23.01

A Note About This Chapter

- Last chapter was fairly brutal
 - Physics is really about making hard problems easy with abstraction
 - * This chapter will be lesse labor-intensive
- Through *symmetry*, we can skip parts of problems
 - Like how we only summed the vertical components of $d\vec{E}$ in 22.04

Gauss' Law

- Gauss' law = a law that relates net charge of a volume enclosed by a closed surface and the \vec{E} field about that closed surface
 - Discovered by Carl Friedrich Gauss
 - * Lived from 1777 until 1855
- Imagine a particle of positive charge q
 - Now superimpose a sphere centered at the particle
 - * The surface of the sphere is called a Gaussian surface
 - * The \vec{E} vectors around the surface point radially outwards
 - · Because the particle is *positive*
 - * Those same vectors are said to **pierce** the surface of the sphere
- The essential utility of Gauss' Law is that we can infer things about the net charge of an object by examining the \vec{E} field about its outer surface
 - Or, equivalently, we can use the net charge to infer information about the \vec{E} about the object's outer surface

Electric Flux

- Electric flux = a metric of how much the \vec{E} field pierces the guassian surface
 - The symbol for **electric flux** is ϕ
- The best way to learn about this is to just do a bunch of examples

Electric Flux On a Flat Surface in a Uniform \vec{E} Field

- Imagine we had a uniform \vec{E} field
 - Now superimpose a flat surface of area A
 - * Orient it along with yz-plane with its center point at the origin
 - Denote the angle that the uniform \vec{E} vectors make with the x-axis as θ
 - Then, we can imagine splitting the \vec{E} vectors into two components
 - * One that directly pierces the surface
 - · Directly perpandicular to the surface
 - $\cdot\;$ This vector is the ${\bf electric}$ flux for any given differential area
 - * One that doesn't pierce the surface at all
 - · Directly parallel to the surface
- We can define the magnitude of the electric flux in a subarea of A as

$$|\vec{E}_x| = |\vec{E}|cos(\theta)$$

- This is valid, but there is a more elegant solution
 - This value can ac