Segura_Guillermo_Tarea6

April 15, 2024

1 Tarea 6. Optimización

Guillermo Segura Gómez

1.1 Ejercicio 1

1. Programe el método de gradiente conjugado lineal, Algoritmo 1 de la Clase 18, para resolver el sistema de ecuaciones Ax = b, donde A es una matriz simétrica y definida positiva.

Haga que la función devuelva el último punto \mathbf{x}_k , el último residual \mathbf{r}_k , el número de iteraciones k y una variable binaria bres que indique si se cumplió el criterio de paro (bres = True) o si el algoritmo terminó por iteraciones (bres = False).

```
[53]: # Librerias
import numpy as np
import matplotlib.pyplot as plt
```

```
[54]: def ConjugateGradient(xk, A, b, nMax, tau):
          rk = A @ xk - b
          pk = -rk
          for k in range(nMax):
              # Condición de parada
              if np.linalg.norm(rk) < tau:</pre>
                  return xk, rk_next, True, k
              Apk = A @ pk # Cálculo de Apk para optimizar
              # Cálculo de alphak
              rkTrk = rk.T @ rk
              alphak = rkTrk / (pk.T @ Apk)
              # Siquiente valor de xk
              xk = xk + alphak * pk
              rk_next = rk + alphak * Apk
              betak = (rk_next.T @ rk_next) / rkTrk
              pk = -rk_next + betak * pk
```

2. Pruebe el algoritmo para resolver el sistema de ecuaciones

$$\mathbf{A}_1\mathbf{x} = \mathbf{b}_1$$

donde

$$\mathbf{A}_1 = n\mathbf{I} + \mathbf{1} = \begin{bmatrix} n & 0 & \cdots & 0 \\ 0 & n & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{bmatrix} + \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & n & 1 \end{bmatrix}, \qquad \mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix},$$

n es la dimensión de la variable independiente $\mathbf{x}=(x_1,x_2,...,x_n)$, \mathbf{I} es la matriz identidad y $\mathbf{1}$ es la matriz llena de 1's, ambas de tamaño n.

También aplique el algoritmo para resolver el sistema

$$\mathbf{A}_2\mathbf{x} = \mathbf{b}_2$$

donde $\mathbf{A}_2 = [a_{ij}]$ con

$$a_{ij} = \exp\left(-0.25(i-j)^2\right), \qquad \mathbf{b_2} = \left[\begin{array}{c} 1\\1\\\vdots\\1 \end{array}\right]$$

- Use \mathbf{x}_0 como el vector cero, el máximo número de iteraciones N=n y una toleracia $\tau=\sqrt{n}\epsilon_m^{1/3}$, donde ϵ_m es el épsilon máquina.
- Pruebe el algoritmo resolviendo los dos sistemas de ecuaciones con n=10,100,1000 y en cada caso imprima la siguiente información
- la dimensión n,
- el número k de iteraciones realizadas,
- las primeras y últimas 4 entradas del punto \mathbf{x}_k que devuelve el algoritmo,
- la norma del residual \mathbf{r}_k ,
- la variable bres para saber si el algoritmo puedo converger.

```
[55]: # Función para generar A1 y b1
def generate_A1_b1(n):
    A1 = n * np.eye(n) + np.ones((n, n))
    b1 = np.ones(n)
    return A1, b1
```

```
# Función para generar A2 y b2
def generate_A2_b2(n):
    A2 = np.array([[np.exp(-0.25 * (i - j) ** 2) for j in range(n)] for i in_\square
 →range(n)])
    b2 = np.ones(n)
    return A2, b2
# Función para probar el algoritmo con las matrices y vectores dados
def test_algorithm(n):
    epsilon_m = np.finfo(float).eps # Epsilon máquina
    tau = np.sqrt(n) * (epsilon_m ** (1/3)) # Tolerancia
    x0 = np.zeros(n) # Vector inicial
    nMax = n # Número máximo de iteraciones
    # Generar A1, b1 y aplicar el Gradiente Conjugado
    A1, b1 = generate_A1_b1(n)
    xk1, rk1, bres1, k1 = ConjugateGradient(x0, A1, b1, nMax, tau)
    # Generar A2, b2 y aplicar el Gradiente Conjugado
    A2, b2 = generate_A2_b2(n)
    xk2, rk2, bres2, k2 = ConjugateGradient(x0, A2, b2, nMax, tau)
    # Imprimir resultados para A1
    print(f"n={n}, Sistema A1")
    print(f" Iteraciones: {k1}")
    print(f" xk (primeras 4 entradas): {xk1[:4]}")
    print(f" xk (últimas 4 entradas): {xk1[-4:]}")
    print(f" Norma del residual: {np.linalg.norm(rk1)}")
    print(f" Convergencia: {bres1}")
    # Imprimir resultados para A2
    print(f"n={n}, Sistema A2")
    print(f" Iteraciones: {k2}")
    print(f" xk (primeras 4 entradas): {xk2[:4]}")
    print(f" xk (últimas 4 entradas): {xk2[-4:]}")
    print(f" Norma del residual: {np.linalg.norm(rk2)}")
    print(f" Convergencia: {bres2}")
# Prueba del algoritmo para n=10, 100, 1000
for n in [10, 100, 1000]:
    test_algorithm(n)
    print("\n" + "-"*50 + "\n")
n=10, Sistema A1
  Iteraciones: 1
 xk (primeras 4 entradas): [0.05 0.05 0.05 0.05]
 xk (últimas 4 entradas): [0.05 0.05 0.05 0.05]
 Norma del residual: 0.0
```

```
Convergencia: True
n=10, Sistema A2
 Iteraciones: 5
 xk (últimas 4 entradas): [-0.61339053    1.60908281 -1.16637682    1.36909916]
 Norma del residual: 4.381415087263756e-12
 Convergencia: True
n=100, Sistema A1
 Iteraciones: 1
 xk (primeras 4 entradas): [0.005 0.005 0.005 0.005]
 xk (últimas 4 entradas): [0.005 0.005 0.005 0.005]
 Norma del residual: 0.0
 Convergencia: True
n=100, Sistema A2
 Iteraciones: 100
 xk (primeras 4 entradas): [ 1.44625585 -1.41631711 2.11047274 -1.4249978 ]
 xk (últimas 4 entradas): [-1.42500419 2.11047638 -1.41630417 1.4462564]
 Norma del residual: 0.00016847652019634396
 Convergencia: False
n=1000, Sistema A1
 Iteraciones: 1
 xk (primeras 4 entradas): [0.0005 0.0005 0.0005 0.0005]
 xk (últimas 4 entradas): [0.0005 0.0005 0.0005 0.0005]
 Norma del residual: 0.0
 Convergencia: True
n=1000, Sistema A2
 Iteraciones: 262
 xk (primeras 4 entradas): [ 1.44628824 -1.41635954 2.1105181 -1.42507231]
 xk (últimas 4 entradas): [-1.42507231 2.1105181 -1.41635954 1.44628824]
 Norma del residual: 0.00018766135470172154
 Convergencia: True
```

Podemos observar que para el sistema $\mathbf{A}_1\mathbf{x} = \mathbf{b}_1$, el algoritmo converge rápidamente (en 1 iteración) para todos los valores de n probados. Esto se puede explicar con la simplicidad y estructura de la matriz \mathbf{A}_1 .

Por otro lado, el sistema $\mathbf{A}_2\mathbf{x} = \mathbf{b}_2$ presenta un mayor desafío, especialmente para n = 100 donde no se logró la convergencia dentro del número máximo de iteraciones. Sin embargo, para n = 1000, el algoritmo pudo converger, pero necesitó un mayor número de iteraciones (262), lo que indica la complejidad creciente del sistema con el aumento de n.

1.2 Ejercicio 2

Programar el método de gradiente conjugado no lineal descrito en el Algoritmo 3 de Clase 19 usando la fórmula de Fletcher-Reeves:

$$\beta_{k+1} = \frac{\nabla f_{k+1}^{\top} \nabla f_{k+1}}{\nabla f_{k}^{\top} \nabla f_{k}}$$

- 1. Escriba la función que implemente el algoritmo.
- La función debe recibir como argumentos x₀, la función f y su gradiente, el número máximo de iteraciones N, la tolerancia τ, y los parámetros para el algoritmo de backtracking: factor ρ, la constante c₁ para la condición de descenso suficiente, la constante c₂ para la condición de curvatura, y el máximo número de iteraciones N_b.
- Agregue al algoritmo un contador nr que se incremente cada vez que se aplique el reinicio, es decir, cuando se hace $\beta_{k+1} = 0$.
- Para calcular el tamaño de paso α_k use el algoritmo de backtracking usando las condiciones de Wolfe con el valor inicial $\alpha_{ini}=1$.
- Haga que la función devuelva el último punto \mathbf{x}_k , el último gradiente \mathbf{g}_k , el número de iteraciones k y una variable binaria bres que indique si se cumplio el criterio de paro (bres = True) o si el algoritmo terminó por iteraciones (bres = False), y el contador bres.

```
[56]: def backtracking_wolfe(xk, pk, gk, f, gradf, alpha_0, rho, c1, c2, nMax):
          alpha = alpha_0
          for i in range(nMax):
              x_next = xk + alpha * pk
              f_next = f(x_next)
              f_{curr} = f(xk)
              gk_next = gradf(x_next)
              # Condición de descenso suficiente
              if f_next > f_curr + c1 * alpha * np.dot(gk, pk):
                  alpha *= rho
              # Condición de curvatura
              elif np.dot(gk_next, pk) < c2 * np.dot(gk, pk):</pre>
                   alpha *= rho
              else:
                  return alpha
          return alpha
```

```
[57]: def ConjugateGrad_NLineal_FR(x0, f, gradf, nMax, tau, alpha_0, rho, c1, c2, □
□nBack):
    xk = np.array(x0)
    gk = gradf(xk)
    dk = -gk
    nr = 0 # Contador de reinicios
    sequence = []
```

```
for k in range(nMax):
      if np.linalg.norm(gk) < tau:</pre>
           return xk, gk, k, True, sequence, nr
      alpha_k = backtracking_wolfe(xk, dk, gk, f, gradf, alpha_0, rho, c1,__
⇔c2, nBack)
      xk += alpha_k * dk
      gk_next = gradf(xk)
      # Condición para el reinicio (revisar ortogonalidad)
      if abs(gk_next.T @ gk) < (0.2 * np.linalg.norm(gk_next)**2):</pre>
           betak = (gk_next.T @ gk_next) / (gk.T @ gk)
      else:
           betak = 0
          nr += 1
      dk = -gk_next + betak * dk
      gk = gk_next
       # Almacenar puntos solo para visualización en 2D
      if len(x0) == 2:
           sequence.append(xk.tolist())
  return xk, gk, k, False, sequence, nr # No se alcanzó la convergencia L
⇔dentro de nMax
```

2. Pruebe el algoritmo usando la siguientes funciones con los puntos iniciales dados:

Función de cuadrática 1: Para $\mathbf{x} = (x_1, x_2, ..., x_n)$

```
• f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{A}_1\mathbf{x} - \mathbf{b}_1^{\top}\mathbf{x}, donde \mathbf{A}_1 y \mathbf{b}_1 están definidas como en el Ejercicio 1.
```

- $\mathbf{x}_0 = (0, ..., 0) \in \mathbb{R}^{10}$
- $\mathbf{x}_0 = (0, ..., 0) \in \mathbb{R}^{100}$
- $\mathbf{x}_0 = (0, ..., 0) \in \mathbb{R}^{1000}$

Función de cuadrática 2: Para $\mathbf{x} = (x_1, x_2, ..., x_n)$

- $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{A}_2\mathbf{x} \mathbf{b}_2^{\top}\mathbf{x}$, donde \mathbf{A}_2 y \mathbf{b}_2 están definidas como en el Ejercicio 1.
- $\mathbf{x}_0 = (0, ..., 0) \in \mathbb{R}^{10}$
- $\mathbf{x}_0 = (0, ..., 0) \in \mathbb{R}^{100}$
- $\mathbf{x}_0 = (0, ..., 0) \in \mathbb{R}^{1000}$

Función de Beale : Para $\mathbf{x} = (x_1, x_2)$

$$f(\mathbf{x})=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2.$$
 - $\mathbf{x}_0=(2,3)$

Función de Himmelblau: Para $\mathbf{x} = (x_1, x_2)$

$$f(\mathbf{x}) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2.$$

$$-\mathbf{x}_0 = (2,4)$$

Función de Rosenbrock: Para $\mathbf{x} = (x_1, x_2, ..., x_n)$

$$f(\mathbf{x}) = \sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2 \right] \quad n \ge 2.$$

- $-\mathbf{x}_0 = (-1.2, 1.0) \in \mathbb{R}^2$
- $\mathbf{x}_0 = (-1.2, 1.0, ..., -1.2, 1.0) \in \mathbb{R}^{20}$
- $\mathbf{x}_0 = (-1.2, 1.0, ..., -1.2, 1.0) \in \mathbb{R}^{40}$
 - 3. Fije $N=5000,~\tau=\sqrt{n}\epsilon_m^{1/3},$ donde n es la dimensión de la variable ${\bf x}$ y ϵ_m es el épsilon máquina. Para backtracking use $\rho=0.5,~c_1=0.001,~c_2=0.01,~N_b=500.$
 - 4. Para cada función de prueba imprima
 - la dimensión n,
 - $f(\mathbf{x}_0)$,
 - \bullet el número k de iteraciones realizadas,
 - $f(\mathbf{x}_k)$,
 - las primeras y últimas 4 entradas del punto \mathbf{x}_k que devuelve el algoritmo,
 - la norma del vector gradiente \mathbf{g}_k ,
 - la variable bres para saber si el algoritmo puedo converger.
 - el número de reinicios nr.

Definimos primero una función general de la forma

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\intercal}\mathbf{A}_1\mathbf{x} - \mathbf{b}_1^{\intercal}\mathbf{x}$$

y su gradiente

$$\nabla f(\mathbf{x}) = \mathbf{A}_1 \mathbf{x} - \mathbf{b}_1$$

Además definimos las otras funciones a probar

```
df_dx^2 = 2 * (x[0]**2 + x[1] - 11) + 4 * x[1] * (x[0] + x[1]**2 - 7)
                      return np.array([df_dx1, df_dx2])
[60]: def beale(x):
                      return ((1.5 - x[0] + x[0]*x[1])**2 +
                                         (2.25 - x[0] + x[0]*x[1]**2)**2 +
                                         (2.625 - x[0] + x[0]*x[1]**3)**2)
             def grad_beale(x):
                      x1, x2 = x
                      \Rightarrow x2**2) + 2*(2.625 - x1 + x1*x2**3)*(-1 + x2**3)
                      df_{dx2} = 2*(1.5 - x1 + x1*x2)*x1 + 2*(2.25 - x1 + x1*x2*x2)*2*x1*x2 + 2*(2.25 - x1 + x1*x2)*2*x1*x2 + 2*(2.25 - x1 + x1*x2)*2*x1*x2 + 2*(2.25 - x1 + x1*x2)*x2 + 2*(2.25 - x1 + x1*x2)*x1*x2 + 2*(2.25 - x1 + x1*x2)*x1*x2 + 2*(2.25 - x1 + x1*x2)*x2 + 2*(2.25 - x1 + x1*x2)*x
                625 - x1 + x1*x2**3)*3*x1*x2**2
                      return np.array([df_dx1, df_dx2])
[61]: def rosenbrock(x):
                      return sum(100*(x[1:] - x[:-1]**2)**2 + (1 - x[:-1])**2)
             def grad_rosenbrock(x):
                      df_dx = np.zeros_like(x)
                      n = len(x)
                      df_dx[:-1] += -400 * x[:-1] * (x[1:] - x[:-1]**2) + 2 * (x[:-1] - 1) #_1
                \negDerivadas parciales para x_i donde i < n
                      df_dx[1:] += 200 * (x[1:] - x[:-1]**2) # Derivadas parciales para <math>x_{i+1}
                \hookrightarrow donde i < n
                      return df_dx
[62]: # Función para visualizar los contornos de nivel de función en 2D
             def contornosFnc2D(fncf, xleft, xright, ybottom, ytop, levels, secuencia=None):
                      ax = np.linspace(xleft, xright, 250)
                      ay = np.linspace(ybottom, ytop, 200)
                      mX, mY = np.meshgrid(ax, ay)
                      mZ = np.array([[fncf(np.array([x, y])) for x in ax] for y in ay])
                      fig, ax = plt.subplots()
                      CS = ax.contour(mX, mY, mZ, levels, cmap='viridis')
                      plt.colorbar(CS, ax=ax)
                      ax.set_xlabel('$x_1$')
                      ax.set_ylabel('$x_2$')
                      # Graficar la secuencia de puntos
                      if secuencia is not None:
                                secuencia = np.array(secuencia)
                                ax.plot(secuencia[:, 0], secuencia[:, 1], 'r.-') # 'r.-' para puntosu
```

 $df_dx1 = 4 * x[0] * (x[0]**2 + x[1] - 11) + 2 * (x[0] + x[1]**2 - 7)$

⇔rojos conectados por líneas

```
ax.plot(secuencia[0, 0], secuencia[0, 1], 'go') # Punto de inicio enuoverde

ax.plot(secuencia[-1, 0], secuencia[-1, 1], 'bo') # Punto final en azul

plt.show()
```

Primero probamos las funciones cuadráticas.

```
[63]: # Epsilon de la máquina
      epsilon_m = np.finfo(float).eps
      # Configuración de tolerancia
      tau = lambda n: np.sqrt(n) * epsilon_m**(1/3)
      # Parámetros iniciales
      alpha_0 = 1
      rho = 0.5
      c1 = 0.001
      c2 = 0.01
      # Número máximo de iteraciones para el descenso máximo y la sección dorada
      NMax = 5000
      NBack = 600
      # Función para probar el algoritmo de descenso máximo con diferentes funciones
      def probar_descenso_maximo(func, grad_func, puntos_iniciales):
          for x0 in puntos_iniciales:
              xk, gk, k, convergio, secuencia, nr = ConjugateGrad_NLineal_FR(x0,_u
       func, grad_func, NMax, tau(len(x0)), alpha_0, rho, c1, c2, NBack)
              valor final = func(xk)
              print(f"Resultado para x0 = {x0}, f(x0) = {func(x0)}:")
              print(f"xk = {xk}, k = {k}, f(xk) = {valor_final}, convergió:__
       print(f"Numero de reinicios = {nr}")
              if len(x0) == 2 and secuencia:
                  print(f"Secuencia de puntos: {secuencia[:2]}")
                  contornosFnc2D(func, xleft=-5.5, xright=5.5, ybottom=-5.5, ytop=5.
       $\displaystyle 5, levels=[0.5, 5, 10, 25, 50, 100, 150, 250, 400], secuencia=secuencia)
              print()
      # Función para probar las funciones cuadráticas
      def test_quadratic(n, generate):
          # Puntos iniciales
          x0 = [np.zeros(n)]
```

```
# Generar A, b
        A, b = generate(n)
        # Generamos la función y su gradiente
        f = lambda x: fG(x, A, b)
        gradf = lambda x: gradfG(x, A, b)
        probar_descenso_maximo(f, gradf, x0)
    Probamos el sistema cuadrático 1
[64]: # Prueba del algoritmo para f1
     for n in [10, 100, 1000]:
        test_quadratic(n, generate_A1_b1)
    Resultado para x0 = [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.], f(x0) = 0.0:
    xk = [0.05000019 \ 0.05000019 \ 0.05000019 \ 0.05000019 \ 0.05000019 \ 0.05000019
     0.05000019 \ 0.05000019 \ 0.05000019 \ 0.05000019], k = 9, f(xk) =
    -0.24999999999636202, convergió: True
    Numero de reinicios = 9
    0. 0. 0. 0.
     0. 0. 0. 0.], f(x0) = 0.0:
    xk = [0.00500003 \ 0.00500003 \ 0.00500003 \ 0.00500003 \ 0.00500003 \ 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 \ 0.00500003 \ 0.00500003 \ 0.00500003], k = 21, f(xk) =
    -0.24999999999200045, convergió: True
    Numero de reinicios = 21
```

```
0. 0. 0. 0.
xk = [0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
```

```
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
```

```
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005
251, f(xk) = -0.2499999999146555, convergió: True
Numero de reinicios = 251
```

Ahora probamos el sistema cuadrático 2

```
[65]: # Prueba del algoritmo para f2
   for n in [10, 100, 1000]:
      test_quadratic(n, generate_A2_b2)
   Resultado para x0 = [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.], f(x0) = 0.0:
   xk = [1.36889566 -1.16586292 1.60838905 -0.61279115 0.59477256 0.59477256]
   -0.61279115 1.60838905 -1.16586292 1.36889566], k = 1571, f(xk) =
   -1.7934207913526616, convergió: True
   Numero de reinicios = 1230
   0. 0. 0. 0.
   0. 0. 0. 0.], f(x0) = 0.0:
   1.19995174 -0.4267088
                  0.81965292 -0.11887528 0.57624854
                                        0.07023695
    0.43154584 0.17931479 0.35064981 0.23821152 0.30871104 0.26728273
    0.28924189 0.27974891 0.28175778 0.28381533 0.27994207
                                        0.28424583
    0.28029303 0.28353226 0.2811104
                          0.28277043
                                 0.28174497
                                        0.2822931
    0.28207596 0.28208987 0.2821851
                          0.28204965
                                 0.28218554 0.28207292
    0.28215588 0.2821035
                  0.28213201 0.28212185
                                 0.28212155 0.28212803
    0.28212025 0.2821279
                  0.2821223
                          0.28212628  0.28212424  0.28212529
    0.28212505  0.28212512  0.28212512  0.28212505
                                 0.28212529
                                        0.28212424
    0.28212628 0.2821223
                          0.28212025
                                 0.28212803 0.28212155
                  0.2821279
    0.28212185 0.28213201 0.2821035
                          0.28215588 0.28207292 0.28218554
    0.28204965 0.2821851
                  0.28208987 0.28207596 0.2822931
                                        0.28174497
    0.28277043 0.2811104
                  0.28353226 0.28029303
                                 0.28424583
                                        0.27994207
    0.28381533  0.28175778  0.27974891  0.28924189  0.26728273
                                        0.30871104
    0.23821152 \quad 0.35064981 \quad 0.17931479 \quad 0.43154584 \quad 0.07023695 \quad 0.57624854
   1.19995174 -0.88010361 1.70857605
   -1.38700249 2.08547332 -1.40322734 1.44208203], k = 4999, f(xk) =
   -14.494288080223397, convergió: False
   Numero de reinicios = 4013
   0. 0. 0. 0.
```

```
1.20198101 -0.42891582 0.8219268 -0.12117218 0.57846018
               0.06812997
0.43345613
   0.17758713
      0.35212405
         0.23694283
            0.30972163
               0.26645497
0.28984435
   0.27927888
      0.28205338
         0.28359331
            0.28004105
               0.28416796
0.28028838
   0.28351969
      0.28106588
         0.28277467
            0.28169533
               0.28229153
0.28203437
   0.28207675
      0.28215249
         0.2820273
            0.28215827
               0.28204561
0.28213018
   0.28207447
      0.28210571
         0.28209268
            0.28209398
               0.28209906
0.28209162
   0.28209897
      0.28209309
         0.28209715
            0.28209486
               0.28209583
0.28209579
   0.28209539
      0.28209598
         0.28209545
            0.28209589
               0.28209564
0.28209578
   0.28209577
      0.28209576
         0.28209582
            0.28209579
               0.28209584
0.28209583
   0.28209586
      0.28209588
         0.28209589
            0.28209591
               0.28209592
   0.28209595
0.28209594
      0.28209597
         0.28209598
            0.282096
               0.28209601
0.28209603
   0.28209604
      0.28209606
         0.28209607
            0.28209609
               0.2820961
0.28209612
   0.28209613
      0.28209615
         0.28209616
            0.28209618
               0.28209619
```

```
0.2820962
                                                  0.28209626
            0.28209622
                         0.28209623
                                     0.28209625
                                                               0.28209627
0.28209629
            0.2820963
                         0.28209632
                                     0.28209633
                                                  0.28209634
                                                               0.28209636
0.28209637
            0.28209638
                         0.2820964
                                      0.28209641
                                                  0.28209642
                                                               0.28209643
0.28209645
            0.28209646
                         0.28209647
                                     0.28209648
                                                  0.2820965
                                                               0.28209651
0.28209652
            0.28209653
                         0.28209655
                                     0.28209656
                                                  0.28209657
                                                               0.28209658
0.28209659
            0.2820966
                         0.28209662
                                     0.28209663
                                                  0.28209664
                                                               0.28209665
0.28209666
            0.28209667
                         0.28209668
                                     0.2820967
                                                  0.28209671
                                                               0.28209672
0.28209673
            0.28209674
                         0.28209675
                                     0.28209676
                                                  0.28209677
                                                               0.28209678
0.28209679
            0.2820968
                         0.28209681
                                     0.28209682
                                                  0.28209683
                                                               0.28209684
0.28209685
            0.28209686
                         0.28209687
                                     0.28209688
                                                  0.28209689
                                                               0.2820969
0.28209691
                         0.28209692
                                     0.28209693
                                                  0.28209694
                                                               0.28209695
            0.28209692
0.28209696
            0.28209697
                         0.28209698
                                     0.28209699
                                                  0.28209699
                                                               0.282097
0.28209701
            0.28209702
                         0.28209703
                                     0.28209703
                                                  0.28209704
                                                               0.28209705
0.28209706
            0.28209707
                         0.28209707
                                     0.28209708
                                                  0.28209709
                                                               0.2820971
0.2820971
            0.28209711
                         0.28209712
                                     0.28209712
                                                  0.28209713
                                                               0.28209714
0.28209714
            0.28209715
                         0.28209716
                                     0.28209716
                                                  0.28209717
                                                               0.28209718
0.28209718
            0.28209719
                         0.2820972
                                      0.2820972
                                                  0.28209721
                                                               0.28209721
0.28209722
                                                               0.28209725
            0.28209723
                         0.28209723
                                     0.28209724
                                                  0.28209724
            0.28209726
0.28209725
                         0.28209727
                                     0.28209727
                                                  0.28209728
                                                               0.28209728
0.28209729
            0.28209729
                         0.2820973
                                      0.2820973
                                                  0.28209731
                                                               0.28209731
0.28209732
            0.28209732
                         0.28209733
                                     0.28209733
                                                  0.28209733
                                                               0.28209734
0.28209734
            0.28209735
                         0.28209735
                                     0.28209736
                                                  0.28209736
                                                               0.28209736
                                                               0.28209739
0.28209737
            0.28209737
                         0.28209738
                                     0.28209738
                                                  0.28209738
0.28209739
            0.28209739
                         0.2820974
                                      0.2820974
                                                  0.28209741
                                                               0.28209741
0.28209741
                         0.28209742
                                     0.28209742
                                                  0.28209743
                                                               0.28209743
            0.28209742
0.28209743
            0.28209744
                         0.28209744
                                     0.28209744
                                                  0.28209744
                                                               0.28209745
0.28209745
            0.28209745
                         0.28209746
                                     0.28209746
                                                  0.28209746
                                                               0.28209746
0.28209747
            0.28209747
                         0.28209747
                                     0.28209747
                                                  0.28209748
                                                               0.28209748
0.28209748
            0.28209748
                         0.28209749
                                     0.28209749
                                                  0.28209749
                                                               0.28209749
0.28209749
            0.2820975
                         0.2820975
                                      0.2820975
                                                  0.2820975
                                                               0.2820975
0.28209751
            0.28209751
                         0.28209751
                                     0.28209751
                                                  0.28209751
                                                               0.28209752
0.28209752
            0.28209752
                         0.28209752
                                     0.28209752
                                                  0.28209752
                                                               0.28209753
0.28209753
            0.28209753
                         0.28209753
                                     0.28209753
                                                  0.28209753
                                                               0.28209754
0.28209754
            0.28209754
                         0.28209754
                                     0.28209754
                                                  0.28209754
                                                               0.28209754
0.28209754
            0.28209755
                         0.28209755
                                     0.28209755
                                                  0.28209755
                                                               0.28209755
0.28209755
            0.28209755
                         0.28209755
                                     0.28209756
                                                  0.28209756
                                                               0.28209756
0.28209756
            0.28209756
                         0.28209756
                                     0.28209756
                                                  0.28209756
                                                               0.28209756
0.28209756
            0.28209757
                                     0.28209757
                                                  0.28209757
                                                               0.28209757
                         0.28209757
0.28209757
            0.28209757
                         0.28209757
                                     0.28209757
                                                  0.28209757
                                                               0.28209757
0.28209757
            0.28209757
                         0.28209758
                                     0.28209758
                                                  0.28209758
                                                               0.28209758
0.28209758
                                                               0.28209758
            0.28209758
                         0.28209758
                                     0.28209758
                                                  0.28209758
0.28209758
            0.28209758
                         0.28209758
                                     0.28209758
                                                  0.28209758
                                                               0.28209758
0.28209758
                                                  0.28209759
            0.28209759
                         0.28209759
                                     0.28209759
                                                               0.28209759
0.28209759
            0.28209759
                         0.28209759
                                     0.28209759
                                                  0.28209759
                                                               0.28209759
0.28209759
            0.28209759
                         0.28209759
                                     0.28209759
                                                  0.28209759
                                                               0.28209759
0.28209759
            0.28209759
                         0.28209759
                                     0.28209759
                                                  0.28209759
                                                               0.28209759
0.28209759
            0.28209759
                         0.28209759
                                     0.2820976
                                                  0.2820976
                                                               0.2820976
0.2820976
            0.2820976
                         0.2820976
                                      0.2820976
                                                  0.2820976
                                                               0.2820976
```

0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.28209761	0.28209761	0.28209761	0.28209761	0.28209761
0.28209761	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.2820976	0.2820976	0.2820976	0.2820976	0.2820976
0.2820976	0.28209759	0.28209759	0.28209759	0.28209759	0.28209759
0.28209759	0.28209759	0.28209759	0.28209759	0.28209759	0.28209759
0.28209759	0.28209759	0.28209759	0.28209759	0.28209759	0.28209759
0.28209759	0.28209759	0.28209759	0.28209759	0.28209759	0.28209759

```
0.28209759
                                                  0.28209758
            0.28209759
                         0.28209759
                                     0.28209758
                                                               0.28209758
0.28209758
            0.28209758
                         0.28209758
                                     0.28209758
                                                  0.28209758
                                                               0.28209758
0.28209758
            0.28209758
                         0.28209758
                                     0.28209758
                                                  0.28209758
                                                               0.28209758
0.28209758
            0.28209758
                         0.28209757
                                     0.28209757
                                                  0.28209757
                                                               0.28209757
0.28209757
            0.28209757
                         0.28209757
                                     0.28209757
                                                  0.28209757
                                                               0.28209757
0.28209757
            0.28209757
                         0.28209757
                                     0.28209756
                                                  0.28209756
                                                               0.28209756
0.28209756
            0.28209756
                         0.28209756
                                     0.28209756
                                                  0.28209756
                                                               0.28209756
0.28209756
            0.28209755
                         0.28209755
                                     0.28209755
                                                  0.28209755
                                                               0.28209755
0.28209755
            0.28209755
                         0.28209755
                                     0.28209754
                                                  0.28209754
                                                               0.28209754
            0.28209754
0.28209754
                         0.28209754
                                     0.28209754
                                                  0.28209754
                                                               0.28209753
0.28209753
                                     0.28209753
                                                  0.28209753
            0.28209753
                         0.28209753
                                                               0.28209752
0.28209752
            0.28209752
                         0.28209752
                                     0.28209752
                                                  0.28209752
                                                               0.28209751
0.28209751
                                                  0.2820975
            0.28209751
                         0.28209751
                                     0.28209751
                                                               0.2820975
0.2820975
            0.2820975
                         0.2820975
                                      0.28209749
                                                  0.28209749
                                                               0.28209749
0.28209749
            0.28209749
                         0.28209748
                                     0.28209748
                                                  0.28209748
                                                               0.28209748
0.28209747
            0.28209747
                         0.28209747
                                     0.28209747
                                                  0.28209746
                                                               0.28209746
0.28209746
            0.28209746
                         0.28209745
                                     0.28209745
                                                  0.28209745
                                                               0.28209744
                         0.28209744
                                     0.28209743
0.28209744
            0.28209744
                                                  0.28209743
                                                               0.28209743
            0.28209742
                         0.28209742
0.28209742
                                     0.28209741
                                                  0.28209741
                                                               0.28209741
0.2820974
            0.2820974
                         0.28209739
                                     0.28209739
                                                  0.28209739
                                                               0.28209738
0.28209738
            0.28209738
                         0.28209737
                                     0.28209737
                                                  0.28209736
                                                               0.28209736
0.28209736
            0.28209735
                         0.28209735
                                     0.28209734
                                                  0.28209734
                                                               0.28209733
                                                               0.28209731
0.28209733
            0.28209733
                         0.28209732
                                     0.28209732
                                                  0.28209731
0.2820973
            0.2820973
                         0.28209729
                                     0.28209729
                                                  0.28209728
                                                               0.28209728
0.28209727
                         0.28209726
                                     0.28209725
                                                  0.28209725
                                                               0.28209724
            0.28209727
0.28209724
            0.28209723
                         0.28209723
                                     0.28209722
                                                  0.28209721
                                                               0.28209721
0.2820972
            0.2820972
                         0.28209719
                                     0.28209718
                                                  0.28209718
                                                               0.28209717
0.28209716
            0.28209716
                         0.28209715
                                     0.28209714
                                                  0.28209714
                                                               0.28209713
0.28209712
            0.28209712
                         0.28209711
                                     0.2820971
                                                  0.2820971
                                                               0.28209709
0.28209708
            0.28209707
                         0.28209707
                                     0.28209706
                                                  0.28209705
                                                               0.28209704
0.28209703
            0.28209703
                         0.28209702
                                     0.28209701
                                                  0.282097
                                                               0.28209699
0.28209699
            0.28209698
                         0.28209697
                                     0.28209696
                                                  0.28209695
                                                               0.28209694
0.28209693
            0.28209692
                         0.28209692
                                     0.28209691
                                                  0.2820969
                                                               0.28209689
0.28209688
            0.28209687
                         0.28209686
                                     0.28209685
                                                  0.28209684
                                                               0.28209683
0.28209682
            0.28209681
                         0.2820968
                                      0.28209679
                                                  0.28209678
                                                               0.28209677
0.28209676
            0.28209675
                         0.28209674
                                     0.28209673
                                                  0.28209672
                                                               0.28209671
0.2820967
            0.28209668
                         0.28209667
                                     0.28209666
                                                  0.28209665
                                                               0.28209664
0.28209663
            0.28209662
                                      0.28209659
                                                  0.28209658
                                                               0.28209657
                         0.2820966
0.28209656
            0.28209655
                         0.28209653
                                     0.28209652
                                                  0.28209651
                                                               0.2820965
0.28209648
            0.28209647
                         0.28209646
                                     0.28209645
                                                  0.28209643
                                                               0.28209642
0.28209641
            0.2820964
                         0.28209638
                                     0.28209637
                                                  0.28209636
                                                               0.28209634
0.28209633
            0.28209632
                         0.2820963
                                      0.28209629
                                                  0.28209627
                                                               0.28209626
0.28209625
                                                  0.28209619
            0.28209623
                         0.28209622
                                     0.2820962
                                                               0.28209618
0.28209616
            0.28209615
                         0.28209613
                                     0.28209612
                                                  0.2820961
                                                               0.28209609
0.28209607
            0.28209606
                         0.28209604
                                     0.28209603
                                                  0.28209601
                                                               0.282096
0.28209598
            0.28209597
                         0.28209595
                                     0.28209594
                                                  0.28209592
                                                               0.28209591
0.28209589
            0.28209588
                         0.28209586
                                     0.28209583
                                                  0.28209584
                                                               0.28209579
            0.28209576
                         0.28209577
                                     0.28209578
                                                  0.28209564
0.28209582
                                                               0.28209589
```

Ahora probamos las funciones de optimización ya que son funciones con resultados conocidos, las cuales podemos probar mas sencillamente que las primeras funciones.

```
[66]: # Puntos iniciales para la función de Himmelblau
      puntos_iniciales_himmelblau = [np.array([2.0, 4.0])]
      # Puntos iniciales para la función de Beale
      puntos_iniciales_beale = [np.array([2.0, 3.0])]
      # Puntos iniciales para la función de Rosenbrock
      puntos_iniciales_rosenbrock = [
         np.array([-1.2, 1.0]),
          np.array([-1.2 if i \% 2 == 0 else 1.0 for i in range(20)]), # Usamos una_
       ⇔list comprenhension
          np.array([-1.2 if i \% 2 == 0 else 1.0 for i in range(40)])
      # Epsilon de la máquina
      epsilon_m = np.finfo(float).eps
      # Configuración de tolerancia
      tau = lambda n: np.sqrt(n) * epsilon_m**(1/3)
      # Parámetros iniciales
      alpha 0 = 1
      rho = 0.5
      c1 = 0.001
      c2 = 0.01
      # Número máximo de iteraciones para el descenso máximo y la sección dorada
      NMax = 5000
      NBack = 500
      # Función para probar el algoritmo de descenso máximo con diferentes funciones
      def probar_descenso_maximo(func, grad_func, puntos_iniciales):
         for x0 in puntos_iniciales:
```

```
xk, gk, k, convergio, secuencia, nr = ConjugateGrad_NLineal_FR(x0,_u
  ofunc, grad func, NMax, tau(len(x0)), alpha 0, rho, c1, c2, NBack)
        valor final = func(xk)
        print(f"Resultado para x0 = \{x0\}, f(x0) = \{func(x0)\}:")
        print(f"xk = {xk}, k = {k}, f(xk) = {valor_final}, convergió:__
  print(f"Numero de reinicios = {nr}")
        if len(x0) == 2 and secuencia:
            print(f"Secuencia de puntos: {secuencia[:10]}")
            contornosFnc2D(func, xleft=-5.5, xright=5.5, ybottom=-5.5, ytop=5.
 $\displaystyle 5$, levels=[0.5, 5, 10, 25, 50, 100, 150, 250, 400], secuencia=secuencia)
        print()
# Probar con la función de Himmelblau
print("Función de Himmelblau:")
probar_descenso_maximo(himmelblau, grad_himmelblau, puntos_iniciales_himmelblau)
# Probar con la función de Beale
print("Función de Beale:")
probar_descenso_maximo(beale, grad_beale, puntos_iniciales_beale)
# Probar con la función de Rosenbrock
print("Función de Rosenbrock:")
probar_descenso_maximo(rosenbrock, grad_rosenbrock, puntos_iniciales_rosenbrock)
Función de Himmelblau:
Resultado para x0 = [2. 4.], f(x0) = 130.0:
xk = [3.58442828 - 1.84812653], k = 37, f(xk) = 2.0568411381419677e-13,
convergió: True
Numero de reinicios = 36
Secuencia de puntos: [[2.0625, -1.3125], [4.352530823584874,
-2.3135086765892776], [2.7361810201222534, -2.0983715861462016],
[3.691488135866293, -1.9047316676403367], [3.5148442032531855,
-1.8892711759672667, [3.6297719387433336, -1.8626069243853784],
[3.5557506438173756, -1.8608430580474333], [3.603504541795902,
-1.8518966454653996], [3.5724399041293884, -1.8522412664073833],
[3.592414590133752, -1.8490566389382543]]
```



```
Función de Beale: Resultado para x0 = [2. 3.], f(x0) = 3347.203125: xk = [2.99998551 0.49999649], k = 78, f(xk) = 3.377431057983643e-11, convergió: True Numero de reinicios = 65 Secuencia de puntos: [[-1.08056640625, -3.21044921875], [1.7385279788790102, -0.5167037007758362], [1.6702182133704837, 0.19049842256335625], [2.0943612184475393, -0.01708745755063787], [2.1058410909975263, 0.3154047253054244], [2.221501652846917, 0.1953473151416435], [2.368756293476698, 0.41215856611692714], [2.3687562934766984, 0.41215856611692736], [2.455157970829864, 0.2473934610771858], [2.441484913115475, 0.350791885259172]]
```



```
Resultado para x0 = \begin{bmatrix} -1.2 & 1. & -1.2 & 1. & -1.2 & 1. & -1.2 & 1. & -1.2 & 1. \end{bmatrix}
-1.2 1.
1.
                           1.
                                      1.
                                                1.
                                                           1.
           1.
                      1.00000001 1.00000002 1.00000006 1.00000012
 1.00000024 1.00000047 1.00000094 1.00000187 1.00000375 1.00000751
 1.00001505 1.00003017], k = 848, f(xk) = 3.0231817062524976e-10, convergió:
True
Numero de reinicios = 713
Resultado para x0 = \begin{bmatrix} -1.2 & 1. & -1.2 & 1. & -1.2 & 1. & -1.2 & 1. & -1.2 & 1. \end{bmatrix}
-1.2 1.
-1.2 1. -1.2 1. -1.2 1. -1.2 1. -1.2 1. -1.2 1. -1.2 1.
-1.2 1. -1.2 1. -1.2 1. -1.2 1. -1.2 1. -1.2 1. ], f(x0) = 9680.0:
xk = [1.
                          1.00000001 1.
                                                1.00000001 1.
                1.
1.00000001 1.00000001 1.
                                 1.00000001 1.
                                                      1.0000001
1.00000001 1.00000001 1.00000001 1.
                                           1.00000001 1.00000001
 1.00000001 1.00000001 1.00000001 1.00000001 1.00000001
           1.00000001 1.
                                                      0.99999998
                                1.
                                           1.
 0.99999996 0.99999999 0.999999981 0.999999961 0.999999921 0.999999841
```

```
0.99999681 0.99999361 0.99998717 0.99997428], k = 2354, f(xk) = 2.200801184833565e-10, convergió: True
Numero de reinicios = 1973
```

1.3 Ejercicio 3

Programar el método de gradiente conjugado no lineal de usando la fórmula de Hestenes-Stiefel:

En este caso el algoritmo es igual al del Ejercicio 2, con excepción del cálculo de β_{k+1} . Primero se calcula el vector \mathbf{y}_k y luego β_{k+1} :

$$\begin{aligned} \mathbf{y}_k &= \nabla f_{k+1} - \nabla f_k \\ \beta_{k+1} &= \frac{\nabla f_{k+1}^\top \mathbf{y}_k}{p_{\scriptscriptstyle L}^\top \mathbf{y}_k} \end{aligned}$$

- 1. Repita el Ejercicio 2 usando la fórmula de Hestenes-Stiefel.
- 2. ¿Hay alguna diferencia que indique que es mejor usar la fórmula de Hestenes-Stiefel respesto a Fletcher-Reeves?
- 3. La cantidad de reinicios puede indicar que tanto se comporta el algoritmo como el algoritmo de descenso máximo. Agregue un comentario sobre esto de acuerdo a los resultados obtenidos para cada fórmula.

```
[67]: def ConjugateGrad NLineal HS(x0, f, gradf, nMax, tau, alpha 0, rho, c1, c2,
       ⇒nBack):
          xk = np.array(x0)
          gk = gradf(xk)
          dk = -gk
          nr = 0 # Contador de reinicios
          sequence = []
          for k in range(nMax):
              if np.linalg.norm(gk) < tau:</pre>
                  return xk, gk, k, True, sequence, nr
              alpha_k = backtracking_wolfe(xk, dk, gk, f, gradf, alpha_0, rho, c1,_
       ⇔c2, nBack)
              xk += alpha_k * dk
              gk_next = gradf(xk)
              yk = gk_next - gk
              # Condición para el reinicio (revisar ortogonalidad)
              if abs(gk_next.T @ gk) < (0.2 * np.linalg.norm(gk_next)**2):</pre>
                  betak = (gk_next.T @ yk) / (dk.T @ yk)
              else:
                  betak = 0
                  nr += 1
```

```
dk = -gk_next + betak * dk
gk = gk_next

# Almacenar puntos solo para visualización en 2D
if len(x0) == 2:
    sequence.append(xk.tolist())

return xk, gk, k, False, sequence, nr # No se alcanzó la convergencia⊔

dentro de nMax
```

```
[68]: # Epsilon de la máquina
      epsilon_m = np.finfo(float).eps
      # Configuración de tolerancia
      tau = lambda n: np.sqrt(n) * epsilon_m**(1/3)
      # Parámetros iniciales
      alpha_0 = 1
      rho = 0.5
      c1 = 0.001
      c2 = 0.01
      # Número máximo de iteraciones para el descenso máximo y la sección dorada
      NMax = 5000
      NBack = 600
      # Función para probar el algoritmo de descenso máximo con diferentes funciones
      def probar_descenso_maximo(func, grad_func, puntos_iniciales):
          for x0 in puntos_iniciales:
              xk, gk, k, convergio, secuencia, nr = ConjugateGrad_NLineal_HS(x0,__
       func, grad_func, NMax, tau(len(x0)), alpha_0, rho, c1, c2, NBack)
              valor final = func(xk)
              print(f"Resultado para x0 = {x0}, f(x0) = {func(x0)}:")
              print(f"xk = {xk}, k = {k}, f(xk) = {valor_final}, convergió:

√{convergio}")
              print(f"Numero de reinicios = {nr}")
              if len(x0) == 2 and secuencia:
                  print(f"Secuencia de puntos: {secuencia[:2]}")
                  contornosFnc2D(func, xleft=-5.5, xright=5.5, ybottom=-5.5, ytop=5.
       →5, levels=[0.5, 5, 10, 25, 50, 100, 150, 250, 400], secuencia=secuencia)
              print()
      # Función para probar las funciones cuadráticas
      def test_quadratic(n, generate):
          # Puntos iniciales
```

```
x0 = [np.zeros(n)]

# Generar A, b
A, b = generate(n)

# Generamos la función y su gradiente
f = lambda x: fG(x, A, b)
gradf = lambda x: gradfG(x, A, b)

probar_descenso_maximo(f, gradf, x0)
```

Probamos el sistema cuadrático 1

```
[69]: # Prueba del algoritmo para f1
     for n in [10, 100, 1000]:
        test_quadratic(n, generate_A1_b1)
    Resultado para x0 = [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.], f(x0) = 0.0:
    xk = [0.05000019 \ 0.05000019 \ 0.05000019 \ 0.05000019 \ 0.05000019 \ 0.05000019
     0.05000019 \ 0.05000019 \ 0.05000019 \ 0.05000019], k = 9, f(xk) =
    -0.2499999999636202, convergió: True
    Numero de reinicios = 9
    0. 0. 0. 0.
     0. 0. 0. 0.], f(x0) = 0.0:
    xk = [0.00500003 \ 0.00500003 \ 0.00500003 \ 0.00500003 \ 0.00500003 \ 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 \ 0.00500003 \ 0.00500003 \ 0.00500003 \ 0.00500003 \ 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 0.00500003 0.00500003 0.00500003 0.00500003 0.00500003
     0.00500003 \ 0.00500003 \ 0.00500003 \ 0.00500003], k = 21, f(xk) =
    -0.2499999999200045, convergió: True
    Numero de reinicios = 21
```

```
0. 0. 0. 0.
xk = [0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005\ 0.0005\ 0.0005\ 0.0005\ 0.0005\ 0.0005\ 0.0005\ 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
```

```
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
```

```
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0005
```

```
251, f(xk) = -0.2499999999146555, convergió: True Numero de reinicios = 251
```

Ahora probamos el sistema cuadrático 2

```
[70]: # Prueba del algoritmo para f2
   for n in [10, 100, 1000]:
      test_quadratic(n, generate_A2_b2)
   Resultado para x0 = [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.], f(x0) = 0.0:
   xk = [1.36889566 -1.16586292 1.60838905 -0.61279115 0.59477256 0.59477256
    -0.61279115 1.60838905 -1.16586292 1.36889566], k = 1571, f(xk) =
   -1.7934207913526616, convergió: True
   Numero de reinicios = 1230
   0. 0. 0. 0.
   0. 0. 0. 0.], f(x0) = 0.0:
   xk = [ 1.43574711 -1.38364255 2.04861357 -1.33199051 1.6369175 -0.79482407
    1.10497892 -0.32632041 0.71812681 -0.02010894 0.48358338 0.15425045
    0.35794489 0.24162001 0.29980583 0.27812842
                                  0.27874551
                                          0.28866183
    0.27497598 0.2884652
                   0.27718391 0.28555298 0.28002646 0.2831932
    0.28176663 0.28206419 0.28239521 0.28180845
                                  0.28241789
                                          0.28191567
    0.282268
           0.28206403 0.28215345 0.28214277 0.28211305 0.28215886
    0.28211645 0.28214943 0.2821301
                           0.2821395
                                  0.28213858 0.28213612
    0.28214075 0.28213706 0.28214017 0.28213882 0.28213951 0.28213975
    0.2821395
           0.28213979 0.28213979 0.2821395
                                  0.28213975 0.28213951
    0.28213882 0.28214017 0.28213706 0.28214075 0.28213612 0.28213858
    0.2821395
           0.2821301
                   0.28214943 0.28211645
                                  0.28215886 0.28211305
    0.28191567
                                          0.28241789
    0.28180845 0.28239521 0.28206419 0.28176663 0.2831932
                                          0.28002646
    0.28555298 0.27718391 0.2884652
                           0.27497598 0.28866183 0.27874551
    0.27812842 0.29980583 0.24162001 0.35794489 0.15425045
                                          0.48358338
   1.6369175
    -1.33199051 2.04861357 -1.38364255 1.43574711], k = 4999, f(xk) =
   -14.494146346147428, convergió: False
   Numero de reinicios = 4034
   0. 0. 0. 0.
```

```
xk = [1.43564286 -1.38333078 2.04801979 -1.3311241]
             1.63578613 -0.79351267
1.10352353 -0.32483427
      0.71663672 -0.01872643
           0.48230324
              0.15533467
      0.29923366
0.35701045
   0.24233173
         0.2785006
           0.27846498
              0.28879
0.27487991
   0.28845716
      0.27717325
         0.28549327
           0.28003477
              0.28312995
0.28176308
   0.28201421
      0.28237403
         0.28177049
           0.28238469
              0.28188279
0.28222979
   0.28203073
      0.28211434
         0.28210687
           0.28207414
              0.28212051
0.28207737
   0.28210952
      0.28209029
         0.28209872
           0.28209786
              0.2820948
   0.28209529
0.28209927
      0.28209819
         0.28209669
           0.28209725
              0.28209745
0.28209705
   0.28209758
      0.28209725
         0.28209752
           0.28209749
              0.28209753
   0.28209761
0.28209763
      0.28209771
         0.28209773
           0.28209778
              0.28209783
0.28209787
   0.28209793
      0.28209797
         0.28209802
           0.28209806
              0.28209811
0.28209815
   0.2820982
      0.28209824
         0.28209829
           0.28209833
              0.28209838
```

```
0.28209842
            0.28209847
                                     0.28209856
                                                  0.2820986
                         0.28209851
                                                               0.28209864
0.28209869
            0.28209873
                         0.28209877
                                     0.28209882
                                                  0.28209886
                                                               0.2820989
0.28209894
            0.28209898
                         0.28209903
                                     0.28209907
                                                  0.28209911
                                                               0.28209915
                                     0.28209931
                                                  0.28209935
0.28209919
            0.28209923
                         0.28209927
                                                               0.28209939
0.28209943
            0.28209947
                         0.28209951
                                     0.28209955
                                                  0.28209959
                                                               0.28209962
0.28209966
            0.2820997
                         0.28209974
                                     0.28209978
                                                  0.28209981
                                                               0.28209985
0.28209989
            0.28209992
                         0.28209996
                                     0.2821
                                                  0.28210003
                                                               0.28210007
                                     0.28210021
0.2821001
            0.28210014
                         0.28210017
                                                  0.28210024
                                                               0.28210027
0.28210031
            0.28210034
                         0.28210038
                                     0.28210041
                                                  0.28210044
                                                               0.28210047
0.28210051
            0.28210054
                         0.28210057
                                     0.2821006
                                                  0.28210063
                                                               0.28210066
0.2821007
            0.28210073
                         0.28210076
                                     0.28210079
                                                  0.28210082
                                                               0.28210085
0.28210088
            0.28210091
                         0.28210093
                                     0.28210096
                                                  0.28210099
                                                               0.28210102
0.28210105
            0.28210108
                         0.2821011
                                     0.28210113
                                                  0.28210116
                                                               0.28210118
0.28210121
            0.28210124
                         0.28210126
                                     0.28210129
                                                  0.28210131
                                                               0.28210134
0.28210137
            0.28210139
                         0.28210141
                                     0.28210144
                                                  0.28210146
                                                               0.28210149
0.28210151
            0.28210153
                         0.28210156
                                     0.28210158
                                                  0.2821016
                                                               0.28210163
0.28210165
            0.28210167
                         0.28210169
                                     0.28210172
                                                  0.28210174
                                                               0.28210176
0.28210178
            0.2821018
                         0.28210182
                                     0.28210184
                                                  0.28210186
                                                               0.28210188
0.2821019
            0.28210192
                         0.28210194
                                     0.28210196
                                                  0.28210198
                                                               0.282102
0.28210202
            0.28210203
                         0.28210205
                                     0.28210207
                                                  0.28210209
                                                               0.28210211
0.28210212
            0.28210214
                         0.28210216
                                     0.28210217
                                                  0.28210219
                                                               0.28210221
0.28210222
            0.28210224
                         0.28210225
                                     0.28210227
                                                  0.28210229
                                                               0.2821023
0.28210232
            0.28210233
                         0.28210235
                                     0.28210236
                                                  0.28210237
                                                               0.28210239
0.2821024
            0.28210242
                         0.28210243
                                     0.28210244
                                                  0.28210246
                                                               0.28210247
0.28210248
            0.2821025
                         0.28210251
                                     0.28210252
                                                  0.28210253
                                                               0.28210254
0.28210256
            0.28210257
                         0.28210258
                                     0.28210259
                                                  0.2821026
                                                               0.28210261
0.28210263
                         0.28210265
                                     0.28210266
                                                  0.28210267
            0.28210264
                                                               0.28210268
0.28210269
            0.2821027
                         0.28210271
                                     0.28210272
                                                  0.28210273
                                                               0.28210274
                                                  0.28210278
0.28210275
            0.28210276
                         0.28210277
                                     0.28210277
                                                               0.28210279
0.2821028
            0.28210281
                         0.28210282
                                     0.28210283
                                                  0.28210283
                                                               0.28210284
0.28210285
            0.28210286
                         0.28210286
                                                  0.28210288
                                     0.28210287
                                                               0.28210289
0.28210289
            0.2821029
                         0.28210291
                                     0.28210291
                                                  0.28210292
                                                               0.28210293
0.28210293
            0.28210294
                         0.28210295
                                     0.28210295
                                                  0.28210296
                                                               0.28210297
0.28210297
            0.28210298
                         0.28210298
                                     0.28210299
                                                  0.28210299
                                                               0.282103
0.28210301
            0.28210301
                         0.28210302
                                     0.28210302
                                                  0.28210303
                                                               0.28210303
0.28210304
            0.28210304
                         0.28210305
                                     0.28210305
                                                  0.28210305
                                                               0.28210306
0.28210306
            0.28210307
                         0.28210307
                                     0.28210308
                                                  0.28210308
                                                               0.28210308
0.28210309
            0.28210309
                         0.2821031
                                     0.2821031
                                                  0.2821031
                                                               0.28210311
0.28210311
            0.28210311
                         0.28210312
                                     0.28210312
                                                  0.28210312
                                                               0.28210313
0.28210313
            0.28210313
                         0.28210314
                                     0.28210314
                                                  0.28210314
                                                               0.28210315
0.28210315
                                                  0.28210316
            0.28210315
                         0.28210316
                                     0.28210316
                                                               0.28210316
0.28210317
            0.28210317
                         0.28210317
                                     0.28210317
                                                  0.28210318
                                                               0.28210318
0.28210318
            0.28210318
                         0.28210318
                                     0.28210319
                                                  0.28210319
                                                               0.28210319
0.28210319
            0.28210319
                         0.2821032
                                     0.2821032
                                                  0.2821032
                                                               0.2821032
0.2821032
            0.28210321
                         0.28210321
                                     0.28210321
                                                  0.28210321
                                                               0.28210321
0.28210321
            0.28210322
                         0.28210322
                                     0.28210322
                                                  0.28210322
                                                               0.28210322
0.28210322
            0.28210322
                         0.28210323
                                     0.28210323
                                                  0.28210323
                                                               0.28210323
0.28210323
            0.28210323
                         0.28210323
                                     0.28210324
                                                  0.28210324
                                                               0.28210324
```

```
0.28210324
                                     0.28210324
                                                  0.28210324
            0.28210324
                         0.28210324
                                                               0.28210324
0.28210324
            0.28210325
                         0.28210325
                                     0.28210325
                                                  0.28210325
                                                               0.28210325
0.28210325
            0.28210325
                         0.28210325
                                     0.28210325
                                                  0.28210325
                                                               0.28210325
                                     0.28210326
                                                  0.28210326
0.28210325
            0.28210326
                         0.28210326
                                                               0.28210326
0.28210326
            0.28210326
                         0.28210326
                                     0.28210326
                                                  0.28210326
                                                               0.28210326
0.28210326
            0.28210326
                         0.28210326
                                     0.28210326
                                                  0.28210326
                                                               0.28210327
0.28210327
            0.28210327
                         0.28210327
                                     0.28210327
                                                  0.28210327
                                                               0.28210327
            0.28210327
                                                               0.28210327
0.28210327
                         0.28210327
                                     0.28210327
                                                  0.28210327
0.28210327
            0.28210327
                         0.28210327
                                     0.28210327
                                                  0.28210327
                                                               0.28210327
                                                               0.28210327
0.28210327
            0.28210327
                         0.28210327
                                     0.28210327
                                                  0.28210327
0.28210327
            0.28210327
                         0.28210327
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
                                     0.28210328
                                                  0.28210328
            0.28210328
                         0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
                                                  0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210328
                         0.28210328
                                     0.28210328
                                                  0.28210328
                                                               0.28210328
0.28210328
            0.28210327
                         0.28210327
                                     0.28210327
                                                  0.28210327
                                                               0.28210327
0.28210327
            0.28210327
                         0.28210327
                                     0.28210327
                                                  0.28210327
                                                               0.28210327
0.28210327
            0.28210327
                         0.28210327
                                     0.28210327
                                                  0.28210327
                                                               0.28210327
0.28210327
            0.28210327
                         0.28210327
                                     0.28210327
                                                  0.28210327
                                                               0.28210327
0.28210327
            0.28210327
                         0.28210327
                                     0.28210327
                                                  0.28210327
                                                               0.28210326
                         0.28210326
0.28210326
            0.28210326
                                     0.28210326
                                                  0.28210326
                                                               0.28210326
0.28210326
            0.28210326
                         0.28210326
                                     0.28210326
                                                  0.28210326
                                                               0.28210326
0.28210326
            0.28210326
                         0.28210326
                                     0.28210325
                                                  0.28210325
                                                               0.28210325
0.28210325
            0.28210325
                         0.28210325
                                     0.28210325
                                                  0.28210325
                                                               0.28210325
0.28210325
            0.28210325
                         0.28210325
                                     0.28210324
                                                  0.28210324
                                                               0.28210324
0.28210324
            0.28210324
                         0.28210324
                                     0.28210324
                                                  0.28210324
                                                               0.28210324
0.28210324
            0.28210323
                         0.28210323
                                     0.28210323
                                                  0.28210323
                                                               0.28210323
```

```
0.28210323
                                     0.28210322
                                                  0.28210322
            0.28210323
                         0.28210322
                                                               0.28210322
0.28210322
            0.28210322
                         0.28210322
                                     0.28210321
                                                  0.28210321
                                                               0.28210321
0.28210321
            0.28210321
                                     0.2821032
                         0.28210321
                                                  0.2821032
                                                               0.2821032
0.2821032
                         0.28210319
                                     0.28210319
                                                  0.28210319
            0.2821032
                                                               0.28210319
0.28210319
            0.28210318
                         0.28210318
                                     0.28210318
                                                  0.28210318
                                                               0.28210318
0.28210317
                         0.28210317
                                     0.28210317
                                                  0.28210316
            0.28210317
                                                               0.28210316
0.28210316
            0.28210316
                         0.28210315
                                     0.28210315
                                                  0.28210315
                                                               0.28210314
0.28210314
            0.28210314
                         0.28210313
                                     0.28210313
                                                  0.28210313
                                                               0.28210312
0.28210312
            0.28210312
                         0.28210311
                                     0.28210311
                                                  0.28210311
                                                               0.2821031
0.2821031
            0.2821031
                         0.28210309
                                     0.28210309
                                                  0.28210308
                                                               0.28210308
0.28210308
            0.28210307
                         0.28210307
                                     0.28210306
                                                  0.28210306
                                                               0.28210305
0.28210305
            0.28210305
                         0.28210304
                                     0.28210304
                                                  0.28210303
                                                               0.28210303
0.28210302
            0.28210302
                         0.28210301
                                     0.28210301
                                                  0.282103
                                                               0.28210299
0.28210299
            0.28210298
                         0.28210298
                                     0.28210297
                                                  0.28210297
                                                               0.28210296
0.28210295
            0.28210295
                         0.28210294
                                     0.28210293
                                                  0.28210293
                                                               0.28210292
0.28210291
            0.28210291
                                                  0.28210289
                         0.2821029
                                      0.28210289
                                                               0.28210288
0.28210287
            0.28210286
                         0.28210286
                                     0.28210285
                                                  0.28210284
                                                               0.28210283
0.28210283
            0.28210282
                         0.28210281
                                     0.2821028
                                                  0.28210279
                                                               0.28210278
0.28210277
            0.28210277
                         0.28210276
                                     0.28210275
                                                  0.28210274
                                                               0.28210273
0.28210272
            0.28210271
                         0.2821027
                                      0.28210269
                                                  0.28210268
                                                               0.28210267
0.28210266
            0.28210265
                         0.28210264
                                     0.28210263
                                                  0.28210261
                                                               0.2821026
0.28210259
            0.28210258
                         0.28210257
                                     0.28210256
                                                  0.28210254
                                                               0.28210253
0.28210252
            0.28210251
                         0.2821025
                                      0.28210248
                                                  0.28210247
                                                               0.28210246
0.28210244
            0.28210243
                         0.28210242
                                     0.2821024
                                                  0.28210239
                                                               0.28210237
0.28210236
            0.28210235
                         0.28210233
                                     0.28210232
                                                  0.2821023
                                                               0.28210229
0.28210227
            0.28210225
                         0.28210224
                                     0.28210222
                                                  0.28210221
                                                               0.28210219
0.28210217
            0.28210216
                         0.28210214
                                     0.28210212
                                                  0.28210211
                                                               0.28210209
0.28210207
            0.28210205
                         0.28210203
                                     0.28210202
                                                  0.282102
                                                               0.28210198
0.28210196
            0.28210194
                         0.28210192
                                     0.2821019
                                                  0.28210188
                                                               0.28210186
0.28210184
            0.28210182
                         0.2821018
                                      0.28210178
                                                  0.28210176
                                                               0.28210174
0.28210172
            0.28210169
                         0.28210167
                                     0.28210165
                                                  0.28210163
                                                               0.2821016
0.28210158
            0.28210156
                         0.28210153
                                     0.28210151
                                                  0.28210149
                                                               0.28210146
0.28210144
            0.28210141
                         0.28210139
                                     0.28210137
                                                  0.28210134
                                                               0.28210131
0.28210129
            0.28210126
                         0.28210124
                                     0.28210121
                                                  0.28210118
                                                               0.28210116
0.28210113
            0.2821011
                         0.28210108
                                     0.28210105
                                                  0.28210102
                                                               0.28210099
0.28210096
            0.28210093
                         0.28210091
                                     0.28210088
                                                  0.28210085
                                                               0.28210082
0.28210079
            0.28210076
                         0.28210073
                                     0.2821007
                                                  0.28210066
                                                               0.28210063
0.2821006
            0.28210057
                         0.28210054
                                     0.28210051
                                                  0.28210047
                                                               0.28210044
                                                  0.28210027
0.28210041
            0.28210038
                         0.28210034
                                     0.28210031
                                                               0.28210024
0.28210021
            0.28210017
                         0.28210014
                                     0.2821001
                                                  0.28210007
                                                               0.28210003
0.2821
                                     0.28209989
                                                  0.28209985
                                                               0.28209981
            0.28209996
                         0.28209992
0.28209978
                         0.2820997
            0.28209974
                                      0.28209966
                                                  0.28209962
                                                               0.28209959
0.28209955
            0.28209951
                         0.28209947
                                     0.28209943
                                                  0.28209939
                                                               0.28209935
0.28209931
            0.28209927
                         0.28209923
                                     0.28209919
                                                  0.28209915
                                                               0.28209911
0.28209907
            0.28209903
                         0.28209898
                                     0.28209894
                                                  0.2820989
                                                               0.28209886
            0.28209877
0.28209882
                         0.28209873
                                     0.28209869
                                                  0.28209864
                                                               0.2820986
0.28209856
            0.28209851
                         0.28209847
                                     0.28209842
                                                  0.28209838
                                                               0.28209833
0.28209829
            0.28209824
                         0.2820982
                                      0.28209815
                                                  0.28209811
                                                               0.28209806
```

Ahora probamos las funciones de optimización ya que son funciones con resultados conocidos, las cuales podemos probar mas sencillamente que las primeras funciones.

```
[71]: # Puntos iniciales para la función de Himmelblau
      puntos_iniciales_himmelblau = [np.array([2.0, 4.0])]
      # Puntos iniciales para la función de Beale
      puntos_iniciales_beale = [np.array([2.0, 3.0])]
      # Puntos iniciales para la función de Rosenbrock
      puntos_iniciales_rosenbrock = [
          np.array([-1.2, 1.0]),
          np.array([-1.2 if i \% 2 == 0 else 1.0 for i in range(20)]), # Usamos una_\( \)
       → list comprenhension
          np.array([-1.2 if i \% 2 == 0 else 1.0 for i in range(40)])
      # Epsilon de la máquina
      epsilon_m = np.finfo(float).eps
      # Configuración de tolerancia
      tau = lambda n: np.sqrt(n) * epsilon_m**(1/3)
      # Parámetros iniciales
      alpha 0 = 1
      rho = 0.5
      c1 = 0.001
      c2 = 0.01
      # Número máximo de iteraciones para el descenso máximo y la sección dorada
      NMax = 5000
      NBack = 500
      # Función para probar el algoritmo de descenso máximo con diferentes funciones
```

```
def probar_descenso_maximo(func, grad func, puntos_iniciales):
    for x0 in puntos_iniciales:
        xk, gk, k, convergio, secuencia, nr = ConjugateGrad NLineal HS(x0, L
 func, grad func, NMax, tau(len(x0)), alpha_0, rho, c1, c2, NBack)
        valor final = func(xk)
        print(f"Resultado para x0 = \{x0\}, f(x0) = \{func(x0)\}:")
        print(f"xk = {xk}, k = {k}, f(xk) = {valor_final}, convergió:__

√{convergio}")
        print(f"Numero de reinicios = {nr}")
        if len(x0) == 2 and secuencia:
            print(f"Secuencia de puntos: {secuencia[:10]}")
             contornosFnc2D(func, xleft=-5.5, xright=5.5, ybottom=-5.5, ytop=5.
 $5, levels=[0.5, 5, 10, 25, 50, 100, 150, 250, 400], secuencia=secuencia
        print()
# Probar con la función de Himmelblau
print("Función de Himmelblau:")
probar_descenso_maximo(himmelblau, grad_himmelblau, puntos_iniciales_himmelblau)
# Probar con la función de Beale
print("Función de Beale:")
probar_descenso_maximo(beale, grad_beale, puntos_iniciales_beale)
# Probar con la función de Rosenbrock
print("Función de Rosenbrock:")
probar_descenso_maximo(rosenbrock, grad_rosenbrock, puntos_iniciales_rosenbrock)
Función de Himmelblau:
Resultado para x0 = [2. 4.], f(x0) = 130.0:
xk = [3.58442828 -1.84812653], k = 37, f(xk) = 1.9833788488942771e-13,
convergió: True
Numero de reinicios = 36
Secuencia de puntos: [[2.0625, -1.3125], [4.352040631804772,
-2.2718423752806016], [2.7316763914402022, -2.092115318716974],
[3.6895006993627346, -1.901972735280989], [3.5160832468629137,
-1.8876798499225802], [3.6289374002205363, -1.8619088588467099],
[3.5562553448995438, -1.8603814971565862], [3.6031536062903706,
-1.851703236713325], [3.5726512294353294, -1.852098781102387],
[3.592268022399545, -1.8490024562341307]]
```



```
Función de Beale: Resultado para x0 = [2. 3.], f(x0) = 3347.203125: xk = [3.00001871 0.50000457], k = 769, f(xk) = 5.6113870648033834e-11, convergió: True Numero de reinicios = 585 Secuencia de puntos: [[-1.08056640625, -3.21044921875], [1.7385279788790102, -0.5167037007758362], [1.6702182133704837, 0.19049842256335625], [2.0943612184475393, -0.01708745755063787], [2.1058410909975263, 0.3154047253054244], [2.221501652846917, 0.1953473151416435], [2.368756293476698, 0.41215856611692714], [3.306169099847903, 0.6244473928653774], [3.3165718403513047, 0.552716772759076], [3.3122277949273204, 0.5696126507670698]]
```



```
Resultado para x0 = \begin{bmatrix} -1.2 & 1. & -1.2 & 1. & -1.2 & 1. & -1.2 & 1. & -1.2 & 1. \end{bmatrix}
-1.2 1.
1.00000001 0.9999999 1.00000001 1.
                1.
           1.
                      0.99999999 1.
                                           0.99999998 0.99999997
0.99999994 0.99999988 0.999999976 0.99999995 0.999999901 0.999999801
0.99999603 0.99999203], k = 1625, f(xk) = 2.1261571738072738e-11, convergió:
True
Numero de reinicios = 1269
Resultado para x0 = \begin{bmatrix} -1.2 & 1. & -1.2 & 1. & -1.2 & 1. & -1.2 & 1. & -1.2 & 1. \end{bmatrix}
-1.2 1.
-1.2 1. -1.2 1. -1.2 1. -1.2 1. -1.2 1. -1.2 1. -1.2 1.
-1.2 1. -1.2 1. -1.2 1. -1.2 1. -1.2 1. -1.2 1. ], f(x0) = 9680.0:
xk = [0.99999008 1.00002593 0.99996035 1.00005603 0.99993217 1.00008395
0.99990635 1.00010857 0.99988387 1.00012908 0.99986566 1.00014484
0.99985238 1.00015537 0.99984409 1.00015999 0.99983868 1.00015631
0.9998303 1.00014263 0.99981884 1.00013615 0.99983044 1.00018888
0.99991218 1.00033103 1.00005806 1.00043032 1.00004926 1.00005417
0.99918521 0.99810116 0.99539362 0.99063081 0.9806199 0.96092109
```

```
0.92155023 0.8476435 0.71681156 0.51236891], k = 4999, f(xk) = 0.11344111062389532, convergió: False
Numero de reinicios = 3976
```

2. ¿Hay alguna diferencia que indique que es mejor usar la fórmula de Hestenes-Stiefel respesto a Fletcher-Reeves?

Según las iteraciones y la convergencia de los algoritmos, parece que ambos se comportan de manera muy similar. De hecho las funciones que se probaron, ambos algoritmos coinciden en la convergencia de las mismas funciones, a excepción de la función de Rosenbrock que no convergía para el FR pero si para HS en dos dimensiones. Aunque en 40 dimensiones para HS no convergió como si lo hizo en FR. Mas allá de eso no veo un cambio significativo en tiempo de compilación, iteraciones y convergencia que asegure una mejora de la fórmula Hestenes-Stiefel.

3. La cantidad de reinicios puede indicar que tanto se comporta el algoritmo como el algoritmo de descenso máximo. Agregue un comentario sobre esto de acuerdo a los resultados obtenidos para cada fórmula.

En general, los reinicios fueron superiores en la función de Hestenes-Steifel en comparación con la fórmula de Fletcher-Reeves para el gradiente conjugado. La mayor cantidad de reinicios observada con la fórmula de HS en comparación con FR sugiere que la primera fórmula puede requerir ajustes más frecuentes en la dirección de búsqueda. Esto indica que las direcciones generadas por Hestenes-Stiefel pueden perder efectividad más rápidamente, lo que lleva a un comportamiento que se asemeja más al de un método de descenso máximo. Por el contrario, el menor número de reinicios con Fletcher-Reeves implica que esta fórmula mantiene una mejor ortogonalidad y eficacia en la dirección de búsqueda a lo largo de múltiples iteraciones, resultando en una necesidad reducida de reiniciar y posiblemente una convergencia más directa hacia el mínimo.