Prof. Dr. Sándor Fekete Dr. Phillip Keldenich

Präsenzblatt 5

Dieses Blatt dient der persönlichen Vorbereitung. Es wird nicht abgegeben und geht nicht in die Bewertung ein. Die Besprechung der Aufgaben erfolgt in den kleinen Übungen vom 04.–07.07.2023.

Präsenzaufgabe:

Wir betrachten das Problem Set Cover.

Gegeben: Eine endliche Menge U (das Universum), eine Menge \mathcal{F} von Teilmengen von U und eine Zahl $k \in \mathbb{N}$.

Gesucht: Ein Set Cover von (U, \mathcal{F}) der Größe höchstens k. Ein Set Cover ist eine Teilmenge $F \subseteq \mathcal{F}$, die U überdeckt, d.h. für jedes Element $u \in U$ gibt es eine Menge $M \in F$ mit $u \in M$. Die Größe eines Set Covers F ist die Anzahl an Mengen in F, d.h. |F|.

Wir nehmen an, dass jedes Element aus U in einer Menge aus \mathcal{F} vorkommt.

Als Beispiel betrachte $U := \{1, 2, 3, 4, 5, 6\}$ und $\mathcal{F} := \{\{1, 2\}, \{1, 4\}, \{3, 6\}, \{2, 3, 4\}, \{1, 2, 5\}, \{2, 3\}\}$, sowie k = 3. $F := \{\{1, 4\}, \{3, 6\}, \{1, 2, 5\}\}$ ist ein Set Cover von (U, \mathcal{F}) . Es kann schnell überprüft werden, dass es für k = 2 kein Set Cover gibt. Eine graphische Darstellung dieser Instanz (und einer möglichen Lösung) ist in Abbildung 1 abgebildet.

Abbildung 1: Beispiel einer Instanz von Set Cover. Punkte entsprechen den Elementen in U, Kreise entsprechen den Mengen in \mathcal{F} . Die farbige Auswahl entspricht einem Set Cover.

a) Zeige, dass Set Cover NP-schwer ist. (Hinweis: Nutze Vertex Cover.)

Da SET COVER also NP-schwer ist, bietet es sich an, Approximationsalgorithmen zu betrachten, um das kleinste k zu finden. Der folgende Algorithmus (GREEDYSC) versucht ein möglichst kleines Set Cover zu bestimmen.

Algorithmus 1 Algorithmus GREEDYSC zum Finden eines Set Covers. In jeder Iteration wird diejenige Menge aufgenommen, die die meisten noch nicht überdeckten Elemente besitzt.

```
1: function GreedySC(U, \mathcal{F})
2:
        C := \emptyset
                                                                      ▶ Menge der bereits überdeckten Elemente
        \overline{C} := U
                                                                 ⊳ Menge der noch zu überdeckenden Elemente
3:
        SC := \emptyset
                                                                                                                 ⊳ Set Cover
4:
        while C \neq U do
5:
             S:=\mathrm{argmax}_{M\in\mathcal{F}}\left|M\cap\overline{C}\right|\quad \triangleright Menge mit den meisten nicht überdeckten Elementen
6:
             C := C \cup S
7:
             \overline{C} := \overline{C} \setminus S
8:
             SC := SC \cup \{S\}
9:
```

b) Wende GreedySC auf folgende Instanz an: $U := \{1, ..., 10\}$, $\mathcal{F} := \{F_1, ..., F_5\}$ mit $F_1 = \{1, 2, 3, 7, 9\}$, $F_2 = \{4, 5, 6, 8, 10\}$, $F_3 = \{1, 2, 3, 4, 5, 6\}$, $F_4 = \{7, 8\}$ und $F_5 = \{9, 10\}$. Gib dabei nach jeder Iteration der while-Schleife S, C sowie \overline{C} an.

10:

return SC

c) Betrachte Instanzen der folgenden Form. Sei $3 \le \ell \in \mathbb{N}$ und $q = 2^{\ell} - 1$. Das Universum besteht aus zwei Teilmengen mit je q Elementen, also $U = \{x_1, \ldots, x_q\} \cup \{y_1, \ldots, y_q\}$. Die Menge der möglichen Mengen \mathcal{F} enthält die zwei Mengen $X = \{x_1, \ldots, x_q\}$ und $Y = \{y_1, \ldots, y_q\}$ sowie zusätzlich die Mengen

$$M_i = \{x_{2^{i-1}}, \dots, x_{2^i-1}\} \cup \{y_{2^{i-1}}, \dots, y_{2^i-1}\}$$

für $1 \le i \le \ell$. Abbildung 2 zeigt als Beispiel die Instanz für den Fall $\ell = 3$.

Was ist die Größe eines optimalen Set Covers auf dieser Art von Instanz? Welche Größe hat das Set Cover, das GreedysC berechnet, in Abhängigkeit von ℓ ? Wie wächst der asymptotische Faktor zwischen OPT und GreedysC in Abhängigkeit der Größe des Universums n=2q (in O-Notation)? Ist GreedysC ein Approximationsalgorithmus im Sinne der Vorlesung?

Abbildung 2: Instanz aus Aufgabenteil c) für $\ell = 3$.

72.8. Vertex Cover $G^{2}(V,E)$ $VC \subseteq V$ wit $(u,v) \in E$ $U \in VC \times V \in VC$.

圣: Set Cover ist NP-Schwer Ex gilt: Vertex Cover ist NP-Schwer. Reduktion von Vertex Cover auf Set Cover durchführen:

Denn Set Cover schneller zu lösen wäh, wäh Verter Over ebenfalls schneller zu lösen wäh, wäh Verter

Korrektheit:
Wenn Verkx Cover ein VC der
Größe k besitzt, dann
besitzt auch Set Cover ein SC
der Größe k.
Nimm dazu die Mengen F, die von
VC gehören.
(Analog gilt auch die Rüchrichtung)
Konstruution erbolft in polynomieller Laufzeit.

B U= {1, __ , 10}

S ·	c	5
F3 = {1,2,,6}	{r, , 6}	{4,8,9,10}
Fiz {1,2,3,7,9}	{1,, 6,7,9}	{8,10}
Fz: {4,5,6,8,10}	{1,,10}	4

Greedy SC ist Approximations algo. Wern Greedy
$$< c$$
 für $n \rightarrow \omega^+$
 $n = 2 \cdot (2^l - 1)$
 $n + 2 = 2 \cdot 2^l = 2^{l+2}$
 $\Rightarrow l + 1 = log(n+2)$
 $\Rightarrow l = log(n+2) - 1$