Particle spectrograph

Wave operator and propagator

${\cal T}_{1^-}^{\# 1}{}_{lpha}$	0	0	0	0	0	0	0	0	0	0
$\Delta_{1^{-}\alpha}^{\#6}$	0	0	0	$-\frac{4}{\sqrt{3}(3a_0+4a_1k^2)}$	$\frac{2\sqrt{\frac{2}{3}}}{3a_0+4a_1k^2}$	$\frac{1}{-18a_0-24a_1k^2}$	$-\frac{\sqrt{5}}{6(3a_0+4a_1k^2)}$	$\frac{-\frac{8}{a_0} + \frac{1}{-3a_0 - 4a_1 k^2}}{3\sqrt{2}}$	$\frac{4}{3a_0} + \frac{1}{.9a_0.12a_1 k^2}$	0
$\Delta_{1^-\alpha}^{\#5}$	0	0	0	$-\frac{2\sqrt{\frac{2}{3}}}{3a_0+4a_1k^2}$	$\frac{2}{\sqrt{3}(3a_0+4a_1k^2)}$	$-\frac{1}{6\sqrt{2}(3a_0+4a_1k^2)}$	$-\frac{\sqrt{\frac{5}{2}}}{6(3a_0+4a_1k^2)}$	$\frac{8}{3a_0} + \frac{1}{-18a_0 - 24a_1 k^2}$	$-\frac{8}{a_0} + \frac{1}{-3 a_0 - 4 a_1 k^2}$ $3 \sqrt{2}$	0
$\Delta_{1^{-}\alpha}^{\#4}$	0	0	0	$-\frac{2\sqrt{\frac{5}{3}}}{3a_0+4a_1k^2}$	$\sqrt{\frac{10}{3}}$ $3a_0 + 4a_1 k^2$	$\frac{1}{12} \sqrt{5} \left(\frac{4}{a_0} + \frac{1}{3a_0 - 4a_1 k^2} \right)$	$-\frac{1}{3a_0} - \frac{5}{36a_0 + 48a_1k^2}$	$\sqrt{\frac{5}{2}} - \frac{\sqrt{\frac{5}{2}}}{18a_0 + 24a_1 k^2}$	$-\frac{\sqrt{5}}{18a_0+24a_1k^2}$	0
$\Delta_{1^{-}\alpha}^{\#3}$	0	0	0	$-\frac{2}{\sqrt{3}(3a_0+4a_1k^2)}$	$\sqrt{\frac{2}{3}}$ $3a_0 + 4a_1k^2$	$-\frac{5}{3a_0} + \frac{1}{-36a_0 - 48a_1 k^2}$	$\frac{1}{12}\sqrt{5}\left(\frac{4}{a_0} + \frac{1}{3a_0 - 4a_1k^2}\right)$	$-\frac{1}{\sqrt{2} (18a_0 + 24a_1 k^2)}$	$\frac{1}{-18a_0-24a_1k^2}$	0
$\Delta_1^{\#2}$	0	0	0	$\frac{2}{3}\sqrt{2}\left(-\frac{1}{a_0}+\frac{12}{3a_0+4a_1k^2}\right)$	$\frac{14}{3a_0} - \frac{8}{3a_0 + 4a_1 k^2}$	$\sqrt{\frac{2}{3}}$ $3a_0 + 4a_1k^2$	$\sqrt{\frac{10}{3}}$ $3a_0 + 4a_1 k^2$	$\frac{2}{\sqrt{3} (3a_0 + 4a_1 k^2)}$	$\frac{2\sqrt{\frac{2}{3}}}{3a_0 + 4a_1k^2}$	0
$\Delta_1^{\#1}{}_{\alpha}$	0	0	0	$\frac{64a_1k^2}{9a_0^2 + 12a_0a_1k^2}$	$\frac{2}{3}\sqrt{2}\left(-\frac{1}{a_0}+\frac{12}{3a_0+4a_1k^2}\right)$	$-\frac{2}{\sqrt{3}(3a_0+4a_1k^2)}$	$-\frac{2\sqrt{\frac{5}{3}}}{3a_0+4a_1k^2}$	$-\frac{2\sqrt{\frac{2}{3}}}{3a_0+4a_1k^2}$	$-\frac{4}{\sqrt{3}(3a_0+4a_1k^2)}$	0
$_{\alpha\beta} \; \Delta_{1}^{\#3}{}_{+\alpha\beta}$	0	0	4 a ₀	0	0	0	0	0	0	0
$\Delta_1^{\#2}$	$-\frac{2\sqrt{2}}{a_0}$	² ^a 0	0	0	0	0	0	0	0	0
$\Delta_{1}^{\#1}_{+}{}_{\alpha\beta}$	0	$\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
	$\Delta_{1}^{\#1} + \alpha^{eta}$	$\Delta_{1}^{\#2} + \alpha \beta$	$\Delta_{1}^{#3} + \alpha \beta$	$\Delta_{1}^{\#_{1}} +^{\alpha}$	$\Delta_1^{\#2} +^{\alpha}$	$\Delta_1^{\#3} +^{lpha}$	$\Delta_{1}^{\#4} +^{\alpha}$	$\Delta_1^{\#5} +^{lpha}$	$\Delta_{1}^{\#6} {\dagger}^{\alpha}$	$\mathcal{T}_{1}^{\#1} +^{lpha}$

	$\Delta_{2}^{\#1}$	$_{\beta} \Delta_{2}^{\#}$	2 ⁺ αβ	$\Delta_{2}^{\#3}$	\mathcal{T}	#1 2 ⁺ αβ	$\Delta_{2}^{\#1}{}_{\alpha\beta\chi}$	$\Delta_{2}^{\#2}\alpha\mu$	3 <i>x</i>
$\Delta_{2}^{\#1} \dagger^{\alpha \beta}$	$\frac{4}{a_0}$	()	0		0	0	0	
$\Delta_{2}^{\#2} \dagger^{\alpha \mu}$	0		2 20	0		0	0	0	
$\Delta_{2}^{#3} \dagger^{\alpha \beta}$	0	()	$\frac{4}{a_0}$		0	0	0	
$\mathcal{T}_{2}^{#1} \dagger^{\alpha \beta}$	0	()	0		$\frac{8}{a_0 k^2}$	0	0	
$\Lambda_2^{\#1} \dagger^{\alpha\beta}$	0	()	0		0	$\frac{4}{a_0}$	0	
$\Lambda_{2}^{\#2} \dagger^{\alpha\beta}$	0	()	0		0	0	$\frac{4}{a_0}$	
$\int_{1}^{\#1} \alpha$	0	0	O		0	0	0	0	c

 $\frac{1}{6} \sqrt{5} (a_0 - 4 a_1 k^2)$

 $\sqrt{\frac{5}{2}} (a_0 - 4 a_1 k^2)$

 $\frac{1}{3}(a_0-5a_1k^2)$

 $\sqrt{5} (a_0 - 2 a_1 k^2)$

 $\frac{a_0}{3\sqrt{6}}$ $\frac{1}{3}\sqrt{\frac{5}{6}}a_0$

 $-\frac{a_0}{\frac{18\sqrt{2}}{3\sqrt{3}}}$ $-\frac{a_0}{\frac{3\sqrt{3}}{3\sqrt{3}}}$

0

0

0

 $\mathcal{A}_{1}^{\#3} \, {\dagger}^{\alpha}$

0

0

0

 $\mathcal{A}_{1}^{\#4} + ^{lpha}$

 $\frac{5a_0}{12} - \frac{4a_1k^2}{3}$

 $\frac{a_0 - 8a_1 k^2}{6 \sqrt{2}}$

 $\frac{1}{6}\sqrt{5}(a_0-4a_1k^2)$

 $\frac{1}{6} (a_0 - 4 a_1 k^2)$

0

0

0

0

 $h_{1}^{\#1} \dagger^{\alpha}$

 $\frac{a_0-4a_1k^2}{6\sqrt{2}}$

 $\frac{a_0}{3\sqrt{3}}$

0

0

0

 $\mathcal{A}_{1}^{\#5} \, \dagger^{\alpha}$

0

0

0

 $\mathcal{A}_{1}^{\#6} \dagger^{lpha}$

0

 $\frac{a_0 - 8 a_1 k^2}{6 \sqrt{2}}$

 $\frac{1}{3}(a_0-2a_1k^2)$

 $\frac{1}{6} (a_0 - 4 a_1 k^2)$

 $\sqrt{5} (a_0 - 2 a_1 k^2)$

 $\frac{1}{3} (-a_0 - a_1 k^2)$

2 a 0 9

0

0

 $\mathcal{A}_{1}^{\#2} +^{\alpha}$

0 $\frac{2a_0}{3\sqrt{3}}$

 $-\frac{1}{3}\sqrt{\frac{2}{3}}\alpha_0$

^a0 3 √3

0

0

0

0

0

0

0

0

 $\mathcal{A}_1^{\#3} +^{\alpha\beta}$

0

0

0 0 3 √3

0 $\frac{a_0}{18\sqrt{2}}$

0 7 2 0 36

0

0

0

 $\mathcal{A}_{1}^{\#_{1}} \dagger^{\alpha}$

	$\mathcal{A}^{\sharp 1}_{2^+ lpha eta}$	$\mathcal{A}_{2}^{\#2}{}_{lphaeta}$	$\mathcal{A}_{2}^{\#3}{}_{lphaeta}$	$h_{2}^{\#1}{}_{\alpha\beta}$	$\mathcal{A}_{2}^{\sharp 1}{}_{lphaeta\chi}$	$\mathcal{A}_{2^{-}lphaeta\chi}^{\#2}$
$\mathcal{A}_{2}^{\sharp 1}\dagger^{lphaeta}$	<u>a₀</u> 4	0	0	0	0	0
$\mathcal{A}_{2}^{\#2}\dagger^{lphaeta}$	0	- <u>a₀</u> 2	0	0	0	0
$\mathcal{A}_{2}^{\#3}\dagger^{lphaeta}$	0	0	<u>a₀</u> 4	0	0	0
$h_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0	$-\frac{a_0 k^2}{8}$	0	0
$\mathcal{A}_{2}^{\sharp_{1}}\!\dagger^{lphaeta\chi}$	0	0	0	0	<u>a₀</u> 4	0
$\mathcal{A}_{2}^{\#_{2}}$ † $^{lphaeta\chi}$	0	0	0	0	0	<u>a₀</u> 4

		a #1	a #2	a #3	a #4	n#1	h#2	a #1
χ	I i	<i>3</i> 7 ₀ +	$\mathcal{A}_{0}^{#2}$			$h_{0}^{#1}$	$h_0^{\#2}$	$\mathcal{A}_0^{\#1}$
	$\mathcal{A}_{0^+}^{\sharp 1}\dagger$	<u>a₀</u> 6	$\frac{a_0}{\sqrt{6}}$	$\frac{a_0}{\sqrt{6}}$	$\frac{a_0}{\sqrt{3}}$	0	0	0
	$\mathcal{A}_{0}^{\#2}$ †	$\frac{a_0}{\sqrt{6}}$	0	<u>a₀</u> 2	$\frac{a_0}{2\sqrt{2}}$	0	0	0
	$\mathcal{A}_{0}^{#3}$ †	$\frac{a_0}{\sqrt{6}}$	<u>a₀</u> 2	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0
	$\mathcal{A}_{0}^{\#4}$ †	$\frac{a_0}{\sqrt{3}}$	$\frac{a_0}{2\sqrt{2}}$	$\frac{a_0}{2\sqrt{2}}$	<u>a₀</u> 2	0	0	0
	$h_0^{#1} \dagger$	0	0	0	0	$\frac{a_0 k^2}{4}$	0	0
	$h_{0}^{\#2}$ †	0	0	0	0	0	0	0
	$\mathcal{A}_{0}^{\sharp 1}$ †	0	0	0	0	0	0	$-\frac{a_0}{2} - 6 a_1 k$
			•	•	•		•	

	$\Delta_0^{\#1}$	$\Delta_0^{\#2}$	$\Delta_0^{\#}$
$\Delta_{0}^{\#1}$ †	$-\frac{2}{a_0}$	$\frac{\sqrt{\frac{2}{3}}}{a_0}$	$\frac{\sqrt{\frac{2}{3}}}{a_0}$
$\Delta_{0}^{#2}$ †	$\frac{\sqrt{\frac{2}{3}}}{a_0}$	$-\frac{13}{12 a_0}$	11 12 a
Δ ₀ ^{#3} †	$\frac{\sqrt{\frac{2}{3}}}{a_0}$	$\frac{11}{12 a_0}$	- 13 12 a
$\Delta_0^{\#4}$ †	$\frac{2}{\sqrt{3} a_0}$	$-\frac{1}{6\sqrt{2}a_0}$	$-\frac{1}{6\sqrt{2}}$
${\cal T}_{0}^{\#1}\dagger$	0	0	0
$\mathcal{T}_{0}^{\#2}$ †	0	0	0
$\Delta_0^{\#1}$ †	0	0	0

Fundamental fields $\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$ $\partial_{\alpha}\Delta^{\alpha\beta}_{\ \beta} == 2 \left(\partial_{\beta}\Delta^{\alpha}_{\ \alpha}^{\ \beta} + \partial_{\beta}\Delta^{\alpha\beta}_{\ \alpha}\right)$ $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$ $\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} +$ $2 \left(\partial_{\chi}\partial^{\chi}\Delta^{\beta\alpha}_{\ \beta} + \partial_{\chi}\partial^{\chi}\Delta^{\beta}_{\ \beta}^{\ \alpha}\right) ==$

Multiplicities

Source constraints SO(3) irreps $T_{0+}^{\#2} == 0$

 $\Delta_{0}^{#3} + 3 \Delta_{0}^{#2} == 2 \Delta_{0}^{#4}$

 $\mathcal{T}_{1}^{\#1}{}^{\alpha} == 0$

	$\Delta_0^{\#1}$	$\Delta_0^{\#2}$	$\Delta_0^{\#3}$	$\Delta_0^{\#4}$	$\mathcal{T}_{0}^{\#1}$	$\mathcal{T}_{0}^{\#2}$	$\Delta_0^{\#1}$
#1 0+ †	$-\frac{2}{a_0}$	$\frac{\sqrt{\frac{2}{3}}}{a_0}$	$\frac{\sqrt{\frac{2}{3}}}{a_0}$	$\frac{2}{\sqrt{3} a_0}$	0	0	0
# ² †	$\frac{\sqrt{\frac{2}{3}}}{a_0}$	$-\frac{13}{12 a_0}$	11 12 a ₀	$-\frac{1}{6\sqrt{2}a_0}$	0	0	0
^{#3} †	$\frac{\sqrt{\frac{2}{3}}}{a_0}$	11 12 a ₀	$-\frac{13}{12 a_0}$	$-\frac{1}{6\sqrt{2}a_0}$	0	0	0
#4 0+ †	$\frac{2}{\sqrt{3} a_0}$	$-\frac{1}{6\sqrt{2}a_0}$	$-\frac{1}{6\sqrt{2}a_0}$	$-\frac{1}{6a_0}$	0	0	0
^{#1} †	0	0	0	0	$\frac{4}{a_0 k^2}$	0	0
^{#2} ₀ +	0	0	0	0	0	0	0
^{#1} †	0	0	0	0	0	0	$-\frac{2}{a_0+12a_2}$
					<u>"</u>		

U	U	U	U	
0	0	0	$-\frac{2}{a_0+12a_1k^2}$	
$-2 \partial_{\chi} \partial^{\alpha} \Delta^{\beta \chi}_{\beta} +$	$O_XO'\Delta'\beta$		$a_0 + 12 a_1 k^2$	$\mathcal{A}_{\alpha\beta\chi} + \frac{1}{72} a_0 (10 \mathcal{A}_{\alpha\chi}^{\chi} \mathcal{A}_{-\beta}^{-1} - 10 \mathcal{A}_{-\alpha}^{-\gamma} \mathcal{A}_{\beta\chi}^{\chi} + 32$ $\mathcal{A}^{\alpha\beta}_{\alpha} \mathcal{A}_{\chi}^{\chi} + 4 \mathcal{A}_{\alpha}^{\alpha}^{\beta} \mathcal{A}_{\chi}^{\chi} - 36 \mathcal{A}^{\alpha\beta\chi} (\mathcal{A}_{\beta\chi\alpha} + \partial_{\beta}h_{\alpha\chi}) - 18 \mathcal{A}_{\alpha}^{\alpha}^{\beta} \partial_{\beta}h_{\chi}^{\chi} + 32$
	ide d		uc X8	o m S

Total constraints/gauge generators:

Quadratic (free) action S ==

18 $\mathcal{A}^{\alpha\beta}_{\alpha} \partial_{\beta}h_{\chi}^{X} - 18 h_{\chi}^{X} \partial_{\beta}\mathcal{A}^{\alpha}_{\alpha}^{\beta} + 18 h_{\chi}^{X} \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} -$ 36 $h_{\alpha\chi} \partial_{\beta}\mathcal{A}^{\alpha\beta\chi} + 18 h^{\alpha\beta} \partial_{\beta}\partial_{\alpha}h_{\chi}^{X} - 9 \partial_{\beta}h_{\chi}^{X} \partial^{\beta}h_{\alpha}^{\alpha} +$ 36 $\mathcal{A}^{\alpha}_{\alpha} \partial_{\beta}\mathcal{A}^{\alpha\beta\chi} + 18 h^{\alpha\beta} \partial_{\beta}\partial_{\alpha}h_{\chi}^{X} - 36 h^{\alpha\beta} \partial_{\lambda}\partial_{\beta}h_{\chi}^{X} +$ 18 $h^{\alpha}_{\alpha} \partial_{\lambda}\partial_{\beta}h^{\beta\chi} + 18 h^{\alpha\beta} \partial_{\lambda}\partial_{\mu}h_{\alpha\beta} - 18 h^{\alpha}_{\alpha} \partial_{\lambda}\partial_{\mu}h_{\beta} -$ 18 $\partial_{\beta}h_{\alpha\chi}\partial^{\chi}h^{\alpha\beta} + 9 \partial_{\chi}h_{\alpha\beta}\partial^{\chi}h^{\alpha\beta} + 36 h_{\beta\chi}\partial^{\chi}\partial^{\chi}h^{\beta} -$ 2 $\partial_{\alpha}\mathcal{A}_{\mu\mu}\partial^{\chi}\partial^{\mu}\mathcal{A}^{\alpha\beta\chi} - 2 \partial_{\alpha}\mathcal{A}_{\chi\beta\mu}\partial^{\mu}\mathcal{A}^{\alpha\beta\chi} +$ 2 $\partial_{\alpha}\mathcal{A}_{\mu\mu}\partial^{\mu}\partial^{\alpha}\partial^{\mu}\mathcal{A}^{\alpha\beta\chi} - 2 \partial_{\alpha}\mathcal{A}_{\chi\beta\mu}\partial^{\mu}\mathcal{A}^{\alpha\beta\chi} +$ 2 $\partial_{\alpha}\mathcal{A}_{\mu\chi}\partial^{\mu}\partial^{\mu}\partial^{\alpha}\partial^{\mu}\mathcal{A}^{\alpha\beta\chi} - 2 \partial_{\beta}\mathcal{A}_{\chi\mu}\partial^{\mu}\partial^{\mu}\partial^{\alpha}\partial^{\mu}\mathcal{A}^{\alpha\beta\chi} +$ 2 $\partial_{\alpha}\mathcal{A}_{\mu\chi}\partial^{\mu}\partial^{\mu}\partial^{\alpha}\partial^{\mu}\mathcal{A}^{\alpha\beta\chi} - 2 \partial_{\beta}\mathcal{A}_{\chi\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
---	--

Massive and massless spectra

Massive particle				
Pole residue:	$\frac{25}{4a_1} > 0$			
Polarisations:	3			
Square mass:	$-\frac{3a_0}{4a_1} > 0$			
Spin:	1			
Parity:	Odd			

k^{μ} ?

	Massive partic	le
? /	Pole residue:	$\frac{1}{6a_1} > 0$
$J^P = 0^-$	Polarisations:	1
$\frac{1}{k^{\mu}}$?	Square mass:	$-\frac{a_0}{12a_1} >$
?	Spin:	0
	Parity:	Odd

? k^{μ}	
	,
?	

uadratic pole	•	
ole residue:	$-\frac{1}{a_0} > 0$	
olarisations:	2	

Unitarity conditions

 $a_0 < 0 \&\& a_1 > 0$

