Widths of weighted Sobolev classes with weights that are functions of distance to some h-set: some limiting cases

A.A. Vasil'eva

1 Introduction

Let X, Y be sets, and let $f_1, f_2 : X \times Y \to \mathbb{R}_+$. We write $f_1(x, y) \lesssim f_2(x, y)$ (or $f_2(x, y) \gtrsim f_1(x, y)$) if for any $y \in Y$ there exists c(y) > 0 such that $f_1(x, y) \leqslant c(y)f_2(x, y)$ for any $x \in X$; $f_1(x, y) \approx f_2(x, y)$ if $f_1(x, y) \lesssim f_2(x, y)$ and $f_2(x, y) \lesssim f_1(x, y)$.

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain (i.e., a bounded open connected set), and let $g, v : \Omega \to (0, \infty)$ be measurable functions. For each measurable vector-valued function $\psi : \Omega \to \mathbb{R}^l$, $\psi = (\psi_k)_{1 \leq k \leq l}$, and for any $p \in [1, \infty]$ we set

$$\|\psi\|_{L_p(\Omega)} = \left\| \max_{1 \le k \le l} |\psi_k| \right\|_p = \left(\int_{\Omega} \max_{1 \le k \le l} |\psi_k(x)|^p dx \right)^{1/p}.$$

Let $\overline{\beta} = (\beta_1, \ldots, \beta_d) \in \mathbb{Z}_+^d := (\mathbb{N} \cup \{0\})^d$, $|\overline{\beta}| = \beta_1 + \ldots + \beta_d$. For any distribution f defined on Ω we write $\nabla^r f = \left(\partial^r f/\partial x^{\overline{\beta}}\right)_{|\overline{\beta}|=r}$ (here partial derivatives are taken in the sense of distributions), and denote by $l_{r,d}$ the number of components of the vector-valued distribution $\nabla^r f$. We set

$$W_{p,g}^r(\Omega) = \left\{ f : \ \Omega \to \mathbb{R} \middle| \ \exists \psi : \ \Omega \to \mathbb{R}^{l_{r,d}} \colon \ \|\psi\|_{L_p(\Omega)} \leqslant 1, \ \nabla^r f = g \cdot \psi \right\}$$

(we denote the corresponding function ψ by $\frac{\nabla^r f}{g}$),

$$||f||_{L_{q,v}(\Omega)} = ||f||_{q,v} = ||fv||_{L_q(\Omega)}, \qquad L_{q,v}(\Omega) = \{f : \Omega \to \mathbb{R} | ||f||_{q,v} < \infty \}.$$

We call the set $W^r_{p,g}(\Omega)$ a weighted Sobolev class. Observe that $W^r_{p,1}(\Omega) = W^r_p(\Omega)$ is a non-weighted Sobolev class. For properties of weighted Sobolev spaces and their generalizations, we refer the reader to the books [13,14,21,27,36,37] and the survey paper [20].

Let $(X, \|\cdot\|_X)$ be a normed space, let X^* be its dual, and let $\mathcal{L}_n(X)$, $n \in \mathbb{Z}_+$, be the family of subspaces of X of dimension at most n. Denote by L(X, Y) the space of continuous linear operators from X into a normed space Y. Also, by $\mathrm{rk}\,A$ denote the dimension of the image of an operator $A \in L(X, Y)$, and by $\|A\|_{X \to Y}$, its norm.

By the Kolmogorov n-width of a set $M\subset X$ in the space X, we mean the quantity

$$d_n(M, X) = \inf_{L \in \mathcal{L}_n(X)} \sup_{x \in M} \inf_{y \in L} ||x - y||_X,$$

by the linear n-width, the quantity

$$\lambda_n(M, X) = \inf_{A \in L(X, X), \operatorname{rk} A \leq n} \sup_{x \in M} \|x - Ax\|_X,$$

and by the Gelfand n-width, the quantity

$$d^{n}(M, X) = \inf_{x_{1}^{*}, \dots, x_{n}^{*} \in X^{*}} \sup\{\|x\| : x \in M, x_{j}^{*}(x) = 0, 1 \leqslant j \leqslant n\} =$$
$$= \inf_{A \in L(X, \mathbb{R}^{n})} \sup\{\|x\| : x \in M \cap \ker A\}.$$

In estimating Kolmogorov, linear, and Gelfand widths we set, respectively, $\vartheta_l(M, X) = d_l(M, X)$ and $\hat{q} = q$, $\vartheta_l(M, X) = \lambda_l(M, X)$ and $\hat{q} = \min\{q, p'\}$, $\vartheta_l(M, X) = d^l(M, X)$ and $\hat{q} = p'$.

In the 1960-1980s problems concerning the values of the widths of function classes in L_q and of finite-dimensional balls B_p^n in l_q^n were intensively studied. Here l_q^n $(1 \leq q \leq \infty)$ is the space \mathbb{R}^n with the norm

$$\|(x_1, \ldots, x_n)\|_q \equiv \|(x_1, \ldots, x_n)\|_{l_q^n} = \begin{cases} (|x_1|^q + \cdots + |x_n|^q)^{1/q}, & \text{if } q < \infty, \\ \max\{|x_1|, \ldots, |x_n|\}, & \text{if } q = \infty, \end{cases}$$

 B_p^n is the unit ball in l_p^n . For more details, see [29, 33, 34].

Let us formulate the result on widths of non-weighted Sobolev classes on a cube in the space L_q . We set

$$\theta_{p,q,r,d} = \begin{cases} \frac{\delta}{d} - \left(\frac{1}{q} - \frac{1}{p}\right)_{+}, & \text{if } p \geqslant q \text{ or } \hat{q} \leqslant 2, \\ \min\left\{\frac{\delta}{d} + \min\left\{\frac{1}{p} - \frac{1}{q}, \frac{1}{2} - \frac{1}{\hat{q}}\right\}, \frac{\hat{q}\delta}{2d}\right\}, & \text{if } p < q, \ \hat{q} > 2. \end{cases}$$
(1)

Theorem A. (see, e.g., [7,12,19,35]). Let $r \in \mathbb{N}$, $1 \le p$, $q \le \infty$, $\frac{r}{d} + \frac{1}{q} - \frac{1}{p} > 0$. In addition, we suppose that

$$\frac{\delta}{d} + \min\left\{\frac{1}{p} - \frac{1}{q}, \frac{1}{2} - \frac{1}{\hat{q}}\right\} \neq \frac{\hat{q}\delta}{2d} \tag{2}$$

in the case p < q and $\hat{q} > 2$. Then

$$\vartheta_n(W_p^r([0, 1]^d), L_q([0, 1]^d)) \underset{r,d,p,q}{\approx} n^{-\theta_{p,q,r,d}}.$$

The problem concerning estimates of widths of weighted Sobolev classes in weighted L_q -space was studied by Birman and Solomyak [7], El Kolli [15], Triebel [36, 38], Mynbaev and Otelbaev [27], Boykov [8, 9], Lizorkin and Otelbaev [26, 28], Aitenova and Kusainova [1, 2]. For details, see, e.g., [46].

Let $|\cdot|$ be a norm on \mathbb{R}^d , and let $E, E' \subset \mathbb{R}^d$, $x \in \mathbb{R}^d$. We set

$$\operatorname{diam}_{|\cdot|} E = \sup\{|y - z| : y, z \in E\}, \operatorname{dist}_{|\cdot|} (x, E) = \inf\{|x - y| : y \in E\}.$$

Definition 1. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, and let a > 0. We say that $\Omega \in \mathbf{FC}(a)$ if there exists a point $x_* \in \Omega$ such that, for any $x \in \Omega$, there exist a number T(x) > 0 and a curve $\gamma_x : [0, T(x)] \to \Omega$ with the following properties:

1.
$$\gamma_x \in AC[0, T(x)], \left| \frac{d\gamma_x(t)}{dt} \right| = 1 \text{ a.e.},$$

- 2. $\gamma_x(0) = x, \ \gamma_x(T(x)) = x_*,$
- 3. $B_{at}(\gamma_x(t)) \subset \Omega$ for any $t \in [0, T(x)]$.

Definition 2. We say that Ω satisfies the John condition (and call Ω a John domain) if $\Omega \in \mathbf{FC}(a)$ for some a > 0.

For a bounded domain the John condition coincides with the flexible cone condition (see definition in [6]). Reshetnyak [30,31] found an integral representation for functions on a John domain Ω in terms of their derivatives of order r. This representation yields that for $\frac{r}{d} - \left(\frac{1}{p} - \frac{1}{q}\right)_{+} \geqslant 0$ (for $\frac{r}{d} - \left(\frac{1}{p} - \frac{1}{q}\right)_{+} > 0$, respectively) the class $W_p^r(\Omega)$ can be continuously (respectively, compactly) imbedded into $L_q(\Omega)$ (i.e., the conditions of continuous and compact imbeddings are the same as for $\Omega = [0, 1]^d$). Moreover, in [5, 39] it was proved that if Ω is a John domain and p, q, r, d are such as in Theorem A, then widths have the same orders as for $\Omega = [0, 1]^d$.

Throughout we suppose that $\overline{\Omega} \subset \left(-\frac{1}{2}, \frac{1}{2}\right)^d$ (here $\overline{\Omega}$ is the closure of Ω). Denote by \mathbb{H} the set of all non-decreasing functions defined on (0, 1].

Definition 3. (see [10]). Let $\Gamma \subset \mathbb{R}^d$ be a nonempty compact set and $h \in \mathbb{H}$. We say that Γ is an h-set if there are a constant $c_* \ge 1$ and a finite countably additive measure μ on \mathbb{R}^d such that supp $\mu = \Gamma$ and

$$c_*^{-1}h(t) \leqslant \mu(B_t(x)) \leqslant c_*h(t) \tag{3}$$

for any $x \in \Gamma$ and $t \in (0, 1]$.

Throughout we suppose that 1 0. We denote $\log x := \log_2 x$.

Let $\Gamma \subset \partial \Omega$ be an h-set,

$$g(x) = \varphi_g(\operatorname{dist}_{|\cdot|}(x, \Gamma)), \quad v(x) = \varphi_v(\operatorname{dist}_{|\cdot|}(x, \Gamma)), \tag{4}$$

where $\varphi_g, \, \varphi_v : (0, \, \infty) \to (0, \, \infty)$. Suppose that in some neighborhood of zero

$$h(t) = t^{\theta} |\log t|^{\gamma} \tau(|\log t|), \quad 0 < \theta < d, \tag{5}$$

$$\varphi_g(t) = t^{-\beta_g} |\log t|^{-\alpha_g} \rho_g(|\log t|), \quad \varphi_v(t) = t^{-\beta_v} |\log t|^{-\alpha_v} \rho_v(|\log t|), \tag{6}$$

where ρ_g , ρ_v , τ are absolutely continuous functions,

$$\lim_{y \to +\infty} \frac{y\tau'(y)}{\tau(y)} = \lim_{y \to +\infty} \frac{y\rho_g'(y)}{\rho_g(y)} = \lim_{y \to +\infty} \frac{y\rho_v'(y)}{\rho_v(y)} = 0.$$
 (7)

For $\beta_v < \frac{d-\theta}{q}$, in [40,41,43] there were obtained sufficient conditions for embedding of $W_{p,g}^r(\Omega)$ into $L_{q,v}(\Omega)$, and order estimates of Kolmogorov, Gelfand and linear widths were found. Here we consider the limiting case

$$\beta_v = \frac{d-\theta}{q}, \quad \alpha_v > \frac{1-\gamma}{q}.$$
 (8)

We set $\beta = \beta_g + \beta_v$, $\alpha = \alpha_g + \alpha_v$, $\rho(y) = \rho_g(y)\rho_v(y)$, $\mathfrak{Z} = (p, q, r, d, a, c_*, h, g, v)$, $\mathfrak{Z}_* = (\mathfrak{Z}, \operatorname{diam}\Omega)$.

Theorem 1. There exists $n_0 = n_0(\mathfrak{Z})$ such that for any $n \ge n_0$ the following assertion holds.

1. Let
$$\beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p}\right)_+ < 0$$
. We set

$$\sigma_*(n) = (\log n)^{-\alpha + \frac{1}{q} + \frac{(\beta - \delta)\gamma}{\theta}} \rho(\log n) \tau^{\frac{\beta - \delta}{\theta}} (\log n).$$

• Let $p \geqslant q$ or p < q, $\hat{q} \leqslant 2$. We set

$$\theta_1 = \frac{\delta}{d} - \left(\frac{1}{q} - \frac{1}{p}\right)_+, \quad \theta_2 = \frac{\delta - \beta}{\theta} - \left(\frac{1}{q} - \frac{1}{p}\right)_+,$$
 (9)

$$\sigma_1(n) = 1, \quad \sigma_2(n) = \sigma_*(n). \tag{10}$$

Suppose that $\theta_1 \neq \theta_2$, $j_* \in \{1, 2\}$,

$$\theta_{j_*} = \min\{\theta_1, \, \theta_2\}.$$

Then

$$\vartheta_n(W_{p,g}^r(\Omega), L_{q,v}(\Omega)) \underset{\mathfrak{J}_*}{\approx} n^{-\theta_{j_*}} \sigma_{j_*}(n).$$

• Let p < q, $\hat{q} > 2$. We set

$$\theta_1 = \frac{\delta}{d} + \min\left\{\frac{1}{p} - \frac{1}{q}, \frac{1}{2} - \frac{1}{\hat{q}}\right\}, \quad \theta_2 = \frac{\hat{q}\delta}{2d},$$
 (11)

$$\theta_3 = \frac{\delta - \beta}{\theta} + \min\left\{\frac{1}{p} - \frac{1}{q}, \frac{1}{2} - \frac{1}{\hat{q}}\right\}, \quad \theta_4 = \frac{\hat{q}(\delta - \beta)}{2\theta}, \quad (12)$$

$$\sigma_1(n) = \sigma_2(n) = 1, \quad \sigma_3(n) = \sigma_4(n) = \sigma_*(n).$$
 (13)

Suppose that there exists $j_* \in \{1, 2, 3, 4\}$ such that

$$\theta_{j_*} < \min_{j \neq j_*} \theta_j. \tag{14}$$

Then

$$\vartheta_n(W_{p,g}^r(\Omega), L_{q,v}(\Omega)) \underset{\mathfrak{Z}_*}{\approx} n^{-\theta_{j_*}} \sigma_{j_*}(n).$$

2. Let $\beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p}\right)_{+} = 0$. In addition, we suppose that $\alpha_0 := \alpha - \frac{1}{q} > 0$ for p < q and $\alpha_0 := \alpha - 1 - (1 - \gamma) \left(\frac{1}{q} - \frac{1}{p}\right) > 0$ for $p \geqslant q$. Then

$$\vartheta_n(W_{p,q}^r(\Omega), L_{q,v}(\Omega)) \underset{\mathfrak{Z}_*}{\simeq} (\log n)^{-\alpha_0} \rho(\log n) \tau^{-\left(\frac{1}{q} - \frac{1}{p}\right)_+} (\log n).$$

Remark 1. From Theorem A it follows that for $\frac{\delta-\beta}{\theta} > \frac{\delta}{d}$ the order estimates are the same as in the non-weighted case.

Remark 2. Formulas in Theorem 1 differ from formulas in [43] by the power of the logarithmic factor.

The upper estimates follow from the general result about the estimate of widths of function classes on sets with tree-like structure. Problems on estimating widths and entropy numbers for embedding operators of weighted function classes on trees were studied in papers of Evans, Harris, Lang, Solomyak, Lifshits and Linde [16,23–25,32].

Without loss of generality, as $|\cdot|$ we may take $|(x_1,\ldots,x_d)|=\max_{1\leqslant i\leqslant d}|x_i|$.

2 Proof of the upper estimate

In this section, we obtain upper estimates for widths in Theorem 1. The following lemma was proved in [44] (see inequalities (60)).

Lemma 1. Let $\Lambda_*:(0,\infty)\to(0,\infty)$ be an absolutely continuous function such that $\lim_{y\to+\infty}\frac{y\Lambda'_*(y)}{\Lambda_*(y)}=0$. Then for any $\varepsilon>0$

$$t^{-\varepsilon} \lesssim \frac{\Lambda_*(ty)}{\Lambda_*(y)} \lesssim t^{\varepsilon}, \quad 1 \leqslant y < \infty, \quad 1 \leqslant t < \infty.$$
 (15)

Let $c_* \ge 1$ be the constant from the definition of an h-set. From (5), (6), (7) and Lemma 1 it follows that there exists $c_0 = c_0(\mathfrak{Z}) \ge c_*$ such that

$$\frac{h(t)}{h(s)} \leqslant c_0, \quad \frac{\varphi_g(t)}{\varphi_g(s)} \leqslant c_0, \quad \frac{\varphi_v(t)}{\varphi_v(s)} \leqslant c_0, \quad j \in \mathbb{N}, \quad t, \ s \in [2^{-j-1}, 2^{-j+1}]. \tag{16}$$

Let (Ω, Σ, ν) be a measure space. We say that sets $A, B \subset \Omega$ do not overlap if $\nu(A \cap B) = 0$. Let $m \in \mathbb{N} \cup \{\infty\}, E, E_1, \ldots, E_m \subset \Omega$ be measurable sets. We say that $\{E_i\}_{i=1}^m$ is a partition of E if the sets E_i do not overlap pairwise and $\nu\left[(\bigcup_{i=1}^m E_i) \triangle E\right] = 0$.

Let (\mathcal{T}, ξ_0) be a tree rooted at ξ_0 . We introduce a partial order on $\mathbf{V}(\mathcal{T})$ as follows: we say that $\xi' > \xi$ if there exists a simple path $(\xi_0, \xi_1, \ldots, \xi_n, \xi')$ such that $\xi = \xi_k$ for some $k \in \overline{0, n}$. In this case, we set $\rho_{\mathcal{T}}(\xi, \xi') = \rho_{\mathcal{T}}(\xi', \xi) = n + 1 - k$. In addition, we denote $\rho_{\mathcal{T}}(\xi, \xi) = 0$. If $\xi' > \xi$ or $\xi' = \xi$, then we write $\xi' \geqslant \xi$ and denote $[\xi, \xi'] := \{\xi'' \in \mathbf{V}(\mathcal{T}) : \xi \leqslant \xi'' \leqslant \xi'\}$. This partial order on \mathcal{T} induces a partial order on its subtree.

Given $j \in \mathbb{Z}_+, \xi \in \mathbf{V}(\mathcal{T})$, we set

$$\mathbf{V}_{j}(\xi) := \mathbf{V}_{j}^{\mathcal{T}}(\xi) := \{ \xi' \geqslant \xi : \rho_{\mathcal{T}}(\xi, \xi') = j \}.$$

For each vertex $\xi \in \mathbf{V}(\mathcal{T})$ we denote by $\mathcal{T}_{\xi} = (\mathcal{T}_{\xi}, \xi)$ a subtree in \mathcal{T} with vertex set $\{\xi' \in \mathbf{V}(\mathcal{T}) : \xi' \geqslant \xi\}$.

In [40,41] a tree $(\mathcal{A}, \eta_{j_*,1})$ with vertex set $\{\eta_{j,i}\}_{j \geqslant j_*, i \in \tilde{I}_j}$ was constructed, as well as the partition of Ω into subdomains $\Omega[\xi], \xi \in \mathbf{V}(\mathcal{A})$. Moreover, $\mathbf{V}_{j-j_*}^{\mathcal{A}}(\eta_{j_*,1}) = \{\eta_{j,i}\}_{i \in \tilde{I}_j}$ and there exists a number $\overline{s} = \overline{s}(a, d) \in \mathbb{N}$ such that

$$\operatorname{diam} \Omega[\eta_{j,i}] \underset{a,d,c_0}{\approx} 2^{-\overline{s}j}, \quad \operatorname{dist}_{|\cdot|}(x, \Gamma) \underset{a,d,c_0}{\approx} 2^{-\overline{s}j}, \quad x \in \Omega[\eta_{j,i}],$$

$$\operatorname{card} \mathbf{V}_{j'-j}^{\mathcal{A}}(\eta_{j,i}) \lesssim_{a,d,c_0} \frac{h(2^{-\overline{s}j})}{h(2^{-\overline{s}j'})}, \quad j' \geqslant j \geqslant j_*.$$

In particular,

$$\operatorname{card} \mathbf{V}_{1}^{\mathcal{A}}(\eta_{j,i}) \lesssim_{a,d,c_{0}}^{(16)} 1, \quad j \geqslant j_{*}.$$

$$(17)$$

We set

$$u(\eta_{j,i}) = u_j = \varphi_g(2^{-\overline{s}j}) \cdot 2^{-\left(r - \frac{d}{p}\right)\overline{s}j}, \quad w(\eta_{j,i}) = w_j = \varphi_v(2^{-\overline{s}j}) \cdot 2^{-\frac{d\overline{s}j}{q}}. \tag{18}$$

Given a subtree $\mathcal{D} \subset \mathcal{A}$, we denote $\Omega[\mathcal{D}] = \bigcup_{\xi \in \mathbf{V}(\mathcal{D})} \Omega[\xi]$.

In [45] sufficient conditions for embedding $W_{p,g}^r(\Omega)$ into $L_{q,v}(\Omega)$ were obtained; here (16) holds and the functions g, v satisfy (4). Let us formulate these results.

Theorem B. Let u, w be defined by (18), $1 . Suppose that there exist <math>l_0 \in \mathbb{N}$ and $\lambda \in (0, 1)$ such that

$$\frac{\left(\sum_{i=j+l_0}^{\infty} \frac{h(2^{-\overline{s}(j+l_0)})}{h(2^{-\overline{s}i})} w_i^q\right)^{1/q}}{w_j} \leqslant \lambda, \quad j \geqslant j_*.$$
(19)

Let $\sup_{j\geqslant j_*} u_j \left(\sum_{i=j}^{\infty} \frac{h(2^{-\overline{s}j})}{h(2^{-\overline{s}i})} w_i^q\right)^{1/q} < \infty$. Then $W_{p,g}^r(\Omega) \subset L_{q,v}(\Omega)$ and for any $k \geqslant j_*$,

 $\xi_* \in \mathbf{V}_{k-j_*}^{\mathcal{A}}(\eta_{j_*,1})$ there exists a linear continuous operator $P: L_{q,v}(\Omega) \to \mathcal{P}_{r-1}(\Omega)$ such that for any subtree $\mathcal{D} \subset \mathcal{A}$ rooted at ξ_* and for any function $f \in W_{p,q}^r(\Omega)$

$$||f - Pf||_{L_{q,v}(\Omega[\mathcal{D}])} \lesssim \sup_{j \geqslant k} u_j \left(\sum_{i \geqslant j} \frac{h(2^{-\overline{s}j})}{h(2^{-\overline{s}i})} w_i^q \right)^{\frac{1}{q}} \left\| \frac{\nabla^r f}{g} \right\|_{L_p(\Omega[\mathcal{D}])}.$$

Theorem C. Let $p \ge q$, $\xi_* \in \mathbf{V}_{k-j_*}^{\mathcal{A}}(\eta_{j_*,1})$, and let the functions $u, w \text{ on } \mathbf{V}(\mathcal{A})$ be defined by (18). We set $\hat{w}_j = w_j \cdot \left(\frac{h(2^{-\overline{s}k})}{h(2^{-\overline{s}j})}\right)^{\frac{1}{q}}$, $\hat{u}_j = u_j \cdot \left(\frac{h(2^{-\overline{s}j})}{h(2^{-\overline{s}k})}\right)^{\frac{1}{p}}$, $k \le j < \infty$. Let

$$M_{\hat{u},\hat{w}}(k) := \sup_{k \leq j < \infty} \left(\sum_{i=j}^{\infty} \hat{w}_i^q \right)^{\frac{1}{q}} \left(\sum_{i=k}^{j} \hat{u}_i^{p'} \right)^{\frac{1}{p'}} < \infty, \quad 1 < p = q < \infty, \tag{20}$$

$$M_{\hat{u},\hat{w}}(k) := \left(\sum_{j=k}^{\infty} \left(\left(\sum_{i=j}^{\infty} \hat{w}_{i}^{q}\right)^{\frac{1}{p}} \left(\sum_{i=k}^{j} \hat{u}_{i}^{p'}\right)^{\frac{1}{p'}} \right)^{\frac{pq}{p-q}} \hat{w}_{j}^{q} \right)^{\frac{1}{q} - \frac{1}{p}} < \infty, \quad q < p.$$
 (21)

Then $W_{p,g}^r(\Omega[\mathcal{A}_{\xi_*}]) \subset L_{q,v}(\Omega[\mathcal{A}_{\xi_*}])$ and there exists a linear continuous operator $P: L_{q,v}(\Omega) \to \mathcal{P}_{r-1}(\Omega)$ such that for any subtree $\mathcal{D} \subset \mathcal{A}_{\xi_*}$ rooted at ξ_* and for any function $f \in W_{p,g}^r(\Omega)$

$$||f - Pf||_{L_{q,v}(\Omega[\mathcal{D}])} \lesssim M_{\hat{u},\hat{w}}(k) \left\| \frac{\nabla^r f}{g} \right\|_{L_p(\Omega[\mathcal{D}])}.$$

Suppose that (5), (6), (7), (8) hold. From (6), (8) and (18) it follows that

$$u(\eta_{j,i}) = u_j = 2^{\overline{s}j\left(\beta_g - r + \frac{d}{p}\right)}(\overline{s}j)^{-\alpha_g}\rho_g(\overline{s}j), \quad w(\eta_{j,i}) = w_j = 2^{-\frac{\theta\overline{s}j}{q}}(\overline{s}j)^{-\alpha_v}\rho_v(\overline{s}j). \quad (22)$$

Recall that $\delta = r + \frac{d}{q} - \frac{d}{p}$.

Corollary 1. Let $1 , <math>r \in \mathbb{N}$, $\delta > 0$, and let the conditions (5), (6), (7), (8) hold. In addition, we suppose that

either
$$\beta - \delta < 0$$
 or $\beta - \delta = 0$, $\alpha > \frac{1}{q}$. (23)

Then $W_{p,g}^r(\Omega) \subset L_{q,v}(\Omega)$ and for any $k \geqslant j_*$, $\xi_* \in \mathbf{V}_{k-j_*}^{\mathcal{A}}(\eta_{j_*,1})$ there exists a linear continuous operator $P: L_{q,v}(\Omega) \to \mathcal{P}_{r-1}(\Omega)$ such that for any subtree $\mathcal{D} \subset \mathcal{A}$ rooted at ξ_* and for any function $f \in W_{p,g}^r(\Omega)$

$$||f - Pf||_{L_{q,v}(\Omega[\mathcal{D}])} \lesssim 2^{-(\delta - \beta)\overline{s}k} (\overline{s}k)^{-\alpha + \frac{1}{q}} \rho(\overline{s}k) \left\| \frac{\nabla^r f}{g} \right\|_{L_p(\Omega[\mathcal{D}])}.$$

Proof. From (5) and (22) it follows that

$$\sum_{i=j}^{\infty} \frac{h(2^{-\overline{s}j})}{h(2^{-\overline{s}i})} w_i^q = \sum_{i=j}^{\infty} 2^{-\theta \overline{s}i} (\overline{s}i)^{-\alpha_v q} \rho_v^q (\overline{s}i) \cdot \frac{2^{\theta \overline{s}i} (\overline{s}j)^{\gamma} \tau(\overline{s}j)}{2^{\theta \overline{s}j} (\overline{s}i)^{\gamma} \tau(\overline{s}i)} \overset{(8),(15)}{\widetilde{\mathfrak{Z}}} \\
\approx 2^{-\theta \overline{s}j} [\overline{s}j]^{-\alpha_v q+1} \rho_v^q (\overline{s}j). \tag{24}$$

This together with Lemma 1 implies (19). Further,

$$\sup_{j\geqslant k} u_j \left(\sum_{i\geqslant j} \frac{h(2^{-\overline{s}j})}{h(2^{-\overline{s}i})} w_i^q \right)^{\frac{1}{q}} {}^{(8),(22),(23),(24)} \underbrace{2^{-(\delta-\beta)\overline{s}k}}_{\overline{3}} (\overline{s}k)^{-\alpha+\frac{1}{q}} \rho(\overline{s}k).$$

It remains to apply Theorem B.

Let us consider the case $p \ge q$. We apply Theorem C. For $j \ge k$, we have

$$\hat{u}_{j} \stackrel{(5),(22)}{=} 2^{\overline{s}j\left(\beta_{g}-r+\frac{d}{p}\right)} (\overline{s}j)^{-\alpha_{g}} \rho_{g}(\overline{s}j) \cdot 2^{-\frac{\theta\overline{s}(j-k)}{p}} \frac{j^{\frac{\gamma}{p}}\tau^{\frac{1}{p}}(\overline{s}j)}{k^{\frac{\gamma}{p}}\tau^{\frac{1}{p}}(\overline{s}k)},
\hat{w}_{j} \stackrel{(5),(22)}{=} 2^{-\frac{\theta\overline{s}k}{q}} (\overline{s}j)^{-\alpha_{v}} \rho_{v}(\overline{s}j) \cdot \frac{k^{\frac{\gamma}{q}}\tau^{\frac{1}{q}}(\overline{s}k)}{j^{\frac{\gamma}{q}}\tau^{\frac{1}{q}}(\overline{s}j)}.$$
(25)

Corollary 2. Let $1 , <math>1 \le q < \infty$, $p \ge q$, $r \in \mathbb{N}$, $\delta > 0$ and let conditions (5), (6), (7), (8) hold. Suppose that either $\beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p}\right) < 0$ or $\beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p}\right) = 0$ and $\alpha - 1 - (1 - \gamma) \left(\frac{1}{q} - \frac{1}{p}\right) > 0$. Then $W_{p,g}^r(\Omega) \subset L_{q,v}(\Omega)$ and for any $k \ge j_*$, $\xi_* \in \mathbf{V}_{k-j_*}^{\mathcal{A}}(\eta_{j_*,1})$ there exists a linear continuous operator $P: L_{q,v}(\Omega) \to \mathcal{P}_{r-1}(\Omega)$ such that for any subtree $\mathcal{D} \subset \mathcal{A}$ rooted at ξ_* and for any function $f \in W_{p,g}^r(\Omega)$

$$||f - Pf||_{L_{q,v}(\Omega[\mathcal{D}])} \lesssim 2^{-(\delta - \beta)\overline{s}k} (\overline{s}k)^{-\alpha + \frac{1}{q}} \rho(\overline{s}k) \left\| \frac{\nabla^r f}{g} \right\|_{L_p(\Omega[\mathcal{D}])}$$

in the case $\beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p}\right) < 0$, and

$$||f - Pf||_{L_{q,v}(\Omega[\mathcal{D}])} \lesssim 2^{-\theta\left(\frac{1}{q} - \frac{1}{p}\right)\overline{s}k} (\overline{s}k)^{-\alpha + 1 + \frac{1}{q} - \frac{1}{p}} \rho(\overline{s}k) \left\| \frac{\nabla^r f}{g} \right\|_{L_p(\Omega[\mathcal{D}])}$$

in the case $\beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p} \right) = 0$.

Proof. Let p = q. Applying (25) and (20) and taking into account that $\alpha_v > \frac{1-\gamma}{q}$ and $\beta_g - r + \frac{d}{p} - \frac{\theta}{p} \stackrel{(8)}{=} \beta - \delta$, we get

$$M_{\hat{u},\hat{w}}(k) \lesssim \sup_{\overline{s}} (\overline{s}l)^{-\alpha_v + \frac{1-\gamma}{q}} \rho_v(\overline{s}l) \tau^{-\frac{1}{q}}(\overline{s}l) \left(\sum_{j=k}^l 2^{p'(\beta-\delta)\overline{s}j} (\overline{s}j)^{p'\left(-\alpha_g + \frac{\gamma}{p}\right)} \rho_g^{p'}(\overline{s}j) \tau^{\frac{p'}{p}}(\overline{s}j) \right)^{\frac{1}{p'}}$$

If $\beta - \delta < 0$, then by Lemma 1

$$M_{\hat{u},\hat{w}}(k) \lesssim 2^{(\beta-\delta)\overline{s}k} (\overline{s}k)^{-\alpha+\frac{1}{q}} \rho(\overline{s}k).$$
 (26)

Let $\beta - \delta = 0$. We may assume that $-\alpha_g + \frac{\gamma}{p} + \frac{1}{p'} > 0$ (otherwise, we multiply \hat{u}_j by $\frac{j^c}{k^c}$ with some c > 0). Then

$$M_{\hat{u},\hat{w}}(k) \lesssim (\overline{s}k)^{-\alpha+1} \rho(\overline{s}k).$$
 (27)

Let p > q. Applying (25) and (21) and taking into account that $\alpha_v > \frac{1-\gamma}{q}$ and $\beta_g - r + \frac{d}{p} - \frac{\theta}{p} \stackrel{(8)}{=} \beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p}\right)$, we get

$$M_{\hat{u},\hat{w}}(k) \lesssim_{3}^{(8)} 2^{-\theta \overline{s}k\left(\frac{1}{q}-\frac{1}{p}\right)} (\overline{s}k)^{\gamma\left(\frac{1}{q}-\frac{1}{p}\right)} \tau^{\frac{1}{q}-\frac{1}{p}} (\overline{s}k) \times$$

$$\times \left(\sum_{j=k}^{\infty} (\overline{s}j)^{\frac{pq}{p-q} \left(-\alpha_v - \frac{\gamma}{q} + \frac{1}{p} \right)} \rho_v^{\frac{pq}{p-q}} (\overline{s}j) \tau^{-\frac{p}{p-q}} (\overline{s}j) \sigma(j)^{\frac{pq}{p-q}} \right)^{\frac{1}{q} - \frac{1}{p}},$$

where

$$\sigma(j) = \left(\sum_{i=k}^{j} 2^{\overline{s}i\left(\beta - \delta + \theta\left(\frac{1}{q} - \frac{1}{p}\right)\right)p'}(\overline{s}i)^{p'\left(-\alpha_g + \frac{\gamma}{p}\right)} \rho_g^{p'}(\overline{s}i)\tau^{\frac{p'}{p}}(\overline{s}i)\right)^{\frac{1}{p'}}.$$

If $\beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p} \right) < 0$, then

$$\sigma(j) \lesssim_{3} 2^{\overline{s}k\left(\beta - \delta + \theta\left(\frac{1}{q} - \frac{1}{p}\right)\right)} (\overline{s}k)^{\left(-\alpha_{g} + \frac{\gamma}{p}\right)} \rho_{g}(\overline{s}k) \tau^{\frac{1}{p}}(\overline{s}k),$$

and by the second relation in (8) we have

$$M_{\hat{u},\hat{w}}(k) \lesssim 2^{(\beta-\delta)\overline{s}k} (\overline{s}k)^{-\alpha+\frac{1}{q}} \rho(\overline{s}k).$$
 (28)

If $\beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p}\right) = 0$ and $\alpha > 1 + (1 - \gamma) \left(\frac{1}{q} - \frac{1}{p}\right)$, then we may assume that $-\alpha_g + \frac{\gamma}{p} + \frac{1}{p'} > 0$. We have

$$M_{\hat{u},\hat{w}}(k) \lesssim 2^{-\theta\left(\frac{1}{q} - \frac{1}{p}\right)\overline{s}k}(\overline{s}k)^{-\alpha + 1 + \frac{1}{q} - \frac{1}{p}}\rho(\overline{s}k). \tag{29}$$

This completes the proof.

Remark 3. Notice that in order to prove Theorems B and C we use estimates for norms of summation operators on trees, which are obtained in [42]. If $\beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p}\right)_+ < 0$, then these estimates can be proved easier (we argue similarly as in [41, Lemma 5.1]).

Applying Corollaries 1 and 2 and arguing similarly as in [43, Theorem 1], we obtain the desired upper estimate of widths.

3 Proof of the lower estimate

In this section, we obtain the lower estimates of widths in Theorem 1.

If $\frac{\delta-\beta}{\theta}>\frac{\delta}{d}$, then by Theorem A (see also Remark 1) and by the upper estimate of $\vartheta_n(W^r_{p,g}(\Omega), L_{q,v}(\Omega))$, which is already obtained, we have $\vartheta_n(W^r_{p,g}(\Omega), L_{q,v}(\Omega))\lesssim \vartheta_n(W^r_p([0, 1]^d), L_q([0, 1]^d))$. On the other hand, there is a cube $\Delta\subset\Omega$ with side length $l(\Delta)\lesssim 1$ such that $g(x)\lesssim 1$, $v(x)\lesssim 1$ for any $x\in\Delta$ (see [43]). Hence, $\vartheta_n(W^r_{p,g}(\Omega), L_{q,v}(\Omega))\gtrsim \vartheta_n(W^r_p([0, 1]^d), L_q([0, 1]^d))$. Thus, we obtained the order estimates of widths in the case $\frac{\delta-\beta}{\theta}>\frac{\delta}{d}$.

Consider the case $\frac{\delta-\beta}{\theta} \leqslant \frac{\delta}{d}$. In order to obtain the lower estimates we argue similarly as in [43]. It is sufficient to prove the following assertions.

Proposition 1. Let $\frac{\delta-\beta}{\theta} \leq \frac{\delta}{d}$. Suppose that one of the following conditions holds: 1) $\beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p}\right)_+ < 0$ or 2) $\beta = \delta$, p < q. Then there exist $t_0 = t_0(\mathfrak{Z}_*) \in \mathbb{N}$ and $\hat{k} = \hat{k}(\mathfrak{Z}_*) \in \mathbb{N}$ such that for any $t \in \mathbb{N}$, $t \geq t_0$ there exist functions $\psi_{j,t} \in C_0^{\infty}(\mathbb{R}^d)$ $(1 \leq j \leq j_t)$ with pairwise non-overlapping supports such that

$$j_t \gtrsim_{\mathfrak{Z}_*} 2^{\theta \hat{k}t} (\hat{k}t)^{-\gamma} \tau^{-1} (\hat{k}t), \tag{30}$$

$$\left\| \frac{\nabla^r \psi_{j,t}}{g} \right\|_{L_p(\Omega)} = 1, \quad \|\psi_{j,t}\|_{L_{q,v}(\Omega)} \gtrsim 2^{(\beta - \delta)\hat{k}t} (\hat{k}t)^{-\alpha + \frac{1}{q}} \rho(\hat{k}t). \tag{31}$$

Proposition 2. Let $\beta - \delta + \theta\left(\frac{1}{q} - \frac{1}{p}\right) = 0$, $p \geqslant q$. Then there exist $t_0 = t_0(\mathfrak{Z}_*) \in \mathbb{N}$ and $\hat{k} = \hat{k}(\mathfrak{Z}_*) \in \mathbb{N}$ such that for any $t \in \mathbb{N}$, $t \geqslant t_0$ there exist functions $\psi_{j,t} \in C_0^{\infty}(\mathbb{R}^d)$ $(1 \leqslant j \leqslant j_t)$ with pairwise non-overlapping supports such that

$$j_t \gtrsim 2^{\theta \hat{k}t} (\hat{k}t)^{-\gamma} \tau^{-1} (\hat{k}t), \tag{32}$$

$$\left\| \frac{\nabla^r \psi_{j,t}}{g} \right\|_{L_p(\Omega)} = 1, \quad \|\psi_{j,t}\|_{L_{q,v}(\Omega)} \gtrsim 2^{-\theta \left(\frac{1}{q} - \frac{1}{p}\right)\hat{k}t} (\hat{k}t)^{-\alpha + \frac{1}{q} + 1 - \frac{1}{p}} \rho(\hat{k}t). \tag{33}$$

First we formulate the Vitali covering theorem [22, p. 408]).

Theorem D. Denote by B(x, t) the open or closed ball of radius t with respect to some norm on \mathbb{R}^d centered in x. Let $E \subset \mathbb{R}^d$ be a finite union of balls $B(x_i, r_i)$, $1 \leq i \leq l$. Then there exists a subset $\mathcal{I} \subset \{1, \ldots, l\}$ such that the balls $\{B(x_i, r_i)\}_{i \in \mathcal{I}}$ are pairwise non-overlapping and $E \subset \bigcup_{i \in \mathcal{I}} B(x_i, 3r_i)$.

Let \mathcal{K} be a family of closed cubes in \mathbb{R}^d with axes parallel to coordinate axes. Given a cube $K \in \mathcal{K}$ and $s \in \mathbb{Z}_+$, we denote by $\Xi_s(K)$ the partition of K into 2^{sd} closed non-overlapping cubes of the same size, and we set $\Xi(K) := \bigcup_{s \in \mathbb{Z}_+} \Xi_s(K)$.

Given a cube $\Delta \in \Xi\left(\left[-\frac{1}{2}, \frac{1}{2}\right]^d\right)$ such that $\Delta \cap \Gamma \neq \emptyset$, we define the cubes Q_{Δ} , \tilde{Q}_{Δ} , \hat{Q}_{Δ} and the points x_{Δ} , \hat{x}_{Δ} as follows.

Let $m \in \mathbb{N}$, $\Delta \in \Xi_m \left(\left[-\frac{1}{2}, \frac{1}{2} \right]^d \right)$, $\Delta \cap \Gamma \neq \emptyset$. We choose $x_\Delta \in \Delta \cap \Gamma$ and a cube Q_Δ such that $\Delta \in \Xi_1(Q_\Delta)$,

$$\operatorname{dist}_{|\cdot|}(x_{\Delta}, \partial Q_{\Delta}) \geqslant 2^{-m-1}. \tag{34}$$

Denote by \hat{x}_{Δ} the center of Q_{Δ} . Then

$$Q_{\Delta} = \hat{x}_{\Delta} + 2^{-m+1} \cdot \left[-\frac{1}{2}, \frac{1}{2} \right]^d. \tag{35}$$

We set

$$\tilde{Q}_{\Delta} = \hat{x}_{\Delta} + 3 \cdot 2^{-m} \cdot \left[-\frac{1}{2}, \frac{1}{2} \right]^d, \quad \hat{Q}_{\Delta} = \hat{x}_{\Delta} + 2^{-m+2} \cdot \left[-\frac{1}{2}, \frac{1}{2} \right]^d.$$
 (36)

Recall that the norm $|\cdot|$ is defined by $|(x_1, \ldots, x_d)| = \max_{1 \leq i \leq d} |x_i|$. Let $\hat{k} \in \mathbb{N}$ (it will be chosen later). For each $l \in \mathbb{Z}_+$ we set

$$\hat{E}_l(\Delta) = \{ x \in \hat{Q}_{\Delta} : \operatorname{dist}_{|\cdot|}(x, \Gamma) \leqslant 2^{-m - \hat{k}l + 2} \}, \quad E_l(\Delta) = \hat{E}_l(\Delta) \cap Q_{\Delta} \cap \Omega. \tag{37}$$

Notice that

$$\hat{Q}_{\Delta} = \hat{E}_0(\Delta). \tag{38}$$

Denote by mes A the Lebesgue measure of the measurable set $A \subset \mathbb{R}^d$.

Lemma 2. The following estimate holds:

$$\operatorname{mes} \hat{E}_{l}(\Delta) \lesssim 2^{-md - (d - \theta)\hat{k}l} \frac{m^{\gamma} \tau(m)}{(m + \hat{k}l)^{\gamma} \tau(m + \hat{k}l)}.$$
 (39)

In addition, there exists $m_0 = m_0(\mathfrak{Z}_*)$ such that for $m \geqslant m_0$

$$\operatorname{mes} E_l(\Delta) \gtrsim 2^{-md - (d-\theta)\hat{k}l} \frac{m^{\gamma} \tau(m)}{(m + \hat{k}l)^{\gamma} \tau(m + \hat{k}l)}.$$
 (40)

Proof. Let us prove (39). Consider the covering of the set $\hat{E}_l(\Delta)$ by cubes x + K, $x \in \Gamma \cap \hat{Q}_{\Delta}$, $K = \left(-2^{-m-\hat{k}l+3}, 2^{-m-\hat{k}l+3}\right)$. We take a finite subcovering; applying Theorem D (the balls are taken with respect to $|\cdot|$), we get a family of pairwise non-intersecting balls $\{x_i + K\}_{i=1}^N$ such that $\{x_i + 3K\}_{i=1}^N$ is a covering of $\hat{E}_l(\Delta)$. Since $\bigcup_{i=1}^N (x_i + K)$ is contained in a ball B of radius $\tilde{R} \lesssim 2^{-m}$, we have

$$\sum_{i=1}^{N} \mu(x_i + K) \leqslant \mu(B) \lesssim_{3_*}^{(3),(16)} h(2^{-m});$$

since $x_i \in \Gamma$, we get $\mu(x_i + K) \stackrel{(3),(16)}{\underset{3_*}{\smile}} h(2^{-m-\hat{k}l})$ and $N \lesssim \frac{h(2^{-m})}{h(2^{-m-\hat{k}l})}$. Finally,

$$\operatorname{mes} \hat{E}_{l}(\Delta) \leqslant \sum_{i=1}^{N} \operatorname{mes} (x_{i} + 3K) \lesssim 2^{-(m+\hat{k}l)d} \frac{h(2^{-m})}{h(2^{-m-\hat{k}l})}.$$

It remains to apply (5).

Let us prove (40). Denote by Q_{Δ}^* the homothetic transform of the cube Q_{Δ} with respect to its center with the coefficient $1 - 2^{-\hat{k}l-3}$. We set

$$\{\Delta_i\}_{i=1}^L = \{\Delta' \in \Xi_{m+\hat{k}l+3}([-1/2, 1/2]^d) : \Delta' \subset Q_{\Delta}^*, \Delta' \cap \Gamma \neq \varnothing\}.$$

It can be proved similarly as formula (4.20) in [40] that $L \underset{3_*}{\simeq} \frac{h(2^{-m})}{h(2^{-m-\hat{k}l})}$. Since $\Delta_i \cap \Gamma \neq \emptyset$, it follows from the definition of Δ_i and Q_{Δ}^* that $\bigcup_{i=1}^L Q_{\Delta_i} \subset \hat{E}_l(\Delta) \cap Q_{\Delta}$. Finally, for any $j \in \{1, \ldots, L\}$

card
$$\{i \in \overline{1, L} : \operatorname{mes}(Q_{\Delta_i} \cap Q_{\Delta_j}) > 0\} \lesssim_d 1.$$

Therefore, it is sufficient to prove that $\operatorname{mes}(Q_{\Delta_i} \cap \Omega) \approx 2^{-(m+\hat{k}l)d}$.

Let $x \in Q_{\Delta_i} \cap \Omega$, $|x - x_{\Delta_i}| \leq 2^{-m-\hat{k}l-5}$. This point exists since $x_{\Delta_i} \in \Gamma \subset \partial\Omega$ and (34) holds with $m + \hat{k}l + 3$ instead of m; moreover, $\operatorname{dist}_{|\cdot|}(x, \partial Q_{\Delta_i}) \gtrsim 2^{-m-\hat{k}l}$. Let x_* and $\gamma_x(\cdot) : [0, T(x)] \to \Omega$ be such as in Definition 1. There exists $m_0 = m_0(\mathfrak{Z}_*)$ such that $x_* \notin Q_{\Delta_i}$ for $m \geq m_0$. Let $\gamma_x(t_*) \in \partial Q_{\Delta_i}$. Then $t_* \gtrsim 2^{-m-\hat{k}l}$. By Definition 1, the ball $B_{at_*}(\gamma_x(t_*))$ is contained in Ω . It remains to observe that $\max \left(B_{at_*}(\gamma_x(t_*)) \cap Q_{\Delta_i}\right) \gtrsim 2^{-(m+\hat{k}l)d}$.

Remark 4. From (39) it follows that $\operatorname{mes}(\hat{Q}_{\Delta} \cap \Gamma) = 0$.

Suppose that $m \ge m_0(\mathfrak{Z}_*)$.

Choose $\hat{k} = \hat{k}(\mathfrak{Z}_*)$ such that for any $l \in \mathbb{Z}_+$

$$\operatorname{mes}\left(E_{l}(\Delta)\backslash \hat{E}_{l+1}(\Delta)\right) \underset{3_{*}}{\approx} 2^{-md-(d-\theta)\hat{k}l} \frac{m^{\gamma}\tau(m)}{(m+\hat{k}l)^{\gamma}\tau(m+\hat{k}l)} \tag{41}$$

(it is possible by (15), (39) and (40)).

Let $\psi \in C_0^{\infty}(\mathbb{R}^d)$, supp $\psi \subset \left[-\frac{1}{2}, \frac{1}{2}\right]^d$, $\psi|_{\left[-\frac{3}{8}, \frac{3}{8}\right]^d} = 1$, $\psi(x) \in [0, 1]$ for any $x \in \mathbb{R}^d$. We set

$$\psi_{\Delta}(x) = \psi(2^{m-2}(x - \hat{x}_{\Delta})). \tag{42}$$

Then

$$\operatorname{supp} \psi_{\Delta} \subset \hat{Q}_{\Delta}, \quad \psi_{\Delta}|_{\tilde{Q}_{\Delta}} = 1, \tag{43}$$

$$\left| \frac{\nabla^r \psi_{\Delta}(x)}{g(x)} \right| \lesssim \frac{(4),(6),(37)}{\lesssim} 2^{-\beta_g(m+\hat{k}l)} (m+\hat{k}l)^{\alpha_g} \rho_g^{-1} (m+\hat{k}l) \cdot 2^{rm}, \quad x \in \hat{E}_l(\Delta) \backslash \hat{E}_{l+1}(\Delta).$$
(44)

We set $c_{\Delta} = \left\| \frac{\nabla^r \psi_{\Delta}}{g} \right\|_{L_p(\hat{Q}_{\Delta})}^{-1} > 0.$

Lemma 3. The following estimates hold:

$$c_{\Delta} \gtrsim 2^{\left(\beta_g - r + \frac{d}{p}\right)m} m^{-\alpha_g} \rho_g(m), \quad c_{\Delta} \|\psi_{\Delta}\|_{L_{q,v}(\Omega)} \gtrsim 2^{(\beta - \delta)m} m^{-\alpha + \frac{1}{q}} \rho(m). \tag{45}$$

Proof. We estimate the value $\left\| \frac{\nabla^r \psi_{\Delta}}{g} \right\|_{L_p(\hat{Q}_{\Delta})}$ from above. First we notice that from the conditions $\frac{\delta - \beta}{\theta} \leqslant \frac{\delta}{d}$, $\theta < d$ and $\beta_v \stackrel{(8)}{=} \frac{d - \theta}{q}$ it follows that

$$\beta_g + \frac{d - \theta}{p} > 0. \tag{46}$$

Hence, by Remark 4,

$$\left\|\frac{\nabla^r \psi_\Delta}{g}\right\|_{L_p(\hat{Q}_\Delta)}^p \overset{(38)}{=} \sum_{l \in \mathbb{Z}_+} \left\|\frac{\nabla^r \psi_\Delta}{g}\right\|_{L_p(\hat{E}_l(\Delta) \backslash \hat{E}_{l+1}(\Delta))}^p \overset{(39),(44)}{\underset{3_*}{\lesssim}}$$

$$\lesssim \sum_{l \in \mathbb{Z}_{+}} 2^{-p\beta_{g}(m+\hat{k}l)} (m+\hat{k}l)^{p\alpha_{g}} \rho_{g}^{-p} (m+\hat{k}l) \cdot 2^{prm} \cdot 2^{-dm-(d-\theta)\hat{k}l} \frac{m^{\gamma} \tau(m)}{(m+\hat{k}l)^{\gamma} \tau(m+\hat{k}l)} \stackrel{(46)}{\widetilde{\mathfrak{Z}_{*}}}$$

$$\approx 2^{p\left(-\beta_g+r-\frac{d}{p}\right)m}m^{p\alpha_g}\rho_g^{-p}(m).$$

This implies the first inequality in (45). Let us prove the second inequality. Taking into account that $\psi_{\Delta}|_{Q_{\Delta}} \stackrel{(43)}{=} 1$ and $\beta_v = \frac{d-\theta}{q}$, we get

$$\|\psi_{\Delta}\|_{L_{q,v}(\Omega)}^{q} \geqslant \sum_{l \in \mathbb{Z}_{+}} \|v\psi_{\Delta}\|_{L_{q}(E_{l}(\Delta) \setminus \hat{E}_{l+1}(\Delta))}^{q} \underset{3_{*}}{\overset{(4),(6),(37),(41)}{\gtrsim}}$$

$$\gtrsim \sum_{l \in \mathbb{Z}_{+}} 2^{\beta_{v}q(m+\hat{k}l)} (m+\hat{k}l)^{-\alpha_{v}q} \rho_{v}^{q}(m+\hat{k}l) \cdot 2^{-md-(d-\theta)\hat{k}l} \frac{m^{\gamma}\tau(m)}{(m+\hat{k}l)^{\gamma}\tau(m+\hat{k}l)} \lesssim 2^{(\beta_{v}q-d)m} m^{-q\alpha_{v}+1} \rho_{v}^{q}(m).$$
(8)

It remains to apply the first inequality in (45).

Proof of Proposition 1. Let

$$\{\Delta_{\nu}\}_{\nu \in \mathcal{N}} = \left\{\Delta \in \Xi_{\hat{k}t} \left(\left[-\frac{1}{2}, \frac{1}{2} \right]^d \right) : \Delta \cap \Gamma \neq \varnothing \right\}. \tag{47}$$

Then $\{\hat{Q}_{\Delta_{\nu}}\}_{\nu\in\mathcal{N}}$ is a covering of Γ . Denote by $Q_{\Delta_{\nu}}^*$ the homothetic transform of $\hat{Q}_{\Delta_{\nu}}$ with respect to its center with coefficient 3. Applying Theorem D, we get that there exists a subset $\mathcal{N}' \subset \mathcal{N}$ such that $\{\hat{Q}_{\Delta_{\nu}}\}_{\nu\in\mathcal{N}'}$ are pairwise non-overlapping and $\{Q_{\Delta_{\nu}}^*\}_{\nu\in\mathcal{N}'}$ is a covering of Γ . We claim that

$$\operatorname{card} \mathcal{N}' \underset{\mathfrak{Z}_*}{\gtrsim} 2^{\theta \hat{k}t} (\hat{k}t)^{-\gamma} \tau^{-1} (\hat{k}t). \tag{48}$$

Indeed,

$$\operatorname{card} \mathcal{N}' \cdot 2^{-\theta \hat{k}t} (\hat{k}t)^{\gamma} \tau (\hat{k}t) \stackrel{(5)}{=} \operatorname{card} \mathcal{N}' \cdot h(2^{-\hat{k}t}) \stackrel{(3),(16)}{\widetilde{\mathfrak{J}_{*}}} \sum_{\nu \in \mathcal{N}'} \mu(Q_{\Delta_{\nu}}^{*}) \geqslant \mu(\Gamma) \underset{\overline{\mathfrak{J}_{*}}}{\widetilde{\mathfrak{J}_{*}}} 1.$$

We take $\{c_{\Delta_{\nu}}\psi_{\Delta_{\nu}}\}_{\nu\in\mathcal{N}'}$ as the desired function set. It remains to apply Lemma 3 with $m=\hat{k}t$ and (48).

Let us prove Proposition 2. Since $\beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p}\right) = 0$ and $\beta_v = \frac{d-\theta}{q}$, then

$$\beta_g = r - \frac{d}{p} + \frac{\theta}{p}.\tag{49}$$

Let $t \in \mathbb{N}$ be sufficiently large, and let $\Delta \in \Xi_{\hat{k}t} \left([-1/2, 1/2]^d \right), \Delta \cap \Gamma \neq \emptyset$. For each $s \in \mathbb{Z}_+$ we set

$$\{\Delta_{s,i}\}_{i\in J_s} = \{\Delta' \in \Xi_{\hat{k}(t+s)}([-1/2, 1/2]^d) : \Delta' \subset \hat{Q}_\Delta, \ \Delta' \cap \Gamma \neq \varnothing\}.$$
 (50)

Let

$$f_{\Delta}(x) = \sum_{s=0}^{t} \sum_{i \in J_s} \psi_{\Delta_{s,i}}(x),$$

where functions $\psi_{\Delta_{s,i}}$ are defined by formula similar to (42).

There are a number $t_0 = t_0(\mathfrak{Z}_*)$ and a cube $\Delta_0 \in \Xi_{\hat{k}(t-t_0)}\left([-1/2, 1/2]^d\right)$ such that $\Delta \subset \Delta_0$, $\Gamma \cap \Delta_0 \neq \emptyset$ and supp $f_\Delta \subset \hat{Q}_{\Delta_0}$.

Let $l \in \mathbb{Z}_+$, $x \in \hat{E}_l(\Delta_0) \setminus \hat{E}_{l+1}(\Delta_0)$ (see (37) with $m = \hat{k}(t-t_0)$). Then $\operatorname{dist}_{|\cdot|}(x, \Gamma) \underset{\mathfrak{Z}_*}{\simeq} 2^{-\hat{k}(t+l)}$. We estimate $\left|\frac{\nabla^r f_{\Delta}(x)}{g(x)}\right|$ from above. If $x \in \operatorname{supp} \psi_{\Delta_{s,i}}$ for some $i \in J_s$, then

$$\left| \frac{\nabla^r \psi_{\Delta_{s,i}}(x)}{g(x)} \right| \overset{(4),(6),(37),(50)}{\lesssim} \underset{3_*}{\lesssim} 2^{-\beta_g \hat{k}(t+l)} (\hat{k}(t+l))^{\alpha_g} \rho_g^{-1} (\hat{k}(t+l)) \cdot 2^{r\hat{k}(t+s)}.$$

Moreover, by (50) we get $s \leq l + s_0$ with $s_0 = s_0(\mathfrak{Z}_*)$. Since $\operatorname{supp} \psi_{\Delta_{s,i}} \overset{(43)}{\subset} \hat{Q}_{\Delta_{s,i}}$, by the definition of $\hat{Q}_{\Delta_{s,i}}$ it follows that for any $x \in \hat{Q}_{\Delta_0}$ the inequality $\operatorname{card} \{i \in J_s : x \in \operatorname{supp} \psi_{\Delta_{s,i}}\} \lesssim 1$ holds. Hence, for $l \leq t - s_0$

$$\left| \frac{\nabla^r f_{\Delta}(x)}{g(x)} \right| \lesssim \sum_{s=0}^{l+s_0} 2^{-\beta_g \hat{k}(t+l)} (\hat{k}(t+l))^{\alpha_g} \rho_g^{-1} (\hat{k}(t+l)) \cdot 2^{r\hat{k}(t+s)} \lesssim \lesssim \frac{1}{3*}$$

$$\lesssim 2^{(r-\beta_g)\hat{k}(t+l)}(\hat{k}t)^{\alpha_g}\rho_g^{-1}(\hat{k}t).$$

and for $l > t - s_0$

$$\left| \frac{\nabla^r f_{\Delta}(x)}{g(x)} \right| \lesssim \sum_{s=0}^t 2^{-\beta_g \hat{k}(t+l)} (\hat{k}(t+l))^{\alpha_g} \rho_g^{-1} (\hat{k}(t+l)) \cdot 2^{r\hat{k}(t+s)} \lesssim \frac{(15)}{3_*}$$

$$\lesssim 2^{-\beta_g \hat{k}(t+l)} (\hat{k}(t+l))^{\alpha_g} \rho_q^{-1} (\hat{k}(t+l)) \cdot 2^{2r\hat{k}t}$$

This yields that

$$\left\| \frac{\nabla^{r} f_{\Delta}}{g} \right\|_{L_{p}(\Omega)}^{p} \stackrel{(38)}{=} \sum_{l=0}^{\infty} \left\| \frac{\nabla^{r} f_{\Delta}}{g} \right\|_{L_{p}(\hat{E}_{l}(\Delta_{0}) \setminus \hat{E}_{l+1}(\Delta_{0}))}^{p} \stackrel{(39)}{\lesssim} \\ \stackrel{<}{\lesssim} \sum_{l=0}^{t-s_{0}} 2^{p(r-\beta_{g})\hat{k}(t+l)} (\hat{k}t)^{p\alpha_{g}} \rho_{g}^{-p} (\hat{k}t) \cdot 2^{-\hat{k}td-(d-\theta)\hat{k}l} \frac{(\hat{k}t)^{\gamma} \tau(\hat{k}t)}{(\hat{k}(t+l))^{\gamma} \tau(\hat{k}(t+l))} + \\ + \sum_{l=t-s_{0}+1}^{\infty} 2^{-p\beta_{g}\hat{k}(t+l)} (\hat{k}(t+l))^{p\alpha_{g}} \rho_{g}^{-p} (\hat{k}(t+l)) \cdot 2^{2r\hat{k}tp} \cdot 2^{-\hat{k}td-(d-\theta)\hat{k}l} \frac{(\hat{k}t)^{\gamma} \tau(\hat{k}t)}{(\hat{k}(t+l))^{\gamma} \tau(\hat{k}(t+l))} \stackrel{(49)}{\lesssim} \\ \stackrel{<}{\lesssim} 2^{-\hat{k}t\theta} (\hat{k}t)^{\alpha_{g}p+1} \rho_{g}^{-p} (\hat{k}t).$$

Thus,

$$\left\| \frac{\nabla^r f_{\Delta}}{g} \right\|_{L_p(\Omega)} \lesssim 2^{-\frac{\hat{k}t\theta}{p}} (\hat{k}t)^{\alpha_g + \frac{1}{p}} \rho_g^{-1} (\hat{k}t). \tag{51}$$

Let us estimate $||f_{\Delta}||_{L_{q,v}(\Omega)}$ from below. Let $x \in E_l(\Delta) \setminus \hat{E}_{l+1}(\Delta)$. Then $\operatorname{dist}_{|\cdot|}(x, \Gamma) \stackrel{(37)}{\widehat{\mathfrak{Z}}_*}$ $2^{-\hat{k}(t+l)}$ and there exists $l_0 = l_0(\mathfrak{Z}_*)$ such that for $0 \leqslant s \leqslant l - l_0$ there exists $i_s \in J_s$ such that $x \in \tilde{Q}_{\Delta_{s,i_s}}$. (Indeed, since $x \in Q_{\Delta}$ by (37), there exists a point $y \in \Gamma \cap \hat{Q}_{\Delta}$ such that $|x-y| \underset{\mathfrak{Z}_*}{\approx} 2^{-\hat{k}(t+l)}$. We choose a cube Δ_{s,i_s} that contains the point y. By the

definition of the cube $Q_{\Delta_{s,is}}$, we have $\hat{x}_{\Delta_{s,is}} \in \Delta_{s,is}$; hence, $|y - \hat{x}_{\Delta_{s,is}}| \leq 2^{-\hat{k}(t+s)}$. Therefore, $|x - \hat{x}_{\Delta_{s,is}}| \leq |x - y| + |y - \hat{x}_{\Delta_{s,is}}| \leq c(\mathfrak{Z}_*)2^{-\hat{k}(t+l)} + 2^{-\hat{k}(t+s)}$ for some $c(\mathfrak{Z}_*) > 0$. It remains to apply (36), (50) and the inequality $s \leq l - l_0$.) Hence, for $\frac{t}{2} \leq l \leq t$ we have $|f_{\Delta}(x)| \gtrsim t$. Consequently,

$$||f_{\Delta}||_{L_{q,v}(\Omega)}^{q} \geqslant \sum_{t/2 \leqslant l \leqslant t} ||f_{\Delta}||_{L_{q,v}(E_{l}(\Delta) \setminus \hat{E}_{l+1}(\Delta))}^{q} \underset{3_{*}}{\overset{(4),(6),(37),(41)}{\gtrsim}}$$

$$\gtrsim \sum_{t/2 \leqslant l \leqslant t} t^{q} \cdot 2^{\beta_{v}q\hat{k}(t+l)} (\hat{k}(t+l))^{-\alpha_{v}q} \rho_{v}^{q} (\hat{k}(t+l)) \cdot 2^{-\hat{k}td - (d-\theta)\hat{k}l} \frac{(\hat{k}t)^{\gamma} \tau(\hat{k}t)}{(\hat{k}(t+l))^{\gamma} \tau(\hat{k}(t+l))} \lessapprox_{3*}^{(8)}$$

$$\gtrsim 2^{-\theta \hat{k}t} (\hat{k}t)^{-\alpha_v q + q + 1} \rho_v^q (\hat{k}t);$$

i.e.,

$$||f_{\Delta}||_{L_{q,v}(\Omega)} \gtrsim 2^{-\frac{\theta \hat{k}t}{q}} (\hat{k}t)^{-\alpha_v + 1 + \frac{1}{q}} \rho_v(\hat{k}t). \tag{52}$$

Proof of Proposition 2. Let the set of cubes $\{\Delta_{\nu}\}_{\nu\in\mathcal{N}}$ be defined by formula (47), and let $F_{\Delta_{\nu}} = c_{\Delta_{\nu}} f_{\Delta_{\nu}}$, with $c_{\Delta_{\nu}}$ such that $\left\|\frac{\nabla^{r} F_{\Delta_{\nu}}}{g}\right\|_{L_{p}(\Omega)} = 1$. From (51) and (52) it follows that

$$||F_{\Delta_{\nu}}||_{L_{q,\nu}(\Omega)} \gtrsim 2^{-\theta(\frac{1}{q}-\frac{1}{p})\hat{k}t}(\hat{k}t)^{-\alpha+\frac{1}{q}+1-\frac{1}{p}}\rho(\hat{k}t).$$

Further, supp $F_{\Delta_{\nu}} = \sup f_{\Delta_{\nu}} \subset \hat{Q}_{(\Delta_{\nu})_0}$ and diam $\hat{Q}_{(\Delta_{\nu})_0} \underset{3_*}{\simeq} 2^{-\hat{k}t}$. We apply Theorem D to the covering $\{\hat{Q}_{(\Delta_{\nu})_0}\}_{\nu \in \mathcal{N}}$ of the set Γ and argue similarly as in the proof of Proposition 1.

Remark 5. Let $\beta_v = \frac{d-\theta}{q}$, $\beta - \delta + \theta \left(\frac{1}{q} - \frac{1}{p}\right)_+ = 0$. In addition, let $\alpha < \frac{1}{q}$ in the case $1 , and let <math>\alpha < 1 + (1 - \gamma) \left(\frac{1}{q} - \frac{1}{p}\right)$ in the case $p \ge q$. Then Propositions 1 and 2 hold; it implies that $\vartheta_n(W_{p,g}^r(\Omega), L_{q,v}(\Omega)) = \infty$ for any $n \in \mathbb{Z}_+$. In particular, if we take $\vartheta_n = d_n$, then we get that the deviation of $W_{p,g}^r(\Omega)$ from any finite-dimensional subspace is infinite.

REFERENCES

[1] M.S. Aitenova, L.K. Kusainova, "On the asymptotics of the distribution of approximation numbers of embeddings of weighted Sobolev classes. I", *Mat. Zh.*, **2**:1 (2002), 3–9.

- [2] M.S. Aitenova, L.K. Kusainova, "On the asymptotics of the distribution of approximation numbers of embeddings of weighted Sobolev classes. II", *Mat. Zh.*, **2**:2 (2002), 7–14.
- [3] K. F. Andersen and H. P. Heinig, Weighted norm inequalities for certain integral operators, SIAM J. Math. Anal. 14, 834–844 (1983).
- [4] G. Bennett, Some elementary inequalities. III, Quart. J. Math. Oxford Ser. (2) 42, 149–174 (1991).
- [5] O.V. Besov, "Kolmogorov widths of Sobolev classes on an irregular domain", *Proc. Steklov Inst. Math.*, **280** (2013), 34-45.
- [6] O.V. Besov, V.P. Il'in, S.M. Nikol'skii, Integral representations of functions, and imbedding theorems. "Nauka", Moscow, 1996. [Winston, Washington DC; Wiley, New York, 1979].
- [7] M.Sh. Birman and M.Z. Solomyak, "Piecewise polynomial approximations of functions of classes W_p^{α} ", Mat. Sb. **73**:3 (1967), 331–355 [Russian]; transl. in Math USSR Sb., **2**:3 (1967), 295–317.
- [8] I.V. Boykov, "Approximation of some classes of functions by local splines", Comput. Math. Math. Phys., 38:1 (1998), 21–29.
- [9] I.V. Boykov, "Optimal approximation and Kolmogorov widths estimates for certain singular classes related to equations of mathematical physics", arXiv:1303.0416v1.
- [10] M. Bricchi, "Existence and properties of h-sets", Georgian Mathematical Journal, 9:1 (2002), 13—32.
- [11] M. Christ, "A T(b) theorem with remarks on analytic capacity and the Cauchy integral", Colloq. Math. **60/61**:2 (1990), 601–628.
- [12] R.A. DeVore, R.C. Sharpley, S.D. Riemenschneider, "n-widths for C_p^{α} spaces", Anniversary volume on approximation theory and functional analysis (Oberwolfach, 1983), 213–222, Internat. Schriftenreihe Numer. Math., **65**, Birkhäuser, Basel, 1984.
- [13] D.E. Edmunds, W.D. Evans, *Hardy Operators, Function Spaces and Embeddings*. Springer-Verlag, Berlin, 2004.
- [14] D.E. Edmunds, H. Triebel, Function spaces, entropy numbers, differential operators. Cambridge Tracts in Mathematics, 120 (1996). Cambridge University Press.
- [15] A. El Kolli, "n-ième épaisseur dans les espaces de Sobolev", J. Approx. Theory, **10** (1974), 268–294.
- [16] W.D. Evans, D.J. Harris, J. Lang, "The approximation numbers of Hardy-type operators on trees", *Proc. London Math. Soc.* (3) 83:2 (2001), 390–418.
- [17] W. D. Evans, D. J. Harris, and L. Pick, Weighted Hardy and Poincaré inequalities on trees, J. London Math. Soc. **52**, 121–136 (1995).
- [18] H. P. Heinig, Weighted norm inequalities for certain integral operators, II, Proc. AMS. 95, 387–395 (1985).

- [19] B.S. Kashin, "The widths of certain finite-dimensional sets and classes of smooth functions", *Math. USSR-Izv.*, **11**:2 (1977), 317–333.
- [20] L.D. Kudryavtsev and S.M. Nikol'skii, "Spaces of differentiable functions of several variables and imbedding theorems," in Analysis-3 (VINITI, Moscow, 1988), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 26, pp. 5–157; Engl. transl. in Analysis III (Springer, Berlin, 1991), Encycl. Math. Sci. 26, pp. 1–140.
- [21] A. Kufner, Weighted Sobolev spaces. Teubner-Texte Math., 31. Leipzig: Teubner, 1980.
- [22] G. Leoni, A first Course in Sobolev Spaces. Graduate studies in Mathematics, vol. 105. AMS, Providence, Rhode Island, 2009.
- [23] M.A. Lifshits, "Bounds for entropy numbers for some critical operators", *Trans. Amer. Math. Soc.*, **364**:4 (2012), 1797–1813.
- [24] M.A. Lifshits, W. Linde, "Compactness properties of weighted summation operators on trees", *Studia Math.*, **202**:1 (2011), 17–47.
- [25] M.A. Lifshits, W. Linde, "Compactness properties of weighted summation operators on trees the critical case", *Studia Math.*, **206**:1 (2011), 75–96.
- [26] P.I. Lizorkin, M. Otelbaev, "Estimates of approximate numbers of the imbedding operators for spaces of Sobolev type with weights", Trudy Mat. Inst. Steklova, 170 (1984), 213–232 [Proc. Steklov Inst. Math., 170 (1987), 245–266].
- [27] K. Mynbaev, M. Otelbaev, Weighted function spaces and the spectrum of differential operators. Nauka, Moscow, 1988.
- [28] M.O. Otelbaev, "Estimates of the diameters in the sense of Kolmogorov for a class of weighted spaces", *Dokl. Akad. Nauk SSSR*, **235**:6 (1977), 1270–1273 [Soviet Math. Dokl.].
- [29] A. Pinkus, n-widths in approximation theory. Berlin: Springer, 1985.
- [30] Yu.G. Reshetnyak, "Integral representations of differentiable functions in domains with a nonsmooth boundary", Sibirsk. Mat. Zh., 21:6 (1980), 108–116 (in Russian).
- [31] Yu.G. Reshetnyak, "A remark on integral representations of differentiable functions of several variables", *Sibirsk. Mat. Zh.*, **25**:5 (1984), 198–200 (in Russian).
- [32] M. Solomyak, "On approximation of functions from Sobolev spaces on metric graphs", J. Approx. Theory, 121:2 (2003), 199–219.
- [33] V.M. Tikhomirov, Some questions in approximation theory. Izdat. Moskov. Univ., Moscow, 1976 [in Russian].
- [34] V.M. Tikhomirov, "Theory of approximations". In: Current problems in mathematics. Fundamental directions. vol. 14. (Itogi Nauki i Tekhniki) (Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987), pp. 103–260 [Encycl. Math. Sci. vol. 14, 1990, pp. 93–243].

- [35] V.M. Tikhomirov, "Diameters of sets in functional spaces and the theory of best approximations", Russian Math. Surveys, **15**:3 (1960), 75–111.
- [36] H. Triebel, Interpolation theory, function spaces, differential operators (North-Holland Mathematical Library, 18, North-Holland Publishing Co., Amsterdam—New York, 1978; Mir, Moscow, 1980).
- [37] H. Triebel, Theory of function spaces III. Birkhäuser Verlag, Basel, 2006.
- [38] H. Triebel, "Entropy and approximation numbers of limiting embeddings, an approach via Hardy inequalities and quadratic forms", *J. Approx. Theory*, **164**:1 (2012), 31–46.
- [39] A.A. Vasil'eva, "Widths of weighted Sobolev classes on a John domain", *Proc. Steklov Inst. Math.*, **280** (2013), 91–119.
- [40] A.A. Vasil'eva, "An embedding theorem for weighted Sobolev classes on a John domain: case of weights that are functions of a distance to a certain h-set", Russ. J. Math. Phys., 20:3 (2013), 360–373.
- [41] A.A. Vasil'eva, "Embedding theorem for weighted Sobolev classes on a John domain with weights that are functions of the distance to some h-set. II', Russ. J. Math. Phys., 21:1 (2014), 112–122.
- [42] A.A. Vasil'eva, "Estimates for norms of two-weighted summation operators on a tree under some conditions on weights", arXiv.org:1311.0375.
- [43] A.A. Vasil'eva, "Widths of function classes on sets with tree-like structure", arxiv.org:1312.7231.
- [44] A.A. Vasil'eva, "Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin", *J. Appr. Theory*, **167** (2013), 1–41.
- [45] A.A. Vasil'eva, "Some sufficient conditions for embedding a weighted Sobolev class on a John domain", Siberian Math. J., to appear.
- [46] A.A. Vasil'eva, "Widths of weighted Sobolev classes on a John domain: strong singularity at a point", Rev. Mat. Compl., 27:1 (2014), 167–212.