Online POMDP Methods

Numerical Approximations

(approximately solve original problem)

Numerical Approximations

(approximately solve original problem)

Numerical Approximations

(approximately solve original problem)

Numerical Approximations

(approximately solve original problem)

Offline

Online

Previously

Numerical Approximations

(approximately solve original problem)

Offline

Previously

Online

Formulation Approximations

(solve a slightly different problem)

Numerical Approximations

(approximately solve original problem)

Offline

Previously

Online

Formulation Approximations

(solve a slightly different problem)

Last Time

QMDP
$$\pi_{QMDP}(5,a)$$
 = argmax $E[Q_{MDP}(5,a)]$
 $(E. \pi_{CE}(b) = \pi_{S}(mode(b))$

$$\pi_{CE}(b) = \pi_s(\text{mode}(b))$$

Numerical Approximations

(approximately solve original problem)

Offline

Previously

Online

Today!

Formulation Approximations

(solve a slightly different problem)

Last Time

POMDP Sense-Plan-Act Loop

POMDP Sense-Plan-Act Loop

POMDP Sense-Plan-Act Loop

Monte Carlo Tree Search (MCTS/UCT)

Search

$$Q(s,a) + c\sqrt{\frac{\log N(s)}{N(s,a)}}$$

low N(s,a)/N(s) = high bonus start with $c=2(\bar{V}-\underline{V})$

Expansion

Rollout

Backup

How should we adapt MCTS for POMDPs?

How should we adapt MCTS for POMDPs?

MCTS on Histories

$$h_{+}=(b_{0},a_{1}o_{1},...a_{t_{1}}o_{t})$$
 $\rightarrow h_{t+1}$
 $s'_{+}o_{1}r \leftarrow G(s,a)$
 $A \subset TS$ on histories

 $A \subset TS$ on histories

DESPOT

DESPOT

DeterminizedScenarios

DESPOT

- DeterminizedScenarios
- Guided by Lower and Upper Bounds

POMCP

POMCP

POMCPOW

POMCP

POMCPOW

POMCP

POMCPOW

 $\mathbf{M_P}$ = Particle belief MDP approximation of POMDP \mathbf{P}

 $\mathbf{M_P}$ = Particle belief MDP approximation of POMDP \mathbf{P}

For any $\epsilon > 0$ and $\delta > 0$, if C (number of particles) is high enough,

 $\mathbf{M_P}$ = Particle belief MDP approximation of POMDP \mathbf{P}

For any $\epsilon > 0$ and $\delta > 0$, if C (number of particles) is high enough,

$$|Q_{\mathbf{P}}^*(b,a) - Q_{\mathbf{M}_{\mathbf{P}}}^*(\overline{b},a)| \leq \epsilon \quad ext{w.p. } 1 - \delta$$

 $\mathbf{M_P}$ = Particle belief MDP approximation of POMDP \mathbf{P}

For any $\epsilon > 0$ and $\delta > 0$, if C (number of particles) is high enough,

$$|Q_{\mathbf{P}}^*(b,a) - Q_{\mathbf{M}_{\mathbf{P}}}^*(\overline{b},a)| \leq \epsilon \quad ext{w.p. } 1 - \delta$$

Solve the Particle Belief MDP to make a decision in the POMDP

 $\mathbf{M_P}$ = Particle belief MDP approximation of POMDP \mathbf{P}

For any $\epsilon > 0$ and $\delta > 0$, if C (number of particles) is high enough,

$$|Q_{\mathbf{P}}^*(b,a) - Q_{\mathbf{M}_{\mathbf{P}}}^*(\overline{b},a)| \leq \epsilon \quad ext{w.p. } 1 - \delta$$

Solve the Particle Belief MDP to make a decision in the POMDP

DESPOT- α

Continuous Action Spaces

Continuous Action Spaces BOMCP

Bayesian Optimized Action Branching

Continuous Action Spaces BOMCP

Bayesian Optimized Action Branching

Figure 2: Wind Map. Figure shows wind map for Altamont Pass, CA at 100m altitude. The colors represent the average annual wind speed in m/s.

Continuous Action Spaces BOMCP

Bayesian Optimized Action Branching

Figure 2: Wind Map. Figure shows wind map for Altamont Pass, CA at 100m altitude. The colors represent the average annual wind speed in m/s.

Algorithm	Queries	Score	Time (seconds
POMCPOW	10	15708 ± 229	2.25 ± 0.0
	25	16234 ± 217	$4.80 \pm 0.0'$
	50	16374 ± 212	6.27 ± 0.08
	100	16018 ± 262	11.98 ± 0.0
	200	15787 ± 233	20.67 ± 0.09
ВОМСР	10	18095 ± 183	2.55 ± 0.03
	25	18154 ± 158	5.21 ± 0.0
	50	18015 ± 163	6.71 ± 0.06
	100	18225 ± 119	13.39 ± 0.0
	200	18113 ± 157	25.14 ± 0.08
Expert	_	8130 ± 51	-

Voronoi Progressive Widening

Online Tree Search Planner

Voronoi Progressive Widening

Voronoi Progressive Widening

Online Tree Search Planner

Voronoi Progressive Widening

