Московский физико-технический институт

Лабораторная работа по общей физике

№11.1 Определение ширины запреженной зоны полупроводника

выполнил студент Б04-852 группы ФЭФМ Яромир Водзяновский

Содержание

1	Цель работы	2
2	Теория	2
3	Экспериментальные установки 3.1 Исследование зависимости $\sigma(T)$ с помощью универсального цифрового вольтметра В7-34А 3.2 Исследование зависимости $\sigma(T)$ с помощью моста переменного тока	3 4
4	Ход работы 4.1 Исследование зависимости $\sigma(T)$ с помощью универсального цифрового вольтметра В7-34А 4.2 Исследование зависимости $\sigma(T)$ с помощью моста переменного тока	4 4 5
5	Вывод	5
6	Графики и таблицы с данными	5

1 Цель работы

- Исследовать температурную зависимость проводимости типичного полупроводника германия или кремния
- Определить ширину запрещенной зоны 2-мя методами: постоянный ток и переменный ток.

2 Теория

Величина электропроводности в полупроводниках определяется числом электронов в зоне проводимости и дырок в валентной зоне.

ЧИсло электронов в зоне проводимости равно произведению числа имеющихся уровней на вероятность их заполнения, определяется это функцие Ферми, в нашем случае мало отличается от больцмановского распределния:

$$f(E) = \frac{1}{e^{\frac{E-\mu}{k_b T}} + 1} \approx e^{-\frac{E-\mu}{k_b T}} \tag{1}$$

E - энергия уровня в зоне проводимости, μ - энергия Φ ерми, лежит вблизи середины запрещенной зоны.

Рис. 1. Схема энергетических зон, поясняющая явление собственной проводимости (a) и указывающая расположение донорных и акцепторных уровней (б)

Рис. 1

Вместо полного числа уровней в зоне подставим эффективное значение Q_n , вблизи дна зоны, то число жлектронов в зоне проводимости:

$$n_n = Q_n e^{-\frac{E_x - \mu}{k_b T}} \tag{2}$$

Вероятность появления дырки 1 - f(E), то число дырок:

$$n_p = Q_p \left[1 - \frac{1}{e^{\frac{E_v - \mu}{k_b T}} + 1} \right] = \cong Q_p e^{-\frac{E_v - \mu}{k_b T}}$$
(3)

Получим, что число электронов равно числу дырок:

$$n_n n_p = n^2 = Q_n Q_p e^{-\frac{E_v - \mu}{k_b T}} \tag{4}$$

Знаем, что $E_c - E_v = \Delta, \, Q_n Q_p = C^2$ Получим:

$$n = Ce^{-\frac{\Delta}{2k_BT}} \tag{5}$$

Электропроводность полупроводника? В поле большая часть элекронов в зоне проводимости начинает двигаться в сторону, противоположную полю. Среднаяя скорость направлена вдоль поля:

$$v_{\rm cp} = \mu_n \varepsilon \tag{6}$$

 μ_n - подвижность электронов, $v_{\rm cp}$ - средняя дрейфовая скорость. Найдем проводимость через ф-лу $j=nev_{\rm cp}$:

$$\sigma = j\varepsilon = |e|(n_n\mu_n + n_n\mu_n) \tag{7}$$

Тк $n_n = n_p$:

$$\sigma = |e|C(\mu_n + \mu_p)e^{-\frac{\Delta}{2k_bT}} = Ae^{-\frac{\Delta}{2k_bT}}$$
(8)

Все рассуждения верны, тк электропроводность полупроводника опредяляется переходами электронов из валентной зоны в зону проводимости - это вклад собственной провдимости полупроводника. При низких температурах вклад уже вносят примесная проводимость.

Примесная проводимость искажает температурный ход собственной электропроводности. Чтобы определить ширину запреженной зоны надо провести исследование в шировокм интервале температур, где электропроводность от 1/T имеет экспоненциальный характер.

3 Экспериментальные установки

3.1 Исследование зависимости $\sigma(T)$ с помощью универсального цифрового вольтметра B7-34A

Рис. 2. Схема установки по измерению зависимости $\sigma(T)$ с помощью вольтметра B7-34A. Размер медного образца:l=26,6 мм, d=0,07 мм, размеры образца полупроводника: a=5 мм, b=3 мм, c=30 мм

Рис. 2

На рис. 2 изображена схема установки. Мы будем исследовать 2 образца O_1 и O_2 . Погрешность при измерении сопротивлений не превышает:

$$\pm [0.015 \pm 0.02(R_k/R_x - 1)] \tag{9}$$

 R_k - включенный предел измерений, R_x - значение измеряемой величины в кОм.

Ток через подключенный образец не превышает 1 мА. Один из образцов изготовлен из кристаллического германия и имеет форму прямоугльного параллилепипед, другой - из тонкой медной проволоки длиной около двадцати метров.

$$\sigma = \frac{l}{RS} \tag{10}$$

Нагрев образцов регулируетяє реостатом Р. Один спай термопары термопары находится у оброзцов, другой в сосуде Дюара. Эдс термопары измеряетсмя вольтметром, постоянная термопары $41 \cdot 10^{-6}$ B/K.

Нагрев надо провдить равномерно, чтобы была одинаковая температура по всей длине. Первый способ - быстрый нагрев вечи при максимайльной подводимой мощности 5 мин, затем выдержка 10 мин. Второй способ - медленный нагрев при малой мощности и, не выключая его, проводить измерения температуры и сопротивления образцов.

3.2 Исследование зависимости $\sigma(T)$ с помощью моста переменного тока.

Рис. 3. Схема установки для измерения зависимости $\sigma(T)$ с помощью моста переменного тока

Рис. 3

Схема установки на рис. 3. Полупровдниковый образец это одно из плеч моста. другие плечи образую омические сопротивления. В качестве R_2 используется магазин сопротивлений. Мост питается от звукового генератора Γ 3-34. В качестве нуль гальвонометра используется осциллограф. Чтобы обеспечить равномерный нагревобразца его помещают в маслянную ванночку. Температура измеряется медь-константановой термопарой.

$$\sigma_x = \frac{l}{S} \frac{R_1}{R_3} \frac{1}{R_2} \tag{11}$$

 R_2 обеспечивает баланс моста.

4 Ход работы

4.1 Исследование зависимости $\sigma(T)$ с помощью универсального цифрового вольтметра В7-34А

- 1. Включим в сеть вольтметр и дадим ему прогреться, переведем его в режим измрения постоянного тока, подставим реостат электропечи в средне положение и включим печь в сеть.
- 2. Будем нагревать образцы от комнатной температуры до 100 °C. Через каждые 10°C будем измерять сопротивления образцов, поочередно подключая их к вольтметру.
- 3. По полученным данным (рис. 4) построим зависимости для $\sigma(T)$ для меди (рис. 5) и полупроводника (рис. 9)
- 4. По наклону графика для медного образца (рис. 5) определим температурный коэффициент.

$$\alpha = -\frac{1}{\sigma} \frac{d\sigma}{dT} = (344.5 \pm 3.7) \cdot 10^{-5} (1/K) [\pm 1.1\%]$$

Для меди табличное значение $\alpha \approx 4.3 \cdot 10^{-3} \ (1/K)$. Не очень точно у меня получилось.

5. Построим график $\ln \sigma = f(1/T)$ (рис. 7) и по наклону определим ширину запрещенной зоны.

$$\Delta = -2k_b \cdot a = (748 \pm 7) \cdot 10^{-3} \text{ (9B) } [\pm 0.9\%]$$

Значение не очень близко к значению ширины запрещенной зоны для Германия $\Delta_{Ge} \approx 0.67~{
m sB}$

6. Я сделал экспоненциальную аппроксимацию функцией уравнения (8) графика $\sigma(T)$ (рис. 6). По полученому параметру $a=-3821.37\pm43.69$ (K):

$$\Delta = -2k_b \cdot a = (659 \pm 8) \cdot 10^{-3} \text{ (9B) } [\pm 1.2\%]$$

Это значение уже ближе к «правде».

4.2 Исследование зависимости $\sigma(T)$ с помощью моста переменного тока

- 1. Включим осциллограф в сеть, включим генератор и установим на выходе сигнал с амплитудой 1 В, частота $\sim 600~\Gamma$ п.
- 2. Мост мы будем балансировать с помощью магазина сопротивлений R_2 каждый раз, кога абудем снимать значения напряжения термопары.
- 3. Проведем эксперимент в диапазне температур от комнатной до 110 $^{\circ}C$. Данные занесем в таблицу на рис. 8.
- 4. Построим график $\sigma(T)$ (рис. 9) и по экспоненциальной аппроксимации (8) определим ширину запрещенной зоны, по полученому параметру $a=-3724.08\pm16.34$ (K):

$$\Delta = -2k_b \cdot a = (642 \pm 3) \cdot 10^{-3} \text{ (9B) } [\pm 0.5\%]$$

Получается достаточно близкое значение к действительному для Германия $\Delta_{Ge} \approx 0.67$ эВ.

5. Построим график $\ln \sigma = f(1/T)$ (рис. 10) и по наклону определим ширину запреженной зоны:

$$\Delta = -2k_b \cdot a = (588 \pm 6) \cdot 10^{-3} \text{ (9B) } [\pm 1\%]$$

Линейная аппроксимация не дает достаточно точного результата.

5 Вывод

В данной работе мы:

- 1. Исследовали температурную зависимость проводимости для меди и типичного полупроводника германия.
- 2. Определили температурный коэффициент проводимости для меди: $\alpha = (344.5 \pm 3.7) \cdot 10^{-5} \; (1/K) \; [\pm 1.1\%].$
- 3. Определить ширину запрещенной зоны 2-мя методами: в режиме постоянного тока и с помощью моста переменного тока.

6 Графики и таблицы с данными

U, мВ	R_sc, кОм	R_сир, кОм	T, C	T,K	Sigma, 1/Ом*м	LnSigma	1/T
5,500E-01	3,347E-01	1,373E-01	3,841E+01	3,114E+02	1,041E+01	2,343E+00	3,211E-03
6,000E-01	3,067E-01	1,376E-01	3,963E+01	3,126E+02	1,136E+01	2,430E+00	3,199E-03
7,000E-01	2,766E-01	1,389E-01	4,207E+01	3,151E+02	1,259E+01	2,533E+00	3,174E-03
8,000E-01	2,393E-01	1,405E-01	4,451E+01	3,175E+02	1,456E+01	2,678E+00	3,149E-03
9,000E-01	2,128E-01	1,415E-01	4,695E+01	3,200E+02	1,637E+01	2,795E+00	3,125E-03
1,000E+00	1,891E-01	1,415E-01	4,939E+01	3,224E+02	1,842E+01	2,914E+00	3,102E-03
1,150E+00	1,652E-01	1,433E-01	5,305E+01	3,260E+02	2,109E+01	3,049E+00	3,067E-03
1,350E+00	1,332E-01	1,456E-01	5,793E+01	3,309E+02	2,615E+01	3,264E+00	3,022E-03
1,550E+00	1,098E-01	1,482E-01	6,280E+01	3,358E+02	3,173E+01	3,457E+00	2,978E-03
1,750E+00	9,104E-02	1,505E-01	6,768E+01	3,407E+02	3,827E+01	3,645E+00	2,935E-03
1,950E+00	7,558E-02	1,532E-01	7,256E+01	3,456E+02	4,609E+01	3,831E+00	2,894E-03
2,150E+00	6,410E-02	1,553E-01	7,744E+01	3,504E+02	5,435E+01	3,995E+00	2,854E-03
2,350E+00	5,513E-02	1,575E-01	8,232E+01	3,553E+02	6,319E+01	4,146E+00	2,814E-03
2,550E+00	4,600E-02	1,597E-01	8,720E+01	3,602E+02	7,573E+01	4,327E+00	2,776E-03
2,750E+00	4,038E-02	1,624E-01	9,207E+01	3,651E+02	8,627E+01	4,458E+00	2,739E-03
2,950E+00	3,467E-02	1,644E-01	9,695E+01	3,700E+02	1,005E+02	4,610E+00	2,703E-03
3,150E+00	2,980E-02	1,673E-01	1,018E+02	3,748E+02	1,169E+02	4,761E+00	2,668E-03
3,350E+00	2,654E-02	1,692E-01	1,067E+02	3,797E+02	1,313E+02	4,877E+00	2,634E-03
3,550E+00	2,310E-02	1,711E-01	1,116E+02	3,846E+02	1,508E+02	5,016E+00	2,600E-03

Рис. 4: Данные исследования в режиме постоянного тока.

Рис. 5: Зависимость $\sigma(T)$ для меди в режиме постоянного тока

Рис. 6: Зависимость $\sigma(T)$ для полупроводника в режиме постоянного тока

Рис. 7: Зависимость $\ln \sigma(1/T)$ для полупроводника в режиме постоянного тока

U, mV	R_2 ,Om	т, к	σ, 1/Ом*м	$\ln \sigma$	1/T
3,200E-01	2,260E+02	2,808E+02	4,087E+00	1,408E+00	3,561E-03
2,850E-01	2,220E+02	2,800E+02	4,160E+00	1,426E+00	3,572E-03
3,150E-01	2,170E+02	2,807E+02	4,256E+00	1,448E+00	3,563E-03
4,050E-01	2,080E+02	2,829E+02	4,440E+00	1,491E+00	3,535E-03
4,750E-01	2,000E+02	2,846E+02	4,618E+00	1,530E+00	3,514E-03
5,250E-01	1,900E+02	2,858E+02	4,861E+00	1,581E+00	3,499E-03
6,750E-01	1,730E+02	2,895E+02	5,338E+00	1,675E+00	3,455E-03
8,550E-01	1,510E+02	2,939E+02	6,116E+00	1,811E+00	3,403E-03
9,750E-01	1,390E+02	2,968E+02	6,644E+00	1,894E+00	3,369E-03
1,085E+00	1,260E+02	2,995E+02	7,330E+00	1,992E+00	3,339E-03
1,475E+00	9,100E+01	3,090E+02	1,015E+01	2,317E+00	3,237E-03
1,695E+00	7,700E+01	3,143E+02	1,199E+01	2,484E+00	3,181E-03
1,995E+00	6,000E+01	3,217E+02	1,539E+01	2,734E+00	3,109E-03
2,185E+00	5,120E+01	3,263E+02	1,804E+01	2,892E+00	3,065E-03
2,455E+00	4,300E+01	3,329E+02	2,148E+01	3,067E+00	3,004E-03
2,685E+00	3,600E+01	3,385E+02	2,565E+01	3,245E+00	2,954E-03
2,955E+00	2,930E+01	3,451E+02	3,152E+01	3,451E+00	2,898E-03
3,295E+00	2,300E+01	3,534E+02	4,015E+01	3,693E+00	2,830E-03
3,785E+00	1,650E+01	3,653E+02	5,597E+01	4,025E+00	2,737E-03
4,155E+00	1,300E+01	3,743E+02	7,104E+01	4,263E+00	2,671E-03

Рис. 8: Данные исследования в режиме переменного тока

Рис. 9: Зависимость $\sigma(T)$ для полупроводника в режиме переменнрого тока

Рис. 10: Зависимость $\ln \sigma(1/T)$ полупроводника в режиме переменного тока