Equivariant Self-Supervision For Musical Tempo Estimation

Elio Quinton 1

¹Music, Audio and Machine Learning Lab Universal Music Group

Abstract

We propose to use **equivariance** as a self-supervision signal to learn audio tempo representations from unlabelled data.

How does it work?

- 1. Timestretching with random ratio applied twice to each training sample
- 2. Forward pass to get representation
- 3. **Equivariant objective**: representation constrained to reflect change in tempo

What do we get out of it?

- Meaningful representations can be learnt with this method
- Simple loss function that prevents the collapse on a trivial solution during training, without requiring regularisation or negative sampling
- Light weight & accessible Small model (33k params) + no need for large batch sizes = light compute requirement (trains on 1 GPU)
- Robust to hyper-parameter choices

What could it be useful for?

- Low resource genres. Typically underserved by supervised methods because most annotated datasets are western
- General music representations. This equivariant objective is simple enough to be used as complement to other self-supervised objectives
- Inspiration for further exploration of equivariant self-supervision. Well suited to regression problems

Background

Equivariance

An *invariant* representation q(w) remains unchanged for a transformation k of the input w:

$$q(k \cdot w) = q(w) \tag{1}$$

An equivariant representation reflects the transformation applied to the input:

$$q(k \cdot w) = k \cdot q(w) \tag{2}$$

State of the art

- Tempo estimation is treated as supervised learning. Requires large quantity of labelled data.
- Self-supervised approaches based on siamese networks usually rely on invariance to data augmentations.
- SPICE [4] was first musical application of equivariant self-supervision for pitch estimation. But requires strong regularisation.

We propose an approach to learn tempo representations from unlabelled data, using *equivariance* as a simple self-supervision supervision objective, which does not require regularisation.

Method

Model

Temporal Convolutional Network (TCN) [1] with 33k parameters. Mel Spectrogram as input and outputs a 16-d embedding ${f h}$.

Training Strategy

For each training sample x, apply time-stretching transformations t_i and t_j , with rate α_i and α_j drawn at random from [1-r,1+r] where r is a hyper-parameter, and feed through the TCN and projection head, as depicted in Fig.1. The equivariant objective is then applied via the proposed loss function:

$$\mathcal{L} = \left| \frac{z_i}{z_i} - \frac{\alpha_i}{\alpha_i} \right| \tag{3}$$

Datasets

MagnaTagaTune (MTT) for self-supervised pre-training. GTZAN, Hainsworth, Giantsteps, and ACM Mirum for fine-tuning and evaluation.

Evaluation

Discard projection head $g(\cdot)$ and freeze network weight. Attach a linear classification head with 300 units and softmax layer to represent the range [0,300] BPM and fine-tune with cross-entropy loss. We perform cross-dataset evaluation and report *Accuracy 1* and *Accuracy 2* scores with a $\pm 4\%$ tolerance.

Figure 1. Equivariant self-supervision framework. Random time-stretching transformations t_i and t_j are applied to a training sample x. The TCN and projection head $g(\cdot)$ are trained to produce a pseudo-tempo scalar z equivariant to the time stretching transformation of the input. The projection head is discarded after training.

Results

Trivial solutions Loss function \mathcal{L} does not collapse to trivial solutions

Influence of pre-training augmentation Random audio augmentations yield not notable difference. Timestretching strength (r_p) only hurts performance for extreme values. Cf. Fig 2.

Influence of fine-tuning augmentation Applying time-stretching ($r_f > 0$) generally improves performance. Optimal value varies from one dataset to the next. Cf. Table 1.

Comparison to supervised benchmarks Accuracy 2 performance is comparable with supervised benchmarks on all datasets. Accuracy 1 performance is more inconsistent.

Figure 2. Performance against supervised benchmarks. Acc1 in blue and Acc2 in green. Results for combinations of using augmentations ("aug") or not ("noAug") and of $r_p \in \{0.1, 0.2, 0.3, 0.4\}$. In all cases the model is fine-tuned with a time-stretching of strength $r_f = 0.2$. Horizontal lines are supervised benchmarks "Böck1" [2], "Böck2" [1], "For" [3], "Sch" [5]. We only display the highest and lowest performing baselines.

Method	r_f	Hainsworth		GTZAN		Giantsteps		ACM Mirum	
		Acc1	Acc2	Acc1	Acc2	Acc1	Acc2	Acc1	Acc2
Ours	0.0	0.604	0.838	0.691	0.887	0.512	0.809	0.704	0.943
Ours	0.1	0.586	0.824	0.719	0.881	0.456	0.791	0.757	0.965
Ours	0.2	0.518	0.856	0.741	0.919	0.470	0.886	0.747	0.965
Ours	0.3	0.550	0.829	0.785	0.921	0.438	0.846	0.700	0.958
Ours	0.4	0.541	0.829	0.778	0.926	0.472	0.884	0.724	0.952
Schreiber [5]	_	0.770	0.842	0.694	0.926	0.730	0.893	0.795	0.974
Foroughmand [3]	-	0.734	0.829	0.697	0.891	0.836	0.979	0.733	0.965
Böck 1 [2]	-	0.806	0.892	0.697	0.950	0.589	0.864	0.741	0.976
Böck 2 [1]	-	-	-	0.673	0.938	0.764	0.958	0.749	0.974

Table 1. Influence of fine-tuning time-stretching strength. Pre-trained on MTT with $r_p=0.2$ and no audio augmentations. Highest performance for each metric and dataset shown in bold. Italics metrics where our model outperforms at least one baseline.

References

- [1] Sebastian Böck, Matthew EP Davies, and Peter Knees. Multi-task learning of tempo and beat: learning one to improve the other. In 20th International Society for Music Information Retrieval Conference (ISMIR 2019), 2019.
- [2] Sebastian Böck, Florian Krebs, and Gerhard Widmer. Accurate tempo estimation based on recurrent neural networks and resonating comb filters. In *International Society for Music Information Retrieval (ISMIR) Conference*, 2015.
- [3] Hadrien Foroughmand and Geoffroy Peeters. Deep-rhythm for tempo estimation and rhythm pattern recognition. In *International Society for Music Information Retrieval (ISMIR)*, 2019.
- [4] Beat Gfeller, Christian Frank, Dominik Roblek, Matt Sharifi, Marco Tagliasacchi, and Mihajlo Velimirović. SPICE: Self-supervised pitch estimation. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 28:1118–1128, 2020.
- [5] Hendrik Schreiber and Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network. In *International Society for Mu- sic Information Retrieval (ISMIR) Conference*, pages 98–105, 2018.