Семинар 16

Общая информация:

- Напомню, что $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ задает линейное отображение $\phi \colon \mathbb{R}^n \to \mathbb{R}^m$ по правилу $x \mapsto Ax$. Тогда в стандартных базисах этих пространств A будет матрицей для отображения ϕ .
- Ранг матрицы A обозначается через $\operatorname{rk} A$.

Задачи:

1. Пусть $\phi \colon \mathbb{R}^3 \to \mathbb{R}^2$ — линейное отображение, заданное в стандартном базисе матрицей $A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$. Пусть

$$f_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, f_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, f_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, x = \begin{pmatrix} 6 \\ 9 \\ 14 \end{pmatrix}$$
 вектора в \mathbb{R}^3 , $g_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, g_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ вектора в \mathbb{R}^2

- (a) Показать, что f_1, f_2, f_3 образуют базис в \mathbb{R}^3 и найти координаты вектора x в этом базисе.
- (b) Показать, что g_1, g_2 образуют базис в \mathbb{R}^2 и найти координаты вектора $\phi(x)$ в этом базисе.
- (c) Найти матрицу отображения ϕ в базисах f_1, f_2, f_3 и $g_1, g_2.$
- 2. Пусть в \mathbb{R}^3 заданы следующие векторы:

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 5 \\ 8 \\ 2 \end{pmatrix}, v_4 = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix}$$

Существует ли линейное отображение $\phi \colon \mathbb{R}^3 \to \mathbb{R}^2$ такое, что $\phi(v_i) = u_i$, где

(a)
$$u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $u_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $u_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $u_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

(b)
$$u_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, $u_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $u_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $u_1 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$

- 3. Задачник. §34, задача 34.11(a).
- 4. Задачник. §34, задача 34.3(д).
- 5. Задачник. §35, задача 35.14(б).
- 6. Пусть $\mathbb{R}[x]_n$ множество всех многочленов с вещественными коэффициентами степени не больше n.
 - (а) Показать, что системы

$$\{1,x,x^2,\dots,x^n\}$$
 и $\{1,x-a,(x-a)^2,\dots,(x-a)^n\}$, где $a\in\mathbb{R}$

являются базисами в $\mathbb{R}[x]_n$ и найти матрицы перехода от первого базиса ко второму и от второго к первому.

- (b) Найти координаты многочлена $f(x) = a_0 + a_1 x + \ldots + a_n x^n$ в этих базисах.
- (c) Пусть $\frac{d}{dx}: \mathbb{R}[x]_n \to \mathbb{R}[x]_n$ отображение дифференцирования многочлена по переменной x. Найти матрицы A и A_a этого отображения в базисах из пункта (6a).
- (d) Найти след и определитель матриц A и A_a .
- 7. Пусть (e_1, \ldots, e_n) базис векторного пространства V и пусть $x \in V$ вектор с координатами (x_1, \ldots, x_n) в базисе (e_1, \ldots, e_n) . Найти координаты x в новом базисе, если новый базис получен следующим образом:
 - (a) Прибавили к e_i вектор e_i умноженный на $\lambda \in \mathbb{R}$.
 - (b) Поменяли местами e_i и e_j .
 - (c) Умножили e_i на $\lambda \in \mathbb{R}$, $\lambda \neq 0$.

- 8. Пусть $A, B \in \mathrm{M}_{m\,n}(\mathbb{R})$ такие, что для любого $x \in \mathbb{R}^n$ из того что Ax = 0 следует, что Bx = 0. Показать, что тогда B = CA для некоторой $C \in \mathrm{M}_m(\mathbb{R})$.
- 9. Пусть $A \in M_{mn}(\mathbb{R})$.
 - (a) Пусть $m \geqslant n$ и $\mathrm{rk}\, A = n$. Показать, что существует $B \in \mathrm{M}_{n\,m}(\mathbb{R})$ такая, что $BA = E \in \mathrm{M}_n(\mathbb{R})$.
 - (b) Пусть $m\leqslant n$ и rk A=m. Показать, что существует $B\in \mathrm{M}_{n\,m}(\mathbb{R})$ такая, что $AB=E\in \mathrm{M}_m(\mathbb{R})$.
 - (c) Показать, что всегда существует $B\in \mathrm{M}_{n\,m}(\mathbb{R})$ такая, что A=ABA и B=BAB.