Hamiltonian Monte-Carlo for Orthogonal Matrices

Victor Yanush¹ Dmitry Kropotov ²

¹Samsung-HSE Laboratory ²Moscow State University

Motivation

Unitary Recurrent neural network¹ (uRNN):

$$egin{aligned} h_t &= \sigma(Wh_{t-1} + Vx_t + b) \ y_t &= Uh_t + c \ W &\in \{X \in \mathbb{C}^{n \times n} \mid X^*X = I_n\} \text{ i.e. unitary matrix} \end{aligned}$$

Properties:

- solves vanishing/exploding gradients
- beats LSTM on sequence copy and pixel-by-pixel MNIST classification problems
- ▶ in theory can process arbitrary length dependencies

We can replace unitarity for orthogonality for simplicity

¹Wisdom, Scott, et al. "Full-capacity unitary recurrent neural networks."

Proof of norm preservation

By chain rule:

$$\frac{\partial L}{\partial h_t} = \frac{\partial L}{\partial h_T} \frac{\partial h_T}{\partial h_t} = \frac{\partial L}{\partial h_T} \prod_{k=t}^{T-1} \frac{\partial h_{k+1}}{\partial h_k} = \frac{\partial L}{\partial h_T} \prod_{k=t}^{T-1} D_{k+1} W^T,$$

where $D_{k+1} = diag(\sigma'(z_{k+1}))$.

Gradient norm:

$$\begin{split} \left\| \frac{\partial L}{\partial h_t} \right\| &= \left\| \frac{\partial L}{\partial h_T} \prod_{k=t}^{T-1} D_{k+1} W^T \right\| \le \left\| \frac{\partial L}{\partial h_T} \right\| \prod_{k=t}^{T-1} \| D_{k+1} W^T \| \\ &= \left\| \frac{\partial L}{\partial h_T} \right\| \prod_{k=t}^{T-1} \| D_{k+1} \| \\ \text{where } \| D_k \| &= \max_{i=1,\dots,n} |\sigma'(z_k^{(i)})|, \end{split}$$

Proof of norm preservation

By chain rule:

$$\frac{\partial L}{\partial h_t} = \frac{\partial L}{\partial h_T} \frac{\partial h_T}{\partial h_t} = \frac{\partial L}{\partial h_T} \prod_{k=t}^{T-1} \frac{\partial h_{k+1}}{\partial h_k} = \frac{\partial L}{\partial h_T} \prod_{k=t}^{T-1} D_{k+1} W^T,$$

where $D_{k+1} = \operatorname{diag}(\sigma'(z_{k+1}))$.

Gradient norm:

$$\left\| \frac{\partial L}{\partial h_t} \right\| = \left\| \frac{\partial L}{\partial h_T} \prod_{k=t}^{T-1} D_{k+1} W^T \right\| \le \left\| \frac{\partial L}{\partial h_T} \right\| \prod_{k=t}^{T-1} \| D_{k+1} W^T \|$$

$$= \left\| \frac{\partial L}{\partial h_T} \right\| \prod_{k=t}^{T-1} \| D_{k+1} \| = \left\| \frac{\partial L}{\partial h_T} \right\|$$
where $\| D_t \| = \max_{k \in T} \| \sigma'(z^{(j)}) \|$

where
$$||D_k|| = \max_{j=1,...,n} |\sigma'(z_k^{(j)})|,$$

Orthogonal matrices in deep learning

Orthogonality — one of the **most useful** constraints:

- Orthogonal matrices in RNNs fix vanishing/exploding gradients
- ► GANs with orthogonal regularization² are more stable
- Additional regularization for usual networks³
- Faster learning

Also we can reparameterize other kinds of parameters:

- Low-rank matrices using SVD
- Tensor-train format tensors
- Others

²Brock, Andrew, et al. "Neural photo editing with introspective adversarial networks."

³Huang, Lei, et al. "Orthogonal weight normalization: Solution to optimization over multiple . . . "

Motivation

How to apply Bayesian inference to the uRNN?

- Variational inference:
 - Either complicated inference with (semi-)implicit distributions
 - Or very simple distributions with high bias
- Markov Chain Monte-Carlo (MCMC):
 - Slow, but no bias
 - We can construct true Bayesian ensemble with it

We choose MCMC!

Problem statement

Problem: sample from the distribution $\pi(\theta)$ which is known up to the normalizing constant. Usually $\pi(\theta)$ is the posterior:

$$\pi(\theta) = p(\theta \mid X) \sim p(X \mid \theta)p(\theta)$$

Samples can be used for inference:

$$p(x_{\mathsf{test}} \mid X_{\mathsf{train}}) = \int p(x_{\mathsf{test}} \mid \theta) p(\theta \mid X_{\mathsf{train}}) d\theta \approx \frac{1}{n} \sum_{i=1}^{n} p(x_{\mathsf{test}} \mid \theta_i)$$

where $\theta_i \sim p(\theta \mid X_{\mathsf{train}})$

Markov Chain Monte-Carlo

Markov Chain Monte-Carlo (MCMC) algorithms consist of:

- ▶ proposal distribution $q(\theta_{\mathsf{new}} \mid \theta_{\mathsf{old}})$ from which we acquire new samples
- Metropolis-Hastings correction which accepts samples with probability

$$\min\left(1, \frac{\pi(\theta_{\mathsf{new}})q(\theta_{\mathsf{old}} \mid \theta_{\mathsf{new}})}{\pi(\theta_{\mathsf{old}})q(\theta_{\mathsf{new}} \mid \theta_{\mathsf{old}})}\right)$$

Proposal should be efficient enough to reject not too many samples

Hamiltonian Monte-Carlo

In Hamiltonian Monte-Carlo (HMC) we

- lacktriangle augment parameter space with auxiliary variables: $\hat{ heta}=(heta,r)$
- work with joint distribution $\hat{\pi}(\theta, r) = \pi(\theta)\hat{\pi}(r \mid \theta)$

Joint distribution is usually written in terms of Hamiltonian:

$$\hat{\pi}(\theta, r) = \frac{1}{Z} \exp(-H(\theta, r))$$

Most often

$$\pi(r \mid \theta) = \mathcal{N}(r \mid 0, I)$$

$$H(\theta, r) = -\log \pi(\theta) + \frac{1}{2}r^{T}r$$

Hamiltonian dynamics

We can explore the distribution following the Hamiltonian dynamics:

$$\frac{d\theta}{dt} = \frac{\partial H}{\partial r}$$
$$\frac{dr}{dt} = -\frac{\partial H}{\partial \theta}$$

Energy is conserved in Hamiltonian dynamics:

$$\frac{dH}{dt} = \frac{\partial H}{\partial \theta} \frac{d\theta}{dt} + \frac{\partial H}{\partial r} \frac{dr}{dt} = \frac{\partial H}{\partial \theta} \frac{\partial H}{\partial r} - \frac{\partial H}{\partial r} \frac{\partial H}{\partial \theta} = 0$$

Maintaining the same energy we quickly explore various regions of θ space with high probability because:

$$\hat{\pi}(\theta, r) \propto \exp(-H(\theta, r))$$

Hamiltonian Monte-Carlo

Sample proposal:

- ▶ Given θ_{old} , sample $r_{\text{old}} \sim \pi(r_{\text{old}} \mid \theta_{\text{old}})$
- Integrate Hamiltonian equations for some time to get $(\theta_{\text{new}}, r_{\text{new}})$
- ▶ Take θ_{new}

Notice that acceptance probability is equal to:

$$\begin{aligned} & \min\left(1, \frac{\exp(-H(\theta_{\mathsf{new}}, r_{\mathsf{new}}))}{\exp(-H(\theta_{\mathsf{old}}, r_{\mathsf{old}}))}\right) \\ &= \min\left(1, \exp(\underbrace{H(\theta_{\mathsf{old}}, r_{\mathsf{old}}) - H(\theta_{\mathsf{new}}, r_{\mathsf{new}})}_{=0 \text{ as energy is conserved}}\right) \right) = 1 \end{aligned}$$

We don't even need rejection step, as we sample from correct distribution!

Hamiltonian Monte-Carlo

Sample proposal:

- ▶ Given θ_{old} , sample $r_{\text{old}} \sim \pi(r_{\text{old}} \mid \theta_{\text{old}})$
- ▶ Integrate Hamiltonian equations for some time to get $(\theta_{\text{new}}, r_{\text{new}})$
- ▶ Take θ_{new}

Notice that acceptance probability is equal to:

$$\begin{split} & \min\left(1, \frac{\exp(-H(\theta_{\mathsf{new}}, r_{\mathsf{new}}))}{\exp(-H(\theta_{\mathsf{old}}, r_{\mathsf{old}}))}\right) \\ &= \min\left(1, \exp(\underbrace{H(\theta_{\mathsf{old}}, r_{\mathsf{old}}) - H(\theta_{\mathsf{new}}, r_{\mathsf{new}})}_{=0 \text{ as energy is conserved}}\right)\right) = 1 \end{split}$$

We don't even need rejection step, as we sample from correct distribution!

Almost always we cannot solve Hamiltonian equations exactly

Leapfrog integration

The only option we have is to integrate numerically. Leapfrog integration:

$$r^{n+1/2} = r^n + \frac{\varepsilon}{2} \nabla \log \pi(\theta^n)$$
$$\theta^{n+1} = \theta^n + \varepsilon r^{n+1/2}$$
$$r^{n+1} = r^{n+1/2} + \frac{\varepsilon}{2} \nabla \log \pi(\theta^{n+1})$$

Discretization error \Rightarrow need MH correction step: accept sample with probability

$$\min (1, \exp(H(\theta_{\text{old}}, r_{\text{old}}) - H(\theta_{\text{new}}, r_{\text{new}})))$$

Integration properties

Good integration scheme should inherit properties of solutions of Hamiltonian equations:

- ▶ Reversibility: $\psi(\theta_{\text{new}}, -r_{\text{new}}) = (\theta_{\text{old}}, -r_{\text{old}})$
- ▶ Energy conservation $H(\theta_{\text{new}}, r_{\text{new}}) = H(\theta_{\text{old}}, r_{\text{old}})$

It's easy to see that Leapfrog is reversible.

What about energy conservation?

What about energy conservation?

Symplecticity

Is Leapfrog a good choice for integration?

- 1. We want $H(\theta_{\rm old}, r_{\rm old}) \approx H(\theta_{\rm new}, r_{\rm new})$ to make rejection rate not too high
- Sufficient condition for approximate energy conservation⁴ is symplecticity

Symplecticity by definition means that for

$$J = \frac{\partial(\theta_{\text{new}}, r_{\text{new}})}{\partial(\theta_{\text{old}}, r_{\text{old}})}, \ A = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}$$

we have

$$J^TAJ=A$$

That condition holds for Leapfrog also.

⁴Hairer, Ernst. "Long-time energy conservation of numerical integrators."

Why HMC fails?

Leapfrog integration:

$$r^{n+1/2} = r^n + \frac{\varepsilon}{2} \nabla \log \pi(\theta^n)$$

$$\theta^{n+1} = \theta^n + \varepsilon r^{n+1/2}$$

$$r^{n+1} = r^{n+1/2} + \frac{\varepsilon}{2} \nabla \log \pi(\theta^{n+1})$$

Assume that we have constraints on θ (i.e. $g(\theta) = 0$). Which equations fail?

Why HMC fails?

Leapfrog integration:

$$r^{n+1/2} = r^n + \frac{\varepsilon}{2} \nabla \log \pi(\theta^n)$$
$$\theta^{n+1} = \theta^n + \varepsilon r^{n+1/2}$$
$$r^{n+1} = r^{n+1/2} + \frac{\varepsilon}{2} \nabla \log \pi(\theta^{n+1})$$

Assume that we have constraints on θ (i.e. $g(\theta) = 0$). Which equations fail?

We need the concept of manifold to fix them.

About manifolds

Manifold — a set which looks like Euclidean space around every point.

For example, ellipse:

- looks like straight line near every point
- has two parameterizations:
 - 1. $t \in [0, 2\pi)$ this is an example of intrinsic coordinates
 - 2. $(x,y) \in \mathbb{R}^2$ with constraints

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

This is an example of extrinsic coordinates

Map between two parameterizations:

$$t \mapsto (a \cos t, b \sin t)$$

About manifolds

Every manifold can be parameterized in two ways:

1. Using *intrinsic* coordinates: $t \in \mathbb{R}^m$ where inner product is defined as

$$\langle u, v \rangle_t = u^T G(t) v.$$

Here we can use conventional HMC.

- 2. Using *extrinsic* coordinates: $x = \phi(t) \in \mathcal{M} \subset \mathbb{R}^k$ with some constraints g(x) = 0.
 - Inner product is defined as usual;
 - ▶ Manifold \mathcal{M} is said to be *embedded* in \mathbb{R}^k

Here HMC fails because of the constraints.

Tangent spaces

For smooth manifold $\mathcal M$ there is a tangent space $\mathcal T_x\mathcal M$ at each point x:

Riemannian gradient

Riemannian gradient — tangent vector along which function increases the most.

Consider $f: \mathcal{M} \to \mathbb{R}$. From Taylor expansion:

$$f(x + dx) = f(x) + \langle \nabla f(x), dx \rangle + O(\|dx\|^2)$$

If we restrict dx to the tangent space we get

$$\langle \nabla f(x), dx \rangle = \langle \nabla f(x)_{||}, dx \rangle + \underbrace{\langle \nabla f(x)_{\perp}, dx \rangle}_{=0} = \langle \nabla f(x)_{||}, dx \rangle$$

Riemannian gradient $\hat{\nabla} f(x)$ can be computed as:

$$\hat{\nabla} f(x) = \nabla f(x)_{||} = \operatorname{proj}_{T_x}(\nabla f(x))$$

Back to HMC

What is the domain of θ and r?

- lacktriangleright eta lies in some **manifold** $\mathcal M$ induced by the constraints
- r is velocity, so r should lie in the **tangent space** $T_{\theta}\mathcal{M}$

Leapfrog integration:

$$r^{n+1/2} = \underbrace{r^n}_{\in T_{\theta^n}} + \underbrace{\frac{\varepsilon}{2} \nabla \log \pi(\theta^n)}_{\notin T_{\theta^n}}$$
$$\theta^{n+1} = \theta^n + \varepsilon r^{n+1/2}$$
$$r^{n+1} = r^{n+1/2} + \frac{\varepsilon}{2} \nabla \log \pi(\theta^{n+1})$$

We can replace $\nabla \log \pi(\theta)$ with **Riemannian gradient** $\hat{\nabla} \log \pi(\theta)$

Leapfrog integration:

$$r^{n+1/2} = r^n + \frac{\varepsilon}{2} \hat{\nabla} \log \pi(\theta^n)$$

$$\underbrace{\theta^{n+1}}_{\notin \mathbb{O}^{n \times p}} = \underbrace{\theta^n}_{\in \mathbb{O}^{n \times p}} + \underbrace{\varepsilon r^{n+1/2}}_{\in T_{\theta^n}}$$

$$r^{n+1} = r^{n+1/2} + \frac{\varepsilon}{2} \hat{\nabla} \log \pi(\theta^{n+1})$$

We need to move θ^n in the direction of $r^{n+1/2}$ but along the curve on the manifold

Leapfrog integration:

$$r^{n+1/2} = r^n + \frac{\varepsilon}{2} \hat{\nabla} \log \pi(\theta^n)$$

$$\theta^{n+1} = \theta^n + \varepsilon r^{n+1/2}$$

$$\underbrace{r^{n+1}}_{\in T_{\theta^{n+1}}} = \underbrace{r^{n+1/2}}_{\in T_{\theta^n}} + \underbrace{\frac{\varepsilon}{2} \hat{\nabla} \log \pi(\theta^{n+1})}_{\in T_{\theta^{n+1}}}$$

We need to **transport** $r^{n+1/2}$ from T_{θ^n} to $T_{\theta^{n+1}}$

In the usual HMC:

$$r_0 \sim \mathcal{N}(0, I)$$

Here we should make sure $r_0 \in T_{\theta^0}$.

Solution:

$$\xi \sim \mathcal{N}(0, I)$$
 $r_0 = \mathsf{proj}_{T_{\theta_0}}(\xi)$

This gives the same result as sampling from standard normal in the tangent space

Retraction and vector transport

Basically we need to be able to do two things:

- 1. move θ along $r(\Rightarrow$ retraction)
- 2. move r from $T_{\theta_0}\mathcal{M}$ to $T_{\theta_1}\mathcal{M}$ (\Rightarrow **vector transport**)

Orthogonal matrices

Useful definitions and properties⁵:

Manifold of orthogonal matrices:

$$\mathbb{O}^{n\times p} = \{X \in \mathbb{R}^{n\times p} \mid X^T X = I\}$$

Tangent space at the point X:

$$T_X \mathbb{O}^{n \times p} = \{ Z \in \mathbb{R}^{n \times p} \mid Z^T X + X^T Z = 0 \}$$

Projection onto the tangent space:

$$\operatorname{proj}_{T_{\mathsf{Y}}}(U) = U - XU^{\mathsf{T}}X$$

⁵Tagare, Hemant D. Notes on optimization on Stiefel manifolds

Cayley transform

For any skew-symmetric matrix $A \in \mathbb{R}^{n \times n}$ we can define *Cayley transform*:

$$Q = \text{Cayley}(A) = (I + A)^{-1} (I - A)$$

We can show that

$$Q \in \mathbb{O}^{n imes n}$$
 $Q^{-1} = \mathsf{Cayley}(-A)$

Retraction for orthogonal matrices

For $X \in \mathbb{O}^{n \times p}$ We can define curve $Y(\varepsilon)$ in $\mathbb{O}^{n \times p}$ such that:

$$Y(\varepsilon) = \text{Cayley}\left(-\frac{\varepsilon}{2}A\right)X = \left(I - \frac{\varepsilon}{2}A\right)^{-1}\left(I + \frac{\varepsilon}{2}A\right)X$$

It has the following properties:

$$\forall \varepsilon \in \mathbb{R} : Y(\varepsilon) \in \mathbb{O}^{n \times p}$$

$$Y(0) = X$$

If $A = UX^T - XU^T$, then tangent vector at X is

$$U - XU^T X = \operatorname{proj}_{T_X}(U)$$

Retraction and vector transport for orthogonal matrices

For orthogonal matrices we define:

▶ Retraction (update for θ) is given by Cayley transform:

$$\mathcal{R}(X,U) = \left(I - \frac{\varepsilon}{2}A\right)^{-1} \left(I + \frac{\varepsilon}{2}A\right)X$$

▶ vector transport of Z from T_X to $T_{\mathcal{R}(X,U)}$:

$$\tau(X, U, Z) = \left(I - \frac{\varepsilon}{2}A\right)^{-1} \left(I + \frac{\varepsilon}{2}A\right)Z$$

where $A = UX^T - XU^T$

oHMC

Final algorithm:

$$\begin{split} r^{n+1/2} &= r^n + \frac{\varepsilon}{2} \hat{\nabla} \log \pi(\theta^n) \\ \theta^{n+1} &= \mathcal{R}(\theta^n, \varepsilon r^{n+1/2}) \\ r^{n+1} &= \tau(\theta^n, \varepsilon r^{n+1/2}, r^{n+1/2}) + \frac{\varepsilon}{2} \hat{\nabla} \log \pi(\theta^{n+1}) \end{split}$$

A few remarks:

- ▶ Time complexity is only $O(np^2)$ per iteration
- ▶ This scheme is reversible
- In stochastic case HMC is fixed in the same way

Most importantly: this scheme is symplectic

Toy example

Much better effective sample size than with standard parameterization $W = V (V^T V)^{-1/2}$:

	min	median
НМС	20.3	63.8
οНМС	103.8	139.7

Orthogonal and low-rank networks

Orthogonal network = network with orthogonal weight matrices

- ▶ For fully-connected layers weight matrix is orthogonal as is
- ▶ For convolutional kernel $W \in \mathbb{R}^{o \times i \times w \times h}$ we require reshaped matrix $\hat{W} \in \mathbb{R}^{o \times iwh}$ to be orthogonal

For low-rank networks we require the same weight matrices to be low-rank and we parameterize them using SVD decomposition:

$$W = U \Sigma V^T,$$
 U, V — orthogonal
 $\Sigma = \text{diag}\{\sigma_1, \dots, \sigma_r\} \geq 0$

Orthogonal networks

Results:

- Learning proceeds faster with orthogonal weights
- Regularization helps with generalization
- Ensembling of neural networks also works

	1 network	Ensemble
MNIST	$97.34 \pm 0.08\%$	$97.87 \pm 0.08\%$
CIFAR-10	$92.70 \pm 0.05\%$	$92.85 \pm 0.03\%$

Much smaller orthogonal networks usually can achieve the same accuracy as bigger non-orthogonal!

Low-rank perceptron

Multilayer perceptron on MNIST with low-rank weight matrices in SVD parameterization(blue) vs $W = AB^T$, where $A \in \mathbb{R}^{n \times r}, B \in \mathbb{R}^{m \times r}$ (i.e. bottleneck (red)):

Conclusion

We proposed an MCMC algorithm which has the following properties:

- It works with orthogonal matrices
- ▶ Better sample efficiency than for standard orthogonal (ambiguous) reparameterization $W = V (V^T V)^{-1/2}$
- Applicable not only to neural networks, but also for any probabilistic models
- Can be applied reparameterize other kinds of variables
- Possibly, it can be generalized to other manifolds