

WELCOME!

Please sign in here: https://tinyurl.com/y7yh9lx4

Regularization

BOSTON UNIVERSITY
MACHINE INTELLIGENCE
COMMUNITY

Chloe Kaubisch, Justin Chen Oct. 10, 2017

Review

- Recall neural networks: layers of nodes capable of modeling high-dimensional data
- We use a cost function to compute our error, and gradient descent to update our weights accordingly
- "Deep" neural networks simply consist of more hidden layers

Overview:

- New Concepts:
 - Generalization
 - Data & Complexity
 - Bias & Variance
- Regularization
 - Weight Decay
 - Early Stopping
 - Dropout Layer
 - Dataset Augmentation

Generalization: the goal of machine learning

- **GENERALIZATION:** the ability of an algorithm to perform well on data it was not trained on
- Key Questions:
 - When and why does an algorithm fail to generalize?
 - O How can this be addressed?

Dataset

Trained learning algorithm

Approximate function to generalize to new data

Dataset

Split - percentages depend on available data

Dataset Bias

Google Photos, y'all up. My friend's not a gorilla.

Src: @jackyalcine //

https://www.dailymail.co.uk/sciencetech/article-3145887/Google-apologises-Photos-app-tags-black-people-gorillas-Fault-image-recognition-software-mislabelled-picture.html

Bias and Variance

- Bias: How far are your results from the true values, e.g. how inaccurate?
 - Can indicate a lack of complexity in your model
- Variance: How dissimilar are your results from each other, e.g. how inconsistent?
 - Spread of your results across a given area
 - Can indicate excessive complexity in your model

Bias & Variance Tradeoff

- Bias and variance are opposite problems that both lead to a failure to generalize
- Must minimize total error
- However, bias causes a model to underfit and variance causes a model to overfit - the difficulty is striking a balance

What is underfitting and overfitting?

 Underfitting and overfitting occur when an algorithm learns but fails to generalize.

Underfitting

- High bias and low variance
- Low training and testing accuracy
- Underrepresentation of the complexity of the dataset
- Algorithm has not actually modeled the data

Overfitting

- High variance and low bias
- High training accuracy
 - But only because the model has memorized the data
- Low **testing** accuracy
- Memorization: fitting the training set perfectly or near-perfectly and failing to generalize

Regularization

"any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error."

Geoffrey Hinton, Yoshua Bengio, and Aaron Courville

- Weight Decay
- Early Stopping
- Dropout Layer
- Dataset Augmentation

Weight Decay

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \frac{RegTerm}{}$$

- Adds a regularization term to your original cost function
- $J'(\theta)$ is the updated cost function
 - Now, you're trying to minimize both the error and the complexity
- Puts a constraint on the size of the weights by **penalizing** weights that get too large
- If your weights are too large, even a small change to your input will have a huge result

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Weight Decay: L1 ("lasso")

- LASSO = Least Absolute Shrinkage and Selection Operator
- Sum of the absolute values of the weights
- **Sparsifies** weight matrices
 - o Some weights become zero
- "Built-in feature selection"
 - What happens when some weights become zero?

$$J'(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda L I_{Term}$$

$$L1_{Norm} = \|\theta\|_1 = \sum_i |\theta_i|$$

Weight Decay: L2 ("ridge")

- $L2_{Reg} = \|\theta\|_2^2 = \sum_{i} \theta_i^2$
- Known as "ridge" or "Tikhonov" regression
- Sum of the square of the weights
- Drives weights closer to origins, but does **not** sparsify

$$J'(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda L2_{Term}$$

Weight Decay: L1 vs L2 gradients

- The derivative of L1 is a constant k
 - The value of **k** is independent of the value of θ_i
- The derivative of L2 is 2*weight

L1:
$$\sum_i |\theta_i|$$
 Gradient: $\theta:=\theta-\frac{\partial}{\partial \theta}(J(x,y;\theta)+\lambda||\theta||_1)$

L2:
$$\sum_{i} \theta_i^2$$
 Gradient: $\theta := \theta - \frac{\partial}{\partial \theta} (J(x,y;\theta) + \frac{\lambda}{2} \|\theta\|_2^2)$

Weight Decay: L1 vs L2

- L1 reduces all weights evenly, while
 L2 will penalize larger weights more
 than smaller ones
- L2 is computationally easier to implement than L1, so it's more commonly used

$$L1_{Norm} = \|\theta\|_1 = \sum_{i} |\theta_i|$$

_1

$$L2_{Reg} = \|\theta\|_2^2 = \sum_i \theta_i^2$$

L2

Regularization Parameter $J(\theta; X, y) = J(\theta; X, y) + \lambda L_{Reg}$

$$J(\theta; X, y) = J(\theta; X, y) + \lambda L_{Reg}^{2}$$

- Regulates how much regularization we apply to our model
- How do you pick an appropriate regularization parameter?
- Too large:
 - High bias
 - Will penalize the parameters too much, and you will end up underfitting
- Too small:
 - High variance
 - Will not penalize the parameters enough, and you will overfit anyways

Early Stopping

- Plot validation error alongside your training error
- When validation error starts to increase, simply stop training
- Not this simple in practice, use stopping criteria
 - o a threshold of error increase
 - a threshold over a period of epochs

Dropout

- Concept: randomly remove units from your neural network
- Intuition:
 - Forces the network to encode the same amount of information into less nodes
- Addresses coadaptation: the tendency of nodes to change to "fix the mistakes" of other nodes

(b) After applying dropout.

Dropout Implementation: "Inverted Dropout"

- Set probability **p** of dropping a node for each layer
- 2. For a given layer **L**, create a vector **d** of randomly set elements to either 1 or 0, in accordance with your probability **p**
- 3. Multiply the activations of **L** by **d**, effectively reducing **p** (percentage) of node values to zero
- 4. Scale up by dividing remaining elements by keep probability (1 **p**) to maintain expected output value

$$L = [(w_0)/0.8, 0, (w_3)/0.8, (w_4)/0.8]$$

$$p = 0.4$$

$$L = [w_0, w_1, w_2, w_3, w_4]$$

$$d = [1, 0, 0, 1, 1]$$

$$L * d^T = [w_0, 0, 0, w_3, w_4]$$

$$1 - p = 0.8$$

Dataset Augmentation

- Most straightforward way to improve a machine learning algorithm?
 - Add more data
- Create new, fake data by making small edits to your existing dataset
- For example: apply a transformation to the data
 - Rotating or scaling images
 - Changing the lighting
 - o Don't change the class, e.g. **9** -> **6**
- Not as effective as new data

Summary

Weight decay:

Penalizing weights that get too large by adding a regularization term to your cost function

• Early Stopping:

Tracking training and validation error and stopping before overfitting occurs

Dropout:

Randomly killing neurons in your neural network to prevent coadaptation

Dataset Augmentation:

Creating new data by making minor changes to pre-existing data

That's all, folks

Thanks for coming!

Resources

Papers:

- Co-adaptation: https://arxiv.org/abs/1207.0580
- Dropout: https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
- Dropout Implementation: https://www.youtube.com/watch?v=D8PJAL-MZv8
- Early stopping: http://page.mi.fu-berlin.de/prechelt/Biblio/stop-tricks1997.pdf

Other:

- Algorithmic Justice League: https://www.ajlunited.org/
- Joy Buolamwini's Ted Talk: https://www.youtube.com/watch?v=UG X 7g63rY

Feedback

https://goo.gl/forms/U9K3KdeNHatHyZEs1