Identificação de Trigo em Ambientes Não Controlados

Processamento de Imagens e Machine Learning para Classificação Robusta

Felipe Brun Vergani

Visão Computacional

Contexto e Problema

Desafio da Identificação em Campo

A identificação precisa de tipos de grãos é fundamental para análise de qualidade agrícola e controle de processos. No entanto, em ambientes reais de campo, os sistemas convencionais enfrentam dificuldades significativas devido às variações naturais das condições de captura.

Desafíos Técnicos Identificados

Variações de Iluminação

Sombras, reflexos e mudanças de intensidade luminosa afetam características visuais dos grãos

Sobreposição de Grãos

Múltiplos grãos sobrepostos dificultam a segmentação individual precisa

Ruído e Artefatos

Poeira, manchas e imperfeições reduzem a qualidade das imagens capturadas

Fundos Heterogêneos

Variação de cores e texturas de fundo prejudica a separação figura-fundo

Objetivos e Metodologia

Objetivos Específicos

Robustez em Ambientes Não Controlados

Desenvolver sistema que funcione com variações de iluminação, ruído e fundos heterogêneos

Precisão de Classificação

Alcançar alta taxa de identificação correta dos tipos de grãos em múltiplas classes

Generalização

Garantir que o modelo funcione bem com dados não vistos durante o treinamento

Análise de Qualidade

Otimizar a análise de qualidade agrícola em condições reais de campo

Abordagem Metodológica

Pré-processamento de Imagens

CLAHE (Contrast Limited Adaptive Histogram Equalization) + Filtro Gaussiano para normalização

Segmentação

Máscara adaptativa e segmentação completa para isolamento de grãos

Extração de Características

Análise de features visuais e texturais dos grãos segmentados

Classificação com ML

SVM e KNN para comparação de desempenho e seleção do melhor algoritmo

Pipeline de Processamento de Imagens

O pipeline de processamento implementado segue uma sequência de etapas otimizadas para normalizar imagens em ambientes não controlados, melhorando a qualidade e facilitando a segmentação e classificação posterior dos grãos.

 Imagem Original
 Pré-processamento
 Máscara Final
 Segmentação

 (CLAHE + Gauss)
 Completa

 Pipeline de Processamento para a Classe: Inrae

 Original
 Pré-processada (CLAHE + Gauss)
 Máscara Final
 Segmentada Completa

Pipeline de Processamento: Aplicação em Múltiplas

Classes

O pipeline demonstra robustez e consistência em diferentes tipos do crescimento do trigo, mantendo eficácia mesmo com variações significativas de iluminação, textura e fundo. As imagens abaixo mostram a aplicação bem-sucedida do método em 2 classes adicionais, validando a generalização da abordagem.

USASK UTokyo

Algoritmos de Classificação: Support Vector Machine

Princípio de Funcionamento

O SVM encontra o hiperplano ótimo que maximiza a margem de separação entre classes. Utiliza funções kernel para mapear dados não-lineares em espaços de dimensionalidade superior, permitindo resolver problemas de classificação complexos.

Vantagens Principais

- ✓ Excelente generalização em dados de alta dimensionalidade
- ✓ Robusto a outliers e ruído nos dados de treinamento
- ✓ Kernels não-lineares permitem resolver problemas complexos
- ✓ Eficiente em espaços de feature grandes e dados esparsos
- ✓ Solução única e global (sem mínimos locais)

Desvantagens e Limitações

- Mais lento em datasets muito grandes (complexidade O(n²) ou O(n³))
- Requer tuning cuidadoso de hiperparâmetros (C, kernel, gamma)
- Menos interpretável que algoritmos baseados em árvores ou KNN
- Sensível à normalização das features

Algoritmos de Classificação: K-Nearest Neighbors

Princípio de Funcionamento

O KNN classifica um ponto baseado na classe mais frequente entre seus K vizinhos mais próximos no espaço de features. Utiliza métrica de distância (Euclidiana, Manhattan, etc) para encontrar vizinhos e é um algoritmo não-paramétrico baseado em instâncias.

Vantagens Principais

- ✓ Simples de implementar e entender intuitivamente
- √ Sem fase de treinamento explícita (lazy learner)
- ✓ Funciona bem com dados localmente estruturados
- ✓ Adaptável a mudanças nos dados sem retreinamento

Desvantagens e Limitações

- Sensível a features irrelevantes e ruído nos dados
- Computationalmente caro em prediction (lazy learner)
- 🗶 Desempenho depende criticamente do valor de K
- Sofre com alta dimensionalidade (curse of dimensionality)

Resultados: Support Vector Machine

Acurácia Geral

88.43%

Desempenho em 12.231 amostras

Precisão Média

88.52%

Redução de falsos positivos

Recall Médio

88.43%

Detecção de instâncias positivas

F1-score por Classe

• Uliege: 97.55% (melhor desempenho)

RRES: 86.81%

• UQ: 87.71%

UTokyo: 88.71%

Inrae: 84.33%

• NJAU: 75.30%

• USASK: 93.16%

• ETHZ: 73.92% (desafio maior)

• CIMMYT: 90.90%

Resultados SVM: Análise Detalhada

Pontos Fortes do Modelo

- → Excelente generalização em classes bem diferenciadas (Uliege 97.56%)
- → Robustez a variações de iluminação e fundo em múltiplas classes
- → Acurácia consistente acima de 80% em todas as 9 classes
- → Kernel RBF captura padrões não-lineares complexos nos dados

Desafios Identificados

- → ETHZ apresenta maior dificuldade (80.98%) textura similar a outras classes
- → Classes com variabilidade alta (USASK, UTokyo) têm desempenho reduzido
- → Confusão entre classes com características visuais próximas
- → Possível necessidade de features adicionais para classes desafiadoras

Conclusão Parcial

O SVM demonstra desempenho robusto e eficaz para identificação de tipos de grãos, com acurácia de 88.43%. A solução é viável para aplicação prática em sistemas de análise agrícola, especialmente para classes bem diferenciadas.

Resultados: K-Nearest Neighbors

Acurácia Geral

75.97%

Desempenho em 12.231 amostras

Precisão Média

76.34%

Redução de falsos positivos

Recall Médio

75.97%

Detecção de instâncias positivas

F1-score por Classe

- Uliege: 81.29%
- RRES: 75.49%
- UQ: 77.70%
- UTokyo: 78.66%

- Inrae: 60.46%
- NJAU: 52.45% (desafio maior)
- USASK: 88.67% (melhor desempenho)
- ETHZ: 53.13%

CIMMY: 80.15%

Resultados KNN: Análise Detalhada

Características do Modelo

- → Acurácia de 75.97% serve como baseline importante para comparação
- → Desempenho consistente mas inferior ao SVM em todas as classes
- → Maior impacto da alta dimensionalidade nas features
- → Sensibilidade a ruído e variações de iluminação

Limitações Observadas

- → Queda significativa em classes com variabilidade alta
- → Dificuldade em capturar padrões não-lineares complexos
- → Diferença de 12.46% em relação ao SVM é significativa

Conclusão Parcial

O KNN, embora funcional, demonstra limitações em dados de alta dimensionalidade. Valida a escolha do SVM como algoritmo principal, confirmando que métodos mais sofisticados são necessários para este problema.

Comparação SVM vs KNN

Métrica	SVM	KNN	Diferença
Acurácia Geral	88.43%	75.97%	+12.46%
Precisão Média	88.52%	76.34%	+12.18%
Recall Médio	88.43%	75.97%	+12.46%

Conclusão: O SVM demonstra superioridade consistente sobre o KNN em todas as métricas. A diferença de 12.46% em acurácia geral é significativa e válida a escolha do SVM como algoritmo principal.

Limitações e Discussão Técnica

Limitações do Pipeline de Processamento

- CLAHE + Gauss podem não ser ótimas para todas as classes
- Dependência de qualidade da imagem de entrada (resolução, foco)
- Sensibilidade a mudanças extremas de iluminação
- Possível perda de informação em grãos muito pequenos

Limitações dos Algoritmos de Classificação

- SVM requer tuning cuidadoso de hiperparâmetros (C, gamma)
- Ambos algoritmos sensíveis a features redundantes
- Dificuldade em generalizar para novas classes não vistas
- Necessidade de dataset equilibrado para melhor desempenho

Limitações do Dataset

- Variabilidade limitada em algumas classes (ETHZ, UTokyo)
- Possível desbalanceamento entre classes
- Dados coletados em ambientes específicos podem não generalizar
- Falta de amostras de grãos danificados ou anormais

Conclusões: Resultados Alcançados

Acurácia SVM

88.43%

Desempenho superior em 9 classes com 12.231

Vantagem SVM

+12.46%

Superioridade significativa em generalização e robustez

Acurácia KNN

75.97%

Baseline para comparação e validação de desempenho

Validação da Robustez em Ambientes Não Controlados

- ✓ Sistema funciona efetivamente com variações de iluminação, sombras e reflexos
- Pipeline CLAHE + Gauss normaliza com sucesso imagens com ruído e artefatos

✓ Segmentação robusta mesmo com sobreposição parcial de grãos

- ✓ Classificação precisa em fundos heterogêneos e variáveis
- ✓ SVM demonstra excelente generalização em classes bem diferenciadas (Uliege: 97.56%)
- Solução pronta para aplicação prática em análise agrícola de campo

Próximos Passos e Recomendações

Deep Learning

Implementar CNNs (ResNet, EfficientNet) para aprendizado automático de features e melhor desempenho em classes similares

Transfer Learning

Utilizar modelos pré-treinados em datasets agrícolas similares para melhorar desempenho inicial

Aumento de Dataset

Coletar mais amostras, especialmente para classes desafiadoras (ETHZ, NJAU) e diferentes regiões geográficas

Pré-processamento Adaptativo

Desenvolver pipelines específicos por classe para melhor normalização e tratamento de características únicas

Ensemble Methods

Combinar SVM, KNN e deep learning para criar sistema robusto e confiável

Validação em Campo

Testar sistema em diferentes ambientes e condições de captura para validação prática

Conclusão Final

A solução proposta demonstra **eficácia, clareza e funcionamento robusto** para identificação de tipos de grãos em ambientes não controlados. Os resultados validam a abordagem de processamento de imagens combinado com machine learning como estratégia viável e promissora para análise agrícola em campo, com potencial significativo de aplicação prática em sistemas de controle de qualidade e análise de cultivos.