Chapitre 15 - Espaces vectoriels et applications linéaires

4 Applications linéaires

4.1 Morphismes d'espaces vectoriels

Soit E, F deux espaces vectoriels sur le même corps \mathbb{K} .

Définition 4.1. Une application *f* d'un espace vectoriel *E* dans un espace vectoriel *F* est dite linéaire si

$$\forall (x,y) \in E^2$$
, $f(x+y) = f(x) + f(y)$ et $\forall x \in E, \forall \alpha \in \mathbb{K}$, $f(\alpha.x) = \alpha.f(x)$.

Théorème 4.1. Une application $f: E \longrightarrow F$ est linéaire si et seulement si elle vérifie :

$$\forall (x,y) \in E^2, \forall (\alpha,\beta) \in \mathbb{K}^2, \qquad f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).$$

$$\iff \forall (x,y) \in E^2, \forall \alpha \in \mathbb{K}, \qquad f(\alpha x + y) = \alpha f(x) + f(y).$$

Remarque 4.1. L'image d'une combinaison linéaire de vecteurs par une application linéaire est la combinaison linéaire des images des vecteurs.

Définition 4.2. Une application linéaire $f: E \longrightarrow E$ s'appelle un endomorphisme de E.

notations 4.3. On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F et $\mathcal{L}(E) = \mathcal{L}(E,E)$ l'ensemble des endomorphismes de E.

4.2 Exemples

4.3 Généralités sur les applications

Dans ce paragraphe, E et F sont deux ensembles.

Définition 4.4. Soit f une application d'un ensemble E dans un ensemble F.

Pour $x \in E$, y = f(x) s'appelle l'image de x et x est un antécédent de y.

On appelle image directe par f d'une partie A de E, l'ensemble des images des éléments de A noté f(A):

$$f(A) = \{ f(x) \mid x \in A \}$$

On appelle image réciproque par f d'une partie B de F, l'ensemble des antécédents (éventuels) des éléments de B noté $f^{-1}(B)$: $f^{-1}(B) = \{x \mid f(x) \in B\}$

Remarque 4.2. Attention : rien n'indique ici que f est bijective ni que son application réciproque f^{-1} existe.

Définition 4.5. Soit f une application de E dans F.

f est injective si tout élément de l'ensemble d'arrivée F a au plus un antécédent ce qui est équivalent à :

$$\forall (x,y) \in E^2, \qquad f(x) = f(y) \Longrightarrow x = y.$$

f est surjective si tout élément de l'ensemble d'arrivée F a au moins un antécédent ce qui est équivalent à :

$$\forall z \in F, \exists x \in E : z = f(x).$$

f est bijective si f est injective et surjective ce qui est équivalent à tout élément de l'ensemble d'arrivée a un et un seul antécédent par f.

Lemme 4.2. Soit f une application de E dans F.

f est bijective de E dans F si et seulement si il existe une application $u: F \longrightarrow E$ telle que $u \circ f = id_E$ et $f \circ u = id_F$.

4.4 Noyau et image d'une application linéaire

E et F sont deux espaces vectoriels sur le même corps \mathbb{K} .

Proposition 4.3. *Soit* $f : E \longrightarrow F$ *une application linéaire.*

L'image directe d'un sous-espace vectoriel de E est un sous-espace vectoriel de F.

L'image réciproque d'un sous-espace vectoriel de F est un sous-espace vectoriel de E.

Définition 4.6. Étant donné une application linéaire $f: E \longrightarrow F$, on appelle :

• noyau de *f* le sous-espace vectoriel de *E* défini par

$$\operatorname{Ker} f = f^{-1} \{ \overrightarrow{0} \} = \{ x \in E \mid f(x) = \overrightarrow{0} \}.$$

C'est l'ensemble des antécédents du vecteur nul par f.

• image de *f* le sous-espace vectoriel de *F* défini par

$$\operatorname{Im} f = f(E) = \{ f(x) \mid x \in E \} = \{ y \in F \mid \exists x \in E : y = f(x) \}.$$

C'est l'ensemble des images de E par f.

Théorème 4.4. Si f est une application linéaire de E dans F, alors

$$f$$
 est injective \iff Ker $f = \{\overrightarrow{0}\}$ et par ailleurs, f est surjective \iff Im $f = F$.

Exercice 4.1. Déterminer le noyau et l'image de $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x, y) = (2x + y - z, x - 2y + z)

Correction:

Soit $u = (x_1, y_1, z_1) \in \mathbb{R}^3$ et $v = (x_2, y_2, z_2) \in \mathbb{R}^2$ deux vecteurs. On calcule

$$f(u+v) = (2(x_1+x_2)+(y_1+y_2)-(z_1+z_2),(x_1+x_2)-2(y_1+y_2)+(z_1+z_2))$$

soit par propriété du calcul vectoriel :

$$f(u+v) = (2x_1 + y_1 - z_1, x_1 - 2y_1 + z_1) + (2x_2 + y_2 - z_2, x_2 - 2y_2 + z_2)$$

On reconnaît

$$f(u+v) = f(u) + f(v)$$

Soit $\alpha \in \mathbb{R}$ et $u = (x, y, z) \in \mathbb{R}^2$. On calcule

$$f(\alpha u) = f(\alpha x, \alpha y, \alpha z) = (2\alpha x + \alpha y - \alpha z, \alpha x - 2\alpha y + \alpha z) = \alpha(2x + y - z, x - 2y + z)$$

On a donc

$$f(\alpha u) = \alpha f(u)$$

Les deux résultats prouvent que f est linéaire

On détermine le noyau de f: soit $u \in \mathbb{R}^3$, $u \in \text{Ker } f \iff f(u) = \overrightarrow{0}$.

On note u = (x, y, z), on a alors :

$$u \in \operatorname{Ker} f \iff \left\{ \begin{array}{ll} 2x + y - z & = & 0 \\ x - 2y + z & = & 0 \end{array} \right. \iff \left\{ \begin{array}{ll} x - 2y + z & = & 0 \\ 5y - 3z & = & 0 \end{array} \right.$$

On a trois inconnues et deux pivots, alors on a un paramètre : $z = \alpha$ avec $\alpha \in \mathbb{R}$:

$$u \in \operatorname{Ker} f \iff \text{il existe } \alpha \in \mathbb{R} : \begin{cases} x = \frac{1}{5}\alpha \\ y = \frac{3}{5}\alpha \\ z = \alpha \end{cases}$$

On en déduit que le noyau de f est la droite vectorielle dirigée par (1,3,5): Ker f = Vect((1,3,5))On détermine ensuite l'image de f:

un vecteur v = (a, b) appartient à l'image de f si et seulement si il existe un vecteur u = (x, y, z)tel que f(u) = v

$$(a,b) \in \operatorname{Im} f \iff \exists (x,y,z) \in \mathbb{R}^3 : \begin{cases} 2x+y-z = a \\ x-2y+z = b \end{cases}$$

 $\iff \exists (x,y,z) \in \mathbb{R}^3 : \begin{cases} x-2y+z = a \\ 5y-3z = a-2b \end{cases}$

$$\iff \exists (x, y, z) \in \mathbb{R}^3: \begin{cases} x - 2y + z = a \\ 5y - 3z = a - 2b \end{cases}$$

Le système est échelonné et a deux équations et trois inconnues (x, y, z). Il n'a pas d'équation de compatibilité, alors il a toujours des solutions (sous-entendu : il a des solutions pour toutes valeurs de a et b).

Alors, tous les vecteurs (a, b) de \mathbb{R}^2 sont dans $\operatorname{Im} f$: on a $\mathbb{R}^2 \subset \operatorname{Im} f$.

Et, on sait que $\underline{\operatorname{Im} f \subset \mathbb{R}^2}$ par définition de f. Alors, $\overline{\operatorname{Im} f = \mathbb{R}^2}$ et il s'ensuit que f est surjective.

Exercice 4.2. Déterminer le noyau et l'image de $g: \mathbb{R}^2 \to \mathbb{R}^3$ définie par g(x,y) = (x-2y,x+3y,2y)

Exercice 4.3. Déterminer le noyau et l'image de $g: \mathbb{R}^3 \to \mathbb{R}^3$ définie par h(x,y) = (x+2y-z,2x+y-2z,x-y-z) En cours ...

Autre exercice

Exercice 4.4. Soit $\varphi : \mathbb{R}_2[X] \to \mathbb{R}_3[X]$ définie par $\varphi(P) = (2X - 1)P' + 3XP$

- 1. Montrer que φ est linéaire.
- 2. Déterminer $\operatorname{Ker} \varphi$ et $\operatorname{Im} \varphi$.

À faire

4.5 Combinaison linéaire d'applications linéaires

Proposition 4.5. Soit f et g deux applications linéaires de E dans F et des scalaires $(\alpha, \beta) \in \mathbb{K}^2$. Alors $\alpha f + \beta g$ est une application linéaire de E dans F.

Corollaire 4.6.

 $\mathscr{L}(E,F)$ est un espace vectoriel, c'est un sous-espace vectoriel de $\mathscr{F}(E,F)$.

L(E) est un en « ce vectoriel (les endomphonnes Lont des vectours)

4.6 Composition d'applications linéaires

Soit E, F, G trois espaces vectoriels sur le même corps \mathbb{K} .

Proposition 4.7. Soit f une application linéaire de E dans F et g une application linéaire de F dans G. Alors $g \circ f$ est linéaire de E dans G.

Démonstration.

Exemple 4.1. On considère les endomorphismes de \mathbb{R}^2 suivants :

$$f(x,y) = \frac{1}{5}(x+2y,2x+4y), \quad g(x,y) = \frac{1}{5}(4x-2y,-2x+4y) \text{ et } h(x,y) = (x,0)$$

Calculer les différentes composées : $f \circ g$, $f \circ f$, $h \circ f$ et $f \circ h$

4.7 Isomorphismes et automorphismes

Définition 4.7. Une application linéaire bijective $f: E \longrightarrow F$ s'appelle un isomorphisme. Un endomorphisme bijectif $f: E \longrightarrow E$ s'appelle un automorphisme.

Proposition 4.8. Soit f une application linéaire de E dans F. Si f est un isomorphisme de E dans F alors f^{-1} est aussi linéaire et est un isomorphisme de F dans E.

Proposition 4.9. L'ensemble des automorphismes d'un \mathbb{K} -espace vectoriel E est un groupe pour la composition des applications. On l'appelle groupe linéaire de E, noté $\mathscr{GL}(E)$.

Corollaire 4.10. Pour $f, g \in \mathcal{GL}(E)$, on a $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

Exemple 4.2. Montrons que l'application $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par f(x,y) = (x-2y,x+y) est un automorphisme de \mathbb{R}^2 .

4.8 Calcul d'endomorphismes

J. E->E

Soit E un espace vectoriel et f, $g \in \mathcal{L}$ deux endomorphismes de E.

On peut effectuer des combinaisons linéaires : $\alpha f + \beta g$ pour tous α et β réels est un endomorphisme de E,

On peut composer les endomorphismes : $f \circ g$ et $g \circ f$ sont deux endomorphismes de E.

On peut également calculer : $f \circ f$ qu'on note f^2 , $f \circ f \circ f = f^3$ et par récurrence, $f^n = \underbrace{f \circ f \circ \dots f \circ f}$

	n fois
Par convention, $f^0 = id_E$.	. 0/01 11
folty)= fof + fog cufed incline (16/5+9)	(M)+(M))= (1)
105 1 1 00 2 m 1 m course	$= \int (f(x)) + \int (g(y))$
(l + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	
(1 + 2) 0 } = f 0 f + g 0 f far de finition de f + 2:	
	$\frac{1}{2} > \frac{1}{2} (x) + \frac{1}{2} (x)$
(1+g)0(1+g) = fo(f+g) + Go/(f+g)	(f+g)(x)
= 101+109+900	0.51
(mnote $(f+g)^2 = f^2 + f \circ g + g \circ f + g^2$ (A+B) $(f+g)^3 = f + g \circ f + g^2 = f + g \circ f \circ f + f \circ g + g \circ f$ $= f^3 + f^2 \circ g + f \circ g \circ f + f \circ g^2 + g \circ f^2 + g \circ f \circ g + g \circ f$	2 A2+ AB+RA+B2
(P. 3) (1) (2) (1) (1) (1) (1)	0
(f+g)3 = (f+g)0(f+g)2 = (f+g)0(f2+f0g+g0	5 (+ (-)
= 13+20y+logof+log2+gol2+golog+	-gogo(+g3
	0000
Si jog=gof (si (de g commulant), alors	2
- 1 () tg 3 = 13 +3 200 +3 Po 92 +	9
Formule du biname ou les endonosphismes	0
City of the control o	
Formule du binôme ou les endonorphismes : Si (fig) E L (E) 2 avec fog = gof dr n EM	1 ans
(0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
$\left(\frac{1}{2} + \frac{1}{2}\right)^n = \sum_{k=0}^{\infty} \binom{n}{k} \int_{-\infty}^{k} o g^{n-k}$	
Neg ()	_
$(0.00)^{\circ} = (0.00)^{\circ} = 0.20^{\circ}$	
gogol = (gog) of = gi2 of nama cidrivité de o	
Var ansa and the ac 2	

Exemple 4.3. On pose:

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto (x+y;x+y) \qquad (x,y) \longmapsto (x+y;-x-y) \qquad (x,y) \longmapsto (x+y;x-y)$$
Calculer $f \circ g, g \circ f$ et h^2

E OE

Exemple 4.4. Soit f un endomorphisme de E. $f \in \mathcal{A}$ coucice: Sort PELIE) qui virilie "OPIE) 12-4/+3ide: De(E) rulle de E dans E Montroms que l'est un automor phisme de E. on a trouvé un endomn phisme $\varphi = -\frac{1}{2}\frac{1}{4}\frac{1}{4}\frac{1}{1}\frac{1}{6}$ de Etel que $\varphi = \frac{1}{2}\frac{1}{4}\frac{1}{4}\frac{1}{1}\frac{1}{6}$ de Etel que $\varphi = \frac{1}{2}\frac{1}{4}\frac{1}{4}\frac{1}{1}\frac{1}{6}$ de Etel que $\varphi = \frac{1}{2}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{6}$ de Etel que $\varphi = \frac{1}{2}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{6}$ de Etel que $\varphi = \frac{1}{2}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{6}$ de Etel que $\varphi = \frac{1}{2}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{6}$ de Etel que $\varphi = \frac{1}{2}\frac{1}{4}\frac{$ alors Post un automorphisme de E et [-'= - 13 f+ 4 ide or a utilisé gog-go get foit = ido g ide: E = E Ce He egalité de Ponctions équianta VE EE (side) (n) = (de ol) (n) ide est l'élèment noutre de la comportion des fonctions POIDE = 1 = ide of

Sous-espaces vectoriels supplémentaires 5

5.1 Somme de sous-espaces vectoriels

mame.

E

Définition 5.1. Si F et G sont deux sous-espaces vectoriels d'un espace vectoriel E, alors le plus petit sous-espace vectoriel qui contient \overline{F} et \overline{G} est

On l'appelle somme de F et G et on le note G et G et

H est le sous-espace vectoriel engendré par la réunion de F et G

Exemple 5.1. Soit F = Vect((1, 3, -1), (1, 1, 1)) et G = Vect((1, 0, 1), (-1, 1, 0))FetG unter ser de Déterminer F + G

Sat II EIR3. II EF+G Z=> il existe VEFet WEG totame 1 = 7 + W mais 76F=> Verste (3) E12° telsque V= V (1,3,-1)+B(1,111) ce qui prouve que F+6= Vecr((1,3,-1), (1,1,1), (1,0,1), (-1,1,0))

famille générative de F+6 on/or = (m, y, 3) fixe $\vec{A} \in \{+G/=>\} \exists (A_1B_1, r_1b): \begin{cases} d + B + 8 - b = 2 \\ +3d + B \cdot t b = 9 \end{cases}$ $= 3 \exists (A_1B_1, r_1b): \begin{cases} -d + B + 8 - 5 = 2 \\ -d + B + 8 = 3 \end{cases}$ 2B +20 - 6 = x + z > le rystime As vecleus de 1R3 soul dans F+6: F+G = 1R3

F= Vect ((1,3,-1), (1,1,1) G= Vect ((1,0), 1(-1,1,0)) F+GCR3 on a FCIR3el OCR3 das

5.2 Somme directe

Définition 5.2. On dit que deux sev F et G d'un espace vectoriel E, sont en somme directe si tout vecteur u de F + G s'écrit de manière unique u = v + w avec $v \in F$ et $w \in G$. On note alors la somme $F \oplus G$.

or sail que $G_E \in F_G \circ V_G \in G_G \circ G_G \circ$

Exemple 5.2. Soit F = Vect((1,3,-1)) et G = Vect((1,0,1)). Montrer que F et G sont en somme directe et déterminer F + G.

Exemple 5.3. Soit $F = \text{Vect}(X^2 + 1)$ et G = Vect(3X - 7). Montrer que F et G sont en somme directe et déterminer F + G.

5.3 Sous-espaces supplémentaires

Définition 5.3. On dit que deux sous-espaces vectoriels F et G de E sont supplémentaires dans E si E = F + G et si F et G sont en somme directe : $E = F \oplus G$.

Théorème 5.2. Soit F et G deux sous-espaces vectoriels de E.

 $E = F \oplus G \iff \forall x \in E, \ \exists ! y \in F : \exists ! z \in G : \ x = y + z \ avec \ y \in F \ et \ z \in G$

 $E = F \oplus G \iff E = F + G \text{ et } F \cap G = \{\overrightarrow{0}\}\$

E = FO 6 tout vertain de Es écut de marier unique comme sanve dun vertain de Fet dons

Exemple 5.4. Soit F le sev de \mathbb{R}^3 d'équation 2x + y - z = 0 et G = Vect((1,0,1)). Montrer que F et G sont supplémentaires dans \mathbb{R}^3 . $F = \mathbb{R}^3$

Surtu=(7, y13) E123, on chache VEFer WEG telique u= V+W mais E G => Wornte d = 112, W = d (1,0,1) VEF => , 22v+yv-zv = 0, avec v= (xv,4v3v) on charche d'invigrizo els que u-v+w or resource système 0/mi - d + 2 n + y - 3 = 0 = 0 x = 2n + y - 3 mis xv = x - d | y = y | 3v = 3 - d on a hour w = (2n + y-3) (1,0,1) EGelv= (-7-y+3, y, -2n-y+23) EF Telsque u=1+W on a promé que R3 = F+G } F+G-1R3 de comme ava F = 1R3 G = 1R13, ma F+G=1R3 } F+G-1R3 Soit MEFRG alors M=(d, 0, d) wild ER an MEG et les coordanies de nu réntient l'ey 2x+y-z=0 ce qui donne 2x+0-x=> x=> d=0 danc u=0 and point FNG-C{0} don a toujour { 3 = } = FNG

donc FNG={5} => Febresont en somme directes donc FOG=1R3: FelG sont suplémentaines dans 1R3.

Exemple 5.5. Montrer que les fonctions paires et les fonctions impaires sont deux sev supplémentaires de l'espace vectoriel E des fonctions de \mathbb{R} dans \mathbb{R} .

5.4 Base adaptée à une somme directe.

Proposition 5.3. Si F et G sont deux sev en somme directe et si $(e_1, e_2, ..., e_p)$ est une base de F et $(e_{p+1}, ..., e_q)$ est une base de G, alors $(e_1, ..., e_q)$ est une base de la somme directe $F \oplus G$. On dit qu'une telle base est adaptée à la somme directe.

Démonstration.

Proposition 5.4. Si $(e_1, e_2, ..., e_p)$ est une base de F et $(e_{p+1}, ..., e_q)$ est une base de G, telles que $(e_1, ..., e_q)$ est une base de E, alors $E = F \oplus G$.

Théorème 5.5.

Si $(e_1, e_2, ..., e_n)$ est une famille libre d'un espace vectoriel, alors $Vect(e_1, ..., e_k)$ et $Vect(e_{k+1}, ..., e_n)$ sont en somme directe.

Si (e_1, e_2, \dots, e_n) est une base de E, alors $E = \text{Vect}(e_1, e_2, \dots, e_p) \oplus \text{Vect}(e_{p+1}, e_{p+2}, \dots, e_n)$ pour tout $p \in [1, n-1]$.

Exemple 5.6. Montrons que $\mathbb{R}_3[X] = \mathbb{R}_2[X] \oplus \text{Vect}(X^3)$

6 Applications linéaires et familles de vecteurs

6.1 Image d'une base par une application linéaire

Théorème 6.1. Soit $u: E \longrightarrow F$ une application linéaire et $(e_i)_{i=1,\dots,n}$ une base de E.

- La famille $(u(e_i))_{i=1,\dots,n}$ est une famille génératrice de $\operatorname{Im} u$.
- u est surjective $\iff (u(e_i))_{i=1,\dots,n}$ est génératrice de F.
- u est injective $\iff (u(e_i))_{i=1,\dots,n}$ est libre dans F.
- u est bijective $\iff (u(e_i))_{i=1,\dots,n}$ est une base de F.

Démonstration.

Corollaire 6.2. *Soit* $u : E \longrightarrow F$ *une application linéaire.*

u est un isomorphisme de E dans F si et seulement si l'image d'une base de E par u est une base de F.

6.2 Application linéaire définie par l'image d'une base

Théorème 6.3. Étant données une base $(e_1, e_2, ..., e_n)$ de E et une famille d'autant de vecteurs $(f_1, f_2, ..., f_n)$ dans F, il existe une unique application linéaire u de E dans F telle que $\forall i \in [1, n]$, $u(e_i) = f_i$.

Exemple 6.1. Soit $f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$ définie par $f(1) = X^2 + 2X$, $f(X - 1) = X^2 + 5$, $f((X - 1)^2) = 2X - 4$. Déterminer l'image d'un polynôme $P \in \mathbb{R}_2[X]$.

Corollaire 6.4. Soit f et g deux applications linéaires de E dans F et $(e_1, e_2, ..., e_n)$ une base de E. $f = g \iff \forall i \in [[1, n]], \quad f(e_i) = g(e_i).$

Deux applications linéaires sont égales si et seulement si leurs images d'une base sont les mêmes.

Corollaire 6.5. Une application linéaire est nulle si et seulement si l'image d'une base par cette application linéaire est la famille nulle.

6.3 Application linéaire définie sur deux sev supplémentaires

Proposition 6.6. Soit E_1, E_2 deux sous-espaces vectoriels supplémentaires dans E. Soit $f_1 : E_1 \longrightarrow F$ et $f_2 : E_2 \longrightarrow F$ deux applications linéaires. Alors il existe une unique application linéaire $f : E \longrightarrow F$ telle que $f_{|E_1} = f_1$ et $f_{|E_2} = f_2$. C'est-à-dire $\forall x_1 \in E_1$, $f(x_1) = f_1(x_1)$ et $\forall x_2 \in E_2$, $f(x_2) = f_2(x_2)$.

7 Applications linéaires essentielles

7.1 Homothéties

Définition 7.1. Soit E un \mathbb{K} -espace vectoriel. On appelle homothétie toute application $f: E \longrightarrow E$ telle que pour tout $x \in E$, $f(x) = \lambda . x$ avec $\lambda \in \mathbb{K}^*$ un scalaire non nul fixé.

Proposition 7.1. Une homothétie de E est un automorphisme de E. L'homothétie de rapport $\lambda \in \mathbb{K}$ de l'espace vectoriel E est l'application $\lambda.id_E$.

7.2 Projecteurs

Définition 7.2. Soit F et G deux sous-espaces vectoriels supplémentaires d'un \mathbb{K} -espace vectoriel E.

On appelle projection sur F parallèlement à G, l'application $p: E \longrightarrow E$ qui à $x \in E$ associe l'unique vecteur $y \in F$ tel que x = y + z avec $z \in G$.

Une telle application est aussi appelée projecteur.

Théorème 7.2. Soit p une application de E dans E.

p est un projecteur si et seulement si p est linéaire et $p \circ p = p$.

Dans ce cas, p projette sur Imp parallèlement à Kerp.

Démonstration.

• Si p est la projection sur F parallèlement à G. Soit $x \in E$ et $y \in E$ et $\alpha \in K$.

Les vecteurs x et y se décomposent en $x = x_F + x_G$ et $y = y_F + y_G$ avec $x_F, y_F \in F$ et $x_G, y_G \in G$. On a $p(x) = x_F$ et $p(y) = y_F$.

Alors $\alpha x + y$ se décompose en $\alpha x + y = (\alpha x_F + y_F) + (\alpha x_G + y_G)$ avec $\alpha x_F + y_F \in F$ et $\alpha x_G + y_G \in G$ car F, G sont des sev.

Alors on a $p(\alpha x + y) = \alpha x_F + y_F = \alpha p(x) + p(y)$. L'application p est donc linéaire .

De plus, pour $x \in E$, que l'on écrit $x = x_F + x_G$, on $a p \circ p(x) = p(p(x)) = p(x_F)$ mais comme $x_F \in F$, on a $x_F = x_F + 0$ donc $p(x_F) = x_F$ et finalement, $p \circ p(x) = p(x)$. On conclut $p \circ p = p$ |.

• Réciproquement, si p est linéaire et $p \circ p = p$, alors on pose G = Ker p et F = Im p. Soit $y \in F \cap G$, u est une image donc il existe $x \in E$ tel que y = p(x) et $y \in G$ donc p(y) = 0 \implies $y = p(x) = p \circ p(x) = p(p(x)) = p(y) = 0$. Donc $F \cap G \subset \{0\}$.

Et, comme on a toujours l'inclusion réciproque, $F \cap G = \{\overrightarrow{0}\}\ |$

Soi $x \in E$, alors x s'écrit x = p(x) + (x - p(x)) avec $p(x) \in F$ et $x - p(x) \in G$ car p(x - x)p(x) = p(x) - p(-p(x)) = p(x) - p(x) = 0. Donc E = F + G.

Alors on a $E = F \oplus G$ et la relation $x = p(x) + (x - \overline{p(x)})$ prouve que p est la projection sur F parallèlement à G.

• Enfin, si p est un projecteur, alors les images sont des éléments de F donc Im $p \subset F$. Et réciproquement tout élément $z \in F$ est sa propre image p(z) = z donc $F \subset \operatorname{Im} p$. On en déduit | Im p = F |

Les éléments $u \in G$ s'écrivent u = 0 + u avec $0 \in F$ et $u \in G$ donc $p(u) = 0 \Longrightarrow u \in K$ er p. On a donc $g \subset \text{Ker } p$.

Réciproquement, si p(u)=0 pour $u\in E$, alors u s'écrit $u=0+u_G$ avec $u_G\in G$. On en déduit que $u \in G$ ce qui prouve $\operatorname{Ker} p \subset G$. On a donc $\operatorname{Ker} p = G$

Remarque 7.1. Pour étudier une projection p, on cherche les vecteurs invariants : $p(x) = x \iff$ $(p-id)(x) = \overrightarrow{0}$ car, pour une projection, $\operatorname{Im} p = \operatorname{Ker}(p-id)$.

Exemple 7.1. Montrons que $f(x,y) = \frac{1}{5}(6x - 2y, 3x - y)$ est une projection.

On calcule $f \circ f(x, y) = \frac{1}{5} (6X - 2Y, 3X - Y)$ avec $X = \frac{6x - 2y}{5}$ et $Y = \frac{3x - y}{5}$.

Ce qui donne $f \circ f(x, y) = \frac{1}{25}(30x - 10y, 15x - 5y) = f(x, y)$ pour tous $(x, y) \in \mathbb{R}^2$. Comme f est aussi linéaire, f est une projection.

On cherche les vecteurs invariants : $f(x, y) = (x, y) \iff x - 2y = 0 \iff (x, y) \in \text{Vect}(2, 1)$. Donc Im f = Vect((2, 1)).

Et le noyau de $f: f(x, y) = (0, 0) \iff 3x - y = 0 \iff (x, y) \in \text{Vect}(1, 3)$. Donc Ker f = Vect((1, 3)). Conclusion : f est la projection sur Vect((2,1)) parallèlement à Vect((1,3))

7.3 Symétries

Définition 7.3. Soit F et G deux sous-espaces vectoriels supplémentaires d'un \mathbb{K} -espace vectoriel E. On appelle symétrie par rapport à F parallèlement à G, l'application $s: E \longrightarrow E$ qui à x s'écrivant x = y + z avec $y \in F$ et $z \in G$ associe s(x) = y - z.

Proposition 7.3. Une symétrie s de E est un automorphisme involutif de E: i.e. $s \circ s = s^2 = id_E$.

Théorème 7.4. Soit s une application de E dans E.

s est une symétrie si et seulement si s est linéaire et $s \circ s = id_E$.

Dans ce cas, s est une symétrie par rapport à $Ker(s-id_E)$ parallèlement à $Ker(s+id_E)$.

