# CS 461 Artificial Intelligence

# Limitations in K-means Clustering

- K-means has problems when the data contains outliers
- The K-means algorithm is very sensitive to the initial seeds.

- K-means has problems when clusters are of different
  - Sizes
  - Densities
  - Non-globular shapes

K-means has problems when the data contains outliers



(A): Undesirable clusters



(B): Ideal clusters

The algorithm is sensitive to initial seeds



(A). Random selection of seeds (centroids)



(B). Iteration 1



(C). Iteration 2

Dr. Hashim Yasin

5

The algorithm is sensitive to initial seeds



(A). Random selection of k seeds (centroids)





(C). Iteration 2

Dr. Hashim Yasin

6

▶ The *k*-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).



(A): Two natural clusters



(B): k-means clusters

- In the Euclidean space, standardization of attributes is recommended so that all attributes can have equal impact on the computation of distances.
- Consider the following pair of data points:

$$x_i$$
: (0.1, 20) and  $x_j$ : (0.9, 720) 
$$dist(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(0.9 - 0.1)^2 + (720 - 20)^2} = 700.000457,$$

- The distance is almost completely dominated by (720 20) = 700.
- Standardize attributes: to force the attributes to have a common value range,

#### **Interval-scaled attributes:**

- Their values are real numbers following a linear scale.
  - The difference in Age between 10 and 20 is the same as that between 40 and 50.
  - The key idea is that intervals keep the same importance through out the scale
- Two main approaches to standardize interval scaled attributes, range and z-score.

#### Range:

Consider f is an attribute  $range(x_{if}) = \frac{x_{if} - \min(f)}{\max(f) - \min(f)},$ 

#### **Z-score:**

- transforms the attribute values so that they have a mean of zero and a mean absolute deviation of 1.
- The mean and absolute deviation of attribute f, denoted by  $m_f$  and  $s_f$  respectively is computed as,

$$m_{f} = \frac{1}{n} \left( x_{1f} + x_{2f} + \dots + x_{nf} \right),$$

$$s_{f} = \frac{1}{n} \left( |x_{1f} - m_{f}| + |x_{2f} - m_{f}| + \dots + |x_{nf} - m_{f}| \right),$$

$$z(x_{if}) = \frac{x_{if} - m_{f}}{s_{f}}.$$

Dr. Hashim Yasin

11

#### **Ratio-scaled attributes:**

- Numeric attributes, but unlike interval-scaled attributes, their scales are exponential,
- For example, the total amount of microorganisms that evolve in a time t is approximately given by

$$Ae^{Bt}$$
,

- where A and B are some positive constants.
- Do log transform:

$$\log(x_{if})$$

Then treat it as an interval-scaled attribute

- The k-means algorithm is sensitive to outliers!
  - Since an object with an extremely large value may substantially distort the distribution of the data.

#### **K-Medoids:**

Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

Find representative objects, called medoids, in the clusters

#### PAM (Partitioning Around Medoids, 1987)

- starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
- PAM works effectively for small data sets, but does not scale well for large data sets





**Arbitrary** choose k object as initial medoids



Assign each remaining object to nearest medoids



K=2

Total Cost = 26

Randomly select a nonmedoid object,O<sub>ramdom</sub>

Do loop

Until no change

Swapping O and  $O_{ramdom}$ 

If quality is improved.



Compute total cost of swapping



- Use real object to represent the cluster
  - 1. Select k representative objects arbitrarily
  - For each pair of non-selected object h and selected object
     i, calculate the total swapping cost TC<sub>ih</sub>
  - 3. For each pair of i and h,
    - If  $TC_{ih} < 0$ ,  $\boldsymbol{i}$  is replaced by  $\boldsymbol{h}$
    - Then assign each non-selected object to the most similar representative object
  - 4. repeat steps 2-3 until there is no change

#### **Data Objects**

|                       | A <sub>1</sub> | A <sub>2</sub> |
|-----------------------|----------------|----------------|
| O <sub>1</sub>        | 2              | 6              |
| 02                    | 3              | 4              |
| $O_3$                 | 3              | 8              |
| $O_4$                 | 4              | 7              |
| $O_5$                 | 6              | 2              |
| $O_6$                 | 6              | 4              |
| <b>O</b> <sub>7</sub> | 7              | 3              |
| <b>O</b> <sub>8</sub> | 7              | 4              |
| $O_9$                 | 8              | 5              |
| O <sub>10</sub>       | 7              | 6              |
|                       |                |                |



#### Goal: create two clusters

Choose randmly two medoids

$$O_2 = (3,4)$$
  
 $O_8 = (7,4)$ 

#### **Data Objects**

|                       | $A_1$ | $A_2$ |
|-----------------------|-------|-------|
| 01                    | 2     | 6     |
| 02                    | 3     | 4     |
| $O_3$                 | 3     | 8     |
| $O_4$                 | 4     | 7     |
| $O_5$                 | 6     | 2     |
| $O_6$                 | 6     | 4     |
| <b>O</b> <sub>7</sub> | 7     | 3     |
| <b>O</b> <sub>8</sub> | 7     | 4     |
| $O_9$                 | 8     | 5     |
| O <sub>10</sub>       | 7     | 6     |
|                       |       |       |



- →Assign each object to the closest representative object
- →Using L1 Metric (Manhattan), we form the following clusters

Cluster1 = 
$$\{O_1, O_2, O_3, O_4\}$$

Cluster2 = 
$$\{O_5, O_6, O_7, O_8, O_9, O_{10}\}$$

19

#### **Data Objects**

|                       | $A_1$ | $A_2$ |
|-----------------------|-------|-------|
| O <sub>1</sub>        | 2     | 6     |
| 02                    | 3     | 4     |
| $O_3$                 | 3     | 8     |
| $O_4$                 | 4     | 7     |
| $O_5$                 | 6     | 2     |
| $O_6$                 | 6     | 4     |
| <b>O</b> <sub>7</sub> | 7     | 3     |
| <b>O</b> <sub>8</sub> | 7     | 4     |
| $O_9$                 | 8     | 5     |

O<sub>10</sub>



→Compute the absolute error criterion [for the set of Medoids (O2,O8)]

$$\begin{split} E = & \sum_{i=1}^{k} \sum_{p \in C_i} p - o_i \mid = \mid o_1 - o_2 \mid + \mid o_3 - o_2 \mid + \mid o_4 - o_2 \mid \\ & + \mid o_5 - o_8 \mid + \mid o_6 - o_8 \mid + \mid o_7 - o_8 \mid + \mid o_9 - o_8 \mid + \mid o_{10} - o_8 \mid \end{split}$$

#### **Data Objects**

|                       | $A_1$ | $A_2$ |
|-----------------------|-------|-------|
| O <sub>1</sub>        | 2     | 6     |
| 02                    | 3     | 4     |
| $O_3$                 | 3     | 8     |
| $O_4$                 | 4     | 7     |
| <b>O</b> <sub>5</sub> | 6     | 2     |
| $O_6$                 | 6     | 4     |
| <b>O</b> <sub>7</sub> | 7     | 3     |
| <b>O</b> <sub>8</sub> | 7     | 4     |
| $O_9$                 | 8     | 5     |



→The absolute error criterion [for the set of Medoids (O2,O8)]

$$E = (3+4+4)+(3+1+1+2+2) = 20$$

#### **Data Objects**

|                       | A <sub>1</sub> | $A_2$ |
|-----------------------|----------------|-------|
| 01                    | 2              | 6     |
| 02                    | 3              | 4     |
| $O_3$                 | 3              | 8     |
| $O_4$                 | 4              | 7     |
| $O_5$                 | 6              | 2     |
| $O_6$                 | 6              | 4     |
| <b>O</b> <sub>7</sub> | 7              | 3     |
| <b>O</b> <sub>8</sub> | 7              | 4     |
| $O_9$                 | 8              | 5     |



- →Choose a random object O<sub>7</sub>
- →Swap O8 and O7
- →Compute the absolute error criterion [for the set of Medoids (O2,O7)]

$$E = (3+4+4)+(2+2+1+3+3)=22$$

#### **Data Objects**

|                       | $A_1$ | $A_2$ |
|-----------------------|-------|-------|
| 01                    | 2     | 6     |
| 02                    | 3     | 4     |
| $O_3$                 | 3     | 8     |
| $O_4$                 | 4     | 7     |
| <b>O</b> <sub>5</sub> | 6     | 2     |
| $O_6$                 | 6     | 4     |
| <b>O</b> <sub>7</sub> | 7     | 3     |
| <b>O</b> <sub>8</sub> | 7     | 4     |
| $O_9$                 | 8     | 5     |
| O <sub>10</sub>       | 7     | 6     |



→Compute the cost function

Absolute error [for  $O_{2'}O_7$ ] – Absolute error  $[O_{2'}O_8]$ 

$$S = 22 - 20$$

 $S>0 \Rightarrow$  it is a bad idea to replace  $O_8$  by  $O_7$ 

- PAM is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- PAM works efficiently for small data sets but does not scale well for large data sets.
- $O(k(n-k)^2)$  for each iteration
  - where n is # of data points,
  - k is # of clusters