<u>Área personal</u> / Mis cursos / <u>03069 - MATEMATICA PARA COMPUTACION II - IIC2023</u> / <u>Vectores en R</u> / <u>Cuestionario N°4</u>

Comenzado el	domingo, 23 de julio de 2023, 13:00
Estado	Finalizado
Finalizado en	domingo, 23 de julio de 2023, 15:13
Tiempo empleado	2 horas 13 minutos
Puntos	20,50/25,00
Calificación	8.20 de 10.00 (82%)

Parcialmente correcta

Se puntúa 1,50 sobre 3,00

Considere los vectores a = -3i + 4j - 2k y b = i + 5j.

Según la información anterior, determine:

- 1. $a \times b$
- 2. $(-3a) \times b$

Respuestas:

- 1. $a \times b =$
- 10
- **✓** *i* +
- **x** j +
- **✓** k
- $(-3a) \times b =$
- 30
- ***** *i*+
- **x** j +
- $\checkmark k$.

Nota: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) solamente debe usar números y en caso de ser necesario el signo negativo. En caso de usar fracciones debe escribirlas de la forma a/b para representar la fracción $\frac{a}{b}$.

Se tiene que:

1.

$$(a \times b) = \begin{vmatrix} i & j & k \\ -3 & 4 & -2 \\ 1 & 5 & 0 \end{vmatrix} = \begin{vmatrix} 4 & -2 \\ 5 & 0 \end{vmatrix} i - \begin{vmatrix} -3 & -2 \\ 1 & 0 \end{vmatrix} j + \begin{vmatrix} -3 & 4 \\ 1 & 5 \end{vmatrix} k = (0 - -10)i - (0 - -2)j + (-15 - 4)k = 10i - 2j - 19k$$

2. Podemos calcular (-3a) imes b haciendo uso de las propiedades del producto cruz de la siguiente manera.

$$(-3a)\times b = -3(a\times b) = -3(10i-2j-19k) = -30i+6j+57k$$

Correcta

Se puntúa 3,00 sobre 3,00

Dados los vectores $\overrightarrow{u}(3,3,3)$ y $\overrightarrow{v}(-1,-1,-1)$, entonces el vector $\overrightarrow{u} \times \overrightarrow{v}$ corresponde a:

- \bigcirc a. $\overrightarrow{u}(9,9,9)$
- \bigcirc b. $\overrightarrow{u}(6,6,6)$
- \odot c. $\overrightarrow{u}(0,0,0)$
- \bigcirc d. $\overrightarrow{u}(-9,9,-9)$

Respuesta correcta

Notemos que al ser paralelo \overrightarrow{v} con \overrightarrow{u} tenemos que $\overrightarrow{u} \times \overrightarrow{v} = (0,0,0)$.

Además, se puede verificar:

$$\begin{vmatrix} i & j & k \\ 3 & 3 & 3 \\ -1 & -1 & -1 \end{vmatrix} = \left[3 \cdot -1 - (-1 \cdot 3) \right] i - \left[3 \cdot -1 - (-1 \cdot 3) \right] j + \left[3 \cdot -1 - (-1 \cdot 3) \right] k = (0, 0, 0)$$

La respuesta correcta es: $\overrightarrow{u}(0,0,0)$

Correcta

Se puntúa 4,00 sobre 4,00

Considere los siguientes puntos en \mathbb{R}^3 :

$$P_0 = (2, 6, -3)$$
 $P_1 = (3, 3, -2)$

De acuerdo con la información anterior, la ecuación **vectorial** y la ecuación **paramétrica** de la recta r que contiene a los puntos P_0 y P_1 , son de la forma:

Nota: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) **solamente debe usar números y en caso de ser necesario el signo negativo.** En caso de usar fracciones debe escribirlas de la forma a/b para representar la fracción $\frac{a}{b}$

1. Vectorial

Solución:

La ecuación vectorial corresponde a (x,y,z)=(

2

Y,

6

-3

-3 **✓**)+t(

 $\checkmark)+t($

,

-3

1

•)

 $\text{con } t \in \mathbb{R}$

2. Paramétrica

Solución:

La ecuación paramétrica corresponde a:

con $t \in \mathbb{R}$

1. Vectorial

Solución:

Se calcula el vector director de la siguiente forma:

$$\overrightarrow{P_0P_1} = (3,3,-2) - (2,6,-3) = (1,-3,1)$$

De esta manera la ecuación está dada por:

$$(x, y, z) = (2, 6, -3) + t(1, -3, 1)$$

2. Paramétrica

Solución:

La ecuación paramétrica corresponda a:

Considere $t \in \mathbb{R}$

$$\begin{cases} x = 2 + 1t \\ y = 6 - 3t \\ z = -3 + 1t \end{cases}$$

Correcta

Se puntúa 3,00 sobre 3,00

El vector normal al plano que contiene los puntos P(-3,-2,1), Q(1,-2,3), R(1,1,1) corresponde a:

- \bigcirc a. (-7, 8, -1)
- b. \((-6,8,12) \)

 ✓
- o. ((1,1,1))
- d. \((3,2,-1) \)

Respuesta correcta

Para hallar el vector \(\overrightarrow{n}\) hacemos:

Así

 $\label{eq:condition} $$ \operatorname{PQ} \simeq \operatorname{QR}=\left(\operatorname{QR}-\operatorname{CR}\right) . $$ is a constant of the condition of the conditio$

 $\hat{i} & \hat{j} & \hat{k} \$

4 & 0 &\ 2 \\

0 & 3 & -2

 $\end{array} \right)=-6\hat{i}+8\hat{j}+12\hat{k} \$

Por tanto el vector está dado por \((-6,8,12) \)

La respuesta correcta es: \((-6,8,12) \)

Correcta

Se puntúa 3,00 sobre 3,00

Considere los siguientes vectores:

$$(u=(1,2))$$
 y $(v=(4,-2))$

Según los vectores dados, con certeza, se puede afirmar que

Seleccione una:

- a. \(u\) y \(v\) son ortogonales.
- b. \(u \times v\) es paralelo a \(u\) y \(v\).
- o. \(u\) y \(v\) son paralelos.
- d. \(u\cdot v \neq 0\).

Respuesta correcta

Siendo los vectores (u=(1,2)) y (v=(4,-2)), entonces

\(u\cdot v=0\)

Por tanto, los vectores (u=(1,2)) y (v=(4,-2)) son ortogonales.

La respuesta correcta es: \(u\) y \(v\) son ortogonales.

Pregunta 6

Incorrecta

Se puntúa 0,00 sobre 3,00

Considere el punto (W=(3,4,0)) y el plano (Pi: x=-2y-2z+7) entonces la distancia (d) entre el punto y el plano corresponde a:

Solución:

La distancia \(d(W, \Pi)=\)

1 **X**

Nota: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) solamente debe usar números y en caso de ser necesario el signo negativo. En caso de usar fracciones debe escribirlas de la forma a/b, en su forma simplificada, para representar la fracción \(\dfrac{a}{b}\\).

Solución:

La distancia $(d(W, Pi)=\frac{|ax_0+by_0+cz_0-d|}{\sqrt{a^2+b^2+c^2}}=\frac{(3)+2(4)+2(0)-7}{\sqrt{1^2+2^2+2^2}}=\frac{4}{3}$ \). Note que $(x=-2y-2z+7 \neq x+2y+2z-7=0)$.

Finalizado

Se puntúa 6,00 sobre 6,00

Considere los siguientes vectores en (\mathbb{R}^{3}) , y $(k \in \mathbb{R})$:

```
\label{eq:continuous} $$ (\operatorname{a}=(k,-1,5)), (\operatorname{b}=(k,-1,7)), (\operatorname{a}=(2-k,3,2)) $$ (\operatorname{a}-\operatorname{a}-\operatorname{b}) y (\operatorname{a}=(2-k,3,2)) $$
```

Según la información anterior, determine el valor o valores del parámetro (k) de modo que los vectores (\overline{u}) y (\overline{v}) sean perpendiculares.

Nota: Recuerde que debe subir una fotografía del procedimiento de respuesta de este ítem. El mismo debe desarrollarlo a mano (no digital) y deberá agregar su nombre, número de cédula y firmar al final del ejercicio si esto no se presenta la respuesta no será calificada.

Ejercicio7 KristelCastro.jpeg

Primero se debe calcular \(\overrightarrow{u}=2\overrightarrow{a} - \overrightarrow{b}\), esto es:

 $\label{limit} $$\left(k_{-1,3} \right) = (k_{-1,3}) \ (k_{-1,3}) \ (1 \ punto) \ (1 \ punto) \ (2 \ punto) \ (2 \ punto) \ (3 \ punto)$

Ahora, considerando la expresión \(\cos\\theta = \dfrac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{v}|}\), y como los vectores \(\overrightarrow{u} \) y \(\overrightarrow{v} \)) son perpendiculares, esto es, que el ángulo que forman entre ellos es \(90^\), se tiene que:

\begin{align*}

```
\cos 90^{\&= \left((k,-1,3) \cdot (2-k,3,2)\right)} \left( (2-k,3,2)\right) \left( (2-k,3,2
```

Resolviendo para (k) se tiene que (k=-1) y (k=3) (1 punto).

Por tanto, los valores del parámetro \(k\) para que los vectores \(\overrightarrow{u}\) y \(\overrightarrow{v}\) sean ortogonales corresponden a \(\(k=-1\)\) y \(\(k=3\)\) (1 punto).

Comentario:

■ Vídeos tutorías: Capitulo #5

Ir a...

Equipo Base Cuestionario N°4 >