

National Cheng Kung University

Department of Aeronautics and Astronautics

非線性控制第六章作業

Author:

Supervisor:

Chen, Guan-Shiun (陳冠勳)

Prof Yang

Student ID No.:

P18091026

An Assignment submitted for the NCKU:

【P4-065】非線性控制

November 28, 2020

Contents

1	Problem Statement	2
2	Answer to Problem 6.1 (1)	3
3	Answer to Problem 6.1 (2)	12
4	Answer to Problem 6.1 (3)	17
5	Answer to Problem 6.1 (4)	24
A	Appendix: Code for Problem 6.1 (2)	35
В	Appendix: Code for Problem 6.1 (3)	36
\mathbf{C}	Appendix: Code for Problem 6.1 (4)	38
Re	eference	41

1. Problem Statement

6.1 考慮非線性系統

$$\dot{x}_1 = -x_1 + x_2 - x_3, \ \dot{x}_2 = -x_1 x_3 - x_2 + u, \ \dot{x}_3 = -x_1 + u$$
 (1)

- (1) 依據定理(6.6.1)後面的7個步驟,設計回授線性化控制 u(x),使得線性化後的系統極點(pole)落在 $\lambda_1=\lambda_2=\lambda_3=-2$ 。
- (2) 將設計得到的控制器 u(x) 代入 (1) 式,進行 Matlab模擬。選擇10個左右的初始位置 $(x_1(0),x_2(0),x_3(0))$,畫出相空間軌跡 $(x_1(t),x_2(t),x_3(t))$,驗證平衡點(原點)是否為漸進穩定。
- (3) 畫出 $x_1(t)$ 、 $x_2(t)$ 、 $x_3(t)$ 分別對時間的響應圖,驗證時間響應圖的收斂速度與 $\lambda=-2$ 的關係。
- (4) 回到問題 (1),如果極點仍然選擇落在 $\lambda_1 = \lambda_2 = \lambda_3 = -2$,討論回授線性化控制 u(x) 的解是否爲唯一?如果不爲唯一,嘗試求得 u(x) 的另一個解,並重複以上步驟。所得到的時間響應圖會一樣嗎?

2. Answer to Problem 6.1 (1)

回授控制的目的爲透過控制手段將非線性系統轉換成線性系統,再利 用傳統線性系統控制策略解決穩定化、追蹤控制、雜訊排除等控制問 題;回授控制的精神在於藉由某些特殊的回授訊號以及尋找適當的座 標轉換,將原本的非線性系統轉換爲等義的線性系統後設計線性控制 率,之後再藉由座標的逆轉換將設計好的控制律轉回原先的非線性系統。

針對本題之非線性系統 (1),吾人欲尋求一合適的回授線性回控制器使得系統極點落在 -2, -2,因此首要問題爲此系統是否爲輸入-狀態可線性化?對於此問題可引用定理 6.6.1:對於非線性系統 $\dot{x}=f(x)+g(x)u$,此系統可被回授線性化若且唯若存在 $D_0\subset D$ 使得

- 矩陣 (matrix) $G(x) = \{g(x), ad_f g(x), \dots, ad_f^{n-1} g(x)\}$ 爲線性獨立 (滿秩), $\forall x \in D_0$ 。
- 分布 (distribution) $D = span\{g, ad_fg, \dots, ad_f^{n-2}g\}$ 在 D_0 為 involutive \circ

綜合以上定理,回授線性化控制器設計流程如下:

(1) 建立函數向量 $g, ad_f g, \ldots, ad_f^{n-1} g$: 針對系統 (1),吾人可求得

$$f = \begin{bmatrix} -x_1 + x_2 - x_3 & -x_1x_3 - x_2 & -x_1 \end{bmatrix}^T, \quad g = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$$

$$\Rightarrow ad_f g = [f, g] = \nabla g \cdot f - \nabla f \cdot g = -\begin{bmatrix} -1 & 1 & -1 \\ -x_3 & -1 & -x_1 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 + x_1 \\ 0 \end{bmatrix}$$

$$\Longrightarrow ad_f^2g = [f, ad_fg] = \nabla(ad_fg) \cdot f - \nabla f \cdot ad_fg \tag{3}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -x_1 + x_2 - x_3 \\ -x_1 x_3 - x_2 \\ -x_1 \end{bmatrix} - \begin{bmatrix} -1 & 1 & -1 \\ -x_3 & -1 & -x_1 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 + x_1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 - x_1 \\ 1 + x_2 - x_3 \\ 0 \end{bmatrix} \tag{4}$$

(2) 檢查可控條件及爲 involutive 條件是否成立 : 首先必須檢查可控 性矩陣是否滿足 $Rank[g,ad_fg,ad_f^2g]=3$,因此吾人可先求得

$$[g, ad_f g, ad_f^2 g] = \begin{bmatrix} 0 & 0 & -1 - x_1 \\ 1 & 1 + x_1 & 1 + x_2 - x_3 \\ 1 & 0 & 0 \end{bmatrix}$$
 (5)

上述矩陣在 $x_1 \neq -1$ 時爲非奇異矩陣,其秩 (rank) 爲 3,此時可控挑件可被保證。再者,由於

$$[g, ad_f g] = \nabla(ad_f g) \cdot g - \nabla g \cdot ad_f g = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$(6)$$

因此 $D = span\{g, ad_fg\}$ 滿足 involutive 條件 (因爲 $Rank[g, ad_fg, [g, ad_fg]] = 2 \Longrightarrow [g, ad_fg] \in D$),根據 Frobenius 定理可知滿足完全可積條件。 綜合上述,吾人得到 $\{f,g\}$ 的可控條件及完全可積條件,此時 系統 (1) 可被回受線性化,意即達到回授線性化所需的座標轉換 $z = \Phi(x), \ \forall x \in D_0 = \{x \in \mathbb{R}^3 \mid x_1 \neq -1\}$ 必定存在。

(3) 求解下列聯立偏微分方程式,得到函數 ϕ_1

$$\begin{cases}
L_g L_f^{i-1} \phi_1 = 0, & i = 1, 2, \dots, n-1 \\
L_g L_f^n \phi_1 \neq 0, & \phi(0) = 0
\end{cases}$$
(7)

對於系統 (1), 吾人首先可知 n=3, 因此

$$\begin{cases}
\nabla \phi_1 \cdot g = \left[\frac{\partial \phi_1}{\partial x_1}, \frac{\partial \phi_1}{\partial x_2}, \frac{\partial \phi_1}{\partial x_3}\right] [0, 1, 1]^T \Longrightarrow \frac{\partial \phi_1}{\partial x_2} + \frac{\partial \phi_1}{\partial x_3} = 0 \Longrightarrow \frac{\partial \phi_1}{\partial x_3} = 0
\end{cases}$$

$$\nabla \phi_1 \cdot a d_f g = \left[\frac{\partial \phi_1}{\partial x_1}, \frac{\partial \phi_1}{\partial x_2}, \frac{\partial \phi_1}{\partial x_3}\right] [0, 1 + x_1, 0]^T \Longrightarrow \frac{\partial \phi_1}{\partial x_2} (1 + x_1) = 0 \Longrightarrow \frac{\partial \phi_1}{\partial x_2} = 0$$

$$\nabla \phi_1 \cdot a d_f^2 g = \left[\frac{\partial \phi_1}{\partial x_1}, \frac{\partial \phi_1}{\partial x_2}, \frac{\partial \phi_1}{\partial x_3}\right] [-1 - x_1, 1 + x_2 - x_3, 0]^T \neq 0 \Longrightarrow \frac{\partial \phi_1}{\partial x_1} \neq 0$$

$$(8)$$

透過上述分析,吾人得知 ϕ_1 與 x_2, x_3 無關而僅僅爲 x_1 的函數,因此最簡單的 $\phi_1(x)$ 可選擇爲 $\phi_1(x_1)=x_1$ 。

(4) 建立狀態座標轉換以及控制訊號轉換

$$\begin{cases} [z_1 \ z_2 \ \cdots \ z_n]^T = [\phi_1 \ L_f \phi_1 \ \cdots \ L_f^{n-1} \phi_1]^T \\ u = \alpha(x) + \beta(x)v, \quad \alpha(x) = -\frac{L_f^n \phi_1}{L_g L_f^{n-1} \phi_1}, \quad \beta(x) = \frac{1}{L_g L_f^{n-1} \phi_1} \end{cases}$$
(9)

配合前項分析,吾人可求得座標轉換爲

$$\begin{cases}
z_{1} = \phi_{1} = x_{1} \\
z_{2} = \phi_{2} = L_{f} \cdot \phi_{1} = \frac{\partial \phi_{1}}{\partial x} \cdot f(x) = \frac{\partial \phi_{1}}{\partial x_{1}} \cdot (-x_{1} + x_{2} - x_{3}) = -x_{1} + x_{2} - x_{3} \\
z_{3} = \phi_{3} = L_{f} \cdot \phi_{2} = \frac{\partial \phi_{2}}{\partial x} \cdot f(x) = \begin{bmatrix} \frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}} & \frac{\partial \phi_{2}}{\partial x_{3}} \end{bmatrix} [f_{1}(x) \quad f_{2}(x) \quad f_{3}(x)]^{T} \\
= [-1 \quad 1 \quad -1] [-x_{1} + x_{2} - x_{3} \quad -x_{1}x_{3} - x_{2} \quad -x_{1}]^{T} \\
= 2x_{1} - 2x_{2} + x_{3} - x_{1}x_{3}
\end{cases} (10)$$

回授線性化所需之控制律爲

$$u = \frac{1}{L_g L_f^{n-1} \phi_1} (v - L_f^n \phi_1) = \frac{1}{L_g \phi_3} (v - L_f \phi_3) = \left(\frac{\partial \phi_3}{\partial x} \cdot g\right)^{-1} \left(v - \frac{\partial \phi_3}{\partial x} \cdot f\right)$$

$$= \left([2 - x_3, -2, 1 - x_1] \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T \right)^{-1} \times$$

$$\left(v - [2 - x_3, -2, 1 - x_1] \begin{bmatrix} -x_1 + x_2 - x_3 & -x_1 x_3 - x_2 & -x_1 \end{bmatrix}^T \right)$$

$$= (-1 - x_1)^{-1} (v - a(x))$$
(11)

其中

$$a(x) = -3x_1 + 4x_2 - 2x_3 + x_1^2 + x_3^2 + 3x_1x_3 - x_2x_3$$
 (12)

(5) 建立線性方程式:在新的狀態及新的控制下將非線性系統轉換爲線性系統

利用此一控制律,在新的狀態變數z下,可將系統(1)轉換成

$$\dot{z}_1 = \dot{x}_1 = -x_4 + x_2 - x_3 = z_2 \tag{13}$$

$$\dot{z}_2 = -\dot{x}_1 + \dot{x}_2 - \dot{x}_3 = 2x_1 - 2x_2 + x_3 - x_1 x_3 = z_3 \tag{14}$$

$$\dot{z}_3 = 2\dot{x}_1 - 2\dot{x}_2 + \dot{x}_3 - \dot{x}_1x_3 - x_1\dot{x}_3$$

$$= -3x_1 + 4x_2 - 2x_3 + x_1^2 + x_3^2 + 3x_1x_3 - x_2x_3 + (-1 - x_1)u$$

$$=v \tag{15}$$

意即

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \\ \dot{z}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} v \tag{16}$$

(6) | 針對轉換後的線性系統 (16) 設計狀態回授控制律 | :

在此,吾人設計狀態回授控制器

$$v = -Kz = -[k_1 \ k_2 \ k_3][z_1 \ z_2 \ z_3]^T$$
 (17)

代入系統 (16) 可得 $\dot{z} = (A_c - B_c K)z$, 狀態空間表示式可寫成

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \\ \dot{z}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -k_1 & -k_2 & -k_3 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$
(18)

其中係數 k_1, k_2, k_3 的選擇將與系統閉迴路極點 (意即特徵值) 有關,其中吾人可求得系統 (16) 的特徵多項式爲

$$det(\lambda I - (A_c - B_c K)) = \lambda^3 + k_3 \lambda^2 + k_2 \lambda + k_1$$
(19)

對於系統給定的特徵值 -2, -2, -2, 可以得到另外一個特徵方程式

$$(\lambda - (-2))^3 = \lambda^3 + 6\lambda^2 + 12\lambda + 8 \tag{20}$$

對於 (19) 和 (20) 兩特徵方程式,通過比較係數法可得 $k_1 = 8, k_2 = 12, k_3 = 6$,此時線性系統狀態回授控制器的形式爲

$$v = -(k_1 z_1 + k_2 z_2 + k_3 z_3)$$

$$= -8z_1 - 12z_2 - 6z_3$$

$$= -8\phi_1 - 12L_f \phi_1 - 6L_f^2 \phi_1$$
(21)

透過線性控制器 (21), 吾人可知閉迴路系統的平衡點爲漸進穩定。

(7) 決定非線性控制律 u:

再得到線性控制器 v 後,由於控制器 v 所使用的狀態爲 z,因此吾人域求轉換成以 x 爲依據所相對應的非線性控制氣 u(x);爲了達到此目的,將 (21) 代入 (9) 可得

$$u = -\frac{L_f^3 \phi_1}{L_g L_f^2 \phi_1} + \frac{1}{L_g L_f^2 \phi_1} v$$

$$= \frac{1}{L_g L_f^2 \phi_1} (-L_f^3 \phi_1 - k_3 L_f^2 \phi_1 - k_2 L_f \phi_1 - k_1 \phi_1)$$

$$= (-1 - x_1)^{-1} (-a(x) - 6(2x_1 - 2x_2 + x_3 - x_1 x_3))$$

$$- 12(-x_1 + x_2 - x_3) - 8(x_1))$$

$$= (-1 - x_1)^{-1} (-5x_1 - 4x_2 + 8x_3 - x_1^2 - x_3^2 + 3x_1 x_3 + x_2 x_3)$$
 (23)

其中可以發現對於系統 (1) 的回授線性穩定化控制器 (23) 而言,可以看出 u(x) 是利用 x 的全狀態回授控制器,且可完全由所設計的函數 $\phi_1(x)$ 決定,如 (22) 所示;透過設計回授線性化控制器,吾人可將非線性系統成功的轉化成線性系統,再以線性系統的觀點設定穩定器,達到回後線性穩定化的控制任務。

3. Answer to Problem 6.1 (2)

對於非線性系統 (1), 吾人設計出一個全狀態回授的回授線性化穩定器 (23),將 (23)代入 (1)可得新的系統爲

$$\begin{cases} \dot{x}_1 = -x_1 + x_2 - x_3 \\ \dot{x}_2 = -x_1 x_3 - x_2 + (-1 - x_1)^{-1} (-5x_1 - 4x_2 + 8x_3 - x_1^2 - x_3^2 + 3x_1 x_3 + x_2 x_3) \\ \dot{x}_3 = -x_1 + (-1 - x_1)^{-1} (-5x_1 - 4x_2 + 8x_3 - x_1^2 - x_3^2 + 3x_1 x_3 + x_2 x_3) \end{cases}$$
(24)

對於系統 (24), 吾人欲以 Matlab 模擬檢驗系統穩定度,因此當吾人選定 16 組初始狀態

第幾組	初始狀態	第幾組	初始狀態
$(x_1^1(0), x_2^1(0), x_3^1(0))$	(0.5, 0.5, 0.5)	$(x_1^2(0), x_2^2(0), x_3^2(0))$	(0.5, -0.5, 0.5)
$(x_1^3(0), x_2^3(0), x_3^3(0))$	(0.5, 0.5, -0.5)	$(x_1^4(0), x_2^4(0), x_3^4(0))$	(0.5, -0.5, -0.5)
$(x_1^5(0), x_2^5(0), x_3^5(0))$	(-0.5, 0.5, 0.5)	$(x_1^6(0), x_2^6(0), x_3^6(0))$	(-0.5, 0.5, -0.5)
$(x_1^7(0), x_2^7(0), x_3^7(0))$	(-0.5, -0.5, 0.5)	$(x_1^8(0), x_2^8(0), x_3^8(0))$	(-0.5, -0.5, -0.5)

第幾組	初始狀態	第幾組	初始狀態
$(x_1^9(0), x_2^9(0), x_3^9(0))$	(0.3, 0.3, 0.3)	$(x_1^{10}(0), x_2^{10}(0), x_3^{10}(0))$	(0.3, -0.3, 0.3)
$(x_1^{11}(0), x_2^{11}(0), x_3^{11}(0))$	(0.3, 0.3, -0.3)	$(x_1^{12}(0), x_2^{12}(0), x_3^{12}(0))$	(0.3, -0.3, -0.3)
$(x_1^{13}(0), x_2^{13}(0), x_3^{13}(0))$	(-0.3, 0.3, 0.3)	$(x_1^{14}(0), x_2^{14}(0), x_3^{14}(0))$	(-0.3, 0.3, -0.3)
$(x_1^{15}(0), x_2^{15}(0), x_3^{15}(0))$	(-0.3, -0.3, 0.3)	$(x_1^{16}(0), x_2^{16}(0), x_3^{16}(0))$	(-0.3, -0.3, -0.3)

模擬結果如圖 1 所示,從圖中可以發現雖然系統運動軌跡較爲複雜,但這些軌跡都會漸近式的向原點靠近,最終進入原點。

爲了看清此一現象,吾人嘗試在 x_1, x_2, x_3 之間兩兩爲基準作圖,模擬結果如圖 2-4 所示,因爲版面空間考慮,作圖方式依序爲 $x_2-x_1 \cdot x_3-x_1 \cdot x_2-x_3$,吾人從圖中發發現以下幾點:

- (i) 從圖 2-3 吾人發現由於當代入設計的回授線性化控制器將會使得 系統閉迴路極點落在 -2,以線性系統的觀點而言此時平衡點爲一 穩定節點,雖然因爲系統內部的非線性特性使得部分初始狀態造 成的響應最大超越量急劇上升,然而最終都會收斂到原點。
- (ii) 圖 4 更加強烈的顯示出這一特色,系統響應 x_2-x_3 之相平面軌

跡與圖 2-3 相比與穩定節點的系統相平面軌跡更加近似。

- (iii) 吾人研判造成上述響應差異的原因在於 \dot{x}_2,\dot{x}_3 直接與控制器 u 相關,因此控制器造成的效應會較快,而對於 \dot{x}_1 而言變化較慢的主因爲此微分方成的響應需要透過 x_2,x_3 間接將控制器效應傳遞出來,因此以 x_2-x_3 作圖的相平面軌跡會較貼近之前所學習的穩定節點所擁有得相平面軌跡。
- (iv) 在建構回授線性化控穩定器的過程中,爲了使用了定理 6.6.1,可控性矩陣是否滿足 $Rank[g,ad_fg,ad_f^2g]=3$ 的階段吾人確定在 $x_1 \neq -1$ 的範圍滿足使用此定理的前提,因此在控制器建構完後 吾人發現當 $x_1 = -1$ 時 $u \to \infty$,故此系統不爲全域穩定。

Figure 2: 相平面軌跡 $x_2(t) - x_1(t)$

Figure 3: 相平面軌跡 $x_3(t) - x_1(t)$

Figure 4: 相平面軌跡 $x_2(t) - x_3(t)$

4. Answer to Problem 6.1 (3)

透過前一題分析,吾人得知在建構的回授線性化穩定器作用下,給定的非線性系統狀態軌跡將成功的收斂到平衡點/原點。在此之上,吾人欲得知特徵值與此系統的關係,因此對於系統狀態 x_1, x_2, x_3 吾人嘗試畫出時域響應,如圖 5-7 所示。

Figure 5: 時域響應 $x_1(t) - t$

Figure 6: 時域響應 $x_2(t) - t$

Figure 7: 時域響應 $x_3(t)-t$

從圖中吾人無法立即發現特徵值與收斂速度的關係,然而當吾人嘗試分析轉變後的線性系統 $\dot{z}=(A_c-B_cK)z=:A_{cl}z$,將有以下發現:

首先此系統的解可被表示成 $z(t) = e^{A_{cl}t}z(0)$,且

$$e^{A_{cl}t} = \sum_{k=1}^{n} \pi_k(t)e^{\lambda_k t} \tag{25}$$

其中 $\pi_k(t)$ 爲一矩陣多項式、 λ 爲特徵值,對於此式吾人可推導得

$$||e^{A_{cl}t}|| \le \sum_{k=1}^{n} ||\pi_k(t)|| e^{Re(\lambda_k)t} \le \sum_{k=1}^{n} p_k(t) e^{Re(\lambda_k)t} \le p(t)e^{-\mu t}$$
 (26)

其中 $p_k(t)$ 爲一個多項式滿足 $p_k(t) \ge ||\pi_k(t)||$, $p(t) := \sum_{k=1}^n p_k(t) \ge 0$ 且 $\mu := -\max\{Re(\lambda_k): \lambda_k$ 爲 A_{cl} 之特徵值 $\}$ 。再者,因爲

$$\forall \varepsilon > 0, \exists m(\varepsilon) > 0 \ni 0 \le |p(t)| \le me^{\varepsilon t}, \ \forall t \ge 0$$
 (27)

因此有

$$\forall \varepsilon > 0, \exists m(\varepsilon) > 0 \ni \|e^{A_{cl}t}\| \le me^{(-(\mu - \varepsilon))t}, \ \forall t \ge 0$$
 (28)

最終,因爲特徵值落在左半部平面,可得 $\mu>0$,選擇 $\varepsilon\in(0,\mu)$ 可推 論出

$$||z(t)|| \le ||e^{A_{cl}t}|| \cdot ||z(0)|| \le me^{(-(\mu-\varepsilon))t} \cdot ||z(0)|| =: me^{-\alpha t} \cdot ||z(0)||$$
 (29)

其中 $\alpha=\mu-\varepsilon>0$,可得閉迴路系統爲指數穩定,系統軌跡將以指數型是收斂到原點。

透過上述分析,吾人得知轉換後的系統爲指數穩定,其中特徵值的選定將決定系統收斂速度;從線性系統理論中得知,系統極點越遠離虛軸其相對穩定度將上升,暫態響應表現更好,即收斂時間縮短;因此回到原來的非線性系統,吾人欲檢測特徵值改變對於系統響應的影響,選定不同重跟特徵值 $\lambda=-2,-3,-4,-5$,以及兩組初始狀態 $(x_1(0),x_2(0),x_3(0))=(0.5,0.5,-0.5),(0.5,0.5,-0.5)$,Matlab 模擬結果如圖 8-10 所示,可以看到當系統特徵值越遠離虛軸時, x_1,x_2,x_3 收斂速度將上升,驗證了上述的結果,另一方面,吾人亦可推測出所建構的座標轉換x-z 之間應該有一對一的關係。

Figure 8: 不同特徵值所產生之時域響應 $x_1(t)-t$

Figure 9: 不同特徵值所產生之時域響應 $x_2(t)-t$

Figure 10: 不同特徵值所產生之時域響應 $x_3(t)-t$

5. Answer to Problem 6.1 (4)

在 6.1(1) 的分析中,回授線性化控制器 u(x) 的架構過程將大大的與所選擇的 ϕ_1 相關,因此吾人判斷 u(x) 亦不唯一,爲了驗證此一結果,吾人刻意選擇 $\phi_1=x_1+x_1^3$ 時,會有以下結果

吾人刻意選擇
$$\phi_1 = x_1 + x_1^3$$
 時,會有以下結果
$$\begin{cases} z_1 = \phi_1 = x_1 + x_1^3 \\ z_2 = \phi_2 = L_f \cdot \phi_1 = \frac{\partial \phi_1}{\partial x} \cdot f(x) = (1 + 3x_1^2) \cdot (-x_1 + x_2 - x_3) \\ = (-x_1 + x_2 - x_3) + (-3x_1^2 + 3x_1^2x_2 - 3x_1^2x_3) \end{cases}$$

$$\begin{cases} z_3 = \phi_3 = L_f \cdot \phi_2 = \frac{\partial \phi_2}{\partial x} \cdot f(x) = \left[\frac{\partial \phi_2}{\partial x_1} \frac{\partial \phi_2}{\partial x_2} \frac{\partial \phi_2}{\partial x_3}\right] [f_1(x) \quad f_2(x) \quad f_3(x)]^T \\ = \left[-1 + (-9x_1^2 + 6x_1x_2 - 6x_1x_3) \quad 1 + (3x_1^2) \quad -1 + (-3x_1^2)\right] \cdot f(x) \\ = (2x_1 - 2x_2 + x_3 - x_1x_3) + (12x_1^3 - 3x_1^3x_3 - 18x_1^2x_2 + 15x_1^2x_3 + 6x_1x_2^2 + 6x_1x_3^2 - 12x_1x_2x_3) \end{cases}$$

(30)

以及

$$\begin{cases} \frac{\partial \phi_3}{\partial x_1} = 36x_1^2 + 6x_2^2 + 6x_3^2 - 9x_1^2x_3 - 36x_1x_2 + 30x_1x_3 - 12x_2x_3 \\ \frac{\partial \phi_3}{\partial x_2} = -18x_1^2 + 12x_1x_2 - 12x_1x_3 \\ \frac{\partial \phi_3}{\partial x_3} = -3x_1^3 + 15x_1^2 - 12x_1x_2 + 12x_1x_3 \end{cases}$$
(31)

此時系統可被表示成 $\dot{z}=(A_c-B_cK)z$ 爲一 Jordan canonical form,因此當選定 $\lambda=-2,-2,-2$,此時回授線性化穩定器爲

$$u = -\frac{L_f^3 \phi_1}{L_g L_f^2 \phi_1} + \frac{1}{L_g L_f^2 \phi_1} v$$

$$= \frac{1}{L_g L_f^2 \phi_1} (-L_f^3 \phi_1 - k_3 \phi_3 - k_2 \phi_2 - k_1 \phi_1)$$
(32)

其中 $k_1=8, k_2=12, k_3=6$, $L_gL_f^2\phi_1=(\partial\phi_3/\partial x)\cdot g, L_f^3\phi_1=(\partial\phi_3/\partial x)\cdot f$ 控制器 (32) 明顯與控制器 (23) 不同,故 u(x) 的架構不唯一。在 Matlab 模擬階段當吾人選擇相同的 16 組初始狀態,得到的時域響應 如圖11-13 所示,可以發現在回授線性化穩定器 (32) 的作用下,非線 性系統 (1) 的解 $(x_1(t),x_2(t),x_3(t))$ 將成功收斂到平衡點/原點。

Figure 11: 選定 $\phi_1 = x_1 + x_1^3$ 時產生之時域響應 $x_1(t) - t$

Figure 12: 選定 $\phi_1 = x_1 + x_1^3$ 時產生之時域響應 $x_2(t) - t$

Figure 13: 選定 $\phi_1 = x_1 + x_1^3$ 時產生之時域響應 $x_3(t) - t$

對於此一結果,吾人有以下討論:

- (i) 當吾人試圖將 $\phi_1 = x_1$ 及 $\phi_1 = x_1 + x_1^3$ 所產生的時域響應做比較,可以發現雖然狀態響應能夠成功收斂到原點,然而以 $\phi_1 = x_1$ 所產生的控制器將會有較快的收斂速度,而在系統暫態表現(最大超越量)則無明顯規律。
- (ii) 當吾人選定 $\phi_1 = x_1^2$ 或 $\phi_1 = x_1^3$ 時,依照相同步驟所產生的 u 可能造成系統解發生有限時間逃離的請形,例如當選定初始狀態 x(0) = (-0.5, -0.5, 0.5), (0.5, 0.5, -0.5) 時, x_1 響應如圖 14-15 所

示,可以看到兩者的響應雖然都有收斂的趨勢,然而最終會在某一點突然爆掉導致圖形無法呈現;爲了清楚此一現象, x_2 及 x_3 的時域響應如圖16—19 所示,可以發現當選定 $\phi_1=x_1^2$ 或 x_1^3 時,系統的響應可能在某一瞬時遭遇奇異點導致有限時間逃離現象 (finite time escape) 發生。

(iii) 因此吾人判斷選擇 ϕ_1 的選擇可能爲 $\phi_1(x_1) = a \cdot x_1 + b \cdot x_1^c + \cdots$,其中 a,b,c 爲任意實數,然而當選擇 $\phi_1 = x_1$ 可得最大的收斂區間,對應的控制器也較容易計算。

Figure 14: 不同 ϕ_1 時產生之時域響應 $x_1(t)-t$, $x_0=(0.5,0.5,-0.5)$

Figure 15: 不同 ϕ_1 時產生之時域響應 $x_1(t)-t$, $x_0=(-0.5,-0.5,0.5)$

Figure 16: 不同 ϕ_1 時產生之時域響應 $x_2(t)-t$, $x_0=(0.5,0.5,-0.5)$

Figure 17: 不同 ϕ_1 時產生之時域響應 $x_2(t)-t$, $x_0=(-0.5,-0.5,0.5)$

Figure 18: 不同 ϕ_1 時產生之時域響應 $x_3(t)-t$, $x_0=(0.5,0.5,-0.5)$

Figure 19: 不同 ϕ_1 時產生之時域響應 $x_3(t)-t$, $x_0=(-0.5,-0.5,0.5)$

A. Appendix: Code for Problem 6.1 (2)

注意:爲了版面控制僅列出主要程式碼。

```
clear all; close all; clc;
               tspan = [0; 100]; \% time interval
     3 %7777777777777777777777777777777777
     4~\%~initial~conditions
    \begin{array}{l} 5 \ \ \text{x01} = [0.5 \ , 0.5 \ , 0.5]; \text{x02} = [0.5 \ , -0.5 \ , 0.5]; \text{x03} = [0.5 \ , -0.5]; \text{x04} = [0.5 \ , -0.5 \ , -0.5]; \text{x05} \\ = [-0.5 \ , 0.5 \ , 0.5]; \text{x06} = [-0.5 \ , 0.5 \ , -0.5]; \text{x07} = [-0.5 \ , -0.5 \ , 0.5]; \text{x08} = [-0.5 \ , -0.5 \ , -0.5]; \text{x09} \\ = [0.3 \ , 0.3 \ , 0.3]; \text{x010} = [0.3 \ , -0.3 \ , 0.3]; \text{x011} = [0.3 \ , 0.3 \ , -0.3]; \text{x012} = [0.3 \ , -0.3 \ , -0.3]; \text{x013} \end{array}
                                          = [\,-0.3\,,0.3\,,0.3\,]\,; \\ \text{x014} = [\,-0.3\,,0.3\,,-0.3\,]; \\ \text{x015} = [\,-0.3\,,-0.3\,,0.3\,]; \\ \text{x016} = [\,-0.3\,,-0.3\,,-0.3\,]; \\ \text{x016} = [\,-0.3\,,-0.3\,,-0.3\,,-0.3\,]; \\ \text{x016} = [\,-0.3\,,-0.3\,,-0.3\,,-0.3\,]; \\ \text{x016} = [\,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,]; \\ \text{x016} = [\,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,]; \\ \text{x016} = [\,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-0.3\,,-
     %plot fugure
     8 figure (1)
     9 \; [t\;,x] = \mathbf{ode45} \, (@ode\;, tspan\;, x01)\;; \\ \mathbf{plot3} \, (x\,(:\;,1)\;, x\,(:\;,2)\;, x\,(:\;,3)\;, `color\;'\;, [112\;,66\;,20]/255\;, `LineStyle\;'\;, `lineStyle\;'', `lineStyle\;'',
                                                     , 'LineWidth', 2.5); hold on;
10 \ [t\ ,x] = \mathbf{ode45} \, (@ode\ , tspan\ ,x02)\ ; \\ \mathbf{plot3} \, (x\, (:\ ,1)\ ,x\, (:\ ,2)\ ,x\, (:\ ,3)\ ,\ 'color\ '\ ,\ 'r\ '\ ,\ 'LineStyle\ '\ ,\ '-'\ ,\ ''\ ,\ 'LineStyle\ '\ ,\ '-'\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ ,\ '\ 
                                        LineWidth', 2.5); hold on;
 11 \ [t\,,x] = \textbf{ode45} (@ode\,, tspan\,, x03\,) \,; \\ \textbf{plot3} \, (x\,(:\,,1)\,\,,x\,(:\,,2)\,\,,x\,(:\,,3)\,\,,\,'color\,'\,,\,'k\,'\,,\,'LineStyle\,'\,,\,'-\,'\,,\,'LineWidth\,'\,,\,\,2.5\,) \,; \\ \textbf{hold} \ on\,; 
12 [t ,x]=ode45(@ode,tspan,x04); plot3(x(:,1),x(:,2),x(:,3),'color','m','LineStyle','-','LineWidth', 2.5); hold on;
13 [t,x]=ode45(@ode,tspan,x05); plot3(x(:,1),x(:,2),x(:,3),'color','b','LineStyle','-','
                                          LineWidth', 2.5); hold on;
14 \ [t\,,x] = \mathbf{ode45} \, (@ ode\,, tspan\,, x06\,) \, ; \\ \mathbf{plot3} \, (x\,(:\,,1)\,\,, x\,(:\,,2)\,\,, x\,(:\,,3)\,\,, \, 'color\,'\,, [18\,,116\,,54]/255\,, \, 'LineStyle\,'\,, \, 'Li
                                                     , 'LineWidth', 2.5); hold on
15 \ [t\,,x] = \textbf{ode45} (@ode\,, tspan\,, x07)\,; \\ \textbf{plot3} (x(:\,,1)\,, x(:\,,2)\,, x(:\,,3)\,, `color\,'\,, [0\,,71\,,125]/255\,, `LineStyle\,'\,, '-ineWidth\,'\,, \ 2.5)\,; \\ \textbf{hold} \ on\,;
16 [t,x]=ode45(@ode,tspan,x08); plot3(x(:,1),x(:,2),x(:,3),'color',[255,77,0]/255,'LineStyle','-','LineWidth', 2.5); hold on;
17 \ [t\ ,x] = \mathbf{ode45} (@ode\ , tspan\ ,x09)\ ; \\ \mathbf{plot3} (x (:\ ,1)\ ,x (:\ ,2)\ ,x (:\ ,3)\ ,\ 'color\ '\ ,[112\ ,66\ ,20]/255\ ,\ 'LineStyle\ '\ ,\ 'LineStyle\ '\ ,' , 'LineStyle\ '\ ,' ,' , 'LineStyle\ '\ ,' ,' , 'LineStyle\ '\ ,' ,' ,' , 'LineStyle\ '\ ,' ,' ,' , 'LineStyle\ 
                                                           , 'LineWidth', 2.5); hold on
18 [t,x]=ode45(@ode,tspan,x010); plot3(x(:,1),x(:,2),x(:,3),'color','r','LineStyle','-.','
                                         LineWidth', 2.5); hold on;
19 [t,x]=ode45(@ode,tspan,x011); plot3(x(:,1),x(:,2),x(:,3),'color','k','LineStyle','--','
                                          LineWidth', 2.5); hold on;
20 [t,x]=ode45(@ode,tspan,x012); plot3(x(:,1),x(:,2),x(:,3),'color','m','LineStyle','--','
                                        LineWidth', 2.5); hold on;
21 [t,x]=ode45(@ode,tspan,x013);plot3(x(:,1),x(:,2),x(:,3),'color','b','LineStyle','--','
                                          LineWidth', 2.5); hold on;
22 [t,x]=ode45(@ode,tspan,x014); plot3(x(:,1),x(:,2),x(:,3),'color',[18,116,54]/255,'LineStyle',
                                              -.', 'LineWidth', 2.5); hold on
23 [t,x]=ode45 (@ode,tspan,x015); plot3 (x(:,1),x(:,2),x(:,3), 'color',[0,71,125]/255, 'LineStyle','
                                                           , 'LineWidth', 2.5); hold on;
24 [t,x]=ode45(@ode,tspan,x016);plot3(x(:,1),x(:,2),x(:,3),'color',[255,77,0]/255,'LineStyle','
-.', 'LineWidth', 2.5); hold on;

25 xlabel({'$x_1$'}, 'Fontsize', 20, 'Interpreter', 'latex'); ylabel({'$x_2$'}, 'Fontsize', 20, 'Interpreter', 'latex'); zlabel({'$x_3$'}, 'Fontsize', 20, 'Rotation', 0, 'Interpreter', 'latex')
               %ODE
28 function y = ode(t, x)
                                                                                                                                                              \%lambda=-2
29 phi1=x(1);
30 Lfphi1=-x(1)+x(2)-x(3);
31 LLfphi1=2*x(1)-2*x(2)+x(3)-x(1)*x(3);
32 LLLfphi1=-3*x(1)+4*x(2)-2*x(3)+x(1)*x(1)+x(3)*x(3)+3*x(1)*x(3)-x(2)*x(3);
33 LgLLfphi1=-1-x(1);
34 \text{ k1} = 8; \text{k2} = 12; \text{k3} = 6;
35 u=(LgLLfphi1^(-1))*(-LLLfphi1-k3*LLfphi1-k2*Lfphi1-k1*phi1);
36 \ y = zeros(3,1);
37 y(1) = -x(1)+x(2)-x(3);
38 y(2) = -x(1)*x(3)-x(2)+u;
39 y(3) = -x(1)+u;
40 end
```

B. Appendix: Code for Problem 6.1 (3)

注意:爲了版面控制僅列出主要程式碼。

```
1 \ \mathbf{clear} \ \mathbf{all} \ ; \mathbf{close} \ \mathbf{all} \ ; \mathbf{clc} \ ; \quad \mathtt{tspan} = [0 \ ; 100] \ ; \ \% \ time \ interval
   \begin{array}{l} 2 \\ \text{3} \\ \text{x01} = [0.5, 0.5, 0.5]; \text{x02} = [0.5, -0.5, 0.5]; \text{x03} = [0.5, 0.5, -0.5]; \text{x04} = [0.5, -0.5, -0.5]; \text{x05} \\ = [-0.5, 0.5, 0.5]; \text{x06} = [-0.5, 0.5, -0.5]; \text{x07} = [-0.5, -0.5, 0.5]; \text{x08} = [-0.5, -0.5, -0.5]; \text{x09} \\ = [0.3, 0.3, 0.3]; \text{x010} = [0.3, -0.3, 0.3]; \text{x011} = [0.3, 0.3, -0.3]; \text{x012} = [0.3, -0.3, -0.3]; \text{x013} \\ \end{array} 
                = [-0.3, 0.3, 0.3]; x014 = [-0.3, 0.3, -0.3]; x015 = [-0.3, -0.3, 0.3]; x016 = [-0.3, -0.3, -0.3];
  5 figure (8) \%x1-t-different-eigenvalues
  6 [t,x]=ode45(@ode,tspan,x03); h1=plot(t,x(:,1),'color','k','LineStyle','-.','LineWidth', 2.5);
               hold on
  7 [t,x]=ode45(@ode,tspan,x07); plot(t,x(:,1),'color','k','LineStyle','-.','LineWidth', 2.5);
               hold on
  8 [t,x]=ode45(@ode3,tspan,x03); h2=plot(t,x(:,1),'color','r','LineStyle','-','LineWidth', 2.5);
               hold on
  9 [t,x]=ode45(@ode3,tspan,x07); plot(t,x(:,1),'color','r','LineStyle','-','LineWidth', 2.5);
               hold on
10 [t,x]=ode45(@ode4,tspan,x03); h3=plot(t,x(:,1),'color','b','LineStyle','-','LineWidth', 2.5);
               hold on
11 [t,x]=ode45(@ode4,tspan,x07); plot(t,x(:,1),'color','b','LineStyle','-','LineWidth', 2.5);
               hold on
12 [t,x]=ode45(@ode5,tspan,x03); h4=plot(t,x(:,1),'color','k','LineStyle','-','LineWidth', 2.5);
               hold on
13 [t,x]=ode45(@ode5,tspan,x07); plot(t,x(:,1),'color','k','LineStyle','-','LineWidth', 2.5);
               hold on
14 legend ([h1,h2,h3,h4],{'$\lambda=-2$','$\lambda=-3$','$\lambda=-4$','$\lambda=-5$'},'fontsize ',16,'Interpreter','latex','location','SouthEast');
15 ylabel({'$x_1$'},'Fontsize',20,'Rotation',0,'Interpreter','latex'); xlabel({'$t (sec)$'},' Fontsize',20,'Interpreter','latex');
16 xlim([0 6]);
17 grid on;
19 figure (9) %x2-t-different-eigenvalues
     [\,t\,,x] = {\bf ode45}\,(@{\rm ode\,},tspan\,,x03\,)\,; \\ h1 = {\bf plot}\,(\,t\,,x\,(\,:\,,2\,)\,\,,\,\,'color\,\,'\,\,,\,\,'k\,\,'\,\,,\,\,'LineStyle\,\,'\,\,,\,\,'-.\,\,'\,\,,\,\,'LineWidth\,\,'\,\,,\,\,\,2.5\,)\,; \\ h1 = {\bf plot}\,(\,t\,,x\,(\,:\,,2\,)\,\,,\,\,'color\,\,'\,\,,\,\,'k\,\,'\,\,,\,\,'LineStyle\,\,'\,\,,\,\,'-.\,\,'\,\,,\,\,'LineWidth\,\,'\,\,,\,\,\,2.5\,)\,; \\ h2 = {\bf plot}\,(\,t\,,x\,(\,:\,,2\,)\,\,,\,\,'color\,\,'\,\,,\,\,'k\,\,'\,\,,\,\,'LineStyle\,\,'\,\,,\,\,'-.\,\,'\,\,,\,\,'LineWidth\,\,'\,\,,\,\,\,2.5\,)\,; \\ h3 = {\bf plot}\,(\,t\,,x\,(\,:\,,2\,)\,\,,\,\,'color\,\,'\,\,,\,\,'k\,\,'\,\,,\,\,'LineStyle\,\,'\,\,,\,\,'-.\,\,'\,\,,\,\,'LineWidth\,\,'\,\,,\,\,\,2.5\,)\,; \\ h3 = {\bf plot}\,(\,t\,,x\,(\,:\,,2\,)\,\,,\,\,'color\,\,'\,\,,\,\,'k\,\,'\,\,,\,\,'LineStyle\,\,'\,\,,\,\,'-.\,\,'\,\,,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'LineWidth\,\,'\,\,,\,\,\,'
20
                hold on
21 [t,x]=ode45(@ode,tspan,x07); plot(t,x(:,2),'color','k','LineStyle','-.','LineWidth', 2.5);
               hold on
22 [t,x]=ode45(@ode3,tspan,x03); h2=plot(t,x(:,2),'color','r','LineStyle','-','LineWidth', 2.5);
               hold on
23 [t,x]=ode45(@ode3,tspan,x07); plot(t,x(:,2),'color','r','LineStyle','-','LineWidth', 2.5);
               hold on
hold on
25 [t,x]=ode45(@ode4,tspan,x07); plot(t,x(:,2),'color','b','LineStyle','-','LineWidth', 2.5);
               hold on
26 [t,x]=ode45(@ode5,tspan,x03); h4=plot(t,x(:,2),'color','k','LineStyle','-','LineWidth', 2.5);
               hold on
27 [t,x]=ode45(@ode5,tspan,x07); plot(t,x(:,2),'color','k','LineStyle','-','LineWidth', 2.5);
               hold on
28 legend([h1,h2,h3,h4],{'$\lambda=-2$','$\lambda=-3$','$\lambda=-4$','$\lambda=-5$'},'fontsize ',16,'Interpreter','latex','location','SouthEast');
29 ylabel({'$x_2$'},'Fontsize',20,'Rotation',0,'Interpreter','latex'); xlabel({'$t (sec)$'},' Fontsize',20,'Interpreter','latex');
30 xlim([0 6]);
31 grid on;
32 print problem6.1.2x2t2.eps -depsc;
33
34 figure (10)
                                \%x3-t-different-eigenvalues
35 [t,x]=ode45(@ode,tspan,x03); h1=plot(t,x(:,3),'color','k','LineStyle','-.','LineWidth', 2.5);
               hold on
36 [t,x]=ode45(@ode,tspan,x07); plot(t,x(:,3),'color','k','LineStyle','-.','LineWidth', 2.5);
               hold on
37 [t,x]=ode45(@ode3,tspan,x03); h2=plot(t,x(:,3),'color','r','LineStyle','-','LineWidth', 2.5);
               hold on
38 [t,x]=ode45(@ode3,tspan,x07); plot(t,x(:,3),'color','r','LineStyle','-','LineWidth', 2.5);
39 [t,x]=ode45(@ode4,tspan,x03); h3=plot(t,x(:,3),'color','b','LineStyle','-','LineWidth', 2.5);
```

```
hold on
40 [t,x]=ode45(@ode4,tspan,x07); plot(t,x(:,3),'color','b','LineStyle','-','LineWidth', 2.5);
          hold on
41 [t,x]=ode45(@ode5,tspan,x03); h4=plot(t,x(:,3),'color','k','LineStyle','-','LineWidth', 2.5);
          hold on
42 [t,x]=ode45(@ode5,tspan,x07); plot(t,x(:,3),'color','k','LineStyle','-','LineWidth', 2.5);
         hold on
43 legend ([h1,h2,h3,h4],{'$\lambda=-2$','$\lambda=-3$','$\lambda=-4$','$\lambda=-5$'},'fontsize ',16,'Interpreter','latex','location','SouthEast');
44 ylabel({'$x_3$'},'Fontsize',20,'Rotation',0,'Interpreter','latex');xlabel({'$t (sec)$'},'Fontsize',20,'Interpreter','latex');
45 xlim([0 6]);
46 grid on;
47 \hspace{0.1cm} \textbf{print} \hspace{0.1cm} \texttt{problem6.1.2} \hspace{0.1cm} \texttt{x3t2.eps} \hspace{0.1cm} -\texttt{depsc} \hspace{0.1cm} ;
49 %ODE
50 function y = ode(t, x)
                                    \%lambda=-2
51 phi1=x(1);
52 Lfphi1=-x(1)+x(2)-x(3);
53 \text{ LLfphi1}=2*x(1)-2*x(2)+x(3)-x(1)*x(3);
 54 \text{ LLLfphi1} = -3*x(1) + 4*x(2) - 2*x(3) + x(1) *x(1) + x(3) *x(3) + 3*x(1) *x(3) - x(2) *x(3) ; 
55 \text{ LgLLfphi1}=-1-x(1);
56 k1=8; k2=12; k3=6;
 57 \ u = (LgLLfphi1 \ \hat{\ } (-1)) * (-LLLfphi1 - k3 * LLfphi1 - k2 * Lfphi1 - k1 * phi1);
58 \ y = zeros(3,1);
 59 y(1) = -x(1)+x(2)-x(3);
60 y(2) = -x(1)*x(3)-x(2)+u;
61 y(3) = -x(1)+u;
62 end
63 function y = ode3(t,x)
                                    \%lambda=-3
64 phi1=x(1);
65 Lfphi1=-x(1)+x(2)-x(3);
66 LLfphi1=2*x(1)-2*x(2)+x(3)-x(1)*x(3);
67 LLLfphi1=-3*x(1)+4*x(2)-2*x(3)+x(1)*x(1)+x(3)*x(3)+3*x(1)*x(3)-x(2)*x(3);
68 LgLLfphi1=-1-x(1);
 69 k1=27; k2=27; k3=9;
 70 \ u = (LgLLfphi1^{(-1)})*(-LLLfphi1-k3*LLfphi1-k2*Lfphi1-k1*phi1);
 71 y = zeros(3,1);
 72 y(1) = -x(1) + x(2) - x(3);
 73 y(2) = -x(1) *x(3) -x(2) +u;
 74 \text{ y(3)} = -x(1) + u;
 75 end
 76 function y = ode4(t,x)
                                   \%lambda=-4
 77 phi1=x(1);
 78 Lfphi1=-x(1)+x(2)-x(3);
 79 LLfphi1=2*x(1)-2*x(2)+x(3)-x(1)*x(3);
 80 LLLfphi1=-3*x(1)+4*x(2)-2*x(3)+x(1)*x(1)+x(3)*x(3)+3*x(1)*x(3)-x(2)*x(3);
 81 LgLLfphi1=-1-x(1);
 82 k1=64; k2=48; k3=12;
83 u=(LgLLfphi1^{(-1)})*(-LLLfphi1-k3*LLfphi1-k2*Lfphi1-k1*phi1);
 84 \ y = zeros(3,1);
 85 y(1) = -x(1)+x(2)-x(3);
86 y(2) = -x(1)*x(3)-x(2)+u;
87 y(3) = -x(1)+u;
 88 end
89 function y = ode5(t,x)
                                    \%lambda=-5
90 phi1=x(1);
91 Lfphi1=-x(1)+x(2)-x(3);
92 LLfphi1=2*x(1)-2*x(2)+x(3)-x(1)*x(3);
93 LLLfphi1=-3*x(1)+4*x(2)-2*x(3)+x(1)*x(1)+x(3)*x(3)+3*x(1)*x(3)-x(2)*x(3);
94 LgLLfphi1=-1-x(1);
95 k1=125; k2=75; k3=15;
96~\mathrm{u} = (\mathrm{LgLLfphi1} - (-1)) \cdot (-\mathrm{LLLfphi1} - k3 \cdot \mathrm{LLfphi1} - k2 \cdot \mathrm{Lfphi1} - k1 \cdot \mathrm{phi1}) \; ;
97 y = zeros(3,1);
98 y(1) = -x(1)+x(2)-x(3);
99 y(2) = -x(1) *x(3) -x(2) +u;
100 y(3) = -x(1)+u;
101 end
```

C. Appendix: Code for Problem 6.1 (4)

注意:爲了版面控制僅列出主要程式碼。

```
1 \ \mathbf{clear} \ \mathbf{all} \ ; \mathbf{close} \ \mathbf{all} \ ; \mathbf{clc} \ ; \quad \mathbf{tspan} = [0 \ ; 100] \ ; \ \% \ time \ interval
   \begin{array}{l} 2 \\ \text{3} \\ \text{x01} = [0.5, 0.5, 0.5]; \text{x02} = [0.5, -0.5, 0.5]; \text{x03} = [0.5, 0.5, -0.5]; \text{x04} = [0.5, -0.5, -0.5]; \text{x05} \\ = [-0.5, 0.5, 0.5]; \text{x06} = [-0.5, 0.5, -0.5]; \text{x07} = [-0.5, -0.5, 0.5]; \text{x08} = [-0.5, -0.5, -0.5]; \text{x09} \\ = [0.3, 0.3, 0.3]; \text{x010} = [0.3, -0.3, 0.3]; \text{x011} = [0.3, 0.3, -0.3]; \text{x012} = [0.3, -0.3, -0.3]; \text{x013} \\ \end{array} 
                 = [-0.3, 0.3, 0.3]; \\ \text{x014} = [-0.3, 0.3, -0.3]; \\ \text{x015} = [-0.3, -0.3, 0.3]; \\ \text{x016} = [-0.3, -0.3, -0.3]; \\ \text{x016} 
  5 figure (14) \%x1-t-different-phi-x07
  6 [t,x]=ode45(@ode,tspan,x07); h1=plot(t,x(:,1),'color','k','LineStyle','--','LineWidth', 2.5);
  7 [t,x]=ode45(@odea,tspan,x07); h2=plot(t,x(:,1),'color','r','LineStyle','-','LineWidth', 2.5);
                hold on
  8 [t,x]=ode45(@odeb,tspan,x07); h3=plot(t,x(:,1),'color','b','LineStyle','--','LineWidth', 2.5)
                 ; hold on
  9 [t,x]=ode45(@odec,tspan,x07); h4=plot(t,x(:,1),'color','k','LineStyle',':','LineWidth', 2.5);
                hold on
10 legend ([h1,h2,h3,h4],{'$\phi_1=x_1\$','\phi_1=x_1+x_1^3\$','\phi_1=x_1^3\s','\phi_1=x_1^3\s','\phi_1=x_1^2\s'},'fontsize',16,'Interpreter','latex','location','SouthEast');
11 ylabel({'\sx_1\s\'},'Fontsize',20,'Rotation',0,'Interpreter','latex'); xlabel({'\sx_1\s\'},'Fontsize',20,'Interpreter','latex');
12 title (\{'$x(0) = (-0.5, -0.5, 0.5)$'\}, 'Fontsize', 20, 'Interpreter', 'latex');
13 grid on;
14
15 figure (15) \%x2-t-different-phi1-x07
16 [t,x]=ode45(@ode,tspan,x07); hi=plot(t,x(:,2),'color','k','LineStyle','--','LineWidth', 2.5);
                hold on
17 [t,x]=ode45(@odea,tspan,x07); h2=plot(t,x(:,2),'color','r','LineStyle','-','LineWidth', 2.5);
                hold on
18 [t,x]=ode45(@odeb,tspan,x07); h3=plot(t,x(:,2),'color','b','LineStyle','--','LineWidth', 2.5)
                 ; hold on
19 [t,x]=ode45(@odec,tspan,x07); h4=plot(t,x(:,2),'color','k','LineStyle',':','LineWidth', 2.5);
                hold on
20 legend ([h1,h2,h3,h4],{'$\phi-1=x-1$','$\phi-1=x-1+x-1^3$','$\phi-1=x-1^3$','$\phi-1=x-1^2$'}
},'fontsize',16,'Interpreter','latex','location','SouthEast');
21 ylabel({'$x-2$'},'Fontsize',20,'Rotation',0,'Interpreter','latex'); xlabel({'$t (sec)$'},'Fontsize',20,'Interpreter','latex');
22 title (\{'$x(0) = (-0.5, -0.5, 0.5)$'\}, 'Fontsize', 20, 'Interpreter', 'latex');
23 grid on;
25 figure (16)
                                2\%x3-t-different-phi1-x07
26 [t,x]=ode45(@ode,tspan,x07); hl=plot(t,x(:,3),'color','k','LineStyle','--','LineWidth', 2.5);
                hold on
27 [t,x]=ode45(@odea,tspan,x07);h2=plot(t,x(:,3),'color','r','LineStyle','-','LineWidth', 2.5);
                hold on
28 [t,x]=ode45(@odeb,tspan,x07);h3=plot(t,x(:,3),'color','b','LineStyle','--','LineWidth', 2.5)
                 ; hold on
29 [t,x]=ode45(@odec,tspan,x07); h4=plot(t,x(:,3),'color','k','LineStyle',':','LineWidth', 2.5);
                hold on
30 legend ([h1,h2,h3,h4],{'$\phi-1=x-1$','$\phi-1=x-1+x-1^3$','$\phi-1=x-1^3$','$\phi-1=x-1^2$'}
},'fontsize',16,'Interpreter','latex','location','SouthEast');
31 ylabel({'$x_3$'},'Fontsize',20,'Rotation',0,'Interpreter','latex'); xlabel({'$t (sec)$'},'Fontsize',20,'Interpreter','latex');
32 title({'$x(0)=(-0.5,-0.5,0.5)$'},'Fontsize',20,'Interpreter','latex');
33 grid on;
34
35 figure (17)
                                 \%x1-t-different-phi-x03
36
      [t,x]=ode45(@ode,tspan,x03); h1=plot(t,x(:,1),'color','k','LineStyle','--','LineWidth', 2.5);
                hold on
37 [t,x]=ode45(@odea,tspan,x03); h2=plot(t,x(:,1),'color','r','LineStyle','-','LineWidth', 2.5);
                hold on
38 [t,x]=ode45(@odeb,tspan,x03);h3=plot(t,x(:,1),'color','b','LineStyle','--','LineWidth', 2.5)
                 ; hold on
39 [t,x]=ode45(@odec,tspan,x03); h4=plot(t,x(:,1),'color','k','LineStyle',':','LineWidth', 2.5);
                hold on
40 legend([h1,h2,h3,h4],{'$\phi-1=x-1$','$\phi-1=x-1+x-1^3$','$\phi-1=x-1^3$','$\phi-1=x-1^2$'}},'fontsize',16,'Interpreter','latex','location','SouthEast');
```

```
41 ylabel({'*x_1$'},'Fontsize',20,'Rotation',0,'Interpreter','latex'); xlabel({'*$t (sec)$'},'Fontsize',20,'Interpreter','latex');
42 title({'*x(0)=(0.5,0.5,-0.5)$'},'Fontsize',20,'Interpreter','latex');
43 grid on;
                                                       \%x2-t-different-phi1-x03
45 figure (18)
46 [t,x]=ode45(@ode,tspan,x03); h1=plot(t,x(:,2),'color','k','LineStyle','--','LineWidth', 2.5);
                           hold on
47 [t,x]=ode45(@odea,tspan,x03); h2=plot(t,x(:,2),'color','r','LineStyle','-','LineWidth', 2.5);
                           hold on
48 [t,x]=ode45(@odeb,tspan,x03); h3=plot(t,x(:,2),'color','b','LineStyle','--','LineWidth', 2.5)
                            : hold on
49 [t,x]=ode45(@odec,tspan,x03); h4=plot(t,x(:,2),'color','k','LineStyle',':','LineWidth', 2.5);
                           hold on
53 grid on;
54
55 figure (19) \%x3-t-different-phi1-x03
          [t,x]=ode45(@ode,tspan,x03); h1=plot(t,x(:,3),'color','k','LineStyle','--','LineWidth', 2.5);
56
                           hold on
57 [t,x]=ode45(@odea,tspan,x03); h2=plot(t,x(:,3),'color','r','LineStyle','-','LineWidth', 2.5);
                           \mathbf{hold} on
58 [t,x]=ode45(@odeb,tspan,x03); h3=plot(t,x(:,3),'color','b','LineStyle','--','LineWidth', 2.5)
                            ; hold on
59 [t,x]=ode45(@odec,tspan,x03); h4=plot(t,x(:,3),'color','k','LineStyle',':','LineWidth', 2.5);
                           hold on
60 legend([h1,h2,h3,h4],{'$\phi_1=x_1\$','\phi_1=x_1+x_1^3\$','\phi_1=x_1^3\s\','\phi_1=x_1^3\s\','\phi_1=x_1^2\s\'
},'fontsize',16,'Interpreter','latex','location','SouthEast');
61 ylabel({'\sx_3\s\},'Fontsize',20,'Rotation',0,'Interpreter','latex');xlabel({'\sx_3\s\},'\square\phi_1\square\phi_2\square\phi_3\s\','\square\phi_1\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\square\phi_3\
                            Fontsize', 20, 'Interpreter'
                                                                                                                                    'latex');
62 title \{(3, 20, 111) = (0.5, 0.5, -0.5) \}, 'Fontsize', 20, 'Interpreter', 'latex');
63 grid on;
64 %ODE
65 function y = ode(t, x)
                                                                                                           \%lambda = -2, phi1 = x1
66 phi1=x(1);
67 Lfphi1=-x(1)+x(2)-x(3);
68 LLfphi1=2*x(1)-2*x(2)+x(3)-x(1)*x(3);
69 LLLfphi1=-3*x(1)+4*x(2)-2*x(3)+x(1)*x(1)+x(3)*x(3)+3*x(1)*x(3)-x(2)*x(3);
 70 LgLLfphi1=-1-x(1);
71 k1=8; k2=12; k3=6;
 72 u=(LgLLfphi1^(-1))*(-LLLfphi1-k3*LLfphi1-k2*Lfphi1-k1*phi1);
73 \ y = zeros(3,1);
 74 \text{ y}(1) = -x(1) + x(2) - x(3);
75 y(2) = -x(1) *x(3) -x(2) + u;
76 y(3) = -x(1)+u;
 77 end
78 %ODE
79 function y = odec(t, x)
                                                                                                           \%phi1=x1^2
80 f1=-x(1)+x(2)-x(3);
81 f2=-x(1)*x(3)-x(2);
82 f3=-x(1);
83 g1=0; g2=1; g3=1;
84 phi1=x(1)^2;
85 Lfphi1=2*x(1)*f1;
86 LLfphi1 = (-4*x(1)+2*x(2)-2*x(3))*f1+(2*x(1))*f2+(-2*x(1))*f3;
87 LLLfphi1 = (12*x(1)-4*x(1)*x(3)-8*x(2)+6*x(3))*f1+(4*x(2)-8*x(1)-4*x(3))*f2+(4*x(3)-2*x(1)*x(3))*f1+(4*x(3)-2*x(1)*x(3)-4*x(3))*f2+(4*x(3)-2*x(1)*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3)-4*x(3))*f1+(4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x(3)-4*x
                            (1)+6*x(1)-4*x(2)) * f3;
88 \text{ LgLLfphi1} = (12 \times x(1) - 4 \times x(1) \times x(3) - 8 \times x(2) + 6 \times x(3)) \times g1 + (4 \times x(2) - 8 \times x(1) - 4 \times x(3)) \times g2 + (4 \times x(3) - 2 \times x(1) \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + 2 \times x(3) + (4 \times x(3) - 2 \times x(3) + (4 \times x(3) + 2 \times x(3) + (4
(1)+6*x(1)-4*x(2))*g3;
89 k1=8;k2=12;k3=6;
90 u=(LgLLfphi1^(-1))*(-LLLfphi1-k3*LLfphi1-k2*Lfphi1-k1*phi1);
91 \ y = zeros(3,1);
92 y(1) = -x(1) + x(2) - x(3);
93 y(2) = -x(1) *x(3) -x(2) + u;
94 y(3) = -x(1)+u;
95 end
96 %ODE
97 function y = odeb(t, x) %%phi1=x1^3
```

```
98 f1=-x(1)+x(2)-x(3);
        99 f2=-x(1)*x(3)-x(2);
  100 \text{ f3} = -x(1);
  101 g1=0; g2=1; g3=1;
  102 phi1=x(1) 3;
  103 Lfphi1=3*x(1)*x(1)*f1;
  \begin{array}{ll} 104 & \text{LLfphi1} = (-9*\text{x}(1)*\text{x}(1) + 6*\text{x}(1)*\text{x}(2) - 6*\text{x}(1)*\text{x}(3)) * \text{f1} + (3*\text{x}(1)*\text{x}(1)) * \text{f2} + (-3*\text{x}(1)*\text{x}(1)) * \text{f3} ; \\ 105 & \text{LLLfphi1} = (36*\text{x}(1)*\text{x}(1) + 6*\text{x}(2)*\text{x}(2) + 6*\text{x}(3)*\text{x}(3) - 9*\text{x}(1)*\text{x}(1) *\text{x}(3) - 36*\text{x}(1)*\text{x}(2) + 30*\text{x}(1)*\text{x}(3) \\ \end{array} 
                                                                         -12*x(2)*x(3))*f1+(-18*x(1)*x(1)+12*x(1)*x(2)-12*x(1)*x(3))*f2+(-3*x(1)*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+15*x(1)+1
                                                                         (1)*x(1)-12*x(1)*x(2)+12*x(1)*x(3))*f3;
 \begin{array}{c} 106 \ \ \text{LgLLfphil} = (36*x(1)*x(1)+6*x(2)*x(2)+6*x(3)*x(3)-9*x(1)*x(3)-36*x(1)*x(2)+30*x(1)*x(3)\\ -12*x(2)*x(3))*g1+(-18*x(1)*x(1)+12*x(1)*x(2)-12*x(1)*x(3))*g2+(-3*x(1)*x(1)*x(1)+15*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)*x(1)+12*x(1)+12*x(1)+12*x(1)+12*x(1)+12*x(1)+12*x(1)+12*x(1)+12*x(1)+12*x(1)+12*x(1)+12*x(1)+12*x(1)+12*x(1)+12*x(1)+12
                                                                         (1)*x(1)-12*x(1)*x(2)+12*x(1)*x(3))*g3;
 107 \text{ k1} = 8; \text{k2} = 12; \text{k3} = 6;
 108 \ u = (LgLLfphi1^{(-1)})*(-LLLfphi1-k3*LLfphi1-k2*Lfphi1-k1*phi1);
  109 y = \bar{z}eros(3,1);
 110 y(1) = -x(1)+x(2)-x(3);
 111\ y(2)\ =\ -x(1)*x(3)-x(2)+u\,;
 112 y(3) = -x(1)+u;
113 end
114 %ODE
115 function y = odea(t,x)
116 f1=-x(1)+x(2)-x(3);
                                                                                                                                                                                                                                                  \%phi1=x1+x1^3
117 f2=-x(1)*x(3)-x(2);
118 f3=-x(1);
 119\ g1\!=\!0;g2\!=\!1;g3\!=\!1;
120 phi1=x(1)+x(1) 3;
121 Lfphi1=f1+3*x(1)*x(1)*f1;
 122 \text{ LLfphi1} = (-1*f1 + 1*f2 - 1*f3) + (-9*x(1)*x(1) + 6*x(1)*x(2) - 6*x(1)*x(3)) *f1 + (3*x(1)*x(1)) *f2 + (-3*x(1)*x(1)) *f3 + (-3*x(1)*x(1)*x(1)) *f3 + (-3*x(1)*x(1)*x(1) *f3 + (-3*x(1)*x(1)) *f3 + (-3*x(1)*x(1)*x(1) *f3 + (-3*x(1)*x(1)*x(1) *f3 + (-3*x(1)*x(1)*x(1) *f3 + (-3*x(1)*x(1)*x(1) *f3 + (-3*x(1)*x(1)) *f3 + (-3*x(1)*x(1)*x(1) *f3 + (-3*x(1)*x(1)*x(1) *f3 + (-
                                                                         (1)*x(1))*f3;
 123 \text{ LLLfphi1} = ((2-x(3))*f1 + (-2)*f2 + (1-x(1))*f3) + (36*x(1)*x(1) + 6*x(2)*x(2) + 6*x(3)*x(3) - 9*x(1)*x(1) + (-2)*f2 + (-2)*f2
                                                                          \begin{array}{l} (x_1(3) - 36 * x(1) * x(2) + 30 * x(1) * x(3) - 12 * x(2) * x(3)) * f1 + (-18 * x(1) * x(1) * x(2) + 12 * x(1) * x(2) - 12 * x(1) * x(3)) * f2 + (-3 * x(1) * x(1) * x(1) + 15 * x(1) * x(1) - 12 * x(1) * x(2) + 12 * x(1) * x(3)) * f3; \end{array} 
 \begin{array}{lll} 124 & \text{LgLLiphi1} = & (2-x(3)) * \text{g1} + & (-2) * \text{g2} + & (1-x(1)) * \text{g3} \\ & & (1) * \text{x} & (1) + \text{6*x} & (2) * \text{x} & (2) + \text{6*x} & (3) * \text{x} & (3) - 9 * \text{x} & (1) * \text{x} \\ & & & (1) * \text{x} & (3) - 36 * \text{x} & (1) * \text{x} & (2) + 30 * \text{x} & (1) * \text{x} & (2) + 20 * \text{x} & (3) & \text{3} & (2) + 6 * \text{x} & (3) * \text{x} & (3) - 9 * \text{x} & (1) * \text{x} \\ & & & (1) * \text{x} & (3) - 36 * \text{x} & (1) * \text{x} & (2) + 30 * \text{x} & (1) * \text{x} & (2) + 20 * \text{x} & (3) & \text{x} & (2) + 6 * \text{x} & (3) * \text{x} & (3) - 9 * \text{x} & (1) * \text{x} \\ & & & & (1) * \text{x} & (2) + 30 * \text{x} & (1) * \text{x} & (2) + 20 * \text{x} & (2) + 6 * \text{x} & (2) + 6 * \text{x} & (3) * \text{x} & (3) - 9 * \text{x} & (1) * \text{x} \\ & & & & (1) * \text{x} & (2) + 6 * \text{x} & (2) + 6 * \text{x} & (3) * \text{x} & (3) - 9 * \text{x} & (1) * \text{x} \\ & & & & (1) * \text{x} & (2) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x} & (3) * \text{x} & (3) + 6 * \text{x
                                                                        x(3)) *g2+(-3*x(1) *x(1) *x(1) +15*x(1) *x(1) -12*x(1) *x(2) +12*x(1) *x(3)) *g3;
  125 k1=8; k2=12; k3=6;
 126 u=(LgLLfphi1^(-1))*(-LLLfphi1-k3*LLfphi1-k2*Lfphi1-k1*phi1);
  127 y = \mathbf{zeros}(3,1);
  128 y(1) = -x(1)+x(2)-x(3);
  129 y(2) = -x(1) *x(3) -x(2) + u;
  130 \text{ y}(3) = -x(1) + u;
  131 end
```

參考文獻

- [1] 楊憲東,非線性系統與控制. I, 系統分析,成大出版社,2015
- [2] Slotine, J.-J. E., and Weiping L.. *Applied nonlinear control*. Englewood Cliffs, NJ: Prentice hall, 1991.
- [3] Khalil, H. K., and Jessy W. G. *Nonlinear systems*. Upper Saddle River, NJ: Prentice hall, 2002.