

Mathematical Statistics

Seminar Exercises: Week 13

Recap. Throughout this class, $X_1, X_2, ..., X_n, ...$ will be i.i.d. random variables that follow the distribution of a given characteristic X.

Let X be a random variable. The probability density functions for the laws that we will use in this problem set are:

•
$$X \sim N(\mu, \sigma)$$
: $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, \ x \in \mathbb{R}$;

•
$$X \sim Bern(p)$$
: $f_X(x) = p^x (1-p)^{1-x}, x \in \{0,1\}$;

•
$$X \sim Exp(\lambda)$$
: $f_X(x) = \lambda e^{-\lambda x}, x > 0$;

•
$$X \sim \Gamma(a,b)$$
: $f_X(x) = \frac{1}{\Gamma(a)b^a} \cdot x^{a-1}e^{\frac{-x}{b}}, \ x > 0$;

•
$$X \sim Poisson(\lambda)$$
: $f_X(x) = e^{-\lambda} \frac{\lambda^x}{k!}, x \in \mathbb{Z}_{\geq 0}$

Proposition. Let $X_1, X_2, ..., X_n$ be independent and identically distributed random variables, that follow the distribution of the variable X.

• If
$$X \sim N(\mu, \sigma)$$
, then $X_1 + \ldots + X_n \sim N(n\mu, \sigma\sqrt{n})$;

• If
$$X \sim Exp(\lambda)$$
, then $X_1 + \ldots + X_n \sim Gamma(n, \frac{1}{\lambda})$;

• Central Limit Theorem: If n is big enough, then:

$$\frac{\frac{X_1 + \dots + X_n}{n} - E(X)}{\frac{\sigma_X}{\sqrt{n}}} \sim N(0, 1)$$

The likelihood function of the sample X_1, X_2, \ldots, X_n is:

$$L(X_1, X_2, \dots, X_n; \theta) = \prod_{i=1}^n f(X_i; \theta);$$

Type I error rate (Significance level):

$$\alpha = P(type\ I\ error) = P(reject\ H_0 \mid H_0) = P(TS \in RR \mid \theta = \theta_0)$$

Type II error rate:

$$\beta = P(type \ II \ error) = P(not \ reject \ H_0 \mid H_1) = P(TS \notin RR \mid H_1)$$

Power of a Test on a parameter θ :

$$\pi(\theta^*) = P(reject \ H_0 \mid \theta = \theta^*) = P(TS \in RR \mid \theta = \theta^*) = 1 - \beta(\theta^*)$$

Theorem (Neyman-Pearson). Let X be a characteristic with pdf $f(x;\theta)$, with $\theta \in A \subseteq \mathbb{R}$ unknown. Suppose we test on θ the simple hypotheses:

$$H_0: \theta = \theta_0$$

$$H_1: \theta = \theta_1$$

based on a random sample $X_1, X_2, ..., X_n$. Then for a fixed $\alpha \in (0, 1)$, a **most powerful test** is the test with rejection region given by

$$RR = \left\{ \frac{L(\theta_1)}{L(\theta_0)} \ge k_{\alpha} \right\}$$

where the constant $k_{\alpha} > 0$ depends only on α and the sample variables.

<u>Remark:</u> Finding such a most powerful test amounts to finding k_{α} so that $\alpha = P((X_1, \dots, X_n) \in RR \mid H_0)$

Exercise 1. Let X be a characteristic that has a normal distribution N(m, 1), where $m \in \mathbb{R}$ is unknown.

- (a) For a random sample of size 9 for X, find a most powerful test with the significance level 5% for the hypothesis $H_0: m = 0$ against $H_1: m = 1$. Find the power of this test.
- (b) For the following sample data of X:

$$-1, 0.5, -0.25, -0.75, 0.75, 1.25, 0.5, 1, 0.25$$

accept or reject the hypothesis $H_0: m = 0$ against $H_1: m = 1$, using the obtained test.

Exercise 2. Let X be a characteristic that has a Bernoulli distribution with parameter p, where $p \in (0,1)$ is unknown.

- (a) For a random sample of (large) size n for X, find a most powerful test with the significance level 5% for the hypothesis $H_0: p=0.5$ against $H_1: p=0.45$.
- (b) Let p be the probability of heads for a coin. Assume we toss the coin 900 times and we get 441 heads. Accept or reject the hypothesis $H_0: p = 0.5$ against $H_1: p = 0.45$, using the obtained test.

Exercise 3. Let X be a characteristic that has an $Exp(\lambda)$ distribution, where $\lambda > 0$ is unknown.

- (a) For a random sample of size 10 for X, find a most powerful test with the significance level 5% for the hypothesis $H_0: \lambda = 1$ against $H_1: \lambda = 3$. Find the power of this test.
- (b) Assume that X is the time (in minutes) spent by a client to buy a bus ticket from a vending machine and that the total time spent by a random sample of 10 clients is 4.9 minutes. Accept or reject the hypothesis $H_0: \lambda = 1$ against $H_1: \lambda = 3$, using the obtained test.

Exercise 4. Let X be a characteristic that has a Poisson distribution with parameter λ , where $\lambda > 0$ is unknown.

- (a) For a random sample of size 100 for X, find a most powerful test with the significance level 5% for the hypothesis $H_0: \lambda = 10$ against $H_1: \lambda = 11$. Find the power of this test.
- (b) Assume that X is the number of received calls during an hour in a call center and that for a random sample of 100 hours we have o total of 1062 calls. Accept or reject the hypothesis $H_0: \lambda = 10$ against $H_1: \lambda = 11$, using the obtained test.