

Design and implementation of an open source visuo-haptic simulator for surgical training

Candidate: Chiara Saporetti

Supervisors: Professor Maura Casadio, Dr. Serena Ricci

Robotics Engineering Course – Master Thesis

Context and motivation

- ➤ Surgical training: involves the use of tactile sense. Various teaching options have been tested: ethical/practical problems.
- Increasing interest in Robotic Minimally
 Invasive Surgery: still lacks haptic feedback.
- ➤ Visuo-haptic simulation advantages provides multi-sensory feedback, shows different real-case scenarios, allows repeatability.

Context and motivation

- ▶ **Open-source** software, accessible to everyone on GitHub: SOFA Framework.
- My contribution: visuo-haptic simulations of:
 - a dexterity task
 - an incision task
 - ➤ a single-device suture task
 - ► a double-device suture task

Virtual Environment Models

Software: SOFA Framework

Skin virtual model

Behavior model:

Tetrahedra to triangles

- Tetrahedral meshes
- Box to keep it fixed
- Other boxes to compute indices

Skin virtual model

Behavior model:

Tetrahedra to triangles

- Tetrahedral meshes
- Box to keep it fixed
- Other boxes to compute indices

Collision model:

• Triangular meshes

Skin virtual model

Behavior model:

Tetrahedra to triangles

- Tetrahedral meshes
- Box to keep it fixed
- Other boxes to compute indices

Collision model:

• Triangular meshes

• Triangular meshes

Instrument virtual models

- Four different interaction objects.
- Model: downloaded and modified on Blender.
- Physics: defined with SOFA scripts.
- Positioned in the simulation structure.

Instrument virtual models

- Four different interaction objects.
- Model: downloaded and modified on Blender.
- Physics: defined with SOFA scripts.
- Positioned in the simulation structure.

Hardware: Geomagic Touch

ACTUATED JOINTS – position of the HIP

PASSIVE JOINTS – orientation of the stylus

Instruments models

Incision

Suture

Haptic interaction scheme

Dexterity task

Incision task

Incision task

Incision task

Suture task: single-device

Suture task: single-device

Suture task: single-device

Suture task: double-device

Graphical User Interfaces

Graphical User Interface

Experiments

Eight surgeons

Average age: 46 ± 16.2 4 Female, 4 Male Average years of experience: 22.4 ± 19.1 All right-handed

Eight age-matched non experts

Average age: 44.1 ±18.3 4 Female, 4 Male Two left-handed

Demographic questionnaire: Custom, EHQ

Familiarization exercises (10min)

Touch a cube

Follow straight lines (visual feedback)

Touch a sphere (visual and force feedback)

Task exercises (20min)

Incision – 3 orient x2 REP each

Final questionnaire: Custom, UEQ, NASA TLX

Experiments

Eight surgeons

Average age: 46 ± 16.2 4 Female, 4 Male Average years of experience: 22.4 ± 19.1 All right-handed

Eight age-matched non experts

Average age: 44.1 ±18.3 4 Female, 4 Male Two left-handed

Incision: Behavioral data

Plot color legend:

• Pink: skin, violet: incision area

Metrics...

• Incision: maximum deviation from cutting line along x and z

...compared to:

- Group
- Age

Incision: Survey data

Range: 1 (I totally do not agree) to 5 (I totally agree)

Suture: Behavioral data

Plot color legend:

• Pink: skin, red: spheres

Metrics...

• Suture: 3D path length

...compared to:

- Group
- Age

Suture: Survey data

Dexterity: behavioral data

Plot color legend:

• Pink: skin, green: rings, violet: rings holes

Metrics...

• Dexterity: 2D and 3D path length

...compared to:

- Group
- Age

RESULTS

Capsule trajectory Path Length

Capsule trajectory Path Length

Dexterity: survey data

Range: 1 (I totally do not agree) to 5 (I totally agree)

NASA TLX Questionnaire data

Range: 1 (Very low workload) to 20 (Very high workload)

Conclusions

Conclusions

Virtual models:

Skin, Scalpel blade, Suture needle, Forceps, Capsule

Haptic device handles:

Scalpel, Needle holder

Tasks algorithms:

Dexterity, Incision, Single-device suture, Double-device suture

Graphical User Interface:

Installation, Task execution

Experiment:

Setup, Task definition, Surveys

Behavioral data analysis:

Visual inspection, Definition of metrics → correlation with age!

Questionnaire data analysis:

Further improvements, potentialities

Future Works

Improve skin model haptics: tune parameters

Add more visual feedback: suggestions, comments, reminders

Add a results GUI: did the student learn in time?

The simulator now

Pestival della Scienza, Genova

IMSH* Abstract:

A haptic skin model to train surgical residents and analyze the neural correlates of surgical learning
S. Ricci, D. Torrigino, C. Saporetti, M. Chirico, G. Borgonovo, M. Minuto, M. Casadio

^{*}International Meeting on Simulation in Healthcare (IMSH): a scientific conference that explores the latest innovations and best practices in healthcare simulation.