Examenul național de bacalaureat 2023 Proba E. c) Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3 \cdot \left(1 + \frac{1}{2}\right) - \frac{1}{2} = 3 \cdot \frac{3}{2} - \frac{1}{2} =$	3 p
	$=\frac{9}{2}-\frac{1}{2}=4$	2p
2.	f(a) = a + 2	2p
	a+2=6, de unde obţinem $a=4$	3 p
3.	2x+1=9	3 p
	x = 4, care convine	2p
4.	Mulțimea A are 23 de elemente, deci sunt 23 de cazuri posibile	2p
	În mulțimea A sunt 14 numere n care verifică inegalitatea $n \ge 10$, deci sunt 14 cazuri	
	favorabile, de unde obținem $p = \frac{14}{23}$	3 p
5.	$x_M = \frac{-1+1}{2} = 0$, unde punctul M este mijlocul segmentului AB	3 p
	$y_M = \frac{2+6}{2} = 4$	2p
6.	$AB = \sqrt{BC^2 - AC^2} = \sqrt{2}$	3 p
	AB = AC, deci triunghiul ABC este isoscel	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = 3 \cdot 1 - 2 \cdot 2 =$	3 p
	=3-4=-1	2p
b)	$2B - A = \begin{pmatrix} 0 & 8 \\ 8 & 4 \end{pmatrix} - \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 6 \\ 6 & 3 \end{pmatrix} =$	3 p
	$=3\begin{pmatrix} -1 & 2\\ 2 & 1 \end{pmatrix} = 3C$	2p
c)	$B + 2C = \begin{pmatrix} -2 & 8 \\ 8 & 4 \end{pmatrix}, A^{-1} = \begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix}$	3 p
	$X = \frac{1}{2}(B+2C) \cdot A^{-1}$, de unde obţinem $X = \begin{pmatrix} 9 & -14 \\ 0 & 2 \end{pmatrix}$	2p
2.a)	5*4=(5-4)(4-4)+4=	3p
	$=1 \cdot 0 + 4 = 4$	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

b)	x*6=2x-4, pentru orice număr real x	3p
	2x-4=6x, de unde obținem $x=-1$	2 p
c)	$\left(\frac{4}{n}-4\right)(n-4)+4>4 \Leftrightarrow \left(\frac{1}{n}-1\right)(n-4)>0$, unde n este număr natural nenul	2p
	Cum n este număr natural nenul, obținem $n=2$ și $n=3$	3p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 3x^2 + 6 \cdot 2x - 15 =$	3p
	$=3x^2+12x-15=3(x^2+4x-5), x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Leftrightarrow x = -5 \text{ sau } x = 1$	2p
	$f'(x) \ge 0$, pentru orice $x \in (-\infty, -5]$, deci f este crescătoare pe $(-\infty, -5]$, $f'(x) \le 0$, pentru	
	orice $x \in [-5,1]$, deci f este descrescătoare pe $[-5,1]$ și $f'(x) \ge 0$, pentru orice $x \in [1,+\infty)$,	3p
	deci f este crescătoare pe $[1,+\infty)$	
c)	$f''(x) = 3(2x+4), x \in \mathbb{R}, \text{ deci } \lim_{x \to +\infty} \frac{f'(x)}{e^x f''(x)} = \lim_{x \to +\infty} \frac{x^2 + 4x - 5}{e^x (2x+4)} = \lim_{x \to +\infty} \frac{2x + 4}{e^x (2x+6)} = \lim_{x \to$	3p
	$= \lim_{x \to +\infty} \frac{2}{e^x \left(2x+8\right)} = 0$	2p
2.a)	$\int_{0}^{1} (x+9) \cdot f(x) dx = \int_{0}^{1} 8x dx = 4x^{2} \Big _{0}^{1} =$	3р
	=4-0=4	2p
b)	$\int_{1}^{6} \frac{1}{8x} \cdot f(x) dx = \int_{1}^{6} \frac{1}{x+9} dx = \int_{1}^{6} \frac{(x+9)'}{x+9} dx = \ln(x+9) \Big _{1}^{6} =$	3р
	$= \ln 15 - \ln 10 = \ln \frac{3}{2}$	2p
c)	$\int_{0}^{3} f(x^{2}) dx = \int_{0}^{3} \frac{8x^{2}}{x^{2} + 9} dx = 8 \int_{0}^{3} \left(1 - \frac{9}{x^{2} + 9} \right) dx = 8x \Big _{0}^{3} - 8 \cdot \frac{9}{3} \arctan \left(\frac{x}{3} \right) \Big _{0}^{3} = 24 - 6\pi$	3р
	$24-6\pi=6(4+a\pi)$, de unde obţinem $a=-1$	2p