Рассматривается уравнение:

$$ax^4 + 4bx^3 + 6cx^2 + 4dx + e = 0$$
 (1)

Вводятся обозначения:

$$P = ae - 4bd + 3c^2$$
; $Q = (b^2 - ac)e + ad^2 + (c^2 - 2bd)c$; $D = 27Q^2 - P^3$; $R = b^2 - ac$; $S = 12R^2 - a^2P$; $T = 3aQ - 2PR$; $U = 2d^2 - 3ce$.

Примечание. Уравнение $4z^3$ - Pz + Q = 0 соответствует кубической резольвенте.

Имеет место

Теорема. Уравнение (1) имеет действительные корни при $a \neq 0$ соответственно таблице

Случай	Число корней	Кратности корней	Условия на коэффициенты
1	4	1,1,1,1	D<0, R>0, S>0
2	3	1,1,2	D=0, T<0
3	2	1,1	D>0
4	2	2,2	D=T=0, PR>0
5	2	1,3	D=P=0, R \neq 0
6	1	4	D=P=R=0
7	1	2	D=0, T>0
8	0		D=T=0, PR<0
9	0		D<0, R ≤0
10	0		D<0, S<0

а при a = 0

Случай	Число корней	Кратности корней	Условия на коэффициенты
1	3	1,1,1	D<0, R \neq 0
2	2	1,1	R=0, P>0, U>0
3	2	1,2	D=0, PR \neq 0
4	1	3	D=P=0, R \neq 0
5	1	2	$R=U=0, P \neq 0$
6	1	1	$D>0$, $R\neq 0$
7	1	1	$R=P=0, U \neq 0$
8	0		$R=0, P \neq 0, U < 0$
9	0		R=P=U=0, $e \neq 0$
10	∞		R=P=U=e=0