MOSFET – Power, Single N-Channel 40 V, 16 mΩ, 24 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	40	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Cur-		T _C = 25°C	I _D	24	Α
rent R _{θJC} (Notes 1 & 3)	Steady	T _C = 100°C		17	
Power Dissipation R _{θJC}	State	T _C = 25°C	P_{D}	18	W
(Note 1)		T _C = 100°C		9.0	
Continuous Drain		T _A = 25°C	I _D	9.8	Α
Current R _{θJA} (Notes 1, 2 & 3)	Steady State	T _A = 100°C		7.0	
Power Dissipation R _{θJA}		T _A = 25°C	P _D	2.9	W
(Notes 1 & 2)		T _A = 100°C		1.4	
Pulsed Drain Current	T _A = 25°	C, t _p = 10 μs	I _{DM}	110	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
Source Current (Body Diode)			I _S	15	Α
Single Pulse Drain-to-Source Avalanche Energy ($T_J = 25$ °C, $I_{L(pk)} = 1.7$ A)			E _{AS}	63	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain) (Note 1)	$R_{\theta JC}$	8.2	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	52	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)}	I _D	
40 V	16 mΩ @ 10 V	24 A	
	24.5 mΩ @ 4.5 V	247	

DPAK CASE 369C STYLE 2

MARKING DIAGRAM & PIN ASSIGNMENT

A = Assembly Location

Y = Year
WW = Work Week
5C486NL = Device Code
G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	<u> </u>						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				17		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V.	T _J = 25°C			10	μΑ
		$V_{GS} = 0 \text{ V},$ $V_{DS} = 40 \text{ V}$	T _J = 125°C			250	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	_S = 20 V			100	nA
ON CHARACTERISTICS (Note 4)	•		•		•	•	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 20 μΑ	1.2		2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _C	₎ = 10 A		19.6	24.5	mΩ
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D	= 10 A		13.3	16	mΩ
Forward Transconductance	9FS	$V_{DS} = 3 \text{ V}, I_{D}$	= 10 A		25.5		S
CHARGES, CAPACITANCES AND GATE RE	SISTANCES		•		•		
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 25 \text{ V}$			530		pF
Output Capacitance	C _{oss}				210		
Reverse Transfer Capacitance	C _{rss}				13		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 32 \text{ V},$ $I_{D} = 10 \text{ A}$			4.7		nC
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 32 V, I_{D} = 10 A			9.8		nC
Threshold Gate Charge	Q _{G(TH)}				1.2		
Gate-to-Source Charge	Q _{GS}				2.0		
Gate-to-Drain Charge	Q_{GD}				1.5		
Plateau Voltage	V _{GP}				3.2		V
SWITCHING CHARACTERISTICS (Note 5)	•		<u>'</u>		•	1	.1
Turn-On Delay Time	t _{d(on)}				6.0		ns
Rise Time	t _r	Vce = 10 V. Vn	e = 32 V.		14		1
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = 10 \text{ V}, V_{DS}$ $I_{D} = 10 \text{ A}, R_{G}$	$= 2.5 \Omega$		15		
Fall Time	t _f		-		2.0		
DRAIN-SOURCE DIODE CHARACTERISTIC							
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V},$ $I_{S} = 10 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ $T_{J} = 125^{\circ}\text{C}$	$T_J = 25^{\circ}C$		0.88	1.2	V
			T _J = 125°C		0.77		
Reverse Recovery Time	t _{RR}				19		ns
Charge Time	ta	V_{GS} = 0 V, dls/dt = 100 A/ μ s, I_{S} = 10 A			8.0		
Discharge Time	tb				10		
Reverse Recovery Charge	Q _{RR}				10		nC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total Charge

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Drain Current vs. Time in Avalanche

TYPICAL CHARACTERISTICS

Figure 13. Thermal Response

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NVD5C486NLT4G	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DPAK (SINGLE GAUGE)

CASE 369C ISSUE G

DATE 31 MAY 2023

- DIMENSIONING AND TOLERANCING ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS 63,
- L3. AND Z. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- DIMENSIONS D AND E ARE DETERMINED AT THE DUTERMOST EXTREMES OF THE PLASTIC BODY.

 DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- OPTIONAL MOLD FEATURE.

DIM	INCHES		MILLIMETERS		
MIM	MIN.	MAX.	MIN.	MAX.	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
ھ	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b 3	0.180	0.215	4.57	5.46	
Ū	0.018	0.024	0.46	0.61	
-2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Η	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114	REF	2.90 REF		
L2	0.020	BSC	0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040	-	1.01	
Z	0.155		3.93		

BOTTOM VIEW

BOTTOM VIEW

ALTERNATE CONSTRUCTIONS

CW ROTATED 90°

GENERIC MARKING DIAGRAM*

XXXXXX	= Device Code
Α	= Assembly Location
L	= Wafer Lot
Υ	= Year
WW	= Work Week
G	= Pb-Free Package

RECOMMENDED MOUNTING FOOTPRINT* *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DUWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

S

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. COLLECTOR	2. DRAIN	CATHODE	2. ANODE	ANODE
EMITTER	SOURCE	ANODE	3. GATE	CATHODE
COLLECTOR	4. DRAIN	CATHODE	ANODE	ANODE

STYLE 7: PIN 1. GATE 2. COLLECTOR STYLE 6: STYLE 8: STYLE 9: STYLE 10: PIN 1. CATHODE 2. ANODE 3. CATHODE PIN 1. MT1 2. MT2 PIN 1. N/C 2. CATHODE 3. ANODE PIN 1. ANODE 2. CATHODE 3 FMITTER 3 RESISTOR ADJUST 3 GATE 4. COLLECTOR 4. CATHODE 4. ANODE 4. CATHODE

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales