## Intuition Behind the Regression Line

| Price of Fuel (X) | Jeepney Fare (Y) |
|-------------------|------------------|
| 1                 | 2                |
| 2                 | 4                |
| 3                 | 5                |
| 4                 | 4                |
| 5                 | 5                |





### Intuition Behind the Regression Line

| Price of Fuel (X) | Fuel (X) Jeepney Fare (Y) (X * Y) |    | <b>X</b> <sup>2</sup> |
|-------------------|-----------------------------------|----|-----------------------|
| 1                 | 2                                 | 2  | 1                     |
| 2                 | 4                                 | 8  | 4                     |
| 3                 | 5                                 | 15 | 9                     |
| 4                 | 4                                 | 16 | 16                    |
| 5                 | 5                                 | 25 | 25                    |

$$\Sigma x = 15$$

$$\Sigma y = 20$$

$$\Sigma xy = 66$$

$$\Sigma x^2 = 55$$

Step 1: Get the sum of X, Y, (X \* Y) and X<sup>2</sup>

The simplest form of a simple linear regression equation with one dependent and one independent variable is represented by:

$$y = m(x) + b$$

#### Where:

y is the value of the dependent variable

X is the value of the independent variable

m is the slope of the line

**b** is the **y-intercept** 

Calculating the **slope** is given by this formula:

$$m = \frac{n(\Sigma xy) - \Sigma x \Sigma y}{n(\Sigma xy) - (\Sigma x)^2}$$

#### Where:

m is the slope of the line

n is the total number of data points

x is the value of the independent variable

y is the value of the dependent variable

Calculating the intercept is given by this formula:

$$b = \frac{\Sigma y - m(\Sigma x)}{n}$$

#### Where:

**b** is the **y-intercept** 

m is the slope of the line

n is the total number of data points

x is the value of the independent variable

y is the value of the **dependent variable** 



| Price of Fuel (X) | Jeepney Fare<br>(Y) |
|-------------------|---------------------|
| 1                 | 1.5                 |
| 2                 | 3.8                 |
| 3                 | 6.7                 |
| 4                 | 9                   |
| 5                 | 11.2                |
| 6                 | 13.6                |
| 7                 | 16                  |

$$y = m(x) + b$$

$$m = \frac{n(\Sigma xy) - \Sigma x \Sigma y}{n(\Sigma x^2) - (\Sigma x)^2}$$

$$b = \frac{\sum y - m(\sum x)}{n}$$

#### Calculate the Slope

| $\Sigma x$ | $\Sigma y$ | Σχ | $\Sigma x^2$ |
|------------|------------|----|--------------|
| 15         | 20         | 66 | 55           |

$$m = \frac{n(\Sigma xy) - \Sigma x \Sigma y}{n(\Sigma x^2) - (\Sigma x)^2}$$

$$m = \frac{5(66) - (15)(20)}{5(55) - (15)^2}$$

$$m = 0.6$$



### Calculate the Intercept

| $\Sigma x$ | $\Sigma y$ | Σχ | $\Sigma x^2$ |
|------------|------------|----|--------------|
| 15         | 20         | 66 | 55           |

$$b = \frac{\Sigma y - m(\Sigma x)}{n}$$

$$b = \frac{20 - 0.6(15)}{5}$$

$$b=2.2$$



## Predicting the Jeepney Fare

| Price of Fuel (X) | Jeepney<br>Fare (Y) | Predicted Jeepney Fare (Y <sub>predict</sub> ) |
|-------------------|---------------------|------------------------------------------------|
| 1                 | 2                   | 2.8                                            |
| 2                 | 4                   | 3.4                                            |
| 3                 | 5                   | 4                                              |
| 4                 | 4                   | 4.6                                            |
| 5                 | 5                   | 5.2                                            |

$$y = m(x) + b$$

$$y = 0.6(2) + (2.2)$$

$$y_{\text{predict}} = 3.4$$

$$y = 0.6(5) + (2.2)$$

$$y_{\text{predict}} = 5.2$$

## Drawing the Regression Line

|   | Jeepney<br>Fare (Y) |     |
|---|---------------------|-----|
| 1 | 2                   | 2.8 |
| 2 | 4                   | 3.4 |
| 3 | 5                   | 4   |
| 4 | 4                   | 4.6 |
| 5 | 5                   | 5.2 |





### Drawing the Regression Line

The blue points
represent the
actual Y values
and the orange
points represent
the predicted Y
values





## Residuals/Errors

The distance
between the
actual values
and the
predicted values
are known as
residuals or
errors





### Sum of Squared Error

| Price of<br>Fuel (X) | Jeepney<br>Fare (Y) | Predicted Jeepney Fare (Y <sub>predict</sub> ) | Y - Y <sub>predict</sub> | (Y - Y <sub>predict</sub> ) <sup>2</sup> |
|----------------------|---------------------|------------------------------------------------|--------------------------|------------------------------------------|
| 1                    | 2                   | 2.8                                            | -0.8                     | 0.64                                     |
| 2                    | 4                   | 3.4                                            | 0.6                      | 0.36                                     |
| 3                    | 5                   | 4                                              | 1                        | 1                                        |
| 4                    | 4                   | 4.6                                            | -0.6                     | 0.36                                     |
| 5                    | 5                   | 5.2                                            | -0.2                     | 0.04                                     |

Sum of Squared Errors (SSE) = 
$$\sum_{i=1}^{n} (y_i - y_{predict})^2$$



#### Sum of Squared Error

| Price of<br>Fuel (X) | Jeepney<br>Fare (Y) | Predicted Jeepney Fare (Y <sub>predict</sub> ) | Y - Y <sub>predict</sub> | (Y - Y <sub>predict</sub> ) <sup>2</sup> |
|----------------------|---------------------|------------------------------------------------|--------------------------|------------------------------------------|
| 1                    | 2                   | 2.8                                            | -0.8                     | 0.64                                     |
| 2                    | 4                   | 3.4                                            | 0.6                      | 0.36                                     |
| 3                    | 5                   | 4                                              | 1                        | 1                                        |
| 4                    | 4                   | 4.6                                            | -0.6                     | 0.36                                     |
| 5                    | 5                   | 5.2                                            | -0.2                     | 0.04                                     |

$$SSE = 2.4$$

The sum of squared errors (SSE) for this regression line is 2.4. This tells you how good a line is fitted to the data. The best fit line will have the least amount of this value.





| Price of Fuel ( $X_i$ ) | Jeepney Fare ( $Y_i$ ) | $\overline{Y}$ | $Y_i - \overline{Y}$ | $(\underline{Y}_i - \overline{\underline{Y}})^2$ |
|-------------------------|------------------------|----------------|----------------------|--------------------------------------------------|
| 1                       | 2                      |                |                      |                                                  |
| 2                       | 4                      |                |                      |                                                  |
| 3                       | 5                      |                |                      |                                                  |
| 4                       | 4                      |                |                      |                                                  |
| 5                       | 5                      |                |                      |                                                  |

$$\frac{\overline{Y}}{N} = \frac{\sum Y_i}{n}$$

| Price of Fuel $(X_i)$ | Jeepney Fare ( $Y_i$ ) | $\overline{Y}$ | $Y_i - \overline{Y}$ | $(\underline{Y}_i - \overline{\underline{Y}})^2$ |
|-----------------------|------------------------|----------------|----------------------|--------------------------------------------------|
| 1                     | 2                      | 4              |                      |                                                  |
| 2                     | 4                      | 4              |                      |                                                  |
| 3                     | 5                      | 4              |                      |                                                  |
| 4                     | 4                      | 4              |                      |                                                  |
| 5                     | 5                      | 4              |                      |                                                  |

$$\frac{7}{7} = \frac{20}{5} = 4$$

| Price of Fuel $(X_i)$ | Jeepney Fare ( $Y_i$ ) | $\overline{Y}$ | $Y_i - \overline{Y}$ | $(\underline{Y}_i - \overline{\underline{Y}})^2$ |
|-----------------------|------------------------|----------------|----------------------|--------------------------------------------------|
| 1                     | 2                      | 4              | -2                   |                                                  |
| 2                     | 4                      | 4              | 0                    |                                                  |
| 3                     | 5                      | 4              | 1                    |                                                  |
| 4                     | 4                      | 4              | 0                    |                                                  |
| 5                     | 5                      | 4              | 1                    |                                                  |

$$\frac{7}{7} = \frac{20}{5} = 4$$

| Price of Fuel $(X_i)$ | Jeepney Fare ( $Y_i$ ) | $\overline{Y}$ | $Y_i - \overline{Y}$ | $(\underline{Y}_i - \overline{\underline{Y}})^2$ |
|-----------------------|------------------------|----------------|----------------------|--------------------------------------------------|
| 1                     | 2                      | 4              | -2                   | 4                                                |
| 2                     | 4                      | 4              | 0                    | 0                                                |
| 3                     | 5                      | 4              | 1                    | 1                                                |
| 4                     | 4                      | 4              | 0                    | 0                                                |
| 5                     | 5                      | 4              | 1                    | 1                                                |

$$\frac{7}{7} = \frac{20}{5} = 4$$

| Price of Fuel ( $X_i$ ) | Jeepney Fare ( $Y_i$ ) | <u> </u> | $Y_i - \overline{Y}$ | $(\underline{Y}_i - \overline{\underline{Y}})^2$ |
|-------------------------|------------------------|----------|----------------------|--------------------------------------------------|
| 1                       | 2                      | 4        | -2                   | 4                                                |
| 2                       | 4                      | 4        | 0                    | 0                                                |
| 3                       | 5                      | 4        | 1                    | 1                                                |
| 4                       | 4                      | 4        | 0                    | 0                                                |
| 5                       | 5                      | 4        | 1                    | 1                                                |

Sum of Squared Total (SST) = 
$$\sum_{i=1}^{n} (y_i - \overline{y})^2$$



| Price of Fuel ( $X_i$ ) | Jeepney Fare ( $Y_i$ ) | <u> </u> | $Y_i - \overline{Y}$ | $(\underline{Y}_i - \overline{\underline{Y}})^2$ |
|-------------------------|------------------------|----------|----------------------|--------------------------------------------------|
| 1                       | 2                      | 4        | -2                   | 4                                                |
| 2                       | 4                      | 4        | 0                    | 0                                                |
| 3                       | 5                      | 4        | 1                    | 1                                                |
| 4                       | 4                      | 4        | 0                    | 0                                                |
| 5                       | 5                      | 4        | 1                    | 1                                                |

$$SST = 6$$

Sum of Squared Total (SST) = 
$$4 + 0 + 1 + 0 + 1 = 6$$



## Computing $R^2$

Sum of Squared Errors (SSE) = 
$$\sum_{i=1}^{n} (y_i - y_{predict})^2$$

Sum of Squared Total (SST) = 
$$\sum_{i=1}^{\infty} (y_i - \overline{y})^2$$

$$R^2 = 1 - \frac{SSE}{SST}$$



# Computing $R^2$

Sum of Squared Errors (SSE) = 2.4

Sum of Squared Total (SST) = 6

$$R^2 = 1 - \frac{2.4}{6} = 0.6$$