

優先相主張

アメリカ合衆国 1973年 6月29日

(5)

昭和 4 9年 6 月/3 日

1. 発明の名称

ガス・パネル駅動装置

2.発 明 者 住 所

アメリカ合衆国ニューヨーク州ウッドストック、 ホワイト・レイン2 番地

氏 名

トニー・エヌ・クリシーマグナ

5.特許出願人 住 所

アメリカ合衆国10504、ニユーヨーク州 アーモンク(番地なし)

インターナンコナル・ビジネス・マシーンズ・コーポレーンエ

名 称 (709)代表者

ジエイ・エイチ・グレイディー アメリカ合衆国

4.代 理

郵便番号 106

東京都港区六本木三丁目2番12号 日本アイ・ピー・エム株式会社

Tel(代表)586-1111(内線2265)

(6454)

5.添付書類の日母

1 通 1 通 委任状及訳文 各1通

優先權証明書及款文

49 6, 13

用西班二城

19 日本国特許庁

公開特許公報

50 - 39024①特開昭

4.10 43公開日 昭 50. (1975)

49-66606 创特願昭

昭49. (1974) 6. 13 22出願日

審査請求 未請求 (全6頁)

65115 54 庁内整理番号 7323 56 7013 54 7170 59

②日本分類 97(1)B1

95 E0

(51) Int. C12. GOOK 15/18 HOAN

HO4N 5/70 HOIT

明,

ガス・パネル駆動装置 1. 発明の名称

2. 特許請求の範囲

 \mathcal{A}_{i}

発光可能なガスを間に有する対向する交差導体 の交点によつて限定されるガス・セルを有するカ ス・パネルの選択されたガス・セルにおいて書込 み又は消去を行うための駆動装置において、上記 選択されたガス・セルにおいて行われるべき動作 に応じて定するゼロ・レベル以上の所定レベルの 電圧を眩動作の際に上記選択されたガス・セルに 与えるための手段と、比較的広巾の第1電圧パル スを発生する手段と、比較的狭巾の第2電圧パル スを発生する手段とより成り、上記第1覧圧パル ス及び第2電圧パルスは上記選択されたセルビお いてのみ上記所定レベルの電圧に加え合わされる ととを特徴とするガス・パネル駆動装置。

3.発明の詳細な説明

本発明はガス・パネル駆動装置、更に具体的に は、ガス・パネル装置において書込み及び消去を 行うための改良された電圧波形を発生するための 駆動回路に関する。

本発明が関係するタイプのガス・パネルはシー ル材により隔鐘された2つのガラス・プレートを 有し、その間にイオン化可能なガス媒体を含む。 一方のガラス・プレート上には、絶縁された1組 の水平導体が配置され、他方のガラス・プレート 上には、絶縁された↑組の垂直導体が配置される。 選択された水平導体と垂直導体の間に適当な電圧 が印加されると、これらの導体の交点でイオン化 が生じ、光が発生される。とれらの交点はセルと 呼ばれ、表示パターンは選択されたセルをイオン 化することにより形成される。セルを最初にイオー ン化する動作は書込みと呼ばれ、前に書込まれた セルから壁電荷を除去する動作は消去と呼ばれる。 セルの消去はイオン化を生じるような適当な電圧 波形の印加によつてセル内に導電を生じさせてセー ルを放電させることにより行われる。

本発明の目的は書込み及び消去のための改良さ れた波形を提供するととである。

春込み期間に生じるイオン化の結果として、セ ルの対向絶縁壁上には正及び負の電荷が警殺され る。との電荷による電圧は対向導体間の印加電圧 に逆らい、結果としてこれらの電圧の和はイオン 化に必要な電圧よりも低い値に急速に減少し、光・ は瞬時的にセルから発生される。審込み電圧波形 はセル壁に充分な電荷が貯蔵されるように光の清 被後も保たれる。書込み動作の後、セルの周期的 光出力は保持電圧と呼ばれる交流電圧により維持 される。書込み動作に続く保持パルスは書込パル スとは逆極性であり、従つて、前の書込み動作に よりセル壁に貯蔵された電荷と同じ極性である。 セルは印加電圧及び貯蔵電荷の電圧の和に等しい: 電圧でイオン化するから、前に書込まれているセ ルは普込み電圧よりも小さな印加保持電圧でイオ ン化する。保持電圧はすべてのセルへ同時に印加 され、既に書込まれているセルはイオン化し、次 の保持動作のために電荷を皆積するが、前に消去 されて壁電荷がゼロになつているセルはイオン化 されない状態に留まる。

オン化を生じ、結果として自由電荷のアパランシェを発生する。従つて、セル電圧放形の振巾及び巾の両方がアパランシェ・イオン化の発生を左右する重要な要素である。既に述べたように、アパランシェ・イオン化は書込み、消去、及び保持の 諸動作に必要とされる。

本発明の他の目的は保持動作のための改良され た波形を提供することである。

ここで、本発明の理解を容易にするために、ガ ス・パネルにおけるイオン化について一般的に述 べる。セルのガス媒体は通常、セル導体上の電圧 に無関係に、いくらかの自由な電子及び正イオン を含み、適当なレベルのイオン化を作るにはパネ ルの緑のまわりにパイロット・ランプを配置する ことができる。電子及び正イオンは再結合し、平 衡的割合で新たなイオンが作られる。セルの導体 間に電圧が印加されると、それにより作られる電 界の中でイオンが加速され、その結果イオンは中 性原子と頻繁に衝突して付加的イオンを生じる。 比較的低い電圧レベルでは、平衡状態、即ち高い レベルのイオン化が存在するがイオンは原子とイ オンの間の衝突によりイオンが作られるのと同じ 割合で再結合により失われるような状態、が得ら、 れる。しかし、より高い電圧レベルでは、失われ るイオンよりも作られるイオンの割合の方が大き くなり、これらのイオンは、ひいては、付加的イ

には充分でないような振巾及び巾を有する。スパイク成分はこの増大されたイオン化レベルを有する選択されたセルでアパランシェを生じるに充分であるが選択されないセルでアパランシェを生じるに充分でないような振巾及び巾を有する。巾広の成分の後部は選択されたセルの壁に適正な電荷貯蔵を生じるような振巾及び巾を有する。(低振巾成分の前部及び後部は高さが等しいのが好きしい。)

本発明の消去放形においては、スパイクの電圧が低振巾広巾電圧成分の後級に又はその付近に現われる。2つの成分は書込み動作に対して既に述べたように、選択されたセルでアパランシェ・イオン化を生じるが、電荷の移動はセルの放電が行われるように特定される。

本発明の保持被形はその前級にスパイク電圧を 有し、この前級には、普通の保持パルスと大体同 しであるが動作マージンが著しく巾広い比較的広 巾の成分が続く。動作マージンは前に書込まれた セルをイオン化する最小保持電圧及び前に消去さ れたセルがオンに転じられ始める最大保持電圧の間の差である。スパイク電圧は最大保持電圧の値をわずかに減少させるが、最小保持電圧の値をそれ以上に減少させる。従つて、製造の験及び動作期間に生じる変動を補償するように回路調節をより市広い範囲にわたつて行うことができる。

次に図面を参照する。第1図において、ガス・パネル12は代表的な水平導体14、15及び代表的な無直導体16、17を有する。トランジスタ19、20及び関連する抵抗21、22はそれらのペース端子の選択信号に応答して、関連する水平等体14、15を下位水平保持線24又は上位水平保持線25へ接続する。トランジスタ18のペース端子の選択信号に応答して、関連する水平保持線25へ接続する。トランジスタ18の水平保持線25へ接続する。トランジスタ18の最近では対して、17を上位垂直保持線34に接続する。春込み又は消去の動作規に、選択されたセルは上位水平線25及び上の銀行といたのでは、選択されたセルは下位水平線24及び上位乗で、選択される電圧を受取り、半選択されたより与えられる電圧を受取り、半選択された

タイミング回路 4 3 が特定のタイミングを与えるように動作する点及び選択回路トランジスタ 1 9、2 0、2 8、2 9 が普通のガス・パネルにおけるトランジスタよりも低電圧のものである点を除けば普通のものである。

回路45は普込み及び消去の波形にスパイク成分を発生する。好ましくは、トランジスタ46及び抵抗47が電流源を形成するのに通した電位は48と接続される。変圧器50はタイミングの路43が終51に発生する。との信がでは近れる。とれにより保持回路38及び水平保持終24、25の間に所定の電圧を与える。水平保持級24、25の間に大変の電圧が現われる。トランジスタ19、20の両端にはスパイク電圧は関連するトランジスタ・スイッチ15に現われる。スパイク電圧は垂直保持線33、34

特解 〒50-39024 (3) セルは上位水平線25及び上位垂直線33により 与えられる電圧並びに下位水平線24及び下位垂 直線34により与えられる電圧を受取る。

保持回路(8)38は第2図のA、Cに示され る波形の保持成分を水平保持線24、25へ印加 し、保持回路(S)40は第2図のB、Dの波形 の保持成分を垂直保持線33、34へ印加する。 書込み - 消去回路(W-E)41は下位水平保持 線24及び上位水平保持線25の間に書込み及び 消去のパルスを印加し、曹込み-消去回路(W-E) 4 2 は下位垂直保持線 3 4 及び上位垂直保持 譲るるの間に書込み及び消去のパルスを印加する。 好ましくは、書込み-消去回路は上位及び下位の 保持線の間に電圧を与えるように接続された変圧 器2次巻線を含み、保持電圧は巻線の中間点に印 加される。タイミング回路(T)43は回路38、 40、41、42に入力を与え、保持波形の期間 を定めると共に、この期間内の書込み及び消去パー ルスの立上り及び立下りを定める。

これまで述べた構成部品(抵抗るりを除く)は

الوزيخ.

又は対応する垂直導体 16、17へ印加されない。 第2図の波形の賭値は実際に用いられる特定の ガス・パネルに依存する。次の表は種々の例を示 している。

例	スパイク巾	スパイク電圧	横	保持電圧
· A	0.8	4 0	3 2	152
В	0. 6	8 5	5 1	1 4 8
Ċ	0. 8	7 0	5 6	1 4 6
D	3. 0	5 0	150	1 3 9

スパイク市はμε、スパイク電圧は V である。 様はスパイク電圧により与えられるエネルギを示し、保持電圧は選択回路により扱われる審込みパルス成分が約12 V である場合の値である。 従って本発明の書込み回路及び動作によれば、高電圧 選択スイッチの必要性がなくなり、回路の大部分 は低電圧の集積回路として構成できるようになる。

第2図において、通常の保持動作では、第2図 のE、F、Gに示されるように各セルの両端に交 流電圧(交互に極性の変化する電圧)が発生される。書込み及び消去の動作期間における保持パルス(又は等価的なパルス)は書込み及び消去の動作期間におりるのな形を形成する。書込みを形成する。音込みを形成で、選択を収集を取りませば、とのな形は保持電圧ののでは、のなどはないのでは、ののでは、ないでは、ないでは、ないでは、ないでは、ないである。成分64は上位、第2図ので及びりの合成によっておいて、成分64は上位、第2図ので及びりの合成によっておいて、成分64は上位、第2図ので及びりの合成によっておいて、ないである。成分64は上位、まる5は各セルに現われる。

第2図のF及びGは半選択セル及び選択されたいセルにおける書込みベルスの効果を示している。 選択されたセルと同じ行の半選択セルは上位水平保持線25の電圧及び上位垂直保持線35の電圧 (第2図のB及びC)を受取る。線25の正書込みベルス及び線34の正書込みベルスは第2図の

れる。選択されないセルは線24の負パルス75 及び線33の正パルス74を受取り、第2図のG のように負パルス76を発生する。スパイク71 が降下すると、消去されたセルの壁電圧がゼロの 状態で保持動作が再開される。

特定のガス・パネルに対する消去放形の成分の 振巾及び巾は容易に見出し得る。例えば、成分7 □は2-4μsの巾及び0,2μsの立上り時間を 持ち得る。スパイク成分は約0.8μsの巾、0.2 μsの立上り時間及び0.2μsの立下り時間を持 ち得る。スパイクの振巾は保持電圧レベルに等し くてよい。

第1図のシングル・スパイク発生器45は書込み及び消去の両方に対して等振巾のスパイクを発生するように構成されているが、独立した掘巾の皆込みスパイク及び消去スパイクを発生するための構成を設けることもでき、例えば抵抗39及びトランジスタ46のコレクタ端子の共通接続点に選択された値の電流を発生するようにスパイク回路45の抵抗47の値の測節された同様のスパイ

Fに示されるように相殺される。同様に、選択されたセルと同じ列の半選択セルは下位水平保持線24の電圧及び下位垂直保持線34の電圧(第2図のA及びD)を受取り、夫々の負替込みパルスは第2図のFに示されるように相殺される。選択されないセルは下位水平保持線24及び上位垂直保持線33の波形(第2図のA及びB)を受取り、第2図のGに示される合成波形を発生する。

- 1-da

ク回路を設けることができる。線24、25、3 3、34が等しい正保持電圧振巾を受取るように 保持回路40をオンにすることにより消去動作の ために保持パルスが中断された時は、保持発生器 40を瞬時的にオフにすることにより、又は等価 的にはスパイク発生器45の如き回路により垂直 保持線33、34へ負パルスを印加することにより、スパイク電圧が形成され得る。スパイク電圧 は水平及び垂直の導体へ印加される半選択電圧に より形成され得る。

次に保持波形を発生するための回路を示す解3 図及び第4図を参照する。第3図の下位水平保持 線24′及び下位垂直保持線34′は第1図の線 24、34に対応し、第1図に示されるように選 択回路及び他の構成部品に接続される。4つのト ランジスタ80、81、82、83はタイミング 回路43′からの信号に応答して線24′、34′ を正保持レベル電位点85及び大地の間で切換え るための保持回路を形成する。タイミング回路4 3′はトランジスタのペース端子に信号を与えて 保持波形を発生する。例えば、トランジスタ81をオンにし且つトランジスタ80をオフにすることにより水平保持線24′に正パルスが形成され、トランジスタ80をオンにし且つトランジスタ81をオフにすることにより線24′にゼロ・レベルが与えられる。スパイク発生器45′はタイミング回路43′からタイミング信号を受取つて電圧パルスを発生する。抵抗47′及び正電位点48′は抵抗39′の回路においてスパイク電圧を発生するのに適当な電流を与える値を有する。

第4図のAは下位水平保持線24′の彼形を示している。この彼形はトランジスタ81がオンにされた時発生されるスパイク発生器45′がオンにされた時発生されるスパイク成分91を有する。同様に、第4図のBに示されている線34′の下位垂直保持波形はトランジスタ83をオンにすることにより発生される成分92及びスパイク発生器をオンにすることにより発生されるスパイク成分93を有する。第4図のCに示されるように、発光セルではこれらの電圧波形が

特開 750-39024 (5) 組合され、普通の保持放形と大体同じの成分94、95及びスパイク成分96、97を形成する。一例を示せば、スパイク成分は振巾約40V、巾2μ。であり、広巾成分94、95はスパイクが存在しない保持動作で通常必要とされる電圧よりも小さい。

第3図の回路では、電位点85はスパイク成分の高さを変えることなく保持電圧成分94、95を適当な値にセットできるよう調節可能にされ得る。或は、抵抗39′が調節可能にされてもよい。後者の場合、大地よりも高いスパイク振巾は最大保持電圧レベルに等しくされ、成分94、95は(普通の保持パルスとしての)このレベル及び最小値の間で可変にされる。保持波形はスパイクが一方の極性のパルスのみ生じるような非対称的波形でもよい。.

第3図及び第4図の保持回路及び動作は第1図 及び第2図の書込み - 消去回路及び動作と共に使用できるし、普通の書込み - 消去動作と共に使用することもでき、また第1図の書込み - 消去回路

は普通の保持動作と共に使用することもできる。 第4図のCに示される一般的形式の波形は種々の 回路の動作で見ることができるようなものであり、 これらの回路を変更して本発明の保持波形を発生 するようにすることも容易にできる。

4.図面の簡単な説明

第1図は本発明の書込み被形及び消去被形を発生するための良好を回路の概略図、第2図は第1 図の回路の動作を例示する被形を示す図、第3図は本発明の保持波形を発生するための回路を示す図、第4図は第3図の回路の動作を例示する波形を示す図、第4図は第3図の回路の動作を例示する波形を示す図である。

12……ガス・パネル、14、15、16、17……導体、38、40……保持回路、41、42……書込み-消去回路、43……タイミング回路、45……スパイク電圧発生回路。

出願人 インターナンロナル・ピンオス・マン・ンズ・コーポン・ンヨン 代理人 弁理士 小 野 廣 司

特許法第17条の2による補正の掲載 昭和49年特許顯第66606 号(特開昭 50-37024号 昭和50年4月0日 発行公開特許公報 50-39/ 号掲載) については特許法第17条の2による補正があったので下記の通り掲載する。

庁内整理番号	日本分類		
7323.56	970184		
717059	970173		
65 at 54	99 G5		
701354	101 E0		

'd: 補正の対象

- (1) 明細書の特許請求の範囲の欄.
- (2) 明細霄の発明の詳細な説明の欄
- 7. 補正の内容
- (1) 特許請求の範囲の記載を別紙の通り補正する。
- (2) 明細書第11頁第12行「正の番込みパルス」 を「正の番込みパルス 66」に補正する。
- (3) 明細書旗11頁第19行-第20行「正書込みパルス及び蘇54の正書込みパルス」を「正書 込みパルス66及び梅33の正書込みパルス6 8」に補正する。

手 続 補 正 書(自発) 昭和 5 1年 1 2 月 | 6 日

特許庁長官 片 山 石 郎 殿

1. 事件の表示

昭和 4.9年 特許顯 第 6.6606 号

2.発明の名称

ガス・パネル駅制益層

3.補正をする者

出願人

住 所 アメリカ合衆国10504、ニューヨーク州 アーモンク(番地なし) 名 称 インターナンヨナル・ビジネス・マン・ンズ・コーポレーション

4.復代理人

住 所 郵便番号 106 東京都港区六本木三丁目2番12号 日本アイ・ビー・エム株式会社 Tel(代表)586-1111(内線2265)

氏 名 弁理士 頓 宮 孝 一 (6728)

5.補正命令の日付

昭和 年 月 日

特許請求の範囲

交差する導体の交点に形成され所定の条件を満 たす電圧を支取つた時アパランシエ・イオン化を 生じるガス・セルを有するカス・パネル及び上記 ガス・セルの両端に交互に極性の変わる保持パル ス電圧を与える装筒を有するガス・パネル装置に おいて書込みを行なりための駆動装置にして、上 紀保持パルス電圧に加え合わされた時アパランシ エ・イオン化を生じないがイオン化レベルを増大 させるに元分を無しパルス電圧をガス・セルに与 えるためのパルスを発生する例1手段と、上記保 持パルス電圧及び上記第1パルス電圧の両方と加 え合わされた時アパランシエ・イオン化を生じる が上記年1パルス電圧が存在しなければアパラン シエ・イオン化を生じない年2パルス電圧をガス ・セルに与えるためのパルスを発生する第2手段 と、上記第1パルス電圧及び上記無2パルス展圧 が選択されたガス・セルにおいて上記保持パルス 、関圧に加え合わされるように上記録 1 手段及び上 記館2手段夫々のパルスを選択されたセルに目加

する手段とよりなるガス・パネル駆動装置。