PRÁCTICA 2:

Implementación y optimización de un cálculo en ensamblador DLX

1. Descripción de la práctica

El objetivo de la práctica es el desarrollo y optimización de un código que realice el siguiente cálculo:

$$M = (A \times B) \bullet \frac{1}{|A + B|} + C \bullet \alpha$$

siendo:

- A,B,CyM matrices 3x3
- α número real
- A determinante de la matriz
- ×,+ producto y suma de matrices
- producto de matriz por escalar

Datos de entrada y salida en DLX:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	;;;;;; NO MODIF	ICAR ORDEN		
A:	.float .float .float	1.500000, 21.002000, 56.251000,	2.750000, 2.658000, 3.154000,	3.257000 2.157000 3.255000
B:	.float .float .float	3.500000, 4.500000, 5.500000,	3.500000, 4.500000, 1.500000,	2.500000 6.500000 2.500000
C:	.float .float .float	15.000000, 17.000000, 14.000000,	17.000000, 15.000000, 17.000000,	14.000000 17.000000 15.000000
Alfa:	.float	1.235		
M:	.float .float .float	0.0,0.0,0.0 0.0,0.0,0.0 0.0,0.0,0.0		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	;;;;;; FIN NO MC	DIFICAR		

2. Se pide

- a) Realizar una versión no optimizada que realice el cálculo pedido
- b) Optimizar el cálculo realizado en a) empleando las técnicas habituales de uso de registros adicionales, reordenación de código, desenrollamiento de bucles (si los hay), etc.
- c) Se debe mantener el orden de las variables de entrada y salida en memoria. Se deben comprobar las posibles divisiones por 0. En ambos casos el resultado debe ser almacenado en la matriz M.
- d) Los valores de entrada se pueden cambiar.

3. Se deberá entregar

- a) Las dos versiones del programa (normal y optimizada), comentadas.
- b) Se entregará un breve documento explicando las mejoras realizadas y comparación de resultados obtenidos

Las pruebas a realizar se harán con la siguiente configuración:

CONFIGURACIÓN		
Memory size:	0x8000	
faddEX-Stages:	1	
faddEX-Cycles:	2	
fmulEX-Stages:	1	
fmulEX-Cycles:	5	
fdivEX-Stages:	1	
fdivEX-Cycles:	19	
Forwarding:	enabled	

ESTADÍSTICAS				
Total				
Nº de ciclos:				
Nº de instrucciones ejecutadas (IDs):				
Stalls				
RAW stalls:				
LD stalls:				
Branch/Jump stalls:				
Floating point stalls:				
WAW stalls:				
Structural stalls:				
Control stalls:				
Trap stalls:				
Total				
Conditional Branches				
Total:				
Tomados:				
No tomados:				
Instrucciones Load/Store				
Total:				
Loads:				
Stores:				
Instrucciones de punto flotante				
Total:				
Sumas:				
Multiplicaciones:				
Divisiones:				
Traps				
Traps:				

4. Lugar de entrega

La entrega se realizará en Studium en las fechas indicadas. Se subirá un único archivo (.zip, .rar, etc.) que contenga lo contemplado en el punto 3.

5. Evaluación de la práctica

Para aprobar la práctica se deberán de entregar las dos versiones y que el resultado sea correcto, para cualquier valor de entrada. A partir de ahí según lo entregado se obtendrá mayor o menor calificación (número de ciclos empleados para la ejecución, documentación entregada,...). La nota final obtenida por cada persona en las prácticas vendrá corregida por un factor real comprendido entre 0 y 1 según la defensa realizada de las mismas.

La detección de copia parcial o total de la práctica conllevará la suspensión de las prácticas, y por tanto de la asignatura.

Cualquier modificación de la práctica se notificará en Studium.