Optimizing double-base elliptic curve single-scalar multiplication

(Joint work with Daniel J. Bernstein, Peter Birkner, Tanja Lange)

Christiane Peters

Technische Universiteit Eindhoven

DIAMANT/EIDMA Symposium November 29, 2007

Motivation: Elliptic Curve Cryptography

Given a finite field \mathbb{F}_p , an elliptic curve E over \mathbb{F}_p and a point P of high order on E, there is the Elliptic Curve Diffie-Hellman key exchange

- Alice and Bob choose $a,b\in\mathbb{F}_p$ privately,
- ullet exchange [a]P and [b]P
- ullet and agree on a public key [ab]P=[a]([b]P)=[b]([a]P).

Question: How do Alice and Bob perform all those scalar multiplications **efficiently**?

Speed-up techniques for elliptic-curve single-scalar multiplication

- choose different curve shapes (e.g. Edwards curves, Weierstrass form)
- choose different coordinate systems (e.g. inverted Edwards coordinates, Jacobian coordinates)
- use sliding-window methods
- use double-base chains

1. Edwards curves

2. Other curve shapes and coordinate systems

3. Double-base number systems

4. Experiments and results

Definition

An elliptic curve E in Edwards form over \mathbb{F}_p where $p\geq 3$ is given by the equation

$$x^2 + y^2 = 1 + dx^2y^2,$$

where $d \in \mathbb{F}_p \setminus \{0, 1\}$.

From now on we will call a curve in this shape an Edwards curve.

That's the way it looks over $\mathbb R$

Addition on Edwards curves

We add two points (x_1, y_1) , (x_2, y_2) on E according to the Edwards addition law

$$(x_1, y_1), (x_2, y_2) \mapsto \left(\frac{x_1y_2 + x_2y_1}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right).$$

- The addition law is strongly unified, i.e., it can be also used for doublings.
- ullet If d is a non-square in \mathbb{F}_p the addition law is complete.
- ullet The point (0,1) is the neutral element of the addition law and
- the negative of $P = (x_1, y_1)$ is $-P = (-x_1, y_1)$.

Explicit fast doubling and tripling formulas

Doubling of a point (x_1, y_1) on $x^2 + y^2 = 1 + dx^2y^2$:

$$[2](x_1, y_1) = \left(\frac{2x_1y_1}{1 + dx_1^2y_1^2}, \frac{y_1^2 - x_1^2}{1 - dx_1^2y_1^2}\right)$$
$$= \left(\frac{2x_1y_1}{x_1^2 + y_1^2}, \frac{y_1^2 - x_1^2}{2 - (x_1^2 + y_1^2)}\right).$$

Tripling:

$$\begin{aligned} &[3](x_1,y_1) = \\ &\left(\frac{((x_1^2+y_1^2)^2-(2y_1)^2)}{4(x_1^2-1)x_1^2-(x_1^2-y_1^2)^2}x_1, \frac{((x_1^2+y_1^2)^2-(2x_1)^2)}{-4(y_1^2-1)y_1^2+(x_1^2-y_1^2)^2}y_1\right). \end{aligned}$$

Avoiding inversions

To avoid inversions we consider the homogenized Edwards equation

$$E: (X^2 + Y^2)Z^2 = (Z^4 + dX^2Y^2)$$

A point $(X_1:Y_1:Z_1)$ with $Z_1\neq 0$ on E corresponds to the affine point $(X_1/Z_1,Y_1/Z_1)$.

Bernstein/Lange (2007): Inverted Edwards coordinates

A point $(X_1 : Y_1 : Z_1)$ on

$$(X_1^2 + Y_1^2)Z_1^2 = X_1^2 Y_1^2 + dZ_1^4$$

where $X_1Y_1Z_1 \neq 0$ corresponds to $(Z_1/X_1,Z_1/Y_1)$ on the Edwards curve $x_1^2+y_1^2=1+dx_1^2y_1^2$.

Avoiding inversions

To avoid inversions we consider the homogenized Edwards equation

$$E: (X^2 + Y^2)Z^2 = (Z^4 + dX^2Y^2)$$

A point $(X_1:Y_1:Z_1)$ with $Z_1\neq 0$ on E corresponds to the affine point $(X_1/Z_1,Y_1/Z_1)$.

Bernstein/Lange (2007): Inverted Edwards coordinates

A point $(X_1 : Y_1 : Z_1)$ on

$$(X_1^2 + Y_1^2)Z_1^2 = X_1^2 Y_1^2 + dZ_1^4$$

where $X_1Y_1Z_1 \neq 0$ corresponds to $(Z_1/X_1,Z_1/Y_1)$ on the Edwards curve $x_1^2+y_1^2=1+dx_1^2y_1^2$.

1. Edwards curves

2. Other curve shapes and coordinate systems

3. Double-base number systems

4. Experiments and results

Weierstrass form over \mathbb{F}_p $(p \geq 5)$

Short Weierstrass form $E: y^2 = x^3 + a_4x + a_6$ with $a_4, a_6 \in \mathbb{F}_p$, and $4a_4^3 + 27a_6^2 \neq 0$.

Jacobian coordinates: $(X_1:Y_1:Z_1)$ satisfying

$$Y_1^2 = X_1^3 + a_4 X_1 Z_1^2 + a_6 Z_1^6$$

corresponds to $(x_1, y_1) = (X_1/Z_1^2, Y_1/Z_1^3)$ on E.

The choice $a_4 = -3$ leads to the fastest arithmetic for curves in Jacobian coordinates.

More coordinate systems

- Jacobi quartics $Y^2 = X^4 + 2aX^2Z^2 + Z^4$,
- Hessian curves $X^3 + Y^3 + Z^3 = 3dXYZ$,
- Jacobi intersections $S^2+C^2=Z^2, aS^2+D^2=Z^2$,
- "tripling-oriented Doche/Icart/Kohel curves" $Y^2 = X^3 + a(X+Z^2)^2Z^2$.

Comparison

 \mathbf{M} : general multiplications, \mathbf{S} : squarings, \mathbf{D} multiplications by d

Curve shape	ADD	mADD	DBL	TRI
3DIK	11M + 6S	7M + 4S	2M + 7S	$6\mathbf{M} + 6\mathbf{S}$
Edwards	10M + 1S	$9\mathbf{M} + 1\mathbf{S}$	3M + 4S	$9\mathbf{M} + 4\mathbf{S}$
ExtJQuartic	$8\mathbf{M} + 3\mathbf{S}$	7M + 3S	3M + 4S	4M + 11S
Hessian	12M + 0S	10M + 0S	7M + 1S	$8\mathbf{M} + 6\mathbf{S}$
InvEdwards	$9\mathbf{M} + 1\mathbf{S}$	$8\mathbf{M} + 1\mathbf{S}$	3M + 4S	$9\mathbf{M} + 4\mathbf{S}$
JacIntersect	13M + 2S	11M + 2S	3M + 4S	4M + 10S
Jacobian	11M + 5S	7M + 4S	1M + 8S	$5\mathbf{M} + 10\mathbf{S}$
Jacobian-3	11M + 5S	7M + 4S	3M + 5S	7M + 7S
Std-Jac	12M + 4S	$8\mathbf{M} + 3\mathbf{S}$	$3\mathbf{M} + 6\mathbf{S}$	$9\mathbf{M} + 6\mathbf{S}$
Std-Jac-3	$12\mathbf{M} + 4\mathbf{S}$	$8\mathbf{M} + 3\mathbf{S}$	4M + 4S	$9\mathbf{M} + 6\mathbf{S}$

For details consider the Explicit-formulas database. http://www.hyperelliptic.org/EFD.

1. Edwards curves

2. Other curve shapes and coordinate systems

3. Double-base number systems

4. Experiments and results

Given $n \in \mathbb{Z}$, compute [n]P

```
single-base: e.g. "signed double-and-add": n=\sum_{i\geq 1}c_i2^i with c_i\in\{0,\pm 1\} Example:
```

314159*P*

Double-bases: base $\{2,3\}$

We express $n\in\mathbb{Z}$ as $\sum_{i\geq 1}c_i2^{a_i}3^{b_i}$ with e.g. $c_i=\pm 1$, i.e. we express the point [n]P as a sum of few points $[c_i2^{a_i}3^{b_i}]P$.

Dimitrov, Imbert and Mishra at Asiacrypt 2005:

$$a_1 \geq a_2 \geq a_3 \geq \ldots, \qquad b_1 \geq b_2 \geq b_3 \geq \ldots$$

 \Rightarrow Horner-like evaluation: only a_1 doublings and b_1 triplings needed.

Double-bases: base $\{2,3\}$

We express $n \in \mathbb{Z}$ as $\sum_{i \geq 1} c_i 2^{a_i} 3^{b_i}$ with e.g. $c_i = \pm 1$,

i.e. we express the point [n]P as a sum of few points $[c_i2^{a_i}3^{b_i}]P$.

Dimitrov, Imbert and Mishra at Asiacrypt 2005:

$$a_1 \ge a_2 \ge a_3 \ge \dots, \qquad b_1 \ge b_2 \ge b_3 \ge \dots$$

 \Rightarrow Horner-like evaluation: only a_1 doublings and b_1 triplings needed.

$$\begin{split} 314159P &= 2^{15}3^2P + 2^{11}3^2P + 2^83^1P + 2^43^1P - 2^03^0P \\ &= 3(2(2(2(2(2(2(2(2(2(2(2(2(2(P)))) + P)))) + P)))) - P \end{split}$$

Expansion of the coefficient set

Doche and Imbert at Indocrypt 2006: additionally to $a_1 \geq a_2 \geq \ldots$, $b_1 \geq b_2 \geq \ldots$ in $n = \sum_{i \geq 1} c_i 2^{a_i} 3^{b_i}$ choose $c_i, -c_i$ from one of the sets

$$\{1\}, \{1, 2, 2^2, 3, 3^2\}, \dots, \{1, 2, \dots, 2^4, 3, \dots, 3^4\},$$

 $\{1, 5, 7\}, \dots \{1, 5, 7, 11, 13, 17, 19, 23, 25\}.$

"Sliding-windows double-base-2-and-3":

$$\begin{split} 314159P &= 2^{12}3^33P - 2^73^35P - 2^43^17P - 2^03^0P \\ &= 3(2(2(2(2(3(3(2(2(2(2(2(2(2(3(P))))) - 5P))))) - 7P))))) - P \end{split}$$

Bernstein/Birkner/Lange/P. 2007:

- more coordinate systems,
- inversion-free precomputations,
- new faster formulas for arithmetic for different coordinate systems,
- larger variety of coefficient sets *S*:

```
\begin{split} \{1\},\ &\{1,2,3\},\{1,2,3,4,9\},\dots\{1,2,3,4,8,9,16,27,81\},\\ &\{1,5\},\{1,5,7\},\dots,\{1,5,7,11,13,17,19,23,25\},\\ &\{1,2,3,5\},\ &\{1,2,3,5,7\},\dots\{1,2,3,5,7,9,11,13,15,17,19,23,25\} \end{split}
```

1. Edwards curves

2. Other curve shapes and coordinate systems

3. Double-base number systems

4. Experiments and results

Finding the chain $n = \sum_{i>1} c_i 2^{a_i} 3^{b_i}$

Generalize how to find Thurber's base-2 sliding-window chain $\sum_i c_i 2^{a_i}$ with $\pm c_i \in \{1,3,5,7\}$ and $a_1 > a_2 > a_3 > \dots$:

Check which of the first bits of

$$\pm 1$$
, ± 2 , $\pm 2^2$, $\pm 2^3$, $\pm 2^4$, ...
 ± 3 , $\pm 2 \cdot 3$, $\pm 2^2 3$, $\pm 2^3 3$, $\pm 2^4 3$, ...
 ± 5 , $\pm 2 \cdot 5$, $\pm 2^2 5$, $\pm 2^3 5$, $\pm 2^4 5$, ...
 ± 7 , $\pm 2 \cdot 7$, $\pm 2^2 7$, $\pm 2^3 7$, $\pm 2^4 7$, ...

is closest to n.

Vary maximal power of 2 and 3 in the representation.

Upper bounds $a_0 \ge a_1$, $b_0 \ge b_1$: For an ℓ -bit number n, we choose $0 \le a_0 \le \ell$, $b_0 = \lceil (\ell - a_0) / \lg 3 \rceil$.

Optimal parameters for each curve shape for $\ell=200$

We assume 1S = 0.8M and D = 0M.

Curve shape	Mults	a_0	a_0/ℓ	S
3DIK	1879.200960	100	0.5	$\{1, 2, 3, 5, 7\}$
Edwards	1642.867360	196	0.98	$\{1, 2, 3, 5, \dots, 15\}$
ExtJQuartic	1628.386660	196	0.98	$\{1, 2, 3, 5, \dots, 15\}$
Hessian	1939.682780	120	0.6	$\{1, 2, 3, 5, \dots, 13\}$
InvEdwards	1603.737760	196	0.98	$\{1, 2, 3, 5, \dots, 15\}$
JacIntersect	1784.742	190	0.95	$\{1, 2, 3, 5, \dots, 15\}$
Jacobian	1937.129960	130	0.65	$\{1, 2, 3, 5, \dots, 13\}$
Jacobian-3	1868.530560	130	0.65	$\{1, 2, 3, 5, \dots, 13\}$

We got similar results for $\ell = 160, 256, 300, 400, 500$.

 $\mathbf{M}:$ general multiplications, $\mathbf{S}:$ squarings, \mathbf{D} multiplications by d

Choice of a_0 for $\ell = 200$

Conclusions

- For curves in Jacobian coordinates, tripling-oriented Doche/Icart/Kohel curves, Hessian curves we recommend using double-bases
- for Edwards curves, Jacobi intersections, extended Jacobi-quartic coordinates, and inverted Edwards coordinates we recommend single-bases

The latter use

- larger sets of precomputations,
- and fewer triplings,
- fast addition laws (precomputations less costly)
- and in particular very fast doublings.