Topology Independent Study, Week 1

Brendan Murphy — 2019

Exercise 1

Is \mathbb{Q} locally compact?

 $\mathbb Q$ is not locally compact. In fact, no neighborhood in $\mathbb Q$ can be compact. Let x be a rational and K a compact neighborhood of x. Then since K is a neighborhood of x, it contains some rational ball centered about x, i.e. $(x - \varepsilon, x + \varepsilon) \cap \mathbb Q \subseteq K$ for some ε . By density of the irrationals, we must have $[a, b] \subseteq (x - \varepsilon, x + \varepsilon)$ for some irrational a, b. Define $V = K \setminus [a, b]$ and

$$U_n = \left(a + \frac{1}{k} \cdot \left(\frac{a+b}{2} - a\right), b - \frac{1}{k} \cdot \left(b - \frac{a+b}{2}\right)\right)$$

So that U_n expands out from the midpoint of [a,b] and fills out all of [a,b] except the endpoints. Then $\{V\} \cup \{U_n \cap \mathbb{Q} : n \in \mathbb{N}\}$ is an open cover of $K \setminus \{a,b\}$. Since a and b are irrational and K is a subset of the rationals, $K \setminus \{a,b\} = K$. But any finite subcover of $\{V\} \cup \{U_n \cap \mathbb{Q} : n \in \mathbb{N}\}$ will have a highest N such that it contains $U_N \cap \mathbb{Q}$, and then this subcover will miss $a + \frac{1}{N} \left(\frac{a+b}{2} - a \right)$, so there is no finite subcover of $\{V\} \cup \{U_n \cap \mathbb{Q} : n \in \mathbb{N}\}$, contradicting our assumption K was compact.

Exercise 3.6.4

Let X be the unit interval with the following topology: the neighborhoods of any nonzero points are as usual, and the neighborhoods of 0 are the usual ones as well as $N \setminus \{x_0, x_1, \ldots\}$ for any sequence of nonzero points $\{x_n\}$ converging to 0. Show X is not a k-space.

We prove that if K is any nonempty compact subset of X, then $\inf\{x \in K : x \neq 0\} > 0$. Let K be a nonempty set such that $\inf\{x \in K : x \neq 0\} = 0$. Then there is a sequence $x_n \neq 0$ in K converging to 0. Let $A_k = \{x_n : n \geq k\}$. Then define $U_k = [0,1] \setminus A_k$. We show that U_k is open for any k. Let a be any point of U. If a = 0, then since [0,1] is a neighborhood of 0 in the standard topology and $x_n \to 0$ (no matter how many initial terms you remove), U_k is a neighborhood of 0. If $a \neq 0$, then $x_n \not\to a$, so there's a distance δ such that $|a - x_n| \geq \delta$ for all n. Then $(a - \delta, a + \delta)$ is a neighborhood of a contained in U_k , so U_k is a neighborhood of a. Thus all U_k are open, so $\{U_k : k \in \mathbb{N}\}$ is an open cover of K (since it is an open cover of K0, and any finite subcover will miss infinitely many points in the sequence x_k (there's no issue with having infinitely many duplicate terms that have been added in, since $x_n \to 0$ but $x_n \neq 0$ for all n).

We now show that for any such K, $K \setminus \{0\}$ is compact. Let ε be such that $\varepsilon < x$ for all $x \in K \setminus \{0\}$, which exists by the above. Let $U = [0, \varepsilon)$, so that U is an open set containing 0 but disjoint from $K \setminus \{0\}$. Then for any open cover \mathcal{U} of $K \setminus \{0\}$, we can add in U to get an open cover of K, then refine this to a finite open subcover \mathcal{F} of K, and since U is disjoint from $K \setminus \{0\}$, the set $\mathcal{F} \setminus \{U\}$ forms a cover of $K \setminus \{0\}$ and is clearly a subcover of \mathcal{U} . Thus the result holds.

But any compact subset is also a compact subspace, and the subspace topology on $K \setminus \{0\}$ inhereted from X coincides with the subspace topology that it would normally inherent from [0,1], since the neighborhoods of points away from 0 are as they are usually. Thus $K \setminus \{0\}$ is a compact subspace of [0,1] under the usual topology, and thus is closed under that usual topology. But by the same remark about neighborhoods away from 0 be as they usually are, this shows $K \setminus \{0\}$ is a closed subset of X.

We now show X is not a k-space. Let A = (0, 1]. Then A is not closed, since its complement $\{0\}$ is not open. If $\{0\}$ were open, it would be a neighborhood of 0, but all neighborhoods of 0 are uncountable (since they contain an interval $[0, \delta)$ possibly minus a countable number of points). Thus A is a nonclosed space. But for any compact subset K of X, either $K = \emptyset$, and so $A \cap K = \emptyset$ is trivially closed in K, or $A \cap K = K \setminus \{0\} = (K \setminus \{0\}) \cap K$ is a closed subset of K as remarked above.

Exercise 4.3.2

Let $f: \mathbb{R} \to [-1, 1]$ be

$$f(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

and give [-1,1] the identification topology with respect to f. Prove that $[-1,1] \setminus \{0\}$ under the subspace topology is as usual, but that the only neighborhood of 0 is the entire space.

By 4.3.1, to show that $[-1,1] \setminus \{0\}$ is as usual under the subspace topology it suffices to show that $[-1,1] \setminus \{0\}$ is as usual under the identification topology with respect to the restricton $g(x) = \sin(1/x)$ of f to $f^{-1}([-1,1] \setminus \{0\})$. But g is continuous, so automatically the implication "U is open in the standard topology on $[-1,1] \setminus \{0\}$ " implies " $g^{-1}(U)$ is open in $f^{-1}([-1,1] \setminus \{0\})$ ". Now suppose U is not open; we show that its preimage is also not open. If U is not open, there's some point $x \in U$ such that U doesn't contain any neighborhood of x, i.e. for all $\varepsilon > 0$ there's some $y \in [-1,1] \setminus \{0\}$ such that $y \notin U$ and $|x-y| < \varepsilon$. UNFINISHED

Now suppose U is an open set containing 0. Then $f^{-1}(U)$ is open in \mathbb{R} , and so for all $x \in \mathbb{R}$ such that f(x) = 0, there is some $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon)$ is in $f^{-1}(U)$. In particular, for x = 0 we have that $f^{-1}(U)$ contains $(-\varepsilon, \varepsilon)$. But by making K big enough, the reciprocal of all points in $[2\pi K, 2\pi(K+1)]$ lies within that small interval, and so $[-1, 1] = f([2\pi K, 2\pi(K+1)]) \subseteq f(f^{-1}(U)) \subseteq U \subseteq [-1, 1]$, which shows U = [-1, 1]. Any neighborhood of 0 must contain an open set containing 0, so this shows any neighborhood of 0 is the whole space.

Lemma 1. Suppose A is closed. Then the projection map $\pi: X \to X/A$ is closed. The same holds when "closed" is replaced with open, and the proof is identical.

Proof. Let C be a closed subset of X. Then if C is disjoint from A, we have $\pi(C) = C$ and $\pi^{-1}(\pi(C)) = \pi^{-1}(C) = C$, so the preimage of $\pi(C)$ is closed in X, and thus $\pi(C)$ is closed

in X/A. Otherwise $C \cap A$ is nonempty, and so

$$\pi(C) = \pi((C \setminus A) \cup (C \cap A)) = \pi(C \setminus A) \cup \pi(C \cap A) = (C \setminus A) \cup \{A\}$$

Then $\pi(C)$ is closed in X/A, as

$$\pi^{-1}(\pi(C)) = \pi^{-1}((C \setminus A) \cup \{A\}) = \pi^{-1}(C \setminus A) \cup \pi^{-1}(\{A\}) = (C \setminus A) \cup A = C \cup A$$

and so the preimage of $\pi(C)$ is the union of two closed sets, and is thus closed.

Lemma 2. Let A be a subset of X and suppose B is a subset of X containing A. Then for any $Q \subseteq A$, if $\pi: X \to X/A$ is the projection map then

$$\pi(Q \cap B) = \pi(Q) \cap \pi(B)$$

Proof. Either A and Q are disjoint or they are not. If they are, then $Q \cap B = Q \cap (B \setminus A)$, and π is injective when restricted to $X \setminus A$ so

$$\pi(Q \cap B) = \pi(Q \cap (B \setminus A)) = \pi(Q) \cap \pi(B \setminus A) = Q \cap (B \setminus A)$$

But also

$$\pi(Q) \cap \pi(B) = Q \cap (B \setminus A \cup \{A\}) = (Q \cap (B \setminus A)) \cup (Q \cap \{A\}) = Q \cap (B \setminus A)$$

So $\pi(Q \cap B) = \pi(Q) \cap \pi(B)$. If Q and A are not disjoint, then $Q \cap B = ((Q \setminus A) \cap B) \cup (Q \cap A)$, and so

$$\pi(Q \cap B) = \pi((Q \setminus A) \cap B) \cup \pi(Q \cap A) = ((Q \setminus A) \cap B) \cup \{A\}$$

But also

$$\pi(Q) \cap \pi(B) = ((Q \setminus A) \cup \{A\}) \cap ((B \setminus A) \cup \{A\}) = (Q \setminus A \cap B \setminus A) \cup \{A\} = ((Q \setminus A) \cap B) \cup \{A\}$$

Thus the result holds. \Box

Exercise 4.3.3

Let A, B be subsets of X and suppose $A \subseteq B$ and A is closed. Prove B/A is a subspace of X/A.

Let $\pi: X \to X/A$ be the quotient map. It suffices to show that for any C, C is closed in the subspace topology on B/A iff it is closed in the identification topology. Suppose C is closed in the subspace topology on B/A. Then $C = C' \cap (B/A)$ for some C' closed in X/A. This means $\pi^{-1}(C')$ is closed in X. But this means

$$\pi^{-1}(C) = \pi^{-1}(C' \cap (B/A)) = \pi^{-1}(C') \cap \pi^{-1}(B/A) = \pi^{-1}(C') \cap B$$

Is closed in B, as it is the intersection of a closed set of X and B.

Now suppose C is closed in the identification topology on B/A. Then $\pi^{-1}(C)$ is closed in B, and so $\pi^{-1}(C) = C' \cap B$ for some C' closed in X. Then by Lemma 2,

$$\pi(\pi^{-1}(C)) = \pi(C') \cap \pi(B) = \pi(C') \cap (B/A)$$

And by Lemma 1, $\pi(C')$ is a closed map, which means $\pi(C')$ is closed, and so $\pi(\pi^{-1}(C))$ is closed in the subspace topology on B/A. But also π is surjective, and so $\pi(\pi^{-1}(C)) = C$, so C is closed in the subspace topology on B/A.

Thus the identification and subspace topologies on B/A have the same closed sets, and are thus the same.

Exercise 4.3.4

Let A be a subset of X. Prove that $X \setminus A$ is a subspace of X/A if and only if the following condition holds: a subset U of $X \setminus A$ is open in $X \setminus A$ if and only if $U = V \cap (X \setminus A)$ where V is open in X and V either contains or is disjoint from A.

A set V is either disjoint from A or is contained in A iff V is π -satured. If V is disjoint from A, then immediately $\pi^{-1}(\pi(V)) = V$ since π is a the identity on $X \setminus A$ and $(X/A) \setminus \{A\}$. If $A \subseteq V$, then $\pi(V) = (V \setminus A) \cup \{A\}$ and so

$$\pi^{-1}(\pi(V)) = \pi^{-1}((V \setminus A) \cup \{A\}) = \pi^{-1}(V \setminus A) \cup \pi^{-1}(\{A\}) = (V \setminus A) \cup A = V$$

Where this last equality holds since $A \subseteq V$. Now if $\pi^{-1}(\pi(V))$, either V and A are disjoint or they share some point a. In this second case,

$$\pi(V) = \pi((V \setminus \{a\}) \cup \{a\}) = \pi(V \setminus \{a\}) \cup \{A\}$$

And so

$$A = \pi^{-1}(\{A\}) \subseteq \pi^{-1}(\pi(V \setminus \{a\})) \cup \pi^{-1}(\{A\}) = \pi^{-1}(\pi(V \setminus \{a\}) \cup \{A\}) = \pi^{-1}(\pi(V)) = V$$

Thus it suffices to show $X \setminus A$ is a subspace of X/A if and only if the condition "a subset U of $X \setminus A$ is open in $X \setminus A$ iff $U = V \cap (X \setminus A)$ where V is open in X and π -satured" holds. Now let $\pi' = \pi \mid_{X \setminus A, X \setminus A}$ be the restriction of π to our subset of interest. Since π' is the identity, every open subset of $X \setminus A$ is π' -saturated, and thus by 4.3.1 we have that π' is an identification map iff every open set of $X \setminus A$ is the intersection of $X \setminus A$ and an open, π -satured set of X. Since it is tautological that the intersection of an open, π -satured set of X and $X \setminus A$ is open in $X \setminus A$, this means that the condition "a subset U of $X \setminus A$ is open in $X \setminus A$ iff $U = V \cap (X \setminus A)$ where V is open in X and π -satured" is in fact equivalent to just saying π' is an identification map.

Thus we just need to prove that $X \setminus A$ is a subspace of X/A iff $\pi' = id$ is an identification map from the topology induced by X to the topology induced by X/A. id is an identification map if and only if for any set U of $X \setminus A$ in the topology inherited from X/A, U is open iff $id^{-1}(U) = U$ is open in the topology inherited from X. But this says that the topology on $X \setminus A$ is exactly that inherited from X/A, and so the result holds.

Give an example of X, A for which this condition holds, yet A is neither open nor closed in X. Give an example of X, A for which this does not hold.

For the first part, let X be a two point indiscrete space and A a set of one of the points. For the second, let $X = \mathbb{R}$ and $A = \mathbb{Q}$. Then the set $U = \{x \in]0,1[:x \text{ is irrational}\}$ is open in $\mathbb{R} \setminus \mathbb{Q}$, but cannot be written as $V \cap (\mathbb{R} \setminus \mathbb{Q})$ for any open V which is either disjoint from or contains \mathbb{Q} , since the only open set containing \mathbb{Q} is \mathbb{R} , and $U \neq \mathbb{R} \setminus \mathbb{Q}$, and any open set V must have some rational point by density.

Exercise 4.3.5

Let A be a subspace of X. Prove that X/A is Hausdorff if (i) $X \setminus A$ is Hausdorff, (ii) $X \setminus A$ is a subspace of X/A, and (iii) if $x \in X \setminus A$ then x and A have disjoint neighbourhoods in X.

Prove that if X = [0, 2], A = [1, 2], then X/A is not Hausdorff.

Exercise 4.3.6

Let A be a closed subset of X and let B be a proper subset of A. Let X' = X B, $A' = A \setminus B$. Prove that X'/A' is homeomorphic to X/A.

We \Box