

राष्टीय प्रौधोगिकी संस्थान गोवा NATIONAL INSTITUTE OF TECHNOLOGY GOA

Farmagudi, Ponda, Goa - 403 401, India

Department of Electrical and Electronics Engineering

Basic Electrical Science Lab

Website: http://www.nitgoa.ac.in

Session – 4

DC Transient Analysis

Introduction: 1. A.

This session makes students to understand transient analysis DC circuits through a Simulation platform, MATLAB/Simulink.

1. B. Objectives:

- a. Acquire a good knowledge on the transient behavior of the DC electrical circuits.
- b. Verification of the theoretical knowledge on transient behavior of DC electrical circuits in MATLAB/Simulink Platform.
- 1. C. Theory: Refer to the notes or necessary materials mentioned in EE151 course.

1. D. Statement of Experiments:

This session consists of two parts. $[V_{in} = 10 \text{ V}, R = 10 \Omega, C]$ $= 10 \, \mu F, L = 10 \, mH$

- a. Using the circuit diagram shown in Fig. 4.a, characterize the circuit in Matlab/Simulink platform.
- b. Replace the capacitor by an inductor in Fig. 4.a, characterize the circuit in Matlab/Simulink platform.

Procedure:

a. Part 1.D.a: DC RC circuit

- i. Convert the circuit in Fig. 4.a into experimental circuit.
- ii. Construct the experimental circuits in MATLAB/Simulink domain, and simulate it in following condition:
 - Connect P to T_1 at t = 0 sec, and run the simulation for 2 second.

Fax

Phone: 0832-2404218

: 0832-2404202

- Connect P to T_1 at t = 0 sec, and then connect P to T_2 at t = 1 sec. Run the entire simulation for 2 sec.
- iii. Based on the simulation, fill up the Table 4.1.
- iv. Find expression of various responses in the circuit, like current voltage across elements.

b. Part 1.D.b: DC RL circuit

Follow the same procedure as mentioned in part 1.E.a., and based on the simulation, prepare an appropriate table and fill up it. Also, find expression of various responses.

Assignments:

Using circuit shown in Fig. 4.b, Connect P to T_1 at t=0sec, keep it for 0.2 sec and note down voltage across the capacitor and current through the inductor. Then connect P to T_2 at t = 0.2 sec and run the simulation for 2 second. Prepare an appropriate table and fill up it. Also, find expression of various responses under the condition when P is connected to T₂.

Table - 4.1

Sl. No	Applied Voltage, V _{in} (volts)	Time Constant, τ (Sec)		Rise Time, T _r (Sec)		Settling Time, T _s (Sec)	
		Theoretical	Simulation	Theoretical	Simulation	Theoretical	Simulation
1	10						
2	15						
3	20						