

Counting Induced Subgraphs: An Algebraic Approach to #W[1]-Hardness

Julian Dörfler (SIC, Saarbrücken), Marc Roth (MMCI, SIC, Saarbrücken), Johannes Schmitt (ETH Zürich), and **Philip Wellnitz** (MPII, SIC, Saarbrücken)

Given ...,

Exists ...

How fast can we solve problem Π ?

Given ...,

Exists ...

How fast can we solve problem Π ?

Ρ

Given ...,

Exists ...

How fast can we solve problem Π ?

Ρ

not faster than

SAT, CLIQUE, ...

NP-hard

Given ...,

Exists ...

What can we do about an **NP-hard** problem Π ?

Problem Π Parameter k

Given ... Exists ...

How fast can we solve **NP-hard** problem Π parametrized in k?

(nice)

FPT

Problem Π Parameter k

Given ... Exists ...

How fast can we solve **NP-hard** problem Π parametrized in k?

not faster than

W[1]-hard

Problem $\#\Pi$ Parameter kGiven . . .

Count ...

How fast can we solve problem $\#\Pi$ parametrized in k?

FPT

not faster than

#K-CLIQUE

#W[1]-hard

Counting Induced Subgraphs

#INDSUB Parameter: |V(H)|

Given graphs H and G, how often does H appear as an induced subgraph in G?

Counting Induced Subgraphs

#INDSUB Parameter: |V(H)|

Given graphs H and G, how often does H appear as an induced subgraph in G?

#INDSUB(Φ) Parameter: k

Given graph G, how many induced subgraphs of G with k vertices satisfy Φ ?

G

Parameter: k

Counting Induced Subgraphs with Property Φ

#INDSUB(Ф)

Given graph G, how many induced subgraphs of G with k vertices satisfy Φ ?

#INDSUB(Φ) Parameter: k Given graph G, how many induced subgraphs of G with k vertices satisfy Φ ?

$$\Phi = \text{bipartite}$$

$$k = 4$$

$$\# IndSub(\Phi, k \to G) = \underbrace{\# IndSub(\Box \to G)}_{} + \# IndSub(\Box \to G) + \cdots$$

G

#INDSUB(Φ)

Parameter: *k*

Given graph G, how many induced subgraphs of G with k vertices satisfy Φ ?

$$\begin{cases}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{cases}$$

$$\Phi = \text{bipartite}$$

$$\Phi = bipartite$$

$$k = 4$$

$$\#IndSub(\Phi, k \to G) = \#IndSub(\square \to G) + \#IndSub(\square \to G) + \cdots$$

#INDSUB(Φ)

Parameter: k

Given graph G, how many induced subgraphs of G with k vertices satisfy Φ ?

$$\Phi = \text{bipartite}$$

$$k = 4$$

$$\#\mathsf{IndSub}(\Phi, k \to G) = \underbrace{\#\mathsf{IndSub}(\square \to G)}_{1} + \underbrace{\#\mathsf{IndSub}(\square \to G)}_{2} = 3$$

#INDSUB(Φ)

Parameter: k

Given graph G, how many induced subgraphs of G with k vertices satisfy Φ ?

$$\Phi = \text{bipartite}$$
 $k = 4$

$$\#\mathsf{IndSub}(\Phi,k\to \mathit{G}) = \sum \,\#\mathsf{IndSub}(H\to \mathit{G})$$

 $H \in \Phi_k$

#INDSUB(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# IndSub(H \to G)$.

$$\Phi_k := \left\{ \begin{array}{c|ccc} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \end{array} \right\}$$

$$\Phi = \text{bipartite}$$
 $k = 4$

$$\#\mathsf{IndSub}(\Phi,k o G) = \sum_{H\in\Phi_k} \#\mathsf{IndSub}(H o G)$$

#INDSUB(Φ) Parameter: k Given graph G, compute $\sum_{H \in \Phi_k} \#IndSub(H \to G)$.

- #W[1]-hard if
 - $-\Phi = connectivity [Jerrum, Meeks '15]$
 - − Φ includes "low edge-densities" [Jerrum, Meeks '15]
 - $-\Phi$ is "co-monotone" and (edge-)minimal elements have high treewidth [Meeks '16]
 - $\Phi=$ # of edges is odd/even [Jerrum, Meeks '17]
- Either FPT or #W[1]-hard for every Φ [Curticapean, Dell, Marx '17]

#INDSUB(Φ **)** Parameter: k Given graph G, compute $\sum_{H \in \Phi_k} \# IndSub(H \to G)$.

- #W[1]-hard if
 - $-\Phi = connectivity [Jerrum, Meeks '15]$
 - − Φ includes "low edge-densities" [Jerrum, Meeks '15]
 - $-\Phi$ is "co-monotone" and (edge-)minimal elements have high treewidth [Meeks '16]
 - $\Phi=$ # of edges is odd/even [Jerrum, Meeks '17]
- Either FPT or #W[1]-hard for every Φ [Curticapean, Dell, Marx '17]

#INDSUB(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# IndSub(H \to G)$.

■ Either FPT or #W[1]-hard for every Φ [Curticapean, Dell, Marx '17]: For any k and any property Φ , there is a function $a_{\Phi,k}$ (with finite support) satisfying for any graph G

$$\sum_{H\in\Phi_k} ext{\#IndSub}(H o extit{G}) = \sum_F extit{a}_{\Phi,k}(F) \cdot ext{\#Hom}(F o extit{G})$$

#INDSUB(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# IndSub(H \to G)$.

■ Either FPT or #W[1]-hard for every Φ [Curticapean, Dell, Marx '17]: For any k and any property Φ , there is a function $a_{\Phi,k}$ (with finite support) satisfying for any graph G

$$\sum_{H\in\Phi_k}$$
 #IndSub $(H o G)=\sum_F a_{\Phi,k}(F)\cdot$ #Hom $(F o G)$

Theorem [CDM'17] (simplified)

Computing $\sum_F a_{\Phi,k}(F) \cdot \#\text{Hom}(F \to G)$ is FPT if every graph F with $a_{\Phi,k} \neq 0$ has bounded treewidth; and #W[1]-hard otherwise.

#INDSUB(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# \text{IndSub}(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$.

Theorem [CDM'17] (simplified)

Computing $\sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$ is FPT if every graph F with $a_{\Phi,k} \neq 0$ has "small" treewidth; and # W[1]-hard otherwise.

#INDSUB(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# \text{IndSub}(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$.

Theorem [CDM'17] (simplified)

Computing $\sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$ is FPT if every graph F with $a_{\Phi,k} \neq 0$ has "small" treewidth; and # W[1]-hard otherwise.

For which properties Φ does the support supp($a_{\Phi,k}$) contain graphs of "large" treewidth?

#INDSUB(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# \text{IndSub}(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$.

Theorem [CDM'17] (simplified)

Computing $\sum_F a_{\Phi,k}(F) \cdot \#\text{Hom}(F \to G)$ is FPT if every graph F with $a_{\Phi,k} \neq 0$ has "small" treewidth; and #W[1]-hard otherwise.

For which properties Φ does the support supp($a_{\Phi,k}$) contain the clique C_k ?

#INDSUB(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# \text{IndSub}(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$.

Theorem [CDM'17] (simplified)

Computing $\sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$ is FPT if every graph F with $a_{\Phi,k} \neq 0$ has "small" treewidth; and # W[1]-hard otherwise.

For which properties Φ does the support supp($a_{\Phi,k}$) contain the clique C_k ?

 \rightsquigarrow Topological interpretation of $a_{\Phi,k}(C_k)$ possible [Roth, Schmitt '18]

#INDSUB(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# \text{IndSub}(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$.

Theorem [CDM'17] (simplified)

Computing $\sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$ is FPT if every graph F with $a_{\Phi,k} \neq 0$ has "small" treewidth; and # W[1]-hard otherwise.

For which properties Φ does the support supp($a_{\Phi,k}$) contain the biclique $C_{k,k}$?

#INDSUB(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# \text{IndSub}(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$.

Theorem [CDM'17] (simplified)

Computing $\sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$ is FPT if every graph F with $a_{\Phi,k} \neq 0$ has "small" treewidth; and # W[1]-hard otherwise.

For which properties Φ does the support supp $(a_{\Phi,k})$ contain the biclique $C_{k,k}$?

 \rightsquigarrow Algebraic interpretation of $a_{\Phi,k}(C_{k,k})$ possible [This work]

Main Result

#INDSUB(Φ) Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# \text{IndSub}(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$.

For which properties Φ does the support supp($a_{\Phi,k}$) contain the biclique $C_{k,k}$?

 \rightsquigarrow Algebraic interpretation of $a_{\Phi,k}(C_{k,k})$ possible [This work]:

Theorem (special case)

For Φ that is **non-trivial on bipartite graphs** and **closed under taking subgraphs**, #IndSub(Φ) is #W[1]-hard and cannot be solved in time $f(k) \cdot |V(G)|^{o(k)}$ (under ETH).

#INDSUB(Φ) Parameter: k

#INDSUB(Φ)

Parameter: k

 $C_{t,t}$ is edge-transitive

#INDSUB(Φ)

Parameter: k

 $C_{t,t}$ is edge-transitive

Can map any edge to any other edge via automorphism

#INDSUB(Φ)

Parameter: k

 $C_{t,t}$ is edge-transitive

Can map any edge to any other edge via automorphism

#INDSUB(Φ)

Parameter: k

 $C_{t,t}$ is edge-transitive

Can map any edge to any other edge via automorphism

#INDSUB(Φ)

Parameter: k

 $C_{t,t}$ is edge-transitive

Can map any edge to any other edge via automorphism

2t vertices; t^2 edges

#INDSUB(Φ)

Basic Definitions and General Overview

Parameter: k

 C_{p^c,p^c} is edge-transitive Can map any edge to any other edge via automorphism

 C_{p^c,p^c} $2p^c$ vertices; p^{2c} edges

#INDSUB(Φ) Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# \text{IndSub}(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$.

Using colored variants of the problems, we obtain:

Lemma

For the biclique $C_{t,t}$, we have

$$a_{\Phi,k}(C_{t,t}) = \sum_{S \subseteq E(C_{t,t})} \Phi(C_{t,t}[S]) \cdot (-1)^{\#E(C_{t,t}) - \#S}$$

Why Bicliques?

#INDSUB(Φ)

Parameter: k

Given graph
$$G$$
, compute $\sum_{H \in \Phi_k} \# \text{IndSub}(H \to G) = \sum_F a_{\Phi, K}(F) \cdot \# \text{Hom}(F \to G)$.

Using colored variants of the problems, we obtain:

Lemma

For the biclique $C_{t,t}$, we have

$$a_{\Phi,k}(C_{t,t}) = \sum_{S \subseteq E(C_{t,t})} \Phi(C_{t,t}[S]) \cdot (-1)^{\#E(C_{t,t}) - \#S} = \tilde{\chi}(\Phi, C_{t,t}) \cdot (-1)^{\#E(C_{t,t})}$$

Why Bicliques?

#INDSUB(Φ) Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# \text{IndSub}(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$.

Using colored variants of the problems, we obtain:

Lemma [Rivest, Vuillemin '76/'77]

For the biclique $C_{t,t}$, where $t = p^c$ is a prime power, the alternating enumerator $\tilde{\chi}(\Phi, C_{t,t})$ of Φ and $C_{t,t}$ satisfies

$$|a_{\Phi,k}(C_{t,t})| = |\tilde{\chi}(\Phi, C_{t,t})| \equiv |\Phi(C_{t,t}[\emptyset]) - \Phi(C_{t,t})| \pmod{p}$$

Main Results

#INDSUB(Φ) Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# IndSub(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# Hom(F \to G)$.

Main Theorem

For all properties Φ where $\mathcal{K} := \{\Phi(C_{t,t}[\emptyset]) \neq \Phi(C_{t,t}) \mid t = p^c\}$ is infinite, the problem $\#IndSub(\Phi)$ is #W[1]-hard.

If K is dense, $\#IndSub(\Phi)$ cannot be solved in time $f(k) \cdot |V(G)|^{o(k)}$ (under ETH).

Main Results

#INDSUB(Φ) Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# IndSub(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# IndSub(F \to G)$.

Main Theorem

For all properties Φ where $\mathcal{K} := \{\Phi(C_{t,t}[\emptyset]) \neq \Phi(C_{t,t}) \mid t = p^c\}$ is infinite, the problem $\#IndSub(\Phi)$ is #W[1]-hard.

If K is dense, $\#IndSub(\Phi)$ cannot be solved in time $f(k) \cdot |V(G)|^{o(k)}$ (under ETH).

Corollary

For Φ that is **non-trivial on bipartite graphs** and **closed under taking subgraphs**, #IndSub(Φ) is #W[1]-hard and cannot be solved in time $f(k) \cdot |V(G)|^{o(k)}$ (under ETH).

#INDSUB(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# IndSub(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# IndSub(F \to G)$.

Main Theorem

For all properties Φ where $\mathcal{K} := \{\Phi(C_{t,t}[\emptyset]) \neq \Phi(C_{t,t}) \mid t = p^c\}$ is infinite, the problem $\#IndSub(\Phi)$ is #W[1]-hard.

If K is dense, $\#IndSub(\Phi)$ cannot be solved in time $f(k) \cdot |V(G)|^{o(k)}$ (under ETH).

#IndSub(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# \text{IndSub}(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# \text{Hom}(F \to G)$.

Main Theorem

For all properties Φ where $\mathcal{K} := \{\Phi(C_t, t[\emptyset]) \neq \Phi(C_t, t) \mid t = p^c\}$ is infinite, the problem $\#IndSub(\Phi)$ is #W[1]-hard.

If K is dense, #IndSub(Φ) cannot be solved in time $f(k) \cdot |V(G)|^{o(k)}$ (under ETH).

Corollary

For the property Φ = Eulerian, the problem #IndSub(Φ) is #W[1]-hard and cannot be solved in time $f(k) \cdot |V(G)|^{o(k)}$ (under ETH).

#INDSUB(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# IndSub(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# IndSub(F \to G)$.

Main Theorem

For all properties Φ where $\mathcal{K} := \{\Phi(C_{t,t}[\emptyset]) \neq \Phi(C_{t,t}) \mid t = p^c\}$ is infinite, the problem $\#IndSub(\Phi)$ is #W[1]-hard.

If K is dense, $\#IndSub(\Phi)$ cannot be solved in time $f(k) \cdot |V(G)|^{o(k)}$ (under ETH).

Corollary

For the property $\Phi = \text{Eulerian}$, the problem #IndSub(Φ) is #W[1]-hard and cannot be solved in time $f(k) \cdot |V(G)|^{o(k)}$ (under ETH).

■ Every graph $C_{t,t}$ for $t = 2^c$ has an Euler cycle; disconnected graphs do not.

#INDSUB(Φ)

Parameter: k

Given graph G, compute $\sum_{H \in \Phi_k} \# IndSub(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \# IndSub(F \to G)$.

Main Theorem

For all properties Φ where $\mathcal{K} := \{\Phi(C_{t,t}[\emptyset]) \neq \Phi(C_{t,t}) \mid t = p^c\}$ is infinite, the problem $\#IndSub(\Phi)$ is #W[1]-hard.

If K is dense, $\#IndSub(\Phi)$ cannot be solved in time $f(k) \cdot |V(G)|^{o(k)}$ (under ETH).

Corollary

For any of the properties $\Phi \in \{\text{disconnected}, \text{planar}, \text{non-hamiltonian}\}$, the problem $\#\text{IndSub}(\Phi)$ **restricted to bipartite input graphs** is #W[1]-hard and cannot be solved in time $f(k) \cdot |V(G)|^{o(k)}$ (under ETH).

Open Problems

Corollary

For Φ that is **non-trivial on bipartite graphs** and **closed under taking subgraphs**, #IndSub(Φ) is #W[1]-hard and cannot be solved in time $f(k) \cdot |V(G)|^{o(k)}$ (under ETH).

- What about properties on general graphs?
 - → Also #W[1]-hard?
- What about properties that are not closed under taking subgraphs?
 - → Also #W[1]-hard?

Are there other edge-transitive graphs that have a prime power number of edges?

Are there other edge-transitive graphs that have a prime power number of edges?

There are, but not many.

- bipartite, or
- vertex-transitive and a subgraph of W_t , where $t = p^{c'}$.

- bipartite, or
- vertex-transitive and a subgraph of W_t , where $t = p^{c'}$.

- bipartite, or
- vertex-transitive and a subgraph of W_t , where $t = p^{c'}$.

- bipartite, or
- vertex-transitive and a subgraph of W_t , where $t = p^{c'}$.

Colorful Graphs

C-Colored Graph

A graph G is C-colored, if there is a homomorphism from G to C.

Colorful Graphs

C-Colored Graph

A graph G is C-colored, if there is a homomorphism from G to C.

Colorful Problems

C-Colored Graph

A graph G is C-colored, if there is a homomorphism from G to C.

#CP-INDSUB(Φ)

Parameter: k = |V(C)|

Theorem

#CP-INDSUB(
$$\Phi$$
) $\preccurlyeq_{\text{fot}}^{T}$ #INDSUB(Φ)

■ Given C-colored graph G and oracle for #INDSUB $(\Phi, |V(C)| \to \star)$

$$\mathsf{cp\text{-}IndSub}(\Phi \to G) = \left\{ S \subseteq \binom{V(G)}{|V(C)|} \middle| c(S) = [|V(C)|] \land \Phi(G[S]) = 1 \right\}$$

Inclusion-Exclusion finishes the proof $(G_J: delete all colors J from G):$

$$\#\text{cp-IndSub}(\Phi \to G) = \sum_{J \subset [IV(G)]} (-1)^{\#J} \cdot \#\text{IndSub}(\Phi, k \to G_J)$$

Theorem

#CP-INDSUB(Φ)
$$\preccurlyeq_{fpt}^{T}$$
 #INDSUB(Φ)

- Given C-colored graph G and oracle for #INDSUB $(\Phi, |V(C)| \to \star)$
- May assume: Every color of C appears in G

$$\mathsf{cp\text{-}IndSub}(\Phi \to G) = \left\{ S \subseteq \begin{pmatrix} V(G) \\ |V(C)| \end{pmatrix} \middle| c(S) = [|V(C)|] \land \Phi(G[S]) = 1 \right\}$$

Inclusion-Exclusion finishes the proof (G_J) : delete all colors J from G):

$$\#\text{cp-IndSub}(\Phi \to G) = \sum_{J \subseteq [IV(G)]} (-1)^{\#J} \cdot \#\text{IndSub}(\Phi, k \to G_J)$$

Theorem

#CP-INDSUB(
$$\Phi$$
) $\preccurlyeq_{\text{fot}}^{T}$ #INDSUB(Φ)

- Given C-colored graph G and oracle for #INDSUB $(\Phi, |V(C)| \to \star)$
- May assume: Every color of C appears in G
- Split *G* according to color:

$$\mathsf{cp\text{-}IndSub}(\Phi \to G) = \left\{ S \subseteq \binom{V(G)}{|V(C)|} \middle| c(S) = [|V(C)|] \land \Phi(G[S]) = 1 \right\}$$

Inclusion-Exclusion finishes the proof (G_J) : delete all colors J from G): $\# \text{cp-IndSub}(\Phi \to G) = \sum_{J \subseteq \Pi(V(G))} (-1)^{\#J} \cdot \# \text{IndSub}(\Phi, k \to G_J)$

Theorem

#CP-INDSUB(
$$\Phi$$
) \preccurlyeq_{fot}^{T} #INDSUB(Φ)

- Given C-colored graph G and oracle for #INDSUB $(\Phi, |V(C)| \to \star)$
- May assume: Every color of C appears in G
- Split *G* according to color:

$$\mathsf{cp\text{-}IndSub}(\Phi \to G) = \left\{ S \subseteq \binom{V(G)}{|V(C)|} \;\middle|\; c(S) = [|V(C)|] \;\land\; \Phi(G[S]) = 1 \right\}$$

■ Inclusion-Exclusion finishes the proof (*G_J*: delete all colors *J* from *G*):

$$\#\text{cp-IndSub}(\Phi \to G) = \sum_{J \subseteq [|V(G)|]} (-1)^{\#J} \cdot \#\text{IndSub}(\Phi, k \to G_J)$$

#CP-INDSUB(Φ)

Parameter: k = |V(C)|

$$\sum_{H \in \Phi_k} \mathsf{\#cp\text{-}IndSub}(H \to G) = \sum_{\substack{H \\ |V(H)| = k}} \Phi(H) \cdot \mathsf{\#cp\text{-}IndSub}(H \to G)$$

#CP-INDSUB(Φ)

Parameter: k = |V(C)|

$$\sum_{H\in\Phi_k} \mathsf{\#cp\text{-}IndSub}(H\to G) = \sum_{S\subseteq E(C)} \Phi(C[S]) \cdot \mathsf{\#cp\text{-}IndSub}(C[S]\to G)$$

#CP-INDSUB(Φ)

Parameter: k = |V(C)|

$$\begin{split} \sum_{H \in \Phi_k} \text{\#cp-IndSub}(H \to G) &= \sum_{S \subseteq E(C)} \Phi(C[S]) \cdot \text{\#cp-IndSub}(C[S] \to G) \\ &= \sum_{S \subseteq E(C)} \Phi(C[S]) \cdot \sum_{J \subseteq E(C) \setminus S} (-1)^{\#J} \text{\#cp-Sub}(C[S \cup J] \to G) \end{split}$$

#CP-INDSUB(Φ)

Parameter: k = |V(C)|

$$\begin{split} \sum_{H \in \Phi_k} \text{\#cp-IndSub}(H \to G) &= \sum_{S \subseteq E(C)} \Phi(C[S]) \cdot \text{\#cp-IndSub}(C[S] \to G) \\ &= \sum_{S \subseteq E(C)} \Phi(C[S]) \cdot \sum_{J \subseteq E(C) \setminus S} (-1)^{\#J} \text{\#cp-Sub}(C[S \cup J] \to G) \\ &= \sum_{S \subseteq E(C)} \Phi(C[S]) \cdot \sum_{J \subseteq E(C) \setminus S} (-1)^{\#J} \text{\#cp-Hom}(C[S \cup J] \to G) \end{split}$$

#CP-INDSUB(Φ)

Parameter: k = |V(C)|

$$\begin{split} \sum_{H \in \Phi_k} \text{\#cp-IndSub}(H \to G) &= \sum_{S \subseteq E(C)} \Phi(C[S]) \cdot \text{\#cp-IndSub}(C[S] \to G) \\ &= \sum_{S \subseteq E(C)} \Phi(C[S]) \cdot \sum_{J \subseteq E(C) \setminus S} (-1)^{\#J} \text{\#cp-Sub}(C[S \cup J] \to G) \\ &= \sum_{S \subseteq E(C)} \Phi(C[S]) \cdot \sum_{J \subseteq E(C) \setminus S} (-1)^{\#J} \text{\#cp-Hom}(C[S \cup J] \to G) \\ &= \left(\sum_{S \subseteq E(C)} \Phi(C[S]) \cdot (-1)^{\#E(C) - \#S}\right) \text{\#cp-Hom}(C \to G) + \cdots \end{split}$$

#CP-INDSUB(Φ)

Parameter: k = |V(C)|

$$\begin{split} \sum_{H \in \Phi_k} \text{\#cp-IndSub}(H \to G) &= \sum_{S \subseteq E(C)} \Phi(C[S]) \cdot \text{\#cp-IndSub}(C[S] \to G) \\ &= \sum_{S \subseteq E(C)} \Phi(C[S]) \cdot \sum_{J \subseteq E(C) \setminus S} (-1)^{\#J} \text{\#cp-Sub}(C[S \cup J] \to G) \\ &= \sum_{S \subseteq E(C)} \Phi(C[S]) \cdot \sum_{J \subseteq E(C) \setminus S} (-1)^{\#J} \text{\#cp-Hom}(C[S \cup J] \to G) \\ &= \left(\sum_{S \subseteq E(C)} \Phi(C[S]) \cdot (-1)^{\#E(C) - \#S}\right) \text{\#cp-Hom}(C \to G) + \cdots \\ &= \left(\tilde{\chi}(\Phi, C) \cdot (-1)^{\#E(C)}\right) \text{\#cp-Hom}(C \to G) + \cdots \end{split}$$

#CP-INDSUB(Φ)

Parameter: k = |V(C)|

Given C-colored graph G, compute $\sum_{H \in \Phi_k} \text{#cp-IndSub}(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \text{#cp-Hom}(F \to G)$.

$$\sum_{H \in \Phi_k} \text{\#cp-IndSub}(H \to G) = \left(\sum_{S \subseteq E(C)} \Phi(C[S]) \cdot (-1)^{\#E(C) - \#S}\right) \text{\#cp-Hom}(C \to G) + \cdots$$
$$= \left(\tilde{\chi}(\Phi, C) \cdot (-1)^{\#E(C)}\right) \text{\#cp-Hom}(C \to G) + \cdots$$

Observation

For C-colored graph G, we have

$$|a_{\Phi,k}(C)| = |\tilde{\chi}(\Phi,C)|.$$

#CP-INDSUB(Φ)

Parameter: k = 2t

Given $C_{t,t}$ -colored graph G, compute $\sum_{H \in \Phi_k} \text{#cp-IndSub}(H \to G) = \sum_F a_{\Phi,k}(F) \cdot \text{#cp-Hom}(F \to G)$

$$\sum_{H \in \Phi_k} \text{\#cp-IndSub}(H \to G) = \left(\sum_{S \subseteq E(C)} \Phi(C[S]) \cdot (-1)^{\#E(C) - \#S}\right) \text{\#cp-Hom}(C \to G) + \cdots$$
$$= \left(\tilde{\chi}(\Phi, C) \cdot (-1)^{\#E(C)}\right) \text{\#cp-Hom}(C \to G) + \cdots$$

Lemma [Rivest, Vuillemin '76/'77]

For the biclique $C_{t,t}$, where $t = p^c$ is a prime power, the alternating enumerator $\tilde{\chi}(\Phi, C_{t,t})$ of Φ and $C_{t,t}$ satisfies

$$|a_{\Phi,k}(C_{t,t})| = |\tilde{\chi}(\Phi, C_{t,t})| \equiv |\Phi(C[\emptyset]) - \Phi(C)| \pmod{p}.$$

Removing Colors

Theorem

 $\#HOM(\mathcal{H}) \preccurlyeq_{fot}^{\mathcal{T}} \#CP-HOM(\mathcal{H})$

- Fix a graph H. Given graph G and oracle for $\#CP-HOM(H \to \star)$
- Compute: $\#Hom(H \rightarrow G)$

Removing Colors

Theorem

 $\#HOM(\mathcal{H}) \preccurlyeq^{\mathcal{T}}_{fpt} \#CP\text{-}HOM(\mathcal{H})$

- Fix a graph H. Given graph G and oracle for $\#CP-HOM(H \to \star)$
- Compute: $\#Hom(H \rightarrow G)$
- Create k = |V(H)| copies of $G \rightsquigarrow V_1, \ldots, V_k$

Removing Colors

Theorem

 $\#HOM(\mathcal{H}) \preccurlyeq^{\mathcal{T}}_{fpt} \#CP\text{-}HOM(\mathcal{H})$

- Fix a graph H. Given graph G and oracle for $\#CP-HOM(H \to \star)$
- Compute: $\#Hom(H \rightarrow G)$
- Create k = |V(H)| copies of $G \rightsquigarrow V_1, \ldots, V_k$
- Connect $u \in V_i$ to $v \in V_j$ if $\{u, v\} \in E$ and $\{i, j\} \in H$

Main Result, again

Main Theorem

For property Φ , define $\mathcal{K} := \{\Phi(C_{t,t}[\emptyset]) \neq \Phi(C_{t,t}) \mid t = p^c\}$. We have

 $\#\mathsf{HOM}(\mathcal{K}) \preccurlyeq^{\mathcal{T}}_{\mathsf{fpt}} \#\mathsf{CP}\text{-}\mathsf{HOM}(\mathcal{K}) \preccurlyeq^{\mathcal{T}}_{\mathsf{fpt}} \#\mathsf{CP}\text{-}\mathsf{INDSUB}(\Phi) \preccurlyeq^{\mathcal{T}}_{\mathsf{fpt}} \#\mathsf{INDSUB}(\Phi).$

Main Result, again

Main Theorem

For property Φ , define $\mathcal{K} := \{\Phi(C_{t,t}[\emptyset]) \neq \Phi(C_{t,t}) \mid t = p^c\}$. We have

$$\#\mathsf{HOM}(\mathcal{K}) \preccurlyeq^{\mathcal{T}}_{\mathsf{fpt}} \#\mathsf{CP}\mathsf{-HOM}(\mathcal{K}) \preccurlyeq^{\mathcal{T}}_{\mathsf{fpt}} \#\mathsf{CP}\mathsf{-INDSUB}(\Phi) \preccurlyeq^{\mathcal{T}}_{\mathsf{fpt}} \#\mathsf{INDSUB}(\Phi).$$

Corollary

#INDSUB(Φ) is #W[1]-hard whenever \mathcal{K} has unbounded treewidth.

Navigation

```
Start
#IndSub
          #IndSub(Φ)
Known Results
                  Known Results: CDM
Main Result (simple)
                        Why Bicliques?
                                            Technical Contribution
                                                                      Main Result
                                                                                      Main Result, reduction
Application: Eulerian Subgraphs | Application: Restriction to Bipartite Inputs
Open Problem
Edge-Trans Start
                     Edge-Trans Picture
Colored Graphs
                                        \#CP-INDSUB(\Phi) \leq_{fot}^{T} \#INDSUB(\Phi)
                    #CP-INDSUB(Φ)
Using Colors (1)
                    Using Colors (2)
                                         \#Hom(\mathcal{H}) \leq_{fot}^{T} \#Hom(\mathcal{H})
End
```


