Identification de points dans le plan avec des disques

Valentin Gledel et Aline Parreau

JGA - 18 novembre 2016

Présentation du problème

Des points et des disques...

Des points et des disques...

O
O
O

Des points et des disques...

Un peu plus formellement

Donnée du problème

 ${\cal P}$ un ensemble de points du plan

Résultat souhaité

 ${\cal D}$ un ensemble de disques fermés vérifiant :

- Chaque point de P doit appartenir à au moins un disque de D. (Domination)
- Deux points de $\mathcal P$ doivent appartenir à des sous-ensembles différents de $\mathcal D$. (Séparation)

 $\gamma_D^{ID}(\mathcal{P})$: Nombre minimum de disques nécessaires pour identifier \mathcal{P} .

Un peu plus formellement

Donnée du problème

 ${\cal P}$ un ensemble de points du plan

Résultat souhaité

 ${\cal D}$ un ensemble de disques fermés vérifiant :

- Chaque point de P doit appartenir à au moins un disque de D. (Domination)
- Deux points de P doivent appartenir à des sous-ensembles différents de D. (Séparation)

 $\gamma_D^{ID}(\mathcal{P})$: Nombre minimum de disques nécessaires pour identifier \mathcal{P} .

Un peu plus formellement

Donnée du problème

 ${\cal P}$ un ensemble de points du plan

Résultat souhaité

 ${\cal D}$ un ensemble de disques fermés vérifiant :

- Chaque point de P doit appartenir à au moins un disque de D. (Domination)
- Deux points de P doivent appartenir à des sous-ensembles différents de D. (Séparation)

 $\gamma_D^{ID}(\mathcal{P})$: Nombre minimum de disques nécessaires pour identifier \mathcal{P} .

Problèmes liés

- Séparer des points par des disques (Gebner et Toth, 2012)
- Code identifiant dans un hypergraphe (Moncel, 2005)
- Code identifiant dans un graphe (Karpovsky, Chakrabarty et Levitin, 1998)
 - ► Graphe disque unitaire (Müller et Sereni, 2009)
 - Graphe intervalle unitaire (Foucaud, Mertzios, Naserasr, Parreau et Valicov, 2015).
- Séparer des points par des lignes parallèles aux axes (Calinescu, Dumitrescu, Karloff et Wan, 2005)

Plan

Quelques cas particuliers

Les points sont tous alignés Les points sont disposés dans une grille

Cas extrémaux

Borne basse

Borne haute

Borne haute en position générale

Complexité dans le cas où le rayon est fixé

Cas général

Les points sont alignés

Quelques cas particuliers

Les points sont tous alignés

Théorème

Soit \mathcal{P} un ensemble de n points alignés, $\gamma_D^{ID}(\mathcal{P}) = \lceil \frac{n+1}{2} \rceil$.

Les disques doivent passer par n+1 zones sur une même ligne pour passer entre chaque point et entourer tous les points.

Les points sont tous alignés

Théorème

Soit \mathcal{P} un ensemble de n points alignés, $\gamma_D^{ID}(\mathcal{P}) = \lceil \frac{n+1}{2} \rceil$.

Les disques doivent passer par n+1 zones sur une même ligne pour passer entre chaque point et entourer tous les points.

Les points sont tous alignés

Théorème

Soit \mathcal{P} un ensemble de n points alignés, $\gamma_D^{ID}(\mathcal{P}) = \lceil \frac{n+1}{2} \rceil$.

Les disques doivent passer par n+1 zones sur une même ligne pour passer entre chaque point et entourer tous les points.

Grille $n \times m$ et demi-plans

 $\gamma_{D,\infty}^{ID}(\mathcal{P})$: Nombre minimum de demi-plans pour identifier \mathcal{P} .

Théorème

Soit \mathcal{P} un ensemble de points disposés dans une grille de taille $n \times m$, $\gamma_{D,\infty}^{ID}(\mathcal{P}) = m+n-2$.

Grille $n \times m$ et demi-plans

 $\gamma_{D,\infty}^{ID}(\mathcal{P})$: Nombre minimum de demi-plans pour identifier \mathcal{P} .

Théorème

Soit \mathcal{P} un ensemble de points disposés dans une grille de taille $n \times m$, $\gamma_{D,\infty}^{ID}(\mathcal{P}) = m+n-2$.

Grille $n \times m$ et demi-plans

 $\gamma_{D,\infty}^{ID}(\mathcal{P})$: Nombre minimum de demi-plans pour identifier \mathcal{P} .

Théorème

Soit \mathcal{P} un ensemble de points disposés dans une grille de taille $n \times m$, $\gamma_{D,\infty}^{ID}(\mathcal{P}) = m + n - 2$.

Grille de largeur 2

Un découpage rapide est le suivant :

Théorème

Soit \mathcal{P} un ensemble de points disposés dans une grille de taille $n \times 2, \lceil \frac{n+1}{2} \rceil \le \gamma_D^{ID}(\mathcal{P}) \le \lceil \frac{n+1}{2} \rceil + 1$.

Résultat final

Théorème

Soit \mathcal{P} un ensemble de points disposés dans une grille de taille $n \times 2$ avec n = 6 ou $n \ge 8$, $\gamma_D^{ID}(\mathcal{P}) = \lceil \frac{n+1}{2} \rceil$.

Grille $n \times m$ avec $n \gg m$

Théorème

Soit $\mathcal P$ un ensemble de points disposés dans une grille de taille $n \times m$ avec $n > \frac{m^2-2m-3}{2}$ alors $\gamma_D^{ID}(\mathcal P) \leq m-1+\lceil \frac{n}{2} \rceil$.

Cas extrémaux

Borne basse théorique

Théorème

En plaçant k disques dans le plan, on obtient au plus k^2-k+1 zones.

En ajoutant un disque à k autres disques, on crée au plus 2k zones.

Borne basse théorique

Théorème

En plaçant k disques dans le plan, on obtient au plus k^2-k+1 zones.

En ajoutant un disque à k autres disques, on crée au plus 2k zones.

Borne basse théorique

Théorème

En plaçant k disques dans le plan, on obtient au plus $k^2 - k + 1$ zones.

En ajoutant un disque à k autres disques, on crée au plus 2k zones.

Corollaire

Soit $\mathcal P$ un ensemble de n points du plan

$$\gamma_D^{ID}(\mathcal{P}) \ge \lceil \frac{1+\sqrt{1+4(n-1)}}{2} \rceil \sim \sqrt{n}$$

Une borne atteinte

Une borne atteinte

Une borne atteinte

Théorème

Borne haute

Théorème

Soit $\mathcal P$ un ensemble de n points du plan, $\gamma_D^{ID}(\mathcal P) \leq \lceil \frac{n+1}{2} \rceil$.

Borne haute en position générale

La borne haute précédente est atteinte dans les cas où tous les points sont alignés ou cocycliques.

Théorème

Soit \mathcal{P} un ensemble de n points tels qu'il n'y a jamais 3 points alignés ou 4 points cocycliques, $\gamma_D^{ID}(\mathcal{P}) \leq \lfloor \frac{n}{3} \rfloor + 2$.

Utilisation de la triangulation de Delaunay.

Remarque

Pour que cette méthode fonctionne, on doit toujours être en mesure de trouver un triangle dont les sommets sont dans les trois différentes zones.

Théorème

Théorème

Théorème

Théorème

Théorème

Théorème

Théorème (J. G. Ceder, 1964)

Cas où la borne est atteinte

Théorème

Soit $\mathcal P$ un ensemble de n points disposés du même côté de l'axe de symétrie d'une parabole, $\gamma_D^{ID}(\mathcal P) \geq \frac{n}{3}$.

Cas où la borne est atteinte

Théorème

Soit \mathcal{P} un ensemble de n points disposés du même côté de l'axe de symétrie d'une parabole, $\gamma_D^{ID}(\mathcal{P}) \geq \frac{n}{3}$.

Complexité dans le cas où le rayon est fixé

Cas général

Théorème

Le problème suivant est NP-complet : Instance : Un ensemble \mathcal{P} de point de \mathbb{Z}^2 et un nombre $k \in \mathbb{N}$.

Question: Peut-on identifier tous les points de $\mathcal P$ avec k disques

de rayon 1?

On réduit notre problème à P_3 -partition dans un graphe de grille qui est NP-complet. Les P_3 sont remplacés par la structure suivante :

Les points sont alignés

Les points sont alignés

Perspectives

Perspectives

- Complexité
 - Cas où les centres sont fixés
 - Cas sans contraintes
 - Cas où l'on n'utilise que des droites
- Amélioration des résultats obtenus (grille)
- Disposition aléatoire des points
- Validité des résultats pour d'autres formes ou des dimensions supérieures

Annexe 1 : Grille $n \times 2$

Idée de base

Idée de base

Idée de base

Sur une seule ligne

Annexe 2 : Grille $n \times m$ avec $n \gg m$

Sur une ligne

Les disques sont de diamètre $\lceil \frac{n+1}{2} \rceil$

Condition de faisabilité

$$a = \frac{1}{2} \left\lceil \frac{n+1}{2} \right\rceil$$

$$b = \frac{m-1}{2}$$

$$r^2 = a^2 + b$$

$$r < a+1$$

Résultat

La simplification des equations précédentes nous donne $n>\frac{m^2-2m-1}{2}$

Résultat

La simplification des equations précédentes nous donne $n>\frac{m^2-2m-1}{2}$

On peut rajouter des points tout en conservant l'identification. Donc $n>\frac{m^2-2\,m-3}{2}$.

Annexe 3 : Exemple de disposition pour laquelle l'algorithme en position générale est nécessaire

Déroulement de l'exemple

Déroulement de l'exemple

Déroulement de l'exemple

