# Lecture 24: Algorithms for Constrained Optimization

Zizhuo Wang

Institute of Data and Decision Analytics (iDDA) Chinese University of Hong Kong, Shenzhen

Dec 5, 2018

#### Announcements

▶ Homework 9 due next Wednesday (12/12)

# Recap: Algorithms for Unconstrained Optimization

We have introduced four methods for unconstrained optimization problems

For single-variable problems

- Bisection method
- Golden section method

For multi-variable problems

- Gradient descent method
- Newton's method

Today, we introduce methods for constrained optimization problems

Gradient projection method



## Constrained Optimization

We consider the following constrained optimization problem:

minimize<sub>**X**</sub> 
$$f(\mathbf{x})$$
  
subject to  $h_i(\mathbf{x}) = 0, \ \forall i$   
 $g_j(\mathbf{x}) \leq 0, \ \forall j$ 

In unconstrained method, the main idea is:

- ► At each  $\mathbf{x}^k$ , compute a descent direction, say  $\mathbf{d}^k$
- ► Then find an appropriate step-size  $\alpha_k$  and go to  $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{d}^k$
- Both gradient and Newton's methods are based on this idea

The problem when we have constraints

 $ightharpoonup x^{k+1}$  may become infeasible

In the following, we assume we have an initial feasible solution



#### Illustration



▶ One of the solution to this problem is to use the gradient projection method



## Main Idea of Gradient Projection Method

Project the descent direction onto the feasible set



We still use the general framework, however, the  $\mathbf{d}^k$  chosen has to take into account feasibility.



# Gradient Projection Method

We first consider a simpler case when the problem has linear equality constraints

minimize 
$$f(\mathbf{x})$$
 subject to  $A\mathbf{x} = \mathbf{b}$ 

Remember at  $\mathbf{x}^k$ , the feasible direction set is

$$S_F(\mathbf{x}^k) = \{\mathbf{d}|A\mathbf{d} = 0\}$$

Idea: We select a search direction that maintains feasibility while achieving maximum descent.

#### Projection

We solve the following *projection* problem:

minimize<sub>d</sub> 
$$\nabla f(\mathbf{x}^k)^T \mathbf{d}$$
  
subject to  $A\mathbf{d} = 0, ||\mathbf{d}||_2 \le 1$  (1)

If we don't have the constraint  $A\mathbf{d} = 0$ , then the optimal solution to the above problem will be

$$\mathbf{d}^* = \frac{-\nabla f(\mathbf{x}^k)}{||\nabla f(\mathbf{x}^k)||}$$

which is the same as in the gradient method.

With the constraint  $A\mathbf{d} = 0$ , one can view (1) as projecting the vector  $-\nabla f(\mathbf{x}^k)$  to the set  $\{\mathbf{d}|A\mathbf{d} = 0\}$ 



## Projection

#### Theorem (Projection Theorem)

Given any vector  $\mathbf{d}$ , the projection of  $\mathbf{d}$  onto the region  $A\mathbf{d}=0$  is

$$(I - A^T (AA^T)^{-1}A)\mathbf{d}$$

We call  $P_A = I - A^T (AA^T)^{-1}A$  the projection matrix.

#### **Theorem**

Let  $\mathbf{y} = P_A \mathbf{x}$ . Then  $\mathbf{y}$  solves the following optimization problem:

minimize<sub>y</sub> 
$$||\mathbf{y} - \mathbf{x}||_2^2$$
  
s.t.  $A\mathbf{y} = 0$ 

# Proof Using KKT Conditions

Consider

minimize 
$$\mathbf{y} = ||\mathbf{y} - \mathbf{x}||_2^2$$
  
s.t.  $A\mathbf{y} = 0$ 

Associate the constraints with multiplier  $\lambda$ , the KKT condition is:

$$2(\mathbf{y} - \mathbf{x}) + A^T \lambda = 0, \quad A\mathbf{y} = 0$$

By multiplying A we get  $\lambda = 2(AA^T)^{-1}A\mathbf{x}$ .

Plug it back in the KKT condition, we get

$$\mathbf{y} = \mathbf{x} - A^{\mathsf{T}} (AA^{\mathsf{T}})^{-1} A \mathbf{x} = (I - A^{\mathsf{T}} (AA^{\mathsf{T}})^{-1} A) \mathbf{x} = P_{A} \mathbf{x}$$

It is a convex optimization problem, thus  $\mathbf{y}$  is the unique optimal solution.



# Properties of the Projection Matrix

There are several properties of  $P_A$ 

- ▶  $AP_A = 0$  (therefore for any **x**, **y** =  $P_A$ **x** satisfies A**y** = 0)
- $P_A^2 = P_A$
- $\blacktriangleright$  All eigenvalues of  $P_A$  are either 0 or 1
- ▶  $P_A$  is positive semi-definite, and  $\mathbf{x}^T P_A \mathbf{x} = 0$  if and only if  $P_A \mathbf{x} = 0$

#### Corollary

The optimal solution to the projection problem is

$$\bar{\mathbf{d}}^k = \frac{-P_A \nabla f(\mathbf{x}^k)}{||P_A \nabla f(\mathbf{x}^k)||_2}$$

In the gradient projection method, we will choose  $\mathbf{d}^k = -P_A \nabla f(\mathbf{x}^k)$  as the search direction in each iteration.



#### Search Direction

We can verify that

$$\mathbf{d}^k = -P_A \nabla f(\mathbf{x}^k)$$

is a descent direction since

$$\nabla f(\mathbf{x}^k)^T \mathbf{d}^k = -\nabla f(\mathbf{x}^k)^T P_A \nabla f(\mathbf{x}^k) \leq 0$$

due to the positive semi-definiteness of  $P_A$  (it is < 0 as long as  $P_A \nabla f(\mathbf{x}^k) \neq 0$ )

▶ It is also a feasible direction since  $A\mathbf{d}^k = 0$ 

#### Procedure

Procedure for gradient projection method with linear equality constraints:

Start with any point  $\mathbf{x}^0$ . Set k=0 and stopping criterion  $\epsilon>0$ . Define  $P_A=I-A^T(AA^T)^{-1}A$ 

- 1. Check  $||P_A \nabla f(\mathbf{x}^k)||$ . If  $||P_A \nabla f(\mathbf{x}^k)|| \le \epsilon$ , stop and output  $\mathbf{x}^k$ . Otherwise, continue to Step 2
- 2. Define  $\mathbf{d}^k = -P_A \nabla f(\mathbf{x}^k)$  as the search direction
- 3. Use backtracking line search to find the step size  $\alpha_k$
- 4. Let  $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{d}^k$ , let k = k + 1. Go back to step 1
  - Again, the only difference with the gradient or Newton's method is the search direction
  - ► The reason for the difference is that we need to take care of feasibility in this case



#### Convergence Rate

#### Theorem (Convergence of Gradient Projection Method)

Under proper conditions, the gradient projection method converges to a local minimizer in a linear convergence rate.

#### Theorem (Gradient Projection for Convex Problems)

If the problem is convex, then under proper conditions, the gradient project method converges to a global minimizer in a linear convergence rate.

# Linear Inequality Constraints

If the constraints are:

$$\mathbf{a}_i^T \mathbf{x} \le b_i \quad i \in I_1$$
  
 $\mathbf{a}_i^T \mathbf{x} = b_i \quad i \in I_2$ 

Then for any feasible solution  $\mathbf{x}^k$ , we first construct the feasible direction set:

$$\mathbf{a}_i^T \mathbf{d} \leq 0$$
 if  $i \in I_1$  and  $a_i^T \mathbf{x}^k = b_i$   
 $\mathbf{a}_i^T \mathbf{d} = 0$   $i \in I_2$ 

## Linear Inequality Constraints

We consider a modified projection problem:

minimize<sub>d</sub> 
$$\nabla f(\mathbf{x}^k)^T \mathbf{d}$$
  
subject to  $\mathbf{a}_i^T \mathbf{d} \leq 0$  if  $i \in I_1$  and  $a_i^T \mathbf{x}^k = b_i$   
 $\mathbf{a}_i^T \mathbf{d} = 0$   $i \in I_2$   
 $||\mathbf{d}||_2 \leq 1$ 

The projection in this case is more complicated, but the idea is the same.

- ► However, the projection matrices will be different at each iteration, depending on which constraint is active or not
- ► The overall procedure is still the same, except the search directions at each step are different



#### Nonlinear Constraints

If the constraints are

$$g_i(\mathbf{x}) \leq 0 \quad \forall j$$

Then we can use a linear approximation for the feasible direction set:

$$\nabla g_i(\mathbf{x})^T \mathbf{d} \leq 0$$
 if  $g_i(\mathbf{x}) = 0$ 

The feasible set is a linear function of  $\mathbf{d}$  and therefore, we can solve a similar projection problem



# Newton's Method with Linear Equality Constraints

The above discussion is all about extending the gradient descent methods to the constrained cases.

We can also extend Newton's method to problems with constraints

#### The idea is similar

- Approximate the objective function by a quadratic function (using second-order Taylor expansion)
- ► Find the minimizer of the quadratic expansion, however, in this case, with the constraints

# Newton's Method with Linear Equality Constraints

We consider

minimize 
$$f(\mathbf{x})$$
  
s.t.  $A\mathbf{x} = \mathbf{b}$ 

At  $\mathbf{x}^k$ , compute the Newton's step by

minimize<sub>v</sub> 
$$f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)^T \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x}^k) \mathbf{v}$$
  
s.t.  $A\mathbf{v} = 0$ 

By KKT conditions, this equality constrained quadratic program can be solved explicitly:

$$\begin{bmatrix} \nabla^2 f(\mathbf{x}^k) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \lambda \end{bmatrix} = \begin{bmatrix} -\nabla f(\mathbf{x}^k) \\ 0 \end{bmatrix}$$

where  $\lambda$  is the Lagrangian multiplier.



# Newton's Method with Linear Equality Constraints

Therefore one can use  $\mathbf{v}$  as the search direction, and use the same iterative framework

lacktracking search to find lpha and update

Similar idea can be applied to solve inequality constrained optimizations

- ▶ There might not be an explicit solution to the Newton's step
- However, it is just a quadratic program, which can be solved easily

To summarize, this approach projects the descent direction to the feasible direction set at each iteration, and otherwise proceeds the same as before.

## Example

minimize 
$$e^{x_1+x_2} + x_1^2 + 3x_2^2 - x_1x_2$$
  
subject to  $x_1 + 2x_2 = 1$ 

The projection matrix is  $I - A^T (AA^T)^{-1}A$  where A = [1, 2]. Thus, we have

$$P_A = \left[ \begin{array}{cc} 4/5 & -2/5 \\ -2/5 & 1/5 \end{array} \right]$$

Use MATLAB to find the solution. Use the initial feasible solution (1,0)



## Example 2

minimize<sub>**X**</sub> 
$$||A\mathbf{x} - \mathbf{b}||_2^2$$
 subject to  $W\mathbf{x} = \mathbf{z}$ 

# Summary of Nonlinear Optimization

#### Optimality conditions

- KKT conditions
- Be able to formulate and analyze KKT conditions

#### Convexity

- Know the concepts: convex set, convex function, convex constraints, and convex optimization problem (also for concave)
- Can identify them
- Can convert problems into convex optimization problem (if possible)

# Summary of Nonlinear Optimization

#### Algorithms

- Bisection, Golden section method
- Gradient descent, Newton's method
- Gradient projection method
- Understand the idea and procedures, can write some codes to implement them