EXERCICE 1.**

Pour tout $A \subset \mathbb{R}$ non vide et tout $x \in \mathbb{R}$, on pose

$$d(x,A) = \inf \{ |x - \alpha| \mid \alpha \in A \}.$$

(expression qui se lit : « distance de x à A »)

- 1. Donner une interprétation géométrique de d(x, A) sur la droite réelle.
- **2.** Examiner les cas où A = [0, 1] et x = 1, 2, 1/2 ou -3.
- 3. On revient au cas général. Justifier l'existence de d(x,A).
- 4. La borne inférieure d(x,A) est-elle un plus petit élément ? Illustrer par divers exemples.
- **5.** Caculer $d(x, \mathbb{R} \setminus \mathbb{Q})$ pour tout $x \in \mathbb{R}$. Même question avec $d(x, \mathbb{Q})$.
- **6.** Soit $(x,y) \in \mathbb{R}^2$. Montrer que

$$\left| d(x,A) - d(y,A) \right| \leq |x - y|.$$

EXERCICE 2.★★

Soit $n \in \mathbb{N}^*$. Etablir que

$$\forall x \in \mathbb{R}, \quad \sum_{k=0}^{n-1} \left[x + \frac{k}{n} \right] = \lfloor nx \rfloor.$$

EXERCICE 3.★

On se propose de calculer la partie entière du réel

$$\alpha = \sum_{k=1}^{10000} \frac{1}{\sqrt{k}}.$$

1. Etablir que:

$$\forall n\geqslant 1, \quad \frac{1}{\sqrt{n+1}}<2(\sqrt{n+1}-\sqrt{n})<\frac{1}{\sqrt{n}}.$$

2. En déduire $|\alpha|$.

EXERCICE 4.★

Prouver que $\forall x \in \mathbb{R}$ et $\forall n \geq 1$,

$$\left| \frac{\lfloor \mathbf{n} \mathbf{x} \rfloor}{\mathbf{n}} \right| = \lfloor \mathbf{x} \rfloor.$$

EXERCICE 5.★★

Prouver que $\forall x \in \mathbb{R}$,

$$\left\lfloor \frac{x+1}{2} \right\rfloor + \left\lfloor \frac{x}{2} \right\rfloor = \lfloor x \rfloor.$$

EXERCICE 6.★

On définit la partie fractionnaire d'un nombre réel x par

$$\{x\} = x - |x|.$$

- 1. Calculer $\{54,465\}$ et $\{-36,456\}$.
- **2.** Soit $x \in \mathbb{R}$. Comparer $\{x\}$ et $\{-x\}$.
- 3. Prouver que la fonction définie sur $\mathbb R$ par

$$x \longmapsto \{x\}$$

est périodique et tracer son graphe.

EXERCICE 7.★

Déterminer l'ensemble des valeurs prises par l'expression

$$\lfloor x + y \rfloor - \lfloor x \rfloor - \lfloor y \rfloor$$

lorsque x et y décrivent \mathbb{R} .

Exercice 8.★★

 $Un\ classique.$

1. Soit $m \in \mathbb{N}$. Déterminer les entiers naturels k tels que

$$\left\lfloor \sqrt{k} \right\rfloor = m.$$

2. Soit $n \ge 0$. Calculer en fonction de n,

$$u_n = \sum_{k=0}^{n^2 + 2n} \left\lfloor \sqrt{k} \right\rfloor.$$

EXERCICE 9.★

Résoudre sur $\mathbb R$ les équations

1.
$$|2x-1| = |x+1|$$
;

2.
$$|x+3| = |x-1|$$
.

EXERCICE 10.

Tracer le graphe de la fonction f définie sur \mathbb{R} par

$$x \mapsto \left| \left| \frac{3}{2} - x \right| \right|.$$

Exercice 11.★

Etablir que $\forall x \in \mathbb{R}$ et $\forall n \in \mathbb{N}^*$:

$$0 \leq \lfloor nx \rfloor - n \lfloor x \rfloor \leq n - 1$$
.

EXERCICE 12.

Soit f une application *croissante* de [0,1] dans [0,1]. On souhaite montrer que f admet un point fixe, c'est-à-dire que'il existe $l \in [0,1]$ tel que f(l) = l.

- 1. On pose $A = \{x \in [0,1] \mid f(x) \ge x\}$. Montrer que A est non vide et majorée.
- **2.** On note alors $c = \sup A$. Montrer que $c \in [0, 1]$.
- **3.** Montrer que $c \leq f(c)$.
- **4.** Montrer que $f(c) \in A$. Conclure.

EXERCICE 13.

Pour $n \in \mathbb{N}^*$, on note s_n la somme des chiffres de l'écriture décimale de n.

- 1. Montrer que $s_n \leq 9(\log_{10} n + 1)$.
- **2.** Montrer que la suite $\left(\frac{s_{n+1}}{s_n}\right)$ est bornée. Quelles sont les bornes supérieure et inférieure de l'ensemble des valeurs de cette suite? Sont-elles atteintes?

EXERCICE 14.★

Soient A et B deux parties non vides et bornées de $\mathbb{R}.$ Montrer que $A\cup B$ est non vide et bornée et que

$$\sup(A \cup B) = \max [\sup(A), \sup(B)]$$

et

$$\inf(A \cup B) = \min [\inf(A), \inf(B)].$$

Exercice 15.★

Etudier l'existence puis déterminer le cas échéant les bornes supérieure et inférieure des ensembles suivants,

1.
$$A = \left\{ 2 - \frac{1}{n}, n \in \mathbb{N}^* \right\};$$

2.
$$\mathcal{B} = \left\{ 1 - \frac{1}{n} - \frac{1}{m}, n, m \in \mathbb{Z}^* \right\};$$

3.
$$C = \left\{ 1 - \frac{1}{n-m}, n \neq m \in \mathbb{Z} \right\};$$

4.
$$\mathcal{D} = \left\{ \frac{pq}{p^2 + q^2}, (p,q) \in \mathbb{N}^* \times \mathbb{N}^* \right\};$$

5.
$$\mathcal{E} = \left\{ \frac{2^n}{2^m + 3^{n+m}}, (n, m) \in \mathbb{N} \right\};$$

6.
$$\mathcal{F} = \left\{ \frac{n+2}{n+1} + \frac{q-1}{q+1}, (n,q) \in \mathbb{N}^2 \right\};$$

7.
$$G = \left\{ \frac{mn}{m^2 + n^2 + mn}, m, n \in \mathbb{N}^* \right\}.$$

EXERCICE 16.

Prouver l'existence puis calculer les bornes supérieures et inférieures de l'ensemble

$$A = \{(-1)^n/n \mid n \ge 1\}.$$

Exercice 17.★

Soient A et B des parties non vides de \mathbb{R} . On définit

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

Montrer que si A et B sont bornées, alors A+B l'est aussi et que

$$\inf(A + B) = \inf(A) + \inf(B)$$

et

$$\sup(A + B) = \sup(A) + \sup(B).$$

EXERCICE 18.

Montrer que $A = {\sqrt{m} - \sqrt{n}, (m, n) \in \mathbb{N}^2}$ est dense dans \mathbb{R} .

EXERCICE 19.

Etablir que $E = \{r^3 \mid r \in \mathbb{Q}\}$ est dense dans \mathbb{R} .

EXERCICE 20.

Soit n un entier supérieur ou égal à 2. On définit une fonction q par q(x) = $e^{-x}\sum_{k=0}^{\infty}\frac{x^k}{k!}$ pour $x\in[0,1]$. On définit également une fonction h par h(x)=0 $g(x) + e^{-x} \frac{x^n}{n!}$.

- 1. Montrer que q est strictement décroissante sur [0, 1].
- 2. En déduire que $\sum_{k=0}^{\infty} \frac{1}{k!} < e$.
- **3.** Montrer que h est strictement croissante sur [0, 1].
- 4. En déduire que $e < \left(\sum_{k=1}^{n} \frac{1}{k!}\right) + \frac{1}{n!}$.
- 5. On suppose que e est rationnel. Il existe donc deux entiers naturels p, q tels que $e = \frac{p}{q}$. Montrer par l'absurde que q > n.
- 6. Conclure.

EXERCICE 21.

Soit α et β deux réels non nuls tels que $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. On suppose $\alpha > 1$ et α irrationnel. On pose

$$A = \{ \lfloor n\alpha \rfloor \ | \ n \in \mathbb{N}^* \} \ \mathrm{et} \ B = \{ \lfloor n\beta \rfloor \ | \ n \in \mathbb{N}^* \}$$

- 1. Montrer que $\beta > 1$ et que β est également irrationnel.
- **2.** On suppose qu'il existe un couple $(\mathfrak{p},\mathfrak{q}) \in (\mathbb{N}^*)^2$ tel que $|\mathfrak{p}\alpha| = |\mathfrak{q}\beta|$. On pose alors $k = |p\alpha| = |q\beta|$.
 - a. Montrer que $p \frac{1}{\alpha} < \frac{k}{\alpha} < p$ et $q \frac{1}{\beta} < \frac{k}{\beta} < q$ et aboutir à une contradiction.
 - **b.** En déduire que $A \cap B = \emptyset$.
- **3.** On suppose qu'il existe $k \in \mathbb{N}^*$ qui n'est ni dans A ni dans B.
 - **a.** Montrer que les suites $(|n\alpha|)$ et $(|n\beta|)$ tendent vers $+\infty$.
 - **b.** En déduire qu'il existe un couple $(p,q) \in \mathbb{N}^2$ tel que $|p\alpha| < k < 1$ $|(\mathfrak{p}+1)\alpha|$ et $|\mathfrak{q}\alpha| < k < |(\mathfrak{q}+1)\alpha|$.
 - c. Montrer que $p<\frac{k}{\alpha}< p+1-\frac{1}{\alpha}$ et $q<\frac{k}{\beta}< q+1-\frac{1}{\beta}$ et aboutir à une contradiction.
 - **d.** En déduire que $A \cup B = \mathbb{N}^*$.

EXERCICE 22.

Soit $n \in \mathbb{N}$ impair tel que $n \ge 3$. On pose $\varphi = \arccos \frac{1}{\sqrt{n}}$. On souhaite montrer que $\frac{\varphi}{\pi}$ est irrationnel.

- 1. Pour $k \in \mathbb{N}$, on pose $A_k = (\sqrt{n})^k \cos k\varphi$. Montrer que pour tout $k \in \mathbb{N}^*$, $A_{k+1} + nA_{k-1} = 2A_k$.
- **2.** En déduire que les A_k sont des entiers.
- 3. Montrer qu'aucun des A_k n'est divisible par n.
- 4. Conclure en raisonnant par l'absurde.

EXERCICE 23.

Prouver que le nombre $\frac{\ln(2)}{\ln(3)}$ est irrationnel.

EXERCICE 24.★

Le réel $r = \sqrt{2} + \sqrt{3}$ est-il rationnel?

EXERCICE 25.

Que dire de x + y et xy dans les quatre cas suivants?

- **3.** $x \in \mathbb{Q}, y \in \mathbb{R} \setminus \mathbb{Q}$; **4.** $y \in \mathbb{Q}, x \in \mathbb{R} \setminus \mathbb{Q}$.
- 1. $x, y \in \mathbb{Q}$; 2. $x, y \in \mathbb{R} \setminus \mathbb{Q}$;

Exercice 26.★

Montrer que si $n \in \mathbb{N}$, \sqrt{n} est rationnel si et seulement si n est un carré parfait (ie de la forme \mathfrak{m}^2 avec $\mathfrak{m} \in \mathbb{N}$).

EXERCICE 27.

Prouver l'égalité

$$\bigcup_{n \geqslant 1} \left[\frac{1}{n}, \frac{2}{n} \right[=]0, 1[\cup]1, 2[.$$

EXERCICE 28.

Soit φ une application de \mathbb{R} dans \mathbb{R} . Pour tous réels $\mathfrak{a},\mathfrak{b}$ on pose

$$a \leq_{\varphi} b \iff \varphi(b) - \varphi(a) \geqslant |b - a|$$
.

- 1. Montrer que \leq_{φ} est une relation d'ordre sur \mathbb{R} .
- **2.** Montrer que cet ordre est total si et seulement si pour tous réels a, b on a $|\phi(b) \phi(a)| \ge |b a|$.
- **3.** Quel ordre obtient on si $\varphi = Id_{\mathbb{R}}$?

EXERCICE 29.

Deux fonctions $f,g\in\mathbb{R}^{\mathbb{R}}$ sont dites *conjuguées* s'il existe une bijection $\varphi\in\mathbb{R}^{\mathbb{R}}$ telle que $f=\varphi^{-1}\circ g\circ\varphi$.

- 1. Montrer que la conjugaison est une relation d'équivalence sur $\mathbb{R}^{\mathbb{R}}$.
- 2. Déterminer toutes les fonctions conjuguées à l'identité.
- Soit f une fonction constante. Déterminer toutes les fonctions conjuguées à f.
- **4.** Les fonctions $f(x) = x^2$ et $g(x) = ax^2$ où $a \in \mathbb{R}^*$, sont-elles conjuguées.
- 5. Les fonctions sin et cos sont-elles conjuguées?

EXERCICE 30.

Soit X un ensemble de cardinal supérieur à 1. On munit $\mathcal{P}(X)$ de l'ordre \subset . On note $E \subset \mathcal{P}(X)$ l'ensemble des singletons de E.

- 1. E possède-t-il un plus grand élément?
- 2. E possède-t-il une borne supérieure?

EXERCICE 31.

On définit une relation binaire sur \mathbb{N}^2 par

$$x \preccurlyeq y$$
 si et seulement si $\begin{pmatrix} x_1 < y_1 \\ \text{ou} \\ x_1 = y_1 \text{ et } x_2 \leqslant y_2 \end{pmatrix}$

- 1. Prouver que \leq est une relation d'ordre sur \mathbb{N}^2 .
- **2.** L'ordre est-il total ?
- **3.** On pose $A = \{(p, p), p \in \mathbb{N}\}$ et

$$B = \{(2, 10^p), p \in \mathbb{N}\}.$$

Les parties A et B de (\mathbb{N}^2 , \leq) sont-elles majorées ? Possèdent-elles un plus grand élément ? Une borne supérieure ?

EXERCICE 32.

Soit E un ensemble muni d'une relation d'équivalence \mathbb{R} . Pour $x \in E$, on appelle classe d'équivalence de x l'ensemble $C(x) = \{y \in E \mid x\mathcal{R}y\}$. Montrer que les classes d'équivalences forment une partition de E.

EXERCICE 33.

1. Montrer que la relation \mathcal{R} définie sur \mathbb{R} par

$$xRy \iff xe^y = ye^x$$

est une relation d'équivalence.

2. Soit $x \in \mathbb{R}$. Quel est le nombre d'éléments de la classe d'équivalence de x?

EXERCICE 34.

On définit une relation binaire \mathcal{R} sur \mathbb{C} par

$$z\mathcal{R}z' \iff |z| = |z'|$$

Montrer que \mathcal{R} est une relation d'équivalence et décrire géométriquement les classes d'équivalence.

EXERCICE 35.

On définit sur \mathbb{Z} la relation \mathcal{R} par

xRy si et seulement si x + y est pair.

Montrer que \mathcal{R} est une relation d'équivalence et déterminer les classes d'équivalence.

EXERCICE 36.

On définit la relation d'équivalence \mathcal{R} sur \mathbb{R} par

$$xRy \iff x^2 - y^2 = x - y$$

Montrer que \mathcal{R} est une relation d'équivalence et déterminer les cardinaux des classes d'équivalence.

EXERCICE 37.

Soient $\mathcal C$ et $\mathcal C'$ deux cercles du plan, de centres respectifs O, O' et de rayons respectifs R et R'. On dit que $\mathcal C$ est inférieur à $\mathcal C'$ si $OO' \leqslant R' - R$. On note alors $\mathcal C \leqslant \mathcal C'$.

Montrer qu'il s'agit d'une relation d'ordre dans l'ensemble des cercles du plan.

EXERCICE 38.

Dans \mathbb{N}^* , on considère la relation \mathcal{R} suivante :

$$p\mathcal{R}q \iff \exists n \in \mathbb{N}^* \quad q = p^n$$

- 1. Démontrer que \mathcal{R} est une relation d'ordre. Cet ordre est-il total?
- 2. La partie $\{2,3\}$ est-elle majorée?

EXERCICE 39.

Soient E un ensemble, (F,\leqslant) un ensemble ordonné et $f:E\to F$ une application injective. On définit dans E la relation $\mathcal R$ par $x\mathcal Ry\iff f(x)\leqslant f(y)$. Montrer que $\mathcal R$ est une relation d'ordre sur E.