

Advanced Parameterized Ideas

3 June 2025

Prof. Dr. Sebastian Wild

Outline

6 Advanced Parameterized Ideas

- 6.1 Linear Programs A Mighty Blackbox Tool
- 6.2 Linear Programs Reformulation Tricks
- 6.3 Linear Programs The Simplex Algorithm
- **6.4 Integer Linear Programs**
- 6.5 LP-Based Kernelization
- 6.6 Lower Bounds by ETH

6.1 Linear Programs – A Mighty Blackbox Tool

Linear Programs

- ► *Linear programs (LPs)* are a class of optimization problems of **continuous** (numerical) variables
- ► can be exactly solved in worst case polytime (LinearProgramming ∈ P)
 - ▶ interior-point methods, Ellipsoid method
- routinely solved in practice to optimality with millions of variables and constraints
 - ► Simplex algorithm, interior-point methods
 - many existing solvers, commercial and open source (e.g., HiGHS)

Hessy James's Apple Farm

- ► Hessy tries to maximize the profit of his apple farm
 - ▶ He is committed to promote regional Hessian heirloom varieties, so he only grows "Sossenheimer Roter" and "Korbacher Edelrenette"
 - ▶ each tree of "Sossenheimer Roter" yields apples worth € 195 per year
 - ▶ each tree of "Korbacher Edelrenette" yields applies worth € 255 per year
 - ► He has an orchard of 5 000 m²
 - ► each tree needs 4 m² of orchard space
 - ▶ each tree of "Sossenheimer Roter" needs 6 kg of organic fertilizer and 1 h harvest effort per year
 - each tree of "Korbacher Edelrenette" needs 4.5 kg of organic fertilizer and 3 h harvest effort per year
 - ► Hessy can only afford 3000 kg of fertilizer and 1700 h of harvester time per year

Hessy James's Apple Farm

- ► Hessy tries to maximize the profit of his apple farm
 - ▶ He is committed to promote regional Hessian heirloom varieties, so he only grows "Sossenheimer Roter" and "Korbacher Edelrenette"
 - ▶ each tree of "Sossenheimer Roter" yields apples worth € 195 per year
 - ▶ each tree of "Korbacher Edelrenette" yields applies worth € 255 per year
 - ► He has an orchard of 5 000 m²
 - each tree needs 4 m² of orchard space
 - each tree of "Sossenheimer Roter" needs 6 kg of organic fertilizer and 1 h harvest effort per year
 - each tree of "Korbacher Edelrenette" needs 4.5 kg of organic fertilizer and 3 h harvest effort per year
 - ▶ Hessy can only afford 3000 kg of fertilizer and 1700 h of harvester time per year
- → How many trees of each variety should Hessy plant?
 - ▶ What will constrain us most? Space? Fertilizer? Harvest hours?
 - What profit can Hessy expect?

Formal Linear Program for Hessy James's Apple Farm

- ► Classic application of linear programming in *operations research* (*OR*)
- ► We formally write LPs as follows:

Formal Linear Program for Hessy James's Apple Farm

- ► Classic application of linear programming in *operations research* (OR)
- ► We formally write LPs as follows:

► Terminology:

- \triangleright s and k are the two *variables* of the problem; these are always real numbers.
- ▶ A vector $(s, k) \in \mathbb{R}^2$ is a *feasible solution* for the LP if it satisfied all constraints.
- ► The largest value of the objective function (over all feasible solutions) is the (optimal) value(z*) of the LP
- ▶ A feasible solution $(s^*, k^*) \in \mathbb{R}^2$ with optimal objective value z^* is called an *optimal solution*

- → Hessy should plant
 - ► 100 Sossenheimer Roter trees and hmm...
- ► 533+¹/₃ Korbacher Edelrenette trees
- ► Harvest and fertilizer *tight*
- orchard space isn't
- \rightsquigarrow know what to change

LPs – The General Case

► General LP:

min
$$c_1x_1 + \cdots + c_nx_n$$

s.t. $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$ (for $i = 1, \dots, p$)
 $a_{i,1}x_1 + \cdots + a_{i,n}x_n \leq b_i$ (for $i = p + 1, \dots, q$)
 $a_{i,1}x_1 + \cdots + a_{i,n}x_n \geq b_i$ (for $i = q + 1, \dots, m$)
 $x_j \geq 0$ (for $j = 1, \dots, r$)
 $x_j \leq 0$ (for $j = r + 1, \dots, n$)
jective function "don't care" (just to make it explicit)

arbitrary linear objective function

- ▶ arbitrary **linear** constraints, of type "=", " \leq " or " \geq "
- variables with non-negativity constraint and unconstrained variables

LPs – The General Case

► General LP:

min
$$c_1x_1 + \cdots + c_nx_n$$

s.t. $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$ (for $i = 1, \dots, p$)
 $a_{i,1}x_1 + \cdots + a_{i,n}x_n \leq b_i$ (for $i = p + 1, \dots, q$)
 $a_{i,1}x_1 + \cdots + a_{i,n}x_n \geq b_i$ (for $i = q + 1, \dots, m$)
 $x_j \geq 0$ (for $j = 1, \dots, r$)
 $x_j \leq 0$ (for $j = r + 1, \dots, n$)
jective function "don't care" (just to make it explicit)

- arbitrary linear objective function
- ► arbitrary **linear** constraints, of type "=", "≤" or "≥"
- variables with non-negativity constraint and unconstrained variables
- ► In general, an LP can
 - (a) have a finite optimal objective value
 - (b) be infeasible (contradictory constraints / empty feasibility region), or
 - (c) be *unbounded* (allow arbitrarily small objective values " $-\infty$ ")
- → in polytime, can detect which case applies and compute optimal solution in case (a)

Classic Modeling Example - Max Flow

- ▶ The maximum-s-t-flow problem in a graph G = (V, E) can be reduced to an LP (Flow)
 - ▶ variable f_e for each edge $e \in E$
 - ightharpoonup maximize flow value F = flow out of s
 - constraint for edge capacity C(e) at each edge
 - ightharpoonup constraint for flow conservation at each vertex v (except s and t)

$$\begin{array}{lll} \max & F \\ \text{s. t.} & F & = & \sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} \\ & & & \\ f_{vw} & \leq & C(vw) & \text{(for } vw \in E) \\ & & \sum_{w \in V} f_{wv} & = & \sum_{w \in V} f_{vw} & \text{(for } v \in V \setminus \{s,t\}) \\ & & & \\ f_{e} & \geq & 0 & \text{(for } e \in E) \end{array}$$

6.2 Linear Programs – Reformulation Tricks

How to solve an LP?

- ▶ Our focus will be on using LPs as a tool
 - ▶ in theory: reducing problem to an LP means polytime solvable
 - ▶ in practice: call good solver!

How to solve an LP?

- Our focus will be on using LPs as a tool
 - ▶ in theory: reducing problem to an LP means polytime solvable
 - ▶ in practice: call good solver!
- ▶ But as with any good tool, it helps to gave an idea of **how** it works to effectively use it
- → We will briefly visit the conceptual ideas of the simplex algorithm

Recall: General Form of LPs

► General LP:

min
$$c_1x_1 + \dots + c_nx_n$$

s.t. $a_{i,1}x_1 + \dots + a_{i,n}x_n = b_i$ (for $i = 1, \dots, p$)
 $a_{i,1}x_1 + \dots + a_{i,n}x_n \le b_i$ (for $i = p + 1, \dots, q$)
 $a_{i,1}x_1 + \dots + a_{i,n}x_n \ge b_i$ (for $i = q + 1, \dots, m$)
 $x_j \ge 0$ (for $j = 1, \dots, r$)
 $x_j \le 0$ (for $j = r + 1, \dots, n$)

- ▶ linear objective function and constraints ("=", "≤", or "≥")
- variables with non-negativity constraint and unconstrained variables

▶ Conventions:

- ightharpoonup n variables (always called x_i)
- \blacktriangleright *m* constraints (coefficients always called $a_{i,j}$, right-hand sides b_i)
- ▶ minimize objective (" \underline{c} ost"), coefficients c_j ; objective value $z = c_1x_1 + \cdots + c_nx_n$

- ▶ Spelling out all those linear combinations is cumbersome
- → Concise notation via matrix and vector products
- ▶ We write

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 cost coefficients $c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$ \sim objective: $\min c^T \cdot x$

```
min c_1x_1 + \cdots + c_nx_n
s.t. a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i (for i = 1, \dots, p)
         a_{i,1}x_1 + \cdots + a_{i,n}x_n \le b_i \text{ (for } i = p + 1, \dots, q)
         a_{i,1}x_1 + \cdots + a_{i,n}x_n \ge b_i (for i = q + 1, \dots, m)
                                x_i \geq 0 \quad (\text{for } j = 1 \dots, r)
                                x_i \leq 0 \quad (\text{for } i = r + 1, \dots, n)
```


- ▶ Spelling out all those linear combinations is cumbersome
- Concise notation via matrix and vector products
- ▶ We write

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 bold \rightsquigarrow vector/matrix $c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$ \rightsquigarrow objective: min $c^T \cdot x$ dot product / scalar product

```
min c_1x_1 + \cdots + c_nx_n
s.t. a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i (for i = 1, ..., p)
        a_{i,1}x_1 + \cdots + a_{i,n}x_n \le b_i \text{ (for } i = p + 1, \dots, q)
        a_{i,1}x_1 + \cdots + a_{i,n}x_n \ge b_i (for i = q + 1, \ldots, m)
                               x_j \ge 0 \quad (\text{for } j = 1 \dots, r)
                              x_i \leq 0 \quad (\text{for } j = r + 1 \dots, n)
```

- ▶ Spelling out all those linear combinations is cumbersome
- Concise notation via matrix and vector products
- ▶ We write

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 bold \rightsquigarrow vector/matrix $c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$ \sim objective: min $c^T \cdot x$ dot product / scalar product

min $c_1x_1 + \cdots + c_nx_n$ s.t. $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$ (for $i = 1, \dots, p$) $a_{i,1}x_1 + \cdots + a_{i,n}x_n \le b_i \text{ (for } i = p + 1, \dots, q)$ $a_{i,1}x_1 + \cdots + a_{i,n}x_n \ge b_i$ (for $i = q + 1, \dots, m$) $x_i \geq 0 \quad (\text{for } i = 1 \dots, r)$ $x_i \leq 0 \quad (\text{for } i = r + 1, \dots, n)$

► "="-constraints

$$A^{(=)} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,n} \end{pmatrix} \in \mathbb{R}^{p \times n} \qquad b^{(=)} = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix} \in \mathbb{R}^p \qquad \rightsquigarrow A^{(=)} \cdot x = b^{(=)}$$

- ▶ Spelling out all those linear combinations is cumbersome
- → Concise notation via matrix and vector products
- ▶ We write

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 bold \rightsquigarrow vector/matrix $c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$ \sim objective: min $c^T \cdot x$ dot product / scalar product

min $c_1x_1 + \cdots + c_nx_n$ s.t. $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$ (for i = 1, ..., p) $a_{i,1}x_1 + \cdots + a_{i,n}x_n \le b_i \text{ (for } i = p + 1, \dots, q)$ $a_{i,1}x_1 + \cdots + a_{i,n}x_n \ge b_i$ (for $i = q + 1, \dots, m$) $x_i \geq 0 \quad (\text{for } j = 1 \dots, r)$ $x_i \leq 0 \quad (\text{for } i = r + 1, \dots, n)$

► "="-constraints

$$A^{(=)} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,n} \end{pmatrix} \in \mathbb{R}^{p \times n} \qquad b^{(=)} = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix} \in \mathbb{R}^p \qquad \rightsquigarrow A^{(=)} \cdot x = b^{(=)}$$

$$\bullet \text{ similarly for "\leq" and "\geq" constraints:} \qquad A^{(\le)}x \stackrel{\leq}{\leq} b^{(\le)} \quad \text{and} \quad A^{(\ge)}x \geq b^{(\ge)}$$

- ▶ Spelling out all those linear combinations is cumbersome
- → Concise notation via matrix and vector products
- ▶ We write

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 bold \rightsquigarrow vector/matrix $c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$ \sim objective: min $c^T \cdot x$ dot product / scalar product

min $c_1x_1 + \cdots + c_nx_n$ s.t. $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$ (for i = 1, ..., p) $a_{i,1}x_1 + \cdots + a_{i,n}x_n \le b_i \text{ (for } i = p + 1, \dots, q)$ $a_{i,1}x_1 + \cdots + a_{i,n}x_n \ge b_i$ (for $i = q + 1, \dots, m$) $x_i \geq 0 \quad (\text{for } j = 1 \dots, r)$ $x_i \leq 0 \quad (\text{for } i = r + 1, \dots, n)$

► "="-constraints

$$A^{(=)} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,n} \end{pmatrix} \in \mathbb{R}^{p \times n} \qquad b^{(=)} = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix} \in \mathbb{R}^p \qquad \rightsquigarrow A^{(=)} \cdot x = b^{(=)}$$

$$\text{elementwise} \leq b^{(\leq)} \quad \text{and} \quad A^{(\geq)} x \geq b^{(\geq)}$$

$$\text{similarly for "\leq" and "\geq" constraints:} \qquad A^{(\leq)} x \leq b^{(\leq)} \quad \text{and} \quad A^{(\geq)} x \geq b^{(\geq)}$$

- ▶ similarly for "≤" and "≥" constraints:
- \rightarrow a single constraint i can be written as $A_{i,\bullet}x = b_{i}$ ASi .: 3 (generally write $A_{i,\bullet}$ for the *i*th row of A and $A_{\bullet,i}$ for the *j*th column)

Tricks of the Trade for working with LPs:

- ▶ "≥"-constraints: $A_{i,\bullet} x \ge b_i \iff (-A)_{i,\bullet} x \le -b_i$

Tricks of the Trade for working with LPs:

- $ightharpoonup min suffices: max <math>c^T x = -min(-c)^T x$
- ► "≥"-constraints: $A_{i,\bullet} x \ge b_i \iff (-A)_{i,\bullet} x \le -b_i$
- ► slack variables: $A_{i,\bullet} x \leq b_i \iff A_{i,\bullet} x + x_{s_i} = b_i$ and $x_{s_i} \geq 0$

Tricks of the Trade for working with LPs:

- $ightharpoonup min suffices: max <math>c^T x = -min(-c)^T x$
- ► "≥"-constraints: $A_{i,\bullet} x \ge b_i \iff (-A)_{i,\bullet} x \le -b_i$
- ► slack variables: $A_{i,\bullet} x \le b_i \iff A_{i,\bullet} x + x_{s_i} = b_i$ and $x_{s_i} \ge 0$ $(x_{s_i} \text{ is a new additional variable})$
- ▶ nonnegative: variable $x_j \le 0 \iff x_j = x_{j,+} x_{j,-} \text{ and } x_{j,+}, x_{j,-} \ge 0$ $(x_{j,+} \text{ and } x_{j,-} \text{ are new additional variables})$

Tricks of the Trade for working with LPs:

- ▶ "≥"-constraints: $A_{i,\bullet} x \ge b_i \iff (-A)_{i,\bullet} x \le -b_i$
- ► slack variables: $A_{i,\bullet} x \leq b_i \iff A_{i,\bullet} x + x_{s_i} = b_i \text{ and } x_{s_i} \geq 0$

(x_{s_i} is a new additional variable)

- ▶ *nonnegative*: variable $x_j \le 0 \iff x_j = x_{j,+} x_{j,-} \text{ and } x_{j,+}, x_{j,-} \ge 0$ $(x_{j,+} \text{ and } x_{j,-} \text{ are new additional variables})$
- → To solve LPs, can assume one of the following **normal forms**

$$\begin{array}{ccc}
\min & c^T x \\
\text{s. t. } & Ax \leq b \\
& x \geq 0
\end{array} \quad \text{or} \quad \begin{bmatrix}
\min & c^T x \\
\text{s. t. } & Ax = b \\
& x \geq 0
\end{bmatrix} \quad \text{with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, \text{ and } c \in \mathbb{R}^n$$

6.3 Linear Programs – The Simplex Algorithm

$$\min c^{T} x$$
s. t. $Ax \le b$

$$x \ge 0$$
+ nondegeneracy

- constraint $A_{i,\bullet}x \le b_i$ defines a *hyperplane*
- \rightarrow halfspace $H_i = \{x \in \mathbb{R}^n : A_{i,\bullet}x \le b_i\}$

n=2


```
\min c^{T} x

s.t. Ax \le b
x \ge 0
+ nondegeneracy
```

- constraint $A_{i,\bullet}x \le b_i$ defines a *hyperplane*
- \rightarrow halfspace $H_i = \{x \in \mathbb{R}^n : A_{i,\bullet}x \le b_i\}$
- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"


```
\min c^{T} x

s. t. Ax \le b
x \ge 0
+ nondegeneracy
```

- constraint $A_{i,\bullet}x \le b_i$ defines a *hyperplane*
- \rightarrow halfspace $H_i = \{x \in \mathbb{R}^n : A_{i,\bullet}x \le b_i\}$
- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - \rightsquigarrow Optimal point x^* must lie on boundary! (assuming finite optimal objective value z^*)


```
\min c^{T} x

s. t. Ax \le b
x \ge 0
+ nondegeneracy
```

- constraint $A_{i,\bullet}x \le b_i$ defines a *hyperplane*
- \rightarrow halfspace $H_i = \{x \in \mathbb{R}^n : A_{i,\bullet}x \le b_i\}$
- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - \rightsquigarrow Optimal point x^* must lie on boundary! (assuming finite optimal objective value z^*)

assuming nondegeneracy

• intersection of n halfspaces H_i is unique point


```
\min c^{T}x
s. t. Ax \le b
x \ge 0
+ nondegeneracy
```

• constraint $A_{i,\bullet}x \le b_i$ defines a *hyperplane*

$$\rightsquigarrow$$
 halfspace
 $H_i = \{x \in \mathbb{R}^n : A_{i,\bullet}x \le b_i\}$

- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - \rightsquigarrow Optimal point x^* must lie on boundary! (assuming finite optimal objective value z^*)

assuming nondegeneracy

 \blacktriangleright intersection of *n* halfspaces H_i is unique point

wertex
$$\{x_I\} = \bigcap_{i \in I} N$$
 (for $I \subset [m], |I| = n$)

hyperlams

$$\min c^{T} x$$
s.t. $Ax \le b$

$$x \ge 0$$

$$+ nondegeneracy$$

- constraint $A_{i,\bullet}x \leq b_i$ defines a *hyperplane*
- \rightsquigarrow halfspace $H_i = \{x \in \mathbb{R}^n : A_{i,\bullet}x \le b_i\}$
- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - → Optimal point x* must lie on boundary!

 (assuming finite optimal objective value z*)

assuming nondegeneracy

▶ intersection of n halfspaces H_i is unique point

$$\rightsquigarrow$$
 vertex $\{x_I\} = \bigcap_{i \in I} H_i$ (for $I \subset [m], |I| = n$)

▶ always have $c^T x^* = c^T x_{I^*}$ for a vertex x_{I^*}

$$min cT x$$
s.t. $Ax \le b$

$$x \ge 0$$
+ nondegeneracy

• constraint $A_{i,\bullet}x \le b_i$ defines a *hyperplane*

$$\rightsquigarrow$$
 halfspace
 $H_i = \{x \in \mathbb{R}^n : A_{i,\bullet}x \le b_i\}$

- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - \rightsquigarrow Optimal point x^* must lie on boundary! (assuming finite optimal objective value z^*)

assuming nondegeneracy

▶ intersection of n halfspaces H_i is unique point

$$\rightsquigarrow$$
 vertex $\{x_I\} = \bigcap_{i \in I} H_i$ (for $I \subset [m], |I| = n$)

- ▶ always have $c^T x^* = c^T x_{I^*}$ for a vertex x_{I^*}
 - "only" $\binom{m}{n}$ vertices x_I (all *n*-subsets of [m])


```
min c<sup>T</sup> x

s.t. Ax \le b
x \ge 0
+ nondegeneracy
```

• constraint $A_{i,\bullet}x \le b_i$ defines a *hyperplane*

$$\rightarrow$$
 halfspace $H_i = \{x \in \mathbb{R}^n : A_{i,\bullet}x \le b_i\}$

- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - → Optimal point x* must lie on boundary!

 (assuming finite optimal objective value z*)

assuming nondegeneracy

 \blacktriangleright intersection of *n* halfspaces H_i is unique point

$$\rightsquigarrow$$
 vertex $\{x_I\} = \bigcap_{i \in I} H_i$ (for $I \subset [m], |I| = n$)

- ► always have $c^T x^* = c^T x_{I^*}$ for a vertex x_{I^*}
 - "only" $\binom{m}{n}$ vertices x_I (all *n*-subsets of [m])
 - → Simplex algorithm:Move to better neighbor until optimal.
 - ▶ x_I and $x_{I'}$ neighbors if $|I \cap I'| = n 1$


```
\min c^{T} x

s.t. Ax \le b
x \ge 0
+ nondegeneracy
```

• constraint $A_{i,\bullet}x \le b_i$ defines a *hyperplane*

$$\rightsquigarrow$$
 halfspace
 $H_i = \{x \in \mathbb{R}^n : A_{i,\bullet}x \le b_i\}$

- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - → Optimal point x* must lie on boundary!

 (assuming finite optimal objective value z*)

assuming nondegeneracy

▶ intersection of n halfspaces H_i is unique point

$$\rightsquigarrow$$
 vertex $\{x_I\} = \bigcap_{i \in I} H_i$ (for $I \subset [m], |I| = n$)

- ► always have $c^T x^* = c^T x_{I^*}$ for a vertex x_{I^*}
 - "only" $\binom{m}{n}$ vertices x_I (all *n*-subsets of [m])
 - → Simplex algorithm:Move to better neighbor until optimal.
 - ▶ x_I and $x_{I'}$ neighbors if $|I \cap I'| = n 1$


```
procedure simplexIteration(H = \{H_1, \dots, H_m\}):

if \bigcap H = \emptyset return INFEASIBLE

x := \text{any feasible vertex}

while x is not locally optimal //c "against wall"

// pivot towards better objective function

if \forall feasible neighbor vertex x' : c^T x' > c^T x

return UNBOUNDED

else

x := \text{some feasible lower neighbor of } x

return x
```

Simplex - Linear Algebra Realization

 $min \ c^{T}x$ s.t. Ax = b $x \ge 0$ + nondegeneracy

- ► Here use equality constraints $\rightsquigarrow m \leq n$
- ightharpoonup Assume rank(A) = m (nondegeneracy)
- every $J = \{j_1, \dots, j_m\} \subseteq [n]$ corresponds to *basis* of A: $\{A_{\bullet, j_1}, \dots, A_{\bullet, j_m}\}$

Simplex – Linear Algebra Realization

$$\min c^{T} x$$
s.t. $Ax = b$

$$x \ge 0$$

$$+ nondegeneracy$$

- ► Here use equality constraints \rightsquigarrow $m \leq n$
- ► Assume rank(A) = m (nondegeneracy)

- $ightharpoonup x_I = (x_{j_1}, \dots, x_{j_m})^T$ vector of basis variables
- $x_{\bar{J}} = (x_{\bar{J}_1}, \dots, x_{\bar{J}_{n-m}})^T$ vector of non-basis variables for $\bar{J} = [n] \setminus J = \{\bar{\jmath}_1, \dots, \bar{\jmath}_{n-m}\}$

Simplex - Linear Algebra Realization

$$\min c^{T} x$$
s.t. $Ax = b$

$$x \ge 0$$
+ nondegeneracy

- ► Here use equality constraints \rightsquigarrow $m \leq n$
- ► Assume rank(A) = m (nondegeneracy)

- $ightharpoonup x_{J} = (x_{j_1}, \dots, x_{j_m})^T$ vector of basis variables
- $\blacktriangleright x_{\bar{J}} = (x_{\bar{J}_1}, \dots, x_{\bar{J}_{n-m}})^T$ vector of non-basis variables for $\bar{J} = [n] \setminus J = \{\bar{J}_1, \dots, \bar{J}_{n-m}\}$
- $ightharpoonup c_{\bar{I}}$ and $c_{\bar{I}}$ defined similarly

Simplex – Linear Algebra Realization

$$min cT x$$
s.t. $Ax = b$

$$x \ge 0$$
+ nondegeneracy

- ► Here use equality constraints \rightsquigarrow $m \leq n$
- min $c^T x$ s.t. Ax = b $x \ge 0$ Here use equality constants

 Assume rank(A) = m (nondegeneracy)

 every $J = \{j_1, \dots, j_m\} \subseteq [n]$ correspond • every $J = \{j_1, \dots, j_m\} \subseteq [n]$ corresponds to *basis* of A: $\{A_{\bullet, j_1}, \dots, A_{\bullet, j_m}\}$

- $x_I = (x_{j_1}, \dots, x_{j_m})^T$ vector of basis variables
- $\blacktriangleright x_{\bar{1}} = (x_{\bar{1}_1}, \dots, x_{\bar{1}_{n-m}})^T$ vector of non-basis variables for $\bar{J} = [n] \setminus J = \{\bar{j}_1, \dots, \bar{j}_{n-m}\}$
- $A_{\bar{I}} = (A_{\bullet,\bar{j}_1}, \dots, A_{\bullet,\bar{j}_m}) \in \mathbb{R}^{m \times m}; \quad \text{similarly } A_{\bar{I}} = (A_{\bullet,\bar{j}_1}, \dots, A_{\bullet,\bar{j}_{n-m}}) \in \mathbb{R}^{(m-n) \times m}$
- $x_{\bar{l}}$ is uniquely determined by choosing $x_{\bar{l}}$

Simplex - Linear Algebra Realization

$$min cT x$$
s.t. $Ax = b$

$$x \ge 0$$
+ nondegeneracy

- ► Here use equality constraints \rightsquigarrow $m \leq n$
- ► Assume rank(A) = m (nondegeneracy)
- every $J = \{j_1, \ldots, j_m\} \subseteq [n]$ corresponds to *basis* of A: $\{A_{\bullet, j_1}, \ldots, A_{\bullet, j_m}\}$

- $ightharpoonup x_I = (x_{j_1}, \dots, x_{j_m})^T$ vector of basis variables
- $\blacktriangleright x_{\bar{I}} = (x_{\bar{I}_1}, \dots, x_{\bar{I}_{n-m}})^T$ vector of non-basis variables for $\bar{I} = [n] \setminus I = \{\bar{I}_1, \dots, \bar{I}_{n-m}\}$
- $ightharpoonup c_{\bar{I}}$ and $c_{\bar{I}}$ defined similarly
- We have $Ax = b \iff A_{\bar{J}}x_{\bar{J}} + A_{\bar{J}}x_{\bar{J}} = b \iff \begin{bmatrix} x_{\bar{J}} = A_{\bar{J}}^{-1}b A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}} \end{bmatrix}$ $x_{\bar{J}}$ is uniquely determined by choosing $x_{\bar{J}}$
- ▶ basic solution setting $x_{\bar{I}} = 0$ gives $x_{\bar{I}} = A_{\bar{I}}^{-1}b$ \rightsquigarrow correspond to vertices from before
 - ▶ may or may not be a *feasible basic solution*: $x_{\bar{l}} \ge 0$?
- → given *J*, can easily compute basic solution and check feasibility

b basic solution:
$$x_{\bar{J}} = A_{\bar{J}}^{-1}b - A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$$
 and $x_{\bar{J}} = 0$

min $c^T x$ s.t. Ax = b $x \ge 0$ + nondegeneracy

▶ basic solution:
$$x_{\bar{J}} = A_{\bar{J}}^{-1}b - A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$$
 and $x_{\bar{J}} = 0$

- ▶ How to locally modify basic solution without violating constraints?
 - ► can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - ▶ can't *decrease* $x_{\bar{l}k}$ for $\bar{j}_k \in \bar{J}$ (nonnegativity);
 - \rightsquigarrow can only increase $x_{\bar{j}_k}$ by small $\delta > 0$

min c^T xs. t. Ax = b $x \ge 0$ + nondegeneracy

▶ basic solution:
$$x_J = A_J^{-1}b - A_J^{-1}A_{\bar{J}}x_{\bar{J}}$$
 and $x_{\bar{J}} = 0$

- ▶ How to locally modify basic solution without violating constraints?
 - ▶ can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - ► can't *decrease* $x_{\bar{l}k}$ for $\bar{j}_k \in \bar{J}$ (nonnegativity);
 - \rightarrow can only increase $x_{\bar{l}k}$ by small $\delta > 0$
- ► rewrite cost: $c^T x = c_J x_J + c_{\bar{J}}^T x_{\bar{J}}$

 $min c^{T}x$ s.t. Ax = b $x \ge 0$ + nondegeneracy

▶ basic solution:
$$x_{\bar{J}} = A_{\bar{J}}^{-1}b - A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$$
 and $x_{\bar{J}} = 0$

- ▶ How to locally modify basic solution without violating constraints?
 - ▶ can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - ► can't *decrease* $x_{\bar{l}k}$ for $\bar{j}_k \in \bar{J}$ (nonnegativity);
 - \rightarrow can only increase $x_{\bar{l}k}$ by small $\delta > 0$

► rewrite cost:
$$c^T x = c_J x_J + c_{\bar{J}}^T x_{\bar{J}}$$

= $c_J (A_J^{-1} b - A_J^{-1} A_{\bar{J}} x_{\bar{J}}) + c_{\bar{J}}^T x_{\bar{J}}$

min c^T xs. t. Ax = b $x \ge 0$ + nondegeneracy

- ▶ basic solution: $\left[x_{\bar{J}} = A_{\bar{J}}^{-1}b A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}\right]$ and $x_{\bar{J}} = 0$
- ▶ How to locally modify basic solution without violating constraints?
 - ► can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - ► can't *decrease* $x_{\bar{l}k}$ for $\bar{j}_k \in \bar{J}$ (nonnegativity);
 - \rightarrow can only increase $x_{\bar{l}k}$ by small $\delta > 0$
- rewrite cost: $c^{T}x = c_{J}x_{J} + c_{\bar{J}}^{T}x_{\bar{J}}$ $= c_{J}(A_{J}^{-1}b A_{J}^{-1}A_{\bar{J}}x_{\bar{J}}) + c_{\bar{J}}^{T}x_{\bar{J}}$ $= c_{J}A_{J}^{-1}b + (c_{\bar{J}}^{T} c_{J}A_{J}^{-1}A_{\bar{J}}x_{\bar{J}})^{*}x_{\bar{J}}$

 $\min c^{T} x$ s.t. Ax = b $x \ge 0$ + nondegeneracy

▶ basic solution: $x_{\bar{J}} = A_{\bar{J}}^{-1}b - A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$ and $x_{\bar{J}} = 0$

min $c^T x$ s.t. Ax = b $x \ge 0$ + nondegeneracy

- ▶ How to locally modify basic solution without violating constraints?
 - ► can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - ► can't *decrease* $x_{\bar{l}k}$ for $\bar{j}_k \in \bar{J}$ (nonnegativity);
 - \rightsquigarrow can only increase $x_{\bar{l}k}$ by small $\delta > 0$
- ► rewrite cost: $c^{T}x = c_{J}x_{J} + c_{\bar{J}}^{T}x_{\bar{J}}$ $= c_{J}(A_{J}^{-1}b A_{J}^{-1}A_{\bar{J}}x_{\bar{J}}) + c_{\bar{J}}^{T}x_{\bar{J}}$ $= c_{J}A_{J}^{-1}b + (\underbrace{c_{\bar{J}} c_{J}A_{J}^{-1}A_{\bar{J}}x_{\bar{J}}}_{\tilde{c}_{\bar{I}}})^{T}x_{\bar{J}}$

Convex function over a convex domain \rightsquigarrow local opt \Longrightarrow global opt

 \leadsto **No** (local) improvement possible \iff $\tilde{c}_{\tilde{l}} \ge 0 \iff$ current basic solution **optimal**

▶ basic solution: $x_{\bar{J}} = A_{\bar{J}}^{-1}b - A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$ and $x_{\bar{J}} = 0$

s.t. Ax = b $x \ge 0$ + nondegeneracy

- ▶ How to locally modify basic solution without violating constraints?
 - ► can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - can't *decrease* $x_{\bar{l}k}$ for $\bar{l}_k \in \bar{l}$ (nonnegativity);
 - \rightarrow can only increase $x_{\bar{l}k}$ by small $\delta > 0$
- ► rewrite cost: $c^T x = c_J x_J + c_{\bar{J}}^T x_{\bar{J}}$ $= c_J (A_J^{-1} b - A_J^{-1} A_{\bar{J}} x_{\bar{J}}) + c_{\bar{J}}^T x_{\bar{J}}$ $= c_J A_J^{-1} b + (\underline{c_{\bar{J}} - c_J A_J^{-1} A_{\bar{J}} x_{\bar{J}}})^T x_{\bar{J}}$

Convex function over a convex domain

→ local opt ⇒ global opt

- \rightsquigarrow **No** (local) improvement possible \iff $\tilde{c}_{\bar{l}} \geq 0 \iff$ current basic solution **optimal**
- ▶ Otherwise: Bring $\bar{\jmath}_k$ with $\tilde{c}_{\bar{\jmath}_k} < 0$ into basis
 - ▶ This means we increase $x_{\bar{l}k}$ as much as possible until some $x_{\bar{l}k}$ becomes 0
 - \leadsto corresponds to moving to neighbor vertex

Summary LP Algorithms

► Simplex Algorithm

easy to implement

usually fast in practice (in most open source solvers)

Summary LP Algorithms

► Simplex Algorithm

easy to implement

usually fast in practice (in most open source solvers)

worst case running time actually **exponential** details depend on how better neighboring vertex is chosen (*pivoting rule*) but no rule known that guarantees polytime

but smoothed analysis proves: random perturbations of input yield expected polytime on any input

Summary LP Algorithms

► Simplex Algorithm

easy to implement

usually fast in practice (in most open source solvers)

worst case running time actually **exponential** details depend on how better neighboring vertex is chosen (*pivoting rule*) but no rule known that guarantees polytime

but smoothed analysis proves: random perturbations of input yield expected polytime on any input

► Alternative methods

- ellipsoid method (separation-oracle based)
- ▶ interior-point methods (numeric algorithms)

worst case polytime

interior-point method fastest in practice

more complicated, harder to implement well