DM 12. Corrigé

1 Actions de groupes

1.1 Exemples

1°) a) Dans cette question, on pose donc $h \times x = hx$ pour tout $h \in H$ et $x \in G$.

Pour tout $x \in G$, $1_H \times x = 1_G x = x$

et pour tout $g, h \in H$ et $x \in G$, $g \times (h \times x) = g(hx) = (gh)x = (gh) \times x$,

donc il s'agit bien d'une action du groupe H sur l'ensemble G.

b) Dans cette question, on pose $h \times g = hgh^{-1}$ pour tout $h \in H$ et $g \in G$.

On vérifie que pour tout $g \in G$, $1_H \times g = g$ et que, pour tout $h, h' \in H$ et $g \in G$, $h \times (h' \times g) = h \times (h'gh'^{-1}) = hh'gh'^{-1}h^{-1} = (hh') \times g$, donc il s'agit bien également d'une action du groupe H sur l'ensemble G.

2°) Supposons que l'on dispose d'une action du groupe G sur un ensemble E, que l'on note $G \times E \longrightarrow E$ $(g,x) \longmapsto g \times x$

Pour tout $g \in G$ et $X \in \mathcal{P}(E)$, posons $g \times X = \{g \times x / x \in X\}$.

Ainsi, pour tout $X \in \mathcal{P}(E)$, $1_G \times X = X$.

Soit $g, h \in G$ et $X \in \mathcal{P}(E)$. $g \times (h \times X) = g \times \{h \times x/x \in X\} = \{g \times (h \times x)/x \in X\}$, donc $g \times (h \times X) = (gh) \times X$. On a donc bien ainsi défini une opération du groupe G sur l'ensemble des parties de E.

3°) Pour tout $x \in E$, $1_{S(E)} \times x = Id_E(x) = x$.

Soit $\sigma, \sigma' \in \mathcal{S}(E)$ et $x \in E$. $\sigma \times (\sigma' \times x) = \sigma \times (\sigma'(x)) = \sigma(\sigma'(x)) = (\sigma \circ \sigma')(x) = (\sigma \sigma') \times x$. Il s'agit donc bien d'une action du groupe $\mathcal{S}(E)$ sur l'ensemble E.

1.2 Théorème de Cayley

4°) Soit $g \in G$. Pour tout $x \in E$,

 $\gamma_g \circ \gamma_{g^{-1}}(x) = \gamma_g(g^{-1} \times x) = g \times (g^{-1} \times x) = (gg^{-1}) \times x = x$, donc $\gamma_g \circ \gamma_{g^{-1}} = Id_E$. De même on vérifie que $\gamma_{g^{-1}} \circ \gamma_g = Id_E$.

Ainsi, γ_g est une bijection dont l'application réciproque est $\gamma_{g^{-1}}$.

- 5°) Soit $g, h \in G$. Pour tout $x \in E$, $\gamma_h \circ \gamma_g(x) = h(gx) = (hg)x = \gamma_{hg}(x)$. Ainsi, $\gamma_h \circ \gamma_g = \gamma_{hg}$, ce qui prouve que l'application $\gamma: G \longrightarrow \mathcal{S}(E) \atop g \longmapsto \gamma_g$ est un morphisme de groupes.
- **6°)** Soit G un groupe fini de cardinal $n \in \mathbb{N}^*$.

Faisons opérer G sur lui-même par translation à gauche (cf question 1.a).

La question précédente fournit alors un morphisme γ de G dans $\mathcal{S}(G)$.

Montrons qu'il est injectif.

Soit $g \in G$ tel que $\gamma_g = Id_G$. Ainsi, pour tout $h \in G$, $h = Id_G(h) = \gamma_g(h) = gh$. En particulier, pour $h = 1_G$, on obtient que $g = 1_G$. Donc $Ker(\gamma) = \{1_G\}$ et γ est un morphisme injectif.

Ainsi G est isomorphe à $\gamma(G)$ qui est un sous-groupe de $\mathcal{S}(G)$.

G est de cardinal n, donc il existe une bijection b de G dans $\{1, \ldots, n\}$.

Notons
$$\varphi: \mathcal{S}(G) \longrightarrow \mathcal{S}_n$$

 $\sigma \longmapsto b\sigma b^{-1}$.

Pour tout $\sigma, \sigma' \in \mathcal{S}(G)$, $\varphi(\sigma\sigma') = b\sigma\sigma'b^{-1} = (b\sigma b^{-1})(b\sigma'b^{-1}) = \varphi(\sigma)\varphi(\sigma')$, donc φ est un morphisme de groupes.

C'est même un isomorphisme, dont l'isomorphisme réciproque est $S_n \longrightarrow S(G)$ $\varphi \circ \gamma$ est alors un morphisme injectif de G dans S_n , donc G est isomorphe à $(\varphi \circ \gamma)(G)$ qui est bien un sous-groupe de S_n .

1.3 Théorème de Lagrange

7°) Soit $x \in E$. $x = 1_G \times x$, donc x R x : R est réflexive.

Soit $x, y \in E$ tel que x R y. Il existe $g \in G$ tel que $y = g \times x$.

Alors $g^{-1} \times y = g^{-1} \times (g \times x) = x$, donc y R x. Ceci montre que R est symétrique.

Soit $x, y, z \in E$ tels que x R y et y R z. Il existe $g, g' \in G$ tels que $y = g \times x$ et $z = g' \times y$. Alors $z = (g'g) \times x$, donc x R z. Ceci montre que R est transitive.

Ainsi, R est bien une relation d'équivalence sur E.

Soit $a, b \in E$. $b \in \overline{a} \iff [\exists g \in G, b = ga], \text{ donc } \overline{a} = \{ga/g \in G\}.$ On pourra noter $\overline{a} = G \times a$.

 8°) Faisons opérer H sur G par translation à gauche (cf question 1.a).

Les orbites des éléments de G sous cette action constituent une partition de G, donc (en notant |X| le cardinal d'un ensemble X), $|G| = \sum_{c \in G/R} |c|$.

Soit $c \in G/R$. D'après la question précédente, il existe $g \in G$ tel que $c = Hg = \{hg/h \in H\}$.

L'application $\begin{matrix} H & \longrightarrow & Hg \\ h & \longmapsto & hg \end{matrix}$ est une bijection dont la bijection réciproque est

$$\begin{array}{ccc} Hg & \longrightarrow & H \\ x & \longmapsto & xg^{-1} \end{array}, \text{ donc } |c| = |Hg| = |H|.$$

On en déduit que $|G| = |G/R| \times |H|$, ce qui permet de conclure.

2 Le groupe symétrique de degré n

2.1 Décomposition en produit de cycles

 9°) Notons $G = Gr(\sigma)$: c'est le sous-groupe de S_n engendré par σ .

On fait opérer G sur \mathbb{N}_n selon la question 3, en convenant que, pour tout $s \in G$, pour tout $x \in \{1, \ldots, n\}, s \times x = s(x)$.

Alors, pour $a \in \{1, ..., n\}$, $\mathcal{O}(a) = \{s \times a/s \in G\}$, donc c'est l'orbite de a sous l'action de G. D'après la question 7, ces orbites sont les classes d'équivalence d'une relation d'équivalence sur \mathbb{N}_n , donc elles constituent une partition de \mathbb{N}_n .

10°) Notons $A = \{a_1, \dots, a_p\}$. Soit $a \in \{1, \dots, n\}$.

Si $a \notin A$, alors $\sigma(a) = a$, donc $\mathcal{O}(a) = \{a\}$.

Sinon, il existe $i \in \{1, ..., p\}$ tel que $a = a_i$.

Convenons que, pour tout $k \in \mathbb{Z}$ et $j \in \{1, \ldots, p\}$, $a_k = a_j$

si et seulement si $k \equiv j$ [p]. On peut alors montrer par récurrence sur $k \in \mathbb{N}$ que, pour tout $j \in \{1, \ldots, p\}$, $\sigma^k(a_j) = a_{j+k}$ et $\sigma^{-k}(a_j) = a_{j-k}$.

On en déduit que $\mathcal{O}(a) = A$.

En conclusion, les orbites du cycle $(a_1 \ a_2, \ldots a_p)$ sont $A = \{a_1, \ldots, a_p\}$ et les singletons $\{a\}$ où $a \in \mathbb{N}_n \setminus A$.

- 11°) a) Notons p l'ordre de σ dans le groupe S_n . Alors $p \in \mathbb{N}^*$ et $\sigma^p = Id_{\mathbb{N}_n}$. En particulier, $\sigma^p(a) = a$, donc $\{k \in \mathbb{N}^*/\sigma^k(a) = a\}$ est non vide, or c'est une partie de \mathbb{N} , donc elle possède un minimum, noté ℓ .
- **b)** Posons $H = \{a, \sigma(a), ..., \sigma^{\ell-1}(a)\}.$
- \diamond Montrons d'abord que $H = \mathcal{O}$.

L'inclusion $H \subset \mathcal{O}$ est claire. Réciproquement, soit $k \in \mathbb{Z}$. Par division euclidienne, on peut écrire que $k = \ell q + r$ avec $0 \le r < \ell$.

 $\sigma^{\ell}(a) = a$, donc par récurrence on en déduit que $\sigma^{q\ell}(a) = a$.

Ainsi, $\sigma^k(a) = \sigma^r(\sigma^{q\ell}(a)) = \sigma^r(a) \in H$.

 \diamond Soit maintenant $i, j \in \{0, \dots, \ell - 1\}$ tels que i < j.

Il s'agit de montrer que $\sigma^i(a) \neq \sigma^j(a)$.

Raisonnons par l'absurde en supposant que $\sigma^i(a) = \sigma^j(a)$. Alors $\sigma^{j-i}(a) = a$ et $1 \le j - i \le \ell - 1$. C'est impossible car $\ell = \min(\{k \in \mathbb{N}^* / \sigma^k(a) = a\})$.

- c) D'après la question b), $\ell = |H| = |\mathcal{O}| = p$. Ainsi $\sigma^p(a) = \sigma^\ell(a) = a$, par construction de ℓ .
- **d)** Soit $a, b \in \mathcal{O}$. Il existe $k \in \{0, \dots, p-1\}$ tel que $b = \sigma^k(a)$.

Soit $h \in \mathbb{N}$: $c_{\sigma^h(a)} = (\sigma^h(a) \ \sigma^{h+1}(a) \dots \ \sigma^{h+p-1}(a))$, or $\sigma^p(a) = a$,

donc $\sigma^{p+h}(a) = \sigma^{h}(a)$. Ainsi, $c_{\sigma^{h}(a)} = (\sigma^{h+1}(a) \ \sigma^{h+2}(a) \ \dots \ \sigma^{h+p}(a)) = c_{\sigma^{h+1}(a)}$.

La suite $(c_{\sigma^h(a)})_{h\in\mathbb{N}}$ est donc constante. Ainsi, $c_a=c_{\sigma^0(a)}=c_{\sigma^k(a)}=c_b$.

12°) a) Commençons par caractériser les points fixes de σ :

Soit $x \in \mathbb{N}_n$. S'il existe $i \in \mathbb{N}_r$ tel que $x \in S_i$, alors pour tout $j \in \mathbb{N}_r \setminus \{i\}$, $x \notin S_j$, donc $c_j(x) = x$. On en déduit que $\sigma(x) = c_i(x) \neq x$.

Si
$$x \notin \bigcup_{i=1}^r S_i$$
, alors $\sigma(x) = x$.

Ainsi, l'ensemble $\{x \in \mathbb{N}_n/\sigma(x) = x\}$ des points fixes de σ est égal à $\mathbb{N}_n \setminus \bigcup_{i=1}^r S_i$.

Raisonnons maintenant par double inclusion:

 \diamond Soit \mathcal{O} une orbite pour σ qui possède au moins 2 éléments.

Soit $a \in \mathcal{O}$. Ainsi, $\mathcal{O} = \mathcal{O}(a)$ et $c_{\mathcal{O}} = (a \ \sigma(a) \ \dots \ \sigma^{p-1}(a))$ où $p = |\mathcal{O}| \ge 2$.

Or $\sigma(a) \neq a$ car $p \geq 2$, donc il existe $i \in \{1, \ldots, r\}$ tel que $a \in S_i$. Alors $\sigma(a) = c_i(a)$. De plus, $c_i(a) \in S_i$, donc on a aussi $\sigma(c_i(a)) = c_i(c_i(a))$, c'est-à-dire $\sigma^2(a) = c_i^2(a)$. Par récurrence sur k, on peut ainsi montrer que, pour tout $k \in \mathbb{N}$, $\sigma^k(a) = c_i^k(a)$.

Ainsi, $c_i^p(a) = a$ et $c_i = c_{\mathcal{O}}$.

On a donc montré que $\{c_{\mathcal{O}}/\mathcal{O} \text{ est une orbite pour } \sigma \text{ telle que } |\mathcal{O}| \geq 2\} \subset \{c_1, \ldots, c_r\}.$ \diamond Réciproquement, soit $i \in \mathbb{N}_r$. Choisissons un élément a de S_i . Ainsi, $\sigma(a) \neq a$, donc $\mathcal{O}(a)$ possède au moins deux éléments.

 $a \in S_i$, donc on a encore, pour tout $k \in \mathbb{N}$, $c_i^k(a) = \sigma^k(a)$, donc à nouveau, $c_i = c_{\mathcal{O}(a)}$. **b)** En reprenant les notations du a), on a vu que pour tout $x \in S_i$, lorsque $j \neq i$,

 $c_j(x) = x$, donc $\left(\prod_{k=1}^r c_k\right)(x) = c_i(x)$, même si l'on modifie l'ordre des facteurs de ce

produit. Ainsi, un produit de cycles à supports disjoints est toujours commutatif. La question a) prouve la partie unicité du théorème.

Pour démontrer l'existence, notons $\mathcal{O}_1, \ldots, \mathcal{O}_r$ les orbites pour σ qui possèdent au moins deux éléments. Il s'agit de montrer que $\sigma = \prod_{i=1}^r c_{\mathcal{O}_i}$, ce qui est bien un produit de cycles dont les supports sont deux à deux disjoints (d'après la question 9).

Posons
$$s = \prod_{i=1}^r c_{\mathcal{O}_i}$$
. Soit $a \in \mathbb{N}_n$.

Premier cas : Supposons que $a \notin \bigcup_{i=1}^r \mathcal{O}_i$. Alors $\mathcal{O}(a)$ est un singleton, donc $\sigma(a) = a$.

On a aussi s(a) = a, donc dans ce cas, $\sigma(a) = s(a)$.

Second cas: Supposons qu'il existe $j \in \mathbb{N}_r$ tel que $a \in \mathcal{O}_j$.

Alors $s(a) = c_{\sigma_i}(a) = \sigma(a)$ d'après la question 11.d).

Ainsi, pour tout $a \in \mathbb{N}_n$, $s(a) = \sigma(a)$, donc $\sigma = s = \prod_{i=1}^r c_{\sigma_i}$ ce qui termine la démonstration du théorème.

2.2 Signature d'une permutation

13°) Pour tout
$$f \in \mathcal{F}(\mathbb{Q}^n, \mathbb{Q})$$
, $Id_{\mathbb{N}_n} \times f = f$.
Soit $f \in \mathcal{F}(\mathbb{Q}^n, \mathbb{Q})$ et $\sigma, \sigma' \in \mathcal{S}_n$. Soit $(x_1, \dots, x_n) \in \mathbb{Q}^n$.
 $[\sigma \times (\sigma' \times f)](x_1, \dots, x_n) = (\sigma' \times f)(x_{\sigma(1)}, \dots, x_{\sigma(n)})$.

Posons $(x_{\sigma(1)},\ldots,x_{\sigma(n)})=(y_1,\ldots,y_n)$. Ainsi, $[\sigma\times(\sigma'\times f)](x_1,\ldots,x_n)=(\sigma'\times f)(y_1,\ldots,y_n)=(y_{\sigma'(1)},\ldots,y_{\sigma'(n)})$, or pour tout $i\in\{1,\ldots,n\},\ y_i=x_{\sigma(i)},\ \mathrm{donc}\ y_{\sigma'(i)}=x_{\sigma(\sigma'(i))}.$ Ainsi, $[\sigma\times(\sigma'\times f)](x_1,\ldots,x_n)=(x_{\sigma(\sigma'(1))},\ldots,x_{\sigma(\sigma'(n))})=[(\sigma\sigma')\times f](x_1,\ldots,x_n).$ Ceci démontre que $\sigma\times(\sigma'\times f)=(\sigma\sigma')\times f,\ \mathrm{donc}\ \mathrm{il}\ \mathrm{s'agit}\ \mathrm{bien}\ \mathrm{d'une}\ \mathrm{action}\ \mathrm{du}\ \mathrm{groupe}\ \mathcal{S}_n\ \mathrm{sur}\ \mathrm{l'ensemble}\ \mathrm{des}\ \mathrm{fonctions}\ \mathrm{de}\ \mathbb{Q}^n\ \mathrm{dans}\ \mathbb{Q}.$

On considère l'application $\Delta: \qquad \mathbb{Q}^n \longrightarrow \mathbb{Q}$ $(x_1, \dots, x_n) \longmapsto \prod_{1 \leq i < j \leq n} (x_j - x_i) .$

14°) a) Soit $x = (x_1, ..., x_n) \in \mathbb{Q}^n$. Notons $(x'_1, ..., x'_n) = (x_{\tau(1)}, ..., x_{\tau(n)})$. Ainsi $x'_k = x_n, x'_n = x_k$ et, pour tout $i \in \mathbb{N}_n \setminus \{k, n\}, x'_i = x_i$. $(\tau \times \Delta)(x_1, ..., x_n) = \Delta(x'_1, ..., x'_n) = \prod_{1 \le i < j \le n} (x'_j - x'_i)$. Ainsi,

$$(\tau \times \Delta)(x) = \left[\prod_{\substack{1 \le i < j < n \\ k \notin \{i,j\}}} (x'_j - x'_i) \right] \prod_{j=k+1}^{n-1} (x'_j - x'_k) \prod_{i=1}^{k-1} (x'_k - x'_i) \prod_{1 \le i \le n-1} (x'_n - x'_i) \times (x'_n - x'_k)$$

$$= \left[\prod_{\substack{1 \le i < j < n \\ k \notin \{i,j\}}} (x_j - x_i) \right] \prod_{j=k+1}^{n-1} (x_j - x_n) \prod_{i=1}^{k-1} (x_n - x_i) \prod_{1 \le i \le n-1} (x_k - x_i) \times (x_k - x_n)$$

$$= \left[\prod_{\substack{1 \le i < j < n \\ k \notin \{i,j\}}} (x_j - x_i) \right] (-1)^{n-1-k} \prod_{j=k+1}^{n-1} (x_n - x_j) \prod_{i=1}^{k-1} (x_n - x_i) \times \prod_{i=1}^{k-1} (x_n - x_i) \times \prod_{i=1}^{k-1} (x_k - x_i) \times (-1)^{n-k-1} \prod_{j=k+1}^{n-1} (x_i - x_k) \times (-1) \times (x_n - x_k),$$

$$= -\left[\prod_{\substack{1 \le i < j < n \\ k \notin \{i,j\}}} (x_j - x_i) \right] \prod_{j=k+1}^{n-1} (x_n - x_j) \prod_{i=1}^{k-1} (x_n - x_i) \times \prod_{i=k+1}^{k-1} (x_i - x_k) \times (x_n - x_k),$$

donc on obtient $(\tau \times \Delta)(x) = -\Delta(x)$, pour tout $x \in \mathbb{Q}^n$, ce qui démontre que $\tau \times \Delta = -\Delta$.

b) Soit τ une transposition de S_n . Il existe $a, b \in \mathbb{N}_n$ tels que a < b et $\tau = (a \ b)$. Si b = n, d'après la question précédente, $\tau \times \Delta = -\Delta$.

Supposons maintenant que b < n. Alors $(a \ b) = (b \ n)(a \ n)(b \ n)$. En effet,

 $[(b \ n)(a \ n)(b \ n)](b) = [(b \ n)(a \ n)](n) = a$ et on vérifie de même que lorsque $x \in \{a, n\}$, $[(b \ n)(a \ n)(b \ n)](x) = (a \ b)(x)$. C'est en outre évident lorsque $x \in \mathbb{N}_n \setminus \{a, b, n\}$, car x est un point fixe de toutes les transpositions utilisées.

Ainsi, $\tau \Delta = [(b \ n)(a \ n)(b \ n)] \times \Delta$, puis d'après les question 13 et 14.a, $\tau \Delta = [(b \ n)(a \ n)] \times (-\Delta)$.

Or, pour tout $\sigma \in \mathcal{S}_n$ et $f \in \mathcal{F}(\mathbb{Q}^n, \mathbb{Q})$, pour tout $(x_1, \dots, x_n) \in \mathbb{Q}^n$, $(\sigma \times (-f))(x_1, \dots, x_n) = -(\sigma \times f)(x_1, \dots, x_n)$, donc $\sigma \times (-f) = -\sigma \times f$.

On en déduit alors que $\tau \times \Delta = (-1)^3 \Delta = -\Delta$.

15°) Supposons qu'il existe k transpositions τ_1, \ldots, τ_k telles que $\sigma = \tau_1 \tau_2 \cdots \tau_k$. Posons $\sigma' = \tau_1 \tau_2 \cdots \tau_{k-1}$.

Ainsi $\sigma = \sigma' \tau_k$ et $\sigma \times \Delta = \sigma' \times (\tau_k \times \Delta) = \sigma' \times (-\Delta) = -(\sigma' \times \Delta)$.

Par récurrence sur k, on peut donc montrer que $\sigma \times \Delta = (-1)^k \Delta$.

En particulier, $(\sigma \times \Delta)(1, \dots, n) = (-1)^k \Delta(1, \dots, n)$, c'est-à-dire $(-1)^k \prod_{1 \leq i < j \leq n} (j-i) = \prod_{1 \leq i < j \leq n} (\sigma(j) - \sigma(i))$, ce qu'il fallait démontrer.

16°) a) Soit c un cycle de longueur ℓ , avec $2 \leq \ell \leq n$. Il existe $c_1, \dots, c_\ell \in \mathbb{N}_n$ tels que $c = (c_1 \ c_2 \ \cdots \ c_\ell).$

Posons $d = (c_1 \ c_2)(c_2 \ c_3) \cdots (c_{\ell-1}, c_{\ell})$ et vérifions que c = d.

Soit $x \in \mathbb{N}_n$. Lorsque $x \in \mathbb{N}_n \setminus \{c_1, \dots, c_\ell\}, c(x) = x = d(x)$.

Supposons qu'il existe $i \in \mathbb{N}_{\ell}$ tel que $x = c_i$. Pour tout j > i, $(c_j, c_{j+1})(x) = x$, donc $d(x) = (c_1 \ c_2) \cdots (c_{i-2}, c_{i-1})(c_{i+1}) = c_{i+1}$, donc pour tout $x \in \mathbb{N}_n$, on a bien d(x) = c(x). Ainsi la signature de c est égale à $(-1)^{\ell-1}$.

b) Soit $\sigma \in \mathcal{S}_n$. On sait qu'il existe des cycles c_1, \ldots, c_p à supports deux à deux disjoints tels que $\sigma = c_1 \cdots c_p$. D'après la question précédente, si l'on décompose chaque cycle en produit de transpositions, en notant ℓ_i la longueur du cycle c_i , $\varepsilon(\sigma) = (-1)^{\ell_1 - 1} \times \cdots \times (-1)^{\ell_p - 1} = (-1)^{\sum_{i=1}^p \ell_i - p}.$

Les orbites de σ constituent une partition de \mathbb{N}_n , donc $n = \sum_{i=1}^p \ell_i + s$, où s désigne

le nombre d'orbites de cardinal 1. Ainsi, $\varepsilon(\sigma)=(-1)^{n-s-p},$ or s+p=m est bien le nombre d'orbites de σ .