Mathematical Finance Exercise Sheet 5

Please hand in until Wednesday, October 22th, 12:00 in your assistant's box in HG G 52.1

Exercise 5-1

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$ be a filtered probability space satisfying the usual conditions. Moreover, let S be an \mathbb{R}^d -valued adapted process with RCLL paths.

a) Let S be a semimartingale and fix $T < \infty$. Set $\mathcal{G}^1 := \{G_T(\vartheta) \mid \vartheta \in \Theta_{adm} \text{ is 1-admissible}\}$. Prove that \mathcal{G}^1 is bounded in L^0 , i.e.

$$\lim_{m \to \infty} \sup_{g \in \mathcal{G}^1} P[|g| \ge m] = 0,$$

if and only if for every sequence $\varepsilon_n \downarrow 0$ and every sequence of ε_n -admissible strategies (ϑ^n) , we have $G_T(\vartheta^n) \to 0$ in L^0 .

- **b)** Assume that $S_0 = s_0$ is constant. Prove the following:
 - (i) S_{-} is locally bounded and predictable.
 - (ii) S is locally bounded if and only if ΔS is locally bounded.
 - (iii) If S is predictable, it is locally bounded.

Hint: Find a suitable sequence of predictable times (T_n) and use that every predictable time has a foretelling sequence (see Exercise 4-3).

Exercise 5-2

Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space satisfying the usual conditions.

- a) Let $(X_t)_{t\geq 0}$ be a product measurable process and such that $^{\mathcal{P}}X$ and $^{\mathcal{O}}X$ are well defined. Show that $^{\mathcal{P}}(^{\mathcal{O}}X) = ^{\mathcal{P}}X$.
- b) Suppose that $(A_t)_{t\geq 0}$ is an RCLL, increasing predictable process with $A_0=0$ and define

$$C_t := \inf \{ s \ge 0 \mid A_s \ge t \} \text{ for } t \ge 0.$$

Show that each C_t is a predictable stopping time, that $\{C_t \leq s\} = \{A_s \geq t\}$ and therefore

$$\int_0^\infty H_s(\omega) dA_s(\omega) = \int_0^\infty H_{C_s(\omega)} 1_{\{C_s(\omega) < \infty\}} ds$$

for all bounded measurable processes H.

Hint: Use the monotone class theorem.

c) Suppose that $(A_t)_{t\geq 0}$ satisfies the conditions in b) and is integrable, i.e. $E[A_\infty] < \infty$, and $(M_t)_{t\geq 0}$ is a bounded martingale. Show that for every stopping time τ ,

$$E\left[\int_{0}^{\tau} \left(M_{\tau} - M_{s-}\right) dA_{s}\right] = 0.$$

Exercise 5-3

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, P)$ be a filtered probability space. For an increasing, adapted, continuous process $A = (A_t)_{t \in [0,T]}$ null at 0, define the σ -finite measure $P \otimes A$ on $(\bar{\Omega}, \mathcal{P})$, where $\bar{\Omega} := \Omega \times [0,T]$ and \mathcal{P} denotes the predictable σ -field, by

$$(P\otimes A)[ar{N}]:=E\left[\int_0^T 1_{ar{N}}(\omega,s)\,dA_s
ight],\quad ar{N}\in\mathcal{P}.$$

a) Let A^1 and A^2 be increasing, adapted, continuous processes null at 0 with $P \otimes A^1 = P \otimes A^2$ on $(\bar{\Omega}, \mathcal{P})$. Show that $A^1 = A^2$.

Hint: Show that $A^1 - A^2$ is a local martingale.

b) Let B and C be increasing, adapted, continuous processes null at 0. Show that there exist a predictable process $H \in L(C)$ and $\bar{N} \in \mathcal{P}$ such that

$$B_t = \int_0^t H_s dC_s + \int_0^t 1_{\bar{N}} dB_s$$
, and $\int_0^t 1_{\bar{N}} dC_s = 0$, $t \in [0, T]$.

Hint: Consider the Lebesgue decomposition of $P \otimes B$ with respect to $P \otimes C$.

c) Now let $S = (S_t)_{t \in [0,T]}$ be a (real-valued) continuous semimartingale with canonical decomposition $S = S_0 + M + A$, where $M \in \mathcal{M}_{0,loc}^c$ and A is adapted, continuous, of finite variation and null at 0. Show that if S satisfies NA for 0-admissible strategies, then there exists a predictable process $H \in L(\langle M \rangle)$ such that

$$A_t = \int_0^t H_s \, d\langle M \rangle_s, \quad t \in [0, T].$$

In other words, this means that S satisfies the so-called structure condition (SC').

Hint: Write $A = A^+ - A^-$, where A^+ and A^- are the positive and negative variation of A, respectively, use part **b**) and argue by contradiction.

Exercise sheets and further information are also available on:

http://www.math.ethz.ch/education/bachelor/lectures/hs2014/math/mf/uebungen