

电子信息科学研究院 网络空间安全分院

Continuously Tracking Core Items in Data Streams with Probabilistic Decays

Junzhou Zhao¹ Pinghui Wang¹ Jing Tao¹ Shuo Zhang¹ John C.S. Lui² ¹Xi'an Jiaotong University ²The Chinese University of Hong Kong

Background & Motivation

- Data streams are ubiquitous:
- email stream, tweets stream, news stream, network traffic stream, etc
- geo-location stream generated by taxis, IoT devices, LBSNs, etc.
- user consuming record stream from Amazon, Taobao, etc
- Applications:
 - real-time trending topic detection
 - network security monitoring
 - online collaborative filtering
- However, their high speed and large volume cause troubles.
- Core Items: informative or representative items in a data stream.
- Core Items Tracking (CIT): a streaming algorithm that can continuously track core items in a data stream in real-time.

• The right to be forgotten:

(a) insertion-only stream

(b) sliding-window stream

(c) probabilistic-decaying stream (this work)

Problem Formulation

- Utility Function: measuring the informativeness of a set of items: $f: 2^V \mapsto \mathbb{R}_{\geq 0}$
- Monotonicity: $f(S) \leq f(T), \forall S \subseteq T \subseteq V$.
- Submodularity: $f(S \cup \{e\}) f(S) \ge f(T \cup \{e\}) f(T), \forall S \subseteq T \subseteq V, e \in V.$
- aka the dimension return property [Nemhauser et al. 1978]
- Probabilistic-Decaying Stream (PDS) model:
 - At time t, an item e arrived at time $t_e \le t$ participates in analysis with probability $p(e,t) = h_e(t-t_e)$
 - $h_e \colon \mathbb{Z}_{\geq 0} \mapsto [0,1]$ is an item-specific decaying function.
 - $h_e(age)$ decreases as age increases, e.g., $h_e(age) = p_e^{age}$, $p_e \in (0,1)$.

- The Core Items Tracking (CIT) problem:
 - Given a monotone submodular utility function f, a PDS with item-specific decaying function h_e , and a budget k > 0
 - Want to find a subset $S_t^* \subseteq V$ at any query time t, s.t.

$$S_t^* = \underset{S \subseteq V \land |S| \le k}{\operatorname{arg max}} \, \mathbb{E}_{h_e}[f(S)|\mathcal{D}_t]$$

where $\mathcal{D}_t \triangleq \{e : t_e \leq t\}$ denotes the items arrived before t.

A Monte-Carlo Framework

- Expensive to calculate $\mathbb{E}[f(S)|\mathcal{D}_t]$ exactly
- need to consider the participation possibility of each item in S, e.g.,

$$\mathbb{E}[f(\{a,b\})|\mathcal{D}_t] = \underbrace{p(a,t)p(b,t)f(\{a,b\})}_{\text{both a and b participate in the analysis}} + \underbrace{p(a,t)(1-p(b,t))f(\{a\})}_{\text{only a participates in the analysis}} + \underbrace{(1-p(a,t))p(b,t)f(\{b\})}_{\text{only b participates in the analysis}}$$

- exactly calculating $\mathbb{E}[f(S)|\mathcal{D}_t]$ requires $O(2^{|S|})$ oracle calls.
- Monte-Carlo Approximation:
 - Generate n samples of the PDS, and estimate $\mathbb{E}[f(S)|\mathcal{D}_t]$.

By Monte-Carlo approximation, we have

$$F(S) \triangleq \frac{1}{n} \sum_{i=1}^{n} f(S \cap \mathcal{D}_{t}^{(i)}) \xrightarrow{a.s.} \mathbb{E}[f(S)|\mathcal{D}_{t}], \quad n \to \infty.$$

- The number of oracle calls reduces from $O(2^{|S|})$ to O(n).
- ullet F(S) is still monotone and submodular.
- Maintaining data stream samples:
 - naive sampling/incremental sampling/lifetime sampling

Algorithms

Overview

PNDCIT

PDCIT

Algorithm	Update Time	Memory	Approximate Ratio
PNDCIT	$O(n\epsilon^{-1}\log k)$	$O(nk\epsilon^{-1}\log k)$	$1/2 - \epsilon$
PDCIT	$O(Ln\epsilon^{-1}\log k)$	$O(Lnk\epsilon^{-1}\log k)$	$1/2 - \epsilon$
PDCIT+	$O(n\epsilon^{-2}\log^2 k)$	$O(nk\epsilon^{-2}\log^2 k)$	$1/4 - \epsilon$

• PNDCIT: probabilistic non-decaying case, i.e., $p(e,t) \equiv p_e$

 $I(e_1) = [0, 0, 0, 1]^T$ $I(e_2) = [0, 1, 1, 1]^T$ $I(e_3) = [1, 0, 1, 0]^T$

PDCIT: probabilistic decaying case

 $I_0(e) = [1, 1, 1, 1]^T$ $I_1(e) = [1, 1, 0, 1]^T$ $I_{\infty}(e) = [0, 0, 0, 0]^T$

 PDCIT+: improve efficiency $g_t(l), l = 1, 2, \dots$

Experiments

Data

data stream	item	length	time period
DBLP	author	371,690	1936 - 2018
MemeTracker	article	714,072	1/2009 (one month)
math. Stack Exchange	question	955, 284	7/2010 - 6/2018
${\sf StackOverflow}$	question	2,904,450	1/2015 - 3/2016

- Goal: maintain k most representative items that jointly have the maximum coverage, i.e., $f(S) = |\bigcup_{e \in S} e|$.
- PDCIT vs PDCIT+:

Solution quality:

• Scalability:

