

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Small UAS Analysis of Laser Designation and Search and Target Acquisition Capabilities in an Urban Environment

76th MORS Symposium 10-11-12 June 2008

Eric Harclerode

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 01 JUN 2008		2. REPORT TYPE N/A		3. DATES COVE	RED		
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER				
Small UAS Analysis of Laser Designation and Search and Target Acquisition Capabilities in an Urban Environment				5b. GRANT NUMBER			
Acquisition Capabilities in an Orban Environment				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
				5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) RDECOM Aberdeen Proving ground, MD 21005-5071					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited							
	OTES 27. Military Operat ne 10-12, 2008, The				New London,		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 16	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Bottom Line

UNCLASSIFIED

 Completed for TRAC in September 2007 as a follow-on to TRAC UAS Mix Analysis of 2006

- Analysis Goals
 - Small UAS Laser Designation targets in urban environment
 - Rotary Wing (RW) versus Fixed Wing (FW) UAS detection
- Implementation
 - FOCUS was used for all modeling and analysis
 - Two missions: laser designation and persistent surveillance
 - Three flight modes: FW, RW, P&S
- Results
 - Poor LD of moving targets in high density terrain
 - Inconsistent LD of moving targets in medium density terrain
 - Good LD of stationary targets
 - Perch-and-Stare could be the best choice for persistent surveillance
 - Surveillance of an intersection by hovering gives better performance than a circular flight path around the area

Fusion Oriented C4ISR Utility Simulation FOCUS

UNCLASSIFIED

FOCUS solves these problems

- Modeling of C4ISR functions using flexible architecture
- Explicit modeling of fusion processes
- Fast turn-around time-- Graphical mission tools and integrated analysis package
- System of systems analysis

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Fusion Oriented C4ISR Utility Simulation FOCUS

UNCLASSIFIED

Caveats/Limitations/Assumptions

UNCLASSIFIED

- Limited Scenarios
- UAS Movement
 - No jitter
 - Fixed-Wing UAS
 - Minimum turn radius used for path; circular flight path around intersection
 - Hovering UAS
 - Stays behind target when tracking; standoff when lasing
 - Hovers at a point with LOS to intersection for 5 minutes then moves
 - Perch-and-Stare
 - Edge of building, 10 m from intersection
 - Altitudes: 20 m (High Density), 10 m (Medium Density)
- C4ISR
 - Communications simplified
- Sensors
 - 3-axis mount, 2 FOVs
- Warhead receiver
 - Low fidelity representation
 - Horizontal safe angle
 - Assumed LOS
 - Power on Receiver measured by NVLaserD Model at each time step

Terrain Types

UNCLASSIFIED

High Density

- Samarra, Iraq
- Tall buildings (3-5 story), tightly packed
- Narrow streets with some intersecting wide avenues

Medium Density

- Fallujah, Iraq
- Low residential buildings (1-2 story)
- Narrow streets and back alleys
- Enclosed courtyards

Run Matrix

UNCLASSIFIED

UAS Follow-On Study Run Matrix							
INUIT WALLIX							
Laser Designation Scenario							
Run#	Target Type	Terrain	Flight Characteristic				
1	Moving	High Density	Fixed-Wing				
2	Moving	High Density	Rotary-Wing				
3	Moving	Medium Density	Fixed-Wing				
4	Moving	Medium Density	Rotary-Wing				
5	Stationary	High Density	Fixed-Wing				
6	Stationary	High Density	Rotary-Wing				
7	Stationary	Medium Density	Fixed-Wing				
8	Stationary	Medium Density	Rotary-Wing				
Intersection	ntersection Surveillance Scenario						
Run #	Sensor Type	Terrain	Flight Characteristic				
9	IR	High Density	Fixed-Wing				
10	IR	High Density	Rotary-Wing				
11	IR	High Density	Perch-and-Stare				
12	IR	High Density	Perch-and-Stare Wide FOV				
13	IR	Medium Density	Fixed-Wing				
14	IR	Medium Density	Rotary-Wing				
15	IR	Medium Density	Perch-and-Stare				
16	IR	Medium Density	Perch-and-Stare Wide FOV				
17	TV	High Density	Fixed-Wing				
18	TV	High Density	Rotary-Wing				
19	TV	Medium Density	Fixed-Wing				
20	TV	Medium Density	Rotary-Wing				
Sensitivity /	Sensitivity Analysis						
	Altitudes	100,200,300,400,500					
	Standoff Ranges	100,200,400,500,700					
Run #	Scenario	Terrain	Flight Characteristic				
21	LD Moving	High Density	Fixed-Wing				
22	LD Moving	High Density	Rotary-Wing				
23	Surveillance	High Density	Fixed-Wing				
24	Surveillance	High Density	Rotary-Wing				

Fixed Wing

Rotary Wing

Perch/Stare

Perch/Stare Wide FOV

Laser Designation Scenario

UNCLASSIFIED

- Moving or Stationary Target
- After tracking target for 5
 minutes, UAS moves into
 slant range while maintaining
 "safe angle"
- Warhead/Receiver moves toward target
- Once warhead reaches target, simulation ends

Intersection Surveillance Scenario

20 minute coverage w/ FLIR or TV

- Targets circle around block
- Sensor only attempts detection at intersection
- FW UAS circular flight path
- RW UAS hovers at points on circle for 5 minutes
- Perch-and-Stare UAS Fixed position at edge of building

UAS Follow-On Results

UNCLASSIFIED

Issue 1: Can a Small UAS laser designate targets in an urban environment?

Moving Target

- High Density LOS blocks result in unacceptable Lock-On times
- Medium Density Target maneuvering results in inconsistent Lock-On

Stationary Target

Lock-On near 100% of overall lasing time for all scenarios

UAS Follow-On Results

UNCLASSIFIED

Issue 2: Does a Fixed-Wing UAS provide better acquisition performance than a Rotary-Wing UAS?

- Laser Designation
 - Similar results for both FW and RW cases
 - LOS blocks caused by constrained movement
- Surveillance
 - High Density hovering can increase acquisition performance
 - Medium Density FW and RW UAS perform equally well
 - Perch-and-Stare Operations, when given an appropriate sensor, increases performance in High Density Environments

Laser Designation Results

UNCLASSIFIED

Overall Lock-On Results

- Similar performance for FW and RW UAS
- Moving Target laser rarely keeps a continuous lock on the target due to LOS blocks

FOCUS FUSION OFFENTED C*1SR UTILITY SIMULATION 10-11-12 June 2008

Moving Target / High Density Terrain In Depth Results

Laser Designation Results Sensitivity Analysis

UNCLASSIFIED

The probability of Lock-On success increases with an increase in altitude and/or decrease in ground standoff range

Operational Parameters

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Intersection Surveillance Results IR Sensor

High Density Terrain

- **Hovering UAS performance** exceeds Fixed Wing
- **Determining Factor: LOS**
- Perch-and-Stare given wider FOV outperforms flights at operational altitude

Medium Density Terrain

Hovering and Fixed-Wing UAS perform equally well

Perch-and-Stare

- Poorly performs due to the size of the FOV (low Ops)
- Footprint shrinks as UAS is closer to ground level
- TV Sensor gives similar results to IR Sensor

Performance

Misses Fraction

LOS Blocks

Fraction

Detection Ops

50

0.3

0.2

0.1

Detections

Fraction

□ PerchStareWide

Summary

UNCLASSIFIED

Conclusions

- Small UAS has extreme difficulty lasing moving targets in high density urban environments
- Lasing moving targets in medium density terrain is possible but not certain
- Lasing of stationary targets is not an issue given LOS
- Perch-and-Stare may be the best choice for surveillance of a point or intersection
- Surveillance of an intersection by hovering gives better performance than a circular flight path around the area

Next Steps

- TRAC used this data in conjunction with Soldier interviews on the operational ability/benefits of the FW and RW Small UAS when compiling the final report
- AMSAA will be conducting an additional UAS Mix Analysis using improved methodology for FOCUS

Questions/Comments?

UNCLASSIFIED

Eric S. Harclerode

Operations Research Analyst

ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

392 Hopkins Road Bldg 392 (AMSRD-AMS-SI) Aberdeen Proving Ground, MD 21005-5071 Office: 410.278.9310 DSN: 298.9310

Fax: 410.278.4694

eric.harclerode@us.army.mil