5.5 Haar Transform for Digital Images

Another neat property of the Haar transform is that it can be instantly generalized to matrices (even rectangular) without any extra effort! This allows for the compression of digital images. But first we address the issue of normalization of the Haar coefficients. As we observed earlier, the $2^n \times 2^n$ matrix W_n of Haar basis vectors has orthogonal columns, but its columns do not have unit length. As a consequence, W_n^{\top} is not the inverse of W_n , but rather the matrix

$$W_n^{-1} = D_n W_n^{\top}$$
 with $D_n = \operatorname{diag}\left(2^{-n}, \underbrace{2^{-n}}_{2^0}, \underbrace{2^{-(n-1)}, 2^{-(n-1)}}_{2^1}, \underbrace{2^{-(n-2)}, \dots, 2^{-(n-2)}}_{2^2}, \dots, \underbrace{2^{-1}, \dots, 2^{-1}}_{2^{n-1}}\right).$

Definition 5.5. The orthogonal matrix

$$H_n = W_n D_n^{\frac{1}{2}}$$

whose columns are the normalized Haar basis vectors, with

$$D_n^{\frac{1}{2}} = \operatorname{diag}\left(2^{-\frac{n}{2}}, \underbrace{2^{-\frac{n}{2}}}_{2^0}, \underbrace{2^{-\frac{n-1}{2}}, 2^{-\frac{n-1}{2}}}_{2^1}, \underbrace{2^{-\frac{n-2}{2}}, \dots, 2^{-\frac{n-2}{2}}}_{2^2}, \dots, \underbrace{2^{-\frac{1}{2}}, \dots, 2^{-\frac{1}{2}}}_{2^{n-1}}\right)$$

is called the normalized Haar transform matrix. Given a vector (signal) u, we call $c = H_n^{\top} u$ the normalized Haar coefficients of u.

Because H_n is orthogonal, $H_n^{-1} = H_n^{\top}$.

Then a moment of reflection shows that we have to slightly modify the algorithms to compute $H_n^{\top}u$ and H_nc as follows: When computing the sequence of u^j s, use

$$u^{j+1}(2i-1) = (u^{j}(i) + u^{j}(2^{j}+i))/\sqrt{2}$$

$$u^{j+1}(2i) = (u^{j}(i) - u^{j}(2^{j}+i))/\sqrt{2},$$

and when computing the sequence of c^{j} s, use

$$c^{j}(i) = (c^{j+1}(2i-1) + c^{j+1}(2i))/\sqrt{2}$$
$$c^{j}(2^{j}+i) = (c^{j+1}(2i-1) - c^{j+1}(2i))/\sqrt{2}.$$

Note that things are now more symmetric, at the expense of a division by $\sqrt{2}$. However, for long vectors, it turns out that these algorithms are numerically more stable.

Remark: Some authors (for example, Stollnitz, Derose and Salesin [168]) rescale c by $1/\sqrt{2^n}$ and u by $\sqrt{2^n}$. This is because the norm of the basis functions ψ_k^j is not equal to 1 (under