Positive Mass Theorem

Joshua Benabou

March 9, 2021

Introduction: Positive mass theorem

Joshua Benabou

The Riemannian positive mass theorem (PMT): an asymptotically flat Riemannian manifold M^n with nonnegative scalar curvature has nonnegative ADM mass. The ADM mass is strictly positive unless M^n is isometric to flat \mathbb{R}^n .

First proven in 1979 by Schoen and Yau for $n \le 7$ using minimal surface techniques.

Positive Mass Theorem

March 9, 2021

Introduction: Penrose Inequality

Penrose inequality - a generalization of the PMT in the presence of an *area* outer minimizing horizon (a minimal surface such that every other surface enclosing it has greater area).

Theorem ((Weak) Penrose inequality)

Given an asymptotically flat Riemannian manifold M^n with nonnegative scalar curvature, containing an area outer minimizing horizon Σ , the ADM mass m is bounded below in terms of the volume A of Σ and the volume ω_{n-1} of the unit (n-1) sphere:

$$m \ge \frac{1}{2} \left(\frac{A}{\omega_{n-1}} \right)^{\frac{n-2}{n-1}},\tag{1}$$

3/23

with equality iff M^n is isometric to a Schwarzschild metric.

First proved for n=3: $m \ge \sqrt{A/16\pi}$ (Huisken and Illmanen, 1997). Later for $n \le 7$ under certain conditions on M (Bray and Lee).

No known proofs for $n \ge 8$ (beyond spherically symmetric cases).

Reminder: minimal surfaces and mean curvature

A minimal surface locally minimizes area \iff mean curvature is zero everywhere

Figure: Left: a minimal surface

Right: principal curvatures

Intro: Isometric embedding of Schwarzschild metric

Equality case of the Penrose inequality is attained by the Schwarzschild metric.

When n=3, $(M^3,g)=(\mathbb{R}^3\backslash B_{2m}(0),(1-2m/r)^{-1}dr^2+r^2d\Omega^2)$ can be isometrically embedded as a rotating parabola in \mathbb{R}^4 :

$$\{(x,y,z,w)\subset\mathbb{R}^4\ ;\ |(x,y,z)|=\frac{w^2}{8m}+2m\}$$

March 9, 2021

Intro: Isometric embedding of Schwarzschild metric

The end of the n=3 Schwarzschild metric containing infinity is the graph of the spherically symmetric function $f: \mathbb{R}^3 \backslash B_{2m}(0) \to \mathbb{R}$ given by $f((x,y,z)) = \sqrt{8m(r-2m)}$, where r = |(x,y,z)|.

In this case, one can check directly that the ADM mass of (M^3, g) is the positive constant m by computing a certain boundary integral at infinity involving the function f.

Also, the minimizing surface has 2-volume A equal to that of $\partial B_{2m}(0)$, so indeed $m = \sqrt{A/16\pi}$.

6/23

Introduction: Penrose inequality for graphs over \mathbb{R}^n

Thus, an end of the n=3 Schwarzschild metric can be isometrically embedded in \mathbb{R}^4 as the graph of a function over $\mathbb{R}^3 \setminus B_{2m}(0)$.

If Ω is bounded and open in \mathbb{R}^n and f is a smooth function on $\mathbb{R}^n \setminus \Omega$ such that the graph of f is an asymptotically flat manifold M with nonnegative scalar curvature R and horizon $f(\partial \Omega)$, can we prove the Penrose inequality for M?

Yes!

In the presence of a boundary whose connected components are convex, we can even get a stronger bound than the Penrose inequality.

We now discuss this elementary proof due to Lam (2010).

Asymptotic flatness

Definition (Schoen)

A complete Riemannian manifold (M^n,g) of dimension n is said to be **asymptotically flat** if there is a compact subset $K \subset M^n$ such that $M^n \setminus K$ is diffeomorphic to $\mathbb{R}^n \setminus \{|x| \leq 1\}$, and a diffeomorphism $\Phi: M^n \setminus K \to \mathbb{R}^n \setminus \{|x| \leq 1\}$ such that, in the coordinate chart defined by Φ , $g = g_{ij}(x)dx^idx^j$, where

$$egin{align} g_{ij}(x) &= \delta_{ij} + O(|x|^{-p}) \ |x||g_{ij,k}(x)| + |x|^2|g_{ij,kl}(x)| &= O(|x|^{-p}) \ |R(g)(x)| &= O(|x|^{-q}) \ \end{gathered}$$

for some q > n and p > (n-2)/2.

Simply put: outside a compact set, M^n is diffeomorphic to \mathbb{R}^n minus a closed ball and the metric g decays sufficiently fast to the flat metric at infinity. p and q are chosen so that the ADM mass is finite.

4 D > 4 A > 4 B > 4 B > B = 90 Q P

8/23

ADM mass

Definition

(Schoen) The **ADM mass** m of a complete, asymptotically flat manifold (M^n,g) is defined to be

$$m = \lim_{r \to \infty} \frac{1}{2(n-1)\omega_{n-1}} \int_{S_r} \sum_{i,j} (g_{ij,i} - g_{ii,j}) \nu_j dS_r,$$

where ω_{n-1} is the volume of the n-1 unit sphere, S_r is the coordinate sphere of radius r, ν is the outward unit normal to S_r and dS_r is the area element of S_r in the coordinate chart.

This definition for n = 3 was originally due to Arnowitt, Deser and Misner.

The ADM mass is independent of the choice of asymptotically flat coordinates (Bartnik).

9/23

Positive mass theorem for graphs over Rⁿ

Given a smooth function $f: \mathbb{R}^n \to \mathbb{R}$, the graph of f is a complete Riemannian manifold.

The graph of f with the induced metric from \mathbb{R}^{n+1} is isometric to $(M^n, g) = (\mathbb{R}^n, \delta + df \otimes df)$.

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth function and let f_i denote the ith partial derivative of f. We say that f is **asymptotically flat** if

$$f_i(x) = O(|x|^{-p/2})$$

$$|x||f_{ij}(x)| + |x|^2|f_{ijk}(x)| = O(|x|^{-p/2})$$

at infinity for some p > (n-2)/2.

Positive mass theorem for graphs over R^n

Theorem (Positive mass theorem for graphs over \mathbb{R}^n)

Let (M^n,g) be the graph of a smooth asymptotically flat function $f:\mathbb{R}^n\to\mathbb{R}$ with the induced metric from \mathbb{R}^{n+1} . Let R be the scalar curvature and m the ADM mass of (M^n,g) . Let ∇f denote the gradient of f in the flat metric and $|\nabla f|$ its norm with respect to the flat metric. Let dV_g denote the volume form on (M^n,g) . Then

$$m = rac{1}{2(n-1)\omega_{n-1}} \int_{M^n} R rac{1}{\sqrt{1+|\nabla f|^2}} dV_g.$$

In particular, $R \ge 0$ implies $m \ge 0$.

Positive mass theorem for graphs with horizons

Theorem

Let Ω be a bounded and open set in \mathbb{R}^n and $\Sigma = \partial \Omega$. Let $f : \mathbb{R}^n \setminus \Omega \to \mathbb{R}$ be a smooth asymptotically flat function such that each connected component of $f(\Sigma)$ is in a level set of f and $|\nabla f(x)| \to \infty$ as $x \to \Sigma$. Let (M^n, g) be the graph of f with the induced metric from $\mathbb{R}^n \setminus \Omega \times \mathbb{R}$ and ADM mass m. Let H_0 be the mean curvature of Σ in $(\mathbb{R}^n \setminus \Omega, \delta)$. Then

$$m = \frac{1}{2(n-1)\omega_{n-1}} \int_{\Sigma} H_0 d\Sigma + \frac{1}{2(n-1)\omega_{n-1}} \int_{M^n} R \frac{1}{\sqrt{1+|\nabla f|^2}} dV_g.$$

The mean curvature H of $f(\Sigma)$ in (M^n, g) and the mean curvature H_0 with respect to the flat metric δ are related by

$$H=\frac{1}{\sqrt{1+|\nabla f|^2}}H_0.$$

Thus if $|\nabla f(x)| \to \infty$ as $x \to \Sigma$, then $f(\Sigma)$ is a horizon in (M^n, g) .

Joshua Benabou

12/23

Penrose Inequality for graphs over \mathbb{R}^n

Corollary (Penrose inequality for graphs on \mathbb{R}^n with convex boundaries)

With the same hypotheses as above, let Ω_i be the connected components of Ω , i = 1, ..., k, and $\Sigma_i = \partial \Omega_i$. If each Ω_i is convex, then

$$m \geq \sum_{i=1}^{k} \frac{1}{2} \left(\frac{|\Sigma_i|}{\omega_{n-1}} \right)^{\frac{n-2}{n-1}} + \frac{1}{2(n-1)\omega_{n-1}} \int_{M^n} R \frac{1}{\sqrt{1+|\nabla f|^2}} dV_g.$$

In particular,

$$R \ge 0$$
 implies $m \ge \sum_{i=1}^k \frac{1}{2} \left(\frac{|\Sigma_i|}{\omega_{n-1}} \right)^{\frac{n-2}{n-1}}$.

We retrieve the (weak) Penrose inequality with:

$$\sum_{i=1}^{k} \frac{1}{2} \left(\frac{|\Sigma_i|}{\omega_{n-1}} \right)^{\frac{n-2}{n-1}} \ge \frac{1}{2} \left(\frac{\sum_{i=1}^{k} |\Sigma_i|}{\omega_{n-1}} \right)^{\frac{n-2}{n-1}} = \frac{1}{2} \left(\frac{A}{\omega_{n-1}} \right)^{\frac{n-2}{n-1}}$$

Proof of the positive mass theorem for graphs over \mathbb{R}^n

Let $(M^n, g) = (\mathbb{R}^n, \delta + df \otimes df)$ be the graph of a smooth asymptotically flat function $f : \mathbb{R}^n \to \mathbb{R}$. Since $g_{ij} = \delta_{ij} + f_i f_i$, the inverse of g_{ij} is

$$g^{ij} = \delta^{ij} - \frac{f^i f^j}{1 + |\nabla f|^2},$$

where the norm of ∇f is taken with respect to the flat metric δ on \mathbb{R}^n . We first compute the Christoffel symbols Γ^k_{ij} of (M^n,g) :

$$\Gamma^{k}_{ij} = rac{1}{2}g^{km}(g_{im,j} + g_{jm,i} - g_{ij,m}) = ... = rac{f_{ij}f^{k}}{1 + |\nabla f|^{2}}$$

and the scalar curvature:

$$R = g^{ij} \left(\Gamma_{ij,k}^{k} - \Gamma_{ik,j}^{k} + \Gamma_{ij}^{l} \Gamma_{kl}^{k} - \Gamma_{ik}^{l} \Gamma_{jl}^{k} \right)$$

$$= \frac{1}{1 + |\nabla f|^{2}} \left(f_{ii} f_{jj} - f_{ij} f_{ij} - \frac{2 f_{j} f_{k}}{1 + |\nabla f|^{2}} (f_{ii} f_{jk} - f_{ij} f_{ik}) \right)$$

Lemma

The scalar curvature R of the graph $(\mathbb{R}^n, \delta + df \otimes df)$ satisfies

$$R = \nabla \cdot \left(\frac{1}{1 + |\nabla f|^2} (f_{ii}f_j - f_{ij}f_i)\partial_j\right).$$

By definition, the ADM mass of $(M^n, g) = (\mathbb{R}^n, \delta + df \otimes df)$ is

$$m = \lim_{r \to \infty} \frac{1}{2(n-1)\omega_{n-1}} \int_{S_r} (g_{ij,i} - g_{ii,j}) \nu_j dS_r$$
$$= \lim_{r \to \infty} \frac{1}{2(n-1)\omega_{n-1}} \int_{S_r} (f_{ii}f_j - f_{ij}f_i) \nu_j dS_r.$$

By asymptotic flatness assumption, $1/(1+|\nabla f|^2)$ goes to 1 at infinity. Thus

$$m = \lim_{r \to \infty} \frac{1}{2(n-1)\omega_{n-1}} \int_{S_r} \frac{1}{1 + |\nabla f|^2} (f_{ii}f_j - f_{ij}f_i) \nu_j dS_r.$$

Proof of the positive mass theorem for graphs over \mathbb{R}^n

Now apply the divergence theorem in (\mathbb{R}^n, δ) and use the Lemma to get

$$m = \frac{1}{2(n-1)\omega_{n-1}} \int_{\mathbb{R}^n} \nabla \cdot \left(\frac{1}{1+|\nabla f|^2} (f_{ij}f_j - f_{ij}f_i) \partial_j \right) dV_{\delta}$$

$$= \frac{1}{2(n-1)\omega_{n-1}} \int_{\mathbb{R}^n} R dV_{\delta}$$

$$= \frac{1}{2(n-1)\omega_{n-1}} \int_{M^n} R \frac{1}{\sqrt{1+|\nabla f|^2}} dV_g$$

since

$$dV_g = \sqrt{\det g} dV_\delta = \sqrt{1 + |\nabla f|^2} dV_\delta.$$

If (M^n,g) is the graph of a smooth spherically symmetric function f=f(r) on \mathbb{R}^n , then the ADM mass m of (M^n,g) is nonnegative even without the nonnegative scalar curvature assumption (simply computation).

Thus, there are no spherically symmetric asymptotically flat smooth functions on \mathbb{R}^n whose graphs have negative scalar curvature everywhere.

Let Ω be a bounded open set in \mathbb{R}^n and $\Sigma = \partial \Omega$. If $f: \mathbb{R}^n \setminus \Omega \to \mathbb{R}$ is a smooth asymptotically flat function such that each connected component of $f(\Sigma)$ is in a level of f and $|\nabla f(x)| \to \infty$ as $x \to \Sigma$, then the graph of f, $(M^n,g)=(\mathbb{R}^n \setminus \Omega, \delta+df\otimes df)$, is an asymptotically flat manifold with area outer minimizing horizon Σ .

As before we can write the mass of (M^n, g) as

$$m = \lim_{r \to \infty} \frac{1}{2(n-1)\omega_{n-1}} \int_{S_r} \frac{1}{1 + |\nabla f|^2} (f_{ii}f_j - f_{ij}f_i) \nu_j dS_r.$$

But now when we apply the divergence theorem, we get an extra boundary integral:

$$m = \frac{1}{2(n-1)\omega_{n-1}} \int_{\mathbb{R}^n \setminus \Omega} \nabla \cdot \left(\frac{1}{1+|\nabla f|^2} (f_{ii}f_j - f_{ij}f_i) \partial_j \right) dV_{\delta}$$
$$- \frac{1}{2(n-1)\omega_{n-1}} \int_{\Sigma} \frac{1}{1+|\nabla f|^2} (f_{ii}f_j - f_{ij}f_i) \nu_j d\Sigma$$

The outward normal to Σ is $\nu = -\nabla f/|\nabla f|$. Let Δf be the Laplacian of f in (M^n,g) and $\Delta_{\Sigma} f$ the Laplacian of f along Σ . Let H^f denote the Hessian of f and H_0 the mean curvature of Σ with respect to the flat metric. Using the identity

$$\Delta f = \Delta_{\Sigma} f + H^{f}(\nu, \nu) + H_{0} \cdot \nu(f)$$

where $\Delta_{\Sigma} f = 0$ since f is constant on Σ . we get

$$-\frac{1}{1+|\nabla f|^2}(f_{ii}f_j-f_{ij}f_i)\nu_j=\cdots=\frac{|\nabla f|^2}{1+|\nabla f|^2}H_0=H_0.$$

Therefore,

$$m = \frac{1}{2(n-1)\omega_{n-1}} \int_{M^n} R \frac{1}{\sqrt{1+|\nabla f|^2}} dV_g + \frac{1}{2(n-1)\omega_{n-1}} \int_{\Sigma} H_0 d\Sigma.$$

Let Ω_i , i = 1, ..., k be the connected components of the bounded open set Ω .

To get a stronger lower bound for the ADM mass in the case of convex Ω_i , we use:

Lemma (special case of Aleksandrov-Fenchel inequality)

If Σ is a convex surface in \mathbb{R}^n with mean curvature H_0 and area $|\Sigma|,$ then

$$\frac{1}{2(n-1)\omega_{n-1}}\int_{\Sigma}H_0\geq \frac{1}{2}\left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2}{n-1}}.$$

Let $\Sigma \subset \mathbb{R}^n$ be a convex surface with principal curvatures $\kappa_1, \dots, \kappa_{n-1}$. Let

$$\sigma_j(\kappa_1,\ldots,\kappa_{n-1}) = \binom{n-1}{j}^{-1} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} \kappa_{i_1} \cdots \kappa_{i_j}$$

be the *j*th normalized elementary symmetric functions in $\kappa_1, \ldots, \kappa_{n-1}$ for $j = 1, \ldots, n-1$. In particular,

$$\sigma_0(\kappa_1,\ldots,\kappa_{n-1}) = 1$$

$$\sigma_1(\kappa_1,\ldots,\kappa_{n-1}) = \frac{1}{n-1} \sum_{i=1}^{n-1} \kappa_i = \frac{1}{n-1} H_0$$

$$\sigma_{n-1}(\kappa_1,\ldots,\kappa_{n-1}) = \prod_{i=1}^{n-1} \kappa_i.$$

Define

$$V_k = \int_{\Sigma} \sigma_k(\kappa_1, \ldots, \kappa_{n-1}).$$

Special case of Aleksandrov-Fenchel inequality gives: $V_{1}^{n-1} \ge V_{0}^{n-2} V_{n-1}$ (2)

Joshua Benabou Positive Mass Theorem March 9, 2021

21/23

Now,

$$V_0 = \int_{\Sigma} \sigma_0(\kappa_1, \dots, \kappa_{n-1}) = |\Sigma|$$

$$V_1 = \int_{\Sigma} \sigma_1(\kappa_1, \dots, \kappa_{n-1}) = \frac{1}{n-1} \int_{\Sigma} H_0$$

$$V_{n-1} = \int_{\Sigma} \sigma_{n-1}(\kappa_1, \dots, \kappa_{n-1}) = \omega_{n-1}.$$

Thus (2) becomes

$$\begin{split} \left(\frac{1}{n-1} \int_{\Sigma} H_{0}\right)^{n-1} &\geq |\Sigma|^{n-2} \omega_{n-1} \\ &\frac{1}{n-1} \int_{\Sigma} H_{0} \geq |\Sigma|^{\frac{n-2}{n-1}} \omega_{n-1}^{\frac{1}{n-1}} \\ &\frac{1}{2(n-1)\omega_{n-1}} \int_{\Sigma} H_{0} \geq \frac{1}{2} \left(\frac{|\Sigma|}{\omega_{n-1}}\right)^{\frac{n-2}{n-1}} \end{split}$$

The paper by Lam: arXiv:1010.4256v1

23/23