HLIN102 - Du binaire au web

Représentation d'images

Sources:

images.math.cnrs.fr/Le-traitement-numerique-des-images.html

Représentation d'images

- 2 familles de représentations, selon ce qu'exprime l'image :
- Image = expression d'un modèle abstrait (ex : formes géométriques, équations physiques) → représentation abstraite
- Image = imitation fidèle de la réalité (ex : photo, scan de document) → représentation matricielle

Représentation abstraite

 Image vectorielle : une image est une superposition de formes géométriques

Représentation abstraite

- Image vectorielle : une image est une superposition de formes géométriques
 - Représentation « de haut niveau »
 - Zoomable indéfiniment, modifiable facilement
 - Stockage économique
 - Quelques formats SVG, PDF, PS, Flash

Image vectorielle: SVG

• Exemple de code SVG dans une page Web :

Représentation abstraite

- Image vectorielle
- Modèle physique : l'image est le résultat d'un calcul issu d'équations physiques
 - Images re (cinéma,)
 - Souvent co images son sous forme

Représentation abstraite

- Image vectorielle
- Modèle physique : l'image est le résultat d'un calcul issu d'équations physiques
 - Images réalistes → applications artistiques (cinéma, jeu vidéo) et scientifiques (simulations)
 - Souvent coûteux en temps de calcul → les images sont souvent calculées puis stockées sous forme matricielle

Représentation d'images

- 2 familles de représentations, selon ce qu'exprime l'image :
- Image = expression d'un modèle abstrait (ex : formes géométriques, équations physiques) → représentation abstraite
- Image = imitation fidèle de la réalité (ex : photo, scan de document) → représentation matricielle

 Image = tableau à deux dimensions de points (ou *pixels*)

- Image = tableau à deux dimensions de points (ou *pixels*)
 - Exemples de formats :
 - Brut : RAW, TIFF
 - Compressé sans perte : PNG, GIF
 - Compressé avec perte : JPG

- Image = tableau à deux dimensions de points (ou *pixels*)
 - Exemples de formats
 - Chaque pixel est associé à un ou plusieurs nombres qui décrivent son apparence

- Ex : images brutes en niveaux de gris
 - Chaque pixel est décrit par son intensité lumineuse
 - ex sur 8 bits:

Images en niveaux de gris

- Le nombre de bits par pixel donne le nombre de nuances de gris (« profondeur » de l'image)
- Le début (= en-tête) du fichier qui stocke l'image doit au moins préciser :
 - le nombre de lignes et de colonnes de l'image
 - le mode : niveaux de gris (sauf si c'est une caractéristique du format)
 - le nombre de bits par pixel (sauf si c'est une caractéristique du format)

- Image en couleurs
 - Format brut : 1 image couleur = superposition de 3 images
 (« masques ») rouge, vert et bleu par synthèse additive

Images en couleurs

- Si chaque composante RVB est codée sur 8 bits, 1 pixel est codé sur 24 bits soit 2²⁴ ≈ 16,8 millions de couleurs
- Autres représentations :
 - Cyan Magenta Jaune (CMJ) : composantes en synthèse soustractive, complémentaires des RVB : C=1-R M=1-V J=1-B
 - Teinte Saturation Luminosité (TSL) : représentation adaptée à la perception humaine

- De la couleur au gris
 - Luminance = moyenne(R,V,B)
 - 24 bits → 8 bits : perte de profondeur

Alléger la représentation

- Comment réduire l'espace occupé par une image ?
 - Réduire la précision
 - Repérer les répétitions pour décrire l'image plus brièvement
 - Décrire l'image comme l'expression d'un modèle abstrait

Alléger la représentation

- Comment réduire l'espace occupé par une image ?
 - Réduire la précision
 - Repérer les répétitions pour décrire l'image plus brièvement
 - Décrire l'image comme l'expression d'un modèle abstrait

Réduire la précision

 Réduction du nombre de lignes/colonnes

Cette réduction
 peut être
 adaptative selon
 les zones de
 l'image
 (ex : Google Maps)

Réduire la précision

- Réduction de profondeur
 - Quantification (ex : 32 bits \rightarrow 8 bits : [0;15] \rightarrow 0 [16;31] \rightarrow 1 [32;47] \rightarrow 2 ...)

3 niveaux de gris

2 niveaux de gris

Réduire la précision

- Réduction de profondeur
 - Optimisation de palette
 - Exemple ci-dessous: 256 couleurs, chacune sur 24 bits
 - → « palette » à inscrire dans le fichier de l'image

16,8 millions de couleurs

256 couleurs

Alléger la représentation

- Comment réduire l'espace occupé par une image ?
 - Réduire la précision
 - Repérer les répétitions pour décrire l'image plus brièvement
 - Décrire l'image comme l'expression d'un modèle abstrait

Repérer les répétitions

Un exemple simpliste

0	0	0	0	0	0	
1	1	1	0	0	0	•
0	1	1	1	0	0	>
0	0	1	1	1	0	•
0	0	0	0	0	0	

(561)634343

Repérer les répétitions

- Un exemple simpliste
- Algorithmes de compression (sans perte): recherche de motifs répétés dans l'image
 - Analyses fréquentielles (dans le plan et en profondeur)
 - Descriptions multi-échelles

Alléger la représentation

- Comment réduire l'espace occupé par une image ?
 - Réduire la précision
 - Repérer les répétitions pour décrire l'image plus brièvement
 - Décrire l'image comme l'expression d'un modèle abstrait

Image réelle, modèle abstrait

- Utilisation de connaissances sur l'image ou le spectateur pour extraire les informations pertinentes
 - Ex : reconnaissance de visage, utilisation de phénomènes de masquage pour réduire la précision...

Merci pour votre attention

