Features

- 12-bit Battery-cell Voltage Measurement
- Simultaneous Battery Cells Measurement in Parallel
- Cell Temperature Measurement
- Charge Balancing Capability
 - Parallel Balancing of Cells Possible
- Integrated Power Supply for MCU
- Undervoltage Detection
- Less than 10 µA Standby Current
- Low Cell Imbalance Current (< 10 μA)
- Hot Plug-in Capable
- Interrupt Timer for Cycling MCU Wake-ups
- Cost-efficient Solution Due to Cost-optimized 30V CMOS Technology
- Reliable Communication between Stacked ICs Due to Level Shifters with Current Sources and Checksum Monitoring of Data
- Daisy-chainable
 - Each IC Monitors up to 6 Battery Cells
 - 16 ICs (96 Cells) per String
 - No Limit on Number of Strings
- Package QFN48 7 mm ×7 mm

Applications

 Battery Measurement, Supply and Monitoring IC for Li-ion and NiMH Battery Systems in Electric (EV) and Hybrid Electrical (HEV) Vehicles

Benefits

- Highest Safety Level for Li-ion Battery Systems in Combination with ATA6871
- Cost Reduction Due to Integrated Measurement Circuit and High Voltage Power-supply

1. Description

The ATA6870 is a measurement and monitoring circuit designed for Li-ion and NiMH multicell battery stacks in hybrid electrical vehicles.

The ATA6870 monitors the battery-cell voltage and the battery-cell temperature with a 12-bit ADC.

The circuit also provides charge-balancing capability for each battery-cell.

In addition, a linear regulator is integrated to supply a microcontroller or other external components. Reliable communication between stacked ICs is achieved by level-shifters with current sources. The ATA6870 can be connected to three, four, five or six battery-cells. Up to 16 circuits (96 cells) can be cascaded in one string. The number of strings is not limited.

Li-lon, NiMH
Battery
Measuring,
Charge
Balancing and
Power-supply
Circuit

ATA6870

Preliminary

2. Block Diagram

Figure 2-1. Block Diagram

3. Pin Configuration

Figure 3-1. Pinning QFN48, $7 \text{ mm} \times 7 \text{ mm}$

Table 3-1. Pin Description

Pad Number	Pad Name	Function	Remark
Exposed Pad		Heatslug	
1	DISCH5	Output to drive external cell-balancing transistor	
2	MBAT5	Battery cell sensing line	
3	DISCH4	Output to drive external cell-balancing transistor	
4	MBAT4	Battery cell sensing line	
5	DISCH3	Output to drive external cell-balancing transistor	
6	MBAT3	Battery cell sensing line	
7	DISCH2	Output to drive external cell-balancing transistor	
8	MBAT2	Battery cell sensing line	
9	DISCH1	Output to drive external cell-balancing transistor	
10	MBAT1	Battery cell sensing line	
11	IRQ	Interrupt output for MCU/ATA6870 below	
12	CLK	System clock	
13	CS_N	Chip select input from MCU/ATA6870 below	
14	SCK	SPI clock input from MCU/ATA6870 below	
15	MOSI	Master Out Slave In input from MCU	SPI data input
16	MISO	Master In Slave Out output for MCU	SPI data output
17	MFIRST	Select Master/Slave	

 Table 3-1.
 Pin Description (Continued)

Pad Number	Pad Name	Function	Remark
18	DTST	Test-mode pin	Keep pin open (output)
19	SCANMODE	Test-mode pin	Connected to VSSA
20	CS_FUSE	Test-mode pin	Connected to VSSA
21	VDDFUSE	Test-mode pin	Connected to VSSA
22	DVSS	Digital negative supply	
23	DVDD	Digital positive supply input (3.3V)	Connected to AVDD
24	GND	Ground	
25	ATST	Test-mode pin	Keep pin open (output)
26	AVDD	3.3V Regulator output	
27	AVSS	Analog negative supply	
28	TEMPVSS	Ground for temperature measuring	
29	TEMP1	Temperature measuring input 1	
30	TEMP2	Temperature measuring input 2	
31	TEMPREF	Reference voltage for temperature measuring	
32	BIASRES	Internal supply current adjustment	
33	PWTST	Test - mode pin	Keep pin open (output)
34	POW_ENA	Power regulator enable/disable	
35	PD_N_OUT	Power down output	
36	VDDHVM	Power regulator output to supply e.g. an external microcontroller	
37	VDDHVP	Power regulator supply voltage	
38	PD_N	Power down input	
39	MISO_IN	Master In Slave Out input from ATA6870 above	
40	MOSI_OUT	Master Out Slave In output for ATA6870 above	
41	SCK_OUT	SPI clock output for input of ATA6870 above	
42	CS_N_OUT	Chip select output for input of ATA6870 above	
43	CLK_OUT	System clock output for input of ATA6870 above	
44	IRQ_IN	Interrupt input from ATA6870 above	
45	VDDHV	Supply voltage	
46	MBAT7	Battery cell sensing line	
47	DISCH6	Output to drive external cell-balancing transistor	
48	MBAT6	Battery cell sensing line	

4. ATA6870 System Overview

The ATA6870 can be stacked up to 16 times in one string. The communication with MCU is carried out on the lowest level through an SPI bus. The data on the SPI bus is transmitted to the 15 other ATA6870s using the communication interface implemented inside ATA6870.

Figure 4-1. Battery Management Architecture with One Battery String

Battery Management Architecture with Several Battery Strings

ATA6870

ATA6870

ATA6870

To Battery

MCU

Figure 4-2. Battery Management Architecture with Several Battery Strings

Master Controller

5. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Unless otherwise specified all voltages to pin VSSA.

Parameters	Pin	Symbol	Min.	Max.	Unit
Ambient temperature		T _A	-40	+85	°C
Junction temperature		TJ	-40	+125	°C
Storage temperature		T _S	– 55	+150	°C
Battery cell voltage	MBAT(i+1), MBAT(i)	V _{MBAT(i+1)} - V _{MBAT(i)}	-0.3	+5.5	V
V _{VDDHV} - V _{VMBAT7} max		V _{VDDHV} - V _{VMBAT7}	-5.5	+0.3	V
V _{MBAT1}	MBAT1	V _{MBAT1}	-0.3	+0.3	V
Supply voltage power regulator	VDDHVP	V_{VDDHVP}	-0.3	+33.6	V
Operating supply voltage	VDDHV	V_{VDDHV}	-0.3	+30	V
Supply voltage DVDD (regulator is Off)	DVDD	V _{DVDD}	-0.3	+5.5	V
Supply voltage AVDD (regulator is Off)	AVDD	V_{AVDD}	-0.3	+5.5	V
Test-input	VDDFUSE	V _{VDDFUSE}	-0.3	+5.5	V
Reference voltage for temperature measuring (regulator is Off)	TEMPREF	V _{TEMPREF}	-0.3	VDD+0.3	V
Supply voltage VDDHVM (regulator is Off)	VDDHVM	V _{VDDHVM}	-0.3	+5.5	V
Digital Ground	DVSS	V _{AVSS} - V _{GND}	-0.3	+0.3	V
Analog Ground	AVSS	V _{AVSS} - V _{GND}	-0.3	+0.3	V
Digital/Analog Ground	AVSS, DVSS	V _{AVSS} - V _{DVSS}	-0.3	+0.3	V
Ground voltage for temperature measuring	TEMPVSS	V _{TEMPVSS}	-0.3	+0.3	V
Input voltage for logic I/O pins	CLK, CS_N, SCK, MOSI, DTST, ATST, SCANMODE, MFIRST, POW_ENA, CS_FUSE, PWTST	V _{CLK} , V _{CS_N} , V _{SCK} , V _{MOSI} , V _{DTST} , V _{ATST} , V _{SCANMODE} , V _{MFIRST} , V _{POW_ENA} , V _{CS_FUSE} , V _{PWTST}	-0.3	VDD + 0.3	V
	IRQ, MISO	V_{IRQ}, V_{MISO}	-0.3	+5.5	V
Input voltage for analog I/O pins	TEMP1, TEMP2, BIASRES	V _{TEMP1} , V _{TEMP2} , V _{BIASRES}	-0.3	VDD + 0.3	V
Input voltage for digital high voltage input pins	MISO_IN, IRQ_IN	V _{MISO_IN} , V _{IRQ_IN}	VDDHV – 0.3	VDDHV + 0.3	V
Voltage at digital high voltage output pins	MOSI_OUT, SCK_OUT, CS_N_OUT, CLK_OUT	V _{MOSI_OUT} , V _{SCK_OUT} , V _{CS_N_OUT} , V _{CLK_OUT}	VDDHV – 0.3	VDDHV + 0.3	V
Input: PD_N	PD_N	V _{PD_N}	VDDHV – 5.5	VDDHV + 0.3	V
Output: PD_N_OUT	PD_N_OUT	V _{PD_N_OUT}	-5.5	+0.3	V
	DISCH(i)	VDISCH(i)	V _{MBAT(i)} - 0.3	$V_{MBAT(i+1)} + 0.3$	V

5. Absolute Maximum Ratings (Continued)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Unless otherwise specified all voltages to pin VSSA.

Parameters	Pin	Symbol	Min.	Max.	Unit
HBM ESD ANSI/ESD-STM5.1 JESD22-A114 AEC-Q100 (002)		ESD	±2		kV
			500		V
CDM ESD STM 5.3.1	1, 12, 13, 24, 25, 36, 37, 48		750		V
Latch-up acc. to AECQ100-004, JESD78A		LATCH-UP	±100		mA

6. Thermal Resistance

Parameters	Symbol	Value	Unit
Package. QFN48 7×7			
Max. thermal resistance junction-ambient ⁽¹⁾	R _{thja} max	20	K/W
Max. thermal resistance junction-case	R _{thiC} max	TBD	K/W

Note: 1. Package mounted on 4 large PCB (per JESD51-7) under natural convention as defined in JESD51-2.

7. Circuit Description and Electrical Characteristics

Unless otherwise specified all parameters in this section are valid for a supply voltage range of $6.9 \text{V} < \text{V}_{\text{DDHV}} < 30 \text{V}$ and a battery cell voltage of $\text{V}_{\text{MBAT}(i+1)} - \text{V}_{\text{MBAT}(i)} = 0 \text{V}$ to 5 V, $-40 ^{\circ}\text{C} < \text{T}_{\text{A}} < 85 ^{\circ}\text{C}$. All values refer to pin VSSA, unless otherwise specified.

7.1 Operating Modes

The ATA6870 has two operation modes.

- 1. Power-down Mode (PDmode)
- 2. Normal Mode (NORM Mode)

7.1.1 Power-down Mode

In Power-down Mode all blocks of the IC are switched off.

The circuit can be switched from Power-down to ON Mode or back via the PD_N input. If the pin is connected to VDDHV via an external optocoupler, for example, the circuit is in ON Mode. If several ATA6870 are stacked, the power-down signal must be only provided for the IC on the top level of the stack. The next lower IC receives this information from the PD_N_OUT output of its upper IC. The PD_N_OUT pin must be connected to either the PD_N pin of the next lower ATA6870 or to VSSA.

Figure 7-1. Power-down

Table 7-1. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
1.1	Maximum allowed input current in Power-down Mode (e.g., leakage current of an optocoupler)		PD_N	I _{PD_N}			50	μΑ	А
1.2	Input current in ON Mode		PD_N	I _{PD_N}	2.5		5	mA	Α
1.3	Maximum voltage (pin PD_N left open)	I _{PD_N} = 0 to 50 μA	PD_N	V _{VDDHV} - V _{PD_N}			5	٧	Α
1.4	Propagation delay time from Power-down Mode to NORM Mode	min slope $I_{PD_N} = \frac{1 \text{ mA}}{\text{msec}}$	DVDD	t _{VDDON}			3	ms	А
1.5	Propagation delay time from NORM Mode to Power-down Mode		DVDD	t _{VDDOFF}			10	ms	Α

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

7.1.2 Normal Operating Mode (NORM Mode)

The ATA6870 turns on when the PD_N signal is switched from low to high. The power supplies AVDD and DVDD as well as VDDHVM (if the input signal POW_ENA = high) are turned on. The configuration registers are set to their default values. In NORM Mode the ATA6870 can acquire analog data (voltage or temperature channels) upon request from the host microcontroller. When the host microcontroller orders an acquisition through the SPI bus, the IC starts digitizing all voltage and one temperature channel in parallel. The on-chip digital signal processor filters, in real time, the channel samples. When conversion and filtering are done, the data-ready interrupt to the host processor indicates the data availability. The MCU can now read the ADC result registers. The MCU reads the ATA6870's status registers to check each IC and to acknowledge the interrupt. When ATA6870 is in NORM Mode, the MCU can be active or in idle mode. In order to wake-up the MCU by an interrupt, the Low Frequency Timer (LFT) can be activated in ATA6870. Interrupt is signaled with a high level on IRQ pin. The LFT is re-programmable on the fly and can be reset through SPI, but is not stoppable.

Figure 7-2. ATA6870 in NORM Mode

Table 7-2. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
2.1	Supply voltage		VDDHV	V_{VDDHV}	6.9		30	V	Α
2.2	Current consumption IVDDHV (Normal Mode)		VDDHV	I _{VDDHV}			15	mA	А
2.3	Current consumption in Power-down mode (PDmode) I _{VDDHV} + I _{MBAT(i)} max ⁽¹⁾	$V_{MBAT(i+1)} - V_{MBAT(i)} = 3.7V$	VDDHV				10	μА	А
2.4	Imbalance from battery cell	$V_{MBAT(i+1)} - V_{MBAT(i)} = 3.7V$	MBAT(i+1)	I _{MBAT(i+1)}			10	μΑ	А

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Battery cell

Note: 1. Largest input current of the cell inputs MBAT(i)

7.2 Interface to Battery Cells

Each input line MBAT(i) and the supply lines VDDHV, AVSS can be protected by additional resistors and a filter capacitor as shown below.

Battery cell(i)

AVSS

AVSS

Figure 7-3. External Components between ATA6870 and the Battery Cells

MBAT_(i) are high impedance input (~2 M Ω). Thus, external components can be added to protect ATA6870 chip against current spikes and overvoltage at battery cell level.

ATA6870

Board

Table 7-3. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
3.1	R_IN		MBAT(i)				1	kΩ	D
3.2	R_VDDHV		VDDHV				50	Ω	D
3.3	R_VSS		AVSS				50	Ω	D

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

7.3 Reduced Number of Battery Cells Configuration

It is possible for ATA6870 to operate with a reduced number of cells: 3, 4, 5, and 6 cell operation are possible. In these cases, the cell-chip inputs corresponding to the missing cells should be connected to the upper cell potential of the module.

Figure 7-4. Connection with 4 Cells only

Battery cell 1 (MBAT1, MBAT2) and battery cell 6 (MBAT6, MBAT7) must always be used for the lowest/highest cell.

7.4 ATA6870 External MCU Supply

The ATA6870 provides a 3.3V power-supply for external components such as the microcontroller unit (MCU). The input pin for this supply is pin VDDHVP, and the output pin is VDDHVM. This regulator is able to supply the MCU directly from the topmost battery cell of a string. The power regulators of all stacked ATA6870 are therefore put in serial configuration to avoid imbalance. The regulator can be disabled with the digital input pin POW_ENA.

Table 7-4. Truth Table

Pin	Symbol	Value	Function
POW_ENA	V	Low	Voltage regulator disabled
	V POW_ENA	High	Voltage regulator enabled

Logic levels: Low = V_{DVSS} , High = V_{DVDD}

Figure 7-5. MCU Supply with the Internal Power Supply

 Table 7-5.
 Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
4.1	Supply voltage		VDDHVP	V _{VDDHVP}	6.9		33.3	V	Α
4.2	Output voltage		VDDHVM	V_{VDDHVM}	3.1	3.3	3.5	V	Α
4.3	DC output current		VDDHVM	I _{VDDHVM}			20	mA	Α
4.4	Peak output current ⁽¹⁾		VDDHVM	I _{VDDHVM}			50	mA	Α
4.5	Capacitor load ⁽²⁾		VDDHVM		30	33		μF	D
4.6	Capacitor load ⁽²⁾		VDDHVM		200	220		nF	D
4.7	High level input voltage		POW_ENA	V _{POW_ENA}	$0.7 \times V_{DVDD}$			V	Α
4.8	Low level input voltage		POW_ENA	V _{POW_ENA}			$0.3 \times V_{DVDD}$	V	А
4.9	Hysteresis		POW_ENA	V _{POW_ENA}	$0.05 \times V_{DVDD}$			V	С
4.10	Input current	$V_{POW_ENA} = 0V \text{ to}$ V_{DVDD}	POW_ENA	I _{POW_ENA}	-1		+1	μΑ	А

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Notes: 1. Maximum current the power regulator can provide, time limited by thermal consideration only

^{2.} These capacitors are mandatory

MCU Supply with an External Power Supply VDDHV MBAT7 PD_N Standby Control PD_N_OUT Digital Level Shifter Cell 6: Reference ADC Cell Balancing VDDHVP 3.3V POW_ENA DISCH6 Voltage Regulator VDDHVM MBAT6 AVDD ATA6870 3.3V Internal DVDD MBAT2 Voltage Regulator Logic Digital Level Shifter BIASRES Cell 1: Reference ADC Cell Balancing Internal Biasing DISCH2 MISO_IN

MOSI_OUT

SCK_OUT

CS_N_OUT

CLK_OUT

IRQ_IN TEMPREF Interchip Digital Level Shifter and Cell Microcontroller CS_N
O SCK
O MOSI
O MISO
O IRQ
O CLK Temperature Communication Measuring Interface Test TEMPVSS GND 4VSS DVSS **PWTST** SCANMODE CS_FUSE ATST MFIRST DTST VDDHV MBAT7 PD N Standby Control Digital Level Shifter Cell 6: PD_N_OUT Reference ADC VDDHVP Cell Balancing POW_ENA DISCH6 Voltage Regulator MBAT6 VDDHVM AVDD ATA6870 3.3V Internal MBAT2 DVDD Voltage Regulator Digital Level Shifter BIASRES Logic Cell 1: Reference Internal Biasing ADC Cell Balancing DISCH2 MISO_IN
MOSI_OUT
SCK_OUT
CS_N_OUT
CLK_OUT
IRQ_IN MBAT1 TEMPRE Interchip фф Digital Level Shifter and TEMP2 Cell Microcontroller Communication Temperature - CS_N-- O SCK -- O MOSI-- O MISO-- O IRQ -- O CLK -Measuring Interface Test TEMP1 MCU **TEMPVSS**

Figure 7-6.

ATST DTST

MFIRST

AVSS, DVSS

SCANMODE CS_FUSE

GND

7.5 Analog Blocks

7.5.1 Battery Voltage Measuring

Figure 7-7. Block Diagram Battery Voltage Measurement

The battery voltage measurement block contains

- a 3-input multiplexer
- a voltage reference,
- a 12-bit ADC
- the upper part of digital voltage level shifters

7.5.1.1 Input Multiplexer

The multiplexer has 3 inputs. Each of the functions are described in the table below:

Table 7-6. Inputs of the Multiplexer

Input	Function
$V(MBAT_{(i+1)}, MBAT_{(i)})$	Input voltage measurement
V(VREF _(i))	Gain error acquisition of ADC
V(MBAT _(i) , MBAT _(i))	Offset error acquisition of ADC

The multiplexer inputs are controlled by SPI.

7.5.1.2 12 Bits Incremental ADC

The purpose of this cell is to convert an analog input into a 12-bit digital word.

Table 7-7. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
5.1	Accuracy of voltage channel ⁽¹⁾	Maximum input noise 0.5 mVrms	MBAT(i+1), MBAT(i)		-10		+10	mV	Α
5.2	Accuracy of voltage channel ⁽¹⁾⁽²⁾	Maximum input noise 0.5 mVrms $V_{MBAT(i+1)} - V_{MBAT(i)} = 3.6V$	MBAT(i+1), MBAT(i)		-7		+7	mV	А
5.3	Input voltage range		MBAT(i+1), MBAT(i)	$V_{\text{MBAT(i+1)}}, \ V_{\text{MBAT(i)}}$	0		5	V	Α
5.4	Input resolution (1 LSB)			V_{LSB}		1.5		mV	Α
5.5	Reference voltage			V_{Ref}		1.667		V	D
5.6	Offset voltage		MBAT(i+1), MBAT(i)	$V_{\text{MBAT(i+1)}}, \ V_{\text{MBAT(i)}}$		410		LSB	Α
5.7	Gain voltage		MBAT(i+1), MBAT(i)	$V_{\text{MBAT(i+1)}}, \ V_{\text{MBAT(i)}}$		655		LSB/V	Α
5.8	System clock		CLK	f _{CLK}	450	500	550	kHz	D
5.9	SPI interface clock		SCK	f _{SCK}		$0.5 \times f_{CLK}$			D
5.10	Conversion rate ⁽³⁾	$t_{conv} = (2^{12} + 1) / f_{CLK}$		t _{conv}		8.194		ms	D
5.11	Input bandwidth		MBAT(i+1), MBAT(i)	f _{BW}		50		Hz	D

 $^{^{\}star}$) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Notes: 1. The accuracy of the voltage channels is guaranteed with no external resistor in the MBAT(i), MBAT(i+1) lines.

- 2. Reduced temperature range (-20°C to + 65°C)
- 3. Conversion rate without readout times of SPI

Figure 7-8.

In order to correct offset and gain, MBAT_i and VREF are measured:

Slope =
$$\frac{adc(VREF_i) - adc(MBAT_i)}{v(VREF_i)}$$
 (1)

Offset = adc(MBAT_i)

 $adc(MBAT_{i+1}) = Slope \times v(MBAT_{i+1}, MBAT_i) + Offset$

$$v(\mathsf{MBAT}_{i+1}\mathsf{MBAT}_i) = \frac{\mathsf{adc}(\mathsf{MBAT}_{i+1}) - \mathsf{adc}(\mathsf{MBAT}_i)}{\mathsf{adc}(\mathsf{VREF}_i) - \mathsf{adc}(\mathsf{MBAT}_i)} \times v(\mathsf{VREF}_i) \tag{2}$$

Table 7-8. Ideal ADC

ADC Input	Ideal ADC Output Code	Comments
0V	410	0.1×2^{12}
VREF = 1.667V	1502	
2.2V	1851	
2.5V	2048	0.5×2^{12}
3V	2375	
3.7V	2834	
5V	3686	0.9 × 2 ¹²

$$v(MBAT_{i+1}MBAT_i) = 1.667 \times \frac{adc(MBAT_{i+1}) - 0.1 \times 2^{12}}{1502 - 0.1 \times 2^{12}}$$
(3)

$$v(MBAT_{i+1}, MBAT_i) = 1.52656 \times 10^{-3} \times (adc(MBAT_{i+1}) - 410)$$

Using this equation, the round error is less than one mV.

LSB =
$$\frac{5}{0.9 \times 2^{12} - 0.1 \times 2^{12}}$$
 = 1.5 mV

Compensation with 1st Order Correction

As the MCU cannot perform a division operation,

 $\frac{1}{\text{adc}(\text{VREF}_i) - \text{adc}(\text{MBAT}_i)}$ is approximated in a first order polynomial equation:

$$\frac{1}{(1502-410)} - \frac{[adc(VREF_i) - 1502] - [adc(MBAT_i) - 410]}{(1502-410)^2}$$
 (4)

ATA6870 [Preliminary]

With equation (3) and (4) we get the formula for calculating the analog input voltage (without division):

$$v(\text{MBAT}_{i+1}, \text{MBAT}_{i}) \ = \ 1.667 \times \left[\frac{1}{(1502 - 410)} - \frac{[\text{adc}(\text{VREF}_{i}) - 1502] - [\text{adc}(\text{MBAT}_{i}) - 410]}{{(1502 - 410)}^2} \right] \times \left[\text{adc}(\text{MBAT}_{i+1}) - \text{adc}(\text{MBAT}_{i}) \right]$$

7.5.1.3 Acquisition Time and Clocking

The acquisition time depends on the number of ATA6870s to be addressed.

Table 7-9. Electrical Characteristics

Number of ATA6870	SCK Frequency (kHz)	CLK Frequency (kHz)	Conversion Time (ms)	Total Acquisition Duration (ms) ⁽¹⁾
1	250	500	8.2	9.5
2	250	500	8.2	10.2
3	250	500	8.2	10.8
4	250	500	8.2	11.5
5	250	500	8.2	12.2
6	125	500	8.2	17.0
7	125	500	8.2	18.4
8	125	500	8.2	19.7
9	125	500	8.2	21.1
10	62.5	500	8.2	36.1
11	62.5	500	8.2	38.8
12	62.5	500	8.2	41.5
13	62.5	500	8.2	44.2
14	62.5	500	8.2	46.8
15	62.5	500	8.2	49.5
16	62.5	500	8.2	52.2

Notes: 1. The total acquisition time takes the following into account:

- ADC conversion
- Reading of voltage values in burst mode for all ATA6870 devices,
- Reading of temperature values for all ATA6870 devices (only one temperature input is read).

SPI clock (pin SCK) must a maximum of half the frequency of the system clock CLK.

7.5.2 Battery Cell Discharge

Each battery cell can be discharged with an external resistor and an NMOS transistor.

Figure 7-9. External Circuit for Cell Balancing

The pin DISCH(i) (Discharge for battery cell i) is intended to switch on the external discharge resistor in parallel to the battery cell to bypass charge current for cell balancing reasons.

The pin DISCH(i) is a digital output:

No discharge: $V_{DISCH(i)} = V_{MBAT(i)}$

Discharge: $V_{DISCH(i)} = V_{MBAT(i+1)}$

Table 7-10. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
6.1	Operating voltage range		MBAT(i)	$\frac{MBAT_{(i+1)} -}{MBAT_{(i)}}$	1.5		5	٧	Α
6.2	High-level output voltage	$I_{DISCH(i)} = -10 \mu A,$ $MBAT_{(i+1)} - MBAT_{(i)} =$ 1.5V to 5V	DISCH(i)	V _{DISCH(i)} - V _{MBAT(i)}	V _{MBAT(i+1)} – 50 mV			V	А
6.3	High-level output voltage	$\begin{aligned} & I_{DISCH(i)} = -1 \text{ mA} \\ & MBAT_{(i+1)} - MBAT_{(i)} = \\ & 3V \text{ to } 5V \end{aligned}$	DISCH(i)	V _{DISCH(i)} - V _{MBAT(i)}	V _{MBAT(i+1)} – 0.6V			٧	А
6.4	Pull-down resistor ⁽¹⁾		DISCH(i)- MBAT(i)		60		140	kΩ	Α

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter Note:

1. Integrated pull-down resistor between pins DISCH(i) and MBAT(i)

7.5.3 Temperature Channel

The temperature sensors are based on a resistor divider using a standard resistor and an NTC resistor. This resistor divider is connected to the reference of the ADC for temperature measuring. As the ADC is sharing same reference value, the output of temperature measurement with ADC is ratio metric.

Figure 7-10. Battery Cell Temperature Measurement

During one measuring cycle only one temperature input can be measured by the ADC. The channel can be selected in the Operation Register (0x02) by the TempMode bit (bit 3).

The ADC output is equal to:

out =
$$2048 \times \left(1 + \frac{RES_NTC(1)}{(RES_NTC(1) + RES_REF(1))} \times \frac{8}{15} - \frac{8}{10}\right)$$

Table 7-11. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
7.1	Reference voltage		TEMPREF	V _{TEMPREF} – V _{TEMPVSS}	1.1	1.2	1.3	V	Α
7.2	Reference voltage output current		TEMPREF	I _{TEMPREF}			2	mA	А
7.3	Input voltage range		TEMP1	V _{TEMP1}	0		$V_{TEMPREF}$	V	Α
7.4	Input voltage range		TEMP2	V _{TEMP2}	0		$V_{TEMPREF}$	V	Α
7.5	Resistor RES_REF			RES_REF	1.2		22	kΩ	D
7.6	Resistor RES_NTC			RES_NTC			800	kΩ	D
7.7	Code output for value(RES_NTCx) = value (RES_REFx)	V(TEMPI, TEMPVSS) = 0.5 × V(TEMPREF, TEMPVSS)			931 _D	956 _D	981 _D		А
7.8	Code output for value(RES_NTC) = 0	V(TEMPi, TEMPVSS) = 0			385 _D	410 _D	435 _D		А
7.9	Code output for value(RES_NTC) = infinite	V(TEMPi, TEMPVSS) = V(TEMPREF)			1477 _D	1502 _D	1527 _D		А

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

7.5.4 Internal Voltage Regulator

The regulator output is pin AVDD. The pins AVDD and DVDD have to be connected together. An external filtering capacitor (10 nF recommended) is used to filter and stabilize the function. The regulator output can be used to supply outside functions at the price of power supply imbalance between battery cells.

Table 7-12. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
8.1	Supply voltage range		VDDHV	V_{VDDHV}	6.9		30	V	Α
8.2	Regulated output voltage		AVDD	V _{AVDD}	3.1	3.3	3.5	V	Α
8.3	Output current		AVDD	I _{AVDD}	0		5	mA	Α
8.4	C _{load} (load capacitor)		C _{load}		9	10		nF	D

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

7.5.5 Central Biasing

This block generates a precise bias current to supply internal blocks of the IC. Connection of any external loads to this pin is not allowed.

Table 7-13. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
9.1	Biasing voltage		BIASRES	V _{BIASRES}		1.2		V	Α
9.2	External resistor			R _{Refbias}		121		kΩ	D
9.3	Tolerance			$\Delta R_{Refbias}$	-1		+1	%	D
9.4	Maximum external parasitic capacitor		BIASRES	C _{External}			50	pF	D

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Figure 7-11. Internal Bias Current Generation

7.5.6 RC Oscillator

 Table 7-14.
 Internal RC Oscillator Frequency

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
10.1	Oscillator frequency			f _{Osc}	45	50	55	kHz	Α

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

7.5.7 Power On Reset

The Power On Reset is used to initialize the digital part at power-up.

The Power On Reset circuit is functional when the voltage at pin DVDD is larger than V_{POROP}.

There are two reset sources:

System "hard reset"

System hard reset occurs when the voltage at pin DVVD goes below the Power On Reset threshold.

ATA6870 registers are set to their initial values.

After $t = t_{RESET}$, the MCU can access the ATA6870.

Figure 7-12. Power On Reset

Table 7-15. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
11.1	Power On Reset Functional		DVDD	V _{POROP}			8.0	V	Α
11.2	Power On Reset Off		DVDD	V _{POROFF}	1.5		2.5	V	Α
11.3	Power On Reset Hysteresis		DVDD	V _{POROFF} – V _{PORON}	0.03			V	С
11.4	Power On Reset Time			t _{RESET}			800	μs	Α

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

7.6 Digital Part

7.6.1 General Features

The digital parts of the ATA6870 includes the following blocks:

- 4-Wire-SPI Full Duplex Communication with External Host MCU
- SPI System Protocol Management (Frames Decoding) and Configuration Registers Bank
- Interrupt to MCU Management
- Operations Decoding (Voltage and/or Temperature Acquisition) and Analog Part Control
- Low Frequency Timer (50 kHz) for Wake-up Management

7.6.2 Host Interface

Figure 7-13. Host Interface

The communication between ATA6870 (1) and its host MCU, as well as ATA6870 (n) and ATA6870(n-1) is based on a 4 wire serial/parallel SPI interface (CS_N, SCK, MISO, MOSI) and an interrupt line (IRQ). The SPI interface allows register read and write operations. The interrupt line indicates events that require host intervention.

ATA6870(n)'s 4 wire-SPI bus inputs (CS_N, SCK, MOSI) are up-shifted through level shifters. They are internally connected to the outputs CS_N_OUT, SCK_OUT, MOSI_OUT and connected to ATA6870(n+1) (CS_N, SCK, MOSI).

ATA6870(n)'s 4 wire-SPI bus output (MISO) and ATA6870(n)'s interrupt (IRQ) are down-shifted through level shifters and connected to ATA6870(n-1) (MOSI_IN, IRQ_IN) or host MCU (n = 1).

7.6.3 Interrupt

In NORM Mode (Normal Mode), the reasons for an interrupt request are:

- The availability of measured data (data ready)
 When a voltage measurement is completed, the dataRdy flag is set in the status register.
 The ATA6870 cannot decode any new incoming operation until the dataRdy flag is released.
- The low frequency timer (LFT) elapses (wakeup)
 The wakeup flag is set in the status register when the LFT elapses. The LFT is controlled via the SPI interface.
- A transmission error is flagged during the last SPI transaction (the commError bit is set in the status register).
- If an undervoltage condition occurs. The undervoltage function is controllable via SPI interface.

A mask bit in the irqMask register corresponds to each interrupt source. The MCU must read the ATA6870 status register before the interrupt is cleared. With each SPI access a 16-bit IRQ state is sent via MISO to the MCU with the interrupt state of all stacked ATA6870 (see Section 7.6.4.1 "SPI Transaction Fields" on page 27).

In PDmode (Power Down), if the digital control part and MCU are not supplied, neither SPI command nor interrupt are transmitted over the interface.

7.6.4 SPI Interface

The full duplex SPI interface block allows communication with the host MCU using four wires (MISO, MOSI, SCK and CS_N). SPI transactions are based on a byte-access MSB first protocol.

7.6.4.1 SPI Transaction Fields

Most of the time, the SPI frame is defined by 4 distinct fields:

IDENTIFICATION (2 bytes): 16-bit chip identification (MOSI), in parallel 16-bit IRQ state (MISO)

CONTROL (1 byte): 7-bit register address + 1-bit read/write information (MOSI)

DATA (k byte): k*8 bits data (MOSI or MISO depending on the access direction)

CHKSUM (1 byte): 8 bits if the Chksum ena bit is set in the Ctrl register (register 0x01, bit 4)

Figure 7-14. SPI Transaction Fields Organization

Note: 1. Only send if chksum_ena bit set to 1 in the Ctrl register

7.6.4.2 Identification Field

ATA6870 Chip Identification

The two chip identification bytes are sent over MOSI to the ATA6870(n) in the chain. The ATA6870(n) checks the LSB. When LSB=1, the information is for this device. The SPI address will be decoded and the information processed. Independent from this the identification bytes are shifted by one bit to the right and transferred to the next ATA6870(n) in the chain. The 2 identification bytes allows the identification of up to 16 ATA6870s.

Figure 7-15. Identification Field: Chip-ID Reception

7.6.4.3 ATA6870 IRQ Identification

Figure 7-16. IRQ Propagation Scheme

ATA6870(n) IRQ output is connected to ATA6870(n-1) IRQ_IN input.

ATA6870(n-1) IRQ output is a logic OR between IRQ_IN and its internal irq_int signal.

ATA6870(1) IRQ output is connected to MCU.

Figure 7-17. Identification Field: Interrupt State Emission

With each SPI access, a 16- bit IRQ state is send via MISO synchronous to the identification field to the MCU with the interrupt state of all stacked ATA6870. The MCU, interrupted by an ATA6870, has to send the identification field to check the IRQ levels (in that case the checksum is not considered). It is also possible to continue the transaction with CONTROL and DATA field. The MCU decodes the identification field shifted in MISO input. When bit m is set, ATA6870(16-m) is requesting interrupt.

Figure 7-18. Identification Field

7.6.4.4 CONTROL Field

The CONTROL field defines the register to access and the direction (read/write). The size of the data (8, 16, or 112 bits) is defined by the address value in the CONTROL field.

Table 7-16. Control Field

CONTROL Field	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	A6	A5	A4	A3	A2	A1	A0	W/Rd

7.6.4.5 DATA Field

The DATA field can be composed of 1, 2, or 14 bytes depending on the accessed register. Irrespective of the data direction, a byte is always transmitted with MSB first; a multi-byte word is transmitted with MSByte first.

Figure 7-19. CONTROL and DATA Fields - 8-bits Register Write

Figure 7-20. CONTROL and DATA Fields - 8-bits Register Read

Figure 7-21. CONTROL and DATA Fields - 16-bits Register Write

Figure 7-22. CONTROL and DATA Fields - 16-bits Register Read

In order to retrieve results from all channels in one ATA6870 without having to request for each channel, an SPI 112-bit read-only "burst access" (dataRd16Burst register; address = 0x7F) is implemented. When requested, the ATA6870 outputs its 6 voltage channels V6 to V1 and one of the two temperature channels T2 and T1 in sequence on the SPI bus. The diagrams below show the CONTROL and DATA fields of such an access.

Figure 7-23. CONTROL and DATA Fields - 112-bits Register Read

One ATA6870 frame corresponds to the set of results obtained in one ATA6870. An ATA6870 frame is formatted as follows:

Figure 7-24. SPI Access to dataRd16burst Register 0x7F

When reading data of chained ATA6870, data is transferred as follow:

Figure 7-25. Example with two ATA6870 in a Chain

7.6.4.6 Communication Error

Correct communication can be verified using various functions of the ATA6870.

For internal synchronization, it is mandatory to keep CLK running during any SPI access; CLK must be set on 4 clock cycles (at least) before SPI access starts, and must be kept on 4 clock cycles (at least) after SPI access ends up. Keeping at least 4 CLK clock cycles between two consecutive SPI accesses is mandatory. If this is not the case, the ATA6870s will detect an error in communication. The CommError bit will be set in the Status Register 0x06).

Figure 7-26. SPI Access and CLK Activity

The ATA6870 verifies that complete bytes (8 bits long) are always transmitted. A transition starts when CS_N goes to low and it ends when CS_N goes to high. The number of clock cycles (signal CLK) is monitored during the transition. This number of clock cycles has to be modulo 8. If the CS_N length is not modulo 8 clock cycles, the bit CommError is set in the Status register. This will cause an interrupt to the MCU if the CommError is not masked by the commErrorMsk bit in the IrqMask register.

7.6.4.7 CHKSUM Field

The ATA6870 provides the possibility of verifying the transmitted data using a checksum. Setting chksum_ena bit to 1 in the Ctrl register (default = 0) activates the checksum feature.

The chksum field is an 8-bit checksum computed from the proceeding data (control and data fields, byte 3 to byte n-1). It is based on the polynomial $x^8+x^2+x^1+1$. The way it is computed is depicted below:

Figure 7-27. LFSR-based Checksum Computation

The checksum is calculated from the CONTROL field and DATA field by a polynomial division. The DATA field can consist of 1 byte up to 14 bytes (112-bit read-only "burst access"). The IDENTIFICATION field (2 bytes) is not used to generate the checksum. The checksum is always sent by the microcontroller, independent of read write mode.

The checksum is in the LFSR (Linear Feedback Shift Register) when the complete bitstream (the whole fields of the transaction) followed by 0x00 have been shifted in the LFSR.

The checksum verification on the complete data transmission was OK when the complete bitstream followed by the checksum have been shifted in the LFSR, and the content of the LFSR is 0x00. If this is not the case, the receiving ATA6870 will set the chkError bit in the status register. This will cause an interrupt to the MCU if the chkError is not masked by the chkErrorMsk bit in the IrqMask register. See the example below. The checksum is serially computed from the 8-bit value 0x57. So the bitstream 0x5700 is shifted in the LFSR. The resulting checksum is [f6o, f6i, f5i ... f0i] at the last shift in cycle:

Table 7-17. checksum = [f60, f6i, ... f0i] = 0xA2

	Input	f01	f1i	f2i	f3i	f4i	f5i	f6i	f6o
	Х	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
5	1	1	0	0	0	0	0	0	0
5 _D	0	0	1	0	0	0	0	0	0
	1	1	0	1	0	0	0	0	0
	0	0	1	0	1	0	0	0	0
7	1	1	0	1	0	1	0	0	0
7 _D	1	1	1	0	1	0	1	0	0
	1	1	1	1	0	1	0	1	0
	0	0	1	1	1	0	1	0	1
	0	1	1	0	1	1	0	1	0
O _D	0	0	1	1	0	1	1	0	1
	0	1	1	0	1	0	1	1	0

Table 7-17. checksum = [f6o, f6i, ... f0i] = 0xA2 (Continued)

	Input	f01	f1i	f2i	f3i	f4i	f5i	f6i	f6o
	Х	0	0	0	0	0	0	0	0
	0	0	1	1	0	1	0	1	1
0	0	1	1	0	1	0	1	0	1
0 _D	0	1	0	0	0	1	0	1	0
	0	0	1	0	0	0	1	0	1
			0	x2			0:	κA	

During an SPI write access, the checksum is computed by the MCU and sent MSB first in the CHKSUM field. For an SPI read access, the checksum is computed by the ATA6870 and is checked by the MCU. During CHKSUM, MCU has to send 0x00 on MOSI, and must check that its own LFSR equals 0x00 at the end of CHKSUM field.

7.6.4.8 Device Position

For the ATA6870 (1), this is the device on the lowest level, the SPI has to work as a standard logic CMOS interface to the MCU. The SPI's between stacked ATA6870 have to work as level-shifters based on current sources. These different physical interfaces can be selected by the Pin MFIRST.

Table 7-18. Device Position

MFIRST	Configuration
0	ATA6870 (2) to ATA6870 (n)
1	ATA6870 (1)

Table 7-19. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
12.1	High level input voltage		MFIRST	MFIRST	0.7 × DVDD			٧	Α
12.2	Low level input voltage		MFIRST	MFIRST			$\begin{array}{c} \text{0.3}\times\\ \text{DVDD} \end{array}$	V	Α
12.3	Hysteresis		MFIRST	MFIRST	0.05 × DVDD			V	С
12.4	Input current	$V_{MFIRST} = 0V \text{ to } V_{DVDD}$	MFIRST	MFIRST	–1		+1	μΑ	Α

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

7.6.5 Digital Inputs and Outputs

7.6.5.1 Digital Output Characteristics

Digital Output Characteristics (MISO, IRQ)

If the ATA6870 is configured as first IC (master) in a string (MFIRST = 1), these pins are configured as an open drain output. If the ATA6870 is configured to be a stacked IC (MFIRST = 0), the output signals MISO and IRQ coming from the upper IC need to be transferred to the MISO and IRQ outputs of the master in the string via the MISO_IN and IRQ_IN inputs. In this case the MISO and IRQ outputs act as level shifters based on current sources.

Table 7-20. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
13.1	Low level output voltage	I _{OUT} = +5 mA MFIRST = 1	MISO, IRQ	V_{MISO} , V_{IRQ}			0.2 × VDD	V	Α
13.2	Low level output current	±0.3V, MFIRST = 0	MISO, IRQ	I _{MISO} , I _{IRQ}	-13		-8	μΑ	Α
13.3	High level output current	±0.3V, MFIRST = 0	MISO, IRQ	I_{MISO} , I_{IRQ}	-65		-40	μΑ	Α

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Digital Output Characteristics (MOSI_OUT, SCK_OUT, CS_N_OUT, CLK_OUT)

These outputs act as level shifters based on current sources. They transfer the input signals MOSI_OUT, SCK_OUT, CS_N_OUT, CLK_OUT to the next IC above. If the ATA6870 is the IC on the top level of a string, these outputs must be connected to VDDHV.

Table 7-21. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
14.1	Low level output current	VDDHV + 1V to VDDHV + 2V	(1)	V ⁽¹⁾	25		55	μΑ	Α
14.2	High level output current	VDDHV + 1V to VDDHV + 2V	(1)	V ⁽¹⁾	-1		+1	μΑ	А

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter Note: 1. MOSI_OUT, SCK_OUT, CS_N_OUT, CLK_OUT

7.6.5.2 Digital Input Characteristics

Digital Input Characteristics (MISO_IN, IRQ_IN)

Table 7-22. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
15.1	Low level input current	(VDDHV + 1.4V) ±0.3V	MISO_IN, IRQ_IN	I _{MISO_IN} I _{IRQ_IN}	13			μΑ	А
15.2	High level input current	(VDDHV + 1.4V) ±0.3V	MISO_IN, IRQ_IN	I _{MISO_IN} I _{IRQ_IN}			40	μΑ	Α

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Digital Input Characteristics (CS_N, SCK, MOSI, CLK)

Table 7-23. Electrical Characteristics

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
16.1	High level input voltage	MFIRST = 1	(1)	V ⁽¹⁾	0.7 × DVDD		DVDD	V	Α
16.2	Low level input voltage	MFIRST = 1	(1)	V ⁽¹⁾			0.3 × DVDD	V	Α
16.3	Hysteresis	MFIRST = 1	(1)	V ⁽¹⁾	0.1 × DVDD			V	С
16.4	High level input current	MFIRST = 1		I ⁽¹⁾	50		100	μΑ	Α
16.5	Low level input current	MFIRST = 1		I ⁽¹⁾	-130		-70	μΑ	Α
16.6	Low level input current	MFIRST = 0, $V^{(1)} = 1V \text{ to } 2V$	(1)	J ⁽¹⁾	– 55		-35	μΑ	А
16.7	High level input current	MFIRST = 0 $V^{(1)}$ = 1V to 2V	(1)	J ⁽¹⁾	-1		+1	μΑ	Α

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter Note: 1. CS_N, SCK, MOSI, CLK

Table 7-24. Propagation Delay Timing

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
17.1	Propagation delay Upper IC to lower IC	$\begin{aligned} R_{\text{pull-up}} &= 5.1 \text{ k}\Omega \\ \text{Load capacitor max.} &= 15 \text{ pF} \\ \text{MFIRST} &= 0, 1 \\ > 10\% \text{ input to } > 90\% \text{ output} \end{aligned}$	(1)				110	ns	Α
17.2	Propagation delay Lower IC to upper IC	$R_{pull-up} = 5.1 \text{ k}\Omega$ Load capacitor max. = 15 pF MFIRST = 0, 1 > 10% input to > 90% output	(2)				140	ns	А

 $^{^{\}star}$) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

^{2.} SCK, MOSI, CS_N, CLK to SCK_OUT, MOSI_OUT, CS_N_OUT, CLK_OUT

Notes: 1. MISO_IN, IRQ_IN to MISO, IRQ

7.6.5.3 Test-mode Pins

The test-mode pins DTST, ATST, PWTST (outputs) have to be kept open in the application. The test-mode pins SCANMODE and CS_FUSE (inputs) have to be connected to VSSA. These inputs have an internal pull-down resistor. The test-mode pin VDDFUSE is a supply pin. It must also be connected to VSSA.

Table 7-25. Input Characteristics Pins SCANMODE, CS FUSE, VDDFUSE

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
18.1	Pull-down resistor		SCANMODE, CS_FUSE	$\begin{array}{c} R_{SCANMODE}, \\ R_{CS_FUSE} \end{array}$	50		200	kΩ	Α

^{*)} Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

7.7 Operations

7.7.1 Voltage and Temperature Measurement

At startup, the ATA6870 is supplied and is waiting for any operation request.

The available operations are:

- 6 channels voltage acquisition with a temperature acquisition
 - with voltage = $V(MBAT_{i+1}, MBAT_i)$ (standard operation) and with voltage = V(TEMP1 or TEMP2, TEMPVSS) (standard operation)
 - with voltage = V(MBAT_i, MBAT_i) (offset calibration: CalOffset operation)
 and with voltage = V(TEMPVSS, TEMPVSS) (offset calibration: CalOffset operation)
 - with voltage = V(VREF_i, MBAT_i) (gain calibration: CalGain operation)
 and with voltage = V(TEMPREF, TEMPVSS) (gain calibration: CalGain operation)

Operation completion is flagged to the host MCU via the IRQ output in conjunction with dataRdy bit set in the status register. In order to retrieve the full results in a single access, the user has to access the dataRd16burst register (112 bits). Getting the results of a single channel (voltage or temperature) is also possible. For this, first select the channel to read through the ChannelRead-Sel register, then retrieve the channel value through the DataRd16 register. It is not possible to order a new operation until the previous operation has been acknowledged. The host MCU acknowledges the interrupt by reading the status register. This resets the dataRdy bit as well as the IRQ output, and enables the ATA6870 to start the next operation. Writing NoOp in the Operation register during an operation running aborts the current operation. In this case, the dataRdy bit is not set and interrupt is not requested to the host MCU. The Opstatus register flags whether operation is running, aborted, ended, or no operation is running.

7.7.2 Discharge Function

Each channel is independently dischargeable. Discharge is activated or deactivated by the register ChannelDischSel.

7.7.3 Low Frequency Timer Function

A low frequency timer (LFT), synchronous to internal 50 kHz oscillator provides the host MCU with a low power timer, which useful to either synchronize operations in the host MCU or monitor the ATA6870's activity.

The LFT elapsing asserts an interrupt to the host MCU if the corresponding mask bit in the Irq-Mask register is not set.

Default is LFT not enabled. To enable the LFT, set the LFTimer_ena bit to 1 in the Ctrl register.

LFT counting time is fully programmable in the register LFTimer.

Changing the LFTimer register restarts the LFT if the new counting time is smaller than the current value of the LFT. Otherwise, LFT runs until it reaches the new end value.

Asserting LFTRst bit in the Rstr register resets and restarts the LFT if the LFT is enabled. Otherwise, LFT is reset but not started.

Each ATA6870 will assert its own interrupt when the timer elapses. Depending on how the timer is used, the host MCU may mask LFTdone interrupts in the whole ATA6870s chain, except the first one. As internal RC oscillators are not synchronized, this prevents the MCU from being interrupted each time one of the LFT elapses.

7.7.4 Undervoltage Detection

A programmable undervoltage detection function is embedded in the ATA6870. After being digitalized, each of the 6 voltages is compared to a programmable threshold defined in the UdvThresh register. If one of the six channels is out of the range defined by the threshold, an interrupt is requested to the host MCU if the corresponding udv mask bit is not set in the IrqMask register.

The default threshold is 1.5V.

As soon as MCU has acknowledged, undervoltage information is no more available to MCU, because status register is cleared when MCU reads it out. As a consequence, the next undervoltage interrupt cannot occur until the ATA6870 leaves its current undervoltage state.

7.8 Registers

Registers are read and written through the SPI interface.

Table 7-26. Register Mapping

Register Address	Control Field Read Mode	Control Field Write Mode	Register Name	Access	Туре	Function
0x00	0x00	-	RevID	R	8 bits	Revision ID/value Mfirst, pow_on
0x01	0x02	0x03	Ctrl	RW	8 bits	Control Register
0x02	0x04	0x05	Operation	RW	8 bits	Operation request
0x03	0x06	-	OpStatus	R	8 bits	Operation status
0x04	-	0x09	Rstr	W	8 bits	Software reset
0x05	0x0A	0x0B	IrqMask	RW	8 bits	Mask interrupt sources
0x06	0x0C	-	Status	R	8 bits	Status interrupt sources
0x08	0x10	-	ChannelUdvStatus	R	8 bits	Channels undervoltage status
0x09	0x12	0x13	ChannelDischSel	RW	8 bits	Select channel to discharge
0x0A	0x14	0x15	ChannelReadSel	RW	8 bits	Select channel to read
0x0B	0x16	0x17	LFTimer	RW	8 bits	Low Frequency Timer control
0x0C	0x18	-	CalibStatus	R	8 bits	Reserved
0x0D	0x1A	0x1B	FuseCtrl	RW	8 bits	Reserved
0x10	0x20	0x21	UdvThresh	RW	16 bits	Undervoltage detection threshold
0x11	0x22	-	DataRd16	R	16 bits	Single access to selected channel value
0x12	0x24	0x25	ATA6870Test	RW	16 bits	Reserved
0x7F	0xFE	-	DataRd16Burst	R	112 bits	Burst Access to the whole channels (6 voltage and 1 temperature)

7.8.1 Registers Content

7.8.1.1 RevID Register

 Table 7-27.
 Revld Register Overview

Reg	ister			Re	vID			
Address		0x00			Reset Value	ue	0x02	
7 (msb)	6	5	4	3	2 1 0 (0 (Isb)	
Х	х	х	pow_en	Mfirst	RevID			

Table 7-28. Revld Register Content

Bit Field	Description
RevID	ATA6870 revision number, revision B: 0x02
Mfirst	Status input pin MFIRST
pow_en	Status input pin POW_EN

7.8.1.2 Ctrl Register

Table 7-29. Ctrl Register Overview

Reg	ister			Cti	rl		
Add	ress		0x01		Reset Value 0x		
7 (msb)	6	5	4	3	2	1	0 (lsb)
Х	Х	х	Chksum_ena	LFTimer_ena	TFMODE_ena	Х	х

Table 7-30. Ctrl Register Content

Bit Field	Description
TFMode_ena	0: Prevent ATA6870 to switch to test mode 1: Not allowed for customer use
LFTimer_ena	Disable internal Low Frequency Timer Enable internal Low Frequency Timer
Chksum_ena	Disable SPI transaction checksum computation/check Enable SPI transaction checksum computation/check

7.8.1.3 Operation Register

 Table 7-31.
 Operation Register Overview

Reg	ister	Operation						
Add	ress	0x02			Reset Val	ue	0x02	
7 (msb)	6	5	4	3	2	1	0 (lsb)	
х	х	OpMode		TempMode	VoltMode		OpRqst	

Table 7-32. Operation Register Content

Bit Field	Description
OpRqst	O: NoOp: No Operation, or abort current operation 1: AcqRqst: Start the analog to digital conversion An interrupt is generated when data is available in DataRd16/DataRd16Burst.
VoltMode	00: Caloffset: select V(MBAT(i), MBAT(i)) as input of voltage channels. (offset calibration) 01: AcqV: select V(MBAT(i+1), MBAT(i)) as input of voltage channels (default) 10: Not allowed
TempMode	11: Calgain: select V(vref(i)) as input of voltage channels. (gain calibration) 0: Select TEMP1 input pin as input of temperature channel 1: Select TEMP2 input pin as input of temperature channel
OpMode	00: 6 voltage channels and temperature acquisition 01: No acquisition performed 10: No acquisition performed 11: No acquisition performed

When a conversion operation is finished and the interrupt has been acknowledged by the MCU the Operation register is automatically reset to "NoOp". Writing "NoOp" in the register when conversion operation is running, aborts the current operation. Other changes are not accepted during any operation.

Figure 7-28. Typical Data Acquisition Flow

7.8.1.4 OpStatus Register

Table 7-33. OpStatus Register Overview

Reg	ister	OpStatus						
Address			0x03	Reset Value	ue	0x00		
7 (msb)	6	5	4	3	2	1	0 (lsb)	
х	х	Х	Х	х	х	OpStatus		

Table 7-34. OpStatus Register Content

Bit Field	Description
OpStatus	00: No Operation 01: Operation is ongoing 10: Operation is finished, result is available 11: Operation is cancelled, result is not available

Figure 7-29. Operation Status Register Management

The OPStatus register is reset when read after a completed or aborted operation. Reading the register before starting an operation is not mandatory. Reading data conversion results or reading the OpStatus Register during an operation does not affect the OpStatus register.

7.8.1.5 Rstr Register

Table 7-35. Rstr Register Overview

Reg	ister	Rstr					
Add	ress	0x04 Reset Value 0x				0x00	
7 (msb)	6	5	4	3	2	1	0 (Isb)
х	х	х	Х	Х	Х	LFTRst	0

 Table 7-36.
 Rstr Register Content

Bit Field	Description
I FIRet	0: No reset 1: Low Frequency Timer software reset

LFTRst resets and restarts the low frequency timer if not disabled (LFTimer_ena = 0).

7.8.1.6 IrqMask Register

Table 7-37. IrqMask Register Overview

Regis	ster	IrqMask						
Addre	Address 0x05 Reset Val		Reset Value	0x0	00			
7 (msb)	6	5	4	3	2	1	0 (lsb)	
Х	х	Х	chkErrorMask	udvmask	commErrorMask	LFTdoneMask	dataDryMask	

 Table 7-38.
 IrqMask Register Content

Bit Field	Description
dataRdyMask	Mask data ready interrupt when set to 1
WakeupMask	Mask LFTdone interrupt when set to 1
commErrorMask	Mask commError interrupt when set to 1
udvMask	Mask undervoltage detection interrupt when set to 1
chkErrorMask	Mask checksum error interrupt when set to 1

7.8.1.7 Status Register

Table 7-39. Status Register Overview

Regis	ter	Status					
Addre	ess	0x06			Reset Value		0x10
7 (msb)	6	5	4	3	2	1	0 (lsb)
х	TFMdeOn	por	chkError	udv	commError	LFTdone	dataRdy

Table 7-40. Status Register Content

Bit Field	Description
dataRdy	Conversion finished
LFTdone	Low frequency timer elapsed
commError	Bad SPI command detected (wrong length)
udv	Undervoltage detected
chkError	Error on checksum check
Por	Power on reset detected
TFMdeOn	Test mode on

Any bit among {dataRdy, LFTdone, commError, udv, chkError} set in the status register requests an interrupt to the external MCU if the corresponding mask bit in the IrqMask register is 0. Reading the status register acknowledges the interrupt and resets its content. Por and TFMdeOn cause no interrupt.

7.8.1.8 ChannelUdvStatus Register

Table 7-41. ChannelUdvStatus Register Overview

Reg	gister	ChannelUdvStatus					
Add	dress		0x08		Reset Va	lue	0x00
7 (msb)	6	5	4	3	2	1	0 (lsb)
х	х	chUdv6_stat	chUdv5_stat	chUdv4_stat	chUdv3_stat	chUdv2_stat	chUdv1_stat

 Table 7-42.
 ChannelUdvStatus Register Content

Bit Field	Description
chUdv1_stat	Undervoltage detected on channel 1 No undervoltage detected on channel 1
chUdv2_stat	Undervoltage detected on channel 2 No undervoltage detected on channel 2
chUdv3_stat	Undervoltage detected on channel 3 No undervoltage detected on channel 3
chUdv4_stat	Undervoltage detected on channel 4 No undervoltage detected on channel 4
chUdv5_stat	Undervoltage detected on channel 5 No undervoltage detected on channel 5
chUdv6_stat	Undervoltage detected on channel 6 No undervoltage detected on channel 6

Undervoltage is detected when voltage decreases under the threshold value defined in udvThresh register.

When undervoltage is detected on a channel, the ATA6870 requests an interrupt if the UDV-mask bit in the IRQMask register is 0.

7.8.1.9 ChannelDischSel Register

Table 7-43. ChannelDischSel Register Overview

Reg	gister	ChannelDischSel					
Add	Address		0x09			0x	:00
7 (msb)	6	5	4	3	2	1	0 (lsb)
х	Х	chV6_disch	chV5_disch	chV4_disch	chV3_disch	chV2_disch	chV1_disch

 Table 7-44.
 ChannelDischSel Register Content

Bit Field	Description
chV1_disch	Enable voltage channel 1 discharge Disable voltage channel 1 discharge
chV2_disch	Enable voltage channel 2 discharge Disable voltage channel 2 discharge
chV3_disch	Enable voltage channel 3 discharge Disable voltage channel 3 discharge
chV4_disch	Enable voltage channel 4 discharge Disable voltage channel 4 discharge
chV5_disch	Enable voltage channel 5 discharge Disable voltage channel 5 discharge
chV6_disch	Enable voltage channel 6 discharge Disable voltage channel 6 discharge

The channels are dischargeable simultaneously.

7.8.1.10 ChannelReadSel Register

Table 7-45. ChannelReadSel Register Overview

Register		ChannelReadSel					
Add	Address		0x0A			ue	0x00
7 (msb)	6	5	4	3	2	1	0 (lsb)
					ChannelReadSel		

Table 7-46. ChannelReadSel Register Content

Bit Field	Description
ChannelReadSel	111: Value of the LFT is returned in DataRd16 register 110: Temperature channel available in DataRd16 register 101: Voltage channel6, value available in DataRd16 register 100: Voltage channel5, value available in DataRd16 register 011: Voltage channel4, value available in DataRd16 register 010: Voltage channel3, value available in DataRd16 register 001: Voltage channel2, value available in DataRd16 register 000: Voltage channel1, value available in DataRd16 register

This register can be used to quickly read a single channel without using a full burst access. The value of the selected channel will be available in the DataRd16 register. The value will always be updated by writing a channel address to the ChannelReadSel register. Data in this register is not valid during ongoing data conversion.

7.8.1.11 LFTimer Register

LFTimer Register Overview

Regis	ter			LF	Timer					
Addre	ess		0x0B		Reset Valu	ıe	0xF9			
7 (msb)	6	5	4	3	2	1	0 (lsb)			
LFTPrescaler			LFTDelay							

 Table 7-47.
 LFTimer Register Content

Bit Field	Description
LFTDelay	Contains the present Low Frequency Timer delay value
LFTPrescaler	0: PrescalerValue = 1 1: PrescalerValue = 6

The default timer value is 59.965s (0xF9) for $f_{OSC} = 50 \text{ kHz}$.

Figure 7-30. Block Diagram LFTimer

Formula for Delay Time calculation:

Delay Time =
$$\frac{1}{T_{OSC}[Hz]} \times 4096 \times (6^{LFTprescaler_D}) \times (LFTdelay_D + 1)$$

ATA6870 [Preliminary]

The LFT can be programmed to the following values ($f_{OSC} = 50 \text{ kHz}$):

LFTprescaler = 0: $0.082s \le duration \le 10.486s$, Increment = 82 ms LFTprescaler = 1: $492 \text{ ms} \le duration \le 62.915s$, Increment = 492 ms

When LFT elapsed, an interrupt is requested unless LFTdoneMask bit is set in the IRQMask register.

For details on the tolerances for the oscillator, see Section 7.5.6 "RC Oscillator" on page 25.

Keeping at list 100 µs between two successive LFTimer register write accesses prevents internal metastability issues, which might result in bad LFTdelay decoding.

7.8.1.12 Test-Mode Register

 Table 7-48.
 Test-Mode Register 1 Overview

Regis	ster			TES.	Tmode1				
Addr	ess		0x0C		Reset Valu	ıe	0x03		
7 (msb)	6	5	4	3	2	1	0 (lsb)		
0	0	0	0	0	0	1	1		

Table 7-49. Test-Mode Register 2 Overview

Regis	ster			TES	Tmode2			
Addre	ess		0x0D		Reset Valu	ne	0x07	
7 (msb)	6	5	4	3	2	1	0 (lsb)	
0	0	0	0	0	1	1	1	

Table 7-50. Test-Mode Register 3 Overview

	Reg	ister			UdvThı							hresh				
	Add	ress			0x12					Reset value			0x0E00			
15	14	13	12	11	11 10 9 8 7 6				5	4	3	2	1	0		
0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	

Test-Mode registers 1, 2, and 3 are reserved for the factory calibration process. They are not allowed for customer use.

7.8.1.13 UdvThresh Register

Table 7-51. UdvThresh Register Overview

	Reg	ister							UdvT	hresh					
	Add	ress			0x10 Reset value 0x0570								,		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
х	Х	Х	Х		udvThresh										

 Table 7-52.
 UdvThresh Register Content

Bit Field	Format	Description
udvThresh	12 bits	Threshold for undervoltage detection

Default value is 1.5V (0x0570, 1392_D)

 $1.5V = VREF \times (1392 - 410) / (1502 - 410)$

See also Section 7.5.1.2 "12 Bits Incremental ADC" on page 19.

7.8.1.14 DataRd16 Register

Table 7-53. DataRd16 Register Overview

	Reg	ister							Data	Rd16					
	Add	ress			0x11 Reset value 0x00							0x0000)		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
х	х	Х	Х						Data	Rd16					

 Table 7-54.
 DataRd16 Register Content

Bit Field	Format	Description
DataRd16	12 bits	Return selected channel value (see Section 7.8.1.10 "ChannelReadSel Register" on page 47)

7.8.1.15 DataRd16burst Register

Table 7-55. DataRd16burst Register Overview

	Reg	ister						D	ataRd	16Bur	st				
	Add	ress				0x	7F			Re	set va	lue	(0x0000)
111	110	109	108	107	106	105	104	103	102	101	100	99	98	97	96
Х	Х	Χ	Х					(Channe	el6 data	a				
95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80
х	х	Х	Х					(Channe	el5 data	а				
79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64
х	х	Х	Х	Channel4 data											
63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
Х	х	Х	Х					(Channe	el3 data	a				
47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
Х	х	Х	Х					(Channe	el2 data	a				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
х	х	Х	х		Channel1 data										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
х	х	Х	Х					Te	mpera	ture da	ıta				

 Table 7-56.
 DataRd16burst Register Content

Bit Field	Format	Description
DataRd16burst	112 bits	Returns the values of all channels from one ATA6870, including temperature measurement

Figure 7-31. Application

Figure 7-31 shows an application with 2 stacked ATA6870s.

Bottom

8. Ordering Information

Extended Type Number	Package	MOQ
ATA6870-PLPW	QFN48, 7 × 7	1,000 pieces
ATA6870-PLQW	QFN48, 7 × 7	4,000 pieces

9. Package Information

Package: VQFN_7 x 7_48L Exposed pad 5.6 x 5.6 Dimensions in mm

Not indicated tolerances ±0.05

Drawing-No.: 6.543-5130.01-4

Issue: 1; 21.03.06

9.1 Markings

As a minimum, the devices will be marked with the following:

- Date code (year and week number)
- Atmel[®] part number (ATA6870)

10. Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document.

Revision No.	History		
9116B-AUTO-10/09	Table 3-1 "Pin Description" on page 4 changed		
	Table 5 "Abs.Max.RAtings" changed		
	Table 7-1 "Electrical Characteristics" on page 11 changed		
	Table 7-5 "Electrical Characteristics" on page 16 changed		
	Table 7-7 "Electrical Characteristics" on page 19 changed		
	Table 7-9 on page 21 changed		
	Table 7-11 "Battery Cell Temperature Measuring Characteristics" on page 23 changed		
	Table 7-12 "Battery Cell Temperature Measuring Characteristics" on page 24 changed		
	Section 7.5.7 "Power On Reset" on page 25 changed		
	Table 7.15 "Battery Cell Temperature Measuring Characteristics" on page 25 changed		
	Figure 7-13 "Host Interface" on page 26 changed		
	• Figure 7-14 "SPI Transaction Field Organization" on page 28 changed		
	Section 7.6.4.7 "CHKSUM Field" on page 34 changed		
	Table 7-19 "Electrical Characteristics" on page 35 changed		
	Table 7-22 "Electrical Characteristics" on page 37 changed		
	Table 7-23 "Electrical Characteristics" on page 37 changed		
	Table 7-26 "Register Mapping" on page 40 changed		
	Table 7-32 "Operation Register Content" on page 42 changed		
	Section 7.8.1.5 "Rstr Register" on page 44 changed		
	Table 7.55 "DataRd16burst Register Overview" on page 51 changed		
	Figure 7-31 "Application" on page 52 changed		

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131

USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon

Hong Kong

Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud

BP 309 78054

Saint-Quentin-en-Yvelines Cedex

France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan

9F, Tonetsu Shinkawa Bldg. Chuo-ku, Tokyo 104-0033

1-24-8 Shinkawa

Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

auto_control@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.