Project Report EE 381

First Name:	Bryan	Last Name:	Tineo Ccasani	

Student ID: <u>026850068</u>

I did this final project own my own and did not share with anyone via discord, emails, verbal, or any other means, if I do, I understand that it is considered as cheating, and there will be an action on my academic dishonesty.

Sign	Bryan Tineo Ccasani	Date	May 6 2024

Mean Price: Fill the table below. (2 point)

Year	Mean Price
2001	\$246235.04
2005	\$364030.13
2010	\$331657.47
2015	\$345883.76
2020	\$529887.73

Mean Price: Insert a bar graph below showing yearly mean prices. (2 points)

Standard deviation (STD): Fill the table below. (2 point)

Year	STD
2001	\$587961.37
2005	\$978403.13
2010	\$790797.63
2015	\$1242075.06
2020	\$2621786.65

Standard deviation: Insert a bar graph below showing yearly standard deviations. (2 point)

Probability of price ranging from \$200,000 to \$300,000 inclusive: Fill the table below. (4 points)

Year	Probability
2001	18.31%
2005	28.60%
2010	22.02%
2015	22.66%
2020	25.80%

Insert a bar graph below showing yearly probability of price ranging from \$200,000 to \$300,000 inclusive. (4 point)


```
import numpy as np # Importing numpy for numerical calculations
import matplotlib.pyplot as plt # Importing matplotlib for plotting graphs
import csv # Importing csv to handle CSV file operations
from collections import defaultdict # Importing defaultdict for easier grouping
def load data(filepath):
    data = defaultdict(list) # Creating a default dictionary to group sale
   with open(filepath, 'r') as file: # Opening the CSV file in read mode
        csv reader = csv.DictReader(file) # Creating a CSV reader object that
        for row in csv_reader: # Looping through each row in the CSV file
            year = int(row['List Year']) # Converting the year from string to
            sale amount = float(row['Sale Amount']) # Converting the sale amount
            data[year].append(sale_amount) # Appending the sale amount to the
   return data # Returning the dictionary containing lists of sale amounts
def calculate statistics(data):
    means = {} # Dictionary to store mean values for each year
    std devs = {} # Dictionary to store standard deviation values for each year
    probabilities = {} # Dictionary to store probability values for each year
    for year, prices in data.items(): # Looping through each year and its
        means[year] = np.mean(prices) # Calculating mean for the current year
        std_devs[year] = np.std(prices) # Calculating standard deviation for the
        count_in_range = sum(200000 <= price <= 300000 for price in prices)</pre>
        probabilities[year] = count in range / len(prices) # Calculating
    return means, std devs, probabilities # Returning the calculated values
def plot data(data, title, vlabel):
```

```
years = sorted(data.keys()) # Sorting the years to ensure the plot is
    values = [data[year] for year in years] # Extracting values in the order of
    plt.figure(figsize=(10, 5)) # Setting the figure size for the plot
    plt.bar(years, values, color='blue') # Creating a bar chart with the years
    plt.xlabel('Year') # Labeling the x-axis as 'Year'
    plt.ylabel(ylabel) # Labeling the y-axis as specified by the function
    plt.title(title) # Setting the title of the plot
    plt.grid(True) # Enabling the grid for easier visualization
    plt.show() # Displaying the plot
def main():
    filepath = 'Sales 01 20.csv' # Define the file path to the CSV file
    data = load_data(filepath) # Load and process the data from the CSV file
    means, std devs, probabilities = calculate statistics(data) # Calculate
    plot_data(means, 'Yearly Mean Sale Prices', 'Mean Price ($)')
    plot data(std devs, 'Yearly Standard Deviation of Sale Prices', 'Standard
Deviation ($)')
    plot data(probabilities, 'Probability of Sale Price Between $200,000 and
$300,000', 'Probability')
if __name__ == "__main__":
   main()
```