PHYSIK

UNTERRICHT - ABITUR 2025

Contents

Welle	Wellenoptik	
1.1	2024-06-06 - Interferenz Gitter Versuch	1
1.1.1	Beobachtung	1
1.1.2	Auswertung	1
1.1.3	Aufgaben	1
1.1.4	Versuch Wiederholung	1
1.1.5	Worauf muss man achten:	2
1.1.6	Links	2
1.1.7	Zweite Runde	2
1.1.8	Bedeutung der einzelnen Bestandteile	2
1.2	2024-08-14 - Überlagerung von Wellen	2
1.3	2024-09-04 - Interferenze Auswerten	3
1.4	2024-09-13 - Interferometer	4
1.4.1	Video - Gravitationswellen	4
1.4.2	Das Michelson-Interferometer	5
1.4.3	Modelle des Lcihtes (alt)	5
1.5	2024-09-18 - Beugung	5
1.5.1	Gitterkonstruktion bei Interferenz	6
1.5.2	Versuch: Elektronenbeugungsröhre	6
Form	eln	7

Wellenoptik

1.1 2024-06-06 - Interferenz Gitter Versuch

1.1.1 Beobachtung

Abstand zum Schirm: 27cm Abstand der Maxima: 12cm

1.1.2 Auswertung

1.

Algemein sind folgende Formeln bekannt:

$$\sin \alpha = \frac{\lambda}{g}$$
 und $\tan \alpha = \frac{a}{l}$

Wobei λ die Wellenlaenge ist.

Gitter: 500 Spalten pro Millimeter

$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

•
$$2a_1 = 0, 12m$$
; $a_1 = 0, 06m$; $l = 27cm = 0, 27m$

$$\lambda = g \cdot \sin(\tan^{-1}(\frac{a}{l}))$$

$$= (2 \cdot 10^{-6}) \cdot \sin(\tan^{-1}(\frac{0, 12}{0, 27}))$$

$$= 434 \cdot 10^{-9} m$$

1.1.4 Versuch Wiederholung

$$2a_2 = 0.127m;$$
 $a_2 = 0.635m;$ $l = 0.38m$

Berechnung der Wellenlaenge λ :

$$\lambda = g \cdot \sin(\tan^{-1}(\frac{a}{l}))$$

$$= (2 \cdot 10^{-6}) \cdot \sin(\tan^{-1}(\frac{0.07}{0.38}))$$

$$= 6.34 \cdot 10^{-7} m = 634 nm$$

1.1.5 Worauf muss man achten:

Wir sollen naechstes Jahr den Versuch den anderen erklaeren

1.1.6 *Links*

а

2a ist zwischen den Maxima der Ordnung n. Also von einem Maxima bis zur mitte ist nur a

1.1.7 Zweite Runde

• 2024-06-18

Messung der verschiedenen Wellen / LED's

LED	Wellenlaenge in nm	Abstand 1. Ordnung in cm ¹	A. 2. Ordnung
Rot	632	10,3	-
Grün	514	8,5	18,8
Blau	463	7,5	15,7

$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

Rot

1. Ordnung

$$2a = 0.103m$$
; $a = 0.0515m$; $l = 0.15m$

Berechnung der Wellenlaenge λ :

$$\lambda = \frac{g}{n} \cdot \sin(\tan^{-1}(\frac{a_n}{l}))$$

$$= (2 \cdot 10^{-6}) \cdot \sin(\tan^{-1}(\frac{0,0515}{0,15}))$$

$$= 6,49 \cdot 10^{-7}m$$

1.1.8 Bedeutung der einzelnen Bestandteile

1.2 2024-08-14 - Überlagerung von Wellen

¹ Abstand 1. Ordnung zur 1. Ordnung

Abbildung 1.2: Überlagerung zwei unterschiedlicher Wellen

Im ersten Beispiel² test [fig:waves_no_offset] wird die Amplitude *verdoppelt*, im zweiten Beispiel³ gleichen sich die beiden Wellen zu *keiner* Welle aus.

Hier betrachten wir immer 2 gleichartige Wellen und interesieren uns für die Wällenlänge: λ

$$\lambda = \frac{g \cdot \sin(\arcsin\frac{a_n}{l})}{n} = \frac{g \cdot \sin(\tan^{-1}(\frac{a_n}{l}))}{n}$$

Abbildung 1.3: Überlagerung von Wellen durch ein Gitter

Abstand zwischen 2 Maxima gleicher Ordnung messen und durch zwei Dividieren.

1.3 2024-09-04 - Interferenze Auswerten

• S. 171 A5

^{2 &}lt;fig:waves_no_offset>

^{3 &}lt;fig:waves_offset>

Mit Tabelle

Messung (29%)

$$2a_1 = 1.90cm$$

 $2a_2 = 3.85cm$
 $2a_3 = 5.80cm$

$$a_1 \approx 3.27cm = 3.27 \cdot 10^{-2}m$$

 $a_2 \approx 6.64cm = 6.64 \cdot 10^{-2}m$
 $a_3 = 10cm = 10 \cdot 10^{-2}m$

$$\lambda = \frac{g \cdot \sin(\tan^{-1}(\frac{a_n}{l}))}{n} \quad | \cdot n$$

$$n\lambda = g \cdot \sin(\tan^{-1}(\frac{a_n}{l})) \quad | \div \sin(\tan^{-1}(\frac{a_n}{l}))$$

$$\frac{n\lambda}{\sin(\tan^{-1}(\frac{a_n}{l}))} = g$$

Dabei ist:

- l = 2.6m
- $6.35 \cdot 10^{-7} m$

1. Ordnung
$$g_1 \approx 5.05 \cdot 10^{-5} m$$

2. Ordnung
$$g_2 \approx 4.97 \cdot 10^{-5} m$$

3. Ordnung
$$g_3 \approx 4.96 \cdot 10^{-5} m$$

$$\overline{x} = \frac{g_1 + g_2 + g_3}{3} \approx 4.99 \cdot 10^{-5} m$$

1.4.1 Video - Gravitationswellen

- Gravitationswellen stauchen und strecken materie minimal
- Solche wellen werden unter anderem durch die Kollision von schwarzen Löchern verursacht

1.4.2 Das Michelson-Interferometer

Aufgabe: Erklären Sie mithilfe der S. 173 unter Erstellung einer Skizze das Funktionsprinzip eines Michelson Interferometers und die Messung kleiner Längenänderungen damit.

Abbildung 1.4: Michelson-Interferometer

Durch die Trennung und die wieder Zusammenführung des Laser kann mit der Interferenz eine beeinflussende Kraft mit sehr hoher präzision festgestelt werden.

Gangunterschied

Der Gangunterschied δs ist der Unteschied der Laufwege der beiden Wellen bei Interferenz

Aufgabe bei Leifiph

1.4.3 Modelle des Leihtes (alt)

• Interferenz ist auch an einem "einzel Spalt" möglich

Kanten gelten als 'Spalt'
Abbildung 1.5: Beugung am Einzelspalt

1.5.1 Gitterkonstruktion bei Interferenz

• S. 171 B1 und B2

Drehung des Gitters: Kreise Kreise auch mit **sehr** vielen gegeneinander verdrehten Gittern

1.5.2 Versuch: Elektronenbeugungsröhre

Berechnung geschwindigkeite von Elektronen in der Elektronenkanone

Elektronen werden im homogenen elektrischen Feld (formal Kondensator) beschleunigt.

Im Feld besitzen sie $E_{el}=U_B\cdot e$ (U_B : Beschleunigungsspannung und e: Elementarladung) an Elektrischer Energie. Diese wird (gemäß Annahme vollständig) in *kinetische* Energie umgewandelt.

$$E_{el} = E_{kin}$$

$$e \cdot U_B = \frac{1}{2}m \cdot v^2 \quad |\cdot 2| \div m$$

$$\frac{2eU_B}{m} = v^2 \qquad |\sqrt{\frac{2eU_B}{m}} = v$$

mit *m* Masse Elektron und und *v* Geschwindigkeit Elektron.

Formeln

Definitionen

Wellenoptik 1	Formeln	 7
Berechnung		
geschwindigkeite von		
Elektronen in der		
Elektronenkanone 6		

Bibliographie