Seminar 1 - ALGEBRĂ

Exercițiul 1. Să se verifice dacă matricele A și B se pot înmulți. În caz afirmativ, să se calculeze produsul lor.

a)
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
 şi $B = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$

b)
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix}$$
 şi $B = \begin{pmatrix} 0 & 1 \\ 2 & 0 \\ 1 & 1 \end{pmatrix}$

c)
$$A = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$$
 şi $B = \begin{pmatrix} 1 & 0 & 3 \\ -1 & 1 & 2 \\ 0 & 2 & 4 \end{pmatrix}$

Rezolvare.

a) Din $A \in \mathbb{R}^{2 \times 3}, B \in \mathbb{R}^{3 \times 1}$ rezultă $A \cdot B \in \mathbb{R}^{2 \times 1}$.

Deoarece numărul de coloane al matricei B este diferit de numărul de linii al matricei A (1 \neq 2), deducem că produsul $B \cdot A$ nu se poate efectua.

$$A \cdot B = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 7 \end{pmatrix}$$

b) Din $A \in \mathbb{R}^{2\times 3}, B \in \mathbb{R}^{3\times 2}$ rezultă $A \cdot B \in \mathbb{R}^{2\times 2}$ și $B \cdot A \in \mathbb{R}^{3\times 3}$.

$$A \cdot B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 4 & 0 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 0 \\ 2 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

c) Deoarece numărul de coloane al matricei A este diferit de numărul de linii al matricei B ($1 \neq 3$), deducem că produsul $A \cdot B$ nu se poate efectua.

Din $A \in \mathbb{R}^{3 \times 1}, B \in \mathbb{R}^{3 \times 3}$ rezultă $B \cdot A \in \mathbb{R}^{3 \times 1}$.

$$B \cdot A = \begin{pmatrix} 1 & 0 & 3 \\ -1 & 1 & 2 \\ 0 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -5 \\ -2 \\ -2 \end{pmatrix}$$

Exercițiul 2. Să se calculeze determinantul matricei A folosind dezvoltarea după linia a doua:

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 2 \\ 2 & 3 & 4 & 0 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$

Rezolvare.
$$det A = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 2 \\ 2 & 3 & 4 & 0 \\ 1 & 1 & 1 & 2 \end{vmatrix} = 0(-1)^{2+1} \begin{vmatrix} 2 & 3 & 4 \\ 3 & 4 & 0 \\ 1 & 1 & 2 \end{vmatrix} + 1(-1)^{2+2} \begin{vmatrix} 1 & 3 & 4 \\ 2 & 4 & 0 \\ 1 & 1 & 2 \end{vmatrix} + 0(-1)^{2+3} \begin{vmatrix} 1 & 2 & 4 \\ 2 & 3 & 0 \\ 1 & 1 & 2 \end{vmatrix} + 2(-1)^{2+4} \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 1 & 1 \end{vmatrix} = -12$$

Exercițiul 3. Să se determine matricea $A = \begin{pmatrix} a & b \\ 1 & c \end{pmatrix} \in \mathbb{Z}^2$ astfel încât $det(A^3 - A^2) = 1.$

Rezolvare.

Avem că $det(A^3 - A^2) = 1 \iff det(A^2)det(A - I_2) = 1.$

Rezultă că $det(A^2) = det(A - I_2) = 1$ (căci $det(A^2) \ge 0$), sau $detA = \pm 1$ $si det(A - I_2) = 1.$

Avem astfel sistemele:

$$\begin{cases} ac - b = 1 \\ (a - 1)(c - 1) - b = 1 \end{cases}$$
 sau
$$\begin{cases} ac - b = -1 \\ (a - 1)(c - 1) - b = 1 \end{cases}$$

$$\begin{cases} ac - b = 1 \\ a + c = 1 \end{cases}$$
 sau
$$\begin{cases} ac - b = -1 \\ a + c = 1 \end{cases}$$

 Deducem că $b=-a^2+a-1$ și c=1-a , $a\in\mathbb{Z}$ (primul sistem) sau $b = -a^2 - a + 1$ și c = -1 - a, $a \in \mathbb{Z}$ (al doilea sistem).

i) Fie matricea $A=\begin{pmatrix}2&2&3\\1&-1&0\\-1&2&1\end{pmatrix}$. Să se arate că matricea Exerciţiul 4.

A este inversabilă si să se calculeze A^{-1}

- ii) Arătați că, dacă $U \in \mathbb{C}^3$, astfel încât $U^2 = O_3$, atunci matricea B = $I_3 - U$ este inversabilă.
- iii) Să se determine valorile parametrului $a \in \mathbb{R}$, pentru care matricea A = $\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$ nu este inversabilă.

Rezolvare.

i) Din faptul că $det A = \begin{vmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{vmatrix} = -1 \neq 0$ avem că matricea A este inversabilă.

Avem că
$$A^t = \begin{pmatrix} 2 & 1 & -1 \\ 2 & -1 & 2 \\ 3 & 0 & 1 \end{pmatrix}$$
 şi $A^* = \begin{pmatrix} -1 & 4 & 3 \\ -1 & 5 & 3 \\ 1 & -6 & -4 \end{pmatrix}$.

Deci
$$A^{-1} = \frac{1}{\det A} A^* = \begin{pmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{pmatrix}.$$

- ii) Observăm că $I_3\cdot U=U\cdot I_3$ și avem egalitatea: $(I_3-U)(I_3+U)=I_3^2-U^2=I_3-O_3=I_3$, deci matricea $B=I_3-U$ este inversabilă și $B^{-1}=I_3+U$.
- iii) Punem condiția $det A=0 \Longleftrightarrow \begin{vmatrix} a & 1 & 1\\ 1 & a & 1\\ 1 & 1 & a \end{vmatrix} =0 \Longleftrightarrow (a+2)(a-1)^2=0 \Longleftrightarrow a\in\{-2,1\}.$
- **Exercițiul 5.** i) Să se discute în funcție de parametrul real a, rangul matricei $A = \begin{pmatrix} 1 & a & 1 \\ 1 & 1 & a \\ 1 & 1 & 1 \end{pmatrix}$.
- ii) Fie matricea $A=\begin{pmatrix}2&-1&1&a\\1&1&a&1\\1&-1&b&b\end{pmatrix}$, $a,b\in\mathbb{R}$. Determinați numerele a și b, astfel încât matricea A să aibă rangul minim. **Rezolvare.**
- i) Calculând, obţinem: $det A = (a-1)^2$. Dacă a=1, atunci rang A=1. Dacă $a \neq 1$, atunci rang A=3.
- ii) Deoarece există un minor nenul de ordinul 2, $\Delta_1 = \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix}$, deducem $rangA \geq 2$. Matricea A are rangul minim 2, dacă toți minorii de ordinul 3 care se obțin prin bordarea minorului de rangul 2 sunt nuli.

Aceștia sunt:

$$\Delta_2 = \begin{vmatrix} 2 & -1 & 1 \\ 1 & 1 & a \\ 1 & -1 & b \end{vmatrix} = a + 3b - 2, \Delta_3 = \begin{vmatrix} 2 & -1 & a \\ 1 & 1 & 1 \\ 1 & -1 & b \end{vmatrix} = -2a + 3b + 1$$

Obţinem sistemul

$$\begin{cases} a+3b-2=0\\ -2a+3b+1=0 \end{cases}$$

Prin rezolvarea acestui sistem obținem a=1 și $b=\frac{1}{3}.$

Exercițiul 6. Să se rezolve sistemul:

$$\begin{cases} x + 4y + 3z = 1 \\ 2x + 5y + 4z = 4 \\ x - 3y - 2z = 5 \end{cases}$$

utilizând

- a) metoda lui Cramer;
- b) metoda matriceală;

Rezolvare.

a) Determinantul sistemului este $\Delta = \begin{vmatrix} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{vmatrix} = 1 \neq 0.$

Apoi calculăm

$$\Delta_x = \begin{vmatrix} 1 & 4 & 3 \\ 4 & 5 & 4 \\ 5 & -3 & -2 \end{vmatrix} = 3, \Delta_y = \begin{vmatrix} 1 & 1 & 3 \\ 2 & 4 & 4 \\ 1 & 5 & -2 \end{vmatrix} = -2, \Delta_z = \begin{vmatrix} 1 & 4 & 1 \\ 2 & 5 & 4 \\ 1 & -3 & 5 \end{vmatrix} = 2$$

Aplicăm metoda de rezolvare a lui Cramer și obținem:

$$x = \frac{\Delta_x}{\Lambda} = 3, y = \frac{\Delta_y}{\Lambda} = -2, z = \frac{\Delta_z}{\Lambda} = 2$$

Astfel soluţia sistemului este: x = 3, y = -2, z = 2.

b) Matricea asociată sistemului este $A = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{pmatrix}$. Matricea termenilor

liberi este
$$B = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$
, iar matricea necunoscutelor este $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

Cu aceste notații se poate scrie sub formă matriceală $A \cdot X = B$. Avem

$$A^{-1} = \begin{pmatrix} 2 & -1 & 1 \\ 8 & -5 & 2 \\ -11 & 7 & -3 \end{pmatrix}, \text{ deci } X = A^{-1} \cdot B = \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix}. \text{ De aici rezultă}$$

$$x = 3, y = -2, z = 2.$$

Exercițiul 7. Să se rezolve sistemul liniar 2x + y - z = -10.

Rezolvare.

Ecuația 2x+y-z=-10 are o soluție particulară x=-3,y=1,z=5. Dacă $x=\alpha,y=\beta,z=2\alpha+\beta+10,\,\alpha,\beta\in\mathbb{R},$ atunci $2\alpha+\beta-(2\alpha+\beta+10)=-10$ este adevarată.

Deci, tripletul $(\alpha, \beta, 2\alpha + \beta + 10)$, $\alpha, \beta \in \mathbb{R}$ este soluția generală a ecuației.

Exercițiul 8. Să se discute și apoi să se rezolve sistemul:

$$\begin{cases} 2x - y + 3z = 4 \\ 3x + 4y - z = -5 \\ x + 5y - 4z = -9. \end{cases}$$

Rezolvare.

Etapele rezolvării unui sistem liniar sunt:

- 1) Identificarea necunoscutelor principale și a necunoscutelor secundare
 - matricea sistemului

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 3 & 4 & -1 \\ 1 & 5 & -4 \end{pmatrix}$$

- \bullet determinantul matricei A
 - -dacă $det A \neq 0$, atunci liniile (coloanele) matricei A nu pot fi scrise unele în funcție de celelalte; se rezolvă utilizând metoda lui Cramer -dacă det A=0, atunci liniile (coloanele) matricei A pot fi scrise unele în funcție de celelalte;

Găsim uşor că $det A = \begin{vmatrix} 2 & -1 & 3 \\ 3 & 4 & -1 \\ 1 & 5 & -4 \end{vmatrix} = 0$, deci cel putin o linie(coloană) poate fi dedusă din cealaltă.

Alegem minorul principal al sistemului : $\Delta_p \neq 0$

În acest exemplu am construit minorul principal din primele două linii, respectiv coloane ale matricei A:

$$\Delta_p = \begin{vmatrix} 2 & -1 \\ 3 & 4 \end{vmatrix} = 11 \neq 0$$

Aşadar necunoscutele principale sunt x,y (fac parte din minorul principal), iar necunoscuta secundară este z (nu face parte din minorul principal). Pentru a evidenția rolul secundar al lui z, acesta va fi renotat cu α . Din sistemul inițial vom păstra doar sistemul redus. Sistemul redus obținut este:

$$\begin{cases} 2x - y = 4 - 3\alpha \\ 3x + 4y = -5 + \alpha \end{cases}$$

- \bullet rangul unei matrice este dat de ordinul minorului principal, decirangA=2
- 2) Studierea compatibilității sistemului

Teorema lui Kronecker-Capelli:

sistemul este compatibil $\iff rangA = rang\overline{A}$.

Teorema lui Rouché:

sistemul este compatibil \iff toți minorii caracteristici sunt nuli

Dacă cel puţin un minor caracteristic este nenul, atunci sistemul este incompatibil.

• minorul caracteristic este un determinant format din minorul principal la care se lipeşte coloana termenilor liberi

În exemplul nostru, matricea extinsă este:

$$\overline{A} = \begin{pmatrix} 2 & -1 & 3 & \vdots & 4 \\ 3 & 4 & -1 & \vdots & -5 \\ 1 & 5 & -4 & \vdots & -9 \end{pmatrix}$$

Putem să formăm un singur minor caracteristic:

$$\Delta_c = \begin{vmatrix} 2 & -1 & 4 \\ 3 & 4 & -5 \\ 1 & 5 & -9 \end{vmatrix} = 0$$

Deci sistemul este compatibil conform teoremei lui Rouche.

3) Rezolvarea sistemului redus

Sistemul redus obținut are soluțiile: $x = 1 - \alpha, y = -2 + \alpha$.

Deci multimea soluțiilor sistemului este $S = \{(1 - \alpha, -2 + \alpha, \alpha) : \alpha \in \mathbb{R}\}.$

Exercițiul 9. Să se discute și apoi să se rezolve sistemul omogen:

$$\begin{cases} 4x + y - 3z - t &= 0 \\ 2x + 3y + z - 5t &= 0 \\ x - 2y - 2z + 3t &= 0. \end{cases}$$

Rezolvare.

Deoarece sistemul este omogen, iar numărul ecuațiilor este mai mic decât numărul necunoscutelor, deducem că sistemul admite și soluții nenule.

Fie A matricea sistemului considerat.

Deoarece
$$\Delta = \begin{vmatrix} 4 & 1 & -3 \\ 2 & 3 & 1 \\ 1 & -2 & -2 \end{vmatrix} = 10 \neq 0$$
, deducem că $rang(A) = 3$ și că Δ

este minor principal al matricei A. Prin urmare, necunoscutele x,y,z sunt necunoscute principale, necunoscuta t este necunoscuta secundară, iar toate ecuațiile sistemului sunt ecuații principale.

Notăm $t = \alpha, \alpha \in \mathbb{R}$, sistemul inițial se poate scrie sub forma :

$$\begin{cases}
4x + y - 3z = \alpha \\
2x + 3y + z = 5\alpha \\
x - 2y - 2z = -3\alpha.
\end{cases}$$
(1)

Având în vedere că $\Delta=10$ este determinantul sistemului (1) și că $\Delta_x=6\alpha, \Delta_y=10\alpha, \Delta_z=8\alpha$ rezultă că $(\frac{3\alpha}{5},\alpha,\frac{4\alpha}{5})$ sunt soluțiile sistemului (1).

Exercițiul 10. Să se discute și să se rezolve sistemul:

$$\begin{cases} ax + y + z = 1 \\ x + ay + z = a \\ x + y + az = a^2 \end{cases}, a \in \mathbb{R}.$$

Rezolvare.

Calculăm determinantul sistemului

$$\Delta = \begin{vmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix} = a^3 - 3a + 2.$$

Se rezolvă ecuația : $a^3 - 3a + 2 = 0 \iff a_1 = a_2 = 1, a_3 = -2.$

Cazul 1. Dacă $a \neq -2, a \neq 1$, atunci sistemul este compatibil determinat, soluțiile sale fiind calculate cu ajutorul regulii lui Cramer:

$$x = -\frac{a+1}{a+2}, y = \frac{1}{a+2}, z = \frac{(a+1)^2}{a+2}$$

Cazul 2. • Dacă
$$a=1,$$
 atunci sistemul devine
$$\left\{ \begin{array}{l} x+y+z=1\\ x+y+z=1\\ x+y+z=1 \end{array} \right..$$

Acest sistem este compatibil dublu nedeterminat (deoarece rangul este 1, iar numărul necunoscutelor principale este 1), având soluțiile x = a, y = $b, z = 1 - a - b, a, b \in \mathbb{R}.$

• Dacă
$$a = -2$$
, atunci sistemul devine
$$\begin{cases} -2x + y + z = 1 \\ x - 2y + z = -2 \\ x + y - 2z = 4 \end{cases}$$

Determinantul sistemului este nul. Alegem un minor nenul care va juca

rolul determinantului principal:
$$\Delta_p = \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} = 3 \neq 0$$
.

Avem minorul caracteristic $\Delta_c = \begin{vmatrix} -2 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 1 & 4 \end{vmatrix} = 9 \neq 0$. Deoarece

minorul caracteristic este nenul, conform teoremei lui Rouchè, deducem că în acest caz sistemul este incompatibil.