TD n°4

NB : Cet exercice sera complété au deuxième semestre par l'étude de la décongélation des aliments par micro-ondes.

<u>Données</u>: Constante de gravitation : $G = 6,7.10^{-11}$ uSI

Permittivité du vide : $\varepsilon_0 = 8,8.10^{-12} \text{ F.m}^{-1}$

Charge élémentaire : $e = 1,6.10^{-19}$ C

Masse d'un atome d'hydrogène : $m_H = 1,7.10^{-27} \text{ kg}$

Masse d'un atome d'oxygène : $m_0 = 2,7.10^{-26} \text{ kg}$

Distance entre les centres des ions H^+ et O^{2-} dans H_2O : $L \cong 1, 0.10^{-10}$ m

A / APPROCHE ELECTROSTATIQUE DE LA MOLECULE D'EAU

Une charge ponctuelle q₁ est fixée au point O.

A1. Rappeler l'expression du potentiel électrostatique V(M) créé dans le vide par la charge ponctuelle q₁ en un point M situé à la distance r du point O (le potentiel sera pris nul à l'infini).

Une deuxième charge q₂ est placée en un point N, à la distance L de O (figure 1).

<u>A2.</u> En déduire l'énergie potentielle d'interaction électrostatique W_{12} entre les deux particules chargées q_1 et q_2 .

Les deux particules chargées q_1 et q_2 ont des masses respectives m_1 et m_2 .

Par identification avec l'énergie potentielle d'interaction électrostatique, exprimer l'énergie potentielle d'interaction gravitationnelle $W_{grav,12}$ entre les deux particules chargées q_1 et q_2 . Calculer le rapport $\eta = \left|W_{12} / W_{grav,12}\right|$ si la charge q_1 est un ion hydrogène H^+ et q_2 un ion oxygène O^{2-} . Qu'en déduire pour une étude énergétique de la molécule d'eau ?

La molécule d'eau peut approximativement être décrite de la manière suivante (<u>figure 2</u>) : un ion ponctuel O^{2-} est à la distance L de deux ions ponctuels H^+ , l'angle $\not \subseteq$ HOH étant noté 2θ .

<u>A4.</u> Déterminer l'énergie d'interaction électrostatique W_{HH} entre les deux ions H^+ , puis l'énergie d'interaction W_{OH} entre un ion H^+ et l'ion O^{2-} , en fonction notamment de la charge élémentaire e, de L et de l'angle θ.

L'énergie potentielle électrostatique W de la molécule d'eau s'exprime, en supposant comme précédemment les charges ponctuelles, sous la forme : $W = W_{HH} + 2 W_{OH}$.

A5. Expliquer les signes de W_{HH} et W_{OH}. Justifier la présence du facteur 2.

La fonction $W(L,\theta)$ représente l'énergie potentielle de la molécule d'eau.

TD n°4

Dans la suite, la longueur L sera supposée fixe. L'expression de l'énergie potentielle de la molécule d'eau $W(\theta)$ sera fonction uniquement de l'angle θ .

- **A6.** Quelle est la valeur θ_0 de l'angle à l'équilibre, prévu par la modélisation précédente ? Cet équilibre est-il stable ? Comment expliquer simplement la valeur de θ_0 ?
- <u>A7.</u> En faisant appel aux connaissances acquises dans le cours de chimie, expliquer quelle valeur est attendue pour θ_0 . Le résultat de la question précédente est-il satisfaisant ?

Une description plus élaborée de la molécule d'eau fait intervenir l'étendue spatiale de l'ion O^{2-} , les ions H^+ étant toujours considérés comme ponctuels. Le champ créé par les ions H^+ perturbe la répartition de charge à l'intérieur de O^{2-} , et par conséquent modifie l'énergie d'interaction électrostatique des charges.

En première approche, étudions un atome constitué, selon le modèle simplifié de THOMSON (1904), d'un noyau de charge +q réparti uniformément en volume dans une boule $\mathcal E$ de centre O et de rayon R, et d'électrons. Ces électrons sont représentés par une charge ponctuelle unique -q, soumise au champ du noyau (<u>figure 3</u>). La position de cette charge -q à un instant quelconque est repérée par le point M.

Figure 3

- **A8.** Evaluer le champ électrique $\vec{E}(M)$ créé par le noyau seul en un point M intérieur à la boule \vec{E} , en fonction notamment de q, R et \overrightarrow{OM} .
- <u>A9.</u> Exprimer la force de LORENTZ subie par la charge -q. En déduire sa position d'équilibre, repérée par le vecteur $\vec{r}_{\acute{e}q}$, de la charge -q dans le champ du noyau. L'équilibre est-il stable ?

L'atome est alors placé dans un champ électrique extérieur uniforme et stationnaire $\overrightarrow{E_0}$. Il sera admis que la distribution de charges du noyau n'est pas modifiée par l'action du champ $\overrightarrow{E_0}$.

- **A10.** Quelle est la nouvelle position d'équilibre, repérée par $\vec{r}_{\acute{e}q}$, de la charge -q en fonction de $\vec{E_0}$, q, ε₀ et R ? (la valeur du champ $\vec{E_0}$ est supposée suffisamment faible pour que cette position d'équilibre se situe à l'intérieur de la sphère de centre R)

TD n°4

Revenons au cas de la molécule d'eau. Elle est désormais modélisée par un ion oxygène O^{2-} de rayon R centré en O et de deux ions ponctuels H^+ . L'angle \angle HOH est toujours noté 2θ et la distance du centre O à un ion H^+ vaut L (<u>figure 4</u>, représentant le plan de la molécule d'eau).

Le champ extérieur $\overrightarrow{E_o}$ modifiant la répartition de charge de l'ion O^{2-} est celui engendré par les deux ions H^+ au niveau du centre O de l'ion O^{2-} .

A12. Exprimer le champ $\overrightarrow{E_0}$ en fonction notamment de la charge élémentaire e, de L et de θ .

L'expression établie en question <u>A11</u> donnant le moment dipolaire induit d'un atome est supposée toujours valable dans le cas de l'ion O^{2-} . L'énergie potentielle électrostatique associée à la déformation de la répartition de charge s'écrit alors : $W' = -\vec{p}_i$. $\vec{E}_0/2$. Au final, l'énergie potentielle totale de la répartition de charge vaut $W_{tot} = W + W'$, où W a été déterminé à la question <u>A5</u>.

- <u>A14.</u> En déduire les positions d'équilibre. Les calculer sachant que le rayon de l'ion O^{2-} vaut $R \cong 1, 0.10^{-10} \text{ m}$.
- <u>A15.</u> Tracer l'allure de $W_{tot}(\theta)$ en fonction de θ. En déduire la stabilité des positions d'équilibre obtenues précédemment.
- <u>A16.</u> Commenter ces résultats.