Probabilistic Reasoning Over Time

Time and Uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

 $\mathbf{X}_t = \text{set of unobservable state variables at time } t$ e.g., $BloodSugar_t$, $StomachContents_t$, etc.

 $\mathbf{E}_t = \text{set of observable evidence variables at time } t$ e.g., $MeasuredBloodSugar_t$, $PulseRate_t$, $FoodEaten_t$

This assumes discrete time; step size depends on problem

Notation: $\mathbf{X}_{a:b} = \mathbf{X}_a, \mathbf{X}_{a+1}, \dots, \mathbf{X}_{b-1}, \mathbf{X}_b$

Markov Chain

A Markov chain is a special sort of belief network:

Thus, $P(S_{t+1}|S_0,\ldots,S_t) = P(S_{t+1}|S_t)$.

Often S_t represents the state at time t. Intuitively S_t conveys all of the information about the history that can affect the future states.

"The past is independent of the future given the present."

Stationary Markov Chain

A stationary Markov chain is when for all t > 0, t' > 0, $P(S_{t+1}|S_t) = P(S_{t'+1}|S_{t'})$.

We specify $P(S_0)$ and $P(S_{t+1}|S_t)$.

- Simple model, easy to specify
- Often the natural model
- The network can extend indefinitely

Example

First-order Markov assumption not exactly true in real world!

Possible fixes:

- 1. Increase order of Markov process
- 2. Augment state, e.g., add $Temp_t$, $Pressure_t$

Example: robot motion.

Augment position and velocity with $Battery_t$

Inference Tasks

Can you think of an example for each of this?

```
Filtering: P(\mathbf{X}_t|\mathbf{e}_{1:t})
    belief state—input to the decision process of a rational agent
Prediction: P(\mathbf{X}_{t+k}|\mathbf{e}_{1:t}) for k>0
    evaluation of possible action sequences;
    like filtering without the evidence
Smoothing: P(X_k|e_{1:t}) for 0 \le k < t
    better estimate of past states, essential for learning
Most likely explanation: \arg \max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t}|\mathbf{e}_{1:t})
```

speech recognition, decoding with a noisy channel

Filtering

Aim: devise a **recursive** state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

I.e., prediction + estimation. Prediction by summing out X_t :

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

 $\mathbf{f}_{1:t+1} = \text{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1}) \text{ where } \mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ Time and space **constant** (independent of t)

Filtering Example

Smoothing

Divide evidence $e_{1:t}$ into $e_{1:k}$, $e_{k+1:t}$:

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t})$$

$$= \alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k},\mathbf{e}_{1:k})$$

$$= \alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$$

$$= \alpha \mathbf{f}_{1:k}\mathbf{b}_{k+1:t}$$

Backward message computed by a backwards recursion:

$$\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) = \sum_{\mathbf{X}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

$$= \sum_{\mathbf{X}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

$$= \sum_{\mathbf{X}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

Smoothing Example

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Most Likely Explanation

Most likely sequence \neq sequence of most likely states!!!!

Most likely path to each \mathbf{x}_{t+1}

= most likely path to some x_t plus one more step

$$\max_{\mathbf{x}_1...\mathbf{x}_t} \mathbf{P}(\mathbf{x}_1, \dots, \mathbf{x}_t, \mathbf{X}_{t+1} | \mathbf{e}_{1:t+1})$$

$$= \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{x}_t} \left(\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} P(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \mathbf{x}_t | \mathbf{e}_{1:t}) \right)$$

Identical to filtering, except $\mathbf{f}_{1:t}$ replaced by

$$\mathbf{m}_{1:t} = \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1,\ldots,\mathbf{x}_{t-1},\mathbf{X}_t|\mathbf{e}_{1:t}),$$

I.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state i. Update has sum replaced by max, giving the Viterbi algorithm:

$$\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{X}_t} (\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)\mathbf{m}_{1:t})$$

Viterbi Example

Hidden Markov Models

A Markov chain is a special sort of belief network:

Thus, $P(S_{t+1}|S_0,\ldots,S_t) = P(S_{t+1}|S_t)$.

Often S_t represents the state at time t. Intuitively S_t conveys all of the information about the history that can affect the future states.

"The past is independent of the future given the present."

Hidden Markov Models

 X_t is a single, discrete variable (usually E_t is too) Domain of X_t is $\{1, \ldots, S\}$

Transition matrix
$$\mathbf{T}_{ij} = P(X_t = j | X_{t-1} = i)$$
, e.g., $\begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$

Sensor matrix O_t for each time step, diagonal elements $P(e_t|X_t=i)$

e.g., with
$$U_1 = true$$
, $\mathbf{O}_1 = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix}$

Forward and backward messages as column vectors:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$

 $\mathbf{b}_{k+1:t} = \mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2:t}$

Forward-backward algorithm needs time $O(S^2t)$ and space O(St)

Example - Localization

Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization

This can be represented by the augmented HMM:

Example – Localization domain

Circular corridor, with 16 locations:

Doors at positions: 2, 4, 7, 11.

Noisy Sensors

Stochastic Dynamics

Robot starts at an unknown location and must determine where it is.

Example Sensor Model & Dynamics Models

$$P(Observe\ Door\ |\ At\ Door) = 0.8$$

 $P(Observe\ Door\ |\ Not\ At\ Door) = 0.1$

$$P(loc_{t+1} = L|action_t = goRight \land loc_t = L) = 0.1$$

 $P(loc_{t+1} = L + 1|action_t = goRight \land loc_t = L) = 0.8$
 $P(loc_{t+1} = L + 2|action_t = goRight \land loc_t = L) = 0.074$
 $P(loc_{t+1} = L'|action_t = goRight \land loc_t = L) = 0.002$ for any other location L' .

- All location arithmetic is modulo 16.
- The action goLeft works the same but to the left.

Combining Sensor Information

Example: we can combine information from a light sensor and the door sensor Sensor Fusion

 S_t robot location at time t D_t door sensor value at time t L_t light sensor value at time t

Kalman Filters

Modelling systems described by a set of continuous variables, e.g., tracking a bird flying— $\mathbf{X}_t = X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$. Airplanes, robots, ecosystems, economies, chemical plants, planets, . . .

Gaussian prior, linear Gaussian transition model and sensor model

Updating Gaussian Distributions

Prediction step: if $P(X_t|e_{1:t})$ is Gaussian, then prediction

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) = \int_{\mathbf{X}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) d\mathbf{x}_t$$

is Gaussian. If $P(X_{t+1}|e_{1:t})$ is Gaussian, then the updated distribution

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

is Gaussian

Hence $P(\mathbf{X}_t|\mathbf{e}_{1:t})$ is multivariate Gaussian $N(\boldsymbol{\mu}_t,\boldsymbol{\Sigma}_t)$ for all t

General (nonlinear, non-Gaussian) process: description of posterior grows unboundedly as $t \to \infty$

Kalman Update

Transition and sensor models:

$$P(\mathbf{x}_{t+1}|\mathbf{x}_t) = N(\mathbf{F}\mathbf{x}_t, \mathbf{\Sigma}_x)(\mathbf{x}_{t+1})$$

$$P(\mathbf{z}_t|\mathbf{x}_t) = N(\mathbf{H}\mathbf{x}_t, \mathbf{\Sigma}_z)(\mathbf{z}_t)$$

F is the matrix for the transition; Σ_x the transition noise covariance **H** is the matrix for the sensors; Σ_z the sensor noise covariance

Filter computes the following update:

$$egin{array}{ll} oldsymbol{\mu}_{t+1} &= \mathbf{F} oldsymbol{\mu}_t + \mathbf{K}_{t+1} (\mathbf{z}_{t+1} - \mathbf{H} \mathbf{F} oldsymbol{\mu}_t) \ oldsymbol{\Sigma}_{t+1} &= (\mathbf{I} - \mathbf{K}_{t+1}) (\mathbf{F} oldsymbol{\Sigma}_t \mathbf{F}^ op + oldsymbol{\Sigma}_x) \end{array}$$

where $\mathbf{K}_{t+1} = (\mathbf{F} \mathbf{\Sigma}_t \mathbf{F}^\top + \mathbf{\Sigma}_x) \mathbf{H}^\top (\mathbf{H} (\mathbf{F} \mathbf{\Sigma}_t \mathbf{F}^\top + \mathbf{\Sigma}_x) \mathbf{H}^\top + \mathbf{\Sigma}_z)^{-1}$ is the Kalman gain matrix

 Σ_t and \mathbf{K}_t are independent of observation sequence, so compute offline

2-D Tracking Example - Filtering

2-D Example Smoothing

Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around $\mathbf{x}_t = \boldsymbol{\mu}_t$ Fails if systems is locally unsmooth

Dynamic Bayesian Networks

 X_t , E_t contain arbitrarily many variables in a replicated Bayes net

DBNs and HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Sparse dependencies \Rightarrow exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has $20 \times 2^3 = 160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$

Exact Inference in DBNs

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with t

Rollup filtering: add slice t + 1, "sum out" slice t using variable elimination

Largest factor is $O(d^{n+1})$, update cost $O(d^{n+2})$ (cf. HMM update cost $O(d^{2n})$)

Likelihood Weighting in DBNs

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence!

- \Rightarrow fraction "agreeing" falls exponentially with t
- \Rightarrow number of samples required grows exponentially with t

Particle Filtering

Basic idea: ensure that the population of samples ("particles") tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for \mathbf{e}_t

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots 10^5 -dimensional state space

Particle Filtering

Assume consistent at time t: $N(\mathbf{x}_t|\mathbf{e}_{1:t})/N = P(\mathbf{x}_t|\mathbf{e}_{1:t})$

Propagate forward: populations of \mathbf{x}_{t+1} are

$$N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t}) = \sum_{\mathbf{x}_t} P(\mathbf{x}_{t+1}|\mathbf{x}_t) N(\mathbf{x}_t|\mathbf{e}_{1:t})$$

Weight samples by their likelihood for e_{t+1} :

$$W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t})$$

Resample to obtain populations proportional to W:

$$N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1})/N = \alpha W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})\sum_{\mathbf{x}_t} P(\mathbf{x}_{t+1}|\mathbf{x}_t)N(\mathbf{x}_t|\mathbf{e}_{1:t})$$

$$= \alpha' P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})\sum_{\mathbf{x}_t} P(\mathbf{x}_{t+1}|\mathbf{x}_t)P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

$$= P(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1})$$

Particle Filtering Performance

Approximation error of particle filtering remains bounded over time, at least empirically—theoretical analysis is difficult

Summary

- Temporal models use state and sensor variables replicated over time
- Markov assumptions and stationarity assumption, so we need
 - Transition model $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-1})$
 - Sensor model $P(\mathbf{E}_t|\mathbf{X}_t)$
- Tasks are filtering, prediction, smoothing, most likely sequence; all done recursively with constant cost per time step
- Hidden Markov models have a single discrete state variable; used
- for speech recognition
- Kalman Filters allow n state variables, linear Gaussian, $O(n^3)$ update
- Dynamic Bayes nets subsume HMMs, Kalman Filters; exact update intractable
- Particle Filtering is a good approximate filtering algorithm for DBNs