Compliance control, Force control Fundamentals of Robotics, Lecture 10

by Sergei Savin

Fall 2022

OPERATION SPACE

Let us consider a task $\mathbf{r}_K = \mathbf{r}_K(\mathbf{q})$. We can differentiate it twice:

$$\dot{\mathbf{r}}_K = \mathbf{J}_K \dot{\mathbf{q}} \tag{1}$$

$$\ddot{\mathbf{r}}_K = \mathbf{J}_K \ddot{\mathbf{q}} + \dot{\mathbf{J}}_K \dot{\mathbf{q}} \tag{2}$$

But remember, we know what robot dynamics is:

$$\mathbf{H}\ddot{\mathbf{q}} + \mathbf{C}\dot{\mathbf{q}} + \mathbf{g} = \tau \tag{3}$$

Expressing $\ddot{\mathbf{q}}$ and substituting it to $\ddot{\mathbf{r}}_K$ we get:

$$\ddot{\mathbf{r}}_K = \mathbf{J}_K \mathbf{H}^{-1} (\tau - \mathbf{C}\dot{\mathbf{q}} - \mathbf{g}) + \dot{\mathbf{J}}_K \dot{\mathbf{q}}$$
 (4)

OPERATION SPACE

If \mathbf{J}_K is full rank (which happens with some robot arms) we can rewrite the last equation further:

$$\ddot{\mathbf{r}}_K = \mathbf{J}_K \mathbf{H}^{-1} (\tau - \mathbf{C}\dot{\mathbf{q}} - \mathbf{g}) + \dot{\mathbf{J}}_K \dot{\mathbf{q}}$$
 (5)

$$\mathbf{H}\mathbf{J}_{K}^{-1}\ddot{\mathbf{r}}_{K} = (\tau - \mathbf{C}\dot{\mathbf{q}} - \mathbf{g}) + \mathbf{H}\mathbf{J}_{K}^{-1}\dot{\mathbf{J}}_{K}\dot{\mathbf{q}}$$
 (6)

Then we can multiply both sides by $\mathbf{J}_K^{-\top}$ and define $\mathbf{J}_K^{\top}\mathbf{f}_K = \tau$ we get:

$$\mathbf{J}_{K}^{-\top}\mathbf{H}\mathbf{J}_{K}^{-1}\ddot{\mathbf{r}}_{K} = \mathbf{J}_{K}^{-\top}\tau - \mathbf{J}_{K}^{-\top}\mathbf{C}\dot{\mathbf{q}} - \mathbf{J}_{K}^{-\top}\mathbf{g} + \mathbf{J}_{K}^{-\top}\mathbf{H}\mathbf{J}_{K}^{-1}\dot{\mathbf{J}}_{K}\dot{\mathbf{q}} \quad (7)$$

$$\mathbf{J}_{K}^{-\top}\mathbf{H}\mathbf{J}_{K}^{-1}\ddot{\mathbf{r}}_{K} = \mathbf{f}_{K} - \mathbf{J}_{K}^{-\top}\mathbf{C}\dot{\mathbf{q}} - \mathbf{J}_{K}^{-\top}\mathbf{g} + \mathbf{J}_{K}^{-\top}\mathbf{H}\mathbf{J}_{K}^{-1}\dot{\mathbf{J}}_{K}\dot{\mathbf{q}} \quad (8)$$

OPERATION SPACE DYNAMICS

We define operation space inertial matrix $\mathbf{H}_K = \mathbf{J}_K^{-\top} \mathbf{H} \mathbf{J}_K^{-1}$:

$$\mathbf{H}_K \ddot{\mathbf{r}}_K = \mathbf{f}_K - \mathbf{J}_K^{-\top} \mathbf{C} \dot{\mathbf{q}} - \mathbf{J}_K^{-\top} \mathbf{g} + \mathbf{H}_K \dot{\mathbf{J}}_K \dot{\mathbf{q}}$$
(9)

$$\mathbf{H}_K \ddot{\mathbf{r}}_K + \mathbf{J}_K^{-\top} \mathbf{C} \dot{\mathbf{q}} - \mathbf{H}_K \dot{\mathbf{J}}_K \dot{\mathbf{q}} + \mathbf{J}_K^{-\top} \mathbf{g} = \mathbf{f}_K$$
 (10)

We additionally define:

$$\mathbf{J}_{K}^{-\top}\mathbf{C}\dot{\mathbf{q}} - \mathbf{H}_{K}\dot{\mathbf{J}}_{K}\dot{\mathbf{q}} = \mathbf{C}_{K}\dot{\mathbf{r}}_{K}$$
(11)

$$\mathbf{J}_K^{-\top}\mathbf{g} = \mathbf{g}_K \tag{12}$$

Which gets us to the operation-space equations:

$$\mathbf{H}_K \ddot{\mathbf{r}}_K + \mathbf{C}_K \dot{\mathbf{r}}_K + \mathbf{g}_K = \mathbf{f}_K \tag{13}$$

OPERATION SPACE DYNAMICS

Let us look at these equations closely:

$$\mathbf{H}_K \ddot{\mathbf{r}}_K + \mathbf{C}_K \dot{\mathbf{r}}_K + \mathbf{g}_K = \mathbf{f}_K \tag{14}$$

- They tell as how the task will evolve under the influence of input forces \mathbf{f}_K
- Operation-space inertia matrix is full rank as long as J_K is full rank.
- As long as J_K is full rank, there is one-to-one correspondence between the operational space and joint space dynamics.

OPERATION SPACE - EXTERNAL FORCE

Assume the original dynamics includes external force \mathbf{f}_e with jacobian \mathbf{J}_e :

$$\mathbf{H}\ddot{\mathbf{q}} + \mathbf{C}\dot{\mathbf{q}} + \mathbf{g} = \tau + \mathbf{J}_e^{\top} \mathbf{f}_e \tag{15}$$

Then we can write the corresponding operational space dynamics:

$$\mathbf{H}_K \ddot{\mathbf{r}}_K + \mathbf{C}_K \dot{\mathbf{r}}_K + \mathbf{g}_K = \mathbf{f}_K + \mathbf{T}_e \mathbf{f}_e \tag{16}$$

where $\mathbf{T}_e = \mathbf{J}_K^{-\top} \mathbf{J}_e^{\top}$.

STIFFNESS

If external force is elastic, proportional to the displacement in \mathbf{r}_K , it can be re-written as:

$$\mathbf{f}_e = \mathbf{K}_e(\mathbf{r}_K^* - \mathbf{r}_K) = -\mathbf{K}_e \mathbf{e}_K \tag{17}$$

where $\mathbf{e}_K = \mathbf{r}_K - \mathbf{r}_K^*$ - displacement in \mathbf{r}_K and \mathbf{K}_e is a full-rank stiffness matrix.

If $\mathbf{r}_K^* = const$, then $\dot{\mathbf{e}}_K = \dot{\mathbf{r}}_K$ and $\ddot{\mathbf{e}}_K = \ddot{\mathbf{r}}_K$, and the dynamics assumes the form:

$$\mathbf{H}_K \ddot{\mathbf{e}}_K + \mathbf{C}_K \dot{\mathbf{e}}_K + \mathbf{g}_K = \mathbf{f}_K - \mathbf{T}_e \mathbf{K}_e \mathbf{e}_K \tag{18}$$

$$\mathbf{H}_K \ddot{\mathbf{e}}_K + \mathbf{C}_K \dot{\mathbf{e}}_K + \mathbf{T}_e \mathbf{K}_e \mathbf{e}_K + \mathbf{g}_K = \mathbf{f}_K \tag{19}$$

STABILITY IN OPERATIONAL SPACE

We propose Lyapunov function:

$$V = \frac{1}{2}\dot{\mathbf{e}}_K^{\top}\mathbf{H}_K\dot{\mathbf{e}}_K + \frac{1}{2}\mathbf{e}_K^{\top}\mathbf{K}_p\mathbf{e}_K$$
 (20)

Let us find its time-derivative:

$$\dot{V} = \dot{\mathbf{e}}_{K}^{\top} \mathbf{H}_{K} \ddot{\mathbf{e}}_{K} + \frac{1}{2} \dot{\mathbf{e}}_{K}^{\top} \dot{\mathbf{H}}_{K} \dot{\mathbf{e}}_{K} + \dot{\mathbf{e}}_{K}^{\top} \mathbf{K}_{p} \mathbf{e}_{K}$$

$$\dot{V} = \dot{\mathbf{e}}_{K}^{\top} \mathbf{f}_{K} - \dot{\mathbf{e}}_{K}^{\top} (\mathbf{C}_{K} \dot{\mathbf{e}}_{K} + \mathbf{T}_{e} \mathbf{K}_{e} \mathbf{e}_{K} + \mathbf{g}_{K}) +$$

$$+ \frac{1}{2} \dot{\mathbf{e}}_{K}^{\top} \dot{\mathbf{H}}_{K} \dot{\mathbf{e}}_{K} + \dot{\mathbf{e}}_{K}^{\top} \mathbf{K}_{p} \mathbf{e}_{K}$$

$$\dot{V} = \dot{\mathbf{e}}_{K}^{\top} \mathbf{f}_{K} - \dot{\mathbf{e}}_{K}^{\top} \mathbf{T}_{e} \mathbf{K}_{e} \mathbf{e}_{K} - \dot{\mathbf{e}}_{K}^{\top} \mathbf{g}_{K} + \dot{\mathbf{e}}_{K}^{\top} \mathbf{K}_{p} \mathbf{e}_{K}$$

GRAVITY COMPENSATION IN OPERATIONAL SPACE

We can propose the following control law

$$\mathbf{f}_K = \mathbf{g}_K - \mathbf{K}_p \mathbf{e}_K - \mathbf{K}_d \dot{\mathbf{e}}_K + \mathbf{T}_e \mathbf{K}_e \mathbf{e}_K$$
 (21)

where \mathbf{K}_p , \mathbf{K}_d are positive-definite matrices. Then, derivative of the Lyapunov function is:

$$\dot{V} = \dot{\mathbf{e}}_K^{\top} (\mathbf{g}_K - \mathbf{K}_p \mathbf{e}_K + \mathbf{T}_e \mathbf{K}_e \mathbf{e}_K - \mathbf{K}_d \dot{\mathbf{e}}_K) - \\ - \dot{\mathbf{e}}_K^{\top} \mathbf{T}_e \mathbf{K}_e \mathbf{e}_K - \dot{\mathbf{e}}_K^{\top} \mathbf{g}_K + \dot{\mathbf{e}}_K^{\top} \mathbf{K}_p \mathbf{e}_K \\ \dot{V} = -\dot{\mathbf{e}}_K^{\top} \mathbf{K}_d \dot{\mathbf{e}}_K$$

We can see that $\dot{V} < 0$.

GRAVITY COMPENSATION IN OPERATIONAL SPACE

We can consider the fixed points $\dot{\mathbf{e}}_K = 0$, $\ddot{\mathbf{e}}_K = 0$:

$$\mathbf{H}_K \ddot{\mathbf{e}}_K + \mathbf{C}_K \dot{\mathbf{e}}_K + \mathbf{T}_e \mathbf{K}_e \mathbf{e}_K + \mathbf{g}_K = \mathbf{g}_K - \mathbf{K}_p \mathbf{e}_K - \mathbf{K}_d \dot{\mathbf{e}}_K + \mathbf{T}_e \mathbf{K}_e \mathbf{e}_K$$
$$\mathbf{T}_e \mathbf{K}_e \mathbf{e}_K + \mathbf{g}_K = \mathbf{g}_K - \mathbf{K}_p \mathbf{e}_K + \mathbf{T}_e \mathbf{K}_e \mathbf{e}_K$$
$$0 = -\mathbf{K}_p \mathbf{e}_K$$

Since \mathbf{K}_p is full rank, therefore $\mathbf{e}_K = 0$. So, the system is asymptotically stable.

CONTROL LAW

$$\mathbf{f}_K = \mathbf{g}_K - \mathbf{K}_p \mathbf{e}_K - \mathbf{K}_d \dot{\mathbf{e}}_K + \mathbf{T}_e \mathbf{K}_e \mathbf{e}_K$$
 (22)

$$\tau = \mathbf{J}_K^{\top} \mathbf{g}_K - \mathbf{J}_K^{\top} \mathbf{K}_p \mathbf{e}_K - \mathbf{J}_K^{\top} \mathbf{K}_d \dot{\mathbf{e}}_K + \mathbf{J}_K^{\top} \mathbf{T}_e \mathbf{K}_e \mathbf{e}_K$$
 (23)

$$\tau = \mathbf{J}_{K}^{\top} \mathbf{g}_{K} + (\mathbf{J}_{K}^{\top} \mathbf{T}_{e} \mathbf{K}_{e} - \mathbf{J}_{K}^{\top} \mathbf{K}_{p}) \mathbf{e}_{K} - \mathbf{J}_{K}^{\top} \mathbf{K}_{d} \mathbf{J}_{e} \dot{\mathbf{q}}$$
(24)

$$\tau = \mathbf{J}_K^{\mathsf{T}} \mathbf{J}_K^{-\mathsf{T}} \mathbf{g} + (\mathbf{J}_K^{\mathsf{T}} \mathbf{J}_K^{-\mathsf{T}} \mathbf{J}_e^{\mathsf{T}} \mathbf{K}_e - \mathbf{J}_K^{\mathsf{T}} \mathbf{K}_p) \mathbf{e}_K - \mathbf{J}_K^{\mathsf{T}} \mathbf{K}_d \mathbf{J}_e \dot{\mathbf{q}}$$
(25)

$$\tau = \mathbf{g} + (\mathbf{J}_e^{\top} \mathbf{K}_e - \mathbf{J}_K^{\top} \mathbf{K}_p) \mathbf{e}_K - \mathbf{J}_K^{\top} \mathbf{K}_d \mathbf{J}_e \dot{\mathbf{q}}$$
 (26)

In a case when $\mathbf{J}_e = \mathbf{J}_K = \mathbf{J}$, we get:

$$\tau = \mathbf{g} + \mathbf{J}^{\top} (\mathbf{K}_e - \mathbf{K}_p) \mathbf{e}_K - \mathbf{J}^{\top} \mathbf{K}_d \mathbf{J} \dot{\mathbf{q}}$$
 (27)

CONTROL LAW

Resulting control law:

$$\tau = \mathbf{g} + \mathbf{J}^{\top} (\mathbf{K}_e - \mathbf{K}_p) \mathbf{e}_K - \mathbf{J}^{\top} \mathbf{K}_d \mathbf{J} \dot{\mathbf{q}}$$
 (28)

results in a robot acting as if the contact interaction is governed by an elastic force with stiffness matrix $\mathbf{K} = \mathbf{K}_e - \mathbf{K}_p$.

For a system with no natural elasticity \mathbf{K}_e we can still achieve elastic-like behavior by choosing \mathbf{K}_p .

READ MORE

You can read more at Siciliano, B., Sciavicco, L., Villani, L. and Oriolo, G., 2009. Robotics. Advanced textbooks in control and signal processing, Chapter 9.2

THANK YOU!

Lecture slides are available via Moodle.

You can help improve these slides at: github.com/SergeiSa/Fundamentals-of-robotics-2022

Check Moodle for additional links, videos, textbook suggestions.

