ECE322L -Homework 9 (100 points) Assigned on Thursday, 04/09/2020-11 am Due on Thursday, 04/23/2020-11 am

Consider the circuit below. The transistor parameters are: β =120, $V_{BE(on)}$ =0.7 V, V_A = ∞ . The circuit parameters are V_{CC} = V_{EE} =3.3 V, R_S =500 Ω , R_L = 6 k Ω , R_B =100 k Ω , R_E =12 k Ω , R_C =12 k Ω .

- (a) Calculate the average power dissipated in the transistor and R_C , for v_s =0.
- (b) Determine the maximum undistorted signal power that can be delivered to R_L , and the resulting average power dissipated in the transistor and R_C .

(a)
$$I_{BQ} = \frac{V_{EE} - V_{BE(on)}}{R_B - (1 + \beta)R_E} = \frac{3.3V - 0.7V}{100k\Omega + (121)12k\Omega} = 1.6753\mu A$$

$$I_{CQ} = \beta I_{BQ} = 120 \times 1.6753 \mu A = 201.03 \mu A$$

 $V_{CC} - I_{CQ} R_C + I_{BQ} R_B - V_{BCQ} = 0 \rightarrow$
 $V_{BCQ} = 3.3V - (201.03 \mu A) (12k\Omega) + (1.6753 \mu A) (100k\Omega) = 1.0552V$

Average Power dissipated in the transistor

$$\overline{P_Q} = I_{CQ}V_{BCQ} = (201.03\mu A)(1.0552V) = 212.12\mu W$$

Average Power dissipated in R_C

$$\overline{P_{R_c}} = I_{CQ}^2 R_C = (201.03 \mu A)^2 (12k\Omega) = 484.96 \mu W$$

(b)
$$\overline{P_{R_L}} = \frac{V_{out}^2}{R_L} = \frac{\left(I_C \left(R_C \parallel R_L\right)\right)^2}{R_L} = 53.885 \mu W$$

$$\overline{P_Q} = I_{CQ} V_{BCQ} - \frac{1}{2} I_C^2 \left(R_C \parallel R_L\right) = 131.29 \mu W$$

$$\overline{P_{R_c}} = I_{CQ}^2 R_C + \frac{1}{2} I_C^2 R_C = 606.2 \mu W$$