# **Assignment 10**

```
In [1]:
```

```
import numpy as np
import pandas as pd
```

```
In [2]:
```

```
df = pd.read_csv("iris.csv")
df.columns = ["col1","col2","col3","col4","col5"]
```

## In [3]:

```
df.head()
```

## Out[3]:

| col5        | col4 | col3 | col2 | col1 |   |
|-------------|------|------|------|------|---|
| Iris-setosa | 0.2  | 1.4  | 3.5  | 5.1  | 0 |
| Iris-setosa | 0.2  | 1.4  | 3.0  | 4.9  | 1 |
| Iris-setosa | 0.2  | 1.3  | 3.2  | 4.7  | 2 |
| Iris-setosa | 0.2  | 1.5  | 3.1  | 4.6  | 3 |
| Iris-setosa | 0.2  | 1.4  | 3.6  | 5.0  | 4 |

## In [4]:

```
df = df.drop(0)
```

#### In [5]:

df

#### Out[5]:

|     | col1 | col2 | col3 | col4 | col5           |
|-----|------|------|------|------|----------------|
| 1   | 4.9  | 3.0  | 1.4  | 0.2  | Iris-setosa    |
| 2   | 4.7  | 3.2  | 1.3  | 0.2  | Iris-setosa    |
| 3   | 4.6  | 3.1  | 1.5  | 0.2  | Iris-setosa    |
| 4   | 5.0  | 3.6  | 1.4  | 0.2  | Iris-setosa    |
| 5   | 5.4  | 3.9  | 1.7  | 0.4  | Iris-setosa    |
|     |      |      |      |      |                |
| 145 | 6.7  | 3.0  | 5.2  | 2.3  | Iris-virginica |
| 146 | 6.3  | 2.5  | 5.0  | 1.9  | Iris-virginica |
| 147 | 6.5  | 3.0  | 5.2  | 2.0  | Iris-virginica |
| 148 | 6.2  | 3.4  | 5.4  | 2.3  | Iris-virginica |
| 149 | 5.9  | 3.0  | 5.1  | 1.8  | Iris-virginica |

149 rows × 5 columns

# In [6]:

```
column = len(list(df))
column
```

#### Out[6]:

5

## In [7]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 149 entries, 1 to 149
Data columns (total 5 columns):
    Column Non-Null Count Dtype
#
            -----
0
    col1
            149 non-null
                            float64
                            float64
 1
    col2
            149 non-null
 2
            149 non-null
                            float64
    col3
 3
    col4
            149 non-null
                            float64
    col5
            149 non-null
                            object
dtypes: float64(4), object(1)
memory usage: 7.0+ KB
```

## In [8]:

```
np.unique(df["col5"])
```

# Out[8]:

array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)

# In [9]:

```
df.describe()
```

#### Out[9]:

|       | col1       | col2       | col3       | col4       |
|-------|------------|------------|------------|------------|
| count | 149.000000 | 149.000000 | 149.000000 | 149.000000 |
| mean  | 5.848322   | 3.051007   | 3.774497   | 1.205369   |
| std   | 0.828594   | 0.433499   | 1.759651   | 0.761292   |
| min   | 4.300000   | 2.000000   | 1.000000   | 0.100000   |
| 25%   | 5.100000   | 2.800000   | 1.600000   | 0.300000   |
| 50%   | 5.800000   | 3.000000   | 4.400000   | 1.300000   |
| 75%   | 6.400000   | 3.300000   | 5.100000   | 1.800000   |
| max   | 7.900000   | 4.400000   | 6.900000   | 2.500000   |

# In [10]:

```
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
```

#### In [11]:

```
fig, axes = plt.subplots(2, 2, figsize=(16, 8))

axes[0,0].set_title("Distribution of First Column")
axes[0,0].hist(df["col1"]);

axes[0,1].set_title("Distribution of Second Column")
axes[0,1].hist(df["col2"]);

axes[1,0].set_title("Distribution of Third Column")
axes[1,0].hist(df["col3"]);

axes[1,1].set_title("Distribution of Fourth Column")
axes[1,1].hist(df["col4"]);
```



#### In [12]:

```
data_to_plot = [df["col1"],df["col2"],df["col3"],df["col4"]]
sns.set_style("whitegrid")
# Creating a figure instance
fig = plt.figure(1, figsize=(12,8))
# Creating an axes instance
ax = fig.add_subplot(111)
# Creating the boxplot
bp = ax.boxplot(data_to_plot);
```



# In [ ]: