Abstract of the Disclosure

A two-phase thermodynamic power system includes a
capillary device, vapor accumulator, superheater, an inline
turbine, a condenser, a liquid pump and a liquid preheater for
generating output power as a generator. The capillary device,
such as a loop heat pipe or a capillary pumped loop, is coupled
to a vapor accumulator, superheater, the inline turbine for
generating output power for power generation, liquid pump and
liquid preheater. The capillary device receives input heat that
is used to change phase of liquid received from the liquid
preheater, liquid pump and condenser into vapor for extra
heating in the superheater used to then drive the turbine. The
power system is well suited for space applications using a
radioisotope, active nuclear or solar heat source. The system
can use waste heat from various dynamic or static power systems
as a heat source and waste heat from spacecraft components such
as electronics as a heat source. These heat sources can be used
separately or in any combination. The power system can be
combined with thermal energy storage devices when operated with
heat sources that are not steady state. Heat sources are useful
for driving the capillary wick, superheater and liquid
preheater for increased power efficiency and long lifetime
operation. The power system is well suited for space receiving
heat from a heat source to produce useful mechanical energy. A
superheater in combination with a liquid pump and preheater are
implemented for use with the evaporator for improved thermal
efficiency while operating at maximum cycle temperatures well
below other available power conversion cycles.