

Polygon Triangulation

O'Rourke, Chapter 1

Outline

- Triangulation
- Duals
- Three Coloring
- Art Gallery Problem

A (simple) polygon is a region of the plane bounded by a finite collection of line segments forming a simple closed curve.

In practice, it is given by $\{p_1, ..., p_n\} \subset \mathbb{R}^2$ with the property that $\overline{p_i p_{i+1}} \cap \overline{p_j p_{j+1}} \neq \emptyset$ if and only if j = i + 1 and then the intersection is the point p_i .

 p_2 p_4

 p_1

A (simple) polygon is a region of the plane bounded by a finite collection of line segments forming a simple closed curve.

In practice, it is given by $\{p_1, ..., p_n\} \subset \mathbb{R}^2$

We will assume that vertices are given in CCW order, so that the interior of the polygon is on the left side of the edges.

 p_2 p_4 p_3

A vertex of a polygon is a *reflex vertex* if its interior angle is greater than π .

Otherwise it is a convex vertex.

(It is *strictly convex* if the interior angle is strictly less than π .)

Claim

Every polygon has at least one strictly convex vertex.

The sum of the interior angles is:

$$\pi \cdot (n-2)$$

 \Rightarrow Some interior angle has to be less than π , otherwise the sum is at least $n \cdot \pi$.

Find the lowest (right-most in case of tie) vertex of the polygon.

- ⇒ The interior angle is (strictly) above the horizontal.
- \Rightarrow The interior angle is smaller than π .

Goal

Given a polygon, compute a triangulation.

Goal

Given a polygon, compute a triangulation.

Given a polygon, a *diagonal* is a line segment between two vertices which does not intersect the polygon (aside from at the vertices).

A *triangulation* of a polygon is a partition of the interior of the polygon into triangles whose edges are non-crossing diagonals.

Three consecutive vertices, p_{i-1} , p_i , p_{i+1} of a polygon form an *ear* if the edge $\overline{p_{i-1}p_{i+1}}$ is a diagonal.

Claim

A polygon with n vertices can always be triangulated and will have n-2 triangles and will require the introduction of n-3 diagonals.

- If n = 3, then we are done.
- If n > 3, add a diagonal to break the polygon into two smaller polygons.
 - This gives two polygons with $n_1 < n$ and $n_2 < n$ vertices, with $n_1 + n_2 = n + 2$.

- If n = 3, then we are done.
- If n > 3, add a diagonal to break the polygon into two smaller polygons.
 - This gives two polygons with $n_1 < n$ and $n_2 < n$ vertices, with $n_1 + n_2 = n + 2$.
 - \Rightarrow They will have $n_1 2$ and $n_2 2$ triangles each.
 - \Rightarrow This gives $n_1 + n_2 4 = n 2$ triangles.

- If n = 3, then we are done.
- If n > 3, add a diagonal to break the polygon into two smaller polygons.
 - This gives two polygons with $n_1 < n$ and $n_2 < n$ vertices, with $n_1 + n_2 = n + 2$.
 - \Rightarrow They will require $n_1 3$ and $n_2 3$ diagonals.
 - \Rightarrow This gives $n_1 + n_2 6 + 1 = n 3$ diagonals.

Sub-Claim

Given a polygon with n > 3 vertices, we can always find at least one diagonal.

Let p_i be a strictly convex vertex, and consider the line segment $\overline{p_{i-1}p_{i+1}}$.

If the line segment is a diagonal, we are done.

Let p_i be a strictly convex vertex, and consider the line segment $\overline{p_{i-1}p_{i+1}}$.

Otherwise, either the line segment is outside the polygon, or it intersects one of the edges.

- \Rightarrow There exists a vertex p_j inside $\Delta p_{i-1}p_ip_{i+1}$. Choose the one that is closest to p_i w.r.t. the perpendicular distance.
- $\Rightarrow \overline{p_i p_j}$ is a diagonal.

Outline

- Triangulation
- Duals
- Three Coloring
- Art Gallery Problem

Given a triangulation of a polygon, the *dual* is the graph with:

- A node associated to each triangle
- An edge between nodes if the corresponding triangles share an edge.

Claim

The triangulation dual is an acyclic graph with each node of degree at most three.

"...degree at most three":

This follows from the fact that each triangle has three edges.

"...acyclic graph...":

"...acyclic graph...":

If the graph has a cycle, consider the curve connecting the mid-points of the (primal) edges of the cycle.

⇒ The curve is inside the polygon and encloses a subset of the vertices.

Note

The triangulation dual is a binary tree when rooted at a node of degree one or two.

Meisters's Two Ears Theorem

Every polygon with n > 3 vertices has at least two non-overlapping ears.

Compute a triangulation of the polygon and then take the triangulation dual.

- ⇒ A leaf of the graph must be an ear.
- ⇒ A binary tree with two or more nodes has at least two leaves.

Outline

- Triangulation
- Duals
- Three Coloring
- Art Gallery Problem

Claim

The triangulation graph of a polygon can be 3-colored.

- If n = 3 we are done.
- Otherwise, the polygon has an ear.

- If n=3 we are done.
- Otherwise, the polygon has an ear.
 - Remove the ear and 3-color (induction hypothesis)

- If n = 3 we are done.
- Otherwise, the polygon has an ear.
 - Remove the ear and 3-color (induction hypothesis)
 - Add the triangle back in and color the new vertex with the only available color.

Outline

- Triangulation
- Triangulation Dual
- Three Coloring
- Art Gallery Problem

Art Gallery Problem

Given a polygonal room, what is the smallest number of (stationary) guards required to cover the room?

-- Klee (1976)

Art Gallery Problem

Given a polygonal room, what is the smallest number of (stationary) guards required to cover the room?

-- Klee (1976)

Formally:

- guard ⇔ point
- A guard <u>sees</u> a point if the segment from the point to the guard doesn't intersect the polygon's interior.
- The polygon is <u>covered</u> if each point is seen by some guard.

Claim

Given a polygon with n vertices, $\lfloor n/3 \rfloor$ guards is necessary and sufficient.

Necessity:

We can always choose n vertices of the polygons so that $\lfloor n/3 \rfloor$ guards are necessary.

Sufficiency:

We cannot choose n vertices so that more than $\lfloor n/3 \rfloor$ guards are necessary.

Necessity

Given any value of n, we can always construct a polygon that requires at least $\lfloor n/3 \rfloor$ guards.

 $k \text{ prongs} \Rightarrow n = 3k \text{ vertices}$

Sufficiency

For any polygon with n vertices, we can always cover with $\lfloor n/3 \rfloor$ guards.

- Triangulate the polygon.
- 3-color the vertices.
- Find the color occurring least often and place a guard at each associated vertex.
- By the pigeon-hole principal, there won't be more than [n/3] guards.

Tetrahedralization

Note that in three dimensions, not every polyhedron *P* can be tetrahedralized.

Claim:

- 1. Either $\overline{p_i p_i}$ is an edge of P or it is exterior.
- 2. Triangles whose edges are on P are faces of P. (a)
- \Rightarrow Any interior tetrahedron has edges belonging to P.
- \Rightarrow Any interior tetrahedron has faces belonging to P.
- \Rightarrow Any interior tetrahadron is P.

(b)

Art Gallery Theorems and Algorithms, O'Rourke (1987)