Verification Report AHB-Lite Protocol

Introduction to the Device-Under-Test (DUT)

AMBA AHB-Lite addresses the requirements of high-performance synthesizable designs. It is a bus interface that supports a single bus master and provides high-bandwidth operation. AHB-Lite implements the features required for high-performance, high clock frequency systems including:

- burst transfers
- Single-clock edge operation
- Non-tristate implementation
- Wide data bus configurations, 64, 128, 256, 512, and 1024 bits.

The most common AHB-Lite slaves are internal memory devices, external memory interfaces, and high bandwidth peripherals. Although low-bandwidth peripherals can be included as AHB-Lite slaves, for system performance reasons they typically reside on the AMBA Advanced Peripheral Bus (APB). Bridging between this higher level of bus and APB is done using an AHB-Lite slave, known as an APB bridge.

The figure shown below describes a single master AHB-Lite system design with one AHB-Lite master and three AHB-Lite slaves. The bus interconnect logic consists of one address decoder and a slave-to-master multiplexor. The decoder monitors the address from the master so that the appropriate slave is selected and the multiplexor routes the corresponding slave output data back to the master.

Verification Plan

No.	Feature	Test Description	Ref.	Туре	Expected Outcome	Result	Comments
1.	Enable the	HWRITE controls the	IHI0033.pdf/Sec3.1	Т	At positive clock		The simplest transfer is one
	value of	direction of data	/pg3-2		edge, when HWRITE is		with no wait states, so the
	HWRITE	transfer to or from			HIGH, it indicates a		transfer consists of one
		the master			write transfer and the		address
					master broadcasts		cycle and one data cycle
					data on		
					the write data bus,		
					HWDATA[31:0]		
2.	Disable the	HWRITE controls the	IHI0033.pdf/Sec3.1	Т	At positive clock edge,		The simplest transfer is one
	value of	direction of data	/pg3-2		when HWRITE is LOW,		with no wait states, so the
	HWRITE	transfer to or from			a read transfer is		transfer consists of one
		the master			performed and the		address
					slave must generate		cycle and one data cycle
					the data on the read		
					data bus, HRDATA		
					[31:0].		
3.	Enable	If the master requires	IHI0033.pdf/Sec3.3	Α	At positive clock		Typically the locked transfer
	HMASTLOCK	locked accesses then	/pg3-7		edge, when it is high,		is used to maintain the
	signal	it must assert the			it indicates to any		integrity of a semaphore, by
		HMASTLOCK			slave that the current		ensuring that the slave does
		signal			transfer sequence is		not perform other
					indivisible		operations between the
					and must therefore be		read and write
					processed before any		phases of a microprocessor
					other transactions are		SWP instruction
					processed		
4.	Bus	At the positive edge	IHI0033.pdf/Sec3.5	Т	During an undefined		The protocol does not
	termination	of the clock, after a	.1/pg3-10		length burst, INCR, the		permit a master to end a

	often a DUCY	hat han atauta d. ±1			manakan majalak inggant	bund with a DUCV top f
	after a BUSY	burst has started, the			master might insert	burst with a BUSY transfer
	transfer for	master uses BUSY			BUSY transfers at the	for fixed length bursts of
	an	transfers if it requires			positive edge of the	type incrementing or
	Undefined	more time before			clock and then decide	wrapping
	Length Burst	continuing with the			that no more data	
		next transfer in the			transfers are required.	
		burst.			Under these	
					circumstances, it is	
					acceptable for the	
					master to then	
					perform a NONSEQ or	
					IDLE transfer at the	
					next positive edge	
					that then effectively	
					terminates the	
					undefined length	
					burst	
5.	Bus	After a burst has	IHI0033.pdf/Sec3.5	T	At the positive edge of	The master is not permitted
	termination	started, the master	.1/pg3-10		the clock, the fixed	to perform a BUSY transfer
	after a BUSY	uses BUSY transfers if			length burst types	immediately after a SINGLE
	transfer for a	it requires more time			must terminate with a	burst. SINGLE bursts must
	SINGLE	before continuing			SEQ transfer	be followed by an IDLE
	length	with the next				transfer or a NONSEQ
	9	transfer in the burst.				transfer.
6.	Change in	Slaves use HREADY	IHI0033.pdf/Sec3.6	Т	At positive edge of the	-
	transfer type	to insert wait states if	.1/pg3-16		clock, when the	
	to NONSEQ	they require more			HTRANS transfer type	
	From IDLE	time to provide or			changes to NONSEQ	
	Transfer	sample the data.			the master must keep	
		During a waited			HTRANS constant,	
		transfer, the master			until HREADY is HIGH	
		is restricted to what			at the second positive	
		changes it can make			clock edge	

					T	T
		to the transfer type				
		and address. During a				
		waited transfer, the				
		master is permitted				
		to change the				
		transfer type from				
		IDLE to NONSEQ				
7.	Change in	During a waited	IHI0033.pdf/Sec3.6	Т	At positive edge of the	Because BUSY transfers
	transfer type	transfer for a fixed	.1/pg3-17		clock, when the	must only be inserted
	to SEQ from	length burst, the			HTRANS transfer type	between successive beats of
	BUSY	master is permitted			changes to SEQ the	a burst, this does not apply
	Transfer	to change the			master must keep	to SINGLE bursts
	when Length	transfer type from			HTRANS constant,	
	of Burst is	BUSY to SEQ			until HREADY is HIGH	
	fixed				at the next positive	
					edge	
8.	Change in	During a waited	IHI0033.pdf/Sec3.6	Т	At the positive edge of	-
	transfer type	transfer for an	.1/pg3-18		the clock, the burst	
	to any other	undefined length			continues if a SEQ	
	type from	burst, INCR, the			transfer is performed	
	BUSY	master is permitted			but terminates if an	
	Transfer	to change from BUSY			IDLE or NONSEQ	
	when Length	to any other transfer			transfer is performed	
	of Burst is	type, when HREADY			,	
	Undefined	is LOW				
9.	Change in	When the slave is	IHI0033.pdf/Sec3.6	Т	When the HTRANS	-
	address	requesting wait	.2/pg3-19		transfer type changes	
	during IDLE	states, the master			to NONSEQ at the	
	Transfer	can only change the			positive edge of clock,	
		address once except			the master must keep	
		in case of an IDLE			the address constant,	
		Transfer. During a			until HREADY is HIGH	
		waited transfer, the			at the next clock edge	

		master is permitted to change the address for IDLE transfers				
10.	Change in address after an ERROR response	When the slave is requesting wait states, the master can only change the address once except after an ERROR response	IHI0033.pdf/Sec3.6 .2/pg3-20	Т	During a waited transfer, if the slave responds with an ERROR response then the master is permitted to change the address when HREADY is LOW at the positive edge of the clock	-
11.	Transfer done	After a master has started a transfer, the slave controls how the transfer progresses. A master cannot cancel a transfer after it has commenced. A slave must provide a response that indicates the status of the transfer when it is accessed. The transfer status is provided by the HRESP signal	IHI0033.pdf/Sec5.1 .1/pg5-3	A	At the positive edge of the clock, a successful completed transfer is signalled when HREADY is HIGH and HRESP is OKAY (0)	-
12.	Transfer pending	A slave uses HREADY to insert the	IHI0033.pdf/Sec5.1 .2/pg5-3	Α	In pending transfer, at the positive edge of	-
	10	appropriate number	71.05		the clock, HREADY is	

		T _				
		of wait states into			LOW and HRESP is	
		the data phase of the			OKAY (0). A transfer	
		transfer.			then completes with	
					HREADY HIGH and an	
					OKAY response at the	
					next edge	
13.	ERROR	A slave uses the	IHI0033.pdf/Sec5.1	Α	The slave will give an	The two-cycle response is
	response	ERROR response to	.3/pg5-3		ERROR response in	required because of the
		indicate some form			the first cycle with	pipelined nature of the bus.
		of error condition			HREADY LOW and	By the time a slave starts to
		with the associated			HRESP ERROR (1). In	issue an ERROR response
		transfer. Usually this			the next cycle,	then the address for the
		denotes a protection			HREADY is driven	following transfer has
		error such as an			HIGH and HRESP	already been broadcast onto
		attempt to write to a			remains HIGH to	the bus. The two-cycle
		read-only memory			indicate error	response provides sufficient
		location				time for the master to
						cancel this next access and
						drive HTRANS [1:0] to IDLE
						before the start of the next
						transfer

Explanation of Different Fields

No. The serial number of the test.

Feature The feature which the current test is verifying in full or partially. The feature is usually on the abstraction level of a user.

Test Description A detailed description of the test case being performed. You can be as verbose as you want.

Ref. Reference to the section in the related standard document. The section number as well as page numbers should be described here.

Type Type of the test. Whether the test is an assertion (A) or a transaction (T) type.

Result Pass (P) or Fail (F).

Comments Any other comments about the test or its results that you want to mention.