Structural Biology 2017 Assignment 2

Investigation of protein ligand binding sites.

Notes

The assignment is to be carried out individually. The files that you need are available from the course Moodle page, and you will also find the tutorial document on protein structure prediction and the matlab code that we worked through in the tutorial helpful for this assignment.

Due: via Moodle by 5.45pm on Thursday 15th June 2017. This is a fixed deadline and there will be no extensions.

Page limit: There is a limit of 6 pages, including figures, this is the absolute maximum and any additional pages will not be read. Minimum font size is 11pt.

Please keep answers short, but avoid simple yes/no answers and use figures and tables where appropriate. It is in your interests to be lucid and concise, and to think about the most informative way to present your findings.

Submission: write-ups must be submitted via Moodle as one single PDF file. If you have any technical difficulties with the assignment please email Lucy Colwell (ljc37@cam.ac.uk).

Aim

The focus of this assignment is to explore the binding sites of ligand-protein complexes and their mutual interactions in more detail. Throughout the course, we have discussed the different type of physico-chemical interactions that are important for interactions between proteins and small molecules. To help you complete this assignment, in addition to the course lecture slides a comprehensive description of these interactions is provided in this paper, which is available on the moodle site:

Bissantz, Caterina, Bernd Kuhn, and Martin Stahl. "A medicinal chemist's guide to molecular interactions." *Journal of medicinal chemistry* 53.14 (2010): 5061-5084.

Receptor Ligand structures and corresponding papers (recall your number from class):

1	<u>1U19</u>	2.20 Å	2004- 10-12	bovine rhodopsin with 11-cis-retinal	Okada, T.; Sugihara, M.; Bondar, A. N.; Elstner, M.; Entel, P.; Buss, V. J. Mol. Biol. 2004, 342, 571
1	2HPY	2.80 Å	2006- 08-22	bovine lumirhodopsin with all-trans-retinal	Nakamichi, H.; Okada, T. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 12729
1	<u>3PXO</u>	3.00 Å	2011- 03-09	metarhodopsin II.	Choe, H. W.;Ernst, O. P. Nature 2011, 471, 651
2	<u>2Z73</u>	2.50 Å	2008- 05-13	squid rhodopsin with 11-cis-retinal	Murakami, M.; Kouyama, T. Crystal structure of squid rhodopsin. Nature 2008, 453, 363
2	3AYN	2.70 Å	2011- 08-17	batho intermediate of squid rhodopsin	Murakami M, Kouyama T. J Mol Biol. 2011 Oct 28;413(3):615-27.
2	<u>4WW3</u>	2.8 Å	2015- 06-17	Crystal structure of the lumi intermediate of	Murakami M, Kouyama T. PLoS One. 2015 May 29;10(5):e0126970.

				squid rhodopsin	
3				human B2AR with the	
3	20111	2 40 Å	2007-		Cherezov, V.,, Stevens, R. C.
	<u>2RH1</u>	2.40 Å	10-30	inverse agonist	Science 2007, 318, 1258
_				carazolol	
3		0	2007-	human B2AR with the	Rasmussen, S. G.,, Kobilka, B. K.
	<u>2R4R</u>	3.40 Å	11-06	inverse agonist	Nature 2007, 450, 383
				carazolola	· · ·
3	3NY9	2.84 Å	2010-	human B2AR with a	Wacker, D.,, Stevens, R. C. J. Am.
	<u>3111 9</u>	2.04 A	08-11	novel inverse agonist	Chem. Soc. 2010, 132, 11443
4	<u>3D4S</u>	2.80 Å	2008-	human B2AR with the	Hanson, M. A,, Stevens, R. C.
			06-17	inverse agonist timolol	Structure 2008, 16, 897
4	0.11110	2048	2010-	human B2AR, inverse	Wacker, D; Stevens, R. C. J. Am.
	<u>3NY8</u>	2.84 Å	08-11	agonist ICI 118,551	Chem. Soc. 2010, 132, 11443
4	0000	0 70 8	2011-	human B2AR with an	Rosenbaum, D. M.,, Kobilka, B. K.
_	3PDS	3.50 Å	01-12	irreversible agonist	Nature 2011, 469, 236
5		0	2010-	human B2AR with the	Wacker, D.; Stevens, R. C. J. Am.
	3NYA	3.16 Å	08-11	antagonist alprenolol	Chem. Soc. 2010, 132, 11443
5			2011-	nanobody-stabilized	Rasmussen, S. G.;Kobilka, B. K.
	<u>3P0G</u>	3.50 Å	01-19	active state of B2AR	Nature 2011, 469, 175
5			01-19	B2AR bound to	1141416 2011, 107, 173
3	4I DI	3.10 Å	2013-	hydroxyl-	Ring AM,Kobilka BK., Nature.
	4LDL	3.10 A	09-25		2013 Oct 24;502(7472):575-9.
				benzylisoproterenol	
6	20.40	2.40 %	2007-	human B2AR with the	Rasmussen, S. G.,, Kobilka, B. K.
	<u>2R4S</u>	3.40 Å	11-06	inverse agonist	Nature 2007, 450, 383
				carazolola	
6		0	2013-	B2AR bound to	Ring AM,Kobilka BK., Nature.
	<u>4LDO</u>	3.20 Å	09-25	adrenaline and an	2013 Oct 24;502(7472):575-9.
				engineered nanobody	
6	4QKX	3.30 Å	2014-	hman B2AR bound to a	Weichert D, Gmeiner P. Proc
	TQIA	3.30 11	07-23	covalent agonist	Natl Acad Sci U S A. 2014 Jul 8
7			2008-	turkey B1AR with the	Warne, T.; Schertler, G. F. Nature
	<u>2VT4</u>	2.70 Å	06-24	antagonist	2008, 454, 486
			00-24	cyanopindolol	2000, 434, 400
7			2011	turkey B1AR with the	Warna T. Tata C. C. Natura
	<u>2Y00</u>	2.50 Å	2011-	partial agonist	Warne, T.;Tate, C. G. Nature
			01-12	dobutamine	2011, 469, 241
7			2014	beta1-adrenoceptor	Miller Cellerler H. W. C. D. C.
	4BVN	2.10 Å	2014-	(B1AR) with	Miller-Gallacher JL, Tate CG. PLoS
			04-02	cyanopindolol bound	One. 2014 Mar 24;9(3):e92727
8		0	2011-	turkey B1AR with the	Warne, T.;Tate, C. G. Nature
	<u>2Y02</u>	2.60 Å	01-12	agonist carmoterol	2011, 469, 241
8	1				Moukhametzianov, R.; Schertler, G.
	2YCW	3.00 Å	2011-	turkey B1AR with the	F. Proc. Natl. Acad. Sci. U.S.A. 2011,
	<u> </u>	J.00 /1	06-01	antagonist carazolol	108, 8228
8				turkey B1AR with	
٦	1. A 1.AT	2.30 Å	2012-	_	Warne T, Tate CG. Structure. 2012
	4AMJ	2.30 A	05-23	bound biased agonist	May 9;20(5):841-9.
0			2000	carvedilol	Jackson W. D. Circus and D. C. C.
9	3EML	2.60 Å	2008-	human A2AR with the	Jaakola, V. P.; Stevens, R. C. Science
			10-14	antagonist ZM241385	2008, 322, 1211
9	3UZA	3.27 Å	2012-	Thermostabilised A2AR	Congreve M, Marshall FH. J Med
			03-21	in complex with T4G	Chem. 2012 Mar 8;55(5):1898-903.

9				Thompostabiliand	
9	<u>4UG2</u>	2.6 Å	2015- 04-08	Thermostabilised human A2a Receptor with CGS21680	Lebon G, Tate CG. Mol Pharmacol. 2015 Jun;87(6):907-15.
10	3QAK	2.71 Å	2011- 03-09	human A2AR with the agonist UKA	Xu, F.; Stevens, R. C. Science 2011, 332, 322
10	<u>3PWH</u>	3.30 Å	2011- 09-07	thermostabilized A2AR	Dore AS, , Marshall FH. Structure. 2011 Sep 7;19(9):1283-93.
10	<u>4EIY</u>	1.80 Å	2012- 07-25	chimeric protein of A2aAR-BRIL in complex with ZM241385	Liu W, Stevens RC. Science. 2012 Jul 13;337(6091):232-6.
11	<u>30DU</u>	2.50 Å	2010- 10-27	human CXCR4 with the small ligand antagonist IT1t	Wu, B.; Stevens, R. C Science 2010, 330, 1066
11	4RWS	3.1 Å	2015- 02-11	CXCR4 and viral chemokine antagonist vMIP-II complex	Qin L, Stevens RC, Handel TM. Science. 2015 Mar 6;347(6226):1117-22.
11	30E0	2.90 Å	2010- 10-27	human CXCR4 with the peptide antagonist CVX15	Wu, B.; Stevens, R. C Science 2010, 330, 1066
12	4DAJ	3.40 Å	2012- 02-22	human M3 muscarinic acetylcholine receptor	Kruse AC, Kobilka BK. Nature. 2012 Feb 22;482(7386):552-6. doi: 10.1038/nature10867
12	<u>4U15</u>	2.80 Å	2014- 11-26	rat M3 muscarinic acetylcholine-mT4L receptor bound to tiotropium	T.S.THORSEN, B.K.KOBILKA, Structure 22: 1657-1664, 2014
12	<u>4U16</u>	3.70 Å	2014- 11-26	rat M3 muscarinic acetylcholine-mT4L receptor bound to NMS	T.S.THORSEN, B.K.KOBILKA, Structure 22: 1657-1664, 2014
13	4GRV	2.8 Å	2012- 10-17	Neurotensin receptor	White JF, Grisshammer R. Nature. 2012 Oct 25;490(7421):508-13.
13	<u>4BUO</u>	2.75 Å	2014- 01-29	Thermostable Agonist- bound Neurotensin Receptor 1 Mutant	Egloff et al, Proc Natl Acad Sci USA. 2014 Feb 11;111(6):E655-62
13	3ZEV	3.00 Å	2014- 01-29	thermostable agonist- bound neurotensin receptor 1 mutant	Egloff et al, Proc Natl Acad Sci USA. 2014 Feb 11;111(6):E655-62
14	<u>3UON</u>	3.00 Å	2012- 02-01	human M2 muscarinic acetylcholine receptor bound to an antagonis	Haga K, Kobayashi T. Nature. 2012 Jan 25;482(7386):547-51.
14	4MQT	3.70 Å	2013- 11-27	active human M2 muscarinic acetylcholine receptor bound to the agonist iperoxo and allosteric modulator LY2119620	Haga K, Kobayashi T. Nature. 2012 Jan 25;482(7386):547-51.
14	4MQS	3.50 Å	2013- 11-27	active human M2 muscarinic acetylcholine receptor bound to the agonist iperoxo	Kruse AC, Kobilka BK., Nature 2013; 504:101–106

	ī			Γ	Ţ
15				human smoothened	
	4JKV	2.45 Å	2013-	7TM receptor in	Wang C, Stevens RC. Nature. 2013
	<u> </u>	2.73 A	05-29	complex with an	May 16;497(7449):338-43.
				antitumor agent	
15		<u> </u>	2014-	human smoothened	Wang C, Stevens RC. Nat Commun.
	<u>4N4W</u>	2.80 Å	01-22	receptor in complex	5
			01-22	with SANT-1	2014 Jul 10;5:4355
15		_	2014-	human smoothened	Wang C, Stevens RC. Nat Commun.
	4QIM	2.60 Å	07-23	receptor in complex	2014 Jul 10;5:4355
			07-23	with ANTA XV	2014 Jul 10,3.4555
16		<u> </u>	2013-	chimeric protein of 5-	Wacker D, Stevens RC. Science.
	<u>4IB4</u>	2.70 Å	03-13	HT2B-BRIL in complex	2013 May 3;340(6132):615-9.
			03-13	with ergotamine	2013 May 5;540(0152):015-9.
16				chimeric protein of 5-	
	4140	2.80 Å	2013-	HT1B-BRIL in complex	Wang C, Xu HE. Science. 2013 May
	4IAQ	2.00 A	03-13	with di-	3;340(6132):610-4.
		<u> </u>	<u> </u>	hydroergotamine	
16	4NC3	2.80 Å	2013-	Е ЦТЭР моломьюм	Liu W, Cherezov V. Science. 2013
	<u>4NU3</u>	2.80 A	12-18	5-HT2B receptor Dec 20;342	Dec 20;342(6165):1521-4.
17		<u> </u>	2014-	human P2Y12 receptor	Thang K Than O Natura 2014 Mar-
	4NTJ	2.62 Å		in complex with an	Zhang K, Zhao Q. Nature. 2014 May
			03-26	antithrombotic drug	1;509(7498):115-8
17	4 DV7	2.50 Å	2014-	P2Y12 receptor in	Zhang J, Zhao Q. Nature. 2014 May
	4PXZ	2.50 A	04-30	complex with 2MeSADP	1;509(7498):119-22.
17	4PY0	3.10 Å	2014-	P2Y12 receptor in	Zhang J, Zhao Q. Nature. 2014 May
	<u>4710</u>	3.10 A	04-30	complex with 2MeSATP	1;509(7498):119-22.
18	2YDO	3.00 Å	2011-	human A2AR with the	Lebon, G.; Tate, C. G. Nature 2011,
	2100	3.00 A	05-18	agonist adenosine	474, 521
18		<u> </u>	2012-	human A2AR with an	Hino T Murata T Natura 2012 I
	<u>3VG9</u>	2.70 Å	02-01	allosteric inverse-	Hino T, Murata T. Nature. 2012 Jan
			02-01	agonist antibody	29;482(7384):237-40
18			2015	Thermostabilised	Lohon C. Teta CC Mal Di
	4UHR	2.6 Å	2015-	human A2a Receptor	Lebon G, Tate CG. Mol Pharmacol.
			04-08	with CGS21680 bound	2015 Jun;87(6):907-15.
	L	<u> </u>			1

Instructions

In this assignment, you will each explore the interactions between a particular protein receptor and one or more ligands, by analysing receptor ligand co-crystal structures and carefully reading the corresponding publications.

Start by using the PDBe or PDB RCSB sites

Search using the PDBID given in the table above to find the entry for each of your three structures. Using the web portal, check whether there are any mutations (AA insertions or deletions) within the secondary structural elements surrounding the binding site.

Using a molecular viewer, VMD (see your previous practicals /assignments), PyMOL or Avagadro, identify the domain(s) complexed with your specified ligand. If the protein is too big – find a smaller one that is manageable to visualise. You don't have to extract or do anything, just inspect the complexed binding site, and make a list of the residues facing the ligand or interacting via the polypeptide backbone.

Using the scPDB website (below), use Database Search to identify the PDB id you have collected. Some PDB ids might not be in there. If not, there is similar information on the PDB website. The scPDB file might not be bang-up-to-date or synchronised with the latest structures deposited in the PDB. Write a brief summary for each of your three structures describing what scPDB tells you about the complexed binding site.

Using the original publication in which the structure was released, briefly summarise the argument or suggestions made by the authors about which residues are important for ligand binding.

Finally, write a brief paragraph comparing the information for each structure that you obtained from scPDB to the description found in the associated publication for each structure.

Collection of Tools that might be useful

From http://www.openchemistry.org/projects/

Avogadro - a molecular editor and visualisation tool

https://sourceforge.net/p/avogadro/news/2015/08/avogadro2-080-released/

Documentation with tutorial

http://avogadro.cc/wiki/Category:Documentation

From BIOVIA (Accelrys)

BIOVIA Studio Visualizer (Windows and Linux only)

 $\frac{http://accelrys.com/products/collaborative-science/biovia-discovery-studio/visualization.html}{}$

The PDB in Europe (from EMBL-EBI) also called PDBe

We will be using PDBe and the RSCB PDB site

For the search for protein-ligand complexes try both of them

http://www.ebi.ac.uk/pdbe/

http://www.rcsb.org/pdb/

Secondary Database of Binding Sites

We will be using this

sc-PDB – An annotated Database of Druggable Binding Sites from the PDB http://bioinfo-pharma.u-strasbg.fr/scPDB/

this database contains approximately 140,000 receptor-ligand pharmacophore models.