CMPE 548 Monte Carlo Methods Homework 2

Due on March 16, 2016

1. (Importance Sampling)

Consider the unit p-norm ball in 2D, i.e. the region where $|x|^p + |y|^p \le 1$. Compute the area of the ball for p = 0.5 by using importance sampling with a properly chosen proposal distribution. Report the variance of your estimate for N = 1000 samples.

2. (Markov Chains)

Place a 6-sided die (possibly loaded according to a distribution π_0) on a table with the top face having the value 1, i.e. $X_0 = 1$. Successive values X_t for t = 1, 2, ... are obtained as follows:

- If X_{t-1} is on the top face, pick one of the four side faces uniformly at random. We will call this face f_t . For example, if $X_{t-1} = 1$, you would choose f_t from $\{2, 3, 4, 5\}$, with each element having probability 1/4.
- Rotate the die f_t times in the direction of f_t and set X_t to the number on the top. For example if $X_{t-1} = 1$ and $f_t = 2$, then $X_t = 6$.

This procedure defines a Markov Chain, $\{X_t\}_{t=0,1,2,...}$

(a) By carefully examining the standard die layout given above, construct the 6×6 transition matrix A for the chain X_t .

- (b) Find the stationary distribution of A (if any) by computing eigenvalues and eigenvectors. Is the stationary distribution the uniform distribution?
- (c) Does this process satisfy the detailed balance condition?
- (d) The chain is said to be approximately reached the stationary distribution when the total variation distance between π and $A^t\pi_0$ (see lecture notes for the definition) is below a small threshold ϵ . Take $\epsilon = 10^{-8}$. We will call the first time the total variation drops below ϵ the mixing time T_{mix} . Find T_{mix} .
- (e) Visualize some intermediary powers of A to visually confirm the convergence of the distribution as demonstrated in the lecture (like Fig.7 of the lecture notes). You can use imshow() from matplotlib. Verify the mixing time by plotting a figure (like Fig.8 of the lecture notes).
- (f) Run 1000 independent chains of length at least T_{mix} , starting from $X_0 = 1$ and record the whole trajectory of each chain. Compute the histograms of X_t for each $t \leq T_{\text{mix}}$ and generate a figure like Fig. 13 bottom left in the lecture notes.
- (g) Run a single chain. After discarding the first $T_{\rm mix}$ samples, record 1000 consecutive values for X_t and plot a histogram. Confirm that although these samples are dependent, their histogram agrees with the stationary distribution obtained numerically from the first eigenvector.