AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A pyrimidine of the formula I

$$R^3$$
 N R^2

in which the index and the substituents are as defined below:

- n is an integer from 1 to 5;
- L is halogen, cyano, nitro, cyanato (OCN), C₁-C₈-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyloxy, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₂-C₁₀-alkynyloxy, C₂-C₁₀-alkynyloxy, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkenyloxy, -C(=S)-N(A')A, -C(=O)-A, -C(=O)-O-A, -C(=O)-N(A')A, C(A')(=N-OA), N(A')A.

 N(A')-C(=O)-A, N(A'')-C(=O)-N(A')A, S(=O)_m-A, S(=O)_m-O-A or S(=O)_m-N(A')A;

m is 0, 1 or 2;

A,A', A'' independently of one another are hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₈-cycloalkyl, C₃-C₈-cycloalkenyl, where the organic radicals may be partially or fully halogenated or may be substituted by cyano or C₁-C₄-alkoxy, or A and A' together with the atoms to which they are attached are a five- or six-

Docket No.: 5000-0128PUS1

membered saturated, partially unsaturated or aromatic heterocycle which contains one to four heteroatoms from the group consisting of O, N and S;

- R^1 is C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_3 - C_{12} -cycloalkyl, C_3 - C_{10} -cycloalkenyl;
- R^2 is halogen, cyano, C_4 - C_4 -alkoxy. C_3 - C_4 -alkenyloxy or C_3 - C_4 -alkynyloxy;
- R³ is a five- or six-membered saturated, partially unsaturated or aromatic mono- or bicyclic heterocycle which contains one to four heteroatoms from the group consisting of O, N and S,

where the aliphatic, alicyclic or aromatic groups of the radical definitions of L, R^1 , R^2 and/or R^3 for their part may be partially or fully halogenated or may carry one to four groups R^a :

R^a is halogen, cyano, C₁-C₈-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, C₁-C₆-alkoxy, C₂-C₁₀-alkenyloxy, C₂-C₁₀-alkynyloxy, OH, SH, two vicinal groups R^a may be (=O) or (=S), C₃-C₆-cycloalkyl, C₃-C₆-cycloalkenyl, C₃-C₆-cycloalkoxy, C₃-C₆-cycloalkenyloxy, -C(=O)-A, -C(=O)-O-A, -C(=O)-N(A')A, C(A')(=N-OA),

as Ra.

N(A')A, N(A')-C(=O)-A, N(A'')-C(=O)-N(A')A, $S(=O)_m-A$, $S(=O)_m-O-A$ or $S(=O)_m-N(A')A$, where m, A, A', A'' are as defined above and where the aliphatic, alicyclic or aromatic groups for their part may be partially or fully halogenated or may carry one to three groups R^b , where R^b has the same meaning

- 2. (Currently Amended) A pyrimidine as claimed in claim 1, in which the index and the substituents are as defined below:
 - L is halogen, cyano, C_1 - C_8 -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_1 - C_6 -alkoxy, $\frac{C_2-C_{10}}{A} \frac{1}{A} \frac{1}{A$

m is 0, 1 or 2;

A,A', A'' independently of one another are hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₈-cycloalkyl, where the organic radicals may be partially or fully halogenated or A and A' together with the atoms to which they are attached are a partially unsaturated or aromatic heterocycle which contains one to four heteroatoms from the group consisting of O, N and S;

Docket No.: 5000-0128PUS1

- R^1 is C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_3 - C_{12} -cycloalkyl, C_3 - C_{10} -cycloalkenyl;
- R² is cyano or chlorine,

where the aliphatic, alicyclic or aromatic groups of the radical definitions of L, R¹ and/or R³ for their part may be partially or fully halogenated or may carry one to four groups R^a:

- Is halogen, cyano, C_1 - C_8 -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_1 - C_6 -alkoxy, C_2 - C_{10} -alkenyloxy, C_2 - C_{10} -alkynyloxy, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_3 - C_6 -cycloalkenyloxy, C_3 - C_6 -cycloalkenyloxy, C_8 - C_8 -
- 3. (Original) A pyrimidine as claimed in claim 1, in which R³ is pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, tetrazolyl, oxazolyl, isoxazolyl, 1,3,4-oxadiazolyl, furanyl, thiophenyl, thiazolyl, isothiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, 1,2,3-triazinyl, 1,2,4-triazinyl, pyrrolidinyl, piperidinyl, hexahydroazepinyl or dihydropyridinyl, where the heterocycle may be attached to the pyrimidine ring via carbon or nitrogen and may carry up to three substituents R^a:

- is halogen, cyano, C₁-C₈-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, C₁-C₆-alkoxy, C₂-C₁₀-alkenyloxy, C₂-C₁₀-alkynyloxy, OH, SH, two vicinal groups R^a may be (=O) or (=S), C₃-C₆-cycloalkyl, C₃-C₆-cycloalkenyl, C₃-C₆-cycloalkoxy, C₃-C₆-cycloalkenyloxy, -C(=O)-A, -C(=O)-O-A, -C(=O)-N(A')A, C(A')(=N-OA), N(A')A, N(A')-C(=O)-A, N(A'')-C(=O)-N(A')A, S(=O)_m-A, S(=O)_m-O-A or S(=O)_m-N(A')A.
- 4. (Original) A pyrimidine as claimed in claim 1, in which R³ is pyrazol-1-yl, [1,2,4]-triazol-1-yl, pyridin-2-yl, pyridin-2-yl, pyridazin-3-yl, pyrrolidin-2-on-1-yl, piperidin-2-on-1-yl, hexahydro-2H-azepin-2-on-1-yl, pyrrolidin-2-thion-1-yl, piperidin-2-thion-1-yl, hexahydro-2H-azepin-2-thion-1-yl, 1,2-dihydropyridin-2-on-1-yl.
- 5. (Previously Presented) A pyrimidine as claimed in claim 1, in which R² is chlorine.
- 6. (Currently Amended) A pyrimidine as claimed in any of claims 1 to 5, in which the phenyl group substituted by L_n is the group B

$$L^{5}$$

$$L^{2}$$

$$L^{2}$$

$$L^{2}$$

$$L^{3}$$

$$L^{2}$$

where # is the point of attachment to the pyrimidine skeleton and

- L¹ is fluorine, chlorine, CH₃ or CF₃;
- L²,L⁴ independently of one another are hydrogen, CH₃ or fluorine;
- is hydrogen, fluorine, chlorine, bromine, cyano, CH₃, SCH₃, OCH₃, SO₂CH₃, CO-NH₂, CO-NHCH₃, CO-NHC₂H₅, CO-N(CH₃)₂, NH-C(=O)CH₃.

 N(CH₃)-C(=O)CH₃ or COOCH₃ and
- L⁵ is hydrogen, fluorine, chlorine or CH₃.
- 7. (Previously Presented) A process for preparing a pyrimidine of the formula I as claimed in claim 1, where R³ is a nitrogen-containing heterocycle attached via nitrogen, which comprises reacting a compound of the formula III,

$$\mathbb{R}^{1}$$

$$\mathbb{L}_{n}$$

$$\mathbb{R}^{2}$$

in which the substituents L_n , R^1 and R^2 are as defined in claim 1 and X is halogen, C_1 - C_6 -alkylsulfoxyl or C_1 - C_6 -alkylsulfoxyl or C_1 - C_6 -alkylsulfoxyl or the formula R^3 -H (IV), optionally in the presence of a base.

8. (Currently Amended) An intermediate of the formula III

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ X & & & \\ X & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

wherein:

 $R^1 \qquad \text{is C_1-C_{10}-alkyl, C_2-C_{10}-alkynyl, C_3-C_{12}-cycloalkyl, C_3-C_{10}-alkynyl;} \\ \text{cycloalkenyl;}$

 $\begin{array}{lll} L_n & \text{ is halogen, cyano, } C_1\text{--}C_8\text{--alkyl, } C_2\text{--}C_{10}\text{--alkenyl, } C_2\text{--}C_{10}\text{--alkynyl, } C_1\text{--}C_6\text{--alkoxy,} \\ & C_2\text{--}C_{10}\text{--alkenyloxy, } C_2\text{--}C_{10}\text{--alkynyloxy, } \text{--}C(=O)\text{--O-A, } \frac{N(A'')\text{--}C(=O)\text{--A}}{A''} \text{ or } S(=O)_m\text{--A''} \\ & A; \\ & m & \text{is } 0, 1 \text{ or } 2; \end{array}$

X is halogen, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfoxyl or C_1 - C_6 -alkylsulfenyl, with a heterocycle of the formula R^3 -H (IV), optionally in the presence of a base, and R^2 is cyano, C_1 - C_4 -alkyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkynyl, C_4 - C_4 -alkoxy, C_3 - C_4 -alkenyloxy or C_3 - C_4 -alkynyloxy, where the alkyl, alkenyl and alkynyl radicals of R^2 may be substituted by halogen, cyano, nitro, C_1 - C_2 -alkoxy or C_1 - C_4 -alkoxycarbonyl.

9. (Previously Presented) A pesticidal composition, which comprises a solid or liquid carrier and a pyrimidine of the formula I

$$R^3$$
 N R^2

in which the index and the substituents are as defined below:

- n is an integer from 1 to 5;
- L is halogen, cyano, nitro, cyanato (OCN), C_1 - C_8 -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkenyl, C_3 - C_6 -cycloalkenyl, C_3 - C_6 -cycloalkenyloxy, C_3 - C_6 -cycloa

m is 0, 1 or 2;

A,A', A'' independently of one another are hydrogen, C₁-C₆-alkyl, C₂-C₆-alkynyl, C₃-C₈-cycloalkyl, C₃-C₈-cycloalkenyl,

where the organic radicals may be partially or fully halogenated or may be substituted by cyano or C₁-C₄-alkoxy, or A and A' together with the atoms to which they are attached are a five- or six-membered saturated, partially unsaturated or aromatic heterocycle which contains one to four heteroatoms from the group consisting of O, N and S;

- R^{1} is C_{1} - C_{10} -alkyl, C_{2} - C_{10} -alkenyl, C_{2} - C_{10} -alkynyl, C_{3} - C_{12} -cycloalkyl, C_{3} - C_{10} -cycloalkenyl;
- R² is halogen, cyano, C₁-C₄-alkoxy, C₃-C₄-alkenyloxy or C₃-C₄-alkynyloxy;
- R³ is a five- or six-membered saturated, partially unsaturated or aromatic mono- or bicyclic heterocycle which contains one to four_heteroatoms from the group consisting of O, N and S,

where the aliphatic, alicyclic or aromatic groups of the radical definitions of L, R^1 , R^2 and/or R^3 for their part may be partially or fully halogenated or may carry one to four groups R^a :

R^a is halogen, cyano, C₁-C₈-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, C₁-C₆-alkoxy,

 C_2 - C_{10} -alkenyloxy, C_2 - C_{10} -alkynyloxy, OH, SH, two vicinal groups R^a may be (=O) or (=S), C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_3 - C_6 -cycloalkenyloxy, C_3 - C_6 -cycloalkenyloxy, C

10. (Previously Presented) A method for controlling phytopathogenic harmful fungi, which comprises treating the fungi or the materials, plants, the soil or seeds to be protected against fungal attack with an effective amount of a pyrimidine of the formula I

$$R^3$$
 N R^2

in which the index and the substituents are as defined below:

- n is an integer from 1 to 5;
- L is halogen, cyano, nitro, cyanato (OCN), C₁-C₈-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, C₁-C₆-alkoxy, C₂-C₁₀-alkenyloxy, C₂-C₁₀-alkynyloxy, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkenyl, C₃-C₆-cycloalkoxy, C₃-C₆-cycloalkenyloxy, -C(=S)-N(A')A,

11 ADM/VP/mao

_C(=O)-A, -C(=O)-O-A, -C(=O)-N(A')A, C(A')(=N-OA), N(A')A, N(A')-C(=O)-A, N(A'')-C(=O)-N(A')A, S(=O)_m-A, S(=O)_m-O-A or S(=O)_m-N(A')A;

m is 0, 1 or 2;

A,A', A'' independently of one another are hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₈-cycloalkyl, C₃-C₈-cycloalkenyl, where the organic radicals may be partially or fully halogenated or may be substituted by cyano or C₁-C₄-alkoxy, or A and A' together with the atoms to which they are attached are a five- or six-membered saturated, partially unsaturated or aromatic heterocycle which contains one to four heteroatoms from the group consisting of O, N and S;

- R^1 is C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_3 - C_{12} -cycloalkyl, C_3 - C_{10} -cycloalkenyl;
- R² is halogen, cyano, C₁-C₄-alkoxy, C₃-C₄-alkenyloxy or C₃-C₄-alkynyloxy;

R³ is a five- or six-membered saturated, partially unsaturated or aromatic mono- or bicyclic heterocycle which contains one to four heteroatoms from the group consisting of O, N and S,

where the aliphatic, alicyclic or aromatic groups of the radical definitions of L, R¹, R² and/or R³ for their part may be partially or fully halogenated or may carry one to four groups R^a:

 R^a is halogen, cyano, C_1 - C_8 -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_1 - C_6 -alkoxy, C_2 - C_{10} -alkenyloxy, C_2 - C_{10} -alkynyloxy, OH, SH, two vicinal groups R^a may be (=O) or (=S), C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_3 - C_6 -cycloalkenyloxy, C_3 -

- 11. (Currently Amended) A pyrimidine as claimed in claim 1, wherein R^2 is halogen[[,]] or cyano or C_4 - C_4 -alkoxy.
- 12. (Previously Presented) A pyrimidine as claimed in claim 1, wherein R¹ is C₃-C₈-alkyl, C₃-C₈-alkyl, C₃-C₆-cycloalkyl or C₅-C₆-cycloalkenyl.

- 13. (Currently Amended) A pyrimidine as claimed in claim 1, wherein R¹ is C₁-C₆-alkyl.
- 14. (Previously Presented) A pyrimidine as claimed in claim 1, wherein R¹ is selected from the group consisting of 2-methyl-butyl, cyclohexyl, but-1-en-4-yl, methyl, 3-methyl-but-1-enyl, 2-hydroxy-3-methyl-butyl, and 2-methyl-propyl.
- 15. (Previously Presented) The pyrimidine of claim 14, wherein R² is halogen[[,]] or cyano or C₁-C₄-aikoxy.
- 16. (Previously Presented) The pyrimidine of claim 15, wherein R³ is selected from the group consisting of [1,2,4] triazol-1-yl, pyrazol-1-yl, 1,2,3-triazol-1-yl, 3-cyano-1,2,4-triazol-1-yl, 7-amino-indazol-1-yl, and 3-amino-pyrazol-1-yl.