Infective endocarditis in the setting of injection drug use

Acknowledgment and Disclaimer
MEDICINE THROUGH THE GLASS SLIDE
is a purely educational platform designed to
provide a learning opportunity by drawing
on personal experiences, scientific literature
and publically available information.

I acknowledge these sources and attribute due credit to the original creators and authors in compliance with legal obligations regarding intellectual property rights.

Ibrahim Zardawi MD

Bachelor of Medicine, Bachelor of Surgery (MB ChB)
University of Baghdad, Iraq, Master of Science in
Pathology (MSc) University of Baghdad, Iraq, Fellow of
the Royal College of Pathologists of Great Britain,
Fellow of the Royal College of Pathologists of
Australasia, Fellow of the International Academy of
Cytology, Diploma in Cytopathology, Royal College of
Pathologists of Australasia, Founding Fellow of the
Faculty of Science of the Royal College of Pathologists
of Australasia, Fellow of the College of the American
Pathologists FCAP, Fellow of the American Association
of Clinical Pathologists, Diploma of the European
Board of Pathology

CLEVELAND CLINIC JOURNALOF MEDICINE

The causes of vascular insufficiency and Hickam vs Ockham

Oral condylomata lata

How do I manage patients with thyrotoxicosis until they see the endocrinologist?

COMPLETE TABLE OF CONTENTS ON PAGE 709

Prioritizing harm reduction in managing infective endocarditis associated with injection drug use

A 74-year-old woman with purple toes

Advanced imaging in the diagnosis of myocardial infarction without obstructive coronary artery disease

Managing urogenital tract disorders: 10 urology pearls for primary care physicians

Myocardial infarction with nonobstructive coronary arteries: Current management strategies

The American
Heart Association
recently issued a
scientific
statement with
suggestions and
guiding principles
for managing IDUIE.

The statement emphasizes the need to treat substance use disorder in conjunction with endocarditis.

Case presentation

```
History and examination
 39F, HCV+, IV drug user (active IV amphetamine use; on methadone
 for past heroin addiction)
 2-week history of fever, polyarthralgia, SOB and lethargy
 Left index finger laceration and infection (3 weeks prior to admission)
 Pansystolic murmur, elevated JVP, bibasal crepitations
 HR 106, BP 125/50, T 38°C (100.4°F), RR 28, SpO<sub>2</sub> 85% (RA)
Labs
 Pancytopenia (Hb 66, WCC 3.6, Plt 133), high inflammatory markers
Cultures
 Penicillin-sensitive S. aureus (blood, urine, finger)
Echo
 55mm tricuspid vegetation
Imaging
 Bilateral septic pulmonary emboli
Diagnosis
 IVDU-associated S. aureus tricuspid endocarditis originating from
 infected finger wound with septic emboli
```


Management Plan

Antibiotic Therapy:

Intravenous flucloxacillin for Staphylococcus aureus endocarditis

Supportive Care:

Oxygen therapy, hydration and anemia management

Surgical Consultation:

Evaluate for tricuspid valve vegetation removal

Addiction Support:

Methadone maintenance and referral to addiction services

Hepatitis C Management:

Referral to hepatology for antiviral therapy

Surgical Intervention
Underwent vegetectomy
of the tricuspid valve.

Follow-Up and Outcomes
Completed six weeks of
IV penicillin under the
"Out and About" home
treatment program.

No signs of tricuspid valve incompetence on follow-up and no further IV drug use.

Overview of infective endocarditis

- > Epidemiological aspects
- > Predisposing factors
- Pathogenesis and patholog
- ➤ Microbiological features
- > Clinical manifestations
- Diagnostic criteria
- > Treatment options
- Complications
- > Trends
- ➤ Mortality and relapse

Endocarditis

- > Inflammation of endocardium
- > Valvular or mural
- > Infective or non-infective
- > Endocardial vegetations

Vegetation on valve leaflet

Ulcerated vegetation

Vegetation

Vegetations

Mass of fibrin, thrombotic debris, inflammatory cells and organisms (bacteria or other organisms)

Organisms within the vegetation are encased by a physical barrier (platelet and fibrin), shielding them from the immune response of the host and the administered antibiotics.

Fibrin, debris, WBCs & bacteria

Gram positive cocci

Pathogenesis of vegetation in infective endocarditis

- 1. Sterile nidus composed of platelets and fibrin form on damaged valvular endothelium
- 2. Colonization of the nidus by micro-organisms circulating in the bloodstream
- 3. Microbial growth in the nidus results in further accumulation of more platelets and fibrin, until a vegetation (macroscopic excrescence) is formed

Pathogenesis of vegetations

- Endothelial damage
 Valvular or mural endothelial damage creates a site for bacterial attachment
- 2. Platelet and fibrin deposition
 Platelets and fibrin form a sterile lesion called a vegetation
- 3. Microbial attachment Micro-organisms from the bloodstream adhere to the vegetation
- 4. Rapid microbial multiplication
 Micro-organisms multiply rapidly in the protected area of the vegetation
- 5. Vegetation growth Vegetation grows as a macroscopic excrescence
- 6. Vegetation detachment Embolization, infarction, abscess formation, mycotic aneurysms, etc

Bacterial colonies and inflammatory material

Vegetation (fibrin, blood cells, bacteria)

Bacterial microcolonies and thrombotic debris

Pathogenesis of infective endocarditis

Endocardial injury

Normal endocardium is resistant to infection with most bacteria or fungi

Highly virulent organisms such as **Staphylococcus aureus** are capable of infecting normal heart valves

Initial step is **injury** to the endocardium, followed by **focal adherence of platelets and fibrin**

Microbial adherence

Adherence, an early event in the pathogenesis of endocarditis, is aided by **Dextran** which is bacteria produced adhesive that helps organisms **adhere to fibrin and platelets**

Intrinsic binding affinity of the organism to ground substance is also important in bacterial adherence

Vegetations

Eosinophilic debris, fibrin and basophilic bacteria on damaged valve leaflet

Eosinophilic debris, fibrin and basophilic bacterial microcolonies

Eosinophilic debris, fibrin and fungal hyphal elements extending into underlying myocardium

Debris, fibrin and inflammatory material (eosinophilic) with bacterial microcolonies (basophilic) are the main constituents of the vegetation

Types of vegetation

Rheumatic heart disease

Row of small vegetations along lines of closure

Infective endocarditis

Large irregular masses on cusps Extension onto chordae

Non-bacterial thrombotic endocarditis Small vegetations at lines of closure

Libman-Sacks endocarditis

Small to medium sized vegetations on either or both sides of leaflets seen in SLE

Non-bacterial thrombotic endocarditis (NBTE) Marantic endocarditis

Small vegetations on previously normal valves

Fibrin and other blood elements

Valve leaflets at lines of closure

Vegetations are **sterile** with no organisms

Seen in **debilitated patients** (cancer or sepsis)

Local effects from vegetations are unimportant or negligible

May lead to embolization and infarction

NBTE

Libman-Sacks endocarditis (LSE)

SLE/Antiphospholipid syndrome

Small sterile vegetations (fibrin, necrotic material)

Associated vasculitis

Vegetations can be seen on **both** surfaces of the AV valves

Mitral or tricuspid regurgitation and valvular deformity

LSE

Non-bacterial thrombotic endocarditis (Fibrin and other blood elements)

Libman-Sacks endocarditis (Fibrin, necrotic material and degenerate blood cells)

Classification of infective endocarditis

IE can be acute or subacute

Clinical classification of IE is based on

- Severity and tempo of disease
- Virulence of the infecting organisms
- ➤ Underlying cardiac disease

Acute bacterial endocarditis (vegetation on aortic valve)

Subacute bacterial endocarditis (vegetation on tricuspid valve)

Acute infective endocarditis

- Destructive infection of previously normal or damaged valves
- Caused by highly virulent organisms (Staph aureus)
- Necrotising, ulcerative massive valvular vegetations
- Associated with severe symptoms and high mortality despite antibiotics and surgery

Subacute infective endocarditis

- > Appears insidiously
- Occurs in previously damaged heart valves
- Caused by organisms of low virulence (Strep viridans)
- > Has a protracted clinical course
- > Less valvular destruction
- Most recover with antibiotic therapy

Prosthetic valvular endocarditis (PVE)

- ➤ PVE develops in **1% of patients** after valve replacement each year
- ➤ More common with **aortic** than mitral valve prostheses
- Least common with porcine valves (heterografts)
- Caused by **bacterial contamination** at time of surgery or by transient asymptomatic **bacteraemia**

Pacemaker-endocarditis

Caused by organisms introduced at the time of surgery or those that usually migrate across a **broken skin barrier,** from an eroding battery pack or generator pocket wound

Early infections are frequently due to **Staph aureus**, and **late** infections to **Staph epidermidis**

Portal of entry of micro-organisms

- > An obvious infection elsewhere
- ➤ Dental or surgical procedures that cause transient bacteraemia
- ➤ Injection of contaminated material directly into the bloodstream by intravenous drug users
- Occult source from the gut, oral cavity or trivial injuries

Clinical diagnosis of IE

- Fever (absent in 15%)
- Murmur (present in 90%)
- Risk factors
- > Embolic events
- Petechiae

Clinical manifestation of IE

- Systemic infection
- Cardiac involvement (valvular or myocardial damage)
- Embolic phenomena
- Immune-mediated injury

Main cardiac complications of IE

- Valvular damage
- Myocardial abscess formation
- Mycotic aneurysms

Acute endocarditis of bicuspid aortic valve (Staphylococcus aureus)

Subacute endocarditis of mitral valve (Streptococcus viridans)

Splinter or subungual hemorrhages Thin, red, linear or flame-shaped streaks located within the nail beds.

Janeway lesions Small, non-tender embolic erythematous or hemorrhagic macular lesions on the palms and soles.

Osler nodes

Painful, tender subcutaneous nodules that typically appear on the pulp of the digits or on the more proximal aspects of the fingers. They persist for hours to days.

Roth spots

Oval-shaped **retinal hemorrhages** with pale centers.

C

Clinical, Microbiological, and Imaging Characteristics of Infective Endocarditis in Latin America: A Systematic Review based on 44 studies Urina-Jassir, et al. International Journal of Infectious Diseases 2022

Variable	Studies	n/N (%)	
Fever	22	2109/2513	(83.9%)
Dyspnea	5	303/820	(37.0%)
Heart failure	28	1108/3047	(36.4%)
Malaise	7	312/494	(63.2%)
Heart murmur	14	1119/1940	(57.7%)
Immunological phenomena	11	206/1851	(11.1%)
Osler's nodes	8	59/1536	(3.8%)
Roth's spots	5	46/1296	(3.6%)
Positive RF	4	23/583	(4.0%)
Glomerulonephritis	2	60/297	(20.2%)

n is the total number of cases with that variable, **N** is the total number of cases of the studies reporting that variable

Clinical, Microbiological, and Imaging Characteristics of Infective Endocarditis in Latin America: A Systematic Review Urina-Jassir, et al. International Journal of Infectious Diseases 2022

Variable	Studies	n/N (%)	
Vascular phenomena	34	1076/3559	(30.2%)
Embolism	33	944/3483	(27.1%)
Mycotic aneurysm	7	46/1433	(3.2%)
Janeway lesions	7	44/1170	(3.8%)
Conjunctival hemorrhages	4	22/315	(7.0%)
Hemorrhagic stroke	2	6/119	(5.0%)
Other manifestations			
Ungual or splinter hemorrhages	6	84/987	(8.5%)
Sepsis	7	619/2815	(69.7%)
Splenomegaly	8	279/1137	(24.5%)
Petechiae	7	291/1400	(20.8%)
Hepatomegaly	4	223/783	(28.5%)

n is the total number of cases with that variable, **N** is the total number of cases of the studies reporting that variable

Table 1. The Duke Criteria for the Clinical Diagnosis of Infectious Endocarditis

Major criteria

Positive blood culture

Two separate blood cultures positive for microorganism consistent with infectious endocarditis (viridans *Streptococcus, Streptococcus bovis,* gramnegative HACEK bacilli, *Staphylococcus aureus,* or community-acquired enterococci in the absence of a primary focus)

or

Recovery of a microorganism consistent with infectious endocarditis from blood cultures drawn more than 12 hours apart

or

Recovery of a microorganism consistent with infectious endocarditis from all of three or most of four or more blood cultures, with first and last drawn more than one hour apart

or

Single positive blood culture for *Coxiella burnetii* or phase 1 immunoglobulin G antibody titer greater than 1:800

Evidence of endocardial involvement

Positive echocardiography (oscillating intracardiac mass on valve or supporting structures, or in the path of regurgitant jets, or on implanted material in the absence of an alternative anatomic explanation; intracardiac abscess; new partial dehiscence of prosthetic valve)

New valvular regurgitation (increase or change in preexisting murmur not sufficient)

Minor criteria

Fever of at least 38.0°C (100.4°F)

Immunologic phenomena: glomerulonephritis, Osler nodes, Roth spots, rheumatoid factor

Microbiologic evidence: positive blood culture that does not meet major criteria, serologic evidence of active infection with organism consistent with infectious endocarditis

Predisposing heart condition or history of injection drug use

Vascular phenomena: major arterial emboli, septic pulmonary infarctions, mycotic aneurysm, intracranial hemorrhage, conjunctival hemorrhages, Janeway lesions

Duke Criteria were published in 1994 2 major criteria or 1 major criterion and 3 minor criteria

Modified in 2000

Updated modified Duke criteria 2023

Table 34.3. The Modified Duke Criteria for the Diagnosis of Endocarditis

Major Criteria

- Blood culture positive for IE
 - Typical microorganisms consistent with IE from two separate blood cultures
 - · Viridans streptococci; Streptococcus bovis, HACEK group, Staphylococcus aureus; or
 - Community-acquired enterococci, in the absence of a primary focus
 - Microorganisms consistent with IE from persistently positive blood cultures, defined as follows:
 - At least two positive blood cultures of blood samples drawn >12 h apart; or
 - All of three or a majority of ≥4 separate cultures of blood (with first and last sample drawn at least 1 h apart)
 - Single positive blood culture for *Coxiella burnetii* or antiphase I IgG antibody titer >1:800
- Evidence of endocardial involvement
- Echocardiogram positive for IE (TEE recommended in patients with prosthetic valves, rated at least "possible IE" by clinical criteria, or complicated IE [paravalvular abscess]; TTE as first test in other patients), defined as follows:
 - Oscillating intracardiac mass on valve or supporting structures, in the path of regurgitant jets, or on implanted material in the absence of an alternative anatomic explanation; or
 - Abscess; or
 - New partial dehiscence of prosthetic valve
- New valvular regurgitation (worsening or changing or preexisting murmur not sufficient)

Minor Criteria

- Predisposition, predisposing heart condition or injection drug use
- Fever, temperature >38°C
- Vascular phenomena, major arterial emboli, septic pulmonary infarcts, mycotic aneurysm, intracranial hemorrhage, conjunctival hemorrhages, and Janeway lesions
- Immunologic phenomena: Glomerulonephritis, Osler nodes, Roth's spots, and rheumatoid factor
- Microbiological evidence: Positive blood culture but does not meet a major criterion as noted previously (excluding single positive cultures for coagulase-negative staphylococci and organisms that do not cause endocarditis) or serologic evidence of active infection with organisms consistent with IE
- Echocardiographic minor criteria eliminated

The 2023 Duke-International Society for Cardiovascular Infectious Diseases Criteria for Infective Endocarditis: Updated Modified Duke Criteria

I. Definite endocarditis

A. Pathologic criteria

1. Microorganisms identified in the context of clinical signs of active endocarditis in a vegetation or from an arterial embolus

or

2. Active endocarditis identified in or on a vegetation or from an arterial embolus

B. Clinical criteria

2 major criteria or 1 major criterion and 3 minor criteria or 5 minor criteria

II. Possible endocarditis

1 major criterion and 1 minor criterion or 3 minor criteria

III. Rejected endocarditis

Firm alternate diagnosis

Lack of recurrence despite antibiotic therapy for less than 4 days

No pathological or macroscopic evidence of IE at surgery or autopsy, with
antibiotic therapy for less than 4 days

Does not meet criteria for possible IE

Vance G Fowler Jr, etc Clinical Infectious Diseases. 2023;77(4):518–526

Definitions according to the 2023 Duke-International Society for Cardiovascular Infectious Diseases Infective Endocarditis Criteria for the Diagnosis of IE

I. Major criteria

- A. Microbiologic major criteria
 - 1. Positive blood cultures
 - 2. Positive laboratory tests PCR, Serology, IF
- B. Imaging major criteria (Echo, CT, PET)
- C. Surgical major criteria

II. Minor criteria

- A. Predisposition
- B. Fever documented temperature greater than 38.0 °C (100.4 °F)
- C. Vascular phenomena
- D. Immunologic phenomena
- E. Microbiologic evidence
- F. Imaging criteria
- G. Physical examination criteria

Demographics of infective endocarditis

IE is difficult to diagnose and is associated with a high death rate (25%)

Incidence is much higher in patients with **underlying** valvular heart disease and IV drug users

Incidence of IE is about 3-4 cases per 100,000 population per year which has been slightly increasing over the past 3 decades

Longer survival

Degenerative heart diseases

Prosthetic heart valves

Congenital heart disease

Advances in medical and surgical treatments More sensitive and specific **diagnosis**

Predisposing factors to IE in Latin America Variable Studies (2022)

Variable	Number with variable/total number	Percentage positivity
Previous valve disease	451/1853	24.3%
Prosthetic valve	603/2573	23.4%
Previous rheumatic heart disease	269/2005	13.4%
Congenital heart diseased	289/2964	9.8%
Previous IE	233/2647	8.8%
Previous heart failure	272/1178	23.1%
IV drug use	79/1981	4%
Indwelling catheter or device	264/1261	20.9%
Previous surgical procedure	326/1491	21.9%
Previous dental procedure	48/856	5.6%

Endocarditis in native and Prosthetic valves		
Native valve endocarditis (NVE)	Prosthetic valve endocarditis (PVE)	
Underlying causes	Early PVE	
Rheumatic valvular disease	Often caused by S aureus and is associated	
Congenital heart disease	with local abscess and fistula formation and	
Mitral valve prolapse	valvular dehiscence	
Degenerative heart disease		
	Late PVE	
Microbiology of NVE	Caused mainly by Streptococci and presents	
Approximately three quarters of infections	in a subacute fashion similar to NVE	
are caused by Streptococcus species (S		
viridans and S bovis) and enterococci	Coagulase Negative Staphylococci (CNS)	
	cause of PVE in 30% (17% of early PVE and	
Staphylococcus species cause 25% of cases	13% of late PVE)	
and generally demonstrate a more		
aggressive acute course	Other organisms	
	Corynebacterium, Non-enterococcal	
	streptococci, Fungi, Legionella and HACEK	
	organisms cause the remaining cases	

Underlying heart disease

- > Rheumatic heart disease
- ➤ Mitral valve prolapse
- Degenerative calcific valvular stenosis
- ➤ Bicuspid aortic valve
- > Artificial (prosthetic) valves
- Implanted devices (pacemakers and defibrillators)
- Congenital heart disease
- > Prior infective endocarditis

Injection drug use-infective endocarditis (IDU-IE) No previous history of heart disease or murmur on admission in the majority (70%) of the cases

Pulmonary manifestations may be prominent 30% have pleuritic chest pain 75% demonstrate chest radiographic abnormalities

Staphylococcus aureus

Most common organism (50% of cases)

Streptococci (groups A, c and G) and **enterococci** and **Gram-negative organisms** (Pseudomonas HACEK) are involved less frequently

Injection drug use-associated infective endocarditis (IDU-IE)

People who inject drugs have a **100-fold higher risk of infective endocarditis** compared with the general population

Incidence of injection drug use-associated infective endocarditis (IDU-IE) has increased with the opioid epidemic and growing number of people who inject drugs

IDU-IE patients are typically much younger than patients with non-IDU-IE and have lower prevalence of other medical conditions

Injection drug use-associated infective endocarditis (IDU-IE)

Short-term outcome

IDU-IE compared with non-IDU-IE achieve similar or better treatment outcomes in the short term, particularly with surgical interventions.

Long-term outcome

Notably **poorer** compared with non-IDU-IE patients

More complex hospital courses

Prolonged hospitalizations

Higher 30-day readmissions

Increased occurrences of reoperation, reinfection and increased rates of long-term mortality

Healthcare-associated infective endocarditis Endocarditis associated with therapeutic modalities involving intravascular devices

Patients tend to have significant comorbidities Intravenous drug use, chronic kidney disease (dialysis patients), chronic liver disease, malignancy, advanced age, corticosteroid use, poorly controlled diabetes, indwelling line for venous access, immunocompromised state

Mortality rate is high

Gram-positive cocci (*S aureus,* CNS, enterococci, non-enterococcal streptococci) are the most common pathogens of HCIE

Fungal endocarditis

Found in IV drug users and intensive care unit patients who receive broad-spectrum antibiotics

Blood cultures may be negative

Microscopic examination of vegetations or large emboli may detect the organism

Candida auris is particularly concerning since most infections are recognized in healthcare facilities and can rapidly spread throughout and between healthcare facilities

Candida auris is usually resistant to many antifungals

Culture negative endocarditis

No organisms can be found in 10% of cases

Possible reasons for culture negative endocarditis:

- Inappropriate institution antibiotics prior to obtaining adequately drawn blood cultures
- Laboratory difficulties in isolating organisms Bartonella, Tropheryma, Coxiella, Brucella, Mycoplasma, Legionella, Fungi
- Deeply embedded organisms
- Incorrect diagnosis

Diagnostic strategy for patients with blood culture-negative endocarditis (BCNE)

Culture negative endocarditis				
	Advantage	Disadvantage		
Culture	Gold standard	Takes long time; difficult to culture fastidious bacteria		
Serology	Inexpensive; Coxiella burnetii and Bartonella spp	Not available in certain countries; single serum sample can be inaccurate; false-positives due to IgM phase may persist for a longer period		
Histopathology	Rapid; definite diagnosis; inexpensive	Low sensitivity if low burden of disease; low specificity; few identifiable pathogens		
PCR	Rapid; able to detect multiple organisms; sensitivity in tissue higher than in blood sample	Sometimes requires more than one amplification; limited to a small portion of genome; difficulties in distinguishing individual pathogens in polymicrobial sample		
NGS	Unbiased sampling; discovery of new or unexpected organisms; predict drug resistance; provides quantitative data	No clear database being cleared point out; human host background and should have depletion method; expensive; contamination sample with environmental species		

Laboratory diagnosis of infective endocarditis Three to five blood cultures within 24 h may be needed to isolate the etiologic agent

Identification of the organism and its antimicrobial susceptibility is vital to guide bactericidal treatment

Blood cultures may require 3 to 4 weeks **incubation** for certain organisms

Some organisms such as Aspergillus species may **not produce positive cultures**

Serological diagnosis is required for Coxiella burnetii (Q fever) and Chlamydia psittaci

Special culture media are needed for Legionella pneumophila

Imaging diagnosis of infective endocarditis Transthoracic echocardiography detects vegetations in 50% of patients with endocarditis and may eliminate the need for more invasive procedures

Trans-oesophageal echocardiography detects vegetations in >90% of patients, including those with negative blood cultures

It can also detect myocardial abscesses

Prognosis of infective endocarditis Untreated, infective endocarditis is always **fatal**

Right-sided endocarditis responds to antimicrobial therapy and has a better prognosis than left-sided endocarditis

Mortality of viridans streptococcus is <10%, but is ~100% with **Aspergillus** after prosthetic valve surgery

Cardiac surgery is associated with improved survival

Indication for Early Cardiac-Valve Surgery

Heart failure

- Refractory pulmonary edema or cardiogenic shock due to aortic-valve or mitral-valve dysfunction, obstruction, fistula, or shunt
- Aortic-valve or mitral-valve regurgitation or dysfunction with poorly compensated hemodynamic function

Prevention of systemic embolization

Aortic-valve or mitral-valve vegetation >10 mm, especially when accompanied by ≥1 embolic events while the patient is receiving appropriate therapy

Uncontrolled infection

- Fungal causative microorganism
- Multidrug-resistant microorganism
- Blood cultures that are persistently positive for an antibiotic-susceptible pathogen in a patient receiving appropriate antimicrobial therapy for 6 or 7 days despite adequate source control of other foci of infection
- Paravalvular complications (e.g., abscess)

Poor prognostic findings in infective endocarditis

- > Heart failure
- ➤ Old age
- ➤ Multiple valve involvement
- ➤ Large vegetations
- > Antimicrobial resistance
- Delay in therapy
- > Prosthetic valve infections
- ➤ Major embolic events

Cause of death

Heart failure (exacerbation of underlying heart disease or acute valve dysfunction)

Embolization of vegetations to vital organs, producing infarction

Ruptured mycotic aneurysm

Septic shock in acute bacterial endocarditis

Renal failure

Complications of cardiac surgery

Current trends and future concerns Antimicrobial resistance

Changing epidemiologic trends

Body piercing
Excessive alcohol consumption
Intravenous drugs use
Other

Children with congenital heart defects

Nosocomial infection can result from invasive procedures such as catheterisation

Clinical, Microbiological, and Imaging Characteristics of Infective Endocarditis in Latin America: A Systematic Review Urina-Jassir, et al. International Journal of Infectious Diseases 2022

Forty-four studies were included

Two thirds were **male** (68.5%)

Predisposing condition including valve disease (24.3%) or prosthetic valve (23.4%)

Clinical manifestations included **fever** (83.9%), **malaise** (63.2%) or **heart murmur** (57.7%)

36.4% and 27.1% developed heart failure or embolism, respectively

Blood cultures were negative in 23.9%

S. aureus (18.6%) and the viridans group streptococci (17.8%) were the most common isolates

Two thirds were **native valve IE** (67.3%) affecting mainly **left-sided valves**

Echocardiographic findings included vegetations (84.3%) and regurgitation (75.9%)

In-hospital mortality was 25.1%

Percentage of Infectious Endocarditis Cases in the Population

80% gram-positive

Staphylococci 35-40%

- Staphylococcus aureus
- Coagulasenegative staphylococci/

Streptococci and Enterococci 40-45%

- Oral streptococci: 20%
 - Streptococcus gallolyticus: **10-15**%
 - Enterococci: 10%

20%

HACEK

(haemophilus, aggregatibacter, cardiobacterium, Eikenella corrodens, kingella) microorganisms

5%

- Candida species
 2%
 - Other*
- Polymicrobial (≥2 microorganisms) 8%
 - No microorganism identified 2%

	Echocardiogram	
Echocardiogram	Number of studies	n/N (%)
Vegetation	25	2333/2767 (84.3%)
Valvular regurgitation	11	1050/1383 (75.9%)
Abscess	18	332/2614 (12.7%)
Rupture or perforation	9	168/1426 (11.8%)
Dehiscence	5	44/1112 (4.0%)

 ${f n}$ is the total number of cases with that variable, ${f N}$ is the total number of cases of the studies reporting that variable

Location of endocarditis

Native valve	Number of studies	n/N(%)
Aortic	19	575/2050 (28.1%)
Mitral	19	564/2092 (27.0%)
Tricuspid	15	123/1928 (6.4%)
Pulmonary	6	13/1555 (0.8%)
Mitral + aortic	10	117/1489 (7.9%)
Other combined	3	6/113 (5.3%)
Prosthetic valve		
Aortic	9	171/1272 (13.4%)
Mitral	9	110/1230 (8.9%)
Tricuspid	3	2/900 (0.2%)
Pulmonary	3	4/927 (0.4%)
Mitral + aortic	5	19/1095 (1.7%)
Non-specified		
Aortic	11	519/1223 (42.4%)
Mitral	11	475/1223 (38.8%)
Tricuspid	8	100/1080 (9.3%)
Pulmonary	3	8/582 (1.4%)
Mitral + aortic	6	62/568 (10.9%)
Other combined valves	1	6/71 (8.5%)
Unidentified/other	9	63/777 (8.1%)

n is the total number of cases with that variable, N is the total number of cases of the studies reporting that variable

Epidemiology of infective endocarditis in Africa Systematic review and meta-analysis Noubiap JJ, The Lancet 2022

Pooled distribution of echocardiographic features of infective endocarditis

Summary of right sided endocarditis 5-10% of IE cases, usually IVDU related

Less severe with lower mortality (5%) and need for surgery (1%) compared to IVDU endocarditis occuring in left sided BE (28%, 15% respectively)

IVDU related infective endocarditis affect the **tricuspid valve** in 60 -70%, **aortic valve or mitral valves** in 20-30% and **multiple valves** in 5 - 10%

Staph aureus causes 70-90% of IVDU endocarditis