Contrôle continu (durée: 1h00)

Exercice 1: Système libre 1ddl amorti (7.5)

Un oscillateur 1ddl libre amorti possède les quantités physiques suivantes.

$$E_c = \frac{1}{2} a \dot{q}^2$$
 , $E_p = \frac{1}{2} b q^2$, $D = \frac{1}{2} c \dot{q}^2$

- 1. Déterminer l'équation de mouvement en fonction de la variable généralisée q.
- 2. Exprimer la pulsation propre ω_0 et le facteur d'amortissement δ en fonction de a, b et c.
- 3. Choisir un des trois systèmes suivants et déterminer les expressions de a, b et c.

- 4. En déduire les expressions de ω_0 et δ pour l'oscillateur choisi.
- 5. L'amplitude des oscillations observées lorsque l'oscillateur évolue librement diminue de 20% pendant une période. Si la pseudo-période mesurée est $T_a=1s$ en déduire les valeurs de ω_0 et δ .

Exercice 2 : Système libre non amorti à 2 DDL (7.5)

Deux masses identiques sont reliées comme sur la figure ci-après par des ressorts identiques sans masses de raideur k. L'ensemble peut se déplacer horizontalement sans frottement. Les déplacements par rapport aux positions d'équilibre des deux masses sont notés $x_1(t)$ et $x_2(t)$.

1. En utilisant le formalisme de Lagrange établir les équations différentielles de mouvement qui régissent les positions $x_1(t)$ et $x_2(t)$ des deux masses.

- 2. Trouver les deux pulsations propres $\omega_1 et \ \omega_2$ du système en fonction de $\omega_0 = \sqrt{\frac{k}{m}}$.
- 3. Déterminer les rapports d'amplitudes et en déduire les expressions générales de $x_1(t)$ et $x_2(t)$. (4: Question bonus)
- 4. On suppose que $x_1(0)=1$ cm, $x_2(0)=-1$ cm, $x_1(0)=0$ et $x_2(0)=0$, trouver les expressions de $x_1(t)$ et $x_2(t)$.

SOLUTION

Exercice 1:

1. C'est un oscillateur amorti à 1 DDL donc : (1)

$$\begin{split} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \left(\frac{\partial L}{\partial q} \right) &= - \left(\frac{\partial D}{\partial \dot{q}} \right) \; avec \; L = \frac{1}{2} a \dot{q}^2 - \frac{1}{2} b q^2 \quad et \; \; , \; \; D = \frac{1}{2} c \dot{q}^2 \\ & a \ddot{q} + c \dot{q} + b q = 0 \; \rightarrow \; \; \ddot{q} + \frac{c}{a} \dot{q} + \frac{b}{a} q = 0 \end{split}$$

2. C'est l'équation d'un système amorti de la forme : $\ddot{q}+2\delta\dot{q}+\omega_0^2q=0$ avec : (0.5+0.5)

$$\omega_0 = \sqrt{\frac{b}{a}} \quad et \ \delta = \frac{c}{2a}$$

3. Système (a): (1+1+1)

système	а	b	С
(a)	$m(R^2+l^2)$	$kR^2 + mgl$	αR^2
(b)	$\frac{3}{2}mR^2$	kR ²	$4\alpha R^2$
(c)	$\frac{ml^2}{3}$	kl^2	αl^2

4.
$$\omega_0 = \sqrt{\frac{b}{a}}$$
 et $\delta = \frac{c}{2a}$ (0.75 + 0.75)

système	ω_0	δ
(a)	$\sqrt{\frac{kR^2 + mgl}{m(R^2 + l^2)}}$	$\frac{\alpha R^2}{2m(R^2+l^2)}$
(b)	$\sqrt{\frac{2k}{3m}}$	$\frac{4\alpha}{3m}$
(c)	$\sqrt{\frac{3k}{m}}$	$\frac{3\alpha}{2m}$

5.
$$(0.5 + 0.5) D = \ln\left(\frac{100\%}{100\% - 20\%}\right) = 0.22 = \delta T_a \rightarrow \delta = \frac{D}{T_a} = 0.22 \text{ s}^{-1} \text{ or } \omega_0 = \sqrt{\omega_a^2 + \delta^2} = \sqrt{\left(\frac{2\pi}{T_a}\right)^2 + \delta^2} = 6.28 \text{ rad. s}^{-1}$$

Exercice2:

1.
$$L = \frac{1}{2}m\dot{x}_{1}^{2} + \frac{1}{2}m\dot{x}_{2}^{2} - \frac{1}{2}kx_{1}^{2} - \frac{1}{2}k(x_{1} - x_{2})^{2}$$
 (0.5 +0.5 + 0.5)

$$\begin{cases} \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}_{1}}\right) - \left(\frac{\partial L}{\partial x_{1}}\right) = 0 \\ \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}_{2}}\right) - \left(\frac{\partial L}{\partial x_{2}}\right) = 0 \end{cases} \Rightarrow \begin{cases} m\ddot{x}_{1} + 2kx_{1} - kx_{2} = 0 \\ m\ddot{x}_{2} + kx_{2} - kx_{1} = 0 \end{cases}$$

2. On cherche des solutions du type sinusoïdal : $\begin{cases} x_1 = Acos(\omega t + \phi_1) \rightarrow x_1 = -\omega^2 x_1 \\ x_2 = Bcos(\omega t + \phi_2) \rightarrow x_2 = -\omega^2 x_2 \end{cases}$ Les équations de mvt deviennent : (0.5 + 0.5 + 0.5)

$$\begin{cases} (2k-m\omega^2)x_1-kx_2=0\\ (k-m\omega^2)x_1-kx_2=0 \end{cases} \to \begin{cases} (2\omega_0^2-m\omega^2)x_1-\omega_0^2x_2=0\\ (\omega_0^2-m\omega^2)x_2-\omega_0^2x_1=0 \end{cases} \equiv \begin{cases} (2\omega_0^2-\omega^2)x_1-\omega_0^2x_2=0\\ -\omega_0^2x_1+(\omega_0^2-\omega^2)x_2=0 \end{cases} (I)$$

C'est un système homogène qui n'a de solutions non nul que si le déterminant est nul. (0.5)

$$(2\omega_0^2 - \omega^2)(\omega_0^2 - \omega^2) - (-\omega_0^2)(-\omega_0^2) = 0$$

$$\omega^4 - 3\omega_0^2\omega^2 + \omega_0^2 = 0 \to \Omega = \omega^2 \to \Omega^2 - 3\omega_0^2\Omega + \omega_0^2 = 0$$

Qui a pour solution $\Omega_{1,2} = \left(3 \pm \sqrt{5}\right)\omega_0^2 \ d'ou \ \omega_{1,2} = \sqrt{\left(3 \pm \sqrt{5}\right)\omega_0} \ \rightarrow \omega_1 = 0.76\omega_0 \ et \ \omega_2 = 5.24\omega_0 \ (0.5 + 0.5)$

Donc $\cos(\omega_1 t + \phi_1)$ est une solution $\cos(\omega_2 t + \phi_1)$ est une solution

3. Les solutions générales s'écrivent donc grâce au principe de superposition comme suit : (0.5)

$$x_1 = A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2)$$

$$x_2 = B_1 \cos(\omega_1 t + \phi_1) + B_2 \cos(\omega_2 t + \phi_2)$$

Les 6 constantes A_1 , A_2 , B_1 , B_2 , ϕ_1 et ϕ_2 peuvent être réduites à 4 grâce aux rapports d'amplitudes.

Du système (I) on déduit

$$\frac{x_2}{x_1} = \frac{(2\omega_0^2 - \omega^2)}{\omega_0^2} = 2 - \frac{\omega^2}{\omega_0^2}$$

Dans ce cas
$$\mu_1 = \frac{x_2}{x_1} = \frac{B_1}{A_1} = 2 - \frac{\omega_1^2}{\omega_0^2} = 2 - (3 - \sqrt{5}) = (-1 + \sqrt{5}) = 1.24$$

Dans ce cas
$$\mu_2 = \frac{x_2}{x_1} = \frac{B_2}{A_2} = 2 - \frac{\omega_2^2}{\omega_0^2} = 2 - (3 + \sqrt{5}) = -(1 + \sqrt{5}) = -3.24$$

D'où les solutions générales s'écrivent : (0.5 + 0.5

$$x_1 = A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2)$$

$$x_2 = 1.24A_1\cos(\omega_1 t + \phi_1) - 3.24A_2\cos(\omega_2 t + \phi_2)$$

(0.5 + 0.5 + 0.5 + 0.5)

$$x_1(0) = 1$$
 $A_1 \cos \phi_1 + A_2 \cos \phi_2 = 1$ (1)

$$x_1(0) = 1$$
 $\rightarrow A_1 \cos \phi_1 + A_2 \cos \phi_2 = 1$ (1)
 $x_2(0) = -1$ $\rightarrow \mu_1 A_1 \cos \phi_1 + \mu_2 A_2 \cos \phi_2 = -1$ (2)

$$\dot{x}_1(0) = 0 \to A_1 \omega_1 \sin \phi_1 + A_2 \omega_2 \sin \phi_2 = 0
\dot{x}_2(0) = 0 \to \mu_1 A_1 \omega_1 \sin \phi_1 + \mu_2 A_2 \omega_2 \sin \phi_2 = 0$$
(3)

$$\dot{x}_2(0) = 0$$
 $\mu_1 A_1 \omega_1 \sin \phi_1 + \mu_2 A_2 \omega_2 \sin \phi_2 = 0$ (4)

$$\mu_2(1) - (2) = (\mu_2 - \mu_1)A_1 \cos \phi_1 = 2$$
 (5)

$$\mu_1(1) - (2) = (\mu_1 - \mu_2)A_2 \cos \phi_2 = 2$$
 (6)

$$\mu_2(3) - (4) = (\mu_2 - \mu_1)\omega_1 A_1 \sin \phi_1 = 0$$
 (7)

$$\mu_1(1) - (2) = (\mu_1 - \mu_2)A_2\omega_2\sin\phi_2 = 0$$
 (8)

De (7) et (8) on déduit $\phi_1=\phi_2=0$

On remplace dans (5) et (6) on trouve $A_1 = \frac{2}{\mu_2 - \mu_1} = 0.45$ et $A_2 = \frac{2}{\mu_2 - \mu_2} = -0.45$

D'où les solutions s'écrivent

$$x_1 = 0.45 \cos \omega_1 t - 0.45 \cos \omega_2 t$$

$$x_2 = 0.55 \cos \omega_1 t - 1.46 \cos \omega_2 t$$