Óptica

Resumen fórmulas

- $c \approx 3 \cdot 10^8 \left(\frac{m}{s}\right)$
- $v = \frac{c}{n} = \lambda \cdot f$
- Ley de Snell: $n_1 \cdot \sin \theta_1 = n_2 \cdot \sin \theta_2$
- Ecuación de Descartes / fabricante de lentes:

$$rac{1}{s'}-rac{1}{s}=rac{1}{f'}=p=(n-1)\left(rac{1}{r_1}-rac{1}{r_2}
ight)$$

- Aumento transversal: $M_T = \frac{h'}{h} = \frac{s'}{s}$
- Aumento angular: $\Gamma = -\frac{f_{obj}}{f_{ocu}}$
- Unidad angström: $1 \, \mathring{A} = 10^{-10} \, (m)$
- Óptica por reflexión \Longrightarrow Espejos
- Óptica por refracción ⇒ Lentes (solo delgadas)

Conceptos básicos

- **Objeto**: fuente de rayos de luz.
- Imagen: imagen formada por el objeto a través de una lente
 - **Real**: se puede registrar sobre una pantalla (ej. imagen por un proyector).
 - Virtual: no se registra en un pantalla (ej. un espejo, un móvil).
- Eje óptico: línea imaginaria que une objeto y lente.

Lentes primas

- Prisma: objeto que refracta, refleja, y descompone la luz en colores.
- Aplicación de Ley de Snell: al pasar la luz del aire a la prisma, su *velocidad* disminuye, su *trayectoria* se desvía, y forma un ángulo con respecto a la *interfase*.

- Reflectantes: solo reflejan luz. Ejemplos: prismáticos, monoculares, etc.
- Dispersivos: descomponen la luz en el espectro arcoíris.
- *Polarizadores*: separan cada haz de luz en componentes de diferente *polarización*.

Distancia focal

- **Distancia focal objeto** (f): distancia del objeto a la lente.
- **Distancia focal imagen** (f'): distancia de la imagen al lente.
- La distancia focal de una lente es la distancia focal imagen de la lente.
- Tipos de lentes:
 - Convergentes (biconvexa): son menos espesas desde el centro a los bordes.
 - Divergentes (bicóncava): son más espesas desde el centro hacia los bordes.

• Estas tienen signo:

- Lente convergente: f' > 0.

- Lente divergente: f' < 0. Lente divergente

Lente convergente

Ecuación de Descartes

- Una aproximación a la imagen formada por una lente para prismas.
- Las distancias entre el objeto y la imagen a la lente se pueden considerar positivas (d^+) o negativas (d^-) según el criterio de signos.

Criterio DIN

Norma utilizada para la resolución de problemas. A la hora de resolver un problema, es importante especificar que se está utilizando este criterio. Al hacerlo, se asume lo siguiente:

- Se usan ejes de coordenadas.
- La lente estará en el eje y y centrada en el eje x.
- La luz va desde la izquierda a la derecha.
- Para lentes *convergentes*, la *imagen foco* está a la derecha de la lente, y el *objeto foco*, a la izquierda. Para lentes *divergentes*, el criterio es al revés.
- El objeto y la imagen se representan con *líneas perpendiculares* al eje óptico.
- Las coordenadas del objeto serán (s, y).
- Las coordenadas de la imagen serán (s', y'). Para el criterio DIN, la **ecuación de Descartes** es la siguiente:

$$rac{1}{s'}-rac{1}{s}=rac{1}{f'}$$
 $rac{1}{f'}=(n-1)\left(rac{1}{r_1}-rac{1}{r_2}
ight)$

Ecuación del fabricante de lentes:

$$rac{1}{s'}-rac{1}{s}=(n-1)\left(rac{1}{r_1}-rac{1}{r_2}
ight) \ M_T=rac{y'}{y}=rac{s'}{s}$$

Donde M_T es el aumento transversal (como de grande o pequeña se hace una imagen).

Otra forma de plantear esta ecuación es la siguiente:

$$s' = \frac{f' \cdot s}{f' + s}$$

Relación de tamaño

$$M_T=rac{h'}{h}=rac{s'}{s}$$

- $M_T < 0 \implies$ imagen invertida.
- $ullet \ |M_T| < 1 \implies {
 m imagen \ reducida.}$

Determinación de la imagen Gráficamente

- Rayo paralelo al eje óptico: pasa por el foco imagen.
- Rayo que pasa por el vértice: no fluctúa.
- Rayo que pasa por el foco objeto: sale paralelo al eje óptico.
- Intersección de los rayos: imagen.

Características de la imagen

- Imagen real: s' > 0
- Imagen invertida: imagen bajo el eje óptico.
- Imagen reducida: $\left|\frac{h'}{h}\right| < 1$.

Determinación de la imagen analíticamente

•
$$s = -10(cm)$$

$$rac{1}{s'} - rac{1}{-10} = rac{1}{3}$$
 $rac{1}{s'} = rac{1}{3} + rac{1}{-10} \implies s' = \left(rac{1}{3} + rac{1}{-10}
ight)^- 1 = 4.28 \ (cm)$

Determinar gráficamente la imagen de un objeto situado a 10(cm) de una lente divergente de distancia focal 3(cm).

- Lente divergente $\implies F_i < 0 \implies \text{imagen virtual}.$
- Imagen sobre el eje óptico \implies imagen derecha.
- Imagen reducida.

Analíticamente

$$rac{1}{s'} - rac{1}{-10} = rac{1}{-3} \implies s' = \left(rac{1}{-3} + rac{1}{-10}
ight)^- 1 = -2.3(cm)$$

• $s' < 0 \implies \text{imagen virtual}$.

•
$$\frac{s'}{s} > 0 \implies \text{imagen derecha}.$$

•
$$\frac{s'}{s} < 1 \implies \text{imagen reducida}.$$

Resumen

Resolución analítica

• s: objeto a la lente.

• s': imagen a la lente.

• F_i : foco imagen

$$F_i iggl\{ < 0 \implies ext{imagen virtual} \ > 0 \implies ext{imagen real} \$$

• F_o : foco objeto

$$s' egin{cases} < 0 \implies ext{imagen virtual} \\ > 0 \implies ext{imagen real} \\ & \frac{s'}{s} iggl\{ > 0 \implies ext{imagen derecha} \\ < 0 \implies ext{imagen invertida} \\ & | \frac{s'}{s} | iggl\{ < 1 \implies ext{imagen reducida} \\ & > 1 \implies ext{imagen ampliada} \end{cases}$$

• f': distancia focal.

• r_1 : radio de la cara a la izquierda.

• r_2 : radio de la cara a la derecha.

$$rac{1}{s'}-rac{1}{s}=rac{1}{f'}$$
 $rac{1}{s'}-rac{1}{s}=(n-1)\left(rac{1}{r_1}-rac{1}{r_2}
ight)$ $M_T=rac{h'}{h}=rac{s'}{s}$

Resolución gráfica

- Rayo paralelo al eje óptico: pasa por el foco imagen.
- Rayo que pasa por el vértice: no fluctúa.
- Rayo que pasa por el foco objeto: sale paralelo al eje óptico.
- Intersección de los rayos: imagen.

Ojo

- Cristalino: lente convergente.
- Retina: pantalla.
- Pupila: entrada de luz.
- Patologías:
 - Miopía (no ver de lejos): corrección con lente divergente.
 - **Hipermetropía** (no ver de cerca): corrección con lente convergente.
 - Astigmatismo
 - Presbicia
- La distancia mínima hasta la cual el ojo puede enfocar algo pequeño se llama **distancia punto próximo** $\Longrightarrow X_p = 25cm$

Instrumentos ópticos

- Lupa
 - Lente convergente de distancia focal **corta**.
 - Se coloca entre el foco objeto y cerca del ojo.
 - Provoca un aumento angular:
 - Ángulo con ojo desnudo: $\tan \alpha = \frac{h}{X_p}$
 - Ángulo aumentado con lupa: $\tan \alpha' = \frac{h}{f'}$
 - Aumento angular: $\nabla \alpha = \frac{\tan \alpha'}{\tan \alpha} = \frac{\frac{h}{f'}}{\frac{h}{X_p}} = \frac{X_p}{f'} = \frac{25}{f'}$
- Cámara de fuelle (fotos)
- Telescopio de Galileo
 - Lente convergente + lente divergente

- La lente divergente es la más cercana al ojo

 conocida como

 ocular.
- La lente convergente
- Foco imagen de l. convergente = Foco objeto de l. divergente