# Национальный исследовательский университет информационных технологий, механики и оптики.

Кафедра систем управления и информатики. Основы теории автоматического управления.

#### Лабораторная работа №5

Свободное и вынужденное движение линейных систем.  $5\ вариант$ 

Студент: Куклина М.Д., Р3401 Преподаватель: Кремлев А.С.

### 1. Задание

Начальные условия и корни характеристических уравнений:

| N | Начальны | е условия   | Корни характеристического |             |  |
|---|----------|-------------|---------------------------|-------------|--|
|   |          |             | уравнения                 |             |  |
|   | $y_0$    | $\dot{y_0}$ | $\lambda_1$               | $\lambda_2$ |  |
| 1 | 1        | 0           | -2.0                      | -2.0        |  |
| 2 | 1        | 0           | -0.9 + j7                 | -0.9 + j7   |  |
| 3 | 1        | 0           | $\mid j7$                 | -j7         |  |
| 4 | 0.05     | 0           | 0.9 + j7                  | 0.9 - j7    |  |
| 5 | 0.05     | 0           | 2.0                       | 2.0         |  |
| 6 | 0        | 0.1         | -0.5                      | 0.5         |  |

Параметры системы и входное воздействие:

| $a_0$ | $a_1$ | b | $g_1(t)$ | $g_2(t)$ | $g_3(t)$   |
|-------|-------|---|----------|----------|------------|
| 3     | 3     | 2 | 2.0      | 0.8t     | $\sin(3t)$ |

# 2. Математическая модель и схема моделирования



Схема моделирования свободной составляющей

### 2.1. Поиск $a_0, a_1$

Нам даны два корня уравнения  $\lambda^2 + a_1\lambda + a_0 = 0$ . Подставляя их в уравнение, имеем систему:

$$\begin{cases} \lambda_1^2 + a_1 \lambda_1 + a_0 = 0\\ \lambda_2^2 + a_1 \lambda_2 + a_0 = 0 \end{cases}$$

Имеем по теореме Виета:

$$a_0 = \lambda_1 \lambda_2$$
  
$$a_1 = -(\lambda_1 + \lambda_2)$$

#### 2.2. Поиск выражения свободной составляющей

В зависимости от корней характеристического уравнения свободная составляющая может принимать разный вид:

#### 2.2.1. Корни веществены и одинаковы: $\lambda_1=\lambda_2=\lambda$

$$y_{\text{cB}}(t) = (C_1 + C_2 t) e^{\lambda t} \Rightarrow \begin{cases} y_{\text{cB}}(0) = C_1 \\ y'_{\text{cB}}(0) = \lambda C_1 + C_2 \end{cases} \Rightarrow \begin{cases} C_1 = y_{\text{cB}}(0) \\ C_2 = -\lambda y_{\text{cB}}(0) + y'_{\text{cB}}(0) \end{cases}$$
$$y_{\text{cB}}(t) = (y_{\text{cB}}(0) \cdot (1 - \lambda t) + y'_{\text{cB}}(0)t) e^{\lambda t}$$

#### 2.2.2. Корни веществены и различны: $\lambda = \alpha \pm (\beta + 0i)$

$$y_{\text{cb}}(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} \Rightarrow \begin{cases} y_{\text{cb}}(0) = C_1 + C_2 \\ y'_{\text{cb}}(0) = \lambda_1 C_1 + \lambda_2 C_2 \end{cases} \Rightarrow \begin{cases} C_1 = \frac{y'_{\text{cb}}(0) - \lambda_2 y_{\text{cb}}(0)}{\lambda_1 - \lambda_2} \\ C_2 = -\frac{y'_{\text{cb}}(0) - \lambda_1 y_{\text{cb}}(0)}{\lambda_1 - \lambda_2} \end{cases}$$
$$y_{\text{cb}}(t) = \frac{1}{\lambda_1 - \lambda_2} \left( (y'_{\text{cb}}(0) - \lambda_2 y_{\text{cb}}(0)) e^{\lambda_1 t} - (y'_{\text{cb}}(0) - \lambda_1 y_{\text{cb}}(0)) e^{\lambda_2 t} \right)$$

#### 2.2.3. Корни комплексные: $\lambda = \alpha \pm \omega i$

$$y_{\text{cb}}(t) = Ae^{\alpha t}\sin(\omega t + \phi) \Rightarrow \begin{cases} y_{\text{cb}}(0) = A\sin(\phi) \\ y'_{\text{cb}}(0) = A\left(\omega\cos(\phi) + \alpha\sin(\phi)\right) \end{cases} \Rightarrow$$

$$\begin{cases} \phi = \operatorname{arcctg}\left(\omega^{-1} \cdot \left(\frac{y'_{\text{cb}}(0)}{y_{\text{cb}}(0)} - \alpha\right)\right) \\ A = y_{\text{cb}}(0) \cdot \operatorname{sgn}\left(y'_{\text{cb}}(0) - \alpha y_{\text{cb}}(0)\right) \sqrt{\left(\omega^{-1} \cdot \left(\frac{y'_{\text{cb}}(0)}{y_{\text{cb}}(0)} - \alpha\right)\right)^2 + 1} \end{cases}$$

#### 2.2.4. Корни комплексные и число мнимые: $\lambda=\pm\omega i$

Применяя наработки предыдущего параграфа при  $\alpha=0$ :

$$y_{\text{cb}}(t) = A \sin(\omega t + \phi) \Rightarrow \begin{cases} y_{\text{cb}}(0) = A \sin(\phi) \\ y_{\text{cb}}'(0) = A \omega \cos(\phi) \end{cases} \Rightarrow \begin{cases} \phi = \operatorname{arcctg}\left(\frac{y_{\text{cb}}'(0)}{\omega y_{\text{cb}}(0)}\right) \\ A = y_{\text{cb}}(0) \cdot \operatorname{sgn}\left(y_{\text{cb}}'(0)\right) \sqrt{\left(\frac{y_{\text{cb}}'(0)}{\omega y_{\text{cb}}(0)}\right)^2 + 1} \end{cases}$$

# 3. Расчёт

| N | Корни       |             | Параметры |       | Условия |             | Свободная                             |
|---|-------------|-------------|-----------|-------|---------|-------------|---------------------------------------|
|   | $\lambda_1$ | $\lambda_2$ | $a_0$     | $a_1$ | $y_0$   | $\dot{y_0}$ | составляющая $y_{\text{\tiny CB}}(t)$ |
| 1 | -2          | -2          | 4         | 4     | 1       | 0           | $(1+2t)e^{-2t}$                       |
| 2 | -0.9        | $\pm j7$    | 49.81     | -1.8  | 1       | 0           | $1.0082e^{-0.9t}\sin(7t+1.443)$       |
| 3 | $\pm j7$    |             | 49        | 0     | 1       | 0           | $\sin(7t + \frac{\pi}{2})$            |
| 4 | 0.9         | $\pm j7$    | 49.81     | 1.8   | 0.05    | 0           | $0.05041e^{0.9t}\sin(7t - 1.443)$     |
| 5 | 2           | 2           | 4         | -4    | 0.05    | 0           | $(1-2t)e^{2t}$                        |
| 6 | 士(          | 0.5         | -0.25     | 0     | 0       | 0.1         | $-0.1e^{-0.5t} + 0.1e^{0.5t}$         |

# 4. Эксперименты

# 4.1. Расчёт свободных составляющих

### 4.1.1. Эксперимент 1

*y*:





# 4.1.2. Эксперимент 2

y:





### 4.1.3. Эксперимент 3

*y*:





# 4.1.4. Эксперимент 4

y:





# 4.1.5. Эксперимент 5

y:





### 4.1.6. Эксперимент 6

y:





# 4.2. Фазовые кривые

# 4.2.1. $1.0082e^{-0.9t}\sin(7t+1.443)$



# 4.2.2. $\sin(7t + \frac{\pi}{2})$



# 4.2.3. $0.05041e^{0.9t}\sin(7t - 1.443)$



# 4.3. Вынужденное движение

4.3.1. 
$$g_1 = 2.0$$

Для условия y(0) = -1



# Для условия y(0)=0



Для условия y(0)=1



4.3.2. g = 0.8t

Для условия y(0) = -1



Для условия y(0) = 0



### Для условия y(0)=1



4.3.3. 
$$g = \sin(3t)$$

Для условия y(0)=-1



# Для условия y(0)=0



Для условия y(0)=1



# 5. Выводы

В результате проделанной работы мы смоделировали дифференциальные уравнения вида  $y''+a_1y'+a_0y=bg(t)$ , где b может быть равен 0, что соответствует свободному движению системы, путём построения аналоговых электрических систем, описываемых такими дифференциальными уравнениями. Это позволяет осуществлять, к примеру, анализ затухающих колебательных движений.