Stochastik

Deskriptive Statistik

Mirko Birbaumer

Hochschule Luzern Technik & Architektur

- Warum ist Statistik wichtig?
- Organisation des Moduls
 - Organisation Modul
 - Testat
 - Software
- Sinführung in R
- Deskriptive Statistik: Ziele
- Modelle vs. Daten
- 6 Kennzahlen
 - Überblick
 - Arithmetisches Mittel und empirische Varianz
 - Eigenschaften Varianz
 - Median
 - Arithmetisches Mittel vs. Median
 - Quartile und Quantile
- 7 Runden Signifikante Stellen

Der Begriff Wahrscheinlichkeit in der Alltagssprache

- Beispiele, wo der Begriff Wahrscheinlichkeit im Alltag auftaucht:
 - "Die Wahrscheinlichkeit, dass es heute morgen regnet, liegt bei 60 Prozent"
 - "Die Wahrscheinlichkeit, dass ich hundert Jahre alt werde, ist klein."
 - "Wie gross ist die Wahrscheinlichkeit, dass Geothermie-Borungen in Basel ein Erdbeben von einer bestimmten Grössenordnung auslösen? "
 - "Wie gross ist die Wahrscheinlichkeit, dass ein Geiger-Zähler in den nächsten 10 Sekunden 20 Zerfälle registriert? "
 - "Wie gross ist die Wahrscheinlichkeit, dass der Wert vom Euro in diesem Jahr über 1.20 Franken steigt?"
- Wahrscheinlichkeiten geben wir im Zusammenhang mit Vermutungen an, wenn wir uns nicht sicher sind.

Der Begriff Wahrscheinlichkeit in der Alltagssprache

- Wir stellen Vermutungen an, wenn wir eine Aussage oder Vorhersage machen möchten, aber nur über unvollständige Informationen oder unsichere Kenntnisse verfügen.
- Wir müssen aufgrund unvollständiger Informationen eine Entscheidung fällen:
 - "Soll ich heute morgen einen Regenschirm mitnehmen? "
 - Soll ich eine Bergtour unternehmen, wenn die Wahrscheinlichkeit für Gewitter bei 30% liegt?
 - "Soll ich mich bei einer Bank bewerben, oder selbstversorgender Bio-Bauer werden?"

Wozu braucht ein Ingenieur Statistik?

- Sie erhalten als Ingenieur den Auftrag, die Höhe eines Dammes zu berechnen.
- Sie wissen nicht mit Sicherheit, wie gross in den nächsten (z.B.) 100 Jahren der **maximale Wasserstand** sein wird.
- D.h. die zukünftigen Ereignisse unterliegen dem Zufall.
- Also müssen Sie eine Entscheidung unter Unsicherheit treffen. Sie müssen daher versuchen, die Unsicherheit zu **quantifizieren**.
- Der Damm soll hoch genug sein (Sicherheit), aber auch die Wirtschaftlichkeit muss gewährleistet sein.

Wie hilft Ihnen Stochastik bei Ihrer Aufgabe?

- Sie verschaffen sich einen Überblick über die Aufzeichnung des Wasserstandes in den letzten hundert Jahren (→Deskriptive Statistik)
- Sie wählen ein geeignetes Modell, das die Verteilung des jährlichen maximalen Wasserstandes beschreibt (
 —Wahrscheinlichkeitsmodell)
- Sie schätzen die Parameter Ihres Wahrscheinlichkeitsmodells aus den Daten (→Parameterschätzung) und geben deren Unsicherheit an (→Vertrauensintervall)
- Aufgrund der Wahrscheinlichkeitsverteilung wählen Sie eine geeignete Dammhöhe. Unter Umständen führen Sie eine Kosten-Nutzen-Rechnung durch (Erwartungswert für Kosten bei Hochwasser->Erwartungswert)

Stochastik = Wahrscheinlichkeitsrechnung + Statistik

Wahrscheinlichkeitsrechnung Modell Daten

Gegeben der Informationen über die Urne: Was und mit welcher W'keit werden wir in den Händen haben?

Gegeben der Informationen in unserer Hand: Was ist in der Urne enthalten und wie sicher sind wir darüber?

Wozu braucht ein Ingenieur Stochastik Ihrer Meinung nach?

Naturgesetze und Wahrscheinlichkeit

- Anfangsbedingungen in physikalischem System nie mit beliebiger Genauigkeit bestimmbar in der Praxis
- Vorhersagen einer physikalischen Grösse in einem Experiment aufgrund von Naturgesetzen sind immer Unsicherheiten/Schwankungen ausgesetzt
- Diese unvollständige Kenntnis der Anfangsbedingung führt zum Begriff der Wahrscheinlichkeit.
- Beispiele: Münzwurf, Galtonsches Nagelbrett
- Quantenmechanik ist ein Beispiel einer fundamental probabilistischen Theorie; Nutzen: Generieren von nicht-deterministischen Zufallszahlen mit radioaktivem Zerfall

Organisation Modul: Flipped Classroom

- Ausführliches Vorlesungsskript und Unterrichtsfolien stehen Ihnen zur Verfügung - Vorlesungsskript auf www.perusall.com; access code: BIRBAUMER-5206; Kurs: Stochastik HS16
- Sie lesen vor dem Unterricht im Selbststudium die Skriptkapitel, die im Semesterwochenplan für jede Semesterwoche angegeben sind und beantworten die auf Ilias im jeweiligen SW-Verzeichnis abgelegten Quizfragen zu den behandelten Themen, und zwar vor dem Unterricht
- Ablauf Unterricht: es wird eine Übungsaufgabe zu jedem Thema der jeweiligen SW mit dem Live-Voting-System von Ilias gemeinsam gelöst, die übrigen Aufgaben der wöchentlichen Übungsserie werden in Gruppen in den Teaminseln gelöst. Ihr Coach: Mirko Birbaumer

Ziel des Unterrichts: Übungsserie möglichst vollständig lösen mit Unterstützung Ihrer Studienkollegen, Ihres Tutors, Ihres Assistenten und Dozenten.

Birbaumer (HSLU T&A) Stochastik 10 /

Organisation Modul: Testatbedingungen und MEP

- **Testatbedingung:** 60% der **Quizfragen** müssen vor Beginn des Unterrichts korrekt gelöst werden.
- Es findet in der letzten Semesterwoche eine Standortbestimmung (alte MEP) statt. Testatbedingung: 30% der Aufgaben korrekt beantwortet
- Zugelassene Hilfsmittel an MEP:
 - eine 12-einseitige eigenhändig von Hand geschriebene Zusammenfassung
 - die R-Referenzkarte (unter Umständen mit Ihren eigenen Anmerkungen)
 - Software R auf einem Prüfungslaptop
- Ablauf der MEP:
 - Sie schreiben alle Ihre Lösungen zu den Aufgaben mit vollständigen Zwischenschritten auf Papier nieder
 - Sie schreiben alle von Ihnen benützten R-Befehle in ein R-Script-File, das Sie mit nachname_name.Rnw benennen
 - Sie speichern diese Datei auf dem Prüfungs-USB-Stick ab

Birbaumer (HSLU T&A) Stochastik 11 /

Organisation Modul: Tutorat

- Mirko Birbaumer wird Ihnen als Tutor am Mittwoch von 12:00 bis 12:45 im Raum F510 zur Verfügung stehen.
- Sie können Fragen zur Theorie oder zu den Quizaufgaben stellen, die Sie nicht verstanden haben
- Der Besuch des Tutorats unterstützt Sie dabei, die Theorie für den bevorstehenden Übungsblock zu verstanden
- Wir empfehlen Ihnen deswegen nachdrücklich, das Tutorat zu besuchen.

Organisation Modul : Statistik-Software R

- Wir werden die Statistiksoftware R verwenden, insbesondere R Studio.
- Die Beherrschung von R ist wesentlicher Bestandteil dieses Stochastik Moduls und auch prüfungsrelevant.
- Zusammenfassung der wichtigsten R-Befehle zusammengestellt in der R-Referenzkarte.
- Hervorragendes Online-Tutorial für R

https://www.datacamp.com

Hervorragendes Nachschlagewerk zur Benützung von R (auf Ilias):

Peter Dalgaard, Introductory Statistics with R, 2008, 2nd Edition, Springer

Entwarnung: Sie werden in diesem Modul bestimmt nicht an der Statistiksoftware **R** scheitern!

Birbaumer (HSLU T&A) Stochastik 13 /

Einführung in Statistiksoftware R

- R ist eine frei erhältliche Programmiersprache für statistisches Rechnen und statistische Graphiken
- R ist eine interpretierte Programmiersprache; es existieren zahlreiche Benutzeroberflächen wie R Studio
- R ist mittlerweilen die bedeutendste Statistiksoftware in vielen Gebieten wie der Finanzmathematik und Bioinformatik.

Einführung in Statistiksoftware R: Start und Hilfe

- Download von RStudio und R unter http://www.rstudio.com/ide/download/
- R besteht aus einem Grundprogramm mit vielen Zusätzen, den sogenannten packages oder Paketen
- R bietet eine Vielzahl frei verfügbarer Pakete (> 8000)
- Ein Paket enthält unterschiedlichste, spezielle Funktionen
- Beim Start von R ist nur eine Grundausstattung geladen, alle anderen Pakete müssen zusätzlich geladen werden
- Jeder kann sein eigenes Paket schreiben

R als Taschenrechner

R-Befehl: Wertzuweisung mit < -

```
> a <- 5
> b <- 3
> a
[1] 5
```

> a+b

[1] 8

> a-b

[1] 2

> a*b

[1] 15

> a/b

[1] 1.666667

> sqrt(a)

[1] 2.236068

> sin(b)

[1] 0.14112

Vektoren in R

```
R-Befehl: length(),sort(), order()
> a < -c(5,4,6)
> a
[1] 5 4 6
> length(a)
[1] 3
> a[1]
[1] 5
> a[2]
[1] 4
> 3*a
[1] 15 12 18
> sort(a)
[1] 4 5 6
> order(a)
[1] 2 1 3
```

Matrizen in R

```
R-Befehl: matrix()
> mat <- matrix(c(1,0,0,0,2,0,0,0,3),nrow=3)
> mat
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3
> mat[1,1]
[1] 1
> mat[,2]
[1] 0 2 0
> mat[3,]
[1] 0 0 3
> mat[1:3,2]
[1] 0 2 0
> mat[-1,]
```

Ziele der Deskriptiven Statistik

- Daten zusammenfassen durch numerische Kennwerte.
- Graphische Darstellung der Daten.

Daten

- Wir betrachten im folgenden reale Daten
- Datensatz

Wiederholte Messungen der freigesetzten Wärme beim Übergang von Eis bei $-0.7\,^{\circ}\text{C}$ zu Wasser bei $0\,^{\circ}\text{C}$ ergaben die folgenden 13 Werte (siehe Skript) (in cal/g)

Methode A

79.98; 80.04; 80.02; ... 80.02; 80.00; 80.02

 Basierend auf den Daten können wir diverse Kennwerte berechnen bzw. die Daten graphisch darstellen.

Warnung:

Wann immer wir einen Datensatz "reduzieren" (durch Kennzahlen oder Graphiken), geht **Information verloren**!

/0082950	0.25383530	0.30581324	0.83154829	0.03214020	0.03052/10	0.36/19205	0.10095418	0.30900000	0.8541950	0.49614412	0.76273099	0.43050
25980996	0.37021603	0.07884733	0.71977404	0.07237495	0.68020504	0.48657579	0.53165132	0.59685485	0.78909487	0.93854889	0.95425422	0.50024
74579848	0.30692408	0.05351679	0.2853162	0.39888676	0.39349628	0.61886139	0.73188697	0.42457447	0.31000296	0.156226	0.50062453	0.4875
82994033	0.83220426	0.9372354	0.73133803	0.96199504	0.55862717	0.32692428	0.61868638	0.56245289	0.71896155	0.34543829	0.75111871	0.1583
92944405	0.64783158	0.60979875	0.52364734	0.26584028	0.40918689	0.16443477	0.25090652	0.04425809	0.06631721	0.45026614	0.96015307	0.5999!
0.3322061	0.87182226	0.22334968	0.45692102	0.38131123	0.91921094	0.56080453	0.42412237	0.79812259	0.12081416	0.18896155	0.2448978	0.4241
97712468	0.50452793	0.57458309	0.02272522	0.12008212	0.68844427	0.93512611	0.35232595	0.54222107	0.74300188	0.1006917	0.22498337	0.6473
57467084	0.16038595	0.20683896	0.58934436	0.55401355	0.78000419	0.67956489	0.09056988	0.68952151	0.00707904	0.26790229	0.42494747	0.6355
72574951	0.60798922	0.00653834	0.80803689	0.88663097	0.14771898	0.75301527	0.48470291	0.54921568	0.04009414	0.8453546	0.67167616	0.89583
12893952	0.7431223	0.42022151	0.53911787	0.24420123	0.78464218	0.78235327	0.30197733	0.38276003	0.63617851	0.72978276	0.90730678	0.5484
50684686	0.14058675	0.07426667	0.6377913	0.44437689	0.32789424	0.38075527	0.28287319	0.55515924	0.17444947	0.44069165	0.35637294	0.2464
72021194	0.52889677	0.51331006	0.20434876	0.5249763	0.71545814	0.61285279	0.87822767	0.53536095	0.28884442	0.69949788	0.84420515	0.7418
47268391	0.3610854	0.310148								399793	0.71514861	0.55
04257944	0.09101231	0.10635					\bigcirc			782089	0.04599336	0.9347
33114474	0.80847503	0.589571				- 1				339522	0.613164	0.0035
17245673	0.67983345	0.231912	\sim	_		_ /		-		171166	0.25283066	0.3387
40573334	0.59170081	0.718914	′ ′ ′	_		- 1		•		488086	0.64948237	0.2252
00561757	0.02425735	0.973367		_		- 1				089384	0.00563944	0.31220
82481867	0.18901555	0.627044					V	• 🔾		409241	0.29417144	0.4912
42911629	0.89390795	0.82025402	0.45552065	0.53005002	0.53071100	0.50402550	U.13328442	0.50351077	0.00134427	0.4370891	0.15453231	0.85024
15493105	0.51554705	0.81666845	0.33193235	0.110345	0.35500368	0.75014733	0.50944245	0.60935806	0.62794021	0.58346955	0.47319041	0.6518
18653266	0.37671214	0.09282944	0.734327	0.79912816	0.67877946	0.22687246	0.40043241	0.61701288	0.49018961	0.03681597	0.2230552	0.9720
38415242	0.04575544	0.18294704	0.07535783	0.49763891	0.15634616	0.47553336	0.39954434	0.49785766	0.19208229	0.03939701	0.50543817	0.17864
07747484	0.7417904	0.48776921	0.34229175	0.65785054	0.77978943	0.20129577	0.62714576	0.46987345	0.69996167	0.48786104	0.99177657	0.67299
71427139	0.83346645	0.50236863	0.59062007	0.29268677	0.67964115	0.09614286	0.14222698	0.66263698	0.42537685	0.64928539	0.5648649	0.2613
96293853	0.6974188	0.85632265	0.45947964	0.00242453	0.68051404	0.20703925	0.87558209	0.679752	0.45999782	0.8722821	0.04547348	0.8243
04080904	0.5989028	0.87059205	0.12444579	0.26178908	0.8533065	0.20800837	0.90760418	0.06746495	0.61181415	0.37402957	0.36137753	0.8349
0.5616472	0.78210485	0.26718637	0.74856241	0.93690527	0.51338037	0.94582627	0.60380999	0.19747357	0.34424067	0.05237252	0.91349594	0.8796
71333452	0.28822987	0.65203382	0.49709346	0.70379359	0.27200958	0.85341908	0.15968767	0.34960955	0.6796046	0.34255204	0.62727145	0.9353
33192659	0.72932196	0.07036634	0.31364757	0.31615678	0.62072333	0.68964657	0.47503972	0.80823875	0.9708966	0.32082118	0.11199293	0.2306
91696324	0.46608963	0.38554788	0.09440939	0.18995497	0.19254922	0.8299711	0.63238203	0.87524562	0.38170458	0.40120436	0.12882023	0.0850
0.8707509	0.06485663	0.22943682	0.41974316	0.9098332	0.86713599	0.88315761	0.31558244	0.63788522	0.48528904	0.17606219	0.17009773	0.4134
06291977	0.05277628	0.48101212	0.1043349	0.30497809	0.0559275	0.64358846	0.19723847	0.74347764	0.6704249	0.26325428	0.04458277	0.40409
22521559	0.30987268	0.99622375	0.94174692	0.28813039	0.20353298	0.84322955	0.54332297	0.34110065	0.68044315	0.87158643	0.41122531	0.80235

Überblick

• Wir haben *n* beobachtete Datenpunkte (Messungen)

$$x_1, x_2, \ldots, x_n$$

(z.B. die n = 13 Messungen der Schmelzwärme mit Methode A)

- Wir unterscheiden zwischen Lage- und Streuungsparametern
- Lageparameter ("Wo liegen die Beobachtungen auf der Mess-Skala?")
 - Arithmetisches Mittel ("Durchschnitt")
 - Median
 - Quantile
- Streuungsparameter ("Wie streuen die Daten um ihre mittlere Lage?")
 - Empirische Varianz / Standardabweichung
 - Quartilsdifferenz

Birbaumer (HSLU T&A) Stochastik 22

Arithmetisches Mittel

Arithmetisches Mittel

$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

• Beispiel Schmelzwärme: arithmetische Mittel der n = 13 Messungen

$$\overline{x} = \frac{79.98 + 80.04 + \ldots + 80.03 + 80.02 + 80.00 + 80.02}{13} = 80.0207$$

R-Befehl

R-Befehl: mean()

> methodeA <- c(79.98, 80.04, 80.02, 80.04, 80.03, 80.03, 80.04, 79.97, 80.05, 80.03, 80.02, 80.00, 80.02)

> mean(methodeA)

[1] 80.02077

Arithmetisches Mittel

• Arithmetische Mittel: anschaulich

Schwerpunkt der Daten

Streuung

- Arithmetisches Mittel sagt etwas über die Frage "Wo ist die Mitte?" in Bezug auf Datensatz aus
- Aber: Beispiel von (fiktiven) Schulnoten:

2; 6; 3; 5 und 4; 4; 4; 4

- Beide haben Mittelwert 4, aber Verteilung der Daten um Mittelwert ist ziemlich unterschiedlich
- Im ersten Fall gibt es zwei gute und zwei schlechte Schüler und im zweiten Fall sind alle Schüler gleich gut
- Wir sagen, die Datensätze haben eine verschiedene Streuung um die Mittelwerte

Streuung

- Streuung numerisch: Erste Idee: Durchschnitt der Unterschiede zum Mittelwert
 - 1. Fall:

$$\frac{(2-4)+(6-4)+(3-4)+(5-4)}{4}=\frac{-2+2-1+1}{4}=0$$

- 2. Fall auch 0 \rightarrow keine Aussage
- ullet Problem: Unterschiede können *negativ* werden ullet können sich aufheben
- Nächste Idee: Unterschiede durch die Absolutwerte ersetzen
 - 1. Fall:

$$\frac{|(2-4)| + |(6-4)| + |(3-4)| + |(5-4)|}{4} = \frac{2+2+1+1}{4} = 1.5$$

Streuung

- D.h.: Noten weichen im Schnitt 1.5 vom Mittelwert ab
- Im 2. Fall ist dieser Wert natürlich 0.
- Je grösser dieser Wert (immer grösser gleich 0), desto mehr unterscheiden sich die Daten bei gleichem Mittelwert untereinander
- Dieses Mass für die Streuung heisst auch mittlere absolute Abweichung, allerdings gibt es Nachteile bei diesem Mass

Empirische Varianz und Standardabweichung

- Besser: *Empirische Varianz* und *empirische Standardabweichung* für das Mass der Variabilität oder Streuung der Messwerte verwendet
- Definition:

Empirische Varianz var(x) und Standardabweichung s_X

$$var(x) = \frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \ldots + (x_n - \overline{x})^2}{n - 1} = \frac{1}{n - 1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$s_x = \sqrt{\operatorname{var}(x)} = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i - \overline{x})^2}$$
.

Eigenschaften der Varianz

- Bei Varianz: Abweichungen $x_i \overline{x}$ quadrieren , damit sich Abweichungen nicht gegenseitig aufheben können
- Nenner n-1, anstelle von $n \rightarrow mathematisch begründet$
- Die Standardabweichung ist die Wurzel der Varianz
- Durch das Wurzelziehen wieder dieselbe Einheit wie bei den Daten selbst
- Ist empirische Varianz (und damit die Standardabweichung) gross, so ist die Streuung der Messwerte um das arithmetische Mittel gross
- Der Wert der empirische Varianz hat keine physikalische Bedeutung. Wir wissen nur, je grösser der Wert umso grösser die Streuung

Birbaumer (HSLU T&A) Stochastik 2

Beispiele: Schmelzwärme

- Arithmetische Mittel der n = 13 Messungen ist $\overline{x} = 80.02$ (siehe oben)
- Die empirische Varianz ergibt

$$var(x) = \frac{(79.98 - 80.02)^2 + (80.04 - 80.02)^2 + \dots + (80.00 - 80.02)^2 + (80.02 - 80.02)^2}{13 - 1}$$
= 0.000 574

Die empirische Standardabweichung ist dann

$$s_{\rm x} = \sqrt{0.000574} = 0.024$$

- D.h.: die "mittlere" Abweichung vom Mittelwert 80.02 cal/g ist 0.024 cal/g
- Von Hand sehr mühsam. Mit R:

R-Befehl: var(), sd()

> var(methodeA)

[1] 0.000574359

> sd(methodeA)

[1] 0.02396579

- Ein weiteres Lagemass für die mittlere Lage ist der Median
- Median ist der Wert, bei dem die Hälfte der Messwerte unter diesem Wert liegen
- Beispiel: Prüfung in der Schule ist Median 4.6
- D.h.: die Hälfte der Klasse liegt unter dieser Note
- Umgekehrt liegen die Noten der anderen Hälfte über dieser Note

• Bestimmung *Median*: Daten zuerst der Grösse nach ordnen:

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$$

Fiir die Daten der Methode A heisst dies

79.97; 79.98; 80.00; 80.02; 80.02; 80.02; 80.03; 80.03; 80.03; 80.04; 80.04; 80.04; 80.05

 Der Median ist unter diesen 13 Messungen dann der Wert der mittleren Beobachtung: der Wert der 7. Beobachtung:

79.97; 79.98; 80.00; 80.02; 80.02; 80.02; 80.03); 80.03; 80.03; 80.04; 80.04; 80.04; 80.05

- Der Median des Datensatzes der Methode A ist 80.03
- Rund die Hälfte der Messwerte, nämlich 6 Beobachtungen, sind kleiner oder gleich 80.03
- Ebenso sind 6 Messwerte grösser oder gleich dem Median

- Methode A: Anzahl der Daten ungerade und damit ist die mittlere Beobachtung eindeutig bestimmt
- Ist die Anzahl der Daten gerade, so gibt es keine mittlere Beobachtung
- Wir definieren den Median in diesem Fall als Mittelwert der beiden mittleren Beobachtungen
- Beispiel: Datensatz der Methode B hat 8 Beobachtungen
- Wir ordnen den Datensatz und für den Median nehmen wir den Durchschnitt von der 4. und 5. Beobachtung

79.94; 79.95; 79.97; 79.97; 79.97; 79.94; 80.02; 80.03
$$\frac{79.97 + 79.97}{2} = 79.97$$

R-Befehl

```
R-Befehl: median()
```

```
> median(methodeA)
[1] 80.03
> methodeB <- c(80.02, 79.94, 79.98, 79.97, 79.97, 80.03, 79.95, 79.97)
> median(methodeB)
[1] 79.97
```

- Als Median kann ein Wert auftreten, der in der Messreihe gar nicht vorkommt
- Wären die beiden mittleren Beobachtungen der Methode *B* die Werte 79.97 und 79.98, so wäre der Median der Durchschnitt dieser Werte:

$$\frac{79.97 + 79.98}{2} = 79.975$$

Median vs. arithmetisches Mittel

- Zwei Lagemasse für die Mitte eines Datensatzes
- Welches ist nun besser?
- Das kommt auf die jeweilige Problemstellung an. Am besten werden beide Masse gleichzeitig angegeben.
- Eigenschaft des Medians: Robustheit
- Das heisst: viel weniger stark durch extreme Beobachtungen beeinflusst als das arithmetisches Mittel

Median vs. arithmetisches Mittel

- Beispiel: Bei der grössten Beobachtung ($x_9 = 80.05$) ist ein Tippfehler passiert und $x_9 = 800.5$ eingegeben worden
- Das arithmetische Mittel ist dann

$$\bar{x} = 135.44$$

Der Median ist aber nach wie vor

$$x_{(7)} = 80.03$$

 Das arithmetische Mittel wird also durch Veränderung einer Beobachtung sehr stark beeinflusst, während der Median hier gleich bleibt – er ist robust.

37 / 55

Arithmetisches Mittel vs. Median: Einkommen [k CHF]

"Sollen wir das arithmetische Mittel als durchschnittliche Körpergröße nehmen und den Gegner erschrecken, oder wollen wir ihn einlullen und nehmen den Median?"

Oberes und unteres Quartil

- Repetition: Der **Median** ist derjenige Wert, wo die Hälfte der Beobachtungen kleiner (oder gleich) wie dieser Wert sind.
- Ähnlich zum Median gibt es noch das untere und obere Quartil:
 - \bullet Unteres Quartil: Wert, wo 25 % aller Beobachtungen kleiner oder gleich und 75 % grösser oder gleich sind wie dieser Wert
 - Oberes Quartil: Wert, wo 75 % aller Beobachtungen kleiner oder gleich und 25 % grösser oder gleich wie dieser Wert sind
- Achtung: für die meisten Datensätze sind es nicht exakt 25 % der Anzahl Beobachtungen, die kleiner als das untere Quartil sind

Beispiel: Schmelzwärme Methode A

- Methode A hat n = 13 Messpunkte und 25 % dieser Anzahl ist 3.25.
- Unteres Quartil: nächstgrösserer Wert $x_{(4)}$

79.97; 79.98; 80.00; 80.02; 80.02; 80.02; 80.03; 80.03; 80.03; 80.04; 80.04; 80.04; 80.05

- Unteres Quartil ist also 80.02: rund ein Viertel der Messwerte ist kleiner oder gleich diesem Wert
- **Oberes Quartil**: wir wählen $x_{(10)}$, da für $0.75 \cdot 13 = 9.75$ die Zahl 10 der nächsthöhere Wert ist

79.97; 79.98; 80.00; 80.02; 80.02; 80.02; 80.03; 80.03; 80.03; 80.04; 80.04; 80.04; 80.05

 Oberes Quartil ist 80.04: rund drei Viertel aller Messwerte sind also kleiner oder gleich diesem Wert

Birbaumer (HSLU T&A) Stochastik 42 /

Beispiel: Schmelzwärme Methode B

Messwerte mit Methode B:

- 25 % der Werte ist $0.25 \cdot 8 = 2$
- 2 ist eine ganze Zahl : wir wählen den Durchschnitt von $x_{(2)}$ und $x_{(3)}$ als unteres Quartil
- Dann sind 2 Beoachtungen kleiner und 6 Beobachtungen grösser als dieser Wert

79.94; 79.95; 79.97; 79.97; 79.94; 80.02; 80.03
$$\frac{79.95 + 79.97}{2} = 79.96$$

• Unteres Quartil der Methode B ist also 79.96

Birbaumer (HSLU T&A) Stochastik 43 / 55

Berechnung der Quartile/Quantile mit R

• Die Software R kennt keine eigenen Befehle für die Quartile

```
R-Befehl: quantile()
> # Syntax für das untere Quartil: p=0.25
> quantile(methodeA,0.25,type=2)
[1] 80.02
> quantile(methodeB,0.25,type=2)
[1] 79.96
> # Syntax für das obere Quartil: p=0.75
> quantile(methodeA,0.75,type=2)
[1] 80.04
```

 Damit R die Quartile nach unserer Definition berechnet, müssen wir die Option type=2 hinzufügen

Quartilsdifferenz

- Die Quartilsdifferenz ist ein robustes Streuungsmass für die Daten oberes Quartil – unteres Quartil
- Quartilsdifferenz misst die Länge des Intervalls, das etwa die Hälfte der "mittleren" Beobachtungen enthält
- Je kleiner dieses Mass, umso n\u00e4her liegt die H\u00e4lfte aller Werte um den Median und umso kleiner ist die Streuung
- Quartilsdifferenz der Methode A:80.04-80.02=0.02

```
R-Befehl: IQR()
```

> IQR(methodeA, type=2)

[1] 0.02

• Rund die Hälfte der Messwerte liegt also in einem Bereich der Länge 0.02

Birbaumer (HSLU T&A) Stochastik 45 /

Quantile

- Beispiel: 10 %-Quantil, derjenige Wert, wo 10 % der Werte kleiner oder gleich und 90 % der Werte grösser oder gleich diesem Wert sind
- Empirischer Median ist empirisches 50 %–Quantil; empirisches 25 %–Quantil ist unteres Quartil; empirisches 75 %–Quantil ist oberes Quartil
- Das **empirische** α -**Quantil** ist der Wert, bei dem $\alpha \times 100\%$ der Datenpunkte kleiner oder gleich und $(1-\alpha)\times 100\%$ der Punkte grösser oder gleich sind

Empirische α -Quantile

$$\begin{split} &\frac{1}{2}(x_{(\alpha n)}+x_{(\alpha n+1)}) \ \ \, , \ \, \text{falls} \,\, \alpha \cdot n \,\, \text{eine natürliche Zahl ist}, \\ &x_{(k)} \,\, \text{wobei} \,\, k \,\, \text{die Zahl} \,\, \alpha \cdot n \,\, \text{aufgerundet ist} \,\, , \quad \text{falls} \,\, \alpha \cdot n \notin \mathbb{N} \end{split}$$

Quantile mit R

R-Befehl: quantile()

```
> quantile(methodeA,.1,type=2)
10%
79.98
```

> quantile(methodeA,.7,type=2)
70%
80.04

- Rund 10 % der Messwerte sind kleiner oder gleich 79.97.
- Entsprechend sind rund 70 % der Messwerte kleiner oder gleich 80.04

Beispiel: Notenstatistik

• In Schulklasse mit 24 SchülerInnen gab es an Prüfung folgende Noten:

```
4.2, 2.3, 5.6, 4.5, 4.8, 3.9, 5.9, 2.4, 5.9, 6, 4, 3.7, 5, 5.2, 4.5, 3.6, 5, 6, 2.8, 3.3, 5.5, 4.2, 4.9, 5.1
```

R-Befehl: Quantile

```
> noten.1 <- c(4.2,2.3,5.6,4.5,4.8,3.9,5.9,2.4,5.9,6,4,3.7,
5,5.2,4.5,3.6,5,6,2.8,3.3,5.5,4.2,4.9,5.1)
> quantile(noten.1,seq(.2,1,.2),type=2)
    20%    40%    60%    80%    100%
    3.6    4.2    5.0    5.6    6.0
```

- Rund 20 % der SchülerInnen schlechter als 3.6 sind
- Das 60 %—Quantil besagt, dass rund 60 % der SchülerInnen schlechter oder gleich einer 5 waren
- Oder 40 % haben eine 5 oder sind besser

Birbaumer (HSLU T&A) Stochastik 48 /

Signifikante Stellen

- Nachkommastellen: Ziffern rechts des Kommas
- Im obigen Beispiel haben die Messpunkte

$$x_1 = 79.98, \quad x_2 = 80.04, \quad \dots, \quad x_{13} = 80.02$$

zwei Nachkommastellen.

- Signifikanten Stellen: Erste von Null verschiedene Stelle bis zur Rundungsstelle
- Rundungsstelle ist die letzte Stelle, die nach dem Runden noch angegeben werden kann
- Im obigen Beispiel haben wir also **vier** signifikante Stellen.

Beispiel

Zahl	Anzahl Signifikante Stellen	Anzahl Nachkommastellen	
98.76	4	2	
0.009 876	4	6	
$987.6 \cdot 10^4$	4	1	
$9.876 \cdot 10^6$	4	3	

Bemerkungen

- Ganze Zahlen haben keine Nachkommastellen.
- In manchen Fällen ist die Bestimmung der signifikanten Stellen unklar:
 - Besitzt 20 eine, zwei oder sogar mehr signifikante Stellen?
 - Je nach Zusammenhang ist eine Zahl exakt zu werten, wenn sie z. B. als natürliche Zahl verwendet wird;
 - oder sie ist als gerundete Zahl zu werten, wenn sie als Zahlenwert zu einer physikalischen Grösse verwendet wird.
 - Zu einer exakten Zahl stellt sich die Frage nach der Signifikanz nicht, da sie mit beliebig vielen Nachkomma-Nullen verlängert werden kann.

- Um zu einer mittels Messtechnik ermittelten Grösse beim Zahlenwert 20 eine Mehrdeutigkeit zu vermeiden, soll man die wissenschaftliche Schreibweise mit Zehnerpotenz-Faktor wählen.
- Im Fall von einer signifikanten Stelle also $2 \cdot 10^{1}$; im Fall von drei signifikanten Stellen $2.00 \cdot 10^{1}$.

Darstellung Rechenergebnis

Bei der Darstellung eines Rechenergebnis von Messwerten gelten folgende zwei Regeln:

- Das Ergebnis einer Addition/Subtraktion bekommt genauso viele Nachkommastellen wie die Zahl mit den wenigsten Nachkommastellen.
- ② Das Ergebnis einer **Multiplikation/Division** bekommt genauso viele signifikante Stellen wie die Zahl mit den wenigsten signifikanten Stellen.

Beispiel

Zahlen	Kleinste Anzahl Signifikante Stellen	Kleinste Anzahl Nachkommastellen	Ergebnis
20.567 + 0.0007	Oiginikante Otenen	3	20.568
12 + 1.234		0	13
12.00 + 1.234		2	13.23
12.000 + 1.234		3	13.234
1.234 · 3.33	3		4.11
1.234 · 0.0015	2		0.0019

Bemerkung

- Eine Rundung sollte erst möglichst spät innerhalb des Rechnungsgangs durchgeführt werden. Sonst können sich mehrere Rundungsabweichungen zu einer grösseren Gesamtabweichung zusammensetzen.
- Um diese Vergrösserung zu vermeiden, sollen in Zwischenrechnungen bekannte Grössen mit mindestens einer Stelle mehr eingesetzt werden als im Ergebnis angegeben werden kann.