Page No. 2020-011/216 Date: / # ASSIGNMENT -10 \$ LAB Answer (a):-Line, TISE of the form: -0 = y(v-3) 2m Rave to determine the Operator Now, sphenical Coondinate K= dsino cuso y = rsino sino 2 2 86030 12+42 + 22 tan 0 = yIx Palar coordinate Schredinger Thu (20h20 2m

schrodingen

equh

125

This

spherical

coordinate.

$ \frac{1}{\sqrt{2}} \frac{1}{\sqrt{6}} \left(\frac{\chi^2}{\sqrt{4}} \frac{1}{\sqrt{4}} \right) + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}$	Since,	S-E	ابر ا	Polar	4mm	Ãr.			
$\frac{+2m}{8^{2}} \left(\underbrace{\varepsilon - v} \right) = 0$ $\frac{\pi^{2}}{\sqrt{8}} \frac{1}{\sqrt{8}} \left(\underbrace{v^{2} \downarrow \psi}_{\sqrt{8}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{sho}_{\sqrt{9}} \frac{1}{\sqrt{9}} \right) + \underbrace{v^{2} \psi}_{\sqrt{9}} $ $\frac{1}{\sqrt{8}} \frac{1}{\sqrt{9}} \left(\underbrace{\varepsilon - v}_{\sqrt{9}} \right) = 0$ $\frac{1}{\sqrt{8}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{\varepsilon - v}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \right) - 2$ $\frac{1}{\sqrt{8}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \right) - 2$ $\frac{1}{\sqrt{8}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \right) - 2$ $\frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \right) - 2$ $\frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(v^$		y (37 2 (37 3 (37) 1 (37)) + ?	1 d 25ino do	(sin o	10) t	1 8251120	$\int_{0}^{2} \psi$	13127
$\frac{+2m}{8^{2}} \left(\underbrace{\varepsilon - v} \right) = 0$ $\frac{\pi^{2}}{\sqrt{8}} \frac{1}{\sqrt{8}} \left(\underbrace{v^{2} \downarrow \psi}_{\sqrt{8}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{sho}_{\sqrt{9}} \frac{1}{\sqrt{9}} \right) + \underbrace{v^{2} \psi}_{\sqrt{9}} $ $\frac{1}{\sqrt{8}} \frac{1}{\sqrt{9}} \left(\underbrace{\varepsilon - v}_{\sqrt{9}} \right) = 0$ $\frac{1}{\sqrt{8}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{\varepsilon - v}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \right) - 2$ $\frac{1}{\sqrt{8}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \right) - 2$ $\frac{1}{\sqrt{8}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \right) - 2$ $\frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \right) - 2$ $\frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{sino}_{\sqrt{9}} \frac{1}{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(\underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \right) + \underbrace{v^{2} \downarrow R_{(8)}}_{\sqrt{9}} \left(v^$				J = W[1-1,	44.2	a Win		
Multiply by Y^{2} sino: $Sin^{2}O \frac{1}{18} \left(X^{2} \frac{1}{14}\right) + Sino \frac{1}{10} \left(Sho \frac{1}{10}\right) + \frac{1}{10}$ $\frac{1}{18} \left(X^{2} \frac{1}{14}\right) + Sino \frac{1}{10} \left(Sho \frac{1}{10}\right) + \frac{1}{10}$ $\frac{1}{18} \left(X^{2} \frac{1}{14}\right) + Sino \frac{1}{10} \left(Sho \frac{1}{10}\right) + \frac{1}{10}$ $\frac{1}{18} \left(X^{2} \frac{1}{14}\right) + \frac{1}{10} \left(X^{$		+2m (8	-V) = 0			1.0			
Multiply by $Y^2 \sin \theta$: $\sin^2 \theta \frac{1}{18} \left(X^2 \frac{1}{2} \frac{1}{4} \right) + \sin \theta \frac{1}{18} \left(\sinh \frac{1}{2} \frac{1}{4} \right) + \frac{1}{18} \frac{1}{18} \frac{1}{18} \left(\frac{1}{18} + \frac{1}{18} \frac{1}{18} \right) + \frac{1}{18} $	140/3	75 \$15.70			gen hyl	do	400	513	. 10.1
$ \frac{1}{48} \left(\frac{38}{8} \right) = 0 $ $ \frac{1}{42} \left(\frac{1}{8} + \frac{1}{2} \right) = 0 $ $ \frac{1}{1} \left(\frac{1}{8} + \frac{1}{2} \right) = 0 $ $\frac{1}{1} \left(\frac{1}{8} + \frac{1}{2} \right) = 0 $ $\frac{1}{1} \left(\frac{1}{8} + \frac{1}{2} \right) = 0 $ $\frac{1}{1} \left($	Multi	ply by	Y ² siho!	_	1 24	landers.).	inst}-	X (i)
$\frac{f^{2}}{\text{Puthing }} \stackrel{\text{left}}{\text{O}} = \frac{f(s) \cdot f(s) \cdot f(s) \cdot g(s) \cdot g(s) \cdot g(s) \cdot g(s)}{h(s)} = \frac{f(s) \cdot f(s) \cdot g(s) \cdot g(s) \cdot g(s)}{h(s)} = \frac{f(s) \cdot g(s) \cdot g(s) \cdot g(s)}{h(s)} = \frac{f(s) \cdot g(s) \cdot g(s) \cdot g(s)}{h(s)} = \frac{f(s) \cdot g(s) \cdot g(s) \cdot g(s) \cdot g(s)}{h(s)} = \frac{f(s) \cdot g(s) \cdot g(s) \cdot g(s) \cdot g(s)}{h(s)} = \frac{f(s) \cdot g(s)}{h(s)} $	Sin ² 0	98 C 9			1 -	7)4-	102		
Puthing (2) in (1):- $1 \sin^{2}\theta \ \partial \left(x^{2} \partial R_{(8)} \right) + \sin\theta \ \partial \left(\sin\theta \ \partial R_{(9)} \right)$ $+ 1 \partial \theta \partial \partial$		+ 2mx25	ho (ε.	·v) 4 =	O	100			
Putting (2) in (1)! - 1 $\sin^2\theta = \frac{1}{3} \left(\frac{8^2 J R(s)}{J^8} \right) + \frac{\sin \theta}{I} = \frac{1}{3} \left(\frac{\sin \theta}{I} + \frac{1}{3} \frac{\sin \theta}{I} \right) + \frac{1}{3} \frac{1}{3}$		f 2	10						
Puthing (2) in (1)! - $ \frac{1}{R_{10}} \frac{\sin^2 \theta}{d\theta} \frac{\partial}{\partial \theta} \left(\frac{\pi^2 dR_{10}}{\pi^2} \right) + \frac{\sin \theta}{R_{10}} \frac{\partial}{\partial \theta} \left(\frac{\sin \theta}{\theta} \frac{\partial R_{10}}{\partial \theta} \right) \\ + \frac{1}{R_{10}} \frac{\partial R_{10}}{\partial \theta} + \frac{2m_1^2 \sin^2 \theta}{\pi^2} \left(\frac{\varepsilon}{\varepsilon} - v_1 > 0 \right) \\ \frac{\partial R_{10}}{\partial \theta} \frac{\partial R_{10}}{\partial \theta} = \frac{\pi^2}{4\pi^2} \frac{\sin^2 \theta}{\theta} \left(\frac{\varepsilon}{\varepsilon} - v_1 > 0 \right) $	W. N. L.							15	
Puthing (2) in (1)! - $ \frac{1}{R_{10}} \frac{\sin^2 \theta}{d\theta} \frac{\partial}{\partial \theta} \left(\frac{\pi^2 dR_{10}}{\pi^2} \right) + \frac{\sin \theta}{R_{10}} \frac{\partial}{\partial \theta} \left(\frac{\sin \theta}{\theta} \frac{\partial R_{10}}{\partial \theta} \right) \\ + \frac{1}{R_{10}} \frac{\partial R_{10}}{\partial \theta} + \frac{2m_1^2 \sin^2 \theta}{\pi^2} \left(\frac{\varepsilon}{\varepsilon} - v_1 > 0 \right) \\ \frac{\partial R_{10}}{\partial \theta} \frac{\partial R_{10}}{\partial \theta} = \frac{\pi^2}{4\pi^2} \frac{\sin^2 \theta}{\theta} \left(\frac{\varepsilon}{\varepsilon} - v_1 > 0 \right) $	· ^	y is	46	10,0)2	R (8).	PLO). 6	3(p)·	-2	
$ \frac{1}{R(6)} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \left(\frac{8^{2} \sqrt{1} \sqrt{1} \sqrt{1}}{\sqrt{3}} \right) + \frac{\sin \theta}{P(6)} \frac{d}{d\theta} \left(\frac{\sin \theta}{d\theta} \right) \\ + \frac{1}{\sqrt{3}} \frac{3}{\sqrt{6}} \frac{1}{\sqrt{2}} + \frac{2m\chi^{2} \sin^{2}\theta}{\sqrt{2}} \left(\frac{\varepsilon}{-\sqrt{3}} - \sqrt{3} \right) \\ \frac{1}{\sqrt{2}} \frac{3}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt$	3							e d) met	Y.
$ \frac{1}{R(6)} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \left(\frac{8^{2} \sqrt{3} R(6)}{\sqrt{3}} \right) + \frac{\sin \theta}{\rho(6)} \frac{1}{\sqrt{3}} \left(\frac{\sin \theta}{\sqrt{3}} \frac{1}{\sqrt{6}} \right) \\ + \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} + \frac{2m\chi^{2} \sin^{2} \theta}{\sqrt{3}} \left(\frac{\varepsilon}{2} - v \right) > 0 $ $ \frac{1}{\sqrt{3}} \frac{1}{$	1	Pulling (2) in	(1) ! -					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-: 1	6	o euD.	(1	111		apre L	1.2	will
R(6) $d8$ $d8$ $P(6)$ $d0$ $d0$ $d0$ $d0$ $d0$ $d0$ $d0$ $d0$	l		82 dR (8)	1 + Sih 1	9 0	1 sino	d Res '	\	
$+\frac{1}{8c0}$ $+\frac{2mz^2 \sin^2 0}{50}$ $(\xi-v)=0$				Pco;	96		A STATE OF THE PARTY OF THE PAR)	1
Oco) 102 52		5.717 6	10 Ty	k of	1977	grant'y	9	i by	7
Oco) 102 t2	+	1 00	ф +	2mg	Sib 20	(E-V)	2 0		
	120		-	1	10	(4 - 3	KY V	+~	
	1.00						0°		

at the second second

-1. 10 may 7 " mile

the state of the s	
	Sin20 d (82 dR) + sino d (sinodP) + 2mx2 sin20 (e-v)
-	R gr l gr de de l'és
	$\frac{2}{6} \frac{1}{d\phi^2}$
	8 db.7
	7
ジレ	1.5 depends on 840 t Rinis to \$ but they
are	equal to sume constant:
	(41) = (v.) 1 m 1 1/ 1/ x 1 6 1
<u>;, </u>	Sin20 d (801R) + sin0 d (smode) + zmx2sin20 (E-V)=m2
6	
	-3 491
	dividing this by Sih20:-
	$\frac{1}{R} \frac{\partial}{\partial \delta} \left(\frac{\chi^2 dR}{d\delta} \right) + \frac{2m \delta^2}{f_2} \left(\frac{\varepsilon - v}{2} \right)^2 \frac{m^2}{5ih^2 \theta} - \frac{1}{P \sin \theta} \frac{\partial}{\partial \theta} \left(\frac{\sin \theta dP}{d\theta} \right)$
	L 10 C CLE 2 1/2 SINCE LZIVE OF CED
	ATE OF SEATON AS A
No	w, again equaling to a constant!
F	1 d (x2 dR) + 2mx2 (E-V) = l(1+1)
	$\frac{1}{R} \frac{d}{dx} \left(\frac{x^2 dR}{dx} \right) + \frac{2mx^2}{f^2} \left(\frac{\varepsilon - v}{\varepsilon} \right) = \frac{2mx^2}{f^2} \left(\frac{\varepsilon - v}{\varepsilon} \right)$
	- (S)
(his is sudial part.

640 =3

7 20 - y sq	was again	(b)	April and the	1	o	1400
	peak.	- \frac{1}{2}	1	- 1		
Boundary RK4 :-	conditions	fur	numerical	soluti	m u	sing
	~ *(E., e)e)	i se		als.		
	060,0	· Syl				
eg s 1	01(0)=	ansitanny			*	
P Dept.		1				
9t can	be any	valu	e when	the	function	is
nomanz	la ·					
V	Con difions	fon	numerical	Soln	wsi	n y
Numerou	, -					
	U(0) - 0	7				
	U (0+R) =	<u>k</u>			30	
15' is	the step	S 126	e which	is a	Smal	<u> </u>
<u>Du</u>	mben.	,				
		-				
	, , , , , , , , , , , , , , , , , , ,					
128 1 - 1						
S-04						
parameter for recovery						

1 Discussion

1. These are the Eigen Values for first five eigen states with l=0,1,2 ..

	Enery for 1 = 0	Energy for 1 = 1	Energy for 1 = 2
0	-0.992816	0.000000	0.000000
1	-0.249941	-0.249989	0.000000
2	-0.111063	-0.111111	-0.111111
3	-0.062439	-0.062500	-0.062500
4	-0.039927	-0.040001	-0.040000

Figure 1:

 $2. \ \,$ This is the plot for the Radial Waveform for first four states .

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

3. The plots for Probability Density is here .

Figure 7:

B.Sc.(Hons.) Physics 32221501 Teacher: Mamta

S.G.T.B. Khalsa College Quantum Mechanics (2022-23) Lab Assignment # 10 H- atom using Shooting Method

Due Date and Time: 22.09.2022, 11:59PM Max. Marks : 20

The objective of this assignment is to

• numerically solve the radial part of Schrödinger Equation for "electron in H-atom" with Shooting method and determine the energy eigenvalues and corresponding normalised radial wavefunctions.

1. (3 marks) Theory

- (a) Write down the Schrödinger Equation for an electron in H-atom potential in spherical polar coordinates and the equation satisfied by radial part of the wave
- (b) Discuss the boundary conditions for numerical solution using RK4 with shooting and Numerov with shooting methods.

2. (12 marks) Programming

- (a) Write a Python code to
 - i. Determine the first ten energy eigenvalues and normalised radial wavefunctions for $\ell=0$ using shooting method with Numerov algorithm in range $[r_{\min}:r_{\max}]$ with $r_{\min}=10^{-14}$ with $r_{\max}=10$.
 - ii. plot the first four radial wavefunctions (as points) along with the corresponding analytical wavefunctions (as continuous curves).
- (b) Extend the code to determine the first ten energy eigenvalues and normalised eigenfunctions for $\ell=1,2$
- (c) Extend the code to plot all radial probability densities (as scatter plots) along with the corresponding analytical wavefunction (as continuous curves) for all ℓ corresponding to a given n. i.e. the following graphs
 - i. radial probability density for $n=1, \ell=0$
 - ii. radial probability density for $n=2, \ell=0, 1$
 - iii. radial probability density for n = 3, $\ell = 0, 1, 2$
- (d) Study the implication of changing r_{\min} and r_{\max} .
- (e) Extend your program to determine the probability that an electron in 2s state of H-atom lies within a sphere of radius $r = pa_0$ around the nucleus. Take p = 0.5, 1, 1.5, 2, 34, ..., 10, 20, ... 50 and show that the probability approaches 1 as p increases. Plot this probability as a function of p.

3. (5 marks) **Discussion**

Discuss your results and compare with those of the Finite Difference Method.