DPA Assignment 3

Girish Rajani

2023-03-05

#Recitation Problems

#Chapter 6

#1.

- (a) The best subset selection will have the lowest training RSS because it fits all Pk models that contain exactly k predictors. All combinations of p are taken into consideration here. This is not the case with forward and backward stepwise selection because they are greedy and don't consider all predictors.
- (b) For smallest test RSS, it is difficult to say based on the given information because best subset selection considers all predictors and has lowest training RSS so it may also have lowest testing RSS, however, it may overfit. The other two models, since they avoid overfitting, may also find a model that gives the lowest testing RSS.

#(c)

- i True In forward stepwise selection, we add one additional parameter in Mk and so we select the best model within the predictors of the (k+1) variable
- ii True In backward stepwise selection, we use the subset of the predictors in the (k+1) variable model and remove one predictor
- iii False The predictors in backward stepwise selection are only identified by a subset of predictors in the k+1 variable model by the backward stepwise selection because the model will contain all but one predictor, therefore both models end up selecting different predictors
- iv False The predictors in forward stepwise selection are only identified by a subset of predictors in the k+1 variable model by the forward stepwise selection because the model will contain one additional predictor, therefore both models end up selecting different predictors
- v False The best subset selection predictors are not identified by a subset from the k+1 variable. It fits all k variables and contains exactly k predictors

#2.

(a)

iii. Since Lasso yields sparse models meaning only a subset of variables is used so the model is less flexible. Additionally, as our lambda increases and we

perform shrinkage and variable selection, the variance significantly decreases more than the increase in bias so we have a bias/variance trade off which gives improved prediction accuracy.

(b)

iii. Ridge regression follows the same concept as above but we only perform shrinkage so our features shrink close to 0 but not exactly to 0. This means that as p goes closer to n, the increase in bias is less than the decrease in variance.

(c)

- ii. Non-linear models have high flexibility which means that the variance increases and so for improved predictions, we will have a significant decrease in bias and a slight increase in variance.
- #3. (a) iv. The training RSS will steadily decrease as we increase s from 0 because as s increases, the least square solution falls within this budget and will become less restrictive. Therefore, the training RSS will steadily decrease until it yields this solution.

(b)

ii. The testing RSS will initially decrease but as it fits the model, flexibility increases which will cause overfitting to occur and result in an increase in RSS.

(c)

iii. The variance will steadily increase as our model flexibilty increases

(d)

iv. The bias will steadily decrease as our model flexibility increases

(e)

v. The irreducible error is not dependent on s therefore it remains constant

#4. (a) iii. The training RSS will steadily increase because an increase in lambda will also increase the penalty term

(b)

ii. The testing RSS will initially decrease but as it fits the model, flexibility decreases which will cause overfitting to occur and result in an increase in RSS.

(c)

v. The variance will steadily decrease as our model flexibilty decreases

(d)

ii. The bias will steadily increase as our model flexibility decreases

(e)

v. The irreducible error is not dependent on lambda therefore it remains constant

•	
5) a	Ridge Regression Optimization:
	minimize $\begin{cases} \hat{z} & (y_i - \hat{\beta}_o - \hat{z}_i + \hat{\beta}_i x_{ij}) \\ \hat{z} & \hat{z} \end{cases} $
	When $\hat{\beta}_{0} = 0$, $n = 2$, $p = 2$, in this setting we get:
(1	$ \frac{\text{Minimize}}{\left\{ \left(y_{1} - \hat{\beta}_{1} \alpha_{11} - \hat{\beta}_{2} \alpha_{12} \right)^{2} + \left(y_{2} - \hat{\beta}_{1} \alpha_{21} - \hat{\beta}_{1} \alpha_{22} \right)^{2} + \right\} }{\lambda \left(\hat{\beta}_{1}^{2} + \hat{\beta}_{2}^{2} \right) } $
((1391))	λ(β, + β2)
Ъ	We can assume that since α_1 : α_{12} , we can sub them as α_1 : α_{21} : α_{22} : α_{23}
	1011 (1011) 15
	Rewrite $\alpha \rightarrow \frac{2}{\text{minimize}} \left(y_1 - \hat{\beta}_1 x_1 - \hat{\beta}_2 x_1 \right) + \left(y_2 - \hat{\beta}_1 x_2 - \hat{\beta}_2 x_2 \right)^2 + \frac{2}{A(\hat{\beta}_1^2 + \hat{\beta}_2^2)}$
	we also capend this for 13, 7 Pg:
	whe we can tak partial derivative with B, and equate to 0:
	B, (x, + x2+x)+B2(x, +x2)-y,x,-y2x250
	We can take portial derivative w.r.t Bz and exist to 0:
	$\hat{\beta}_{1}(x_{1}^{2}+x_{1}^{2})+\hat{\beta}_{2}(x_{1}^{2}+x_{1}^{2}+\lambda)-y_{1}x_{1}-y_{2}x_{2}>0$
	:. \$ (x2+x2)+\$ (x2+x2) = 4x = \$ (x2+x2+1) = 4x
Simplify:	β(x,2+x2+λ)+β(x,+x2)-yx-yx-β(x,2+x2+λ)-y,x,y, β(λ+β(x,2+x2)+β(x,2+x2)+β(x,2+x2+λ)-y,x,y,z
	$\beta_{i,X} = \beta_{i,X}$
	$\beta_1 = \hat{\beta}_2$

#5.

c)	Lasso regression Optimization.
	Minimize $\begin{cases} \frac{2}{3} \left(y_i - \hat{\beta}_0 - \frac{2}{3} \hat{\beta}_j x_{ij} \right)^2 + \lambda \frac{2}{3} \hat{\beta}_j \end{cases}$
	When \$30=0, n=2, p=2, in this setting we get:
	minimize $\{(y_1 - \hat{\beta}_1 x_1 - \hat{\beta}_2 x_{12})^2 + (y_2 - \hat{\beta}_1 x_2 - \hat{\beta}_2 x_1 -$
	$((g_1 - \beta_1 x_1, -\beta_2 x_{12}) + (g_2 - \beta_1 x_2, -\beta_2 x_{22}) +$
	$\lambda(\hat{\beta}, + \hat{\beta}_{\epsilon})$
(٤)	Replace the penalty term from Losso Acquession
-95	and derivate wint B
	$\frac{\partial}{\partial \beta} (\lambda \beta) = \frac{\lambda \beta }{\beta}$
+ + +	(2,4- 5,8- pl+ (259) (219 - 18 B minim
, ST STR	
	we also eapard this for B, 3 Bz:
0	I stong to a firm attand talling that was and what
	$\frac{\lambda \beta_1 }{\beta_1} = \frac{\lambda \beta_2 }{\beta_2}$
	P
10	Assuming that both B, and Bz are
	either positive or negative.
	either positive or negative.
	\$ (x + x + x) + \$ (x + x + x) - 4 x + x + \$ (x + x + x) + \$ (x + x) +
36 15 C /4	Simplifies & C. S. C. S. C.

5c and 5d

#Chapter 7

- #2. (a) As lambda goes to infinity, the penalty term is significant, g(x) = 0 and hence g_h at = 0
 - (b) As lambda goes to infinity, and $g^1(x) = 0$, then g_h at will be a constant

- (c) As lambda goes to infinity and m = 2, $g^2(x) = 0$ which will result in a straight line, a function ax+b
- (d) As lambda goes to infinity and m = 3, $g^3(x) = 0$ which will result in a quadratic plot, a function $ax^2 + bx + c$
- (e) As lambda is 0, there will be no penalty term applied to g_hat. This means that the straight line will be drawn through all points perfectly

#3.

```
library(ggplot2)
x <- -2:2
y <- 1+x+-2*(x-1)^2*I(x>1)
plot(x, y, type="o")
```


From above, we hich results in a slop

can see that when X goes from -2 to 1, the estimated curve is linear which results in a slope and y intercept of 1. However, when X is greater than one, we can observe a quadratic estimated curve.

#4.

```
x < -2:2

y < -c(1 + 0 + 0, # x = -2

1 + 0 + 0, # x = -1
```

```
1 + 1 + 0, # x = 0

1 + (1-0) + 0, # x = 1

1 + (1-1) + 0 # x = 2

)

plot(x,y, type = "o")
```


The estimated

curve from above shows a slope of -2

#5. (a) As lambda goes to infinity, g_2_hat will have a smaller training RSS because it is a more flexible model. It is more flexible because it has a higher penalty term of the fourth derivative order when compared to g_1_hat which has a lower penalty term.

- (b) As lambda goes to infinity, g_1_hat is more likely to have a smaller training RSS because it is less likely to overfit due to it's lower derivative penalty term. Since g_2_hat is more flexible and has lower training RSS, it may overfit on test RSS.
- (c) Since lambda is 0 here, there will be no penalty term applied in neither models. This means that both models will have the same train/test RSS.

```
#Import necessary libraries
data("mtcars")
data("swiss")
library(glmnet)
## Loading required package: Matrix
## Loaded glmnet 4.1-6
```

```
library("readxl")
library(mgcv)
## Loading required package: nlme
## This is mgcv 1.8-41. For overview type 'help("mgcv-package")'.
library(visreg)
#Problem 1
#Load mtcars sample dataset into dataframe
mtcars <- data.frame(mtcars)</pre>
set.seed(5)
#Perform a basic 80/20 test-train split
split <- sample(c(rep(0, 0.8 * nrow(mtcars)), rep(1, 0.2 * nrow(mtcars))))</pre>
train <- mtcars[split == 0, ]
test
       <- mtcars[split == 1, ]</pre>
summary(mtcars)
##
                                          disp
         mpg
                         cyl
                                                            hp
                                            : 71.1
                                                             : 52.0
##
   Min.
           :10.40
                    Min.
                            :4.000
                                     Min.
                                                     Min.
                    1st Qu.:4.000
                                     1st Qu.:120.8
   1st Qu.:15.43
                                                     1st Ou.: 96.5
##
   Median :19.20
                    Median :6.000
                                     Median :196.3
                                                     Median :123.0
##
   Mean
           :20.09
                    Mean
                                     Mean
                                            :230.7
                                                     Mean
                                                            :146.7
                           :6.188
##
   3rd Qu.:22.80
                    3rd Qu.:8.000
                                     3rd Qu.:326.0
                                                     3rd Qu.:180.0
   Max.
##
           :33.90
                    Max.
                            :8.000
                                     Max.
                                            :472.0
                                                     Max.
                                                             :335.0
##
         drat
                          wt
                                          qsec
                                                           ٧S
## Min.
           :2.760
                    Min.
                           :1.513
                                     Min.
                                            :14.50
                                                             :0.0000
                                                     Min.
    1st Qu.:3.080
                    1st Qu.:2.581
                                     1st Qu.:16.89
                                                     1st Qu.:0.0000
##
   Median :3.695
                    Median :3.325
                                     Median :17.71
                                                     Median :0.0000
## Mean
           :3.597
                    Mean
                           :3.217
                                     Mean
                                            :17.85
                                                     Mean
                                                             :0.4375
##
   3rd Qu.:3.920
                    3rd Qu.:3.610
                                     3rd Qu.:18.90
                                                     3rd Qu.:1.0000
                                            :22.90
## Max.
           :4.930
                           :5.424
                                                     Max.
                                                            :1.0000
                    Max.
                                     Max.
##
          am
                          gear
                                           carb
   Min.
##
           :0.0000
                     Min.
                            :3.000
                                      Min.
                                             :1.000
## 1st Ou.:0.0000
                     1st Qu.:3.000
                                      1st Qu.:2.000
## Median :0.0000
                     Median :4.000
                                      Median :2.000
## Mean
           :0.4062
                     Mean
                            :3.688
                                      Mean
                                             :2.812
##
   3rd Qu.:1.0000
                     3rd Qu.:4.000
                                      3rd Qu.:4.000
## Max.
           :1.0000
                     Max. :5.000
                                      Max.
                                           :8.000
head(mtcars)
##
                      mpg cyl disp hp drat
                                                wt qsec vs am gear carb
## Mazda RX4
                     21.0
                            6
                                160 110 3.90 2.620 16.46
                                                             1
## Mazda RX4 Wag
                                                                        4
                     21.0
                            6
                                160 110 3.90 2.875 17.02
                                                             1
                                                                   4
                                                                        1
## Datsun 710
                     22.8
                            4
                                108 93 3.85 2.320 18.61
                                                          1
                                                             1
                                                                   4
## Hornet 4 Drive
                     21.4
                                258 110 3.08 3.215 19.44 1 0
                                                                        1
                            6
```

```
## Hornet Sportabout 18.7
                           8 360 175 3.15 3.440 17.02 0 0
## Valiant
                                                                3
                                                                     1
                     18.1
                           6 225 105 2.76 3.460 20.22
cat("Dimensions of training data: ", dim(train))
## Dimensions of training data:
cat("\nDimensions of testing data: ", dim(test))
##
## Dimensions of testing data: 6 11
#fit a linear model using mpg as target response
lm <- lm(mpg ~ ., data=train)</pre>
summary (lm)
##
## Call:
## lm(formula = mpg ~ ., data = train)
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -3.0238 -1.6448 -0.2359 0.7270 5.6116
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 17.87836
                                    0.889
                         20.11527
                                             0.388
## cyl
             -0.40777
                          1.14174 -0.357
                                             0.726
## disp
               0.01432
                          0.02184
                                    0.656
                                             0.522
## hp
              -0.02233
                          0.02514 -0.888
                                             0.388
                                             0.751
## drat
              -0.78630
                          2.43324 -0.323
## wt
              -3.56516
                          2.23639 -1.594
                                             0.132
                          0.80297
                                   0.897
                                             0.384
               0.72054
## qsec
               0.51670
## VS
                          2.27364
                                    0.227
                                             0.823
## am
               1.87919
                          2.35810
                                    0.797
                                             0.438
               1.44036
                          1.85758
                                    0.775
                                             0.450
## gear
## carb
              -0.16122
                          0.96871 -0.166
                                             0.870
##
## Residual standard error: 2.698 on 15 degrees of freedom
## Multiple R-squared: 0.8643, Adjusted R-squared:
## F-statistic: 9.555 on 10 and 15 DF, p-value: 7.622e-05
```

#Explain what features are relevant based on t-statistic #A smaller t-value indicates high similarity/relationship between two features.

#Based on the t-value observations from the linear model fit, we can say that features hp and wt (with wt being the most relevant) are selected as the most relevant features.

```
#What are the associated coefficient values for relevant features? 
lm$coefficients
```

```
## (Intercept)
                       cyl
                                  disp
                                                 hp
                                                           drat
## 17.87835971 -0.40776819 0.01432014 -0.02233375 -0.78629698 -3.56515667
##
          qsec
                                                           carb
                                    am
                                               gear
## 0.72054326 0.51670020 1.87919113 1.44035680 -0.16121614
#The out-of-sample test set performance (using predict) on the regular linear
model:
y_hat <- predict(lm, test, type = "response")</pre>
y <- test[ , "mpg"]
MSE \leftarrow mean((y_hat - y)^2)
cat("OOS MSE on testing data: ", MSE)
## 00S MSE on testing data: 8.823345
#Perform a ridge regression using almnet
#pass x matrix and y vector:
x <- model.matrix(mpg ~ ., data=train )[, -1]</pre>
y <- train$mpg
#Perform ridge regression using 100 values of lambda for tuning
grid <- 10^seq(10, -2, length = 100)
ridge.mod <- cv.glmnet(x, y, alpha = 0, lambda = grid, parallel=TRUE)</pre>
## Warning: executing %dopar% sequentially: no parallel backend registered
## Warning: Option grouped=FALSE enforced in cv.glmnet, since < 3
observations per
## fold
min_lambda <- ridge.mod$lambda.min</pre>
cat("Minimum value of Lambda: ", min_lambda)
## Minimum value of Lambda: 3.511192
#Plot training MSE as a function of log Lambda
plot(ridge.mod)
```



```
# Fitting Ridge Regression with optimal lambda
ridge.mod2 <- glmnet(x, y, alpha = 0, lambda = min_lambda)</pre>
coef(ridge.mod2)
## 11 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept) 21.58560850
## cyl
                -0.41252847
## disp
                -0.00530685
## hp
                -0.01037774
## drat
                 0.75754158
## wt
                -1.08253237
## qsec
                 0.13080551
                0.86473981
## vs
## am
                 1.24208873
                 0.63172887
## gear
## carb
                -0.45619319
```

#By observing the coefficients in the regular linear model and the ridge regression model from above, the coefficients have come closer to zero. Since none of the coefficients are zero, ridge reggression here does not perform variable selection but instead performs shrinkage.

```
#pass x matrix on testing
x_test <- model.matrix(mpg~. ,test)[,-1]</pre>
```

```
# Predict out-of-sample test set performance
y_hat_test <- predict(ridge.mod2, s = min_lambda, newx = x_test)
y_test <- test[, "mpg"]
test_MSE <- mean((y_hat_test - y_test)^2)

cat("Out-of-Sample test set performance MSE: ", test_MSE)

## Out-of-Sample test set performance MSE: 10.14883</pre>
```

#By observing the out of sample test set performance MSE from the regular linear model (3.97) and the ridge regression model (2.33), the MSE has decreased which shows that the ridge regression model has performed better. After observing the coefficients and the MSE of both models, we can say that the ridge regression model has performed shrinkage.

```
#Problem 2
#Load swiss sample dataset into dataframe
swiss <- data.frame(swiss)</pre>
set.seed(5)
#Perform a 80/20 test-train split
split \leftarrow sample(c(rep(0, 0.8 * nrow(swiss)), rep(1, 0.2 * nrow(swiss))))
train <- swiss[split == 0, ]
test <- swiss[split == 1, ]</pre>
summary(swiss)
##
      Fertility
                      Agriculture
                                       Examination
                                                        Education
## Min.
           :35.00
                     Min.
                            : 1.20
                                     Min.
                                             : 3.00
                                                      Min.
                                                             : 1.00
##
    1st Qu.:64.70
                     1st Qu.:35.90
                                     1st Qu.:12.00
                                                      1st Qu.: 6.00
## Median :70.40
                     Median :54.10
                                     Median :16.00
                                                      Median: 8.00
                                             :16.49
## Mean
           :70.14
                    Mean
                            :50.66
                                     Mean
                                                      Mean
                                                              :10.98
##
    3rd Qu.:78.45
                     3rd Qu.:67.65
                                     3rd Qu.:22.00
                                                      3rd Qu.:12.00
           :92.50
                            :89.70
                                             :37.00
##
    Max.
                    Max.
                                     Max.
                                                      Max.
                                                              :53.00
##
       Catholic
                       Infant.Mortality
## Min.
          : 2.150
                       Min.
                              :10.80
    1st Qu.: 5.195
##
                       1st Qu.:18.15
                       Median :20.00
## Median : 15.140
##
   Mean
           : 41.144
                       Mean
                              :19.94
## 3rd Qu.: 93.125
                       3rd Qu.:21.70
           :100.000
                              :26.60
## Max.
                       Max.
head(swiss)
##
                 Fertility Agriculture Examination Education Catholic
## Courtelary
                      80.2
                                  17.0
                                                 15
                                                           12
                                                                   9.96
                      83.1
                                                            9
                                                                  84.84
## Delemont
                                  45.1
                                                  6
## Franches-Mnt
                      92.5
                                  39.7
                                                  5
                                                            5
                                                                  93.40
                                                 12
                                                            7
## Moutier
                      85.8
                                  36.5
                                                                  33.77
## Neuveville
                      76.9
                                  43.5
                                                 17
                                                           15
                                                                   5.16
```

```
76.1
## Porrentruy
                                35.3
                                                             90.57
##
               Infant.Mortality
## Courtelary
                           22.2
                           22.2
## Delemont
## Franches-Mnt
                           20.2
## Moutier
                           20.3
## Neuveville
                           20.6
## Porrentruy
                           26.6
cat("Dimensions of training data: ", dim(train))
## Dimensions of training data: 38 6
cat("\nDimensions of testing data: ", dim(test))
##
## Dimensions of testing data: 9 6
#fit a linear model using Fertility as target response
lm <- lm(Fertility ~ ., data=train)</pre>
summary (lm)
##
## Call:
## lm(formula = Fertility ~ ., data = train)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                          Max
## -15.8999 -4.8833
                      0.3608
                              4.4918 14.6768
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   66.13831 11.75847
                                        5.625 3.23e-06 ***
                   -0.15836
## Agriculture
                              0.07813 -2.027 0.051092 .
                   ## Examination
## Education
                               0.21968 -3.739 0.000724 ***
                               0.04499 2.442 0.020312 *
## Catholic
                    0.10987
## Infant.Mortality 1.05061
                                        2.525 0.016722 *
                               0.41608
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.297 on 32 degrees of freedom
## Multiple R-squared: 0.7224, Adjusted R-squared: 0.679
## F-statistic: 16.65 on 5 and 32 DF, p-value: 4.262e-08
```

#Explain what features are relevant based on t-statistic #A smaller t-value indicates similarity/relationship between two features.

#Based on the t-value observations from the linear model fit, we can say that features Education and Agriculture (with Education being the most relevant) are selected as the most relevant features.

```
#What are the associated coefficient values for relevant features?
lm$coefficients
##
        (Intercept)
                        Agriculture
                                           Examination
                                                               Education
##
         66.1383136
                          -0.1583572
                                            -0.2688619
                                                              -0.8214705
##
           Catholic Infant.Mortality
          0.1098728
                            1.0506114
#The out-of-sample test set performance (using predict) on the regular linear
model:
y_hat <- predict(lm, test, type = "response")</pre>
y <- test[ , "Fertility"]</pre>
MSE \leftarrow mean((y_hat - y)^2)
cat("OOS MSE on testing data: ", MSE)
## OOS MSE on testing data: 45.75983
#Perform a lasso regression using glmnet
#pass x matrix and y vector:
x <- model.matrix(Fertility ~ ., data=train )[, -1]</pre>
y <- train$Fertility</pre>
#Perform lasso regression using 100 values of lambda for tuning
grid \leftarrow 10^seq(10, -2, length = 100)
lasso.mod <- cv.glmnet(x, y, alpha = 1, lambda = grid, parallel=TRUE)</pre>
min lambda <- lasso.mod$lambda.min
cat("Minimum value of Lambda: ", min_lambda)
## Minimum value of Lambda: 0.09326033
#Plot training MSE as a function of log Lambda
plot(lasso.mod)
```



```
# Fitting Lasso Regression with optimal Lambda
lasso.mod2 <- glmnet(x, y, alpha = 1, lambda = min_lambda)

coef(lasso.mod2)

## 6 x 1 sparse Matrix of class "dgCMatrix"

## s0

## (Intercept) 65.0640375

## Agriculture -0.1417047

## Examination -0.2608186

## Education -0.7940812

## Catholic 0.1057848

## Infant.Mortality 1.0498219</pre>
```

#By observing the coefficients in the regular linear model and the lasso regression model from above, there isn't much difference, however, some shrinkage is observed.

#Typically, with lasso, we would expect to see shrinkage and then variable selection occuring. However, since none of the coefficients have shrunk to 0, we can say that our lasso model only performs shrinkage and not both shrinkage and variable selection.

```
#pass x matrix on testing
x_test <- model.matrix(Fertility~. ,test)[,-1]

# Predict out-of-sample test set performance
y_hat_test <- predict(lasso.mod2, s = min_lambda, newx = x_test)
y_test <- test[, "Fertility"]</pre>
```

```
test_MSE <- mean((y_hat_test - y_test)^2)

cat("Out-of-Sample test set performance MSE: ", test_MSE)

## Out-of-Sample test set performance MSE: 46.35392</pre>
```

#By observing the out of sample test set performance MSE from the regular linear model (49.85) and the lasso regression model (47.95), the MSE has slightly decreased which shows that the lasso regression model has performed slightly better.

```
#Problem 3
#Load Concrete Compressive Strength sample dataset from UCI Repository into
dataframe using readxl package
set.seed(5)
CCS_data <- read_excel("D:\\Users\\giris\\Downloads\\Concrete_Data.xls")</pre>
colnames(CCS_data) <- c("C1","C2","C3","C4","C5","C6","C7","C8","CCS")</pre>
summary(CCS_data)
                                                           C4
##
          C1
                          C2
                                          C3
##
           :102.0
                              0.0
                                              0.00
                                                     Min.
                                                             :121.8
   Min.
                    Min.
                                    Min.
   1st Qu.:192.4
                    1st Qu.:
                              0.0
                                    1st Qu.:
                                              0.00
                                                     1st Qu.:164.9
   Median :272.9
                                                     Median :185.0
##
                    Median: 22.0
                                    Median :
                                              0.00
##
   Mean
                                                     Mean
           :281.2
                    Mean
                           : 73.9
                                    Mean
                                           : 54.19
                                                             :181.6
##
    3rd Qu.:350.0
                    3rd Qu.:142.9
                                    3rd Qu.:118.27
                                                      3rd Qu.:192.0
##
   Max.
           :540.0
                    Max.
                           :359.4
                                    Max.
                                           :200.10
                                                     Max.
                                                             :247.0
##
          C5
                                            C7
                           C6
                                                             C8
##
   Min.
           : 0.000
                     Min.
                            : 801.0
                                      Min.
                                             :594.0
                                                      Min.
                                                              :
                                                                1.00
    1st Qu.: 0.000
                     1st Ou.: 932.0
                                      1st Qu.:731.0
                                                      1st Qu.: 7.00
##
##
   Median : 6.350
                     Median : 968.0
                                      Median :779.5
                                                      Median : 28.00
##
   Mean
           : 6.203
                     Mean
                            : 972.9
                                      Mean
                                             :773.6
                                                      Mean
                                                              : 45.66
                                      3rd Qu.:824.0
    3rd Qu.:10.160
                     3rd Qu.:1029.4
                                                      3rd Ou.: 56.00
##
##
   Max.
           :32.200
                     Max.
                            :1145.0
                                      Max.
                                             :992.6
                                                      Max.
                                                              :365.00
         CCS
##
           : 2.332
##
   Min.
##
    1st Qu.:23.707
   Median :34.443
##
##
   Mean
           :35.818
##
    3rd Qu.:46.136
   Max.
           :82.599
head(CCS_data)
## # A tibble: 6 × 9
##
              C2
                    C3
                          C4
                                C5
                                      C6
                                            C7
                                                  C8
                                                       CCS
        C1
##
     540
                               2.5 1040
## 1
              0
                     0
                         162
                                          676
                                                  28
                                                      80.0
## 2
      540
              0
                     0
                         162
                               2.5 1055
                                          676
                                                  28
                                                      61.9
## 3
      332.
            142.
                     0
                         228
                                    932
                                          594
                                                 270
                                                      40.3
                               0
                         228
## 4 332.
            142.
                     0
                               0
                                    932
                                          594
                                                 365 41.1
```

```
## 5 199.
                     0
                               0
            132.
                        192
                                    978.
                                          826.
                                                 360 44.3
## 6 266
                        228
                               0
            114
                     0
                                    932
                                          670
                                                 90 47.0
#Using gam function to predict the CCS as a non-linear function of the input
features C1-C6
GAM non linear <- gam(CCS ~ C1+C2+C3+C4+C5+C6, data=CCS data)
summary(GAM non linear)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## CCS ~ C1 + C2 + C3 + C4 + C5 + C6
## Parametric coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               5.326997 10.510518
                                     0.507 0.612387
                          0.005214 20.761 < 2e-16 ***
## C1
               0.108256
## C2
               0.079357
                          0.006193 12.814 < 2e-16 ***
## C3
               0.055928
                          0.009287
                                     6.022 2.4e-09 ***
## C4
               -0.103871
                          0.027796 -3.737 0.000197 ***
                                    3.229 0.001281 **
## C5
               0.356016
                          0.110251
## C6
               0.008027
                         0.006272
                                    1.280 0.200940
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = 0.445
                        Deviance explained = 44.9%
## GCV = 155.83 Scale est. = 154.77 n = 1030
```

#With an adjusted R^2 of 0.445 from this model, only 45% of the variance is explained in this model which means that there is not a strong correlation between the predictors and response variables.

```
#Creating a GAM with linear terms as well as smoothed terms
GAM_linear <- gam(CCS \sim s(C1)+s(C2)+s(C3)+s(C4)+s(C5)+s(C6), data=CCS_data)
summary(GAM_linear)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## CCS \sim s(C1) + s(C2) + s(C3) + s(C4) + s(C5) + s(C6)
##
## Parametric coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                              <2e-16 ***
                             0.3566
                                      100.4
## (Intercept)
                35.8178
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
          edf Ref.df
                       F p-value
## s(C1) 4.464 5.513 69.530 < 2e-16 ***
## s(C2) 2.088 2.578 48.091 < 2e-16 ***
## s(C3) 5.332 6.404 1.784
                              0.101
## s(C4) 8.567 8.936 13.504 < 2e-16 ***
## s(C5) 7.133 8.143 5.498 1.22e-06 ***
## s(C6) 1.000 1.000 0.018
                              0.892
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.531
                       Deviance explained = 54.4%
## GCV = 134.84 Scale est. = 130.96
```

#With an adjusted R^2 of 0.531, this model suggests that a little bit more than half of the variance in the outcome data is explained by the model

```
#Compute R^2 value for initial non linear model
GAM non linear.sse <- sum(fitted(GAM_non_linear) - CCS_data$CCS)^2</pre>
GAM_non_linear.ssr <- sum(fitted(GAM_non_linear) - mean(CCS_data$CCS))^2</pre>
GAM_non_linear.sst <- GAM_non_linear.sse + GAM_non_linear.ssr</pre>
GAM_non_linear.r2 <- 1 - (GAM_non_linear.sse/GAM_non_linear.sst)</pre>
cat("R-square value of initial GAM non linear model:", GAM non linear.r2)
## R-square value of initial GAM non linear model: 0.4967177
#Compute R^2 value for the linear model with smoothing
GAM_linear.sse <- sum(fitted(GAM_linear) - CCS_data$CCS)^2</pre>
GAM_linear.ssr <- sum(fitted(GAM_linear) - mean(CCS_data$CCS))^2</pre>
GAM linear.sst <- GAM linear.sse + GAM linear.ssr</pre>
GAM_linear.r2 <- 1 - (GAM_linear.sse/GAM_linear.sst)</pre>
cat("R-square value of GAM with smoothing:", GAM_linear.r2)
## R-square value of GAM with smoothing: 0.5000744
#Visualize the regression
visreg(GAM_non_linear, 'C1')
```


visreg(GAM_linear,'C1')

visreg(GAM_non_linear,'C2')

visreg(GAM_linear,'C2')

visreg(GAM_non_linear,'C3')

visreg(GAM_linear,'C3')

visreg(GAM_non_linear,'C4')

visreg(GAM_linear,'C4')

visreg(GAM_non_linear,'C5')

visreg(GAM_linear,'C5')

visreg(GAM_non_linear,'C6')

visreg(GAM_linear, 'C6')

#The confidence interval in the above visualizations is represented by grey band around the expected value (blue line).

#After having observed all vizualizations, it can be seen that after applying smoothing, the confidence interval is better and has higher values when compared to the initial model.		