## Civil Aviation University of China, avril 2018 Option Propulsion, semestre 4

## **COMBUSTION FONDAMENTALE**

## TD 4: COMBUSTION EN FOYERS HOMOGENE ET TUBULAIRE

On considère un foyer fonctionnant en régime stationnaire, isobare (p = 1 atm) et adiabatique. Le mélange propane-air pauvre entrant dans le foyer à  $T_e = 300$  K a pour composition :

$$\phi C_3H_8 + 5 O_2 + 18.8 N_2$$

- 1°) Ecrire la composition molaire du mélange dans le foyer pour un degré d'avancement  $\lambda$  de la réaction. On supposera que les seules espèces produites sont  $CO_2$  et  $H_2O$ .
- 2°) Le mélange gazeux étant supposé parfait, sa vitesse de réaction  $V_r$  (relative à la réaction globale  $C_3H_8$  5  $O_2$  +  $P \rightarrow 0$ ) est donnée par la relation :

$$V_r = B T^a e^{-E_a/RT} C_{C3H8} C_{O2}$$

Donner l'ordre de la réaction et exprimer V<sub>r</sub> :

- a) en fonction de la pression p, de la température T et des fractions molaires de propane et d'oxygène ;
- b) en fonction de p, T,  $\lambda$  et  $\phi$ .
- $3^{\circ}$ ) le mélange a désormais pour richesse  $\phi = 0.75$ . La vitesse de réaction de ce mélange, en fonction du degré d'avancement  $\lambda$  a été établie expérimentalement (cf. annexe).

On donne :  $Q^* = 489 \text{ kcal/mol de } C_3H_8 \text{ (pour } \phi = 1) \text{ ; } C_p = 0.36 \text{ kcal/K kg de mélange.}$ 

Calculer les caractéristiques de fonctionnement d'un foyer homogène de volume  $V_h = 1$  litre, utilisant ce mélange réactif, pour les régimes correspondants aux cas où :

a) la vitesse de réaction est maximum (indice "m"). Calculer alors :

 $V_{rm}$  = Vitesse de réaction  $m_m$  = Débit des gaz

 $\lambda_m = \text{Degr\'e d'avancement}$   $\rho_m = \text{Masse volumique des gaz}$ 

 $T_m$  = Température des gaz  $t_{s,m}$  = Temps de séjour dans le foyer homogène.

- b) Le débit des gaz est  $\dot{m} = 58 \text{ g/s}$ . Calculer  $V_r$ ,  $\lambda$ , T et  $t_{S,h}$ .
- $4^{\circ})$  On adopte les caractéristiques de fonctionnement correspondant à  $V_{r}$  maximum (cf. 3-a), donc  $\lambda=\lambda_{m}<1.$  On adjoint alors à ce foyer homogène, un foyer tubulaire. On demande de calculer le volume  $V_{t}$  du foyer tubulaire, et le temps de séjour  $t_{S,t}$  des gaz dans ce foyer tels que le degré d'avancement de la réaction soit, à sa sortie,  $\lambda_{s}=0,99.$

Remarque : pour  $\lambda_m < \lambda < 1$ , on pourra assimiler la courbe  $V_r(\lambda)$  à :

- la droite  $V_r = V_m = \text{cte pour } \lambda_m < \lambda < 0.85$
- la droite  $V_r = V_m ((1-\lambda) / 0.15)$  pour  $0.85 < \lambda < 1$ .
- 5°) On veut brûler le mélange précédent ( $\phi = 0.75$ ) avec un débit de 500 g/s, et en poussant la réaction jusqu'au degré d'avancement  $\lambda = 0.99$ .

Quel est le volume total du foyer, dans le cas où celui-ci se compose :

- a) uniquement d'un foyer homogène,
- b) d'un foyer homogène et d'un foyer tubulaire convenablement couplés.

