RICERCA OPERATIVA

Esercizi da temi d'esame

	COGNOME:	Questo foglio deve
Scrivere subito!	NOME:	va consegnato con
	MATRICOLA:	 l'elaborato

• Un mulino produce due tipi di semola normale e integrale a partire da tre tipi di granaglie: A, B e C. Per produrre un quintale di semola normale, sono necessari 0.5 quintali di granaglia A, 0.4 di granaglia B e 0.3 di granaglia C; per un quintale di semola integrale, sono necessari 0.3 quintali di granaglia A, 0.7 di B e 0.4 di C. Il mulino si serve da tre fornitori. Ciascun fornitore mette a disposizione un lotto di acquisto, le cui caratteristiche sono riportate nella seguente tabella:

Lotto	Granaglia A	Granaglia B	Granaglia C	Costo	% impurità
1	3 q	5 q	8 q	100 €	1.0 %
2	4 q	9 q	3 q	140 €	2.0 %
3	7 q	2 q	2 q	120 €	1.5 %

Il mulino dispone di 10 000 € per approvvigionarsi di granaglie e vuole massimizzare il numero di quintali di semola prodotta complessivamente, considerando che:

- si possono acquistare al massimo 5 unità di lotto 3;
- la semola normale deve essere almeno il doppio della semola integrale e non più del quadruplo;
- le granaglie del lotto 1 e del lotto 2 sono incompatibili e pertanto non possono essere contemporaneamente acquistate;
- l'impurità media delle scorte di granaglia di tipo A deve essere inferiore allo 1.6%.
- (*1) Una società di navigazione effettua un servizio di trasporto merci su tre rotte 1, 2 e 3 dove la domanda è rispettivamente di 20000, 5000 e 15000 tonnellate. La società usa per questo servizio tre tipi di nave (A, B e C) e dispone di 100 navi di tipo A, 80 navi di tipo B e 150 navi di tipo C. Ciascuna nave ha capacità e costo di trasporto unitario che dipendono dal tipo e dalla rotta, come riassunto nella seguente tabella:

TIPO NAVE	ROTTA	Capacità massima	Costo €/tonnellata	
A	1	150	60	
A	2	120	30	
A	3	non impiegabile		
В	1	100	45	
В	2	80	25	
В	3	90	30	
С	1	non impiegabile		
С	2	60	50	
С	3	140	35	

Si scriva il modello di programmazione lineare per determinare il piano di trasporto che soddisfa la domanda sulle tre rotte minimizzando i costi complessivi, tenendo conto che:

- sulla rotta 1 ci possono essere al massimo 10 navi di tipo A;

- sulla rotta 2 può effettuare servizio un solo tipo di nave;
- se le navi di tipo B sono utilizzate sulla rotta 2, allora queste non possono essere utilizzate né sulla rotta 1, né sulla rotta 3.
- (*2) Si risolva il seguente problema di programmazione lineare con il metodo del simplesso, a partire dalla base relativa alle variabili x_1 , x_2 , x_3 e applicando la regola di Bland:

max
$$x_1 + 5x_2$$

s.t. $x_1 \le 5$
 $x_1 + x_2 \ge -1$
 $x_2 + 2x_3 = -2$
 $x_1 \ge 0 \quad x_2 \le 0 \quad x_3 \ge 0$

• Si consideri il seguente grafo:

- a. si scelga un algoritmo per determinare i cammini minimi dal nodo 1 verso tutti gli altri nodi e si motivi la scelta;
- b. si applichi l'algoritmo scelto (riportare e giustificare i passi dell'algoritmo in una tabella);
- c. L'algoritmo ha individuato un ciclo negativo? Giustificare la risposta.
- d. Riportare l'albero e il grafo dei cammini minimi, oppure il ciclo negativo (in ogni caso, si descriva il procedimento utilizzato).
- Si consideri il seguente grafo:

- a. si scelga il miglior algoritmo tra quelli presentati per determinare i cammini minimi dal nodo A verso tutti gli altri nodi e si motivi la scelta;
- b. si applichi l'algoritmo scelto (riportare e giustificare i passi dell'algoritmo in una tabella);
- c. si disegni l'albero e il grafo dei cammini minimi, descrivendo il procedimento usato.

• Si consideri il seguente grafo:

- a. si scelga il miglior algoritmo tra quelli presentati per determinare i cammini minimi CON MASSIMO 4 ARCHI dal nodo A verso tutti gli altri nodi e si motivi la scelta;
- b. si applichi l'algoritmo scelto (riportare e giustificare i passi dell'algoritmo in una tabella);
- c. si ricavi un cammino con al più 4 archi da A verso E e un cammino minimo con al più 3 archida A a F: DESCRIVERE IL PROCEDIMENTO.
- d. è possibile, ricavare direttamente dalla tabella ottenuta albero e/o grafo dei cammini minimi? Giustificare la risposta.
- Si consideri il seguente grafo:

- a. si scelga un algoritmo appropriato e si motivi la scelta;
- b. si calcolino i cammini minimi dal nodo A verso tutti gli altri nodi (i passi dell'algoritmo vanno riportati in una tabella e giustificati);
- c. si disegni l'albero e il grafo dei cammini minimi, descrivendo il procedimento usato.
- (*3) Si vogliono determinare i cammini minimi composti da al più 4 archi sul seguente grafo:

- si scelga un algoritmo appropriato e si motivi la scelta;
- si calcolino i cammini minimi con al più quattro archi dal nodo 1 verso tutti gli altri nodi (<u>i</u> passi dell'algoritmo vanno riportati in una tabella e giustificati);
- si ricavi un cammino minimo di al più quattro archi da 1 a 7, descrivendo il procedimento adottato.

• Enunciare le condizioni di complementarietà primale-duale in generale. Applicare tali condizioni per dimostrare che (x1, x2, x3) = (1, 4, 0) è soluzione ottima del seguente problema:

• Enunciare le condizioni di complementarietà primale-duale e applicarle per dimostrare che $(x_1,x_2,x_3) = (3/2, 9/4, 0)$ è soluzione ottima del seguente problema:

$$\begin{array}{rcl}
\min & -2 x_1 & + & x_2 - & x_3 \\
s.t. & -2 x_1 & - & x_2 + & x_3 & \leq & 2 \\
x_1 & + 2 x_2 + 3 x_3 & = & 6 \\
-2 x_1 & & \geq -3 \\
x_1 \geq 0 & x_2 \geq 0 & x_3 \leq 0
\end{array}$$

• (*4) Enunciare le condizioni di complementarietà primale-duale e applicarle per dimostrare che $(x_1,x_2,x_3) = (0,4,8)$ è soluzione ottima del seguente problema:

• A) enunciare le condizioni di complementarietà primale-duale in generale e B) applicare tali condizioni per dimostrare che(x_1 , x_2 , x_3) = (1, 0, -2) è soluzione ottima del seguente problema:

- Come si riconoscono sul tableau del simplesso le condizioni di illimitatezza per un problema di minimo? Giustificare la risposta.
- Si enunci e si giustifichi la regola adottata dal metodo del simplesso per la selezione della variabile uscente nelle operazioni di cambio base.
- Si discuta la complessità computazionale dell'algoritmo di Bellman-Ford.
- (*5) Si discuta la complessità computazionale dell'algoritmo di Dijkstra per il problema del cammino minimo.

- Si discuta la complessità computazionale dell'algoritmo del simplesso.
- Si consideri il seguente tableau del simplesso:

	x_1	x_2	x_3		x_5	b
- Z	0	1/2	0	1	0	9
<i>x</i> ₃ <i>x</i> ₅ <i>x</i> ₁	0	1/2	1	2	0	0
<i>x</i> ₅	0	0	0	-1	1	2
x_1	1	1/2 1/2 0 -1/2	0	1	0	1

Indicare, senza svolgere operazioni di pivot, 3 basi ottime (nei termini delle variabili che le compongono) del corrispondente problema di programmazione lineare.

• Si consideri il seguente tableau del simplesso:

	x_1	x_2	x_3	χ_4	X 5	<u>b</u>
- Z	0	-1/3	0	-1	0	9
<i>x</i> ₃	0	1/13	1	2	0	0
<i>X</i> 5	0	0	0	-1	1	4/3
x_1	1	1/17	0	1	0	0

Rispondere alle seguenti domande, GIUSTIFICARE TUTTE LE RISPOSTE:

- (a) Si può individuare una soluzione di base? Quale? È ottima?
- (b) Quali sono i possibili cambi base?
- (c) Quale sarà il cambio base usando la regola di Bland e ordinando le variabili secondo le colonne?
- (d) Stabilire, SENZA EFFETTUARE LE OPERAZIONI DI PIVOT, quale sarà il valore della funzione obiettivo alla fine della prossima iterazione del simplesso usando la reola di Bland?
- (e) Alla fine della prossima iterazione sarà cambiata la base corrente: sarà cambiato anche il vertice del poliedro associato alla nuova base?
- Enunciare e giustificare le condizioni di ottimalità nel metodo del simplesso.
- (*6) Si consideri il seguente tableau del simplesso:

	x_1	x_2	x_3	x_4	<i>X</i> 5	b
- Z	-12	0	0	0	-147	-239
x_3	75	0	1	0	-12	0
<i>X</i> 4	46	0	0	1	1	4/3
x_2	13	1	0	0	0	0

Riportare il tableau sul foglio e rispondere (NON su questo foglio) alle seguenti domande:

- (a) Cerchiare i possibili elementi pivot e dire su quale elemento si farà pivot alla prossima iterazione del simplesso usando la regola di Bland?
- (b) Stabilire, SENZA EFFETTUARE LE OPERAZIONI DI PIVOT, quale sarà il valore della funzione obiettivo alla fine della prossima iterazione del simplesso. GIUSTIFICARE LA RISPOSTA!
- (c) Alla fine della prossima iterazione sarà cambiata la base corrente: sarà cambiato anche il vertice del poliedro associato alla nuova base? GIUSTIFICARE LA RISPOSTA!