Relaxations for Production Planning Problems with Increasing Byproducts

Srikrishna Sridhar, Jeff Linderoth, James Luedtke University of Wisconsin-Madison srikris@cs.wisc.edu

background

We study a **production** planning problem, where the production process creates a set of **products** $(\mathcal{P} = \mathcal{P}^+ \cap \mathcal{P}^-)$, a subset of which are **useful** (\mathcal{P}^+) with the remaining undesirable **byproducts** (\mathcal{P}^-) .

★ Fraction of **useful products/byproducts** monotonically **decreases/increases** as a function of total production.

Problems with these characteristics arise in applications like natural resource extraction, hydro turbine performance modeling and compressor scheduling in petroleum reservoirs.

problem statement

Continuous time formulation

Amount of each product produced is a **non-convex** function of the cumulative production up to that time instance!

discrete time

Key Idea: Integral of monotonically increasing/decreasing functions are convex/concave.

Formulation X₁

Formulation X₂

$$v_t = \sum_{s \leq t} x_s$$
 $x_t \leq \Delta_t f(v_{t-1})$ $y_{p,t} = x_t g_p(v_{t-1})$ $v_t \leq \mathrm{M} z_t$ $z_t \leq z_{t+1}$

comparing formulations

- \star X₂ is more **accurate**
- \star X₂ is computationally more efficient because it only requires the approximation of **univariate convex/concave** functions

mip formulations

We propose three different MIP formulations for X2. The functions share the domain v_t and can be written as a convex combination of the breakpoints $\{B_o \mid \forall o \in \mathcal{O}\}$ using variables $\{\lambda_o \mid \forall o \in \mathcal{O}\}$.

Piecewise Linear Approximation (PLA)

1-Secant Relaxation (1-SEC)

k-Secant Relaxation (k-SEC)

strengthening

In all MIP formulations, the production functions are positive only if the facility is open. We leverage this property to tighten all formulations using the following trick!

$$\mathbf{z_t} = \sum_{\mathbf{o} \in \mathcal{O}} \lambda_{\mathbf{t},\mathbf{o}}$$

- **★** No need for variable upper bounds
- **★** Locally ideal!

results

We conducted numerical experiments on 60 datasets of a production planning problem.

Accuracy of X₁ vs X₂

Inaccuracy of formulation X₁ leads to significantly worse solutions!

Comparing MIP Formulations

Quality of **feasible solutions**

Method	Gap to best bound (%)		
	A.M	Variance	G.M
X_1	58.96	57.36	13.44
PLA	3.59	3.47	0.90
1-SEC	3.90	3.63	1.86
3-SEC	7.90	5.04	9.19

1-SEC yields best bounds and competitive feasible solutions.

Effect of strengthening

Strengthening greatly improves all MIP formulations.