Set Theory (HD)

Prove:

Prove that for all sets $A \cup (B \cap A) = A$.

\mathbf{proof}

$A \cup (B \cap A)$	=	$(A \cup B) \cap (A \cup A)$	(Distributivity of \cup over \cap)
	=	$(A \cup B) \cap A$	(Idempotence of \cup)
	=	$(A \cup B) \cap (A \cup \emptyset)$	(Identity of \cup)
	=	$A \cup (B \cap \emptyset)$	(Distributivity of \cup over \cap)
	=	$A \cup (B \cap (B \cap B^c))$	(Complement with \cap)
	=	$A \cup ((B \cap B) \cap B^c)$	(Associativity of \cap)
	=	$A \cup (B \cap B^c)$	$(\text{Idempotence of} \ \cap)$
	=	$A \cup \emptyset$	(Complement with \cap)
	=	A	(Identity of \cup)