Machine Learning In Python

Subject: Unsupervised Learning

Lecturer: Reza Akbari Movahed

Hamedan University of Technology

Spring 2020

Unsupervised vs Supervised

Supervised Learning

- It contains training and testing steps.
- The training dataset has labels or Targets.
- It is used for classification and regression problems.

Unsupervised Learning

- It is performed in just one step.
- It deals with unlabelled dataset.
- It is used for clustering problems.

What is the Unsupervised Learning?

- Unsupervised learning is a machine learning technique, where you do not need to supervise the model.
- Instead, you need to allow the model to work on its own to discover information. It mainly deals with the unlabelled data.
- The goal in such unsupervised learning problems may be to discover groups of similar examples within the data, where it is called **clustering**.
- Clustering is an important concept when it comes to unsupervised learning.
- It mainly deals with finding a structure or pattern in a collection of uncategorized data.
- Clustering algorithms will process your data and find natural clusters(groups) if they exist in the data.
- You can also modify how many clusters your algorithms should identify.

What is the Unsupervised Learning?

Dataset

Number of clusters

Unsupervised
Learning
(Clustering
Algorithms)

Partitioning dataset into the clusters

Some Visual Examples

Supervised Learning (Classification Algorithm)

Some Visual Examples

Some Visual Examples

Useful Link:

https://www.guru99.com/supervised-vs-unsupervised-learning.html

Unsupervised Techniques

K-means Clustering

- K-means clustering is one of the simplest and popular unsupervised machine learning algorithms.
- It aims to partition n observations into k clusters using an iterative algorithm.

Given a set of observations $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$, where each observation is a *d*-dimensional real vector, *k*-means clustering aims to partition the *n* observations into $k \leq n$ sets $\mathbf{S} = \{S_1, S_2, ..., S_k\}$ so as to minimize the within-cluster sum of squares (WCSS) (i.e. variance). Formally, the objective is to find:

$$rg \min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2 = rg \min_{\mathbf{S}} \sum_{i=1}^k |S_i| \operatorname{Var} S_i$$

where μ_i is the mean of points in S_i . This is equivalent to minimizing the pairwise squared deviations of points in the same cluster:

$$rg \min_{\mathbf{S}} \sum_{i=1}^k \, rac{1}{2|S_i|} \, \sum_{\mathbf{x},\mathbf{y} \in S_i} \|\mathbf{x} - \mathbf{y}\|^2$$

K-means Clustering

K-means algorithm:

- 1. Specify number of clusters K.
- 2. Initialize centroids by first shuffling the dataset and then randomly selecting K data points for the centroids without replacement.
- 3. Keep iterating until there is no change to the centroids. i.e assignment of data points to clusters isn't changing.
 - Compute the sum of the squared distance between data points and all centroids.
 - Assign each data point to the closest cluster (centroid).
 - Compute the centroids for the clusters by taking the average of the all data points that belong to each cluster.

K-means Clustering

