Cancer survival prediction and integration of multi-omics integration with Supervised Autoencoders, Stacked Autoencoders and Concrete Supervised Autoencoders for multiple correlated driver genes

Team Papaki

Alexus Action

Vasileios Alevizos

Yishu Qu

Vanessa Xiao

Zonaliana Yue

Northwestern University

Project Overview

Breast cancer is the second most diagnosed cancer among women in the United States.

- Heterogeneous
- Several different molecular subtypes
- Clinical, pathological, and molecular characteristic differences contribute to breast cancer progression
 Patient prognosis, survival and therapeutic significance

Purpose:

- Deep learning methods are utilized in cancer prognosis prediction using genomic information
 Single layer omics data (mRNA)
- Autoencoders are tools that allow for the integration of multi-omics data for cancer prognosis prediction

Goal:

To compare these existing algorithms to advance and optimize the methods for better utilities

- Categorizing molecular subtypes
- Risk-level for cancer staging

Breast cancer

Remarks on selected frameworks

Denoising Autoencoder for accurate cancer prognosis prediction (DCAP) is a framework that allows for the integration of multi-omics data by denoising that is utilized to accurately estimate cancer risks through the Cox model.

The DCAP in this study improved the C-index values by 6.5% compared to that of previous methods.

eXtreme Gradient Boosting (XGboost) was used for selection of a small number of genomic features that are considered to be correlated to tumorigenesis and risk factor level of breast cancer

The XGboost models were shown to achieve an average C-index values of 0.627.

Moanna (Multi-Omics Autoencoder-based Neural Networks Algorithm) DL based model facilitating classification with semi-supervised autoencoders

Future work and next steps

Experiments

- Integration of GAN based autoencoders (Ahmed et al, Bioinformatics 2022 & Yang et al, Bioinformatics 2021)
- 2. Cancer survival analysis utilizing subtype detection techniques
- 3. Prioritize omics profiles/modifications

Room for improvements

- Assessment through k-fold Cross-validation
- Scale-up training pipeline with Apache Spark
- 3. Integrating other types of omics data, e.g., metabolomics, proteomics (Alakwaa et al, J Proteome Res 2018 & Lewis et al, Nat Commun 2021)

Thank you for your kind attention!

Questions and Feedback?

Thanks again to all the team members and organizers for hosting this amazing hackathon!