

Вариант 6, 7, 8

- Найти (в пределе) регулярные язык префиксов и суффиксов, содержащие хотя бы одну итерацию.
- Для каждой пары «накачек» из выбранных регулярных префиксов и суффиксов проверить, что с достаточно высокой вероятностью слова из накачек формируют слово из языка \mathscr{L} .

- Определить пределы вывода: С допуск на регулярность, Р число испытаний на эквивалентность, Р' — число испытаний на существование симметричной накачки. Определить Σ.
- Выбрать базу $\Phi_1 = \{\gamma_1\}$, где $\gamma_1 \in \Sigma$ и вывести язык $\mathcal{P}(\Phi_1)$ (префиксы в алфавите Φ_1). Для всякого КС-языка его префиксы в унарном алфавите это регулярный язык, поэтому вывод на этом этапе точный. Если язык $\mathcal{P}(\Phi_1)$ бесконечен (КА содержит циклы), сохранить его в списке языков префиксов.
- Перейти от $\Phi_{\mathfrak{i}-1}$ к $\Phi_{\mathfrak{i}}$ (пробегая возможные подмножества Σ). Считаем, что вывод префикса проходит неудачно, если число состояний в автомате для него превышает $\max_{\gamma_{\mathfrak{j}} \in \Sigma} (\Phi_{\mathfrak{i}} \setminus \{\gamma_{\mathfrak{j}}\}) + C$. В этом случае считаем $\Phi_{\mathfrak{i}}$ и все содержащие его алфавиты порождающими нерегулярные языки.
- Аналогично порождаем языки суффиксов $S(\Phi_i)$.

- Строим списки предположительно совместных накачек. Для очередной пары $\langle \mathcal{P}(\Phi_i), \mathcal{S}(\Phi_j) \rangle$ находим в КА для $\mathcal{P}(\Phi_i)$ и $\mathcal{S}(\Phi_j)$ все возможные циклы из состояний в себя (не содержащие итераций по внутренним циклам).
- Пусть w_0^p , u_1 , w_2^p путь из w_0 до цикла, по циклу, и из цикла в конечное состояние, для языка $\mathcal{P}(\Phi_i)$, аналогично w_0^s , v_1 , w_2^s для $\mathcal{S}(\Phi_j)$. Язык $w_0^p u_1^* w_2^p w_0^s v_1^* w_2^s$ первичный кандидат на накачку.
- Если с достаточно высокой вероятностью (зависящей от установленного вами параметра P') для выбранного k_1 существует k_2 такое, что $w_0^p u_1^{k_1} w_2^p w_0^s v_1^{k_2} w_2^s \in \mathscr{L}$, и для выбранного k_2 существует k_1 такое, что $w_0^p u_1^{k_1} w_2^p w_0^s v_1^{k_2} w_2^s \in \mathscr{L}$, тогда объявляем язык $w_0^p u_1^* w_2^p w_0^s v_1^* w_2^s$ предполагаемой накачкой и возвращаем его.
- В рамках возрастающих алфавитов Φ_i возможные варианты накачек (по циклам в автоматах) будут повторяться. Нужно избежать повторов в их проверках.

Вариант 0, 1, 3, 9

- Дано разбиение $\langle \omega_1, \omega_2, \omega_3, \omega_4, \omega_5 \rangle$, предположительно описывающее серию слов $\omega_1 \omega_2^n \omega_3 \omega_4^n \omega_5$ в языке \mathcal{L} .
- Найти (в пределе) языки отдельно $\mathscr{L}(\omega_1), \mathscr{L}(\omega_3), \mathscr{L}(\omega_5).$
- Проверить, что пары слов из $\mathscr{L}(\omega_1)$ и $\mathscr{L}(\omega_5)$ действительно совместны относительно накачек ω_2 и ω_4 в языке \mathscr{L} .

- Определить пределы вывода: С допуск на регулярность, Р число испытаний на эквивалентность, Р' — число испытаний на накачку. Определить Σ.
- Проверить, что для достаточно большого числа испытаний $\omega_1 \omega_2^i \omega_3 \omega_4^i \omega_5$ действительно принадлежат языку \mathscr{L} .
- Пусть Φ_1 алфавит ω_1 . Вывести язык префиксов р для слов вида $\mathbf{u} = \omega_2^i \omega_3 \omega_4^i w$ такой, что р $\mathbf{u} \in \mathscr{L}$. Порогом вывода (максимальным размером КА) считать $|\omega_1| + C$. Последовательно расширить алфавит выводимых языков префиксов, пока они не превышают порог регулярности (в дальнейшем используя ту же эвристику, что в вариантах 6, 7, 8). Аналогично вывести языки суффиксов ω_5 и середин ω_3 . Элементы множества языков префиксов накачки обозначаем \mathscr{L}_p ; суффиксов \mathscr{L}_s .
- Языки «середины накачки» (обобщения ω_3) уже не надо обрабатывать, просто возвращаем их.

- Язык префиксов \mathcal{L}_p абсолютно совместен с \mathcal{L}_s , если $\forall p \in \mathcal{L}_p$, $s \in \mathcal{L}_s(p\omega_2^i\omega_3\omega_4^is \in \mathcal{L})$ для достаточно большого числа испытаний степеней i.
- Если пара $\langle p_k, s_k \rangle$ нарушает совместность префиксов с суффиксами, сохраняем её в списке контрпримеров. Если число контрпримеров превысило совокупное число состояний в КА для \mathcal{L}_p и \mathcal{L}_s , то выводим языки \mathcal{L}_p и \mathcal{L}_s для $\{p_k\}$ и $\{s_k\}$, использующие оракулы
 - $\mathbf{u} \in \mathscr{L}_{\neg p} \Leftrightarrow \exists \mathbf{i}, \nu(\mathbf{u}\omega_2^i\omega_3\omega_4^i\mathbf{v} \notin \mathscr{L} \& \nu \in \mathscr{L}_s);$ и $\mathbf{u} \in \mathscr{L}_{\neg s} \Leftrightarrow \exists \mathbf{i}, \nu(\nu\omega_2^i\omega_3\omega_4^i\mathbf{u} \notin \mathscr{L} \& \nu \in \mathscr{L}_p).$ Даже если автоматы языков контрпримеров превысят порог регулярности (размер исходного автомата для \mathscr{L}_p или \mathscr{L}_s плюс C), всё равно считать вывод языков контрпримеров успешным (в этом случае останавливаемся и уже не ищем новые контрпримеры для KA).
- Построить пересечения $\mathcal{L}_p \cap \overline{\mathcal{L}_{\neg p}}$ и $\mathcal{L}_s \cap \overline{\mathcal{L}_{\neg s}}$ (т.е. разности между исходными языками и языками контрпримеров) и вернуть их пару в качестве языков префиксов и суффиксов накачки.

Вариант 2, 4, 5

- Найти языки разбиений относительно букв алфавита Σ слов языка \mathscr{L} .
- В рамках этих языков найти неразличимые элементы лексем и последовательные сложные элементы лексем.

В этом варианте будут полезными всевозможные упрощения регулярных выражений, реализованные в предыдущей лабораторной работе. Результаты работы алгоритма будут сильно отличаться для разных базисных наборов лексем, поэтому имеет смысл выбирать такие базисные наборы лексем, которые порождают бесконечные языки относительно разбиений по ним.

- Определить пределы вывода: С допуск на регулярность, Р число испытаний на эквивалентность. Определить Σ.
- Выбрать базисную лексему $\gamma_0 \in \Sigma$. Произвести вывод языка подслов Σ , не содержащих γ_0 . Если НКА для языка подслов превысил $|\Sigma| + C$, считаем выбор базовой лексемы неудачным и переходим к очередному набору базисных лексем (сначала проверяем все синглетоны, при неудаче пары базисных лексем, и т.д.). Процесс вывода сходится, поскольку, если выбрать все элементы Σ в качестве базисных лексем, то получится элементарный язык разбиений $\{\varepsilon\}$.
- В полученном языке вывести все альтернативы на внешний уровень по дистрибутивности (т.е. привести $\tau_1(\tau_2 \mid \tau_3)\tau_4$ к виду $\tau_1\tau_2\tau_4 \mid \tau_1\tau_3\tau_4$). Элементы этих альтернатив потенциальные комбинации лексем. .
- Дальнейшая работа алгоритма производится отдельно с каждым таким элементом (в нашем примере: отдельно с языками $\tau_1\tau_2\tau_4$ и $\tau_1\tau_3\tau_4$), называемым далее \mathcal{L}_{lex} .

6/12

- Насыщаем алфавиты лексем. Если символы γ_i , γ_j таковы, что замена γ_i на γ_j и наоборот не меняет принадлежность языку \mathcal{L}_{lex} , то переходим от \mathcal{L}_{lex} к языку, где γ_i и γ_j оба заменены на новую лексему $\gamma_{\{i,j\}}$. При этом $\gamma_{\{i,j\}}$ станет новым символом алфавита Σ_{lex} языка \mathcal{L}_{lex} , а γ_i и γ_j из него удалятся.
- Когда алфавиты лексем будут максимально насыщены, производим отщепление префиксов \mathcal{L}_{lex} . А именно, если $\alpha_i \in \Sigma_{lex}$ ($i \leqslant k$), и для всех α_i частичная производная языка \mathcal{L}_{lex} по α_i включает \mathcal{L}_{lex} , тогда строим отображение $\mathcal{L}_{lex} = (\alpha_1 \mid \ldots \mid \alpha_k)^* \mathcal{L}'_{lex}$, где $\mathcal{L}'_{lex} = \mathcal{L}_{lex} \cup (\alpha_1 \mid \ldots \mid \alpha_k)^*$ (т.е. множество слов \mathcal{L}_{lex} , которые не начинаются на α_i).
- После отщепления префиксов выявляем сложные лексемы: если частичная производная по слову w языка \mathcal{L}'_{lex} единственна (и не включает \mathcal{L}'_{lex} и с пустой регуляркой), а по некоторому слову $w\gamma$, где $\gamma \in \Sigma_{lex}$, уже не единственна либо включает себя, тогда считаем w сложной лексемой (не исключено, что состоящей из одного символа). Переходим от \mathcal{L}'_{lex} к производным по всем возможным сложным лексемам и повторяем для них отщепление префиксов и выявление сложных лексем.
- Если не нашлось сложных лексем, возвращаем рассматриваемый язык как елиную лексическую елинипу.

Варианты алгоритмов вывода

- (Чётная последняя цифра зачётки) алгоритм L*.
- (Нечётная последняя цифра зачётки) алгоритм NL*.

Если вы в числе приоритетных (оба сдали ЛР до 16 октября), то можете выбрать в этой позиции любой вариант.

7/12

Минимально адекватный (MAT)

МАТ отвечает на два типа запросов к оракулу.

- Membership (принадлежность): $\omega \mapsto \omega \in \mathscr{L}$. Возвращает 1, если ω принадлежит \mathscr{L} , и 0 иначе.
- Equivalence (эквивалентность): $\mathscr{A} \equiv \mathscr{L}$ (т.е. принимает на вход описание регулярного языка, например, конечным автоматом). Возвращает либо сообщение о том, что эквивалентность выполнена, либо контрпример: слово ω такое, что либо $\omega \in \mathcal{L}(\mathscr{A})$, но $\omega \notin \mathcal{L}$, либо $\omega \in \mathcal{L}$, но $\omega \notin \mathcal{L}(\mathcal{A})$.

Расширенная таблица наблюдений

Алгоритмы L^* и NL^* строят описание KA при условии обращения к MAT посредством постепенных приближений таблицы классов эквивалентности. На каждом этапе вычислений таблица должна удовлетворять следующим свойствам:

- полнота при заглядывании «на шаг вперёд» не должно получаться строк, демонстрирующих иное поведение относительно уже существующих.
- непротиворечивость если два префикса демонстрируют согласованное поведение в таблице, то при заглядывании «на шаг вперёд» они также должны вести себя согласованно.

Чтобы осуществить требуемое заглядывание, таблица строится из двух частей. Основная состоит из множества строк $\mathcal S$ и столбцов $\mathcal E$, содержимое таблицы — отметки, принадлежат ли $\mathcal U$ языку $\mathcal L$, где $\mathcal U \in \mathcal S$, $\mathcal V \in \mathcal E$. Расширенная часть — это строки из $\mathcal S$, не являющиеся префиксами других строк из $\mathcal S$, с приписанными к ними элементами алфавита $\mathcal S$, и всё те же столбцы $\mathcal E$.

Общая канва алгоритмов L^* и NL^*

- Если таблица $S \times \mathcal{E}$ неполна, то существует элемент из $S.\Sigma$, который порождает новую строку в таблице. Добавляем его в S и обновляем расширенную таблицу.
- **2** Если $S \times \mathcal{E}$ противоречива, то существует суффикс v из \mathcal{E} , показывающий различное поведение строк u_1 , u_2 при приписывании к ним суффикса γv ($\gamma \in \Sigma$). Добавляем суффикс γv в \mathcal{E} и достраиваем таблицу.
- Результат описание регулярного языка, которое признаётся оракулом как корректное.

Алгоритм L

- Условие полноты отсутствие в $S.\Sigma \times \mathcal{E}$ строк, которые отличаются от строк в $S \times \mathcal{E}$.
- Условие непротиворечивости отсутствие в $S.\Sigma \times \mathcal{E}$ таких позиций i, j, k, что $u_i v_k \neq u_j v_k$, притом что $u_i = u_i' \gamma$, $u_j = u_j' \gamma$, и строки в таблице $S \times \mathcal{E}$ для u_i' и u_j' совпадают.
- ДКА по таблице строится следующим образом.
 - Состояния ДКА кратчайшие слова из δ , порождающие разные строки в $\delta \times \mathcal{E}$.
 - Начальное состояние соответствует префиксу ε.
 - Конечные состояния те, которые содержат 1 в столбце, помеченном ε.
 - Если $u\gamma \equiv u'$ (т.е. $u\gamma$ и u' соответствуют одинаковым строчкам в таблице), то $\langle u, \gamma \rangle \to u'$ добавляется в ДКА как переход.

Aлгоритм NL^*

Алгоритм строит минимальный остаточный НКА (RFSA). Скажем, что строка r накрывается $\bigcup_k r_k$, если $\forall i (r[i] = \bigvee_k r_k[i])$ (т.е. она является поэлементной дизъюнкцией строк r_k). Строка r_1 поглощает r_2 ($r_2 \sqsubseteq r_1$), если $\forall i (r_1[i] \geqslant r_2[i])$.

- Условие полноты отсутствие в $S.\Sigma \times \mathcal{E}$ строк, которые не накрываются строками в $S \times \mathcal{E}$.
- Условие непротиворечивости отсутствие в $S \times \mathcal{E}$ таких позиций i, j, k, что $u_i \sqsubseteq u_j$, но для некоторого $\gamma \in \Sigma$ $u_i \gamma \not\sqsubseteq u_j \gamma$ в расширенной таблице.
- НКА по таблице строится следующим образом.
 - Состояния НКА кратчайшие слова из δ , базисные (т.е. не накрывающиеся набором других) в $\delta \times \mathcal{E}$.
 - Начальные состояния включают строки, поглощаемые строкой ε (чтобы перейти к классическому НКА, придётся стянуть их в одно).
 - Конечные состояния те, которые содержат 1 в столбце, помеченном ε.
 - Если $\nu \sqsubseteq u\gamma$, то $\langle u, \gamma \rangle \to \nu$ добавляется в НКА как переход.