Formula Sheet

Trigonometric Identities

$$\cos(\theta) = \sin(\theta + \pi/2)$$

$$\cos(\theta) = \cos(\theta + 2\pi k), k \in \mathbb{Z}$$

$$\cos(\theta) = \cos(-\theta)$$

$$\sin(-\theta) = -\sin(\theta)$$

$$\cos(2\pi k) = 1, k \in \mathbb{Z}$$

$$\cos(\pi k + \pi/2) = 0, k \in \mathbb{Z}$$

$$\cos(2\pi k + \pi) = -1, k \in \mathbb{Z}$$

$$\cos(2\pi k + \pi) = 1$$

$$\cos(\theta)\cos(\phi) = \frac{1}{2}(\cos(\theta - \phi) + \cos(\theta + \phi))$$

$$\sin(\theta)\sin(\phi) = \frac{1}{2}(\cos(\theta - \phi) - \cos(\theta + \phi))$$

$$\sin(\theta)\cos(\phi) = \frac{1}{2}(\sin(\theta - \phi) + \sin(\theta + \phi))$$

$$\cos(\theta)\sin(\phi) = \frac{1}{2}(\sin(\theta + \phi) - \sin(\theta - \phi))$$

Complex numbers and Euler's formula

$$j^{2} = -1$$

$$\Re(a+jb) = a$$

$$\Im(a+jb)^{*} = b$$

$$(a+jb)^{*} = a-jb$$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Relevant Integrals and functions

$$\int e^{\theta t} dt = \frac{e^{\theta t}}{\theta} + c, \quad \theta \neq 0$$

$$\int t e^{\theta t} dt = \frac{\theta t - 1}{\theta^2} e^{\theta t} + c, \quad \theta \neq 0$$

$$\prod_{k=m}^{M} a_k = a_m a_{m+1} \cdots a_M, \quad m < M$$

Consider the polynomial $ax^2 + bx + c$, where $a, b, c \in \mathbb{R}$. Its roots are given by

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Signal Processing

Let $T_s, f_s > 0$ be the sampling period and frequency, respectively. Let x[n] and y[n] be discrete-time signals, and h[n] be the unit impulse response.

$$f_{s} = \frac{1}{T_{s}}$$

$$\hat{\omega} = \omega T_{s}$$

$$x[n] = x(nT_{s})$$

$$h[n] = \sum_{k=0}^{M} b_{k} \delta[n-k]$$

$$y[n] = \sum_{k=0}^{M} b_{k} x[n-k]$$

$$h[n] * x[n] = \sum_{k=-\infty}^{\infty} h[k] x[n-k]$$

$$y[n] = h[n] * x[n]$$

$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{M} b_{k} e^{-j\hat{\omega}k} = \sum_{k=0}^{M} h[k] e^{-j\hat{\omega}k}$$

$$h_{1}[n] * h_{2}[n] \longleftrightarrow H_{1}(e^{j\hat{\omega}}) H_{2}(e^{j\hat{\omega}})$$

Fourier Analysis

Let x(t) be a continuous-time periodic signal with period T_0 and Fourier series coefficients a_k .

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j(2\pi/T_0)kt}$$

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)kt} dt$$

Z-transform

Let x[n] be a discrete-time signal with Z-transform X(z), and h[n] be the unit impulse response.

$$X(z) = \sum_{k=0}^{N} x[k]z^{-n}$$

$$H(z) = \sum_{k=0}^{N} b_k z^{-k} = \sum_{k=0}^{N} h[k]z^{-k}$$

$$h[n] * x[n] \longleftrightarrow H(z)X(z)$$

$$ax_1[n] + bx_2[n] \longleftrightarrow aX_1(z) + bX_2(z), \ a, b \in \mathbb{R}$$

Values for trigonometric functions in selected angles

Let $\theta \in [0, \pi]$ be an angle. Relevant values for $\sin(\theta)$, $\cos(\theta)$ and $\tan(\theta)$ are given in Table 1. If the value you look for is not listed in the table, please assign a variable to it, e.g. $\sin(\pi/7) = \alpha$ or $\tan^{-1}(\pi/7) = \beta$. Also, note that relevant trigonometric identities are above to compute values for negative angles.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\tan(\theta)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0

Table 1: Values for trigonometric functions in selected angles