Occasionally Misspecified

JJ Forneron, Boston University

October 2023

- Want to estimate a model on a sample of data, problem:
 - good fit for most of the sample
 - grossly misspecified for a few observations

- Want to estimate a model on a sample of data, problem:
 - good fit for most of the sample
 - grossly misspecified for a few observations
- Can be due to:
 - temporary change in policy rule
 - imperfect match between merged datasets
 - generated regressors/outcomes with some large mispredictions

- Want to estimate a model on a sample of data, problem:
 - good fit for most of the sample
 - grossly misspecified for a few observations
- Can be due to:
 - temporary change in policy rule
 - imperfect match between merged datasets
 - generated regressors/outcomes with some large mispredictions
- Solution: robust estimation
 - + less sensitive to outliers

- Want to estimate a model on a sample of data, problem:
 - good fit for most of the sample
 - grossly misspecified for a few observations
- Can be due to:
 - temporary change in policy rule
 - imperfect match between merged datasets
 - generated regressors/outcomes with some large mispredictions
- Solution: robust estimation
 - + less sensitive to outliers
 - inconsistent/biased unless data symmetric + symmetrically contaminated

- Want to estimate a model on a sample of data, problem:
 - good fit for most of the sample
 - grossly misspecified for a few observations
- Can be due to:
 - temporary change in policy rule
 - imperfect match between merged datasets
 - generated regressors/outcomes with some large mispredictions
- Solution: robust estimation
 - + less sensitive to outliers
 - inconsistent/biased unless data symmetric + symmetrically contaminated
- Look for an estimator that is:

- Want to estimate a model on a sample of data, problem:
 - good fit for most of the sample
 - grossly misspecified for a few observations
- Can be due to:
 - temporary change in policy rule
 - imperfect match between merged datasets
 - generated regressors/outcomes with some large mispredictions
- Solution: robust estimation
 - + less sensitive to outliers
 - inconsistent/biased unless data symmetric + symmetrically contaminated
- Look for an estimator that is:
 - 1. robust to small amounts of large contamination

- Want to estimate a model on a sample of data, problem:
 - good fit for most of the sample
 - grossly misspecified for a few observations
- Can be due to:
 - temporary change in policy rule
 - imperfect match between merged datasets
 - generated regressors/outcomes with some large mispredictions
- Solution: robust estimation
 - + less sensitive to outliers
 - inconsistent/biased unless data symmetric + symmetrically contaminated
- Look for an estimator that is:
 - 1. robust to small amounts of large contamination
 - 2. asymptotically unbiased

- Want to estimate a model on a sample of data, problem:
 - good fit for most of the sample
 - grossly misspecified for a few observations
- Can be due to:
 - temporary change in policy rule
 - imperfect match between merged datasets
 - generated regressors/outcomes with some large mispredictions
- Solution: robust estimation
 - + less sensitive to outliers
 - inconsistent/biased unless data symmetric + symmetrically contaminated
- Look for an estimator that is:
 - 1. robust to small amounts of large contamination
 - 2. asymptotically unbiased
 - 3. not too hard to compute

Motivating Example: Price Puzzle

- Estimand: effect of monetary shock on inflation
- Method: recursive VAR (OLS)
 - Variables: Interest Rates R_t , Inflation π_t , Unemployment: u_t
 - Specification: 4 lags
 - Data: US from 1960Q1 to 2000Q4 (same as Stock and Watson, 2001)

Motivating Example: Price Puzzle

- Estimand: effect of monetary shock on inflation
- Method: recursive VAR (OLS)
 - Variables: Interest Rates R_t , Inflation π_t , Unemployment: u_t
 - Specification: 4 lags
 - Data: US from 1960Q1 to 2000Q4 (same as Stock and Watson, 2001)
- Results: when $R_t \nearrow$, $\pi_t \nearrow$

• Initially Sims (1992), termed "Price Puzzle" by Eichenbaum (1992)

- Initially Sims (1992), termed "Price Puzzle" by Eichenbaum (1992)
- Several explanations, resolutions:
 - omitted variables: e.g. commodity prices (Sims, 1992), factors (Bernanke et al., 2005)
 - structural breaks: e.g (Castelnuovo and Surico, 2010)
 - . . .
 - ullet meta-analysis: Rusnák et al. (2013) look at 1000 regressions ($\gg T$)

- Initially Sims (1992), termed "Price Puzzle" by Eichenbaum (1992)
- Several explanations, resolutions:
 - omitted variables: e.g. commodity prices (Sims, 1992), factors (Bernanke et al., 2005)
 - structural breaks: e.g (Castelnuovo and Surico, 2010)
 - ...
 - meta-analysis: Rusnák et al. (2013) look at 1000 regressions ($\gg T$)
- The initial impact at Lag = 1 measured by β_1 in:

$$\pi_t = \beta_0 + \beta_1 R_{t-1} + \beta_2 u_{t-1} + \beta_3 \pi_{t-1} + \dots + \beta_{10} R_{t-4} + \beta_{11} u_{t-4} + \beta_{12} \pi_{t-4} + e_{\pi,t}.$$

estimated by OLS

- Initially Sims (1992), termed "Price Puzzle" by Eichenbaum (1992)
- Several explanations, resolutions:
 - omitted variables: e.g. commodity prices (Sims, 1992), factors (Bernanke et al., 2005)
 - structural breaks: e.g (Castelnuovo and Surico, 2010)
 - ...
 - meta-analysis: Rusnák et al. (2013) look at 1000 regressions ($\gg T$)
- The initial impact at Lag = 1 measured by β_1 in:

$$\pi_t = \beta_0 + \beta_1 R_{t-1} + \beta_2 u_{t-1} + \beta_3 \pi_{t-1} + \dots + \beta_{10} R_{t-4} + \beta_{11} u_{t-4} + \beta_{12} \pi_{t-4} + e_{\pi,t}.$$

estimated by OLS

Let's look at some regression diagnostics

Price Puzzle: Diagnostics

$$\pi_t = \beta_0 + \beta_1 R_{t-1} + \beta_2 u_{t-1} + \beta_3 \pi_{t-1} + \dots + \beta_{10} R_{t-4} + \beta_{11} u_{t-4} + \beta_{12} \pi_{t-4} + e_{\pi,t}.$$

• Residuals $\hat{e}_{\pi,t}$ (standardized)

Skewness: 0.36, Kurtosis: 3.78

Price Puzzle: Diagnostics

• Contributions to $\hat{\beta}_{1n}$ – based on $(X'X/n)^{-1}x_ty_t$ (avg = $\hat{\beta}_n$)

- 1981Q1: $75/n \simeq 0.47$ vs. $\hat{\beta}_1 = 0.21$, 3.5 standard errors
- Skewness: 3.24, Kurtosis: 27.81

Price Puzzle: Concerns

- 1979-1982: Federal Reserve no longer sets R_t directly
 - Non-borrowed reserves targeting (misspecification)
 - Increased volatility in R_t (leverage)
- **⇒** Leveraged outliers

Price Puzzle: Concerns

- 1979-1982: Federal Reserve no longer sets R_t directly
 - Non-borrowed reserves targeting (misspecification)
 - Increased volatility in R_t (leverage)
- **⇒** Leveraged outliers
 - Robust estimation & inference desirable
 - + Reduce the influence of outliers
 - Biased/Inconsistent for asymmetric data

Price Puzzle: Concerns

- 1979-1982: Federal Reserve no longer sets R_t directly
 - Non-borrowed reserves targeting (misspecification)
 - Increased volatility in R_t (leverage)
- ⇒ Leveraged outliers
 - Robust estimation & inference desirable
 - + Reduce the influence of outliers
 - Biased/Inconsistent for asymmetric data
 - Robust M-estimators not robust to leverage (Hamilton, 1992)

• Robust M-estimation:

$$\min_{\theta} \sum_{t=1}^{n} \psi(y_t - x_t'\theta),$$

• Robust M-estimation:

$$\min_{\theta} \sum_{t=1}^{n} \psi(y_t - x_t'\theta),$$

- Classic asymptotic results:
 - Huber (1964): $F_{\varepsilon} = (1 \varepsilon)\Phi + \varepsilon G$, symmetric

• Robust M-estimation:

$$\min_{\theta} \sum_{t=1}^{n} \psi(y_t - x_t'\theta),$$

 ψ non-quadratic: LAD, Huber loss, trimming, etc.

- Classic asymptotic results:
 - Huber (1964): $F_{\varepsilon} = (1 \varepsilon)\Phi + \varepsilon G$, symmetric
 - Jaeckel (1971):

$$F_{\varepsilon_n}=(1-\varepsilon_n)\Phi+\varepsilon_nG,$$

G asymmetric,
$$\varepsilon_n = O(n^{-1/2}) \Rightarrow \text{asymptotic bias} = O(n^{-1/2})$$

• Hampel (1974): Influence Curve for local asymptotics

• Robust M-estimation:

$$\min_{\theta} \sum_{t=1}^{n} \psi(y_t - x_t'\theta),$$

- Classic asymptotic results:
 - Huber (1964): $F_{\varepsilon} = (1 \varepsilon)\Phi + \varepsilon G$, symmetric
 - Jaeckel (1971):

$$F_{\varepsilon_n} = (1 - \varepsilon_n)\Phi + \varepsilon_n G,$$

G asymmetric,
$$\varepsilon_n = O(n^{-1/2}) \Rightarrow \text{asymptotic bias} = O(n^{-1/2})$$

- Hampel (1974): Influence Curve for local asymptotics
- F_0 asymmetric \Rightarrow inconsistency Carroll and Welsh (1988), Newey and Steigerwald (1997),...

• Robust M-estimation:

$$\min_{\theta} \sum_{t=1}^{n} \psi(y_t - x_t'\theta),$$

- Classic asymptotic results:
 - Huber (1964): $F_{\varepsilon} = (1 \varepsilon)\Phi + \varepsilon G$, symmetric
 - Jaeckel (1971):

$$F_{\varepsilon_n} = (1 - \varepsilon_n)\Phi + \varepsilon_n G$$

G asymmetric,
$$\varepsilon_n = O(n^{-1/2}) \Rightarrow \text{asymptotic bias} = O(n^{-1/2})$$

- Hampel (1974): Influence Curve for local asymptotics
- F_0 asymmetric \Rightarrow inconsistency Carroll and Welsh (1988), Newey and Steigerwald (1997),...
- Cantoni and Ronchetti (2001): GLM, analytical bias correction (parametric)

• Robust M-estimation:

$$\min_{\theta} \sum_{t=1}^{n} \psi(y_t - x_t'\theta),$$

- Classic asymptotic results:
 - Huber (1964): $F_{\varepsilon} = (1 \varepsilon)\Phi + \varepsilon G$, symmetric
 - Jaeckel (1971):

$$F_{\varepsilon_n} = (1 - \varepsilon_n)\Phi + \varepsilon_n G,$$

G asymmetric,
$$\varepsilon_n = O(n^{-1/2}) \Rightarrow \text{asymptotic bias} = O(n^{-1/2})$$

- Hampel (1974): Influence Curve for local asymptotics
- F_0 asymmetric \Rightarrow inconsistency Carroll and Welsh (1988), Newey and Steigerwald (1997),...
- Cantoni and Ronchetti (2001): GLM, analytical bias correction (parametric)
- Local asymptotics require $\hat{\theta}_n$ consistent, asymptotically normal

- More recent, finite-sample: Median-of-Means
 - K-subsamples, K means, return median
 - robust up to $n_o \leq K/2 1$ outliers
 - cv. rate depends on n/K
 - e.g. Lecué and Lerasle (2020), Laforgue et al. (2021)

- More recent, finite-sample: Median-of-Means
 - K-subsamples, K means, return median
 - robust up to $n_o \le K/2 1$ outliers
 - cv. rate depends on n/K
 - e.g. Lecué and Lerasle (2020), Laforgue et al. (2021)
- Bias can be bounded but not tractable:

$$|\mathsf{median}(X) - \mathbb{E}_P(X)| \leq \sigma_P(X)$$

- More recent, finite-sample: Median-of-Means
 - K-subsamples, K means, return median
 - robust up to $n_o \le K/2 1$ outliers
 - cv. rate depends on n/K
 - e.g. Lecué and Lerasle (2020), Laforgue et al. (2021)
- Bias can be bounded but not tractable:

$$|\mathsf{median}(X) - \mathbb{E}_P(X)| \leq \sigma_P(X)$$

- $n_o \to \infty$ requires $K \to \infty$
- bias of order: $\sqrt{K/n}$

- GMM problem: $\mathbb{E}_P[g(z_t; \theta)] = 0 \Leftrightarrow \theta = \theta_0$
- Sample (z_1, \ldots, z_n) with $n = n_P + n_o$

- GMM problem: $\mathbb{E}_P[g(z_t; \theta)] = 0 \Leftrightarrow \theta = \theta_0$
- Sample (z_1, \ldots, z_n) with $n = n_P + n_o$
- n_P good observations: $t = 1, ..., n_P$ s.t. $z_t \sim P$
 - iid or
 - strictly stationary, β -mixing with $\beta_m \leq a \exp(-bm)$ for $0 < a, b < \infty$

- GMM problem: $\mathbb{E}_P[g(z_t;\theta)] = 0 \Leftrightarrow \theta = \theta_0$
- Sample (z_1, \ldots, z_n) with $n = n_P + n_o$
- n_P good observations: $t = 1, ..., n_P$ s.t. $z_t \sim P$
 - iid or
 - strictly stationary, β -mixing with $\beta_m \leq a \exp(-bm)$ for $0 < a, b < \infty$
- n_o outliers: for $0 \le A, \alpha < \infty$ and $t = n_P + 1, \ldots, n$

$$z_t \in \mathcal{O}_n = \{z, \sup_{\theta \in \Theta} \|g(z;\theta)\| \le An^{\alpha}\}$$

- GMM problem: $\mathbb{E}_P[g(z_t;\theta)] = 0 \Leftrightarrow \theta = \theta_0$
- Sample (z_1, \ldots, z_n) with $n = n_P + n_o$
- n_P good observations: $t = 1, ..., n_P$ s.t. $z_t \sim P$
 - iid or
 - strictly stationary, β -mixing with $\beta_m \leq a \exp(-bm)$ for $0 < a, b < \infty$
- n_o outliers: for $0 \le A, \alpha < \infty$ and $t = n_P + 1, \dots, n$

$$z_t \in \mathcal{O}_n = \{z, \sup_{\theta \in \Theta} \|g(z;\theta)\| \le An^{\alpha}\}$$

- Sample mean $\overline{g}_n(\theta)$ can be
 - asymptotically biased if $n_o n^\alpha / \sqrt{n} \not\to 0$
 - inconsistent if $n_o n^\alpha/n \not\to 0$
 - diverging if $n_o n^\alpha/n \not\to 0$

Estimator

1. Moments: find $\hat{\psi}_n(\theta; \nu) = (\hat{\mu}_n, \hat{\Sigma}_n)$ minimizing:

$$Q_n(\psi;\theta) = \frac{\nu + p}{n} \sum_{t=1}^n \log \left(1 + \frac{\|g(z_t;\theta) - \mu\|_{\Sigma^{-1}}^2}{\nu} \right) + \log |\Sigma| + \frac{\kappa_1}{\nu} \|\mu\|_{\Sigma^{-1}}^2 + \frac{\kappa_2}{\nu} \mathsf{trace}(\Sigma)$$

for $0 < \nu, \kappa_1, \kappa_2 < \infty$ over

$$\Psi = \{(\mu, \Sigma), \, \mu \in \mathbb{R}^p, 0 < s_0 \le \lambda_{\min}(\Sigma) \le \lambda_{\max}(\Sigma) \le +\infty\}$$

Estimator

1. Moments: find $\hat{\psi}_n(\theta; \nu) = (\hat{\mu}_n, \hat{\Sigma}_n)$ minimizing:

$$Q_n(\psi;\theta) = \frac{\nu + p}{n} \sum_{t=1}^n \log \left(1 + \frac{\|g(z_t;\theta) - \mu\|_{\Sigma^{-1}}^2}{\nu} \right) + \log |\Sigma| + \frac{\kappa_1}{\nu} \|\mu\|_{\Sigma^{-1}}^2 + \frac{\kappa_2}{\nu} \operatorname{trace}(\Sigma)$$

for $0 < \nu, \kappa_1, \kappa_2 < \infty$ over

$$\Psi = \{(\mu, \Sigma), \, \mu \in \mathbb{R}^p, 0 < s_0 \leq \lambda_{\mathsf{min}}(\Sigma) \leq \lambda_{\mathsf{max}}(\Sigma) \leq +\infty\}$$

2. Correction:

$$\tilde{\mu}_n(\theta) = 2\hat{\mu}_n(\theta; \nu) - \hat{\mu}_n(\theta; \nu/2)$$

Estimator

1. Moments: find $\hat{\psi}_n(\theta; \nu) = (\hat{\mu}_n, \hat{\Sigma}_n)$ minimizing:

$$Q_n(\psi; \theta) = \frac{\nu + p}{n} \sum_{t=1}^n \log \left(1 + \frac{\|g(z_t; \theta) - \mu\|_{\Sigma^{-1}}^2}{\nu} \right) + \log |\Sigma| + \frac{\kappa_1}{\nu} \|\mu\|_{\Sigma^{-1}}^2 + \frac{\kappa_2}{\nu} \operatorname{trace}(\Sigma)$$

for $0 < \nu, \kappa_1, \kappa_2 < \infty$ over

$$\Psi = \{(\mu, \Sigma), \, \mu \in \mathbb{R}^p, 0 < s_0 \leq \lambda_{\mathsf{min}}(\Sigma) \leq \lambda_{\mathsf{max}}(\Sigma) \leq +\infty\}$$

2. Correction:

$$\tilde{\mu}_n(\theta) = 2\hat{\mu}_n(\theta; \nu) - \hat{\mu}_n(\theta; \nu/2)$$

3. Estimates $\tilde{\theta}_n$:

$$\|\tilde{\mu}_n(\tilde{\theta}_n)\|_{W_n}^2 \leq \inf_{\theta \in \Theta} \|\tilde{\mu}_n(\theta)\|_{W_n}^2 + o_p(n^{-1})$$

Tuning parameters, Properties

- $0 < \nu < \infty$: controls robustness,
 - $\nu = \infty$: $\hat{\mu}_n(\theta; \infty) = \overline{g}_n(\theta)$, $\hat{\Sigma}_n(\theta; \infty)$ sample covariance
 - $\nu < \infty$: $\hat{\mu}_n(\theta; \nu)$, $\hat{\Sigma}_n(\theta; \nu)$ biased

Tuning parameters, Properties

- $0 < \nu < \infty$: controls robustness,
 - $\nu = \infty$: $\hat{\mu}_n(\theta; \infty) = \overline{g}_n(\theta)$, $\hat{\Sigma}_n(\theta; \infty)$ sample covariance
 - $\nu < \infty$: $\hat{\mu}_n(\theta; \nu)$, $\hat{\Sigma}_n(\theta; \nu)$ biased
- $\kappa_1 = 0$
 - $\partial_{\mu}Q_{n}(\psi;\theta)=0$ when $\|\mu\|=\infty$, $\Sigma<\infty$
 - can be numerically unstable

Tuning parameters, Properties

- $0 < \nu < \infty$: controls robustness,
 - $\nu = \infty$: $\hat{\mu}_n(\theta; \infty) = \overline{g}_n(\theta)$, $\hat{\Sigma}_n(\theta; \infty)$ sample covariance
 - $\nu < \infty$: $\hat{\mu}_n(\theta; \nu)$, $\hat{\Sigma}_n(\theta; \nu)$ biased
- $\kappa_1 = 0$
 - $\partial_{\mu}Q_{n}(\psi;\theta)=0$ when $\|\mu\|=\infty$, $\Sigma<\infty$
 - can be numerically unstable
- Weighted average representation:

$$\hat{\mu}_n(\theta;\nu) = \sum_t \omega_t(\theta;\nu) g(z_t;\theta), \quad \tilde{\mu}_n(\theta;\nu) = \sum_t \tilde{\omega}_t(\theta;\nu) g(z_t;\theta)$$

where
$$0 \le \omega_t$$
, $\sum_t \omega_t \le 1$, $\tilde{\omega}_t = 2\omega_t(\nu) - \omega_t(\nu/2)$

 \Rightarrow Robust-LS is weighted-LS with weights \tilde{w}_t

• Simplified estimator: $\theta_0 = \mathbb{E}_P(z_t)$

$$\hat{\mu}_n(\nu) = \frac{1}{n} \sum_{t=1}^n \frac{z_t}{1 + |z_t|^2/\nu}$$

• Simplified estimator: $\theta_0 = \mathbb{E}_P(z_t)$

$$\hat{\mu}_n(\nu) = \frac{1}{n} \sum_{t=1}^n \frac{z_t}{1 + |z_t|^2/\nu}$$

• Finite-Sample: a) $\sup_{z} |z|/(1+|z|^2/\nu) \le \sqrt{\nu}/2$, b) Bernstein's inequality:

$$\mathbb{P}\left(\sup_{z_t \in \mathcal{O}_n, t > n_P} |\hat{\mu}_n(\nu) - \mu(\nu)| \ge \frac{\sqrt{\nu} n_o}{n} + \frac{n_P}{n} \frac{x}{\sqrt{n_P}}\right) \le 2 \exp\left(-\frac{x^2}{2} \sigma_{\nu}^2 + 2/3\sqrt{\nu/n_P}x\right)$$

when $z_t \sim P$, $1 \le t \le n_P$, are iid. $\sigma_{\nu}^2 \to \text{var}_P(z_t)$ as $\nu \nearrow$

• Simplified estimator: $\theta_0 = \mathbb{E}_P(z_t)$

$$\hat{\mu}_n(\nu) = \frac{1}{n} \sum_{t=1}^n \frac{z_t}{1 + |z_t|^2/\nu}$$

• Finite-Sample: a) $\sup_{z} |z|/(1+|z|^2/\nu) \le \sqrt{\nu}/2$, b) Bernstein's inequality:

$$\mathbb{P}\left(\sup_{z_t \in \mathcal{O}_n, t > n_P} |\hat{\mu}_n(\nu) - \mu(\nu)| \ge \frac{\sqrt{\nu} n_o}{n} + \frac{n_P}{n} \frac{x}{\sqrt{n_P}}\right) \le 2 \exp\left(-\frac{x^2}{2} \sigma_{\nu}^2 + 2/3\sqrt{\nu/n_P}x\right)$$

when $z_t \sim P$, $1 \le t \le n_P$, are iid. $\sigma_{\nu}^2 \to \text{var}_P(z_t)$ as $\nu \nearrow$

- Two biases:
 - outlier: $\sqrt{\nu} n_o/n$
 - asymmetry: $\mu(\nu) \theta_0 = \mathbb{E}_P[\hat{\mu}_n(\nu)] \theta_0$

• Asymmetry bias is at most $\mathbb{E}_P(|z_t|^3)/\nu$:

$$\mu(
u) = heta_0 - rac{1}{
u} \mathbb{E}_P \left(rac{z_t^3}{1 + z_t^2/
u}
ight).$$

• Asymmetry bias is at most $\mathbb{E}_P(|z_t|^3)/\nu$:

$$\mu(
u) = heta_0 - rac{1}{
u} \mathbb{E}_P\left(rac{z_t^3}{1 + z_t^2/
u}
ight)$$

• Bias correction $\tilde{\mu}(\nu) = 2\mu(\nu) - \mu(\nu/2)$:

$$ilde{\mu}(
u) = heta_0 - rac{1}{
u^2} \mathbb{E}_P \left(rac{z_t^5}{(1 + z_t^2/
u)(1 + 2z_t^2/
u)}
ight)$$

• Asymmetry bias is at most $\mathbb{E}_P(|z_t|^3)/\nu$:

$$\mu(
u) = heta_0 - rac{1}{
u} \mathbb{E}_P \left(rac{z_t^3}{1 + z_t^2/
u}
ight).$$

• Bias correction $\tilde{\mu}(\nu) = 2\mu(\nu) - \mu(\nu/2)$:

$$ilde{\mu}(
u) = heta_0 - rac{1}{
u^2} \mathbb{E}_P \left(rac{z_t^5}{(1 + z_t^2/
u)(1 + 2z_t^2/
u)}
ight)$$

• Repeat bias correction $\tilde{\mu}(\nu) = 2\tilde{\mu}(\nu) - \tilde{\mu}(\nu/2)$:

$$ilde{\mu}(
u) = heta_0 + rac{2}{
u^2} \mathbb{E}_P \left(rac{z_t^5 (1 - z_t^4 /
u)}{(1 + z_t^2 /
u)(1 + 2z_t^2 /
u)(1 + 2z_t^2 /
u)(1 + 4z_t^2 /
u)}
ight)$$

numerator has 3 roots, better small sample properties (simulations)

- Two biases:

 - Outlier bias: $\sqrt{\nu} n_o/n$ Asymmetry bias: $1/\nu^2$

- Two biases:
 - Outlier bias: $\sqrt{\nu} n_o/n$
 - Asymmetry bias: $1/\nu^2$
- Optimal choice $\nu \simeq (n/n_o)^{2/5}$

- Two biases:
 - Outlier bias: $\sqrt{\nu} n_o/n$
 - Asymmetry bias: $1/\nu^2$
- Optimal choice $\nu \simeq (n/n_o)^{2/5}$
- Asymptotic normality requires: $\sqrt{n}/\nu^2 = o(1), \sqrt{\nu/n}n_o = o(1) \Rightarrow n_o = o(n^{3/8})$
 - no cannot increase too quickly...
 - P symmetric, need: $n_o = o(n^{1/2})$
 - $\nu \approx n^{1/4} \log(n)$ implies $n_o = o(n^{3/8}/\sqrt{\log(n)})$

- Two biases:
 - Outlier bias: $\sqrt{\nu} n_o/n$
 - Asymmetry bias: $1/\nu^2$
- Optimal choice $\nu \simeq (n/n_o)^{2/5}$
- Asymptotic normality requires: $\sqrt{n}/\nu^2 = o(1), \sqrt{\nu/n}n_o = o(1) \Rightarrow n_o = o(n^{3/8})$
 - no cannot increase too quickly...
 - P symmetric, need: $n_o = o(n^{1/2})$
 - $\nu \approx n^{1/4} \log(n)$ implies $n_o = o(n^{3/8}/\sqrt{\log(n)})$
- Undersmoothing (no bias correction): $n_o = o(n^{1/4})$

Finite Samples

$$Q_{\nu}(\psi;\theta) = \mathbb{E}_{P}\left[\left(\nu + p\right)\log\left(1 + \|g(z_{t};\theta) - \mu\|_{\Sigma^{-1}}^{2}/\nu\right)\right] + \log|\Sigma| + \frac{\kappa_{1}}{\nu}\|\mu\|_{\Sigma^{-1}}^{2} + \frac{\kappa_{2}}{\nu}\operatorname{trace}(\Sigma).$$

• Q_{ν} : population analog of Q_n with $n_o = 0$, let $\psi(\theta; \nu)$ minimize Q_{ν}

Finite Samples

$$Q_{\nu}(\psi;\theta) = \mathbb{E}_{P}\left[\left(\nu + p\right)\log\left(1 + \|g(z_{t};\theta) - \mu\|_{\Sigma^{-1}}^{2}/\nu\right)\right] + \log|\Sigma| + \frac{\kappa_{1}}{\nu}\|\mu\|_{\Sigma^{-1}}^{2} + \frac{\kappa_{2}}{\nu}\mathsf{trace}(\Sigma).$$

• Q_{ν} : population analog of Q_n with $n_o=0$, let $\psi(\theta;\nu)$ minimize Q_{ν}

where $C_p = 1 + (k + 2p^2)[\log(p) + \log(\nu) + \log(n_P)]$

• If i. $\mathbb{E}_P[\|g(z_t;\theta)\|^2] < \infty$, $\forall \theta$, ii. $\|g(z_t;\theta_1) - g(z_t;\theta_2)\| \le G_t \|\theta_1 - \theta_2\|$, $\mathbb{E}_P(\|G_t\|^2) < \infty$, then, for iid data:

$$\mathbb{P}\left(\sup_{\theta\in\Theta}\sup_{z_{t}\in\mathcal{O}_{n},t>n_{P}}\left\{Q_{\nu}(\hat{\psi}_{n}(\theta;\nu);\theta)-Q_{\nu}(\psi(\theta;\nu);\theta)\right\}\geq C_{\mathcal{O}}\frac{n_{o}(\nu+p)}{n}[1+\log(n)]+L\frac{n_{P}}{n}(\nu+p)\log(1+\nu p)\left[\sqrt{\frac{x}{n_{P}}}+\frac{x}{n_{P}}+\sqrt{\frac{C_{n}}{n_{P}}}+\frac{C_{n}}{n_{P}}\right]\right)\leq 4\exp(-x),$$

Large Samples: Oracle Equivalence

• Further assume that $\sup_{\theta \in \Theta} \mathbb{E}_P[\|g(z_t;\theta)\|^4] < \infty$, and

$$n_{o} = o\left(\frac{n}{\nu \log(n)}\right), \ \nu \log(\nu) = o\left(\sqrt{\frac{n}{\log(n)}}\right).$$

• Let $M_{r,\delta} = \max\left(\mathbb{E}_P(\|g(z_t;\theta_0)\|^{r+\delta}), \mathbb{E}_P(\|G_t\|^{r+\delta})\right)$ and $\overline{g}_{n_P}(\theta) = \frac{1}{n_P} \sum_{t=1}^{n_P} g(z_t;\theta)$

Large Samples: Oracle Equivalence

• Further assume that $\sup_{\theta \in \Theta} \mathbb{E}_P[\|g(z_t;\theta)\|^4] < \infty$, and

$$n_o = o\left(\frac{n}{\nu\log(n)}\right), \ \nu\log(\nu) = o\left(\sqrt{\frac{n}{\log(n)}}\right).$$

- Let $M_{r,\delta} = \max\left(\mathbb{E}_P(\|g(z_t;\theta_0)\|^{r+\delta}), \mathbb{E}_P(\|G_t\|^{r+\delta})\right)$ and $\overline{g}_{n_P}(\theta) = \frac{1}{n_P} \sum_{t=1}^{n_P} g(z_t;\theta)$
- If $M_{3,\delta} < \infty$ for some $\delta > 0$:

$$\sup_{\theta \in \Theta} \left(\sup_{z_t \in \mathcal{O}_n, t > n_P} \| \hat{\mu}_n(\theta; \nu) - \overline{g}_{n_P}(\theta) \| \right) = O_p \left(\max \left[\frac{1}{\nu}, \frac{\sqrt{\nu} n_o}{n} \right] \right)$$

Large Samples: Oracle Equivalence

• Further assume that $\sup_{\theta \in \Theta} \mathbb{E}_P[\|g(z_t;\theta)\|^4] < \infty$, and

$$n_o = o\left(\frac{n}{\nu\log(n)}\right), \ \nu\log(\nu) = o\left(\sqrt{\frac{n}{\log(n)}}\right).$$

- Let $M_{r,\delta} = \max\left(\mathbb{E}_P(\|g(z_t;\theta_0)\|^{r+\delta}), \mathbb{E}_P(\|G_t\|^{r+\delta})\right)$ and $\overline{g}_{n_P}(\theta) = \frac{1}{n_P} \sum_{t=1}^{n_P} g(z_t;\theta)$
- If $M_{3,\delta} < \infty$ for some $\delta > 0$:

$$\sup_{\theta \in \Theta} \left(\sup_{z_t \in \mathcal{O}_n, t > n_P} \| \hat{\mu}_n(\theta; \nu) - \overline{g}_{n_P}(\theta) \| \right) = O_p \left(\max \left[\frac{1}{\nu}, \frac{\sqrt{\nu} n_o}{n} \right] \right)$$

• If $M_{5,\delta} < \infty$ for some $\delta > 0$:

$$\sup_{\theta \in \Theta} \left(\sup_{z_t \in \mathcal{O}_n, t > n_P} \| \tilde{\mu}_n(\theta; \nu) - \overline{g}_{n_P}(\theta) \| \right) = O_p \left(\max \left[\frac{1}{\nu^2}, \frac{\sqrt{\nu} n_o}{n} \right] \right).$$

Large Samples: Oracle Equivalence (estimator)

• Assume standard regularity conditions for $1 \le t \le n_P$, and

$$rac{\sqrt{n}}{
u^2}=o(1), ext{ and } \sqrt{rac{
u}{n}}n_o=o(1).$$

Large Samples: Oracle Equivalence (estimator)

• Assume standard regularity conditions for $1 \le t \le n_P$, and

$$rac{\sqrt{n}}{
u^2}=o(1), ext{ and } \sqrt{rac{
u}{n}}n_o=o(1).$$

• Let $\hat{\theta}_{n_P}$ minimize $\|\overline{g}_{n_P}(\theta)\|_{W_n}$; $\tilde{\theta}_n$ minimize $\|\tilde{\mu}_n(\theta;\nu)\|_{W_n}$ then:

$$\sup_{z_t \in \mathcal{O}_n, t > n_P} \| \sqrt{n_P} (\tilde{\theta}_n - \hat{\theta}_{n_P}) \| = o_P(1), \quad \text{and} \quad \sqrt{n_P} (\tilde{\theta}_n - \theta_0) \overset{d}{\to} \mathcal{N}(0, V)$$

for any sequence $(z_t)_{t>n_P}\in\mathcal{O}_n$, $V=\operatorname{avar}(\hat{\theta}_{n_P})$

Monte Carlo

• Simulation design – for $1 \le t \le n_P$

$$y_t = \theta_0 + \theta_1 x_{1t} + \theta_2 x_{2t} + \theta_3 x_{3t} + e_t,$$

•
$$n = 150$$
, $x_{1t}, x_{2t}, x_{3t}, e_t = (\chi_5^2 - 5)/\sqrt{10}$. $\theta_0 = (0, 1, 1, 1)$

Monte Carlo

• Simulation design – for $1 \le t \le n_P$

$$y_t = \theta_0 + \theta_1 x_{1t} + \theta_2 x_{2t} + \theta_3 x_{3t} + e_t,$$

- n = 150, $x_{1t}, x_{2t}, x_{3t}, e_t = (\chi_5^2 5)/\sqrt{10}$. $\theta_0 = (0, 1, 1, 1)$
- Outliers: $y_t = x_t' \theta_\dagger$, $\theta_\dagger = (0, 1/2, 1/2, 1/2)$. $x_{1t} = x_{2t} = x_{3t} = \sqrt{n}$
- $n_o = 0, 1, 5, 10, \dots$

Monte Carlo

• Simulation design – for $1 \le t \le n_P$

$$y_t = \theta_0 + \theta_1 x_{1t} + \theta_2 x_{2t} + \theta_3 x_{3t} + e_t,$$

- n = 150, x_{1t} , x_{2t} , x_{3t} , $e_t = (\chi_5^2 5)/\sqrt{10}$. $\theta_0 = (0, 1, 1, 1)$
- Outliers: $y_t = x_t' \theta_\dagger$, $\theta_\dagger = (0, 1/2, 1/2, 1/2)$. $x_{1t} = x_{2t} = x_{3t} = \sqrt{n}$
- $n_o = 0, 1, 5, 10, \dots$
- Several estimators:
 - OLS,
 - oracle estimator,
 - Robust M-estimator with Huber loss,
 - This paper: $\hat{\theta}_n$, $\tilde{\theta}_n$, $\tilde{\theta}_n$
 - ullet Undersmoothing: no bias correction, u^2

	100 imes RMSE								Rejection Rate							
	$n_o = 0$															
	$\hat{ heta}_n^{ols}$	$\hat{ heta}_{n_P}^{ols}$	$\hat{ heta}_n^{rlm}$	$\hat{\theta}_n$	$\widetilde{ heta}_n$	$ ilde{ heta}_n$	$\hat{ heta}_n^{un}$	$\hat{ heta}_n^{ols}$	$\hat{ heta}_{n_P}^{ols}$	$\hat{ heta}_n^{rlm}$	$\hat{\theta}_n$	$\tilde{\theta}_n$	$ ilde{ heta}_n$	$\hat{ heta}_n^{un}$		
θ_0	8.05	8.05	12.00	11.84	9.31	8.11	7.94	0.04	0.04	0.24	0.29	0.14	0.05	0.06		
$ heta_{ extbf{1}}$	8.00	8.00	7.15	7.97	7.79	7.78	7.92	0.06	0.06	0.06	0.11	0.08	0.07	0.06		
$ heta_2$	8.10	8.10	7.46	8.45	8.21	8.11	8.06	0.04	0.04	0.05	0.10	0.06	0.05	0.05		
θ_3	8.19	8.19	7.43	8.55	8.30	8.16	8.14	0.06	0.06	0.06	0.10	0.07	0.06	0.06		

	100 imes RMSE								Rejection Rate							
	$\hat{ heta}_{n}^{ols}$	$\hat{ heta}_{n_P}^{ols}$	$\hat{ heta}_n^{rlm}$	$\hat{\theta}_n$	$\widetilde{ heta}_n$	$ ilde{ heta}_n$	$\hat{ heta}_n^{un}$	$\hat{ heta}_n^{ols}$	$\hat{ heta}_{n_P}^{ols}$	$\hat{\theta}_n^{rlm}$	$\hat{\theta}_n$	$\widetilde{ heta}_n$	$ ilde{ heta}_n$	$\hat{\theta}_n^{un}$		
θ_0	10.71	8.04	13.01	14.18	10.97	8.52	10.32	0.03	0.04	0.20	0.46	0.23	0.08	0.08		
$ heta_{1}$	38.57	8.07	15.23	8.27	7.97	7.87	32.24	0.00	0.06	0.01	0.14	0.10	0.07	0.40		
θ_2	38.39	8.11	15.09	8.73	8.36	8.14	32.08	0.01	0.04	0.01	0.12	0.06	0.06	0.38		
θ_3	39.94	8.20	15.75	8.83	8.49	8.27	33.47	0.00	0.06	0.00	0.12	0.09	0.07	0.39		

	100 × RMSE								Rejection Rate						
	$n_o = 5$														
	$\hat{ heta}_{n}^{ols}$	$\hat{ heta}_{n_P}^{ols}$	$\hat{ heta}_n^{rlm}$	$\hat{\theta}_n$	$\widetilde{ heta}_n$	$ ilde{ heta}_n$	$\hat{ heta}_n^{un}$	$\hat{ heta}_n^{ols}$	$\hat{ heta}_{n_P}^{ols}$	$\hat{\theta}_n^{rlm}$	$\hat{\theta}_n$	$\widetilde{ heta}_n$	$ ilde{ heta}_n$	$\hat{ heta}_n^{un}$	
θ_0	11.98	8.14	16.57	16.98	13.38	9.82	13.45	0.10	0.04	0.24	0.59	0.38	0.13	0.16	
$ heta_{ extbf{1}}$	47.57	8.40	47.17	9.02	8.62	8.40	46.72	0.99	0.06	0.99	0.12	0.08	0.06	0.99	
$ heta_2$	47.48	8.26	48.25	9.28	8.80	8.53	47.14	0.99	0.04	1.00	0.12	0.05	0.03	1.00	
θ_3	49.17	8.28	49.48	9.33	8.94	8.72	48.65	0.98	0.06	0.98	0.10	0.08	0.04	0.98	

			10	$00 \times RM$	Rejection Rate									
	$n_o = 10$													
	$\hat{ heta}_n^{ols}$	$\hat{ heta}_{n_P}^{ols}$	$\hat{ heta}_n^{rlm}$	$\hat{\theta}_n$	$\widetilde{ heta}_n$	$ ilde{ heta}_n$	$\hat{ heta}_n^{un}$	$\hat{ heta}_n^{ols}$	$\hat{ heta}_{n_P}^{ols}$	$\hat{\theta}_n^{rlm}$	$\hat{\theta}_n$	$\tilde{\theta}_n$	$ ilde{ heta}_n$	$\hat{\theta}_n^{un}$
θ_0	12.21	8.21	17.33	16.78	13.27	10.35	14.13	0.09	0.04	0.23	0.47	0.22	0.07	0.17
$ heta_{ extbf{1}}$	49.14	8.54	48.38	10.22	11.68	19.76	48.65	0.99	0.04	0.99	0.01	0.01	0.09	1.00
$ heta_2$	49.05	8.31	49.67	10.76	12.40	20.28	48.92	0.99	0.04	0.99	0.01	0.01	0.09	1.00
θ_3	50.52	8.51	50.70	11.04	13.00	20.96	50.19	0.98	0.06	0.98	0.00	0.01	0.09	0.99

Back to the Price Puzzle

- Re-estimate the model using OLS, $\hat{\theta}_n$, $\tilde{\theta}_n$, $\tilde{\theta}_n$
- Same data
- Same model

Price Puzzle: OLS

Price Puzzle: Robust, No Bias Correction

Price Puzzle: Robust, Bias Correction

Price Puzzle: Robust, Repeat Bias Correction

Price Puzzle: Estimation Weights

Price Puzzle: Estimation Weights (log scale)

Conclusion

- Misspecification can occur
 - don't always know which t are involved
 - diagnostics useful but not definitive
- Robust estimation:
 - more resilient
 - potentially biased/inconsistent
- This paper: simple estimates, bias correction
 - some finite and large sample results
 - robustness to leveraged outliers
 - weights: make the results transparent

References I

- Bernanke, B. S., Boivin, J., and Eliasz, P. (2005). Measuring the effects of monetary policy: a factor-augmented vector autoregressive (favar) approach. *The Quarterly journal of economics*, 120(1):387–422.
- Cantoni, E. and Ronchetti, E. (2001). Robust inference for generalized linear models. *Journal of the American Statistical Association*, 96(455):1022–1030.
- Carroll, R. J. and Welsh, A. H. (1988). A note on asymmetry and robustness in linear regression. *The American Statistician*, 42(4):285–287.
- Castelnuovo, E. and Surico, P. (2010). Monetary policy, inflation expectations and the price puzzle. *The Economic Journal*, 120(549):1262–1283.
- Eichenbaum, M. (1992). Comment on 'interpreting the macroeconomic time series facts: The effects of monetary policy': by christopher sims. *European Economic Review*, 36(5):1001–1011.
- Hamilton, L. C. (1992). How robust is robust regression? Stata Technical Bulletin, 1(2).
- Hampel, F. R. (1974). The influence curve and its role in robust estimation. *Journal of the American Statistical Association*, 69(346):383–393.
- Huber, P. J. (1964). Robust Estimation of a Location Parameter. *The Annals of Mathematical Statistics*, 35(1):73 101.
- Jaeckel, L. A. (1971). Robust estimates of location: Symmetry and asymmetric contamination. The Annals of Mathematical Statistics, 42(3):1020–1034.

References II

- Laforgue, P., Staerman, G., and Clémençon, S. (2021). Generalization bounds in the presence of outliers: a median-of-means study. In *International Conference on Machine Learning*, pages 5937–5947. PMLR.
- Lecué, G. and Lerasle, M. (2020). Robust machine learning by median-of-means: Theory and practice. *The Annals of Statistics*, 48(2):906 931.
- Newey, W. K. and Steigerwald, D. G. (1997). Asymptotic bias for quasi-maximum-likelihood estimators in conditional heteroskedasticity models. *Econometrica: Journal of the Econometric Society*, pages 587–599.
- Rusnák, M., Havranek, T., and Horváth, R. (2013). How to solve the price puzzle? a meta-analysis. Journal of Money, Credit and Banking, 45(1):37–70.
- Sims, C. A. (1992). Interpreting the macroeconomic time series facts: The effects of monetary policy. *European Economic Review*, 36(5):975–1000.
- Stock, J. H. and Watson, M. W. (2001). Vector autoregressions. Journal of Economic perspectives, 15(4):101-115.

Back to the Price Puzzle

ullet Re-estimate with a larger u=15 vs. u=8.99 in the main results

Price Puzzle: OLS

Price Puzzle: Robust, No Bias Correction

Price Puzzle: Robust, Bias Correction

Price Puzzle: Robust, Repeat Bias Correction

Price Puzzle: Estimation Weights

Price Puzzle: Estimation Weights (log scale)

