

Fachbereich Informatik
Dr. Marco Hülsmann

Numerische Mathematik 1 Übungsblatt 1, WS 2019/20

Aufgabe 1 (Approximation von π)

Bekanntermaßen ist π der Umfang eines Kreises mit dem Radius $r = \frac{1}{2}$.

- a) Berechnen Sie den Umfang des in diesen Kreis einbeschriebenen Quadrats!
- b) Stellen Sie eine Rekursionsformel für den Umfang eines in den Kreis einbeschriebenen regelmäßigen 2^n -Ecks auf $(n \in \mathbb{N}_{\geq 2})$.
- c) Eine explizite Formel für den Umfang eines in den Kreis einbeschriebenen regelmäßigen n-Ecks $(n \in \mathbb{N}_{\geq 2})$ ist gegeben durch $U_n = n \sin\left(\frac{\pi}{n}\right)$. Zeigen Sie, daß $\lim_{n \to \infty} U_n = \pi$ gilt, und finden Sie eine obere Schranke für den absoluten Fehler $|U_n \pi|$. **Tipp:** Taylorentwicklung!
- **d**) Die Zahl π kann also mithilfe des Umfangs eines der regelmäßigen Polygone approximiert werden. Berechnen Sie mithilfe eines Computerprogramms und der Rekursionsformel aus **b**) einige Näherungen für π .

Aufgabe 2 (Rundung)

a)

- (i) Gegeben seien die Zahlen x=0.3721448693 und y=0.3720214371. Berechnen und bewerten Sie den relativen Fehler zwischen der Differenz x-y, die durch einen Rechner mit 5 Stellen Genauigkeit berechnet wird, im Vergleich zu der Differenz, die durch einen Rechner mit 10 Stellen Genauigkeit berechnet wird!
- (ii) Versuchen Sie durch Einsetzen von kleinen Werten, den Grenzwert

$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

zu berechnen. Was passiert da und warum?

b) Was ist bei der Auswertung der folgenden Terme numerisch gesehen problematisch? Wie kann man jeweils dem Problem entgegenwirken?

(i)
$$\sqrt{x^2+1}-1$$

(ii)
$$x = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$
 (Lösen der quadratischen Gleichung $x^2 + px + q, q \neq 0$, mit pq -Formel)

(iii)
$$\frac{1-\cos(x)}{x}$$

Die Übungsaufgaben werden in der Übung am Donnerstag, 10. Oktober 2019, besprochen.