3 2.8-2.9 - Column Space, Null space, Kank, and Nullity we've used a number of terms so far that hadn't previously been defined. First, we give those formal dets: 1 A subspace of IRn is any set H in IRn s.t. (a) õe H; (b) for all u, veH, n+veH; and (c) for all veH, cveH for all scalars ce IR. Ex: Which is a weather space of the indicated space? (i) A line through the origin in IR2? > yes! let y=mx. Then (0,0) on line, (b) if y=mx, 8 y=mxz eH, then y,tyz=mx,tmxz=m(x,txz)eH, and (c) If yMMx y=mx eH, then cy=c(mx)=m(cx)eH.

(ii) A line through the origin in IR3? Lyes (see above) (iii) A line not through the origin? by No. If y=mx+b, then (0,0) not in H: m(0)+b=b. (iv) A plane through the origin in 123? La lyes (v) The unit circle {(cos 6, sino): 05 05 27 in 12? L> No. This satisfies none of the criteria. (vi) span {vi/..., vp3 in IRn for any vi/..., vp. -> yes

(vii) {0} in IRM for any n. > Tyes

Def (contid)
3 A basts for a subspace H in IRM is a linearly
independent subset which settles spans H.
Ex: (i) $\{(b), (b)\}$ is a basts for $\mathbb{I}\mathbb{Z}^2$.
Ly clearly L.I. (not scalar multiples of each other)
$5pan = 12^2 ?$
15 Let 1x) = 12 he any nector, is (u) +
can I find Span ? (3), (9) ? HALLANDE Somet solution,
C1,C2 s.t. Howely (a) to your mannety
$(x) = c_1(0) + c_2(0)$?
How about $(4) \iff {\binom{x}{y}} = {\binom{C_1}{(2)}}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
_ 4
(iii) $\{\binom{6}{0}, \binom{6}{2}\}$ is, too!
Ly . L.I. as above.
(iii) {(b),(b)} or {(b),(i)} or {(b),(i)} or {(b),(b)} tool.
(for b, b, b2 7 0!)
(iv) {(i)}? -> yes!
$\left(0\right)\left\{\left(\frac{3}{4}\right),\left(\frac{2}{8}\right),\left(\frac{3}{9}\right)\right\}$ basis for $1R^3$? \longrightarrow No!

Def (Contid)

notation: dim(H)

- 3) The dimension of a nonzero subspace HMin 12n is the number of vectors in any basis for H.
 - (i) The dimension of IR^n is n. (e.g. $dim(IR^2)=2$, $dim(IR^3)=3$)
 - (ii) The dimension of a line through the origin = 1. Ly such a line is of form span 773 for some v.
 - (iii) dim (plane thru origin) = 2 (iv) dim (span \vi, \(\div\), \(\div\) = # of L.I. vectors in \(\vector\), \(\div\), \(\div\).

Now, we're going to relate these notions to some new subspaces we're going to define!

Def: The column space of a matrix A is set Col(A) of all linear combos of columns of A.

Ly . So, col(A) = span (v1, ..., vn) if A = (v1 -... | vn).

· By previous examples, col(A) is a subspace of IRM (it Vi,,,, V) EIRM).
i.e. if A = mxn.

Def: rank (A) =dim (Col(A)).

Ex: let
$$A = \begin{pmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$
.

(a) 15
$$\vec{b} = \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix} \in Col(A)? (A|b) \rightarrow \begin{pmatrix} 1 & -3 & -4 & 3 \\ 0 & -6 & -18 & 15 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

(b) Find a basis for col(A).

(b) Find a basis for
$$Col(AT)$$
.

A $Col(AT)$.

B $Col(AT)$.

Col(AT).

Col(AT).

Col(AT).

rank(A) = 2.

Def: The nullspace of a matrix A is the set Nul(A) of all solutions to the eq Ax = 0.

EX.
$$A = \begin{pmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -3 & -4 \\ -3 & 7 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$

This matrix is r.e. to

50
$$x_1 + 5x_3 = 0$$
 $x_1 = -5x_3$ $x_2 = -3x_3$ $x_3 = -3$ $x_3 = -3$ $x_3 = -3$

Hence, Nul(A) =
$$\{x_3(-\frac{5}{3}): x_3 \in \mathbb{R}^3\}$$

= span $\{\vec{v}, \vec{v}, \vec{v}\}$, where $\vec{v} = \begin{pmatrix} -5 \\ -3 \end{pmatrix}$.

Def: The Nullity of A is dim (Nul(A)).

Ex': For A as above,
$$Nul(A) = span \{\vec{v}\vec{y}\}$$
 for $\vec{v} = \begin{pmatrix} -\frac{5}{3} \\ -\frac{3}{3} \end{pmatrix}$ so nullity of $A = dim(Nul(A)) = 1$, as \vec{v} is a basis for $Nul(A)$.

37

To summarize: If A = mxn,

Ex; let
$$T(\vec{x}) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ -1 & 1 & -2 & 1 \end{pmatrix} \times from R^4 \rightarrow 1R^3$$
.

Note 1: A r.l. (1 0 0 -1/9) =>
$$\vec{V}_{4} = -\frac{1}{9}\vec{V}_{1} + \frac{14}{9}\vec{V}_{2}$$

+ $\frac{1}{3}\vec{V}_{3}$.
Subspace of \vec{V}_{1} \vec{V}_{2} \vec{V}_{3} \vec{V}_{4} => span \vec{v}_{1} , \vec{V}_{2} , \vec{V}_{3} , \vec{V}_{4}] = span \vec{v}_{1} , \vec{V}_{2} , \vec{V}_{3} , \vec{V}_{4}] = span \vec{v}_{1} , \vec{V}_{2} , \vec{V}_{3} .

>> remel (T) = span(v).

• Note 2:
$$Ax = 0$$
 $\angle 7$ $(A|0)$ r.e. $\begin{pmatrix} 1 & 0 & 0 & -1/q & 0 \\ 0 & 1 & 0 & 1/q & 0 \\ 0 & 0 & 1 & 1/3 & 0 \end{pmatrix}$
• Nul(A) = span $7\sqrt{3}$ where $\sqrt{3} = -\frac{11/q}{1/3}$ $\angle 3$ subspace of $12\sqrt{3}$

7 · Nullity = dim (Nul(4)) = 1.

Rank + Nullity Thm

If
$$A = mxn$$
, then

rank $(A) + nullity(A) = n$
 $A = mxn$, then

 $A = mxn$, then

Def: The row space of A is the set/lof all linear combinations of the rows of A. \iff row(A)=col(A^T) row(A^T)= col(A)

EX'.
$$A = \begin{pmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{pmatrix} \overrightarrow{v}_{2}$$
 \overrightarrow{v}_{3} $\overrightarrow{v}_{4} = 5pan ? \overrightarrow{v}_{1}, \overrightarrow{v}_{2}, \overrightarrow{v}_{3}$ \overrightarrow{v}_{3} $\overrightarrow{v}_{4} = 5pan ? \overrightarrow{v}_{1}, \overrightarrow{v}_{2}, \overrightarrow{v}_{3}$ $\overrightarrow{v}_{3} = 7$ $\overrightarrow{v}_{4} = 7$ $\overrightarrow{v}_{5} = 7$ $\overrightarrow{v}_$

Fact: If A r.e. B, then row(A)= row(B).] COLSPACE!

subspace of 1R3.

Observe: dim (row(A)) = 2 & dim(col(A)) = 2 (from before)

Theorem: Rank (A) = dim (row(A)) = dim(col(A)) = dim (row (AT))