Fyzikální olympiáda – mladší

Úlohy řešte nejprve obecně, po té případně pro konkrétní hodnoty (jsou-li zadány).

- 1. Střelec Pepa střílí na cyklistu Toníka, který jede po silnici. Pepa stojí 30 m kolmo od silnice a vypálí v okamžiku, kdy je od něj Toník vzdálený 100 m. Úsťová rychlost střely je 200 m s⁻¹, Toníkova rychlost je 20 m s⁻¹ a pohybuje se po přímé silnici směrem k Pepovi. Jaký úhel musí svírat směr, ve kterém Pepa vidí Toníka a směr, ve kterém střílí, aby Toníka zasáhnul? (v úloze neuvažujte tíhové zrychlení) (10 bodů)
- 2. Certifikovaný hrobník kope hrob cyklisty Toníka. Nepaží, takže hrob má tvar lichoběžníka se sklonem stěn α . Aby si ušetřil práci, recykluje hrob a zároveň s tím, jak do něj spouští Toníkovu rakev o hmotnosti m_1 , z něj starou rakev o hmotnosti $m_2 > m_1$ vytahává. Obě rakve mají koeficient smykového tření f. Napište časovou závislost souřadnic obou těles. (m_1 = 80 kg, m_2 = 90 kg, f = 0,5, α = 45°)
- **3.** Parašutista o hmotnosti m=80 kg vyskočil z letadla ve výšce h=1000 m v homogenním tíhovém poli o velikosti 10 m s⁻² směřujícím dolů. Na parašutistu působí odporová síla o velikosti $F=Cv^2$ směřující proti vektoru okamžité rychlosti. Určete závislost rychlosti a výšky parašutisty na čase (pro C=10 kg m⁻¹). (14 bodů)
- **4.** Na pružině o tuhosti k je zavěšena kulička hmotnosti m_1 , která kmitá s amplitudou y_m . Hmotnost pružiny zanedbáváme. Určete
 - a) Výchylku, při které je kinetická energie rovna potenciální energii kmitání.
 - b) Poměr kinetické a potenciální energie kmitání, je-li okamžitá výchylka rovna polovině amplitudy

Kuličku zaměníme za jinou o hmotnosti $m_2=4m_1$, která kmitá se stejnou amplitudou. Určete:

- c) Poměr period obou kuliček $T_1: T_2$
- d) Poměr celkových energií kmitavých pohybů E_1 : E_2

Řešte obecně, potom pro hodnoty $k=10~\mathrm{N/m}, m_1=10~\mathrm{g}, y_m=6.0~\mathrm{cm}$ (12 bodů)

- **5.** Točme bolaso o délce 1 m s frekvencí 1 Hz. Hmotnost závaží na konci je 1 kg. Určete sílu, kterou bolaso působí na ruku vrhače. (8 bodů)
- **6.** Pod jakým úhlem α musíme vystřelit z děla střelu o úsťové rychlosti 300 m s⁻¹, abychom zasáhli letadlo ve výšce 4000 m a rychlosti 100 m s⁻¹, které se nachází přímo nad námi. (10 bodů)
- **7.** Po kouli o poloměru *R* klouže bez tření hmotný bod. V jaké výšce se hmotný bod od koule odtrhne? (12 bodů)
- 8. Parametrizujte (tj. $\vec{r}(t)$ =?) nerovnoměrný pohyb po elipse, pokud víte, že pro velikost rychlosti platí $v^2 \frac{k}{R} = E$ a excentricita je ε = 0,2. (13 bodů)
- **9.** Napište závislost $\vec{r}(t)$, $\vec{v}(t)$ a $\vec{a}(t)$ při

a) Kmitavém pohybu

(3 body)

b) Pohybu po kružnici

(3 body)

10. Loďka pluje po řece rychlostí v_L kolmo na proud o rychlosti u. Námořník hází kámen kolmo vzhůru rychlostí v_K . Parametrizujte pohyb kamene (tj. $\vec{r}(t) = ?$) v soustavě spojené se břehem.

(5 bodů)