

Maestría en Ciencias Naturales y Matemáticas Clase 10 - Cálculo Avanzado de Varias Variables

Mg: Julián Uribe Castañeda

UPB

15 de diciembre de 2022

Topología en \mathbb{R}^n - Continuidad uniforme.

Definición (continuidad uniforme).

Sea $f:A\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}^m$ una función. Decimos que f es uniformemente continua sobre A, si para todo $\varepsilon>0$, existe $\delta>0$ tal que

Si
$$x, y \in A$$
 y $||x-y|| < \delta$, entonces $||f(x)-f(y)|| < \varepsilon$.

Observación (definición anterior).

Es sencillo notar que toda función $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ uniformemente continua sobre A es continua en A. Pero el reciproco no necesariamente es cierto, y para ver esto consideraremos los siguientes ejemplos.

Ejemplo (función continua en (0,1] que no es uniformemente continua en (0,1]).)

Sea $f:(0,1]\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ la función definida por

$$f(x) = \frac{1}{x}$$

para $x \in (0,1]$. Entonces f satisface las siguientes propiedades:

- (1) f es continua en (0,1].
- (2) f no es uniformemente continua en (0,1].

Prueba de (1): La continuidad de f en (0,1] es trivial. De hecho, f es continua en $\mathbb{R}-\{0\}$.

Prueba de (2): Sea $\varepsilon = 1$ y $\delta > 0$, entonces tenemos los siguientes casos:

$$(\checkmark) \text{ Si } 0 < \delta < 1, \text{ tomamos } x = \frac{\delta}{2} \text{ y } y = \frac{\delta}{3} \text{ } (x,y \in (0,1]), \text{ de donde}$$

$$\begin{cases} |x-y| = \left|\frac{\delta}{2} - \frac{\delta}{3}\right| = \frac{\delta}{6} < \delta, \\ |f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{2}{\delta} - \frac{3}{\delta}\right| = \frac{1}{\delta} > 1 = \varepsilon. \end{cases}$$

$$\left| |f(x)-f(y)| = \left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{2}{\delta} - \frac{3}{\delta} \right| = \frac{1}{\delta} > 1 = \varepsilon.$$

(\checkmark) Si $\delta \ge 1$, entonces tomamos $x = \frac{1/2}{2}$ y $y = \frac{1/2}{2}$ ($x, y \in (0,1]$), de donde

$$\begin{cases} |x-y| = \left| \frac{1/2}{2} - \frac{1/2}{3} \right| = \frac{1}{12} < 1 \le \delta, \\ |f(x) - f(y)| = \left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{2}{1/2} - \frac{3}{1/2} \right| = \frac{1}{1/2} = 2 > 1 = \varepsilon. \end{cases}$$

De esta manera, tenemos que existe $\varepsilon > 0$, tal que para todo $\delta > 0$, existen $x, y \in (0,1]$ tales que $|x-y| < \delta$ y $|f(x)-f(y)| > \varepsilon$; lo cual muestra que f no es uniformemente continua en (0,1].

Ejemplo (función uniformemente continua en (0,1]).

Sea $f:(0,1]\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ la función definida como

$$f(x) = x^2$$

para $x \in (0,1]$ Entonces f es uniformemente continua en (0,1].

Solución:

Para empezar, notemos inicialmente que para todo $x, y \in (0,1]$, se tiene que

$$(\checkmark)$$
 $|x+y| \le |x| + |y| \le 1 + 1 = 2$.

$$(\checkmark) |f(x)-f(y)| = |x^2-y^2| = |(x-y)(x+y)| = |x-y| \cdot |x+y| \le 2|x-y|.$$

Por lo tanto, dado $\varepsilon > 0$ al tomar $\delta := \frac{\varepsilon}{2}$ tenemos que

Si
$$|x-y| < \delta = \frac{\varepsilon}{2}$$
, entonces $|f(x)-f(y)| \le 2|x-y| < 2 \cdot \left(\frac{\varepsilon}{2}\right) = \varepsilon$

lo cual prueba que f es uniformemente continua en (0,1].

Ejemplo (función continua en \mathbb{R} que no es uniformemente continua en \mathbb{R}).

Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ la función definida como

$$f(x) = x^2$$

para $x \in \mathbb{R}$. Entonces f no es uniformemente continua en \mathbb{R} .

Solución:

Para empezar, notemos las siguientes cosas:

$$(\checkmark) \sqrt{n+1} - \sqrt{n} = (\sqrt{n+1} - \sqrt{n}) \cdot \left(\frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}\right) = \frac{1}{\sqrt{n+1} + \sqrt{n}} \text{ para cada } n \in \mathbb{N}.$$

$$(\checkmark) \lim_{n \to +\infty} |\sqrt{n+1} - \sqrt{n}| = \lim_{n \to +\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0.$$

(\checkmark) Debido a que $\lim_{n\to+\infty} |\sqrt{n+1}-\sqrt{n}|=0$, entonces dado $\delta>0$, existe $m\in\mathbb{N}$ tal que

Así, al tomar $\varepsilon = \frac{1}{2}$, $\delta > 0$ arbitrario, $x = \sqrt{m+1}$ y $y = \sqrt{m} \ (x, y \in \mathbb{R})$ se tiene que

$$\begin{cases} |x-y| = |\sqrt{m+1} - \sqrt{m}| < \delta, \\ |f(x) - f(y)| = |x^2 - y^2| = |m+1-m| = 1 > \frac{1}{2} = \varepsilon. \end{cases}$$

De esta forma, el anterior análisis muestra que $f(x) = x^2$ no es uniformemente continua en \mathbb{R} . Sin embargo, f es continua en \mathbb{R} .

Nota (siguiente teorema).

El siguiente teorema nos dice cuando una función continua es uniformemente continua.

Teorema (una función continua en un conjunto compacto es uniformemente continua).

Sea $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una función que satisface las siguientes condiciones

- (\checkmark) A es compacto.
- (\checkmark) f es continua en A.

Entonces f es uniformemente continua sobre A.

Demostración:

Sea $\varepsilon > 0$. Entonces para cada $a \in A$, existe $\delta_a > 0$ tal que

Si
$$x \in B(a; \delta_a) \cap A$$
, entonces $||f(x) - f(a)|| < \frac{\varepsilon}{2}$.

Ahora teniendo en cuenta que $A\subseteq\bigcup_{a\in A}B\left(a;\frac{\delta_a}{2}\right)$, entonces por la compacidad de A, existen $a_1,\ldots,a_p\in A$ (finitos) tales que

$$A \subseteq B\left(a_1; \frac{\delta_{a_1}}{2}\right) \cup \cdots \cup B\left(a_p; \frac{\delta_{a_p}}{2}\right)$$

Si $\delta := \min \left\{ \frac{\delta_{a_1}}{2}, ..., \frac{\delta_{a_p}}{2} \right\}$, entonces consideramos la siguiente afirmación

<u>Afirmación:</u> Dados $x, y \in A$ con $||x-y|| < \delta$, entonces $||f(x)-f(y)|| < \varepsilon$.

Supongamos que $x, y \in A$ y $||x-y|| < \delta$, entonces existe $a_k \in \{a_1, \dots, a_p\}$ tal que $x \in B\left(a_k, \frac{\delta_{a_k}}{2}\right)$, ya que $x \in A$ y $A \subseteq B\left(a_1; \frac{\delta_{a_1}}{2}\right) \cup \dots \cup B\left(a_p; \frac{\delta_{a_p}}{2}\right)$. Además, tenemos que

$$(\checkmark) ||y-a_k|| = ||(y-x)+(x-a_k)|| \le ||y-x|| + ||x-a_k|| < \delta + \frac{\delta_{a_k}}{2} \le \frac{\delta_{a_k}}{2} + \frac{\delta_{a_k}}{2} = \delta_{a_k}.$$

$$(\checkmark) x, y \in B(a_k; \delta_{a_k}).$$

$$(\checkmark) ||f(x)-f(y)|| = ||[f(x)-f(a_k)]+[f(a_k)-f(y)]|| \le ||f(x)-f(a_k)|| + ||f(a_k)-f(y)|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

De esta manera, el análisis anterior prueba la afirmación y así f es uniformemente continua sobre A.

Problemas.

- (1) Sea $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una función. Demostrar que si f es uniformemente continua en A, entonces f es continua en A.
- (2) Sea $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una función uniformemente continua sobre A. Demostrar que si $\{x_k\}_{k=1}^{+\infty} \subseteq A$ es una sucesión de Cauchy, entonces $\{f(x_k)\}_{k=1}^{+\infty} \subseteq \mathbb{R}^m$ es una sucesión de Cauchy.
- (3) Sea $f:A\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}^m$ una función que satisface que existe M>0 tal que

$$||f(x)-f(y)|| \le M||x-y||$$

para todo $x, y \in A$. Demostrar que f es uniformemente continua en A.

(4) Sea A un subconjunto no vacío de \mathbb{R}^n y $d_A: \mathbb{R}^n \longrightarrow \mathbb{R}$ la función definida como

$$d_A(x) = \inf \operatorname{mo}\{||x - a|| \in \mathbb{R} : a \in A\}$$

para cada $x \in \mathbb{R}^n$. Demostrar que d_A es uniformemente continua en \mathbb{R}^n .

Avuda:

Demostrar que $|d_A(x)-d_A(y)| \le ||x-y||$ para todo $x,y \in \mathbb{R}^n$ y usar el problema anterior.

(5) Sea A un subconjunto no vacío de \mathbb{R}^n , entonces

$$\overline{A} = \{x \in \mathbb{R}^n : d_A(x) = 0\}$$

donde $d_A(x) = \inf mo\{||x-a|| \in \mathbb{R} : a \in A\}$ para cada $x \in \mathbb{R}^n$.

- (6) Sea $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una función. Demostrar que las siguientes afirmaciones son equivalentes.
- (a) f es uniformemente continua sobre A.
- (b) Para todo par de sucesiones $\{x_n\}_{n=1}^{+\infty}, \{y_n\}_{n=1}^{+\infty} \subseteq A$ tales que $\lim_{n \to +\infty} ||x_n y_n|| = 0$, se tiene que $\lim_{n \to +\infty} ||f(x_n) f(y_n)|| = 0$.
- (7) Sea $f:A\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}^m$ una función. Demostrar que las siguientes afirmaciones son equivalentes.
- (a) f no es uniformemente continua sobre A.
- (b) Existe $\varepsilon > 0$ y existen sucesiones $\{x_n\}_{n=1}^{+\infty}, \{y_n\}_{n=1}^{+\infty} \subseteq A$ tales que $\lim_{n \to +\infty} ||x_n y_n|| = 0$ y $||f(x_n) f(y_n)|| > \varepsilon$.
- (8) Sea $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una función y $B \subseteq A$. Si f es uniformemente continua en A, demostrar que f es uniformemente continua en B.

(9) Sea $f:(0,1)\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ |a función definida como

$$f(x) = e^x$$

para $x \in (0,1)$. Demostrar que f es uniformemente continua en (0,1).

(10) Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ |a función definida como

$$f(x) = \sin(x)$$

para $x \in \mathbb{R}$. Demostrar que f es uniformemente continua en \mathbb{R} .

Ayudas:

*
$$sin(x) - sin(y) = 2sin(\frac{x-y}{2})cos(\frac{x+y}{2})$$
 para cada $x, y \in \mathbb{R}$.

- * $|\sin(x) \sin(y)| \le 2 \left| \sin\left(\frac{x-y}{2}\right) \right|$ para cada $x, y \in \mathbb{R}$.
- \star |sin(x)| ≤ |x| para cada x ∈ \mathbb{R} .
- (11) Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función continua en \mathbb{R} . Si f es una función periódica con periodo L > 0, entonces f es una función uniformemente continua en \mathbb{R} .

Ayudas:

(a) Como f es uniformemente continua en [0,2L], entonces para cada $\varepsilon>0$, existe $\delta>0$ $(\delta< L)$ tal que

Si
$$x, y \in [0, 2L]$$
 con $|x-y| < \delta$, entonces $|f(x)-f(y)| < \varepsilon$.

- (b) Para cada $x \in \mathbb{R}$, existen $n \in \mathbb{Z}$ y $r \in [0, L)$ tal que x = nL + r.
- (c) Si $x, y \in \mathbb{R}$ satisfacen que $|x-y| < \delta < L$ con x = nL + r y y = mL + s, entonces $|n-m| \le 1$.
- (d) Si $x, y \in \mathbb{R}$ satisfacen que $|x-y| < \delta < L$ con x = nL + r y y = mL + s, entonces

$$|x-y| = \begin{cases} |r-s| & \text{Si } n = m, \\ |L+r-s| & \text{Si } n = m+1, \\ |L+s-r| & \text{Si } m = n+1. \end{cases}$$

(e) Si $x, y \in \mathbb{R}$ satisfacen que $|x-y| < \delta < L$ con x = nL + r y y = mL + s, entonces

$$|f(x)-f(y)| = \begin{cases} |f(r)-f(s)| & \text{Si } n=m, \\ |f(L+r)-f(s)| & \text{Si } n=m+1, \\ |f(L+s)-f(r)| & \text{Si } m=n+1. \end{cases}$$

(f) Si $x, y \in \mathbb{R}$ satisfacen que $|x-y| < \delta < L$, entonces $|f(x)-f(y)| < \varepsilon$.