Lasing Spectra and Thresholds of Supermodes in an Active Microdisk Assisted with a Passive Microring in View of the Mode Overlap Coefficients

Object of research

Lasing Egenvalue Problem (LEP)

$$U = E_z \text{ or } H_z, \quad U \neq 0$$

- × Helmholtz equation off the boundary
- Transparent boundary conditions
- Sommerfeld radiation condition at infinity

The real-valued (κ_i, γ_i) are the eigenparameters

Overlap Coefficients

$$\Gamma_j^{(f)} = W_j^{(f)} / W_j \le 1,$$

$$W_j^{(f)}(k_j, \gamma_j) = \int_{V_f} \alpha_f^2 |\vec{E}_j(\vec{R}, k_j, \gamma_j)|^2 dv, \quad f = a, g, r$$

$$W_{j}(k_{j},\gamma_{j}) = \int_{V} \alpha_{a}^{2} |\vec{E}_{j}|^{2} dv = \int_{V_{a}} \alpha_{a}^{2} |\vec{E}_{j}|^{2} dv + \int_{V_{g}} \alpha_{g}^{2} |\vec{E}_{j}|^{2} dv + \int_{V_{r}} \alpha_{r}^{2} |\vec{E}_{j}|^{2} dv$$

 $H_{1,n,q,p}$ supermodes, w=0.2a, $\alpha_a=\alpha_r=2.63$, $\alpha_g=1$.

Conclusions

- ★ In multiple-domain microcavities all lasing modes are supermodes, i.e. optically-coupled modes of partial domains
- ★ Thresholds are inverse proportional to the activeregion overlap coefficients, which are specific for each mode of the cavity