SYDE 556/750

Simulating Neurobiological Systems Lecture 5: Feed-Forward Transformation

Chris Eliasmith

September 29 & 30, 2022

- Slide design: Andreas Stöckel
- Content: Terry Stewart, Andreas Stöckel, Chris Eliasmith

Introduction

- We've only talked about representation til now
 What about computation?
- ► We start by focusing on the state of a network after learning and development
- ► A kind of hypothesis testing and generation

DALL-E AI Generated Art, 2022

NEF Principle 2: Transformation

NEF Principle 2 – Transformation

Connections between populations describe *transformations* of neural representations. Transformations are functions of the variables represented by neural populations.

A Tale of Two Populations (I)

Communication Channel Experiment: Same input signal

A Tale of Two Populations (II)

Communication Channel Experiment: Populations in series

Computing Synaptic Weights: Step 1 – Encoding Matrix

Computing Synaptic Weights: Step 2 – Scaled Encoding Matrix

Computing Synaptic Weights: Step 3 - W = ED

Computational Complexity

- ▶ Weights multiplying $\mathbf{a} \in \mathbb{R}^n$ with $\mathbf{W} \in \mathbb{R}^{m \times n}$ is $\mathcal{O}(nm)$ i.e., $\approx \mathcal{O}(n^2)$
- ▶ Decoding $\hat{\mathbf{x}} = \mathbf{Da}$ is $\mathcal{O}(dn)$
- ► Encoding $\mathbf{J} = \mathbf{E}\hat{\mathbf{x}} + \mathbf{J}_{\text{bias}}$ is $\mathcal{O}(dm)$
- lacktriangledown Encoding/Decoding $\mathcal{O}(d(n+m))$ or $pprox \mathcal{O}(dn)$ for n=m
- ▶ So if *d* is small we get a linear complexity $\mathcal{O}(n)$
- Therefore, sequential decoding and re-encoding saves a lot of time compared to using actual synaptic weights
- One reason why Nengo is so fast compared to other SNN simulators

Computing Functions

Function Decoder $\mathbf{D}^f = \left((\mathbf{A} \mathbf{A}^\mathsf{T} + \mathcal{N} \sigma^2 \mathbf{I})^{-1} \mathbf{A} \mathbf{Y}^\mathsf{T} \right)^\mathsf{T}$, where $\left(\mathbf{Y} \right)_{ik} = \left(f(\mathbf{x}_k) \right)_i$

Decoding Functions – Using a Few Neurons

Decoding Functions - Using More Neurons

Computing Functions – Weight Matrix

$$\mathbf{W}^f = \mathbf{E}\mathbf{D}^f$$

Computing Multivariate Functions

Homogenous population
 → Linear connection
 → Inh. connection
 → Exc. connection

Linear Superposition

$$W^{f_1}\mathbf{a}_1(\mathbf{x}) + W^{f_2}\mathbf{a}_2(\mathbf{y})$$

Nonlinear Functions

Multi-dimensional ${f z}$

(Dendritic Computation)

Exploit dendritic nonlinearity

Computing Multivariate Functions – Linear Superposition

Linear Superposition

Computing Multivariate Functions – Multiplication

Nonlinear Functions

Multi-dimensional z

Multiplication is useful...

- Gating of signals
- Attention effects
- Binding
- Statistical inference

Image sources

Title slide

"Yellow Butterfly"

Author: Albert Bierstadt, circa 1890.

From Wikimedia.