Simulazione MIVR (Aprile 2019)

Ministero dell' Istruzione, dell' Università e della Ricerca ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzi: LI02, EA02 – SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE LI15 - SCIENTIFICO - SEZIONE AD INDIRIZZO SPORTIVO

(Testo valevole anche per le corrispondenti sperimentazioni internazionali e quadriennali)

Tema di: MATEMATICA e FISICA

Il candidato risolva uno dei due problemi e risponda a 4 quesiti.

PROBLEMA 1

Due fili rettilinei paralleli vincolati a rimanere nella loro posizione, distanti 1 m l'uno dall'altro e di lunghezza indefinita, sono percorsi da correnti costanti di pari intensità ma verso opposto; si indichi con i l'intensità di corrente, espressa in ampere (A). Si consideri un piano perpendicolare ai due fili sul quale è fissato un sistema di riferimento ortogonale Oxy, dove le lunghezze sono espresse in metri (m), in modo che i due fili passino uno per l'origine O e l'altro per il punto D(1,0), come mostrato in figura.

- 1. Verificare che l'intensità del campo magnetico \vec{B} , espresso in tesla (T), in un punto P(x,0), con 0 < x < 1, è data dalla funzione $B(x) = K\left(\frac{1}{x} + \frac{1}{1-x}\right)$, dove K è una costante positiva della quale si richiede l'unità di misura. Stabilire quali sono la direzione e il verso del vettore \vec{B} al variare di x nell'intervallo (0,1). Per quale valore di x l'intensità di \vec{B} è minima?
- 2. Nella zona di spazio sede del campo \vec{B} , una carica puntiforme q transita, ad un certo istante, per il punto $C\left(\frac{1}{2},0\right)$, con velocità di modulo v_0 nella direzione della retta di equazione $x=\frac{1}{2}$. Descriverne il moto in presenza del solo campo magnetico generato dalle due correnti, giustificando le conclusioni.
 - Stabilire intensità, direzione e verso del campo magnetico \vec{B} nei punti dell'asse x esterni al segmento OD. Esistono punti sull'asse x dove il campo magnetico \vec{B} è nullo?
- 3. Indipendentemente da ogni riferimento alla fisica, studiare la funzione $f(x) = K\left(\frac{1}{x} + \frac{1}{1-x}\right)$ dimostrando, in particolare, che il grafico di tale funzione non possiede punti di flesso. Scrivere l'equazione della retta r tangente al grafico di f nel suo punto di ascissa $\frac{1}{3}$ e determinare le coordinate dell'ulteriore punto d'intersezione tra r e il grafico di f.

Ministero dell'Istruzione, dell'Università e della Ricerca

4. Calcolare il valore dell'integrale

$$\int_{1/4}^{3/4} f(x) \, dx$$

ed interpretare geometricamente il risultato ottenuto. Esprimere, per $t \ge 2$, l'integrale

$$g(t) = \int_{2}^{t} |f(x)| \, dx$$

e calcolare $\lim_{t\to +\infty} g(t)$. Qual è il significato di tale limite?

PROBLEMA 2

Assegnato un numero reale positivo k, considerare le funzioni f e g così definite:

$$f(x) = \sqrt{x} (k - x) \qquad g(x) = x^2(x - k).$$

- 1. Provare che, qualunque sia k > 0, nell'intervallo [0, k] il grafico di f ha un unico punto di massimo $F(x_F, y_F)$ ed il grafico di g ha un unico punto di minimo $G(x_G, y_G)$. Verificare che si ha $x_G = 2x_F$ e $y_G = -(y_F)^2$.
- 2. Verificare che, qualunque sia k > 0, i grafici delle due funzioni sono ortogonali nell'origine, vale a dire che le rispettive rette tangenti in tale punto sono tra loro ortogonali. Determinare per quale valore positivo di k i due grafici si intersecano ortogonalmente anche nel loro ulteriore punto comune.

D'ora in avanti, assumere k = 1. In un riferimento cartesiano, dove le lunghezze sono espresse in metri (m), l'unione degli archi di curva di equazioni y = f(x) e y = g(x), per $x \in [0, 1]$, rappresenta il profilo di una spira metallica. Sia S la regione piana delimitata da tale spira.

- 3. Supponendo che nella regione S sia presente un campo magnetico uniforme, perpendicolare al piano di S, avente intensità $B_0 = 2.0 \cdot 10^{-2}$ T, verificare che il valore assoluto del flusso di tale campo attraverso S è pari a $7.0 \cdot 10^{-3}$ Wb.
- 4. Supporre che la spira abbia resistenza elettrica R pari a 70 Ω e che il campo magnetico, rimanendo perpendicolare al piano di S, a partire dall'istante $t_0 = 0$ s, inizi a variare secondo la legge:

$$B(t) = B_0 e^{-\omega t} \cos(\omega t)$$
, con $\omega = \pi \text{ rad/s}$

e $t \ge 0$ espresso in secondi (s). Esprimere l'intensità della corrente indotta nella spira in funzione di t, specificando in quale istante per la prima volta la corrente cambia verso.

Qual è il valore massimo di tale corrente per $t \ge 0$? Spiegare quale relazione esiste tra la variazione del campo che induce la corrente e il verso della corrente indotta.

Ministero dell'Istruzione, dell'Università e della Ricerca quesiti

- 1. Assegnato $k \in \mathbb{R}$, si consideri la funzione così definita: $g(x) = \frac{(k-1)x^3 + kx^2 3}{x-1}$.
 - Come va scelto il valore di k affinché il grafico di g non abbia asintoti?
 - Come va scelto il valore di k affinché il grafico di g abbia un asintoto obliquo? Giustificare le risposte e rappresentare, nei due casi, i grafici delle funzioni ottenute.
- 2. Sia f una funzione pari e derivabile in \mathbb{R} , sia g una funzione dispari e derivabile in \mathbb{R} . Dimostrare che la funzione f' è dispari e che la funzione g' è pari. Fornire un esempio per la funzione f ed un esempio per la funzione f, verificando quanto sopra.
- 3. Si consideri la funzione $f:(0,+\infty)\to\mathbb{R}$ così definita:

$$f(x) = \int_{1}^{x} \frac{\cos\left(\frac{\pi}{3}t\right)}{t} dt$$

Determinare l'equazione della retta tangente al grafico di f nel suo punto di ascissa 1.

- 4. Nello spazio tridimensionale, sia r la retta passante per i punti A(-2, 0, 1) e B(0, 2, 1). Determinare le coordinate di un punto appartenente alla retta r che sia equidistante rispetto ai punti C(5, 1, -2) e D(1, 3, 4).
- 5. Emma fa questo gioco: lancia un dado con facce numerate da 1 a 6; se esce il numero 3 guadagna 3 punti, altrimenti perde 1 punto. Il punteggio iniziale è 0.
 - Qual è la probabilità che, dopo 4 lanci, il suo punteggio sia ancora 0?
 - Qual è la probabilità che, in una sequenza di 6 lanci, il punteggio non scenda mai sotto lo 0?
- 6. Ai vertici di un quadrato ABCD, di lato 2 m, sono fissate quattro cariche elettriche. La carica in A è pari a 9 nC, la carica in B è pari a 2 nC, la carica in C è pari a 4 nC, la carica in D è pari a -3 nC. Supponendo che le cariche si trovino nel vuoto, determinare intensità, direzione e verso del campo elettrostatico generato dalle quattro cariche nel centro del quadrato.
- 7. Un protone, inizialmente in quiete, viene accelerato da una d.d.p. di 400 V ed entra, successivamente, in una regione che è sede di un campo magnetico uniforme e perpendicolare alla sua velocità.

La figura illustra un tratto semicircolare della traiettoria descritta dal protone (i quadretti hanno lato 1,00 m). Determinare l'intensità di \vec{B} .

Ministero dell'Istruzione, dell' Università e della Ricerca

8. Si vuole ottenere l'emissione di elettroni da lastre metalliche di materiali diversi su cui incide una radiazione di frequenza 7,80 · 10¹⁴ Hz. Determinare, motivando la risposta, quale tra i materiali in elenco è l'unico adatto allo scopo.

Materiale	Lavoro di estrazione	
Argento	4,8 eV	
Cesio	1,8 eV	
Platino	5,3 eV	

Individuato il materiale da utilizzare, determinare la velocità massima che può avere un elettrone al momento dell'emissione.

COSTANTI FISICHE			
carica elementare	е	1,602 · 10 ⁻¹⁹ C	
costante di Planck	h	6,626 · 10 ⁻³⁴ J·s	
costante dielettrica nel vuoto	ε_0	8,854 · 10 ⁻¹² F/m	
massa dell'elettrone	m _e	9,109 · 10 ⁻³¹ kg	
massa del protone	m _p	1,673 · 10 ⁻²⁷ kg	

Durata massima della prova: 6 ore.

È consentito l'uso di calcolatrici scientifiche e/o grafiche purché non siano dotate di capacità di calcolo simbolico (O.M. n. 350 Art. 18 comma 8).

È consentito l'uso del dizionario bilingue (italiano-lingua del paese di provenienza) per i candidati di madrelingua non italiana.

Publeme Nº1

Richard le querte legge ti l'exwell &Bdl= poi é possibile riceron il

Compo magnetic pa un filo infinito percorso

de courte elettrice

B275= 1.i

B = nol

Il un del compo é tengente elle circonfluence concertrice al file ortogonèle ed ess.

Il ver i quelle delle mans destre rispetto al cons della comente.

Se indices can Bil compregnents del filin o e

Ca B'il compregnents del filin Della

in un punto compress tre o e Dil compretetele

vele

Dele
$$B_{t,t} = \frac{\mu \cdot i}{2\pi \times 2\pi (t-x)} + \frac{\mu \cdot i}{2\pi (t-x)} = \frac{\mu \cdot i}{2\pi \left(\frac{1}{x} + \frac{1}{(1-x)}\right) = K\left(\frac{1}{x} + \frac{1}{1-x}\right)}{2\pi \times 2\pi (t-x)}$$

Il veno è quello dell'esse y et il massimo è deto del messimo delle funzione

$$\int (x) = \frac{1}{x} + \frac{1}{1-x}$$

$$\int (x) = \frac{1}{(1-x)^2} - \frac{1}{x^2} = \frac{x^2 - (1-x)^2}{x^2(1-x)^2} = \frac{x^2 - 1 - x^2 + 2x}{x^2(1-x)^2} = \frac{2x - 1}{x^2(1-x)^2}$$

 $\int_{A=(\frac{1}{2})^{2}} = 2 + 2 = 4$ $A=(\frac{1}{2})^{4}$

l'intensité del Compo per $x \in (0,1)$ e minime per $x = \frac{1}{2}$ e role

Br.t = Mi 4 = 2 Mi

Il note time canica roggette a composition to data dalle formula di Lorentz. $\vec{F} = m\vec{\lambda} = q \vec{v} \times \vec{B}$

Le conice si music lango l'asse X= \frac{1}{2}

poiche il comp magnetico generationi

dei due fili perconi da conerte

elettrica é puellel e just'one visulte

\(\vec{7} \times \vec{6} = 0 = \) \(\vec{a} = \) il noto delle conice

é rettitres uniforme con relicta so.

Per relaisterni all'intervalle $x \in (0,1)$ il comp totele rale

$$B_{t,t} = B_{t}B' = \frac{\mu \cdot i}{7\pi} \left(\frac{1}{X} + \frac{1}{(1-X)} \right)$$

et entranti hun la direjone dell'ane y

In never pour o dell'one x il comp in ennulle essent la funzione $f(t) = \frac{1}{X} + \frac{1}{(1-X)}$ rempe $\neq 0$

$$B_{nn} = \left(X = \frac{1}{2}\right)$$

Andere to del compo Br.+ sull'one X.

Le dizzine i quelle dell'one y con il verso det. del regne delle funzione.

Studione la funzione
$$f(x) = K\left(\frac{1}{X} + \frac{1}{1-X}\right)$$

$$\int_{1}^{2} (1x) = \frac{1}{(1-x)^{2}} - \frac{1}{x^{2}} = \frac{2x-1}{x^{2}(1-x)^{2}}$$

$$\int_{0}^{\infty} (1x) = 0 \qquad \qquad \times \qquad \frac{1}{2}$$

$$\int_{-\infty}^{\infty} (1) \times 0$$

$$\begin{cases} (x) = \frac{2(1-x)}{(1-x)^4} + \frac{2x}{x^3} = \frac{2x^3(1-x)+2(1-x)^4}{x^3(1-x)^4}$$

$$=2(1-x)(1-x)^{3}+(1-x)^{3}=2(1-x)(x^{3}+1-3x+3x^{2}-x^{3})$$

$$=2(1-x)(x^{3}+1-3x+3x^{2}-x^{3})$$

$$=2(1-x)(x^{3}+1-3x+3x^{2}-x^{3})$$

$$= \frac{2(1-x)(3x^{3}-3x+1)}{x^{3}(1-x)^{4}}$$

$$\int_{-\infty}^{\infty} (x) > 0 \qquad \frac{(1-x)}{\sqrt{3}} > 0$$

lin f(x)=0

 $\begin{cases} \lim_{x \to 0^{-}} f(x) = -\infty \\ \lim_{x \to 0^{+}} f(x) = +\infty \end{cases}$

 $\lim_{X\to 1^{-}} f(x) = +\infty$ $\lim_{X\to 1^{+}} f(x) = -\infty$ $\lim_{X\to 1^{+}} f(x) = -\infty$

A = (1/4 K) = nIMING

$$y = \int \left(\frac{4}{7}\right) + \int \left(\frac{9}{7}\right) \left(x - \frac{4}{3}\right)$$

$$\int (x) = K \left(\frac{4}{7} + \frac{4}{1-x}\right)$$

$$\int \left(\frac{4}{7}\right) - K \left(\frac{3}{7} + \frac{3}{2}\right) = K \frac{9}{2}$$

$$\int (x) = 2x - 1 \quad K \implies \int \left(\frac{1}{2}\right) = \frac{2}{3} - 1 \quad K = \frac{1}{3} \quad K = \frac{1}{3}$$

$$\int (x) = \frac{2 \times -1}{x^2 (1-x)^2} = \int \left(\frac{1}{3}\right) = \frac{2 \cdot \frac{1}{3} - 1}{\frac{1}{3} \left(\frac{1}{3}\right)^2} = -\frac{\frac{1}{3}}{\frac{1}{4}} = -\frac{\frac{1}{3}}{\frac{1}{4}} = -\frac{27}{4} K$$

$$= -\frac{1}{3} \cdot \frac{31}{4} = -\frac{27}{4} K$$

$$\gamma = K \left[\frac{9}{2} - \frac{21}{4} \left(x - \frac{1}{3} \right) \right]$$

Clabil punto di intersezione tre

le rette

$$y = K \left[\frac{9}{2} - \frac{27}{h} \left(x - \frac{1}{3} \right) \right]$$
 le fungin

$$f(x) = K\left(\frac{1}{x} + \frac{1}{1-x}\right)$$

$$\frac{9}{2} - \frac{27}{5} \left(x - \frac{1}{3} \right) = \left(\frac{1}{x} + \frac{1}{1 - x} \right)$$

$$\frac{9}{2} - \frac{27}{4} \times \frac{9}{4} = \frac{1}{x} + \frac{1}{1-x}$$

$$18 - 27 \times + 9 = \frac{4}{x} + \frac{4}{1-x}$$

$$27 - 27 \times = \frac{4}{\times} + \frac{4}{1 - \times}$$

$$77(1-x) = \frac{4}{x} + \frac{4}{1-x} = \frac{4(1-x)+4x}{(1-x)x} = \frac{4(1-x)+4x}{(1-x)x}$$

$$27(1-x) = \frac{4}{(1-x)x}$$

$$27 \times (1+x^{2}-2x)=4$$

$$27 \times + 27 \times^{2} - 54 \times^{2} - 4=0$$

$$27 \times^{3} - 54 \times^{2} + 27 \times - 4=0$$

$$X = \frac{4}{3}$$

$$27 \left(\frac{4}{3}\right)^{3} - 54 \left(\frac{4}{3}\right)^{2} + 27 \left(\frac{4}{3}\right) - 4=0$$

$$4^{3} - 6 \cdot 4^{2} + 9 \cdot 4 - 4=0$$

$$64 - 86 + 36 - 4=0$$

$$f(x) = K\left(\frac{1}{X} + \frac{1}{1-X}\right)$$

$$\int_{1}^{\frac{3}{4}} K\left(\frac{1}{X} + \frac{1}{1-X}\right) dX = \left[K \ln |X| - H \ln |1-X|\right]_{\frac{3}{4}}^{\frac{3}{4}}$$

$$= \frac{1}{11-x} \left| \frac{1}{4} \right|^{\frac{3}{4}} = \frac{1}{11-x} \ln \frac{3}{4} \ln \frac{1}{x} \ln \frac{$$

l'integrale reppresente l'erre rottere delle Jugisse tre X = 1 e X = 3. g(+)=] | f(x) | dx $g(t) = \int_{1}^{t} \left| K\left(\frac{1}{x} + \frac{1}{1-x}\right) \right| dx = \int_{1}^{t} \left| K\left(\frac{1-x+x}{1-x}\right) \right| dx = \int_{1}^{t} \left| K\left(\frac{1-x+x}{1-x}\right)$ = | K 1 dx enemb f(1) negative nell'

internell considerats

 $\frac{A}{X(X-1)} = \frac{A}{X} + \frac{B}{(X-1)} = \frac{A \times -A + B \times}{X(X-1)} \Rightarrow A = -1$

 $g(t) = \int K \left(-\frac{1}{X} + \frac{1}{(x-1)}\right) dx = -\lim_{x \to \infty} (x) + \lim_{x \to \infty} (x-1) \Big|_{x=0}^{t}$

 $= \ln \frac{x-1}{x} \Big|_{z}^{t} = \ln \frac{t-1}{t} - \ln \frac{1}{z} = \ln \frac{t-1}{t} + \ln z$

 $\lim_{t\to\infty} \ln \frac{t-1}{t} + \ln z = \ln z$

Publeme N°2]

(PUNT 21)

Stuboil grafico f(x)

Il dominio di f(x) è

 $X \in [0, +\infty)$

$$f(x) = x^{\frac{1}{2}} N - x^{\frac{3}{2}}$$

$$\int_{0}^{1} (X)^{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

J(1) >0

f(x) 70

11-3 X >0

 $X < \frac{1}{3}$

$$\int_{0}^{\infty} f(x) = -\frac{1}{4} \times \sqrt{\frac{1}{4}} \times \sqrt{\frac{3}{4}} \times \sqrt{\frac{1}{2}}$$

$$V_{X} < -\frac{\zeta}{3}$$
 (mei

$$K-3X^{\frac{1}{2}}>0$$

$$\sqrt{(K)}>0$$

$$\sqrt{X}<-\frac{K}{3}$$
(mai)

Stutisil gufic di g (x) = x²(x-u) ca U>0 Il Loninio di g (x) e tatto IR.

$$\times (3 \times -2 U) > 0$$

lim g(x): ->

la g(x)=+ 20

$$g(\frac{1}{3}u) = -\frac{4}{27}u^3$$

(punto2)

Le due funjoni f(x)e g(x) som ortogonel. Hellorigine infatti

 $\int_{-\infty}^{\infty} (x) = \frac{1}{2\sqrt{x}} U - \frac{3}{2} \sqrt{x}$

J(0)=+00

g (1x) = 3x2 - 2 x W

9/16)=0

=> le tengente nelle p ulle Jungine f(x) e l'esse y

> le tengete melle p ulle funzione y (x) e

love X.

//

 $\int (u) = \frac{1}{2} V x - \frac{3}{2} V x = -\frac{1}{2} V x$

g(14) = 3112-2112 = U2

Le contijone de le he fungion siens atografia che sul punto 11 è dete delle Contizione

$$\int (K) = -\frac{1}{g(K)}$$

$$-\frac{1}{2}VK = -\frac{1}{K^2} \Rightarrow$$

$$\mathcal{N}^{\frac{3}{2}} = 2$$

$$\mathcal{N} = 2^{\frac{2}{3}} = (\sqrt[3]{2})^{\frac{2}{3}} = 1.58$$

Color l'ere delimitete dulle que Cure f (1) e g (1) $A = \int f(x) dx - \int g(x) dx =$ $=\int_{-\infty}^{\infty} \left(x^{\frac{1}{2}} - x^{\frac{3}{2}} \right) dx - \int_{-\infty}^{\infty} \left(x^{\frac{3}{2}} - x^{\frac{3}{2}} \right) dx =$ $-\left[\frac{2}{3} \times \frac{3}{2} - \frac{2}{5} \times \frac{5}{2}\right]^{1} - \left[\frac{x^{4} - \frac{x}{3}}{5}\right]^{1} =$

$$\frac{2}{3} - \frac{2}{5} - \left(\frac{1}{4} - \frac{1}{3}\right) =$$

$$-\frac{2}{3} - \frac{2}{5} - \frac{1}{5} + \frac{1}{3} = 1 + \frac{-8-5}{20} = 1 - \frac{13}{20} = \frac{7}{20}$$

$$\phi(B) = B_0 A = 2 \times 10^{-2} \times \frac{7}{2010} = 7 \times 10^{-3}$$

Applicent le I legge l' Mexuell nel cosonon

Mezionomo possieno suivere

$$\oint \vec{E} \cdot \vec{l} = \int \cdot \ell \cdot \vec{i} = -i \cdot \frac{1}{4} \cdot (\vec{G})$$

Il compo magnetico induce sulle spira una Joya elettromotrice parie - d 4(B)

$$-\frac{d}{dt} \phi(B) = -\int Bo \frac{d}{dt} \left[e^{-ut} (coat) \right]$$

$$= -\int Bo \left[-wl - ut cout + e^{-et} (-mat) \right]$$

$$= + \int Bo w e^{-ut} \left[cout + mut \right]$$

$$\int_{e} e^{-it} \left[cout + mut \right]$$

$$RI = \int Bo w e^{-ut} \left[cout + mut \right]$$

$$I = \int Bo w e^{-ut} \left[cout + mut \right]$$

$$I = \int Bo w e^{-ut} \left[cout + mut \right]$$

$$= \int_{e} e^{-ut} \left[cout + mut \right]$$

$$= \int_{e} e^{-ut} \left[cout + mut \right]$$

$$dI = \int_{e} e^{-ut} \left[cout + mut \right]$$

$$dI = \int_{e} e^{-ut} \left[cout + mut \right]$$

$$dI = \int_{e} e^{-ut} \left[cout + mut \right]$$

-wmet + w coult - w gold - w met >0
-2 ce met > 0

post: W=x

$$\frac{dI}{dt} = \pi t$$

$$\frac{dI}{dt} = \pi t$$

$$\frac{dI}{dt} = \pi t$$

Inthe

Le conente si en nulle per $t_y(at) = -1$ $at = \frac{3}{4}\pi \implies \pi t = \frac{3}{4}\pi \implies t = \frac{3}{4} = 0.75$

Il velne menimo della conente si he per t=sl vele $I_0 = \frac{SB_0}{R}$

Le conerte conlie uns per t=0.75.

Le conette é proposionale in module alle f.e. i e quinti elle derive le del flusso.

Il vers della comente è concorde alla
regula della mano sinistre (per il segno nen
nella fimila f. e.i = - d \$(15°)) -

$$g(x) = (U-1) \times^{3} + U \times^{2} - 3$$
 $\times -1$

$$g(x) = \frac{K \times^3 - \times^3 + K \times^2 - 3}{X - 1}$$

$$|yn|^{1-2}$$
 $g(x) = 2x^3 - x^3 + 2x^2 - 3 = x^3 + 2x^2 - 3$

$$\frac{x^{3}+2x^{2}-3 \quad | x-1}{x^{3}-x^{2}}$$

$$\frac{x^{3}-x^{2}}{\sqrt{3}x^{2}}$$

$$\frac{3x^{2}-3x}{\sqrt{7}x^{2}-3}$$

$$\frac{3x-3}{\sqrt{6}x^{6}}$$

$$g(x) = (x-1)(x^2+3x+3) = x^2+3x+3$$

2) Sulzo Kaffinche la funzione presenti un esistata E oblique-

Per avere un sintoto obligues occorre verificere le due condizioni:

1)
$$\lim_{x\to \pm\infty} \frac{g(x)}{x} = \alpha \in \mathbb{R}$$

1)
$$\lim_{x\to 2} g(x) - ax = b \in \mathbb{R}$$

Se sono suificate le due consigioni l'esintoto
oblique e le rette $y = a \times b$

1)
$$\lim_{X\to\pm\infty} \frac{g(x)}{X} = \lim_{X\to\pm\infty} \frac{(N-1)X^3}{X^2} = (N-1)X$$

EIR

affichi post. limite e Elle dere enere

$$g(x) = \frac{x^2 - 3}{x - 1}$$

1)
$$\lim_{x \to i\infty} \frac{y(x)}{x} = \lim_{x \to i\infty} \frac{x^i}{x^2} = 1 = \infty$$

1)
$$\lim_{X \to \pm \infty} g(x) - \alpha x = \lim_{X \to \pm \infty} \frac{x^2 - 3}{x - 1} - x = b$$

$$\lim_{x\to 1/20} \frac{x^{2}-3-x^{2}+x}{x-1} = b = 1$$

$$g(x) = \frac{x^2 - 3}{x - 1}$$

$$\lim_{x \to 1^{-}} \frac{x^{2}-3}{x-1} = 120$$

$$\lim_{x \to 1^{-}} \frac{x^{2}-3}{x-1} = -20$$

$$\frac{d g(x)}{d x} = \frac{2 \times (x-1) - (x^2-3)}{(x-1)^2} = \frac{2 \times^2 - 2x - x^2 + 3}{(x-1)^2}$$

$$=\frac{\chi^{2}-2\chi+3}{(\chi-1)^{2}}$$

$$\frac{\partial \partial^{(\chi)}}{\partial \chi}>0 \quad \forall \chi$$

$$g(x) = \frac{x^2 - 3}{x - 1}$$

$$[h=1]$$

g (x)= x2+3x+3

3.7.1

$$\frac{1}{\text{HINIAUS}} \times \left(-\frac{2}{2}, \frac{3}{4}\right)$$

$$g'(x) = 0 \implies x = -\frac{3}{2} \quad g\left(-\frac{2}{2}\right) = \frac{9}{4} - \frac{9}{2} + \frac{3}{4} = \frac{3}{4}$$

f(x) = funzisse pour
g(x) = funzisse dispari

(Definizione di funzine pieni

f(x) = f(-x)

devicente antoi membr.

f'(x) = -f'(-x)

Le dévicte d'une funjone pari l'une punjone d'openi

Definizione di une funzione disposi f(x) = -f(-x)derivent enhoi membri f(x) = f(-x)

La dévicte da une funçose disperié une

Esempio di Jungiore puie

y = x2

9=2x (dispni)

Esempio di funzione disposi

y = x3 y'= 3x" (pari)

Consider le funzione

f(x):
$$\int \frac{c_{1}(\frac{\pi}{3}t)}{t} dt$$

L'est tengente e f(x) sul purto x=1 ha

equerione

$$y = f(x=1) + f'(x=1)(x-1)$$

$$f(x=1):
$$\int \frac{c_{1}(\frac{\pi}{3}t)}{t} dt = 0$$

$$\int \frac{d}{dx} f(x) = \left[\frac{c_{1}(\frac{\pi}{3}t)}{t}\right]^{x} = \frac{c_{1}(\frac{\pi}{3}x)}{x} - \frac{c_{1}\pi}{3}$$

$$\int \frac{d}{dx} f(x-1) = f'(x=1) = c_{1}\pi - c_{1}\pi = 0$$

Le rette tengente e f(x) sel punto x=1 he

equezione y=0.$$

Quesito N'4

Determin l'equazione delle rette penente per i punti $\vec{A} = (-2, 0, 1)$ $\vec{B} = (6, 2, 1)$

(A-B)=(-2,0,1)-(0,2,1)=(-2,-2,0)

l'equojore delle rette i

 $\vec{X} = t(A-B) + \vec{B}$

 $\begin{cases} x = -2t + 0 \\ y = -2t + 2 \\ z = 0 + 1 \end{cases}$

 $\begin{cases} X = -2t \\ Y = -2t + 2 \\ \overline{z} = 1 \end{cases}$

Determino il punto approntenente elle rette e equidittente da C = (5, 1, -2) D = (1, 3, 1)

 $(x-5)^{2} + (y-1)^{2} + (z+2)^{2} = (x-1)^{4} + (y-3)^{2} + (z-4)^{3}$ sostituent

 $\left(-2t-5\right)^{2} + \left(-2t+2-1\right)^{2} + \left(1+2\right)^{2} = \left(-2t-1\right)^{2} + \left(-2t+2-3\right)^{2} + \left(1-4\right)^{2}$

 $4t^{2}+25+20t+(-2t+1)^{2}+9=4t^{2}+1+4t+(-2t-1)^{2}+$

 Il punto eppartenette alle rette est equististente de Ce Dé

$$\begin{cases} X = C \\ Y = 8 \\ Z = 1 \end{cases}$$

Lencio dede:

- re esce il numero 3 Emme guadegne 3 ponti

- altrimenti perde 1 punto.

1) Probabilité de dops 4 lanci il sus punteggio sie encore de-

Dopo 4 lanci il punteggio é d 20 mi 4 lanci esce une volte 3

Utilijent le linomiele di Bernoull.

 $P = \binom{n}{k} p^{n-k}$

 $\binom{n}{n} = \frac{n!}{n!(n-n)!}$

N= numer di estrezioni

K= numer di successi

p= pshahilité di 1 successo

9=1-1

Le probelilité che rei 4 lenci exe une obte

3 I

$$P(\text{eva une volle 3 in 4 lanei}) = {\binom{4}{1}} \frac{1}{6} {\binom{5}{6}}^{3} = \frac{4!}{3!} \frac{1}{6} {\binom{5}{6}}^{3} = \frac{4!}{3!} \frac{1}{6} {\binom{5}{6}}^{3} = \frac{500}{1296}$$

2) Probabilité che dans 6 lanci il punteggis non sande 20the la p.

Affirche des 6 lanci il punteggis non sumle sott le d'occome de su 6 lenci esce il 3 de 2 a 6 volte.

Oppure m 6 lenci nor dere uscine il 3 1 volle vole o publi

 $P_{1}(ene 1 volte 3) n (leni) = {\binom{6}{6}} {\binom{\frac{1}{6}}{6}} = \frac{6!}{5!} \frac{1}{6} {\binom{\frac{5}{6}}{6}} = \frac{6!}{5!} \frac{1}{6} {\binom{\frac{5}{6}}{6}} = \frac{3125}{7776}$

Place o volte 3 m blaci) = $\left(\frac{5}{6}\right)^6 = \frac{15.625}{46.656}$

Le probabilité de de les clerai il poutegy, b non sande 20th lo pé il complementere de

$$P_1 + P_2 = 1$$

$$P = 1 - P_1 - P_2 = 1 - \frac{3125}{7776} - \frac{15625}{46656} = 1 - 0.4 - 0.33 = 0.27$$

QD = -34 4

Il velore del camp elettrico generato de une corica nel punto o vele $\vec{E} = Q \hat{r} \over 4\pi E_0 d^2$

de l'estenje delle cerice del punto 0

f = unore pasigine del punto - posigine carice

In modul
$$E_{A} = \frac{9}{4\pi \xi_{o}} \left(\frac{v_{i}}{z}\right)^{2} = \frac{9}{4\pi \xi_{o}} \left(\frac{V}{n\xi_{o}}\right)^{2} = \frac{9}{2\pi \xi_{o}} \left(\frac{V}{n\xi_{o}}\right)^{2}$$

$$E_{B} = \frac{2}{4\pi \xi_{o}} \left(\frac{v_{i}}{z}\right)^{2} = \frac{2}{4\pi \xi_{o}} = \frac{2}{2\pi \xi_{o}} \left(\frac{V}{n\zeta_{o}}\right)^{2}$$

$$E_{C} = \frac{4}{4\pi \xi_{o}} \left(\frac{v_{i}}{z}\right)^{2} = \frac{2}{4\pi \xi_{o}} \times 2 = \frac{2}{\pi \xi_{o}} \left(\frac{V}{n\zeta_{o}}\right)^{2}$$

$$E_{D} = \frac{3}{2\pi \xi_{o}} \left(\frac{v_{i}}{z}\right)^{2} = \frac{3}{2\pi \xi_{o}} \times 2 = \frac{3}{2\pi \xi_{o}} \left(\frac{V}{n\zeta_{o}}\right)^{2}$$

Consider one il verso del compo rel punto o

Somment i vettr.

Le risultante é dirette verticalmete (veroil boss) « Le modul $2 \times \sqrt{2} \times \frac{5}{2} = \frac{\sqrt{2}}{2} \cdot \frac{5}{17} \left(\frac{1}{n \text{ Godes}} \right)$

Quesito 2. 21

Il moto di une carice soggette ad un comp magnetic e date dalle france di Lorentz $\vec{F} = m\vec{e} = q\vec{\sigma} \times \vec{B}$

Nel nostre caso il protone accelerato de une d.d. p. = $\Delta V = 400V$ acquiste un'energie Cretice $E_c = \frac{1}{2}mv^2 = 9\Delta V$.

Essent le foze di bount, prespendicolere ella celaitail moto della carica sone circlore uniforme e le foze d' Lorenz equilibriere le foze centripage.

For Event = 4/291V B

uzuerficul Fc = Freitz

R 291 = 1 /21 DV B

Si ricere

$$B = \frac{2}{R} \frac{\Delta V}{V_{2} \frac{1}{4} \frac{1}{\Delta V_{m}}} = \frac{\sqrt{2}}{R} \frac{\sqrt{\Delta V}}{V_{\overline{q}}} \frac{V_{\overline{m}}}{q}$$

Quesito N° 8

Seems l'effets fit elettice e le legge di Planti agri fotore incidente he un' leggie prince $E = h f = 7.80 \times 10^{16} \text{ Hz} \cdot 6.63 \times 10^{-34} \text{ J} s = 5.12 \times 10^{-19} \text{ J}$ Trofemente E in it de f in eV $E = \frac{5.12 \times 10^{-19} \text{ J}}{1.6 \times 10^{-19} \text{ J/eV}} = 3.23 \text{ eV}$

Solo il Ceris he un levoro di estrazione infliene e 7.23 eV.

Al momento dell'Atrozione gli elettroni liberi

dell'etomo di Cesio possono reggingee

une relocità ciretice peri e (3.23-1.8) eV

Ec: 1.43 eV

De ani

$$\frac{1}{2}$$
 Me $V^2 = 1.43 eV = 1.47 \times 1.6 \times 10^{-19} \text{ J}$

$$U = \sqrt{\frac{2 \times 1.43 \times 1.6 \times 10^{-19}}{m_c}} = \sqrt{\frac{2 \times 1.43 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}} =$$

$$= \sqrt{\frac{2 \times 1.13 \times 1.6}{9.1}} \quad 10^{6} = 0.7 \times 10^{6} \frac{m}{5}$$