

Broad Question

- How to organize the Web?
- First try: Human curated Web directories
 - □ Yahoo, DMOZ, 新浪
- Second try: Web Search
 - Information Retrieval investigates:
 Find relevant docs in a small
 and trusted set
 - Newspaper articles, Patents, etc.
 - <u>But:</u> Web is huge, full of untrusted documents, random things, web spam, etc.

5

Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
 - □ Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

6

Ranking Nodes on the Graph

- All web pages are not equally "important" www.joe-schmoe.com vs. www.ict.ac.cn
- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

PageRank:
The "Flow" Formulation

Links as Votes

- Idea: Links as votes
- Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.ict.ac.cn has 12,300 in-links
 - www.joe-schmoe.com has 1 in-link
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

9

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_i/n votes
- Page j's own importance is the sum of the votes on its in-links

11

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
 v/2
- Define a "rank" r_i for page j

The web in 1839 $f_i = \sum_{i \to i} \frac{r_i}{d_i}$

 $d_i \dots$ out-degree of node i

 $r_y = r_y/2 + r_a/2$

 $r_a = r_y/2 + r_m$ $r_m = r_a/2$

Solving the Flow Equations

3 equations, 3 unknowns, no constants Flow equations: $\begin{aligned} r_y &= r_y/2 + r_a/2 \\ r_a &= r_y/2 + r_m \end{aligned}$

- No unique solution (linearly dependent)
- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:

$$r_y + r_a + r_m = 1$$

• Solution:
$$r_y = \frac{2}{5}$$
, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

13

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - ullet Let page i has d_i out-links

- M is a column stochastic matrix
 Columns sum to 1
- Rank vector r: vector with an entry per page
 - $lue{r}_i$ is the importance score of page i
 - $\sum_i r_i = 1$
- The flow equations can be written

requations can be written
$$m{r}_j = m{M} \cdot m{r} = \sum_{m{i}} m{r}_{m{i}} m{M}_{*m{i}}$$
 $r_j = \sum_{i o j} m{d}_{i}$

14

Example

- Remember the flow equation: $r_j = \sum_{i=1}^{n} \frac{r_i}{d}$
- Flow equation in the matrix form $\sum_{i \to j}^{j} di$

$$M \cdot r = r$$

□ Suppose page *i* links to 3 pages, including *j*

15

Eigenvector Formulation

■ The flow equations can be written

$$r = M \cdot r$$

- So the rank vector r is an eigenvector of the stochastic web matrix M
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of M is 1 since M is column stochastic (with non-negative entries)
 - ullet We know r is unit length and each column of M sums to one, so $Mr \leq 1$

NOTE: x is an eigenvector with the corresponding eigenvalue λ if: $Ax = \lambda x$

We can now efficiently solve for r!
 The method is called Power iteration

Example: Flow Equations & M

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r = M \cdot r$$

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

1/2	1/2	0	y
$\frac{1}{2}$	0	1	a
0	$\frac{1}{2}$	0	m
	-	/2 0	/2 0 1

17

Power Iteration Method

- Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages

• Initialize:
$$r^{(0)} = [1/N,....,1/N]^T$$

□ Iterate:
$$r^{(t+1)} = M \cdot r^{(t)}$$

□ Stop when
$$|r^{(t+1)} - r^{(t)}|_1 < \varepsilon$$

 $r_j^{(t+1)} = \sum_{i \to i} \frac{r_i^{(t)}}{d_i}$

d_i out-degree of node i

 $|\mathbf{x}|_1 = \sum_{1 \leq i \leq N} |x_i|$ is the L₁ norm Can use any other vector norm, e.g., Euclidean

18

PageRank: How to solve?

- Power Iteration for all *j*:
 - $\Box \operatorname{Set} r_i = 1/N$
 - **1:** $<math>r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - **2:** $r_i = r'_i$
 - Goto 1
- **Example:**

)
N	
a₹	≥ m
	_

	у	a	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_{\rm m} = r_{\rm a}/2$$

PageRank: How to solve?

■ Power Iteration for all *j*:

$$\Box \operatorname{Set} r_i = 1/N$$

$$1: r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

2:
$$r_i = r'_i$$

Exam	ple:

•						
$[r_y]$	1/3	1/3	5/12	9/24		6/15
	1/3	3/6	1/3	11/24	•••	6/15
$\lfloor_{\mathbf{r_m}}\rfloor$		1/6 0, 1, 2, .	3/12	1/6		3/15

20

 $r_v = r_v/2 + r_a/2$

 $r_a = r_v/2 + r_m$

 $r_m = r_a/2$

Why Power Iteration works? (1)

Power iteration:

A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)

$$r^{(1)} = M \cdot r^{(0)}$$

$$r^{(2)} = M \cdot r^{(1)} = M(Mr^{(0)}) = M^2 \cdot r^{(0)}$$

$$\mathbf{r}^{(3)} = \mathbf{M} \cdot \mathbf{r}^{(2)} = \mathbf{M} (\mathbf{M}^2 \mathbf{r}^{(0)}) = \mathbf{M}^3 \cdot \mathbf{r}^{(0)}$$

Claim:

Sequence $M \cdot r^{(0)} \cdot M^2 \cdot r^{(0)} \cdot ... M^k \cdot r^{(0)} \cdot ...$ approaches the dominant eigenvector of M

Why Power Iteration works? (2)

- Claim: Sequence $M \cdot r^{(0)}$, $M^2 \cdot r^{(0)}$, ... $M^k \cdot r^{(0)}$, ... approaches the dominant eigenvector of M
- Proof:
 - Assume M has n linearly independent eigenvectors, $x_1, x_2, ..., x_n$ with corresponding eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ where $\lambda_1 > \lambda_2 > \cdots > \lambda_n$
 - Vectors x_1,x_2,\dots,x_n form a basis and thus we can write: $r^{(0)}=c_1\,x_1+c_2\,x_2+\dots+c_n\,x_n$

$$Mr^{(0)} = M(c_1 x_1 + c_2 x_2 + \cdots + c_n x_n)$$

$$= c_1(Mx_1) + c_2(Mx_2) + \dots + c_n(Mx_n)$$

= $c_1(\lambda_1x_1) + c_2(\lambda_2x_2) + \dots + c_n(\lambda_nx_n)$

- Repeated multiplication on both sides produces
- $M^k r^{(0)} = c_1(\lambda_1^k x_1) + c_2(\lambda_2^k x_2) + \dots + c_n(\lambda_n^k x_n)$

Why Power Iteration works? (3)

- Claim: Sequence $M \cdot r^{(0)} \cdot M^2 \cdot r^{(0)} \cdot ... M^k \cdot r^{(0)} \cdot ...$ approaches the dominant eigenvector of M
- Proof (continued):
 - Repeated multiplication on both sides produces $M^k r^{(0)} = c_1(\lambda_1^k x_1) + c_2(\lambda_2^k x_2) + \dots + c_n(\lambda_n^k x_n)$

$$M^k r^{(0)} = \lambda_1^k \left[c_1 x_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k x_2 + \dots + c_n \left(\frac{\lambda_n}{\lambda_1} \right)^k x_n \right]$$

- Since $\lambda_1 > \lambda_2$ then fractions $\frac{\lambda_2}{\lambda_1}$, $\frac{\lambda_3}{\lambda_4}$... < 1 and so $\left(\frac{\lambda_i}{\lambda_*}\right)^n = 0$ as $k \to \infty$ (for all $i = 2 \dots n$).
- - Note if $c_1 = 0$ then the method won't converge i.e. r0 is orthogonal to the first eigenvector

Random Walk Interpretation

- Imagine a random web surfer:
- At any time t, surfer is on some page i
- \Box At time t+1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely
- Let:
- p(t) ... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
- \square So, p(t) is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time t+1?
 - Follows a link uniformly at random

$$p(t+1) = M \cdot p(t)$$

• Suppose the random walk reaches a state $p(t+1) = M \cdot p(t) = p(t)$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

25

PageRank: The Google Formulation

Existence and Uniqueness

A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy **certain conditions**, the **stationary distribution is unique** and eventually will be reached no matter what the initial probability distribution at time **t** = **0**

ref to

Perron–Frobenius theorem [all entries are positive, or Nonnegative Matrix, irreducible (connected), or primitivity (k-connected)]

26

PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i o j} rac{r_i^{(t)}}{ ext{d}_i}$$
 or equivalently $r = Mr$

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

Does this converge?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

■ Example:

Iteration 0, 1, 2, ...

29

Does it converge to what we want?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

Iteration 0, 1, 2, ...

30

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"

- (2) Spider traps: (all out-links are within the group)
 - Random walked gets "stuck" in a trap
 - And eventually spider traps absorb all importance

Problem: Spider Traps

■ Power Iteration:

$$\square$$
 Set $r_i = 1$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

And iterate

		у	a	m
	y	1/2	1/2	0
١	a	1/2	0	0
/	m	0	1/2	1

m is a spider trap

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2$

 $r_m = r_a / 2 + r_m$

■ Example:

All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - \square With prob. β , follow a link at random
 - □ With prob. 1- β , jump to some random page
 - ullet Common values for eta are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

33

Problem: Dead Ends

- Power Iteration:
 - $lue{}$ Set $r_j = 1$

And iterate

	y	a	m
у	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

 $r_y = r_y/2 + r_a/2$ $r_a = r_y/2$ $r_m = r_a/2$

■ Example:

$[r_y]$	1/3	2/6	3/12	5/24		0
$\begin{bmatrix} \mathbf{r}_{\mathbf{y}} \\ \mathbf{r}_{\mathbf{a}} \\ \mathbf{r}_{\mathbf{m}} \end{bmatrix} =$	1/3	1/6	2/12	3/24	•••	0
$\lfloor r_m \rfloor$	1/3	1/6	1/12	2/24		0

Iteration 0, 1, 2, ...

Here the PageRank "leaks" out since the matrix is not stochastic.

. .

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

35

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem (converge), but with traps PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
 - The matrix is not column stochastic (zero column) so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:
 At each step, random surfer has two options:
 - \square With probability β , follow a link at random
 - □ With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i o j} eta \; rac{r_i}{d_i} + (1 - eta) rac{1}{N}$$
 di... out-degree of node i

Inis formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends (add 1/N in M) or explicitly follow random teleport links with probability 1.0 from dead-ends (R=0)

37

The Google Matrix

■ PageRank equation [Brin-Page, '98] $r_j = \sum_{i \to i} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$

■ The Google Matrix A:

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$
 where all end

- We have a recursive problem: r = A · r And the Power method still works!
- What is β ?
 - □ In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

38

How do we actually compute the PageRank?

Computing Page Rank

- Key step is matrix-vector multiplication
 - $r^{\text{new}} = A \cdot r^{\text{old}}$
- Easy if we have enough main memory to hold A, rold, rnew
- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - 10¹⁸ is a large number!

 $A = \beta \cdot M + (1-\beta) [1/N]_{NxN}$

$$\mathbf{A} = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

41

Matrix Formulation

- Suppose there are N pages
- Consider page *i*, with d_i out-links
- We have $M_{ji} = 1/|d_i|$ when $i \rightarrow j$ and $M_{ii} = 0$ otherwise
- The random teleport is equivalent to:
 - □ Adding a teleport link from i to every other page and setting transition probability to $(1-\beta)/N$
 - Reducing the probability of following each out-link from $1/|d_i|$ to $\beta/|d_i|$
 - Equivalent: Tax each page a fraction (1-β) of its score and redistribute evenly

42

Rearranging the Equation

- $r = A \cdot r$, where $A_{ji} = \beta M_{ji} + \frac{1-\beta}{N}$
- $r_j = \sum_{i=1}^N A_{ji} \cdot r_i$
- $r_j = \sum_{i=1}^N \left[\beta \ M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i$ $= \sum_{i=1}^N \beta \ M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^N r_i$ $= \sum_{i=1}^N \beta \ M_{ji} \cdot r_i + \frac{1-\beta}{N}$ since $\sum r_i = 1$

lacksquare So we get: $r=eta\,M\cdot r+\left[rac{1-eta}{N}
ight]_N$

 $[x]_N$... a vector of length N with all entries x

43

Sparse Matrix Formulation

We just rearranged the PageRank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

- where [(1-β)/N]_N is a vector with all N entries (1-β)/N
- M is a sparse matrix! (with no dead-ends)
 - □ 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - □ Compute $r^{\text{new}} = \beta M \cdot r^{\text{old}}$
- **Δ** Add a constant value (1- β)/N to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_j r_j^{new} < 1$ and we also have to renormalize $r^{\rm new}$ so that it sums to 1

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
 - □ Directed graph *G* (can have spider traps and dead ends)
 - \square Parameter β
- Output: PageRank vector r^{new}

 - repeat until convergence: $\sum_{i} |r_{i}^{new} r_{i}^{old}| > \varepsilon$
 - $\forall j \colon r'^{new}_j = \sum_{i \to j} \beta \, \frac{r^{old}_i}{d_i}$
 - r'new = 0 if in-degree of j is 0
 Now re-insert the leaked PageRank:
 - $\forall j: r_j^{new} = r_j^{new} + \frac{1-S}{N}$
 - $r^{old} = r^{new}$

where: $S = \sum_{j} r'_{j}^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing **S**. 45

Sparse Matrix Encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Say 10N, or 4*10*1 billion = 40GB
 - Still won't fit in memory, but will fit on disk

source node	degree	destination nodes			
0	3	1, 5, 7			
1	5	17, 64, 113, 117, 245			
2	2	13, 23			

46

Basic Algorithm: Update Step

- Assume enough RAM to fit r^{new} into memory
 - Store rold and matrix M on disk
- 1 step of power-iteration is:

Initialize all entries of $\mathbf{r}^{\text{new}} = (\mathbf{1} - \mathbf{\beta}) / \mathbf{N}$ For each page i (of out-degree d_i): Read into memory: i, d_i , $dest_i$, ..., $dest_{d^i}$, $r^{old}(i)$ For $\mathbf{j} = \mathbf{1} \dots d_i$

 $r^{\text{new}}(\text{dest}_i) += \beta r^{\text{old}}(i) / d_i$

	ı (uc	, 3 ij , - p i	(1) / (u _l	
0	rnew	source	degree	e destination	rold
1		0	3	1, 5, 6	
3		1	4	17, 64, 113, 117	
4	1	2	2	13, 23	
5		2	2	13, 23	
6					

Analysis

- Assume enough RAM to fit *r*^{new} into memory
 - Store rold and matrix M on disk
- In each iteration, we have to:
 - Read rold and M
 - □ Write *r*^{new} back to disk
 - Cost per iteration of Power method:= 2|r| + |M|
- Question:
 - □ What if we could not even fit *r*^{new} in memory?

Analysis of Block Update

- Similar to nested-loop join in databases
 - □ Break r^{new} into k blocks that fit in memory
 - Scan M and rold once for each block
- Total cost:
 - □ k scans of M and rold
 - Cost per iteration of Power method: k(|M| + |r|) + |r| = k|M| + (k+1)|r|
- Can we do better?
 - Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration

50

Block-Stripe Update Algorithm | Src | degree | destination | O | 4 | 0, 1 | | 1 | 3 | 0 | 2 | 2 | 1 | | 2 | 3 | 0 | 4 | 3 | | 2 | 2 | 3 | 3 | | 4 | 5 | 5 | | Break M into stripes! Each stripe contains only destination nodes in the corresponding block of rnew | 51

Block-Stripe Analysis

- Break *M* into stripes
 - Each stripe contains only destination nodes in the corresponding block of r^{new}
- Some additional overhead per stripe
 - But it is usually worth it
- Cost per iteration of Power method:
 - $=|M|(1+\varepsilon)+(k+1)|r|$

Application to Measuring Proximity in Graphs

Random Walk with Restarts: S is a single element

Good proximity measure?

Shortest path is not good:

- No effect of degree-1 nodes (E, F, G)!
- Multi-faceted relationships

--

Good proximity measure?

■ Network flow is not good:

■ Does not punish long paths

PageRank: Summary

- "Normal" PageRank:
 - □ Teleports uniformly at random to any node
- Topic-Specific PageRank also known as Personalized PageRank:
 - □ Teleports to a topic specific set of pages
 - Nodes can have different probabilities of surfer landing there: S = [0.1, 0, 0, 0.2, 0, 0, 0.5, 0, 0, 0.2]
- Random Walk with Restarts:
 - □ Topic-Specific PageRank where teleport is always to the same node. S=[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

Questions?