ZJU-UIUC Institute

ECE-210 ANALOG SIGNAL PROCESSING: MIDTERM

& ECE-211 ANALOG SIGNAL PROCESSING: FINAL EXAM

Instructor: Prof. Yang Xu & Prof. Songbin Gong

April 7th (Thursday), 2022

Time: 100 minutes (10:00AM - 11:40AM)

NAME:	Hong	Jia dang	Student ID:	32001	1097	0	
-							

INSTRUCTIONS

- 1. The first page of this paper should be filled clearly.
- 2. Calculator is permitted.
- Access to internet is not permitted in addition to asking questions in the Wechat group, downloading and submitting the paper.
- 4. Solutions should be written clearly either on paper or on Pad.
- Convert the finished paper to PDF version and submit it in the Blackboard. The submission deadline is 11:50am.

Question #	Full Marks	Your Score
1. KCL & KVL	15	
2. Thevenin Theorems & Max Power Transfer	15	
3. Op-amplifier	15	
4. Op-amplifier & 1st Order RC Circuit	20	
5. Impedance/Admittance & Phasors Diagrams	20	
6. Superposition in Phasors	15	
Total	100	

Question 1:

Determine the power of each current sources and voltage sources in the following circuit in *Figure 1*.

Question 2:

In the following circuit in Figure 2, R_L is an adjustable resistor. It is observed that for i = 2A, v = 6 V and $R_L = R$, $i_L = (1 A)$ while for i = 4 A, v = 4 V and $R_L = 2R$, $i_L = 9/8 A$.

- (a) Determine the value of resistance (R.)
- (b) Determine i_L when i = 3 A, v = 2 V and $R_L = 2R$.
- (c) Determine the value of resistances R_L in order to get maximum power in R_L when i = 3 A and v = 2 V.

$$\begin{array}{ll} 1 \text{ short:} \\ \sqrt{\frac{1}{4}} = \frac{V_{2} - V_{1}}{4} \\ \sqrt{\frac{1}{4}} + \frac{V_{2} - V_{1}}{4} = 3h \end{array} \Rightarrow \begin{cases} 2V_{1} - V_{2} = 2 \\ -V_{1} + 2V_{2} - V_{3} = 12 \\ V_{3} = 0 \end{cases} \Rightarrow \begin{cases} V_{1} = \frac{16}{3} V \\ V_{2} = \frac{26}{3} V \end{cases} \Rightarrow 7 \text{ short:} = \frac{V_{2} - V_{3}}{4} = \frac{26}{12} = \frac{13}{6} A \end{cases}$$

$$\begin{array}{ll} V_{0} pon^{2} \\ \sqrt{\frac{1}{4} - 1} = \frac{V_{2} - V_{1}}{4} \\ \frac{V_{2} - V_{1}}{4} + \frac{V_{2} - V_{1}}{4} = 3h \end{cases} \Rightarrow \begin{cases} 2V_{1} - V_{2} = 2 \\ -V_{1} + 2V_{2} - V_{3} = 12 \end{cases} \Rightarrow \begin{cases} V_{1} = \frac{44}{5} V \\ V_{2} = \frac{5}{3} V \\ V_{3} = \frac{5}{3} V \end{cases} \Rightarrow 1f R_{1} = 2R = 3 \Omega \\ \therefore T_{1} = \frac{10.9}{8 + 4} \end{cases}$$

$$(C) R_{1} = 4.8 \Omega$$

$$\Rightarrow V_{0} pon^{2} = 10.4 V \end{cases} \Rightarrow \begin{cases} 10.4 V (\frac{1}{2}) \\ 10.4 V(\frac{1}{2}) \end{cases} \Rightarrow \begin{cases} 10.4 V(\frac{1}{2}) \\ 10.4 V(\frac{1}{2}) \end{aligned} \Rightarrow \begin{cases} 10.4 V(\frac{1}{2}) \\ 10.4 V(\frac{1}{2}$$

Question 3:

Design an op-amp circuit that performs the following operation

$$\mathbf{v_0} = 2\mathbf{v_1} - 3\mathbf{v_2}$$

Notice:

- 1. Only one operational amplifier that you can use in this circuit.
- 2. All resistances must $\geq 1k\Omega$ and $\leq 100k\Omega$.

Question 4:

Write the 1st order ODE in the RC circuit, and determine $v_o(t)$ for t > 0 in Figure 4.

Let $v_{in} = 3u(t) V$, and assume that capacitor is initially uncharged. (u(t) is unit step function)

Question 5:

5.1 In Figure 5(a), determine the equivalent impedance of the network if the frequency f=60 Hz. Then, compute the current i(t) if the voltage source is $v(t) = 50\cos(\omega t + 30^{\circ})$.

5.2 In Figure 5(b), $i(t) = 10\cos(500t)$. Find the value of C such that v(t) and i(t) are in phase. Then sketch the phasor diagram for the network shown in Figure 5(b). (Hint: Here 'in phase' refers to $\theta_v = \theta_i$)

Question 6:

In Figure 6,

- 1) Use superposition to find V_0 in the network in *Figure 6*.
- 2) Express time-domain output voltage $V_0(t)$.

$$\frac{V_1}{2\overline{J}} + \frac{V_1 - V_0}{2\overline{J}} = \frac{24}{2}$$

$$\Rightarrow \frac{V_0}{2\overline{J}} = 12$$

$$\Rightarrow V_0 = 24\overline{J}$$

$$\Rightarrow V_0 = \frac{-24}{5} + 264\overline{J}$$

$$= |2|\overline{J} \cdot e^{\overline{J} \cdot 1/\overline{J}}$$

$$\Rightarrow V(t) = |2|\overline{J} \cdot \cos(wt + 1/\overline{J}) \cdot vad)$$

Formula Sheet

Table 1. Suggestions for particular solutions of $\frac{dy}{dt} + ay(t) = bf(t)$ with various source functions f(t).

	Source function $f(t)$	Particular solution of $\frac{dy}{dt} + ay(t) = bf(t)$	
1	constant D	constant K	
2	Dt	Kt + L for some K and L	
3	De^{pt}	Ke^{pt} if $p \neq -a$ Kte^{pt} if $p = -a$	
4	$\cos(\omega t)$ or $\sin(\omega t)$	$H\cos(\omega t + \theta)$, where H and θ depend on ω , a, and	