EA772U CIRCUITOS LÓGICOS 22/05/2007 Prova 2A Duração: 2 horas

Nome: RA:

Questão 1 (2,0) Determinar as **expressões booleanas mínimas** para as saídas do TRANSCODIFICADOR **8 4 2 1** (entradas: w,x,y,z) para **3 em Excesso** (saídas: A,B,C,D): A = f1(w,x,y,z); B = f2(w,x,y,z); C = f3(w,x,y,z) e D = f4(w,x,y,z). Desenhar o diagrama lógico do transcodificador usando portas NAND.

Questão 2 (2,0) Obter a **expressão mínima** para a função abaixo, utilizando o método de **Quine-McCluskey**:

$$F(w, x, y, z) = \sum m(0, 3, 4, 7, 8, 11, 12, 15)$$

Questão 3 (2,0) Determinar a **tabela de estados mínima** equivalente à tabela de estados abaixo. Mostrar os passos de sua solução e desenhar o diagrama de estados correspondente à tabela de estados mínima.

EA	Entrada	
	$\mathbf{x} = 0$	x = 1
A	C,0	Н,0
В	A,1	B,0
C	A,1	C,0
D	D,1	E,1
Е	Н,0	D,0
F	F,1	A,0
G	A,0	Н,0
Н	F,1	A,0
	PE, saída	

Questão 4 (2,0) Obter o diagrama de estados reduzido para um detector do padrão 0100 com repetição (Exemplo: para uma entrada x = 01000100100010001000 a sequência de saída deve ser z = 00010001001001000000010). Por que podemos afirmar que o diagrama de estados obtido é mínimo?

Questão 5 (2,0) Seja a especificação de alto nível de um sistema seqüencial

Entrada: $x(t) \in \{a, b, c, d\}$; Saída: $z(t) \in \{0, 1\}$; Estados: $s(t) \in \{S_0, S_1, S_2, S_3\}$; Estado inicial: $s(0) = S_0$

e as funções de transição de estado e de saída definidas pela tabela

EA	Entrada			
	$\mathbf{x} = \mathbf{a}$	$\mathbf{x} = \mathbf{b}$	$\mathbf{x} = \mathbf{c}$	x = d
S_0	S ₀ ,0	$S_{0},1$	$S_{0},0$	$S_0, 1$
S_1	S ₁ ,0	$S_{3},0$	$S_{1},0$	$S_{3},0$
S_2	S ₂ ,0	$S_{2},1$	$S_{3},0$	$S_{3},1$
S_3	S ₃ ,0	$S_{1},0$	$S_{2},0$	$S_{0},0$
	PE, Saída			

- a) (0,25)Determinar a tabela de estados correspondente em código binário e o número mínimo de *flip-flops* tipo D necessários para implementar o sistema.
- b) (1,0) Determinar as funções de excitação para cada *flip-flop* D que resultem nas transições especificadas. Mostrar os passos da solução.
- c) (0,25)Determinar a função de transição para cada *flip-flop* D. Justificar a resposta.
- d) (0,5)Determinar a função de saída z(t).
- e) (0,5)Desenhar o diagrama lógico de uma implementação do sistema com uso de *flip-flops* D.