IN THE U.S. PATENT AND TRADEMARK OFFICE

APPLICANT:

QUIBELL, Martin et al.

CONF:

1147

SERIAL NO .:

10/678,947

GROUP:

1626

FILED:

October 3, 2003

EXAMINER: YOUNG, S.

FOR:

CYSTEINE PROTEASE INHIBITORS

DECLARATION SUBMITTED UNDER 37 C.F.R. § 1.132

Honorable Commissioner Of Patents and Trademarks P.O. Box 1450 Alexandria, VA 22313-1450

October 19, 2006

Sir:

I, Dr. Urszula Grabowska, based at the applicant's English subsidiary Medivir UK Ltd, do hereby declare the following:

I have attached a copy of my curriculum vitae to this Declaration.

I am a Medicinal Chemist and Project Director for the Cathepsin K project in the Medivir group of companies. I have worked with protease inhibitors including cathepsins in excess of 8 years and have been Project Director since early 2001.

I am familiar with the above referenced patent application, as well as the development, usages and properties of cathepsin K inhibitors.

I have read and understand the subject matter of the Office Action of March 3, 2006.

The following comments are offered in support of the patentability of the instant invention.

The Examiner states that the invention in application 10/678,947 ('947) is obvious because Gribble (WO 98/50533) describes a compound with a similar structure but with a hydrogen as opposed to a methyl at the α -carbon position on the ketone bearing ring structure. The Examiner states that replacing hydrogen with methyl usually does not result in a significant difference in biological activities and asks for proof of unexpected results.

First, I must point out that Gribble has published extensively in the academic literature that the compounds embraced by Formula I in the '947 application are epimerically unstable and unsuitable for drug development. An example publication which includes Gribble as an author is Marquis et al. (2001) J Med Chem 44:725-736. Here, the last 3 lines of the abstract on page 735 states "Epimerization issues associated with the labile α-amino ketone diastereomeric centre contained within these inhibitor classes has proven to limit their utility..." Similarly, at page 728, right column, 16 lines from the bottom, the authors state that the rate of epimerization of the C-3 chiral center is rapid, while page 731, right column, the passage beginning at line 19 reinforces the unsuitability of this scaffold for drug development. I note that the authors use "C-3" to describe the furanone ring carbon which bears the link to the dipeptide chain and "C-2" to describe the carbon bearing the substituent denoted as R5 in the '947 application.

Gribble and his co-authors have also published more detailed investigations of the chiral stability of the relevant prior art compounds in the Fenwick et al. (2001) Bioorg Med Chem Lett 11:199-202 paper. For example, the last two lines of the right column on page 199 states "Significant epimerisation over a period of several hours was evident in both diastereomers." Figure 2 on page 201 shows this; that is, within 4 hours the diastereomeric ratio (i.e. the amplitude of the main and minor peaks for each eluting diastereomer) is about 1:2 when conducted at pH 5.5. Interestingly, the last 4 lines of

page 200 describe 5.5 as the pH with the <u>slowest</u> rate of epimerization. Hence epimerization occurs more quickly at higher pHs, such as pH 7-8 of physiological relevance to the compounds in the '947 application. Since different epimers have very different levels of activity (see, for example, Fenwick et al., page 200, Table 1), this means that half of any dose administered will contain the less active form. This is especially so since the drug would have been manufactured weeks or months previously and therefore will have equilibrated as a 1:1 diastereomeric mix.

In contrast, and as highlighted in the second paragraph of page 10 of application '947, the R5 substituent contributes to good chiral stability at the furanone alpha carbon. By chirally stable is meant that the compounds of the invention exist as a predominant steroisomer rather than an equal mixture of stereoisomers differing in sterochemistry at C4, i.e. in the dynamic equilibrium of the steroisomers, one configuration is strongly favoured. That is, instead of rapidly epimerising to a 1:1 diasteromeric mixture as the Gribble, Fenwick et al. and/or Marquis et al. compounds, the compounds of application '947 epimerise to a diasteromeric mixture wherein the intended diastereomer is present in at least around 90% and typically greater than 95%.. In fact, a long term equilibrium in excess of 99% has been observed. Thus, the R5 substituent has a major impact on the sterochemistry at the furanone α -carbon, with a larger substituent, e.g. alkyl rather than hydrogen, favouring a trans relationship between the R5 substituent and the amino function at C-4. This means that the compounds of application '947 reduce the patient's exposure to the "wrong" enantiomer by at least 4-10 fold, which in turn means reduced difficulties with toxicity and tolerization.

Table A below presents the results of standardized stability assessments carried out at pH 7 for periods in excess of 4 weeks with stereochemically synthesized epimer pairs of representative compounds bearing the characteristic substitution of the furanone as highlighted in application '947. It is evident that the compounds with the distinctive R5 substituent have a dynamic equilibrium that strongly favors one epimer and that the diastereomeric pairs, a and b, largely reflect each other.

Table A

R5 substituent	Epimer a) steady state	Epimer b) steady state	
	trans:cis	trans:cis	
H (prior art)	1:1 (NMR)	1:1 (NMR)	
Methyl	97:3 (HPLC)	95:5 (HPLC) 89:11	
		(NMR)	
Ethyl	96:4 (NMR)	94:6 (NMR)	
Isopropyl	Nd	>99:1 (NMR)	

I would also point out that, from a pharmaceutical viewpoint, when R5 size increases, the equilibrium tends even further to the favoured trans isomer; that is, it is becoming even better compared to the compounds of D1.

These data show that the presence of the R5 substituent imparts an unexpected and pharmaceutically relevant improvement. In addition, from stereochemistry first principles it is a reasonable expectation that the identity of the substituents R1-R4, which are strung out on the dipeptide side chain (remote from the labile α -carbon) will not affect the dynamic equilibrium imparted by R5 in either a detrimental or favorable way. Thus, one expects that the present data regarding compound stability is applicable to other compounds with the various claimed permutation of R1-R4, especially since R6 is restricted to H.

Appl. No: 10/678,947

The R5 = methyl examples show that the dynamic equilibrium has been pushed almost as far as 9:1. This is clearly a substantial improvement over the 1:1 equilibrium disclosed in WO 98/50533. Extending the R5 chain only improves the ratio and the R5 = isopropyl indicates that there is room for quite a large substituent. This is consistent with the observations in Marquis et al (see page 728, right column, three lines from the bottom and figure 2 on page 729, left column) which indicate that the furanone ring carbon bearing R5 is oriented toward solvent and would be a suitable position for pharmacokinetic optimisation.

Thus, by avoiding a 1:1 diastereomeric mixture, the same unit dosage form presents much greater quantities of active principle per unit dose. This ensures good serum levels, reducing pill burden and enhancing patient compliance. This is particularly important in the (basically) bone disorders in which cathepsin K is implicated, e.g. osteoporosis, where drug administration is likely to occur over prolonged time periods, or even for life.

In summary, the results presented above demonstrate that the compounds of the '947 application show a surprisingly and significant improvement over the compounds of Gribble et al.

Appl. No: 10/678,947

The undersigned hereby declares that all statements made herein based upon knowledge are true, and that all statements made based upon information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

DATED: 19th October 2006

Dr. Urszula Grabowska

URSZULA GRABOWSKA

Address:

Medivir UK Ltd

Chesterford Research Park

Little Chesterford

CB10 1XL

UK

Tel: ++44+(0)1799 532156

e-mail: urszula.grabowska@medivir.com

Date of Birth: Nationality:

19 February 1966

British

Place of Birth:

Manchester, UK

Education and Qualifications

Undergraduate

1984-1988

Four year Sandwich course at Liverpool Polytechnic with the third year spent on

industrial placement

Final year research project directed towards the synthesis of target carbohydrates

BSc(Hons) in Applied Chemistry, Degree class: I

Postgraduate

1988-1992

Postgraduate research for the award of Ph.D. (CASE award with SmithKline

Beecham Pharmaceuticals) on 'The Reactions of β,γ -Unsaturated Amides with Carbonyl Compounds,' under the guidance of Dr. Charles Marson at The

University of Sheffield Ph.D. awarded 1992

2002-2003

Diploma in Project Management at Lancaster University

Research Experience

1992-1994

Postdoctoral position with Professor W. N. Speckamp at The University of Amsterdam, The Netherlands. Funded by University of Amsterdam

- Research on 'An Enantiopure Synthesis of Epibatidine; an amphibian analgesic'
- Development of novel higher order cyanocuprate chemistry

1994-1997

Postdoctoral position with Professor Timothy Gallagher at University of Bristol. LINK Biotransformation Programme in collaboration with Glaxo and Institute of Food Research.

- Research on 'Oligosaccharide Synthesis. Synthesis of Fucose-containing disaccharides'
- General carbohydrate chemistry

1997-2000

Senior Research Scientist at Peptide Therapeutics.

- Identifying, designing and synthesising target molecules in the field of peptidomimetics, and inhibitor design for cysteinyl and serinyl proteases
- Solid phase synthesis and solution phase chemistry
- Development of novel methodology for library synthesis on solid phase of potential inhibitors

- Leading and organising the cathepsin K program
- · Planning project and identifying critical path and driving the project along this path
- Co-ordination of team's intellectual insight in terms of chemical expertise and promoting biological/chemical understanding in the cathepsin K program
- Advancing the capacity at which lead compounds are generated
- · Identifying risks & measures which may prevent them from occurring, or contingency plans etc
- · Keeping abreast of current literature and competition
- Ensuring timely delivery of project targets

Conferences and Courses

Poster presented at 33rd IUPAC Congress, August 1991, Budapest, Hungary
Lecture presented at a Perkin Division Meeting, February 1992, Leicester University, UK
Lecture presented at Organon Chemical Division, September 1992, Oss, The Netherlands
Poster presented at Netherlands Postgraduate Meeting, October 1993, Lunteren, The Netherlands
Poster presented at ICOS-11, June 1996, Amsterdam, The Netherlands
Attended 15th International Symposium on Medicinal Chemistry, September 1998, Edinburgh, UK
Participated in VIIIth LACDR School on Medicinal Chemistry, October 1999, The Netherlands
Poster presented at Medicinal Chemistry Gordon Conference, August 2001, New London, USA
Poster presented at Medicinal Chemistry Gordon Conference, August 2002, New London, USA
Lecture presented at Anglo-Swedish Medicinal Chemistry Symposium, March 2003, Are, Sweden
Poster presented at Medicinal Chemistry Gordon Conference, August 2003, New London, USA
Poster presented at 4th International Conference on Cysteine Proteinases and Their Inhibitors, September 2004, Portoroz, Slovenia

Lecture presented at Anglo-Swedish Medicinal Chemistry Symposium, March 2005, Are, Sweden Lecture presented at First Eurpean Workshop on Drug Synthesis, May 2006, Siena, Italy

Publications

'Recent developments in cathepsin K inhibitor design,' Urszula B Grabowska, Timothy J Chambers & Masahiro Shiroo, Current Opinion in Drug Discovery & Development, 2005 8(5) 619-630

'New routes to β-cycloalkylalanine derivatives using serine-derived organozinc reagents,' Tomas Carrillo, Lorenzo Caggiano, Richard F W Jackson, Urszula Grabowska, Alastair Rae & Matthew J Tozer, *Org. Biomol. Chem.*, 2005, 3, 4117-4123

- 'A new route to hydrophobic amino acids using copper-promoted reactions of serine-derived organozinc reagents;' Deboves, H. J. C.; Grabowska, U.; Rizzo, A.; Jackson, R. J. W.; *J Chem. Soc., Perkin Trans. 1*, 2000, 4284-4292.
- '5-(Hydroxymethyl)oxazoles; Versatile Scaffolds for Combinatorial Solid Phase Synthesis of 5-Substituted Oxazoles; Grabowska, U.; Rizzo, A.; Farnell, K.; Quibell, M.; *Journal of Combinatorial Chemistry*, 2000, 2, 475-490.
- 'Application of an Organozine Reagent Derived from (S)-Pyroglutamic Acid: A Formal Synthesis of Epibatidine;' Karstens, W. F. J.; Moolenaar, M. J.; Rutjes, P. J. T.; Grabowska, U.; Speckamp, W. N.; Hiemstra, H.; Tetrahedron Letters, 1999, 40, 8629.
- 'Enzymic glycosylation using 6-substituted glycosides as donor substrates: a novel route to functionalised disaccharides;' MacManus, D. A.; Grabowska, U.; Biggadike, K.; Bird, M. I.; Davies, S.; Vulfson, E. N.; Gallagher, T.; J. Chem. Soc., Perkin Trans. 1, 1999, Issue 3, 295.

- 'Diastereoselective resolution of 6-substituted glycosides via enzymatic hydrolysis;' Grabowska, U.; MacManus, D.; Biggadike, K.; Bird, M. I.; Davies, S.; Gallagher, T.; Hall, L. D.; Vulfson, E. N.; Carbohydr. Res., 1998, 305 (3-4), 351.
- 'Stereoselective Syntheses of Substituted 5,6-Dihydro-2(1*H*)-pyridinones in Polyphosphate Media;' Marson, C. M.; Grabowska, U.; Fallah, A.; Walsgrove, T.; Eggleston, D. S.; Baures, P. W.; *J. Org. Chem.*, 1994, **59**, 291.
- 'Stereocontrolled Construction of Condensed γ-Lactam Ring Systems by Cationic Cyclizations. Rearrangement of a γ-Lactam to a δ-Lactam;' Marson, C. M.; Grabowska, U.; Walsgrove, T.; Eggleston, D. S.; Baures, P. W.; *J. Org. Chem.*, 1994, **59**, 284.
- 'Structures of Three Tricyclic γ-Lactams;' Eggleston, D. S.; Baures, P. W.; Grabowska, U.; Marson, C. M.; Walsgrove, T.; *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 1992, C48 (12), 2177.
- 'Stereoselective Syntheses of Substituted Unsaturated δ-Lactams from 3-Alkenamides;' Marson, C. M.; Grabowska, U.; Walsgrove, T.; J. Org. Chem., 1992, 57, 5046.
- 'Stereoselective Syntheses of Substituted γ-Lactams from 3-Alkenamides;' Marson, C. M.; Grabowska, U.; Walsgrove, T.; Eggleston, D. S.; Baures, P. W.; J. Org. Chem., 1991, **56**, 2603.

PTO/SB/08a/b (07-05)
Approved for use through 07/31/2006. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449A/B/PTO				Complete if Known		
				Application Number	10/678,947-Conf. #001147	
INFORMATION DISCLOSURE				Filing Date	October 3, 2003	
S	STATEMENT BY APPLICANT			First Named Inventor	Martin QUIBELL	
				Art Unit	1626	
(Use as many sheets as necessary)		Examiner Name	S. Young			
Sheet	1	of	1	Attorney Docket Number	1718-0208P	

U.S. PATENT DOCUMENTS					
Examiner Initials*	Cite No.1	Document Number Number-Kind Code ² (<i>if known</i>)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear

FOREIGN PATENT DOCUMENTS						
Examiner Initials*	Cite No.1	Foreign Patent Document Country Code ³ -Number ⁴ -Kind Code ⁵ (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	T ⁶

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ² See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. ⁸ Applicant is to place a check mark here if English language

	NON PATENT LITERATURE DOCUMENTS					
Examiner Initials Cite No. Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the article (when appropriate), title magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s and/or country where published.		Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ²			
	CA	MARQUIS et al., "Cyclic Ketone Inhibitors of the Cysteine Protease Cathepsin K", J. Med. Chem, Vol. 44 (2001), Pages 725-736.				
	СВ	FENWICK et al., "Diastereoselective Synthesis, Activity and Chiral Stability of Cyclic Alkoxyketone Inhibitors of Cathepsin K", Bioorganic & Medicinal Chemistry Letters, Vol. 11 (2001), Pages 199-202.				

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Examiner	Date		
Signature	Considered		
		1.00/014/0/	

¹Applicant's unique citation designation number (optional). ²Applicant is to place a check mark here if English language Translation is attached.

J. Med. Chem. 2001, 44, 725-736

725

Cyclic Ketone Inhibitors of the Cysteine Protease Cathepsin K

Robert W. Marquis,*,† Yu Ru,† Jin Zeng,† Robert E. Lee Trout,† Stephen M. LoCastro,† Andrew D. Gribble,‡ Jason Witherington,[‡] Ashley E. Fenwick,[‡] Benedicte Garnier,[‡] Thaddeus Tomaszek,[§] David Tew,[§] Mark E. Hemling, Chad J. Quinn, Ward W. Smith, Baoguang Zhao, Michael S. McQueney, Cheryl A. Janson,* Karla D'Alessio,* and Daniel F. Veber

Departments of Medicinal Chemistry (U.S.A.), Medicinal Chemistry (U.K.), Molecular Recognition, Physical and Structural Chemistry, Structural Biology, and Protein Biochemistry, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, U.K., and 709 Swedeland Road, King of Prussia, Pennsylvania 19406

Received July 27, 2000

Cathepsin K (EC 3.4.22.38), a cysteine protease of the papain superfamily, is predominantly expressed in osteoclasts and has been postulated as a target for the treatment of osteoporosis. Crystallographic and structure-activity studies on a series of acyclic ketone-based inhibitors of cathepsin K have led to the design and identification of two series of cyclic ketone inhibitors. The mode of binding for four of these cyclic and acyclic inhibitors to cathepsin K is discussed and compared. All of the structures are consistent with addition of the active site thiol to the ketone of the inhibitors with the formation of a hemithioketal. Cocrystallization of the C-3 diastereomeric 3-amidotetrahydrofuran-4-one analogue 16 with cathepsin K showed the inhibitor to occupy the unprimed side of the active site with the 3S diastereomer preferred. This C-3 stereochemical preference is in contrast to the X-ray cocrystal structures of the 3-amidopyrrolidin-4-one inhibitors 29 and 33 which show these inhibitors to prefer binding of the 3R diastereomer. The 3-amidopyrrolidin-4-one inhibitors were bound in the active site of the enzyme in two alternate directions. Epimerization issues associated with the labile α -amino ketone diastereomeric center contained within these inhibitor classes has proven to limit their utility despite promising pharmacokinetics displayed in both series of compounds.

Introduction

The proteolytic processing of endogenous peptide substrates by cysteine proteases has been implicated in the pathology of a wide variety of diseases.1 These diseases include inflammation,2 tumor progression,3 parasitic infections, 4 and osteoporosis. 5 Cathepsin K (EC 3.4.22.38), a 24-kDa cysteine protease of the papain superfamily, is selectively and abundantly expressed within osteoclasts.6 Upon expression, this protease is secreted from the osteoclast into the resorption pit where it degrades the protein matrix of bone. The osteoclast-selective expression of cathepsin K suggests that this enzyme may play a crucial role in the degradative phase of the remodeling of the bone matrix. As such, selective inhibition of this enzyme could prove to be an effective strategy for the treatment of diseases such as osteoporosis, which is characterized by an imbalance between the formation and resorption of the bone matrix. Several recently published studies support this hypothesis. First, Gelb and Johnson have shown that mutations in the gene which encodes for cathepsin K are associated with a rare autosomal disorder of bone remodeling known as pycnodysostosis.7 This disease is characterized by short stature, dwarfism, high bone fracture rates, and osteosclerosis. Second, through the

use of an antisense oligonucelotide, Yamamura and coworkers have inhibited osteoclast bone resorption in a dose-dependent manner.8 Finally, two groups have independently generated cathepsin K-deficient mice which were viable but displayed a distinct osteopetrotic phenotype.9

Two of the key issues in the development of therapeutically useful inhibitors of proteases involve the mechanism of protease inhibition as well as the optimization of structural features and physiochemical properties which may limit their oral bioavailabilty.

Cysteine protease inhibitors may be broadly divided into two classes. 10 The first are a series of active site titrants whose mechanism for inhibition is to permanently modify the target protease via an irreversible alkylation of the active site cysteine. Notable examples of this inhibitor class include the naturally derived epoxide E-64,11 the (acyloxy)methyl ketone quiescent affinity labels, 12 peptidyl vinyl sulfones, 13 and α,β unsaturated esters. 14 The second class of inhibitor is based on the formation of a covalent, yet fully reversible, transition-state intermediate with the thiol of the active site cysteine residue. Inhibitors in this series include peptide aldehydes,15 cyclopropenones,16 peptide nitriles, 17 a-keto amides, 18 and diamino ketones. 19

Our efforts have focused on the development of reversible inhibitors of cathepsin K. In a disease such as osteoporosis, which would most likely require chronic administration of a therapeutic agent, reversible inhibition may avoid immunological responses which are associated with the permanent, covalent modification of proteins.²⁰ We have recently disclosed a series of

^{*}To whom correspondence should be addressed. Phone: 1-610-270-6570. Fax: 1-610-270-4451. E-mail: Robert_W_Marquis@sbphrd.com.

† Department of Medicinal Chemistry (U.S.A.).

Department of Medicinal Chemistry (U.K.).

Department of Molecular Recognition.
 Department of Physical and Structural Chemistry.
 Department of Structural Biology.

Department of Protein Biochemistry.

Figure 1. C-O and C-C bond formation of acyclic alkoxymethyl ketone 2 to provide 3-amidotetrahydrofuran-4-one and 4-amidotetrahydropyran-3-one inhibitors 3 and 4. Substitution of nitrogen and carbon for oxygen provides analogues 5-8.

X = CH

7 X = CH2

potent, reversible alkoxymethyl ketone inhibitors of cathepsin K (1; Figure 1)21 which were based upon the alkoxymethyl ketone template originally developed by Szelke and co-workers for the inhibition of the serine protease thrombin.22 While examining substitutions of the P1 amino acid of the lead methoxymethyl ketone inhibitor 1 (cathepsin K $K_{l,app} = 80$ nM; Figure 1)²³ we had shown that the isobutyl moiety 1 could be replaced by a methyl group to afford inhibitor $\boldsymbol{2}$ (cathepsin K $K_{\text{i,app}} = 60 \text{ nM}$) without loss of inhibitory potency. In the course of designing cyclic conformational constraints it became clear that simple incorporation of ketonebased ring systems into this acyclic template could lead to potent inhibitors. As outlined in Figure 1, cyclization of inhibitor 2 along path A by the formation of a carbonoxygen bond between the alanine methyl group and the oxygen of the methyl ether generates the 3-amidotetrahydrofuran-4-one 3.24 Alternatively, cyclization along path B by the formation of a carbon-carbon bond between the alanine methyl group and the methyl ether carbon provides the 4-amidotetrahydropyran-3-one derivative 4. Substitution of nitrogen for the oxygen of inhibitors 3 and 4 provides the previously reported 3-amidopyrrolidin-4-one- and 4-amidopiperidin-3-onebased analogues 5 and 6.25 Although the pyrrolidinone

Marquis et al.

Scheme 1. Synthesis of 3-Amidotetrahydrofuran-4-one and 4-Amidotetrahydropyran-3-one Inhibitors^a

 a Reagents and conditions: (a) NaN₃, NH₄Cl, CH₃OH, H₂O; (b) H₂, 10% Pd/C, CH₃OH; (c) Cbz-leucine, EDC, CH₂Cl₂; (d) (COCl)₂, DMSO, TEA; (e) 10% Pd/C, H₂, EtOAc; (f) quinoline-2-carboxylic acid, EDC; (g) SO₃—pyridine, TEA, DMSO.

and piperidinone ring systems followed conceptually from the furanone and pyranone systems, synthetic expedience led first to the nitrogen-based ketones which have been previously reported in this Journal.²⁵ Substitution of the oxygen or nitrogen in the heterocyclic rings of these templates with a methylene group provides the carbocyclic analogues 7 and 8. These carbocycles were prepared in order to determine the role the heteroatom plays in modulating the electrophilicity of the carbonyl group contained within the cyclic inhibitor templates described herein.

Synthesis Chemistry

The syntheses of the 3-amidotetrahydrofuran-4-one and 4-amidotetrahydropyran-3-one inhibitors 3, 4, and 16 are detailed in Scheme 1. Opening of the commercially available 3,4-epoxytetrahydrofuran (9) with sodium azide followed by reduction of the intermediate azido alcohol provided the amino alcohol 11. Acylation of 11 with Cbz-leucine in the presence of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC) provided alcohol intermediate 13 which was oxidized to provide ketone 3 as a mixture of diastereomers. In a similar fashion, opening of the epoxide 10 with sodium azide followed by reduction using hydrogen in the presence of 10% palladium on carbon provided the amino alcohol 12 along with approximately 20% of the regioisomeric amino alcohol (not shown).26 The undesired regioisomer was separated by column chromatography at a later stage of the synthesis. Acylation of 12 with Cbz-leucine in the presence of EDC provided alcohol 14 which on Swern oxidation provided the ketone 4 as a mixture of diastereomers. Hydrogenolysis

Journal of Medicinal Chemistry, 2001, Vol. 44, No. 5 727

Scheme 2. Synthesis of Pyrrolidinone and Piperidinone Inhibitors 22-29^a

*Reagents and conditions: (a) Cbz-leucine, EDC, HOBt, CH₂Cl₂; (b) HCl, EtOAc; (c) AcCl, DIPEA, CH₂Cl₂ or HOAc, EDC, CH₂Cl₂; (d) (COCl)₂, DMSO, TEA, CH₂Cl₂; (e) N-Boc-N-methylleucine, EDC, CH₂Cl₂; (f) N-Cbz-N-methylleucine, EDC, HOBt, CH₂Cl₂; (g) Jone's reagent, acetone.

of the Cbz group of intermediate 13 followed by acylation of the resulting amine with quinoline-2-carboxylic acid provided the alcohol intermediate 15 which was oxidized under Parikh conditions²⁷ to provide 16 as a 1:1 mixture of diastereomers.

The syntheses of the pyrrolidinone and piperidinone inhibitors 22-29 are detailed in Scheme 2 and follow the general procedures described in our earlier communication of a portion of this work.25 Acylation of the amino alcohols 1728 and 1829 with either Cbz-leucine or N-methyl-Cbz-leucine in the presence of EDC followed by removal of the tert-butoxycarbonyl protecting group under acidic conditions provided the amine salts 19-21. Acylation of the amine salt 19 with acetic acid in the presence of EDC followed by Swern oxidation of the resulting alcohol provided 22. Alternatively, acylation of 20 with acetyl chloride and oxidation gave 23. Inhibitors 24-28 were synthesized by the acylation of amine salts 19-21 with either Cbz-leucine or N-Cbz-N-methylleucine followed by oxidation of the intermediate alcohols. Alternatively, acylation of amine salt 19 with Boc-N-methylleucine followed by oxidation of the intermediate alcohol and removal of the tert-butoxycarbonyl protecting group under acidic conditions provided inhibitor 29.

Inhibitor ${\bf 33}$ was synthesized beginning with the EDC-mediated acylation of amino alcohol ${\bf 30}$ with N-

Boc-leucine (Scheme 3). Hydrogenolysis of the benzyloyxcarbonyl protecting group provided amino alcohol intermediate 31. Reductive amination of 31 with Cbz-leucinal in the presence of sodium triacetoxyborohydride and subsequent removal of the N-Boc protecting group gave the intermediate amine salt 32. Coupling of 32 with quinoline-7-carboxylic acid followed by SO₃-pyridine oxidation of the resulting alcohol provided the diastereomeric ketones 33.

The syntheses of the carbocyclic analogues 7 and 8 are shown in Scheme 4. Acylation of the known amino alcohols 34 and 35 with Cbz-leucine provided alcohols 36 and 37. Parikh oxidation of these alcohols provided the ketone derivatives 7 and 8 as mixtures of diaster-eomers.

Results and Discussion

Cathepsin K inhibition and selectivity data versus human cathepsins B, S, and L are shown in Table 1.30 Cyclization of the alkoxymethyl ketone inhibitor 2 produced the diastereomeric 3-amidotetrahydrofuran-4-one and the 4-amidotetrahydropyran-3-one analogues 3 and 4 which resulted in only a slight loss of activity when tested as a 1:1 mixture of diastereomers. Both 3 and 4 are selective inhibitors of cathepsin K versus cathepsins B and L but were less selective for cathepsin K over cathepsin S. The alcohol precursors 13 and 14

Marquis et al.

Scheme 3. Synthesis of Pyrrolidinone Inhibitor 33°

³ Reagents and conditions: (a) N-Boc-leucine, EDC; (b) H₂, 10% Pd/C, CH₃OH; (c) Cbz-leucinal, NaBH(OAc)₃, CH₂Cl₂; (d) HCl, EtOAc, CH₃OH; (e) quinoline-7-carboxylic acid, EDC, HOBt; (f) SO₃—pyridine, TEA, DMSO.

Scheme 4. Synthesis of Carbocyclic Inhibitors 7 and 8^a

 a Reagents and conditions: (a) Cbz-leucine, EDC; (b) SO₃-pyridine, TEA, DMSO.

Table 1. Cathepsin K, B, S, and L Inhibition Data^{a-c}

	K _{i,app} (nM)				
inhibitor	cathepsin K	cathepsin B	cathepsin S	cathepsin l.	
2	60	>1000		513	
3	140	>10000	310	2600	
4	150	> 10000	530	850	
7	>10000	>10000	> 10000	> 10000	
8	>10000	>10000	>10000	>10000	
13	>1000		>1000	>1000	
14	> 1000		>1000	> 1000	
16	44	7800	1100	250	
22	250		480	580	
23	230				
24	2.3	>1000	90	39	
25	0.6				
26	180	2600	51	49	
27	2.6	440	8.0	16	
28	1.9				
29	77	7300	290	400	
33	1.6	46			

^a With the exception of inhibitor 2, all compounds were tested as mixtures of diastereomers. b See ref 30 for enzyme assay conditions. c Average standard errors for $K_{l,app}$ values were 3-10%. were significantly less active than the corresponding ketone derivatives 3 and 4 with $K_{l,app}$'s ≥ 1000 nM when tested as a mixture of diastereomers. This result is in agreement with the transition state mechanism of inhibition for ketone-based inhibitors.31 The Lineweaver-Burk plot of 3 displays a 1/v axis intercept which is constant with increasing inhibitor concentration, indicative of competitive inhibition (see Supporting Information). Competitive inhibition was also observed for 4. Neither compound displayed time-dependent inhibition over a 30-min progress curve analysis. Ketones 3 and 4 were also shown to be reversible inhibitors of cathepsin K. In separate experiments, incubation of 3 and 4 with

cathepsin K for 2 h followed by LC-MS analysis of the protein/inhibitor mixture showed no covalent modification of the protein. Preincubation of excess of 3 or 4 with cathepsin K for 2 h followed by addition of the fluorescent substrate Z-Phe-Arg-AMC revealed no loss of enzyme activity. This experiment provides additional evidence for the reversible mechanism of inhibition of these compounds. The quinoline-2-carboxamide 16 is 4 times as potent as analogue 3 with a $K_{l,app} = 44$ nM when tested as a 1:1 mixture of diastereomers.32 X-ray crystallographic analysis of the inhibitor 16/cathepsin K complex at 2.5 Å resolution shows the inhibitor oriented on the unprimed side of the active site (Figure 2). The leucine is seen bound within the hydrophobic S₂ pocket formed by residues Leu 160, Ala 134, and Met 68 of the protein. The quinoline group is bound in the S_3 binding pocket forming a π - π stack with Tyr 67.33 The direction of binding for this inhibitor is likely to be a result of both the π -stacking interaction formed between the quinoline carboxamide and Tyr 67 as well as the preferred specificity of the S_{2} binding pocket of cathepsin K for leucine. 13b The X-ray cocrystal structure is consistent with the formation of a hemithioketal between Cys 25 of cathepsin K and the carbonyl group of the tetrahydrofuran-3-one, confirming our initial hypothesis for the design of reversible, transition-state inhibitors of cysteine proteases. The oxygen of the hemithioketal is stabilized by two hydrogen bonds formed within the oxyanion hole of the enzyme with the C(O)NH2 group of Gln 19 as well as the NH of Cys 25. The stereochemistry of the C-3 diastereomeric center is consistent with the S configuration. Since the rate of epimerization of the C-3 chiral center is rapid relative to the rate of crystallization, this stereochemical preference may be a reflection of the more potent of the two diastereomers or may be a result of crystal packing forces. Assuming that the S diastereomer of ${\bf 16}$ has formed the initial complex with cathepsin K, then the active site cysteine has added to the diastereotopically more hindered si face of the ketone. Two hydrogen bonds were observed between Gly 66 of the enzyme with the C-3 leucinamide portion of the inhibitor. The C-2methylene group of the tetrahydrofuran-3-one ring is directed out toward solvent with no apparent interactions with the protein. The orientation of the C-2 methylene group toward solvent suggests that this portion of the molecule may serve as a suitable position

Figure 2. The 2.5 Å X-ray cocrystal structure of inhibitor 16 (yellow) seen bound within the active site of cathepsin K (blue and orange). The inhibitor is oriented on the unprimed side of the active site with the isobutyl group of the inhibitor bound within the hydrophobic S_2 binding pocket The extended π -aromatic of the quinoline molety is seen bound in the S_3 pocket of the active site. A tetrahedral hemithioketal is formed between the ketone carbonyl of the inhibitor and the active site Cys 25 of cathepsin K. The thiol group of Cys 25 has added to the sterically more congested si face of the carbonyl group of 16. The inhibitor has crystallized within the enzyme active site with the S stereochemistry at the C-3 stereocenter.

from which to optimize the physiochemical properties of these inhibitors which may play a role in determining their pharmacokinetic behavior.

The direction of binding for inhibitor 16 in the active site of cathepsin K is opposite to the previously published X-ray cocrystal structure of the weakly timedependent acyclic n-propyloxymethyl ketone inhibitor 38 ($K_{\text{inact/I}} = 4100 \text{ M}^{-1} \text{ s}^{-1}$; Figure 3).²¹ In this X-ray cocrystal structure, 38 was oriented on the primed side of the active site with the isobutyl groups bound in the S_1' and S_2' pockets of the protein. The phenyl moiety of the benzyloxycarbonyl group was seen bound in the S₃' pocket forming an edge-face interaction with Trp 184. This edge-face aromatic interaction between the phenyl moiety of the inhibitor and the indole of Trp 184 may be the most critical for determining the direction of binding for this inhibitor. The N-H of Trp 184 forms a hydrogen bond with the urethane carbonyl of the inhibitor, while the amide carbonyl of 38 forms a hydrogen bond with the N-H group of His 162. The X-ray cocrystal structure was consistent with the addition of the thiol group of the active site Cys 25 to the carbonyl of 38, forming a hemithioketal. The oxygen of the hemithioketal is stabilized in the oxyanion hole by hydrogen bonds to the Cys 25 NH and the $H_2NC(0)$ of Gln 19. Here, the thiol group of the active site cysteine

Journal of Medicinal Chemistry, 2001, Vol. 44, No. 5 729

Figure 3. Schematic representation of the 2.5 Å X-ray cocrystal structure of the inhibitor **38** bound within the active site of cathepsin K (see ref 21).

Cathepsin K K_{inact/l} = 4100 M⁻¹s⁻¹

has added to the $\it re$ face of the carbonyl group in a Felkin—Anh manner, opposite to the bulky $P_i{}'$ isobutyl group. The $\it re$ -propyl alkyl side chain was oriented on the unprimed side of the active site partially penetrating the hydrophobic S_2 binding pocket.

Replacement of the ring oxygen atom of 3 and 4 with an N-acetyl moiety provided 22 and 23 which were 250 and 230 nM inhibitors of cathespin K, respectively (again tested as a 1:1 mixture of diastereomers). Inhibitor 23 showed a 2-fold selectivity for cathepsin K versus cathepsins L and S. Replacement of the N-acetyl group with Cbz-leucine in order to introduce additional binding elements which would permit access to both sides of the active site provided analogues 24 and 27 which are 2.3 and 2.6 nM inhibitors of cathepsin K, respectively. The approximately 100-fold increase in potency upon incorporation of the C-3 leucinamide reflects the additional binding energies associated with the inhibitor occupying the S₃ and S₃' binding pockets of the active site of the protein. Inhibitor 24 showed good selectivity for cathepsin K over cathepsins B, L, and S, while 27 was somewhat less selective for cathepsin K versus cathepsins L and S. These cyclic diamino ketones were also characterized as competitive, reversible inhibitors of cathepsin K. Incubation of 24 or 27 with cathepsin K followed by LC-MS analysis showed that there had been no irreversible covalent modification of the enzyme. The N-methylated analogues 25 and 28 were also potent inhibitors of cathepsin K with $K_{i,app}$'s of 0.6 and 1.9 nM, respectively. N-Methylation has also served to elucidate the relative importance of the hydrogen bond which is formed between the inhibitor and the amide carbonyl of Gly 66 of the protein. The bis-N-methyl analogue 26 was significantly less potent than 25 indicating that the methylation of the C-3 leucinamide has either eliminated a critical hydrogen bond between the inhibitor and the enzyme and/or imparted a highly unfavorable conformation of the urethane which precluded effective inhibitor binding. Removal of the benzyloxycarbonyl moiety from 25 provided 29 which was a 77 nM inhibitor of cathepsin K. The loss in activity of 29 relative to 25 highlights the role of the carbonylbenzyloxy moiety for potent inhibition. The 2.4 Å resolution X-ray cocrystal structure of 29 shows that this inhibitor spans both the primed and unprimed sides of the active site (Figure 4). The direction of binding of inhibitor 29 is the same

Figure 4. The 2.4 Å X-ray cocrystal structure of inhibitor **29** (yellow) seen bound within the active site of cathepsin K (blue and orange). The inhibitor spans S_2 to S_3 ′ of the active site. A tetrahedral hemithioketal is formed between the ketone carbonyl of the inhibitor and the active site Cys 25 of cathepsin K with the thiol molety adding from the more hindered st face of the carbonyl group. The inhibitor has crystallized within the enzyme active site with the R stereochemistry at the C-3 diastereomeric center.

Figure 5. Schematic representation of the 2.3 Å resolution X-ray cocrystal structure of inhibitor **24** bound within the active site of cathepsin K (see ref 25). The inhibitor spans the active site of the protein with the thiol of Cys 25 adding to the sterically more congested si face of the carbonyl group of the inhibitor. The inhibitor has crystallized within the active site with the R stereochemistry at the C-3 chiral center of the pyrrolidinone ring.

as that of the previously published cocrystal structure of inhibitor 24 (see Figure 5). ²⁵ In both structures the N-1 tertiary amide of the pyrrolidinone ring is bound on the unprimed side while the C-3 leucinamide is seen bound on the primed side of the active site. The X-ray cocrystal structure of 29 is consistent with the formation of a covalent bond between the ketone carbonyl of the inhibitor and the thiol group of Cys 25 of the protein.

Marquis et al.

Here again, the oxygen of the hemithioketal is stabilized within the oxyanion hole by two hydrogen bonds with the backbone N-H of Cys 25 and the C(O)NH2 of Gln 19. The inhibitors in the cocrystal structures of both 24 and 29 have crystallized within the active site with the R configuration of the labile C-3 stereocenter. As in the case of the inhibitor 16/cathepsin K complex, this stereochemical preference for the R diastereomer may be a reflection of the more active of the two diastereomers or may be a result of crystal packing forces. The sulfur nucleophile of Cys 25 has added to the sterically more congested si face of 29. The S3 pocket of the inhibitor 29/cathepsin K complex is vacant, while the S2 pocket is occupied by the isobutyl group. The C-2 methylene group of the pyrrolidinone ring in the crystal structures of both 24 and 29 is oriented away from the protein backbone toward solvent making no significant contacts with the protein. As in the X-ray cocrystal structure of furanone derivative 16, the orientation of the C-2 methylene group toward solvent suggests that this position may be used to alter the pharmacokinetic properties of these inhibitors or to slow the rate of enolization of the C-3 methine hydrogen. The isobutyl group of the C-3 leucinamide is bound in the S2' pocket with the aryl group of the carbonylbenzyloxy group located in the S_3 pocket forming a π - π stacking interaction with Trp 184. Again, we believe that it is this interaction which has dominated the direction of binding for this inhibitor.

Analogue 33, in which a methylene group has replaced the N-1 tertiary amide and a quinoline-7-carboxamide has replaced the carbonylbenzyloxy group, is as potent as the parent cyclic diamino ketone 24 with a $K_{i,app} = 1.6 \text{ nM}$ as a diastereometric mixture. These changes have served to reduce the peptidic nature of these inhibitors while also increasing their overall aqueous solubility. As seen in Figure 6, the 1.9 Å resolution cocrystal structure of analogue 33/cathepsin K reveals that this inhibitor again spans both sides of the active site. In contrast to the direction of binding of inhibitors 24 and 29, analogue 33 binds in the opposite direction, with the N-1 tertiary amine of the pyrrolidinone ring oriented on the primed side of the active site and the C-3 leucinamide on the unprimed side. The C-3 diastereomeric center with the R configuration has crystallized within the active site of the protein. The active site cysteine has added to sterically more accessible re face of the ketone, opposite to the C-3 leucinamide molety. The quinoline-7-carboxamide is bound in the S₃ pocket of cathepsin K, forming an edge-face electrostatic interaction with Tyr 67. The isobutyl molety of the C-3 leucinamide lies within the S2 pocket. On the primed side of the active site the isobutyl group of the N-1 tertiary amine is bound within the S2' pocket with the phenyl of the Cbz group in the S₃' pocket forming a π - π stack with Trp 184. The orientation of binding for 33 is likely a result of the preferred interactions of the phenyl moiety of the inhibitor with the S₃' tryptophan of the protein and the extended π aromatic group of the quinoline-7-carboxamide with Tyr 67 of the S₃ binding pocket. In this example, the S₂ binding pocket may be irrelevant to the direction of inhibitor binding due to the presence of two isobutyl groups in the inhibitor.

Figure 6. The 1.9 Å X-ray cocrystal structure of inhibitor 33 (yellow) seen bound within the active site of cathepsin K (blue and orange). The inhibitor is bound within the S_3 to S_3 ' pockets of the active site. A tetrahedral hemithioketal is formed between the ketone carbonyl of the inhibitor and the active site Cys 25 of cathepsin K with addition of the thiol from the sterically more accessible re face of the ketone. The inhibitor has crystallized within the enzyme active site with the R stereochemistry at the α -amino carbon stereocenter.

Figure 7. Effect of positioning of the heteroatom on inhibitor potencies.

Removal of the electron-withdrawing oxygen or nitrogen heteroatoms from the cyclic ketone templates provided the carbocyclic ketones **7** and **8** which were not active up to a concentration of $10~\mu\text{M}$ when tested against cathepsins K, B, L, and S. Analogues **39** and **40** were evaluated as inhibitors of cathepsin K in order to determine the effect that the positioning of the heteroatom within a cyclic framework has on inhibitor potency. As shown in Figure 7, the 4-amidotetrahydropyran-3-one **39** is an **11** nM inhibitor of cathepsin K when tested as a mixture of diastereomers, Analogue **40**, in which the oxygen is now positioned γ to the ketone, is a 560 nM inhibitor. This loss in inhibitor

Journal of Medicinal Chemistry, 2001, Vol. 44, No. 5 731

potency relative to the positioning of the heteroatom within the cyclic ketone framework reveals the dramatic difference between a through-bond effect and a through-space electrostatic effect in altering the reactivity of the ketone carbonyl group of these inhibitors.³⁴ These results highlight the essential requirement of these heteroatoms for the potent inhibition of cysteine proteases by cyclic ketone-based inhibitors.

Having established the cyclic ether and the cyclic amine classes of compounds as potent, reversible inhibitors of cathepsin K, the pharmacokinetics of several analogues in each of these series where evaluated in order to determine if the introduction of a conformational constraint has improved the bioavailability of these compounds relative to their acyclic counterparts. Their pharmacokinetic behavior was profiled in the rat as multicomponent mixtures utilizing LC-MS-MS analysis following modified protocols described by Shaffer and co-workers. 35 Several analogues from each class displayed promising pharmacokinetics in the rat. However due to the facile epimerization of the α-amino ketone chiral center, these compounds were unsuitable for further development or for full pharmacokinetic evaluation of the active diastereomer.

Conclusions

In this paper we have disclosed a new series of 3-amidotetrahydrofuran-4-one- and 4-amidotetrahydropyran-3-one-based inhibitors of the cysteine protease cathepsin K. These inhibitors were characterized as reversible and competitive. The binding of one of these cyclic inhibitors was demonstrated by X-ray cocrystallization with the protein, to bind on the unprimed side of the active site. This mode of binding was opposite to the orientation of an acyclic analogue which was seen bound on the primed side of the active site. X-ray crystallographic analysis of two 3-amidopyrrolidin-4one-based inhibitors reveals these analogues to bind in opposite directions in the active site. The X-ray crystallographic analysis of several protein/inhibitor complexes was instrumental in delineating the contribution of the electrostatic interactions which determine the direction of binding for both the cyclic ether and the cyclic diamino ketone inhibitor classes. Furthermore, all the cocrystal structures presented herein revealed that the C-2 methylene group in all of the bound inhibitors is oriented away from the protein toward solvent. This observation suggests that this group may be used to attenuate the rate of epimerization of this class of cyclic ketone inhibitors. The introduction of a conformational constraint was seen to provide potent inhibitors which displayed promising, yet inconclusive, pharmacokinet-

Experimental Procedures

General. All materials and reagents were used as supplied. Nuclear magnetic resonance spectra were recorded at 400 MHz using a Bruker AC 400 spectrometer. Chemical shifts are reported in parts per million (6). Mass spectra were taken on either VG 70 FE, PE Sciex API III, or VG ZAB HF instruments, using electrospray ionization (ESI) techniques. Elemental analyses were obtained using a Perkin-Elmer 240C elemental analyzer. Reactions were monitored by TLC analysis using Analtech silica gel GF or E. Merck silica gel 60 F-254 thin layer plates. Flash chromatography was carried out on E. Merck Kieselgel 60 (230–400 mesh) silica gel.

Marquis et al.

trans-4-Amino-3-hydroxytetrahydrofuran (11). 3,4-Epoxytetrahydrofuran (9 g, 105 mmol) was added to a stirred solution of sodium azide (27 g, 415 mmol) and ammonium chloride (9 g, 159 mmol) in aqueous methanol (95%, 200 mL). The reaction was heated to 75 °C and stirred for 20 h. The reaction was cooled, filtered and evaporated under reduced pressure. The residue was diluted with water and extracted with ethyl acetate, dried and evaporated under reduced pressure to afford 10g (74%) of trans-4-azido-3-hydroxytetrahydrofuran as a clear oil: ¹H NMR (400 MHz, CDCl₃) δ 4.32 (m, 1H), 4.09 (dd, 1H, J=4.8, 9.9 Hz), 3.99 (dd, 1H, J=4.3, 10.1 Hz), 3.94 (m, 1H), 3.81 (dd, J=2.1, 9.9 Hz), 3.73 (dd, 1H, J=1.8, 10.1 Hz), 2.72 (d, 1H, J=4.6 Hz).

To a solution of *trans*-4-azido-3-hydroxytetrahydrofuran (13.2 g, 102 mmol) in methanol (100 mL) was added 10% palladium on charcoal (2 g). The reaction was stirred under an atmosphere of hydrogen overnight whereupon it was filtered and concentrated to give 10.2 g of 11 as a brown solid. This material was of sufficient purity to carry on to the next step with no further purification.

[(*S*)-1-((*3R*,*S*),(*4R*,*S*)-4-Hydroxytetrahydrofuran-3-yl-carbamoyl)-3-methylbutyl]carbamic Acid Benzyl Ester (13). To a solution of amino alcohol 11 (1.0 g, 9.7 mmol) in CH₂Cl₂ (20 mL) were added Cbz-leucine (2.83 g, 10.7 mmol) and EDC (2.83 g, 21.3 mmol). The reaction was maintained at room temperature for 2 h whereupon it was concentrated. The residue was dissolved in ethyl acetate and washed with 1 N HCl, saturated NaHCO₃, brine, dried (MgSO₄), filtered and concentrated. Column chromatography (2:1 hexanes:ethyl acetate) of the residue provided 1.7 g (50%) of 13 as a white powder: ¹H NMR (400 MHz, DMSO-*a*₆, reported as a mixture of diastereomers) *ò* 8.08 (app d, 1H), 7.34 (m, 5H), 5.24 (br s, 1H), 5.01 (app s, 2H), 4.03–3.78 (m, 5H), 3.49–3.32 (m, 3H), 1.58–1.33 (m, 3H), 0.87–0.83 (m, 6H); MS(ESI) 351.1 (M + H)⁺, 372.6 (M + Na)⁺. Anal. (C₁₈H₂₆N₂O₅-0.15EtOAc) C, H, O.

[(5)-1-((3R,5)-4-Oxotetrahydrofuran-3-ylcarbamoyl)-3-methylbutyl]carbamic Acid Benzyl Ester (3). To a $-78\,^{\circ}\mathrm{C}$ solution of oxalyl chloride (0.11 mL, 1.3 mmol) in $\mathrm{CH}_2\mathrm{Cl}_2$ was added DMSO (0.18 mL, 2.6 mmol). The solution was maintained at $-78\,^{\circ}\mathrm{C}$ for 10 min whereupon a solution of 13 (0.30 g, 0.86 mmol) in $\mathrm{CH}_2\mathrm{Cl}_2$ (5.0 mL) was added dropwise. The reaction was stirred at $-78\,^{\circ}\mathrm{C}$ for 30 min whereupon TEA (0.60 mL, 4.3 mmol) was added. The reaction was warmed to room temperature, diluted with ethyl acetate and washed sequentially with 1 N HCl, saturated NaHCO₃, brine, dried (MgSO₄), filtered and concentrated. Column chromatography (1:1 hexanes:ethyl acetate) provided 0.24 g (80%) of 3 as a white powder: ¹H NMR (400 MHz, DMSO- d_6 , reported as a mixture of diastereomers) δ 8.45 and 8.35 (d, J=5 Hz, 1 H), 7.35–7.32 (m, 5H), 5.04 (ABq, J=7.9 Hz, 2H), 4.33–3.76 (m, 6H), 1.61–1.39 (m, 3H), 0.88–0.84 (m, 6H); MS(ESI) 349.0 (M + H)⁺, 371.0 (M + Na)⁺. Anal. (C₁₈H₂₄N₂O₆) C, H, N, O.

Quinoline-2-carboxylic Acid [(5)-1-((3R,5),(4R,5)-4-Hydroxytetrahydrofuran-3-ylcarbamoyl)-3-methylbutyl]-amide (15). To a solution of 13 (1.0 g, 2.86 mmol) in methanol (25 mL) was added 10% Pd/C (0.50 g). A balloon of hydrogen gas was attached and the reaction was stirred rapidly for 1 h whereupon it was filtered through a pad of Celite and concentrated to provide 0.6 g (97%) of (5)-2-amino-4-methylpentanoic acid ((4R,S),(3R,S)-4-hydroxytetrahydrofuran-3-yl)-amide as a clear, light green oil. This material was of sufficient purify to use in the following procedure with no further purification: 1 H NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers) δ 7.66 (br s, 1H), 4.19–3.99 (m, 4H), 3.68 (m, 2H), 3.85 (m, 1H), 2.65 (br s, 3H), 1.65 (m, 2H), 1.31 (m, 1H), 0.94–0.89 (m, 6H): MS(ESI); 216.8 (M + H)+

To a solution of (S)-2-amino-4-methylpentanoic acid ((4R,S),-(3R,S)-4-hydroxytetrahydrofuran-3-yl)amide (0.50 g. 2.31 mmol) in CH₂Cl₂ (5.0 mL) were added quinoline-2-carboxylic acid (0.4 g, 2.31 mmol) and EDC (0.48 g, 2.54 mmol). The reaction was maintained at room temperature for approximately 2 h whereupon it was concentrated. The residue was diluted with ethyl acetate and washed with water, saturated NaHCO₃, brine, dried (MgSO₄) filtered and concentrated. Column chro

matography (3:1 ethyl acetate:hexanes) of the residue provided 0.45 g (52%) of 15 as an off-white solid: 1H NMR (400 MHz, CDCl3, reported as a mixture of diastereomers) δ 8.64–7.31 (m, 7H), 4.72 (m, 1H), 4.36–3.62 (m, 8H), 1.90–1.66 (m, 3H), 0.96–0.83 (m, 6H); MS(ESI) 372 (M+H)+. Anal. (C20H25N3O4+55H2O) C, H, N.

Quinoline-2-carboxylic Acid [(S)-1-((3R,S)-4-Oxotetrahydrofuran-3-ylcarbamoyl)-3-methylbutyl]amide (16). To a solution of 15 (0.2 g, 0.54 mmol) in DMSO (10 mL) were added sulfur trioxide-pyridine complex (0.26 g, 1.62 mmol) and TEA (0.45 mL, 3.24 mmol). The reaction was maintained at room temperature for 2 h whereupon it was diluted with ethyl acetate and washed with water, saturated NaHCO₃, brine, dried (MgSO₄), filtered and concentrated. Column chromatography (1:1 ethyl acetate:hexanes) of the residue provided 0.14 g (70%) of ketone 16 as a white powder: ¹H NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers) & 8.55 (m, 1H), 8.27-8.10 (m, 3H), 7.84-7.58 (m, 3H), 7.26 (br s, 1H), 4.78-4.75 (m, 1H), 4.62-4.56 (m, 1H), 4.29-43.86 (m, 4H), 1.92-1.74 (m, 3H), 0.99-0.95 (m, 6H); MS(ESI) 370 (M + H)⁺. Anal. (C₂₀H₂₃N₃O₄) C, H, N.

(3R,S),(4R,S)-4-Aminotetrahydropyran-3-ol (12). To a solution of the epoxide 10 (1.0 g, mmol) in methanol (40 mL) and water (5 mL) were added NH₄Cl (1.12 g, mmol) and NaN₃ (3.25 g). The reaction was heated to 78 °C until complete consumption of the starting material was observed by TLC analysis. The mixture was concentrated in vacuo to approximately 1/3 the original volume. The mixture was then diluted with ether and washed with saturated NaHCO₃, brine, dried (MgSO₄), filtered and concentrated to provide (3R,S),-(4R,S)-4-azidotetrahydropyran-3-ol which was of sufficient purity to carry onto the following step with no further purification: 1 H NMR (400 MHz, CDCl₃) δ 3.96 (m, 2H), 3.57 (m, 1H), 3.46 (m, 2H), 3.22 (m,1H) 2.03 (m, 1H), 1.70 (m, 1H).

To a solution of (3R,S),(4R,S)-4-azidotetrahydropyran-3-ol (0.20 g, 1.4 mmol) in methanol (3 mL) was added 10% Pd/C (0.1 g). The reaction was stirred rapidly under an atmosphere of hydrogen overnight whereupon it was filtered through a pad of Celite. The filtrate was concentrated to provide the amino alcohol 12: 1 H NMR (400 MHz, CDCl₃) δ 3.90 (m, 2H), 3.29 (m, 2H), 3.08 (m, 1H), 2.66, 1H); MS(ESI) 117.8 (M + H)+.

[(S)-1-((4R,S)-3-Oxotetrahydropyran-4-ylcarbamoyl)-3-methylbutyl]carbamic Acid Benzyl Ester (4). To a solution of 12 (0.094 g, 0.8 mmol) in CH_2Cl_2 (10 mL) were added Cbz-leucine (0.21 g, 0.8 mmol) and EDC (0.15 g, 0.85 mmol). The reaction was maintained at room temperature overnight whereupon it was concentrated and the residue chromatographed (100% ethyl acetate) to provide 0.13 g of the alcohol 14: 1 H NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers) δ 7.29–7.24 (m, 5H), 6.97–6.84 (m, 1H), 5.81–5.60 (m, 1H), 5.08–4.97 (m, 2H), 4.20–3.83 (m, 4H), 3.42–3.27 (m, 3H), 3.08 (t, 1H), 1.88–1.51 (m, 5H), 0.90–0.86 (m, 6H); MS(ESI) 365.0 (M + H)+, 387.0 (M + Na)+.

To a solution of the alcohol 14 (0.07 g, 0.02 mmol) in DMSO (1.5 mL) were added TEA (0.17 mL, 0.012 mmol) and sulfur trioxide—pyridine complex (0.09 g, 0.06 mmol). The reaction was maintained at room temperature for 2 h whereupon it was diluted with ethyl acetate and washed with saturated NaH-CO₃, brine, dried (MgSO₄), filtered and concentrated to provide ketone 4 as a mixture of diastereomers: 1 H NMR (400 MHz, DMSO- 4 G, reported as a mixture of diastereomers) 5 8.15 (d, 1H), 7.39–7.29 (m, 5H), 5.02 (d, 2H), 4.63 (m, 1H), 4.14–4.10 (m, 2H), 3.97–3.83 (m, 3H), 2.10 (m, 1H), 1.61 (m, 1H), 1.45 (m, 1H), 0.95 (m, 6H); MS(ESI) 363.0 (M + H)+

[(S)-1-((3R,S),(4R,S)-4-Hydroxypyrrolidin-3-ylcarbamoyl)-3-methylbutyl]carbamic Acid Benzyl Ester Hydrochloride (19). To a solution of 17 (0.20 g, 1.14 mmol) in CH_2Cl_2 (5.0 mL) were added Cbz-leucine (0.30 g, 1.14 mmol), HOBt (0.15 g, 1.14 mmol) and EDC (0.26 g, 1.37 mmol). The reaction was allowed to stir until complete by TLC analysis whereupon it was diluted with EtOAc and washed sequentially with pH 4 buffer, saturated K_2CO_3 , water and brine. The organic layer was dried (MgSO₄), filtered and concentrated. Column chromatography of the residue (3:1 EtOAc:hexanes)

provided 0.32 g (62%) of (3R,S)-((S)-2-benzyloxycarbonylamino-4-methylpentanoylamino)-(4R,S)-4-hydroxypyrrolidine-1-carboxylic acid *tert*-butyl ester: 1H NMR (400 MHz, DMSO- d_6 , reported as a mixture of diastereomers) δ 8.11 (m, 1H), 7.44 – 7.37 (m, 5H), 5.29 (br s, 1H), 5.01 (app s, 2H), 3.97 – 3.87 (m, 3H), 3.48 – 3.11 (m, 6H), 1.56 (m, 1H), 1.40 (s, 9H), 0.86 – 0.83 (m, 6H); MS(ESI) 450.3 (M + H)+, 472.2 (M + Na)+, Anal. ($C_{23}H_{35}N_3O_6$) C, H, N.

To a solution of (3R,S)-((S)-2-benzyloxycarbonylamino-4-methylpentanoylamino)-(4R,S)-4-hydroxypyrrolidine-1-carboxylic acid tert-butyl ester (0.31 g, 0.69 mmol) in dry EtOAc (5.0 mL) was bubbled HCl gas for approximately 5 min. The reaction was stirred until TLC analysis indicated the complete consumption of the starting material. The reaction was then concentrated in vacuo to provide 0.25 g (94%) of 19 as a white solid: 'H NMR (400 MHz, DMSO- d_6 , reported as a mixture of diastereomers) δ 8.39 (m, 1H), 7.46 (m, 1H), 7.35 (m, 5H), 5.77 (br s, 1H), 5.01 (m, 2H), 4.16–3.95 (m, 3H), 3.49–3.23 (m, 3H), 3.03 (m, 2H), 1.63–1.45 (m, 3H), 0.89–0.83 (m, 6H); MS(ESI) 350.3 (M + H)+. Anal. ($C_{18}H_{27}N_3O_4$) C, H, N, O.

[(S)-1-((3R,S),(4R,S)-4-Hydroxypiperidin-3-ylcarbamoyl)-3-methylbutyl]carbamic Acid Benzyl Ester (20). To a solution of 18 (1.0 g, 4.62 mmol) in CH2Cl2 were added Cbzleucine (1.22 g, 4.62 mmol), EDC (1.07 g, 5.58 mmol) and HOBt (0.62 g, 4.62 mmol). The reaction was allowed to stir until complete as indicated by TLC analysis. The reaction was concentrated and the residue dissolved in ethyl acetate, washed with 1 N HCl, saturated NaHCO₃, brine, dried, filtered and concentrated. Column chromatography (1:1 hexanes: EtOAc) of the residue provided 0.88 g (42%) of (4R,5)-((S)-2benzyloxycarbonylamino-4-methylpentanoylamino)-(3R, 5)-hydroxypiperidine-1-carboxylic acid tert-butyl ester: 1H NMR (400 MHz, DMSO-d₆, reported as a mixture of diastereomers) δ 7.82-7.72 (m, 1H), 7.33 (m, 5H), 4.99 (m, 2H), 4.90 (m, 1H), 4.02-3.51 (m, 4H), 3.49-3.31-3.25 (m, 1H), 2.66 (br s, 1H), 1.71-1.58 (m, 2H), 1.48-1.36 (m, 2H), 1.37 (s, 9H), 0.86-0.82 (m, 6H); MS(ESI) 464.4 (M + H)+, 486.2 (M + Na). Anal. (C24H37N3O6) C, H, N.

To a solution of (4R,S)-((S)-2-benzyloxycarbonylamino-4-methylpentanoylamino)-(3R,S)-hydroxypiperidine-1-carboxylic acid *tert*-butyl ester (0.88 g, 1.96 mmol) in dry EtOAc (10 mL) was bubbled HCl gas for approximately 5 min. The reaction was stirred until TLC analysis indicated complete consumption of the starting material. The reaction was then concentrated in vacuo to give 0.74 g (98%) of $20 \text{ as a white powder which was of sufficient purity to carry on to the next step with no further characterization: MS(ESI) <math>364.3 \text{ (M} + 10^{+})$

[(S)-1-((3R,S)-1-Acetyl-4-oxopyrrolidin-3-ylcarbamoyl)-3-methylbutyl]carbamic Acid Benzyl Ester (22). To a solution of 19 (0.20 g, 0.57 mmol) in CH₂Cl₂ were added EDC (0.12 g, 0.57 mmol), HOBt (0.077 g, 0.57 mmol), TEA (0.14 g, 1.43 mmol) and acetic acid (0.034 g, 0.57 mmol), The reaction was stirred until complete as indicated by TLC analysis whereupon it was concentrated, the residue dissolved in EtOAc and washed with 0.5 N HCl, saturated NaHCO₃, brine, dried (MgSO₄), filtered and concentrated. Column chromatography (10% CH₃OH:CH₂Cl₂) of the residue provided 0.096 g (57%) of [(S)-1-((3R,S),(4R,S)-1-acetyl-4-hydroxypyrrolidin-3-ylcarbamoyl)-3-methylbutyl]carbamic acid benzyl ester as an off-white powder: MS(ESI) 392.2 (M + H)⁺. Anal. (C₂₀H₂₉N₃O₅·0.1H₂O) C. H. N. O.

To a -78 °C solution of oxalyl choride (0.01 mL, 0.11 m mol) in CH₂Cl₂ (0.3 mL) was added DMSO (0.016 mL, 0.23 mmol) in CH₂Cl₂ (0.05 mL). The reaction was maintained at -78 °C for approximately 10 min whereupon a solution of $\{(.5), 1-((3R, 5), (4R, 5), 1-acetyl-4-hydroxypyrrolidin-3-ylcarbamoyl)-3-methylbutyl|carbamic acid benzyl ester (0.04 g, 0.10 mmol) in CH₂Cl₂ (0.10 mL) was added. The reaction was maintained at <math>-78$ °C for another 20 min whereupon TEA (0.07 mL) was added. The mixture was warmed to 0 °C then diluted with EtOAc and washed with saturated NaHCO₃, brine, dried (MgSO₄) filtered and concentrated. Column chromatography

Journal of Medicinal Chemistry, 2001, Vol. 44, No. 5 733

(3% CH₃OH:CH₂Cl₂) provided 0.015 g (35%) of **22** as an off white powder: ¹H NMR (400 MHz, CDCl₃, reported as a 1:1 mixture of diastereomers) δ 7.22 (m, 5H), 6.15–5.87 (m, 1H), 4.97 (m, 2H), 4.19–3.16 (m, 7H), 1.99–1.81 (m, 3H), 1.56–1.46 (m, 3H), 1.19–1.31.09 (m, 2H), 0.89–0.83 (m, 6H); MS-(ESI) 390.1 (M + H)⁺, 779.3 (2M + H)⁺. Anal. (C₂₀H₂₇N₃O₅· 0.25EtOAc) C, H, N, O.

 $((S)-1-\{[(3R,S)-((S)-2-Benzyloxycarbonylamino-4-meth$ ylpentanoylamino)-4-oxopyrrolidin-1-yl]methanoyl}-3-methylbutyl)carbamic Acid Benzyl Ester (24). To a solution of 19 (0.25 g, 0.64 mmol) in CH₂Cl₂ (10 mL) were added Cbz-leucine (0.17 g, 0.64 mmol), HOBt (0.08 g, 0.64 mmol), NMM (0.300 mL) and EDC (0.15 g, 0.77 mmol). The reaction was allowed to stir at room temperature for 2 h whereupon it was diluted with ethyl acetate and washed sequentially with 1 N HCl, saturated K2CO3, water and brine. The organic layer was dried (MgSO₄), filtered and concentrated. Column chromatography of the residue (3:1 EtOAc: hexanes) gave 0.1 g (26%) of ((S)-1-{1-{(3R,S)-((S)-2-benzyloxycarbonylamino-4-methylpentanoylamino)-(4R, 5)-hydroxypyrrolidin-1-yl]methanoyl}-3-methylbutyl)carbamic acid benzyl ester: 1H NMR (400 MHz, CDCl3; reported as a mixture of diastereomers) δ 7.31-7.26 (m, 12H), 5.76-5.44 (m, 3H), 5.13-4.90 (m, 5H), 4.37-4.12 (m, 8H), 1.69-1.46 (m, 6H), 0.96-0.87 (m, 12H); MS(ESI) 597.1 (M + H)+, 619.1 (M + Na)+. Anal. ($C_{32}H_{46}N_{407}\cdot0.5H_{2}O$) C, H, N, O.

To a 0 °C solution of of ((.5)-1-{1-[(3R,S)-((.5)-2-benzyloxy-carbonylamino-4-methylpentanoylamino)-(4R,S)-hydroxypyrrolidin-1-yl]methanoyl]-3-methylbutyl)carbamic acid benzyl ester (0.10 g, 0.17 mmol) in acetone (5.0 mL) was added Jone's reagent dropwise until the brown color persisted. The reaction was allowed to warm to room temperature and stirred approximately 48 h whereupon it was quenched with 2-propanol, diluted with EtOAc and washed sequentially with saturated K_2CO_3 , water and brine. The organic layer was dried (MgSO₄), filtered and concentrated. Column chromatography of the residue (3:1 EtOAc:hexanes) gave 0.03 g of 24 as a white powder: MS(ESI) 595.1 (M + H)+, 617.0 (M + Na)+. Anal. ($C_{32}H_{44}N_4O_7$) C, H, N, O.

4-methylpentanoylamino)-4-oxopyrrolidin-1-yl]methanoyl}-3-methylbutyl)carbamic Acid Benzyl Ester (25). To a solution of 19 (0.1 g, 0.26 mmol) in CH₂Cl₂ (5.0 mL) were added N-methyl-Cbz-leucine (0.07 g, 0.26 mmol), HOBt (0.03 g, 0.64 mmol), NMM (0.30 mL) and EDC (0.06 g, 0.31 mmol). The reaction was allowed to stir at room temperature for 2 h whereupon it was diluted with ethyl acetate and washed sequentially with 1 N HCl, saturated K2CO3, water and brine. The organic layer was dried (MgSO4), filtered and concentrated. Column chromatography of the residue (3:1 EtOAc:hexanes) gave 0.13 g (82%) of ((S)-1-{[(3R,S)-((S)-2-(benzyloxycarbonylmethylamino)-4-methylpentanoylamino)-(4R, S)hydroxypyrrolidin-1-yl]methanoyl}-3-methylbutyl)carbamic acid benzyl ester: 1H NMR (400 MHz, CDCl₃; reported as a mixture of diastereomers) δ 7.33–7.26 (m, 10H), 5.13–4.99 (m, 4H), 4.31–3.25 (m, 7H), 3.03–2.84 (m, 4H), 1.79–1.40 (m, 5H), 0.93-0.83 (m, 12H); MS(ESI) 611.3 (M+H)+, 632.9 (M+Na)+.

To a -78 °C solution of oxalyl chloride (0.013 mL, 0.13 mmol) in CH_2Cl_2 (5.0 mL) was added DMSO (0.018 mL, 0.26 mmol). The reaction was maintained at -78 °C for 10 min whereupon a solution of ((S)-1-{[(3R,S)-((S)-2-(benzyloxycarbonylmethylamino)-4-methylpentanoylamino)-(4R,S)-hydroxypyrrolidin-1-yl]methanoyl}-3-methylbutyl)carbamic acid benzyl ester (0.075 g, 0.12 mmol) in CH_2Cl_2 (2.0 mL) was added in a dropwise fashion. The reaction was maintained at -78 °C for 30 min whereupon TEA (0.083 mL, 0.6 mmol) was added. The reaction was warmed to room temperature, diluted with ethyl acetate and washed with 1 N HCl, saturated K_2 -CO3, water and brine. The organic layer was dried (MgSO4), filtered and concentrated. Column chromatography (2:1 ethyl acetate: hexanes) of the residue provided 0.04 g (55%) of 25 as a white solid: 'H NMR (400 MHz, CDCl3, reported as a mixture of diastereomers) δ 7.35–7.25 (m, 10H), 5.15–5.10

(m, 6H), 4.95-3.40 (m, 6H), 2.93-2.83 (m, 3H), 1.67-1.36 (m, 6H), 0.97-0.91 (m, 12H); MS(ESI) 609.1 (M + H)+, 630.8 (M + Na)+.

((S)-1-{[(4R,S)-((S)-2-Benzyloxycarbonylamino-4-methylpentanoylamino)-3-oxopiperidin-1-yl]methanoyl}-3-methylbutyl)carbamic Acid Benzyl Ester (27). To a solution of 20 (0.15 g, 0.43 mmol) in CH₂Cl₂ were added Cbzleucine (0.11 g, 0.43 mmol), EDC (0.1 g, 0.52 mmol), HOBt (0.058 g, 0.43 mmol) and NMM (0.14 mL., 1.28 mmol). The reaction was stirred until complete as indicated by TLC analysis. Workup and column chromatography (2:1 EtOAc: hexanes) gave 0.22 g (84%) of ((S)-1-{[(4R,S)-((S)-2-benzyloxy-carbonylamino-4-methylpentanoylamino)-(3R,S)-hydroxypiperidin-1-yl]methanoyl}-3-methylbutyl)carbamic acid benzyl ester: MS(ESI) 611.2 (M + H)+, 633.2 (M + Na)+. Anal. (C₃₃H₄₆N₄O₇) C, H, N, O.

To a $-78~^{\circ}\text{C}$ solution of oxalyl chloride (0.043 mL, 0.49 mmol) in CH_2Cl_2 (5.0 mL) was added DMSO (0.07 mL, 0.98 mmol). The reaction was maintained at $-78~^{\circ}\text{C}$ for 10 min whereupon a solution of ((.5)-1-{[(4R,5)-((.5)-2-benzyloxycarbonylamino-4-methylpentanoylamino)-(3R,5)-hydroxypiperidin1-yl]methanoyl}-3-methylbutyl)carbamic acid benzyl ester (0.19 g, 0.32 mmol) in CH_2Cl_2 (3 \times 2.0 mL) was added in a dropwise fashion. The reaction was maintained at $-78~^{\circ}\text{C}$ for 30 min whereupon TEA (0.23 mL, 1.63 mmol) was added. The reaction was warmed to room temperature, diluted with ethyl acetate and washed with 1 N HCl, saturated $K_2\text{CO}_3$, water and brine. The organic layer was dried (MgSO₄), filtered and concentrated. Column chromatography (2:1 ethyl acetate:hexanes) of the residue provided 0.11 g (54%) of 27 as a white solid: MS(ESI) 611.2 (M+H)+, 633.2 (M+Na)+. Anal. (C_{33}H_{44}N_4O_7) C, H, N, O.

 $[(S)\hbox{-}1\hbox{-}(3RS,\!4RS)\hbox{-}4\hbox{-}Hydroxy\hbox{-}tetrahydro-furan-}3\hbox{-}ylcar$ bamoyl)-3-methylbutyl]carbamic Acid Benzyl Ester (36). To a solution of trans-2-aminocyclopentanol 34 (1.00 g. 6.59 mmol) in CH₂Cl₂ (20 mL) were added Cbz-leucine (1.75 g, 6.59 mmol), EDC (1.23 g, 6.59 mmol) and N-methylmorpholine. The reaction was maintained at room temperature overnight whereupon it was concentrated in vacuo and the residue dissolved in ethyl acetate and washed with 1 N HCl, saturated NaHCO3, water and brine. The organic layer was dried (MgSO₄), filtered and concentrated. Column chromatography (2:1 ethyl acetate:hexanes provided 1.16 g of 36 as a white solid: 1H NMR (400 MHz, CDCl3, reported as a mixture of diastereomers) δ 7.38-7.32 (m, 5H), 6.41 (br s, 1H), 5.25 (m, 1H), 5.11 (app s, 2H), 4.17 (m, 1H), 3.92 (m, 1H), 3.79 (m, 1H), 3.49 (m, 1H), 2.11-1.53 (m, 8H), 0.95 (m, 6H); MS(ESI) 349.1 $(M + H)^{+}$

[(S)-1-((R,S)-2-Oxocyclopentylcarbamoyl)-3-methylbutyl]carbamic Acid Benzyl Ester (8). To a solution of 37 (0.50 g, 1.37 mmol) in DMSO (5.0 mL) was added sulfur trioxide—pyridine complex (0.66 g, 4.13 mmol). The reaction was stirred for approximately 2 h whereupon it was diluted with ethyl acetate and washed with 1 N HCl, water and brine. The organic layer was dried (MgSO₄), filtered and concentrated. Column chromatography (1:1 ethyl acetate:hexanes) provided 0.48 g of 8 as a white solid: ¹H NMR (400 MHz, CDCl₃, reported as a mixture of diastercomers) δ 7.31 (m, 5H), 6.87 (m, 1H), 5.65 (m, 1H), 5.28 (m, 2H), 4.50 (m, 1H), 4.09 (m, 1H), 2.49–1.53 (m, 8H), 0.91 (m, 6H); MS(ESI) 347.3 (M + H)⁺.

X-ray Crystallography: 1. Crystallization of the Complex of Cathepsin K with Inhibitor 16. Crystals of mature activated cathepsin K complexed with the inhibitor were grown by the vapor diffusion method from a solution of 30% MPD, 0.1 M MES, 0.1 M Tris at pH 7.0. Crystals of the complex are orthorhombic, space group $P2_12_12_1$, with cell constants of a=38.5 Å, b=51.3 Å, and c=104.2 Å. The structure was determined as described described below for the complex of cathepsin K with inhibitor 29 and refined at 2.5 Å. The final $R_{\rm c}$ was 0.201.

2. Crystallization of the Complex of Cathepsin K with Inhibitor 29. Crystals of mature activated cathepsin K

Marquis et al.

complexed with the inhibitor were grown by the vapor diffusion method from a solution of 18% PEG 8000, 0.06 M sodium acetate at pH 4.5 containing 0.12 M Li₂SO₄. Crystals of the complex are tetragonal, space group $P4_32_12$, with cell constants of a=57.9 Å and c=130.3 Å. The structure was determined by molecular replacement with a model consisting of all protein atoms from the previously determined cathepsin K/E-64 complex. ³⁶ The structure was refined at 2.4 Å resolution. The final R_c was 0.218.

3. Crystallization of the Complex of Cathepsin K with Inhibitor **33.** Crystals of mature activated cathepsin K complexed with the inhibitor were grown by the vapor diffusion method from a solution of 30% MPD, 0.1 M MES, 0.1 M Tris at pH 7.0. Crystals of the complex are orthorhombic, space group $P2_12_12_1$, with cell constants of a=38.2 Å, b=50.6 Å, and c=102.3 Å. The structure was determined as described above for the complex of cathepsin K with inhibitor **29** and refined at 1.9 Å. The final R_c was 0.253.

Mass Spectral Analysis of Cathepsin K/Inhibitor Complexes. The inhibitors were prepared at a 5-fold molar concentration to the enzyme in water (Milli-Q 18 M Ω) with a 20% final volume of DMSO making sure that the inhibitor was completely dissolved. Human cathepsin K was provided in buffer (100 mM sodium acetate, 100 mM NaCl, 2 mM L-cysteine, pH 5.5). The enzyme, 1 mol, was mixed with inhibitor solution 1:1 in a 0.65-mL plastic centrifuge tube, vortexed and a minimum of 120-min incubation time was allowed before analysis by LC-MS. The entire reaction mixture was injected onto the peptide trap. The trap was washed with 1 mL of water (Milli-Q 18 M Ω) manually before being back-eluted onto the analytical column.

Supporting Information Available: Lineweaver—Burk plots for **3** and **24**. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) McKerrow, J. H., James, M. N. G., Eds. Cysteine proteases: evolution, function and inhibitor design. Perspect. Drug Disovery Des. 1996, 6, 1-125.
 (b) Chapman, H. A.; Riese, R. J.; Shi, G.-P. Emerging roles for cysteine proteases in human biology. Annu. Rev. Physiol. 1997, 59, 63-88.
- (2) Krantz, A. Proteinases in inflammation. Annu. Rep. Med. Chem. 1993, 28, 187.
- (3) (a) Frosch, B. A.; Sloane, B. F. The role of proteolytic enzymes in brain tumor infiltration. *Brain Tumor Invasion* 1998, 275— 300. (b) Elliott, E. E.; Sloane, B. F.; The cysteine protease cathepsin B in cancer. *Perspect. Drug Disovery Des.* 1996, 6, 12— 32
- (4) (a) Cazzulo, J. J.; Stoka, V.; Turk, V. Cruzipain, the major cysteine proteinase from the protazoan parasite Trypanosoma cruzi. J. Biol. Chem. 1997, 378, 1-10. (b) McKerrow, J. H. Cysteine proteases of parasites: a remarkable diversity of function. Perspect. Drug Discovery Des. 1995, 2, 437. (c) McKerrow, J. H.; Sun, E. Rosenthal, P. J.; Bouvier, J. The proteases and pathogenicity of parasitic protazoa. Annu. Rev. Microbiol. 1993, 47, 821-853. (d) McKerrow, J. H. Development of cysteine protease inhibitors as chemotherepy for parasitic diseases: insights on safety, target validation, and mechanism of action. Int. I. Parasitiol. 1999, 29, 833-837.
- insights on safety, target validation, and mechanism of action. *Int. J. Parasitol.* **1999**, *29*, 833–837.

 (5) Gowen, M. Inhibition of cathepsin K–a novel approach to antiresorptive therapy. *Exp. Opin. Invest. Drugs* **1997**, *6*, 1999–2002
- (6) (a) Drake, F. H.; Dodds, R. A.; James, I. A.; Connor, J. R.; Debouck, C.; Richardson, S.; Lee-Rykaczewski, L.; Coleman, L.; Riemann, D.; Barthlow, R.; Hastings, G.; Gowen, M. Cathepsin K, but not cathepsins B, L or S is abundantly expressed in human osteoclasts. J. Biol. Chem. 1996, 271, 12511-12516. (b) Brömme, D.; Okamoto, K. Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary. Molecular cloning, sequencing and tissue distribution. Biol. Chem. Hoppe-Seyler 1995, 376, 379-384. (c) Shi, G.-P.; Chapman. H. A.; Bhairi, S. M.; DeLeeuw, C.; Reddy, V. Y.; Weiss, S. J. Molecular cloning of human cathepsin O, a novel endoproteinase and homologue of rabbit OC2. FEBS Lett. 1995, 357, 129-134. (d) Littlewood-Evans, A.; Kokubo, T.; Ishibashi, O.; Inaoka, T.; Wlodarski, B.; Callagher, J. A.; Bilbe, C. Localization of cathepsin K in human osteoclasts by In Situ hybridization and immunohistochemistry. Bone 1997, 20, 81-86. (e) Bossard, M.

J.; Tomaszek, T. A.; Thompson, S. K.; Amegadzie, B. Y.; Hanning, C. R.; Jones, C., Kurdyla, J. T.; McNulty, D. E.; Drake, F. H.; Gowen, M.; Levy, M. A. Proteolytic activity of human osteoclast cathepsin K. Expression, activation and substrate identification. J. Biol. Chem. 1996, 271, 12517—12524.

(a) Gelb, B. D.; Moissoglu, K.; Zhang, J.; Martignetti, J. A.; Brömme, D.; Desnick, R. J. Cathepsin K; isolation and characticute of the repression contents of the repression contents and charactic contents and charac

Brömme, D.; Desnick, R. J. Cathepsin K; isolation and characterization of the murine cDNA and genomic sequence, the homologue of the human pycnodysostosis Gene. *Biochem Mol. Med.* 1996, *59*, 200–206. (b) Johnson, M. R.; Polymeropoulos, M. H.; Vos, H. L.; Oritz de Luna, R. I.; Francomano, C. A. A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis. *Genome Res.* 1996, *6*, 1050–1055. (c) Gelb, B. D.; Shi, G.-P.; Chapman, H. A.; Desnick, R. J. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. *Science* 1996, *273*, 1236–1238. Inul, T.; Ishibashi. O.; Inaoka, T.; Origane, V.; Kunacaus, M.

Inui, T.; Ishibashi, O.; Inaoka, T.; Origane, Y.; Kumegawa, M.; Kokubo, T.; Yamaura, T. Cathepsin K antisense oligodeoxynucleotide inhibits osteoclastic bone resorption. J. Biol. Chem.

1997, 272, 8109-8112.

(a) Saftig, P.; Hunziker, E.; Wehmeyer, O.; Jones, S.; Boyde, A.; Rommerskirch, W.; Detlev, J. D.; Schu, P.; von Figura, K. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin K deficient mice. *Proc. Natl. Acad. Sci. U.S.A.* **1998**, *95*, 13453—13458. (b) Gowen, M.; Lazner, F.; Dodds, R.; Kapadia, R.; Field, J.; Tavaria, M.; Bertoncello, I.; Drake, F.; Zavarselk, S.; Tellis, I.; Hertzog, P.; Debouck, C.; Kola, I. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J. Bone Miner. Res. 1999, *14*, 1654–1663.

(10) Reviews on cysteine protease inhibition: (a) Rasnick, D. Small synthetic inhibitors of cysteine proteases. *Perspect. Drug Discovery Des.* 1996, 6, 47–63. (b) Otto, H.-H.; Schirmeister, T. Cysteine proteases and their inhibitors. *Chem. Rev.* 1997, 97, 133–171. (c) Leung, D.; Abbenante, G.; Fairle, D. P. Protease

133-171. (c) Leding, D., Abbehante, G., Palle, D. F. Theodor, Inhibitors: current status and future prospects. J. Med. Chem. 2000, 43, 305-341.
(11) Matsumoto, K.; Mizoue, K.; Kitamura, K.; Tse, W.-C.; Huber, C. P.; Ishida, T. Structural basis of the inhibition of cysteline proteases by E-64 and its derivatives. Biopolymers 1999, 51, 99-

(a) Smith, R. A.; Copp, L. J.; Coles, P. J.; Pauls, H. W.; Robinson, V. J.; Spencer, R. W.; Heard, S. B.; Krantz, A. New inhibitors of cysteine proteases. Peptidyl acyloxymethyl ketones and the quiescent nucleofuge strategy. J. Am. Chem. Soc. 1988, 110, 4429–04431. (b) Krantz, A. Some thoughts on enzyme inhibition and the quiescent affinity label concept. Adv. Med. Chem. 1992, 1235–261. (c) Krantz, A. Peptidyl(aryloxy)methages as quies-1, 235-261. (c) Krantz, A. Peptidyl(acyloxy)methanes as quies cent affinity labels for cysteine proteases. Methods Enzymol. 1994, 244, 656-671.

(13) (a) Palmer, J. T.; Rasnick, D.; Klaus, J. L.; Brömme, D. Vinyl wilfones as mechanism-based cysteine protease inhibitors. J. Med. Chem. 1995, 38, 3193–3196. (b) Brömme, D.; Klaus, J. L.; Okamoto, K.; Rasnick, D.; Palmer, J. T. Peptidyl vinyl sulphones: a new class of potent and selective cysteine protease inhibitors. Biochem. J. 1996, 315, 85–89. (c) McGrath, M. E.; Klaus, J. L.; Barnes, M. G.; Brömme, D. Crystal structure of human cathepsin K complexed with a potent inhibitor. Nat.

thinian cattlepsin K complexed with a potent manufact. Nat. Struct. Biol. 1997, 4, 105–109.

(a) Hanzlik, R. P.; Thompson, S. A. Vinylogous amino acid esters: a new class of inactivators for thiol proteases. J. Med. Chem. 1984, 27, 711–712. (b) Matthews, D. A.; Dragovich, P. S.; Webber, S. E.; Fuhrman, S. A.; Patick, A. K.; Kalman, L. S.; Handalder, T. Fuhrman, S. A.; Patick, A. T. L. Margheyits, I. T. Hendrickson, T. F.; Love, R. A.; Pattk, A. K.; Rarakovits, J. T.; Zhou, R.; Tikhe, J.; Ford, C. E.; Meador, J. W.; Ferre, R. A.; Brown, E. L.; Binford, S. L.; Brothers, M. A.; DeLisle, D. M.; Worland, S. T. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11000-11007 and references therein.

references therein.

(15) Recent examples include: (a) Votta, B. J.; Levy, M. A.; Badger, A.; Bradbeer, J.; Dodds, R. A.; James, I. E.; Thompson, S.; Bossard, M. J.; Carr, T.; Conner, J. R.; Tomaszek, T. A.; Szewczuk, L.; Drake, F. H.; Veber, D. F.; Gowen, M. Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J. Bone Mineral Res. 1997, 12, 1396–1406. (b) Yasuma, T.; Oi, S.; Choh, N.; Nomura, T.; Furuyama, N.; Nishimura, A.; Fujisawa, Y.; Sohda, T. Synthesis of peptide Nishimura, A.; Fujisawa, Y.; Sonda, I. Synthesis of peptide aldehyde derivatives as selective inhibitors of human cathepsin L and their inhibitory effect on bone resorption. *J. Med. Chem.* **1998**, *41*, 4301–4308. (c) Karanewsky, D. S.; Bai, X.; Linton, S. D.; Krebs, J. F.; Wu, J.; Pham, B.; Tomaselli, K. J. Conformationally constrained inhibitors of caspase-1 (interleukin-1\(\theta\) converting enzyme) and of the human CED-3 homologue caspase-3 (CPP32, apopain). *Bloorg. Med. Chem. Lett.* **1998**, *8*, 2757–2762 2757-2762.

Journal of Medicinal Chemistry, 2001, Vol. 44, No. 5 735

(a) Ando, R.; Morinaka, Y. A new class of proteinase inhibitor. (a) Ando, K.; Morinaka, Y. A new class of proteinase inhibitor: Cyclopropenone-containing inhibitor of papain. J. Am. Chem. Soc. 1993, 115, 1174-1175.
(b) Ando, R.; Sakaki, T.; Morinaka, Y.; Takahashi, C.; Tamao, Y.; Yoshii, N.; Katayama, S.; Saito, K.; Tokuyama, H.; Isaka, M.; Nakamura, E. Cyclopropeneone-containing cysteine proteinase inhibitors. Synthesis and enzyme inhibitory activities. Bioorg. Med. Chem. 1999, 7, 571-579.
(a) Moon, J. B.; Coleman, R. S.; Hanzlik, R. P. Reversible covalent inhibitors of papain by a pestide pixell. ISC NMD cyclopes.

(a) Moon, J. B.; Coleman, R. S.; Hanzlik, R. P. Reversible covalent inhibition of papain by a peptide nitrile. ¹³C NMR evidence for a thioimidate ester adduct. J. Am. Chem. Soc. 1986, 108, 1350–1351. (b) Brisson, J.-R.; Carey, P. R.; Storer, A. C.; Benzoylamidoacetonitrile is bound as a thioimidate in the active site of papain. J. Biol. Chem. 1986, 261, 9087–9089. (c) Liang, T.-C.; Abeles, R. H. Inhibition of papain by nitriles: mechanistic studies using NMR and kinetic measurements. Arch. Biochem. Biophys. 1987, 252, 626–634.
(a) Hu, L.-Y.; Abeles, R. H. Inhibition of cathepsin B and papain by peptidyl α-keto esters, α-keto amides α-diketones and α-keto acids. Arch. Biochem. Biophys. 1990, 281, 271–274. (b) Li, Z.; Patil, G. S.; Golubski, Z. E.; Horl, H.; Tehrani, K.; Foreman, J. E.; Eveleth, D. D.; Bartus, R. T.; Powers, J. C. Peptide α-keto ester, α-keto amide, and α-keto acid inhibitors of calpains and

Patil, G. S.; Golubski, Z. E.; Hori, H.; Terrani, R.; Foreman, J. E.; Eveleth, D. D.; Bartus, R. T.; Powers, J. C. Peptide c-keto ester, a-keto amide, and a-keto acid inhibitors of calpains and other cysteine proteases. J. Med. Chem. 1993, 36, 3472–3480. (c) Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett III, R.; Carroll R. M. Straub, J. A. Tkacz, J. N.; Wu, C.; Musso, G. F. Stereospecific synthesis of peptidyl a-keto amides as inhibitors of calpain. J. Med. Chem. 1994, 37, 2918–2929. (a) Majalli, A. M. M.; Chapman, K. T.; MacCoss, M.; Thornberry, N. A.; Peterson, E. P. Activated ketones as potent reversible inhibitors of interleukin-1\(\beta\) converting enzyme. Bioorg. Med. Chem. Lett. 1994, 4, 1965–1968. (b) Yamashita, D. S.; Smith, W. W.; Zhao, B.; Janson, C. A.; Tomaszek, T. A.; Bossard, M. A.; Levy, M. A.; Oh, H.-J.; Carr, T. J.; Thompson, S. T.; Ijames, C. F.; Carr, S. A.; McQueney, M.; D'Alessio, K. J.; Amegadzie, B. Y.; Hanning, C. R.; Abdel-Meguid, S.; DesJarlais, R. L.; Gleason, J. G.; Veber, D. F. Structure and design of potent and selective cathepsin K inhibitors. J. Am. Chem. Soc. 1997, 119, 11351–11352. (c) DesJarlais, R. L.; Yamashita, D. S.; Oh, H.-J.; Uzinskas, I. N.; Erhard, K. F.; Allen, A. C.; Haltwanger, R. C.; Zhao, B.; Smith, W. W.; Abdel-Meguid, S. S.; D'Allesio, K.; Janson, C. A.; McQueney, M. S.; Tomaszek, T. A.; Levy, M. A.; Veber, D. F. Use of X-ray cocrystal structures and molecular medality to design potent and selective pon-nerotic inhibitors. Veber, D. F. Use of X-ray cocrystal structures and molecular

Veber, D. F. Use of X-ray cocrystal structures and molecular modeling to design potent and selective non-peptide inhibitors of cathepsin K. J. Am. Chem. Soc. 1998, 35, 9114–9115.
(20) Amos, H. E.; Park, B. K. In Immunotoxicology and Immunopharmacology, Raven Press: New York, 1985; pp 207–228.
(21) Marquis, R. W.; Ru, Y.; Yamashita, D. S.; Oh, H.-J.; Yen, J.; Thompson, S. K.; Carr, T. J.; Levy, M. A.; Tomaszek, T. A.; Ijames, C. F.; Smith, W. W.; Zhao, B.; Janson, C. A.; Abdel-Meguid, S. S.; D'Alessio, K. J.; McQueney, M. S.; Veber, D. F. Potent dipeptidyl ketone inhibitors of the cysteine protease cathepsin K. Bioorg. Med. Chem. 1999, 7, 581–588.
(22) (a) Jones, D. M.; Atrash, B.; Teger-Nilsson, A.-C.; Gyzander, E.; Deinum, J.; Szelke, M.; Design and synthesis of thrombin inhibitors. Lett. Pept. Sci. 1995, 2, 147–154. (b) Jones, M. D.; Atrash, B.; Teger-Nilsson, A. C.; Gyzander, E.; Deinum, J.; Szelke, M. Inhibitors of thrombin containing arginine ketone derivatives. Proc. Eur. Pept. Symp. 23rd 1995, 899–900. (c) Jones, D. M.; Atrash, B.; Ryder, H.; Teger-Nilsson, A.-C.; Gyzander, E.; Szelke, M. Thrombin inhibitors based on ketone derivatives of arginine and lysine. J. Enzyme Inhib. 1995, 9, 43–60. derivatives of arginine and lysine. J. Enzyme Inhib. 1995, 9, 43-

The nomenclature of Schecter and Berger: Schecter, I.; Berger, A. On the size of the active site in proteases I. Papain. *Biochem. Biophys. Res. Commun.* 1967, 27, 157–162.

(24) The following numbering system has been used:

n = 1; 3-amidotetrahydrofuran-4-one n = 1; 3-amido-pyrrolidin-4-one n = 2: 4-amido-tetrahydropyran-3-one n = 2; 4-amido-piperidin-3-one

(25) Marquis, R. W.; Yamashita, D. S.; Ru, Y.; LoCastro, S. M.; Oh, H.-J.; Erhard, K. F.; Des Jarlais, R. L.; Head, M. S.; Smith, W. W.; Zhao, B.; Janson, C. A.; Abdel-Meguid, S. S.; Tomaszek, T. A.; Levy, M. A.; Veber, D. F. Conformationally constrained 1,3 diamino ketones: A series of potent and selective inhibitors of the cysteine protease cathepsin K. J. Med. Chem. 1998, 41, 3563-3567.

(26) For a discussion regarding the regional elective opening of 3.4-epoxytetrahydropyrans, see: Berti, G.; Catelani, G.; Ferretti, M.; Monti, L. Regio- and stereoselectivity of the three-membered ring opening of 3.4-epoxytetrahydropyrans and of the corresponding epibromonium ions. Tetrahedron 1974, 30, 4013-4020.

- (27) Parikh, J. R.; Doering, v. W. E.; Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide. J. Am. Chem. Soc. 1967, 89.
- (28) Hong, H.; Mendoza, J. S.; Lowden, C. T.; Ballas, L. M.; Janzen, W. P. Synthesis and protein kinase C activities of balanol analogues with modification of the 4-hydroxbenzamido moiety. *Bioorg. Med. Chem.* 1997, 5, 1873-1882.
 (29) Marquis, R. W.; Veber, D. F.; Ru, R.; LoCastro, S. M. WO9805336.
 (30) Inhibitor proteocles verses purified recombinant cathenin K ware.
- Bioorg. Med. Chem. 1997, 5, 1873–1882.
 (29) Marquis, R. W.; Veber, D. F.; Ru, R.; LoCastro, S. M. WO9805336.
 (30) Inhibitor potencies verses purified recombinant cathepsin K were evaluated according to the procedure of reference 15a. Human liver cathepsins B and L were purchased from Calbiochem. Inhibitors were assayed against recombinant human cathepsin S. human liver cathepsin L and human liver cathepsin B utilizing the following substrates respectively: Cbz-Val-Val-Arg-AMC at 20 μM (K_m = 25 μM), Cbz-Phe-Arg-AMC at 5 μM (K_m = 3 μM), and Cbz-Phe-Arg-AMC at 50 μM (K_m = 140 μM), respectively, in 100 mM acetate, 20 mM cysteine, 5 mM EDTA, pH 5.5 buffer with a final DMSO concentration of 10%.
 (31) (a) Abeles, R. H. Enzyme inhibitors: Ground state/transition state analogues. Drug Dev. Res. 1987, 10, 221–234. (b) Douglas, D. T. Transition-state analogues in drug design. Chem. Ind. (London) 1983, 8, 311–315. (c) Brodbeck, U. Recent developments in the field of enzyme inhibitors. Chima 1980, 34, 415–421. (d) Lienhard, G. E. Transition state analogues as enzyme inhibitors. Annu. Rep. Med. Chem. 1972, 7, 249–258. (e) Radzika, A.; Wolfenden, R. Transition state and multisubstrate analogue inhibitors. Methods Enzymol. 1995, 249, 284–312
 (32) (a) Fenwick, A. E.; Gribble, A. D.; Ife, R. J.; Stevens, N.; Witherington, J. Diastereoselective synthesis, activity and chiral stability of cyclic alkoxy ketone inhibitors of cathepsin K. Bioorg.

Marquis et al.

- Med. Chem Lett., submitted for publication. (b) Fenwick, A. E.; Garnier, B.; Gribble, A. D.; Ife, R. J.; Rawlings, A. D.; Witherington, J. Solid-phase synthesis of cyclic alkoxy ketones, inhibition. tors of the cysteine protease cathepsin K. Bioorg. Med. Chem.
- total of the tysteller protesse cathepair N. Dioog. Week. Cather. Lett., submitted for publication.
 Hunter, C. A.; Sanders, J. K. M. The nature of π-π Interactions. J. Am. Chem. Soc. 1990, 112, 5525-5534.
 The utility of the through-space effect for the design of ketone-based curvation personant habitations have been alcountable demonstrates. The utility of the through-space effect for the design of ketone-based cysteine protease inhibitors has been eloquently demonstrated by Seto and co-workers. Sec: (a) Conroy, J. L.; Sanders, T. C.; Seto, C. T. Using the electrostatic field effect to design a new class of inhibitors for cysteine proteases. *J. Am. Chem. Soc.* 1997, 119, 4285-4291. (b) Conroy, J. L.; Abato, P.; Ghosh, M.; Austermuhle, M. I.; Kiefer, M. R.; Seto, C. T. Synthesis of cyclohexanone-based cathepsin B inhibitors that interact with both the S and S' binding sites. Tetrahedron Lett. 1998, 39, 8253-8256.
- (35) Berman, J.; Halm, K.; Adkinson, K.; Shaffer, J. Simultaneous pharmacokinetic screening of a mixture of compounds in the dog using API LC/MS/MS analysis for increased throughput. *J. Med. Chem.* 1997, 40, 827–829.
- (36) Zhao, B.; Janson, C. A.; Amegadzie, B. Y.; D'Alessio, K.; Griffin, C.; Hanning, C. R.; Jones, C.; Kurdyla, J.; McQueney, M.; Qlu, X.; Smith, W. W.; Abdel Meguid, S. S. Crystal structure of human osteoclast cathepsin K complex with E-64. Nat. Struct. Biol. 1997, 4, 109-111.

JM000320T

Bioorganic & Medicinal Chemistry Letters 11 (2001) 199-202

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Diastereoselective Synthesis, Activity and Chiral Stability of Cyclic Alkoxyketone Inhibitors of Cathepsin K

Ashley E. Fenwick,^a Andrew D. Gribble,^a Robert J. Ife,^a Nichola Stevens^b and Jason Witherington^a,*

^aDepartment of Medicinal Chemistry, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park,
Third Avenue, Harlow, Essex, CM19 5AD, UK

^bDepartment of Analytical Sciences, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park,
Third Avenue, Harlow, Essex, CM19 5AD, UK

Received 23 June 2000; revised 31 October 2000; accepted 2 November 2000

Abstract—The diastereoselective synthesis of a novel class of cathepsin K inhibitors together with their cathepsin K affinity and stability towards aqueous buffer is reported. © 2001 Published by Elsevier Science Ltd.

Cathepsin K (EC 3.4.22.38), a cysteine protease of the papain superfamily, is selectively expressed in osteoclasts and has been implicated in the process of bone resorption. Selective inhibitors of cathepsin K therefore could be promising therapeutic agents for the treatment of diseases characterised by excessive bone loss, such as osteoporosis.

Recently we reported the design² and solid-phase synthesis³ of a new class of cyclic alkoxyketones 1 as selective reversible inhibitors of cathepsin K (Fig. 1).

To enable the investigation of both the activity and chiral stability of these novel inhibitors, we required a diastereoselective synthesis, as all attempts to separate the individual diastereomers employing preparative chromatography proved unsuccessful.

Our initial approach towards the preparation of the single diastereomers of these cyclic ketones involved the preparation of the key enantiomerically enriched amino alcohols 3. Desymmetrisation of meso-epoxide 4 with (S)-(--)-α-methylbenzylamine⁴ provided the corresponding amino:alcohols 5 as a 1:1 mixture. Formation of the hydrochloride salt and fractional crystallisation from ethanol provided a single diastereomer of unknown stereochemistry (Scheme 1). Attempts to obtain an X-ray structure, enabling the absolute chirality of the ring stereochemistry to be established, proved unsuccessful.

Although we had a route towards the single diastereomers of the cyclic alkoxyketones we were interested in developing a synthesis to provide either diastereomer with known absolute stereochemistry. To this end, desymmetrisation of meso-epoxide 4 employing the (R,R)-salen catalyst 65 and TMS-N₃ in ether at 25 °C provided the (3S,4R)-azido silyl alcohol 7 in 98% ee. 6 Employing the (1S,2S)salen catalyst likewise provided the corresponding (3R,4S)-azido alcohol, again in 90% yield and 97% ee. Removal of the silyl group with camphor sulfonic acid in methanol at room temperature and subsequent reduction of the azido moiety with hydrogen in the presence of Pd/C afforded the amino-alcohol 8. Selective amide bond formation with the mixed anhydride of Cbz-Leu-OH and subsequent hydrogenolysis of the Cbz group afforded the amine 9. Amide bond formation and subsequent Dess-Martin oxidation of the secondary alcohol provided the 4S diastereomers 10 (Scheme 2).

The cathepsin K activity for the individual diastereomers showed that activity resided in the 4S isomer with the 4R isomer typically showing up to a 40-fold reduction in potency (Table 1).

The cyclic alkoxyketones were also examined for their stability towards epimerisation in a series of aqueous buffers (hepes, phosphate and acetate). In these studies, compound concentration was 1 µM and the final solution contained 20% THF to aid solubility. Analysis of samples was carried out after extraction into dichloromethane, using chiral HPLC.⁸ Significant epimerisation over a period of several hours was evident in both diastereomers.

^{*}Corresponding author. Tel.: +44-01279-672832; fax: +44-01279-627841; c-mail: jason_witherington-1@sbphrd.com

200

A. E. Fenwick et al. | Bioorg. Med. Chem. Lett. 11 (2001) 199-202

Figure 1. The evolution of cyclic alkoxyketones.

Scheme 1. Desymmetrisation employing (S)-(-)- α -methyl benzylamine.

Scheme 2. Diastereoselective synthesis of five membered cyclic alkoxyketones.

Table 1. Diastereomeric activity of tetrahydrofuranone inhibitors

Entry	R	S isomer, K_i $(nM)^7$	R isomer, K_i (nM)
10a	2-Benzo[b]thiophenyl	7	68
10b	2-Naphthyl	14	470
10c	2-Quinoly1	15	590

However, the rate of epimerisation appears different in the various buffers, being fastest in hepes pH 6.8 buffer and slowest in acetate pH 5.5, indicating the epimerisation is catalysed by hydroxide anion (Fig. 2).

Having measured the chiral stability and activity for the five membered cyclic alkoxyketones, we wished to assess the stability of the related six membered cyclic alkoxyketones which also emerged as potent cathepsin K inhibitors. Again, attempted separation of the individual diastereomers employing chiral HPLC proved unsuccessful. However, column chromatography of the related ketal analogues 11 followed by deketalisation afforded the diastereomers 12 in typically 95% d.e., albeit of unknown stereochemistry (Scheme 3).

Again, cathepsin K activity of the ketones 12 resided in predominately one, stereochemically undefined, diaster-eomer (Table 2).

Attempts to quantify epimerisation employing chiral HPLC analysis proved unsuccessful due to incomplete baseline separation. We were able, however, to employ ¹H NMR analysis for this purpose. Using the same protocol as for the five membered ketones, we observed

A. E. Fenwick et al. | Bioorg. Med. Chem. Lett. 11 (2001) 199-202

Figure 2. Diastereomeric epimerisation of 10b in the acetate buffer, pH 5.5.

Scheme 3. Diastereoselective synthesis of six membered cyclic alkoxyketones.

$$\Delta E = 8.4 \text{Kcal/mol} \quad HO \qquad AE = 10.4 \text{Kc$$

Figure 3. Ab initio calculations of cyclic alkoxyketones.

Table 2. Diastereomeric activity of tetrahydropyranone inhibitors

Entry	R	Diastereomer-1, K_i (nM)	Diastereomer-2, K_i (nM)
12a	2-Benzo[b]thiophenyl	8	70
12b	2-Naphthyl	32	380
12c	3,4-Dimethoxybenzyl	10	770

no significant levels of epimerisation in a series of aqueous buffers (hepes, phosphate and acetate). We hypothesised that the epimerisation differences observed between the five and six membered cyclic alkoxyketones could be due to the energy barrier between the ketol and enolic forms. Indeed, ab initio calculations in SPAR-TAN using 3-21G(*) indicate a larger energy difference (ΔE) between the two forms for the 6-ring system relative to the 5-ring (Fig. 3).

In summary we have completed the diastereoselective synthesis of a novel class of cathepsin K inhibitors and examined their stability to a range of buffer systems. Whilst the more potent diastereomer of the five and six membered cyclic alkoxyketones show comparable

potency, the six membered ketones may offer significant development advantages due to their enhanced chiral stability.

Acknowledgements

The authors would like to acknowledge Thaddeus Thomaszek for determination of cathepsin K inhibition.

References and Notes

1. (a) Drake, F. H.; Dodds, R. A.; James, I. E.; Connor, J. R.; Debouck, C.; Richardson, S.; Lee-Rykaczewski, E.; Coleman, L.; Rieman, D.; Barthlow, R.; Hastings, G.; Gowen, M. J. Biol. Chem. 1996, 271, 12511. (b) Bossard, M. J.; Tomaszek, T. A.; Thompson, S. K.; Amergadzie, B. Y.; Hanning, C. R.; Jones, C.; Kurdyla, J. T.; McNulty, D. E., Drake, F. H.; Gowen, M.; Levy, M. A. J. Biol. Chem. 1996, 271, 12517.

2. Marquis, R. W.; Ru, Y.; Zeng, J.; Trout, R. E. L.; Gribble, A. D.; Witherington, J.; Fenwick, A. E.; Gamier, B.; Tomaszek, T.; Tew, D.; Hemling, M. E.; Quinn, C.; Smith, W. W.; Janson, C. A.; Zhao, B.; McQueney, M. S.; D'Alessio, K.; Veber, D. F. J. Med. Chem. Submitted.

3. Fenwick, F.; Gamier, B.; Gribble, A.; Ife, R.; Rawlings, A.; Witherington, J. Bloorg. Med. Chem. Lett. 2000, 11, 195.

4. Overman, L. E.; Sugai, S. J. Org. Chem. 1985, 50, 4154. Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen,
 N. J. Am. Chem. Soc. 1995, 117, 5897.

6. Optical rotations of 7 and 8 were identical to those reported

by Jacobsen.5

201

202

A. E. Fenwick et al. | Bioorg. Med. Chem. Lett. 11 (2001) 199-202

- 7. Enzyme inhibition was evaluated as previously described: Votta, B.; Levy, M. A.; Badger, A.; Bradbeer, J.; Dodds, R. A.; James, I. E.; Thompson, S.; Bossard, M. J.; Can, T.; Connor, J. R.; Tomaszek, T. A.; Szewczuk, L.; Drake, F. H.; Veber, D. F.; Gowen, M. J. Bone Miner. Res. 1997, 12, 1396.
- 8. Separation was achieved using a Chiralpak AD column (250 mm \times 4.6 mm) using a mobile phase of 50:50 hexane: IPA.
- 9. Gribble, A. D.; Fenwick, A. E.; Marquis, R. W.; Veber, D. F.; Witherington, J. WO 9850533.