Can Tho University Page 1 of 23

Contents

2	Contest 1.1 Template 1.2 Debug 1.3 Java 1.4 sublime-build 1.5 vscode Data structures 2.1 RMQ	2 2 2 3 3 3 3 3		4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Z function Counting occurrences of each prefix Knuth–Morris–Pratt algorithm Suffix array Suffix array slow Manacher's algorithm Trie Hashing Minimum rotation	10 10 10		Geometry .1 Fundamentals 8.1.1 Point 8.1.2 Line 8.1.3 Circle 8.1.4 Triangle 8.1.5 Convex hull 8.1.6 Polygon 8.1.6	10 12 12 12 13
	2.2 Ordered set/map 2.3 Dsu	4 4 4 5	5	5.1	merical Fast Fourier transform	12 12 12	9. 9.	inear algebra 1 Gauss elimination	18
	2.7 Persistent lazy segment tree 2.8 Lichao tree	5 6 6 6 7 7 8		6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Euler's totient function Mobius function Primes Wilson's theorem Zeckendorf's theorem Bitwise operation Modmul Miller-Rabin Pollard's who algorithm	13 13 13 13 13 14 14	1) 1) 1)	Graph 0.1 Bellman-Ford algorithm 0.2 Articulation point and Bridge 0.3 Topo sort 0.4 Strongly connected components 10.4.1 Tarjan's Algorithm 10.4.2 Kosaraju's algorithm	19 20 20 20 20 20
3	Mathematics 3.1 Trigonometry	9 9 9 9	7	6.10 6.11 6.12 6.13	Pollard's rho algorithm	14 14 15 15 15 15	1) 1)	0.5 K-th smallest shortest path	21 21 21 21
4	3.2 Sums	9 9 9	,	7.1 7.2 7.3 7.4	Catalan numbers	15 16 16 16	10 11 M	0.9 2-SAT	22
	4.1 Prefix function	9		7.5	Derangements	16	1	1.2 Matrix	2

Can Tho University Page 2 of 23

1 Contest

1.1 Template

template.h, 18 lines

```
#include <bits/stdc++.h>
using namespace std;

#ifdef LOCAL
#include "cp/debug.h"
#else
#define debug(...)
#endif

mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());

int main() {
    cin.tie(nullptr)->sync_with_stdio(false);
    // freopen("input.txt", "r", stdin);
    // freopen("output.txt", "w", stdout);
    return 0;
}
```

1.2 Debug

Description: c++17 debug template, does not support: arrays (e.g. int arr[N], vector<int> dp[N]).

debug-cpp17.h, 135 lines

```
#undef debug
template < typename T, typename G> ostream& operator << (ostream& os, pair < T, G> p);
template < size_t N > ostream& operator << (ostream& os, bitset < N > bs);
template < typename ... Ts > ostream& operator < < (ostream& os, tuple < Ts... > tup);
template < typename T, typename = void> struct iterable_std_DA: false_type {};
template < typename T>
struct iterable_std_DA<T, void_t<decltype(declval<T>().begin(), declval<T>().end())>>
 : true_type {};
template < typename T, typename = void > struct non_iterable_std_DA: false_type {};
template < typename T>
struct non_iterable_std_DA<T, void_t<decltype(declval<T>().pop())>>: true_type {};
template < typename T, typename = void> struct stack_like: false_type {};
template < typename T>
struct stack_like<T, void_t<decltype(declval<T>().top())>>: true_type {};
template<typename T, typename = void> struct queue_like: false_type {};
template<typename T>
struct queue_like<T, void_t<decltype(declval<T>().front())>>: true_type {};
template < typename Container >
typename enable_if<iterable_std_DA<Container>::value &&
                      !is_same < Container, string >:: value,
  ostream&>::type
operator << (ostream& os, Container container);</pre>
template < typename Container >
typename enable_if<non_iterable_std_DA<Container>::value &&
                      !is_same < Container, string > :: value,
 ostream&>::tvpe
operator << (ostream& os, Container container);</pre>
template < typename Container >
typename enable_if<iterable_std_DA<Container>::value &&
                      !is_same < Container, string >:: value,
```

```
ostream&>::type
operator << (ostream& os, Container container) {</pre>
 for (auto it = container.begin(); it != container.end(); ++it) {
   os << (it == container.begin() ? "" : ", ") << *it;
 return os << "}";</pre>
template<typename Container>
typename enable_if<non_iterable_std_DA<Container>::value &&
                      !is_same < Container, string >:: value,
 ostream&>::type
operator << (ostream& os, Container container) {</pre>
 os << "{":
 if constexpr (stack like<Container>::value) {
    bool first = true:
    while (!container.empty()) {
      if (!first) { os << ", "; }</pre>
      first = false:
      os << container.top(), container.pop();</pre>
 } else if constexpr (queue_like<Container>::value) {
    bool first = true;
    while (!container.empty()) {
     if (!first) { os << ", "; }</pre>
      first = false:
      os << container.front(), container.pop();</pre>
 } else {
    // maybe throw an error
 return os << "}";</pre>
template < typename T, typename G> ostream& operator << (ostream& os, pair < T, G> p) {
 return os << "(" << p.first << ", " << p.second << ")";</pre>
template < size_t N > ostream& operator << (ostream& os, bitset < N > bs) {
 for (size_t i = 0; i < N; ++i) { os << (char) (bs[i] + '0'); }</pre>
 return os;
// https://en.cppreference.com/w/cpp/utility/integer_sequence
template < typename Tup, size_t... Is>
void print_tuple_impl(ostream& os, const Tup& tup, index_sequence<Is...>) {
 ((os << (Is == 0 ? "" : ", ") << get < Is > (tup)), ...);
template < typename ... Ts> ostream& operator << (ostream& os, tuple < Ts...> tup) {
 os << "(":
 print_tuple_impl(os, tup, index_sequence_for<Ts...>{});
 return os << ")";</pre>
// https://codeforces.com/blog/entry/125435
template < typename H, typename ... T>
void debug(const char *names, H&& head, T&&...tail) {
 int i = 0;
 for (size_t bracket = 0; names[i] != '\0' && (names[i] != ',' || bracket != 0);
       i++) {
    if (names[i] == '(' || names[i] == '<' || names[i] == '{') {</pre>
      bracket++;
   | else if (names[i] == ')' || names[i] == '>' || names[i] == '}') {
      bracket --:
 cerr << "[", cerr.write(names, i) << " = " << head << "]";</pre>
 if constexpr (sizeof...(tail)) {
```

Can Tho University Page 3 of 23

```
while (names[i] != '\0' && names[i + 1] == ' ') { ++i; }
    cerr << " ";
    debug(names + i + 1, tail...);
} else {
    cerr << '\n';
}

using high_clock = chrono::high_resolution_clock;
auto start_time = high_clock::now();
int elapsed_time() {
    auto elapsed = high_clock::now() - start_time;
    start_time = high_clock::now();
    return chrono::duration_cast<chrono::milliseconds>(elapsed).count();
}

#define debug(...)
{
    cerr << __FUNCTION__ << ":" << __LINE__ << ": ";
    debug(#__VA_ARGS__, __VA_ARGS__);
}</pre>
```

1.3 Java

template.iava, 50 lines

```
import java.io.BufferedReader;
import iava.util.StringTokenizer:
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Random;
public class Main {
    public static void main(String[] args) {
       FastScanner fs = new FastScanner();
       PrintWriter out = new PrintWriter(System.out);
       int n = fs.nextInt();
       out.println(n);
       out.close(); // don't forget this line.
    static class FastScanner {
       BufferedReader br;
       StringTokenizer st;
       public FastScanner() {
            br = new BufferedReader(new InputStreamReader(System.in));
            st = null:
       public String next() {
            while (st == null || st.hasMoreTokens() == false) {
                try {
                    st = new StringTokenizer(br.readLine());
                catch (IOException e) {
                    throw new RuntimeException(e);
            return st.nextToken();
       }
       public int nextInt() {
            return Integer.parseInt(next());
       public long nextLong() {
            return Long.parseLong(next());
```

```
public double nextDouble() {
    return Double.parseDouble(next());
    }
}
```

1.4 sublime-build

c++17.sublime-build, 14 lines

1.5 vscode

tasks.json, 25 lines

```
// location: ~/.vscode or ~/.config/Code/User/
    "version": "2.0.0",
    "tasks": [
            "type": "shell"
            "label": "c++17 build",
            "command": "g++ -std=c++17 -DLOCAL -Wall -Wextra -Wfloat-equal
    -Wconversion -fmax-errors=3 \"${file}\" -o
    \"${fileDirname}/${fileBasenameNoExtension}.out\"",
            "group": {
                "kind": "build"
                // "isDefault": true
            },
       },
            "type": "shell",
            "label": "c++17 build and run",
            "dependsOn": ["c++17 build"].
            "command": "\"${fileDirname}/${fileBasenameNoExtension}.out\" < input >
    output 2> err",
            "group": {
                "kind": "build"
                // "isDefault": true
            },
       }
}
```

2 Data structures

2.1 RMQ

Description: range minimum queries on a static array. **Time:** $< O(N \log N), O(1) >$.

rmq.h, 20 lines

```
template < typename T> struct RMQ {
```

Can Tho University Page 4 of 23

```
static const int LOG = 21:
  int n;
  vector<vector<T>> table:
  RMQ(const vector<T>& arr) {
    n = (int) arr.size();
    table.assign(LOG, vector<T>(n));
    table[0] = arr;
    for (int j = 1; j < LOG; ++j) {
      for (int i = 0; i + (1 << j) - 1 < n; ++i) {
        table[j][i] = min(table[j - 1][i], table[j - 1][i + (1 << (j - 1))]);
   }
  T get(int 1, int r) {
    assert(0 \le 1 \&\& 1 \le r \&\& r < n);
    int i = _{-}lg(r - l + 1);
    return min(table[i][l], table[i][r - (1 << i) + 1]);</pre>
};
```

2.2 Ordered set/map

ordered_set.h, 24 lines

```
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
template<typename K, typename V, typename comp = less<K>>>
using ordered_map = tree<K, V, comp, rb_tree_tag, tree_order_statistics_node_update>;
template < typename K. typename comp = less < K >>
using ordered_set = ordered_map<K, null_type, comp>;
const int INF = 0x3f3f3f3f;
void example() {
 vector < int > nums = \{1, 2, 3, 5, 10\};
  ordered_set<int> st(nums.begin(), nums.end());
  cout << *st.find_by_order(0) << '\n'; // 1</pre>
  assert(st.find_by_order(-INF) == st.end());
 assert(st.find_by_order(INF) == st.end());
  cout << st.order_of_key(2) << '\n'; // 1</pre>
 cout << st.order_of_key(4) << '\n'; // 3</pre>
 cout << st.order_of_key(9) << '\n'; // 4
 cout << st.order_of_key(-INF) << '\n'; // 0</pre>
  cout << st.order_of_key(INF) << '\n'; // 5</pre>
```

2.3 Ds11

dsu.h, 37 lines

```
struct Dsu {
 int n;
 vector<int> par, sz;
 Dsu(int _n): n(_n) {
   sz.resize(n, 1);
   par.resize(n);
   iota(par.begin(), par.end(), 0);
 int find(int v) {
   // finding leader/parrent of set that contains the element v.
   // with {path compression optimization}.
   return (v == par[v] ? v : par[v] = find(par[v]));
 bool same(int u, int v) { return find(u) == find(v); }
 bool unite(int u, int v) {
   u = find(u):
   v = find(v);
   if (u == v) { return false; }
   if (sz[u] < sz[v]) { swap(u, v); }
```

```
par[v] = u;
    sz[u] += sz[v];
    return true;
}
vector<vector<int>> groups() {
    // returns the list of the "list of the vertices in a connected component".
    vector<int> leader(n);
    for (int i = 0; i < n; ++i) { leader[i] = find(i); }
    vector<int> id(n, -1);
    int count = 0;
    for (int i = 0; i < n; ++i) {
        if (id[leader[i]] == -1) { id[leader[i]] = count++; }
    }
    vector<vector<int>> result(count);
    for (int i = 0; i < n; ++i) { result[id[leader[i]]].push_back(i); }
    return result;
}
</pre>
```

2.4 MinQueue

Description: acts like normal std::queue except it supports get minimum value in current queue.

min_queue.h, 30 lines

```
template < typename T> struct MinQueue {
 vector <T> vals;
 int ptr = 0;
 vector<int> st;
 int ptr_idx = 0;
 void push(T val) {
    while ((int) st.size() > ptr_idx && vals[st.back()] >= val) { st.pop_back(); }
   st.push_back((int) vals.size());
   vals.push_back(val);
 void pop() {
   assert(ptr < (int) vals.size());</pre>
   if (ptr_idx < (int) st.size() && st[ptr_idx] == ptr) { ptr_idx++; }</pre>
 T get() {
    assert(ptr_idx < (int) st.size());</pre>
   return vals[st[ptr_idx]];
 int front() {
   assert(!emptv()):
   return vals[ptr];
 int back() {
    assert(!emptv()):
   return vals.back();
 bool empty() { return (ptr == (int) vals.size()); }
 int size() { return ((int) vals.size() - ptr); }
```

2.5 Segment tree

Description: A segment tree with range updates and sum queries that supports three types of operations:

- Increase each value in range [1, r] by x (i.e. a[i] += x).
- Set each value in range [1, r] to x (i.e. a[i] = x).
- Determine the sum of values in range [l, r].

segment_tree.h, 68 lines

```
struct SegmentTree {
  int n;
  vector<long long> tree, lazy_add, lazy_set;
  SegmentTree(int _n): n(_n) {
    int p = 1;
    while (p < n) { p *= 2; }
    tree.resize(p * 2);</pre>
```

Can Tho University Page 5 of 23

```
lazy_add.resize(p * 2);
 lazy_set.resize(p * 2);
long long merge(const long long& left, const long long& right) {
  return left + right;
void build(int id, int 1, int r, const vector<int>& arr) {
  if (1 == r) {
    tree[id] += arr[1];
    return:
  int mid = (1 + r) >> 1;
  build(id * 2, 1, mid, arr);
  build(id * 2 + 1, mid + 1, r, arr);
  tree[id] = merge(tree[id * 2], tree[id * 2 + 1]);
void push(int id, int 1, int r) {
  if (lazy_set[id] == 0 && lazy_add[id] == 0) { return; }
  int mid = (1 + r) >> 1;
  for (int child : {id * 2, id * 2 + 1}) {
    int range = (child == id * 2 ? mid - l + 1 : r - mid);
    if (lazy_set[id] != 0) {
      lazy_add[child] = 0;
      lazy_set[child] = lazy_set[id];
      tree[child] = range * lazy_set[id];
    lazy_add[child] += lazy_add[id];
    tree[child] += range * lazy_add[id];
  lazy_add[id] = lazy_set[id] = 0;
void update(
  int id, int 1, int r, int u, int v, int amount, bool set_value = false) {
  if (r < u || 1 > v) { return; }
  if (u <= 1 && r <= v) {
    if (set_value) {
      tree[id] = 1LL * amount * (r - l + 1);
      lazy_set[id] = amount;
      lazy_add[id] = 0; // clear all previous updates.
      tree[id] += 1LL * amount * (r - 1 + 1);
      lazy_add[id] += amount;
    return:
  push(id, 1, r);
  int mid = (1 + r) >> 1;
  update(id * 2, 1, mid, u, v, amount, set_value);
  update(id * 2 + 1, mid + 1, r, u, v, amount, set_value);
  tree[id] = merge(tree[id * 2], tree[id * 2 + 1]);
long long get(int id, int 1, int r, int u, int v) {
 if (r < u || 1 > v) { return 0; }
 if (u <= 1 && r <= v) { return tree[id]; }</pre>
  push(id, 1, r);
  int mid = (1 + r) >> 1;
  long long left = get(id * 2, 1, mid, u, v);
  long long right = get(id * 2 + 1, mid + 1, r, u, v);
  return merge(left, right);
```

2.6 Efficient segment tree

efficient_segment_tree.h, 26 lines

```
template < typename T > struct SegmentTree {
  int n;
  vector < T > tree;
  SegmentTree(int _n): n(_n), tree(2 * n) {}
```

```
T merge(const T& left, const T& right) { return left + right; }
  template<typename G> void build(const vector<G>& initial) {
   assert((int) initial.size() == n);
   for (int i = 0; i < n; ++i) { tree[i + n] = initial[i]; }</pre>
   for (int i = n - 1: i > 0: --i) {
     tree[i] = merge(tree[i * 2], tree[i * 2 + 1]);
 void modify(int i, int v) {
   tree[i += n] = v;
   for (i /= 2; i > 0; i /= 2) { tree[i] = merge(tree[i * 2], tree[i * 2 + 1]); }
 T get_sum(int 1, int r) {
   // sum of elements from 1 to r - 1.
   T ret{};
   for (1 += n, r += n; 1 < r; 1 /= 2, r /= 2) {
     if (1 & 1) { ret = merge(ret, tree[1++]); }
     if (r & 1) { ret = merge(ret, tree[--r]); }
   return ret;
};
```

2.7 Persistent lazy segment tree

persistent_lazy_segment_tree.h, 65 lines

```
struct Vertex {
 int 1, r;
 long long val, lazy;
 bool has_changed = false;
 Vertex() {}
 Vertex(int _1, int _r, long long _val, int _lazy = 0):
   l(_1), r(_r), val(_val), lazy(_lazy) {}
struct PerSegmentTree {
 vector<Vertex> tree;
 vector<int> root;
 int build(const vector<int>& arr, int 1, int r) {
   if (1 == r) {
      tree.emplace_back(-1, -1, arr[1]);
     return tree.size() - 1;
   int mid = (1 + r) / 2;
   int left = build(arr, 1, mid);
   int right = build(arr, mid + 1, r);
   tree.emplace_back(left, right, tree[left].val + tree[right].val);
   return tree.size() - 1;
 int add(int x, int 1, int r, int u, int v, int amt) {
   if (1 > v \mid | r < u)  { return x: }
   if (u <= 1 && r <= v) {
     tree.emplace_back(tree[x].1, tree[x].r, tree[x].val + 1LL * amt * (r - l + 1),
        tree[x].lazy + amt);
      tree.back().has_changed = true;
     return tree.size() - 1;
   int mid = (1 + r) >> 1;
   push(x, 1, mid, r);
   int left = add(tree[x].1, 1, mid, u, v, amt);
   int right = add(tree[x].r, mid + 1, r, u, v, amt);
   tree.emplace_back(left, right, tree[left].val + tree[right].val, 0);
   return tree.size() - 1;
 long long get_sum(int x, int 1, int r, int u, int v) {
   if (r < u || 1 > v) { return 0; }
   if (u <= 1 && r <= v) { return tree[x].val; }
   int mid = (1 + r) / 2;
   push(x, 1, mid, r);
```

Can Tho University Page 6 of 23

```
return get_sum(tree[x].1, 1, mid, u, v) + get_sum(tree[x].r, mid + 1, r, u, v);
  void push(int x, int l, int mid, int r) {
    if (!tree[x].has_changed) { return; }
    Vertex left = tree[tree[x].1];
    Vertex right = tree[tree[x].r];
    tree.emplace_back(left);
    tree[x].l = tree.size() - 1
    tree.emplace_back(right);
    tree[x].r = tree.size() - 1;
    tree[tree[x].1].val += tree[x].lazy * (mid - 1 + 1);
    tree[tree[x].1].lazy += tree[x].lazy;
    tree[tree[x].r].val += tree[x].lazy * (r - mid);
    tree[tree[x].r].lazy += tree[x].lazy;
    tree[tree[x].1].has_changed = true;
    tree[tree[x].r].has_changed = true;
    tree[x].lazv = 0:
    tree[x].has_changed = false;
};
```

2.8 Lichao tree

Description: A segment tree that allows inserting a new line and querying for minimum value over all lines at point **x**

Usage: useful in convex hull trick.

lichao_tree.h, 41 lines

```
const long long INF LL = (long long) 4e18:
struct Line {
 long long a, b;
 Line(long long _a = 0, long long _b = INF_LL): a(_a), b(_b) {}
 long long operator()(long long x) { return a * x + b; }
struct SegmentTree { // min query
  vector<Line> tree;
  SegmentTree() {}
  SegmentTree(int _n): n(1) {
    while (n < _n) { n *= 2; }
    tree.resize(n * 2);
  void insert(int x, int 1, int r, Line line) {
      if (line(l) < tree[x](l)) { tree[x] = line; }
      return;
    int mid = (1 + r) >> 1;
    bool b_left = line(l) < tree[x](l);</pre>
   bool b_mid = line(mid) < tree[x](mid);</pre>
   if (b_mid) { swap(tree[x], line); }
   if (b_left != b_mid) {
      insert(x * 2, 1, mid, line);
      insert(x * 2 + 1, mid + 1, r, line);
 long long query(int x, int l, int r, int at) {
   if (1 == r) { return tree[x](at); }
   int mid = (1 + r) >> 1;
   if (at <= mid) {
      return min(tree[x](at), query(x * 2, 1, mid, at));
      return min(tree[x](at), query(x * 2 + 1, mid + 1, r, at));
```

} };

2.9 Old driver tree (Chtholly tree)

Description: An optimized brute-force approach to deal with problems that have operation of setting an interval to the same number.

Note: only works when inputs are random, otherwise it will TLE.

old_driver_tree.h, 58 lines

```
#include "../number-theory/modmul.h"
struct ODT {
  map<int, long long> tree;
  using It = map<int, long long>::iterator;
  It split(int x) {
   It it = tree.upper_bound(x);
   assert(it != tree.begin());
   if (it->first == x) { return it; }
   return tree.emplace(x, it->second).first;
  void add(int 1, int r, int amt) {
   It it_l = split(l);
   It it_r = split(r + 1);
    while (it_l != it_r) {
     it_l->second += amt;
      ++it_l;
  void set(int 1, int r, int v) {
   It it l = split(l):
   It it_r = split(r + 1);
    while (it_l != it_r) { tree.erase(it_l++); }
   tree[1] = v;
  long long kth_smallest(int 1, int r, int k) {
    // return the k-th smallest value in range [1..r]
   vector<pair<long long, int>> values; // pair(value, count)
   It it l = split(l):
   It it_r = split(r + 1);
    while (it l != it r) {
     It prev = it_l++;
      values.emplace_back(prev->second, it_l->first - prev->first);
    sort(values.begin(), values.end());
    for (auto [value, cnt] : values) {
     if (k <= cnt) { return value; }</pre>
     k -= cnt;
   return -1;
  int sum_of_xth_power(int 1, int r, int x, int mod) {
   It it_l = split(l);
   It it_r = split(r + 1);
   int res = 0;
    while (it_l != it_r) {
     It prev = it_l++;
        (res + 1LL * (it_l->first - prev->first) * modpow(prev->second, x, mod)) %
    return res;
};
```

2.10 Disjoint sparse table

Can Tho University Page 7 of 23

Description: range query on a static array. **Time:** *O*(1) per query.

disjoint_sparse_table.h, 37 lines

```
const int MOD = (int) 1e9 + 7;
struct DisjointSparseTable { // product gueries.
 int n, h;
 vector<vector<int>> dst:
 vector<int> lg;
 DisjointSparseTable(int _n): n(_n) {
   h = 1; // in case n = 1: h = 0 !!.
   int p = 1;
   while (p < n) \{ p *= 2, h++; \}
   lg.resize(p);
   lg[1] = 0;
   for (int i = 2; i < p; ++i) { lg[i] = 1 + lg[i / 2]; }
   dst.resize(h, vector<int>(n));
 void build(const vector<int>& A) {
   for (int lv = 0; lv < h; ++lv) {
     int len = (1 << lv);</pre>
     for (int k = 0; k < n; k += len * 2) {
       int mid = min(k + len, n);
       dst[lv][mid - 1] = A[mid - 1] \% MOD;
       for (int i = mid - 2; i >= k; --i) {
         dst[lv][i] = 1LL * A[i] * dst[lv][i + 1] % MOD;
       if (mid == n) { break; }
       dst[lv][mid] = A[mid] % MOD;
       for (int i = mid + 1; i < min(mid + len, n); ++i) {</pre>
         dst[lv][i] = 1LL * A[i] * dst[lv][i - 1] % MOD;
     }
   }
 int get(int 1, int r) {
   if (1 == r) { return dst[0][1]; }
   int i = lg[l ^ r];
   return 1LL * dst[i][l] * dst[i][r] % MOD;
```

2.11 Fenwick tree

Description: range update and range sum query.

fenwick_tree.h, 53 lines

```
using tree_type = long long;
struct FenwickTree {
 vector<tree_type> fenw_coeff, fenw;
 FenwickTree() {}
 FenwickTree(int n): n(n) {
   fenw\_coeff.assign(n, 0); // fenwick tree with coefficient (n - i).
   fenw.assign(n, 0); // normal fenwick tree.
  template<typename G> void build(const vector<G>& A) {
   assert((int) A.size() == n):
   vector<int> diff(n);
   diff[0] = A[0];
   for (int i = 1; i < n; ++i) { diff[i] = A[i] - A[i - 1]; }</pre>
   fenw_coeff[0] = (long long) diff[0] * n;
   fenw[0] = diff[0]:
   for (int i = 1; i < n; ++i) {
     fenw_coeff[i] = fenw_coeff[i - 1] + (long long) diff[i] * (n - i);
     fenw[i] = fenw[i - 1] + diff[i];
   for (int i = n - 1; i >= 0; --i) {
     int j = (i \& (i + 1)) - 1;
```

```
if (j >= 0) {
      fenw_coeff[i] -= fenw_coeff[i];
      fenw[i] -= fenw[j];
void add(vector<tree_type>& fenw, int i, tree_type val) {
  while (i < n) {
    fenw[i] += val;
   i |= (i + 1);
}
tree_type __prefix_sum(vector<tree_type>& fenw, int i) {
  tree_type res{};
  while (i >= 0) {
   res += fenw[i];
   i = (i \& (i + 1)) - 1;
  return res;
tree_type prefix_sum(int i) {
  return __prefix_sum(fenw_coeff, i) - __prefix_sum(fenw, i) * (n - i - 1);
void range_add(int 1, int r, tree_type val) {
  add(fenw_coeff, l, (n - l) * val);
  add(fenw_coeff, r + 1, (n - r - 1) * (-val));
  add(fenw, 1, val);
  add(fenw, r + 1, -val);
tree_type range_sum(int 1, int r) { return prefix_sum(r) - prefix_sum(l - 1); }
```

2.12 Fenwick tree 2D

Description: range update and range sum query on a 2D array.

fenwick_tree_2d.h. 40 lines

```
using tree_type = long long;
struct FenwickTree2D {
 int n, m;
 vector<vector<tree_type>> fenw[4];
 FenwickTree2D(int _n, int _m): n(_n), m(_m) {
   for (int i = 0; i < 4; i++) { fenw[i].resize(n, vector<tree_type>(m)); }
 void add(int u, int v, tree_type val) {
   for (int i = u; i < n; i |= (i + 1)) {
     for (int j = v; j < m; j | = (j + 1)) {
       fenw[0][i][j] += val;
       fenw[1][i][j] += (u + 1) * val;
       fenw[2][i][j] += (v + 1) * val;
        fenw[3][i][j] += (u + 1) * (v + 1) * val;
   }
 void range_add(int r, int c, int rr, int cc, tree_type val) { // [r, rr] x [c, cc].
   add(r, c, val);
   add(r, cc + 1, -val);
   add(rr + 1, c, -val);
   add(rr + 1, cc + 1, val);
 tree_type prefix_sum(int u, int v) {
   tree_type res{};
   for (int i = u: i >= 0: i = (i & (i + 1)) - 1) {
     for (int j = v; j >= 0; j = (j & (j + 1)) - 1) {
       res += (u + 2) * (v + 2) * fenw[0][i][j];
       res -= (v + 2) * fenw[1][i][j];
       res -= (u + 2) * fenw[2][i][j];
       res += fenw[3][i][j];
```

Can Tho University Page 8 of 23

2.13 Treap

treap.h, 94 lines

```
struct Node {
 int val, prior, cnt;
 bool rev:
  Node *left, *right;
  Node() {}
  Node(int _val):
    val(_val), prior(rng()), cnt(1), rev(false), left(nullptr), right(nullptr) {}
int get_cnt(Node *n) { return n ? n->cnt : 0; }
void pull(Node *& n) {
 if (!n) { return; }
 n->cnt = get_cnt(n->left) + get_cnt(n->right) + 1;
void push(Node *treap) {
 if (!treap || !treap->rev) { return; }
  treap -> rev = false;
  swap(treap->left, treap->right);
 if (treap->left) { treap->left->rev ^= true; }
 if (treap->right) { treap->right->rev ^= true; }
struct Treap {
  Node *root:
  bool implicit_key;
 Treap(bool _implicit_key = true): root(nullptr), implicit_key(_implicit_key) {}
  bool go_right(Node *treap, int pos_or_val) {
   if (implicit_kev) {
     int local_idx = get_cnt(treap->left);
      return local_idx <= pos_or_val;</pre>
   return treap->val <= pos_or_val;</pre>
 pair<Node *, Node *> split(Node *treap, int pos_or_val) {
   // normal treap -> Left: all nodes having val <= val
    // implicit treap -> Left: all nodes having index <= pos
   if (!treap) { return {}; }
    push(treap);
    if (go_right(treap, pos_or_val)) {
     if (implicit_key) { pos_or_val -= (get_cnt(treap->left) + 1); }
      auto pr = split(treap->right, pos_or_val);
      treap->right = pr.first;
     pull(treap);
     return {treap, pr.second};
      auto pl = split(treap->left, pos_or_val);
      treap->left = pl.second;
     pull(treap):
      return {pl.first, treap};
  tuple < Node *, Node *, Node *> split(int u, int v) {
   auto [1, rem] = split(root, u - 1);
   auto [mid. r] = split(rem. v - (implicit kev ? u : 0)):
   return {1, mid, r};
  Node *merge(Node *1, Node *r) {
   push(1);
```

```
push(r);
    if (!l || !r) { return (l ? l : r); }
   if (l->prior < r->prior) {
     1->right = merge(1->right, r);
      pull(1);
      return 1;
    } else {
     r->left = merge(1, r->left);
     pull(r);
      return r;
  void insert(int pos. int val) {
   auto [1, r] = split(root, pos - 1);
   root = merge(merge(l, new Node(val)), r);
  void insert(int val) { insert(val, val); }
  void erase(int u, int v) {
   auto [1, mid, r] = split(u, v);
   root = merge(1, r);
  void reverse(int u, int v) {
   auto [1, mid, r] = split(u, v);
   mid->rev ^= true;
   root = merge(merge(1, mid), r);
  int get_kth(Node *treap, int k) {
   if (!treap) { return (int) 1e9; }
   int sz = get_cnt(treap->left) + 1;
   if (sz == k) {
      return treap->val;
   } else if (sz < k) {</pre>
     return get_kth(treap->right, k - sz);
    return get_kth(treap->left, k);
};
```

2.14 Line container

Description: container that allow you can add lines in form ax + b and query maximum value at x.

line_container.h, 40 lines

```
using num_t = int;
struct Line {
 num_t a, b; // ax + b
 mutable num_t x; // x-intersect with the next line in the hull
 bool operator<(const Line& other) const { return a < other.a; }</pre>
 bool operator<(num_t other_x) const { return x < other_x; }</pre>
struct LineContainer: multiset<Line, less<>> { // max-query
 // for doubles, use INF = 1 / 0.0
 static const num_t INF = numeric_limits<num_t>::max();
  num_t floor_div(num_t a, num_t b) { return a / b - ((a ^ b) < 0 && a % b != 0); }</pre>
 bool isect(iterator u, iterator v) {
   if (v == end()) {
     u->x = INF;
     return false;
   if (u->a == v->a) {
     u->x = (u->b > v->b ? INF : -INF);
   } else {
     u->x = floor_div(v->b - u->b, u->a - v->a);
   return u->x >= v->x;
 void add(num_t a, num_t b) {
   auto z = insert({a, b, 0}), y = z++, x = y;
```

Can Tho University Page 9 of 23

```
while (isect(y, z)) { z = erase(z); }
if (x != begin() && isect(--x, y)) {
    y = erase(y);
    isect(x, y);
}
while ((y = x) != begin() && (--x)->x >= y->x) { isect(x, erase(y)); }
}
num_t query(num_t x) {
    assert(!empty());
    auto it = *lower_bound(x);
    return it.a * x + it.b;
};
```

3 Mathematics

3.1 Trigonometry

3.1.1 Sum - difference identities

$$\sin(u \pm v) = \sin(u)\cos(v) \pm \cos(u)\sin(v)$$

$$\cos(u \pm v) = \cos(u)\cos(v) \mp \sin(u)\sin(v)$$

$$\tan(u \pm v) = \frac{\tan(u) \pm \tan(v)}{1 \mp \tan(u)\tan(v)}$$

3.1.2 Sum to product identities

$$\cos(u) + \cos(v) = 2\cos(\frac{u+v}{2})\cos(\frac{u-v}{2}) \qquad \sin(u) + \sin(v) = 2\sin(\frac{u+v}{2})\cos(\frac{u-v}{2})$$

$$\cos(u) - \cos(v) = -2\sin(\frac{u+v}{2})\sin(\frac{u-v}{2}) \qquad \sin(u) - \sin(v) = 2\cos(\frac{u+v}{2})\sin(\frac{u-v}{2})$$

3.1.3 Product identities

$$\cos(u)\cos(v) = \frac{1}{2}[\cos(u+v) + \cos(u-v)]$$

$$\sin(u)\sin(v) = -\frac{1}{2}[\cos(u+v) - \cos(u-v)]$$

$$\sin(u)\cos(v) = \frac{1}{2}[\sin(u+v) + \sin(u-v)]$$

3.1.4 Double - triple angle identities

$$\sin(2u) = 2\sin(u)\cos(u) \qquad \sin(3u) = 3\sin(u) - 4\sin^3(u)$$

$$\cos(2u) = 2\cos^2(u) - 1 = 1 - 2\sin^2(u) \qquad \cos(3u) = 4\cos^3(u) - 3\cos(u)$$

$$\tan(2u) = \frac{2\tan(u)}{1 - \tan^2(u)} \qquad \tan(3u) = \frac{3\tan(u) - \tan^3(u)}{1 - 3\tan^2(u)}$$

3.2 Sums

$$\sum_{i=a}^{b} c^{i} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$\sum_{i=1}^{n} i^{6} = \frac{n(n+1)(2n+1)(3n^{4} + 6n^{3} - 3n + 1)}{42}$$

$$\sum_{i=1}^{n} i^{6} = \frac{n(n+1)(2n+1)(3n^{4} + 6n^{3} - 3n + 1)}{42}$$

$$\sum_{i=1}^{n} i^{7} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)}{24}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=0}^{n} i^{6} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)}{24}$$

$$\sum_{i=1}^{n} i^{6} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)}{24}$$

$$\sum_{i=1}^{n} i^{7} = \frac{n^{2}(n+1)(2n+1)}{6}$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)(2n+1)}{6}$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)(2n+1)}{n+1}$$

$$\sum_{i=1}^{n} i^{6} = \frac{n^{2}(n+1)(2n+1)(3n^{4} + 6n^{3} - 3n + 1)}{24}$$

$$\sum_{i=1}^{n} i^{7} = \frac{n^{2}(n+1)(2n+1)(3n^{4} + 6n^{3} - 3n + 1)}{24}$$

$$\sum_{i=1}^{n} i^{7} = \frac{n^{2}(n+1)(2n+1)(3n^{4} + 6n^{3} - 3n + 1)}{24}$$

$$\sum_{i=1}^{n} i^{7} = \frac{n^{2}(n+1)(2n+1)(3n^{4} + 6n^{3} - 3n + 1)}{24}$$

$$\sum_{i=1}^{n} i^{7} = \frac{n^{2}(n+1)(2n+1)(3n^{4} + 6n^{3} - 3n + 1)}{24}$$

$$\sum_{i=1}^{n} i^{7} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)}{24}$$

$$\sum_{i=1}^{n} i^{7} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)}{24}$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)}{24}$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)}{24}$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)}{24}$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)}{24}$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)}{24}$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)}{24}$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 4n + 2)$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 1n + 2$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} - 1n + 2$$

$$\sum_{i=0}^{n} i^{n} = \frac{n^{2}(n+1)^{2}(3n^{4} + 6n^{3} - n^{2} -$$

3.3 Pythagorean triple

- A Pythagorean triple is a triple of positive integers a, b, and c such that $a^2 + b^2 = c^2$.
- If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k.
- A primitive Pythagorean triple is one in which *a*, *b*, and *c* are coprime.
- Generating Pythagorean triple
 - Euclid's formula: with arbitrary 0 < n < m, then:

$$a = m^2 - n^2$$
, $b = 2mn$, $c = m^2 + n^2$

form a Pythagorean triple.

To obtain primitive Pythagorean triple, this condition must hold: *m* and *n* are coprime, *m* and *n* have opposite parity.

4 String

4.1 Prefix function

Description: the prefix function of a string s is defined as an array pi of length n, where pi[i] is the length of the longest proper prefix of the sub-string s[0..i] which is also a suffix of this sub-string.

Time: O(|S|).

prefix_function.h, 11 lines

```
vector<int> prefix_function(const string& s) {
  int n = (int) s.length();
  vector<int> pi(n);
  pi[0] = 0;
```

Can Tho University Page 10 of 23

• sa[i] = starting index of the i-th smallest suffix.

lcp[i] = longest common prefix between 'sa[i - 1]' and 'sa[i]'

rank[i] = rank of the suffix starting at 'i'.

```
for (int i = 1; i < n; ++i) {
   int j = pi[i - 1]; // try length pi[i - 1] + 1.
   while (j > 0 && s[j] != s[i]) { j = pi[j - 1]; }
   if (s[j] == s[i]) { pi[i] = j + 1; }
   return pi;
}
```

4.2 Z function

Description: for a given string 's', z[i] = longest common prefix of 's' and suffix starting at 'i'. z[0] is generally not well defined (this implementation below assume z[0] = 0).

Time: O(n).

z_function.h, 15 lines

```
vector<int> z_function(const string& s) {
   int n = (int) s.size();
   vector<int> z(n);
   z[0] = 0;
   // [1, r)
   for (int i = 1, l = 0, r = 0; i < n; ++i) {
      if (i < r) { z[i] = min(r - i, z[i - 1]); }
      while (i + z[i] < n && s[z[i]] == s[i + z[i]]) { ++z[i]; }
   if (i + z[i] > r) {
      l = i;
      r = i + z[i];
   }
   return z;
}
```

4.3 Counting occurrences of each prefix

Description: count the number of occurrences of each prefix in the given string. Time: O(n).

counting_occur_of_prefix.h, 12 lines

```
#include "prefix_function.h"
vector<int> count_occurrences(const string& s) {
  vector<int> pi = prefix_function(s);
  int n = (int) s.size();
  vector<int> ans(n + 1);
  for (int i = 0; i < n; ++i) { ans[pi[i]]++; }
  for (int i = n - 1; i > 0; --i) { ans[pi[i - 1]] += ans[i]; }
  for (int i = 0; i <= n; ++i) { ans[i]++; }
  return ans;
  // Input: ABACABA
  // Output: 4 2 2 1 1 1 1
}</pre>
```

4.4 Knuth-Morris-Pratt algorithm

Description: searching for a sub-string in a string.

Time: O(N + M).

KMP.h, 11 lines

```
#include "prefix_function.h"
vector<int> KMP(const string& text, const string& pattern) {
  int n = (int) pattern.length();
  string combined = pattern + '$' + text;
  vector<int> pi = prefix_function(combined);
  vector<int> indices;
  for (int i = 0; i < (int) combined.length(); ++i) {
    if (pi[i] == n) { indices.push_back(i - 2 * n); }
  }
  return indices;
}</pre>
```

4.5 Suffix array

Description: suffix array is a sorted array of all the suffixes of a given string.

```
lcp[i + 2], ..., lcp[j])
Time: O(N \log N).
                                                                          suffix_array.h, 47 lines
struct SuffixArray {
  string s;
 int n, lim;
 vector<int> sa, lcp, rank;
 SuffixArray(const string& _s, int _lim = 256):
   s(s), n(s.length() + 1), lim(_lim), sa(n), lcp(n), rank(n) {
   build();
   kasai();
    sa.erase(sa.begin());
   lcp.erase(lcp.begin());
   rank.pop_back();
   s.pop_back();
 void build() {
   vector<int> nrank(n), norder(n), cnt(max(n, lim));
    for (int i = 0; i < n; ++i) {
      sa[i] = i;
      rank[i] = s[i];
    for (int k = 0, rank_cnt = 0; rank_cnt < n - 1;</pre>
         k = max(1, k * 2), lim = rank_cnt + 1) {
      for (int i = 0: i < n: ++i) {
        norder[i] = (sa[i] - k + n) \% n;
        cnt[rank[i]]++;
      for (int i = 1; i < lim; ++i) { cnt[i] += cnt[i - 1]; }</pre>
      for (int i = n - 1; i >= 0; --i) { sa[--cnt[rank[norder[i]]]] = norder[i]; }
      rank[sa[0]] = rank\_cnt = 0;
      for (int i = 1: i < n: ++i) {
        int u = sa[i], v = sa[i - 1];
        int nu = (u + k) \% n, nv = (v + k) \% n;
        if (rank[u] != rank[v] || rank[nu] != rank[nv]) { ++rank_cnt; }
        nrank[sa[i]] = rank_cnt;
     for (int i = 0; i < rank_cnt + 1; ++i) { cnt[i] = 0; }
      rank.swap(nrank);
 void kasai() {
    for (int i = 0, k = 0; i < n - 1; ++i, k = max(0, k - 1)) {
     int j = sa[rank[i] - 1];
      while (s[i + k] == s[j + k]) \{ k++; \}
      lcp[rank[i]] = k;
};
```

• for arbitrary 'u v', let i = rank[u] - 1, j = rank[v] - 1 (assume i < j), then longest_common_prefix(u, v) = min(lcp[i + 1],

4.6 Suffix array slow

Description: an easier and shorter implementation of suffix array but run a bit slower. **Time:** $O(N \log^2 N)$.

```
struct SuffixArraySlow {
   string s;
   int n;
   vector < int > sa, lcp, rank;
   SuffixArraySlow(const string& _s):
      s(_s), n((int) s.size() + 1), sa(n), lcp(n), rank(n) {
```

suffix_array_slow.h, 41 lines

Can Tho University Page 11 of 23

```
s += '$':
    build();
    kasai();
    sa.erase(sa.begin());
   lcp.erase(lcp.begin());
   rank.pop_back();
   s.pop_back();
  bool comp(int i, int j, int k) {
    return make_pair(rank[i], rank[(i + k) % n]) <</pre>
           make_pair(rank[j], rank[(j + k) % n]);
  void build() {
   vector<int> nrank(n);
    for (int i = 0; i < n; ++i) {
     sa[i] = i;
      rank[i] = s[i];
    for (int k = 0; k < n; k = max(1, k * 2)) {
      stable_sort(sa.begin(), sa.end(), [&](int i, int j) { return comp(i, j, k); });
      for (int i = 0, cnt = 0; i < n; ++i) {
        if (i > 0 \& comp(sa[i - 1], sa[i], k)) { ++cnt; }
        nrank[sa[i]] = cnt;
      rank.swap(nrank);
  void kasai() {
    for (int i = 0, k = 0; i < n - 1; ++i, k = max(0, k - 1)) {
     int j = sa[rank[i] - 1];
      while (s[i + k] == s[j + k]) \{ ++k; \}
      lcp[rank[i]] = k;
};
```

Manacher's algorithm

Description: for each position, computes d[0][i] = half length of longest palindrome centered on i (rounded up), d[1][i] = half length of longest palindrome centered on i and i - 1.

Time: O(N).

```
manacher.h, 23 lines
array<vector<int>, 2> manacher(const string& s) {
 int n = (int) s.size();
 array<vector<int>, 2> d;
 for (int z = 0; z < 2; ++z) {
   d[z].resize(n);
   int 1 = 0. r = 0:
   for (int i = 0; i < n; ++i) {
     int mirror = 1 + r - i + z;
     d[z][i] = (i < r ? min(d[z][mirror], r - i) : 0);
     int L = i - d[z][i] - z, R = i + d[z][i];
     while (L >= 0 \&\& R < n \&\& s[L] == s[R]) {
       d[z][i]++;
       L--;
       R++;
     if (R > r) {
       1 = L;
       r = R:
 return d;
```

Trie

Description: a rooted tree in which each edge is labeled with a character.

Check if a string exists in the set of strings.

Time: O(N) for each operation where N is the length of the string.

trie.h, 36 lines

```
struct Trie {
 const static int ALPHABET = 26;
 const static char minChar = 'a';
 struct Vertex {
   int next[ALPHABET];
   bool leaf:
   Vertex() {
     leaf = false;
      fill(next, next + ALPHABET, -1);
 };
 vector<Vertex> trie;
 Trie() { trie.emplace_back(); }
  void insert(const string& s) {
   int i = 0;
   for (const char& ch : s) {
     int j = ch - minChar;
     if (trie[i].next[j] == -1) {
        trie[i].next[j] = trie.size();
        trie.emplace_back();
     i = trie[i].next[j];
   trie[i].leaf = true;
 bool find(const string& s) {
   int i = 0;
   for (const char& ch : s) {
     int j = ch - minChar;
     if (trie[i].next[j] == -1) { return false; }
     i = trie[i].next[j];
   return (trie[i].leaf ? true : false);
};
```

Hashing

hash61.h, 56 lines

```
struct Hash61 {
 static const uint64_t MOD = (1LL << 61) - 1;</pre>
 static uint64_t BASE;
 static vector<uint64_t> pw;
 uint64_t addmod(uint64_t a, uint64_t b) const {
   a += b;
   if (a >= MOD) { a -= MOD; }
   return a;
 uint64_t submod(uint64_t a, uint64_t b) const {
   a += MOD - b;
   if (a >= MOD) { a -= MOD; }
   return a;
 uint64_t mulmod(uint64_t a, uint64_t b) const {
   uint64_t low1 = (uint32_t) a, high1 = (a >> 32);
   uint64_t low2 = (uint32_t) b, high2 = (b >> 32);
   uint64_t low = low1 * low2;
   uint64_t mid = low1 * high2 + low2 * high1;
   uint64_t high = high1 * high2;
   uint64_t ret =
     (low \& MOD) + (low >> 61) + (high << 3) + (mid >> 29) + (mid << 35 >> 3) + 1;
   // ret %= MOD:
```

Can Tho University Page 12 of 23

```
ret = (ret >> 61) + (ret & MOD);
   ret = (ret >> 61) + (ret & MOD);
   return ret - 1;
  void ensure_pw(int m) {
   int sz = (int) pw.size();
   if (sz >= m) { return; }
   pw.resize(m);
   for (int i = sz; i < m; ++i) { pw[i] = mulmod(pw[i - 1], BASE); }
  vector<uint64_t> pref;
  template < typename T> Hash61(const T& s) { // strings or arrays.
   n = (int) s.size();
    ensure_pw(n);
   pref.resize(n + 1);
   pref[0] = 0;
    for (int i = 0; i < n; ++i) {
     pref[i + 1] = addmod(mulmod(pref[i], BASE), s[i]);
  inline uint64_t operator()(const int from, const int to) const {
   assert(0 \le from \&\& from \le to \&\& to < n);
    // pref[to + 1] - pref[from] * pw[to - from + 1]
   return submod(pref[to + 1], mulmod(pref[from], pw[to - from + 1]));
};
mt19937 rnd((unsigned int) chrono::steady_clock::now().time_since_epoch().count());
uint64_t Hash61::BASE = (MOD >> 2) + rnd() % (MOD >> 1);
vector<uint64_t> Hash61::pw = vector<uint64_t>(1, 1);
```

4.10 Minimum rotation

Description: finds the lexicographically smallest rotation of a string. **Usage:** rotate(v.begin(), v.begin() + minRotation(v), v.end()) **Time:** O(N).

min_rotation.h, 19 lines

```
#pragma once
int minRotation(string s) {
    int a = 0, n = (int) s.size();
    s += s;
    for (int b = 0; b < n; ++b) {
        for (int k = 0; k < n; ++k) {
            if (a + k == b || s[a + k] < s[b + k]) {
                b += max(0, k - 1);
                break;
        }
        if (s[a + k] > s[b + k]) {
            a = b;
            break;
        }
    }
    return a;
}
```

5 Numerical

5.1 Fast Fourier transform

Description: a fast algorithm for multiplying two polynomials. **Time:** $O(N \log N)$.

fast_fourier_transform.h, 47 lines

```
const double PI = acos(-1);
using Comp = complex<double>;
```

```
if (n \& (1 << i)) \{ res |= (1 << (lg - i - 1)); \}
 return res:
void fft(vector<Comp>& a, bool invert = false) {
 int n = (int) a.size();
 int lq = 0;
 while (1 << (lg) < n) { ++lg; }</pre>
 for (int i = 0; i < n; ++i) {
   int rev_i = reverse_bit(i, lg);
   if (i < rev_i) { swap(a[i], a[rev_i]); }</pre>
 for (int len = 2; len <= n; len *= 2) {
    double angle = 2 * PI / len * (invert ? -1 : 1);
    Comp w_base(cos(angle), sin(angle));
    for (int i = 0; i < n; i += len) {</pre>
     Comp w(1);
      for (int j = i; j < i + len / 2; ++j) {
        Comp u = a[j], v = a[j + len / 2];
        a[j] = u + w * v;
        a[j + len / 2] = u - w * v;
        w *= w_base;
 if (invert) {
   for (int i = 0; i < n; ++i) { a[i] /= n; }
vector<int> mult(vector<int>& a, vector<int>& b) {
 vector<Comp> A(a.begin(), a.end()), B(b.begin(), b.end());
 int n = (int) a.size(), m = (int) b.size(), p = 1;
 while (p < n + m) \{ p *= 2; \}
 A.resize(p), B.resize(p);
 fft(A, false);
 fft(B, false);
 for (int i = 0; i < p; ++i) { A[i] *= B[i]; }
 fft(A, true);
 vector < int > res(n + m - 1);
 for (int i = 0; i < n + m - 1; ++i) { res[i] = (int) round(A[i].real()); }</pre>
 return res:
```

6 Number Theory

6.1 Euler's totient function

int reverse_bit(int n, int lg) {

for (int i = 0; i < lg; ++i) {

int res = 0;

- Euler's totient function, also known as **phi-function** $\phi(n)$ counts the number of integers between 1 and n inclusive, that are **coprime to** n.
- Properties:
 - Divisor sum property: $\sum_{d|n} \phi(d) = n$.
 - $\phi(n)$ is a **prime number** when n = 3, 4, 6.
 - − If p is a prime number, then $\phi(p) = p 1$.
 - If p is a prime number and $k \ge 1$, then $\phi(p^k) = p^k p^{k-1}$.
 - If *a* and *b* are **coprime**, then $\phi(ab) = \phi(a) \cdot \phi(b)$.

Can Tho University Page 13 of 23

- In general, for **not coprime** a and b, with d = gcd(a, b) this equation holds: $\phi(ab) = \phi(a) \cdot \phi(b) \cdot \frac{a}{\phi(d)}$
- With $n = p_1^{k_1} \cdot p_2^{k_2} \cdots p_m^{k_m}$:

$$\phi(n) = \phi(p_1^{k_1}) \cdot \phi(p_2^{k_2}) \cdots \phi(p_m^{k_m})$$
$$= n \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_m}\right)$$

- Application in Euler's theorem:
 - If gcd(a, M) = 1, then:

$$a^{\phi(M)} \equiv 1 \pmod{M} \Rightarrow a^n \equiv a^{n \bmod{\phi(M)}} \pmod{M}$$

- In general, for arbitrary a, M and n ≥ $\log_2 M$:

$$a^n \equiv a^{\phi(M) + [n \mod \phi(M)]} \pmod{M}$$

Time: $O(N \log N)$.

phi_euler_totient_function.h. 10 lines

```
const int MAXN = (int) 2e5;
int etf[MAXN + 1];
void sieve(int n) {
  for (int i = 0; i <= n; ++i) { etf[i] = i; }</pre>
  for (int i = 2; i <= n; ++i) {
   if (etf[i] == i) {
      for (int j = i; j <= n; j += i) { etf[j] -= etf[j] / i; }</pre>
```

Mobius function

• For a positive integer $n = p_1^{k_1} \cdot p_2^{k_2} \cdots p_m^{k_m}$:

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1\\ 0, & \text{if } \exists k_i > 1\\ (-1)^m & \text{otherwise} \end{cases}$$

- Properties:
 - $-\sum_{d|n}\mu(d)=[n=1].$
 - If a and b are **coprime**, then $\mu(ab) = \mu(a) \cdot \mu(b)$.
 - Mobius inversion: let *f* and *g* be arithmetic functions:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right)g(d)$$

Time: $O(N \log N)$.

mobius_function.h, 8 lines

```
const int MAXN = (int) 2e5;
int mu[MAXN + 1];
void sieve(int n) {
 mu[1] = 1;
 for (int i = 1; i <= n; ++i) {</pre>
    for (int j = 2 * i; j <= n; j += i) { mu[j] -= mu[i]; }
```

Primes 6.3

Approximating the number of primes up to *n*:

n	$\pi(n)$	$\frac{n}{\ln n - 1}$
$100 (1e^2)$	25	28
$500 (5e^2)$	95	96
$1000 (1e^3)$	168	169
$5000 (5e^3)$	669	665
$10000 (1e^4)$	1229	1218
$50000 (5e^4)$	5133	5092
$100000 (1e^5)$	9592	9512
$500000 (5e^5)$	41538	41246
$1000000 (1e^6)$	78498	78030
$5000000 (5e^6)$	348513	346622

 $(\pi(n))$ = the number of primes less than or equal to n, $\frac{n}{\ln n - 1}$ is used to approximate $\pi(n)$).

6.4 Wilson's theorem

A positive integer *n* is a prime if and only if:

$$(n-1)! \equiv n-1 \pmod{n}$$

Zeckendorf's theorem

The Zeckendorf's theorem states that every positive integer n can be represented uniquely as a sum of one or more distinct non-consecutive Fibonacci numbers. For example: 64 = 55 + 8 + 1

$$85 = 55 + 21 + 8 + 1$$

Bitwise operation

- $a + b = (a \oplus b) + 2(a \& b)$

- $a \mid (a \& b) = a$

- $a + b = (a \oplus b) + 2(a \otimes b)$ $a \mid b = (a \oplus b) + (a \otimes b)$ $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ $a \mid (b \otimes c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \otimes c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$ $a \mid (b \mid c) = (a \mid b) \otimes (a \mid c)$

• Iterating over all subsets of a set and iterating over all submasks of a mask:

mask.h, 18 lines

```
int n;
void mask_example() {
 for (int mask = 0; mask < (1 << n); ++mask) {</pre>
    for (int i = 0; i < n; ++i) {
```

Can Tho University Page 14 of 23

6.7 Modmul

Description: calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 \le a, b \le c \le 7.2 \cdot 10^{18}$. **Note:** this runs roughly 2x faster than the naive (_int128_t) a * b % M. **Time:** O(1) for modmul, $O(\log b)$ for modpow.

modmul.h, 15 lines

```
#pragma once
uint64_t modmul(uint64_t a, uint64_t b, uint64_t mod) {
   int64_t ret = a * b - mod * uint64_t(1.L / mod * a * b); // overflow is fine!
   return ret + mod * (ret < 0) - mod * (ret >= (int64_t) mod);
}
uint64_t modpow(uint64_t a, uint64_t b, uint64_t mod) {
   uint64_t ans = 1;
   while (b > 0) {
      if (b & 1) { ans = modmul(ans, a, mod); }
      a = modmul(a, a, mod);
      b /= 2;
   }
   return ans;
}
```

6.8 Miller-Rabin

Description: Miller–Rabin primality test, this algorithm works for number up to $7e^{18}$.

miller_rabin.h, 26 lines

```
using num_t = long long;
int small_primes[] = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 73, 113, 193, 311,
 313, 407521, 299210837};
bool miller_rabin(num_t a, num_t d, int s, num_t mod) {
 num_t x = modpow(a, d, mod);
 if (x == mod - 1 || x == 1) { return true; }
  for (int i = 0; i < s - 1; ++i) {
   x = modmul(x. x. mod):
   if (x == mod - 1) { return true; }
 return false:
bool is prime(num t n) {
 if (n < 4) { return n > 1; }
 num t d = n - 1:
 int s = 0:
  while (d % 2 == 0) {
   d >>= 1:
  for (int a : small_primes) {
   if (n == a) { return true; }
   if (n % a == 0 || !miller_rabin(a, d, s, n)) { return false; }
  return true;
```

6.9 Pollard's rho algorithm

Description: Pollard's rho is an efficient algorithm for integer factorization. The algorithm can run smoothly with n upto $1e^{18}$, but be careful with overflow for larger n (e.g. $1e^{19}$).

pollard_rho.h, 52 lines

```
#include "miller rabin.h"
#include "modmul.h"
uint64_t f(uint64_t x, int c, uint64_t mod) { // f(x) = (x^2 + c) \% mod.
 x = modmul(x, x, mod) + c;
 if (x >= mod) \{ x -= mod; \}
 return x;
uint64_t pollard_rho(uint64_t n, int c) {
 // algorithm to find a random divisor of 'n'.
 // using random function: f(x) = (x^2 + c) \% n.
 uint64_t x = 2, y = x, d;
 long long p = 1;
 int dist = 0:
 while (true) {
   y = f(y, c, n);
   dist++;
   d = \_\_gcd(max(x, y) - min(x, y), n);
   if (d > 1) { break; }
   if (dist == p) {
      dist = 0;
     p *= 2;
      \hat{x} = y;
 return d;
void factorize(uint64_t n, vector<uint64_t>& factors) {
 if (n < 2) { return; }
 if (is prime(n)) {
   factors.emplace_back(n);
   return:
 uint64_t d = n;
 for (int c = 2; d == n; c++) { d = pollard_rho(n, c); }
  factorize(d, factors);
 factorize(n / d, factors);
vector<uint64_t> gen_divisors(vector<pair<uint64_t, int>>& factors) {
 vector<uint64_t> divisors = {1};
 for (auto& x : factors) {
   int sz = (int) divisors.size();
   for (int i = 0; i < sz; ++i) {
     uint64_t cur = divisors[i];
     for (int j = 0; j < x.second; ++j) {
        cur *= x.first;
        divisors.push_back(cur);
 return divisors; // this array is NOT sorted yet.
```

6.10 Segment divisor sieve

Description: computes the number of divisors for each number in range [L, R].

segment_divisor_sieve.h, 14 lines

```
const int MAXN = (int) 1e6; // R - L + 1 <= N.
int divisor_count[MAXN + 3];
void segment_divisor_sieve(long long L, long long R) {
  for (long long i = 1; i <= (long long) sqrt(R); ++i) {
    long long start1 = ((L + i - 1) / i) * i;
    long long start2 = i * i;
    long long j = max(start1, start2);</pre>
```

Can Tho University Page 15 of 23

```
if (j == start2) {
    divisor_count[j - L] += 1;
    j += i;
}
for (; j <= R; j += i) { divisor_count[j - L] += 2; }
}</pre>
```

6.11 Linear sieve

Description: finding primes and computing value for multiplicative function in O(N).

Time: O(N) (but the factor may be large).

linear_sieve.h. 44 lines

```
const int N = (int) 2e6 + 3;
bool is_prime[N + 1];
int spf[N + 1]; // smallest prime factor
int lpf[N + 1]; // largest prime factor
int cntp[N + 1]; // number of prime factor
int phi[N + 1]; // euler's totient function
int mu[N + 1]; // mobius function
int func [N + 1]; // a multiplicative function, f(p^k) = k
int k[N + 1]; // k[i] = the power of the smallest prime factor of i
int pw[N + 1]; // pw[i] = p^k[i] where p is the smallest prime factor of i
vector<int> primes;
void linear sieve(int n = N) {
  spf[0] = spf[1] = lpf[0] = lpf[1] = -1;
  phi[1] = mu[1] = func[1] = 1;
  for (int x = 2; x <= n; ++x) {
   if (spf[x] == 0) {
     primes.push_back(x);
      is_prime[x] = true;
      spf[x] = lpf[x] = x;
     cntp[x] = 1;
      phi[x] = x - 1, mu[x] = -1, func[x] = 1;
      k[x] = 1, pw[x] = x;
    for (int p : primes) {
      if (p > spf[x] || x * p > n) { break; }
      spf[x * p] = p, lpf[x * p] = lpf[x];
      cntp[x * p] = cntp[x] + 1;
      if (p == spf[x]) {
       phi[x * p] = phi[x] * p;
       mu[x * p] = 0;
       func[x * p] = func[x / pw[x]] * (k[x] + 1);
       k[x * p] = k[x] + 1;
       pw[x * p] = pw[x] * p;
      } else {
       phi[x * p] = phi[x] * phi[p];
       mu[x * p] = mu[x] * mu[p]; // or -mu[x]
       func[x * p] = func[x] * func[p];
       k[x * p] = 1;
       pw[x * p] = p;
```

6.12 Bitset sieve

Description: sieve of eratosthenes for large n (up to 10^9).

Time: time and space tested on codeforces:

- For $n = 10^8$: 200 ms, 6 MB.
- For $n = 10^9$: 4000 ms, 60 MB.

bitset_sieve.h. 19 lines

```
const int N = (int) 1e8;
bitset<N / 2 + 1> isPrime;
void sieve(int n = N) {
```

```
isPrime.flip();
isPrime[0] = false;
for (int i = 3; i <= (int) sqrt(n); i += 2) {
    if (isPrime[i >> 1]) {
        for (int j = i * i; j <= n; j += 2 * i) { isPrime[j >> 1] = false; }
    }
}
void example(int n) {
    sieve(n);
    int primeCnt = (n >= 2);
    for (int i = 3; i <= n; i += 2) {
        if (isPrime[i >> 1]) { primeCnt++; }
}
cout << primeCnt << '\n';
}</pre>
```

6.13 Block sieve

Description: a very fast sieve of eratosthenes for large n (up to 10⁹).

Time: time and space tested on codeforces:

- For $n = 10^8$: 160 ms, 60 MB.
- For $n = 10^9$: 1600 ms, 505 MB.

block_sieve.h, 25 lines

```
const int N = (int) 1e8;
bitset<N + 1> is_prime;
vector<int> fast_sieve() {
 const int S = (int) sqrt(N), R = N / 2;
 vector<int> primes = {2};
 vector<bool> sieve(S + 1, true);
 vector<array<int, 2>> cp;
 for (int i = 3; i \le S; i += 2) {
   if (sieve[i]) {
      cp.push_back({i, i * i / 2});
      for (int j = i * i; j <= S; j += 2 * i) { sieve[j] = false; }</pre>
 for (int L = 1; L \le R; L += S) {
    array < bool , S > block { };
   for (auto& [p, idx] : cp) {
     for (; idx < S + L; idx += p) { block[idx - L] = true; }</pre>
   for (int i = 0; i < min(S, R - L); ++i) {
     if (!block[i]) { primes.push_back((L + i) * 2 + 1); }
 for (int p : primes) { is_prime[p] = true; }
 return primes;
```

7 Combinatorics

7.1 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{n!(n+1)!}$$

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}, \ C_0 = 1, \ C_n = \frac{4n-2}{n+1} C_{n-1}$$

• The first 12 Catalan numbers $(n = 0, 1, 2, \dots, 11)$:

```
C_{11} = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786
```

Can Tho University Page 16 of 23

- Applications of Catalan numbers:
 - difference binary search trees with *n* vertices from 1 to *n*.
 - rooted binary trees with n + 1 leaves (vertices are not numbered).
 - correct bracket sequence of length 2 * n.
 - permutation [n] with no 3-term increasing subsequence (i.e. doesn't exist i < j < k for which a[i] < a[j] < a[k]).
 - ways a convex polygon of n + 2 sides can split into triangles by connecting vertices.

7.2 Fibonacci numbers

$$F_n = \begin{cases} 0, & \text{if } n = 0\\ 1, & \text{if } n = 1\\ F_{n-1} + F_{n-2}, & \text{otherwise} \end{cases}$$

• The first 20 Fibonacci numbers (n = 0, 1, 2, ..., 19):

$$F_n = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181$$

• Binet's formula:

$$F_n = \frac{\varphi^n - \psi^n}{\varphi - \psi} = \frac{\varphi^n - \psi^n}{\sqrt{5}}$$

where
$$\varphi = \frac{1 + \sqrt{5}}{2}$$
, $\psi = \frac{1 - \sqrt{5}}{2}$

• Properties:

$$F_{2n+1} = F_n^2 + F_{n+1}^2 F_{2n} = F_{n-1} \cdot F_n + F_n \cdot F_{n+1}$$

$$F_{n+1} \cdot F_{n-1} - F_n^2 = (-1)^n n \mid m \Leftrightarrow F_n \mid F_m gcd(F_n, F_m) = F_{gcd(n,m)}$$

7.3 Stirling numbers of the first kind

Number of permutations of *n* elements which contain exactly *k* permutation cycles.

$$S(0,0) = 1$$

$$S(n,k) = S(n-1,k-1) + (n-1)S(n-1,k)$$

$$\sum_{k=1}^{n} S(n,k)x^{k} = x(x+1)(x+2)\dots(x+n-1)$$

7.4 Stirling numbers of the second kind

Partitions of *n* distinct elements into exactly *k* non-empty groups.

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} i^n$$

7.5 Derangements

Permutation of the elements of a set, such that no element appears in its original position (no fixied point). Recursive formulas:

$$D(n) = (n-1)[D(n-1) + D(n-2)] = nD(n-1) + (-1)^n$$

8 Geometry

8.1 Fundamentals

8.1.1 Point pragma once

point.h, 64 lines

```
const double PI = acos(-1);
const double EPS = 1e-9;
typedef double ftype;
struct Point {
 ftype x, y;
  Point(ftype _x = 0, ftype _y = 0): x(_x), y(_y) {}
 Point& operator+=(const Point& other) {
   x += other.x;
   y += other.y;
   return *this:
 Point& operator -= (const Point& other) {
   x -= other.x;
   y -= other.y;
   return *this:
 Point& operator*=(ftype t) {
   x *= t;
   y *= t;
   return *this;
 Point& operator/=(ftype t) {
   x /= t;
   y /= t;
   return *this:
 Point operator+(const Point& other) const { return Point(*this) += other; }
 Point operator-(const Point& other) const { return Point(*this) -= other; }
  Point operator*(ftype t) const { return Point(*this) *= t; }
 Point operator/(ftype t) const { return Point(*this) /= t; }
 Point rotate(double angle) const {
   return Point(x * cos(angle) - y * sin(angle), x * sin(angle) + y * cos(angle));
 friend istream& operator>>(istream& in, Point& t);
 friend ostream& operator<<(ostream& out, const Point& t);</pre>
 bool operator<(const Point& other) const {</pre>
   if (fabs(x - other.x) < EPS) { return y < other.y; }</pre>
    return x < other.x;</pre>
};
istream& operator>>(istream& in, Point& t) {
 in >> t.x >> t.y;
 return in;
ostream& operator << (ostream& out, const Point& t) {
 out << t.x << ' ' << t.y;
```

Can Tho University Page 17 of 23

```
return out;
ftype dot(Point a, Point b) { return a.x * b.x + a.y * b.y; }
ftype norm(Point a) { return dot(a, a); }
ftype abs(Point a) { return sqrt(norm(a)); }
ftype angle(Point a, Point b) { return acos(dot(a, b) / (abs(a) * abs(b))); }
ftype proj(Point a, Point b) { return dot(a, b) / abs(b); }
ftype cross(Point a, Point b) { return a.x * b.y - a.y * b.x; }
bool ccw(Point a, Point b, Point c) { return cross(b - a, c - a) > EPS; }
bool collinear(Point a, Point b, Point c) { return fabs(cross(b - a, c - a)) < EPS; }</pre>
Point intersect(Point a1, Point d1, Point a2, Point d2) {
  double t = cross(a2 - a1, d2) / cross(d1, d2);
 return a1 + d1 * t:
8.1.2 Line
                                                                              line.h. 80 lines
#include "point.h"
struct Line {
  double a, b, c;
  Line (double a = 0, double b = 0, double c = 0): a(a), b(b), c(c) {}
  friend ostream& operator<<(ostream& out, const Line& 1);</pre>
ostream& operator << (ostream& out, const Line& 1) {
  out << 1.a << ' ' << 1.b << ' ' << 1.c;
  return out;
void PointsToLine(const Point& p1, const Point& p2, Line& 1) {
  if (fabs(p1.x - p2.x) < EPS) {
   1 = \{1.0, 0.0, -p1.x\};
  } else {
   l.a = -(double) (p1.y - p2.y) / (p1.x - p2.x);
   1.b = 1.0;
   1.c = -1.a * p1.x - 1.b * p1.y;
void PointsSlopeToLine(const Point& p, double m, Line& 1) {
 1.a = -m;
 1.b = 1:
 1.c = -1.a * p.x - 1.b * p.y;
bool areParallel(const Line& 11, const Line& 12) {
 return fabs(11.a - 12.a) < EPS && fabs(11.b - 12.b) < EPS:
bool areSame(const Line& 11, const Line& 12) {
  return areParallel(11, 12) && fabs(11.c - 12.c) < EPS;</pre>
bool areIntersect(Line 11, Line 12, Point& p) {
  if (areParallel(l1, l2)) { return false; }
  p.x = -(11.c * 12.b - 11.b * 12.c) / (11.a * 12.b - 11.b * 12.a);
 if (fabs(l1.b) > EPS) {
   p.y = -(11.c + 11.a * p.x);
 } else {
   p.y = -(12.c + 12.a * p.x);
 return 1:
double distToLine(Point p. Point a. Point b. Point& c) {
  double t = dot(p - a, b - a) / norm(b - a);
  c = a + (b - a) * t;
  return abs(c - p);
```

double distToSegment(Point p, Point a, Point b, Point& c) {

double t = dot(p - a, b - a) / norm(b - a);

if (t > 1.0) {

c = Point(b.x, b.y);

} else if (t < 0.0) {</pre>

```
c = Point(a.x, a.y);
 } else {
   c = a + (b - a) * t:
 return abs(c - p);
bool intersectTwoSegment(Point a, Point b, Point c, Point d) {
 ftype ABxAC = cross(b - a, c - a);
 ftype ABxAD = cross(b - a, d - a);
 ftype CDxCA = cross(d - c, a - c);
 ftype CDxCB = cross(d - c, b - c);
 if (ABXAC == 0 \mid | ABXAD == 0 \mid | CDXCA == 0 \mid | CDXCB == 0) {
   if (ABxAC == 0 && dot(a - c, b - c) <= 0) { return true; }
   if (AB \times AD == 0 \& dot(a - d, b - d) <= 0) { return true; }
   if (CDxCA == 0 && dot(c - a, d - a) <= 0) { return true; }</pre>
   if (CDxCB == 0 && dot(c - b, d - b) <= 0) { return true; }</pre>
   return false:
 return (ABxAC * ABxAD < 0 && CDxCA * CDxCB < 0);
void perpendicular(Line 11, Point p, Line& 12) {
 if (fabs(l1.a) < EPS) {
   12 = \{1.0, 0.0, -p.x\};
 } else {
   12.a = -11.b / 11.a;
   12.b = 1.0;
   12.c = -12.a * p.x - 12.b * p.y;
8.1.3 Circle
                                                                              circle.h, 16 lines
#include "point.h"
int insideCircle(const Point& p, const Point& center, ftype r) {
 ftype d = norm(p - center);
 ftype rSq = r * r;
 return fabs(d - rSq) < EPS ? 0 : (d - rSq >= EPS ? 1 : -1);
bool circle2PointsR(const Point& p1, const Point& p2, ftype r, Point& c) {
 double h = r * r - norm(p1 - p2) / 4.0;
 if (fabs(h) < 0) { return false; }</pre>
 h = sart(h):
 Point perp = (p2 - p1).rotate(PI / 2.0);
 Point m = (p1 + p2) / 2.0;
 c = m + perp * (h / abs(perp));
 return true:
8.1.4 Triangle
                                                                            triangle.h, 33 lines
#include "line.h"
#include "point.h"
double areaTriangle(double ab, double bc, double ca) {
 double p = (ab + bc + ca) / 2:
 return sqrt(p) * sqrt(p - ab) * sqrt(p - bc) * sqrt(p - ca);
double rInCircle(double ab, double bc, double ca) {
 double p = (ab + bc + ca) / 2;
 return areaTriangle(ab, bc, ca) / p;
double rInCircle(Point a, Point b, Point c) {
 return rInCircle(abs(a - b), abs(b - c), abs(c - a));
bool inCircle(Point p1, Point p2, Point p3, Point& ctr, double& r) {
 r = rInCircle(p1, p2, p3);
 if (fabs(r) < EPS) { return false; }</pre>
```

Can Tho University Page 18 of 23

```
Line 11, 12;
  double ratio = abs(p2 - p1) / abs(p3 - p1);
Point p = p2 + (p3 - p2) * (ratio / (1 + ratio));
PointsToLine(p1, p, 11);
ratio = abs(p1 - p2) / abs(p2 - p3);
p = p1 + (p3 - p1) * (ratio / (1 + ratio));
PointsToLine(p2, p, 12);
areIntersect(11, 12, ctr);
return true;
}
double rCircumCircle(double ab, double bc, double ca) {
  return ab * bc * ca / (4.0 * areaTriangle(ab, bc, ca));
}
double rCircumCircle(Point a, Point b, Point c) {
  return rCircumCircle(abs(b - a), abs(c - b), abs(a - c));
}
```

8.1.5 Convex hull

convex_hull.h. 17 lines

```
#include "point.h"

vector<Point> CH_Andrew(vector<Point>& Pts) { // overall O(n log n)
   int n = Pts.size(), k = 0;
   vector<Point> H(2 * n);
   sort(Pts.begin(), Pts.end());
   for (int i = 0; i < n; ++i) {
      while ((k >= 2) && !ccw(H[k - 2], H[k - 1], Pts[i])) { --k; }
      H[k++] = Pts[i];
   }
   for (int i = n - 2, t = k + 1; i >= 0; --i) {
      while ((k >= t) && !ccw(H[k - 2], H[k - 1], Pts[i])) { --k; }
      H[k++] = Pts[i];
   }
   H.resize(k);
   return H;
}
```

8.1.6 Polygon

polygon.h, 45 lines

```
#include "point.h"
double perimeter(const vector<Point>& P) {
  double ans = 0.0;
  for (int i = 0; i < (int) P.size() - 1; ++i) { ans += abs(P[i] - P[i + 1]); }
 return ans;
double area(const vector<Point>& P) {
  double ans = 0.0;
  for (int i = 0; i < (int) P.size() - 1; ++i) {
   ans += (P[i].x * P[i + 1].y - P[i + 1].x * P[i].y);
 return fabs(ans) / 2.0;
bool isConvex(const vector<Point>& P) {
  int n = (int) P.size();
 if (n <= 3) { return false; }</pre>
 bool firstTurn = ccw(P[0], P[1], P[2]);
  for (int i = 1; i < n - 1; ++i) {
   if (ccw(P[i], P[i + 1], P[(i + 2) == n ? 1 : i + 2]) != firstTurn) {
      return false:
 return true:
int insidePolygon(Point pt, const vector<Point>& P) {
 int n = (int) P.size();
 if (n <= 3) { return -1; }
 bool on_polygon = false;
```

```
for (int i = 0; i < n - 1; ++i) {
    if (fabs(abs(P[i] - pt) + abs(pt - P[i + 1]) - abs(P[i] - P[i + 1])) < EPS) {
        on_polygon = true;
    }
}
if (on_polygon) { return 0; }
double sum = 0.0;
for (int i = 0; i < n - 1; ++i) {
    if (ccw(pt, P[i], P[i + 1])) {
        sum += angle(P[i] - pt, P[i + 1] - pt);
    } else {
        sum -= angle(P[i] - pt, P[i + 1] - pt);
    }
}
return fabs(sum) > PI ? 1 : -1;
}
```

9 Linear algebra

9.1 Gauss elimination

Time: $O(\min(n, m) \cdot nm)$ or $O(n^3)$ in case n = m.

gauss_elimination.h. 37 lines

```
const double EPS = 1e-9;
const int INF = 2; // it doesn't actually have to be infinity or a big number
int gauss(vector<vector<double>> a, vector<double>& ans) {
 int n = (int) a.size();
 int m = (int) a[0].size() - 1;
 vector < int > where (m, -1);
 for (int col = 0, row = 0; col < m && row < n; ++col) {
   int sel = row;
    for (int i = row; i < n; ++i) {</pre>
      if (abs(a[i][col]) > abs(a[sel][col])) { sel = i; }
   if (abs(a[sel][col]) < EPS) { continue; }</pre>
    for (int i = col; i <= m; ++i) { swap(a[sel][i], a[row][i]); }</pre>
    where[col] = row;
    for (int i = 0; i < n; ++i) {
     if (i != row) {
        double c = a[i][col] / a[row][col];
        for (int j = col; j <= m; ++j) { a[i][j] -= a[row][j] * c; }</pre>
    ++row;
 ans.assign(m, 0);
 for (int i = 0; i < m; ++i) {</pre>
   if (where[i] != -1) { ans[i] = a[where[i]][m] / a[where[i]][i]; }
 for (int i = 0; i < n; ++i) {
    double sum = 0:
    for (int j = 0; j < m; ++j) { sum += ans[j] * a[i][j]; }</pre>
   if (abs(sum - a[i][m]) > EPS) { return 0; }
 for (int i = 0; i < m; ++i) {
   if (where[i] == -1) { return INF; }
 return 1;
```

9.2 Gauss determinant

Description: computing determinant of a square matrix A by applying Gauss elimination to produces a row echolon matrix B, then the determinant of A is equal to product of the elements of the diagonal of B.

Can Tho University Page 19 of 23

Time: $O(N^3)$.

gauss_determinant.h, 28 lines

```
const double EPS = 1e-9;
double determinant(vector<vector<double>> A) {
 int n = (int) A.size();
 double det = 1;
 for (int i = 0; i < n; ++i) {
   // find non-zero cell
   int k = i;
   for (int j = i + 1; j < n; ++j) {
     if (abs(A[j][i]) > abs(A[k][i])) \{ k = j; \}
   if (abs(A[k][i]) < EPS) {
     det = 0;
     break:
   if (i != k) {
     swap(A[i], A[k]);
     det = -det;
   det *= A[i][i];
   for (int j = i + 1; j < n; ++j) { A[i][j] /= A[i][i]; }
   for (int j = 0; j < n; ++ j) {
     if (j != i && abs(A[j][i]) > EPS) {
       for (int k = i + 1; k < n; ++k) { A[j][k] -= A[i][k] * A[j][i]; }
 return det;
```

9.3 Bareiss determinant

Description: Bareiss algorithm for computing determinant of a square matrix A with integer entries using only integer arithmetic. **Usage:**

• Kirchhoff's theorem: finding the number of spanning trees.

Time: $O(N^3)$.

bareiss_determinant.h. 28 lines

```
long long determinant(vector<vector<long long>> A) {
  int n = (int) A.size();
 long long prev = 1;
  int sign = 1;
  for (int i = 0; i < n - 1; ++i) {
    // find non-zero cell
   if (A[i][i] == 0) {
     int k = -1;
     for (int j = i + 1; j < n; ++j) {
       if (A[j][i] != 0) {
         k = i;
         break;
     if (k == -1) { return 0; }
     swap(A[i], A[k]);
     sign = -sign;
    for (int j = i + 1; j < n; ++j) {
     for (int k = i + 1; k < n; ++k) {
       assert((A[j][k] * A[i][i] - A[j][i] * A[i][k]) % prev == 0);
       A[j][k] = (A[j][k] * A[i][i] - A[j][i] * A[i][k]) / prev;
   prev = A[i][i];
 return sign * A[n - 1][n - 1];
```

10 Graph

10.1 Bellman-Ford algorithm

Description: single source shortest path in a weighted (negative or positive) directed graph.

Time: O(VE).

```
bellman_ford.h, 34 lines
const int64_t INF = (int64_t) 2e18;
struct Edge {
 int u, v; // u -> v
 int64_t w;
 Edge() {}
 Edge(int _u, int _v, int64_t _w): u(_u), v(_v), w(_w) {}
int n;
vector < Edge > edges;
vector<int64_t> bellmanFord(int s) {
 // dist[stating] = 0.
 // dist[u] = +INF, if u is unreachable.
 // dist[u] = -INF, if there is a negative cycle on the path from s to u.
  // -INF < dist[u] < +INF, otherwise.
 vector<int64_t> dist(n, INF);
 dist[s] = 0;
 for (int i = 0; i < n - 1; ++i) {
   bool any = false;
   for (auto [u, v, w] : edges) {
      if (dist[u] != INF && dist[v] > w + dist[u]) {
        dist[v] = w + dist[u];
        any = true;
   if (!any) { break; }
  // handle negative cycles
 for (int i = 0; i < n - 1; ++i) {
   for (auto [u, v, w] : edges) {
      if (dist[u] != INF && dist[v] > w + dist[u]) { dist[v] = -INF; }
```

10.2 Articulation point and Bridge

Description: finding articulation points and bridges in a simple undirected graph.

Time: O(V + E).

return dist:

articulation_point_and_bridge.h, 39 lines

```
const int N = (int) 1e5;
vector < int > g[N];
int num[N], low[N], dfs_timer;
bool joint[N];
vector<pair<int, int>> bridges;
void dfs(int u, int prev = -1) {
 low[u] = num[u] = ++dfs_timer;
  int child = 0;
  for (int v : g[u]) {
   if (v == prev) { continue; }
   if (num[v]) {
      low[u] = min(low[u], num[v]);
   } else {
      dfs(v, u);
      low[u] = min(low[u], low[v]);
      child++;
      if (low[v] >= num[v]) { bridges.emplace_back(u, v); }
      if (prev != -1 && low[v] >= num[u]) { joint[u] = true; }
```

Can Tho University Page 20 of 23

```
if (prev == -1 && child > 1) { joint[u] = true; }
}
int solve() {
   int n, m;
   cin >> n >> m;
   for (int i = 0; i < m; ++i) {
      int u, v;
      cin >> u >> v;
      u--;
      y = [u].push_back(v);
      g[v].push_back(u);
}
for (int i = 0; i < n; ++i) {
      if (!num[i]) { dfs(i); }
   }
   return 0;
}</pre>
```

10.3 Topo sort

Description: a topological sort of a directed acyclic graph is a linear ordering of its vertices such that for every directed edge from vertex u to vertex v, u comes before v in the ordering.

Note: if there are cycles, the returned list will have size smaller than n.

Time: O(V + E).

topo_sort.h, 21 lines

```
vector<int> topo_sort(const vector<vector<int>>& g) {
 int n = (int) g.size();
 vector<int> indeq(n);
  for (int u = 0; u < n; ++u) {
   for (int v : g[u]) { indeg[v]++; }
 queue < int > q; // Note: use min-heap to get the smallest lexicographical order.
 for (int u = 0; u < n; ++u) {
   if (indeg[u] == 0) { q.emplace(u); }
 vector<int> topo;
  while (!q.empty()) {
   int u = q.front();
   q.pop();
   topo.emplace_back(u);
   for (int v : g[u]) {
     if (--indeg[v] == 0) { q.emplace(v); }
 return topo:
```

10.4 Strongly connected components

10.4.1 Tarjan's Algorithm

Description: Tarjan's algorithm finds strongly connected components (SCC) in a directed graph. If two vertices u and v belong to the same component, then $scc_id[u] == scc_id[v]$.

Time: O(V + E).

tarjan.h, 27 lines

```
const int N = (int) 5e5;
vector<int> g[N], st;
int low[N], num[N], dfs_timer, scc_id[N], scc;
bool used[N];
void Tarjan(int u) {
  low[u] = num[u] = ++dfs_timer;
  st.push_back(u);
  for (int v : g[u]) {
    if (used[v]) { continue; }
    if (num[v] == 0) {
        Tarjan(v);
    }
}
```

```
low[u] = min(low[u], low[v]);
} else {
    low[u] = min(low[u], num[v]);
}
if (low[u] == num[u]) {
    int v;
    do {
        v = st.back();
        st.pop_back();
        used[v] = true;
        scc_id[v] = scc;
} while (v != u);
scc++;
}
```

10.4.2 Kosaraju's algorithm

Description: Kosaraju's algorithm finds strongly connected components (SCC) in a directed graph in a straightforward way. Two vertices u and v belong to the same component iff scc_id[u] == scc_id[v]. This algorithm generates connected components numbered in topological order in corresponding condensation graph.

Time: O(V + E).

kosaraju.h, 34 lines

```
const int N = (int) 1e5;
vector<int> q[N], rev_q[N], vers;
int scc id[N]:
bool vis[N];
int n, m;
void dfs1(int u) {
 vis[u] = true;
 for (int v : g[u]) {
   if (!vis[v]) { dfs1(v); }
 vers.push_back(u);
void dfs2(int u, int id) {
 scc_id[u] = id;
 vis[u] = true:
 for (int v : rev_g[u]) {
   if (!vis[v]) { dfs2(v, id); }
void Kosaraiu() {
 for (int i = 0; i < n; ++i) {
   if (!vis[i]) { dfs1(i); }
 memset(vis, 0, sizeof vis);
 int scc_cnt = 0;
  // iterating in reverse order
 for (int i = n - 1; i >= 0; --i) {
   int u = vers[i];
   if (!vis[u]) { dfs2(u, ++scc_cnt); }
 cout << scc_cnt << '\n';</pre>
 for (int i = 0; i < n; ++i) { cout << scc_id[i] << " \n"[i == n - 1]; }</pre>
```

10.5 K-th smallest shortest path

Description: finding the k-th smallest shortest path from vertex s to vertex t, each vertex can be visited more than once.

k_smallest_shortest_path.h, 20 lines

```
using adj_list = vector<vector<pair<int, int>>>;
vector<long long> k_smallest(const adj_list& g, int k, int s, int t) {
  int n = (int) g.size();
  vector<long long> ans;
```

Can Tho University Page 21 of 23

```
vector<int> cnt(n);
using pli = pair<long long, int>;
priority_queue<pli, vector<pli>, greater<pli>> pq;
pq.emplace(0, s);
while (!pq.empty() && cnt[t] < k) {
   int u = pq.top().second;
   long long d = pq.top().first;
   pq.pop();
   if (cnt[u] == k) { continue; }
   cnt[u]++;
   if (u == t) { ans.push_back(d); }
   for (auto [v, cost] : g[u]) { pq.emplace(d + cost, v); }
}
assert(k == (int) ans.size());
return ans;</pre>
```

10.6 Eulerian path

10.6.1 Directed graph

Description: Hierholzer's algorithm. An Eulerian path in a directed graph is a path that visits all edges exactly once. An Eulerian cycle is a Eulerian path that is a cycle.

Time: O(E).

eulerian_path_directed.h, 16 lines

```
vector<int> find_path_directed(const vector<vector<int>>& g, int s) {
  int n = (int) g.size();
  vector<int> stack, cur_edge(n), vertices;
  stack.push_back(s);
  while (!stack.empty()) {
    int u = stack.back();
    stack.pop_back();
    while (cur_edge[u] < (int) g[u].size()) {
        stack.push_back(u);
        u = g[u][cur_edge[u]++];
    }
    vertices.push_back(u);
}
reverse(vertices.begin(), vertices.end());
return vertices;
}</pre>
```

10.6.2 Undirected graph

Description: Hierholzer's algorithm. An Eulerian path in a undirected graph is a path that visits all edges exactly once. An Eulerian cycle is a Eulerian path that is a cycle.

Time: O(E).

eulerian_vath_undirected.h. 21 lines

```
struct Edge {
 int to;
 list<Edge>::iterator reverse_edge;
 Edge(int _to): to(_to) {}
vector<int> vertices;
void find_path(vector<list<Edge>>& g, int u) {
  while (!g[u].empty()) {
   int v = q[u].front().to;
   g[v].erase(g[u].front().reverse_edge);
   g[u].pop_front();
   find_path(g, v);
  vertices.emplace_back(u); // reversion list.
void add_edge(vector<list<Edge>>& g, int u, int v) {
 g[u].emplace_front(v);
  g[v].emplace_front(u);
 g[u].front().reverse_edge = g[v].begin();
 g[v].front().reverse_edge = g[u].begin();
```

10.7 HLD

HLD.h, 68 lines

```
const int INF = 0x3f3f3f3f3f;
template < class SegmentTree >
struct HLD { // vertex update and max query on path u -> v
 vector<vector<int>> g;
 SegmentTree seg_tree;
 vector<int> par, top, depth, sz, id;
 int timer = 0, root = 0;
 bool VAL_IN_EDGE = false;
 HLD() {}
 HLD(int_n): n(n), g(n), seg_tree(n), par(n), top(n), depth(n), sz(n), id(n) {}
 void build() {
   dfs_sz(root);
   dfs_hld(root);
 void add_edge(int u, int v) {
   g[u].push_back(v);
   g[v].push_back(u);
 void dfs_sz(int u) {
   sz[u] = 1;
   for (int& v : g[u]) { // MUST BE ref for the swap below
     par[v] = u;
     depth[v] = depth[u] + 1;
     g[v].erase(find(g[v].begin(), g[v].end(), u));
     dfs_sz(v);
     sz[u] += sz[v];
     if (sz[v] > sz[g[u][0]]) { swap(v, g[u][0]); }
 void dfs_hld(int u) {
   id[u] = timer++;
   for (int v : g[u]) {
      top[v] = (v == g[u][0] ? top[u] : v);
      dfs_hld(v);
 int lca(int u, int v) {
   while (top[u] != top[v]) {
      if (depth[top[u]] > depth[top[v]]) { swap(u, v); }
     v = par[top[v]];
    // now u, v is in the same heavy-chain
   return (depth[u] < depth[v] ? u : v);</pre>
 void set_vertex(int v, int x) { seg_tree.set(id[v], x); }
 void set_edge(int u, int v, int x) {
   if (u != par[v]) { swap(u, v); }
   seg_tree.set(id[v], x);
 void set_subtree(int v, int x) {
    // modify segment_tree so that it supports range update
   seg_tree.set_range(id[v] + VAL_IN_EDGE, id[v] + sz[v] - 1, x);
 int query_path(int u, int v) {
   int res = -INF;
   while (top[u] != top[v]) {
     if (depth[top[u]] > depth[top[v]]) { swap(u, v); }
     int cur = seg_tree.query(id[top[v]], id[v]);
     res = max(res, cur);
     v = par[top[v]];
   if (depth[u] > depth[v]) { swap(u, v); }
   int cur = seg_tree.query(id[u] + VAL_IN_EDGE, id[v]);
```

Can Tho University Page 22 of 23

```
res = max(res, cur);
return res;
}
};
```

10.8 DSU on tree

dsu_on_tree.h. 28 lines

```
const int nmax = (int) 2e5 + 1;
vector<int> adj[nmax];
int sz[nmax]; // sz[u] is the size of the subtree rooted at u
bool big[nmax];
void add(int u, int p, int del) {
  // do something...
  for (int v : adj[u]) {
   if (big[v] == false) { add(v, u, del); }
 }
void dsuOnTree(int u, int p, int keep) {
 int bigC = -1;
  for (int v : adj[u]) {
   if (v != p \&\& (bigC == -1 || sz[bigC] < sz[v])) { bigC = v; }
  for (int v : adj[u]) {
   if (v != p && v != bigC) { dsuOnTree(v, u, 0); }
 if (bigC != -1) {
   big[bigC] = true;
   dsuOnTree(bigC, u, 1);
  add(u, p, 1);
 if (bigC != -1) { big[bigC] = false; }
 if (keep == 0) { add(u, p, -1); }
```

10.9 2-SAT

Description: finds a way to assign values to boolean variables a, b, c,.. of a 2-SAT problem (each clause has at most two variables) so that the following formula becomes true: $(a \mid b) & (\sim a \mid c) & (b \mid \sim c) \dots$ **Usage:**

- TwoSat twosat(number of boolean variables);
- twosat.either(a, "b); // a is true or b is false
- twosat.solve(); // return true iff the above formula is satisfiable

Time: O(V + E) where V is the number of boolean variables and E is the number of clauses.

two_sat.h, 46 lines

```
struct TwoSat {
 int n:
 vector<vector<int>> g, tg; // g and transpose of g
 vector<int> comp, order;
 vector<bool> vis, vals;
 TwoSat(int _n): n(_n), g(2 * n), tg(2 * n), comp(2 * n), vis(2 * n), vals(n) {}
 void either(int u, int v) {
   u = max(2 * u, -2 * u - 1);
   v = max(2 * v, -2 * v - 1);
   g[u ^ 1].push_back(v);
   g[v ^ 1].push_back(u);
   tg[v].push_back(u ^ 1);
   tg[u].push_back(v ^ 1);
 void set(int u) { either(u, u); }
 void dfs1(int u) {
   vis[u] = true;
   for (int v : g[u]) {
     if (!vis[v]) { dfs1(v); }
   order.push_back(u);
```

```
void dfs2(int u, int scc_id) {
  comp[u] = scc_id;
  for (int v : tg[u]) {
    if (comp[v] == -1) { dfs2(v, scc_id); }
bool solve() {
  for (int i = 0; i < 2 * n; ++i) {
    if (!vis[i]) { dfs1(i); }
  fill(comp.begin(), comp.end(), -1);
  for (int i = 2 * n - 1, scc_id = 0; i >= 0; --i) {
    int u = order[i];
    if (comp[u] == -1) \{ dfs2(u, scc id++): \}
  for (int i = 0; i < n; ++i) {
    int u = i * 2, nu = i * 2 + 1;
    if (comp[u] == comp[nu]) { return false: }
    vals[i] = comp[u] > comp[nu];
  return true;
vector < bool > get_vals() { return vals; }
```

11 Misc.

11.1 Ternary search

Description: given an unimodal function f(x), find the maximum/minimum of f(x). Unimodal means the function strictly increases/decreases first, reaches a maximum/minimum (at a single point or over an interval), and then strictly decreases/increases.

ternary_search.h, 27 lines

```
const double eps = 1e-9;
template<typename T> inline T func(T x) { return x * x; }
// these two functions below find min, for find max: change '<' below to '>'.
double ternary_search(double 1, double r) { // min
 while (r - 1 > eps) {
    double mid1 = 1 + (r - 1) / 3;
    double mid2 = r - (r - 1) / 3;
   if (func(mid1) < func(mid2)) {</pre>
     r = mid2;
   } else {
     1 = mid1;
 return 1;
int ternary_search(int 1, int r) { // min
 while (1 < r) {
   int mid = 1 + (r - 1) / 2;
   if (func(mid) < func(mid + 1)) {</pre>
     r = mid;
   } else {
     l = mid + 1;
 return 1;
```

11.2 Matrix

matrix.h, 37 lines

```
using matrix_type = int;
const int MOD = (int) 1e9 + 7;
struct Matrix {
```

Can Tho University Page 23 of 23

```
static const matrix_type INF = numeric_limits<matrix_type>::max();
  int N, M;
  vector<vector<matrix_type>> mat;
  Matrix(int _N, int _M, matrix_type v = 0): N(_N), M(_M) {
   mat.assign(N, vector<matrix_type>(M, v));
  static Matrix identity(int n) { // return identity matrix.
   Matrix I(n, n);
    for (int i = 0; i < n; ++i) { I[i][i] = 1; }
   return I;
  vector<matrix_type>& operator[](int r) { return mat[r]; }
  const vector<matrix_type>& operator[](int r) const { return mat[r]; }
  Matrix& operator*=(const Matrix& other) {
   assert(M == other.N); // [N x M] [other.N x other.M]
    Matrix res(N, other.M);
    for (int r = 0; r < N; ++r) {
      for (int c = 0; c < other.M; ++c) {</pre>
        long long square_mod = (long long) MOD * MOD;
        long long sum = 0;
        for (int g = 0; g < M; ++g) {
          sum += (long long) mat[r][g] * other[g][c];
          if (sum >= square_mod) { sum -= square_mod; }
        res[r][c] = sum % MOD;
    mat.swap(res.mat);
   return *this;
};
```