Sortowanie. Posortuj zadany ciąg metodą QS (ze środkowym elementem wyboru) i HS.

> Pokaż kolejne kroki sortowania zaznaczając elementy wyboru i miejsca podziału tablicy oraz zamiany elementów na drzewie (w metodzie HS).

1	2	3	4	5	suma	Ocena

Podaj złożoność obliczeniową dla podanych metod w najlepszym, średnim i najgorszym przypadku – krótko uzasadnij. 12, 3, 55, 43, 6, 15, 16, 0, 1, 5, 0, 99, 23

Wymień metody sortowania w miejscu. Co to jest sortowanie w miejscu (krótko)?

- 2. Dany jest ciag:23, 44, 31, 1, 23, 17, 22, 16, 18, 15, 22, 37, 25, 11, 24
 - a) Dla podanego ciągu utwórz drzewo BST dodając element po elemencie.
 - Podaj sekwencje wierzchołków przy przeglądaniu: Wzdłużnym, Poprzecznym Wstecznym
 - Korzystając z jednego z w/w porządków utwórz drzewo BBST (dokładnie wyważone)
 - d) Dla tak utworzonego drzewa BBST Podaj sekwencje wierzchołków przy przeglądaniu: Wzdłużnym Poprzecznym, Wstecznym
 - e) Podaj zasadę usuwania korzenia z drzewa BST.
- a) Dla zadanego grafu nieskierowanego podaj sekwencje wierzchołków przy przeglądaniu w gląb i wszerz (dla obu metod przeglądania wybieramy wierzchołki zgodnie z rosnącym porządkiem ich numerów). Zaznacz składowe spójne grafu w podanych sekwencjach.

- Dla podanych grafów skierowanych, pokaż działanie algorytmu sortowania topologicznego. Podaj wynik jego działania i złożoność
- Rozwiąż następujący problem plecakowy stosując metodę programowania dynamicznego: rozmiar plecaka b=7, liczba
 elementów n=6, dla każdego i-tego elementu dany jest jego rozmiar s_i oraz wartość w_i zgodnie z poniższą tabela

	· · · · · · · · · · · · · · · · · · ·		erretter an	ary jessejej	Se recuiring		THE COLUMN TWO	35
	element i	1	2	3	4	5	6	
	rozmiar s _i	1	3	3	1	2	14	
	wartość <u>w</u> ,	3	2	6	2	14	44	
- 1								

- a) podaj wzór funkcji rekurencyjnej wykorzystanej w metodzie programowania dynamicznego dla w/w problemu plecakowego (zastosuj oznaczenia z zadania),
- Jaka byłaby wartość optymalna dla plecaka o pojemności b=5 oraz dostępne byłyby tylko pierwsze 4 elementy? Uzasadnij.
- c) wypisz indeksy elementów wybranych do plecaka,
- d) jaką złożoność obliczeniową O(?) ma algorytm programowania dynamicznego rozwiązujący w/w problem?
- Podaj dowód NP zupełności dla problemu P2||Cmax (2 równoległe identyczne maszyny, n- zadań, dowolne czasy wykonania zadań, minimalizacja czasu zakończenia zadań) (5 pkt)