Prof. Flavio Venturini Lez.06 - Introduzione al Machine Learning - Prima parte

What is Machine Learning? Machine learning is the integration of different techniques Its goal is to extract value out of data

Copyright © Università Telematica Internazionale UNINETTUNO

Prof. Flavio Venturini Lez.06 - Introduzione al Machine Learning - Prima parte

Supervised ML methods → PARAMETRIC METHODS → Define the functional form of the function f(X) & fit the model

→ NON PARAMETRIC METHODS
 → Find the best fitting function f(X)
 → MODEL EVALUATION (MSE)

Supervised ML and Input Data → Quantitative data: Regression problems → Qualitative (categorical) data: Classification problems → But... not a crisp classification

Unsupervised Learning → Given only (x_i), i = 1,..., n, can we infer the underlying structure of X? → Used for exploratory data analysis

Copyright © Università Telematica Internazionale UNINETTUNO

Prof. Flavio Venturini Lez.06 - Introduzione al Machine Learning - Prima parte

Review questions Which sort of input data are generally needed by Regression problems? And Classification ones?

Review questions Do you need Labels for Unsupervised ML? What is the typical usage of Unsupervised ML?

PCA goal

→ PCA derives a lowdimensional set of features
from a large set of variables
(p) given (n) observations

→ The idea is that each of the n-observations lives in the p-dimensional space but not all of these dimensions are equally interesting

Copyright © Università Telematica Internazionale UNINETTUNO

Prof. Flavio Venturini Lez.06 - Introduzione al Machine Learning - Prima parte

→ It finds a low-dimensional representation of a data set that contains as much as possible of the variation

First principal component

→ First PC is the normalized linear combination of the features that has the largest variance

$$Z_1 = \phi_{11} X_{1+} \phi_{21} X_{2+} + ... + \phi_{p1} X_p$$

 $ightharpoonup \
ightharpoonup \
igh$

First PC vector: $\phi_1 = (\phi_{11}, \phi_{21}, ..., \phi_{p1})^T$ $\text{Max} \left[\frac{\sum_{i=1}^{n} (\phi_1^T \cdot X_i)^2}{n} \right] \text{ subject to}$ $\sum_{j=1}^{p} \phi^2_{j1} = 1$

 $Z_{i} = \phi_{1}^{T} \cdot X_{i}$ $Max \left[\frac{\sum_{i=1}^{n} (Z_{i})^{2}}{n} \right] \text{ subject to}$ $\sum_{j=1}^{p} \phi^{2}_{j1}_{=1}$ $\Rightarrow \text{ We are maximizing the sample variance of the values of } Z_{i}$ $\Rightarrow \text{ Solved via eigen decomposition}$

Nth principal component

> 2nd PC is the linear combination of X_i which has the maximal variance out of all linear combinations that are uncorrelated with Z₁

Copyright © Università Telematica Internazionale UNINETTUNO

Prof. Flavio Venturini Lez.06 - Introduzione al Machine Learning - Prima parte

- → Nth PC has maximal variance out of all linear combinations that are uncorrelated with Z₁ ... Z_{n-1}
- → 1st PC is the dimension along which the data varies the most
- → It defines the line that is closest to all n observations

PCA – Other interpretation → 1st PC is the line in p-dimensional space that is closest to the n observations (euclidean distance)

The first 2 PC span the plane that is closest to the n observations
 The m first PC span the m-dim hyperplane that is closest to the n observations

Copyright © Università Telematica Internazionale UNINETTUNO

Prof. Flavio Venturini Lez.06 - Introduzione al Machine Learning - Prima parte

Copyright © Università Telematica Internazionale UNINETTUNO

Prof. Flavio Venturini Lez.06 - Introduzione al Machine Learning - Prima parte

Review questions

- → What is the purpose of PCA?
- → Why is it useful for many ML problems?
- → Why do you think it is necessary to standardize data before doing PCA?

Review questions

- Provide a geometrical explanation of PCA
- → Explain the "elbow" technique for choosing the number of PC to be used

Review questions

Using the NYC hotels example, explain why Cleanliness is not as important as Room and Location to Tripadvisor reviewers

- → Which are the different categories of Machine Learning?
- → What is the difference between Unsupervised and Supervised ML?
- → Which sort of input data are generally needed by Regression problems?
- → And Classification ones?
 → Do you need Labels for Unsupervised ML?
 → What is the typical usage of Unsupervised ML?

Copyright © Università Telematica Internazionale UNINETTUNO

Prof. Flavio Venturini Lez.06 - Introduzione al Machine Learning - Prima parte

- What is the purpose of PCA?
 Why is it useful for many ML problems?
 Why do you think it is necessary to standardize data before doing PCA?
- → Provide a geometrical explanation of PCA
 → Explain the "elbow" technique for choosing the number of PC to be used

→ Using the NYC hotels example, explain why Cleanliness is not as important as Room and Location to Tripadvisor reviewers

