Tópicos de Matemática

Lic. Ciências da Computação 2021/2022

3. Indução nos Naturais

No capítulo 1. foram apresentados métodos de prova que podem ser aplicados para estabelecer a veracidade de afirmações a respeito de qualquer tópico matemático. Neste capítulo estudamos uma outra técnica de prova, designada por *indução matemática*, e que é indicada para provar propriedades a respeito dos números naturais.

3.1 Princípio de Indução Matemática

Muitas proposições e conjeturas em matemática referem propriedades sobre os números naturais. Considere, por exemplo, o problema de encontrar uma fórmula para a soma dos primeiros n números naturais ímpares. Se calcularmos esta soma para alguns valores de n

$$\begin{array}{rcl}
1 & = & 1 \\
1+3 & = & 4 \\
1+3+5 & = & 9 \\
1+3+5+7 & = & 16 \\
1+3+5+7+9 & = & 25
\end{array}$$

somos levados a conjeturar que a soma dos n primeiros números naturais ímpares poderá ser dada pela fórmula n^2 . Mas será esta fórmula válida para qualquer natural n? Em caso afirmativo, como provar que a conjetura é válida? Obviamente, não podemos confirmar esta conjetura fazendo a sua verificação para cada um dos números naturais, mas, como vamos ver seguidamente, existe um método de prova que permitirá mostrar que a conjetura anterior é, de facto, válida. Tal método de prova, que tem por base o **Princípio de Indução (Simples)** para \mathbb{N} , é justificado pela definição indutiva de \mathbb{N} através das regras seguintes

- (i) $1 \in \mathbb{N}$;
- (ii) se $n \in \mathbb{N}$, então $n + 1 \in \mathbb{N}$.

Como se verificará de seguida, a validade do Princípio de Indução (Simples) para $\mathbb N$ pode ser estabelecida com base numa importante propriedade dos números naturais, o *Princípio da Boa Ordenação de* $\mathbb N$. De acordo com este princípio (que será estudado com mais detalhe no capítulo 6.), todo o subconjunto não vazio de $\mathbb N$ tem elemento mínimo (isto é, para todo o subonjunto não vazio S de $\mathbb N$, existe $m \in S$ tal que $m \le s$, para todo $s \in S$).

Teorema 3.1 (Princípio de Indução (Simples) para \mathbb{N}). Seja p(n) um predicado sobre \mathbb{N} . Se

- (1) p(1) é verdadeira, e
- (2) para todo $k \in \mathbb{N}$, p(k+1) é verdadeira sempre que p(k) é verdadeira, então p(n) é verdadeira, para todo $n \in \mathbb{N}$.

Demonstração. Admitamos que as condições (1) e (2) são satisfeitas e mostremos que, para qualquer natural $n,\ p(n)$ é verdadeira. Para tal, consideremos o conjunto X dos números naturais que não satisfazem p(n), i.e. $X=\{n\in\mathbb{N}: \neg p(n)\}$, e, no sentido de fazer uma prova por redução ao absurdo, admitamos que $X\neq\emptyset$. Então X tem um elemento mínimo, digamos m. Pela condição (1), tem-se $m\neq 1$ e, portanto, m=k+1, para algum $k\in\mathbb{N}$. Sendo m o menor elemento de X, então $k=m-1\not\in X$. Logo p(k) é verdadeira e por (2) segue que p(k+1) é verdadeira, o que contradiz a hipótese de m ser um elemento de X. Logo X tem de ser vazio e, portanto, para todo $n\in\mathbb{N}$, p(n) é verdadeira.

A condição (1) do teorema anterior é chamada de **Base de indução** e a condição (2) de **Passo de indução**. Na aplicação da condição (2) chamamos **Hipótese de indução** a "p(k) é verdadeira".

A aplicação do Princícpio de Indução para $\mathbb N$ para provar uma proposição do tipo $\forall_{n\in\mathbb N}\,p(n)$, onde p(n) representa um predicado sobre os naturais, diz-se uma **prova por indução nos naturais**.

Exemplo 3.1. Consideremos novamente o problema de determinar uma fórmula para a soma soma dos n primeiros números naturais ímpares e mostremos que esta soma é igual n^2 , i.e., mostremos que

$$\forall_{n \in \mathbb{N}} \ 1 + 3 + 5 + \ldots + (2n - 1) = n^2.$$

A prova é feita recorrendo ao Princípio de Indução para \mathbb{N} . Representemos por p(n) o predicado: $(1+3+5+\ldots+(2n-1)=n^2)$.

- (1) Base de indução (n=1): Uma vez que $1=1^2$, é imediato que p(1) é verdadeira.
- (2) Passo de indução: Dado $k \in \mathbb{N}$, admitamos, por hipótese de indução, que p(k) é verdadeira, ou seja que

$$1+3+5+\dots(2k-1)=k^2$$
.

Mostremos, com base nesta hipótese, que p(k+1) também é verdadeira, ou seja, que

$$1+3+5+\ldots+(2k-1)+(2(k+1)-1)=(k+1)^2.$$

De facto, atendendo à hipótese de indução, tem-se:

$$1+3+5+\ldots+(2k-1)+(2(k+1)-1) = k^2+(2(k+1)-1)$$
$$= k^2+2k+1$$
$$= (k+1)^2.$$

De (1) e (2) e pelo Princípio de Indução para N, concluímos que

$$\forall_{n \in \mathbb{N}}, 1+3+5+\ldots+(2n-1)=n^2$$

é uma proposição verdadeira.

Exemplo 3.2. Mostremos que n^3-n é divisível por 3, para todo o natural $n \in \mathbb{N}$, pelo método de indução nos naturais.

Representemos por p(n) o predicado " $n^3 - n$ é divisível por 3".

- (1) Base de indução: Para n=1, temos $n^3-n=1^3-1=0$. Como 0 é divisível por 3, p(1) é verdadeira.
- (2) Passo de indução: Seja $k \in \mathbb{N}$ tal que p(k) é verdadeira, ou seja, $k^3 k$ é divisível por 3. Então, existe $q \in \mathbb{N}_0$ tal que $k^3 k = 3q$. Assim,

$$(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)$$

$$= k^3 + 3k^2 + 3k - k$$

$$= (k^3 - k) + (3k^2 + 3k)$$

$$= 3q + (3k^2 + 3k)$$

$$= 3(q + k^2 + k).$$

Logo, $(k+1)^3 - (k+1) = 3(q+k^2+k)$, pelo que p(k+1) é verdadeira.

Pelo Princípio de Indução para N e por (1) e (2), podemos concluir que

$$\forall_{n \in \mathbb{N}} \ n^3 - n \ \'e \ divis\'ivel \ por \ 3.$$

Exemplo 3.3. Mostremos, pelo método de indução nos naturais, que, para todo o natural n,

$$2^{n+4} > 2n+9$$
.

Representemos por p(n) o predicado " $2^{n+4} > 2n + 9$ ".

(1) Base de indução: Para n=1, tem-se

$$2^{1+4} = 32 > 11 = 2 \times 1 + 9$$

e, portanto, p(1) verdadeira.

(2) Passo de indução: Seja $k \in \mathbb{N}$ tal que p(k) é verdadeira, ou seja, tal que

$$2^{k+4} > 2k + 9$$
.

Então

$$2^{(k+1)+4} = 2 \times 2^{k+4}$$

$$> 2 \times (2k+9)$$

$$= (2k+9+2) + (2k+7)$$

$$> 2k+2+9$$

$$= 2(k+1) + 9,$$

donde $2^{(k+1)+4} > 2(k+1) + 9$ e, portanto, p(k+1) é verdadeira.

Pelo Princípio de Indução para N e por (1) e (2), podemos concluir que

$$\forall_{n \in \mathbb{N}} \ 2^{n+4} > 2n+9.$$

Note que é necessário que se verifiquem simultaneamente as condições (1) e (2) do teorema anterior para que se possa invocar o Princípio de Indução.

Exemplo 3.4. Considerando o predicado p(n): " $n^2 + 5n + 1$ é par", facilmente se verifica que o passo de indução do Príncipio de Indução é válido quando aplicado a p(n). De facto, dado $k \in \mathbb{N}$, se admitirmos que p(k) é verdadeira, a proposição p(k+1) também é verdadeira, pois

$$(k+1)^2 + 5(k+1) + 1 = (k^2 + 5k + 1) + (2k+6)$$

e, uma vez que $(k^2 + 5k + 1)$ e (2k + 6) são pares, tem-se que $(k + 1)^2 + 5(k + 1) + 1$ é par. Note-se, porém, que, embora o passo de indução seja válido, a proposição

$$\forall_{n\in\mathbb{N}} \ n^2 + 5n + 1 \ \acute{e} \ par$$

 $n\tilde{a}o$ é verdadeira, uma vez que p(1) é falsa.

A proposição " $\forall_{n\in\mathbb{N}}$ $3^n>2^{n+1}$ " também não é verdadeira. De facto, representando por p(n) o predicado " $3^n>2^{n+1}$ ", é simples verificar que este não é válido para o natural 1. No entanto, prova-se ser válido para todos os naturais maiores ou iguais a 2. A prova deste resultado pode ser feita recorrendo a uma variante do Princípio de Indução, considerando para base de indução o elemento de $\mathbb N$ a partir do qual se pode provar a validade da propriedade.

Teorema 3.2 (Princípio de Indução (Simples) para \mathbb{N} de base n_0). Sejam p(n) um predicado sobre \mathbb{N} e $n_0 \in \mathbb{N}$. Se

- (1) $p(n_0)$ é verdadeira, e
- (2) para todo $k \in \mathbb{N}$ tal que $k \ge n_0$, p(k+1) é verdadeira sempre que p(k) é verdadeira, então p(n) é verdadeira, para todo $n \in \mathbb{N}$ tal que $n \ge n_0$.

Exemplo 3.5. Mostremos que, para todo o natural $n \ge 2$, $3^n > 2^{n+1}$.

Representemos por p(n) o predicado '3ⁿ > 2ⁿ⁺¹".

- (1) Base de indução: Para n=2, tem-se $3^2=9>8=2^3$, pelo que p(2) é verdadeira.
- (2) Passo de indução: Seja $k \geq 2$ tal que p(k) é verdadeira, ou seja, tal que

$$3^k > 2^{k+1}$$
.

Então

$$3^{k+1} = 3 \times 3^k > 3 \times 2^{k+1} > 2 \times 2^{k+1} = 2^{k+2}$$

Então, pelo Princípio de Indução para $\mathbb N$ de base 2 e por (1) e por (2), concluímos que, para todo $n \ge 2$, $3^n > 2^{n+1}$.

Exemplo 3.6. Mostremos que, para todo o natural $n \ge 10$,

$$2^n > n^3$$
.

Representemos por p(n) o predicado " $2^n > n^3$ ".

(1) Base de indução: Para n=10, tem-se

$$2^{10} = 1024 > 1000 = 10^3$$
.

pelo que p(10) é verdadeira.

(2) Passo de indução: Dado $k \in \mathbb{N}$ tal que $k \ge 10$, suponhamos que p(k) é verdadeira, ou seja, que $2^k > k^3$.

Pretendemos mostrar que p(k+1) é verdadeiro, isto é, que $2^{k+1} > (k+1)^3$. De facto, admitindo que p(k) é verdadeiro, tem-se

$$2^{k+1} = 2 \cdot 2^{k}$$

$$> 2 \cdot k^{3}$$

$$= k^{3} + k^{3}$$

$$> k^{3} + 9k^{2}$$

$$= k^{3} + 3k^{2} + 6k^{2}$$

$$> k^{3} + 3k^{2} + 54k$$

$$= k^{3} + 3k^{2} + 3k + 51k$$

$$> k^{3} + 3k^{2} + 3k + 1$$

$$= (k+1)^{3}.$$

Então, pelo Princípio de Indução para $\mathbb N$ de base 10 e por (1) e por (2), concluímos que, para todo $n \geq 10$, $2^n > n^3$.

3.2 Indução Completa

Na prova de certas propriedades sobre os naturais a aplicação do Princípio de Indução Simples não é fácil. Nestes casos torna-se conveniente optar por um método de prova que, embora sendo equivalente ao Princípio de Indução Simples, torna mais fácil a prova de certas propriedades - trata-se do **Princípio de Indução Completa** (também designado por **Princípio de Indução Forte**).

Teorema 3.3 (Princípio de Indução Completa para \mathbb{N}). Seja p(n) um predicado sobre \mathbb{N} . Se

- (1) p(1) é verdadeira, e
- (2) para todo $k \in \mathbb{N}$, p(k+1) é verdadeira sempre que p(j) é verdadeira para todo $j \leq k$, então p(n) é verdadeira, para todo $n \in \mathbb{N}$.

Embora o Princípio de Indução Completa pareça ser mais geral do que o Princípio de Indução Simples, verifica-se que se tratam de métodos de prova equivalentes: toda a prova que possa ser feita pelo Princípio de Indução Simples pode ser feita pelo Princípio de Indução Completa e vice-versa.

À semelhança do que acontece com o Princípio de Indução Simples, também podemos considerar o **Princípio de Indução Completa com base** n_0 .

Teorema 3.4 (Princípio de Indução Completa para \mathbb{N} de base n_0). Sejam p(n) um predicado sobre \mathbb{N} e $n_0 \in \mathbb{N}$. Se

- (1) $p(n_0)$ é verdadeira, e
- (2) para todo $k \in \mathbb{N}$ tal que $k \ge n_0$, p(k+1) é verdadeira sempre que p(j) é verdadeira para todo $j \le k$,

então p(n) é verdadeira, para todo $n \in \mathbb{N}$ tal que $n \ge n_0$.

Exemplo 3.7. Recorrendo ao Princípio de Indução Completa de base 2 torna-se simples mostrar que

 $\forall_{n\geq 2}$ n é primo ou é um produto de números primos.

Representemos por p(n) o predicado "n é primo ou n é produto de primos" e mostremos que se verificam as condições (1) e (2) do Princípio de Indução Completa de base 2.

- (1) 2 é primo, logo p(2) é verdadeira.
- (2) Dado $k \in \mathbb{N}$ tal que $k \ge 2$, admitamos que, para todo $j \le k$, p(j) é verdadeira. Com base nesta hipótese, prova-se que p(k+1) é verdadeira. De facto:
 - (i) Se k + 1 é primo, então p(k + 1) é verdadeira.
 - (ii) Caso k+1 não seja primo, então existem $p,q\in\mathbb{N}$ tais que p,q< k+1 e k+1=pq. Mas, $p,q\leq k$, logo, por hipótese, p é primo ou é produto de primos e q é primo ou é produto de primos.

Em qualquer dos casos conclui-se que k+1 é produto de primos e, portanto, p(k+1) é verdadeira.

Assim, ficou provado que, para todo $k \geq 2$, se p(j) é verdadeira para todo $j \leq k$, então p(k+1) também é verdadeira.

De (1) e (2) e pelo Princípio de Indução Completa de base 2 segue que a proposição

 $\forall_{n>2}$ n é primo ou é um produto de números primos

é verdadeira.