4.3. 4º Experimento: Técnica da Seção Áurea - Avaliação Direta da Função e Aproximações Quadráticas da Função a Cada Iteração

Primeira Função Analisada

A primeira função analisada consiste na função apresentada na seção 2.5 respectiva ao problema de Rosen-Suzuki. Esta, como já abordado, é uma função quadrática dada pela soma da função objetivo e penalidades que impõem um conjunto de restrições não lineares.

Para o experimento em questão a função objetivo será dada em duas dimensões. Nesse caso, o número máximo de iterações, calculado por meio da equação (35), é igual a 400 e os limites inferior e superior das variáveis de decisão definem o seguinte intervalo [-10,10].

Na execução dos algoritmos que implementam os métodos Quase-Newton será considerado apenas um ponto inicial a fim de avaliar e comparar a técnica da seção áurea feita através da avaliação direta da função objetivo e por meio das aproximações quadráticas para função a cada iteração. Ponto inicial:

$$x_0 = \begin{bmatrix} -6 & -5 \end{bmatrix} \rightarrow 3^{\circ}$$
 Quadrante \Rightarrow Avaliação Direta da Função $x_0 = \begin{bmatrix} -6 & -5 \end{bmatrix} \rightarrow 3^{\circ}$ Quadrante \Rightarrow Aproximações Quadráticas

Tabela 14 – Resultados relacionados ao esforço computacional e precisão considerando o ponto inicial x_0 .

	$x_{0_1} = [-6 -5] \Longrightarrow \text{Avalição Direta de } f(x)$						
Método	Tempo de Processamento Médio (_S)	Nº de Iterações	Nº de Avaliações da $f(x)$	${\sf Erro}_{{oldsymbol{\mathcal{X}}}^*}$		Erro _{f(x*)} (%)	
DFP							
BFGS							
Huang							
Biggs							
		A	Aproximações Qu	adráticas	para		
Método	Tempo de Processamento Médio ()	Nº de Iterações	Nº de Avaliações da $f(x)$	Erro	(%)	Erro (%)	
DFP							
BFGS							
Huang							
ITualig			1				

Segunda Função Analisada

A segunda função analisada consiste na função da seção 2.4 que é apresentada aqui novamente com o parâmetro a igual a 0,0263:

$$f(x) = \frac{1}{2} \cdot (x - c)^T \cdot A \cdot (x - c) + 0.0263 \cdot \sum_{k=1}^{n} (x_k - 1)^3$$

Para o experimento em questão o problema de otimização possui 30 dimensões, com os limites inferior e superior [-10,10] para as variáveis. O parâmetro *a* será igual 0,0263. Na execução dos algoritmos será considerado apenas um ponto inicial gerado aleatoriamente, conforme apresentado abaixo:

$$x0 = -10 + 20*rand(30,1)$$

Tabela 15 - Resultados relacionados ao esforço computacional e precisão considerando o ponto inicial x_0 .

	$x_{0_1} = [-6 -5] \Rightarrow \text{Avalição Direta de } f(x)$						
Método	Tempo de Processamento Médio (s)	Nº de Iterações	Nº de Avaliações da f(x)	Erro x* (%)	Erro f(x*) (%)		
DFP	E S	<u> </u>	T	S	2		
BFGS			3	:			
Huang		:+:		· · · · · · · · · · · · · · · · · · ·	· ·		
Biggs							
Método	Tempo de Processamento Médio (s)	= [−6 −5] ⇒ Nº de Iterações	Aproximações Qua Nº de Avaliações da f(x)	adráticas para f (Erro x* (%)	x) Erro f(x*) (%)		
DFP	15						
BFGS	24 1		2	3 34.			
Huang			3	9	3		

4.4. 5º Experimento: Avaliação dos Métodos Quase-Newton em Problemas com Hessiana Singular

Função Analisada

A função analisada consiste na função da seção 2.6 que é apresentada novamente abaixo:

$$f(x) = 8 \cdot \left\| x_1 + \frac{x_2}{2}, \frac{x_1}{2} + \frac{x_2}{3} \right\|_2 + 7 \cdot \left(x_1 + \frac{x_2}{2} \right)$$

A função objetivo apresentada acima possui duas variáveis de decisão. Nesse caso, o número máximo de iterações, calculado por meio da equação (35), é igual a 400 e os limites das variáveis de decisão definem o seguinte intervalo [-10,10].

No presente experimento, considera-se apenas um ponto inicial para a execução dos algoritmos que implementam os métodos Quase-Newton. Para realizar uma análise mais apurada os algoritmos serão executados utilizando-se a técnica da seção áurea feita através da avaliação direta da função e por meio das aproximações quadráticas para a função a cada iteração, conforme apresentado abaixo:

$$x_0 = \begin{bmatrix} 9 & 9 \end{bmatrix} \rightarrow 1^{\underline{0}}$$
 Quadrante \Rightarrow Avaliação Direta da Função $x_0 = \begin{bmatrix} 9 & 9 \end{bmatrix} \rightarrow 1^{\underline{0}}$ Quadrante \Rightarrow Aproximações Quadráticas

Tabela 16 - Resultados relacionados ao esforço computacional e precisão considerando o ponto inicial x₀.

	$x_{0_1} = [9 9] \Rightarrow \text{Avaliação Direta de } f(x)$							
Método	Tempo de Processamento Médio (s)	Nº de Iterações	Nº de Avaliações da f(x)	Erro x* (%)	Erro f(x*) (%)			
DFP	54		2		2			
BFGS				873				
Huang		7.5	13	*	2			
Biggs	N.T.		3					
11/642		$= [9 9] \Rightarrow A$	proximações Quad	lráticas para $f(x)$				
Método	Tempo de Processamento Médio (s)	Nº de Iterações	№ de Avaliações da f(x)	Erro x* (%)	Erro f(x*) (%)			
DFP	54		23 8					
BFGS	54		0 9		5			
Huang								
Biggs			8 9					

4.5. 6° Experimento: Avaliação Estatística dos Métodos Quase-Newton com a Variação do Parâmetro a

Função Analisada

A função analisada consiste na função da seção 2.2 que é apresentada novamente abaixo:

$$f(x) = 12 \cdot x_1^2 - 4 \cdot x_2^2 - 12 \cdot x_1 \cdot x_2 + 2 \cdot x_1 + a \cdot (x_1^3 + x_2^3)$$

A função objetivo apresentada acima possui duas variáveis de decisão. Nesse caso, o número máximo de iterações, calculado por meio da equação (35), é igual a 400 e os limites das variáveis de decisão definem o seguinte intervalo [-10,10]. No intuito de realizar a avaliação estatística, serão considerados três valores para o parâmetro \boldsymbol{a} , os quais são apresentados abaixo seguido da respectiva função objetivo:

$$a = -0.0263 \rightarrow \boxed{f(x) = 12 \cdot x_1^2 - 4 \cdot x_2^2 - 12 \cdot x_1 \cdot x_2 + 2 \cdot x_1 - 0.0263 \cdot (x_1^3 + x_2^3)}$$

$$a = 0 \rightarrow \boxed{f(x) = 12 \cdot x_1^2 - 4 \cdot x_2^2 - 12 \cdot x_1 \cdot x_2 + 2 \cdot x_1}$$

$$a = 0.0263 \rightarrow \boxed{f(x) = 12 \cdot x_1^2 - 4 \cdot x_2^2 - 12 \cdot x_1 \cdot x_2 + 2 \cdot x_1 + 0.0263 \cdot (x_1^3 + x_2^3)}$$

Nos casos estudados, para a=0, a função f(x) é quadrática e para $a\neq 0$, a função f(x) é não quadrática. Além disso, tal parâmetro \boldsymbol{a} está dentro dos limites que mantêm a convexidade da função objetivo.

Os pontos iniciais devem ser determinados por meio de uma busca aleatória feita através da função *rand* disponível no Matlab, lembrando que todas as variáveis de decisão devem estar dentro da faixa definida pelos limites. Dessa forma tem-se a seguinte expressão que determina o ponto inicial:

$$x_0 = 20 . rand(2,1) - 10$$

Cada método deverá ser executado 50 vezes, considerando a técnica da seção áurea feita por meio da avaliação direta da função objetivo e por meio de se utilizar aproximações quadráticas para essa mesma função. A análise estatística consiste no estudo dos seguintes resultados obtidos pelas execuções dos algoritmos Quase-Newton: Tempo de processamento médio(s); Número de iterações; Número de avaliações da função objetivo; Erro percentual da solução; e Erro percentual do valor da função objetivo. Os três primeiros itens serão avaliados com o auxílio de uma ferramenta estatística denominada boxplot. Esta fermenta pode realizar uma análise gráfica da dispersão de um conjunto de dados. Já os dois últimos itens serão avaliados por meio de gerar o gráfico do Erro (%) \boldsymbol{X} Execução.

Tabela 17 – Análise estatística dos Métodos Quase-Newton para a técnica da seção áurea feita por meio da avaliação direta da função objetivo e parâmetro a=-0,0263.

Técnica	da Seção Áurea	Feita por meio da $a = -0,0263$	Avaliação Direta de	ef(x)
	Tempo	de Processament	o Médio	
Métodos	DFP	BFGS	Huang	Biggs
Média				
Mediana				(0)
Desvio Padrão		a		
Erro Padrão				
Variância	10	6		
Mínimo				
Máximo			1	
Nº de Dados				
	N	lúmero de Iteraçõ	es	
Métodos	DFP	BFGS	Huang	Biggs
Média				7.928
Mediana				
Desvio Padrão				
Erro Padrão	8		8	
Variância				
Mínimo	His		1 "	
Máximo				
Nº de Dados				
	Núme	ro de Avaliações d	$\operatorname{le} f(x)$	
Métodos	DFP	BFGS	Huang	Biggs
Média	-			
Mediana	120			
Desvio Padrão	32	100	%	35
Erro Padrão		8		
Variância			## ##	
Mínimo				
Máximo		8		
Nº de Dados				

Tabela 18 - Análise estatística dos Métodos Quase-Newton para a técnica da seção áurea feita por meio de aproximações quadráticas para a função objetivo e parâmetro a=0.

Técnica da Seç	ão Aurea Feita	por meio de Aprox $a=0$	imações Quadrátic	as para $f(x)$
	Tempo	de Processament	o Médio	
Métodos	DFP	BFGS	Huang	Biggs
Média		A HILLIAN		
Mediana	23			3.
Desvio Padrão		2		
Erro Padrão		15		13
Variância				
Mínimo	2))	9 8		
Máximo		S2		52
Nº de Dados		- 3		
**	N	Vúmero de Iteraçõ	es	
Métodos	DFP	BFGS	Huang	Biggs
Média	- 1. 4 6			
Mediana				
Desvio Padrão	fiz.		52	
Erro Padrão				
Variância		- S		
Mínimo	7			
Máximo		S A		5 6
Nº de Dados				
	Núme	ero de Avaliações d	$\operatorname{le} f(x)$	<u>.</u>
Métodos	DFP	BFGS	Huang	Biggs
Média				3 223
Mediana			06 t6	
Desvio Padrão				
Erro Padrão		15		3
Variância				. 2
Mínimo	27.22	1 D		- 10
Máximo				
Nº de Dados				6

Tabela 19 - Análise estatística dos Métodos Quase-Newton para a técnica da seção áurea feita por meio da avaliação direta da função objetivo e parâmetro a=0.

Técnica	da Seção Áurea	Feita por meio da $a = 0$	Avaliação Direta de	ef(x)
	Tempo	de Processament	o Médio	
Métodos	DFP	BFGS	Huang	Biggs
Média				
Mediana	2:			
Desvio Padrão				
Erro Padrão	3			
Variância	Sa :			
Mínimo	-			
Máximo	-	5		
Nº de Dados				
***	N	lúmero de Iteraçõ	es	
Métodos	DFP	BFGS	Huang	Biggs
Média			1	
Mediana				
Desvio Padrão	£= 7			
Erro Padrão				
Variância	176 V			
Mínimo	100		1	
Máximo	3	<u>.</u>	2	
Nº de Dados				
	Núme	ro de Avaliações d	$\operatorname{de} f(x)$	
Métodos	DFP	BFGS	Huang	Biggs
Média				
Mediana				
Desvio Padrão	-			
Erro Padrão	38			:51
Variância	81	32	8	8
Mínimo	?			
Máximo				
Nº de Dados	3			

Tabela 20 - Análise estatística dos Métodos Quase-Newton para a técnica da seção áurea feita por meio de aproximações quadráticas para a função objetivo e parâmetro a=0.0263.

Técnica da Seçã	o Áurea Feita po	meio de Aproxima $a = 0,0263$	ições Quadráticas pa	raf(x)
	Tempo	de Processament	o Médio	
Métodos	DFP	BFGS	Huang	Biggs
Média				
Mediana	8			
Desvio Padrão	9	-:	9	
Erro Padrão			10	
Variância				
Mínimo	05		14 25 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
Máximo	-	3		×
Nº de Dados	3			
	N	úmero de Iteraçõ	es	
Métodos	DFP	BFGS	Huang	Biggs
Média				
Mediana				
Desvio Padrão	20		8	
Erro Padrão	-		9	
Variância	¥4 3			
Mínimo				
Máximo	3			
Nº de Dados				
	Núme	ro de Avaliações d	$\operatorname{le} f(x)$	
Métodos	DFP	BFGS	Huang	Biggs
Média	F-1			5-12-12-
Mediana			1881 B	
Desvio Padrão				فد
Erro Padrão	- 	1.77	10 20	195
Variância		_		8
Mínimo			- N2	105
Máximo				
Nº de Dados			8	

Capítulo 4

Conclusão

4. Conclusões Gerais

Concluir sobre o comportamento dos métodos Quase Newton (BFGS, DFP, de HUANG e de BIGGS) para a otimização de funções quadráticas e não quadráticas perfeitas, utilizando

ou não as aproximações quadráticas.

Na solução de complexos problemas irrestritos, o que representa o uso de métodos Quase Newton na otimização de funções implícitas quadráticas e não quadráticas.