Modeling the cumulative incidence function of clustered competing risks data: a multinomial GLMM approach

Semana Acadêmica de Estatística, UFPR

Henrique Laureano (.github.io)

IPPPP & LEG @ UFPR

September 13, 2021

Giving context: defining where we are and what we did

Object

 Handle clustered competing risks data (a kind of failure time data) through the cumulative incidence function (CIF).

Goal

 Perform maximum likelihood estimation in terms of a full likelihood formulation based on Cederkvist et al. (2019)'s CIF specification (Scheike's).

Contribution

- The full likelihood formulation is in terms of a generalized linear mixed model (GLMM) a conditional approach (with fixed and random/latent effects);
- The optimization and inference are tacked down via an efficient model implementation with the use of state-of-art computational libraries (Kristensen et al. (2016)'s TMB).

Outline

- 1 Data;
- 2 Model;
- 3 TMB: Template Model Builder;
- 4 Simulation study;
- 6 Conclusion;
- 6 References.

- 1 Data
- 2 Mode
- 3 TMB: Template Model Builder
- 4 Simulation study
- 6 Conclusion
- 6 References

Clustered competing risk data

Key ideas:

- Clustered: groups with a dependence structure (e.g. families);
- 2 Causes competing by something;
- 3 Occurrence time of this something.

Something?

- Failure of an industrial or electronic component;
- Occurrence or cure of a disease or some biological process;

 Progress of a patient clinic state.

Independent of the application, always the same framework

Cluster	ID	Cause 1	Cause 2	Censorship	Time	Feature
1	1	Yes	No	No	10	Α
1	2	No	No	Yes	8	Α
2	1	No	No	Yes	7	В
2	2	No	Yes	No	5	Α

- Data
- 2 Model
- 3 TMB: Template Model Builde
- 4 Simulation study
- 6 Conclusion
- 6 References

Modeling clustered competing risks data

What? Why? How?

Modeling failure time data

First of all, we have to choose which scale we model the survival experience.

1 Usually, is in the

hazard (failure rate) scale :
$$\lambda(t \mid \text{features}) = \lambda_0(t) \times c(\text{features})$$
. (1)

We have a Equation 1 for each competing cause.

The cluster dependence is something actually not measured...

Not measured dependence \rightarrow random/latent effects \rightarrow Frailty models.

Frailty-based models for (multiple) survival experiences turn out in challengeable likelihood functions with inference routines mostly done via

 Elaborated and slow expectation—maximization (EM) algorithms; Inefficient Markov chain Monte Carlo (MCMC) schemes.

2 Not usually, the probability scale.

$\textbf{Probability scale} \rightarrow \textbf{Cause-specific CIF}$

i.e., $CIF = \mathbb{P}[\text{ failure time } \leq t, \text{ a given cause } | \text{ features \& latent effects }].$

Common applications: family studies.

↓ Keywords: within-family/cluster dependence; age at disease onset; populations.

Cederkvist et al. (2019)'s CIF specification

For two competing causes of failure, the cause-specific CIFs are specified in the following manner

$$F_k(t \mid \mathbf{x}, u_1, u_2, \eta_k) = \underbrace{\pi_k(\mathbf{x}, u_1, u_2)}_{\text{cluster-specific risk level}} \times \underbrace{\Phi[w_k g(t) - \mathbf{x} \gamma_k - \eta_k]}_{\text{cluster-specific failure time trajectory}}, \quad t > 0, \quad k = 1, 2, \quad (2)$$

with

$$\mathbf{1} \pi_k(\mathbf{x}, \mathbf{u}) = \exp\{\mathbf{x}\beta_k + u_k\} / \left(1 + \sum_{m=1}^{K-1} \exp\{\mathbf{x}\beta_m + u_m\}\right), \quad k = 1, 2, \quad K = 3;$$

- \mathbf{Q} $\Phi(\cdot)$ is the cumulative distribution function of a standard Gaussian distribution;
- 3 $g(t) = \operatorname{arctanh}(2t/\delta 1), \quad t \in (0, \delta), \quad g(t) \in (-\infty, \infty).$
- In Cederkvist et al. (2019), this CIF specification is modeled under a pairwise composite likelihood approach (Lindsay 1988; Varin, Reid, and Firth 2011).

Our contribution: a full likelihood analysis

For two competing causes of failure, a subject i, in the cluster i, in time t, we have

$$y_{ijt} \mid \underbrace{\{u_{1j}, u_{2j}, \eta_{1j}, \eta_{2j}\}}_{\text{latent effects}} \sim \text{Multinomial}(p_{1ijt}, p_{2ijt}, p_{3ijt})$$

$$\begin{bmatrix} u_1 \\ u_2 \\ \eta_1 \\ \eta_2 \end{bmatrix} \sim \text{Multivariate} \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{u_1}^2 & \text{cov}(u_1, u_2) & \text{cov}(u_1, \eta_1) & \text{cov}(u_1, \eta_2) \\ \sigma_{u_2}^2 & \text{cov}(u_2, \eta_1) & \text{cov}(u_2, \eta_2) \\ \sigma_{\eta_1}^2 & \sigma_{\eta_2}^2 \end{bmatrix} \end{pmatrix}$$

$$\begin{split} & \rho_{kijt} = \frac{\partial}{\partial t} F_k(t \mid \boldsymbol{x}, \boldsymbol{u}, \eta_k) \\ & = \frac{\exp\{\boldsymbol{x}_{kij}\beta_k + u_{kj}\}}{1 + \sum_{m=1}^{K-1} \exp\{\boldsymbol{x}_{mij}\beta_m + u_{mj}\}} \\ & \times w_k \frac{\delta}{2\delta t - 2t^2} \, \varphi\left(w_k \operatorname{arctanh}\left(\frac{t - \delta/2}{\delta/2}\right) - \boldsymbol{x}_{kij}\gamma_k - \eta_{kj}\right), \quad k = 1, \ 2. \end{split}$$

Simulating from the model

dCIF 1

dCIF 2

Marginal likelihood function for two competing causes

$$L(\boldsymbol{\theta}; \boldsymbol{y}) = \prod_{j=1}^{J} \int_{\mathfrak{R}^{4}} \pi(\boldsymbol{y}_{j} \mid \boldsymbol{r}_{j}) \times \pi(\boldsymbol{r}_{j}) \, d\boldsymbol{r}_{j}$$

$$= \prod_{j=1}^{J} \int_{\mathfrak{R}^{4}} \left\{ \prod_{i=1}^{n_{j}} \prod_{t=1}^{n_{ij}} \left(\frac{(\sum_{k=1}^{K} y_{kijt})!}{y_{1ijt}! y_{2ijt}! y_{3ijt}!} \prod_{k=1}^{K} p_{kijt}^{y_{kijt}} \right) \right\} \times$$
fixed effect component
$$(2\pi)^{-2} |\Sigma|^{-1/2} \exp\left\{ -\frac{1}{2} \boldsymbol{r}_{j}^{T} \Sigma^{-1} \boldsymbol{r}_{j} \right\} d\boldsymbol{r}_{j}$$

latent effect component

$$= \prod_{j=1}^J \int_{\Re^4} \left\{ \underbrace{\prod_{i=1}^{n_j} \ \prod_{t=1}^{n_{ij}} \prod_{k=1}^K \boldsymbol{p}_{kijt}^{y_{kijt}}}_{t=1 \ k=1} \right\} \underbrace{(2\pi)^{-2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left\{-\frac{1}{2} \boldsymbol{r}_j^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{r}_j\right\}}_{} \mathrm{d}\boldsymbol{r}_j,$$

fixed effect

latent effect component

with p_{kijt} from Equation 3 and where $\theta = [\beta \ \gamma \ \mathbf{w} \ \sigma^2 \ \rho]^{\top}$ is the parameters vector.

- Data
- 2 Mode
- 3 TMB: Template Model Builder
- 4 Simulation study
- 6 Conclusion
- 6 References

TMB: Template Model Builder

🌽 Kristensen et al. (2016).

An R (R Core Team 2021) package for the quickly implementation of complex random effect models through simple C++ templates.

Workflow

- Write your objective function in a .cpp through a #include <TMB.hpp>;
- 2 Compile and load it in R via TMB::compile() and base::dyn.load(TMB::dynlib());
- 3 Compute your objective function derivatives with obj <- TMB::MakeADFun();</p>
- Perform the model fitting, opt <- base::nlminb(obj\$par, obj\$fn, obj\$gr);</pre>
- **5** Compute the parameters standard deviations, TMB::sdreport(obj).

TMB: Template Model Builder

Key features:

Automatic differentiation;
 The state-of-art in derivatives computation

2 Laplace approximation. An efficient fashion to approximate the latent effect integrals

macciplisureano - □

#include <1M8.hpp>
template<class Type>
template<class Type>
type objective_function<Type>::operator() ()

{
DATA_VECTOR(y); DATA_SPARSE_MATRIX(Z); DATA_SCALAR(n);
PARAMETER(beta);
PARAMETER(logad);
PARAMETER(logad);
PARAMETER(logad);
PARAMETER(vector(u); vector<Type> Zu = Z*u;
vector<Type> risk = exp(beta*Zu);
vector<Type> risk = exp(beta*Zu);
vector<Type> prob = risk/level;
parallel_accumulator<Type> nll(this);
nll == donom(u, Type(0), sd, true).sum();
nll == donom(u, Type(u), sd, true).sum();
nll == donom(u), nll

A code example:

For details about TMB, AD, and Laplace approximation: Laureano (2021).

- Data
- 2 Mode
- 3 TMB: Template Model Builder
- 4 Simulation study
- 6 Conclusion
- 6 References

Simulation study model designs

Risk model

Latent effects only on the risk level i.e.,

$$\Sigma = \begin{bmatrix} \sigma_{u_1}^2 & \mathsf{COV}_{u_1, u_2} \\ & \sigma_{u_2}^2 \end{bmatrix}.$$

Block-diag model

Latent effects on the risk and time levels without cross-correlations i.e.,

$$\Sigma = \begin{bmatrix} \sigma_{u_1}^2 & \text{cov}_{u_1, u_2} & 0 & 0 \\ & \sigma_{u_2}^2 & 0 & 0 \\ & & \sigma_{\eta_1}^2 & \text{cov}_{\eta_1, \eta_2} \\ & & & \sigma_{\eta_2}^2 \end{bmatrix}$$

Time model

Latent effects only on the failure time trajectory level i.e.,

$$\Sigma = egin{bmatrix} \sigma_{\eta_1}^2 & \mathsf{cov}_{\eta_1,\eta_2} \ \sigma_{\eta_2}^2 \end{bmatrix}.$$

Complete model

A complete latent effects structure i.e..

$$\Sigma = \begin{bmatrix} \sigma_{u_1}^2 & \text{cov}_{u_1,u_2} & 0 & 0 \\ & \sigma_{u_2}^2 & 0 & 0 \\ & & \sigma_{\eta_1}^2 & \text{cov}_{\eta_1,\eta_2} \\ & & & \sigma_{\eta_2}^2 \end{bmatrix}. \qquad \Sigma = \begin{bmatrix} \sigma_{u_1}^2 & \text{cov}_{u_1,u_2} & \text{cov}_{u_1,\eta_1} & \text{cov}_{u_1,\eta_2} \\ & \sigma_{u_2}^2 & \text{cov}_{u_2,\eta_1} & \text{cov}_{u_2,\eta_2} \\ & & & \sigma_{\eta_1}^2 & \text{cov}_{\eta_1,\eta_2} \\ & & & & \sigma_{\eta_2}^2 \end{bmatrix}.$$

Simulation study setup

Four latent effects structures:

Risk model;

2 Time model;

3 Block-diag model;

4 Complete model.

Two CIF configurations:

Low max incidence ≈ 0.15 ;

High max incidence \approx 0.60.

For each of those $4 \times 2 = 8$ scenarios, we vary the sample and cluster sizes:

5000 data points

- 2500 clusters of size 2;
- 1000 clusters of **size 5**;
- 500 clusters of size 10.

30000 data points

- 15000 clusters of size 2;
- 6000 clusters of **size 5**;
- 3000 clusters of **size 10**.

60000 data points

- 30000 clusters of **size 2**;
- 12000 clusters of **size 5**;
- 6000 clusters of **size 10**.

 $8 \times 3 \times 3 = 72$ scenarios.

For each scenario, we simulate 500 samples. $72 \times 500 = 36000$ model fittings.

Simulation study results

First of all, the **time**.

• The *non-complete* models (2D Laplace aprox.) are kind of fast, taking always **less than 5 min**.

In the most expensive scenarios (30K 4D Laplaces).

- the complete model takes 30 min.
 In a full R implementation with 10K 4D Laplaces, it took 30hrs. TMB is fast.
- We also did a Bayesian analysis via Stan/NUTS-HMC (Stan Development Team 2020).
 - 1 week of parallelized processing for a 2500 size 2 clusters scenario with tuned NUTS.
 This just reinforces the MCMC impracticability for some complex models.

Parameters estimation.

The non-complete models fail to learn the data.
 They appear to be not structured enough to capture the data characteristics.

Simulation study results: High CIF scenario

True curve in dashed black

CIF of failure cause 2

True curve in dashed black

Simulation study results: Low CIF scenario

CIF of failure cause 1

True curve in dashed black

CIF of failure cause 2

True curve in dashed black

- Data
- 2 Mode
- 3 TMB: Template Model Builder
- 4 Simulation study
- **5** Conclusion
- 6 References

Take-home message

The complete model works.

- 1 It works better in the high CIF scenarios;
- 2 As expected, as the sample size increases the results get better;
- 3 We do not see any considerable performance difference between cluster/family sizes;
- 4 Satisfactory full likelihood analysis under the maximum likelihood estimation framework.

What else can we do?

- 1 We can try a marginal approach e.g., an McGLM (Bonat and Jørgensen 2016);
- We can also try a copula (Embrechts 2009), on maybe two fronts:1) for a full specification; 2) to accommodate the within-cluster dependence.

For more read Laureano (2021) master thesis.

Thanks for watching and have a great day

Special thanks to

PPGMNE

Programa de Pós-Graduação em Métodos Numéricos em Engenharia

Joint work with

Wagner H. Bonat http://leg.ufpr.br/~wagner

Paulo Justiniano Ribeiro Jr. http://leg.ufpr.br/~pauloius

- Data
- 2 Mode
- 3 TMB: Template Model Builder
- 4 Simulation study
- **5** Conclusion
- 6 References

References

Bonat, W. H., and B. Jørgensen. 2016. "Multivariate Covariance Generalized Linear Models." *Journal of the Royal Statistical Society, Series C (Applied Statistics)* 65 (5): 649–75.

Cederkvist, L., K. K. Holst, K. K. Andersen, and T. H. Scheike. 2019. "Modeling the Cumulative Incidence Function of Multivariate Competing Risks Data Allowing for Within-Cluster Dependence of Risk and Timing." *Biostatistics* 20 (2): 199–217.

Embrechts, P. 2009. "Copulas: A Personal View." The Journal of Risk and Insurance 76 (3): 639–50.

Kristensen, K., A. Nielsen, C. W. Berg, H. J. Skaug, and B. M. Bell. 2016. "TMB: Automatic Differentiation and Laplace Approximation." *Journal of Statistical Software* 70 (5): 1–21.

Laureano, H. A. 2021. "Modeling the Cumulative Incidence Function of Clustered Competing Risks Data: A Multinomial Glmm Approach." Master's thesis, Federal University of Paraná (UFPR).

Lindsay, B. G. 1988. "Composite Likelihood Methods." Comtemporary Mathematics 80 (1): 221–39.

R Core Team. 2021. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. Vienna, Austria.

Stan Development Team. 2020. "RStan: The R Interface to Stan." https://mc-stan.org/.

Varin, C., N. Reid, and D. Firth. 2011. "An Overview of Composite Likelihood Methods." Statistica Sinica 21 (1): 5–42.