≡ Item Navigation

Notes: Sequences and Series

Sequences

Definitions

A **sequence** is an infinite ordered list of numbers, $\{a_n\}=\{a_n\}_{n=1}^\infty=a_1,a_2,\ldots,a_n,\ldots$

A sequence is **convergent** if the terms a_n get close to a **limit** L when n is sufficiently large. If this is the case, we write $\lim_{n \to \infty} a_n = L$.

A sequence that is not convergent is called **divergent**.

A sequence $\{a_n\}$ is **increasing** if $a_n < a_{n+1}$ for all n, and **decreasing** if $a_n > a_{n+1}$ for all n. A sequence is called **monotonic** if it is either increasing or decreasing.

Limit Laws

Limits of sequences follow all of the same limit laws defined for functions: If $\{a_n\}$ and $\{b_n\}$ are convergent and c is a constant, then

$$ullet \lim_{n o\infty}(a_n\pm b_n)=\lim_{n o\infty}a_n\pm\lim_{n o\infty}b_n$$

$$ullet \lim_{n o\infty}(ca_n)=c\lim_{n o\infty}a_n$$

$$ullet \lim_{n o\infty}(a_nb_n)=\lim_{n o\infty}a_n\cdot\lim_{n o\infty}b_n$$

•
$$\lim_{n o\infty}rac{a_n}{b_n}=rac{\lim_{n o\infty}a_n}{\lim_{n o\infty}b_n}$$
 if $\lim_{n o\infty}b_n
eq 0$

•
$$\lim_{n o\infty}a_n{}^p=\left(\lim_{n o\infty}a_n
ight)^p$$
 if $p>0$ and $a_n>0$.

Examples of Sequences

The **harmonic sequence** has terms of the form $a_n=rac{1}{n}$. The harmonic sequence converges to 0.

A **geometric sequence** is a sequence where each term is found by multiplying the previous term by a