Cryptography Lecture 5

Arkady Yerukhimovich

September 11, 2024

Outline

1 Lecture 4 Review

② Security of PRG+OTP (Chapter 3.3.3)

Lecture 4 Review

- PRGs
- Proofs by reduction

Outline

Lecture 4 Review

2 Security of PRG+OTP (Chapter 3.3.3)

Assumption: $G: \{0,1\}^n \rightarrow \{0,1\}^{l(n)}$ is PRG

Assumption: $G: \{0,1\}^n \rightarrow \{0,1\}^{l(n)}$ is PRG

Goal: Prove that $\Pi = PRG + OTP$ is secure

Proof:

Assumption: $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π (Pr[$PrivK_{A_c,\Pi}^{eav}(1^n)=1$] > 1/2+1/poly(n))
- Construct A_r that breaks G:

Assumption: $G: \{0,1\}^n \to \{0,1\}^{I(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT \mathcal{A}_c that breaks Π (Pr[$PrivK_{\mathcal{A}_c,\Pi}^{eav}(1^n)=1$] >1/2+1/poly(n))
- Construct \mathcal{A}_r that breaks G:

Intuition

• \mathcal{A}_r receives either $r \leftarrow \{0,1\}^{l(n)}$ or r = G(s)

Assumption: $G: \{0,1\}^n \rightarrow \{0,1\}^{l(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π $(\Pr[PrivK_{A,\Pi}^{eav}(1^n) = 1] > 1/2 + 1/poly(n))$
- Construct \hat{A}_r that breaks G:

- A_r receives either $r \leftarrow \{0,1\}^{l(n)}$ or r = G(s)
- IDEA: use r as mask to encrypt (i.e., $c = r \oplus m$)

Assumption: $G: \{0,1\}^n \to \{0,1\}^{I(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π (Pr[$PrivK^{eav}_{A_c,\Pi}(1^n)=1$] $>1/2+1/\mathsf{poly}(n)$)
- Construct \mathcal{A}_r that breaks G:

- \mathcal{A}_r receives either $r \leftarrow \{0,1\}^{l(n)}$ or r = G(s)
- IDEA: use r as mask to encrypt (i.e., $c = r \oplus m$)
- If $r \leftarrow \{0,1\}^{l(n)}$, Π is just OTP $(\Pr[\mathcal{A}_c \text{ WINS}] = 1/2)$

Assumption: $G: \{0,1\}^n \to \{0,1\}^{I(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT \mathcal{A}_c that breaks Π (Pr[$PrivK^{eav}_{\mathcal{A}_c,\Pi}(1^n)=1$] $>1/2+1/\mathsf{poly}(n)$)
- Construct \mathcal{A}_r that breaks G:

- \mathcal{A}_r receives either $r \leftarrow \{0,1\}^{l(n)}$ or $r = \mathcal{G}(s)$
- IDEA: use r as mask to encrypt (i.e., $c = r \oplus m$)
- If $r \leftarrow \{0,1\}^{l(n)}$, Π is just OTP $(\Pr[\mathcal{A}_c \text{ WINS}] = 1/2)$
- If r=G(s), Π is PRG+OTP (by assumption, $\Pr[\mathcal{A}_c \ \text{WINS}] > 1/2 + 1/\mathsf{poly}(n))$

Assumption: $G: \{0,1\}^n \to \{0,1\}^{I(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π (Pr[$PrivK_{A_c,\Pi}^{eav}(1^n)=1$] > 1/2+1/poly(n))
- Construct \hat{A}_r that breaks G:

- \mathcal{A}_r receives either $r \leftarrow \{0,1\}^{l(n)}$ or r = G(s)
- IDEA: use r as mask to encrypt (i.e., $c = r \oplus m$)
- If $r \leftarrow \{0,1\}^{l(n)}$, Π is just OTP ($\Pr[\mathcal{A}_c \text{ WINS}] = 1/2$)
- If r = G(s), Π is PRG+OTP (by assumption, $\Pr[\mathcal{A}_c \ \text{WINS}] > 1/2 + 1/\mathsf{poly}(n)$)
- A_r runs A_c generating challenge c using r, observes if A_c wins, and if so outputs "PRG".

PRG+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$
- Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$.
- If b=0, he chooses $r \leftarrow \{0,1\}^{l(n)}$; if b=1, he chooses $s \leftarrow \{0,1\}^n$, and computes r=G(s). He gives r to \mathcal{D} .
- \bullet On input r, the distinguisher $\mathcal D$ outputs a guess b'
- $PRG_{D,G}(n) = 1$ (i.e., D wins) if b' = b

PrivK4.0

- A outputs two messages $m_0, m_1 \in M$
- The challenger chooses k ← Gen, b ← {0,1}, computes
 c ← Enc_k(m_k) and gives c to A
- A outputs a guess bit b'
- f v We say that ${\sf Priv}{\sf K}^{\sf cav}_{{\cal A},\Pi}=1$ (i.e., ${\cal A}$ wins) if b'=b.

PRG+OTP Encryption

- Gen(1"): $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$ • Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $r \leftarrow \{0, 1\}^{r(n)}$; if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $\bullet \ \mathit{PRG}_{\mathcal{D},\mathit{G}}(\mathit{n}) = 1 \ \mathsf{(i.e.,} \ \mathcal{D} \ \mathsf{wins)} \ \mathsf{if} \ \mathit{b}' = \mathit{b}$

PrivK_{A,II}

- A outputs two messages m₀, m₁ ∈ M
- The challenger chooses k ← Gen, b ← {0,1}, computes c ← Enc_k(m_b) and gives c to A
- A outputs a guess bit b'
- ${\sf u}$ We say that ${\sf PrivK}^{\sf eav}_{{\cal A},\Pi}=1$ (i.e., ${\cal A}$ wins) if b'=b.

Assumption: $G: \{0,1\}^n \to \{0,1\}^{I(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

• Assume there exists PPT \mathcal{A}_c that breaks Π $(\Pr[PrivK_{\mathcal{A}_c,\Pi}^{eav}(1^n)] > 1/2 + 1/poly(n))$

PRG+OTP Encryption

- Gen(1"): $k \leftarrow \{0,1\}^n$
- Enc(k, m): c = G(k) ⊕ m
 Dec(k, c): m = G(k) ⊕ c

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $r \leftarrow \{0, 1\}^{r(n)}$; if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{\mathcal{D},G}(n)=1$ (i.e., \mathcal{D} wins) if b'=b

PrivK**

- A outputs two messages m₀, m₁ ∈ M
- The challenger chooses k ← Gen, b ← {0,1}, computes c ← Enc_k(m_b) and gives c to A
- A outputs a guess bit b'

 No arm that Driving Way 1 (i.e. 4 mins) if b'

 The second s
- w We say that $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1$ (i.e., \mathcal{A} wins) if b' = b.

Assumption: $G: \{0,1\}^n \to \{0,1\}^{I(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π $(\Pr[PrivK_{A_c,\Pi}^{eav}(1^n)] > 1/2 + 1/poly(n))$
- Construct A_r that breaks G:

PRG+OTP Encryption

- Gen(1ⁿ): k ← {0,1}ⁿ
 Enc(k, m): c = G(k) ⊕ m
- Enc(k, m): $c = G(k) \oplus m$ • Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b = 0, he chooses $r \leftarrow \{0,1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- \circ $PRG_{\mathcal{D},G}(n)=1$ (i.e., \mathcal{D} wins) if b'=b

PrivK_{A,П}

- ${f a}$ ${\cal A}$ outputs two messages $m_0, m_1 \in {\cal M}$
- The challenger chooses k ← Gen, b ← {0,1}, computes c ← Enc_k(m_b) and gives c to A
- A outputs a guess bit b'
 We say that PrivK^{ap}_{a,D} = 1 (i.e., A wins) if b' = b.
- We say that PrivK^{aav}_{A,Π} = 1 (i.e., A wins) if b' = b

Assumption: $G: \{0,1\}^n \to \overline{\{0,1\}^{I(n)} \text{ is PRG}}$ Goal: Prove that $\Pi = \mathsf{PRG} + \mathsf{OTP}$ is secure Proof:

- Assume there exists PPT \mathcal{A}_c that breaks Π $(\Pr[PrivK_{\mathcal{A}_c,\Pi}^{eav}(1^n)] > 1/2 + 1/\operatorname{poly}(n))$
- Construct A_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{l(n)}$ as its challenge (trying to tell if its random or G(s))

PRG+OTP Encryption

- Gen(1"): $k \leftarrow \{0,1\}^n$
- Enc(k, m): c = G(k) ⊕ m
 Dec(k, c): m = G(k) ⊕ c

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $r \leftarrow \{0,1\}^{l/n}$; if b=1, he chooses $s \leftarrow \{0,1\}^n$, and computes r=G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{\mathcal{D},G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

PrivK_{A,П}

- ${f a}$ ${\cal A}$ outputs two messages $m_0, m_1 \in {\cal M}$
- The challenger chooses k ← Gen, b ← {0,1}, computes
 c ← Enc_k(m_k) and gives c to A
- A outputs a guess bit b'
 We say that PrivK^{ap}_{a,D} = 1 (i.e., A wins) if b' = b.

Assumption: $G: \{0,1\}^n \to \overline{\{0,1\}^{I(n)} \text{ is PRG}}$ Goal: Prove that $\Pi = \mathsf{PRG} + \mathsf{OTP}$ is secure Proof:

- Assume there exists PPT \mathcal{A}_c that breaks Π $(\Pr[PrivK_{\mathcal{A}_c,\Pi}^{eav}(1^n)] > 1/2 + 1/\operatorname{poly}(n))$
- Construct A_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{l(n)}$ as its challenge (trying to tell if its random or G(s))
 - A_r runs A_c to get (m_0, m_1)

PRG+OTP Encryption

- Gen(1"): $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$ • Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b = 0, he chooses $r \leftarrow \{0,1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- On input r, the distinguisher \mathcal{D} outputs a guess b'
- \circ $PRG_{\mathcal{D},G}(n)=1$ (i.e., \mathcal{D} wins) if b'=b

PrivK_{A,П}

- ${f a}$ ${\cal A}$ outputs two messages $m_0, m_1 \in {\cal M}$
- The challenger chooses k ← Gen, b ← {0,1}, computes
 c ← Enc_k(m_k) and gives c to A
- A outputs a guess bit b'
 We say that PrivK^{ap}_{a,D} = 1 (i.e., A wins) if b' = b.

Assumption: $G: \{0,1\}^n \to \overline{\{0,1\}^{I(n)}}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π $(\Pr[PrivK_{A_c,\Pi}^{eav}(1^n)] > 1/2 + 1/poly(n))$
- Construct A_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{l(n)}$ as its challenge (trying to tell if its random or G(s))
 - A_r runs A_c to get (m_0, m_1)
 - \mathcal{A}_r chooses $b \leftarrow \{0,1\}$ and sets $c = r \oplus m_b$ (challenge)

PRG+OTP Encryption

- Gen(1"): $k \leftarrow \{0,1\}^n$
- Enc(k, m): c = G(k) ⊕ m
 Dec(k, c): m = G(k) ⊕ c

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b = 0, he chooses $r \leftarrow \{0,1\}^{\ell(n)}$; if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- On input r, the distinguisher \mathcal{D} outputs a guess b'
- $PRG_{\mathcal{D},G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

PrivK_{A,П}

- ${f a}$ ${\cal A}$ outputs two messages $m_0, m_1 \in {\cal M}$
- The challenger chooses k ← Gen, b ← {0,1}, computes
 c ← Enc_k(m_k) and gives c to A
- A outputs a guess bit b'
 We say that PrivK^{eav}_{AD} = 1 (i.e., A wins) if b' = b.

Assumption: $G: \{0,1\}^n \to \{0,1\}^{I(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure

Proof:

- Assume there exists PPT \mathcal{A}_c that breaks Π $(\Pr[PrivK_{\mathcal{A}_c,\Pi}^{eav}(1^n)] > 1/2 + 1/\operatorname{poly}(n))$
- Construct A_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{l(n)}$ as its challenge (trying to tell if its random or G(s))
 - A_r runs A_c to get (m_0, m_1)
 - A_r chooses $b \leftarrow \{0,1\}$ and sets $c = r \oplus m_b$ (challenge)
 - A_r gives c to A_c and gets bit b'

PRG+OTP Encryption

- Gen(1"): $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$ • Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b = 0, he chooses $r \leftarrow \{0,1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- \circ $PRG_{\mathcal{D},G}(n)=1$ (i.e., \mathcal{D} wins) if b'=b

PrivK_{A,П}

- $m{a}$ ${\cal A}$ outputs two messages $m_0, m_1 \in {\cal M}$
- The challenger chooses k ← Gen, b ← {0,1}, computes c ← Enc_k(m_b) and gives c to A
- A outputs a guess bit b'
 We say that PrivK^{ap}_{AP} = 1 (i.e., A wins) if b' = b.
- Assumption: $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure

Proof:

- Assume there exists PPT A_c that breaks Π $(\Pr[PrivK_{A_c,\Pi}^{eav}(1^n)] > 1/2 + 1/poly(n))$
- Construct A_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{l(n)}$ as its challenge (trying to tell if its random or G(s))
 - A_r runs A_c to get (m_0, m_1)
 - A_r chooses $b \leftarrow \{0,1\}$ and sets $c = r \oplus m_b$ (challenge)
 - A_r gives c to A_c and gets bit b'
 - A_r outputs 1 ("PRG") if b = b' and 0 otherwise

PRG+OTP Encryption

- Gen(1ⁿ): $k \leftarrow \{0,1\}^n$
- Enc(k, m): c = G(k) ⊕ m
 Dec(k, c): m = G(k) ⊕ c

$PRG_{D,G}(n)$

- The challenger chooses b ← {0,1}.
 If b = 0, he chooses r ← {0,1}^{f(n)};
 if b = 1, he chooses s ← {0,1}ⁿ, and computes r = G(s).
- ${\bf o}$ On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{D,G}(n) = 1$ (i.e., D wins) if b' = b

PrivK_{A,II}

- A outputs two messages $m_0, m_1 \in M$
- The challenger chooses $k \leftarrow \mathsf{Gen}, \ b \leftarrow \{0,1\},$ computes
- $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A
- A outputs a guess bit b'
- f w We say that ${\sf PrivK}^{\sf eav}_{{\cal A},\Pi}=1$ (i.e., ${\cal A}$ wins) if b'=b.

Need to analyze $Pr[A_r \text{ WINS}] (Pr[PRG_{A_r,G}(n) = 1])$

PRG+OTP Encryption

- Gen(1"): k ← {0,1}"
- Enc(k, m): $c = G(k) \oplus m$ Dec(k, c): m = G(k) ⊕ c

$PRG_{D,G}(n)$

- The challenger chooses b ← {0, 1} If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$: if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- On input r, the distinguisher D outputs a guess b' • $PRG_{\mathcal{D}, \mathcal{C}}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

PrivK4.0

- A outputs two messages m₀, m₁ ∈ M
- The challenger chooses k ← Gen. b ← {0,1}, computes
- $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A
- A outputs a guess bit b' • We say that $PrivK_{A,\Omega}^{eav} = 1$ (i.e., A wins) if b' = b.

Need to analyze $Pr[A_r \text{ WINS}]$ $(Pr[PRG_{A_r,G}(n)=1])$

- Case 1: $r \leftarrow \{0, 1\}^{l(n)}$
 - A_c receives $c = r \oplus m_b$ with $r \leftarrow \{0,1\}^{l(n)}$, this is just OTP

PRG+OTP Encryption

- Gen(1"): k ← {0,1}"
- Enc(k, m): $c = G(k) \oplus m$ • Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses b ← {0, 1} If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$: if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s).
- On input r, the distinguisher D outputs a guess b'
- $PRG_{\mathcal{D}, \mathcal{C}}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

- A outputs two messages m₀, m₁ ∈ M
- The challenger chooses k ← Gen. b ← {0,1}, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A
- A outputs a guess bit b'
- We say that $PrivK_{A,\Omega}^{eav} = 1$ (i.e., A wins) if b' = b.

Need to analyze $Pr[A_r \text{ WINS}]$ ($Pr[PRG_{A_r G}(n) = 1]$)

He gives r to \mathcal{D} .

- Case 1: $r \leftarrow \{0, 1\}^{l(n)}$
 - A_c receives $c = r \oplus m_b$ with $r \leftarrow \{0,1\}^{l(n)}$, this is just OTP
 - $\Pr[A_r(r) = 1] = \Pr[A_c \text{ outputs } b' = b] = 1/2$

PRG+OTP Encryption

- Gen (1^n) : $k \leftarrow \{0,1\}^n$
- Enc(k, m): c = G(k) ⊕ m
 Dec(k, c): m = G(k) ⊕ c

$PRG_{D,G}(n)$

- The challenger chooses b ← {0,1}.
 If b = 0, he chooses r ← {0,1}^{l(n)};
 if b = 1, he chooses s ← {0,1}ⁿ, and computes r = G(s).
- if b=1, he chooses $s \leftarrow \{0,1\}^n$, and computes r=G(s)He gives r to \mathcal{D} .
- On input r, the distinguisher D outputs a guess b'
 PRGD c(n) = 1 (i.e., D wins) if b' = b

PrivK_{A,II}

- A outputs two messages m₀, m₁ ∈ M
- The challenger chooses $k \leftarrow \text{Gen}, b \leftarrow \{0,1\}$, computes
- $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A• A outputs a guess bit b'
- We say that PrivK_{A,II} = 1 (i.e., A wins) if b' = b.

Need to analyze $Pr[A_r \text{ WINS}] (Pr[PRG_{A_r,G}(n) = 1])$

- Case 1: $r \leftarrow \{0,1\}^{l(n)}$
 - \mathcal{A}_c receives $c = r \oplus m_b$ with $r \leftarrow \{0,1\}^{l(n)}$, this is just OTP
 - $\Pr[A_r(r) = 1] = \Pr[A_c \text{ outputs } b' = b] = 1/2$
- Case 2: r = G(s)
 - A_c receives $c = r \oplus m_b$ with r = G(s), this is OTP+PRG

PRG+OTP Encryption

- Gen(1ⁿ): k ← {0,1}ⁿ
 Enc(k, m): c = G(k) ⊕ m
- Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses b ← {0, 1}.
 If b = 0, he chooses r ← {0, 1}^{l(n)};
 if b = 1, he chooses s ← {0, 1}ⁿ, and computes r = G(s).
 He gives r to D.
- On input r, the distinguisher D outputs a guess b'
 PRG_D G(n) = 1 (i.e., D wins) if b' = b

PrivK_{A,II}

- A outputs two messages m₀, m₁ ∈ M
- The challenger chooses $k \leftarrow \mathsf{Gen}, \ b \leftarrow \{0,1\},$ computes
- $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A• A outputs a guess bit b'
- We say that PrivK_{A,II} = 1 (i.e., A wins) if b' = b.

Need to analyze $Pr[A_r \text{ WINS}] (Pr[PRG_{A_r,G}(n) = 1])$

- Case 1: $r \leftarrow \{0,1\}^{l(n)}$
 - \mathcal{A}_c receives $c = r \oplus m_b$ with $r \leftarrow \{0,1\}^{l(n)}$, this is just OTP
 - $\Pr[A_r(r) = 1] = \Pr[A_c \text{ outputs } b' = b] = 1/2$
- Case 2: r = G(s)
 - A_c receives $c = r \oplus m_b$ with r = G(s), this is OTP+PRG
 - $\Pr[\mathcal{A}_r(r) = 1] = \Pr[\mathcal{A}_c \text{ outputs } b' = b] =$ = $\Pr[PrivK^{eav}_{\mathcal{A}_c,\Pi}(1^n) = 1] \ge 1/2 + 1/\operatorname{poly}(n)$

PRG+OTP Encryption

- Gen(1"): k ← {0,1}" • Enc(k, m): $c = G(k) \oplus m$
- Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses b ← {0, 1} If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$: if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- On input r, the distinguisher D outputs a guess b' • $PRG_{\mathcal{D}, \mathcal{C}}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

PrivK4.0

- A outputs two messages m₀, m₁ ∈ M
- The challenger chooses k ← Gen. b ← {0,1}, computes
- $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to AA outputs a guess bit b'
- We say that $PrivK_{A,\Omega}^{eav} = 1$ (i.e., A wins) if b' = b.

Need to analyze $Pr[A_r \text{ WINS}]$ $(Pr[PRG_{A_r,G}(n)=1])$

- Case 1: $r \leftarrow \{0, 1\}^{l(n)}$
 - A_c receives $c = r \oplus m_b$ with $r \leftarrow \{0,1\}^{l(n)}$, this is just OTP
 - $\Pr[\mathcal{A}_r(r) = 1] = \Pr[\mathcal{A}_c \text{ outputs } b' = b] = 1/2$
- Case 2: r = G(s)
 - A_c receives $c = r \oplus m_b$ with r = G(s), this is OTP+PRG
 - $\Pr[A_r(r) = 1] = \Pr[A_c \text{ outputs } b' = b] =$ $= \Pr[PrivK_{A_n}^{eav}(1^n) = 1] \ge 1/2 + 1/poly(n)$
- Summing these together, we get

$$\Pr[PRG_{A_r,G}(1^n) = 1] \geq 1/2 \cdot 1/2 + 1/2 \cdot (1/2 + 1/\text{poly}(n))$$

= 1/2 + 1/(2\text{poly}(n))

Contradiction!

Where Are We Now

- Features of PRG+OTP encryption
 - Can encrypt messages of arbitrary length, just need PRG with enough stretch.
 - Achieve security against an eavesdropper

Where Are We Now

- Features of PRG+OTP encryption
 - Can encrypt messages of arbitrary length, just need PRG with enough stretch.
 - Achieve security against an eavesdropper
- Limitations of PRG+OTP encryption
 - Can only see one encryption
 - If see two, can tell whether they are equal