· active Londs in common source amp. can be current source of Mosfet.

- · Cullent Soulce model:
- @ Ideal C.S I

2 Practical C.s ID Fr

- 1) $R_{i_n} = \frac{V_i}{l_i} = \frac{V_i}{\sigma} = \infty$
- 2) Rout at V:=0 ~ : Vys=0 ~ : Rout = (0
- 3) Av. = Vo = -2 Mys Co Av. = 2 m Co
 - " int linsic Jain"

- 1) 12 in = 0
- 21 12 out = Coi // Coz
- 3) Av = -2m ((01/1(02)), if (01=(02 ~ Av = \frac{1}{2} Av.

a CasCode amplifer:

is a CG and. but it's $12in \neq 00$, so we use it with CS and who has $12in = \infty$. So there is no cultent drop at 1/P. the cascode Jain higher.

.Q.; CS ,Q.; CG

$$A_{v_0} = -(A_{n_1} C_{01}) (2_{n_1} C_{01})$$

$$A_{v_0} = -A_{v_{01}} A_{v_{02}}$$

- the gain 19 in this case because we used ideal c.s To 200, it's Practical equivilent is C.s PMos.

- also the Mos will drive constant carrent.

- Re: is the resitance at the drain of Qz - which is ros - 17 = ros

:. Av = - 2 (12.1/RL)

Av = -ga, [(2m, Poz Co, // (03)]

if lo,=lo==lo;=lo -s: An=lo:(0:10:5)loz -s: Av = -da, lo JJ

* Cascode with 2. P Mos as load;

-, the goin has declarsef by , to increase it we'll use 2 PMos as load.

- Q, Qz are C.S Followed by C.G (NMOS)
La Ro=4mto= Rs = 4m2 foz for - Ro

- Qz, Qyale C.S Followed by C.G (PMOS)

Lo 120, = 2m3 (oz 125 = 2m3 (o3 (o4 -> 12)

. Av = -9m, (Ama Coa Con 1/2m3 (03 Coy)

-if In = In = In = In and (01= for = for = for = 6

 $L_{x} A_{v} = \frac{1}{2} g_{x}^{2} G^{2} = -\frac{1}{2} A^{2}_{v}, \qquad \uparrow \uparrow$

	Ex (8.4)	very in	fortant	Page	(573)	، اللهفانت (علىالرجمه
_	Design a C	as Code C	urrent	Source	to	Provide	a Current
_	of 100 MA	and an	0/9	resistan(e 0F	500 KJ	, assume
_	the availabi	ity of o	.18 Jm	CMoS	tech	notogy fo	r which
	VDD = 1.8	V , Vtp =	_ 0.5 V	Mp Co	x = 9	MA/V2 a	nd
1	VA = _5 V	ym . use	IVovI =	0.3 V	and d	etermine	L and W/L
_	for each	transistor	, and t	he Value	s of	the bia	s Voltage
_	VG3, VG4.						

ID=100 MA	Mp Cox = 9	0 Mm/v2
Rowt = 500KA	VA = -5	V/ Hm - VA = VAL
VDD = 1.8 V	1 Vov 1 = 0.	
Vep = _ 0.5 V		9, & Dy are motched
find: L, W,	VG, VG	•
	3 ,	
. Rop = 3m.	ro, roy	. Q3, Qy matched
Rop = 9 r	2 0	ro3 = ro4 = ro
9 _ 2 Ip	_ (2)	
1Vov1	ro = 1	VAI 3
from 0 , 0 , 3		ID
Rop = 2 Ip	(VAL)2	= 2 IVAI2 L2 IVayl ID
500 10 ³	2 1-512 +10	o'2 L2
	0.3 + 1	$00 * 10^{-6}$ $L^2 = 3 * 10^{-13}$
L=5.478	8 * 10 7 m	
		L= 0.56 Hm
. VSG4 = 1 Ve	el + I VovI	
= 0.5	+ 0.3 = 0	V 8.
VSGY = VSV	110.70	Vsy = VDD = 1.8 V
0.8 = 1.8		
* for Saturation :_		VG4 = 1 V
VSD4 > Vov = 0.	3 Vs4	- VD4 >0.3
VsD3 > 1 Vov1 = 0.3		
Vs VD, > 0.3		VD4 61.5 V
VDy =1.5	VD4 5 1.2	V

$$VsG_{4} = VsG_{3} = Vs_{3} - VG_{3}$$

$$0.8 = 1.5 - VG_{3}$$

$$VG_{3} = 0.7 V$$

$$ID = \frac{1}{2} M_{P} Cox \frac{W}{L} |Vov|^{2} (I_{+} \lambda VsD)$$

$$\lambda = \frac{1}{2} IOO M = \frac{1}{2} 90 M \frac{W}{L} |0.3|^{2} (I_{+} \frac{0.3}{1VAI})$$

$$IVAI = IVAI L = 5 (0.55) = 2.75 V$$

$$VA = 2.75 V$$

$$W = 22.3$$