Strong stationary times

Manuel Hinz

30.06.2020

Übersicht

Top To Random Shuffle

Markov Chains With Filtrations

(Strong) Stationary Times

Handout

- Rückblick,
- klassisches Handout.

Intro

• Beispiele: Karten mischen (S_n) , layz random walk auf einem Hyperwürfel, . . .

• Big Picture: Schranken für τ_{mix} .

Aufteilung

Top To Random Shuffle

Markov Chains With Filtrations

(Strong) Stationary Times

Karten mischen für Menschen mit zu viel Zeit

- Ein Deck aus *n* Karten soll gemischt werden.
- Oberste Karte wird an eine zufällige Position im verbleibenden Deck gesteckt.
- Dieser Mischvorgang entspricht einem random walk auf der Gruppe S_n .

```
def insert_random(deck:List[int], card:int)->List[int]:
    i=randint(0,len(deck))
    return deck[0:i]+[card]+deck[i:]

def shuffle(deck:List[int], tau:int=0)->Tuple[List[int], int]:
    if deck[0]==len(deck): return insert_random(deck[1:], deck[0]), tau+1
    else: return shuffle(insert_random(deck[1:], deck[0]), tau+1)
```

Abbildung: Algorithmus in python

Top-to-random shuffle

Proposition

Sei X_t ein random walk auf S_n , welcher dem top-to-random Mischvorgang entspricht. Seien zum Zeitpunkt t k Karten unter der Karte ρ , welche bei t=0 zu unterst liegt. Dann ist jede der k! möglichen Ordnung gleich wahrscheinlich. Sei τ_{top} die Zeit, welche einen Zeitschritt nach dem ρ die oberste Karte ist. Die Verteilung von $X_{\tau_{\text{top}}}$ ist dann gleichmäßig über S_n und die Zeit τ_{top} ist unabhängig von $X_{\tau_{\text{top}}}$.

Beweis der Proposition

Beweis durch Induktion über t

Für t = 0 ist die Aussage trivial. Wenn die Aussage zum Zeitpunkt t gilt, so sind zwei Fälle möglich:

- Die zum Zeitpunkt t oberste Karte wird über ρ eingefügt, dann hat sich die Reinfolge der Karten unter ρ nicht geändert.
- Falls die zum Zeitpunkt t oberste Karte unter ρ eingefügt wird, so ist jeder der (k+1)! Möglichkeiten gleichwahrscheinlich.

Aufteilung

Top To Random Shuffle

Markov Chains With Filtrations

(Strong) Stationary Times

σ -Algebra

Definition

Für eine Menge Ω ist eine σ -Algebra eine Menge ${\mathcal F}$ von Teilmengen mit

- (i) $\Omega \in \mathcal{F}$,
- (ii) wenn $A_1, A_2, \dots \in \mathcal{F}$, dann schon $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$, und
- (iii) wenn $A \in \mathcal{F}$, dann $A^c = \Omega \setminus A \in \mathcal{F}$.

Sei \mathcal{A} eine Menge von Mengen. Wir schreiben $\sigma(\mathcal{A})$ für die kleinste σ -Algebra, welche \mathcal{A} enthält.

Messbar

Definition

Eine Menge Ω mit einer σ -Algebra \mathcal{F} und einer Funktion $f:\Omega\to\mathbb{R}$ wird messbar genannt, wenn $f^{-1}(B)\in\mathcal{F}$ für alle offenen Mengen $B\subset\mathbb{R}$ gilt.

Filtration

Definition

Sei $\{\mathcal{F}_t\}$ eine Filtration, d.h. eine Sequenz von σ -Algebraen s.d. $\mathcal{F}_t \subset \mathcal{F}_{t+1}$ für alle t gilt. $\{X_t\}$ heißt adaptiert zu $\{\mathcal{F}_t\}$, wenn X_t für alle t \mathcal{F}_t -messbar ist. Wenn $\mathcal{H}_t = \sigma(X_0, X_1, \dots, X_t)$, dann heißt $\{\mathcal{H}_t\}$ die natürliche Filtration. Sei $\{X_t\}$ zu $\{\mathcal{F}_t\}$ adaptiert. Man nennt $\{X_t\}$ eine Markovkette bezüglich $\{\mathcal{F}_t\}$, wenn

$$P_{\mathsf{x}}\{X_{t+1}=y|\mathcal{F}_t\}=P(X_t,y),$$

wobei P die Transitionsmatrix ist. Eine Markovkette erfüllt die Gleichung, wenn $\{\mathcal{F}_t\}$ die natürliche Filtration ist.

< ロ > ∢ @ > ∢ 差 > √ 差 → り へ ♡ .

Stopping time

Definition

Eine Stoppzeit (stopping time) für eine Filtration $\{\mathcal{F}_t\}$ ist eine $\{0,1,\dots\}$ -wertige Zufallsgröße τ s.d. $\{\tau=t\}\in\mathcal{F}_t$. Wenn die Filtration einer Stoppzeit nicht angegeben ist, so wird die natürliche Filtration angenommen. Bsp: τ_{top} .

Hitting times

Sei $A \subset \mathcal{X}$. Dann ist

$$\tau_A = \min\{t \ge 0 : X_t \in A\}$$

eine hitting time un die erste Zeit zu der die Sequenz (X_t) in A ist. τ_A ist für die natural filtration eine stopping time, da $\{X_0 \not\in A, X_1 \not\in A, \dots X_{t-1} \not\in A, X_t \in A\} \subset \sigma(X_0, X_1, \dots, X_t).$

Beispiele für stopping times

- Verkauf ein Future, wenn das underlying für weniger als X gehandelt wird.
- KEIN Beispiel: Verkaufe, wenn der Verkaufspreis am höchsten ist.

Aufteilung

Top To Random Shuffle

2 Markov Chains With Filtrations

(Strong) Stationary Times

Definition: Stationary Times

Definition

Sei (X_t) eine irreduzible Markovkette mit Gleichgewichtsverteilung π . Sei nun $\{\mathcal{F}_t\}$ eine Filtration und $\{X_t\}$ adaptiert zu $\{\mathcal{F}_t\}$. Eine stationary time τ von (X_t) ist eine $\{\mathcal{F}_t\}$ stopping time, evtl. abhängig von der Startposition x, s.d die Verteilung von X_τ π ist:

$$\forall y: P_{\mathsf{x}}\{X_{\mathsf{\tau}}=y\}=\pi(y). \tag{1}$$

Definition: Strong Stationary Times

Definition

Sei (X_t) eine Markovkette bezüglich der Filtration $\{\mathcal{F}_t\}$, mit Gleichgewichtsverteilung π . Eine strong stationary time von (X_t) und Anfangsposition x ist eine $\{\mathcal{F}_t\}$ -stopping time τ , s.d. für alle t und alle y folgendes gilt:

$$P_{X}\{\tau=t, X_{\tau}=y\} = P_{X}\{\tau=t\}\pi(y).$$
 (2)

Mit anderen Worten ist π unabhängig von τ . Beispiel: τ_{top} .

4□ > 4□ > 4 = > 4 = > = 90

Bemerkung

Bemerkung

Sei τ eine strong stationary time für die Startposition x, dann gilt:

$$P_{x}\{\tau \leq t, X_{t} = y\} = \sum_{s \leq t} \sum_{z} P_{x}\{\tau = s, X_{s} = z, X_{t} = y\}$$
$$= \sum_{s \leq t} \sum_{z} P^{t-s}(z, y) P_{x}\{\tau = s\} \pi(z).$$

Es folgt, da π eine Gleichgewichtsverteilung ist, dass $\sum_{z} \pi(z) P^{t-s}(z, y) = \pi(y)$. Damit gilt für alle $t \ge 0$ und y

$$P_{\mathsf{x}}\{\tau \leq t, X_t = y\} = P_{\mathsf{x}}\{\tau \leq t\}\pi(y). \tag{3}$$

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Proposition

Proposition

Sei τ eine strong stationary time für die Startposition x, dann gilt:

$$||P^{t}(x,\cdot) - \pi||_{TV} \le P_{x}\{\tau > t\}.$$
 (4)

Definition: Seperation distance

Definition

Die separation distance wird durch

$$s_{x}(t) := \max_{y \in \mathcal{X}} \left[1 - \frac{P^{t}(x, y)}{\pi(y)} \right]$$
 (5)

definiert. Sei ebenfalls:

$$s(t) := \max_{x \in \mathcal{X}} s_x(t). \tag{6}$$

Lemma 1

Lemma

Sei τ eine strong stationary time für die Startposition x, dann gilt:

$$s_{x}(t) \le P_{x}\{\tau > t\}. \tag{7}$$

Beweis: Lemma 1

Beweis.

Nebenrechnung:

$$1 - \frac{P^t(x,y)}{\pi(y)} = 1 - \frac{P_x\{X_t = y\}}{\pi(y)} \le 1 - \frac{P_x\{X_t = y, \tau \le t\}}{\pi(y)}$$

Es folgt aus der Bemerkung 3, dass die RHS folgendem gleicht:

$$1 - \frac{\pi(y)P_{x}\{\tau \le t\}}{\pi(y)} = P_{x}\{\tau > t\}$$
 (8)

Halting state

Definition

Für einen Startwert x nennt man $y \in \mathcal{X}$ einen halting state für eine stopping time τ , falls

$$X_t = y \implies \tau \le t. \tag{9}$$

Optimal strong stationary time

Proposition

Wenn ein halting state für den Startwert x existiert, dann ist τ eine optimal strong stationary time für x, d.h.

$$s_{x}(t) = P_{x}\{\tau > t\}$$

außerdem gilt $P_x\{\tau > t\} \le P_x\{\rho > t\}$ für jede weitere strong stationary time ρ .

24 / 36

Manuel Hinz Strong stationary times 30.06.2020

Beweis und Kommentar

Beweis.

Falls y ein halting state für den Startwert x und die stopping time τ ist, dann wird aus der Ungleichung

$$1 - \frac{P^t(x, y)}{\pi(y)} \le 1 - \frac{P_x\{X_t = y, \tau \le t\}}{\pi(y)}$$

eine Gleichung für alle t. Daher impliziert die Existenz eines halting states die geforderte Gleichung. \Box

Lemma 2

Lemma

Für die seperation distance $s_x(t)$ gilt:

$$||P^t(x,\cdot)-\pi||_{TV}\leq s_x(t),$$

und damit auch $d(t) \leq s(t)$.

Beweis.

$$\|P^{t}(x,\cdot) - \pi\|_{TV} = \sum_{\substack{y \in \mathcal{X} \\ P^{t}(x,y) < \pi(y)}} [\pi(y) - P^{t}(x,y)]$$

$$= \sum_{\substack{y \in \mathcal{X} \\ P^{t}(x,y) < \pi(y)}} \pi(y) \left[1 - \frac{P^{t}(x,y)}{\pi(y)} \right] \le \max_{y} \left[1 - \frac{P^{t}(x,y)}{\pi(y)} \right] = s_{x}(t).$$

Durch Lemma 1 und Lemma 2 wurde nun die Proposition bewiesen.

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Lazy random walk auf einem hypercube

- lazy random walk auf $\{0,1\}^n$.
- ullet $au_{\rm refresh}$ ist eine strong stationary time.
- Rückblick: coordinate by coordinate coupling und damit auch coupon collector.
- (Proposition 2.4): $P\{\tau > \lceil n \log n + cn \rceil\} \le e^{-c}$.
- Durch 7 folgt dann $s_x(n \log n + cn) \le e^{-c}$.
- 10 : $||P^t(x,\cdot) \pi||_{TV} \leq s_x(t)$
- $||P^{n \log n + cn}(x, \cdot) \pi||_{TV} \le e^{-c}$
- Es folgt $t_{\text{mix}}(\epsilon) \le n \log n + n \log(\epsilon^{-1})$

Top-to-random shuffle Abschätzung

Anwendungsbeispiel

Wie schon voher bemerkt ist τ_{top} eine strong stationary time. Die Wahrscheinlichkeit, dass eine Karte unter ρ gelegt wird, wenn schon k unter ρ sind, beträgt (k+1)/n. Daher hat τ_{top} die gleiche Verteilung wie im Beispiel coupon collector (Seite 63 LPW). Dann folgt aus der Proposition 4 und der Proposition 2.4 (LPW)

$$t_{\mathsf{mix}}(\epsilon) \le n \log n + n \log(\epsilon^{-1}).$$

Proposition

Sei (X_t) die Top-to-random Markovkette mit n Karten. Für jedes $\epsilon>0$ existiert eine Konstante $\alpha(\epsilon)$ s.d. $\alpha>\alpha(\epsilon)$ impliziert, dass es für alle genügent große n

$$d_n(n\log n - \alpha n) \ge 1 - \epsilon \tag{10}$$

D.h.

$$t_{\mathsf{mix}}(1-\epsilon) \ge n \log n - \alpha n.$$
 (11)

Beweis 1/4

Seien die A_j die Ereignisse, dass die unteren j Karten unverändert sind. Sei τ_j die Zeit zu welcher die jte Karte von unten die oberste Karte ist.

$$\tau_j = \sum_{i=j}^{n-1} \tau_{j,i}$$

Wobei $\tau_{j,i}$ die Zeiten sind, welche die jte Karte braucht um zur Position i zu kommen. Die $\tau_{j,i}$ sind unabhängig und geometrisch verteilt mit p=i/n. Daher $E(\tau_{j,i})=n/i$ und $Var(\tau_{j,i})< n^2/i^2$.

$$E(\tau_j) = \sum_{i=j}^{n-1} n/i \ge n \int_j^n \frac{dx}{x} = n(\log n - \log j)$$
 (12)

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 釣 Q C

Beweis 2/4

$$Var(\tau_j) \le n^2 \sum_{i=j}^{\infty} \frac{1}{i(i-1)} \le \frac{n^2}{j-1}$$
 (13)

12,13 und Chebychev's Ungleichung liefern

$$P\{\tau_j < n \log n - \alpha n\} \le P\{\tau_j - E(\tau_j) < -n(\alpha - \log j)\} \le \frac{1}{j-1}$$

Falls $\alpha \ge \log j + 1$. Sei $t_n(\alpha) = n \log n - \alpha n$. Falls $\tau_j \ge t_n(\alpha)$ so bleiben die ursprünglichen j untersten Karten in der ursprünglichen Reinfolge zur Zeit $t_n(\alpha)$:

$$P^{t_n(\alpha)}(A_n,A_j) \geq P\{\tau_j \geq t_n(\alpha)\} \geq 1 - \frac{1}{j-1},$$

für $\alpha \ge \log i + 1$.

Beweis 3/4

Für die gleichverteilte Gleichgewichtsverteilung

$$\pi(A_j) = 1/(j!) \le (j-1)^{-1}$$

 $\text{gilt für } \alpha \geq \log j + 1$

$$d_n(t_n(\alpha)) \ge \|P^{t_n(\alpha)}(A_n, A_j) - \pi\|_{TV} \ge P^{t_n(\alpha)}(id, A_j) - \pi(A_j) > 1 - \frac{2}{j-1}.$$
(14)

Für $j = \lceil e^{\alpha - 1} \rceil$ gilt für $n \ge e^{\alpha - 1}$ gilt nun folgendes

$$d_n(t_n(\alpha)) > g(\alpha) := 1 - \frac{2}{\lceil e^{\alpha - 1} \rceil - 1}. \tag{15}$$

◆ロト→御ト→重ト→重ト 重 めなべ

33 / 36

Manuel Hinz Strong stationary times 30.06.2020

Beweis 4/4

Es folgt

$$\lim_{n\to\infty}\inf d_n(t_n(\alpha))\geq g(\alpha)$$

Und $g(\alpha) \to 1$ wenn $\alpha \to \infty$

34 / 36

Manuel Hinz Strong stationary times 30.06.2020

Realität

Des weiteren ...

•

$$s(2t) \le 1 - (1 - \bar{d}(t))^2 \le 2\bar{d}(t) \le 4d(t).$$
 (Lemma 6.17)

Des weiteren ...

•

$$s(2t) \le 1 - (1 - \bar{d}(t))^2 \le 2\bar{d}(t) \le 4d(t).$$
 (Lemma 6.17)

• Für jede irreduzible und aperiodische Markovkette (X_t) . Für jede Startposition x existiert eine optimale strong stationary time. D.h. es existiert eine strong stationary time s.d. für alle $t \geq 0$: $s_x(t) = P_x\{\tau > t\}$.

Des weiteren ...

$$s(2t) \leq 1 - (1 - \bar{d}(t))^2 \leq 2\bar{d}(t) \leq 4d(t).$$
 (Lemma 6.17)

- Für jede irreduzible und aperiodische Markovkette (X_t) . Für jede Startposition x existiert eine optimale strong stationary time. D.h. es existiert eine strong stationary time s.d. für alle $t \geq 0$: $s_x(t) = P_x\{\tau > t\}$.
- Code: Auf Sciebo.
- Literatur: LPW, H und das Alma 1 Skript von Harbrecht.