Noah Casey

MATH 4720

Homework 4

1 By using Euler's Theorem, show that if p = 4n + 3 is a prime integer, there is no solution to the equation $x^2 \equiv -1 \pmod{p}$

We know that p is prime, so for any $x \in \mathbb{Z}$, $\gcd(x,p) = 1$. Thus, we can proceed using Euler's Theorem. For any p prime, the Euler-phi function $\phi(p) = p - 1$, so in this case, $\phi(p) = 4n + 2$. By Euler's theorem, $x^{4n+2} \equiv 1 \pmod{p}$. Now take $x^{4n+3-1} \equiv x^{4n+3}x^{-1} \equiv 1 \pmod{(p)}$. Thus, we can write $x^{4n+3} \equiv x \pmod{p}$ by multiplication modulo p Thus, x = 0 as $x^p \equiv 0 \pmod{p}$. If x = 0 and $4n + 3 \ge 3$, x^2 cannot be congruent to -1 modulo p.

2 Let $\alpha: G \mapsto H$ be a group homomorphism.

a If G is abelian, show that $\alpha(G)$ is an abelian subgroup of G.

Assume G is abelian. Then we know that for any $a,b \in G$, a+b=b+a. Now consider $\alpha(a)+\alpha(b)$. As α is a homomorphism, this is $\alpha(a+b)$. G is abelian, so this is $\alpha(b+a)=\alpha(b)+\alpha(a)$, and $\alpha(G)$ is abelian. We now show that this is a subgroup of G. We know that $\alpha(G)$ contains the identity as $\alpha:e_G\mapsto e_{\alpha(G)}$. Furthermore, for any $h=\alpha(g)$, we know that the inverse exists as $\alpha(g^{-1})=(\alpha(g)^{-1})=h^{-1}$. Now take some $h_1=\alpha(g_1)$ and $h_2=\alpha(g_2)$. Then we show that h_1h_2 is in $\alpha(G)$. Using the properties of homomorphisms, $h_1h_2=\alpha(g_1)\alpha(g_2)=\alpha(g_1g_2)$, which is clearly in $\alpha(G)$. Thus, $\alpha(G)$ is an abelian subgroup of G.

b Is it possible for $\alpha(G)$ to be non-trivial and abelian if G is non-abelian? Is there some α such that $\alpha(a) + \alpha(b) = \alpha(b) + \alpha(a)$ when $ab \neq ba$? Assume that we can. Then using the properties of a homomorphism,

$$\alpha(a) + \alpha(b) = \alpha(ab) = \alpha(ba) = \alpha(b) + \alpha(a).$$

However,

$$\alpha(ab) = \alpha(ba)$$

$$\alpha(ab) (\alpha(ba))^{-1} = id$$

$$\alpha(ab)\alpha(a^{-1}b^{-1}) = id$$

$$\alpha(aba^{-1}b^{-1}) = id,$$

which is clearly not true as $aba^{-1}b^{-1} \neq e$, which is necessary in a homomorphism as the identity maps to the identity.

3 Suppose that $G_1 \cong H_1$ and $G_2 \cong H_2$. Show that $G_1 \times G_2 \cong H_1 \times H_2$.

Let $\alpha: G_1 \mapsto H_1$ and $\beta: G_2 \mapsto H_2$ be isomorphisms. Then if $(g_1, g_2) \in G_1 \times G_2$, we must find an isomorphism to $(h_1, h_2) \in H_1 \times H_2$, which will show that these are isomorphic as the points are arbitrary. Let $\varphi: G_1 \times G_2 \mapsto H_1 \times H_2$ be defined as $\varphi(g_1, g_2) = (\alpha(g_1), \beta(g_2))$ for some $(g_1, g_2) \in G_1 \times G_2$.

We first show that φ is a homomorphism. Let $(g_1g_1^*, g_2g_2^*) \in G_1 \times G_2$, then using the fact that α and β are isomorphisms,

$$\varphi(g_1 g_1^*, g_2 g_2^*) = \left(\alpha(g_1 g_1^*), \beta(g_2 g_2^*)\right)
= \left(\alpha(g_1)\alpha(g_1^*), \beta(g_2)\beta(g_2^*)\right)
= \left(\alpha(g_1), \beta(g_2)\right) \left(\alpha(g_1^*), \beta(g_2^*)\right)
= \varphi(g_1, g_2)\varphi(g_1^*, g_2^*).$$

We now show that φ is bijective. Let $\varphi(g_1, g_2) = \varphi(g_1^*, g_2^*)$, then $\left(\alpha(g_1), \beta(g_2)\right) = \left(\alpha(g_1^*), \beta(g_2^*)\right)$. This means that $\alpha(g_1) = \alpha(g_1^*)$ and $\beta(g_2) = \beta(g_2^*)$. As α and

 β are isomorphisms, they are injective, so we get that $g_1 = g_1^*$ and $g_2 = g_2^*$ and $(g_1, g_2) = (g_1^*, g_2^*)$. Thus, φ is injective. Now let $(h_1, h_2) \in H_1 \times H_2$. As α and β are surjective, $\alpha(g_1) = h_1$ and $\beta(g_2) = h_2$, so $(\alpha(g_1), \beta(g_2)) = (h_1, h_2)$ and $\varphi(g_1, g_2) = (h_1, h_2)$, so φ is surjective. As φ is a homomorphism and also a bijective map, it is an isomorphism, proving that $G_1 \times G_2 \cong H_1 \times H_2$.

4 Prove that \mathbb{R}^* is not congruent to \mathbb{C}^* .

Assume there exists an isomorphism $\varphi: \mathbb{R}^* \to \mathbb{C}^*$. From linear algebra, we know that mappings can be written as matrices, so write $\varphi = A$ such that $\varphi(r) = Ar$. As \mathbb{R}^* is one-dimensional and \mathbb{C}^* is two-dimensional, A is a 2x1 matrix. Recall that matrices only have inverses if they are square; in other words, their dimension must be nxn. Note that A is not square, so it is singular. Thus, it is not a bijective mapping from $\mathbb{R}^* \mapsto \mathbb{C}^*$. Thus, φ has no inverse, and it cannot be an isomorphism. Hence, \mathbb{R}^* is not congruent to \mathbb{C}^* .

Let T be the subgroup of $GL_2(\mathbb{R})$ consisting of upper-triangular matrices. Let $U = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} | x \in \mathbb{R} \} \subset T$.

a Show that U < T.

We proceed by the first subgroup test. We know that U contains the identity matrix, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Also, for some $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \in U$, we know that its inverse, $\begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix} \in U$. Furthermore, for some $A, B \in U$ such that $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$, we know that $AB = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix}$, which is in U. Hence, U < T.

\mathbf{b} Prove that U is abelian.

Let $A=\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ and $B=\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$. Then $AB=\begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix}$. Now take $BA=\begin{pmatrix} 1 & b+a \\ 0 & 1 \end{pmatrix}$, but as the entries of matrices in U are in \mathbb{R} , a+b=b+a and $\begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix}=\begin{pmatrix} 1 & b+a \\ 0 & 1 \end{pmatrix}$. Thus AB=BA and U is abelian.

\mathbf{c} Prove that U is normal in T.

By Theorem G22, U is normal if for all $A \in T$, $AUA^{-1} \subset U$. Let $A \in T$ such that $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, so $A^{-1} = \frac{1}{ac} \begin{pmatrix} c & -b \\ 0 & a \end{pmatrix}$ Also let N be an arbitrary element of U such that $U = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$. Then if $ANA^{-1} \in U$, we are done.

$$\frac{1}{ac} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & -b \\ 0 & a \end{pmatrix} = \frac{1}{ac} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} c & -b+na \\ 0 & a \end{pmatrix}$$
$$= \frac{1}{ac} \begin{pmatrix} ac & a(-b+na)+ab \\ 0 & ac \end{pmatrix}$$
$$= \begin{pmatrix} 1 & \frac{na}{c} \\ 0 & 1 \end{pmatrix} \in U.$$

d Show that T/U is abelian.

First, we concretely state what it means for T/U to be abelian. Let A, B be matrices in T. If T/U is abelian, then (AU)(BU) = (AB)U = (BA)U = (BU)(AU). Let $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ and let $B = \begin{pmatrix} d & e \\ 0 & f \end{pmatrix}$. Hence, $AB = \begin{pmatrix} ad & ae+bf \\ 0 & cf \end{pmatrix}$ and $BA = \begin{pmatrix} ad & db+ec \\ 0 & cf \end{pmatrix}$. It must be shown that these lie in the same coset ((AB)U = (BA)U) for T/U to be abelian. In fact, these two matrices both lie in the coset of matrices of the form $\begin{pmatrix} ad & x \\ 0 & cf \end{pmatrix}$ for $x \in \mathbb{R}$. We know this is a coset as both of these matrices may be found by multiplying $\begin{pmatrix} ad & 1 \\ 0 & cf \end{pmatrix}$ by some element in U as all real numbers x are accounted for in the first rows and second columns of the matrices in U. Thus, T/U is abelian.

e Is U normal in $GL_2(\mathbb{R})$?

Set $A \in GL_2(\mathbb{R})$ such that $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $ab - bc \neq 0$. Also set $N \in U$

such that $N = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$. Then

$$\frac{1}{ad-bc} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{ad-bc} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d-cn & -b+na \\ -c & a \end{pmatrix}$$
$$= \frac{1}{ad-bc} \begin{pmatrix} ad-acn-bc & -ab+a^2n+ab \\ cd-c^2n-cd & -cb+can+ad \end{pmatrix}$$

We stop here as we see that $cd - c^2n - cd = c^2n$, and c^2 nor n is necessarily 0, so the matrix is not necessarily upper triangular, and therefore not necessarily in U. Thus, U is not normal in $GL_2(\mathbb{R})$.

- **6** Let G be a group. Let $Inn(G) = \{i_g | g \in G\}$. We know that this is a subgroup of Aut(G).
- **a** Show that $\alpha: G \mapsto \operatorname{Aut} G$ given by $\alpha(g) = i_g$ is a group homomorphism. Recall that $i_g(x) = gxg^{-1}$. Let $g_1, g_2 \in G$, then using properties of inverses, we see that

$$\alpha(g_1)\alpha(g_2)(x) = i_{g_1} \circ i_{g_2}(x)$$

$$= g_1 g_2 x g_2^{-1} g_1^{-1}$$

$$= g_1 g_2 x (g_1 g_2)^{-1}$$

$$= i_{g_1 g_2}$$

$$= \alpha(g_1 g_2).$$

Hence, α is a group homomorphism.

b Justify that Inn(G) is a subgroup of Aut(G).

We first ensure that α is onto Inn(G). Let i_g be some inner automorphism on G, then $i_g = \alpha(g)$. Thus, $\alpha(G) = \text{Inn}(G)$. By proposition G18, using the

fact that G is a subgroup of G and α is a homomorphism, $\alpha(G) < \operatorname{Aut}(G)$. In particular, because α is onto $\operatorname{Inn}(G)$, $\alpha(G) = \operatorname{Inn}(G) < \operatorname{Aut}(G)$.

c Show that $\ker(\alpha) = C(G)$, where C(G) is the center of G. Letting $id: G \mapsto G$ be the identity mapping. We see that

$$\ker(\alpha) = \{g \in G | i_g = id\}$$
$$= \{gxg^{-1} = id(x) | x \in G\}$$

But recall that $C(G)=\{x\in G|\forall h\in G,gh=hg\}$. Thus, $\ker(\alpha)=\{gxg^{-1}=id(x)|x\in G,g\in C(G)\}$ as if $g\in C(G),\ gxg^{-1}=xgg^{-1}=xe=x=id(x)$. Hence, $\ker(\alpha)=C(G)$.

d Show that $Inn(G) \cong G/C(G)$.

Equivalently, we prove that $\mathrm{Inn}(G)\cong G/\ker(\alpha)$. Recall that α is a homomorphism from G to $\mathrm{Aut}(G)$, in particular, α is onto $\mathrm{Inn}(G)$. Let ϕ be the canonical homomorphism from G to $G/\ker(\alpha)$. Thus, there exists an isomorphism $\eta:G/\ker(\alpha)\mapsto \mathrm{Inn}(G)$ by the first isomorphism theorem and $\mathrm{Inn}(G)\cong G/\ker(\alpha)=G/C(G)$ as desired.