# Materials 28 - Putting approximating functions and value function iteration together

Laura Gáti

May 11, 2020

The setup of the problem makes the separate issues I'm facing clear:

$$V(x) = \max_{u} p(u, x) + \beta \mathbb{E} V(x')$$
(1)

- 1. Interpolate instead of discretize
- 2. Interpolation may have to be shape-preserving
- 3. Compute expectation on RHS  $\rightarrow$  quadrature
- 4. x is a vector  $\rightarrow$  multivariate approximation

ALGORITHM: PARAMETRIC VALUE FUNCTION ITERATION

- $(Judd, Numerical\ Methods, Algorithm\ 12.5)$ 
  - Objective: Solve Bellman equation  $\to$  find coefficients  $b^*$  such that the approximation  $\hat{V}(x,b)$  is close enough.
  - Initialization: Choose a functional form for  $\hat{V}(x, b^0)$  and choose a grid of n interpolation nodes  $X = \{x_1, \dots, n_n\}$ . Choose initial vector of coefficients  $b^0$  and stopping criterion  $\varepsilon > 0$ .

Step 1 Maximization step

Compute  $v_j = T\hat{V}(\cdot, b^i)$  for  $x_j \in X$ .

Step 2 Fitting step

Using your choice of approximation method, compute the updated vector of coefficients  $b^{i+1}$  such that  $\hat{V}(x, b^{i+1})$  approximates the  $(v_i, x_i)$  data.

Step 3 If  $||\hat{V}(x,b^i) - \hat{V}(x,b^{i+1}) < \varepsilon||$ , stop; else go to Step 1.

#### 1 Optimal growth model

#### 1.1 Optimal growth - value function iteration with discretization



## 1.2 Optimal growth - value function iteration with Chebyshev polynomial interpolation



#### 1.3 Optimal growth - value function iteration with cubic spline interpolation



## 1.4 Optimal growth - value function iteration with piecewise cubic Hermite interpolation (shape-preserving)



## ${\bf 1.5}\quad {\bf Optimal\ growth\ -\ stochastic\ value\ function\ iteration\ with\ bivariate\ tech\ shock,}\\ {\bf discretized}$



This one is not a 100% what Collard gets but hey.