Fabio A González Ph.D

Markov Random Fields

Application Example

Markov Random Fields

Fabio A. González Ph.D.

Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá

September 7, 2011

Fabio A González Ph.D.

Markov Random Fields

Application Example

Markov Property

A Markov Random Field (MRF) is a graph, (V, Ed), where each graph node, $l_i \in V$, corresponds to a random variable.

Locality/Markov property: A node (random variable) is independent of the other non-neighbor nodes given its neighbors:

$$P(l_i|V\backslash l_i) = P(l_i|\mathcal{N}_i), \forall i \in V$$

Fabio A. González Ph.D.

Markov Random Fields

Application Example

Inference Problem

$$\max_{L} P(L, X) = \max_{L} P(l_1, \dots, l_n, x_1, \dots, x_n)$$

Fabio A González Ph.D.

Markov Random Fields

Application Example

Factorization Property

$$p(V) = \frac{1}{Z} \prod_{C} \psi_C(V_C)$$

Fabio A. González Ph.D.

Markov Random Fields

Application Example

Energy Function

$$\psi_C(C) = e^{-E_C(V_C)}$$

$$p(V) = \frac{1}{Z}e^{-E(V)} = \frac{1}{Z}e^{-\sum_C E_C(V_c)}$$

$$\max_L \arg P(L, X) = \max_L \arg \frac{1}{Z}e^{-E(L.X)}$$

$$= \min_L \arg E(L.X)$$

Fabio A González Ph.D.

Markov Random Fields

Application Example

Optimization of the Energy Function

- Gibbs sampling: Random samples from a probability distribution. (1984)
- Simulated annealing: MAP solution (1984)
- Iterated conditional modes (ICM) (1986)
- Loopy Belief propagation (2001)
- Graph cuts (2001)
- Max-sum Algorithm

Fabio A. González Ph.D.

Markov Randon Fields

Application Example

Methodology Markov Random Fields Model Exploratory Experiments

Semantic Image Segmentation

- General goal: to interpret the image content
- Specific goal: to assign semantic categories to some image regions

Figure: Understanding the image

Fabio A. González Ph.D.

Methodology Markov Random Fields Model

Exploratory Experiments

Global Semantic Segmentation **Process**

Figure: Semantic segmentation process

Fabio A. González Ph.D.

Markov Randon Fields

Application Example Methodology

Markov Random Fields Model Exploratory Experiments

MRF Model (I)

Prediction: given a set of observations to infer the most probable assignations for the latent variables

$$\max_{L} P(L|X) = \max_{L} P(l_1, \dots, l_n | x_1, \dots, x_n)$$

Fabio A González Ph.D

Markov Randor Fields

Application Example

Methodology Markov Random Fields Model Exploratory Experiments

MRF Model (II)

$$P(L|X) = \frac{P(X|L)P(L)}{P(X)} = \frac{P(X^{app}|L)P(X^{geom}|L)P(L)}{P(X)}$$

$$E(L) = \alpha E_{app}(L) + \delta E_{geom}(L) + \beta E_{edge}(L) + \gamma E_{prior}(L),$$

where:

- $E_{app}(L) = -\sum_{l_i \in V} \log P(x_i^{app}|l_i)$
- $E_{geom}(L) = -\sum_{l_i \in V} \log P(x_i^{geom}|l_i)$
- $E_{edge}(L) = -\sum_{(i,j)\in Ed} \log P(l_i, l_j)$
- $E_{prior}(L) = -\sum_{l_i \in V} \log P(l_i)$

Fabio A González Ph.D.

Markov Random Fields

Application Example

Methodology Markov Random Fields Model Exploratory Experiments

Appearance Information

- Three types of descriptors SIFT, SURFT and DCT were tested
- SIFT worked better
- Three color components were added

Fabio A. González Ph.D.

Markov Random Fields

Application Example

Methodology Markov Random Fields Model Exploratory Experiments

Geometric 2D Information (I)

- Coordinate of the morphological center of each superpixel was recorded
- A probability distribution was estimated independently for each label class (Bivariate Gaussian)
- The vertical axis symmetry of the images was exploited to make the estimation problem easier

Fabio A. González Ph.D.

Methodology Markov Random Fields Model Exploratory

Experiments

Geometric 2D Information (II)

Fabio A. González Ph.D.

Markov Randon Fields

Applicatio

Methodology Markov Random Fields Model

Exploratory Experiments

Geometric 2D Information (III)

Fabio A González Ph.D

Markov Randor Fields

Application Example Methodology

Markov Random Fields Model

Fields Model Exploratory Experiments

Data Set

The Cambridge-driving Labeled Video Database (CadVid) is a collection of 701 labeled images (with dimension of 960 \times 720 px) that associates each pixel with one of 32 semantic classes.

Figure: Image data set examples

Fabio A González Ph.D.

Random Fields

Application Example

Methodology Markov Random Fields Model

Exploratory Experiments

Preprocessing

Fabio A. González Ph.D.

Markov Randon Fields

Application

Methodology Markov Random Fields Model

Exploratory Experiments

Importance of Geometric Information

Fabio A González Ph.D.

Markov Randon Fields

Example
Methodology
Markov
Random
Fields Model
Exploratory
Experiments

Parameter Tuning

Figure: Parameter tuning on test images: left, alpha and delta parameters are set to $\alpha=\delta=1.0$; right, beta and gamma are set to best values found ($\beta=0.04,\ \gamma=0$).

Fabio A González Ph.D

Random Fields

Application Example

Methodology Markov Random Fields Model

Exploratory Experiments

Example Segmentation (I)

$$\delta=0 \text{ vs } \delta=0.8$$

Fabio A González Ph.D.

Random Fields

Application Example

Methodology Markov Random Fields Model

Exploratory Experiments

Example Segmentation (II)

$$\beta=0$$
 vs $\beta=0.12$

Fabio A González Ph.D.

Markov Randon Fields

Application
Example
Methodology
Markov
Random
Fields Model
Exploratory

Experiments

Experimental Results

Method	Kind	bicyclist	building	car	fence
MRF Geo+ App	2D	14.3%	55.4%	53.9%	32.50%
MRF App	-	9.8%	52.5%	37.7%	2.4%
SVM	-	1.26%	72.17%	35.15%	0.28%
co-occ&wLg Spx	3 D	28.8%	71.71%	76.5%	4.8%

Method	Kind	road	sidewalk	sky	Average
MRF Geo+ App	2D	84.8%	55.1%	92%	43.09%
MRF App	-	84.5%	22.8%	93%	33.29%
SVM	-	76.76%	8.49%	84.81%	28%
co-occ&wLg Spx	3 D	88.4%	84.7%	89.5%	53%

Conclusion

Geometrical Information Improves the model!