

ITR SUR OESTE- FRAY BENTOS INGENIERÍA MECÁTRONICA PROYECTOS INTEGRADORES

PROYECTO INTEGRADOR DE COMPETENCIAS I, II, III	l:

Τ	IT	U	L	O	

Autor 1:	Autor 2:	Autor 3:	Autor 3:	
Firma:	Firma:	Firma:		
Docentes encargados:	Fecha de Entrega:			
Hippa R., Eguia L., Campero C., Di				

1. Introducción

1.1. Planteamiento del problema

La enseñanza de robótica manipuladora en contextos educativos (escuelas, UTU, liceo y cursos introductorios universitarios) suele verse limitada por el alto costo, riesgos de seguridad y poca facilidad de modificación y/o reparación de los equipos comerciales. Esto reduce la práctica real de manipulación, dificulta integrar contenidos de mecánica, electrónica y control, y hace inviable llevar equipos a giras didácticas.

1.2. Solución propuesta

Un brazo robótico didáctico a escala de 4 GDL con efector intercambiable: electroimán (para piezas ferromagnéticas) y garra (para piezas no magnéticas). Estructura paramétrica cortada en MDF (3.2–10 mm), tornillería estándar y electrónica de fácil reposición. Control con ESP32/ATmega328P, modos manual/automático, GUI en Python (Tkinter/PyQt), y documentación abierta para replicación.

1.3. Objetivo General

Diseñar, construir y validar un brazo robótico didáctico de 4 GDL, seguro, portable y de bajo costo, con efectores electroimán/garra intercambiables, capaz de ejecutar tareas básicas de pick & place en un volumen de trabajo de hasta $50 \times 50 \times 50$ cm.

1.4. Objetivos específicos

- 1. Repetibilidad: $\leq 3-5$ mm en el volumen útil (validado con 10 repeticiones por punto).
- 2. Carga y alcance: manipular $\leq 100 \,\mathrm{g}$ a un alcance de $40 \,\mathrm{cm}$ con tasa de éxito $\geq 90 \,\%$ (10 intentos).
- 3. Tiempo de ciclo: $pick \rightarrow place \rightarrow retorno < 3 s a 10-15 cm entre posiciones.$
- 4. Efector intercambiable: cambio imán/garra en < 60 s sin herramientas especiales.
- 5. **Seguridad:** paro de emergencia, cableado protegido, tensión segura en zona de usuario; checklist previo a operación.
- 6. **Software:** GUI con lectura de posición, control ON/OFF del imán, modos manual y automático y cinemática inversa planar.

1.5. Obstáculos

A partir del alcance y de las decisiones técnicas, se identifican los siguientes obstáculos que pueden afectar cronograma, costo y calidad del prototipo:

- **Presupuesto:** mantener un costo *razonable y no excesivo* considerando servos, fuente, electrónica y materiales. *Mitigación:* priorizar compras esenciales, consolidar pedidos, alternativas locales y revisión de la BOM por etapas.
- **Tiempo de trabajo:** limitaciones de calendario académico y disponibilidad del equipo para CAD, corte, montaje y pruebas. *Mitigación:* hitos semanales, versiones incrementales y criterios de aceptación por etapa.

- Complejidad de diseño: ajustes paramétricos para distintos espesores, transmisión por eslabones y tolerancias de corte. *Mitigación*: plantillas de agujeros unificadas, librería de piezas parametrizadas y pruebas de "cupón" antes del corte final.
- Fuerza de trabajo: cantidad de integrantes y experiencia en mecánica, electrónica y software. *Mitigación:* división clara de roles, documentación mínima obligatoria y revisiones cruzadas.
- **Disponibilidad de materiales:** variación de espesores de MDF (3.2–10 mm), alternativas en acrílico/metal y stock de tornillería. *Mitigación:* diseño con holguras controladas, insertos/espaciadores y piezas "shim" para compensar espesores.
- Reparabilidad: acceso a componentes para reemplazo, desgaste en articulaciones y cableado. *Mitigación*: modularidad por subconjuntos, tornillería estándar M3, bujes/arandelas en puntos de fricción y canalización de cables.
- Ensamblaje: alineación de ejes, juego mecánico y centrado previo de servos. *Mitigación:* guías paso a paso, marcas de referencia, útiles simples de alineación y checklist de calibración inicial.

2. Fundamento técnico-conceptual

2.1. Soluciones consideradas

A partir del planteamiento del problema, se evaluaron tres alternativas tecnológicas para el accionamiento del brazo. A continuación se presentan de forma breve sus características, ventajas y limitaciones principales.

- Servomotores (MG996R). Proporcionan control directo por PWM, integración sencilla con microcontroladores y velocidad adecuada para demostraciones didácticas. En comparación con MG90 (insuficientes en par), los MG996R cubren el requerimiento de carga (hasta 100 g a 40 cm) con una repetibilidad aceptable. Detractor principal: es la alternativa más cara dentro de las consideradas; se estimó un costo de 4 servos por \$U 2600 (disponibles en línea), aunque mantiene baja la complejidad de diseño y puesta en marcha.
- Actuadores lineales tornillo—tuerca (motor DC con reductora). Ofrecen alta fuerza y buen costo por actuador, y a niveles educativos más avanzados pueden resultar más didácticos por la necesidad de instrumentación. Sin embargo, el mecanismo es más lento y menos preciso sin realimentación; requiere encoders o potenciómetros y finales de carrera para conocer el ángulo articular. Además, el diseño de eslabones y articulaciones se complica para alojar el husillo, y los mecanismos de codificación de posición son más propensos a interferencias/ruido y se convierten en otro posible punto de fallo. El juego mecánico (backlash) y la fricción pueden degradar la repetibilidad.
- Actuadores lineales con asistencia hidráulica (jeringas). Es la alternativa más compleja: añade una capa de transmisión hidráulica sobre el actuador lineal. A cambio, ofrece una relación fuerza—peso muy favorable (bajo peso en el extremo móvil frente a la fuerza aplicable). No obstante, introduce menor velocidad, histéresis, necesidad de purgado/cebado, riesgo de fugas y mayor mantenimiento; el control (válvulas, amortiguación) eleva la complejidad de ingeniería. Al igual que en la opción de tornillo—tuerca, la posición debe codificarse (p. ej., potenciómetros/encoders lineales), añadiendo sensores y puntos de fallo adicionales.

Criterio	Peso	Servo	Actuador	Hidráulico
Peso	0.10	4	3	3
Velocidad	0.20	4	2	1
Simplicidad	0.30	5	2	1
Precio	0.20	4	4	4
Fuerza	0.15	3	4	5
Libertad	0.05	5	3	3
Total ponderado		4.20	2.85	2.50

Cuadro 1: Matriz de selección de actuadores (1 = peor, 5 = mejor). Totales calculados con los pesos indicados.

Decisión técnica

Se implementa la solución con servomotores MG996R por simplicidad de control, velocidad adecuada y disponibilidad, manteniendo el costo dentro del objetivo y una fuerza suficiente para las tareas de pick & place. No obstante, se adopta la filosofía de diseño observada en las alternativas de actuadores lineales e hidráulicos: concentrar masa cerca de los ejes de rotación y transmitir el movimiento mediante eslabones hasta las articulaciones distales. Con ello se reduce el brazo de palanca efectivo sobre cada servo, disminuye el par exigido y se baja la inercia en el extremo móvil, conservando parte de los beneficios de aquellas soluciones sin incorporar su complejidad de sensado y control.

Lineamientos de diseño adoptados

- Ubicar los actuadores lo más cerca posible de los ejes principales o de la base para minimizar el par requerido.
- Emplear eslabones/bielas para accionar articulaciones alejadas, manteniendo baja la masa en el efector.
- Limitar configuraciones que generen grandes brazos de palanca y añadir topes/curvas de velocidad para proteger a los servos.
- Mantener la modularidad e intercambiabilidad del efector (electroimán/garra) y el diseño paramétrico para distintos espesores de MDF.

En síntesis, el resultado es un **diseño híbrido**: control directo con servos potentes y una **arquitectura mecánica inspirada** en sistemas lineales/hidráulicos que traslada masa hacia la estructura fija. Esto simplifica la implementación y el mantenimiento, a la vez que mejora la eficiencia mecánica y la repetibilidad del prototipo.

3. Alcance

3.1. Alcance del proyecto

El proyecto comprende el diseño, construcción y validación de un **brazo robótico didáctico** a escala con:

- Arquitectura mecánica: 4 grados de libertad (sin contar el efector), estructura paramétrica para corte láser en MDF (3.2–10 mm), con posibilidad de adaptación a acrílico/metal. Base fija dentro de 50×50×50 cm.
- Efectores intercambiables: electroimán para piezas ferromagnéticas y garra mecánica para piezas no magnéticas, con cambio rápido.
- Actuación: servomotores MG996R (uno por articulación principal). Transmisión por eslabones para mantener masa cerca de los ejes.
- Control y electrónica: microcontrolador (ESP32 o ATmega328P), driver MOSFET para el electroimán (IRFZ44N o equivalente), finales de carrera para homing, LEDs/buzzer de estado.
- **Software:** firmware en C/C++ y GUI en Python (Tkinter o PyQt) con modos manual y automático, control ON/OFF del electroimán y cinemática inversa planar básica.
- Alimentación: fuente para lógica y potencia, con convertidores adecuados para servos y electroimán.
- **Documentación y docencia:** manual de armado, guía docente y un conjunto mínimo de 5 prácticas de laboratorio.

3.2. Rendimiento y límites operativos

- Alcance y carga: manipulación de objetos hasta 100 g con alcance aproximado de 40 cm.
- Repetibilidad: objetivo entre 3 y 5 mm en el volumen útil.
- Tiempo de ciclo: $pick \rightarrow place \rightarrow retorno \le 3$ s para desplazamientos de 10–15 cm.
- Seguridad: paro de emergencia, velocidades reducidas en modo enseñanza y carenados opcionales para cableado y zonas de pinzamiento.

3.3. Fuera de alcance

- Implementación de actuadores lineales (tornillo—tuerca) o hidráulicos; solo se documentan como alternativas.
- Visión artificial, seguimiento por cámara o planificación avanzada de trayectorias en 3D.
- Cargas superiores a 100 g o uso industrial continuo.
- Calibración metrológica de alta precisión o certificaciones industriales.

3.4. Criterios de aceptación

- Funcionalidad: ejecución de trayectorias punto a punto en modo manual y automático; cambio de efector sin herramientas especiales.
- **Desempeño:** tasa de éxito de agarre $\geq 90\%$ para el conjunto de pruebas definido; repetibilidad dentro del rango objetivo.
- Homing y seguridad: rutina de referencia operativa, paro de emergencia y límites mecánicos verificados.

■ Entregables: prototipo ensamblado, firmware, GUI, manual de usuario y guía docente con 5 prácticas evaluables.

4. Metodología

- 4.1. Materiales
- 5. Resultados
- 6. Conclusiones
- 7. Apendice