Chipimplementation einer zweidimensionalen Fouriertransformation für die Auswertung eines Sensor-Arrays

Bachelorkolloquium

Thomas Lattmann

2. Mai 2018

Inhaltsübersicht

Gliederung:

- Einleitung
- Grundlagen
- Analyse und Entwurf
- Testumgebung und Evaluation
- Zusammenfassung und Ausblick

Einleitung: Details zur Hardware

- 350 μm Prozess, EuroPractice
- Array von Magnetsensoren
- Sensoren, Signalverarbeitung & Ausgabe des digitalen Nutzsignals auf einem ASIC

Quelle: SensorAusgang.pdf, K.-R. Riemschneider + T. Schüthe

Einleitung: Einordung im ISAR-Projekt

 $Quelle: Frequency_filtering_and_stray_field_compensation_using_2D-DFT_algorithm.pdf, \ K.-R. \ Riemschneider + \ T. \ Sch\"{u}the and the compensation of the compens$

Grundlagen

Gliederung:

- Interpretation von Dualzahlen
- Komplexe Multiplikation
- Matrixmultiplikation
- DFT und IDFT
- 2D-DFT

Interpretation von Dualzahlen

Mögliche Arten sind:

- positive Ganzahldarstellung (a)
- Darstellung im Einerkomplement (b)
- Darstellung im Zweierkomplement (c)
- vorzeichenbehaftete Festkommazahlen (SQ-Format) mit u. ohne Vorkommaanteil (d)

Beispiel

1001011010100

$$4096 + 512 + 128 + 64 + 16 + 4 = 4820_{10}$$
 (a

$$-(512 + 128 + 64 + 16 + 4) = -724_{10}$$
 (b)

$$-4096 + 512 + 128 + 64 + 16 + 4 = -3372_{10}$$
 (c)

$$-4 + 0, 5 + 0, 125 + 0, 062 + 0, 015625 + 0, 00390625 = -3, 29296875_{10}$$
 in S2Q10 (d)

Interpretation von Dualzahlen

Mögliche Arten sind:

- positive Ganzahldarstellung (a)
- Darstellung im Einerkomplement (b)
- Darstellung im Zweierkomplement (c)
- vorzeichenbehaftete Festkommazahlen (SQ-Format) mit u. ohne Vorkommaanteil (d)

Beispiel:

10010110101002

$$4096 + 512 + 128 + 64 + 16 + 4 = 4820_{10} \tag{a}$$

$$-(512 + 128 + 64 + 16 + 4) = -724_{10}$$
 (b)

$$-4096 + 512 + 128 + 64 + 16 + 4 = -3372_{10}$$
 (c)

$$-4+0, 5+0, 125+0, 062+0, 015625+0, 00390625=-3, 29296875_{10} \quad \mathrm{in} \ \mathrm{S2Q10} \ (\mathrm{d})$$

Komplexe Multiplikation sind 4 einfache Multiplikationen und 2 Additionen.

$$e + jf = (a + jb) \cdot (c + jd)$$

$$= a \cdot c + j(a \cdot d) + j(b \cdot c) + j^{2}(b \cdot d)$$

$$= a \cdot c - b \cdot d + j(a \cdot d + b \cdot c)$$

Wenn einer der beiden Multiplikanden keinen Imaginärteil haben, reduziert sich das zu

$$e + jf = a \cdot (c + jd)$$

= $a \cdot c + j(a \cdot d)$

Veranschaulichung der Matrixmultiplikation

DFT:

Summenschreibweise

$$X^*[m] = \frac{1}{N} \cdot \sum_{n=0}^{N-1} x[n] \cdot e^{-\frac{j2\pi mn}{N}}$$

Matrixschreibweise

$$W = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{-\frac{j2\pi mn}{N}}$$
$$X^* = W \cdot x$$

IDFT:

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X^*[m] \cdot e^{+\frac{j2\pi m}{N}}$$

DFT:

Summenschreibweise

$$X^*[m] = \frac{1}{N} \cdot \sum_{n=0}^{N-1} x[n] \cdot e^{-\frac{j2\pi mn}{N}}$$

Matrixschreibweise

$$W = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{-\frac{j2\pi mn}{N}}$$
$$X^* = W \cdot x$$

IDFT:

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X^*[m] \cdot e^{+\frac{j2\pi mn}{N}}$$

2D-DFT als Matrixmultiplikation

Alternative Schreibweise der 2D-DFT als Matrixmultiplikation

$$X = \left((x \cdot W)^T \cdot W \right)^T$$
$$= \left(X^{*T} \cdot W \right)^T$$

Berechnungsarten der DFT und deren Aufwand

- optimierte Matrixmultiplikation mit reellen Eingangswerten
- optimierte Matrixmultiplikation mit komplexen Eingangswerten
- Fast Fouriertransformation (Butterfly-Algorithmus)
- allgemeine Matrixmultiplikation

2D-DFT mit reellen Eingangswerten zur Ausnutzung von Redundanzen

2D-DFT mit reellen Eingangswerten zur Ausnutzung von Redundanzen

2D-DFT mit komplexen Eingangswerten

Anzahl reeller Multiplikationen für die Berechnung der 8x8-2D-DFT

Methode	Anzahl reeller Multiplikationen
reelle Eingangswerte	64
komplexe Eingangswerte	128
FFT	128
allgemeine Matrixmultiplikation	4096

Analyse und Entwicklung

Gliederung:

- Gegenüberstellung verschiedener Größen von Twiddlefaktormatrizen
- Optimieren der 8x8-DFT
- Konstantenmultiplikation
- Benötigte Takte
- Zustandsfolge
- Entwickeln der 2D-DFT auf Basis der 1D-DFT

Gegenüberstellung verschiedener Größen von DFT-Twiddlefaktormatrizen

N	8	9	12	15	16
$N \times N$	64	81	144	225	256
trivial \Re	48	45	128	81	128
nicht triv. \Re	16	36	16	144	128
triv. 3	48	21	96	45	128
nicht triv. \Im	16	60	48	180	128
\sum triv.	96	66	224	126	256
\sum nicht triv.	32	96	64	324	256
Anzahl verschiedener nicht trivialer Werte	1	7	1	13	3
Verhältnis \sum trivial $/$ \sum nicht trivial	3	0,6875	3,5	0,3889	1

Optimierung der 8x8-DFT

Legende: = 1

= 0

Anzahl benötigter Takte je Element, ungerade Zeilen

1. Spalte:
$$r_0 + r_1 + r_2 + r_3 + r_4 + r_5 + r_6 + r_7$$

Anzahl benötigter Takte je Element, gerade Zeilen

2. Spalte:
$$r_1 - r_3 + i_1 - i_7 + i_3 - r_5 + r_7 - i_5 + r_0 - r_4 + i_2 - i_6$$

Takt					Bit
1	$\underbrace{r_1 - r_3} \qquad \underbrace{i_1 - i_7}$	$i_3 - r_5$	$r_7 - i_5$	$r_0 - r_4$ $i_2 - i_6$	12
	\downarrow	↓		*	13
2	$sum1_1 + sum1_2$	sum1_3 +	- sum1_4	$sum1_5 + sum1_6$	12
	$\overline{\hspace{1cm}}$			+	13
3	$sum2_1$ +	sun	n2_2		12
			_	#	13
	sum3	_ 1			13
	↓			#	13
4	$\frac{\sqrt{2}}{2}$				13
	Į.				26
5	$sum4$ _	_1	+	$sum2_3$	12
			$\overrightarrow{\hspace{1cm}}$		13
			$sum5_1$		12

Summe der Takte für die Berechnung der 2D-DFT

Zeile	Additionen pro Element (N)	Takte pro Element $(\log_2(N))$	Takte für Multiplikation	Summe der Takte
1	8	3	0	3
2	12	3,6	1	5
3	8	3	0	3
4	12	3,6	1	5
5	8	3	0	3
6	12	3,6	1	5
7	8	3	0	3
8	12	3,6	1	5

$$\Rightarrow \mathsf{Summe} \; \mathsf{der} \; \mathsf{Takte} \; \mathsf{ist} \; \underbrace{ \begin{pmatrix} 3 \cdot 4 \\ \mathsf{ungerade} \\ \mathsf{Zeilen} \\ \mathsf{aus} \\ \mathsf{W} \end{pmatrix}}_{\mathsf{Ungerade}} \underbrace{ \begin{cases} 3 \cdot 4 \\ \mathsf{Sellen} \\ \mathsf{Spalten} \\ \mathsf{Spalten$$

Konstantenmultiplikation mit $\frac{\sqrt{2}}{2} \simeq 0.70703125 = 0001011010100_2$

Zustandsfolge

Evaluation

Gliederung:

- Testumgebung
- Zeitabschätzung
- Chipimplementation

Testumgebung

- Simulation mit NC Sim und SimVision
 - nützlich für Teilfunktionen
 - ► Betrachtung einzelner Signalverläufe
- Automatisierung durch Shell-Skript
 - Simulation mit NC Sim und TCL-Skript
 - Berechnung mittels Matlab
 - Vergleich

Simulationsprogramm NC Sim

Verifikation der benötigen Takte

Gegeben: Systemtakt: 100 MHz, max. Drehzahl: 8000min $^{-1}$, Auflösung: 1°

$$\frac{8000\,\mathrm{min}^{-1}}{60} = 1333, \bar{3}\,\mathrm{sec}^{-1}$$

$$1^{\circ} \widehat{=} \frac{7, 5 \cdot 10^{-3} \sec}{360} = 20, 83 \cdot 10^{-6} \ \text{sec}$$

 $20,83 \cdot 10^{-6} \text{ sec} \cdot 100 \text{ MHz} = 2083 \text{ Takte}$

Chipimplementation: Stromversorgung

blau: Layer 1, rot: Layer 2, grün: Layer 3

Chipimplementation: Platzierung der Standardzellen

blau: Layer 1, rot: Layer 2, grün: Layer 3

Chipimplementation: Platzierung der Standardzellen

Standardzellen:

15 310

Fläche:

 $1\,524\,960\mu m^2=1,5mm^2$

Prozess: 350µm²

Zusatzfeature: Implementation der IDFT

$$W = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{-\frac{j2\pi mn}{N}}$$

$$-1$$

$$e^{+j\pi kt}$$

$$e^{-j\pi kt}$$

$$W^* = \sum_{n=0}^{N-1} \sum_{n=0}^{N-1} e^{+\frac{j2\pi mn}{N}}$$

Zusatzfeature: Implementation der IDFT

$$W = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{-\frac{j2\pi mn}{N}}$$

$$W^* = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{+\frac{j2\pi mn}{N}}$$

Zusammenfassung

- DFT als 8x8 hat sich als effizient erwiesen
- Optimierung der Multiplikationen mit der Twiddlefaktormatrix
- Kritischer Pfad scheint Konstantenmultiplikation zu sein
- Berechnung der 1D- und 2D-DFT mit selber Einheit
- Benötigte Takte liegen im realistischen Rahmen
- DFT und IDFT benötigen zusammen etwa 50% der verfügbaren Takte
- IDFT kann durch geringe Ergänzungen berechnet werden
- Wertvolle Grundlagen f
 ür die Implementation der 15x15 2D-DFT

Ausblick

- Reduzierung des kritischen Pfades
 - auf zwei Schaltnetze aufteilen
 - Wallace-Tree verwenden
- 15x15 mit ähnlich vielen Takten