1	Введение во взрывозащиту			
	1.1	Объяснение терминов	1-1	
	1.2	Взрывчатая среда	1-2	
	1.3	Меры защиты	1-5	

Рисунки				
1.1	Концентрация огнеопасного вещества в воздухе (пределы, за которыми происходит взрыв, зависят от вещества)	_1-3		

1 Введение во взрывозащиту.

1.1 Объяснение терминов

Ниже объясняются основные термины, используемые в этом документе. Официальное определение терминов можно найти в **ElexV** /1/(Правила для электрооборудования в опасных зонах).

Зона

Что касается взрывозащищенности, промышленная площадь, на которой производится оценка риска взрыва, определяется на основе

- физических и химических принципов взрывобезопасности;
- характеристик безопасности взрывчатой среды;
- производственных и местных обстоятельств.

В правилах VDE **промышленной площадью** считается наружняя площадка или помещение, служащие для любых деловых операций и доступные на регулярной основе неподготовленным (специально) людям. Слова "наружняя площадка" и "помещение" должны обозначать обычно ограниченный объем, который, в свою очередь, можно подразделить на зоны (см.раздел 4.1) с разными уровнями опасности взрыва. Слово "зона", согласно немецким и международным правилам, далее используется как си-ноним промышленной площади.

Взрыв

Сюда относятся **взрывы**, которые, по определению, вызывают экзотермическую реакцию (т.е. с выделением тепла) во взрывчатых смесях или средах; реакция эта имеет место по причине повышения температуры, вызванной выделенным теплом, с большой скоростью (порядка величины м/с) и резким перепадом давления, сопровождаемым звуком взрыва.

В отличие от описанного, существует **мгновенное сгорание**, если скорость распространения реакции находится в пределах см/с. Если реакция протекает при чрезвычайно высоком давлении и шуме и со скоростью порядка км/с, явление называется **детонацией**.

Опасная зона

Это зона, в которой может существовать риск взрыва или опасная, взрывчатая среда по причине местных или производственных обстоятельств.

Электроустройства

Термин понимается как все секции системы, служащие всецело или частично для приложения электроэнергии. Среди прочих он включает: секции системы для генерации, передачи, распределения, накопления, измерения, регулирования, преобразования/трансформирования и потребления электроэнергии. Электросистемы образуются путем соединения электроустройств.

1.2 Взрывчатая среда

Взрывчатая среда - это смесь воздуха и огнеопасных газов, паров, тумана или пыли, которая при некоторой концентрации и в некоторых атмосферных условиях может быть подожжена от источника зажигания, после чего сгорание становится **самораспространяющимся**. Приемлемыми атмосферными условиями являются полное давление от 0,8 до 1,1 бар и температура смеси от -20 до +60°C.

Факторами потенциально взрывчатой атмосферы и ее поджигания являются

- степень рассеяния огнеопасных веществ;
- концентрация огнеопасных веществ;
- наличие опасного количества;
- эффективность источника зажигания.

Концентрация огнеопасных веществ

Жидкости - газы/пары:

Определенное количество жидкости переходит в газообразное агрегатное состояние по причине испарения. Над свободной поверхностью жидкости образуется смесь паров и воздуха; смесь не обязательно является огнеопасной. Если, однако, температура достаточно высока, при испарении образуется столь большое коли-чество пара, что над жидкостью появляется огнеопасная смесь паров с воздухом. Такую температуру называют температурой вспышки; она определяется в закры-том сосуде при заданных условиях посредством внешнего зажигания. Непрерывное горение, однако, еще не возможно, т.к. при такой температуре жидкости паров бы-вает недостаточно. Более высокая температура, достаточная для непрерывного горе-ния измененной паровоздушной смеси над жидкостью, известна как температура горения.

Величины температур вспышки и горения не являются физическими постоянными, но представляют собой так называемые зависимые от вещества характеристики газовоздушных смесей. Они определяются как **характеристики безопасности** (см.также раздел 4.3), поскольку в установлении указанных температур участвуют и другие факторы такие, как конвекция и диффузия. На температуру вспышки могут влиять примеси, наличествующие в огнеопасных жидкостях.

Динамика взрывчатой среды зависит от концентрации смеси, образующейся над жидкостью. При концентрации, когда смесь в наименьшей степени взрывчата, мы

имеем **нижний предел взрыва** (известен также как нижний предел зажигания); соответствующая температура называется **нижней температурой взрыва**.

Если концентрация увеличивается, то со временем достигается степень концентрации, при которой смесь будет содержать недостаточно кислорода для взрыва из-за большего содержания газов и паров; тогда речь идет о **верхней границе взрыва** или верхнем пределе зажигания. Выше его смесь становится слишком концентрированной, хотя и может гореть в присутствии окисляющего вещества.

Область концентрации между пределами взрыва (пределами зажигания) называется областью взрыва (областью зажигания); см. Рис.1.1.

Рис. 1.1 Концентрация огнеопасного вещества в воздухе (границы взрыва зависят от вещества).

Для смесей с кислородом верхняя граница взрыва значительно выше, чем для смесей с воздухом. Если вместо кислорода или воздуха присутствует **инертный газ**, взрыв становится невозможным.

Температурой зажигания огнеопасного газа или жидкости является наименьшая температура, определенная в тестовом приборе для нагретой стенки, от которой едва лишь происходит зажигание смеси огнеопасного вещества и воздуха (см. также Таблицу 4.6). Температуры зажигания газов можно разнести по нескольким температурным классам (см. часть 4.3.2).

Пыль

Твердые вещества часто присутствуют в измельченной форме, такой как пыль. Пыле-вые отложения можно сравнить с пористым телом, т.к. их пористость может дохо-дить до 90%. Если пыль с малым размером частиц находится в вихревом движении, ее можно очень легко поджечь, поскольку с ростом измельченности

увеличивается и поверхность. При повышении температуры пылевого отложения происходит спон-танное зажигание горючего вещества в форме пыли. Имеет место тление или тлеющий огонь; он всегда начинается при температурах ниже температуры взрыва той же пыли в виде воздушно-пылевой смеси. Такой тлеющий огонь, особенно при вихревом движении пылевых частиц, может стать источником зажигания для воздуш-но-пылевой смеси. По этой причине температура тления, определяемая для зажи-гания 5 мм-ого пылевого слоя, является важной характеристикой безопасности для пыли. Для толстых слоев пыли тление может происходить при температурах меньших температуры тления.

Также как для газов и жидкостей, у воздушно-пылевой смеси имеются пределы и области взрыва. В таблице 4.3 сведены характеристики безопасности для пыли от разных распространенных метериалов.

Нестабильные вещества и газы

У некоторых химически нестабильных веществ и газов, например, ацетилена, экзотермическая реакция может быть запущена зажиганием, даже при отсутствии кислорода или воздуха.

Наличие опасного количества

Взрывчатая среда в опасном количестве является опасной взрывчатой средой, т.е. ее количество таково, что в случае взрыва можно ожидать прямой или косвенной угрозы жизни или ущерба окружающему.

Как правило, 10 литров совокупной взрывчатой среды в закрытом помещении можно считать опасным, независимо от размеров помещения. Однако, даже меньшее количество может быть опасным, в особенности, если оно сосредоточено в непосредственной близости от людей и может быть ими подожжено.

Правило большого пальца:

Объем помещения < 10000 х объем смеси.

Пример: Это получается лишь при 8-ми литрах на помещение объемом в 80 м³

Эффективность источника зажигания

Эффективность источника и, следовательно, его способность поджечь взрывчатую среду, зависит от энергии источника и свойств взрывчатой среды.

Согласно /1/ (из основных положений взрывобезопасности), источниками зажигания являются:

- горячие поверхности
- пламя и горячие газы

- механически производимые искры
- электрооборудование
- электрический циркулирующий ток, катодная защита
- статическое электричество
- удары молнии
- электромагнитные волны
- оптическое излучение
- ионизирующее излучение
- ультразвук
- адиабатическое сжатие, ударные волны текущих газов
- химические реакции.

На практике, электроустройства и системы составляют основную долю возможных источников зажигания. Искры переключения и компоненты, перегретые очень большими токами (т.е. в случае короткого замыкания), могут стать источниками зажигания.

1.3 Меры защиты

Существуют две основные меры недопущения взрыва:

- 1. Предотвращение образования опасной, взрывчатой среды, т.е. первичная мера взрывобезопасности.
- 2. Предотвращение поджигания опасной, взрывчатой среды, т.е. вторичная мера взрывобезопасности.

Согласно ElexV, Параграф 7, меры по предотвращению образования взрывчатой среды являются обязательными.

Первичные меры взрывозащиты

Первичные меры взрывозащиты включают все, что предотвращает или ограничивает нарастание опасной взрывчатой среды (см. главу 3). Этого можно добиться, например:

- избегая использования огнеопасных жидкостей
- инертностью
- заменой горючих веществ негорючими
- ограничивая концентрацию до нижней и выше верхней границы взрыва
- подходящей конструкцией оборудования
- естественной и принудительной вентиляцией.

Подробней о мерах первичной взрывозащищенности смотри в Части Е1 "Меры, предотвращающие или ограничивающие образование опасной взрывчатой среды" EX-RL /1/,/4/(см.также главу 3).

Меры вторичной взрывозащиты

Существуют, тем не менее, многие применения, в которых основные меры защиты нельзя использовать. Меры вторичной защиты препятствуют зажиганию, обеспечивая, таким образом, безопасность персонала и сохранность оборудования в зонах риска.

Меры вторичной взрывозащиты включают все, что препятствует зажиганию взрывчатой среды. Существуют разные, стандартизированные типы защиты, которые описаны в разделе 4.2. Относительно электроустройств, такие меры касаются соблюдения конструктивных требований для электроприборов с взрывозащитой. При помощи конструктивных и/или иных связанных со схемами мер они нацелены на предотвращение взрыва или на предотвращение поджигания окружающей взрывчатой среды в случае взрыва внутри устройства (см. также главу 4).