CS 663: Digital Image Processing: Assignment 2

Siddharth Saha [170100025], Tezan Sahu [170100035]

Due Date :- 2nd September, 2019

Question 1: Spatially Varying Blurring

(i) Generating Image Mask

Process adopted to achieve a foreground mask

- For each image we take parameters stating the window size that the object (of interest to the user) is contained as well as the threshold value for image intensity.
- We convert the image to grayscale and apply the first histogram equalization on the entire image. This allows the grayscale foreground object to be distinguishable from the background.
- We extract the object using window size parameters and apply median filter twice to smoothen noise.
- We apply the second histogram equalization to allow us to distinguish the object from the local background in the extracted window. It is easier to perform thresholding due to increased contrast.
- Running the Spatially Varying blurring function takes a cumulative time of 254 seconds after downsizing bird.jpg by factor of 0.4 and flower.jpg by a factor of 0.7. This is against a cumulative of 22 minutes taken with the original image sizes.

Figure 1: Mask, Foreground & Background for bird.jpg

Figure 2: Mask, Foreground & Background for flower.jpg

(ii) Contour plot of r w.r.t distance from the mask boundary

Figure 3: Contour plots

The reason for the strange shape of the contour plot for bird image is owing to patches in the background that passed the thresholding.

(iii) Kernels used for Blurring

Figure 4: Kernels used to blur bird.jpg ($d_{thresh}=40$)

Figure 5: Kernels used to blur flower.jpg ($d_{thresh}=20$)

(iv) Spatially varying blurring

Figure 6: Original & Blurred flower.jpg

Figure 7: Original & Blurred flower.jpg