Modelos de Inteligencia Artificial

Procesamiento del Lenguaje Natural

Anexo :: Introducción a Naive Bayes

Curso 2022-23

Tabla de contenidos

- 1. ¿Qué es Naive Bayes?
- 2. Teorema de Bayes
- 3. Caso práctico
- 4. Modelo Naïve Bayes
- 5. Pros y contras de *Naive Bayes*

- Los modelos de *Naive Bayes* son una clase especial de algoritmos de clasificación de Aprendizaje Automático
- Se basan en una técnica de clasificación estadística
 llamada "teorema de Bayes"
- Proporcionan una manera fácil de construir modelos con un comportamiento muy bueno debido a su simplicidad

$$P(A|R) = \frac{P(R|A)P(A)}{P(R)}$$

P(A): Probabilidad de A

P(R|A): Probabilidad de que se de R dado A

P(R): Probabilidad de R

P(A|R): Probabilidad posterior de que se de A dado R

La fórmula de Bayes se basa en la noción estadística de "suceso"

• A y R son sucesos

- o cualquier posible resultado de un experimento aleatorio
- o o dicho de otro modo, a cualquier subconjunto de un espacio muestral, siendo el espacio muestral un conjunto de posible resultados

• **Ejemplo**: probabilidad de sacar un resultado concreto al tirar al aire una moneda

• **Ejemplo**: probabilidad de sacar un resultado concreto al tirar al aire una moneda

$$\circ$$
 A = "sacar cara" \rightarrow P(A) = 0,5

O
$$\mathbf{B} = \text{``sacar cruz''} \rightarrow \mathbf{P(B)} = 0.5$$

• **Ejemplo**: probabilidad de sacar un resultado concreto al tirar al aire una moneda

$$\circ$$
 A = "sacar cara" \rightarrow **P(A)** = 0,5

o
$$\mathbf{B} = \text{``sacar cruz''} \rightarrow \mathbf{P(B)} = 0.5$$

 Si tiramos la moneda 2 veces ... ¿Cuál es la probabilidad de sacar cara habiendo sacado antes cruz?

• **Ejemplo**: probabilidad de sacar un resultado concreto al tirar al aire una moneda

$$\circ$$
 A = "sacar cara" \rightarrow P(A) = 0,5

o
$$\mathbf{B} = \text{``sacar cruz''} \rightarrow \mathbf{P(B)} = 0.5$$

 Si tiramos la moneda 2 veces ... ¿Cuál es la probabilidad de sacar cara habiendo sacado antes cruz?

$$\circ$$
 P(A|B) = 0,5

$$\circ$$
 P(B|A) = 0,5

 Ejemplo: probabilidad de sacar un resultado concreto al tirar al aire una moneda

$$\circ$$
 A = "sacar cara" \rightarrow P(A) = 0,5

o
$$\mathbf{B} = \text{``sacar cruz''} \rightarrow \mathbf{P(B)} = 0.5$$

• Si tiramos la moneda 2 veces ... ¿Cuál es la probabilidad de sacar cara habiendo sacado antes cruz?

$$\circ$$
 P(A|B) = 0,5

La probabilidad es la misma porque en este caso ambos sucesos son **independientes**

$$\circ$$
 P(B|A) = 0,5

• **Ejemplo**: probabilidad de sacar un resultado concreto al tirar al aire una moneda

$$\circ$$
 A = "sacar cara" \rightarrow P(A) = 0,5

o
$$\mathbf{B} = \text{``sacar cruz''} \rightarrow \mathbf{P(B)} = 0.5$$

• Si tiramos la moneda 2 veces ... ¿Cuál es la probabilidad de sacar cara habiendo sacado antes cruz?

$$\circ$$
 P(A|B) = 0,5

La probabilidad es la misma porque en este caso ambos sucesos son **independientes**

$$\circ$$
 P(B|A) = 0,5

A esta forma de representar la probabilidad de un suceso a partir de otro se llama **probabilidad condicionada**

Ejemplo: en una estantería hay 60 novelas y 20 libros de poesía.
 Una persona A elige un libro al azar de la estantería y se lo lleva.
 A continuación otra persona B elige otro libro al azar.

- Ejemplo: en una estantería hay 60 novelas y 20 libros de poesía.
 Una persona A elige un libro al azar de la estantería y se lo lleva.
 A continuación otra persona B elige otro libro al azar.
- ¿Cuál es la probabilidad de que el libro seleccionado por **B** sea una novela?

- Ejemplo: en una estantería hay 60 novelas y 20 libros de poesía.
 Una persona A elige un libro al azar de la estantería y se lo lleva.
 A continuación otra persona B elige otro libro al azar.
- ¿Cuál es la probabilidad de que el libro seleccionado por **B** sea una novela?

- Ejemplo: en una estantería hay 60 novelas y 20 libros de poesía.
 Una persona A elige un libro al azar de la estantería y se lo lleva.
 A continuación otra persona B elige otro libro al azar.
- ¿Cuál es la probabilidad de que el libro seleccionado por **B** sea una novela?

- Ejemplo: en una estantería hay 60 novelas y 20 libros de poesía.
 Una persona A elige un libro al azar de la estantería y se lo lleva.
 A continuación otra persona B elige otro libro al azar.
- ¿Cuál es la probabilidad de que el libro seleccionado por **B** sea una novela?

P(B escoge novela) =

60/80 * 59/79 + 20/80 * 60/79 = **3/4**

- Ejemplo: en una estantería hay 60 novelas y 20 libros de poesía.
 Una persona A elige un libro al azar de la estantería y se lo lleva.
 A continuación otra persona B elige otro libro al azar.
- ¿Cuál es la probabilidad de que el libro seleccionado por **B** sea una novela?

P(B escoge novela) =

60/80 * 59/79 + 20/80 * 60/79 = 3/4

La probabilidad en este caso se da entre sucesos dependientes

 Consideremos el caso de dos compañeros que trabajan en la misma oficina: Alicia y Bruno.

- Sabemos que:
 - O Alicia viene a la oficina 3 días a la semana
 - O Bruno viene a la oficina 1 día a la semana
 - o ambos solo trabajan 4 días de los 5 laborables
- Probabilidad de "encontrarnos con" (suceso) Alicia o Bruno:
 - \circ P(Alicia) = 3/4 = 0.75
 - O P(Bruno) = 1/4 = 0.25

Situación hipotética:

- o Imaginemos que vemos pasar a una persona vestida con una chaqueta roja (suceso) y sabemos que ...
 - Alicia viste de rojo 2 veces en días laborables
 - Bruno viste de rojo 3 veces en días laborables
- o probabilidad de que Alicia vista de rojo: P(Rojo|Alicia) = 2/5 = 0.4
- o probabilidad de que **Bruno** vista de rojo: **P(Rojo|Bruno)** = 3/5 = **o.6**

Pregunta

¿A quién vimos pasar en la oficina?

¿A Alicia o a Bruno?

Conocido

Probabilidad de que Alicia vista de rojo

Probabilidad de que Bruno vista de rojo

Supuesto

Probabilidad de que la persona que viste de rojo sea Alicia

Probabilidad de que la persona que viste de rojo sea Bruno

Tenemos que normalizar las probabilidades, dividiéndolas por la suma de ambas

Tenemos que normalizar las probabilidades, dividiéndolas por la suma de ambas

4. Modelo Naïve Bayes

 Una utilidad de Naive Bayes se da en el contexto de la clasificación binaria, donde tenemos dos clases (positiva y negativa)

4. Modelo Naïve Bayes

- Una utilidad de Naive Bayes se da en el contexto de la clasificación binaria, donde tenemos dos clases (positiva y negativa)
- La <u>matriz de confusión</u> es una forma de representar el conjunto de posibilidades entre dos clases de eventos: uno "real" y otro que predecimos.

Prediction Class	True	False
True	True Positive	False Positive
False	False Negative	True Negative

- Una utilidad de Naive Bayes se da en el contexto de la clasificación binaria, donde tenemos dos clases (positiva y negativa)
- La <u>matriz de confusión</u> es una forma de representar el conjunto de posibilidades entre dos clases de eventos: uno "real" y otro que predecimos.

Prediction	True	False
True	True Positive	False Positive
False	False Negative	True Negative

- Métricas disponibles:
 - exactitud
 - o precisión
 - o sensibilidad

Rango de o a 1 — cuánto más cerca a 1 mayor bondad del modelo

(es decir, de su fiabilidad en las predicciones que elabora)

Supongamos que estamos evaluando a **100 pacientes** para una enfermedad y sabemos que la prevalencia de la enfermedad en la población es del **5%** (P(enfermedad) = 0.05) y la no enfermedad es del **95%** (P(no enfermedad) = 0.95).

4. Modelo Naïve Bayes

Probabilidades a Priori:

- P(enfermedad) = 0.05
- P(no enfermedad) = 0.95

Matriz de Confusión (Resultados del Modelo):

Supongamos que nuestro modelo predice:

- TP (Verdaderos Positivos) = 4
- FP (Falsos Positivos) = 1
- TN (Verdaderos Negativos) = 90
- FN (Falsos Negativos) = 5

¿Cómo podemos interpretar este caso desde Naïve Bayes?

- P(enfermedad|predicción) es la probabilidad de que un paciente tenga la enfermedad dado que el modelo lo predijo como positivo.
- P(no enfermedad|predicción) sería la probabilidad de que un paciente no tenga la enfermedad dado que el modelo lo predijo como negativo.

4. Modelo Naïve Bayes

> Cálculo de la predicción

P(predicción)

... se calcularía como ...

P(enfermedad) * P(predicción|enfermedad) + P(no enfermedad) * P(predicción|no enfermedad)

... es decir ...

P(p) = P(e) * P(p/e) + P(ne) * P(p/ne)

Los puntos débiles principales son:

- Suposición de independencia: el término "Naive" se refiere a la suposición de independencia condicional entre las características, lo cual es una simplificación que permite que el algoritmo sea más eficiente.
- Sensibilidad a características irrelevantes: cuando el conjunto de datos de prueba tiene una característica que no ha sido observada en el conjunto de entrenamiento, el modelo le asignará una probabilidad de cero y será inútil realizar predicciones.

Los puntos fuertes principales son:

- Eficiencia y simplicidad: Naïve Bayes representa una manera fácil y rápida de predecir clases.
- Buena generalización: en los casos en que sea apropiada una presunción de independencia, el algoritmo se comporta mejor que otros modelos de clasificación, incluso con menos datos de entrenamiento.

