# UD.1 Practica 4. VPC y servidor Libre



| 1. | Crear VPC                                                                              | 3  |
|----|----------------------------------------------------------------------------------------|----|
| 2. | Crear el grupo de seguridad para internet                                              | 4  |
| 3. | Creamos instancia EC2 en la subred pública. Lanzada desde la consola                   | 5  |
| 4. | Probar que el servidor funciona, probar ACLs y conectividades                          | 6  |
| 5. | Buscar diferentes configuraciones de lanzamiento en datos de usuario: crear un fichero | 7  |
| 6. | Emplea la herramienta Reachabily analyzer para ver que todo está bien                  | 9  |
| 7. | Gateway NAT                                                                            | 9  |
| Q  | Deshahilitar Gateway NAT                                                               | 10 |

#### 1. Crear VPC

- Creamos VPC con nuestro nombre. En us-east-1 Usamos CIDR IPv4, no el IPv6. Rango de direcciones privadas: 10.10.0.0/16.
- Creamos 2 subredes (1 privada y 1 públicas) en una única AZ, con el asistente. Nombre\_privada1;
  Nombre\_publica1. Debemos tener 1 NAT gateway en la AZ



Adjunto esquema de red creado por el VPC Wizard



Creo la VPC con rango 10.10.0.0/16. Activo la opción de DNS en acciones, que me vendrá bien para luego configurar los servicios.

Compruebo los rangos y asigno la mitad de las direcciones a cada sibred



De momento no creo un internet Gateway NAT pero lo crearle manualmente después)
 Doy a crear la VPC

# 2. Crear el grupo de seguridad para internet

Creamos un grupo de seguridad "Web Security Group" que de a acceso HTTP y HTTPS
 Reglas de entrada:



Source (Origen): Anywhere (Cualquiera)

Description (Descripción): Permitir solicitudes web

### 3. Creamos instancia EC2 en la subred pública. Lanzada desde la consola

Nombre: Tunombre\_Server\_I\_P4

Ej: Ruth\_Server\_I\_P4

- tipo t2.micro
- AMI: mira en el catálogo de la comunidad, y en modelo de precios, filtra por "free"
- Para esta ocasión finalmente vamos a lanzar un Ubuntu Server
- Red y Subred: asegúrate de que está en la red/sub red adecuadas
- Auto-assign Public IP (Asignar automáticamente IP pública): Enable
- Seleccciona el grupo de Web Security Group para lanzarlo
- Emplea las claves de vockey para acceder al servidor



• En detalles avanzados pegamos lo siguiente en los datos de Usuario. (Yo he cogido Script para instalar Nginx):

#!/bin/bash yum update -y yum install -y nginx systemctl start nginx systemctl enable nginx echo "<h1>¡Bienvenido a mi servidor Nginx!</h1>" > /usr/share/nginx/html/index.html

### 4. Probar que el servidor funciona, probar ACLs y conectividades

Por defecto al crear la red se ha creado una ACL asociada a nuestras dos subredes. Pero nota: una ACL puede reutilizarse para muchas subredes.



Ahora que hemos lanzado la instancia nos aplica:

- ACL de la red
- Grupo de seguridad que hemos elegido

Probablemente tengas algún problema ... averigua cual es. Comprueba que la ACL y el web security group no entran en conflicto.

¿Qué problema ha sido y como lo has arreglado (si alguno). Se debía a que la ACL tiene permitido todos los tipos de conexiones, y la Web Security Group no.

# Debes probar conexión SSH



#### También debes probar conexión HTTP



#### Consulta los metadatos de la instancia

Los metadatos de la instancia son datos sobre la instancia. Mientras esté conectado a la instancia los puedes ver así:

En un navegador: http:// 44.223.66.67/latest/meta-data/

En una ventana de terminal: curl http://44.223.66.67/latest/meta-data/

Eh?

#### Revisa las opciones metadatos de una instancia existente mediante la consola

En la consola de Amazon EC2, selecciona la instancia-> Elija **Acciones**, **Configuración de la instancia** y **Modificar opciones de metadatos de instancia**.

Revise las opciones de metadatos de la instancia actuales en el cuadro de diálogo **Modificar las opciones de metadatos de la instancia**.



#### 5. Intenta usar la herramienta Reachabily analyzer para ver que todo está bien

Puedes crearla pero no te va a dejar...

You are not authorized to perform tiros:CreateQuery

 Administrador de redes > Analizador de accesibilidad

## 6. Gateway NAT

Si lo que queremos es salida a internet pero no entrada... necesitamos un NAT Gateway. Así que lo creamos. Al crearlo nos pone las subredes disponibles a las que podemos asociarlo.

Muy importante: UN NAT Gateway debe asociarse siempre a una subred publica. Un NAT Gateway necesita salir a internet desde una subred publica, porque solo la subred publica está conectada a internet.

Lo asociamos a la subred publica. En conectividad ponemos publica y luego le asociamos una Elastic IP. Si no tenemos una, la generamos. Una Elastic IP es una IP que nos da AWS para conectarnos a internet, sin esto no tenemos conexión a internet.



Ya tenemos nuestro NAT Gateway disponible. Ahora tenemos que hacer que nuestra red privada acceda a internet, pero que desde internet no se pueda acceder a ella. Editamos la ruta de la tabla de enrutamiento privado. Tenemos que añadir la ruta para el caso de internet:

Todo lo que vaya a internet tiene que ira al NAT Gateway. Seleccionamos el NAT Gateway que acabamos de crear (Y que además se encuentra en la subred publica 1):



Ahora, de la privada si es de la VPC permanece interno, y si es de internet, va al NAT Gateway que se encuentra en una subred publica. Desde internet no pueden ser accedidos. Prueba el servicio con la IP elástica. Para ello, sal del laboratorio y vuelve a entrar, verás que la IP es la misma.

#### 7. Deshabilitar Gateway NAT

Ojo! Los NAT Gateway cuestan 0,048 por hora=1,15 dolares al dia ... unos 30 euros al mes. Asegurate de que no tienes ninguna IP elástica contratada y de que no hay ningún Gatway NAT