Lecture 2* Optimization and Regularization in Deep Learning

课程: 机器学习与深度学习

Recap of the Last Lecture

- Model Architectures
 - Artificial neurons
 - Activation function and saturation
 - Feedforward neural nets
- How to train a neural net
 - Loss Function Design
 - Optimization
 - Gradient Descent and Stochastic Gradient Descent
 - Back-propagation

Two Important Questions in DL

- How to train large scale neural nets? (Efficiency)
 - Algorithm: SGD, momentum, Adagrad, etc.
 - Architecture: multicore CPU, GPU, Spark, TensorFlow, H2O, etc.
- How to improve generalization and prevent overfitting? (Effectiveness)
 - Norm regularizer/constraint
 - Ensemble
 - Dropout
 - . . .

Optimization in Neural Nets

• Given $(x_1, x_2, ..., x_d)$ and their true label y, where y is either 0 or 1, build a neural network to predict true label.

Three layers

- Three layers
- Each layer: $y = \tanh(Wx + b)$

```
def fc_layer(inputs, input_sz, output_sz):
    W = tf.get_variable(
    'W', [input_sz, output_sz],
    initializer=tf.zeros_initializer()
    )
    b = tf.get_variable(
    'b', [output_sz],
    initializer=tf.zeros_initializer()
    )
    outputs = tf.tanh(tf.matmul(inputs, W) + b)
    return outputs
```


- Three layers
- Each layer: $y = \tanh(Wx + b)$
- Loss softmax loss L2 regularization

- Three layers
- Each layer: $y = \tanh(Wx + b)$
- Loss softmax loss L2 regularization
- OptimizerGradient descent

Gradient Descent

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} l(f(x^{(i)}, \theta), y^{(i)}) + \lambda \Omega(\theta)$$

Gradient descent

for
$$t = 1,2,3,...$$

$$\mathbf{g}^{(t)} = \frac{1}{n} \sum_{i}^{n} \nabla l(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}^{(t)}), y^{(i)}) + \lambda \nabla \Omega(\boldsymbol{\theta}^{(t)})$$

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta \cdot \mathbf{g}^{(t)}$$

Stochastic gradient descent

for
$$t = 1,2,3,...$$

sample
$$i \in \{1, 2, ..., n\}$$

$$\mathbf{s} = \nabla l(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}^{(t)}), y^{(i)}) + \lambda \nabla \Omega(\boldsymbol{\theta}^{(t)})$$

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \boldsymbol{\eta} \cdot \mathbf{s}$$

SGD vs GD

- SGD: use a single data in each iteration
- GD: use full dataset in each iteration
- If the data is highly redundant (small variance), gradient on the first half of dataset is almost identical to the gradient on the second half
- We prefer SGD, but often employ mini-batch SGD in practice
 - can take advantages of matrix matrix multiplication in GPU

SGD

Mini-batch

- Update based on a mini-batch of training data
 - can produce a more accurate estimate of the gradient
 - can leverage matrix/matrix operations, which are more efficient in GPUs
- Sample a mini-batch $I_t \subseteq \{1, 2, ..., n\}$ and compute

$$g_t = \frac{1}{|I_t|} \sum_{i \in I_t} \nabla l(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}^{(t)}), y^{(i)}) + \lambda \nabla \Omega(\boldsymbol{\theta}^{(t)})$$

Three Steps for Deep Learning

- Three layers
- Each layer: $y = \tanh(Wx + b)$
- Loss
 softmax loss
 L2 regularization
- OptimizerGradient descent

Everything seems fine, let's run the code!

Oops!

What goes wrong?

Some strategies in optimization

- Weight initialization
- Preprocessing
- Other tips

Initialization

```
def fc_layer(inputs, input_sz, output_sz):
    W = tf.get_variable(
    'W', [input_sz, output_sz],
    initializer=tf.zeros_initializer()
    )
    b = tf.get_variable(
    'b', [output_sz],
    initializer=tf.zeros_initializer()
    )
    outputs = tf.tanh(tf.matmul(inputs, W) + b)
    return outputs
```

See layer 2 as an example:

Denote layer 1's output as h, then $Loss = f(Wh + b) + \lambda ||W||2$ $Gradient = f'(Wh + b)h^{T} + 2\lambda W$ Since h, W = 0, gradient will always be 0, i.e. update never happens!

- Bias can generally be initialized to zero.
- What about weight matrix?

If we use all zero initialization, all the fprop and bprop compute the same value.

• What about initializing weights with Gaussian Noise?

```
inputs = np.random.randn(1000, 500)
hidden_layer_sizes = [500] * 9

Hs = []
for i in range(len(hidden_layer_sizes)):
    X = inputs if i == 0 else Hs[i - 1]
    fan_in = X.shape[1]
    fan_out = hidden_layer_sizes[i]
    W = np.random.randn(fan_in, fan_out)
    Hs.append(np.tanh(X.dot(W)))
```


50000

• What about initializing weights with Gaussian Noise?

Gradient Saturation!

• What about initializing with Gaussian Noise * small value?

```
inputs = np.random.randn(1000, 500)
hidden_layer_sizes = [500] * 9

Hs = []
for i in range(len(hidden_layer_sizes)):
    X = inputs if i == 0 else Hs[i - 1]
    fan_in = X.shape[1]
    fan_out = hidden_layer_sizes[i]
    W = np.random.randn(
      fan_in, fan_out) * .01
    Hs.append(np.tanh(X.dot(W)))
```


Like zero initialization, gradients are killed in deep layer!

- The idea
 - Initialize weights with small random values to break symmetry between hidden units of the same layer.
 - e.g. Gaussian / sqrt(fan_in)

- The idea
 - Initialize weights with small random values to break symmetry between hidden units of the same layer.
 - e.g. Gaussian / sqrt(fan_in)

100%|**| | 100/1** | 100/100 [00:08<00:00, 12.25it/s]

Test accuracy is 0.970000.

- Other initialization
 - Initialize $W_{ij}^{(k)}$ from U[-b,b], where $b = \frac{\sqrt{6}}{\sqrt{n_j + n_{j-1}}}$

 - Xavier initialization [Glorot et al., 2010], $b=\frac{1}{\sqrt{n_{j-1}}}$ Not so effective in ReLU, recommend $b=\frac{1}{\sqrt{n_{j-1}/2}}$ [He et al., 2015]

Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010: 249-256.

He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." *Proceedings of* the IEEE international conference on computer vision. 2015.

Mishkin, D., & Matas, J. (2015). All you need is a good init. arXiv preprint arXiv:1511.06422.

Zhang, Hongyi, Yann N. Dauphin, and Tengyu Ma. "Fixup Initialization: Residual Learning Without Normalization." arXiv preprint arXiv:1901.09321 (2019).

Batch Normalization

- When discussing about initialization, we want each layer's output to look like Gaussian, so that gradient won't be killed or get saturated
- What if we force it to act like that by hand?

Ioffe S. Batch renormalization: Towards reducing minibatch dependence in batch-normalized models[C]//Advances in Neural Information Processing Systems. 2017: 1942-1950.

Batch Normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
                    Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i}
\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2}
\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}
y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv BN_{\gamma,\beta}(x_{i})
                                                                                               // mini-batch mean
                                                                        // mini-batch variance
                                                                                                                // normalize
                                                                                                 // scale and shift
```

Batch Normalization: Condition Number

Think about linear model

$$\min_{w} ||y - Xw||^2$$

Iteration complexity of gradient descent:

$$\kappa \log(\frac{1}{\epsilon})$$

where
$$\kappa = \frac{\lambda_{max}(X^T X)}{\lambda_{min}(X^T X)}$$

- In deep nets, X can be the output of a hidden layer (H) and κ covers a wide range
- In contrast to convex opt, it is very difficult to choose learning rates when the context is changing

Batch Normalization

- BN provides an efficient way to re-parameterize deep nets
 - Improve the gradient flow through the network
 - More stability
 - Allows larger learning rate
 - Smaller L^2 weight
 - Higher accuracy
 - Reduce the strong dependence on initialization
 - Can be seen as a way to do regularization, which reduces the need for dropout

a) Accuracy on MNIST datab), c) The evolution of input distributions to a typical sigmoid

Batch Normalization

Other Normalizations

- Wu, Y., & He, K. (2018). **Group normalization**. In *Proceedings of the European Conference on Computer Vision (ECCV)* (pp. 3-19).
- Lei Ba, J., Kiros, J. R., & Hinton, G. E. (2016). **Layer normalization**. arXiv preprint arXiv:1607.06450.
- Ioffe, Sergey. "Batch renormalization: Towards reducing minibatch dependence in batchnormalized models." *Advances in neural information processing systems*. 2017.

Some strategies in optimization

- Weight initialization
- Preprocessing
- Other tips

Preprocessing

- 1. Subtract each dimension with its training mean (e.g. images)
- 2. Process the covariance matrix
 - 1 Normalize features: subtract mean, scale to have unit variance
 - 2 Whitening features: covariance matrix to be identity matrix
 - 3 Decorrelate features: covariance matrix to be diagonal matrix

3. PCA

Some strategies in optimization

- Weight initialization
- Preprocessing
- Other tips

Other tips

- Randomly initialize hyperparameters
- Tune up regularization strength if validation accuracy is much lower than training accuracy

More about SGD

- Drawbacks
 - Large condition number
 - Local minima / saddle point
 - Noise due to stochastic

Momentum

• Gradient descent uses the gradient to change the position, $\theta_{t+1} = \theta_t - \eta \nabla I(\theta)$

• Instead of using the gradient to change the *position* of θ , use it to change the "*velocity*".

$$\begin{aligned} v_{t+1} &= \mu v_t - \eta \nabla J(\theta_t) \\ \theta_{t+1} &= \theta_t + v_{t+1} \end{aligned}$$

- accelerate progress along dimensions in which gradient consistently point in the same direction
- slow progress along dimensions where the sign of the gradient continues to change
- μ ("momentum") dampens the velocity and reduces the kinetic energy of the system

Intuition

Integrate velocity

$$v_{t+1} = \mu v_t - \eta \nabla J(\theta_t) \Delta t$$

Integrate position

$$\theta_{t+1} = \theta_t + \nu_{t+1} \Delta t$$

• μ ("momentum") dampens the velocity and reduces the kinetic energy of the system

Advantage

- Escape Local minima / Saddle point by remained kinetic
- Deal with large condition number: damp

Nesterov's Method

 Nesterov's accelerated gradient method

$$\begin{aligned} v_{t+1} &= \mu v_t - \eta \nabla J(\theta_t + \mu v_t) \\ \theta_{t+1} &= \theta_t + v_{t+1} \end{aligned}$$

- NAG allows quicker and more responsive feedback
- In the convex setting, NAG achieves $O(\frac{L}{T^2} + \frac{\sigma}{\sqrt{T}})$ while GD achieves $O(\frac{L}{T} + \frac{\sigma}{\sqrt{T}})$.

Top: Classical Momentum Bottom: NAG to optimize $\min_{\theta} g(\theta)$

Adagrad

• Learning rates are scaled by the square root of the cumulative sum of squared gradients

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \odot \nabla J(\theta_t)$$

- G_t contains the sum of square of the past gradient $G_t = G_{t-1} + g_t^2$
- ϵ is a small constant to prevent division by zero
- Advantage
 - Solve poor condition number problem
- Disadvantage
 - Step size goes smaller, it will stop at saddle point

Adadelta

- Accumulate sum of square of gradient over a window $E[g^2]_t = \rho E[g^2]_{t-1} + (1-\rho)g_t^2,$ ρ is a constant so that the weight of past gradient is diminishing
- RMS $[g]_t = \sqrt{E[g^2]_t + \epsilon}$ (Root mean square)
- Replace learning rate η by $\Delta\theta$ with $E[\Delta\theta^2]_t = \rho E[\Delta\theta^2]_{t-1} + (1 \epsilon)^{-1}$

RMSprop

- Similar to Adadelta, except that it still estimates η
- Compared with Adagrad, don't have to worry about decreasing step size, since there's a decay on it

Adam

• Combine momentum and RMSProp: estimate both first and second moment

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

• Correct the bias of estimation when m, v are initialized at zero

$$\widehat{m}_t = \frac{m_t}{1 - \beta_1^t} \text{ and } \widehat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\widehat{v}_t} + \epsilon} \odot \widehat{m}_t$$

Learning Rates in SGD

$$\theta_{t+1} = \theta_t - \eta_t g_t$$

where $g_t = g(\theta_t)$ is a stochastic gradient and the learning rate η satisfies

$$\sum_t \eta_t = \infty$$
 and $\sum_t \eta_t^2 < \infty$

• Convergence of SGD is slow and it is difficult to tune the stepsize η_t

Adaptive Learning Rates

- Learning rates too large, diverge or flip around; too small, move slow and little progress
- In a multilayer neural net, the appropriate learning rates can vary widely between weights
- "One learning rate per group of parameters"
- Data-driven, as few hyper-parameters as possible

Other optimization strategies

- Block Coordinate Descent
- Supervised Pretraining
- Knowledge Distillation
- Continuation Method and Curriculum Learning

Block Coordinate Descent

- Update a block of parameters iteratively
- BCD is efficient when
 - the different variables in can be clearly separated
 - optimization w.r.t. the block variables is significantly easier

Supervised Pretraining

- Train simple models on simple tasks, then move on to more complex models and tasks.
- Greedy pretraining
 - Break a problem into many parts
 - Combine optimized components and fine tune the full model
 - No theoretical results, but works very well

Greedy Algorithms

- Added hidden layer is pretrained as part of a shallow supervised MLP
- Take the output of the previously trained hidden layer as input.

Knowledge Distillation

• Pretrain a teacher net to help improve student net's performance

Romero, A., Ballas, N., Ebrahimi Kahou, S., Chassang, A., Gatta, C., and Bengio, Y. (2015). Fitnets: Hints for thin deep nets. In *ICLR'2015*, arXiv:1412.6550 . 277

Continuation Method and Curriculum Learning

- Solve a series of problems with increasing difficulty
- Traditional CM based on smoothing, e.g. local averaging: $\hat{f}_{\delta}(x) = E_{u \sim B}[f(x + \delta u)]$
- Escape local minima
- Speed up convergence

Hazan et al. 2015

Curriculum Learning

• Learning is more efficient when data are not i.i.d., but arranged in a meaningful order with increasing complexity

Regularization in Neural Nets

Regularization in Neural Nets

Bagging and Ensemble Methods

- Train *k* different models separately
- Each of the k models resample the training data
- All the models vote on the output for test examples

Regularization in Neural Nets

- Regularizer and constraint models
- Dropout
- Data augmentation and others

Parameter Norm Penalty

$$\min_{\theta} \tilde{J}(\theta) = J(\theta; X, y) + \alpha \Omega(\theta)$$

 $J(\theta; X, y)$ stands for the loss driven by data, not $l(\cdot)$.

- Regularizers are added to
 - encode some prior knowledge
 - express a generic preference for a *simpler* model and promote *generalization*

L² Parameter Regularization

• L^2 parameter norm penalty is known as weight decay.

$$\tilde{J}(w) = J(w; X, y) + \frac{\alpha}{2} ||w||^2$$

Gradient step

$$w = w - \eta (\alpha w + \nabla_w J(w; X, y))$$

= $(1 - \eta \alpha)w - \eta \nabla_w J(w; X, y)$

 L^2 penalty performs weight shrinkage by a factor $(1 - \eta \alpha)$.

L² Penalty on Quadratic Problem

Ridge Regression

$$\min_{w} \tilde{J}(w) = \frac{1}{2} \|y - Xw\|^2 + \frac{\alpha}{2} \|w\|^2$$

where $w^* \in \operatorname{argmin}_w J(w)$ and $J(w) = \frac{1}{2} ||y - Xw||^2$

being the original QP. Then

$$w^* = (X^T X)^{-1} X^T y$$

Let $\nabla \widetilde{J}(\widetilde{w}) = 0$, we have

$$\widetilde{w} = (X^T X + \alpha I)^{-1} X^T y$$

L² Penalty on Quadratic Problem

- SVD: $X = U\Sigma V^T$ (Assume X full column rank) $X^TX = V\Sigma^2 V^T$ and $X^TX + \alpha I = V(\Sigma^2)V^T$
- Prediction:

$$y^* = Xw^* = UU^T y$$

$$\tilde{y} = X \tilde{w} = U\Sigma(\Sigma^2 + \alpha I)^{-1}\Sigma U^T y$$

Equivalently:

$$\tilde{y} = \sum_{i} \frac{\sigma_i^2}{\sigma_i^2 + \alpha} u_i(u_i^T y)$$

Intuition

- $X^TX = V\Sigma^2V^T$ is the scaled covariance
- Columns of *V* are principle directions (PCA)
- Columns of *U*: representation of data in the principle direction

$$\sigma_i u_i = X v_i$$

- In ridge regression: $\tilde{y} = \sum_{i} \frac{\sigma_i^2}{\sigma_i^2 + \alpha} u_i(u_i^T y)$
 - shrinkage on all the σ_i s, but small σ_i are affected mostly.
- Ridge regression respects and assigns higher weights to the more informative directions, where most of the data activity take place

L_1 Parameter Regularization

$$\tilde{J}(w) = J(w; X, y) + \alpha ||w||_1$$

- $\nabla_w \tilde{J} = \alpha \text{sign}(w) + \nabla_w J(w)$, however not continuously differentiable
- Consider a simple case

$$J(w) = \frac{1}{2}(w - w^*)^T \operatorname{diag}(h)(w - w^*)$$

it can be shown that at optimality, we have

$$w_i = \text{sign}(w_i^*) \max\{|w_i^*| - \frac{\alpha}{H_{i,i}}, 0\}$$

• The so-called *soft-thresholding operator* either shifts w_i^* or truncates it to zero.

Norm Penalties as Constrained Optimization

$$\min_{\theta} \quad \tilde{J}(\theta) = J(\theta; X, y)$$

s.t.
$$\Omega(\theta) \le k$$

• Lagrange function $\mathcal{L}(\theta, \alpha) = J(\theta; X, y) + \alpha(\Omega(\theta) - \theta)$

Norm Penalties as Constrained Optimization

- More specifically, we have a correspondence between α and k such that solving the regularized problem and constrained problem yield the same optimal θ .
- The penalty α doesn't give explicit form of k, which is often needed to characterize the constraint region.
- We can tweak the magnitude of α to find a path of solutions
 - Large α -> small region
 - Small α -> large region

Reasons to Use Explicit Constraints

- When we have an idea of what value of *k* is appropriate
- Regularizer will encourage optimizer to get stuck in local minima corresponding to small $\|\theta\|$
- Explicit constraints may prevent divergence when using high learning rates.

Reasons to Use Regularizers

- Improve stability, handle ill-conditioned problem
- Often the corresponding optimization is easier
- Quite useful in generalized linear models (shallow model)

Difference in L_2 and L_1 Penalty

- L^2 penalize all the parameters and drive them to zero
- L_1 performs truncation and enhance sparse solution

$$\min_{\beta} f(\beta)$$

s. t. $\|\beta\|_k \le \lambda$
where $k = 1,2$

$$\hat{\beta}^* = argmin_{x \in \mathbb{R}^n} f(x)$$

Sparse Representations

• Besides, in deep learning, we often invoke sparse penalty on *representation*.

$$\min_{\theta} \tilde{J}(\theta) = J(\theta; X, y) + \alpha \Omega(h)$$

where $\Omega(h)$ is the L_1 or KL divergence to constrain the neurons' activity.

Dropout: Training

- Use a mask vector μ to randomly turn on/off each neuron
- To apply SGD, we not only sample mini-batch of data, but sample the neurons as well.

for
$$t = 1,2,3,...$$

sample $i \in \{1,2,...,n\}$ and $\mu \in 2^{d}$

$$\mathbf{s} = \nabla l \left(f \left(\mathbf{x}^{(i)}, \boldsymbol{\theta}_{\mu}^{(t)}, \mu \right), \mathbf{y}^{(i)} \right) + \lambda \nabla \Omega \left(\boldsymbol{\theta}_{\mu}^{(t)} \right)$$

$$\boldsymbol{\theta}_{\mu}^{(t+1)} = \boldsymbol{\theta}_{\mu}^{(t)} - \eta \cdot \mathbf{s}$$

$$\boldsymbol{\theta}_{\mu^{c}}^{(t+1)} = \boldsymbol{\theta}_{\mu^{c}}^{(t)}$$

Dropout: Training

```
prob = .5

# forward prop
H1 = np.tanh(np.dot(W1, X) + b1)
mu1 = np.random.rand(*H1.shape) < prob
H1 *= mu1

out = np.tanh(np.dot(W2, H1) + b2)
mu2 = np.random.rand(*out.shape) < prob
out *= mu2</pre>
```


Dropout (Efficient Ensemble of NNs)

- Dropout trains the ensemble consisting of all subnetworks that can be formed by removing nonoutput units from an underlying base network
- We have exponentially many models (2^d)

Ensemble of subnetworks

Dropout: Prediction

- In Bagging, average the k models: $\frac{1}{k}\sum_{i} p^{(i)}(y|x)$
- In Dropout:

$$\sum_{\mu} p(\mu)p(y|x,\mu)$$

Although this is intractable, we can approximate it with finite sum.

Dropout: Prediction

- Weight scaling inference rule:
 - Evaluate only one specific model
 - the output of units are multiplied by the probability of turning on: $\mathbf{h}' = \mathbb{E}[\boldsymbol{\mu}] \odot \mathbf{h}$
- Example:
 - $\bullet y = h_1 + h_2$
 - In training: $\mathbb{E}[y] = p2(h_1 + h2) + p(1-p)h_1 + p(1-p)h_2 + (1-p)^2 * 0 = p(h_1 + h2)$
 - So during testing: $y = p(h_1 + h_2)$

More common: Inverted dropout

```
# forward prop during train
prob = .5
H1 = np.tanh(np.dot(W1, X) + b1)
mu1 = (np.random.rand(*H1.shape) < prob) / prob</pre>
H1 *= mu1
out = np.tanh(np.dot(W2, H1) + b2)
mu2 = (np.random.rand(*out.shape) < prob) / prob</pre>
out *= mu2
# during prediction
H1 = np.tanh(np.dot(W1, X) + b1)
out = np.tanh(np.dot(W2, H1) + b2)
```

Dropout: Prediction

• A better way is to use *geometric mean*, which approximates the predictions of the entire ensembles

$$\tilde{p}(y|x) = \sqrt[2^d]{\Pi_{\mu}p(y|x,\mu)}$$

Dropout: randomness at train time

- When training
 - Add randomness
- When testing
 - Average out randomness
- Other example
 - Batch Normalization

Other Ways to Improve Generalization

- Data augmentation
 - Create new fake data by transforming the input features.
 - This works successfully for classification problems, such as object recognition.
- Random noise
- Semi-supervised Learning
 - Use unlabeled data to learn representation of feature x.
- Multitask Learning

Early Stopping

• To select the number of epochs, stop training when validation set error increases (with some look ahead).

Train Very Deep Convolutional Nets

- VGGNET
- Pretrain a ConvNet
- Use the first four and last three layers to initialize a even deeper net

ConvNet Configuration					
A	A-LRN	В	С	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224 × 224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

Supervised pretraining in deep ConvNets (Simonyan & Zisserman 2015)

Adversarial Training

• A neural network which performs well on human level accuracy would be entirely wrong on examples that are intentionally constructed (adversarial examples).

Adversarial Training

$$+.007 \times$$

~ ~.))

 \boldsymbol{x}

y ="panda" w/ 57.7% confidence $\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" w/8.2% confidence

 $m{x} + \epsilon \operatorname{sign}(\nabla_{m{x}} J(m{ heta}, m{x}, y))$ "gibbon"
w/ 99.3 %
confidence

Summary

- Optimization
 - Initialization
 - SGD algorithms
 - Data preprocessing
 - •
- Regularization
 - Norm regularizations
 - Dropout
 - Bagging and ensembles
 - . . .