Data Mining INFS 4203/7203

Miao Xu

miao.xu@uq.edu.au

The University of Queensland, 2020 Semester 2

"Please be aware that this session is being recorded so it can be made available through Learn.UQ (Blackboard) to all students enrolled in the course. The reason we are recording the class presentations, discussions and chat room logs is because this provides a richer experience for all students and active classrooms help students' learning.

The recording may be accessed and downloaded only by students enrolled in the course, including those students studying outside Australia.

If you would prefer not be captured either by voice or image in the recording, please let me know before the class starts. I recognise this will be the case for some students and it can be accommodated."

Class recordings

If you are not wishing to be recorded:

- Turn off video and mute audio
- Use a proxy name for Zoom (student attendance will still be on record with the Course Coordinator)

Please note that students are not permitted to record teaching without the explicit permission of the Course Co-ordinator. This includes recording classes using Zoom.

For further information:

- PPL 3.20.06 Recording of Teaching at UQ
- UQ website: https://my.uq.edu.au/information-and-services/information-technology/software-and-web-apps/software-uq/zoom

"all members of the University community deserve respect from others in both formal and informal contexts"

--the UQ Student Charter

Please ensure the "to everyone" CHAT content is accessible to everyone, and related to the course content!

Last lecture

Why data mining?

What is data mining?

What can data mining do?

Who are using data mining?

Lecture 2: Association Rule Mining

Market basket analysis

- Which items are frequently purchased together by customers?
- ➤ If customers buy { }, what else will they often buy? How often?

Given

- A database of transactions
- Each transaction is a list of items

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

Find

- Frequent items purchased together
- A rule that buying some items will lead to the buying of some other

ISBN-13: 978-9380931913 ISBN-10: 9780123814791 Why is ISBN important? *

> Have one to sell? Sell on Amazon

Add to List

Book annotation not available for this title. Title: Data MiningAuthor: Han, Jiawei/ Kamber, Micheline/ Pei, JianPublisher: Elsevier Science LtdPublication Date: 2011/06/22Number of Pages: 703Binding Type: HARDCOVERLibrary of Congress: 2011010635

More Buying Choices

5 New from \$72.47 5 Used from \$66.80

Customers who viewed this item also viewed

Storytelling with Data: A Data Visualization Guide for Business Professionals > Cole Nussbaumer...

★★★★☆ 832

#1 Best Seller (in Information Management

Paperback 46 offers from \$17.00

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:... Aurélien Géron

★★★★ 511

#1 Best Seller (in Artificial

Intelligence Paperback \$44.99

The Visual Display of Quantitative Information > Edward R. Tufte

★★★★☆ 376 Hardcover \$37.85

Data Science from Scratch: First Principles with Python

Joel Grus

食食食食食 111 Paperback \$42.96

Deep Learning (Adaptive Computation and Machine Learning series)

) Ian Goodfellow

★★★☆☆ 789 Hardcover \$48.00

Customers who bought this item also bought

Project Jupyter

Software company

jupyter.org

Project Jupyter is a nonprofit organization created to "develop opensource software, open-standards, and services for interactive computing across dozens of programming languages". Spun-off from IPython in 2014 by Fernando Pérez, Project Jupyter supports execution environments in several dozen languages. Wikipedia

Founded: February 2015

Formation: February 2015; 5 years ago

Purpose: To support interactive data science and scientific

computing across all programming languages.

Founders: Fernando Pérez, Brian Granger

Type of business: Non-profit organisation

Profiles

Twitter

Facebook

People also search for

View 15+ more

edX

freeCode...

Girls Who Code

Apache Software Foundation

What else?

Traffic accident data

```
{Accident form=Collision with moving vehicles, Season=Summer, Hour=Deep night} => {Accident type=Fatal accident} 
{Accident form=Collision with moving vehicles, Hour=Deep night} => {Accident type=Fatal accident} 
{Week=Workday, Season=Summer, Hour=Deep night} => {Accident type=Fatal accident} 
{Season=Summer, Hour=Deep night} => {Accident type=Fatal accident} 
{Week=Workday, Hour=Deep night} => {Accident type=Fatal accident} 
{Week=Workday, Season=Summer, Hour=Deep night} => {Accident form=Collision with moving vehicles} 
{Hour=Deep night} => {Accident type=Fatal accident}
```

Qiu-ru Cai. Cause Analysis of Traffic Accidents on Urban Roads Based on an Improved Association Rule Mining Algorithm. IEEE Access 8: 75607-75615 (2020).

Medical data

Rule	Rule content		Confidence
r_1	$(disease = meningitis) \rightarrow (tissue = brain)$		1
r_2	$(tissue = brain) \rightarrow (disease = meningitis)$		1
r_3	$(disease = liver\ cancer) \rightarrow (tissue = liver)$	2	1
r_4	$(sex = male) \land (disease = meningitis) \rightarrow (tissue = brain)$	2	1
r_5	$(sex = male) \land (tissue = brain) \rightarrow (disease = meningitis)$	2	1
r_6	$(sex = female) \rightarrow (tissue = brain)$	1	1
r_7	$(sex = female) \rightarrow (disease = meningitis)$	1	1
r_8	$(disease = cirrhosis) \rightarrow (tissue = liver)$	1	1
r_9	$(sex = male) \land (disease = liver cancer) \rightarrow (tissue = liver)$	1	1
r_{10}	$(sex = male) \land (tissue = liver) \rightarrow (disease = liver cancer)$	1	1
r_{11}	$(sex = female) \land (disease = meningitis) \rightarrow (tissue = brain)$	1	1
r_{12}	$(sex = female) \land (tissue = brain) \rightarrow (disease = meningitis)$	1	1
r_{13}	$(tissue = brain) \rightarrow (sex = male)$	2	2 / 3 = 0.67
r_{14}	$(sex = male) \rightarrow (tissue = brain)$	2	2 / 3 = 0.67
r_{15}	$(disease = meningitis) \rightarrow (sex = male)$	2	2 / 3 = 0.67
r_{16}	$(sex = male) \rightarrow (disease = meningitis)$	2	2 / 3 = 0.67
r ₁₇	$(tissue = liver) \rightarrow (disease = liver cancer)$	2	2 / 3 = 0.67
r_{18}	$(tissue = brain) \rightarrow (disease = meningitis)$	2	2 / 3 = 0.67

https://pubmed.ncbi.nlm.nih.gov/31210270/

Others

Text

Bioinformatics

•

COVID-19 e-print

Important: e-prints posted on arXiv are not peer-reviewed by arXiv; they should not be relied upon without context to guid consulting multiple experts in the field.

[Submitted on 6 Apr 2020]

Discovering associations in COVID-19 related research papers

Iztok Fister Jr., Karin Fister, Iztok Fister

A COVID-19 pandemic has already proven itself to be a global challenge. It proves how vulnerable humanity can be. It has also with this, our study analyses the abstracts of papers related to COVID-19 and coronavirus-related-research using association ru method, called information cartography, was applied for extracting structured knowledge from a huge amount of association rule situations throughout history.

Association rule mining to identify transcription factor interactions in genomic regions

Gaia Ceddia ™, Liuba Nausicaa Martino, Alice Parodi, Piercesare Secchi, Stefano Campaner, Marco Masseroli

Bioinformatics, Volume 36, Issue 4, 15 February 2020, Pages 1007–1013, https://doi.org/10.1093/bioinformatics/btz687

Published: 03 September 2019 Article history ▼

Given

- A database of lists
- Each list is a list of items

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

Find

- -Frequent items appeared together in one list
- A rule that some items appearing will lead to the appearing of some others

Given

- A database of transactions
- Each transaction is a list of items

Find

- Frequent items purchased together
- A rule that buying some items will lead to the buying of others

Itemset

- Itemset
 - –A set of items
 - A subset of all items

- *k*-itemset
 - —An itemset containing k items

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

Measurement on itemset: support

- Support count supp_cout(A) = #A
 - How many transactions contain the itemset?
 - For {Diapers, Beer}: 3
 - For {Diapers, Beer, Milk}: 2
- Support rate supp_rate(A) = #A/# Transaction
 - —The rate of transactions contain the itemset
 - For {Diapers, Beer}: 3/5 = 0.6 = 60%
 - For {Diapers, Beer, Milk}: 2/5 = 0.4 = 40%

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer , Eggs}
3	{Milk, Diapers, Beer , Cola}
4	{Bread, Milk, Diapers, Beer }
5	{Bread, Milk, Diapers, Cola}

Frequent itemset: itemset with support larger than the specified *minimum support threshold*.

I see frequently turtle, ibis, duck and hen but not koala

Do you see:

ibis frequently?

turtle and duck frequently?

turtle, ibis and hen frequently?

duck and koala frequently?

Frequent:

A: {turtle, ibis, duck, hen}
Infrequent
B: {koala}

Frequent: $\{ibis\} \subset A$

Frequent: $\{turtle, duck\} \subset A$

Frequent: $\{turtle, ibis, hen\} \subset A$

Infrequent: $B \subset \{duck, koala\}$

Properties of frequent itemset

The Apriori Principle

If an itemset is frequent, then all of its subsets must also be frequent.

If {turtle, ibis, duck, hen} is frequent, then {ibis}, {turtle, duck}, {turtle, ibis, hen} are also frequent.

If an itemset if not frequent, then all its supersets are not frequent either.

If {koala} is not frequent, then {duck, koala} is not frequent.

If the itemset {item1, item2, ..., item100} is a frequent itemset, how many frequent itemsets does it contain?

$$2^{100} - 1 \approx 1.27 \times 10^{30}$$

If we put them in excel files, and store the files in 1T hard disk, the height of all disks should be $\mathbf{10}^{13}$ km.

1 light year = 9.46×10^{12} km

Compact representation for frequent itemset

Maximal frequent itemset (max-itemset)

A frequent itemset is maximal if none of its supersets is frequent.

Given

- A database of transactions
- Each transaction is a list of items

Find

- Frequent items purchased together
- A rule that buying some items will lead to the buying of others

Association rule

An implication of the form

$$A \Rightarrow B \text{ or } A \rightarrow B$$

- -A, B: non-empty itemset
- $-A \cap B = \emptyset$

```
\{Bread, Milk\} \Rightarrow \{Diapers\}
\{Diapers\} \Rightarrow \{Beer\}
```

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

Measurement on rules

Support

- Equals to support on itemset $A \cup B$ minimum support threshold

Confidence

-If A, what is the possibility of B?

$$\operatorname{conf}(A \Rightarrow B) = \frac{\#\{A,B\}}{\#\{A\}}$$

$$-\{Bread, Milk\} \Rightarrow \{Beer\}: 1/3 = 0.333 = 33.3\%$$

minimum confidence threshold

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers , <u>Beer</u> , Eggs}
3	{Milk, Diapers , <u>Beer</u> , Cola}
4	{Bread, Milk, Diapers , <u>Beer</u> }
5	{Bread, Milk, Diapers , Cola}

$$A \Rightarrow B$$

Activity: calculate the support and confidence

https://docs.google.com/spreadsheets/d/1Bcdr6FftEdo3UhwytRB9B3V2YDgRPWoG0uN2707OuF0/edit?usp=sharing

Strong association rule

- User-specified threshold
 - minimum supportMIN SUP
 - minimum confidenceMIN CONF

Rules that satisfy both MIN_SUP and MIN_CONF are called strong rules.

Question: true/false

If MIN_SUPP represents the minimum value threshold for support rate, then MIN_CONF needs to be larger than MIN_SUPP to make the MIN_CONF meaningful?

$$\operatorname{conf}(A \Rightarrow B) = \frac{\#\{A, B\}}{\#\{A\}} \ge \operatorname{supp}(A \Rightarrow B) = \frac{\#\{A, B\}}{\#T} \ge \operatorname{MIN_SUPP}$$

Association rule mining

Given a set of transactions, find all strong rules showing the association relation between items.

A naïve solution

- List all possible association rules
- Compute for each rule the

−*s*: support

-c: confidence

Keep strong rules

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

```
How many rules are there for three items? 12

How many rules are there for five items? 180

How many rules are there for six items? 602
```

How many rules are there for ditems?

$$\sum_{k=2}^{d} C_d^k (2^k - 2) = 3^d - 2^{d+1} + 1$$

news.com.au National World Lifestyle Travel Entertainment Techno

Coles stocks around 25,000 products, compared with around 2000 at discount rival Aldi. According to market research firm IRI, private label brands were a key driver of Coles growth last year, even drawing customers away from Aldi.

Observation

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

```
Example of Rules:

\{Milk, Diaper\} \Rightarrow \{Beer\} (s=0.4, c=0.67)

\{Milk, Beer\} \Rightarrow \{Diaper\} (s=0.4, c=1.0)

\{Diaper, Beer\} \Rightarrow \{Milk\} (s=0.4, c=0.67)

\{Beer\} \Rightarrow \{Milk, Diaper\} (s=0.4, c=0.67)

\{Diaper\} \Rightarrow \{Milk, Beer\} (s=0.4, c=0.5)

\{Milk\} \Rightarrow \{Diaper, Beer\} (s=0.4, c=0.5)
```

- These rules are all partitions of {Milk, Diaper, Beer}.
- They have the same support but different confidence.

Let's decouple the support and confidence requirement!

A two-step approach

- 1. Frequent Itemset Generation
 - Generate all itemsets with

support ≥ MIN_SUP

- 2. Strong rule Generation
 - Partition each frequent itemset into two parts
 - Generate rules from each partition and keep those with

confidence ≥ MIN_CONF

Step 1: frequent itemset generation

- Brute force
 - -Generate all itemsets
 - How much? $2^{d} 1$

- -For each itemset:
 - Calculate its support by scanning all data

Step 1: frequent itemset generation

- Brute force
 - -Generate all itemsets
 - How much? $2^{d} 1$

- -For each itemset:
 - Calculate its support by scanning all data

1	TID	Items
	1	{Bread, Milk}
	2	{Bread, Diapers, Beer, Eggs}
n	3	{Milk, Diapers, Beer, Cola}
	4	{Bread, Milk, Diapers, Beer}
	5	{Bread, Milk, Diapers, Cola}
•	4	$\overline{}$ m $\overline{}$

Time complexity? $O(nm2^d)$

Segment overview

\$ MILLION	FY19	FY18	CHANGE
Sales revenue	30,992.6	30,018.2	3.2%
EBIT	1,191.4	1,171.9	1.7%
EBIT margin (%)	3.8	3.9	(6bps)

The Apriori Principle for step 1

If an itemset is frequent, then all of its subsets must also be frequent.

If an itemset if not frequent, then all its supersets are not frequent either.

- F_k: frequent k-itemsets
- L_k: candidate k-itemsets
 - Algorithm
 - Let k=1
 - Generate F_1 = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - Candidate Generation: Generate L_{k+1} from F_k
 - Support Counting: Count the support of each candidate in L_{k+1}
 - Candidate Elimination: leaving only those that are frequent to F_{k+1}

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

L ₁	
1-itemset	S
Bread	4
Milk	4
Diapers	4
Beer	3
Cola	2
Eggs	1

 F_1

 F_3

3-itemset

NULL

MIN_SUP count = 3

 F_2

Generate L₂ from F₁

2-itemset
Bread, Milk
Milk, Diapers
Diapers, Beer

2-itemset	S
Bread, Milk	3
Bread, Diapers	3
Bread, Beer	2
Milk, Diapers	3
Milk, Beer	2
Diapers, Beer	3

Candidate generation

If an itemset is frequent, then all of its subsets must also be frequent.

 F_2

2-itemsetBread, Milk
Milk, Diapers
Diapers, Beer

 F_1

1-itemset
Bread
Milk
Diapers
Beer

3-itemset	s
Bread, Milk, Diapers	2
Bread, Milk, Beer	1
Beer, Milk, Diapers	2
Bread, Diapers, Beer	2

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

MIN_SUP count = 3

Candidate generation and pruning

If an itemset is frequent, then all of its subsets must also be frequent.

Pruning: check if all subsets of these 3-itemset are in F2

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

L_1	
1-itemset	S
Bread	4
Milk	4
Diapers	4
Beer	3
Cola	2
Eggs	1

 F_1

Generated L₃ from F₂

F_2	
2-itemset	2-itemset
Bread, Milk	Milk, Cola
Bread, Diapers	Diapers, Cola
Bread, Beer	Diapers, Beer
Milk, Diapers	
Milk, Beer	

Generate L₂ from F₁

2-itemset	S	2-itemset	s
Bread, Milk	3	Bread, Cola	1
Bread, Diapers	3	Milk, Cola	2
Bread, Beer	2	Diapers, Cola	2
Milk, Diapers	3	Beer, Cola	1
Milk, Beer	2	Diapers, Beer	3

 F_2

2-itemset		
Beer, Bread		
Beer, Diapers		
Beer, Milk		
Bread, Cola		
Bread, Diapers		
Bread, Milk		
Cola, Diapers		
Cola, Milk		
Diapers, Milk		

3-itemset
Beer, Bread, Cola
Beer, Bread, Diapers
Beer, Bread, Milk
Beer, Diapers, Milk
Bread, Cola, Diapers
Bread, Cola, Milk
Bread, Diapers, Milk
Cola, Diapers, Milk

Smarter way to generate L3?

3-itemset Beer, Bread, Diapers Beer, Bread, Milk Beer, Diapers, Milk Bread, Cola, Diapers Bread, Cola, Milk Bread, Diapers, Milk Cola, Diapers, Milk

Candidate generation by "join"

- Sorting the items in each frequent k-itemset
 - Lexicographic order

- If two frequent k-itemsets
 - -share the first (k-1) items
 - -different in the last item

- Concatenate the first (k-1) items and the last two items
 - A candidate (k+1)-itemset is generated.

• Illustration of a "join" operation

Frequent 6-itemset 1:

Frequent 6-itemset 2:

Join 1 and 2:

Pruning

3-itemset

Beer, Bread, Diapers

Beer, Bread, Milk

Beer, Diapers, Milk

Bread, Cola, Diapers

Bread, Cola, Milk

Bread, Diapers, Milk

Cola, Diapers, Milk

Why we only need to do the joining operation to generate L_{k+1} , instead of merging every two frequent k-itemsets in F_k ?

Hints:

- 1. Does the join operation generate duplicated candidates?
- 2. Will all frequent (k+1)-itemsets be contained within the generated L_{k+1}

Please find the answer by yourself and share/discuss on Piazza!

Summarization of Step 1

- The Apriori Algorithm
 - Let k=1
 - Generate F_1 = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - Candidate Generation: Generate L_{k+1} from by Join operation on F_k
 - Candidate Pruning: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - Support Counting: Count the support of each candidate in L_{k+1} by scanning the DB
 - Candidate Elimination: Eliminate candidates in L_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Discussion

- What are the factors impact the efficiency of Apriori algorithm?
 - -Thresholds

Number of items

Number of transactions

Each transaction length

A two-step approach

- 1. Frequent Itemset Generation
 - Generate all itemsets with

support ≥ MIN_SUP

- 2. Strong rule Generation
 - Partition each frequent itemset into two parts
 - Generate rules from each partition and keep those with

confidence ≥ MIN_CONF

Step 2: Rule generation

- Algorithm
 - For each frequent itemset
 - For each partition {part1, part2} of the frequent itemset
 - -Candidate Generation: Generate rule {part1⇒part2} and {part2 ⇒ part1}
 - —Confidence Counting: Count the confidence of the rules by conf(part1⇒part2) = support(part1, part2)/support(part1) conf(part2 ⇒ part1) = support(part1, part2)/support(part1)
 - -Candidate Elimination: leaving only those that are strong

—If {A,B,C,D} is a frequent itemset, partitions are:

{A, BCD}, {B, ACD}, {C, ABD}, {D, ABC} {AB, CD}, {AC, BD}, {AD, BC}

-candidate rules:

$$\{A \Rightarrow BCD\}, \quad \{B \Rightarrow ACD\}, \quad \{C \Rightarrow ABD\}, \quad \{D \Rightarrow ABC\}$$
 $\{BCD \Rightarrow A\}, \quad \{ACD \Rightarrow B\}, \quad \{ABD \Rightarrow C\}, \quad \{ABC \Rightarrow D\}$
 $\{AB \Rightarrow CD\}, \quad \{AC \Rightarrow BD\}, \quad \{AD \Rightarrow BC\}$
 $\{CD \Rightarrow AB\}, \quad \{BD \Rightarrow AC\}, \quad \{BC \Rightarrow AD\}$

-If |F| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

 F_3

3-itemset	S
Beer, Bread, Diapers	2
Beer, Diapers, Milk	2
Bread, Diapers, Milk	2
Cola, Diapers, Milk	2

MIN_SUP count = 2 MIN_CONF= 60%

	support	confidence
Beer→ Bread, Diapers	40%	66.7%
Bread, Diapers→ Beer	40%	66.7%
Bread→ Beer, Diapers	40%	50%
Beer, Diapers→ Bread	40%	66.7%
Diapers→ Beer, Bread	40%	50%
Beer, Bread→ Diapers	40%	100%

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

 F_3

3-itemset	S
Beer, Bread, Diapers	2
Beer, Diapers, Milk	2
Bread, Diapers, Milk	2
Cola, Diapers, Milk	2

MIN_SUP count = 2

MIN_CONF= 60%

	support	confidence
Beer→ Bread, Diapers	40%	66.7%
Bread, Diapers→ Beer	40%	66.7%
Bread→ Beer, Diapers	40%	50%
Beer, Diapers→ Bread	40%	66.7%
Diapers→ Beer, Bread	40%	50%
Beer, Bread→ Diapers	40%	100%

Summary

Association Rule Mining

- Why
 - Market basket analysis, text, bioinformatics...
- What
 - -Frequent itemset: high support
 - -Strong rule: high support and high confidence
- How
 - -The Apriori Algorithm
 - Rule generation

Recommended reading (not required)

- [Han et al., 2012]
 - -Sec. 6.1-6.2

- [Tan et al., 2019]
 - -Sec. 5.1-5.4

- [Aggarwal, 2015]
 - -Sec. 4.1-4.4

