Lý thuyết Điều khiển tự động 1

Phân tích hệ thống trong không gian trạng thái

ThS. Đỗ Tú Anh

Bộ môn Điều khiển tự động Khoa Điện, Trường ĐHBK HN

Mô hình trạng thái

Mô hình trạng thái (tiếp)

Từ hàm truyền đạt đến MHTT

Tổng quát

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

$$U(s) = D(s) Z(s)$$

$$Y(s) = N(s) Z(s)$$

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_2 s^2 + b_1 s + b_0}{s^3 + a_2 s^2 + a_1 s + a_0} = \frac{N(s)}{D(s)}$$

$$U(s) = D(s) Z(s)$$

$$U(s) = (s^{3} + a_{2}s^{2} + a_{1}s + a_{0})Z(s)$$

$$U(s) = s^{3}Z(s) + a_{2}s^{2}Z(s) + a_{1}sZ(s) + a_{0}Z(s)$$

$$u(t) = \ddot{z} + a_{2}\ddot{z} + a_{1}\dot{z} + a_{0}z$$

$$Y(s) = N(s) Z(s) Y(s) = (b_2 s^2 + b_1 s + b_0) Z(s)$$

$$= b_2 s^2 Z(s) + b_1 s Z(s) + b_0 Z(s)$$

$$y(t) = b_2 \ddot{z} + b_1 \dot{z} + b_0 z$$

Sơ đồ cấu trúc dạng chuẩn điều khiển

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = x_3$$

$$\dot{x}_3 = -a_0 x_1 - a_1 x_2 - a_2 x_3 + u$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \qquad [y] = [b_0 \quad b_1 \quad b_2] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$y = b_0 x_1 + b_1 x_2 + b_2 x_3$$

$$[y] = \begin{bmatrix} b_0 & b_1 & b_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Sơ đồ cấu trúc dạng chuẩn quan sát

$$\dot{x}_1 = -a_2 x_1 + x_2 + b_2 u$$

$$\dot{x}_2 = -a_1 x_1 + x_3 + b_1 u$$

$$\dot{x}_3 = -a_0 x_1 + b_0 u$$

$$y = x_1$$

Mô hình trạng thái dạng chuẩn quan sát

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -a_2 & 1 & 0 \\ -a_1 & 0 & 1 \\ -a_0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_2 \\ b_1 \\ b_0 \end{bmatrix} u$$

$$\begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_2 s^2 + b_1 s + b_0}{s^3 + a_2 s^2 + a_1 s + a_0} = \frac{N(s)}{D(s)}$$

Chuẩn điều khiển

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -a_2 & 1 & 0 \\ -a_1 & 0 & 1 \\ -a_0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_2 \\ b_1 \\ b_0 \end{bmatrix} u$$

$$[y] = \begin{bmatrix} b_0 & b_1 & b_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -a_2 & 1 & 0 \\ -a_1 & 0 & 1 \\ -a_0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_2 \\ b_1 \\ b_0 \end{bmatrix} u$$

$$[y] = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Quỹ đạo trạng thái

Định nghĩa

QĐTT là nghiệm của hệ phương trình vi phân

$$\frac{d}{dt}\underline{x} = A\underline{x} + B\underline{u}$$

ứng với một kích thích $\underline{u}(t)$

và trạng thái đầu $\underline{x}(\underline{0}) = \underline{x}_0$ cho trước

Không gian trạng thái

Tập hợp của tất cả các QĐTT của hệ thống

x_3 x_2 x_1 x_2 x_1 x_2

Đồ thị quỹ đạo trạng thái

Là đường cong biểu diễn $\underline{x}(t)$ khi cho t chạy từ $0 \to \infty$ trong không gian trạng thái \mathbb{R}^n

$$\begin{bmatrix}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t) \\
\vdots \\
\dot{x}_{n}(t)
\end{bmatrix} = \begin{bmatrix}
a_{11} & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} & \dots & a_{2n} \\
\vdots \\
a_{n1} & a_{n2} & \dots & a_{nn}
\end{bmatrix} \begin{bmatrix}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{bmatrix} + \begin{bmatrix}
b_{11} & b_{12} & \dots & b_{1r} \\
b_{21} & b_{22} & \dots & b_{2r} \\
\vdots \\
b_{n1} & b_{n2} & \dots & b_{nr}
\end{bmatrix} \begin{bmatrix}
u_{1}(t) \\
u_{2}(t) \\
\vdots \\
u_{r}(t)
\end{bmatrix}$$

$$\dot{x}_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} + b_{11}u_{1} + \dots + b_{1r}u_{r}$$
Laplace
$$sX_{1}(s) - x_{1}(0) = a_{11}X_{1}(s) + a_{12}X_{2}(s) + \dots + a_{1n}X_{n}(s) + b_{11}U_{1}(s) + \dots + b_{1r}U_{r}(s)$$

Tương tự với phương trình vi phân thứ 2

$$sX_2(s) - x_2(0) = a_{21}X_1(s) + a_{22}X_2(s) + \dots + a_{2n}X_n(s) + b_{21}U_1(s) + \dots + b_{2n}U_n(s)$$

Vậy ảnh Laplace của hệ phương trình vi phân là

$$sX(s) - x(0) = AX(s) + BU(s)$$

$$(sI - A)X(s) = x(0) + BU(s)$$

 $X(s) = (sI - A)^{-1}x(0) + (sI - A)^{-1}BU(s)$

Lấy ảnh Laplace ngược để tìm nghiệm x(t)

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{s^2 + 3s + 2}$$

Chuyển sang mô hình trạng thái

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \qquad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Phi(t) = L^{-1}((sI - A)^{-1})$$

$$(sI - A) = s\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} s+3 & -1 \\ 2 & s \end{bmatrix}$$

$$Adj(sI - A) = \begin{bmatrix} s & 1 \\ -2 & s + 3 \end{bmatrix}$$

$$det(sI - A) = s^{2} + 3s + 2 = (s + 1)(s + 2)$$

$$(sI - A)^{-1} = \frac{adj(sI - A)}{det(sI - A)}$$

Tiếp tục ...

$$(sI - A)^{-1} = \frac{adj(sI - A)}{det(sI - A)}$$

Do đó

$$(sI - A)^{-1} = \begin{bmatrix} \frac{s}{(s+1)(s+2)} & \frac{1}{(s+1)(s+2)} \\ \frac{-2}{(s+1)(s+2)} & \frac{s+3}{(s+1)(s+2)} \end{bmatrix} = \begin{bmatrix} \frac{-1}{s+1} + \frac{2}{s+2} & \frac{1}{s+1} + \frac{-1}{s+2} \\ \frac{-2}{s+1} + \frac{2}{s+2} & \frac{2}{s+1} + \frac{-1}{s+2} \end{bmatrix}$$

Ma trận chuyển trạng thái:

$$\Phi(t) = L^{-1}((sI - A)^{-1}) = \begin{bmatrix} -e^{-t} + 2e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & 2e^{-t} - e^{-2t} \end{bmatrix}$$

Tiếp tục ...

$$X(s) = (sI - A)^{-1}x(0) + (sI - A)^{-1}BU(s)$$

Giả sử với tín hiệu vào bước nhảy đơn vị u(t)=1, ta có

$$(sI - A)^{-1}BU(s) = \begin{bmatrix} \frac{s}{(s+1)(s+2)} & \frac{1}{(s+1)(s+2)} \\ \frac{-2}{(s+1)(s+2)} & \frac{s+3}{(s+1)(s+2)} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{1}{s} = \begin{bmatrix} \frac{1}{s(s+1)(s+2)} \\ \frac{s+3}{s(s+1)(s+2)} \end{bmatrix}$$

$$(sI - A)^{-1}BU(s) = \begin{bmatrix} \frac{1/2}{s} + \frac{-1}{s+1} + \frac{1/2}{s+2} \\ \frac{3/2}{s} + \frac{-2}{s+1} + \frac{1/2}{s+2} \\ \frac{3/2}{s} + \frac{1}{s+2} \end{bmatrix}$$

Tiếp tục ...

$$L^{-1}((sI - A)^{-1}BU(s)) = \begin{bmatrix} \frac{1}{2} - e^{-t} + \frac{1}{2}e^{-2t} \\ \frac{3}{2} - 2e^{-t} + \frac{1}{2}e^{-2t} \end{bmatrix}$$

Từ công thức

$$x(t) = L^{-1}((sI - A)^{-1}x(0) + (sI - A)^{-1}BU(s))$$

Suy ra nghiệm của hệ phương trình vi phân:

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} -e^{-t} + 2e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & 2e^{-t} - e^{-2t} \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} + \begin{bmatrix} \frac{1}{2} - e^{-t} + \frac{1}{2}e^{-2t} \\ \frac{3}{2} - 2e^{-t} + \frac{1}{2}e^{-2t} \end{bmatrix}$$

Ma trận hàm mũ

Khai triễn chuỗi của $(sI - A)^{-1}$

$$(sI - A)^{-1} = (1/s)(I - A/s)^{-1} = \frac{I}{s} + \frac{A}{s^2} + \frac{A^2}{s^3} + \cdots$$

(với |s| đủ lớn), do đó

$$\Phi(t) = I + At + A^2 \frac{t^2}{2!} + A^3 \frac{t^3}{3!} \dots$$

có dạng giống khai triển Taylor của hàm mũ thông thường

Vậy ta có

$$e^{at} = I + at + a^2 \frac{t^2}{2!} + a^3 \frac{t^3}{3!} \dots$$

$$\Phi(t) = e^{At}$$

Ma trận hàm mũ

$$e^M = I + M + \frac{M^2}{2!} + \cdots$$

với $M \in \mathbb{R}^{n \times n}$