Теоретические модели вычислений ДЗ №1: Регулярные языки и коненые автоматы

А-13а-19 Сабитов Алексей

8 апреля 2022 г.

- 1 Построить конечный автомат, распознающий язык
- 1.1 $L = \{\omega \in \{a, b, c\}^* | |\omega|_c = 1\}$

1.2 $L2 = \{\omega \in \{a, b\}^* | |w|_a \le 2, |\omega|_b \ge 2\}$

Имеем 2 автомата: $|w|_a \leq 2$ $L21 = \{\Sigma = \{a,b\}, Q_1 = \{1,2,3\}, S_1 = \{1\}, T_1 = \{3\}, \delta_1\}$

$$\omega|_b \ge 2$$
 $L22 = \{\Sigma = \{a, b\}, Q_2 = \{1, 2, 3\}, S_2 = \{1\}, T_2 = \{1, 2, 3\}, \delta_2\}$

Строим прямое произведение

1.
$$\Sigma = \{a, b\}$$

$$2. \ \ Q = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

3.
$$S = \{(1,1)\}$$

4.
$$T = \{(1,3), (2,3), (3,3)\}$$

5. δ :

L21	L22	a	b
1	1	1,2	2,1
1	2	1,3	2,2
1	3		2,3
2	1	2,2	3,1
2	2	2,3	3,2
2	3		3,3
3	1	3,2	3,1
3	2	3,3	3,2
3	3		3,3

1.3
$$L = \{\omega \in \{a, b\}^* | |\omega|_a \neq |\omega|_b\}$$

Данный язык подразумевает запоминание количество элементов, но ${\rm KA}$ "не умеет"это делать.

Следовательно, невозможно построить КА для данного языка.

1.4
$$L = \{\omega \in \{a, b\}^* | \omega\omega = \omega\omega\omega\}$$

2 Построить конечный автомат, используя прямое произведение

2.1
$$L1 = \{\omega \in \{a, b\}^* \mid |\omega|_a \ge 2 \land |\omega|_b \ge 2\}$$

Имеем два автомата:

$$\begin{aligned} |\omega|_a &\geq 2 \\ L11 &= \{\Sigma = \{a,b\}, Q_1 = \{1,2,3\}, 1, T_1 = \{3\}, \delta_1\} \end{aligned}$$

$$|\omega|_b \ge 2$$

 $L12 = \{\Sigma = \{a, b\}, Q_2 = \{1, 2, 3\}, 1, T_2 = \{3\}, \delta_2\}$

1.
$$\Sigma = \{a, b\}$$

$$2. \ \ Q = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

3.
$$S = \{(1,1)\}$$

4.
$$T = \{(3,3)\}$$

5. δ :

L11	L12	a	b
1	1	21	12
1	2	22	13
1	3	23	13
2	1	31	22
2	2	32	23
2	3	33	23
3	1	31	32
3	2	32	33
3	3	33	33
	'		

2.2 $L2 = \{\omega \in \{a,b\} \mid |\omega| \ge 3 \land |\omega|$ нечетное $\}$

Имеем следующие автоматы:

$$|\omega| \geq 3 \ L21 = \{\Sigma = \{a, b\}, Q_1 = \{1, 2, 3, 4\}, S_1 = \{1\}, T_1 = \{4\}, \delta_1\}$$

$$|\omega|$$
 нечетное $L22=\{\Sigma=\{a,b\},Q_1=\{1,2\},S_1=\{1\},T_1=\{2\},\delta_2\}$

Строим прямое произведение

1.
$$\Sigma = \{a, b\}$$

2.
$$Q = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2), (4,1), (4,2), \}$$

3.
$$S = \{(1,1)\}$$

4.
$$T = \{(4,2)\}$$

5. δ :

L21	L22	a	b
1	1	2,2	2,2
1	2	2,1	2,1
2	1	3,2	3,2
2	2	3,1	3,1
3	1	4,2	4,2
3	2	4,1	4,1
4	1	4,2	4,2
4	2	4,1	4,1

2.3
$$L3 = \{\omega \in (a,b) | |\omega|_a$$
четно $\wedge |\omega|$ кратно трем $\}$

$$\label{eq:L31} \begin{array}{l} |\omega|_a \text{ четно} \\ L31 = \{\Sigma = \{a,b\}, Q_1 = \{1,2\}, S_1 = \{1\}, T_1 = \{1\}, \delta_1\} \end{array}$$

 $|\omega|$ кратно трем $L32=\{\Sigma=\{a,b\},Q_1=\{1,2,3\},S_2=\{1\},T_1=\{1\},\delta_1\}$

- 1. $\Sigma = \{a, b\}$
- $2. \ Q = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$
- 3. $S = \{(1,1)\}$
- 4. $T = \{(1,1)\}$
- 5. δ :

L31	L32	a	b
1	1	21	12
1	2	22	13
1	3	23	11
2	1	11	22
2	2	12	23
2	3	13	21

2.4
$$L4 = \overline{L3}$$

 $\overline{L3} = \{\Sigma_3, Q_3, s_3, Q_3 \backslash T_3, \delta_3\} Q_3 \backslash T_3 = 12, 13, 21, 22, 23$

- 3 Построить минимальный ДКА по регулярному выражению
- $3.1 \quad (ab + aba)^*a$

Автомат с лямбда переходами:

Удаляем Лямда переходы и используем алгоритм Томсона для получения ДKA:

$3.2 \quad a(a(ab)^*b)^*(ab)^*$

Сначала построим части автомата:

 $a(a(ab)^*b)^*$

2 - ая часть автомата

 $(ab)^*$

Соединяем (с помощью лямбда-перехода):

Удаляем лямбда-переходы - получаем ДКА:

3.3
$$(a + (a+b)(a+b)b)^*$$

Сначала строим НКА:

По НКА с помощью алгоритма Томсона строим ДКА:

$$3.4 \quad (b+c)((ab)^*c+(ba)^*)^*$$

Используя алгоритм Томсона, строим ДКА:

$$(a+b)^*(aa+bb+abab+baba)(a+b)^*$$

Построим НКА:

- 4 Определить является ли язык регулярным или нет
- 4.1 $L = \{(aab)^n b (aba)^m | n \ge 0, m \ge 0\}$

Этот язык является регулярным, строим автомат:

4.2
$$L = \{uaav \mid u \in \{a, b\}, v \in \{a, b\}, |u|_b \ge |v|_a\}$$

Нужно разбить язык, как uxyzv, причем $|xy| \le n, \, |y| \ge 1.$ И слово uxy^izv при $\forall i \ge 1$ пренадлежит языку L. Берем отрицание языка L:

$$\overline{L} = \{uaav \mid u \in \{a,b\}, v \in \{a,b\}, |u|_b < |v|_a\}$$

Фиксируем произвольное $n \in N$.

Берем слово:

$$b^n a a a^n$$

Очевидно, длина слова не меньше n: $|w| = 2n + 2 \ge n$. Разобьем язык следующим образом:

$$b^{n-l}b^la^2a^n$$

где $x=b^{n-l};\ y=b^l;\ z=a^{n+2};$ и $l\ge 1;\ l\le n;$ При достаточном большом i (накачиваем y) слово $xy^iz=b^{n-l}(b^l)^ia^2a^n$ не будет пренадлежать языку \overline{L} , следовтельно, язык \overline{L} - нерегулярный, а, значит, язык L тоже не регулярный. ч.т.д.

4.3
$$L = \{a^m \omega | \omega \in \{a, b\}^*, 1 \le |\omega|_b \le m\}$$

Рассмотрим отрицание языка L:

$$\overline{L} = \{a^m \omega | \omega \in \{a, b\}^*, |\omega|_b \ge m\}$$

Фиксируем произвольное $n \in N$. Берем слово:

$$w = a^n b^n$$

Очевидно, длина слова не меньше n: $|w|=2n\geq n$. Разобьем язык следующим образом:

$$a^{l_1}a^{l_2}a^{n-l_1-l_2}$$

где $x=a^{l_1}; y=a^{l_2}; \ z=a^{n-l_1-l_2}b^n$ и $l_2\geq 1; \ l_1+l_2\leq n;$ При достаточном большом i (накачиваем y) слово $xy^iz=a^{l_1}(a^{l_2})^ia^{n-l_1-l_2}b^n$ не будет пренадлежать языку \overline{L} , следовательно, язык \overline{L} - нерегулярный, а, значит, язык L тоже не регулярный. ч.т.д.

4.4
$$L = \{a^k b^m a^n | k = n \lor m > 0\}$$

Фиксируем произвольное $n \in N$. Берем слово

$$w = a^{n-1}ba^n \in L$$

Очевидно, длина слова не меньше n: $|w| = 2n \ge n$. Рассмотрим следующее разбиение слова:

$$a^{n-1-l}a^lba^n$$

где $x = a^{n-1-l}; y = a^l b; \ z = a^n$ и $l \ge 0; \ l \le n-1;$

Других разбиений нет.

При i=0 слово $xy^iz=a^{n-1-l}(a^lb)^ia^n=a^{n-1-l}a^n$ не будет пренадлежать языку L, следовательно, язык L - нерегулярный. ч.т.д.

4.5
$$L = \{ucv | u \in \{a, b\}^* v \in \{a, b\}^* u \neq v^R\}$$

Фиксируем произвольное $n \in N$.

Берем слово

$$w = a^n c a^{2n} \in L$$

Очевидно, длина слова не меньше n: $|w| = 3n + 1 \ge n$. Рассмотрим следующее разбиение слова:

$$a^{n-l}a^lca^{2n}$$

где $x = a^{n-l}$; $y = a^l$; $z = ca^{2n}$ и l > 0; $l \le n$;

Других разбиений нет.

При i=2 слово принимает такой вид: $xy^iz=a^{n-l}(a^l)^ica^{2n}=a^{n-l+il}ca^n=a^{n+l}ca^{2n};$

Таким образом, при l = n:

$$a^{2n}ca^{2n}$$

То есть, $u=v^R$, следовательно, слово не будет пренадлежать языку L, следовательно, язык L - нерегулярный. ч.т.д.