Tutorial Sheet 5 Inner Product Spaces

1. Find an inner product in \mathbb{R}^2 such that the following condition hold:

$$||(1,2)|| = ||(2,-1)|| = 1$$
 and $\langle (1,2), (2,-1) \rangle = 0$

- 2. Let $x, y \in \mathbb{R}^n$. Then prove the following:
 - (a) $\langle x, y \rangle = 0$ if and only if $||x y||^2 = ||x||^2 + ||y||^2$, (This is called Pythagoras Theorem).
 - (b) $||x|| = ||y|| \iff \langle x + y, x y \rangle = 0$, (x and y form adjacent sides of a rhombus as the diagonals x + y and x y are orthogonal).
 - (c) $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$, (This is called the Parallelogram Law).
 - (d) $4\langle x,y\rangle = ||x+y||^2 ||x-y||^2$ (This is called the polarisation identity).
 - (e) If $x, y \in \mathbb{C}^n(\mathbb{C})$, then $4\langle x, y \rangle = ||x + y||^2 ||x y||^2 + i||x + iy||^2 i||x iy||^2$ (This is called the polarisation identity).
- 3. (a) Let $\{u_1 = (1, 1, 1, 1), u_2 = (1, 0, 1, 0), u_3 = (0, 1, 0, 1)\}$ be a linearly independent set in $\mathbb{R}^4(\mathbb{R})$. Find an orthonormal set $\{v_1, v_2, v_3\}$ such that $L(u_1, u_2, u_3) = L(v_1, v_2, v_3)$.
 - (b) Find an orthonormal basis for $\mathcal{P}_2(\mathbb{R})$, where the inner product is given by $\langle p,q\rangle=\int_{-1}^1 p(x)q(x)$.
- 4. Let V be an inner product space. Let W be a non-empty set. Then

$$W^{\perp} = \{ v \in V : \langle v, w \rangle = 0 \text{ for all } w \in W \}.$$

- (a) If $W = \{(x, y, z) \in \mathbb{R}^3 : x + y z = 0\}$. Then find W^{\perp} with respect to the standard inner product. Also find basis and dimension of W, W^{\perp}
- (b) Let V be the vector space of all $n \times n$ real matrices. Then V is a real inner product space with the inner product given by $\langle A, B \rangle = tr(AB^t)$. If W is the subspace given by $W = \{A \in V : A^t = A\}$, determine the dimension of W^{\perp} .

1