State High School Mathematics Tournament

University of South Carolina

Round 1 - March 23, 2024

Coming Soon!

The Columbia Math Circle:

Coming Soon!

The Columbia Math Circle:

► Sign up at https://thornef.github.io/mathcircle/

Coming Soon!

The Columbia Math Circle:

- ► Sign up at https://thornef.github.io/mathcircle/
- ► Contact me at thorne@math.sc.edu

► You will be asked a series of questions. Each correct answer earns you a point.

- You will be asked a series of questions. Each correct answer earns you a point.
- ➤ You have 90 seconds to answer each question. You are racing the clock and not each other. You will be warned when only 10 seconds remain.

- You will be asked a series of questions. Each correct answer earns you a point.
- ➤ You have 90 seconds to answer each question. You are racing the clock and not each other. You will be warned when only 10 seconds remain.
- Write your answer in simplified form on the slip you are given, and hand it to the judge.

- You will be asked a series of questions. Each correct answer earns you a point.
- ➤ You have 90 seconds to answer each question. You are racing the clock and not each other. You will be warned when only 10 seconds remain.
- Write your answer in simplified form on the slip you are given, and hand it to the judge.
- If you change your mind, you may give another answer to the judge. Only the last answer you give to the judge will be counted.

- You will be asked a series of questions. Each correct answer earns you a point.
- ➤ You have 90 seconds to answer each question. You are racing the clock and not each other. You will be warned when only 10 seconds remain.
- Write your answer in simplified form on the slip you are given, and hand it to the judge.
- If you change your mind, you may give another answer to the judge. Only the last answer you give to the judge will be counted.
- ► Two winners will be selected this round: the participants earning three points with the fewest questions.

- You will be asked a series of questions. Each correct answer earns you a point.
- ➤ You have 90 seconds to answer each question. You are racing the clock and not each other. You will be warned when only 10 seconds remain.
- Write your answer in simplified form on the slip you are given, and hand it to the judge.
- ▶ If you change your mind, you may give another answer to the judge. Only the last answer you give to the judge will be counted.
- ► Two winners will be selected this round: the participants earning three points with the fewest questions.
- ▶ There will be a tiebreaker if needed.

How many numbers occur as the last digit of a prime number?

Answer. 6.

Answer. 6.

$$2, 3, 5, 7, 11, 13, 17, 19, \dots$$

Answer. 6.

$$2, 3, 5, 7, 11, 13, 17, 19, \dots$$

No prime other than 2 is even, so 4, 6, 8, and 0 can't occur.

In a semicircle with center O and diameter CB, a point D is chosen between C and O. A line segment DF of length OB is drawn perpendicular to CB, intersecting the semicircle at A.

In a semicircle with center O and diameter CB, a point D is chosen between C and O. A line segment DF of length OB is drawn perpendicular to CB, intersecting the semicircle at A.

If AB = 6, what is the area of the rectangle *DFEB*?

Answer. 18.

Answer, 18.

Suppose that the circle has radius r. Both $\triangle ABC$ and $\triangle DBA$ are both right triangles and are similar, so we have $AB^2 = BC \cdot BD$, that is, $BC \cdot BD = 36$. Note that BE = r and BC = 2r = 2BE. So the area of the rectangle is $BE \cdot BD = \frac{1}{2}BC \cdot BD = 36/2 = 18$.

"Cheating" Solution 1-2

"Cheating" Solution 1-2

It's 18 no matter where D is.

The above depicts a unit circle, where the endpoints of the depicted line segments are equally spaced.

The above depicts a unit circle, where the endpoints of the depicted line segments are equally spaced.

What is the area of either of the two visible squares?

Answer. $2 - \sqrt{2}$.

Answer. $2 - \sqrt{2}$.

Rotate the picture so that the edges of a square are parallel to the coordinate axes:

Answer. $2-\sqrt{2}$.

Rotate the picture so that the edges of a square are parallel to the coordinate axes:

A has coordinates $(\cos \frac{\pi}{8}, \sin \frac{\pi}{8})$, and the square has area

$$4\sin^2\frac{\pi}{8} = 4 \cdot \frac{1 - \cos\frac{\pi}{4}}{2} = 2 - \sqrt{2}.$$

What is the minimum value assumed by $\sin^4(x) + \cos^4(x)$?

Answer. $\frac{1}{2}$.

Answer. $\frac{1}{2}$.

We have

$$1 = (\sin^2 x + \cos^2 x)^2$$

= $\sin^4(x) + \cos^4(x) + 2\sin^2(x)\cos^2(x)$
= $\sin^4(x) + \cos^4(x) + \frac{1}{2}\sin^2(2x)$.

Answer. $\frac{1}{2}$.

We have

$$1 = (\sin^2 x + \cos^2 x)^2$$

= $\sin^4(x) + \cos^4(x) + 2\sin^2(x)\cos^2(x)$
= $\sin^4(x) + \cos^4(x) + \frac{1}{2}\sin^2(2x)$.

 $\sin^4(x) + \cos^4(x) = \frac{1}{2}$ whenever $\sin(2x) = \pm 1$, for example at $x = \frac{\pi}{4}$.

You flip three coins and a friend flips three coins.

You flip three coins and a friend flips three coins. What is the probability that you each flip exactly the same number of heads?

Answer. $\frac{5}{16}$.

Answer. $\frac{5}{16}$.

$$\left(\frac{1}{8}\right)^2 + \left(\frac{3}{8}\right)^2 + \left(\frac{3}{8}\right)^2 + \left(\frac{1}{8}\right)^2 = \frac{1+9+9+1}{64} = \frac{5}{16}.$$

Unit circles C_1 and C_2 intersect at P_1 and P_2 . A unit circle C_3 passes through P_2 and has center P_1 .

Unit circles C_1 and C_2 intersect at P_1 and P_2 . A unit circle C_3 passes through P_2 and has center P_1 .

What is the total area covered by the circles?

Solution 1-6

Answer. $\frac{5}{3}\pi + \sqrt{3}$.

Solution 1-6

Answer. $\frac{5}{3}\pi + \sqrt{3}$.

The four triangles have total area $\sqrt{3}$, and the remaining circles have $\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$ of their areas counted.

If $\triangle ABC$ is an isosceles triangle with AB = BC = 1, what should the length of AC be to maximize the triangle's area?

Answer. $\sqrt{2}$

Area =
$$sin(\theta) \cdot cos(\theta) = \frac{1}{2} sin(2\theta)$$
.

Answer. $\sqrt{2}$

Area =
$$sin(\theta) \cdot cos(\theta) = \frac{1}{2} sin(2\theta)$$
.

Maximize with $\theta = \frac{\pi}{4}$, so $AC = \sqrt{2}$.

The equation $2^x = x^2$ has three real solutions. What is the nearest integer to their sum?

Answer. 5

$$x = 2$$
, $x = 4$, and $x = -.76...$

Answer. 5

$$x = 2$$
, $x = 4$, and $x = -.76...$

For the negative solution, note that $2^{-\frac{1}{2}} > (-\frac{1}{2})^2$, so $x < -\frac{1}{2}$.

What is

$$1-2+3-4+5-\cdots+2021-2022+2023-2024$$
?

Answer. -1012.

Answer. -1012.

Write it as

$$(1-2)+(3-4)+\cdots+(2023-2024)=(-1)\times 1012.$$

How many positive integers $n \le 10$ satisfy $\cos(n) > 0$? (Assume radian measure.)

$$n \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, \frac{5\pi}{2}\right)$$

$$n \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, \frac{5\pi}{2}\right)$$
$$n \in \left(0, 1.57 \dots\right) \cup \left(4.71 \dots, 7.85 \dots\right)$$

$$n \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, \frac{5\pi}{2}\right)$$
 $n \in \left(0, 1.57...\right) \cup \left(4.71..., 7.85...\right)$
 $n \in \left\{1, 5, 6, 7\right\}$

Simplify:

Simplify:

$$\frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{5}}}}}$$

▶
$$1 + \frac{1}{5} = \frac{6}{5}$$

$$1 + \frac{1}{5} = \frac{6}{5}$$

$$1 + \frac{1}{1 + \frac{1}{5}} = \frac{11}{6}$$

$$1 + \frac{1}{5} = \frac{6}{5}$$

$$1 + \frac{1}{1 + \frac{1}{5}} = \frac{11}{6}$$

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{5}}} = \frac{17}{11}$$

$$1 + \frac{1}{5} = \frac{6}{5}$$

$$1 + \frac{1}{1 + \frac{1}{5}} = \frac{11}{6}$$

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{F}}} = \frac{17}{11}$$

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{F}}}} = \frac{28}{17}$$

Answer. $\frac{17}{28}$.

$$1 + \frac{1}{5} = \frac{6}{5}$$

$$1 + \frac{1}{1 + \frac{1}{5}} = \frac{11}{6}$$

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}} = \frac{17}{11}$$

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}} = \frac{28}{17}$$

Notice the pattern: $\frac{6}{5},\frac{11}{6},\frac{17}{11},\frac{28}{17}$