Vectors and Factors Lab

DSC 105, Introduction to data science, Lyon College, Fall 2024

Marcus Birkenkrahe (pledged)

October 11, 2024

Vectors and Factors

1. How can you append foo to bar if $c(1,2,3) \rightarrow foo, c(4,5,6) \rightarrow bar$?

```
c(1,2,3) -> foo
c(4,5,6) -> bar
foo; bar
c(bar,foo) # solution
```

- [1] 1 2 3
- [1] 4 5 6
- [1] 4 5 6 1 2 3

2. How can you turn c("a", "b") -> baz into a numeric vector?

```
c("a","b") -> baz
baz
as.numeric(baz) # solution - but characters cannot become numbers
```

- [1] "a" "b"
- [1] NA NA

Warning message:

NAs introduced by coercion

3. How can you turn $c(1,2,3) \rightarrow foo into a character vector?$

```
c(1,2,3) \rightarrow foo
  foo
  as.character(foo) # solution: numbers can become characters
  as.numeric(as.character(foo)) # number characters can become numbers
  [1] 1 2 3
  [1] "1" "2" "3"
  [1] 1 2 3
4. What will c(1,1,1.0), c(1,1,1.1), c(1,1,1e+6), c(1,1,0.000001e6)
  print?
  c(1,1,1.0) # coerced to double but displayed as integer
  c(1,1,1.1) # coerced to double
  c(1,1,1e+6) # coerced to scientific display
  c(1,1,0.000001e6) # coerced to regular display
  [1] 1 1 1
  [1] 1.0 1.0 1.1
  [1] 1e+00 1e+00 1e+06
  [1] 1 1 1
5. What R object class are: Inf, NA, NaN, NULL, and c(NA, NaN, Inf)?
  class(Inf)
  class(NA) # logical class
  class(NaN)
  class(NULL) # NULL class
  class(c(NA, NaN, Inf)) # numeric vector
  [1] "numeric"
  [1] "logical"
  [1] "numeric"
  [1] "NULL"
  [1] "numeric"
6. Convert the vector names with the elements "Joe", "Jeff", "Jim",
```

"Jane" to a factor and store it in names_f.

```
names <- c("Joe","Jeff","Jim")</pre>
  names
  factor(names) -> names_f
  names_f
  [1] "Joe" "Jeff" "Jim"
  [1] Joe Jeff Jim
  Levels: Jeff Jim Joe
7. Extract the levels vector of names_f and determine its object class
  using a pipe!
  levels(names_f) |> class()
  [1] "character"
8. Create a named vector grades with the elements A, C, B, B for the
  grades of Jeff, Jim, Jane and Joe, respectively.
  grades <- c('A','C','B','B') # just a character vector
  grades <- c(Jeff='A', Jim='C', Jane='B', Joe='B') # a named character vector
  grades
  [1] "A" "C" "B" "B"
  Jeff Jim Jane
                   Joe
   "A" "C" "B"
                   "B"
9. Convert grades to an ordered factor grades_f with the levels A, B,
  C so that A > B > C,
  factor(grades)
  factor(grades, ordered=TRUE)
  factor(grades,ordered=TRUE,levels=c('C','B','A')) -> grades_f # solution
  grades_f
```

10. Store grades and grades_f in a data.frame named df, and then apply first str and then summary to df.

11. Use grades_f to show that Jeff is a better student than Jim.

```
grades_f["Jeff"]
grades_f["Jim"]
grades_f["Jeff"] > grades_f["Jim"] # solution

Jeff
    A
Levels: C < B < A
Jim
    C
Levels: C < B < A
[1] TRUE</pre>
```

12. Add two levels, D and F, to grades_f, and then test with str if it worked.

```
c('F','D',levels(grades_f)) -> levels(grades_f)
levels(grades_f)
str(grades_f)

[1] "F" "D" "C" "B" "A"
Ord.factor w/ 5 levels "F"<"D"<"C"<"B"<..: 3 1 2 2
  - attr(*, "names")= chr [1:4] "Jeff" "Jim" "Jane" "Joe"</pre>
```