Дніпропетровський Національний університет Кафедра обчислювальної математики та математичної кібернетики

Чисельні методи в інформатиці

Завдання до лабораторної роботи № 4

Чисельне інтегрування

Тема: Методи обчислення визначених інтегралів.

<u>Mema:</u> Познайомитись з квадратурними формулами прямокутників, трапецій, Сімпсона, Гаусса та їх чисельною реалізацією.

Постановка завдання:

1. Обчислити визначений інтеграл $I = \int_a^b f(x) dx$, використовуючи всі чотири квадратурні формули (n = 10). Результати порівняти та надрукувати.

2. Здійснити оцінку похибки формули Сімпсона за допомогою правила Рунге.

- 3. Надрукувати графік функції y = f(x) на відрізку [a,b] та зобразити графічно площу криволінійної трапеції, яка обмежена зверху кривою y = f(x) на відрізку [a,b].
- 4. При самостійному вивчені квадратурної формули прямокутників (лівих, правих, центральних) використати [3], с.61-64.

<u>Література</u>

- 1. Крылов В.И. Приближенное вычисление интегралов. М.: Наука, 1967. 500 с.
- 2. Крылов В.И., Шульгина Л.Т. Справочная книга по численному интегрированию: М.: Наука, 1966. 372 с.
- 3. Балашова С.Д. Чисельні методи. Частина 1. Методи розв'язування задач аналізу та алгебри: Київ НМК ВО 1992. 280 с.

Завдання до лабораторної роботи № 4

No	f(x), [a;b]	№	f(x), [a;b]
1.	$0.37e^{\sin x}, x \in [0;1]$	2.	$0.5x + x \lg x, x \in [1;2]$
3.	$(x+1,9)\sin\left(\frac{x}{3}\right), x \in [1;2]$	4.	$\frac{\ln(x+2)}{x}, x \in [2;3]$
5.	$\frac{3\cos x}{2x+1,7}, x \in [0;1]$	6.	$(2x+0,6)\cos\left(\frac{x}{2}\right), x \in [1;2]$
7.	$2,6x^2 \ln x, x \in [1,2;2,2]$	8.	$(x^2+1)\sin(x-0.5), x \in [0.5;1.5]$
9.	$x^2 \cos\left(\frac{x}{4}\right), x \in [2;3]$	10.	$(x^2+1)\sin(0,2x+3), x \in [2;3]$
11.	$3x + 4\ln x, x \in [1; 2]$	12.	$4x\left(e^x - e^{-x}\right), x \in [0;1]$
13.	$3x^2 + tgx$, $x \in [-0,5;0,5]$	14.	$3x^2 + \sin x, x \in [0;1]$
15.	$3xe^{\cos x}, x \in [0,2;1,2]$	16.	$x^2 \operatorname{tg}(0,5x), x \in [0,5;1,5]$
17.	$\frac{x^2}{0,25x+1}, x \in [1,1;2,1]$	18.	$\frac{x^2 - 0.3x}{\sqrt{1 + 2x}}, x \in [2;3]$
19.	$2e^{-x}(2+x^3), x \in [1;2]$	20.	$x\cos\left(x^2\right), x \in [0;1]$
21.	$\sqrt{1+x}\cos(x), x \in [2;3]$	22.	$e^x + x^2 - 1, x \in [0;1]$
23.	$(e^x + x)\sin(x), x \in [0;1]$	24.	$\sqrt{3+x}\lg(x), x \in [1;2]$
25.	$(4+x)\sin(x^2), x \in [1;2]$	26.	$xe^{\sin x}, x \in [2;3]$
27.	$x\sin x\cos 2x, x\in[2;3]$	28.	$\sin x \cdot \ln x, x \in [1; 2]$
29.	$\cos x \cdot \ln x, x \in [3;4]$	30.	$x^2 \lg x, x \in [2;3]$