НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет систем управления и робототехники

Теория автоматического управления

Лабораторная работа №6

«Практика с моторчиком»

Выполнили студенты:

Боровик А.М.

Мысов М.С.

Петров И.А.

Синицин Е.Е.

Группа № R33372

Руководитель:

Перегудин А.А.

СОДЕРЖАНИЕ

Задание 1. Определение параметров двигателя с помощью МНК	3
Задание 2. Астатизмы и регуляторы	3
П-регулятор	3
ПИ-регулятор	10
Специальный регулятор	15
Задание 3. Частотные характеристики	19
Задание 4. Критерий Найквиста	20
Задание 5. Вынужденное движение	
Выводы	24

Задание 1. Определение параметров двигателя с помощью МНК

Ссылка на наш питоновский код

Используем математическую модель двигателя

$$T\ddot{\theta} + \dot{\theta} = Ku$$

где θ , рад — угол поворота двигателя, U, B — напряжение, поданное на двигатель.

Заряд батареи, полученный с брика EV3 = 7.5 B

Аппроксимированные значения параметров T и k двигателя постоянного тока:

$$Tm = 0.0642$$

$$k = 1.7993$$

Задание 2. Астатизмы и регуляторы

П-регулятор

Рисунок 1 – график слежения по углу поворота за постоянным сигналом $\mathbf{u} = 400$, $\mathbf{kp} = 0.04$

Рисунок 2 — график слежения по углу поворота за постоянным сигналом $\mathbf{u} = 400$, $\mathbf{kp} = 0.08$

Рисунок 3 — график слежения по углу поворота за постоянным сигналом $\mathbf{u} = 400, \, \mathbf{kp} = 0.12$

Рисунок 4 — график моделирования слежения по углу поворота за постоянным сигналом ${\bf u}={\bf 400}$

Рисунок 5 – график слежения по углу поворота за линейным сигналом 80t, kp = 0.04

Рисунок 6 – график слежения по углу поворота за линейным сигналом 80t, kp = 0.08

Рисунок 7 — график слежения по углу поворота за линейным сигналом 80t, kp = 0.12

Рисунок 8 – графики ошибок по углу поворота за линейным сигналом при разных кр

Рисунок 9 – график моделирования слежения по углу поворота за линейным сигналом **80t**

Рисунок 10 – графики ошибок при моделировании слежения по углу поворота за линейным сигналом при разных kp

Рисунок 11 – схема с П-регулятором

Аналитический расчет предполагаемой ошибки слежения за линейным сигналом

$$W(s) = W_{per}(s) \cdot W_{o6}(s) = \frac{kp \cdot k_avg}{Tm_avg \cdot s^2 + s}$$

Передаточная функция от G к Е:

$$W_{g \to e}(s) = \frac{1}{1 + W(s)} = \frac{\text{Tm_avg} \cdot s^2 + s}{\text{Tm_avg} \cdot s^2 + s + \text{kp} \cdot k_avg}$$

Образ Лапласа входного воздействия:

$$G(s) = \frac{80 \cdot \frac{\pi}{180}}{s^2} = \frac{1.4}{s^2}$$

Образ Лапласа установившейся ошибки:

$$E(s) = W_{g \to e}(s) \cdot G(s) = \frac{1.4}{s^2} \cdot \frac{\text{Tm_avg} \cdot s^2 + s}{\text{Tm_avg} \cdot s^2 + s + \text{kp} \cdot k_avg}$$

Так как полюса sE(s) имеют строго отрицательную вещественную часть при k>0, то можем использовать теорему о конечном значении установившейся ошибки.

Предельное значение установившейся ошибки:

$$\varepsilon = \lim_{s \to 0} s \, W_{g \to e}(s) \cdot G(s) = \lim_{s \to 0} s \cdot \frac{1.4}{s^2} \cdot \frac{\text{Tm_avg} \cdot s^2 + s}{\text{Tm_avg} \cdot s^2 + s + \text{kp} \cdot k_avg} =$$

$$= \lim_{s \to 0} \frac{1.4}{s} \cdot \frac{s \cdot (\text{Tm_avg} \cdot s + 1)}{\text{Tm_avg} \cdot s^2 + s + \text{kp} \cdot k_avg}, \text{ kp > 0}$$

$$\varepsilon = \frac{1.4}{\text{kp} \cdot k_avg} = 6.45$$

Реальная ошибка = 10

Увеличение коэффициента *kp* уменьшает значение теоретической ошибки.

ПИ-регулятор

Рисунок 12 – графики слежения за различными сигналами при $\mathbf{kp} = \mathbf{0.05}, \, \mathbf{ki} = \mathbf{0.2}$

Рисунок 13 – графики ошибок слежения за различными сигналами при $\mathbf{kp} = \mathbf{0.05}, \mathbf{ki} = \mathbf{0.2}$

Рисунок 14 – графики ошибок слежения за различными сигналами при $\mathbf{kp} = \mathbf{0.05}, \mathbf{ki} = \mathbf{0.2}$

Рисунок 15 – графики моделирования слежения за различными сигналами при $\mathbf{kp} = \mathbf{0.05}, \mathbf{ki} = \mathbf{0.2}$

Рисунок 16 – графики моделирования слежения за различными сигналами при $\mathbf{kp} = \mathbf{0.05}, \mathbf{ki} = \mathbf{0.2}$

Рисунок 17 — графики ошибок при моделировании слежения за различными сигналами при $\mathbf{kp} = \mathbf{0.05}, \, \mathbf{ki} = \mathbf{0.2}$

Рисунок 18 – графики ошибок при моделировании слежения за различными сигналами при **kp** = **0.05**, **ki** = **0.2**

Рисунок 19 – схема с ПИ-регулятором

Аналитический расчет предполагаемой ошибки

$$W(s) = W_{\text{per}}(s) \cdot W_{\text{o6}}(s) = \frac{\left(\text{kp} + \frac{\text{ki}}{s}\right) \cdot k_{\text{a}} \text{avg}}{\text{Tm}_{\text{a}} \text{vg} \cdot s^{2} + s}$$

Передаточная функция от G к Е:

$$W_{g \to e}(s) = \frac{1}{1 + W(s)} = \frac{\text{Tm_avg} \cdot s^2 + s}{\text{Tm_avg} \cdot s^2 + s + \left(\text{kp} + \frac{\text{ki}}{s}\right) \cdot k_\text{avg}}$$

Для линейного сигнала

$$\begin{split} \epsilon &= \lim_{s \to 0} s \, W_{g \to e}(s) \cdot G(s) = \lim_{s \to 0} s \, \cdot \frac{1,4}{s^2} \cdot \frac{Tm_avg \cdot s^2 + s}{Tm_avg \cdot s^2 + s + \left(kp + \frac{ki}{s}\right) \cdot k_avg} = \\ &= \lim_{s \to 0} \frac{80}{s} \cdot \frac{s \cdot \left(Tm_avg \cdot s + 1\right)}{Tm_avg \cdot s^2 + s + \left(kp + \frac{ki}{s}\right) \cdot k_avg} \\ &= \lim_{s \to 0} \frac{80 \cdot \left(Tm_avg \cdot s + 1\right)}{Tm_avg \cdot s^2 + s + \left(kp + \frac{ki}{s}\right) \cdot k_avg} \\ &= \lim_{s \to 0} \frac{80 \cdot \left(Tm_avg \cdot s + 1\right)}{Tm_avg \cdot s^2 + s + \left(kp + \frac{ki}{s}\right) \cdot k_avg} \\ &= 0 \end{split}$$

Реальная ошибка = 0

В данном случае ошибки сошлись.

Для квадратичного сигнала

Образ Лапласа входного воздействия:

$$G(s) = 0.7 \cdot \frac{2}{s^3}$$

Предельное значение установившейся ошибки:

$$\varepsilon = \lim_{s \to 0} s \, W_{g \to e}(s) \cdot G(s) = \lim_{s \to 0} s \cdot \frac{1,4}{s^3} \cdot \frac{\operatorname{Tm_avg} \cdot s^2 + s}{\operatorname{Tm_avg} \cdot s^2 + s + \left(kp + \frac{ki}{s}\right) \cdot k_avg} =$$

$$= \lim_{s \to 0} \frac{1,4}{s^2} \cdot \frac{s \cdot \left(\operatorname{Tm_avg} \cdot s + 1\right)}{\operatorname{Tm_avg} \cdot s^2 + s + \left(kp + \frac{ki}{s}\right) \cdot k_avg} =$$

$$= \lim_{s \to 0} \frac{1,4 \cdot \operatorname{Tm_avg} \cdot s^2 + s + \left(kp + \frac{ki}{s}\right) \cdot k_avg}{\operatorname{Tm_avg} \cdot s^3 + s^2 + \left(kp \cdot s + ki\right) \cdot k_avg}$$

$$\varepsilon = \frac{80}{ki \cdot k \ avg} = 3,87$$

Увеличение коэффициента ki уменьшает значение теоретической ошибки

Для кубического сигнала

Образ Лапласа входного воздействия:

$$G(s) = \frac{1,05}{s^4}$$

Предельное значение установившейся ошибки:

$$\begin{split} \epsilon &= \lim_{s \to 0} s \, W_{g \to e}(s) \cdot G(s) = \lim_{s \to 0} s \, \cdot \frac{1,05}{s^4} \cdot \frac{Tm_avg \cdot s^2 + s}{Tm_avg \cdot s^2 + s + \left(kp + \frac{ki}{s}\right) \cdot k_avg} = \\ &= \lim_{s \to 0} \frac{1,05}{s^2} \cdot \frac{Tm_avg \cdot s + 1}{Tm_avg \cdot s^2 + s + \left(kp + \frac{ki}{s}\right) \cdot k_avg} = \infty \end{split}$$

Реальная ошибка = ∞

В данном случае ошибки сошлись.

Специальный регулятор

Рисунок 20 – график модели и эксперимента со специальным регулятором

$$0.3 \cdot cos(2t \, + \frac{\pi}{2}) \, + \, 0.16 \cdot sin(2t \, + \, 2\pi)$$

Рисунок 21 – график модели и эксперимента со специальным регулятором

Рисунок 22 – схема со специальным регулятором и ограничением по напряжению

Рисунок 23 – график модели со специальным регулятором при задержке 0.01 с

Рисунок 24 – график модели со специальным регулятором при задержке 0.009 с

Рисунок 25 — графики модели и эксперимента со специальным регулятором при задержке $0.015\ {\rm c}$

Нам кажется, что добиться хотя бы приемлемого результата специального регулятора не удалось, потому что в этом случае огромную роль играет задержка (а вычисление напряжения на каждую итерацию спец. регулятора не мгновенное).

При этом мы не знаем, как именно связаны специальный регулятор и задержка, но у нас получилось подобрать критическую задержку при моделировании. T = 0.009 с.

К сожалению, в реальности задержка больше. Но зато вид графиков экспериментального и теоретического сошелся! (рисунок 16)

Задание 3. Частотные характеристики

Рисунок 26 – график АЧХ

Рисунок 27 – график ФЧХ

Небольшое расхождение теории и эксперимента мы обуславливаем тем, что всё же имеется погрешность в вычислении k_avg , присутствует неполнота математической модели двигателя. Также на это влияют и задержки по времени при вычислении напряжения, доходящего до моторчика.

Рисунок 28 – график критической задержки, при которой система устойчива

Рисунок 29 – график критической задержки, при которой система устойчива

Рисунок 30 – график критической задержки, при которой система неустойчива

Рисунок 31 – график критической задержки, при которой система неустойчива

Рисунок 32 – годограф Найквиста

Точка пересечения годографа Найквиста и единичной окружности (-0.993, -0.114) Частота в этой точке = 1.788

Критическая задержка =
$$\frac{\pi + atan2(-0.993, -0.114)}{1.788} = 0.81$$

Из этого эксперимента и вычисленной теоретически критической задержки, можно сделать вывод, что суммарная задержка подаваемого напряжения на моторчик составляет примерно 0.5 секунды.

Задание 5. Вынужденное движение

Рисунок 33 – моделирование для расчета теоретического выхода системы

Рисунок 34 – график траекторий угла поворота двигателя при входном воздействии sin(2t)

Рисунок 35 – график траекторий угла поворота двигателя при входном воздействии $\cos(4t) + 2 \cdot \sin(7t)$

В этом задании эксперимент практически совпадает с теорией, с небольшими различиями, что объясняется все той же неточностью коэффициента k_avg , неполнотой математической модели, задержками по времени, а также дискретностью системы, которая не позволяет нам делать доподлинно точные вычисления.

Выводы

В ходе выполнения данной лабораторной работы мы применили на практике наши изученные за весь семестр (и даже больше) знания по предмету. Использовали для систем с разными астатизмами разные регуляторы, построили частотные характеристики для двигателя постоянного тока, нашли критическую задержку, а также построили графики вынужденного движения при различных входных воздействиях. Однако не всегда эксперимент полностью сходился с теорией, но и Рим не в один день строился.