Lab3_Group2_Final

November 6, 2020

```
[1]: # Import related libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
plt.style.use('ggplot')
pd.set_option('display.max_rows', 100)
pd.set_option('display.max_columns', 50)
import warnings
warnings.filterwarnings("ignore")
```

0.1 Data Review

```
[436]: # Import the dataset

df = pd.read_csv('C:/Users/AS/Downloads/data/US_Accidents_June20.csv')
```

0.2 Data Visualization

top 20 accident durations correspond to 81.8% of the data

From the above curve we can see that most of the accidents take less than an hours time to get resolved. But more than 12% of the accidents are taking 360 minutes to resolve.

```
[13]: # create df for state accidents
import plotly.graph_objects as go
state_count_acc = pd.value_counts(df['State'])

fig = go.Figure(data = go.Choropleth(
    locations = state_count_acc.index,
    z = state_count_acc.values.astype(float),
    locationmode = 'USA-states',
    colorscale = 'Reds',
```

```
colorbar_title = "Count Accidents",
))

fig.update_layout(
   title_text = '2016 - 2020 US Traffic Accident Dataset by State',
   geo_scope='usa',
)
fig.show()

# Acceident in different states
fig,ax = plt.subplots(1, 2, figsize = (15, 8))
```

```
[14]: # Acceident in different states
      clr = ("blue", "forestgreen", "gold", "red", __
       →"purple",'cadetblue','hotpink','orange','darksalmon','brown')
      df.State.value_counts().sort_values(ascending = False)[:15].sort_values().
      \rightarrowplot(kind = 'barh', ax = ax[0], color = clr)
      ax[0].set_title("Top 15 Accident Prone States", size = 20)
      ax[0].set_xlabel('States total count', size = 18)
      count = df['State'].value_counts()
      groups = list(df['State'].value_counts().index)[:15]
      counts = list(count[:15])
      counts.append(count.agg(sum) - count[:15].agg(sum))
      groups.append('Other')
      type_dict = pd.DataFrame({"group": groups, "counts": counts})
      qx = type_dict.plot(kind = 'pie', y = 'counts', labels = groups, autopct = '%1.
      →1f%%',
                          pctdistance = 0.9, radius = 1.2, ax = ax[1])
      plt.legend(loc = 0, bbox_to_anchor = (1.15, 0.4))
      plt.subplots_adjust(wspace = 0.5, hspace = 0)
      plt.ioff()
      plt.ylabel('')
```

[14]: Text(0, 0.5, '')

We can see that more accidents are happening in state of California(CA), Texas(TX) and Florida(FL)

```
[15]: # Severity accidents
      df_sever = df.sample(n=10000)
      fig = go.Figure(
          data = go.Scattergeo(
              locationmode = 'USA-states',
              lon = df_sever['Start_Lng'],
              lat = df_sever['Start_Lat'],
              text = df_sever['City'],
              mode = 'markers',
              marker = dict(
                  size = 8,
                  opacity = 0.5,
                  reversescale = False,
                  autocolorscale = False,
                  symbol = 'circle',
                  line = dict(
                      width = 1,
                      color = 'rgba(102, 102, 102)'),
                  colorscale = 'Reds',
                  color = df_sever['Severity'],
                  colorbar_title = "Severity"
              )
```

```
fig.update_layout(
    title = 'Severity of accidents',
    geo = dict(
        scope='usa',
        projection_type='albers usa',
        showland = True,
        landcolor = "rgb(250, 250, 250)",
        subunitcolor = "rgb(217, 217, 217)",
        countrycolor = "rgb(217, 217, 217)",
        countrywidth = 0.7,
        subunitwidth = 0.7
    ),
    )
fig.show()
```



```
[17]: # Weather confition for the accidents
fig,ax = plt.subplots(1, 2, figsize = (15, 8))
```

```
clr = ("blue", "forestgreen", "gold", "red", __
 →"purple",'cadetblue','hotpink','orange','darksalmon','brown')
df.Weather_Condition.value_counts().sort_values(ascending = False)[:10].
→sort values().plot(
    kind = 'barh', ax = ax[0], color = clr)
ax[0].set_title("Top 10 Accident Weather Condition", size = 20)
ax[0].set_xlabel('Weather Condition total count', size = 18)
count = df['Weather_Condition'].value_counts()
groups = list(df['Weather_Condition'].value_counts().index)[:10]
counts = list(count[:10])
counts.append(count.agg(sum) - count[:10].agg(sum))
groups.append('Other')
type_dict = pd.DataFrame({"group": groups, "counts": counts})
qx = type_dict.plot(kind = 'pie', y = 'counts', labels = groups, autopct = '%1.
→1f%%',
                    pctdistance = 0.9, radius = 1.2, ax = ax[1])
plt.legend(loc = 0, bbox_to_anchor = (1.15, 0.4))
plt.subplots_adjust(wspace = 0.5, hspace = 0)
plt.ioff()
plt.ylabel('')
```

[17]: Text(0, 0.5, '')

Most accidents occure when the weather is clear. Maybe people drive faster and inattention when the weather is clear, and more carefully when the weather is bad.

```
[18]: # Where are Accidents occuring
bool_cols = [col for col in df.columns if df[col].dtype == np.dtype('bool')] #

→ find the bool type columns
```

```
booldf = df[bool_cols]
more_than_one = booldf[booldf.sum(axis = 1) > 1] # find combination with more_

$\top than 1 fact$

print('There are {} more than one fact metadata rows, which are {:.1f}% of the_

$\top data'.format(

len(more_than_one), 100*len(more_than_one)/len(df)

))
```

There are 284711 more than one fact metadata rows, which are 8.1% of the data

```
606
Bump
Crossing
                   274526
Give_Way
                     9564
Junction
                   284449
No_Exit
                     4384
Railway
                    31175
Roundabout
                      184
Station
                    70321
                    51976
Stop
Traffic_Calming
                     1401
Traffic_Signal
                   623623
Turning_Loop
                        0
dtype: int64
```

```
[20]: plt.figure(figsize=(9,8))
   plt.style.use('fivethirtyeight')
   bools.plot.pie(autopct='%1.1f%%', shadow = True)
   plt.ylabel('')
   plt.title('Proximity to Traffic Object')
```

[20]: Text(0.5, 1.0, 'Proximity to Traffic Object')

Proximity to Traffic Object

We can see that more accidents are happening near traffic signal, junction, and crossings

```
[21]: # Extract year, month, day, hour and weekday
    df['Year'] = df['Start_Time'].dt.year
    df['Month'] = df['Start_Time'].dt.month
    df['Day'] = df['Start_Time'].dt.day
    df['Hour'] = df['Start_Time'].dt.hour
    df['Weekday'] = df['Start_Time'].dt.strftime('%a')
[22]: plt.figure(figsize = (20, 10))
    sns.countplot(x = "Year", hue = "Severity", data = df)
```

[22]: <AxesSubplot:xlabel='Year', ylabel='count'>


```
[23]: plt.figure(figsize = (20, 10))
sns.countplot(x = "Month", hue = "Severity", data = df)
```

[23]: <AxesSubplot:xlabel='Month', ylabel='count'>


```
[24]: plt.figure(figsize=(20, 10))
sns.countplot(x = "Day", hue = "Severity", data = df)
```

[24]: <AxesSubplot:xlabel='Day', ylabel='count'>


```
[25]: plt.figure(figsize=(20, 10))
sns.countplot(x = "Weekday", hue = "Severity", data = df)
```

[25]: <AxesSubplot:xlabel='Weekday', ylabel='count'>


```
[26]: plt.figure(figsize=(20, 10))
sns.countplot(x = "Hour", hue = "Severity", data = df)
```

[26]: <AxesSubplot:xlabel='Hour', ylabel='count'>

0.3 Data Clearning

```
[28]: # copy the dataframe before start cleaning the data df_tmp = df.copy()
```

Clean the outliers of the time duration

```
[29]: # Check if there is any negative time_duration values
df_tmp.loc[df_tmp['diff']/np.timedelta64(1, 'm') <= 0]

# Drop the rows with above
df_tmp['diff'] = df_tmp['diff']/np.timedelta64(1, 'm')
df_tmp = df_tmp[df_tmp['diff'] > 0]
```

```
[29]:
                       ID
                             Source
                                                               Start_Time
                                       TMC
                                            Severity
      69719
                 A-69721
                          MapQuest
                                     201.0
                                                    3 2016-11-06 01:38:13
      69720
                           MapQuest
                                     241.0
                                                    2 2016-11-06 01:38:45
                 A-69722
                                     201.0
      69721
                 A-69723
                           MapQuest
                                                    3 2016-11-06 01:35:47
      69722
                 A-69724
                           MapQuest
                                     201.0
                                                    2 2016-11-06 01:32:24
                          MapQuest
                                     201.0
                                                    2 2016-11-06 01:33:05
      69723
                 A-69725
      309387
                A-309390
                          MapQuest
                                     201.0
                                                    2 2016-11-06 01:51:04
      309388
                A-309391
                          MapQuest
                                     201.0
                                                    2 2016-11-06 01:51:49
      860988
                A-861014 MapQuest
                                     201.0
                                                    2 2019-11-03 01:25:16
      861024
                A-861050
                          MapQuest
                                     201.0
                                                    2 2019-11-03 01:47:49
      861041
                A-861067
                          MapQuest
                                     201.0
                                                    2 2019-11-03 01:34:54
      861475
                A-861501
                           MapQuest
                                     201.0
                                                    3 2019-11-03 01:20:44
      861494
                A-861520
                          MapQuest
                                     201.0
                                                    3 2019-11-03 01:44:47
                          MapQuest
      861495
                A-861521
                                     201.0
                                                    2 2019-11-03 01:43:50
```

```
1497823 A-1497855
                    MapQuest
                              201.0
                                             3 2018-11-04 01:30:41
                               201.0
1497824 A-1497856
                    MapQuest
                                             3 2018-11-04 01:40:28
2234574
       A-2234614
                    MapQuest
                               201.0
                                             2 2017-11-05 01:56:55
2234659 A-2234699
                    MapQuest
                               241.0
                                             3 2017-11-05 01:32:24
                    MapQuest
                              201.0
                                             2 2017-11-05 01:55:55
2234660 A-2234700
3104499
        A-3104659
                                 NaN
                                             2 2019-11-03 01:57:00
                        Bing
                                             2 2019-11-03 01:13:00
3104975 A-3105135
                        Bing
                                 NaN
3104978 A-3105138
                        Bing
                                 NaN
                                             2 2019-11-03 01:22:00
3232740 A-3232900
                        Bing
                                             2 2018-11-04 01:51:53
                                 NaN
                                                        End_Lat
                   End Time
                              Start Lat
                                          Start Lng
                                                                    End Lng \
69719
        2016-11-06 01:37:57
                              34.032963 -118.435738
                                                            NaN
                                                                        NaN
69720
        2016-11-06 01:38:23
                              34.053040 -118.228264
                                                            NaN
                                                                        NaN
69721
        2016-11-06 01:35:31
                              33.804443 -118.207527
                                                            NaN
                                                                        NaN
69722
        2016-11-06 01:31:50
                             34.134960 -117.597748
                                                            NaN
                                                                        NaN
69723
        2016-11-06 01:32:33
                             34.070320 -117.208679
                                                            NaN
                                                                        NaN
309387
        2016-11-06 01:20:49
                             47.608002 -122.296280
                                                                        NaN
                                                            NaN
        2016-11-06 01:21:35
                                                                        NaN
309388
                             47.530354 -122.270004
                                                            NaN
860988
        2019-11-03 01:12:56
                             42.793083 -78.818367
                                                            NaN
                                                                        NaN
861024
        2019-11-03 01:17:08
                             43.091412
                                                                        NaN
                                        -75.747284
                                                            NaN
861041
        2019-11-03 01:34:31
                              41.043110 -73.835861
                                                            NaN
                                                                        NaN
        2019-11-03 01:06:33
                             45.635433 -122.663467
                                                                        NaN
861475
                                                            NaN
861494
        2019-11-03 01:44:26
                             37.561687 -122.036362
                                                            NaN
                                                                        NaN
        2019-11-03 01:13:31
                                                                        NaN
861495
                              37.730671 -121.747063
                                                            NaN
1497823 2018-11-04 01:00:17
                              34.172119 -118.467529
                                                                        NaN
                                                            NaN
1497824 2018-11-04 01:09:39
                              34.067585 -117.201378
                                                            NaN
                                                                        NaN
2234574 2017-11-05 01:26:32
                             47.121880 -122.434883
                                                            NaN
                                                                        NaN
2234659 2017-11-05 01:02:02
                                                                        NaN
                             34.045719 -117.310364
                                                            NaN
2234660 2017-11-05 01:25:05
                              33.923199 -117.857597
                                                            NaN
                                                                        NaN
3104499 2019-11-03 01:22:55
                             43.024010 -71.195290
                                                     43.024880
                                                                 -71.190330
3104975 2019-11-03 01:05:47
                              34.041208 -118.064316
                                                     34.041208 -118.064316
3104978 2019-11-03 01:14:47
                              36.326633 -119.279029
                                                     36.326633 -119.279029
3232740 2018-11-04 01:21:22
                             40.705504 -111.888270
                                                     40.703211 -111.888260
         Distance(mi)
                                                               Description \
69719
                0.010
                        Accident on I-10 Eastbound at Exits 3A 3B I-405.
69720
                0.010 Lane blocked due to accident on US-101 Northbo...
                0.010
                       Accident on I-710 Northbound at Exits 3A 3B Wi...
69721
69722
                1.230
                       How lane blocked due to accident on CA-210 Eas...
                0.010
                                   Accident on Lugonia Ave at Alabama St.
69723
                0.010
                       Accident on Martin Luther King Jr Way at Cherr...
309387
309388
                0.010
                                  Accident on Rainier Ave at Elmgrove St.
                6.210
                       Accident on I-90 Eastbound from Exit 57 NY-75 ...
860988
861024
                0.000
                       Accident on I-90 Eastbound at Exit 34 NY-13 Pe...
                0.000
                       Accident on I-87 Northbound at Exit 7A Saw Mil...
861041
                0.000
                       Center lane closed due to accident on I-5 Nort...
861475
                0.000
861494
                               Accident on I-880 Northbound at Decoto Rd.
```

861495 1497823 1497824 2234574 2234659 2234660 3104499 3104975 3104978 3232740		0.000 #1 0.000 Rig	lane bloc lane bloc ght lane b e lane blo Ac At	ked d ked d locke cked ciden Old	due to a due to a due to due to t on La Manches CA-19/	ccident on ccident on o accident accident on mbert Rd at ter Rd/Exit Rosemead Bl	at Dagnino Rd I-405 North I-210 Eastb on WA-7 Pac I-215 Sout Sunflower St 4 - Accident vd - Accident ay - Accident lanes blocked	
	Numbe	r	Street	Side		City	Coun	ty \
69719	Na	N San Die	ego Fwy S	R	L	os Angeles	Los Angel	es
69720	Na	N	US-101 N	R	L	os Angeles	Los Angel	es
69721	Na	N W	Willow St	R		Long Beach	Los Angel	es
69722	Na		CA-210 E	R	Rancho	Cucamonga	San Bernardi	
69723	1298.		labama St	L		Redlands	San Bernardi	no
309387	2733.		Cherry St	R		Seattle	Ki	_
309388	8099.		ier Ave S	R		Seattle		ng
860988	Nal		I-90 W	R		Buffalo	Er	
861024	Na.		I-90 E	R		Canastota	Madis	
861041	Nal		I-87 N	R		Irvington	Westchest	
861475	1814.		eserve St	L		Vancouver	Cla	
861494	Nal		I-880 N	R		Newark	Alame	
861495 1497823	4357.		aymond Rd bank Blvd	R R		Livermore	Alame	
1497824	987.		nessee St	n R		Van Nuys Redlands	Los Angel San Bernardi	
2234574	100.		49th St S	L		Tacoma	Pier	
2234659	Na.		I-215 S	R		Colton	San Bernardi	
2234660	292.		flower St	R		Brea	Oran	
3104499	Na.		nester Rd	R		Raymond	Rockingh	_
3104975	Na		nead Blvd	R	Sout	h El Monte	Los Angel	
3104978	Na		CA-198 E	R		Visalia	Tula	
3232740	Na	N S	State St	R	Salt	Lake City	Salt La	
						·		
	State	-	Country			Airport_Cod		
69719	CA	90064	US	•	acific	KSM		
69720	CA	90033	US		acific	KCC		
69721	CA	90810	US		acific	KLG		
69722	CA	91737	US		acific	KON		
69723	CA	92374-2814	US		acific	KSE		
309387	AW	98122-4935	US		acific	KBF		
309388	WA	98118-4444	US		acific	KBF		
860988	NY	14219	US		astern	KBU		
861024	NY	13032	US		Castern	KSY		
861041 861475	NY	10533	US		Castern	KHP		
861475	WA	98663-3362	US	09/P	acific	KVU	U	

861494	CA	94560	US	US/Pacific	c	KPAO		
861495	CA	94551-9776	US	US/Pacific	c	KLVK		
1497823	CA	91411	US	US/Pacific	c	KVNY		
1497824	CA	92374	US	US/Pacific	3	KSBD		
2234574	WA	98444	US	US/Pacific	c	KTCM		
2234659	CA	92324	US	US/Pacific	C	KSBD		
2234660	CA	92821-4725	US	US/Pacific	C	KFUL		
3104499	NH	03077	US	US/Easter	n	KMHT		
3104975	CA	91733	US	US/Pacific	3	KEMT		
3104978	CA	93292	US	US/Pacific	3	KVIS		
3232740	UT	84115	US	US/Mountain	ı	KSLC		
		ther_Timestamp	_	erature(F)	Wind_Chil		\	
69719		11-06 01:51:00		57.0			••	
69720		11-06 01:47:00		59.0			••	
69721		11-06 01:34:00		59.0			••	
69722		11-06 01:53:00		55.9			••	
69723		11-06 01:38:00		57.2			••	
309387		11-06 01:53:00		50.0			•••	
309388		11-06 01:53:00		50.0			••	
860988		11-03 01:54:00		34.0		27.0 .	•••	
861024		11-03 01:54:00		39.0		34.0 .	••	
861041		11-03 01:56:00		40.0		37.0 .	••	
861475	2019-	11-03 00:53:00		42.0		42.0 .	••	
861494	2019-	11-03 06:47:00		39.0		39.0 .	••	
861495	2019-	11-03 01:53:00		41.0		41.0 .	••	
1497823	2018-	11-04 01:51:00		63.0		NaN .	••	
1497824	2018-	11-04 01:42:00		59.5		NaN .	••	
2234574	2017-	11-05 01:58:00		39.9		NaN .	••	
2234659	2017-	11-05 01:39:00		59.7		NaN .	••	
2234660	2017-	11-05 01:53:00		62.1		NaN .	••	
3104499	2019-	11-03 01:53:00		32.0		32.0 .	••	
3104975	2019-	11-03 00:53:00		55.0		55.0 .	••	
3104978	2019-	11-03 00:56:00		45.0		45.0 .	••	
3232740	2018-	11-04 01:54:00		39.0		32.3 .		
	Droci	pitation(in)	Montho	r Condition	Amonitu	Dumn	Crossing	. \
60710	Preci	Pitation(in) NaN	weathe	r_Condition Clear	Amenity False	Bump False	Crossing False	
69719				Clear				
69720		NaN	Мо		False	False	False False	
69721		NaN	MO	stly Cloudy	False	False		
69722		NaN NaN		Clear	False	False False	False	
69723		NaN O OO		Clear	False		False	
309387		0.09		Light Rain	True	False	True	
309388		0.09	M -	Light Rain	True	False	True	
860988		0.00		stly Cloudy	False	False	False	
861024		0.00	Pa	rtly Cloudy	False	False	False	
861041		0.00		Fair	False	False	False	

861475		0.00		Fair	False	False	False	
861494		NaN		Fair	False	False	False	
861495		0.00		Fair	False	False	False	
1497823		NaN		Clear		False	False	
1497824		NaN		Clear	False	False	False	
2234574		0.00		Overcast	False		False	
2234659								
2234660		NaN NaN		Overcast			False	
				Overcast	False		False	
3104499		0.00		Fair	False		False	
3104975		0.00		Fair	False		False	
3104978		0.00	a	Fair	False	False	False	
3232740		NaN	Scatter	ed Clouds	False	False	True	
	Give_Way	Junction	No_Exit	Railway	Roundabout	Station	Stop	\
69719	False	False	False	False	False	e False	False	
69720	False	False	False	False	False	e False	False	
69721	False	True	False	False	False	e False	False	
69722	False	False	False	False	False	e False	False	
69723	False	False	False	False	False	e False	False	
309387	False	False		False	False		False	
309388	False	False	False	False	False			
860988	False	False	False	False	False			
861024	False	False		False	False			
861041	False	False	False	False	False			
861475	False	False	False	False	False			
861494	False	False	False	False	False			
861495	False	False	False	False	False			
1497823	False	False	False	False	False			
1497824	False	False	False	False	False			
2234574	False	False	False	False	False			
2234659	False	False	False	False	False			
2234660	False	False	False	False	False			
3104499	False	False	False	False	False		False	
3104499	False	False	False	False	False		False	
	False							
3104978		True	False	False	False		False	
3232740	False	False	False	False	False	e False	True	
	Traffic_C	Calming T	raffic_Si	gnal Turi	ning_Loop	Sunrise_S	unset \	\
69719		False	F	alse	False	I	Night	
69720		False	F	alse	False	I	Night	
69721	False		False		False		Night	
69722	False			False			Night	
69723	False		True		False False		Night	
309387	False		True		False		Night	
309388		False	False		False		Night	
860988		False		alse	False		Night	
861024		False		alse	False		Night	
301021		1 0150	1	Q	1 0100	1	60	

861041	Fals	se	False		False	$ exttt{Night}$
861475	Fals	se	False		False	Night
861494	Fals	se	False		False	Night
861495	Fals		False		False	Night
1497823	Fals		True		False	
						Night
1497824	Fals		False		False	Night
2234574	Fals	se	False		False	Night
2234659	Fals	se	False		False	Night
2234660	Fals	se	True		False	Night
3104499	Fals	se	False		False	Night
3104975	Fals		False		False	Night
3104978	Fals		False		False	Night
3232740	Fals	se	False		False	Night
	Civil_Twilight	: Nautic	al_Twiligh	nt. Ast	tronomical	Twilight \
69719	Night		Nigh			Night
69720	_		_			_
	Night		Nigh			Night
69721	Night		Nigh			Night
69722	Night		Nigh			Night
69723	Night		Nigh			Night
309387	Night	;	Nigh	ıt		Night
309388	Night	;	Nigh	nt		Night
860988	Night	;	Nigh	nt		Night
861024	Night		Nigh	nt		Night
861041	Night		Nigh			Night
861475	Night		Nigh			Night
861494	Night		Nigh			Night
	_		_			_
861495	Night		Nigh			Night
1497823	Night		Nigh			Night
1497824	Night		Nigh			Night
2234574	Night	;	Nigh			Night
2234659	Night	;	Nigh	nt		Night
2234660	Night	;	Nigh	nt		Night
3104499	Night	;	Nigh	nt		Night
3104975	Night		Nigh			Night
3104978	Night		Nigh			Night
3232740	Night		Nigh			Night
0202110	wight	,	11-61	10		NIGHO
	d:	.ff Year	Month Day	7 Hour	Weekdav	
69719	-1 days +23:59		-		Sun	
	-1 days +23:59				Sun	
	-1 days +23:59				Sun	
	•					
	-1 days +23:59				Sun	
	-1 days +23:59				Sun	
	-1 days +23:29				Sun	
	-1 days +23:29				Sun	
860988	-1 days +23:47	40 2019	11 3	3 1	Sun	

```
861024 -1 days +23:29:19
                          2019
                                   11
                                        3
                                             1
                                                   Sun
861041 -1 days +23:59:37
                           2019
                                        3
                                                   Sun
                                   11
                                             1
861475 -1 days +23:45:49
                                                   Sun
                          2019
                                   11
                                        3
                                             1
861494 -1 days +23:59:39
                          2019
                                   11
                                        3
                                             1
                                                   Sun
861495 -1 days +23:29:41
                          2019
                                   11
                                        3
                                             1
                                                   Sun
1497823 -1 days +23:29:36
                          2018
                                   11
                                        4
                                             1
                                                   Sun
1497824 -1 days +23:29:11
                          2018
                                   11
                                        4
                                             1
                                                   Sun
2234574 -1 days +23:29:37
                          2017
                                   11
                                        5
                                             1
                                                   Sun
2234659 -1 days +23:29:38 2017
                                   11
                                        5
                                             1
                                                   Sun
2234660 -1 days +23:29:10 2017
                                   11
                                        5
                                             1
                                                   Sun
                                        3
                                                   Sun
3104499 -1 days +23:25:55 2019
                                   11
                                             1
3104975 -1 days +23:52:47
                          2019
                                   11
                                        3
                                             1
                                                   Sun
3104978 -1 days +23:52:47
                          2019
                                   11
                                        3
                                             1
                                                   Sun
3232740 -1 days +23:29:29 2018
                                   11
                                        4
                                             1
                                                   Sun
```

[22 rows x 55 columns]

```
[31]: # review the status of missing values for each column
num = df_tmp.isna().sum()
num
```

[31]:	ID	0
	Source	0
	TMC	1034795
	Severity	0
	Start_Time	0
	End_Time	0
	Start_Lat	0
	Start_Lng	0
	End_Lat	2478800
	End_Lng	2478800
	Distance(mi)	0
	Description	1
	Number	2262850
	Street	0
	Side	0
	City	112
	County	0
	State	0
	Zipcode	1069
	Country	0
	Timezone	3880
	Airport_Code	6758
	Weather_Timestamp	43323
	<pre>Temperature(F)</pre>	65732
	<pre>Wind_Chill(F)</pre>	1868237
	<pre>Humidity(%)</pre>	69687

```
Pressure(in)
                            55882
Visibility(mi)
                            75856
Wind_Direction
                            58874
Wind_Speed(mph)
                           454602
Precipitation(in)
                          2025863
Weather_Condition
                            76138
Amenity
                                 0
                                 0
Bump
Crossing
                                 0
Give_Way
                                 0
Junction
                                 0
No_Exit
                                 0
Railway
                                 0
Roundabout
                                 0
Station
                                 0
Stop
                                 0
Traffic_Calming
                                 0
Traffic_Signal
                                 0
Turning_Loop
                                 0
Sunrise_Sunset
                              115
Civil_Twilight
                              115
Nautical_Twilight
                              115
Astronomical_Twilight
                              115
diff
                                 0
Year
                                 0
Month
                                 0
Dav
                                 0
Hour
                                 0
Weekday
                                 0
dtype: int64
```

```
[32]: # replace na in Precipitation(in) with 0
df_tmp['Precipitation(in)'] = df_tmp['Precipitation(in)'].fillna(0)
```

Clean the outliers in 'Distance(mi)', 'Temperature(F)', 'Pressure(in)', 'Visibility(mi)', and 'Wind_Speed(mph)'

```
Distance(mi) has 37756 outliers
Temperature(F) has 13420 outliers
Pressure(in) has 84587 outliers
Visibility(mi) has 32400 outliers
Wind_Speed(mph) has 21468 outliers
Precipitation(in) has 7417 outliers
```

```
[34]: # drop the outliers
for item in outlier_list:

    median = df_tmp[item].median()
    std = df_tmp[item].std()
    df_tmp = df_tmp[(df_tmp[item] - median).abs() <= std * 3]</pre>
```

Deal with missing values

```
[37]: # Select the dataset to include only the selected features df_sel = df_tmp[feature_lst].copy()
```

```
[38]: # drop the rows with missing values

df_sel.dropna(subset = df_sel.columns[df_sel.isnull().mean()!=0], how = 'any',

→axis = 0, inplace = True)
```

```
[39]: # convert all bool columns to int type data (0,1)
df_sel[bool_cols] = df_sel[bool_cols].astype(int)
```

0.4 Select the sample data for analysing (state of interest, and the City of interest)

Due to the limitation of personal laptop, the whole US dataset is too big to handle

```
[201]: # Select the state of South Carolina, which has the most accident records
    df_state = df_sel.loc[df_sel.State == 'CA'].copy()
    df_state.drop('State', axis = 1, inplace = True)

<class 'pandas.core.frame.DataFrame'>
    Int64Index: 650415 entries, 728 to 3513616
```

Severity 650415 non-null int64

Data columns (total 33 columns):

Start_Time 650415 non-null datetime64[ns]

```
Start_Lng
                          650415 non-null float64
     Start_Lat
                          650415 non-null float64
     Distance(mi)
                          650415 non-null float64
     Side
                          650415 non-null object
                          650415 non-null object
     City
     County
                          650415 non-null object
     Timezone
                          650415 non-null object
                          650415 non-null float64
     Temperature(F)
     Humidity(%)
                          650415 non-null float64
     Pressure(in)
                          650415 non-null float64
     Visibility(mi)
                          650415 non-null float64
     Wind_Direction
                          650415 non-null object
     Wind_Speed(mph)
                          650415 non-null float64
     Precipitation(in)
                          650415 non-null float64
     Weather_Condition
                          650415 non-null object
     Amenity
                          650415 non-null int32
     Bump
                          650415 non-null int32
     Crossing
                          650415 non-null int32
     Give_Way
                          650415 non-null int32
     Junction
                          650415 non-null int32
                          650415 non-null int32
     No Exit
     Railway
                          650415 non-null int32
     Roundabout
                          650415 non-null int32
     Station
                          650415 non-null int32
                          650415 non-null int32
     Stop
                          650415 non-null int32
     Traffic_Calming
     Traffic_Signal
                          650415 non-null int32
     Turning_Loop
                          650415 non-null int32
     Sunrise_Sunset
                          650415 non-null object
     Hour
                          650415 non-null int64
     Weekday
                          650415 non-null object
     dtypes: datetime64[ns](1), float64(9), int32(13), int64(2), object(8)
     memory usage: 136.5+ MB
[42]: # Map of accidents, color code by county
      sns.scatterplot(x = 'Start_Lng', y = 'Start_Lat', data = df_state, hue = _ \( \)
      plt.show()
```



```
[202]: # find the city with most accident cases
city = df_state.City.value_counts().sort_values(ascending = False)[:10]
city
```

```
[202]: Los Angeles
                         56120
       Sacramento
                         28805
       San Diego
                         22663
       San Jose
                         17454
       Oakland
                         12811
       Riverside
                         10925
      Long Beach
                          9953
       San Francisco
                          8810
       Anaheim
                          8496
       San Bernardino
                          7701
       Name: City, dtype: int64
```

```
[44]: # Select the city with most cases for modeling
df_city = df_state.loc[df_state.City == 'Los Angeles'].copy()
df_city.drop('City', axis = 1, inplace = True)
```

[45]: df_city['Severity'].value_counts(normalize = True) * 100

```
[45]: 2 66.760513
3 32.435852
4 0.789380
1 0.014255
Name: Severity, dtype: float64
```

Which means our prediction accuracy should at least above the percentage of the highest counted one. Because if a model predicts all the case's to that severity, it will get the accuracy same as that percentage.

Deal with categorical data: pd.get_dummies()

```
[46]: # Generate dummies for categorical data

df_city.drop('Start_Time', axis = 1, inplace = True)

df_city_dummy = pd.get_dummies(df_city, drop_first = True)
```

0.5 Predict the accident severity with various supervised machine learning algorithms

Import the machine learning libraries

```
[18]: # Import LogisticRegression
from sklearn.linear_model import LogisticRegression

# Import KNeighborsClassifier from sklearn.neighbors
from sklearn.neighbors import KNeighborsClassifier

# Import DecisionTreeClassifier from sklearn.tree
from sklearn.tree import DecisionTreeClassifier

# Import RandomForestClassifier
from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.feature_selection import SelectFromModel
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_curve, auc
```

Data preparation: train_test_split

```
[48]: # Set the target for the prediction
target='Severity'

# set X and y
y = df_city_dummy[target]
X = df_city_dummy.drop(target, axis = 1)
```

```
[49]: # List of classification algorithms

algo_lst = ['Logistic Regression', 'K-Nearest Neighbors', 'Decision Trees',

→'Random Forest']

# Initialize an empty list for the accuracy for each algorithm

accuracy_lst = []
```

Algorithm A. Logistic regression

```
[50]: # Logistic regression
lr = LogisticRegression(random_state = 0)
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)

# Get the accuracy score
acc = accuracy_score(y_test, y_pred)

# Append to the accuracy list
accuracy_lst.append(acc)
print("[Logistic regression algorithm] accuracy_score: {:.3f}.".format(acc))
```

[Logistic regression algorithm] accuracy_score: 0.704.

Algorithm B. The K-Nearest Neighbors (KNN) algorithm

```
[K-Nearest Neighbors (KNN)] knn.score: 0.669. [K-Nearest Neighbors (KNN)] accuracy_score: 0.669.
```

Optmize the number of neighbors: plot the accuracy versus number of neighbors

```
[52]: # Setup arrays to store train and test accuracies
      neighbors = np.arange(1, 9)
      train_accuracy = np.empty(len(neighbors))
      test_accuracy = np.empty(len(neighbors))
      # Loop over different values of k
      for i, n_neighbor in enumerate(neighbors):
          # Setup a k-NN Classifier with n_neighbor
          knn = KNeighborsClassifier(n_neighbors = n_neighbor)
          # Fit the classifier to the training data
          knn.fit(X_train, y_train)
          #Compute accuracy on the training set
          train_accuracy[i] = knn.score(X_train, y_train)
          #Compute accuracy on the testing set
          test_accuracy[i] = knn.score(X_test, y_test)
      # Generate plot
      plt.title('k-NN: Varying Number of Neighbors')
      plt.plot(neighbors, test_accuracy, label = 'Testing Accuracy')
      plt.plot(neighbors, train_accuracy, label = 'Training Accuracy')
      plt.legend()
      plt.xlabel('Number of Neighbors')
      plt.ylabel('Accuracy')
      plt.show()
```


Algorithm C. Decision Tree

```
# Fit dt_entropy to the training set
dt_gini.fit(X_train, y_train)

# Use dt_entropy to predict test set labels
y_pred= dt_gini.predict(X_test)

# Evaluate accuracy_entropy
accuracy_gini = accuracy_score(y_test, y_pred)

# Append to the accuracy list
acc = accuracy_gini
accuracy_lst.append(acc)

# Print accuracy_gini
print('[Decision Tree -- gini] accuracy_score: {:.3f}.'.format(accuracy_gini))
```

[Decision Tree -- entropy] accuracy_score: 0.818. [Decision Tree -- gini] accuracy_score: 0.809.

Algorithm D. Random Forest

```
[54]: #Create a Gaussian Classifier
clf = RandomForestClassifier(n_estimators = 100)

#Train the model
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

# Model Accuracy, how often is the classifier correct?
print("[Random forest algorithm] accuracy_score: {:.3f}.".format(acc))
```

[Randon forest algorithm] accuracy_score: 0.809.

Find the most important features

No handles with labels found to put in legend.


```
[56]: # List top k important features
k = 20
feature_imp.sort_values(ascending = False)[:k]
```

[56]:	Start_Lng	0.155800
	Start_Lat	0.136912
	Distance(mi)	0.084278
	Pressure(in)	0.073940
	<pre>Humidity(%)</pre>	0.066338
	Temperature(F)	0.061989
	Hour	0.059239
	Wind_Speed(mph)	0.055023
	Side_R	0.030569
	Traffic_Signal	0.027936
	Weather_Condition_Fair	0.022207
	Visibility(mi)	0.017734
	Weather_Condition_Clear	0.016928
	Junction	0.012951
	Sunrise_Sunset_Night	0.011065
	Weekday_Sat	0.009557
	Weekday_Wed	0.008803
	Weekday_Sun	0.008688
	Weekday_Tue	0.008631
	Weekday_Thu	0.008388
	dtype: float64	

```
[57]: # Create a selector object that will use the random forest classifier tou
       →identify features which importance > 0.04
      sfm = SelectFromModel(clf, threshold = 0.04)
      # Train the selector
      sfm.fit(X_train, y_train)
      feat_labels = X.columns
      # Print the names of the most important features
      for feature_list_index in sfm.get_support(indices = True):
          print(feat_labels[feature_list_index])
     Start Lng
     Start Lat
     Distance(mi)
     Temperature(F)
     Humidity(%)
     Pressure(in)
     Wind_Speed(mph)
     Hour
[58]: # Transform the data to create a new dataset containing only the most important
      \rightarrow features
      X_important_train = sfm.transform(X_train)
      X_important_test = sfm.transform(X_test)
      # Create a new random forest classifier for the most important features
      clf_important = RandomForestClassifier(n_estimators = 500, random_state = 0,__
      \rightarrown_jobs = -1)
      # Train the new classifier on the new dataset containing the most important
       \rightarrow features
      clf_important.fit(X_important_train, y_train)
[58]: RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
                             criterion='gini', max_depth=None, max_features='auto',
                             max_leaf_nodes=None, max_samples=None,
                             min_impurity_decrease=0.0, min_impurity_split=None,
                             min_samples_leaf=1, min_samples_split=2,
                             min_weight_fraction_leaf=0.0, n_estimators=500,
                             n_jobs=-1, oob_score=False, random_state=0, verbose=0,
                             warm start=False)
[59]: # Apply The Full Featured Classifier To The Test Data
      y_pred = clf.predict(X_test)
```

```
# View The Accuracy Of Our Full Feature Model
print('[Randon forest algorithm -- Full feature] accuracy_score: {:.3f}.'.

-- format(accuracy_score(y_test, y_pred)))

# Apply The Full Featured Classifier To The Test Data
y_important_pred = clf_important.predict(X_important_test)

# View The Accuracy Of Our Limited Feature Model
print('[Randon forest algorithm -- Limited feature] accuracy_score: {:.3f}.'.

-- format(accuracy_score(y_test, y_important_pred)))

# Get the accuracy score
acc = accuracy_score(y_test, y_important_pred)

# Append to the accuracy list
accuracy_lst.append(acc)
```

[Randon forest algorithm -- Full feature] accuracy_score: 0.832. [Randon forest algorithm -- Limited feature] accuracy_score: 0.844.

Accuracy Score VS. Algorithm

```
[60]: # Generate a list of ticks for y-axis
      y_ticks = np.arange(len(algo_lst))
      # Combine the list of algorithms and list of accuracy scores into a dataframe, __
      ⇒sort the value based on accuracy score
      df_acc = pd.DataFrame(list(zip(algo_lst, accuracy_lst)), columns = u
       →['Algorithm', 'Accuracy Score']).sort_values(by = ['Accuracy Score'], |
       →ascending = True)
      # Make a plot
      ax = df_acc.plot.barh('Algorithm', 'Accuracy_Score', align = 'center', legend = __
       \hookrightarrowFalse, color = '0.5')
      # Add the data label on to the plot
      for i in ax.patches:
          # get_width pulls left or right; get_y pushes up or down
          ax.text(i.get_width() + 0.02, i.get_y() + 0.2, str(round(i.get_width(),_u
      \rightarrow2)), fontsize = 10)
      # Set the limit, lables, ticks and title
      plt.xlim(0, 1.1)
      plt.xlabel('Accuracy Score')
      plt.yticks(y_ticks, df_acc['Algorithm'], rotation = 0)
      plt.title('[CA - Los Angeles] Algorithm Accuracy Comparison')
      plt.show()
```


0.6 Time Series Forecasting For Road Accidents in one specific State

Auto Regressive Integrated Moving Average (ARIMA) model

```
[]: # save the cleaned dataframe to a csv file # df_sel.to_csv('C:/Users/AS/Downloads/data/US_Accidents_forecast.csv', index = False, index_label = None)
```

```
[2]: import datetime from pylab import rcParams import statsmodels.api as sm warnings.filterwarnings("ignore")
```

```
[3]: # Import the cleaned dataset

df_forecast = pd.read_csv('C:/Users/AS/Downloads/data/US_Accidents_forecast.

→csv')
```

```
[65]: # Select the dataset to include only the selected features
df_forecast = df_forecast[feature_lst_2].copy()
df_forecast['Count'] = 1
```

```
[66]: df_forecast.Timestamp = pd.to_datetime(df_forecast.Start_Time, format='\%Y-\%m-\%d_\)
        →%H:%M:%S')
[67]: df_forecast['Start_Time_date'] = pd.DatetimeIndex(df_forecast.Timestamp).date
[424]: # Check out the Data for a specific State
       df_fc_spe = df_forecast.loc[df_forecast.State == 'CA'].copy()
       df fc spe.head()
[424]:
                         Start_Time Severity
                                                 Start_Lng Start_Lat Distance(mi)
                                             2 -121.364571
       24179
                2016-03-22 17:44:13
                                                             38.713371
                                                                               0.010
                2016-03-22 23:57:48
                                             3 -122.065567
       24187
                                                             37.980061
                                                                               0.010
       1963359 2016-03-22 20:07:32
                                             3 -122.307987
                                                             37.881943
                                                                               0.276
       24177
                2016-03-22 21:44:11
                                             2 -121.415352
                                                            38.608391
                                                                               0.010
       24180
                2016-03-22 21:05:57
                                             3 -121.273888 38.739998
                                                                               0.010
                          Temperature(F) Humidity(%) Pressure(in) Visibility(mi)
               Side State
                  L
                       CA
                                      60.8
                                                   42.0
                                                                 30.21
                                                                                   9.0
       24179
                  R
                       CA
                                      52.0
                                                   71.0
                                                                 30.23
       24187
                                                                                   10.0
                       CA
                                                   64.0
                                                                 30.24
                                                                                   10.0
       1963359
                  R
                                      57.0
       24177
                  L
                       CA
                                      51.8
                                                   67.0
                                                                 30.26
                                                                                   10.0
       24180
                  R
                       CA
                                      53.6
                                                   58.0
                                                                 30.25
                                                                                   10.0
                Wind_Speed(mph) Weather_Condition Traffic_Signal Hour Weekday \
       24179
                            6.9
                                             Clear
                                                                       17
                                                                              Tue
                                                                  1
       24187
                            4.6
                                             Clear
                                                                  0
                                                                       23
                                                                              Tue
                                     Partly Cloudy
                                                                  0
                                                                       20
                                                                              Tue
       1963359
                            8.1
                            3.5
                                                                       21
       24177
                                             Clear
                                                                  0
                                                                              Tue
       24180
                            4.6
                                             Clear
                                                                  0
                                                                       21
                                                                              Tue
                Count Start_Time_date
                    1
                           2016-03-22
       24179
       24187
                    1
                           2016-03-22
       1963359
                    1
                           2016-03-22
       24177
                    1
                            2016-03-22
       24180
                    1
                           2016-03-22
[425]: # Set the Date for index
       df_fc_spe['Start_Time_date'] = pd.to_datetime(df_fc_spe.Start_Time_date,__
       \rightarrowformat='%Y-%m-%d')
       acc_spec = df_fc_spe.set_index('Start_Time_date')
       acc_spec.index
[425]: DatetimeIndex(['2016-03-22', '2016-03-22', '2016-03-22', '2016-03-22',
                      '2016-03-22', '2016-03-22', '2016-03-22', '2016-03-22',
                      '2016-03-22', '2016-03-22',
```

```
[426]: y_spec = acc_spec['Count'].resample('M').sum()
```

```
[429]: rn_spec = np.where(y_spec.index == '2019-12-31')
n = int(rn_spec[0]) + 1
```

```
[428]: y_spec.plot(figsize=(16, 8))
plt.show()
```



```
[431]: # Parameter combinations for seasonal ARIMA

p = d = q = range(0, 2)

pdq = list(itertools.product(p, d, q))

seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, u → q))]

[377]: # use a "grid search" to find the optimal set of parameters that yields the u
```

ARIMA(0, 0, 0) \times (0, 0, 12)12 - AIC:979.4273732610349 ARIMA(0, 0, 0) \times (0, 0, 1, 12)12 - AIC:1365.5727695260152

```
ARIMA(0, 0, 0)x(0, 1, 0, 12)12 - AIC:682.9871031272089
ARIMA(0, 0, 0)x(0, 1, 1, 12)12 - AIC:444.90524281681127
ARIMA(0, 0, 0)x(1, 0, 0, 12)12 - AIC:704.7926489651738
ARIMA(0, 0, 0)x(1, 0, 1, 12)12 - AIC:1367.6904076447106
ARIMA(0, 0, 0)x(1, 1, 0, 12)12 - AIC:465.68332435176467
ARIMA(0, 0, 0)x(1, 1, 1, 12)12 - AIC:441.4333327812981
ARIMA(0, 0, 1)x(0, 0, 0, 12)12 - AIC:932.3783544649402
ARIMA(0, 0, 1)x(0, 0, 1, 12)12 - AIC:3827.6458355236273
ARIMA(0, 0, 1)x(0, 1, 0, 12)12 - AIC:652.407333493177
ARIMA(0, 0, 1)x(0, 1, 1, 12)12 - AIC:417.5398967809095
ARIMA(0, 0, 1)x(1, 0, 0, 12)12 - AIC:689.5481512815007
ARIMA(0, 0, 1)x(1, 0, 1, 12)12 - AIC:3539.145187675308
ARIMA(0, 0, 1)x(1, 1, 0, 12)12 - AIC:457.1584276451849
ARIMA(0, 0, 1)x(1, 1, 1, 12)12 - AIC:419.5377203858947
ARIMA(0, 1, 0)x(0, 0, 0, 12)12 - AIC:860.0212165535962
ARIMA(0, 1, 0)x(0, 0, 1, 12)12 - AIC:1270.5687945583882
ARIMA(0, 1, 0)x(0, 1, 0, 12)12 - AIC:638.343520325064
ARIMA(0, 1, 0)x(0, 1, 1, 12)12 - AIC:407.5406891181471
ARIMA(0, 1, 0)x(1, 0, 0, 12)12 - AIC:656.210477028506
ARIMA(0, 1, 0)x(1, 0, 1, 12)12 - AIC:2592.591597535879
ARIMA(0, 1, 0)x(1, 1, 0, 12)12 - AIC:429.77661205234267
ARIMA(0, 1, 0)x(1, 1, 1, 12)12 - AIC:409.5387164511369
ARIMA(0, 1, 1)x(0, 0, 0, 12)12 - AIC:840.4172836581823
ARIMA(0, 1, 1)x(0, 0, 1, 12)12 - AIC:1917.5529223847786
ARIMA(0, 1, 1)x(0, 1, 0, 12)12 - AIC:619.2495225942914
ARIMA(0, 1, 1)x(0, 1, 1, 12)12 - AIC:389.0842501019831
ARIMA(0, 1, 1)x(1, 0, 0, 12)12 - AIC:655.7845552605228
ARIMA(0, 1, 1)x(1, 0, 1, 12)12 - AIC:2229.715907705357
ARIMA(0, 1, 1)x(1, 1, 0, 12)12 - AIC:430.83264782526476
ARIMA(0, 1, 1)x(1, 1, 1, 12)12 - AIC:391.049872313511
ARIMA(1, 0, 0)x(0, 0, 12)12 - AIC:883.9365734612862
ARIMA(1, 0, 0)x(0, 0, 1, 12)12 - AIC:1350.5858050295553
ARIMA(1, 0, 0)x(0, 1, 0, 12)12 - AIC:660.6059843033833
ARIMA(1, 0, 0)x(0, 1, 1, 12)12 - AIC:430.2954819256927
ARIMA(1, 0, 0)x(1, 0, 0, 12)12 - AIC:658.9721670266343
ARIMA(1, 0, 0)x(1, 0, 1, 12)12 - AIC:1272.9991202806227
ARIMA(1, 0, 0)x(1, 1, 0, 12)12 - AIC:431.65554610591494
ARIMA(1, 0, 0)x(1, 1, 1, 12)12 - AIC:432.26992262252986
ARIMA(1, 0, 1)x(0, 0, 0, 12)12 - AIC:860.428458650118
ARIMA(1, 0, 1)x(0, 0, 1, 12)12 - AIC:2527.3390123920244
ARIMA(1, 0, 1)x(0, 1, 0, 12)12 - AIC:640.7844354895325
ARIMA(1, 0, 1)x(0, 1, 1, 12)12 - AIC:410.3836700770396
ARIMA(1, 0, 1)x(1, 0, 0, 12)12 - AIC:657.391037822451
ARIMA(1, 0, 1)x(1, 0, 1, 12)12 - AIC:2174.5041500376456
ARIMA(1, 0, 1)x(1, 1, 0, 12)12 - AIC:432.1122224108316
ARIMA(1, 0, 1)x(1, 1, 1, 12)12 - AIC:412.35436834060863
ARIMA(1, 1, 0)x(0, 0, 12)12 - AIC:860.3735153475362
ARIMA(1, 1, 0)x(0, 0, 1, 12)12 - AIC:1223.4131490049356
```

```
ARIMA(1, 1, 0)x(0, 1, 0, 12)12 - AIC:639.3328810285408
      ARIMA(1, 1, 0)x(0, 1, 1, 12)12 - AIC:409.07014219093503
      ARIMA(1, 1, 0)x(1, 0, 0, 12)12 - AIC:638.0779716301504
      ARIMA(1, 1, 0)x(1, 0, 1, 12)12 - AIC:1397.672987947693
      ARIMA(1, 1, 0)x(1, 1, 0, 12)12 - AIC:410.9547653529601
      ARIMA(1, 1, 0)x(1, 1, 1, 12)12 - AIC:411.0406967981893
      ARIMA(1, 1, 1)x(0, 0, 0, 12)12 - AIC:842.2046376842674
      ARIMA(1, 1, 1)x(0, 0, 1, 12)12 - AIC:2330.4988152647543
      ARIMA(1, 1, 1)x(0, 1, 0, 12)12 - AIC:621.1713196424049
      ARIMA(1, 1, 1)x(0, 1, 1, 12)12 - AIC:390.7933422057563
      ARIMA(1, 1, 1)x(1, 0, 0, 12)12 - AIC:639.3544155894712
      ARIMA(1, 1, 1)x(1, 0, 1, 12)12 - AIC:619.3140263891471
      ARIMA(1, 1, 1)x(1, 1, 0, 12)12 - AIC:412.5141735822761
      ARIMA(1, 1, 1)x(1, 1, 1, 12)12 - AIC:392.79681257126515
      CA: ARIMA(0, 1, 1)x(0, 1, 1, 12) yields the lowest AIC 389.08.
[432]: # Fitting the ARIMA Model
      mod = sm.tsa.statespace.SARIMAX(y_spec[:n],
                                      order = (0,1,1),
                                      seasonal\_order = (0,1,1,12),
                                      enforce_stationarity = False,
                                      enforce_invertibility = False)
      results_spec = mod.fit()
      print(results.summary().tables[1])
          ______
                                                                 [0.025
                                                                            0.975
                              std err
                                                      P>|z|
                      coef
      ar.L1
                    0.8750
                                                      0.000
                                                                              1.073
                                0.101
                                           8.662
                                                                  0.677
      ma.L1
                   -1.0000
                              887.138
                                         -0.001
                                                     0.999
                                                            -1739.759
                                                                          1737.759
      ar.S.L12
                                                                           -0.079
                   -0.5273
                                0.229
                                          -2.304
                                                     0.021
                                                                 -0.976
                              887.211
                                                      0.999
                                                              -1737.901
      ma.S.L12
                    0.9993
                                           0.001
                                                                           1739.900
      sigma2
                 1265.4366
                                0.385
                                        3282.995
                                                      0.000
                                                               1264.681
                                                                          1266.192
[434]: pred_spec = results_spec.get_prediction(start = pd.to_datetime('2019-06-30'),
       \rightarrowdynamic = False)
      pred_ci_spec = pred_spec.conf_int()
      ax = y_spec['2016':].plot(label = 'observed')
      pred_spec.predicted_mean.plot(ax = ax,
                                    label = 'Accident Forecast',
```

pred_ci_spec.iloc[:, 1], color = 'k', alpha = .2)

alpha = .7,

pred_ci_spec.iloc[:, 0],

ax.fill_between(pred_ci_spec.index,

ax.set_xlabel('Date')

figsize = (14, 7))

```
ax.set_ylabel('Monthly Accident Count')
plt.legend()
plt.show()
```



```
[380]: # Use mean squared error (MSE) to check the accuracy of this model
y_forecasted = pred.predicted_mean
y_truth = y_spec['2020-01-01':]
mse = ((y_forecasted - y_truth) ** 2).mean()
print('The Mean Squared Error of the forecasts is {}'.format(round(mse, 2)))
```

The Mean Squared Error of the forecasts is 636637.42

```
[389]: # Visualising the number of road accident in USA in next years
       pred_uc = results.get_forecast(steps = 132)
       pred_ci = pred_uc.conf_int(alpha = 0.5).resample('Y').sum()
       pred_y_s = pd.concat([y_spec[-6:], pred_uc.predicted_mean[6:]]).round()
       obse_y_s = pd.concat([y_spec, pred_uc.predicted_mean[:6]]).round()
       ax = obse_y_s.resample('Y').sum().plot(label = 'CA observed', figsize = (14,__
       \rightarrow7), marker='o', markersize = 10)
       pred_y_s.resample('Y').sum().plot(ax = ax, label = 'CA Forecast', marker='x',
        →markersize = 10)
       ax.fill_between(pred_ci.index,
                       pred_ci.iloc[:, 0],
                       pred_ci.iloc[:, 1], color='k', alpha=.10)
       ax.set_xlabel('Date')
       ax.set_ylabel('Yearly Accident Count')
       plt.title('CA accident forecast 2021 to 2030')
       plt.legend(loc = 2)
```

```
plt.ylim(ymin = 0, ymax = 1400000)
plt.show()
```


0.7 Time Series Forecasting For Road Accidents in US and each state


```
[407]: rcParams['figure.figsize'] = 16, 10
decomposition = sm.tsa.seasonal_decompose(y_us, model='additive')
fig = decomposition.plot()
plt.show()
```



```
[409]: # use a "grid search" to find the optimal set of parameters that yields the
       ⇒best performance for ARIMA model
       results us = []
       p = d = q = range(0, 2)
       pdq = list(itertools.product(p, d, q))
       seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, u
       -q))]
       for param in pdq:
           for param_seasonal in seasonal_pdq:
               try:
                   mod = sm.tsa.statespace.SARIMAX(y_us[:47],
                                                    order = param,
                                                    seasonal_order = param_seasonal,
                                                    enforce stationarity = True,
                                                    enforce_invertibility = True)
                   results_ite = mod.fit()
               except:
                   continue
               res_aic = results_ite.aic
               if results_ite.aic <= res_aic:</pre>
                   res_aic = results_ite.aic
                   results_us=([param, param_seasonal, results_ite.aic])
       mod = sm.tsa.statespace.SARIMAX(y_us[:47],
                                        order = results_aic[0],
                                        seasonal_order = results_aic[1],
                                        enforce stationarity = True,
                                        enforce_invertibility = True)
       results us = mod.fit()
       print(results_us.summary().tables[1])
[416]: pred_us = results_us.get_prediction(start = pd.to_datetime('2019-06-30'),__
       \rightarrowdynamic = False)
       pred_ci_us = pred_us.conf_int()
       ax = y_us['2016':].plot(label = 'observed')
       pred_us.predicted_mean.plot(ax = ax,
                                    label = 'Accident Forecast',
                                    alpha = .7,
                                    figsize = (14, 7))
       ax.fill_between(pred_ci_us.index,
                       pred_ci_us.iloc[:, 0],
                       pred_ci_us.iloc[:, 1], color = 'k', alpha = .2)
       ax.set_xlabel('Date')
       ax.set_ylabel('Monthly Accident Count')
       plt.legend(loc = 2)
       plt.show()
```



```
[417]: # Visualising the number of road accident in USA in next years
       pred uc = results us.get forecast(steps = 132)
       pred_ci_us = pred_uc.conf_int(alpha = 0.5).resample('Y').sum()
       pred_y = pd.concat([y_us[-6:], pred_uc.predicted_mean[6:]]).round() # add_u
        →observed 2020 6 month to the beginning of prediction for yearly count
       obse_y = pd.concat([y_us, pred_uc.predicted_mean[6:12]]).round() # add_u
       →predicted 2020 6 month to the end of observed for yearly count
       ax = obse_y.resample('Y').sum().plot(label = 'US Observed', figsize = (17, 8),
       →marker='o', markersize = 10)
       pred_y.resample('Y').sum().plot(ax = ax, label = 'US Forecast', marker='x',
        \rightarrowmarkersize = 10)
       ax.fill_between(pred_ci_us.index,
                       pred_ci_us.iloc[:, 0],
                       pred_ci_us.iloc[:, 1], color='k', alpha=.25)
       ax.set_xlabel('Year')
       ax.set_ylabel('Yearly Number of Accident')
       plt.title('US accident forecast 2021 to 2030')
       plt.legend(loc = 2)
       plt.show()
```



```
Forecast for all states
[256]:
      state_info = df_forecast.State.unique()
       print(sorted(state_info))
      ['AL', 'AR', 'AZ', 'CA', 'CO', 'CT', 'DC', 'DE', 'FL', 'GA', 'IA', 'ID', 'IL',
      'IN', 'KS', 'KY', 'LA', 'MA', 'MD', 'ME', 'MI', 'MN', 'MO', 'MS', 'MT', 'NC',
      'ND', 'NE', 'NH', 'NJ', 'NM', 'NV', 'NY', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC',
      'SD', 'TN', 'TX', 'UT', 'VA', 'VT', 'WA', 'WI', 'WV', 'WY']
[185]: state_list = ['AL', 'AR', 'AZ', 'CA', 'CO', 'CT', 'DC', 'DE', 'FL', 'GA', 'IA',
                     'ID', 'IL', 'IN', 'KS', 'KY', 'LA', 'MA', 'MD', 'ME', 'MI', 'MN',
                     'MO', 'MS', 'MT', 'NC', 'ND', 'NE', 'NH', 'NJ', 'NM', 'NV', 'NY',
                     'OH', 'OK', 'OR', 'PA', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VA',
                     'VT', 'WA', 'WI', 'WV', 'WY']
       for item in state_list:
           df temp = accident US[accident US['State'] == item]
           y_state = df_temp['Count'].resample('M').sum()
           row_number = np.where(y_state.index == '2020-06-30')[0].tolist()
           print('%s: '%item + '%s'%row_number)
      AL: [48]
      AR: [48]
      AZ: [48]
      CA: [51]
      CO: []
      CT: [51]
      DC: [48]
```

DE: [51]

```
FL: [48]
      GA: [48]
      IA: [51]
      ID: [48]
      IL: [50]
      IN: [52]
      KS: [48]
      KY: [52]
      LA: [48]
      MA: [51]
      MD: [51]
      ME: [50]
      MI: [52]
      MN: [51]
      MO: [51]
      MS: [48]
      MT: []
      NC: [48]
      ND: []
      NE: [51]
      NH: [51]
      NJ: [51]
      NM: []
      NV: [50]
      NY: [51]
      OH: [52]
      OK: [48]
      OR: [48]
      PA: [52]
      RI: [51]
      SC: [48]
      SD: []
      TN: [48]
      TX: [48]
      UT: []
      VA: [48]
      VT: [45]
      WA: [48]
      WI: [50]
      WV: [52]
      WY: []
[316]: accident_US.State.value_counts().sort_values(ascending = False)
[316]: CA
              650415
       ΤX
              275742
              222472
       FL
```

```
SC
      140687
NC
      137023
NY
      128063
IL
       86061
       81875
ΜI
PA
       80408
GA
       75293
VA
       72860
       65230
OR
       61626
MN
TN
       59079
       56593
WA
ΑZ
       55411
ОН
       54988
LA
       53369
       52930
OK
NJ
       45580
AL
       38029
MD
       31470
MA
       30390
MO
       28955
IN
       26909
CT
       21350
NE
       19825
ΚY
       19418
       15953
WI
CO
       15823
UT
        14480
RΙ
        9748
IA
        7682
NH
        5874
\mathtt{MS}
        5353
        5059
DE
NV
        4925
KS
        4718
DC
        3673
NM
        2969
ME
        1704
WV
        1596
        1578
AR
         933
ID
VT
          438
WY
          169
MT
          161
SD
           30
ND
           25
```

Name: State, dtype: int64

from above, we see certain states: = ['CO', 'MT', 'ND', 'NM', 'SD', 'UT', 'WY'] are lack of data for analysis. We will leave these states at this moment.

```
[350]: state_list_1 = ['TX', 'FL', 'SC', 'NC', 'NY', 'MN', 'VA', 'OR', 'IL']
      fig, ax = plt.subplots(figsize=(17, 12))
      plt.ylim(ymin = 0, ymax = 250000)
      ax.set_xlabel('Year')
      ax.set_ylabel('Number of Accident')
      plt.title('Accident forecast by States (2021 to 2030)')
      # for item in df_forecast_1.State.unique():
      for item in state_list_1:
          results_aic = []
          df_temp = accident_US[accident_US['State'] == item]
          y_state = df_temp['Count'].resample('M').sum()
          row_number = np.where(y_state.index == '2019-12-31')
          n = int(row_number[0]) + 1
          p = d = q = range(0, 2)
          pdq = list(itertools.product(p, d, q))
          \rightarrowd, q))]
          for param in pdq:
              for param_seasonal in seasonal_pdq:
                  try:
                      mod = sm.tsa.statespace.SARIMAX(y_state[:n],
                                                     order = param,
                                                     seasonal_order = param_seasonal,
                                                     enforce_stationarity = True,
                                                     enforce_invertibility = True)
                      results_ite = mod.fit()
                  except:
                      continue
                  res_aic = results_ite.aic
                  if results_ite.aic <= res_aic:</pre>
                      res_aic = results_ite.aic
                      results_aic=([param, param_seasonal, results_ite.aic])
          mod = sm.tsa.statespace.SARIMAX(y_state[:n],
                                         order = results_aic[0],
                                         seasonal_order = results_aic[1],
                                         enforce_stationarity = True,
                                         enforce_invertibility = True)
          results = mod.fit()
```



```
[351]: state_list_2 = ['GA', 'TN', 'WA', 'AZ', 'OH', 'AL', 'OK', 'MD', 'NJ']
fig, ax = plt.subplots(figsize=(17, 12))
plt.ylim(ymin = 0, ymax = 80000)
ax.set_xlabel('Year')
ax.set_ylabel('Number of Accident')
plt.title('Accident forecast by States (2021 to 2030)')
```

```
# for item in df_forecast_1.State.unique():
for item in state_list_2:
    results_aic = []
    df_temp = accident_US[accident_US['State'] == item]
    y_state = df_temp['Count'].resample('M').sum()
    row_number = np.where(y_state.index == '2019-12-31')
    n = int(row_number[0]) + 1
    p = d = q = range(0, 2)
    pdg = list(itertools.product(p, d, q))
    seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p,_
\rightarrow d, q))]
    for param in pdq:
        for param_seasonal in seasonal_pdq:
            try:
                mod = sm.tsa.statespace.SARIMAX(y_state[:n],
                                                 order = param,
                                                 seasonal_order = param_seasonal,
                                                 enforce stationarity = False,
                                                 enforce_invertibility = False)
                results_ite = mod.fit()
            except:
                continue
            res_aic = results_ite.aic
            if results_ite.aic <= res_aic:</pre>
                res_aic = results_ite.aic
                results_aic=([param, param_seasonal, results_ite.aic])
    mod = sm.tsa.statespace.SARIMAX(y_state[:n],
                                     order = results_aic[0],
                                     seasonal_order = results_aic[1],
                                     enforce stationarity = False,
                                     enforce_invertibility = False)
    results = mod.fit()
    pred_uc_state = results.get_forecast(steps = 132)
    pred_ci_state = pred_uc_state.conf_int(alpha = 0.5).resample('Y').sum()
    pred_y_state = pd.concat([y_state[-6:], pred_uc_state.predicted_mean[6:]]).
 →round()
    obse_y_state = pd.concat([y_state, pred_uc_state.predicted_mean[6:12]]).
→round()
    obse y state.resample('Y').sum().plot(ax = ax, label = str(item)+'___
→observed', marker='o', markersize = 10)
    pred_y_state.resample('Y').sum().plot(ax = ax, label = str(item)+'__
 →Forecast', marker='x', markersize = 10)
```



```
[355]: state_list_3 = ['LA', 'PA', 'MA', 'MO', 'IN', 'WI', 'DC', 'KS', 'CT']
fig, ax = plt.subplots(figsize=(17, 12))
plt.ylim(ymin = 0, ymax = 35000)
ax.set_xlabel('Year')
ax.set_ylabel('Number of Accident')
plt.title('Accident forecast by States (2021 to 2030)')

# for item in df_forecast_1.State.unique():
for item in state_list_3:

    results_aic = []
    df_temp = accident_US[accident_US['State'] == item]
    y_state = df_temp['Count'].resample('M').sum()
    row_number = np.where(y_state.index == '2019-12-31')
    n = int(row_number[0]) + 1

    p = d = q = range(0, 2)
```

```
pdq = list(itertools.product(p, d, q))
   seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p,__
\rightarrow d, q))]
   for param in pdq:
       for param_seasonal in seasonal_pdq:
           try:
               mod = sm.tsa.statespace.SARIMAX(y state[:n],
                                                order = param,
                                                seasonal_order = param_seasonal,
                                                enforce_stationarity = False,
                                                enforce_invertibility = False)
               results_ite = mod.fit()
           except:
               continue
           res_aic = results_ite.aic
           if results_ite.aic <= res_aic:</pre>
               res_aic = results_ite.aic
               results_aic=([param, param_seasonal, results_ite.aic])
   mod = sm.tsa.statespace.SARIMAX(y_state[:n],
                                    order = results aic[0],
                                    seasonal_order = results_aic[1],
                                    enforce_stationarity = False,
                                    enforce_invertibility = False)
   results = mod.fit()
   pred_uc_state = results.get_forecast(steps = 132)
   pred_ci_state = pred_uc_state.conf_int(alpha = 0.5).resample('Y').sum()
   pred_y_state = pd.concat([y_state[-6:], pred_uc_state.predicted_mean[6:]]).
→round()
   obse_y_state = pd.concat([y_state, pred_uc_state.predicted_mean[6:12]]).
→round()
   obse_y_state.resample('Y').sum().plot(ax = ax, label = str(item)+'__
→observed', marker='o', markersize = 10)
   pred_y_state.resample('Y').sum().plot(ax = ax, label = str(item)+'__
→Forecast', marker='x', markersize = 10)
   ax.fill_between(pred_ci_state.index,
                   pred_ci_state.iloc[:, 0],
                   pred_ci_state.iloc[:, 1], alpha=.10, color='k')
   plt.legend(loc = 2)
```



```
[363]: state_list_4 = ['KY', 'IA', 'NH', 'DE', 'AR', 'ME', 'WV', 'ID', 'VT']
      fig, ax = plt.subplots(figsize=(17, 12))
      plt.ylim(ymin = 0, ymax = 7500)
      ax.set_xlabel('Year')
      ax.set_ylabel('Number of Accident')
      plt.title('Accident forecast by States (2021 to 2030)')
      # for item in df_forecast_1.State.unique():
      for item in state_list_4:
          results_aic = []
          df_temp = accident_US[accident_US['State'] == item]
          y_state = df_temp['Count'].resample('M').sum()
          row_number = np.where(y_state.index == '2019-12-31')
          n = int(row_number[0]) + 1
          p = d = q = range(0, 2)
          pdq = list(itertools.product(p, d, q))
          \rightarrowd, q))]
          for param in pdq:
```

```
for param_seasonal in seasonal_pdq:
           try:
               mod = sm.tsa.statespace.SARIMAX(y_state[:n],
                                                order = param,
                                                seasonal_order = param_seasonal,
                                                enforce_stationarity = False,
                                                enforce_invertibility = False)
               results_ite = mod.fit()
           except:
               continue
           res_aic = results_ite.aic
           if results_ite.aic <= res_aic:</pre>
               res_aic = results_ite.aic
               results_aic=([param, param_seasonal, results_ite.aic])
   mod = sm.tsa.statespace.SARIMAX(y_state[:n],
                                   order = results_aic[0],
                                   seasonal_order = results_aic[1],
                                   enforce_stationarity = False,
                                   enforce_invertibility = False)
   results = mod.fit()
   pred_uc_state = results.get_forecast(steps = 132)
   pred ci state = pred uc state.conf int(alpha = 0.5).resample('Y').sum()
   pred_y_state = pd.concat([y_state[-6:], pred_uc_state.predicted_mean[6:]]).
   obse_y_state = pd.concat([y_state, pred_uc_state.predicted_mean[6:12]]).
→round()
   obse_y_state.resample('Y').sum().plot(ax = ax, label = str(item)+'__
→observed', marker='o', markersize = 10)
   pred_y_state.resample('Y').sum().plot(ax = ax, label = str(item)+'__
→Forecast', marker='x', markersize = 10)
   ax.fill between(pred ci state.index,
                   pred_ci_state.iloc[:, 0],
                   pred_ci_state.iloc[:, 1], alpha=.10, color='k')
   plt.legend(loc = 2)
```



```
[422]: state_list_5 = ['MI', 'NE', 'RI', 'MS', 'NV']
      fig, ax = plt.subplots(figsize=(17, 12))
      plt.ylim(ymin = -2000, ymax = 25000)
      ax.set_xlabel('Year')
      ax.set_ylabel('Number of Accident')
      plt.title('Accident forecast by States (2021 to 2030)')
      # for item in df_forecast_1.State.unique():
      for item in state_list_5:
         results_aic = []
         df_temp = accident_US[accident_US['State'] == item]
         y_state = df_temp['Count'].resample('M').sum()
         row_number = np.where(y_state.index == '2019-12-31')
         n = int(row_number[0]) + 1
         p = d = q = range(0, 2)
         pdq = list(itertools.product(p, d, q))
         \rightarrowd, q))]
         for param in pdq:
```

```
for param_seasonal in seasonal_pdq:
           try:
               mod = sm.tsa.statespace.SARIMAX(y_state[:n],
                                                order = param,
                                                seasonal_order = param_seasonal,
                                                enforce_stationarity = False,
                                                enforce_invertibility = False)
               results_ite = mod.fit()
           except:
               continue
           res_aic = results_ite.aic
           if results_ite.aic <= res_aic:</pre>
               res_aic = results_ite.aic
               results_aic=([param, param_seasonal, results_ite.aic])
   mod = sm.tsa.statespace.SARIMAX(y_state[:n],
                                   order = results_aic[0],
                                   seasonal_order = results_aic[1],
                                   enforce_stationarity = False,
                                   enforce_invertibility = False)
   results = mod.fit()
   pred_uc_state = results.get_forecast(steps = 132)
   pred ci state = pred uc state.conf int(alpha = 0.5).resample('Y').sum()
   pred_y_state = pd.concat([y_state[-6:], pred_uc_state.predicted_mean[6:]]).
   obse_y_state = pd.concat([y_state, pred_uc_state.predicted_mean[6:12]]).
→round()
   obse_y_state.resample('Y').sum().plot(ax = ax, label = str(item)+'__
→observed', marker='o', markersize = 10)
   pred_y_state.resample('Y').sum().plot(ax = ax, label = str(item)+'__
→Forecast', marker='x', markersize = 10)
   ax.fill between(pred ci state.index,
                   pred_ci_state.iloc[:, 0],
                   pred_ci_state.iloc[:, 1], alpha=.10, color='k')
   plt.legend(loc = 1)
```


[]: