

## planetmath.org

Math for the people, by the people.

## quantale

Canonical name Quantale

Date of creation 2013-03-22 17:00:08 Last modified on 2013-03-22 17:00:08

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 12

Author CWoo (3771) Entry type Definition Classification msc 06F07

Synonym standard Kleene algebra Defines quantale homomorphism A quantale Q is a set with three binary operations on it:  $\land$ ,  $\lor$ , and  $\cdot$ , such that

- 1.  $(Q, \wedge, \vee)$  is a complete lattice (with 0 as the bottom and 1 as the top), and
- 2.  $(Q, \cdot)$  is a monoid (with 1' as the identity with respect to  $\cdot$ ), such that
- 3. · distributes over arbitrary joins; that is, for any  $a \in Q$  and any subset  $S \subseteq Q$ ,

$$a \cdot \left(\bigvee S\right) = \bigvee \{a \cdot s \mid s \in S\} \quad \text{ and } \quad \left(\bigvee S\right) \cdot a = \bigvee \{s \cdot a \mid s \in S\}.$$

It is sometimes convenient to drop the multiplication symbol, when there is no confusion. So instead of writing  $a \cdot b$ , we write ab.

The most obvious example of a quantale comes from ring theory. Let R be a commutative ring with 1. Then L(R), the lattice of ideals of R, is a quantale.

*Proof.* In addition to being a (complete) lattice, L(R) has an inherent multiplication operation induced by the multiplication on R, namely,

$$IJ := \{ \sum_{i=1}^{n} r_i s_i \mid r_i \in I \text{ and } s_i \in J, n \in \mathbb{N} \},$$

making it into a semigroup under the multiplication.

Now, let  $S = \{I_i \mid i \in N\}$  be a set of ideals of R and let  $I = \bigvee S$ . If J is any ideal of R, we want to show that  $IJ = \bigvee \{I_iJ \mid i \in N\}$  and, since R is commutative, we would have the other equality  $JI = \bigvee \{JI_i \mid i \in N\}$ . To see this, let  $a \in IJ$ . Then  $a = \sum r_i s_i$  with  $r_i \in I$  and  $s_i \in J$ . Since each  $r_i$  is a finite sum of elements of  $\bigcup S$ ,  $r_i s_i$  is a finite sum of elements of  $\bigcup \{I_iJ \mid i \in N\}$ , so  $a \in \bigvee \{I_iJ \mid i \in N\}$ . This shows  $IJ \subseteq \bigvee \{I_iJ \mid i \in N\}$ . Conversely, if  $a \in \bigvee \{I_iJ \mid i \in N\}$ , then a can be written as a finite sum of elements of  $\bigcup \{I_iJ \mid i \in N\}$ . In turn, each of these additive components is a finite sum of products of the form  $r_k s_k$ , where  $r_k \in I_i$  for some i, and  $s_k \in J$ . As a result, a is a finite sum of elements of the form  $r_k s_k$ , so  $a \in IJ$  and we have the other inclusion  $\bigvee \{I_iJ \mid i \in N\} \subseteq IJ$ .

Finally, we observe that R is the multiplicative identity in L(R), as IR = RI = I for all  $I \in L(R)$ . This completes the proof.

**Remark**. In the above example, notice that  $IJ \leq I$  and  $IJ \leq J$ , and we actually have  $IJ \leq I \wedge J$ . In particular,  $I^2 \leq I$ . With an added condition, this fact can be characterized in an arbitrary quantale (see below).

**Properties**. Let Q be a quantale.

- 1. Multiplication is monotone in each argument. This means that if  $a, b \in Q$ , then  $a \leq b$  implies that  $ac \leq bc$  and  $ca \leq cb$  for all  $c \in Q$ . This is easily verified. For example, if  $a \leq b$ , then  $ac \vee bc = (a \vee b)c = bc$ , so  $ac \leq bc$ . So a quantale is a partially ordered semigroup, and in fact, an l-monoid (an l-semigroup and a monoid at the same time).
- 2. If 1 = 1', then  $ab \le a \land b$ : since  $a \le 1$ , then  $ab \le a1 = a1' = a$ ; similarly,  $b \le ab$ . In particular, the bottom 0 is also the multiplicative zero:  $a0 \le a \land 0 = 0$ , and 0a = 0 similarly.
- 3. Actually, a0 = 0a = 0 is true even without 1 = 1': since  $a\varnothing = \{ab \mid b \in \varnothing\} = \varnothing$  and  $0 := \bigvee \varnothing$ , we have  $a0 = a\bigvee \varnothing = \bigvee a\varnothing = \bigvee \varnothing = 0$ . Similarly 0a = 0. So a quantale is a semiring, if  $\vee$  is identified as + (with 0 as the additive identity), and  $\cdot$  is again  $\cdot$  (with 1' the multiplicative identity).
- 4. Viewing quantale Q now as a semiring, we see in fact that Q is an idempotent semiring, since  $a + a = a \lor a = a$ .
- 5. Now, view Q as an i-semiring. For each  $a \in Q$ , let  $S = \{1', a, a^2, \ldots\}$  and define  $a^* = \bigvee S$ . We observe some basic properties
  - $1' + aa^* = a^*$ : since  $1' \lor (a \lor S) = 1' \lor (\bigvee \{a1', aa, aa^2, \ldots\}) = \bigvee \{1', a, a^2, \ldots\} = \bigvee S = a^*$
  - $1' + a^*a = a^*$  as well
  - if  $ab \leq b$ , then  $a^*b \leq b$ : by induction on n, we have  $a^nb \leq b$  whenever  $a \leq b$ , so that  $a^*b = \bigvee \{a^nb \mid n \in \mathbb{N} \cup \{0\}\} \leq b$ .
  - similarly, if  $ba \leq b$ , then  $ba^* \leq b$

All of the above properties satisfy the conditions for an i-semiring to be a Kleene algebra. For this reason, a quantale is sometimes called a *standard Kleene algebra*.

6. Call the multiplication *idempotent* if each element is an idempotent with respect to the multiplication: aa = a for any  $a \in Q$ . If  $\cdot$  is idempotent and 1 = 1', then  $\cdot = \wedge$ . In other words,  $ab = a \wedge b$ .

*Proof.* As we have seen,  $ab \le a \land b$  in the 2 above. Now, suppose  $c \le a \land b$ . Then  $c \le a$  and  $c \le b$ , so  $c = c^2 \le cb \le ab$ . So ab is the greatest lower bound of a and b, i.e.,  $ab = a \land b$ . This also means that  $ba = b \land a = a \land b = ab$ .

7. In fact, a locale is a quantale if we define  $\cdot := \wedge$ . Conversely, a quantale where  $\cdot$  is idempotent and 1 = 1' is a locale.

Proof. If Q is a locale with  $\cdot = \wedge$ , then  $aa = a \wedge a = a$  and  $a1 = a \wedge 1 = a = 1 \wedge a = 1a$ , implying 1 = 1'. The infinite distributivity of  $\cdot$  over  $\vee$  is just a restatement of the infinite distributivity of  $\wedge$  over  $\vee$  in a locale. Conversely, if  $\cdot$  is idempotent and 1 = 1', then  $\cdot = \wedge$  as shown previously, so  $a \wedge (\bigvee S) = a(\bigvee S) = \bigvee \{as \mid s \in S\} = \bigvee \{a \wedge s \mid s \in S\}$ . Similarly  $(\bigvee S) \wedge a = \bigvee \{s \wedge a \mid s \in S\}$ . Therefore, Q is a locale.  $\square$ 

**Remark**. A quantale homomorphism between two quantales is a complete lattice homomorphism and a monoid homomorphism at the same time.

## References

[1] S. Vickers, *Topology via Logic*, Cambridge University Press, Cambridge (1989).