WHAT ARE POLAR MOLECULES?

- Molecules in which the charge is not distributed symmetrically among the atoms making up the molecule
- Polarity of molecule is dependent on the presence of polar bonds & the shape of the molecule

BOND POLARITY

 ΔEN between 2 atoms determines the polarity of the bond – greater the difference, the more polar the bond

POLAR COVALENT BONDS

- Bond in which unequal sharing of electrons exists
- Electrons spend most of their time closer to one nucleus than the other

Partial negative charge

POLAR COVALENT BONDS

- Polar covalent bonds are shown by using a bond dipole (arrow indicating a Δ EN travelling from the lower (δ ⁺) to the higher (δ ⁻) EN)
- The bond dipole is a vector, and vectors can be added (tip-to-tail) to determine the overall polarity of a molecule

POLAR COVALENT BOND EXAMPLES

DETERMINING THE POLARITY OF A MOLECULE

A molecule may have polar bonds, but it may not be polar

Example:

CO₂ is a <u>non</u>polar molecule, but each C=O bond is polar

$$O = C = O$$
3.5 2.5 3.5

DETERMINING THE POLARITY OF A MOLECULE

- Existence of a polar bond in a molecules does not necessarily mean the molecule is polar (also must consider symmetry)
- Nonpolar molecule: either has nonpolar bonds or polar bonds whose dipoles cancel to zero
- Polar molecule: has polar bonds with dipoles that do not cancel to zero

Example: CO₂

- 1. Draw a Lewis structure
- Use the # of electron pairs & VSEPR to determine the shape around each central atom Linear
- Use EN differences to determine the polarity of each bond
- 4. Add the bond dipole vectors to determine if the final result is zero (nonpolar molecule) or non-zero (polar molecule)

 $\Delta EN = 1.0$

Nonpolar

Example: H₂O

- 1. Draw a Lewis structure
- Use the # of electron pairs & VSEPR to determine the shape around each central atom Angular/bent
- Use EN differences to determine the polarity of each bond
- 4. Add the bond dipole vectors to determine if the final result is zero (nonpolar molecule) or non-zero (polar molecule)

Example: H₂O

Example: CO₂ vs. H₂O

- Can be difficult to add 3-D vectors so can use symmetry of the molecule instead to determine its polarity
- In all symmetrical molecules, the sum of the bond dipoles is zero & the molecule is nonpolar

Summary

Example of nonsymmetrical molecule

Using arrows to represent the polar bonds in methylene chloride

This molecule is pulled in two directions, which add together to produce a pull in the direction shown by the red arrow. Methylene chloride is polar

Methylene chloride

Example of symmetrical molecule

Example: NH₃

1) Draw the Lewis structure

2) Based on the Lewis structure, draw the VSEPR diagram

Example: NH₃

3) Add the electronegativity of the atoms and assign δ^+ and δ^- to the bonds

4) Draw in the bond dipoles

.: NH₃ is polar because it has polar bonds that do no cancel to zero.

Example: NH₃ vs. NF₃

Homework

Page 221 # 1 − 7

• Page 229 # 1 − 8