Linear Algebra Game

Chapter 1

Vector Spaces

1.1 Zero Scalar Multiplication

Definition 1. We begin by defining a *vector space* V over a field K as an abelian group with four key axioms:

- smul_add: $\forall a \in K, x, y \in V, a \bullet (x + y) = a \bullet x + a \bullet y$
- add_smul: $\forall a, b \in K, x \in V, (a+b) \bullet x = a \bullet x + b \bullet x$
- mul_smul: $\forall a, b \in K, x \in V, (a * b) \bullet x = a \bullet (b \bullet x)$
- one_smul: $\forall x \in V, (1:K) \bullet x = x$

Theorem 2. In any vector space V over K, the scalar 0 multiplied by any vector gives the zero $vector: \forall w \in V, (0:K) \bullet w = (0:V)$

1.2 Multiplying By The Zero Vector

Theorem 3. In any vector space V over K, any scalar a multiplied by the zero vector gives the zero vector: $\forall a \in K, a \bullet (0:V) = (0:V)$

1.3 Scaling By NegativeOne

Theorem 4. In any vector space V over K, multiplying a vector by -1 gives its additive inverse: $v \in V : (-1:K) \bullet v = -v$

1.4 Zero Must Belong

Definition 5. A *subspace* is a subset of a vector space that acts similarly to a vector space itself. It has three main properties:

- Nonempty: W.Nonempty
- Closure_Under_Addition: $\forall (x,y \in V), x \in W \rightarrow y \in W \rightarrow x + y \in W$
- Closure_Under_Scalar_Multiplication: $\forall (a \in K)(x \in V), x \in W \rightarrow a \bullet x \in W$

Theorem 6. This is a proof that any subspace contains the zero vector: $(0:V) \in W$

1.5 Negatives In Subspace

Theorem 7. This is a proof that if a subspace contains a vector 'x', it also contains '-x': $\forall x \in V, x \in W \to (-x) \in W$

Chapter 2

LinearIndependenceSpan

2.1 Linear Combinations

Definition 8. $\exists (s : (Finset\ V))(f : V \to K), (\uparrow s \subseteq S) \land (x = Finset.sum\ (fun\ v \Rightarrow f(v) \bullet v))$

Theorem 9. If $v \in S$, then v is a linear combination of S: $(S : (Set\ V))(v : V)(hv : v \in S) : is_linear_combination\ K\ V\ S\ v$

2.2 Introducing Span

Definition 10. $\{x \in V | linear_combination \ K \ V \ S \ x\}$

Theorem 11. If $v \in S$, then $v \in span \ K \ V \ S : S : Set V v : V(hv : v \in S) : v \in span \ K \ V \ S$

2.3 Monotonicity Of Span

Theorem 12. The span of sets is monotonic. Simply, this means that if you have $h:A\subseteq B$, then span_mono K V h is a proof that span K V $A\subseteq span$ K V B:A B:Set V $(hAB:A\subseteq B):span$ K V $A\subseteq span$ K V B

2.4 Linear Independence

Definition 13. A set of vectors S is *inearly independent* if no vector in S can be written as a linear combination of the others. Equivalently, the only solution to a linear combination of elements of S equaling zero is the trivial solution (all coefficients zero). Here we formalize this condition: $\forall (s: FinsetV)(f: V \to K), (\uparrow s \subseteq S) \to (Finset.sums(funv \mapsto fv \bullet v) = 0) \to (\forall v \in s, fv = 0)$

Theorem 14. The empty set is linearly independent: linear independent $KV(\emptyset : SetV)$

2.5 Linear Independence Of Subsets

Theorem 15. If A is a linearly independent set, and we have $B \subseteq A$, then B is also linearly independent: $AB : SetV(hBsubA : B \subseteq A)(hA : linear_independent_vKVA)$

2.6 Supersets Span The Whole Space

Theorem 16. If a set A spans the whole space V, then any superset of A also spans V: $ABT : SetV(hT : \forall (x : V), x \in T)(hA : T = spanKVA)(hAsubB : A \subseteq B) : T = spanKVB$

2.7 Uniqueness Of Linear Combinations

Theorem 17. $S: SetV(hS: linear_independentKVS)(st: FinsetV)(hs: \uparrow s \subseteq S)(ht: \uparrow t \subseteq S)(fg: V \to K)(hf\emptyset: \forall v \notin s, fv = 0)(hg0: \forall v \notin t, gv = 0)(heq: Finset.sums(funv \Rightarrow fv \bullet v) = Finset.sumt(funv \Rightarrow gv \bullet v)): f = g$

2.8 Linear Independence Of Set With Insertion

 $\textbf{Theorem 18.} \ S: SetVv: V(hS: linear_independentKVS)(hv_not_span: v \not\in spanKVS): linear_independentKV(S \cup v)$

2.9 Span After Removing Elements

Definition 19. $x \in V | linear_combinationKVSx$

Theorem 20. $S: SetVv: V(hS: linear_independentKVS)(hv_not_span: v \notin spanKVS): linear_independentKV(S \cup v)$