Experiment 5.1

```
--Import Required Libraries--
--Load and Prepare Data--
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
# Download dataset directly from source
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-min-temperatures.csv"
df = pd.read_csv(url, parse_dates=['Date'], index_col='Date')
# Extract the temperature values
series = df['Temp'].values.reshape(-1, 1)
# Display first few rows
print("Dataset Head:")
print(df.head())
print("\nDataset Shape:", df.shape)
→ Dataset Head:
     Date
     1981-01-01 20.7
     1981-01-02 17.9
     1981-01-03 18.8
     1981-01-04 14.6
     1981-01-05 15.8
     Dataset Shape: (3650, 1)
--Normalize Data--
# Initialize scaler and normalize data between 0 and 1
scaler = MinMaxScaler(feature_range=(0, 1))
series_scaled = scaler.fit_transform(series)
# Plot original vs scaled data
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(series)
plt.title("Original Data")
plt.subplot(1, 2, 2)
plt.plot(series_scaled)
plt.title("Scaled Data")
plt.show()
₹
                              Original Data
```


⁻⁻Split Data into Train/Test Sets--

⁻⁻Create Sequences for LSTM--

```
# Split into training (80%) and testing (20%) sets
train_size = int(len(series_scaled) * 0.8)
train, test = series scaled[:train size], series scaled[train size:]
print(f"Training set size: {len(train)}")
print(f"Testing set size: {len(test)}")
def create_sequences(data, window_size):
     """Convert time series into supervised learning format"""
    X, y = [], []
    for i in range(len(data)-window_size):
       X.append(data[i:i+window_size])
        y.append(data[i+window size])
    return np.array(X), np.array(y)
# Set window size (number of time steps to look back)
window_size = 30
# Create sequences for training and testing
X_train, y_train = create_sequences(train, window_size)
X_test, y_test = create_sequences(test, window_size)
print(f"Training shapes - X: {X_train.shape}, y: {y_train.shape}")
print(f"Testing shapes - X: {X_test.shape}, y: {y_test.shape}")
→ Training set size: 2920
     Testing set size: 730
     Training shapes - X: (2890, 30, 1), y: (2890, 1)
     Testing shapes - X: (700, 30, 1), y: (700, 1)
--Build LSTM Model--
model = Sequential([
    # First LSTM layer with return sequences
    LSTM(50, activation='relu',
         input_shape=(window_size, 1),
         return_sequences=True),
    Dropout(0.2), # Regularization
    # Second LSTM layer
    LSTM(50, activation='relu'),
    Dropout(0.2), # Regularization
    # Output layer
    Dense(1)
1)
# Compile the model
model.compile(optimizer='adam', loss='mse')
# Display model summary
model.summary()
    /usr/local/lib/python3.11/dist-packages/keras/src/layers/rnn/rnn.py:200: UserWarning: Do not pass an `input_shape`/`input_dim` argum
       super().__init__(**kwargs)
     Model: "sequential'
                                          Output Shape
       Layer (type)
                                                                          Param #
                                                                           10,400
       1stm (LSTM)
                                          (None, 30, 50)
       dropout (Dropout)
                                          (None, 30, 50)
                                                                                0
       lstm_1 (LSTM)
                                          (None, 50)
                                                                           20,200
       dropout_1 (Dropout)
                                          (None, 50)
                                                                                0
       dense (Dense)
                                          (None, 1)
                                                                               51
      Total params: 30,651 (119.73 KB)
      Trainable params: 30,651 (119.73 KB)
Non-trainable params: 0 (0 00 R)
--Train the Model--
history = model.fit(
    X_train, y_train,
    epochs=50,
```

batch size=32,

validation_data=(X_test, y_test),

```
verbose=1
)

# Plot training history
plt.figure(figsize=(10, 5))
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Model Training History')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
```

1/202	20, 17.	50							L,	O i ivi.ipyi
	01/01	,	7.	27ms/s+on		10001	0.0460		val lass.	0 0110
	91/91 Epoch		/5	37ms/step	-	1055:	0.0409	-	Va1_1055:	0.0110
	91/91 Epoch		6s	44ms/step	-	loss:	0.0152	-	val_loss:	0.0100
	91/91		3s	31ms/step	-	loss:	0.0148	-	val_loss:	0.0113
	Epoch 91/91		5s	30ms/step	-	loss:	0.0137	-	val_loss:	0.0098
	Epoch 91/91		5s	33ms/step	_	loss:	0.0132	_	val loss:	0.0096
	Epoch 91/91	6/50		31ms/step						
	Epoch	7/50							_	
	91/91 Epoch		5s	32ms/step	-	loss:	0.0140	-	val_loss:	0.0094
	91/91 Epoch		5s	32ms/step	-	loss:	0.0132	-	val_loss:	0.0093
	91/91		3s	30ms/step	-	loss:	0.0132	-	val_loss:	0.0093
	91/91		3s	31ms/step	-	loss:	0.0123	-	val_loss:	0.0093
	Epoch 91/91	11/50	4s	43ms/step	_	loss:	0.0125	_	val_loss:	0.0092
	Epoch 91/91	12/50	4s	32ms/step	_	loss:	0.0118	_	val loss:	0.0091
		13/50		32ms/step						
	Epoch	14/50								
		15/50		43ms/step					_	
	91/91 Epoch	16/50	4s	31ms/step	-	loss:	0.0117	-	val_loss:	0.0087
	91/91 Enoch	17/50	3s	31ms/step	-	loss:	0.0127	-	val_loss:	0.0109
	91/91		6s	44ms/step	-	loss:	0.0124	-	val_loss:	0.0084
	91/91		3s	32ms/step	-	loss:	0.0117	-	val_loss:	0.0085
	Epoch 91/91	19/50	5s	32ms/step	_	loss:	0.0115	_	val_loss:	0.0089
	Epoch 91/91	20/50	6s	37ms/step	_	loss:	0.0113	_	val loss:	0.0090
		21/50		32ms/step					_	
	Epoch	22/50		•					_	
	91/91 Epoch	23/50	35	31ms/step	-	loss:	0.0110	-	val_loss:	0.0080
	91/91 Epoch	24/50	3s	33ms/step	-	loss:	0.0111	-	val_loss:	0.0082
	91/91 Enoch	25/50	5s	31ms/step	-	loss:	0.0115	-	val_loss:	0.0088
	91/91		5s	31ms/step	-	loss:	0.0114	-	val_loss:	0.0080
	91/91		4s	44ms/step	-	loss:	0.0109	-	val_loss:	0.0078
	91/91	27/50	3s	31ms/step	-	loss:	0.0106	-	val_loss:	0.0080
	Epoch 91/91	28/50	5s	32ms/step	_	loss:	0.0109	_	val loss:	0.0077
	Epoch 91/91	29/50	35	36ms/step	_	loss:	0.0096	_	val loss:	0.0080
		30/50		•					_	
	Epoch	31/50		37ms/step					_	
	91/91 Epoch	32/50	3s	32ms/step	-	loss:	0.0104	-	val_loss:	0.0076
	91/91 Epoch	33/50	5s	32ms/step	-	loss:	0.0106	-	val_loss:	0.0080
	91/91 Enoch	34/50	4s	44ms/step	-	loss:	0.0107	-	val_loss:	0.0081
	91/91		3s	31ms/step	-	loss:	0.0108	-	val_loss:	0.0077
	91/91		5s	32ms/step	-	loss:	0.0103	-	val_loss:	0.0079
	Epoch 91/91	36/50	6s	36ms/step	-	loss:	0.0101	-	val_loss:	0.0077
	Epoch 91/91	37/50	3s	32ms/step	_	loss:	0.0108	_	val loss:	0.0077
	Epoch 91/91	38/50	35	31ms/step	_	loss:	0.0101	_	val loss:	0.0079
	Epoch	39/50		•					_	
		40/50		36ms/step					_	
	91/91 Epoch	41/50	5s	32ms/step	-	loss:	0.0101	-	val_loss:	0.0077
	91/91 Epoch	42/50	5s	32ms/step	-	loss:	0.0101	-	val_loss:	0.0075
	91/91		4s	43ms/step	-	loss:	0.0098	-	val_loss:	0.0075
	91/91		3s	31ms/step	-	loss:	0.0112	-	val_loss:	0.0074
	91/91		5s	31ms/step	-	loss:	0.0103	-	val_loss:	0.0075
	Epoch 91/91	45/50 	3s	35ms/step	-	loss:	0.0100	-	val_loss:	0.0084
			, , ,				404000			

```
Enoch 46/50
91/91
                          - 4s 39ms/step - loss: 0.0103 - val_loss: 0.0074
Epoch 47/50
91/91 -
                          - 3s 31ms/step - loss: 0.0098 - val_loss: 0.0075
Epoch 48/50
91/91
                           3s 33ms/step - loss: 0.0101 - val_loss: 0.0076
Epoch 49/50
91/91
                           6s 46ms/step - loss: 0.0101 - val_loss: 0.0073
Epoch 50/50
91/91 -
                          - 4s 31ms/step - loss: 0.0099 - val loss: 0.0078
```


---Make Predictions---

---Evaluate Model Performance---

```
# Generate predictions
train_pred = model.predict(X_train)
test_pred = model.predict(X_test)
# Inverse transform to original scale
train_pred = scaler.inverse_transform(train_pred)
y_train = scaler.inverse_transform(y_train)
test_pred = scaler.inverse_transform(test_pred)
y_test = scaler.inverse_transform(y_test)
# Calculate evaluation metrics
train_rmse = np.sqrt(mean_squared_error(y_train, train_pred))
test_rmse = np.sqrt(mean_squared_error(y_test, test_pred))
train_mae = mean_absolute_error(y_train, train_pred)
test_mae = mean_absolute_error(y_test, test_pred)
print("\nModel Performance Metrics:")
print(f"Training RMSE: {train_rmse:.2f}")
print(f"Testing RMSE: {test_rmse:.2f}")
print(f"Training MAE: {train_mae:.2f}")
print(f"Testing MAE: {test_mae:.2f}")
   91/91 -
                              - 1s 9ms/step
     22/22
     Model Performance Metrics:
     Training RMSE: 213605.64
     Testing RMSE: 218702.78
     Training MAE: 200756.93
     Testing MAE: 205705.86
```

---Visualize Results---

```
# Prepare data for plotting
train_plot = np.empty_like(series)
train_plot[:, :] = np.nan
train_plot[window_size:len(train_pred)+window_size] = train_pred
test_plot = np.empty_like(series)
test_plot[:, :] = np.nan
```

₹

```
test_plot[len(train_pred)+(window_size*2):len(series)] = test_pred

# Create the plot
plt.figure(figsize=(15, 6))
plt.plot(df.index, scaler.inverse_transform(series_scaled), label='Actual Data')
plt.plot(df.index, train_plot, label='Training Predictions')
plt.plot(df.index, test_plot, label='Testing Predictions')
plt.title('Temperature Prediction vs Actual')
plt.xlabel('Date')
plt.ylabel('Temperature (°C)')
plt.legend()
plt.show()
```


Experiment 5.2: Sequence Text Prediction using LSTM

```
---Load and Inspect the Dataset---
import tensorflow as tf
import numpy as np
# Load Shakespeare text (first 500k chars for faster prototyping)
shake speare\_url = \verb|"https://storage.googleapis.com/download.tensorflow.org/data/shake speare.txt"|
filepath = tf.keras.utils.get_file('shakespeare.txt', shakespeare_url)
text = open(filepath, 'rb').read().decode(encoding='utf-8')[:500000] # Reduced dataset
print(f"Dataset length: {len(text)} characters")
print("\nSample text:\n", text[:100])
→ Dataset length: 500000 characters
     Sample text:
      First Citizen:
     Before we proceed any further, hear me speak.
     Speak, speak.
     First Citizen:
     You
---Preprocess the Text---
# Create vocabulary and mapping
vocab = sorted(set(text))
char2idx = {char: i for i, char in enumerate(vocab)}
idx2char = np.array(vocab)
```

```
# Convert text to numerical indices
text_as_int = np.array([char2idx[char] for char in text])
```

---Prepare Training Sequences---

```
# Reduced sequence length and batch size
seq_length = 50 # Was 100
BATCH_SIZE = 32
                 # Was 64
# Create TensorFlow Dataset
char_dataset = tf.data.Dataset.from_tensor_slices(text_as_int)
sequences = char_dataset.batch(seq_length + 1, drop_remainder=True)
# Split into input/target
def split_input_target(chunk):
    return chunk[:-1], chunk[1:]
dataset = sequences.map(split_input_target)
# Batch and shuffle (reduced buffer size)
BUFFER_SIZE = 5000 # Was 10000
dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)
---Build the LSTM Model---
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Embedding
vocab_size = len(vocab)
embedding dim = 256
rnn_units = 512  # Was 1024
model = Sequential([
   Embedding(vocab_size, embedding_dim),
    LSTM(rnn_units, return_sequences=True),
   Dense(vocab_size)
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
```

→ Model: "sequential_3"

model.summary()

Layer (type)	Output Shape	Param #		
embedding_8 (Embedding)	(32, None, 256)	16,128		
lstm_5 (LSTM)	(32, None, 512)	1,574,912		
dense_2 (Dense)	(32, None, 63)	32,319		

model.build(input_shape=(BATCH_SIZE, None)) # Explicit batch size

Total params: 1,623,359 (6.19 MB)
Trainable params: 1.623,359 (6.19 MR)

---Train the Model---

```
EPOCHS = 10 # Reduced from 30
history = model.fit(dataset, epochs=EPOCHS)

# Plot training loss
import matplotlib.pyplot as plt
plt.plot(history.history['loss'])
plt.title('Training Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()
```

```
→ Epoch 1/10
    306/306
                                 245s 791ms/step - loss: 3.7980
    Epoch 2/10
    306/306
                                - 243s 792ms/step - loss: 2.9315
    Epoch 3/10
    306/306
                                 261s 789ms/step - loss: 3.0186
    Enoch 4/10
    306/306
                                 261s 783ms/step - loss: 2.8850
    Epoch 5/10
    306/306
                                 241s 785ms/step - loss: 2.7926
    Epoch 6/10
    306/306
                                 241s 785ms/step - loss: 2.7395
    Epoch 7/10
    306/306 -
                                 264s 790ms/step - loss: 2.6798
    Epoch 8/10
                                 242s 790ms/step - loss: 2.5934
    306/306
    Fnoch 9/10
                                 267s 804ms/step - loss: 2.8293
    306/306
    Epoch 10/10
    306/306
                                 259s 796ms/step - loss: 2.6255
                                      Training Loss
```


---Generate Text (Optimized)---

```
def generate_text(model, start_string, num_generate=200, temperature=0.1):
    # Rebuild model for inference
    inf_model = Sequential([
        Embedding(vocab_size, embedding_dim),
        LSTM(rnn_units, return_sequences=True),
       Dense(vocab_size)
    inf_model.build(input_shape=(1, None))
    inf_model.set_weights(model.get_weights())
    # Generation logic
    input_eval = [char2idx[s] for s in start_string]
    input_eval = tf.expand_dims(input_eval, 0)
    text_generated = []
    for _ in range(num_generate):
        predictions = inf_model(input_eval)
        predictions = tf.squeeze(predictions, 0)
        predictions = predictions / temperature
        predicted_id = tf.random.categorical(predictions, num_samples=1)[-1,0].numpy()
        input_eval = tf.expand_dims([predicted_id], 0)
        text_generated.append(idx2char[predicted_id])
    return start_string + ''.join(text_generated)
# Example generation
print(generate_text(model, start_string="ROMEO: ", temperature=0.1))
37 ROMEO: thesnd t t thest hest t t t hes t hes t t hes t thin wes hmesthesthesI the hesthes t t thes t t t hres thest t t thes I thes
```

Experiment 5.3: Sequence Text Classification using LSTM

---Load and Explore the Dataset---

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, f1_score
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout, Embedding
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
# Load the SMS Spam Collection Dataset
url = "https://raw.githubusercontent.com/justmarkham/pydata-dc-2016-tutorial/master/sms.tsv"
df = pd.read_csv(url, sep='\t', header=None, names=['label', 'message'])
# Display first few rows
print("Dataset Head:")
print(df.head())
print("\nDataset Shape:", df.shape)
print("\nClass Distribution:")
print(df['label'].value_counts())
→ Dataset Head:
      label
             Go until jurong point, crazy.. Available only ...
       ham
        ham
                                  Ok lar... Joking wif u oni...
     1
     2 spam Free entry in 2 a wkly comp to win FA Cup fina...
             U dun say so early hor... U c already then say... Nah I don't think he goes to usf, he lives aro...
         ham
        ham
     Dataset Shape: (5572, 2)
     Class Distribution:
     label
             4825
     spam
             747
     Name: count, dtype: int64
---Preprocess the Data---
# Convert labels to binary (0 for ham, 1 for spam)
df['label'] = df['label'].map({'ham': 0, 'spam': 1})
# Text preprocessing
texts = df['message'].values
labels = df['label'].values
# Tokenize the text
tokenizer = Tokenizer(num_words=5000)
tokenizer.fit on texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
# Pad sequences to have the same length
max_len = 100 # Maximum length of sequences
X = pad_sequences(sequences, maxlen=max_len)
# Split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)
print("\nTraining data shape:", X_train.shape)
print("Test data shape:", X_test.shape)
     Training data shape: (4457, 100)
     Test data shape: (1115, 100)
---Build the LSTM Model---
# Model parameters
vocab_size = len(tokenizer.word_index) + 1
embedding_dim = 128
lstm_units = 64
# Build the model
```

```
model = Sequential()
model.add(Embedding(input dim=vocab size, output dim=embedding dim, input length=max len))
model.add(LSTM(lstm_units))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
print("\nModel Summary:")
model.summary()
₹
     Model Summary:
     /usr/local/lib/python3.11/dist-packages/keras/src/layers/core/embedding.py:90: UserWarning: Argument `input_length` is deprecated. :
       warnings.warn(
     Model: "sequential 13"
       Layer (type)
                                          Output Shape
                                                                         Param #
                                          ?
       embedding_18 (Embedding)
                                                                     0 (unbuilt)
       1stm_15 (LSTM)
                                          7
                                                                     0 (unbuilt)
                                          ?
                                                                               0
       dropout_2 (Dropout)
       dense_12 (Dense)
                                          ?
                                                                     0 (unbuilt)
```

Total params: 0 (0.00 B) Trainahla narame. 0 (0 00 R)

---Train the Model--- bold text

```
# Train the model
history = model.fit(X_train, y_train,
                    epochs=10,
                    batch_size=32,
                    validation_data=(X_test, y_test))
# Plot training history
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Model Accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Model Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend()
plt.show()
```

```
→ Epoch 1/10
     140/140
                                 - 17s 93ms/step - accuracy: 0.8985 - loss: 0.3078 - val_accuracy: 0.9883 - val_loss: 0.0516
     Epoch 2/10
                                - 22s 107ms/step - accuracy: 0.9913 - loss: 0.0411 - val accuracy: 0.9928 - val loss: 0.0412
     140/140
     Epoch 3/10
                                 - 16s 112ms/step - accuracy: 0.9971 - loss: 0.0148 - val_accuracy: 0.9928 - val_loss: 0.0308
     140/140 -
     Enoch 4/10
                                 - 22s 120ms/step - accuracy: 0.9988 - loss: 0.0080 - val_accuracy: 0.9937 - val_loss: 0.0343
     140/140
     Epoch 5/10
     140/140 -
                                – 18s 103ms/step - accuracy: 0.9993 - loss: 0.0031 - val_accuracy: 0.9928 - val_loss: 0.0404
     Epoch 6/10
     140/140 -
                                - 20s 103ms/step - accuracy: 0.9979 - loss: 0.0056 - val_accuracy: 0.9928 - val_loss: 0.0412
     Epoch 7/10
     140/140 -
                                – 19s 94ms/step - accuracy: 1.0000 - loss: 8.6148e-04 - val_accuracy: 0.9937 - val_loss: 0.0445
     Epoch 8/10
                                - 14s 98ms/step - accuracy: 0.9999 - loss: 9.4729e-04 - val accuracy: 0.9928 - val loss: 0.0490
     140/140 -
     Epoch 9/10
--- Evaluate the Model
                                - 21s 103ms/step - accuracy: 0.9998 - loss: 7.4710e-04 - val accuracy: 0.9910 - val loss: 0.0557
     Epoch 10/10
# Make predictions
y_pred = (model.predict(X_test) > 0.5).astype("int32")
# Calculate metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
print("\nEvaluation Metrics:")
print(f"Accuracy: {accuracy:.4f}")
print(f"Precision: {precision:.4f}")
print(f"F1-Score: {f1:.4f}")
# Confusion matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
            xticklabels=['Ham', 'Spam'],
           yticklabels=['Ham', 'Spam'])
plt.title('Confusion Matrix')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.show()
<del>→</del>▼ 35/35 —
                              -- 2s 50ms/step
     Classification Report:
```

precision	recall	f1-score	support
0.99	1.00	0.99	966
0.97	0.95	0.96	149
		0.99	1115
0.98	0.97	0.98	1115
0.99	0.99	0.99	1115
	precision 0.99 0.97	precision recall 0.99 1.00 0.97 0.95 0.98 0.97	precision recall f1-score 0.99 1.00 0.99 0.97 0.95 0.96 0.98 0.97 0.98

Evaluation Metrics: Accuracy: 0.9901 Precision: 0.9726 F1-Score: 0.9627

Confusion Matrix

