VERMES MIKLÓS Fizikaverseny

II. forduló 2020. február 28. XI. osztály

JAVÍTÓKULCS

1. feladat

\mathbf{A}	
 a.) a rugóra akasztott testre ható erők helyes ábrázolása egyenes vona 	lú egyenletes és görbe vonalú
mozgás (kanyar) esetén	0,5 p
$m = G_1/g$	
$G_2^2 = G_1^2 + F_{cf}^2$, $G_2^2 = G_1^2 + (m \cdot v^2/R)^2$	0,75 p
$R = (G_1 \cdot v^2/g) \cdot (G_2^2 - G_1^2)^{-1/2}, v = 15 \text{ m/s}$	0,25 p
R= 13 m	0,25 p
b.) $\cos\alpha = G_1/G_2$	0,50 p
$\alpha=60^{\circ}$	0,25 p
c .) $\Delta l_1 = G_1/k$, $\Delta l_2 = G_2/k$, $\Delta l = \Delta l_2 - \Delta l_1 = G_2/k - G_1/k$	0,50 p
$\Delta l=4$ cm	0,25 p
d.) $-T=2\pi \cdot (m/k)^{1/2}=2\pi \cdot (G_1/(g \cdot k))^{1/2}$	0,75p
T=0,397 s	
$A=\Delta l$, $v_{max}=\omega \cdot A=2\pi \cdot \Delta l/T=\Delta l \cdot (k \cdot g/G_1)^{1/2}$	0,75 p
$v_{\text{max}}=0.63 \text{m/s}$	0,25 p
В	
Az ingára ható erők helyes ábrázolása a felvonó egyenletesen gyorsul	ó, egyenletes és egyenletesen
lassuló mozgása esetén	1 p
az össz rezgésszám: n=n1+n2+n3	0.25 n

$n=t_1/T_1+t_2/T_2+t_3/T_3, T_1=2\pi \cdot (l_0/(g+a_1))^{1/2}, T_2=2\pi \cdot (l_0/g)^{1/2}, T_3=2\pi \cdot (l_0/(g-a_3))^{1/2}$	1 p
T_1 =0,846 s, T_2 =0,888 s, T_3 =0,936 s	0,25 p
$v_1 = a_1 \cdot t_1 = g \cdot t_1 / 10$, $v_1 = 8 \text{ m/s}$, $h_1 = a_1 \cdot t_1^2 / 2 = g \cdot t_1^2 / 20$, $h_1 = 32 \text{ m}$	0,75 p
$h_3=v_1\cdot t_3-a_3\cdot t_3^2/2$, $v_3=v_1-a_3\cdot t_3$, $t_3=v_1/a_3$, $t_3=8$ s, $h_3=32$ m	0,75 p
$h=h_1+h_2+h_3$, $h_2=50\cdot 4-64=136$ m, $t_2=h_2/v_1$, $t_2=17$ s	0,75 p
n=37,13 rezgés	0,25 p

2. feladat

a) Ha egy adott pillanatban a cső egyik ágában a folyadék szintje az egyensúlyi állapothoz viszonyítva \mathbf{y} értékkel megváltozik, akkor a cső két ága között $\Delta p = \rho \cdot \mathbf{g} \cdot 2\mathbf{y}$ nyomáskülönbség keletkezik

a folyadékoszlopra ható erő: F= $\Delta p \cdot S = S \cdot \rho \cdot g \cdot 2y = k \cdot y$, ahol k= $S \cdot \rho \cdot g \cdot 2 =$ állandó	2 p
F~y→a folyadékoszlop rezgései harmonikus rezgések	0,50 p
b). F=m·a és F= $2 \cdot S \cdot \rho \cdot g \cdot y$, a= $2 \cdot S \cdot \rho \cdot g \cdot y/m$	1,25 p
$V=l\cdot S$, $\rho=m/V$, $m=\rho\cdot l\cdot S$, $a=2\cdot g\cdot l/y$	1 p
$a=\omega^2 \cdot y, \ \omega=2 \cdot \pi/T, \ T=2 \cdot \pi(1/2 \cdot g)^{1/2}, \ T\sim 1 \ s$	
	1,50 p
c). – a kezdeti állapotban $E_p=m\cdot g\cdot A, E_p=\rho\cdot g\cdot S\cdot A^2$	1 p
$E_{c,max}=m\cdot v^2_{max}/2=m\cdot (\omega\cdot A)^2/2=\rho\cdot g\cdot S\cdot A^2,\ m\cdot \omega^2=k$	1,50 p
$E_{c,max}=1,28 \text{ mJ}.$	0,25 p

3. feladat

A

a. – a két csőre felírható:

$$l_1 = k \cdot \lambda_1 / 2$$
 $l_2 = (2k-1) \cdot \lambda_2 / 4$

$$v_1 = c/\lambda_1 = c \cdot k/(2l_1)$$
 $v_2 = c/\lambda_2 = c \cdot (2k-1)/(4l_2)$ 1 **p**

$$v_{1,2}=c\cdot 2/(2l_1)$$
 $v_{2,3}=c\cdot 5(4l_2)$ $l_2=5l_1/4$ $l_2=3,5$ m

b.– az alaphangok frekvenciája:

$$v_{1,1}=c\cdot/(2l_1)$$
 $v_{1,1}=121,43$ Hz $v_{2,1}=c/(4l_2)=24,28$ Hz **1 p**

c.
$$c \cdot k_1/(2l_1) = c \cdot (2k_2-1)/(4l_2)$$
 $k_1 = k_2-0.5$ **0.50 p**

0,50 p

Mivel k₁, k₂ egész számok, nem lehetséges ilyen egybeesés.

В

Amíg a test (l-x) hosszúságú súrlódásmentes felületen csúszik rá az $F_f = -\frac{\mu \cdot m \cdot g}{l}x$ erő hat, amely

bevezetve a
$$k = \frac{\mu \cdot m \cdot g}{l}$$
 állandót $F_1 = -kx$ alakra hozható, \Rightarrow **1p**

a mozgás ezen szakasza harmonikusnak tekinthető
$$\Rightarrow \omega = \sqrt{\frac{\mu \cdot g}{l}}$$
 0,5p

A távolsággal lineárisan változó erő munkája
$$L = -F_k \cdot x$$
, ahol $F_k = \frac{\mu \cdot m \cdot g}{2l} x$ **0,5p**

A mozgási energia változásának tétele értelmében $\frac{mv^2}{2} - \frac{mv_0^2}{2} = -\frac{\mu \cdot m \cdot g}{2l} x^2$ \Rightarrow

$$v^2 = v_0^2 - \frac{\mu \cdot g}{l} x^2 \implies \frac{\mu \cdot g}{l} x^2 = v_0^2 - v_0^2 \cos^2(\omega \cdot t) = v_0^2 \sin^2(\omega \cdot t)$$
 0,5p

 t_1 idő elmúltával $x = l \implies \frac{\mu \cdot g \cdot l}{v_0^2} = \sin^2(\omega \cdot t_1) \implies$

$$t_1 = \frac{1}{\omega} \arcsin \frac{\sqrt{\mu \cdot g \cdot l}}{v_0} = \sqrt{\frac{l}{\mu \cdot g}} \arcsin \frac{\sqrt{\mu \cdot g \cdot l}}{v_0}$$

Ekkor a test sebessége $v = \sqrt{v_0^2 - \mu \cdot g \cdot l}$ A továbbiakban a testre az $F_2 = \mu \cdot m \cdot g$

erő hat
$$\Rightarrow a_2 = \mu \cdot g \Rightarrow t_2 = \frac{v}{a_2} = \frac{\sqrt{v_0^2 - \mu \cdot g \cdot l}}{\mu \cdot g}$$

Tehát a teljes mozgásidő:
$$t = t_1 + t_2 = \sqrt{\frac{l}{\mu \cdot g}} \arcsin \frac{\sqrt{\mu \cdot g \cdot l}}{v_0} + \frac{\sqrt{v_0^2 - \mu \cdot g \cdot l}}{\mu \cdot g}$$
 0,5p