汇编语言程序设计

习题一 (2019年10月8日交)

- 1. 将下列数字转换成相应形式:
 - (a) 求 (-27)₁₀ 带符号的 2 进制数
 - (b) 求 (-35)10 的 2 进制补码
 - (c) 求 (213)₁₆ 的 10 进制数
 - (d) 求 (55.875)₁₀ 的不带符号的 2 进制数
 - (e) 求 2 进制 (-13)₁₀ 以 32 为偏移量的移码
 - (f) 求 (132.2)4 的 16进制数
- 2. 将 (a) 0.2 转换为 8-bit 无符号 2 进制小数 (b) 将 0.00012 转换为 16-bit 无符号 2 进制小数
- 3. 将下列 2 进制数转换成 IEEE-754 格式:
 - (a) $-1.00111_2 \times 2^{-1}$ (双精度)
 - (b) $1.1011_2 \times 2^5$ (单精度)
- 4. 计算
 - (a) 用带符号的 BCD 码表示 (641)10 和 (-259)10 的 10 的补码
 - (b) 求 (121)₁₀ 和 (-178)₁₀ 之和,使用带符号的 BCD 补码形式计算。

- 5. 下列的两个 16-bit 十六进制数在标准 Intel 小端 (little endian) 格式的内存中如何存储:
 - (a) 1234H
 - (b) A122H
- 6. 应用 IEEE-754 双精度格式, 求下面的值(不是找比特的排列形式):
 - (a) 可表达绝对值的最大正数
 - (b) 标准化后绝对值的最小的非零正数
 - (c) 所表达相邻的两个数之间的最小间隙是多少?
 - (d) 所表达相邻的两个数之间的最大间隙是多少?
 - (e) 可表达的标准化数的数目(包括0但不包括 $\pm\infty$)
- 7. 填空:将答案填入表格(Table 1)中,一个 8-bit 的带符号数所表示的内容:(答案用 10 进制整数表示)

 Table 1: 8-bit 二进制码

 8-bit 带符号原码 反码 补码

 数值最大的正数

 数值最大的负数

 可表示多少不同数值

- 8. 回答下面问题:
 - (a) 什么是分页系统的内存花费? 80386 中 2G 的分页存储系统, 计算需要多少内存花费才能实现这样一个分页存储系统?
 - (b) 什么是分页系统的时间花费?建议一个减少 80386 分页系统时间花费的方法。
- 9. 填写下表 Table 2,比较 80386 系统中实模式和保护模式寻址方式的异同:

Table 2: 寻址模式

实模式 保护模式

段的大小

段起始地址

段寄存器内容

- 10. 以下为 Pentium 4 寄存器里的内容,请确定内存中的位置(物理地址)
 - (a) DS=2000H, EAX=00003000H
 - (b) DS=1A00H, ECX=00002000H
 - (c) DS=C000H, ESI=0000A000H
 - (d) SS=8000H, ESP=00009000H
 - (e) DS=1239H, EDX=0000A900H
- 11. 在一个保护模式寻址的系统中,如果 DS=0105H,将选择哪个描述符?将 指向总体还是本地描述符表?所选的优先级是什么?
- 12. 在 Figure 1 中的存储系统采用分页寻址模式,总容量为 4G-byte,假设不可见寄存器 CR3 中的内容是 2000H:
 - (a) 把下列逻辑地址转换成物理地址:
 - i. 000C8090H
 - ii. 00001000H
 - iii. 000CA900H
 - (b) 如果在地址 00002004H 下存放的内容是 00002003H, 找出逻辑地址 00401001H 的物理地址,并把这个地址下存放的内容以字节写出来。
 - (c) 如果 CR3 中的内容变为 3000H, 找出逻辑地址 00800004H 的物理地址。存储字的内容是什么?

Figure 1: 页目录和页表

- 13. 在 Pentium-Pro 系统中, 共有 8 种数据寻址模式: i. 寄存器寻址 ii. 立即数寻址 iii. 直接寻址 iv. 寄存器间接寻址 v. 基址加偏移量(变址寻址) vi. 寄存器相对寻址 vii. 基址相对加偏移量 viii. 偏移量相对寻址。假设 Table 3 中, 是内存的内容,寄存器 EDX=EBX=00000004H, ESI=00000002H, ARRAY=1010H, DS=100H。在下列汇编语句表达式中回答下面三个问题:
 - (a) 指出属于那种寻址方式(提示:可能两种寻址模式同时存在)
 - (b) 指出被传输的数据是什么
 - (c) 指出数据移动的起始位置和终止位置
 - i. MOV AX, BX
 - ii. MOV AL,3AH
 - iii. MOV AX,[1012H]
 - iv. MOV CL,[BX]
 - v. MOV BP,[BX+SI]
 - vi. MOV CL,[BX+4]

vii. MOV ARRAY[BX+SI],DX

Table 3: 寻址模式

地址			1001	HEX 内容	<u> </u>			
1000H	10	02	20	11	10	13	14	10
1008H	01	31	21	22	04	51	13	12
1010H	12	12	03	33	21	03	10	19
2010H	10	11	12	10	14	15	17	16

- 14. 假设寄存器 AX 中的内容是 3A8CH,请找出执行下列语句之后 AX 的内容。(注意,下列语句不是顺序执行,而是各自单独运行,所以总是使用AX 中的原始内容)
 - (a) CMP AX,BX
 - (b) SUB AL,AH
 - (c) MOV AX,55H
 - (d) NEG AX
 - (e) ROL AL,1
- 15. 用汇编语言语句编写逻辑运算命令,对寄存器 AX 进行如下操作:
 - (a) 将寄存器中最后的四位置为 1;
 - (b) 再将寄存器最高的三位置为 0; 最后,
 - (c) 将寄存器的第7,8,和9位求反。