Урок 1. Топологічні структури. Відкриті і замкнені множини. Підпростори

Задача 1.1. Нехай $X=\{a,b\}$. Доведіть, що система множин $\tau=\{\varnothing,X,\{b\}\}$ утворює топологічну структуру в множині X і назвіть замкнені множини в топологічному просторі $X=\{a,b\}$.

Розв'язок. Перевіримо виконання аксіом топологічної структури.

- 1) \emptyset , $X \in \tau$.
- 2) Доведемо, що довільне об'єднання елементів τ належить τ . Розглянемо лише довільні об'єднання різних множин системи τ , оскільки варіанти, коли об'єднання складається з однієї й тієї ж множини є тривіальним випадком. Довільні об'єднання різних множин із τ можна класифікувати наступним чином.
 - 2.1. Якщо в об'єднання входить \varnothing , її можна відкинути і розглядати лише решту, оскільки $\forall A \ \varnothing \cup A = A$.
 - 2.2. Решту об'єднань можна розділити на об'єднання, що містять X і такі, що не містять X .
 - 2.2.1. Об'єднання, що містять X, збігаються з X і тому належать τ .
 - 2.2.2. Об'єднання, що не містять X, збігаються з $\{b\}$ і тому належать системі τ .
- 3) Доведемо, що скінченні перетини множин із au належать au. Розділимо всі ці перетини на ті, що містять arnothing і ті, ще не містять цієї множини.
 - 3.1. Якщо перетин містить \varnothing , він дорівнює \varnothing , оскільки $\forall A \ \varnothing \cap A = \varnothing$. Отже, він належить τ .
 - 3.2. Перетини, що не містять \varnothing , можна розділити на такі, що містять $\{b\}$ і такі, що не містять цієї множини.
 - 3.2.1. Перетини, що не містять ані \varnothing , ані $\{b\}$, дорівнюють X і належать системі τ .
 - 3.2.2. Перетини не містять ані \varnothing , ані X, дорівнюють $\{b\}$ і належать τ .

Отже, ми пересвідчились, що всі три аксіоми топологічної структури виконуються, тому множина τ є топологічною структурою.

Для того щоб знайти замкнені множини в топологічному просторі $X=\{a,b\}$, треба розглянути доповнення до відкритих множин, тобто елементів топологічної структури: $X\setminus\varnothing=X,\ X\setminus X=\varnothing,\ X\setminus\{b\}=\{a\}$. Отже замкненими множинами $\varepsilon\varnothing$, X, $\{a\}$.

Топологічна структура $\tau = \{\varnothing, X, \{b\}\}$ називається зв'язною двокрапкою.

Задача 1.2. Нехай $X=\{a,b\}$. Доведіть, що система множин $\tau=\left\{\varnothing,X,\{a\},\{b\},\{a\}\cup\{b\}\right\}$ утворює топологічну структуру в множині X і назвіть замкнені множини в топологічному просторі $X=\{a,b\}$.

Розв'язок. Перевіримо виконання аксіом топологічної структури.

- 1) \emptyset , $X \in \tau$.
- 2) Те, що довільне об'єднання елементів τ належить τ є очевидним фактом.
- 3) Доведемо, що скінченні перетини множин із τ належать τ . Розділимо всі ці перетини на ті, що містять \varnothing і ті, ще не містять цієї множини.

- 3.1. Якщо перетин містить \varnothing , він дорівнює \varnothing , оскільки $\forall A \ \varnothing \cap A = \varnothing$. Отже, він належить τ .
- 3.2. Перетини, що не містять \varnothing , можна розділити на такі, що містять X і такі, що не містять цієї множини.
 - 3.2.1. Перетини, що не містять \varnothing , але містять X , дорівнюють $\{a\}$, $\{b\}$ або $\{a\} \cup \{b\}$.
 - 3.2.2. Перетини, що не містять ані \varnothing , ані X, являють собою перетини множин $\{a\}$, $\{b\}$ або $\{a\} \cup \{b\}$. Залежно від того, чи a=b вони дорівнюють $\{a\}$ або $\{b\}$.

Отже, ми пересвідчились, що всі три аксіоми топологічної структури виконуються, тому множина τ ϵ топологічною структурою.

Для того щоб знайти замкнені множини в топологічному просторі $X=\{a,b\}$, треба розглянути доповнення до відкритих множин, тобто елементів топологічної структури: $X\setminus\varnothing=X\in\tau, \qquad X\setminus X=\varnothing\in\tau, \qquad X\setminus\{a\}=\{b\}\in\tau, X\setminus\{b\}=\{a\}\in\tau, X\setminus\{a\}\cup\{b\})=X\setminus\{a\}\cap X\setminus\{b\}=\{a\}\cap\{b\}\in\tau$. Отже, замкненими множинами ε \varnothing , X, $\{a\}$, $\{b\}$, $\{a\}\cup\{b\}$. Топологічна структура $\tau=\left\{\varnothing,X,\{a\},\{b\},\{a\}\cup\{b\}\right\}$ називається простою двократкою. Як бачимо, вона складається із множин, які одночасно ε і відкритими, і замкненими.

Задача 1.3. (Топологія трикутника.) Розглянемо множину $X = \left\{a, b, c, \alpha, \beta, \gamma, \Delta\right\}$ і топологічну структуру $\tau = \left\{X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, \bigcup_{i \in \{1, \dots, 9\}} X_i\right\}, \quad \text{де} \quad X_1 = \varnothing, \quad X_2 = X,$ $X_3 = \left\{\alpha, b, c, \Delta\right\}, \quad X_4 = \left\{\beta, a, c, \Delta\right\}, \quad X_5 = \left\{\gamma, a, b, \Delta\right\}, \quad X_6 = \left\{a, \Delta\right\},$ $X_7 = \left\{b, \Delta\right\}, \quad X_8 = \left\{c, \Delta\right\}, \quad X_9 = \left\{\Delta\right\}.$ Назвіть одноточкові замкнені множини в цій топології.

Розв'язок. Ця топологія називається топологією трикутника, тому що елементи множини X можна інтерпретувати як сторони трикутника $a,\ b$ і c, кути між сторонами трикутника α , β і γ , а також сам трикутник Δ (див. рисунок).

Для того щоб розв'язати задачу, перевіримо всі одноточкові множини.

Чи можна стверджувати, що $\{a\}$ — замкнена множина? Для цього треба з'ясувати властивості її доповнення $X\setminus\{a\}=\left\{b,\,c,\,\alpha,\,\beta,\,\gamma,\,\Delta\right\}$. Якщо ми доведемо, що цю множину неможливо подати як об'єднання відкритих множин, то покажемо, що множина $\{a\}$ є не замкненою. Дійсно, для утворення множини $X\setminus\{a\}=\left\{b,\,c,\,\alpha,\,\beta,\,\gamma,\,\Delta\right\}$ нам потрібні множини, що містять її елементи, але водночає не містять точку a. Виявляється, що точки $b,\,c,\,\alpha$ и Δ можна знайти в множині $X_3=\left\{\alpha,\,b,\,c,\,\Delta\right\}$, але ми не можемо знайти точки β і γ , уникнувши точки a (див. множини X_4 і X_5). Аналогічно можна довести, що множини $\{b\}$, $\{c\}$ і $\{\Delta\}$ не є замкненими.

3 іншого боку,

$$X \setminus \{\alpha\} = \left\{a, b, c, \beta, \gamma, \Delta\right\} = X_4 \cup X_5,$$

$$X \setminus \{\beta\} = \left\{a, b, c, \alpha, \gamma, \Delta\right\} = X_3 \cup X_5,$$

$$X \setminus \{\gamma\} = \left\{a, b, c, \alpha, \beta, \Delta\right\} = X_3 \cup X_4.$$

Отже, замкненими одноточковими множинами в топології трикутника ϵ множини $\{\alpha\}$, $\{\beta\}$ і $\{\gamma\}$. \blacksquare

Задача 1.4. Нехай (X,τ) — топологічний простір, $M\subset X$. Доведіть, що $(M,\tau_{_M})$, де $\tau_{_M}=\left\{U_{_M}^{(\alpha)}=U_{_{\alpha}}\cap M,U_{_{\alpha}}\in\tau\right\}$, є топологічним простором.

Розв'язок. Перевіримо виконання аксіом топологічного простору.

1).
$$\varnothing=\varnothing\cap M\in\tau_{\scriptscriptstyle M}$$
 , $M=M\cap X\in\tau_{\scriptscriptstyle M}.$

$$\text{2). } \bigcup_{\alpha \in A} U_{\scriptscriptstyle M}^{(\alpha)} = \bigcup_{\alpha \in A} \bigl(U_{\scriptscriptstyle \alpha} \cap M \bigr) = M \cap \bigcup_{\alpha \in A} U_{\scriptscriptstyle \alpha} \in \tau_{\scriptscriptstyle M}.$$

3).
$$\bigcap_{\alpha=1}^n U_M^{(\alpha)} = \bigcap_{\alpha=1}^n (M \cap U_\alpha) = M \cap \bigcap_{\alpha=1}^n U_\alpha \in \tau_M.$$

Топологічна структура au_M називається топологією в M , індукованою топологічним простором (X,τ) , а топологічний простір (M,τ_M) називається підпростором простору (X,τ) . \blacksquare

Задача 1.5. Доведіть, що для того щоб довільна відкрита множина B в підпросторі (A, τ_A) була відкритою в просторі (X, τ_X) необхідно і достатньо, щоб множина A сама була відкритою в просторі (X, τ_X) .

Розв'язок. Запишемо формально, що треба довести.

Дано:
$$B \in (A, \tau_A), B \subseteq A \subseteq X, B \in \tau_A$$
.

Довести: $B \in \tau_X \Leftrightarrow A \in \tau_X$.

 $Heoбxiдність. \ B \in \tau_X \Rightarrow A \in \tau_X ?$

$$\forall B \subseteq A \subseteq X \ B \in \tau_X \Rightarrow A \stackrel{\textit{def}}{=} B \in \tau_X.$$

Інакше кажучи, якщо будь-яка підмножина множини A ϵ відкритою в топології τ_X , то відкритою в ній ϵ і сама множина A, яка, безперечно, ϵ підмножиною самої себе.

Достатність.
$$A \in \tau_X \Rightarrow B \in \tau_X$$
?
$$A \in \tau_X, B \in \tau_A \Rightarrow A \in \tau_X, \exists U \in \tau_X : B = A \cap U \Rightarrow B \in \tau_X.$$

Інакше кажучи, з огляду на те, що множина B ϵ елементом індукованої топології τ_A , існує множина U, відкрита в топології τ_X , така що $B=A\cap U$. З урахуванням того, що за умовою множина A ϵ відкритою в топології τ_X , множина B ϵ перетином двох множин, відкритих в топології τ_X , тобто за третьою аксіомою топологічної структури, ϵ відкритою в топології τ_X .

Задача 1.6. Доведіть, що підмножина M множини A ϵ замкненою в просторі (A, τ_A) тоді і лише тоді, коли вона ϵ перетином A і деякої замкненої в X множини.

Розв'язок. Запишемо, що треба довести.

Дано: $M \subseteq A \subseteq X$.

Довести.
$$A\setminus M\in \tau_{A}\Leftrightarrow \exists F\subset X:X\setminus F\in \tau_{X},M=F\cap A.$$

Необхідність.

$$\forall M \subseteq A \subseteq X, \, A \setminus M \in \tau_{\scriptscriptstyle{A}} \Rightarrow \exists F \subset X : X \setminus F \in \tau_{\scriptscriptstyle{X}}, \, M = F \cap A \, ?$$

$$\begin{array}{ccc} A \setminus M \in \tau_{\scriptscriptstyle A} & \Rightarrow & \exists N \in \tau_{\scriptscriptstyle A} : M = A \setminus N \Rightarrow \exists \, G \in \tau_{\scriptscriptstyle X} : M = A \setminus \big(A \cap G \big), \\ A \setminus G \subseteq X \setminus G \Rightarrow & \end{array}$$

$$\Rightarrow \exists G \in \tau_X : M = A \cap (X \setminus G).$$

$$\bigcirc -A \cap G$$

$$\mathfrak{I} - X \setminus G$$

Інакше кажучи, нехай множина M ϵ замкненою в просторі (A, τ_A) . Із цього випливає, що вона ϵ доповненням до деякої множини N, яка ϵ елементом топології τ_A і ма ϵ вигляд $A \cap G$, де G — деяка множина, відкрита в топології τ_X . Зважаючи на те, що $A \setminus (A \cap G) = A \setminus G$ і те що $A \subseteq X$, ма ϵ мо, що $A \setminus G \subseteq X \setminus G$ і $M = A \cap (X \setminus G)$. Оскільки множина G ϵ відкритою в топології τ_X , її доповнення ϵ

замкненою. Таким чином, ми подали довільну замкнену підмножину M множини $A\subseteq X$ як перетин множини A і множини, замкненої в топології τ_X .

Достатність.

$$\forall M \subseteq A \subseteq X \; \exists F \subset X : X \setminus F \in \tau_X, \, M = F \cap A \Rightarrow A \setminus M \in \tau_A ?$$

$$\exists F \subset X : X \setminus F \in \tau_X, \, M = F \cap A \Rightarrow \exists G \in \tau_X : M = A \cap (X \setminus G), \, A \subseteq X \Rightarrow$$

$$\Rightarrow A \setminus M = A \setminus (A \cap (X \setminus G)) = A \cap G \Rightarrow A \setminus M \in \tau_A.$$

Інакше кажучи, припустимо, що множину M можна подати як перетин множини A і множини F, замкненої в топології τ_X . Оскільки множина F ϵ замкненою в топології τ_X , її доповнення G ϵ відкритою в топології τ_X . Отже, множину M можна подати як перетин $M = A \cap (X \setminus G)$. Таким чином, доповнення до множини M в топології τ_A ϵ доповненням множини $A \cap (X \setminus G)$ до множини A. Зважаючи на те, що $A \subseteq X$, маємо, що $A \setminus M = A \cap G$, тобто належить індукованій топології τ_A , тобто множина M ϵ замкненою. \blacksquare

Задача 1.7. Доведіть рівність $\overline{A} = A \cup A'$?.

Розв'язок. Доведемо взаємні включення.

$$\overline{A} \subset A \cup A'$$
?

- 1) $x \in \overline{A}, x \in A \Rightarrow x \in A \cup A'$.
- 2) $x \in \overline{A}, x \not\in A \Rightarrow A \setminus \{x\} = A, x \in \overline{A \setminus \{x\}} \Rightarrow$
- $\Rightarrow \forall O(x) \in \tau \ O(x) \cap A \setminus \{x\} \neq \emptyset \Rightarrow x \in A' \Rightarrow x \in A \cup A'$

$$A \cup A' \subset \overline{A}$$
?

- 1) $x \in A \cup A', x \in A \Rightarrow x \in \overline{A}$.
- 2) $x \in A \cup A', x \notin A \Rightarrow x \in A' \Rightarrow x \in \overline{A \setminus \{x\}} \subset A \subset \overline{A}$.

Задача 1.8. Доведіть, що в топологічному просторі (X,τ) множина M ϵ замкненою тоді і лише тоді, коли вона містить всі свої граничні точки, тобто $M' \subset M : M = \bar{M} \Leftrightarrow M' \subset M.$

Poзв'язок. Heoбхідність. Припустимо, що множина M ϵ замкненою. Отже, за означенням, вона збігається із своїм замиканням: $M=\bar{M}$. Це означає, що вона містить всі свої точки дотику. Кожна гранична точка множини ϵ її точкою дотику. Таким чином, множина M містить всі свої граничні точки

Достатність. Для того щоб довести твердження згадаємо, що $\overline{M}=M\cup M'$. Отже, якщо $M'\subset M$, то $M=\overline{M}$.

Задача 1.9. Наведіть приклад топологічного простору (X, τ) і його множини $M \subseteq X$, в якому множина M' граничних точок множини M не ϵ замкненою.

Poзв'язок 1. Розглянемо числову пряму $\mathbb R$ із топологією $au = \{\varnothing, \mathbb R, (-\infty, a) : a \in \mathbb R\}$. Похідна множина множини $\{0\}$ є промінь $(0, \infty)$, який не є ані відкритою, а ні замкненою множиною у цій топології.

Розв'язок 2. (С.Кравченко). Розглянемо носій $X = \{a,b\}$ із тривіальною топологією $\tau = \{\varnothing,X\}$. Похідна множина множини $\{a\}$ є множина $\{b\}$, яка не є ані відкритою, а ні замкненою.

Розв'язок 3. (S.Lipschuts). Розглянемо носій $X = \{a,b,c,d,e\}$ із топологією $\tau = \{\varnothing, X, \{a\}, \{c,d\}, \{a,c,d\}, \{b,c,d,e\}\}$. Тоді $\{a,b,c\}' = \{b,d,e\}$, яка не є замкненою множиною, оскільки її доповнення $\{a,c\}$ не належить топології.

Задача 1.10. Доведіть, що похідна множина будь-якої скінченої множини в дискретній топології є порожньою.

Pозв'язок. Оскільки $(A \cup B) = A' \cup B'$ і скінченну множину можна подати як скінченне об'єднання одноточкових множин, похідна множина яких є порожньою, похідна множина скінченної множини є порожньою.

Задача 1.11. Доведіть, що похідна множина будь-якої множини в дискретній топології не зміниться, якщо до цієї множини додати або відняти скінчену кількість точок.

Розв'язок. Оскільки $(A \setminus \{x\})' = A' = (A \cup \{x\})'$, то похідна множина будь-якої множини не зміниться, якщо до цієї множини додати або відняти скінчену кількість точок.