Statistique & Apprentissage

Paul-Henry Cournède

Amphi 5

III - Test d'hypothèses statistiques

III.1 - Un exemple introductif

Problème : Une entreprise pharmaceutique veut tester l'effet d'un nouveau médicament pour une maladie. Or pour cette maladie : effet placébo connu donne un taux de guérison de $\theta_0 = 0.2$.

Modèle : Soit X v.a. définie par :

$$X = \begin{cases} 1 \text{ si un patient traité par le nouveau médicament guérit} \\ 0 \text{ sinon.} \end{cases}$$

On suppose donc que $X\sim \text{Bernoulli}(\theta),\ \theta$ est donc le taux de guérison pour les patients sous traitement, paramètre inconnu.

Tests d'hypothèses statistiques : On formule un test d'hypothèses :

$$H_0: \theta = \theta_0$$
, hypothèse nulle ou conservative

$$H_1: \theta > \theta_0$$
, hypothèse alternative

Expérimentation : On met en œuvre une expérimentation clinique pour sélectionner l'une ou l'autre des hypothèses.

- On traite N patients malades avec le médicament : correspond à un N-échantillon (X_1,\ldots,X_N) de variables aléatoires i.i.d. selon Bernoulli (θ)
- On obtient N_g guérisons, $N_g = \sum_{i=1}^N X_i$.

Critère de Décision : Intuitivement, on va rejeter H_0 si N_g est assez grand, $N_g > N_0$. On parle de région de rejet. Comment définir ce seuil N_0 ? Deux erreurs possibles :

- (i) erreur de type I : on rejette H_0 alors qu'elle est vraie
- (ii) erreur de type II : on accepte H_0 alors que H_1 est vraie

Critère de Décision : Intuitivement, on va rejeter H_0 si N_g est assez grand, $N_g > N_0$. On parle de région de rejet. Comment définir ce seuil N_0 ? Deux erreurs possibles :

(i) erreur de type I : on rejette H_0 alors qu'elle est vraie

(ii) erreur de type II : on accepte H_0 alors que H_1 est vraie \Longrightarrow On fixe en général un risque de première espèce α , qui est le risque limite qu'on est prêt à accepter pour l'erreur de type I.

 \implies On cherche donc N_0 tel que $\mathbb{P}(N_g > N_0) \leq \alpha$ quand H_0 est vraie.

Mise en œuvre du test : $\implies N_g$ est une variable aléatoire binomiale, $N_g \sim B(N, \theta)$. Sous H_0 , $N_g \sim B(N, \theta_0)$.

On rappelle la définition du quantile d'ordre $r:q_r=\inf\{x\in\mathbb{R},F(x)\geq r\}$. Si on prend $N_0=q_{1-\alpha}$, quantile d'ordre $1-\alpha$ pour la loi Binomiale $B(N,\theta_0)$, on a bien :

$$\mathbb{P}(N_g > q_{1-\alpha}) \leq \alpha$$

Application Numérique : N = 1000, $\alpha = 0.05 \implies q_{0.95}^{B(1000,0.2)} = N_0 = 221$.

- Exemple 1 : essai clinique donne $N_g=218\implies$ on ne peut pas rejeter H_0 : l'effet du nouveau médicament n'est pas concluant.
- Exemple 2 : essai clinique donne $N_g = 232 \Longrightarrow$ on peut rejeter H_0 et dire que l'effet du médicament est signficativement meilleur que l'effet placébo.

Remarque : Le niveau de risque 5% fixé de manière arbitraire. Jusqu'à où pouvait-on réduire le risque, et encore rejetter l'hypothèse conservative dans le cas 2?

- \Longrightarrow Le N_0 maximal pour lequel on rejette H_0 est donc $N_0=231$, soit un risque minimal associé (p-valeur) de $\mathbb{P}(N_g>231)\approx 0.0071$.
- \implies Niveau faible : on est alors très confiant quant à notre décision de rejeter H_0 .

III.2 - Cadre général des tests statistiques

Soit un modèle statistique $\mathcal M$ sur $(\mathcal X,\mathcal A)$, et soit $P^*\in\mathcal M$ loi de probabilité inconnue.

Définition : Une hypothèse statistique sur une loi $P^* \in \mathcal{M}$ est une affirmation du type $P^* \in \mathcal{M}_0$, où $\mathcal{M}_0 \subset \mathcal{M}$ est une sous-famille de lois de \mathcal{M} .

Exemples variés :

- \mathcal{M}_0 est un modèle paramétrique, $\mathcal{M}_0 = \left\{ \mathcal{N}(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma^2 > 0 \right\}$
- \mathcal{M}_0 est un singleton : $\mathcal{M}_0 = \{\mathcal{N}(0, 10)\}$

Objectif d'un test : Décider si une hypothèse statistique peut être considérée comme vraie à partir d'une expérience aléatoire associée à P^* .

 \Longrightarrow Nous considérons le cadre où on confronte deux hypothèses statistiques disjointes

Définition : Soient $\mathcal{M}_0 \subset \mathcal{M}$, $\mathcal{M}_1 \subset \mathcal{M}$, $\mathcal{M}_0 \cap \mathcal{M}_1 = \emptyset$. Un test d'hypothèses statistiques est une procédure qui confronte deux hypothèses statistiques :

 $H_0: P^* \in \mathcal{M}_0 \implies$ hypothèse nulle ou conservative

 $\mathit{H}_1: P^* \in \mathcal{M}_1 \implies \mathsf{hypoth\`ese}$ alternative

et définit une règle de décision permettant à partir de l'observation d'un N-échantillon i.i.d. pour P^* d'indiquer si H_0 peut être acceptée (supposée vraie) ou rejetée (supposée fausse) au profit de H_1 .

La règle de décision est définie par une région de rejet ou région critique $\mathcal{R} \subset \mathcal{X}^N$: soit l'échantillon d'observations $(x_1,\ldots,x_N) \in \mathcal{X}^N$, si $(x_1,\ldots,x_N) \notin \mathcal{R}$ alors on accepte H_0 , si $(x_1,\ldots,x_N) \in \mathcal{R}$ alors on rejette H_0

Formellement, un test sur $(\mathcal{X}^N, \mathcal{A}^{\otimes N})$, est ainsi défini par le triplet $(\mathcal{M}_0, \mathcal{M}_1, \mathcal{R})$ où $\mathcal{M}_0, \mathcal{M}_1$ sont deux familles de lois de probabilité sur $(\mathcal{X}, \mathcal{A})$ disjointes et $\mathcal{R} \subset \mathcal{X}^N$ la région de rejet.

Remarques :

• La région de rejet $\mathcal R$ conduisant au rejet de l'hypothèse H_0 est construite à partir d'une statistique de test $\mathcal T:\mathcal X^N \to \mathbb R$, dont on connait la loi, et la région de rejet sera de la forme :

$$\mathcal{R} = \left\{ (x_1, \dots, x_N) \in \mathcal{X}^N : T(x_1, \dots, x_N) \in \mathcal{W} \right\}, \text{ avec } \mathcal{W} \subset \mathbb{R} \ .$$

- ullet Dissymétrie des hypothèses H_0 et H_1 : analogie avec la présomption d'innocence.
- Deux types d'erreur : l'erreur de première espèce, qui consiste à rejeter H_0 alors qu'elle est vraie (condamner un innocent), et l'erreur de deuxième espèce qui consiste à accepter H_0 alors que H_1 est vraie (relâcher un coupable).
- ⇒ La région de rejet sera construite de façon à contrôler le risque lié à ces erreurs.

Définition : Soit $(\mathcal{M}_0, \mathcal{M}_1, \mathcal{R})$, un test d'hypothèse pour P^* sur $(\mathcal{X}^N, \mathcal{A}^{\otimes N})$.

On appelle risque de première espèce du test la probabilité de rejeter H_0 alors qu'elle est vraie, c'est à dire $\mathbb{P}\left((X_1,\ldots,X_N)\in\mathcal{R}\right)$ alors que $P^*\in\mathcal{M}_0$.

On appelle risque de deuxième espèce du test la probabilité d'accepter H_0 alors que H_1 est vraie, c'est à dire $\mathbb{P}((X_1,\ldots,X_N)\notin\mathcal{R})$ alors que $P^*\in\mathcal{M}_1$.

La puissance du test est alors (1 - le risque de deuxième espèce), c'est à dire la probabilité de rejeter H_0 alors que H_1 est vraie

Remarques:

- Plus la puissance du test est grande, plus celui-ci est capable de remettre en cause l'hypothèse conservative quand elle est fausse.
- ullet En général P^* inconnu, donc on ne pourra pas calculer des risques, mais des majorants.

Définition : Pour un test $(\mathcal{M}_0, \mathcal{M}_1, \mathcal{R})$ sur $(\mathcal{X}^N, \mathcal{A}^{\otimes N})$, on appelle taille du test

$$\alpha = \sup_{P \in \mathcal{M}_0} P(\mathcal{R}) .$$

Tout majorant de la taille du test sera dit un niveau du test.

⇒ La taille du test est donc un majorant du risque de première espèce.

2 stratégies :

- On fixe un risque de première espèce acceptable α (typiquement $\alpha=0.01,\,0.05,\,0.1$) et on construit un test de niveau $\alpha\Longrightarrow$ on construit \mathcal{R}_{α} telle que $\sup_{P\in\mathcal{M}_0}P\left(\mathcal{R}_{\alpha}\right)\leq\alpha$
- Pour un échantillon, on regarde quel était le risque d'obtenir une valeur aussi extrême que celle obtenue, c'est à dire la plus petite taille d'un test qui conduirait à rejeter $H_0 \implies p$ -valeur.

Définition :Soit $\{(\mathcal{M}_0,\mathcal{M}_1,\mathcal{R}_t),t\in\mathcal{T}\}$ une collection de tests sur $(\mathcal{X}^N,\mathcal{A}^{\otimes N})$ indicés par $t\in\mathcal{T}\subset\mathbb{R}$, et α_t la taille du test de région de rejet \mathcal{R}_t . La p-valeur α^* est la statistique définie sur \mathcal{X}^N par :

$$\alpha^*(X_1,\ldots,X_N) = \inf \{\alpha_t, t \in \mathcal{T} : (X_1,\ldots,X_N) \in \mathcal{R}_t\}$$

En pratique, on tire les conclusions décrites ci-dessous en fonction de la p-valeur :

<i>p</i> -valeur	évidence
$\alpha^*(x) < 0.01$	très forte évidence contre H_0
$0.01 \le \alpha^*(x) < 0.05$	forte évidence contre H_0
$0.05 \le \alpha^*(x) < 0.1$	faible évidence contre H_0
$0.1 \leq \alpha^*(x)$	aucune évidence contre H_0

Attention! La p-valeur n'est pas la probabilité que H_0 soit vraie!

Différents types de test :

- ullet ${\cal M}$ est un modèlé statistique paramétrique et test sur les paramètres de P^* \Longrightarrow test paramétrique
- \mathcal{M}_0 est une famille de loi de probabilités \implies test d'adéquation ou d'ajustement : par ex., est-ce-que la loi de l'échantillon est Gaussienne ?
- 2 sous-échantillons (x_1,\ldots,x_N) , (y_1,\ldots,y_M) sont-ils issus de la même population? \Longrightarrow test de comparaisons d'échantillons

III.3 - Tests paramétriques

Soit un modèle statistique paramétrique $\mathcal{M}_{\Theta} = \{P_{\theta}, \theta \in \Theta\}.$

Définition : Soit $P_{\theta} \in \mathcal{M}_{\Theta}$ la loi inconnue. Un test paramétrique est un test de la forme :

$$\left\{
\begin{array}{l}
H_0: \theta \in \Theta_0 \\
H_1: \theta \in \Theta_1
\end{array}
\right.$$

où Θ_0 et Θ_1 sont deux sous-ensembles disjoints de $\Theta.$

Terminologie:

Le test paramétrique d'hypothèses simples prend Θ_0 et Θ_1 comme singletons :

$$H_0: \theta = \theta_0 \text{ vs } H_1: \theta = \theta_1$$

Tout autre test paramétrique est dit composite (ou d'hypothèses composites).

$$\begin{array}{lll} \textit{H}_0: \theta \in \Theta_0 & \text{vs} & \textit{H}_1: \theta \in \Theta_1 = \Theta_0^c \\ \textit{H}_0: \theta = \theta_0 & \text{vs} & \textit{H}_1: \theta \neq \theta_0 & \Longrightarrow \text{test bilatère} \\ \textit{H}_0: \theta = \theta_0 & \text{vs} & \textit{H}_1: \theta > \theta_0 & \Longrightarrow \text{test unilatère} \end{array}$$

III.3.a - Construction de la zone de rejet

Méthode directe :

Soit le test d'hypothèses : $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta_1$.

Soit α , un niveau de risque.

S'il existe une statistique T, telle que la loi de $T(X_1,\ldots,X_N)$ soit connue quand (X_1,\ldots,X_N) échantillon i.i.d. pour P_θ .

 \Longrightarrow Alors on peut déterminer \mathcal{W}_{α} tel que :

$$\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta} \left(T(X_1, \dots, T_N) \in \mathcal{W}_{\alpha} \right) \leq \alpha$$

et la région de rejet est donnée par :

$$\mathcal{R}_{\alpha} = \left\{ (x_1, \dots, x_N) \in \mathcal{X}^N : T(x_1, \dots, x_N) \in \mathcal{W}_{\alpha} \right\}$$

Exemple:

Pour la population française, le taux de glycémie à jeun noté suit une loi Normale de moyenne $\mu_0=4,8$ mmol/l et d'écart type $\sigma_0=0,4$ mmol/l.

 \Longrightarrow On veut tester si ce taux est différent dans une sous-population identifée : par exemple les adolescents de 14 à 16 ans, les habitants d'une région particulière, les sportifs, les fumeurs...

Modélisation : Soit X correspondant à la mesure du taux de glycémie à jeun pour un individu dans la sous-population d'intérêt. On suppose donc $X \sim \mathcal{N}(\mu, \sigma^2)$. Comme la population est plus homogène, on ne peut pas supposer que $\sigma = \sigma_0 \implies \sigma$ inconnu.

Hypothèses : H_0 : $\mu = \mu_0$ vs H_1 : $\mu \neq \mu_0$

Expérimentation : On réalise N = 50 mesures sur des individus.

Statistique de test pour construire la région de rejet?

Exemple : On veut tester si le taux de glycémie est différent dans une sous-population identifée, et dans cette sous-population $X \sim \mathcal{N}(\mu, \sigma^2)$, σ inconnu.

 $\mbox{Hypoth\`eses}: \mbox{$H_0: \mu=\theta_0$} \quad \mbox{vs} \quad \mbox{$H_1: \theta \neq \theta_0$}$

Expérimentation : On réalise N = 50 mesures sur des individus « indépendants ».

Statistique de test :

Si
$$X \sim \mathcal{N}(\mu, \sigma^2) \Longrightarrow \frac{\sqrt{N}(\overline{X} - \mu)}{\sigma} \sim \mathcal{N}(0, 1)$$
 et $\frac{NS^2}{\sigma^2} \sim \chi^2(N - 1)$, \overline{X} et S^2 indépendantes.

$$\Longrightarrow \frac{\sqrt{N-1}(\overline{X}-\mu)}{c} \sim \mathsf{Student}(N-1).$$

$$\implies$$
 sous H_0 , $T(X_1,\ldots,X_N) = \frac{\sqrt{N-1}(\overline{X}-\mu_0)}{S} \sim \text{Student}(N-1)$.

Région de rejet pour un niveau de risque fixé, $\alpha = 0.05$:

$$\mathbb{P}_{\mu_0}\left(-q_{1-\alpha/2}^{\mathit{Student}(N-1)} \leq \mathit{T}(X_1,\ldots,X_N) \leq q_{1-\alpha/2}^{\mathit{Student}(N-1)}\right) = 1-\alpha, \text{ et donc}:$$

$$\mathcal{R}_{\alpha} = \left\{ \left(x_1, \dots, x_N \right) : \frac{\sqrt{N-1} \left(\overline{x} - \mu_0 \right)}{s} < -q_{1-\alpha/2}^{Student(N-1)} \text{ ou } \frac{\sqrt{N-1} \left(\overline{x} - \mu_0 \right)}{s} > q_{1-\alpha/2}^{Student(N-1)} \right\}$$

Région symétrique car test bilatère!

Application numérique : $q_{0.975}^{Student(49)} = 2.01$; sur notre échantillon : $\overline{X} = 4.6$ mmol/l, s = 0.3

- mmol/l, d'où $T(x_1,...,x_N) = -4.67$.
- \implies On rejette H_0 , la sous-population est significativement différente au niveau de risque 0.05.
- \implies Calcul de la *p*-valeur : la borne inférieure du risque tel qu'on rejette H_0 est donc obtenu pour : $-q_{1-\alpha/2}^{Student(N-1)} = -4.67$, soit $1-\alpha/2 = F(4.67)$, $\alpha = 2(1-F(4.67)) = 0.000024$

 \implies Très forte évidence contre H_0

Remarque : si seulement 10 mesures, $T(X_1, \dots, X_10) = -2.0$ et $-q_{1-\alpha/2}^{Student(9)} \approx -2.26$ \implies ne permet pas de rejeter H_0 !

Méthode asymptotique : Test de Wald

Soit $X \sim P_{\theta}$, avec $\theta \in \mathbb{R}$, et le test sur un échantillon i.i.d. (X_1, \dots, X_N) des hypothèses :

$$H_0: \theta = \theta_0$$
 contre $H_1: \theta \neq \theta_0$

On suppose que $\hat{\theta}_N=\hat{\theta}(X_1,\ldots,X_N)$ est un estimateur asymptotiquement normal de θ et $\tau^2(\theta)$ la variance asymptotique associée. Alors

$$rac{\sqrt{N}(\hat{ heta}_N- heta_0)}{ au(heta_0)}\stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0,1)$$

 $\Rightarrow \frac{\sqrt{N(\theta_N - \theta_0)}}{\tau(\theta_0)}$ est dite statistique de Wald.

Soit α un niveau de risque donné : en notant q_r le quantile d'ordre r de la Gaussienne normalisée, $\forall \gamma \in [0;\alpha]$:

$$\mathcal{R}_{\alpha,\gamma}\!=\!\left\{(x_1,\ldots,x_N):\hat{\theta}(x_1,\ldots,x_N)<\theta_0+\frac{q_\gamma\tau(\theta_0)}{\sqrt{N}}\text{ ou }\hat{\theta}(x_1,\ldots,x_N)>\theta_0+\frac{q_{1-\alpha+\gamma}\tau(\theta_0)}{\sqrt{N}}\right\}$$

définit une région de rejet de taille asymptotique α .

En effet :

$$\begin{split} \mathbb{P}_{\theta_0} \Big((X_1, \dots, X_N) \in \mathcal{R}_{\alpha, \gamma} \Big) &= \mathbb{P}_{\theta_0} \Big(\frac{\sqrt{N} (\hat{\theta}_N - \theta_0)}{\tau(\theta_0)} < q_\gamma \Big) + \mathbb{P}_{\theta_0} \Big(\frac{\sqrt{N} (\hat{\theta}_N - \theta_0)}{\tau(\theta_0)} > q_{1-\alpha+\gamma} \Big) \\ & \underset{N \to +\infty}{\longrightarrow} F^{\mathcal{N}(0, 1)} (q_\gamma) + 1 - F^{\mathcal{N}(0, 1)} (q_{\gamma+1-\alpha}) \\ &= \gamma + 1 - \gamma - 1 + \alpha = \alpha \end{split}$$

 \implies En pratique $\gamma=0$ ou $\gamma=\alpha$ pour tests unilatères, $\gamma=\alpha/2$ pour tests unilatères.

Remarque : De façon générale, on peut construire des tests asymptotiques, c'est à dire des tests dont les régions de rejet vérifient les niveaux de risque asymptotiquement.

III.3.b - Puissance d'un test et Comparaison de tests

Définition : Soit un test paramétrique $(\Theta_0,\Theta_1,\mathcal{R})$ sur $(\mathcal{X}^N,\mathcal{A}^{\otimes N})$. On définit π la fonction puissance du test, $\forall \theta \in \Theta_0 \cup \Theta_1$:

$$\pi(\theta) = \mathbb{P}_{\theta}\Big((X_1,\ldots,X_N) \in \mathcal{R}\Big),$$

Remarque : La taille du test α est alors donnée par : $\alpha = \sup_{\theta \in \Theta_0} \pi(\theta)$

Pour un test d'hypothèses simples, $\Theta_0 = \{\theta_0\}$ et $\Theta_1 = \{\theta_1\}$, on obtient :

- (i) $\alpha = \pi(\theta_0)$ est la taille du test et le risque de première espèce,
- (ii) $\beta = 1 \pi(\theta_1)$ est le risque de deuxième espèce.
- (iii) $\pi(\theta_1)$ est la puissance du test.

Définition : Soient $\mathcal{T}=(\Theta_0,\Theta_1,\mathcal{R})$ et $\mathcal{T}'=(\Theta_0,\Theta_1,\mathcal{R}')$ deux tests paramétriques et de fonctions puissances respectives π et π' .

Si $\Theta_1 = \{\theta_1\}$: \mathcal{T} est plus puissant que \mathcal{T}' si $\pi(\theta_1) > \pi'(\theta_1)$

Si Θ_1 est quelconque : \mathcal{T} est uniformément plus puissant que \mathcal{T}' si $\pi(\theta) > \pi'(\theta)$, $\forall \theta \in \Theta_1$.

Exemple : Même exemple : taux de glycémie dans une sous-population, sauf qu'on suppose cette fois $\sigma=\sigma_0$ connu : $X\sim\mathcal{N}(\mu,\sigma_0^2)$.

 $\mbox{Hypoth\`eses}: \mbox{$H_0: \mu=\mu_0$} \quad \mbox{vs} \quad \mbox{$H_1: \mu\neq\mu_0$}$

Expérimentation : On réalise N = 50 mesures sur des individus « indépendants ».

 $\begin{aligned} \text{Statistique de test} : \text{Sous } H_0 & \frac{\sqrt{N}(\overline{X} - \mu_0)}{\sigma_0} \sim \mathcal{N}(0, 1) \text{ et} \\ \mathcal{R}_\alpha = \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \text{ ou } \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} > q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \text{ ou } \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} > q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \text{ ou } \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} > q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \text{ ou } \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} > q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\} \\ & \stackrel{\wedge}{=} \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}\left(\overline{X} - \mu_0\right)}{\sigma_0} < -q_{$

Exemple : Même exemple : taux de glycémie dans une sous-population, sauf qu'on suppose cette fois $\sigma = \sigma_0$ connu : $X \sim \mathcal{N}(\mu, \sigma_0^2)$.

Hypothèses : H_0 : $\mu = \mu_0$ vs H_1 : $\mu \neq \mu_0$

Expérimentation : On réalise N = 50 mesures sur des individus « indépendants ».

Statistique de test : Sous
$$H_0$$
 $\frac{\sqrt{N}(\overline{X} - \mu_0)}{\sigma_0} \sim \mathcal{N}(0, 1)$ et
$$\mathcal{R}_{\alpha} = \left\{ (x_1, \dots, x_N) : \frac{\sqrt{N}(\overline{x} - \mu_0)}{\sigma_0} < -q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \text{ ou } \frac{\sqrt{N}(\overline{x} - \mu_0)}{\sigma_0} > q_{1-\alpha/2}^{\mathcal{N}(0, 1)} \right\}$$

Calcul de la Puissance : On considère désormais que $X \sim \mathcal{N}(\mu, \sigma_0^2)$, $\forall \mu$, et on calcule :

$$\mathbb{P}_{\mu}\Big((x_1,\ldots,x_N)\in\mathcal{R}_{\alpha}\Big).$$

On a:
$$\mathcal{R}_{\alpha} = \left\{ (x_1, \dots, x_N) : \overline{x} < \mu_0 - \frac{\sigma_0 \, q_{1-\alpha/2}^{\mathcal{N}(0,1)}}{\sqrt{N}} \text{ ou } \overline{x} > \mu_0 - \frac{\sigma_0 \, q_{1-\alpha/2}^{\mathcal{N}(0,1)}}{\sqrt{N}} \right\}$$

Soit : pour $\mu_0 = 4.8$, $\sigma_0 = 0.4$, N = 50, $q_{0.075}^{\mathcal{N}(0,1)} = 1.96$

$$\mathcal{R}_{\alpha} = \left\{ (x_1, \dots, x_N) : \overline{x} < a_{min} \approx 4.69 \text{ ou } \overline{x} > a_{max} \approx 4.91 \right\}$$

Si
$$X \sim \mathcal{N}(\mu, \sigma_0^2)$$
, $\overline{X} \sim \mathcal{N}(\mu, \frac{\sigma_0^2}{N})$, en notant $\Psi_{\mu} = F^{\mathcal{N}(\mu, \frac{\sigma_0^2}{N})}$:

Puissance du test $\pi(\mu) = \Psi_{\mu}(a_{min}) + 1 - \Psi_{\mu}(a_{max})$

III.3.c - Test du rapport de vraisemblance et méthode de Neyman-Pearson

On considère un test d'hypothèses simples sur le N-échantillon (X_1, \ldots, X_N) i.i.d. pour la loi inconnue de densité p_θ :

 $H_0: \theta = \theta_0$ contre $H_1: \theta = \theta_1$

Définition : On appelle test du rapport de vraisemblances de niveau α un test qui utilise la statistique de test :

$$\lambda(X_1,\ldots,X_N) = \frac{\mathcal{L}(\theta_1;X_1,\ldots,X_N)}{\mathcal{L}(\theta_0;X_1,\ldots,X_N)}$$

et définit la région critique par

$$\mathcal{R}_{\alpha}^* = \left\{ (x_1, \dots, x_N) \in \mathcal{X}^N \ , \ \lambda(x_1, \dots, x_N) > c_{\alpha} \right\} \ ,$$

où c_{α} est choisi tel que $\mathbb{P}_{\theta_0}\Big((X_1,\ldots,X_N)\in\mathcal{R}_{\alpha}^*\Big)\leq \alpha.$

Lemme de Neyman-Pearson Le test du rapport de vraisemblance de taille α est le test le plus puissant parmi les tests de niveau α .

Exemple : On reprend l'exemple de la mise sur marché d'un médicament. Le laboratoire annonce un taux de guérison de $\theta=\theta_1=0.25$. L'Agence Nationale de Sécurité du Médicament doit donner son autorisation de mise sur le marché. Elle conduit ses propres essais cliniques indépendants sur N individus, et met en place le test :

Hypothèses : H_0 : $\theta = \theta_0 = 0.2$ vs H_1 : $\theta = \theta_1 = 0.25$

Recherche de la statistique de test par Neyman-Pearson : On note $N_g = \sum_{i=1}^N X_i$.

On sait que $\mathcal{L}(\theta; (X_1, ..., X_N)) = \prod_{i=1}^N \theta^{X_i} (1-\theta)^{1-X_i} = \theta^{N_g} (1-\theta)^{N-N_g}$

Exemple : On reprend l'exemple de la mise sur marché d'un médicament. Le laboratoire annonce un taux de guérison de $\theta=\theta_1=0.25$. L'Agence Nationale de Sécurité du Médicament doit donner son autorisation de mise sur le marché. Elle conduit ses propres essais cliniques indépendants sur N individus, et met en place le test :

Hypothèses : H_0 : $\theta = \theta_0 = 0.2$ vs H_1 : $\theta = \theta_1 = 0.25$

Recherche de la statistique de test par Neyman-Pearson : On note $N_g = \sum_{i=1}^N X_i$.

On sait que $\mathcal{L}(\theta;(X_1,\ldots,X_N))=\prod_{i=1}^N \theta^{X_i}(1-\theta)^{1-X_i}=\theta^{N_g}(1-\theta)^{N-N_g}$

$$\Longrightarrow \lambda(X_1,\ldots,X_N) = \left(\frac{\theta_1}{\theta_0}\right)^{N_g} \left(\frac{1-\theta_1}{1-\theta_0}\right)^{N-N_g}$$

On sait que la zone de rejet est de la forme :

$$\mathcal{R}_{\alpha}^{*} = \left\{ (x_{1}, \dots, x_{N}) \in \mathcal{X}^{N} : \lambda(x_{1}, \dots, x_{N}) > c_{\alpha} \right\}$$

$$\lambda(x_{1}, \dots, x_{N}) > c_{\alpha} \Leftrightarrow \left(\frac{\theta_{1}}{\theta_{0}}\right)^{N_{g}} \left(\frac{1 - \theta_{1}}{1 - \theta_{0}}\right)^{N - N_{g}} > c_{\alpha}$$

$$\Leftrightarrow N_{g} \ln \left(\frac{\theta_{1}}{\theta_{0}}\right) + (N - N_{g}) \ln \left(\frac{1 - \theta_{1}}{1 - \theta_{0}}\right) > k_{1}$$

$$\Leftrightarrow N_{g} \ln \left(\frac{\theta_{1}}{\theta_{0}}\right) - N_{g} \ln \left(\frac{1 - \theta_{1}}{1 - \theta_{0}}\right) > k_{2}$$

$$\Leftrightarrow N_{g} \left[\ln \left(\frac{\theta_{1}}{\theta_{0}}\right) + \ln \left(\frac{1 - \theta_{0}}{1 - \theta_{1}}\right)\right] > k_{3}$$

$$\Leftrightarrow N_{g} > k_{4}, \text{ comme } \theta_{1} > \theta_{0} \text{ et } 1 - \theta_{0} > 1 - \theta_{1}$$

Et donc on prend la région de rejet de la forme :

$$\mathcal{R}_{\alpha}^{*} = \left\{ (x_{1}, \ldots, x_{N}) \in \mathcal{X}^{N} \ : \ N_{g_{k}} \geq k_{\alpha} \right\}_{\text{product}} \quad \text{if } k_{\alpha} \geq k_{\alpha}$$

III.3.d - Test du χ^2 de Pearson pour le modèle Multinomial

Définition : Soit $N \in \mathbb{N}^*$, $p \in]0; 1[^k$ tel que $\sum_{i=1}^k p_i = 1$. On appelle loi multinomiale de paramètres (N,p), la loi de probabilité sur $\{0;1;\ldots;N\}^k$ définie par la fonction de masse :

$$P(x_1,...,x_k) = \frac{N!}{\prod_{i=1}^k x_i!} \prod_{i=1}^k \rho_i^{x_i},$$

pour tout $(x_1, \ldots, x_k) \in \{0; 1; \ldots; N\}^k$ tel que $\sum_{i=1}^k x_i = N$. On note $X \sim M(N, p)$.

 \Longrightarrow On considère une urne avec des boules de k couleurs différentes en proportions $p=(p_1,\ldots,p_k)$. On effectue N tirages avec remise et on relève le nombre X_i de tirages de boules de chaque couleur dans le vecteur $X=(X_1,\ldots,X_k)$, on a $\Sigma_{i=1}^k X_i=N$.

Définition Soit $X \sim M(N, p), \ p \in]0; 1[^k, \sum_{i=1}^k p_i = 1.$ On appelle statistique de Pearson la statistique T définie par

$$T(X) = \sum_{i=1}^{\kappa} \frac{(X_i - Np_i)^2}{Np_i} .$$

 \longrightarrow T est une mesure relative de l'écart entre entre les effectifs réalisés et théoriques.

Proposition : Soit $X \sim M(N,p)$, $p \in]0; 1[^k, \sum_{i=1}^k p_i = 1 \text{ et } T(X) \text{ la statistique de Pearson.}$ Alors, la loi limite de T(X) est une loi du chi-deux à k-1 degrés de liberté :

$$T(X) = \sum_{i=1}^{\kappa} \frac{(X_i - Np_i)^2}{Np_i} \xrightarrow{\mathcal{L}} \chi^2(k-1)$$

Corollaire : Test de Pearson pour le modèle multinomial Soit $X \sim M(N, p)$, N connu, p inconnu.

Soit p_0 donné, $p_0 \in]0;1[^k,\sum_{i=1}^k p_{0i}=1]$. On considère le test :

$$H_0: p = p_0$$
 contre $H_1: p \neq p_0$

Alors, sous
$$H_0: T(X) = \sum_{i=1}^k \frac{(X_i - Np_{0i})^2}{Np_{0i}} \xrightarrow{\mathcal{L}} \chi^2(k-1)$$
.

Pour un niveau lpha donnée, on en déduit la région asymptotique de rejet :

$$\mathcal{R}_{\alpha} = \left\{ x : T(x) > q_{1-\alpha}^{\chi^{2}(k-1)} \right\}$$

avec $q_{1-lpha}^{\chi^2(k-1)}$ le quantile d'ordre (1-lpha) pour $\chi^2(k-1)$.

III.4 - Tests d'ajustement ou Tests d'adéquation

Soit (X_1, \ldots, X_N) , un échantillon i.i.d de loi P^* inconnue : nous souhaitons vérifier si P^* appartient à une famille paramétrique particulière $\mathcal{M}_{\Theta} = \{P_{\theta}, \theta \in \Theta\}$:

$$H_0: P^* \in \mathcal{M}_{\Theta}$$
 contre $H_1: P^* \notin \mathcal{M}_{\Theta}$

 \Longrightarrow phase préliminaire d'estimation : pour un échantillon donné (x_1,\ldots,x_N) , parmi tous les $P_{\theta}\in\mathcal{P}_{\Theta}$, on choisit celui qui maximise $P_{\theta}(x_1,\ldots,x_N)$, donc en prenant $P_{\hat{\theta}(x_1,\ldots,x_N)}$, avec $\hat{\theta}(x_1,\ldots,x_N)$ l'estimation du maximum de vraisemblance pour θ , et on se ramène au test :

$$H_0: P^* = P_{\theta_0}$$
 contre $H_1: P^* \neq P_{\theta_0}$

III.4.a -Test du χ^2

 \implies Le test d'ajustement du χ^2 adapte le test défini pour la loi multinomiale.

III.4.a -Test du χ^2

 \Longrightarrow Le test d'ajustement du χ^2 adapte le test défini pour la loi multinomiale.

Soit \mathcal{M}_{Θ} un modèle paramétrique, et $\theta_0 \in \Theta$, le test du χ^2 permet de tester :

$$H_0: P^* = P_{\theta_0}$$
 contre $H_1: P^* \neq P_{\theta_0}$

Définition : Soit (X_1, \ldots, X_N) un échantillon i.i.d. de loi P^* . Soit (I_1, \ldots, I_k) , une partition du support de P^* telle que $\forall j, 1 \leq j \leq k$, $P^*(I_j) > 0$. Soit $p_j = P^*(I_j)$ et $p = (p_1, \ldots, p_k)$. Soit $Y = (Y_1, \ldots, Y_k)$, la statistique à valeurs dans $\{0, 1, \ldots, N\}^k$ qui compte le nombre de X_i

dans tous les
$$I_j$$
, $1 \leq j \leq k$: $Y_j(X_1, \ldots, X_N) = \sum_{i=1}^N \mathbb{I}_{I_j}(X_i)$.

Alors $Y \sim M(N, p)$ et la statistique de Pearson généralisée est donnée par :

$$\tilde{T}(X_1,\ldots,X_N):=T(Y(X_1,\ldots,X_N))=\sum_{i=1}^{n}\frac{(Y_i-Np_i)^2}{Np_i}$$

Test du χ^2 : Sous l'hypothèse H_0 , $Y \sim M(N, p_0)$ avec $p_{0j} = P_{\theta_0}(X_1 \in I_j)$, $\forall 1 \leq j \leq k$. Et donc,

$$\mathcal{T}(Y(X_1,\ldots,X_N)) = \sum^k \frac{(Y_i - Np_{0i})^2}{Np_{0i}} \stackrel{\mathcal{L}}{\longrightarrow} \chi^2(k-1) \; .$$

Pour un niveau de test donné α , on forme la région de rejet asymptotique :

$$\mathcal{R}_{\alpha} = \left\{ (x_1,\ldots,x_N) : T(Y(x_1,\ldots,x_N)) > q_{1-\alpha}^{\chi^2(k-1)}
ight\} ,$$

avec $q_{1-\alpha}^{\chi^2(k-1)}$ le quantile d'ordre $(1-\alpha)$ du $\chi^2(k-1)$.

Test du χ^2 : Sous l'hypothèse H_0 , $Y \sim M(N, p_0)$ avec $p_{0j} = P_{\theta_0}(X_1 \in I_j)$, $\forall 1 \leq j \leq k$. Et donc,

$$T(Y(X_1,\ldots,X_N)) = \sum_{i=1}^k \frac{(Y_i - Np_{0i})^2}{Np_{0i}} \stackrel{\mathcal{L}}{\longrightarrow} \chi^2(k-1) .$$

Pour un niveau de test donné lpha, on forme la région de rejet asymptotique :

$$\mathcal{R}_{\alpha} = \left\{ (x_1, \dots, x_N) : \mathcal{T}(Y(x_1, \dots, x_N)) > q_{1-\alpha}^{\chi^2(k-1)} \right\} ,$$

avec $q_{1-lpha}^{\chi^2(k-1)}$ le quantile d'ordre (1-lpha) du $\chi^2(k-1)$.

Remarques:

• Le test du χ^2 est souvent précédé d'une phase d'estimation de θ_0 . Si Θ est de dimension $q,\,q$ degrés de liberté sont ainsi perdus, et nous avons :

$$T(Y(X_1,\ldots,X_N)) = \sum_{i=1}^k \frac{(Y_i - Np_{0i})^2}{Np_{0i}} \stackrel{\mathcal{L}}{\longrightarrow} \chi^2(k-1-q) .$$

- On considère que l'approximation asymptotique est valide dés que $Np_{0i} \ge 5$ pour toutes les classes. Sinon on regroupe certaines classes.
- Autres tests d'ajustement : Kolmogorov-Smirnov et Cramer Von-Mises (sur les écarts entre fonction de répartition théorique et fonction de répartition empirique).