- The Influence of Temperature on Ozone Production under
- $_{2}$ varying NO_{x} Conditions a modelling study: Supplementary

3 Material

- J. Coates¹ and T. Butler¹
- ¹Institute for Advanced Sustainability Studies, Potsdam, Germany

March 7, 2016

⁷ S1 Vertical Mixing with Diurnal Boundary Layer Height

- 8 The MECCA box model used in Coates and Butler (2015) included a constant boundary layer
- 9 height of 1 km and no interactions (vertical mixing) with the free troposphere. In reality,
- the planetary boundary layer (PBL) height varies diurnally and affects chemistry by diluting
- emissions after sunrise when the PBL rises.

6

- The expansion of the PBL into the free troposphere introduces vertical mixing with those
- 13 chemical species present in the free troposphere. When the PBL collapses in the evening,
- 4 pollutants are trapped in the PBL. The mixing layer height was measured as part of the
- 5 BAERLIN campaign (Bonn et al., 2016) over Berlin, Germany. The profile of mean mixing layer
- height during the campaign period (June August 2014) was used in the model to represent the
- diurnal cycle of the mixing layer height.
- The concentrations of the chemical species within the PBL are diluted due to the larger
- 19 mixing volume when the PBL height increases at the beginning of the day, also the increasing
- 20 PBL height mixes the chemical species from the free troposphere with the chemical species
- 21 within the PBL i.e. vertical mixing. The PBL height collapses during night leaving the stable
- 22 nocturnal boundary layer, trapping the chemical species into a smaller volume thus increasing
- 23 the concentrations of the chemical species. This vertical mixing scheme was implemented into
- the boxmodel using the same approach of Lourens et al. (2016).

The mixing ratios of O3, CO and CH4 in the free troposphere were respectively set to 50 ppbv, 116 ppbv and 1.8 ppmv. These conditions were taken from the MATCH-MPIC chemical weather forecast model on the 21st March (the start date of the simulations). The model results (http://cwf.iass-potsdam.de/) at the 700 hPa height were chosen and the daily average was used as input into the boxmodel.

S2 Allocation of Benelux AVOC emissions to Mechanism Species

The total MCM v3.2 emissions for each initial species in Tables S1, S2 and S3 were translated to emissions of mechanism species from each reduced chemical mechanism by weighting with the carbon numbers. The final emissions of the mechanism species representing each MCM v3.2 species in CRIv2, MOZART-4, CB05 and RADM2 are presented in Tables S4 – S8 for each country in the Benelux region.

Table S1: Belgium AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped to MCMv3.2 species.

Type	MCM.species	SNAP.1	SNAP.2	SNAP.34	SNAP.5	SNAP.6	SNAP.71	SNAP.72	SNAP.73	SNAP.74	SNAP.8	SNAP.9	BVOC	Total
Ethane	C2H6	4.15E+08	1.11E+09	2.98E + 09			1.74E+08	4.62E+07	8.17E + 06		8.30E+07	8.22E+07		4.91E+09
Propane	C3H8	1.14E + 09	4.72E + 08	1.03E + 08	3.12E + 10	3.40E + 08	8.49E + 06	3.15E + 07	8.17E + 07	$2.71\mathrm{E}{+06}$	7.53E+07	3.56E + 07		3.35E+10
	NC4H10	7.77E+08	2.42E+08	1.27E+06	1.23E + 11	1.26E+09	1.89E+08	3.26E+07		4.48E+07	1.40E+08	2.20E+07		1.25E+11
Butanes	IC4H10	9.48E + 07	8.49E + 07	3.11E + 05	2.98E + 10	5.73E + 07	8.81E + 07	1.52E + 07		2.09E+07	7.02E+07	2.20E+07		3.03E + 10
	NC5H12	6.21E+08	2.25E+08		8.78E+10		1.13E+08	1.31E+07		2.25E+07	4.51E+07	1.11E+07		8.89E+10
Pentanes	IC5H12	$2.62\mathrm{E}{+08}$	1.21E + 08		5.25E + 10		$2.19E{+08}$	2.54E + 07		4.37E+07	8.60E + 07	1.11E+07		5.33E + 10
	NEOP											1.11E+07		1.11E+07
	NC6H14	3.89E+08	2.39E+07	3.15E+08	1.26E+10	1.12E+09	3.98E + 08	1.94E+08		8.35E+06	1.04E+08	3.84E+06		1.52E+10
	M2PE			4.06E + 07	$1.94\mathrm{E}{+09}$	2.35E + 08					1.73E + 08	1.65E + 06		2.39E + 09
	M3PE			3.04E + 07	9.69E + 08	2.35E + 08					1.04E + 08			1.34E + 09
səu	NC7H16	$1.67E{\pm}08$	4.11E+07	1.48E + 08	$1.35E{+}10$	4.05E+08	6.55E + 07	3.20E+07		1.38E + 06	2.98E + 07	1.94E + 07		1.45E + 10
rjks	M2HEX					1.52E + 08	$5.10E{\pm}07$	2.49E + 07		1.07E + 06	4.48E + 07			2.74E + 08
A 19	M3HEX					1.52E + 08	3.64E + 07	1.78E + 07		7.64E + 05	2.98E + 07			2.37E + 08
dgi]	M22C4										3.47E + 07			3.47E + 07
ΗР	M23C4										3.47E + 07			3.47E + 07
ure a	NC8H18			6.13E + 07	1.01E + 10	4.44E+07	5.75E + 07	2.81E + 07		1.21E+06	1.70E + 08	6.63E + 06		1.04E + 10
эцез	NC9H20			3.41E + 07		1.07E+09						2.21E+06		1.10E + 09
сәН	NC10H22			4.30E + 07		2.07E + 09	$2.56\mathrm{E}{+07}$	1.25E+07		5.38E + 05		3.32E + 06		2.15E+09
	NC11H24			1.68E + 07		8.44E + 08	9.33E + 06	4.56E + 06		1.96E + 05	1.91E+07	1.21E+06		8.95E + 08
	NC12H26					5.96E + 07	1.52E + 08	7.44E+07		3.20E + 06	1.76E + 07			3.07E + 08
	CHEX		3.81E + 07	1.04E + 07		2.41E+08						1.12E + 06		2.91E+08
Ethene	C2H4	8.93E + 07	2.49E + 09	3.11E + 10			9.61E + 08	5.94E + 08	4.38E + 07		1.18E + 09	1.43E + 08		3.66E + 10
Propene	C3H6	5.95E + 07	5.21E+08	5.33E+08			3.38E + 08	9.90E + 07	1.95E+07		2.06E + 08	4.10E + 07		1.82E+09
	HEXIENE	5.05E+06	1.28E + 07									1.63E + 07		3.42E+07
	BUTIENE		1.80E + 07	6.24E + 07							1.96E + 07			9.99E + 07
	MEPROPENE										9.80E + 06			9.80E + 06
sət	TBUTZENE										9.80E + 06			9.80E + 06
Ікет	CBUTZENE										9.80E + 06			9.80E + 06
Αı	CPENT2ENE		5.65E + 06								3.92E + 06			9.57E + 06
гре	TPENT2ENE		5.65E + 06								3.92E + 06			9.57E + 06
!H	PENTIENE		5.14E + 06	5.93E + 06							1.57E+07			2.68E + 07
	ME2BUT2ENE		3.08E + 06								7.84E + 06			1.09E+07
	ME3BUT1ENE		3.08E + 06								7.84E + 06			1.09E+07
	ME2BUT1ENE		2.05E+06											2.05E+06
Ethyne	C2H2	6.97E + 05	7.84E+08	3.45E + 08			8.95E+08	2.80E+08	1.73E + 07	1.09E+07	3.95E+08	5.38E+07		2.78E+09
Benzene	BENZENE	6.91E + 07	4.64E+08	5.74E+08	3.05E + 09		2.16E + 08	3.56E + 07		1.53E + 06	7.98E+07	2.75E+07		4.52E+09
Toluene	TOLUENE	8.49E+07	1.54E + 08	4.87E+07	2.59E + 09	2.30E+09	4.88E+08	2.26E + 07		1.30E+06	6.79E+07	1.81E+07		5.78E+09

Table S1: Belgium AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped to MCMv3.2 species.

Type	MCM.species	SNAP.1	SNAP.2	SNAP.34	SNAP.5	SNAP.6	SNAP.71	SNAP.72	SNAP.73	SNAP.74	SNAP.8	SNAP.9 B	BVOC	Total
	MXYL	4.20E+07	1.32E+07	1.60E+06	3.74E+08	1.33E+09	1.04E+08	9.52E+06		2.05E+05	1.86E+07	3.66E+06		1.90E+09
Xylenes	OXYL	9.33E + 06	1.32E + 07	6.42E + 05	3.74E + 08	3.33E + 08	1.04E + 08	9.52E + 06		2.05E+05	1.51E+07	2.19E + 06		8.61E + 08
	PXYL		1.32E + 07	6.42E + 05	3.74E + 08	3.33E + 08	7.79E+07	7.14E+06		1.53E + 05	1.86E + 07	$2.93E{+}06$		8.28E + 08
	TM123B	6.21E + 03	1.06E+06			2.23E+07	1.79E+07				3.33E+06	3.30E+05		4.49E+07
Trimethylbenzenes	TM124B	$6.21E{\pm}03$	1.06E + 06	1.46E + 07		7.60E+07	7.50E+07				7.76E + 06	4.40E + 05		1.75E + 08
	TM135B	6.21E + 03	1.06E + 06			2.23E+07	2.86E + 07				3.33E + 06	4.40E + 05		5.58E + 07
	EBENZ	1.36E+07		1.65E+07		6.07E+07	7.76E+07	5.32E+07	1.53E+04		1.74E+08	3.93E+06		3.99E+08
	PBENZ					1.34E+07	6.86E + 07	4.70E+07	1.35E+04		2.79E + 07	1.73E + 06		1.59E+08
	IPBENZ					4.92E+07					2.79E+07	1.73E + 06		7.88E+07
spics	PETHTOL					4.47E + 06					5.59E + 07			6.03E + 07
tsm 1	METHTOL					1.34E + 07					5.59E + 07			6.93E + 07
отА	OETHTOL										4.19E+07			4.19E+07
191	DIET35TOL						1.45E + 08	9.94E + 07	2.86E + 04					2.45E + 08
Ι³Ο	DIME35EB					7.60E+07	1.79E+07	1.23E+07	3.53E + 03					1.06E + 08
	STYRENE			1.68E + 07		1.55E+07	1.65E + 07	1.13E+07	3.25E + 03					6.01E+07
	BENZAL						2.77E+07	1.90E+07	5.46E + 03					4.68E + 07
	PHENOL			1.86E + 07										1.86E + 07
Formaldehyde	нсно	2.74E + 07	5.76E + 08				2.12E + 08	2.78E + 08	1.09E+07		1.23E + 09	2.22E+07		2.35E+09
	СНЗСНО	$2.82\mathrm{E}{+06}$	7.80E + 07	7.07E+07			5.74E+07	1.15E+08	2.09E+06		$2.22E{+08}$	5.17E + 06		5.53E + 08
	C2H5CHO	$1.61E{+}06$	5.91E + 07				9.67E + 06	1.94E + 07	3.52E + 05		8.41E + 07	3.92E + 06		1.78E + 08
səp	C3H7CHO	1.29E + 04	4.76E + 07								6.78E + 07	3.16E + 06		1.19E + 08
єμλ	IPRCHO	1.29E + 04	4.76E + 07								4.52E + 07	3.16E + 06		9.60E + 07
ΡΙV	C4H9CHO	1.08E + 04	3.99E + 07									2.64E + 06		4.25E+07
ует.	ACR	1.67E + 04	6.13E + 07				1.50E+07	3.02E + 07	5.48E + 05			4.06E + 06		1.11E+08
ĮΦO	MACR	1.33E + 04	4.90E+07									3.25E + 06		5.23E + 07
	C4ALDB	1.33E + 04	4.90E+07				8.01E + 06	1.61E+07	2.92E + 05			3.25E + 06		7.67E+07
	MGLYOX										4.52E + 07			4.52E + 07
Alkadienes and	C4H6	2.64E + 07	4.69E + 08	3.10E + 08	4.19E+10		4.51E + 08	1.21E+08	3.14E + 07	1.98E + 07	2.84E + 08	3.97E + 07		4.36E+10
Other Alkynes	C5H8											3.:	3.35E + 09	3.35E + 09
	нсоон	1.27E + 06	7.07E+08								1.67E + 08	5.23E+07		9.28E + 08
A circum	СНЗСО2Н	9.72E + 05	5.42E + 08	4.37E+07							1.28E + 08	4.01E+07		7.55E+08
Olganic Actus	PROPACID	7.88E+05	4.39E+08								1.04E + 08	3.25E + 07		5.77E+08
	ACO2H			3.64E + 07										3.64E + 07

Table S1: Belgium AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped to MCMv3.2 species.

						,					•			
Type	MCM.species	SNAP.1	SNAP.2	SNAP.34	SNAP.5	SNAP.6	SNAP.71	SNAP.72	SNAP.73	SNAP.74	SNAP.8	SNAP.9	BVOC	Total
	СНЗОН	5.18E + 04		$2.12\mathrm{E}{+06}$		2.14E + 09					4.03E+07	1.81E + 07		2.20E+09
	С2Н5ОН	3.60E + 04	9.73E + 08	5.98E + 07		2.19E + 09					2.80E + 07	4.77E+07		3.30E + 09
	NPROPOL	2.76E + 04				1.78E + 08					2.15E + 07	5.78E + 06		$2.06E{\pm}08$
	IPROPOL	2.76E + 04		7.52E + 05		2.85E + 08					2.15E + 07			3.08E + 08
	NBUTOL	2.24E + 04				1.74E + 08					1.74E+07			1.91E + 08
	BUT2OL	2.24E + 04				1.16E + 08					1.74E + 07	7.80E+06		1.41E + 08
	IBUTOL	2.24E + 04				7.23E+07					1.74E + 07			8.97E + 07
	TBUTOL	2.24E + 04									1.74E + 07			1.74E + 07
slo	PECOH	1.88E + 04									1.46E + 07			1.47E+07
оцоз	IPEAOH	1.88E + 04									1.46E + 07			1.47E+07
PΙV	ME3BUOL	1.88E + 04									1.46E + 07			1.47E+07
	IPECOH	1.88E + 04									1.46E + 07			1.47E+07
	IPEBOH	1.88E + 04									1.46E + 07			1.47E+07
	CYHEXOL	1.66E + 04									1.29E+07			1.29E+07
	MIBKAOH	1.43E + 04				3.69E + 07					1.11E+07			4.80E+07
	ETHGLY	2.67E + 04				5.18E + 07					2.08E+07			7.26E+07
	PROPGLY	2.18E + 04				1.03E + 08					1.69E+07			1.20E+08
	С6Н5СН2ОН					2.97E + 07								2.97E + 07
	MBO	1.93E + 04									1.50E+07			1.50E+07
	СНЗСОСНЗ	1.29E+05	1.08E+07	1.66E+08		2.28E+09	6.45E+06	3.59E+07			1.73E+08	1.06E+06		2.67E + 09
	MEK		8.73E + 06			1.10E + 09						8.54E + 05		$1.11E{+09}$
	MPRK		7.31E+06									7.15E + 05		8.03E + 06
s	DIEK		7.31E+06									7.15E + 05		8.03E + 06
səuc	MIPK		7.31E+06									7.15E + 05		8.03E + 06
угер	HEX2ONE		6.29E + 06									6.15E + 05		6.90E + 06
I	HEX3ONE		6.29E + 06									6.15E + 05		6.90E + 06
	MIBK		6.29E + 06			6.60E + 08						6.15E + 05		6.67E + 08
	MTBK		6.29E+06									6.15E + 05		6.90E + 06
	CYHEXONE		6.42E + 06	8.91E + 06		5.39E + 07						6.28E + 05		6.99E + 07
	APINENE											2.28E + 06	4.19E + 08	4.22E+08
Terpenes	BPINENE											2.28E + 06	4.19E + 08	4.22E + 08
	LIMONENE					7.33E+07						3.42E + 06	4.19E + 08	4.96E + 08
	METHACET			6.18E+07										6.18E + 07
	ETHACET			7.08E + 06		1.47E + 09								1.48E + 09
si9:	NBUTACET					1.03E + 09								1.03E+09
ısı	IPROACET					3.63E + 08								3.63E + 08
	СНЗОСНО			6.93E + 06										6.93E + 06

Table S1: Belgium AVOC and BVOC emissions, in molecules ${\rm cm^{-2}~s^{-1}}$, mapped to MCMv3.2 species.

	тарт	DI. DUE	o a trans	Table 51. Delgium 11V of and D V of chinssions, in indicentes on		olomo, iii	IIIOIOGTO	S CIII S	, rrrappy	, mapped to month of apolica.	7. 7. O. TAT	COTOD.		
Type	MCM.species	SNAP.1	SNAP.2	SNAP.34	SNAP.5	SNAP.6	SNAP.71	SNAP.72	SNAP.73	SNAP.74	SNAP.8	SNAP.9	BVOC	Total
	NPROACET					1.36E + 08						5.94E + 06		1.42E + 08
	СНЗОСНЗ		3.36E+07	2.43E+08		8.29E+07								3.59E+08
	DIETETHER		2.09E+07	9.06E + 07										1.11E + 08
	MTBE		1.76E + 07											$1.76E{\pm}07$
	DIIPRETHER		1.52E + 07	6.57E + 07								1.47E + 07		9.56E + 07
ers 1615	ETBE		1.52E + 07											1.52E + 07
нээ	MO2EOL		2.04E+07			1.00E + 08								1.21E + 08
	EOX2EOL		1.72E + 07			8.48E + 07								1.02E + 08
	PR2OHMOX		1.72E + 07			1.70E + 08								1.87E + 08
	BUOX2ETOH		1.31E+07			8.14E + 08								8.27E + 08
	BOX2PROL		1.17E + 07											1.17E+07
	CH2CL2			1.75E + 08		6.57E + 08						1.09E + 06		8.34E + 08
	CH3CH2CL			1.36E + 08										1.36E + 08
suc	CH3CCL3					4.60E + 08						3.47E + 05		4.61E + 08
r.po	TRICLETH			6.66E + 07		1.04E + 09						3.52E + 05		1.11E + 09
sooi	CDICLETH			4.51E+07								7.11E + 05		4.58E + 07
ρΛ	TDICLETH			4.51E+07								4.74E + 05		4.56E + 07
I þa	CH3CL			1.39E + 08										1.39E + 08
nst	CCL2CH2			4.51E+07										4.51E+07
irol	CHCL2CH3											5.35E + 05		5.35E + 05
СP	VINCL			4.20E + 07										4.20E+07
	TCE			1.05E+07		2.53E + 08						6.93E + 05		2.64E + 08
	CHCL3			2.93E + 07										2.93E+07
L	Total	4.30E+09	1.13E + 10	3.85E + 10	4.12E + 11	2.91E + 10	6.00E+09	2.47E + 09	2.16E + 08	1.85E + 08	6.61E + 09	8.86E + 08	4.61E+09	5.16E + 11

Table S2: Netherlands AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped to MCMv3.2 species.

Type	MCM.species	Snap.1	Snap.2	Snap.34	Snap.5	Snap.6	Snap.71	Snap.72	Snap.73	Snap.74	Snap.8	Snap.9 B	BVOC	Total
Ethane	C2H6	5.70E+08	5.15E+08	6.20E+09			3.15E + 08	4.38E+07	5.22E+07		1.36E + 08	1.28E+08		7.96E+09
Propane	C3H8	1.60E+09	6.01E+08	2.47E+09	3.38E+10	2.93E+08	1.53E+07	2.99E+07	5.22E+08	1.66E+07	8.83E+07	3.96E+07		3.94E+10
Dt	NC4H10	1.13E+09	6.33E + 08	9.48E+08	1.42E+11	1.09E+09	3.41E+08	3.09E+07		2.74E+08	8.82E+07	2.02E+07		1.47E+11
Duranes	IC4H10	1.37E + 08	$2.22E{+08}$	2.32E + 08	3.46E + 10	4.93E + 07	1.59E + 08	1.44E + 07		1.28E + 08	4.41E+07	2.02E+07		3.56E + 10
	NC5H12	9.18E + 08	7.80E + 08		1.03E + 11		2.04E+08	1.24E+07		1.38E + 08	3.69E + 07	3.79E + 06		1.05E+11
Pentanes	IC5H12	3.87E + 08	4.18E + 08		6.13E + 10		3.96E + 08	2.41E+07		2.67E + 08	7.05E+07	3.79E + 06		6.29E + 10
	NEOP											3.79E + 06		3.79E + 06
	NC6H14	5.43E+08	3.23E+07	8.96E+08	1.47E+10	9.22E+08	7.19E+08	1.84E+08		5.11E+07	1.63E+08	1.32E+06		1.82E+10
	M2PE			1.16E + 08	$2.26\mathrm{E}{+09}$	1.94E + 08					2.71E + 08	5.65E + 05		2.84E + 09
	M3PE			8.67E + 07	1.13E + 09	1.94E + 08					1.63E + 08			1.57E + 09
səu	NC7H16	2.33E+08	5.56E + 07	4.23E + 08	1.58E + 10	3.34E + 08	1.18E + 08	3.03E + 07		8.41E + 06	4.66E + 07	6.64E + 06		1.71E+10
']K ^g '	M2HEX					1.25E + 08	9.20E + 07	2.36E + 07		6.54E + 06	6.99E + 07			3.17E + 08
A 18	M3HEX					1.25E + 08	6.57E + 07	1.68E + 07		4.67E + 06	4.66E + 07			2.59E + 08
odgi	M22C4										5.42E + 07			5.42E + 07
н Р	M23C4										5.42E + 07			5.42E + 07
ure a	NC8H18			1.74E + 08	1.17E + 10	3.66E + 07	1.04E + 08	2.66E + 07		7.38E+06	2.66E + 08	2.27E + 06		1.23E + 10
эцез	NC9H20			9.71E+07		8.80E + 08						7.59E+05		9.78E + 08
нех	NC10H22			1.23E + 08		1.70E + 09	4.63E + 07	1.19E+07		3.29E + 06		1.14E + 06		1.89E + 09
	NC11H24			4.78E + 07		6.95E + 08	1.69E + 07	4.32E + 06		1.20E + 06	2.99E + 07	4.15E + 05		7.96E + 08
	NC12H26					4.91E+07	2.75E + 08	7.05E+07		1.96E + 07	2.74E + 07			4.42E + 08
	CHEX		5.15E + 07	2.96E + 07		1.99E + 08						3.86E + 05		2.80E + 08
Ethene	C2H4	1.23E + 08	1.11E + 09	$2.58\mathrm{E}{+09}$			1.74E + 09	$5.63\mathrm{E}{+08}$	$2.80E{+}08$		1.82E + 09	4.70E + 07		8.25E + 09
Propene	C3H6	8.22E + 07	3.19E + 08	$1.26\mathrm{E}{+08}$			6.10E + 08	9.38E + 07	1.24E + 08		3.09E + 08	1.35E + 07		1.68E + 09
	HEXIENE	1.60E+07	2.47E + 06									5.51E + 06		2.40E+07
	BUTIENE		3.45E + 06	1.78E + 08							4.91E + 06			1.86E + 08
	MEPROPENE										2.46E + 06			2.46E + 06
sət	TBUTZENE										$2.46\mathrm{E}{+06}$			2.46E + 06
Ікет	CBUTZENE										$2.46\mathrm{E}{+06}$			2.46E + 06
V 1:	CPENT2ENE		1.09E + 06								9.82E + 05			2.07E + 06
эцЗі	TPENT2ENE		1.09E + 06								9.82E + 05			2.07E + 06
ΙΗ	PENTIENE		9.87E + 05	2.56E + 05							3.93E + 06			5.17E + 06
	ME2BUT2ENE		5.92E + 05								1.96E + 06			2.56E + 06
	ME3BUT1ENE		5.92E + 05								1.96E + 06			$2.56\mathrm{E}{+06}$
	ME2BUT1ENE		3.95E + 05											3.95E+05
Ethyne	C2H2	2.00E+06	4.29E+08	8.16E + 07			1.62E + 09	2.65E + 08	1.10E + 08	6.66E+07	6.36E+08	1.77E+07		3.22E+09
Benzene	BENZENE	1.18E + 08	5.17E + 08	2.56E + 08	3.58E + 09		3.89E + 08	3.37E + 07		9.35E + 06	1.06E + 08	9.04E + 06		5.02E+09
Toluene	TOLUENE	1.29E + 08	2.10E + 08	3.57E + 07	$3.04E \pm 09$	1 97F±09	8 80E+08	2 14E±07		7 025 106	6 49E 07	90 - 400		8 27E 100

Table S2: Netherlands AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped to MCMv3.2 species.

						,			T /			1		
Type	MCM.species	Snap.1	Snap.2	Snap.34	Snap.5	Snap.6	Snap.71	Snap.72	Snap.73	Snap.74	Snap.8	Snap.9	BVOC	Total
	MXYL	6.30E + 07	7.31E+06	6.93E + 04	4.40E+08	1.14E+09	1.88E+08	9.02E + 06		1.25E + 06	2.62E + 07	1.22E+06		1.88E+09
Xylenes	OXYL	1.40E+07	7.31E+06	2.77E + 04	4.40E+08	2.85E + 08	1.88E + 08	9.02E + 06		1.25E + 06	2.13E + 07	7.34E+05		9.66E + 08
	PXYL		7.31E+06	2.77E + 04	4.40E+08	2.85E + 08	1.41E + 08	6.76E + 06		9.38E + 05	2.62E + 07	9.79E + 05		9.08E+08
	TM123B	1.06E + 04	2.03E+05			1.91E+07	3.23E + 07				0.00E+00	$1.11E{+}05$		5.17E+07
Trimethylbenzenes	TM124B	1.06E + 04	2.03E + 05	4.15E+07		6.51E+07	1.35E + 08				0.00E+00	1.49E + 05		2.42E + 08
	TM135B	1.06E + 04	2.03E + 05			1.91E+07	$5.16\mathrm{E}{+07}$				0.00E+00	1.49E + 05		7.11E+07
	EBENZ	2.15E + 07		4.69E + 07		5.20E+07	1.40E + 08	5.04E+07	9.77E + 04		3.16E + 08	1.32E + 06		6.29E+08
	PBENZ					1.15E+07	1.24E + 08	4.45E+07	8.63E + 04		5.08E + 07	5.81E + 05		2.31E + 08
	IPBENZ					4.21E+07					5.08E + 07	5.81E + 05		9.35E + 07
sics	PETHTOL					3.83E + 06					1.02E + 08			1.05E + 08
mat	METHTOL					1.15E+07					1.02E + 08			1.13E + 08
отА	OETHTOL										7.62E + 07			7.62E + 07
19u	DIET35TOL						$2.62\mathrm{E}{+08}$	9.42E + 07	1.83E + 05					3.56E + 08
I³Ο	DIME35EB					6.51E+07	3.23E + 07	1.16E + 07	2.25E + 04					1.09E + 08
	STYRENE			4.78E + 07		1.32E + 07	2.98E + 07	1.07E + 07	2.08E + 04					1.02E + 08
	BENZAL						5.01E+07	1.80E + 07	3.49E + 04					6.81E + 07
	PHENOL			5.29E + 07										5.29E+07
Formaldehyde	нсно	1.55E + 08	1.59E + 09				3.83E + 08	2.63E + 08	6.97E + 07		9.11E + 08	7.29E+06		3.38E+09
	СНЗСНО	8.96E + 06	4.73E+07	3.05E + 06			1.04E+08	1.09E + 08	1.34E + 07		2.48E + 08	1.69E + 06		5.35E+08
	С2Н5СНО	$5.10E{\pm}06$	3.59E + 07				1.75E + 07	1.84E + 07	2.25E + 06		9.39E + 07	1.28E + 06		1.74E + 08
səp	СЗН7СНО	$2.21\mathrm{E}{+04}$	2.89E + 07								7.56E+07	1.03E+06		1.06E + 08
єμλ	IPRCHO	$2.21\mathrm{E}{+04}$	2.89E + 07								5.04E + 07	1.03E+06		8.04E + 07
ΡΙΨ	C4H9CHO	1.85E + 04	2.42E + 07									8.64E + 05		2.51E+07
төг	ACR	2.84E + 04	3.72E + 07				2.71E+07	2.86E + 07	3.50E + 06			1.33E + 06		9.78E + 07
Ο¢	MACR	2.27E+04	2.97E + 07									1.06E + 06		3.08E + 07
	C4ALDB	2.27E+04	2.97E + 07				1.45E+07	1.53E + 07	1.87E + 06			1.06E + 06		6.24E + 07
	MGLYOX										5.05E+07			5.05E+07
Alkadienes and	C4H6	4.12E + 07	2.77E + 08	4.43E+09	4.92E + 10		8.14E + 08	1.15E + 08	2.01E + 08	1.21E + 08	3.98E + 08	1.31E+07		5.56E + 10
Other Alkynes	C5H8													0.00E+00
	нсоон	3.39E + 06	4.54E + 08								0.00E+00	1.71E+07		4.74E+08
A Circon	CH3CO2H	2.60E + 06	3.48E + 08	1.24E + 08							0.00E+00	1.31E+07		4.88E + 08
Organic Acido	PROPACID	$2.11E{+06}$	2.82E + 08								0.00E+00	1.06E + 07		2.95E + 08
	ACO2H			1.04E+08										1.04E+08

Table S2: Netherlands AVOC and BVOC emissions, in molecules cm⁻² s⁻¹, mapped to MCMv3.2 species.

												1		
Type	MCM.species	Snap.1	Snap.2	Snap.34	Snap.5	Snap.6	Snap.71	Snap.72	Snap.73	Snap.74	Snap.8	Snap.9	BVOC	Total
	СНЗОН	8.82E + 04		1.08E + 06		1.84E + 09					1.19E + 05	5.92E + 06		1.85E + 09
	С2Н5ОН	6.14E + 04	$6.51E{\pm}08$	3.05E + 07		1.88E + 09					8.29E + 04	1.56E + 07		2.58E + 09
	NPROPOL	4.70E + 04				1.53E + 08					6.35E + 04	1.89E + 06		1.55E + 08
	IPROPOL	4.70E + 04		3.83E + 05		2.45E + 08					6.35E + 04			$2.46\mathrm{E}{+08}$
	NBUTOL	$3.81E{+04}$				1.49E + 08					5.15E + 04			1.49E + 08
	BUT2OL	3.81E + 04				9.94E + 07					5.15E + 04	2.56E + 06		1.02E + 08
	IBUTOL	$3.81E{+04}$				6.21E+07					5.15E + 04			6.22E + 07
	TBUTOL	$3.81E \pm 04$									5.15E + 04			8.97E + 04
slo	PECOH	3.21E+04									4.33E+04			7.54E + 04
оцоз	IPEAOH	$3.21E \pm 04$									4.33E + 04			7.54E + 04
ρΙΨ	ME3BUOL	$3.21E \pm 04$									4.33E + 04			7.54E + 04
	IPECOH	3.21E + 04									4.33E+04			7.54E + 04
	IPEBOH	$3.21E \pm 04$									4.33E + 04			7.54E + 04
	CYHEXOL	$2.82\mathrm{E}{+04}$									3.81E + 04			6.64E + 04
	MIBKAOH	$2.43\mathrm{E}{+04}$				3.17E + 07					3.29E + 04			3.18E + 07
	ETHGLY	4.56E + 04				4.45E+07					6.15E + 04			4.46E + 07
	PROPGLY	3.72E + 04				8.88E + 07					5.02E + 04			8.88E+07
	С6Н5СН2ОН					2.55E+07								2.55E + 07
	MBO	$3.28E{+04}$									4.43E+04			7.72E + 04
	СНЗСОСНЗ	$2.19\mathrm{E}{+}05$	4.54E + 06	4.72E + 08		1.91E+09	1.16E + 07	3.40E + 07			1.11E + 08	3.54E + 05		2.54E+09
	MEK		3.65E + 06			9.22E+08						2.85E + 05		9.26E + 08
	MPRK		$3.06E \pm 06$									2.39E+05		3.30E + 06
s	DIEK		3.06E + 06									2.39E + 05		3.30E + 06
səuo	MIPK		3.06E + 06									2.39E + 05		3.30E + 06
Ket	HEX2ONE		$2.63\mathrm{E}{+06}$									2.05E+05		2.84E + 06
	HEX3ONE		$2.63\mathrm{E}{+06}$									2.05E+05		2.84E + 06
	MIBK		$2.63\mathrm{E}{+06}$			5.53E + 08						2.05E+05		5.56E + 08
	MTBK		2.63E + 06									2.05E+05		2.84E + 06
	CYHEXONE		2.69E + 06	2.54E + 07		4.51E+07						2.09E+05		7.34E+07
	APINENE											7.70E + 05	1.46E + 08	1.47E+08
Terpenes	BPINENE											7.70E + 05	1.46E + 08	1.47E + 08
	LIMONENE					6.31E+07						1.16E + 06	1.46E + 08	$2.10\mathrm{E}{+08}$
	METHACET			2.67E + 06										2.67E+06
	ETHACET			3.06E + 05		1.29E + 09								1.29E + 09
sies	NBUTACET					9.03E + 08								9.03E + 08
ısı	IPROACET					$3.18E \pm 08$								3.18E + 08
	СНЗОСНО			2.99E + 05										2.99E + 05

1.01E+08 8.56E + 073.67E + 081.80E+05 1.20E + 082.32E + 085.64E + 111.21E + 081.07E + 081.99E + 071.35E + 071.93E+07 1.16E+07 1.58E + 087.05E + 088.99E + 061.02E + 093.86E + 081.02E + 091.29E+08 1.29E+08 3.95E + 081.28E+08 8.35E + 07Total 4.37E + 08BVOC 4.47E + 081.17E+05 1.19E + 052.01E + 064.82E + 063.68E + 052.40E + 051.60E + 051.80E + 052.34E + 05Table S2: Netherlands AVOC and BVOC emissions, in molecules cm⁻² s⁻¹, mapped to MCMv3.2 species. Snap.9 7.33E + 09Snap.8 1.08E + 10 2.34E + 09 1.38E + 09 1.13E + 09Snap.74 Snap.73 Snap.72 Snap.71 $2.46\mathrm{E}{+}10$ 7.24E+07 8.57E+07 3.67E + 081.19E + 087.08E+07 1.45E + 086.95E + 088.30E + 082.01E + 085.24E+08 Snap.6 4.77E + 11Snap.5 2.26E + 102.84E+064.99E+083.86E + 081.90E + 081.28E + 081.20E + 083.00E+071.05E+07 $3.91E{+}06$ 1.28E + 083.95E + 081.28E+08 Snap.34 8.35E + 072.58E + 076.30E+09 9.96E+09 1.60E + 071.16E + 071.16E + 071.56E+07 1.01E+071.35E+07 1.32E+07 1.32E+07 8.99E + 06Snap.2 Snap.1 MCM.species DIIPRETHER BUOX2ETOH DIETETHER PR2OHMOX NPROACET BOX2PROL TDICLETH CH3CH2CL TRICLETH CHCL2CH3 CDICLETH EOX2EOL СНЗОСНЗ CH3CCL3 CCL2CH2 MO2EOL CH2CL2 CH3CL VINCL MTBE ETBE CHCL3 TCE Total Type Етрегз Chlorinated Hydrocarbons

Table S3: Luxembourg AVOC and BVOC emissions, in molecules cm⁻² s⁻¹, mapped to MCMv3.2 species.

Type Ethane	MCM.species	Snap.1	Snap.2 Snap.34	Snap.5	Snap.6	Snap.71	Snap.72	Snap.73	Snap.74	Snap.8	Snap.9	BVOC	Total
Ethane											~ · J ~ · · ·		
	C2H6		4.33E+07			4.78E + 08	$2.06E{\pm}08$	3.49E + 06		1.26E + 08			8.58E + 08
Propane	C3H8	1.46E+08	1.36E+07	3.91E+10	3.39E+08	2.33E+07	1.41E+08	3.49E+07	4.34E+07	8.61E+07			4.00E+10
	NC4H10	2.20E+08	7.87E+06	3.46E+11	1.26E+09	5.18E+08	1.46E+08		7.19E+08	8.71E+07			3.49E+11
Butanes	IC4H10	2.68E + 07	2.76E + 06	8.42E + 10	5.71E+07	2.42E + 08	6.79E + 07		3.35E + 08	4.36E+07			8.50E + 10
	NC5H12	2.44E+08	9.96E+06	2.64E+11		3.10E+08	5.85E+07		3.61E+08	3.62E+07			2.65E+11
Pentanes	IC5H12	1.03E+08	5.34E + 06	$1.58\mathrm{E}{+11}$		6.01E + 08	1.14E + 08		7.01E+08	6.91E + 07			1.60E + 11
	NEOP												0.00E+00
	NC6H14	2.21E+07	1.19E + 06	3.76E + 10	1.12E+09	1.09E+09	8.68E+08		1.34E+08	1.59E + 08			4.10E+10
	M2PE			$5.78E{\pm}09$	2.37E + 08					2.64E + 08			6.28E + 09
	M3PE			2.89E + 09	2.37E + 08					1.59E + 08			3.29E + 09
səu	NC7H16	9.52E + 06	2.04E + 06	4.04E + 10	4.07E+08	1.80E + 08	1.43E + 08		2.20E+07	4.55E+07			4.12E + 10
rjks	M2HEX				1.53E + 08	1.40E + 08	1.11E + 08		1.71E+07	6.82E + 07			4.89E + 08
A 19	M3HEX				1.53E + 08	9.99E + 07	7.94E+07		1.22E + 07	4.55E+07			3.90E + 08
пgi	M22C4									5.29E+07			5.29E+07
н Р	M23C4									5.29E+07			5.29E+07
ure a	NC8H18			$3.00\mathrm{E}{+10}$	4.46E + 07	1.58E + 08	1.25E + 08		1.93E + 07	2.59E + 08			3.06E + 10
эиез	NC9H20				1.07E+09								1.07E + 09
кәН	NC10H22				2.08E + 09	7.03E+07	5.59E + 07		8.63E + 06				2.21E+09
	NC11H24				8.48E + 08	2.56E + 07	2.04E + 07		3.14E + 06	$2.91E{+07}$			9.26E + 08
	NC12H26				5.98E + 07	4.18E + 08	3.32E + 08		5.13E + 07	2.67E + 07			8.88E + 08
	CHEX		1.89E + 06		2.42E + 08								2.44E + 08
Ethene	C2H4		9.57E + 07			2.64E + 09	2.65E + 09	1.87E + 07		1.62E + 09			7.03E + 09
Propene	C3H6		2.82E+07			9.28E+08	4.42E+08	8.31E+06		2.71E+08			1.68E+09
	HEXIENE		5.03E + 05										5.03E+05
	BUTIENE		7.04E + 05										7.04E + 05
	MEPROPENE												0.00E+00
səı	TBUT2ENE												0.00E+00
јкец	CBUT2ENE												0.00E + 00
[A 1	CPENT2ENE		2.21E + 05										$2.21E{+05}$
ард	TPENT2ENE		2.21E+05										$2.21E{+05}$
ŀН	PENTIENE		2.01E + 05										2.01E+05
	ME2BUT2ENE		1.21E + 05										1.21E + 05
	ME3BUT1ENE		1.21E + 05										1.21E + 05
	ME2BUT1ENE		8.05E + 04										8.05E+04
Ethyne	C2H2		3.92E + 07			2.46E + 09	1.25E + 09	7.39E + 06	1.75E + 08	5.83E + 08			4.51E+09
Benzene	BENZENE	8.25E + 07	2.50E + 07	9.58E + 09		5.92E + 08	1.59E + 08		2.45E + 07	9.72E + 07			1.06E+10
Toluene	TOLUENE	3.88E + 07	8.76E + 06	$8.12E{\pm}09$	$2.53\mathrm{E}{+09}$	1.34E + 09	1.01E+08		2.08E + 07	$6.18E{+07}$			1.22E + 10

8.28E+08 4.63E + 080.00E + 003.04E + 094.57E+07 1.34E+11 1.10E + 100.00E+003.00E + 091.89E + 091.82E + 097.36E + 072.89E + 081.03E + 081.04E + 081.05E + 081.14E + 087.47E+07 8.42E + 081.88E + 081.13E + 081.61E + 088.88E+08 1.97E + 086.71E + 072.45E+06 1.80E + 083.01E+06 9.70E + 074.28E + 074.04E + 073.10E + 072.51E + 071.10E + 10BVOC Table S3: Luxembourg AVOC and BVOC emissions, in molecules cm⁻² s⁻¹, mapped to MCMv3.2 species Snap.9 2.07E + 072.54E + 074.98E+07 1.98E+07 9.96E + 079.96E+07 7.47E+07 2.10E + 087.97E+07 3.42E+07 3.51E + 082.54E + 073.10E + 087.59E+08 Snap.8 3.28E + 063.28E + 062.46E + 06Snap.74 $3.18\mathrm{E}{+08}$ 5.77E + 031.51E + 031.39E + 038.93E + 056.53E + 031.22E + 042.33E + 034.66E + 061.50E + 052.34E + 051.25E + 051.34E + 07Snap.73 2.38E + 085.15E + 081.35E + 084.44E + 081.24E + 093.19E + 072.10E + 085.48E + 075.05E + 078.68E + 077.19E + 074.25E + 078.49E + 075.42E + 08Snap.72 4.25E+072.85E + 083.98E + 085.82E + 081.57E + 084.12E + 072.85E + 082.14E + 084.90E+072.13E + 081.88E + 084.91E+074.52E+07 7.61E+07 2.65E+072.20E+071.24E + 092.06E + 087.84E+07 Snap.71 1.46E + 093.66E + 082.46E + 073.66E + 088.35E+07 6.67E + 071.47E + 078.36E + 071.70E+072.46E + 074.91E + 065.40E + 071.47E + 07Snap.6 1.18E + 091.18E + 091.18E + 091.31E + 11Snap.5 Snap.34 2.92E + 064.79E + 062.92E + 062.45E + 063.01E + 066.69E + 056.69E + 056.69E + 054.15E + 044.15E + 043.63E + 063.76E + 063.01E + 064.04E + 073.10E + 074.15E + 042.93E + 072.53E + 072.51E + 07Snap.2 1.74E+03 1.74E + 031.74E+03 4.29E + 083.73E + 033.63E + 033.63E + 033.04E+03 4.67E + 033.73E + 03Snap.1 MCM.species DIET35TOL PROPACID METHTOL OETHTOL DIME35EB STYRENE PETHTOL СЗН7СНО C2H5CHO C4H9CHO СНЗСО2Н BENZAL PHENOL СНЗСНО MGLYOX TM124B IPRCHO C4ALDB TM123B TM135B EBENZ PBENZ нсоон PBENZ ACO2H MACR HCHO MXYL OXYL PXYL C4H6C5H8ACR Trimethylbenzenes Alkadienes and Other Alkynes Formaldehyde Organic Acids Xylenes Type Other Aromatics Other Aldehydes

Table S3: Luxembourg AVOC and BVOC emissions, in molecules ${\rm cm^{-2}~s^{-1}}$, mapped to MCMv3.2 species.

	Table 55:	ruxeiiil	table 55: Luxellibourg AVOC and			USSIOIIS, 1	DACC emissions, in morecules cm	les cili	s , ma _k	, mapped to incinivo.z species.	7. U 1∨1 V U.∠	species.		
Type	MCM.species	Snap.1	Snap.2	Snap.34	Snap.5	Snap.6	Snap.71	Snap.72	Snap.73	Snap.74	Snap.8	Snap.9	BVOC	Total
	СНЗОН					2.40E+09								2.40E+09
	С2Н5ОН		6.30E + 07			2.45E + 09								$2.51\mathrm{E}{+09}$
	NPROPOL					$2.00E{\pm}08$								2.00E+08
	IPROPOL					3.19E + 08								3.19E + 08
	NBUTOL					1.94E + 08								1.94E + 08
	BUT2OL					1.30E + 08								1.30E + 08
	IBUTOL					8.09E + 07								8.09E + 07
	TBUTOL													0.00E+00
slo	PECOH													0.00E+00
оцоз	IPEAOH													0.00E+00
νIV	ME3BUOL													0.00E+00
	IPECOH													0.00E+00
	IPEBOH													0.00E+00
	CYHEXOL													0.00E+00
	MIBKAOH					4.13E+07								4.13E + 07
	ETHGLY					5.80E + 07								5.80E + 07
	PROPGLY					1.16E + 08								1.16E + 08
	С6Н5СН2ОН					3.33E + 07								3.33E + 07
	СНЗСОСНЗ	3.61E + 04	5.56E + 05			2.47E+09	1.77E+07	1.60E + 08			9.81E + 07			2.75E + 09
	MEK		4.48E + 05			1.19E+09								1.20E + 09
	MPRK		3.75E + 05											3.75E + 05
s	DIEK		3.75E + 05											3.75E + 05
oues	MIPK		3.75E + 05											3.75E + 05
мete	HEX2ONE		3.22E + 05											3.22E + 05
Į.	HEX3ONE		3.22E + 05											3.22E + 05
	MIBK		3.22E + 05			7.17E+08								7.17E + 08
	MTBK		3.22E + 05											3.22E + 05
	CYHEXONE		3.29E + 05			5.85E + 07								5.89E + 07
	APINENE												1.27E + 09	1.27E + 09
Terpenes	BPINENE												1.27E + 09	1.27E + 09
	LIMONENE					7.31E+07							1.27E + 09	1.34E + 09
	METHACET													0.00E+00
	ETHACET					1.68E + 09								1.68E + 09
pers	NBUTACET					1.18E + 09								1.18E + 09
ısя	IPROACET					4.14E + 08								4.14E + 08
	СНЗОСНО													0.00E+00
	NPROACET					1.55E+08								1.55E + 08

Table S3: Luxembourg AVOC and BVOC emissions, in molecules cm⁻² s⁻¹, mapped to MCMv3.2 species.

Total	9.30E+07	$1.46\mathrm{E}{+06}$	1.23E + 06	$1.06\mathrm{E}{+06}$	$1.06E{+06}$	$1.11E{+08}$	9.39E + 07	1.87E + 08	8.90E + 08	8.20E + 05	4.08E+08	0.00E + 00	$2.86E{+08}$	6.46E + 08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.57E + 08	0.00E+00	
BVOC																							
Snap.9																							
Snap.8																							
Snap.74																							
Snap.73																							
Snap.72																							
Snap.71																							
Snap.6	9.06E+07					1.10E + 08	9.27E + 07	1.85E + 08	8.89E + 08		4.08E+08		2.86E + 08	6.46E + 08							1.57E + 08		
Snap.5																							
Snap.34																							
Snap.2	2.35E+06	1.46E + 06	1.23E + 06	1.06E + 06	1.06E + 06	1.42E + 06	1.20E+06	1.20E+06	9.17E + 05	8.20E + 05													
Snap.1																							
MCM.species	СНЗОСНЗ	DIETETHER	MTBE	DIIPRETHER	ETBE	MO2EOL	EOX2EOL	PR2OHMOX	BUOX2ETOH	BOX2PROL	CH2CL2	CH3CH2CL	CH3CCL3	TRICLETH	CDICLETH	TDICLETH	CH3CL	CCL2CH2	CHCL2CH3	VINCL	TCE	CHCL3	
Type					s.iəi	чээ							suc	rspc	soor	Iydı	I be	oten	irol	СР			

Table S4: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCMv3.2 species into corresponding CRIv2 species. Emissions were weighted by the carbon numbers of the respective species.

Type	MCMv3.2	CRIv2	Belgium	Netherlands	Luxembarra	Total
Type	Species	Species	Beigium	Netnerlands	Luxembourg	Total
Ethane	C2H6	С2Н6	4.91E+09	8.58E+08	7.96E+09	1.37E + 10
Propane	С3Н8	С3Н8	3.35E+10	4.00E+10	3.94E+10	1.13E+11
Dartage	NC4H10	NC4H10	1.25E+11	3.49E+11	1.47E+11	6.21E+11
Butanes	IC4H10	IC4H10	3.03E+10	8.50E+10	$3.56E{+}10$	1.51E+11
	NC5H12	NC5H12	8.89E+10	2.65E+11	1.05E+11	4.59E+11
Pentanes	IC5H12	IC5H12	$5.33E{+}10$	1.60E + 11	6.29E + 10	2.76E+11
	NEOP	NEOP	1.11E+07	0.00E+00	3.79E + 06	1.49E+07
	NC6H14	NC6H14	1.52E+10	4.10E+10	1.82E+10	7.44E+10
	M2PE	M2PE	2.39E+09	6.28E + 09	2.84E+09	1.15E + 10
	M3PE	M3PE	1.34E+09	3.29E+09	1.57E+09	6.20E+09
10	NC7H16	NC7H16	1.45E+10	4.12E + 10	1.71E+10	7.28E+10
cane	M2HEX	M2HEX	2.74E + 08	4.89E + 08	3.17E + 08	1.08E+09
Hexane and Higher Alkanes	M3HEX	M3HEX	2.37E + 08	3.90E + 08	2.59E+08	8.86E + 08
ighe	M22C4	M22C4	3.47E + 07	5.29E+07	5.42E+07	1.42E+08
H pu	M23C4	M23C4	3.47E + 07	5.29E + 07	5.42E + 07	1.42E+08
ne aı	NC8H18	NC8H18	1.04E+10	3.06E + 10	1.23E+10	5.33E+10
Iexa	NC9H20	NC9H20	1.10E+09	1.07E + 09	9.78E + 08	3.15E+09
щ	NC10H22	NC10H22	2.15E+09	2.21E+09	1.89E+09	6.25E+09
	NC11H24	NC11H24	8.95E + 08	9.26E + 08	7.96E + 08	2.62E+09
	NC12H26	NC12H26	3.07E + 08	8.88E + 08	4.42E+08	1.64E+09
	CHEX	CHEX	2.91E+08	2.44E + 08	2.80E + 08	8.15E+08
Ethene	C2H4	С2Н4	3.66E+10	7.03E+09	8.25E+09	5.19E+10
Propene	СЗН6	С3Н6	1.82E+09	1.68E+09	1.68E+09	5.18E+09
	HEX1ENE	HEX1ENE	3.42E+07	5.03E+05	2.40E+07	5.87E+07
	BUT1ENE	BUT1ENE	9.99E + 07	7.04E + 05	1.86E + 08	2.87E + 08
	MEPROPENE	MEPROPENE	9.80E + 06	0.00E+00	2.46E + 06	1.23E+07
w	TBUT2ENE	TBUT2ENE	9.80E + 06	0.00E+00	2.46E + 06	1.23E+07
kene	CBUT2ENE	CBUT2ENE	9.80E + 06	0.00E+00	2.46E + 06	1.23E+07
r All	CPENT2ENE	CPENT2ENE	9.57E + 06	2.21E + 05	2.07E+06	1.19E+07
Higher Alkenes	TPENT2ENE	TPENT2ENE	9.57E + 06	2.21E + 05	2.07E+06	1.19E+07
H	PENT1ENE	PENT1ENE	2.68E+07	2.01E+05	5.17E + 06	3.22E+07
	ME2BUT2ENE	ME2BUT2ENE	1.09E+07	1.21E+05	2.56E + 06	1.36E+07
	ME3BUT1ENE	ME3BUT1ENE	1.09E+07	1.21E+05	2.56E+06	1.36E+07
	ME2BUT1ENE	ME2BUT1ENE	2.05E+06	8.05E+04	3.95E+05	2.53E+06

Table S4: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCMv3.2 species into corresponding CRIv2 species. Emissions were weighted by the carbon numbers of the respective species.

TT	MCMv3.2	$\mathbf{CRIv2}$	D-1	NT - 41 1 1 -	T	
Type	Species	Species	Belgium	Netherlands	Luxembourg	Total
Ethyne	C2H2	C2H2	2.78E+09	4.51E+09	3.22E+09	1.05E+10
Benzene	BENZENE	BENZENE	4.52E+09	1.06E+10	5.02E+09	2.01E+10
Toluene	TOLUENE	TOLUENE	5.78E+09	1.22E+10	6.37E+09	2.44E+10
	MXYL	MXYL	1.90E+09	3.00E+09	1.88E+09	6.78E+09
Xylenes	OXYL	OXYL	8.61E + 08	1.89E+09	9.66E + 08	3.72E+09
	PXYL	PXYL	8.28E + 08	1.82E + 09	9.08E + 08	3.56E+09
	TM123B	TM123B	4.49E+07	7.36E+07	5.17E+07	1.70E+08
Trimethylbenzenes	TM124B	TM124B	1.75E + 08	2.89E + 08	2.42E+08	7.06E + 08
	TM135B	TM135B	5.58E + 07	1.03E + 08	7.11E+07	2.30E+08
	EBENZ	EBENZ	3.99E+08	8.28E+08	6.29E+08	1.86E+09
	PBENZ	PBENZ	1.59E + 08	4.63E + 08	2.31E+08	8.53E + 08
	IPBENZ	IPBENZ	7.88E + 07	1.04E + 08	9.35E+07	2.76E + 08
S	PETHTOL	PETHTOL	6.03E+07	1.05E + 08	1.05E+08	2.70E+08
mati	METHTOL	METHTOL	6.93E + 07	1.14E + 08	1.13E+08	2.96E+08
Aron	OETHTOL	OETHTOL	4.19E + 07	7.47E + 07	7.62E + 07	1.93E+08
Other Aromatics	DIET35TOL	DIET35TOL	2.45E+08	8.42E + 08	3.56E + 08	1.44E+09
Ó	DIME35EB	DIME35EB	1.06E + 08	1.88E + 08	1.09E+08	4.03E+08
	STYRENE	STYRENE	6.01E + 07	1.13E + 08	1.02E+08	2.75E+08
	BENZAL	BENZAL	4.68E + 07	1.61E + 08	6.81E+07	2.76E + 08
	PHENOL	AROH14	1.86E + 07	0.00E+00	5.29E+07	7.15E+07
Formaldehyde	НСНО	НСНО	2.35E+09	3.04E+09	3.38E+09	8.77E+09
	СНЗСНО	СНЗСНО	5.53E+08	8.88E+08	5.35E+08	1.98E+09
	С2Н5СНО	С2Н5СНО	1.78E + 08	1.97E + 08	1.74E + 08	5.49E+08
S	СЗН7СНО	СЗН7СНО	1.19E + 08	6.71E + 07	1.06E+08	2.92E+08
shyde	IPRCHO	IPRCHO	9.60E + 07	4.57E + 07	8.04E+07	2.22E+08
Alde	С4Н9СНО	С4Н9СНО	4.25E + 07	2.45E + 06	2.51E+07	7.01E+07
Other Aldehydes	ACR	UCARB10	8.33E+07	1.35E + 08	7.33E+07	2.92E+08
0	MACR	UCARB10	5.23E+07	3.01E + 06	3.08E+07	8.61E+07
	C4ALDB	UCARB10	7.67E + 07	9.70E + 07	6.24E+07	2.36E+08
	MGLYOX	CARB6	4.52E + 07	2.85E + 07	3.36E+07	1.07E+08
Alkadienes and	C4H6	C4H6	4.36E+10	1.34E+11	5.56E+10	2.33E+11
Other Alkynes	C5H8	C5H8	3.35E+09	1.10E + 10	0.00E+00	1.44E+10

Table S4: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCMv3.2 species into corresponding CRIv2 species. Emissions were weighted by the carbon numbers of the respective species.

T	MCMv3.2	CRIv2	D-1	NI -41 11-	T	
Type	Species	Species	Belgium	Netherlands	Luxembourg	Total
	НСООН	НСООН	9.28E+08	4.04E+07	4.74E + 08	1.44E+09
Ommonio Acido	CH3CO2H	СН3СО2Н	7.55E + 08	3.10E + 07	4.88E + 08	1.27E+09
Organic Acids	PROPACID	PROPACID	5.77E + 08	2.51E + 07	2.95E + 08	8.97E + 08
	ACO2H	PROPACID	3.64E + 07	0.00E+00	1.04E+08	1.40E + 08
	СНЗОН	СНЗОН	2.20E+09	2.40E + 09	1.85E+09	6.45E + 09
	C2H5OH	C2H5OH	3.30E+09	2.51E+09	2.58E+09	8.39E + 09
	NPROPOL	NPROPOL	2.06E + 08	2.00E + 08	1.55E + 08	5.61E + 08
	IPROPOL	IPROPOL	3.08E + 08	3.19E + 08	2.46E + 08	8.73E + 08
	NBUTOL	NBUTOL	1.91E + 08	1.94E + 08	1.49E + 08	5.34E + 08
	BUT2OL	BUT2OL	1.41E+08	1.30E + 08	1.02E + 08	3.73E + 08
	IBUTOL	IBUTOL	8.97E + 07	8.09E+07	6.22E + 07	2.33E+08
	TBUTOL	TBUTOL	1.74E + 07	0.00E+00	8.97E + 04	1.75E+07
sls	PECOH	PECOH	1.47E + 07	0.00E+00	7.54E + 04	1.48E+07
Alcohols	IPEAOH	IPEAOH	1.47E + 07	0.00E+00	7.54E + 04	1.48E + 07
A	ME3BUOL	ME3BUOL	1.47E + 07	0.00E+00	7.54E + 04	1.48E+07
	IPECOH	IPECOH	1.47E + 07	0.00E+00	7.54E + 04	1.48E+07
	IPEBOH	IPEBOH	1.47E + 07	0.00E+00	7.54E + 04	1.48E+07
	CYHEXOL	CYHEXOL	1.29E+07	0.00E+00	6.64E + 04	1.30E+07
	MIBKAOH	MIBKAOH	4.80E + 07	4.13E+07	3.18E + 07	1.21E+08
	ETHGLY	ETHGLY	7.26E + 07	5.80E + 07	4.46E + 07	1.75E + 08
	PROPGLY	PROPGLY	1.20E + 08	1.16E + 08	8.88E + 07	3.25E + 08
	С6Н5СН2ОН	BENZAL	2.31E+07	2.59E + 07	1.99E+07	6.89E+07
	MBO	PENT1ENE	1.50E + 07	0.00E+00	7.72E + 04	1.51E+07
	СНЗСОСНЗ	СНЗСОСНЗ	2.67E+09	2.75E + 09	2.54E+09	7.96E+09
	MEK	MEK	1.11E+09	1.20E+09	9.26E + 08	3.24E+09
	MPRK	MPRK	8.03E + 06	3.75E + 05	3.30E + 06	1.17E + 07
	DIEK	DIEK	8.03E + 06	3.75E + 05	3.30E + 06	1.17E + 07
ones	MIPK	MIPK	8.03E + 06	3.75E + 05	3.30E + 06	1.17E + 07
Ketones	HEX2ONE	HEX2ONE	6.90E + 06	3.22E + 05	2.84E + 06	1.01E+07
	HEX3ONE	HEX3ONE	6.90E + 06	3.22E + 05	2.84E + 06	1.01E+07
	MIBK	MIBK	6.67E + 08	7.17E + 08	5.56E + 08	1.94E+09
	MTBK	MTBK	6.90E + 06	3.22E + 05	2.84E + 06	1.01E+07
	CYHEXONE	CYHEXONE	6.99E + 07	5.89E + 07	7.34E+07	2.02E+08

Table S4: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCMv3.2 species into corresponding CRIv2 species. Emissions were weighted by the carbon numbers of the respective species.

	MCMv3.2	CRIv2	D.I.	NT /1 1 1	т 1	m . 1
Type	Species	Species	Belgium	Netherlands	Luxembourg	Total
	СНЗОСНЗ	СНЗОСНЗ	3.59E + 08	9.30E + 07	1.07E + 08	5.59E + 08
	DIETETHER	DIETETHER	1.11E+08	1.46E + 06	1.99E+07	1.32E + 08
	MTBE	MTBE	1.76E + 07	1.23E + 06	1.35E+07	3.23E + 07
	DIIPRETHER	DIIPRETHER	9.56E + 07	1.06E + 06	1.93E + 07	1.16E + 08
Ethers	ETBE	ETBE	1.52E + 07	1.06E + 06	1.16E + 07	2.79E + 07
Eth	MO2EOL	MO2EOL	1.21E + 08	1.11E + 08	1.01E + 08	3.33E + 08
	EOX2EOL	EOX2EOL	1.02E + 08	9.39E + 07	8.56E + 07	2.82E + 08
	PR2OHMOX	PR2OHMOX	1.87E + 08	1.87E + 08	1.58E + 08	5.32E + 08
	BUOX2ETOH	BUOX2ETOH	8.27E + 08	8.90E + 08	7.05E + 08	2.42E+09
	BOX2PROL	BOX2PROL	1.17E + 07	8.20E + 05	8.99E + 06	2.15E+07
	CH2CL2	C2H2	4.17E + 08	2.04E+08	5.12E+08	1.13E+09
	CH3CH2CL	C2H2	1.36E + 08	0.00E+00	3.86E + 08	5.22E + 08
	CH3CCL3	C2H2	4.61E + 08	2.86E + 08	3.67E + 08	1.11E+09
bons	TRICLETH	C2H4	1.11E+09	6.46E + 08	1.02E+09	2.78E + 09
ocarl	CDICLETH	C2H4	4.58E + 07	0.00E+00	1.29E+08	1.75E + 08
Chlorinated Hydrocarbons	TDICLETH	C2H4	4.56E + 07	0.00E+00	1.29E + 08	1.75E + 08
ted I	CH3CL	C2H2	6.93E+07	0.00E+00	1.97E + 08	2.66E + 08
rina	CCL2CH2	C2H4	4.51E+07	0.00E+00	1.28E + 08	1.73E + 08
Chlo	CHCL2CH3	C2H2	5.35E + 05	0.00E+00	1.80E + 05	7.15E + 05
	VINCL	C2H4	4.20E + 07	0.00E+00	1.20E + 08	1.62E + 08
	TCE	C2H4	2.64E + 08	1.57E + 08	2.32E + 08	6.53E + 08
	CHCL3	C2H4	1.47E + 07	0.00E+00	4.17E + 07	5.64E + 07
	METHACET	METHACET	6.18E + 07	0.00E+00	2.67E + 06	6.45E + 07
	ETHACET	ETHACET	1.48E+09	1.68E + 09	1.29E+09	4.45E + 09
Esters	NBUTACET	NBUTACET	1.03E+09	1.18E + 09	9.03E + 08	3.11E+09
Est	IPROACET	IPROACET	3.63E + 08	4.14E + 08	3.18E + 08	1.10E + 09
	СНЗОСНО	СНЗОСНО	6.93E + 06	0.00E+00	2.99E+05	7.23E + 06
	NPROACET	NPROACET	1.42E + 08	1.55E + 08	1.21E+08	4.18E + 08
	APINENE	APINENE	4.22E+08	1.27E+09	1.47E+08	1.84E+09
Terpenes	BPINENE	BPINENE	4.22E + 08	1.27E + 09	1.47E + 08	1.84E + 09
	LIMONENE	APINENE	4.96E + 08	1.34E+09	2.10E + 08	2.05E+09
Tot	tal		5.15E+11	1.25E+12	5.64E+11	2.32E+12

Table S5: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCMv3.2 species into corresponding MOZART-4 species. Emissions were weighted by the carbon numbers of the respective species.

Tuno	MCMv3.2	MOZART-4	Belgium	Netherlands	Luxembourg	Total
Type	Species	Species	Deigium	Netherlands	Luxembourg	Total
Ethane	C2H6	C2H6	4.91E+09	8.58E + 08	7.96E+09	1.37E+10
Propane	С3Н8	C3H8	$3.35E{+}10$	4.00E + 10	3.94E+10	1.13E+11
Butanes	NC4H10	BIGALK	1.00E + 11	2.79E + 11	1.17E+11	4.96E+11
Dutanes	IC4H10	BIGALK	2.42E+10	6.80E + 10	2.85E+10	1.21E+11
	NC5H12	BIGALK	$8.89E{+}10$	2.65E + 11	1.05E+11	4.59E+11
Pentanes	IC5H12	BIGALK	$5.33E{+}10$	$1.60E{+}11$	$6.29E{+}10$	2.76E + 11
	NEOP	BIGALK	1.11E+07	0.00E+00	3.79E + 06	1.49E+07
	NC6H14	BIGALK	1.82E + 10	4.92E + 10	2.18E+10	8.92E+10
	M2PE	BIGALK	2.87E + 09	7.54E + 09	3.41E+09	1.38E+10
	M3PE	BIGALK	1.61E+09	3.94E + 09	1.89E+09	7.44E+09
100	NC7H16	BIGALK	2.02E+10	5.77E + 10	2.39E+10	1.02E + 11
kane	M2HEX	BIGALK	3.83E + 08	6.84E + 08	4.44E+08	1.51E+09
Hexane and Higher Alkanes	M3HEX	BIGALK	3.31E + 08	5.45E + 08	3.63E + 08	1.24E+09
ighe	M22C4	BIGALK	4.16E + 07	6.34E + 07	6.51E+07	1.70E + 08
H pu	M23C4	BIGALK	4.16E + 07	6.34E + 07	6.51E+07	1.70E + 08
ne al	NC8H18	BIGALK	1.67E + 10	4.89E + 10	1.97E + 10	8.53E+10
Iexa	NC9H20	BIGALK	1.99E+09	1.93E+09	1.76E + 09	5.68E + 09
н	NC10H22	BIGALK	4.31E+09	4.42E+09	3.78E + 09	$1.25E{+}10$
	NC11H24	BIGALK	1.97E + 09	2.04E+09	1.75E+09	5.76E+09
	NC12H26	BIGALK	7.37E + 08	2.13E+09	1.06E+09	3.93E+09
	CHEX	BIGALK	3.49E + 08	2.93E + 08	3.36E + 08	9.78E + 08
Ethene	C2H4	C2H4	3.66E + 10	7.03E+09	8.25E+09	5.19E+10
Propene	С3Н6	С3Н6	1.82E + 09	1.68E+09	1.68E+09	5.18E+09
	HEX1ENE	BIGENE	5.13E+07	7.55E + 05	3.60E+07	8.81E+07
	BUT1ENE	BIGENE	9.99E+07	7.04E + 05	1.86E + 08	2.87E + 08
	MEPROPENE	BIGENE	9.80E + 06	0.00E+00	2.46E+06	1.23E+07
ω	TBUT2ENE	BIGENE	9.80E + 06	0.00E+00	2.46E + 06	1.23E+07
kene	CBUT2ENE	BIGENE	9.80E + 06	0.00E+00	2.46E + 06	1.23E+07
ır Al	CPENT2ENE	BIGENE	1.20E+07	2.77E + 05	2.58E+06	1.49E+07
Higher Alkenes	TPENT2ENE	BIGENE	1.20E + 07	2.77E + 05	2.58E + 06	1.49E + 07
щ	PENT1ENE	BIGENE	3.34E+07	2.52E + 05	6.47E + 06	4.01E+07
	ME2BUT2ENE	BIGENE	1.37E + 07	1.51E + 05	3.20E + 06	1.71E+07
	ME3BUT1ENE	BIGENE	1.37E+07	1.51E + 05	3.20E + 06	1.71E+07
	ME2BUT1ENE	BIGENE	2.57E + 06	1.01E + 05	4.93E + 05	3.16E+06

Table S5: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCMv3.2 species into corresponding MOZART-4 species. Emissions were weighted by the carbon numbers of the respective species.

Th.	MCMv3.2	MOZART-4	D.I.	NT /1 1 1	т 1	m . 1
Type	Species	Species	Belgium	Netherlands	Luxembourg	Total
Ethyne	C2H2	C2H2	2.78E + 09	4.51E+09	3.22E+09	1.05E+10
Benzene	BENZENE	TOLUENE	3.87E+09	9.05E+09	4.30E+09	1.72E+10
Toluene	TOLUENE	TOLUENE	5.78E+09	1.22E+10	6.37E+09	2.44E+10
	MXYL	TOLUENE	2.17E+09	3.43E+09	2.14E+09	7.74E+09
Xylenes	OXYL	TOLUENE	9.85E + 08	2.16E+09	1.10E+09	4.25E+09
	PXYL	TOLUENE	9.46E + 08	2.08E+09	1.04E+09	4.07E + 09
	TM123B	TOLUENE	5.78E+07	9.47E+07	6.65E+07	2.19E+08
Trimethylbenzenes	TM124B	TOLUENE	2.25E+08	3.72E + 08	3.12E+08	9.09E+08
	TM135B	TOLUENE	7.17E + 07	1.32E + 08	9.14E + 07	2.95E+08
	EBENZ	TOLUENE	4.57E+08	9.46E+08	7.19E+08	2.12E+09
	PBENZ	TOLUENE	2.04E+08	5.95E + 08	2.97E + 08	1.10E+09
	IPBENZ	TOLUENE	1.01E+08	1.34E + 08	1.20E + 08	3.55E+08
S	PETHTOL	TOLUENE	7.76E + 07	1.34E + 08	1.36E + 08	3.48E+08
natid	METHTOL	TOLUENE	8.90E + 07	1.47E + 08	1.45E+08	3.81E+08
Aror	OETHTOL	TOLUENE	5.39E + 07	9.61E + 07	9.80E + 07	2.48E+08
Other Aromatics	DIET35TOL	TOLUENE	3.84E + 08	1.32E+09	5.60E + 08	2.26E+09
Ō	DIME35EB	TOLUENE	1.52E + 08	2.68E + 08	1.56E + 08	5.76E + 08
	STYRENE	TOLUENE	7.72E+07	1.45E + 08	1.31E+08	3.53E+08
	BENZAL	TOLUENE	6.01E + 07	2.07E + 08	8.76E+07	3.55E + 08
	PHENOL	TOLUENE	1.59E + 07	0.00E+00	4.54E + 07	6.13E+07
Formaldehyde	НСНО	CH2O	2.35E+09	3.04E+09	3.38E+09	8.77E+09
	СНЗСНО	СН3СНО	5.53E+08	8.88E+08	5.35E+08	1.98E+09
	С2Н5СНО	СН3СНО	2.67E + 08	2.95E+08	2.61E+08	8.23E+08
S	СЗН7СНО	СН3СНО	2.37E + 08	1.34E + 08	2.11E+08	5.82E + 08
hyde	IPRCHO	СНЗСНО	1.92E + 08	9.14E + 07	1.61E + 08	4.44E+08
Alde	С4Н9СНО	СНЗСНО	1.06E + 08	6.13E + 06	6.27E + 07	1.75E + 08
Other Aldehydes	ACR	MACR	8.33E+07	1.35E + 08	7.33E+07	2.92E + 08
Ö	MACR	MACR	5.23E+07	3.01E + 06	3.08E+07	8.61E+07
	C4ALDB	MACR	7.67E + 07	9.70E + 07	6.24E + 07	2.36E+08
	MGLYOX	СН3СОСНО	4.52E+07	4.28E + 07	5.05E+07	1.39E+08
Alkadienes and	C4H6	BIGENE	4.36E+10	1.34E+11	4.45E+10	2.22E+11
Other Alkynes	С5Н8	ISOP	3.35E+09	1.10E+10	0.00E+00	1.44E+10

Table S5: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCMv3.2 species into corresponding MOZART-4 species. Emissions were weighted by the carbon numbers of the respective species.

Type	MCMv3.2	MOZART-4	Belgium	Netherlands	Luxembourg	Total
Type	Species	Species	Deigium	Netherlands	Luxembourg	Total
	НСООН	НСООН	9.28E + 08	4.04E + 07	4.74E + 08	1.44E+09
Organic Acids	СН3СО2Н	СНЗСООН	7.55E + 08	3.10E + 07	4.88E + 08	1.27E + 09
Organic Acids	PROPACID	СНЗСООН	8.65E + 08	3.77E + 07	4.42E + 08	1.34E+09
	ACO2H	СНЗСООН	5.46E + 07	0.00E+00	1.56E + 08	2.11E+08
	СНЗОН	СНЗОН	2.20E+09	2.40E+09	1.85E+09	6.45E+09
	С2Н5ОН	C2H5OH	3.30E + 09	2.51E + 09	2.58E + 09	8.39E+09
	NPROPOL	С2Н5ОН	3.08E + 08	3.00E + 08	2.33E+08	8.41E + 08
	IPROPOL	С2Н5ОН	4.61E + 08	4.79E + 08	3.69E + 08	1.31E+09
	NBUTOL	С2Н5ОН	3.82E + 08	3.89E + 08	2.98E + 08	1.07E + 09
	BUT2OL	С2Н5ОН	2.82E + 08	2.59E + 08	2.04E + 08	7.45E+08
	IBUTOL	С2Н5ОН	1.79E + 08	1.62E + 08	1.24E + 08	4.65E + 08
	TBUTOL	С2Н5ОН	3.48E + 07	0.00E+00	1.79E + 05	3.50E + 07
slo	PECOH	С2Н5ОН	3.66E + 07	0.00E+00	1.88E + 05	3.68E + 07
Alcohols	IPEAOH	С2Н5ОН	3.66E + 07	0.00E+00	1.88E + 05	3.68E + 07
Al	ME3BUOL	С2Н5ОН	3.66E + 07	0.00E+00	1.88E + 05	3.68E + 07
	IPECOH	С2Н5ОН	3.66E + 07	0.00E+00	1.88E + 05	3.68E + 07
	IPEBOH	С2Н5ОН	3.66E + 07	0.00E+00	1.88E + 05	3.68E + 07
	CYHEXOL	С2Н5ОН	3.87E + 07	0.00E+00	1.99E + 05	3.89E + 07
	MIBKAOH	С2Н5ОН	1.44E + 08	1.24E + 08	9.53E + 07	3.63E + 08
	ETHGLY	С2Н5ОН	7.26E + 07	5.80E + 07	4.46E + 07	1.75E + 08
	PROPGLY	С2Н5ОН	1.80E + 08	1.73E + 08	1.33E+08	4.86E + 08
	С6Н5СН2ОН	С2Н5ОН	1.04E + 08	1.17E + 08	8.94E + 07	3.10E + 08
	MBO	С2Н5ОН	3.75E + 07	0.00E+00	1.93E + 05	3.77E + 07
	СНЗСОСНЗ	СНЗСОСНЗ	2.67E + 09	2.75E+09	2.54E+09	7.96E+09
	MEK	MEK	1.11E+09	1.20E + 09	9.26E + 08	3.24E+09
	MPRK	MEK	1.00E + 07	4.69E + 05	4.12E + 06	1.46E + 07
	DIEK	MEK	1.00E + 07	4.69E + 05	4.12E + 06	1.46E + 07
ones	MIPK	MEK	1.00E+07	4.69E + 05	4.12E + 06	1.46E + 07
Ketones	HEX2ONE	MEK	1.04E+07	4.84E + 05	4.25E + 06	1.51E+07
	HEX3ONE	MEK	1.04E+07	4.84E + 05	4.25E + 06	1.51E+07
	MIBK	MEK	1.00E+09	1.08E+09	8.34E + 08	2.91E+09
	MTBK	MEK	1.04E+07	4.84E + 05	4.25E + 06	1.51E+07
	CYHEXONE	MEK	1.05E+08	8.83E + 07	1.10E + 08	3.03E+08

Table S5: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCMv3.2 species into corresponding MOZART-4 species. Emissions were weighted by the carbon numbers of the respective species.

	MCMv3.2	MOZART-4	D.I.	NT /1 1 1	т 1	m . 1
Type	Species	Species	Belgium	Netherlands	Luxembourg	Total
	СНЗОСНЗ	BIGALK	1.44E + 08	3.72E + 07	1.47E + 08	3.28E + 08
	DIETETHER	BIGALK	8.92E + 07	1.17E + 06	1.47E + 08	2.37E + 08
	MTBE	BIGALK	1.76E + 07	1.23E + 06	2.10E+08	2.29E+08
	DIIPRETHER	BIGALK	1.15E + 08	1.27E + 06	1.60E + 06	1.18E + 08
Ethers	ETBE	BIGALK	1.82E + 07	1.27E + 06	1.03E+09	1.05E+09
Eth	MO2EOL	BIGALK	7.25E+07	6.67E + 07	1.08E + 09	1.22E+09
	EOX2EOL	BIGALK	8.16E + 07	7.51E + 07	3.18E + 08	4.75E + 08
	PR2OHMOX	BIGALK	1.49E + 08	1.49E + 08	2.99E+05	2.98E + 08
	BUOX2ETOH	BIGALK	9.92E + 08	1.07E + 09	1.21E+08	2.18E+09
	BOX2PROL	BIGALK	1.64E + 07	1.15E + 06	4.28E+07	6.04E+07
	CH2CL2	BIGALK	1.67E + 08	8.16E + 07	1.60E+07	2.65E+08
	CH3CH2CL	BIGALK	5.42E + 07	0.00E+00	1.35E+07	6.77E + 07
_	CH3CCL3	BIGALK	1.84E + 08	1.14E + 08	2.32E+07	3.21E + 08
pons	TRICLETH	BIGALK	4.43E + 08	2.58E + 08	1.40E + 07	7.15E + 08
ocar	CDICLETH	BIGALK	1.83E + 07	0.00E+00	6.08E + 07	7.91E + 07
Chlorinated Hydrocarbons	TDICLETH	BIGALK	1.82E + 07	0.00E+00	6.85E + 07	8.67E + 07
ted]	CH3CL	BIGALK	2.77E + 07	0.00E+00	1.26E + 08	1.54E + 08
orina	CCL2CH2	BIGALK	1.80E + 07	0.00E+00	8.46E + 08	8.64E + 08
Chlc	CHCL2CH3	BIGALK	2.14E + 05	0.00E+00	1.26E + 07	1.28E + 07
	VINCL	BIGALK	1.68E + 07	0.00E+00	2.05E+08	2.22E + 08
	TCE	BIGALK	1.06E + 08	6.27E + 07	1.54E + 08	3.23E + 08
	CHCL3	BIGALK	5.86E + 06	0.00E+00	1.47E+08	1.53E+08
	METHACET	BIGALK	3.71E + 07	0.00E+00	4.08E + 08	4.45E + 08
	ETHACET	BIGALK	1.18E + 09	1.35E + 09	5.15E + 07	2.58E + 09
Esters	NBUTACET	BIGALK	1.24E + 09	1.41E + 09	5.15E + 07	2.70E + 09
Ξ	IPROACET	BIGALK	3.63E + 08	4.14E + 08	7.90E + 07	8.56E + 08
	СНЗОСНО	BIGALK	6.93E + 06	0.00E+00	5.14E + 07	5.83E + 07
	NPROACET	BIGALK	1.42E+08	1.55E+08	7.22E+04	2.97E+08
	APINENE	C10H16	4.22E + 08	1.27E + 09	4.78E + 07	1.74E + 09
Terpenes	BPINENE	C10H16	4.22E + 08	1.27E + 09	9.26E + 07	1.78E + 09
	LIMONENE	C10H16	4.96E + 08	1.34E+09	1.67E + 07	1.85E+09
Tot	al		5.05E+11	1.21E+12	5.39E+11	2.25E+12

Table S6: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCMv3.2 species into corresponding RADM2 species. Emissions were weighted by the carbon numbers of the respective species.

Type	MCMv3.2	RADM2	Belgium	Netherlands	Luxembourg	Total
	Species	Species	Deigium	Netherlands	Luxellibourg	Total
Ethane	C2H6	ETH	4.91E+09	8.58E + 08	7.96E+09	1.37E + 10
Propane	С3Н8	HC3	3.47E + 10	4.13E+10	4.08E+10	1.17E + 11
Butanes	NC4H10	НС3	1.73E+11	4.81E+11	2.02E+11	8.56E+11
Dutanes	IC4H10	HC3	4.18E+10	1.17E+11	4.91E+10	2.08E+11
	NC5H12	HC5	$9.26E{+}10$	2.76E + 11	1.09E+11	4.78E+11
Pentanes	IC5H12	HC5	$5.55E{+}10$	$1.66E{+}11$	$6.55E{+}10$	2.87E + 11
	NEOP	HC3	1.91E+07	0.00E+00	6.54E + 06	2.56E+07
	NC6H14	HC5	1.89E + 10	5.12E + 10	2.28E+10	9.29E+10
	M2PE	HC5	2.99E+09	7.85E + 09	3.55E+09	1.44E+10
	M3PE	HC5	1.67E + 09	4.11E+09	1.97E + 09	7.75E+09
ω	NC7H16	HC5	2.11E+10	6.01E + 10	2.49E+10	$1.06E{+}11$
kane	M2HEX	HC8	2.42E + 08	4.33E + 08	2.81E + 08	9.56E + 08
Hexane and Higher Alkanes	M3HEX	HC8	2.10E + 08	3.45E + 08	2.30E + 08	7.85E+08
lighe	M22C4	HC3	7.18E+07	1.09E + 08	1.12E + 08	2.93E+08
H pu	M23C4	HC5	4.34E+07	6.61E + 07	6.78E + 07	1.77E + 08
ne al	NC8H18	HC8	1.06E + 10	$3.10E{+}10$	$1.25E{+}10$	5.41E+10
Iexa	NC9H20	HC8	1.26E+09	1.22E+09	1.11E+09	3.59E+09
H	NC10H22	HC8	2.73E+09	2.80E + 09	2.39E+09	7.92E+09
	NC11H24	HC8	1.25E+09	1.29E+09	1.11E+09	3.65E + 09
	NC12H26	HC8	4.66E + 08	1.35E + 09	6.71E + 08	2.49E+09
	CHEX	HC8	2.21E+08	1.85E + 08	2.13E+08	6.19E+08
Ethene	C2H4	OL2	3.66E + 10	7.03E+09	8.25E+09	5.19E+10
Propene	С3Н6	OLT	1.43E+09	1.32E+09	1.32E+09	4.07E+09
	HEX1ENE	OLT	5.40E + 07	7.94E + 05	3.79E + 07	9.27E + 07
	BUT1ENE	OLT	1.05E+08	7.41E + 05	1.96E + 08	3.02E+08
	MEPROPENE	OLI	8.17E + 06	0.00E+00	2.05E+06	1.02E+07
ω	TBUT2ENE	OLI	8.17E + 06	0.00E+00	2.05E+06	1.02E+07
kene	CBUT2ENE	OLI	8.17E + 06	0.00E+00	2.05E+06	1.02E+07
er Al	CPENT2ENE	OLI	9.97E + 06	2.31E + 05	2.15E+06	1.24E + 07
Higher Alkenes	TPENT2ENE	OLI	9.97E + 06	2.31E + 05	2.15E+06	1.24E+07
-	PENT1ENE	OLT	3.52E+07	2.65E + 05	6.81E + 06	4.23E+07
	ME2BUT2ENE	OLI	1.14E+07	1.26E + 05	2.66E + 06	1.42E+07
	ME3BUT1ENE	OLT	1.44E+07	1.59E + 05	3.36E + 06	1.79E+07
	ME2BUT1ENE	OLI	2.14E + 06	8.39E+04	4.11E + 05	2.63E+06

Table S6: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCMv3.2 species into corresponding RADM2 species. Emissions were weighted by the carbon numbers of the respective species.

Trumo	MCMv3.2	RADM2	Dalaina	Netherlands	Tand a	Total
Type	Species	Species	Belgium	Netnerlands	Luxembourg	Total
Ethyne	C2H2	HC3	1.92E+09	3.11E+09	2.22E+09	7.25E+09
Benzene	BENZENE	TOL	3.82E + 09	8.93E+09	4.24E+09	1.70E+10
Toluene	TOLUENE	TOL	5.69E+09	1.21E+10	6.28E + 09	2.41E+10
	MXYL	XYL	1.71E+09	2.69E+09	1.69E+09	6.09E+09
Xylenes	OXYL	XYL	7.74E + 08	1.70E + 09	8.68E + 08	3.34E+09
	PXYL	XYL	7.44E + 08	1.63E + 09	8.16E + 08	3.19E+09
	TM123B	XYL	4.54E+07	7.45E+07	5.23E+07	1.72E+08
Trimethylbenzenes	TM124B	XYL	1.77E + 08	2.93E + 08	2.45E + 08	7.15E+08
	TM135B	XYL	5.64E + 07	1.04E + 08	7.19E+07	2.32E+08
	EBENZ	TOL	4.50E+08	9.33E+08	7.08E+08	2.09E+09
	PBENZ	TOL	2.01E+08	5.86E + 08	2.93E + 08	1.08E+09
	IPBENZ	TOL	9.99E + 07	1.32E + 08	1.18E + 08	3.50E+08
S	PETHTOL	XYL	6.10E + 07	1.06E + 08	1.07E + 08	2.74E + 08
mati	METHTOL	XYL	7.00E+07	1.16E + 08	1.14E + 08	3.00E+08
Aro	OETHTOL	XYL	4.24E+07	7.56E + 07	7.71E + 07	1.95E+08
Other Aromatics	DIET35TOL	XYL	3.02E + 08	1.04E+09	4.41E+08	1.78E + 09
0	DIME35EB	XYL	1.19E + 08	2.11E + 08	1.23E + 08	4.53E+08
	STYRENE	TOL	7.61E + 07	1.43E + 08	1.29E+08	3.48E+08
	BENZAL	CSL	6.38E+07	2.20E + 08	9.29E + 07	3.77E + 08
	PHENOL	CSL	1.69E+07	0.00E+00	4.81E + 07	6.50E+07
Formaldehyde	НСНО	НСНО	2.35E+09	3.04E+09	3.38E+09	8.77E+09
	СНЗСНО	ALD	4.61E+08	7.40E + 08	4.46E + 08	1.65E+09
	C2H5CHO	ALD	2.23E + 08	2.46E + 08	2.18E + 08	6.87E + 08
88	СЗН7СНО	ALD	1.98E + 08	1.12E + 08	1.76E + 08	4.86E + 08
shyd	IPRCHO	ALD	1.60E + 08	7.62E + 07	1.34E + 08	3.70E + 08
Alde	С4Н9СНО	ALD	8.86E + 07	5.10E + 06	5.23E+07	1.46E + 08
Other Aldehydes	ACR	ALD	1.39E+08	2.25E + 08	1.22E + 08	4.86E + 08
0	MACR	ALD	8.71E+07	5.02E + 06	5.14E + 07	1.44E+08
	C4ALDB	ALD	1.28E+08	1.62E + 08	1.04E + 08	3.94E+08
	MGLYOX	MGLY	4.52E+07	2.85E + 07	3.36E+07	1.07E + 08
Alkadienes and	C4H6	OLI	3.64E+10	1.12E+11	4.63E+10	1.95E+11
Other Alkynes	C5H8	ISO	3.35E+09	1.10E + 10	0.00E+00	1.44E+10

Table S6: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCMv3.2 species into corresponding RADM2 species. Emissions were weighted by the carbon numbers of the respective species.

Type	MCMv3.2	RADM2	Belgium	Netherlands	Luxembourg	Total
Type	Species	Species	Беідішіі	Netherlands	Luxembourg	iotai
	НСООН	ORA1	9.28E + 08	4.04E + 07	4.74E + 08	1.44E+09
O	СН3СО2Н	ORA2	7.55E + 08	3.10E + 07	4.88E + 08	1.27E+09
Organic Acids	PROPACID	ORA2	8.65E + 08	3.77E + 07	4.42E + 08	1.34E+09
	ACO2H	OLT	2.87E + 07	0.00E+00	8.19E+07	1.11E+08
	СНЗОН	HC3	7.59E + 08	8.27E + 08	6.37E + 08	2.22E+09
	С2Н5ОН	HC3	2.27E + 09	1.73E + 09	1.78E + 09	5.78E + 09
	NPROPOL	HC5	1.29E+08	1.25E + 08	9.70E + 07	3.51E+08
	IPROPOL	HC5	1.92E + 08	2.00E + 08	1.54E + 08	5.46E + 08
	NBUTOL	HC8	9.67E + 07	9.84E + 07	7.55E+07	2.71E+08
	BUT2OL	HC8	7.14E + 07	6.56E + 07	5.17E + 07	1.89E + 08
	IBUTOL	HC8	4.54E + 07	4.10E + 07	3.15E + 07	1.18E+08
	TBUTOL	HC3	2.40E + 07	0.00E+00	1.24E + 05	2.41E+07
sla	PECOH	HC8	9.27E + 06	0.00E+00	4.77E + 04	9.32E+06
Alcohols	IPEAOH	HC8	9.27E + 06	0.00E+00	4.77E + 04	9.32E + 06
Al	ME3BUOL	HC8	9.27E + 06	0.00E+00	4.77E + 04	9.32E + 06
	IPECOH	HC3	2.53E+07	0.00E+00	1.30E + 05	2.54E+07
	IPEBOH	HC8	9.27E + 06	0.00E+00	4.77E + 04	9.32E+06
	CYHEXOL	HC8	9.79E + 06	0.00E+00	5.04E+04	9.84E + 06
	MIBKAOH	KET	7.39E+07	6.36E + 07	4.89E + 07	1.86E + 08
	ETHGLY	HC8	1.84E + 07	1.47E + 07	1.13E+07	4.44E+07
	PROPGLY	HC8	4.57E + 07	4.39E + 07	3.37E+07	1.23E+08
	С6Н5СН2ОН	HC8	2.64E + 07	2.95E + 07	2.26E+07	7.85E+07
	MBO	OLT	1.97E + 07	0.00E+00	1.02E + 05	1.98E+07
	СНЗСОСНЗ	KET	2.05E+09	2.11E+09	1.95E+09	6.11E+09
	MEK	KET	1.14E+09	1.23E+09	9.49E + 08	3.32E+09
	MPRK	KET	1.03E+07	4.81E + 05	4.23E + 06	1.50E+07
	DIEK	KET	1.03E+07	4.81E + 05	4.23E + 06	1.50E+07
nes	MIPK	KET	1.03E+07	4.81E + 05	4.23E + 06	1.50E+07
Ketones	HEX2ONE	HC5	8.63E+06	4.03E + 05	3.55E + 06	1.26E+07
	HEX3ONE	HC5	8.63E+06	4.03E + 05	3.55E + 06	1.26E+07
	MIBK	HC5	8.34E+08	8.96E + 08	6.95E + 08	2.43E+09
	MTBK	KET	1.06E+07	4.96E + 05	4.36E + 06	1.55E+07
	CYHEXONE	HC5	8.73E+07	7.36E + 07	9.18E+07	2.53E+08

Table S6: Benelux AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, mapped from MCMv3.2 species into corresponding RADM2 species. Emissions were weighted by the carbon numbers of the respective species.

<i>T</i>	MCMv3.2	RADM2	D-1	NI - 4111 -	T	
Type	Species	Species	Belgium	Netherlands	Luxembourg	Total
	СНЗОСНЗ	HC3	2.48E + 08	6.41E + 07	7.38E+07	3.86E + 08
	DIETETHER	HC8	5.64E + 07	7.40E + 05	1.01E+07	6.72E + 07
	MTBE	HC3	3.03E+07	2.12E + 06	2.32E+07	5.56E + 07
	DIIPRETHER	HC8	7.26E + 07	8.06E + 05	1.47E + 07	8.81E + 07
Ethers	ETBE	HC8	1.15E + 07	8.06E + 05	8.83E + 06	2.11E+07
Et!	MO2EOL	HC8	$4.59E{+07}$	4.22E + 07	3.85E + 07	1.27E + 08
	EOX2EOL	HC8	$5.16\mathrm{E}{+07}$	4.75E + 07	4.33E+07	1.42E + 08
	PR2OHMOX	HC8	9.46E + 07	9.45E + 07	8.00E + 07	2.69E + 08
	BUOX2ETOH	HC8	6.28E + 08	6.76E + 08	5.35E + 08	1.84E+09
	BOX2PROL	HC8	1.04E+07	7.26E + 05	7.97E + 06	1.91E+07
	CH2CL2	НС3	2.87E + 08	1.41E + 08	3.53E+08	7.81E+08
	CH3CH2CL	HC3	9.35E + 07	0.00E+00	2.66E + 08	3.60E + 08
_	CH3CCL3	HC3	3.18E + 08	1.97E + 08	2.53E + 08	7.68E + 08
pons	TRICLETH	HC3	7.64E + 08	4.45E + 08	7.03E + 08	1.91E+09
ocar	CDICLETH	HC3	3.16E + 07	0.00E+00	8.88E + 07	1.20E + 08
Chlorinated Hydrocarbons	TDICLETH	HC3	$3.14\mathrm{E}{+07}$	0.00E+00	8.87E + 07	1.20E + 08
ted]	CH3CL	HC3	4.78E + 07	0.00E + 00	1.36E + 08	1.84E + 08
rina	CCL2CH2	HC8	1.14E + 07	0.00E+00	3.25E + 07	4.39E+07
Chlc	CHCL2CH3	HC3	$3.69E{+}05$	0.00E+00	1.24E + 05	4.93E + 05
	VINCL	HC8	1.06E + 07	0.00E + 00	3.03E+07	4.09E+07
	TCE	HC3	1.82E + 08	1.08E + 08	1.60E + 08	4.50E + 08
	CHCL3	НС3	1.01E+07	0.00E+00	2.88E+07	3.89E+07
	METHACET	HC3	6.39E + 07	0.00E+00	2.76E + 06	6.67E + 07
	ETHACET	HC3	2.04E + 09	2.32E + 09	1.78E + 09	6.14E + 09
Esters	NBUTACET	HC5	1.29E + 09	1.47E + 09	1.13E+09	3.89E + 09
E Sd	IPROACET	HC3	6.26E + 08	7.14E + 08	5.48E + 08	1.89E + 09
	СНЗОСНО	HC3	1.19E + 07	0.00E+00	5.16E + 05	1.24E+07
	NPROACET	НС3	2.45E+08	2.68E+08	2.09E+08	7.22E+08
	APINENE	OLI	8.78E + 08	2.65E + 09	3.05E + 08	3.83E+09
Terpenes	BPINENE	OLI	8.78E + 08	2.65E + 09	3.05E + 08	3.83E+09
	LIMONENE	OLI	1.03E+09	2.80E + 09	4.38E + 08	4.27E+09
Tot	al		5.83E+11	1.44E+12	6.42E+11	2.66E+12

	Table S7: A	llocation	Table S7: Allocation of MCMv3.2 species used to represent NMVOC emissions from Benelux allocated to CB05 species.
Type	MCMv3.2 Species	PAR	OLE TOL XYL FORM ALD2 ALDX MEOH ETOH FACD AACD ETH ETHA IOLE ISOP TERP
Ethane	C2H6		1
Propane	C3H8	2	
f	NC4H10	4	
Butanes	IC4H10	4	
	NC5H12	2	
Pentanes	IC5H12	ಬ	
	NEOP	4	
	NC6H14	9	
	M2PE	9	
	M3PE	9	
Se	NC7H16	7-	
үsue	M2HEX	7	
IA 14	M3HEX	7	
ədgil	M22C4	ಬ	
H þu	M23C4	9	
ne an	NC8H18	∞	
ехэг	NC9H20	6	
Н	NC10H22	10	
	NC11H24	11	
	NC12H26	12	
	CHEX	9	
Ethene	C2H4		1
Propene	C3H6	1	1

TERPISOPIOLE Table S7: Allocation of MCMv3.2 species used to represent NMVOC emissions from Benelux allocated to CB05 species. ETHA ETHAACD FACD ETOH MEOHALDX ALD2 \mathbf{FORM} XYLTOLOLE PARME2BUT2ENE ME3BUT1ENE ME2BUT1ENE MEPROPENE TPENT2ENE CPENT2ENE PENTIENE TBUTZENE CBUT2ENE MCMv3.2BUTIENE TOLUENE HEXIENE BENZENE Species TM124BTM135BTM123BMXYLOXYL $\rm PXYL$ C2H2Trimethylbenzenes Benzene Toluene Xylenes Ethyne \mathbf{Type} Higher Alkenes

	Table S7: Allocation of MCMv3.2 species used	llocation	of MC	Mv3.2	specie	s used to	represe	nt NMV	OC emis	to represent NMVOC emissions from Benelux allocated to CB05 species.	m Benel	ux alloce	ted to ($3B05~\mathrm{spc}$	ecies.		
Type	MCMv3.2 Species	PAR	OLE	TOL	XXL	FORM	ALD2	ALDX	МЕОН	ЕТОН	FACD	AACD	ЕТН	ЕТНА	IOLE	ISOP	TERP
	EBENZ	П		1													
	PBENZ	2		1													
	IPBENZ	2		1													
cs	PETHTOL	1			1												
itsm	METHTOL	П			П												
ıoıA	OETHTOL	1			1												
her	DIET35TOL	က			1												
ЭΟ	DIME35EB	2			П												
	STYRENE		1	1													
	BENZAL			1													
	PHENOL	1															
Formaldehyde	НСНО					1											
	СНЗСНО						П										
	С2Н5СНО	1						1									
sə	СЗН7СНО	2						1									
рλцә	IPRCHO	2						1									
bbIA	C4H9CHO	က						1									
per	ACR		1					1									
Ю	MACR	1	1					1									
	C4ALDB		П					1									
	MGLYOX					1		1									
Alkadienes and	C4H6		2														
Other Alkynes	C5H8															1	
	НСООН										1						
Organic Acids	СНЗСО2Н	,										₽ ,					
	PROPACID	1										1					

TERP ISOPIOLE Table S7: Allocation of MCMv3.2 species used to represent NMVOC emissions from Benelux allocated to CB05 species. ETHA ETHFACD AACD ETOH MEOH ALDX FORM ALD2 OLE TOL XYL PARС6Н5СН2ОН СНЗСОСНЗ MCMv3.2NPROPOL CYHEXOL MIBKAOH PROPGLY HEX20NE ME3BUOL IPROPOL IPEAOH NBUTOL ETHGLY TBUTOL C2H5OH BUT2OL IBUTOL PECOH IPECOH IPEBOH Species СНЗОН ACO2H MPRK MIPKMBO DIEK MEK \mathbf{Type} Alcohols Ketones

	Table S7: Allocation of MCMv3.2 species used	ocation of N	ICMv3.	2 species		to represent NMVOC emissions from Benelux allocated to CB05 species.	t NMV	OC emiss	sions fron	n Benel	ux alloce	ted to (3B05 sp	ecies.		
\mathbf{Type}	MCMv3.2 Species	PAR OLE	E TOL	XXL	\mathbf{FORM}	ALD2	ALDX	МЕОН	ЕТОН	FACD	AACD	ETH	ЕТНА	IOLE	ISOP	TERP
	HEX3ONE	9														
	MIBK	9														
	MTBK	9														
	CYHEXONE	9														
	СНЗОСНЗ	2														Ī
	DIETETHER	4														
	MTBE	4														
	DIIPRETHER	9														
ıers	ETBE	က														
E¢!	MO2EOL	3														
	EOX2EOL	4														
	PR2OHMOX	2														
	BUOX2ETOH	9														
	BOX2PROL	7														
	CH2CL2															
	CH3CH2CL															
s	CH3CCL3															
uoq.	TRICLETH											1				
ocsı.	CDICLETH															
Iydr	TDICLETH															
H bə:	CH3CL															
tsnir	CCL2CH2															
юјчд	CHCL2CH3															
)	VINCL											1				
	TCE															
	CHCL3															

	Table S7: Allocation of MCMv3.2 species used	location	of MC	Mv3.2	species	used to	represer	nt NMV(to represent NMVOC emissions from Benelux allocated to CB05 species.	ions fron	n Benelu	x allocat	ted to C	3B05 spe	scies.		
E C	MCMv3.2	DAD	1 C	IOT	17.4	Maca tyy top ato ava	אווא	ATDX	AID AIDI AHTA HEA TO A ACH AACH AATH A ATH A HOLE HOUR	HOTA	7	4	THE STATE	4 H.L.	4 101	GOSI	0 0 0 1
Type	Species	LAN	OLE	101	717	FORIM	ALD2	ALDA	МЕОП	EIOH	FACD	AACD	E I E	БІПА	IOLE	ISOF	IENE
	METHACET	2															
	ETHACET	3															
SJƏ	NBUTACET	ಬ															
tsA	IPROACET	4															
	СНЗОСНО	1															
	NPROACET	4															
	APINENE																1
Terpenes	BPINENE																1
	LIMONENE																1

Table S8: Benelux emissions of AVOC and BVOC species in CB05. Emissions are in molecules $\rm cm^{-2}~s^{-1}$ and determined by multiplying the MCMv3.2 emissions from Tables S1–S3 by the allocated number of CB05 species from Table S7.

CB05 Species	Belgium	Luxembourg	Netherlands	Total
PAR	1.80E + 12	4.90E+12	2.10E+12	8.80E+12
OLE	8.96E + 10	2.70E + 11	1.13E + 11	$4.73E{+}11$
TOL	6.55E + 09	1.39E + 10	7.51E + 09	2.80E + 10
XYL	4.39E+09	8.50E + 09	4.87E + 09	1.78E + 10
FORM	2.41E+09	3.09E+09	3.44E+09	8.94E + 09
ALD2	5.64E + 08	8.88E + 08	5.37E + 08	1.99E+09
ALDX	7.21E + 08	6.35E + 08	6.27E + 08	1.98E + 09
MEOH	2.20E+09	2.40E+09	1.85E + 09	6.45E + 09
ETOH	3.30E + 09	2.51E+09	2.58E + 09	8.39E + 09
FACD	9.28E + 08	4.04E+07	4.74E + 08	1.44E+09
AACD	1.33E+09	5.61E + 07	7.83E + 08	2.17E + 09
ETH	3.78E + 10	7.68E + 09	9.39E + 09	5.49E + 10
ETHA	4.91E+09	8.58E + 08	7.96E + 09	1.37E + 10
IOLE	3.87E + 07	4.43E + 05	9.05E + 06	4.82E + 07
ISOP	3.35E+09	1.10E + 10	0.00E+00	1.44E + 10
TERP	1.34E+09	3.89E + 09	5.03E + 08	5.73E + 09
Total	1.96E+12	5.23E+12	2.25E+12	9.44E+12

References

- B. Bonn, E. von Schneidemesser, D. Andrich, J. Quedenau, H. Gerwig, A. Lüdecke, J. Kura,
- ³⁹ A. Pietsch, C. Ehlers, D. Klemp, C. Kofahl, R. Nothard, A. Kerschbaumer, W. Junkermann,
- R. Grote, T. Pohl, K. Weber, B. Lode, P. Schönberger, G. Churkina, T. M. Butler, and M. G.
- 41 Lawrence. BAERLIN2014 The influence of land surface types on and the horizontal heterogeneity
- 42 of air pollutant levels in Berlin. Atmospheric Chemistry and Physics Discussions, 2016:1–62,
- 43 2016.
- 44 J. Coates and T. M. Butler. A comparison of chemical mechanisms using tagged ozone production
- potential (TOPP) analysis. Atmospheric Chemistry and Physics, 15(15):8795–8808, 2015.
- Alexandra S. M. Lourens, Tim M. Butler, J. Paul Beukes, Pieter G. van Zyl, Gerhard D. Fourie,
- 47 and Mark G. Lawrence. Investigating atmospheric photochemistry in the Johennesburg-Pretoria
- megacity using a box model. South African Journal of Science, 112(1/2), 2016.