

TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit

<u>Sunho Lee</u>, Jungwoo Kim, Seonjin Na, Jongse Park, and Jaehyuk Huh

Vulnerabilities of integrated NPU

NPU is widely used in the form of <u>System-on-a-Chip</u>.

Trusted Execution Environment (CPU)

- Access control
- Counter-based memory protection

Trusted Execution Environment (NPU)

- CPU: On-chip hardware and related software
- TNPU: + NPU-related hardware/software

1) Access control, 2) Memory Protection for NPU

4

Validate Access from NPU-MMU

- Access control
 - CPU MMU: Traditional validation table
 - NPU IOMMU

Validate Access from NPU

- Access control: <u>Extended validation table (EEPCM)</u>
 - CPU MMU: Traditional validation entries
 - NPU IOMMU: Additional validation entries

Naive Memory Protection to NPU

- Memory protection
 - Counter-based encryption & integrity protection
 - Counter Freshness Validation

Advantage of counter caching

- 1. Bandwidth saving
- 2. Traffic of the security engine

Naive Memory Protection to NPU

- Average 19.2% performance degradation
- Reason: Counter-cache miss rate (7.9%)

Norm. Exec Time Counter Cache Miss

A novel memory protection technique for NPU is necessary!

NPU Execution Model

- Execution: * $mvin \rightarrow preload \rightarrow compute \rightarrow **mvout$
 - The <u>software</u> controls NPU data movement by commands

Tensor-based Computing

- Tensor-granular computation
 - Per-tensor version number is sufficient: Tensor-unit memory access

Residual Block (Resnet 50)

Tree-less Integrity Protection

- Counter → Version number controlled by <u>software</u>
 - Security granularity: Cacheline → <u>Tensor</u>
 - Storage requirement: Only <u>0.14KB</u> on average

Problem: NPU executes layer operation at once? (i.e Many large tensors are not fitted into SPM)

Challenge: Intra-layer Computing

■ Tensor → One or multiple tiles for intra-layer computing

Tile-granular version number is necessary in intra-layer!

Tile-granular Version Number

■ Tensor → One or multiple tiles for intra-layer computing

Tensor/Tile Version Number

- Tensor/Tile version number
 - Granularity: Cacheline → Tensor/<u>Tile (Intra-layer)</u>
 - Storage requirement: Only <u>1.3KB</u> on average
- expand, merge: Granularity translation operation

Evaluation Environment

- Cycle-level simulation modified from *SCALE-Sim
- Two edge-level system-on-a-chip configurations
 - Samsung Exynos 990 (Small NPU), ARM Ethos N77 (Large NPU)
- Workloads: 14 models in MLPerf, DeepBench

	Small NPU (Samsung Exynos 990)	Large NPU (ARM Ethos N77)
PE	32 x 32	45 x 45
Bandwidth	11 GB/s (4 channels)	22 GB/s (4 channels)
Frequency	2.75 GHz (both processor/memory)	1 GHz (both processor/memory)
SPM	480KB in total	1MB in total
Precision	Float16	Float16

^{*} A systematic methodology for characterizing scalability of DNN accelerators using SCALE-Sim (ISPASS 2020)

Evaluation Result (Single NPU)

- Performance improvement: 8.75%
 - Data traffic reduction: 7.67%
- Remaining performance degradation: 8.80% (Comp. Unsecure)
 - Stored-hash-value (Message-authentication-code; MAC)

Evaluation Result (Multiple NPUs)

- Scalability: Slope (TNPU) < Slope (Baseline)
- Performance improvement: 8.75% → 11%

Summary

Result

- Trusted Execution environment for NPU
- Performance improvement: 8.75% (single), 11% (3-NPU)

Challenge

Counter tree overhead

Idea

■ Counter → Tensor/tile-granular version number

Further Work

Stored-hash-value (MAC) optimization

Thank you