k nearest neighbors

1) Given a dataset as follows:

X1	X2	Class
0.376000	0.488000	0
0.312000	0.544000	0
0.298000	0.624000	0
0.394000	0.600000	0
0.506000	0.512000	0
0.488000	0.334000	1
0.478000	0.398000	1
0.606000	0.366000	1
0.428000	0.294000	1
0.542000	0.252000	1

- Classifying the testset with 1NN, 3NN:

X1	X2	Class
0.550000	0.364000	?
0.558000	0.470000	?
0.456000	0.450000	?

0.450000	0.570000	?

- 2) Implement kNN from scratch in Python. The program requires 3 parameters:
- file name of trainset
- file name of testset
- number of nearest neighbors (k)

Dataset with m examples, n dimensions (attribute), c classes (0, 1, ..., c-1), is in the format:

The program reports the classification results (accuracy, confusion matrix) with different trials k=1, 3, etc for 5 datasets:

- Iris (.trn: trainset, .tst: testset)

- Optics (.trn: trainset, .tst: testset)

- Letter (.trn: trainset, .tst: testset)

- Leukemia (.trn: trainset, .tst: testset)

- Fp (.trn: trainset, .tst: testset)

http://www.cit.ctu.edu.vn/~dtnghi/ml/data.tar.gz

3) Proof of Cover-Hart's theorem:

For sufficiently large training set size m, the error rate of the 1NN classifier is less than twice the Bayes error rate.