Due: 1/30/18

Answer the following problems.

You must show all work, including formulas used, numbers substituted, and answers with units. If Excel was used, e-mail a copy of the workbook to me.

If a computer program was used, either attach or e-mail me a copy of the program.

Your written portion must indicate what equations were used in Excel and/or your program.

You are performing motion capture with 2 cameras, positioned as shown in the figure to the right, at heights (Z) of 1 m and 0.7 m, respectively. During motion capture, a point within a camera's field of view will appear at a location (u,v) in the camera's image, where u and v are the horizontal and vertical locations within the image, respectively. The relationship between the (X,Y,Z) position of a point in 3-D space and its position u in the camera's image is given by the Direct Linear Transformation (DLT):

$$u - \Delta u = \frac{L_1 X + L_2 Y + L_3 Z + L_4}{L_9 X + L_{10} Y + L_{11} Z + 1}$$
 (eq. 1)

where Δu is the lens distortion. Each camera has a sensor that is 1024 x 1024 pixels, such that u and v can both range in value from 1-1024.

1. (2.8 pts) To calibrate Camera 1, you film 7 control points with known (X,Y,Z) locations and record the corresponding horizontal positions, u, of these points in the camera image. You find the following:

Control Pt.	X(m)	Y(m)	Z(m)	u (px)
1	0	0	0	367.6
2	0.3	0	0	323.8
3	0.8	0	0	268.1
4	0	0.4	0	518.4
5	0	1.0	0	703.4
6	0	0	0.3	357.9
7	0.8	1.0	0.3	552.4

px = pixel

Assume that $\Delta u = 0$ for Camera 1. What are the *values* and *units* of L_1 , L_2 , L_3 , L_4 , L_9 , L_{10} , and L_{11} in equation (1) for Camera 1?

Hint: With the 7 control points, you have 7 equations and 7 unknowns.

You perform a similar calibration for Camera 2 and find the following values for the L_i constants for Camera 2, relating pixels to meters (i.e. in the same units as for Camera 1):

L_1	L_2	L_3	L_4	L_9	L_{10}	L_{11}
-551.0	-160.5	-89.7	689.9	-0.381	0.381	-0.175

During the calibration, you also find the following lens distortion function for Camera 2:

$$\Delta u = L_{12} (u - u_0) r^2$$
 (eq. 2)

where:

$$r^2 = (u - u_0)^2 + (v - v_0)^2$$
 (eq. 3)

with the constants:

<i>u</i> ₀ (px)	v_0 (px)	$L_{12} (\mathrm{px}^{-2})$
512	512	-4.0×10^{-7}

2. After calibrating the cameras, you film the motion of a marker located on the top of small robotic vehicle as the vehicle moves about the room. You film the marker at 30 frames/s. You know that the Z position of the marker is 0.15 m throughout the movement. A comma-delimited text file "Marker.csv" has been posted to Canvas with the resulting camera data. The first row of the file contains header information. Each subsequent row comprises a frame of data:

Column	Contents	Units
1	Frame number	
2	<i>u</i> position of the marker in the image of Camera 1	px
3	<i>u</i> position of the marker in the image of Camera 2	px
4	v position of the marker in the image of Camera 2	px

- a. (0.3 pts) Compute the time that corresponds to each frame. The first frame of data corresponds to a time of zero.
- b. $(0.5 \, pts)$ Use equations (2) and (3) to compute the value of Δu for Camera 2 as a function of time for the marker data recorded.
- c. (3.1 pts) Using the results of problems 1 and 2(b) with the other information given, find the (X,Y) position of the marker as a function of time.

Hint: Because the *Z* position of the marker is known, you will only have 2 unknowns in each DLT equation.

d. (0.4 pts) Create a table containing the results of problems 2(a), 2(b), and 2(c), with appropriate formatting.

- e. (0.4 pts) Graph the marker Y vs. X position from problem 2(c). The graph must show the individual data points, connected by lines. Axes must be labeled with a descriptor and units.
- f. (1.2 pts) For the marker motion that was filmed in this problem:
 - i) Were the camera placements appropriate?
 - ii) Were the locations of the control points used to calibrate Camera 1 in problem 1 appropriate?
 - iii) Was 30 frames/s an appropriate frame rate at which to film the marker?

Give a *brief* justification for your answers for each part. Also, if your answer is that the camera placements, control points, and/or frame rate were inappropriate, state how you would change them to make them more appropriate.

g. (0.4 pts) Could we have used just 1 camera to accurately capture the motion of the marker in this problem?

If *yes*, explain and justify what changes to the set-up and/or additional calibration information would be needed to accurately capture the motion using 1 camera.

If no, explain and justify why more than 1 camera is needed.

3. (0.3 pts) Briefly explain why it would be of benefit to use more than 7 control points in the calibration procedure of problem 1.

Note: In problem 1, we did not use the ν position of the control point in the camera image to calibrate the camera. If we had, we would only have had to film 6 control points, but the equations would have been harder for you to solve.

4. (0.6 pts) In general, what would be **two** potential benefits of using 3 cameras instead of 2 to capture the 3-D motion of a marker? *Briefly* explain how/why each benefit results.