Tree-based Methods and Boosting

PS690 Computational Methods in Social Science

Jiawei Fu

Department of Political Science Duke University

Sep 9, 2025

Overview

- 1. Tree-based Methods
- 2. Bagging
- 3. Random Forest
- 4. Boosting
- 5. First Section

Decision Trees

- The linear methods we have studied are not well suited to capturing the underlying nonlinear relationships between the response and the predictors.
- We also want to allow for interactions among the predictors.
- Although we can add higher-order terms and interaction terms in a linear model, we prefer to let the data itself reveal the appropriate structure.
- A popular class of models is tree-based methods.

Building a Tree

- Our general goal: Divide the predictor space $(X_1, X_2, ..., X_p)$ into J distinct regions and make one prediction for each region.
- Formally, we hope to find regions $R_1, ..., R_J$ that

$$\min \sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

- Unfortunately, it is computationally infeasible to consider every possible partition of the feature space into J boxes.
- Solution: Top-down, greedy approach, known as recursive binary splitting
 - Top-down: begins at the top of the tree
 - Greedy: the best split is made at the *local* step

Classification and Regression Trees (CART)

• We select a predictor X_j and cut point s, splitting the predictor space into two regions

$$R_1(j,s) = \{X | X_j < s\} \text{ and } R_2(j,s) = \{X | X_j \ge s\}$$

- Q: Which variable is to be split? and What is the criterion to split?
- Objective function:

$$\min_{j,s} \left[\min_{c_1} \sum_{i: x_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{i: x_i \in R_2(j,s)} (y_i - c_2)^2 \right]$$

- Given j, s, it is clear that $\hat{c}_k = \mathbb{E}_n[y_i|x_i \in R_k(j,s)]$ for k = 1, 2.
- For each j, finding s is easy. Then go through all j.

CART

- Repeat the splitting process on each of the two regions, and continue.
- Q: When to stop? Or, say, what is the tree size?
 - Too deep (large): high variance, low bias; overfit
 - Too shallow (small): low variance, high bias
 - 1. Stop until the decrease in RSS is too small
 - Problem: too short-sighted since a seemingly worthless split early on in the tree might be followed by a very good split
 - 2. Better solution: grow a very large tree, stopping the splitting process only wehn some minimum node size (say 5) is reached, and then prune it
 - Cost complexity pruning: For each tuning parameter α , find the unique subtree T_{α} s.t.

$$\min \sum_{m=1}^{|\mathcal{T}|} \sum_{x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |\mathcal{T}|$$

where |T| denote the number of terminal nodes in T, m denotes the terminal nodes.

• The first term is just the training error. Therefore, larger α increases the price to pay for having a tree with many terminal nodes.

CART

Algorithm 8.1 Building a Regression Tree

- Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . For each $k=1,\ldots,K$:
 - (a) Repeat Steps 1 and 2 on the ^{K-1}/_Kth fraction of the training data, excluding the kth fold.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α.

Average the results, and pick α to minimize the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of α .

Advantage and Disadvantage trees

Advantage

- Interpretable and seems to be close to human decision-making.
- They are insensitive to monotone transformations of the inputs (because the split points are based on ranking of the data points).
- They perform automatic variable selection.

Disadvantage

- High variance: a small change in the data can result in a very different series of splits.
- Why? Hierarchical nature of the process: the effect of an error in the top split is propagated down to all of the splits below it.
- · Lack of smoothness.

Bagging

- Bootstrap aggregation: a general-purpose procedure for reducing the variance of a statistical learning method
 - Given a set of *n* iid observations with variance σ^2 , the variance of the mean is $\frac{\sigma^2}{n}$
 - In other words, averaging a set of observations reduces variance.
 - Natural Idea: take many training sets from the population, build separate models, and average them.
 - However, it is not practical because we generally have single one training set.
 - Solution: Bootstrap!

Note

Bagging does not reduce bias. Therefore, each tree should be grown deep, and are not pruned. Hence each individual tree has high variance, but low bias.

Bagging

- Bagging may not work well if trees are highly correlated!
- Suppose the positive pairwise correlation ρ , the variance of the average is $\rho\sigma^2+\frac{1-\rho}{B}\sigma^2$
- This may happen if there is one very strong predictor.
- Then in the collection of bagged trees, most or all of the trees will use this strong predictor in the top split.
- Solution: De-correlation!
- BTW: Bagging is a frequentest concept. Bayesian approach: Bayesian adaptive regression trees (BART)

Random Forests

- That is a pretty dramatic name, right?
- To de-correlate trees:
 - a random sample of $m=\sqrt{p}$ predictors is chosen as split candidates from the full set of p predictors.
 - The split is allowed to use only one of those *m* predictors.
 - A fresh sample of m predictors is taken at each split.
- The estimator can be written as

$$\hat{F}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{T}_b(x)$$

where $\hat{T}_b(x)$ is a tree estimator based on a subsample (or bootstrap) of size s using m randomly selected features. The trees are usually required to have some number k of observations in the leaves.

• There are three tuning parameters: s, m, k.

Cross-validation of Random Forests

- Out-of-Bag (OOB) Samples: For each observation (x_i, y_i) , construct its random forest predictor by averaging only those trees corresponding to bootstrap samples in which (x_i, y_i) did not appear.
- An OOB error estimate is almost identical to that obtained by N-fold cross-validation
- Hence unlike many other nonlinear estimators, random forests can be fit in one sequence, with cross-validation being performed along the way.

Inference

- Under some regular conditions, including honesty (we will introduce it in details in the later lectures), subsampling of size $s=n^{\beta}$, $\beta<1$, [Wager and Athey, 2018] show that $\frac{\hat{F}(x)-F(x)}{\sigma(x)}\to N(0,1)$
- They also shows that $\hat{\sigma}(x) = \frac{n-1}{n} (\frac{n}{n-s}) \sum_{i=1}^{n} [Cov(\hat{T}_b(x), N_{ib})]^2$, where N_{ib} indicate whether or not the *i*-th training example was used for the *b*-th tree.
- Random forests are considered one of the best all purpose classifiers. But it is still a
 mystery why they work so well.

Variable Importance Measures

- How important is feature X_j ?
- One intuitive way to answer this is to fit the forest with all the data and fit it again without using X_j .
- If leaving out a covariate X_j barely changes predictive accuracy, its "true" contribution is small.
- Practically, a random forest builds many trees; because for each tree, we randomly subsampling some features, we already have lots of trees that never saw a given variable during construction.
- This method is called LOCO, Leave-Out-COvariates. For each X_j , we compare the inflation of the prediction error by not having access to X_j , and then the rank of importance is based on the inverse rank of this value.

Variable Importance Measures

- A different approach is called Permutation Feature Importance.
- We measure the increase in the prediction error of the model after we permute the values of the feature in the test set.
- A feature is 'important' if shuffling its values increases the model error, because in this case, the model relied on the feature for the prediction.
- A feature is 'unimportant' if shifting its values leaves the model error unchanged because, in this case, the model ignored the prediction feature.

Permutation feature importance

Permutation feature importance

- Let \hat{f} be the trained model, and let L be the loss.
- Step 1: estimate the prediction error:

$$error_{orig} = \frac{1}{n_{test}} \sum_{i=1}^{n_{test}} L(y_i, \hat{f}(\mathbf{x}_i))$$

e.g. mean squared error.

- For each feature j do:
 - permute feature X_j , generate $\mathbf{x}_i^{perm,j}$ (so that breaks the association between X_j and outcome y)
 - estimate $error_{perm}^{j} = \frac{1}{n_{test}} \sum_{i=1}^{n_{test}} L(y_i, \hat{f}(\mathbf{x}_i^{perm,j}))$
 - calculate permutation feature importance as quotient $\frac{error^{j}_{perm}}{error_{orig}}$ or difference $error^{j}_{perm} error_{orig}$

- Booting is one of the most powerful learning ideas introduced in the last twenty years.
- We estimate a simple prediction rule, then take the residuals and estimate another simple prediction rule for these residuals. Keep repeating.
- Consider additive basis-function model (ABM): $f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m)$
- These models are fit by minimizing a loss function:

$$\min_{f} \sum_{i=1}^{N} L(y_i, f(x_i)) = \min_{\beta_m, \gamma_m} \sum_{i=1}^{N} L(y_i, \sum_{m=1}^{M} \beta_m b(x; \gamma_m))$$

This is very hard problem.

- Boosting find each b() sequentially, by an algorithm called a weak learner.
- Then, applying the weak learner sequentially to weighted versions of the data.
- More weight is given to data that does not learned well before.

- We can tackle it sequentially. We initialize a $f_0(x)$, which is a simple solution. For example, $f_0(x) = 0$, $f_0(x) = \overline{y}$, or using GLM.
- For m = 1 to M, compute

$$(\beta_m, \gamma_m) = \arg\min \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma))$$

- Then, set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$
- This method is called forward stagewise additive modeling.
- We continue this for a fixed number of iterations M. In fact M is the main tuning parameter of the method.

- For example, consider square-error loss: $L(y, f(x)) = (y f(x))^2$
- Then,

$$L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)) = (y_i - f_{m-1}(x_i) - \beta b(x_i; \gamma))^2$$

= $(residual_{im} - \beta b(x_i; \gamma))^3$

 $residual_{im} = y_i - f_{m-1}(x_i)$ is simply the residual on the *i*th observation.

• That is, we fit a model using the residuals.

- How to choose *M*? If *M* is too large, it can lead to overfitting.
- Often we pick it by monitoring the performance on a separate validation set, and then stopping once performance starts to decrease; this is called early stopping.
- In practice, better (test set) performance can be obtained by performing "partial updates":

$$f_m(x) = f_{m-1}(x) + \nu \beta_m b(x; \gamma_m)$$

• 0 < $\nu \leq$ 1 is a step-size parameter. In practice it is common to use a small value such as $\mu =$ 0.1.

Boosting Trees

• Note that a tree is an additive function: $T(x; \Theta) = \sum_{j=1} \hat{y}_{R_j} I(x \in R_j)$, where $\Theta = \{R_j, \hat{y}_{R_i}\}$, and

$$\hat{\Theta} = arg \min \sum_{j=1} \sum_{x_i \in R_j} L(y_i, \hat{y}_{R_j})$$

• For boosting trees, in each step, we solve

$$\hat{\Theta} = arg \ min \sum_{j=1} L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

For squared-error loss, we just build tree for the residuals.

Algorithm 8.2 Boosting for Regression Trees

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
 - (a) Fit a tree \hat{f}^b with d splits (d+1) terminal nodes) to the training data (X,r).
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x).$$
 (8.10)

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i). \tag{8.11}$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$
 (8.12)

References

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning: with applications in R, volume 103. Springer.

Wager, S. and Athey, S. (2018).

Estimation and inference of heterogeneous treatment effects using random forests.

Journal of the American Statistical Association, 113(523):1228–1242.