

MERCARI PRICE SUGGESTION CHALLENGE

46TH PLACE SOLUTION – BY THOMAS SELECK

COMPETITION CONTEXT AND GOAL

Mercari: Japan's biggest community-powered shopping app

 It can be hard to know how much something's really worth: small details can mean big differences in pricing.

 Goal of the competition: Build an algorithm that automatically suggests the right product prices using userinputted text descriptions of their products, product category name, brand name, and item condition.

EVALUATION METRIC AND DATA

 Evaluation metric: RMSLE (Root Mean Squared Logarithmic <u>Error</u>)

$$RMSLE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(a_i + 1))^2}$$

- *n* is the total number of observations in the data
- p_i is the predicted price
- a_i is the actual sale price for the i^{th} article

Data:

- 1,482,535 samples in train set
- 693,359 samples in test set (phase 1)
- 3,5 million samples in test set (phase 2)
- 6 features: name, item_condition_id, category_name, brand_name, shipping, item_description

FEATURE ENGINEERING (1 / 2)

- 874 items had a zero price in train set ⇒ remove those items
- brand_name feature: 42.67% of items in train set don't have a brand ⇒ Create dummy: 1 == no brand
- For item_condition_id: goes from 1 to 5; 1 = brand new and 5 = broken; reverse levels order (1 = 5, 2 = 4, ...)
- Compute average price for each category found in category_name.
 - Group categories than have less than 10 samples to avoid overfitting.
 - Create 7 new features based on it using binning: avg \in [0;10[, [10;20[, [20;40[, [40;50[, [50;75[, [75;+ ∞ [
- Extract first 3 levels out of 5 from category_name and fill missing values with "missing" string
 - Last 2 levels are only used by 0.3% of samples
 - E.g. Women/Jewelry/Necklaces ⇒ category_1 = Women, category_2 = Jewelry, category_3 = Necklaces
- Fill missing values in brand_name, name and item_description with "missing" string
- Group least occurring brands, as 1,243 brands out of 4,810 only appears once in train set

FEATURE ENGINEERING (2 / 2)

- Luxury brands are expensive ⇒ Dummy equal to 1 for 22 luxury brands (Louis Vuitton, Rolex, Apple, ...)
 - Do the same for cheapest brands
- Look for important keywords
 - "dust" ⇒ refers to "dust bag", a women's handbag accessory: brand new luxury bags have one, others not
 - "gold" ⇒ as gold is a precious metal, having gold in the item raises its price
 - "lularoe" ⇒ clothes brand that was one of the most important features for LightGBM
 - "bundle" ⇒ this means several objects to sell and can increase the price
- Compute some statistics on name and item_description
 - Number of characters, tokens, words, numbers, letters, digits
- Add brand groups depending on category_1
- Normalize the created features (substract mean and divide by standard deviation)
- Use WordBatch on name and item_description (text processing), LabelBinarizer for brand_name,
 CountVectorizer for category_1, category_2 and category_3

PREDICTIVE MODELS

- FTRL (Follow The Regularized Leader): kind of adaptive-learning-rate sparse linear regression with efficient L1-L2-regularization
 - Comes from WordBatch package: https://github.com/anttttti/Wordbatch
 - Original paper: H. B. McMahan, "Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization": https://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/37013.pdf
- FM_FTRL: Factorization Machine with linear effects estimated with FTRL and factor effects estimated with adaptive SGD.
 - Comes from WordBatch package: https://github.com/anttttti/Wordbatch
- LightGBM: Gradient boosted trees library developped by Microsoft
 - More info here: https://github.com/Microsoft/LightGBM

BLENDING STRATEGY

- Quick and Dirty way:
 - Split train set into 2 sets: X_train and X_valid (y_train and y_valid for target)
 - Group predictions in a DataFrame and split it by category_1
 - Fit a linear regression without intercept for each split, trying to predict price using predictions made by all three models.
 - Use linear regression coefficients as weights for blending
 - E.g. "Men": $[-0.01, 0.65, 0.36] \Rightarrow$ preds for "Men" split = $-0.01 \times FTRL + 0.65 \times FM_FTRL + 0.36 \times LightGBM$

FINAL RESULTS AND CONCLUSION

Public LB score: 0.41316

Private LB score: 0.41373

Thomas SELECK

Code and slides available here:

https://github.com/ThomasSELECK/Kaggle Mercari competition

ANY QUESTIONS?

DON'T FORGET: HTTPS://GITHUB.COM/THOMASSELECK/KAGGLE MERCARI COMPETITION