IMPLEMENTATION OF A POWER FACTOR COMPENSATOR

A Report submitted to

MSRIT

Bangalore

for partial requirement of award of degree of

Bachelor of Engineering in Electrical and Electronics Engineering

by

VARUN C SHEKAR (1MS11EE064)

ARCHIT K KAMATH (1MS11EE070)

KIRAN KUMAR K (1MS12EE404)

MIR WAFA ABBAS (1MS12EE408)

Under the guidance of

Sri. KODEESWARA KUMARAN G

Assistant Professor

Department of Electrical and Electronics Engineering, MSRIT

Bangalore - 560054

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING M S RAMAIAH INSTITUTE OF TECHNOLOGY

(Autonomous Institute, Affiliated to VTU)

June 2015

Department of Electrical and Electronics Engineering

M S Ramaiah Institute of Technology

Bangalore – 54

CERTIFICATE

This is to certify that the following students, who were working under our guidance, have completed their work as per our satisfaction with the topic "IMPLEMENTATION OF A POWER FACTOR COMPENSATOR".

To the best of our understanding the work to be submitted in this report does not contain any work, which has been previously carried out by others and submitted by the candidates for themselves for the award of any degree anywhere.

VARUN C SHEKAR – 1MS11EE064

ARCHIT K KAMATH – 1MS11EE070

KIRAN KUMAR K – 1MS12EE404

MIR WAFA ABBAS - 1MS12EE408

Sri. KODEESWARA KUMARAN G

Dr. PREMILA MANOHAR

Assistant Professor,

Professor and HOD,

EEE, MSRIT

EEE, MSRIT

Department of Electrical and Electronics Engineering M S Ramaiah Institute of Technology

Bangalore – 54

DECLARATION

We hereby declare that the entire work embodied in this report has been carried out by us at M S Ramaiah Institute of Technology under the supervision of Sri. KODEESWARA KUMARAN G, Assistant Professor, MSRIT. This report has not been submitted in part or full for the award of any diploma or degree of this or any other University.

VARUN C SHEKAR – 1MS11EE064

ARCHIT K KAMATH – 1MS11EE070

KIRAN KUMAR K – 1MS12EE404

MIR WAFA ABBAS – 1MS12EE408

ABSTRACT

Power factor correction (PFC) is a technique of counteracting the undesirable effects of electric loads that create a power factor that is less than one. 95 % of industrial loads bear a dominantly lagging power factor. Generally Power factor correction is applied by an electrical power transmission utility to improve the stability and efficiency of the transmission network. Power factor correction setup can also be installed by individual electrical customers to reduce the costs charged to them by their electricity supplier. Many control methods for the Power Factor Correction (PFC) have been proposed. This work describes the design and development of a power factor corrector using PIC (Programmable Interface Controller) microcontroller chip. Measuring of power factor from load is achieved by using PIC Microcontroller-based developed algorithm. This algorithm determines the power factor and includes appropriate capacitors in order to compensate demand of excessive reactive power locally, thus bringing power factor near to unity. This setup has been tested using a 2 HP induction motor having a full load power factor of 0.55 lag, which led to actuation of a 1KVAR capacitor, improving the power factor to unity. The setup is found to be working satisfactorily.

ACKNOWLEDGEMENT

This is to place on record our appreciation and gratitude to the people without whose support this project would never see the light of day.

We wish to express our sincere thanks to **Dr. S. Y. Kulkarni**, Principal, MSRIT for providing us with all the necessary facilities for the research.

We place on record, our sincere thank you to **Dr. Premila Manohar**, Head of Department, Electrical & Electronics Engineering, for the continuous encouragement.

We are also grateful to **Sri Kodeeswara Kumaran G**, Assistant Professor and also our guide & mentor, in the Department of Electrical & Electronics Engineering, MSRIT. We are extremely thankful and indebted to him for sharing expertise, and sincere and valuable guidance and encouragement extended to us.

We take this opportunity to express special thanks to **Prof. T. K. Anantha Kumar**, **Mr. H. R. Ravi**, **Mr. Ganesh V** and all of the Department faculty members for their help and support. We are also grateful to our friends who supported us throughout this venture.

We like to thank our parents for their blessings through moral support without which we wouldn't have reached here.

TABLE OF CONTENTS

Chapter No	Title			Page No	
1	INTRODUCTION			01	
2	LITERA	LITERATURE SURVEY			
3	INTRODUCTION TO REACTIVE POWER & POWER				
	FACTOR				
	3.1	Probler	n statement	05	
	3.2	Objecti	ve of the project	05	
	3.3	Objecti	ves of power system studies	05	
	3.4	Power	flow equation	06	
	3.5	Concep	t of efficiency and regulation	07	
	3.6	Relation between voltage and reactive power			
	3.7	Power factor			
	3.8	Effects of low power factor		12	
	3.9	Methods of Reactive Power Control		13	
		3.9.1	Shunt capacitor compensation	14	
		3.9.2	Shunt reactor compensation	16	
		3.9.3	Series reactor compensation	17	
		3.9.4	On-load tap changing transformer	18	
		3.9.5	Booster transformer	19	
		3.9.6	Synchronous phase modifier	20	
4	METHO	DOLOG	YY		
	4.1	Basic w	vorking of the setup	22	
	4.2	Block o	liagram	23	
	4.3	Power factor meter			
		4.3.1	Voltage sensing module	24	
		4.3.2	Current sensing module	25	
		4.3.3	Voltage & current zero crossing module	29	
		4.3.4	Auxiliary relay module	31	

	4.4	PIC24FJ256 Microcontroller				
	4.5					
	4.6	Flow cha	art	35		
5	SHUNT 5.1		CITOR BANK tion to capacitor banks	36 37		
	5.2	Compon	ents used in the capacitor bank	37		
	5.3	Component Details				
		5.3.1	3 pole MCCB	40		
		5.3.2	Single phase MCB	40		
		5.3.3	Auxiliary contactor	41		
		5.3.4	3 pole MCB	42		
		5.3.5	Capacitor duty contactor	43		
6	RESULT			4.4		
	6.1		with resistive load	44		
_	6.2		with inductive load	45		
7	CONCL	USION		48		
8	FUTURI	E SCOPE		49		
	APPENI	DICES				
	A. Pi	A. Pin details of PIC controller				
	B. P.	B. PIC PROGRAMMING				
	C. A	C. ACS 712 datasheet				
	REFERI	ENCES				

LIST OF FIGURES

SL.	FIGURE	PAGE
NO		NO
1	Single Machine connected to Infinite Bus	6
2	Two bus system	8
3	Power triangle	11
4	Effects of low power factor.	12
5	Classification of Reactive Power Control Methods	13
6	Shunt capacitor compensator	14
7	Power triangle for shunt Reactor Compensator	14
8	Shunt reactor compensator	16
9	Power triangle for shunt Reactor Compensator	16
10	Series capacitor compensator	16
11	On-load tap changing transformer	19
12	Booster transformer.	19
13	Synchronous phase modifier	20
14	Phase advancer	21
15	Block diagram	23
16	Voltage sensing module	24
17	Rectified voltage waveform	25
18	ACS712 current sensor.	25
19	ACS sensor output.	26
20	ACS sensor offset nulling.	27
21	Offset nulling waveforms.	27
22	Precision rectifier circuit.	28
23	Complete current sensing circuit.	28
24	Current Zero Crossing & its Output	30
25	Voltage zero crossing.	31
26	Auxiliary relay	31
27	LCD	33
28	Flow chart	35
29	Capacitor bank	38
30	Capacitor bank panel	39

31	3 pole MCCB	40
32	Single phase MCB	40
33	Auxiliary contactor	41
34	Capacitor duty contactor	43
35	Testing with resistive load	44
36	Testing with Inductive load	45
37	ZCD Output with Capacitor Bank	45
38	V & I before correction.	46
39	V & I after correction.	46