The Kendall's τ

计算方法

- Compute rank for X and Y 计算 Rank
- Classify each point 对每个点的分类
 - o Positive: Rx > Ry 正的
 - o Negative: Rx < Ry 负的
 - o Zero: Rx = Ry 零 (最后不会考虑的)
- Sum by category 按照类别统计次数
 - o p: number of positive points 正类的个数
 - o n: number of negative points 负类的个数
 - o z: number of zeros points 零类的个数
 - \circ N = p + n + z
- 逻辑
 - o Positive 类别里互相是 concordant
 - o Negative 类别里互相是 Concordant
 - o Positive 和 Negative 之间的是 Discordant
- Pairs 计算对数
 - o Concordant: $C_n^2 + C_n^2$ 一致的对数
 - o Discordant: n × p 不一致的对数
 - o Total: C²_N 总对数
- Metric

$$\circ \quad \frac{C_{\rm n}^2 + C_p^2 - n \times p}{C_{\rm N}^2}$$

Pair Combination

	Positive	Negative	Zero
Positive	C_p^2		
Negative	n×p	C^2_n	
Zero	z×p	z×n	C_z^2

组合只看下三角: 红色是 concordant pairs, 蓝色是 discordant pairs, 黑色是被忽略的

需要证明下三角之和是所有的对数

 $=> (N - z + z)^2 = N^2$

$$C_{p}^{2} + C_{n}^{2} + n \times p + z \times p + z \times n + C_{z}^{2} = C_{N}^{2}$$

$$=> C_{p}^{2} + C_{n}^{2} + n \times p + z \times (N - z) + C_{z}^{2} = C_{N}^{2}$$

$$=> p \times (p - 1) + n \times (n - 1) + 2 \times p \times n + 2 \times z \times (N - z) + z \times (z - 1)$$

$$= N \times (N - 1)$$

$$=> p^{2} - p + n^{2} - n + 2 \times p \times n + 2 \times z \times (N - z) + z^{2} - z = N^{2} - N$$

$$=> p^{2} + 2 \times p \times n + n^{2} + 2 \times z \times (N - z) + z^{2} - n - p - z = N^{2} - N$$

$$=> (p + n)^{2} + 2 \times z \times (N - z) + z^{2} = N^{2}$$

$$=> (N - z)^{2} + 2 \times z \times (N - z) + z^{2} = N^{2}$$

A risk manager gathers five years of historical returns to calculate the Kendall τ correlation coefficient for stocks X and Y. The stock returns for X and Y from 2010 to 2014 are as follows:

			1	7	KX	KM
Year	X	Y	X	40	1	5
2010	5.0%	-10.0%	-20/0	-		U
2011	50.0%	-5.0%	1070	20	2	4
2012	-10.0%	20.0%	5%	-10	3	1
2013	-20.0%	40.0%	3070	15	4	3
2014	30.0%	15.0%	567,	-5	5	2.
			11.	/	1	

What is the Kendall τ correlation coefficient for the stock returns of X and Y?

NC-	-	100	4
Y.	3		
1		4/1	

解答

计算类别

Year	X	Y	类别(X>Y?)	Rank X	Rank Y	Rank X>
						Rank Y
2010	5%	-10%	1	3	1	-1
2011	50%	-5%	1	5	2	1
2012	-10%	20%	-1	2	4	-1
2013	-20%	40%	-1	1	5	-1
2014	30%	15%	1	4	3	1

- 统计类别
 - o Positive (1): 2 ↑
 - o Negative (-1): 3 个
- Pair 数
 - o Coordinate: $C_n^2 + C_p^2 = C_2^2 + C_3^2 = 1 + 3 = 4$ o Discordant: $n \times p = 3 \times 2 = 6$ o Total: $C_N^2 = C_5^2 = 10$
- Metric

$$0 \quad \frac{C_n^2 + C_p^2 - n \times p}{C_N^2} = \frac{4 - 6}{10} = -0.2$$

Calculate the Kendall τ correlation coefficient for the stock returns of X and Y listed in Figure 3.

Figure 3: Ranked Returns for Stocks X and Y

Year	X	Y	X Rank	Y Rank
2012	-20.0%	10.0%	1	2
2014	-10.0%	30.0%	2	4
2010	25.0%	-20.0%	3	1
2013	40.0%	20.0%	4	3
2011	60.0%	40.0%	5	5

Answer:

Begin by comparing the rankings of X and Y stock returns in columns four and five of Figure 3. There are five pairs of observations, so there will be ten combinations. Figure 4 summarizes the pairs of rankings based on the stock returns for X and Y. There are two concordant pairs, four discordant pairs, and four pairs that are neither concordant nor discordant.

Figure 4: Categorizing Pairs of Stock X and Y Returns

Concordant Pairs	Discordant Pairs	<u>Neither</u>
{(1,2),(2,4)}	$\{(1,2),(3,1)\}$	$\{(1,2),(5,5)\}$
{(3,1),(4,3)}	$\{(1,2),(4,3)\}$	$\{(2,4),(5,5)\}$
	$\{(2,4),(3,1)\}$	{(3,1),(5,5)}
	$\{(2,4),(4,3)\}$	{(4,3),(5,5)}

Kendall's τ can then be determined as -0.2:

$$\tau = \frac{n_c - n_d}{n(n-1)/2} = \frac{2-4}{5(5-1)/2} = -0.2$$

• 计算类别

Year	X	Y	类别(X>Y?)	Rank X	Rank Y	Rank X>
						Rank Y
2012	-20%	10%	-1	1	2	-1
2014	-10%	30%	-1	2	4	-1
2010	25%	-20%	1	3	1	1
2013	40%	20%	1	4	3	1
2011	60%	40%	1	5	5	0

• 统计类别

- o Positive (1): 2 ↑
- o Negative (-1): 2 个
- o Zero(0): 1 个
- Pair 数
 - O Coordinate: $C_n^2 + C_p^2 = C_2^2 + C_2^2 = 1 + 1 = 2$ O Discordant: $n \times p = 2 \times 2 = 4$ O Total: $C_N^2 = C_5^2 = 10$
- Metric

$$0 \frac{C_n^2 + C_p^2 - n \times p}{C_N^2} = \frac{2 - 4}{10} = -0.2$$