Contenuto dei files con i dati acquisiti

0.994	21.704	5.247
0.993	21.702	5.243
0.993	21.700	5.252
0.991	21.702	5.216
0.986	21.699	5.212
0.983	21.701	5.204
0.980	21.698	5.212
	• • •	

- Prima colonna: l'inverso della pressione (misurata in Kg/cm²);
- Seconda colonna: il volume (misurato in cm³);
- Terza colonna: la temperatura (misurata in °C).

Pressione minima osservata in funzione della temperatura

Dati acquisiti a temperatura costante

Tutti i dati acquisiti (a sei temperature differenti)

Risultati delle interpolazioni lineari

T_c	B (Kg⋅cm)	B (N·m)
5.22	24.3638 ± 0.022368	2.3891 ± 0.0022
15.44	25.0818 ± 0.021360	2.4595 ± 0.0021
25.31	25.8656 ± 0.021105	2.5364 ± 0.0021
35.21	26.6837 ± 0.024063	2.6166 ± 0.0024
45.11	27.4979 ± 0.028708	2.6964 ± 0.0028
55.02	28.3704 ± 0.022114	2.7820 ± 0.0022

Fattore di conversione da Kg·cm a N·m: 9.806×10^{-2}

La temperatura in funzione della pendenza delle rette interpolanti

Risultati

$$a = -295.2 \pm 5.6 = T_0$$

$$\beta = 126.1 \pm 2.2$$

$$R = 8.3136$$

$$n = \frac{1}{RB} = (9.54 \pm 0.16) \times 10^{-4} \text{ moli}$$

$$\lambda = \frac{|295.2 - 273.15|}{5.6} \approx 4.0$$