University of Cape Town ~~ Department of Computer Science Computer Science 1015F ~~ 2015

Class Test 3

** Solutions **

Question		1	2	3	4	5	6	7	8
Max		10	9	6	10	15			
Marks	0 1 2 3 4 5 6 7 8 9								
Marker									

Question 1 – Arrays and Dictionaries [30]

Examine the Q1.py module listed at the end of the test and answer the following questions.

(a) From this module, give an example of a variable that contains:

(b) Assume that this module has been imported into the Python3 interpreter. For each of the function calls below, write down the value returned, or indicate if an error occurs.

i.	vals.index(2)	[1]	vi. len(someData)	[1]
	0		4	
ii.	CourseMarks.keys()	[1]	vii.len(someData[1])	[1]
	['MAM1000W', 'AST1000F',		2	
iii.	'CSC1015F', 'BIO1004F'] CourseMarks['AST1000F']	[1]	viii.len(CourseMarks)	[1]
			4	
	[88, 78, 67, 85]			
iv.	CourseMarks[50]	[1]	<pre>ix. loc2D(someData,2)</pre>	[2]
			[1, 1]	
	Error			
v.	len(vals)	[1]	x. loc2D(someData,20)	[2]
			[0, 1]	
	3			

i. loc2D(someData, 25)

[2]

U)	Describe briefly, and in clear English, what the function puzzle (keys, data) does.	[3]
	This function returns a dictionary[1], where the keys are the items in the list val [1] and the values for each key are the number of times that value occurs in the 2D arra someData [1]	ay
:)	Write down the value returned by the function call:	
	puzzle(vals, someData)	[2]
	{2: 1, 100: 1, 10: 3}	-
d)	Write the code for a new function in the Q 1 module. This function in the American supplied the specified cutoff are replaced with the cutoff value. The example (in the Python3 interpreter): >>>Threshold([[100,4],[20,500]], 30)	tw
	[[30, 4], [20, 30]]	
	Complete the code below:	[8]
	Threshold(arr2D,cutoff):	_
		_
		_
		_
		_
		_
		<u> </u>

```
def Threshold(arr2D,cutoff):
    for i in range(len(arr2D)): #2
        for j in range(len(arr2D[i])): #2
        if arr2D[i][j]>cutoff: #2
        arr2D[i][j]=cutoff #1
    return arr2D #1
```

Question 2 -	- Recursion	[20]
--------------	-------------	------

	Examine the Python3 Q2.py module listed at the end of the test and answer the followestions.	lowing
(d)	What is the base case of the recursive function MystRec(n)?	[1]
(e)	What is the recursive step of the recursive function MystRec(n)?	[1]
(a)	Describe briefly, and in clear English, what the recursive function MystRec(n) does.	[2]
(b)	Write down the exact output of the Q2.py module if the user runs the module.	[8]
		_
	Explain clearly what happens, and why it happens, when a user types the following code Python3 interpreter:	in the
	>>>import Q2 >>>Q2.MystRec(-2)	[2]

(d) Now write the code for a recursive function FiboRec(n) that returns the nth Fibonacci number. This function must be recursive - no marks will be given for an iterative (nonrecursive) solution. For numbers less than or equal to zero, your function should return the value 0. For example,

```
>>>FiboRec(0)
      >>>FiboRec(1)
      >>>FiboRec(2)
      >>>FiboRec(3)
      >>>FiboRec(4)
Complete the code below:
                                                                          [6]
def FiboRec(n):
def FiboRec(n):
  if n \le 0:
    return 0 #1 mark
  if n==1 or n==2: #2 marks - if statement must not have 'if n==1 or 2'!
    return 1 # 1 amrk
  return FiboRec(n-1)+FiboRec(n-2) # 2 marks
```

Code examples for the test – you may detach this sheet.

```
Question 1
# Module Q1.py
someData=[[10,20,30],[1,2],[10,20,40,50],[10,100]]
vals=[2,10,100]
CourseMarks=\{'CSC1015F': [50,78,34,50],
              'MAM1000W': [35,55,67,90],
              'AST1000F': [88,78,67,85],
             'BIO1004F': [67,68,60,65]}
def loc2D(arr2D, key):
    for i in range(len(arr2D)):
        for j in range(len(arr2D[i])):
            if arr2D[i][j] == key:
                return [i,j]
    return []
def puzzle(keys, data):
    count={}
    for a in keys:
        count[a]=0
        for row in data:
            for i in row:
                if i==a:
                    count[a]=count[a]+1
    return count
               Question 2
# Module Q2.py
def MystRec(n):
    if n==0:
        return 1
    else:
        return MystRec(n-1)*2
w=MystRec(3)
x=MystRec(0)
y=MystRec(8)
z=MystRec(MystRec(2))
print(w)
print(x)
print(y)
print(z)
```