Dr. Denton Bobeldyk

CIS 365 Artificial Intelligence

Uncertainty in AI

Week in Review

Blackboard Check-in

Uncertainty in AI

- * Methods to cope with uncertainty:
 - * Fuzzy Logic
 - * Probability Theory

Uncertainty in AI - Fuzzy Sets

- * Crisp Sets:
 - * Standing = {x | x is a student standing in your class}
 - * Sitting = {y | y is a student sitting in your class}
- * The intersection of the two above sets is an empty set. A student belongs to one or the other.

 $Standing \cap Sitting = \emptyset$

Uncertainty in AI - Fuzzy Sets

Notation Note:

x such that x is a student standing in your class used for set notation

- * Crisp Sets:
 - * Standing = {x | x is a student standing in your class}
 - * Sitting = {y | y is a student sitting in your class}
- * The intersection of the two above sets is an empty set. A student belongs to one or the other.

 $Standing \cap Sitting = \emptyset$

Fuzzy Sets

- * Are you happy with your job?
- * Are you unhappy with your job?

Fuzzy Sets

It is possible to be Happy and Unhappy about your job at the same time

Uncertainty in AI

* What about concepts like 'tallness'? Is someone that is 5 foot, someone that would be considered tall?

Uncertainty in AI

Figure 8.2
Membership function for the set of tall people.

* Sample Space for an experiment S is the set of all possible outcomes

- * Sample space of flipping one coin = {H, T}
- * Sample space of flipping two coins = {(H,H), (H,T), (T, H), (T,T)}

- * Sample space of flipping one coin = {H, T}
- * Probability of Heads = 0.5
 - $P(H) = \{H, T\} = 0.5$
- * Probability of Tails = 0.5
 - $P(T) = \{H, T\} = 0.5$

- * Sample space of flipping two coins = {(H,H), (H,T), (T, H), (T,T)}
- * Probability of outcomes:
 - * $P(H,H) = \{(H,H), (H,T), (T,H), (T,T)\} = 1/4 = 0.25$
 - * $P(H, T) = \{(H, H), (H, T), (T, H), (T, T)\} = 1/4 = 0.25$
 - * $P(T, H) = \{(H,H), (H,T), (T,H), (T,T)\} = 1/4 = 0.25$
 - * $P(T, T) = \{(H,H), (H,T), (T,H), (T,T)\} = 1/4 = 0.25$

- * Rolling a single die
 - * What's the sample set?
 - * What's the probability that each event will occur?

- * Rolling a single die
 - * What's the sample set? {1, 2, 3, 4, 5, 6}
 - * What's the probability that each event will occur?
 - * $P(1) = \{1, 2, 3, 4, 5, 6\} = 1/6 = 16.67\%$
 - * $P(2) = \{1, 2, 3, 4, 5, 6\} = 1/6 = 16.67\%$
 - *

- * Rolling 2 dice
 - * What's the sample set?
 - * What's the probability that each event will occur?

- * Rolling 2 dice
 - * What's the sample set?
 - * {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
 - * (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
 - * (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
 - * What's the probability that each event will occur?

- * Rolling 2 dice:
 - P(1,1) =
 - * {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
 - * (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
 - * (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
 - * P(1,1) = P(Event/Number of items in sample space) = 1/36

- * Rolling a 2 dice:
 - * P(Sum of two dice = 4)
 - * {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
 - * (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
 - * (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
 - * P(Sum of two dice = 4) = ??

- * Rolling a 2 dice:
 - * P(Sum of two dice = 4)
 - * {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
 - * (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
 - * (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
 - * P(Sum of two dice = 4) = 3/36 = 8.3%

- * Probability Distribution for the sum of two dice is?
- * If we know the probability distribution, we can determine:
 - * What sum has the highest probability?
 - * What sum has the lowest probability?
 - * Cumulative distribution (i.e., what's the probability of rolling less than 8)

https://mathinsight.org/image/two_dice_distribution

Three basic axioms of probability:

- 1. For any event E: P(E) >= 0
- 2. P(S) = 1 where S is the sample space of an experiment
- 3. If the events E_1 and E_2 are mutually exclusive then $P(E_1 \cap E_2) = P(E_1) + P(E_2)$

Class Exercise

- * Probability Distribution for 1d6 and 2d6 have been covered
- * What is the sample space for:
 - * Rolling 1d4
 - * Rolling 2d4
- * What is the probability distribution:
 - * Rolling 1d4
 - * Rolling 2d4
 - * Rolling 3d4

- * Probability distribution
 - * Rolling 1d4
 - * Rolling 2d4
 - * Rolling 3d4
- * Given the following numbers, what is the probability that it came from each of the above distributions?
 - * 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

- * Distributions: 1d4, 2d4, 3d4
- * Given the following numbers, what is the probability that it came from each of the above distributions?
 - * 1:
 - * Probability of 1 Given 1d4 = ?
 - * Probability of 1 Given 2d4 = ?
 - * Probability of 1 Given 3d4 = ?

- * Distributions: 1d4, 2d4, 3d4
- * Given the following numbers, what is the probability that it came from each of the above distributions?
 - * 2:
 - * Probability of 2 Given 1d4 = ?
 - * Probability of 2 Given 2d4 = ?
 - * Probability of 2 Given 3d4 = ?

- * Distributions: 1d4, 2d4, 3d4
- * Given the following numbers, what is the probability that it came from each of the above distributions?
 - * Complete for each of the following numbers: 1 12

Completed Answer Next Slide

	1d4	2d4	3d4
1	25	0	0
2	25	6.25	0
3	25	12.5	1.6
4	25	18.75	4.7
5	0	25	9.4
6	0	18.75	15.6
7	0	12.5	18.8
8	0	6.25	18.8
9	0	0	15.6
10	0	0	9.4
11	0	0	4.7
12	0	0	1.6

Which distribution did it come from?

* Can we determine if given an outcomes what distribution it came from?

Bayesian Classifier - Which Distribution Generated the outcome?

Outcome	1d4	2d4	3d4
1	25	0	0
2	25	6.25	0
3	25	12.5	1.6
4	25	18.75	4.7
5	0	25	9.4
6	0	18.75	15.6
7	0	12.5	18.8
8	0	6.25	18.8
9	0	0	15.6
10	0	0	9.4
11	0	0	4.7
12	0	0	1.6

D4 Distributions

* Does a formula exist, if we know the number of d4 we are using, what the probability distribution is?

D4 Distributions

- * If a formula did exist, we could easily calculate the probability of an outcome given the number of d4's that were used.
- * For example, calculateD4Distribution(X, numberOfD4s)
 - * calculateD4Distribution(1, 1) = .25
 - * calcuateD4Distribution(1,2) = 0
 - * calcuateD4Distribution(2,2) = 6.25

The formula would return the values to the right

- * calculateD4Distribution(1, 1) = .25
- * calcuateD4Distribution(1,2) = 0
- * calcuateD4Distribution(2,2) = 6.25

Please note the X axis is slightly misaligned

The formula would return the values to the right

- * calculateD4Distribution(1, 1) = .25
- * calcuateD4Distribution(1,2) = 0
- * calcuateD4Distribution(2,2) = 6.25

Please note the X axis is slightly misaligned

No Parametric distribution like this exists!!
We could however write a program that statically returns a value based on a static mapping

- * No formula exists to determine the parametric distribution based on the number of d4's, however parametric distributions do exist, and one of those is the Gaussian distribution.
- * Gaussian distribution is determined by the mean (average sample) and standard deviation (how spread out the values are)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

 σ is the standard deviation for the distribution μ is the mean for the distribution π is a pre-defined constant e is a pre-defined constant

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Can relatively easily convert the above into a function that programmatically determines the probability of x occurring given a gaussian distribution defined by 2 parameters: μ , σ

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

calculateDistribution(x, average, standardDeviation)

What if we have more than one feature?

Pack all of the features into a 'feature vector'

What if we have more than one feature?

Pack all of the features into a 'feature vector'

For example: Height of an athlete

Just One feature!!

More than one feature would be: Height, Weight, Shoe size

Three Features!!

What if we have more than one feature? Pack all of the features into a 'feature vector'

For example: Height of an athlete

More than one feature would be: Height, Weight, Shoe size Data Representation

[70]

[70,200,13]

Multivariate Gaussian Distribution

$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^k |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu)\right)$$

```
\label{eq:covariance} \begin{tabular}{ll} Parameters: & x (np.array): The k-dimensional data point (column vector). & mu (np.array): The mean vector (column vector). & mu (np.array): The mean vector (column vector). & covarianceMatrix (np.array): The covariance matrix (k x k matrix). & covarianceMatrix_det = np.linalg.det(covarianceMatrix) & covarianceMatrix_inv = np.linalg.inv(covarianceMatrix) & norm_factor = 1.0 / np.sqrt((2 * np.pi) ** k * covarianceMatrix_det) & diff = x - mu & exponent = -0.5 * np.dot(np.dot(diff.T, covarianceMatrix_inv), diff) & return norm_factor * np.exp(exponent) & parameters: & x (np.array): The k-dimensional data point (column vector). & mu (np.array): The mean vector (column vector). & covarianceMatrix (np.array): The covariance matrix (k x k matrix). & diff = x - mu & di
```

import numpy as np

```
def multivariate_gaussian(x, mu, covarianceMatrix):
    k = len(mu)
    covarianceMatrix_det = np.linalg.det(covarianceMatrix)
    covarianceMatrix_inv = np.linalg.inv(covarianceMatrix)
    norm_factor = 1.0 / np.sqrt((2 * np.pi) ** k * covarianceMatrix_det)
    diff = x - mu
    exponent = -0.5 * np.dot(np.dot(diff.T, covarianceMatrix_inv), diff)
    return norm_factor * np.exp(exponent)

# Example usage:
```

Example usage: x = np.array([1.0, 2.0]) mu = np.array([0.0, 0.0]) covMatrix = np.array([[1.0, 0.5], [0.5, 1.0]])

Calculate the multivariate Gaussian value
result = multivariate_gaussian(x, mu, covMatrix)
print(result)

End Slide