Module 2: Visualizing your data

Jake Ferguson (jakeferg@hawaii.edu)

Module goals

- 1. Present data visually.
- 2. Understand ggplot syntax
- 3. Identify approach figure types for your datatype

R's package system

Base R can be extended using a package. One popular collection of packages is the tidyverse.

"The tidyverse is an opinionated collection of R packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures."

The tidyverse is designed for "wrangling" and presenting your data.

We are going to use the grammar of graphics package from the tidyverse

What does gg in ggplot2 stand for?

It stands for **Grammar of Graphics**:

You can uniquely describe any plot as a combination of these 7 parameters.

Why use ggplot2?

- Easily add colors, size, shape, to illustrate multiple factors.
- Easy superposition, facetting, etc.
- Good animation package
- Automatic legends

Why not use ggplot2?

- Syntax differs from base R
- Colors, size, shape can also be modified in base R
- For publication quality graphics both ggplot2 and base graphics will often require significant coding
- Default theme sucks

Different plots for different thoughts

Keep in mind

some plot characteristics will require categorical variables (color, faceting)

some plot charateristics will require **continuous** variables (y-axis)

some plot characteristics can be **either** continuous or categorical (point/line size, x-axis)

How you choose to display your information affects the types of conclusions that a reader will draw from the data.

The car mpg dataset

Data were collecated by the EPA on 38 models of car. The variables are

- displ, the car's engine size in liters and
- **hwy**, a cars fuel efficiency
- **class**, the type of car
- **year**, the model year

```
str(mpg)
## Classes 'tbl_df', 'tbl' and 'data.frame': 234 obs. of 11 variables:
   $ manufacturer: chr "audi" "audi" "audi" "audi" ...
##
   $ model : chr "a4" "a4" "a4" "a4" ...
###
   $ displ : num 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
###
   $ year : int 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
###
   $ cyl : int 4 4 4 4 6 6 6 4 4 4 ...
###
   $ trans : chr "auto(l5)" "manual(m5)" "manual(m6)" "auto(av)" ...
###
                      "f" "f" "f" "f" ...
   $ drv : chr
###
   $ cty : int
###
                     18 21 20 21 16 18 18 18 16 20 ...
   $ hwy : int
                      29 29 31 30 26 26 27 26 25 28 ...
###
                      "p" "p" "p" ...
  $ fl : chr
###
   $ class : chr
                      "compact" "compact" "compact" ...
###
```

Plotting miles per gallon

```
library(ggplot2) #loads the ggplot library.
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy))
```


Excercise 2A

Build a scatterplot

Theming your plot

```
library(ggthemes) #an R library with more ggplot themes
theme_set(theme_tufte()) # a simple theme I like.
```

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x=displ, y=hwy))
```


Adding color

```
ggplot(data=mpg) +
  geom_point(mapping=aes(x=displ, y=hwy, color=class))
```


Adding size

```
ggplot(data=mpg) +
  geom_point(mapping=aes(x=displ, y=hwy, size=class))
```


Adding shape

```
ggplot(data=mpg) +
  geom_point(mapping=aes(x=displ, y=hwy, shape=class))
```

Warning: The shape palette can deal with a maximum of 6 discrete values because
more than 6 becomes difficult to discriminate; you have 7. Consider
specifying shapes manually if you must have them.

Warning: Removed 62 rows containing missing values (geom_point).

Adding transparency

alpha controls transparency

Editing arguments outside of aes will modify the all observations

```
ggplot(data=mpg) +
  geom_point(mapping=aes(x=displ, y=hwy, color=class, size=year), alpha=0.5)
```


Aspect & axis labels

```
ggplot(data=mpg) +
  geom_point(mapping=aes(x=displ, y=hwy, color=class, size=year)) +
  theme(aspect.ratio = 0.5) +
  xlab("Engine size") + ylab("Miles per gallon")
```

Excercise 2B

Polish your scatterplots

Faceting (multipanel figures)

Use facet_wrap to split your plot into facets that each display a subset of the data.

```
ggplot(data=mpg) +
  geom_point(mapping=aes(x=displ, y=hwy, color=year)) +
  facet_wrap(~class, nrow=2)
```


Other geometries

Fisher's iris data

```
head(iris)
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
###
## 1
              5.1
                          3.5
                                        1.4
                                                    0.2 setosa
              4.9
                          3.0
                                        1.4
                                                    0.2
                                                         setosa
              4.7
                          3.2
                                        1.3
## 3
                                                    0.2 setosa
              4.6
                          3.1
                                        1.5
## 4
                                                    0.2 setosa
              5.0
                          3.6
                                        1.4
## 5
                                                    0.2 setosa
              5.4
                          3.9
                                        1.7
                                                    0.4 setosa
## 6
```

Look at your base-layer first

```
ggplot(data=iris) +
  geom_point(mapping=aes(x=Petal.Length, y=Petal.Width, color = Species, shape = Speci
  xlab("Petal length") + ylab("Petal width")
```


A smoother

The smooth geometry: geom_smooth

Combining geometries

```
ggplot(data=iris) +
  geom_smooth(color = "black", mapping=aes(x=Petal.Length, y=Petal.Width)) +
  geom_point(mapping=aes(x=Petal.Length, y=Petal.Width, color = Species, shape = Species)
  xlab("Petal length") + ylab("Petal width")
```


Note that the order you give the geometries affects the order they are plotted.

Smooth by group

```
ggplot(data=iris) +
  geom_smooth(mapping=aes(x=Petal.Length, y=Petal.Width, group = Species), color = "bl
  geom_point(mapping=aes(x=Petal.Length, y=Petal.Width, color = Species, shape = Species)
```


Use a linear model instead

```
ggplot(data=iris) +
  geom_point(mapping=aes(x=Petal.Length, y=Petal.Width, shape = Species, color=Specient geom_smooth(mapping=aes(x=Petal.Length, y=Petal.Width, group = Species), color="black")
```


An important application

Simpson's Paradox

Source: https://goo.gl/GycYod

Excercise 2C

Combining geometries

The boxplot

Numerical response, categorical covariate

The box - first, second (median), and third quartiles

The whiskers - "The upper whisker extends from the hinge to the largest value no further than 1.5 *IQR from the hinge* (where *IQR* is the inter-quartile range, or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 IQR of the hinge. Data beyond the end of the whiskers are called "outlying" points and are plotted individually."

Source: https://tgwardsdatascience.com/understanding-boxplots-5e2df7bcbd51

The geom_boxplot geometry

```
ggplot(data=iris) +
  geom_boxplot(mapping=aes(x=Species, y=Petal.Width, fill=Species))
```


Excercise 2D

Build a boxplot

A single continuous variable

histogram: geom_histogram

Histograms pile observations into predetermined bins

```
ggplot(data=iris) +
  geom_histogram(mapping=aes(x=Sepal.Length), bins=15, color="white")
```


A single categorical variable

bar charts: geom_bar()

```
ggplot(data=mpg) +
  geom_bar(mapping=aes(x=class)) +
  xlab("Vehicle class") + ylab("Number of vehicles tested")
```


Multiple categorical variables

```
ggplot(data=mpg) +
  geom_bar(mapping=aes(x=class, fill=manufacturer)) +
  xlab("Vehicle class") + ylab("Number of vehicles tested") +
  theme(axis.text.x = element_text(size = 8))
```


Proportions

Use position="fill" to turn counts into proportions

```
ggplot(data=mpg) +
  geom_bar(mapping=aes(x=manufacturer, fill=class), position="fill") +
  xlab("Manufacturer") + ylab("Number of vehicles tested") +
  theme(axis.text.x = element_text(size = 8), aspect.ratio=0.5)
```

Excercise 2E

Univariate plots

Interactive plots

1. Build your ggplot

```
p ← ggplot(data=iris) + geom_point(mapping=aes(x=Petal.Length, y=Petal.Width, color=$
```

2. convert your ggplot to plotly

```
library(plotly, quietly=F)
ggplotly(width = 700, height = 300)
```


Resources

- Cheatsheet
- Spatial Visualization
- Heatmaps
- Cookbook for R Graphs
- Top 50 ggplot2 Visualizations
- Using color brewer palettes
- Publication Ready Plots