, \nabla L(\underbrace{\mathbf{w}^{(k)} + \mu \mathbf{v}^{(k-1)}}_{\text{approx. of next parameters}}) \\ \mathbf{w}^{(k+1)} &= \mathbf{w}^{(k)} + \mathbf{v}^{(k)} \end{aligned}$$

We can rewrite this to use the conventional gradient:

$$\mathbf{v}^{(k)} = \mu \mathbf{v}^{(k-1)} - \eta \, \nabla L(\mathbf{w}^{(k)})$$
$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \mu \mathbf{v}^{(k-1)} + (1+\mu)\mathbf{v}^{(k)}$$



## How does this compare to momentum?





# **Example for an advantage of NAG**



GD (red), momentum (green), NAG (blue)

Source: Sutskever "Training Recurrent Neural Networks", p. 76



### What if our features have different needs?



#### What if our features have different needs?

- Suppose some features are activated very infrequently
- ... while others are updated very often



#### What if our features have different needs?

- Suppose some features are activated very infrequently
- ... while others are updated very often
- We'd need individual learning rates for every parameter in the network
- Large (small) learning rates for infrequent (frequent) parameters and parameters with small (large) gradient magnitudes



#### **AdaGrad**

$$\mathbf{g}^{(k)} = \nabla L(\mathbf{w}^{(k)})$$

$$\mathbf{r}^{(k)} = \mathbf{r}^{(k-1)} + \mathbf{g}^{(k)} \odot \mathbf{g}^{(k)}$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \frac{\eta}{\sqrt{\mathbf{r}^{(k)}} + \epsilon} \odot \mathbf{g}^{(k)}$$

- Adaptive Gradient
- Adaption based on all past squared gradients
- We use ⊙ to emphasize the element-wise multiplication



#### **AdaGrad**

$$\mathbf{g}^{(k)} = \nabla L(\mathbf{w}^{(k)})$$

$$\mathbf{r}^{(k)} = \mathbf{r}^{(k-1)} + \mathbf{g}^{(k)} \odot \mathbf{g}^{(k)}$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \frac{\eta}{\sqrt{\mathbf{r}^{(k)}} + \epsilon} \odot \mathbf{g}^{(k)}$$

- Adaptive Gradient
- Adaption based on all past squared gradients
- We use ⊙ to emphasize the element-wise multiplication
- + Individual learning rates



#### **AdaGrad**

$$\mathbf{g}^{(k)} = \nabla L(\mathbf{w}^{(k)})$$

$$\mathbf{r}^{(k)} = \mathbf{r}^{(k-1)} + \mathbf{g}^{(k)} \odot \mathbf{g}^{(k)}$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \frac{\eta}{\sqrt{\mathbf{r}^{(k)}} + \epsilon} \odot \mathbf{g}^{(k)}$$

- Adaptive Gradient
- Adaption based on all past squared gradients
- We use ⊙ to emphasize the element-wise multiplication
- + Individual learning rates
- Learning rate decreases too aggressively



# **RMSProp**

$$\begin{aligned} \mathbf{g}^{(k)} &= \nabla L(\mathbf{w}^{(k)}) \\ \mathbf{r}^{(k)} &= \rho \mathbf{r}^{(k-1)} + (\mathbf{1} - \rho) \mathbf{g}^{(k)} \odot \mathbf{g}^{(k)} \\ \mathbf{w}^{(k+1)} &= \mathbf{w}^{(k)} - \frac{\eta}{\sqrt{\mathbf{r}^{(k)}} + \epsilon} \odot \mathbf{g}^{(k)} \end{aligned}$$

- Hinton suggests  $\rho =$  0.9,  $\eta =$  0.001
- + The aggressive decrease is fixed
- We still have to set the learning rate



#### **Adadelta**

$$\mathbf{g}^{(k)} = \nabla L(\mathbf{w}^{(k)})$$

$$\mathbf{r}^{(k)} = \rho \mathbf{r}^{(k-1)} + (1 - \rho) \mathbf{g}^{(k)} \odot \mathbf{g}^{(k)}$$

$$\boldsymbol{\Delta}_{x} = -\frac{\sqrt{\mathbf{h}^{(k-1)}}}{\sqrt{\mathbf{r}^{(k)}} + \epsilon} \odot \mathbf{g}^{(k)}$$

$$\mathbf{h}^{(k)} = \rho \mathbf{h}^{(k-1)} + (1 - \rho) \boldsymbol{\Delta}_{x} \odot \boldsymbol{\Delta}_{x}$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \boldsymbol{\Delta}_{x}$$

- Suggested:  $\rho = 0.95$
- + No learning rate



#### **Adam**

$$\begin{split} \mathbf{g}^{(k)} &= \nabla L(\mathbf{w}^{(k)}) \\ \mathbf{v}^{(k)} &= \mu \mathbf{v}^{(k-1)} + (1-\mu) \mathbf{g}^{(k)} \\ \mathbf{r}^{(k)} &= \rho \mathbf{r}^{(k-1)} + (1-\rho) \mathbf{g}^{(k)} \odot \mathbf{g}^{(k)} \\ \end{split}$$
 Bias correction: 
$$\hat{\mathbf{v}}^{(k)} &= \frac{\mathbf{v}^{(k)}}{1-\mu^k} \quad \hat{\mathbf{r}}^{(k)} = \frac{\mathbf{r}^{(k)}}{1-\rho^k} \\ \mathbf{w}^{(k+1)} &= \mathbf{w}^{(k)} - \eta \frac{\hat{\mathbf{v}}^{(k)}}{\sqrt{\hat{\mathbf{r}}^{(k)}} + \epsilon} \end{split}$$

- Short for Adaptive Moment Estimation
- Suggested:  $\mu = 0.9, \rho = 0.999, \eta = 0.001$
- + Robustness
- · Combination w. NAG exists ("Nadam")



#### **AMSGrad**

• Adam empirically observed to fail to converge to an optimal/good solution



#### **AMSGrad**

- Adam empirically observed to fail to converge to an optimal/good solution
- Recent insight by Reddi et al. [5]: Adam (and similar methods) do not guarantee convergence for convex problems (error in original convergence proof)
- AMSGrad [5] "fixes" Adam to ensure non-increasing step size:

$$\hat{\mathbf{v}}^{(k)} = \max(\hat{\mathbf{v}}^{(k-1)}, \mathbf{v}^{(k)})$$



#### **AMSGrad**

- Adam empirically observed to fail to converge to an optimal/good solution
- Recent insight by Reddi et al. [5]: Adam (and similar methods) do not guarantee convergence for convex problems (error in original convergence proof)
- AMSGrad [5] "fixes" Adam to ensure non-increasing step size:

$$\hat{\mathbf{v}}^{(k)} = \max(\hat{\mathbf{v}}^{(k-1)}, \mathbf{v}^{(k)})$$

- Effect has to be shown in larger experiments
- Lesson: Keep your eyes open!



## **Summary**

- SGD + Nesterov momentum + learning rate decay
- + Often converges most reliably
- + Still used in many state-of-the-art papers
- Learning rate decay needs to be adjusted
- Adam
- + Individual learning rates
- + Learning rate very well behaved
- Loss curves harder to interpret
- Not discussed: Distributed gradient descend



#### **Practical recommendations**

- Start by using minibatch SGD with momentum
- Mostly keep to the default momentum
- Give Adam a try when you have a feeling for your data
- When in need for individual learning rates use Adam
- Start by using the default parameters for Adam
- Adjust the learning rate first
- Keep your eyes open for unusual behavior (see AMSGrad)

# **NEXT TIME**

ON DEEP LEARNING



# **Coming Up**

- How can we deal with spatial correlation in features?
- Why do we hear so much about convolution in neural networks?
- How can we incorporate invariances into network architectures?



# **Comprehensive Questions**

- What are our standard loss functions for classification and regression?
- What assumptions do our standard loss functions imply?
- What is a subdifferential at a point x<sub>0</sub>?
- How can we optimize a non-smooth convex function?
- What if somebody tells you, to use an SVM because it is superior?
- What is Nesterov Momentum?
- Describe Adam.



### **Further Reading**

- Link for details on Maximum Likelihood estimation and the basic loss functions.
- Link [6] for insights about some loss functions
- Link [10] for a troubling insight, that deep networks can learn arbitrary random labels





# References





#### References I

- [1] Christopher M. Bishop.
  Pattern Recognition and Machine Learning (Information Science and Statistics Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.
- [2] Anna Choromanska, Mikael Henaff, Michael Mathieu, et al. "The Loss Surfaces of Multilayer Networks.". In: AISTATS. 2015.
- [3] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, et al. "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization". In: <u>Advances in neural information processing systems</u>. 2014, pp. 2933–2941.
- [4] Yichuan Tang. "Deep learning using linear support vector machines". In: arXiv preprint arXiv:1306.0239 (2013).



#### References II

- [5] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. "On the Convergence of Adam and Beyond". In:
  - International Conference on Learning Representations. 2018.
- [6] Katarzyna Janocha and Wojciech Marian Czarnecki. "On Loss Functions for Deep Neural Networks in Classification". In: <u>arXiv preprint arXiv:1702.05659</u> (2017).
- [7] Jeffrey Dean, Greg Corrado, Rajat Monga, et al. "Large scale distributed deep networks". In: <u>Advances in neural information processing systems</u>. 2012, pp. 1223–1231.
- [8] Maren Mahsereci and Philipp Hennig. "Probabilistic line searches for stochastic optimization". In:
  - Advances In Neural Information Processing Systems. 2015, pp. 181–189.



#### References III

- [9] Jason Weston, Chris Watkins, et al. "Support vector machines for multi-class pattern recognition.". In: <u>ESANN</u>. Vol. 99. 1999, pp. 219–224.
- [10] Chiyuan Zhang, Samy Bengio, Moritz Hardt, et al. "Understanding deep learning requires rethinking generalization". In: arXiv preprint arXiv:1611.03530 (2016).