Homework 5

(a)

1 point possible (graded)

 $X \sim \mathcal{N}\left(\mu,\sigma^2
ight)$ and $Y = X^2$. Please enter in terms of $\,\mu\,$ and $\,\sigma\,$.

Cov(X, Y) =Answer: 2*mu*sigma^2

STANDARD NOTATION

Solution:

The definition for the covariance of two random variables: $\operatorname{Cov}(X,Y) = \mathbb{E}\left[(X - \mathbb{E}\left[X\right])(Y - \mathbb{E}\left[Y\right])\right]$. An alternative form for the covariance is $\operatorname{Cov}(X,Y) = \mathbb{E}\left[XY\right] - \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]$. This form is easier to work with to calculate covariances compared to the original definition.

$$\begin{split} \mathbb{E}\left[X^2\right] &= \sigma^2 + \mu^2 \text{ , } \mathbb{E}\left[X^3\right] = \mu^3 + 3\mu\sigma^2 \text{ .} \\ &\text{Cov}\left(X, X^2\right) = \mathbb{E}\left[X^3\right] - \mathbb{E}\left[X\right] \mathbb{E}\left[X^2\right] \\ &= \mu^3 + 3\mu\sigma^2 - \mu\left(\mu^2 + \sigma^2\right) \\ &= 2\mu\sigma^2 \end{split}$$

(b)

1 point possible (graded)

X , Y have the joint probability density function f(x, y) = 1 , 0 < x < 1 , x < y < x + 1 . Please enter a number.

Cov(X, Y) = Answer: 1/12

Solution:

 $\text{Cov}\left(X,Y\right) = \mathbb{E}\left[XY\right] - \mathbb{E}\left[X\right] \mathbb{E}\left[Y\right] \text{, so we need to find out the expectations of } X \text{, } Y \text{, and } XY \text{. From the joint distribution, we can derive the marginal distribution: } f_X\left(x\right) = \int_x^{x+1} 1 \ dy = y|_x^{x+1} = 1 \text{, } x \in (0,1) \text{ and the conditional distribution } f\left(y|x\right) = \frac{f(x,y)}{f(x)} = 1 \text{, } y \in (x,x+1) \text{.}$

On one hand, we have $\mathbb{E}[X] = \frac{1}{2}$: since $f_X(x)$ doesn't depend on x, this describes the density of a uniform random variable over [0,1]. On the other hand, for the mean of Y:

$$\mathbb{E}[Y|X] = \int_{x}^{x+1} y \, dy$$
$$= \frac{y^2}{2} \Big|_{x}^{x+1}$$
$$= \frac{2x+1}{2}$$

According to the law of iterated expectations,

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$$

$$= \mathbb{E}\left[\frac{2X+1}{2}\right]$$

$$= \int_0^1 \frac{2x+1}{2} dx$$

$$= 1$$

$$\mathbb{E}[XY] = \int_0^1 x \left[\int_x^{x+1} y \, dy \right] dx$$
$$= \int_0^1 x \frac{y^2}{2} \Big|_x^{x+1} dx$$
$$= \int_0^1 \frac{2x^2 + x}{2} \, dx$$
$$= \frac{7}{12}$$

$$\mathsf{Cov}\left(X,Y\right) = \mathbb{E}\left[XY\right] - \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right] = \frac{7}{12} - \frac{1}{2} \times 1 = \frac{1}{12}$$

(c)

1 point possible (graded)

$$X \sim f(x) = \frac{1}{2b}e^{-|x|/b}, x \in \mathbb{R}, b > 0 \text{ and } Y = \text{sign}(X)$$

Cov(X, Y) = Answer: b

Solution:

By symmetry, $\mathbb{E}\left[X\right] = \int_{-\infty}^{\infty} \frac{x}{2b} e^{-|x|/b} \ dx = 0$. $\mathbb{E}\left[Y\right] = (-1) \cdot P\left(X < 0\right) + 1 \cdot P\left(X > 0\right) = -\frac{1}{2} + \frac{1}{2} = 0$

$$Cov(X, Y) = \mathbb{E}[XY] = \int_{-\infty}^{\infty} \frac{x \cdot sign(x)}{2b} e^{-|x|/b} dx$$
$$= \int_{0}^{\infty} \frac{x}{b} e^{-x/b} dx$$

We can think of this as the expectation of an exponential random variable Z with parameter $\frac{1}{b}$. $\int_0^\infty \frac{x}{b} e^{-x/b} \ dx = \mathbb{E}\left[Z\right] = b \text{ , where } Z \sim \operatorname{Exp}\left(\frac{1}{b}\right).$

symmetric around x=0?

plot $\frac{1}{2b} \exp\left(-\frac{|x|}{b}\right)$

3D plot:

Q

Contour plot:

(d)

1 point possible (graded)

$$X \sim \mathsf{Unif}(0,1)$$
 and given $X = x$, $Y \sim \mathsf{Unif}(x,1)$

$$Cov(X, Y) =$$
 Answer: 1/24

Solution:

$$\mathbb{E}[X] = \frac{1}{2}$$

$$\mathbb{E}[Y|X] = \frac{X+1}{2}$$

According to the law of iterated expectations, $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}[\frac{X+1}{2}] = \int_0^1 \frac{x+1}{2} dx = \frac{3}{4}$

$$f(x, y) = f(y|x) f(x) = \frac{1}{1-x}$$

$$\mathbb{E}[XY] = \int_0^1 \int_x^1 \frac{1}{1-x} \cdot xy \, dy dx$$

$$= \int_0^1 \frac{x}{1-x} \cdot \frac{y^2}{2} \Big|_x^1 \, dx$$

$$= \int_0^1 \frac{x}{1-x} (\frac{1}{2} - \frac{x^2}{2}) \, dx$$

$$= \frac{1}{2} \int_0^1 (x+x^2) \, dx$$

$$= \frac{5}{12}$$

$$\mathsf{Cov}\,(X,Y) = \mathbb{E}\left[XY\right] - \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right] = \tfrac{5}{12} - \tfrac{1}{2} \times \tfrac{3}{4} = \tfrac{1}{24}$$

(f)

1 point possible (graded)

X+Y and X-Y , where X and Y are independent $\mathcal{N}\left(\mu,\sigma^{2}\right)$.

$$Cov(X+Y,X-Y) = Answer: 0$$

Solution:

$$\begin{aligned} \operatorname{Cov}\left(X+Y,X-Y\right) &= \mathbb{E}\left[\left(X+Y\right)\left(X-Y\right)\right] - \mathbb{E}\left[X+Y\right]\mathbb{E}\left[X-Y\right] \\ &= \mathbb{E}\left[X^2\right] - \mathbb{E}\left[Y^2\right] - \left(\mathbb{E}\left[X\right] + \mathbb{E}\left[Y\right]\right)\left(\mathbb{E}\left[X\right] - \mathbb{E}\left[Y\right]\right) \\ &= \left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + \mu^2\right) - \left(\left(\mathbb{E}\left[X\right]\right)^2 - \left(\mathbb{E}\left[Y\right]\right)^2\right) \\ &= 0 \end{aligned}$$

2. A Simple Singular Covariance Matrix

Homework due Jul 1, 2020 08:59 JST Past Due

☐ Bookmark this page

Suppose **X** is a random vector, where $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$, with mean **0** and covariance matrix $\mathbf{v}\mathbf{v}^T$, for some vector $\mathbf{v} \in \mathbb{R}^d$.

(a)

1 point possible (graded)

If d > 1, is the covariance matrix $\mathbf{v}\mathbf{v}^T$ invertible?

Hint: Compute the determinant for the case d=2. That result will generalize to higher dimension.

 \bigcirc $\mathbf{v}\mathbf{v}^T$ is invertible.

 \bigcirc $\mathbf{v}\mathbf{v}^T$ is **not** invertible. \checkmark

Solution:

For d > 1, the matrix $\mathbf{v}\mathbf{v}^T$ where \mathbf{v} is a vector in \mathbb{R}^d is not invertible. To get an intuition, we start with an example in 2 dimensions:

$$\mathbf{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies \mathbf{v}\mathbf{v}^T = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

The matrix $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is not invertible. One way to see this is that its determinant is 1(0) - (0)(0) = 0. Another way to see it is that for any 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

In fact, the above argument works in general after a change of variables. Given $\mathbf{v} \in \mathbb{R}^d$, change coordinates of \mathbb{R}^d so that the first axis points in the direction of \mathbf{v} (and so that \mathbf{v} has unit length). In this new coordinate system, \mathbf{v} can be rewritten

as
$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
, and the matrix

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix} \ = \ \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & 0 \end{pmatrix}$$

is not invertible because no $d \times d$ matrix when multiplied by it will give the identity matrix.

v is a vector (here matrix of size $d \times 1$). Hence, vv^T is a matrix of size $d \times d$.

In the first question, we are asked to either prove a statement (vv^T is invertible) or to find a counterexample for this statement. The answer discusses the counterexample when d=2 and $v=\begin{pmatrix}1\\0\end{pmatrix}$.

Note that v^Tv is quite a different thing. It is a matrix of size 1×1 (a scalar) and it is equal to the square of the norm $\|v\|$ (L_2 norm) of the vector (see here for vector norms). For instance, for the case $v = \begin{pmatrix} a \\ b \end{pmatrix}$, we have

$$v^T v = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = a^2 + b^2 = ||v||^2$$

Also, if you look at the general case, see figure below from this question, you can understand why it is by construction a covariance matrix.

so $a^T b$ is equivalent to $a \cdot b$, while

$$aa^T = egin{bmatrix} a_1 \ a_2 \ dots \ a_n \end{bmatrix} egin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = egin{bmatrix} a_1^2 & a_1a_2 & \cdots & a_1a_n \ a_2a_1 & a_2^2 & \cdots & a_2a_n \ dots & dots & dots & dots \ a_na_1 & a_na_2 & \cdots & a_n^2 \end{bmatrix}.$$

The matrix presented in the solution for problem (a) is just an example for the vector: $\mathbf{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Let's pick another vector (for simplicity in 2D) : $\mathbf{v}_1 = \left(egin{array}{c} a \\ b \end{array} \right)$

Then,
$$\mathbf{v_1}^T = \begin{pmatrix} a & b \end{pmatrix}$$

$$\mathbf{v_1}\mathbf{v_1}^T = \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a & b \end{pmatrix} = \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix}$$

Then, matrix is invertible IFF the determinant $\neq 0$

 $\det(\mathbf{v_1}\mathbf{v_1}^T) = a^2 \cdot b^2 - ab \cdot ab = 0$. Hence, $\mathbf{v_1}\mathbf{v_1}^T$ is **not** invertible.

(b)

1 point possible (graded)

Let \mathbf{u} be a vector in \mathbb{R}^d such that $\mathbf{u} \perp \mathbf{v}$, i.e. $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u} = 0$.

Find the variance of $\mathbf{u}^T \mathbf{X}$.

(If applicable, enter trans(v) for the transpose v^T of a vector v, and norm(v) for the norm ||v|| of a vector v.)

$$Var(\mathbf{u}^T\mathbf{X}) =$$
 Answer: 0

STANDARD NOTATION

Solution:

Given two vectors $\mathbf{u}, \mathbf{X} \in \mathbb{R}^d$, the inner product $\mathbf{u}^T \mathbf{X}$ is a scalar, and its variance is also a scalar. Using the covariance matrix formula, we get

$$\begin{aligned} \mathsf{Var}\left(\mathbf{u}^{T}\mathbf{X}\right) &= \mathsf{Cov}\left(\mathbf{u}^{T}\mathbf{X}\right) \\ &= \mathbf{u}^{T}\mathsf{Cov}\left(\mathbf{X}\right)\mathbf{u} \\ &= \mathbf{u}^{T}\left(\mathbf{v}\mathbf{v}^{T}\right)\mathbf{u} \\ &= \left(\mathbf{u}^{T}\mathbf{v}\right)\left(\mathbf{v}^{T}\mathbf{u}\right) \\ &= 0. \end{aligned}$$

(c)

1 point possible (graded)

Let $\overline{v} = \frac{v}{\|v\|}$ (i.e., \overline{v} is the normalized version of v). What is the variance of $\overline{v}^T X$? (If applicable, enter trans(v) for the transpose v^T of v, and norm(v) for the norm ||v|| of a vector v.)

 $Var(\overline{\mathbf{v}}^T\mathbf{X}) = Answer: norm(v)^2$

STANDARD NOTATION

Solution:

Similarly

$$\begin{aligned} \mathsf{Var}\left(\overline{\mathbf{v}}^T\mathbf{X}\right) &= \mathsf{Cov}\left(\overline{\mathbf{v}}^T\mathbf{X}\right) &= \overline{\mathbf{v}}^T\mathsf{Cov}\left(X\right)\overline{\mathbf{v}} \\ &= \left(\frac{\mathbf{v}}{\|\mathbf{v}\|}\right)^T(\mathbf{v}\mathbf{v}^T)\left(\frac{\mathbf{v}}{\|\mathbf{v}\|}\right) \\ &= \frac{(\mathbf{v}^T\mathbf{v})\left(\mathbf{v}^T\mathbf{v}\right)}{\|\mathbf{v}\|^2} &= \|\mathbf{v}\|^2. \end{aligned}$$

(d)

1 point possible (graded)

Suppose we observe n independent copies of \mathbf{X} and call them $\mathbf{X}_1,\dots,\mathbf{X}_n$. What is the asymptotic distribution of $\overline{\mathbf{X}}_n = \frac{\sum_{i=1}^n \mathbf{X}_i}{n}$? (Select all that apply.)

$$igcup_{n}(\overline{\mathbf{X}}_{n}-\mathbf{0}) \xrightarrow[n o \infty]{(d)} \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}
ight) ext{ where } \mathbf{I}_{d} ext{ is the identity matrix in } R^{d}$$

Note on notation: In the choices above, $\mathcal N$ denotes a multivariate Gaussian distribution. In lecture and elsewhere, a multivariate Gaussian distribution in d dimension is also sometimes denoted with an extra subscript by $\mathcal N_d$. To be accurate, read the dimension from the arguments, i.e. the mean and the covariance matrix.

Solution:

By multivariate CLT,

$$\sqrt{n}(\overline{\mathbf{X}}_n - \mathbf{0}) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(\mathbf{0}, \mathbf{v}\mathbf{v}^T)$$

However, $\mathbf{v}\mathbf{v}^T$ is not invertible, so the pdf of $\mathcal{N}(\mathbf{0},\mathbf{v}\mathbf{v}^T)$ is not given by the usual formula that involves the inverse of the determinant of the covariance matrix of the multivariate Gaussian variable.

(e)

2 points possible (graded)

Let
$$\mathbf{Y}_i = \overline{\mathbf{v}} (\overline{\mathbf{v}}^T \mathbf{X}_i)$$
 , or equivalently $\overline{\mathbf{v}} (\overline{\mathbf{v}} \cdot \mathbf{X}_i) = (\overline{\mathbf{v}} \cdot \mathbf{X}_i) \overline{\mathbf{v}}$, where $\overline{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ is the same as in part (c).

We will compare the asymptotic distribution of $\overline{\mathbf{X}}_n$ you obtain in part (d) to the asymptotic distribution of $\overline{\mathbf{Y}}_n$ where $\overline{\mathbf{Y}}_n = \frac{\sum_{i=1}^n \mathbf{Y}_i}{n}$.

What is the expectation $\mathbb{E}\left[\mathbf{Y}_{i}\right]$ of \mathbf{Y}_{i} ? (Choose all that apply.)

$$\mathbf{\overline{v}}^T \mathbb{E}\left[\mathbf{X}_i\right]$$

$$\checkmark$$
 $\mathbf{0}$ (the zero vector in \mathbb{R}^d) \checkmark

$$\Box \ \overline{\mathbf{v}}^T \mathbf{v}$$

Find the covariance matrix $\Sigma_{\mathbf{Y}_i}$ of \mathbf{Y}_i in terms of the vector \mathbf{v} .

(If applicable, enter **trans(v)** for the transpose \mathbf{v}^T of \mathbf{v} , and **norm(v)** for the norm $||\mathbf{v}||$ of a vector \mathbf{v} .)

$$\Sigma_{\mathbf{Y}_i} =$$
 Answer: v*trans(v)

(There is no answer box for the following question.)

Notice that \mathbf{Y}_i is a scalar multiple of the vector \mathbf{v} and hence lies on the same line as \mathbf{v} no matter what value \mathbf{X}_i takes. (Specifically, $\mathbf{Y}_i = (\overline{\mathbf{v}}^T\mathbf{X}_i)\overline{\mathbf{v}}$ is the projection of \mathbf{X}_i onto the vector \mathbf{v} .) Use your answers for $\mathbb{E}\left[\mathbf{Y}_i\right]$ and $\Sigma_{\mathbf{Y}_i}$ to find the asymptotic distribution of $\overline{\mathbf{X}}_n$. Compare this with the asymptotic distribution of $\overline{\mathbf{X}}_n$ from the previous part. What can you conclude about the asymptotic distribution of $\overline{\mathbf{X}}_n$?

3. Asymptotic Variance

Homework due Jul 1, 2020 08:59 JST Past Due

□ Bookmark this page

a)

2 points possible (graded)

Note: This question is the ungraded problem from homework 2.

Let $X_1,\ldots,X_n \overset{i.i.d.}{\sim} \mathcal{N}\left(0,\sigma^2\right)$, for some $\sigma^2>0$. Let

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n X_i^2$$
, and $\widetilde{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

Argue that both proposed estimators $\widehat{\sigma^2}$ and $\widetilde{\sigma^2}$ below are consistent and asymptotically normal.

Then, give their asymptotic variances $V(\widehat{\sigma^2})$ and $V(\widehat{\sigma^2})$ and decide if one of them is always bigger than the other.

Hint: Use the multivariate Delta method. Also see Recitation 5 Inference for the Variance of a Gaussian distribution.

$$V(\widehat{\sigma^2}) =$$
 Answer: 2*(sigma^2)^2

$$V(\widetilde{\sigma^2}) =$$
 Answer: 2*(sigma^2)^2

Solution:

Note that

$$\widehat{\sigma^2} = \overline{Y}_n$$
, for $Y_i = X_i^2$.

By the Law of Large Numbers,

$$\overline{Y}_n \xrightarrow[n \to \infty]{\mathbf{P}} \mathbb{E}[Y_1] = \sigma^2.$$

By the Central Limit Theorem,

$$\sqrt{n}(\overline{Y}_n - \sigma^2) \sim \mathcal{N}(0, \text{Var}(Y_1)) = \mathcal{N}(0, 2(\sigma^2)^2),$$

hence

$$V(\widehat{\sigma^2}) = 2(\sigma^2)^2.$$

For $\widetilde{\sigma^2}$, first observe that we can write it as

$$\widetilde{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

$$= \frac{1}{n} \sum_{i=1}^n (X_i^2 - 2\overline{X}_n X_i + \overline{X}_n^2)$$

$$= \frac{1}{n} \left(\sum_{i=1}^n X_i^2 \right) - \overline{X}_n^2 = \widehat{\sigma^2} - \overline{X}_n^2.$$

Again, by the Law of Large Numbers,

$$\overline{X}_n^2 \xrightarrow[n \to \infty]{\mathbf{P}} \mathbb{E}[X_1]^2 = 0,$$

SO

$$\widetilde{\sigma^2} = \widehat{\sigma^2} - \overline{X}_n^2 \xrightarrow[n \to \infty]{\mathbf{P}} \sigma^2.$$

Now, we can consider $\widetilde{\sigma^2}$ as

$$\widetilde{\sigma^2} = g\left(\frac{1}{n}\sum_{i=1}^n \binom{X_i}{X_i^2}\right),\,$$

where

$$g(x, y) = y - x^2.$$

By the above, we have a multidimensional Central Limit Theorem for the first and second moments of a Gaussian together,

$$\sqrt{n} \left[\left(\frac{\overline{X}_n}{\overline{Y}_n} \right) - \left(\begin{matrix} 0 \\ \sigma^2 \end{matrix} \right) \right] \xrightarrow[n \to \infty]{(D)} \mathcal{N} \left(\left(\begin{matrix} 0 \\ 0 \end{matrix} \right), \left(\begin{matrix} \sigma^2 & 0 \\ 0 & 2(\sigma^2)^2 \end{matrix} \right) \right),$$

where the $\,0$ s on the diagonal come from the fact that

$$\mathbb{E}\left[X_i \times X_i^2\right] = \mathbb{E}\left[X_i^3\right] = 0.$$

Now, apply the multidimensional Delta Method, computing

$$Dg(x, y) = \begin{pmatrix} -2x & 1 \end{pmatrix},$$

to obtain

$$\begin{split} \sqrt{n} \, (\widetilde{\sigma^2} - \sigma^2) & \xrightarrow[n \to \infty]{(D)} \, \mathcal{N} \left(0, \, Dg \, (0, \, \sigma^2) \begin{pmatrix} \sigma^2 & 0 \\ 0 & 2(\sigma^2)^2 \end{pmatrix} Dg (0, \, \sigma^2)^\top \right) \\ &= \, \mathcal{N} \left(0, \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \sigma^2 & 0 \\ 0 & 2(\sigma^2)^2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = \mathcal{N} \, (0, 2(\sigma^2)^2) \, . \end{split}$$

Combined, we see that both estimators have the same asymptotic variance.

4. Maximum Likelihood Estimator for Curved Gaussian

Homework due Jul 1, 2020 08:59 JST Past Due

☐ Bookmark this page

(a)

1 point possible (graded)

Note: To avoid too much double jeopardy, the solution to part (a) will be available once you have either answered it correctly or reached the maximum number of attempts.

Let X_1, \ldots, X_n be n i.i.d. random variables with distribution $\mathcal{N}(\theta, \theta)$ for some unknown $\theta > 0$.

Compute the maximum likelihood estimator $\hat{\theta}$ for θ in terms of the sample averages of the linear and quadratic means, i.e. \overline{X}_n and \overline{X}_n^2 .

(Enter **barX_n** for \overline{X}_n and **bar(X_n^2)** for $\overline{X_n^2}$. Note that **barX_n^2** represents $(\overline{X}_n)^2$, and is **not** equal to **bar(X_n^2)** with the brackets.

$$\hat{\theta} =$$
 Answer: (sqrt(4 * bar(X_n^2) + 1) - 1)/2

Solution:

To compute the maximum likelihood estimator, we write the log likelihood and maximize it by setting its derivative to zero. First,

$$\begin{split} \ell_n(\theta) &= \sum_{i=1}^n \log \left[\frac{1}{\sqrt{2\pi\theta}} \exp\left(-\frac{(X_i - \theta)^2}{2\theta} \right) \right] \\ &= -\frac{n}{2} (\log(2) + \log(\pi) + \log(\theta)) - \sum_{i=1}^n \frac{(X_i - \theta)^2}{2\theta} \\ &= -\frac{n}{2} (\log(2) + \log(\pi) + \log(\theta)) - \sum_{i=1}^n \left[\frac{1}{2\theta} X_i^2 - X_i + \frac{1}{2}\theta \right]. \end{split}$$

Differentiating yields

$$\frac{d}{d\theta}\mathscr{E}(\theta) = -\frac{n}{2\theta} + \frac{1}{2\theta^2} \sum_{i=1}^n X_i^2 - \frac{n}{2},$$

which we set to zero to obtain the equation

$$\hat{\theta}^2 + \hat{\theta} - \frac{1}{n} \sum_{i=1}^n X_i^2 = 0.$$

Employing the quadratic formula and picking the result that gives a positive $\,\hat{ heta}\,$ then leads to

$$\hat{\theta} = -\frac{1}{2} + \frac{1}{2}\sqrt{4\overline{X_n^2} + 1}.$$

4 points possible (graded)

We want to compute the asymptotic variance of $\,\hat{ heta}\,$ via two methods.

In this problem, we apply the Central Limit Theorem and the 1-dimensional Delta Method. We will compare this with the approach using the Fisher information next week.

First, compute the limit and asymptotic variance of $\overline{X_n^2}$.

The limit to which $\overline{X_n^2}$ converges in probability, also known as its ${f P}$ -limit , is

$$\overline{X_n^2} \xrightarrow[n \to \infty]{\mathbf{P}}$$
 Answer: theta + theta^2

The asymptotic variance $\ V \ (\overline{X_n^2}) \ ext{ of } \ \overline{X_n^2}$, which is equal to $\ extst{Var} \ (X_1^2)$, is

$$V(\overline{X_n^2}) = \text{Var}(X_1^2) =$$
 Answer: 2*theta^2*(2*theta + 1)

Now, write $\,\hat{ heta}\,$ as the function of $\,\overline{X_n^2}\,$ you found in part (a),

$$\hat{\theta} = g(\overline{X_n^2})$$

and give its first derivative, g'(x),

$$g'(x) =$$
 Answer: 1/sqrt(4*x+1)

What can you conclude about the asymptotic variance $\,V\,(\hat{ heta})\,$ of $\,\hat{ heta}$?

$$V(\hat{\theta}) =$$
 Answer: 2*theta^2/(2*theta + 1)

STANDARD NOTATION

Solution:

First, by the Law of Large Numbers,

$$\overline{X_n^2} \xrightarrow[n \to \infty]{\mathbf{P}} \mathbb{E}[X_1^2] = \mathsf{Var}(X_1) + \mathbb{E}[X_1]^2 = \theta + \theta^2.$$

Its asymptotic variance can be found by the Central Limit Theorem that gives us

$$\sqrt{n}(\overline{X_n^2} - (\theta + \theta^2)) \xrightarrow[n \to \infty]{(D)} \mathcal{N}(0, \text{Var}(X_1^2)),$$

and

$$\begin{split} \operatorname{Var}(X_{1}^{2}) &= & \mathbb{E}\left[X_{1}^{4}\right] - \mathbb{E}\left[X_{1}^{2}\right]^{2} \\ &= & \mathbb{E}\left[(\theta + \sqrt{\theta}Z)^{4}\right] - (\theta + \theta^{2})^{2} \\ &= & \theta^{4} + 4\theta^{3}\sqrt{\theta}\mathbb{E}\left[Z\right] + 6\theta^{2}\theta\underbrace{\mathbb{E}\left[Z^{2}\right]}_{=0} + 4\theta\sqrt{\theta^{3}}\underbrace{\mathbb{E}\left[Z^{3}\right]}_{=0} + \theta^{2}\underbrace{\mathbb{E}\left[Z^{4}\right]}_{=3} - \theta^{4} - 2\theta^{3} + \theta^{2} \\ &= & 2\theta^{2}\left(2\theta + 1\right), \end{split}$$

where $~Z \sim \mathcal{N}\left(0,1\right)$ is a standard Normal variable.

From the previous part, we get

$$g(x) = \frac{1}{2} (\sqrt{4x+1} - 1),$$

so

$$g'(x) = \frac{1}{\sqrt{4x+1}}.$$

Finally, by the Delta Method,

$$\sqrt{n}\left(g\left(\overline{X_{n}^{2}}\right)-g\left(\theta+\theta^{2}\right)\right)\xrightarrow[n\to\infty]{(D)}\mathcal{N}\left(0,2\theta^{2}\left(2\theta+1\right)g'(\theta+\theta^{2})^{2}\right)=\mathcal{N}\left(0,\frac{2\theta^{2}}{2\theta+1}\right).$$