Coordenadas

Coordenadas Cartesianas

El vector posición lo expresamos, como una terna ordenada de números reales o como una expresión en función de los versores que indican la referencia de tres ejes concurrentes al origen.

El vector indica un punto en relación con el origen de coordenadas. \vec{r}_{P-Q}

$$ec{r}_{\scriptscriptstyle P\,-\,O} = x_p \hat{i} + y_p \hat{j} + z_p \hat{k}$$

El módulo de este vector es la distancia que existe entre P y O:

$$|ec{r}_{{}_{P\,-\,O}}| = \sqrt{(x_p)^2 + (y_p)^2 + (z_p)^2}$$

 x_P , y_P , z_P : son coordenadas del punto, y que variarán en función del tiempo en la medida que la partícula se mueva.

Coordenadas Polares

$$ec{r}_{\scriptscriptstyle P-O}=\pm |ec{r}_{\scriptscriptstyle P-O}|reve{e}_{r}$$

El vector se escribe como módulo del vector en la dirección radial con el signo más si es un vector que apunta del centro hacia afuera como el versor radial \check{e}_r o el signo menos si apunta hacia adentro contrario a \check{e}_r .

Lo interesante es que *tenemos un versor que acompañará la posición del punto material*, y esta propiedad es muy útil para describir movimientos curvilíneos en general.

El versor radial se puede escribir en cartesianas, es decir podemos dar la transformación de polar a cartesiano de este versor.

$$reve{e}_r = cos(heta)\,\hat{i} + sen(heta)\,\hat{j}$$

Tenemos que entender que el versor \check{e}_r es variable en θ , que es el ángulo que forma el versor con el eje "+x", cuando deseamos transformar la notación polar en notación cartesiana.

El versor \check{e}_{θ} es normal al versor radial, matemáticamente se puede calcular mediante la derivada (usando la regla de la cadena) del versor \check{e}_r .

$$\frac{d(\check{e}_r)}{dt} = \frac{d(\cos\theta\;\check{i} + \, sen\;\theta\;\check{j}\,)}{dt}$$

$$\frac{d(\check{e}_r)}{dt} = (-sen\ \theta\ \check{\iota} + cos\ \theta\ \check{\jmath})\frac{d\theta}{dt}$$

Recordando que el módulo de la velocidad angular (w) es $\frac{d\theta}{dt}$ y llamando a $\check{e}_{\theta}=-sen(\theta)\,\hat{i}+cos(\theta)\,\hat{j}$

$$\begin{split} \check{e}_{\theta} &= -sen \ \theta \ \check{\imath} + \ cos \ \theta \ \check{\jmath} \\ \\ \frac{d(\check{e}_r)}{dt} &= (-sen \ \theta \ \check{\imath} + \ cos \ \theta \ \check{\jmath}) \frac{d\theta}{dt} = \omega \check{e}_{\theta} \end{split}$$

Esta ecuación nos está indicando que la derivada de un versor es perpendicular a dicho versor y además su módulo es igual a la velocidad angular del movimiento del punto que estamos estudiando.

Versores Polares

$$reve{e}_r = cos(heta)\,\hat{i} + sen(heta)\,\hat{j}$$

$$reve{e}_{ heta} = -sen(heta)\,\hat{i} + cos(heta)\,\hat{j}$$

- $\breve{e}_r \perp \breve{e}_\theta$
- $\frac{d\breve{e}_r}{dt} = w \, \breve{e}_{ heta}$
- ullet es un versor que acompañará la posición del punto material.

Coordenadas Intrinsecas

La velocidad es tangente a la trayectoria.

Esta propiedad la utilizamos para encontrar el versor tangente y expresar la velocidad de la partícula "P".

$$ec{v}_{\scriptscriptstyle P-O} = |ec{v}_{\scriptscriptstyle P-O}| reve{e}_t$$

El versor tangente, es el vector velocidad dividido por su módulo.

$$reve{e}_t = rac{ec{v}_{\scriptscriptstyle P\,-\,O}}{|ec{v}_{\scriptscriptstyle P\,-\,O}|}$$

- ullet $|ec{v}_{\scriptscriptstyle P-O}|$: es el módulo del vector velocidad.
- ullet ullet ullet ullet es el versor tangencial a la trayectoria o versor tangente.

La expresión en coordenadas cartesianas de este versor es:

$$reve{e}_t = cos(arphi)\,\hat{i} + sen(arphi)\,\hat{j}$$

Otra vez, **como para polares**, en este sistema, se verifica que el ángulo ϕ , es una variable que se toma desde el eje de abscisas y que depende del tiempo en la medida que se mueve el punto "P".

Para definir el versor normal utilizaremos la técnica de la derivada del versor tangente.

$$\frac{d\check{e}_t}{dt} = (-sen\ \varphi\ \check{\imath} + \cos\ \varphi\ \check{\jmath})\ \frac{d\theta}{dt} \quad \Rightarrow \quad \frac{d\check{e}_t}{dt} = (-sen\ \varphi\ \check{\imath} + \cos\ \varphi\ \check{\jmath})\ \omega$$

El paréntesis es un versor que se denomina versor normal:

$$\check{e}_n = -sen \varphi \, \check{\imath} + \cos \varphi \, \check{\jmath}$$

Versores Intrinsecos

$$reve{e}_t = cos(arphi)\,\hat{i} + sen(arphi)\,\hat{j}$$

$$reve{e}_n = -sen(arphi)\,\hat{i} + cos(arphi)\,\hat{j}$$

- $\frac{d \breve{e}_t}{dt} = w \, \breve{e}_n$
- \breve{e}_t es un versor **tangente a la trayectoria**, por tanto tiene la misma dirección que la velocidad en ese instante \vec{v}_{P-O}

Obtener vectores intrinsecos y normal

Sistema intrínseco

$$\hat{b} = \frac{\vec{v} \times \vec{a}}{|\vec{v} \times \vec{a}|}$$

$$\hat{t} = \frac{\vec{v}}{|\vec{v}|}$$

$$\hat{n} = \hat{b} \times \hat{t}$$

Versor binormal: perpendicular al plano de movimiento Versor tangente: paralelo a la velocidad Versor normal: en la dirección de la aceleración perpendicular a la velocidad

Sistema intrínseco

Plano de movimiento

$$\vec{v} = v \hat{t}$$

$$\vec{a}_t = (\vec{a} \cdot \hat{t}) \hat{t}$$

$$\vec{a}_n = \vec{a} - \vec{a}_t$$

$$\hat{a} = \vec{a}_t + \vec{a}_n$$

$$\vec{a} = \vec{a}_t + \vec{a}_n$$

$$\vec{a} = \vec{a}_t - \vec{a}_t$$

$$\hat{n} = \frac{\vec{a}_n}{|\vec{a}_n|}$$

Radio de Giro

Círculo osculador y radio de giro

$$a_t = \partial v/\partial t$$

$$a_n = v^2/R_g$$

 R_a Radio de giro

Círculo osculador

$$\vec{v} = v \, \hat{t}$$

$$\vec{a} = \frac{\partial v}{\partial t} \, \hat{t} + \frac{v^2}{R_g} \, \hat{n}$$

$$a_n = \omega^2 \cdot R_g = rac{v^2}{R_g}$$

Recordar $v = \omega \cdot r$