World development indicators Which country will develop more

Group 12:
Stefano Moawad
Leonardo Comandini
Diana Isaeva
Andrea Schiavon
Viktor Snesarevskii

April-May 2017

Abstract: "... individuate the best countries where to invest, w.r.t. different economical and social fields"

• Best = ?

◆ロト ◆部ト ◆注ト ◆注ト 注 りへで

Abstract: "... individuate the best countries where to invest, w.r.t. different economical and social fields"

• Best = upcoming largest development

Abstract: "... individuate the best countries where to invest, w.r.t. different economical and social fields"

- Best = upcoming largest development
- Development = ?

Abstract: "... individuate the best countries where to invest, w.r.t. different economical and social fields"

- Best = upcoming largest development
- Development = ?
- Invest =?

Raw dataset

Indicators (5 656 458 x 6)

Country name Country code Indicator name Indicator code Year Value

Country (247×31)

Country code Short name Table name Long name Alpha 2 code

Currency unit Special notes Region Indice group etc...

Country notes (4 857 x 3)

Country code Series code Description

Series (1 345 x 20)

Series code Topic Indicator name Short definition

Long definition Unit of measure Periodicity etc ...

Series notes (369 x 3)

Series code Year Description

Raw dataset

Examples of indicators

	CountryName [‡]	CountryCode [‡]	IndicatorName	IndicatorCode	Year [‡]	Value [‡]
4934459	Italy	ITA	GDP per capita (current US\$)	NY.GDP.PCAP.CD	2010	3.587787e+04
4934460	Italy	ITA	GDP per capita growth (annual %)	NY.GDP.PCAP.KD.ZG	2010	1.398210e+00
	:	:	:	:	:	:
5617698	Russian Federation	RUS	Exports of goods and services (current US\$)	NE.EXP.GNFS.CD	2014	5.585801e+11
5617692	Russian Federation	RUS	Exports of goods and services (% of GDP)	NE.EXP.GNFS.ZS	2014	3.002154e+01

	CountryName	Access to electricity (% of population)	Agricultural land (sq. km)	Net income from abroad (current US\$)	Urban population	• • • • •
- 1	Canada	100.00000	677680	-21448405896	21282904	
2	Cuba	92.86102	67410	-610497598	7763439	
3	Italy	100.00000	168400	-15262429218	37846480	
4	Japan.	100.00000	56930	20113271442	95542280	
5	Mongolia	79.81566	1256560	-43600000	1245683	
:						

indicators

Looking at *Indicators* as a 3D matrix leads to some problems

• Years → not homogeneous

Looking at *Indicators* as a 3D matrix leads to some problems

- Years → not homogeneous
- Countries → small ones

Looking at *Indicators* as a 3D matrix leads to some problems

- Years → not homogeneous
- Countries → small ones
- Indicators → too varied to choose easily

An intermediate goal: Extract a full matrix with meaningful indicators to perform PCA

Surface area Population, total population, total population growth population growth population growth population growth population growth pran population growth urban population of secondary education population population population population population population of primary education population population population of primary education population populatio

3. Select the indicators among the fullest

Surface area Population, total Population, total Population, total Population (Population Growth Population (Population Growth Population Growth Population (Population Growth Population (Population Population Population (Population Population Population (Population Population (Population Population Population (Population Population Population (Population Population Population Population Population (Population (Population (Population Population (Population (Populatio

3. Select the indicators among the fullest

- 4. Evaluate the fullness of the matrix
- 5. If problematic countries or indicators are still present, consider shrinking them

- 4. Evaluate the fullness of the matrix
- 5. If problematic countries or indicators are still present, consider shrinking them
- 6. Fill the real missing data (via interpolation, value at the previous year or manually from the source)

- 4. Evaluate the fullness of the matrix
- 5. If problematic countries or indicators are still present, consider shrinking them
- 6. Fill the real missing data (via interpolation, value at the previous year or manually from the source)
- 7. Expand the shrunk matrix over years

Example 1

GDP per capita (current US\$) in 2013

Рис.: GDP per capita, 2013

Example 2

Population ages 65 and above (% of total) in 2010

Рис.: Population aged over 65

Example 3

