

EL2-Praktikum #08: Dreispannungsmesser-Verfahren mit LTspice

Eine Spule mit nicht vernachlässigbarem Drahtwiderstand kann mit dem Serie-Ersatzschaltbild nach Abbildung 1 oder mit dem Parallel-Ersatzschaltbild nach Abbildung 2 modelliert werden. Der Drahtwiderstand kann mit einem Milliohmmeter gemessen werden. Allerdings ist es mit ein wenig mehr Messaufwand und dem sogenannten «Dreispannungsmesser-Verfahren» möglich, neben dem ohmschen Anteil auch gerade noch den induktive Anteil zu bestimmen. Dieses Verfahren soll in diesem Praktikum an der gegebenen Visaton Luftspule mit den Nennwerten 2.2 mH und 2 Ω Drahtwiderstand durchgeführt werden.

Abbildung 1. Ersatzschaltbild einer realen Spule mit einem Seriewiderstand R_S und einer Serieinduktivität L₅.

Abbildung 2. Ersatzschaltbild einer realen Spule mit einem Parallelwiderstand R_P und einer Parallelinduktivität L_P .

Dreispannungsmesser-Verfahren

Wird die reale Spule durch einen Messwiderstand ergänzt und an eine Wechselspannungsquelle angeschlossen, ergibt sich das Schaltschema nach Abbildung 3.

Abbildung 3. Mess-Schaltung für das Dreispannungsmesser-Verfahren.

Die in Abbildung 3 bezeichneten Spannungen bilden das Festzeigerdiagramm gemäss Abbildung 4.

Abbildung 4. Festzeigerdiagramm zum Dreispannungsmesser-Verfahren.

Gemessen werden die drei Effektivwerte U, U_m und U_S der entsprechenden Spannungen. Damit ist das aktuell vorliegende Festzeigerdiagramm definiert. Die Effektivwerte U_R und U_L können nicht gemessen werden, sie sind Modellparameter, aber sie können aus dem Festzeigerdiagramm offensichtlich bestimmt werden. Die Stromstärke I ergibt sich aus U_m und dem Messwiderstand R_m . Mit der Stromstärke und U_R können R_S , mit der Stromstärke, der Messfrequenz f und U_L kann L_S bestimmt werden.

Definieren der Messparameter

 R_m ist grundsätzlich frei wählbar. Ist jedoch R_S schon bekannt wie im vorliegenden Fall ist es sinnvoll, den Messwiderstand ungefähr gleich R_S zu wählen. Ansonsten wird das Festzeigerdiagramm unter Umständen stark verzerrt, womit sich ungenaue Resultate ergeben.

Aus den gleichen Überlegungen – ein einigermassen kompaktes Dreieck für bessere Resultatgenauigkeit – soll die Messfrequenz so gewählt werden, dass gilt: $R_S \approx \omega L_S$.

Messung und Auswertung

Bauen Sie nun die Schaltung gemäss Abbildung 3 in LTspice auf. Setzen Sie 2 Ω für R_S ein, 2.2 mH für L_S . Die Generatorenspannung ist frei wählbar. Messen Sie die Amplituden der Spannungen des Generators, des Messwiderstands¹ und der Spule. Die Spannung U_L über L_S soll nicht gemessen werden, da sie in der Realität nicht zugänglich ist.

- 1. Verwenden Sie den Kosinus-Satz, um zu den Effektivwerten von U_R und U_L zu kommen. Berechnen Sie R_S und L_S . Es sollten die Nennwerte resultieren.
- 2. Stellen Sie Ihr Festzeigerdiagramm mittels der Funktion Quiver in Matlab dar.

¹ Eine Differenzspannung messen Sie in LTspice wie folgt: auf den einen Anschluss des Elements klicken (rote Sonde), linke Maustaste gedrückt halten, Maus verschieben, man erhält eine schwarze Sonde (Masseanschluss), verschieben dieser schwarzen Sonde auf den anderen Anschluss des Elements, loslassen.