Отчёт по лабораторной работе №6

НКНбд-01-21

Подлесный Иван Сергеевич

Содержание

1	Теоретическое введение			
	1.1	Задача об эпидемии (SIR модель)	3	
		Задание		
		1.2.1 Вариант 32	4	
2	Ход работы			
	2.1	Решение и листинг программы №1	5	
	2.2	Решение и листинг программы №2	7	
	2.3	Результаты работы	10	
3	Выв	од	12	

1 Теоретическое введение

1.1 Задача об эпидемии (SIR модель)

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$\frac{dS}{dt} = \begin{cases} -\alpha S : I(t) > I^* \\ 0 : I(t) \le I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$\frac{dI}{dt} = \begin{cases} \alpha S - \beta I &: I(t) > I^* \\ -\beta I &: I(t) <= I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие

иммунитет к болезни)

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности, α и β - это коэффициенты заболеваемости и выздоровления соответственно.

Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) <= I^*, I(0) > I^*$

1.2 Задание

1.2.1 Вариант 32

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=11 900) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=290, А число здоровых людей с иммунитетом к болезни R(0)=52. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)- R(0).

Постройте графики изменения числа особей в каждой из трех групп.

Рассмотрите, как будет протекать эпидемия в случае:

1)
$$I(0) <= I^*$$

2)
$$I(0) > I^*$$

2 Ход работы

2.1 Решение и листинг программы №1

```
problem = ODEProblem(F, u0, time)
const solution = solve(problem , saveat = 0.1 )
const S = Float64[]
const I = Float64[]
const R = Float64[]
for u in solution.u
    s, i, r = u
    push!(S, s)
    push!(I, i)
   push!(R, r)
end
plt1 = plot(
    dpi = 300,
    size = (800,600),
    title = "Динамика изменений в каждой группе сл-1"
)
plot!(
    plt1,
    solution.t,
    I,
    color =:red,
    label = "Инфицированные"
```

```
)
plot!(
    plt1,
    solution.t,
    S,
    color =:blue,
    label = "Восприимчивые"
)
plot!(
    plt1,
    solution.t,
    R,
    color =:red,
    label = "Имунные"
)
savefig(plt1, "first.png")
```

2.2 Решение и листинг программы №2

```
using Plots
using DifferentialEquations
N = 11900
```

```
I0 = 290
R0 = 52
SO = N - IO - RO
a = 0.01
b = 0.02
u0 = [S0, I0, R0]
time = [0.0, 100]
function F(du, u, p, t)
    du[1] = -a*u[1]
    du[2] = a*u[1] - b * u[2]
    du[3] = -b * u[3]
end
problem = ODEProblem(F, u0, time)
const solution = solve(problem , saveat = 0.1 )
const S = Float64[]
const I = Float64[]
const R = Float64[]
for u in solution.u
    s, i, r = u
    push!(S, s)
    push!(I, i)
    push!(R, r)
end
```

```
plt1 = plot(
    dpi = 300,
    size = (800,600),
    title = "Динамика изменений в каждой группе сл-1"
)
plot!(
    plt1,
    solution.t,
    I,
    color =:red,
    label = "Инфицированные"
)
plot!(
    plt1,
    solution.t,
    S,
    color =:blue,
    label = "Восприимчивые"
)
plot!(
    plt1,
    solution.t,
```

```
R,
color =:red,
label = "Имунные"
)
savefig(plt1, "second.png")
```

2.3 Результаты работы

Динамика изменений в каждой группе сл-1

Рис. 2.1: $I(0) <= I^*$

Динамика изменений в каждой группе сл-1

Рис. 2.2: $I(0) > I^*$

3 Вывод

Во время выполнения лабораторной работы мы познакомились с SIR моделью.