

Mestrado Integrado em Engenharia Física

UC de Análise de Circuitos

Departamento de Eletrónica Industrial e Computadores

Paulo Carvalhal pcarvalhal@dei.uminho.pt

■ Filtros Passivos

Aproveitando o fato de a <u>impedância variar com a frequência</u>, os filtros passivos (construídos apenas com **componentes passivos**), aceitam ou rejeitam sinais em determinadas faixas espectrais.

Dado que não possuem componentes com capacidade de amplificar o sinal de entrada (com ganho de tensão superior a 1), este tipo de filtros apresenta um **ganho de tensão** menor ou igual a 1

Circuito RC - Resposta ao Degrau

Carga

Na carga do condensador, a fonte faz com que os eletrões se desloquem de uma armadura (que fica polarizada positivamente) para a outra armadura (que fica polarizada negativamente) do condensador.

Aparece então um campo elétrico, resultante da energia (elétrica) armazenada entre as armaduras.

■ Circuito RC - Resposta ao Degrau

$$V_F = V_R + V_C = Ri + \frac{1}{C} \int_0^t i dt + V_C(0^+)$$

Solucionando a equação diferencial (para $v_c(0^+) = 0V$) e fazendo $\tau = RC$,

$$\rightarrow i(t) = \frac{V_F}{R} e^{-\frac{t}{\tau}}$$

$$\rightarrow V_R = R \cdot i = V_F e^{-\frac{t}{\tau}}$$

$$\rightarrow V_C = V_F - V_R = V_F (1 - e^{-\frac{t}{\tau}})$$

Repare-se que i(t) e Vc(t) têm o mesmo sentido Ou seja, o condensador comporta-se como um receptor

 $\tau \rightarrow$ "constante de tempo" do circuito [s]

$$[\tau] = [\Omega] \times [F] = [\frac{V}{A}] \times [\frac{C}{V}] = [\frac{A.S}{A}] = [S]$$

■ Circuito RC - Resposta ao Degrau

$$V_C = V_F (1 - e^{-\frac{t}{\tau}})$$

Circuito RC - Resposta ao Degrau

Significado físico de T

Tempo que demoraria a carga do condensador se a velocidade de carga fosse constante

Tempo no fim do qual a tensão no condensador atinge 63,2% do valor final, ou seja, para $t=\tau$,

$$V_C = V_F (1 - e^{-\frac{t}{\tau}}) = V_F (1 - e^{-\frac{\tau}{\tau}}) = V_F \times 0.632$$

■ Circuito RC - Resposta ao Degrau

$$V_R = V_F e^{-\frac{t}{\tau}}$$

■ Circuito RC - Resposta ao Degrau

Tempo de subida – Corresponde ao tempo necessário para que a resposta passe de 10% para 90%

Circuito RC - Resposta ao Degrau

t	v_c/V_f
τ	0.632
3τ	0.950
5τ	0.993

■ Circuito RC - Resposta ao Degrau

(Evolução Exponencial – Caso Geral)

Circuito RC - Resposta ao DegrauDescarga

Repare-se que i(t) e Vc(t) têm sentidos opostos ou seja, o condensador comporta-se como um uma fonte, entregando a energia que tinha armazenada na altura da carga

■ (Filtro passivo passa-baixo de 1ª ordem)

A baixa frequência, a impedância do condensador é elevada, não provocando atenuação significativa no sinal de saída.

A alta frequência a impedância do condensador é muito baixa, Atenuando fortemente o sinal de saída

■ (Filtro passivo passa-baixo de 1ª ordem)

$$\overline{V}_S = \overline{V}_e \frac{\overline{Z}_c}{R + \overline{Z}_c} = \overline{V}_e \frac{\frac{1}{jwC}}{R + \frac{1}{jwC}}$$

$$\overline{V}_S = \overline{V}_e \frac{1}{1 + jwRC} = \overline{V}_e \frac{1}{1 + \frac{jw}{RC}}$$

$$Para \qquad w_c = \frac{1}{RC} \qquad \rightarrow \overline{V_S} = \overline{V_e} \frac{1}{1+j\frac{w}{wc}} = \overline{V_e} \frac{1}{1+j\frac{f}{fc}}$$

$$fc = \frac{\omega_c}{2\pi} \qquad \qquad Ganho de tensão$$

 ω_{c} – Frequência de corte [RAD/s]

 \mathbf{f}_{c} [Hz]

■ (Filtro passivo passa-baixo de 1ª ordem)

$$\overline{V_s} = \overline{V_e} \frac{1}{1 + j\frac{f}{f_c}}$$

$$\overline{V_s} = \overline{V_e} \frac{1}{\sqrt{1 + \left(\frac{f}{f_c}\right)^2}} \underbrace{-\arctan\left(\frac{f}{f_c}\right)}_{\text{fase}}$$

$$\underline{módulo}$$

Para
$$f \ll f_c$$
, $\rightarrow \overline{V_s} \approx \overline{V_e}$

a tensão de saída não sofre atenuação e está em fase com a tensão de entrada,

■ Circuito RC – Análise e Corrente Alternada

Filtro passivo passa-baixo de 1ª ordem

$$\overline{V_s} = \overline{V_e} \frac{1}{\sqrt{1 + \left(\frac{f}{f_{sc}}\right)^2}} \left[-\arctan\left(\frac{f}{f_{sc}}\right) \right]$$

Para
$$f >> f_{sc}$$
,
 $\rightarrow \overline{V_s} \approx \overline{V_e} \cdot \frac{1}{f} [-90^{\circ}]$

(a tensão de saída tende para zero com um atraso de 90º relativamente à de entrada)

Para
$$f = f_{sc}$$
,

$$\rightarrow \overline{V_s} = \overline{V_e} \cdot \frac{1}{\sqrt{2}} [\underline{-45^0} = \overline{V_e} \cdot 0,707] \underline{-45^0}$$

(a tensão de saída sofre uma atenuação de 30% e apresenta um atraso de 45º relativamente à de entrada)

■ Circuito RC – Análise e Corrente Alternada

Filtro passivo passa-baixo de 1ª ordem

Ganho em tensão à frequência de corte:

Para
$$f = f_{sc}$$
,

$$\rightarrow \overline{V_s} = \overline{V_e} \cdot \frac{1}{\sqrt{2}} \left[-45^{\circ} = \overline{V_e} \cdot 0,707 \right] -45^{\circ}$$

$$G(dB) = 20.\log(0.707) = -3 dB$$

- Circuito RC Análise e Corrente Alternada
 - Filtro passivo passa-baixo de 1ª ordem

■ Circuito RL - Resposta ao Degrau

■ Circuito *RL* - Resposta ao Degrau

$$V_F = V_R + V_L = Ri + L \frac{di}{dt}$$

Solucionando a equação diferencial

(para
$$i_L(0^+) = 0A$$
) e fazendo $\tau = \frac{L}{R}$,

$$\rightarrow i(t) = \frac{V_F}{R} (1 - e^{-\frac{t}{\tau}})$$

$$\rightarrow V_R = R \cdot i = V_F (1 - e^{-\frac{t}{\tau}})$$

$$\rightarrow V_L = V_F - V_R = V_F e^{-\frac{t}{\tau}}$$

Repare-se que i(t) e $V_L(t)$ têm o mesmo sentido Ou seja, L comporta-se como um receptor

 $\tau \rightarrow$ "constante de tempo" do circuito [s]

■ Circuito RL - Resposta ao Degrau

$$V_L = V_F e^{-\frac{t}{\tau}}$$

$$i(t) = \frac{V_F}{R} (1 - e^{-\frac{t}{\tau}})$$

■ Circuito *RL* - Resposta ao Degrau

Interrupção de uma corrente numa bobine

Repare-se que i(t) e $V_L(t)$ têm sentidos opostos ou seja, a indutância comporta-se agora como uma fonte, entregando a energia que tinha armazenada na altura da carga

■ (Filtro passivo passa-alto de 1ª ordem)

A baixa frequência a impedância do indutor é muito baixa, provocando forte atenuação no sinal de saída

A alta frequência a impedância do indutor é muito alta, não afetando significativamente o sinal de saída

■ (Filtro passivo passa-alto de 1ª ordem)

$$\overline{V_{s}} = \overline{V_{e}} \frac{\frac{j \frac{f}{f_{c}}}{1 + j \frac{f}{f_{c}}}}{1 + j \frac{f}{f_{c}}}$$

$$\overline{V_{s}} = \overline{V_{e}} \frac{\frac{f}{f_{c}}}{\sqrt{1 + \left(\frac{f}{f_{c}}\right)^{2}}} \underbrace{90^{\circ} - \arctan\left(\frac{f}{f_{c}}\right)}_{\text{fase}}$$

Para $f \ll f_c$,

$$ightarrow \overline{V_{\rm s}} pprox \overline{V_{\rm e}} \cdot \frac{f}{f_c} [+90^{\circ}]$$

 $\rightarrow \overline{V_s} \approx \overline{V_e} \cdot \frac{f}{f} + 90^\circ$ a tensão de saída tende para zero com um avanço de 90° relativamente à de entrada 90º relativamente à de entrada

■ (Filtro passivo passa-alto de 1ª ordem)

$$\overline{V_S} = \overline{V_e} \frac{\frac{f}{f_{ic}}}{\sqrt{1 + \left(\frac{f}{f_c}\right)^2}} \left| 90^{\underline{o}} - \arctan\left(\frac{f}{f_c}\right) \right|$$

Para
$$f >> f_c$$
,
 $\rightarrow \overline{V_s} \approx \overline{V_e}$

(a tensão de saída não sofre atenuação significativa e está em fase com a tensão de entrada)

(a tensão de saída sofre uma atenuação de 30% e apresenta um avanço de 45º relativamente à de entrada)

■ (Filtro passivo passa-alto de 1ª ordem)

Aplicações Equalizadores áudio

Aplicações Sintonizadores de rádio

Aplicações Colunas de Som

