配布資料 4:展開形ゲーム

(参考文献 12「ゲーム理論」(岡田章著,有斐閣)61 - 93,105 - 114ページ参照)

- 1. 例を使った説明 展開形ゲーム I を参照
 - (a) $N = \{1, 2, 3\}$ プレイヤーの集合 , $\Gamma = (K, P, p, U, h)$
 - K=(V,E) グラフ $V=\{x_0,x_1,...,x_6,w_1,...,w_8\}$ 点の集合 x_0 始点, $W=\{w_1,...,w_8\}$ 終点の集合 $X=V\setminus W=\{x_0,x_1,...,x_6\}$ 手番の集合 $E=\{e_1,...,e_{10}\}$ 枝の集合 $A(x_0)=\{e_1,e_2\}$ x_0 から出る枝(選択肢)の全体(問題) $A(x_2)$ は?
 - $P^0 = \{x_1\}$ 偶然手番の集合 $P^1 = \{x_0\}, P^2 = \{x_2\}, P^3 = \{x_3, x_4, x_5, x_6\}$ プレイヤー 1,2,3 の手番の集合
 - p_{x1} = (p_{x1}(e₃), p_{x1}(e₄)), p_{x1}(e₃) + p_{x1}(e₄) = 1, p_{x1}(e₃), p_{x1}(e₄) ≥ 0
 偶然手番において枝がとられる確率
 - $U^0=\{u_1^0\}$ 偶然手番の情報集合の全体 $U^1=\{u_1^1\}, U^2=\{u_1^2\}, U^3=\{u_1^3, u_2^3\}$ プレイヤー 1 , 2 , 3 の情報集合の全体 $u_1^0=\{x_1\},\ u_1^1=\{x_0\},\ u_1^2=\{x_2\},\ u_1^3=\{x_3,x_4\},\ u_2^3=\{x_5,x_6\}$ $A(u_1^0)=\{e_3,e_4\},\ A(u_1^1)=\{e_1,e_2\},\ A(u_1^2)=\{e_5,e_6\}$ $A(u_1^3)=\{e_7,e_8\},\ A(u_2^3)=\{e_9,e_{10}\}$ 各情報集合における枝の全体
 - $h^i(w_i)$ 終点 w_i におけるプレイヤー i の利得
 - (b) 戦略
 - 純粋戦略

$$S^1 = \{e_1, e_2\}, S^2 = \{e_5, e_6\},$$

 $S^3 = \{(e_7, e_9), (e_7, e_{10}), (e_8, e_9), (e_8, e_{10})\}$

• 混合戦略

$$Q^{1} = \{q^{1} = (q^{1}(e_{1}), q^{1}(e_{2}))|q^{1}(e_{1}) + q^{1}(e_{2}) = 1, q^{1}(e_{1}), q^{1}(e_{2}) \geq 0\}$$

$$Q^{2} = \{q^{2} = (q^{2}(e_{5}), q^{2}(e_{6}))|q^{2}(e_{5}) + q^{2}(e_{6}) = 1, q^{2}(e_{5}), q^{2}(e_{6}) \geq 0\}$$

$$Q^{3} = \{q^{3} = (q^{3}(e_{7}, e_{9}), q^{3}(e_{7}, e_{10}), q^{3}(e_{8}, e_{9}), q^{3}(e_{8}, e_{10}))|$$

$$q^{3}(e_{7}, e_{9}) + q^{3}(e_{7}, e_{10}) + q^{3}(e_{8}, e_{9}) + q^{3}(e_{8}, e_{10}) \geq 1,$$

$$q^{3}(e_{7}, e_{9}), q^{3}(e_{7}, e_{10}), q^{3}(e_{8}, e_{9}), q^{3}(e_{8}, e_{10}) \geq 0\}$$

• 行動戦略

$$\begin{split} B^1 &= \{b^1 = (b^1_{u^1_1})|b^1_{u^1_1} = (b^1_{u^1_1}(e_1), b^1_{u^1_1}(e_2)), \\ b^1_{u^1_1}(e_1) + b^1_{u^1_1}(e_2) &= 1, b^1_{u^1_1}(e_1), b^1_{u^1_1}(e_2) \geq 0 \} \\ B^2 &= \{b^2 = (b^2_{u^2_1})|b^2_{u^2_1} = (b^2_{u^2_1}(e_5), b^2_{u^2_1}(e_6)), \\ b^2_{u^2_1}(e_5) + b^2_{u^2_1}(e_6) &= 1, b^2_{u^2_1}(e_5), b^2_{u^2_1}(e_6) \geq 0 \} \end{split}$$

$$\begin{split} B^3 = \{b^3 = (b^3_{u^3_1}, b^3_{u^3_2}) | b^3_{u^3_1} = (b^3_{u^3_1}(e_7), b^3_{u^3_1}(e_8)), b^3_{u^3_2} = (b^3_{u^3_2}(e_9), b^3_{u^3_2}(e_{10})), \\ b^3_{u^3_1}(e_7) + b^3_{u^3_1}(e_8) = 1, b^3_{u^3_1}(e_7), b^3_{u^3_1}(e_8) \geq 0, \\ b^3_{u^3_2}(e_9) + b^3_{u^3_2}(e_{10}) = 1, b^3_{u^3_2}(e_9), b^3_{u^3_2}(e_{10}) \geq 0 \} \end{split}$$

(c) 期待利得

- 行動戦略 $b=(b^1,b^2,b^3)$ $p(w_3|b)$ b のもとで終点 w_3 に到達する確率 $=p_{x_1}(e_4)b_{u_1^1}^1(e_1)b_{u_1^3}^3(e_7)$ (問題) $p(w_6|b)$ は? $H^i(b)$ b のもとでの期待利得 $=\sum_{j=1}^8 p(w_j|b) imes h^i(w_j)$ i=1,2,3
- 純粋戦略 $s = (s^1, ..., s^n)$

$$p(w_3|s) = \left\{ egin{array}{ll} p_{x_1}(e_4) & s^1(u_1^1) = e_1, s^3(u_1^3) = e_7$$
のとき 0 それ以外のとき

(問題) $p(w_6|s)$ は? $H^i(s) = \sum_{j=1}^8 p(w_j|s) imes h^i(w_j) \ i=1,2,3$

- ・ 混合戦略 $q=(q^1,...,q^n)$ $p(w_3|q)=q^1(e_1)\times p_{x_1}(e_4)\times (q^3(e_7,e_9)+q^3(e_7,e_{10}))$ (問題) $p(w_6|q)$ は? $H^i(q)=\sum_{j=1}^8 p(w_j|q)\times h^i(w_j)\ i=1,2,3$
- (d) 戦略形ゲーム表現 $G = (N, \{S^i\}_{i \in N}, \{H^i\}_{i \in N})$
 - $N = \{1, 2, 3\}$
 - $S^1 = \{e_1, e_2\}, S^2 = \{e_5, e_6\},$ $S^3 = \{(e_7, e_9), (e_7, e_{10}), (e_8, e_9), (e_8, e_{10})\}$
 - $\bullet \ H^i(b), H^i(s), H^i(q) \ i = 1, 2, 3$

(e) 部分ゲーム

- K の部分木 K' に関して, $\Gamma=(K,P,p,U,h)$ のすべての情報集合は K' の点と K' 以外の点を同時に含むことはないとする.このとき, Γ の各構成要素を部分木 K' に制限したゲームを Γ の 部分ゲーム という.
- ・部分木 $K(x_2)=(V(x_2),E(x_2))$ $V(x_2)=\{x_2,x_5,x_6,w_5,w_6,w_7,w_8\},E(x_2)=\{e_5,e_6,e_9,e_{10}\}$ $\Gamma(x_2)$ は部分ゲーム
- (問題)
 - $-K(x_3) = (V(x_3), E(x_3)) \otimes V(x_3), E(x_3)$ は?
 - $-\Gamma(x_3)$ は部分ゲームになるか?

(f) 部分ゲーム完全均衡

すべての部分ゲームにナッシュ均衡を与えるような戦略の組を <u>部分ゲーム完全均衡</u> という。

- (g) 完全情報
 - i. すべての情報集合が1点集合であるゲームを 完全情報ゲーム という.
 - ii. 各プレイヤーは選択において過去のプレイの結果をすべて知っている.
 - iii. <u>定理</u>:(点の数が有限個の)完全情報ゲームにおいては,純粋戦略によるナッシュ 均衡が存在する.
- (h) 完全記憶 以下,展開形ゲーム II を参照
 - 展開形ゲーム II において, u_1^1 と u_2^1 を考える.
 - x_3 は u_1^1 において e_1 を採ったときに到達可能
 - x_4 も u_1^1 において e_1 を採ったときに到達可能
 - u¹₁ と u₃¹ についても同様
 - 展開形ゲーム II は完全記憶ゲーム
 - 行動戦略 → 混合戦略
 - 行動戦略 $b^1=(b^1_{u^1_1},b^1_{u^1_2},b^1_{u^1_3})$ $b^1_{u^1_1}=(b^1_{u^1_1}(e_1),b^1_{u^1_1}(e_2)),$ $b^1_{u^1_2}=(b^1_{u^1_2}(e_7),b^1_{u^1_2}(e_8)),$ $b^1_{u^1_3}=(b^1_{u^1_3}(e_9),b^1_{u^1_3}(e_{10}))$
 - 混合戦略

純粋戦略
$$s^1=(s^1_{u^1_1},s^1_{u^1_2},s^1_{u^1_3})=(e_1,e_7,e_9)$$
 に対しては, $q(e_1,e_7,e_9)=b^1_{u^1_1}(e_1)b^1_{u^1_2}(e_7)b^1_{u^1_3}(e_9)$ でこの純粋戦略を用いる確率を与える (問題) $s^1=(s^1_{u^1_1},s^1_{u^1_2},s^1_{u^1_3})=(e_2,e_7,e_{10})$ を用いる確率は?

- 終点に到達する確率

$$\begin{array}{l} * \;\; p(w_1|b) = b^1_{u^1_1}(e_1) \times p_{x_1}(e_3) \times b^1_{u^1_2}(e_7) \\ * \;\; p(w_1|q) = (q(e_1,e_7,e_9) + q(e_1,e_7,e_{10}) \times p_{x_1}(e_3) \\ = (b^1_{u^1_1}(e_1)b^1_{u^1_2}(e_7)b^1_{u^1_3}(e_9) + b^1_{u^1_1}(e_1)b^1_{u^1_2}(e_7)b^1_{u^1_3}(e_{10})) \times p_{x_1}(e_3) \\ = b^1_{u^1_1}(e_1)b^1_{u^1_2}(e_7)p_{x_1}(e_3) \end{array}$$

- * 両者は等しくなる
- * (問題)終点 w_7 について等しくなることを確かめよ.
- 混合戦略 → 行動戦略
 - 混合戦略 $q^1 = (q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8)$ $q_1 = q(e_1, e_7, e_9), q_2 = q(e_1, e_7, e_{10})$ $q_3 = q(e_1, e_8, e_9), q_4 = q(e_1, e_8, e_{10})$ $q_5 = q(e_2, e_7, e_9), q_6 = q(e_2, e_7, e_{10})$ $q_7 = q(e_2, e_8, e_9), q_8 = q(e_2, e_8, e_{10})$
 - 行動戦略

$$q_1+q_2+q_3+q_4>0$$
, $q_5+q_6+q_7+q_8>0$ のとき

*
$$b_{u_1^1}^1(e_1) = q_1 + q_2 + q_3 + q_4, \ b_{u_1^1}^1(e_2) = q_5 + q_6 + q_7 + q_8$$

*
$$b_{u_2^1}^1(e_7) = \frac{q_1 + q_2}{q_1 + q_2 + q_3 + q_4}, b_{u_2^1}^1(e_8) = \frac{q_3 + q_4}{q_1 + q_2 + q_3 + q_4}$$

* (問題)
$$b_{u_{1}^{1}}^{1}(e_{9}),\;b_{u_{1}^{1}}^{1}(e_{10})$$
 はどうなるか?

$$q_1+q_2+q_3+q_4=1,\ q_5+q_6+q_7+q_8=0$$
 のとき

*
$$b_{u_1^1}^1(e_1) = q_1 + q_2 + q_3 + q_4, \ b_{u_1^1}^1(e_2) = 0$$

$$* b_{u_2}^{1}(e_7) = \frac{q_1 + q_2}{q_1 + q_2 + q_3 + q_4}, b_{u_2}^{1}(e_8) = \frac{q_3 + q_4}{q_1 + q_2 + q_3 + q_4}$$

$$* \ b_{u_{3}^{1}}^{1}(e_{9}) = q_{1} + q_{3} + q_{5} + q_{7} = q_{1} + q_{3}, \ b_{u_{3}^{1}}^{1}(e_{10}) = q_{2} + q_{4} + q_{6} + q_{8} = q_{2} + q_{4}$$

* (問題) $q_1+q_2+q_3+q_4=0,\ q_5+q_6+q_7+q_8=1$ のときはどうか?

- 終点に到達する確率

- * $p(w_1|q) = (q_1 + q_2) \times p_{x_1}(e_3)$
- * $p(w_1|b) = b_{u_1^1}^1(e_1) \times p_{x_1}(e_3) \times b_{u_2^1}^1(e_7) = (q_1 + q_2 + q_3 + q_4) \frac{q_1 + q_2}{q_1 + q_2 + q_3 + q_4} \times p_{x_1}(e_3) = (q_1 + q_2) \times p_{x_1}(e_3)$
- * 両者は等しくなる
- * (問題)終点 w_7 について,等しくなることを確かめよ.
- <u>定理</u>: (点の数が有限個の)完全記憶ゲームにおいては,行動戦略によるナッシュ 均衡が存在する.