DELHI PUBLIC SCHOOL KAMPTEE ROAD,NAGPUR

SUBMITTED BY	MARUVAPALLI MANOJ
CLASS	12 [™] 'A'
TOPIC	PRACTICAL FILE
SUBMITTED TO	MR CHANDRASHAKER
	UPRADE

CERTIFICATE

This is to certify that Maruvapalli Manoj, a student of class 12th 'A' has successfully completed the project on the topic of Python Interface with SQL databases under the guidance of Mr Chandrashaker Uprade during session 2019-20 at Delhi Public school, Kamptee Road, Nagpur

Signature of External Examiner

Signature of Computer Science Teacher

ACKNOWLEDGEMENT

I place my sincere thanks to my computer science teacher Mr Chandrashaker Uprade for his guidance and advices to complete my work succesfully.

I also thank our principal Mrs Ritu Sharma for providing me all the facilities to finish the project on time.

Last but not least I thank my parents for their encouragement and support in my humble venture.

Index

1.PYTHON	6
2.MYSOL	42

PYTHON

Program to check weather a number is prime or not.

```
x=int(input("Enter a number:"))
y=int(x/2)+1
for i in range (2,y):
    rem=x%i
    if rem==0:
        print("Number",x,"is not a prime number.")
        break
else:
    print("Number",x,"is a prime number.")
```

```
Enter a number:59
Number 59 is a prime number.
```

Program to check a number is palindrome or not.

```
def cekpal(n):
  num=n
  d=0
  rev=0
  while n>0:
     d=n%10
     n=int(n/10)
     rev=int(rev*10+d)
  if(num==rev):
     return True
  else:
     return False
#__main__
n=int(input("Enter a number:"))
if cekpal(n):
  print(n,"is a palindrome")
else:
  print(n,"is a not palindrome")
```

OUTPUT:

Enter a number:123454321 123454321 is a palindrome #Program to calculate compound interest.

```
def compint(p,r,n):
    m=n
    x=p*(1+r/100)**(n)
    return x

p=float(input("Enter the principal amount:"))

r=float(input("Enter the rate of intrest:"))

n=float(input("Enter the number of years:"))

x=compint(p,r,n)

print("The amount after",n,"years is",x,"rupees.")
```

```
Enter the principal amount:6250
Enter the rate of intrest:8
Enter the number of years:2
The amount after 2.0 years is 7290.00000000001 rupees.
```

Program to display ASCII code of a character and vice versa.

```
def asc(a):
  print([ord(c) for c in a])
  def asc_val(a):
  char=[chr(ascii) for ascii in a]
  ".join(char)
  print(char)
#__main__
print("Enter '1' for converting string in ascii code")
print("Enter '2' for converting ascii code in string")
x=int(input("Enter your choice:"))
if x==1:
  n=input("Enter your character:")
  asc(n)
elif x==2:
  n=eval(input("Enter your ASCII value:"))
  asc_val(n)
else:
  print("You have entered a in valid choice")
```

```
Enter '1' for converting string in ascii code
Enter '2' for converting ascii code in string
Enter your choice:2
Enter your ASCII value:[11,22,33,44,55,66,77,8,8,8,9,9,0,128]
['\x0b', '\x16', '!', ',', '7', 'B', 'M', '\x08', '\x08', '\x08', '\x08', '\x', '\t', '\x00', '\x80']
```

Program to input a character and print weather a given character is an alphabet, digit or any other character.

```
ch = input("Please Enter Your Own Character : ")
if((ch >= 'a' and ch <= 'z') or (ch >= 'A' and ch <= 'Z')):
    print("The Given Character ", ch, "is an Alphabet")
elif(ch >= '0' and ch <= '9'):
    print("The Given Character ", ch, "is a Digit")
else:
    print("The Given Character ", ch, "is Not an Alphabet or a Digit")</pre>
```

OUTPUT:

Please Enter Your Own Character : 55 The Given Character 55 is a Digit # Program to calculate the factorial of an integer using recursion.

```
def factorial(n):
    if n == 1:
        return n
    else:
        return n*factorial(n-1)
num = int(input("Enter a number: "))
if num < 0:
    print("Sorry, factorial does not exist for negative numbers")
elif num == 0:
    print("The factorial of 0 is 1")
else:
    print("The factorial of",num,"is",factorial(num))</pre>
```

```
Enter a number: 5
The factorial of 5 is 120
```

Program to print Fibonacci series using recursion.

```
def fib(n):
    if n==1:
        return 0
    elif n==2:
        return 1
    else:
        return fib(n-1)+fib(n-2)
#__main__
n=int(input("Enter the last term required:"))
for i in range(1,n+1):
    print(fib(i),end=',')
print ("...")
```

```
Enter the last term required:8 0,1,1,2,3,5,8,13,...
```

Program for binary search.

```
def binarysearch(ar,key):
  low=0
  high=len(ar)-1
  while low<=high:
     mid=int((low+high)/2)
     if key==ar[mid]:
        return mid
     elif key<ar[mid]:
        high=mid-1
     else:
        low=mid+1
  else:
     return-999
#__main__
ar=eval(input("Enter a list of integers:" ))
item=int(input("Enter search item:"))
res=binarysearch(ar,item)
if res >= 0:
  print(item, "found at index", res, ".")
else:
  print("Sorry",item,"not found in array.")
```

OUTPUT:

Enter a list of integers:[12,15,21,25,28,32,33,36,43,45] Enter search item:32 32 found at index 5 . #Program to find weather a string is palindrome or not using recursion.

```
def par(s):
    if len(s) < 1:
        return True
    else:
        if s[0] == s[-1]:
            return par(s[1:-1])
        else:
            return False
a=str(input("Enter string:"))
if (par(a)==True):
    print("String is a palindrome")
else:
    print("String isn't a palindrome")</pre>
```

```
Enter string:mam
String is a palindrome
```

#Program to count the number of vowels present in a text file.

```
file1=open("D:\\mytext.txt","r")
str1=file1.read()
vowel_count=0
for i in str1:
    if(i=='A' or i=='a' or i=='E' or i=='e' or i=='I' or i=='i'or i=='O' or i=='o' or i=='U'or i=='u'):
        vowel_count+=1
print("The number of vowels in the text file :",vowel_count)
file1.close()
```

OUTPUT:

The number of vowels in the text file: 1635

#Program to write those lines which have the character 'p' from one text file to another text file.

```
fn=open("D:\\mytext.txt","r")
fn1=open("D:\\mytext1.txt","w")
count=fn.read()
type(count)
for i in range (0,len(count)):
    if count[i]=='p':
        fn1.write(count[i])
    else:
        pass
fn1.close
fn1=open("D:\\mytext1.txt","r")
count1=fn1.read()
print(count1)
fn.close
fn1.close
```

#Program to count number of words in a file.

```
num_words=0
with open("D:\\mytext.txt","r") as f:
  for line in f:
    words=line.split()
    num_words+=len(words)
print("Number of words:",num_words)
```

OUTPUT:

Number of words: 11

#Program to calculate the value of sin(x) using its Taylor series expansion upto n terms.

```
import math
def cal_sin(n):
  accuracy=0.0001
  n=n*(3.142/180.0)
  x=n
  sinx=n
  sinval=math.sin(n)
  i=1
  while (True):
     denominator=2*i*(2*i+1)
     x=-x*n*n/denominator
     sinx=sinx+x
     i=i+1
     if(accuracy<= abs(sinval-sinx)):</pre>
        break
  print(sinx)
n=int(input("Enter the angle:"))
cal_sin(n)
```

OUTPUT: Enter the angle:45 0.7047230747708333 **22 |** Page

#Program to generate random numbers between 1 to 6 and check whether the user has won a lottery or not.

```
import random
x=int(input("Enter a number :"))
a=int(random.randint(0,6))
print("The lottery number is",a)
if(x==a):
    print ("You WON!!!!")
else:
    print("YOU LOSE")
```

```
Enter a number :5
The lottery number is 5
You WON!!!!
```

#Program to plot a bar chart on to display the result of a school for five consecutive years.

```
import matplotlib.pyplot as plt
import numpy as np
objects = ('DPS', 'SPS', 'ZPS', 'PPS', 'SPS', 'LPS')
y = np.arange(len(objects))
performance = [10,8,6,5,6,10]
plt.bar(y, performance, align='center', alpha=0.5)
plt.xticks(y, objects)
plt.ylabel('Results')
plt.xlabel('Schools')
plt.title('Results Of Five Consecutive Years')
plt.show()
```


#Program to plot a graph for the function $y=x^2$.

```
import matplotlib.pyplot as plt
import numpy as np
x = np.arange( -10 , 10 )
y = np.square( x )
plt.plot( x , y )
plt.show()
```


#Program for linear search.

```
def linear_search(alist,key):
    for i in range (len(alist)):
        if alist==key:
            return True
    return False
alist=eval(input("enter the list of numbers:"))
key=str(input("The numbd=er to search for:"))
index=linear_search(alist,key)
if index<0:
    print(key,"was not found in the list")
else:
    print(key,"was found in the list")</pre>
```

```
enter the list of numbers:[15,6,13,22,3,52,2]
The numbd=er to search for:22
22 was found in the list
```

#Program for bubble sort search.

```
aList=eval(input("Enter Your List:"))
print("Orginal list is:",aList)
n=len(aList)
for i in range(n):
   for j in range (0,n-i-1):
        if aList[j]>aList[j+1]:
            aList[j],aList[j+1]=aList[j+1],aList[j]
print("List after sorting:",aList)
```

```
Enter Your List: [15,6,13,22,3,52,2]
Orginal list is: [15, 6, 13, 22, 3, 52, 2]
List after sorting: [2, 3, 6, 13, 15, 22, 52]
```

#Menu based program to perform the operation on stack in python.

```
def empty (stk):
  if stk==[]:
     return True
  else:
     return False
def push (stk,item):
  stk.append(item)
  top=len(stk)-1
def pop(stk):
  if empty(stk) is True:
     print("empty stack")
  else:
     item=stk.pop()
     if len(stk)==0:
        top=None
     else:
        top=len(stk)-1
        print(top,item)
     return item
def peek(stk):
  if empty:
```

```
return "underflow"
  else:
     top=len(stk-1)
     return stk[top]
def display(stk):
  if empty(stk):
     print("empty stack")
     quit
  else:
     top=len(stk)-1
     print(stk[top],",top")
     for i in range(top,-1,-1):
       print(stk[i])
#main program
stk=[1,2,3,4,5,6,7,8,9]
top = None
while empty(stk) is not True:
  print("STACK OPERATION")
  print("1.PUSH")
  print("2.POP")
  print("3.PEEK")
  print("4.DISPLAY")
  print("5.EXIT")
  ch=int(input("ENTER YOUR CHOICE FROM 1 TO 5: "))
  if ch not in (1,2,3,4,5):
```

```
print ("invalid choice")
   break
elif ch == 1:
  item=int(input("enter item:"))
  push(stk,item)
elif ch==2:
  item= pop(stk)
  if item=="underflow":
     print("underflow the stack is empty")
     print(stk)
   else:
     print("poped item is ",item)
elif ch==3:
  item=peek(stk)
  if item=="underflow":
     print("underflow,stack is empty")
   else:
     print ("top most item is",item)
elif ch==4:
  display(stk)
elif ch==5:
   break
```

```
STACK OPERATION
1.PUSH
2.POP
3.PEEK
4.DISPLAY
5.EXIT
ENTER YOUR CHOICE FROM 1 TO 5: 1
enter item:0
STACK OPERATION
1.PUSH
2.POP
3.PEEK
4.DISPLAY
5.EXIT
ENTER YOUR CHOICE FROM 1 TO 5: 2
poped item is 0
STACK OPERATION
1.PUSH
2.POP
3.PEEK
4.DISPLAY
5.EXIT
ENTER YOUR CHOICE FROM 1 TO 5: 3
underflow, stack is empty
STACK OPERATION
1.PUSH
2.POP
3.PEEK
4.DISPLAY
5.EXIT
ENTER YOUR CHOICE FROM 1 TO 5: 4
9 ,top
9
8
7
6
5
4
3
2
STACK OPERATION
1.PUSH
2.POP
3.PEEK
4.DISPLAY
5.EXIT
ENTER YOUR CHOICE FROM 1 TO 5: 5
```

Menu based program to perform the operation on queue in python.

```
class Queue:
  def __init__(self):
     self.items = []
  def is_empty(self):
     return self.items == []
  def enqueue(self, data):
     self.items.append(data)
  def dequeue(self):
     return self.items.pop(0)
q = Queue()
while True:
  print('enqueue <value>')
  print('dequeue')
  print('quit')
  do = input('What would you like to do? ').split()
```

```
operation = do[0].strip().lower()
if operation == 'enqueue':
    q.enqueue(int(do[1]))
elif operation == 'dequeue':
    if q.is_empty():
        print('Queue is empty.')
    else:
        print('dqueued value: ',q.dequeue())
elif operation=='quit':
    break
```

```
enqueue <value>
dequeue
quit
What would you like to do? 3
enqueue <value>
dequeue
quit
What would you like to do? quit
```

Menu based program for circular queue in python.

```
class CircularQueue():
  def __init__(self, size): # initializing the class
     self.size = size
     self.queue = [None for i in range(size)]
     self.front = self.rear = -1
  def enqueue(self, data):
     if ((self.rear + 1) % self.size == self.front):
        print(" Queue is Full\n")
     elif (self.front == -1):
        self.front = 0
        self.rear = 0
        self.queue[self.rear] = data
     else:
        self.rear = (self.rear + 1) % self.size
        self.queue[self.rear] = data
  def dequeue(self):
     if (self.front == -1):
        print ("Queue is Empty\n")
     elif (self.front == self.rear):
        temp=self.queue[self.front]
        self.front = -1
```

```
self.rear = -1
        return temp
     else:
        temp = self.queue[self.front]
        self.front = (self.front + 1) % self.size
        return temp
  def display(self):
     if(self.front == -1):
        print ("Queue is Empty")
     elif (self.rear >= self.front):
        print("Elements in the circular queue are:",end = " ")
        for i in range(self.front, self.rear + 1):
           print(self.queue[i], end = " ")
        print ()
     else:
        print ("Elements in Circular Queue are:",end = " ")
        for i in range(self.front, self.size):
           print(self.queue[i], end = " ")
        for i in range(0, self.rear + 1):
           print(self.queue[i], end = " ")
        print ()
     if ((self.rear + 1) % self.size == self.front):
        print("Queue is Full")
#__main__
ob = CircularQueue(5)
```

```
ob.enqueue(14)
ob.enqueue(22)
ob.enqueue(13)
ob.enqueue(-6)
ob.display()
print ("Deleted value = ", ob.dequeue())
print ("Deleted value = ", ob.dequeue())
ob.display()
ob.enqueue(9)
ob.enqueue(20)
ob.enqueue(5)
ob.display()
```

```
Elements in the circular queue are: 14 22 13 -6
Deleted value = 14
Deleted value = 22
Elements in the circular queue are: 13 -6
Elements in Circular Queue are: 13 -6 9 20 5
Queue is Full
```

#Graph based on the production of wheat in different years.

```
import matplotlib.pyplot as plt
import numpy as np
objects =
(2000,2002,2004,2006,2008,2010,2012,2014,2016,2018)
y = np.arange(len(objects))
performance = [4,6,7,15,24,2,19,5,16,4]
plt.bar(y, performance, align='center', alpha=0.5)
plt.xticks(y, objects)
plt.ylabel('Production')
plt.xlabel('Years')
plt.title('Production of wheat in different years')
plt.show()
```


#Bar graph representing bed-sheets manufactured by a factory.

```
import matplotlib.pyplot as plt
import numpy as np

x=[1,2,3,4,5]

y=[600,850,700,300,900]

plt.bar(x,y)

plt.xlabel("WEEK")

plt.ylabel("Usage")

plt.title("Bedsheets")

plt.show()
```


#Program for Graph of the give data.

import matplotlib.pyplot as plt
import numpy as np
a=[6,7,8,9,10,11,12]
b=[130,120,135,130,150,80,75]
plt.bar(a,b)
plt.xlabel("CLASS")
plt.ylabel("NUMBER OF STUDENTS")
plt.title("DATA OF SUTDENTS")

#Program to pie graph of the given data.

import matplotlib.pyplot as plt
labels = ['MUSIC','DANCE', 'GAMES', 'READING','DRAWING']
number_of_students = [130,150,180,75,160]
plt.pie(number_of_students,labels=labels)

#Program to make a graph of the given data.

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

N = 500

x = [2002,2005,2010,2015]

y = [50,40,30,60]

colors = (0,0,0)

plt.title('PRODUCTION')

plt.xlabel('YEAR')

plt.ylabel('PRODUCTION IN TONS')

plt.scatter(x, y)

plt.show()
```


MYSQL

THE GIVE TABLE IS:

1:

101 JOHN	SEX M	EXPERIENCE
104 SMITH ORTHOPEDIC 107 GEORGE CARDIOLOGY 110 LARA SKIN 109 K GREGORY MEDICINE	 M	47 1
117 LUCY ENT 111 JILL MEDICINE	M F F M F M	17 10 3 9 10 4 12 15

2:

mysql> S	SELECT* F	ROM SALARY;	
ID	BASIC	ALLOWANCE	CONSULTANCY
101 104 107 114 109 105 130	12000 23000 32000 12000 42000 15900 21700	1000 2300 4000 5200 1700 1090 2600	300 500 500 500 100 200 300 300

```
ANS
```

```
(A)
SELECT NAME FROM DOCTOR
WHERE DEPT='MEDICINE'
AND EXPERIENCE > 10;
```

```
mysql> SELECT NAME FROM DOCTOR
-> WHERE DEPT='MEDICINE'
-> AND EXPERIENCE > 10;

+-----+
| NAME |
+----+
| JILL |
+----+
1 row in set (0.00 sec)
```

(B)

SELECT AVG(BASIC+ALLOWANCE) AS 'AVERAGE_SALARY' FROM SALARY, DOCTOR

WHERE SALARY.ID=DOCTOR.ID

AND DEPT='ENT';

```
(C)
SELECT NAME, DEPT FROM DOCTOR
WHERE SEX='F'
AND EXPERIENCE > 5;
```

(D)

SELECT NAME, DEPT, CONSULTANCY FROM DOCTOR AS D, SALARY AS S

where D.SEX='M'

and d.id=s.id

and s.consultancy = (select max(consultancy) from salary);

```
mysql>
mysql> SELECT NAME,DEPT,CONSULTANCY FROM DOCTOR AS D,SALARY AS S
-> where D.SEX='M'
-> and d.id=s.id
-> and s.consultancy = (select max(consultancy) from salary);

| NAME | DEPT | CONSULTANCY |
| SMITH | ORTHOPEDIC | 500 |
| GEORGE | CARDIOLOGY | 500 |
| Tows in set (0.04 sec)
```

(E)

Select count(*) from doctor where sex= "f";

(F)

SELECT NAME FROM DOCTOR WHERE DEPT LIKE "OR%" AND NAME LIKE "S%";

PROGRAM 2

THE GIVEN TABLES ARE:

1:

mysql> SELECT * FROM STATIONARY;					
SL_ID	StationaryName	COMPANY	PRICE		
PL02 ER05 PL01	DOT PEN PENCIL ERASER PENCIL GEL PEN	ABC XYZ XYZ CAB ABC	10 6 7 5 15		
5 rows in	set (0.00 sec)				

2:

(A)
SELECT* FROM CONSUMER
WHERE ADDERSS='DELHI';

```
mysql> SELECT* FROM CONSUMER

-> WHERE ADDERSS='DELHI';

| CustId | ConsumerName | ADDERSS | S_ID |

| 1 | GOOD LEARNER | DELHI | PLO1 |

| 12 | TOPPER | DELHI | DPO1 |

| 15 | WRITE AND DRAW | DELHI | PLO2 |

3 rows in set (0.00 sec)
```

(B)
SELECT*FROM STATIONARY
WHERE PRICE <= 15 AND PRICE >= 8;

```
mysql> SELECT*FROM STATIONARY
-> WHERE PRICE <=15 AND PRICE>=8;

| SL_ID | StationaryName | COMPANY | PRICE |

| DP01 | D0T PEN | ABC | 10 |

| GP02 | GEL PEN | ABC | 15 |

2 rows in set (0.00 sec)
```

(C)

SELECT CONSUMERNAME, ADDERSS, COMPANY, PRICE FROM CONSUMER, STATIONARY WHERE CONSUMER.S_ID= STATIONARY.SL_ID;

```
      mysql> SELECT CONSUMERNAME, ADDERSS, COMPANY, PRICE FROM CONSUMER, STATIONARY

      -> WHERE CONSUMER.S_ID= STATIONARY.SL_ID;

      ! CONSUMERNAME | ADDERSS | COMPANY | PRICE |

      ! CONSUMERNAME | ADDERSS | COMPANY | PRICE |

      ! TOPPER | DELHI | ABC | 10 |

      ! WRITE AND DRAW | DELHI | XYZ | 6 |

      ! GOOD LEARNER | DELHI | CAB | 5 |

      ! MOTIVATION | BANGLORE | CAB | 5 |

      ! WRITE WELL | MUMBAI | ABC | 15 |

      ***TOPPER | TOPPER |
```

(D)

UPDATE STATIONARY

SET PRICE=PRICE+2;

(E)

Select Distinct Address from Consumer;

```
mysql> SELECT DISTINCT ADDERSS FROM CONSUMER;
| ADDERSS |
| DELHI |
| MUMBAI |
| BANGLORE |
| rows in set (0.02 sec)
```

(F)

Select Company, MAX(Price), MIN(Price), COUNT(*), from Stationary Group by Company;

```
mysql> SELECT CONSUMER.CONSUMERNAME, STATIONARY.STATIONARYNAME, STATIONARY.PRICE
-> FROM STATIONARY, CONSUMER WHERE CONSUMER.S_ID=STATIONARY.SL_ID;

| CONSUMERNAME | STATIONARYNAME | PRICE |

| GOOD LEARNER | PENCIL | 7 |

| WRITE WELL | GEL PEN | 17 |

| TOPPER | DOT PEN | 12 |

| WRITE AND DRAW | PENCIL | 8 |

| MOTIVATION | PENCIL | 7 |

5 rows in set (0.00 sec)
```

(G)

Select Stationary Name, price*3 From Stationary;