光伏发电预测第四次报告

张翼鹏 杨思敏

December 26, 2019

目录

1	参数	2
2	特征	2
3	模型	2

1 参数

这里准备推翻上次报告提出的用题目给出的误差函数(类似L1范数)代替线性回 归均方误差代价函数的做法。

首先是对L1范数的优化比较难以实现,查阅资料只发现了一个相关方法,即近端梯度下降(PGD),用于解决具有L1正则化项的Lasso回归等优化问题,但与我们目前的情况也不太相符。

我认为这种做法是否能得到更好的结果这件事过于随机,受到具体数据的影响。首 先我们始终使用线性回归,模型的复杂程度和拟合能力并未改变;其次我们用题目给出 的误差函数,看似更加直击重点,但我们击的是训练集的重点,测试集很可能与之不 符。

初步分析,如果数据分布比较均匀,那么用L1范数代价函数(MAE)或L2范数代价函数(MSE)得到的结果应该是一样的。这两个代价函数比较主要的区别就是对与数据中存在异常值的情况,MSE放大了直线上的点与异常值之间的偏差,导致拟合直线一定程度上会偏向异常值点;而MAE则受异常值影响较小。对于这种情况,我们改变代价函数,误差可能更小也可能更大。如果单纯为了避免异常值的影响,我们不如就直接删除掉异常值。

2 特征

将风向化成余弦值,对目前的线性回归模型确实能够减小误差。

表 1: 标准化风向后的误差比较

	普通	只标准化风向	只加入交叉项	同时
电站1	0.1293	0.1289	0.1290	0.1285
电站2	0.1517	0.1511	0.1507	0.1502
电站4	0.1556	0.1553	0.1527	0.1526
电站6	0.1261	0.1258	0.1277	0.1273
平均	0.1407	0.1403	0.1400	0.1396

3 模型

将训练集按小时,分割成24份,训练24个线性回归模型。预测时根据测试集数据的时间选择对应的模型进行预测。

表 2: 按小时训练结果(已标准化风向)

	普通	交叉
电站1	0.1249	0.1236
电站2	0.1716	0.1734
电站4	0.1418	0.1430
电站6	0.1218	0.1219
平均	0.1400	0.1404