Processamento linguagem natural

Quantum Finance

Introdução

A QuantumFinance, empresa do setor financeiro digital, recebe diariamente inúmeros chamados de clientes em seu canal de atendimento via chat, contendo dúvidas, solicitações e reclamações.

O desafio deste projeto é desenvolver um modelo de inteligência artificial capaz de classificar automaticamente o assunto dos chamados a partir do texto livre, garantindo:

- A) Direcionamento mais rápido e preciso para as áreas responsáveis
- B) Redução do tempo de resposta
- C) Maior eficiência e qualidade no atendimento ao cliente

Análise de dados

Nuvem palavras sentimentos

Machine learning

Modelo 3: LogisticRegression (TF-IDF)

Acurácia no Treino: 0.9273

Acurácia no Teste: 0.8914

Precision: 0.8915

Recall: 0.8914

F1-Score: 0.8912

Modelo machine learning

Regressão logistica

Matriz de Confusão - LogisticRegression

Matriz de confusão

Treinando LogisticRegression...

Curva ROC

Relatório de Classificação para LogisticRegression:

	precision	recall	f1-score	support
- · · · · · · · · · · · · · · · · · · ·				
Cartão de crédito / Cartão pré-pago	0.89	0.90	0.90	1252
Hipotecas / Empréstimos	0.92	0.91	0.91	962
Outros	0.89	0.81	0.85	558
Roubo / Relatório de disputa	0.86	0.87	0.87	1206
Serviços de conta bancária	0.89	0.93	0.91	1290
accuracy			0.89	5268
macro avg	0.89	0.88	0.89	5268
weighted avg	0.89	0.89	0.89	5268

Classification Report

	Model	Accuracy	Precision	Recall	F1-Score
0	Decision Tree Classifier	0.627752	0.632864	0.627752	0.625596
1	Random Forest Classifier	0.795178	0.795034	0.795178	0.793699
2	LogisticRegression	0.891420	0.891523	0.891420	0.891166
3	AdaBoostClassifier	0.799544	0.798906	0.799544	0.798664
4	XGBClassifier	0.315300	0.380641	0.315300	0.234814
5	LGBMClassifier	0.886484	0.886301	0.886484	0.886308

Resultados final melhores modelos

Transformers

Arquitetura Transformers

Transformers Modelo BERTimbau BERT

Utilizamos o modelo **BERTimbau** (versão do BERT pré-treinada para o português), aplicando tanto o **fine-tuning direto** quanto a **extração de embeddings** combinados com classificadores tradicionais de machine learning.

Matriz de Confusão - Transformers BERT Cartão de crédito / Cartão pré-pago -1052 26 38 101 35 Hipotecas / Empréstimos -35 824 41 28 34 Outros -32 423 39 44 20 Roubo / Relatório de disputa -91 32 31 977 75 Serviços de conta bancária -47 34 29 68 1112 Outros Cartão de crédito / Cartão pré-pago Hipotecas / Empréstimos Roubo / Relatório de disputa Serviços de conta bancária Previsto

Matriz de confusão

- 1000

- 800

- 600

- 400

- 200

Curva ROC

==== Resultados modelo Transformers (BERTimbau) ====

	precision	recall	f1-score	support
Cartão de crédito / Cartão pré-pago	0.84	0.84	0.84	1252
Hipotecas / Empréstimos	0.86	0.86	0.86	962
Outros	0.75	0.76	0.76	558
Roubo / Relatório de disputa	0.82	0.81	0.81	1206
Serviços de conta bancária	0.86	0.86	0.86	1290
accuracy			0.83	5268
macro avg	0.82	0.83	0.83	5268
weighted avg	0.83	0.83	0.83	5268

Conclusão

O modelo Logistic Regression foi o melhor para este problema, com métricas mais consistentes e performance superior ao BERT.

TF-IDF com seleção ótima de features se mostrou fundamental para maximizar desempenho em modelos clássicos.

Transformers trouxeram bons resultados, mas não superaram os métodos tradicionais neste caso.

A análise de texto confirmou os principais pontos de dor dos clientes: segurança, cobranças indevidas e falhas no atendimento.

A combinação entre análise exploratória (nuvem de palavras + sentimentos) e preditiva (modelos ML/NLP) trouxe visão abrangente para suporte à tomada de decisão.

Machine Learning NLP

https://github.com/RafaelGallo/FIAP NLP Quantum Finance