Исследование непараметрических методов проверки гипотез с помощью статистического моделирования

Мелас В. Б., доктор физ.-мат. наук, профессор кафедры статистического моделирования СПбГУ, vbmelas@yandex.ru¹,

Сальников Д.И., студент-магистр кафедры статистического моделирования СПбГУ, st013309@student.spbu.ru

Аннотация

Перестановочные тесты — важный класс методов проверки статистических гипотез, ставший доступным с развитием вычислительной техники. Их применение почти не требует выполнения каких—либо предположений о данных, тестовую статистику достаточно просто подстроить под конкретные задачи, а благодаря построению возможно точно достигнуть заданного уровня значимости.

В данной работе вводятся новые перестановочные тесты, а так же с помощью статистического моделирования исследуются их мощности в рамках задачи сравнения распределений двух выборок.

Введение

Задача проверки гипотезы равенства распределений двух выборок является классической задачей математической статистики и часто встречается на практике в различных областях. Классическим тестом проверки данной гипотезы является тест Колмогорова-Смирнова.

Хорошо известно (см. Леман, 1979 [1]), что для выборок из нормальных распределений в случае равных дисперсий оптимальным является тест Стьюдента. Для проверки гипотезы равенства центров распределений часто применяется ранговый тест Манна-Уитни, который обладает высокой мощностью для распределений с «тяжелыми хвостами».

Наряду с классическими параметрическими и непараметрическими тестами важное место занимают перестановочные тесты, обладающие высокой мощностью, гибкостью и универсальностью. Так, например, в работе Ludbrook, Dudley (1998, [7]) рекомендуется применение перестановочных

¹Работа выполнена при частичной поддержке РФФИ (грант № 17-01-00161).

тестов в медико-биологических исследованиях, где объемы выборок зачастую слишком малы для применения классических тестов. В работе Нио и др. (2014, [8]) приведен большой обзор применения перестановочных тестов в педагогических и поведенческих науках.

В общем случае теоретическое сравнение мощностей статистических тестов является сложной задачей, часто неразрешимой. В данной работе мы рассмотрим широкий класс распределений и проведем сравнительный анализ мощностей перестановочных тестов для выборок из этих распределений.

Постановка задачи

Рассмотрим классическую задачу проверки гипотезы однородности

$$H_0: F_1 = F_2$$
 (1)

против альтернативы

$$H_1: F_1 \neq F_2$$
 (2)

в случае двух независимых выборок $X=(X_1\dots X_{n_1})$ и $Y=(Y_1\dots Y_{n_2})$ из генеральных совокупностей с функциями распределения F_1 и F_2 соответственно. Для упрощения обозначений и без потери общности положим $n_1=n_2=n$.

Определим вектор

$$Z = (X_1 \dots X_n, Y_1 \dots Y_n).$$

Определим следующие статистики:

$$K_1(Z) = (\overline{X} - \overline{Y})^2, \tag{3}$$

$$K_6(Z) = \sum_{i,j=1}^{n} |X_i - Y_j|, (4)$$

$$L_{\gamma}(Z) = \sum_{i,j=1}^{n} \ln(1 + |X_i - Y_j|^{\gamma}), \quad \gamma = \{1, 2, 0.5\},$$
 (5)

$$L_{\infty}(Z) = \sum_{i,j=1}^{n} \ln(|X_i - Y_j|),$$
 (6)

где под $\overline{X}, \overline{Y}$ подразумеваются выборочные средние значения.

Обозначим множество всевозможных перестановок элементов вектора ${\cal Z}$ через

$$\{Z(\pi_k) = (\underbrace{X_1(\pi_k) \dots X_n(\pi_k)}_{X(\pi_k)}, \underbrace{Y_1(\pi_k) \dots Y_n(\pi_k)}_{Y(\pi_k)})\}_{k=1}^{(2n)!}.$$
 (7)

Приведем алгоритм проверки гипотезы 1, 2 на примере статистики $K_1(\cdot)$. Вычисляя значения $K_1(Z(\pi_k))$, $k=1\dots(2n)!$, мы получаем перестановочное распределение величины $K_1(Z)$, которое позволяет нам принять решение относительно поставленной гипотезы, а именно:

- пусть d общее число перестановок, r число перестановок π_k , для которых $K_1(Z(\pi_k)) \ge K_1(Z)$;
- если отношение $\frac{r}{d} < \alpha$, то гипотеза H_0 (1) отвергается в пользу альтернативной гипотезы H_1 (2) с уровнем значимости α .

Приведенный выше алгоритм будем называть перестановочным тестом K_1 . Тесты K_6 и L_γ , $\gamma=\{1,2,0.5,\infty\}$ вводятся по аналогии. В случае L_∞ необходимо, чтобы все элементы вектора Z были различны. Заметим, что при проверке гипотезы мы можем использовать лишь случайное подмножество перестановок $Z(\pi_k)$ размера d (рекомендации для выбора величины d, основанные на эмпирических исследованиях, можно найти в работах Keller-McNulty, Higgins, 1987 [5] и Marozzi, 2004 [6]).

Мощность K_1 была изучена численными методами в работе Sturino и др. (2010, [2]), K_6 был рассмотрен в работе Sirsky (2012, [3]), также мощности этих двух тестов исследовались в работе Мелас и др. (2016, [4]). Согласно выводам этих работ, K_6 обладает высокой мощностью для широкого класса распределений и особенно эффективен в случае, когда центры сравниваемых распределений совпадают, а мощность K_1 наиболее близка к мощности классического теста Стьюдента. Тесты L_i , $i=\{1,2,0.5,\infty\}$, насколько известно авторам данной статьи, введены впервые.

Заметим, что статистики $L_{\gamma}(\cdot)$, $\gamma=\{1,2,0.5\}$ (5), в отличие от $K_1(\cdot)$, $K_6(\cdot)$ и $L_{\infty}(\cdot)$, зависят от нормировки аргумента. Рассмотрим следующие пределы:

$$\frac{\sum_{i,j=1}^{n} \ln(1 + |X_i - Y_j|^{\gamma})}{\sum_{i,j=1}^{n} |X_i - Y_j|^{\gamma}} \xrightarrow[1 \le i,j \le n]{} \frac{\max_{1 \le i,j \le n} |X_i - Y_j| \to 0}{} 1,$$

$$\frac{\sum_{i,j=1}^{n} \ln(1+|X_i-Y_j|^{\gamma})}{\gamma \sum_{i,j=1}^{n} \ln(|X_i-Y_j|)} \xrightarrow[1 \le i,j \le n]{\min_{1 \le i,j \le n} |X_i-Y_j| \to \infty} 1.$$

Таким образом, при уменьшении расстояния между элементами выборок тест L_1 сходится к тесту K_6 , а L_2 — к K_1 . При увеличении расстояния между элементами выборок тесты $L_{\gamma}(\cdot)$, $\gamma=\{1,2,0.5\}$ сходятся к тесту L_{∞} (согласно алгоритму проверки гипотезы умножение статистики теста L_{∞} на константу γ не влияет на результат тестирования).

Рассмотрим выражение

$$\sum_{i,j=1}^{n} |X_i - Y_j| = \underbrace{\sum_{1 \le i < j \le 2n} |Z_i - Z_j|}_{C'} - \sum_{1 \le i < j \le n} |X_i - X_j| - \sum_{1 \le i < j \le n} |Y_i - Y_j|.$$

Сумма C' состоит из n(2n-1) слагаемых и является инвариантной относительно любой перестановки π_k . В качестве нормировочной константы было решено взять величину C=C'/n(2n-1). Таким образом, к рассмотрению добавилось еще 3 теста со следующими статистиками:

$$L_{\gamma}^{C}(Z) = \sum_{i,j=1}^{n} \ln\left(1 + \left(\frac{|X_i - Y_j|}{C}\right)^{\gamma}\right), \quad i = \{1, 2, 0.5\}.$$
 (8)

Задача заключается в исследовании мощности данных тестов для широкого класса типичных распределений с помощью статистического моделирования, а также в сравнении их мощности с классическими тестами Стьюдента (t.test), Колмогорова-Смирнова (ks.test) и Манна-Уитни (w.test).

Описание экспериментов

В исследовании были рассмотрены следующие распределения:

- нормальное распределение $N(\mu,\sigma)$;
- распределение Коши $C(x_0, \gamma)$;
- логнормальное распределение $LN(\mu,\sigma)$;
- распределение Парето $P(x_m, k)$;
- распределение Фишера $F(d_1, d_2)$;
- распределение Вейбулла $W(k,\lambda)$;
- бета-распределение $B(\alpha, \beta)$;

• гамма-распределение $G(k, \theta)$.

В каждом эксперименте были рассмотрены выборки размера n=5 и n=20, уровень значимости выбран равным $\alpha=0.05$.

Для оценки мощности тестов в каждом случае было проведено по m=2500 независимых испытаний. Стандартная ошибка среднего в m испытаниях Бернулли оценивается как $\hat{\sigma}_m=\sqrt{\frac{\hat{p}(1-\hat{p})}{m}}$. Согласно центральной предельной теореме при $m\to\infty$ истинная величина мощности p с вероятностью более 0.95 находится в интервале $(\hat{p}-2\hat{\sigma}_m,\,\hat{p}+2\hat{\sigma}_m)\stackrel{m=2500}{\subseteq}(\hat{p}-0.02,\,\hat{p}+0.02)$, где \hat{p} — полученная оценка мощности.

Заметим, что все введенные перестановочные тесты инвариантны относительно перестановок элементов внутри векторов $X(\pi_k)$ и $Y(\pi_k)$, а также, в силу того, что размеры выборок одинаковы, относительно перемены местами $X(\pi_k)$ и $Y(\pi_k)$. Таким образом мы можем сократить размер множества перестановок 7 до $\frac{(2n)!}{2(n!)^2}$. При размерах исходных выборок n=5 мы получаем всего 126 перестановок и можем применять точные тесты, однако при n=20 их количество резко возрастает.

Для избежания вычислительных трудностей при n=20 будем рассматривать только d=1600 случайных, возможно повторяющихся перестановок. Такое количество было выбрано на основе выводов из работ Keller-McNulty, Higgins, 1987 [5] и Marozzi, 2004 [6]. Для практического применения рекомендуется брать d=5000.

Исследование мощности логарифмических тестов

Проведем сравнительный анализ введенных логарифмических тестов L_γ , L_γ^C , где $\gamma=\{0.5,1,2\}$, и L_∞ , используя пакет для статистической обработки данных R. Приведем полученные значения мощности тестов для случая размера выборки n=20, так как в случае n=5 результаты похожи. Жирным шрифтом выделены тесты, оценки 95% доверительных интервалов мощности которых пересекаются с оценкой 95% доверительного интервала мощности лидирующего теста. В каждом случае было проведено по 5 различных экспериментов с контролем уровня значимости, в таблицы вошли наиболее наглядные результаты.

Таблица 1: Мощность логарифмических тестов при размерах выборок n=20

F_1	F_2	L_1	L_1^C	L_2	L_2^C	$L_{0.5}$	$L_{0.5}^{C}$	L_{∞}
N(0,1)	N(1,1)	0.802	0.807	0.83	0.841	0.76	0.762	0.685

N(0,1)	N(0,3)	0.86	0.856	0.871	0.826	0.846	0.847	0.812
N(0,1)	N(1, 2)	0.734	0.736	0.748	0.738	0.706	0.71	0.662
C(0,1)	C(2,1)	0.906	0.854	0.902	0.663	0.911	0.902	0.903
C(0,1)	C(0,6)	0.912	0.822	0.91	0.525	0.916	0.904	0.914
LN(0,1)	LN(1,1)	0.776	0.781	0.774	0.762	0.764	0.77	0.725
LN(0,1)	LN(0,4)	0.925	0.888	0.882	0.739	0.952	0.953	0.956
P(1,1)	P(3,1)	0.991	0.911	0.989	0.684	0.994	0.986	0.997
P(1,2)	P(1,6)	0.86	0.851	0.878	0.873	0.814	0.811	0.727
F(40,2)	F(40, 20)	0.894	0.901	0.881	0.838	0.868	0.879	0.801
F(2,40)	F(20,40)	0.796	0.802	0.609	0.687	0.819	0.819	0.809
W(2,2)	W(2,4)	0.949	0.956	0.962	0.97	0.937	0.938	0.902
W(2,2)	W(8,2)	0.959	0.963	0.882	0.941	0.961	0.96	0.944
G(3,1)	G(3,2)	0.908	0.923	0.915	0.941	0.891	0.9	0.844
G(1,1)	G(2,1)	0.741	0.743	0.745	0.748	0.723	0.726	0.68
B(2,2)	B(5,2)	0.904	0.889	0.924	0.909	0.867	0.856	0.804
B(1,1)	B(8,8)	0.81	0.864	0.103	0.786	0.869	0.874	0.857

Усредненные по всем рассмотренным случаям ошибки первого рода каждого теста находятся в интервале (0.047,0.05), что хорошо согласуется с заданным уровнем значимости $\alpha=0.05$.

Из таблицы 1 видно, что мощности всех тестов довольно близки, однако наименее мощным является тест L_{∞} . Для нормальных распределений, различающихся параметром сдвига $N(\mu,1)$, тест L_2 является наиболее мощным, для распределений Парето и логнормальных распределений, различающихся параметром масштаба (случаи $P(x_m,1)$ и $LN(0,\sigma)$ соответственно) — тест $L_{0.5}$. Тест L_1 является своеобразным компромиссом между этими двумя тестами, зачастую оценка его мощности находится между оценками мощности тестов L_2 и $L_{0.5}$.

Опираясь на численные результаты можно заметить, что введенная нормировка для теста L_1 уменьшает его мощность для распределений с тяжелыми хвостами, а именно распределений Коши и распределений Парето с параметром формы, равном единице $P(x_m,1)$ (у этих распределений не существует математического ожидания), а также для логнормальных распределений, различающихся параметром масштаба $LN(0,\sigma)$, однако дает незначительный выигрыш в остальных рассмотренных случаях, а также делает тест независимым к разбросу данных.

Сравнение лучшего логарифмического теста с известными ранее тестами

На основе проведенного в предыдущей главе анализа проведем сравнительное исследование мощности теста L_1^C , который оказался наилучшим среди введенных логарифмических тестов, с классическими тестами Стьюдента (t.test), Колмогорова-Смирнова (ks.test), Манна-Уитни (w.test), а также с перестановочными тестами K_1 и K_6 . В таблицах 2 и 3 представлены результаты экспериментов в случае выборок размера n=5 и n=20 соответственно, при этом из таблицы 2 исключено распределение Фишера, так как при таком малом объеме выборок все тесты имеют низкую мощность при любом выборе параметров.

Таблица 2: Мощность тестов при размерах выборок n=5

F_1	F_2	K_1	K_6	L_1^C	t.test	w.test	ks.test
N(0,1)	N(2,1)	0.799	0.782	0.738	0.765	0.672	0.375
N(0,1)	N(0, 9)	0.111	0.249	0.726	0.052	0.055	0.038
N(0,1)	N(4,4)	0.56	0.655	0.702	0.41	0.402	0.266
C(0,1)	C(5,1)	0.595	0.725	0.791	0.452	0.51	0.406
C(0,1)	C(0, 20)	0.106	0.222	0.658	0.026	0.061	0.045
LN(0,1)	LN(2,1)	0.768	0.756	0.734	0.286	0.667	0.37
LN(0,1)	LN(0,40)	0.659	0.686	0.739	0.012	0.058	0.053
P(1,1)	P(5,1)	0.638	0.662	0.687	0.222	0.587	0.416
P(1,2)	P(1,20)	0.762	0.759	0.748	0.176	0.605	0.363
W(2,2)	W(2,6)	0.758	0.755	0.726	0.581	0.596	0.336
W(2,2)	W(20,2)	0.142	0.293	0.712	0.086	0.089	0.054
G(3,1)	G(3,5)	0.943	0.938	0.928	0.724	0.85	0.635
G(1,1)	G(5,1)	0.954	0.947	0.938	0.895	0.894	0.648
B(2,2)	B(9, 2)	0.715	0.712	0.682	0.618	0.564	0.287
B(1,1)	B(40,40)	0.105	0.213	0.584	0.073	0.062	0.035

Таблица 3: Мощность тестов при размерах выборок n=20

F_1	F_2	K_1	K_6	L_1^C	t.test	w.test	ks.test
N(0,1)	N(1, 1)	0.868	0.849	0.807	0.868	0.854	0.704
N(0,1)	N(0, 3)	0.058	0.742	0.856	0.054	0.065	0.294

N(0,1)	N(1,2)	0.5	0.711	0.736	0.486	0.46	0.524
C(0,1)	C(2,1)	0.316	0.742	0.854	0.21	0.81	0.867
C(0,1)	C(0,6)	0.05	0.663	0.822	0.02	0.07	0.353
LN(0,1)	LN(1,1)	0.746	0.78	0.781	0.667	0.842	0.708
LN(0,1)	LN(0,4)	0.71	0.836	0.888	0.065	0.064	0.452
P(1,1)	P(3,1)	0.525	0.768	0.911	0.284	0.98	0.996
P(1,2)	P(1,6)	0.895	0.889	0.851	0.673	0.804	0.678
F(40,2)	F(40, 20)	0.724	0.883	0.901	0.276	0.241	0.449
F(2,40)	F(20,40)	0.073	0.626	0.802	0.072	0.232	0.461
W(2,2)	W(2,4)	0.979	0.973	0.956	0.978	0.946	0.894
W(2,2)	W(8,2)	0.098	0.898	0.963	0.086	0.158	0.489
G(3,1)	G(3, 2)	0.959	0.948	0.923	0.955	0.931	0.839
G(1,1)	G(2,1)	0.742	0.757	0.743	0.736	0.806	0.656
B(2,2)	B(5, 2)	0.925	0.91	0.889	0.926	0.893	0.787
B(1,1)	B(8,8)	0.054	0.708	0.864	0.052	0.067	0.324

Численные эксперименты показывают, что в обоих случаях тест L_1^C значительно превосходит остальные тесты для распределений, различающихся только параметрами масштаба $(N(0,\sigma),LN(0,\sigma),B(\alpha,\alpha))$, распределений Коши $C(x_0,\gamma)$, распределений Вейбулла с разным параметром формы W(k,2), а также, при n=20, для распределений Фишера $F(d_1,d_2)$, особенно в случае, когда различается первый параметр распределения $F(d_1,40)$. В случае нормальных распределений, различающихся параметром сдвига $N(\mu,1)$, тесты K_1 и t.test являются наиболее мощными, однако, если у нормальных распределений одновременно изменяются оба параметра $N(\mu,\sigma)$, тест L_1^C является наиболее мощными.

Стоит также отметить, что для выборок малого объема (n=5, табл. 2) перестановочные тесты оказываются значительно более мощными, чем классические неперестановочные, что хорошо согласуется с выводами работы Ludbrook, Dudley (1998, [7]).

Заключение

В работе предложен ряд новых перестановочных тестов, основанных на сумме логарифмов разностей элементов двух выборок. В рамках задачи проверки гипотезы о равенстве двух распределений с помощью статистического

моделирования из предложенных тестов выбран наиболее мощный и универсальный, им оказался тест L_1^C (5).

Проведено исследование мощности теста L_1^C в сравнении с классическими тестами Стьюдента, Колмогорова-Смирнова и Манна-Уитни, а также с ранее исследованными в литературе перестановочными тестами. Из полученных результатов следует, что перестановочный тест L_1^C обладает высокой мощностью, в большом числе рассмотренных случаев оказываясь наиболее мощным. Преимущество этого теста над другими перестановочными тестами особенно велико в случае распределений с совпадающими центрами, а так же для распределений с тяжелыми хвостами.

Литература

- [1] Леман Э. Проверка статистических гипотез. М.: Наука, 1979.
- [2] Statistical methods for comparative phenomics using high-throughput phenotype microarrays / J. Sturino, I. Zorych, B. Mallick et al. // The International Journal of Biostatistics. 2010. Vol. 6.
- [3] Sirsky M. On the Statistical Analysis of Functional Data Arasing from Designed Experiments: Ph. D. thesis / M. Sirsky; University of Manitoba. 2012.
- [4] Мелас В.Б., Сальников Д.И., Гудулина А.О. Численное сравнение перестановочных и классических методов проверки статистических гипотез // Вестник СПбГУ, сер.1, вып.3. 2016.
- [5] Keller-McNulty S., Higgins J. Effect of tail weight and outliers on power and type-I error of robust permutation tests for location // Communications in Statistics Simulation and Computation. 1987. Vol. 16.
- [6] Marozzi M. Some remarks about the number of permutations one should consider to perform a permutation test // Statistica 2004.
- [7] Ludbrook J., Dudley H. Why Permutation Tests Are Superior to t and F Tests in Biomedical Research // American Statistician 1998 Vol. 52.
- [8] Permutation Tests in the Educational and Behavioral Sciences: A Systematic Review / M. Huo, M. Heyvaert, W. Van den Noortgate, P. Onghena. // Methodology European Journal of Research Methods for the Behavioral and Social Sciences. — 2014. — Vol. 10.