Amendments to the Claims:

The following claims will replace all prior versions of the claims in this application (in the unlikely event that no claims follow herein, the previously pending claims will remain):

- 1. (Canceled)
- 2. (Currently Amended) The radiation curable composition of claim 45, wherein the components comprise
 - A a radiation curable oligomer (A) and
 - B a diluent (B).
- 3. (Original) The radiation curable composition of claim 2, wherein the diluent (B) is a reactive diluent (B).
- 4. (Currently Amended) The radiation curable composition according to claim 15, wherein the functional group, when attached to an acrylate group, has a Boltzmann average dipole moment of higher than 4.5 Debye.
- 5. (Currently Amended) A The radiation curable composition according to claim 1, wherein one or more components are present that are chosen from the group consisting of lactones compounds (C1) according to the formula (1):

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_6
 R_6
 R_6
 R_6
 R_6

wherein R₁ = organic group with a molecular weight between 40 and 20000; R₂,R₃,R₄,R₅,R₆ and

 R_7 are independently of each other H, an alkyl group having 1-20 C atoms, wherein the alkyl group can be linear, branched or cyclic and may contain heteroatoms like =N, O, S and P; X is an oxygen or sulfur atom; Y is an oxygen or sulfur atom or an NR₇-group; n is 0-4; m is 0-4 and n+m=1-4:

or eyelio earbonates compounds (C2) according to formula (2):

wherein R_1 = organic group with a molecular weight between 40 and 20000; R_2 , R_3 , R_4 , R_5 , R_6 and R_7 are independently of each other H, an alkyl group having 1-20 C atoms, wherein the alkyl group can be linear, branched or cyclic and may contain heteroatoms like =N, O, S and P or an aryl group having from 6-20 C-atoms; X is an oxygen or sulfur atom; Y and Z are independently an oxygen or sulfur atom or an NR₇-group; n is 0-4; m is 0-4 and n+m = $\frac{12}{4}$, but oxeluding the compound wherein n = $\frac{1}{4}$, $\frac{1}{$

R₁=CH₂CCH₂CO₂CH₂,

or compounds (C3) according to the formula (3):

wherein R_1 = organic group with a molecular weight between 40 and 20000; R_2 , R_3 , R_4 , R_5 , R_6 and R_7 are independently of each other H, an alkyl group having 1-20 C atoms, wherein the alkyl

group can be linear, branched or cyclic and may contain heteroatoms like =N, O, S and P or an aryl group having from 6-20 C-atoms; X and W are independently an oxygen or sulfur atom; Y is an oxygen or sulfur atom or an NR₇-group; n is 0-4; m is 0-4 and n+m=1-4; or a compound (C4) according to the formula (4):

$$R_1 \longrightarrow N \longrightarrow \begin{pmatrix} R_2 \\ R_3 \end{pmatrix}_n$$
(4)

wherein R_1 = organic group with a molecular weight between 40 and 20000; R_2 , and R_3 , are independently of each other H, an alkyl group having 1-20 C atoms, wherein the alkyl group can be linear, branched or cyclic and may contain heteroatoms like =N, O, S and P or an aryl group having from 6-20 C-atoms; X and W are independently an oxygen or sulfur atom; n is 1-4; or a compound (C5) according to the formula (5):

$$R_1$$
 N
 Y
 p
 R_2
 R_3
 R_3
 R_3
 R_4
 R_5

wherein R_1 = organic group with a molecular weight between 40 and 20000; R_2 , and R_3 are independently of each other H, an alkyl group having 1-20 C atoms, wherein the alkyl group can be linear, branched or cyclic and may contain heteroatoms like =N, O, S and P or an aryl group having from 6-20 C-atoms; X is an oxygen or sulfur atom; Y is an oxygen or sulfur atom or an NR_7 -group; n is 1-5; p = 0, 1; but excluding a compound wherein R_1 =CH₂CHCO₂CH₂CH₂ or R_1 =CH₂CCH₃CO₂CH₂CH₂ with n=2, 3 and X = Y = oxygen, or a compound (C6) according to the formula (6):

$$\begin{array}{c|c}
R_2 & R_3 \\
R_4 & Z \\
R_5 & R_6
\end{array}$$

$$(6)$$

wherein R₁ = organic group with a molecular weight between 40 and 20000; R₂,R₃,R₄,R₅, R₆ and R₂ are independently of each other H, an alkyl group having 1-20 C atoms, wherein the alkyl group can be linear, branched or cyclic and may contain heteroatoms like =N, O, S and P or an aryl group having from 6-20 C-atoms; X is an oxygen or sulfur atom; Y and Z are independently an oxygen or sulfur atom or an NR₇-group; n is 0-4; m is 0-4 and n+m = 1-4, or a compound (C7) according to the formula (7):

wherein R₁ = organic group with a molecular weight between 40 and 20000; R₂,R₃,R₄,R₅, R₆ and R₇ are independently of each other H, an alkyl group having 1-20 C atoms, wherein the alkyl group can be linear, branched or cyclic and may contain heteroatoms like =N, O, S and P or an aryl group having from 6-20 C-atoms; W, X, Y and Z are independently an oxygen or sulfur atom or an NR7-group with the proviso that W and X are not both an NR7-group at the same time; n is 1-4;

or a compound (C8) according to the formula (8):

$$R_1 - P \left(\begin{array}{c} Y & R_2 \\ Z & P_3 \end{array} \right)_n$$
 (8)

wherein R_1 = organic group with a molecular weight between 40 and 20000; R_2 , R_3 , and R_7 are independently of each other H, an alkyl group having 1-20 C atoms, wherein the alkyl group can be linear, branched or cyclic and may contain heteroatoms like =N, O, S and P or an aryl group having from 6-20 C-atoms; X is an oxygen or sulfur atom; Y and Z are independently an oxygen or sulfur atom or an NR_7 -group; n is 1-4;

or a compound (C9) according to the formula (9):

$$R_1 \longrightarrow X Y R_2 P_3$$

wherein R_1 = organic group with a molecular weight between 40 and 20000; R_2 , R_3 , and R_7 are independently of each other H, an alkyl group having 1-20 C atoms, wherein the alkyl group can be linear, branched or cyclic and may contain heteroatoms like =N, O, S and P or an aryl group having from 6-20 C-atoms; X is an oxygen or sulfur atom; Y is an oxygen or sulfur atom or an NR_7 -group; n is 1-4.

- 6. (Original) The radiation curable composition according to claim 5, wherein at least one of the R_1 to R_7 groups contains a radiation curable functional group.
- 7. (Previously presented) The radiation curable composition according to claim 6, wherein the radiation curable oligomer (A) or diluent (B) comprises a NH- or OH-group.
- 8. (Currently Amended) The radiation curable composition according to claim 15, wherein the component that contains a functional group also has a radiation curable functional group selected from the group consisting of methacrylate, acrylate, vinylether, fumarate, maleate, itaconate, oxolane or epoxy group.

- 9. (Currently Amended) The radiation curable composition according to claim 45, wherein the component that contains a functional group also has a radiation curable functional group selected from the group consisting of methacrylate, acrylate, vinylether, fumarate, maleate, itaconate, oxolane or epoxy group.
- 10. (Original) The radiation curable composition according to claim 9, wherein the radiation curable functional group is a methacrylate or an acrylate group.
- 11. (Currently Amended) The radiation curable composition according to claim 45, wherein a radiation curable diluent is present, which is a compound according to the formula (10):

wherein R_{11} = H or Me, R_{12} = organic group having 1-20 C-atoms and R_{13} is a heterocyclic group of which the corresponding alcohol has a calculated Boltzmann average dipole moment of > 2.5 Debye.

12. (Currently Amended) The radiation curable composition according to claim ±5, wherein a radiation curable diluent is present, which is a compound according to the formula (11):

$$\begin{array}{c|c}
R & 21 \\
\hline
 & O \\
\hline$$

wherein R_{21} = H or Me, R_{22} = organic group having 1-20 C-atoms, R_{23} = organic group having 1-20 C atoms and R24 is a heterocyclic group of which the corresponding alcohol has a calculated Boltzmann average dipole moment of > 2.5 Debye.

The radiation curable composition according to claim 15, wherein 13. (Currently Amended) a radiation curable component is present according to the formula (12):

$$R_{31}$$
 R_{32} R_{32} R_{32} R_{34} R_{34} R_{34} R_{34} R_{35} R_{31} R_{31} R_{32} R_{32} R_{33} R_{34} R_{34} R_{34} R_{34} R_{34} R_{34} R_{35} R_{35} R_{31} R_{32} R_{32} R_{33} R_{34} R_{34} R_{34} R_{34} R_{34} R_{34} R_{35} R_{35} R_{35} R_{31} R_{32} R_{32} R_{33} R_{34} R

wherein R_{31} = H or Me, R_{32} , R_{33} and R_{34} = are independently an organic group having 1-20 C atoms, E is an oligomer or polymer with a molecular weight between 100 and 100000, X and Y are independently oxygen, sulphur-sulfur or a NR7-group, and R35 is a heterocyclic group of which the corresponding alcohol has a calculated Boltzmann average dipole moment of > 2.5 Debye.

- (Original) The radiation curable composition according to claim 13, wherein E has a 14. molecular weight between 500 and 10000.
- (Currently Amended) The radiation curable composition according to claim 15, wherein 15. the component that contains a functional group which, when attached to an acrylate group, has a calculated Boltzmann average dipole moment of greater than 3.5 Debye or the component containing a heterocyclic group of which the corresponding alcohol has a calculated Boltzmann average dipole moment of greater than 2.5 Debye is present in an amount of at least about 3 wt.% relative to the total amount of components in the composition.

- 16. (Original) The radiation curable composition of claim 15, wherein the component that contains a functional group or the component that contains a heterocyclic group is present in an amount of at least about 5 wt.% relative to the total amount of components in the composition.
- 17-21. (Canceled).
- 22. (Currently Amended) The radiation curable composition as defined in claim 15, wherein said composition is a coating composition, an adhesive composition, or an ink composition.
- 23. (Canceled)
- 24. (Currently Amended) The radiation curable composition as defined in claim 15, wherein said composition is a glass fiber coating composition.
- 25-34. (Canceled).
- 35. (Previously presented) The composition of claim 5, wherein said composition comprises a component according to said formula (2).
- 36. (Canceled)
- 37. (Previously presented) The composition of claim 35, wherein Y represents an oxygen atom and wherein Z represents an NR₇-group.
- 38. (Canceled).

39. (Previously presented) A composition comprising the following component:

- 40. (Previously presented) The composition of claim 15, wherein said composition is a stereolithography composition.
- 41. (New) The composition of claim 35, wherein the n+m in formula (2) equals 1, and Y represents an oxygen atom and Z represents an NR₇-group.