Отчёт

Тема: «Решение систем линейных уравнений с разреженными матрицами специального вида»

Выполнил: студент 3 курса 61 группы Вафин А.Р.

Проверила: преподаватель Фролова О.А.

1. Постановка задачи

Составить программу для решения систем уравнений с матрицей специального вида:

$$\begin{cases} p_1x_1 + p_2x_2 + \dots + p_nx_n = f_1, \\ c_ix_{n-i} + b_ix_{n-i+1} + a_ix_{n-i+2} = f_i, & i = 2 \div (n-1) \\ q_1x_1 + q_2x_2 + \dots + q_nx_n = f_n \end{cases}$$

Систему уравнений задают векторы: b — главная побочная диагональ, a — нижняя побочная кодиагональ, c — верхняя побочная кодиагональ, p — 1-ая (самая верхняя) строка, q — n-ая (самая нижняя) строка, f — столбец свободных членов. Матрица состоит из n строк.

Будет считать, что все делители отличны от нуля и система определена.

2. Теоретическая часть

Будем использовать формулу для оценки относительной погрешности:

$$\delta_{\tilde{x}} = \max_{i} \left| \frac{\tilde{x}_{i} - 1}{1} \right| = \max_{i} \left| \tilde{x}_{i} - 1 \right|$$

где $\tilde{\chi}_i$ — приближённое значение, полученное после применения метода решения приближённого значения при условии, что правая часть соответствует системе с единичным решением;

$$\delta_x = \max_i \delta x_i$$

где x_i — полученное решение, x_i^* — точное решение, q — число, выбранное с учётом особенностей системы.

$$\delta x_i = \begin{cases} \left| \frac{x_i - x_i^*}{x_i^*} \right|, & |x_i^*| > q, \\ |x_i - x_i^*|, & |x_i^*| \le q \end{cases}$$

*	*	*	*	*	*
			*	*	*
		*	*	*	
	*	*	*		
*	*	*			
*	*	*	*	*	*

рис.1 Исходное состояние матрицы

Шаг 1.

Процесс заключается в том, чтобы пройтись циклом по строкам с 2-й по (n-1)-ю, стремясь привести элементы на главной диагонали к единицам. Для этого каждая строка делится на соответствующий коэффициент b_i. Затем умножаем полученную строку на коэффициенты, которые соответствуют элементам столбцов текущей строки (обозначены как q, p), и складываем её с верхней строкой, нижней строкой и следующей за ней. Это позволяет занулить элементы выше и ниже текущего элемента на главной диагонали. В процессе вычитания строк друг из друга, в последнем столбце (который не содержит свободных членов) формируются определённые коэффициенты, которые мы сохраняем в массиве г для дальнейшего использования. В результате этого шага получаем промежуточную структуру, аналогичную изображению на рисунке 2.

*	0	0	0	0	*
			*	1	*
		*	1	0	*
	*	1	0		*
*	1	0			*
*	0	0	0	0	*

рис.2 Состояние матрицы после шага №1

Шаг 2.

На этом этапе наша цель — полностью привести главную диагональ к единицам и занулить элементы в левом верхнем и правом нижнем углах матрицы. Для этого:

- 1. Сначала делим первую строку р на коэффициент, который стоит при n-м элементе, чтобы в массиве b на первой позиции оказалась единица.
- 2 Затем умножаем эту строку на коэффициент q_n и вычитаем её из последней строки. Это приведёт к тому, что в правом нижнем углу появится ноль.
- 3. Далее, делим последнюю строку на коэффициент q1, чтобы на главной диагонали в самом конце появилась единица.
- 4. Используя полученную строку, преобразуем элемент р1 в ноль.

После выполнения этих операций результат будет соответствовать изображению на рисунке 3.

0	0	0	0	0	1
			*	1	*
		*	1		*
	*	1			*
*	1				*
1	0	0	0	0	0

рис.3 Состояние матрицы после шага №2

Шаг 3.

На этом шаге наша задача — избавиться от лишних коэффициентов в правом столбце матрицы. Для этого:

1. Вычитаем первую строку, в которой единица находится только в nnn-м месте, умноженную на соответствующие коэффициенты из массива rrr, из всех последующих строк.

Таким образом, мы устраняем ненужные элементы в правом столбце и получаем результат, который изображён на рисунке 4.

Осталось найти значения вектора ответа. Для этого:

- 1. Первый и последний элементы вектора можно найти напрямую, приравняв их к соответствующим элементам столбца свободных членов.
- 2. Остальные элементы вектора считаются следующим образом: начиная с первого, подставляем уже найденные значения векторных элементов в уравнения для следующего элемента. Процесс идёт снизу вверх, где для каждого х_i (i=2, n-1) используется найденный ранее элемент х i-1

0	0	0	0	0	1
			*	1	0
		*	1		0
	*	1			0
*	1				0
1					0

рис.4 Состояние матрицы после шага №3

4. Тестирование

Оценим погрешность систем с разными размерами и разными диапазонами коэффициентов.

№ теста	Размерность системы	Диапазон значений элементов матрицы	Средняя относительная погрешность системы	Среднее значение оценки точности
1	10*10	(-10; 10)	6.54369e-05	4.59667e-05
2	10*10	(-100; 100)	3.82582e-04	2.18455e-05
3	10*10	(-1000; 1000)	1.44624e-03	1.51929e-05
4	100*100	(-10; 10)	8.16305e-04	1.79174e-04
5	100*100	(-100; 100)	4.84138e-02	1.07766e-03
6	100*100	(-1000; 1000)	2.62642e-02	4.60973e-03
7	1000*1000	(-10; 10)	1.58646e-02	1.93924e-02
8	1000*1000	(-100; 100)	1.41713e-01	1.18103e-01
9	1000*1000	(-1000; 1000)	3.2028e-01	3.24175e-01