

类脑智能大作业汇报

使用Spiking-VGG、ResNet对CIFAR-10分类

©CIFAR-10, MNIST

CIFAR-10

MNIST

VGG16, ResNet34

VGG16(ANN)

ResNet34(ANN)

- Spiking VGG16: 90.18% (CIFAR-10)
- Spiking ResNet34: 10.00%! (CIFAR-10)

In Vanilla Shortcut(VS):

$$\begin{split} O_A' &= ReLU(F(ReLU(F(U_A'))) + U_A') \\ O_S' &= SN(F(SN(F(U_S')) + U_S') \\ \\ \stackrel{\text{"}}{=} F(ReLU(F(U_A'))) \equiv 0, \ F(SN(F(U_S'))) \equiv 0 \ \text{时}, \ O_A' = ReLU(U_A'), \ O_S' = SN(U_S'). \end{split}$$

残差连接要求实现恒等映射

$$O'_A = ReLU(U'_A) = U'_A,$$

 $O'_S = SN(U'_S) \neq U'_S$

无法实现恒等映射

Any other shortcut?

Spike-Element-Wise Shortcut (SEW)

Membrane Shortcut (MS)

$$O' = SN(F(SN(F(U')))) + U'$$

$$O' = F(SN(F(SN(U')))) + U'$$

$$SN\left(F\left(SN\left(F(U')\right)\right)\right)\equiv 0, F\left(SN\left(F\left(SN(U')\right)\right)\right)\equiv 0$$
时, $O'=U'$

实现了恒等映射

On CIFAR-10

网络架构	模型参数(M)	FLOPs(M)	能耗 (μJ)	时间步长	准确率 (%)
VGG-16	14.79	317.0	64.70	6	90.18
SEW-ResNet-34	0.47	72.5	14.80	6	89.03
MS-ResNet-34	0.47	72.5	8.30	6	82.39

On MNIST

网络架构	模型参数 (M)	FLOPs(M)	能耗 (μJ)	时间步长	准确率 (%)
VGG-16	14.79	315.8	64.63	6	99.03
SEW-ResNet-34	0.46	72.2	14.97	6	99.18
MS-ResNet-34	0.46	72.2	8.61	6	99.13

饮水思源 爱国荣校 www.sjtu.edu.cn

02

基于脉冲序列相似性的分布外泛化算法

◎模型在与训练集环境不同的测试集环境中的表现

Colored MNIST

● Train1: 10%翻转, Train2: 20%翻转, Test: 90%翻转

脉冲序列相似性

余弦序列相似度

$$Similarity(A, B) = \frac{A \cdot B}{||A|| \times ||B||} = \frac{\sum_{i=1}^{n} (A_i \times B_i)}{\sqrt{\sum_{i=1}^{n} A_i^2} \times \sqrt{\sum_{i=1}^{n} B_i^2}}$$

●训练损失

$$\mathcal{L}_{total} = \mathcal{L}_{crossentropy} + \lambda \cdot \mathcal{L}_{similarity}$$

$$\mathcal{L}_{similarity} = 1 - Similarity(O_1, O_2)$$

※λ设置: 从0开始随epoch线性增长

- ●在Colored MNIST上训练50个epochs
- ●选择在训练集上平均准确率超过70%时的最高测试准确率

	Train Set 1(%)	Train Set 2(%)	Test Set(%)
None	89.1	80.1	10.2
IRM	73.2	68.1	41.2
Similarity1	75.8	65.0	42.1
Similarity2	73.4	73.2	32.5

- ●IRM: 不稳定,经常出现失败的情况,且准确率不高

IRM训练过程

Similarity训练过程

●跟踪相似性损失和测试集准确率

创 训练环境差异的影响

◎修改两个训练环境翻转的比例

	Train Set 1 Flip(%)	Train Set 2 Flip(%)	Test Set Flip(%)
Colored MNIST	10	20	90
Colored MNIST-1	5	25	90
Colored MNIST-2	2.5	27.5	90
Colored MNIST-3	0	30	90

●使用相似性算法的结果

	Train Set 1(%)	Train Set 2(%)	Test Set(%)
Colored MNIST	75.8	65.0	42.1
Colored MNIST-1	75.4	67.9	35.1
Colored MNIST-2	87.2	67.9	23.7
Colored MNIST-3	77.4	64.5	33.6

训练环境差异的影响

(e) 2.5% 和 27.5% 结果

(f) 0% 和 30% 结果

03

Spiking GhostNet及改进

THY SUTUP

●Ghost Net架构

Input	Operator	#exp	#out	SE	Stride
$224^{2} \times 3$	Conv2d 3×3)-	16	-	2
$112^{2} \times 16$	G-bneck	16	16	æ	1
$112^{2} \times 16$	G-bneck	48	24	14	2
$56^{2} \times 24$	G-bneck	72	24	-5	1
$56^{2} \times 24$	G-bneck	72	40	1	2
$28^{2} \times 40$	G-bneck	120	40	1	1
$28^{2} \times 40$	G-bneck	240	80	3	2
$14^{2} \times 80$	G-bneck	200	80		1
$14^{2} \times 80$	G-bneck	184	80	:=	1
$14^{2} \times 80$	G-bneck	184	80	2	1
$14^{2} \times 80$	G-bneck	480	112	1	1
$14^2 \times 112$	G-bneck	672	112	1	1
$14^{2} \times 112$	G-bneck	672	160	1	2
$7^{2} \times 160$	G-bneck	960	160	S (1
$7^{2} \times 160$	G-bneck	960	160	1	1
$7^{2} \times 160$	G-bneck	960	160	্ৰ	1
$7^{2} \times 160$	G-bneck	960	160	1	1
$7^{2} \times 160$	Conv2d 1×1	-	960	~	1
$7^{2} \times 960$	AvgPool 7×7	15			ē
$1^{2} \times 960$	Conv2d 1×1	= 1	1280	-	1
$1^2 \times 1280$	FC	- 27	1000	in .	.71

图 2: (a) 无下采样且不带 SE 模块的 Ghost bottleneck (b) 无下采样但带 SE 模块的 Ghost bottleneck (c) 带下采样和 SE 模块的 Ghost bottleneck (d) 带下采样但不带 SE 模块的 Ghost bottleneck

- Ghost Module
- ●目的: 低计算量同时减轻特征图冗余
- ●1. Primary Conv: 轻量卷积 n/m特征图
- ●2. Cheap Operation: m-n/m 特征图
- ●3. 特征图拼接: m 特征图

●Ghost Net: 低计算量

● Spiking Ghost Net: 低计算量, 低能耗

●结果: CIFAR-10

网络架构	模型参数 (M)	FLOPs(M)	能耗 (μ.J)	时间步长	准确率 (%)
GhostNet-SNN	3.9	6.4	1.04	6	80.12

多对比基础部分的网络

网络架构	模型参数(M)	$\mathrm{FLOPs}(M)$	能耗 (μJ)	时间步长	准确率 (%)
VGG-16	14.79	317.0	64.70	6	90.18
SEW-ResNet-34	0.47	72.5	14.80	6	89.03
MS-ResNet-34	0.47	72.5	8.30	6	82.39

◎改进一: DFC注意力(Decoupled Fully Connected Attention)

●特点: 简单高效易部署、低计算量

Figure 3: The information flow of DFC attention. The horizontal and vertical FC layers capture the long-range information along the two directions, respectively.

●加入DFC后的Ghost bottleneck:

◉结果:

网络架构	模型参数 (M)	FLOPs(M)	能耗 (μJ)	时间步长	准确率 (%)
GhostNet-SNN	3.9	6.4	1.04	6	80.12
GhostNet-DFC	4.9	9.7	1.53	6	80.42

- ●改进二: Channel MLP
- 参考Meta Transformer Block

- Token Mixer: Ghost Module
- @Channel MLP: +Channel MLP
- ●残差:使用bottleneck的残差

www.sjtu.edu.cn

●整体结果:

网络架构	模型参数 (M)	$\mathrm{FLOPs}(M)$	能耗 (μJ)	时间步长	准确率 (%)
GhostNet-SNN	3.9	6.4	1.04	6	80.12
GhostNet-DFC	4.9	9.7	1.53	6	80.42
GhostNet-ChannelMLP	4.7	7.1	0.96	6	81.30

网络架构	模型参数 (M)	FLOPs(M)	能耗 (μJ)	时间步长	准确率 (%)
VGG-16	14.79	317.0	64.70	6	90.18
SEW-ResNet-34	0.47	72.5	14.80	6	89.03
MS-ResNet-34	0.47	72.5	8.30	6	82.39

表 1: 网络在 CIFAR-10 上的实验结果

