Math 136 - Linear Algebra

Winter 2016

Lecture 21: February 26, 2016

Lecturer: Yongqiang Zhao Notes By: Harsh Mistry

21.1 Bases

Definition 21.1 Let $\mathbb V$ be a vector space. The set β is called a basis of $\mathbb V$ if β is a linearly independent spanning set for $\mathbb V$

We define a basis for $\{\vec{0}_{\mathbb{V}}\}\$ to be the empty set

Theorem 21.2 Let $\beta = \{\vec{v_1} \dots \vec{v_n}\}$ be a basis for a vector space \mathbb{V} and let $\zeta = \{\vec{v_1} \dots \vec{v_k}\}$ be a set in \mathbb{V} . If k > n, then ζ is linear

Theorem 21.3 if $\beta = \{\vec{v_1} \dots \vec{v_n}\}$ and $\zeta = \{\vec{v_1} \dots \vec{v_k}\}$ are bases for a vector space \mathbb{V} , then k = n

21.2 Dimension

Definition 21.4 If $\beta = \{\vec{v_1} \dots \vec{v_n}\}\$ is a basis for a vector space \mathbb{V} , then we say the dimension of \mathbb{V} is n and write

dimV = n

If \mathbb{V} is yje trivial vector space, then $\dim \mathbb{V} = n$. If \mathbb{V} does not have a basis with a finite number of vectors in it, then \mathbb{V} is said to be **Infinite Dimensional**

Theorem 21.5 If \mathbb{V} is an n-dimensional vector space n > 0 then

- 1. a set of more than n vectors in V must be linear dependant
- 2. a set of fewer than n vectors in V cannot span V
- 3. a set of n vectors in \mathbb{V} is linear independent if and only if it spans \mathbb{V}

End of Lecture Notes Notes by: Harsh Mistry