

AD-A110 137

MITRE CORP MCLEAN VA METREK DIV  
OVERVIEW OF THE O'HARE RUNWAY CONFIGURATION MANAGEMENT SYSTEM, (U)  
SEP 81 R L FAIN  
MTR-81W235

F/6 17/7

DTFA01-81-C-10001

NL

UNCLASSIFIED

FAA-EM-82-5

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
698  
699  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
798  
799  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
898  
899  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
997  
998  
998  
999  
999  
1000

END  
DRAFTED  
3 82  
DTIG



MICROCOPY RESOLUTION TEST CHART  
NATIONAL BUREAU OF STANDARDS 1963 A

(12)

LEVEL 2  
YU

AD A110137

# OVERVIEW OF THE O'HARE RUNWAY CONFIGURATION MANAGEMENT SYSTEM,

RICHARD L. FAIN

The MITRE Corporation  
McLean, Virginia 22102



52  
DTIC  
ELECTED  
JAN 27 1982  
S D  
B

SEPTEMBER 1981

Document is available to the U.S. public through  
the National Technical Information Service  
Springfield, Virginia 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION  
FEDERAL AVIATION ADMINISTRATION  
OFFICE OF SYSTEMS ENGINEERING MANAGEMENT

Washington, D.C. 20591

409890

0120 82 017

DTIC FILE COPY  
VHS

N O T I C E

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

## Technical Report Documentation Page

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                               |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1. Report No.<br>FAA-EM-82-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Government Accession No.<br><i>AD-A110137</i>                                                                                            | 3. Recipient's Catalog No.                                                                                                                    |           |
| 4. Title and Subtitle<br><br>Overview of the O'Hare Runway Configuration Management System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             | 5. Report Date<br>September 1981                                                                                                              |           |
| 6. Performing Organization Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             | 7. Author(s)<br>Richard L. Fain                                                                                                               |           |
| 8. Performing Organization Report No.<br>MTR-81W235✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             | 9. Performing Organization Name and Address<br>The MITRE Corporation<br>Metrek Division<br>1820 Dolly Madison Blvd.<br>McLean, Virginia 22102 |           |
| 10. Work Unit No. (TRAIS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             | 11. Contract or Grant No.<br>DTFA01-81-C-10001                                                                                                |           |
| 12. Sponsoring Agency Name and Address<br>Department of Transportation<br>Federal Aviation Administration<br>Office of Systems Engineering Management<br>Washington, D. C. 20591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             | 13. Type of Report and Period Covered                                                                                                         |           |
| 14. Sponsoring Agency Code<br>AEM-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                             | 15. Supplementary Notes                                                                                                                       |           |
| 16. Abstract<br><br>The O'Hare Runway Configuration Management System (CMS) is an interactive computer algorithm designed to assist the Assistant Chief of the O'Hare facility in selecting runway configurations which minimize delay. The current version of CMS utilizes a full screen input/output structure to enhance near-term implementation within O'Hare's manual ATC environment. This paper presents an overview of the runway selection logic (including the impacts of transitioning between configurations and balancing demand) and describes the system hardware configuration and the functional responsibilities of the participants in the O'Hare application. The historical development of CMS, future potential enhancements in system logic and system implementation, and application of CMS at other airports are also discussed. |                                                                                                                                             |                                                                                                                                               |           |
| 17. Key Words<br>Runway Configuration<br>Terminal Flow Management<br>Airport Capacity<br>Air Traffic Delay Reduction<br>Interactive computer algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18. Distribution Statement<br>Document is available to the public through the National Technical Information Service, Springfield, VA 22161 |                                                                                                                                               |           |
| 19. Security Classif. (of this report)<br>Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20. Security Classif. (of this page)<br>Unclassified                                                                                        | 21. No. of Pages                                                                                                                              | 22. Price |

## TABLE OF CONTENTS

|                                                          | <u>Page</u> |
|----------------------------------------------------------|-------------|
| <b>1. INTRODUCTION</b>                                   | <b>1-1</b>  |
| <b>2. HISTORICAL PERSPECTIVE</b>                         | <b>2-1</b>  |
| <b>3. THE CONCEPT OF RUNWAY CONFIGURATION MANAGEMENT</b> | <b>3-1</b>  |
| <b>4. OPERATIONAL DESCRIPTION OF THE O'HARE SYSTEM</b>   | <b>4-1</b>  |
| <b>4.1 Physical Configuration</b>                        | <b>4-1</b>  |
| <b>4.2 Functional Description</b>                        | <b>4-5</b>  |
| <b>4.2.1 Tower Cab Position</b>                          | <b>4-5</b>  |
| <b>4.2.2 Airways Facilities (AF) Position</b>            | <b>4-10</b> |
| <b>4.2.3 Assistant Chief (AC) Position</b>               | <b>4-10</b> |
| <b>5. FUTURE ENHANCEMENTS</b>                            | <b>5-1</b>  |
| <b>5.1 System Development Issues</b>                     | <b>5-1</b>  |
| <b>5.2 Interface Issues</b>                              | <b>5-5</b>  |
| <b>6. APPLICATION AT OTHER AIRPORTS</b>                  | <b>6-1</b>  |
| <b>APPENDIX A: REFERENCES</b>                            | <b>A-1</b>  |

RE: Report No. FAA-EM-82-5  
Page 1-2 does not contain proprietary  
information per Ms. Even Hill, FAA/Library

|                                                                                       |                                     |
|---------------------------------------------------------------------------------------|-------------------------------------|
| Accession For                                                                         |                                     |
| NTIS GRA&I                                                                            | <input checked="" type="checkbox"/> |
| DTIC TAB                                                                              | <input type="checkbox"/>            |
| Unannounced                                                                           | <input type="checkbox"/>            |
| Justification _____                                                                   |                                     |
| <br>By _____                                                                          |                                     |
| Distribution/ _____                                                                   |                                     |
| Availability Codes _____                                                              |                                     |
| Avail and/or _____                                                                    |                                     |
| Print                                                                                 | Special                             |
| A                                                                                     |                                     |
|  |                                     |

LIST OF ILLUSTRATIONS

|                                                                        | <u>Page</u> |
|------------------------------------------------------------------------|-------------|
| TABLE 4-1: CMS INPUT AVAILABILITY WITHIN THE O'HARE ATCT               | 4-2         |
| FIGURE 1-1: CHICAGO O'HARE INTERNATIONAL AIRPORT LAYOUT                | 1-2         |
| FIGURE 2-1: HISTORICAL DEVELOPMENT OF CMS                              | 2-2         |
| FIGURE 3-1: INPUTS TO RUNWAY CONFIGURATION SELECTION                   | 3-2         |
| FIGURE 3-2: VFR CAPACITY CURVES FOR FOUR TYPICAL O'HARE CONFIGURATIONS | 3-3         |
| FIGURE 3-3: MAJOR ELEMENTS OF RUNWAY CONFIGURATION MANAGEMENT          | 3-4         |
| FIGURE 4-1: PHYSICAL CONFIGURATION OF CMS                              | 4-4         |
| FIGURE 4-2: CMS FUNCTIONAL RELATIONSHIPS                               | 4-6         |
| FIGURE 4-3: AIRPORT STATUS SCREEN                                      | 4-7         |
| FIGURE 4-4: AIRPORT PLANNING LOG SCREEN                                | 4-8         |
| FIGURE 4-5: DEPARTURE QUEUE SCREEN                                     | 4-9         |
| FIGURE 4-6: RUNWAY EQUIPMENT STATUS SCREEN                             | 4-11        |
| FIGURE 4-7: RUNWAY EQUIPMENT PLANNING LOG SCREEN                       | 4-12        |
| FIGURE 4-8: CURRENT DEMAND SCREEN                                      | 4-14        |
| FIGURE 4-9: DEMAND PLANNING LOG SCREEN                                 | 4-15        |
| FIGURE 4-10: O'HARE STATUS SCREEN                                      | 4-16        |
| FIGURE 4-11: CURRENT ORDERED LIST OF CONFIGURATIONS SCREEN             | 4-17        |
| FIGURE 4-12: FORECAST AIRPORT STATUS SCREEN                            | 4-19        |
| FIGURE 4-13: FORECAST RUNWAY EQUIPMENT STATUS SCREEN                   | 4-20        |
| FIGURE 4-14: FORECAST DEMAND SCREEN                                    | 4-21        |

LIST OF ILLUSTRATIONS  
(Concluded)

|                                                             | <u>Page</u> |
|-------------------------------------------------------------|-------------|
| FIGURE 4-15: ORDERED LIST OF TRANSITIONS SCREEN             | 4-22        |
| FIGURE 4-16: FORECAST ORDERED LIST OF CONFIGURATIONS SCREEN | 4-23        |
| FIGURE 4-17: CURRENT CONFIGURATION SCREEN                   | 4-24        |
| FIGURE 5-1: CMS ENHANCEMENTS                                | 5-2         |
| FIGURE 5-2: MULTIPLE TRANSITION NETWORK LOGIC               | 5-3         |

## 1. INTRODUCTION

The O'Hare Runway Configuration Management System (CMS) is an interactive computer algorithm designed to aid supervisory personnel of the combined O'Hare tower/TRACON facility in the consistent selection of runway configurations which reduce delays by maximizing throughput capacity in dynamically changing operational environments. This document presents an historical perspective and functional overview of the most recent version of CMS which has been developed by The MITRE Corporation under the sponsorship of the Office of Systems Engineering Management of the Federal Aviation Administration (FAA) for near-term implementation at O'Hare.

The O'Hare system is the first site specific application of a national program called Terminal Area Configuration Management (TACM). TACM encompasses not only runway selection but also includes management of terminal airspace and ground side resources (reference 1) and can, therefore, be tailored to suit the specific operational needs of any major airport. In turn, TACM is a key program of the FAA's Integrated Flow Management program which concerns the global optimization of traffic flow throughout the entire ATC system.

At O'Hare, the runway configuration selection process is compounded by the complexity of the runway layout (Figure 1-1) and the dynamic nature of airport operations. The airport has twelve main runway ends and a short runway (18/36) which is used occasionally for general aviation traffic under visual conditions. Using only the twelve main runways, there are seventy-three runway configurations that use at least two arrival runways and two departure runways simultaneously and that have been identified as operationally feasible. In addition, there are a myriad of runway combinations that include fewer runways. Furthermore, the airport's role as a major connecting link for domestic and international air traffic creates large fluctuations during the day in the volume and distribution of traffic over each of its arrival and departure fixes. In addition, the rapid changes in wind and weather conditions which are prevalent in the Chicago area further increase the complexities of the runway selection. These problems, plus those common to all major airports (runway closures, equipment outages, etc.) make CMS a particularly useful tool for O'Hare in minimizing aircraft delay.



**FIGURE 1-1**  
**CHICAGO O'HARE INTERNATIONAL AIRPORT LAYOUT**

**PAGE DRAWING PROVIDED BY  
JEPPesen & CO.  
ILLUSTRATION ONLY - NOT TO BE  
USED FOR NAVIGATIONAL PURPOSES**

In today's environment, the assistant chief (AC) of the shift on duty at the O'Hare facility has primary responsibility for making runway selection decisions. Such decisions are based on a diverse set of airport status and traffic demand indicators and generally require extensive coordination with team supervisors of both the tower cab and the TRACON. CMS offers a means to consolidate and display information relevant to the decision process and to automatically integrate this information into a measure of capacity for evaluating alternative configuration choices. CMS also provides the AC with a powerful tool in planning transitions between the currently active configuration and those feasible in a forecast set of conditions.

There are a number of companion documents which serve to comprehensively document the current O'Hare system. One set of forthcoming documents will give highly detailed descriptions of the CMS program including representations of logic flow. The User's Guide (reference 2) instructs users of CMS in how to access and operate the system as implemented on an IBM 4341 time-share computer with IBM 3277 equivalent terminals configured as shown in Section 4.1. The O'Hare Test Plan (reference 3) outlines how the test and evaluation of CMS at O'Hare could be conducted on a time-share system.

The historical chain of events prompting the development of CMS is presented in Section 2 and is followed in Section 3 by a description of the runway configuration management concepts which guided the development. Section 4 describes both the physical layout of CMS hardware and the functional interactions of CMS users as envisioned for near-term implementation at O'Hare. Finally, Sections 5 and 6 respectively discuss future enhancements that would increase the operational productivity of CMS and the changes that would be necessary to adapt the O'Hare system for use at other major airports.

## 2. HISTORICAL PERSPECTIVE

The initial impetus for developing a runway configuration management system for O'Hare was the finding of the O'Hare Delay Task Force Study which began in December 1974 to identify the causes and potential solutions to air traffic delays at Chicago. The task force concluded in its report of July 1976 (reference 4) that development and implementation of a terminal management plan which utilized optimal runway configuration selection could realize potential cost savings of between \$11M and \$16M dollars annually. The subsequent development of CMS is summarized in Figure 2-1.

Following the publication of the task force finding, FAA Great Lakes Region (AGL) requested FAA headquarters for assistance in developing an operational system. The MITRE Corporation, in support of both the FAA Office of Systems Engineering Management (OSEM) and the Air Traffic and Airway Facilities Services (ATF), was tasked to do the development and in November 1977 the first project meeting was held at Chicago.

In February 1978, MITRE presented the initial concepts for an evolutionary three level runway configuration management system to the Director of AGL and to ATF. MITRE was then directed to begin development of the first level "basic" system.

By February 1979, the basic level of computer software had been developed for what was now officially designated as the O'Hare Runway Configuration Management System (CMS). Its design was that of an interactive computer algorithm which could provide a list of preferred runway configurations for any fixed set of operational inputs. The basic design was intended to provide a modular foundation for adding subsequent time-dynamic enhancement associated with the second level 'intermediate' system and the third level 'advanced' system. The basic system was installed at the O'Hare Tower for 30 days of preliminary testing and evaluation and, as a result, several modifications were suggested along with the recommendation that the system software development should continue to evolve toward the intermediate level concepts (primarily the incorporation of transition effects and airspace considerations). In May 1979, MITRE formally published the first paper presenting the tri-level concepts of runway configuration management and the O'Hare application (reference 5).



**FIGURE 2-1**  
**HISTORICAL DEVELOPMENT OF CMS**

By mid 1980, the airspace logic and associated software had been added to account for the distribution of traffic demand over the arrival and departure fixes. During the latter part of 1980 with funding support from the Transportation System Center, MITRE surveyed and recommended technical enhancements to CMS to guide the FAA's decision with respect to future developments at O'Hare and other major airports (reference 6). Work also focused on developing the conceptual and logical designs for incorporating demand balancing and transition impacts into the existing system. By October 1980, the demand balancing software had been developed and was successfully integrated into the CMS program.

During 1981, work on CMS concentrated on three areas -- refining and programming the demand balancing and transition logic, improving the manual interface and preparing for the test and evaluation. Several new algorithms were designed and tested which would make both the linear programming formulation of the transition analysis and the demand balancing analysis computationally more efficient. In both cases, efforts met with success and were adopted in the CMS software. To further reduce the manual workload, MITRE also decided during 1981 to completely overhaul the input/output structure to take advantage of recent advances in full-screen, menu type displays which would allow inputs directly on status display screens. At the same time, provisions were made for a multi-terminal implementation which would distribute the input responsibilities to those personnel in the O'Hare TRACON and cab currently responsible for monitoring and reporting changes in airport conditions (described in Section 4 of this document). The third area involved the development of computer specifications, cost estimates, and a survey of computer systems (commercial time-share vendors and dedicated minicomputers) suitable for testing and evaluating CMS prior to implementation.

The culmination of all these efforts is the version of CMS that is described in this and the companion documents. Future work will be guided by recommendations coming from future demonstrations, tests and evaluations of CMS and by the enhancements discussed in Section 5.

### 3. THE CONCEPT OF RUNWAY CONFIGURATION MANAGEMENT

Runway configuration management addresses the issue of how to dynamically choose combinations of runways at an airport which will minimize aircraft delays for a given sequence of changes in the airport's operational environment. By its very nature, runway selection is a complex process being influenced not only by whims of nature (changes in wind and weather) but also by many operational factors as illustrated in Figure 3-1. A change in any one of these many variables can have significant influence on aircraft delays. Figure 3-2 demonstrates the impact of the percentage mix of arrivals and departures on total capacity. As the demand pattern changes from one consisting predominantly of departures to one consisting predominantly of arrivals, the best choice of runway configurations to minimize potential delays changes dramatically. While the experience and proficiency of supervisory air traffic controllers cope admirably with such complex problems, there is a need for an automated aid which can assist the supervisor in the consistent selection of high capacity runway configurations. This need for such an aid becomes more acute in a rapidly changing environment.

Figure 3-3 identifies the elements that make up the runway configuration management process. The solid lines indicate the components of a single transition system which incorporates the capacity impacts of changing from a runway configuration operating under a set of current conditions to all configurations eligible under one future set of operating conditions. The dashed lines indicate the logical extension of the single step system into one involving multiple transitions. The multiple step system can determine optimal runway configuration selection strategies over an extended planning horizon involving more than one set of forecast changes in the operating environments. The runway configuration management system under development at O'Hare is, at this point in time, a single-transition system with plans to enhance the design to include multiple transitions in the future. This enhancement is discussed in more detail in Section 5.

The first step in runway configuration management is to define the respective current and forecast scenarios. This is accomplished in the current scenario by insuring that the system is continually aware of all changes in the current operating environment. Ideally, this would be done automatically by interfaces with existing monitoring systems available in the tower and TRACON facilities. In a manual environment such as that at O'Hare, the input functions can be delegated to those



**FIGURE 3-1**  
**INPUTS TO RUNWAY CONFIGURATION SELECTION**



3-3

FIGURE 3-2  
VFR CAPACITY CURVES FOR FOUR TYPICAL O'HARE CONFIGURATIONS



**FIGURE 3-3**  
**MAJOR ELEMENTS OF RUNWAY CONFIGURATION MANAGEMENT**

persons who now have responsibility for monitoring, reporting and recording the information without imposing much, if any, additional workload. The operational description in Section 4 describes how this might be done at O'Hare.

The forecast scenarios record changes in the operational environment expected to occur in the future which may be significant enough to warrant a change in runways. In an automated environment some forecast information could be input to the system by interfaces with National Weather Service communication lines for wind and weather forecasts and with NAS, ARTS and Central Flow computer systems for expected traffic demand information. Manual inputs can be delegated to the same parties responsible for maintaining the current operational status or they can be left to the supervisor responsible for deciding runway changes. The latter option gives the supervisor freedom to use the system as a planning tool with which he can evaluate the consequences of different courses of action. In the application at O'Hare, only the assistant chief (AC) is permitted to construct future scenarios, however, the O'Hare system allows the other participants (Airway Facilities operations office and cab team supervisors) to communicate future events (runway closures, planned maintenance) to the AC by a system of interconnected planning logs (described in Section 4).

Based on the updated inputs, the next step within each scenario determines the operational availability of individual runways. Runways may be closed to arrivals and/or departures for a variety of reasons: city-directed closures for construction and maintenance, aircraft emergencies, excessive crosswinds or tailwinds, or ceiling or visibility below published minima. Ceiling and visibility minima are, in turn, a function of runway equipment outages (instrument landing systems, navaids and lighting systems). Runway preference and availability may also be influenced by traffic at nearby airports such as when 13R is being used for arrivals at Midway Airport.

The runway configurations remaining after the deletion of ineligible runways are then checked for operational suitability. Some runway geometries require that prevailing ceiling and visibility conditions exceed certain thresholds. For example at O'Hare, non-parallel arrivals can only be operated in conditions better than 800 ft ceiling and 2 nmi visibility. Configurations in which arrivals must hold short of intersecting active arrival and departure runways are also subject to stringent ATC rules regarding runway surface and braking conditions.

The capacity analysis for each feasible runway configuration remaining after the initial screening process is conducted in two parts. The first redistributes the demand over the north and south complexes so as to equalize saturation levels (demand divided by capacity) on each runway. Demand balancing mimics the airport's actual procedure of rerouting traffic within the terminal area in order to equalize controller workloads and to minimize the need to hold aircraft. Using the arrival/departure ratios for each operationally independent group of runways within the configuration resulting from the demand redistribution, capacities are calculated for each group for the respective weather and braking conditions and appropriate ATC rules.

The first level of output within each scenario is the capacity ordered list of available configurations suitable for the respective current and forecast conditions. The ordered list associated with current conditions is particularly useful in identifying the capacity differences between the runway configurations actually in use and others on the list and, depending on the magnitude of the difference, may prompt a transition on its own accord. If transition impacts are of little concern to the decision maker, the current and forecast ordered lists may be compared directly to plan runway transitions.

Up to this point, the runway selection process has been concerned with analyzing configurations within static operating scenarios, that is, for a single set of conditions. With the addition of the transition analysis, the process becomes a dynamic one, being concerned also with the capacity impacts of changing from one configuration to another. The selection strategy then becomes to maximize total capacity over some planning time horizon which includes all the transitions resulting from expected changes in the operational environment. This prevents the selections of successive high capacity configurations whose transition penalties may be so high as to offset the capacity benefits gained with each configuration.

The transition analysis yields the primary output of the runway configuration management system -- an ordered list of transition strategies indicating which runways to use at what times during the planning period.

A runway configuration management system has a number of inherent benefits which supplement its primary purpose of reducing aircraft delays. Most of these serve to reduce workloads in one form or another and are evident in the O'Hare application described in Section 4. The use of multiple terminals to access a common data base provides key personnel in the tower and TRACON facilities with immediate access to displays of the current operational status of the airport. The multiple terminal system also allows, with as much flexibility as desired, direct communication between terminal users. In the O'Hare system, this facility is used primarily to transmit future planning information from the cab and AF operations officer to the AC. These information transfer capabilities can significantly reduce the telephone workload and paperwork normally associated with these functions. Another benefit deriving from having a consolidated data base which continually reflects current and future status of the airport is the automatic and/or selective generation of logs and historical records on system printers. Likely candidates include Performance Measurement System (PMS) reports and equipment logs.

#### 4. OPERATIONAL DESCRIPTION OF THE O'HARE SYSTEM

The O'Hare Runway Configuration Management System (CMS) as envisioned for near-term implementation within the O'Hare Air Traffic Control Tower (ATCT) is designed to aid the assistant chief (AC) of the facility in decisions regarding choice of runway configurations. This requires that CMS have access to complete and timely information about all factors affecting runway choice and that this same information be readily available to the assistant chief.

Although in the long run, O'Hare CMS will automatically detect changes in airport conditions through direct interfaces with existing and future monitoring systems, initial implementation is expected to occur within the existing manual ATC environment. Thus, the O'Hare system is both physically and functionally organized in keeping with the current location of inputs with the ATCT and current procedures for monitoring and reporting changes (Table 4-1).

To minimize the impact of manual inputs, CMS uses a sophisticated full screen input/output structure and comprehensive error checking routines. Most operational entries only require moving a cursor to the appropriate position on a formatted screen and entering a single symbol (usually an 'X'). Input/status/output display screens are selected by pushing a single function key. All screens are virtually self-explanatory and require minimal training of users.

##### 4.1 Physical Configuration

At a minimum, CMS consists of a central computer supporting at least three keyboard CRT display terminals and one printer (Figure 4-1). One terminal is located in the tower cab, one at the Airway Facilities (AF) operations officer's position in the TRACON and one at the assistant chief's position in the TRACON. Additional display terminals may be added as desired. The printer is located in a room adjacent to the TRACON radar room which has easy access by the assistant chief and the AF representative.

Each terminal allows only a selected set of inputs into CMS consistent with the information for which that terminal position is responsible as defined in Section 4.2. Optional display terminals such as that shown near the TRACON team supervisor position in Figure 4-1 could be restricted to displaying only airport and runway conditions for the informational benefit

**TABLE 4-1**  
**CMS INPUT AVAILABILITY WITHIN THE O'HARE ATCT**

| <u>INPUT</u>                                                                              | <u>LOCATION</u> | <u>SOURCE</u>    | <u>FREQUENCY</u> | <u>DG</u> | <u>COMMENTS</u>               |
|-------------------------------------------------------------------------------------------|-----------------|------------------|------------------|-----------|-------------------------------|
| <b>Equipment Status:</b>                                                                  |                 |                  |                  |           |                               |
| LOC                                                                                       |                 |                  |                  |           |                               |
| AS                                                                                        |                 |                  |                  |           |                               |
| OM                                                                                        |                 |                  |                  |           |                               |
| MN                                                                                        |                 |                  |                  |           |                               |
| IM                                                                                        |                 |                  |                  |           |                               |
| MDH                                                                                       |                 |                  |                  |           |                               |
| VOR/DME                                                                                   |                 |                  |                  |           |                               |
| ALS                                                                                       | TRACON (AF)     | status lights    | continuous       |           |                               |
| RAIL                                                                                      | Cab             | status lights    | continuous       | AF 100    | AF 100<br>TRACON<br>worksheet |
| RVR                                                                                       | Cab, TRACON     | digital readouts | continuous       | AF log    |                               |
| HIRL                                                                                      | Cab             | CITY, PIREPS     | nightly          | AF log    |                               |
| CL                                                                                        |                 |                  |                  |           |                               |
| T02                                                                                       |                 |                  |                  |           |                               |
| Edge Lights                                                                               |                 |                  |                  |           |                               |
| Arrival demand                                                                            |                 |                  |                  |           |                               |
| Arrival demand                                                                            |                 |                  |                  |           |                               |
| ARTS, CF2, Cab                                                                            |                 |                  |                  |           |                               |
| continuous                                                                                |                 |                  |                  |           |                               |
| hourly totals<br>on PMS                                                                   |                 |                  |                  |           |                               |
| 30 minutes prior to proposed<br>departure time                                            |                 |                  |                  |           |                               |
| Departure demand                                                                          |                 |                  |                  |           |                               |
| FDEP                                                                                      |                 |                  |                  |           |                               |
| continuous                                                                                |                 |                  |                  |           |                               |
| hourly totals<br>on PMS                                                                   |                 |                  |                  |           |                               |
| alphanumeric aircraft info<br>listed on ARTS, 10-15 minutes<br>before appearance on scope |                 |                  |                  |           |                               |

**TABLE 4-1**  
(Concluded)

| <u>INPUT</u>                      | <u>LOCATION</u> | <u>SOURCE</u>                                      | <u>FREQUENCY</u>   | <u>LOG</u>         | <u>COMMENTS</u>                                                                                                                                                                            |
|-----------------------------------|-----------------|----------------------------------------------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ceiling                           | Cab, TRACON     | NWS electrowriter                                  | hourly, as needed  | PMS                |                                                                                                                                                                                            |
| Visibility<br>(>4 mi)             | Cab, TRACON     | NWS electrowriter                                  | hourly & as needed | PMS                | supplementary sources:<br>Int., Chicago FSS, CFS                                                                                                                                           |
| Visibility<br>(4 mi)              | Cab             | Cab observations                                   | continuous         | PMS                |                                                                                                                                                                                            |
| Visibility<br>(< 60 RVR)          | Cab, TRACON     | RVR                                                | continuous         | PMS                |                                                                                                                                                                                            |
| Wind Direction<br>& Velocity      | Cab, TRACON     | NWS centerfield<br>indicator and<br>VAS Indicators | continuous         | PMS                | stored on mag tape for minutes 1-<br>days. Selective displays at<br>arrival controller and local<br>controller positions. Summary<br>displays at supervisor positions<br>in cab and TRACON |
| Braking and<br>Surface Conditions | Cab             | City CRT, city<br>telephone, PIREPS                | daily, as needed   |                    |                                                                                                                                                                                            |
| City Directed<br>Runway Closures  | Cab             | City CRT, city<br>telephone                        |                    | TRACON<br>workshop |                                                                                                                                                                                            |
| Highway traffic                   | TRACON          | TRACON                                             | continuous         |                    | TRACON approach control<br>coordinates with Chicago En Route                                                                                                                               |



**FIGURE 4-1  
PHYSICAL CONFIGURATION OF CMS**

or it could also function as another input station for the assistant chief since one source of current traffic demand information is directly available on the ARTS III scopes.

The main CMS computer houses the CMS software which controls the interactive input/output displays, maintains the common data base and performs the analytical functions of the system. It also enforces the communications protocol which governs terminal access to the data base and to other terminals.

The printer located adjacent to the radar room has the capability to produce hard copies of any screen displayed at any of the terminals by request. In addition, the printer can be used to generate data relevant to equipment logs, PMS reports and any other information requested by the AC.

#### 4.2 Functional Description

In keeping with the physical layout of CMS peripheral equipment at O'Hare, the functional responsibilities are distributed to those tower and TRACON personnel who normally monitor and report changes in the operating environment namely, the assistant chief, the tower cab team supervisor and the AF operations officer. Figure 4-2 diagrams the functional relationships between each participant in the runway configuration selection process and the various CMS input/output display screens.

##### 4.2.1 Tower Cab Position

The team supervisor of the tower cab or his designee is primarily responsible for maintaining the current airport status screen (Figure 4-3), for reporting forecast changes on the airport planning log (Figure 4-4) and for inputting departure queue lengths (Figure 4-5) when requested by the AC from sources normally available in the cab. These include National Weather Service (NWS) reports and forecasts of prevailing ceiling, visibility and centerfield wind; tower visibility observations; braking and runway surface reports from the city desk; and city directed closures of runways (maintenance, snow removal, emergencies, etc.). Although cab personnel can display other CMS input/status/output screens, the airport status, the airport planning log and the departure queue length are the only screens which can accept inputs from the cab position.



**FIGURE 4-2**  
**CMS FUNCTIONAL RELATIONSHIPS**

CURRENT AIRPORT STATUS

CENTERFIELD: WI: CEIL... 5000 VIS... 4.50  
 WIND: DIR... 060 VEL... 3

MIDWAY 13R ARR IN USE...

| RWY | TOWER | SURF | BK1 | RVR  | WIND |     |       | MINIMA |      |      | CLOSED    |
|-----|-------|------|-----|------|------|-----|-------|--------|------|------|-----------|
|     | ARRI  | DEP1 | WEI | POOR | DIR  | VEL | CRSS1 | TAIL   | CEIL | VIS  | ARRI DEP1 |
| 4R  |       |      |     |      | 060  | 3   | 1     | 0      | 200  | .50  |           |
| 4L  |       |      |     |      | 060  | 3   | 1     | 0      | 402  | 1.25 |           |
| 9R  |       |      |     |      | 060  | 3   | 1     | 0      | 200  | .50  |           |
| 9L  |       |      |     |      | 060  | 3   | 1     | 0      | 200  | .50  |           |
| 14R |       |      |     |      | 060  | 3   | 1     | 0      | 100  | .25  |           |
| 14L |       |      |     |      | 060  | 3   | 1     | 0      | 100  | .25  |           |
| 22R |       |      |     |      | 060  | 3   | 1     | 3      | 200  | 2.00 |           |
| 22L |       |      |     |      | 060  | 3   | 1     | 3      | 200  | .50  |           |
| 27R |       |      |     |      | 060  | 3   | 1     | 3      | 200  | .50  |           |
| 27L |       |      |     |      | 060  | 3   | 1     | 3      | 200  | .50  |           |
| 32R |       |      |     |      | 060  | 3   | 1     | 1      | 200  | .50  |           |
| 32L |       |      |     |      | 060  | 1   | 3     | 1      | 200  | .50  |           |

DATA STORED AT 1322

FIGURE 4-3  
 AIRPORT STATUS SCREEN

AIRPORT PLANNING LOG

WEATHER & WIND FORECASTS

| GMT  | CSTL | VIS  | DIR | VEL | REMARKS          |
|------|------|------|-----|-----|------------------|
| 1200 | 5000 | 4.50 | 060 | 3   | SCATTERED CLOUDS |
| 1330 | 600  | .75  | 170 | 7   |                  |

ASST. CHIEF--ADDITIONAL ENTRIES

DATA STORED AT 1242

FIGURE 4-4  
AIRPORT PLANNING LOG SCREEN

\*\*\*\*\*  
CURRENT DEPARTURE QUEUES  
\*\*\*\*\*

| DEPARTURE RUNWAYS | QUEUE LENGTH |
|-------------------|--------------|
| 32R               | 6            |
| 32L               | 4            |

DATA STORED AT 1248

\*\*\*\*\*  
FIGURE 4-5  
DEPARTURE QUEUE SCREEN  
\*\*\*\*\*

During normal use of CMS, the current airport status screen remains on display at the cab terminal ready to accept inputs of changes to the airport environment. Entries on this screen immediately update the common data base and impact all subsequent screens displayed at any of the terminal positions. Entries made on the airport planning log indicate expected future changes and are transmitted to the O'Hare status screen (Figure 4-10, Section 4.2.3) for use by the AC in constructing forecast transition scenarios. Planning log entries do not directly affect the forecast airport status screen to which only the AC has input access.

#### 4.2.2 Airway Facilities (AF) Position

Similar to the tower cab position, the AF operations officer or his designee located in the TRACON maintains the current equipment status screen (Figure 4-6) and records forecast changes in equipment status on the equipment planning log (Figure 4-7). With the exception of runway lighting systems (the status of which is indicated in the cab), the operational status of equipment is known to the AF officer by way of status light indicators located in the TRACON. Although the AF terminal can display other CMS screens, only the current equipment status and the equipment planning log screens can accept inputs.

In normal usage, the current equipment status screen remains on display at the terminal ready to accept inputs of changes in equipment status. Entries on this screen immediately update the common data base and are reflected in all subsequent screens displayed at any of the terminal positions. Entries of future status changes made on the equipment planning log do not directly affect the forecast equipment status screen, but are transmitted only to the O'Hare status screen for use by the AC in planning future transition scenarios.

The AF representative may at anytime have historical equipment information and periodic equipment logs printed by the CMS printer.

#### 4.2.3 Assistant Chief (AC) Position

The assistant chief has the overall responsibility for the operation of the combined tower/TRACON facility at O'Hare and is responsible for decisions regarding runway configuration selection. Consequently, the terminal located at his position in the TRACON allows him, or his designee, to have input/output

**CURRENT RUNWAY EQUIPMENT STATUS  
(X INDICATES OUTAGE)**

| RWY | CATI | LOC | GS | OH | MM | IN | RAIL | ALS | EVRI | HIRL | CL | TDR | HDR | VOR |
|-----|------|-----|----|----|----|----|------|-----|------|------|----|-----|-----|-----|
| 4R  | --   | --  | -- | -- | -- | -- | --   | --  | --   | --   | -- | --  | --  | --  |
| 4L  | --   | --  | -- | -- | -- | -- | --   | --  | --   | --   | -- | --  | --  | --  |
| 9R  | --   | --  | -- | -- | -- | -- | --   | --  | --   | --   | -- | --  | --  | --  |
| 9L  | --   | --  | -- | -- | -- | -- | --   | --  | --   | --   | -- | --  | --  | --  |
| 14R | --   | --  | -- | -- | -- | -- | --   | --  | --   | --   | -- | --  | --  | --  |
| 14L | --   | --  | -- | -- | -- | -- | --   | --  | --   | --   | -- | --  | --  | --  |
| 22R | --   | --  | -- | -- | -- | -- | --   | --  | --   | --   | -- | --  | --  | --  |
| 22L | --   | --  | -- | -- | -- | -- | --   | --  | --   | --   | -- | --  | --  | --  |
| 27R | --   | --  | -- | -- | -- | -- | --   | --  | --   | --   | -- | --  | --  | --  |
| 27L | --   | --  | -- | -- | -- | -- | --   | --  | --   | --   | -- | --  | --  | --  |
| 32R | --   | --  | -- | -- | -- | -- | --   | --  | --   | --   | -- | --  | --  | --  |
| 32L | --   | --  | -- | -- | -- | -- | --   | --  | --   | --   | -- | --  | --  | --  |

DATA STORED AT 1322

**FIGURE 4-6  
RUNWAY EQUIPMENT STATUS SCREEN**

RUNWAY EQUIPMENT PLANNING LOG

| RWY | EQUIPMENT | OTS  | RTS  | REMARKS     |
|-----|-----------|------|------|-------------|
| 22R | HIRL      | 1200 | 2000 | Maintenance |
| 14R | LOC       | 1400 | 1530 | Repairs     |
| 32L | ALS       | 2200 | 2345 |             |

ASST. CHIEF--ADDITIONAL ENTRIES

DATA STORED AT 1255

FIGURE 4-7  
RUNWAY EQUIPMENT PLANNING LOG SCREEN

access to all CMS screens. However, the only screens which concern the current airport status and which are regularly maintained at the AC terminal are the current demand profile (Figure 4-8) and the demand planning log (Figure 4-9). The demand planning log consists of a 24 hour set of prestored hourly fix demand profiles (based on published OAG schedules) which can be modified by the AC to reflect current and expected changes in demand. As with the other planning logs, entries on the demand log do not directly affect other status screens but are used to initialize current (and forecast) demand profile screens. By entering an 'X' in the retrieve field of the current demand screen, CMS extracts the demand for the following hour from the demand planning log prorated between hours as necessary. If necessary, the AC may make additional changes directly on the current demand profile screen. When entered, the common data base is updated and the new demand profile affects all subsequent status screens. All other screens which the AC has exclusive input access to are associated with his use of CMS as a planning aid to assess the impact of either remaining in the current active configuration or of transitioning to another.

When not being used for other purposes, the AC terminal continuously displays the O'Hare status screen (Figure 4-10) which gives an overview of the current operating posture of the airport. This screen not only shows current wind and weather conditions but also shows the capacity relationship of the current runway configuration with respect to the maximum achievable for current conditions. The O'Hare status screen also displays entries made on the airport planning log by the cab and the equipment planning log by the AF representative. Those log entries made since the AC last keyed his terminal are highlighted to draw his attention to new entries that may require some forthcoming action. Highlights remain until the AC acknowledges that he is aware of the entries by pressing the 'acknowledge' key on his terminal.

The AC position is the only terminal which can access those CMS screens associated with planning configuration changes. Any time the AC wishes to determine the relative merit of the current choice of runways with respect to other runway configurations possible within the current environment, he may select to display the current ordered list of configurations (Figure 4-11). This screen shows the current operating configuration as a highlighted entry among all eligible configurations listed in order of decreasing throughput capacity. Operational warnings (such as conflicting Midway

\*\*\*\*\* CURRENT DEMAND ( FROM 1317 TO 1417 )

RETRIEVE... .

ARRIVALS:

|          |    |
|----------|----|
| TOTAL... | 57 |
| KUBBS... | 14 |
| CGT...   | 20 |
| VAINS... | 13 |
| PARNH... | 10 |

DEPARTURES:

|          |    |
|----------|----|
| TOTAL... | 67 |
| NORTH... | 19 |
| EAST...  | 19 |
| SOUTH... | 15 |
| WEST...  | 14 |

DATA ENTERED AT 1317

FIGURE 4-8  
CURRENT DEMAND SCREEN

DEMAND PLANNING LOG  
 (TO INITIALIZE LOG, ENTER "Y"...) )

|      |        | SCHOLL LINES |     | ARRIVALS |       |       |       | DEPARTURES |      |       |      |    |
|------|--------|--------------|-----|----------|-------|-------|-------|------------|------|-------|------|----|
| CGT  | TOTALS | ARR          | DEP | RUBBS    | CGT   | WAHNS | PARNH | NORTH      | EAST | SOUTH | WEST |    |
|      |        |              |     | HKE      | PLANT |       | HKE   |            |      |       |      |    |
| 1300 | 63     | 71           |     | 18       |       | 21    | 14    | 10         | 20   | 21    | 15   | 15 |
| 1400 | 44     | 56           |     | 5        |       | 19    | 10    | 10         | 15   | 15    | 16   | 10 |
| 1500 | 75     | 73           |     | 21       |       | 22    | 17    | 15         | 15   | 23    | 15   | 20 |
| 1600 | 57     | 72           |     | 11       |       | 16    | 15    | 15         | 21   | 19    | 17   | 15 |

DATA STORED AT 1545

**FIGURE 4-9**  
**DEMAND PLANNING LOG SCREEN**

O'HARE STATUS  
 BY: CEIL... 5000 VIS... 4.50 WIND: DIR... 060 VEL... 3  
 IRR... 4H 9L 9L DEP... 32R 32L CAPACITY... 204  
 CAPACITY AT 94 % OF HIGHEST AVAILABLE CAPACITY  
 SCROLL... LINES  
 \*\*\*\* RECENT CHANGES FROM 1200 \*\*\*\*  
 1200 22R HIRL OTS  
 1200 WX 5000 4.50 SCATTERED CLOUDS  
 1200 WIND 060 3 SCATTERED CLOUDS  
 \*\*\*\* EXPECTED CHANGES THROUGH 2315 \*\*\*\*  
 1330 WX 600 .75  
 1330 WIND 170 7  
 1400 14R LOC OTS MAINTENANCE  
 1530 14R LOC RTS MAINTENANCE  
 2000 22R HIRL RTS  
 2200 32L ALS OTS REPAIRS  
 2345 32L ALS RTS REPAIRS  
 DATA STORED AT 1255

FIGURE 4-10  
O'HARE STATUS SCREEN

CURRENT ORDERED LIST OF CONFIGURATIONS

TOTAL ARRIVALS... 46 X

NUMBER OF ELIGIBLE CONFIGURATIONS... 73

SCROLL LINES

| RANK | ARRIVALS    | DEPARTURES | CAPACITY | REMARKS  |
|------|-------------|------------|----------|----------|
| 1    | 22R 27R 27L | 22L 32L    | 221      | DAY ONLY |
| 2    | 4R 9R 9L    | 4L 32L     | 213      | DAY ONLY |
| 3    | 9R 14R 22R  | 9L 22L     | 211      | DAY ONLY |
| 4    | 6R 9R 9L    | 32R 32L    | 206      | DAY ONLY |
| 5    | 9R 14R 22R  | 14L 22L    | 199      | DAY ONLY |
| 6    | 9R 14R 14L  | 9L 22L     | 198      |          |
| 7    | 9R 14R 14L  | 9R 22L     | 191      |          |
| 8    | 9R 14R 14L  | 9L 22L     | 191      |          |
| 9    | 14R 14L 22L | 22L 27L    | 190      |          |
| 10   | 14R 22L 22L | 22L 27L    | 188      | DAY ONLY |

DATA STORED AT 1317

FIGURE 4-11  
CURRENT ORDERED LIST OF CONFIGURATIONS SCREEN

Airport traffic) associated with each configuration which could influence the selection decision are also displayed on this screen.

To assess the capacity impacts of transitioning to any of the other configurations, the AC may conduct a transition analysis by first defining the operational environment he expects to exist at the end of the transition. This is done by constructing a forecast scenario on airport status, runway equipment status and demand screens similar in format to those used to indicate current conditions (Figures 4-12, 4-13 and 4-14, respectively). If the clearing out of departure queues is expected to affect the transition, the AC may at this time request the cab to enter queue lengths (Figure 4-5, Section 4.2.1). The AC completes the transition analysis by selecting the screen which shows the ordered list of transitions (Figure 4-15). For each configuration which would be eligible in the forecast scenario, this screen displays the total capacity for the first hour after the start of the transition (the transition capacity plus a prorated portion of the capacity of the final configuration) and the hourly capacity of the final configuration.

If the assistant chief does decide to change the runway configuration, he can then indicate his new choice by returning to the current ordered list of configurations screen and entering an 'X' next to its position on the list.

A number of supplemental CMS displays are also available to the AC on his request. The forecast ordered list of configurations (Figure 4-16) lists those configurations eligible under the forecast set of conditions in decreasing order of available future capacity without consideration for transition impacts. A second display called the configuration information display provides detailed capacity, demand, saturation and demand balancing information for any runway configuration in either current or forecast conditions (Figure 4-17). This latter display is useful to the AC in providing acceptance rate information to the en route center in compliance with en route metering guidelines (reference 7).

**FORECAST AIRPORT STATUS**

CENTERFIELD: WY: CRSL...: 600 VIS...: .75  
WIND: DIR...: 170 VEL...: 7

MIDWAY 13R ARR IN USE... X

| RWY | TOWER |     |      | SURF |     |      | WIND |     |     | VISIBIL |      |     | MINIMA |      |      | CLOSED |     |
|-----|-------|-----|------|------|-----|------|------|-----|-----|---------|------|-----|--------|------|------|--------|-----|
|     | ARRI  | DEP | POOR | DIR  | VEL | CRSS | TAIL | DIR | VEL | CRSS    | TAIL | DIR | VEL    | CRSS | TAIL | ARRI   | DEP |
| 4R  | 170   | 7   |      | 5    | 5   |      | 5    | 200 |     | 50      |      |     |        |      |      |        |     |
| 4L  | 170   | 7   |      | 5    | 5   |      | 5    | 402 |     | 1.25    |      | X   |        |      |      |        |     |
| 9R  | 170   | 7   |      | 7    | 0   |      | 0    | 200 |     | 50      |      |     |        |      |      |        |     |
| 9L  | 170   | 7   |      | 7    | 0   |      | 0    | 200 |     | 50      |      |     |        |      |      |        |     |
| 1R  | 170   | 7   |      | 4    | 0   |      | 0    | 100 |     | .25     |      |     |        |      |      |        |     |
| 1L  | 170   | 7   |      | 4    | 0   |      | 0    | 100 |     | .25     |      |     |        |      |      |        |     |
| 22R | 170   | 7   |      | 5    | 0   |      | 0    | 200 |     | 2.00    |      | X   |        |      |      |        |     |
| 22L | 170   | 7   |      | 5    | 0   |      | 0    | 200 |     | .50     |      |     |        |      |      |        |     |
| 27R | 170   | 7   |      | 7    | 1   |      | 1    | 200 |     | .50     |      |     |        |      |      |        |     |
| 27L | 170   | 7   |      | 7    | 1   |      | 1    | 200 |     | .50     |      |     |        |      |      |        |     |
| 32R | 170   | 7   |      | 3    | 1   |      | 6    | 200 |     | .50     |      |     |        |      |      |        |     |
| 32L | 170   | 7   |      | 3    | 1   |      | 6    | 200 |     | .50     |      |     |        |      |      |        |     |

DATA STORED AT 1304

**FIGURE 4-12**  
**FORECAST AIRPORT STATUS SCREEN**

**FORECAST RUNWAY EQUIPMENT STATUS**  
 (X INDICATES OUTAGE)

| RWY | CAT | LOC | GS | ON | BB | IR | RAIL | ALS | RVR | HIRL | CL | TDZ | VOR | DBI |
|-----|-----|-----|----|----|----|----|------|-----|-----|------|----|-----|-----|-----|
| 4R  | --  |     |    |    |    |    |      |     |     |      |    |     |     |     |
| 4L  | --  |     |    |    |    |    |      |     |     |      |    |     |     |     |
| 9R  | --  |     |    |    |    |    |      |     |     |      |    |     |     |     |
| 9L  | --  |     |    |    |    |    |      |     |     |      |    |     |     |     |
| 14R | --  |     |    |    |    |    |      |     |     |      |    |     |     |     |
| 14L | --  |     |    |    |    |    |      |     |     |      |    |     |     |     |
| 22R | --  |     |    |    |    |    |      |     |     |      |    |     |     |     |
| 22L | --  |     |    |    |    |    |      |     |     |      |    |     |     |     |
| 27R | --  |     |    |    |    |    |      |     |     |      |    |     |     |     |
| 27L | --  |     |    |    |    |    |      |     |     |      |    |     |     |     |
| 32R | --  |     |    |    |    |    |      |     |     |      |    |     |     |     |
| 32L | --  |     |    |    |    |    |      |     |     |      |    |     |     |     |

DATA ENTERED AT 1314

**FIGURE 4-13**  
**FORECAST RUNWAY EQUIPMENT STATUS SCREEN**

\*\*\*\*\*  
FORECAST DEMAND ( FROM 1418 TO 1518 )

RETRIEVE... .

ARRIVALS:

|            |    |
|------------|----|
| TOTAL... . | 52 |
| KUBBS... . | 9  |
| CGT... .   | 20 |
| VAINS... . | 12 |
| PARM... .  | 11 |

DEPARTURES:

|            |    |
|------------|----|
| TOTAL... . | 61 |
| NORTH... . | 15 |
| EAST... .  | 17 |
| SOUTH... . | 16 |
| WEST... .  | 13 |

DATA STORED AT 1317

FIGURE 4-14  
FORECAST DEMAND SCREEN

ORDERED LIST OF TRANSITIONS  
 ARRIVALS... 46 % NUMBER OF ELIGIBLE CONFIGURATIONS... 8  
 SCROLL LINES

| RANK    | ARRIVALS | DEPARTURES  | TRANSITION (TRANSITION) |          | FINAL CAP |
|---------|----------|-------------|-------------------------|----------|-----------|
|         |          |             | DUR (MIN)               | HOUR CAP |           |
| CURRENT | 42 9R 9L | 32R 32L     | --                      | 206      |           |
| 1       | 9R 9L    | 4R 4L 32R   | 28                      | 184      | 126       |
| 2       | 9R 9L    | 4R 4L       | 28                      | 169      | 126       |
| 3       | 9R 9L    | 32R 32L     | 28                      | 168      | 125       |
| 4       | 27R 27L  | 22L 32R 32L | 26                      | 168      | 125       |
| 5       | 27R 27L  | 22L 32L     | 26                      | 163      | 126       |
| 6       | 27R 27L  | 32R 32L     | 26                      | 163      | 125       |
| 7       | 32R 32L  | 27L 32R 32L | 25                      | 161      | 124       |
| 8       | 32R 32L  | 27L 32R     | 25                      | 151      | 119       |

DATA STORED AT 1336

FIGURE 4-15  
 ORDERED LIST OF TRANSITIONS SCREEN

FORECAST ORDERED LIST OF CONFIGURATIONS

TOTAL ARRIVALS... 46 1

NUMBER OF ELIGIBLE CONFIGURATIONS... 8

SCROLL LINES

| RANK | ARRIVALS | DEPARTURES  | CAPACITY | REMARKS |
|------|----------|-------------|----------|---------|
| 1    | 27R 27L  | 22L 32L     | 126      | MIDWAY  |
| 2    | 9R 9L    | 4R 4L 32R   | 126      |         |
| 3    | 9R 9L    | 8R 8L       | 126      |         |
| 4    | 9R 9L    | 32R 32L     | 125      |         |
| 5    | 27R 27L  | 22L 32R 32L | 125      | MIDWAY  |
| 6    | 27R 27L  | 32R 32L     | 125      |         |
| 7    | 32R 32L  | 27L 32R 32L | 124      | MIDWAY  |
| 8    | 32R 32L  | 27L 32R     | 119      | MIDWAY  |

DATA STORED AT 1317

FIGURE 4-16  
FORECAST ORDERED LIST OF CONFIGURATIONS SCREEN

CURRENT CONFIGURATION

|            | 4R | 4L | 9R | 9L | 14R | 14L | 22R | 22L | 27R | 27L | 32R | 32L |
|------------|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| ARRIVALS   | X  | X  | X  | X  |     |     |     |     | X   | X   |     |     |
| DEPARTURES | -  | -  | -  | -  |     |     |     |     | X   | X   |     |     |

|       | PCT  | SAT | ARRIVAL | DEPARTURE |
|-------|------|-----|---------|-----------|
|       | ARR  |     | DEH     | CAP       |
| TOTAL | 96 X | -60 | 57      | 95        |
| MOUTH | 31 X | -60 | 14      | 23        |
| SOUTH | 54 X | -60 | 43      | 71        |

10 ARRIVALS MOVED TO SOUTH COMPLEX  
3 DEPARTURES MOVED TO SOUTH COMPLEX

DATA STORED AT 1336

**FIGURE 4-17**  
**CURRENT CONFIGURATION SCREEN**

## 5. FUTURE ENHANCEMENTS

With the advent of CMS as a viable system to reduce aircraft delays, there are a number of enhancements which would make the system significantly more productive in an operational environment. These enhancements can be divided broadly into two categories: 1) system development issues which either expand the capabilities of the current system or which incorporate new concepts in configuration management and 2) interface issues which deal with the interactions of CMS with other components of the air traffic control system. Major CMS enhancements are schematically summarized in Figure 5-1.

### 5.1 System Development Issues

The single most important enhancement to the current version of CMS which would significantly improve its power as a runway selection decision tool is to extend the transition logic to allow multiple transitions over some extended planning period (e.g., a controller shift). The output of CMS would then take the form of transition strategies which would be ordered on the total capacity over the entire planning horizon.

One concept for a multiple transition system utilizes "minimum cost/maximum flow" network logic to incorporate several predicted changes in the operational environment and resulting transition effects throughout the planning horizon. Figure 5-2 depicts the concept of the multiple transition model. The planning horizon consists of 'n' time frames indicated by  $t_1$ ,  $t_2$ , ...,  $t_n$ . The nodes of the network consist of sets of 'M' configurations. Each link  $(i,j)_k$  from configuration  $i$  at time  $t_k$  to configuration  $j$  at time  $t_{k+1}$  represents the capacity of transitioning to and remaining in configuration  $j$  in the time period  $(t_{k+1} - t_k)$ .

In actual applications of this concept, the list of configurations under  $t_k$  will be limited only to those configurations feasible under the predicted operating conditions at  $t_k$ . These feasible configurations will be determined through the existing logic applied to the forecast set of inputs at  $t_k$ . The transition links will then be defined from each feasible configuration  $i$  at  $t_k$  to each feasible configuration  $j$  at  $t_{k+1}$ . With the network so defined, an application of "minimum cost/maximum flow" techniques would provide the optimal runway selection strategy over the entire planning horizon.



**FIGURE 5-1**  
**CMS ENHANCEMENTS**

Time Period:



**FIGURE 5-2**  
MULTIPLE TRANSITION NETWORK LOGIC

Some caution must be exercised in extending the length of the planning horizon in the multiple transition system. As the complexity increases, so do the data requirements and subsequent computing requirements. The conclusions from any such dynamic system are only as good as the quality and reliability of the predicted inputs. A poor set of forecast inputs could actually degrade the output of the system and result in poor or unnecessary configuration changes.

A second area of concern is the development of new input sources required by CMS, but which are not readily available in the tower/TRACON facility and which may not be provided by other proposed information systems (e.g., Terminal Information Display System and Remote Maintenance Monitoring System). Not only will it be necessary to identify the inputs (e.g., expected departure demand), but it will also be necessary to determine how these inputs can be made available as either automated or manual inputs to CMS.

Input dynamics is another area which requires new research. Initial efforts would be to investigate the characteristic changes of inputs over time (especially wind and weather), and the robustness (stability) of configurations with respect to input fluctuations. This work would then be extended to determine if the expected duration of configuration use can be forecast based on the current (immediate historical) behavior of operational inputs. This work is crucial to configuration selection to prevent choosing configurations which may offer high capacity but which are unstable.

Another area of interest to configuration management is to pursue the relationship between capacity and delay. While capacity is a useful inverse measure for ranking configurations with respect to expected delays, it is not a satisfactory measure of the absolute differences which are needed to assess the actual benefits gained from choosing one configuration over another.

There is also a need to develop and incorporate criteria for several other factors which affect runway configuration selection, but which are not presently considered by CMS. Such factors include the impacts of noise constraints imposed by local municipalities, staffing requirements (such as extra monitors during parallel approaches), and missed approaches. Another area to be resolved is the need to include degenerate configurations (configuration with less than two arrivals and two departure runways) in the list of configuration choices. One approach to this last problem is to devise an algorithm that

can generate and calculate capacities for configurations composed only of the remaining eligible runways whenever all major configurations have been deleted.

Finally, there are several related uses of CMS which can yield immediate benefits by taking advantage of the system's consolidated and continually updated data base to replace or supplement tasks currently being performed in the tower/TRACON. The automation of Performance Measurement System (PMS) reports and equipment logs would be simple to provide. Another possibility would be to use the data base as a source for Automatic Terminal Information Service (ATIS) reports.

### 5.2 Interface Issues

Resource planning systems such as CMS not only provide near-term delay benefits to airports such as O'Hare, but are cornerstones of the FAA's Integrated Flow Management (IFM) program which links both en route and terminal traffic flow programs in order to globally minimize fuel consumption and aircraft delays. The recent advent of CMS (providing terminal acceptance rates and demand distribution information to the en route centers) and en route metering (providing real-time traffic information to the terminal) provides the first real framework for studying en route - terminal relationships and for establishing the communication and coordination that will be necessary to optimize traffic flow.

In addition to the inputs that will be generated by the en route interface (e.g., fix demand), it will also be necessary to design interfaces to provide the other automated inputs required by CMS, including those already available in the tower/TRACON facility (e.g., Runway Visual Range (RVR), equipment status monitors and weather conditions) and those to be provided by FAA Research and Development programs such as the Terminal Information Display System (TIDS) and the Remote Maintenance Monitoring System (RMMS). The obvious benefit to automation of inputs is the elimination of the requirement for a continuous human interface. This not only significantly reduces the workload of making manual inputs to CMS but it also reduces the need for continuous monitoring of input sources.

## 6. APPLICATION AT OTHER AIRPORTS

From the beginning, CMS software has been designed with a highly modular structure to facilitate both its evolutionary development and its eventual application at airports other than O'Hare. To as large an extent as possible, site specific information has been confined either to data files which reside outside the main program logic or to program modules that can be easily replaced. As discussed in reference 1, adaptation of the O'Hare CMS software to other airports is only appropriate if management of runway resources is a major emphasis in the application of terminal area configuration management at that site.

Specifically, the software changes necessary to adapt the O'Hare system must be made in three areas -- data files, input/output screens and program logic modules. Several data files are used to define specific physical and operational characteristics of the airport including

- runway identifiers and operating minima for various equipment status conditions,
- feasible runway configurations,
- fix-to-runway assignments for each configuration,
- capacity curves for each configuration under different operating scenarios (VFR, IFR, hold short, poor braking, etc.),
- nominal travel times between fixes and runways,
- exclusive dependencies between all possible pairs of active arrival and departure runway operations under different operating scenarios,
- 24 hour profiles of the nominal hourly demand at the fixes, and
- central data base of current and forecast airport conditions.

Formats and headings for tabular CMS input/output screens (shown in Section 4) reflect the O'Hare environment and would need to

be modified accordingly. Screens which would be significantly affected include

- current and forecast airport status,
- current and forecast runway equipment status,
- current and forecast demand profiles,
- demand planning log, and
- current and forecast configuration information.

In addition, there are several program logic modules which are also unique to O'Hare operations. In particular, those dealing with

- eligibility of hold short configuration,
- converging arrival minima, and
- demand balancing between north and south runway complexes

would need to be replaced. Some modifications may also be necessary to modules which manipulate the data file information specific to O'Hare.

It should also be noted that, as with any site specific implementation, there are additional concerns that go beyond software adaptation which may directly affect both the physical and functional implementation of CMS. At O'Hare, the tower cab and TRACON are combined into one facility under the common supervision of the assistant chief (whose desk is located in the TRACON) who is primarily responsible for runway configuration selection. However, at many other major airports, the tower and TRACON are separate operational entities, both geographically and organizationally, in which runway selection is done by one facility, usually the tower, and coordinated by phone with the other. There may also be variations in the location and availability of inputs to CMS (particularly with respect to lighting system status and runway conditions from the local municipality). All of these factors will influence both the physical arrangement of CMS peripherals as well as the functional distribution of input responsibilities. For example, one typical application might require that the runway selection planning terminal (equivalent to the AC's terminal at O'Hare) be

located at the tower for use by the tower supervisor. Airport status and planning information would likely continue to be input on another terminal located in the tower cab. Remote terminals at the TRACON and AF facilities would be used to update traffic demand and runway equipment status/planning information respectively. Reassignment of screens to different terminals would also require some minor CMS software changes and may require some changes in the communications protocol of the system. However, the benefits of CMS attributed to workload reduction (Section 3) because of enhanced interfacility communication are greatly increased when facilities are separated.

APPENDIX A

REFERENCES

1. A. N. Sinha, "Concepts for Terminal Area Configuration Management," MP-81W31, The MITRE Corporation, September 1981.
2. S. Kavoussi and M. Segal, "User's Reference Guide for the O'Hare Runway Configuration Management System," WP-81W536, The MITRE Corporation, September 1981.
3. R. Hentz and R. Fain, "Outline of a Test Plan for the O'Hare Runway Configuration Management System," WP-81W557, The MITRE Corporation, September 1981.
4. Federal Aviation Administration, "O'Hare Delay Task Force Study," Volumes I-III, FAA-AGL-76-1, July 1976.
5. A. N. Sinha and R. L. Fain, "Runway Configuration Management System Concepts," MP-79W18, The MITRE Corporation, May 1979.
6. R. L. Fain, S. Kavoussi, and G. Scot, "Enhancements to the O'Hare Configuration Management System," Volumes I and II, WP-80W997, The MITRE Corporation, December 1980.
7. Federal Aviation Administration, "Local Flow Traffic Management - En Route Arrival Metering," FAA Order 7100.87, May 1981.

