TD 9 : Chaînes de Markov Corrigé

Lundi 28 Novembre

Exercice 1 (Vrai ou faux)

Soit (S_n) une marche aléatoire simple sur \mathbb{Z} . Lesquels des processus suivants sont des chaînes de Markov sur \mathbb{Z} ? Pour ceux qui le sont, donner la matrice de transition.

1. $A = (S_n)_{n>0}$,	5. $E = (S_n + (-1)^n)_{n>0}$
<u> </u>	6. $F = (S_n)_{n \ge 0}$
3. $C = (S_n + n^2)_{n \ge 0}$	7. $G = (S_n^2 - n)_{n \ge 0}$
4. $D = (S_n + 10^n)_{n \ge 0}$	8. $H = (S_{2n})_{n \geq 0}$.

Solution de l'exercice 1

- 1. Oui. La matrice de transition est $Q(x,y) = \frac{1}{2}$ si |x-y| = 1 et 0 sinon.
- 2. Oui. La matrice de transition est $Q(x,y) = \frac{1}{2}$ si y = x ou y = x + 2, et 0 sinon.
- 3. Non. Si C était une chaîne de Markov de matrice de transition Q, on aurait d'une part

$$\mathbb{P}(C_0 = 0, C_1 = 0) = Q(0, 0)$$

soit $Q(0,0) = \mathbb{P}(S_1 = -1) = \frac{1}{2}$, et d'autre part

$$\mathbb{P}(C_0 = 0, C_1 = 0, C_2 = 0) = Q(0, 0)^2,$$

mais $C_2 \ge -2 + 2^2 = 2$ donc $\mathbb{P}(C_2 = 0) = 0$ donc $Q(0,0)^2 = 0$ et Q(0,0) = 0, d'où la contradiction.

- 4. Oui. La matrice de transition est la suivante : pour tous $n \in \mathbb{N}$ et $k \in \mathbb{Z}$ de même parité que n tel que $|k| \le n$, on a $Q(10^n + k, 10^{n+1} + k + 1) = Q(10^n + k, 10^{n+1} + k 1) = \frac{1}{2}$, et $Q(10^n + k, y) = 0$ pour tous les autres y. Cette définition a bien un sens car chaque entier peut s'écrire d'au plus une manière comme $10^n + k$ avec $|k| \le n$. Notons que cet argument ne marche plus pour l'exemple précédent, car par exemple 0 peut s'écrire $0^2 + 0$, mais aussi $1^2 + (-1)$.
- 5. Oui. La matrice de transition est la suivante : si x est pair alors $Q(x,y)=\frac{1}{2}$ si y=x-1 ou y=x-3 et 0 sinon. Si x est impair alors $Q(x,y)=\frac{1}{2}$ si y=x+1 ou y=x+3 et 0 sinon.
- 6. Oui. La matrice de transition est la suivante : on a Q(0,1)=1 et Q(0,y)=0 pour tout $y\neq 1$ et, pour $x\geq 1$, on a $Q(x,y)=\frac{1}{2}$ si |y-x|=1 et 0 sinon.
- 7. Non. Si G était une chaîne de Markov de matrice de transition Q, on aurait d'une part

$$Q(0,0) = \mathbb{P}(G_1 = 0) = \mathbb{P}(S_1^2 = 1) = 1$$

et d'autre part

$$Q(0,0) = \mathbb{P}(G_5 = 0|G_0 = 0, G_1 = 0, G_2 = 2, G_3 = 6, G_4 = 0) = 0$$

car $\mathbb{P}(G_5=0)=0$ (il faudrait $S_5^2=5$), alors que

$$\mathbb{P}(G_0 = 0, G_1 = 0, G_2 = 2, G_3 = 6, G_4 = 0) \ge \mathbb{P}(S_1 = 1, S_2 = 2, S_3 = 3, S_4 = 2) > 0.$$

8. Oui. La matrice de transition est

$$Q(x,y) = \begin{cases} \frac{1}{2} & \text{si } x = y, \\ \frac{1}{4} & \text{si } |x - y| = 1, \\ 0 & \text{sinon.} \end{cases}$$

Exercice 2 (Chaîne de Markov et indépendance)

Soient S un ensemble dénombrable et (G,\mathcal{G}) un ensemble mesurable. Soient aussi $(Z_n)_{n\geq 1}$ une suite de variables i.i.d. à valeurs dans (G,\mathcal{G}) et $\phi: S\times G\to S$ une application mesurable. On définit une suite de variables $(X_n)_{n\geq 0}$ à valeurs dans S par $X_0=x\in S$ et $X_{n+1}=\phi(X_n,Z_{n+1})$ pour tout $n\geq 0$. Montrer que $(X_n)_{n\geq 0}$ est une chaîne de Markov et déterminer sa matrice de transition.

Solution de l'exercice 2 Soient $n \ge 0$ et $(x_0, \ldots, x_n) \in S^n$. On a par indépendance :

$$\mathbb{P}(X_0 = x_0, \dots, X_n = x_n) = \mathbb{P}(X_0 = x_0, \phi(x_0, Z_1) = x_1, \phi(x_1, Z_2) = x_2, \dots, \phi(x_{n-1}, Z_n) = x_n)
= \mathbb{P}(X_0 = x_0) \mathbb{P}(\phi(x_0, Z_1) = x_1) \mathbb{P}(\phi(x_1, Z_2) = x_2) \dots \mathbb{P}(\phi(x_{n-1}, Z_n) = x_n)
= \mathbb{P}(X_0 = x_0) \mathbb{P}(\phi(x_0, Z_1) = x_1) \mathbb{P}(\phi(x_1, Z_1) = x_2) \dots \mathbb{P}(\phi(x_{n-1}, Z_1) = x_n).$$

On pose $Q(y,z) = \mathbb{P}(\phi(y,Z_1) = z)$ pour tout $(y,z) \in S^2$. On peut alors écrire

$$\mathbb{P}(X_0 = x_0, \dots, X_n = x_n) = \mathbb{P}(X_0 = x_0)Q(x_0, x_1)Q(x_1, x_2)\dots Q(x_{n-1}, x_n).$$

Cela signifie que $(X_n)_{n\geq 0}$ est une chaîne de Markov de matrice de transition Q.

Exercice 3 Soit $(S_n)_{n\geq 0}$ une marche aléatoire simple sur \mathbb{Z} issue de 0. Pour tout $i\geq 0$, on pose $T_i=\min\{n\geq 0|S_n=i\}$ (on rappelle que tous les T_i sont finis p.s. par récurrence de S).

- 1. Montrer que les variables $T_{i+1} T_i$ sont i.i.d.
- 2. On suppose maintenant que S est une marche biaisée négativement, i.e. les $S_{n+1} S_n$ sont i.i.d. et

$$\mathbb{P}(S_{n+1} - S_n = -1) = 1 - \mathbb{P}(S_{n+1} - S_n = +1) > \frac{1}{2}.$$

Montrer sans calcul que $M = \max\{S_n | n \ge 0\}$ est une variable géométrique.

Solution de l'exercice 3

1. Soit $i \geq 0$. Par la propriété de Markov forte, conditionnellement à \mathcal{F}_{T_i} , le processus $(S_{T_i+n})_{n\geq 0}$ a la loi d'une marche simple issue de i, donc $\widetilde{S} = (S_{T_i+n} - i)_{n\geq 0}$ est une marche simple sur \mathbb{Z} conditionnellement à \mathcal{F}_{T_i} . De plus, on a

$$T_{i+1} - T_i = \min\{n \ge 0 | \widetilde{S}_n = 1\},\$$

donc conditionnellement à \mathcal{F}_{T_i} , la variable $T_{i+1}-T_i$ a la même loi que T_1 . Comme cette loi est toujours la même, la variable $T_{i+1}-T_i$ est indépendante de \mathcal{F}_{T_i} . Or, les variables $T_1, T_2-T_1, \ldots, T_i-T_{i-1}$ sont \mathcal{F}_{T_i} -mesurables, donc $T_{i+1}-T_i$ a la loi de T_1 et est indépendante de $(T_{j+1}-T_j)_{0\leq j\leq i-1}$, d'où le résultat.

2. Le raisonnement est similaire. Soit $i \geq 0$. Conditionnellement à \mathcal{F}_{T_i} , si $T_i < +\infty$, le processus $\widetilde{S} = (S_{T_i+n} - i)_{n \geq 0}$ est une marche simple sur \mathbb{Z} par la propriété de Markov forte, donc

$$\mathbb{P}\left(T_{i+1}<+\infty|T_i<+\infty\right)=\mathbb{P}\left(\exists n\geq 0,\widetilde{S}_n=+1\right)=\mathbb{P}\left(T_1<+\infty\right).$$

Par récurrence, on en déduit $\mathbb{P}(T_i < +\infty) = \mathbb{P}(T_1 < +\infty)^i$ pour tout $i \geq 0$, d'où le résultat car $T_i < +\infty$ équivaut à $M \geq i$.

Remarque Le résultat de la deuxième question a déjà été obtenu (avec le paramètre de la loi géométrique) de manière plus calculatoire dans l'exercice 4 du TD4.

Exercice 4 Soit $(S_n)_{n\geq 0}$ la marche aléatoire simple sur \mathbb{Z} . Pour $x\in\mathbb{Z}$ avec $x\neq 0$, montrer que l'espérance du nombre de visites de x avant le premier retour en 0 vaut 1.

Solution de l'exercice 4 Pour tout $i \in \mathbb{Z}$, on note $\tau_i = \inf\{n > 0 | S_n = i\}$. On note aussi $N_x([0, \tau_0[)$ le nombre de passages en x avant le premier retour en 0. Dire que $N_x([0, \tau_0[)) = k$ revient à dire que la marche atteint x sans repasser par 0, puis en partant de x revient k-1 fois sur x toujours sans repasser par 0 et enfin en partant de x va en 0 sans repasser par x. D'après la propriété de Markov forte, on a donc

$$\mathbb{P}_{0}\left(N_{x}([0,\tau_{0}[)=k)=\mathbb{P}_{0}\left(\tau_{x}<\tau_{0}\right)\mathbb{P}_{x}\left(\tau_{x}<\tau_{0}\right)^{k-1}\mathbb{P}_{x}\left(\tau_{0}<\tau_{x}\right).$$

Il faut donc calculer ces trois quantités. Supposons x positif. On a, en utilisant la propriété de Markov simple,

$$\mathbb{P}_0(\tau_x < \tau_0) = \mathbb{P}_0(S_1 = +1 \text{ et } \tau_x < \tau_0) = \mathbb{P}_0(S_1 = +1)\mathbb{P}_1(\tau_x < \tau_0) = \frac{1}{2}\frac{1}{x}.$$

Par symétrie, on a aussi $\mathbb{P}_x[\tau_0 < \tau_x] = \frac{1}{2x}$ et $\mathbb{P}_x[\tau_x < \tau_0] = 1 - \frac{1}{2x}$. L'espérance cherchée vaut donc

$$\mathbb{E}_0[N_x([0,\tau_0[)=k]=\sum_{k=1}^{\infty}k\frac{1}{2x}\left(1-\frac{1}{2x}\right)^{k-1}\frac{1}{2x}=1.$$

Exercice 5 (h-transformée d'une chaîne de Markov)

Soit S un ensemble dénombrable et $(X_n)_{n\geq 0}$ une chaîne de Markov sur S de matrice de transition Q. Soit $h: S \to \mathbb{R}_+$. Soit P la matrice définie sur $S_+ = \{x \in S | h(x) > 0\}$ par la formule

$$P(i,j) = \frac{h(j)}{h(i)}Q(i,j).$$

- 1. Donner une hypothèse sur h qui garantit que P est la matrice de transition d'une chaîne de Markov sur S⁺. Que signifie cette hypothèse si X est la marche aléatoire simple sur un graphe? On dit alors que P est la h-transformée de Q.
- 2. Soit Y une chaîne de Markov de matrice de transition P. Déterminer la dérivée de Radon-Nikodým de la loi de $(Y_i)_{0 \le i \le n}$ par rapport à celle de $(X_i)_{0 \le i \le n}$.
- 3. On considère la marche aléatoire simple S sur \mathbb{Z} . On note $T_i = \inf\{n \geq 0 | S_n = i\}$. Pour N > 0 et $k \in [0, N]$, on définit

$$\mathbb{P}_k^{(N)} = \mathbb{P}_k(\ \cdot \ | T_N < T_0).$$

- (a) On rappelle que $\mathbb{P}_k(T_N < T_0) = \frac{k}{N}$. Montrer que sous $P_k^{(N)}$, $(S_{n \wedge T_N})_{n \geq 0}$ est une chaîne de Markov et donner sa matrice de transition.
- (b) Trouver une fonction $h : [0, N] \to \mathbb{R}_+$ telle que la matrice de transition de la question précédente soit la h-transformée de la matrice de transition de la marche aléatoire simple.
- (c) Proposer une définition de la "marche aléatoire simple sur $\mathbb Z$ conditionnée à rester positive".

Solution de l'exercice 5

1. Il faut avoir $\sum_{i \in S^+} P(i,j) = 1$ pour tout $i \in S^+$, soit

$$\sum_{j \in S^+} Q(i,j)h(j) = h(i).$$

Par définition de S^+ , le membre de droite est égal à $\sum_{j\in S} Q(i,j)h(j)$ car les contributions pour $j\in S\backslash S^+$ sont nulles. Une condition suffisante est donc

$$\forall i \in S^+, h(i) = \sum_{i \in S} Q(i, j)h(j).$$

Si X est une marche aléatoire simple, i.e. $Q(i,j) = \frac{1}{\deg(i)} \mathbb{1}_{i \leftrightarrow j}$, cette condition signifie que h est harmonique sur S^+ .

2. Soient $y_0, \ldots, y_n \in S^+$. On a

$$\mathbb{P}(Y_0 = y_0 \dots, Y_n = y_n) = \mathbb{P}(X_0 = y_0) P(y_0, y_1) \dots P(y_{n-1}, y_n)
= \mathbb{P}(X_0 = y_0) \frac{h(y_1)}{h(y_0)} Q(y_0, y_1) \dots \frac{h(y_n)}{h(y_{n-1})} Q(y_{n-1}, y_n)
= \frac{h(y_n)}{h(y_0)} \mathbb{P}(X_0 = y_0 \dots, X_n = y_n).$$

La dérivée de Radon-Nikodym recherchée vaut donc $\frac{h(X_n)}{h(X_n)}$.

3. On calcule

$$P_k^{(N)}(X_{n+1} = x_{n+1} | X_0 = x_0, \dots, X_n = x_n)$$

$$= \frac{\mathbb{P}_k(X_0 = x_0, \dots, X_n = x_n, X_{n+1} = x_{n+1} \text{ et } T_N < T_0)}{\mathbb{P}_k(X_0 = x_0, \dots, X_n = x_n \text{ et } T_N < T_0)}.$$

Par la propriété de Markov simple, on a $\mathbb{P}_k\left(X_0=x_0,\ldots,X_n=x_n \text{ et } T_N < T_0\right)=\frac{1}{2^n}\cdot\frac{x_n}{N}$, ainsi que $\mathbb{P}_k\left(X_0=x_0,\ldots,X_n=x_n,X_{n+1}=x_{n+1} \text{ et } T_N < T_0\right)=\frac{1}{2^{n+1}}\cdot\frac{x_{n+1}}{N}$. Par conséquent,

$$P_k^{(N)}[X_{n+1} = x_{n+1} | X_0 = x_0, \dots, X_n = x_n] = \frac{x_{n+1}}{2x_n}.$$

La marche arrêtée sous la proba $P_k^{(N)}$ est donc une chaîne de Markov de matrice de transition

$$Q(x,y) = \frac{y}{2x} \mathbb{1}_{|x-y|=1}$$
 et $Q(N,N) = 1$.

Il s'agit de la h-transformée de la marche simple stoppée en N avec h(x) = x.

Conditionner une marche aléatoire simple sur \mathbb{Z} (issue, par exemple, de 1) à ne pas taper 0 n'a a priori pas de sens. Une manière de lui donner un sens est de la conditionner à taper N avant 0 puis de faire tendre N vers $+\infty$. D'après la discussion qui précède, pour tous n et x_0, x_1, \ldots, x_n avec $x_0 = 1$ on a

$$\mathbb{P}_{1}^{(N)}\left(X_{0}=x_{0},\ldots,X_{n}=x_{n}\right)\xrightarrow[n\to+\infty]{}\prod_{i=0}^{n-1}\frac{x_{i+1}}{2x_{i}}\mathbb{1}_{|x_{i+1}-x_{i}|=1}.$$

Un candidat naturel est donc la h-transformée de la marche simple avec $h(x) = x \mathbb{1}_{x>0}$.

Remarque L'utilisation d'une h-transformée pour "conditionner" une marche aléatoire à un événement de probabilité nulle (par exemple ne pas taper un état ou un ensemble d'états donné) fonctionne dans des cas assez variés.

Exercice 6 (La fourmi et la montre)

Une fourmi se promène sur une montre de la manière suivante : elle démarre sur le chiffre 0 et, toutes les minutes, elle se déplace avec proba $\frac{1}{2}$ d'un chiffre vers la gauche et avec proba $\frac{1}{2}$ d'un chiffre vers la droite. On note C le dernier chiffre de la montre visité par la fourmi. Montrer que C est une variable uniforme sur $\{1, 2, \ldots, 11\}$.

<u>Solution de l'exercice</u> 6 Notons d'abord que $C < +\infty$ p.s. car la fourmi finit forcément par faire 12 pas consécutifs vers la gauche (argument déjà vu en TD, par exemple exercice 3 du TD4). Pour tout $i \in \mathbb{Z} \setminus 12\mathbb{Z}$, on note T_i le premier temps auquel la fourmi découvre i. Pour tout $i \in (\mathbb{Z}/12\mathbb{Z})^*$, on a

$$\mathbb{P}(C=i) = \mathbb{P}(T_i > T_{i-1}, T_i > T_{i+1})
= \mathbb{P}(T_{i-1} < T_{i+1} < T_i) + \mathbb{P}(T_{i+1} < T_{i-1} < T_i)
= \mathbb{P}(T_{i-1} < T_{i+1}) \mathbb{P}(T_{i+1} < T_i | T_{i-1} < T_{i+1}) + \mathbb{P}(T_{i+1} < T_{i-1}) \mathbb{P}(T_{i-1} < T_i | T_{i+1} < T_{i-1}).$$

Mais d'après la propriété de Markov forte, conditionnellement à $\mathcal{F}_{T_{i-1}}$, la marche de la fourmi après T_{i-1} a la même loi qu'une marche aléatoire démarrée de i-1, donc $\mathbb{P}(T_{i+1} < T_i | T_{i-1} < T_{i+1})$ est égale à la

probabilité qu'une marche démarrée en i-1 atteigne i+1 avant i. Par invariance par rotation, cette probabilité ne dépend pas de i donc vaut $\mathbb{P}(T_2 < T_1)$. De même, on a

$$\mathbb{P}(T_{i-1} < T_i | T_{i+1} < T_{i-1}) = \mathbb{P}(T_{10} < T_{11}) = \mathbb{P}(T_2 < T_1),$$

où la dernière égalité s'obtient par symétrie. On obtient donc

$$\mathbb{P}(C = i) = \mathbb{P}(T_{i-1} < T_{i+1}) \mathbb{P}(T_2 < T_1) + \mathbb{P}(T_{i+1} < T_{i-1}) \mathbb{P}(T_2 < T_1)
= \mathbb{P}(T_2 < T_1).$$

Comme cela ne dépend pas de i, on en déduit que C est bien uniforme sur $\{1, 2, \dots, 11\}$.

Remarque Au passage, au a montré que $\mathbb{P}(T_2 < T_1) = \frac{1}{11}$, c'est-à-dire que pour la marche simple sur \mathbb{Z} on a $\mathbb{P}(T_{-10} < T_1) = \frac{1}{11}$, résultat qu'on a déjà obtenu par le théorème d'arrêt.