

REI 603M - Final Project Predicting fish location based on their otoliths

Andri Freyr Viðarsson

University of Iceland

2021

Introduction

The data contains images of otoliths from herrings that were fished in eight different regions in Alaska. The goal of this project was to build a model that predicts a fish's location based on an image of it's otolith.

The data

Data processing

■ Processing Training Images

■ When processing the testing images the cropping step was dropped.

Data Augmentation

- Only 630 images in the training set.
- Augment the data by zooming and rotating images from the training set.
- After augmentation there are on average 1000 images per class in the training data.

Base Model

After training this model for around 150 epochs we got 60% testing accuracy.

Main model

- The main model was the VGG16¹deep convolutional network from the Visual Geometry Group at University of Oxford
- The model was imported with pre-trained weights and the first layers of the network were frozen in the training phase.
- The model was trained for 60 epochs with early stopping conditions based on validation accuracy.

Model Performance

- This model achieved 78% testing accuracy after training for 35 epochs.
- The model reached 98% training accuracy after only 10 epochs.

Explainability

■ I used lime to try understand how the main model makes predictions

Model deployment

I created a simple web-app using Flask to interact with the model. I put the app up on an AWS-EC2 instance, the app can be accessed here.

Thanks.

