MA 3831 Principles of Real Analysis 1: Homework 2

Hubert J. Farnsworth

January 26, 2022

Exercise 1

Let a_n be a sequence which converges to a positive number A. We showed in class that there is an $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with n > N, $|a_n| > \frac{A}{2}$. From there, show that $\frac{1}{a_n}$ converges to $\frac{1}{A}$.

Answer: There is an $N \in \mathbb{N}$ such that $\forall n > N, \ 0 < A/2 < |a_n| \iff 0 < 1/|a_n| < 2/A$. Then for all n > N,

$$\left| \frac{1}{a_n} - \frac{1}{A} \right| = \frac{|A - a_n|}{|a_n|A} < \frac{2}{A} |a_n - A|.$$

Since $|a_n - A| \to 0$, $\frac{2}{A}|a_n - A| \to 0$.

Exercise 2

Optional and omitted from the solutions.

Exercise 3

Prove or disprove:

Let a_n be a sequence of real numbers. If $\lim_{n\to\infty}(a_{n+1}-a_n)=0$, then a_n is convergent.

Answer: This statement is generally false. Consider the counterexample $a_n = \ln n$.

$$\lim_{n \to \infty} (a_{n+1} - a_n) = \lim_{n \to \infty} (\ln(n+1) - \ln n) = \lim_{n \to \infty} \ln \frac{n+1}{n} = \ln 1 = 0$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \ln n = +\infty \text{ (divergent)}$$

Exercise 4

Let q be a fixed positive number. Show that the sequence $a_n = \frac{q^n}{n!}$ is eventually decreasing.

Answer: Let $N \in \mathbb{N}$ with $N \geq q-1$. For any n > N we have $n \geq q-1$ as well.

$$q-1 \le n \iff q \le n+1 \iff \frac{q^{n+1}}{q^n} \le \frac{(n+1)!}{n!} \iff a_{n+1} \equiv \frac{q^{n+1}}{(n+1)!} \le \frac{q^n}{n!} \equiv a_n$$

This shows that for n > N, $a_{n+1} \le a_n$. Conclude that a_n is eventually decreasing.

Exercise 5

(2.6.B of Davidson and Donsig) Let $a_1 = 0$ and $a_{n+1} = \sqrt{5 + 2a_n}$ for $n \ge 1$. Show that $\lim_{n \to \infty} a_n$ exists and find the limit.

Answer: Prove by induction that $0 \le a_n \le a_{n+1} \le 1 + \sqrt{6}$ by induction.

Base Case (n = 1): $a_1 = 0$, $a_2 = \sqrt{5 + 2a_1} = \sqrt{5} \le \sqrt{6} \le 1 + \sqrt{6}$. Therefore $0 \le a_1 \le a_2 \le 1 + \sqrt{6}$.

Assume that $0 \le a_n \le a_{n+1} \le 1 + \sqrt{6}$ for some $n \ge 1$.

$$a_{n+1} = \sqrt{5 + 2a_n} \ge \sqrt{5 + 2 \cdot 0} \ge 0$$

$$a_{n+2} = \sqrt{5 + 2a_{n+1}} \ge \sqrt{5 + 2a_n} = a_{n+1}$$

$$a_{n+2} = \sqrt{5 + 2a_{n+1}} \le \sqrt{5 + 2(1 + \sqrt{6})} = \sqrt{7 + 2\sqrt{6}} \le 1 + \sqrt{6}$$

To prove the last inequality $\sqrt{7+2\sqrt{6}} \le 1+\sqrt{6}$ consider (note $\sqrt{7+2\sqrt{6}} > 0$ and $\le 1+\sqrt{6} > 0$):

$$\sqrt{7 + 2\sqrt{6}} \le 1 + \sqrt{6} \iff \left(\sqrt{7 + 2\sqrt{6}}\right)^2 \le (1 + \sqrt{6})^2 \iff 7 + 2\sqrt{6} \le 1 + 2\sqrt{6} + 6 \iff 7 + 2\sqrt{6} \le 7 + 2\sqrt{6}$$

Therefore $0 \le a_{n+1} \le a_{n+2} \le 1 + \sqrt{6}$. This concludes the induction proof.

We have established that the sequence a_n is increasing and bounded above. Thus a_n must converge to some limit L and so must the subsequence a_{n+1} also converge to L.

$$L = \lim a_{n+1} = \lim \sqrt{5 + 2a_n} = \sqrt{5 + 2\lim a_n} = \sqrt{5 + 2L}$$
$$L^2 = 5 + 2L \implies L = 1 + \sqrt{6} \text{ or } L = 1 - \sqrt{6}.$$

Since $1 - \sqrt{6} < 0$ and $a_n \ge 0$ for all n, the only possibility is $L = 1 + \sqrt{6}$.

Exercise 6

(2.7.A of Davidson and Donsig) Show that $(a_n) = \left(\frac{n \cos^n n}{\sqrt{n^2 + 2n}}\right)_{n=1}^{\infty}$ has a convergent subsequence.

Bolzano-Weierstrass Theorem Every bounded sequence of real numbers has a convergent subsequence.

Answer: The sequence a_n is bounded ($|a_n| \le 1 \,\forall n$). By Bolzano-Weierstrass Theorem there is a subsequence of a_n which converges

$$|a_n| = \frac{|n\cos^n n|}{|\sqrt{n^2 + 2n}|} = \frac{n|\cos n|^n}{\sqrt{n^2 + 2n}} \le \frac{n \cdot 1^n}{\sqrt{n^2 + 2n}} \le \frac{n}{\sqrt{n^2}} = \frac{n}{|n|} = \frac{n}{n} = 1.$$

Exercise 7

(2.7.G of Davidson and Donsig) Let $(x_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R} . Suppose there is a number L such that $L = \lim_{n \to \infty} x_{3n-1} = \lim_{n \to \infty} x_{3n} = \lim_{n \to \infty} x_{3n+1}$. Show that $\lim_{n \to \infty} x_{3n-1}$ exists and equals L.

Answer:

There is an N_1 such that $|x_{3n-1} - L| < \epsilon$ whenever $3n - 1 > N_1$.

There is an N_2 such that $|x_{3n} - L| < \epsilon$ whenever $3n > N_2$.

There is an N_3 such that $|x_{3n+1} - L| < \epsilon$ whenever $3n + 1 > N_3$.

For any integer m there must exist an n such that exactly one of $m=3n_1, m=3n$, or m=3n+1 holds. For any $n>N:=\max\{N_1,N_2,N_3\}, |x_m-L|<\epsilon$. Conclude that x_m converges and $\lim_{m\to\infty}x_m=L$.