A-code/E-code

Message source M= {0,1}

K1	01	11
K2	10	00
K3	00	11
K4	01	10
K5	00	01
K6	11	01

10

K7

Authentication code is a subset of the whole space *for each key.*

Error correcting code is a subset of the whole space.

Security

- Success probability of the adversary in forgery
- Modeled as a game between
 (Alice & Bob) ← → adversary

Model

- MAC system is public.
 - Set of messages, tags, keys and algorithms are public.
- Goal: constructing a forged message
 - (m,t) such that Ver((m,t), k)=1
 - k is not known

Authentication games

- 0-message game
 - Impersonation game
 - 1. Adversary constructs a forgery
 - without seeing any communication.

- 1-message game
 - Substitution game
 - 1. Adversary sees an authenticated message
 - 2. Adversary constructs a forgery.

q-message game can be modelled based on above.

Authentication games

MAC system is Public

- Alice and Bob:
- Choose a secret random key k
- Adversary:
- Constructs m,t

- Adversary succeeds if:
- Ver ((m,t), k) =1

- 0-message game
 - Impersonation game
 - 1. Adversary constructs a forgery
 - without seeing any communication.
- P₀: Success probability in impersonation

Authentication games

MAC system is Public

- Alice and Bob:
- Choose a secret random key k
- Adversary:
- (i) sees m,t; (ii) constructs m',t'

- Adversary succeeds if:
- Ver ((m',t'), k) =1

- 1-message game
 - substitution game
 - 1. Adversary sees an authenticated message
 - 2. Adversary constructs a forgery.
- P₁: Success probability in substitution

Example

- $M=\{m_1,m_2,m_3\}$, $K=\{k_1,k_2,k_3,k_4\}$, $T=\{a,b\}$
- Assume K is uniformly distributed.
- $P_0(m_2,a)$ = probability of success with (m_2,a) = probability (m_2,a) be valid for the communicants' key

k_1	a	b	a
k_2	b	b	a
k_3	a	a	b
k_4	b	a	a
	•		

 m_2

 m_3

 m_1

=1/2

Two ways of writing Encoding matrix

		M			l	
	$\underbrace{m_{\!\scriptscriptstyle 1},b}$	m_1,a	m_2,b	m_2,a	m_3,b	m_3, a
k_1	0	1	1	0	0	1
k_2	1	0	1	0	0	1
k_3	0	1	0	1	1	0
k_4	1	0	0	1	0	1

0-message game

P₀(m,t) = Success probability with (m,t)
 = probability that (m,t) is valid for k

Best success probability of attacker:

$$P_0 = \max_{m \in M, t \in T} P_0(m,t)$$

P₀ is success probability of impersonation game.

Example

•
$$M=\{m_1,m_2,m_3\}$$
, $K=\{k_1,k_2,k_3,k_4\}$, $T=\{a,b\}$

- Assume K is uniformly distributed.
- $P_0(m_2,a) = \text{prob } (m_2,a) \text{ is valid} = 1/2$
- $P_0(m_1,a) = 1/2$
- $P_0(m_3,a) = 3/4$
-

• $P_0 = \max_{\{(mi, j) \in M \times T\}} P_0(m_i, j) = 3/4$

	m_1	m_2	m_3
k_1	a	b	a
k_2	b	b	a
k_3	a	a	b
k_4	b	a	a
	I		

Two ways of writing

Encoding matrix

/4						
	$\underbrace{m_1,b}$	m_1,a	$\underline{m}_2,\underline{b}$	m_2, a	m_3, b	m_3, a
k_1	0	1	1	0	0	1
k_2	1	0	1	0	0	1
k_3	0	1	0	1	1	0
k_4	1	0	0	1	0	1

M

0-message game

- If the key distribution is not uniform:
 - Communicants' will choose a key according to probability distribution p(k)
- Probability (m,t) is valid:
 P₀(m,t) = p (Ver((m,t), k)=1) = Σ_{k∈ K, Ver((m,t),k)=1} p(k)

		Poss	Possible adversary's choices					
		m_1,b	m_1, a	m_2,b	m_2,a	m_3,b	m_3,a	
_	k_1	0	1	1	0	0	1	
Communicant's choices	k_2	1	0	1	0	0	1	
	k_3	0	1	0	1	1	0	
	k_4	1	0	0	1	0	1	10
		I						

Success chance in 0-message

- $M=T=Z_3$, $K=Z_3$ XZ_3 ,
- MAC $(m; (i,j)) = m.i + j \mod 3$
- Assume p(k) is uniform: p(k) =1/9
- Adversary wants to choose (m,t) with highest P₀(m,t)
- Possible (m,t) pairs:
 {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)}

	0	1	2
message			
K			
k1=(0,0)	0	0	0
k2=(0,1)	1	1	1
k3=(0,0)	2	2	2
k4=(1,0)	0	1	2
k5=(1,1)	1	2	0
k6=(1.2)	2	0	1
k7=(2,0)	0	2	1
k8=(2,1)	1	0	2
k9=(2,2)	2	1	0

Success chance

$$P_0(0,0)$$
 = success prob with (0,0)

=
$$\sum_{\{k \in K, \text{ Ver } ((0,0),k)=1\}} p(k)$$

=3 x 1/9=1/3

- $P_0(0,1)=3/9=1/3$
- $P_0 = \max_{\{m \in M, t \in T\}} P_0(m,t)$
- $P_0 = 1/3$

message	0	1	2
K			
k1	0	0	0
k2	1	1	1
k3	2	2	2
k4	0	1	2
k5	1	2	0
k6	2	0	1
k7	0	2	1
k8	1	0	2
k9	2	1	0

1-message game (substitution)

MAC system is public.

Alice and Bob:

Choose distribution p(k), choose k

Alice:

- m ←p(m);
- t=MAC(m, k)

Adversary:

- Sees (m,t)
- forges m',t'

Adversary succeeds:

Ver ((m',t'), k) =1, given Ver ((m,t), k) =1

Success chance: substitution

game

- For each observed (m,t) pair:
- Adversary finds her best success cl
 - (m',t') that has the highest success cha
 - → (m',t') valid, given (m,t) is valid

P((m',t'); (m,t)) is the
success probability of forgery
using (m',t') when (m,t) is
seen. – <u>k</u>

$P((m_2,a);$	(m ₁ ,a))=
	$p(k_3)$
\overline{p}	$\overline{(k_3) + p(k_1)}$

ery	•				Adversar actions	ry's	
		m_1,b	m_1, a	m_2,b	m_2,a	m_3,b	m_3,a
\overline{k}	71	0	1	1	0	0	1
k	2	1	O	1	0	0	1
k	3	0	1	0	1	1	0
k	4	1	O	0	1	0	14

 m_2

 m_3

Success chance: substitution game

• P((m₃,b); (m₁,a))=
$$\frac{p(k_3)}{p(k_3)+p(k_1)} = \frac{1}{2}$$

• P((m₁,b); (m₃, a))=
$$\frac{p(k_2)+p(k_4)}{p(k_1)+p(k_2)+p(k_4)} = \frac{2}{3}$$

		Adversary' s actions						
	m_1,b	m_1, a	m_2,b	m_2, a	m_3, b	m_3,a		
$\overline{k_1}$	0	1	1	0	0	1		
k_2	1	0	1	0	0	1		
k_3	0	1	0	1	1	0		
k_4	1	0	0	1	0	15 1		

Success chance of substitution

- Success chance of using (m',t') as forgery, when (m,t) is seen:
- P((m',t'); (m,t))= p((m',t') valid | (m,t) valid) $= \frac{\sum_{k \in K \ s.t \ [(m',t') valid \ for \ k] \ AND \ [(m,t) valid \ for \ k]} p(k)}{\sum_{[(m,t) \ valid \ for \ k]} p(k)}$ $= \frac{\sum_{k \in K \ s.t \ [Ver((m',t'),k)=1] \ AND \ [Ver((m,t),k)=1]} p(k)}{\sum_{[Ver((m,t),k)=1]} p(k)}$

Success chance of substitution when (m,t) is seen:

$$P_1(m,t) = \max_{\{m' \in M, t' \in T\}} P((m',t'); (m,t))$$

Success chance of substitution

$$P_1=\max_{\{m\in M, t\in T\}} P_1(m,t)$$

Success chance P₁

- Adversary sees (0,0) = (m,t)
- What (m',t') maximizes their success chance?

- Possible forgeries:{(1,0), (1,1), (1,2), (2,0), (2,1), (2,2)}
- · Which one?

	0	1	2
message			
key			
k1	0	0	0
k2	1	1	1
k3	2	2	2
k4	0	1	2
k5	1	2	0
k6	2	0	1
k7	0	2	1
k8	1	0	2
k9	2	1	0

Success chance P₁

- (0,0) is seen:
- P((1,0); (0,0))= success prob with (1,0), when (0,0) is seen
- P((1,0); (0,0))= $\frac{\sum_{\{k \in K, \ Ver((1,0),k)=1 \ \& \ Ver((0,0),k)=1\}} p(k)}{\sum_{\{k \in K, \ Ver((0,0),k)=1)\}} p(k)}$

=
$$p(k)/[\sum_{\{k \in K, Ver((0,0),k)=1\}} p(k)]$$

= $(1/9)/(1/3)=1/3$

- P((1,1); (0,0)) =
-
- P((2,2); (0,0))
- $P_1(0,0) = \max_{m \in M, t \in T} P((m,t); (0,0))$

1			
	0	1	2
message			
K			
k1	Ô	0	0
k2	1	1	1
k3	2	2	2
k4	0	1	2
k5	1	2	0
k6	2	0	1
k7	0	2	1
k8	1	0	2
k9	2	1	0

Impersonation or substitution?

- Adversary can play one of the two games: which game should they choose?
- P₀ must be compared with expected value of P₁.
 - For each message, expected success chance
 - (0,a),(0,b),(1,a),(1,b)(2,a),(2,b)
 - Averaged over all messages

M K	0	1	2
k ₁	b	b	а
k_2	b	а	а
k_3	а	b	b
k_4	b	а	b

→expected P1 can be smaller than P0

Gustavus Simmons 1930-

Bounds

- Brute force (generic) attacks give bounds on min success probability.
- Bounds

$$P \ge \frac{1}{|K|}$$

$$P_0 \ge \frac{1}{|T|}, \qquad P_1 \ge \frac{1}{|T|}$$

 An A-code is optimal if it satisfies one of the bounds.

Example

- M=T=Z₃,
 MAC(m,k)= MAC(m, (a,b)= am+b
- $P_0 = P_1 = 1/3$
- Alice sends (m,t)=(1,2)
- 1a +b=2 → b= 2 a
- Suppose Alice sends a second message (0,0)

- → Each key can be used once.
- → Using the same key for two messages completely breaks the security.

message	0	1	2
Key (a, b)			
0,0	0	0	0
0,1	1	1	1
0,2	2	2	2
1,0	0	1	2
1,1	1	2	0
1,2	2	0	1
2,0	0	2	1
2,1	1	0	2
2,2	2	1	0

Security for q messages

 Adversary can see (choose) q message-tag pairs: (m₁,t₁), (m₂,t₂).....(m_qt_q)- under same key

MAC applications

The most widely used cryptographic primitive

- File integrity checking
 - Tampering with stored files

- Communication security
 - TLS data integrity
 - Secure file transfer

Summary

- Message integrity
 - Noise
 - Adversarial

- Protection goals:
 - Detection
 - Correction

Adversarial corruption

- A-codes
 - MAC, Ver, success prob
- 0-message security
 - Impersonation
- 1-message security
 - Substitution
- q-message security
 - Wegman-Carter
- Bounds