Modern Statistical Modeling

Lectured by Wei Lin

LaTeXed by Chengxin Gong

2023年3月3日

目录

1 Prediction and Nearest Neighbor

 $\mathbf{2}$

1 Prediction and Nearest Neighbor

- Goal: (1) predict y from x ("black box"); (2) which variable(s) in x contributes to the prediction of y (" $x^T\beta$ "), estimation, testing, variable selection.
- Why are prediction and estimation different: (1) model parameters; (2) identifiability $(f_{\theta_1} \neq f_{\theta_2} \Rightarrow \theta_1 \neq \theta_2)$.
- Find prediction function $f: \mathcal{X} \to \mathcal{Y}$ that minimizes $\mathbb{E}_{X,Y} \mathcal{L}(f(X), Y) = \mathbb{E}\{\mathbb{E}(\mathcal{L}(f(X), Y)|X)\}$ where loss function $\mathcal{L}: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.
- Optimal predictor conditioned on x: $f^*(x) = \arg\min_{f(x) \in \mathcal{V}} \mathbb{E}\{\mathcal{L}(f(X), Y) | X = x\}$.
- Regression: y numerical, squared error $(L_2$ -loss) $\mathcal{L}(\hat{y}, y) = (\hat{y} y)^2$, $\mathbb{E}\{(Y f(X))^2 | X\} = \{\mathbb{E}(Y|X) f(X)\}^2 + \mathbb{E}\{(Y \mathbb{E}(Y|X))^2 | X\} = \text{bias}^2 + \text{variance. Optimal } f^*(X) = \mathbb{E}(Y|X).$
- To model f^* , $\begin{cases} \text{parametric: linear}, f*(x) = x^T\beta, \beta \in \mathbb{R}^2 \\ \text{nonparametric: infinite dimension}, f^*(x) = m(x), m \text{ satisfying certain smoothness} \end{cases}$.
- Classification: 0-1 loss $\mathcal{L}(\hat{y}, y) = I(\hat{y} = y)$, $\mathbb{E}\{\mathcal{L}(h(X), Y) | X = x\} = \sum_{j \neq h(x)} P(Y = j | X = x) = 1 P(Y = h(X) | X = x)$. Optimal classification (Bayes classifier): $h^*(x) = \arg \max_{h(x) \in \mathcal{V}} P(Y = h(X) | X = x)$.
- A fully nonparametric approach: k nearest neighbor (k-NN). Given training data $\{(x_i, y_i)\}_{i=1}^m$, use data "around" x to estimate $m(x) = \mathbb{E}(Y|X=x)$. Rationale: "Things that look alike must be alike". Classification: $h_{k\text{-NN}}(x) = \max_{i=1}^n (x_i) = \min_{i=1}^n (x_i) = \min_{i=1}^n$
- Theory for 1-NN: Consider binary classification: $\mathcal{Y} = \{0,1\}$, $\mathcal{L}(h(x),y) = I(h(x) \neq y)$. Assume $\mathcal{X} \subset [-1,1]^d$, ρ Euclidean distance, $S = \{(x_i,y_i)\}_{i=1}^n$. $\forall x \in \mathcal{X}$, let $\pi_1(x), \dots, \pi_n(x)$ be an ordering of $\{1,\dots,n\}$ with increasing distance to x. $\eta(x) = \mathbb{E}(Y = 1|X = x)$. Bayes classifier: $h^*(x) = I(\eta(x) > \frac{1}{2})$. Assumption on η : η is c-Lipschitz for some c > 0. Goal: Derive an upper bound on $\mathbb{E}_{S \sim \mathcal{D}^n} \mathcal{L}(\hat{h}_S) = \mathbb{E}_{S \sim \mathcal{D}^n} \mathbb{E}_{(x,y) \sim \mathcal{D}} I(\hat{h}_S(x) \neq y)$.
- Lemma 1.1 The 1-NN rule \hat{h}_S satisfies $\mathbb{E}_{S \sim \mathcal{D}^n} \mathcal{L}(\hat{h}_S) \leq 2\mathcal{L}(h^*) + c\mathbb{E}_{S \sim \mathcal{D}^n, x \sim \mathcal{D}} ||x x_{\pi_1}(x)||$.

Proof $\mathbb{E}_{S}\mathcal{L}(\hat{h}_{S}) = \mathbb{E}_{S_{x} \sim \mathcal{D}_{x}^{n}, x \sim \mathcal{D}_{x}, y \sim \eta(x), y' \sim \eta(\pi_{1}(x))} P(y \neq y')$. Note that $P(y \neq y') = \eta(x')(1 - \eta(x)) + (1 - \eta(x'))\eta(x) = (\eta - \eta + \eta')(1 - \eta) + (1 - \eta + \eta - \eta')\eta = 2\eta(1 - \eta) + (\eta - \eta')(2\eta - 1)$. Since η is c-Lipschitz and $|2\eta - 1| \leq 1$, $P(y \neq y') \leq 2\eta(1 - \eta) + c||x - x'||$. Substituting back, $\mathbb{E}_{S}\mathcal{L}(\hat{h}_{S}) \leq 2\mathbb{E}_{x}\eta(x)(1 - \eta(x)) + c\mathbb{E}_{S,x}||x - x_{\pi_{1}(x)}||$. The Bayes error $\mathcal{L}(h^{*}) = \mathbb{E}_{x}\{\eta(x) \wedge (1 - \eta(x))\} \geq \mathbb{E}_{x}(\eta(x)(1 - \eta(x)))$.

• Lemma 1.2 Let C_1, \dots, C_r be a collection of subsets of \mathcal{X} . Then $\mathbb{E}_{S \sim \mathcal{D}^n} \{ \sum_{i:C_i \cap S = \emptyset} \} P(C_i) \leq \frac{r}{ne}$ ("probability of subsets that not hit by S").

Proof By linearity, $\mathbb{E}_S\{\sum_{i:C_i\cap S=\emptyset}P(C_i)\}=\sum_{i=1}^rP(C_i)\mathbb{E}_SI(C_i\cap S=\emptyset)=\sum_{i=1}^rP(C_i)P(C_i\cap S=\emptyset)$. Note that $P(C_i\cap S=\emptyset)=(1-P(C_i))^n\leq e^{-nP(C_i)}$. Thus, LHS $\leq \sum_{i=1}^rP(C_i)e^{-nP(C_i)}\leq r\max P(C_i)e^{-nP(C_i)}\leq r\min P(C_i)e^{-nP(C_i)}$