2) Sea el vector posición \vec{r} que varia con respecto el tiempo de la siguiente forma.

$$\vec{r}$$
(t)=(Cos (ω t - φ), Sin(ω t - φ))

 $\omega = 1.5$;

R1x = Plot[Cos[ω t- φ] /. φ > 2, {t, 0, 4 Pi}]

 $\omega = 1.5$

R1y = Plot[Sin[ω t - φ] /. φ → 2, {t, 0, 4 Pi}, PlotStyle \rightarrow Red]

La velocidad de las componentes de $\it R$ esta definida como la derivada

con respecto al tiempo de sus componentes entonces tenemos lo siguiente.

$$\overrightarrow{V(t)} = \frac{d\overrightarrow{r(t)}}{dt} = \frac{d}{dt} \left(\cos(\omega t - \varphi), \sin(\omega t - \varphi) \right) = \left(\frac{d(\cos(\omega t - \varphi))}{dt}, \frac{d(\sin(\omega t - \varphi))}{dt} \right) = \dots$$
... =

$$\left(-\sin\left(\omega t-\varphi\right)\frac{(\omega t-\varphi)}{dt}, \quad \cos(\omega t-\varphi)\frac{(\omega t-\varphi)}{dt}\right) = \left(-\omega \sin\left(\omega t-\varphi\right), \quad \omega \cos(\omega t-\varphi)\right) = \overrightarrow{V}(t)$$

 $\omega = 1.5$;

V1x = Plot[$-\sin[\omega t - \varphi] * \omega / . \varphi \rightarrow 2$, {t, 0, 4 Pi}];

Show[V1x, AxesLabel \rightarrow {HoldForm[Tiempo[s]], HoldForm[HoldForm[Velocidad[$\frac{m}{\epsilon}$]]]},

PlotLabel → "Velocidad en X"]

 $\omega = 1.5$;

 $V1y = Plot[Cos[\omega t - \varphi] * \omega /. \varphi \rightarrow 2, \{t, 0, 4Pi\}, PlotStyle \rightarrow Red];$

Show[V1y, AxesLabel \rightarrow {HoldForm[Tiempo[s]], HoldForm[Velocidad[$\frac{m}{s}$]]},

PlotLabel → HoldForm[Velocidad en Y], LabelStyle → {GrayLevel[0]}]

Continuamos ahora con la aceleración, tenemos la siguiente formula y desarrollo.

$$\vec{a} = \frac{d\vec{V}}{dt} = \frac{d}{dt} \left(-\omega \sin(\omega t - \varphi), \ \omega \cos(\omega t - \varphi) \right) = \left(\frac{d(-\omega \sin(\omega t - \varphi))}{dt}, \frac{d(\omega \cos(\omega t - \varphi))}{dt} \right) = \left(-\omega^2 \cos(\omega t - \varphi), \ \omega^2 \left(-\sin(\omega t - \varphi) \right) = \vec{a}$$

 $\omega = 1.5$; A1x = Plot[$-\cos[\omega t - \varphi] * \omega^2 / . \varphi \rightarrow 2$, {t, 0, 4 Pi}]; $Show[Alx, AxesLabel \rightarrow \{HoldForm[Tiempo[s]], HoldForm[Aceleración[\frac{m}{c^2}]]\},\\$ PlotLabel → HoldForm[Aceleración en X], LabelStyle → {GrayLevel[0]}

 $\omega = 1.5$; $\mathsf{Aly} = \mathsf{Plot} \big[-\mathsf{Sin}[\omega \, \mathsf{t} - \varphi] \, * \omega^2 \, / . \ \varphi \to 2 \, , \ \{\mathsf{t}, \, \mathsf{0}, \, \mathsf{4} \, \mathsf{Pi} \} \, , \, \mathsf{PlotStyle} \to \mathsf{Red} \big] \, ;$

Show[A1y, AxesLabel \rightarrow {HoldForm[Tiempo[s]], HoldForm[Aceleración[$\frac{m}{s^2}$]]},

PlotLabel → HoldForm[Aceleración en Y], LabelStyle → {GrayLevel[0]}

