NAIL062 P&P Logic: Worksheet 1 – Intro to propositional logic

Teaching goals: The student is able to

- understand the notions of propositional logic syntax (language, atomic proposition, proposition, tree of a proposition, subproposition, theory), formally define them and give examples
- understand the notions of model, consequence of a theory, formally define them and give examples
- formalize a given system (word/computational problem, etc.) in propositional logic
- find models of a given theory
- decide whether a given proposition is a consequence of a given theory
- has experience applying (with instructor assistance) the tableau method and resolution method to prove properties of a given system (e.g., to solve a word problem)

IN-CLASS PROBLEMS

Problem 1. Ztratili jsme se v labyrintu a ped námi jsou troje dvee: ervené, modré, a zelené. Víme, e za práv jednmi dvemi je cesta ven, za ostatními je drak. Na dveích jsou nápisy:

- ervené dvee: "Cesta ven je za tmito dvemi."
- Modré dvee: "Cesta ven není za tmito dvemi."
- Zelené dvee: "Cesta ven není za modrými dvemi."

Víme, e alespo jeden z nápis je pravdivý a alespo jeden je livý. Kudy vede cesta ven?

- (a) Zvolte vhodný jazyk (mnoinu prvovýrok) P.
- (b) Formalizujte vechny znalosti jako teorii T v jazyce \mathbb{P} . (Pozor: Axiomy nejsou nápisy na dveích, ty nemusí být pravdivé.)
- (c) Najdte vechny modely teorie T.
- (d) Formalizujte tvrzení "Cesta ven je za ervenými/modrými/zelenými dvemi" jako výroky $\varphi_1, \varphi_2, \varphi_3$ nad \mathbb{P} . Je nkterý z tchto výrok dsledkem T?
- (e) Vyzkouejte si pouití tablo metody: Zkonstruujte tablo z teorie T s polokou $F\varphi_i$ v koeni, budou vechny vtve sporné? (Pokuste se vymyslet správné kroky konstrukce tabla, inspirujte se píkladem z pednáky.)
- (f) Vyzkouejte si pouití rezoluní metody: Pevete axiomy teorie T, a také výrok $\neg \varphi_i$, do konjunktivní normální formy (CNF). Pokuste se sestrojit rezoluní zamítnutí, zakreslete ho ve form rezoluního stromu. (Pozor: Nezapomete znegovat dokazovaný výrok φ_i .)

Problem 2. Uvame *vrcholové pokrytí* (vertex cover) následujícího grafu:

Chceme pro dané k > 0 zjistit, zda má tento graf nejvýe k-prvkové vrcholové pokrytí.

- (a) Zvolte vhodný jazyk (mnoinu prvovýrok) P.
- (b) Formalizujte ve výrokové logice problém, zda graf na obrázku má nejvýe k-prvkové vr-cholové pokrytí, pro pevn zvolené k. Ozname výslednou teorii jako VC_k .
- (c) Ukate, e VC_2 nemá ádné modely, tj. graf nemá 2-prvkové vrcholové pokrytí.
- (d) Umli byste k tomu vyuít tablo metodu? Rozmyslete si postup.

- (e) Umli byste k tomu vyuít rezoluní metodu? Rozmyslete si postup.
- (f) Najdte vechna 3-prvková vrcholová pokrytí.

EXTRA PRACTICE

Problem 3. Uvame následující tvrzení:

- (i) Ten, kdo je dobrý bec a má dobrou kondici, ubhne maraton.
- (ii) Ten, kdo nemá tstí a nemá dobrou kondici, neubhne maraton.
- (iii) Ten, kdo ubhne maraton, je dobrý bec.
- (iv) Budu-li mít tstí, ubhnu maraton.
- (v) Mám dobrou kondici.

Podobn jako v prvním píkladu popite situaci pomocí výrokové logiky:

- (a) Formalizujte tato tvrzení jako teorii T nad vhodnou mnoinou prvovýrok.
- (b) Najdte vechny modely teorie T.
- (c) Pokuste se vyuít k hledání model také tablo metodu.
- (d) Napite nkolik rzných dsledk teorie T.
- (e) Najdte CNF teorii ekvivalentní teorii T.

Problem 4. Mjme ti bratry, kadý z nich bu vdy íká pravdu anebo vdy le.

- (i) Nejstarí íká: "Oba mí brati jsou lhái."
- (ii) Prostední íká: "Nejmladí je lhá."
- (iii) Nejmladí íká: "Nejstarí je lhá."

Pomocí výrokové logiky ukate, e nejmladí bratr je pravdomluvný.

Problem 5. Mjme pevn dané Sudoku. Popite, jak vytvoit teorii (ve výrokové logice), její modely jednoznan odpovídají validním eením.

Problem 6. Formalizujte následující tvrzení ve výrokové logice:

- (a) Králíci v oblasti nebyli pozorováni a procházení po cest je bezpené, ale borvky podél cesty jsou zralé.
- (b) Pokud jsou borvky podél cesty zralé, pak je procházení po cest bezpené pouze tehdy, pokud králíci nebyli v oblasti pozorováni.
- (c) Procházet se podél cesty není bezpené, ale v oblasti nebyli pozorováni králíci a borvky podél cesty jsou zralé.
- (d) Aby bylo procházení po cest bezpené, je nezbytné, ale nedostaující, aby borvky podél cesty nebyly zralé a králíci nebyli v oblasti pozorováni.
- (e) Procházení po cest není bezpené, kdykoli jsou borvky podél cesty jsou zralé a v oblasti byli pozorováni králíci.

Problem 7. Formalizujte následující vlastnosti matematických objekt ve výrokové logice:

- (a) Pro pevn daný (konený) graf G, e má perfektní párování.
- (b) Pro pevn danou ásten uspoádanou mnoinu, e je totáln (lineárn) uspoádaná.
- (c) Pro pevn danou ásten uspoádanou mnoinu, e má nejmení prvek.

Problem 8. Pro následující výroky nakreslete strom výroku, a najdte mnoinu model:

(a)
$$(p \to q) \leftrightarrow \neg (p \land \neg q)$$
 (b) $(p \leftrightarrow q) \leftrightarrow ((p \lor q) \to (p \land q))$

K zamylení

Problem 9. Pipomete si definici stromu výroku.

- (a) Dokate podrobn, e kadý výrok má jednoznan urený strom.
- (b) Platilo by to, i kdybychom v definici výroku nahradili symboly '(', ')' symbolem '|'?
- (c) Co by se stalo, pokud bychom závorky vbec nepsali?