Approaches to automatic detection of machine-generated text

Aron Winkler

University of Tuebingen
MAT 6189673
aron.winkler@student.uni-tuebingen.de

Abstract

Recent developments in Natural Language Processing (NLP) have resulted in the development and popularization of highly effective Large Language Models (LLMs), capable of generating convincing and creative linguistic material. LLMs have garnered much attention, both from researchers and the general public, and continue to be increasingly applied to a variety of fields. However, the breakneck speed at which these systems are adopted leaves unattended some of the security concerns regarding their use. Since the language produced by the models is of such high quality, it isn't always feasible to distinguish authentically human contributions from machine-generated text, which can enable a multitude of nefarious applications of LLMs. This work explores the history and inner workings of LLMs, how they can be misused, and possible antidotes to the problem of machine-generated text detection, with a careful eye toward a good balance of computational cost and performance of detection strategies.

1 Introduction

In 1951, Gnome Press published Isaac Asimov's *Foundation* (Asimov, 1951), the first title of a trilogy that would go on to become one of the cornerstones of modern science fiction. In the novel, set in the distant future, scientist Hari Seldon predicts the fall of the Galactic Empire, an event that would pave the way to an era of barbarism in the story's fantastical universe.

To preserve humanity's knowledge and technical skills, Hari Seldon establishes the Foundation on an uninhabited planet on the periphery of the Empire, a sort of outpost dedicated to being the home to the archival effort. The novel follows the political and technological adventures of the Foundation and its leaders, with one of the first plot points being the first conflict between the Foundation and a major local power in the periphery, Anacreon, which declared its independence as the Empire's

influence in the periphery weakened. Seeking protection from the Empire against Anacreon's expansionary stance, the Foundation hosts a diplomatic emissary from the Empire, a Lord Dorwin, finally obtaining a convoluted treaty between the Empire and Anacreon over their respective spheres of influence.

"Before you now you see a copy of the treaty between the Empire and Anacreon – a treaty, incidentally, which is signed on the Emperor's behalf by the same Lord Dorwin who was here last week – and with it a symbolic analysis."

The treaty ran through five pages of fine print and the analysis was scrawled out in just under half a page.

"As you see, gentlemen, something like ninety percent of the treaty boiled right out of the analysis as being meaningless, and what we end up with can be described in the following interesting manner."

"Obligations of Anacreon to the Empire: None!"

"Powers of the Empire over Anacreon: None!"

Isaac Asimov, Foundation, Part II: The Encyclopedists

At this point the Foundation's scientists, through a technique they call "symbolic analysis", condense several pages of treaty into a few lines, revealing the hidden meaning behind the layers of legal dissimulation. By doing so, they expose the inability of the dying empire to exert its influence over its own periphery, and they realize that moving forward, they can only rely on themselves, marking

perhaps the true starting point of the story in Asimov's *Foundation*.

Despite first reading this passage when I was a teenager, perhaps over a decade ago, these fictional twists stayed with me through the years. They were, after all, my first indirect exposure to the field of computational linguistics and natural language processing (NLP). I remember being mesmerized by the potential of machine computation applied to natural language, in what I would later learn to better define as a mixture of information retrieval and automatic text summarization.

While Asimov's pen definitely hit the mark in predicting some of the most intriguing and successful applications of NLP in the years ahead, what granted computational linguistics perhaps its brightest moment in the limelight was one of its other, albeit related, subfields: language modelling and generation.

1.1 Language modelling

Teaching a machine to understand and produce natural language is intuitively a difficult task. Even if one could reliably collect all ingredients that make up human language, creating a system that emulates it even just well-enough is a very tall order, since there would likely be millions if not billions of cases to consider. Linguists have documented hundreds of languages, each with their own grammar, peculiarities, exceptions, all of which have yet to be described under one common ruleset. Manually building a program from the ground up for even just one language is beyond what current technology is capable of.

The very first chatbot, ELIZA (Please, 2024), simulated conversation through pattern matching and substitution, essentially repeating and paraphrasing their interlocutor's statements. While it successfully bypasses the necessity of programming a machine with *intelligence*, such an approach does not result in a system that can be described as creative in any sense. In other words, ELIZA will never write a poem, or surprise their conversation partner with a witty turn of phrase. It would never be able to tell whether May has 30 or 31 days because it has no notion of what *May* and *days* are. Teaching language is, after all, not only an issue of grammar, but one of world knowledge as well.

If *teaching* language to machines as one would to humans is not possible, and rule-based approaches such as ELIZA inevitably reach a bottleneck, then it becomes necessary to adopt a new strategy, rooted

in statistics. This new approach consists in the realization that the sentence "he's wearing a circumference jacket" is much less likely to be uttered than "he's wearing a yellow jacket". Extrapolating the pattern, the set of words that can fill the gap in "he's wearing a _____ jacket" is varied, but "yellow" will have a much higher *probability* of showing up than "circumference". Language models are the tools that are employed to estimate these probabilities.

Due to recent innovations in NLP, the phrase "language model" evokes big and expensive systems, trained on huge amounts of data and costing enormous amounts of money to develop. While this is certainly understandable, the label in itself has no presupposition of size or cost. In essence, language models break down the massively complex problem of "teaching language to machines", into the more manageable task of "statistically learning what words are likely to follow others". In other words, language models produce next-word (or, more generally, next-token) probabilities based on an input sequence (Please, 2024).

For example, for the completion "fifteen minutes of _____", one would expect a (good) language model to offer words such as "fame" or "overtime". One idea to achieve this is to collect some linguistic data and observe what words follow "fifteen minutes of" and extrapolate a probability distribution from the observed frequencies. So-called *n-gram* language models (Please, 2024) are built in this fashion, with the *n* in *n-gram* specifying the amount of left context taken into consideration.

The simplest of these models, the bigram (2gram) language model, records co-occurring word pairs in the sample dataset. Consequently, for this model, only the last word of a sequence determines the prediction over the following word. This results in a model that can reliably generate short collocations, such as "Marie Curie", but cannot generate coherent sentences, and would likely even fail to offer "fame" as a completion to "fifteen minutes _", since the only available context for the prediction is the word "of". To correctly predict "fame", one would need at least a 4-gram language model, which would finally allow for such a "long" context requirement. However, while taking more context tokens into consideration increases the performance of n-gram language models, it does so at a steep (especially memory) cost: for 4-gram LMs with a vocabulary size (i.e., how many words the model knows) of 1000, for example, implementations without optimizations would require the frequency counts for 10^4 n-grams to be accessible for predictions.

Another issue that presents itself with frequencybased models is the handling of unseen n-grams. For example, the 3-gram "duck goose pony" may never come up in the model training data, in which case some near-0 probability is assigned to the sequence (due to smoothing, see for example Please, 2024). While some n-grams will fail to appear due to being ungrammatical or nonsensical like in "duck goose pony", others may be perfectly wellformed but either rare or just absent from the training data due to chance: if "trees need hydration" was never observed, then the model would fail to recognize this n-gram to be more likely than, for example, "trees need circumference" (assuming the latter was also not observed, which is quite likely in organic text). Even the n-gram "roundly faucet knowledge" would be equally is likely as "trees need hydration" if both were never observed in training. While the latter example can be solved by including lower-order n-grams in the probability calculation ("trees need" may have been observed even if "trees need hydration" wasn't, but "roundly faucet" is unlikely to have been observed; see for example Please, 2024), the former case requires more subtle knowledge. In order to correctly assess "trees need hydration" as a quite likely n-gram, the model would need to identify the similarity between the words "water" and "hydration", and infer that "trees need hydration" should have higher probability than, say, "trees need virtual", due to "water" and "hydration" being similar.

Due to such limitations, n-gram language models aren't the piece of technology that propelled language modelling to the heights that we associate with it today. The missing piece of the puzzle are neural networks (Please, 2024), which when applied to language generation give rise to *neural language models*. (Please, 2024)

Following the example above, both n-gram and neural language models solve the fundamental of problem of estimating the probability that the word "fate" follows "fifteen minutes of". However, in order to do so, n-gram language models draw upon explicit frequency observations when generating its output, an approach that often fails to consider an adequate amount of context, or to take into account the fact that similar words appear in similar contexts. In contrast, neural language models draw upon their internal parameters - the weights and

biases (Please, 2024) associated to the various layers of the neural network that makes up the model. (Please, 2024)

1.2 Neural language modelling

Neural networks (Please, 2024) are an extremely powerful for many applications across several disciplines. Providing an effective summary of all neural networks is a difficult task, since they manifest themselves in different variations for different tasks. Still, they are generally understood as interconnected layers of neurons that map an input vector of numbers to an output vector. Each neuron in the network is made up of a weight, a bias, and an activation function (Please, 2024), which are used to transform an input vector to an output number (Please, 2024). For the purposes of this work, it is more important to understand the overall network rather than its individual parts: neural models are a way to apply complex transformations to vectors. The parameters of the model, i.e. the combined weights and biases of the individual neurons, can be used to encode knowledge in a way that simpler statistical models struggle to achieve.

Above, the example of "trees need water" and "trees need hydration" was briefly discussed. While n-gram models have no structural way to note the similarity between "water" and "hydration", and thus fail to recognize that the admissible contexts for the two words have some overlap, neural networks have been employed to solve this problem exactly because of their capacity to progressively store knowledge. Word embeddings citationneeded are a way of representing words as numerical vectors, such words with similar semantics will be close to each other in terms of vector distance. (Please, 2024) The embeddings for "water" and "hydration" would therefore be closer in vector space than "water" and "dog". Several ways have been developed to derive embeddings from text data — for exmaple, the CBOW citationneeded algorithm uses neural networks to predict the missing word given the surrounding context through the use of a neural network. For many iterations, the model is presented with a piece of text with a gap, and the objective of guessing the missing item. With each example, the model parameters are updated, or nudged in the correct direction (for information on gradient descent, see Please, 2024), i.e. towards a state that are more conducive to the correct prediction. Importantly, among the parameters of the neural network are the embeddings for every word, which are used by the model to compute the final prediction — these are random at the beginning, but progressively more and more refined. At the end of training, most model parameters are discarded, but the embeddings are kept, and hopefully the result will have captured semantic similarities between the entries.

- 1.3 Large Language Models
- 1.4 Fears and reactions to LLMs
- 2 Dangers of undetected generation
- 3 Previous approaches
- 4 Task 8 at SemEval 2024
- 5 Discussion of SemEval results
- 6 Conclusion
- 7 Acknowledgements

References

I. Asimov. 1951. Foundation. Foundation series. Gnome Press.

Cite Please. 2024. Citation needed!