٠÷. -

Response to First Office Action Docket No. 011.0262.US.UTL

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1 1. (currently amended): A system for determining a natural color 2 depth of a digital image, comprising:
- a color distance module determining color distances between each pair of
 colors in a color palette stored for a digital color image;
- a merge module selecting a closest neighboring color for each color in the color palette separated by a substantially minimum color distance, and merging, in iterative sequence, the colors in each color pair that [[is]] are visually indistinct.
- 2. (original): A system according to Claim 1, further comprising:
 an averaging module generating a weighted average of the colors in each
 color pair that are visually indistinct.
- 3. (original): A system according to Claim 2, wherein the weighted average z is calculated, in accordance with the equation:

$$z = \frac{[count(x) \times x] + [count(y) \times y]}{count(x) + count(y)};$$

- where x and y are the colors in the color pair, and count() denotes the number of occurrences of each color in the digital color image.
- 4. (original): A system according to Claim 1, wherein visual distinctness is determined based on an output of a function f of visual area, in accordance with the equation:

$$f(x) = \frac{c}{x + c(y_2 - y_1)^{-1}} + y_1;$$

- 5 where x is a visual area occupied by one of the colors in the color pair, y_1 denotes
- a horizontal asymptote, y2 denotes a y-intercept, and c represents a fitted curve
- 7 constant.
- 1 5. (original): A system according to Claim 4, further comprising:
- 2 a visualization module determining visual distinction △, in accordance
- 3 with the equation:

4
$$\Delta(x,y) = \begin{cases} \text{TRUE,} & \text{if } |x-y| \ge f(v(x)), \\ \text{FALSE,} & \text{if } |x-y| < f(v(x)), \end{cases}$$

- 5 where v is a visual area comprising a largest four-way block of contiguous pixels
- 6 of one of the colors in the color pair.
- 6. (currently amended): A method for determining a natural color
- 2 depth of a digital image, comprising:
- 3 determining color distances between each pair of colors in a color palette
- 4 stored for a digital color image;
- 5 selecting a closest neighboring color for each color in the color palette
- 6 separated by a substantially minimum color distance; and
- 7 merging, in iterative sequence, the colors in each color pair that [[is]] are
- 8 visually indistinct.
- 7. (original): A method according to Claim 6, further comprising:
- 2 generating a weighted average of the colors in each color pair that are
- 3 visually indistinct.
- 8. (original): A method according to Claim 7, further comprising:
- 2 calculating the weighted average z, in accordance with the equation:

$$z = \frac{[count(x) \times x] + [count(y) \times y]}{count(x) + count(y)};$$

- 4 where x and y are the colors in the color pair, and count() denotes the number of
- 5 occurrences of each color in the digital color image.

- 9. (original): A method according to Claim 6, further comprising:
- determining visual distinctness based on an output of a function f of visual
- 3 area, in accordance with the equation:

$$f(x) = \frac{c}{x + c(y_2 - y_1)^{-1}} + y_1;$$

- 5 where x is a visual area occupied by one of the colors in the color pair, y_1 denotes
- 6 a horizontal asymptote, y2 denotes a y-intercept, and c represents a fitted curve
- 7 constant.
- 10. (original): A method according to Claim 9, further comprising:
- 2 determining visual distinction △, in accordance with the equation:

3
$$\Delta(x,y) = \begin{cases} \text{TRUE}, & \text{if } |x-y| \ge f(\nu(x)); \\ \text{FALSE}, & \text{if } |x-y| < f(\nu(x)); \end{cases}$$

- 4 where v is a visual area comprising a largest four-way block of contiguous pixels
- 5 of one of the colors in the color pair.
- (original): A computer-readable storage medium holding code for
- 2 performing the method according to Claims 6, 7, 8, 9, or 10.
- 1 12. (original): A system for reducing a color palette of a digital image
- 2 to a natural color depth, comprising:
- a distance module selecting a neighboring color closest in color distance in
- 4 a color space for each unique color in the color palette of a digital image; and
- 5 a merge module merging the unique color and the closest neighboring
- 6 color, comprising determining visual distinctness of the unique color based on the
- 7 visual area occupied by the unique color in the digital image, and combining the
- 8 unique color and the closest neighboring color when visually indistinct and
- 9 reducing the color palette by replacing all occurrences of the unique color and the
- 10 closest neighboring color with the combined color.

1	13.	(original): A system according to Claim 12, wherein selecting the	
2	closest neight	poring color and merging the unique color and the closest	
3	neighboring o	color is repeated until no further colors in the color palette merge.	
1	14.	(original): A system according to Claim 12, further comprising:	
2	a stati	stical module counting occurrences of the unique color, counting	
3	оссиптенсеs of the closest neighboring color, and calculating a weighted average		
4	of the unique color and the closest neighboring color to combine the unique color		
5	and the closest neighboring color.		
1	15.	(original): A system according to Claim 12, further comprising:	
2	a visu	al distinctness module evaluating the visual area occupied by the	
3	unique color relative to color distances in the color space from other colors to		
4	determine a threshold below which the unique color and any other such color are		
5	visually indis	stinct.	
1	16.	(original): A system according to Claim 15, wherein visual	
2	distinctness is set as occurring when the color distance between the unique color		
3	and the close	st neighboring color exceeds the threshold.	
1	17.	(original): A system according to Claim 15, wherein the color	
2	distance is de	etermined as a Euclidean distance in the color space.	
1	18.	(original): A system according to Claim 12, wherein the digital	
2	image is rece	ived as an output from another color reduction process.	
1	19.	(original): A system according to Claim 12, wherein the digital	
2	image is forwarded as an input to another color reduction process.		
1	20.	(original): A system according to Claim 12, further comprising:	

OA Resp -5 -

2	a non-natural color depth color reduction process performing a color		
3	reduction of the color palette of the digital image prior reducing the color palette		
4	to a natural color depth.		
1	21. (original): A system according to Claim 12, further comprising:		
2	a compression module compressing the digital image following reduction		
3	of the color palette to a natural color depth.		
1	22. (original): A system according to Claim 12, wherein the color		
2	space is selected from the group comprising CIELAB, RGB, sRGB, YUV, HSV,		
3	HSB, and YCbCr.		
1	23. (original): A method for reducing a color palette of a digital image		
2	to a natural color depth, comprising:		
3	selecting a neighboring color closest in color distance in a color space for		
4	each unique color in the color palette of a digital image; and		
5	merging the unique color and the closest neighboring color, comprising:		
6	determining visual distinctness of the unique color based on the		
7	visual area occupied by the unique color in the digital image; and		
8	combining the unique color and the closest neighboring color when		
9	visually indistinct and reducing the color palette by replacing all occurrences of		
10	the unique color and the closest neighboring color with the combined color.		
1	24. (original): A method according to Claim 23, further comprising:		
2	repeatedly selecting the closest neighboring color and merging the unique		
3	color and the closest neighboring color until no further colors in the color palette		
4	merge.		
1	25. (original): A method according to Claim 23, further comprising:		
2	counting occurrences of the unique color;		
3	counting occurrences of the closest neighboring color; and		

4

Response to First Office Action Docket No. 011.0262.US.UTL

5	neighboring color to combine the unique color and the closest neighboring color.		
1	26. (original): A method according to Claim 23, further comprising:		
2	evaluating the visual area occupied by the unique color relative to color		
3	distances in the color space from other colors to determine a threshold below		
4	which the unique color and any other such color are visually indistinct.		
1	27. (original): A method according to Claim 26, further comprising:		
2	setting visual distinctness as occurring when the color distance between		
3	the unique color and the closest neighboring color exceeds the threshold.		
1	28. (original): A method according to Claim 26, further comprising:		
2	determining the color distance as a Euclidean distance in the color space.		
1	29. (original): A method according to Claim 23, further comprising:		
2	receiving the digital image as an output from another color reduction		
3	process.		
1	30. (original): A method according to Claim 23, further comprising:		
2	forwarding the digital image as an input to another color reduction		
3	process.		
1	31. (original): A method according to Claim 23, further comprising:		
2	performing a color reduction of the color palette of the digital image prior		
3	reducing the color palette to a natural color depth.		
1	32. (original): A method according to Claim 23, further comprising:		
2	compressing the digital image following reduction of the color palette to		
3	natural color depth.		

calculating a weighted average of the unique color and the closest

OA Resp - 7 -

- 1 33. (original): A method according to Claim 23, wherein the color
- 2 space is selected from the group comprising CIELAB, RGB, sRGB, YUV, HSV,
- 3 HSB, and YCbCr.
- 1 34. (original): A computer-readable storage medium holding code for
- 2 performing the method according to Claims 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
- 3 or 33.

-8-