

4

Moving Charges and Magnetism

A static charge produces only electric field. A moving charge produces both electric field and magnetic field. A current carrying conductor produces only magnetic field.

MAGNETIC FIELD PRODUCED BY A CURRENT WIRE (BIOT-SAVART'S LAW)

The magnetic induction dB produced by an element $d\ell$ carrying a current I at a distance r is given by:

$$dB = \frac{\mu_0 \mu_r}{4\pi} \frac{I \, dl \sin \theta}{r^2} \Rightarrow \vec{dB} = \frac{\mu_0 \mu_r}{4\pi} \frac{I \left(\vec{d\ell} \times \vec{r} \right)}{r^3}$$

here the quantity $Id\ell$ is called as current element.

 μ = permeability of the medium = $\mu_0 \mu_r$

 μ_0 = permeability of free space

 μ_r = relative permeability of the medium (Dimensionless quantity)

Unit of μ_0 & μ is NA⁻² or Hm⁻¹;

$$\mu_0 = 4\pi \times 10^{-7}~Hm^{-1}$$

Magnetic Induction Due To a Straight Current Conductor

Magnetic induction due to a current carrying straight wire

$$B = \frac{\mu_0 I}{4\pi R} (\cos\theta_1 + \cos\theta_2) = \frac{\mu_0 I}{4\pi R} (\sin\alpha_1 + \sin\alpha_2)$$

Magnetic induction due to a infinitely long wire $B = \frac{\mu_0 I}{2\pi R} \otimes$

Magnetic induction due to semi infinite straight conductor

$$B = \frac{\mu_0 I}{4\pi R} \otimes$$

$$\alpha_1 = 0^{\circ}; \ \alpha_2 = 90^{\circ}$$

- * Magnetic field due to a flat circular coil carrying a current:
- (i) At its centre B = $\frac{\mu_0 NI}{2R}$ where

N = total number of turns in the coil

I = current in the coil

R = Radius of the coil

(ii) On the axis B =
$$\frac{\mu_0 \text{NIR}^2}{2(x^2 + R^2)^{3/2}}$$

Where x = distance of the point from the centre

It is maximum at the centre $B_C = \frac{\mu_0 NI}{2R}$

$$B=\frac{\mu_0 I \theta}{4\pi R}$$

 Magnetic field due to infinite long solid cylindrical conductor of radius R

$$For \ r \ge R : B = \frac{\mu_0 I}{2\pi r}$$

• For
$$r < R : B = \frac{\mu_0 Ir}{2\pi R^2}$$

Magnetic Induction Due to Solenoid

 $B = \mu_0 nI$, direction along axis.

where $n \rightarrow$ number of turns per meter;

 $I \rightarrow current$

Magnetic Induction Due To Toroid

$$B = \mu_0 nI$$

where
$$n = \frac{N}{2\pi R}$$
 (no. of turns per m)

 $N = total turns and R \approx r$

Magnetic Induction Due To Current Carrying Sheet

$$B = \frac{1}{2} \mu_0 \lambda, \text{ where } \lambda = \text{Linear current density (A/m)}$$

Ampere's Circuital Law

 $\oint \vec{B} \cdot \vec{d} l = \mu \Sigma I$ where ΣI = algebraic sum of all the current.

Motion of A Charge In Uniform Magnetic Field

- (a) When $\overrightarrow{V} \mid | \ \overrightarrow{B};$ Motion will be in a straight line and $\overrightarrow{F} = 0$
- (b) When $\overrightarrow{V} \perp \overrightarrow{B}$: Motion will be in circular path with radius $R = \frac{mv}{qB} \text{ and angular velocity } \omega = \frac{qB}{m} \text{ and } F = qvB.$
- (c) When \overrightarrow{V} is at $\angle \theta$ to \overrightarrow{B} : Motion will be helical with radius $R_k = \frac{mv\sin\theta}{qB} \text{ and pitch } P_H = \frac{2\pi mv\cos\theta}{qB} \text{ and } F = qvBsin\theta.$

LORENTZ FORCE

An electric charge 'q' moving with a velocity \vec{V} through a magnetic field of magnetic induction \vec{B} experiences a force \vec{F} ,

given by $\overrightarrow{F} = q \overrightarrow{v} \times \overrightarrow{B}$. Therefore, if the charge moves in a space where both electric and magnetic fields are superposed.

 \overrightarrow{F} = net electromagnetic force on the charge = $\overrightarrow{qE} + \overrightarrow{qv} \times \overrightarrow{B}$ This force is called the Lorentz Force.

Motion of Charge In Combined Electric Field & Magnetic Field

- * When $\overrightarrow{v} \parallel \overrightarrow{B} \And \overrightarrow{v} \parallel \overrightarrow{E}$, Motion will be uniformly accelerated in a straight line as $F_{magnetic} = 0$ and $F_{electrostatic} = qE$ So the particle will be either speeding up or speeding down
- * When $\overrightarrow{v} \parallel \overrightarrow{B} \And \overrightarrow{v} \perp \overrightarrow{E}$, motion will be uniformly accelerated in a parabolic path
- * When $\overrightarrow{v} \perp \overrightarrow{B} \& \overrightarrow{v} \perp \overrightarrow{E}$, the particle will move undeflected & undervated with same uniform speed if $v = \frac{E}{B}$ (This is called as velocity selector condition)

Magnetic Force On A straight Current Carrying

Wire: $\overrightarrow{F} = I (\overrightarrow{L} \times \overrightarrow{B})$

I = current in the straight conductor

 \vec{L} = displacement between the ends of the conductor in the direction of the current in it

 \overrightarrow{B} = magnetic induction. (Uniform throughout the length of conductor)

Note: In general, force is $\vec{F} = \int I(d\vec{l} \times \vec{B})$

Magnetic Interaction Force Between Two Parallel Long Straight Currents

The interactive force between two parallel long straight wires is:

- (i) Repulsive if the currents are anti-parallel.
- (ii) Attractive if the currents are parallel.

This force per unit length on either conductor is given by

$$F = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{r}.$$

Where r = perpendicular distance between the parallel conductors

Magnetic Torque On a current loop

When a plane current loop of 'N' turns and of area 'A' per turn carrying a current I is placed in uniform magnetic field, it experiences zero net force, but experiences a torque given by

 $\overrightarrow{\tau} = NI \vec{A} \times \vec{B} = \vec{M} \times \vec{B} = BINAsin\theta \text{ where } \vec{A} = area \, vector \, outward$

from the face of the circuit where the current is anticlockwise, \vec{B} = magnetic induction of the uniform magnetic field.

 \overrightarrow{M} = magnetic moment of the current circuit = \overrightarrow{NIA}

Force on A Random Shaped Conductor in A Uniform Magnetic Field

- ❖ Magnetic force on a closed loop in a uniform B is zero.
- Force experienced by a wire of any shape is equivalent to force on a wire joining points A & B in a uniform magnetic field.

Magnetic Moment of A Rotating Charge

If a charge q is rotating at an angular velocity ω , its equivalent current is given as $I=\frac{q\omega}{2\pi}$ & its magnetic moment is $M=I\pi R^2=\frac{1}{2}q\omega R^2$.

Key Note

The ratio of magnetic moment to angular momentum of a uniform rotating object which is charged uniformly is always a constant, irrespective of the shape of conductor M/L = q/2m.

- * Magnetic dipole
 - + Magnetic moment $M = m \times 2l$ where m = pole strength of the magnet

- + Magnetic field at axial point (or End-on) of dipole \vec{B} $= \frac{\mu_0}{4\pi} \frac{2 \vec{M}}{r^3}$
- + Magnetic field at equatorial position (Broad-on) of dipole $= \vec{B} = \frac{\mu_0}{4\pi} \frac{\left(-\vec{M}\right)}{r^3}$
- + At a point which is at a distance r from midpoint of dipole and making angle θ with dipole axis.

Magnetic field B =
$$\frac{\mu_0}{4\pi} \frac{M\sqrt{1 + 3\cos^2\theta}}{r^3}$$

- * Torque on dipole placed in uniform magnetic field $\overset{\rightarrow}{\tau} = \vec{M} \times \vec{B}$
- * Potential energy of dipole placed in an uniform field $U = \overrightarrow{M} \cdot \overrightarrow{B}$
- Intensity of magnetisation I = M/V
- Magnetic induction $B = mH = m_0(H + I)$
- Magnetic permeability $\mu = \frac{B}{H}$
- Magnetic susceptibility $\chi_m = \frac{1}{H} = \mu 1$
- Curies Law for paramagnetic $\chi_m \propto \frac{1}{T}$
- * Curie-Wiess law for Ferromagnetic materials $\chi_m \propto \frac{1}{T-T_C}$

Where $T_C = Curie$ temperature