HOME CHAPTERS LOGIN

# 3. Low Level Radioactive Waste



According to the U.S. Nuclear Regulatory Commission (2004), LLRW consists of discarded items that have become contaminated with radioactive material or have become radioactive through exposure to neutron radiation. Trash, protective clothing, and used laboratory glassware make up all but about 3 percent of LLRW. These "Class A" wastes remain hazardous less than 100 years. "Class B" wastes, consisting of water purification filters and ion exchange resins used to clean contaminated water at nuclear power plants, remain hazardous up to 300 years. "Class C" wastes, such as metal parts of decommissioned nuclear reactors, constitute less than 1 percent of all LLRW, but remain dangerous for up to 500 years.

The danger of exposure to LLRW varies widely according to the types and concentration of radioactive material contained in the waste. Low level waste containing some radioactive materials used in medical research, for example, is not particularly hazardous unless inhaled or consumed, and a person can stand near it without shielding. On the other hand, exposure to LLRW contaminated by processing water at a reactor can lead to death or an increased risk of cancer (U.S. Nuclear Regulatory Commission, n.d.).



The Nature of Geographic Information



## Chapters

- ► Chapter 1: Data and Information
- Chapter 2: Scales and Transformations
- Chapter 3: Census Data and Thematic Maps
- Chapter 4: TIGER, Topology and Geocoding
- Chapter 5: Land Surveying and GPS
- Chapter 6: National Spatial Data Infrastructure I
- ➤ Chapter 7: National Spatial Data Infrastructure II
- ► Chapter 8: Remotely Sensed Image Data
- ▼ Chapter 9: Integrating Geographic Data
  - 1. Overview
  - 2. Context
  - 3. Low Level Radioactive Waste
  - 4. Siting LLRW Storage Facilities
  - 5. Map Overlay Concept
  - 6. Pennsylvania
    Case Study
  - 7. Vector Approach
  - 8. Stage One: Statewide Screening

Hundreds of nuclear facilities across the country produce LLRW, but only a very few disposal sites are currently willing to store it. Disposal facilities at Clive, Utah; Barnwell, South Carolina; and Richland, Washington accepted over 4,000,000 cubic feet of LLRW in both 2005 and 2006, up from 1,419,000 cubic feet in 1998. By 2008, the volume had dropped to just over 2,000,000 cubic feet (U.S. Nuclear Regulatory Commission, 2011a). Sources include nuclear reactors, industrial users, government sources (other than nuclear weapons sites), and academic and medical facilities. (We have a small nuclear reactor here at Penn State that is used by students in graduate and undergraduate nuclear engineering classes.)

< 2. Context

up

4. Siting LLRW Storage Facilities >

- 9. Stage Two: Regional Screening
- 10. Stage Three: Local Disqualification
- 11. Buffering
- 12. New York Case Study
- 13. Outcomes
- 14. Conclusion
- 15. Bibliography

## Navigation

- login
- Search

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.



## Navigation

- Home
- News
- About
- · Contact Us
- People Resources
- Services
- Login

#### EMS

- · College of Earth and Mineral Sciences
- · Department of Energy and Mineral Engineering
- · Department of Geography
- · Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and Atmospheric
- Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

### Programs

- Online Geospatial Education Programs
- iMPS in Renewable Energy and Policy Program

Office

• BA in Energy and Sustainability Policy Program Office

#### Related Links

- · Penn State Digital Learning Cooperative
- Penn State World Campus
- Web Learning @ Penn State

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.

