NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Lau Tze Siong

MA3201 Algebra II

AY 2005/2006 Sem 1

Question 1

(a) Since $f(\sqrt{-1}) = \sqrt{-1} - \sqrt{-1} - (-1) - 1 = 0$. Hence $t^2 + 1$ is a factor of f. Also since f(1) = (1) + (1) - (1) - 1 = 0, t - 1 is a factor of f. Hence $t^3 - t^2 + t - 1$ is a factor of f. By comparing coefficients we have $f = (t^2 + t + 1)(t^2 + 1)(t - 1)$. Since $(t^2 + t + 1), (t^2 + 1)$ has no roots in \mathbb{R} , they are irreducible in $\mathbb{R}[t]$. Since \mathbb{R} is a field, $\mathbb{R}[t]$ is a Euclidean Domain. Therefore $(t^2 + t + 1), (t^2 + 1)$ is prime in $\mathbb{R}[t]$.

Hence the prime factorization of f in $\mathbb{R}[t]$ is $(t^2+1)(t^2+t+1)(t-1)$.

(b) The prime factorization of f in $\mathbb{C}[t]$ is $(t-i)(t+i)(t+\frac{1-i\sqrt{3}}{2})(t+\frac{1+i\sqrt{3}}{2})(t-1)$.

Question 2

- (a) Since $2 \nmid 1, 2 \mid 2, 2 \mid 10$ and $2^2 \nmid 10$, by Eisenstein's Criterion, $t^9 + 2t + 10$ is irreducible in \mathbb{Q} .
- (b) Claim: $t^5 + t^2 + 1$ is irreducible in $\mathbb{Q}[t]$

Proof:

By Gauss's Lemma, it suffices to show that $t^5 + t^2 + 1$ is irreducible in $\mathbb{Z}[t]$.

Suppose that $t^5 + t^2 + 1$ is reducible in $\mathbb{Z}[t]$.

Case 1) $t^5 + t^2 + 1$ has a linear factor.

If $t^5 + t^2 + 1$ has a linear factor then it must be either (t+1) or (t-1). We can easily check that 1, -1 are not roots of $t^5 + t^2 + 1$.

Hence $t^5 + t^2 + 1$ has no linear factors.

Case $2)t^5 + t^2 + 1$ has a quadratic factor.

Hence $t^5 + t^2 + 1 = (t^3 + at^2 + bt + c)(t^2 + dt + e)$. By comparing coefficient of t^0 .

Case2.1)c = e = 1

Comparing coefficients for t^4 , t^3 , t^2 , t we have

$$a+d = 0$$

$$ad+1+b = 0$$

$$a+1+bd = 1$$

b+d = 0

Solving we have

$$a^2 - a - 1 = 0$$

which has no solutions in \mathbb{Z} .

Case 2.2)c = e = -1

$$a+d = 0$$

$$ad-1+b = 0$$

$$-a-1+bd = 1$$

$$-b-d = 0$$

Solving we have

$$a^2 - a + 1 = 0$$

which has no solutions in \mathbb{Z} .

Hence $t^5 + t^2 + 1$ is irreducible in $\mathbb{Z}[t]$. Therefore $t^5 + t^2 + 1$ is irreducible in $\mathbb{Q}[t]$.

Question 3

$$t_1^3 + t_2^3 + t_3^3 = (t_1 + t_2 + t_3)^3 - 3(t_1t_2^2 + t_1t_3^2 + t_2t_3^2 + t_2t_1^2 + t_3t_1^2 + t_3t_2^2) - 6(t_1t_2t_3)$$

Question 4

Since A satisfies $A^2 - A - 6I = 0$. A satisfies the polynomial $x^2 - x - 6 = (x+2)(x-3)$. Let m(x) be the minimal polynomial for A. Hence we have $m(x) \mid (x+2)(x-3)$ Therefore m(x) can be expressed as a product of distinct linear factors. Therefore A is diagonalize. The eigenvalues of A are either (3 and -2) or 3 or -2.

Question 5

Let $\phi: K[x,y]/(xy-1) \to S$ be a ring isomorphism where $S=Im(\phi)$ and U be the set of units in S.

Since ϕ is a isomorphism, $\phi(1+\langle xy-1\rangle)=1_S$. We can express $1+\langle xy-1\rangle$ as $xy-1+1+\langle xy-1\rangle=xy+\langle xy-1\rangle$. Hence $\phi(1+\langle xy-1\rangle)=\phi(x+\langle xy-1\rangle)\phi(y+\langle xy-1\rangle)=1_S$. Hence $\phi(x+\langle xy-1\rangle)$ and $\phi(y+\langle xy-1\rangle)$ are units in S. Hence $\phi(x+\langle xy-1\rangle), \phi(y+\langle xy-1\rangle)\in U$.

For any $\sum_{i=1}^n a_i x^{p_i} y^{q_i} + \langle xy - 1 \rangle \in K[x,y]/(xy-1)$ such that $a_i \in K$ and $p_i, q_i \in \mathbb{N} \cup \{0\}$,

$$\phi(\sum_{i=1}^{n} a_i x^{p_i} y^{q_i} + \langle xy - 1 \rangle) = \sum_{i=1}^{n} \phi(a_i + \langle xy - 1 \rangle) \phi(x^{p_i} + \langle xy - 1 \rangle) \phi(y^{q_i} + \langle xy - 1 \rangle) \in U$$

since $\phi(a_i + \langle xy - 1 \rangle), \phi(x^{p_i} + \langle xy - 1 \rangle), \phi(y^{q_i} + \langle xy - 1 \rangle) \in S$.

Hence every element of S is a unit.

Now suppose S is a polynomial ring of one variable over K.

Hence $t+1 \in S$ but t+1 is not a unit.

Therefore K[x,y]/(xy-1) is not isomorphic to a polynomial ring in one variable over a field K.

Page: 2 of 2