EXCEL 151 Fall 19

1.	Consider the experiment of flipping a fair coin 10 times.
	a. What is the probability of getting exactly 7 heads?
	b. What is the probability of getting at most 7 heads?
	c. What is the probability that the first head occurs on the second flip?
2.	How many 5-digit odd numbers can be made from the digits {0, 1, 2, 3, 4, 5} with no
	repeating digit?
2	How many E digit numbers can be made from the digits (0.1.2.2.4.E) with no
3.	How many 5-digit numbers can be made from the digits $\{0, 1, 2, 3, 4, 5\}$ with no
	repeating digits and such that the number is <u>divisible by 3</u> ?
4.	How many ways are there to arrange 7 people (A to G) in a line such that A and B are
	next to each other?
5.	How many ways are there to arrange 7 people (A to G) in a line such that C is
	anywhere in between A and B? (e.g. <u>ADECB</u> GF is valid)

6.	How many ways can we put 8 <u>numbered</u> marbles into 3 different boxes?
7.	How many ways can we put 8 <u>identical</u> marbles into 3 different boxes?
8.	How many ways can we put 8 identical marbles into 3 different boxes such that a. each box has at least 1 marble? b. each box has at least 2 marbles? c. the first box has at least 2 marbles?
9.	Given a 100×100 grid, a lattice path from (0,0) to (100,100) is a path that either moves up or right one step at a time. a. How many lattice paths are there from (0,0) to (100,100)? b. How many lattice paths do not pass through (10,10)? c. How many lattice paths do not pass through (20,50)?

10. Prove the following using counting in two ways.

$$\binom{3n}{3} = n^3 + 6n\binom{n}{2} + 3\binom{n}{3}$$

11. Prove the following using counting in two ways.

$$n^3 = 6\binom{n}{3} + 6\binom{n}{2} + n$$

12. Let x, y, z be non-negative real numbers. Prove

$$xy + xz \ge x\sqrt{yz}$$

13. Let x, y be real numbers. Prove

$$|x| - |y| \le |x - y|$$

14. Let x, y, z be non-negative real numbers such that $y + z \ge 2$. Prove

$$(x+y+z)^2 \ge 4yz + 4x$$

15. Let *x* be a positive real number. Prove

$$x + x^{-1} \ge 2$$

16. What is the maximum area of a rectangle with fixed perimeter p? Explain why.

17. Let a, b, c be integers. Find all integers x such that $x \equiv a \mod 4$, $x \equiv b \mod 5$, and $x \equiv c \mod 9$.