Lecture 8a: Regularization

CS109A Introduction to Data Science Pavlos Protopapas, Kevin Rader and Chris Tanner

ANNOUNCEMENTS

- Religious Holidays: please contact if this affects your HW due dates.
- For 209 students:
 - please submit 209 HW separately from 109 HW in different assignments on Canvas.
 - A-sec this week: optional to cover 2nd part from last week (Bayesian perspective).

ANNOUNCEMENTS

- Milestone 1: Due this Friday, Oct 4 (see Canvas instructions).
- Study break: Wednesday 6-8pm in TBD?
- Recall Course Requirements: "You are expected to have programming experience at the level of CS 50 or above, and statistics knowledge at the level of Stat 100 or above (Stat 110 recommended)."

Low Variance (Precise) Low Bias (Accurate)

Bias vs Variance

Left: 2000 best fit straight lines, each fitted on a different 20 point training set.

Right: Best-fit models using degree 10 polynomial

Bias vs Variance

Left: Linear regression coefficients

Right: Poly regression of order 10 coefficients

Lecture Outline

Regularization: LASSO and Ridge

Geometric Interpretation

Regularization: An Overview

The idea of regularization revolves around modifying the loss function L; in particular, we add a regularization term that penalizes some specified properties of the model parameters

$$L_{reg}(\beta) = L(\beta) + \lambda R(\beta),$$

where λ is a scalar that gives the weight (or importance) of the regularization term.

Fitting the model using the modified loss function L_{reg} would result in model parameters with desirable properties (specified by R).

LASSO Regression

Since we wish to discourage extreme values in model parameter, we need to choose a regularization term that penalizes parameter magnitudes. For our loss function, we will again use MSE.

Together our regularized loss function is:

$$L_{LASSO}(\beta) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \boldsymbol{\beta}^{\top} \boldsymbol{x}_i|^2 + \lambda \sum_{j=1}^{J} |\beta_j|.$$

Note that $\sum_{j=1}^{J} |\beta_j|$ is the I_1 norm of the vector $\boldsymbol{\beta}$

$$\sum_{j=1}^{J} |eta_j| = \|oldsymbol{eta}\|_1$$

Ridge Regression

Alternatively, we can choose a regularization term that penalizes the squares of the parameter magnitudes. Then, our regularized loss function is:

$$L_{Ridge}(\beta) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \beta^{\top} \mathbf{x}_i|^2 + \lambda \sum_{j=1}^{J} \beta_j^2.$$

Note that $\sum_{j=1}^{J} |\beta_j|^2$ is the square of the I_2 norm of the vector $\boldsymbol{\beta}$

$$\sum_{j=1}^{J} \beta_j^2 = \|\beta\|_2^2$$

Choosing λ

In both ridge and LASSO regression, we see that the larger our choice of the **regularization parameter** λ , the more heavily we penalize large values in β ,

- If λ is close to zero, we recover the MSE, i.e. ridge and LASSO regression is just ordinary regression.
- If λ is sufficiently large, the MSE term in the regularized loss function will be insignificant and the regularization term will force β_{ridge} and β_{LASSO} to be close to zero.

To avoid ad-hoc choices, we should select λ using cross-validation.

Ridge, LASSO - Computational complexity

Solution to ridge regression:

$$\beta = (X^T X + \lambda I)^{-1} X^T Y$$

The solution to the LASSO regression:

LASSO has no conventional analytical solution, as the L1 norm has no derivative at 0. We can, however, use the concept of subdifferential or subgradient to find a manageable expression. See a–sec2 for details.

Regularization Parameter with a Validation Seet

The solution of the Ridge/Lasso regression involves three steps:

- Select λ
- Find the minimum of the ridge/Lasso regression loss function (using the formula for ridge) and record the *MSE* on the validation set.
- Find the λ that gives the smallest *MSE*

$$L_{LASSO}(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \boldsymbol{\beta}^T \boldsymbol{x}|^2 + \lambda \sum_{j=1}^{J} |\beta_j|$$

$$\widehat{\boldsymbol{\beta}}^{LASSO} = \operatorname{argmin} L_{LASSO}(\boldsymbol{\beta})$$

$$L_{LASSO}(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \boldsymbol{\beta}^T \boldsymbol{x}|^2 + \lambda \sum_{j=1}^{J} |\beta_j|$$

$$\widehat{\boldsymbol{\beta}}^{LASSO} = \operatorname{argmin} L_{LASSO}(\boldsymbol{\beta})$$

 $-1.00_{-0.75}^{-0.50}_{-0.25}^{-0.25}_{0.00}^{-0.25}_{0.50}^{-0.25}_{0.75}^{-0.50}_{1.00}$

CS 09A, PRCTOPAPAS, RADER, TANNER

0.25

$$LASSO() = \frac{1}{LASSO} \sum_{i=1}^{n} |_{i} - |_{i}^{T} |_{i}^{2} + \sum_{j=1}^{J} |_{j} |_{j}$$
 $\widehat{\Box}^{LASSO} = \operatorname{argmin}_{LASSO}()$

The Geometry of Regularization (Ridge)

$$L_{Ridge}(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \boldsymbol{\beta}^T \boldsymbol{x}|^2 + \lambda \sum_{j=1}^{J} (\beta_j)^2 \qquad \qquad \widehat{\boldsymbol{\beta}}^{Ridge} = \operatorname{argmin} L_{Ridge}(\boldsymbol{\beta})$$

The Geometry of Regularization (Ridge)

The Geometry of Regularization

Examples

```
In [ ]: from sklearn.linear model import Lasso
 In [22]: lasso regression = Lasso(alpha=1.0, fit intercept=True)
         lasso regression.fit(np.vstack((X train, X val)), np.hstack((y train, y val)))
         print('Lasso regression model:\n {} + {}^T . x'.format(lasso regression.intercept , lasso regression.coe
         Lasso regression model:
          10.424895873901445 + [0.24482603 3.48164594 1.84836859 -0.06864603 -0.
          -0.02249766 -0. 0.
                                  0. 	 0. 	 0. 	 1^T. x
In [ ]: from sklearn.linear model import Ridge
In [20]: X train = train[all predictors].values
        X val = validation[all predictors].values
        X test = test[all predictors].values
        ridge regression = Ridge(alpha=1.0, fit intercept=True)
        ridge regression.fit(np.vstack((X train, X val)), np.hstack((y train, y val)))
        print('Ridge regression model:\n {} + {}^T . x'.format(ridge regression.intercept , ridge regression.coe
        Ridge regression model:
         0.298926791^{T} \cdot x
         -0.50397312 -4.47065168 4.99834262 0.
                                                   0.
```

Ridge visualized

weights alpha

Ridge coefficients as a function of the regularization

The ridge estimator is where the constraint and the loss intersect.

The values of the coefficients decrease as lambda increases, but they are not nullified.

LASSO visualized

The Lasso estimator tends to zero out parameters as the OLS loss can easily intersect with the constraint on one of the axis.

The values of the coefficients decrease as lambda increases, and are nullified fast.

Ridge regularization with only validation : step by step

- 1. split data into $\{\{X,Y\}_{train},\{X,Y\}_{validation},\{X,Y\}_{test}\}$
- 2. for λ in $\{\lambda_{min}, ... \lambda_{max}\}$:
 - 1. determine the β that minimizes the L_{ridge} , $\hat{\beta}_{Ridge}(\lambda) = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda I\right)^{-1} X^{T}Y \text{, using the train data.}$
 - 2. record $L_{MSE}(\lambda)$ using validation data.
- 3. select the λ that minimizes the loss on the validation data, $\lambda_{ridge} = \mathrm{argmin}_{\lambda} \, L_{MSE}(\lambda)$
- 4. Refit the model using both train and validation data, $\{\{X,Y\}_{train}, \{X,Y\}_{validation}\}$, resulting to $\hat{\beta}_{ridge}(\lambda_{ridge})$
- 5. report MSE or \mathbb{R}^2 on $\{X,Y\}_{test}$ given the $\hat{eta}_{ridge}(\lambda_{ridge})$

Ridge regularization with validation only: step by step

Lasso regularization with validation only: step by step

- 1. split data into $\{\{X,Y\}_{train}, \{X,Y\}_{validation}, \{X,Y\}_{test}\}$
- 2. for λ in $\{\lambda_{min}, ... \lambda_{max}\}$:
 - A. determine the β that minimizes the L_{lasso} , $\hat{\beta}_{lasso}(\lambda)$, using the train data. This is done using a solver.
 - B. record $L_{MSE}(\lambda)$ using validation data
- 3. select the λ that minimizes the loss on the validation data, $\lambda_{lasso} = \operatorname{argmin}_{\lambda} L_{MSE}(\lambda)$
- 4. Refit the model using both train and validation data, $\{\{X,Y\}_{train}, \{X,Y\}_{validation}\}$, resulting to $\hat{\beta}_{lasso}(\lambda_{lasso})$
- 5. report MSE or R^2 on $\{X,Y\}_{test}$ given the $\hat{eta}_{lasso}(\lambda_{lasso})$

Ridge regularization with CV: step by step

- 1. remove $\{X,Y\}_{test}$ from data
- 2. split the rest of data into K folds, $\{\{X,Y\}_{train}^{-k}, \{X,Y\}_{val}^{k}\}$
- 3. for $k ext{ in } \{1, ..., K\}$
 - 1. for λ in $\{\lambda_0, ..., \lambda_n\}$:

- B. record $L_{MSE}(\lambda,k)$ using the validation data of the fold $\{X,Y\}_{val}^k$ At this point we have a 2-D matrix, rows are for different k, and columns are for different λ values.
- 4. Average the $L_{MSE}(\lambda,k)$ for each λ , $\bar{L}_{MSE}(\lambda)$.
- 5. Find the λ that minimizes the $\overline{L}_{MSE}(\lambda)$, resulting to λ_{ridge} .
- 6. Refit the model using the full training data, $\{\{X,Y\}_{train},\{X,Y\}_{val}\}$, resulting to $\hat{\beta}_{ridge}(\lambda_{ridge})$
- 7. report MSE or R² on $\{X,Y\}_{test}$ given the $\hat{eta}_{ridge}(\lambda_{ridge})$

 λ_n

 k_1

 k_2

 k_n

 L_{11} L_{12} ...

 L_{21}

Ridge regularization with validation only: step by step

Variable Selection as Regularization

Since LASSO regression tend to produce zero estimates for a number of model parameters - we say that LASSO solutions are **sparse** - we consider LASSO to be a method for variable selection.

Many prefer using LASSO for variable selection (as well as for suppressing extreme parameter values) rather than stepwise selection, as LASSO avoids the statistic problems that arises in stepwise selection.

Question: What are the pros and cons of the two approaches?

Quiz time: Lecture 8

