Automatización de simulaciones para procesos de optimización

Alicia Lapique Rodríguez Grupo de Investigación CEHINAV

- OBJETIVOS
 - Del proyecto
 - De la presentación
- CONDICIONES INICIALES
 - Punto de partida
 - Problema
- SOFTWARE EMPLEADO
 - OpenFOAM
 - Python
 - AQUAgpusph
 - Wrytex

- FASES CFD
- TIEMPO EMPLEADO
 - Proceso manual
 - Proceso automático
 - Comparación
- COSTE DEL PROCESO
 - Proceso manual
 - Proceso automático
 - Comparación
- CONCLUSIONES

OBJETIVOS

OBJETIVOS DEL PROYECTO

- Crear un programa para ayudar en el proceso de diseño y optimización de un artefacto naval
- Optimizar en la medida de lo posible el coste computacional y humano
- Vídeo

OBJETIVOS

OBJETIVOS DE LA PRESENTACIÓN

- Valorar cuantitativamente si compensa automatizar el proceso en función del número de simulaciones.
- Estudiar el tiempo y dinero empleado en llevar a cabo las simulaciones de forma manual y automática.

- OBJETIVOS
 - Del proyecto
 - De la presentación
- CONDICIONES INICIALES
 - Punto de partida
 - Problema
- SOFTWARE EMPLEADO
 - OpenFOAM
 - Python
 - AQUAgpusph
 - Wrytex

- FASES CFD
- TIEMPO EMPLEADO
 - Proceso manual
 - Proceso automático
 - Comparación
- COSTE DEL PROCESO
 - Proceso manual
 - Proceso automático
 - Comparación
- CONCLUSIONES

CONDICIONES INICIALES

PUNTO DE PARTIDA

- Una simulación
- StarCCM+
- Tiempo de realización 3 meses aproximadamente

PROBLEMA

- Del orden de 100 simulaciones por diseño
- Casos similares
 - Geometría
 - Solver
 - Presentación de resultados

- OBJETIVOS
 - Del proyecto
 - De la presentación
- CONDICIONES INICIALES
 - Punto de partida
 - Problema
- SOFTWARE EMPLEADO
 - OpenFOAM
 - Python
 - AQUAgpusph
 - Wrytex

- FASES CFD
- TIEMPO EMPLEADO
 - Proceso manual
 - Proceso automático
 - Comparación
- COSTE DEL PROCESO
 - Proceso manual
 - Proceso automático
 - Comparación
- CONCLUSIONES

SOFTWARE EMPLEADO

- OpenFOAM
 - CFD: Mecánica de Fuidos Computacional
 - OpenFOAM is a free, open source CFD software http://www.openfoam.com
 - FVM: Finite Volume Method <u>http://www.openfoam.com/features/numerical-method.php</u>
 - Los casos se estructuran en archivos.
 (No tiene interfaz gráfica)
 - Algo similar a PyFOAM

SOFTWARE EMPLEADO

- Python
 - Lenguaje de programación
 - http://www.python.org/
 - ¿Por qué Python?
 - Sencillo
 - Fácil modificación de archivos de texto y variables de entrada
 - Función os.system(comando), que ejecuta el comando (de bash) en un terminal

SOFTWARE EMPLEADO

- AQUAgpusph
 - CFD: Mecánica de Fuidos Computacional
 - AQUAgpusph is a homemade software
 - SPH: Smoothed-particle hydrodynamics
 - Vídeo
- Wrytex
 - Librería Python
 - Homemade
 - Genarar documentos Latex
 - https://gitorious.org/wrytex

- OBJETIVOS
 - Del proyecto
 - De la presentación
- CONDICIONES INICIALES
 - Punto de partida
 - Problema
- SOFTWARE EMPLEADO
 - OpenFOAM
 - Python
 - AQUAgpusph
 - Wrytex

- FASES CFD
- TIEMPO EMPLEADO
 - Proceso manual
 - Proceso automático
 - Comparación
- COSTE DEL PROCESO
 - Proceso manual
 - Proceso automático
 - Comparación
- CONCLUSIONES

FASES DE UNA SIMULACIÓN CFD

- Preprocesado
 - Definir el problema y las ecuaciones que lo gobiernan
 - Condiciones de contorno e iniciales
 - Mallado de la geometría
- Procesado
 - Solución numérica del problema
- Postprocesado
 - Crear gráficas, videos...

- OBJETIVOS
 - Del proyecto
 - De la presentación
- CONDICIONES INICIALES
 - Punto de partida
 - Problema
- SOFTWARE EMPLEADO
 - OpenFOAM
 - Python
 - AQUAgpusph
 - Wrytex

- FASES CFD
- TIEMPO EMPLEADO
 - Proceso manual
 - Proceso automático
 - Comparación
- COSTE DEL PROCESO
 - Proceso manual
 - Proceso automático
 - Comparación
- CONCLUSIONES

TIEMPO EMPLEADO

HIPÓTESIS

¡SOMOS RICOS!

Tenemos todo el dinero necesario para personal, pero todo el trabajo lo hace una persona.

El objetivo es terminar cuanto antes.

TIEMPO PROCESO MANUAL

 Tiempo de preparar, postprocesar y documentar una simulación

$$T_{simulación} \approx 1 semana$$

Tiempo de cálculo por simulación

$$T_{c\'alculo} \approx 2 \, \text{d\'ias}$$

• Tiempo muerto: tiempo entre simulación y simulación

$$T_{tiempo muerto} \approx 12 \text{ h}$$

Tiempo empleado en validar el caso

$$T_{validación} \approx 1.5 \text{ meses}$$

Tiempo total manual:

$$T_{manual} = N_{casos} \cdot (T_{simulación} + T_{tiempo\ muerto} + T_{cálculo}) + T_{validación}$$

TIEMPO PROCESO AUTOMÁTICO

Tiempo total de desarrollo

$$T_{desarrollo} \approx 2 \, meses$$

$$T_{desarrollo} = T_{SPH} + T_{controlador \, general} + T_{OF} + T_{Wrytex}$$

Tiempo desarrollo SPH

$$T_{SPH} \approx 10 \, \text{días}$$

Tiempo muerto: tiempo entre simulación y simulación

$$T_{tiempo \, muerto} = 0$$

Tiempo de cálculo por simulación

$$T_{c\'alculo} \approx 2 \, d\'as$$

 Tiempo validación: tiempo empleado en validar el caso (el mismo empleado en validar con el proceso manual) y en validar el programa

$$T_{validación} \approx T_{validar\,caso} + T_{validar\,programa} \approx 2$$
meses

Tiempo total automático:

$$T_{autom\acute{a}tico} = N_{casos} \cdot (T_{c\acute{a}lculo}) + T_{validaci\acute{o}n} + T_{desarrollo} - T_{SPH}$$

COMPARACIÓN

 $T_{manual} = N_{casos} \cdot (T_{simulación} + T_{tiempo\; muerto} + T_{c\'alculo}) + T_{validaci\'on}$

$$T_{autom\acute{a}tico} = N_{casos} \cdot (T_{c\acute{a}lculo}) + T_{validaci\acute{o}n\,(caso+prog)} + T_{desarrollo} - T_{SPH}$$

A partir de 8 casos es rentable automatizar el proceso

- OBJETIVOS
 - Del proyecto
 - De la presentación
- CONDICIONES INICIALES
 - Punto de partida
 - Problema
- SOFTWARE EMPLEADO
 - OpenFOAM
 - Python
 - AQUAgpusph
 - Wrytex

- FASES CFD
- TIEMPO EMPLEADO
 - Proceso manual
 - Proceso automático
 - Comparación
- COSTE DEL PROCESO
 - Proceso manual
 - Proceso automático
 - Comparación
- CONCLUSIONES

COSTE PROCESO

HIPÓTESIS

¡SOMOS JÓVENES!

Tenemos todo el tiempo del mundo Queremos gastar poco dinero Sólo se tendrá en cuenta el coste del ingeniero:

Coste = Tiempo x Precio ingeniero

COSTE PROCESO MANUAL

Tiempo para preparar, postprocesar y documentar una simulación

$$T_{simulación} \approx 1 semana$$

Tiempo para validar el caso

$$T_{validación} \approx 1.5 \text{ meses}$$

Coste total manual:

$$C_{manual} = (N_{casos} \cdot T_{simulación} + T_{validación}) X P_{ingeniero/h}$$

COSTE PROCESO AUTOMÁTICO

 Tiempo total de desarrollo (el ingeniero que desarrolla el programa emplea Python)

$$T_{desarrollo} \approx 2 \text{ meses}$$

$$T_{desarrollo} = T_{SPH} + T_{controlador \text{ general}} + T_{OF} + T_{Wrytex}$$

Tiempo de desarrollo SPH

$$T_{SPH} \approx 10 \text{ días}$$

 Tiempo de validación: coste de validar el caso (el mismo de validar con el proceso manual) y de validar el programa

$$T_{validación} = T_{validar\,caso} + T_{validar\,programa} \approx 2$$
meses

Coste total automático:

$$C_{automático} = (T_{validación} + T_{desarrollo} - T_{SPH}) x P_{ingeniero(Python)/h}$$

COMPARACIÓN

$$C_{manual} = (N_{casos} \cdot T_{simulación} + T_{validación}) \times P_{ingeniero/h}$$

$$C_{automático} = (T_{validación} + T_{desarrollo} - T_{SPH}) \times P_{ingeniero(Python)/h}$$

$$P_{ingeniero/día} = 8 \frac{horas}{día} \times 50 \frac{\epsilon}{hora} = 400 \epsilon/día$$

Suponiendo que todos los ingenieros cobran lo mismo, se estima que a partir de 9 casos es rentable automatizar el proceso.

- OBJETIVOS
 - Del proyecto
 - De la presentación
- CONDICIONES INICIALES
 - Punto de partida
 - Problema
- SOFTWARE EMPLEADO
 - OpenFOAM
 - Python
 - AQUAgpusph
 - Wrytex

- FASES CFD
- TIEMPO EMPLEADO
 - Proceso manual
 - Proceso automático
 - Comparación
- COSTE DEL PROCESO
 - Proceso manual
 - Proceso automático
 - Comparación
- CONCLUSIONES

CONCLUSIONES

El cálculo del tiempo y dinero empleado en llevar a cabo las simulaciones se ha particularizado para un proyecto en concreto.

Por tanto, los resultados obtenidos cuantitativamente son sólo válidos para este caso.

A pesar de ello, se puede decir que la automatización con Python ayuda a reducir tanto el tiempo empleado como el coste.

CONCLUSIONES

En nuestro proyecto, si se quiere llevar a cabo más de 8-9 simulaciones compensa en tiempo y dinero automatizar el proceso.

Es significativo que tomando dos hipótesis diferentes se obtenga aproximadamente el mismo número de simulaciones para las que el programa comienza a compensar.

En el caso de que el precio/h del ingeniero con conocimiento de Python sea mayor, será necesario realizar un mayor número de simulaciones para que fuese rentable automatizar el proceso.

CONCLUSIONES

El desarrollo del programa con Python es relativamente sencillo y disminuye notablemente la probabilidad de cometer fallos humanos.

Además hemos conseguido optimizar el proceso empleando OpenFOAM (open source)

iiiMUCHAS GRACIAS!!!

¿¿PREGUNTAS??