Piano di Progetto

Riconoscimento Automatico del Parlato per Persone con Disartria

1. Introduzione

Nel contesto dell'assistenza ai disturbi del linguaggio di origine neurologica, proponiamo un progetto finalizzato allo sviluppo di un **sistema di riconoscimento e sintesi vocale** (anche noto come "speech-to-text-to-speech" o "sistema di riconversione vocale") che consenta di convertire il linguaggio di persone affette da disartria in testo e successivamente in parlato sintetizzato. La realizzazione di tale soluzione su misura potrebbe migliorare l'autonomia comunicativa, l'inclusione sociale e la qualità di vita di migliaia di persone, con un potenziale impatto sia sanitario che economico.

Il progetto si articolerà in due fasi principali:

1. Fase Pilota:

- Obiettivo: dimostrare la fattibilità tecnologica del modello speech-to-text-to-speech su un campione selezionato di persone con disartria.
- Attività chiave: studio preliminare, definizione delle caratteristiche del dataset, sviluppo di un prototipo ASR con sintesi vocale e validazione iniziale.

2. Fase di Miglioramento ed Estensione:

- Obiettivo: potenziare e ampliare il sistema in base ai risultati del pilota, al fine di renderlo più robusto e applicabile su scala più ampia.

In allegato, presentiamo il dettaglio del piano, comprensivo di analisi dei rischi, strategie di mitigazione, budget e risorse necessarie.

2. Contesto e Motivazione

Molte patologie neurologiche (Parkinson, ictus, sclerosi multipla, traumi cranici, SLA, ecc.) possono causare **disartria**, con conseguente difficoltà nell'articolazione del parlato. È stato stimato che in Italia più di 100.000 persone presentino disartrie di vario grado, spesso con impatto notevole sulla comunicazione. L'esistente tecnologia di riconoscimento vocale fatica a interpretare correttamente queste emissioni vocali alterate, rendendo indispensabile lo sviluppo di soluzioni **custom**, adattate alle peculiarità del parlato disartrico.

Il potenziale impatto di un sistema ASR "inclusivo" per persone con disartria è considerevole:

- Miglioramento dell'autonomia comunicativa in contesti quotidiani (famiglia, lavoro, relazioni sociali).
- Riduzione del carico sull'assistenza socio-sanitaria.

3. Visione Generale del Progetto

3.1 Obiettivo Principale

Sviluppare e validare un **modello completo di riconversione vocale** (speech-to-text-to-speech) in lingua italiana specificamente addestrato per comprendere e trascrivere il parlato di persone con disartria di gravità moderata (o scelta diversa dopo uno studio preliminare), e successivamente convertire il testo in parlato sintetizzato chiaro e naturale.

3.2 Struttura in Due Fasi

- 1. **Fase Pilota**: Creazione di un prototipo iniziale, raccolta di dati su un gruppo ristretto e omogeneo di pazienti, analisi delle performance e validazione preliminare.
- 2. **Fase di Miglioramento ed Estensione**: Scalare il sistema, ottimizzare l'accuratezza, potenziare la robustezza a vari tipi di disartria e valutare un roll-out più ampio.

4. Fase Pilota (6 mesi)

4.1 Objettivo

Verificare la **fattibilità tecnologica** dell'ASR disartrico e raccogliere indicazioni tecniche e cliniche fondamentali per il successivo sviluppo. L'ipotesi di base è che, attraverso un'adeguata raccolta di dati vocali e un'approfondita analisi delle caratteristiche del parlato disartrico, un modello di speech-to-text possa raggiungere **un'accuratezza sufficiente (es. Word Error Rate < 25-35%)** per consentire una comprensione funzionale del messaggio.

4.2 Attività Principali

1. Studio Preliminare del Field (1° mese)

- Analisi dei vari sottotipi di disartria e definizione, in collaborazione con foniatri e logopedisti, dei criteri di selezione (es. disartria di grado moderato, target di intelligibilità 50-80%).
- Identificazione del **gruppo pilota** di pazienti: si prevede di coinvolgere circa 50 persone con disartria di caratteristiche acustiche simili.

2. Raccolta e Preparazione del Dataset (2°-5° mese)

- Registrazione di campioni vocali in lingua italiana, con frasi standard e conversazioni spontanee (100-200 frasi a partecipante).
- Etichettatura dei dati.
- Eventuali tecniche di data augmentation (rumore, variazioni di pitch, ecc.) per aumentare la varietà dei dati.

3. Sviluppo Prototipo di Modello ASR e Sintesi Vocale (2°-5° mese)

- Utilizzo di un modello pre-addestrato sul parlato italiano standard (es. Whisper in italiano o altra soluzione neurale) come base per il componente speech-to-text.
- **Fine-tuning** del modello sulle registrazioni disartriche raccolte.
- Adozione di algoritmi di machine learning robusti (CNN-LSTM, Transformers, ecc.) con tecniche di regularization per evitare overfitting su un dataset relativamente ridotto.
- Integrazione di un sistema di sintesi vocale (text-to-speech) di alta qualità per convertire il testo trascritto in parlato naturale.

4. Analisi delle Prestazioni e Validazione (5°-6° mese)

- Valutazione del Word Error Rate (WER) e di metriche di intelligibilità automatica per il componente speech-to-text.
- Valutazione della naturalezza e comprensibilità del parlato sintetizzato.
- Raccolta di feedback qualitativo da parte dei partecipanti (grado di soddisfazione, usabilità).
- Identificazione di eventuali **colli di bottiglia** tecnici o clinici (es. scarsa qualità audio, sovrapposizione con aprassia dell'eloquio, ecc.).

4.3 Timeline e Milestones

- Mese 1: Completamento dello Studio Preliminare, definizione criteri di inclusione, reclutamento partecipanti.
- **Mese 2-5**: Acquisizione dataset.
- **Mese 2-5**: Sviluppo prototipo e fine-tuning modello.
- **Mese 5-6**: Validazione interna e testing su test set disartrico.

4.4 Metriche di Successo

- Quantitative:

- Word Error Rate (WER) < 25-35% su un test set di parlato disartrico (baseline su parlato disartrico tipicamente è molto più alta, >60-70%).
- Tasso di miglioramento in confronto a un ASR standard non adattato (riduzione degli errori di almeno il 35%).

Qualitative:

- Feedback positivo da parte dei pazienti e dei clinici sulla comprensibilità del testo generato e sulla naturalezza del parlato sintetizzato.

5. Fase di Miglioramento ed Estensione (6-12 mesi)

Obiettivo Generale: Espandere e rafforzare il prototipo validato nella fase pilota, ottenendo un sistema di riconversione vocale (speech-to-text-to-speech) che funzioni in maniera robusta, adattandosi a una gamma più ampia di variabilità del parlato disartrico.

Principali Aree di Intervento:

- Espansione e Raffinamento del Dataset:

- Ampliare il corpus dati includendo registrazioni da pazienti con diversi gradi e tipi di disartria provenienti da più centri clinici.
- Integrare tecniche di data augmentation avanzate e implementare un sistema di apprendimento continuo per aggiornare il modello in base ai nuovi dati raccolti.

- Ottimizzazione del Modello ASR e Sintesi Vocale:

- Applicare strategie di transfer learning avanzato e speaker adaptation per migliorare ulteriormente la precisione del riconoscimento.
- Sperimentare e integrare architetture neurali ibride.
- Migliorare la qualità e personalizzazione della sintesi vocale.

6. Analisi dei Rischi e Mitigazioni

1. Disponibilità limitata di dati:

- *Mitigazione:* adottare strategie di data augmentation e collaborare con più centri di riabilitazione. Sviluppare politiche chiare su consenso e gestione della privacy.

2. Elevata variabilità tra pazienti:

- *Mitigazione:* concentrare il pilota su un sottogruppo omogeneo di disartria; successivamente, estendere il modello in modo graduale.

3. Rischio di overfitting:

- *Mitigazione:* ricorso a modelli pre-addestrati, regularization avanzata, cross-validation estesa.

7. Budget e Risorse

Le seguenti stime si riferiscono a due fasi di progetto (con una durata complessiva di 12-18 mesi). Le cifre possono variare in base a decisioni tecnologiche definitive.

7.1 Fase Pilota (6 mesi)

- Ricerca e Sviluppo (Team tecnico)
 - 2 Data Scientist: 6 mesi ~ 30.000 € cadauno
- Totale stimato personale tecnico: 60.000 €
- Team Medico di Consulenza
 - Sarà necessario un team di esperti consultabili composto da foniatri e logopedisti per l'intera durata del progetto
- Infrastruttura IT
 - Server e Cloud computing per training del modello (GPU, storage) ~ 20.000 €
 - Licenze software ed altri strumenti ~ 5.000 €
- Totale infrastruttura: 25.000 €

Totale Fase Pilota: 85.000 €

7.2 Fase di Miglioramento ed Estensione (6-12 mesi)

Costi Stimati: Il budget per questa fase è complessivamente stimato tra 150.000 e 250.000 €.

Principali Voci di Spesa:

- Team Tecnico:
 - Maggior impegno dei Data Scientist/ML Engineer per l'integrazione di tecnologie avanzate (transfer learning avanzato, speaker adaptation e architetture ibride).
 - Specialisti in sintesi vocale per ottimizzare il componente text-to-speech.
- Team Medico:
 - Consulenza continuativa di specialisti in foniatria e logopedia.
- Infrastruttura IT:
 - Potenziamento dei server e dei servizi cloud.
 - Acquisizione di strumenti software avanzati.

8. Conclusioni

L'investimento proposto punta alla realizzazione di una **tecnologia pionieristica** in grado di colmare un vuoto significativo nell'ambito dell'inclusione digitale per persone con disartria. La struttura in due fasi (pilota e successiva estensione) permette di gestire gradualmente i rischi e consolidare progressi tangibili.

Il sistema di riconversione vocale completo offrirà non solo la trascrizione del parlato disartrico, ma anche la possibilità di comunicare attraverso una voce sintetizzata chiara e naturale, ampliando notevolmente le possibilità comunicative degli utenti.

Visti i **benefici potenziali** e l'assenza di soluzioni equivalenti in lingua italiana, riteniamo che il progetto offra **alte prospettive di ritorno** in termini di impatto sociale, opportunità di integrazione con sistemi sanitari e collaborazioni future (dispositivi di assistenza vocale, telemedicina, piattaforme di comunicazione alternativa e aumentativa).