Introdução à Complexidade

Análise de Algoritmos

- Não basta que um algoritmo resolva um problema; é necessário ter um desempenho aceitável na prática!
 - Um algoritmo simples e rápido para um conjunto pequeno de dados pode se tornar inviável para um conjunto com milhões de registros
- Analisar a complexidade de um algoritmo significa estimar os recursos necessários para que a tarefa seja completada
 - Complexidade de tempo → medida do tempo de execução
 - Complexidade de espaço → medida da quantidade de memória

Análise de Algoritmos

Formas de computar:

- Análise empírica (benchmark)
 - Implementar o algoritmo e realizar experimentos com diversos conjuntos de dados, de diferentes tamanhos e características, medindo o tempo de execução/consumo de memória;
 - Os resultados são dependentes da linguagem de programação utilizada, do compilador, da capacidade do hardware, da quantidade de processos sendo executados, etc;
 - Computa custos não aparentes (como alocação de memória);
 - Permite comparar computadores, linguagens, etc;
 - Depende da habilidade do programador;
 - Cenários de teste limitados.

Análise de Algoritmos

- Formas de computar:
 - Análise matemática (modelo teórico)
 - Estudo formal das propriedades do algoritmo;
 - Considera um computador idealizado onde cada operação executa em tempo constante e de forma sequencial;
 - Operações simples (comparações, atribuições, cálculos, incrementos, acesso a um elemento em um array) possuem mesmo custo
 - Realiza simplificações buscando considerar apenas o custo dominante;
 - Objetivo: estimar como o algoritmo se comporta em função do tamanho do conjunto de dados (entrada);
 - Independe de aspectos específicos de hardware, linguagem, compilador e ambiente de execução;

Complexidade

- Ao olhar para complexidade dos algoritmos, podemos:
 - predizer seu desempenho;
 - comparar diferentes algoritmos que resolvem o mesmo problema;
 - avaliar sua viabilidade, provendo algumas garantias de que sua execução será completada no tempo esperado.
- Ao invés de olhar para o tempo exato de execução (o qual depende de fatores relacionados ao ambiente de execução), a noção de complexidade possibilita analisar e entender o comportamento do algoritmo, isto é,
 - como o tempo de execução cresce à medida que o tamanho da entrada cresce.

Análise de Complexidade

Exemplo

Notação Assintótica

- Quando trabalhamos com N objetos, algumas operações tomarão tempo proporcional a N
 - Para valores pequenos de N, até mesmo um algoritmo ruim pode ter desempenho aceitável
 - Nos interessa saber a ordem de crescimento do algoritmo para valores grandes de N
 - À medida que N cresce, as constantes aditivas e multiplicativas têm cada vez menos impacto, podendo até mesmo se tornar irrelevantes
- Por exemplo, para valores de N suficientemente grandes, as funções
 - n^2 (3/2) n^2 9999 n^2 $n^2/1000$ n^2+100n
- têm todas a mesma taxa de crescimento e, portanto, são todas "equivalentes".

Notação Assintótica

- Ex: considere as funções
 - f(n) = 1000n + 500
 - g(n) = $n^2 + n + 1$

 Existe um valor de n a partir do qual g(n) é sempre maior do que f(n), tornando os demais termos e constantes pouco significativos.

Notação Assintótica

Na notação assintótica, considera-se apenas o termo
dominante da equação (ou seja, o termo de maior grau). Os
termos de grau menor e as constantes aditivas e multiplicativas
são desconsiderados.

Ex:

$$f(n) = 75$$

f(n) = 1

f(n) = n

$$f(n) = 2n + 1 =$$

$$f(n) = n^2 + n$$
 = $f(n) = n^2$

$$f(n)=10n^3 + 4n - 1$$
 = $f(n) = n^3$

quando função não possui n, então o comportamento assintótico é 1 (constante)

Classes de Complexidade (Order of growth)

Fonte: (SEDGEWICK, 2016)

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
log N	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N²	quadratic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }	double loop	check all pairs	4
N³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Fonte: (SEDGEWICK, 2016)

Complexidade

- . Melhor caso (best case)
 - Representado pela letra grega Ω (ômega)
 - Consiste na entrada mais "fácil" (e a que deve preferencialmente ser buscada)
 - Constitui o limite inferior de custo (não pode ser mais rápido)
- . Pior caso (worst case)
 - Representado pela letra O (ômicron), também chamada de "Big O"
 - Representa a entrada mais difícil (a que faz o algoritmo executar o maior número de operações)
 - Constitui o limite superior de custo, servindo como uma garantia para as demais entradas (não pode ser mais lento)

Notação "Big O": a mais utilizada para expressar a complexidade do algoritmo

Complexidade

- . Caso médio (average case)
 - Representado pela letra grega € (theta)
 - Custo esperado para uma entrada aleatória
 - Difícil de determinar na maioria dos casos

Exemplo

Busca sequencial em um vetor de tamanho n

- Melhor caso: $\Omega(1)$
 - O valor procurado é o primeiro do vetor
- Pior caso: O(n)
 - O valor procurado é o último ou não faz parte do vetor
 - Será necessário visitar todos os n elementos do vetor até encontrar o valor procurado
- Caso médio: θ(n)
 - Será necessário visitar na média n/2 elementos do vetor até encontrar o valor procurado

Dizemos que o algoritmo é O(n), ou seja, linear