

1. Case study: structured bond

 \checkmark Forward price (that refers to payment date t_p) has to be rescaled to first reset date t_r

$$F(t_r) = S \cdot exp\{[r(t_r) - d] \cdot TtM\}$$

Where S is the spot price, whereas dividend yield d is implied from forward value at t_p and spot interest rate $r(t_r)$ is given by discounting curve.

Dealing with Montecarlo methods, you should always produce a report with confidence intervals (at a selected p-value) and computational times!*

Premi	um in bp	s, ela	psed t	ime i	n second:
		IC-	IC+	IC	elapsed
NSim	Model				
1E+3	VG	222.4	273.6	51.2	0.2
	NIG	222.9	274.1	51.2	0.8
	BLACK	134.6	181.1	46.5	0.1
1E+4	VG	239.4	255.6	16.2	0.3
	NIG	240.0	256.2	16.2	1.1
	BLACK	140.8	155.3	14.5	0.0
1E+5	VG	245.7	250.8	5.1	0.6
	NIG	246.1	251.3	5.1	0.9
	BLACK	150.0	154.6	4.6	0.0
1E+6	VG	246.8	248.4	1.6	0.3
		247.3	248.9	1.6	0.6
	BLACK			1.5	0.2
1E+7		247.2		0.5	0.4
16+7					
		248.1	248.6	0.5	0.5
	BLACK			0.5	0.6
1E+8	VG	247.7	247.9	0.2	0.2
	NIG	248.8	249.0	0.2	0.4
	BLACK	153.7	153.9	0.1	9.1

Financial Engineering

Upfront empirical normal distribution changing Montecarlo number of samples (from left to right, Black, NIG and VG)

Considering option log-moneyness $x = \log \frac{F}{K}$, closed formula solution for digital call price dc(x), as an example for NIG or VG processes with parameters $\{\sigma, \eta, k\}$, are two-folds:

1. Given the return's characteristic function $\Phi_{\Delta t, \sigma, k, \eta}(\xi)$, $\{\xi \in \mathbb{C}, -1 \leq Im(\xi) \leq 0\}$

$$dc(x) = B(t_0, t) \cdot e^{\frac{x}{2}} \int_{-\infty}^{\infty} \frac{d\xi}{2\pi} \cdot \frac{e^{-i \cdot x \cdot \xi}}{\frac{1}{2} - i \cdot \xi} \cdot \Phi_{\Delta t, \sigma, k, \eta} \left(-\xi - \frac{i}{2} \right)$$

2. Given the return's probability density $\mathcal{P}(G; k, \Delta t)$ and Laplace exponent $\log \mathcal{L}_{\Delta t, \sigma, k}[\eta]$

$$dc(x) = B(t_0, t) \cdot \int_0^\infty dG \cdot \mathcal{P}(G; k, \Delta t) \cdot N\left(\frac{x - \eta \Delta t \sigma^2 G - \log \mathcal{L}_{\Delta t, \sigma, k}[\eta]}{\sqrt{\Delta t \sigma^2 G}} - \frac{1}{2} \sqrt{\Delta t \sigma^2 G}\right)$$

Considering option log-moneyness $x = \log \frac{F}{K}$, digital call price dc(x), with Black correction

$$dc_{BLACK_corr} = N(d2) - \frac{\partial \sigma}{\partial K} Vega = \lim_{\epsilon \to 0} (c_{BLACK}(K) - c_{BLACK}(K + \epsilon)) / \epsilon$$

If your calibration works: $dc_{BLACK\ corr} \sim dc_{NIG}$

If your calibration works for the two years certificate: $X_{BLACK\ corr} = X_{NIG}$

The same does not hold for the three year case because you cannot write it in terms of digital options.

Bermudan Swaption Price 10y-NC-2y 5% strike (atm 4.61%)

Time Steps = 100

Model	Price [bps]
Upper Bound	886.5
Trinomial Tree	218.0
Lower Bound	148.0
Jamshidian 2Y-8Y	81.8
Jamshidian 3Y-7Y	120.3
Jamshidian 4Y-6Y	142.3
Jamshidian 5Y-5Y	148.0
Jamshidian 6Y-4Y	140.1
Jamshidian 7Y-3Y	119.2
Jamshidian 8Y-2Y	87.5
Jamshidian 9Y-1Y	47.3

