Homework 1

- 1. (10 pts). Assuming an n-type transistor with V_{ds} of 1.8V and V_t of 0.7V, find the ranges of Vgs to put the transistor in cutoff, linear, and saturation regions.
- 2. (10 pt). Assume a NMOS has $V_t = 0.6V$ and W/L = 5/2, $k_t = 73uA/V^2$. Calculate the drain current I_{ds} for the given V_{ds} and V_{gs} . Assume $\lambda = 0$

a.
$$V_{ds} = 1.5V$$
, $V_{gs} = 1V$

$$b. \quad V_{ds} = 1V, \, V_{gs} = 0.5V \\ c. \quad V_{ds} = 0.2V, \, V_{gs} = 1V$$

c.
$$V_{ds} = 0.2V, V_{gs} = 1V$$

3. (15 pts). Compute the parasitic resistance of the following metal wire, where the sheet resistance (R_{\square}) of metal1 is $0.08\Omega/\square$.

4. (20 pts). Predict how interconnect resistance, interconnect capacitance and RC delay would change for a 90nm processing from the 180nm process: (a) Ideal scaling and (b) Constant dimension scaling. (tip: the scaling factor S=0.5).

Table: Interconnect scaling trends (S: scaling factor)

	ideal scaling	constant dimension scaling
line width and spacing	S	1
wire thickness	S	1
interlevel dielectric thickness	S	1
wire length	$1/\sqrt{S}$	$1/\sqrt{S}$
resistance per unit length	$1/S^{2}$	1
capacitance per unit length	1	1
RC delay	$1/S^{3}$	1/ <i>S</i>
current density	1/ <i>S</i>	S

5. (20 pts). Consider the following stick diagram. Draw the electrically equivalent transistor-level schematic.

- 6.. (15pt). Draw layouts for:
 - a) A metal-1 wire to n-diffusion wire through a via
 - b) A poly wire with width of 25 λ
 - c) A W/L = 4/3 n-type MOSFET transistor
 - d) A W/L = 6/2 p-type MOSFET transistor