Nested Quantified Expressions: Order is important

Order of quantifier is extremely important

$$\forall x \exists y \ P(x,y)$$
 is not the same as $\exists y \forall x \ P(x,y)$

Q(x,y,z): x is an instructor of course y in university z

- $\blacksquare \forall z \forall y \exists x \ Q(x,y,z)$: In every uni. for every course there is an instructor
- $\blacksquare \ \forall z \ \exists x \ \forall y \ Q(x,y,z)$: In every uni. there is an instructor for all courses
- $\blacksquare \exists x \ \forall z \ \forall y \ Q(x,y,z)$: There is an instructor for every course in every uni.

 However, In some cases, the order of universal and existential quantifiers can be swapped without changing the meaning of a propositional function.
This happens when the quantifiers are independent of each other.
Here are a few examples

Example 1: Properties of Real Numbers

Let the domain be the set of real numbers \mathbb{R} .

Propositional function: P(x,y): x+y=y+x

- 1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, P(x,y)$
 - "For every real number x, there exists a real number y such that x+y=y+x."
- 2. $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, P(x, y)$
 - "There exists a real number y such that for every real number x, x+y=y+x."

Since the commutative property of addition holds for all real numbers, both statements are true. Therefore, the order of quantifiers does not matter here.

Example 2: Multiplicative Identity

Let the domain be \mathbb{R} .

Propositional function: $P(x,y): x\cdot y = x$

- 1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, P(x,y)$
 - "For every real number x, there exists a real number y such that $x \cdot y = x$."
- 2. $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, P(x,y)$
 - "There exists a real number y such that for every real number x, $x \cdot y = x$."

Since y=1 works as the multiplicative identity for all x, both statements are true, and the order of quantifiers can be switched without affecting the meaning.