13. Mai 2014

Stochastik I

Blatt 4

Aufgabe 1 (4+2=6 Punkte)

Sei (Ω, \mathcal{A}) ein Messraum und $f: \Omega \to \mathbb{R} \cup \{+\infty, -\infty\}$ eine numerische Funktion. Zeigen Sie:

- (a) f ist genau dann $\mathcal{A}/\bar{\mathcal{B}}$ -messbar, wenn für alle $a \in \mathbb{R}$ die Menge $\{f \geq a\}$ in \mathcal{A} liegt.
- (b) Die folgenden vier Bedingungen sind zur $\mathcal{A}/\bar{\mathcal{B}}$ -Messbarkeit der Funktion f äquivalent:
 - (i) $\{f \geq a\} \in \mathcal{A} \text{ für alle } a \in \mathbb{R},$
 - (ii) $\{f > a\} \in \mathcal{A}$ für alle $a \in \mathbb{R}$,
 - (iii) $\{f \leq a\} \in \mathcal{A} \text{ für alle } a \in \mathbb{R},$
 - (iv) $\{f < a\} \in \mathcal{A} \text{ für alle } a \in \mathbb{R}.$

Aufgabe 2 (2+(3+3)=8 Punkte)

Sei (Ω, \mathcal{A}) ein Messraum und $f, g: \Omega \to \mathbb{R} \cup \{+\infty, -\infty\}$ zwei $\mathcal{A}/\bar{\mathcal{B}}$ -messbare numerische Funktionen. Beweisen Sie:

- (a) Die Mengen $\{f < g\}, \{f \le g\}, \{f = g\} \text{ und } \{f \ne g\} \text{ liegen in } \mathcal{A}.$
- (b) (i) Die Funktionen f + g und f g sind $\mathcal{A}/\bar{\mathcal{B}}$ -messbar, falls sie überall auf Ω definiert sind.
 - (ii) Die Funktion $f \cdot g$ ist $\mathcal{A}/\bar{\mathcal{B}}$ -messbar.

Aufgabe 3 (6 Punkte)

Wir betrachten den Maßraum $(\Omega, \mathcal{A}, \mathbb{P})$, wobei $\Omega = [0, 1)$, $A = [0, 1) \cap \mathcal{B}^1$ und \mathbb{P} die Einschränkung des Lebesguemaßes auf [0, 1) ist. Gegeben sei das System von Mengen

$$A_n := \left[0, \frac{1}{2^n}\right) \cup \left[\frac{2}{2^n}, \frac{3}{2^n}\right) \cup \ldots \cup \left[\frac{2^n - 2}{2^n}, \frac{2^n - 1}{2^n}\right) \quad (n \in \mathbb{N}).$$

Zeigen Sie die Unabhängigkeit der Folge $(A_n)_{n\in\mathbb{N}}$.