Transformações Por Vizinhança

Operadores Locais (Vizinhança).

Combina a Intensidade de um certo número de píxels (janela), para computar o valor da nova intensidade na Imagem de

Imagem de Entrada

Imagem de Saída

: Operação sobre todos os pixels dentro da janela centrada em .

Filtros no domínio do espaço

Exemplo: Janela de 3 x 3

- ☐: valores dos níveis de cinza na vizinhança de ;
- a : são os "pesos", ou seja, os valores dos níveis de cinza em cada posição do *Template*.

O valor do pixel , na nova imagem, será dado por:

$$g(x,y) = w_1 \cdot a + w_2 \cdot b + w_3 \cdot c + w_4 \cdot d + w_5 \cdot e + w_6 \cdot f + w_7 \cdot g + w_8 \cdot h + w_9 \cdot i$$

Convenção:

Máscaras de organização par (, , ...) o resultado é colocado sobre o primeiro pixel.

☐ Máscaras de organização ímpar (, , ...) o resultado é colocado sobre o pixel central.

Convolução e Correlação Cruzada:

No domínio do espaço, a diferença entre a Convolução e a Correlação Cruzada reside apenas no espelhamento do Template a ser utilizado, que deve ser feito na Convolução.

Como, em geral, os Templates são simétricos, a equação da Correlação Cruzada tem sido empregada com o nome de Convolução na área de Processamento de Imagens.

Convoluir um Template com uma Imagem equivale à operação:

Espelhamento, Desloca, Multiplica e Soma

Exemplo de máscara simétrica, onde a operação de convolução e de correlação são idênticas:

Template

1	0
0	1

$$oldsymbol{T}(oldsymbol{i},oldsymbol{j})$$

Imagem Original

1	1	3	3	4				
1	1	4	4	3				
2	1	3	3	3				
1	1	1	4	4				
f(x,y)								

Imagem Final

2	5	7	6	*
2	4	7	7	*
3	2	7	7	*
*	*	*	*	*

$$T(i,j) * f(x,y)$$

Os valores marcados com * não podem ser calculados.

Exemplo 1: Atribuindo zero aos resultados não calculáveis

Template

_		
1	1	1
0	0	0
1	1	1

Imagem

1	2/	3	4	5
0	1	3	4	0
1	1	3	2	0
0	0	4	5	6
1	0	7	8	0

Resultado

0	0	0	0	0
0	11	15	17	0
0	8	17	22	0
0	13	21	20	0
0	0	0	0	0

Primeiro Ponto ==>
$$(1x1) + (1x2) + (1x3) + (0x0) + (0x1) + (0x3) + (1x1) + (1x1) + (1x3) = 11$$

Exemplo 2: *Padding* com zeros ⁰

Centra-se o Template com o primeiro pixel da imagem atribuindo o valor 0 aos valores inexistentes na imagem.

Template								
1	1	1						
0	0	0						

$0^{I_{1}}$	ma	ger	n	
1	2	3	4	5
0	1	3	4	0
1	1	3	2	0
0	0	4	5	6
1	0	7	8	0
	1 0 1 0	0 1 2 0 1 1 1 2	0 0 1 2 3 0 1 3	0 1 3 4 1 1 3 2 0 0 4 5

Resultado

1	4	4 8 7		4
4	11	15	17	11
1	8	17	22	15
3	13	21	20	10
0	4	9	15	11

Primeiro Ponto:

Exemplo 3: Convolução Periódica

O Template é deslocado sobre todos os pixels da imagem original como se esta fosse adjacente em suas extremidades.

Primeiro Ponto:

Solução para os pixels das bordas:

Podem ser usadas cinco soluções:

- 1. Atribuindo valor zero aos resultados não calculáveis;
- 2. Preenchimento da imagem com 0´s antes do cálculo da imagem final (*Padding P**);
- 3. Replicação dos pixels das bordas (*replicate**);
- 4. Espelhamento (symmetric*);
- 5. Convolução periódica (circular*);

^{*} Usado pelo Matlab

Efeitos nas bordas da imagem

Convolução da imagem original com um filtro da média

$$\frac{1}{9} \times \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}_{3 \times 3}$$

- A) Imagem original
- B) Padding com zeros
- C) Replicação
- D) Espelhamento
- E) Periódica (circular)

Observações:

- O custo computacional da Convolução espacial é alto.
- ☐ Se a Imagem é de tamanho e o Template , o número de multiplicações é de ;
- Exemplo: se a Imagem é de e o Template é de , são necessárias 67.108.864 multiplicações;
- A alternativa é transformar a Imagem e o Template para o domínio da frequência (Fourier) e multiplicar elemento a elemento.
- A transformação só é justificável se o Template for maior que , devido ao custo da Transformada de Fourier.

Filtragem Espacial

Filtros Passa-Baixa

Filtros Passa-Alta

Filtros Derivativos

Representação de uma Imagem como Superfície Isométrica

Perfil radiométrico de uma imagem: altas frequências e baixas frequências

Altas e baixas frequências em uma imagem

Figure 2.8 Sinusoidal patterns with (i) low, (ii) medium and (iii) high spatial frequency in the horizontal direction.

Filtragem Espacial: Passa Baixa

- Uma das aplicações da Convolução espacial de uma Imagem com Templates é a Suavização (Smoothing) ou Filtragem Passa Baixa.
- ☐ Um filtro espacial Passa Baixa é implementado através

- Máscara que realiza a Média da Vizinhança. Uma Máscara de Média é tal que seus pesos são positivos
- soma é igual a 1. Exemplos de algumas Máscaras de Filtros Passa Baixa:

$$\frac{1}{5} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \frac{1}{32} \begin{bmatrix} 1 & 3 & 1 \\ 3 & 16 & 3 \\ 1 & 3 & 1 \end{bmatrix} \qquad \frac{1}{8} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Exemplo de Média da Vizinhança.

f(x,y)

g(x,y)

	20	30	24	34	60	80	89	90	12	00
I	23	24	56	67	88	99	00	00	00	00
	12	23	35	65	66	77	88	99	00	00
Ī	11	22	99	99	99	99	99	98	88	88
I	12	12	12	22	22	44	55	65	77	88
	11	44	55	76	87	55	66	33	33	33
	12	33	44	55	66	77	88	00	00	00

25				

$$g(0,0) = (20 + 30 + 24 + 23 + 24 + 56 + 12 + 23 + 35) / 9 = 24,77$$

Exemplo de Média da Vizinhança.

f(x,y)

g(x,y)

	20	30	24	34	60	80	89	90	12	00
I	23	24	56	67	88	99	00	00	00	00
Ī	12	23	35	65	66	77	88	99	00	00
7	11	22	99	99	99	99	99	98	88	88
Ī	12	12	12	22	22	44	55	65	77	88
	11	44	55	76	87	55	66	33	33	33
	12	33	44	55	66	77	88	00	00	00

25	40				

$$g(0,0) = (20 + 30 + 24 + 23 + 24 + 56 + 12 + 23 + 35) / 9 = 24,77$$

$$g(0,1) = (30 + 24 + 34 + 24 + 56 + 67 + 23 + 35 + 65) / 9 = 39,77$$

Imagem Original

Vizinhança

Vizinhança

Vizinhança

Vizinhança

Vizinhança

Imagem Original

Vizinhança

Vizinhança

Vizinhança

Vizinhança

Vizinhança

Filtro Passa Baixa – Média da Vizinhança

$$* \frac{1}{9} \times \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}_{3 \times 3} =$$

Filtro Passa Baixa – Média da Vizinhança

Filtragem Espacial: Passa Alta

- É chamada de filtro de passa-alta porque detecta na imagem os detalhes finos e mudanças abruptas de níveis de cinza na imagem.
- ☐ A máscara do filtro passa alta deve ter pesos de tal forma que a soma seja igual a zero.

Exemplos de máscaras de filtros passa alta:

Normaliza

$$\frac{1}{9} \begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix}$$

Normaliza

$$\frac{1}{9} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \qquad \frac{do}{5} \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Operador Laplaciano

Filtro Passa Alta – Detector de Altas Frequências

Normalizado
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \end{bmatrix}$$

Filtro de AGUÇAMENTO (Sharpening) - realce de altas frequências

Filtro Passa Alta – Detector de Altas Frequências

$$* \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} =$$

255 -

=

Filtro de AGUÇAMENTO (Sharpening) - realce de altas frequências

Detecta variação em todas direções

Isotropia

Detecta variação apenas em cruz

Filtragem Espacial: Filtros Derivativos de 1ª Ordem

1 -1

Bordas Horizontais

1 -1

Bordas Diagonais

0	-1
1	0

0	1
-1	0

-1	0
0	1

1	0
0	-1

Esses operadores são conhecidos como Operadores Gradiente-Cruzado de Roberts ou Detectores de Bordas de Roberts

Detector de Bordas de Roberts

- ☐ São filtros não-isotrópicos (detectam bordas em uma direção específica);
- ☐ Detectam gradiente (bordas) positivo ou negativo dependendo do *template* utilizado;
- Não são muito sensíveis à ruídos e pequenos detalhes como os detectores Laplacianos (de segunda ordem).

Exemplo do Detector de Bordas de Roberts (Negativo da imagem final):

Direção do gradiente = direção dos sinais Direção da borda = perpendicular a da

- Convolução

$$h1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$h2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Exemplo do Detector de Bordas de Roberts (Negativo da imagem final):

Direção do gradiente = direção dos sina Direção da borda = perpendicular a da

- Convolução

$$h1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

$$h2 = [1 - 1]$$

Filtragem Espacial: Filtros Derivativos

Exemplo do Detector de Bordas de Roberts:

- Correlação cruzada

$$h_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$h_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Filtragem Espacial: Filtros Derivativos de 1ª Ordem

-1	-1	-1
0	0	0
1	1	1

Bordas Horizontais

1	1	1
0	0	0
-1	-1	-1

1	0	-1
1	0	-1
1	0	-1

Bordas Verticais

-1	0	1
-1	0	1
-1	0	1

Esses operadores são conhecidos como Operador de Prewitt ou Detector de Bordas de <u>Prewitt</u>

Filtragem Espacial: Filtros Derivativos de 1ª Ordem

0	-1	-1
1	0	-1
1	1	0

0	1	1
-1	0	1
-1	-1	0

Bordas Diagonais

1	1	0
1	0	-1
0	-1	-1

-1	-1	0
-1	0	1
0	1	1

Esses operadores são conhecidos como Operador de Prewitt ou Detector de Bordas de <u>Prewitt</u>

Exemplo de detector de Prewitt:

Correlação cruzada

$$h_1 = \begin{vmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{vmatrix}$$

$$h_2 = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Filtragem Espacial: Filtros Derivativos de 1ª Ordem

-1	-2	-1
0	0	0
1	2	1

Bordas Horizontais

1	2	1
0	0	0
-1	-2	-1

1	0	-1
2	0	-2
1	0	-1

Bordas Verticais

-1	0	1
-2	0	2
-1	0	1

Esses operadores são conhecidos como Operador de Sobel ou Detector de Bordas de <u>Sobel</u>

Filtragem Espacial: Filtros Derivativos de 1ª Ordem

0	-1	-2
1	0	-1
2	1	0

0	1	2
-1	0	1
-2	-1	0

Bordas Diagonais

2	1	0
1	0	-1
0	-1	-2

-2	-1	0
-1	0	1
0	1	2

Esses operadores são conhecidos como Operador de Sobel ou Detector de Bordas de <u>Sobel</u>

Exemplo de detector de Sobel:

Correlação cruzada

$$h_1 = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$h_2 = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Exemplo de detector de Prewitt e Sobel:

Correlação cruzada

$$h_2 = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$h_2 = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

