

Discrete Mathematics MH1812

Topic 8 - Relations Summary

ECHNOLOGICAL

UNIVERSITY SINGAPORE

Example

Consider the relation $R = \{(1,1), (1,2), (2,3)\}$ on the set $A = \{1,2,3\}$.

- Is it Reflexive? Symmetric? Anti-symmetric? Transitive?

	= (there exists)	
Not reflexive		
Not symmetric		
Not anti-symmetric		
Not transitive		

Symmetry	vs anti-s	ymmetry
----------	-----------	---------

Anti symmetric		Not anti-symmetric
	7 17/2 (35) 17 (35)	
Symmetric		
Not symmetric		

Example

Consider the relation $R = \{(x,y) \mid x \equiv y \mod 2\}$ on the set $A = \mathbb{N}$.

- Show that *R* is an equivalence relation.
- Show that the equivalence classes of *R* partition the set *A*.

MH1812: Discrete Mathematics

Example

Let relation R be defined on set $A = \{a, b, c, d\}$ and $R = \{(a, b), (b, a), (b, c), (c, d)\}$.

- Find R^{-1} and R^t .

- Is R^t an equivalence relation, a partial order?

MH1812: Discrete Mathematics 6