SET-1

Series SSO

कोड नं. Code No. 65/1/G

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 11 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-प्स्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 11 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

गणित

MATHEMATICS

निर्धारित समय : 3 घण्टे अधिकतम अंक : 100

Time allowed: 3 hours Maximum Marks: 100

65/1/G 1 P.T.O.

सामान्य निर्देश :

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में **26** प्रश्न हैं।
- (iii) खण्ड अ के प्रश्न 1 6 तक अति लघु-उत्तर वाले प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक निर्धारित है।
- (iv) खण्ड ब के प्रश्न **7 19** तक दीर्घ-उत्तर I प्रकार के प्रश्न हैं और प्रत्येक प्रश्न के लिए **4** अंक निर्धारित हैं।
- (v) खण्ड स के प्रश्न **20 26** तक दीर्घ-उत्तर II प्रकार के प्रश्न हैं और प्रत्येक प्रश्न के लिए **6** अंक निर्धारित हैं।
- (vi) उत्तर लिखना प्रारम्भ करने से पहले कृपया प्रश्न का क्रमांक अवश्य लिखिए।

General Instructions:

- (i) **All** questions are compulsory.
- (ii) Please check that this question paper contains 26 questions.
- (iii) Questions 1 6 in Section A are very short-answer type questions carrying 1 mark each.
- (iv) Questions **7 19** in Section B are long-answer I type questions carrying **4** marks each.
- (v) Questions 20 26 in Section C are long-answer II type questions carrying 6 marks each.
- (vi) Please write down the serial number of the question before attempting it.

SECTION A

प्रश्न संख्या 1 से 6 तक प्रत्येक प्रश्न का 1 अंक है।

Question numbers 1 to 6 carry 1 mark each.

- 1. यदि $A=\begin{bmatrix}2&4\\3&2\end{bmatrix}$ तथा $B=\begin{bmatrix}-2&5\\3&4\end{bmatrix}$ है, तो (3A-B) ज्ञात कीजिए । If $A=\begin{bmatrix}2&4\\3&2\end{bmatrix}$ and $B=\begin{bmatrix}-2&5\\3&4\end{bmatrix}$, then find (3A-B).
- 2. वक्र $y=e^{-x}+ax+b$ को निरूपित करने वाला अवकल समीकरण ज्ञात कीजिए, जहाँ a तथा b स्वेच्छ अचर हैं।

Find the differential equation representing the curve $y = e^{-x} + ax + b$, where a and b are arbitrary constants.

 $\mathbf{3.}$ अवकल समीकरण $\left(\frac{\mathrm{d}^2 y}{\mathrm{dx}^2}\right)^2 - \left(\frac{\mathrm{d}y}{\mathrm{dx}}\right)^3 = y^3$ की कोटि व घात का योगफल लिखिए ।

Write the sum of the order and the degree of the differential equation

$$\left(\frac{d^2y}{dx^2}\right)^2 - \left(\frac{dy}{dx}\right)^3 = y^3.$$

4. यदि बिन्दु (2, a, 3), (3, -5, b) तथा (-1, 11, 9) संरेख हैं, तो a + b का मान ज्ञात कीजिए ।

Find the value of a + b, if the points (2, a, 3), (3, -5, b) and (-1, 11, 9) are collinear.

5. यदि $|\stackrel{\rightarrow}{a}| = 10$, $|\stackrel{\rightarrow}{b}| = 2$ तथा $|\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}| = 16$ है, तो $\stackrel{\rightarrow}{a}$. $\stackrel{\rightarrow}{b}$ का मान ज्ञात कीजिए ।

Find the value of $\overrightarrow{a} \cdot \overrightarrow{b}$, if $|\overrightarrow{a}| = 10$, $|\overrightarrow{b}| = 2$ and $|\overrightarrow{a} \times \overrightarrow{b}| = 16$.

6. समान्तर समतलों \vec{r} . $(2\hat{i} - \hat{j} - 2\hat{k}) = 6$ तथा \vec{r} . $(6\hat{i} - 3\hat{j} - 6\hat{k}) = 27$ के बीच की दूरी ज्ञात कीजिए ।

Find the distance between the parallel planes

$$\overrightarrow{r} \cdot (2\overrightarrow{i} - \overrightarrow{j} - 2\overrightarrow{k}) = 6$$
 and $\overrightarrow{r} \cdot (6\overrightarrow{i} - 3\overrightarrow{j} - 6\overrightarrow{k}) = 27$.

खण्ड ब

SECTION B

प्रश्न संख्या ७ से 19 तक प्रत्येक प्रश्न के ४ अंक हैं। Question numbers ७ to 19 carry 4 marks each.

7. निम्नलिखित को सिद्ध कीजिए :

$$\sin \left\lceil \tan^{-1} \left(\frac{1 - x^2}{2x} \right) + \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right\rceil = 1, \quad 0 < x < 1$$

अथव

यदि
$$\tan^{-1}\left(\frac{x-5}{x-6}\right) + \tan^{-1}\left(\frac{x+5}{x+6}\right) = \frac{\pi}{4}$$
 है, तो x का मान ज्ञात कीजिए ।

Prove the following:

$$\sin \left[\tan^{-1} \left(\frac{1-x^2}{2x} \right) + \cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) \right] = 1, \quad 0 < x < 1.$$

OR

If
$$\tan^{-1}\left(\frac{x-5}{x-6}\right) + \tan^{-1}\left(\frac{x+5}{x+6}\right) = \frac{\pi}{4}$$
, then find the value of x.

8. सारणिकों के गुणधर्मों का प्रयोग करके निम्न को सिद्ध कीजिए :

$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3$$

Using the properties of determinants prove that:

$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3$$

9. आव्यूह
$$A=egin{pmatrix} 2&-1&1\\ -1&2&-1\\ 1&-1&2 \end{pmatrix}$$
 के लिए दर्शाइए कि $A^2-5A+4I=O$. अत: A^{-1} ज्ञात कीजिए ।

अथवा

प्रारम्भिक संक्रियाओं के प्रयोग द्वारा निम्नलिखित आव्यूह का व्युत्क्रम प्राप्त कीजिए :

$$\left(egin{array}{cccc} 0 & 1 & 2 \ 1 & 2 & 3 \ 3 & 1 & 0 \end{array}
ight)$$

For the matrix
$$A=\begin{pmatrix}2&-1&1\\-1&2&-1\\1&-1&2\end{pmatrix}$$
, show that $A^2-5A+4I=O$.

Hence find A^{-1} .

OR

Using elementary transformations, find the inverse of the following matrix:

$$\left(egin{array}{cccc} 0 & 1 & 2 \ 1 & 2 & 3 \ 3 & 1 & 0 \end{array}
ight)$$

10. निम्न फलन f(x) की x=1 पर सांतत्यता तथा x=2 पर अवकलनीयता की जाँच कीजिए :

$$f(x) = \left[\begin{array}{cccc} 5x - 4 & , & 0 < x < 1 \\ 4x^2 - 3x & , & 1 < x < 2 \\ 3x + 4 & , & x \ge 2 \end{array} \right.$$

Examine the following function f(x) for continuity at x = 1 and differentiability at x = 2.

$$f(x) = \left[\begin{array}{ccc} 5x - 4 & \text{,} & 0 < x < 1 \\ 4x^2 - 3x & \text{,} & 1 < x < 2 \\ 3x + 4 & \text{,} & x \geq 2 \end{array} \right.$$

11. यदि
$$y = x^3 \log \left(\frac{1}{x}\right)$$
हो, तो सिद्ध कीजिए कि $x \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 3x^2 = 0$.

अथवा

फलन f(x) = (x - 4)(x - 6)(x - 8) के लिए अंतराल [4, 10] में माध्य मान प्रमेय सत्यापित कीजिए ।

If
$$y = x^3 \log \left(\frac{1}{x}\right)$$
, then prove that $x \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 3x^2 = 0$.

OR

Verify mean value theorem for the function f(x) = (x - 4)(x - 6)(x - 8) on the interval [4, 10].

12. यदि
$$\frac{x}{x-y} = \log \frac{a}{x-y}$$
 हो, तो सिद्ध कीजिए $\frac{dy}{dx} = 2 - \frac{x}{y}$.

If $\frac{x}{x-y} = \log \frac{a}{x-y}$, then prove that $\frac{dy}{dx} = 2 - \frac{x}{y}$.

13. ज्ञात कीजिए:

$$\int \frac{\mathrm{dx}}{\mathrm{x}^3(\mathrm{x}^5+1)^{3/5}}$$

Find:

$$\int \frac{dx}{x^3(x^5+1)^{3/5}}$$

14. मान ज्ञात कीजिए:

$$\int_{2}^{4} \left\{ |x-2| + |x-3| + |x-4| \right\} dx$$

अथवा

मान ज्ञात कीजिए:

$$\int_{0}^{\pi/4} \frac{\sec x}{1 + 2\sin^2 x} \, dx$$

Evaluate:

$$\int_{2}^{4} \{ |x-2| + |x-3| + |x-4| \} dx$$

OR

Evaluate:

$$\int_{0}^{\pi/4} \frac{\sec x}{1 + 2\sin^2 x} \, dx$$

15. मान ज्ञात कीजिए:

$$\int_{-\pi/2}^{\pi/2} e^{2x} \left(\frac{1 - \sin 2x}{1 - \cos 2x} \right) dx$$

Evaluate:

$$\int_{-\infty}^{\pi/2} e^{2x} \left(\frac{1 - \sin 2x}{1 - \cos 2x} \right) dx$$

16. दर्शाइए कि चार बिन्दु जिनके स्थिति सदिश $4\hat{i} + 8\hat{j} + 12\hat{k}$, $2\hat{i} + 4\hat{j} + 6\hat{k}$, $3\hat{i} + 5\hat{j} + 4\hat{k}$ तथा $5\hat{i} + 8\hat{j} + 5\hat{k}$ हैं, समतलीय हैं ।

Show that the four points with position vectors $4\hat{i} + 8\hat{j} + 12\hat{k}$, $2\hat{i} + 4\hat{j} + 6\hat{k}$, $3\hat{i} + 5\hat{j} + 4\hat{k}$ and $5\hat{i} + 8\hat{j} + 5\hat{k}$ are coplanar.

17. थैले I में 4 लाल और 5 काली गेंदें हैं तथा थैले II में 3 लाल और 4 काली गेंदें हैं। एक गेंद को थैले I से थैले II में स्थानांतिरत किया जाता है और तब दो गेंदें थैले II से (बिना प्रतिस्थापना के) यादृच्छया निकाली जाती हैं। निकाली गई दोनों गेंदें काले रंग की हैं। स्थानांतिरत गेंद के काले रंग के होने की प्रायिकता ज्ञात कीजिए।

Bag I contains 4 red and 5 black balls and bag II contains 3 red and 4 black balls. One ball is transferred from bag I to bag II and then two balls are drawn at random (without replacement) from bag II. The balls so drawn are both found to be black. Find the probability that the transferred ball is black.

18. बिन्दु (1, -1, 1) से गुज़रने वाली व बिन्दुओं (4, 3, 2), (1, -1, 0) तथा (1, 2, -1), (2, 1, 1) से होकर जाने वाली रेखाओं के लम्बवत् रेखा का सदिश तथा कार्तीय समीकरण ज्ञात कीजिए।

Find the vector and cartesian equations of a line through the point (1, -1, 1) and perpendicular to the lines joining the points (4, 3, 2), (1, -1, 0) and (1, 2, -1), (2, 1, 1).

19. तीन विद्यालय A, B तथा C अपने कुछ चुने हुए विद्यार्थियों को तीन मूल्यों ईमानदारी, नियमितता तथा कठोर परिश्रम के लिए पुरस्कार देना चाहते हैं। प्रत्येक विद्यालय उपरोक्त मूल्यों के लिए पुरस्कार की राशि प्रति विद्यार्थी क्रमश: ₹ 2,500, ₹ 3,100 तथा ₹ 5,100 निश्चित करता है। निम्न तालिका तीनों विद्यालयों द्वारा पुरस्कृत विद्यार्थियों की संख्या दर्शाती है:

विद्यालय मूल्य	A	В	C
ईमानदारी	3	4	6
नियमितता	4	5	2
कठोर परिश्रम	6	3	4

आव्यूहों के प्रयोग से प्रत्येक विद्यालय द्वारा पुरस्कार में दी जाने वाली कुल राशि ज्ञात कीजिए। उपरोक्त मूल्यों के अतिरिक्त आप एक अन्य मूल्य सुझाइए जिसके लिए भी पुरस्कार दिया जाना चाहिए।

Three schools A, B and C want to award their selected students for the values of Honesty, Regularity and Hard work. Each school decided to award a sum of $\geq 2,500$, $\geq 3,100$, $\geq 5,100$ per student for the respective values. The number of students to be awarded by the three schools is given below in the table:

School Values	A	В	C
Honesty	3	4	6
Regularity	4	5	2
Hard work	6	3	4

Find the total money given in awards by the three schools separately, using matrices.

Apart from the above given values, suggest one more value which should be considered for giving award.

खण्ड स

SECTION C

प्रश्न संख्या 20 से 26 तक प्रत्येक प्रश्न के 6 अंक हैं। Question numbers 20 to 26 carry 6 marks each.

20. जाँच कीजिए कि संक्रिया * जो समुच्चय $A = R \times R$ पर निम्न रूप में परिभाषित है, एक द्विआधारी संक्रिया है या नहीं :

$$(a, b) * (c, d) = (a + c, b + d),$$

जहाँ R, सभी वास्तिवक संख्याओं का समुच्चय है। यदि यह द्विआधारी संक्रिया है, तो ज्ञात कीजिए क्या यह क्रमविनिमेय व साहचर्य भी है। * का तत्समक अवयव भी ज्ञात कीजिए।

अथवा

मान लीजिए कि $A=\{-1,\,0,\,1,\,2\},\,B=\{-4,\,-2,\,0,\,2\}$ और $f,\,g:A\to B$ क्रमश: $f(x)=x^2-x,\,x\in A \text{ तथा } g(x)=2\,\left|x-\frac{1}{2}\right|-1,\,x\in A \text{ द्वारा परिभाषित फलन हैं } 1$ gof(x) ज्ञात कीजिए, अत: दर्शाइए कि f=g=g of.

Check whether the operation * defined on the set $A = R \times R$ as

$$(a, b) * (c, d) = (a + c, b + d)$$

is a binary operation or not, where R is the set of all real numbers. If it is a binary operation, is it commutative and associative too? Also find the identity element of *.

OR

Let $A = \{ -1, 0, 1, 2 \}$, $B = \{ -4, -2, 0, 2 \}$ and $f, g : A \to B$ be functions defined by $f(x) = x^2 - x$, $x \in A$ and $g(x) = 2 | x - \frac{1}{2} | -1$, $x \in A$. Find gof (x) and hence show that f = g = gof.

21. वक्र $y = \frac{x-7}{(x-2)(x-3)}$ जिस बिन्दु पर x-कक्ष को काटती है, उस बिन्दु से वक्र पर खींची स्पर्श रेखा व अभिलम्ब के समीकरण ज्ञात कीजिए।

अथवा

फलन $f(x) = \cos^2 x + \sin x, x \in [0, \pi]$ के निरपेक्ष उच्चतम मान व निरपेक्ष निम्नतम मान ज्ञात कीजिए ।

Find the equations of the tangent and the normal to the curve $y = \frac{x-7}{(x-2)(x-3)}$ at the point where it cuts the x-axis.

\mathbf{OR}

Find the absolute maximum and absolute minimum values of the function f given by $f(x) = \cos^2 x + \sin x, x \in [0, \pi]$.

22. समाकलन का प्रयोग करके, रेखा y-1=x, x-अक्ष तथा कोटियों x=-2 एवं x=3 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए ।

Using integration, find the area of the region bounded by the line y - 1 = x, the x-axis and the ordinates x = -2 and x = 3.

23. अवकल समीकरण $(y - \sin x) dx + (\tan x) dy = 0$ का प्रतिबन्धों y = 0 यदि x = 0 को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए ।

Find the particular solution of the differential equation $(y - \sin x) dx + (\tan x) dy = 0$ satisfying the condition that y = 0 when x = 0.

24. k का वह मान ज्ञात कीजिए जिसके लिए निम्न रेखाएँ परस्पर लम्बवत् हैं:

$$\frac{x+3}{k-5} = \frac{y-1}{1} = \frac{5-z}{-2k-1}; \ \frac{x+2}{-1} = \frac{2-y}{-k} = \frac{z}{5}$$

अत: इन रेखाओं को अन्तर्विष्ट करने वाले समतल का समीकरण ज्ञात कीजिए।

Find the value of k for which the following lines are perpendicular to each other:

$$\frac{x+3}{k-5} = \frac{y-1}{1} = \frac{5-z}{-2k-1}; \ \frac{x+2}{-1} = \frac{2-y}{-k} = \frac{z}{5}$$

Hence find the equation of the plane containing the above lines.

25. एक विशेष उद्देश्य से बनवाई गई एक ईंट का मानक भार 5 किलोग्राम है। इसमें दो प्रकार के मूल तत्त्व अवश्य हैं B_1 और B_2 , जिनका मूल्य क्रमशः $\not\equiv$ 5 प्रति किलो व $\not\equiv$ 8 प्रति किलो है। मज़बूती हेतु एक ईंट में अधिक-से-अधिक 4 किलो B_1 तथा कम-से-कम 2 किलो B_2 सम्मिलित होने चाहिए। क्योंकि उत्पाद की माँग, ईंट की क़ीमत पर आधारित होने की संभावना है, तो ईंट का न्यूनतम मूल्य ज्ञात कीजिए जो उपरोक्त प्रतिबंधों को संतुष्ट करे। इस प्रश्न को रैखिक प्रोग्रामन समस्या बनाकर ग्राफ़ द्वारा हल कीजिए।

The standard weight of a special purpose brick is 5 kg and it must contain two basic ingredients B_1 and B_2 . B_1 costs \neq 5 per kg and B_2 costs \neq 8 per kg. Strength considerations dictate that the brick should contain not more than 4 kg of B_1 and minimum 2 kg of B_2 . Since the demand for the product is likely to be related to the price of the brick, find the minimum cost of brick satisfying the above conditions. Formulate this situation as an LPP and solve it graphically.

26. एक अनिभनत सिक्के को 'n' बार उछाला जाता है । माना यादृच्छिक चर X, चितों की संख्या दर्शाता है । यदि P(X=1), P(X=2) तथा P(X=3) समान्तर श्रेणी में हों, तो n का मान ज्ञात कीजिए ।

An unbiased coin is tossed 'n' times. Let the random variable X denote the number of times the head occurs. If P(X = 1), P(X = 2) and P(X = 3) are in AP, find the value of n.