

TabNAS: Rejection Sampling for Neural Architecture Search on Tabular Datasets

Chengrun Yang 1 , Gabriel Bender 1 , Hanxiao Liu 1 , Pieter-Jan Kindermans 1 , Madeleine Udell 2 , Yifeng Lu 1 , Quoc V. Le 1 , Da Huang 1

¹ Google Research, Brain Team ² Stanford University

Neural architecture search (NAS)

People want neural networks that are accurate (low loss), fast (low latency), cheap, interpretable, fair, . . .

Neural architecture search (NAS) matters to improve accuracy while meeting the latency desiderata.

Source: Google AI MobileNet-EdgeTPU blog post

Question: How to find the best architecture within a user-given resource limit? We do: reinforcement learning (RL) with weight sharing in a factorized search space

Example:

a 2-layer search space, candidate widths for each layer: {2, 3, 4}

Previous resource-aware RL rewards: With

- ullet a resource target T_0
- ullet a sampled architecture y, with quality reward Q(y) and resource consumption T(y)we have
- in MnasNet [3]: $Q(y) \cdot (T(y)/T_0)^{\beta}$ (exponential decay over limit, $\beta < 0$)
- in TuNAS [1]: $Q(y) + \beta |T(y)/T_0 1|$ (absolute value reward, or **Abs Reward**. $\beta < 0$)

Tradeoff between performance and resource usage

- performance metric: loss
- resource metric: number of parameters

Example: 3-layer feedforward networks (FFNs) on the Criteo dataset

- candidate widths for each layer: {8, 16, 24, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 384, 512}
- embedding size: 1,027
- activation: ReLU

Bottleneck architectures often outperform among FFNs.

- Definition: a layer being much wider or narrower than its neighbors
- Example: 32-144-24
- Intuition for outstanding performance: the weights mimic the low-rank factors of wider networks
- Our hope for NAS: automatically determine whether to use bottlenecks, and their sizes

Our NAS setting: use a Pareto-optimal (often bottleneck) architecture as our reference architecture for NAS:

- The NAS controller only has information about its number of parameters.
- The NAS controller aims to find an architecture that matches its performance.

It is difficult for RL with the Abs Reward to find a bottleneck — a toy example

Our method: rejection-based reward + Monte-Carlo sampling

Part I: Use rejection sampling to learn a better probability distribution

- ullet the set of feasible architectures: V
- a REINFORCE step on the logits: $\ell = \ell + \eta \nabla J(y)$ with single-step objective J(y)

Our algorithm: In each RL step

- \bullet sample a child network y
- \mathbf{Q} if y is feasible:
- ullet compute (or estimate) a differentiable $\mathbb{P}(V)$: within S, the probability of sampling an architecture that falls in V• compute single-step objective with reweighted sampling probability: $J(y) = \text{stop_grad}(Q(y) - Q_{\text{avg}}) \log[\underline{\mathbb{P}(y)}/\underline{\mathbb{P}(V)}]$

Intuition: rejection sampling

- the distribution we want to sample from: $\mathbb{P}(y \mid y \in V)$, which requires **coupled** distributions across layers
- the distribution we have: layer-wise distributions $\mathbb{P}(y)$ in a **factorized** search space
- ullet what we do: sample from $\mathbb{P}(y)$, accept and reweight it with $\mathbb{P}(V)$ when the sample y is feasible, reject otherwise

Part II: when the sample space is large, estimate $\mathbb{P}(V)$ by **Monte-Carlo sampling**

- ullet what we want: $\widehat{\mathbb{P}}(V)$, an estimate of the differentiable $\mathbb{P}(V)$
- what we have: candidate architectures, each with a sampling probability

what we do: sample from a proposal distribution
$$q$$
 for N times, get an estimate
$$\widehat{\mathbb{P}}(V) = \frac{1}{N} \sum_{k \in [N]} \frac{p^{(k)}}{q^{(k)}} \cdot \mathbb{1}(z^{(k)} \in V)$$

In theory:

- ullet $\mathbb{P}(V)$ is an unbiased and consistent estimate of $\mathbb{P}(V)$
- $\nabla \log[\mathbb{P}(y)/\hat{\mathbb{P}}(V)]$ is a consistent estimate of $\nabla \log[\mathbb{P}(y \mid y \in V)]$

In practice:

- for simplicity: set $q = \text{stop_grad}(p)$, i.e. sample with the current distribution p
- ullet to get an accurate estimate: have a large enough N

Experiments (more in paper!)

The failure of Abs Reward on Criteo, in the 3-layer search space with reference architecture 32-144-24:

TabNAS has easier-to-tune hyperparameters:

epochs

(e) Layer 1 (final choice **32**)

epochs

N=256 (5.2 ms/iteration)

N=5120 (5.6 ms/iteration)

(h) $\mathbb{P}(V)$ and $\widehat{\mathbb{P}}(V)$

 β and N on the toy example: the number of Monte-Carlo samples N in rejection-based reward is easier to tune than coefficient β in Abs Reward, and is easier to succeed.

(i) β in Abs Reward (j) N in TabNAS

epochs

(f) Layer 2 (final choice **144**)

On a **vision** task – NATS-Bench [2] channel size search space on CIFAR-100, with a 75M #FLOPs limit:

Table 1: **#FLOPs (M)** of architectures found by RL with the rejection-based reward and the Abs Reward.

RL learning rate	0.01	0.05	0.1	0.5
rejection-based reward, $N{=}200$	74.7 ± 0.3 (median 74.7)	74.7 ± 0.2 (median 74.7)	74.6 ± 0.3 (median 74.7)	70.7 ± 4.5 (median 72.4)
Abs Reward, $eta=$ -10	77.0 ± 12.7 (median 76.4)	75.1 ± 4.5 (median 74.8)	75.2 ± 1.7 (median 75.1)	$75.7 \pm 3.8 \ ({ m median} \ 75.2)$
Abs Reward, β =-5	78.1 ± 13.1 (median 77.0)	$75.6 \pm 4.3 \ (median \ 75.5)$	75.4 ± 1.7 (median 75.2)	$76.0 \pm 4.4 \ ({ m median} \ 75.3)$
Abs Reward, β =-1	83.0 ± 13.3 (median 81.9)	$77.4 \pm 4.4 \ (median \ 77.1)$	76.0 ± 2.1 (median 75.8)	76.7 ± 5.3 (median 75.6)
Abs Reward, β =-0.5	$87.1\pm12.7~(median~86.7)$	$78.8 \pm 4.5 \ (\text{median} \ 78.7)$	$77.0 \pm 2.6 \ (median \ 76.6)$	76.9 ± 6.0 (median 76.1)
Abs Reward, $eta=$ -0.1	$101.8 \pm 13.3 \ (median \ 103.0)$	$84.2 \pm 7.6 \ (median \ 83.0)$	81.1 ± 5.8 (median 80.5)	80.1 ± 10.6 (median 78.6)

Table 2: Test errors of architectures found by RL with the rejection-based reward and the Abs Reward.

epochs

(g) Layer 3 (final choice **24**)

RL learning rate	0.01	0.05	0.1	0.5
rejection-based reward, $N{=}200$				
Abs Reward, $eta=$ -10	0.483 ± 0.056	0.468 ± 0.034	0.473 ± 0.046	0.490 ± 0.074
Abs Reward, β =-5	0.474 ± 0.049	0.461 ± 0.029	0.463 ± 0.039	0.481 ± 0.061
Abs Reward, $\beta =$ -1	0.449 ± 0.027	0.442 ± 0.016	0.445 ± 0.020	0.456 ± 0.035
Abs Reward, β =-0.5	0.436 ± 0.019	0.434 ± 0.014	0.435 ± 0.015	0.444 ± 0.023
Abs Reward, β =-0.1	0.414 ± 0.009	0.416 ± 0.008	0.418 ± 0.009	0.426 ± 0.014

More experiments in paper: tradeoffs between loss and number of parameters in more search spaces; performance of RL-based NAS with more reward functions; ablation studies; comparison with Bayesian optimization and evolutionary search in one-shot NAS

- Paper: https://arxiv.org/abs/2204.07615
- Contact: Chengrun Yang (chengrun@google.com)

Bibliography

[1] G. Bender, H. Liu, B. Chen, G. Chu, S. Cheng, P.-J. Kindermans, and Q. V. Le. Can weight sharing outperform random architecture search? An investigation with TuNAS. In *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition, pages 14323–14332, 2020.

- [2] X. Dong, L. Liu, K. Musial, and B. Gabrys. Nats-bench: Benchmarking nas algorithms for architecture topology and size. IEEE transactions on pattern analysis and machine intelligence, 2021.
- [3] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le. Mnasnet: Platform-aware neural architecture search for mobile. In *Proceedings of the IEEE/CVF Conference on Computer* Vision and Pattern Recognition, pages 2820–2828, 2019.