2. DOMAČA NALOGA IZ DIFERENCIALNE GEOMETRIJE Maj, 2019

(1) Prostor \mathbb{R}^3 opremimo z Lorentzovo metriko

$$g_L((x_1, y_1, t_1), (x_2, y_2, t_2)) = t_1t_2 - x_1x_2 - y_1y_2.$$

Za vsak R > 0 označimo

$$D_R = \{(x, y)|x^2 + y^2 < R^2\},$$

$$H_R = \{(x, y, t)|t^2 - x^2 - y^2 = R^2, t > 0\}$$

disk polmera R in zgornji del hiperbolo
ida. Hiperbolo
id parametriziramo s preslikavo

$$\phi_R \colon D_R \to H_R$$

ki točki (x,y) priredi presek premice skozi točki (x,y,0) in (0,0,-R) s hiperboloidom H_R .

- a) Izračunaj ekspliciten predpis preslikave ϕ_R . Na disku D_R definiramo metriko $g_R = -\phi_R^* g_L$. Izračunajte metriko g_R v bazi $\left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\}$.
- b) Izračunajte Levi-Civita povezavno 1-formo, Riemannov tenzor ukrivljenosti in Gaussovo ukrivljenost, glede na ogrodje $\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\}$.
- c) Naj bo $\mathbb H$ zgornja polravnina v $\mathbb R^2$ z metriko

$$g_H = \frac{1}{y^2} g_e,$$

kjer je g_e evklidska metrika. Pokažite, da je preslikava $\tau\colon \mathbb{H}\to D_1$, ki je v kompleksnih koordinatah dana s predpisom

$$\tau(z) = \frac{iz+1}{z+i}$$

Riemannova izometrija.

- d) Izračunajte predpisa geodetk $\gamma_x,\gamma_y\colon\mathbb{R}\to D_1,$ ki sta določeni s pogoji $\gamma_x(0)=\gamma_y(0)=(0,0) \text{ in } \dot{\gamma}_x(0)=\frac{\partial}{\partial x}\ \dot{\gamma}_y(0)=\frac{\partial}{\partial y}.$
- (2) Naj bo ∇ Levi-Civita kovariantni odvod na tangentnem svežnju sfere $TS^2.$
 - a) Definiramo ∇^* na kotangentnem svežnju sfere T^*S^2 z implicitnim predpisom

$$X(\alpha(Y)) = (\nabla_X^* \alpha)(Y) + \alpha(\nabla_X Y)$$

za $X,Y\in\Gamma(TS^2)$ in $\alpha\in\Omega^1(S^2)$. Pokažite, da je ∇^* kovariantni odvod.

b) Naj bo $\{e_1, e_2\}$ lokalno ortonormirano ogrodje TS^2 in $\{e_1^*, e_2^*\}$ dualno lokano ogrodje T^*S^2 . Definiramo koeficiente A_{ij}^k , B_{ij}^k za $i, j, k \in \{1, 2\}$ s pogoji:

$$\nabla_{e_j} e_i = \sum_{k=1}^2 A_{ij}^k e_k,$$

$$\nabla_{e_j}^* e_i^* = \sum_{k=1}^2 B_{ij}^k e_k^*.$$

Pokažite, da velja $A_{ij}^k = B_{ij}^k$ za vse i, j, k.

- c) Izračunajte ukrivljenost F_{∇^*} .
- (3) Označimo z End (TS^2) sveženjendomorfizmov TS^2 . Vlakno svežnja End (TS^2) v točki $p \in S^2$ je vektorski prostor End (TpS^2) . Evklidska metrika na S^2 porodi metriko na svežnju End (TS^2) na naslednji način: če je $\{e_1, e_2\}$ ortonormirana baza prostora T_pS^2 , za $\mathcal{A}, \mathcal{B} \in \text{End}(T_pS^2)$ definiramo skalarni produkt

$$\langle \mathcal{A}, \mathcal{B} \rangle = \operatorname{tr}(AB^T)$$

kjer sta A in B matriki, ki pripadata endomorfizmoma v bazi $\{e_1, e_2\}$. Naj bo $E \subset \operatorname{End}(TS^2)$ vektorski podsveženj, katerega vlakno v točki p je

$$E_p = \{ \mathcal{A} \in \operatorname{End}(TpS^2) | \mathcal{A} = \mathcal{A}^*, \operatorname{tr}(\mathcal{A}) = 0 \}.$$

Naj bo E^\perp ortogonalni komplement Ev End $(TS^2).$ Konstruirajte izomorfizem vektorskih svežnjev

$$\Psi \colon S^2 \times \mathbb{R}^2 \to E^{\perp}.$$