機械学習キホンの紹介

回帰分析の例

例: $f(x,y,z) = 5x + y^2 + z$

項目1(x)	項目2(y)	項目3(z)	result
10.2	2.0	3.1	58.1
3.2	3.0	1.2	26.2

回帰分析の例

- 上の(x,y,z)とそのresultのセット(学習データと教師データ)を沢山用意する。
- 2. データを使って学習させる。
- 3. 上記数式を近似するモデルが作成できる。(x,y,zを入力すれば、resultを近似できる)

※2の学習のステップがいわゆる機械学習と呼ばれる部分。古典的なものからニューラルネットワークまで幅広い 選択肢がある。

分類モデル

上記のresultの部分がラベルで構成されるものだと思えば よい。

違うことを表現するだけで、その値について意味はない。 (統計的には、**質的変数と量的変数**の違い)

ニューラルネットワーク

各出力について、以下で表現できる。

$$y = \phi\left(\sum_{i=0}^N x_i w_i + b
ight)$$

st ϕ は活性化関数

なぜここまでもてはやされるように?

主に画像の分野で、従来の手法とは一線を画す精度を出したことで、爆発的に認知されるに至った。

 \downarrow

AI

↓ "This is Cat" 従来の手法ではこれがものすごく大変だった。 何をもって猫と定義するのか、特徴量を人間が手動で設定 する必要があった。

ニューラルネットワークを使った学習の場合、猫と猫以外の画像とそれぞれの画像に対応するラベル(cat or not)を集めて学習させればよいだけ。

いわゆる特徴量の抽出を自動で行わせられるようになった。

これを応用・発展させて現在では様々なタスクを行わせられるようになった。

- 画像分類
- 物体検知
- 音声認識
- 画像生成
- etc...