CMSC 27100 - Problem Set 1

Sohini Banerjee

October 9, 2023

1

$$\begin{array}{cccc} A & \neg A & A \vee \neg A \\ T & F & T \\ F & T & T \end{array}$$

$\mathbf{2}$

We must demonstrate the existence and uniqueness of x when R(x) is true. We can write existence as $\exists x \in A, R(x)$. To write uniqueness, we must show that there is no y where $y \neq x$ and R(y) is true. This is equivalent to $\neg(\exists y \in A, \neg(y = x) \land R(y))$. Combining the existence and uniqueness conditions, we get that

$$\exists x \in A, R(x) \land \neg (\exists y \in A, \neg (y = x) \land R(y))$$

3

$$\bullet \ \neg (P \Rightarrow Q) = \neg (\neg P \lor Q) = \boxed{P \land \neg Q}$$

$$\bullet \ \neg ((P \lor \neg Q) \land (R \lor \neg S)) = \neg (P \lor \neg Q) \lor \neg (R \lor \neg S) = \boxed{(\neg P \land Q) \lor (\neg R \land S)}$$

•
$$\neg((P \Rightarrow Q) \Rightarrow \neg R) = \neg((\neg P \lor Q) \Rightarrow \neg R) = \neg(\neg(\neg P \lor Q) \lor \neg R) = \neg((P \lor \neg Q) \lor \neg R) = \neg((P \lor \neg Q) \land R)$$

4

- $S_2 \cup S_3 = \{1, 2, 3\}$, so $S_1 \times (S_2 \cup S_3) = \{(Red, 1), (Blue, 1), (Red, 2), (Blue, 2), (Red, 3), (Blue, 3)\}$
- $S_1 \cap S_2 = \boxed{\emptyset}$
- $S_2 \cap S_3 = \{2\}$, so $\{orange\} \times \{S_2 \cap S_3\} = \boxed{\{(orange, 2)\}}$

5

To show that $(S_1 \setminus S_2) \cup (S_2 \setminus S_3) \subseteq (S_1 \cup S_2) \setminus (S_1 \cap S_2 \cap S_3)$, we need to show that if $x \in (S_1 \setminus S_2) \cup (S_2 \setminus S_3)$, then $x \in (S_1 \cup S_2) \setminus (S_1 \cap S_2 \cap S_3)$.

Assume that $x\epsilon(S_1 \setminus S_2) \cup (S_2 \setminus S_3)$. This is equivalent to $x\epsilon(S_1 \setminus S_2)$ or $x\epsilon(S_2 \setminus S_3)$. We can break this into two cases.

Case 1: If $x\epsilon(S_1 \setminus S_2)$, then $x\epsilon S_1$ and $x \notin S_2$. If this is true, $x\epsilon(S_1 \cup S_2)$ because if $x\epsilon S_1$, then it must be an element of the union of S_1 and S_2 . Thus, if $x\epsilon(S_1 \setminus S_2)$, then $x\epsilon(S_1 \cup S_2)$. Similarly, if $x \notin S_2$, then $x \notin (S_1 \cap S_2 \cap S_3)$ because the intersection of S_1 and S_2 and S_3 must also contain elements from S_2 . Thus, if $x \notin S_2$, then $x \notin (S_1 \cap S_2 \cap S_3)$. We have shown that if $x\epsilon(S_1 \setminus S_2)$, then $x\epsilon(S_1 \cup S_2)$ and $x \notin (S_1 \cap S_2 \cap S_3)$, so if $x\epsilon(S_1 \setminus S_2)$, then $x\epsilon(S_1 \cup S_2) \setminus (S_1 \cap S_2 \cap S_3)$.

Case 2: If $x\epsilon(S_2 \setminus S_3)$, then $x\epsilon S_2$ and $x \notin S_3$. If this is true, $x\epsilon(S_1 \cup S_2)$ because if $x\epsilon S_2$, then it must be an element of the union of S_1 and S_2 . Thus, if $x\epsilon(S_2 \setminus S_3)$, then $x\epsilon(S_1 \cup S_2)$. Similarly, if $x \notin S_3$, then $x \notin (S_1 \cap S_2 \cap S_3)$ because the intersection of S_1 and S_2 and S_3 must also contain elements from S_3 . Thus, if $x \notin S_3$, then $x \notin (S_1 \cap S_2 \cap S_3)$. We have shown that if $x\epsilon(S_2 \setminus S_3)$, then $x\epsilon(S_1 \cup S_2)$ and $x \notin (S_1 \cap S_2 \cap S_3)$, so if $x\epsilon(S_2 \setminus S_3)$, then $x\epsilon(S_1 \cup S_2) \setminus (S_1 \cap S_2 \cap S_3)$.

Through both cases, we have shown that if $x \in (S_1 \setminus S_2) \cup (S_2 \setminus S_3)$, then $x \in (S_1 \cup S_2) \setminus (S_1 \cap S_2 \cap S_3)$. This proves that $(S_1 \setminus S_2) \cup (S_2 \setminus S_3) \subseteq (S_1 \cup S_2) \setminus (S_1 \cap S_2 \cap S_3)$.

6

6.1

A bijective function is both injective and surjective. Surjectivity means that for every $b\epsilon B$, there is an $a\epsilon A$ such that the function maps a to b, and injectivity means that this a is unique. As given in the problem, we have a bijective function and the sets contain n elements. If we enumerate the elements in $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_n\}$, the first element a_1 can map to any b_i element in B, a total of n elements. The next arbitrary element in A, say a_2 , can map to the remaining n-1 elements in B since injectivity means each b has a unique a, so a_2 cannot map to the element in B that a_1 has already mapped to. Continuing this pattern, the third arbitrary element has n-2 elements in B to map to, so the total number of bijections between sets A and B is n!

6.2

There is no condition that restricts what elements of A can map to in B. So, for every element in A, it has the option of mapping to any of the m elements in B. We do this for each of the n elements in A, so there are $\boxed{m^n}$ functions that map from A to B.