算法设计与分析

Computer Algorithm Design & Analysis

赵峰 zhaof@hust.edu.cn

Chapter 16 Greedy Algorithms

贪心算法

什么是贪心算法?

贪心算法是这样一种方法,分步骤实施,它在每一步仅作

出当时看起来最佳的选择,即局部最优的选择,

希望这样的选择能导致全局最优解。

经典问题:最小生成树问题的Prim算法、Cruskal算法, 单源最

短路径Dijkstra算法等,以及一些近似算法。

16.1 活动选择问题

1)问题描述

假定有一个n个活动的集合 $S=\{a_1,a_2,...,a_n\}$,这些活动都要求使用同一资源(如演讲会场),而这个资源在某个时刻只能供一个活动使用。每个活动 a_i 都有一个开始时间 s_i 和一个结束时间 f_i ,且 $0 \le s_i < f_i < \infty$ 。若两个活动 a_i 和 a_j 满足 $[s_i,f_i)$ 与区间 $[s_j,f_j)$ 不重叠,则称它们是**兼容**的。

活动选择问题就是从活动集合中选出最大兼容活动的集合。

设活动已经按照结束时间单调递增排序:

$$f_1 \le f_2 \le f_3 \le \cdots \le f_{n-1} \le f_n.$$

例:设有以下待安排的11个活动的开始时间和结束时间,并按结束时间的 非减序排列如下:

 $\{a_3, a_9, a_{11}\}$ $\{a_1, a_4, a_8, a_{11}\}$, $\{a_2, a_4, a_9, a_{11}\}$ 都是兼容活动集合。

其中 $\{a_1, a_4, a_8, a_{11}\}$ 、 $\{a_2, a_4, a_9, a_{11}\}$ 是最大兼容活动集合。最大兼容活动集合不一定是唯一的。

(1)活动选择问题的最优子结构

活动选择问题具有最优子结构:

- 令S_{ij}表示在a_i结束之后开始且在a_j开始之前结束的那些活动的集合。 设A_{ij}是S_{ij}的一个最大兼容活动集,并设A_{ij}包含活动a_k,A_{ik}表示A_{ij}中 a_k之前的活动子集,A_{kj}表示A_{ij}中a_k之后的活动子集。同时得到两个 子问题:寻找S_{ik}的最大兼容活动集合和寻找S_{kj}的最大兼容活动集合
 。
- 则必有A_{ik}是S_{ik}一个最大兼容活动子集,A_{kj}是S_{kj}一个最大兼容活动子 集。而A_{ii}= A_{ik}∪{a_k}∪A_{kj}。

• 贪心算法

在贪心算法的每一步所做的局部最优选择就叫做贪心选择。

活动选择问题的贪心选择:每次选择最早结束时间的活动加入 集合A。

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

结束时间递增

首次选择的活动是**a**₁,其后选择的是结束时间最早且开始 时间不早于前面已选择的最后一个活动的结束时间的活动 。

当输入的活动已按结束时间的递增顺序排列,贪心算法只需0(n)的时间即可选择出来n个活动的最大兼容活动集合。

- 在首次选择a₁后,下面寻找a₁结束后开始的活动。
 - ■令 $S_k = \{a_i \in S: s_i \geq f_k\}$,即在 a_k 结束之后开始的任务集合。则在首次选择 a_1 后, S_1 是接下来要求解的(唯一)子问题

■最优子结构性:如果 a_1 在最优解中,那么原问题的最优解由活动 a_1 及子问题 S_1 的最优子解构成。

0

定理16.1 考虑任意非空子问题 S_k ,令 a_m 是 S_k 中结束时间最早的活动,则 a_m 必在 S_k 的某个最大兼容活动子集中。

证明:

令 A_k 是 S_k 的一个最大兼容活动子集,且 a_j 是 A_k 中结束最早的活动。若 $a_j = a_m$,则得证。否则 , A_k ' $= A_k - \{a_j\} \cup \{a_m\}$,且 A_k ' 中的活动不相交。

所以A_k'也是S_k的一个最大兼容活动子集,且包含a_m。定理得证。

从**S**₀开始,反复选择结束时间最早的活动,重复这一过程,直至不再有剩余的兼容活动。所得的子集就是最大兼容活动集合。

■ 活动选择问题的贪心算法

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

1 m = k + 1

2 while m \le n and s[m] < f[k] // find the first activity in S_k to finish

3 m = m + 1

4 if m \le n

5 return \{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)

6 else return \emptyset
```

注:为处理方便,引入一个虚拟活动 a_0 ,其结束时间 $f_0=0$ 。

求解原问题,初次调用:RECURSIVE-ACTIVITY-SELECTOR(s,f,0,n)。

2018/1/9

例:

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

执行过程如图所示:

■ 迭代算法

GREEDY-ACTIVITY-SELECTOR (s, f)

```
1  n = s.length

2  A = \{a_1\}

3  k = 1

4  for m = 2 to n

5  if s[m] \ge f[k]

6  A = A \cup \{a_m\}

7  k = m

8 return A
```

- 假定活动已经按照结束时间单调递增的顺序排列好
- 集合A用于收集选出的活动。
- k对应最后一个加入A的活动, f_k是A中活动的最大结束时间, 若m的开始时间大于f_k,则m就是下一个被选中的活动。
- 算法的运行时间是O(n)。

16.2 贪心算法原理

- ■贪心算法通过做出一系列选择来求问题的最优解 —— 即贪心选择
- : 在每个决策点, 它做出在当时看来是最佳的选择。
- ●贪心算法通常采用自顶向下的设计,做出一个选择,然后求解剩下的子问题。

贪心求解的一般步骤:

- 1)确定问题的最优子结构;
- 2)每次对其作出一次选择;
- 3)证明作出贪心选择后,原问题总是存在最优解,即安全;
- 4)证明作出贪心选择后,剩余的子问题满足:其最优解与贪心选择组合即可得到原问题的最优解。

14

贪心算法中贪心选择性质和最优子结构性是两个关键要素。

1) 贪心选择性质

贪心选择性质:可以通过做出局部最优(贪心)选择来构造全局最优解。

如何证明每个步骤贪心选择能生成全局最优解?

通常先考查某个子问题的最优解,然后用贪心选择替换某个其它选择来修改此解,从而得到一个相似但更小的子问题。

参考定理16.1的证明。

2018/1/9

|2)最优子结构性

- 最优子结构性质是能否应用动态规划和贪心方法的关键要素。
- •对比动态规划算法:
 - > 0-1背包问题和分数背包问题:都具有最优子结构性质。
 - □ 0-1背包问题:动态规划算法
 - □ 分数背包问题:贪心算法,按p_i/w_i的降序考虑问题

2018/1/9

Figure 16.2 An example showing that the greedy strategy does not work for the 0-1 knapsack problem. (a) The thief must select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking the items in order of greatest value per pound yields an optimal solution.

■ 详细讨论见P244

16.3 Huffman编码

Huffman编码问题是一个典型的贪心算法问题。

Huffman编码:最佳编码方案

实例说明:

设一个有10万个字符的数据文件:

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

2018/1/9

分析:

采用二进制字符编码,每个字符用唯一的二进制串表示, 称为码字。

- 1)定长编码:如3位码字
- 2) 变长编码:每个字符赋予不同长度的码字。

如表中的变长编码方案,10万个字符仅需22.4万个二进制位,节约了25%的空间。

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

最优编码方案

前缀码(Prefix code):没有任何码字是其它码字的前缀。 前缀码的作用是简化解码过程。

由于没有码字是其它码字的前缀,编码文件的开始部分可以唯一地转换回原字符,然后对编码文件剩余部分重复解码过程。

0101100

对每一个二进制子位串,在码字表 里都只有一个字符唯一地与之对应

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

编码树:用于表示字符二进制编码的二叉树。

叶子结点:对应给定的字符。

编码构造:由从根到字符叶子结点的简单路径:0代表"转向左孩子"

,1代表"转向右孩子"。

图 16-3 中编码方案的二叉树表示。每个叶结点标记了一个字符及其出现频率。每个内部结点标记了其子树中叶结点的频率之和。(a)对应定长编码 a=000,…,f=101 的二叉树。(b)对应最优前缀码 a=0,b=101,…,f=1100 的二叉树

一个文件的最优字符编码方案总对应一棵满(full)二叉树。

如图(b):

图(a)的定长编码二叉树不是满二叉树,包含以10开头的码字,但不包含以11开头的码字。

最优编码方案

■设C为字母表

- > 任意字符c∈C, 令属性c.freq表示字符c在文件中出现的频率。
- » 最优前缀码树中恰好有|C|个叶子结点,每个叶子结点对应一个字符
- > 有|C|-1个内部结点。
- ■T表示一棵前缀编码树;
- ■d_T(c)表示c的叶子结点在树中的深度。
- •B(T)表示采用编码方案T文件的编码长度:

$$B(T) = \sum_{c \in C} c.freq \cdot d_T(c)$$
, 称**B(T)**为T的代价。

■最优编码:使得B(T)最小的编码称为最优编码。

Huffman编码的贪心算法

算法每次选择<mark>频率最低</mark>的两个结点<mark>合并</mark>,执行|C|-1次",构造出一棵编码树。

```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 allocate a new node z

5 z.left = x = \text{EXTRACT-MIN}(Q)

6 z.right = y = \text{EXTRACT-MIN}(Q)

7 z.freq = x.freq + y.freq

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q) // return the root of the tree
```

例:构造前面实例的Huffman编码

(e) a:45

- 每一步选择频率最低的两棵树进行合并。
- 编码: 左孩子的边标记为0, 右孩子的边标记为1。

时间分析

- Q使用最小二叉堆实现
 - > Q的初始化: O(n)。
 - ▶ 循环的总代价: O(nlgn)。

HUFFMAN的总运行时间O(nlgn)。

■最小二叉堆换为van Emde Boas树,可以将运行时间减少到O(nlglgn)

HUFFMAN算法的正确性

引理 16.2 令C为一个字母表,其中每个字符c∈C都有一个频率c.freq。令x和y是C中频率最低的两个字符。那么存在C的一个最优前缀码,x和y的码字长度相同,且只有最后一个二进制位不同。

证明:

令T是最优前缀码编码树,a和b是T中深度最大的兄弟叶结点。

- >x.freq≤a.freq且y.freq≤b.freq.
- ■若x.freq=b.freq,引理成立。

若x.freq≠b.freq,在T中交换x和a,生成一棵新树T';在T'中交换b和y,生成T",如图所示:

在最优树T中,叶子结点x和y为算法首先合并的两个叶子结点。

有:

$$B(T) - B(T')$$

$$= \sum_{c \in C} c.freq \cdot d_T(c) - \sum_{c \in C} c.freq \cdot d_{T'}(c)$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_{T'}(x) - a.freq \cdot d_{T'}(a)$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_T(a) - a.freq \cdot d_T(x)$$

$$= (a.freq - x.freq)(d_T(a) - d_T(x))$$

$$\geq 0,$$

- 类似地 , B(T')-B(T'')≥0。

因此, B(T")≤ B(T)。

根据假设,T是最优的,T"也是最优解。

- 一般性,通过合并来构造最优树。
 - ■贪心选择:每次选择出现频率最低的两个字符。
 - > 将一次合并操作的代价视为被合并的两项的频率之和。
 - > 编码树总代价等于所有合并操作的代价之和。
 - > HUFFMAN选择是一个代价最小的方案:

引理 16.3

令C为一个给定的字母表,其中每个字符c∈C都有一个频率 c.freq。令x和y是C中频率最低的两个字符。

- > C' = C $\{x, y\} \cup \{z\}_{\circ}$
 - z.freq = x.freq + y.freq.
- > 令T'为字母表C'的最优前缀码的编码树。

则有:将T'中叶子结点z替换为以x和y为孩子的内部结点,则T 表示字母表C的一个最优前缀码。

证明:

对c
$$\in$$
C-{x,y}: $d_T(c)=d_{T'}(c)$,

对x、y有:
$$d_T(x)=d_T(y)=d_{T'}(z)+1$$

故有:

$$x.freq \cdot d_T(x) + y.freq \cdot d_T(y)$$

$$= (x.freq + y.freq)(d_{T'}(z) + 1)$$
从而可得。 $z.freq \cdot d_{T'}(z) + (x.freq + y.freq)$

$$B(T) = B(T') + x.freq + y.freq$$

$$B(T') = B(T) - x.freq - y.freq$$

假定T不是C的最优前缀码。令最优前缀码树T"。

▶ 不失一般性,T"包含兄弟结点x和y。

令T""为将T"中x、y及它们的父结点替换为叶结点z得到的树,其中z.freq=x.freq+y.freq。于是

$$B(T''') = B(T'') - x.freq - y.freq$$

 $< B(T) - x.freq - y.freq$
 $= B(T')$,

这与T'代表一个最优前缀码相矛盾。

因此,T表示C的一个最优前缀码。

定理 16.4 过程HUFFMAN会生成一个最优前缀码。

证明:由引理16.2和引理16.3即可得。

- 6.1-4
- 6.2-6
- 6.2-7
- 6-3.3
- **16-1**