Calculus 1 10/31 Note Module Class 07

Yueh-Chou Lee

October 31, 2019

Section 4.7: Optimization Problems

The First Derivative Test for Absolute Extrema

Suppose that c us a critical number of a continuous function f defined on the interval I.

- (a) If f'(x) > 0 for all x < c and f'(x) < 0 for all x > c, then f(c) will be the absolute maximum value of f(x) on the interval I.
- (b) If f'(x) < 0 for all x < c and f'(x) > 0 for all x > c, then f(c) will be the absolute minimum value of f(x) on the interval I.

The Second Derivative Test for Absolute Extrema

Suppose that c us a critical number of a continuous function f defined on the interval I.

- (a) If f''(x) > 0 for all $x \in I$, then f(c) will be the absolute maximum value of f(x) on the interval I.
- (b) If f''(x) < 0 for all $x \in I$, then f(c) will be the absolute minimum value of f(x) on the interval I

Example:

What is the smallest possible area of the triangle that is cut off by the first quadrant and whose hypotenuse is tangent to the parabola $y = 4 - x^2$ at some point?

Sol.

Since

$$y = 4 - x^2 \Rightarrow y' = -2x,$$

so an equation of the tangent line at $(a, 4-a^2)$ is $y-(4-a^2)=-2a(x-a)$ or $y=-2ax+a^2+4$.

The y-intercept (x=0) is a^2+4 . The x-intercept (y=0) is $\frac{a^2+4}{2a}$.

The area A of the triangle is

$$A = \frac{1}{2}(\text{base})(\text{height}) = \frac{1}{2} \cdot \frac{a^2 + 4}{2a}(a^2 + 4) = \frac{1}{4} \frac{a^4 + 8a^2 + 16}{a} = \frac{1}{4} \left(a^3 + 8a + \frac{16}{a}\right).$$

Moreover,

$$A' = 0 \Rightarrow \frac{1}{4} \left(3a^2 + 8 - \frac{16}{a^2} \right) = 0$$
$$\Rightarrow 3a^4 + 8a^2 - 16 = 0$$
$$\Rightarrow (3a^2 - 4)(a^2 + 4) = 0$$
$$\Rightarrow a^2 = \frac{4}{3}$$
$$\Rightarrow a = \frac{2}{\sqrt{3}} \qquad (a > 0).$$

Also,

$$A'' = \frac{1}{4} \left(6a + \frac{32}{a^3} \right) > 0.$$

By The Second Derivative Test for Absolute Extrema, there is an absolute minimum at

$$a = \frac{2}{\sqrt{3}}.$$

Thus,

$$A = \frac{1}{2} \cdot \frac{\frac{4}{3} + 4}{2 \cdot \frac{2}{\sqrt{3}}} \left(\frac{4}{3} + 4 \right) = \frac{1}{2} \cdot \frac{4\sqrt{3}}{3} \cdot \frac{16}{3} = \frac{32}{9} \sqrt{3}.$$

Exercise:

Find an equation of the line through the point (3, 5) that cuts off the least area from the first quadrant.

Sol.

Absolute minimum area occurs when $m = -\frac{5}{3}$, then the line is $y - 5 = -\frac{5}{3}(x - 3)$ or $y = -\frac{5}{3}x + 10$.

