PROCEDE ET APPAREIL D'IMPRESSION A REPORT SOUS VIDE

Publication number: FR2364130 Publication date: 1978-04-07

Publication date:
Inventor:

Applicant:

STORK BRABANT BV (NL)

Classification:

- international:

B41F16/02; B41M5/035; B41M5/382; D06B11/00; D06P5/00; D06P5/24; B41F16/00; B41M5/035;

B41M5/26; D06B11/00; D06P5/00; D06P5/24; (IPC1-7):

B44C1/16; B41M5/00

- European:

B41F16/02; B41M5/035P; D06B11/00J; D06P5/00T

Application number: FR19770025689 19770823

Priority number(s): NL19760010114 19760910; NL19770002806 19770315

Also published as:

JP53059517 (A)
DE2740137 (A1)
IT1084737 (B)

Report a data error here

Abstract not available for FR2364130

Data supplied from the esp@cenet database - Worldwide

(1) N° de publication :

commandes de reproduction).

(A n'utiliser que pour les

2 364 130

INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

A1

DEMANDE DE BREVET D'INVENTION

N° 77 25689

Procédé et appareil d'impression à report sous vide.

(51) Classification internationale (Int. Cl.²). B 44 C 1/16; B 41 M 5/00.

① Déposant : Société dite : STORK BRABANT B.V., résidant aux Pays-Bas.

(72) Invention de:

73 Titulaire : Idem 71

Mandataire : Société de Protection des Inventions.

5

La présente invention concerne l'impression d'une feuille ou toile suivant un procédé de report. Un procédé de ce type est connu et décrit dans les demandes françaises n° 76 11319 et N° 76 28728 au nom de la demanderesse, ainsi que dans les documents qui y sont cités.

Ce procédé connu est mis en oeuvre au moyen d'un support provisoire de matières colorantes, la feuille ou toile et le support se portant mutuellement et étant guidés le long du pourtour d'un tambour rotatif qui est monté dans une zone sous pression très faible, comportant des moyens de chauffage. Cette feuille, ou 10 toile, et le support pénètrent dans cette zone et en sortent par une fente étanche.

En raison de la pression très faible qui règne dans la zone de traitement ainsi que de la température élevée, le traitement s'effectue très rapidement ce qui, d'un point de vue indus-15 triel, constitue un avantage. Mais la faible durée du traitement a parfois pour conséquence qu'il se produit un phénomène, en effet le dessin normal à reproduire, qui est uniforme, est brouillé par un motif irrégulier de taches qui augmente en fonction inverse de la durée du report. Une étude de ce phénomène a révélé qu'il demeure une certaine proportion d'humidité dans le support ce 20 qui, au cours du procédé de report, provoque la formation d'un grande nombre de molécules de vapeur d'eau. Ces molécules perturbent considérablement le libre parcours des molécules de matières colorantes entre le support et la feuille ou toile. Même s'il ne 25 demeure qu'une faible proportion d'humidité dans le support, la quantité de molécules de vapeur d'eau dans la fente étroite entre ce support et la feuille dépasse de beaucoup la quantité de molécules de matières colorantes. Etant donné que ce genre de perturbation est souvant local et dépend de légères différences de densité 30 des fibres et de l'épaisseur du support, la feuille ou toile reçoit, en ces points localisés, une moins grande quantité de molécules de matières colorantes, de sorte qu'en ces endroits, le motif reporté est plus pâle.

En outre, le motif imprimé est troublé car, en certains points, le support a une plus forte teneur en humidité, ce qui signifie qu'il faut un plus grand nombre de calories pour provoquer une évaporation, de sorte que la température du support

demeure inférieure à la température moyenne visée, tandis qu'une sublimation des matières colorantes en ces points se trouve légèrement retardée.

L'invention vise à empêcher la réalisation de ce phénomène, ou tout au moins à la réduire considérablement, grâce à un traitement thermique et/ou un traitement mécanique, préalable à l'opération de report. Il en résulte qu'une évaporation assez importante de l'eau contenue dans le support s'est déjà produite et que la sublimation n'est pas retardée.

Le traitement thermique qui peut comporter la feuille ou toile peut alors être mis en oeuvre à une température bien inférieure à la température de report, de sorte qu'il n'y a pas de pertes de matières colorantes en raison d'une sublimation prématurée.

Le support et/ou la feuille ou toile peuvent être 15 soumis à un séchage préalable dans une zone située juste en avant ou juste en arrière de la fente étanche. Les deux procédés ont chacun leurs avantages: en effet, un traitement préalable effectué à l'extérieur de la zone de traitement peut être réglé 20 et surveillé plus facilement qu'un traitement préalable effectué à l'intérieur de cette zone; par ailleurs, le second procédé présente cet avantage qu'il assure un chauffage préalable du support, ce qui permet d'avoir une durée de report encore plus courte. On a constaté que l'on peut encore améliorer ce procédé 25 en exerçant une certaine pression complémentaire sur l'ensemble constitué par la feuille ou toile et par le support en vue de chasser l'air et/ou les bulles de gaz qui demeurent éventuellement. L'expulsion des molécules de gaz assure un meilleur report des molécules de matières colorantes, sans perturbation, de sorte que finalement on obtient une impression encore plus régulière et 30 plus homogène. Le perfectionnement selon l'invention réside donc dans le fait que, par un traitement thermique et/ou mécanique, l'humidité et les bulles de gaz contenues dans la feuille sont pratiquement chassées avant que ne commence l'opération de report proprement dite.

De façon avantageuse, on obtient cette amélioration grâce au fait qu'une pression s'exerce sur l'ensemble constitué par le support et par la feuille ou toile, dans la première zone de contact entre le support et le tambour.

5

15

Le traitement mécanique du support indiqué plus haut peut s'effectuer étant donné que la porosité de la face du support munie de matières colorantes est augmentée par les perforations pratiquées au moins dans la couche supérieure de cette face. Ce support consiste essentiellement en une feuille de papier munie d'un revêtement plus ou moins épais. En plus des liants nécessaires, cette couche renferme en particulier du kaolin et d'autres pigments, ce qui permet d'obtenir une surface bien fermée et lisse. Cette couche de revêtement est peu perméable à la vapeur d'eau, de sorte que les perforations mécaniques conformes au procédé indiqué ci-dessus ont pour conséquence une augmentation considérable de la porosité. Par conséquent, les molécules de vapeur d'eau peuvent s'échapper rapidement avant l'opération de report proprement dite.

L'invention a également pour objet un appareil permettant de mettre en oeuvre le procédé que l'on vient de décrire.

Cet appareil comprend, de façon connue, un tambour rotatif logé dans un carter étanche au gaz comportant des fentes étanches pour le passage de la feuille ou toile, et du support, et des moyens servant à produire un vide très poussé dans ce carter ainsi que des moyens servant à chauffer l'ensemble constitué par le support et par la feuille, appliqués fortement contre la surface du tambour.

Un appareil de ce type est décrit lui aussi dans les 25 documents cités plus haut.

Conformément à l'invention, il est prévu des dispositifs de chauffage complémentaires servant à chauffer le support avant qu'il n'atteigne la surface du tambour. On peut ensuite limiter la température obtenue par ce chauffage à une valeur bien inférieure à la température qui règne au cours du procédé de report proprement dit.

Suivant une forme de réalisation de l'appareil selon l'invention, il est prévu un dispositif servant à perforer au moins la couche supérieure de celle des faces du support sur laquelle sont déposées les matières colorantes pouvant se sublimer. Les dispositifs de chauffage nécessaires indiqués ci-dessus ainsi que le dispositif servant à réaliser les perforations peuvent être montés à l'intérieur ou à l'extérieur du carter étanche aux gaz

dans une zone située juste en avant ou juste en arrière de la fente étanche.

Dans la première zone de contact entre l'ensemble constitué par le support, la feuille et le tambour, agit un cylindre de compression.

D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre, faite en regard des dessins annexés et donnant, à titre explicatif mais nullement limitatif, diverses formes de réalisation.

Sur ces dessins,

10

- la figure 1 représente une forme de réalisation de l'appareil suivant laquelle le traitement thermique et le traitement mécanique du support sont effectués tous deux à l'extérieur de la zone de traitement;
- la figure 2 représente un appareil dans lequel ne s'effectue qu'un traitement thermique dans la zone de traitement, juste à l'arrière de la fente étanche;
 - la figure 3 est une variante de l'appareil de la figure 1 ; et
- la figure 4 représente, en section transversale et à échelle beaucoup plus grande, le support muni de deux perforations de types différents.

Avant d'exposer de façon détaillée l'appareil et le procédé selon l'invention, on effectuera un calcul bref pour montrer à quel point une faible teneur en humidité dans le support peut jouer un rôle sur le parcours libre des molécules de matières colorantes. Le support (temporaire) des matières colorantes sublimables se compose essentiellement de papier, livré par le fabricants avec encore un restant d'humidité, représentant environ de à 10 % du poids. Le papier utilisé pour les reports a une densité d'environ $60g/m^2$. Si ce papier renferme de l'humidité dans la proportion de 7 %, 1 m^2 de ce papier contient un poids d'eau égal à 0,07 x 60 = 4,2 g. Le poids moléculaire de l'eau étant de 18, cela signifie que, dans une évaporation complète, ces 4,2g d'eau comprennent :

 $\frac{4.2}{18}$ x 6,06 x 10^{23} = 0,23 x 6,06 x 10^{23} molecules.

35

En ce qui concerne la quantité de molécules de matières colorantes libérée par une sublimation totale de 1 m² de papier de report, on suppose que dans 1 m² le papier de report complètement imprimé, il y a environ 1 g de matière colorante pure, d'un poids moléculaire moyen de 400. Cela signifie que, dans la cas d'une sublimation complète, le nombre de molécules de matières colorantes libérées est de

 $\frac{1}{400} \times 6,06 \times 10^{23} = 0,0025 \times 6,06 \times 10^{23}$

10

15

5

Il ressort de ce qui précède que la quantité de molécules de vapeur d'eau est égale environ à 100 fois la quantité de molécules de matières colorantes. On n'obtient donc un bon report que si la majeure partie des molécules de vapeur d'eau a été chassée avant la mise en oeuvre du procédé proprement dit.

L'appareil selon la figure 1 comporte, de façon connue, un carter 1 étanche aux gaz, dans lequel est monté un tambour rotatif 2. Ce tambour est entouré d'une courroie sans fin 3 de compression, guidée par un certain nombre de cylindres 4. Dans ce 20 carter 1 un autre cylindre (5) coopère avec deux cylindres 6 disposés à l'extérieur du carter. Ces cylindres 6 sont appliqués de façon étanche, d'une part, sur la paroi du carter 1, et, d'autre part, ils constituent une fente étanche (respectivement 7 et 8) avec le cylindre central 5. A l'extérieur du carter 1 se 25 trouve un cylindre d'alimentation (non représenté) pour un support 9 de matières colorantes sublimables, et également un cylindre d'alimentation (qui n'est pas représenté non plus) pour une feuille ou toile 10 de matériau à imprimer. Le support 9 et la toile 10 sont entraînés vers la fente étanche 7 au moyen de 30 cylindres de guidage 11 et l'ensemble constitué par le support et la feuille ou toile, est ensuite introduit dans le carter puis guidé le long du pourtour des tambours 2.

De la sorte, cet ensemble est comprimé contre le tambour 2 par la courroie de compression 3. L'ensemble constitué par la 35 feuille ou toile et le support quitte de nouveau le carter 1 par une fente étanche 8, puis cette feuille et ce support se séparent l'un de l'autre et sont réenroulés séparément.

L'appareil selon l'invention comprend en outre les moyens classiques (non représentés) servant à créer un vide très poussé dans le carter 1 et à chauffer l'ensemble constitué par le support 9 et la feuille 10 comprimé contre la surface du tambour 2. Le procédé de report s'effectue pendant que cet ensemble constitué par le support et par la feuille se trouve comprimé contre la surface du tambour conformément au procédé classique de report expliqué de façon plus détaillée dans les documents cités plus haut.

Il est très important pour l'appareil représenté sur la figure 1 qu'une plaque chauffante 12, qui constitue un dispositif complémentaire pour le chauffage du support 9, chauffe ce support avant que ce dernier n'ait atteint la surface du tambour 2. La forme de réalisation représentée sur la figure 1 comprend de plus un dispositif 13 permettant de perforer au moins la couche supérieure de celle des faces du support 9 sur lequel sont appliquées les matières colorantes sublimables. Ces perforations sont très fines, comme indiqué sur la figure 4.

10

15

On peut réaliser également les perforations par des 20 moyens électriques ou par un faisceau d'électrons. On voit, sur la figure 4, que le support 9 est muni d'un revêtement 14 et d'une impression 15 de matières colorantes sublimables. La partie de gauche de la figure 4 indique que la profondeur des perforations est égale à environ la moitié de l'épaisseur du support 9. Dans 25 la partie de droite de la figure 4, les perforations vont du haut jusqu'en bas.

Une autre caractéristique importante de l'invention réside dans l'application d'un cylindre de compression 16 qui agit dans la première zone de contact entre l'ensemble constitué 30 par le support et par la feuille et le tambour 2. Ce cylindre de compression complémentaire exerce sur l'ensemble constitué par le support et par la feuille une pression telle que l'air et/ou les bulles de gaz de l'ensemble constitué par les éléments 9 et 10 sont chassés. On obtient par conséquent un meilleur report des 35 matières colorantes, sans perturbation, ce qui permet d'avoir une impression meilleure et plus homogène.

Les valeurs numériques indiquées ci-après constituent un exemple de mise en oeuvre du procédé selon l'invention :

feuille ou toile 10

= tissu de polyester d'une densité $de 150g/m^2$

5 support 9

diamètre du tambour 2

pression dans la zone de traitement 1 température de la surface du tambour vitesse de rotation du tambour 2

trajectoire de report 10

durée de mise en oeuvre du procédé

température de la plaque chauffante 12 = 120°C

nombre des perforations dans le

cylindre 13

de report

15

= papier ayant une densité de 60g/m²

= 80 mbar

= 210°C

= de 10 à 15 tours-minute

= environ les deux tiers de la cir-

conférence du tambour 2

= environ 4 secondes

= de 50 à 2000 par cm^2 , par exemple

On a constaté, en pratique, qu'antérieurement à la mise en oeuvre du procédé de report proprement dit, la majeure partie 20 des molécules de vapeur d'eau a été chassée du support 9, à la fois en raison de l'élévation de la température par suite d'un chauffage complémentaire à l'aide de la plaque 12 et en raison du vide qui règne dans le carter 1 en association avec le cylindre de compression 16. A ce propos, les perforations constituées par le cylindre 13 se sont révélées très satisfaisantes.

La structure de la forme de réalisation représentée sur la figure 2 est pratiquement identique à celle de la figure 1, avec toutefois cette différence qu'au lieu de la plaque chauffante 12 et du cylindre perforateur 13, il n'est prévu qu'un cylindre 17 30 de séchage préalable à l'intérieur du carter 1, juste derrière la 7. Cette nouvelle forme de réalisation ne cométanche porte aucun moyen pour effectuer un traitement mécanique du support 9 étant donné que le chauffage préalable par l'intermédiaire du cylindre 17 s'effectue au voisinage du tambour 2, la température 35 de report nécessaire est obtenue avec un moins grand nombre de calories. En plus de l'avantage que représente une coloration uniforme et homogène de la feuille, ou toile, 10 terminée, on réalise une meilleure utilisation de la chaleur et, par suite, le rendement est meilleur.

La forme de réalisation représentée sur la figure 3 est pratiquement identique à celle de la figure 1, le chauffage complémentaire du support 9 étant obtenu par un dispositif à infrarouge 18 disposé juste à l'avant de la fente étanche 7, tandis que le cylindre perforateur 13 est situé plus haut. En dehors de ces légères différences, cet appareil ne diffère pas de celui qui est représenté sur la figure 1.

5

On remarquera que l'on peut également obtenir un chauffage complémentaire du support 9 au moyen d'un double champ de rayon infrarouge, le support se déplaçant entre ces deux champs. Le champ de rayon infrarouge peut également se trouver à l'intérieur du carter 1 de l'appareil. Ces remarques s'appliquent également à la plaque chauffante 12 de l'appareil de la figure 1.

Il convient de remarquer que le support 9 peut également comporter un revêtement 14 plus poreux, que l'on peut obtenir
en remplaçant, en partie ou en totalité, le kaolin du revêtement
par un autre produit, par exemple par du carbonate de calcium.
On a constaté que, de la sorte, on peut obtenir la porosité à
20 la vapeur d'eau désirée et avoir des durées de report très
courtes sans l'inconvénient de la formation de taches.

REVENDICATIONS

1. Procédé d'impression d'une feuille, ou toile par le procédé de report avec application d'un support provisoire de matières colorantes sublimables, suivant lequel l'ensemble constitué par la feuille et les supports est entraîné le long du pourtour d'un tambour rotatif monté dans une zone où règne un vide poussé et qui comporte des moyens de chauffage, cette feuille et ce support pénétrant dans cette zone et sortant de celle-ci par une fente étanche, ce procédé étant caractérisé par le fait que l'on fait subir au support un traitement préalable consistant en un traitement thermique ou un traitement mécanique avant de mettre en oeuvre le procédé de report, de sorte que les molécules de gaz perturbatrices dans cet ensemble se trouvent pratiquement supprimées.

5

10

15

20

25

30

35

- 2. Procédé selon la revendication 1, caractérisé par le fait que, grâce à un traitement thermique et/ou un traitement mécanique, on supprime pratiquement l'humidité et les bulles de gaz dans la feuille, avant l'opération de report.
- 3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé par le fait que l'on fait subir un séchage préalable au support et/ou à la feuille ou toile, dans une zone située juste à l'avant ou juste à l'arrière de la fente étanche.
- 4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé par le fait que l'on augmente la porosité de celle des faces du support qui est munie de matières colorantes, en perforant au moins la couche supérieure de cette face du support.
- 5. Procédé selon la revendication 2, caractérisé par le fait que l'on exerce une pression sur l'ensemble constitué par le support et par la feuille dans la première zone de contact entre le support et le tambour.
- 6. Appareil permettant de mettre en oeuvre le procédé selon l'une quelconque des revendications 1 à 5, comprenant un tambour rotatif monté dans un carter étanche au gaz muni de fentes étanches pour la passage de la feuille et du support, et comprenant en outre des moyens servant à créer un vide très

poussé dans le carter et des moyens pour chauffer l'ensemble constitué par le support et par la feuille, comprimé contre le pourtour du tambour, cet appareil étant caractérisé par le fait qu'il comporte des éléments de chauffage complémentaires pour chauffer le support et/ou la feuille ou toile, avant leur contact avec le pourtour du tambour.

- 7. Appareil selon la revendication 6, caractérisé par le fait qu'il comprend un dispositif servant à perforer au moins la couche supérieure de celle des faces du support sur laquelle sont appliquées les matières colorantes sublimables.
- 8. Appareil selon l'une quelconque des revendications 6 et 7, caractérisé par le fait qu'une cylindre de compression agit dans la première zone de contact entre les éléments de l'ensemble constitués par le support et la feuille, ou toile.

#14.Z.

F14:5.

