Procesamiento de Señal y Transformadas

Convolutional Neural Networks

Prof. Rubén Vera Rodríguez ruben.vera@uam.es
BiDA Lab, EPS
http://atvs.ii.uam.es/atvs/

Based on material by Fei-Fei Li & Justin Johnson & Serena Yeung from Stanford University

Frank Rosenblatt, ~1957: Perceptron

Widrow and Hoff, ~1960: Adaline/Madaline: Multilayer perceptron networks

Rumelhart et al., 1986: First time back-propagation became popular

Convolutional Networks: 1998

LeNet: a layered model composed of convolution and subsampling operations followed by a holistic representation and ultimately a classifier for handwritten digits. [LeCun, Bottou, Bengio, Haffner 1998]

Hinton and Salakhutdinov 2006, Reinvigorated research in Deep Learning

Convolutional Nets: 2012

AlexNet: a layered model composed of convolution, subsampling, and further operations followed by a holistic representation and a final classification on ILSVRC12.

+ data + gpu + non-saturating nonlinearity + regularization

ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

CNN from LeNet to GoogLeNet

Convolutional Nets: 2014

ILSVRC14 Winners: ~6.6% Top-5 error

- GoogLeNet: composition of multi-scale dimension-reduced modules (pictured)
- VGG: 16 layers of 3x3 convolution interleaved with max pooling + 3 fully-connected layers
- + data + gpu + non-saturating nonlinearity + regularization

Evolution of Neural Networks

- 1. Perceptron (Rosenblatt, 1958, 1962)
- 2. Adaptive linear element (Widrow and Hoff, 1960)
- 3. Neocognitron (Fukushima, 1980)
- 4. Early back-propagation network (Rumelhart et al., 1986b)
- 5. Recurrent neural network for speech recognition (Robinson and Fallside, 1991)
- Multilayer perceptron for speech recognition (Bengio et al., 1991)
- 7. Mean field sigmoid belief network (Saul et al., 1996)
- 8. LeNet-5 (LeCun et al., 1998b)
- 9. Echo state network (Jaeger and Haas, 2004)
- 10. Deep belief network (Hinton et al., 2006)
- 11. GPU-accelerated convolutional network (Chellapilla et al., 2006)
- 12. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)
- 13. GPU-accelerated deep belief network (Raina et al., 2009)
- 14. Unsupervised convolutional network (Jarrett et al., 2009)
- 15. GPU-accelerated multilayer perceptron (Circsan et al., 2010)
- 16. OMP-1 network (Coates and Ng, 2011)
- 17. Distributed autoencoder (Le et al., 2012)
- 18. Multi-GPU convolutional network (Krizhevsky et al., 2012)
- 19. COTS HPC unsupervised convolutional network (Coates of al., 2013)
- 20. GoogLeNet (Szegedy et al., 2014a)

Classification Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

Detection

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Segmentation

Figures copyright Clement Farabet, 2012. Reproduced with permission.

[Farabet et al., 2012]

self-driving cars

Photo by Lane McIntosh. Copyright CS231n 2017.

NVIDIA Tesla line

(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup would involve NVIDIA Tegras, with integrated GPU and ARM-based CPU cores.

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.

[Toshev, Szegedy 2014]

[Guo et al. 2014]

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, and Xiaoshi Wang, 2014. Reproduced with permission.

How can we extract features from unstructured data?

Image Domain

Translator

Feature Domain

$$\mathbf{f} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_{128} \end{bmatrix}$$

How can we extract features from unstructured data?

Image Domain

Deep Learning algorithm

Feature Domain

$$\mathbf{f} = \begin{bmatrix} J_1 \\ f_2 \\ \vdots \\ f_{128} \end{bmatrix}$$

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fully Connected Layer

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

1 number:

the result of taking a dot product between a row of W and the input (a 3072-dimensional dot product)

32x32x3 image -> preserve spatial structure

32x32x3 image -> preserve spatial structure

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32x32x3 image -> preserve spatial structure

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Consider a second filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

ConvNet

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

7

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 3?

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

N

Output size:

(N - F) / stride + 1

e.g.
$$N = 7$$
, $F = 3$:

stride
$$1 = (7 - 3)/1 + 1 = 5$$

stride
$$2 \Rightarrow (7 - 3)/2 + 1 = 3$$

stride
$$3 \Rightarrow (7 - 3)/3 + 1 = 2.33 : \$$

In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

```
(recall:)
(N - F) / stride + 1
```


In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Examples time:

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Examples time:

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

$$(32+2*2-5)/1+1 = 32$$
 spatially, so $32x32x10$

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params (+1 for bias)

Input volume=5x5x3 Filter 3x3x3 Stride =2

Output

0[:,:,0]		
3	-2	-5
-1	-2	-5
-4	-8	-4

Convolution layer: summary

Let's assume input is W₁ x H₁ x C Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W₂ x H₂ x K where:

$$-W_2 = (W_1 - F + 2P)/S + 1$$

$$-H_2 = (H_1 - F + 2P)/S + 1$$

Number of parameters: F2CK and K biases

Convolution layer: summary

Common settings:

- F = 3, S = 1, P = 1

- F = 1, S = 1, P = 0

K = (powers of 2, e.g. 32, 64, 128, 512)

F = 5, S = 2, P = ? (whatever fits)

Let's assume input is W₁ x H₁ x C

Conv layer needs 4 hyperparameters: F = 5, S = 1, P = 2

- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W₂ x H₂ x K where:

- $-W_2 = (W_1 F + 2P)/S + 1$
- $-H_2 = (H_1 F + 2P)/S + 1$

Number of parameters: F2CK and K biases

(btw, 1x1 convolution layers make perfect sense)

Conv Layer

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

Universidad Autónoma de Madrid

Escuela Politécnica Superior

Conv Layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Each neuron looks at the full input volume

ConvNet

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

ConvNet

Activation Functions

f is the activation function:

These are non-linear functions applied at the output values

implementation

Pooling Layer

Makes the representations smaller and more manageable

Operates over each activation map independently:

Pooling Layer: Max Pooling

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

У

Fully Connected Layer

Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

Slides from Jason Yosinski

Krizhevsky, Sutskever, Hinton — NIPS 2012

Slides from Jason Yosinski

Krizhevsky, Sutskever, Hinton — NIPS 2012

Slides from Jason Yosinski

Slides from Jason Yosinski

Slides from Jason Yosinski

Nguyen et al. arXiv 2014

Slides from Jason Yosinski

Slides from Jason Yosinski

general

Transfer learning

Transfer learning: embeddings

Tuned network for fashion applications

Transfer learning: embeddings

Transfer learning

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014

Transfer learning

	very similar dataset	very different dataset
very little data	Finetune linear classifier on top layer	You're in trouble Try data augmentation / collect more data
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Data Augmentation

a. No augmentation (= 1 image)

224x224

b. Flip augmentation (= 2 images)

224x224

c. Crop+Flip augmentation (= 10 images)

224x224

+ flips

Dropout

Dropout: A Simple Way to Prevent Neural Networks from Overfitting (N Srivastava et al. 2015)

How can we extract features from unstructured data?

Image Domain

Deep Learning algorithm

Feature Domain

$$\mathbf{f} = \begin{bmatrix} J_1 \\ f_2 \\ \vdots \\ f_{128} \end{bmatrix}$$

We can compare images in the feature domain

$$\mathbf{f}^1 = \begin{bmatrix} f_1^1 \\ f_2^1 \\ \vdots \\ f_{128}^1 \end{bmatrix}$$

$$\mathbf{f}^2 = \begin{bmatrix} f_1^2 \\ f_2^2 \\ \vdots \\ f_{128}^2 \end{bmatrix}$$

 $d(\mathbf{f}^1, \mathbf{f}^2) = 1.85$

$$\mathbf{f}^1 = \begin{bmatrix} f_2^1 \\ \vdots \\ f_{128}^1 \end{bmatrix}$$

$$\mathbf{f}^3 = \begin{bmatrix} f_1^3 \\ f_2^3 \\ \vdots \\ f_{128}^3 \end{bmatrix}$$

 $d(\mathbf{f}^1, \mathbf{f}^3) = 2,12$

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- ILSVRC'14 classification winner (6.7% top 5 error)
- 22 layers
- Only 5 million parameters!
 12x less than AlexNet
 27x less than VGG-16
- Efficient "Inception" module
- No FC layers

Case Study: GoogLeNet

[Szegedy et al., 2014]

"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other

Case Study: ResNet

[He et al., 2015]

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

