Notes on Anomaly Detection

Sameer Kesava PhD

Contents

1	Supervised Learning Algorithms		
	1.1	Univariate Data	1
	1.2	Multivariate Data	1
	1.3	Random Cut Forest	1
	1.4	XGBoost	1
2	2.1	Supervised Learning Algorithms MeanShift Clustering	
	Improving the Accuracy		
	3.1	Hyperparameter Tuning	_

Supervised Learning Algorithms

1.1 Univariate Data

- Boxplot
- Grubbs test
- RANSAC algorithm for linear regression
- Studentized residuals and leverage points. Easy to plot for univariate data.

1.2 Multivariate Data

1.3 Random Cut Forest

From Amazon SageMaker

1.4 XGBoost

Highly popular classifier and regressor.

- ullet Gradient boosting method
- Absolute loss and Huber loss more robust to outliers.
- Hyperparameters
 - 1. Max_depth
 - 2. Colsample_bytree
 - 3. Eta

 $4. \ \, {\rm train\text{-}test\ split:}\ \, 60\text{-}40/70\text{-}30/80\text{-}20.$

Unsupervised Learning Algorithms

2.1 MeanShift Clustering

- Distance-based clustering
- Has the ability to detect outliers.

2.2 DBSCAN

Density-based spatial clustering of applications with Noise

- Hyperparameters: min_samples, ϵ and ϵ -metric.
- Has the ability to detect outliers.
- Works well for non-linear data.
- Affected by the curse of dimensionality.

Improving the Accuracy

3.1 Hyperparameter Tuning

- Hyperparameter optimization based on Gaussian Process Regression and Bayesian Optimization
- keras tuner in keras
- GridSearchCV or RandomSearchCV in scikit-learn
- RandomSearch can be used as the baseline against which optimization algorithms can be evaluated.

Bibliography

[1] Pankaj Malhotra et al., Long Short Term Memory Networks for Anomaly Detection in Time Series, 2015.