ANALYSIS I EXTENSION LECTURE 7. TOPOLOGY(POINT-SET TOPOLOGY)

ASILATA BAPAT

Introduction

So far the class has discussed metric spaces, such as \mathbb{R} and \mathbb{R}^n . Recall some basic definitions [Say X a metric space]

• The open ball of radius ε around $p \in X$, denoted $B(p, \varepsilon)$, is

$$B(p,\varepsilon) = \{ x \in X \mid d(x,p) < \varepsilon \}$$

- A subset $Y \subseteq X$ is open if $\forall y \in Y$, there is some $\varepsilon \in \mathbb{R}$ such that $B(y, \varepsilon) \subseteq X$.
- A subset $Z \subseteq X$ is <u>closed</u> if $X \setminus Z$ is open.
- A <u>neighbourhood</u> of $x \in X$ is an open set u containing X.

Notice the following facts (Of course there are many other observations).

- An arbitrary union of open subset of X is open. (Also a finite \cap).
- Consequently, an arbitrary intersection of closed sets of X is closed.

A <u>topological space</u> is supposed to generalise all above notions.

Definition. A <u>Topological Space</u> consists of a pair (X, O), where X is a set and O is a subset of the power set of X, together with the following conditions:

- (1) $\varnothing \in O$ and $X \in O$.
- (2) An arbitrary union of elements of O is also an element of O.
- (3) A finite intersection of elements of O is also an element of O

Given (X, O), we say that $Y \subseteq X$ is <u>open</u> iff $Y \in O$. We say that $Z \subseteq X$ is <u>closed</u> iff $(X \setminus Y) \in O$.

Remark. X need not have metric...

Example.

- (1) Let $X=\{\,1,2,3\,\};$ Then $O=\{\,\varnothing,\{\,1,2,3\,\}\,\}$ [or X is any set, $O=\{\,\varnothing,X\,\}]$
- (2) Let X be any set and $O = \mathbb{P}(X)$.
- $(3)\ \ X = \{\ 1,2,3\ \};\ O = \{\ \varnothing\ \}\ , \{\ 1\ \}\ , \{\ 1,2\ \}\ , \{\ 1,3\ \}\ , \{\ 1,2,3\ \}$
- (4) Let X be any metric space; Let O be the set of open subsets of X.

BASIS FOR TOPOLOGICAL SPACE

Definition. Let (X, O) be a topological space. A subset $B \subseteq O$ is called a <u>basis</u> for this topology if:

- (1) Every $v \in O$ is a union of elements from B. Consequently,
- (2) For every $u \in O$, there is some $v \in B$ s. t. $v \subseteq u$

Example. For $X = \mathbb{R}$ as before, we can take $B = \{ v \mid v \text{ is open interval in } \mathbb{R} \}$.

In fact we can define the topological space by specifying a basis B, the set O then consists of all possible unions of elements of B.

Example (Lower-Limit Topology). Once again take $X = \mathbb{R}$, but we take a different O: Set $B = \{ [a,b) \mid a,b \in \mathbb{R} \}$, so that O consists of unions of these half-open intervals. This is called the lower-limit topology on \mathbb{R} .

Proposition. Any interval (a, b) is open in the lower limit topology. Therefore, any set open in the usual metric topology is open in the Lower Limit topology on \mathbb{R} .

Proof. Consider the intervals $\left[a+\frac{1}{n},b\right)$ for $n\geqslant 1$. These are open in $(\mathbb{R},O_{\mathrm{LL}})$. Their union is all points of $(a,b)\implies (a,b)$ is open in R_{LL} .

 $O_{\text{metric}} \subseteq O_{\text{LL}}$ because $B_{\text{metic}} \subseteq B_{\text{LL}}$. We say that the lower-limit topology is <u>finer</u> than the metric topology - it has more sets.

Remark. Is $O_{\text{metric}} = O_{\text{LL}}$? Specifically, IS [a, b) open in $\mathbb{R}_{\text{metric}}$? To answer this, we will need some more definitions and lemmas

Definition. Given (X, O), we say that $Y \subseteq X$ is <u>closed</u> [in this topology] if X - Y is open; i. e. $X - Y \in O$

We have the following analogies of the axioms in terms of closed sets:

Axiom. If Φ is the set of all closed sets, then

- (1) $\varnothing \in \Phi$ and $X \in \Phi$.
- (2) Arbitrary intersections of closed sets are closed.
- (3) Finite unions of closed sets are closed.

Definition (Interior, Boundary, and Limit point). Let $A \subseteq X$, and suppose that $x \in X$. Then there is the following trichotomy:

- (1) $\exists u \in O \text{ s. t. } x \in u \text{ and } u \subseteq A, \text{ or }$
- (2) $\exists u \in O \text{ s. t. } x \in u \text{ and } u \subseteq X A, \text{ or }$
- (3) $\forall u \in O \text{ s. t. } x \in u, \text{ we have } u \cap A \neq \emptyset \text{ and } u \cap (X A) \neq \emptyset.$

- If (1) holds, we say x is in the <u>interior</u> of A.
- If (2) holds, we say x is in the <u>interior</u> of X A.
- If (3) holds, we say x is in the <u>boundary</u> of X and X A.

The set of all points where either (1) and (3) holds, i. e. $interior(A) \cup boundary(A)$, is called the set of limit points of A.

Example. In $\mathbb{R}_{\text{metric}}$, let A = [a, b), where a < b, then

- (1) int(A) = (a, b)
- (2) boundary(A) = { a, b }
- (3) $\operatorname{int}(X A) = (-\infty, a) \cup (b, \infty)$

Definition (Closure). The set of limit points of $A \subseteq X$ is called the closure of A, denoted by \overline{A} .

Proposition. Let $A \subset X$, then

- (a) int(A) is open.
- (b) \overline{A} is closed.
- (c) A is open iff A = int(A).
- (d) A is closed iff $A = \overline{A}$.

Remark. $O_{LL} \not\subseteq O_{metric}$ since [a,b) is not the union of open intervals. What are some closed sets of R_{LL} ? Does there exist a metric on \mathbb{R} whose associated topology is (\mathbb{R}, O_{LL}) ?

Example (Finite-Complement Topology). Let $X = \mathbb{R}$, and let

$$O = \{ \, Y \subseteq X \mid X - Y \text{ is finite} \, \}$$

Such topological space is called Complement-Finite Topology.

Subspace Topology

If (X, O) is a topological space and $Y \subseteq X$ is any set, we can define a topology on Y as follows:

$$O_Y = \{ U \subset Y \mid \exists V \in O \text{ where } U = V \cap Y \}$$

In this case, we say Y is a <u>subspace</u> of X.

Lemma. Given $Y \subset X$ a subspace, and any $A \subseteq Y$, the closure of A in Y is $\overline{A} \cap Y$.

Proof. Let y be a limit point of A in Y, then there exists an open set U_y of y s. t. $y \in Y$ and $U_y \cap A \neq \emptyset$. But $A \subseteq Y$, and $U_y = V \cap Y$ for some open V of X. So $U_y \cap A = (V \cap Y) \cap A = V \cap A$. But y is in \overline{A} , so $\forall V \in O$ s. t. $y \in V$, we have $V \cap A \neq \emptyset$.

Continuity

Definition (Continuity). Let X and Y be topological space. A function $f: X \mapsto Y$ is to be <u>continuous</u> if $\forall v$ open in Y, we have $f^{-1}(Y)$ is open in X.

Equivalently, $\forall Z \subset Y$ closed, $f^{-1}(Z)$ is closed in X. Equivalently, given B_Y , for all $v \subseteq Y$ s. t. $v \in B_Y$, $f^{-1}(v)$ is open in X.

Lemma. If $f:X\mapsto Y$ and $g:Y\mapsto Z$ are continuous, then $(gf):X\mapsto Z$ is also continuous.

Lemma. If $f: X \mapsto Y$ is continuous and $A \subseteq X$ is a subspace, then $f|_A: A \mapsto Y$ is continuous.

Definition (Homeomorphism). A continuous map $f: X \mapsto Y$ is a <u>homeomorphism</u> if it is one-to-one and onto, and also $f^{-1}: Y \mapsto X$ is continuous.

PRODUCT TOPOLOGY

Let X and Y be topological spaces, with open sets O_X and O_Y respectively. We can define a topology on their Cartesian product, called the <u>product topology</u>, as follows:

Definition. A <u>basis</u> for the product topology on $X \times Y$ is $B_{X \times Y} := O_X \times O_Y$. So if $U \in O_X$ and $V \in O_Y$, then $U \times V$ is open in $X \times Y$.

Remark. THE CONVERSE NEED NOT HOLD.

Example. Let $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, and define

$$\Delta = \{ (x, x) \mid x \in \mathbb{R} \}$$

 Δ is closed, so its complement $\mathbb{R}^2 - \Delta$ is open in \mathbb{R}^2 . However, the complement cannot be written as $U \times V$ for U, V open in \mathbb{R} .

Example. Define a "cylinder" space inside \mathbb{R}^3 . In \mathbb{R}^2 , we can have a "annulus". These two spaces are homeomorphic, and they are homeomorphic to $(S' \times [0, 1])$.