5

10

What is claimed is:

1. A compound of formula **I**:

or a pharmaceutically acceptable derivative thereof, wherein:

ring A is a heteroaryl selected from or

each R¹ and R² is independently H, alkyl, or fluoroalkyl;

 R^3 is H, alkyl, fluoroalkyl, aralkyl, carbocyclylalkyl, heterocyclyl, carbocyclyl, heterocyclylalkyl, aryl, heteroaryl, heteroaralkyl, -C(O)R, -OR, -(CH₂)₁₋₆OR, -(CH₂)₁₋₆N(R)₂, -N(R)₂, or -C(H)(OR)R;

R⁴ is H, alkyl, fluoroalkyl, -CO₂R, -CON(R)₂, carbocyclyl, carbocyclylalkyl, heteroaryl, or heterocyclyl;

 R^5 is $-OR^7$ or $-NR^8R^9$:

 R^6 is -C(O)R, -C(S)R, -C=C-C(O)R, -SR, -S-W-OR⁷, M, or Y;

$$R^1$$
 R^2
 R^3
 R^4
 R^3
 R^4
 R^4
 R^5
 $(CR^cR^d)_n$

R⁷ is R°, -C(O)R, -C(O)N(R)₂, -C(O)OR, -(CH₂)₁₋₆-C(O)R, -PO₃M_x, -P(O)(alkyl)OM', -(PO₃)₂M_y, carbocyclyl, aryl, heterocyclyl, heteroaryl, carbocyclylalkyl, aralkyl, heterocyclylalkyl, heteroaralkyl, or a tumor-targeting moiety;

x is 1 or 2;

20 y is 1, 2 or 3;

each M is independently H, Li, Na, K, Mg, Ca, Mn, Co, Ni, Zn, or alkyl; M' is H, Li, Na, K, or alkyl;

R⁸ is H or alkyl;

WO 2005/095344

 R^9 is H, alkyl, -C(O)R, -C(O)N(R)₂, -C(O)OR, -SO₂R, -SO₂N(R)₂,

5 carbocyclyl, aryl, heterocyclyl, heteroaryl, carbocyclylalkyl, aralkyl, heterocyclylalkyl, heteroaralkyl or a tumor targeting moiety;

each R^a and R^b is independently H, OR^o , alkyl, or fluoroalkyl; each R^c and R^d is independently H, alkyl, or fluoroalkyl; n is 0-4;

W is alkylene, arylene, heteroarylene, carbocyclylene, or heterocyclylene; R° is H or alkyl; and

R is R°, carbocyclyl, aryl, heterocyclyl, heteroaryl, carbocyclylalkyl, aralkyl, heterocyclylalkyl, or heteroaralkyl.

- 2. The compound of 1, wherein R^6 is Y.
- The compound of 1, wherein said compound has one or more features selected from the group consisting of:
 - i) R^1 , R^2 and R^4 are independently H, C_{1-6} alkyl or fluoro(C_{1-6} alkyl);
 - ii) R^3 is H, alkyl, fluoroalkyl, $-(CH_2)_{1-6}OR$, $-(CH_2)_{1-6}N(R)_2$, $-NR^{\circ}C(O)R$, -C(O)R, -C(H)(OR)R, aralkyl, heterocyclyl, heterocyclylalkyl,
- 20 heteroaryl, or heteroaralkyl;
 - iii) R^6 is -C=C-C(O)R, -SR, -S-W-OR⁷, M or Y;
 - iv) R^7 is H, alkyl, -C(O)R, $-PO_3M_x$, $-(PO_3)_2M_y$, -P(O)(alkyl)OM', $-C(O)N(R)_2$, -C(O)OR, or a tumor-targeting moiety; or R^9 is H, alkyl, -C(O)R, $-C(O)N(R)_2$, -C(O)OR, $-SO_2R$, 5-membered heterocyclyl, 5-membered
- 25 heteroaralkyl, or a tumor-targeting moiety; and
 - v) n is 1.
 - 4. The compound of 3, wherein:
 - i) R^1 , R^2 and R^4 are independently H, C_{1-6} alkyl or fluoro(C_{1-6} alkyl);
 - ii) R^3 is H, alkyl, fluoroalkyl, $-(CH_2)_{1-6}OR$, $-(CH_2)_{1-6}N(R)_2$,
- -NR°C(O)R, -C(O)R, -C(H)(OR)R, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroaralkyl;

5

20

- iii) R^6 is -C=C-C(O)R, -SR, -S-W-OR⁷, M or Y:
- iv) R⁷ is H, alkyl, -C(O)R, -PO₃M_x, -(PO₃)₂M_y, -P(O)(alkyl)OM', -C(O)N(R)₂, -C(O)OR, or a tumor-targeting moiety; or R⁹ is H, alkyl, -C(O)R, -C(O)N(R)₂, -C(O)OR, -SO₂R, 5-membered heterocyclyl, 5-membered heteroaralkyl, or a tumor-targeting moiety; and
 - v) n is 1.
- 5. The compound of 3 or 4, wherein R is R^o, carbocyclyl, aryl, heteroaryl, heterocyclyl, aralkyl, heterocyclylalkyl or heteroaralkyl.
- 6. The compound of 5, wherein R^{o} is H or C_{1-6} alkyl optionally substituted with halo, hydroxy or amino.
 - 7. The compound of 3 or 4, wherein said compound has one or more of the features selected from the group consisting of:
- i) ring A is optionally substituted with -OC(O)R[†], halo, -OR[†], -CF₃, -OCF₃, -SCF₃, -SR[†], -R[†], -NR[†]C(O)R[†], -CO₂R[†], -NO₂, -N(R[†])₂, -CN, -C(O)R[†], -C(O)N(R[†])₂, -SO₂N(R[†])₂, -NR[†]CO₂R[†], -C(O)C(O)R[†], -OC(O)N(R[†])₂, -S(O)_tR[†], -C(O)CH₂C(O)R[†], -NR[†]SO₂R[†], or -C(=S)N(R[†])₂; and R[†] is 3-6 membered unsubstituted cycloalkyl, phenyl, benzyl, naphthyl, pyridyl, or C₁₋₆ alkyl optionally substituted with halo;
 - ii) R^3 is H, C_{1-6} alkyl, $-(CH_2)_{1-6}OR^o$ or $-CH(OR^o)R^o$;
 - iii) R^6 is -C=C-C(O)R, -SR, -S-W-OR⁷ or Y; and
 - iv) R^8 is H or C_{1-6} unsubstituted alkyl.
 - 8. The compound of 7, wherein R^7 or R^9 is a polysaccharide, $-[C(O)CH(R)N(R)]_{2-3}-R$, an antibody, or

,wherein R¹⁰ is H, alkyl, or aryl.

- 9. The compound of 7, wherein said compound has one or more of the features selected from the group consisting of:
 - i) ring A is selected from the group consisting of $\underline{1}$ - $\underline{9}$;

ii) R^1 , R^2 and R^4 are independently H, methyl, ethyl, -CH₂F, -CHF₂, or -CF₃;

iii) R³ is H, methyl, ethyl, -CH(OH)CH₃, -CH₂OH, or -CH₂CH₂OH;

iv)
$$R^6$$
 is -S-(unsubstituted C_{1-6} alkyl), Y, C_{CH_3}

v) R⁸ is H, methyl, or ethyl; and

5

10

group consisting of:

vi) R^7 is H, methyl, ethyl, -C(O)Me, -C(O)Et, -C(O)NMe₂, -C(O)-p-OMe-phenyl, -C(O)O-phenyl, -PO₃H₂, -P(O)(OMe)₂, -P(O)(OMe)OH, -P(O)(OH)OP(O)(OH)(OH), or R^{11} ; and R^{11} is selected from the

peptide Z-Val-Cit-PABOH

NH2

and an

antibody; or R9 is H, methyl, ethyl, R11,

WO 2005/095344 PCT/US2005/009966

10. The compound of 1, wherein said compound is III-1 to III-18 or IV-1 to IV-18.

11. A pharmaceutical composition comprising a compound of 1 10 and a pharmaceutically acceptable carrier.

WO 2005/095344 PCT/US2005/009966

- 58 -

- 12. The composition of 11, further comprising at least one chemotherapeutic agent, antiangiogenic agent or agent which modulates signaling associated with hypoxic conditions in a cell.
- 13. A method for inhibiting transketolase activity in a biological sample or a patient in need thereof comprising contacting said biological sample with or administering to said patient an effective amount of a compound of 1-10.
 - 14. A method for reducing levels of ribulose/ribose-5-phosphate in a cell comprising administering to the cell an effective amount of a compound of 1-10.
- 10 15. A method for inhibiting nucleic acid synthesis in a cell comprising administering to the cell an effective amount of a compound of 1-10.
 - 16. A method for inhibiting cell proliferation comprising administering to the cell an effective amount of a compound of 1-10.
 - 17. A method for increasing apoptosis in a tumor cell comprising administering to the cell an effective amount of a compound of 1-10.

15

- 18. A method for reducing tumor growth in a patient comprising administering an effective amount of a compound of 1-10 or a composition of 11 to the patient in need thereof.
- 19. The method of 18, further comprising administering at least one chemotherapeutic agent, antiangiogenic agent or agent which modulates signaling associated with hypoxic conditions in a cell.
 - 20. The method of 18 or 19, further comprising limiting thiamine concentrations in the patient during the administration step.
- The method of 20, wherein the patient is on a reduced thiamine diet during the administration step.

WO 2005/095344 PCT/US2005/009966

- 59 -

22. The method of 21, wherein cellular thiamine concentrations are maintained at a level sufficient to avoid toxicity associated with thiamine deficiency.