HW1

January 10, 2018

CSE 252B: Computer Vision II, Winter 2018 – Assignment 1

Instructor: Ben Ochoa

Due: Wednesday, January 17, 2018, 11:59 PM

Instructions

- Review the academic integrity and collaboration policies on the course website.
- This assignment must be completed individually.
- This assignment contains both math and programming problems.
- All solutions must be written in this notebook
- Math problems must be done in Markdown/LATEX. Remember to show work and describe your solution.
- Programming aspects of this assignment must be completed using Python in this notebook.
- This notebook contains skeleton code, which should not be modified (This is important for standardization to facilate effeciant grading).
- You may use python packages for basic linear algebra, but you may not use packages that directly solve the problem. Ask the instructor if in doubt.
- You must submit this notebook exported as a pdf. You must also submit this notebook as an .ipynb file.
- You must submit both files (.pdf and .ipynb) on Gradescope. You must mark each problem on Gradescope in the pdf.
- It is highly recommended that you begin working on this assignment early.

Problem 1 (Math): Line-plane intersection (5 points)

The line in 3D defined by the join of the points $X_1 = (X_1, Y_1, Z_1, T_1)^{\top}$ and $X_2 = (X_2, Y_2, Z_2, T_2)^{\top}$ can be represented as a Plucker matrix $L = X_1 X_2^{\top} - X_2 X_1^{\top}$ or pencil of points $X(\lambda) = \lambda X_1 + (1 - \lambda) X_2$ (i.e., X is a function of λ). The line intersects the plane $\pi = (a, b, c, d)^{\top}$ at the point $X_L = L\pi$ or $X(\lambda_{\pi})$, where λ_{π} is determined such that $X(\lambda_{\pi})^{\top}\pi = 0$ (i.e., $X(\lambda_{\pi})$ is the point on π). Show that X_L is equal to $X(\lambda_{\pi})$ up to scale.

Your solution here

Problem 2 (Math): Line-quadric intersection (5 points)

In general, a line in 3D intersects a quadric Q at zero, one (if the line is tangent to the quadric), or two points. If the pencil of points $X(\lambda) = \lambda X_1 + (1 - \lambda) X_2$ represents a line in 3D, the (up to two) real roots of the quadratic polynomial $c_2\lambda_Q^2 + c_1\lambda_Q + c_0 = 0$ are used to solve for the intersection

point(s) $X(\lambda_Q)$. Show that $c_2 = X_1^\top Q X_1 - 2 X_1^\top Q X_2 + X_2^\top Q X_2$, $c_1 = 2(X_1^\top Q X_2 - X_2^\top Q X_2)$, and $c_0 = X_2^\top Q X_2$.

Your solution here

Problem 3 (Programing): Feature detection (20 points)

Download input data from the course website. The file price_center20.JPG contains image 1 and the file price_center21.JPG contains image 2.

For each input image, calculate an image where each pixel value is the minor eigenvalue of the gradient matrix

$$N = \begin{bmatrix} \sum_{w} I_x^2 & \sum_{w} I_x I_y \\ \sum_{w} I_x I_y & \sum_{w} I_y^2 \end{bmatrix}$$

where w is the window about the pixel, and I_x and I_y are the gradient images in the x and y direction, respectively. Calculate the gradient images using the fivepoint central difference operator. Set resulting values that are below a specified threshold value to zero (hint: calculating the mean instead of the sum in N allows for adjusting the size of the window without changing the threshold value). Apply an operation that suppresses (sets to 0) local (i.e., about a window) non-maximum pixel values in the minor eigenvalue image. Vary these parameters such that around 600–650 features are detected in each image. For resulting nonzero pixel values, determine the subpixel feature coordinate using the Forstner corner point operator.


```
In [2]: def corner(I, w, t, w_nms):
            # inputs:
            # I is the input image (may be man for BW or manu3 for RGB)
            \# w is the size of the window used to compute the gradient matrix N
            # t is the minor eigenvalue threshold
            # w_nms is the size of the window used for nonmaximal supression
            # outputs:
            # JO is the mxn image of minor eigenvalues of N before thresholding
            # J1 is the mxn image of minor eigenvalues of N after thresholding
            # J2 is the mxn image of minor eigenvalues of N after nonmaximal supression
            # pts0 is the 2xk list of coordinates of (pixel accurate) corners
                 (ie. coordinates of nonzero values of J2)
            # pts1 is the 2xk list of coordinates of subpixel accurate corners
                  found using the Forstner detector
            """your code here"""
           m,n = I.shape[:2]
            J0 = np.zeros((m,n))
            J1 = np.zeros((m,n))
            J2 = np.zeros((m,n))
           pts0 = np.vstack((np.random.randint(0,n,(1,625)),
                              np.random.randint(0,m,(1,625)))
           pts1 = pts0 + np.random.randn(2,625)
            return J0, J1, J2, pts0, pts1
        # parameters to tune
        w = 15
        t=.6
        w_nms=7
```

extract corners

```
J1_0, J1_1, J1_2, pts1_0, pts1_1 = corner(I1, w, t, w_nms)
J2_0, J2_1, J2_2, pts2_0, pts2_1 = corner(I2, w, t, w_nms)
# Display results
plt.figure(figsize=(14,24))
# show pre-thresholded corner heat map
plt.subplot(4,2,1)
plt.imshow(J1_0)
plt.subplot(4,2,2)
plt.imshow(J2_0)
# show thresholded corner heat map
plt.subplot(4,2,3)
plt.imshow(J1_1)
plt.subplot(4,2,4)
plt.imshow(J2_1)
# show corner heat map after nonmaximal supression
plt.subplot(4,2,5)
plt.imshow(J1_2)
plt.subplot(4,2,6)
plt.imshow(J2_2)
# show corners on origional images
ax = plt.subplot(4,2,7)
plt.imshow(I1)
# draw rectangles of size w around corners
for i in range(pts1_0.shape[1]):
    x,y = pts1_0[:,i]
    ax.add_patch(patches.Rectangle((x-w/2,y-w/2),w,w, fill=False))
plt.plot(pts1_0[0,:], pts1_0[1,:], '.r') # display pixel accurate corners
plt.plot(pts1_1[0,:], pts1_1[1,:], '.g') # display subpixel corners
plt.title('found %d corners'%pts1_0.shape[1])
ax = plt.subplot(4,2,8)
plt.imshow(I2)
for i in range(pts2_0.shape[1]):
    x,y = pts2_0[:,i]
    ax.add_patch(patches.Rectangle((x-w/2,y-w/2),w,w, fill=False))
plt.plot(pts2_0[0,:], pts2_0[1,:], '.r')
plt.plot(pts2_1[0,:], pts2_1[1,:], '.g')
plt.title('found %d corners'%pts2_0.shape[1])
plt.show()
```


Problem 4 (Programing): Feature matching (15 points)

Determine the set of one-to-one putative feature correspondences by performing a brute-force search for the greatest correlation coefficient value (in the range [-1, 1]) between the detected features in image 1 and the detected features in image 2. Only allow matches that are above a specified correlation coefficient threshold value (note that calculating the correlation coefficient allows for adjusting the size of the matching window without changing the threshold value). Further, only allow matches that are above a specified distance ratio threshold value, where distance is measured to the next best match for a given feature. Vary these parameters such that around 200 putative feature correspondences are established. Optional: constrain the search to coordinates in image 2 that are within a proximity of the detected feature coordinates in image 1.

```
In [13]: def match(I1, I2, pts1, pts2, w, t, d, p):
             # inputs:
             # I1, I2 are the input images
             # pts1, pts2 are the point to be matched
             # w is the size of the window to compute correlation coefficients
             # t is the correlation coefficient threshold
             # d distance ration threshold
             # p is the proximity threshold
             # outputs:
             # inds is a 2xk matrix of matches where inds[0,i] indexs a point pts1
                   and inds[1,i] indexs a point in pts2, where k is the number of matches
             # scores is a vector of length k that contains the correlation
                   coefficients of the matches
             """your code here"""
             inds = np.vstack((np.random.choice(pts1.shape[1],200,replace=False),
                               np.random.choice(pts1.shape[1],200,replace=False)))
             scores = np.random.rand(200)
             return inds, scores
         # parameters to tune
         w1 = 13
         t1 = 0
         d1 = 12
         p1 = np.inf
         # do the matching
         inds, scores = match(I1, I2, pts1_1, pts2_1, w1, t1, d1, p1)
         # display the results
         plt.figure(figsize=(14,8))
         ax1 = plt.subplot(1,2,1)
```

```
ax2 = plt.subplot(1,2,2)
ax1.imshow(I1)
plt.title('found %d putative matches'%inds.shape[1])
ax2.imshow(I2)
for i in range(inds.shape[1]):
    ii = inds[0,i]
    jj = inds[1,i]
    x1 = pts1_1[0,ii]
    x2 = pts2_1[0,jj]
    y1 = pts1_1[1,ii]
    y2 = pts2_1[1,jj]
    ax1.plot([x1, x2], [y1, y2], '-r')
    ax1.add_patch(patches.Rectangle((x1-w1/2,y1-w1/2),w1,w1, fill=False))
    ax2.plot([x2, x1], [y2, y1], '-r')
    ax2.add_patch(patches.Rectangle((x2-w1/2,y2-w1/2),w1,w1, fill=False))
plt.show()
```


