SMIII lectures

Week 12

The Geometry of Least Squares

- ► The discussion of linear models so far has been formulated in terms of matrices.
- This is adequate from a computational perspective.
- ▶ But there is an important logical gap to be filled.
- We know the same model can be specified with different model matrices.
- ► For example, when dealing with factors, we can use different constraints and we showed that the models were equivalent.

The Geometry of Least Squares

We need to answer the question:

What is the unique definition of a linear model?

Overview

- In this section, we use concepts of linear algebra and, in particular, vector subspaces to provide a precise specification of the linear model.
- ► Hypothesis testing and the analysis of variance will be described in terms of linear algebra.
- ▶ We will consider only *n*-dimensional Euclidean space.
- Much of the theory extends to abstract vector spaces, but this is not considered here.

Subspaces

$$\mathbb{R}^{\ltimes}$$

$$\mathbb{R}^n = \left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} : x_i \in \mathbb{R} \right\}.$$

Vector Addition

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

for

$$\mathbf{x},\mathbf{y}\in\mathbb{R}^n$$
.

Scalar Multiplication

$$\mathbf{ax} = \begin{bmatrix} ax_1 \\ ax_2 \\ \vdots \\ ax_n \end{bmatrix}$$

for

$$a \in \mathbb{R}, \ \mathbf{x} \in \mathbb{R}^n$$
.

The dot product

The **dot product** or **inner product** of two vectors is defined in the usual way.

$$\mathbf{x.y} = \mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i.$$

The norm

The dot product can be used to define distances, via the **norm**,

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}.\mathbf{x}} = \sqrt{\sum_{i=1}^{n} x_i^2},$$

so that the Euclidean distance between two points is

$$\|\mathbf{x}-\mathbf{y}\|.$$

Orthogonal vectors

The dot product is also used to define the angle, θ between vectors via the relation

$$\frac{\boldsymbol{x}.\boldsymbol{y}}{\|\boldsymbol{x}\|.\|\boldsymbol{y}\|} = \cos\theta.$$

The vectors x, y are said to be **orthogonal** or **perpendicular** if

$$x.y = 0.$$

In this case, we write

$$x \perp y$$
.

Definition 12.1: Vector Subspaces

A set

$$\mathcal{M} \subseteq \mathbb{R}^n$$

is said to be a vector subspace if

$$a\mathbf{x} + b\mathbf{y} \in \mathcal{M}$$

for all $x, y \in \mathcal{M}$ and $a, b \in \mathbb{R}$.

Example 1

$$\mathcal{M}_1\subset\mathbb{R}^3$$

defined by

$$\mathcal{M}_1 = \left\{ oldsymbol{x} = egin{bmatrix} x_1 \ x_2 \ 0 \end{bmatrix} : x_1, x_2 \in \mathbb{R}
ight\}.$$

Example 2

Let X be an $n \times p$ matrix and let

$$\mathcal{M}_2 = \{ {m y} \in \mathbb{R}^n : {m y} = X{m eta} \ ext{for} \ {m eta} \in \mathbb{R}^p \}.$$

Definition 12.2: Span

Let

$$\{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_p\} \subset \mathbb{R}^n$$

be a set of vectors.

The **span** is defined by

$$S\{x_1, x_2, \dots, x_p\} = \{y \in \mathbb{R}^n : y = a_1x_1 + a_2x_2 + \dots + a_px_p\}$$

for

$$a_1, a_2, \ldots, a_p \in \mathbb{R}$$
.

Ш

The span,

$$\mathcal{S}\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_p\},\$$

is always a vector subspace.

The vectors

$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$$

is said to span the subspace ${\mathcal M}$ if

$$\mathcal{M} = \mathcal{S}\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p\}.$$

Basis

Recall that a set of vectors,

$$\{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_p\} \subset \mathbb{R}^n$$

is said to be linearly independent if

$$\sum_{i=1}^p a_i \mathbf{x}_i = \mathbf{0} \Rightarrow a_1 = a_2 = \ldots = a_p = 0.$$

Definition 12.3

Let

$$\mathcal{M} \subseteq \mathbb{R}^n$$

be a vector subspace.

A set of linearly independent vectors,

$$\{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_p\},\$$

such that

$$\mathcal{M} = \mathcal{S}\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p\}$$

is said to form a **basis** for \mathcal{M} .

L

Example 1

The two vectors

$$\left\{ \boldsymbol{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \boldsymbol{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$

form a basis for \mathcal{M}_1 .

Example 2

If the columns

$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$$

of the matrix, X, are **linearly independent**, then they form a basis for \mathcal{M}_2 .

Alternative Bases

The basis of a vector subspace is not unique. In our two examples:

▶ The two vectors

$$\left\{ \boldsymbol{y}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \boldsymbol{y}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\}$$

form a basis for \mathcal{M}_1 . - For any $p \times p$ invertible matrix, A, the columns of the matrix XA form a basis for \mathcal{M}_2 , provided the columns of X are linearly independent.

Theorem 12.1: Dimension of a subspace

Suppose

$$\{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_p\}$$

and

$$\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_r\}$$

are bases for the vector subspace \mathcal{M} . The r = p.

Definition 12.4

The the vector subspace, \mathcal{M} , is said to have dimension, p, if any basis for \mathcal{M} has p elements.

Г

Linear Models

Linear Models

Consider data $\mathbf{y} = (y_1, y_2, \dots, y_n)$ and the statistical model,

$$y = \eta + e$$

where e_1, e_2, \ldots, e_n are such that

$$E(\mathbf{e}) = 0$$
 and $Var(\mathbf{e}) = \sigma^2 I$.

A model of the form,

$$M: \boldsymbol{\eta} \in \mathcal{M}$$

where $\mathcal{M} \subseteq \mathbb{R}^n$ is called a linear model.

Linear Models

A linear model is specified at the most fundamental level by the subspace $\mathcal{M}.$

In practice, linear models can be specified by a model matrix, X, such that

$$\eta \in \mathcal{M} \Leftrightarrow \eta = X\beta.$$

That is, where the columns of X form a basis for \mathcal{M} .

We have seen previously examples where the same model can specified with different model matrices.

In general two models of the form

$$\eta = X\beta$$
 and $\eta = X^*\beta^*$

will be equivalent when the columns of X and X^* are bases for the same subspace \mathcal{M} .

The projection matrix

In the matrix treatment of the linear model, the projection matrix

$$P = X(X^TX)^{-1}X^T$$

plays a key role.

P can also be defined as a projection operator on the underlying subspace without reference to a model matrix.

This is an important result because it implies that the projection P obtained from X and X^* is the same.

Definition 12.5 Orthogonal Complement

The $orthogonal\ complement\ of\ the\ vector\ subspace\ \mathcal{M}\ is\ the\ set$

$$\mathcal{M}^{\perp} = \{ \mathbf{v} \in \mathbb{R}^n : \mathbf{v} \perp \mathbf{x} \text{ for all } \mathbf{x} \in \mathcal{M} \}.$$

Theorem 12.2

If \mathcal{M} is a vector subspace of dimension p, then \mathcal{M}^{\perp} is a vector subspace of dimension n-p.

П

Example

Let \mathcal{M}_1 be as previously.

$$\mathcal{M}_1 = \left\{ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \right\}.$$

$$\mathcal{M}_1^{\perp} = \left\{ oldsymbol{v} \in \mathbb{R}^3 : oldsymbol{v.x} = 0 ext{ for all } oldsymbol{x} = egin{bmatrix} x_1 \ x_2 \ 0 \end{bmatrix}
ight\}.$$

$$\mathbf{v.x} = x_1 v_1 + x_2 v_2 = 0$$
 for all $x_1, x_2 \Leftrightarrow v_1 = v_2 = 0$.

That is,

$$\mathcal{M}_1^\perp = \left\{ oldsymbol{v} = egin{bmatrix} 0 \ 0 \ v_2 \end{bmatrix} : v_3 \in \mathbb{R}
ight\} = \mathcal{S} \left\{ egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}
ight\}$$

Orthogonal Projection

Let $\mathcal{M} \subseteq \mathbb{R}^n$ be a vector subspace.

It can be proved that every $\mathbf{\textit{y}} \in \mathbb{R}^n$ can be expressed **uniquely** as

$$\mathbf{y} = \mathbf{u} + \mathbf{v}$$
 where $\mathbf{u} \in \mathcal{M}, \ \mathbf{v} \in \mathcal{M}^{\perp}$.

Definition 12.6

The orthogonal projection P on the subspace \mathcal{M} is the linear mapping $P:\mathbb{R}^n\mapsto\mathcal{M}$ defined by

$$P\mathbf{y}=\mathbf{u}$$
.

Note I - P is the orthogonal projection on \mathcal{M}^{\perp} .

Example

Let $\mathcal{M}_1 \subset \mathbb{R}^3$ be as before and let P be the orthogonal projection. Consider

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \in \mathbb{R}^3.$$

The unique decomposition of

$$y = u + v$$

is

$$oldsymbol{u} = egin{bmatrix} y_1 \ y_2 \ 0 \end{bmatrix} \in \mathcal{M}_1 \ ext{and} \ oldsymbol{v} = egin{bmatrix} 0 \ 0 \ y_3 \end{bmatrix} \in \mathcal{M}_1^{\perp}.$$

The orthogonal projection is

$$P\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ 0 \end{bmatrix}$$

Theorem 12.3 The least squares property

Let P be the orthogonal projection on \mathcal{M} and consider $\mathbf{y} \in \mathbb{R}^n$ and $\mathbf{w} \in \mathcal{M}$.

Then

$$\|\mathbf{y} - \mathbf{w}\|^2 \ge \|\mathbf{y} - P\mathbf{y}\|^2$$

with equality if and only if $\mathbf{w} = P\mathbf{y}$.

Theorem 12.4 The normal equations

The linear mapping P is the orthogonal projection on $\mathcal M$ if and only if

$$P\mathbf{y} \in \mathcal{M}$$
 and $\mathbf{y} - P\mathbf{y} \in \mathcal{M}^{\perp}$

for all $\mathbf{y} \in \mathbb{R}^n$.

Note, the conditions

$$P\mathbf{y} \in \mathcal{M}$$
 and $\mathbf{y} - P\mathbf{y} \in \mathcal{M}^{\perp}$

for all $y \in \mathbb{R}^n$ are called the **normal equations**.

Theorem 12.5 Symmetry and Idempotence

Consider an $n \times n$ matrix, P. The mapping $P\mathbf{y}$ is the orthogonal projection on the range of P if and only if $P = P^2 = P^T$.

The matrix formulation

Consider the matrix formulation,

$$y = \eta + e$$

such that E(e) = 0 and $Var(e) = \sigma^2 I$, and consider the linear model

$$\eta = X\beta$$

where X an $n \times p$ matrix with linearly independent columns.

- ► Have seen previously that $P = X(X^TX)^{-1}X^T$ is symmetric and idempotent.
- Moreover the range of P is the column space of X, or the linear subspace \mathcal{M} .
- lacktriangle Least squares estimation is the orthogonal projection on ${\cal M}.$

Test of Hypotheses and ANOVA

Consider vector subspaces

$$\mathcal{H} \subset \mathcal{M} \subset \mathbb{R}^n$$

such that
$$p_0 = \dim(\mathcal{H}) .$$

Consider the linear model

$$M: \boldsymbol{\eta} \in \mathcal{M}$$

and the hypothesis

$$H_0: \boldsymbol{\eta} \in \mathcal{H}$$
.

The ANOVA table

The analysis of variance table is

Source	SS	DF	MS	F-ratio
H_0 vs M	$\ (P-P_0)\boldsymbol{y}\ ^2$	$p-p_0$	$MS_H = \frac{\ (P-P_0)\mathbf{y}\ ^2}{P-P_0}$	$F = \frac{MS_H}{MS_E}$
Residual	$\ (I-P)\boldsymbol{y}\ ^2$	n-p	$MS_H = \frac{\frac{1}{P - p_0}}{\frac{1}{P - p_0}}$ $MS_E = \frac{\ (I - P)\mathbf{y}\ ^2}{n - p}$	
Total	$\ (I-P_0)\boldsymbol{y}\ ^2$	$n-p_0$		

} \end{center}

where P is the orthogonal projection on \mathcal{M} and P_0 is the orthogonal projection on \mathcal{H} .

The expected mean squares

The key to understanding ANOVA lies in the expected value of the mean square entries.

Suppose the model ${\mathcal M}$ holds.

We have

$$E(\|\mathbf{Y} - X\hat{\beta}\|^2) = E(\|(I - P)\mathbf{Y}\|^2) = (n - p)\sigma^2$$

so that

$$E(MS_E) = \sigma^2$$
.

The expected mean squares

Consider now the hypothesis sum squares.

$$||(P - P_0)\mathbf{Y}||^2 = ||((P - P_0)(\mathbf{Y} - \boldsymbol{\eta}) + (P - P_0)\boldsymbol{\eta}||^2$$

= $||((P - P_0)(\mathbf{Y} - \boldsymbol{\eta})||^2 + ||(P - P_0)\boldsymbol{\eta}||^2$
+ $2\boldsymbol{\eta}^T(P - P_0)(\mathbf{Y} - \boldsymbol{\eta})$

Since $P-P_0$ is the orthogonal projection on the vector subspace, $\mathcal{M}\cap\mathcal{H}.$

$$E(\|(P-P_0)(Y-\eta)\|^2) = (p-p_0)\sigma^2.$$

Since η is a constant,

$$E(\|(P-P_0)\eta\|^2) = \|(P-P_0)\eta\|^2.$$

$$E(n^{T}(D D_{1})(V m)) = n^{T}(D D_{1})E(V m) = 0$$

$$E(\boldsymbol{\eta}^T(P-P_0)(\mathbf{Y}-\boldsymbol{\eta})) = \boldsymbol{\eta}^T(P-P_0)E(\mathbf{Y}-\boldsymbol{\eta}) = 0$$

$$E(\eta^{\cdot}(P-P_0)(\mathbf{Y}-\eta))=\eta^{\cdot}(P-P_0)E(\mathbf{Y}-\eta)=0$$

 $E(MS_H) = \sigma^2 + \frac{1}{p - p_0} \|(P - P_0)\eta\|^2.$

$$E(\eta'(P-P_0)(\mathbf{Y}-\eta))=\eta'(P-P_0)E(\mathbf{Y}-\eta)$$

Hence

The expected mean squares

Observe that $H_0: \eta \in \mathcal{H}$ is true if and only if $(P - P_0)\eta = \mathbf{0}$ Hence $\delta^2 = \frac{1}{p - p_0} \|(P - P_0)\eta\|^2$ is a measure of the magnitude of any departure from H_0 .

To summarise

$$E(MS_H) = egin{cases} \sigma^2 & \text{if } H_0 \text{ holds} \\ \sigma^2 + \delta^2 & \text{otherwise.} \end{cases}$$

The F-statistic

The F-statistic is the ratio

$$F = \frac{MS_H}{MS_E}.$$

- When H₀ is true, we would expect the F-statistic to be close to 1.
- ▶ When H_0 is not true, we expect the F-statistic to exceed 1.
- ▶ The greater the departure from H_0 , the larger we expect F-statistic to be.

This explains the logic of the F-test, where H_0 is rejected only for large values of the F-statistic.

It can also be proved that the null distribution of the F-statistic is $F_{p-p_0,n-p}$ but this is beyond the scope of the course.

Generalised least squares also has a geometrical interpretation.

The same theory applies but instead of using the standard inner product (dot product)

$$\mathbf{x}_1.\mathbf{x}_2 = \langle \mathbf{x}_1, \mathbf{x}_2 \rangle = \mathbf{x}_1^T \mathbf{x}_2$$

to define angle and distance, we use

$$\langle \mathbf{x}_1, \mathbf{x}_2 \rangle_* = \mathbf{x}_1^T V^{-1} \mathbf{x}_2$$

The orthogonal* projection

$$P = X(X^TV^{-1}X)^{-1}X^TV^{-1}$$

is idempotent, i.e. $P^2 = P$.

However, symmetry is generalised to the self-adjoint property,

$$\langle P\mathbf{x}_1, \mathbf{x}_2 \rangle_* = \langle \mathbf{x}_1, P\mathbf{x}_2 \rangle_*$$

It can be checked that

$$P\mathbf{y} = \operatorname{argmin}_{\mathbf{\eta} \in \mathcal{L}} \|\mathbf{y} - \mathbf{\eta}\|_*^2$$

where \mathcal{L} is the column space of X and

$$\|\mathbf{x}\|_*^2 = \langle \mathbf{x}, \mathbf{x} \rangle_* = \mathbf{x}^T V^{-1} \mathbf{x}.$$

Finally, the definition of

$$Px = v$$

from the decomposition

$$x = v + w$$

with

$$\mathbf{v} \in \mathcal{L}$$
 and $\mathbf{w} \in \mathcal{L}^{\perp}$

is the same.

The only difference is that the space \mathcal{L}^{\perp} is orthogonal with respect to the * inner product.