Doing data analysis requires quite a bit of thinking and we believe that when you've completed a good data analysis, you've spent more time thinking than doing. The thinking begins before you even look at a dataset, and it's well worth devoting careful thought to your question. This point cannot be over-emphasized as many of the "fatal" pitfalls of a data analysis can be avoided by expending the mental energy to get your question right. In this lesson, we will discuss the types of questions that can be asked, and how to apply the iterative epicycle process to stating and refining your question so that when you start looking at data, you have a sharp, answerable question.

Types of Questions

Before we delve into stating the question, it's helpful to consider what the different types of questions are. There are six basic types of questions and much of the discussion that follows comes from a paper published in *Science* by myself and Jeff Leek. Understanding the type of question you are asking may be the most fundamental step you can take to ensure that, in the end, your interpretation of the results is correct. The six types of questions are:

- 1. Descriptive
- 2. Exploratory
- 3. Inferential
- 4. Predictive
- 5. Causal
- 6. Mechanistic

And the type of question you are asking directly informs how you interpret your results.

A **descriptive** question is one that seeks to summarize a characteristic of a set of data. Examples include determining the proportion of males, the mean number of servings of fresh fruits and vegetables per day, or the frequency of viral illnesses in a set of data collected from a group of individuals. There is no interpretation of the result itself as the result is a fact, an attribute of the set of data that you are working with.

An **exploratory** question is one in which you analyze the data to see if there are patterns, trends, or relationships between variables. These types of analyses are also called "hypothesis-generating" analyses because rather than testing a hypothesis as would be done with an inferential, causal, or mechanistic question, you are looking for patterns that would support proposing a hypothesis. If you had a general thought that diet was linked somehow to viral illnesses, you might explore this idea by examining relationships between a range of dietary factors and viral illnesses. You find in your exploratory analysis that individuals who ate a diet high in certain foods had fewer viral illnesses than those whose diet was not enriched for these foods, so you propose the hypothesis that among adults, eating at least 5 servings a day of fresh fruit and vegetables is associated with fewer viral illnesses per year.

An **inferential** question would be a restatement of this proposed hypothesis as a question and would be answered by analyzing a different set of data, which in this example, is a representative sample of adults in the US. By analyzing this different set of data you are both determining if the association you observed in your exploratory analysis holds in a different sample and whether it holds in a sample that is representative of the adult US population, which would suggest that the association is applicable to all adults in the US. In other words, you will be able to infer what is true, on average, for the adult population in the US from the analysis you perform on the representative sample.

A **predictive** question would be one where you ask what types of people will eat a diet high in fresh fruits and vegetables during the next year. In this type of question you are less interested in what causes someone to eat a certain diet, just what predicts whether someone will eat this certain diet. For example, higher income may be one of the final set of predictors, and you may not know (or even care) why people with higher incomes are more likely to eat a diet high in fresh fruits and vegetables, but what is most important is that income is a factor that predicts this behavior.

Although an inferential question might tell us that people who eat a certain type of foods tend to have fewer viral illnesses, the answer to this question does not tell us if eating these foods causes a reduction in the number of viral illnesses, which would be the case for a **causal** question. A causal question asks about whether changing one factor will change another factor, on average, in a population. Sometimes the underlying design of the data collection, by default, allows for the question that you ask to be causal. An example of this would be data collected in the context of a randomized trial, in which people were randomly assigned to eat a diet high in fresh fruits and vegetables or one that was low in fresh fruits and vegetables. In other instances, even if your data are not from a randomized trial, you can take an analytic approach designed to answer a causal question.

Finally, none of the questions described so far will lead to an answer that will tell us, if the diet does, indeed, cause a reduction in the number of viral illnesses, *how* the diet leads to a reduction in the number of viral illnesses. A question that asks how a diet high in fresh fruits and vegetables leads to a reduction in the number of viral illnesses would be a **mechanistic** question.

There are a couple of additional points about the types of questions that are important. First, by necessity, many data analyses answer multiple types of questions. For example, if a data analysis aims to answer an inferential question, descriptive and exploratory questions must also be answered during the process of answering the inferential question. To continue our example of diet and viral illnesses, you would not jump straight to a statistical model of the relationship between a diet high in fresh fruits and vegetables and the number of viral illnesses without having determined the frequency of this type of diet and viral illnesses and their relationship to one another in this sample.

A second point is that the type of question you ask is determined in part by the data available to you (unless you plan to conduct a study and collect the data needed to do the analysis). For example, you may want to ask a causal question about diet and viral illnesses to know whether eating a diet high in fresh fruits and vegetables causes a decrease in the number of viral illnesses, and the best type of data to answer this causal question is one in which people's diets change from one that is high in fresh fruits and vegetables to one that is not, or vice versa. If this type of data set does not exist, then the best you may be able to do is either apply causal analysis methods to observational data or instead answer an inferential question about diet and viral illnesses.

Note: Parts of this reading were taken from *The Art of Data Science*, by Peng & Matsui.