

Análise Complexa e Equações Diferenciais 1º Semestre 2016/2017

1º Teste — Versão A

(CURSOS: MEBIOL, MEQ)

5 de Novembro de 2016, 11h

- 1. Considere a função real definida em \mathbb{R}^2 por $u(x,y)=x\alpha(y)-x^3y$, em que $\alpha:\mathbb{R}\to\mathbb{R}$ é uma função de classe $C^2(\mathbb{R})$.
 - (a) Determine a forma geral de $\alpha(y)$ de modo a que u seja a parte real duma função holomorfa $f:\mathbb{C}\to\mathbb{C}.$
 - (b) Considerando $\alpha(y)=y^3$, determine a função f, holomorfa em $\mathbb C$, tal que $\mathrm{Re}(f)=u$ e $f(\mathrm i)=0$.
 - (c) Sendo f a função da alínea anterior, calcule o valor de

$$\oint_{|z|=2016} \frac{f(z) \operatorname{sen} z}{(z-\mathrm{i})^2} dz ,$$

onde a curva é percorrida uma vez no sentido directo.

Resolução:

[1,0 val.]

[1,0 val.]

[1,0 val.]

(a) Para qualquer função $\alpha:\mathbb{R}\to\mathbb{R}$, de classe $C^2(\mathbb{R})$, a função u(x,y) é de classe $C^2(\mathbb{R}^2)$ em todo o seu domínio \mathbb{R}^2 , o qual é obviamente simplesmente conexo. Então, nesse caso, é condição necessária e suficiente para que u seja a parte real duma função holomorfa $f:\mathbb{C}\to\mathbb{C}$ que u seja harmónica, ou seja, que $\Delta u=0$. Portanto:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \forall (x, y) \in \mathbb{R}^2 \quad \Leftrightarrow \quad x(\alpha''(y) - 6y) = 0,$$

concluindo-se, para que a igualdade se verifique para todo o $(x,y) \in \mathbb{R}^2$, que só poderá ser $\alpha''(y) = 6y$, ou seja, $\alpha'(y) = 3y^2 + A$ e $\alpha(y) = y^3 + Ay + B$, com $A, B \in \mathbb{R}$ quaisquer.

(b) Com $\alpha(y)=y^3$ tem-se $u(x,y)=xy^3-x^3y$. A função harmónica conjugada de u(x,y), que designaremos por v(x,y), representa a parte imaginária de f de modo a que seja uma função holomorfa em todo o $\mathbb C$. Por serem, respectivamente, a parte real e imaginária de uma função inteira, u e v terão então de verificar as equações de Cauchy-Riemann em $\mathbb C$. Assim, para todo (x,y), tem-se que

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \iff \frac{\partial v}{\partial y} = y^3 - 3x^2y \iff v(x,y) = \frac{y^4}{4} - \frac{3}{2}x^2y^2 + c(x).$$

Substituindo na outra equação

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \Leftrightarrow -3xy^2 + c'(x) = -3xy^2 + x^3 \Leftrightarrow c'(x) = x^3 \Leftrightarrow c(x) = \frac{x^4}{4} + k,$$

com $k \in \mathbb{R}$. Pelo que se conclui que a forma geral do conjugado harmónico de u é

$$v(x,y) = \frac{y^4}{4} - \frac{3}{2}x^2y^2 + \frac{x^4}{4} + k, \quad k \in \mathbb{R}.$$

Finalmente, para determinar a constante k, observa-se que $f(\mathbf{i})=0$ implica que v(0,1)=0 pelo que $k=-\frac{1}{4}$. Então

$$f(z) = f(x + iy) = (xy^3 - x^3y) + i\left(\frac{y^4}{4} - \frac{3}{2}x^2y^2 + \frac{x^4}{4} - \frac{1}{4}\right).$$

- (c) Atendendo a que:
 - a curva $\gamma = \{|z| = 2016 : z \in \mathbb{C}\}$ percorrida uma vez, é uma curva de Jordan;
 - $i \in int \gamma$;
 - as funções f(z) e sen z são inteiras, donde o produto $f(z) \sin z$ também o é;

estamos nas condições de aplicar a fórmula integral de Cauchy para a primeira derivada, pelo que temos

$$\oint_{|z|=2016} \frac{f(z) \operatorname{sen} z}{(z-\mathrm{i})^2} dz = 2\pi \mathrm{i} (f(z) \operatorname{sen} z)'_{|z=\mathrm{i}} = 2\pi \mathrm{i} \left(f'(\mathrm{i}) \operatorname{sen} \mathrm{i} + f(\mathrm{i}) \operatorname{cos} \mathrm{i} \right)$$

$$= -2\pi \left(\frac{\partial u}{\partial x} + \mathrm{i} \frac{\partial v}{\partial x} \right)_{|z=\mathrm{i}} \operatorname{senh} 1,$$

porque, pela alínea anterior, $f(\mathbf{i})=0$ e $\sin\mathbf{i}=\mathbf{i} \sinh 1$. Observe-se que não era sequer necessário ter obtido a função harmónica conjugada v, na alínea b) anterior, visto que pelas equações de Cauchy-Riemann a derivada complexa pode ser obtida exclusivamente a partir das derivadas parciais de u

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = (y^3 - 3x^2y) - i(3xy^2 - x^3),$$

donde f'(i) = 1 e assim

$$\oint_{|z|=2016} \frac{f(z) \sin z}{(z-i)^2} dz = -2\pi \sinh 1.$$

- 2. Seja $g: \mathbb{C} \to \mathbb{C}$ definida por $g(x+\mathrm{i}y)=2xy+\mathrm{i}(x^2-y^2)$
- [1,0 val.] (a) Determine, justificando, se g tem primitiva em \mathbb{C} .
 - (b) Calcule $\int_{\gamma}g(z)\,dz$, em que γ é o segmento de recta de 0 a $-1+\mathrm{i}.$

Resolução:

[1,0 val.]

(a) Se g tivesse primitiva em \mathbb{C} , g seria necessariamente inteira, ou seja, holomorfa em todo o \mathbb{C} . De facto, essa primitiva teria derivada - igual a g - em todos os pontos de \mathbb{C} , portanto seria inteira e, consequentemente, infinitamente diferenciável. Donde a função original g teria também que ser infinitamente diferenciável em todo o \mathbb{C} .

Mas, pelas equações de Cauchy-Riemann para g, tem-se

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases} \Leftrightarrow \begin{cases} 2y = -2y \\ 2x = -2x, \end{cases}$$

donde se verifica que são satisfeitas apenas no ponto (x,y)=(0,0). Conclui-se assim que g não é holomorfa em ponto nenhum e portanto não tem primitiva em \mathbb{C} .

(b) Não havendo primitiva, o integral de g só pode ser calculado pela definição. Uma parametrização para o segmento de recta de 0 a $-1+\mathrm{i}$ é $\gamma(t)=-t+\mathrm{i}t$, com $t\in[0,1]$. Assim,

$$\int_{\gamma} g(z) dz = \int_{0}^{1} g(\gamma(t))\gamma'(t)dt = \int_{0}^{1} (-2t^{2})(-1+i)dt = 2(1-i)\int_{0}^{1} t^{2}dt = \frac{2}{3}(1-i).$$

3. Considere a função complexa f definida no seu domínio por

$$f(z) = \cos(z - i) + \frac{1}{z(z - 2i)}$$

- [1,0 val.] (a) Determine todos os desenvolvimentos possíveis em séries de potências de (z-i) indicando cada uma das regiões onde esses desenvolvimentos são válidos.
 - (b) Utilize os resultados da alínea anterior para obter os valores de

$$\oint_{|z-\mathbf{i}|=\frac{1}{2}} \frac{f(z)}{(z-\mathbf{i})^3} \, dz \qquad \text{e} \qquad \oint_{|z-\mathbf{i}|=\frac{3}{2}} \frac{f(z)}{(z-\mathbf{i})^3} \, dz.$$

[1,0 val.] (c) Classifique as singularidades da função g definida por $g(z)=\frac{f(z)}{(z-2\mathrm{i})^4}$. Justifique a sua resposta.

Resolução:

[0,5 val.]

(a) Escreva-se $f(z) = f_1(z) + f_2(z)$, com

$$f_1(z) = \cos(z - i), \quad f_2(z) = \frac{1}{z(z - 2i)}.$$

A função f_1 é holomorfa em todo o \mathbb{C} , pelo que tem um único desenvolvimento em potências de $(z-\mathrm{i})$ válido para todo o $z\in\mathbb{C}$: a sua série de Taylor centrada em $z_0=\mathrm{i}$

$$\cos(z - i) = \sum_{n=0}^{\infty} (-1)^n \frac{(z - i)^{2n}}{(2n)!}.$$

Já a função f_2 tem singularidades em 0 e 2i, ambas à distância unitária do centro de desenvolvimento em série de potências, $z_0=i$. Assim, teremos uma série de Taylor de f_2 centrada em $z_0=i$, com raio de convergência 1, ou seja, para |z-i|<1, onde f_2 é holomorfa; e teremos uma série de Laurent no anel $1<|z-i|<\infty$, a região para além das singularidades 0 e 2i.

Para escrever estas duas séries, começamos por simplificar f_2 , como soma de fracções elementares

$$\frac{1}{z(z-2i)} = \frac{1/2i}{z-2i} - \frac{1/2i}{z},$$

e representam-se agora $1/z-2{\rm i}$ e 1/z como séries geométricas, de razão adequada. Assim, na região $|z-{\rm i}|<1$ faz-se

$$\frac{1/2i}{z-2i} = \frac{1}{2i} \frac{1}{-i + (z-i)} = \frac{1}{2i} \frac{1}{1 - \left(\frac{z-i}{i}\right)} = \frac{1}{2i} \sum_{n=0}^{\infty} \frac{(z-i)^n}{i^n},$$

a qual converge em $\left|\frac{z-\mathrm{i}}{\mathrm{i}}\right| < 1 \Leftrightarrow |z-\mathrm{i}| < 1$, e

$$-\frac{1/2i}{z} = -\frac{1}{2i} \frac{1}{i + (z - i)} = \frac{1}{2i} \frac{1}{1 - \left(-\frac{z - i}{i}\right)} = \frac{1}{2i} \sum_{n=0}^{\infty} (-1)^n \frac{(z - i)^n}{i^n},$$

que converge também em $\left|-\frac{z-\mathrm{i}}{\mathrm{i}}\right|<1\Leftrightarrow |z-\mathrm{i}|<1$. Portanto, a série de Taylor de f centrada em $z_0=\mathrm{i}$, válida em $|z-\mathrm{i}|<1$ é dada por:

$$f(z) = \sum_{n=0}^{\infty} (-1)^n \frac{(z-\mathrm{i})^{2n}}{(2n)!} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(z-\mathrm{i})^n}{\mathrm{i}^n} + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{(z-\mathrm{i})^n}{\mathrm{i}^n}$$
$$= \sum_{n=0}^{\infty} \left(\frac{(-1)^n}{(2n)!} + (-1)^n \right) (z-\mathrm{i})^{2n}.$$

Na região $|z-{\bf i}|>1$ temos agora apenas que escrever $\frac{1}{z(z-2{\bf i})}=\frac{1/2{\bf i}}{z-2{\bf i}}-\frac{1/2{\bf i}}{z}$ como série de Laurent

$$\frac{1/2i}{z-2i} = \frac{1}{2i} \frac{1}{(z-i)-i} = \frac{1}{2i(z-i)} \frac{1}{1-\left(\frac{i}{z-i}\right)} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{i^{n-1}}{(z-i)^{n+1}},$$

a qual converge em $\left| \frac{\mathrm{i}}{z-\mathrm{i}} \right| < 1 \Leftrightarrow |z-\mathrm{i}| > 1$, e

$$-\frac{1/2i}{z} = -\frac{1}{2i}\frac{1}{(z-i)+i} = -\frac{1}{2i(z-i)}\frac{1}{1-\left(-\frac{i}{z-i}\right)} = \frac{1}{2}\sum_{n=0}^{\infty}(-1)^{n-1}\frac{i^{n-1}}{(z-i)^{n+1}},$$

que converge também em $\left|-\frac{\mathrm{i}}{z-\mathrm{i}}\right| < 1 \Leftrightarrow |z-\mathrm{i}| > 1$. Portanto, a série de Laurent de f centrada em $z_0 = \mathrm{i}$, válida em $|z-\mathrm{i}| > 1$ é dada por:

$$f(z) = \sum_{n=0}^{\infty} (-1)^n \frac{(z-\mathrm{i})^{2n}}{(2n)!} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{\mathrm{i}^{n-1}}{(z-\mathrm{i})^{n+1}} + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^{n-1} \frac{\mathrm{i}^{n-1}}{(z-\mathrm{i})^{n+1}}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(z-\mathrm{i})^{2n+2}} + \sum_{n=0}^{\infty} (-1)^n \frac{(z-\mathrm{i})^{2n}}{(2n)!}.$$

(b) Ambos os integrais correspondem ao termo a_2 da parte regular duma série de Laurent em potências de (z-i), residindo a diferença apenas no facto dos caminhos, num e noutro caso, estarem abaixo ou acima do raio 1.

No caso da curva $|z-{\bf i}|=1/2$, está-se abaixo do raio 1, pelo que a série em questão é a de Taylor, válida na bola $|z-{\bf i}|<1$ e como nessa região f até é holomorfa, este integral corresponde mesmo à segunda derivada $f''({\bf i})$. Assim,

$$\oint_{|z-\mathbf{i}|=\frac{1}{2}} \frac{f(z)}{(z-\mathbf{i})^3} dz = \frac{2\pi \mathbf{i}}{2!} f''(\mathbf{i}) = 2\pi \mathbf{i} a_2.$$

Portanto, examinando a série de Taylor determinada na alínea anterior em $|z-{\bf i}|<1$ observa-se que o coeficiente a_2 , correspondente à potência $(z-{\bf i})^2$, se obtém para n=1 valendo $a_2=-\frac{1}{2!}-1=-\frac{3}{2}$ e assim

$$\oint_{|z-\mathbf{i}| = \frac{1}{2}} \frac{f(z)}{(z-\mathbf{i})^3} dz = -3\pi \mathbf{i}.$$

Já no caso da curva $|z-{\rm i}|=3/2$, está-se acima do raio 1, pelo que a série em questão é a de Laurent, válida na bola $|z-{\rm i}|>1$. Aí o coeficiente a_2 da parte regular da série não pode ser relacionado com derivadas de f, mas o integral é na mesma dado por $2\pi {\rm i}a_2$. De novo, para a potência $(z-{\rm i})^2$ tem-se n=1 na série de Laurent em $|z-{\rm i}|>1$, da alínea anterior, valendo $a_2=-\frac{1}{2!}=-\frac{1}{2}$ e assim

$$\oint_{|z-i|=\frac{3}{2}} \frac{f(z)}{(z-i)^3} \, dz = -\pi i.$$

(c) Para determinar o valor deste integral aplicamos o teorema dos resíduos, determinando as singularidades isoladas de f no interior da circunferência de raio 4 centrada na origem. Ora, pelo estudo das singularidades de f realizado na alínea anterior, conclui-se que apenas $z_0=0,\pi {\rm i},-\pi {\rm i}$ se encontram no interior da curva. Os correspondentes resíduos também já foram determinados na alínea anterior, sendo de salientar que em $z_0=0$ o resíduo é nulo apesar de se tratar duma singularidade essencial de f. Assim,

$$\oint_{|z|=4} f(z)dz = 2\pi i \left(\operatorname{Res}(f, -\pi i) + \operatorname{Res}(f, 0) + \operatorname{Res}(f, \pi i) \right) =
= 2\pi i \left(i \frac{\operatorname{senh}(-\pi)}{2} + 0 + i \frac{\operatorname{senh}(\pi)}{2} \right) = 0.$$

[0,8 val.] 4. (a) Mostre que

$$\int_0^{2\pi} \frac{\cos \theta}{2 + \cos \theta} \, d\theta = -i \oint_{|z|=1} \frac{z^2 + 1}{z(z^2 + 4z + 1)} dz.$$

[0,7 val.] (b) Use a alínea anterior para calcular o valor do integral

$$\int_0^{2\pi} \frac{\cos \theta}{2 + \cos \theta} \, d\theta.$$

Resolução:

(a) Usando a fórmula de Euler temos, para $\theta \in \mathbb{R}$,

$$\cos(\theta) = \frac{e^{\mathrm{i}\theta} + e^{-\mathrm{i}\theta}}{2},$$

donde

$$\int_0^{2\pi} \frac{\cos(\theta)}{2 + \cos(\theta)} d\theta = \int_0^{2\pi} \frac{\frac{e^{\mathrm{i}\theta} + e^{-\mathrm{i}\theta}}{2}}{2 + \frac{e^{\mathrm{i}\theta} + e^{-\mathrm{i}\theta}}{2}} d\theta = \int_0^{2\pi} \frac{\frac{e^{\mathrm{i}\theta} + e^{-\mathrm{i}\theta}}{2}}{2 + \frac{e^{\mathrm{i}\theta} + e^{-\mathrm{i}\theta}}{2}} \frac{\mathrm{i}e^{\mathrm{i}\theta}}{\mathrm{i}e^{\mathrm{i}\theta}} d\theta.$$

A função $e^{\mathrm{i}\theta}$, com $\theta\in[0,2\pi]$ pode ser interpretada como uma parametrização da circunferência de raio 1 centrada na origem, percorrida uma vez no sentido positivo, e desse modo

o integral real pode também assim ser interpretado como o integral complexo $\oint_{|z|=1} f(z)dz$, da função

$$f(z) = \frac{\frac{z + \frac{1}{z}}{2}}{2 + \frac{z + \frac{1}{z}}{2}} \frac{1}{iz} = -i \frac{z^2 + 1}{z(z^2 + 4z + 1)}.$$

Portanto,

$$\int_0^{2\pi} \frac{\cos \theta}{2 + \cos \theta} \, d\theta = -i \oint_{|z|=1} \frac{z^2 + 1}{z(z^2 + 4z + 1)} dz.$$

(b) Basta então aplicar o teorema dos resíduos (ou alternativamente, a fórmula integral de Cauchy) ao cálculo do integral em torno da circunferência unitária em torno da origem. Para isso, começa-se por observar, usando a fórmula resolvente para o polinómio de segundo grau no denominador, que as singularidades desta função f são z=0 e $z=-2\pm\sqrt{3}$. Obviamente só $z_0=0$ e $z_0=-2+\sqrt{3}$ interessam visto serem as únicas que estão situadas no interior da circunferência unitária de integração. O denominador da função pode portanto ser factorizado como:

$$f(z) = \frac{z^2 + 1}{z(z + 2 + \sqrt{3})(z + 2 - \sqrt{3})},$$

e quer-se, deste modo, determinar o valor do integral

$$-i \oint_{|z|=1} \frac{z^2 + 1}{z(z+2+\sqrt{3})(z+2-\sqrt{3})} dz.$$

Os pontos $z_0=0$ e $z_0=-2+\sqrt{3}$ são claramente pólos simples, portanto usando o teorema dos resíduos ou a fórmula integral de Cauchy, tem-se

$$\begin{split} & \int_0^{2\pi} \frac{\cos \theta}{2 + \cos \theta} \, d\theta = -\mathrm{i} \oint_{|z|=1} \frac{z^2 + 1}{z(z + 2 + \sqrt{3})(z + 2 - \sqrt{3})} dz \\ & = 2\pi \left[\frac{z^2 + 1}{(z + 2 + \sqrt{3})(z + 2 - \sqrt{3})}_{|z=0} + \frac{z^2 + 1}{z(z + 2 + \sqrt{3})}_{|z=-2 + \sqrt{3}} \right] = 2\pi \left(1 - \frac{2}{\sqrt{3}} \right). \end{split}$$

[1,0 val.] 5. Suponha que f e g são funções inteiras tais que f(x+i0)=g(x+i0), para todo o $x\in[-1,1]$. Mostre que, necessariamente, f(z)=g(z), para todo o $z\in\mathbb{C}$.

Resolução:

Como estamos a assumir que f e g são ambas inteiras, então são válidos os desenvolvimentos em série de MacLaurin das duas funções, com raio de convergência infinito, ou seja, para todo o $z\in\mathbb{C}$ tem-se

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n$$
 e $g(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} z^n$.

Basta, portanto, mostrar que todas as derivadas de f e g na origem são iguais, para concluir que as suas séries de MacLaurin serão iguais e, consequentemente, as funções em todo o $z \in \mathbb{C}$.

Mas, por hipótese, temos que f(x+i0)=g(x+i0) num intervalo em torno de x=0 e as derivadas (complexas) de f e g na origem podem ser obtidas apenas com recurso a derivadas

parciais em x, donde

$$f(0) = g(0), \qquad f'(0) = \frac{\partial f}{\partial x}(0) = \frac{\partial u}{\partial x}(0,0) + i\frac{\partial v}{\partial x}(0,0) = \frac{\partial g}{\partial x}(0) = g'(0),$$
$$f''(0) = \frac{\partial^2 f}{\partial x^2}(0) = \frac{\partial^2 u}{\partial x^2}(0,0) + i\frac{\partial^2 v}{\partial x^2}(0,0) = \frac{\partial^2 g}{\partial x^2}(0) = g''(0),$$

e para qualquer n,

$$f^{(n)}(0) = \frac{\partial^n f}{\partial x^n}(0) = \frac{\partial^n u}{\partial x^n}(0,0) + i\frac{\partial^n v}{\partial x^n}(0,0) = \frac{\partial^n g}{\partial x^n}(0) = g^{(n)}(0).$$

Concluimos assim que todas as derivadas de f e g coincidem na origem, pelo que as suas séries de MacLaurin são iguais e portanto as próprias funções também.