1. A function $f:A\to B$ is linear if, $\forall a,b\in\mathbb{R}$, f(ax+b)=af(x)+b. Apply the definition of linear to:

(a)
$$f(x) = 2x$$

(b)
$$f(x) = x^2$$

(c)
$$f(x) = \sum_{i=0}^{\infty} a_i x^i$$

2. A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if, $\forall \epsilon > 0$, $\exists \delta > 0: f(x+\delta) - f(x) < \epsilon$. Apply the definition of continuous to:

(a)
$$f(x) = |2x - 1|$$

(b)
$$f(x) = x^{-1}$$

(c)
$$f(x) = \sum_{n=0}^{\infty} \cos(b^n \pi x)$$

- 3. A relation \sim : $A \times A$ is a *chain* if, $\forall x, y \in A, x \sim y \lor y \sim x$ Apply the definition of chain to:
 - (a) $x \sim y$, : $x, y \in \mathbb{R} \land |x| \le |y|$
 - (b) $S \sim T \iff S \in P(T)$, where S, T are sets and P() denotes power set.
 - (c) $\sigma_1 \sim \sigma_2 \iff \sigma_1, \sigma_2 : A \to A$ are functions and $\sigma_1 = \tau \circ \sigma_2$ for some function τ .
- 4. (a) Prove that there is no smallest positive rational number greater than 0.
 - (b) Prove that for every positive real number greater than 0 there is a smaller positive rational number.
 - (c) Prove that there is no smallest positive real number greater than 0.

5. Fermat's Last theorem is a famous theorem in Math that was unproven for 200 years. The theorem says $\forall n>2$, $a,b,c\in\mathbb{N} \implies a^n+b^n\neq c^n$. Another way to state this is $a^n+b^n=c^n$ has no integer solutions for n larger than 2. Use this theorem to prove that $\sqrt[n]{2}$ is irrational for n larger than 2.