3.1 What is the difference between event-driven and multithreading concurrency

When using the event-driven concurrency approach it can happen that one single handler can take a lot of time to complete/terminate, which can cause to a "traffic jam" for other requests will not be handled for a long time. In multi-threading concurrency this is not the case because other threads are handled independently from each other and requests will be handled regardless another request is taken a very long time to complete.

Furthermore event-driven concurrency has a very inexpensive memory cost, whereas the memory cost of multi-thread concurrency is much higher.

3.2 Low-Energy Earliest Deadline First

Task	Arrival Time [s]	Deadline [s]	Length [MI]
t1	0	4	900
t2	2	8	1800
t3	2.5	8	450
t4	5	20	1000
t5	6	14	800
Proces	ssor Speed [MIPS]	Voltage	
200		1.5	
300		2	
450		3.5	

$$t_0=0$$
 :
$$0+\frac{900}{200}\not\leq 4\ \Rightarrow\ \text{False}$$

$$0+\frac{900}{300}\leq 4\ \Rightarrow\ t=3\Rightarrow t1\ scheduled\ on\ 2V$$

$$2 + \frac{300}{200} \le 4 \Rightarrow t = 3.5 \Rightarrow \exists \tau_2 \text{ with 1800 MI: } 3.5 + \frac{1800}{450} = 7.5 \le 8 \Rightarrow t1 \text{ scheduled on } 1.5V$$
 $t_2 = 2.5$:

$$2.5 + \frac{200}{200} \le 4 \Rightarrow \ t = 3.5 \Rightarrow \exists \tau_2 \ \textit{with 1800 MI: } 3.5 + \frac{1800}{450} = 7.5 \le 8 \Rightarrow \exists \tau_3 \ \textit{with 450 MI: } 7.5 + \frac{450}{450} = 8.5 \not \le 8 \Rightarrow \text{Break}$$

$$2.5 + \frac{200}{300} \le 4 \Rightarrow \ t = 3.1\overline{6} \Rightarrow \exists \tau_2 \ \textit{with 1800 MI: } 3.1\overline{6} + \frac{1800}{450} = 7.1\overline{6} \le 8 \Rightarrow \exists \tau_3 \ \textit{with 450 MI: } 7.1\overline{6} + \frac{450}{450} = 8.1\overline{6} \not \le 8 \Rightarrow \text{Break}$$

$$2.5 + \frac{200}{450} \le 4 \Rightarrow \ t = 2.9\overline{4} \Rightarrow \exists \tau_2 \ \textit{with 1800 MI: } 2.9\overline{4} + \frac{1800}{450} = 6.9\overline{4} \le 8 \Rightarrow \exists \tau_3 \ \textit{with 450 MI: } 6.9\overline{4} + \frac{450}{450} = 7.9\overline{4} \le 8 \Rightarrow \text{OK}$$

$$t_3 = 5:$$

$$7.9\overline{4} + \frac{1000}{450} \le 20 \Rightarrow \text{oK}$$

$$t_4 = 6:$$

$$7.9\overline{4} + \frac{800}{450} = 9.7\overline{1} \le 14 \Rightarrow 9.7\overline{1} + \frac{1000}{450} \le 20 \Rightarrow \text{oK}$$

$$t_6 = 7.9\overline{4}:$$

$$7.9\overline{4} + \frac{800}{200} = 11.9\overline{4} \le 14 \Rightarrow \exists \tau_5 \text{ with } 1000 \text{ MI: } 11.9\overline{4} + \frac{1000}{450} = 14.1\overline{6} \le 20 \Rightarrow \text{oK}$$

$$t_5 = 11.9\overline{4}:$$

$$11.9\overline{4} + \frac{1000}{200} = 16.9\overline{4} \le 20 \Rightarrow t5 \text{ scheduled on } 1.5V$$

Therefore we get the execution plan:

	0 1	
$\mathrm{Time}[\mathrm{s}]$	Processor Speed [MIPS]	Voltage
0-2	300	2V
2 - 2.5	200	1.5V
$2.5 \text{-} 7.9\overline{4}$	450	$3.5\mathrm{V}$
$7.9\overline{4}$ - $16.9\overline{4}$	200	1.5V