Name: ADVAIT GURUNATH CHAVAN

Contact Number: +91 70214 55852

Mail ID: advaitchavan135@gmail.com

<u>Forage Quantium Data Analytics Task 2</u>: Experimenting and Uplift Testing

1. Importing the necessary dependencies

```
In [1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import plotly.express as px
  import plotly.graph_objects as go
  import seaborn as sns
```

2. Reading the dataset

In [2]:	<pre>data = pd.read_csv('QVI_data.csv')</pre>									
In [3]:	data.head()									
Out[3]:	LYLTY_CARD	_NBR	DATE	STORE_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACK_SIZE
	0	1000	2018- 10-17	1	1	5	Natural Chip Compny SeaSalt175g	2	6.0	175
	1	1002	2018- 09-16	1	2	58	Red Rock Deli Chikn&Garlic Aioli 150g	1	2.7	150
	2	1003	2019- 03-07	1	3	52	Grain Waves Sour Cream&Chives 210G	1	3.6	210
	3	1003	2019- 03-08	1	4	106	Natural ChipCo Hony Soy Chckn175g	1	3.0	175
	4	1004	2018- 11-02	1	5	96	WW Original Stacked Chips 160g	1	1.9	160

```
# Column
                          Non-Null Count Dtype
                           _____
       ---
          LYLTY_CARD_NBR 264834 non-null int64
        0
       1 DATE
                          264834 non-null object
       2 STORE_NBR 264834 non-null int64
        3 TXN ID
                          264834 non-null int64
        4 PROD NBR
                          264834 non-null int64
        5 PROD NAME
                          264834 non-null object
        6 PROD QTY
                          264834 non-null int64
          TOT SALES
                          264834 non-null float64
        7
        8 PACK SIZE
                          264834 non-null int64
        9 BRAND
                          264834 non-null object
       10 LIFESTAGE 264834 non-null object
       11 PREMIUM CUSTOMER 264834 non-null object
       dtypes: float64(1), int64(6), object(5)
       memory usage: 24.2+ MB
In [5]: data.BRAND.value counts()
      KETTLE 41288
Out[5]:
      SMITHS
                  31823
       DORITOS
                  28145
                 25102
       PRINGLES
       RRD
                  17779
       WOOLWORTHS 14757
       INFUZIONS 14201
                  14075
       THINS
       COBS
                   9693
       TOSTITOS
                  9471
                  9454
       TWISTIES
       OLD
                   9324
                   7740
       GRNWVES
                   7469
      NATURAL
       TYRRELLS
                   6442
       CHEEZELS
                   4603
       CCS
                   4551
                   3008
       SUNBITES
       CHEETOS
                    2927
       BURGER
                   1564
       FRENCH
                   1418
       Name: BRAND, dtype: int64
In [6]: counts = data.BRAND.value counts()
       colors = px.colors.qualitative.Set1[:len(counts)]
       # Create a bar chart using Plotly Express with different colors
       fig = px.bar(
          x=counts.index,
          y=counts.values,
          labels={'y': 'Count', 'x':'Brand Name'},
          color=counts.index,
          color discrete map={ctype: color for ctype, color in zip(counts.index, colors)},
          title='Count of Brand',
       for i, count in enumerate(counts.values):
          fig.add annotation (
              x=counts.index[i],
              y=count,
              text=str(count),
              showarrow=True,
              arrowhead=5,
              ax=0,
```

RangeIndex: 264834 entries, 0 to 264833

Data columns (total 12 columns):

```
ay=-20,
)

# Add a legend
fig.update_layout(legend=dict(title=dict(text='Legend')), height = 1000)

# Show the plot
fig.show()
```

Count of Brand

CH TOS TTOS ZELS ZELS VVES TTIES TTIES ZIONS LWORTHS GLES TOS HS HS HS

Brand Name

```
In [7]: counts = data['PACK_SIZE'].value_counts()

# Plotting the counts
plt.figure(figsize=(11, 15))

for i, (value, count) in enumerate(counts.items()):
    plt.bar(i, count)
    plt.text(i, count + 0.1, str(count), ha='center', va='bottom', rotation=90)

plt.title('Count by Pack Size')
plt.xlabel('Pack Size')
plt.ylabel('Count')
plt.xticks(range(len(counts)), counts.index, rotation=45)

# Display the plot
plt.show()
```



```
In [8]: data['DATE'] = pd.to_datetime(data['DATE'], format='%Y-%m-%d')
In [9]: #Extracting Year from DATE column
data['Year'] = data['DATE'].dt.year
```

In [10]: #Extracting Month_name and Year from DATE column

```
#Extracting Month name from DATE column
In [11]:
          data['Month Name'] = data['DATE'].dt.strftime('%B')
          ##Extracting Quater from DATE column
In [12]:
          data['Quarter'] = data['DATE'].dt.quarter
          #Extracting Quater and Year from DATE column
In [13]:
          data['Quarter Year'] = data['DATE'].dt.to period('Q')
          #Extracting WEEKDAY from DATE column
In [14]:
          data['Weekday'] = data['DATE'].dt.day name()
          data.head()
In [15]:
Out[15]:
             LYLTY_CARD_NBR DATE STORE_NBR TXN_ID PROD_NBR PROD_NAME PROD_QTY TOT_SALES PACK_SIZE
                                                                     Natural Chip
                              2018-
          0
                        1000
                                             1
                                                     1
                                                                 5
                                                                                         2
                                                                                                   6.0
                                                                                                              175
                                                                         Compny
                              10-17
                                                                      SeaSalt175g
                                                                     Red Rock Deli
                              2018-
                        1002
                                                     2
                                                                58
                                                                                                   2.7
                                                                                                              150
          1
                                             1
                                                                     Chikn&Garlic
                                                                                         1
                              09-16
                                                                       Aioli 150g
                                                                      Grain Waves
                              2019-
                                                                            Sour
          2
                        1003
                                                     3
                                                                                                   3.6
                                                                                                              210
                              03-07
                                                                    Cream&Chives
                                                                           210G
                                                                         Natural
                              2019-
                                                                     ChipCo Hony
          3
                        1003
                                                               106
                                                                                         1
                                                                                                   3.0
                                                                                                              175
                                             1
                                                     4
                              03-08
                                                                            Soy
                                                                      Chckn175g
                                                                     WW Original
                              2018-
                        1004
                                             1
                                                     5
                                                                    Stacked Chips
                                                                                         1
                                                                                                   1.9
                                                                                                              160
                              11-02
                                                                           160g
          #Saving the updated dataset
In [16]:
          data.to csv('updated data.csv')
          data.to_excel('updated data.xlsx')
          data.head()
In [17]:
             LYLTY_CARD_NBR DATE STORE_NBR TXN_ID PROD_NBR
                                                                    PROD_NAME PROD_QTY TOT_SALES PACK_SIZE
Out[17]:
                                                                     Natural Chip
                              2018-
                        1000
                                                     1
                                                                 5
                                                                                         2
          0
                                                                                                   6.0
                                                                                                              175
                                                                         Compny
                              10-17
                                                                      SeaSalt175g
                                                                     Red Rock Deli
                              2018-
                                                     2
          1
                                             1
                                                                58
                                                                     Chikn&Garlic
                                                                                         1
                                                                                                   2.7
                                                                                                              150
                              09-16
                                                                       Aioli 150g
                                                                      Grain Waves
                              2019-
                                                                            Sour
          2
                        1003
                                             1
                                                     3
                                                                                         1
                                                                                                   3.6
                                                                                                              210
                              03-07
                                                                    Cream&Chives
                                                                           210G
          3
                              2019-
                                             1
                                                               106
                                                                                                   3.0
                                                                                                              175
                        1003
                                                                         Natural
                                                                                          1
                              03-08
                                                                     ChipCo Hony
```

data['Month Year'] = data['DATE'].dt.strftime('%B %Y')

```
Chckn175g

WW Original

1004 2018-
11-02 1 5 96 Stacked Chips 1 1.9 160
160g
```

Soy

```
In [18]:
    sns.set_theme(style="whitegrid")
    g = sns.catplot(
        data=data, kind="bar",
        x="LIFESTAGE", y="TOT_SALES", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, hei
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_heigha='center', va='bottom', xytext=(0, 10), textcoords='offset points'

g.set_xticklabels(rotation=90)
    g.set_axis_labels("LIFESTAGE", "TOT_SALES")
    g.legend.set_title("Distribution of Total Sales by Lifestage and Customer Type")
```



```
In [19]: sns.set_theme(style="whitegrid")
g = sns.catplot(
    data=data, kind="bar",
    x="LIFESTAGE", y="PROD_QTY", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, heig
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_height() + p.get_width() / 2., p.get_width
```



```
In [20]: sns.set_theme(style="whitegrid")
g = sns.catplot(
    data=data, kind="bar",
    x="LIFESTAGE", y="PACK_SIZE", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, hei
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_heigha='center', va='bottom', xytext=(0, 10), textcoords='offset points'

g.set_xticklabels(rotation=90)
g.set_axis_labels("LIFESTAGE", "PACK_SIZE")
g.legend.set_title("Distribution of Pack Size by Lifestage and Customer Type")
```



```
In [22]: sns.set_theme(style="whitegrid")
g = sns.catplot(
    data=data, kind="bar",
    x="Month_Year", y="TOT_SALES", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, he
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_height=0.6, height=0.6, hei
```



```
In [23]: sns.set_theme(style="whitegrid")
g = sns.catplot(
    data=data, kind="bar",
    x="Month_Year", y="PROD_QTY", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, hei
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_heigha='center', va='bottom', xytext=(0, 10), textcoords='offset points'

g.set_xticklabels(rotation=90)
g.set_axis_labels("Month_Year", "PROD_QTY")
g.legend.set_title("Distribution of Product Quantity by Month Year and Customer Type")
```



```
In [24]:
    sns.set_theme(style="whitegrid")
    g = sns.catplot(
        data=data, kind="bar",
        x="Year", y="PROD_QTY", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, height=8,
    )

    for ax in g.axes.flat:
        for p in ax.patches:
            ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_heigha='center', va='bottom', xytext=(0, 10), textcoords='offset points'
        g.set_xticklabels(rotation=90)
        g.set_axis_labels("Year", "PROD_QTY")
        g.legend.set_title("Distribution of Product Quantity by Year and Customer Type")
```



```
In [25]:
    sns.set_theme(style="whitegrid")
    g = sns.catplot(
        data=data, kind="bar",
        x="Year", y="TOT_SALES", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, height=8
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_heigha='center', va='bottom', xytext=(0, 10), textcoords='offset points'

g.set_xticklabels(rotation=90)
    g.set_axis_labels("Year", "TOT_SALES")
    g.legend.set_title("Distribution of Total Sales by Year and Customer Type")
```



```
In [26]: sns.set_theme(style="whitegrid")
g = sns.catplot(
    data=data, kind="bar",
    x="Year", y="PACK_SIZE", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, height=8
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_height() / 2., p.get_height()
```



```
In [27]:
    sns.set_theme(style="whitegrid")
    g = sns.catplot(
        data=data, kind="bar",
        x="Quarter_Year", y="PACK_SIZE", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6,
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_heigha='center', va='bottom', xytext=(0, 10), textcoords='offset points'

g.set_xticklabels(rotation=90)
    g.set_axis_labels("Quarter_Year", "PACK_SIZE")
    g.legend.set_title("Distribution of Pack Size by Quarter Year and Customer Type")
```



```
In [28]:
    sns.set_theme(style="whitegrid")
    g = sns.catplot(
        data=data, kind="bar",
        x="Quarter_Year", y="TOT_SALES", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6,
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_heigha='center', va='bottom', xytext=(0, 10), textcoords='offset points'

g.set_xticklabels(rotation=90)
    g.set_axis_labels("Quarter_Year", "TOT_SALES")
    g.legend.set_title("Distribution of Total Sales by Quarter Year and Customer Type")
```



```
In [29]: sns.set_theme(style="whitegrid")
g = sns.catplot(
    data=data, kind="bar",
    x="Quarter_Year", y="PROD_QTY", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, h
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_heigha='center', va='bottom', xytext=(0, 10), textcoords='offset points'

g.set_xticklabels(rotation=90)
g.set_axis_labels("Quarter_Year", "PROD_QTY")
g.legend.set_title("Distribution of Product Quantity by Quarter Year and Customer Type")
```



```
In [30]: sns.set_theme(style="whitegrid")
g = sns.catplot(
    data=data, kind="bar",
    x="Weekday", y="PROD_QTY", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, height)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_heigha='center', va='bottom', xytext=(0, 10), textcoords='offset points'

g.set_xticklabels(rotation=90)
g.set_axis_labels("Weekday", "PROD_QTY")
g.legend.set_title("Distribution of Product Quantity by Weekday and Customer Type")
```



```
In [31]:
    sns.set_theme(style="whitegrid")
    g = sns.catplot(
        data=data, kind="bar",
        x="Weekday", y="TOT_SALES", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, heigh
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_heigha='center', va='bottom', xytext=(0, 10), textcoords='offset points'

g.set_xticklabels(rotation=90)
    g.set_axis_labels("Weekday", "TOT_SALES")
    g.legend.set_title("Distribution of Total Sales by Weekday and Customer Type")
```



```
In [32]: sns.set_theme(style="whitegrid")
g = sns.catplot(
    data=data, kind="bar",
    x="Weekday", y="PACK_SIZE", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, heigh
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_heigha='center', va='bottom', xytext=(0, 10), textcoords='offset points'

g.set_xticklabels(rotation=90)
g.set_axis_labels("Weekday", "PACK_SIZE")
g.legend.set_title("Distribution of Pack Size by Weekday and Customer Type")
```



```
In [33]: plt.figure(figsize=(15, 10))
    sns.heatmap(data.corr(), annot=True)
```

Out[33]: <AxesSubplot:>

3. Experimenting and Uplift Testing

```
In [34]: total_sales=data.groupby(["STORE_NBR", "Month_Year"])["TOT_SALES"].sum()
   total_sales=total_sales.to_frame()
   total_sales.head(15)
```

Out[34]: TOT_SALES

STORE_NBR	Month_Year	
1	April 2019	192.9
	August 2018	176.1
	December 2018	189.6
	February 2019	225.4
	January 2019	154.8
	July 2018	206.9
	June 2019	174.1
	March 2019	192.9
	May 2019	221.4
	November 2018	192.6
	October 2018	188.1
	September 2018	278.8

```
2 April 2019 196.5
August 2018 193.8
December 2018 136.0
```

```
In [35]: total_customers=data.groupby(["STORE_NBR", "Month_Year"])["LYLTY_CARD_NBR"].nunique()
    total_customers=total_customers.to_frame()
    total_customers.head(15)
```

Out[35]: LYLTY_CARD_NBR

STORE_NBR	Month_Year	
1	April 2019	42
	August 2018	42
	December 2018	42
	February 2019	52
	January 2019	35
	July 2018	49
	June 2019	42
	March 2019	45
	May 2019	46
	November 2018	46
	October 2018	44
	September 2018	59
2	April 2019	47
	August 2018	39
	December 2018	35

In [36]: transactions_per_customer=data.groupby(["STORE_NBR", "Month_Year"])["TXN_ID"].nunique()/
#Grouping the pandas.DataFrame by the STORE_NBR and YEAR_MONTH column, and counting the
transactions_per_customer=transactions_per_customer.to_frame()
transactions_per_customer.head(15)

Out[36]: 0

STORE_NBR	Month_Year	
1	April 2019	1.023810
	August 2018	1.023810
	December 2018	1.119048
	February 2019	1.057692
	January 2019	1.028571
	July 2018	1.061224
	June 2019	1.000000
	March 2019	1.088889
	May 2019	1.108696

```
November 2018 1.021739
October 2018 1.022727
September 2018 1.050847
2 April 2019 1.042553
August 2018 1.102564
December 2018 1.057143
```

In [37]: dataframe_list=[total_sales, total_customers, transactions_per_customer]
 dataframe=pd.concat(dataframe_list, axis=1)
 dataframe.columns=["TOT_SALES", "TOT_CUST", "TXN_PER_CUST"]
 dataframe.head(15)

Out[37]: TOT_SALES TOT_CUST TXN_PER_CUST

STORE_NBR	Month_Year			
1	April 2019	192.9	42	1.023810
	August 2018	176.1	42	1.023810
	December 2018	189.6	42	1.119048
	February 2019	225.4	52	1.057692
	January 2019	154.8	35	1.028571
	July 2018	206.9	49	1.061224
	June 2019	174.1	42	1.000000
	March 2019	192.9	45	1.088889
	May 2019	221.4	46	1.108696
	November 2018	192.6	46	1.021739
	October 2018	188.1	44	1.022727
	September 2018	278.8	59	1.050847
2	April 2019	196.5	47	1.042553
	August 2018	193.8	39	1.102564
	December 2018	136.0	35	1.057143

```
In [38]: dataframe.isnull().sum()
```

Out[38]: TOT_SALES 0 TOT_CUST 0 TXN PER CUST 0

dtype: int64

In [39]: recorded_stores=pd.pivot_table(data, index="STORE_NBR", columns="Month_Year", values="TX
recorded_stores

Out[39]: April August December February January July June March May November October Sept Month_Year 2019 2018 2018 2019 2019 2018 2019 2019 2019 2018 2018 STORE_NBR 1 43.0 43.0 47.0 55.0 36.0 52.0 43.0 49.0 51.0 47.0 45.0 2 49.0 43.0 38.0 32.0 45.0 41.0 42.0 46.0 50.0 40.0 43.0

3	110.0	134.0	129.0	139.0	121.0	138.0	122.0	130.0	123.0	118.0	119.0
4	137.0	151.0	133.0	102.0	168.0	160.0	134.0	135.0	126.0	139.0	155.0
5	109.0	112.0	125.0	106.0	118.0	120.0	127.0	97.0	104.0	111.0	107.0
•••											
268	50.0	54.0	43.0	37.0	38.0	52.0	40.0	47.0	52.0	51.0	48.0
269	139.0	132.0	133.0	133.0	144.0	139.0	127.0	122.0	130.0	136.0	148.0
270	132.0	154.0	149.0	125.0	155.0	139.0	127.0	143.0	128.0	133.0	119.0
271	109.0	101.0	117.0	102.0	120.0	129.0	129.0	101.0	127.0	122.0	114.0
272	56.0	48.0	47.0	48.0	50.0	52.0	37.0	53.0	40.0	45.0	51.0

272 rows × 12 columns

```
In [40]: recorded_stores.isnull().sum()
        Month Year
Out[40]:
         April 2019
                           7
        August 2018
        December 2018
         February 2019
         January 2019
        July 2018
                           6
         June 2019
                           7
        March 2019
        May 2019
                          8
        November 2018
        October 2018
                           7
         September 2018
         dtype: int64
In [41]: unrecorded_stores=[]
         for i in recorded stores.index:
             if recorded stores.loc[i].isnull().any():
                 unrecorded stores.append(i)
         unrecorded stores
         [11, 31, 44, 76, 85, 92, 117, 193, 206, 211, 218, 252]
Out[41]:
         dataframe=dataframe.drop(unrecorded stores, axis=0)
In [42]:
         dataframe
```

Out[42]: TOT_SALES TOT_CUST TXN_PER_CUST

1 April 2019 192.9 42 1.023810 August 2018 176.1 42 1.023810 December 2018 189.6 42 1.119048 February 2019 225.4 52 1.057692 January 2019 154.8 35 1.028571	STORE_NBR	Month_Year			
December 2018 189.6 42 1.119048 February 2019 225.4 52 1.057692	1	April 2019	192.9	42	1.023810
February 2019 225.4 52 1.057692		August 2018	176.1	42	1.023810
		December 2018	189.6	42	1.119048
January 2019 154.8 35 1.028571		February 2019	225.4	52	1.057692
		January 2019	154.8	35	1.028571
	•••	•••			
272 March 2019 442.3 50 1.060000	272	March 2019	442.3	50	1.060000
May 2019 314.6 34 1.176471		May 2019	314.6	34	1.176471

November 2018	376.2	41	1.097561
October 2018	430.6	44	1.136364
September 2018	304 7	32	1 125000

3120 rows × 3 columns

In []:

A. Pre-Trial Duration -- Before February 2019

In [43]: pre_trial_data = dataframe.loc[pd.to_datetime(dataframe.index.get_level_values("Month_Ye

In [44]: pre_trial_data=pre_trial_data.reset_index()

In [45]: pre_trial_data

Out[45]:

	STORE_NBR	Month_Year	TOT_SALES	TOT_CUST	TXN_PER_CUST
0	1	August 2018	176.1	42	1.023810
1	1	December 2018	189.6	42	1.119048
2	1	January 2019	154.8	35	1.028571
3	1	July 2018	206.9	49	1.061224
4	1	November 2018	192.6	46	1.021739
•••					
1815	272	January 2019	423.0	46	1.086957
1816	272	July 2018	433.1	48	1.083333
1817	272	November 2018	376.2	41	1.097561
1818	272	October 2018	430.6	44	1.136364
1819	272	September 2018	304.7	32	1.125000

1820 rows × 5 columns

Out[46]: TOT_SALES TOT_CUST TXN_PER_CUST

STORE_NBR			
1	1386.90	317	7.327967
2	1128.50	272	7.359700
3	7526.15	744	8.209829
4	9127.00	849	8.535253
5	5739.70	651	8.791906
•••			
268	1549.05	304	7.373037

269	6664.50	746	8.921035
270	6697.95	734	9.147187
271	5765.10	652	8.671966
272	2744.35	302	7.620124

257 rows × 3 columns

In [47]: trial_stores=pre_trial_data[(pre_trial_data.STORE_NBR==77) | (pre_trial_data.STORE_NBR=
trial_stores

Out[47]: TOT SALES TOT CUST TXN PER CUST

STORE NBR

77	1699.00	299	7.405289
86	6119.85	697	8.798544
88	9383.60	880	8.523817

Store Number: 77

Out[48]: TOT_SALES TOT_CUST TXN_PER_CUST DIFFERENCE

STORE_NBR						
139	1493.2	257.0	0.405289	609.34		
135	1486.9	256.0	0.012432	603.04		
161	1459.0	252.0	0.405289	575.14		
233	39.2	1.0	0.115969	-844.66		
46	-59.0	-3.0	0.094215	-942.86		

Store Number: 86

Out[49]: TOT_SALES TOT_CUST TXN_PER_CUST DIFFERENCE

STORE_NBR				
258	5934.85	670.0	1.798544	4066.46
215	3411.85	386.0	1.486773	1543.46
225	29.25	3.0	0.023669	-1839.14
196	-6.45	1.0	0.040716	-1874.84

57 -27.55 -2.0 0.031815 -1895.94

Store Number: 88

CTODE NIDD

Out[53]:

```
In [50]: difference=control_stores.loc[control_stores.corrwith(trial_stores.loc[88], axis=1).nlar

difference=(trial_stores.loc[88]-difference).sort_values(by="TOT_SALES", ascending=False
    difference["DIFFERENCE"]=difference["TOT_SALES"]-difference["TOT_SALES"].mean()
    difference.sort_values(by="DIFFERENCE", ascending=False)
```

Out[50]: TOT_SALES TOT_CUST TXN_PER_CUST DIFFERENCE

2 LOKE WRK						
60	1697.1	154.0	0.052504	783.5		
75	1420.1	129.0	0.078986	506.5		
72	865.1	79.0	0.085871	-48.5		
203	439.9	38.0	0.135139	-473.7		
165	145.8	18.0	0.093389	-767.8		

For STORE_NBR 88, we can see that STORE_NBR 165 would be the most suitable control store.

```
In [51]: trial_stores_one=pre_trial_data.loc[pre_trial_data.STORE_NBR.isin([77])].reset_index()
    trial_stores_two=pre_trial_data.loc[pre_trial_data.STORE_NBR.isin([86])].reset_index()
    trial_stores_three=pre_trial_data.loc[pre_trial_data.STORE_NBR.isin([88])].reset_index()
```

In [52]: control_stores_one=pre_trial_data.loc[pre_trial_data.STORE_NBR.isin([46])].reset_index()
 control_stores_two=pre_trial_data.loc[pre_trial_data.STORE_NBR.isin([57])].reset_index()
 control_stores_three=pre_trial_data.loc[pre_trial_data.STORE_NBR.isin([165])].reset_index

	index	STORE_NBR	Month_Year	TOT_SALES	TOT_CUST	TXN_PER_CUST
0	504	77	August 2018	255.50	47	1.021277
1	505	77	December 2018	267.30	46	1.043478
2	506	77	January 2019	204.40	35	1.114286
3	507	77	July 2018	296.80	51	1.078431
4	508	77	November 2018	245.30	41	1.073171
5	509	77	October 2018	204.50	37	1.027027
6	510	77	September 2018	225.20	42	1.047619
0	560	86	August 2018	764.05	94	1.170213
1	561	86	December 2018	841.20	98	1.224490
2	562	86	January 2019	841.40	94	1.372340
3	563	86	July 2018	892.20	99	1.272727
4	564	86	November 2018	918.00	100	1.250000
5	565	86	October 2018	948.40	109	1.266055

6	566	86	September 2018	914.60	103	1.242718
0	574	88	August 2018	1323.80	131	1.206107
1	575	88	December 2018	1325.20	126	1.174603
2	576	88	January 2019	1266.40	117	1.230769
3	577	88	July 2018	1310.00	129	1.186047
4	578	88	November 2018	1382.80	130	1.200000
5	579	88	October 2018	1352.40	123	1.260163
6	580	88	September 2018	1423.00	124	1.266129
0	294	46	August 2018	240.70	44	1.045455
1	295	46	December 2018	306.90	50	1.060000
2	296	46	January 2019	176.20	33	1.000000
3	297	46	July 2018	253.00	45	1.066667
4	298	46	November 2018	273.10	42	1.047619
5	299	46	October 2018	275.10	47	1.042553
6	300	46	September 2018	233.00	41	1.048780
0	371	57	August 2018	915.40	102	1.274510
1	372	57	December 2018	951.00	104	1.259615
2	373	57	January 2019	852.80	87	1.379310
3	374	57	July 2018	839.60	103	1.203883
4	375	57	November 2018	830.00	100	1.170000
5	376	57	October 2018	965.80	104	1.307692
6	377	57	September 2018	792.80	99	1.171717
0	1099	165	August 2018	1206.60	109	1.256881
1	1100	165	December 2018	1345.40	121	1.206612
2	1101	165	January 2019	1422.00	133	1.203008
3	1102	165	July 2018	1457.00	133	1.255639
4	1103	165	November 2018	1291.20	126	1.166667
5	1104	165	October 2018	1234.40	118	1.169492
6	1105	165	September 2018	1281.20	122	1.172131

```
In [54]: sns.set_style("darkgrid")
    figure, axis=plt.subplots(1, 3, figsize=(20, 7))
    sns.barplot(x="STORE_NBR", y="TOT_SALES", data=stores, ax=axis[0], palette="pastel")
    axis[0].set_title("Total Sales")
    sns.barplot(x="STORE_NBR", y="TOT_CUST", data=stores, ax=axis[1], palette="pastel")
    axis[1].set_title("Total Customers")
    sns.barplot(x="STORE_NBR", y="TXN_PER_CUST", data=stores, ax=axis[2], palette="pastel")
    axis[2].set_title("Transactions per Customer")
    figure.suptitle("Comparison of the Total Sales, Total Customers, and Transactions per Cuplt.show()
```


While the other trial stores performed the same as their corresponding control stores, we can see, however, that STORE_NBR 88 slightly out-performed its control store in all attributes. We can also notice that STORE_NBR 86 and 88 show a significant difference in terms of the total sales, but this isn't the case with STORE_NBR 77, whose sales are considerably less.

```
In [55]: trial_data = dataframe.loc[pd.to_datetime(dataframe.index.get_level_values("Month_Year")
    trial_data=trial_data.reset_index()
    trial_data
```

	STORE_NBR	Month_Year	TOT_SALES	TOT_CUST	TXN_PER_CUST
0	1	April 2019	192.9	42	1.023810
1	1	February 2019	225.4	52	1.057692
2	1	June 2019	174.1	42	1.000000
3	1	March 2019	192.9	45	1.088889
4	1	May 2019	221.4	46	1.108696
•••					
1295	272	April 2019	445.1	54	1.018519
1296	272	February 2019	395.5	45	1.066667
1297	272	June 2019	312.1	34	1.088235
1298	272	March 2019	442.3	50	1.060000
1299	272	May 2019	314.6	34	1.176471

1300 rows × 5 columns

Out[55]:

```
In [56]: trial_stores_one=trial_data.loc[trial_data.STORE_NBR.isin([77])].reset_index()
    trial_stores_two=trial_data.loc[trial_data.STORE_NBR.isin([86])].reset_index()
    trial_stores_three=trial_data.loc[trial_data.STORE_NBR.isin([88])].reset_index()

In [57]: control_stores_one=trial_data.loc[trial_data.STORE_NBR.isin([46])].reset_index()
    control_stores_two=trial_data.loc[trial_data.STORE_NBR.isin([57])].reset_index()
    control_stores_three=trial_data.loc[trial_data.STORE_NBR.isin([165])].reset_index()
```

	index	STORE_NBR	Month_Year	TOT_SALES	TOT_CUST	TXN_PER_CUST
0	360	77	April 2019	263.50	47	1.021277
1	361	77	February 2019	235.00	45	1.000000
2	362	77	June 2019	264.70	41	1.024390
3	363	77	March 2019	278.50	50	1.100000
4	364	77	May 2019	299.30	55	1.018182
0	400	86	April 2019	848.20	105	1.200000
1	401	86	February 2019	913.20	107	1.289720
2	402	86	June 2019	838.00	98	1.204082
3	403	86	March 2019	1026.80	115	1.217391
4	404	86	May 2019	889.30	104	1.230769
0	410	88	April 2019	1439.40	128	1.265625
1	411	88	February 2019	1370.20	124	1.233871
2	412	88	June 2019	1354.60	121	1.223140
3	413	88	March 2019	1477.20	134	1.261194
4	414	88	May 2019	1308.25	128	1.203125
0	210	46	April 2019	260.00	47	1.042553
1	211	46	February 2019	222.40	38	1.000000
2	212	46	June 2019	280.30	47	1.042553
3	213	46	March 2019	259.20	41	1.000000
4	214	46	May 2019	243.55	38	1.105263
0	265	57	April 2019	900.00	106	1.292453
1	266	57	February 2019	919.80	108	1.194444
2	267	57	June 2019	911.00	104	1.288462
3	268	57	March 2019	807.40	99	1.222222
4	269	57	May 2019	846.70	109	1.192661
0	785	165	April 2019	1391.70	129	1.232558
1	786	165	February 2019	1237.50	113	1.230088
2	787	165	June 2019	1450.30	137	1.197080
3	788	165	March 2019	1215.40	114	1.184211
4	789	165	May 2019	1441.05	133	1.285714

Out[58]:

```
In [59]: sns.set_style("darkgrid")
    figure, axis=plt.subplots(1, 3, figsize=(20, 7))
    sns.barplot(x="STORE_NBR", y="TOT_SALES", data=stores, ax=axis[0], palette="pastel")
    axis[0].set_title("Total Sales")
    sns.barplot(x="STORE_NBR", y="TOT_CUST", data=stores, ax=axis[1], palette="pastel")
    axis[1].set_title("Total Customers")
    sns.barplot(x="STORE_NBR", y="TXN_PER_CUST", data=stores, ax=axis[2], palette="pastel")
    axis[2].set_title("Transactions per Customer")
```

figure.suptitle("Comparison of the Total Sales, Total Customers, and Transactions per Cuplt.show()

Comparison of the Total Sales, Total Customers, and Transactions per Customer for Each the Trial Stores and the Control Stores During the Trial Duration

We can, notice that STORE_NBR 88 slightly out-performs its control store, STORE_NBR 165, and still remains the best implementation of the trial of all the trial stores. The driver for this seems to be the purchasing customers rather than purchases per customer, as we can see that with the increase in the total customers, there's also an increase in the total sales almost identically, but the transactions per customer seem to be reasonably high for all the trial stores regardless of the total sales.

Conclusion

- --> While the other trial stores performed the same as their corresponding control stores, we can see, however, that STORE_NBR 88 slightly out-performed its control store, STORE_NBR 165, in all attributes.
- --> STORE_NBR 86 and 88 show a significant difference in terms of the total sales, but this isn't the case with STORE_NBR 77, which may be because of the way the trial was implemented for it.
- --> Due to the maximum difference in the total sales of all the trial stores, STORE_NBR 88 remains the best implementation of the trial.
- --> The driver for the increase in total sales seems to be the purchasing customers rather than purchases per customer the more the customers, the higher the sales.