MPEG Requirements of 3D Video and Occlusion-Adaptive Unidirectional DCVF

Pravin Kumar Rana

Sound and Image Processing Lab.(SIP)

KTH - Royal Institute of Technology

SE-10044 Stockholm, Sweden

Outline

- Part –I
 - Requirements of 3D Video
 - Reference Softwares
- Part –II
 - Occlusion-Adaptive Unidirectional DCVF
 - Experiments
- Present Scenario and Scope for Improvement

Part -I

MPEG Requirements of 3D Video

MPEG Requirements of 3D Video

MPEG Requirements of 3D Video

MPEG Reference Software

- Philips –Zhejiang Reference Software(LDVRS)
- Thomson Reference Software(ViSBD)
- Nagoya Reference Software(DERS, VSRS)

Philips-Zhejiang Reference Software

- Warping : The foreground view and background view are warped to the virtual view with foreground and background depth, respectively.
- Merge : The warped foreground view and warped background view are merged.
- Hole Filing: Remaining marked pixels as hole pixels after merge process in the rendered view are filled by Inpainting Technique.

Thomson Reference Software

View Synthesis Based on Disparity 1.0 (ViSBD 1.0)

- ViSDB 2.0 (October 2008, Busan, Korea)
 - Reference View Upsampling
 - Boundary-aware Splatting
 - Smart Blending Method
 - Occlusion Layer Generation

Nagoya Reference Software

<u>Depth Estimation Reference Software 3.0</u>
(DERS 3.0)

Nagoya Reference Software

Reference Software Performance

Reference: MPEG2008/M16040, February 2009, Lausanne, Switzerland

Average PSNR of Book Arrival synthesized view 8 by the three software

Average PSNR of Dog synthesized view 39 by the three software

Champagne Tower View 39

Average PSNR of Champagne tower view 39 by the three software

Courtesy: Ericsson & MPEG 2009-09-10 11

Part -II

Occlusion-Adaptive Unidirectional DCVF

Effect of Occlusion

Well-Defined Disparity Field

Left view

Right view

Undefined Disparity Field

 A pixel with undefined disparity field information affects energy compaction in the DCVF

Transform Modes

Unidirectional Mode

- It is incremental orthogonal transform;
- It is implemented to handle pixels with well-defined unidirectional disparity information.

Identity Mode

- It is identity transform;
- It is implemented to handle pixels with undefined disparity information (i.e., occlusion).
- Criteria for Switching between Modes
 - Unidirectional Mode

Left view

Right view

Transform Modes

Unidirectional Mode

- It is incremental orthogonal transform;
- It is implemented to handle pixels with well-defined unidirectional disparity information.

Identity Mode

- It is identity transform;
- It is implemented to handle pixels with undefined disparity information (i.e., occlusion).
- Criteria for Switching between Modes
 - Identity Mode

Right view

Occlusion Detection

Ş

High Band Energy Minimization Algorithm

E_U = Energy of the pixel in the high band in unidirectional mode

E₁ = Energy of the pixel in the second view in the identity mode

Occlusion-Adaptive Unidirectional DCVF

Pantomime

common view

high band III

high band II

high band I

pantomime 39

pantomime 40

pantomime 41

pantomime 42

Champagne Tower

common view

high band III high band II high band I

champagne tower 39

champagne tower 40

champagne tower 41

champagne tower 42

Dog

Performance Comparison

	Disparity Compensated View Filters	
Video Data	Energy Ratio(%) (Non-occlusion Adaptive)	Energy Ratio(%) (Occlusion-Adaptive)
Pantomime	0.30	0.27
Champagne Tower	0.24	0.20
Dog	1.65	0.50

Present Scenario and Scope for Improvement

Present Scenario

- Depth estimation just form two views
- Depth in MVD is not consistent
- LDV just distinguishes between foreground and background.

Scope for Improvement

- Multi-resolution depth estimation
- Consistence depth information across many scales
- Minimize impact of hole filling / inpainting

