Национальный исследовательский ядерный университет «МИФИ» Институт интеллектуальных кибернетических систем

Классическое машинное обучение

Камерзан Игорь Николаевич

Курсовая работа

Курсовая работа

Научный руководитель:

Оглавление

Bı	Введение				
П	остан	новка задачи	4		
1.	Исследовательский анализ данных		5		
	1.1.	Общая информация о датасете	5		
	1.2.	Анализ ключевых показателей	5		
	1.3.	Анализ молекулярных характеристик	6		
2.	Ана	ализ корреляций и предобработка данных	7		
	2.1.	Корреляционный анализ	7		
	2.2.	Предобработка данных	8		
	2.3.	Важные молекулярные дескрипторы	9		
		2.3.1. Топ-10 наиболее важных дескрипторов для ІС50 .	9		
		2.3.2. Топ-10 наиболее важных дескрипторов для СС50	10		
		2.3.3. Топ-10 наиболее важных дескрипторов для ${ m SI}$	11		
3.	Fea	ture Engineering и построение моделей	13		
	3.1.	Создание новых признаков	13		
	3.2.	. Используемые модели			
	3.3.	Процесс оценки моделей			
	3.4.	. Результаты моделирования для задач Регрессии			
	3.5.	Результаты моделирования для задач Классификации .	15		
За	клю	учение	16		

Введение

Представим следующую ситуацию: химиками были предоставлены конфиденциальные данные о 1000 химических соединений с указанием их эффективности против вируса гриппа. Параметры, характеризующие эффективность, обозначаются как IC50, CC50 и SI.

Требуется проанализировать текущие параметры с использованием различных методов, научиться предсказывать их эффективность. Как и в любой задаче машинного обучения, здесь нет однозначного ответа на вопрос, какая модель обеспечит наилучший результат. Поэтому необходимо протестировать различные подходы, проанализировать возможные результаты, сравнить качество построенных моделей и сделать обоснованные выводы.

Постановка задачи

Требуется разработать и сравнить эффективные модели машинного обучения для решения следующих задач:

Задачи регрессии:

- Предсказание значения ${
 m IC}_{50}$ (полумаксимальная ингибирующая концентрация)
- ullet Предсказание значения $\mathbf{CC_{50}}$ (цитотоксическая концентрация)
- Предсказание значения **SI** (индекс селективности)

Задачи классификации:

• Бинарная классификация: превышает ли значение ${
m IC}_{50}$ медианное значение выборки

$$IC_{50} > median(IC_{50})$$

• Бинарная классификация: превышает ли значение \mathbf{CC}_{50} медианное значение выборки

$$CC_{50} > median(CC_{50})$$

• Бинарная классификация: превышает ли значение **SI** медианное значение выборки

• Бинарная классификация: превышает ли значение **SI** пороговое значение 8

1. Исследовательский анализ данных

1.1. Общая информация о датасете

- Размерность данных: 1001 строка × 214 столбцов
- Пропущенные значения отсутствуют во всех столбцах
- Большинство признаков числовые, есть бинарные категориальные признаки (fr thiazole, fr urea)

Рис. 1: Распределения целевых признаков

1.2. Анализ ключевых показателей

- ІС50 (концентрация ингибирования):
 - Среднее: 222.81 ± 402.17
 - Диапазон: от 0.0035 до 4128.53

Наличие как высокоактивных (низкие значения), так и малоактивных соединений

• СС50 (цитотоксическая концентрация):

- Среднее: 589.11 ± 642.87
- Диапазон: от 0.70 до 4538.98
- Присутствуют соединения с разной степенью токсичности

• SI (индекс селективности):

- Среднее: 72.51 (стандартное отклонение 684.48)
- Медиана: 3.85 (указывает на выбросы)
- Максимальное значение: 15620.6

1.3. Анализ молекулярных характеристик

• Дескрипторы:

- MaxAbsEStateIndex: среднее 10.83 (электронное состояние)
- qed: среднее 0.58 (показатель "лекарственности")
- SPS: среднее 29.49 (сложность синтеза)

• Бинарные признаки:

- fr thiazole: 5.2% соединений
- fr_urea: 0.7% соединений
- Некоторые фрагменты отсутствуют полностью

2. Анализ корреляций и предобработка данных

2.1. Корреляционный анализ

Анализ корреляций выявил следующие взаимосвязи между признаками:

- Умеренная положительная корреляция (0.4-0.6) между 'CC50, mM' и целевой переменной 'IC50, mM'
- Слабая корреляция (0.1-0.3) большинства молекулярных дескрипторов с целевыми переменными
- Отсутствие значимой линейной зависимости для некоторых бинарных признаков

Рис. 2: Матрица корреляций между ключевыми признаками

2.2. Предобработка данных

Для улучшения качества данных были выполнены следующие преобразования:

• Логарифмирование целевых переменных:

$$Log_IC50 = \log_{10}(IC50)$$
$$Log_CC50 = \log_{10}(CC50)$$
$$Log_SI = \log_{10}(SI)$$

- Создание новых признаков:
 - Произведение Mol
LogP и MolWt: $MolLogP \times MolWt$

- Полиномиальные признаки второй степени
- Бинарный признак $MolLogP_gt_3$
- Обработка выбросов для признаков с асимметричным распределением

2.3. Важные молекулярные дескрипторы

2.3.1. Топ-10 наиболее важных дескрипторов для ІС50

Дескриптор	Важность
VSA_EState4	0.062637
Chi1n	0.041884
${\bf FpDensityMorgan3}$	0.040449
Chi4v	0.039201
Chi2v	0.038437
BCUT2D_MRLOW	0.035050
Chi2n	0.024153
$SlogP_VSA5$	0.020892
Chi3n	0.020464
${\tt EState_VSA4}$	0.020019

Таблица 1: Важные дескрипторы для IC50

Рис. 3: График важности дескрипторов для ІС50

2.3.2. Топ-10 наиболее важных дескрипторов для СС50

Дескриптор	Важность
LabuteASA	0.057715
BCUT2D_MWLOW	0.042473
Chi1	0.038697
Kappa3	0.038478
Kappa2	0.037475
FpDensityMorgan1	0.034774
BCUT2D_MRLOW	0.030914
MolMR	0.026832
VSA_EState7	0.023108
Ipc	0.022703

Таблица 2: Важные дескрипторы для СС50

Рис. 4: График важности дескрипторов для СС50

2.3.3. Топ-10 наиболее важных дескрипторов для SI

Дескриптор	Важность
VSA_EState6	0.436867
$VSA_EState2$	0.073586
MinPartialCharge	0.048444
BalabanJ	0.041674
qed	0.039508
MaxAbsPartialCharge	0.031512
VSA_EState9	0.014044
VSA_EState8	0.013034
SMR_VSA10	0.012428
FractionCSP3	0.012006

Таблица 3: Важные дескрипторы для SI

Рис. 5: График важности дескрипторов для SI

3. Feature Engineering и построение моделей

3.1. Создание новых признаков

В процессе feature engineering были выполнены следующие преобразования:

- Логарифмирование целевых переменных для нормализации распределения
- Создание взаимодействий между признаками (произведение MolLogP и MolWt)
- Генерация полиномиальных признаков второй степени
- Добавление бинарных признаков на основе пороговых значений
- Отбор признаков по важности для разных целевых переменных

3.2. Используемые модели

Для решения задач регрессии были применены следующие алгоритмы:

- Метод k-ближайших соседей (KNN)
- Ансамблевые методы:
- Градиентный бустинг (GradientBoosting, XGBoost, LightGBM, CatBoost)
- Случайный Лес
- Метод
- Классические модели регрессии и пр.

3.3. Процесс оценки моделей

Методика оценки включала:

- Разбиение данных на обучающую и тестовую выборки (80%/20%)
- Заполнение пропущенных значений медианой
- Оценку качества в логарифмическом и исходном масштабе
- Использование метрик:
 - Среднеквадратичная ошибка (MSE)
 - Корень из среднеквадратичной ошибки (RMSE)
 - Коэффициент детерминации (R2)
- Тестирование с разным количеством признаков (от 1 до 50)

3.4. Результаты моделирования для задач Регрессии

Анализ результатов показал:

- Наилучшие результаты показали модели CatBoost и RandomForest.
- Логарифмирование целевых переменных принципиально качество моделей не улучшило.
- Удаление выбросов и лишних колонок в целом дало + к значению метрик.

Таргет	Модель	MSE	RMSE	R^2
CC50 (MM)	CatBoost	203,547.99	451.16	0.607
IC50 (MM)	Random Forest	194,487.81	441.01	0.417
SI (безразм.)	CatBoost	2,200.43	46.91	0.370

3.5. Результаты моделирования для задач Классификации

Анализ результатов показал:

- Все модели показывают относительно скромные результаты (Accuracy 50-66, что указывает на сложность задачи классификации для данного набора данных.
- Наилучшие значения у моделей градиентного бустинга: HistGradientBoos CatBoostClassifier, Stacking
- Удаление выбросов и лишних колонок в целом дало + к значению метрик.

Таргет	Модель	Accuracy	ROC AUC	F1
CC50	StackingClassifier	0.77	0.84	0.77
IC50	${\bf Grad Boost Classifier}$	0.76	0.84	0.75
SI	${\bf CatBoostClassifier}$	0.76	0.78	0.72
SI (> 8)	HGBClassifier	0.69	0.74	0.54

Заключение

В ходе выполнения курсовой работы был проведен комплексный анализ данных о 1000 химических соединениях и их активности против вируса гриппа. Основные достижения исследования:

Результаты EDA:

Выявлены значительные различия в распределениях ключевых параметров (IC50, CC50, SI)

Обнаружены многочисленные выбросы, особенно в значениях индекса селективности (SI)

Установлены умеренные корреляции между молекулярными дескрипторами и целевыми переменными

Предобработка данных:

Разработана стратегия обработки выбросов

Проведено логарифмическое преобразование целевых переменных

Созданы новые информативные признаки на основе имеющихся дескрипторов

Интерпретация:

Выделены наиболее значимые молекулярные дескрипторы для каждого целевого параметра

Установлено, что VSA_EState показал наибольшую важность для предсказания ${
m SI}$

Для IC50 и CC50 наиболее информативными оказались различные группы дескрипторов

Моделирование:

Для разных целевых переменных оптимальными оказались различные модели:

CatBoost показал наилучшие результаты для $CC50 (R^2 = 0.607)$

Random Forest лучше предсказывает IC50 (R²=0.417)

Для SI наилучший результат CatBoost (R^2 =0.370)

Логарифмирование целевых переменных не привело к значимому улучшению качества моделей

Для разных целевых переменных лучшими стали:

 $CC50 \rightarrow Stacking (Accuracy 0.772, ROC AUC 0.841)$

 $IC50 \rightarrow GradientBoosting (Accuracy 0.767, ROC AUC 0.844)$

 $SI \rightarrow CatBoost (Precision 0.857)$

 $SI>8 \rightarrow HistGradientBoosting (Accuracy 0.698)$

Как и в регрессии:

Бустинг-модели (CatBoost, GBM) лидируют

Stacking эффективен для сложных случаев

SI (>8) предсказывается хуже всего (F1=0.543)