

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 8月 9日

出 願 番 号 Application Number:

特願2002-233906

[ST. 10/C]:

[JP2002-233906]

出 願 人
Applicant(s):

テルモ株式会社

特許庁長官 Commissioner, Japan Patent Office 2003年 7月11日

【書類名】

特許願

【整理番号】

14P172

【あて先】

特許庁長官 殿

【国際特許分類】

A61M 25/01

【発明者】

【住所又は居所】

静岡県富士宮市舞々木町150番地 テルモ株式会社内

【氏名】

村山啓

【発明者】

【住所又は居所】

静岡県富士宮市舞々木町150番地 テルモ株式会社内

【氏名】

梅野 昭彦

【発明者】

【住所又は居所】

静岡県富士宮市舞々木町150番地 テルモ株式会社内

【氏名】

岩見 純

【特許出願人】

【識別番号】

000109543

【氏名又は名称】

テルモ株式会社

【代表者】

和地 孝

【代理人】

【識別番号】

100091292

【弁理士】

【氏名又は名称】

増田 達哉

【電話番号】

3595-3251

【手数料の表示】

【予納台帳番号】

007593

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9004990

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 ガイドワイヤ

【特許請求の範囲】

【請求項1】 先端側に配置された管状ワイヤと、該管状ワイヤを貫くよう 設けられ、前記管状ワイヤの構成材料より弾性率が大きい材料で構成された芯材 とを有する線状の第1ワイヤと、

前記第1ワイヤの基端側に一体的に連結され、前記管状ワイヤの構成材料より 弾性率が大きい材料で構成された線状の第2ワイヤとを備えることを特徴とする ガイドワイヤ。

【請求項2】 前記第1ワイヤは、その先端部において、前記芯材が露出している請求項1に記載のガイドワイヤ。

【請求項3】 前記第1 ワイヤの先端部における前記芯材の露出長さは、5 ~ 200 mmである請求項2 に記載のガイドワイヤ。

【請求項4】 前記第1ワイヤの少なくとも前記芯材が露出する部分を覆う 螺旋状のコイルを有する請求項2または3に記載のガイドワイヤ。

【請求項5】 前記管状ワイヤは、その少なくとも先端側において外径が先端方向に向かって漸減している請求項1ないし4のいずれかに記載のガイドワイヤ。

【請求項 6 】 前記管状ワイヤの最大外径を R_1 [mm] とし、前記芯材の平均外径を R_2 [mm] としたとき、 R_2/R_1 は、 $0.01\sim0.5$ である請求項 1 ないし 5 のいずれかに記載のガイドワイヤ。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、ガイドワイヤ、特に血管のような体腔内にカテーテルを導入する際 に用いられるガイドワイヤに関する。

[0.002]

【従来の技術】

·ガイドワイヤは、例えばPTCA術(Percutaneous Transluminal Coronary

: 2/

Angioplasty:経皮的冠状動脈血管形成術)のような、外科的手術が困難な部位の治療、または人体への低侵襲を目的とした治療や、心臓血管造影などの検査に用いられるカテーテルを誘導するのに使用される。PTCA術に用いられるガイドワイヤは、ガイドワイヤの先端をバルーンカテーテルの先端より突出させた状態にて、バルーンカテーテルと共に目的部位である血管狭窄部付近まで挿入され、バルーンカテーテルの先端部を血管狭窄部付近まで誘導する。

[0003]

血管は、複雑に湾曲しており、カテーテルを血管に挿入する際に用いるガイドワイヤには、適度の可撓性、基端部における操作を先端側に伝達するための押し込み性およびトルク伝達性(これらを総称して「操作性」という)、さらには耐キンク性(耐折れ曲がり性)等が要求される。それらの特性の内、適度の柔軟性を得るための構造として、ガイドワイヤの細い先端芯材の回りに曲げに対する柔軟性を有する金属コイルを備えたものや、柔軟性、復元性を付与するためガイドワイヤの芯材にNi-Ti等の超弾性線を用いたものがある。

$[0\ 0\ 0\ 4]$

従来のガイドワイヤは、芯材が実質的に1種の材料から構成されており、ガイドワイヤの操作性を高めるために、比較的弾性率の高い材料が用いられ、その影響としてガイドワイヤ先端部の柔軟性は失われている。また、ガイドワイヤの先端部の柔軟性を得るために、比較的弾性率の低い材料を用いると、ガイドワイヤの基端側における操作性が失われる。このように、必要とされる柔軟性および操作性を、1種の芯材で満たすことは困難とされていた。

[0005]

このような欠点を改良するため、例えば芯材にNi-Ti合金線を用い、その 先端側と基端側とに異なった条件で熱処理を施し、先端部の柔軟性を高め、基端 側の剛性を高めたガイドワイヤが提案されている。しかし、このような熱処理に よる柔軟性の制御には限界があり、先端部では十分な柔軟性が得られても、基端 側では必ずしも満足する剛性が得られないことがあった。

[0006]

【発明が解決しようとする課題】

本発明の目的は、操作性および耐キンク性に優れたガイドワイヤを提供することにある。

$[0\ 0\ 0\ 7]$

【課題を解決するための手段】

このような目的は、下記(1) \sim (6) の本発明により達成される。また、下記 (7) \sim (14) であるのが好ましい。

[0008]

(1) 先端側に配置された管状ワイヤと、該管状ワイヤを貫くよう設けられ、前記管状ワイヤの構成材料より弾性率が大きい材料で構成された芯材とを有する線状の第1ワイヤと、

前記第1ワイヤの基端側に一体的に連結され、前記管状ワイヤの構成材料より 弾性率が大きい材料で構成された線状の第2ワイヤとを備えることを特徴とする ガイドワイヤ。

[0009]

(2) 前記第1ワイヤは、その先端部において、前記芯材が露出している上記(1)に記載のガイドワイヤ。

[0010]

(3) 前記第1ワイヤの先端部における前記芯材の露出長さは、 $5 \sim 200$ mmである上記(2)に記載のガイドワイヤ。

[0011]

(4) 前記第1ワイヤの少なくとも前記芯材が露出する部分を覆う螺旋状のコイルを有する上記(2)または(3)に記載のガイドワイヤ。

[0012]

(5) 前記管状ワイヤは、その少なくとも先端側において外径が先端方向に 向かって漸減している上記(1)ないし(4)のいずれかに記載のガイドワイヤ

[0013]

(6) 前記管状ワイヤの最大外径を R_1 [mm] とし、前記芯材の平均外径 R_2 [mm] としたとき、 R_2/R_1 は、 $0.01\sim0.5$ である上記(1)

ないし(5)のいずれかに記載のガイドワイヤ。

$[0\ 0\ 1\ 4]$

(7) 前記第1ワイヤと前記第2ワイヤとの連結部は、前記コイルの基端より基端側に位置する上記(4)に記載のガイドワイヤ。

[0015]

(8) 前記第1ワイヤの少なくとも前記管状ワイヤと前記第2ワイヤとは、 溶接されている上記(1)ないし(7)のいずれかに記載のガイドワイヤ。

[0.016]

(9) 前記溶接は、突き合わせ抵抗溶接によるものである上記(8)に記載のガイドワイヤ。

$[0\ 0\ 1\ 7]$

(10) 前記芯材の構成材料と前記第2ワイヤの構成材料とは、それらの弾性率がほぼ等しい上記(1)ないし(9)のいずれかに記載のガイドワイヤ。

[0018]

(11) 前記芯材および前記第 2 ワイヤは、それぞれ、ステンレス鋼で構成されている上記(1)ないし(10)のいずれかに記載のガイドワイヤ。

[0019]

(12) 前記管状ワイヤは、超弾性合金で構成されている上記(1)ないし(11)のいずれかに記載のガイドワイヤ。

[0020]

(13) 前記第1ワイヤと前記第2ワイヤとの接続端面は、それぞれ、前記ガイドワイヤの軸方向に対しほぼ垂直になっている上記(1)ないし(12)のいずれかに記載のガイドワイヤ。

[0021]

(14) 前記第1ワイヤと前記第2ワイヤとの連結部が、生体内の位置となるように用いられる上記(1)ないし(13)のいずれかに記載のガイドワイヤ

[0022]

【発明の実施の形態】

以下、本発明のガイドワイヤを添付図面に示す好適な実施形態に基づいて詳細 に説明する。

[0023]

図1は、本発明のガイドワイヤの実施形態を示す縦断面図、図2は、図1に示すガイドワイヤにおける第1ワイヤと第2ワイヤとを接続する手順を示す図である。なお、説明の都合上、図1および図2中の右側を「基端」、左側を「先端」という。また、図1および図2中では、見易くするため、ガイドワイヤの長さ方向を短縮し、ガイドワイヤの太さ方向を誇張して模式的に図示しており、長さ方向と太さ方向の比率は実際とは大きく異なる。

[0024]

図1に示すガイドワイヤ1は、カテーテルに挿入して用いられるカテーテル用ガイドワイヤであって、先端側に配置された第1ワイヤ2と、第1ワイヤ2の基端側に配置された第2ワイヤ3と、螺旋状のコイル4とを有している。ガイドワイヤ1の全長は、特に限定されないが、200~5000mm程度であるのが好ましい。

[0025]

第2ワイヤ3は、弾性を有する線材である。第2ワイヤ3の長さは、特に限定されないが、200~4800mm程度であるのが好ましい。

[0026]

第2ワイヤ3は、比較的弾性率(ヤング率(縦弾性係数)、剛性率(横弾性係数)、体積弾性率)が大きい材料で構成されている。これにより、第2ワイヤ3に適度な剛性(曲げ剛性、ねじり剛性)が得られ、ガイドワイヤ1がいわゆるコシの強いものとなって押し込み性およびトルク伝達性が向上し、より優れた挿入操作性が得られる。なお、第2ワイヤ3の構成材料は、第1ワイヤ2の管状ワイヤ23の構成材料より弾性率が大きいものである。

[0027]

第2ワイヤ3の構成材料 (素材) は、特に限定されず、ステンレス鋼 (例えば、SUS304、SUS303、SUS316、SUS316L、SUS316 J1、SUS316J1L、SUS405、SUS430、SUS434、SU

6/

S444、SUS429、SUS430F、SUS302等のSUS全品種)、ピアノ線、コバルト系合金、擬弾性を示す合金(超弾性合金を含む。)などの各種金属材料を用いることができるが、そのなかでも特にステンレス鋼が好ましい。第2ワイヤ3をステンレス鋼で構成することにより、ガイドワイヤ1は、より優れた押し込み性およびトルク伝達性が得られる。

[0028]

第2ワイヤ3の先端には、第1ワイヤ2の基端が連結(接続)されている。第 1ワイヤ2は、弾性を有する線材である。第1ワイヤ2の長さは、特に限定されないが、10~1000mm程度であるのが好ましい。

[0029]

第1ワイヤ2は、弾性を有する管状ワイヤ23と、この管状ワイヤ23を貫くよう設けられた芯材22とを有している。この芯材22は、その外径がほぼ一定である細径の線材であり、管状ワイヤ23の構成材料より弾性率が大きい材料、好ましくは第2ワイヤ3の構成材料とほぼ弾性率が等しい材料、より好ましくは第2ワイヤ3の構成材料と同一の材料(特に、ステンレス鋼)で構成されている

[0030]

換言すれば、第1ワイヤ2は、第2ワイヤ3の構成材料と同一またはほぼ弾性 率が等しい材料(比較的弾性率が高い材料)で構成された細径の芯材22を、芯 材22と比較して弾性率が小さい管状ワイヤ23で覆ったような構成とされてい る。

[0031]

このような構成により、第1ワイヤ2の剛性を第2ワイヤ3より十分に低くすることができる。その結果、ガイドワイヤ1は、その先端側の部分に十分な曲げに対する柔軟性が得られ、複雑に湾曲・屈曲する血管に対する追従性が向上し、より優れた操作性が得られるとともに、第1ワイヤ·2が湾曲・屈曲変形を繰り返しても、第1ワイヤ2に曲がり癖が付き難いので、ガイドワイヤ1の使用中に第1ワイヤ2に曲がり癖が付くことによる操作性の低下を防止することができる。

[0032]

管状ワイヤ23の最大外径を R_1 [mm] とし、芯材22の平均外径を R_2 [mm] としたとき、 R_2/R_1 は、 $0.01\sim0.5$ 程度であるのが好ましく、 $0.02\sim0.3$ 程度であるのがより好ましい。 R_2/R_1 を前記範囲とすることにより、第1ワイヤ2の剛性をより適度なものとすることができ、ガイドワイヤ1の操作性がより向上する。

[0033]

本実施形態では、第1ワイヤ2は、その先端部において、管状ワイヤ23が省略され、芯材22が露出した露出部221が形成されている。すなわち、露出部221は、比較的弾性率が高い材料のみで構成されており、これにより、リシェイプ可能となっている。ここで、「リシェイプ可能」とは、線材を所望の形状に曲げてその形状を維持できることを言う。

$[0\ 0\ 3\ 4]$

ガイドワイヤ1は、通常、血管分岐を選択するために、医師がガイドワイヤ1 の先端部を所望の形状に曲げて使用することが多いが、このようにガイドワイヤ 1 に露出部 2 2 1 を設けることにより、ガイドワイヤ1 の先端部のリシェイプ (形状付け)を容易かつ確実に行うことができる。その結果、ガイドワイヤ1を生体内に挿入する操作の際の操作性が格段に向上する。

[0035]

この露出部 221 の長さ(第1 ワイヤ 2 の先端部における芯材 22 の露出長さ)は、特に限定されないが、 $5\sim200$ mm程度であるのが好ましく、 $10\sim1$ 50 mm程度であるのがより好ましい。露出部 221 の長さが長すぎると、芯材 22 の構成材料等によっては、ガイドワイヤ 1 の操作性が低下するおそれがあり、一方、露出部 221 の長さが短すぎると、ガイドワイヤ 1 の先端部のリシェイプが困難となるおそれがある。

[0036]

また、本実施形態では、管状ワイヤ23は、その基端から所定長さは外径が一定であり、途中から先端方向へ向かって(先端側において)外径が漸減している。この部分を外径漸減部15と言う。このような外径漸減部15を有することにより、第1ワイヤ2の剛性(曲げ剛性、ねじり剛性)を先端方向に向かって徐々

に減少させることができ、その結果、ガイドワイヤ1は、先端部に良好な柔軟性 を得て、血管への追従性、安全性が向上すると共に、折れ曲がり等も防止するこ とができる。

[0037]

図示の構成では、外径漸減部15は管状ワイヤ23の一部に形成されているが 、管状ワイヤ23の全体が外径漸減部15を構成していてもよい。また、外径漸 減部15のテーパ角度(外径の減少率)は、ワイヤ長手方向に沿って一定でも、 長手方向に沿って変化する部位があってもよい。例えば、テーパ角度(外径の減 少率)が比較的大きい箇所と比較的小さい箇所とが複数回交互に繰り返して形成 されているようなものでもよい。

[0038]

また、管状ワイヤ23は、外径漸減部15の途中または外径漸減部15より先 端側に、外径が長手方向に沿って一定の部分があってもよい。例えば、管状ワイ ヤ23は、先端方向へ向かって外径が漸減するテーパ状のテーパ部が長手方向に 沿って複数箇所に形成され、これらのテーパ部とテーパ部との間に外径が長手方 向に沿って一定の部分が形成されているようなものでもよい。このような場合で も、前記と同様の効果が得られる。

[0039]

また、図示の構成と異なり、外径漸減部15の基端が第2ワイヤ3の途中に位 置する、すなわち、外径漸減部15が第1ワイヤ2と第2ワイヤ3の境界(連結 部:溶接部14)を跨って形成された構成でもよい。

[0040]

このような管状ワイヤ23の構成材料は、芯材22の構成材料より弾性率が小 さいものであれば特に限定されず、例えば、ステンレス鋼などの各種金属材料を 使用することができるが、そのなかでも特に、擬弾性を示す合金(以下、擬弾性 合金という)が好ましい。

$[0\ 0\ 4\ 1\]$

擬弾性合金には、引張りによる応力-ひずみ曲線のいずれの形状も含み、As 、Af、Ms、Mf等の変態点が顕著に測定できるものも、できないものも含み 、応力により大きく変形(歪)し、応力の除去により元の形状にほぼ戻るものは 全て含まれる。管状ワイヤ23の構成材料は、超弾性合金がより好ましい。

$[0\ 0\ 4\ 2]$

超弾性合金は、比較的柔軟であるとともに、復元性があり、曲がり癖が付き難いので、管状ワイヤ23を超弾性合金で構成することにより、ガイドワイヤ1は、その先端側の部分(第1ワイヤ2)に十分な柔軟性と曲げに対する復元性が得られ、複雑に湾曲・屈曲する血管に対する追従性が向上し、より優れた操作性が得られるとともに、第1ワイヤ2が湾曲・屈曲変形を繰り返しても、第1ワイヤ2に復元性により曲がり癖が付かないので、ガイドワイヤ1の使用中に第1ワイヤ2に曲がり癖が付くことによる操作性の低下を防止することができる。

[0043]

超弾性合金の好ましい組成としては、 $49\sim52$ 原子%NiのNi-Ti合金等のNi-Ti系合金、 $38.5\sim41.5$ 重量%ZnのCu-Zn合金、 $1\sim10$ 重量%XのCu-Zn-X合金(Xは、Be、Si、Sn、Al、Gaのうちの少なくとも1種)、 $36\sim38$ 原子%AlのNi-Al合金等が挙げられる。このなかでも特に好ましいものは、上記のNi-Ti系合金である。

$[0\ 0\ 4\ 4\]$

また、本発明では、管状ワイヤ23を超弾性合金で構成し、芯材22および第2ワイヤ3をステンレス鋼で構成することが特に好ましい。これにより、ガイドワイヤ1は、先端側の部分が優れた柔軟性を有するとともに、基端側の部分が剛性(曲げ剛性、ねじり剛性)に富んだものとなる。その結果、ガイドワイヤ1は、優れた押し込み性やトルク伝達性を得て良好な操作性を確保しつつ、先端側においては良好な柔軟性、復元性を得て血管への追従性が向上する。

[0045]

コイル4は、線材(細線)を螺旋状に巻回してなる部材であり、少なくとも露出部221(本実施形態では、露出部221および管状ワイヤ23の先端部)を覆うように設置されている。図示の構成では、第1ワイヤ2の先端側の部分は、コイル4の内側のほぼ中心部に挿通されている。また、第1ワイヤ2の先端側の部分は、コイル4の内面と非接触で挿通されている。第1ワイヤ2と第2ワイヤ

3との連結部(溶接部14)は、コイル4の基端より基端側に位置している。

[0046]

なお、図示の構成では、コイル4は、外力を付与しない状態で、螺旋状に巻回された線材同士の間にやや隙間が空いているが、図示と異なり、外力を付与しない状態で、螺旋状に巻回された線材同士が隙間なく密に配置されていてもよい。

[0047]

コイル4は、金属材料で構成されているのが好ましい。コイル4を構成する金属材料としては、例えば、ステンレス鋼、超弾性合金、コバルト系合金や、金、白金、タングステン等の貴金属またはこれらを含む合金等が挙げられる。特に、貴金属のようなX線不透過材料で構成した場合には、ガイドワイヤ1にX線造影性が得られ、X線透視下で先端部の位置を確認しつつ生体内に挿入することができ、好ましい。また、コイル4は、その先端側と基端側とを異なる材料で構成してもよい。例えば、先端側をX線不透過材料のコイル、基端側をX線を比較的透過する材料(ステンレス鋼など)のコイルにて各々構成してもよい。なお、コイル4の全長は、特に限定されないが、5~500mm程度であるのが好ましい。

[0048]

コイル4の基端部および先端部は、それぞれ、固定材料11および12により第1ワイヤ2(管状ワイヤ23および芯材22)に固定されている。また、コイル4の中間部(先端寄りの位置)は、固定材料13により第1ワイヤ2(芯材22)に固定されている。固定材料11、12および13は、半田(ろう材)で構成されている。なお、固定材料11、12および13は、半田に限らず、接着剤でもよい。また、コイル4の固定方法は、固定材料によるものに限らず、例えば、溶接でもよい。また、血管内壁の損傷を防止するために、固定材料12の先端面は、丸みを帯びているのが好ましい。

[0049]

本実施形態では、このようなコイル4が設置されていることにより、第1ワイヤ2は、コイル4に覆われて接触面積が少ないので、摺動抵抗を低減することができ、よって、ガイドワイヤ1の操作性がより向上する。

[0050]

なお、本実施形態の場合、コイル4は、線材の横断面が円形のものを用いているが、これに限らず、線材の断面が例えば楕円形、四角形(特に長方形)等のものであってもよい。

[0051]

ガイドワイヤ1において、第1ワイヤ2と第2ワイヤ3とは、溶接により互いに一体的に連結(固定)されている。これにより、第1ワイヤ2と第2ワイヤ3との溶接部(連結部)14は、高い結合強度(接合強度)が得られ、よって、ガイドワイヤ1は、溶接部14の破損、損傷を確実に防止することができ、高い安全性が得られる。また、溶接部14の強度低下による弊害、例えば、溶接部14で折れ曲がりを生じたり、第2ワイヤ3からのねじりトルクや押し込み力が第1ワイヤ2に伝達されにくくなったりするような弊害が生じるのも確実に防止することができる。

[0052]

また、溶接部14の外周部は、例えば後述する手順③等の方法により、実質的に平滑とされているのが好ましい。

$[0\ 0\ 5\ 3]$

なお、第1ワイヤ2と第2ワイヤ3とは、第1ワイヤ2の少なくとも管状ワイヤ23と第2ワイヤ3とが溶接されているものであってもよい。この場合、例えば、芯材22と第2ワイヤ3とを一体的に形成し、芯材22の外周に管状ワイヤ23を配置して、管状ワイヤ23の基端と第2ワイヤ3の先端とを溶接により連結する構成とすることができる。

$[0\ 0\ 5\ 4]$

また、本実施形態では、第1ワイヤ2の第2ワイヤ3に対する接続端面21と、第2ワイヤ3の第1ワイヤ2に対する接続端面31とは、それぞれ、ガイドワイヤ1の軸方向(長手方向)に対しほぼ垂直な平面になっているが、これにより、接続端面21、31を形成するための加工が極めて容易であり、ガイドワイヤ1の製造工程を複雑化することなく上記効果を達成することができる。

[0055]

なお、図示の構成と異なり、接続端面21、31は、両ワイヤの軸方向(長手

方向)に垂直な平面に対し傾斜していてもよく、また、凹面または凸面になって いてもよい。

. [0056]

第1ワイヤ2と、第2ワイヤ3との溶接の方法としては、特に限定されず、例 えば、レーザを用いたスポット溶接、バットシーム溶接等の突き合わせ抵抗溶接 などが挙げられるが、突き合わせ抵抗溶接であるのが好ましい。これにより、溶 接部14は、より高い結合強度が得られる。

[0057]

以下、図2を参照して、第1ワイヤ2と第2ワイヤ3とを突き合わせ抵抗溶接の一例であるバットシーム溶接により接合する場合の手順について説明する。同図には、第1ワイヤ2と第2ワイヤ3とをバットシーム溶接により接合する場合の手順①~③が示されている。

[0058]

手順①では、図示しないバット溶接機に固定(装着)された第1ワイヤ2と第 2ワイヤ3とが示される。

[0059]

手順②にて、第1ワイヤ2と第2ワイヤ3とは、バット溶接機によって、所定の電圧を印加されながら第1ワイヤ2の基端側の接続端面21と第2ワイヤ3の 先端側の接続端面31とが加圧接触される。この加圧接触により、接触部分には 溶融層が形成され、第1ワイヤ2と第2ワイヤ3とは強固に接続される。

[0060]

手順③にて、加圧接触することによって変形された接続箇所(溶接部14)の 突出部分を除去(削除)する。これにより、溶接部14の外周は、実質的に平滑 とされる。なお、突出部分の除去方法は、例えば、研削、研磨、エッチング等の 化学処理が挙げられる。

$[0\ 0\ 6\ 1]$

次いで、管状ワイヤ23の接続箇所(溶接部14)より先端側の部位を研削または研磨して外径が先端方向に向かって漸減する外径漸減部15を形成するとともに、第1ワイヤ2の先端部において芯材22を露出させ、露出部221を形成

する。

[0062]

なお、外径漸減部15の基端を溶接部14より基端側とする場合には、手順③ を省略して、外径漸減部15を形成する本手順(本工程)を行ってもよい。

[0063]

なお、第1ワイヤ2(芯材22および管状ワイヤ23)と第2ワイヤ3との接合は、溶接によるものが好ましいが、例えば、管状部材内に挿入しろう材を充填して固定するなど任意の方法を用いることもできる。

$[0\ 0\ 6\ 4]$

以上のようなガイドワイヤ1は、その外周面(外表面)の全部または一部を覆う合成樹脂の図示しない被覆(プラスティックジャケット)を有していてもよい。これにより、ガイドワイヤ1とともに用いられるカテーテルの内壁との摩擦が低減されて摺動性が向上し、カテーテル内でのガイドワイヤ1の操作性がより良好なものとなる。このような被覆の構成材料としては、例えば、ポリエチレン、ポリ塩化ビニル、ポリエステル、ポリプロピレン、ポリアミド、ポリウレタン、ポリスチレン、ポリカーボネート、フッ素系樹脂(PTFE、ETFE等)、シリコーン樹脂、その他各種のエラストマー、またはこれらの複合材料が好ましく用いられる。特に、管状ワイヤ23と同等またはそれ以下の可撓性、柔軟性を有するものが好ましい。また、このような被覆を設ける個所は、特に限定されず、例えば、ガイドワイヤ1のほぼ全体に設けられていても良く、先端側の部分(第1ワイヤ2およびコイル4の外周面)のみに設けられていても良い。

$[0\ 0\ 6\ 5]$

また、ガイドワイヤ1の外周面の全部または一部には、ガイドワイヤ1とともに用いられるカテーテルの内壁との接触により発生する摩擦を抑える処理が施されていてもよい。これにより、カテーテル内壁との摩擦が抑えられ、カテーテル内でのガイドワイヤ1の操作性は、より良好なものとなる。この処理としては、例えば、ガイドワイヤ1の外周面に、親水性材料または疎水性材料による被膜(図示せず)を設けることができる。

[0066]

この被膜を構成する親水性材料としては、例えば、セルロース系高分子物質、ポリエチレンオキサイド系高分子物質、無水マレイン酸系高分子物質(例えば、メチルビニルエーテルー無水マレイン酸共重合体のような無水マレイン酸共重合体)、アクリルアミド系高分子物質(例えば、ポリアクリルアミド、ポリグリシジルメタクリレートージメチルアクリルアミド(PGMA-DMAA)のブロック共重合体)、水溶性ナイロン、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。また、被膜を構成する疎水性材料としては、例えば、ポリテトラフルオロエチレン等のフッ素系樹脂、シリコーン系の材料等が挙げられる。

$[0\ 0\ 6\ 7]$

図3および図4は、それぞれ、本発明のガイドワイヤ1をPTCA術に用いた場合における使用状態を示す図である。

[0068]

図3および図4中、符号40は大動脈弓、符号50は心臓の右冠状動脈、符号60は右冠状動脈開口部、符号70は血管狭窄部である。また、符号30は大腿動脈からガイドワイヤ1を確実に右冠状動脈に導くためのガイディングカテーテル、符号20はその先端部分に拡張・収縮自在なバルーン201を有する狭窄部拡張用のバルーンカテーテルである。

[0069]

図3に示すように、ガイドワイヤ1の先端をガイディングカテーテル30の先端から突出させ、右冠状動脈開口部60から右冠状動脈50内に挿入する。さらに、ガイドワイヤ1を進め、先端から右冠状動脈内に挿入し、先端が血管狭窄部70を超えた位置で停止する。これにより、バルーンカテーテル20の通路が確保される。なお、このとき、ガイドワイヤ1の溶接部14は、大動脈弓40の基部付近(生体内)に位置している。

[0070]

次に、図4に示すように、ガイドワイヤ1の基端側から挿通されたバルーンカテーテル20の先端をガイディングカテーテル30の先端から突出させ、さらにガイドワイヤ1に沿って進め、右冠状動脈開口部60から右冠状動脈50内に挿入し、バルーンが血管狭窄部70の位置に到達したところで停止する。

[0071]

次に、バルーンカテーテル20の基端側からバルーン拡張用の流体を注入して、バルーン201を拡張させ、血管狭窄部70を拡張する。このようにすることによって、血管狭窄部70の血管に付着堆積しているコレステロール等の堆積物は物理的に押し広げられ、血流阻害が解消できる。

[0072]

以上、本発明のガイドワイヤを図示の実施形態について説明したが、本発明は、これに限定されるものではなく、ガイドワイヤを構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。

[0073]

本発明では、ガイドワイヤは、第1ワイヤにおいて芯材が露出する露出部を有さないもの、すなわち、管状ワイヤが芯材の先端まで設けられたような構成であってもよい。この場合、第1ワイヤの先端部における、管状ワイヤの外径と芯材の外径との比率を適宜設定することにより、ガイドワイヤの先端部のリシェイプ性を確保することができる。

[0074]

また、本発明では、第1ワイヤにおいて、芯材と管状ワイヤとの間には、任意の目的の層 (例えば、芯材と管状ワイヤとの密着性を向上し得る中間層) を設けることもできる。

[007.5]

【発明の効果】

以上述べたように、本発明によれば、柔軟性に優れた先端部と剛性に富んだ基端部とを有し、押し込み性、トルク伝達性および追従性に優れたガイドワイヤが構成できる。

[0076]

また、第1ワイヤの少なくとも管状ワイヤと第2ワイヤとを溶接により連結することにより、溶接部(連結部)の結合強度が高く、第2ワイヤから第1ワイヤへねじりトルクや押し込み力を確実に伝達することができる。

[0077]

また、第1ワイヤの先端部において、芯材を露出させることにより、かかる芯 材の露出部位にリシェイプ性を付与することができる。

【図面の簡単な説明】

【図1】

本発明のガイドワイヤの実施形態を示す縦断面図である。

【図2】

本発明のガイドワイヤにおける第1ワイヤと第2ワイヤとを接続する手順を示す図である。

[図3]

本発明のガイドワイヤの使用例を説明するための模式図である。

【図4】

本発明のガイドワイヤの使用例を説明するための模式図である。

【符号の説明】

1	ガイドワイヤ
1 0	ワイヤ本体
2	第1ワイヤ
2 1	接続端面
2 2	芯材。
2 3	管状ワイヤ
3	第2ワイヤ
3 1	接続端面
4	コイル
11,	12、13 固定材料
1 4	溶接部
1.5	外径漸減部
20	バルーンカテーテル
2 0 1	バルーン
3 0	ガイディングカテーテル

4 0	大動脈弓
5 0	右冠状動脈
6 0	右冠状動脈開口部
7 0	血管狭窄部

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【書類名】要約書

【要約】

【課題】操作性および耐キンク性に優れたガイドワイヤを提供すること。

【解決手段】ガイドワイヤ1は、カテーテルに挿入して用いられるカテーテル用ガイドワイヤであって、先端側に配置された第1ワイヤ2と、第1ワイヤ2の基端側に配置された第2ワイヤ3と、螺旋状のコイル4とを有している。第2ワイヤ3は、比較的弾性率が大きい材料(例えば、ステンレス鋼)で構成されている。第1ワイヤ2は、管状ワイヤ23と、管状ワイヤ23を貫くよう設けられた芯材22とを有している。芯材22は、細径の線材であり、管状ワイヤ23の構成材料(例えば、超弾性合金)より弾性率が大きい材料、好ましくは第2ワイヤ3の構成材料とほぼ弾性率が等しい材料、より好ましくは第2ワイヤ3の構成材料と同一の材料(特に、ステンレス鋼)で構成されている。

【選択図】図1

ページ: 1/E

認定・付加情報

特許出願の番号

特願2002-233906

受付番号

5 0 2 0 1 1 9 4 9 6 4

書類名

特許願

担当官

第四担当上席

0 0 9 3

作成日

平成14年 8月12日

<認定情報・付加情報>

【提出日】

平成14年 8月 9日

特願2002-233906 出願人履歴情報

識別番号

[000109543]

1. 変更年月日 [変更理由] 住 所 氏 名 1·9 9 0 年 8 月 1 1 日 新規登録 東京都渋谷区幡ヶ谷 2 丁目 4 4 番 1 号 テルモ株式会社