PCT/JP 2004/010415

30.08.2004

REC'D 24 SEP 2004

WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 3月19日

出 願 番 号 Application Number:

特願2004-080167

[ST. 10/C]:

 $\{\cdot\}$

[JP2004-080167]

出 願 人
Applicant(s):

積水化学工業株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 8月23日

)· [1]

ページ: 1/E

【書類名】 特許願 【整理番号】 P04021

【提出日】平成16年 3月19日【あて先】特許庁長官殿【国際特許分類】H01L 21/00

【発明者】

【住所又は居所】 京都府京都市南区上鳥羽上調子町2-2 積水化学工業株式会社

内

【氏名】 勢造 一志

【発明者】

【住所又は居所】 茨城県つくば市和台32番地 積水化学工業株式会社内

【氏名】 大野 毅之

【発明者】

【住所又は居所】 茨城県つくば市和台32番地 積水化学工業株式会社内

【氏名】 竹内 裕人

【発明者】

【住所又は居所】 東京都港区虎ノ門2-3-17 積水化学工業株式会社内

【氏名】 太田 宜衛

【特許出願人】

【識別番号】 000002174

【氏名又は名称】 積水化学工業株式会社

【代理人】

【識別番号】 100085556

【弁理士】

【氏名又は名称】 渡辺 昇

【選任した代理人】

【識別番号】 100115211

【弁理士】

【氏名又は名称】 原田 三十義

【先の出願に基づく優先権主張】

【出願番号】 特願2003-278537 【出願日】 平成15年 7月23日

【手数料の表示】

【予納台帳番号】 009586 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

処理ガスを放電空間でプラズマ化し、前記放電空間の外部に配された被処理物に吹き付け 、被処理物のプラズマ処理を行なう装置であって、

前記放電空間を形成する電極構造と、前記放電空間への処理ガス導入口の形成部と、前記 放電空間から被処理物への吹出し口の形成部とを備え、前記導入口と吹出し口が、前記電 極構造を挟んで第1方向に対向するように配置されており、

前記電極構造が、前記第1方向と交差する第2方向にそれぞれ延びるとともに前記第1、 第2方向の何れとも交差する第3方向に互いに対峙する一対の電極列を含み、これら電極 列の各々が、前記第2方向に並べられた複数の電極部材にて構成され、第2方向の実質的 に同じ位置に配置された一方の電極列と他方の電極列の電極部材どうしが、互いに逆の極 性を有して互いの対向面の間に前記放電空間の一部分を形成しており、

更に、前記部分放電空間の各々における隣の部分放電空間寄りの側部を通る処理ガス流を、隣側へ誘導するガス誘導手段を設けたことを特徴とするプラズマ処理装置。

【請求項2】

前記部分放電空間の隣寄り側部の内部には、前記ガス誘導手段として、隣側へ傾くガス誘導面を有するガス誘導部材が設けられていることを特徴とする請求項1に記載のプラズマ処理装置。

【請求項3】

前記ガス誘導部材の前記ガス誘導面より吹出し口側には、ガス誘導面とは逆方向に傾くガス戻し面が形成されていることを特徴とする請求項2に記載のプラズマ処理装置。

【請求項4】

前記ガス誘導手段が、前記導入口形成部に設けられていることを特徴とする請求項1に記載のプラズマ処理装置。

【請求項5】

前記導入口が、各部分放電空間の隣寄り側部への分岐口を有し、この分岐口が、隣側へ傾けられることにより、前記ガス誘導手段を構成していることを特徴とする請求項4に記載のプラズマ処理装置。

【請求項6】

前記導入口における各部分放電空間の隣寄り側部と対応する位置に、前記ガス誘導手段として、隣側へ傾けられた整流板が収容されていることを特徴とする請求項4に記載のプラズマ処理装置。

【請求項7】

前記ガス誘導手段が、前記放電空間における隣り合う部分放電空間どうしの境の前記導入 口側の端部を塞ぐ閉塞部を含むことを特徴とする請求項1に記載のプラズマ処理装置。

【謂求項8】

前記導入口が、前記放電空間に沿って延びるスリット状をなし、この導入口の前記境に対応する位置に前記閉塞部が収容されていることを特徴とする請求項7に記載のプラズマ処理装置。

【請求項9】

前記電極構造には、2つの電極列の隣り合う電極部材どうしの間にそれぞれ挟まれる一対 の介在部と、これら介在部を繋ぐ連結部を有するスペーサが設けられ、前記連結部が、前 記境の前記導入口側の端部に片寄って配置されることにより前記閉塞部として提供されて いることを特徴とする請求項7に記載のプラズマ処理装置。

【請求項10】

前記ガス誘導手段が、前記吹出し口形成部に設けられ、部分放電空間の隣寄り側部から出た処理ガスを隣方向へ誘導することを特徴とする請求項1に記載のプラズマ処理装置。

【請求項11】

前記ガス誘導手段が、隣方向へ傾くガス誘導面を有して、前記吹出し口における各部分放電空間の隣寄り側部に対応する位置に配されていることを特徴とする請求項10に記載の

【請求項12】

前記ガス誘導手段が、隣り合う部分放電空間どうしの境の吹出し口側の端部を塞ぐ閉塞部を含み、この閉塞部が、前記吹出し口の内部において前記放電空間の側に片寄って配置されていることを特徴とする請求項10に記載のプラズマ処理装置。

【請求項13】

前記吹出し口形成部が、前記ガス誘導手段として多孔板を有し、この多孔板によって各部 分放電空間からの処理ガスが分散し、ひいては隣方向へも拡散して吹出されることを特徴 とする請求項10に記載のプラズマ処理装置。

【請求項14】

前記吹出し口形成部の吹出し口における隣り合う部分放電空間どうしの境に対応する部位が、各部分放電空間に対応する部位よりも開口幅が大きく、この開口幅の大きい部位が、 前記ガス誘導手段を構成していることを特徴とする請求項10に記載のプラズマ処理装置

【請求項15】

処理ガスをプラズマ化して被処理物に当てるプラズマ処理装置であって、

前記プラズマ化のための放電空間を形成する電極構造と、前記放電空間への導入口の形成部と、前記放電空間から被処理物への吹出し口の形成部とを備え、前記導入口と吹出し口が、前記電極構造を挟んで第1方向に対向するように配置されており、

前記電極構造が、前記第1方向と交差する第2方向にそれぞれ延びるとともに前記第1、第2方向の何れとも交差する第3方向に互いに対峙する一対の電極列を含み、これら電極列の各々が、前記第2方向に間隙を置いて並べられた複数の電極部材にて構成され、第2方向の実質的に同じ位置に配置された一方の電極列と他方の電極列の電極部材どうしが、互いに逆の極性を有して互いの対向面の間に前記放電空間の一部分を形成し、更に、各電極列において、隣り合う電極部材どうしの極性が互いに逆になっており、

前記導入口形成部の導入口が、前記部分放電空間に連なる主導入口と、前記間隙に連なる 副導入口とを有していることを特徴とするプラズマ処理装置。

【書類名】明細書

【発明の名称】プラズマ処理装置

【技術分野】

[0001]

この発明は、所謂リモート式のプラズマ処理装置に関し、特に大面積の被処理物の処理に適したプラズマ処理装置に関する。

【背景技術】

[0002]

例えば、特許文献1には、処理ガスを電極間の放電空間でプラズマ化して吹出し、搬送手段で送られて来た被処理物に当てる所謂リモート式のプラズマ処理装置が記載されている。該装置の電極は、2つの平らな電極板(電極部材)を平行に対向配置した構造になっている。通常、これら電極板は、被処理物の幅(搬送方向と直交する方向)以上の長さのものが用いられる。したがって、これら電極板の間の放電空間およびそれに連なるプラズマ吹出し口も、被処理物の幅寸法以上の長さになっている。これによって、放電空間でプラズマ化した処理ガスを吹出し口の全長域から一様に吹出すことができる。その結果、被処理物の全幅を一度にプラズマ処理でき、処理効率を向上させることができる。

[0003]

【特許文献1】特開2002-143795号公報(第1頁、図4)

【発明の開示】

【発明が解決しようとする課題】

[0004]

近年、液晶用ガラス基板などの被処理物は、大型化が進んでおり、例えば1辺が1.5m~数mのものも登場して来ている。このような幅広・大面積の被処理物に対応するには、プラズマ処理装置の電極板を長尺化する必要がある。

しかし、電極板が長くなればなるほど、寸法精度を確保するのが難しくなるだけでなく、両電極板間に作用するクーロン力や、電極を構成する金属本体とその表面の固体誘電体との熱膨張率の違いや電極内部の温度差による熱応力等によって撓みやすくなる。そのため、放電空間の厚さが不均一になりやすく、ひいては表面処理の均一性が損なわれやすい。クーロン力に対抗するには、電極板を厚肉にし、剛性を高めることが考えられるが、そうすると電極重量が増大し、これを支える電極支持構造に負担が掛かるだけでなく、材料費や加工費も上昇してしまう。また、電極板の単位面積あたりの供給電力を確保するために、電源を大容量化する必要も出てくる。

そこで、電極を長手方向に複数の電極部材に分割することが考えられるが、その場合、 隣り合う電極部材どうしの境で十分なプラズマを得、該境に対応する位置でのプラズマ処 理を確保し、処理ムラを防止する必要がある。

【課題を解決するための手段】

[0005]

上記問題点を解決するために、本発明は、処理ガスを放電空間でプラズマ化し、前記放電空間の外部に配された被処理物に吹き付け、被処理物のプラズマ処理を行なう装置であって、前記放電空間を形成する電極構造と、前記放電空間への処理ガス導入口の形成部と、前記蔵電空間から被処理物への吹出し口の形成部とを備え、前記導入口と吹出し口が、前記電極構造を挟んで第1方向に対向するように配置されており、前記電極構造が、前記第1方向と交差する第2方向にそれぞれ延びるとともに前記第1、第2方向の何れとも交差する第3方向に互いに対峙する一対の電極列を含み、これら電極列の各々が、前記第2方向に並べられた複数の電極部材にて構成され、第2方向の実質的に同じ位置に配置された一方の電極列と他方の電極列の電極部材どうしが、互いに逆の極性を有して互いの対向面の間に前記放電空間の一部分(部分放電空間)を形成しており、更に、前記部分放電空間の各々における隣の部分放電空間寄りの側部を通る処理ガス流を、隣側へ(すなわち、隣り合う部分放電空間どうしの境へ向けて)誘導するガス誘導手段を設けたことを特徴とする。

[0006]

これによって、個々の電極部材の長さを被処理物の幅寸法に依らず短くできる。よって、寸法精度の確保が容易になるだけでなく、クーロン力等による電極部材の撓み量を抑えることができ、部分放電空間からのプラズマ吹出しの均一性を確保できる。電極部材を厚肉にする必要もなく、重量増大を回避して支持構造への負担を軽減でき、材料費等の上昇を抑えることができる。また、電界印加極の電極部材ごとに互いに異なる電源を接続することにすれば、各電源の容量を大きくすることなく、単位面積あたりの供給電力を十分に確保でき、しかも、これら電源を互いに同期させなくても済む。さらに、被処理物において、隣り合う部分放電空間どうしの境に対応する箇所にもプラズマを十分に吹き付けることができ、処理ムラを防止することができる。ひいては、前記撓み抑制効果などと相俟って、表面処理の均一性を十分に確保することができる。

[0007]

被処理物は、前記第1方向すなわち吹出し方向を横切るように、例えば前記第3方向に沿って相対移動されるのが好ましい。

前記部分放電空間の隣寄り側部の内部には、前記ガス誘導手段として、第1方向の下流側に向かって隣側へ傾くガス誘導面を有するガス誘導部材が設けられていてもよい。これによって、隣寄りのガス流を、ガス誘導面に沿って隣方向へ確実に誘導することができる

[0008]

この場合、前記ガス誘導部材の前記ガス誘導面より吹出し口側には、ガス誘導面とは逆方向に傾くガス戻し面が形成されていることが望ましい。これによって、隣方向へ向かう処理ガスの一部をガス誘導部材より吹出し口側へ回り込ませることができ、被処理物におけるガス誘導部材に対応する箇所にもプラズマを吹き付けることができ、処理ムラを確実に防止できる。

[0009]

前記ガス誘導手段は、前記導入口形成部(前記電極構造より処理ガス導入側)に設けられていてもよい。例えば、前記導入口が、各部分放電空間の隣寄り側部への分岐口を有し、この分岐口が、第1方向の下流側に向かって隣側へ傾けられることにより、前記ガス誘導手段を構成していてもよい。これによって、処理ガスを部分放電空間どうしの境へ確実に誘導することができる。

[0010]

前記導入口における各部分放電空間の隣寄り側部と対応する位置に、前記ガス誘導手段として、第1方向の下流側に向かって隣側へ傾けられた整流板が収容されていてもよい。 これによって、処理ガスを部分放電空間どうしの境へ確実に誘導することができる。

[0011]

前記ガス誘導手段が、前記放電空間における隣り合う部分放電空間どうしの境の前記導入口側の端部を塞ぐ閉塞部を含んでいてもよい。これによって、処理ガスが部分放電空間でのプラズマ化を経たうえで部分放電空間どうしの境に流れて行くようにすることができる。

前記導入口が、前記放電空間に沿って延びるスリット状をなし、この導入口の前記境に 対応する位置に前記閉塞部が収容されていてもよい。

前記電極構造には、2つの電極列の隣り合う電極部材どうしの間にそれぞれ挟まれる一対の介在部と、これら介在部を繋ぐ連結部を有するスペーサが設けられ、前記連結部が、前記境の前記導入口側の端部に片寄って配置されることにより前記閉塞部として提供されていてもよい。処理ガスは、部分放電空間を経て、前記境の前記連結部より吹出し口側の部分に流れて行く。

[0012]

前記ガス誘導手段が、前記吹出し口形成部(前記電極構造より吹出し側)に設けられ、 部分放電空間の隣寄り側部から出た処理ガスを隣方向へ誘導するようになっていてもよい

この場合、前記ガス勝導手段が、第1方向の下流側へ向かって瞬側へ傾くガス勝導面を 有して、前記吹出し口における各部分放電空間の隣寄り側部に対応する位置に配されてい てもよい。これによって、プラズマ化された処理ガスを、被処理物における部分放電空間 どうしの境に対応する部分に確実に当てることができる。

[0013]

前記ガス誘導手段が、隣り合う部分放電空間どうしの境の吹出し口側の端部を塞ぐ閉塞部を含み、この閉塞部が、前記吹出し口の内部において前記放電空間の側に片寄って配置されていていてもよい。これによって、部分放電空間どうしの境を流れて来た処理ガスが部分放電空間へ流れてプラズマ化されるようにすることができ、部分放電空間でのプラズマ化を経た処理ガスが閉塞部より下流側の吹出し口内に回り込むようにすることができる。前記吹出し口が前記第2方向に沿って延びるスリット状をなし、この吹出し口における隣り合う部分放電空間どうし間に跨る部分が、各部分放電空間からの処理ガスの隣方向への拡散を許容することにより前記ガス誘導手段を構成していてもよい。

$\{0014\}$

前記吹出し口形成部が、前記ガス誘導手段として多孔板を有し、この多孔板によって各部分放電空間からの処理ガスが分散し、ひいては隣方向へも拡散して吹出されるようになっていてもよい。これによって、処理ガスを確実に均一化して吹出すことができ、処理ムラを確実に防止することができる。

(0015)

前記吹出し口形成部の吹出し口における隣り合う部分放電空間どうしの境に対応する部位が、各部分放電空間に対応する部位よりも開口幅が大きく、この開口幅の大きい部位が、前記ガス誘導手段を構成していてもよい。これによって、吹出し口における隣り合う部分放電空間どうしの境に対応する部位の流通抵抗を、各部分放電空間に対応する部位の流通抵抗より小さくでき、部分放電空間でプラズマ化された処理ガスが、前記境に対応する部位に流れて行くようにすることができる。

[0016]

各電極列の隣り合う電極部材どうしの間に間隙が形成され、しかも、これら隣り合う電極部材どうしの極性が互いに逆になっており、前記導入口形成部の導入口が、前記部分放電空間に連なる主導入口と、前記間隙に連なる副導入口とを有していてもよい。これによって、隣り合う電極部材どうしの境での処理ガスのプラズマ化量を十分に確保することができ、処理ムラを確実に防止することができ、処理の均一性を十分に確保することができる。

[0017]

前記電極構造の隣り合う部分放電空間どうしは、直接または連通空間を介して連通されていてもよく、隔壁で隔てられていてもよい。

電界印加極を構成する電極部材どうしが、共通(単一)の電源に接続されていてもよい

(0018)

一対の電極列において第3方向に対向する電極部材どうしだけでなく各電極列において第2方向に隣り合う電極部材どうしも、互いに逆の極性になっているのが望ましい。すなわち、極性配置が互い違いになっているのが望ましい。これによって、各電極列の当該隣接電極部材どうし間の間隙をも放電空間の他の一部分とすることができ、そこにも処理ガスを通して吹出すことにより、処理ムラを一層確実に防止でき、表面処理の一層の均一化を図ることができる。さらに、この互い違い構造において、電界印加極と接地極のうち電界印加極を構成する電極部材どうしを互いに異なる電源に接続することにすれば、単位面積あたりの供給電力を十分に確保できるのは勿論のこと、電源どうしが同期していなくても、電界印加極どうしが直接隣接していないので、アークが発生するおそれがない。

(0019)

同じ電極列の電極部材どうしが、同一極性に揃えられていてもよい。この場合、少なく とも電界印加極の側の電極列において隣り合う電極部材どうしの間には、絶縁性の隔壁を

[0020]

前記第3方向に対向する電極部材どうしのうち少なくとも一方の対向面には、固体誘電体を設ける。前記互い違いの極性構造において、各電極列の隣り合う電極部材どうし間に間隙が形成され、この間隙に処理ガスが通されるようになっている場合には、これら隣り合う電極部材のうち少なくとも一方の隣接面にも、固体誘電体を設ける。

固体誘電体は、アルミナ等の溶射膜にて構成されていてもよく、セラミック等の板にて 構成され、この板を電極部材の表面に付設することにしてもよい。

[0021]

一方の電極列の電極部材と他方の電極列の電極部材どうしが、前記第2方向にずれていてもよい。この場合、互いに長さの過半が対向している電極部材どうしが、「第2方向の 実質的に同じ位置」に対向配置されたものに該当する。

[0022]

各電極列における隣接電極部材どうし間の間隔は、処理条件等に応じて適宜設定される

[0023]

本発明のプラズマ処理は、好ましくは、大気圧近傍の圧力下(略常圧)で実行される。本発明における大気圧近傍とは、1.013×10 4 ~50.663×10 4 Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×10 4 ~10.664×10 4 Paが好ましく、9.331×10 4 ~10.397×10 4 Paがより好ましい。

本発明は、好ましくは、大気圧グロー放電すなわち大気圧近傍の圧力下でグロー放電を起こすことによりプラズマを発生させ、処理を実行する。

【発明の効果】

[0024]

本発明によれば、個々の電極部材の長さを被処理物の幅寸法に依らず短くできる。よって、寸法精度の確保が容易になるだけでなく、クーロン力等による電極部材の撓み量を抑えることができ、部分放電空間からのプラズマ吹出しの均一性を確保できる。さらに、被処理物において、隣り合う部分放電空間どうしの境に対応する箇所にも、プラズマを十分に吹き付けることができ、処理ムラを防止できる。この結果、表面処理の均一性を十分に確保することができる。

【発明を実施するための最良の形態】

[0025]

以下、本発明の実施形態を、図面を参照して説明する。

図1~図4は、第1実施形態に係るリモート式常圧プラズマ処理装置M1を示したものである。図2、図3に示すように、装置M1の被処理物Wは、例えば大型の液晶用ガラス基板であり、その幅方向(図2、図3において左右方向、図1において紙面と直交する方向)の寸法は、1.5m程度である。

[0026]

図1に示すように、プラズマ処理装置M1は、処理ガス源2と、3つ(複数)の電源3A,3B,3Cと、これら処理ガス源2および電源3A,3B,3Cに接続されたノズルヘッド1と、搬送手段4とを備えている。処理ガス源2には、処理目的に応じた処理ガスが蓄えられている。

電源 3A, 3B, 3Cは、互いに同一のパルス状電圧を出力するようになっている。このパルスの立上がり時間及び/又は立下り時間は、 10μ s 以下、後記部分放電空間 33 p での電界強度は $10\sim1000$ k V / c m、周波数は 0.5 k H z 以上であることが望ましい。

なお、パルス波に代えて、高周波などの連続波電源を用いることにしてもよい。

[0027]

搬送手段4は、例えばローラコンペアからなり、被処理物のガラス基板Wを前後方向(図1において左右方向)に搬送してノズルヘッド1の下側に通すようになっている。このガラス基板Wに、ノズルヘッド1でプラズマ化された処理ガスが吹き付けられ、プラズマ表面処理が行なわれるようになっている。勿論、ガラス基板Wが固定され、ノズルヘッド1が移動するようになっていてもよい。

なお、プラズマ処理装置M1においては、略常圧下で処理が実行される。

[0028]

リモート式常圧プラズマ処理装置M1のノズルヘッド1について詳述する。

図1および図2に示すように、ノズルヘッド1は、上側のガス均一導入部20と、下側の放電処理部30とを備え、前記ガラス基板Wの搬送方向(図2、図3において上下方向)と直交する左右方向に長く延びている。

[0029]

ガス均一導入部20は、左右(図1において紙面と直交する方向)に延びる2本のパイプ21,22からなるパイプユニット25と、その上下に設けられた左右細長のチャンバー23,24とを有している。パイプユニット25には、各パイプ21,22から上側のチャンバー23に連なるスポット状の孔25aが長手方向に沿って短間隔置きに形成されている。一方のパイプ21の左端(図1において紙面手前)と他方のパイプ22の右端(図1において紙面奥)に、ガス供給路2aを介して処理ガス源2が連なっている。処理ガス源2からの処理ガスは、パイプ21,22内を互いに逆方向に流れながら、各スポット孔25aを通って上側のチャンバー23に入る。その後、パイプユニット25の前後両脇のスリット状の隙間20aを経て、下側のチャンバー24に入る。これによって、処理ガスが、左右長手方向に均一化されるようになっている。

[0030]

ノズルヘッド1の放電処理部30は、フレーム40と、このフレーム40に収容された電極ホルダ48と、このホルダ48の内部に設けられた電極ユニット(電極構造)30Xと、下板49を備えている。フレーム40は、それぞれ剛性金属からなる上板41と側板42を含んでいる。ホルダ48は、セラミックや樹脂などの絶縁材料からなる一対の逆L字断面の部材を含んでいる。フレーム40の上板41には、チャンバー24に連なるとともに左右に延びるスリット状の貫通孔41aが形成され、ホルダ48の一対の逆L字断面部材の上辺部どうし間には、上記貫通孔41aに連なるとともに左右に延びるスリット状の間隙48aが形成されている。これら貫通孔41aと間隙48aとにより左右に延びるスリット状の導入口43aが構成されている。フレーム40の上板41とホルダ48の一対の逆L字断面部材の上辺部とにより、導入口形成部43が構成されている。

絶縁材料からなる下板49は、左右に延びるスリット状の吹出し口49aを有し、吹出し口形成部を構成している。

導入口43aと吹出し口49aは、電極ユニット30Xを挟んで上下(第1方向)に対向配置されている。

導入口形成部43を有するフレーム40及びホルダ48、並びに吹出し口49aを有する下板49は、「処理ガス流通構造」を構成している。

[0031]

図1及び図2に示すように、電極ユニット30Xは、前後(第3方向)に対向する一対の電極列31X,32Xを含んでいる。各電極列31X,32Xは、それぞれ左右(第2方向)に延びている。前側(第1側)の第1電極列31Xは、左右に並べられた3つ(複数)の電極部材31A,31B,31Cにて構成されている。後側(第2側)の第2電極列32Xは、左右に並べられた3つ(複数)の電極部材32A,32B,32Cにて構成されている。

[0032]

各電極部材31A~32Cは、ステンレスやアルミニウムなどの導電金属によって出来

[0033]

図1および図2に図示するように、各電極部材31A~32Cには、アーク放電の防止 のために、アルミナなどの溶射膜からなる固体誘電体層34が被膜されている。(なお、 図3以降の図面では、固体誘電体層34の図示を省略する。)

固体誘電体層34は、電極部材における他方の列との対向面の全体と、左右隣との対向 端面の全体と、上下両面の全体を覆うとともに、対向端面や上下端面から背面にも及んで いる。この背面における固体誘電体層34の幅は、1mm以上が好ましく、3mm以上が より好ましい。なお、図1、図2において、固体誘電体層34の厚さは誇張して示してあ る。

各電極部材 $31A\sim32C$ の角は、アーク防止のためにR取りされている。このRの曲率半径は、 $1\sim10$ mmが好ましく、 $2\sim6$ mmがより好ましい。

[0034]

図2に示すように、第1電極列31 Xの隣り合う電極部材31A,31B,31Cどうし、及び第2電極列32 Xの隣り合う電極部材32A,32B,32Cどうしの間には、間隙が形成されている。これら左右隣接電極部材31A~31C、32A~32Cどうしの対向する側端面間には、セラミックなどの絶縁性かつ耐プラズマ性の材料からなるスペーサ36が挟まれている。スペーサ36は、前記側端面の背面側に片寄っており、該スペーサ36と左右隣接電極部材の側端面とによって、小さい空間33 qが画成されている。前後の電極列31 X,32 Xの左右同位置の小空間33 qどうしの間に連通空間33 rが形成されている。なお、小空間33 qの奥行き(電極部材の厚さからスペーサ36の幅を差し引いた寸法)は、例えば5 mm程度である。小空間33 qの厚さ(左右の隣接電極部材間の距離)は、後記部分放電空間33 pと同程度にしてもよく、それより例えば1 mm~3 mm程度大きくしてもよい。小空間33 qは、連通空間33 rに連なることにより、後記放電空間33 sと一体になっている。

[0035]

2つの電極列31X,32Xにおいて左右同位置に配された電極部材31Aと32A,31Bと32B,31Cと32Cは、それぞれ前後に正対している。これら前後の電極部材の対向面どうしの間には、部分放電空間33pが形成されている。部分放電空間33pの厚さ(前後の対向電極部材間の距離)は、例えば1mm~2mm程度である。左右に隣り合う部分放電空間33pどうしの境には、連通空間33rが形成されている。この連通空間33rを介して隣り合う部分放電空間33pどうしが互いに連通している。これによって、2つの電極列31X,32Yどうしの間には、3つの部分放電空間33pを左右に一列に連ねてなる放電空間33sが形成されている。放電空間33sは、ガラス基板Wの幅寸法に対応する左右長さを有している。

[0036]

図1に示すように、この放電空間33sの上端開口が、ガス導入口43aの左右全長に わたって連なっている。放電空間33sの下端開口は、吹出し口49aの左右全長にわた って連なっている。

[0037]

図2に示すように、電極ユニット30Xは、互い違いの極性配置構造をなしている。すなわち、前後の対向電極部材どうしの一方は、電界印加極となり、他方は、接地極となり、互いに逆の極性を有している。しかも、各電極列の左右の隣接電極部材どうしが、互いに逆極性になっている。

詳述すると、電極ユニット30Xの左側部において、前側の第1電極列31Xの電極部材31Aは、給電線3aを介してパルス電源3Aに接続され、後側の第2電極列32Xの電極部材32Aは、接地線3eを介して接地されている。電極ユニット30Xの中央部において、第1電極列31Xの電極部材31Bは、接地線3eを介して接地され、第2電極

列32Xの電極部材32Bは、給電線3bを介してパルス電源3Bに接続されている。電極ユニット30Xの右側部において、第1電極列31Xの電極部材31Cは、給電線3cを介してパルス電源3Cに接続され、第2電極列32Xの電極部材32Cは、接地線3eを介して接地されている。

電界印加極を構成する3つの電極部材31A,32B,31Cは、互いに異なる電源3A,3B,3Cに接続されている。

[0038]

これにより、前後の対向電極部材どうし間の部分放電空間33pでは、電源3A,3B,3Cからのパルス電圧によりパルス電界が形成され、グロー放電が起きるようになっている。さらに、左右の隣接電極部材どうし間の小空間33qでも、同様にパルス電界が形成されグロー放電が起きるようになっている。これによって、小空間33qも放電空間33sの一部になっている。この放電空間33sの一部としての小空間33qは、隣り合う2つの部分放電空間33pを繋ぎ、放電空間33sを左右延び方向に沿って連続化している。

[0039]

図2、図4に示すように、前後の対向電極部材間の部分放電空間33pには、ガス誘導手段を構成する部材51が収容されている。このガス誘導部材51は、各部分放電空間33pにおける隣の部分放電空間寄り側部に配置されている。すなわち、左側の電極部材31A,32A間の部分放電空間33pにおいては、その右側部に配置され、中央の電極部材31B,32B間の部分放電空間33pにおいては、その左右両側部に配置され、右側の電極部材31C,32C間の部分放電空間33pにおいては、その左側部に配置されている。

[0040]

ガス誘導部材51は、セラミックなどの絶縁性かつ耐プラズマ性の材料にて構成され、 上向きのくさび状をなしている。すなわち、ガス誘導部材51は、垂直面と、この垂直面 と鋭い鋭角をなすようにして下方へ向かって隣側へ傾くガス誘導面51aと、これら2面 の下端を結ぶ底面とを有している。ガス誘導部材51の底面の左右幅は、5mm以下が好 ましい。

[0041]

なお、図1に図示(図2以降において省略)するように、ノズルヘッド1の放電処理部30には、各電極部材31A~32Cにねじ込まれて該電極部材を前後外側へ引く引きボルト61と、ホルダ48を介して電極部材を前後内側へ押す押しボルト62とが、左右に間隔を置いて設けられている。これらボルト61,62によって、各電極部材31A~32Cの前後位置ひいては放電空間33sの厚さを調節することができるようになっている。これら押し引きボルト61,62は、電極部材31A~32Cのクーロン力等による撓みに対する阻止手段としても機能する。

[0042]

上記のように構成されたリモート式常圧プラズマ処理装置M1の作用を説明する。

電界印加極の各電極部材31A,32B,31Cには、それぞれ電源3A,3B,3C からパルス電圧が供給される。これによって、各部分放電空間33p内にパルス電界が形成され、グロー放電が起きる。

これと併行して、ガス均一導入部20にて左右に均一化された処理ガスが、導入口43 aを経て、放電空間33sの3つの部分放電空間33pに均一に導入される。図4の矢印に示すように、この処理ガスのうち、各部分放電空間33pにおける隣寄り側部以外の部分を通るガス流f0は、そのまま真っ直ぐ下方へ流れ、この流通過程で前記放電によってプラズマ化(励起・活性化)される。そして、吹出し口49aから吹出され、図3に示すように、ガラス基板Wの上面における部分放電空間33pの隣寄り以外の部分に対応する領域R1に吹付けられる。

[0043]

一方、図4に示すように、部分放電空間33pの隣寄り側部を通るガス流 f 1は、ガス

誘導部材51のガス誘導面51aに沿って隣方向へ誘導されながらプラズマ化される。こ のプラズマ化されたガス流f1が、隣との連通空間33rに入る。なお、連通空間33r への処理ガスには、その真上の導入路38aから直接入ってくるものもある。これらガス は、連通空間33mから各列の隣接電極部材間の小空間33g内に拡散する。この小空間 33gにおいても、パルス電界が形成されグロー放電が起きているため、処理ガスのプラ ズマ化が行なわれる。この小空間33g内でプラズマ化された処理ガスは、吹出し口49 aの連通空間33rに対応する部分から吹出される。これによって、図3に示すように、 ガラス基板Wにおける連通空間33rに対応する領域R2にも、プラズマを吹付けること ができる。

[0044]

さらに、図4に示すように、前記部分放電空間33p内のガス流f0のうち、ガス誘導 部材51の垂直面に沿って真下に流れるガス流の一部f2が、ガス誘導部材51の下側に 回り込む。そして、吹出し口49aのガス誘導部材51に対応する位置から下方へ吹出さ れる。これによって、図3に示すように、ガラス基板Wにおけるガス誘導部材51に対応 する領域R3にも、プラズマを吹付けることができる。

この結果、大面積のガラス基板Wの左右全幅を一度に、しかもムラ無く略均一にプラズ マ表面処理することができる。

同時に、搬送手段4にてガラス基板Wを前後に移動させることにより、ガラス基板Wの 全面を処理することができる。

[0045]

電極ユニット30X全体としては、ガラス基板Wの幅寸法に対応する長さであっても、 各電極部材31A~32Cは、その3分の1(数分の1)程度の長さしかないため、寸法 精度を容易に確保できるだけでなく、印加電界によってクーロン力が強く働いても、撓み 量が大きくならないようにすることができる。これによって、部分放電空間33pの前後 幅が一定になるように維持することができる。したがって、部分放電空間33p内での処 理ガスの流れを均一に維持でき、ひいては、表面処理の均一性を確実に得ることができる 。また、電極部材を剛性アップのために厚肉にする必要がなく、重量増大を回避して支持 構造への負担を軽減でき、材料費等の上昇を抑えることができる。

[0046]

短小の電極部材31A.32B,31Cごとに電源3A,3B,3Qを設けているので 、各電源3A,3B,3Cの容量が小さくても、単位面積あたりの投入電力を十分に大き くすることができる。ひいては、処理ガスを十分にプラズマ化することができ、高い処理 能力を確保することができる。また、これら電源3A,3B,3Cは、互いに別の電極部 材に接続されているので、同期させる必要がない。さらに、極性が互い違いになっており 、電界印加極どうしが左右に接していないので、電源3A,3B,3Cどうしが同期して いなくても、隣接電極部材どうし間に異常電界が形成されアークが発生するおそれがない

また、発明者らの実験によれば、処理前に行う電極加熱等のための空放電工程において 処理ガスをガス誘導手段で連通空間33rや小空間33gに誘導することにより、該空 放電の所要時間を短縮することができた。

[0047]

次に、本発明の他の実施形態を説明する。以下の実施形態において、既述の実施形態と 重複する構成に関しては、図面に同一符号を付して説明を省略する。

[0048]

図5は、ガス誘導部材の変形例を示したものである。このガス誘導部材52には、頂角 から下方へ向かって隣側へ傾くガス誘導面52aと、このガス誘導面52aの下端から下 方へ向かって隣側とは逆側に傾くガス戻し面52bとが設けられている。

このガス誘導部材52によれば、ガス誘導面52aに沿って隣方向へ誘導されるガス流 f 1の一部 f 3を、ガス戻し面 5 2 b に沿って逆側に確実に戻すことができ、ガス誘導部 材52の下側に確実に回り込ませることができる。これによって、ガス誘導部材対応領域

[0049]

ガス誘導部材は、図4、図5に示す形状に限定されるものではなく、ガス流を隣方向へ 誘導できるものであれば種々の形状を採用できる。例えば、図6に示すガス誘導部材53 のように、正三角形に近い断面形状でもよく、図7に示すガス誘導部材54ように、下方 へ向かって隣方向へ傾斜した平板形状でもよい。これら部材53,54において、下方へ 向かって隣方向へ傾斜する斜面は、ガス誘導面53a,54aを構成している。

[0050]

図8は、本発明の第2実施形態を示したものである。この実施形態では、ガス流を隣方向へ誘導するガス誘導手段が、電極ユニット30Xより上側のガス導入口形成部43に設けられている。詳述すると、処理ガス導入口形成部43の導入口が、第1実施形態の左右細長スリット38aに代えて、左右に短間隔置きに配置形成された多数の細い分岐口43b,43cにて構成されている。これら分岐口43b,43cのうち、部分放電空間33pの中程に対応する分岐口43cは、まっすぐ下(第1方向)に向かって開口されている。これに対し、各部分放電空間33pの隣寄り側部に対応する分岐口43bは、隣方向へ傾けられている。この傾斜分岐口43bが、「ガス誘導手段」を構成している。

[0051]

処理ガスのうち、垂直分岐口43cを通ったガス流f0は、部分放電空間33p内を真っ直ぐ下へ流れながら、プラズマ化された後、ガラス基板Wに吹付けられる。当該実施形態の部分放電空間33pにはガス誘導部材が無いので、ガス流f0のガラス基板Wへの吹付け領域R1は、第1実施形態のR3をも含み得る。

[0052]

一方、傾斜分岐口43bを通ったガス流f1は、部分放電空間33p内でプラズマ化されながら隣方向へ向けて斜め下に流れる。そして、連通空間33rの下方へ吹出される。これによって、ガラス基板Wの連通空間対応領域R2でのプラズマ表面処理を確実に確保でき、処理の均一性を高めることができる。

[0053]

図9は、本発明の第3実施形態を示したものである。この実施形態では、電極ユニット30X(33Bのみ図示)の上方に、処理ガス導入口形成部としてガス導入管43Pが設けられている。ガス導入管43Pは、部分放電空間33pに沿って延びるとともに、部分放電空間33pの左右長手方向の両側に対応する部分が上に反るように湾曲されている。このガス導入管43Pの下側部には、部分放電空間33pへの処理ガス導入口として多数の小孔状の分岐口43d,43eが該管43Pの長手方向に沿って短間隔置きに形成されている。部分放電空間33pの中程に対応する分岐口43eは、略真下(第1方向)に向かって開口されている。一方、両端に近い分岐口43eほど、隣方向への傾きが大きくなっている。そして、両端すなわち部分放電空間33pの隣寄り側部に対応する分岐口43dは、隣方向への傾きが最も大きくなっている。この分岐口43dが、「ガス誘導手段」を構成している。

[0054]

導入管43Pの一端部に処理ガスが導入される。この処理ガスは、導入管43P内を流れるとともに、漸次、分岐口43d,43eから下方の部分放電空間33pへ漏れ出る。そのうち、分岐口43dから出たガス流f1は、部分放電空間33p内を隣方向へ向けて斜め下に流れる。これによって、ガラス基板Wの連通空間対応領域R2でのプラズマ表面処理を確保でき、処理の均一性を高めることができる。

[0055]

図10に示す第4実施形態では、各電極部材31A~32C(31A,31Bのみ図示)の左右隣との対向端面が、上側で隣と大きく離れ、下へ向かうにしたがって隣へ接近するように斜めにカットされている。したがって、連通空間33rおよび小空間33qは、下方へ向かうにしたがって幅狭になっている。

[0056]

図11~図13は、本発明の第5 実施形態を示したものである。図11及び図12に示すように、第5 実施形態の処理ガス導入口形成部43の導入口43 aには、ガス誘導手段として3つ(複数)の絶縁樹脂製の整流部材60が設けられている。ここで、導入口43 aは、3つの部分放電空間33pにわたるスリット状をなしている。図13に示すように、各整流部材60は、ベース板61と、このベース板61の片面に設けられた複数の整流板62,63を一体に有している。ベース板61は、部分放電空間33pと対応する長さの細長い薄板状をなしている。図11及び図12に示すように、このベース板61が、フレーム上板41のスリット状貫通孔41aの片方の内側面に宛がわれるようにして、3つの整流部材60は、部分放電空間33pと一対一に対応している。隣接する整流部材60どうしの境は、連通空間33rと対応している。

[0057]

図12及び図13に示すように、整流板62,63は、ペース板61の長手方向に間隔を置いて配置されている。これら整流板62,63によってスリット状貫通孔41aが仕切られている。また、図11に示すように、整流板62,63は、スリット状貫通孔41aにおけるペース板61とは反対側の内側面に突き当てられ、これにより、整流部材60が、貫通孔41a内にしっかりと固定されている。図12に示すように、連通空間33rの近くに配置された整流板62は、下方へ向かって隣の整流部材60に近づくように斜めをなしている。それ以外の整流板63は、ほぼ垂直になっている。

[0058]

図12の符号f0で示すように、導入口43aに導かれた処理ガスの大半は、まっすぐ下に向かって流れる。流れが整流板63によって乱されることは殆どない。一方、符号f1で示すように、整流板62の配置場所の近くでは、処理ガスの流れが整流板62によって斜めになる。この斜めの流れf1が、部分放電空間33pの隣寄り部分を通り、プラズマ化されながら連通空間33rひいては隣の部分放電空間33pに寄って行く。これによって、連通空間33rの下側へもプラズマを吹出すことができ、ガラス基板Wの連通空間対応領域R2でのプラズマ表面処理を確実に確保でき、処理の均一性を高めることができる。

[0059]

図14及び図15に示すように、本発明の第6実施形態では、処理ガス導入口形成部43の導入口43aに閉塞部材70が嵌め込まれている。閉塞部材70は、絶縁樹脂にてなり、導入口43aにおける連通空間33rに対応する部分に、隣り合う部分放電空間33pに跨るようにして配置されている。これによって、連通空間33rの導入口43a側の端部が塞がれている。連通空間33rは、両隣の部分放電空間33pを介してのみ導入口43aと連通している。

[0 0 6 0]

したがって、図14の符号 f 1に示すように、連通空間33 r に入って来る処理ガスは、その前に必ず部分放電空間33 p を経ることになり、この部分放電空間33 p の通過過程でプラズマ化されることになる。これによって、連通空間33 r の下側へもプラズマを吹出すことができ、ガラス基板Wの連通空間対応領域R 2 でのプラズマ表面処理を確実に確保でき、処理の均一性を高めることができる。

[0061]

図16〜図18は、本発明の第7実施形態を示したものである。この実施形態は、図2のスペーサ36を、「ガス誘導手段」として提供されるように変形した態様に係るものである。すなわち、電極構造30Xの左右に隣り合う電極部材どうしの境には絶縁樹脂製の門型スペーサ80が介装されている。スペーサ80は、一対の脚部81と、これら脚部8

1の上端部間を繋ぐ連結部82を有し、門型の平板状をなしている。図17に示すように、門型スペーサ80の外輪郭は、電極ユニット30X全体の側面断面の輪郭と一致している。図18に示すように、一対の脚部81は、2つの電極列31X,32Xの隣り合う電極部材どうし間への介在部」となっている。脚部81は、電極部材31A~32Cより幅狭になっている。これによって、各脚部81は、対応する電極列31X,32Xの隣り合う電極部材どうし間における連通空間33rとは逆側(外側)に片寄って配置されている。隣り合う電極部材どうし間における脚部81より連通空間33rの側(内側)に、放電空間33sの一部としての小空間33qが形成されている。

なお、脚部81を電極部材31A~32Cと等幅にして、小空間33 q を完全に埋めることにしてもよい。

[0062]

図16及び図17に示すように、連結部82は、連通空間33rにおける導入口43a側の端部に片寄って配され、そこを塞いでいる。一方、図16~図18に示すように、連結部82より下側の連通空間33rは、開放され、第2方向に沿って両側の部分放電空間33p,33pと、第3方向に沿って両側の小空間33q,33qとにそれぞれ連通している。

[0063]

図16の符号f1に示すように、処理ガスは、連結部82の両側の部分放電空間33pを経て、プラズマ化されたうえで、連結部82より下側の連通空間33rに入って来る。これによって、ガラス基板Wの連通空間対応領域R2でのプラズマ表面処理を確実に確保でき、処理の均一性を高めることができる。また、各電極列31X,32Xにおいて隣り合う電極部材どうしの極性を互いに異ならせることにより、小空間33pをも放電空間33sの一部とすることができ、そこでも処理ガスのプラズマ化を起こすことができる。これによって、ガラス基板Wの連通空間対応領域R2でのプラズマ表面処理を一層確実に確保でき、処理の均一性を一層高めることができる。

[0064]

図19および図20は、本発明の第8実施形態を示したものである。この実施形態では、「ガス誘導手段」が、電極ユニット30Xより下側(吹出し側)に設けられている。すなわち、下板49の左右細長スリット状の吹出し口49aには、各部分放電空間33pの隣寄り側部に対応する位置に、ガス誘導手段としてガス誘導部49Bが設けられている。ガス誘導部49Bは、下方へ向かって隣側へ傾くガス誘導面49cを有する断面三角形状をなし、吹出し口49aの前後の縁面間に架け渡されている。

[0065]

図20に示すように、部分放電空間33pにおいてプラズマ化された処理ガスのうち、 隣寄り側部から出たガス流 f 1"は、ガス誘導部49Bのガス誘導面49cによって隣方 向へ誘導される。これによって、ガラス基板Wの連通空間対応領域R2でのプラズマ表面 処理を確保でき、処理の均一性を高めることができる。

[0066]

図21、図22、図23は、本発明の第9実施形態を示したものである。この実施形態では、放電処理部30の吹出し口形成部としての下板49が、上下2枚の板部49U,49Lによって構成されている。上段の板部49Uには、各部分放電空間33pに対応する3つのスリット状の上段吹出し口49dが一列をなすようにして形成されている。隣り合う上段吹出し口49dどうしの間には、これらを分断する橋部49Eが設けられている。

[0067]

各上段吹出し口49dは、その上側の部分放電空間33pに直接に連なっている。上段 吹出し口49dの幅は、部分放電空間33pの幅より大きい。

下段の板部49Lには、3つの上段吹出し口49dを合わせた長さの下段吹出し口49fが形成されている。下段吹出し口49fの幅は、上段吹出し口49dの幅より小さく、

ページ: 12/

部分放電空間33pの幅と略等しい。

[0068]

橋部49Eは、連通空間33rの真下に配置されており、該連通空間33rの下端を塞いでいる。これにより、橋部49Eは、「吹出し口の隣り合う部分放電空間どうしの境の吹出し口側の端部を塞ぐ閉塞部」を構成している。橋部49Eは、上下の段の吹出し口49d,49fを合わせた吹出し口全体における上側に片寄って配置されている。連通空間33rは、両隣の部分放電空間33pを介してのみ吹出し口43d,43fと連通している。

なお、板部49U, 49Lどうしは、互いに一体になっていてもよく、2枚に代えて3枚以上の板部を積層することによって吹出し口形成部材を構成してもよい。

[0069]

図23の符号f1に示すように、連通空間33r内を下降して来た処理ガスは、橋部49Eによって連通空間33rから直接吹出口へ行くのを阻止され、必ず両隣の部分放電空間33pを経てプラズマ化されたうえで吹出し口49dに流れ込む。そして、橋部49Eの下側の下段吹出し口49f内に回り込み、その下方へ吹出される。これによって、連通空間対応領域R2でのプラズマ表面処理を確保でき、処理の均一性を高めることができる

[0070]

図24及び図25は、本発明の第10実施形態を示したものである。この実施形態では、下板49のスリット状吹出し口49aに、ガス誘導手段として、多数の小孔90aを有する多孔板90が嵌め込まれている。多孔板90は、電極ユニット30Xより下方に若干離れ、吹出し口49aの下側部に片寄って配置されている。

[0071]

[0072]

図26は、本発明の第11実施形態を示したものである。この実施形態は、吹出し口49aの変形態様に係るものである。すなわち、第11実施形態のプラズマ処理装置の下板49に形成された吹出し口49aは、左右(第2方向)に長く延びる主吹出し口49hと、この主吹出し口49hの中間の2箇所と交差するようにして前後(第3方向)に延びる2つの短い副吹出し口49iとを有している。主吹出し口49hは、部分放電空間33p及び連通空間33rに連なっている。副吹出し口49iは、左右に隣り合う電極部材どうしのちょうど境に配置され、2つの電極列31X,32Xの小空間33q及び連通空間33rに連なっている。これによって、下板49の吹出し口は、隣り合う部分放電空間33pどうしの境に対応する部位が、各部分放電空間に対応する部位よりも開口幅が大きくなり、したがって流通抵抗が小さくなっている。

[0073]

小空間33 q でプラズマ化された処理ガスは、小空間33 q の真下に連なる副吹出し口4 9 i から吹出される。また、各部分放電空間33 p の隣寄り側部から出た処理ガスは、流通抵抗の小さな副吹出し口4 9 i に向かって流れながら吹出される。これによって、処理の均一性を高めることができる。副吹出し口4 9 i すなわち吹出し口4 9 a における隣り合う部分放電空間3 3 p どうしの境に対応する大開口の部位は、「ガス誘導手段」を構成している。

[0074]

なお、副吹出し口49iの長さは、適宜延長、短縮してよく、小空間33 q に合わせる必要はない。

また、図27に示すように、副吹出し口49iを主吹出し口49hの片側(例えば第2

電極列32Xの側)にだけ設けることにしてもよい。

[0075]

各電極列31X,32Xにおける隣り合う電極部材どうしの間の間隙全体を絶縁スペーサで埋め、放電空間33sの一部としての小空間33qを無くした構成においても、或いは、後記実施形態のように、電極列31X,32Xごとに電極部材の極性を揃え、小空間33qで放電が起きないようにした構成においても、副吹出し口49iを形成しておけば、各部分放電空間33pでプラズマ化された処理ガスが、大開口の副吹出し口49iに流れ込もうとし、これにより、処理ガスの均一性を確保できる。

[0076]

吹出し口49aにおける隣り合う部分放電空間33pどうしの境に対応する大開口部として、スリット状の副吹出し口49iに代えて、図28(a)に示すように、菱形の開口49jを適用してもよく、同図(b)に示すように、主吹出し口49hの片側に突出する三角形の開口49kを適用してもよく、その他、円形等の種々の形状を適用してもよい。

[0077]

図29は、本発明の第12実施形態を示したものである。この実施形態は、ガス導入手段すなわち導入口形成部43の変形態様に係るものである。すなわち、第12実施形態の導入口形成部43に形成された導入口43aは、左右(第2方向)に長く延びる主導入口43hと、この主導入口43hの中間の2箇所と交差するようにして前後(第3方向)に延びる2つの短い副導入口43iとを有している。主導入口43hは、部分放電空間33p及び連通空間33rに連なっている。副導入口43iは、左右に隣り合う電極部材どうしのちょうど境に配置され、電極ユニット30Xの放電空間33sの一部としての小空間33q及び連通空間33rに連なっている。

[0078]

ガス均一導入部20からの処理ガスは、主導入口43hから部分放電空間33pに導入されるとともに、副導入口43iから小空間33qに直接導入される。これによって、小空間33q内でプラズマ化される処理ガスの量を増やすことができる。この結果、処理の均一性を高めることができる。

[0079]

なお、副導入口43iの長さは、適宜延長、短縮してよく、小空間33qに合わせる必要はない。また、副導入口43iを主吹出し口49hの片側にだけ設けることにしてもよい。

[0080]

図30は、本発明の第13実施形態を示したものである。この実施形態では、電界印加極を構成する電極部材31A,32B,31Cどうしが、第1実施形態の別々電源3A,3B,3Cに代えて、共通(単一)の電源3に接続されている。したがって、各部分放電空間33pに形成されるプラズマ電界どうしを、互いに確実に同期させることができる。

なお、この実施形態では、第1実施形態と同様のガス誘導部材51が備えられているが、これに代えて、第1実施形態の変形例や第2~第12実施形態を適用することにしてもよい。(以降の実施形態において同様。但し、後記列ごと揃い極性の実施形態と第12実施形態との組み合わせはあまり好ましくない。)

[0081]

図31は、本発明の第14実施形態を示したものである。この実施形態では、電極ユニット30Xの極性配置が、既述実施形態の互い違いに代えて、電極列31X,32Xごとに同極に揃えられている。

すなわち、前側の第1電極列31Xの電極部材31A,31B,31Cは、それぞれ電源3A,3B,3Cに接続されることにより、すべて電界印加極となっている。一方、後側の第2電極列32Xの電極部材32A,32B,32Cは、すべて接地極となっている。この構成においても、前後の電極部材間の部分放電空間33pでグロー放電が起き、処理ガスをプラズマ化することができる。

[0082]

[0083]

なお、隔壁35は、少なくとも電界印加極の電極部材31A~31Cどうし間に設けられていればよく、接地極の電極部材31A~31Cどうし間には無くてもよい。接地極の電極部材32A~32Cどうしは、くっついていてもよい。

[0084]

図32は、本発明の第15実施形態を示したものである。この実施形態は、第14実施 形態と同様の、列ごと揃い極性の電極ユニット30Xにおいて、電界印加極の電極部材3 1A~31Cに共通(単一)の電源3を接続したものである。

左右に隣り合う電極部材31A~31C,32A~32Cどうし間には、第14実施形態と同様に隔壁35が設けられているが、当該第10実施形態では、電極部材31A~31Cへの印加電圧が確実に同期しているので、隔壁35は無くてもよい。接地極の電極部材32A~32Cどうしは勿論、電界印加極の電極部材31A~31Cどうしも、くっついていてもよい。

[0085]

図33は、本発明の第16実施形態を示したものである。この実施形態では、前後の電極部材どうしが、左右にずれて配置されている。すなわち、本発明において、2つの電極列31X,32Xの電極部材31Aと32Aどうし、31Bと32Bどうし、31Cと32Cどうしは、前後に正対している必要はなく、実質的に同位置において対向していれば多少ずれていてもよい。

[0086]

図33のずらし配置構成は、図2、図30等の互い違い極性配置の電極構造に適用してもよく、図31、図32の列ごと揃い極性の電極構造に適用してもよい。発明者らが実験したところによれば、列ごと揃い極性構造は勿論、互い違い極性構造においても、2つの列間に多少ずれがあってもワークWの幅方向の全域を処理することができた。

[0087]

本発明は、上記形態に限定されるものではなく、種々の改変をなすことができる。

例えば、電極部材どうしの長さは、互いに同一になっていなくてもよい。但し、対向電 極部材どうしは、同長であることが望ましい。

各電極列において隣り合う電極部材どうしの間隙を絶縁樹脂などの詰め材で完全に埋め、そこに処理ガスが入り込まないようにしてもよい。

各電極列31X,32Xにおいて隣り合う電極部材どうし間の間隔(小空間33rの幅)や、電極列31X,32Xどうし間の間隔(部分放電空間33pの幅)は、適宜設定する。前者が、後者より大きくてもよく、小さくてもよく、等しくてもよい。

各電極列31X,32Xにおいて隣り合う電極部材どうし間の間隙に挟むスペーサ36(図2)の前後方向の寸法や配置位置を調節することにより、小空間33rの大きさを適宜設定することにしてもよい。

吹出し部材 4 9 を省略し、電極部材どうしの間の吹出し側の開口が、吹出し部を構成していてもよい。

電極ユニット30Xを、前後(第3方向)に複数段配置することにしてもよい。

図8~図15、図29等のガス導入口形成部43におけるガス誘導手段ないしガス導入 手段と、図4~図7、図16等の放電空間33s内におけるガス誘導手段と、図20~図 28等の吹出し口形成部49におけるガス誘導手段とを相互に組み合わせてもよい。

本発明は、洗浄、成膜、エッチング、表面改質、アッシング等の種々のプラズマ表面処理に遍く適用でき、グロー放電に限らず、コロナ放電、沿面放電、アーク放電などによるプラズマ表面処理にも適用でき、略常圧に限らず減圧下でのプラズマ表面処理にも適用で

きる。

【図面の簡単な説明】

[0088]

- 【図1】第1実施形態に係るリモート式常圧プラズマ処理装置を示す側面断面図である。
- 【図2】図1のI-I線に沿う前記リモート式常圧プラズマ処理装置の電極構造の平面断面図である。
- 【図3】前記リモート式常圧プラズマ処理装置の被処理物であるガラス基板に電極構造を投影させた平面図である。
 - 【図4】図2のIV-IV線に沿う電極構造の正面図である。
 - 【図5】ガス誘導部材の変形例を示す正面図である。
 - 【図6】ガス誘導部材の変形例を示す正面図である。
 - 【図7】ガス誘導部材の変形例を示す正面図である。
 - 【図8】第2実施形態に係るガス誘導手段の正面断面図である。
 - 【図9】第3実施形態に係るガス誘導手段の正面図である。
 - 【図10】第4実施形態に係るガス誘導手段の正面図である。
- 【図11】第5実施形態に係る常圧プラズマ処理装置の放電処理部の処理ガス導入形成部の周辺を示し、図12のXI-XI線に沿う側面断面図である。
- 【図12】第5実施形態に係る処理ガス導入形成部の周辺を示し、図11のXII-XII 線に沿う正面断面図である。
- 【図13】第5実施形態の整流部材の斜視図である。
- 【図14】第6実施形態に係る常圧プラズマ処理装置の放電処理部の正面断面図である。
- 【図15】図14の放電処理部の平面断面図である。
- 【図16】第7実施形態に係る常圧プラズマ処理装置の放電処理部の正面断面図である。
- 【図17】第7実施形態のスペーサを正視した図である。
- 【図18】第7実施形態の放電処理部の平面断面図である。
- 【図19】第8実施形態に係る電極ユニットおよび下板の斜視図である。
- 【図20】図19の電極ユニットおよび下板の正面断面図である。
- 【図21】第9実施形態に係る電極ユニットおよび下板の斜視図である。
- 【図22】図21のXXIIーXXII線に沿う電極ユニットおよび下板の断面図である。
- 【図23】図21のXXIII-XXIII線に沿う電極ユニットおよび下板の正面図である。
- 【図24】第10実施形態に係る電極ユニットおよび下板の斜視図である。
- 【図25】図24の電極構造および吹出し口形成部材の正面断面図である。
- 【図26】第11実施形態に係る常圧プラズマ処理装置の下板の平面図である。
- 【図27】第11実施形態の変形例に係る下板の平面図である。
- 【図28(a)】第11実施形態の他の変形例に係る下板の平面図である。
- 【図28(b)】第11実施形態の他の変形例に係る下板の平面図である。
- 【図29】第12実施形態に係る常圧プラズマ処理装置の放電処理部のガス導入口形成部の平面図である。
- 【図30】第13実施形態に係る電極構造の平面図である。
- 【図31】第14実施形態に係る電極構造の平面図である。
- 【図32】第15実施形態に係る電極構造の平面図である。
- 【図33】第16実施形態に係る電極構造の平面図である。

【符号の説明】

[0089]

- M リモート式常圧プラズマ処理装置
- W ガラス基材(被処理物)
- 1 ノズルヘッド

ページ: 16/E

- 2 処理ガス源
- 3A, 3B, 3C 電源
- 4 搬送手段
- 30X 電極ユニット(電極構造)
- 31X 第1電極列
- 31A, 31B, 31C 第1電極列の電極部材
- 32X 第2電極列
- 32A, 32B, 32C 第2電極列の電極部材
- 33 放電空間
- 33p 部分放電空間
- 33 q 各電極列の隣接電極部材間間隙の小空間
- 33 r 連通空間 (隣り合う部分放電空間どうしの境)
- 43 導入口形成部
- 43a 処理ガス導入口
- 43b, 43d 各部分放電空間の隣寄り側部への分岐口(ガス誘導手段)
- 43h 主導入口
- 43 i 副導入口
- 49 下板(吹出し口形成部)
- 49a 吹出し口
- 49B ガス誘導部 (ガス誘導手段)
- 49 c ガス誘導面
- 49E 橋部 (閉塞部)
- 49 i 副吹出し口 (開口幅の大きい部位)
- 51, 52, 53, 54 ガス誘導部材 (ガス誘導手段)
- 51a, 52a, 53a, 54a ガス誘導面
- 52b ガス戻し面
- 63 整流板(ガス誘導手段)
- 70 閉塞部材 (閉塞部)
- 80 スペーサ
- 81 脚部(介在部)
- 82 連結部 (閉塞部)
- 90 多孔板 (ガス誘導手段)

【書類名】図面 【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図8】

【図9】

【図10】

【図12】

【図13】

【図15】

【図16】

【図18】

【図19】

【図20】

【図22】

[図23]

【図25】

【図27】

【図28 (a)】

【図28(b)】

【図30】

【図31】

【図32】

【図33】

【要約】

【課題】 大面積の被処理物用のプラズマ処理装置において、処理の均一性を確保する。 【解決手段】 ガス導入口43 aと吹出し口49 aの間の電極構造30 Xは、左右にそれぞれ延びるとともに前後に互いに対峙する一対の電極列からなる。各電極列は、左右に並べられた複数の電極部材にて構成され、左右方向の実質的に同じ位置に配置された一方の電極列と他方の電極列の電極部材どうしが、互いに逆の極性を有して互いの対向面の間に部分放電空間33 pを形成している。各部分放電空間33 pには、隣の部分放電空間寄り側部を通るガス流を、隣側へ誘導するガス誘導手段51 が設けられている。

【選択図】 図4

特願2004-080167

出願人履歴情報

識別番号

[000002174]

1. 変更年月日 1990年 8月29日

[変更理由]

新規登録

住 所

大阪府大阪市北区西天満2丁目4番4号

氏 名

積水化学工業株式会社