Data Structures and Algorithms

Graph and Lecture 14: Breath First Search

Department of Computer Science & Technology United International College

Graphs

- Extremely useful tool in modeling problems
- Consist of:
 - Vertices

Vertices can be considered "sites" or locations.

Edges represent connections.

Application 1

Air flight system

- Each vertex represents a city
- Each edge represents a direct flight between two cities
- A query on direct flights = a query on whether an edge exists
- A query on how to get to a location = does a path exist from A to B
- We can even associate costs to edges (weighted graphs), then ask "what is the cheapest path from A to B"

Application 2

- Represented by a weighted complete graph (every two vertices are connected by an edge)
- Each edge represents the Euclidean distance dij between two stations
- Each station uses a certain power i to transmit messages. Given this power i, only a few nodes can be reached (bold edges). A station reachable by i then uses its own power to relay the message to other stations not reachable by i.
- A typical wireless communication problem is: how to broadcast between *all* stations such that they are all connected and the power consumption is minimized.

Definition

- A graph G=(V, E) consists a set of vertices, V, and a set of edges, E.
- Each edge is a pair of (v, w), where v, w belongs to V
- If the pair is unordered, the graph is undirected; otherwise it is directed

$$V = \{a,b,c,d,e,f\}$$

$$E = \{\{a,b\},\{a,c\},\{b,d\},\{c,d\},\{b,e\},\{c,f\},\{e,f\}\}$$

An undirected graph

Terminology

- 1. If v_1 and v_2 are connected, they are said to be adjacent vertices
 - v_1 and v_2 are endpoints of the edge $\{v_1, v_2\}$
- 2. If an edge *e* is connected to *v*, then *v* is said to be incident on *e*. Also, the edge *e* is said to be incident on *v*.
- 3. $\{v_1, v_2\} = \{v_2, v_1\}$

If we are talking about directed graphs, where edges have direction. This means that $\{v_1, v_2\} \neq \{v_2, v_1\}$. Directed graphs are drawn with arrows (called arcs) between edges.

A

This means $\{A,B\}$ only, not $\{B,A\}$

Graph Representation

- Two popular computer representations of a graph. Both represent the vertex set and the edge set, but in different ways.
 - Adjacency Matrix
 Use a 2D matrix to represent the graph
 - 2. Adjacency List Use a 1D array of linked lists

Adjacency Matrix

	a	b	c	d	e
a	0	0	1	1	1
b	0	0	0	0	0
c	1	0	0	0	1
d	1	0	0	0	1
e	1	0	1	1	0

- 2D array A[0..n-1, 0..n-1], where n is the number of vertices in the graph
- Each row and column is indexed by the vertex id
 - e,g a=0, b=1, c=2, d=3, e=4
- A[i][j]=1 if there is an edge connecting vertices i and j; otherwise A[i][j]=0.
- The storage requirement is $\Theta(n^2)$. It is not efficient if the graph has few, edges. An adjacency matrix is an appropriate representation if the graph is dense: $|E| = \Theta(|V|^2)$
- We can detect in O(1) time whether two vertices are connected.

Adjacency List

- If the graph is not dense, in other words, sparse, a better solution is an adjacency list
- The adjacency list is an array A[0..n-1] of lists, where n is the number of vertices in the graph.
- Each array entry is indexed by the vertex id
- Each list A[i] stores the ids of the vertices adjacent to vertex i

Adjacency Matrix Example

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0	1
2	0	1	0	0	1	0	0	0	1	0
3	0	1	0	0	1	1	0	0	0	0
4	0	0	1	1	0	0	0	0	0	0
5	0	0	0	1	0	0	1	0	0	0
6	0	0	0	0	0	1	0	1	0	0
7	0	1	0	0	0	0	1	0	0	0
8	1	0	1	0	0	0	0	0	0	1
9	0	1	0	0	0	0	0	0	1	0

Adjacency List Example

Storage of Adjacency List

- The array takes up ⊕(n) space
- Define degree of ν , deg(ν), to be the number of edges incident to ν . Then, the total space to store the graph is proportional to:

- An edge $e=\{u,v\}$ of the graph contributes a count of 1 to deg(u) and contributes a count 1 to deg(v)
- Therefore, $\Sigma_{\text{vertex }} \log(v) = 2m$, where m is the total number of edges
- In all, the adjacency list takes up $\Theta(n+m)$ space
 - If $m = O(n^2)$ (i.e. dense graphs), both adjacent matrix and adjacent lists use $O(n^2)$ space.
 - If m = O(n), adjacent list outperform adjacent matrix
- However, one cannot tell in O(1) time whether two vertices are connected

Adjacency List vs. Matrix

Adjacency List

- More compact than adjacency matrices if graph has few edges
- Requires more time to find if an edge exists

Adjacency Matrix

- Always require n² space
 - This can waste a lot of space if the graph is sparse
- Can quickly find if an edge exists

Path between Vertices

- A path is a sequence of vertices (v₀, v₁, v₂,..., v_k) such that:
 - For $0 \le i < k$, $\{v_i, v_{i+1}\}$ is an edge
 - For $0 \le i < k-1$, $V_i \ne V_{i+2}$ That is, the edge $\{v_i, v_{i+1}\} \ne \{v_{i+1}, v_{i+2}\}$

Note: a path is allowed to go through the same vertex or the same edge any number of times!

 The length of a path is the number of edges on the path

Types of paths

- A path is simple if and only if it does not contain a vertex more than once.
- A path is a cycle if and only if $v_0 = v_k$
 - The beginning and end are the same vertex!
- A path contains a cycle as its sub-path if some vertex appears twice or more

Path Examples

Are these paths?

Any cycles?

What is the path's length?

- 1. {a,c,f,e}
- 2. {a,b,d,c,f,e}
- 3. {a, c, d, b, d, c, f, e}
- 4. {a,c,d,b,a}
- 5. {a,c,f,e,b,d,c,a}

Graph Traversal

- Application example
 - Given a graph representation and a vertex s
 in the graph
 - Find all paths from s to other vertices
- Two common graph traversal algorithms
 - Breadth-First Search (BFS)
 - Find the shortest paths in an unweighted graph
 - Depth-First Search (DFS)
 - Topological sort
 - Find strongly connected components

BFS and Shortest Path Problem

- Given any source vertex *s*, BFS visits the other vertices at increasing distances away from s. In doing so, BFS discovers paths from s to other vertices
- What do we mean by "distance"? The number of edges on a path from s

Example

Consider s=vertex 1

Nodes at distance 1? 2, 3, 7, 9

Nodes at distance 2? 8, 6, 5, 4

Nodes at distance 3? 0

BFS Algorithm

```
Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
    for each vertex v
        do flag[v] := false; // flag[]: visited table
3. Q = \text{empty queue}; Why use queue? Need FIFO
    flag[s] := true;
4.
5. enqueue(Q, s);
6.
    while Q is not empty
       do v := dequeue(Q);
7.
           for each w adjacent to v
8.
               do if flag[w] = false
9.
                     then flag[w] := true;
10.
                          enqueue(Q, w)
11.
```

BFS Example

Adjacency List

Visited Table (T/F)

F
F
F
F
F
F
F
F
F
F

Initialize visited table (all False)

$$Q = \{ \}$$

Initialize **Q** to be empty

Adjacency List

Visited Table (T/F)

0	F
1	F
2	T
3	F
4	F
5	F
6	F
7	F
8	F
9	F

$$Q = \{ 2 \}$$

Flag that 2 has been visited

Visited Table (T/F)

F
Т
Т
F
Т
F
F
F
T
F

Mark neighbors as visited 1, 4, 8

$$Q = \{2\} \rightarrow \{8, 1, 4\}$$

Dequeue 2.

Place all unvisited neighbors of 2 on the queue

 $\mathbf{Q} = \{ 8, 1, 4 \} \rightarrow \{ 1, 4, 0, 9 \}$

Mark new visited Neighbors 0, 9

Dequeue 8.

- -- Place all unvisited neighbors of 8 on the queue.
- -- Notice that 2 is not placed on the queue again, it has been visited!

0	T
1	T
2	T
3	Т
4	Т
5	F
6	F
7	T
8	T
9	T

Mark new visited Neighbors 3, 7

$$\mathbf{Q} = \{ 1, 4, 0, 9 \} \rightarrow \{ 4, 0, 9, 3, 7 \}$$

Dequeue 1.

- -- Place all unvisited neighbors of 1 on the queue.
- -- Only nodes 3 and 7 haven't been visited yet.

$$\mathbf{Q} = \{4, 0, 9, 3, 7\} \rightarrow \{0, 9, 3, 7\}$$

Dequeue 4.

-- 4 has no unvisited neighbors!

Visited Table (T/F)

T
Т
Т
T
T
F
F
T
Т
T

$$\mathbf{Q} = \{0, 9, 3, 7\} \rightarrow \{9, 3, 7\}$$

Dequeue 0.

-- 0 has no unvisited neighbors!

$$\mathbf{Q} = \{ 9, 3, 7 \} \rightarrow \{ 3, 7 \}$$

Dequeue 9.

-- 9 has no unvisited neighbors!

Visited Table (T/F)

T
Т
Т
Т
Т
Т
F
Т
Т
Т

Mark new visited Vertex 5

$$\mathbf{Q} = \{3, 7\} \rightarrow \{7, 5\}$$

Dequeue 3.

-- place neighbor 5 on the queue.

Visited Table (T/F)

<u> </u>		
0	T	
1	Т	
2	T	
3	_	
4	_	
5	_	
6	T	
7	_	
8	T	
9	T	
	0 1 2 3 4 5 6 7	

Mark new visited Vertex 6

$$Q = \{7, 5\} \rightarrow \{5, 6\}$$

Dequeue 7.

-- place neighbor 6 on the queue

Visited Table (T/F)

0	T
1	Т
2	Т
3	Т
4	Т
5	Т
6	Т
7	T
8	Т
9	T

$$Q = \{5, 6\} \rightarrow \{6\}$$

Dequeue 5.

-- no unvisited neighbors of 5

Visited Table (T/F)

T
_
_
T
T
T
T
T
T
T

$$\mathbf{Q} = \{6\} \rightarrow \{\}$$

Dequeue 6.

-- no unvisited neighbors of 6

Q = { } **STOP!!! Q** is empty!!!

Adjacency List

Visited Table (T/F)

0	_
1	T
2	T
3	T
4	T
5	T
6	T
7	T
8	T
9	T

What did we discover?

Look at "visited" tables.

There exists a path from source vertex 2 to all vertices in the graph

Time Complexity of BFS

(Using Adjacency List)

- Assume adjacency list
 - n = number of vertices m = number of edges

```
Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
    for each vertex v
        do flag[v] := false;
   Q = \text{empty queue};
    flag[s] := true;
    enqueue(Q, s);
    while Q is not empty
7.
       do v := dequeue(Q);
           for each w adjacent to v
8.
               do if flaq[w] = false
9.
10.
                     then flag[w] := true;
                           enqueue(Q, w)
11.
```

O(n + m)

Each vertex will enter Q at most once.

Each iteration takes time proportional to deg(v) + 1 (the number 1 is to account for the case where deg(v) = 0 --- the work required is 1, not 0).

Running Time

 Recall: Given a graph with m edges, what is the total degree?

$$\Sigma_{\text{vertex } v} \text{ deg(v)} = 2m$$

• The total running time of the while loop is:

O(
$$\Sigma_{\text{vertex } v} (\text{deg}(v) + 1)) = O(n+m)$$

this is summing over all the iterations in the while loop!

Time Complexity of BFS (Using Adjacency Matrix)

- Assume adjacency list
 - n = number of vertices m = number of edges

```
Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
    for each vertex v
        do flag[v] := false;
    Q = \text{empty queue};
    flag[s] := true;
    enqueue(Q, s);
    while Q is not empty
6.
7.
       do v := dequeue(Q);
           for each w adjacent to v
8.
9.
               do if flaq[w] = false
10.
                     then flag[w] := true;
11.
                           enqueue(Q, w)
```


Finding the adjacent vertices of v requires checking all elements in the row. This takes linear time O(n).

Summing over all the n iterations, the total running time is $O(n^2)$.

So, with adjacency matrix, BFS is $O(n^2)$ independent of the number of edges m. With adjacent lists, BFS is O(n+m); if $m=O(n^2)$ like in a dense graph, $O(n+m)=O(n^2)$.