Лабораторная работа № 5

НАСТРОЙКА ПАРАМЕТРОВ ПИД-РЕГУЛЯТОРА

1. ЦЕЛЬ РАБОТЫ

Исследование влияния каналов ПИД-регулятора на динамическую точность системы.

2. УКАЗАНИЯ К САМОСТОЯТЕЛЬНОЙ РАБОТЕ

Настройка параметров ПИД – регулятора методу Зиглера – Никольса. Описание объекта управления задано в виде передаточной функции:

$$W_o(p) = \frac{k_o}{(T_{o1}p + 1)(T_{o2}p + 1)} e^{-\tau_o p}$$

Схема исследуемой системы представляет собой замкнутую систему с единичной обратной связью. Схема разомкнутой системы содержит последовательное включение регулятора и объекта управления.

Требуется найти параметры ПИД - регулятора по переходной характеристике объекта управления.

No	Параметры динамических звеньев				
варианта	k_0	T_{01} , c	T_{02} , c	$ au_o$	
1	1	0,1	0,12	0,01	
2	1,2	0,11	0,14	0,011	
3	1,5	0,09	0,13	0,012	
4	1,8	0,12	0,08	0,013	
5	2	0,07	0,15	0,014	
6	4	0,06	0,12	0,02	
7	5	0,09	0,16	0,01	
8	6	0,02	0,08	0,012	
9	1	3	2	0,4	
10	2	3	1	0,3	
11	1	4	2	0,2	
12	2	4	1	0,2	
13	3	4	3	0,25	
14	2	2	1	0,35	
15	2	3	1	0,1	
16	1	4	2	0,4	
17	2	4	1	0,15	
18	3	4	3	0,45	

19	2	2	1	0,1
20	1	0,1	0,12	0,01
21	1,3	0,12	0,14	0,011
22	1,4	0,09	0,15	0,012
23	1,9	0,12	0,09	0,013
24	2	0,06	0,16	0,012
25	4	0,08	0,13	0,022
26	5	0,09	0,16	0,014
27	6	0,02	0,08	0,01
28	1	3	2	0,45
29	2	3	1	0,25
30	2	3	1	0,15

3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 3.1. Определить переходную характеристику объекта управления и её производную, используя модель разомкнутой системы без регулятора:
- 3.2. По максимальному значению производной найти точку перегиба переходной характеристики и построить в этой точке касательную к переходной характеристике:

3.3. Определить численные значения параметров а и L (смещение характеристики относительно начала координат по оси ординат и абсцисс соответственно) по графику построенной к переходной характеристике касательной.

4.4. Определить параметры ПИД – регулятора по формулам таблицы 1.

Управляющее воздействие u(t), формируемое ПИД-регулятором, может быть представлено следующим образом:

$$u(t) = K_{\Pi} * \varepsilon(t) + K_{H} * \int_{0}^{t} \varepsilon(\tau) d\tau + K_{\Lambda} * \frac{d\varepsilon}{dt}$$

Передаточная функция ПИД-регулятора:

$$W(s) = K_{\Pi} + \frac{K_{\Pi}}{s} + K_{\Lambda} * s$$

Таблица 1.

	Формулы для расчёта параметров ПИД – регулятора по временному методу Зиглера - Никольса			
Регулятор	K	K V	иглера - тикольса К	
П	1 / a	Λ _N	Хд	
11	1/a	2 1/17		
ПИ	0,9/a	$3*L/K_{\Pi}$		
ПИД	1,2/a	$2*L/K_{\Pi}$	$0.5 * L * K_{\Pi}$	

4.5. Получить переходную характеристику замкнутой системы, с рассчитанными настройками ПИД-регулятора.

4.6. Эмпирически изменяя настройки ПИД регулятора в окрестностях полученных значений, добиться улучшения показателей качества системы.

5. СОДЕРЖАНИЕ ОТЧЕТА

- 5.1. Цель работы.
- 5.2. Порядок выполнения работы.
- 5.4. Результаты моделирования: переходные характеристики замкнутой системы до включения регулятора, с настройками ПИД-регулятора, рассчитанными по методу Зиглера-Никольса, с настройками ПИД-регулятора, найденными эмпирически.
 - 5.5. Сравнительный анализ результатов моделирования.