MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

Prepared by: Er. Ankit Kharel

Nepal college of information technology

LOGIC, INDUCTION AND REASONING

- Proposition and Truth function
- Propositional Logic
- Expressing statements in Logic Propositional Logic
- Rules of Inference
- The predicate Logic
- Validity
- Informal Deduction in Predicate Logic
- Proofs(Informal Proofs & Formal Proofs)
- Elementary Induction
- Complete Induction
- Methods of Tableaux
- Consistency and Completeness of the System

Proposition:

- > Declarative statement that is either TRUE or FALSE.
- Symbol 'T' for TRUE and 'F' for FALSE. Examples:
 - Paris is in France(T).
 - ii) Delhi is in Nepal(F).'
 - iii) 2 < 4(T).
 - iv) 4=7(F).

Example of statement that are not propositions:

- i) What is your name? (This is a Question)
- ii) Do your Homework (This is a command)
- iii) "x" is even number (It depends on the value of x)
- > Small alphabets like 'p', 'q', 'r' are used to represent prepositions.
 - p: Paris is in France.
 - q: We live on Earth

Proposition Logic:

- Deals with proposition also known as Propositional Calculus.
- > First developed by Aristotle.

I) Atomic Proposition:

❖ Which cannot be further broken down.

Example:

"Today is Friday"

II) Compound Proposition:

- ❖ Which can further be broken down.
- ❖ Logical operators are used.

Example:

"Ram is intelligent and diligent."

p: "Ram is intelligent"

q: "Ram is diligent"

1.Logical operators/connectives:

- > Used to construct compound propositions.
- Some common logical connectives are:
- 1. NEGATION(NOT) ¬
- 2. CONJUCTION(AND) ^
- 3. DISJUNCTION(OR) v
- 4. EXCLUSIVE OR(XOR) ⊕
- 5. IMPLICATION(IF-THEN) →(Inverse, Converse and Contrapositive)
- 6. BICONDITIONAL(IF AND ONLY IF) $\leftarrow \rightarrow$

1.Negation(not):

- If 'p' is the proposition, then the negation of 'p' is denoted by '¬p'.
- '¬p' means "it is not case that p" or simply "not p".

Examples:

1) p: "Today is Friday"

¬p: "It is not the case that today is Friday"

¬p: "Today is not Friday"

2) p: "London is in Denmark"

¬p: "It is not the case that London is in Denmark"

¬p: "London is not in Denmark"

TRUTH TABLE

2.conjunction(and):

- If 'p' and 'q' are two proposition, then the conjunction of 'p' and 'q' is denoted by 'p^q'.
- p^q is TRUE only when both 'p' and 'q' are TRUE, otherwise FALSE.

Examples:

1) p: "Today is Friday"

q: "It is raining Today"

p^q: "Today is Friday and it is raining Today"

р	q	p∧q
T	T	T
T	F	F
F	T	F
F	F	F

3.disjunction(or):

- If 'p' and 'q' are two proposition, then the disjunction of 'p' and 'q' is denoted by 'pVq'.
- pVq is FALSE when both 'p' and 'q' are FALSE, otherwise TRUE.

Examples:

1) p: "Today is Friday"

q: "It is raining Today"

pVq: "Today is Friday or it is raining Today"

р	q	pVq
T	T	T
T	F	T
F	T	T
F	F	F

4.Exclusive or (xor):

- If 'p' and 'q' are two proposition , then the Exclusive or of 'p' and 'q' is denoted by 'p ⊕ q' which means "Either p or q but not both"
- p ⊕ q is TRUE when either 'p' or 'q' is TRUE and FALSE when both are TRUE or both are FALSE.

Examples:

```
    p: "Today is Friday"
    q: "It is raining Today"
    p ⊕ q: "Either today is Friday or it is raining today"
```

р	q	p⊕q
T	T	F
T	F	T
F	T	Т
F	F	F

5.implication (if→then):

- If 'p' and 'q' are two proposition then the statement "if p then q" is called an implication and denoted by p→q.
- p>q is also called a conditional statement.
- 'p' is called **hypothesis** or **antecedent** or **premise**.
- 'q' is called the **conclusion** or **consequence**.

Some other terminologies used to express p->q are:

- \checkmark If p , then q.
- ✓ p is sufficient for q
- √ q when p
- ✓ A necessary condition for p is q.
- ✓ p only if q
- √ q unless ¬p
- √ q follows from p

5.implication (if→then):

Example:

p: "Today is holiday"

q: "The college is closed"

p->q: "If today is holiday, then the college is closed"

TRUTH TABLE

р	q	p→q
Т	Т	Т
T	F	F
F	Т	Т
F	F	Т

inverse:

$$p \rightarrow q$$
 $\rightarrow \neg p \rightarrow \neg q$
"if p, then q" "if not p, then not q"

p: "Today is holiday" ¬p: "Today is not holiday"

q: "The college is closed" ¬q: "The college is not closed"

 $p \rightarrow q$: "If today is holiday, then the college is closed" $p \rightarrow q$: "If today is not holiday, then the college is not closed"

converse:

$$p \rightarrow q \longrightarrow q \rightarrow p$$
"if p, then q" "if q, then p"

p: "Today is holiday"

q: "The college is closed"

p->q: "If today is holiday, then the college is closed"

q→p: "if the college is closed, then today is holiday"

Contra-positive:

$$p \rightarrow q \longrightarrow \neg q \rightarrow \neg p$$
"if p, then q" "if not q, then not p"

p: "Today is holiday" ¬p: "Today is not holiday"

q: "The college is closed" ¬q: "The college is not closed"

 $p\rightarrow q$: "If today is holiday, then the college is closed" $\neg q\rightarrow \neg p$: "If the college is not closed, today is not holiday"

6.Biconditional(if and only if):

- If 'p' and 'q' are two proposition, then the biconditional statement p←→q is the proposition "p if and only if q"
- $(p \rightarrow q) \land (q \rightarrow p) == p \leftarrow \rightarrow q$
- These are also called bi-implications.
- Some other Terminologies:
 "p is necessary and sufficient for q"
 "if p then q and conversely"

Examples:

p: "I am breathing"

q: "I am alive"

p←→q: "I am breathing if and only if I am alive"

р	q	p←→q
T	T	T
T	F	F
F	T	F
F	F	T

Operator precedence:

Operator	Precedence (higher the number higher the precedence)	
7	1	
۸	2	
V	3	
→	4	
←→	5	

Examples:

Truth table of compound preposition:

• Construct the truth table of compound proposition $(PV \neg Q) \rightarrow (P \wedge Q)$

Р	Q	¬Q	PV¬Q	P^Q	(P∨¬Q) → (P∧Q)
T	Т	F	T	Т	T
T	F	Т	T	F	F
F	Т	F	F	F	Т
F	F	T	T	F	F

Truth table of compound preposition:

- Construct the truth table of compound proposition
- 1. $(PV \neg Q) \rightarrow (P \wedge Q)$

P	Q	¬Q	A=(PV¬Q)	B=(P^Q)	A→B
T	T	F	Т	Т	Т
T	F	T	Т	F	F
F	Т	F	F	F	Т
F	F	T	T	F	F

Truth table of compound preposition:

Construct the truth table of compound proposition

 $2. (P \rightarrow Q) \land (Q \rightarrow R)$

P	Q	R	(P → Q)	(Q→R)	(P→Q)^(Q→R)
Т	T	T	T	T	T
Т	T	F	T	F	F
T	F	T	F	T	F
Т	F	F	F	T	F
F	T	T	T	T	Т
F	T	F	T	F	F
F	F	T	T	T	Т
F	F	F	T	T	T

TRANSLATING ENGLISH SENTENCES:

Examples:

1."You can access the internet from NCIT only if you are a masters student or you are a new student"

Let,

p: You access the internet from NCIT

q: You are a masters student

r: You are a new student

$$p \rightarrow (q \wedge r)$$

2."The automated reply can not be sent when file system is full" Let,

p:The automated reply can be sent q:File system is full

Assignment 1:

- 1. What are logical connectives explain each with example and truth table.
- 2. Construct truth table for
- ¬(p∧q)ν(r∧¬p)
- (p∨¬r)∧¬((q∨r)∨¬(r∨p))
- $((p \leftarrow \rightarrow q) \oplus (\neg p \rightarrow q)) \vee (q \rightarrow \neg r)$
- **3.**Let p, q ,r be:

```
p="You have flu"
```

q="You miss the final exam"

r="You pass the course"

Express each proposition as an English sentence and construct truth table:

- p > q
- q→¬r
- $\cdot (p \rightarrow \neg r) v(q \rightarrow \neg r)$
- 4. Translate into mathematical expression
- You can't have voting right if you are mentally unfit and you are not over 18 years.
- Leaders will make correct decision only if you choose a good leader or you raise your voice against incorrect decision