Questions:	Answers:
1. Translate the following into predicate calculus. For each answer, also state your assumed universe of discourse.	a) Let A(x) represent "x was an ancient Roman," and K(x) represent "x tried to kill Caesar." Let L(x) represent "x is loyal to Caesar."
	$\forall x (A(x) \land K(x) \rightarrow \neg L(x))$ Assumed universe of discourse: All individuals.
a) "Anyone who was an ancient Roman and tried to kill Caesar was not loyal to Caesar."	b) Let C(x) represent "x is a cat" and F(x) represent "x is female." Let H(x) represent "x is calico."
b) "All cats which are calico, are female."	$\forall x((C(x) \land H(x)) \rightarrow F(x))$ Assumed universe of discourse: All animals.
c) "Some Texans have never left the state of Texas."	c) Let $T(x)$ represent "x is a Texan" and $L(x)$ represent "x left the state of Texas."
	$\exists x (T(x) \land \neg L(x))$
	Assumed universe of discourse: All individuals.
2. A universe contains the three individuals a, b, and c. For these individuals, a predicate Q(x, y) is defined, and its truth values are given by the following table:	a) $\forall x \exists y Q(x,y)$ $Q(a,a) \lor Q(a,b) \lor Q(a,c)$ $Q(b,a) \lor Q(b,b) \lor Q(b,c)$ $Q(c,a) \lor Q(c,b) \lor Q(c,c)$
given by the following table.	$Q(a,a) \lor Q(a,b) \lor Q(a,c)$ $T \lor F \lor T = T$
x\y a b c a T F T	$Q(b,a)\vee Q(b,b)\vee Q(b,c)$ $F\vee T\vee F=T$
b F T F	$Q(c,a) \lor Q(c,b) \lor Q(c,c)$
c F T T	$F \lor T \lor T = T$
Write each of the following	$\forall x \exists y Q(x,y)$ evaluates to T
expressions without quantifiers (i.e. convert them to expressions with	b) $\forall y Q(y,b)$
ANDs and ORs or both) and then	$Q(a,b) \wedge Q(b,b) \wedge Q(c,b)$
evaluate the expression.	$Q(a,b) \wedge Q(b,b) \wedge Q(c,b)$
a) $\forall x \exists y Q(x, y)$	$F \wedge T \wedge T = F$
b) ∀yQ(y, b)	$\forall yQ(y,b)$ evaluates to F
c) ∀yQ(y,y)	c) $\forall y Q(y,y)$
	$Q(a,a) \wedge Q(b,b) \wedge Q(c,c)$
	$Q(a,a) \wedge Q(b,b) \wedge Q(c,c)$

 $T \wedge T \wedge T = T$

