1 Further details on clustering

This document provides additional details on the process of performing hierarchical agglomerative clustering, which is implemented in part using the fastcluster package.

1.1 Methodology

Generally, the process of agglomerative hierarchical clustering consists of merging groups of records together based on a distance criterion until all points are contained within one group, forming an inverse tree structure. From here it is possible to examine the tree and find the groupings that satisfy a certain linkage criterion (e.g., all records within each group returned are at most ϵ apart).

Formally, let $\mathcal{X} = \{\mathbf{x}_i\}_{i=1}^n$, $\mathbf{x}_i \in \mathbb{R}^k$ define the set of records. Additionally, define a metric function $f(\mathbf{x}_i, \mathbf{x}_j)$ to evaluate the distance between two records and a linkage function $g(\mathcal{C}_p, \mathcal{C}_q)$, $\mathcal{C}_p \mathcal{C}_q \subset \mathcal{X}$ to determine the distance between two groups. Note that f is used as a kernel in g such that g is of the form $g(\mathcal{C}_p, \mathcal{C}_q) = h(f(\mathbf{x}_i, \mathbf{x}_j)) \, \forall \mathbf{x}_i \in \mathcal{C}_p, \, \mathbf{x}_j \in \mathcal{C}_q$. In a given iteration, for group \mathcal{C}_i , merge \mathcal{C}_i with $\mathcal{C}^* = \underset{\mathcal{C}}{\operatorname{argmin}} g(\mathcal{C}_i, \mathcal{C})$. Continue this procedure for all groups until there is only one group remaining.

In our current implementation, we set f to be a weighted ℓ_2 norm of the form

$$f(\mathbf{x}_i, \mathbf{x}_j) = \left(\left(w(\mathbf{d}_{i,j}) \times \mathbf{d}_{i,j} \right)^T \left(w(\mathbf{d}_{i,j}) \times \mathbf{d}_{i,j} \right) \right)^{\frac{1}{2}} \quad \mathbf{d}_{i,j} = \mathbf{x}_i - \mathbf{x}_j$$

where $w: \mathbb{R}^k \to \mathbb{R}^k$ is a weight function and $w(\mathbf{d}) \times \mathbf{d}$ denotes the element-wise product of the two vectors. We specify w as a function because of the flexibility it provides. We may wish to set the weight applied to the difference in the value of a tolerance variable between two records because we believe it may be a function of that difference. Otherwise, the function can just be a constant.

We set $g(\mathcal{C}_i, \mathcal{C}_j) = \max(f(\mathbf{x}_i, \mathbf{x}_j)) \, \forall \, \mathbf{x}_i \in \mathcal{C}_i, \, \mathbf{x}_j \in \mathcal{C}_j$. This corresponds to setting method = 'complete' in the fastcluster package. This linkage method is preferred because our intent is to establish an upper bound on the distance between any two records assigned to the same group.