Question 9. We will now consider the Boston housing data set, from the ISLR2 library.

- (a) Based on this data set, provide an estimate for the population mean of medv . Call this estimate $\hat{\ }\mu.$
- (b) Provide an estimate of the standard error of $^{\uparrow}\mu$. Interpret this result. Hint: We can compute the standard error of the sample mean by dividing the sample standard deviation by the square root of the number of observations.
- (c) Now estimate the standard error of $\hat{\ }\mu$ using the bootstrap. How does this compare to your answer from (b)?
- (d) Based on your bootstrap estimate from (c), provide a 95 % confidence interval for the mean of medv . Compare it to the results obtained using t.test(Boston medv). Hint: You can approximate a 95 % confidence interval using the formula [$\hat{\mu}$ 2SE($\hat{\mu}$), $\hat{\mu}$ + 2SE($\hat{\mu}$)].
- (e) Based on this data set, provide an estimate, $\hat{\ }\mu$ med , for the median value of medv in the population.
- (f) We now would like to estimate the standard error of $\hat{\ }\mu$ med . Unfortunately, there is no simple formula for computing the standard error of the median. Instead, estimate the standard error of the median using the bootstrap. Comment on your findings.
- (g) Based on this data set, provide an estimate for the tenth percentile of medv in Boston census tracts. Call this quantity $\hat{\ }\mu$ 0.1 . (You can use the quantile() function.)
- (h) Use the bootstrap to estimate the standard error of $\hat{\ }\mu$ 0.1 . Comment on your findings.

Boston Dataset

- id Number assigned to every entry.
- · CRIM per capita crime rate by town.
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town.

- CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling.
- AGE proportion of owner-occupied units built prior to 1940.
- · DIS weighted distances to five Boston employment centres.
- RAD index of accessibility to radial highways.
- TAX full-value property-tax rate per 10,000 Dollars.
- · PTRATIO pupil-teacher ratio by town.
- LSTAT percent lower status of the population.
- MEDV Median value of owner-occupied homes in \$1000's.

1. Importing Necessary Library

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

2. Loading the Data

```
In [2]:
```

```
bostonData = pd.read_csv('boston.csv')
bostonData.head()
```

oostonbata.nead(,

Hnnamod:

Out[2]:

	0	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	Ista
0	1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	4.98
1	2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	9.14
2	3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	4.03
3	4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	2.94
4	5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	5.33
4													•

In [3]:

```
bostonData = bostonData.drop('Unnamed: 0',axis=1)
bostonData.head()
```

nox

zn indus chas

Out[3]:

crim

							•				•		
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	5.33	36.2

age

dis rad tax ptratio Istat medy

3. Shape of the Data

Shape of the data helps us understand the number of rows and number of columns present in out dataset.

In [4]:

bostonData.shape

Out[4]:

(506, 13)

4. Handling missing Values

- · Let's see if our data has any missing values.
- · If it does then we will handle it by replacing it with the appropriate value based on data

In [5]:

bostonData.isnull().sum()

Out[5]:

crim 0 zn 0 indus 0 chas 0 nox rm 0 age dis 0 rad 0 tax ptratio 0 lstat 0 medv

dtype: int64

There are no missing values in the Dataset

5. Descriptive Statistics of our Dataset

5.1 Data type of all the variables in the Dataset

```
In [6]:
bostonData.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 13 columns):
     Column
              Non-Null Count
                               Dtype
 a
     crim
              506 non-null
                               float64
 1
     7n
              506 non-null
                               float64
 2
     indus
              506 non-null
                               float64
 3
     chas
              506 non-null
                               int64
 4
     nox
              506 non-null
                               float64
 5
     rm
              506 non-null
                               float64
                               float64
 6
     age
              506 non-null
 7
              506 non-null
                               float64
     dis
```

int64

int64

float64

float64

float64

All our features are Quantitative

memory usage: 51.5 KB

506 non-null

506 non-null

506 non-null

506 non-null

ptratio 506 non-null

dtypes: float64(10), int64(3)

6. Based on this data set, provide an estimate for the population mean of medv . Call this estimate μ ^.

```
In [29]:
```

8

9

10

11

rad

tax

lstat

medv

```
mu_hat = bostonData['medv'].mean()
print("Estimate for population mean of medv is: {:.5f}".format(mu_hat))
```

Estimate for population mean of medv is: 22.53281

6.1 Provide an estimate of the standard error of μ° . Interpret this result. Hint: We can compute the standard error of the sample mean by dividing the sample standard deviation by the square root of the number of observations.

```
In [12]:
```

import math

$$StandardErrorofSample = \frac{(StandardDeviation(MEDV))}{(SquareRootofLengthofBostonData)}$$

```
In [14]:
muHat SE = (np.std(bostonData['medv'])/math.sqrt(len(bostonData)))
In [18]:
print("Estimate of Standard Error for sample mean of medv is : {:.4f}".format(muHat SE))
Estimate of Standard Error for sample mean of medv is: 0.4085
6.2 Now estimate the standard error of u using the bootstrap. How does this
compare to your answer from (b)?
6.2.1 Resampling Data
In [21]:
from sklearn.utils import resample
In [44]:
def boot(df):
    return resample(df)
sampleError = []
for i in range(1000):
   df = boot(bostonData)
    sampleError.append(df['medv'].mean())
In [49]:
boot Standard_error = np.std(sampleError)
In [50]:
boot_Standard_error
```

Out[50]:

0.39034792796686735

6.2.2 Standard Error of MEDV using BootStrap

In [51]:
print("Estimate of Standard Error of MEDV using Bootstrap Method is : {}".format(boot Standard Error of MEDV using Bootstrap Method is : {}".format(boot Standard Error of MEDV using Bootstrap Method is : {}".format(boot Standard Error of MEDV using Bootstrap Method is : {}".format(boot Standard Error of MEDV using Bootstrap Method is : {}".format(boot Standard Error of MEDV using Bootstrap Method is : {}".format(boot Standard Error of MEDV using Bootstrap Method is : {}".format(boot Standard Error of MEDV using Bootstrap Method is : {}".format(boot Standard Error of MEDV using Bootstrap Method is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Standard Error of MEDV using Bootstrap Method Is : {}".format(boot Sta

Estimate of Standard Error of MEDV using Bootstrap Method is : 0.390347927

The Standard Error of MEDV we achieved in (6.1) was 0.4085 and the Standard Error of MEDV using Bootstrap is 0.39034792796686735. We can say that there is a negligible difference between in both Standard Errors.

- 6.3 Based on your bootstrap estimate from (c) (6.2.2), provide a 95% confidence interval for the mean of medv. Compare it to the results obtained using t.test(Boston\$medv)
- 6.3.1 95 % Confidence Interval

Suppose we want to generate a 95% confidence interval estimate for an unknown population mean. This means that there is a 95% probability that the confidence interval will contain the true population mean. Thus,

P([sample mean] - margin of error $< \mu <$ [sample mean] + margin of error) = 0.95.

95% CONFIDENCE INTERVAL FOR UNKNOWN POPULATION MEAN is 22.12421 and 22.941

In [31]:

41

96686735

print("95% CONFIDENCE INTERVAL FOR UNKNOWN POPULATION MEAN is {0} and {1}".format((22.532)

- 6.3.2 T-test
- This is a test for the null hypothesis that the expected value (mean) of a sample of independent observations a is equal to the given population mean.

In [33]:

from scipy import stats

```
In [37]:
stats.ttest_1samp(bostonData['medv'],popmean=0.0)
```

```
Out[37]:
Ttest_1sampResult(statistic=55.11114583037392, pvalue=9.370623727132662e-2
16)
```

The 95 % Confidence Interval for Unknown population mean is 22.12421 and 22.94141 and the p-Value for Median value of owner-occupied homes in \$1000's(MEDV) is 9.370623727132662e-216 which makes this feature significantly associated.

6.4 Based on this data set, provide an estimate, μ med $\hat{}$, for the median value of medv in the population.

```
In [39]:
print("Estimate for population median of medv is: ",bostonData['medv'].median())
```

Estimate for population median of medv is: 21.2

6.5 We now would like to estimate the standard error of µmed[^]. Unfortunately, there is no simple formula for computing the standard error of the median. Instead, estimate the standard error of the median using the bootstrap. Comment on your findings.

```
In [52]:
```

```
sampleMedian = []
for i in range(1000):
    df = boot(bostonData)
    sampleMedian.append(df['medv'].median())
```

```
In [55]:
```

0.3874382241080502

```
print("Estimate of standard error of sample median of medv (using bootstrap) is: ",np.sto
```

Estimate of standard error of sample median of medv (using bootstrap) is:

6.6 Based on this data set, provide an estimate for the tenth percentile of medv in Boston suburbs. Call this quantity μ 0.1 $\hat{}$. (You can use the quantile() function.)

```
In [56]:
print("Estimate for the tenth percentile of medv is: " ,bostonData['medv'].quantile(q=0.
Estimate for the tenth percentile of medv is:
                                               12.75
6.7 Use the bootstrap to estimate the standard error of µ0.1<sup>^</sup>. Comment on
your findings.
In [59]:
sample percentile = []
for i in range(1000):
   df = boot(bostonData)
    sample_percentile.append(df['medv'].quantile(q=0.1))
In [60]:
print("Estimate of standard error for the tenth percentile of medv (using bootstrap) is:
Estimate of standard error for the tenth percentile of medv (using bootstr
ap) is: 0.5113456365316906
In [ ]:
In [ ]:
```