# Ejemplo de Gloria

## Gloria Vizcaíno

5/11/2021

Carga del script con las funciones que usaré:

```
source("teoriadecision_funciones_incertidumbre.R")
```

Función que da la mejor alternativa según el valor de alfa:

```
alfas = function(tablaX, precisionAlfa=0.05, favorable=TRUE){
  X = tablaX;
  Altmin = apply(X, MARGIN=1, min);
  Altmax = apply(X, MARGIN=1, max);
  valfa = seq(from=0,to=1,by=precisionAlfa);
  vHurwicz = rep(0,length(valfa));
  alternativa = rep(0,length(valfa));
  Alt_vHurwicz = rep(0,length(valfa));
  for (i in 1:length(valfa)) {
   alfab = valfa[i];
   if (favorable) {
      vAltH = alfab * Altmax + (1-alfab) * Altmin;
      vHurwicz[i] = max(vAltH)
      alternativa[i]=which.max(vAltH) #que alternativa lo cumple
   } else {
      vAltH = alfab * Altmin + (1-alfab) * Altmax;
      vHurwicz[i] = min(vAltH)
      alternativa[i]=which.min(vAltH) #que alternativa lo cumple
   }
  }
  altsinrep=unique(alternativa) #me quedo con las diferentes alternativas
                                #(quitando las repeticiones)
  alfasb = (which(!duplicated(alternativa)))*precisionAlfa - precisionAlfa
  #posiciones de cuándo aparecen las nuevas alternativas en el intervalo [0,1] (alfas)
  alfas=alfasb[-1] #quitamos la primera que siempre será 0)
  #salida que se nos pide:
  return(
  if (length(alfas)==1) {
    cat ("La mejor alternativa es", altsinrep[1],
         "para alfa perteneciente a [ 0 , ", alfas[1],
         "] \ny la mejor alternativa es",altsinrep[2],
         "para alfa perteneciente a [",alfas[1],", 1 ]")
   } else {
```

```
if (length(alfas)==2) {
      cat ("La mejor alternativa es", altsinrep[1],
           "para alfa perteneciente a [ 0 , ",
           alfas[1],"], \nla mejor alternativa es", altsinrep[2],
           "para alfa perteneciente a [",alfas[1],",",alfas[2],
           "] \ny la mejor alternativa es", altsinrep[3],
           "si alfa pertenece a [",alfas[2],", 1]")
   } else {
      cat ("La mejor alternativa es", altsinrep[1],
           "para alfa perteneciente a [ 0 , ", alfas[1], "], ")
      for (i in 1:(length(alfas)-1)) {
        cat ("\nla mejor alternativa es",altsinrep[i+1],
             "para alfa perteneciente a [",alfas[i],",",alfas[i+1],"] ")
      cat ("\ny la mejor alternativa es", altsinrep[length(altsinrep)],
           "si alfa pertenece a [",alfas[length(alfas)],", 1 ]")
   }
  )
} #fin de función creada
```

## **ENUNCIADO:**

Una persona quiere tomar la decisión de qué medio de transporte usar para ir diariamente a trabajar. Las alternativas son las siguientes: coche, autobús, patinete eléctrico y metro.

El dinero que ahorraría el trabajador (expresado en euros) usando cada uno de los transportes varía según:

E1: va al trabajo en dicho transporte y vuelve andando.

E2: va al travajo andando y vuelve en dicho transporte.

E3: va y vuelve del trabajo en dicho transporte.

E4: va y vuelve al trabajo en dicho transporte repartiendo gastos (si es posible) con un compañero de trabajo.

Y se recoge en la siguiente tabla:

| M. de transporte   | E1 | E2 | E3 | E4 | _ |
|--------------------|----|----|----|----|---|
| Coche              | 24 | 27 | 10 | 16 |   |
| Autobús            | 16 | 16 | 16 | 16 |   |
| Patinete Eléctrico | 13 | 23 | 21 | 15 |   |
| Metro              | 25 | 24 | 14 | 14 |   |

¿Qué transporte sería la mejor opción (con el que más ahorre) para ir a trabajar?

# **SOLUCIÓN:**

Objetivo: maximizar ahorro.

Planteamiento:

- Un decisor
- Modelo favorable

#### Alternativas:

- 1="Coche"
- 2="Autobús"
- 3="Patinete eléctrico"
- 4="Metro"

#### Estados de la naturaleza:

- E1 = "va al trabajo en dicho transporte y vuelve andando"
- E2 = "va al trabajo andando y vuelve en dicho transporte"
- E3 = "va y vuelve del trabajo en dicho transporte"
- $\bullet~$  E4 = "va y vuelve al trabajo en dicho transporte repartiendo gastos (si es posible) con un compañero de trabajo"

## Resolución en R:

En primer lugar preparamos los datos y le aplicamos todos los criterios de incertidumbre estudiados para conocer cuál es la mejor alternativa en cada caso:

```
t2=crea.tablaX(c(24,27,10,16,16,16,16,16,23,23,21,15,25,24,14,14),4,4)
criterio.Todos(t2, alfa=0.3,favorable = TRUE)
```

| ## |                            | e1 | e2 | еЗ | e4 | Wald | Optimista | Hurwicz | Savage | Laplace | Punto Ideal |
|----|----------------------------|----|----|----|----|------|-----------|---------|--------|---------|-------------|
| ## | d1                         | 24 | 27 | 10 | 16 | 10   | 27        | 15.1    | 11     | 19.25   | 11.045      |
| ## | d2                         | 16 | 16 | 16 | 16 | 16   | 16        | 16.0    | 11     | 16.00   | 15.067      |
| ## | d3                         | 23 | 23 | 21 | 15 | 15   | 23        | 17.4    | 4      | 20.50   | 4.583       |
| ## | d4                         | 25 | 24 | 14 | 14 | 14   | 25        | 17.3    | 7      | 19.25   | 7.874       |
| ## | <pre>iAlt.Opt (fav.)</pre> |    |    |    |    | d2   | d1        | d3      | d3     | d3      | d3          |

Según el criterio de Wald la mejor alternativa es la 2 (Autobús), según el criterio optimista la mejor alternativa es la 1 (coche) y según los demás criterios la mejor alternativa es la 3 (Patinete Eléctrico).

NOTA: se ha aplicado el criterio de Hurwicz para alfa=0.3, vamos a ver ahora cómo varía para los diferentes valores de alfa:

```
dibuja.criterio.Hurwicz(t2,favorable=TRUE)
```

# Criterio de Hurwicz (favorable – linea discontinua)



```
alfas(t2,precisionAlfa = 0.05,favorable = TRUE)

## La mejor alternativa es 2 para alfa perteneciente a [ 0 , 0.15 ],

## la mejor alternativa es 3 para alfa perteneciente a [ 0.15 , 0.35 ]

## la mejor alternativa es 4 para alfa perteneciente a [ 0.35 , 0.7 ]

## y la mejor alternativa es 1 si alfa pertenece a [ 0.7 , 1 ]

Hago lo mismo con una mayor precisión en los valores del alfa:

alfas(t2,precisionAlfa = 0.001,favorable = TRUE)

## La mejor alternativa es 2 para alfa perteneciente a [ 0 , 0.126 ],

## la mejor alternativa es 3 para alfa perteneciente a [ 0.126 , 0.334 ]

## la mejor alternativa es 4 para alfa perteneciente a [ 0.334 , 0.667 ]

## y la mejor alternativa es 1 si alfa pertenece a [ 0.667 , 1 ]
```