Introduction to Basic Machine Learning and Deep Learning

BCS Weekend Workshop

Outline

- We will talk about some basic concepts in Machine Learning (Supervised) and Deep Learning.
- Have a tutorial on basic Neuroscience using python and Google Colab, where we'll simulate a LIF neuron model.
- An assignment for you to work on.

What is Machine Learning?

What is Machine Learning?

What is Machine Learning?

- Fitting a suitable mathematical model to the given data
- Minimising the error between expected and actual output of the model
- Everything is about optimising the mathematical model to reduce the error in training datas.

Problem: Assume you have to predict prices for a house for which you have got some features of house such as **size**, **location**, **age**. And you have data's for 100 houses for which you know their **prices**, **size**, **location**, **age**. (**Note:** We assume prices of houses are linearly dependent on the given three features)

Solution: We will try to find a **Linear Model** which can fit to the given data.

Model Can Be Taken As

$$y = w_1x_1 + w_2x_2 + w_3x_3$$

Where: $y = price$, $x_1 = size$, $x_2 = location$ and $x_3 = age$

Source: https://en.wikipedia.org/wiki/Linear_regression

N = 100 D = 3

- Let's find out W
- To find W minimise the error between expected and predicted value.
- Therefore, minimise this: E(W) = (Y XW)²
- So, find W for dE/dW = 0 (Minimising a function, E(W))
- Then, predict prices y_p = xW

$$dE/dW = -X^{T}(Y - XW) = 0$$

$$=> X^{T}Y = (X^{T}X)W$$

$$=> W = (X^{T}X)^{-1}X^{T}Y$$

- What if inverse of X^TX don't exist or is too costly.
- Use **Gradient Descent**, which we talked about in the last lecture.

 $dE/dW = -X^{T}(Y - XW)$

Update: $W = W - \eta(dE/dW)$

Find Y and then Iterate

ML Ex: Linear Classification (Logistic Regression)

Sigmoid Function

What for Non-Linear Cases?

- Kernel Method (transforming linear model to non-linear model)
- Deep Neural Networks adding non linearity (activation functions) after performing some linear operation.

Credits

Leaders:

- Shivanshu
- Mohit Kulkarni

Secretaries:

- Shashwat Gupta
- Sahil Bansal
- Rashmi Sharma
- Saurabh Patil