Friedrich-Schiller-Universität Jena

Seminar I - 06.01.2016 & 13.01.2016

Introduction to Optical Modeling

Site Zhang <u>site.zhang@uni-jena.de</u>
Applied Computational Optics Group - ACOG
<u>www.applied-computational-optics.org</u>

Warm-up: Ray tracing vs. Field Tracing

RAY TRACING

Start to investigate the performance of your optical system using 3D ray distribution, dot diagrams of ray positions and directions, and OPL.

GEOMETRIC FIELD TRACING

Switch from conventional to smart rays and you quickly receive additional information about phase, polarization, coherence, and interference.

UNIFIED FIELD TRACING

Combine geometric with numerous diffractive modeling techniques to include more wave-optical effects in your simulation.

- When do we use ray tracing / field tracing?

Warm-up: Ray tracing vs. Field Tracing

- Example: high NA lens system
 - Result of ray tracing

Result of geometric field tracing (behind last lens)

Warm-up: Ray tracing vs. Field Tracing

- Example: high NA lens system
 - Result of ray tracing

Result of unified field tracing (in focal plane)

Fields in Both Domains

 In the lecture, the relation between the real field in temporal domain and its Fourier transformation is shown

$$\boldsymbol{E}^{(r)}(\boldsymbol{r},\omega) = \mathcal{F}_{\omega}\bar{\boldsymbol{E}}^{(r)}(\boldsymbol{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \bar{\boldsymbol{E}}^{(r)}(\boldsymbol{r},t) e^{+i\omega t} dt$$

Then we truncate the negative frequencies

$$\boldsymbol{E}(\boldsymbol{r},\omega) = \begin{cases} 2\boldsymbol{E}^{(r)}(\boldsymbol{r},\omega) & \text{if } \omega \geq 0\\ 0 & \text{otherwise} \end{cases}$$

and define the complex field in temporal domain as

$$\bar{\boldsymbol{E}}(\boldsymbol{r},t) = \boldsymbol{\mathcal{F}}_{\omega}^{-1}\boldsymbol{E}(\boldsymbol{r},\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \boldsymbol{E}(\boldsymbol{r},\omega) \exp\left(-\mathrm{i}\omega t\right) \,\mathrm{d}\omega$$

• The relation between the real and complex electric fields reads $\bar{\pmb{E}}^{(r)}(\pmb{r},t)=\Re(\bar{\pmb{E}}(\pmb{r},t))$

Fields in Both Domains

 It is usually convenient to represent a field in frequency domain. Especially for a harmonic (monochromatic) field, which can be defined as

$$E(r;\omega) = E(r)\delta(\omega - \omega_0)$$

- Any other field can be decomposed into harmonic fields, either in a coherent or incoherent way.
- Thus electromagnetic fields are, in most cases, represented by harmonic fields in VirtualLab, i.e., in frequency domain.

How to convert fields between both domians?

Fields in Both Domains

In frequency domain

In time domain

[note: animation in one optical cycle]

Electromagnetic Field Components

Field Components

 Maxwell's equations in homogeneous isotropic media in frequency domain are given

$$\nabla \times \boldsymbol{E}(\boldsymbol{r}, \omega) = i\omega \mu_0 \boldsymbol{H}(\boldsymbol{r}, \omega)$$

$$\nabla \times \boldsymbol{H}(\boldsymbol{r}, \omega) = -i\omega \epsilon_0 \check{\epsilon}_r(\omega) \boldsymbol{E}(\boldsymbol{r}, \omega) ,$$

$$\nabla \cdot \boldsymbol{E}(\boldsymbol{r}, \omega) = 0 ,$$

$$\nabla \cdot \boldsymbol{H}(\boldsymbol{r}, \omega) = 0 .$$

and they describe the relation between the **six** field components

$$\mathbf{E} = (\mathbf{E}_x, \mathbf{E}_y, E_z)$$
$$\mathbf{H} = (H_x, H_y, H_z)$$

These components are NOT independent!

Field Components

For an ideal plane wave, the following relation is known

$$\breve{E}_z = -\frac{\check{k}_x \breve{E}_x + \check{k}_y \breve{E}_y}{\check{k}_z} \qquad \qquad \breve{H} = \sqrt{\frac{\varepsilon_0}{\mu_0}} \frac{\check{k} \times \breve{E}}{k_0}$$

$$m{reve{H}} = \sqrt{rac{arepsilon_0}{\mu_0}} rac{m{k} imes m{E}}{k_0}$$

Plane wave in VirtualLab

- finite power
- smooth edge

Field Components

