

Sintesi Sequenziale Sincrona

Sintesi Comportamentale di reti Sequenziali Sincrone

Il problema dell'assegnamento degli stati

versione del 15/12/04

Sintesi: Scelta del codice

- Il processo di codifica degli stati ha l'obiettivo di identificare per ogni rappresentazione simbolica dello stato una corrispondente rappresentazione binaria.
- Due problemi paralleli:
 - Scelta del codice.
 - · A minimo numero di bit
 - n°di elementi di memoria= [log₂ |S|] (codifica densa)
 - · One-Hot
 - n°di elementi di memoria= |S| (codifica sparsa)
 - · Distanza Minima
 - Gli stati che sono in corrispondenza delle transizioni più frequenti sono poste a distanza Hamming più piccola possibile ponendo il vincolo del minor numero possibile di bit.
 - Identificazione della codifica di ogni stato.

Sintesi: Assegnamento degli stati

- La riduzione del numero degli stati minimizza il numero di elementi di memoria e quindi di variabili di stato che descrivono la macchina da sintetizzare
- $\, \Box \,$ A pari numero di stati la complessità della rete combinatoria che sintetizza la funzione δ dipende dal particolare assegnamento scelto per gli stati
- L'assegnamento degli stati trasforma la tabella degli stati in tabella delle transizioni
- La tabella delle transizioni rappresenta in forma iniziale (manca la scelta del bistabile) l'insieme delle tabelle delle eccitazioni della macchina (mappe di Karnaugh soggette ad effettiva sintesi)
- Le adiacenze di 1 (o 0) nelle mappe di Karnaugh consentono di ottenere reti combinatorie più o meno complesse, a pari metodo di ottimizzazione

- 2 -

Sintesi: Codifica degli stati

- Scelto il codice, la codifica degli stati influisce sia sull'area sia sulle prestazioni del dispositivo.
- Il problema della identificazione della codifica ottima è un problema NP-completo
- Impone l'uso di euristiche per prevedere l'influenza sul processo di ottimizzazione dell'interazione tra il tipo di elemento di memoria utilizzato e la codifica scelta.
 - Ad esempio, il numero possibili codifiche per il codice *a minimo numero di bit* è: (2[log,|s|] 4),

$$\frac{\left(2^{\lceil \log_2 |S| \rceil} - 1\right)!}{\left(2^{\lceil \log_2 |S| \rceil} - |S|\right)! \cdot \lceil \log_2 |S| \rceil!}$$

- · Ad esempio, con |S| = 8 si hanno 840 possibili codifiche
- Spesso, scelto il codice, si preferisce non ricorrere ad alcuna specifica strategia di codifica.
 - Il costo della strategia di codifica rispetto alla affidabilità del risultato ottenuto è ritenuto eccessivo.

- 3 -

- 4

Sintesi: Scelta del codice

- Semplici codifiche: binario naturale e one-hot con codifica random
 - Binario Naturale:
 - · Il numero di bit è quello minimo
 - al primo stato corrisponde la configurazione di bit associata a 0, al secondo stato corrisponde la configurazione di bit associata ad 1...
 - L'ordinamento degli stati è quello determinato in fase di realizzazione della tabella degli stati.
 - One-Hot:
 - · Il numero di bit per la codifica dello stato è pari al numero degli stati
 - In ogni codifica, un solo bit assume valore 1. Tutti i bit rimanenti assumono valore 0
 - Si osservi che le codifiche degli stati sono tutte a distanza di hamming 2

Esempio:

	Binario naturale	One-Hot
S ₀	00	001
S_1	01	010
S_2	10	100

- 5 -

Codifica degli stati: codifica a numero minimo di bit e flip-flop D

- Uno dei metodi utilizzabili manualmente, su macchine con un numero di stati ridotto, si basa sulle seguenti considerazioni che generano vincoli di codifica, con diversa priorità
- A. ALTA PRIORITÀ: Se due stati s_i e s_i hanno, per la stessa configurazione di ingresso, lo stesso stato futuro è opportuno che s, e s, abbiano codifiche adiacenti, in modo da avere coppie di 1 o di 0 adiacenti sulle colonne
- Esempio alta priorità.

Taballa dogli stati

	rabella degli stati							
	00	01	11	10		Z		
S 0	S0	S0	S2	s1		1		
s1	S1	S1	S 0	s1		0		
s2	S2	S 3	s0	S2		1		
S 3	S3	S 3	S2	S3		0		

Codifica

S1 01 S2 11 **S3** 10 Tahalla dalla transizioni

rabella delle transizioni						
	00	01	11	10		Z
00	00	00	11	01		1
01	01	01	00	01		0
11	11	10	00	11		1
10	10	10	11	10		0

Codifica degli stati: codifica a numero minimo di bit e flip-flop D

- D. Consideriamo il caso di codifica a numero minimo di bit e utilizzo di flip flop D
- E' possibile utilizzare metodi euristici per determinare codifiche che possano produrre macchine con reti combinatorie semplificate da una buona scelta dell'associazione codifica-stato
- Nel caso di bistabili D è possibile identificare dei criteri di scelta semplici, poichè la tabella delle transizioni della macchina coincide con la tabella delle eccitazioni
- I criteri di scelta si basano sul principio di generare il più possibile 1 (o 0) adiacenti nella tabella delle transizioni (eccitazioni)

- 6 -

Codifica degli stati: codifica a numero minimo di bit e flip-flop D (cont.)

- MEDIA PRIORITÀ: Se due stati s_i e s_i sono stati prossimi dello stesso stato e corrispondono a ingressi adiacenti, è opportuno che abbiano codifiche adiacenti, in modo da avere coppie di 1 o di 0 adiacenti sulle righe
- BASSA PRIORITÀ: Nel caso di macchina di Mealy è possibile esprimere un criterio anche relativo all'uscita (se s, e s, hanno uscite identiche, per qualche ingresso, è opportuno ché i due stati abbiano codifiche adiacenti)
- Esempio media priorità.

Tabella degli stati

	. aboma aogmotati							
	00	01	11	10		Z		
S 0	S0	S0	s2	s1		1		
s1	S1	S1	s0	s1		0		
s2	S2	S 3	s0	S2		1		
s 3	S3	S3	s2	s 3		0		

Codifica S0 00 s1 01 S2 11

10

Tabella delle transizioni

		00	01	11	10	Z
0	0	00	00	11	01	1
0	1	01	01	00	01	0
1	1	11	10	00	11	1
1	0	10	10	11	10	0

Codifica degli stati: codifica a numero minimo di bit e flip-flop D (cont.)

- I vincoli imposti dai tre criteri di adiacenza possono generare conflitti e comunque può risultare impossibile soddisfarli
- A questi vincoli può essere associato anche un peso relativo:
 - cardinalità del vincolo derivante dell'esame della tabella degli stati, dopo aver applicato le regole esposte
- Noi consideriamo i vincoli di alta e media priorità e utilizziamo il peso

Codifica degli stati: Esempio 1

- 10 -

- 9 -

- 11 -

Codifica degli stati: Esempio 1

Cardinalità dei vincoli

Adiacenze	Cardinalità
a,b	1
a,c	1
a,d	1
a,e	0
b,c	1
b,d	0
b,e	1
c,d	0
c,e	1
d,e	1

Dalla tabella dei vincoli, si costruisce il grafo, i cui archi hanno un peso pari alla cardinalità dei vincoli. Il peso viene usato se non è possibile soddisfare tutti i vincoli

Grafo dei vincoli con archi pesati

Scelta dell'assegnamento

- Il grafo dei vincoli, il linea di principio, rappresenta l'insieme dei sotto-cubi di adiacenza che devono essere riportati nella mappa di codifica.
- Ciò è possibile solo se il grafo ottenuto è costituito da soli n-cubi o da unioni di sottocubi

- Se il grafo non è costituito da soli n-cubi o da unioni di n-cubi, è necessario "tagliare" alcuni archi
- La scelta viene fatta eliminando il minimo numero di archi possibile e utilizzando il peso come criterio secondario

Codifica degli stati: Esempio 1

Tabella degli stati

S1 S1

S2

S3

Codifica degli stati: Esempio 2

Stati aventi lo stesso stato prossimo

s0,s1	$\verb"condividon" o$	s1
s0,s3	$\verb"condividon" o$	s2
s2,s3	condividono	s3
a1 a2	condividono	αn

Stati prossimi con ingressi adiacenti

	S0	S0	a n	S2	S1		Stati più	3311111 60	on ingressi a	uiac
_	50	50	50	52	SI					
	S1	S1	S1	S0	S1				presente	
	S2	S3	c 2	S0	S2		s1,s2	stato	presente	s0
	52	دد	55	50	54		s0,s1	stato	presente	s0
	S3	S3	S3	S2	S3					
							s0,s1	stato	presente	sl
	4	stati	tati:			\	s0,s1	stato	presente	s1
					-	_	s2,s3	stato	presente	s2
2 variabili				s0,s3	stato	presente	s2			
	a	i stato	state)			s0,s2	stato	presente	s2
							s2,s3	stato	presente	s3
							s2,s3	stato	presente	s3

Cardinalità dei vincoli

Adiacenze	Cardinalità
s0,s1	4
s1,s2	2
s0,s2	2
s2,s3	4
s0,s3	2

- 14 -

Codifica degli stati: Esempio 2

Cardinalità dei vincoli

Adiacenze	Cardinalità
s0,s1	4
s1,s2	2
s0,s2	2
s2,s3	4
s3,s0	2

Dalla tabella dei vincoli, si costruisce il grafo, i cui archi hanno un peso pari alla cardinalità dei vincoli. Il peso viene usato se non è possibile soddisfare tutti i vincoli

Grafo dei vincoli con archi pesati

MILNO

Codifica degli stati: Esempio 2

Altri criteri di assegnamento

- Il metodo assegna, se possibile, gli stati in modo da identificare dei moduli che dipendono da un numero di variabili di stato inferiore a quello totale della FSM
- Il metodo partiziona le variabili di stato (i bistabili) e quindi individua dei moduli costituiti da
 - un sottoinsieme di bistabili e una rete combinatoria che realizza δ solo per quel sottoinsieme di variabili di stato
 - le reti combinatorie risultanti sono in generale localmente meno complesse perché dipendono, oltre che dagli ingressi, da un numero ridotto di variabili di stato

Strumenti di sintesi automatica

- Esistono strumenti specifici di sintesi automatica in grado di adottare diverse strategie per definire la codifica degli stati
- In generale utilizzano le regole esposte per identificare i vincoli di adiacenza tra stati. Il criterio di soddisfacimento dei vincoli dipende dalla strategia adottata che, spesso, può essere definita al momento dell'attivazione dello strumento
- Gli strumenti sono in grado di gestire un numero sufficientemente elevato di variabili nelle tabelle delle verità ottenute dall'assegnamento
- Presuppongono di lavorare con Flip-Flop D e il risultato dell'assegnamento e della relativa ottimizzazione della rete combinatoria dipende anche dalla tecnologia implementativa prevista (es. PLA)

- 17 -