

Classifying Physician Needed Response Questions on Online Health Forums

(Final Project of SI699: Big Data Analytics)

Kristen McGarry^{1,2}, Deahan Yu^{1,2}

¹ School of Information, ² School of Public Health, University of Michigan

Introduction

Problem: Patients seek medical advice on online platforms, but not all questions need a response from a medical professional. With rising rates of physician fatigue and the demand for physician time, it is difficult for physicians to respond to questions on these online platforms.

Solution: We created a form of 'weak Al', an automatic filter, to help sort through questions that need a doctors response.

"I have two nodules one on each side of my thyroids. my labs came back normal but the test for thyroid peroxidase ab came back <10.0 and standard range is 0-35 is this ok."

"What exercise do u plan on doing next week?"

"I had a root canal done over 2 years ago ... i get sinus pressure on the left area of my face especially above the molar with the root canal, ... and i even have swullon cheek that i can notice, which appears unidentified by others, but i feel they say this 2 make me feel better?

any suggestions?"

Data: 1,403,220 questions 2,366,387 follow-up comments Task 1: Question Labeling Task based on Comments Question Classification Task Process Task 2: Question Classification Task Question Task Question Classification Task

Task 1. Question Labeling Task

Initial Regex	Random 200 comments			
Labeled 1's and 0's	Cohen's Kappa = 0.73			
Finalized Regex	Patterns & Errors			
	precision	recall	f1-score	
~23% labeled as 1's	0.76	0.91	0.83	

Task 2. Question Classification

Pre-text processing: stopword removal & "num" for numbers

Standard Models

For our initial approach, we used a supervised learning technique with bag of words & TF-IDF (optional). Below are the top 2 performing models.

Feature Selection:

Start: 571,045 features

Chi-Squared, p-value <0.05: 29,821 features

Top Models	асс	roc/auc	prec	recall	f1
Logistic Regression	0.75	0.66	0.68	0.75	0.66
Random Forest	0.74	0.60	0.66	0.74	0.67

Top 20 Features: back, chest, condom, doctor, feel, feeling, go, heart, hiv, like, normal, pain, risk, sex, side, sometimes, started, stomach, symptoms, worse

UMLS Models

For this approach, we utilized Quick UMLS to match medical concepts to the tokenized questions. We used a supervised learning technique with bag of words & TF-IDF. Below are the top 2 performing models.

Feature Selection:

Start: 29,134 features

Chi-Squared, p-value <0.05: 7,801 features

Top Models	асс	roc/auc	prec	recall	f1
Logistic Regression	0.75	0.66	0.68	0.75	0.66
Random Forest	0.74	0.60	0.66	0.74	0.67
Logistic Regression on UMLS Cleaned Data Random Forest on UMLS Cleaned Data					

Top 20 Features from UMLS: abdominal, breathing, chest, condom, condoms, constipation, depression, discharge, dizziness, dizzy, dog, exposure, feeling, heart, medication, medications, pain, pressure, sex, stomach

Conclusions

- UMLS models performs better than standards models
 Incorporating UMLS does help
- 2. Random Forest with UMLS performs the best
- 3. But, precision still has room for improvement

Lessons

- 1. "Occam's Razor"
 - a. Sometimes the simplest model works the best
- 2. Labeling limitations and biases
 - a. Need physician's input
- 3. When working with big data, runtime is the bottleneck

Future Work

- 1. Partner with researchers to continue the project forward!
- 2. Continue training models to achieve higher support
- 3. Implement the neural network models (LSTM, CNN)
- 4. Develop "better" RegEx for question labeling task
- a. Incorporate physician's input