Bewijzen - Inleveropgave 3

B.H.J. van Boxtel

5 Oktober 2022 - Week 40

Gegeven is het volgende lemma:

Lemma 1. Zij $m, n \in \mathbb{Z}$ en p een priemgetal. Als $p \mid mn$, dan geldt dat $p \mid m$ of $p \mid n$.

(a.) **Theorem 1.** Voor twee priemgetallen p, q geldt dat \sqrt{pq} irrationaal is. Met behulp van **lemma 1.** kan dit met behulp van contradictie worden bewezen.

Bewijs van **Theorem 1**.

Stel p, q zijn twee priemgetallen.

Neem aan dat \sqrt{pq} is rationeel. In andere woorden \sqrt{pq} is te schrijven als $\sqrt{pq} = \frac{a}{b}$ met $a, b \in \mathbb{R}$ zodat a en b geen gemeenschappelijke deler(s) hebben.

Dan $pq = \frac{a^2}{b^2}$ en $b^2pq = a^2$.

Dus p deelt a^2 , en samen met **lemma 1.** volgt dat p deelt a.

Omdat p deelt a, is a te schrijven als a = pk, met k een willekeurig getal in \mathbb{Z} . hieruit volgt dat $a^2 = p^2k^2$.

Wanneer we dit invullen in de vergelijking die we voor a^2 hadden gevonden, vinden we dat $b^2pq = p^2k^2$. Nu kan er aan allebei de kanten een p worden weggestreept, om het volgende te vinden: $b^2q = pk^2$. Waaruit blijkt dat p deelt b^2q .

Vanuit **lemma 1.** weten we dat dit impliceert dat p deelt b^2 , of p deelt q. Maar omdat q priem is, kan p deelt q niet, wat leidt tot het feit dat p deelt b^2 en dus (opnieuw volgens **lemma 1.**) ook p deelt b.

Maar nu zien we dat p deelt a en p deelt b, terwijl de aannamen was dat a en b geen gemeenschappelijke deler(s) hebben. We hebben een tegenspraak gevonden met onze orginele aanname, dus er bestaan geen a en b waarvoor $\sqrt{pq} = \frac{a}{b}$, met a en b geen gemeenschappelijke deler(s).

Voor twee priemgetallen p en q geldt \sqrt{pq} is irrationaal.

(b.) Claim 1. Theorem 1. blijft gelden wanneer de twee getallen p en q niet priem zijn.

Het tegendeel van deze stelling is te bewijzen doormiddel van een tegenvoorbeeld.

Bewijs van het tegendeel van claim 1.

Neem twee getallen p = 2 en q = 8.

 $Dan \sqrt{pq} = \sqrt{16} = 4.$

4 is niet irrationaal, dus ${\bf claim}~{\bf 1.}$ is onwaar.