Лабораторная работа 4.4.1. Исследование амплитудной решетки

Калинин Даниил, Б01-110

9 марта 2023 г.

Цель работы: знакомство с работой и настройкой гониометра Г5, определение спектральных характеристик амплитудной решетки.

В работе используются: гониометр, дифракционная решетка, ртутная лампа

Теоритическая справка:

Основное соотношение приближенной теории дифракционной решётки:

$$d\sin\varphi_m = m\lambda. \tag{1}$$

Угловая дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}.$$
 (2)

Экспериментальная установка:

При работе с дифракционной решёткой основной задачей является точное измерение углов, при которых наблюдаются главные максимумы для различных длин волн. В нашей работе для измерения углов используется гониометр Г5. Принципиальная схема экспериментальной установки приведена на рис. 1.

Рис. 1. Схема установки.

Ход работы:

1. Измерим координаты спектральных линий ртути в ± 1 порядках. Результаты занесем в таблицу 1.

Цвет	Длина волны, нм.	угол ϕ_1 , град.	$sin(\phi_1)$
фиолетовый	487.7	13°36′28″	0.23527
синий	435.8	14°26′28″	0.24938
голубой	491.6	16°8′32″	0.27802
зеленый	546.1	17°45′27″	0.30499
желтый	577.0	18°40′21″	0.32016
желтый	579.1	18°44′21″	0.32126

Таблица 1. Данные эксперимента

Рис. 2. График зависимости $\sin(\phi_1)$ от λ

2. Построим график зависимости $\sin(\phi_1)$ от λ для ± 1 порядка, изобразим его на рисунке 2

По углу наклона графика можно определить период решетки: d=2.016 мкм.

3. Оценим угловую дисперсию решётки: для этого определим разности угловых координат желтых линий во всех видимых порядках. Результаты занесем в таблицу 2.

m	$\Delta \varphi,''$	D експеримент., $10^{-5}~{ m pag/\mathring{A}}$	D теоретич., $10^{-5}~{ m pag/\mathring{A}}$
1	50	1, 14	5,22
2	588	13,4	12, 2
3	1350	30,9	29,9
-1	239	-5,46	-5,22
-2	548	-12,5	-12, 2
-3	1332	-30, 4	-29,9

Таблица 2. Угловая дисперсия.

Построим график зависимости D=f(m). Изобразим его на рисунке 3

Рис. 3. График зависимости D = f(m)

4. Получим оценку для разрешимого спектрального интервала $\delta\lambda$, числа эффективно работающих штрихов решётки N, разрешающей способности R, а также её эффективного размера решетки l:

$$\delta\lambda \approx \Delta\varphi/D = 2 \text{ Å};$$

$$R \approx \frac{\lambda}{\delta\lambda} = 2885$$

$$N \approx R/m = 2885$$

Заключение:

В ходе работы были изучены спектральные линии ртути, определен шаг дифракционной решетки, измерена ее угловая дисперсия, а также эффективный размер. Полученные результаты довольно хорошо согласуются с теорией.

 $l \approx Nd = 6$ mm.