Last Time

- Charge Density
- Electric Field of a Charge Distribution
- Electric Field of a Charged Rod

For an infinite rod,
$$E \propto rac{1}{r}$$
 everywhere

Today

• Find the fields of:

Points, Lines, and Planes

$$E \propto \frac{1}{r^2}$$

$$E \propto \frac{1}{r}$$

??

Points, Lines, and Planes

Point Charge

$$E \propto \frac{1}{r^2}$$

∞ Line Charge

$$E \propto \frac{1}{r}$$

$$E \propto {\rm constant!}$$

We will show this

• Point Charge $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{|r|^2} \hat{r}$ \vec{E} at \vec{r} due to q at $\langle 0, 0, 0 \rangle$

Place the charge at $\langle -a, 0, 0 \rangle$

First find
$$|r|$$
, \hat{r} for $\vec{r}=\langle a,0,z\rangle$
$$|r|=(a^2+z^2)^{1/2} \qquad \hat{r}=\frac{\vec{r}}{|r|}=\frac{\langle a,0,z\rangle}{(a^2+z^2)^{1/2}}$$

• Point Charge
$$\vec{E} = \frac{1}{4\pi\epsilon_o} \frac{q}{|r|^2} \hat{r}$$
 $\begin{cases} \vec{E} \text{ at } \vec{r} \\ \text{due to } q \text{ at } \langle 0, 0, 0 \rangle \end{cases}$

Place the charge at $\langle -a, 0, 0 \rangle$

First find |r|, \hat{r} for $\vec{r} = \langle a, 0, z \rangle$

$$|r| = (a^2 + z^2)^{1/2}$$
 $\hat{r} = \frac{\vec{r}}{|r|} = \frac{\langle a, 0, z \rangle}{(a^2 + z^2)^{1/2}}$

$$\vec{E} = \frac{1}{4\pi\epsilon_o} \frac{q}{(a^2 + z^2)^{3/2}} \langle a, 0, z \rangle$$

We have point charges all around the ring

Symmetry: only the z component survives!

$$\Delta E_z = \frac{1}{4\pi\epsilon_o} \frac{z\Delta Q}{(a^2 + z^2)^{3/2}}$$

How do we set up the integral?

$$\sum \Delta Q \rightarrow \int d\theta$$

How do we set up the integral?

We need
$$\sum \Delta Q \rightarrow \int d\theta$$

Calculus We Will Need

Recall how to convert a sum to an integral:

UNITS = [Length]
$$\longrightarrow \sum \Delta x \rightarrow \int dx$$
 UNITS = [Length]

We will need to sum over all charges:

$$\sum \Delta q = \frac{Q}{L} \sum \Delta x \rightarrow \frac{Q}{L} \int dx$$

UNITS = [Charge]

UNITS = [Charge]

How do we set up the integral?

We need
$$\sum \Delta Q \rightarrow \int d\theta$$

Ring of radius $\,a\,$ has total "length" $\,L=2\pi a\,$

Charge q uniformly distributed as $\Delta Q = \frac{q}{L} \Delta L = \frac{q}{2\pi a} \Delta L$

We need this in terms of θ

$$L = a2\pi$$

Circumference: $L=a2\pi$ All the way around

$$\Delta L = a\Delta\theta$$

Arclength: $\Delta L = a\Delta \theta$ Partway around the circle

Doublecheck:
$$\Sigma \Delta L \rightarrow a \int_{0}^{2\pi} \theta d\theta = 2\pi a = L$$

$$\Rightarrow \Delta Q = \frac{q}{2\pi a} a \Delta \theta = \frac{q}{2\pi} \Delta \theta$$

$$\Sigma\Delta Q \rightarrow \frac{q}{2\pi} \int_0^{2\pi} d\theta$$

$$\vec{E} = \frac{1}{4\pi\epsilon_o} \frac{q}{(a^2 + z^2)^{3/2}} \langle a, 0, z \rangle \qquad \qquad \Sigma \Delta Q \rightarrow \frac{q}{2\pi} \int_0^{2\pi} d\theta$$

$$\Sigma \Delta Q \rightarrow \frac{q}{2\pi} \int_0^{2\pi} d\theta$$

We have point charges all around the ring

Symmetry: only the z component survives!

$$\Delta E_z = \frac{1}{4\pi\epsilon_o} \frac{z\Delta Q}{(a^2 + z^2)^{3/2}}$$

$$F_z^{\rm tot} = \frac{1}{4\pi\epsilon_o}\sum\frac{\Delta Qz}{(a^2+z^2)^{3/2}} \rightarrow \frac{1}{4\pi\epsilon_o}\frac{q}{2\pi}\int_0^{2\pi}\frac{zd\theta}{(a^2+z^2)^{3/2}}$$

$$\vec{E} = \frac{1}{4\pi\epsilon_o} \frac{q}{(a^2 + z^2)^{3/2}} \langle a, 0, z \rangle \qquad \qquad \Sigma \Delta Q \rightarrow \frac{q}{2\pi} \int_0^{2\pi} d\theta$$

$$\Sigma \Delta Q \rightarrow \frac{q}{2\pi} \int_0^{2\pi} d\theta$$

We have point charges all around the ring

Symmetry: only the z component survives!

$$\Delta E_z = \frac{1}{4\pi\epsilon_o} \frac{z\Delta Q}{(a^2 + z^2)^{3/2}}$$

$$E_z^{\rm tot} = \frac{1}{4\pi\epsilon_o} \sum \frac{\Delta Qz}{(a^2 + z^2)^{3/2}} \to \frac{1}{4\pi\epsilon_o} \frac{q}{2\pi} \int_0^{2\pi} \frac{zd\theta}{(a^2 + z^2)^{3/2}}$$

$$= \frac{1}{4\pi\epsilon_o} \frac{q}{2\pi} \frac{z}{(a^2 + z^2)^{3/2}} \int_0^{2\pi} d\theta$$

$$E_z^{\text{tot}} = \frac{1}{4\pi\epsilon_o} \frac{qz}{(a^2 + z^2)^{3/2}}$$

Field along axis of a ring

iClicker question

Going from a ring to a disk

 How can we use the field of a ring to find the field of a disk?

- We could build up the disk by adding the field a series of concentric rings. How do we do this addition?
- Integration!

Field from a disk

- We can carry out the integration of the field from a ring for the radius of the ring going from 0 to R
- The (uniform) charge density of the disk is Q/A
- Therefore, the charge on each ring is $2\pi r^* Q/A$

•
$$\vec{E}_{disk} = \int_0^R \frac{2Qrz}{4A\epsilon_0(r^2+z^2)^{3/2}} \hat{z} \, dr = \frac{Q}{2A\epsilon_0} \left[1 - \frac{z}{\sqrt{R^2+z^2}} \right] \hat{z}$$

- Use mathematica or something for the integral
- When R is big compared to z, $\sqrt{R^2 + z^2} \approx R$

•
$$\vec{E}_{disk} \approx \frac{Q}{2A\epsilon_0} \left[1 - \frac{z}{R} \right] \hat{y}$$

Infinite disk

Note what happens if we make the disk large

- Close up, it starts to look more and more like and infinite plane
- For an infinite plane, there is no center, motion along the x and y axes is meaningless
- It becomes a 1d problem (z axis), so as in lecture 1, E is constant

•
$$\lim_{r \to \infty} \frac{Q}{2A\epsilon_0} \left[1 - \frac{z}{\sqrt{R^2 + z^2}} \right] \hat{z} = \frac{Q}{2A\epsilon_0} \hat{z}$$

Field between two disks

- The hard part is done—we just have to add the field from two individual disks
- Between the disks the fields point the same way, if they have opposite charge (up)
- For a small separation, s, the field is very uniform (close to the field at center)
- Consider a point a distance z from the bottom plate. Distance from top = s-z

•
$$\vec{E} = \frac{Q/A}{2\epsilon_0} \left[1 - \frac{z}{R} \right] \hat{z} + \frac{Q/A}{2\epsilon_0} \left[1 - \frac{s-z}{R} \right] \hat{z}$$

• =
$$\frac{Q/A}{\epsilon_0} \left[1 - \frac{s}{2R} \right] \hat{z} \approx \frac{Q/A}{\epsilon_0} \hat{z}$$

iClicker question

Capacitor

- A capacitor is just two oppositely charged plates next to each other, like on previous slide
- $E \approx \frac{Q/A}{\epsilon_0}$ inside the capacitor, perpendicular to plates
- Fringe field at locations 1 and 3, due to the fact that the two plates are different distances away: fields don't quite cancel

Today

• Find the fields of:

