Manejo de Vida Silvestre (BIF506)

Lección 9 Estructuras poblacionales

Introducción

Cracimiente	Natalidad	Mortalidad	Superviven-	
Crecimiento	Matalluau	Mortalidad	cia	

Abundancia	Colonización	Estructura	Razón:	Interacciones
Abundancia	Extinción	Edad	Sexo	Ecológicas

Producción	Cosecha	Tallas
------------	---------	--------

Fundamentos

Modelo básico de población

$$N_{t+1} = N_t + (B+I) - (D+E).$$

Individuos del año anterior Crecimeinto: Natalidad (B) + Inmigración (I)

Decrecimiento: Muerte (D) + Emigración (E)

FACTOR HUMANO

Reintroducción Crianza Cosecha Cacería Disturbios

REFERENCIAS

[WDA] Skalski, J. R., K. E. Ryding, and J. Millspaugh. 2005. Wildlife demography: analysis of sex, age, and count data. Academic Press.

[ECO] Smith, R. L., & Smith, T. M. (2001). Ecología. Madrid: Pearson/Addison Wesley.

Modelos denso-dependientes

$$\frac{dN}{dt} = B - D$$

Tasa de crecimiento

$$B = bN$$
 $D = dN$

Tasa de nacimiento y muerte depende de población

$$\frac{dN}{dt} = (b - d)N = rN$$

r es la tasa de crecimiento intrínseca per cápita

Qué pasa si r >0 r<0 r=0 ?

Modelos denso-dependientes

$$\int rac{d\,N_t}{N_t} = \int r\,dt$$
 Usando separación de variables (Ecuaciones diferenciales de primer grado)

$$\ln |N_t| + c = rt + c'$$
 Después de unos arreglos y establecer N_0 como la población inicial se tiene:

$$N_t = N_0 e^{rt}$$
 Modelo básico de crecimiento

Crecimiento logístice

Pág 17 WDA

Tasa de

En cierto momento, la población alcanza su capacidad de carga. Esto puede deberse a competencia intraespecífica por recursos, disminución en tasas de preñez, reducción en supervivencia de juveniles.

 $b = b_0 - aN_t$ Natalidad disminuye conforme aumenta población

Mortalidad aumenta $d = d_0 + cN_t$ proporcionalmente al tamaño de población

 $\frac{dN_t}{dt} = [(b_0 - aN_t) - (d_0 + cN_t)]N_t$ Tasa de crecimiento afectada

por b y d

crecimiento $\frac{dN_t}{dt} = rN_t \left(1 - \frac{N_t}{K}\right)$

Proyección de la población

Modelos estructurados por edad

- Muy útiles cuando la supervivencia, y fecundidad dependen de la edad (o tallas).
- Muy usados para controlar extracción o producción en relación a ciertas tallas o edades.

Figure 2.13. Schematic of a one-sex, density-independent, age-structure, matrix model with four age classes and age-dependent survival (*S*) and fecundity (*F*).

Matriz de Leslie

$$\begin{bmatrix} n_{01} \\ n_{11} \\ n_{21} \\ n_{31} \end{bmatrix} = \begin{bmatrix} F_0 & F_1 & F_2 & F_3 \\ S_0 & 0 & 0 & 0 \\ 0 & S_1 & 0 & 0 \\ 0 & 0 & S_2 & 0 \end{bmatrix} \cdot \begin{bmatrix} n_{00} \\ n_{10} \\ n_{20} \\ n_{30} \end{bmatrix}$$

Matriz de Leslie

Número de hembras en *t*+1

Matriz de Leslie

Se utilizan solo las hembras de la población, asumiendo que todas tendrán serán fecundadas.

$$\begin{bmatrix} n_{01} \\ n_{11} \\ n_{21} \\ n_{31} \end{bmatrix} = \begin{bmatrix} F_0 & F_1 & F_2 & F_3 \\ S_0 & 0 & 0 & 0 \\ 0 & S_1 & 0 & 0 \\ 0 & 0 & S_2 & 0 \end{bmatrix} \cdot \begin{bmatrix} n_{00} \\ n_{10} \\ n_{20} \\ n_{30} \end{bmatrix} = \begin{bmatrix} F_0 \times n_{00} + F_1 \times n_{10} + F_2 \times n_{20} + F_3 \times n_{30} \\ S_0 \times n_{00} + 0 \times n_{10} + 0 \times n_{20} + 0 \times n_{30} \\ \vdots \\ \vdots \end{bmatrix}$$

 $\{F:F\geq 0\}$ Fecundidad es positiva o 0; número de hembras edad 0 producidas por cada hembra en la clase de edad \emph{k}

 $S_{kt} \in [0\,1]$ Probabilidad de un individuo de sobrevivir de la clase anterior a la siguiente.

Ejercicio en clase

$$\mathbf{M} = \begin{bmatrix} 0 & 1.1 & 2.3 \\ 0.75 & 0 & 0 \\ 0 & 0.25 & 0 \end{bmatrix}. \qquad \underline{n}_0 = \begin{bmatrix} 50 \\ 30 \\ 20 \end{bmatrix}.$$

 $\mathbf{M} \cdot n_0$

Respuesta

$$\begin{bmatrix} n_{01} \\ n_{11} \\ n_{21} \end{bmatrix} = \begin{bmatrix} 0 & 1.1 & 2.3 \\ 0.75 & 0 & 0 \\ 0 & 0.25 & 0 \end{bmatrix} \cdot \begin{bmatrix} 50 \\ 30 \\ 20 \end{bmatrix} = \begin{bmatrix} 0 \times 50 & +1.1 \times 30 & +2.3 \times 20 \\ 0.75 \times 50 + 0 \times 30 & +0 \times 20 \\ 0 \times 50 & +0.25 \times 30 + 0 \times 20 \end{bmatrix} = \begin{bmatrix} 79 \\ 37.5 \\ 7.5 \end{bmatrix}$$

Ejercicio 2

- ¿Cuál es el efecto de tomar constantemente 5 ton de la clase 01 en la biomasa de dentro de 20 generaciones?
- ¿Cuál es el efecto de tomar constantemente 5 ton de la clase 04 en la biomasa de dentro de 20 generaciones?

Leslie =
$$\begin{pmatrix} 0 & 1.2 & 2 & 10 \\ .30 & 0 & 0 & 0 \\ 0 & .5 & 0 & 0 \\ 0 & 0 & .4 & 0 \end{pmatrix}$$

$$n_0 = \begin{pmatrix} 1000 \\ 300 \\ 150 \\ 10 \end{pmatrix}$$

Biomasa

Ver file Leslie_mat.R

Tablas de vida

		1	7		T	σ		
x	n_x	ι_x	d_x	q_x	L_x	T_x	e_x	
0-1		1	$l_x - l_{x+1}$	d_x/l_x	$\frac{l_{x+1}+l_x}{2}$	$\sum_{k}^{x} L_{x}$	T_x/lx	
1-2		n_x/n_1			_			
2-3	x = Edad							
3-4	$n_x = \text{Individuos en categoria}$ $l_x = \text{Sobrevivientes al principio de la clase de edad}$ $d_x = \text{muertes}$ $q_x = \text{Tasa de mortalidad}$ $L_x = \text{Vida promedio de todos los individuos}$							
4-5								
5-6								
6-7								
7-8	$T_x = \text{tiempo por vivir de todos los individuos a partir de } x$							
$e_x = \text{esperanza de vida posterior}$								

k = Total de clases de edad

TABLA DE VIDA DE LA ARDILLA GRIS							
x	n_x	l_x	d_x	q_x	L_x	T_x	e_x
0-1	530	1	0.747	0.626	0.626	1.008	1.008
1-2	134	0.253	0.147	0.581	0.179	0.382	1.509
2-3	56	0.106	0.032	0.302	0.090	0.203	1.915
3-4	39	0.074	0.031	0.418	0.058	0.113	1.527
4-5	23	0.043	0.021	0.488	0.033	0.055	1.279
5-6	12	0.022	0.013	0.591	0.015	0.022	1.000
6-7	5	0.009	0.006	0.666	0.006	0.007	1.285
7-8	2	0.003	0.003	1	0.001	0.001	0.333

Tasas de reproducción

- Se basa en el valor de I_x de la tabla de supervivencia, y el valor m_x
- mx es el número medio de hembras nacidas de hembras en la clase x.

Tasas de reproducción

Fecundida	ad para la ai	$T - \sum^{k} m$				
\boldsymbol{x}	n_x	l_x	m_x	$l_x m_x$	xl_xm_x	$T_c = \sum_{x=1}^k x l_x m_x$ $T_c = 2.53$
0-1	530	1	0	0	0	$I_c = 2.53$
1-2	134	0.253	1.28	0.324	0.324	
2-3	56	0.106	2.28	0.242	0.484	Tiempo medio de
3-4	39	0.074	3.24	0.240	0.720	generación. Es decir, el tiempo en que una ardilla
4-5	23	0.043	3.24	0.139	0.556	gris produce en
5-6	12	0.022	2.48	0.055	0.275	promedio 1.027
6-7	5	0.009	2.28	0.021	0.126	individuos
7-8	2	0.003	2.28	0.007	0.049	

 $R_0 = \sum_{x=1}^k l_x m_x = 1.027$

Número de hembras producidas a lo largo de la vida

Tasas de reproducción y crecimiento

$$\lambda = R_0^{1/T_c}$$

- Crecimiento anual
- Conocido también como tasa finita de crecimiento

 Bajo determinadas condiciones, la tasa finita de crecimiento puede aproximar la tasa de crecimiento instantáneo, r (diapositivas de 3 a la 8). Ver sección 13.9 de (Smith y Smith 2001)

$$r \approx R = \ln \lambda$$

Poblaciones reducidas

Tamaño Efectivo vs. Razón de Sexos

En especies poliginias, un macho puede fecundar varias hembras hasta cierto umbral.

Cuando hay pocos machos, quedan muchas hembras sin fecundar y la población efectiva se reduce.

En qué casos se podría causar un desbalanza en la Razón de Sexos?

Cuellos de botella

- Se da en poblaciones con tamaño fluctuante, cuando hay años con un tamaño poblacional muy bajo.
- Se pierden alelos raros, y variabilidad genética
- Los efectos son visibles en poblaciones muy pequeñas

Variabilidad demográfica

- Las tasas de natalidad y mortalidad varían naturalmente
- En poblaciones pequeñas, estas variaciones pueden ser peligrosas.

Catástrofes ambientales

- Pueden influir sobre muchos parámetros poblacionales
- Afectan especies con distribuciones pequeñas
- Poblaciones con poca variabilidad genética podrían tener menos oportunidad de adaptarse
- Pueden ser eventos puntuales (huracanes, incendios); o en escala geológica (era glaciar).

Vórtices de extinción

Efecto aditivo, o multiplicativo de todas las anteriores, en poblaciones reducidas

