ТАКСОНОМИЯ ФЛИННА

Таксономия Флинна —

- •общая классификация архитектур ЭВМ по признакам наличия параллелизма в потоках команд и данных.
- •предложена в 1972 г. Майклом Флинном.

Основы таксономии Флинна

 $S - single \qquad M - multiple$

I – instruction D - date

SISD MISD

SIMD MIMD

Расширение классификации Флинна

4

SISD

- Один поток команд, Один поток данных

- В каждый момент времени выполняется только одна операция над одним элементом данных.
- Последовательные компьютеры
- Архитектура Фон-Неймана

SIMD

- Один поток команд, множественный поток данных

- Один блок управления. Множество АЛУ
- Вычислительные системы с синхронным управлением
- SIMD компьютеры называют векторными или матричными компьютеры
- система ILLIAC IV
- •Thinking Machine Corporation's CM

Умножение матриц

$$C = A \cdot B$$

Задача умножения матриц может быть сведена к выполнению *m·n* независимых операций умножения строк матрицы *A* на столбцы матрицы *B*

$$c_{ij} = (a_i, b_j^T) = \sum_{k=0}^{n-1} a_{ik} \cdot b_{kj}, 0 \le i < m, 0 \le j < l$$

В основу организации параллельных вычислений может быть положен принцип распараллеливания по данным

Параллельный алгоритм: ленточная схема...

- Базовая подзадача (агрегация) процедура вычисления всех элементов одной из строк матрицы
 С (количество подзадач равно n)
- Распределение данных ленточная схема (разбиение матрицы *A* по строкам и матрицы *B* по столбцам)

Параллельный алгоритм: ленточная схема.

о Общая схема алгоритма

- Каждая подзадача содержит по одной строке матрицы A и одному столбцу матрицы B
- На каждой итерации проводится скалярное умножение содержащихся в подзадачах строк и столбцов, что приводит к получению соответствующих элементов результирующей матрицы C,
- На каждой итерации каждая подзадача i, $0 \le i < n$, передает свой столбец матрицы \boldsymbol{B} подзадаче с номером $(i+1) \mod n$.

После выполнения всех итераций алгоритма в каждой подзадаче поочередно окажутся все столбцы матрицы \boldsymbol{B} .

Параллельный алгоритм: ленточная схема...

• Схема информационного взаимодействия

ILLIAC IV

- 1976 год
- Университет Иллинойса
- 256 процессоров
- Дорого
- Неэффективно

Thinking Machine Corporation's Connection Machine (CM - 1, CM - 2)

- 1983
- имеет форму куба с длиной стороны 1,5 метра, разделённого на 8 равных кубов
- Каждый меньший куб содержал 16 печатных плат и основной процессор, называемый секвенсором (задатчиком последовательности).
- Каждая печатная плата содержала 32 микросхемы. Каждая микросхема содержала канал связи, называемый маршрутизатором, 16 процессоров и 16 O3Y.
- Всё было подключено к коммутационному устройству, называемому нексус

Turing Hitachi S3600

- 1996- 1999
- Скорость векторных вычислений достигала 1 GFLOP
- Скорость CU < 10 MFOPS

MISD

- множественный поток команд, Один поток данных

Примеры задач:

- Работа нескольких частотных фильтров на едином потоке сигнала.
- Попытка взломать одну шифровку, используя различные криптоалгоритмы

Систолический массив процессоров – MISD ?

- Процессоры находятся в узлах регулярной решетки.
- Роль ребер в ней играют межпроцессорные соединения
- все ПЭ управляются общим тактовым генератором
- В каждом цикле работы любой ПЭ получает данные от своих
- •соседей, выполняет одну команду и передает результат соседям.

MIMD

- множественный поток команд, множественный поток данных

- MIMD мультипроцессор
- Подходит для решения различных задач
- асинхронный параллелизм
- ICN осуществляет взаимодействие процессорпроцессор, процессор-память
- SPMD, MPMD \subset MIMD
- •Sun Ultra Servers, multiprocessors PCs, workstation clusters, and IBM SP.

MIMD- компьютеры с разделяемой памятью

- Единое адресное пространство для всех процессоров
- Uniform Memory Access Архитектура
- Symmetric MultiProcessors и Asymmetric multiProcessors
- ограниченное число процессоров

МІМD-компьютеры с разделяемой и распределенной памятью

- Для каждого процессора выделен модуль памяти
- Non Uniform Memory Access архитектура
- Межпроцессорная связь через общие переменные
- SGI Origin and the Sun Enterprise servers.

MIMD-компьютеры с распределенной

памятью

- Каждый узел самостоятельная компьютерная система
- Примеры : are COW (Cluster of Workstations) and NOW (Network of Workstations).
- NO Remote Memory Access архитектура

Сравнение MIMD с разделяемой памятью и MIMD с распределенной памятью

• Программируемость:

легче программируются системы с разделяемой памятью т.к. для них общее адресное пространство

• Надежность:

- NO Remote Memory Access системы более надежны т.к. сбой в каком- то узле является локальным в большинстве случаев
- Авария в одном модуле (процессор или память) может стать причиной аварии всей системы

• Масштабируемость:

• Тяжело добавлять новые модули (процессоры) в системы с разделяемой памятью. Архитектура с распределенной памятью, напротив, хорошо масштабируема

SPMD и MPMD

•SPMD

- Множество автономных процессоров выполняют одну и ту же программу на разных данных.
- Наиболее общий стиль параллельного программирования.

• MPMD

- множество независимых процессоров одновременно выполняют как минимум две незаdисимых программы.
- обычно это модель "master workers"
- Sony PlayStation 3 game console, with its SPU/PPU processor architecture

Литература

- Баденко И. Л. Высокопроизводительные вычисления: учебное пособие. Санкт-Петербург, Издательство Политехнического университета, 2010г
- Классификация BC http://www.stu.ru/inform/glaves2/glava5/gl_5_5.html
- Обзор архитектур BC http://rsusu1.rnd.runnet.ru/tutor/method/m1/page02.html
- http://en.wikipedia.org/wiki/SPMD
- •http://en.wikipedia.org/wiki/Flynn%27s_taxonomy
- http://en.wikipedia.org/wiki/ILLIAC_IV

Спасибо за внимание