Introduction to Game Theory 6 Shapley Value for Coalitional Games

Eric Pauwels (CWI & VU)

November 21, 2023

Reading

- Recommended
 - Shoham and Leyton-Brown: Chapter 12, sections 12.1-12.2

Overview

Coalitional Game Theory

- Basic modelling unit is group rather than indvidual agent.
- Transferable vs. non-transferable utility
- Coalitional game with transferable utility (N, v):
 - *N* finite set of players:
 - $v: 2^N \longrightarrow \mathbb{R}$ pay-off function $(v(\emptyset) = 0)$
- Fundamental questions:
 - Which coalitions will form?
 - How should coalition divide its pay-off among its members?

Classes of coalitional games

Super-additive game ("synergy")
 Game (N, v) is super-additive iff

$$\forall S, T \subset N : S \cap T = \emptyset \Longrightarrow v(S \cup T) \ge v(S) + v(T).$$

In particular: $v(S \cup i) \ge v(S) + v(i)$ for any $S \subset N \setminus \{i\}$.

 As a consequence, for super-additive game, the grand coalition has the highest pay-off of all coalitional structures:

$$v(N) = v(S \cup S^c) \ge v(S) + v(S^c) \ge v(S).$$

 Therefore focus on a fair redistribution of total pay-off among the members of the grand coalition.

Motivating example: Ways to allocate common benefits

- Three friends sharing a taxi cab
- Splitting the profit from an investment

Worked example: Fair division of taxi fare

- Alice, Bob and Charlize share a taxi to go home;
- The individual fares would be: A(6), B(12) and C(36);
- If they share the cab then they only have to pay the fare to the farthest destination (C = 36).
- What would be a fair way to share the fare?

Sanity check: 2+5+29=36, and everyone is better off!

Worked example: Fair division of taxi fare

- Consider a sequential version of the problem in which A, B and C arrive in random order, and pay whatever is lacking (i.e. their marginal contribution);
- Permutation ACB indicates that coalition grows as follows:

$$A \rightarrow AC \rightarrow ACB$$

- 1. When A joins, he pays the fare to his destination: 6
- 2. When C joins, he pays the remainder to get to C: 36-6=24;
- 3. Finally, when B joins, everything is already paid for.

Worked example: Fair division of taxi fare

A B				
marginal Contribution	A	\mathcal{B}	С	
ABC	G	6,	24	4
ACB	6	0	30	5
BAC	0	12	24	4
BCA	0	12	24	4
CAB	0	0	36	
CBA	0 (0 (36	6
mean	12 (2)	30 5	174	29

Shapley: common sense vs. permutation solution

Shapley value: Alternative definition

- Marginal contribution only depends on what precedes a contributor;
- Marginal contribution of player *i* to subset *S*:

$$\delta_i(S) = v(S \cup i) - v(S)$$

• Shapley value of player *i*: (denoting #N = n, #S = s)

$$\varphi_i(N, v) := \frac{1}{n} \sum_{S \subset N \setminus i} {n-1 \choose s}^{-1} \delta_i(S)$$

Amplification: see next slides!

- We focus on Shapley value $\varphi_i(N, v)$ for agent i;
- For any existing coalition S not including i, i.e.

$$S \subset N_i := N \setminus i$$

we consider the value increment due to *i* joining:

$$\delta_i(S) = v(S \cup i) - v(S)$$

• The size s := #S of the possible coalitions S that i joins, can range between $0 \le s \le n-1$.

• For fixed coalition size s there are

$$N_s := \binom{n-1}{s}$$

coalitions S of that size.

• Hence, the mean contribution $\overline{\Delta}_i$ of i to existing coalitions S of size s is given by:

$$\overline{\Delta}_i(s) := \frac{1}{N_s} \sum_{S: \#S = s} \delta_i(S) = \binom{n-1}{s}^{-1} \sum_{S: \#S = s} \delta_i(S).$$

• Finally, since $0 \le s \le n-1$ we compute the average over the n possible choices of s. This average is the Shapley value:

$$\varphi_{i} := \frac{1}{n} \sum_{s=0}^{n-1} \overline{\Delta}_{i}(s) = \frac{1}{n} \sum_{s=0}^{n-1} \binom{n-1}{s}^{-1} \sum_{S:\#S=s} \delta_{i}(S)$$

$$= \frac{1}{n} \sum_{s=0}^{n-1} \sum_{S:\#S=s} \binom{n-1}{s}^{-1} \delta_{i}(S)$$

$$= \frac{1}{n} \sum_{S=0}^{n-1} \binom{n-1}{s}^{-1} \delta_{i}(S)$$

• Double sum above is actually sum over all subsets $S \subset N \setminus i$.

Recall:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \quad \text{where} \quad n! = n(n-1)(n-2)\dots 3\cdot 2\cdot 1.$$

Hence:

$$\varphi_{i} = \frac{1}{n} \sum_{S \subset N \setminus i} {n-1 \choose s}^{-1} \delta_{i}(S)$$

$$= \frac{1}{n} \sum_{S \subset N \setminus i} \frac{s!(n-1-s)!}{(n-1)!} \delta_{i}(S)$$

$$= \frac{1}{n!} \sum_{S \subset N \setminus i} s!(n-1-s)! \delta_{i}(S)$$

Claim: this corresponds to the permutation definition!

Shapley: equivalence of definitions

Permutation formula:

$$\varphi_{i} = \frac{1}{n!} \sum_{S \in S} s! (n-1-s)! S_{i}(S) (s=\#,S)$$
 $\pi_{1} = 24315 \rightarrow S = \{2,4\}$
 $S = \{1,5\}$
 $\pi_{2} = 43215 \rightarrow S = \{4\}$
 $S = \{1,25\}$

Shapley: equivalence of definitions

Recall: $\delta_i(S)$ depends on the **set** S, not on the permutation sequence of the elements in S!

- Hence, $\delta_3(S)$ has the same value in $\pi_1 = 24315$ and $\pi_2 = 42351$ as in both cases $S = \{2, 4\}$.
- Consider an arbitrary permutation of 1, 2, ..., n and let's focus on i somewhere in the sequence, all numbers that appear to the left of i, constitute the set S. Likewise, all elements that appear to the right, are collected in the set S^c:

$$\pi = \underbrace{* * * \dots * * *}_{S} i \underbrace{* * * \dots * * *}_{S^{c}}$$

• Any permutation of the *S*-elements in π yields the same value $\delta_i(S)$ (see above), There are s! such permutations.

Shapley: equivalence of definitions

- Likewise, $\delta_i(S)$ does **not depend** on the elements in S^c . Any permutation of these elements in S^c yields that same value $\delta_i(S)$. There are (n-1-s)! such permutations.
- Hence, we can conclude that of the n! permutations of $\{1,2,\ldots,n\}$, a total of s!(n-1-s)! give rise to the same value $\delta_i(S)$, which only depends on the **set** S.
- Averaging over all possible choices for $S \subset N_i \equiv N \setminus i$ yields:

$$\frac{1}{n!} \sum_{S \subset N_i} s!(n-1-s)! \, \delta_i(S) = \phi_i(i)$$

Shapley's Axioms: Some useful terminology

 Players i and j are interchangeable if their contributions to every coalition (subset) S is exactly the same:

$$\forall S \subset N \setminus \{i,j\} : \quad v(S \cup i) = v(S \cup j)$$

 A player i is a dummy player if the amount he contributes to any coalition is exactly the amount he's able to achieve alone:

$$\forall S \subset N \setminus \{i\} : v(S \cup i) = v(S) + v(i)$$

Shapley's Axioms

• **Symmetry:** If *i* and *j* are interchangeable then:

$$\psi_i(N, v) = \psi_j(N, v).$$

 Dummy Player: will only get what he can achieve on his own:

$$\psi_i(N,v)=v(i).$$

• Additivity: Consider two games $G_1 = (N, v)$, $G_2 = (N, w)$ and assume that we play G_1 with probability p and G_2 with prob q = 1 - p. Then

$$\psi_i(N, pv + qw) = p\psi_i(N, v) + q\psi_i(N, w)$$

Shapley's theorem

Shapley (1951)

Given a coalitional game (N, v), the Shapley values φ_i , i = 1, ..., n specifies the unique distribution of the total value v(N) that is both

- efficient, i.e. $\sum_i \varphi_i = v(N)$
- satisfies Shapley's axioms,
 i.e. Symmetry, Dummy Player and Additivity.

Shapley value: worked example

An AI expert (E) developed a powerful new algorithm. However, in order to implement his ideas, he needs to create a startup and hire a programmer (P) for 2 years. An angel investor (A) provides funding. The value that each coalition of these three stakeholders (E, P, A) can generate satisfies the following rules:

- Without both investor and expert, no value can be generated.
- If he has no assistance from a programmer, the expert's value equals 3, but if he can delegate the programming and focus on R&D, his value rises to 10.
- The value created by the programmer is 5. This is in addition to the rise in value of the expert.

The startup is sold to a large software company for serious money. How to split this money fairly among the three stakeholder?

Shapley value: Method 1

Shapley value computation:
$$\#N=n=3$$
, $\#S=s$

$$\begin{cases}
P_i = \frac{1}{n} \sum_{S \in \mathbb{N}} \binom{N-1}{s}^{-1} \delta_i(S) \\
Fxput (E)
\end{cases}$$

$$S=0 \longrightarrow S=\emptyset \Rightarrow \delta_E(S) = \overline{v}(E) - \overline{v}(\phi) = 0.$$

$$L \Rightarrow \binom{n-1}{s} = \binom{2}{0} = 1$$

$$S=1 \longrightarrow \delta_E(A) = \overline{v}(AE) - \overline{v}(A) = 3$$

$$\delta_E(P) = \overline{v}(EP) - \overline{v}(P) = 0$$

$$\begin{pmatrix} N-1 \\ s \end{pmatrix} = \binom{1}{1} = 2$$

$$S=2 \longrightarrow \delta_E(AP) = \overline{v}(APE) - \overline{v}(AP) = 15$$

$$L \Rightarrow \binom{n-1}{s} = \binom{1}{2} = 1$$

$$\mathcal{Q}_E = \frac{1}{3} \left[\frac{1}{1} \cdot 0 + \frac{1}{2} \cdot 3 + \frac{1}{4} \cdot 15 \right] = \frac{11}{2}$$

Shapley value: Method 2

Figure: Notice distribution is efficient:
$$\varphi_E + \varphi_A + \varphi_P = 15 = v(N)$$