

Advanced Computer Networks - Set 4 Study online at https://quizlet.com/_eq3ya7

olddy offilife at fittps://quiziet.com/_eqoya/	
1. The Network Layer	Transport segment from sending to receiving host, encapsulates segments into datagrams
2. Forwarding	Move packets fro routers input to appropriate router output. Data plane
3. Routing	Determine route taken by packets from source to destination. Control plane
4. Data Plane	 Local, per-router function Determine how datagram arriving in inpur port is forwarded to output port Forwarding function
5. Control Plane	 Network-wide logic Determine how datagram is routed among routers along end-to-end path from source to destination Two approaches Traditional routing; routers Software-defined routing; remote servers
6. Traditional Routing	Individual routing algorithm compo- nents in each and every router inter- act in the control plane
7. SDN Routing	A distinct (remote) controller interacts with local control agents
8. Forwarding Table	Table that maps destination address to a routers outbound links
9. Longest Prefix Matching	Finds the longest matching entry in the table
10. Switching Fabric	Connects the routers input ports to its output ports. Can be:

Advanced Computer Networks - Set 4 Study online at https://quizlet.com/_eq3ya7

11 Input Port Quaraina	- Memory - Bus - Crossbar
11. Input Port Queueing	 Can occur when fabric is slower than input ports combined. HOL-blocking can occur here Queuing delay and loss due to input port buffer overflow possible
12. Output Port Queueing	 Buffering can occur when arrival rate via switching fabric exceeds output line speed Queuing and loss due to output port buffer overflow possible
13. Scheduling Mechanisms	- Choosing next packet to send on the link
14. FIFO Scheduling	Packets are sent in order of arrival to queue
15. Priority Scheduling	Packet with highest priority in the queue is sent Issue: Starvation
16. Round-Robin Scheduling	Packets are sent in a cyclical fashion, one from each class. Solves starvation, however unfair to queues with many more packets
17. Weighted Fair Queuing Scheduling	Generalized round-robin, but each class gets weighted amount according to volume of packets
18. IP Datagram Fragmentation	Datagram is fragmented into small- er datagrams and then reassembled

C)	3
19.	M	T
20.	IP	

Advanced Computer Networks - Set 4

Study online at https://quizlet.com/ eq3ya7

Study online at https://quizlet.com/_eq3ya7	
	at the destination host. This accomodates MTU of link level.
	Utilized fragflag and offset fields in header to reassemble datagram.
19. MTU	(Maximum Transfer Unit) The largest data unit an ethernet network will accept for transmission.
20. IP Addressing	32-bit identifier for host/router interface, consisting of network identifier and host identifier.
	Interface: connection between host/router physical link
21. Class A IP Address	Few networks, many hosts7-bits for network, 24-bits for hostBegins with 0, decimal 1-126
22. Class B IP Address	Medium networks, medium hosts14-bits for network, 16-bits for hostBegins with 10, decimal 128-191
23. Class C IP Address	Many networks, few hosts21-bits for network, 8-bits for hostBegins with 110, decimal 192-223
24. Subnet	A logical subset of a larger network, created by an administrator to improve network performance or to provide security.
25. Subnet Mask	Tells how many bits of host ID are subnet ID and how many are the host ID
26. Extended Network ID	Network ID and subnet ID (not host ID)

Advanced Computer Networks - Set 4

Study online at https://quizlet.com/_eq3ya7

27. Default Class Masks

Class A:

11111111.00000000.00000000.0000000

Class B:

11111111111111111100000000.0000000

Class C:

11111111.111111111.11111111.0000000

28. Example Subnet Problem

ip: 192.10.17.22

mask: 255.255.255.240

240 in binary => 1111 0000 22 in binary => 0001 0110

this means the first 4 bits of host ID

are subnet ID,

SO,

subnet ID: 0001 = 1 host #: 0110 = 6

and extended network

and extended network # = 192.10.17.1

29. Example Subnet Problem

ip: 130.157.224.240

mask: 255.255.255.240

240 in binary => 1111 0000

240 in binary => 1111 0000 this means the first 4 bits of host ID

are subnet ID,

SO,

subnet ID: 1111 = 1 host #: 0000 = 0

Advanced Computer Networks - Set 4 Study online at https://quizlet.com/_eq3ya7	
	and extended network # = 130.157.224.15
30. Exercise: Given a network address of 192.168.100.0 and subnet mask	192 = 1100 0000 (Class C)
255.255.255.192: How many subnets are created, and how many hosts per	
subnet?	Since 6 zero-bits, 2^6 hosts created
31. Exercise: Given a company with six individual departments and each department having ten computers or networked devices, what mask	Six departments -> Need six subnets Ten computers -> Need minimum 10 hosts per subnet
could be applied to the company network to provide the subnetting	1110 0000 -> Works but not equally divided
necessary to divide up the network equally?	1111 0000 -> Works and equally divided
32. CIDR	Classless InterDomain Routing
	Address format: a.b.c.d/x where x is number of bits in subnet portion of address.
	Ex: 200.23.16.0/23 11001000 00010111 0001000 (end subnet portion, start host portion) 0 00000000
	23 bits for the subnet, so the host will be 9 bits. $2^9 = 510$ possible hosts
33. IP Broadcast Address	255.255.255.255. All hosts on the same subnet get datagrams sent to this address
34. DHCP	Dynamic Host Configuration Protocol: dynamically get address from a server. Can also return address of

first-hop router for the client, address

Advanced Computer Networks - Set 4 Study online at https://quizlet.com/_eq3ya7

	of DNS server, and network mask
	4 steps: DHCP discover DHCP offer DHCP request DHCP ack
	(DHCP is application layer protocol)
35. NAT	Network address translation.
	Outgoing datagrams: Replace source socket with NAT socket
	Remember in NAT translation table every source socket to NAT socket translation pair
	Incoming datagrams: Replace NAT socket with source socket
36. IPv6	Addresses limited IPv4 addresses. Reduced header size. No fragmentation.
37. Tunneling	IPv6 routers can wrap IPv6 data- grams in IPv4 header for backward compatibility