Aprendizado Não Supervisionado

Uarlley do Nascimento Amorim

Universidade Federal do Espirito Santo

28 de Fevereiro de 2022

Sumário

- Supervisionado vs Não Supervisionado
- Clusterização
 - Tipos de modelos
- Identificação de Anomalias
- 💶 Redução Dimensional
 - TSNE vs PCA
- K-Means
 - Visão Geral
 - Funcionamento
 - Exemplo
 - Encontrando o melhor K
 - Método do Cotovelo
 - Coeficiente de Silhouette
 - Identificação de Outliers utilizando o K-Means
 - Pontos Negativos

Supervisionado vs Não Supervisionado

Supervisionado

- Para qualquer conjunto de dados X, temos suas respectivas labels Y.
- Objetivo: Aprender uma função que mapeia X → Y.
- Exemplos: Classificação, regressão, detecção de objetos, etc.

Não Supervisionado

- Temos apenas o conjunto de dados X, sem labels.
- Objetivo: Identificar padrões e similaridades na estrutura do conjunto de dados.
- Exemplos: Clusterização, redução dimensional, density estimation, modelos generativos, etc.

Clusterização

Tem como objetivo dividir um determinado conjunto de dados em *n* grupos a partir de uma determinada *similaridade*.

Clusterização

Geralmente, é possível agrupar um conjunto de dados a olho nu utilizando métodos de visualização.

Mas isso só é possível quando se trabalha com um conjunto de dados com $n \leq 3$ dimensões.

Clusterização

Nesse contexto, utilizamos modelos para automatizar este processo para conjuntos de dados *n-dimensionais*.

Tais modelos identificam padrões nos dados, e, a partir disso, associam um dado á um determinado grupo.

O método de identificação de padrões pode variar de modelo à modelo, tais variações podem se dar em:

- Custo computacional;
- tempo de execução;
- performance;
- implementação.

Tipos de modelos

Baseados em distância

- Utiliza calculo de distância para associar um ponto ao centroide mais próximo.
- Exemplos: K-Means, Mean-shift e OPTICS.

Baseados em Hierarquia

- Agrupa os dados utilizando uma árvore de hierarquia.
- Exemplo: Hierarchical clustering.

Baseados em densidade

- Transforma regiões muito densas em clusters.
- Exemplo: DBSCAN.

Baseados em distribuição

- Assume que o conjunto de dados é um composto de distribuições.
- Exemplo: Gaussian Mixture Model.

Identificação de Outliers

Outliers são observações que estão bem distantes de outros dados em uma amostra qualquer de uma população.

Os outliers podem ser classificados em:

- Univariado: pontos extremos na distribuição de uma variável especifica. Ex: pessoa com 2.3 metros de altura.
- Multivariado: pontos improváveis em observação qualquer. Ex: Pessoas com 2 metros de altura.

Identificação de Outliers

As principais causas de outliers são:

- Erros na entrada dos dados (erro humano);
- erros de medida (erro instrumental);
- erros experimentais (erro de extração, planejamento ou execução);
- erros de processamento de dados (erro de manipulação);
- naturais (não é um erro e sim um dado improvável).

Para conjuntos de dados paramétricos, podemos utilizar métodos estatísticos para remover outliers, como por exemplo o método **IQR** (**intervalo interquartil**).

Já para dados não paramétricos, podemos utilizar modelos como **DBScans** e **Isolation Forest**.

Redução Dimensional

Quando se trabalha com conjuntos de dados com múltiplas dimensões, é importante utilizar métodos de redução tanto para visualização, quanto para aplicação de modelos.

Os métodos são:

- PCA: utiliza projeções lineares, ou seja, quanto mais linear for a relação entre as variáveis, melhor será o desempenho do PCA, ou melhor, menos informação será perdida após a redução.
- TSNE: utiliza projeções não linerares. Busca reduzir as dimensões tentando preservar a vizinhança dos pontos.

TSNE vs PCA

PCA	TSNE
Busca preservar a estrutura global	Busca preservar a estrutura
dos dados	local dos dados
Não depende de hyperparametros	Depende de Hyperparametros como
	perplexity e early exageration.
É sensivel a outliers	Consegue lidar bem com outliers
Funciona a partir da rotação de	Busca minimizar a distância
vetores preservando a variância.	entre os pontos em uma gaussiana.
É possivel determinar o quanto	Não podemos preservar a
de variância queremos manter	variância dos dados.
Possui baixo custo computacional	Possui um alto custo computacional.

K-Means

- Tem como objetivo encontrar similaridades entre os dados e agrupá-los em um número de grupos definido a priori.
- Utiliza um método simples e eficiente baseado no conceito de distância, atribuindo de forma iterativa os pontos de dados ao grupo que representa a menor distância.
- Algumas aplicações são:
 - Identificar perfil de clientes
 - Segmentação de mercado
 - Visão computacional
 - Motores de busca
 - Astronomia

Algoritmo

Cria dois pontos aleatórios do espaço, chamados centróides.

Associa cada ponto ao centróide mais próximo.

Algoritmo

Move os centróides para a posição média dos pontos pertencentes à ele.

A distância é recalculada e os pontos são novamente associados ao centróide mais próximo.

Algoritmo

O processo é repetido iterativamente, até que o reposicionamento do centróide seja insignificante.

Exemplo

Exemplo de Utilização em Python:

```
from sklearn.cluster import KMeans
from sklearn.datasets import make blobs
X, y = make_blobs(n_samples=2000, centers=4, cluster_std
   =0.60, random state=0)
data = pd.DataFrame({"X": X[:,0], "Y": X[:,1]})
km = KMeans(n_clusters=4)
labels = km.fit(data).predict(data)
```

Exemplo

Como encontrar o melhor K

As vezes estaremos trabalhando com um conjunto de dados com múltiplas dimensões, e, nestes casos, se torna impossível visualizar e identificar a quantidade de clusters ideal. Nesse contexto, podemos utilizar alguns métodos para identificar qual é a melhor quantidade de clusters.

Os principais são:

- Método do Cotovelo
- Coeficiente de Silhouette

Método do Cotovelo

O Método do Cotovelo ou A Curva de Cotovelo é uma técnica usada para encontrar a quantidade ideal de clusters K. Para isso, o método:

- Testa a variância dos dados em relação ao número de clusters e a inércia do modelo.
- Define como cotovelo o momento em que variância tende a ser menor, ou seja, quando a não existe uma discrepância significativa.

Como a partir deste ponto a variância é baixa e queremos escolher a menor quantidade de clusters possível, tal quantidade seria exatamente onde o cotovelo estaria.

Método do Cotovelo

Método aplicado no exemplo anterior:

Coeficiente de Silhouette

O Coeficiente de Silhouette é calculado a partir da distância média entre os pontos de um cluster (a), e a distância média entre os clusters (b). A partir disso, o coeficiente é calculado utilizando seguinte fórmula:

$$\frac{(b-a)}{\max(a,b)}\tag{1}$$

O coeficiente varia de 1 à -1. Se o coeficiente é 1, os clusters estão densos e bem separados. Um valor próximo de 0 significa que os clusters estão sobrepostos. Um coeficiente negativo representa que existem pontos associados com o cluster errado.

Coeficiente de Silhouette

Coeficiente de Silhouette aplicado no exemplo anterior com K=4:

Coeficiente de Silhouette

Coeficiente de Silhouette aplicado no exemplo anterior com K=6:

Identificando Outliers a partir do K-Means

Como mencionado anteriormente, pode acontecer de termos pontos que supostamente deveriam pertencer à um cluster a, porém, o modelo o classificou como b. Este tipo de problema é muito comum em problemas de aprendizado não supervisionado.

Uma boa estrategia, é simplesmente não classificar este tipo de dado, evitando falsos positivos/negativos.

Tal abordagem é simples de ser realizada no K-Means, já que o mesmo utiliza distância para classificar os dados.

Identificando Outliers a partir do K-Means

Tal processo pode ser feito da seguinte forma:

- Ocleta as distâncias de um ponto à todos os centroides.
- Coleta a menor das distâncias e a normaliza.
- **3** Estabelece um limitante α entre 0 à 1.
- \P Se a distância normalizada for maior que $\alpha,$ não classifique, caso contrario, classifique.

O resultado deste método é a identificação dos pontos que "não sabem onde se encaixam", ou seja, pontos "indecisos".

Identificando Outliers a partir do K-Means

Aplicação do método no exemplo anterior, com $\alpha = 0.5$.

Fraquezas

- É necessário determinar o numero de clusters K previamente.
- Tem problemas com conjuntos de dados com diferentes escalas.
- Não lida bem com clusters não convexos.

A imagem a seguir compara o desempenho de modelos de aprendizado não supervisionado em conjuntos de dados com clusters convexos e não-convexos.

Fraquezas

