





# An Underwater Docking System for Sustained Presence at Sea

2nd Cycle Integrated Project in Electrical and Computer Engineering

June 2024

Ravi Alexandre da Silva Regalo

ravi.regalo@tecnico.ulisboa.pt



António Pascoal antonio@isr.tecnico.ulisboa.pt

David Cabecinhas david.cabecinhas@tecnico.ulisboa.pt





#### Introduction





#### **Motivation**

- Oceans are vital due to environmental and economic factors
- 80% of the oceans remain unexplored

**Solution: Docking Stations** 

Allow for **battery recharging** and **communication** with **base station** 

- Growing popularity of Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs)
- Unable to operate for long periods at a time.

Development of an Autonomous Underwater Docking System





# **Navigation Contributions**

#### Complementary Filter

|         | High Frequency | Low Frequency |
|---------|----------------|---------------|
| Compass | ×              | <b>✓</b>      |
| Gyro    | <b>✓</b>       | ×             |



Low + High Pass Filter



Complementary filter block diagram.



Complementary filter with bias rejection block diagram.





## **Navigation Contributions**

#### Kalman Filter

Linear State Model:

$$\begin{cases} \boldsymbol{x}(k+1) = A_k \boldsymbol{x}(k) + B_k \boldsymbol{u}(k) + G_k \boldsymbol{w}(k) \\ \boldsymbol{y}(k) = C_k \boldsymbol{x}(k) + \boldsymbol{v}(k) \end{cases}$$

Gaussian White Noise:

$$E\left(\begin{bmatrix}w_k\\v_k\end{bmatrix}\begin{bmatrix}w_k^T&v_k^T\end{bmatrix}\right)=\begin{bmatrix}Q_k&0\\0&R_k\end{bmatrix}$$
 Measurement noise Covariance

- o Initial state is a gaussian random vector
- o Kalman Cycle:

$$\begin{array}{ccc} p\left(x_{k}|Y_{1}^{k},U_{0}^{k-1}\right) & \xrightarrow{\text{Predict}} & p\left(x_{k+1}|Y_{1}^{k},U_{0}^{k}\right) & \xrightarrow{\text{p}\left(x_{k+1}|Y_{1}^{k+1},U_{0}^{k}\right)} \\ & u_{k} & y_{k+1} \end{array}$$





#### **Navigation Contributions**

Extended Kalman Filter

$$F(k) = \nabla f|_{\hat{x}(k|k)}$$
  $H(k) = \nabla h|_{\hat{x}(k+1|k)}$ 







#### **Motion Control**

Inner-outer-loop structure



Position, Velocity, Orientation

Inner-outer-loop control structure block diagram.





#### **Motion Control**

Line-of-Sight (LOS) Path Following (PF)

**Guidance Law:** 

$$\psi_d = \arctan\left(-\frac{y_e}{\Delta h}\right)$$

✓ Simple, yield asymptotic convergence to path in the absence of disturbances (i.e. ocean currents)



Steady-state error in the presence of currents.



LOS algorithm scheme, from A. Lekkas and T. Fossen "Line-of-sight guidance for path following of marine Vehicles"





#### **Motion Control**

Simplified LOS (P. Maurya)

**Guidance Law:** 

$$\psi_d = \sin^{-1}\left(\sigma\left(-\frac{1}{u}\left(K_1e + K_2\varsigma\right)\right)\right)$$

$$\dot{\varsigma} = y + K_a\left[-\frac{1}{u}\left(K_1e + K_2\varsigma\right) - \sigma\left(-\frac{1}{u}\left(K_1e + K_2\varsigma\right)\right)\right]$$

Yields asymptotic convergence to path even in the presence of constant currents



Simplified LOS algorithm scheme, from P. Maurya, A. Aguiar and A. Pascoal "Marine vehicle path following using inner-outer loop control".

#### **Vehicle and Docking Station Modelling**





#### **Reference Frames and General Notation**



$$\boldsymbol{\eta}_1 = [x \ y \ z]^T$$

$$\boldsymbol{\eta}_2 = [\phi \ \theta \ \psi]^T$$

$$\boldsymbol{\nu}_1 = [u \ v \ w]^T$$

$$\boldsymbol{\eta}_1 = [x \ y \ z]^T$$
  $\boldsymbol{\eta}_2 = [\phi \ \theta \ \psi]^T$   $\boldsymbol{\nu}_1 = [u \ v \ w]^T$   $\boldsymbol{\nu}_2 = [p \ q \ r]^T$ 

#### **Vehicle and Docking Station Modelling**





#### **Simplified Equations of Motion**

Kinematics: 
$$\begin{cases} \dot{x} = u\cos\psi - v\sin\psi \\ \dot{y} = u\sin\psi + v\cos\psi \\ \dot{\psi} = r \\ \dot{z} = w \end{cases}$$

Dynamics: 
$$\begin{cases} m_u \dot{u} - m_v v r + d_u u = \tau_u \\ m_v \dot{v} + m_u u r + d_v v = \tau_v \\ m_r \dot{r} - m_{uv} u v + d_r r = \tau_r \\ m_w \dot{w} + d_w w + g_w = \tau_w \end{cases}$$

#### **Assumptions:**

- $\phi = 0$ ,  $\theta = 0$
- Decoupling horizontal and vertical motion

- Only actuated by forces along xyz-axes and torque around z-axis
- No environment disturbances

#### **Vehicle and Docking Station Modelling**





#### **Sensor Suite**



Doppler Velocity Logger (DVL)



Ultrashort-Baseline (USBL)



Attitude and Heading Reference System (AHRS)





# **Task description**







# **Task description**







# **Approximation Stage**

**Control Law:** 

$$r = -K_b \delta$$

$$r = -K_b \delta$$
$$\delta = \psi_B - b_{\mathcal{I}}$$









# **Task description**







#### **Relative Navigation Filter - Orientation**







#### **Relative Navigation Filter - Position**







# **Task description**







## **Homing Stage**

**Guidance Law:** 

$$\psi_d = atan\left(\frac{y_h - y}{x_h - x}\right) + \psi_c,$$

Obstacle avoidance term:

$$\dot{\psi}_c = \begin{cases} \frac{\alpha - \beta}{\rho} K_{\gamma}, & \text{if } 0 < \beta < \alpha \\ \frac{\alpha + \beta}{\rho} K_{\gamma}, & \text{if } -\alpha < \beta < 0 \end{cases}$$







# **Task description**







#### **Docking Stage**

#### **Guidance Law:**

$$\varphi = \psi_{path} + \sin^{-1}\left(\sigma\left(-\frac{1}{u}\left(K_1y + K_2\varsigma\right)\right)\right)$$

$$\dot{\varsigma} = y + K_a\left[-\frac{1}{u}\left(K_1y + K_2\varsigma\right) - \sigma\left(-\frac{1}{u}\left(K_1y + K_2\varsigma\right)\right)\right]$$

$$V = T_t + \frac{V_c}{2} + \frac{V_c}{2} \tanh\left(\frac{1}{2}(x-8)\right)$$

#### **Fully Actuated Vehicles**

$$[u_d, v_d] =_{\mathcal{D}}^{\mathcal{B}} R(\psi) \cdot [V\cos(\varphi), V\sin(\varphi)]^T$$
$$\psi_d = 180^{\circ}$$

#### **Under Actuated Vehicles**

$$u_d = V$$
$$\psi_d = \varphi$$





#### **Simulations - Fully Actuated**



AUV Trajectory in the  $\mathcal{D}$ -frame.







Body velocities with respect to the water.



Estimation errors.





#### **Simulations - Fully Actuated**



-50 No Current Current 0.2 m/s

40 50 60 70 80 90 100 110 120

Time [s]

Cross-track error.

Alignment error.





#### **Simulations - Under Actuated**



AUV Trajectory in the  $\mathcal{D}$ -frame.



AUV relative heading  $\psi$ .



Body velocities with respect to the water.



Estimation errors.





#### **Simulations - Under Actuated**





#### **Conclusion & Planning**





#### **Achieved thus far:**

- **Introduced** and analysed the docking task
- Formulated mathematical models for underwater motion
- Proposed a navigation system w.r.t. the docking station
- Provided a basic solution for the docking manoeuvre

#### **Future Work:**

Control Strategy Improvement
Realistic Simulator Development
New Controller Simulations
Code Development for MEDUSA
Testing on real environment
Thesis Writing







# Questions?

