

Database Management

BU.330.770

Session 1

Instructor: Changmi Jung, Ph.D.

Session Objectives

- >>> Understand why we use database
- >> Define database terms
- >>> Identify the purpose of a database management system (DBMS)
- >>> Explain and practice database design using Entity-Relationship Models and normalization

What is Database?

What is Database Management?

First, Why Databases?

- >>> Characteristics of data in today's world
 - Ubiquitous (i.e., abundant, global, and everywhere)
 - Pervasive (i.e., unescapable, prevalent, and persistent)
- >>> What kind of data did you generate yesterday?
- Databases make data persistent and shareable in a secure way
 - Specialized structures that allow computer-based systems to store, manage, and retrieve data very quickly

Data vs. Information vs. Knowledge

- >>> Data consists of raw facts
 - Not yet processed to reveal meaning to the end user
 - Building blocks of information
- >>> Information results from processing raw data to reveal meaning
 - Requires context
 - Bedrock of knowledge
 - Should be accurate, relevant, and timely

Data vs. Information vs. Knowledge

a) Data entry screen

c) Information in summary format

Rank	COUNT	%/INFS	TOT/COL	%/COL. TOT.	%/COL. FAC.
Adjunct	5	20.00%	23	21.74%	3.27%
Assistant Professor	2	8.00%	28	7.14%	1.31%
Associate Professor	9	36.00%	37	24.32%	5.88%
Instructor	2	8.00%	18	11.11%	1.31%
Professor	7	28.00%	47	14.89%	4.58%

b) Raw data

ld LastName	MidName	FirstName	DeptCod	le Office	[Email	Rank	HireYear Degree
1 Washinghto	ıA.	George	MOMT	Nt35	gwashington@mtsu.edu	Professor	2001 Ph.D.
2 Adams		John	EIN	N313	jedens@mtsu.edu	Professor	1984 Ph.D.
3 Jefferson	L	Thomas	ECON		Setterson@mtsu.edu	Instructor	2002 M.B.A.
4 Madison	0.	James	FIN	14236	jmodison@mlswedu	Associate Professor	1994 Ph.D.
5 Monton	N.	James	ACCT	19411	ymonroe@mtsu.edu	Assistant Professor	1995 Ph.D.
8 Adems	0.	John	ACCT	14418	igadams⊗mtsu edu	Associate Professor	1989 Ph.D.
7 Jackson	C	Andresi	ECON.	N303	ajackson@mtsu.edu	Associate Professor	1999 Ph.D.
8 Van Buren	T	Modin	FIN	N306	mvenburen@mtsu.edu	Professor	1988 Ph.D.
9 Harsion	R.	William	MICTG	N1118	oftenison@mtsu.edu	Professor	1994 Ph.D.
10 Tyler	M	John	MGMT		Jtyfor@mtou.eciu	Assistant Professor	2000 EdD.
11 Polk		Cheryl	MCTG	19840	cpolk@wisu.edu	Associate Professor	2002 Ph.D.
12 Taylor	G	Zachary	ACCT	19415	rteylor@wtsu adu	Associate Prefessor	1996 Ph.D.
13 Eilmore		Millard	JCB	14219	mfillmore@mtss.edu	Professor	1992 Ph.D
14 Pierce	A	Frenklin	MKTG	14358	pherklin@mtsu.edu	Instructor	2005 MBA
15 Buchesen	T.	Jerres	MGMT.	NII-86	Buchenen@mtsu.edu	Associets Prefessor	1986 D.B.A.
17 Lincoln	56	Letty	MGMT	N150	filmcoln@mtsu.edu	Associate Professor	1996 Ph.D
18 Johnson		Andrew	#SYS	N350	ajohnson/Pmlsa.edu	Professor	1987 Ph.D.
19 Grent		Kelio	MKTG	N120	kgrent@mtss.edu	Assistant Professor	1989 D.B.A.
20 Ratherford		Heyes	ACCT	14436	hruthertent/Grintss edu	Professor	1992 Ph.D.
21 Grefield	T.	Denise	ACCT		dgerfield@mtsu edu	Assistant Professor	2018 Ph.O.
22 Arthur		Emly	ACCT	19413	eorthur@mtsu.edu	Associate Professor	2003 J.D.
23 Cleveniand	6.	Rigisert.	ACCT	19401	rdieveland@mtsu.edu	Associate Professor	1997 Ph.D.
24 Horison	×	Patricia .	BULA	14406	phenison@msu.edu	Associate Professor	2001 J.D.
25 McKinley	B.	Priscillo.	ISYS .	N363	prickinley@mtsu.edu	Adjunct	1994 M.S.
26 Proosevelt	F.	Hillory	MGMT	NI04	hroosevelt/dimitsu.edia	Associate Professor	2002 Ph.D.
27 Wilson		Louro	BCEN	19448	lwilson@mtsu.edu	Professor	1992 Ph.D.
28 Harding		Worten	MKTQ:	NI114	whereing@mtsu.edu	Professor	1984 EdD
29 Coolidge		Cohin	ECON	14816	cocolidge@mtsu.edu	Professor	1975 Ph.D.
30 Hoover		Lice	MONT		ProgverSimtou eds	Adjunct	1978 MBA
31 Trumen		Betv	ACCT	19116	btrumer@mtsu.edu	Professor	1971 EdD
32 Johnson		Robert	BCEN	N246	notnson/Simtsuedu	Professor	2001 Ph.D.

d) Information in graphical format

Assistant Professor

Associate Professor II Instructor

Adjunct

Database Management System (DBMS)

DBMS presents the end user (or application program) with a single, integrated view of the data in the database

Database vs. File system

Advantage of Using DBMS

- >> Improved data sharing
- >> Improved data security
- >>> Better data integration
- Minimized data inconsistency
- >> Improved data access
- >> Improved decision making
- >>> Increased end-user productivity

Database Management System Function

- >>> Data storage: manage the physical structure of the database
- >>> Security: control user access and privileges
- >>> Multiuser access: manage concurrent data access
- >>> Backup: enable recovery options for database failures
- >>> Data access language: provide a language that allows database access
- >>> Data integrity: enable constraints or checks on data
- >>> Data dictionary: maintain information about database structure

So... Database and DBMS is...

- >>> Database is a logical structure to store data
- >>> Database Management is an act/activity of creating, storing, organizing, handling of database
- Database Management System (DBMS) is a software used to create and interact with the database

Database Terminology

Database Components

- Character
- Field (attribute)
- Record (row)
- File (table)

Component – Character

- >>> Basic unit of data
- >>> Can be a letter, number, or special symbol

Image: https://instapage.com/blog/sign-up-page

Component – Field

- >>> A group of related characters
- >>> Represents an attribute or characteristic of an entity
- >>> Corresponds to a column in the physical database

Customer ID	First name	Last name	Address	Sign-up date	
000001	Changmi	Jung	1234 Carey Dr	Dec-25-2020	
000002	Harry	Potter	2345 Owl Ln	Jan-10-2021	
000003	Gummy	Bear	3456 Rainbow Ct	Feb-01-2022	
				::	

Component – Record

- >>> A collection of fields for one specific entity
- >>> Corresponds to a row in the physical database

Customer ID	First name	Last name	Address	Sign-up date	
000001	Changmi	Jung	1234 Carey Dr	Dec-25-2020	
000002	Harry	Potter	2345 Owl Ln	Jan-10-2021	
000003	Gummy	Bear	3456 Rainbow Ct	Feb-01-2022	
•••					

Component – File

- >>> A group of records about the same type of entity (such as customer file or inventory file)
- >>> We call it table

Customer File (Table) <

Customer ID	First name	Last name	Address	Sign-up date	
000001	Changmi	Jung	1234 Carey Dr	Dec-25-2020	
000002	Harry	Potter	2345 Owl Ln	Jan-10-2021	
000003	Gummy	Bear	3456 Rainbow Ct	Feb-01-2022	
				::	

Example of Components

>>> Database: a Collection of interrelated files (tables)

Database Design

- >>> Systems Development Life Cycle (SDLC)
- >>> Entity-Relationship model (E-R model)
- Normalization

Systems Development Life Cycle (SDLC)

- >>> Systems investigation understanding the problem
- >>> Systems analysis understanding the solution
- Systems design defining the logical and physical components
- Systems implementation creating the system and placing completed system into operation
- Systems maintenance and review evaluating the implemented system

Applying SDLC to Database

BabyBoba has 40 stores across 6 states in the US. The company does not have any customer information yet, and they want to understand and use the information for a promotional campaign or mobile order later.

- >>> Systems investigation No idea about their customers, thus unable to analyze them to for a promotion
- >>> Systems analysis Need to create a table or database to collet customer and other relevant data
- Systems design Define the table relations, identify necessary data attributes for each table (customer id, name, location, order, etc.)
- >>> Systems implementation create 'Customer' table (and other tables), run with test data, deploy, and start collecting the data
- >>> Systems maintenance and review evaluate if data types/values are correct, if more data fields are needed, etc.

Entity-Relationship Model (E-R Model / ERD)

- >>> Identifies the relationship among entities in the database
 - Office 401 (Office table) is occupied by Instructor John Wick (Instructor table)
- >>> The following relationships can be included in an E-R model:
 - One-to-one
 - One-to-many
 - Many-to-many

Wait, what is an entity?

Entity: what each row represents in a table

Ex. Offices, Instructors, Classes, and

Students in the tables below

One-to-One Relationship

- >>> Each occurrence of data (record) in one table is represented by only one occurrence of data in the other table, and vice versa
- >>> Example: Each individual has just one Social Security number (SSN), and each SSN is assigned to just one person

One-to-Many Relationship

- >>> Each occurrence of data in one table can be represented by many occurrences of the data in the other table
- >>> Example: A class has only one instructor, but each instructor can teach many classes

Instructor Class

First Name	Last Name	Office	Class Code	Name	Classroom
Changmi	Jung	HE 1331	330.770.51	Database Management	DC 101
Minghong	Xu	HE 1321	330.780.51	Data Science and	DC 102
Tony	Stark	DC 123		Business Intelligence	
			330.999.51	Al and Jarvis	DC 103

Many-to-Many Relationship

- Multiple records in one table can relate to multiple records in another table.
- >>> Example Student course enrollment: A student can take many classes, and each class is composed of many students
- >> Need to be reduced to a set of One-to-Many relationships

Instructor Students

First Name	Last Name	Office		Student ID	First Name	Last Name
Changmi	Jung	HE 1331		A123456789	Peter	Parker
Minghong	Xu	HE 1321	\rightarrow	B123456709	Ron	Weasly
Tony	Stark	DC 123		B123456789	Hermione	Granger

Simple E-R Model Example: 'JustLee' Books

Simple and Rudimentary ERD

- ——— Mandatory relationship: there must be a matched relation for all records
- Optional relationship: some records may not have any matching records in the other table

Database Normalization

- >>> Determines required tables and columns for each table
- >>> Multistep process
- >>> Used to reduce or control data <u>redundancy</u> and data <u>anomalies</u>

Database Redundancy and Anomalies

- Data redundancy refers to having the same data in different places within a database
- >>> Data anomalies refers to data inconsistencies

TABLE 1-1 Single-Table Approach Example

Last Name	First Name	City	State	Zip	Order Date	Order#
Jones	Pat	Norfolk	VA	24553	3/22/2009	45720
Jones	Pat	Norfolk	VA	24553	5/28/2009	48243
Jones	Pat	Suffolk	VA	26544	9/05/2009	51932

Is the third Pat Jones a different customer...?

The same Pat Jones may have moved to Suffolk, VA...?

Someone may have incorrectly entered the city information...?

Unnormalized Data

- >>> Contains repeating entries in the Author column in the BOOKS table
 - Repeating entries (group): multiple entries in a single column

TABLE 1-2 ISBN as the Primary Key

ISBN	Title	Publication Date	Cost	Retail	Category	Publisher	Contact	Author
8843172113	Database Implementation	04-JUN-03	31.40	55.95	Computer	American Publishing	Davidson	T. Peterson, J. Austin, J. Adams
1915762492	Handcranked Computers	21-JAN-05	21.80	25.00	Computer	American Publishing	Davidson	W. White, L. White

Natural key

Repeating entries

Then, what is a surrogate key or artificial key?

First-Normal Form (1NF)

>>> Primary key is identified

• ISBN is the natural primary key in the previous example, but...

>>> Repeating entries are eliminated

- Each attribute contains only atomic values of the domain
- Ex. Attribute 'Author' of one record contains only one author's name

First-Normal Form (1NF) (continued)

Publication Cost Retail Category Publisher Contact

ISBN

Title

>>> ISBN and Author columns together create a composite primary key

		Date									
8843172113	Database Implementation	04-JUN-03	31.40	55.95	Computer	American Publishing	Davidson	T. Peters J. Austin J. Adams	,		
1915762492	Handcranked Computers	21-JAN-05	21.80	25.00	Computer	American Publishing	Davidson	W. White L. White	÷,		
ISBN	Title		Public Date	ation	Cost	Retail	Categ	ory P	ublisher	Contact	Author
88431721	13 Database Impleme		04-JUI	N-03	31.40	55.95	Compu		merican ublishing	Davidson	T. Peterson
88431721	13 Database Impleme		04-JU	N-03	31.40	55.95	Compt		merican ublishing	Davidson	J. Austin
88431721	13 Database Impleme		04-JUI	N-03	31.40	55.95	Сотр		merican ublishing	Davidson	J. Adams
19157624	92 Handera Comput		21-JAN	N-05	21.80	25.00	Compu		merican ublishing	Davidson	W. White
19157624	92 Handera Compute		21-JAN	N-05	21.80	25.00	Compu		merican ublishing	Davidson	L. White

No repeating entries!

Composite Primary Key

- >> More than one column is required to uniquely identify a row
- May lead to partial dependency the fields in a record depend on only a portion of the composite primary key

ISBN	Title	Publication Date	Cost	Retail	Category	Publisher	Contact	Author
8843172113	Database Implementation	04-JUN-03	31.40	55.95	Computer	American Publishing	Davidson	T. Peterson
8843172113	Database Implementation	04-JUN-03	31.40	55.95	Computer	American Publishing	Davidson	J. Austin
8843172113	Database Implementation	04-JUN-03	31.40	55.95	Computer	American Publishing	Davidson	J. Adams
1915762492	Handcranked Computers	21-JAN-05	21.80	25.00	Computer	American Publishing	Davidson	W. White
1915762492	Handcranked Computers	21-JAN-05	21.80	25.00	Computer	American Publishing	Davidson	L. White

Second-Normal Form (2NF)

- >>> Eliminate Partial dependency
 - : Break the composite primary key into two parts, each part representing a separate table

ISBN	Title	Publication Date	Cost	Retail	Category	Publisher	Contact	Author
8843172113	Database Implementation	04-JUN-03	31.40	55.95	Computer	American Publishing	Davidson	T. Peterson
8843172113	Database Implementation	04-JUN-03	31.40	55.95	Computer	American Publishing	Davidson	J. Austin
8843172113	Database Implementation	04-JUN-03	31.40	55.95	Computer	American Publishing	Davidson	J. Adams
1915762492	Handeranked Computers	21-JAN-05	21.80	25.00	Computer	American Publishing	Davidson	W. White
1915762492	Handcranked Computers	21-JAN-05	21.80	25.00	Computer	American Publishing	Davidson	L. White

Second-Normal Form (2NF) (continued)

>> 'BOOKS' table in 2NF

ISBN	Title	Publication Date	Cost	Retail	Category	Publisher	Contact
8843172113	Database Implementation	04-JUN-03	31.40	55.95	Computer	American Publishing	Davidson
1915762492	Handcranked Computers	21-JAN-05	21.80	25.00	Computer	American Publishing	Davidson

>>> Create a separate 'Authors' table

Author ID	Last name	First name	
A00001	Peterson	Tim	
A00002	Austin	James	
A00003	Adams	Justin	

'Author' field removed

Then, how do we connect BOOKS and AUTHORS?

Third-Normal Form (3NF)

- >>> Eliminate **Transitive Dependencies**
 - Transitive dependency: at least one field in the record is not dependent on the primary key but on another field in the record
- >>> Create a separate table, PUBLISHER
- Publisher's contact name has been removed

ISBN	Title	Publication Date	Cost	Retail	Category	Publisher	Contact
8843172113	Database Implementation	04-JUN-03	31.40	55.95	Computer	American Publishing	Davidson
1915762492	Handcranked Computers	21-JAN-05	21.80	25.00	Computer	American Publishing	Davidson

PUBLISHER

Publisher ID	Publisher name	Contact	Address
00001	American Publishing	Davidson	
00002	Magical World	Severus Snape	

Summary of Normalization Steps

- >>> 1NF: eliminate repeating entries, identify a primary key (or composite primary key)
- >> 2NF: table is in 1NF, and partial dependencies are eliminated
- >> 3NF: table is in 2NF, and transitive dependencies are eliminated

	1NF	2NF	3NF
No Repeating entries	Yes	Yes	Yes
Primary key identified	Yes	Yes	Yes
No Partial Dependency		Yes	Yes
No Transitive Dependency			Yes

Practice Normalization

>>> Create 1NF of the Project_Resource table

Pr	oj_Num	Project_Name	Emp_Num	Emp_Name	Job_Class	Chg_Hour	Hours
	15	Evergreen	103, 101, 105, 106, 102	June E. Arbough, John G. News, Alice K. Johnson, William Smithfield, David H. Senior	Elec Engineer, Database Designer, Database Designer, Programmer, System Analyst	85.5, 105, 105, 35.75, 98.75	23.8, 19.4, 35.7, 12.6, 23.8
	18	Amber Wave	114, 118, 104, 112		Application Designer, General Support, Systems Analyst, DSS Analyst	48.1, 18.36, 96.75, 45.95	25.6, 45.3, 32.4, 45
	22	Rolling Tide	105, 104, 113, 111, 106	Alice K. Johnson, Anne K. Ramoras, Delbert K. Joenbrood, Geoff B. Wabash, William Smithfield	Analyst Anniications	105, 96.75, 48.1, 26.87, 35.75	65.7, 48.4, 23.6, 22, 12.8
	25	Star Light	107, 115, 101, 114, 108, 118, 112	Maria D. Alonzo, Travis B. Bawangi, John G. News, Annelise Jones, Ralph B. Washington, James J. Frommer, Darlene M. Smithson	Programmer, Systems Analyst, Database Design, Applications Designer, Systems Analyst, General Support, DSS Analyst	35.75, 96.75, 105, 48.1, 96.75, 18.36, 45.95	25.6, 45.8, 56.3, 33.1, 23.6, 30.5, 41.4

Download file 'Project_Resource.xlsx' on Canvas > Week 1

Practice Dependency Diagram

1NF (PROJ_NUM, EMP_NUM, PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOURS, HOURS)

PARTIAL DEPENDENCIES:

(PROJ_NUM PROJ_NAME)
(EMP_NUM EMP_NAME, JOB_CLASS, CHG_HOUR)

TRANSITIVE DEPENDENCY:

(JOB_CLASS — CHG_HOUR)

Let's eliminate the Partial Dependencies First!

Practice 2NF Result

Practice 3NF Result

Table name: PROJECT

PROJECT (PROJ_NUM, PROJ_NAME)

Table name: EMPLOYEE

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS)

Table name: ASSIGNMENT

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Let's go back to 'JustLee Books' example

>> After normalization, we will have multiple tables

BOOKS table

ISBN	Title	Publication date	Cost	Retail	Category	Pub ID
88431721 13	Database Implementation					1
19157624 92	Handcranked Computers					1

Publisher table

Pub ID	Name	Contact
1	American Publishing	Davidson
2	Cengage	

Author table

Author ID	Last name	First name	
00001	••••		
00002			

Customer table

Customer ID	Last name	First name	City	State	Zip
00001	••••	•••			
00002					

Order table

Order#	Customer ID	Order date	Ship date	:	•••
00001	••••	•••			
00002					

And some other tables

Now, how to relate them?

Relating Tables within the Database

- >>> Once tables are normalized, ensure tables are linked
- >>> Tables are linked through a common field
- >>> A common field is usually a primary key in one table and a foreign key in the other table

The foreign key appears in the "many" side of a one-to-many relationship.

Bridging Entity

- A many-to-many relationship cannot exist in a relational database. The most common way to eliminate it is to create two 'one-to-many' relationships by adding a bridging entity.
- Placed between two entities with many-to-many relationship and serve as a filter for the data

After Normalization: JustLee Books ERD

Lookup Table

>>> Common reference for descriptive data tables referenced in a foreign key

You may create Book Category Table

Category Code	Category Description
10	Computer
20	Cooking
30	Business
40	Family Literature

Select type of dish *

Assuming each book will be included in only one category.

Structured Query Language (SQL)

>>> Data sublanguage

 A computer language that defines/manipulates the structure or content of DB in RDBMS

>> Used to:

- Create or modify tables
- Add data to tables
- Edit data in tables
- Retrieve data from tables
- >>> ANSI and ISO standards

Textbook Database – JustLee Books

- Assumptions
 - No back orders or partial shipments
 - Only U.S. addresses
 - Completed orders are transferred to the annual SALES table at the end of each month to enable faster processing on the ORDERS table

>>> Details of each table are found in Casteel page 14 – 16.

Summary (1/3)

- >>> A DBMS is used to create and maintain a database
- >>> A database is composed of a group of interrelated tables
- >>> A file is a group of related records; a file is also called a table in the physical database
- >>> A record is a group of related fields regarding one specific entity; a record is also called a row

Summary (2/3)

- >> A primary key is used to uniquely identify each record
- A record is considered unnormalized if it contains repeating entries
- >>> A record is in first-normal form (1NF) if no repeating entries exist and it has a primary key
- >>> Second-normal form (2NF) is achieved if the record is in 1NF and has no partial dependencies
- >>> After a record is in 2NF and all transitive dependencies have been removed, then it is in third-normal form (3NF), which is generally sufficient for most databases

Summary (3/3)

- A common field is used to join data contained in different tables
- >>> A foreign key is a common field that exists between two tables but is also a primary key in one of the tables
- A lookup table is a common term for a table referenced in a foreign key
- >>> A Structured Query Language (SQL) is a data sublanguage that navigates the data stored within a database's tables

Next Week

- >>> Starting SQL Exercise with SQL Developer
- >>> Use the link from Oracle's email to sign up for your Oracle Cloud Account! If you're asked to provide your payment information, you did not use the provided link.
- >>> Download and install **SQL Developer** before joining the class.
- We will create Oracle DB on the cloud and connect it with SQL Developer in the classroom
- ≫ Quiz 1: about 10 12 multiple-choice questions. More details will be posted on the Course Announcements.

Let's Check Our Knowledge!

