

Aula 6.2

Domínio da Frequência

A escala dinâmica dos espectros de Fourier usualmente é muito mais alta do que aquela reproduzível com fidelidade por um dispositivo típico de exibicão, e em tal caso apenas as partes mais brilhantes da imagem serão visíveis na tela de exibição.

Uma técnica útil que compensa essa dificuldade consiste na exibição da função $D(u, v) = c \log[1 + |F(u, v)|]$

Espectro de Fourier valores no intervalo $[0, 2,5 \times 10^6]$

log[1+|F(u,v)|] variam de 0 a 6.4.→

Espectro de Fourier

Compensando a escala

Imagem de um objeto

para o centro da imagem

Figura 3.3 — Algumas funções bidimensionais e seus espectros de Fourier.

3.3 ALGUMAS PROPRIEDADES DA TRANSFORMADA BIDIMENSIONAL DE

FOURIER

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \exp[-j2\pi(ux+vy)/N]$$
 (3.2-9)

$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) \exp[j2\pi(ux+vy)/N]$$
 3.2-10

3.3.1 Separabilidade

O par de transformadas discretas de Fourier nas Equações (3.2-9) e (3.2-10) pode ser expressas em formas separáveis

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \exp[-j2\pi ux/N] \sum_{y=0}^{N-1} f(x,y) \exp[-j2\pi vy/N]$$
 (3.3-2)

ou seja, o cálculo em 2D pode ser obtido processando em 1D

Figura 3.7 — Computação de uma transformada de Fourier bidimensional como uma série de transformadas em uma dimensão

para u, v = 0, 1, ..., N-1, e

$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \exp[j2\pi ux/N] \sum_{v=0}^{N-1} F(u,v) \exp[j2\pi vy/N]$$
 (3.3-3)

para x, y = 0, 1, ..., N-1.

3.3.2 Translação

As propriedades da translação do par de transformadas de Fourier são

$$f(x, y) \exp[j2\pi(u_0x + v_0y)/N] \Leftrightarrow F(u - u_0, v - v_0)$$
 (3.3-6)

e $f(x-x_0, y-y_0) \Leftrightarrow F(u, v) \exp[-j2\pi(ux_0+vy_0)/N]$ (3.3-7)

3.3.3 Periodicidade e Simetria Conjugada

A transformada discreta de Fourier e sua inversa são periódicas com período N; isto é,

$$F(u, v) = F(u + N, v) = F(u, v + N) = F(u + N, v + N).$$
 (3.3-10)

3.3.4 Rotação

Se introduzirmos as coordenadas polares

$$x = r \cos \theta$$
 $y = r \sin \theta$ $u = \omega \cos \phi$ $v = \omega \sin \phi$

então f(x, y) e F(u, v) tornam-se $f(r, \theta)$ e $F(\omega, \phi)$, respectivamente. A substituição direta no par de transformadas de Fourier contínuas ou discretas resulta

$$f(r, \theta + \theta_0) \Leftrightarrow F(\omega, \phi + \theta_0).$$
 (3.3-13)

Em outras palavras, a rotação de f(x, y) de um ângulo θ_0 implicará em uma rotação de F(u, v) deste mesmo ângulo. A Figura 3.10 ilustra essa propriedade. (A seguir)

Figura 3.10 — Propriedades rotacionais da transformada de Fourier: (a) uma imagem simples; (b) espectro; (c) © 2002 R. C. Gonzalez & R. Limagem rotacionada; (d) espectro resultante.

3.3.5 Distributividade e Mudança de Escala

Da definição do par de transformadas contínua ou discreta

$$\mathfrak{F}\{f_1(x,y) + f_2(x,y)\} = \mathfrak{F}\{f_1(x,y)\} + \mathfrak{F}\{f_2(x,y)\}$$
(3.3-14)

e, em geral,

$$\Re\{f_1(x,y) \cdot f_2(x,y)\} \neq \Re\{f_1(x,y)\} \cdot \Re\{f_2(x,y)\}. \tag{3.3-15}$$

Em outras palavras, a transformada de Fourier e sua inversa são distributivas quanto à adição, mas não quanto à multiplicação.

Para dois escalares $a \in b$,

$$af(x, y) \Leftrightarrow aF(u, v)$$

e

$$f(ax, by) \Leftrightarrow \frac{1}{|ab|} F(u/a, v/b).$$

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \exp[-j2\pi(ux+vy)/N]$$

3.3.6 Valor Médio

Uma definição largamente utilizada do valor médio de uma função discreta bidimensional é dada pela expressão:

$$\bar{f}(x,y) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y).$$
 (3.3-18)

Substituindo-se u = v = 0 na Equação (3.2-9) resulta

$$F(0,0) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)$$
(3.3-19)

Portanto $\overline{f}(x, y)$ é relacionada à transformada de Fourier de f(x, y) por

$$\bar{f}(x,y) = \frac{1}{N}F(0,0).$$
 (3.3-20)

ou seja, a média de f(x,y) é obtida dividindo F(0,0) por N

3.3.7 O Laplaciano

O Laplaciano de uma função de duas variáveis f(x, y) é definido como

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.$$

Da definição da transformada de Fourier bidimensional,

$$\mathfrak{F}\{\nabla^2 f(x,y)\} \Leftrightarrow -(2\pi)^2 (u^2 + v^2) F(u,v).$$

O operador Laplaciano é útil para reforçar as bordas de uma imagem como mostrado na Seção 7.1.3.

A derivada

Supondo g(t) e G(f) um par de Fourier genérico e i um número real não negativo, então

$$\frac{d^{i}g(t)}{dt^{i}} = D_{i}(f)G(f)$$

onde $D_i(f) = (j2\pi f)^i$

O que permite calcular, por exemplo, uma derivada tal como

$$\frac{d^{0,5}g(t)}{dt^{0,5}} \quad \text{ou ainda} \quad \frac{d^{\pi}g(t)}{dt^{\pi}}$$

Convolução e Correlação

Convolução

A convolução de duas funções f(x) e g(x), denotada por f(x)*g(x), é definida pela integral

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(\alpha)g(x - \alpha) d\alpha$$

$$f(x).g(x) \Leftrightarrow F(u)*G(u)$$
produto convolução

Correlação

A correlação ode duas funções contínuas f(x) e g(x), denotada por $f(x) \circ g(x)$, é definida pela relação

$$f(x) \circ g(x) = \int_{-\infty}^{\infty} f^{*}(\alpha)g(x+\alpha) d\alpha$$

sendo que * é o conjugado complexo.

O complexo conjugado de um número complexos z = a + bi é $\overline{z} = a - bi$

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) \exp[-j2\pi ux / N]$$

3.4 A TRANSFORMADA RÁPIDA DE FOUR!ER (FFT)

O número de multiplicações e adições complexas necessárias para implementar a Equação (3.2-2) é proporcional a N^2 . Isto é, para cada um dos N valores de u, a expansão do somatório requer N multiplicações complexas de f(x) por $\exp[-j 2\pi ux/N]$ e N-1 adições dos resultados. Os termos de $\exp[-j 2\pi ux/N]$ podem ser computados uma vez e armazenados numa tabela para todas as aplicações subseqüentes. Por essa razão, a multiplicação de u por x nestes termos não é usualmente considerada uma parte direta da implementação.

A decomposição adequada da Equação (3.2-2) pode tornar o número de operações de multiplicações e adições proporcional a $N \log_2 N$. O procedimento de decomposição é denominado algoritmo da transformada rápida de Fourier (FFT). A redução em proporcionalidade de N^2 para $N \log_2 N$ operações representa uma economia significativa no esforço computacional

3.4.1 O Algoritmo FFT

O algoritmo FFT desenvolvido nesta seção baseia-se no assim chamado método de dobramentos sucessivos. Por conveniência, expressamos a Equação (3.2-2) na forma

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) W_N^{ux}$$
 (3.4-1)

em que

$$W_N = \exp[-j2\pi/N]$$
 (3.4-2)

e assume-se N como

$$N=2^n$$
 N=8, 16, 32, 64, etc. (3.4-3)

em que n é um inteiro positivo. Portanto N pode ser expresso como

$$N = 2M$$
 N é par (3.4-4)

em que M é também um inteiro positivo.

A substituição da Equação (3.4-4) na Equação (3.4-1) resulta

$$F(u) = \frac{1}{2M} \sum_{x=0}^{2M-1} f(x) W_{2M}^{ux}$$
 Separa a parte par da ímpar

$$= \frac{1}{2} \left[\frac{1}{M} \sum_{x=0}^{M-1} f(2x) W_{2M}^{u(2x)} + \frac{1}{M} \sum_{x=0}^{M-1} f(2x+1) W_{2M}^{u(2x+1)} \right]$$

 $W_N = \exp[-j2\pi/N]$

Da Equação (3.4-2), $W_{2M}^{2ux} = W_{M}^{ux}$, de modo que a Equação (3.4-5) pode ser expressa na forma

$$F(u) = \frac{1}{2} \left[\frac{1}{M} \sum_{x=0}^{M-1} f(2x) W_M^{ux} + \frac{1}{M} \sum_{x=0}^{M-1} f(2x+1) W_M^{ux} W_{2M}^u \right].$$
 (3.4-6)

Definindo-se

$$F_{\text{par}}(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(2x) W_M^{ux}$$
 (3.4-7)

para u = 0, 1, 2, ..., M - 1, e

$$F_{\text{impar}}(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(2x+1) W_M^{ux}$$
 (3.4-8)

para u = 0, 1, 2, ..., M - 1, simplifica-se a Equação (3.4-6) para

$$F(u) = \frac{1}{2} [F_{\text{par}}(u) + F_{\text{impar}}(u) W_{2M}^{u}].$$
 (3.4-9)

Também, uma vez que $W_M^{u+M} = W_M^u$ e $W_{2M}^{u+M} = -W_{2M}^u$, as Equações (3.4-7) e (3.4-9) nos dão

$$F(u+M) = \frac{1}{2} [F_{\text{par}}(u) - F_{\text{impar}}(u) W_{2M}^{u}].$$
 (3.4-10)

A análise cuidadosa das Equações (3.4-7)—(3.4-10) revela algumas propriedades interessantes dessas expressões. Uma transformada de N pontos pode ser computada pela divisão da expressão original em duas

Tabela 3.1 Uma comparação de N^2 com $N \operatorname{Log}_2 N$ para vários valores de N

N	N ² (FT Direto)	N log ₂ N (FFT)	Vantagem computacional (N/log ₂ N)
2	4	2	2,00
4	16	8	2,00
8	64	24	2,67
16	256	64	4,00
32	1.024	160	6,40
64	4.096	384	10,67
128	16.384	896	18,29
256	65.536	2.048	32,00
512	262.144	4.608	56,89
1.024	1.048.576	10.240	102,40
2.048	4.194.304	22.528	186,18
4.096	16.777.216	49.152	341,33
8.192	67.108.864	106.496	630,15

DFT FFT

Vantagem computacional

FFT Fortran

Digital Image Processing, 2nd ed.

geprocessingbook.com

```
SUBROUTINE FFT (F, LN)
    COMPLEX F(1024), U, W, T, CMPLX
    PI=3.141593
    N=2**LN
    NV2=N/2
    NM1=N-1
    J=1
    DO 3 I=1, NM1
        IF(I.GE.J)GO TO 1
        T=F(J)
        F(J) = F(I)
        F(I) = T
        K=NV2
        IF(K.GE.J) GO TO 3
        J=J-K
        K=K/2
        GO TO 2
3
    J=J+K
    DO 5 L=1, LN
       LE=2**L
       LE1=LE/2
       U=(1.0,0.0)
       W=CMPLX(COS(PI/LE1),-SIN(PI/LE1))
       DO 5 J=1, LEI
          DO 4 I=J,N,LE
              IP=I+LE1
              T=F(IP)*U
              F(IP)=F(I)-T
          F(I) = F(I) + T
    U=U*W
    DO 6 I=1, N
    F(I) = F(I) / FLOAT(N)
6
    RETURN
    END
```