論理と証明 期末試験 (2015年8月3日実施)

学生番号

氏名

1. 以下の規則 1-3:

規則 1 $\vdash \neg \neg A \rightarrow A$ 規則 2 $\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ 規則 3 $A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$

を用いて以下を証明せよ。ただし、証明中の式を A_i と置き、用いた公理、推論規則、規則を明記すること。

$$\vdash \neg (A \to \neg B) \to (\neg A \to B).$$

 $A_1 = \neg B \rightarrow (A \rightarrow \neg B)$ 公理 P1 $A_2 = (\neg B \rightarrow (A \rightarrow \neg B)) \rightarrow (\neg (A \rightarrow \neg B)) \rightarrow \neg \neg B)$ 規則 2 $A_3 = \neg (A \rightarrow \neg B) \rightarrow \neg \neg B$ A_1, A_2, MP $A_4 = \neg \neg B \rightarrow B$ 規則 1 $A_5 = \neg (A \rightarrow \neg B) \rightarrow B$ $A_3, A_4, 規則 3$ $A_6 = B \rightarrow (\neg A \rightarrow B)$ 公理 P1 $A_7 = \neg (A \rightarrow \neg B) \rightarrow (\neg A \rightarrow B)$ $A_5, A_6, 規則 3$

• これは $\vdash (A \land B) \rightarrow (A \lor B)$ の証明である.

2. (a) 以下の二つのアトムが単一化可能であれば最汎単一化代入 (mgu) を、そうでなければ×を空欄に記入せよ。ただし、P は述語記号、f は関数記号、x,y,z,w,u,v は変数とする。 (計算過程は記入する必要はない。)

P(f(f(x,y),z), f(f(y,z),x)) $P(f(u,u), f(v,v))$	×
P(f(f(x,y),z), f(f(y,z),x)) $P(f(u,v), f(w,v))$	x := v, z := v, u := f(v, y), w := f(y, v)
P(f(f(x,y),z), f(f(y,z).x)) P(f(u,v), f(f(v,w), f(v,w)))	x := f(v, v), y := v, z := v u := f(f(v, v), v), w := v
P(f(f(x,y),z), f(f(y,z),x)) P(f(u,f(v,v)), f(f(w,w),v))	x := v, y := f(v, v), z := f(v, v), u = f(v, f(v, v)), w := f(v, v)

(b) 以下の二つのリストが単一化可能であれば最汎単一化代入 (mgu) を、そうでなければ ×を空欄に記入せよ。ただし、a,b,c は定数記号、x,y,z,w は変数とする。(計算過程は記入 する必要はない。)

x := [a], y := b, $z := c, w := [[\]]$	[[x, y], z] w] [[[a] [b]], c x]	x := [a], y := b, z := c, w := [a]
×		×
×	$ [[[x,y] z] w] \\ [[[a] [b]],c w] $	×

3. 以下の節集合の線形反駁を求めよ. ただし、導出に用いた mgu を明記し、因子化も下線を引き mgu を明記すること. また、導出節を再び利用する場合には、利用する導出節を丸で囲むこと.

4. 以下の確定プログラム Π_i に対して、 T_{Π_i} † ω と T_{Π_i} ‡ ω を求めよ. なお、 $f(\cdots f(a))$ は $f^n(a)$ と表し、 $\{P(a), P(f(a)), P(f^2(a)), \ldots\}$ は $\{P(f^n(a)) \mid n \geq 0\}$ 、 $\{P(f(a)), P(f^2(a)), \ldots\}$ は $\{P(f^n(a)) \mid n \geq 1\}$ などと表せ.

Π_i	$T_{\Pi_i}\!\uparrow\!\omega$	$T_{\Pi_i}\!\downarrow\!\omega$
$\Pi_1 = \left\{ \begin{array}{l} P(x) \\ Q(a) \leftarrow P(b) \end{array} \right\}$	$\{P(a),P(b),Q(a)\}$	$\{P(a),P(b),Q(a)\}$
$\Pi_2 = \left\{ \begin{array}{l} Q(x) \leftarrow P(x) \\ P(x) \leftarrow Q(x), R(x) \end{array} \right\}$. Ø	Ø
$\Pi_{3} = \left\{ \begin{array}{l} P(b) \\ P(x) \leftarrow Q(a) \\ Q(x) \leftarrow P(x) \end{array} \right\}$	$\{P(b),Q(b)\}$	$\{P(a),P(b),Q(a),Q(b)\}$
$\Pi_4 = \left\{ \begin{array}{l} P(x) \leftarrow Q(a) \\ Q(a) \leftarrow R(x) \\ R(x) \leftarrow P(b) \end{array} \right\}$	Ø	$\left\{\begin{array}{l} P(a), P(b), Q(a), \\ R(a), R(b) \end{array}\right\}$
$\Pi_5 = \left\{ \begin{array}{l} P(f(f(a))) \\ Q(f(b)) \\ P(f(x)) \leftarrow P(x) \\ Q(f(x)) \leftarrow Q(x) \end{array} \right\}$	$\{P(f^n(a)) \mid n \ge 2\}$ $\cup \{Q(f^n(b)) \mid n \ge 1\}$	$\{P(f^n(a)) \mid n \ge 2\}$ $\cup \{Q(f^n(b)) \mid n \ge 1\}$
$\Pi_{6} = \left\{ \begin{array}{l} Q(x) \leftarrow P(f(f(x))) \\ R(f(x)) \leftarrow Q(f(x)) \\ P(f(f(x))) \leftarrow R(x) \end{array} \right\}$	0	$ \{P(f^n(a)) \mid n \ge 3\} $

П6 について:

$$\begin{array}{lll} T_{\Pi_6} \downarrow 0 & = & B_{\Pi_6}, \\ T_{\Pi_6} \downarrow 1 & = & \{P(f^n(a)) \mid n \geq 2\} \cup \{Q(f^n(a)) \mid n \geq 0\} \cup \{R(f^n(a)) \mid n \geq 1\}, \\ T_{\Pi_6} \downarrow 2 & = & \{P(f^n(a)) \mid n \geq 3\} \cup \{Q(f^n(a)) \mid n \geq 0\} \cup \{R(f^n(a)) \mid n \geq 1\}, \\ T_{\Pi_6} \downarrow 3 & = & \{P(f^n(a)) \mid n \geq 3\} \cup \{Q(f^n(a)) \mid n \geq 1\} \cup \{R(f^n(a)) \mid n \geq 1\}, \\ T_{\Pi_6} \downarrow 4 & = & \{P(f^n(a)) \mid n \geq 3\} \cup \{Q(f^n(a)) \mid n \geq 1\} \cup \{R(f^n(a)) \mid n \geq 1\}, \\ & \vdots \\ T_{\Pi_6} \downarrow \omega & = & \{P(f^n(a)) \mid n \geq 3\} \cup \{Q(f^n(a)) \mid n \geq 1\} \cup \{R(f^n(a)) \mid n \geq 1\}. \end{array}$$

$$fo$$
 P $n \ge a0$, Q $n \ge a0$ $R \ge 40$
 $f1$ P $n \ge 1$ Q $n \ge 2$ $R \ge 3$.
 $f2$ P $n \ge 1$ Q $n \ge 2$ R $N \ge 4$.
 $f3$ P $n \ge 2$ Q $n \ge 2$ R $n \ge 4$.
 $f4$ P $n \ge 2$ Q $n \ge 2$ R $n \ge 4$.

5. 末尾再帰を用いたリストの反転プログラムを参考に、以下の述語を計算する 3 つの節からなる確定プログラムを求めよ。なお、各問の補助述語は同一の述語記号を用いてもよい。
(a) 長さ1以上のリストxの反転がyとなることを表す述語P(x,y). すなわち、P([a],[a])、P([a,b],[b,a])、P([a,b,c],[c,b,a]) は真となるが、P([],[]) は偽となる。

$$\left\{ \begin{array}{l} P([w|x],\underline{y}) \leftarrow A(x,[w],\underline{y}) \\ A([\],x,x) \\ A([w|x],y,z) \leftarrow A(x,[w|y],z) \end{array} \right\} \qquad \overbrace{ \left[\ [\ [\],x,z \] \] } \qquad \underbrace{ \left[\ [\],x,z \] \] \qquad \underbrace{ \left[\ [\],x,z \] \] \qquad \underbrace{ \left[\ [\],x,z \] \] \qquad \underbrace{ \left[\ [\],x,z \] \] \qquad \underbrace{ \left[\ [\],x,z \] \] \qquad \underbrace{ \left[\ [\],x,z \] \qquad \underbrace{ \left[\],x,z \] \qquad \underbrace{ \left[\ [\],x,z \] \qquad \underbrace{ \left[\ [\],x,z \] \qquad \underbrace{ \left[\],x,z \] \qquad \underbrace{ \left[\ [\],x,z \] \qquad \underbrace{ \left[\ [\],x,z \] \qquad \underbrace{ \left[\],x,z \]$$

(b) 長さ1以上のリストxの先頭要素を除いたリストの反転がyとなることを表す述語 Q(x,y). すなわち, Q([a],[]), Q([a,b],[b]), Q([a,b,c],[c,b]), Q([a,b,c,d],[d,c,b]) は真となるが, Q([],[]), Q([a],[a]), Q([a,b],[b,a]), Q([a,b],[a]) は偽となる.

$$\left\{
\begin{array}{l}
Q([w|x], y) \leftarrow A(x, [], y) \\
A([], x, x) \\
A([w|x], y, z) \leftarrow A(x, [w|y], z)
\end{array}
\right\}$$

(c) 長さ1以上のリストxの末尾要素を除いたリストの反転がyとなることを表す述語 R(x,y). すなわち, $R([a],[\])$, R([a,b],[a]), R([a,b,c],[b,a]), R([a,b,c,d],[c,b,a]) は真となるが, $R([\],[\])$, R([a],[a]), R([a,b],[b,a]), R([a,b],[b]) は偽となる.

$$\left\{ \begin{array}{l} R(x,y) \leftarrow A(x,[\],y) \\ A([w],x,x) \\ A([w|x],y,z) \leftarrow A(x,[w|y],z) \end{array} \right\}$$

(d) 長さ2以上のリストxの先頭要素と末尾要素を除いたリストの反転がyとなることを表す述語S(x,y). すなわち, S([a,b],[]), S([a,b,c],[b]), S([a,b,c,d],[c,b]), S([a,b,c,d],[c,b]), は真となるが、S([a,b,c,d],[d,c,b,a]), S([a,b,c,d],[c,b,a]), S([a,b,c,d],[d,c,b]) は偽となる.

$$\left\{ \begin{array}{l} S([w|x],y) \leftarrow A(x,[\;],y) \\ A([w],x,x) \\ A([w|x],y,z) \leftarrow A(x,[w|y],z) \end{array} \right\} \qquad \qquad P\left([w,x],y \right) \\ \left\{ \begin{array}{l} P\left([w,x],y \right) \\ Y = V \end{array} \right. \\ \left. \begin{array}{l} Y = V \end{array} \right. \\ \left. \begin{array}{l} Y = V \end{array} \right. \end{array}$$

A ([c), [a, b] q vs.]

A ([s), [a, b] q vs.]

A ([s), [a, c b a] (v.4)

A ([s), [a, c b a] (v.4)