ギルバート乗算回路のバッファ設計

2023/06/19 B4 小島

目次

- 背景
- 目的
- バッファ回路
- 基板バイアス効果
- ドレインコンダクタンス
- 素子值設計
- シミュレーション結果
- ・まとめ

背景

- ・高周波で動作する回路は分布乗数回路として扱う
- ・負荷と伝送線路の整合が取れていないと反射が起きる
- マッチングをとるためにバッファを挿入する

目的

今回測定に使用する予定のオシロスコープのインピーダンスが 50Ω であるので、出力抵抗が 50Ω であるバッファ回路を設計する。

バッファ回路

求められる回路

- ・高い入力インピーダンス
- ・50 Ωの出力インピーダンス
- ・入力波形をそのまま出力

ドレイン接地のソースフォロワ回路を用いる。

バッファ回路

 V_{inb} : ギルバートセルの出力オフセット

今回は0.9 Vとした

 V_{DD} :電源

 V_{bias1} :電流源のバイアス

 R_{out} R_{out} : オシロスコープの抵抗

 v_{in} : ギルバートセルの出力振幅

今回は±150 mVとした

Process: Rhom 0.18 μm

バッファ回路-小信号等価回路

ある。 キルヒホッフの電流測から $g_{m1}v_{in1} = (g_{d1} + g_{d2})v_{out}$ $)g_{m1}v_{in1}$ g_{d1} v_{in1} $v_{in1} = v_{in} - v_{out}$ なので $g_{m1}(v_{in} - v_{out}) = (g_{d1} + g_{d2})v_{out}$ $v_{out} = \frac{g_{m1}}{g_{m1} + g_{d1} + g_{d2}}$ $g_{m2}\cdot 0$ g_{d2} $g_{m1} \gg g_{d1} + g_{d2}$ であるとすると $v_{out} \approx \frac{g_{m1}}{g_{m1}} v_{in} = v_{in}$

左図はバッファ回路の小信号等価回路で

バッファ回路-出力インピーダンス

出力インピーダンスRを求める際、入力は OVとし、負荷から電流が流れ込むとすると $-g_{m1}v_{out} + i = (g_{d1} + g_{d2})v_{out}$ $g_{m1} + g_{d1} + g_{d2}$ $R = \frac{v_{out}}{i} = g_{m1} + g_{d1} + g_{d2}$ $g_{m1} \gg g_{d1} + g_{d2}$ を仮定すると $R \approx g_{m,1}$

シミュレーション回路

左図のようなMOS単体でシミュレーションを行った。条件は

チャネル長:1 μm

チャネル幅:1 μm

 V_{ds} : 0.9 V

ソース-バルク間、ゲート-ソース 間の電圧でスイープした。

基板バイアス効果(v_{th1})

$$\sqrt{I_1} = \sqrt{\frac{1}{2}\mu C_{ox}} \frac{W}{L} (v_{gs} - V_{th1})$$

$$\Rightarrow \sqrt{I_1} - v_{gs}$$
特性は直線になるはず

各 V_{sb} に対する $\sqrt{I_1}-v_{gs}$ 曲線が左図 しきい電圧以上では直線に見える。

 $v_{gs}>0.7V$ の範囲で線形近似を行い、各 V_{bs} の時のしきい電圧を求めた。

基板バイアス効果(v_{th1})

求めたしきい電圧を縦軸、その時の V_{sb} を横軸に取り特性を調べた。

するとしきい電圧が V_{sb} に比例しているように考えられたので線形近似を行い、

$$V_{th}(V_{sb}) = 0.167781 \cdot V_{sb} + 0.424192$$

$$\equiv T \cdot V_{sb} + V_{th0}$$
という V_{sb} に関する一次関数を得た。

基板バイアス効果 (g_{m1})

各 V_{sb} ごとの $I_1 - v_{gs}$ 特性は左図のようになった。
Excelで v_{gs} が微小量 Δv_{gs} 増加させたとき I_1 が ΔI_1 だけ増加したとすると $g_{m1} = \frac{\Delta I_1}{\Delta v_{gs}}$

基板バイアス効果 (g_{m1})

$$g_{m1} = \frac{\Delta I_1}{\Delta v_{gs}}$$
をプロットすると左のようになる。また、

$$g_{m1} = \frac{\mu C_{ox}}{2} \cdot \frac{W_1}{L_1} \cdot \{v_{gs} - V_{th1}(V_{sb})\}$$

であるので、それぞれしきい電圧以上 の範囲で線形近似を行い、比例定数を 求めた。

基板バイアス効果(K)

vds	А	В	intercept
0.0	0.000244898	-0.000104933	0.428476345
0.1	0.000245287	-0.000109813	0.447691887
0.2	0.000245580	-0.000114449	0.466035508
0.3	0.000245797	-0.000118867	0.483598254
0.4	0.000245992	-0.000123120	0.500504081
0.5	0.000246218	-0.000127258	0.516850921
0.6	0.000246453	-0.000131276	0.532661400
0.7	0.000246760	-0.000135231	0.548026422
0.8	0.000247103	-0.000139105	0.562943388
0.9	0.000247540	-0.000142953	0.577494546
ave.	0.000246163		

 $I_1 = A \cdot v_{gs} + B$ の形で近似をした結果が左の表である。 Interceptはx切片であり $-\frac{B}{A}$ で計算した ここで $K \equiv \frac{\mu C_{ox}}{2}$ とすると、 $W_1 = L_1 = 1$ μ mで シミュレーションし、ほとんど変化がな かったのでKはAの平均値で K = 246 μ S/V

$$V_{gs} = 0.5 \text{ V}$$

 $V_{sb} = 0 \text{ V}$
 $E = 0 \text{ V}$
 $E = 0 \text{ V}$
 $E = 0 \text{ V}$

$$g_{d} = \frac{\partial I_{1}}{\partial V_{ds}} = \lambda \cdot \frac{\mu C_{ox}}{2} \cdot \frac{W_{1}}{L_{1}} (V_{gs} - V_{th1})^{2}$$
 λ はチャネル長に反比例するので比例定数 を C と 置くと

$$g_d = \frac{\mu C_{ox}}{2} \cdot W_1 \cdot \left(V_{gs} - V_{th1} \right)^2 \times \frac{C}{L_1^2} \cdots (1)$$

と分かる。

チャネル幅:1μm

チャネル長: $0.2 \mu m \sim 4.0 \mu m$

^{2023/6}分テップ幅: **0.2** μm

チャネル幅: 1.0 μm ~ 9.8 μm

チャネル長:1μm

I₁ [uA]

ステップ幅: 0.4 μm

16

それぞれ $V_{ds} > 0.4$ Vの範囲で線形近似し、チャネル長を変化させたときの傾きをプロットした。

 $g_d = \frac{c}{L^2}$ に最小二乗法を用いて近似を行った。

(1)式からわかるように L^2 に反比例することが確認できた。

この時、比例定数は 1.51376×10^{-19} であった。

$$L = W = 1 \, \mu \text{m}$$
のとき $g_d \approx 0.15 \, \mu \text{S}$ であった。 トランスコンダクタンスは $L = W = 1 \, \mu \text{m}$ のとき $g_{m1} = K \cdot \frac{W_1}{L_1} \cdot (v_{gs} - V_{th1})$ $= 246 \cdot (v_{gs} - V_{th1}) \, \mu \text{S}$ である。したがって $g_{m1} \gg g_{d1} + g_{d2}$ である。

$$VDD$$
 V_{in}
 V_{in}
 V_{out}
 V_{out}
 V_{out}
 V_{inb}
 V_{bias1}
 V_{out}
 V_{out}

$$I_1(r_1) \equiv \frac{g_{m1}}{2} \{ v_{gs}(r_1) - V_{th}(r_1) \} \cdots (4)$$
 $I_2 \equiv I_1(r_1) - I_{out}(r_1) \cdots (3)$ と形状比についての関数で表すことができる

 $I_{out}^{V_{out}}$ V_{out} は常に正であるので I_2 、 I_{out} は下向きである

したがって、 $I_1(r_1) > I_{out}(r_1)$ が必要条件となる

前述の条件より $I_1 = I_{out}$ となる形状比 r_{cross} は(3),(4)式より

 r_{cross}

$$=rac{T+3}{2\{V_{inb}+(T+2)\cdot V_{th0}\}}\cdotrac{g_{m1}}{K}$$
 $=70.770\cdotspprox71$ この時の出力電位は(2)式より $V_{out}(r_{cross})=0.1502\cdots V$ と求められた。

マッチングがとれているとき出力の 振幅は入力の半分

 $V_{out}(r_{cross})$ より出力振幅の半分小さくなる形状比が必要

 M_2 はおよそ $V_{ds} > 0.075$ Vのとき飽和領域で動作するので

$$V_{out}(r_1) = \frac{V_{out}(r_{cross}) - 0.075}{2} + 0.075$$
= 0.1126 V

22

$$V_{out}(r_1) = 0.1126$$
となる形状比は $r_1 = \frac{1}{V_{inb} + V_{th0} - (T+1) \cdot V_{out}(r_1)} \cdot \frac{g_{m1}}{K}$ $= 68.1653 \cdots$ と求められた。 このとき $I_2 = I_1(r_1) - I_{out}(r_1) = 1.1912 \text{ mA}$ とすればよい

$$I_2 = K \cdot \frac{W_2}{L_2} (V_{gs} - V_{th0})^2 = 1.1912 \times 10^{-3}$$

より、 $r_2 \equiv \frac{W_2}{L_2}$ とすれば

$$r_2 = \frac{I_2}{K \cdot \left(V_{gs} - V_{th0}\right)^2}$$

 V_{out} は $0.075\,V$ が下限になると考えると、 M_2 のゲート電位は $0.075+V_{th0}$ が上限となる。したがって r_2 は

$$1.1912 \times 10^{-3}$$

と求められた。

左が入力(1 GHz/150 mV)、右が出力電圧 設計した出力電位になっていない

 I_2 は定電流源となることを想定していたが変動している

⇒出力電位が下がりすぎていて M_2 が 飽和領域で動作していない

改善するために引き込み電流源を外し、 $r_1 = r_{cross}$ とする

 M_2 を外し、 $r_1 = r_{cross}$ とした が改善は見られなかった。

原因は M_2 のドレイン電位が変動することよりも M_1 のトランスコンダクタンス、ドレインコンダクタンスの見積もりによると思われる

 M_2 を外し、 $W_1 = 7.1 \, \mu \mathrm{m}$ 、 $L_1 = 1 \, \mu \mathrm{m}$ 、並列数10での $I_1 - v_{gs}$ 特性である。 線形近似をすると傾きは $g_{m1} = 4.9 \, \mathrm{mS}$ であった。

 $V_{out} = R_{out} \cdot I_1$ より、出力の直流電位は

$$V_{out} = R_{out} \cdot I_1 \Big|_{v_{gs}=0}$$

= $50 \cdot 1.43 \times 10^{-3} = 71.5 \text{ mV}$
である。

$$g_{m1} = K \cdot \frac{W_1}{L_1} \cdot \left\{ v_{gs} - V_{th1(V_{out})} \right\}$$

$$\approx 6.852 \cdots \text{mS}$$

0.1 0.15 Kの推定が間違っていると考えられる。 29

 M_2 は取りはずした状態で、 M_1 の

チャネル長:1 μm

チャネル幅: 6.62 μm

並列数 : 40

としたとき左のような出力電圧を

得られた。

振幅の中心: 0.15 V

振幅:±0.070 V

まとめ

・理論計算とシミュレーションは一致しなかった。 ⇒Kの値が他の人よりも高く出ていて、シミュレーショ ンからも推定が間違えていた可能性がある。

• 計算値との乖離の原因を探していく