- CPU executing an instruction takes a certain number of clock cycles
 - > These are referred as to as *machine cycles*
- The length of machine cycle depends on the frequency of the crystal oscillator connected to 8051
- In original 8051, one machine cycle lasts 12 oscillator periods

Find the period of the machine cycle for 11.0592 MHz crystal frequency

```
11.0592/12 = 921.6 kHz; machine cycle is 1/921.6 kHz = 1.085 \mus
```


TIME DELAY FOR VARIOUS 8051 CHIPS (cont')

For 8051 system of 11.0592 MHz, find how long it takes to execute each instruction.

- (a) MOV R3, #55 (b) DEC R3 (c) DJNZ R2 target
- (d) LJMP (e) SJMP (f) NOP (g) MUL AB

	<i>Machine cycles</i>	Time to execute
(a)	1	$1 \mathrm{x} 1.085 \mu \mathrm{s} = 1.085 \mu \mathrm{s}$
(b)	1	$1 \mathrm{x} 1.085 \mu \mathrm{s} = 1.085 \mu \mathrm{s}$
(C)	2	$2x1.085 \mu \mathrm{s} = 2.17 \mu \mathrm{s}$
(d)	2	$2x1.085 \mu \mathrm{s} = 2.17 \mu \mathrm{s}$
(e)	2	$2x1.085 \mu \mathrm{s} = 2.17 \mu \mathrm{s}$
(f)	1	$1 \text{x} 1.085 \mu \text{s} = 1.085 \mu \text{s}$
(g)	4	$4x1.085 \mu \mathrm{s} = 4.34 \mu \mathrm{s}$

Delay Calculation

Find the size of the delay in following program, if the crystal frequency is 11.0592MHz.

HERE: DJNZ R3, HERE

RET

A simple way to short jump to itself in order to keep the microcontroller busy

HERE: SJMP HERE

We can use the following:

SJMP \$

Solution:

Machine cycle

DELAY: MOV R3,#200 1
HERE: DJNZ R3,HERE 2
RET 2

Therefore, $[(200x2)+1+2]x1.085 \mu s = 436.255 \mu s$.

Increasing Delay Using NOP

Find the size of the delay in following program, if the crystal frequency is 11.0592MHz.

Machine Cycle

DELAY:	MOV	R3,#250	1
HERE:	NOP		1
	DJNZ	R3,HERE	2
	RET		2

Solution:

The time delay inside HERE loop is $[250(1+1+1+1+2)] \times 1.085 \,\mu\,\text{s} = 1627.5 \,\mu\,\text{s}.$ Adding the two instructions outside loop we have $1627.5 \,\mu\,\text{s} + 3 \times 1.085 \,\mu\,\text{s} = 1630.755 \,\mu\,\text{s}$

Large Delay Using Nested Loop Find the size of the delay in following program, if the crystal frequency is 11.0592MHz.

Machine Cycle

MOV	R2,#200	1
MOV	R3,#250	1
NOP		1
NOP		1
DJNZ	R3,HERE	2
DJNZ	R2,AGAIN	2
RET		2
	MOV NOP NOP DJNZ	MOV R3,#250 NOP

Notice in nested loop, as in all other time delay loops, the time is approximate since we have ignored the first and last instructions in the subroutine.

Solution:

For HERE loop, we have $(4x250)x1.085\,\mu\,s=1085\,\mu\,s$ For AGAIN loop repeats HERE loop 200 times, so we have $200x1085\,\mu\,s=217000\,\mu\,s$. But "MOV R3,#250" and "DJNZ R2,AGAIN" at the start and end of the AGAIN loop add $(3x200x1.805)=651\,\mu\,s$. As a result we have $217000+651=217651\,\mu\,s$.

Delay
Calculation for
Other 8051

- Two factors can affect the accuracy of the delay
 - Crystal frequency
 - The duration of the clock period of the machine cycle is a function of this crystal frequency
 - > 8051 design
 - The original machine cycle duration was set at 12 clocks
 - Advances in both IC technology and CPU design in recent years have made the 1-clock machine cycle a common feature

Clocks per machine cycle for various 8051 versions

Chip/Maker	Clocks per Machine Cycle
AT89C51 Atmel	12
P89C54X2 Philips	6
DS5000 Dallas Semi	4
DS89C420/30/40/50 Dallas Semi	1

Delay
Calculation for
Other 8051
(cont')

Find the period of the machine cycle (MC) for various versions of 8051, if XTAL=11.0592 MHz.

(a) AT89C51 (b) P89C54X2 (c) DS5000 (d) DS89C4x0

- (a) 11.0592 MHz / 12 = 921.6 kHz; MC is $1/921.6 \text{kHz} = 1.085 \, \mu \, \text{s} = 1085 \, \text{ns}$
- (b) 11.0592 MHz / 6 = 1.8432 MHz; MC is $1/1.8432 \text{MHz} = 0.5425 \, \mu \, \text{s} = 542 \text{ns}$
- (c) 11.0592 MHz / 4 = 2.7648 MHz; MC is $1/2.7648 \text{MHz} = 0.36 \, \mu \, \text{s} = 360 \, \text{ns}$
- (d) 11.0592 MHz / 1 = 11.0592 MHz;MC is $1/11.0592 \text{MHz} = 0.0904 \, \mu \, \text{s} = 90 \, \text{ns}$

Delay Calculation for Other 8051 (cont')

Instruction	8051	DSC89C4x0
MOV R3,#55	1	2
DEC R3	1	1
DJNZ R2 target	2	4
LJMP	2	3
SJMP	2	3
NOP	1	1
MUL AB	4	9

For an AT8051 and DSC89C4x0 system of 11.0592 MHz, find how long it takes to execute each instruction.

- (a) MOV R3, #55 (b) DEC R3 (c) DJNZ R2 target
- (d) LJMP (e) SJMP (f) NOP (q) MUL AB

AT8051		DS89C4x0
$(a) 1 \times 1085 ns =$	1085ns	2×90 ns = 180 ns
(b) 1×1085ns $=$	1085ns	1×90 ns = 90 ns
(c) 2×1085ns $=$	2170ns	4×90 ns = 360ns
(d) 2×1085ns $=$	2170ns	3×90 ns = 270ns
$(e) 2 \times 1085 ns =$	2170ns	3×90 ns = 270ns
(f) 1×1085ns $=$	1085ns	1×90 ns = 90 ns
(g) 4×1085ns $=$	4340ns	9×90 ns = 810 ns

