

CMC	Addition,	lbs./ton	4	4	4	0	8	4	0	0	0	8	4	0	4	4	4	0	4
Kymene	Addition,	lbs./ton	25	25	25	40	10	40	10	40	10	40	25	25	10	25	25	25	25
Actual Refining	Energy, kWh/mt		40	53	27	27	27	53	27	108*	108	108	108	53	53	53	53	53	53
Inclusion Rate,	%		75%	75%	75%	75%	75%	75%	75%	78%	78%	%99	999	75%	75%	75%	75%	75%	75%
NBSK			PA Control	TR 962	TR 962	TR 963													
Sample	Number		199:100	199:101	199:102	199:105	199:115	199:120	199:125	199:130	199:131	199:135	199:140	199:145	199:150	199:155	199:160	199:165	199:170

Sample Number	199:101	199:155	199:170
Pulp	Prince Albert	Prince Albert	TR963
Refining Energy Input, kWh/mt	53	53	53
CSF, ml	550	550	540
Calculated PFR, sec ²	12.1	12.1	12.4
Basis Weight, g/m ²	22.0	21.3	20.9
Bulk, m ³ /1000 kg	16.0	17.0	17.0
Machine Direction (MD) Dry Tensile Index, Nm/g	13.03	11.78	13.38
Cross Machine Direction (CD) Dry Tensile Index, Nm/g	10.48	68.6	12.67
Square Root of MD*CD Tensile Index, Nm/g	11.69	10.79	13.02
MD Dry Tensile, N/m	287	251	280
CD Dry Tensile, N/m	231	211	265
Total Dry Tensile, N/m	518	462	545
MD/CD Tensile Strength Ratio	1.24	1.19	1.06
MD Stretch, %	17.8	18.4	18.3
MD TEA Index, J/kg	1189	1117	1263
CD Wet Tensile Index, Nm/g	3.05	2.90	3.21
CD Wet Tensile, N/m	67	62	<i>L</i> 9
CD Wet Tensile/CD Dry Tensile, %	29.0	29.4	25.3
Wet Burst Strength, g	211.0	205.4	247.2
Wet Burst Strength/Square Root MD*CD Tensile, in	0.32	0.34	0.37
Water Absorbency, g water/g sheet	7.4	7.4	7.1

Sample Number	199:135	199;160
Pulp	Prince Albert	TR962
NBSK Inclusion Rate, %	99	75
Refining Energy Input, kWh/mt	108	53
CSF, ml	480	460
Calculated PFR, sec ²	14.7	15.5
Basis Weight, g/m²	21.4	22.6
Bulk, m ³ /1000 kg	17.9	16.1
Machine Direction (MD) Dry Tensile Index, Nm/g	12.77	12.21
Cross Machine Direction (CD) Dry Tensile Index, Nm/g	11.67	11.5
Square Root of MD*CD Tensile Index, Nm/g	12.21	14.61
MD Dry Tensile, N/m	273	276
CD Dry Tensile, N/m	250	260
Total Dry Tensile, N/m	523	536
MD/CD Tensile Strength Ratio	1.09	1.06
MD Stretch, %	18.0	19.2
MD TEA Index, J/kg	1243	1163
CD Wet Tensile Index, Nm/g	3.67	3.31
CD Wet Tensile, N/m	78	75
CD Wet Tensile/CD Dry Tensile, %	31.2	28.8
Wet Burst Strength, g	272.4	263.4
Wet Burst Strength/Square Root MD*CD Tensile, in	0.40	0.32
Water Absorbency, g water/g sheet	7.5	7.2

Pulp CMC Addition Rate, lbs./ton CSF, ml Calculated PFR, sec ² Basis Weight, g/m ² Bulk. m ³ /1000 kg	Prince Albert 4 550 12.1 22.0	Prince Albert	Prince Albert	TR962	TR962
lbs./ton	550 12.1 22.0	4			
	550 12.1 22.0		0	4	0
	12.1	550	550	460	520
	22.0	12.1	12.1	15.5	13.1
	•	21.3	20.7	21.8	22.6
	16.0	17.0	16.6	17.3	16.1
Machine Direction (MD) Dry Tensile Index, Nm/g	13.03	11.78	9.71	15.09	12.21
Cross Machine Direction (CD) Dry Tensile Index, Nm/g	10.48	68.6	8.25	14.15	11.5
Square Root of MD*CD Tensile Index, Nm/g	11.69	10.79	8.95	14.61	11.85
MD Dry Tensile, N/m	287	251	201	329	276
CD Dry Tensile, N/m	231	211	171	308	260
Total Dry Tensile, N/m	518	462	372	637	536
MD/CD Tensile Strength Ratio	1.24	1.19	1.18	1.07	1.06
MD Stretch, %	17.8	18.4	19.4	19.4	19.2
MD TEA Index, J/kg	1189	1117	934	1422	1163
CD Wet Tensile Index, Nm/g	3.05	2.90	2.06	3.72	3.31
CD Wet Tensile, N/m	29	62	43	103	75
CD Wet Tensile/CD Dry Tensile, %	29.0	29.4	25.1	33.4	28.8
Wet Burst Strength, g 21	211.0	205.4	139.3	263.4	206.3
Wet Burst Strength/Square Root MD*CD Tensile, in	0.32	0.34	0.29	0.32	0.30
Water Absorbency, g water/g sheet	7.4	7.4	7.6	7.6	7.2

	WRV	6/6	1.99	1.77	2.27	2.15	2.08	2.19	2.14	2.06	2.16	2.17	2.07	1.99	1.79	2.13	1.95	2.21	2.08	2.03	2.17	2.05	1.90	2.19	1.84	2.13	2.01	2.15	2.09	1.96	1.91	1.80
	Actual	sec2	7.7	7.0	18.1	11.6	10.6	10.0	8.6	10.8	12.8	14.4	12.3	8.7	0'9	11.3	6.8	14.8	10.8	8.4	12.7	11.0	7.0	14.0	9.9	11.5	10.5	10.7	10.5	10.6	8.3	7.2
	Bulk	cc/g	3.87	3.90	3.12	3.18	3.39	3.60	3.36	3.46	3.47	3.09	3.33	3.45	4.14	3.23	4.04	3.18	3.54	3.48	3.45	3.32	4.01	3.19	3.85	3.35	3.45	3.31	3.37	3.53	3.74	3.80
Data	Wet Burst	/Dry Tensile	0.2656	0.2958	0.3068	0.3156	0.2790	0.3316	0.3040	0.3204	0.2810	0.2981	0.3109	0.3207	0.2806	0.3136	0.2936	0.3524	0.2838	0.2836	0.2939	0.3187	0.2802	0.3331	0.3180	0.3250	0.3169	0.3152	0.3146	0.2983	0.2220	0.2865
O	Wet Burst	6	1268	1456	1989	1902	1600	1680	1798	1856	1563	1929	1791	1880	1179	1795	1358	2216	1642	1593	1600	1923	1261	2032	1630	2019	1812	1970	1853	1765	1127	1453
	Dry Tensile	g/in	4774	4922	6482	6027	5734	5067	5915	5792	5563	6472	5760	5863	4201	5723	4625	6289	5786	5617	5444	6034	4500	6101	5125	6212	5718	6250	5890	5916	5076	5071
	Actual	meg/100g	3	12	3	12	7	7	7	7	3	12	3	12	7	7	7	7	3	12	3	12	7	7	7	7	7		7	7	3	72
	Type of Point	5000	Edge center	Center	Center	Center	Center																									
	CMC	D/t	2	2	2	2	0	0	4	4	0	0	4	4	2	2	2	2	2	2	2	2	0	0	4	4	2	2	2	2	0	0
gn	Kymene	lb/t	35	35	35	35	20	50	20	50	35	35	35	35	20	20	50	50	20	20	50	50	35	35	35	35	35	35	35	35	35	32
n Design	Refined PFR	sec2	7	7	13	13	10	10	10	10	10	10	10	10	7	13	7	13	10	10	10	10	. 7	13	7	13	10	10	10	10	7	7
Box-Behnken D	Carboxyl	8	4	16	4	91	10	10	10	10	4	16	4	16	10	10	10	10	4	16	4	16	10	10	10	10	10	10	10	10		
Вох	Block		Block 1	Block 1	Block 1	Block 1	Block 1																									
	Bun Order		22	2	56	8	20		18	5	3	28	11	.4	25	13	16	17	14	12	10	6	24	21	23	15	9	19	27	1	59	30
	Standard	Order	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	extra	extra

PFR vs. PFI Revs

Wet Burst vs. PFR

Tensile Strength vs. PFR

WB:DT Ratio vs. PFR

_	\neg				٦		٦									4						\neg	
WRV	9/6				1.519		1.839									1.734		1.741			1.752		
WB/DT	ri.	0.214	0.246	0.271	0.255	0.220	0.271	0.274	0.236	0.269	0.200	0.225	0.198	0.285	0.266	0.272	0.232	0.257	0.217	0.268	0.258	0.215	0.225
Tensile	g/in.	4419	4621	5498	5087	5259	5013	5147	4605	5638	5354	5368	3303	5546	4560	4949	4274	5084	4458	3956	4734	4686	3766
Wet Burst	б	945	1139	1488	1298	1157	1360	1411	1089	1517	1069	1207	654	1578	1215	1346	991	1304	296	1062	1221	1005	846
Bulk	cm³/g	3.455	3.755	3.553	3.451	3.425	3.726	3.484	3.559	3.086	3.536	3.663	4.305	3.626	3.722	3.855	3.988	3.652	3.985	4.245	3.973	3.697	4.269
BSWT	g/m²	27.0	26.6	26.5	27.2	27.0	27.2	27.3	26.9	26.4	26.8	26.8	27.0	26.9	26.7	26.7	27.2	27.1	26.6	26.8	27.2	26.7	26.8
CMC	lbs./ton	4	4	80	4	∞	4	4	0	8	4	4	0	8	80	4	0	4	4	8	4	0	4
Kymene	lbs./ton	10	40	40	25	10	25	40	10	22	10	10	25	25	25	25	40	25	9	22	25	10	10
CSF		575	575	475	475	475	475	375	475	375	375	375	575	375	575	475	475	475	575	575	475	475	575
Pulp		Carboxylated	PA-Pilot Dried	PA-Pilot Dried	Carboxylated	PA-Pilot Dried	Prince Albert	Prince Albert	PA-Pilot Dried	Carboxylated	Carboxylated	PA-Pilot Dried	Prince Albert	PA-Pilot Dried	Carboxylated	PA-Pilot Dried	Prince Albert	Carboxylated	PA-Pilot Dried	Prince Albert	Prince Albert	Carboxylated	Prince Albert
Run	ì	24	25	56	27	28	29	30	31	32	33	34	35	36	37	38	39	40	4	42	43	44	45

FIGURE 11B

E B	Bulk Wet	BSWT Bulk g/m² cm³/g	CMC BSWT Bulk lbs./ton g/m² cm³/g	BSWT Bulk g/m² cm³/g	CMC BSWT Bulk lbs./ton g/m² cm³/g
	3.647		4 26.9	26.9	4 26.9
_	3.802	26.8 3.802	0 26.8	26.8	0 26.8
	3.651	26.7 3.651	8 26.7	26.7	8 26.7
1615	3.354	27.0 3.354	4 27.0	27.0	4 27.0
1486	3.725	26.3 3.725	8 26.3	26.3	8 26.3
1334	3.717	26.8 3.717	4 26.8	26.8	4 26.8
1332	3.261	27.0 3.261	0 27.0	27.0	0 27.0
8 1047	3.568	27.3 3.56	0 27.3	27.3	0 27.3
8 2	3.748	26.9 3.74	0 26.9	26.9	0 26.9
27 1306	3.427	27.0 3.4	4 27.0	27.0	4 27.0
3.559 1258	-	26.9 3.5	4 26.9	26.9	4 26.9
3.384 1324	-	26.9 3.0	0 26.9	26.9	0 26.9
3.554 1071		26.9 3.	0 26.9	26.9	0 26.9
3.291 1578	_	27.2 3.	4 27.2	27.2	4 27.2
3.962		26.6 3.	4 26.6	26.6	4 26.6
3.253 1112	3.	26.7 3.	8 26.7	26.7	8 26.7
3.609 1115		27.3 3.	8 27.3	27.3	8 27.3
3.577	က်	26.7 3.	8 26.7	26.7	8 26.7
3.465 1214	, ,	27.2 3.	0 27.2	27.2	0 27.2
3.384 1436	က	26.7 3.	8 26.7	26.7	8 26.7
3.669 1455	\dashv	24.9 3.0	4 24.9	24.9	4 24.9
3.537 1081	(r)	27.1 3.	0 27.1	27.1	0 27.1
3.509 1143	က်	26.4 3.	4 26.4	26.4	4 26.4

FIGURE 11A

FIGURE 12A

FIGURE 12B

FIGURE 13A

FIGURE 13B

FIGURE 14A

FIGURE 14B

Fig.15A.

Fig.15B.