Integrated Systems approach in thermal modeling by using GT-Suite

Irina Dmitrieva

Thermal Management, Engine Analysis, GMPT NA

Rob McAlpine,

GM Technical Fellow, Advanced Engineering, GMPT NA

Jeff Schlautman.

Technical Specialist, Thermal Management, GMPT NA

Oct. 29, 2014

Outline:

New industry requirements

Challenges in thermal modeling:

- Fast warm-up vs Cooling capability
- Fuel Economy/ Performance

Modeling approaches

Model applications:

- ✓ Steady state simulations;
- ✓ Warm up studies evaluation of contributors;
- Engine oil cooler assessment
- Calibration support
- **DFSS** studies

New industry requirements

OUTLOOK FOR GLOBAL FUEL ECONOMY AND GREEN HOUSE GAS REQUIREMENTS

Courtesy of Roger Clark

Challenges in thermal modeling

- Fast engine warm up:
 - <u>Fuel energy redistribution</u> from Energy to Coolant to Energy to Engine thermal masses;
 - Define a proper <u>threshold</u> to avoid boiling;
 - Deliver a min coolant flow to maintain the engine thermal balance
- Cooling capability:
 - Higher coolant capability is needed for a stoichiometric engine operation and for a hotter running engines in general

Challenges in thermal modeling

 All subsystems contributing to the engine thermal balance are to be included

All physics are to be captured

Design

Performance

Testing

Slide 6

ignificant level of

General Motors Company

Modeling approaches Calibration data Engine Bay Oil Splash **Controls** CFD data; Engine performance System isothermal Heat from (GTP) analysis at various temps **IEM** Combust ion heat Lube system Heat Engine thermal masses Cooling system Heat to to oil coolant Heat Heat from CFD data; friction From Dyno test or System isothermal analysis Components From GTP friction approach; From in-house software Engine Cooling Jacket* ııma Dmitrieva Slide 7 THE WORLD'S BEST VEHICLES General wotors company

Cooling system:

- Engine cooling system that includes engine specific components;
- Coolant pump (s) thru pump performance curves (flow rate as a function of RPM and Pressure);
- Thermostat (s) / Cooling control valve (s)
- Dyno or Vehicle cooling system depending on project request;
- Heat exchangers require both fluid inputs

- <u>Lubrication system</u>:
 - The major components included in the model are:
 - Oil pump performance that usually comes from the isolated lube system analysis:
 - pump curves at various RPM and oil temps for two pressure modes of the variable displacement pump (if applicable)
 - Engine oil cooler and turbocharger (if applicable)
 - Oil block flow passage that includes main gallery, main and rod bearings, piston squirters;
 - Oil head flow passage with cam bearings, cam phasers and lifters;
 - Oil pan (oil sump)

Air flow/Combustion system:

- In order to provide the fuel energy coming to the system at a certain engine speed/load condition a stand alone GTP model is integrated into the engine thermal model;
- FRM (Fast Run Model) for both Steady State and Transient Operations
 - Intake and Exhaust Systems Simplified but still capture main tuning effects
 - Combustion Characteristics Contains accurate attributes for specified operating conditions
 - **Controls** Contains representative algorithms for proper engine controls; ie: throttle, camshafts, waste gate, spark, etc

Exhaust system:

- Conventional exhaust system represented thru the GTP model;
- System with integrated exhaust manifold an additional heat exchange between the IEM gasses and engine thermal mass is to be included

In engine performance - FRM model transient/steady state Model conversion FRM model **Original GTP** model 150 Total Fuel Energy (kW) Original Original FRM FRM Original **FRM** 0.50 **Run time: Original** Computational FRM time gain ational Time per Case [min] Original GTP model – 80 X RT; FRM with component reduction – 40 X RT; FRM with GTP model recalibration - 3 X RT

THE MOKED 2 BEZT

General Motors Company

- Engine thermal structure:
 - Thermal mass partitioning:
 - Each cylinder is represented separately cylinder to cylinder temp gradient
 - Traditional block and head masses;
 - More detailed cylinder head masses split if refined temp distribution is needed;
 - Each cylinder Block mass split between a liner+ block mass attached to a liner and the rest of the block mass
 - Crankshaft and crankcase are represented as separated masses – due to high contribution in an overall engine mass;
 - Oil pan to account for heat lost thru the pan to ambient

Engine thermal structure:

Additional GT tools are to be used for a model build simplification

Friction

- Several levels of simplifications:
 - As defined in GTP module;
 - Split between major contributors:
 - Piston;
 - Main and rod bearings;
 - Cam bearings;
 - Others
- Additional friction heat is a function of temperature

Model applications:

- Steady state cases;
- Transient warm up;
- Maximum cooling modes;
- Oil cooler determination;
- Calibrations
- DFSS studies

Model applications - Steady state cases:

Serve primarily as model validation

Analysis Test **Analysis** Test

heat transfer, fixed RPM, at 245 sec.

Model applications – Transient warm-up:

- Standard and non-standard driving cycles;
- Evaluation of fluids, metal, surfaces temps over time;
- Inputs:
 - RPM vs. time;
 - Load vs. time;
 - With open cooling circuit loop or with an electric pump (coolant on demand) – flow vs. time
- Outputs:
 - Energy split;
 - Bulk Metal, fluid temps vs. time;
 - Combustion, waterjacket surface temps

Warm-up analytical results:

Mass Averaged Temperature (Inlet) [degC]

General Motors Company

Model applications – Oil cooler determination:

- Steady state analysis at various coolant inlet temps and RPM;
- Open cooling circuit (vehicle components are not included);
- The simulations are performed for two cases:
 - System without cooler;
 - System with cooler.

Analysis vs. test: oil sump temp vs. RPM @ fixed coolant T °C

Sump temperature difference due to EOC

Oil cooler impact evaluation; Oil cooler sizing

Sump Oll Temperature (°C)

Model applications – Calibration

- Analytical calibration;
- Steady state analysis to cover the entire range of the engine operating conditions:
 - Idle to max speed;
 - Light to WOT loads

Model applications - DFSS studies

- Design for six sigma methodology
- Use the GTS DOE functions to:
 - Create a new DOE;
 - Input control parameters;
 - Run a complete DOE study;
 - Analyze the results or post-process them in the other DFSS tools

Model applications – DFSS studies

One of the examples - Impact of key parameters on Oil sump temperature

Summary

The GTS software has shown to be a useful tool to resolve the current industry needs in the design and analysis of thermal management systems, it enables one to:

- Combine both modules heat generation and heat management.
- Study various scenarios and design alternatives.
- Provide the thermal parameters that cannot be directly measured in tests, but needed for engine calibration.
- The simulation results have proven to be reliable when obtained from validated models
- The base engine thermal model serves as a template for an engine models family that address various design needs

Acknowledgements

GM colleagues:

GTP:

- Andrew Kosanka;
- Ramakrishna Tatavarthi;

CFD:

- Colin Bosman;
- Shriram Reguraman;
- Subash Janarthanam

Gamma Technology:

- Matt Warner;
- Brad Holcomb

