10. Вероятностное пространство - отображения из k элементного множества в nэлементное (каждому из k человек сопоставим один из n вагонов). Таких отображений $n^k\Rightarrow$ всего исходов n^k . Выберем r вагонов, в которые будем сажать людей, сделать это можно C_n^r способами. Нам необходимо отображение, в котором у каждого из rвыбранных вагонов будет непустой прообраз \Rightarrow наше отображение сюръективно. Число сюръекций из k элементного множества в r элементное =

$$\sum_{s=0}^r (-1)^s \cdot C_r^s \cdot (r-s)^k$$
. Итоговый ответ - $rac{C_n^r \cdot \sum_{s=0}^r (-1)^s \cdot C_r^s \cdot (r-s)^k}{n^k}$.

- 10 (а). Вероятностное пространство двоичные слова длины N (1 на i-ой позиции соответствует белому шару, вытащенному из i-ой коробки, 0 - черному). Переберем все 4исхода:

$$P$$
(Белый) = $P(11) + P(01)$ = $\frac{a^2 + ab + a}{(a+b)(a+b+1)} = \frac{a}{a+b}$

- 10 (б). Докажем что P(Белый) = $\frac{a}{a+b}$. Воспользуемся математической индукцией.
 - \circ База N = 1 очевидно.
 - \circ Пусть для n-1 корзины верно, переберем все 4 исхода:

...11: Вероятность -
$$\frac{a}{a+b}$$
 · $\frac{a+1}{a+b+1}$.
...10: Вероятность - $\frac{a}{a+b}$ · $\frac{b}{a+b+1}$.
...01: Вероятность - $\frac{b}{a+b}$ · $\frac{a}{a+b+1}$.
...00: Вероятность - $\frac{b}{a+b}$ · $\frac{b+1}{a+b+1}$.
Р(Белый) = $P(\dots 11) + P(\dots 01) = \frac{a^2+ab+a}{(a+b)(a+b+1)} = \frac{a}{a+b}$.

- 11) Примечание: [q] целая часть от q.
 - $\circ P(A) = \frac{\left\lfloor \frac{n}{2} \right\rfloor}{n}$
 - $P(B) = \frac{\left[\frac{n}{5}\right]}{n}.$
 - $\circ \ P(A|B) = \frac{[\frac{n}{10}]}{n}$
 - $\circ~$ Чтобы A и B были независимы, необходимо, чтобы $P(A|B) = P(A) \cdot P(B) \Rightarrow$ выполнялось равенство $\frac{\left[\frac{n}{2}\right]}{n}\cdot\frac{\left[\frac{n}{5}\right]}{n}=\frac{\left[\frac{n}{10}\right]}{n}$
 - \circ Переберем все остатки от деления n на 10, равенство выполняется для $n \in [1;4] \Rightarrow n = [1+10k, \dots, 4+10k], k \in \mathbb{Z}$ входит в ответ.
 - \circ Также рассмотрим случай $n=10k, k\in\mathbb{Z}$, так как для него в равенстве появляется неопределённость.
 - $\circ \ \ P(A)=rac{1}{2}$, $P(B)=rac{1}{5}$, $P(A|B)=rac{1}{10}\Rightarrow n=10k, k\in\mathbb{Z}$ также входит в ответ.

Ответ: A и B независимы при $n=[10k,\ldots 4+10k], k\in\mathbb{Z}.$