ALV System Verilog

typedef enum {ADD, MULT, SUB, XOR} opcode_t;
these are testbench outputs
module ALU(input clk, reset, input [7:0] operand, operand 2, input opcode: opcode, output [15:0] result);
always@*
case opcode
ADD; result= operand 2 MULT: SUB: XOR: endcase endmodule
interface alu_intf()
clocking cbl@(posedge clk)
input/output output operand 1/2, opcode //define w/ respect to test bench input result;
endinterface;

```
module tb;
   alu_intf my_intf
   ALU DUT (.clk(my_intf.clk), .opcode(my_intf.opcode));
   task reset()
   begin
       m_intf. cbl. rest <= 0;
      @(my_intf.chl) Esychronizes to next clock edge
       my_intf.cbl. reset <=1;
   end
                                                  one-opcode (ADD, 0, 1)
                                                           (MULT, 7, 3)
   task one-opcode (input opcode_t op, input [7:0] opl, op 2)
   begin
      my_intf.cbl.op <= op/
      my_intf.cbl.operand/2=opli
     my_intf.cb 2. operand 2 <= op 2;
     @ my_intf.cbl
   end
   task n-opcode (int n);
   Degin
      for (i=0; i<n; i++)
         ove-obcode ( wy
   endtack
```

initial begin

reset ();

-> 10

n = opcode(10)

-> 10

interfaces = synthesizable

50C

