

Практикум на ЭВМ

Отчёт № 3

Параллельная программа на MPI и OpenMP, реализующая однокубитное квантовое преобразование с шумами

Работу выполнил **Чепурнов А. В.**

Постановка задачи и формат данных

- 1) Реализовать параллельную программу на C++ с использованием MPI и OpenMP, которая выполняет квантовое преобразование n-Адамар с зашумленными вентилями над вектором состояний длины 2^n , где n количество кубитов. Использовать рекомендованную модель зашумления. Для работы с комплексными числами использовать стандартную библиотеку шаблонов.
- Протестировать программу на системе Polus.
 Начальное состояние вектора генерируется случайным образом и нормируется (тоже параллельно).

Формат командной строки: < Число кубитов n > < Уровень шума e > [<имя файла исходного вектора>] [<имя файла полученного вектора>]

Формат файла-вектора: Вектор представляется в виде бинарного файла следующего формата:

Tun	Значение	Описание	
Число типа int	n — натуральное число	Число кубитов	
Массив чисел типа double	2^n пар чисел с плавающей	павающей Элементы вектора	
	точой (комплексных чисел)		

Описание алгоритма

Однокубитная операция над комплексным входным вектором $\{a_i\}$ размерности 2^n задается двумя параметрами: комплексной матрицей $\{u_{ij}\}$ размера 2x2 (вентиль) и числом k от 1 до n (номер кубита, по которому проводится операция). Такая операция преобразует вектор $\{a_i\}$ в $\{b_i\}$ размерности 2^n , где все элементы вычисляются по следующей формуле:

$$b_{i_1 i_2 \dots i_k \dots i_n} = \sum_{j_k=0}^{1} u_{i_k j_k} a_{i_1 i_2 \dots j_k \dots i_n} = u_{i_k 0} a_{i_1 i_2 \dots 0_k \dots i_n} + u_{i_k 1} a_{i_1 i_2 \dots 1_k \dots i_n}$$

$$U = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

Зашумленный вентиль Адамара H_e определяется следующими формулами:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, H_e = HU(\Theta), U(\Theta) = \begin{pmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{pmatrix}, \Theta = e\xi, \xi \sim N(0, 1),$$

где е – это уровень шума.

Преобразование n-Адамар – это преобразование Адамара, выполненное последовательно n раз над вектором состояний, при этом кубит, по которому проводится преобразование изменяется от 1 до n. В качестве меры потери точности используется 1-F, где F – мера точности (вероятность совпадения между идеальным и зашумленным векторами состояний). Мера точности вычисляется как квадрат модуля скалярного произведения соответствующих векторов.

Аппаратное обеспечение: Исследования проводились на вычислительном комплексе IBM Polus.

Анализ времени выполнения: Для оценки времени выполнения программы использовалась функция MPI_Wtime().

Анализ ускорения: Ускорение, получаемое при использовании параллельного алгоритма для p процессов, высчитывалось как отношение времени выполнения программы без распараллеливания к времени параллельного выполнения программы.

Результаты выполнения

Количество	Количество	Количество	Время работы	Ускорение
кубитов (n)	вычислительных	используемых	(сек)	
	узлов	ядер в узле		
28	1	1	41,078991	1
		2	21,398794	1,919687
		4	11,536339	3,560834
		8	7,113737	5,774601
	2	1	43,816157	1
		2	21,732912	2,01612
		4	11,880787	3,687984
		8	7,413621	5,910223
	4	1	33,14957	1
		2	11,10364	2,985469
		4	6,893902	4,808535
		8	4,451833	7,446274

При фиксированной точности е = 0.01:

При фиксированном количестве кубитов n = 26:

e	Среднее значение	
	потерь точности	
0.1	0,235289383	
0.01	0,002654017	
0.001	0,000025734	

Для построения каждого распределения проводилось 60 экспериментов.