Série d'exercices n° 1 Extrema des fonction de plusieurs variables

EXTREMA LIBRES ET POINTS CRITIQUES

Exercise 1: Soient $f_1(x,y) = 2x^2 + 2y^2 + 2xy + 1$ et $f_2(x,y) = x^2 + y^3$.

- 1) Déterminer les points critiques de f_1 et de f_2 .
- 2) Etudier les extrema locaux et globaux de f_1 , en utilisant la dédinition.
- 3) En calculant, pour $y \neq 0$, $f_2(0, y)$, étudier les extrema locaux de f_2 .

Exercice 2 : En utilisant la définition et un changement de variable adéquats pour se ramner en (0,0), étudier les extrema locaux de f_1 et de f_2 où:

$$f_1(x,y) = x^2 + y^2 + xy - 3x - 6y$$
, et $f_2(x,y) = x^2 + 2y^2 - 2xy - 2y$.

Exercice 3: Soit f la fonction définie de \mathbb{R}^2 dans \mathbb{R} par : $f(x,y) = -y \left(\ln(y)^2 + x^2\right)$.

- $\overline{1}$) Détreminer le domaine de définition de f.
- 2) Déterminer les points critiques de f.
- 3)En utilisant les dérivées partielles d'ordre 2, étudier les extrema locaux et globaux de f

Exercice 4: Trouver et déterminer la nature des points critiques des fonctions

1)
$$f_1(x,y) = 2x^3 + 6xy - 3y^2 + 2$$
.

s points critiques des fonctions
2)
$$f_2(x, y, z) = x^4 + 2y^2 + 3z^2 - yz - 23y - 4x - 5$$
.
4) $f_4(x, y) = xy + \frac{1}{x} + \frac{1}{y}$.

3)
$$f_3(x,y) = y^2 + xy \ln(x)$$
,

4)
$$f_4(x,y) = xy + \frac{1}{x} + \frac{1}{y}$$

Exercice 5 : Déterminer les extrema locaux des fonctions ci-dessous. Est-ce que ce sont des extrema globaux?

1)
$$f_1(x,y) = x^4 + y^3 - 3y - 2$$
, 2) $f_2(x,y) = x^3 + xy^2 - y^3$, 3) $f_3(x,y) = x^2y^2(1 + x + 2y)$.

Exercice 6 : Afin de traiter une infection bactérienne, l'utilisation conjointe de deux composés chimiques est utilisée. Des études ont montré qu'en laboratoire la durée de l'infection pouvait être modelisée par

$$D(x,y) = x^2 + 2y^2 - 18x - 24y + 2xy + 120,$$

où x est le dosage en mg du premier composé et y le dosage en mg du second.

Comment minimiser la durée de l'infection?

EXTREMA SOUS CONTRAINTES

Exercise 7: Soient $f(x,y) = xy(\overline{1-x-y})$ et $K = \{(x,y) \in \mathbb{R}^2 \text{ tq } xy \ge 0 \text{ et } x+y \le 1\}$.

- 1) Illustrer géométriquement l'ensemble K.
- 2) Montrer que f admet un maximum sur K, et déterminer ce maximum.

Exercice 8 : Utiliser la méthode des multiplicateurs de Lagrange pour trouver les extrema des fonctions f_1 et de f_2 sous la (les) contrainte(s) indiquée(s):

- 1) $f_1(x,y) = x^2 + y^2$ sous la contrainte xy = 1. 2) $f_2(x,y,z) = x^2 + y^2 + z^2$ sous les contraintes $x^2 + y^2 + z^2 \le 1$ et $2\sin(x^2 + y^2 + z^2) = 2\sin(x^2 + y^2)$
- 3) f(x,y) = xy sous la contrainte $x^2 + y^2 = 1$.

Exercice 9 : 1) Minimiser la distance de P_1 à P_2 où

- P_1 est un point de l'éllipsoide d'équation $2x^2 + y^2 + 2z^2 8 = 0$,
- P_2 est un point du plan d'équation x + y + z 10 = 0.
- 2) Quelle est la plus longue distance du point (2, 1) au cercle d'équation $x^2+y^2=4$
- 3) Chercher la distance minimale de la courbe d'équation $y^2 x^3 = 0$ au point (-1,0)

EXERCICES D'EXAMENS

Exercice 10 (Contrôle final S1- 2010/2011): La température au point de coordonnées (x, y, z) de la sphère d'équation $x^2+y^2+z^2=1$ vaut : T(x, y, z)=xz+yz. Quels sont les points les plus chauds et les plus froids.

Exercice 11 (Contrôle final S1- 2011/2012) : Soient f et g deux applications de $U=\mathbb{R}^2-\{(0,0)\}$ dans \mathbb{R} telles que : $f(x,y)=\sqrt{x^2+y^2}+y^2-1$ et $g(x,y)=x^2+y^2-9$.

- 1) Montrer que U est un ouvert de \mathbb{R}^2 et que $f \in C^{\infty}(U)$.
- 2) On pose: pour $(x,y) \in U$, $h(x,y) = f(x,y) \frac{7}{6}g(x,y)$. Trouver les points critiques de h sur U et éudier leurs nature.
- 3) On pose $\Gamma = \{(x,y) \in \mathbb{R}^2 / g(x,y) = 0\}$. En utilisant la méthode des multiplicateurs de Lagrange, montrer qu'il existe 4 points où $f_{|\Gamma}$ peut présenter des extrema.
 - Démontrer que Γ est un fermé borné de U.
 - Donner la valeur maximale et la valeur minimale de $f_{|\Gamma}$.
- 4) On pouvait déduire, de la question 2, deux des extrema de $f_{\mid \Gamma}$. Expliquez comment.
- 5) Trouver les extrema de h en tant que fonction définie sur \mathbb{R}^2 .

Exercice 12 (Contrôle intermédiaire-2016/2017): On définit la fonction $f \text{ de } \mathbb{R}^2 \text{ dans } \mathbb{R} \text{ par} : f(x,y) = x^4 + y^4 - 4xy.$

- 1) Trouver les points critiques de f et donner leur nature.
- 2) Vérifier que $f(x,y) = (x^2 y^2)^2 + 2(xy 1)^2 2$.
- 3) En déduire que les extrema locaux de f sont globaux.

Exercice 13 (Contrôle intermédiaire-2016/2017) : Déterminer les points de la courbe d'équation $x^6 + y^6 = 1$ les plus proches et les plus éloignés de l'origine O, sachant que la réprésentation graphique de cette courbe est la suivante :

Courbe d'équation $x^6 + y^6 = 1$

NB : $2^{\frac{2}{3}} = 1.59$.

Exercice 14 (Contrôle intermédiaire-2017-2018) : On aimerait trouver un champ rectangulaire d'aire maximale délimité par une clôture de longueur l donnée. Soient x et y les longueurs des côtés du champ rectangulaire.

1) Donner la longueur de la clôture et l'aire du champ en fonction de x et y.

- 2) S'agit-il d'un problème d'extrema liés? Si oui donner la fonction à optimiser et la contrainte.
- 3) Trouver, par la méthode des multiplicateurs de Lagrange, l'aire maximale du champ rectangulaire délimité par une clôture de longueur 16 (faire le test).