

Japanese Vowels

This dataset records 640 time series of 12 LPC cepstrum coefficients taken from nine male speakers.

Dataset Characteristics

Multivariate, Time-Series

Associated Tasks

Classification

Instances

640

Subject Area

Other

Feature Type

Real

Features

-

Dataset Information

Additional Information

The data was collected for examining our newly developed classifier for multidimensional curves (multidimensional time series). Nine male speakers uttered two Japanese vowels /ae/ successively. For each utterance, with the analysis parameters described below, we applied 12-degree linear prediction analysis to it to obtain a discrete-time series with 12 LPC cepstrum coefficients. This means that one utterance by a speaker forms a time series whose length is in the range 7-29 and each point of a time series is of 12 features (12 coefficients).

The number of the time series is 640 in total. We used one set of 270 time series for training and the other set of 370 time series for testing.

Number of Instances (Utterances):

<u>(i)</u>

By using the UCI Machine Learning Repository, you acknowledge and accept the cookies and privacy practices used by the UCI Machine Learning Repository.

ACCEPT

Length of Time Series:

* 7 - 29 depending on utterances

Analysis parameters:

* Sampling rate : 10kHz * Frame length : 25.6 ms * Shift length : 6.4ms

* Degree of LPC coefficients: 12

Files:

* Training file: ae.train* Testing file: ae.test

Format:

Each line in ae.train or ae.test represents 12 LPC coefficients in the increasing order separated by spaces. This corresponds to one analysis frame.

Lines are organized into blocks, which are a set of 7-29 lines separated by blank lines and corresponds to a single speech utterance of /ae/ with 7-29 frames.

Each speaker is a set of consecutive blocks. In ae.train there are 30 blocks for each speaker. Blocks 1-30 represent speaker 1, blocks 31-60 represent speaker 2, and so on up to speaker 9. In ae.test, speakers 1 to 9 have the corresponding number of blocks: 31 35 88 44 29 24 40 50 29. Thus, blocks 1-31 represent speaker 1 (31 utterances of /ae/), blocks 32-66 represent speaker 2 (35 utterances of /ae/), and so on.

SHOW LESS ^

Has Missing Values?

No

Variables Table

^

By using the UCI Machine Learning Repository, you acknowledge and accept the cookies and privacy practices used by the UCI Machine Learning Repository.

	Role	Туре	Description	Units	Missing Values
					no
		Rows	per page 10	0 to 10	of 12
Additional Var	riable Inform				^
					^
2 Real Attributes					
Additional Var 2 Real Attributes Reviews There are no rev		nation			O WRITE A REVIEW

- **99** 0 citations
- **o** 7817 views

Creators

- Mineichi Kudo
- Jun Toyama
- Masaru Shimbo

DOI

10.24432/C5NS47

License

This dataset is licensed under a **Creative Commons Attribution 4.0 International** (CC BY 4.0) license.

This allows for the sharing and adaptation of the datasets for any purpose, provided that the appropriate credit is given.

THE PROJECT

About Us

CML

National Science Foundation

NAVIGATION

Home

By using the UCI Machine Learning Repository, you acknowledge and accept the cookies and privacy practices used by the UCI Machine Learning Repository.

LOGISTICS

Contact

(i)

Privacy Notice

Feature Request or Bug Report

By using the UCI Machine Learning Repository, you acknowledge and accept the cookies and privacy practices used by the UCI Machine Learning Repository.