10

20

2.5

30

35

WHAT IS CLAIMED IS:

- 1. A device to analyze or reconstruct one or more signals lj coming from one or more light sources, comprising at least:
- means to separate the signals I_i into at least two signals I_{j1} and I_{j2},
- at least two channels V_1 , V_2 respectively possessing a gain G_1 , G_2 and a dynamic range D_1 , D_2 , said channels having at least one sensor and being adapted to obtain, at output, a signal I'_{11} , I'_{12} with amplitudes $A_{11}(t)$, $A_{12}(t)$,
- a device for the processing of the signals l'j1, l'j2 adapted to memorizing the amplitude Aj1(t), Aj2(t) of at least one of the two signals l'j1, l'j2 when l'j1 and/or l'j2 is below a threshold value S_{max} and to determining the amplitude Aj(t) of the corresponding signal l'j.
- 2. A device according to claim 1, wherein the signal-processing device works as follows:

for a signal I'i corresponding to a given spatial position j

- if the amplitude A_{j1}(t) is smaller than or equal to a threshold value S_{max} then the processing device stores the pair of values (A_{j1}(t), t),
- if the amplitude A_{j1}(t) is greater than the threshold value S_{max}, then the
 processing device stores the pair of values (A_{j2}(t), t) and
- from the stored values (A_{j1}(t), t), (A_{j2}(t), t) the device determines the corresponding values of amplitude A_j(t) in order to obtain the signal I'_j.
- 3. A device according to one of the claims 1 or 2, wherein said means of separating the signal I_j have an attenuation coefficient K determined so that K is smaller than or equal to the dynamic range of at least one of said channels V_1, V_2 .
- 4. A device according to claim 3, wherein the means of separation have a value of attenuation coefficient K substantially equal to the dynamic range of at least one of said channels $V_1,\,V_2.$
- A device according to one of the claims 1 to 4, wherein the sensors are streak cameras.
- 6. A device according to one of the claims 1 to 5, comprising n channels having a dynamic range D_{n} , (n-1) means of separating the signal or signals I_{n} .
- 7. A streak camera with wide dynamic range according to one of the claims 1 to 6.
- 8. A method to analyze a signal I_j with a wide dynamic range, wherein it comprises at least the following steps:

5

10

15

20

25

30

- (a) separating the signal to be analyzed into at least two signals l_{j1} , \cdot l_{j2} ,
 - (b) making each signal I_{j1} , I_{j2} go through at least one channel V_1 , V_2 comprising at least one sensor, each of the channels having a dynamic range D_1 , D_2 ,
 - (c) memorizing each signal l'_{j1} and l'_{j2} coming from the two channels V_1 and V_2 in digital form so as to obtain, for an index j, the values of the corresponding amplitudes $A_{j1}(t)$ and $A_{j2}(t)$,
 - (d) reading the values $A_{j1}(t)$ and comparing each of the values with a threshold value S_{max} .
 - (e) if Aj1(t) is smaller than the threshold value S_{max} , memorizing the value of the amplitude $A_{i1}(t)$ and the corresponding instant t,
 - (f) if Aj_{I1}(t) is greater than the threshold value S_{max} , then memorizing the value $A_{i2}(t)$ and the corresponding instant t,
- (g) determining the resultant amplitude signal $A_j(t)$ from the pairs of values having an amplitude $[(A_{j1}(t),t);(A_{j2}(t),t)]$.
- 9. A method according to claim 8 wherein the signal is split up into several signals I_i with j varying spatially, and wherein the steps (a) to (g) are reiterated for each of the values of i.
- 10. A method according to one of the claims 8 and 9 wherein the threshold value S_{max} corresponds to the value of saturation of the sensor with the smallest dynamic range.
- 11. A method according to one of the claims 8 to 10, wherein a sensor comprises a streak camera.
- 12. A method according to one of the claims 8 to 10, wherein the signal to be analyzed $\rm I_{\rm j}$ corresponds to the projection of a single laser beam through a slot.
- 13. A method according to one of the claims 8 to 10, wherein the analyzed signal I_j is a linear image coming from a spectrometer or the section of a physical phenomenon.
- 14. A method according to one of the claims 8 to 10, wherein the signal to be analyzed I_j is a signal formed by a row of optic fibers, each of the fibers producing a signal having an index j.