Optimizations Pt. 1

Section 9:

CS 164 @ UC Berkeley, Spring 2024

Reminders

WA 5 is due on Thursday, April 11 at 11:59 PM PST.

Pre-PA4 is released!

Due on April 16 at 11:59 PM PST.

(hard deadline)

Reminder to take care of yourselves, and to prioritize your health! WAs are worth 5% of your grade so don't stress too much about them!

Control Flow Graphs

Directed graph of basic blocks

- Edges represent possible control flow
- Only first instruction can be a label
- Only last instruction can be a jump

Control Flow Graphs

```
ENTER:

x = 5

y = 2

if x > 0: jump L2
   EXIT
```


Dead Code Elimination

Are variables referenced after being assigned?

$$a := x ** 2$$

$$c := x$$

$$d := c * c$$

$$f := a + d$$

$$g := e * f$$

$$a := x ** 2$$

) := 3

$$c := x$$

$$d := c * c$$

$$f := a + d$$

$$g := e * f$$

Common Subexpression Elimination

Do any assignments have the same right-hand side?

```
a := x ** 2 a := x ** 2
```

$$c := x$$
 $c := x$

$$d := c * c$$
 $d := c * c$

$$f := a + d$$
 $f := a + d$

$$g := e * f$$
 $g := e * f$

Copy Propagation

Do any variables copy other variables?

а	:= x ** 2	а	:= x ** 2
b	:= 3	b	:= 3
С	:= x	С	:= x
d	:= c * c	d	:= x * x
е	:= c * c	е	:= x * x
f	:= a + d	f	:= a + d
a	:= e * f	a	:= e * f

- Global optimizations require flow analysis
- Program points:
 - For each statement in a program, define a program point before and after it.
- Constant propagation:
 - If a variable is assigned a constant, replace every valid reference with the constant.
 - For each variable x, for each program point, assign value #, *, or a constant.
 - #: Program point is unreachable from where x is assigned.
 - *: Don't know if x is a constant at this program point.
 - Constant: x has a constant value at this program point.
- #, *, and the constants form a lattice where # < c < *.
 - Every finite set of values has a least upper bound.
 - Provide guarantees for termination of flow analysis.

$$C_{in}(x,s) = lub(C_{out}(x,p)|p \text{ is a predecessor of } s)$$

$$C_{\text{out}}(x, y := ...) = C_{\text{in}}(x, y := ...)$$
 if $x \neq y$

(Picture slightly different from rule)

$$C_{out}(x, x := e) = eval(e, C_{in})$$

Anonymous feedback form: http://tinyurl.com/SoraDisFeedback