Universidad de Bolívar December 5, 2024

Corrección del Examen II

Cálculo I

Primer Ciclo "A" - Ingeniería de Software

 $\text{1. Determinar si la función } f(x) = \begin{cases} 3x-5, & \text{si } x \leq 1 \\ \\ \frac{x^2-1}{x^2-3x+2}, & \text{si } x>1 \end{cases}$ es continua en x=1

Evaluamos las tres condiciones de continuidad:

(I). Existencia de f(1): Dado que x=1 pertenece al dominio de la primera rama, evaluamos:

$$f(1) = 3(1) - 5 = -2.$$

- (II). **Existencia del límite cuando** $x \to 1$: Evaluamos el límite lateral izquierdo y derecho:
- Límite cuando $x \to 1^-$ (usando la primera rama):

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (3x - 5) = 3(1) - 5 = -2.$$

- Límite cuando $x \to 1^+$ (usando la segunda rama):

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^2 - 1}{x^2 - 3x + 2}.$$

$$\frac{x^2 - 1}{x^2 - 3x + 2} = \frac{(x - 1)(x + 1)}{(x - 1)(x - 2)} = \frac{x + 1}{x - 2}$$

$$\lim_{x \to 1^+} \frac{x + 1}{x - 2} = \frac{1 + 1}{1 - 2} = \frac{2}{-1} = -2.$$

Dado que:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = -2$$

- \implies Entonces el límite existe y es igual a -2.
- (III). Igualdad entre f(1) y $\lim_{x\to 1} f(x)$:

$$f(1) = -2$$
 y $\lim_{x \to 1} f(x) = -2$.

 \implies Dado que las tres condiciones de continuidad se satisfacen, entonces f(x) es continua en x=1.

2. Escribir las derivadasde las siguientes funciones:

(a) Para $y = ax^n$, donde a es constante y $n \in \mathbb{N}$:

$$y' = anx^{n-1}.$$

2

(b) Para $y = \frac{a}{x}$, donde a es constante:

$$y' = -\frac{a}{x^2}.$$

(c) Para $y = a\cos(x)$, donde a es constante:

$$y' = -a\sin(x).$$

(d) Para $y = ab^x$, donde a y b son constantes y b > 1:

$$y' = ab^x \ln(b).$$

(e) Para $y = a \sin^{-1}(x)$, donde a es constante:

$$y' = \frac{a}{\sqrt{1 - x^2}}.$$

(f) Para $y = \sin(x)\cos(x)$: Usamos el producto de funciones:

$$y' = \cos^2(x) - \sin^2(x).$$

(g) Para $y = \frac{\sin(x)}{\tan(x)}$: Simplificamos primero: $\tan(x) = \frac{\sin(x)}{\cos(x)}$, entonces:

$$y = \frac{\sin(x)}{\frac{\sin(x)}{\cos(x)}} = \cos(x).$$

Por lo tanto:

$$y' = -\sin(x).$$

(h) Para $y=(\ln(a))\log_a(x)$, donde a>3: Usamos $\log_a(x)=\frac{\ln(x)}{\ln(a)}$:

$$y = \ln(a) \cdot \frac{\ln(x)}{\ln(a)} = \ln(x).$$

Derivamos:

$$y' = \frac{1}{x}.$$

3. Encontrar la derivada de las siguientes funciones:

(a) Para $y = 2x^{-2} + 3e^2 - 2\ln(2x)$:

Derivamos cada término:

$$y' = \frac{d}{dx} (2x^{-2}) + \frac{d}{dx} (3e^2) - \frac{d}{dx} (2\ln(2x)).$$

- Derivada del primer término:

$$\frac{d}{dx}\left(2x^{-2}\right) = -4x^{-3}.$$

- Derivada del segundo término ($3e^2$ es constante):

$$\frac{d}{dx}\left(3e^2\right) = 0.$$

- Derivada del tercer término (aplicamos regla de la cadena):

$$\frac{d}{dx}\left(2\ln(2x)\right) = 2 \cdot \frac{1}{2x} \cdot 2 = \frac{2}{x}.$$

Entonces:

$$y' = -4x^{-3} - \frac{2}{x}.$$

(b) Para
$$y = \sqrt{\frac{2-x}{2+x}}$$
:

Reescribimos la función como:

$$y = \left(\frac{2-x}{2+x}\right)^{1/2}.$$

Derivamos usando la regla de la cadena y la regla del cociente:

$$y' = \frac{1}{2} \left(\frac{2-x}{2+x} \right)^{-1/2} \cdot \frac{d}{dx} \left(\frac{2-x}{2+x} \right).$$

Calculamos la derivada del cociente :

$$\frac{d}{dx}\left(\frac{2-x}{2+x}\right) = \frac{(2+x)(-1) - (2-x)(1)}{(2+x)^2} = \frac{-2-x-2+x}{(2+x)^2} = \frac{-4}{(2+x)^2}.$$

$$y' = \frac{1}{2}\left(\frac{2-x}{2+x}\right)^{-1/2} \cdot \frac{-4}{(2+x)^2}.$$

$$y' = -\frac{2}{(2+x)^2\sqrt{\frac{2-x}{2+x}}}.$$

$$y' = -\frac{2\sqrt{2+x}}{(2+x)^2\sqrt{2-x}}.$$

4. Resolver:

- (a) Encontrar y' en la siguiente ecuación: $x (y+1)^2 = 2xy$
- (b) Encontrar la tercera derivada de $y = xe^{-x}$
- (a) Encontrar y' en la ecuación $x (y+1)^2 = 2xy$:

Derivamos implícitamente con respecto a x:

$$\frac{d}{dx}(x) - \frac{d}{dx}((y+1)^2) = \frac{d}{dx}(2xy).$$

- Derivada del primer término:

$$\frac{d}{dx}(x) = 1.$$

- Derivada del segundo término (regla de la cadena):

$$\frac{d}{dx}((y+1)^2) = 2(y+1)y'.$$

- Derivada del tercer término (regla del producto):

$$\frac{d}{dx}(2xy) = 2(y + xy').$$

Sustituimos:

$$1 - 2(y+1)y' = 2y + 2xy'.$$

Despejar y':

$$1 - 2y - 2(y+1)y' = 2xy'.$$

$$1 - 2y = 2xy' + 2(y+1)y'.$$

$$1 - 2y = y'(2x+2y+2).$$

$$y' = \frac{1-2y}{2x+2y+2}.$$

(b) Encontrar la tercera derivada de $y=xe^{-x}$:

Derivamos sucesivamente: - Primera derivada:

$$y' = \frac{d}{dx}(xe^{-x}) = e^{-x} - xe^{-x}.$$

- Segunda derivada:

$$y'' = \frac{d}{dx} \left(e^{-x} - xe^{-x} \right) = -e^{-x} - \left(e^{-x} - xe^{-x} \right) = -2e^{-x} + xe^{-x}.$$

- Tercera derivada:

$$y''' = \frac{d}{dx} \left(-2e^{-x} + xe^{-x} \right) = 2e^{-x} + (e^{-x} - xe^{-x}).$$

Simplificamos:

$$y''' = 3e^{-x} - xe^{-x}.$$

5. La posicion en funcion del tiempo (distancia - tiempo) de un movil viene dado como: $x=-5t+10\sin(2t)$, donde x esta en metros y t esta en segundos.

- (a) Encuentre las ecuaciones de la velocidad(rapidez) y de la aceleracion.
- (b) Encuentre la posicion, velocidad y aceleracion para los tiempos t=0 y t=5 segundos.
- (a) Encuentre las ecuaciones de la velocidad (rapidez) y de la aceleración: La posición en función del tiempo está dada por:

$$x(t) = -5t + 10\sin(2t).$$

- La velocidad es la derivada de la posición con respecto al tiempo:

$$v(t) = \frac{dx}{dt} = \frac{d}{dt} \left(-5t + 10\sin(2t) \right).$$

Derivamos:

$$v(t) = -5 + 10 \cdot 2\cos(2t) = -5 + 20\cos(2t).$$

- La aceleración es la derivada de la velocidad con respecto al tiempo:

$$a(t) = \frac{dv}{dt} = \frac{d}{dt} \left(-5 + 20\cos(2t) \right).$$

Derivamos:

$$a(t) = -20 \cdot 2\sin(2t) = -40\sin(2t).$$

(b) Encuentre la posición, velocidad y aceleración para los tiempos t=0 y t=5 segundos:

Sustituimos t=0 y t=5 en las ecuaciones:

- Para t = 0:

$$x(0) = -5(0) + 10\sin(2(0)) = 0,$$

$$v(0) = -5 + 20\cos(2(0)) = -5 + 20(1) = 15,$$

$$a(0) = -40\sin(2(0)) = -40(0) = 0.$$

- Para t = 5:

$$x(5) = -5(5) + 10\sin(2(5)) = -25 + 10\sin(10).$$

Aproximamos $\sin(10)$ usando radianes:

$$x(5) \approx -25 + 10(-0.544) = -25 - 5.44 = -30.44.$$

 $v(5) = -5 + 20\cos(10).$

Aproximamos cos(10):

$$v(5) \approx -5 + 20(-0.839) = -5 - 16.78 = -21.78.$$

 $a(5) = -40\sin(10).$

Usando $\sin(10) \approx -0.544$:

$$a(5) \approx -40(-0.544) = 21.76.$$

Resultados:

- Para t = 0: x = 0, v = 15, a = 0.
- Para t = 5: $x \approx -30.44$, $v \approx -21.78$, $a \approx 21.76$.