Context-dependent effects of chromatin proteins assessed in high-throughput

Laura Brueckner B4 meeting 7.3.2016

taking chromatin proteins out of context

context-dependent effects of HP1

HP1a (drosophila)

- Nucleates and spreads a heterochromatin state that results in transcriptional silencing
- Associated with euchromatic genes and activating role in their transcription
 (d melanogaster Piacentini)

(d. melanogaster, Piacentini 2003/2009)

How does HP1a function depend on chromatin context?

TRIP assay - Assessing chromatin protein effects in multiple genomic contexts

summary TRIP drosophila

1. HP1a silences even highly expressing loci

2. HP1a is influenced by chromatin state

3. no stable memory of silencing

TRIP in human cells (K562)

TRIP in K562 - workflow

D4 after transfection

Mean GFP POC

CBX5

- Aka HP1α
- Induces heterochromatin and H3K9me

BL[B] 530_30-A- BL[B] 530_30-A+ 66.6

30%

G9a

- H3K9 HMT
- Associated with genome-lamina interactions

- Gal4DBD-POI
- Gal4DBD

D4 after transfection

Mean GFP POC

D10 after transfection

CBX5

G9a

- Aka HP1α
- Induces heterochromatin and H3K9me

30%

- H3K9 HMT
 Associated with
- Associated with genome-lamina interactions

- Gal4DBD-POI
- Gal4DBD

D4 after transfection

Mean GFP POC

KRAB

 Recruits KAP1 which targets HP1 and H3K9me3 to retrotransposons

51%

P300 (core)

- H3K27 HAT
- CRISPR-based system can induce various endogenous genes

- Gal4DBD-POI
- Gal4DBD

D4 after transfection

Mean GFP POC

D10 after transfection

KRAB

 Recruits KAP1 which targets HP1 and H3K9me3 to retrotransposons

51%

P300 (core)

- H3K27 HAT
- CRISPR-based system can induce various endogenous genes

- Gal4DBD-POI
- Gal4DBD

TRIP CBX5

CBX5 r3	Live cells	NGFR+		yield % of max
Gal4-CBX5	70,	6 4	48,1	16
Gal4	8	0 6	67,8	27
CBX5	83,	1 6	64,3	34
CBX5 r2	Live cells	NGFR+		
Gal4-CBX5	89,	5 4	42,5	12
Gal4	91,	2	70	13
CBX5	89,	1 7	78,3	21

TRIP CBX5

CBX5 r3	Live cells		NGFR+		yield % of max
Gal4-CBX5		70,6		48,1	16
Gal4		80		67,8	27
CBX5		83,1		64,3	34
CBX5 r2	Live cells		NGFR+		
Gal4-CBX5		89,5		42,5	12
Gal4		91,2		70	13
CBX5		89,1		78,3	21

TRIP KRAB

KRAB r1	Live cells	NGFR+		yield % of max
Gal4-KRAB	85,4		42,7	12,3
Gal4	88,5		48,6	9,0
KRAB	86		74,2	18,4
KRAB r2	Live cells	NGFR+		
Gal4-KRAB	86,1		44,5	20
Gal4	90,2	2	46,7	10
KRAB	87,7	•	50,2	15

TRIP G9a

G9a r1	Live cells	NGFR+	yield % of max
Gal4-G9a	78,5	27,9	22,4
Gal4	84,5	47,7	16,1
G9a	82,1	40,1	23,0
G9a r2	Live cells	NGFR+	
Gal4-G9a	62,5	34,6	23,7
Gal4	75,5	74,8	13,4
G9a	68,4	76,5	20,4

TRIP p300

p300 r1	Live cells	NGFR+	yield % of max
Gal4-p300	69,	6 22	37,2
Gal4	85,	2 64,4	18,3
p300	56,	9 48	36,6
p300 r2	Live cells	NGFR+	
Gal4-p300	75,	9 16,3	36,1
Gal4	90,	9 46,9	9,9
p300	70,	2 30,8	35,1

Summary and future steps

 Good results for K562 TRIP experiments so far, especially CBX5 and KRAB

 Problems with G9a, p300 - other candidate proteins?

 Effects of nuclear organization on TRIP expression: targeting endogenous G9a (compound inhibition, shRNAs)

Thankyous

Van Steensel lab

- Bas van Steensel
- Joris van Arensbergen
- Eva Brinkman
- Jorge Omar Yanez-Cuna
- Ludo Pagie
- Tao Chen
- Marcel de Haas
- Sandra de Vries
- Tom van Schaik
- Christ Leemans

Van Lohuizen lab

Waseem Akhtar

Flow Cytometry facility

Genomics Core Facility

