203: Διακριτά Μαθηματικά Κεφάλαιο 0: Μαθηματική Επαγωγή

Σπυρίδων Τζίμας

Εαρινό Εξάμηνο 2025

Μας ενδιαφέρει να αποδείξουμε προτάσεις της μορφής

«Για κάθε
$$n \ge n_0$$
 ισχύει $P(n)$.»,

όπου P(n) είναι μια έκφραση με ανεξάρτητη μεταβλητή n που παίρνει ακέραιες τιμές.

Παράδειγμα: Για κάθε $n \ge 1$ ισχύει $1+3+5+\cdots+(2n-1)=n^2$. (Άθροισμα πρώτων n περιττών φυσικών αριθμών.)

Το επιτυγχάνουμε κάνοντας χρήση της αποδεικτικής μεθόδου της μαθηματικής επαγωγής που αποτελείται από τα ακόλουθα βήματα:

Βάση της επαγωγής: Δείχνουμε ότι ισχύει $P(n_0)$. Επαγωγική υπόθεση: Υποθέτουμε ότι για κάποιο $n \ge n_0$ ισχύει P(n). Επαγωγικό βήμα: Δείχνουμε ότι για το ίδιο n ισχύει και P(n+1).

Άσκηση: Δείξτε ότι για κάθε $n \ge 1$ ισχύει $1+3+5+\cdots+(2n-1)=n^2$. (Άθροισμα πρώτων n περιττών φυσικών αριθμών.)

Λύση: Θα το δείξουμε κάνοντας χρήση της μαθηματικής επαγωγής.

 $\underline{\mathsf{Bάση}}\ \mathsf{της}\ \mathsf{επαγωγής:}\ (2\cdot 1-1)=1^2\ \mathsf{που}\ \mathsf{ισχύει}.$

 $\overline{\mathsf{Eπαγωγική}}$ υπόθεση: Έστω ότι $1+3+5+\cdots+(2n-1)=n^2$ για κάποιο $n\geq 1.$

 $\overline{\mathsf{Eπαγωγικό}}$ $\overline{\mathsf{βήμα}}$ $\overline{\mathsf{Θα}}$ δείξουμε ότι $1+3+5+\cdots+(2(n+1)-1)=(n+1)^2$.

$$1+3+5+\cdots+(2(n+1)-1)$$
 $=1+3+5+\cdots+(2n-1)+(2(n+1)-1)$ Εμφάνιση προτελευταίου όρου
 $=n^2+(2(n+1)-1)$ Επαγωγική υπόθεση
 $=n^2+2n+1$ Αλγεβρικές πράξεις
 $=(n+1)^2$ Τριώνυμο

Άσκηση: Δείξτε ότι για κάθε
$$n \geq 1$$
 ισχύει $1+2+3+\cdots+n=\frac{n(n+1)}{2}$. (Άθροισμα πρώτων n φυσικών αριθμών.)

Λύση: Θα το δείξουμε κάνοντας χρήση της μαθηματικής επαγωγής.

 ${ {\sf B}άση} \ {\sf της} \ {\sf επαγωγής:} \ 1 = 1(1+1)/2 \ {\sf που} \ {\sf ισχύει}.$

 $\overline{\mathbb{E}\pi$ αγωγική υπόθεση: Έστω ότι $1+2+3+\cdots+n=n(n+1)/2$ για κάποιο $n\geq 1$.

Επαγωγικό βήμα: Θα δείξουμε ότι $1+2+3+\cdots+(n+1)=(n+1)((n+1)+1)/2$.

$$1+2+3+\cdots+(n+1)$$

$$= 1+2+3+\cdots+n+(n+1)$$

$$= \frac{n(n+1)}{2}+(n+1)$$

$$= \frac{n(n+1)}{2}+\frac{2(n+1)}{2}=\frac{n(n+1)+2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}=\frac{(n+1)((n+1)+1)}{2}$$

Εμφάνιση προτελευταίου όρου

Επαγωγική υπόθεση

Ομώνυμα κλάσματα

Αντιμεταθετική και επιμεριστική ιδιότητα

Άσκηση: Δείξτε ότι για κάθε $n \ge 3$ ισχύει $n^2 \le 2^n$.

Λύση: Θα το δείξουμε κάνοντας χρήση της μαθηματικής επαγωγής.

Επαγωγική υπόθεση: Έστω ότι $n^2 \le 2^n$ για κάποιο $n \ge 3$.

 $\overline{\mathsf{Eπαγωγικό}\ \mathsf{βήμα}\colon \mathsf{Θα}}\ \mathsf{δείξουμε}\ \mathsf{ότι}\ (n+1)^2 \leq 2^{n+1}.$

$$(n+1)^2$$
 $= n^2 + 2n + 1$ Τριώνυμο
 $\leq n^2 + 2n + n = n^2 + 3n$ $1 \leq 3 \leq n$
 $\leq n^2 + n^2 = 2n^2$ $3 \leq n \Rightarrow 3n \leq n^2$
 $\leq 2 \cdot 2^n = 2^{n+1}$ Επαγωγική υπόθεση

Παραγοντικό

Για κάθε θετικό ακέραιο αριθμό n, καλούμε παραγοντικό του n τον αριθμό $n!=1\cdot 2\cdot \cdots \cdot n$. Για το 0, ορίζουμε 0!=1. Παρατηρούμε ότι το παραγοντικό ενός θετικού ακεραίου n μπορεί να οριστεί και αναδρομικά ως $n!=(n-1)!\cdot n$.

Άσκηση: Δείξτε ότι για κάθε $n \ge 4$ ισχύει $2^n \le n!$.

Λύση: Θα το δείξουμε κάνοντας χρήση της μαθηματικής επαγωγής.

 $\underline{\underline{\underline{Bάση της επαγωγής:}}}$ $2^4 = 16 \le 24 = 1 \cdot 2 \cdot 3 \cdot 4 = 4!$ που ισχύει.

 $Επαγωγική υπόθεση: Έστω ότι <math>2^n \le n!$ για κάποιο $n \ge 4$.

 $\overline{\mathsf{Eπαγωγικό}\ \mathsf{βήμα}:\ \mathsf{Θα}}\ \mathsf{δείξουμε}\ \mathsf{ότι}\ 2^{n+1} \leq (n+1)!.$

$$2^{n+1}$$
 $=2^n\cdot 2$ Αλγεβρικές Πράξεις $\leq n!\cdot 2$ Επαγωγική υπόθεση $\leq n!\cdot (n+1)$ $1\leq 4\leq n\Rightarrow 2\leq n+1$ Παραγοντικό