

(https://skills.network/?

utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=1 SkillsNetwork-Channel-SkillsNetworkCoursesIBMDS0321ENSkillsNetwork26802033-2022-01-01)

Space X Falcon 9 First Stage Landing **Prediction**

Assignment: Machine Learning Prediction

Estimated time needed: 60 minutes

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. In this lab, you will create a machine learning pipeline to predict if the first stage will land given the data from the preceding labs.

Several examples of an unsuccessful landing are shown here:

Most unsuccessful landings are planed. Space X; performs a controlled landing in the oceans.

Objectives

Perform exploratory Data Analysis and determine Training Labels

- · create a column for the class
- · Standardize the data
- · Split into training data and test data

-Find best Hyperparameter for SVM, Classification Trees and Logistic Regression

Find the method performs best using test data

Import Libraries and Define Auxiliary Functions

```
In [ ]:
            import piplite
            await piplite.install(['numpy'])
            await piplite.install(['pandas'])
            await piplite.install(['seaborn'])
```

We will import the following libraries for the lab

```
In [1]:
         ▶ # Pandas is a software Library written for the Python programming Langue
            import pandas as pd
            # NumPy is a library for the Python programming language, adding suppor
            import numpy as np
            # Matplotlib is a plotting library for python and pyplot gives us a Matl
            import matplotlib.pyplot as plt
            #Seaborn is a Python data visualization library based on matplotlib. It
            import seaborn as sns
            # Preprocessing allows us to standarsize our data
            from sklearn import preprocessing
            # Allows us to split our data into training and testing data
            from sklearn.model_selection import train_test_split
            # Allows us to test parameters of classification algorithms and find the
            from sklearn.model selection import GridSearchCV
            # Logistic Regression classification algorithm
            from sklearn.linear_model import LogisticRegression
            # Support Vector Machine classification algorithm
            from sklearn.svm import SVC
            # Decision Tree classification algorithm
            from sklearn.tree import DecisionTreeClassifier
            # K Nearest Neighbors classification algorithm
            from sklearn.neighbors import KNeighborsClassifier
```

This function is to plot the confusion matrix.

```
def plot confusion matrix(y,y predict):
In [2]:
                "this function plots the confusion matrix"
                from sklearn.metrics import confusion matrix
                cm = confusion_matrix(y, y_predict)
                ax= plt.subplot()
                sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells
                ax.set_xlabel('Predicted labels')
                ax.set_ylabel('True labels')
                ax.set_title('Confusion Matrix');
                ax.xaxis.set_ticklabels(['did not land', 'land']); ax.yaxis.set_tic
```

```
In [4]:
         ▶ pip install js
            Collecting jsNote: you may need to restart the kernel to use updated p
            ackages.
              Downloading js-1.0.tar.gz (2.5 kB)
              Preparing metadata (setup.py): started
              Preparing metadata (setup.py): finished with status 'done'
            Collecting fanstatic
              Downloading fanstatic-1.3-py3-none-any.whl (32 kB)
            Requirement already satisfied: setuptools in c:\users\danie\anaconda3
            \lib\site-packages (from js) (63.4.1)
            Collecting WebOb>=1.2
              Downloading WebOb-1.8.7-py2.py3-none-any.whl (114 kB)
                    ------ 115.0/115.0 kB 1.7 MB/s et
            a 0:00:00
            Building wheels for collected packages: js
              Building wheel for js (setup.py): started
              Building wheel for js (setup.py): finished with status 'done'
              Created wheel for js: filename=js-1.0-py3-none-any.whl size=2884 sha
            256=4fc02b494e5f08a0beea00143afcbbb86453ed82ccfa1a9917f1ada72920e75d
              Stored in directory: c:\users\danie\appdata\local\pip\cache\wheels\6
            f\91\12\9fc79cc62b07127faf39b5f3afcc6606e659bb54743a00bebb
            Successfully built is
            Installing collected packages: WebOb, fanstatic, is
            Successfully installed WebOb-1.8.7 fanstatic-1.3 js-1.0
            WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=No
            ne, status=None)) after connection broken by 'ProtocolError('Connectio
            n aborted.', ConnectionResetError(10054, 'An existing connection was f
            orcibly closed by the remote host', None, 10054, None))': /simple/js/
```

Load the dataframe

Load the data

```
In [6]:
            # from js import fetch
            # import io
            URL1 = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cle
            # resp1 = await fetch(URL1)
            # text1 = io.BytesIO((await resp1.arrayBuffer()).to py())
            # data = pd.read csv(text1)
            data = pd.read_csv(URL1)
```

▶ data.head() In [7]:

Out[7]:

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flig
0	1	2010- 06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	
1	2	2012- 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	
2	3	2013 - 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	
3	4	2013- 09-29	Falcon 9	500.000000	РО	VAFB SLC 4E	False Ocean	
4	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	
	1							

```
URL2 = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.clo
In [8]:
            # resp2 = await fetch(URL2)
            # text2 = io.BytesIO((await resp2.arrayBuffer()).to_py())
            \# X = pd.read csv(text2)
            X = pd.read_csv(URL2)
```

★ X.head(100) In [9]:

Out[9]:

	FlightNumber	PayloadMass	Flights	Block	ReusedCount	Orbit_ES- L1	Orbit_GEO	Oı
0	1.0	6104.959412	1.0	1.0	0.0	0.0	0.0	
1	2.0	525.000000	1.0	1.0	0.0	0.0	0.0	
2	3.0	677.000000	1.0	1.0	0.0	0.0	0.0	
3	4.0	500.000000	1.0	1.0	0.0	0.0	0.0	
4	5.0	3170.000000	1.0	1.0	0.0	0.0	0.0	
85	86.0	15400.000000	2.0	5.0	2.0	0.0	0.0	
86	87.0	15400.000000	3.0	5.0	2.0	0.0	0.0	
87	88.0	15400.000000	6.0	5.0	5.0	0.0	0.0	
88	89.0	15400.000000	3.0	5.0	2.0	0.0	0.0	
89	90.0	3681.000000	1.0	5.0	0.0	0.0	0.0	
90 rows × 83 columns								

TASK 1

Create a NumPy array from the column Class in data, by applying the method to_numpy() then assign it to the variable Y ,make sure the output is a Pandas series (only one bracket df['name of column']).

```
Y = pd.Series(data['Class'].to_numpy())
In [10]:
```

```
In [12]:
              print(type(Y))
              print(Y.head(100))
              <class 'pandas.core.series.Series'>
              0
                    0
              1
                    0
              2
                    0
              3
                    0
              4
                    0
              85
                    1
              86
                    1
              87
                    1
              88
                    1
              89
                    1
              Length: 90, dtype: int64
```

Standardize the data in X then reassign it to the variable X using the transform provided below.

```
In [13]:
          transform = preprocessing.StandardScaler()
            X = transform.fit transform(X)
In [15]:
          N X
   Out[15]: array([[-1.71291154e+00, -1.94814463e-16, -6.53912840e-01, ...,
                    -8.35531692e-01, 1.93309133e+00, -1.93309133e+00],
                   [-1.67441914e+00, -1.19523159e+00, -6.53912840e-01, ...,
                    -8.35531692e-01, 1.93309133e+00, -1.93309133e+00],
                   [-1.63592675e+00, -1.16267307e+00, -6.53912840e-01, ...,
                    -8.35531692e-01, 1.93309133e+00, -1.93309133e+00],
                   [ 1.63592675e+00, 1.99100483e+00, 3.49060516e+00, ...,
                     1.19684269e+00, -5.17306132e-01, 5.17306132e-01],
                   [ 1.67441914e+00, 1.99100483e+00, 1.00389436e+00, ...,
                     1.19684269e+00, -5.17306132e-01, 5.17306132e-01],
                   [ 1.71291154e+00, -5.19213966e-01, -6.53912840e-01, ...,
                    -8.35531692e-01, -5.17306132e-01, 5.17306132e-01]])
```

We split the data into training and testing data using the function train test split. The training data is divided into validation data, a second set used for training data; then the models are trained and hyperparameters are selected using the function GridSearchCV.

Use the function train_test_split to split the data X and Y into training and test data. Set the parameter test size to 0.2 and random state to 2. The training data and test data should be assigned to the following labels.

```
X_train, X_test, Y_train, Y_test
```

```
In [16]:
         X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2
```

we can see we only have 18 test samples.

```
In [17]: ► Y_test.shape
   Out[17]: (18,)
```

TASK 4

Create a logistic regression object then create a GridSearchCV object logreg cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters .

```
In [ ]:
             parameters ={'C':[0.01,0.1,1],
                           'penalty':['12'],
                           'solver':['lbfgs']}
             parameters ={"C":[0.01,0.1,1],'penalty':['12'], 'solver':['lbfgs']}# L1
In [18]:
             lr=LogisticRegression()
          ▶ logreg_cv = GridSearchCV(lr, parameters, cv=10)
In [19]:
             logreg_cv.fit(X_train, Y_train)
   Out[19]: GridSearchCV(cv=10, estimator=LogisticRegression(),
                          param_grid={'C': [0.01, 0.1, 1], 'penalty': ['12'],
                                       'solver': ['lbfgs']})
```

We output the GridSearchCV object for logistic regression. We display the best parameters using the data attribute best_params_ and the accuracy on the validation data using the data attribute best_score_ .

```
In [20]:
          ▶ print("tuned hpyerparameters :(best parameters) ",logreg_cv.best_params
             print("accuracy :",logreg_cv.best_score_)
             tuned hpyerparameters :(best parameters) {'C': 0.01, 'penalty': '12',
             'solver': 'lbfgs'}
             accuracy: 0.8464285714285713
```

Calculate the accuracy on the test data using the method score:

```
In [21]:
          ▶ test_accuracy = logreg_cv.score(X_test, Y_test)
             print("Test Accuracy:", test_accuracy)
```

Test Accuracy: 0.8333333333333334

Lets look at the confusion matrix:

Examining the confusion matrix, we see that logistic regression can distinguish between the different classes. We see that the major problem is false positives.

TASK 6

Create a support vector machine object then create a GridSearchCV object svm_cv with cv - 10. Fit the object to find the best parameters from the dictionary parameters .

```
In [25]:
          # Create a GridSearchCV object with 10-fold cross-validation
             svm_cv = GridSearchCV(svm, parameters, cv=10)
             # Fit the GridSearchCV object to the training data
             svm_cv.fit(X_train, Y_train)
   Out[25]: GridSearchCV(cv=10, estimator=SVC(),
                          param grid={'C': array([1.0000000e-03, 3.16227766e-02,
             1.00000000e+00, 3.16227766e+01,
                    1.00000000e+03]),
                                       'gamma': array([1.00000000e-03, 3.16227766e-0
             2, 1.00000000e+00, 3.16227766e+01,
                    1.00000000e+03]),
                                       'kernel': ('linear', 'rbf', 'poly', 'rbf', 's
             igmoid')})
In [26]:
          ▶ print("tuned hpyerparameters :(best parameters) ",svm_cv.best_params_)
             print("accuracy :",svm_cv.best_score_)
             tuned hpyerparameters :(best parameters) {'C': 1.0, 'gamma': 0.031622
             77660168379, 'kernel': 'sigmoid'}
             accuracy: 0.8482142857142856
```

Calculate the accuracy on the test data using the method score:

```
In [27]:
        test accuracy = svm cv.score(X test, Y test)
            print("Test Accuracy:", test_accuracy)
```

Test Accuracy: 0.8333333333333334

We can plot the confusion matrix

```
In [28]:
             yhat=svm_cv.predict(X_test)
             plot_confusion_matrix(Y_test,yhat)
```


Create a decision tree classifier object then create a GridSearchCV object tree_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

```
In [29]:
              'max_depth': [2*n for n in range(1,10)],
               'max_features': ['auto', 'sqrt'],
              'min_samples_leaf': [1, 2, 4],
               'min_samples_split': [2, 5, 10]}
          tree = DecisionTreeClassifier()
```

```
▶ # Create a GridSearchCV object with 10-fold cross-validation
In [30]:
             tree cv = GridSearchCV(tree, parameters, cv=10)
             # Fit the GridSearchCV object to the training data
             tree_cv.fit(X_train, Y_train)
   Out[30]: GridSearchCV(cv=10, estimator=DecisionTreeClassifier(),
                          param_grid={'criterion': ['gini', 'entropy'],
                                       'max_depth': [2, 4, 6, 8, 10, 12, 14, 16, 1
             8],
                                       'max_features': ['auto', 'sqrt'],
                                       'min_samples_leaf': [1, 2, 4],
                                       'min_samples_split': [2, 5, 10],
                                       'splitter': ['best', 'random']})
In [31]:
          ▶ print("tuned hpyerparameters :(best parameters) ",tree_cv.best_params_)
             print("accuracy :",tree_cv.best_score_)
             tuned hpyerparameters :(best parameters) {'criterion': 'entropy', 'ma
             x_depth': 4, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_sampl
             es_split': 10, 'splitter': 'random'}
             accuracy: 0.8892857142857145
```

Calculate the accuracy of tree_cv on the test data using the method score:

```
    test accuracy = tree cv.score(X test, Y test)

In [32]:
              print("Test Accuracy:", test_accuracy)
```

Test Accuracy: 0.8333333333333334

We can plot the confusion matrix

```
In [33]:
          ▶ | yhat = svm_cv.predict(X_test)
             plot_confusion_matrix(Y_test,yhat)
```


Create a k nearest neighbors object then create a GridSearchCV object knn_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters .

```
parameters = {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
In [34]:
                            'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
                            'p': [1,2]}
             KNN = KNeighborsClassifier()
```

```
In [35]:
             # Create a GridSearchCV object with 10-fold cross-validation
             knn cv = GridSearchCV(KNN, parameters, cv=10)
             # Fit the GridSearchCV object to the training data
             knn_cv.fit(X_train, Y_train)
             C:\Users\danie\anaconda3\lib\site-packages\sklearn\neighbors\_cla
             ssification.py:228: FutureWarning: Unlike other reduction functio
             ns (e.g. `skew`, `kurtosis`), the default behavior of `mode` typi
             cally preserves the axis it acts along. In SciPy 1.11.0, this beh
             avior will change: the default value of `keepdims` will become Fa
             lse, the `axis` over which the statistic is taken will be elimina
             ted, and the value None will no longer be accepted. Set `keepdims
             ` to True or False to avoid this warning.
               mode, = stats.mode( y[neigh ind, k], axis=1)
             C:\Users\danie\anaconda3\lib\site-packages\sklearn\neighbors\_cla
             ssification.py:228: FutureWarning: Unlike other reduction functio
             ns (e.g. `skew`, `kurtosis`), the default behavior of `mode` typi
             cally preserves the axis it acts along. In SciPy 1.11.0, this beh
             avior will change: the default value of `keepdims` will become Fa
             lse, the `axis` over which the statistic is taken will be elimina
             ted, and the value None will no longer be accepted. Set `keepdims
             ` to True or False to avoid this warning.
               mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
             C:\Users\danie\anaconda3\lib\site-packages\sklearn\neighbors\_cla
             print("tuned hpyerparameters :(best parameters) ",knn cv.best params )
In [36]:
             print("accuracy :",knn cv.best score )
```

```
tuned hpyerparameters :(best parameters) {'algorithm': 'auto', 'n nei
ghbors': 10, 'p': 1}
accuracy: 0.8482142857142858
```

Calculate the accuracy of tree cv on the test data using the method score:

```
In [37]:
          test_accuracy = knn_cv.score(X_test, Y_test)
             print("Test Accuracy:", test_accuracy)
```

Test Accuracy: 0.8333333333333334

C:\Users\danie\anaconda3\lib\site-packages\sklearn\neighbors\ classifi cation.py:228: FutureWarning: Unlike other reduction functions (e.g. skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: th e default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warn

```
mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
```

We can plot the confusion matrix

```
In [38]:
             yhat = knn cv.predict(X test)
             plot_confusion_matrix(Y_test,yhat)
```

C:\Users\danie\anaconda3\lib\site-packages\sklearn\neighbors_classifi cation.py:228: FutureWarning: Unlike other reduction functions (e.g. skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: th e default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warn ing.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

TASK 12

Find the method performs best:

```
In [40]:
          # Print the test accuracies
             logreg_acc = logreg_cv.score(X_test, Y_test)
             svm_acc = svm_cv.score(X_test, Y_test)
             tree_acc = tree_cv.score(X_test, Y_test)
             knn_acc = knn_cv.score(X_test, Y_test)
             print("Logistic Regression Accuracy:", logreg_acc)
             print("SVM Accuracy:", svm_acc)
             print("Decision Tree Accuracy:", tree acc)
             print("K-NN Accuracy:", knn_acc)
```

Logistic Regression Accuracy: 0.8333333333333334

SVM Accuracy: 0.8333333333333334

Decision Tree Accuracy: 0.8333333333333334

K-NN Accuracy: 0.8333333333333334

C:\Users\danie\anaconda3\lib\site-packages\sklearn\neighbors_classifi cation.py:228: FutureWarning: Unlike other reduction functions (e.g. skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: th e default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warn ing.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

Authors

Pratiksha Verma (https://www.linkedin.com/in/pratiksha-verma-6487561b1/? SkillsNetwork-Channel-SkillsNetworkCoursesIBMDS0321ENSkillsNetwork865-2022-01-01)

Change Log

Date (YYYY-MM-DD)		Version	Changed By	Change Description
	2022-11-09	1.0	Pratiksha Verma	Converted initial version to Jupyterlite

IBM Corporation 2022. All rights reserved.