Counterfactual Prediction and Fairness in Risk Assessment Tools

Alan Mishler (amishler@stat.cmu.edu), Edward H. Kennedy (edward@stat.cmu.edu)

Department of Statistics & Data Science, Carnegie Mellon University

Introduction

Risk Assessment Tools (RATs) predict **observed outcomes**. Evaluations of the fairness of these instruments also rely on observed outcomes.

Problem: Observed outcomes confound *risk* and the *effect of interventions*.

- Interventions reflect risk and affect outcomes.
- ⇒ RATs have limited use to decision-makers.
- ⇒ Hard to evaluate performance or fairness.

Solution: Use potential outcomes under various intervention(s) instead.

- → More useful information for decision-makers.
- ⇒ More sensible definitions of fairness.

Example: COMPAS Scores

The COMPAS recidivism prediction tool (Northpointe, inc.) predicts whether criminal defendants will be arrested for a future crime within 2 years.

Notation:

Observed variables

 $S \in \{0,1\} = \text{COMPAS score}, 1 = \text{``high risk''}$

 $A \in \{0,1\}$ = Incarceration indicator

 $Y \in \{0,1\}$ = Outcome: recidivism indicator

X = Covariates: gender, prior convictions, etc.

R = race (b = black, w = white)

Counterfactual variables

 $S^{R=r} \in \{0,1\}$ = Potential score under race r

 $Y^{A=a} \in \{0,1\}$ = Outcome under treatment a

 $\mu_a(X) = P(Y^{A=a} = 1|X)$

 $\implies \mu_0(X) = P(\text{recidivism without intervention})$

COMPAS aims to predict P(Y = 1|X). Why is this problematic?

Plausible scenario:

- Defendants with high $\mu_0(X)$ get incarcerated.
- Defendants with low $\mu_0(X)$ don't.
- Then low $\mu_0(X)$ implies higher recidivism rates.

Result:

- Accuracy maximized by assigning S = 1 for low $\mu_0(X)$!
- Not clear how decision-makers can use this.
- Doesn't predict what happens if the prediction itself is used for decision-making.
- Unclear how to evaluate fairness.

COMPAS: Counterfactual Reanalysis

Data (ProPublica, 2016)

- 5,278 arrest cases from Broward County, FL
- 3,175 black; 2,103 white
- Jail durations, recidivism outcomes, covariates
- 2 COMPAS scores:

General recidivism risk (G)

Violent recidivism risk (V)

Previous Analyses

- ProPublica (2016): Found different error rates and predicted score ratios based on race.
- Northpointe (2016): Found scores show predictive parity for whites and blacks.

Analysis 1: Do scores differ by race?

ProPublica (logistic regression):

$$\frac{\hat{P}(S=1|X=x,R=b)}{\hat{P}(S=1|X=x,R=w)}$$

for an arbitrarily chosen x.

Reanalysis (doubly robust estimator):

$$\frac{\hat{P}(S^{R=b}=1)}{\hat{P}(S^{R=w}=1)}$$

Assumes $R \perp S^{R=r}|X$

Results:

	(G)	(V)	
ProPublica	1.45	1.77	
Reanalysis	1.21	1.29	

Counterfactual scores show much less bias.

Analysis 2: False Positive Rates

ProPublica:

$$\hat{P}(S=1|Y=0,R=r)$$

Reanalysis (doubly robust estimator):

$$\hat{P}(S=1|Y^{A=0}=0,R=r)$$

Assumes $A \perp \!\!\!\perp Y^{A=a} | S = 1, R = r, X$

Results:

	(G)		(V)	
	White	Black	White	Black
ProPublica	0.23	0.45	0.18	0.38
Reanalysis	0.24	0.43	0.17	0.30

Counterfactual scores show similar bias.

Analysis 3: False Negative Rates

ProPublica:

$$\hat{P}(S=0|Y=1,R=r)$$

Reanalysis (doubly robust estimator):

$$\hat{P}(S=0|Y^{A=0}=1,R=r)$$

Assumes $A \perp Y^{A=a} | S = 0, R = r, X$.

Results:

	(G)		(V)	
	White	Black	White	Black
ProPublica	0.48	0.28	0.63	0.38
Reanalysis	0.51	0.29	0.71	0.45

Counterfactual scores show similar bias.

Analysis 4: Positive Predictive Values

Northpointe:

$$\hat{P}(Y=1|S=1,R=r)$$

Reanalysis (doubly robust estimator):

$$\hat{P}(Y^{A=0}=1|S=1,R=r)$$

Assumes $A \perp \!\!\!\perp Y^{A=a} | S = 1, R = r, X$.

Results:

	(G)		(V)	
	White	Black	White	Black
Northpointe	0.59	0.63	0.17	0.21
Reanalysis	0.65	0.69	0.14	0.18

COMPAS Reanalysis Conclusions

- Bias in score ratios, but much less than in ProPublica results.
- Error rates (FPR, FNR) similar to ProPublica results.
- Approximate predictive parity, similar to Northpointe results.
- Slightly higher PPVs for blacks than whites.
- General recidivism: Slightly higher PPVs than from observed outcomes.

General Conclusions

Risk prediction should start with well-defined notion of risk.

Current standard: E(Y|X)

- Merely predicts outcomes under current system.
- Doesn't consider effects of interventions.
- Not clear how decision-maker should use this.
- Not clear how to evaluate fairness.

Our proposal: $E(Y^{A=a}|X)$ under various interventions a, including no intervention (a=0).

- Predicts outcomes under different interventions.
- Allows decision maker to weigh interventions.
- Yields sensible notions of fairness.

Measure	Current	Proposed
FPR	P(S=1 Y=0)	$P(S=1 Y^{A=0}=0)$
FNR	P(S=0 Y=1)	$P(S=0 Y^{A=0}=1)$
PPV	P(Y=1 S=1)	$P(Y^{A=0}=1 S=1)$

References

Julia Angwin, Jeff Larson, Surya Mattu, & Lauren Kirchner. How we analyzed the COMPAS recidivism algorithm. 2016. (ProPublica)

William Dieterich, Christina Mendoza, & Tim Brennan. COMPAS risk scales: Demonstrating accuracy equity and predictive parity. 2016. (Northpointe)