

Absolute Position Read

Absolute "Homing" Position Read

- No home search move (motion) required
- ➤ Motor does not need to be energized (but can be)
- > Typically, used with absolute feedback devices
- ➤ Absolute position read is governed by the following elements
 - Motor[].pAbsPos
 - Motor[].AbsPosFormat
 - Motor[].AbsPosSf
 - Motor[].HomeOffset
 - Motor[].PowerOnMode (optional)

Online command

Program command

- o HOMEZ 1
- o HOMEZ 1..4
- o HOMEZ 1,2,3,4

Absolute Position Read Control

Motor[].pAbsPos

- o Pointer to <u>first</u> source address (second must be consecutive)
 - E.g. Motor[].pAbsPos = Gate3[].Chan[].SerialEncDataA.a

Motor[].AbsPosSf

- Typically equal to Motor[].PosSf
- O Dual feedback system?

Motor[].HomeOffset

o User configurable zero offset in motor units

Motor[].PowerOnMode (optional)

- =4 to read position automatically on power-up
- Encoder power supply available?

Absolute Position Read Control

Absolute linear scales are always read as unsigned (positive – "no multiturn" data)

Absolute Position Read Example

> An absolute serial encoder with 23 bits of binary single-turn (no multi-turn) position data located in the lower fields of serial data A register:


```
Motor[1].pAbsPos = Gate3[0].Chan[0].SerialEncDataA.a
Motor[1].AbsPosSf = Motor[1].PosSf
Motor[1].AbsPosFormat = $00001700
Motor[1].HomeOffset = 0
Motor[1].PowerOnMode = 0
```

Absolute Position Read Example

> A 36-bit binary serial encoder with 24 bits of single-turn and 12 bits of multi-turn position


```
Motor[1].pAbsPos = Gate3[0].Chan[0].SerialEncDataA.a
Motor[1].AbsPosSf = Motor[1].PosSf
Motor[1].AbsPosFormat = $01002400
Motor[1].HomeOffset = 0
Motor[1].PowerOnMode = 0
```

Absolute Position Read Exercise

> User shared memory register as "dummy" absolute position data source register

- **▶** Write to the source register "scaled" motor units values
 - o Normally, this data is in raw counts
 - E.g. Sys.Idata[100] = 10 / Motor[1].PosSf
- > Perform an absolute read and monitor position window
 - o #1HMZ
 - Try adding a home offset
 - Of the same magnitude! (e.g. 10)

When finished with this exercise, restore the original home offset, and set pAbsPos=0