21-484 Notes JD Nir jnir@andrew.cmu.edu February 22, 2012

(Havel-Hakimi)

Def: (p. 115-116):

- A <u>vertex-cut</u> in a graph G is a set U such that G-U is disconnected.
- A vertex-cut of minimal cardinality is called a minimal vertex cut.
- A vertex-cut U such that no proper subset of U is a vertex-cut is called a minimal vertex-cut.

- \rightarrow Every minimum vertex-cut is minimal.
- \rightarrow A graph contains a vertex-cut iff it is not complete.
- \rightarrow The vertex-connectivity of a graph G, denoted by $\kappa(G)$, is the size of a smallest set U such that G = U is disconnected or trivial.
- \rightarrow The number of connected components in G will be denoted k(G).
- \rightarrow A graph is said to be k-connected if $\kappa(G) \geq k$.

Def (p. 116-117):

- An edge-cut $X \subseteq E(G)$ is a set of edges such that G X is disconnected.
- An edge-cut with minimal size is called a minimum edge-cut.
- An edge-cut for which no proper subset is an edge-cut is called a minimal edge-cut.
- $\lambda(G)$, the edge-connectivity of G, is the size of a minimal $X \subseteq E(G)$ such that G X is disconnected or trivial.
- G is k-edge-connected if $\lambda(G) \geq k$.

Property (theorem 5.11, Whitney): For all G, $\kappa(G) \leq \lambda(G) \leq \delta(G)$

Proof:

- \rightarrow If G is disconnected or trivial, $\kappa(G) = \lambda(G) = 0$
- \rightarrow If G is complete graph then $\kappa(K_n) = n 1 = \lambda(K_n)$
 - \rightarrow removing all n-1 edges incident with one vertex disconnects the graph.
 - \rightarrow Let X be an edge-cut and assume that G-X has two components of size j and n-j.
 - $\rightarrow |X| = j(n-j)$
 - \rightarrow both components are not empty, so $j \ge 1, n-j \ge 1$
 - $\rightarrow 0 \le (j-1)(n-j-1) = j(n-j) j n + j + 1 = j(n-j) n + 1$
 - $\Rightarrow |X| = j(n-j) \ge n-1$
 - $\Rightarrow \lambda(K_n) = n 1 = \delta(K_n).$

- \rightarrow Assume that G is non-trivial, connected, not complete and with at least three vertices.
- $\rightarrow \lambda(G) \leq \delta(G)$ \checkmark (removing all edges incident with a vertex of minimum degree disconnects the graph).
- \rightarrow Let X be a minimum edge-cut, and let G_1 and G_2 be the two components of G-X.

- \rightarrow If all of the edges between G_1 and G_2 are in G, then |X| = j(n-j) where j is the number of vertices in G_1 . Then $j \ge 1$ and $n-j \ge 1 \Rightarrow j(n-j) \ge n-1$ contradicting the facts that $\delta(G \not\cong K_n) < n-1$ and $\lambda(G) \le \delta(G)$.
- \rightarrow Since not all the edges between G_1 and G_2 are in G, then we have $u \in G_1$ and $v \in G_2$ such that $uv \notin E(G)$.
- \rightarrow Define U as follows. For every $e \in X$, pick a vertex incident with e as follows.
 - \rightarrow if $u \in e$, pick $e \cap V(G_2)$
 - \rightarrow otherwise, pick $e \cap V(G_2)$

- $|U| \leq |X|$
- $X \cap E(G U) = \emptyset$