

(b) Copolymer 1 or a Copolymer 1-related peptide or polypeptide.

REMARKS

Claims 1-42 presently appear in this case. The present amendment is intended to place the present claims into better condition for examination. Consideration of the present supplemental amendment in conjunction with applicants' amendment of January 2, 2003, prompt examination of all claims on the merits and allowance thereof are earnestly solicited.

Attached hereto is a marked-up version of the changes made to the claims by the current amendment. The attached page is captioned "Version with markings to show changes made".

Respectfully submitted,

BROWDY AND NEIMARK, P.L.L.C. Attorneys for Applicant(s)

By

Roger L. Browdy

Registration No. 25,61/8

RLB:rd

Telephone No.: (202) 628-5197 Facsimile No.: (202) 737-3528 G:\BN\B\BENA\Eis-Schwartz13B\pto\AmendmentB.doc

In re of Appln. No. 09/765,544

Version with Markings to Show Changes Made In the Claims

Claims 1-3, 6-19, 23, 24, 27-40 and 42 have been amended as follows:

- 1_(Amended). A method for preventing or
 inhibitingreducing neuronal degeneration, or for promoting
 nerve regeneration, in the central nervous system or
 peripheral nervous system, which comprises administering to an
 individual in need thereof an effective amount of at least one
 of:
 - (a) activated T cells which have been activated by Cop 1 Copolymer 1 or a Cop 1 Copolymer 1 - related peptide or polypeptide; or
 - (b) Cop 1 Copolymer 1 or a Cop 1 Copolymer 1 related peptide or polypeptide.

wherein the individual in need is other than one with multiple sclerosis.

- 2_(Amended). A method in accordance with claim 1, wherein said administering step comprises administering to said individual an effective amount of activated T cells which have been activated by Cop 1Copolymer 1 or a Cop 1Copolymer 1-related peptide or polypeptide.
- 3_(Amended). A method in accordance with claim 2, wherein said NS-specific activated T cells are autologous T cells, or allogeneic T cells from related donors, or HLA-

matched or partially matched, semi-allogeneic or fully allogeneic donors.

6 (Amended). A method in accordance with claim 1, wherein said administering step comprises administering to an individual in need thereof an effective amount of Cop 1 Copolymer 1 or a Cop 1 Copolymer 1 related peptide or polypeptide.

7_(Amended). A method in accordance with claim 6, wherein said Cop 1Copolymer 1 or a Cop 1Copolymer 1-related peptide or polypeptide is Cop 1Copolymer 1.

8 (Amended). A method in accordance with claim 6, wherein said Cop 1 Copolymer 1 or a Cop 1 Copolymer 1 - related peptide or polypeptide is a Cop 1 Copolymer 1 - related peptide or polypeptide.

9_(Amended). A method in accordance with claim 6, in which said Cop 1Copolymer 1 or a Cop 1Copolymer 1-related peptide or polypeptide is administered in a manner which promotes active immunization of the individual so as to build up a critical T cell response.

10_(Amended). A method in accordance with claim 1, wherein said Copolymer 1 or Cop 1Copolymer 1-related peptide or polypeptide is a random copolymer that cross-reacts functionally with myelin basic protein (MBP) and is capable of competing with MBP on the MHC class II molecule in antigen presentation.

- 11_(Amended). A method in accordance with claim 10, wherein said random copolymer comprises consists of one amino acid_residue selected from each of at least three of the following groups:
 - (a) lysine and arginine;
 - (b) glutamic acid and aspartic acid;
 - (c) alanine and glycine; and
 - (d) tyrosine and tryptophan.
- 12 (Amended). A method in accordance with claim 11, wherein said random copolymer consists of contains four different amino acidsacid residues, each from a different one of the groups (a) to (d).
- 13 (Amended). A method in accordance with claim 12, wherein said four different amino acid residuesacids are alanine, glutamic acid, lysine and tyrosine.
- 14 (Amended). A method in accordance with claim 12, wherein said random copolymer consists of contains three different amino acid residues acids, each from a different one of three groups (a) to (d).
- 15 (Amended). A method in accordance with claim 14, wherein said random copolymer consists of contains tyrosine, alanine, and lysine residues.
- 16 (Amended). A method in accordance with claim 14, wherein said random copolymer contains consists of tyrosine, glutamic acid and lysine residues.

- 17 (Amended). A method in accordance with claim 14, wherein said random copolymer consists of contains lysine, glutamic acid, and alanine residues.
- 18 (Amended). A method in accordance with claim 14, wherein said random copolymer consists of contains tyrosine, glutamic acid, and alanine residues.
- 19 (Amended). A method for treating reducing neuronal degeneration caused by injury or disease other than multiple sclerosis, which comprises administering to an individual having neuronal degeneration caused by injury or disease other than multiple sclerosis an effective amount of at least one of:
 - (a) activated T cells which have been activated by Cop 1 Copolymer 1 or a Cop 1 Copolymer 1 - related peptide or polypeptide; or
 - (b) Cop 1 Copolymer 1 or a Cop 1 Copolymer 1 related peptide or polypeptide.
- 23 (Amended). A method in accordance with claim 19, wherein said administering step comprises administering to said individual an effective amount of activated T cells which have been activated by Cop 1 Copolymer 1 or a Cop 1 Copolymer 1 related peptide or polypeptide.
- 24_(Amended). A method in accordance with claim 23, wherein said NS-specific activated T cells are autologous T cells, or allogeneic T cells from related donors, or HLA-

matched or partially matched, semi-allogeneic or fully allogeneic donors.

- 27_(Amended). A method in accordance with claim 19, wherein said administering step comprises administering to an individual in need thereof an effective amount of Cop 1_Copolymer 1_-related peptide or polypeptide.
- 28 (Amended). A method in accordance with claim 27, wherein said Cop 1 Copolymer 1 or a Cop 1 Copolymer 1 related peptide or polypeptide is Cop 1 Copolymer 1.
- 29 (Amended). A method in accordance with claim 27, wherein said Cop 1 Copolymer 1 or a Cop 1 Copolymer 1 related peptide or polypeptide is a Cop 1 Copolymer 1 related peptide or polypeptide.
- 30 (Amended). A method in accordance with claim 27, in which said Cop 1 Copolymer 1 or a Cop 1 Copolymer 1-related peptide or polypeptide is administered in a manner which promotes active immunization of the individual so as to build up a critical T cell response.
- 31 (Amended). A method in accordance with claim 19, wherein said Copolymer 1 or Cop 1 Copolymer 1 related peptide or polypeptide is a random copolymer that cross-reacts functionally with myelin basic protein (MBP) and is capable of competing with MBP on the MHC class II molecule in antigen presentation.

- 32_(Amended). A method in accordance with claim 31, wherein said random copolymer comprises consists of one amino acid_residue selected from each of at least three of the following groups:
 - (a) lysine and arginine;
 - (b) glutamic acid and aspartic acid;
 - (c) alanine and glycine; and
 - (d) tyrosine and tryptophan.
- 33 (Amended). A method in accordance with claim 32, wherein said random copolymer contains consists of four different amino acidsacid residues, each from a different one of the groups (a) to (d).
- 34 (Amended). A method in accordance with claim 33, wherein said four different amino <u>acid residuesacids</u> are alanine, glutamic acid, lysine and tyrosine.
- 35_(Amended). A method in accordance with claim 33, wherein said random copolymer consists of contains three different amino acid residues acids, each from a different one of three groups (a) to (d).
- 36_(Amended). A method in accordance with claim 35, wherein said random copolymer consists of contains tyrosine, alanine, and lysine residues.
- 37 (Amended). A method in accordance with claim 35, wherein said random copolymer consists of contains tyrosine, glutamic acid and lysine residues.

In re of Appln. No. 09/765,544

38 (Amended). A method in wherein said random copolymer consist

38 (Amended). A method in accordance with claim 35, wherein said random copolymer consists of contains lysine, glutamic acid, and alanine residues.

39 (Amended). A method in accordance with claim 35, wherein said random copolymer consists of contains tyrosine, glutamic acid, and alanine residues.

40 (NewAmended). A method for reducing neuronal degeneration in the central nervous system or peripheral nervous system of an individual suffering from neuronal degeneration, comprising causing T cells which have been activated by Cop 1Copolymer 1 or a Cop 1Copolymer 1-related peptide or polypeptide to accumulate at the site of neuronal degeneration in the individual, thereby reducing neuronal degeneration at that site.

42 (<u>AmendedNew</u>). A method in accordance with claim 40, wherein said T cells which have been activated by Cop ± Copolymer 1 or a Cop 1Copolymer 1-related peptide or polypeptide are caused to accumulate at the site of neuronal degeneration by administering to the individual in need thereof an effective amount of:

- (a) activated T cells which have been activated by Cop 1 Copolymer 1 or a Cop 1 Copolymer 1 - related peptide or polypeptide; or
- (b) Cop 1 Copolymer 1 or a Cop 1 Copolymer 1 related peptide or polypeptide.