

McKendrik-von Foerster equation

density of weight w individuals of species i

Recruitment $R_i = \frac{R_{p.i} R_{max.i}}{R_{p.i} + R_{max.i}}$ Maximum recruitment Egg production

$$R_{p.i} = \frac{\epsilon_i}{2w_{0.i}} \int_0^\infty N_i(w) E_{r.i}(w) \psi_i(w).dw$$

Hold recruitment fixed at $R_{f.i}$

Evolve system to steady state

Choose reproduction efficiency ϵ_i so

$$R_{f.i} = \frac{\epsilon_i}{2w_{0.i}} \int_0^\infty N_i(w) E_{r.i}(w) \psi_i(w).dw$$

With SRR Without SRR

$$R_{p.i} = \frac{\epsilon_i}{2w_{0.i}} \int_0^\infty N_i(w) E_{r.i}(w) \psi_i(w).dw$$

energy available for growth and reproduction

fraction of energy diverted into reproduction

sum over prey

weight by preference

multiply by search rate of predator

energy encountered

limited eating rate

energy costs for movement and metabolism

energy for reproduction

growth

prefered predator-prey mass ratio preference level prey size

predator size

width of prey distribution

energy encountered

abundance of background resources at weight w_p

preference level of weight w predator for weight w_p prey

$N_i(w)$ =density of weight w individuals of species i

 $\int_A^B N_i(w)dw$ = number of individuals with weight between A and B

Size Spectrum Modelling Gustav Delius, Richard Southwell