POST-TEST

INTRODUCTION TO ECONOMETRICS 2023

FAKULTAS EKONOMI DAN BISNIS – UNIVERSITAS PADJADJARAN

TOPIK PRAKTIKUM – 8 : TIME SERIES, STATIONARITY, & AUTOCORRELATION

DATA : Real Estate Investment in Canada (canada.dta)

Nama : Hisbi Asyihristani R

NPM : 120610210018

1. Pasang Log dan buka *do file editor* dalam STATA dan input data *Real Estate Investment* (canada.dta) di Kanada!

cd "C:\Users\hisbi\iCloudDrive\Stata_Hisbi"

//Makro direktori

global data "C:\Users\hisbi\iCloudDrive\Stata_Hisbi\data"

global log "C:\Users\hisbi\iCloudDrive\Stata_Hisbi\log"

global output "C:\Users\hisbi\iCloudDrive\Stata_Hisbi\output"

// Buat log file

log using "\$log/posttestlab8"

use "\$data/canada.dta"

2. Set waktu data time series dalam bentuk tahunan!

tsset year, yearly

3. Lakukan analisis grafik untuk mengetahui stasioneritas pada variabel tingkat inflasi IHK (**inf**), variabel data inventaris (**inven**), dan variabel GDP di Kanada (**gdp**) apakah variabel-variabel tersebut mengandung trend? Gambar grafik pada lembar jawaban dan tulis analisisnya! (5%) tsline inf inven gdp

Analisis terhadap grafik

• Grafik yang ditunjukan untuk CPI Inflation rate (garis berwarna biru) menunjukkan adanya stagnasi dalam tingkat indeks harga konsumen dalam rentang waktu 1959-1995

- Sedangakan grafik inventories (merah) menujukkan adanya tren positif untuk inventories dalam rentang waktu 1959-1995
- Grafik GDP (hijau) menunjukkan adanya tren positif dalam GDP dalam rentang waktu 1959-1995
- 4. Uji Stasioneritas pada variabel **inf, inven,** dan **gdp** menggunakan ADF Test dengan tingkat signifikansi 1%! Jika belum stasioner ubah variabel tersebut menjadi turunan pertama, apakah masih tidak stasioner? (15%)

dfuller inf dfuller inven

dfuller gdp

• Tingkat signifikansi 1%

ADF test

1. Inventories

Hipotesis

Ho: Variabel Inven Tidak Stasioner (Mengandung Unit Root)

Ha: Variabel Inven Stasioner Hipotesis (Tidak Mengandung Unit Root)

Kriteria

P. Value $< \alpha$: Ho ditolak

P. Value $> \alpha$: Ho tidak dapat ditolak

Hasil

Ho tidak dapat ditolak

0.9536 > 0.01

Jadi dengan tingkat signifikansi 1% maka variabel Inven Tidak Stasioner (Mengandung Unit Root)

2. Inf CPI

Dickey-Fuller Variable: inf	r test for unit f	Number of Number of							
H0: Random walk without drift, d = 0									
		D	ickey-Fuller						
	Test	cr	itical value						
	statistic	1%	5%	10%					
	-2.027	-3.675	-2.969	-2.617					

Hipotesis

Ho: Variabel inf cpi Tidak Stasioner (Mengandung Unit Root)

Ha: Variabel inf cpi Stasioner Hipotesis (Tidak Mengandung Unit Root)

Kriteria

P. Value $< \alpha$: Ho ditolak

P. Value $> \alpha$: Ho tidak dapat ditolak

Hasil

Ho tidak dapat ditolak

0.2749 > 0.01

Jadi dengan tingkat signifikansi 1% maka variabel inf cpi Tidak Stasioner (Mengandung Unit Root)

3. GDP

Hipotesis

Ho: Variabel Inven Tidak Stasioner (Mengandung Unit Root)

Ha: Variabel Inven Stasioner Hipotesis (Tidak Mengandung Unit Root)

Kriteria

P. Value $< \alpha$: Ho ditolak

P. Value $> \alpha$: Ho tidak dapat ditolak

Hasil

Ho tidak dapat ditolak

0.9898 > 0.01

Jadi dengan tingkat signifikansi 1% maka variabel Inven Tidak Stasioner (Mengandung Unit Root)

• Turunan Pertama

1. Tingkat Inflasi CPI

Hipotesis

Ho: Variabel tingkat inflasi CPI Tidak Stasioner (Mengandung Unit Root)

Ha: Variabel tingkat inflasi CPI Stasioner Hipotesis (Tidak Mengandung Unit Root)

Kriteria

P. Value $\leq \alpha$: Ho ditolak

P. Value $> \alpha$: Ho tidak dapat ditolak

Hasil

Ho ditolak

0.0005 < 0.01

Jadi dengan tingkat signifikansi 1% maka Variabel tingkat inflasi CPI Stasioner Hipotesis (Tidak Mengandung Unit Root)

2. Inventories

Hipotesis

Ho: Variabel Inven Tidak Stasioner (Mengandung Unit Root)

Ha: Variabel Inven Stasioner Hipotesis (Tidak Mengandung Unit Root)

Kriteria

P. Value $< \alpha$: Ho ditolak

P. Value $> \alpha$: Ho tidak dapat ditolak

Hasil

H0 ditolak

0.0000 < 0.01

Jadi dengan tingkat signifikansi 1% maka variabel Inven Tidak Stasioner (Mengandung Unit Root)

3. GDP

Hipotesis

Ho: Variabel GDP Tidak Stasioner (Mengandung Unit Root)

Ha: Variabel GDP Stasioner Hipotesis (Tidak Mengandung Unit Root)

Kriteria

P. Value $< \alpha$: Ho ditolak

P. Value $> \alpha$: Ho tidak dapat ditolak

Hasil

H0 ditolak

0.0000 < 0.01

Jadi dengan tingkat signifikansi 1% maka variabel Inven Tidak Stasioner (Mengandung Unit Root)

5. Lakukan regresi yang menyatakan variabel l variabel tingkat inflasi IHK (inf) dan variabel data inventaris (inven) mempengaruhi variabel GDP di Kanada (gdp), tuliskan formal reportnya! (15%)

reg gdp inf inven

. reg gdp inf inven								
Source	SS	df	MS	Number	of obs	=	37	
				F(2,	34)	=	3352.64	
Model	67583763.8	2	33791881.9	Prob :	≻ F	=	0.0000	
Residual	342692.091	34	10079.1791	. R-squa	ared	=	0.9950	
				· Adj R	-squared	=	0.9947	
Total	67926455.9	36	1886846	Root N	4SE	=	100.4	
gdp	Coefficient	Std. err.	t	P> t	[95% con	ıf.	interval]	
inf	-37.54435	5.54872	-6.77	0.000	-48.8207	,	-26.26799	
inven	5.928149	.0736053	80.54	0.000	5.778565	;	6.077733	
_cons	-157.5617	59.28728	-2.66	0.012	-278.048	3	-37.07547	

Formal Report

$$GDPt = \beta 0 + \beta 1 inft + \beta 2 invent + Ut$$

$$GDPt = -157.5617 - 37,54435 inft + 5.928149 \beta 2 invent + Ut$$

$$Std. Error = (59.28728)(5.54872)(0.0736053)$$

$$t - ratio = (-2.66)(-6.77)(80.54)$$

$$P - Value = (0.012)(0.000)(0.000)$$

$$R2 = 0.9950$$

6. Tuliskan interpretasi untuk variabel tingkat inflasi IHK, variabel data inventaris, dan R-square! (15%)

Inflasi IHK

Memprediksi bahwa setiap peningkatan inflasi IHK sebesar 1% makan akan menurunkan GDP sebesar \$37.54435, ceteris paribus

Data Inventasis

Memprediksi bahwa setiap peningkatan data inventaris sebesar 1% maka akan meningkatkan GDP sebesar \$5.928149, ceteris paribus

R2

Model variabel independen tersebut dapat menjelaskan 99.5% sedangkan untuk 0.5% dipengaruhi oleh faktor lain diluar model

7. Apakah model tersebut terdapat masalah otokorelasi? Lakukan uji otokorelasi dengan Durbin-Watson! (10%)

estat dwatson

```
. do "C:\Users\hisbi\AppData\Local\Temp\STD3da8_000000.tmp"
. estat dwatson
Durbin-Watson d-statistic( 3, 37) = .674493
```

Nilai dwatson

df = .674493

 $\alpha = 0.05$

dU = 1.6550

dL = 1.3068

Hipotesis:

Ho: di dalam model tidak terdapat masalah autokorelasi

Ha: di dalam model terdapat masalah autokorelasi

Pengujian

d.watson < dL

0.677493 < 1.3068 autokorelasi Positif

Autokorel	Daer	Tidak	Daer	Autikorel	
asi Potisitf	ah	Terdapat	ah	asi	
	tak	Autokorel	tak	Negatif	
	tentu	asi	tentu		
0	dL = 1 3068	dII – 1 6550	4-dU = 2.345	-dI - 2 6932	

Hasil

Terdapat autokorelasi positif passa tingkat signifikansi 5%

8. Lakukanlah uji Otokorelasi dengan metode Breusch-Godfrey dengan tingkat signifikansi 5%! (10%)

estat bgodfrey

Hipotesis

Ho: di dalam model tidak terdapat masalah otokorelasi

Ha: di dalam model terdapat masalah otokorelasi

Kriteria

Nilai probabilitas $\chi^2 < \alpha$ (H0 ditolak)

Nilai probabilitas $\chi^2 > \alpha$ (H0 tidak dapat ditolak)

Hasil

 $\alpha = 0.05$

probabibilitas $\chi^2 = 0.0001$

0.0001 < 0.05

Nilai probabilitas $\chi^2 < \alpha$ (H0 ditolak)

Jadi di dalam model terdapat masalah otokorelasi pada tingkat signifikansi 5%

 Lakukanlah perbaikan jika terdapat masalah otokorelasi dengan menurunkan semua variabel ke turunan pertama. Uji kembali otokorelasi model dengan Durbin Watson dan Breusch-Godfrey! (30%)

reg d.gdp d.inf d.inven

. do "C:\Users\hisbi\AppData\Local\Temp\STD3da8_000000.tmp"								
. reg d.gdp d.inf d.inven								
Source	ss	df	MS		er of obs		36	
Model	171368.518	2	85684.2589		, 33) > > F	=		
Residual	124016.699	33	3758.08178		uared	=		
Total	295385.217	35	8439.57762		R-squared : MSE		0.5547 61.303	
D.gdp	Coefficient	Std. err.	t	P> t	[95% con	ıf.	interval]	
inf D1.	-8.443018	5.839484	-1.45	9.158	-20.32354	ļ	3.437501	
inven D1.	3.910775	.5834905	6.70	0.000	2.723655	;	5.097895	
_cons	41.18538	16.21932	2.54	0.016	8.186912	!	74.18384	

Masalah Autokorelasi estat bgodfrey

. estat bgodfrey Breusch-Godfrey LM test for autocorrelation					
lags(p)	chi2	df	Prob > chi2		
1	0.044	1	0.8330		
H0: no serial correlation					

Hipotesis

Ho: di dalam model tidak terdapat masalah otokorelasi Ha: di dalam model terdapat masalah otokorelasi

Kriteria

Nilai probabilitas $\chi^2 < \alpha$ (H0 ditolak) Nilai probabilitas $\chi^2 > \alpha$ (H0 tidak dapat ditolak)

$\begin{array}{l} Hasil \\ \alpha = 0.05 \end{array}$

probabibilitas $\chi^2 = 0.8330$

0.8330 > 0.05

Nilai probabilitas $\chi^2 < \alpha$ (H0 tidak dapat ditolak)

Jadi di dalam model tidak terdapat masalah otokorelasi (model dengan turunan pertama) pada tingkat signifikansi 5%

Estat dwatson

. do "C:\Users\hisbi\AppData\Local\Temp\STD3da8_000000.tmp"
. estat dwatson
Durbin-Watson d-statistic(3, 36) = 1.932234

Nilai dwatson

df = .1.932234

 $\alpha = 0.05$

dU = 1.6539

dL = 1.2953

Hipotesis:

Ho: di dalam model tidak terdapat masalah autokorelasi

Ha: di dalam model terdapat masalah autokorelasi

Pengujian

d.watson > dU

1.932234 > 1.6539 tidak terdapat autokorealsi

Autokorel	Daer	Tidak	Daer	Autikorel	
asi Potisitf	ah	Terdapat	ah	asi	
	tak	Autokorel	tak	Negatif	
	tentu	asi	tentu		
0	dL = 1.2953	dU = 1.6539	4-dU = 2.3461	4-dL = 2.7047	

Hasil

Tidak terdapat autokorelasi positif (model turunan pertama) passa tingkat signifikansi 5%

10. Tutup log-file (0%)

log close