In [4]:

```
import numpy as np
import matplotlib.pyplot as plt
import math
from scipy.stats import norm
def positive(S,K,del t,r,sigma):
    val = math.log(S/K) + (r+(sigma*sigma/2))*(del t)
    return val/(sigma*math.sqrt(del t))
def negative(S,K,del t,r,sigma):
    val = math.log(S/K) + (r-(sigma*sigma/2))*(del t)
    return val/(sigma*math.sqrt(del t))
def BSM call option(S,K,T,t,r,sigma):
    if(t==T):
        return np.maximum(S-K,0)
    term1 = S*norm.cdf(positive(S,K,T-t,r,sigma))
    term2 = K*math.exp(-r*(T-t))*norm.cdf(negative(S,K,T-t,r,sigma))
    return term1-term2
def BSM put option(S,K,T,t,r,sigma):
    if(t==T):
        return np.maximum(K-S,0)
    return K*math.exp(-r*(T-t))-S+BSM call option(S,K,T,t,r,sigma)
T = 1;
K = 1:
r = 0.05;
sigma = 0.6
t = 0.5
x = 1
BSM call = [];
BSM put = []
u = np.linspace(0.5, 1.5, 100)
for i in u:
    BSM_put.append(BSM_put_option(x,i,T,t,r,sigma))
    BSM call.append(BSM call option(x,i,T,t,r,sigma))
print ('Strike Price(K)
                              Call Option Price(C(t,x))
                                                             Put Option Price(P
(t,x))')
for i in range(0,len(u),10):
    print(round(u[i],6),"
                                            ",round(BSM call[i],6),"
",round(BSM_put[i],6))
plt.plot(u,BSM_put,label='P(t,x)',c='b')
plt.plot(u,BSM call,label='C(t,x)',c='g')
plt.title('C(t,x) and P(t,x) varying K (Strike Price)')
plt.xlabel('K (Strike Price)')
plt.ylabel('Option Price')
plt.legend()
plt.show()
BSM call = [];
```

```
BSM put = []
v = np.linspace(0.01, 1, 100)
for i in v:
    BSM put.append(BSM put option(x,K,T,t,r,i))
    BSM call.append(BSM call option(x,K,T,t,r,i))
print ('Sigma
                    Call Option Price(C(t,x))
                                                Put Option Price(P(t,x))')
for i in range(0,len(v),10):
                                        ",round(BSM_call[i],6),"
    print(round(v[i],6),"
",round(BSM_put[i],6))
plt.plot(v,BSM put,label='P(t,x)',c='b')
plt.plot(v,BSM call,label='C(t,x)',c='g')
plt.title('C(t,x) and P(t,x) varying sigma')
plt.xlabel('Sigma')
plt.ylabel('Option Price')
plt.legend()
plt.show()
BSM call = [];
BSM put = []
w = np.linspace(0,1,100)
for i in w:
    BSM put.append(BSM put option(x,K,T,t,i,sigma))
    BSM call.append(BSM call option(x,K,T,t,i,sigma))
print ('Rate
                 Call Option Price(C(t,x))
                                                 Put Option Price(P(t,x))')
for i in range(0,len(w),10):
                                        ",round(BSM_call[i],6),"
    print(round(w[i],6),"
",round(BSM_put[i],6))
plt.plot(w,BSM_put,label='P(t,x)',c='b')
plt.plot(w,BSM_call,label='C(t,x)',c='g')
plt.title('C(t,x) and P(t,x) varying rate (r)')
plt.xlabel('Rate (r)')
plt.ylabel('Option Price')
plt.legend()
plt.show()
BSM call = []; BSM put = []
y = np.linspace(0.51, 5, 100)
for i in y:
    BSM put.append(BSM put option(x,K,i,t,r,sigma))
    BSM_call.append(BSM_call_option(x,K,i,t,r,sigma))
             Call Option Price(C(t,x)) Put Option Price(P(t,x))')
print ('T
for i in range(0,len(y),10):
                                       ",round(BSM_call[i],6),"
    print(round(y[i],6),"
",round(BSM_put[i],6))
plt.plot(y,BSM put,label='P(t,x)',c='b')
plt.plot(y,BSM call,label='C(t,x)',c='g')
plt.title('C(t,x) and P(t,x) varying Final Time (T)')
plt.xlabel('Final Time (T)')
plt.ylabel('Option Price')
plt.legend()
plt.show()
```

```
BSM call={}
BSM put={}
m=np.linspace(0.5,1.5,20)
l=[]
n=np.linspace(0.01,1,20)
k=[]
BSM call t=[]
BSM put t=[]
for i in range(0,len(n)):
    for j in range(0,len(m)):
        BSM call[i,j] = BSM call option(x,m[j],T,t,r,n[i])
        BSM put[i,j] = BSM put option(x,m[j],T,t,r,n[i])
        l.append(m[i]);k.append(n[i]);
        BSM call t.append(BSM call[i,j]);BSM put t.append(BSM put[i,j])
print ('Strike Price(K)
                                    Call Option Price(C(t,x)) Put Option Pric
                            Sigma
e(P(t,x))')
for i in range(0,20,2):
    print(round(m[i],6),"
                                   ",round(n[i],6),"
                                                                   ",round(BSM cal
l[i,i],6),"
                                   ",round(BSM put[i,i],6))
axes = plt.axes(projection ='3d')
X = np.reshape(l, (len(n), len(m)))
Y = np.reshape(k, (len(n), len(m)))
Z = np.reshape(BSM_call_t, (len(n), len(m)))
axes.plot surface(X, Y, Z,cmap ='plasma', edgecolor ='green')
axes.set title('3D plot of C(t,x) varying K and sigma')
axes.set xlabel('K (Strike Price)')
axes.set ylabel('sigma')
axes.set zlabel('C(t,x)')
axes.view init(40, 60)
plt.show()
axes = plt.axes(projection ='3d')
X = np.reshape(l, (len(n), len(m)))
Y = np.reshape(k, (len(n), len(m)))
Z = np.reshape(BSM put t, (len(n), len(m)))
axes.view_init(40, 210)
axes.plot_surface(X, Y, Z, cmap ='viridis', edgecolor='pink')
axes.set title('3D plot of P(t,x) varying K and sigma')
axes.set xlabel('K (Strike Price)')
axes.set_ylabel('sigma')
axes.set zlabel('P(t,x)')
plt.show()
BSM_call={}
BSM put={}
m=np.linspace(0.5,1.5,20)
n=np.linspace(0,1,20)
k=[]
BSM call t=[]
BSM put t=[]
for i in range(0,len(n)):
    for j in range(0,len(m)):
        BSM_call[i,j] = BSM_call_option(x,m[j],T,t,n[i],sigma)
```

```
BSM_put[i,j] = BSM_put_option(x,m[j],T,t,n[i],sigma)
        l.append(m[j]);k.append(n[i]);
        BSM call t.append(BSM call[i,j]);BSM put t.append(BSM put[i,j])
print ('Strike Price(K)
                                          Call Option Price(C(t,x))
                              Rate
                                                                         Put Opti
on Price(P(t,x))')
for i in range(0,20,2):
    print(round(m[i],6),"
                                   ",round(n[i],6),"
                                                                   ",round(BSM cal
l[i,i],6),"
                                   ",round(BSM put[i,i],6))
axes = plt.axes(projection = '3d')
X = np.reshape(l, (len(n), len(m)))
Y = np.reshape(k, (len(n), len(m)))
Z = np.reshape(BSM call t, (len(n), len(m)))
axes.plot surface(X, Y, Z,cmap ='plasma', edgecolor ='green')
axes.set title('3D plot of C(t,x) varying K and r')
axes.set xlabel('K (Strike Price)')
axes.set_ylabel('r (rate)')
axes.set zlabel('C(t,x)')
axes.view init(40, 60)
plt.show()
axes = plt.axes(projection ='3d')
X = np.reshape(l, (len(n), len(m)))
Y = np.reshape(k, (len(n), len(m)))
Z = np.reshape(BSM_put_t, (len(n), len(m)))
axes.view init(40, 60)
axes.plot surface(X, Y, Z, cmap ='viridis', edgecolor='pink')
axes.set title('3D plot of P(t,x) varying K and r' )
axes.set xlabel('K (Strike Price)')
axes.set ylabel('r (rate)')
axes.set zlabel('P(t,x)')
plt.show()
BSM_call={}
BSM put={}
m=np.linspace(0.5,1.5,20)
1=[]
n=np.linspace(0.5,5,20)
k=[]
BSM_call_t=[]
BSM_put_t=[]
for i in range(0,len(n)):
    for j in range(0,len(m)):
        BSM_call[i,j] = BSM_call_option(x,m[j],n[i],t,r,sigma)
        BSM put[i,j] = BSM_put_option(x,m[j],n[i],t,r,sigma)
        l.append(m[j]);k.append(n[i]);
        BSM_call_t.append(BSM_call[i,j]);BSM_put_t.append(BSM_put[i,j])
print ('Strike Price(K)
                                     Call Option Price(C(t,x)) Put Option Pric
e(P(t,x))')
for i in range(0,20,2):
                                   ",round(n[i],6),"
                                                                   ",round(BSM_cal
    print(round(m[i],6),"
l[i,i],6),"
                                   ",round(BSM_put[i,i],6))
axes = plt.axes(projection = '3d')
X = np.reshape(l, (len(n), len(m)))
Y = np.reshape(k, (len(n), len(m)))
Z = np.reshape(BSM_call_t, (len(n), len(m)))
```

```
axes.plot_surface(X, Y, Z,cmap ='plasma', edgecolor ='green')
axes.set title('3D plot of C(t,x) varying K and T' )
axes.set_xlabel('K (Strike Price)')
axes.set ylabel('T (Final Time)')
axes.set zlabel('C(t,x)')
axes.view init(40, 60)
plt.show()
axes = plt.axes(projection ='3d')
X = np.reshape(l, (len(n), len(m)))
Y = np.reshape(k, (len(n), len(m)))
Z = np.reshape(BSM_put_t, (len(n), len(m)))
axes.view init(40, 210)
axes.plot surface(X, Y, Z, cmap ='viridis', edgecolor='pink')
axes.set title('3D plot of P(t,x) varying K and T')
axes.set xlabel('K (Strike Price)')
axes.set_ylabel('T (Final Time)')
axes.set zlabel('P(t,x)')
plt.show()
BSM call={}
BSM put={}
m=np.linspace(0,1,100)
l=[]
n=np.linspace(0.5,5,20)
k=[]
BSM call t=[]
BSM put t=[]
for i in range(0,len(n)):
    for j in range(0,len(m)):
        BSM call[i,j] = BSM call option(x,K,n[i],t,m[j],sigma)
        BSM put[i,j] = BSM put option(x,K,n[i],t,m[j],sigma)
        l.append(m[j]);k.append(n[i]);
        BSM call t.append(BSM call[i,j]);BSM put t.append(BSM put[i,j])
print ('Rate
                             Call Option Price(C(t,x)) Put Option Price(P(t,
x))')
for i in range(0,20,2):
    print(round(m[5*i],6),"
                                     ",round(n[i],6),"
                                                                    ", round (BSM c
                                       ",round(BSM_put[i,5*i],6))
all[i,5*i],6),"
axes = plt.axes(projection = '3d')
X = np.reshape(l, (len(n), len(m)))
Y = np.reshape(k, (len(n), len(m)))
Z = np.reshape(BSM_call_t, (len(n), len(m)))
axes.plot_surface(X, Y, Z,cmap ='plasma', edgecolor ='green')
axes.set_title('3D plot of C(t,x) varying r (rate) and T(Final Time)' )
axes.set xlabel('r (rate)')
axes.set ylabel('T (Final Time)')
axes.set zlabel('C(t,x)')
plt.show()
axes = plt.axes(projection ='3d')
X = np.reshape(l, (len(n), len(m)))
Y = np.reshape(k, (len(n), len(m)))
Z = np.reshape(BSM put t, (len(n), len(m)))
```

```
axes.plot_surface(X, Y, Z, cmap ='viridis', edgecolor='yellow')
axes.set title('3D plot of P(t,x) varying with r(rate) and T(Final Time)')
axes.set xlabel('r (rate)')
axes.set_ylabel('T (Final Time)')
axes.set zlabel('P(t,x)')
plt.show()
BSM call={}
BSM put={}
m=np.linspace(0,1,100)
l=[]
n=np.linspace(0.01,1,20)
k=[]
BSM call t=[]
BSM put t=[]
for i in range(0,len(n)):
    for j in range(0,len(m)):
        BSM_call[i,j] = BSM_call_option(x,K,T,t,m[j],n[i])
        BSM put[i,j] = BSM put option(x,K,T,t,m[j],n[i])
        l.append(m[j]);k.append(n[i]);
        BSM_call_t.append(BSM_call[i,j]);BSM_put_t.append(BSM_put[i,j])
print ('Rate
                                                                       Put Option
                                        Call Option Price(C(t,x))
                         Sigma
 Price(P(t,x))')
for i in range(0,20,2):
    print(round(m[5*i],6),"
                                     ",round(n[i],6),"
                                                                     ", round (BSM c
all[i,5*i],6),"
                                       ",round(BSM put[i,5*i],6))
axes = plt.axes(projection = '3d')
X = np.reshape(l, (len(n), len(m)))
Y = np.reshape(k, (len(n), len(m)))
Z = np.reshape(BSM_call_t, (len(n), len(m)))
axes.plot_surface(X, Y, Z,cmap ='viridis', edgecolor ='green')
axes.set title('3D plot of C(t,x) varying with r and sigma')
axes.set_xlabel('r (rate)')
axes.set ylabel('sigma')
axes.set_zlabel('C(t,x)')
axes.view init(40, 210)
plt.show()
axes = plt.axes(projection = '3d')
X = np.reshape(l, (len(n), len(m)))
Y = np.reshape(k, (len(n), len(m)))
Z = np.reshape(BSM_put_t, (len(n), len(m)))
axes.view init(40, 30)
axes.plot_surface(X, Y, Z, cmap ='inferno', edgecolor='pink')
axes.set title('3D plot of P(t,x) varying with r and sigma')
axes.set_xlabel('r (rate)')
axes.set_ylabel('sigma')
axes.set zlabel('P(t,x)')
plt.show()
BSM call={}
BSM put={}
m=np.linspace(0.5,5,20)
1=[]
n=np.linspace(0.01,1,20)
k=[]
```

```
BSM call t=[]
BSM put t=[]
for i in range(0,len(n)):
    for j in range(0,len(m)):
        BSM call[i,j] = BSM call option(x,K,T,t,m[j],n[i])
        BSM put[i,j] = BSM put option(x,K,T,t,m[j],n[i])
        l.append(m[j]);k.append(n[i]);
        BSM_call_t.append(BSM_call[i,j]);BSM_put t.append(BSM put[i,j])
print ('T
               Siama
                        Call Option Price(C(t,x)) Put Option Price(P(t,x))')
for i in range(0,20,2):
    print(round(m[i],6),"
                                  ", round(n[i],6),"
                                                                  ", round(BSM cal
                                  ",round(BSM_put[i,i],6))
l[i,i],6),"
axes = plt.axes(projection ='3d')
X = np.reshape(l, (len(n), len(m)))
Y = np.reshape(k, (len(n), len(m)))
Z = np.reshape(BSM call t, (len(n), len(m)))
axes.plot surface(X, Y, Z,cmap ='viridis', edgecolor ='green')
axes.set title('3D plot of C(t,x) varying with T and sigma')
axes.set xlabel('T (Final Time)')
axes.set ylabel('sigma')
axes.set_zlabel('C(t,x)')
axes.view init(40, 210)
plt.show()
axes = plt.axes(projection ='3d')
X = np.reshape(l, (len(n), len(m)))
Y = np.reshape(k, (len(n), len(m)))
Z = np.reshape(BSM put t, (len(n), len(m)))
axes.view init(40, 30)
axes.plot_surface(X, Y, Z, cmap ='inferno', edgecolor='pink')
axes.set_title('3D plot of P(t,x) varying with T and sigma')
axes.set xlabel('T (Final time)')
axes.set ylabel('sigma')
axes.set zlabel('P(t,x)')
plt.show()
```

<pre>Strike Price(K) (P(t,x))</pre>	<pre>Call Option Price(C(t,x))</pre>	Put Option Price
0.5	0.517768	0.005423
0.60101	0.429708	0.01588
0.70202	0.350549	0.035236
0.80303	0.281857	0.06506
0.90404	0.223993	0.105713
1.005051	0.176399	0.15663
5		
1.106061	0.137972	0.21672
4		
1.207071	0.107382	0.28465
1.308081	0.08329	0.359074
1.409091	0.064463	0.43876
3		

Sigma	<pre>Call Option Price(C(t,x))</pre>	<pre>Put Option Price(P(t,x))</pre>
0.01	0.02469	0.0
0.11	0.044553	0.019863
0.21	0.071625	0.046935
0.31	0.0991	0.07441
0.41	0.126597	0.101907
0.51	0.154007	0.129317
0.61	0.181269	0.156579
0.71	0.208339	0.183649
0.81	0.23518	0.21049
0.91	0.261757	0.237067

0.51 0.963535 1.417071 1.870606 2.324141 2.777677	l Option	Price(C(t,x)) 0.024178 0.171697 0.244137 0.299811 0.346328 0.386733	Put Option	0 0 0 0	. 148787 . 199319 . 233576 . 259157 . 279094
2.///6// 3.231212 3.684747 4.138283 4.591818		0.386733 0.422626 0.454987 0.484465 0.511527		0 0 0	.279094 .29498 .30778 .318138 .326507

Strike Price(<) Sigma	Call Option Price(C(t,x))	Put Option
<pre>Price(P(t,x))</pre>			
0.5	0.01	0.512345	
0.0			
0.605263	0.114211	0.409681	
0.0			
0.710526	0.218421	0.307393	
0.000377			
0.815789	0.322632	0.221171	
0.016819			
0.921053	0.426842	0.171749	
0.070061			
1.026316	0.531053	0.148517	
0.149493			
1.131579	0.635263	0.139505	
0.243145			
1.236842	0.739474	0.138476	
0.344781			
1.342105	0.843684	0.142383	
0.451352			
1.447368	0.947895	0.149653	
0.561285			

3D plot of C(t,x) varying K and sigma

3D plot of P(t,x) varying K and sigma

Strike Price(K)		<pre>Call Option Price(C(t,x))</pre>	Put
Option Price(P((t,x))).0	0.50633	0.0
0633			
0.605263	0.105263	0.439952	
0.014183			
0.710526	0.210526	0.385594	
0.02513			
0.815789	0.315789	0.341642	
0.038277			
0.921053	0.421053	0.306385	
0.052583			
1.026316	0.526316	0.278251	
0.067098			
1.131579	0.631579	0.255904	
0.081066			
1.236842	0.736842	0.238254	
0.093933			
1.342105	0.842105	0.224432	
0.10533			
1.447368	0.947368	0.213755	
0.115037			

3D plot of C(t,x) varying K and r

3D plot of P(t,x) varying K and r

<pre>Strike Price(K) Price(P(t,x))</pre>	Т	Call Option Price(C(t,x))	Put Option
	.5	0.5	0.0
0.605263	0.973684	0.423979	
0.015075			
0.710526	1.447368	0.39334	
0.070995			
0.815789	1.921053	0.382929	
0.142766			
0.921053	2.394737	0.381812	
0.219613			
1.026316	2.868421	0.385726	
0.297425			
1.131579	3.342105	0.392647	
0.374325			
1.236842	3.815789	0.401475	
0.449358			
1.342105	4.289474	0.411559	
0.52201			
1.447368	4.763158	0.422484	
0.591999			

3D plot of C(t,x) varying K and T

3D plot of P(t,x) varying K and T

Rate (t,x))	T Call Op	tion Price(C(t,x))	Put Option Price(P
0.0	0.5	0	0
0.10101 0.137454	0.973684	0.184	174
0.20202 0.133419	1.447368	0.3070	506
0.30303 0.093675	1.921053	0.443	571
0.40404 0.05107	2.394737	0.5859	992
0.505051 0.021691	2.868421	0.719	9341
0.606061 0.007054	3.342105	0.828	3433
0.707071 0.00171	3.815789	0.90	5814
0.808081 0.000299	4.289474	0.953	3514
0.909091 3.6e-05	4.763158	0.979	9294

3D plot of C(t,x) varying r (rate) and T(Final Time)

3D plot of P(t,x) varying with r(rate) and T(Final Time)

Rate	Sigma	Call Option Price(C(t,x))	Put	0pt
ion Price(P(t,x))			
	01	0.002821		
0.002821				
0.10101	0.114211	0.061988		
0.012737				
0.20202	0.218421	0.118702		
0.022626				
0.30303	0.322632	0.172574		
0.031979				
0.40404	0.426842	0.223708		
0.040786				
0.505051	0.531053	0.272211		
0.049047				
0.606061	0.635263	0.318188		
0.056765				
0.707071	0.739474	0.361744		
0.063945				
0.808081	0.843684	0.402976		
0.070593				
0.909091	0.947895	0.441982		
0.076719				

3D plot of C(t,x) varying with r and sigma

3D plot of P(t,x) varying with r and sigma

T Sigma 0.5	Call Option 0.01	Price(C(t,x)) 0.221199	Put Option	<pre>Price(P(t,x))</pre>
0.973684 0.0	0.114211		0.385436	
1.447368 0.0	0.218421		0.515038	
1.921053 0.0	0.322632		0.617309	
2.394737 1e-06	0.426842		0.698013	
2.868421 3e-06	0.531053		0.761699	
3.342105 5e-06	0.635263		0.811956	
3.815789 6e-06	0.739474		0.851614	
4.289474 8e-06	0.843684		0.882909	
4.763158 9e-06	0.947895		0.907605	

3D plot of C(t,x) varying with T and sigma

3D plot of P(t,x) varying with T and sigma

In []: