Úlohy - predikátová logika (přepis)

Martin Všetička

7. ledna 2009, 17:12

Zásadní informace pro následné čtení příkladů

Tvrzení:

Pravidlo tautologie (PTT) Každá tautologie je dokazatelná v predikátové logice. Pravidlo o rozboru případů (PR) $T \vdash (A \lor B) \to C \Leftrightarrow (T \vdash A \to C) \text{ a } (T \vdash B \to C)$ Pravidlo konjunkce (PK) $T \vdash A \text{ a } T \vdash B \Leftrightarrow T \vdash A \text{ & } B$ Pravidlo tranzitivity implikace (PTI) $T \vdash A \to B \text{ a } T \vdash B \to C \Rightarrow T \vdash A \to C$

Důkaz.

- 1. PTT plyne z toho, že predikátová logika 1. řádu v sobě přirozeně obsahuje výrokovou logiku (tj. každá formule je výrok nad prvovýroky, které představují atomické formule a formule začínající kvantifikátorem).
- 2. PR plyne z PTT a z faktu, že $(A \vee B) \to C \leftrightarrow ((A \to B) \& (B \to C))$ je tautologie.
- 3. PK plyne z toho, že $A \to (B \to (A \& B))$ je tautologie, z PTT a z definice symbolu \vdash .
- 4. PTI plyne z toho, že $(A \to B) \to ((B \to C) \to (A \to C))$ je tautologie.

Další základní poučky, pravidla, věty a axiomy a jejich symbolické označení

Poučka, pravidlo, axiom	\mathbf{Symbol}	Formulace
Pravidlo Modus Ponens	MP	Odvod' $B z A a A \rightarrow B$
Pravidlo Generalizace	PG	Odvod' $(\forall x)A \neq A$
Axiom Specifikace	AxS	$(\forall x)A \to A_x[t]; A_x[t] \to (\exists x)A \text{ ("duální verze")}$
Axiom Přeskoku	AxP	$(\forall x)(A \to B) \to (A \to (\forall x)B)$, není-li x volná v A.
Pravidlo Zavedení ∀	$\mathrm{PZ}\forall$	$T \vdash A \to B \Rightarrow T \vdash A \to (\forall x)B$, není-li x volná v A.
Pravidlo Zavedení ∃	$PZ\exists$	$T \vdash A \to B \Rightarrow T \vdash (\exists x)A \to B$, není-li x volná v B.
Věta o uzávěru	VU	$T \vdash A \Leftrightarrow T \vdash A'$, je-li A' uzávěr A .
Věta o Instanci	VI	$T \vdash A \Rightarrow T \vdash A'$, je-li A' instance A .
Věta o Substituci	VS	$a) \vdash (\forall x_1, \dots, x_n) A \to A_{x_1, \dots, x_n} [t_1, \dots, t_n]$
		b) $\vdash A_{x_1,,x_n}[t_1,,t_n] \to (\exists x_1,,x_n)A$
Věta o Konstantách	VK	$T \vdash A \Leftrightarrow T' \vdash A_{x_1,\dots,x_n}[c_1,\dots,c_n]$, je-li T' rozšíření o
		nové konstantní symboly $c_i, 1 \leq i \leq n$.
Věta o Dedukci	VD	Je-li A sentence, tak $T, A \vdash B \Leftrightarrow T \vdash A \to B$.
Důkaz sporem	DS	Je-li A sentence, tak T , $\neg A$ je sporná $\Leftrightarrow T \vdash A$.
Pravidlo Distribuce Q	PDQ	$T \vdash A \to B \Rightarrow T \vdash (Qx)A \to (Qx)B.$
Věta o Ekvivalenci	VE	Nechť formule A' vznikne z formule A nahrazením
		některých výskytů podformulí A_1, A_2, \ldots, A_n po řadě
		formulemi A'_1, A'_2, \dots, A'_n , kde pro $\forall i \in \{1, \dots, n\}$ je
		$\vdash A_i \leftrightarrow A_i'$. Potom: $\vdash A \leftrightarrow A'$.
Věta o Variantách	VV	$\vdash A \leftrightarrow A'$, je-li A' varianta A .

Další běžně užívaná symbolická označení:

- Q . . . označení pro kvantifikátor (∀,∃)
- ⇒ ...značí české "implikuje".
- \Leftrightarrow ... značí české "je ekvivalentní".
- $\bullet \to \dots$ symbol pro implikaci ve formálním jazyce
- ↔ ... symbol pro ekvivalenci ve formálním jazyce
- \bullet Pro formule $A,\,B$ symbol A=Bznačí "formule A je B "; obdobně o termech $t,\,s$ můžeme prohlásit t=s
- Je-li A formule resp. t je term, symbol $A(\overline{x})$ resp. $t(\overline{x})$ značí, že \overline{x} je nějaká n-tice x_1, \ldots, x_n navzájem různých proměnných, mezi kterými jsou všechny volné proměnné A resp. všechny proměnné termu t.

F.1.0 Substituce, instance

F.1.0.1 Vlastnosti substitucí a instancí

1. Dokažte: $\vdash (\forall x)A \leftrightarrow (\forall y)A_x[y]$, pokud y není volná v A a je substituovatelná za x do A. Speciálně tedy platí: $(\forall x)A \leftrightarrow (\forall y)A_x[y]$, nemá-li y výskyt v A.

Řešení: Označme $A_x[y]$ jako A'. Oba předpoklady o x, y v A zaručují, že volný výskyt y v A' je právě tam, kde je volný výskyt x v A. Tedy x je substituovatelné za y do A' a $A'_y[x]$ je A.

$$(1) \qquad \qquad \vdash (\forall y) A' \to A_y[x] \tag{AxS}$$

(2)
$$\vdash (\forall y)A' \to A$$
 (přepis)

$$(3) \qquad \qquad \vdash (\forall x) A \to A' \qquad (AxS)$$

$$(4) \qquad \qquad \vdash (\forall y)A' \to (\forall x)A \qquad \qquad (PZ\forall \text{ na } (2))$$

(5)
$$\vdash (\forall x)A \to (\forall y)A'$$
 (PZ \forall na (3))

(6)
$$\vdash (\forall x) A \leftrightarrow (\forall y) A_x[y]$$
 (PK na (4) a (5))

Přípisek: Ukažme si ty substituce na příkladu, mějme formuli:

$$A = x = 0 \to \neg(\exists y)(y \neq 0)$$

Máme splněné oba předpoklady (y není volná v A a y je substituovatelná za x). A' je tedy tvaru:

$$A' = y = 0 \to \neg(\exists y)(y \neq 0)$$

Proměnná x je zřejmě substituovatelná za y, čímž dostaneme:

$$A = x = 0 \to \neg(\exists y)(y \neq 0)$$

2. Dokažte:

$$\vdash (\forall x_1, \dots, x_n) A \rightarrow A_{x_1, \dots, x_n} [t_1, \dots, t_n]$$

Řešení: Pro každé i = 1, 2, ..., n platí

$$(*) \qquad \vdash (\forall x_i, x_{i+1}, \dots, x_n) A \to A$$

Toto tvrzení dokážeme pomocí indukce:

$$(7) \qquad \vdash (\forall x_i, x_{i+1}, \dots, x_n) A \to (\forall x_{i+1}, \dots, x_n) A \tag{AxS}$$

(8)
$$\vdash (\forall x_{i+1}, \dots, x_n) A \to A$$
 (indukční předpoklad)

(9)
$$\vdash (\forall x_i, x_{i+1}, \dots, x_n) A \rightarrow A$$
 (PTI na (1) a (2))

Dokazované tvrzení plyne z (*) pomocí věty o instancích:

(1)
$$\vdash ((\forall x_1, \dots, x_n)A \rightarrow A)_{x_1, \dots, x_n}[t_1, \dots, t_n]$$
 (VI na (*))

(2)
$$\vdash (\forall x_1, \dots, x_n) A \to A_{x_1, \dots, x_n} [t_1, \dots, t_n]$$
 (viz vysvětlení níže)

Přechod od (1) k (2) je možný proto, že premisa implikace v (1) neobsahuje žádnou z proměnných x_1, \ldots, x_n volně - vycházíme tedy z definice substituovatelnosti termu do formule.

Přípisek: Zadání je věta o substituci, jak je uvedeno v úvodní tabulce.

3. Dokažte:

$$\mathbb{M} \models A_{x_1,\dots,x_n}[t_1,\dots,t_n][e] \Leftrightarrow \mathbb{M} \models A[e'],$$

kde $e'(x_1/t_1[e], ..., x_n/t_n[e])$.

Řešení: Indukcí podle složitosti A. Pro A atomickou a spojky \neg a \rightarrow to je jasné. Indukční krok pro A tvaru $(\forall x)B$:

$$\mathbb{M} \vDash A_{x_1,\dots,x_n}[t_1,\dots,t_n][e]$$

$$\Rightarrow \mathbb{M} \vDash B_{x_1,\dots,x_n}[t_1,\dots,t_n][e(x/a)] \text{ pro každé } a \in M \qquad \text{ (definice splňování)}$$

$$\Rightarrow \mathbb{M} \vDash B[e(x/a)'] \text{ pro každé } a \in M \qquad \text{ (indukční předpoklad)}$$

$$\Rightarrow \mathbb{M} \vDash B[e'(x/a)] \text{ pro každé } a \in M \qquad \text{ (viz vysvětlení níže)}$$

$$\Rightarrow \mathbb{M} \vDash (\forall x)B[e'] \qquad \text{ (definice splňování)}$$

 $\Leftrightarrow \mathbb{M} \models (\forall x)B[e] \qquad \text{(definice spinovan)}$ $\Leftrightarrow \mathbb{M} \models A[e'] \qquad \text{(přepis)}$

Třetí ekvivalence plyne z e'(x/a) = e(x/a)', což platí v důsledku toho, že x není v t_i díky

Přípisek: Kompletní důkaz je možno najít ve skriptech Jana Pelce, str. 28, lemma 8.12

F.1.0.2 Vlastnosti instancí - protipříklady

substituovatelnosti¹ t_i za x_i do A.

1.

$$\not\vdash (\forall x)A \to A_x^t,$$

je-li A_x^t výsledek nahrazení každého volného výskytu x v A termem t.

Řešení: Podle věty o úplnosti predikátové logiky stačí: $\langle M, P^M \rangle \not\models (\forall x) A \to A^t_x$, kde:

- A je $(\exists y)P(x,y)$
- $M = \{a, b\}$
- $P^M = \{\langle a, b \rangle, \langle b, a \rangle\}$
- volíme $t \equiv y$

Přípisek: A_x^t není to samé, co substituovatelnost termu t za proměnnou x do formule A.

¹Protože A je tvaru $(\forall x)B$.

2.

$$\mathbb{M} \vDash A_x^t[e] \Leftrightarrow \mathbb{M} \vDash A[e'],$$

kde e' = e(x/t[e]) a A_x^t je výsledek nahrazení každého volného výskytu x v A termem t.

Řešení: Protipříklad je následující:

- A bud' $(\exists y)P(x,y)$
- t bud y; tedy A_x^t je $(\exists y)P(y,y)$
- $M = \{a, b\}$
- $P^M = \{\langle a, b \rangle, \langle b, a \rangle\}$

Mějme e(x) = a, e(y) = b a e'(x) = b = e'(y). Pak $\langle M, P^M \rangle \models A[e']$, ale $\langle M, P^M \rangle \not\models A_x^y[e]$.

3.

$$T \vdash A_x[t] \Rightarrow T \vdash A$$
,

kde T je jistá teorie v jazyce $\langle M, P, c \rangle$ - P je unární predikát, c konstanta.

Řešení: Protipříklad je následující:

- Bud' $T = \{P(c)\}\$
- Bud' $\mathbb{M} = \langle M, P^M, c^M \rangle \models T$, kde $P^M \neq \{c^M\}$
- Bud' $A \equiv P(x)$
- Bud' $t \equiv c$

Pak $\mathbb{M} \models P(c)$, ale $\mathbb{M} \not\models P(x)$

F.1.1 Varianta

F.1.1.1

Definice: Říkáme, že formule A' je variantou formule A, jestliže A' vznikne z A postupným nahrazením podformulí tvaru (Qx)B formulemi $(Qy)B_x[y]$, kde y není volná proměnná ve formuli (Qx)B.

Buď te x, y, z, u různé proměnné, Q kvantifikátor. Odpovězte a uveď te důvod, zda platí:

B je varianta A.

1.
$$A = (Qx)(x < y \lor (\exists z)(z = y \& z \neq x)), B = (Qz)(z < y \lor (\exists z)(z = y \& z \neq z))$$

Řešení: Ne. z není substitovatelné za x do A.

Přípisek: Protože existuje podformule A ve tvaru $(\exists z)C$ taková, že x má v C volný výskyt.

2.
$$A = (Qx)(x < y \lor (\forall z)(z = y \& z \neq x)), B = (Qy)(y < y \lor (\forall z)(z = y \& z \neq y))$$

Řešení: Ne. y je volná v A.

3.
$$A = (Qx)(x < y \lor (\exists z)(z = y \& z \neq x)), B = (Qu)(u < y \lor (\exists z)(z = y \& z \neq u))$$

Řešení: Ano. u není volná v A a je substituovatelná za x do A.

F.1.2 Dokazatelné, vyvratitelné a nezávislé formule

F.1.2.1 Dokazatelnost jednoduchých formulí

Buď te P,R různé unární predikátové symboly. Odpovězte, zda uvedená formule je:

a uveď te důvod.

1. *P*

Řešení: NZ. $\langle 1, 0 \rangle \models \neg P, \langle 1, 1 \rangle \models P$

Přípisek: $\langle 1,0 \rangle$ zde značí model jehož interpretace (realizace) je:

- \bullet $M=1=\{0\}$...jednoprvková množina, že je jejím prvkem zrovna nula není příliš podstatné
- \bullet $P^M = \emptyset$
- 2. $P \rightarrow R$

Řešení: NZ.

- $\langle 2, 0, 2 \rangle \models P \rightarrow R \dots$ Premisa (P) je vždy nesplněná.
- $\langle 2,2,0 \rangle \vDash \neg (P \to R) \dots$ Premisa (P) je vždy splněná, závěr (R) je však vždy nesplňen.

Přípisek: $\langle 2, 0, 2 \rangle$ zde značí model jehož interpretace (realizace) je:

- $M = 2 = \{0, 1\}$
- $P^M = \emptyset$
- $R^M = \{\{0\}, \{1\}\}$
- 3. $P \rightarrow (R \rightarrow P)$

Řešení: D. Je to tautologie (instance axiomu A1).

4. $(\exists x)P(x)$

Řešení: NZ.

- $\langle 1, 0 \rangle \models \neg (\exists x) P$
- $\langle 1, 1 \rangle \models (\exists x) P$
- 5. $P(x) \vee (\exists x) \neg P(x)$

Řešení: D. Formule je logicky ekvivalentní s $(\forall x)P \to P$, což je axiom substituce.

Přípisek:

(1)
$$P(x) \vee (\exists x) \neg P(x)$$

(2)
$$\Leftrightarrow \neg P(x) \to (\exists x) \neg P(x)$$
 (zkratky)

Formule (2) není nic jiného než instance "duální verze" axiomu specifikace (viz tabulka v první kapitole).

F.1.2.2 Nezávislé formule v modelu

1. Buď A formule $P \to (\forall x)P$, kde P je unární relační symbol. V právě kterých modelech² $\langle M, P^M \rangle$, neplatí A ani $\neg A$?

Řešení: Právě, když $0 \neq P^M \neq M$.

Přípisek: Pokud bude splněno $0 \neq P^M \neq M$, pak pro danou realizaci jazyka (pojem model mi zde obsahově nesedí) budou vždy existovat ohodnocení e a e' taková, že $\langle M, P^M \rangle \models A[e]$ ale $\langle M, P^M \rangle \not\models A[e']$.

2. Buď A formule x=c,kde c je konstantní symbol. V právě kterých modelech $\langle M,c^M\rangle,$ neplatí Aani $\neg A?$

Řešení: Právě když |M| > 1.

Přípisek: Pokud bude |M| > 1, pak bude existovat právě jedno ohodnocení e, pro které bude platit $e(x) = c^M$, pro jedno ohodnocení bude tedy formule splněna pro zbývající ne, tedy formule je nezávislá.

3. Buď A formule $P \to (\forall x)R$, kde P,R jsou různé unární predikátové symboly. V právě kterých modelech $\mathbb{M} = \langle M, P^M, R^M \rangle$, neplatí A ani $\neg A$?

Řešení: Právě, když $0 \neq P^M \neq M \neq R^M$.

Přípisek: Zřejmě platí:

•
$$\mathbb{M} \not\models A \Leftrightarrow \underbrace{P^M \neq 0}_{\#1} \text{ a } \underbrace{R^M \neq M}_{\#2},$$

•
$$\mathbb{M} \not\models \neg A \Leftrightarrow \underbrace{P^M \not= M}_{\#3}$$
 nebo $\underbrace{R^M = M}_{\#4}$.

Aby byla formule A nezávislá, musíme spojit podmínky #1, #2 a #3 (viz 3).

F.1.3 Protipříklady

F.1.3.1 K větě o dedukci a o důkazu sporem

1.

$$T, A \vdash B \Rightarrow T \vdash A \rightarrow B$$
,

kde $T = \{(\exists x)P\}$ je teorie v jazyce $\langle P \rangle$ s unárním predikátem P, A je P(x) a B vhodné.

Řešení:

• Bud' B formule $(\forall x)P(x)$.

Je dokazatelné $T, A \vdash B$:

$$(1) T, P(x) \vdash P(x)$$

(2)
$$T, P(x) \vdash (\forall x) P(x)$$
 (PG)

Platí však $T \not\vdash A \to B$, neboť $\langle M, P^M \rangle \not\models P(x) \to (\forall x) P(x)$, když $0 \neq P^M \neq M$.

²Použil bych raději pojem interpretace jazyka, jelikož model je definován jako interpretace jazyka L, při které je formule *pravdivá*.

³Podmínky #1, #2 a #4 se vylučují, pro jich nelze použít.

Přípisek: V dokumentu [1], 3.44 je uvedeno které jiné formule lze použít pro dokázání našeho tvrzení. Jsou to formule, jejichž důkaz závisí na použítí pravidla generalizace (což se dále např. využije pro použití pravidla zavedení \forall).

2.

$$T, \neg A$$
 je sporná teorie $\Rightarrow T \vdash A$,

kde $T = \{(\exists x)P\}$ je teorie v jazyce $\langle P \rangle$ s unárním predikátem P a A je vhodné.

Řešení:

• Buď A rovno P.

 $T, \neg A$ je sporná, neboť dokazuje $(\exists x)P \& \neg (\exists x)P$:

(1)
$$T, \neg P \vdash \neg P$$
 (předpoklad)

$$(2) T, \neg P \vdash (\forall x) \neg P (PG)$$

(3)
$$T, \neg P \vdash (\exists x)P$$
 (předpoklad)

(4)
$$T, \neg P \vdash (\exists x)P \& (\forall x) \neg P$$
 (Pravidlo konjunkce na (2) a (3))

(5)
$$T, \neg P \vdash (\exists x)P \& \neg (\exists x)P$$
 (Prenex (i) + VE)

Díky tautologii $(B \& \neg B) \rightarrow C$ dostáváme $T, \neg A \vdash C$. Na druhé straně $T \not\vdash A$, neboť $(\exists x)P \not\vdash P$, o čemž svědčí model $\langle 2, 1 \rangle \not\models P$.

F.1.4 Tvrzení o kvantifikátorech

F.1.4.1 Vytýkání kvantifikátorů

Nechť Q značí kvantifikátor, Q' kvantifikátor "duální" ke Q.

1.
$$(\forall x)(A \to B) \leftrightarrow (A \to (\forall x)B)$$
, nemá-li x volný výskyt v A.

Řešení:

" \rightarrow " Instance axiomu přeskoku.

"←" Dokazujeme takto:

$$(1) \vdash (A \to (\forall x)B) \to (((\forall x)B \to B) \to (A \to B))$$
 (tautologie PTI)

(2)
$$\vdash ((\forall x)B \to B) \to ((A \to (\forall x)B) \to (A \to B))$$
 (věta o záměně předpokladů³)

$$(3) \vdash (\forall x)B \to B) \tag{AxS}$$

$$(4) \vdash (A \to (\forall x)B) \to (A \to B) \tag{(2), (3) MP}$$

$$(5) \vdash (A \to (\forall x)B) \to (\forall x)(A \to B) \tag{PZ}\forall$$

2. $(\exists x)(A \to B) \to (A \to (\exists x)B),$ nemá-lixvolný výskyt v A.

Řešení:

"→" Dokazujeme:

(1)
$$\vdash (A \to B) \to ((B \to (\exists x)B) \to (A \to (\exists x)B))$$
 (tautologie PTI)

(2)
$$\vdash (B \to (\exists x)B) \to ((A \to B) \to (A \to (\exists x)B))$$
 (věta o záměně předpokladů³)

(3)
$$\vdash B \to (\exists x)B$$
 ("duální" verze AxS)

$$(4) \vdash (A \to B) \to (A \to (\exists x)B) \tag{(2), (3) MP}$$

$$(5) \vdash (\exists x)(A \to B) \to (A \to (\exists x)B) \tag{PZ\exists}$$

 $^{^3}$ viz skripta Jana Pelce, věta 3.14

3.
$$(A \to (\exists x)B) \to (\exists x)(A \to B)$$

Řešení:

"→" Dokazujeme:

(1)
$$\vdash (A \to B) \to (\exists x)((A \to B))$$
 ("duální" verze AxS)
(2) $\vdash \neg A \to (A \to B)$ (V2)
(3) $\vdash \neg A \to (\exists x)(A \to B)$ ((1), (2) PTI)
(4) $\vdash B \to (A \to B)$ (A1)
(5) $\vdash (\exists x)B \to (\exists x)(A \to B)$ (DK⁴)
(6) $\vdash (\neg A \vee (\exists x)B) \to (\exists x)(A \to B)$ ((3), (5) PR)
(7) $\vdash (\neg A \vee (\exists x)B) \leftrightarrow (A \to (\exists x)B)$ (zkratky)
(8) $\vdash (A \to (\exists x)B) \to (\exists x)(A \to B)$ (VE na (6) se (7))

4. $(Qx)(A \to B) \leftrightarrow ((Q'x)A \to B)$, nemá-li x volný výskyt v B.

Návod: Užijte tvrzení o vytýkání kvantifikátorů z konsekventu implikace.

Řešení:

(1)
$$\vdash (Qx)(A \to B) \leftrightarrow (Qx)(\neg B \to \neg A)$$
 (V5)
(2) $\leftrightarrow (\neg B \to (Qx)\neg A)$ (Prenex (ii))
(3) $\leftrightarrow (\neg (Qx)\neg A \to B)$ (V5 a V3,V4)
(4) $\leftrightarrow ((Q'x)A \to B)$ (vztah mezi \forall a \exists)

5. $(Qx)(A \diamondsuit B) \leftrightarrow (A \diamondsuit (Qx)B)$, nemá-li x volný výskyt v A, \diamondsuit je \vee nebo &.

Návod: Užijte tvrzení o vytýkání kvantifikátorů z konsekventu implikace.

Řešení:

(a) Q je \forall , \Diamond je \vee . Jsou dokazatelné ekvivalence:

(1)
$$\vdash (\forall x)(A \lor B) \leftrightarrow (\forall x)(\neg A \to B)$$
 (zkratky)
(2) $\leftrightarrow (\neg A \to (\forall x)B)$ (Prenex (ii))
(3) $\leftrightarrow (A \lor (\forall x)B)$ (zkratky)

(b) Ostatní vztahy plynou z (a) užitím $\vdash (\exists x)C \leftrightarrow \neg(\forall x)\neg C, \vdash C \leftrightarrow \neg\neg C,$ deMorganových pravidel a věty o ekvivalenci.

F.1.4.2 Vytýkání kvantifikátorů - protipříklady

Nechť Q značí kvantifikátor, Q' kvantifikátor "duální" ke Q.

1.
$$\not\vdash (\forall x)(A \to B) \to (A \to (\forall x)B)$$
.

Řešení:

- Buď $\mathbb{M} = \langle M, P^M, R^M \rangle$, kde P, R jsou unární predikátové symboly.
- Bud' $a \in P$.

 $^{^4}$ Distribuce Kvantifikátorů, Jan Pelc, lemma 9.9; důsledek PZ $\!\exists$

• Nechť platí $0 \neq P^M \subseteq R^M \subseteq M$.

Pak $\mathbb{M} \models (\forall x)(P \to R), \mathbb{M} \not\models (P \to (\forall x)R)[a]. \text{ Tedy } \mathbb{M} \not\models (\forall x)(P \to R) \to (P \to (\forall x)R).$

2. $\forall (A \to (\forall x)B) \to (\forall x)(A \to B)$.

Řešení:

- Buď $\mathbb{M} = \langle M, P^M, R^M \rangle$, kde P, R jsou unární predikátové symboly.
- Bud' $a \in M \backslash P^M$.
- Nechť platí $0 \neq P^M \subseteq R^M$.

Pak

- $\mathbb{M} \models (P \rightarrow (\forall x)R)[a] \dots$ jelikož není splněna premisa
- $\mathbb{M} \not\models (\forall x)(P \to R)$

Tedy $\mathbb{M} \not\models (P \to (\forall x)R) \to (\forall x)(P \to R).$

 $3. \not\vdash (\exists x)(A \to B) \to (A \to (\exists x)B).$

Řešení:

- Buď $\mathbb{M} = \langle M, P^M, R^M \rangle$, kde P, R jsou unární predikátové symboly.
- Bud' $a \in P^M$.
- Nechť platí $0 \neq P^M \subsetneq M, R = 0$.

Pak

- $\mathbb{M} \models (\exists x)(P \to R) \dots \text{protože existuje } a \in M \setminus P^M$
- $\mathbb{M} \not\models (P \to (\exists x)R)[a] \dots \text{protože je } a \in P^M$

Tedy $\mathbb{M} \not\models (\exists x)(P \to R) \to (P \to (\exists x)R).$

F.1.4.3 Vlastnosti kvantifikátorů

1. Dokažte syntakticky, přičemž Q značí kvantifikátor:

$$\vdash (Qx)(A \& B) \rightarrow (Qx)A \& (Qx)B$$

Řešení: Nechť všechny volné proměnné formulí A, B kromě x jsou mezi x_1, \ldots, x_n , nechť c_1, \ldots, c_n jsou nové konstantní symboly, A' je $A_{x_1, \ldots, x_n}[c_1, \ldots, c_n]$, B' je $B_{x_1, \ldots, x_n}[c_1, \ldots, c_n]$.

- (1) $\vdash (A' \& B') \to A'$ (PK (tautologie))
- (2) $\vdash (A' \& B') \to B'$ (PK (tautologie))
- (3) $\vdash (Qx)(A' \& B') \to (Qx)A'$ (PDQ na (1))
- $(4) \qquad \qquad \vdash (Qx)(A' \& B') \to (Qx)B' \qquad (PDQ na (2))$
- (5) $(Qx)(A' \& B') \vdash (Qx)A'$ ((3) VD)
- (6) $(Qx)(A' \& B') \vdash (Qx)B'$ ((4) VD)
- (7) $(Qx)(A' \& B') \vdash (Qx)A' \& (Qx)B'$ (PK na (5), (6))
- (8) $\vdash (Qx)(A' \& B') \to (Qx)A' \& (Qx)B' \tag{(7) VD}$
- $(9) \qquad \qquad \vdash (Qx)(A \& B) \to (Qx)A \& (Qx)B \qquad ((8) VK)$
- 2. Dokažte syntakticky, přičemž Q značí kvantifikátor:

$$\vdash (\forall x)A \& (\forall x)B \rightarrow (\forall x)(A \& B)$$

Řešení: Nechť všechny volné proměnné formulí A, B kromě x jsou mezi x_1, \ldots, x_n , nechť c_1, \ldots, c_n jsou nové konstantní symboly, A' je $A_{x_1, \ldots, x_n}[c_1, \ldots, c_n]$, B' je $B_{x_1, \ldots, x_n}[c_1, \ldots, c_n]$.

(1)
$$(\forall x)A' \& (\forall x)B' \vdash A'$$
 $(AxS + MP)$

(2)
$$(\forall x)A' \& (\forall x)B' \vdash B'$$
 $(AxS + MP)$

(3)
$$(\forall x)A' \& (\forall x)B' \vdash A' \& B'$$
 (PK na (1) a (2))

$$(4) \qquad (\forall x)A' \& (\forall x)B' \vdash (\forall x)(A' \& B') \tag{PG}$$

(5)
$$\vdash (\forall x)A' \& (\forall x)B' \to (\forall x)(A' \& B')$$
 (VD)

(6)
$$\vdash (\forall x)A \& (\forall x)B \to (\forall x)(A \& B)$$
 (VK)

3. Dokažte syntakticky:

$$\vdash (\forall x)(A \& B) \leftrightarrow (\forall x)A \& (\forall x)B, \vdash (\exists x)(A \lor B) \leftrightarrow (\exists x)A \lor (\exists x)B$$

Návod: i)
$$\vdash (Qx)(A \& B) \rightarrow (Qx)A \& (Qx)B$$
, ii) $\vdash (\forall x)A \& (\forall x)B \rightarrow (\forall x)(A \& B)$

Řešení:

- (a) První formule:
 - (1) $\vdash (\forall x)(A \& B) \rightarrow (\forall x)A \& (\forall x)B$ (příklad 1., tj. hint i)
 - (2) $\vdash (\forall x)A \& (\forall x)B \rightarrow (\forall x)(A \& B)$ (příklad 2., tj. hint ii))
 - $(3) \qquad \vdash (\forall x)(A \& B) \leftrightarrow (\forall x)A \& (\forall x)B \qquad (PK (1) a (2))$
- (b) Druhá formule plyne z první užitím (Negace Implikace (NI)): $T \vdash C \rightarrow C' \Leftrightarrow T \vdash \neg C' \rightarrow \neg C$ (což plyne z PTT) a VE.

$$(1) \qquad \qquad \vdash \neg(\forall x)(A \& B) \leftrightarrow \neg((\forall x)A \& (\forall x)B) \tag{NI}$$

$$(2) \qquad \vdash \neg(\forall x)(A \& B) \leftrightarrow \neg(\forall x)\neg(\neg A \lor \neg B) \qquad (deMorgan)$$

$$(3) \qquad \leftrightarrow (\exists x)(\neg A \vee \neg B) \qquad (zkratky)$$

$$(4) \qquad \vdash \neg((\forall x)A \& (\forall x)B) \leftrightarrow \neg(\forall x)A \lor \neg(\forall x)B \qquad (deMorgan)$$

(5)
$$\leftrightarrow (\exists x) \neg A \lor (\exists x) \neg B$$
 (zkratky)

$$(6) \qquad \vdash (\exists x)(\neg A \lor \neg B) \leftrightarrow (\exists x)\neg A \lor (\exists x)\neg B$$

Formule (6) plyne z toho, že jsme dokázali ekvivalentními úpravami obě strany formule (6) z již dokázaného tvrzení. Formuli (6) si navíc můžeme pozměnit⁵, tak že podformule tvaru $\neg B$ zaměníme za B, čímž dostaneme žádáné.

4. Dokažte syntakticky:

$$\vdash (\exists x)(A \& B) \rightarrow (\exists x)A \& (\exists x)B, \vdash (\forall x)A \vee (\forall x)B \rightarrow (\forall x)(A \vee B)$$

Návod: i)
$$\vdash (Qx)(A \& B) \rightarrow (Qx)A \& (Qx)B$$
, ii) $\vdash (\forall x)A \& (\forall x)B \rightarrow (\forall x)(A \& B)$

Řešení:

- (a) První formule: Přímo plyne z hintu i)
- (b) Druhá formule plyne z první užitím (Negace Implikace (NI)): $T \vdash C \rightarrow C' \Leftrightarrow T \vdash \neg C' \rightarrow \neg C$ (což plyne z PTT) a VE.
- 5. Dokažte syntakticky: $\vdash (\forall x)(\forall y)A \leftrightarrow (\forall y)(\forall x)A, \vdash (\exists x)(\exists y)A \leftrightarrow (\exists y)(\exists x)A$

Řešení:

 $^{^5\}mathrm{Tím}$ vlastně vytváříme instanci dané tautologie.

(a) První formule:

(1)
$$\vdash (\forall x)(\forall y)A \to (\forall y)A$$
 (AxS)

$$(2) \qquad \qquad \vdash (\forall y)A \to A \tag{AxS}$$

(3)
$$\vdash (\forall x)(\forall y)A \rightarrow A$$
 (PTI na (1) a (2))

$$(4) \qquad \qquad \vdash (\forall x)(\forall y)A \to (\forall x)A \tag{PZ}\forall)$$

(5)
$$\vdash (\forall x)(\forall y)A \to (\forall y)(\forall x)A$$
 (PZ \forall)

Ze symetrie plyne druhá implikace. Pomocí PK pak plyne tvrzení.

(b) Druhá formule plyne z první formule užitím NI a VE:

$$(1) \vdash (\forall x)(\forall y)A \leftrightarrow (\forall y)(\forall x)A \Leftrightarrow \vdash \neg(\forall x)(\forall y)A \leftrightarrow \neg(\forall y)(\forall x)A \tag{NI}$$

$$(2) \qquad \Leftrightarrow \vdash (\exists x) \neg (\forall y) A \leftrightarrow (\exists y) \neg (\forall x) A \quad (Prenex (i))$$

$$(3) \qquad \Leftrightarrow \vdash (\exists x)(\exists y) \neg A \leftrightarrow (\exists y)(\exists x) \neg A \quad (Prenex (i))$$

$$(4) \qquad \Leftrightarrow \vdash (\exists x)(\exists y)A \leftrightarrow (\exists y)(\exists x)A$$

V kroku (4) jsme provedli stejnou úvahu jako v příkladu 3.

6. Dokažte syntakticky, přičemž ${\cal Q}$ značí kvantifikátor:

$$\vdash (\exists x)(\forall y)A \rightarrow (\forall y)(\exists x)A, \qquad \vdash (Qx)A \leftrightarrow A,$$
 není-li x volná v A .

Řešení:

(a) První formule:

$$(1) \qquad \qquad \vdash A \to (\exists x)A \tag{VS}$$

(2)
$$\vdash (\forall y)A \to (\forall y)(\exists x)A$$
 (PD \forall)

(3)
$$\vdash (\exists x)(\forall y)A \to (\forall y)(\exists x)A$$
 (PZ \exists)

(b) Druhá formule. Q buď \forall .

(1)
$$\vdash (\forall x)A \to A$$
 (AxS)

$$(2) \qquad \qquad \vdash A \to (\forall x)A \tag{PZ}\forall)$$

(3)
$$\vdash (\forall x) A \leftrightarrow A$$
 (PK na (1) a (2))

Pro Q rovno \exists plyne tvrzení z dokázaného užitím NI a VE.

7. Dokažte:

$$A_x[t] \leftrightarrow (\forall x)(x = t \to A),$$

není-li x obsaženo v termu t.

Řešení:

" \rightarrow "

(1)
$$\vdash (\forall x)(x = t \to A) \to (t = t \to A_x[t])$$
 (AxS⁶)

(2)
$$\vdash t = t \to ((\forall x)(x = t \to A) \to A_x[t])$$
 (Záměna předpokladů)

(3)
$$\vdash t = t$$
 (Axiom identity)

$$(4) \qquad \vdash (\forall x)(x = t \to A) \to A_x[t] \tag{MP}$$

 $^{^6\}mathrm{P\check{r}edpokl\acute{a}d\acute{a}}$ se substituovatelnost t za x do A

"←"

$$(1) \vdash t_1 = s_1 \to t_2 = s_2 \to \cdots \to t_n = s_n \to (A[t_1, \dots, t_n] \leftrightarrow A[s_1, \dots, s_n]) \quad (VR^7)$$

$$(2) \quad \vdash x = t \to (A \leftrightarrow A_x[t]) \tag{z (1)}$$

$$(3) \quad \vdash A_x[t] \to (x = t \to A) \tag{ZP}$$

$$(4) \quad \vdash A_x[t] \to (\forall x)(x = t \to A) \tag{PZ}$$

V kroku (4) jsme využili předpokladu, ze kterého plyne, že x není volná v $A_x[t]$.

8. Dokažte:

$$A_x[t] \leftrightarrow (\exists x)(x = t \& A),$$

není-li x obsaženo v termu t.

Řešení:

" \rightarrow " PT bude značit předpoklad tvrzení.

(1)
$$\vdash (t = t \& A_x[t]) \to (\exists x)(x = t \& A)$$
 (AxS a PT)

(2)
$$\vdash t = t$$
 (Axiom identity)

(3)
$$\vdash A_x[t] \to (\exists x)(x = t \& A)$$
 (z PT a (2))

" ←"

$$(1) \vdash t_1 = s_1 \to t_2 = s_2 \to \cdots \to t_n = s_n \to (A[t_1, \dots, t_n] \leftrightarrow A[s_1, \dots, s_n]) \quad (VR)$$

$$(2) \quad \vdash x = t \to (A \leftrightarrow A_x[t]) \tag{z (1)}$$

$$(3) \vdash (x = t \& A) \to A_x[t] \tag{z (2)}$$

$$(4) \vdash (\exists x)(x = t \& A) \to A_x[t] \tag{PZ\exists}$$

V kroku (4) jsme využili předpokladu, ze kterého plyne, že x není volná v $A_x[t]$.

Příklady odjinud

1. Dokažte syntakticky v predikátové logice: $(\exists x)(\exists y)(P(x) \lor \neg P(y))$

Řešení:

(1)
$$\vdash (\forall x) P(x) \to P(x)_x [y]$$
 (AxS)

(2)
$$(\forall x)P(x) \vdash P(x)_x[y]$$
 (VD)

(3)
$$\vdash P(x)_x[y] \to (\exists x)P(x)$$
 (PS)

$$(4) \qquad \qquad \vdash (\forall x) P(x) \to (\exists x) P(x) \qquad ((2),(3) \text{ MP, VD})$$

(5)
$$\vdash (\exists x)P(x) \to (\exists y)P(x)_x[y]$$
 (VV)

(6)
$$\vdash (\forall x)P(x) \rightarrow (\exists y)P(y)$$
 ((4) VD + (5) MP, VD)

(7)
$$\vdash (\exists x)(P(x) \to (\exists y)P(y))$$
 (Prenex (iii))

(8)
$$\vdash (\exists x)(\exists y)(P(x) \to P(y))$$
 (Prenex (ii))

(9)
$$\vdash (\exists x)(\exists y)(\neg P(x) \lor P(y))$$
 (zkratky)

Reference

[1] DrSc. prof. RNDr. Petr Štěpánek. Skripta pro přednášku Výroková a predikátová logika (AIL023). Praha, 2000.

⁷Věta o rovnosti