# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГАОУ ВО «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития

Кафедра инфокоммуникаций

Дисциплина: «основы кроссплатформенного программирования»

## ОТЧЕТ

# по лабораторной работе №3

Выполнил: студент 1 курса группы ИТС-21-1

Снадный Михаил Сергеевич

Проверил: к.ф.-м.н., доцент кафедры инфокоммуникаций

Воронкин Роман Александрович

|--|--|--|

Ставрополь, 2021

#### Тема:

Условные операторы и циклы в языке Python

#### Цель работы:

приобретение навыков программирования разветвляющихся алгоритмов и алгоритмов циклической структуры. Освоить операторы языка Python версии 3.х if, while, for, break и continue, позволяющих реализовывать разветвляющиеся алгоритмы и алгоритмы циклической структуры.

## Ход работы:

Создадим общедоступный репозиторий - <a href="https://github.com/peach909/3.git">https://github.com/peach909/3.git</a>
Пример 1:

```
C:\Users\Popa\anaconda3\envs\laba3\python.exe "(
Connected to pydev debugger (build 203.7148.72)

Value of x? y = -80.58788151475824

Process finished with exit code 0
```

Рисунок 1. Окно вывода для Примера 1.

#### Пример 2:

```
C:\Users\Popa\anaconda3\envs\laba3\python.exe
Введите номер месяца 8
Summer
Process finished with exit code 0
```

Рисунок 2. Окно вывода для Примера 2.

#### Пример 3:

```
C:\Users\Popa\anaconda3\envs\laba3\
Value of n? 6
Value of x? 5
S= 2.89644465760977

Process finished with exit code 0
```

Рисунок 3. Окно вывода для Примера 3.

# Пример 4:

```
C:\Users\Popa\anaconda3\envs'
Connected to pydev debugger
Value of a? >? 52
x = 7.211102550927979
X = 7.211102550927978
```

Рисунок 4. Окно вывода для Примера 4.



Рисунок 5. UML диаграмма для примера 4.

# Пример 5:

```
C:\Users\Popa\anaconda3\envs\laba3'
Value of x? 85
Ei(85.0) = 9.790723136657533e+34

Process finished with exit code 0
```

Рисунок 6. Окно вывода для Примера 5.



Рисунок 7. UML диаграмма для примера 5.

Индивидуальные задания:

Задание 1. . С клавиатуры вводится цифра (от 1 до 12). Вывести на экран название месяца, соответствующего цифре.



Рисунок 9. UML диаграмма для Задачи 1.

Задача 2. Попадёт ли точка А в окружность заданного радиуса с центром в начале координат?



Задача 3. Заданы три натуральных числа, которые обозначают число, месяц и год. Найти порядковый номер даты, начиная отсчет с начала года.



Рисунок 13. UML диаграмма для Задачи 3.

Задача повышенной сложности.

Решим эту задачу аналогично примеру номер 5. Найдем как задается текущий член ряда:

$$a_n = \frac{(-1)^n * x^{2n+1}}{(2n+1) * n!}$$

Тогда следующий член ряда будет:

$$a_{n+1} = \frac{(-1)^{n+1} * x^{2(n+1)+1}}{(2(n+1)+1)*(n+1)*n!}$$

Найдем отношение следующего и текущего членов ряда:

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(-1)^{n+1} * x^{2(n+1)+1}}{(2(n+1)+1)*(n+1)*n!}}{\frac{(-1)^n * x^{2n+1}}{(2n+1)*n!}}$$

$$= \frac{(-1)^{n+1} * x^{2(n+1)+1}}{(2(n+1)+1)*(n+1)*n!} : \frac{(-1)^n * x^{2n+1}}{(2n+1)*n!}$$

$$= \frac{(-1) * x^2 * (2n+1)}{(2n+3)*(n+1)}$$

Для вычисления рекуррентного соотношения нужно найти значения для первого члена ряда.

$$a_1 = \frac{(-1)^1 * x^{2*1+1}}{(2*1+1)*1!} = \frac{(-1)*x^3}{3}$$

C:\Users\Popa\anaconda3\envs\laba3
x = 1
erf(1.0) = 0.36885156553167675
Process finished with exit code 0

Рисунок 15. Окно вывода для задачи повышенной сложности.

#### Вывод:

Приобрёл навыки программирования разветвляющихся алгоритмов и алгоритмов циклической структуры. Освоил операторы языка Python версии 3.х if, while, for, break и continue, позволяющих реализовывать разветвляющиеся алгоритмы и алгоритмы циклической структуры.