How to Stack Neural Networks together? Ideas and Applications >>>

Hi, It's me!

Bridging gaps between Human and Machine Intelligence as an Al Scientist @ Polymerize.io

Building AI tools to enable faster material development cycles, accelerate R&D and add operational efficiency at every stage of the process

- Python!
- Data Science and Machine Learning to solve problems facilitating data-driven decision making
- Built an AI platform for Marketing Attribution, Planning and Optimisation enhancing ROI's to 1.5X
- Core areas
 - o Explainable Al
 - Tabular Neural Nets Issues, Ideas
 - Reinforcement Learning
 - Optimisation to exploit learned patterns (by models)
 - MLOps Agile learning, distributed training and tuning

Stacking Models

What is Stacking?

 Ensemble technique with multiple independent (vs. Boosting), heterogeneous (vs. Bagging) models learning parallely with a meta-model / layer to combine outputs from each and work as a single model

Why Stack?

 Access to capabilities of diverse models to make predictions with better performance and reduced error variance

Why Stack Neural Networks?

- Enhances capability by incorporating multiple informative sources and types of data - Image, Text, Tabular, Speech etc.
- Each model fine-tuned separately to drive additional value from specific datasets with added advantage of handling sparsity, weight and bias limitations, dimensionality, outliers and multitude of feature types - primary, secondary etc.
- Explainable AI for every individual model, at a layer level for each data type
- Applicability of Transfer Learning with pretrained models to push boundaries with smaller datasets

What we're building today?

Stacking Classical ML Models

• Stacking 2 Deep Neural Nets together

- Stacking
 - Numerical DNN
 - Categorical DNN
 - 4 CNN's

Stacking Classical ML Models

- Simple Implementation
 - sklearn.ensemble.StackingRegressor
 - o sklearn.ensemble.StackingClassifier
- Base estimators / beta models
- Final estimator / meta model

Let's head over to the code to check out the implementation >>>

Fundamental Idea and Decisions

- Data based model selection
 - Same dataset different models / model types
 - Different dataset different models / model types
- Training Process
 - Individual (not trained with final layer)
 - Combined (trained together)
 - Individual + Combined (layer selective training)
- Final Layer dimensions and depth
 - Single
 - Multiple
- Hyperparameter Tuning
 - Individual
 - Combined
- Pre-trained Models
 - Layer selective training (model.trainable = False)
 - Use for high performance dimensionality reduction

Stacking 2 Deep Neural Nets together

Steps to build a simple Stacked DNN

- build network1 any architecture
- build network2 any architecture
- Use tf.keras.layers.concatenate to concat the network1.output
 and network2.output
- Finally, create a single/multiple Dense layers with required dimensions
- use tensorflow functional API to connect the concatenated output of the stacked networks as input to the final dense layer
- use *tf.keras.models.Model* to combine all of them together with inputs from the individual layers and output as the final dense layer
- define optimiser and loss functions and finally compile the model
- model.predict() with the right Input shape

Let's code this!

Example 1: Real Estate Price Prediction [Property Data + Property Images]

A great read : https://arxiv.org/pdf/1609.08399.pdf

https://github.com/emanhamed/Houses-dataset

Numerical + Categorical Data

Frontal View

•	Numericai + Galegoricai Dala		7		0040	20072 205020	100_bedroom.jpg
	Images of costions of the house	1	4	3.0	3343	36372 865200	
•	Images of sections of the house	2	3	4.0	3923	85266 889000	100_frontal.jpg
	 Bedroom 	3	5	5.0	4022	85262 910000	100_kitchen.jpg
	 Bathroom 	4	3	4.0	4116	85266 971226	
	 Kitchen 			100_bedroom.jpg ×	_	100, handigo ×	

df.head(5)

The dataset folder contains 2140 images, 4 images for each house (535 houses)

It contains a text file that contains the metadata of the dataset.

Each row in the file represents the house_number in order. The data has number of bedrooms, number of bathrooms, area of the house, zip code and the price (target)

Houses Dataset

100_bathroom.jpg

Stacking - Numerical DNN + Categorical DNN + 4 CNN's

- Process the data and prepare for building networks
- Build a DNN on Numerical Data
- Build a DNN on Categorical (Label Binarised) Data
- Build 4 CNN's for each part of the property
 - Bathroom
 - Bedroom
 - Kitchen
 - Frontal View
- Concatenate all of them together
- Add a dense layer post concatenation
- Add a final layer to predict the Property Price
- Train the model
- Make a Prediction

Let's head to the code one more time!

Other Ideas and Applications

Materials Science : Experiment Data + Compound Structure

Experiment	Ingredient 1	Ingredient 2	Ingredient 3	Ingredient 4	Processing 1	Processing 2	Processing 3	Property 1	Property 2	Property 3
1	64	42	50	73	19	16	21	42	23	55
2	36	66	32	24	34	44	76	72	31	19
3	50	94	74	42	68	43	95	16	29	45

• Customer Retention : Feedback Text + Call Records

Bennett was very helpful, courteous and punctual for this assignment, which was our company's first foray into Upwork. The completed assignment was well-written, with clear explanations, and no spelling errors, etc. However, the final document was a touch more simplistic/top-level than we expected, given the sum allotted for payment. Overall, I would recommend Bennett for fast-turn jobs. He is very good at providing a solid deliverable to work with and at synthesizing complex information into easily understood copy.

Industry +	Customer Start Date	Close Date	Stage	Fiscal Period	Age	Opportunity Ov
Building Materials	12/9/2015	12/8/2015	Closed Won	Q4-2015	f	Zach Patterson
Computer & Network Security	11/1/2015	10/15/2015	Closed Won	Q4-2015	58	Tonni Bennett
Computer Software	8/14/2015	8/14/2015	Closed Won	Q3-2015	84	Tonni Bennett
Computer Software	11/2/2015	10/30/2015	Closed Won	Q4-2015	93	Tonni Bennett
Computer Software	8/31/2015	8/31/2015	Closed Won	Q3-2015	33	Stuart Maron
Computer Software	12/17/2015	12/16/2015	Closed Won	Q4-2015	63	Tonni Bennett
Computer Software	10/20/2015	9/30/2015	Closed Won	Q3-2015	71	Stuart Maron
Computer Software	9/14/2015	9/14/2015	Closed Won	Q3-2015	10	Stuart Maron
Marketing and Advertising	9/29/2015	9/28/2015	Closed Won	Q3-2015	56	Tonni Bennett
Marketing and Advertising	10/27/2015	10/26/2015	Closed Won	Q4-2015	47	Stuart Maron
Marketing and Advertising	10/1/2015	9/30/2015	Closed Won	Q3-2015	40	Stuart Maron
Marketing and Advertising	1/1/2016	12/14/2015	Closed Won	Q4-2015	11	Zach Patterson
Internet	10/1/2015	9/24/2015	Closed Won	Q3-2015	112	Stuart Maron
Internet	8/21/2015	8/20/2015	Closed Won	Q3-2015	6	Stuart Maron
Internet	1/1/2016	12/14/2015	Closed Won	Q4-2015	126	Tonni Bennett
Software Development & Design	10/14/2015	10/13/2015	Closed Won	Q4-2015	42	Stuart Maron
Software Development & Design	9/30/2015	9/30/2015	Closed Won	Q3-2015	41	Stuart Maron

Hyperparameter Tuning Stacked Models

Bonus!

Let's code a tuner with Ray!

Working with Pretrained Models

Densenet 121

Resent 50

Thanks! Cheers to the love for Python and Data!