- 1. Sea G un grupo y sea H un subgrupo normal de G.
 - I.) Demostrar que, si H y G/H son p-grupos, entonces G es un p-grupo.

Demostración. Por el teorema de Lagrange tenemos que $|G| = |H|[G:H] = p^m p^n = p^{n+m}$. Por lo tanto, G es un p-grupo.

II.) Demostrar que, si H y G/H son solubles, entonces G es soluble.

Demostración. Denotemos $G/H=H^*$. En primer lugar tenemos que como H es soluble hay una cadena

$$H = H_0 \supset H_1 \supset \cdots \supset H_n = \{1\}$$

Tal que $H_i \supseteq H_{i+1}$ y H_i/H_{i+1} es abeliano.

As mismo existe una cadena para H^*

$$H^* = H_0^* \supset H_1^* \supset \cdots \supset H_m^* = \{1\}$$

Tal que $H_i^* \trianglerighteq H_{i+1}^*$ y H_i^*/H_{i+1}^* es abeliano.

Por el teorema de correspondencia tenemos que para cada H_i^* existe un subgrupo H_i' de G tal que $H_i'/H = H_i^*$. Estos cumplen adems que $H_i' \geq H_{i+1}'$. Adems por el tercer teorema de isomorfismo tenemos que

$$H_i^*/H_{i+1}^* \cong (H_i'/H)/(H_{i+1}'/H) \cong H_i'/H_{i+1}'$$

Asi, la cadena

$$H' = H'_0 \supset H'_1 \supset \cdots \supset H'_m = H = H_0 \supset H_1 \supset \cdots \supset H_n = \{1\}$$

es una filtracin cuyo graduado asociado esta compuesto por grupos abelianos.

2. Demostrar que S_3 y los grupos dihedrales D_{2n} son solubles.

Demostración. Para S_3 tomemos la filtracin $G_0 = S_3 \subset A_3 \subset \{1\} = G_2$. Vemos que $G_0/G_1 = \mathbb{Z}/2$ y $G_1/G_2 = \mathbb{Z}/2$. Por lo tanto, S_3 es soluble.

Para D_{2n} , tomese la filtracin $G_0 = D_{2n} \subset \mathbb{Z}/n \subset \{1\} = G_2$. Notese que \mathbb{Z}/\ltimes es un subgrupo normal de D_{2n} porque los subgrupos diehedrales tienen un generador con orden n y adems el ndice de este subgrupo es 2, por lo cual es normal.

De nuevo vemos que $G_0/G_1 = \mathbb{Z}/2$ y $G_1/G_2 = \mathbb{Z}/2$. Por lo tanto, D_{2n} tambin es soluble.

3. Sea G un grupo y sea H un subgrupo normal de G. Demostrar con un ejemplo que, si H y G=H son nilpotentes, entonces G no es necesariamente nilpotente.

Demostración.

Demostración. El ejemplo ms simple es $G = S_3$, si tomamos $H = A_3$, tenemos que $A_3 \cong \mathbb{Z}/3$ que es abeliano y por lo tanto nilpotente. Adems, $S_3/A_3 \cong \mathbb{Z}/2$ que tambin es abeliano y por lo tanto nilpotente. Pero S_3 no es nilpotente, pues si tomamos los 2-Sylows de S_3 podemos ver que en S_3 hay 3, (uno por cada trasposicin (1 2) (1 3) y (2 3) en S_3). Pero los grupos nilpotentes solo tienen un p-Sylow por cada primo. Luego S_3 no es nilpotente.

4. I.) Sea n un entero positivo impar. Demostrar que el centro del grupo dihedral D_{2n} es trivial.

Demostración. Sea $x \in Z(D_{2n})$. Como D_{2n} es generado por s y t, con $s^n = 1$ y $t^2 = 1$, tenemos que $x = s^a t^b$ con $0 \le a < n$ y $0 \le b < 2$.

Ahora por defincin de centro tenemos que xt = tx. Desarrollamos esta expresin.

$$xt = tx$$

$$s^a t^b t = ts^a t^b$$

$$s^a t^b t t^{-b} = ts^a t^b t^{-b}$$

$$s^a t = ts^a$$

Pero adems por la relacin de grupos dihedrales tendriamos que $ts^n = s^{-n}t$. De estas dos relaciones concluimos que

$$s^{a}t = ts^{a}$$

$$s^{a}t = s^{-a}t$$

$$s^{a} = s^{-a}$$

$$s^{2a} = 1$$

Entonces tenemos que el orden de s, n, divides a 2a. Pero como n es impar tenemos que (2, n) = 1 y por lo tanto n divide a a pero a esta entre 0 y n-1 lo que implica que a = 0 y $s^a = 1$.

Entonces $x = t^b$, pero notese que si x = t entonces t conmutaria con todos los elementos. En particular conmutaria con s y tendriamos que st = ts, pero $st = t^s - 1$ de donde concluiriamos que $ts = ts^{-1}$, es decir, $s^2 = 1$. Pero el orden s, n es mayor que 2, por lo cual esto seria una contradiccin. Entonces, la nica opcin es que x = 1, luego $Z(D_{2n})$ es trivial.

II.) Concluir que D_{2n} no es nilpotente para n impar.

Demostración. Tomemos s, t los generadores de D_{2n} , tales que $t^2 = 1$ y $s^n = 1$. Si D_{2n} fuera nilpotente entonces como los ordenes de estos elementos son coprimos,

estos deberian conmutar. Pero si este fuera el caso entonces por ser los generadores todos los elementos de D_{2n} conmutarian entre si. Lo cual implicaria que $Z(D_{2n}) = D_{2n}$. Pero esto contradice lo demostrado anteriormente de que el centro es trivial.

5. Sea G un grupo de orden p^r .

I.) Demostrar que por cada entero $k \leq r$, G tiene un subgrupo normal de orden p^k .

Demostración. En primer lugar podemos demostrar que para cada k existe un subgrupo de orden p^k . Esto lo podemos hacer pues tenemos un lema que dice que un p-grupo de orden p^r tiene un subgrupo de orden p^{r-1} normal. Aplicando esto inductivamente tenemos el resultado esperado.

Preba por induccin fuerte sobre r.

Caso base: r = 1. En este caso es trivial que para cada $k \le r$ hay un subgrupo normal de orden k.

Ahora para el paso inductivo tomemos r y supongamos que para todo grupo de orden s < r se cumple la proposicin.

Ahora para demostrar que hay subgrupos de orden p^k normales, tomemos $D^1(G) = [G, G]$ el grupo derivado de G. Como G es nilpotente y por lo tanto soluble tenemos que $D^1(G)$ es un subgrupo propio de G. Es decir que $|D^1(G)| = p^s$ para s < r y $D^1(G)$ es característico en G. Luego por la hipotesis de induccin $D^1(G)$ tiene un subgrupo normal de orden k para cualquier $k \le r$ y adems como $D^1(G)$ es característico estos subgrupos tambin son normales en G. Por otro lado tenemos que $G/D^1(G)$ es abeliano y entonces tenemos que tambien es un p-grupo de orden p_i . Con 0 < i < r, por lo tanto, cualquier subgrupo de $G/D^1(G)$ de orden p^s es normal y entonces por el teorema de correspondencia existe un subgrupo de G con orden i + j normal en G.

II.) Demostrar que existe una serie $G_0 = \{1\} \subset G_1 \subset \cdots \subset G_r = G$ de subgrupos G_i normales de G de orden p^i , por $i = 1, \dots, r$.

Demostración. Como G es nilpotente sabemos que su serie central inferior es finita y que $C_n(G) = \{1\}$ para algun $n \in \mathbb{N}$.

Por otro lado sabemos que estos grupos $C_i(G)$ son característicos por lo tanto si un grupo es normal en ellos es normal en todo G. Por ultimo sabemos que $C_i(G) \subset C_{i+1}(G)$.

Ahora en el caso en que un grupo G fuera un p-grupo abeliano se puede construir esta cadena pues como se discutio en la primera parte del literal anterior, un subgrupo de orden p^r tiene un subgrupo de orden p^k normal. As yo puedo tener una cadena de grupos $\{1\} = G_0 \subset G_1 \cdots \subset G_n = G$ tales que $|G_i| = p^i$. y todos son normales.

En el caso general podemos tomar la serie central inferior. $1 = C_m(G) \subset C_{m+1}(G) \cdots C_0(G) = G$.

Como G es soluble tenemos que $C_{i-1}/C_i(G)$ es abeliano. Por lo anterior entonces tenemos que existe una cadena de subgrupos $G_{i0} = \{1\} \subset G_{i1} \subset \cdots \subset G_{in_i} = C_{i-1}/C_i(G)$ de subgrupos G_ij normales de G de orden p^j , por $j=1,\cdots,n_i$. Utilizando el teorema de correspondencia tenemos la cadena correspondiente $G'_{i0} = C_i(G) \subset G'_{i1} \subset \cdots \subset G'_{in_i} = C_{i-1}(G)$ tales que G'_{ij} tiene orden p^{j+o_i} donde o_i es el orden de $C_i(G)$. (De esa forma $n_i = o_{i-1} - o_i$), adems todos esto grupos son normales a $C_{i-1}G$ y como este grupo es caracteristico tenemos que tambien son normales en G. Finalmente sustituyendo los $C_i(G)$ por las cadenas $G'_{i0} = C_i(G) \subset G'_{i1} \subset \cdots \subset G'_{in_i} = C_{i-1}(G)$ derivada anteriormente obtenemos la cadena que buscabamos.

III.) Demostrar que, dado un subgrupo H de G de orden p^s , con $0 \le s < r$, existe un subgrupo K de G de orden p^{s+1} que contiene a H.

Demostración. Tomemos tal subgrupo H. Vemos que es un subgrupo propio de G y como G es nilpotente sabemos que su normalizador $N_G(H)$ contiene a G propiamente. Ahora si tomamos el cociente $N_G(H)/H$ vemos que esto es un p-grupo y por lo demostrado en el literal anterior hay una cadena de grupos $\{1\} = N_0 \subset N_1 \cdots \subset N_n = G$ tales que $|N_i| = p^i$. En particular si tomamos N_i de orden p. Por el teorema de la correspondencia tenemos un subgrupo N' de $N_G(H)$ tal que |N'| = s + 1 y $N' \geq H$.

6. Sea G un grupo nilpotente de orden n. Demostrar que, si m|n, entonces G tiene un subgrupo de orden m.

Demostración. En primer lugar tenemos que n puede expresarse como $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$ con $\prod_{i=1}^n \neq 0$.

Como G es nilpotente sabemos que puede descomponerse como el producto directo de sus p-Sylows. Esta descomposicin seria de la forma $G = \prod_{i=1}^n H_i$, donde H_i seria el p_i -Sylow de G y tendria orden p^{α_i} . Ahora si m|n tenemos que $m = p_1^{\beta_1} p_2^{\beta_2} \cdots p_n^{\beta_n}$ con $0 \le \beta_i \le \alpha_i$.

Luego por lo demostrado en el punto **5** por cada subgrupo H_i de G yo tengo un subgrupo J_i normal a H_i y con orden $p_i^{\beta_i}$. Finalmente construimos el subgrupo J como $J = \prod_{i=1}^n J_i$. Claramente se puede observar que J = m y $J \leq G$.

7. Demostrar que los únicos automorfsmos $\phi: G \to G$ de un grupo G de orden p primo, tales que $\phi^2 = id$, son la misma identidad y el automorfismo definido por $\phi(g) = g^{-1}$.

Demostración. Utilizamos notacin aditiva. Por lo demostrado en un punto de la tarea 1, los autoformismos de un grupo \mathbb{Z}/n son de la forma $\theta: ak \to k$, donde a es un

generador de \mathbb{Z}/n . En este caso los generadores son todos los elementos con excepcin del 0. Otra forma de ver esto es que θ envia un elemento x al elemento x/a. De esta manera $\theta^2: x \to x/a/a = x/a^2$. As ue para que $\theta^2 = id$ se debe cumplir que $x/a^2 = x$. Es decir que $a^2 = 1$. Las soluciones de esta ecuacin son a = 1, a = -1. Lo que demuestra que los nicos automorfismos son los de la forma $x \to x/1 = x$ y $x \to x/-1 = -x$ \square

- 8. Sea G un grupo finito de orden 2p, con $p \geq 3$ primo. Demostrar que G contiene a un único subgrupo normal H de orden p y que tal subgrupo es normal. Utilizar el problema 7 para demostrar que hay solo dos posibilidades:
 - I.) G es cíclico;
 - II.) G tiene dos generadores s y t que satisfacen las relaciones $s^p = 1$, $t^2 = 1$ y $tst^{-1} = s^{-1}$.

Demostraci'on. Por los teoremas de Sylow tenemos que existe un p-Sylow cuyo orden es p. Sea H este subgrupo. Por el teorema de Lagrange tenemos que [G:H]=2p/p=2 y por lo tanto H es normal en G. Concluimos por el segundo teorema de Lagrange que H es el nico p-Sylow. Adems como p es primo tenemos que $H\cong \mathbb{Z}$.

Ahora como tenemos un subgrupo normal podemos escribir G como un producto semidirecto $G \cong \mathbb{Z}/p \ltimes_{\psi} \mathbb{Z}/2$ con $\psi : \mathbb{Z}/2 \to Aut(\mathbb{Z}/p)$. Adems tenemos que $Img(\psi) \leq \mathbb{Z}/2$, por lo tanto el orden de $Img(\psi)$ puede ser 2 o 1.

Como ψ es un homorfismo tenemos que $\psi(0) = id$. En el primer caso tendriamos que $\psi(1) = id$. Entonces si tomamos s un generador de \mathbb{Z}/p y t el generador de $\mathbb{Z}/2$ por lo anterior tenemos que $tst^{-1} = s$. Es decir que s y t conmutan entre si. Osea que el grupo es abeliano y es isomorfo a $\mathbb{Z}/p \times \mathbb{Z}/2$ pero por un punto de la tarea anterior, como (2, p) = 1 tenemos que $\mathbb{Z}/p \times \mathbb{Z}/2 \cong \mathbb{Z}/2p$.

Por el punto anterior, el otro caso es que $\psi(1) := a \to -a$, porque este es el unico automorfismo de orden 2. De aqui sacamos la relacin $tst^{-1} = tst = s^{-1}$ que es la relacin caracteristica de los grupos dihedrales.

9. Demostrar que un grupo G de orden 200 no puede ser simple.

Demostración. $200 = 2^3 * 5^2$. Luego por los teoremas de Sylow tenemos que n_5 (el nmero de 5-Sylows) divide a 8 y adems que $n_5 \equiv 1 \pmod{5}$. Los divisores de 8 son 1, 2, 4 y 8 y de estos el nico que cumple la congruencia es 1. Por lo tanto solo hay un nico 5-sylow. Pero por los teoremas de Sylow tenemos que todos los conjugados de este grupo tambien son 5-Sylow. Concluimos que este grupo es normal y por lo tanto G no es simple.

10. Sea G un grupo simple de orden 60.

I.) Demostrar que G tiene 6 5-Sylow y que la acción por conjugación sobre los 5-Sylow define un homomorfismo injectivo $\alpha: G \to S_6$, una vez fijada una numeración de los 5-Sylow de G.

Demostración. $60 = 2^2 * 3 * 5$, luego de nuevo por los teoremas de Sylow tenemos que n_5 divide a 12 y $n_5 \equiv 1 \pmod{5}$. Los divisores de 12 son 1, 2, 3 4, 6 y 12. Por lo tanto, tenemos que 1 y 6 son dos posibles opciones. Pero si $n_5 = 1$, entonces el nico 5-Sylow seria normal lo cual contradice el hecho de que G es simple. Por lo tanto, $n_5 = 6$. Definimos la accin de grupo $\alpha' : G \times H \to H$ donde H es el conjunto de los 5-Sylows y α' es la accin por conjugacin. Por lo tanto, tenemos el homorfismo asociado $\alpha : G \to S_6$. Para mostrar que el kernel de α es trivial notese que este subgrupo en normal en G. Pero, como G es simple concluimos que solamente puede ser el grupo trivial $\{1\}$ o todo G. Pero claramente no puede ser todo G porque esto significaria que para todo $h \in H$, $ghg^{-1} = h$, lo que significaria que todos los 5-Sylow son normales. Claramente una contradiccin pues si esto fuera cierto entonces solo existiria un nico subgrupo de Sylow.

II.) Demostrar que la imagen de α está contenida en el subgrupo alterno A_6 de S_6 .

Demostración. Como demostramos anteriormente que el homomorfismo es inyectivo tenemos que $G \cong \alpha(G)$. Por lo tanto, $\alpha(G)$ tambin tiene 6 5-Sylows. Ahora observece que estos 5-Sylows serian grupos ciclicos de orden 5, y por lo tanto estarian compuestos por los elementos de S_6 que tienen orden 5. Pero estos son los 5-ciclos. Esto demuestra que todos los 5-ciclos estan contenidos en G. Pero adems, demostramos en la primera tarea que los 5-ciclos generan a A_5 , luego $A_5 \leq \alpha(G)$. Y como $|A_5| = 60 = |G|$ concluimos que $A_5 = \alpha(G)$ que claramente esta contenido en A_6 .

Notese que por este argumento ya logramos demostrar que $G \cong A_5$

III.) Identifiquemos G con su imagen $\alpha(G)$ en A_6 y consideremos la acción de A_6 por translación a la izquierda sobre el conjunto de las clases laterales izquierdas A_6/G . Demostrar que tal acción define un isomorfismo $\phi: A_6 \to A_6$, una vez fijada una numeración de los elementos de A_6/G .

Demostración. Definimos la accin $\phi': A_6 \times A_6/G$, que seria translacin a la izquierda sobre el conjunto de clases laterales izquierdas. Ahora notese que $|A_6/G|=360/60=6$. Por lo tanto, el homomorfismo asociado es de la forma $\phi: A_6 \to S_6$. Pero el kernel de ϕ es normal en A_6 y como A_6 es simple tenemos que solamente puede ser o A_6 o {1}. Pero si fuera todo A_6 significaria que para todo a, ahG = hG, en particular aG = G pero esto significaria que G es todo G0, contradiccin. Entonces G0 es un homomorfismo inyectivo y su imagen por lo tanto tendria orden 360, pero el nico grupo de G1 de ese orden es G2 mismo, luego la imagen de G3 es isomorma a G3 y G4 define un isomorfismo de G4 a G5. IV.) Demostrar que G es el estabilizador de la clase lateral G en A_6/G por la acción definida en el punto anterior y concluir que es cierto $G \cong A_5$.

Demostración. Por definicin de estabilizador $\operatorname{Stab}(G)$ tenemos que $x \in \operatorname{Stab}(G)$ si y solo si gG = G. Pero esto es lo mismo que decir que $g \in G$. Por lo tanto $\operatorname{Stab}(G) = G$. Ahora si tomamos $\phi|_G : G \to A_6$, tenemos que la accin asociada afecta todos los dems elementos con excepcin de G. Por lo tanto, $\phi|_G : G \to S_5$ y adems como $\phi|_G$ sigue siendo inyectivo tenemos que $|Img(\phi|_G)| = 60$. Concluimos que $Img(\phi|_G) \cong A_5$.