

Quelques points d'entrée
Usages et applications
Propriétés d'un schéma de tatouage
Evaluation d'un schéma de tatouage
Quelques attaques possibles

# Tatouage numérique sans infirmations (1 er génération) :

Grandes classes du tatouage
Schéma d'insertion et détection
Exemples de schémas sans information
Quelques mots sur le tatouage avec
information

#### **CONTACT:**

Email: kouider@lirmm.fr http://www2.lirmm.fr/~kouider

### Dissimulation de données

Tatouage de documents numériques (Cours 1)



Quelques points d'entrée
Usages et applications
Propriétés d'un schéma de tatouage
Evaluation d'un schéma de tatouage
Quelques attaques possibles

Tatouage numérique sans infirmations (1 er génération) :

Grandes classes du tatouage
Schéma d'insertion et détection
Exemples de schémas sans information
Quelques mots sur le tatouage avec
information

#### **CONTACT:**

Email: kouider@lirmm.fr http://www2.lirmm.fr/~kouider

## **Tatouage de documents numériques**

I. Introduction au tatouage numérique

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Techniques de protection des données secrètes



II - Tatouage sans information adjacente

I - Introduction au tatouage numérique

**Applications** 

Evaluation d'un schéma

**Quelques attaques** 

### Techniques de protection des données secrètes

Points d'entrées



Propriétés d'un schéma



### Tatouage de documents numériques

I - Introduction au tatouage numérique

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Définition du tatouage (Watermarking)

### Le tatouage numérique

Le tatouage est l'art d'altérer un média (un texte, une image, un son, une vidéo...) de sorte qu'il contienne un message le plus souvent **en rapport avec le média** et le plus souvent de manière **imperceptible** et **robuste**.







**Tatouage invisible** 



**Tatouage de documents numériques** II - Tatouage sans information adjacente

I - Introduction au tatouage numérique

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Tatouage vs Stéganographie vs Cryptographie

### Le tatouage numérique

Le tatouage est l'art d'altérer un média (un texte, une image, un son, une vidéo...) de sorte qu'il contienne un message le plus souvent en rapport avec le média et le plus souvent de manière imperceptible et robuste.

### La Stéganographie

La stéganographie est l'art de dissimuler au sein d'un support anodin une information qui bien souvent est sans rapport avec le support hôte. Cette dissimulation se fait de sorte que la présence même du message soit insoupçonnée. Autrement dit, la dissimulation doit être indétectable visuellement et statistiquement.

### La Cryptographie

La cryptographie est l'art de rendre indéchiffrable un message et ceci au sus de toute personne tierce.



Tatouage de documents numériques
II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Le tatouage dans l'Histoire

### Premières approches

Contrairement à la stéganographie, les premières approches de tatouage sont plus récentes et peu nombreuses jusqu'aux années 1990 :

- 1282 papier légèrement plus fin à certain endroits pour l'identification.
- Présence sur les billets de banque actuels de filigrane.
- 1954 Premier exemple du monde digital avec insertion d'un message dans une bande sonore à la fréquence 1kHz.

### Un exemple parmi d'autre

Actuellement, les images du site web du Musée Hermitage de St. Petersburg sont tatouées pour identifier l'appartenance des images au musée. Un message sur chaque page web indique que ce tatouage est réalisé sur toutes les images. Cette pratique peut donc dissuader la piraterie.





II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

Le tatouage numérique : une science jeune

| Year         | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
|--------------|------|------|------|------|------|------|------|
| Publications | 2    | 2    | 4    | 13   | 29   | 64   | 103  |

Table: Number of publications on digital watermarking during the years 1992-1998 according to [PETITCOLAS1999IEEE]

[PETITCOLAS1999IEEE] Fabien A. P. Petitcolas, Ross J. Anderson and Markus G. Kuhn: Information Hiding - A Survey. Proceedings of the IEEE, special issue on protection of multimedia content, 87(7):1062-1078, July 1999.



Tatouage de documents numériques

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

Le tatouage numérique : une science jeune

### Conférences

- Information Hiding Workshop crée en 1996.
- Conférence SPIE « Security and Watermarking of Multimedia Contents » crée en 1999.
- ...

### Le tatouage numérique dans le domaine industrielle

Avènement du tatouage numérique dans le domaine industrielle (Début des années 90) :

- The Copy Protection Technical Working Group a testé les systèmes de tatouage pour la protection des DVDs,
- The Secure Digital Music Initiative (SDMI) font du tatouage principalement pour la protection de la musique,
- L'ISO étudie l'utilisation du tatouage dans les standard MPEG et JPEG,
- La fonction de tatouage **Digimarc** dans Adobe's Photoshop,

- ...



Tatouage de documents numériques

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### La motivation première du tatouage numérique

| L | 1993 | : Navigateur | Web <b>Mo</b> s | saic et | début d | de l'ère | Internet, |
|---|------|--------------|-----------------|---------|---------|----------|-----------|
|---|------|--------------|-----------------|---------|---------|----------|-----------|

- Facilité de stockage, de copie et de redistribution (disque dur, CD, DVD,...),
- Réticence des grands et petits auteurs, possesseurs et diffuseurs de données numériques envers Internet, CD, DVD, et autres ...

Il faut des solutions pour protéger les ayant droits de ces documents

Note: Contrairement au tatouage le cryptage protège tant que le support est crypté mais plus une fois qu'il est en clair (décrypté).



II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Intérêt du tatouage numérique

| Le  | tatouage   | est   | invisible | (cas | du | tatouage | invisible | traité | dans | ce | cours); |
|-----|------------|-------|-----------|------|----|----------|-----------|--------|------|----|---------|
| ľes | thétique e | st co | nservée,  |      |    |          |           |        |      |    |         |

- Le tatouage est inséparable (cas du tatouage robuste) de son support (à la différence d'un header ou d'un fichier descriptif annexe); Un changement de format ne fait pas disparaître le message caché,
- Le tatouage subit les mêmes transformations que le support (il est possible d'apprendre sur ces transformations en observant la marque).



**Tatouage de documents numériques** 

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

Quelques attaques

### Les médias numériques

- ☐ Textes,
- Programme Informatique,
- Images numériques.
- Programme Informatique,
- → Vidéos,
- ☐ Modèle 3D,
- **]** ...

Différents médias numériques qui peuvent possiblement être tatoués



Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Quelques exemples de tatouage

### ☐ Tatouage d'un programme informatique :

Dans un programme codé en assembleur, on peut remplacer certaines séquences d'instructions par d'autres, qui leur sont équivalentes. On peut ainsi modifier la fréquence d'apparition des instructions. Le programme est ensuite compilé. La marque cachée dans le programme est la distribution de fréquences des instructions.

### ☐ Tatouage d'un modèle 3D :

Pour un modèle 3D on peut insérer a marque du tatouage soit dans la texture du modèle ou bien dans le maillage 3D.







Insertion de marque dans une texture 3D

Maillage 3D tatoué



II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Les applications possibles du tatouage numérique

### ☐ Contrôle/Surveillance/Analyse de diffusion :

La marque permet d'identifier le support diffusé,

- Identification immédiate (à la différence d'une analyse par calcul puis par parcours d'une BD),
- + Pas de problème de droit à l'insertion (dans une zone brevetée) ni de perte lorsque l'on change de format (`a la différence d'une insertion dans des headers),
- Le tatouage dégrade le support et nécessite la mise en place d'un protocole d'insertion et d'extraction







Tatouage de documents numériques

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Les applications possibles du tatouage numérique

- ☐ Contrôle/Surveillance/Analyse de diffusion (broadcast monitoring),
- ☐ Identification du propriétaire (copyright identification) :

La marque permet d'identifier l'ayant droit du support,





FIGURE 2.1

The often-used Lena image in image processing research is a cropped version of a 1972 *Playboy* centerfold. This portion of the original, lost to cropping, identifies the copyright owner.



Tatouage de documents numériques

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Les applications possibles du tatouage numérique

- Contrôle/Surveillance/Analyse de diffusion (broadcast monitoring),
- ☐ Identification du propriétaire (copyright identification) :

La marque permet d'identifier l'ayant droit du support,

- Bien moins « voyant» que le tatouage visible d'un copyright,
- Bien moins sûr qu'un tatouage visible de copyright (présent dans un coin ou sur la jaquette pour un CD),
- La présence d'une marque n'est pas visuellement identique au fameux symbole © suivi de la date et du nom de l'ayant droit, et donc n'a pas actuellement de validité devant une cour de justice,
- Les systèmes de tatouage ne sont pas exempts d'extraction erronée,
- Avec un tel système, un utilisateur honnête peut avoir des difficulté à contacter l'ayant droit pour utiliser son œuvre.

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

Les applications possibles du tatouage numérique

- ☐ Contrôle/Surveillance/Analyse de diffusion (broadcast monitoring),
- Identification du propriétaire (copyright identification),
- Traçage de traîtres (active fingerprinting) :

La marque permet d'identifier l'acheteur du support,

Le vendeur vend à l'acheteur une image qui contient une information identifiant l'acheteur





Tatouage de documents numériques

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

Les applications possibles du tatouage numérique

- Contrôle/Surveillance/Analyse de diffusion (broadcast monitoring),
- ☐ Identification du propriétaire (copyright identification),
- ☐ Traçage de traîtres (active fingerprinting) :

La marque permet d'identifier l'acheteur du support,

- + Bien moins « voyant» que le tatouage visible,
- + Bien plus sûr qu'un tatouage visible,
- Une structure de traçage qui est complexe à mettre en œuvre.

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Les applications possibles du tatouage numérique

- Contrôle/Surveillance/Analyse de diffusion (broadcast monitoring),
- Identification du propriétaire (copyright identification),
- Traçage de traîtres (active fingerprinting),
- Contrôle d'intégrité (authentication):

La présence de la marque permet de savoir si le support est un support non altère,



Image originale (protégée)



Image modifiée



Détection des régions modifiées



Control of Compatible of Amelian de difference / Inno adopt manufactures

Tatouage de documents numériques

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

Les applications possibles du tatouage numérique

| _ | Controle/Surveillance/Analyse de diffusion (broadcast monitoring),                 |
|---|------------------------------------------------------------------------------------|
|   | Identification du propriétaire (copyright identification),                         |
|   | Traçage de traîtres (active fingerprinting),                                       |
|   | Contrôle d'intégrité (authentication) :                                            |
|   | La présence de la marque permet de savoir si le support est un support non altère, |

En cryptographie on utilise la notion de signature (= utilisation d'une fonction de hashing) pour vérifier `a la réception l'authenticité du message (comparaison hash reçu et hash calculé),

du tatouage : le message est directement dans le document (pas de risque de perte de la signature),

**Solution tatouage fragile**: utilisation de la marque comme authentifiant.

**Tatouage semi-fragile** : résistance de la marque à certains traitements comme la compression avec perte.

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Les applications possibles du tatouage numérique

- Contrôle/Surveillance/Analyse de diffusion (broadcast monitoring),
- ☐ Identification du propriétaire (copyright identification),
- ☐ Traçage de traîtres (active fingerprinting),
- Contrôle d'intégrité (authentication),
- Contrôle de copie (copy control) :

La marque indique si l'utilisateur a le droit de copier ou non le document.





Tatouage de documents numériques

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Les applications possibles du tatouage numérique

| Contrôle/Surveillance/Analyse de diffusion (broadcast monitoring), |
|--------------------------------------------------------------------|
| Identification du propriétaire (copyright identification),         |
| Traçage de traîtres (active fingerprinting),                       |
| Contrôle d'intégrité (authentication),                             |
| Contrôle de copie (copy control):                                  |

La marque indique si l'utilisateur a le droit de copier ou non le document,

La solution DVD : faire cohabiter des lecteurs et enregistreurs **compliant-tatouage** et des lecteurs et enregistreurs **non-compliant**.

Lorsqu'un lecteur **compliant** voit la marque **never-copy** il vérifie l'authenticité du signal vidéo (par exemple par vérification d'encryptage ou bien par vérification de signature) et si le signal n'est pas authentifié la lecture est stoppée.

L'acheteur a le choix : - d'acheter un lecteur DVD **compliant**, acheter des DVD **legaux** et ne pas lire de DVD piratés ou - acheter un lecteur DVD "**non-compliant**", lire des DVDs piratés et ne pas lire des DVDs légaux.



Tatouage de documents numériques

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

Quelques attaques

### Les applications possibles du tatouage numérique

- Contrôle/Surveillance/Analyse de diffusion (broadcast monitoring),
- Identification du propriétaire (copyright identification),
- ☐ Traçage de traîtres (active fingerprinting),
- Contrôle d'intégrité (authentication),
- Contrôle de copie (copy control),
- ☐ Contrôle de périphérique (device control) :

Le périphérique réagit en fonction de la marque (le contrôle de périphérique est une catégorie plus

large du contrôle de copies).



Interaction télévision - jouet robot



**Tatouage de documents numériques** 

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Les applications possibles du tatouage numérique

| Contrôle/Surveillance/Analyse de diffusion (broadcast monitoring),                       |
|------------------------------------------------------------------------------------------|
| Identification du propriétaire (copyright identification),                               |
| Traçage de traîtres (active fingerprinting),                                             |
| Contrôle d'intégrité (authentication),                                                   |
| Contrôle de copie (copy control),                                                        |
| Contrôle de périphérique (device control),                                               |
| Enrichissement (enchancement):                                                           |
| La marque contient une information additionnelle comme des codes correcteurs du support, |
| des paramètres d'animation d'un clone                                                    |



**Tatouage de documents numériques** 

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Les applications possibles : résumé

| Contrôle/Surveillance/Analyse de diffusion (broadcast monitoring), |
|--------------------------------------------------------------------|
| Identification du propriétaire (copyright identification),         |
| Traçage de traîtres (active fingerprinting),                       |
| Contrôle d'intégrité (authentication),                             |
| Contrôle de copie (copy control),                                  |
| Contrôle de périphérique (device control) ,                        |
| Enrichissement (enchancement).                                     |



**Tatouage de documents numériques** 

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

Propriétés et caractéristiques d'un tatouage

☐ Imperceptibilité (pas le même niveau pour le streaming web et HD),



**Tatouage de documents numériques** 

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

Quelques attaques

### Propriétés et caractéristiques d'un tatouage

- ☐ Imperceptibilité (pas le même niveau pour le streaming web et HD),
- ☐ Robustesse (dépend de l'application),



**Tatouage de documents numériques** 

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Propriétés et caractéristiques d'un tatouage

| Imperceptibilité (pas le même niveau pour le streaming web et HD), |
|--------------------------------------------------------------------|
| Robustesse (dépend de l'application),                              |
| Capacité (importante pour l'enrichissement de contenu),            |



**Tatouage de documents numériques** 

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Propriétés et caractéristiques d'un tatouage

| Ц | Imperceptibilité (pas le meme niveau pour le streaming web et HD),                      |
|---|-----------------------------------------------------------------------------------------|
|   | Robustesse (dépend de l'application),                                                   |
|   | Capacité (importante pour l'enrichissement de contenu),                                 |
|   | Sécurité : le principe de Kerckhoff (la sécurité repose uniquement sur la clé secrète), |



**Tatouage de documents numériques** 

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Propriétés et caractéristiques d'un tatouage

| nperceptibilité (pas le même niveau pour le streaming web et HD),                      |
|----------------------------------------------------------------------------------------|
| obustesse (dépend de l'application),                                                   |
| apacité (importante pour l'enrichissement de contenu),                                 |
| écurité : le principe de Kerckhoff (la sécurité repose uniquement sur la clé secrète), |
| omplexité (importante pour les applications en temps réel).                            |

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### **Contraintes et compromis**





Schémas FAUX énumérant quelques propriétés et tentant de donner les compromis entre ces quelques propriétés

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### **Contraintes et compromis**





Schémas FAUX énumérant quelques propriétés et tentant de donner les compromis entre ces quelques propriétés

En résumé, lors la conception d'un schéma de tatouage, il faut prendre en compte l'application visée, les éventuelles contraintes de sécurité et la nature du document hôte



II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

Quelques attaques

### Evaluation des dégradation dues au tatouage







- $c_o$  le signal à tatouer de moyenne  $\mu_{c_o}$  et d'écart-type  $\sigma_{c_o}$ ,
- c<sub>w</sub> le signal tatoué,
- w la dégradation dût au tatouage ( $w=c_w-c_o$ ) de moyenne  $\mu_w$  et d'écart-type  $\sigma_w$ ,
- Le PSNR après tatouage, pour une image codée sur 8 bits, est  $PSNR = -10log_{10}\frac{|w|^2}{255^2}$  (Les valeurs typiques de PSNR pour des images de bonne qualité varient entre 30 et 40 dB),
- Le Watermark to Content Ratio est  $WCR = 10 log_{10} \frac{\sigma_w}{\sigma_{c_o}}$
- Il existe également d'autres critères d'évaluation perceptuelle (Watson



Tatouage de documents numériques

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Evaluation de la bonne transmission de données en tatouage







- Le taux d'erreur binaire est  $BER = \frac{nb \ bits \ erronées}{nb \ bits \ total \ transmis}$
- Le taux d'erreur message est  $MER = \frac{nb \text{ messages erronées}}{nb \text{ messages total transmis}}$

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Attaques possibles sur un tatouage



Image tatouée (insertion d'un message)



... le message peut-il être extrait ?



**Tatouage de documents numériques** 

II - Tatouage sans information adjacente

Points d'entrées

**Applications** 

Propriétés d'un schéma

Evaluation d'un schéma

**Quelques attaques** 

### Attaques possibles sur un tatouage

| Attaques sur la robustesse (peuvent être involontaires)                                                                                                                                                                                                | Attaques sur la robustesse (attaques malicieuses)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Attaques d'effacement : bruit, compression avec perte, rehaussement de contraste, lissage, les transformations valumétriques, filtrage, débruitage, etc  - Attaques désynchronisantes : rotation, translation, changement, d'échelle, decoupage, etc | Estimation de la clé secrète et des paramètres secrets :  Cadres d'attaques :  Le pirate observe uniquement des contenus tatoués,  Le pirate observe des paires de contenus originaux et tatoués,  Le pirate observe des paires de marques et de contenus tatouées associés,  Le pirate observe uniquement des contenus tatoués, mais il sait que le marque caché est toujours la même.  Quelques attaques :  Attaque cryptographique (attaque sur la clé),  Attaque de protocole (insertion d'une ou plusieurs autres marques),  Attaque de sensibilité (par apprentissage). |



# Introduction au tatouage numérique :

Quelques points d'entrée
Usages et applications
Propriétés d'un schéma de tatouage
Evaluation d'un schéma de tatouage
Quelques attaques possibles

## Tatouage numérique sans infirmations (1 er génération) :

Grandes classes du tatouage
Schéma d'insertion et détection
Exemples de schémas sans information
Quelques mots sur le tatouage avec
information

#### **CONTACT:**

Email: kouider@lirmm.fr http://www2.lirmm.fr/~kouider

## **Tatouage de documents numériques**

II. Tatouage numérique sans infirmations (1 er génération)

Grandes classes en tatouage

Insertion et détection

**Exemples de schémas** 

**Tatouage avec information** 

## Les grandes classes du tatouage



Insertion et détection

II - Tatouage sans information adjacente

**Exemples de schémas** 

**Tatouage avec information** 

Les grandes classes du tatouage

Grandes classes en tatouage





#### I - Introduction au tatouage numérique

**Tatouage de documents numériques** 

II - Tatouage sans information adjacente

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

## Le tatouage du première génération (1990 - 1998)

|             | spatial      | fréquentiel   | multirésolution |
|-------------|--------------|---------------|-----------------|
| additif     | Tirkal [93]  | Cox [95]      | Kun [97]        |
|             | Schmid [94]  | Piva [97]     | Xia [97]        |
|             | Bender [95]  | Delaigle [98] | Zhu [98]        |
|             | Pitas [96]   |               | Barni [99]      |
|             | Hartung [98] |               |                 |
| substitutif | Swanson [96] | Zhao [94]     | Kun [98]        |
|             | Chen [99]    |               |                 |
|             | Maes [98]    |               |                 |
|             | Bas [99]     |               |                 |



Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

#### Vocabulaire

- signal : par exemple une image. Le signal peut donc être représenté par un vecteur 1D;
- message : c'est le vecteur binaire qui sera tout d'abord transformé en une marque puis inséré;
- signal hôte, couverture, document : c'est le signal qui va embarquer (contenir) une marque (filigrane);
- signal marqué, signal tatoué : c'est le signal qui a été tatoué;
   il embarque une marque;
- espace d'insertion : c'est un ensemble de coefficients issu du signal hôte;
- émetteur, codeur : c'est l'algorithme de tatouage;
- détecteur, extracteur : c'est l'algorithme de détection et/ou d'extraction.

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

## Tatouage basé modèle de communication

Le tatouage est une forme de communication.

On souhaite transmettre un message d'un émetteur (tatouage) vers un récepteur (extraction) et ce message transite à travers un canal (**support hôte** : image, son, vidéo...).



Système de communication (message = u, canal = image+attaque, message reçu =  $\hat{u}$ ) message reçu =  $\hat{u}$ )

I - Introduction au tatouage numérique

II - Tatouage sans information adjacente

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

## Schéma d'insertion aveugle

- 1 Le message m est transformé ("is mapped") en une marque (pattern)  $w_a$  de même dimension que la couverture  $c_0$ . Ce "mapping" peut être réalisé en utilisant une clef secrête.
- 2 La marque  $w_a$  est alors ajoutée à la couverture  $c_0$  pour produire le signal tatoué  $c_w$ .





Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

#### Schéma de détection informé

- ① On retire le signal couverture  $c_0$  du signal marqué attaqué  $c_{wn}$  et l'on récupère la marque (filigrane, pattern) bruitée  $w_n$ ,
- 2 La marque bruitée  $w_n$  est alors décodée grâce à la clef pour obtenir le message  $m_n$ .





Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

## Schéma de détection aveugle

- La couverture c<sub>0</sub> est inconnue et ne peut donc être retirée. La marque est donc corrompue par la couverture c<sub>0</sub> et par le signal de bruit n.
- 2 Le signal reçu  $c_{wn}$  peut donc être vu comme une version corrompue de la marque  $w_a$





## I - Introduction au tatouage numérique

**Tatouage de documents numériques** 

II - Tatouage sans information adjacente

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

## Tatouage par substitution du bit de poids faible (LSB)





#### I - Introduction au tatouage numérique

II - Tatouage sans information adjacente

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

Tatouage par substitution du bit de poids faible (LSB)

- choix d'emplacements (clé), puis on écrit un message intelligible dans les bits
- choix d'un motif (clé), puis on incruste ce motif (s'apparente au masque jetable)

mais : ces bits sont détruits dès la moindre manipulation (compression, filtrage, bruit).

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

Le patchwork de Bender 95, puis Pitas 96

Soient : A,B : deux ensembles de n pixels (clé = choix), de lumi-

nances  $\{a_1, ..., a_n\}, \{b_1, ..., b_n\}.$ 

Constat:

$$S = \frac{1}{n} \sum_{i=1}^{n} (a_i - b_i) \approx 0$$



Exemples de schémas

**Tatouage avec information** 

Grandes classes en tatouage

Insertion et détection

Le patchwork de Bender 95, puis Pitas 96

Insertion: on modifie les luminances:

$$a_i' = a_i + C_i$$

$$b_i' = b_i - C$$

On a donc à l'insertion et à la détection :

$$S' = \frac{1}{n} \sum_{i=1}^{n} (a'_i - b'_i) = S + 2C \approx 2C$$

L'introduction du biais dans la statistique permet sachant la clé de retrouver la valeur C insérée.

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

**Tatouage par étalement de spectre (Spread Spectrum)** 

La technique provient du monde des télécommunications. Un message m est composé d'un ensemble de symboles m[i] (m[i] vaut bien souvent 0 ou 1). Chaque symbole m[i] est transmis à travers un signal appelé **porteuse** et noté  $u_i$ . Une porteuse est un signal pseudo-aléatoire (obtenu par un GNPA) pouvant être composé de 0 et de 1 ou bien distribué suivant une loi Gaussienne normale  $\mathcal{N}(0,1)$ . On peut également contraindre les porteuses à être orthogonales ( $\forall i$ ,  $\forall j$ ,  $u_i.u_j=0$ ).

Insertion et détection



II - Tatouage sans information adjacente

Grandes classes en tatouage

Exemples de schémas

**Tatouage avec information** 

## Tatouage par étalement de spectre (Spread Spectrum)

#### Insertion:

- $w_i$ : un vecteur (porteuse) de la taille du signal hôte N,
- m : un message composé de  $N_c$  bits.
- s: une fonction (appelée modulation)  $0, 1 \to \mathbb{R}$ . Par exemple  $s(m[i]) = \gamma (-1)^{m[i]}$  avec  $\gamma$  un facteur réglant l'ampleur de la distortion.
- La marque est alors  $w = \sum_{i=1}^{N_c} w_i.s(m(i))$
- l'insertion est alors  $c_w = c_o + w$

#### Détection:

• Soit  $c_{wn}$  un signal tatoué attaqué. Le message extrait est  $\hat{m}[i] = sign(c_{wn}.u_i)$  avec :

$$sign(x) = \begin{cases} 0 & si \ x > 0 \\ 1 & si \ x \le 0 \end{cases}$$

Insertion et détection d'un unique bit 0 ou 1



I - Introduction au tatouage numérique

II - Tatouage sans information adjacente

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

**Tatouage par étalement de spectre (Spread Spectrum)** 

## Insertion aveugle de 1 bit



Fig.: Exemple sur cette image monochrome  $3\times 3$ 

 $= (178 \ 145 \ 46 \ 156 \ 179 \ 186 \ 109 \ 237 \ 210)^T$ 

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

**Tatouage par étalement de spectre (Spread Spectrum)** 

## Insertion aveugle de 1 bit

$$I_{w} = I + \alpha \cdot W$$

$$\begin{pmatrix} 178 \\ 145 \\ 46 \\ 156 \\ 179 \\ 186 \\ 109 \\ 237 \\ 210 \end{pmatrix} + \alpha \cdot \begin{pmatrix} -1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 1 \end{pmatrix}$$

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

## **Tatouage par étalement de spectre (Spread Spectrum)**

## Insertion aveugle de 1 bit







(b) Porteuse insérée



(c) Image tatouée

$$I = (178 \ 145 \ 46 \ 156 \ 179 \ 186 \ 109 \ 237 \ 210)^T$$

$$I_{w} = \begin{pmatrix} 175 & 142 & 43 & 153 & 179 & 186 & 112 & 234 & 213 \end{pmatrix}^{T}$$





Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

**Tatouage par étalement de spectre (Spread Spectrum)** 

## Insertion aveugle de 1 bit

- Le message *m* est un unique bit (0 ou 1).
- Soit  $w_m$  générée à partir d'un unique pattern (porteuse)  $w_r$  de la même taille que l'image  $c_o$ . Ce pattern  $w_r$  est généré pseudoaléatoirement via une clef secrête. On a :

$$w_m = \begin{cases} w_r & \text{si } m = 1 \\ -w_r & \text{si } m = 0 \end{cases}$$

- La marque est alors définie par  $w_a = \alpha w_m$ . Le scalaire  $\alpha$  permet de contrôler la **force d'insertion** de la marque.
- Finalement, le tatouage est réalisé comme ceci :  $c_w = c_o + w_a$ .



I - Introduction au tatouage numérique

II - Tatouage sans information adjacente

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

**Tatouage par étalement de spectre (Spread Spectrum)** 

#### Détection aveugle de 1 bit

## Détection aveugle :

Pour détecter la marque, il faut détecter  $\pm w_r$  en présence du bruit causé par le signal hôte  $c_o$  et le bruit n. La manière optimale pour détecter ce signal en présence de bruit additif Gaussien est de calculer la corrélation linéaire entre l'image reçue  $c_{wn}$  et le pattern  $w_r$ :

$$z_{lc}(c_{wn}, w_r) = \frac{1}{N} c_{wn}.w_r = \frac{1}{N} \sum_{i=1}^{N} c_{wn}[i].w_r[i]$$

Grandes classes en tatouage

Insertion et détection

**Exemples de schémas** 

**Tatouage avec information** 

**Tatouage par étalement de spectre (Spread Spectrum)** 

#### Détection aveugle de 1 bit

#### Sortie du détecteur :

$$m_n = \begin{cases} 1 & \text{si } z_{lc}(c_{wn}, w_r) > \tau_{lc} \\ \text{pas de marque} & \text{si } -\tau_{lc} \leq z_{lc}(c_{wn}, w_r) \leq \tau_{lc} \\ 0 & \text{si } z_{lc}(c_{wn}, w_r) < -\tau_{lc} \end{cases}$$

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

Code source extrait du livre de Cox, Miller et Bloom

#### Construction d'un patern (porteuse) pseudo-aléatoire

```
-----
  MakeRandomPattern -- make a random pattern by drawing pixel values
                     independently from a Normal distribution and then
                     normalizing to have zero mean and unit variance
  Arguments:
    seed -- each seed leads to a unique pattern
    w -- where to store generated pattern
    width -- width of w
    height -- height of w
  Return value:
    none
void WMTools::MakeRandomPattern(unsigned int seed, double *w, int width, int height)
 int i:
 srand(seed); //re-initialisaion de la semance
 for( i = 0; i < width * height; i = i + 1 )
   w[i] = RandNormal();
 NormalizePattern( w, width, height );
}
```

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

Code source extrait du livre de Cox, Miller et Bloom

#### Normalisation du patern (porteuse) pseudo-aléatoire

```
| NormalizePattern -- normalize a pattern to have zero mean and unit
                     standard-deviation
 | Arguments:
    w -- pattern to be normalized (changed in place)
void WMTools::NormalizePattern( double *w, int width, int height ) {
 double mean:
                                     /* mean of pattern */
                                      /* standard deviation of pattern */
 double std;
 int i:
 const double ESSENTIALLY_ZERO = 10e-10;
 /* subtract out mean */
 mean = 0:
 for( i = 0; i < width * height; i = i + 1 )
   mean = mean + w[i];
 mean = mean / (width * height);
 for( i = 0; i < width * height; i = i + 1 )
   w[i] = w[i] - mean;
 /* normalize standard deviation */
 std = 0;
 for( i = 0; i < width * height; i = i + 1 )
   std = std + w[i] * w[i];
 std = sqrt( std / (width * height) );
 if ( std > ESSENTIALLY_ZERO )
   for( i = 0; i < width * height; i = i + 1 )
     w[i] = w[i] / std;
```

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

Quelques mots sur la sécurité des clés (comment utiliser une clé?)

- La clef sert de "germe" (seed) à un Générateur de Nombres Pseudo-Aléatoire (GNPA) (pseudo random generator number : PRNG),
- ② Un appel au GNPA produit une séquence uniforme de nombres aléatoires associés à la clef,
- 3 Ces nombres peuvent alors être utilisés pour produire un secret. La distribution peut également être modifiée.

## Remarque:

- Les PRNGs cryptographiquement sûrs sont lents (BBS, ISAAC),
- Ne jamais utiliser srand/rand du C (ni ceux de Matlab),
- Il vaut mieux utiliser le PRNG MT19937 pour le tatouage (que l'on trouve dans les librairies C LIBIT et GSL).

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

#### Code source extrait du livre de Cox, Miller et Bloom

#### Insertion d'un message m de taille 1 bit

```
E_BLIND -- embed a watermark by simply adding a message pattern
 | Arguments:
    c -- image to be watermarked (changed in place)
    width -- width of img
    height -- height of img
    m -- one-bit message to embed -> m=1 or m=0
    alpha -- embedding strength
    wr -- reference pattern (width x height array of doubles)
  Return value:
    none
void WME_BLIND::E_BLIND( unsigned char *c, int width, int height,
                         int m, double alpha, double *wr ) {
 /* Allocate memory for the pattern */
 double *wm = new double [ width*height ]; /* pattern that encodes m */
 /* Encode the message in a pattern */
 WMTools::ModulateOneBit( m, wr, wm, width, height ); //Recopie wr dans wm fois + ou -1
 /* Scale and add pattern to image (with clipping and rounding) */
 WMTools::AddScaledPattern(c, width, height, alpha, wm);
 /* Delete the memory for the pattern */
 delete [] wm;
```



Insertion et détection

Exemples de schémas

**Tatouage avec information** 

Code source extrait du livre de Cox, Miller et Bloom

Grandes classes en tatouage

#### Création de ma marque W<sub>m</sub> par modulation du message m et d'un patern W,

```
ModulateOneBit -- encode a one-bit message by either copying or negating
                  a given reference pattern
 | Arguments:
  m -- message to be encoded
  wr -- reference pattern
  wm -- where to store resulting message pattern
   width -- width of wm
   height -- height of wm
 Return value:
    none
   -----*/
void WMTools::ModulateOneBit( int m, double *wr, double *wm, int width, int height )
                                 /* index into patterns */
 int i;
 if(m == 0)
   for( i = 0; i < width * height; i = i + 1 )
     wm[i] = -wr[i];
 else
   for( i = 0; i < width * height; i = i + 1 )
     wm[i] = wr[i];
}
```

Insertion et détection



Exemples de schémas

**Tatouage avec information** 

Code source extrait du livre de Cox, Miller et Bloom

**Grandes classes en tatouage** 

#### Ajout de la marque au signal hôte

```
-----
 | AddScaledPattern -- scale and add a pattern to an image with clipping
                    and rounding
 | This multiplies w by alpha to obtain the added pattern, and adds
 | it to c, clipping and rounding each pixel to an 8-bit integer.
 | Arguments:
    c -- image to which to add pattern (changed in place)
    width -- width of image
    height -- height of image
    alpha -- scaling factor
    w -- pattern to scale and add (width times height array of doubles)
  Return value:
    none
void WMTools::AddScaledPattern(unsigned char *c, int width, int height,
                             double alpha, double *w )
₹
                                   /* pixel index */
 int i;
 for( i = 0; i < width * height; i = i + 1)
   c[i] = ClipRound((double)c[i] + alpha * w[i]);
```

**Grandes classes en tatouage** 

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

#### Code source extrait du livre de Cox, Miller et Bloom

#### Détection de la marque par corrélation linéaire

```
| D_LC -- detect watermarks using linear correlation
 | Arguments:
 c -- image
  width -- width of img
 height -- height of img
 tlc -- detection threshold
    wr -- reference pattern (width by height array of doubles)
 | Return value:
    decoded message (0 or 1), or NO_WMK if no watermark is found
 *-----*/
int WMD_LC::D_LC( unsigned char *c, int width, int height, double tlc, double *wr ) {
 double lc;
                                   /* linear correlation */
                                   /* decoded message (or NO_WMK) */
 int m;
 /* Find the linear correlation between the image and the reference pattern */
 lc = WMTools::ImgPatInnerProduct( c, wr, width, height ) / (width * height);
 /* Decode the message */
 if( lc > tlc )
   m = 1;
 else if( lc < -tlc )
   m = 0;
 else
   m = NO_WMK;
 return m;
```

Insertion et détection



i - introduction au tatouage numerique

Exemples de schémas

**Tatouage avec information** 

Code source extrait du livre de Cox, Miller et Bloom

Grandes classes en tatouage

#### Rappel: Produit scalaire

```
ImgPatInnerProduct -- get the inner product of an image and a pattern
 | Arguments:
     c -- image
    w -- pattern
    width -- width of both patterns
    height -- height of both patterns
 | Return value:
    inner product of c and w
double WMTools::ImgPatInnerProduct( unsigned char *c, double *w,
                                    int width, int height )
  double product;
                                      /* inner product of c and w */
                                      /* index into patterns */
  int i;
  product = 0;
 for( i = 0; i < width * height; i = i + 1 )
   product = product + c[i] * w[i];
 return product;
```

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

## **Quelques commentaires**

- Le détecteur peut se tromper pour certaines images tatouées;
   On verra ultérieurement l'évaluation de l'efficacité (faux positif) de la robustesse (faux négatif);
- Pour le moment, nous n'avons pas pris en compte les attaques;
- Pour le moment, nous n'avons pas pris en compte l'invisibilité de l'insertion?
- La technique donnée ici est une technique de première génération (1990-1998) où il n'y a pas de prise en compte de l'information adjacente lors de l'insertion. Les capacités d'insertion (première génération) sont donc très faibles.

Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

Quelques mots sur le tatouage avec information adjacente (2ème génération)

1998 : on effectue en fait une transmission . . .





Grandes classes en tatouage

Insertion et détection

Exemples de schémas

**Tatouage avec information** 

Quelques mots sur le tatouage avec information adjacente (2ème génération)

Puisqu'à l'insertion le signal hôte est connu, il est possible d'exploiter cette connaissance pour améliorer l'éfficacité de l'algorithme. Le codeur examine donc  $c_o$  avant de générer la marque  $w_a$ . Plusieurs études des communications ont montré que pour certains types de canaux, l'utilisation de l'information de bord permettait de supprimer son interférence.

