KisFiz 2 gyakorlat házi

Pongó Tivadar

1. Szolenoid tengelyén a mágneses indukció

1.1. Analitikusan levezetett képlet

$$B = -\frac{\mu_0 NI}{2l} \left(\frac{z - \frac{l}{2}}{\sqrt{R^2 + \left(z - \frac{l}{2}\right)^2}} - \frac{z + \frac{l}{2}}{\sqrt{R^2 + \left(z + \frac{l}{2}\right)^2}} \right)$$

A számolás alapja az, hogy felbontjuk a szolenoidot kis dz szélességű körgyűrűkre és ezt felintegráljuk $z+\frac{l}{2}$ -től $z-\frac{l}{2}$ -ig, ahol z a szolenoid közepétől való távolság. A körgyűrű tengelyén a B távolságfüggését már előzőleg kiszámoltuk Biot-Savart törvény alapján.

 μ_0 -lal egyik eseteben sem szoroztam be!!!

1.2. Egy bizonyos szolenoid tere

Tekercs menetszáma: N=20

Tekercs hossza: $10.0\,m$ Tekercs sugara: $1\,m$ Áramerősség: $1\,A$

Az adatok az excel is fájlban (N20.xlsx) láthatók.

Z	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5
B analitikı	ıs 1,9612	1,96006	1,95654	1,9499	1,93863	1,9197	1,88671	1,8252	1,70099	1,44172
B 100	2,283	2,2821	2,27934	2,2741	2,26514	2,24984	2,22245	5 2,16896	2,05093	1,76068
B 1000	1,9639	1,96279	1,95928	1,95265	1,94141	1,92252	1,88958	3 1,82814	1,70396	1,44435
5,5	6	6,5	7	7,5	8	8,5	j	9	9,5	10
0,548282	0,288786	0,16419	0,102119	0,068338	6 0,048	3712 0,0	0357438	0,0273162	0,0214433	0,017204

5,5	6	$\mid 6,5$	7	7,5	8	8,5	9	9,5	10
0,548282	0,288786	0,16419	0,102119	0,0683386	0,0483712	0,0357438	0,0273162	0,0214433	0,0172045
0,544385	0,253972	0,135641	0,08172	0,0537379	0,0376409	0,0276294	0,0210199	0,0164482	0,0131661
0,548311	0,288482	0,163915	0,101913	0,0681881	0,0482591	0,0356583	0,0272495	0,0213901	0,0171614

1.2.1. Analitikus eredmény

Függőleges tengelyen a B van, vízszintes tengelyen a z.

1.2.2. Program által számolt

100 egyenes vonal esetén (dl)

Függőleges tengelyen a B van, vízszintes tengelyen a z.

Látszik, hogy az indukció nagysága eléggé eltér az analitikusan számolt értékektől a kirajzolt tekercs is "szögletes".

1000 egyenes vonal esetén (dl)

Függőleges tengelyen a B van, vízszintes tengelyen a z.

A program által számolt értékek miatt alig látszanak az analitikusan számolt értékek.

Másik szolenoid tere

Tekercs menetszáma: N=100

Tekercs hossza: $10.0\,m$ Tekercs sugara: $0.5\,m$ Áramerősség: $1\,A$

1.2.3. Program által számolt

 $1000\ dl$ darabra összegezve.

Függőleges tengelyen a B van, vízszintes tengelyen a z.

Az adatok az excel fájlban (N100.xlsx) láthatók.

Jól látszik, hogy az indukció nagysága nagyon lecsökken a tekercsen kívül. A tekercs szélén pedig pont a fele a maximális értéknek, mint ahogy az az analitikus képletből is kijön $R \ll l$ esetén.

$$B(0) = -\frac{\mu_0 NI}{2l} \left(\frac{-\frac{l}{2}}{\sqrt{R^2 + (\frac{l}{2})^2}} - \frac{\frac{l}{2}}{\sqrt{R^2 + (\frac{l}{2})^2}} \right) = \frac{\mu_0 NI}{2\sqrt{R^2 + (\frac{l}{2})^2}} = \frac{\mu_0 NI}{4\sqrt{2R^2 + l^2}}$$

$$B(\frac{l}{2}) = -\frac{\mu_0 NI}{2l} \left(0 - \frac{l}{\sqrt{R^2 + l^2}} \right) = \frac{\mu_0 NI}{2\sqrt{R^2 + l^2}}$$