

FCC Test Report

FCC Rule(s): FCC Part 15.247

Applicant: Shenzhen Hongtuo Tongda Electronics Technology Co.Ltd

Product Name: CoBand K9

Model: SWB016

FCC ID: <u>2AIGP-SWB016</u>

Report No.: <u>ZKS170900095E</u>

Tested Date: 2017-07-01 to 2017-07-03

Issued Date: <u>2017-07-10</u>

Tested By: <u>Lieber Ouyang (Engineer)</u>

Approved By: <u>Lahm Peng (Manager)</u>

Prepared By:

Shenzhen ZRLK Testing Technology Co., Ltd.

6F, Fuxinfa Industrial Park, Liuxiandong, Xili Street, Nanshan District, Shenzhen, China

Tel.: +86-755-33019599 Fax.: +86-755-33019599 Website: www.zrlklab.com

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen ZRLK Testing Technology Co., Ltd.

FCC Test Report Page 1 of 35

CONTENTS

1. General Information	3
1.1 Product Information	3
1.2 Compliance Standards	4
1.3 Test Facilities	
1.4 Test Setup Information	
1.5 Measurement Uncertainty	
1.6 List of Test and Measurement Instruments	
2. Summary of Test Results	
3. Antenna Requirement	
3.1 Standard and Limit	
3.2 Test Result	
4. Power Spectral Density	9
4.1 Standard and Limit	9
4.2 Test Procedure	
4.3 Test Data and Results	
5. 6dB Bandwidth	11
5.1 Standard and Limit	
5.2 Test Procedure	
5.3 Test Data and Results	
6. RF Output Power	
6.1 Standard and Limit	
6.2 Test Procedure	
6.3 Test Data and Results	
7. Field Strength of Spurious Emissions	
7.1 Standard and Limit	
7.2 Test Procedure	
7.3 Test Data and Results	
8. Out of Band Emissions	
8.1 Standard and Limit	
8.2 Test Procedure	
8.3 Test Data and Results	
9. Conducted Emissions	
9.1 Standard and Limit	
9.2 Test Procedure	
9.3 Test Data and Results	
Annex A. EUT External Photos	
Annex B. EUT Internal Photos	
Annex C. Test Photos	
Annex D. Label and Information	35

1. General Information

1.1 Product Information

Applicant and Manufacturer	
Applicant:	Shenzhen Hongtuo Tongda Electronics Technology Co.Ltd
Address of Applicant:	02/1F, Block 2, East Industrial Park, Minqiang Community, Longhua
	New District, Shenzhen, China
Manufacturer:	Shenzhen Hongtuo Tongda Electronics Technology Co.Ltd
Address of Manufacturer:	02/1F, Block 2, East Industrial Park, Minqiang Community, Longhua
	New District, Shenzhen, China

General Description of EUT	Γ
Product Name:	CoBand K9
Model No.:	SWB016
Trade Name:	
Adding Model(s):	SWB020
Class of Equipment:	DTS
Rated Voltage:	DC 3.7V by battery
Hardware Version:	V1.0
Software Version:	V1.0
Frequency Range:	2402-2480MHz
Bluetooth Version:	V4.2 (BLE)
Modulation:	GFSK
Type of Antenna:	Integral Antenna
Antenna Gain:	1dBi

Note 1: The test data is gathered from a production sample, provided by the manufacturer.

Note 2: The appearance color of others models listed in the report is different from main-test model SWB016, but the circuit and the electronic construction do not change, declared by the manufacturer.

FCC Test Report Page 3 of 35

1.2 Compliance Standards

Compliance Standards or Rules			
ECC Dark 15 Calmont C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY		
FCC Part 15 Subpart C	DEVICES, Intentional Radiators		
ECC D 4 15 247	Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850		
FCC Part 15.247	MHz.		
The objective of the man	ufacturer or applicant is to demonstrate compliance with the above standards.		
According to standards for	or test methodology		
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices		
ANSI C03.10-2013	Accredited Standards Committee C63®—Electromagnetic Compatibility		
All measurements contain	ned in this report were conducted with all above standards		
Maintenance of complia	nce is the responsibility of the manufacturer or applicant. Any modification of the		
product, which result is le	owering the emission, should be checked to ensure compliance has been maintained.		

1.3 Test Facilities

Testing Lab: Global United Technology Services Co., Ltd.

The laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is **L5775**.

The laboratory has been listed by US Federal Communications Commission to perform electromagnetic emission measurements. The recognition numbers of test site are **600491**.

The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 9079A-2.

All measurement facilities used to collect the measurement data are located at No.301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

FCC Test Report Page 4 of 35

1.4 Test Setup Information

List of Test Modes				
Test Mode	Description	Remark		
TM1	Low Channel	2402	MHz	
TM2	Middle Channel	2442	MHz	
TM3	High Channel	2480MHz		
TM4	Charging & Operating			
List and Details of Auxilian	ry Equipment			
Description	Manufacturer	Model	Serial Number	
AC Adapter	GTS	A31-501000		
Notebook	Lenovo	E40		
Conversion Board	ZRLK	CH340		

- Note 1: The equipment under test (EUT) was configured to measure its highest possible emission level.
- Note 2: The Bluetooth has been tested under continuous transmission mode.
- Note 3: The Bluetooth is connected to notebook through a serial to USB conversion board, and to use a test set software to control the Bluetooth device work in test modes.
- Note 4: The Bluetooth has been tested under continuous transmission mode, and set the duty cycle of 99%.
- Note 5: The equipment under test (EUT) was tested under fully-charged battery.

1.5 Measurement Uncertainty

Parameter	Conditions	Uncertainty
Conducted Emissions	9kHz~30MHz	$\pm 2.79 \text{ dB}$
Radiated Emissions	$9kHz \sim 30MHz$	$\pm 4.12~\mathrm{dB}$
	$30 MHz \sim 1 GHz$	$\pm 4.16\mathrm{dB}$
	1GHz ~ 18GHz	\pm 5.97dB
	18GHz ~ 26.5GHz	±6.71dB

FCC Test Report Page 5 of 35

1.6 List of Test and Measurement Instruments

Description	Manufacturer	Model	Cal. Date	Due. Date
EMI Test Receiver	R&S	ESCI 7	April.25 2017	April. 24 2018
Coaxial Switch	ANRITSU CORP	MP59B	April.25 2017	April. 24 2018
Artificial Mains Network	SCHWARZBECK	NSLK8127	April.25 2017	April. 24 2018
ESU EMI Test Receiver	R&S	ESU26	April.25 2017	April. 24 2018
BiConiLog Antenna	SCHWARZBECK	VULB9163	April.25 2017	April. 24 2018
Double-ridged horn antenna	SCHWARZBECK	9120D	April.25 2017	April. 24 2018
Horn Antenna	ETS-LINDGREN	3160-09	April.25 2017	April. 24 2018
Loop Antenna	SCHWARZBECK	FMZB 1519	April.25 2017	April. 24 2018
RF Amplifier	HP	8347A	April.25 2017	April. 24 2018
Broadband Preamplifier	SCHWARZBECK	BBV9718	April.25 2017	April. 24 2018
EMI Test Software	AUDIX	E3	N/A	N/A
Coaxial Cable	GTS	9kHz-1GHz	April.25 2017	April. 24 2018
Coaxial Cable	GTS	1GHz-18GHz	April.25 2017	April. 24 2018
Coaxial Cable	GTS	18GHz-40GHz	April.25 2017	April. 24 2018
Spectrum Analyzer	Agilent	E4407B	April.25 2017	April. 24 2018
Temporary Antenna Connector	ZRLK	SMA-01	April.25 2017	April. 24 2018

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

FCC Test Report Page 6 of 35

2. Summary of Test Results

FCC Rules	Description of Test Items	Result
FCC Part 2.1093	RF Exposure	Passed
FCC Part 15.203, FCC Part 15.247(b)(4)(i)	Antenna Requirement	Passed
FCC Part 15.205	Restricted Band of Operation	Passed
FCC Part 15.207(a)	Conducted Emission	Passed
FCC Part 15.209(a)	Radiated Spurious Emissions	Passed
FCC Part 15.247(a)(2)	6dB Bandwidth	Passed
FCC Part 15.247(e)	Power Spectral Density	Passed
FCC Part 15.247(b)(3)	RF Power Output	Passed
FCC Part 15.247(d)	Band Edge (Out of Band Emissions)	Passed

Passed: The EUT complies with the essential requirements in the standard

Failed: The EUT does not comply with the essential requirements in the standard

N/A: Not applicable

FCC Test Report Page 7 of 35

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has a permanent antenna (wire antenna), fulfill the requirement of this section.

FCC Test Report Page 8 of 35

4. Power Spectral Density

4.1 Standard and Limit

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.2 Test Procedure

According to the KDB 558074 D01 v04, the test method of power spectral density as below:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW \geq 3 \times RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

4.3 Test Data and Results

Test Mode	Test Channel	Power Spectral Density	Limit
Test Mode	MHz	dBm/100kHz	dBm/3kHz
	2402	-2.313	8
GFSK(BLE)	2442	1.839	8
	2480	2.978	8

FCC Test Report Page 9 of 35

FCC Test Report Page 10 of 35

5. 6dB Bandwidth

5.1 Standard and Limit

According to 15.247(a)(2). Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.2 Test Procedure

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 \times RBW.
- c) Detector = Peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3 Test Data and Results

Test Mode	Test Channel MHz	6dB Bandwidth kHz	99% Bandwidth kHz
	2402	513.797	962.3813
GFSK(BLE)	2442	494.706	966.1081
	2480	503.368	957.9704

FCC Test Report Page 11 of 35

FCC Test Report Page 12 of 35

6. RF Output Power

6.1 Standard and Limit

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

6.2 Test Procedure

According to the ANSI C63.10, the peak output power test method as follows.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, the indicated level is the peak output power (the external attenuation and cable loss shall be considered).

6.3 Test Data and Results

Channel	Frequency MHz	Measured Value dBm	Output Power mW	Limit mW
Low Channel	2402	-1.330	0.736	1000
Middle Channel	2442	2.450	1.758	1000
High Channel	2480	3.423	2.199	1000

Note: the antenna gain of 1dBi less than 6dBi maximum permission antenna gain value based on 1 watt peak output power limit.

FCC Test Report Page 13 of 35

7. Field Strength of Spurious Emissions

7.1 Standard and Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious radiated emissions measurements starting below or at the lowest crystal frequency.

The general limits in FCC Part 15.209

Engagement of Emission (MHz)	Field Strength (uV/m)	Field Streng	gth (dBuV/m)
Frequency of Emission (MHz)	QP	QP	AV
30-88	100	40	
88-216	150	43.5	
216-960	200	46	
Above 960	500	54	74

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious radiated emissions measurements starting below or at the lowest crystal frequency.

Compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

7.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.

FCC Test Report Page 14 of 35

Test Setup Block Diagram below 30MHz

Test Setup Block Diagram for 30MHz-1GHz

FCC Test Report Page 15 of 35

Test Setup Block Diagram above 1GHz

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Frequency: 9kHz-30MHz	Frequency: 30MHz-1GHz	Frequency: Above 1GHz
RBW=10KHz	RBW=120KHz.	RBW=1MHz.

VBW=30KHz VBW=300KHz VBW=3MHz(Peak), 10Hz(AV)

Sweep time= Auto Sweep time= Auto Sweep time= Auto
Trace = max hold Trace = max hold Trace = max hold

Detector function = peak, QP Detector function = peak, AV

7.3 Test Data and Results

According to the data below, the FCC Part 15.205, 15.209 and 15.247 standards, and had the worst case:

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

FCC Test Report Page 16 of 35

Worst case TM1 mode (Low CH)

Test Plots and Data of Radiated Emissions (30MHz to 1GHz)	
Tested Model:	SWB016
Tested Mode:	TM1
Test Power Specification:	DC 3.7V
Test Antenna Polarization:	Horizontal

FCC Test Report Page 17 of 35

Test Plots and Data of Radiated Emissions (30MHz to 1GHz)	
Tested Model:	SWB016
Tested Mode:	TM1
Test Power Specification:	DC 3.7V
Test Antenna Polarization:	Vertical

FCC Test Report Page 18 of 35

Test Plots and Data of Radiated Emissions (1GHz to 25GHz)	
Tested Model:	SWB016
Tested Mode:	TM1/TM2/TM3
Test Power Specification:	DC 3.7V
Remark:	

Frequency	Correct	Result	Limit	Margin	Detector	Polar
(MHz)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	PK/AV	H/V
		Low	Channel (2402N	MHz)		
4804	8.29	37.56	74	-36.44	PK	Н
4804	8.29	26.31	54	-27.69	AV	Н
4804	8.29	38.83	74	-35.17	PK	V
4804	8.29	27.04	54	-26.96	AV	V
		Midd	le Channel (2442)	MHz)		
4884	8.40	38.21	74	-35.79	PK	Н
4884	8.40	26.94	54	-27.06	AV	Н
4884	8.40	38.92	74	-35.08	PK	V
4884	8.40	28.11	54	-25.89	AV	V
	High Channel (2480MHz)					
4960	8.50	38.84	74	-35.16	PK	Н
4960	8.50	27.99	54	-26.01	AV	Н
4960	8.50	39.12	74	-34.88	PK	V
4960	8.50	28.24	54	-25.76	AV	V

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 3^{th} Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The measurements greater than 20dB below the limit from 9kHz to 30MHz..

FCC Test Report Page 19 of 35

8. Out of Band Emissions

8.1 Standard and Limit

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

8.2 Test Procedure

According to the ANSI C63.10, the band-edge radiated test method as follows.

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation (2310MHz to 2410MHz for low bandedge, 2470MHz to 2500MHz for the high bandedge)

RBW = 1MHz, VBW = 3MHz for peak value measured

RBW = 1MHz, VBW = 10Hz for average value measured

Sweep = auto; Detector function = peak; Trace = max hold

All the trace to stabilize, set the marker on the emission at the bandedge, or on the highest modulation porduct outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emission must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205. Note that the method of measurement KDB publication number: 913591 may be used for the radiated bandedge measurements.

FCC Test Report Page 20 of 35

8.3 Test Data and Results

Radiated Bandedge (Worst case)

Lowest Bandedge (Vertical)

FCC Test Report Page 21 of 35

Highest Bandedge (Vertical)

FCC Test Report Page 22 of 35

9. Conducted Emissions

9.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted limit, the limit for a class B device as below:

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz

Note 2: The lower limit applies at the band edges

AC Power Line

9.2 Test Procedure

Test is conducting under the description of ANSI C63.10-2013 measurement procedure.

Test Setup Block Diagram

9.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a Class B device, and with the worst case as below:

FCC Test Report Page 23 of 35

Test Plots and Data of Conducted Emissions	
Tested Model:	SWB016
Tested Mode:	TM4
Test Power Specification:	AC 120V/60Hz
Test Power Line:	Neutral

FCC Test Report Page 24 of 35

Test Plots and Data of Conducted Emissions	
Tested Model:	SWB016
Tested Mode:	TM4
Test Power Specification:	AC 120V/60Hz
Test Power Line:	Line

FCC Test Report Page 25 of 35

Annex A. EUT External Photos

EUT View 1

EUT View 2

FCC Test Report Page 26 of 35

EUT View 4

FCC Test Report Page 27 of 35

EUT View 6

FCC Test Report Page 28 of 35

EUT View 8

FCC Test Report Page 29 of 35

EUT View 10

FCC Test Report Page 30 of 35

Annex B. EUT Internal Photos

EUT Internal View 1

FCC Test Report Page 31 of 35

EUT Internal View 3

FCC Test Report Page 32 of 35

Annex C. Test Photos

Radiated Emissions (30MHz to 1GHz)

Radiated Emissions (Above 1GHz)

FCC Test Report Page 33 of 35

Conducted Emission

FCC Test Report Page 34 of 35

Annex D. Label and Information

FCC Label Sample

FCC ID: 2AIGP-SWB016

FCC Label Specifications

Text is Black in color and is justified. Labels are printed in indelible ink on permanent adhesive backing or silk-screened onto the EUT or shall be affixed at a conspicuous location on the EUT. Where the EUT is constructed in two or more sections connected by wires and marketed together, the above statement is required to be affixed only to the main control unit. When the EUT is so small or for such use that it is not practicable to place the statement on it, the above information shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed.

FCC Label Location

***** END OF REPORT *****

FCC Test Report Page 35 of 35