

A LYAPUNOV ANALYSIS OF ACCELERATED METHODS IN OPTIMIZATION

Paper Representation

Supervisor: Prof. Samir Adly Student: CHAU Dang Minh

University of Limoges

Outline

1 Introduction

- 2 Bregman Lagrangians
- 3 Discretization
- 4 Derivation

Introduction

Scenerio

$$\min_{x \in \mathcal{X}} f(x),\tag{1}$$

where

- ullet $\mathcal{X} \in \mathbb{R}^d$ is a closed convex set,
- $f: \mathcal{X} \to \mathbb{R}$ is a continuously differentiable convex.

We use the standard Euclidean norm $\|x\|=rac{1}{2}\langle x,x\rangle.$

Discreteness and Continuality

- Early iterative optimization algorithms (Gradient Descent and Polyak's Momentum Acceleration) are intuitively interpretable.
- Nesterov's Acceleration is less intuitive

$$\begin{cases} x_k = y_{k-1} - s\nabla f(y_{k-1}) \\ y_k = x_k + \frac{k-1}{k+2}(x_k - x_{k-1}). \end{cases}$$
 (2)

- Continualized versions as ODEs are available.
- Current orientation: starting from an ODE and derive a family of discrete algorithms using Euler's methods.

Lagrangian mechanics and the Lagrangian

The Lagrangian $\mathcal{L}(X,V,t)$ is introduced ¹ as a framework to derive ODEs, where

- X = X(t) is the coordinate
- $V = \dot{X}(t)$ is the velocity
- $t \in \mathbb{R}$ is the time

The action in $[t_1, t_2]$ is $\mathcal{A}(X) = \int_{t_1}^{t_2} \mathcal{L}(X, V, t) \, \mathrm{d}t$. A trajectory X being a stationary function of \mathcal{A} solves the Euler-Lagrange equation

$$\frac{\partial \mathcal{L}}{\partial X} \mathcal{L}(X, V, t) = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial V} \mathcal{L}(X, V, t). \tag{3}$$

¹Wibisono, Andre, Ashia C. Wilson, and Michael I. Jordan. "A variational perspective on accelerated methods in optimization." proceedings of the National Academy of Sciences 113.47 (2016): E7351-E7358.

NAG's Lagrangian

The ODE associated to NAG ²

$$\ddot{X} + \frac{3}{t}\dot{X} + \nabla f(X) = 0 \tag{4}$$

has corresponding Lagrangian

$$\mathcal{L}(X, V, t) = t^3 \left(\frac{1}{2} \|V\|^2 - f(X) \right).$$
 (5)

Indeed,
$$\frac{\partial \mathcal{L}}{\partial X}\mathcal{L} = -t^3\nabla f(X)$$
, $\frac{\partial \mathcal{L}}{\partial V}\mathcal{L} = t^3V$ and $\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial \mathcal{L}}{\partial V}\mathcal{L} = 3t^2V + t^3\dot{V}$.

Hence $t^3\dot{X}=3t^2\dot{X}+t^3\ddot{X}$. Divide by t^3 and rearrange to get (4).

²Su, Weijie, Stephen Boyd, and Emmanuel J. Candes. "A differential equation for modeling Nesterov's accelerated gradient method: theory and insights." arXiv preprint arXiv:1503.01243 (2015).

Lagrangian

• We can also see that the standard Lagrangian

$$\mathcal{L}(X, V, t) = \frac{1}{2} \|V\|^2 - f(X)$$
 (6)

derives Polyak's acceleration with momentum $\beta = 1$.

- In (6), $\frac{1}{2}||V||^2$ is the kinetic energy and f(X) is the potential energy.
- Idea: generalizing this difference, proving convergence of the derived ODE, then discretizing and proving the convergence of iterative algorithms.

• The kinetic energy is generalized by the Bregman divergence

$$D_{y}(y,x) = h(y) - h(x) - \langle \nabla h(x), y - x \rangle, \tag{7}$$

where $h: \mathcal{X} \to \mathbb{R}$ is convex and smooth.

- Rescaling factors are added.
- The first Bregman Lagrangian is defined ³ by

$$\mathcal{L}(X,V,t) = e^{\alpha_t + \gamma_t} (D_h(X + e^{-\alpha_t}V,X) - e^{\beta_t}f(X)). \tag{8}$$

• When $h(x) = \frac{1}{2} ||x||^2$ and $Y = X + e^{-\alpha_t} V$ is near X, we recover a scaled kinetic energy

$$e^{\alpha_t + \gamma_t} D_h(X + e^{-\alpha_t} V, X) \approx e^{\alpha_t + \gamma_t} \frac{1}{2} \|Y - X\|^2 = e^{\gamma_t - \alpha_t} \frac{1}{2} \|V\|^2.$$

³Wibisono, Andre, Ashia C. Wilson, and Michael I. Jordan. "A variational perspective on accelerated methods in optimization." proceedings of the National Academy of Sciences 113.47 (2016): E7351-E7358.

Under ideal rescaling conditions

$$\dot{\gamma_t} = e^{\alpha_t} \text{ and } \dot{\beta^t} \le e^{\alpha_t},$$
 (9)

the first Bregman Lagrangian reduced to the ODE

$$\frac{\mathrm{d}}{\mathrm{d}t}\nabla h(X + e^{-\alpha_t}V) = -e^{\alpha_t + \beta_t}\nabla f(X). \tag{10}$$

Using a Lyapunov function, it is proven that for some $x^* \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x)$,

$$f(X(t)) - f(x^*) \le O(e^{-\beta_t}).$$
 (11)

The second Bregman Lagrangian is introduced ⁴ as

$$\mathcal{L}(X,V,t) = e^{\alpha_t + \beta_t + \gamma_t} (\mu D_h(X + e^{-\alpha_t}V,X) - f(X)). \tag{12}$$

The derived ODE under rescaling conditions (9) is more general than that of the first Bregman Lagrangian.

$$\frac{\mathrm{d}}{\mathrm{d}t}\nabla h(X+e^{-\alpha_t}V) = \dot{\beta}_t\nabla h(X) - \dot{\beta}_t\nabla h(X+e^{-\alpha_t}V) - \frac{e^{\alpha_t}}{\mu}\nabla f(X). \tag{13}$$

When $h(x) = \frac{1}{2}||x||^2$ and $\beta_t = \sqrt{\mu}t$, (13) is reduced to Polyak's momentum

$$\ddot{X} + 2\sqrt{\mu}\dot{X} + \nabla f(X) = 0.$$

⁴Wilson, Ashia C., Ben Recht, and Michael I. Jordan. "A Lyapunov analysis of accelerated methods in optimization." Journal of Machine Learning Research 22.113 (2021): 1-34.

Using the Lyapunov function

$$\mathcal{E}_t = e^{\beta_t} \left(\mu D_h(X + e^{-\alpha_t} V, X) + f(X) - f(X) \right) \tag{14}$$

with $x=x^*$, the inequality $\mathcal{E}_t \leq \mathcal{E}_0$ leads to the same convergence rate as that of the first Bregman Lagrangian

$$f(X(t)) - f(x^*) \leq O(e^{-\beta_t}).$$

To this point, we have two ODEs. Recalling (10)

$$rac{\mathrm{d}}{\mathrm{d}t}
abla h(X + e^{-lpha_t}V) = -e^{lpha_t + eta_t}
abla f(X).$$

Using $\alpha_t = \log p - \log t$, $\beta_t = p \log t + \log C$ and $\gamma_t = p \log t$ for some p > 0, we have

$$\frac{\mathrm{d}}{\mathrm{d}t}\nabla h(X+\frac{t}{\rho}V)=-C\rho t^{\rho-1}\nabla f(X).$$

Or

$$\begin{cases}
Z = X + \frac{t}{\rho} \dot{X} \\
\frac{\mathrm{d}}{\mathrm{d}t} \nabla h(Z) = -C \rho t^{\rho - 1} \nabla f(X)
\end{cases}$$
(15)

Let $t = \delta k$, now we discretize $x_k = X(t)$, $x_{k+1} = X(t+\delta) \approx X(t) + \delta \dot{X}_t$ and similarly for Z(t).

The first equation becomes

$$x_{k+1} = \frac{p}{k} z_k + \frac{k-p}{k} x_k$$

The second equations becomes

$$\nabla h(z_k) - \nabla h(z_{k-1}) = -C\rho \delta^{\rho} k^{\rho-1} \nabla f(x_k).$$

Equivalently,

$$abla_z(Cpk^{p-1}\langle \nabla f(x_k),z\rangle + rac{1}{\delta p}D_h(z,z_{k-1})) = 0.$$

Proving that the function taken gradient is convex, we can update

$$z_k = \operatorname*{argmin}_{z} \left\{ C p k^{p-1} \langle \nabla f(x_k), z \rangle + rac{1}{\delta^p} D_h(z, z_{k-1})
ight\}.$$

Unfortunately, it is proven that this algorithm is not stable.

Using the combination instead of the exponent

$$\begin{cases}
x_{k+1} = \frac{p}{k} z_k + \frac{k-p}{k} x_k \\
z_k = \underset{z}{\operatorname{argmin}} \left\{ Cp \binom{p+k-2}{p} \left\langle \nabla f(x_k), z \right\rangle + \frac{1}{\delta^p} D_h(z, z_{k-1}) \right\},
\end{cases} (16)$$

the algorithm is proven to converge with rate $O(1/(\delta k)^p)$.

The same implicit method is applied for ODE (13) and convergence is also guaranteed. However, solving for z_k is as difficult as the original problem. Hence we consider cases where explicit discretization arrives at reasonable convergence rate.

Use an extrapolating sequence (y_k) , there are two possible updates. For example with ODE (10)

$$\begin{cases} x_{k+1} = \beta_k z_k + (1 - \beta_k) y_k \\ \nabla h(z_{k+1}) = \nabla h(z_k) - \delta \alpha_k \nabla f(y_{k+1}), \end{cases}$$
(17)

$$\begin{cases} x_{k+1} = \beta_k z_k + (1 - \beta_k) y_k \\ \nabla h(z_{k+1}) = \nabla h(z_k) - \delta \alpha_k \nabla f(x_{k+1}). \end{cases}$$
 (18)

Using Lyapunov's method with appropriate conditions, convergence rate $O(1/(\delta k)^p)$ is guaranteed.

Derivation

Derivations

Difference choices of (y_k) reveal published algorithms. For example

Acceleration of gradient descent (plugged to (17)) ⁵

$$y_{k+1} = \underset{y}{\operatorname{argmin}} \left\{ f(x_{k+1}) + \langle \nabla f(x_{k+1}), y - x_{k+1} + \frac{1}{2\nu} \|y - x_{k+1}\|^2 \rangle \right\}.$$

Acceleration of tensor methods ⁶

$$y_{k+1} = \underset{y}{\operatorname{argmin}} \left\{ \sum_{t=0}^{p-1} \frac{1}{i!} \nabla^i f(x) (y-x)^i + \frac{1}{p\nu} ||x-y||^p \right\}.$$

⁵Nesterov, Yurii. Introductory lectures on convex optimization: A basic course. Vol. 87. Springer Science & Business Media, 2013.

 $^{^6}$ Nesterov, Yu. "Accelerating the cubic regularization of Newton's method on convex problems." Mathematical Programming 112.1 (2008): 159-181.

Conclusion and Future Work

- The concerned paper revisits Lagrangians as generalized of the difference between the kinetic energy and the potential energy
- The aim is to unify some know algorithms and provide a framework for algorithm design.
- A new Lagrangian is introduced.
- It may require the elaboratively derivations to specific algorithms.

Thank you for listening!