- Supplemental information for Soil minerals mediate climatic control of soil C cycling on annual to centennial timescales
- Jeffrey Beem-Miller¹, Craig Rasmussen², Alison M. Hoyt^{1,3}, Marion Schrumpf¹, Georg
- Guggenberger⁴, & Susan Trumbore¹ 4
- ¹ Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena,
- Germany 6

- ² Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
- ³ Department of Earth System Science Science, Stanford University, Stanford, CA, USA
- ⁴ Institute of Soil Science, Leibniz University Hannover, Hannover, Germany 9

Supplemental information for Soil minerals mediate climatic control of soil C cycling on annual to centennial timescales

S1 Soil carbon

We did not observe clear trends in soil carbon concentration over time for the majority 13 of sites, making us confident that most sites are at steady-state with regards to carbon stock 14 changes (Fig. S1). Although we did observe substantial variation in some sites, this is likely 15 due to spatial heterogeneity in soil C concentration that cannot be avoided when 16 destructively resampling the same sites over time (Fig. S1). However, we did observe 17 significant trends in soil C concentration with time for a few of the sites when considered 18 by specific depth increments. However, a caveat is that we did not account for potential 19 differences in the mass of soil sampled over time, as we only considered depth-based 20 increments. We observed significant changes at two sites for the surface layer (0-0.1 m), and 21 at two additional sites in the intermediate depth layer (0.1-0.2 m), but C concentration changes were only significant at a single site showed changes for the deepest depth layer (0.2-0.3 m) (**Table S1**). The soil at the cold climate and esite site was an outlier in that the 24 soil C concentration showed a consistently significant increase in the two deeper depth layers over the study period, while the other soils with significant changes showed decreases in C concentrations (Table S1).

Table S1

Changes in soil C concentration (%), 2001-2019. (Only signficant trends shown).

					95% CI		
Depth	Site	Trend	SE	df	lower	upper	
0-10cm	andesite (warm)	-0.20	0.09	62	-0.38	-0.02	
	andesite (cold)	0.20	0.10	62	0.01	0.40	
	basalt (cold)	-0.27	0.09	62	-0.45	-0.09	
10-20cm	andesite (cold)	0.23	0.06	62	0.12	0.35	
	granite (warm)	0.16	0.05	62	0.05	0.26	

Table S1

Changes in soil C concentration (%), 2001-2019. (Only signficant trends shown). (continued)

					95%	ć CI
Depth	Site	Trend	SE	df	lower	upper
20-30cm	andesite (cold)	0.21	0.04	62	0.13	0.29

Figure S1. Changes in soil C concentration, 2001-2019. Points show replicate profiles (n = 3); lines show marginal mean estimates of linear trends in soil C concentration with time; ribbons show 95% CIs around trend estimates.

Figure S2. Heterotrophic respiration rates from incubations of 2019 and 2001 samples. Panels a-c show 2019 data, and panels d-f show 2001 data. Panels in the top row (a, d) show the first depth increment for each year, middle row shows the second depth increment (b, e), and the bottom row shows the third depth increment (c, f). Bars show means for laboratory duplicates averaged over the whole incubation period; error bars \pm 1 standard error of the mean. NB: Total CO₂ respired was controlled to be within 10,000 ppm (\pm 1,000 ppm) for all samples; incubation duration varied between 4 and 40 days.

S3 Radiocarbon depth profiles: 2001 data

Depth profiles of $\Delta^{14}C_{bulk}$ were similar in 2001 (**Fig. S3**) as to what we observed in 2019. We observed the most depleted ¹⁴C overall in the cool climate sites, where we also observed the clearest differences among parent materials. Parent material differences were least apparent for the cold climate sites, as we also observed in 2019. Within climate zones andesitic soils tended be most depleted and the granitic soils most enriched, with the basaltic parent material intermediate between the other two.

Figure S3. Depth profiles of $\Delta^{14}C_{\text{bulk}}$ and $\Delta^{14}C_{\text{respired}}$ for 2001 data. Top panels show bulk data, bottom panels respired data. Dotted vertical lines show $\Delta^{14}C$ of the atmosphere in the year of sampling. Points show the mean of three replicate profiles for bulk soil, and the mean of laboratory duplicates for respired CO_2 . Error bars show ± 1 SD for bulk soils and the minimum and maximum for respired CO_2 . Respired CO_2 from the cold granite site (panel f) was extremely depleted in $\Delta^{14}C$ and thus is excluded for display purposes.

${ m S4}$ Parent material and climate effects on bulk and respired ${ m ^{14}C}$

S4.1 Contrasts

Table S2

36

Contrasts of bulk and respired $\Delta^{14}C$ for parent material and climate factors, 0-0.1 m (all pairs). P value adjustment: Tukey method for comparing a family of 3 estimates.

				Bulk			Respir	ed
Year	Group	Contrast	Est.	SE	p	Est.	SE	p
2001	cool	andesite - basalt	-62.0	18.8	0.011			
		andesite - granite	-124.5	18.8	< .001			
		basalt - granite	-62.4	18.8	0.011			
	cold	andesite - granite				84.0	22.1	0.016
		basalt - granite				82.1	18.1	0.006
	andesite	warm - cool	126.6	18.8	< .001			
		cool - cold	-82.1	21.0	0.003			
	basalt	warm - cool	48.7	18.8	0.048			
		warm - cold	66.1	18.8	0.007			
	granite	warm - cold	107.3	18.8	< .001	114.5	18.1	< .001
		cool - cold	83.6	18.8	< .001	104.1	18.1	0.002
2019	warm	andesite - basalt	-56.5	16.3	0.007			
		andesite - granite	-79.8	16.3	< .001			
	cool	basalt - granite				-43.6	18.0	0.089
	andesite	cool - cold	-42.0	16.3	0.047			
	basalt	warm - cool	52.3	16.3	0.013			
	granite	warm - cool	65.0	16.3	0.002			
		warm - cold	58.5	16.3	0.006	47.1	18.0	0.066
		cool - cold				49.0	18.0	0.056

Table S3 Contrasts of bulk and respired $\Delta^{14}C$ for parent material and climate factors, 0.1-0.2 m (all pairs). P value adjustment: Tukey method for comparing a family of 3 estimates.

				Bulk			Respir	ed
Year	Group	Contrast	Est.	SE	p	Est.	SE	p
2001	warm	andesite - granite	-47.8	20.1	0.072			
	cool	andesite - basalt	-72.2	20.1	0.006			
		andesite - granite	-99.5	20.1	< .001			
	cold	andesite - granite				162.8	31.4	0.005
		basalt - granite				227.2	27.2	< .001
	andesite	warm - cool	65.0	20.1	0.013			
		cool - cold	-57.2	22.5	0.052			
	granite	warm - cold	70.4	20.1	0.007	165.1	27.2	0.002
		cool - cold	57.2	20.1	0.029	163.9	27.2	0.002
2019	warm	andesite - basalt	-62.6	20.1	0.016			
		andesite - granite	-124.9	20.1	< .001	-52.4	13.7	0.013
		basalt - granite	-62.3	20.1	0.016	-35.2	13.7	0.078
	cool	andesite - basalt				74.2	13.7	0.002
		andesite - granite				87.3	13.7	< .001
	cold	andesite - granite				62.2	16.8	0.015
		basalt - granite				70.8	16.8	0.007
	basalt	warm - cool	74.8	20.1	0.004	63.0	13.7	0.004
		cool - cold	-63.5	20.1	0.014	-54.2	13.7	0.011
	granite	warm - cool	118.2	20.1	< .001	111.3	13.7	< .001
		warm - cold	105.3	20.1	< .001	114.7	16.8	< .001

Table S4 Contrasts of bulk and respired $\Delta^{14}C$ for parent material and climate factors, 0.2-0.3 m (all pairs). P value adjustment: Tukey method for comparing a family of 3 estimates.

	Bulk	Respired
<u>-</u>		

Year	Group	Contrast	Est.	SE	p	Est.	SE	p
2001	warm	andesite - granite	-70.2	21.0	0.01			
	cool	andesite - granite	-106.5	21.0	< .001			
		basalt - granite	-62.9	21.0	0.021			
	granite	warm - cold	51.8	21.0	0.061			
2019	warm	andesite - granite	-51.9	19.6	0.042			
		basalt - granite	-51.3	19.6	0.044			
	cool	andesite - basalt				93.9	20.6	0.005
		basalt - granite	-53.5	19.6	0.035	-61.0	20.6	0.043
	cold	andesite - basalt	-46.3	19.6	0.073			
	andesite	warm - cool	57.6	19.6	0.023			
	basalt	warm - cool	75.7	19.6	0.003	64.7	20.6	0.033
		cool - cold	-106.5	19.6	< .001	-86.8	25.3	0.022
	granite	warm - cool	73.5	19.6	0.004			
		warm - cold	51.5	19.6	0.043	57.8	20.6	0.054

38 S4.2 Temporal trends & contrasts

Please see the main text for discussion of the temporal trends in both $\Delta^{14}C_{\it bulk}$ and

 $\Delta^{14}C_{bulk}$. See SI tables **S5** and **S6** for statistics.

Table S5

Change in $\Delta^{14}C_{\rm bulk}$, 2001-2019. Degrees of freedom = 44; confidence level used = 0.95.

		0-10cm		10-20cm		20-30cm	
Climate	Parent material	Trend	SE	Trend	SE	Trend	SE
warm	andesite	-5.8	1.0	-1.9	1.3	1.1	1.3
	basalt	-1.8	1.0	-0.1	1.3	-1.1	1.3
	granite	-2.5	1.0	2.4	1.3	0.2	1.3
cool	andesite	0.1	1.0	0.4	1.3	0.3	1.3
	basalt	-2.1	1.0	-3.2	1.3	-3.3	1.3
	granite	-4.9	1.0	-3.5	1.3	-3.6	1.3
cold	andesite	-2.2	1.1	-0.9	1.4	0.4	1.5
	basalt	0.9	1.0	0	1.3	1.4	1.3
	granite	0.1	1.0	0.3	1.3	0.1	1.3

Table S6

Change in $\Delta^{14}C_{\text{respired}}$, 2001-2019. Degrees of freedom = 44; confidence level used = 0.95.

		0-10cm		10-20cm		20-30cm	
Climate	Parent material	Trend	SE	Trend	SE	Trend	SE
warm	andesite	-6.2	1.0	-2.1	1.0	1.4	2.0
	basalt	-2.3	1.0	-0.9	1.0	0.4	2.0
	granite	-3.7	1.0	2	1.0	3.2	2.0
cool	andesite	-1.4	1.2	-1	1.2	-1.5	2.5
	basalt	-3.7	1.0	-5.9	1.0	NA	
	granite	-3	1.0	-4.1	1.0	0	2.0

Table S6

Change in $\Delta^{14}C_{\text{respired}}$, 2001-2019. Degrees of freedom = 44; confidence level used = 0.95. (continued)

		0-10cm		10-20cm		20-30cm	
Climate	Parent material	Trend	SE	Trend	SE	Trend	SE
cold	andesite	-2.9	1.2	-0.8	1.2	1.4	2.5
	basalt	-3.9	1.0	-3.9	1.0	-3.5	2.5
	granite	0.1	1.0	4.8	1.4	NA	

We saw more significant contrasts in the change over time in $\Delta^{14}C_{respired}$ than we did for $\Delta^{14}C_{bulk}$ (Table S7). When considered within climate zones, trends for the basaltic and granitic soils were more similar to one another overall than were either to the andesitic soils. We observed parent material trend contrasts more commonly in the cool and cold climate sites than in the warm sites; however we only observed significant trend contrasts for the cold climate sites in the $\Delta^{14}C_{respired}$ data, and not for $\Delta^{14}C_{bulk}$. When considered within parent materials, we saw more significant trend contrasts for the granitic and basaltic soils than for the andesitic soils (Table S7).

Table S7 ${\it Contrasts for bulk and respired $\Delta^{14}C$ by year and depth. P value adjustment: Tukey method } for comparing a family of 3 estimates. }$

				Bul	k		Respi	red
Depth	Group	Contrast	Est.	SE	p	Est.	SE	p
0-10cm	warm	andesite - basalt	-4.0	1.4	0.021	-3.9	1.4	0.036
	warm	andesite - granite	-3.3	1.4	0.068			
	cool	andesite - granite	5.0	1.4	0.004			
	cold	basalt - granite				-4.0	1.4	0.031
	andesite	warm - cool	-5.9	1.4	< .001	-4.8	1.6	0.021
	andesite	warm - cold	-3.6	1.5	0.06			
	granite	warm - cold				-3.7	1.4	0.045
	granite	cool - cold	-5.0	1.4	0.004			
10-20cm	warm	andesite - granite	-4.3	1.8	0.051	-4.1	1.4	0.03
	cool	andesite - basalt				4.9	1.6	0.019
	cool	andesite - granite	4.0	1.8	0.08			
	cold	andesite - granite				-5.6	1.9	0.024
	cold	basalt - granite				-8.7	1.7	< .001
	basalt	warm - cool				5.0	1.4	0.008
	granite	warm - cool	5.9	1.8	0.005	6.1	1.4	0.002
	granite	cool - cold	-3.8	1.8	0.094	-8.9	1.7	< .001
20-30cm	basalt	cool - cold	-4.7	1.9	0.04			

S5 Mineral assemblages

We simplified the data in the main text to consider the relationship between Δ^{14} C and either poorly crystalline metal oxides or crystalline metal oxides. We present here the individual regression plots for Δ^{14} C_{bulk} (**Fig. S7**) and Δ^{14} C_{respired} (**Fig. S8**).

We also present here the results of the individual regression analyses for $\Delta^{14}C_{bulk}$ (Fig. 53 S5), $\Delta^{14}C_{respired}$ (Fig. S6), and $\Delta^{14}C_{respired-bulk}$ vs. Al selectively dissolved with ammonium oxalate (Al_o) or sodium pyrophosphate (Al_p), and Fe selectively dissolved with ammonium 55 oxalate (Fe_o), or dithionite citrate (Fe_d) Fig. S4. The relationships between Al_o, Al_p, and 56 Fe_o and $\Delta^{14}C_{respired-bulk}$ in the models derived from Eq. (4) (main text) were all highly 57 significant (p < 0.001). P-values for the metal oxide concentration coefficients in the $\Delta^{14}C_{respired-bulk}$ and $\Delta^{14}C_{bulk}$ models were highly significant (< 0.001 at α = 0.1) for Al_o, Al_p, and Fe_o. The coefficient for Al_o in $\Delta^{14}C_{respired}$ model also had a p-value of < 0.001, but while 60 still significant, p-values were larger for ${\rm Al_p}$ and ${\rm Fe_o}$ in the $\Delta^{14}{\rm C}_{respired}$ models: 0.028, 0.086, 61 respectively. In contrast, the concentration of Fe_d was not significant in any of the models.

Figure S4. Relationship of selectively dissolved iron and alumnimum to the difference between $\Delta^{14}C_{respired}$ and $\Delta^{14}C_{bulk}$ ($\Delta^{14}C_{respired-bulk}$). (a) Oxalate-extractable aluminum (Al_o), (b) Pyrophosphate-extractable aluminum (Al_p), (c) Oxalate-extractable iron (Fe_o), (d) Dithionite extractable iron (Fe_d). Points show mass-weighted mineral concentrations and carbon-weighted values of $\Delta^{14}C_{respired-bulk}$ for 0-30cm profiles. Lines show linear model fits from Eq. (5) (main text).

Figure S5. Relationship of selectively dissolved iron and alumnimum to $\Delta^{14}C_{bulk}$. (a) Oxalate-extractable aluminum (Al_o), (b) Pyrophosphate-extractable aluminum (Al_p), (c) Oxalate-extractable iron (Fe_o), (d) Dithionite extractable iron (Fe_d). Points show mass-weighted mineral concentrations and carbon-weighted values of $\Delta^{14}C_{bulk}$ for 0-30cm profiles. Lines show linear model fits from Eq. (5) (main text).

Figure S6. Relationship of selectively dissolved iron and alumnimum to $\Delta^{14}C_{respired}$. (a) Oxalate-extractable aluminum (Al_o), (b) Pyrophosphate-extractable aluminum (Al_p), (c) Oxalate-extractable iron (Fe_o), (d) Dithionite extractable iron (Fe_d). Points show mass-weighted mineral concentrations and carbon-weighted values of $\Delta^{14}C_{respired}$ for 0-30cm profiles. Lines show linear model fits from Eq. (5) (main text).

Figure S7. Relationship of poorly crystalline and crystalline minerals to $\Delta^{14}C_{bulk}$. (a) Poorly crystalline mineral content (oxalate-extractable aluminum + 1/2 oxalate-extractable iron), (b) Crystalline mineral content (dithionite-extractable iron - oxalate-extractable iron). Points show mass-weighted mineral concentrations and carbon-weighted values of $\Delta^{14}C_{bulk}$ for 0-30cm profiles. Lines show linear model fits from Eq. (5) (main text).

Figure S8. Relationship of poorly crystalline and crystalline minerals to $\Delta^{14}C_{respired}$. (a) Poorly crystalline mineral content (oxalate-extractable aluminum + 1/2 oxalate-extractable iron), (b) Crystalline mineral content (dithionite-extractable iron - oxalate-extractable iron). Points show mass-weighted mineral concentrations and carbon-weighted values of $\Delta^{14}C_{respired}$ for 0-30cm profiles. Lines show linear model fits from Eq. (5) (main text).