Blatt 6: Folgen & Vermischtes

27 Zum Infimum.

- (a) Formulieren Sie eine Definition des Infimums einer Teilmenge M von \mathbb{R} .
- (b) Geben Sie eine möglichst anschauliche Erklärung, was $\inf(M)$ ist.
- (c) Kommentieren Sie die folgende Aussage und belegen Sie sie mit Beispielen: "Supremum und Infimum beschränkter Mengen $M\subseteq\mathbb{R}$ sind der immer verfügbare Ersatz für das nur allzu häufig fehlende Maximum und Minumum."

28 Supremum, Maximum, Infimum, Minimum. Stellen Sie die Beispiele D.1.3.18 und D.1.3.20, graphisch dar, d.h. falls existent, stellen Sie Supremum, Maximum, Infimum bzw. Minimum von \mathbb{N} , (0,1], [0,1] und $(1/n)_{n\geq 1}$ graphisch dar. Erfinden Sie zwei weitere Aufgaben, eine leicht und eine schwierige.

29 Umformungen: Stil und Fallen. Kommentieren Sie die folgenden Beweise. Sind sie korrekt? Sind die behaupteten Aussagen korrekt? Stellen Sie gegebenenfalls die Aussage richtig und beweisen Sie diese *in gutem Stil*.

(a) Behauptung: Für alle $n \in \mathbb{N}$ gilt $n^2 - 3n - 4 > n^2 - 4n$. Beweis:

$$n^{2} - 3n - 4 > n^{2} - 4n$$

 $(n+1)(n-4) > n(n-4)$
 $n+1 > n$ w.A.

(b) Behauptung: Für $n \ge 1$ gilt $1 - n^2 \ge n(n - 1)$ Beweis:

$$\begin{array}{rclcrcl} 1-n^2 & \geq & n(n-1) & |^2 \\ 1 - 2n^2 + \cancel{n^4} & \geq & n^2(n^2-2n+1) & = & n^4-2n^3+n^2 \geq \cancel{n^4}-2n^3+1 & \text{weil } n^2 \geq 1 \\ -2n^2 & \geq & -2n^3 \\ & n^2 & \leq & n^3 \\ & 1 & \leq & n & \text{w.A.} \end{array}$$

30 Heron-Verfahren explizit. Berechnen Sie mittels des Heron-Verfahrens

 $(a) \sqrt{30} \text{ und} \qquad (b) \sqrt{17}$

auf 20 Nachkommastellen genau. Verwenden Sie dazu Technologie!

31 Heron reloaded. Implementieren Sie das Heron-Verfahren z.B. mit Geogebra (oder einem Werkzeug Ihrer Wahl) und berechenen Sie für

(a) $\sqrt{99}$ und (b) $\sqrt{313}$ (c) $\sqrt{4711}$

für $n \leq 15$ nicht nur die Näherung x_n sondern auch explizit den Rest r_n und den Fehler z_n . Wie wirkt sich der gewählte Startwert x_1 auf den Approximationsprozess aus?