(5) Let (S, \preceq) be a finite poset. Let G be the directed graph of the relation \preceq and let A be the adjacency matrix of G. Let I be the identity matrix of the same size as A. True or false: some positive power of A-I must be zero. If true, justify it. Otherwise give an example where no positive power of A-I is zero.

subtracting any adjacency matrix A by I is simply the act of removing the reflexive edges from G, which can be treated as a conversion of (S, \preceq) to (S, \prec) . Since the graph of (S, \prec) is finite and asymetric, there is a maximum length path which exists. Therefore after a certain power A-I is zero.