XIONG, Xihan (xx3216)

Imperial College London

Department of Computing Academic Year 2020-2021

Page created Tue Nov 3 23:15:04 GMT 2020

70051 rac101 2 t5 xx3216 v1

 ${\bf Electronic_submission}$

Wed - 28 Oct 2020 07:00:15

xx3216

Exercise Information

Module: 70051 Introduction to Symbolic

Artificial Intelligence (MSc AI)

Exercise: 2 (CW)

Title: Logic FAO: Craven, Robert (rac101)

Issued: Tue - 20 Oct 2020

Due: Tue - 03 Nov 2020

Assessment: Individual Submission: Electronic

Student Declaration - Version 1

 \bullet I declare that this final submitted version is my unaided work.

Signed: (electronic signature) Date: 2020-10-28 06:56:56

For Markers only: (circle appropriate grade)

| XIONG, Xihan (xx3216) | 01390842 | t5 | 2020-10-28 06:56:56 | A* A B C D E F

Introduction to Symbolic AI Coursework 1: logic

CID: 01390842 xihan.xiong20@imperial.ac.uk

October 28, 2020

I Question 1

- i. $\neg (p \lor q) \to \neg r$
 - p: Michel is fulfilled.
 - q: Michel is rich.
 - r: Michel will live for another five years.
- ii. $(\neg p \lor q) \land p$
 - p: The snowstorm arrives.
 - q: Raheem will wear his boots.
- iii. $(r \land s) \rightarrow (p \leftrightarrow q)$
 - r: Akira is on set.
 - s: Toshiro is on set.
 - p: The filming will begin.
 - q: The caterers have cleared out.
- iv. $(p \lor \neg q) \land \neg (p \lor q)$
 - p: Irad arrived.
 - q: Sarah arrived.
- v. $\neg r \to \neg (p \land q)$
 - r: Anne Sophie answered her phone calls.
 - p: Herber heard the performance.
 - q: Anne Sophie heard the performance.

II Question 2

- i. A propositional formular A is satisfiable if there is some ν such that $h_{\nu}(A) = t$.
- ii. Two propositional formulas A,B are logically equivalent if, for every ν , $h_{\nu}(A) = h_{\nu}(B)$.
- iii. Prove that a propositional formular $\neg A$ is satisfiable iff $\neg \neg A \not\equiv \top$

Proof. To prove that $\neg A$ is satisfiable $\leftrightarrow \neg \neg A \not\equiv \top$, we should prove this on both side.

- a) First we prove that $\neg A$ is satisfiable $\rightarrow \neg \neg A \not\equiv \top$. Assume that $\neg A$ is satisfiable, then there is some ν such that $h_{\nu}(\neg A) = t$, which means $h_{\nu}(\neg \neg A) = f$. Therefore, $\neg \neg A \not\equiv \top$.
- b) Then we prove that $\neg \neg A \not\equiv \top \to \neg A$ is satisfiable. $\neg \neg A \not\equiv \top$ means that $\neg A \not\equiv \bot$ and further $\neg A \equiv \top$. Then $h_{\nu}(\neg A) = t$, which means that $\neg A$ is satisfiable. Hence proved.

III Question 3

Applying **de morgan's law**, we can reduce the formular $(p \land \neg q \leftrightarrow \neg(\neg r \land \neg p)) \rightarrow (\neg \neg q \rightarrow r)$ to $(p \land \neg q \leftrightarrow r \land p) \rightarrow (q \rightarrow r)$. Therefore, determining the validity of original formular is logically equivalent to determine the validity of the new one.

p	q	r	(p	\wedge	$\neg q$	\leftrightarrow	r	\wedge	p)	\rightarrow	(q	\rightarrow	r)
t	t	t	t	f	f	f	t	t	t	\mathbf{t}	t	t	t
t	t	f	t	f	f	t	t	f	f	f	t	f	f

For a formular A to be valid, then $\forall \nu$, $h_{\nu}(A) = t$. There are 8 possible combinations of the truth-value of tuple (p, q, r), we derive them sequentially.

However, we found that, when $\nu(p) = t$, $\nu(q) = t$ and $\nu(r) = f$, we got $h_{\nu}(A) = f$. So we stop deriving the truth-table, and we know that the formular is invalid.

IV Question 4

i. In CNF: a,b,d,g. In DNF: b,d,e,h.

- ii. The property of refutation-soundness and -completeness:
 - Let S be in CNF. $S \vdash_{res(PL)} \emptyset$ iff $S \models \bot$.

This property is important because it implies that for SAT and resolution, S is satisfiable iff $S \not\vdash_{res(PL)} \emptyset$. Therefore, if it impossible to derive \emptyset from S by a resolution derivation, then S is satisfiable.

- iii. Apply unit propogation and the pure rule repeatedly to reduce the CNF.
 - a. $\{\{p,s\}, \{q,r\}, \{\neg s,q\}, \{\neg p, \neg r, \neg s\}\}\$ $\Rightarrow \{\{p,s\}, \{\neg p, \neg r, \neg s\}\}\$ [q is pure] $\Rightarrow \{\{p,s\}\}\$ [$\neg r$ is pure] $\Rightarrow \{\}\$ [p is pure]
 - b. $\{\{\neg p, q, r\}, \{\neg q\}, \{p, r, q\}, \{\neg r, q\}\}\}$ $\Rightarrow \{\{\neg p, r\}, \{p, r\}, \{\neg r\}\}\}$ [unit propogation by clause $\{\neg q\}$] $\Rightarrow \{\{\neg p\}, \{p\}\}\}$ [unit propogation by clause $\{\neg r\}$] $\Rightarrow \{\{\}\}\}$ [unit propogation by clause $\{p\}$]

V Question 5

Formalize the argument as: $a \to \neg b$, $\neg b \to \neg c$, $c \vee \neg a$, $c \vee a$, therefore, b.

- a: I'm going.
- b: You are going.
- c: Tara is going.

Then we should check whether $a \to \neg b$, $\neg b \to \neg c$, $c \lor \neg a$, $c \lor a \models b$.

We know that, $A_1...A_n \models B$ iff $A_1 \wedge ... \wedge A_n \wedge \neg B$ is unsatisfiable.

So we should check whether $(a \to \neg b) \land (\neg b \to \neg c) \land (c \lor \neg a) \land (c \lor a) \land (\neg b)$ is satisfiable.

First convert it to CNF: $\{\{\neg a, \neg b\}, \{b, \neg c\}, \{c, \neg a\}, \{c, a\}\}$

Now apply DP:

$$\{\{\neg a, \neg b\}, \{b, \neg c\}, \{c, \neg a\}, \{c, a\}, \{\neg b\}$$

- $\Rightarrow \{ \{\neg c\}, \{c, \neg a\}, \{c, a\} \} \text{ [unit propogation by clause } \{\neg b\}]$
- $\Rightarrow \{\{\neg a\}, \{a\}\} \text{ [unit propogation by clause } \{\neg c\}]$
- \Rightarrow {{}} [unit propogation by clause {c}]
- \Rightarrow UNSATISFIABLE [since \emptyset is in the set].

Since CNF is unsatifiable, the original argument is propositionally valid.

VI Question 6

- i. $\forall X(X = aunt(aunt(Andrea)) \rightarrow \exists Y(\neg(GiveCupcakeTo(X, Y) \land (Y = Andrea))))$
 - $C = \{Andrea\}$
 - $\mathcal{P}_2 = \{GiveCupcakeTo\}$, where the binary predicate GiveCupcakeTo(X, Y) means that object X gives a cupcake to Y.
 - $\mathcal{F}_1 = \{aunt\}$
- ii. $\exists X \forall Y (computer(X) \land computer(Y) \land connect(X,Y) \land \neg(connect(Y,Y))$
 - $P_1 = \{computer\}$
 - $P_2 = \{connect\}$, where the binary predicate connect(X, Y) means that object X is connected to object Y.
- iii. $\forall X \forall Y \forall A \forall B ((painting(X) \land paint(PaulKlee, X) \land BritishGallary(X) \land hang(X, A) \land room(A)) \land (painting(Y) \land paint(Kandinsky, Y) \land BritishGallary(Y) \land hang(Y, B) \land room(B)) \rightarrow A = B)$
 - $C = \{PaulKlee, Kandinsky\}$
 - $\mathcal{P}_1 = \{painting, room, BrtishGallary\}$, where the unary predicate painting(X) means that object X is a painting; room(X) means that object X is a room; BrtishGallary(X) means that object X is in the BrtishGallary.
 - $\mathcal{P}_2 = \{paint, hang\}$, where the binary predicate paint(X, Y) means that object X paints object Y; hang(X, Y) means X is hangs in place Y.
- iv. $\exists X \neg \exists Y (love(X, Y)) \rightarrow \neg (\forall X \exists Y (love(X, Y)))$
 - $\mathcal{P}_2 = \{love\}$, where the binary predicate love(X, Y) means that object X loves Y.

VII Question 7

- i. False. This says that all objects accessible from k cannot be j. However, the graph shows that only j is accessible from k. let σ be such that $(\sigma(k), \sigma(X)) \in \varphi_M(a)$. Then plainly $\sigma(X) = j$, and $\neg(X = j)$ is false.
- ii. True. This says that at least one black and circular object is accessible from l. For this to be true, $b(\sigma(X)) \in \varphi_M(b)$, $c(\sigma(X)) \in \varphi_M(c)$, and $(\sigma(l), \sigma(X)) \in \varphi_M(a)$. Then plainly it is true considering $\sigma(X) = j$ or $\sigma(X) = k$.

- iii. True. This says that for at least one object X, there's no other Y accessible from X. Let $\sigma(X)$ =the black square object, or $\sigma(X)$ =the black white object, and $(\sigma(X), \sigma(Y)) \in \varphi_M(a)$. Then plainly $\sigma(X) = \sigma(Y)$. Hence, the argument is true.
- iv. False. This implies that for all objects that are not square, there is at least one accessible circular black object. Let σ be such that $s(\sigma(X)) \notin \varphi_M(s)$, then $\sigma(X)$ could be k or l or j. Assume there is Y such that $c(\sigma(Y)) \in \varphi_M(c)$, $b(\sigma(Y)) \in \varphi_M(b)$ and $(\sigma(X), \sigma(Y)) \in \varphi_M(a)$. Let $\sigma(X) = j$, clearly this is not the case.
- v. False. This says that, for all object X, if there is some other object Y accessible from X, then the two objects communicate with each other. Let $\sigma(X) = k$ and $\sigma(Y) = j$. Clearly $\sigma(X) = k \neq \sigma(Y) = j$ and $(\sigma(k), \sigma(j)) \in \varphi_M(a)$. However, $(\sigma(j), \sigma(k)) \notin \varphi_M(a)$. Therefore, it is clearly false.
- vi. False. This says that all objects arrow to j mutually communicate. Let $\sigma(X) = k$ and $\sigma(Y) = l$. Clearly, $(\sigma(k), \sigma(j)) \in \varphi_M(a)$ and $(\sigma(j), \sigma(j)) \in \varphi_M(a)$. However, $(\sigma(k), \sigma(j)) \notin \varphi_M(a)$. Therefore, it is clearly false.