- 1. 判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.
 - (1) 上海市控江中学 2022 年入学的全体高一年级新生;
 - (2) 中国现有各省的名称;
 - (3) 太阳、2、上海市;
 - (4) 大于 10 且小于 15 的有理数;
 - (5) 末位是 3 的自然数;
 - (6) 影响力比较大的中国数学家;
 - (7) 方程 $x^2 + x + 3 = 0$ 的所有实数解;
 - (8) 函数 $y = \frac{1}{x}$ 图像上所有的点;
 - (9) 在平面直角坐标系中, 到定点 (0,0) 的距离等于 1 的所有点;
 - (10) 不等式 3x 10 < 0 的所有正整数解;
 - (11) 所有的平面四边形.
- 2. 用 "∈" 或 " ∉" 填空:
 - $(1) -3_{--}N;$
 - $(2) \ 3.14_{\mathbf{Q}};$
 - (3) 5___**Z**;
 - (4) $\frac{1}{2}$ _N;
 - $(5) -2_{\mathbf{Q}};$

 - (6) π ___R; (7) $0.\dot{1}\dot{3}$ __Q; (8) $\frac{1}{\sqrt{2}-1} \sqrt{2}$ __Z; (9) $\frac{\pi}{2}$ _Q; (10) $\frac{1}{1 \frac{1}{1 \frac{1}{2}}}$ _N;
 - $(11) 0 \varnothing;$
 - (12) 0___**N**.
- 3. 对于一个确定的实数 x, 由 x, -x, |x|, $-\sqrt{x^2}$ 中的一个值或几个值组成的所有集合中, 元素的个数最多有多 少个?
- 4. 已知关于 x 的方程 $\sqrt{x^2+4x+a}=x+2$,若以该方程的所有解为元素组成的集合是无限集,求实数 a 满足 的条件.
- 5. 用列举法表示下列集合:
 - (1) 12 以内的素数组成的集合;
 - (2) 绝对值小于 3 的所有整数的集合;
 - (3) $\{x | \frac{6}{3-x} \in \mathbf{N}, \ x \in \mathbf{Z}\};$
 - (4) $\{y|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\};$

- (5) $\{(x,y)|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\};$
- (6) $\{(x,y)|x+y=5, x \in \mathbb{N}, y \in \mathbb{N}\}.$
- 6. 用描述法表示下列集合:
 - (1) 所有奇数组成的集合;
 - (2) 被 3 除余数等于 2 的正整数的集合;
 - (3) 不小于 10 的实数组成的集合;
 - (4) 绝对值大于 4 的所有整数组成的集合;
 - (5) 平面直角坐标系内 y 轴上的点的坐标组成的集合;
 - (6) 在直线 y = 2x + 1 上所有的点的坐标组成的集合.
- 7. 用区间表示下列集合:
 - (1) $\{x | -2 < x < 7\};$
 - (2) $\{x | -2 \le x \le 7\};$
 - (3) $\{x | -2 \le x < 7\};$
 - (4) 不等式 2x < 5 的解集;
 - (5) 不等式 -x < 5 的解集;
 - (6) 非负实数集.
- 8. 用适当的方法表示下列集合:
 - (1) 能整除 10 的所有正整数组成的集合;
 - (2) 能整除 10 的所有正整数组成的集合;
 - (3) 方程 $x^2 + 2 = 0$ 的实数解组成的集合;

(4) 方程组
$$\begin{cases} 2x + y = 0, & \text{的所有解组成的集合:} \\ x - y + 3 = 0 & \end{cases}$$

- (5) 两直线 y = 2x + 1 和 y = x 2 的交点组成的集合.
- 9. 下面写法正确的有_____
 - ① $\emptyset \in \{a\}; ② (0,1) \in \{0,1\}; ③ 1 \in \{(0,1)\}; ④ (0,1) \in \{(0,1)\}; ⑤ 0 \in \{0,1\}; ⑥ 0 \notin \{0,1\}.$
- 10. 集合 $\{(x,y)|xy \ge 0, x \in \mathbb{R}, y \in \mathbb{R}\}$ 是指 ().
 - A. 第一象限内的所有点

- B. 第三象限内的所有点
- C. 第一象限和第三象限内的所有点
- D. 不在第二象限、第四象限内的所有点
- 11. 若集合 $M = \{0, 2, 3, 7\}, P = \{x | x = ab, a, b \in M, a \neq b\}$. 用列举法写出集合 P.
- 12. 已知集合 $A = 2, a^2, a,$ 且 $1 \in A,$ 求实数 a 的值.
- 13. 设集合 $M = \{a | a = x^2 y^2, x, y \in \mathbb{Z}\}$, 下列数中不属于 M 的为 ().
 - A. 3

B. 6

C. 9

D. 12

- 14. 已知集合 $A = \{x | x = a + \sqrt{2}b, \ a, b \in \mathbf{Z}\},$ 若 $x_1, x_2 \in A$, 证明: $x_1x_2 \in A$.
- 15. 已知集合 $A = \{x | (k+1)x^2 + x k = 0\}$ 中只有一个元素, 求实数 k 的值.
- 16. 用符号 "⊂"、"=" 或 "⊃" 填空:
 - (1) $\{a\}$ _____ $\{a,b,c\}$;
 - (2) $\{a, b, c\}$ ____ $\{a, c\}$;
 - (3) $\{1,2\}$ ____ $\{x|x^2-3x+2=0\};$
 - (4) $A = \{x|x^2 2x + 1 = 0\}$ _____B = $\{x|x^2 + 2x 3 = 0\}$;
 - (5) $A = \{1, 2\}$ _____B = $\{x | x \neq 2 \text{ neg } b\}$;
 - (6) $A = \{(x,y)|xy > 0\}$ _____B = $\{(x,y)|x > 0, y > 0\}$.
- 17. (1) 集合 $\{1,2,3\}$ 的子集共有______ 个. (2) 已知集合 $A = \{1,2\}$, 集合 $B = \{1,2,3,4,5\}$. 若集合 M 满足 $A \subset M$ 且 $M \subseteq B$, 则这样的集合 M 有_____ 个. (3) 满足 $\{a,b\} \subset M \subset \{a,b,c,d,e\}$ 的集合 M 有______ 个.
- 18. (1) 下列写法正确的有_____
 - ① $\varnothing \subset \{0\};$ ② $\varnothing = \varnothing;$ ③ $\varnothing \in \{0\};$ ④ $0 \in \varnothing.$
 - (2) 下列各选项中, M 与 P 表示同一个集合的有_____.
 - ① $M = \{(1, -3)\}, P = \{(-3, 1)\};$ ② $M = \{1, -3\}, P = \{-3, 1\};$ ③ $M = \emptyset, P = \{\emptyset\};$ ④ $M = \{y|y = x^2 + 1, x \in \mathbf{R}\}, P = \{(x, y)|y = x^2 + 1, x \in \mathbf{R}\};$ ⑤ $M = \{y|y = x^2 + 1, x \in \mathbf{R}\}, P = \{t|t = y^2 + 1, y \in \mathbf{R}\};$
 - (6) $M = \{y | y = x^2 + 1, x \in \mathbf{R}\}, P = \{x | y = \sqrt{x 1}, x \in \mathbf{R}\}.$
 - (3) 下列说法正确的有_____
 - ① 若 $a \in A$ 且 $A \subseteq B$, 则 $a \in B$; ② 若 $A \subseteq B$ 且 $A \subseteq C$, 则 B = C; ③ 若 $A \subset B$ 且 $B \subseteq C$, 则 $A \subset C$.
- 19. 设常数 $x, y \in \mathbb{R}$, 已知集合 $A = \{x, y\}, B = \{2x, x^2\}, \mathbb{L}$ A = B, 求集合 A.
- 20. (1) 证明: 集合 $A = \{1, 2, 3\}$ 是集合 $B = \{0, 1, 2, 3, 4, 5, 6\}$ 的子集.
 - (2) 判断集合 $A = \{n | n = 2k 1, k \in \mathbb{Z}\}, B = \{n | n = 2m + 1, m \in \mathbb{Z}\}$ 的关系, 并说明理由;
 - (3) 证明集合 $A = \{n | n = 2k 1, k \in \mathbb{N}\}$ 不是集合 $B = \{n | n = 2m + 1, m \in \mathbb{N}\}$ 的子集, 且集合 A 真包含集合 B.
- 21. 已知集 $B = \{0, 2, 4\}, C = \{0, 2, 6\},$ 若集合 A 满足 $A \subseteq B, A \subseteq C,$ 写出所有满足条件的集合 A.
- 22. 已知集合 $A = \{1\}, B = \{x | x \subseteq A\},$ 用列举法表示集合 B. 并指出 A 与 B 的关系.