## **CHEM202**

# M. C. Escher Fish & Frogs

# Stereochemistry Lecture 8

Steric Acceleration

#### **Lecture Problem**

How would you make  $11\beta$ -acetoxyandrostan- $3\beta$ -ol from androstane- $3\beta$ , $11\beta$ -diol?

#### **Steric Compression**

Look at this in the setting of the cyclohexane ring. Axial substituents suffer destabilising 1,3-diaxial interactions:



- In reaction where an axial bond is broken:
  - Relief of steric strain may be considerable. May lead to a rate enhancement
  - i.e. an axial derivative may react faster than its equatorial epimer
- Characteristic feature:
  - Reaction takes place at ring atom rather than at group attached to ring - Endocyclic attack

#### **Oxidation of Secondary Alcohols**

Chromic acid (H<sup>+</sup>/Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup>) converts 2° alcohols into ketones:

$$R^{1}$$
  $C$   $R^{2}$   $H^{+}/Cr_{2}O_{7}^{2-}$   $R^{1}$   $R^{2}$ 

#### Evidence for slow step:

- Isotope labelling studies:
  - Based on the fact that a C-2H bond is stronger than a C-1H bond
  - Compare oxidation rates for cholestan-3α-ol and 3β-deuterocholestan-3α-ol get a ratio of 7:1
  - Only expect a large rate difference if the C-H bond is broken in the slow step of the reaction (rate determining step)
- Reaction rate increases if a stronger base is used

#### **Axial Reacts Faster than Equatorial**

Note that the rate controlling step involves:

- Conversion of a tetrahedral (sp³) carbon into a planar (sp²)
   geometry attack at an endocyclic centre
  - For an axial ROH get relief of strain from 1,3-diaxial interactions
  - For most equatorial ROH get little steric relief
- Removal of a proton by a base (H<sub>2</sub>O) exocyclic attack
  - This is easier for an equatorial hydrogen

Thus, for an axial alcohol the two factors combine. An axial alcohol oxidises faster than its equatorial epimer

#### **Simple Cyclohexanols**

#### 4-tert-butylcyclohexanols:

- Cis-isomer:
  - Has an axial OH



- Reaction removes 1,3-diaxial interactions
- H<sub>2</sub>O has easy approach towards the equatorial hydrogen

#### **Simple Cyclohexanols**

#### 4-tert-butylcyclohexanols:

- Cis-isomer:
  - Has an axial OH



- Reaction removes 1,3-diaxial interactions
- H<sub>2</sub>O has easy approach towards the equatorial hydrogen
- *Trans*-isomer:
  - Has an equatorial OH



- Reaction provides little steric relief
- Approach of H<sub>2</sub>O to the axial hydrogen is more difficult
- Thus, the cis-isomer reacts more rapidly than the trans

#### **Steroidal Alcohols**

Relative rate data for oxidation of a range of cholestanols:

| Axial |               | Equato | orial           | _    |                         |
|-------|---------------|--------|-----------------|------|-------------------------|
|       | $1\alpha$ -ol | 13.0   | 1β-ol           | 9.7  |                         |
|       | 2β-ol         | 20.0   | 2α-ol           | 1.3  | 2 Cholestane cholestane |
|       | 3α-ol         | 3.0    | 3β-ol           | 1.0  |                         |
|       | 4β-ol         | 35.0   | 4α-ol           | 2.0  |                         |
|       | 6β-ol         | 36.0   | 6α-ol           | 2.0  |                         |
|       | 7α-ol         | 12.3   | 7β-ol           | 3.3  |                         |
|       | 11β-ol        | 900.0  | 11 $\alpha$ -ol | 14.0 |                         |

#### Note:

- An axial ROH always reacts faster than its equatorial epimer
- The most reactive axial ROH are the most sterically hindered
- A hindered equatorial ROH will also react rapidly

#### **Selective Syntheses**

- Use combinations of oxidation, acetylation and hydrolysis
- Use principles discussed over the last 2 lectures
- Design selective syntheses of multifunctional steroids
  - A game of logic

# Game Rules (Limited sub-set)



#### **Lecture Problem**

Design syntheses of:

- 2α-hydroxyandrostan-6-one
- $6\beta$ -hydroxyandrostan-2-one starting from androstane- $2\alpha$ ,  $6\beta$ -diol

#### Selectivity

- Axial Groups
  - oxidation fast
  - hydrolysis and esterification slow
- Equatorial Groups
  - oxidation slow
  - hydrolysis and esterification fast

#### **Protection**

OAc group is not oxidised



#### Recap/Tute

Represent as regular polygons

Each unspecified vertex is a C with enough H to give 4 bonds Name by adding *cyclo* to alkane name

Molecular shapes dictated by minimisation of:

- Bond Angle Strain bond angles will be as close as possible to the ideal
- Torsional Strain adjacent bonds will be as close to staggered as possible
- Van der Waals Interactions close approach of non-bonded atoms will be avoided if possible

#### **Irreversible Ring Formation**

- Irreversible ring formations are controlled by the rate of product formation (kinetic control)
- The lower the activation energy, the faster the product will form



#### **Reversible Ring Formation**

- These reactions are under thermodynamic control
- Equilibrium composition reflects the stability of the ring system
- Cyclized products may only be isolated if the ring has little strain

#### **Hemiacetal Formation**

 Results when an alcohol and an aldehyde are treated with acid (CHEM 191)

#### **Cyclic Ethers**

- Alkoxide + alkyl halide ⇒ ether (S<sub>N</sub>2 reaction CHEM 191)
- If both functions are part of the same molecule ⇒ cyclic ether
- Not reversible halide ion (nucleophile) cannot displace alkoxide ion (poor leaving group)
- Rate of reaction strongly dependent on ring size. Observations:

$$-3 \approx 5 > 6 > 4 \approx 7 > 8$$



- 8-membered ring:
  - High degree of polymerisation
  - Rate of internal reaction is very slow
  - Intermolecular reaction becomes competitive
- 9 to 11-membered rings do not form

#### The anti-periplanar Transition State for E2

The full geometric requirements for E2 are described as *anti-periplanar*.

- •X,C,C,Y are in one plane
- •X and Y are on opposite sides of the C-C bond

This geometry allows for maximum orbital overlap for formation of the new  $\pi$ -bond:



- geometry of products
- ease with which the reaction proceeds

#### Newman Projections of Cyclohexane

chair form – ideal, all bonds staggered



boat - 2 sides with eclipsing bonds



### **Exam Tips**

- Past papers are always a good idea
- Study now to save work later
- Come and see me if you need help