Name	Manish Shashikant Jadhav
UID no.	2023301005

Experiment 8

Aim

Considering a system with five processes P0 through P4 and three resources of type A, B, C. Resource type A has 10 instances, B has 5 instances and type C has 7 instances. Suppose at time t0 following snapshot of the system has been taken:

Process	Allocation	Max	Available
	АВС	АВС	АВС
P ₀	0 1 0	7 5 3	3 3 2
P ₁	2 0 0	3 2 2	
P ₂	3 0 2	9 0 2	
P ₃	2 1 1	2 2 2	
P ₄	0 0 2	4 3 3	

Question 1. What will be the content of the Need matrix?

Question2. Is the system in a safe state? If Yes, then what is the safe sequence?

Question3. What will happen if process P1 requests one additional instance of resource type A and two instances of resource type C?

Implement using Any programming language.

```
# 5 processes: P0, P1, P2, P3, P4
Code:
         n = 5 # Number of processes: P0, P1, P2, P3, P4
                # Number of resources: A, B, C
         # ALLOCATION COLUMN
         alloc = [[0, 1, 0], [2, 0, 0],
                  [3, 0, 2], [2, 1, 1], [0, 0, 2]]
```

```
# MAXIMUM COLUMN
\max = [[7, 5, 3], [3, 2, 2],
      [9, 0, 2], [2, 2, 2], [4, 3, 3]]
# AVAILABLE COLUMN
avail = [3, 3, 2]
# table display for output which includes process, allocation, max,
available based on input values provided.
               Allocation
print("Process
                                       Max
                                                  Available")
for i in range(n):
   print(f"P{i}
                   {alloc[i]} {max[i]} {avail}")
f = [0] * n
ans = [0] * n
ind = 0
for k in range(n):
   f[k] = 0
need = [[0 for i in range(m)] for i in range(n)]
for i in range(n):
   for j in range(m):
       need[i][j] = max[i][j] - alloc[i][j]
print("\nNeed Matrix calculated = (Need(i, j) = Max(i, j) -
Allocation(i, j)):")
for i in range(n):
    print(need[i])
for k in range(5):
   for i in range(n):
       if f[i] == 0:
           flag = 0
           for j in range(m):
               if need[i][j] > avail[j]:
```

```
flag = 1
                                                     break
                                      if flag == 0:
                                             ans[ind] = i
                                             ind += 1
                                             for y in range(m):
                                                    avail[y] += alloc[i][y]
                                             f[i] = 1
                                             break
                        print("\nAfter allocation of P" + str(ans[ind - 1]) + " Available:
                 " + str(avail))
                print("\nThe safe sequence for the program is as follows:")
                for i in range(n - 1):
                        print(" P", ans[i], " ->", sep="", end="")
                print(" P", ans[n - 1], sep="")
                  PS D:\Manish\SPIT> & C:/Users/manis/AppData/Local/Programs/Python/Python311/python.exe "d:/Manish/SPIT/4th SEM/OS/Experiments/Exp8/bankers.py
Process Allocation Max Available
Output:
                              [0, 1, 0]
[2, 0, 0]
[3, 0, 2]
[2, 1, 1]
[0, 0, 2]
                                                        [3, 3, 2]
[3, 3, 2]
[3, 3, 2]
[3, 3, 2]
[3, 3, 2]
                   P0
P1
P2
                   Need Matrix calculated = (Need(i, j) = Max(i, j) - Allocation(i, j)):
                   After allocation of P1 Available: [5, 3, 2]
                   After allocation of P3 Available: [7, 4, 3]
                   After allocation of P0 Available: [7, 5, 3]
                   After allocation of P2 Available: [10, 5, 5]
                   After allocation of P4 Available: [10, 5, 7]
                   The safe sequence for the program is as follows:
P1 -> P3 -> P0 -> P2 -> P4
PS D:\Manish\SPIT>
```

0	·	2023301005 MTWTF35
Questions	13	Page No.: Youva
		Os Expersiment No.8.
	03	what will be the content of need mostrix?
	2.17	
	=>	7,4,3
		6 2 2
		6,0,0
		4 3 1
	(2.2)	Is the system in safe state? If yes, then
	7	what is the sequence?
	=>	The system is in safe state.
		$P_1 \rightarrow P_3 \rightarrow P_4 \rightarrow P_0 \rightarrow P_2$
	Q.37	What will happen if process Pi requests one
		additional instance of resource type A
		and two instances of resource type (?
	=>	
		A B C 1,0,2 < 1,2,2 10 2 Requesta Need 1
		@ 10,2 < 3,3, 2
		Requesta Available
	,	Available = Available - Request _
		Allocation = Allocation + Request 1
		Need = Need 1 - Request
		0
		0
		P4 002 431
	-	4 5 1

	Date:
6	6
3	i=2 Needs 6,0,0 7 ,5,3,2 X
4	i=3 0,1,16 < 5,3,2 V P3 is added to safe sequence. P1 > P3
8	i=4 4,3,147,4,3 Py is added to safe sequence. Pi -> P3-> P4
	i=0 7,4,3 < 7,4,5 / Po is added to safe sequence ·P, >P3 >P4>P0
P	i=2.6,0,0<7,5,5 P2 is added to safe sequence. PP, >P3 >P4>P5
	Safe sequence would be: P1 → P3 → P4 → P0 → P2
	y completing this experiment Learne to know about Penker's Algerithm

Conclusion Hence, by completing this experiment I came to know about Banker's Algorithm.