1 Rules design explanation

1.1 remark 1

Question:

Why not generalising \vdash^- by introducing \vdash^{-k} for k > 1 with the following meaning: $\Gamma \vdash^{-k} M : A$ when variable in Γ have orders at least $\operatorname{ord}(\mathsf{M}) - \mathsf{k}$?

Answer: The only rule that really exploit the judgment \vdash^- is the weakening rule. We can see that this rule is only necessary for k=1 and therefore there is no need for generalization.

Consider $M : \overline{A}|B$. Because of homogeneity of the partitioned type $\overline{A}|B$ we have ord(M) = 1 + ord(A).

Note that there are only two cases where we need to weaken a judgment $\Gamma \vdash M : \overline{A}|B$ to $\Gamma, x : C \vdash^{-} M : \overline{A}|B$ while forming an unsafe term. In both cases, the hope is that eventually we will form a safe term. The two cases are:

- we want to form a safe term by abstracting a variable. The requirement here is to respect type homogeneity therefore we need to have $ord(x) \ge ord(A)$. Hence the weakening should allow the case when ord(x) = ord(A) = ord(M) 1.
- we want to form a safe term by apply another term N to M such that N has a free variable that do not appear M. This weakening can always be postpone until we really need it: just before instancing the (App) rule with M and N as the premises.

The only way to recover the unsafety of $\Gamma, x : C \vdash^- M : \overline{A}|B$ is to applied the safe term N to it (in that way the unsafe term M does not appear at an operand position).

But since x occurs freely in the safe term $\Gamma, x : C \vdash N$ we should have $\operatorname{ord}(\mathsf{x}) \geq \operatorname{ord}(\mathsf{N}) = \operatorname{ord}(\mathsf{A}) = \operatorname{ord}(\mathsf{M}) - 1$

Hence the only weakening rule that we need is $\vdash^- 1$.