Package 'TinderMIX'

July 20, 2020

```
Type Package
Title TinderMIX: An R package to cluster gene expression by contour plots
Version 0.1.0
Author Angela Serra
Maintainer Angela Serra <angela.serra@tuni.fi>
Description The TinderMIX package allows to analyse toxicogenomics data with multiple dose lev-
      els and time-points. It allows to identify the expression patterns with respect to both vari-
      ables and to cluster molecular features accordingly. It also identify enriched path-
      ways/go terms that are associated to each cluster.
Depends R (>= 3.4),
      stats,
      utils,
      AnnotationDbi,
      gProfileR,
      gtools,
      reshape,
      plotly,
      clv,
      gplots,
      org.Hs.eg.db,
      org.Mm.eg.db,
      org.Rn.eg.db,
      xlsx,
      pracma,
      raster,
      wordcloud,
      ggplot2,
      fmsb,
      biomaRt
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr,
      rmarkdown,
      testthat
VignetteBuilder knitr
```

2 build_items_list

R topics documented:

	build_items_list	2
	compute_anova_dose_time	3
	compute_BMD_IC50	3
	compute_fc	4
	create_contour	5
	create_gene_table	ϵ
	label2DMap	7
	plot3d	
	plot_cake_diagrams_time_dose_effect	8
	plot_dynamic_dose_responsive_map	9
	plot_kegg_radar_chart	g
	plot_number_genes_labels	
	read_excel_allsheets	10
	run_all_BMD_IC50	11
Index		12
buil	d_items_list This function computes the venn diagram of the genes associated to)

Description

This function computes the venn diagram of the genes associated to time, dose or their interaction

time, dose or their interaction

Usage

```
build_items_list(PvalMat, p.val.th = 0.01)
```

Arguments

PvalMat	matrix with pvalue associated to the dose, timepoint and the dose*timepoint effect that is the output of the compute_anova_dose_time function
p.val.th	is the threshold at which p.values are considered significant. Default = 0.01

Value

a list containing the genes in each position of the venn diagram

```
compute_anova_dose_time
```

This function computes a two way anova between dose and time for the expression value of every genes

Description

This function computes a two way anova between dose and time for the expression value of every genes

Usage

```
compute_anova_dose_time(exp_data, pheno_data, dose_index, time_point_index,
   adj.method = "none")
```

Arguments

exp_data	is the expression matrix with genes on the rows and samples on the columns					
pheno_data	is a dataframe with phenodata informations. Samples are on the rows. The columns should include the dose and time point information.					
dose_index numeric value specifing the column of the phenodata table containing the						
time_point_index						
	numeric value specifing the column of the phenodata table containing the time points					
adj.method	a string specifying the adjustement method for the pvalue					

Value

a matrix with pvalue associated to the dose, timepoint and the dose*timepoint effect

```
compute_BMD_IC50 This function identify the BMD area and the IC50 value in the time and dose maps
```

Usage

```
compute_BMD_IC50(immy, coord, geneName, activity_threshold = 0.1,
BMD_response_threshold = 0.95, nDoseInt = 3, nTimeInt = 3,
doseLabels = c("Late", "Middle", "Early"),
timeLabels = c("Sensitive", "Intermediate", "Resilient"),
toPlot = TRUE, addLegend = TRUE, tosave = FALSE, path = ".",
mode = "cumulative")
```

4 compute_fc

Arguments

immy z-maps of the fitted 3D model, with doses on the columns and time points on the

rows

coord matrix with x and y coordinate. The first column contain the doses, while the

second one the time points

geneName is a character string containing the gene name

activity_threshold

threshold defining the responsive gene area. Eg. if the immy maps contains genes logFC, then an activity_threhdold = 0.58 means that the active area will

be the one with an effect of 1.5 bigger or smaller than the controls

BMD_response_threshold

a threshold to define the portion of dose-response area to be identified as labels

for the gene.

nDoseInt number of dose related breaks in the gene label's table. default is 3 nTimeInt number of time related breaks in the gene label's table. default is 3

doseLabels vector of colnames (doses) for the gene label's table. default is c("Sensitive", "Intermediate", "Resilient

timeLabels vector of rownames (time points) for the gene label's table. default c("Late", "Middle", "Early")

toPlot it true the gene map is displayed

addLegend if true the legend will be added to the plot
tosave if true a png of the gene map is saved in path
path path of the folder where to save the gene map

mode is a character specifying when an area is called active. values can be "cumula-

tive" or "presence". If presence, an area is called active if at least one of its pixel is on the BMD curve. If cumulative, the number of region needed to reach the

th

an object of class TinderMIX containing the fitted BMD object, the IC50 value.

The function plot the map showing the responsive region.

This function identify the BMD area and the IC50 value in the time and dose

maps

compute_fc This function starts from a phenodata and gene expression data matrix

and compute all the possible pairwise foldchange values

Description

This function starts from a phenodata and gene expression data matrix and compute all the possible pairwise foldchange values

Usage

compute_fc(exp_data, pheno_data, dose_index, time_index)

create_contour 5

Arguments

exp_data is the expression matrix with genes on the rows and samples on the columns pheno_data is a dataframe with phenodata informations. Samples are on the rows. The

columns should include the dose and time point information. Doses of controls

need to be indicated as 0

dose_index index of the column containing the dose time_index index of the column containing the time

Value

a list containing two new matrices

fc_data a matrix with all the possible fold_changes

pdata the new phenodata table

create_contour This function fits a 3D regression model for every gene in the dataset

and creates an N x N contour plot

Description

This function fits a 3D regression model for every gene in the dataset and creates an N x N contour plot

Usage

```
create_contour(exp_data, pheno_data, responsive_genes, dose_index,
  time_point_index, gridSize = 50, pvalFitting.adj.method = "fdr",
  pvalFitting = 0.05, logScale = FALSE, modelSelection = c(1, 2))
```

Arguments

exp_data is the expression matrix with genes on the rows and samples on the columns

pheno_data is a dataframe with phenodata informations. Samples are on the rows. The

columns should include the dose and time point information.

responsive_genes

responsive_genes character vector with the genes statistically significant for the

two-way anova

dose_index numeric value specifing the column of the phenodata table containing the doses

time_point_index

numeric value specifing the column of the phenodata table containing the time

points

gridSize numeric value specifing size of the z-grid

logScale boolean specifying if the fitting is performed by using the dose and time in log

or linear scale

modelSelection is a vector of indices specifying which model to fit. 1:linear 2: poly2, 3: poly3

6 create_gene_table

Value

a list with list with estimated contour objects, 3D fitted objects, fitting statistics and feature values for time and dose

GenesMap a matrix with the z-maps computed for each gene

RPGenes a list with the 3D fitted objects

Statis a matrix with the fitting statistics: PValue, Adj. R. Square, RMSE

DFList a list with the data used for the fitting

ModList a list with the fitted models

create_gene_table This function create a table with the information on the dynamic-dose-

dependent genes

Description

This function create a table with the information on the dynamic-dose-dependent genes

Usage

```
create_gene_table(DDRGene, contour_res, nTimeInt, nDoseInt,
biomart_dataset = "rnorvegicus_gene_ensembl")
```

Arguments

DDRGene is the results of the run_all_BMD_IC50 function

contour_res is the result of the create_contour function

nTimeInt number of time points nDoseInt number of dose levels

biomart_dataset

is a string specifying the dataset to use in the useEnsembl function. e.g rnorvegi-

cus_gene_ensembl

Value

a data frame

label2DMap 7

1:	abe	12	ŊΜ	lap

This function assigns a label to contour map

Usage

```
label2DMap(map, BMD, coord, myContour, th = 0.95, mode = "mix",
    nDoseInt = 3, nTimeInt = 3, doseLabels = c("Late", "Middle",
    "Early"), timeLabels = c("Sensitive", "Intermediate", "Resilient"),
    toplot = FALSE)
```

Arguments

map matrix containing the z-map for a specific gene or cluster prototype

BMD matrix containing the dose-response area

coord matrix with x and y coordinate. The first column contain the doses, while the

second one the time points

myContour matrix with coordinate of bmd area border

th a threshold to define the portion of dose-response area to be identified as labels

for the gene.

mode is a character specifying when an area is called active. values can be "cumula-

tive" or "presence". If presence, an area is called active if at least one of its pixel is on the BMD curve. If cumulative, the number of region needed to reach the

th

\itemnDoseIntnumber of dose related breaks in the gene label's table. default is

\itemnTimeIntnumber of time related breaks in the gene label's table. default is

\itemdoseLabelsvector of colnames (doses) for the gene label's table. default is c("Sensitive","Intermediate","Resilient")

\itemtimeLabelsvector of rownames (time points) for the gene label's table. default c("Late","Middle","Early")

\itemnDoseIntnumber of dose related breaks in the gene label's table. default is 3

\itemnTimeIntnumber of time related breaks in the gene label's table. default is 3

\itemdoseLabelsvector of colnames (doses) for the gene label's table. default is c("Sensitive", "Intermediate", "Resilient")

\itemtimeLabelsvector of rownames (time points) for the gene label's table. default c("Late","Middle","Early")

a list with 9x9 matrices specifying if the gene is active at low, mid or high time points and dose levels

This function assigns a label to contour map

plot3d This function plots the fitted 3d surface for the expression value of a gene

Description

This function plots the fitted 3d surface for the expression value of a gene

Usage

```
plot3d(toPlot = list(x, y, z), DF, logScale = FALSE)
```

Arguments

toPlot is a list containing the predicted value for the x, y and z axis

DF is the data frame containing the information for the samples used in the fitting

process

Value

a plotly object

```
plot_cake_diagrams_time_dose_effect
```

this function takes in input the result of the function run_all_BMD_IC50 and plot a 3x3 multiplot with the number of dose responsive genes fir tge 12 segment of time and dose interaction the letters d and t (independently if they are capital or small) stand for dose and time +/- indicate if the gene fc is increasing or decreasing with respect of dose and time capital letters are used to indicate which between dose and time has a stronger effect

Description

this function takes in input the result of the function run_all_BMD_IC50 and plot a 3x3 multiplot with the number of dose responsive genes fir tge 12 segment of time and dose interaction the letters d and t (independently if they are capital or small) stand for dose and time +/- indicate if the gene fc is increasing or decreasing with respect of dose and time capital letters are used to indicate which between dose and time has a stronger effect

Usage

```
\verb|plot_cake_diagrams_time_dose_effect(res, timeLabels, doseLabels)|\\
```

Arguments

res is the result object from the run_all_BMD_IC50 function timeLabels is the vector with time labels predefined by the user doseLabels is the vector with dose labels predefined by the user

Value

a ggplot object

```
plot_dynamic_dose_responsive_map
```

This function takes in input the result of the function create_contour and plot the dynamic dose responsive activation map of a specific gene

Description

This function takes in input the result of the function create_contour and plot the dynamic dose responsive activation map of a specific gene

Usage

```
plot_dynamic_dose_responsive_map(contour_res, geneName, activity_threshold,
   BMD_response_threshold, mode, nTimeInt, nDoseInt, timeLabels, doseLabels)
```

Arguments

contour_res is the result object from the create_contour function

geneName is the name of the gene

Value

a ggplot object

```
plot_kegg_radar_chart this function takes in input the pathways enriched and retur a radar chart for each one of the gene label category
```

Description

this function takes in input the pathways enriched and retur a radar chart for each one of the gene label category

Usage

```
plot_kegg_radar_chart(Enriched_list, n = 5, vlcex = 1.5,
   kegg_level = 1, mar = c(2, 1, 1, 1))
```

Arguments

Enriched_list is the list of dataframe resulting from enrichment for each gene category

n is the max number of pathways to plot in each radar plot

vlcex is the size of the labels

kegg_level is the level of the kegg hierarchy to be considered in the plotting

mar are the margin settings for the plot

caxislabels is a character vector for center axis labels, overwriting values specified in ax-

istype option. If NULL, the values specified by axistype option are used. De-

fault is NULL.

10 read_excel_allsheets

Value

a ggplot object

```
plot_number_genes_labels
```

This function takes in input the result of the function run_all_BMD_IC50 and plot a 3x3 heatmap with the number of dose responsive genes for each label

Description

This function takes in input the result of the function run_all_BMD_IC50 and plot a 3x3 heatmap with the number of dose responsive genes for each label

Usage

```
plot_number_genes_labels(res, drugName, timeLabels, doseLabels)
```

Arguments

res is the result object from the run_all_BMD_IC50 function drugName is the name of the drug that will be used in the title timeLabels is the vector with time labels predefined by the user doseLabels is the vector with dose labels predefined by the user

Value

a ggplot object

```
read_excel_allsheets read excel file as a list of dataframe
```

Description

read excel file as a list of dataframe

Usage

```
read_excel_allsheets(filename, tibble = FALSE)
```

Arguments

filename is the path to the file

tibble boolean specifying if the content of each sheet should be read as tibble or

dataframe

Value

a data frame contained in the excel file

run_all_BMD_IC50

run_all_BMD_IC50

This function run the compute_BMD_IC50 for all genes and return a matrix with label associated to every gene

Usage

```
run_all_BMD_IC50(contour_res, activity_threshold = 0.1,
   BMD_response_threshold = 0.95, nDoseInt = 3, nTimeInt = 3,
   doseLabels = c("Late", "Middle", "Early"),
   timeLabels = c("Sensitive", "Intermediate", "Resilient"),
   tosave = FALSE, toPlot = FALSE, addLegend = FALSE, path = ".",
   relGenes, mode = "cumulative")
```

Arguments

threshold defining the responsive gene area. Eg. if the immy maps contains genes logFC, then an activity_threhdold = 0.58 means that the active area will be the one with an effect of 1.5 bigger or smaller than the controls

BMD_response_threshold

a threshold to define the portion of dose-response area to be identified as labels

for the gene.

nDoseInt number of dose related breaks in the gene label's table. default is 3 nTimeInt number of time related breaks in the gene label's table. default is 3

doseLabels vector of colnames (doses) for the gene label's table. default is c("Sensitive", "Intermediate", "Resilient

timeLabels vector of rownames (time points) for the gene label's table. default c("Late", "Middle", "Early")

tosave if true a png of the gene map is saved in path
path path of the folder where to save the gene map

relGenes vector of genes with signifineant pvalues from the fitting

mode is a character specifying when an area is called active. values can be "cumula-

tive" or "presence". If presence, an area is called active if at least one of its pixel is on the BMD curve. If cumulative, the number of region needed to reach the

th

\itemcoordmatrix with x and y coordinate. The first column contain the doses, while the second one the time points

\itemgeneNameis a character string containing the gene name

a list with two object: Mat is a matrix with genes on the rows and labels on the columns. GeneRes is a list of results from the compute_BMD_IC50 function,

one for every gene

This function run the compute_BMD_IC50 for all genes and return a matrix

with label associated to every gene

Index

```
build_items_list, 2

compute_anova_dose_time, 3

compute_BMD_IC50, 3

compute_fc, 4

create_contour, 5

create_gene_table, 6

label2DMap, 7

plot3d, 8

plot_cake_diagrams_time_dose_effect, 8

plot_dynamic_dose_responsive_map, 9

plot_kegg_radar_chart, 9

plot_number_genes_labels, 10

read_excel_allsheets, 10

run_all_BMD_IC50, 11
```