

MODELING WITH DATA IN THE TIDYVERSE

Model assessment and selection

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

Refresher: Multiple regression

Two models with different pairs of explantory/predictor variables:

Refresher: Sum of squared residuals

Refresher: Sum of squared residuals

```
# Model 1
model price 1 <- lm(log10 price ~ log10 size + yr built,
                    data = house prices)
get regression points (model price 1) %>%
  mutate(sq residuals = residual^2) %>%
  summarize(sum sq residuals = sum(sq residuals))
# A tibble: 1 x 1
  sum sq residuals
            <dbl>
             585.
# Model 3
model price 3 <- lm(log10 price ~ log10 size + condition,
                    data = house prices)
get regression points (model price 3) %>%
  mutate(sq_residuals = residual^2) %>%
  summarize(sum sq residuals = sum(sq residuals))
# A tibble: 1 x 1
  sum_sq residuals
             <dbl>
              608.
```


Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

Assessing model fit with R-squared

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

R-squared

$$R^2 = 1 - rac{ ext{Var(residuals)}}{ ext{Var}(y)}$$

- R^2 is between 0 & 1
- Smaller R^2 ~ "poorer fit"
- $R^2=1$ ~ "perfect fit" and $R^2=0$ ~ "no fit"

High R-squared value example

$$R^2 = 1 - rac{ ext{Var(residuals)}}{ ext{Var}(y)}$$

High R-squared value: "Perfect" fit

$$R^2 = 1 - rac{ ext{Var(residuals)}}{ ext{Var}(y)}$$

Low R-squared value example

$$R^2 = 1 - rac{ ext{Var(residuals)}}{ ext{Var}(y)}$$

Low R-squared example

Low R-squared value example

$$R^2 = 1 - rac{ ext{Var(residuals)}}{ ext{Var}(y)}$$

Low R-squared example

Numerical interpretation

Since
$$\mathrm{Var}(y) \geq \mathrm{Var}(\mathrm{residuals})$$
 and $R^2 = 1 - \frac{\mathrm{Var}(\mathrm{residuals})}{\mathrm{Var}(y)} = \frac{\mathrm{Var}(y) - \mathrm{Var}(\mathrm{residuals})}{\mathrm{Var}(y)}$

 R^2 's interpretation is: the proportion of the total variation in the outcome variable y that the model explains.

Computing R-squared

```
# Model 1: price as a function of size and year built
model price 1 <- lm(log10 price ~ log10 size + yr built,
                    data = house prices)
get regression points (model price 1) %>%
  summarize(r squared = 1 - var(residual) / var(log10 price))
# A tibble: 1 x 1
 r squared
    <dbl>
1 0.483
# Model 3: price as a function of size and condition
model price 3 <- lm(log10 price ~ log10 size + condition,
                    data = house prices)
get regression points (model price 3) %>%
  summarize(r squared = 1 - var(residual) / var(log10 price))
# A tibble: 1 x 1
  r squared
     <dbl>
      0.462
```


Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

Assessing predictions with RMSE

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

Refresher: Residuals

Mean squared error

```
# Model 1: price as a function of size and year built
model price 1 <- lm(log10 price ~ log10 size + yr built,
                      data = house prices)
# Sum of squared residuals:
get regression points(model price 1) %>%
  \overline{\text{mutate}}(\text{sq residuals} = \overline{\text{residual}^2}) \% > \%
  summarize(sum sq residuals = sum(sq residuals))
# A tibble: 1 x 1
  sum_sq_residuals
              <dbl>
               585.
# Mean squared error: use mean() instead of sum():
get regression points (model price 1) %>%
  mutate(sq residuals = residual^2) %>%
  summarize(mse = mean(sq_residuals))
# A tibble: 1 x 1
     mse
   <dbl>
1 0.0271
```


Root mean squared error

```
# Root mean squared error:
get_regression_points(model_price_1) %>%
   mutate(sq_residuals = residual^2) %>%
   summarize(mse = mean(sq_residuals)) %>%
   mutate(rmse = sqrt(mse))

# A tibble: 1 x 2
   mse rmse
   <dbl> <dbl>
1 0.0271 0.164
```


RMSE of predictions on new houses

```
# Recreate data frame of "new" houses
new houses <- data frame(</pre>
 \log 10 \text{ size} = c(2.9, 3.6),
 condition = factor(c(3, 4))
new houses
# A tibble: 2 x 2
 log10 size condition
      <dbl> <fct>
     2.9 3
    3.6 4
# Get predictions
get regression points(model price 3, newdata = new houses)
# A tibble: 2 x 4
    ID log10_size condition log10_price_hat
  <int> <dbl> <fct>
                                      <dbl>
     1 2.9 3
                                       5.34
     2 3.6 4
                                       5.94
```


RMSE of predictions on new houses

Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

Validation set prediction framework

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

Validation set approach

Use two independent datasets to:

- 1. Train/fit your model
- 2. Evaluate your model's predicitive power i.e. validate your model

Training/test set split

Randomly split all n observations (white) into

- 1. A training set (blue) to fit models
- 2. A test set (orange) to make predictions on

Training/test set split in R

```
library(dplyr)

# Randomly shuffle order of rows:
house_prices_shuffled <- house_prices %>%
    sample_frac(size = 1, replace = FALSE)

# Split into train and test:
train <- house_prices_shuffled %>%
    slice(1:10000)
test <- house_prices_shuffled %>%
    slice(10001:21613)
```


Training models on training data

Making predictions on test data

```
# Train model on train:
train model price_1 <- lm(log10_price ~ log10_size + yr_built,
                     data = train)
# Get predictions on test:
get regression_points(train_model_price_1, newdata = test)
# A tibble: 11,613 x 6
    ID log10 price log10 size yr built log10 price hat residual
  <int>
            <dbl>
                  <dbl>
                            <dbl>
                                         <dbl>
                                                <dbl>
            5.83
                 3.29
                         1951
                                          5.71
                                               0.127
                 3.40 1922
            5.88
                                         5.84 0.033
                 3.67 2002
3 1953
       6.15
                                          5.99 0.159
          5.62
                                          5.43 0.19
          5.42
                 2.89 1948
                                          5.34 0.079
                  3.29
          5.51
                          2000
                                          5.63
                                                -0.126
                  3.37
          5.63
                           1978
                                  5.74
                                                -0.109
                  3.58
            6.24
                           2013
                                  5.89
                                               0.352
            5.74
                 3.62
                           2006
                                   5.93
                                               -0.191
10
    10
             5.81
                      3.52
                             1919
                                          5.96
                                                -0.147
# ... with 11,603 more rows
```


Assessing predictions with RMSE

Comparing RMSE

Let's practice!

MODELING WITH DATA IN THE TIDYVERSE

Conclusion - Where to go from here?

Albert Y. Kim

Assistant Professor of Statistical and Data Sciences, Smith College

R source code for all videos

Available at http://bit.ly/modeling_tidyverse

R source code for "Modeling with Data in the Tidyverse" DataCamp course

```
1 # R source code for all slides/videos in Albert Y. Kim's "Modeling with Data in
      # the Tidyverse" DataCamp course:
      # Load all necessary packages -----
      library(ggplot2)
      library(dplyr)
      library(moderndive)
      # Chapter 1 - Video 1: Background on modeling for explanation -----
  10 ## Modeling for explanation example
     glimpse(evals)
  12
      ## Exploratory data analysis
      ggplot(evals, aes(x = score)) +
        geom_histogram(binwidth = 0.25) +
        labs(x = "teaching score", y = "count")
  18 # Compute mean, median, and standard deviation
        summarize(mean_score = mean(score),
  21
                 median_score = median(score),
  22
                 sd_score = sd(score))
```


Other Tidyverse courses

Available here

Refresher: General modeling framework

- In general: $y = f(\vec{x}) + \epsilon$
- Linear regression models: $y = \beta_0 + \beta_1 \cdot x_1 + \epsilon$

Parallel slopes model

Polynomial model

Tree models

Tree model for log10 price

DataCamp courses using other models

Courses with different f() in $y = f(\vec{x}) + \epsilon$:

- Machine Learning with Tree-Based Models in R
- Supervised Learning in R: Case Studies

Refresher: Regression table

ModernDive: Online textbook

- Uses tidyverse tools: ggplot2 and dplyr
- Expands on the regression models from this course
- Uses evals and house_prices datasets (and more)
- Goal: Statistical inference via data science
- Available at ModernDive.com

MODELING WITH DATA IN THE TIDYVERSE

Good luck!