Математическая логика

Таблицы простых импликантов

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела
п/п	раздела дисциплины	
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.
		Принцип двойственности. Совершенная дизъюнктивная нормальная
		форма (СДНФ). Совершенная конъюнктивная нормальная форма
		(СКНФ). Разложение булевых функций по переменным. Построение
		СДНФ для функции, заданной таблично.
2.	Минимизация	Проблема минимизации. Порождение простых импликантов.
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс
	логических функций	самодвойственных функций. Определение и лемма о
		несамодвойственной функции. Класс монотонных функций.
		Определение и лемма о немонотонной функции. Класс линейных
		функций. Определение и лемма о нелинейной функции.
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод
	предикатов	резолюций для исчисления высказываний. Понятие предиката.
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм
		преобразования формул в предваренную нормальную форму.
		Скулемовская стандартная форма. Подстановка и унификация.
		Алгоритм унификации. Метод резолюций в исчислении предикатов.

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Таблицы простых импликантов

Задача нахождения минимального подмножества простых импликантов решается с помощью таблиц, **столбцы** которых перенумерованы k_i (ОЭК), **строки** простыми импликантами $\alpha_1, ..., \alpha_m$.

	0000	0001	0010	1000	1001	1100	1101
00-0							
-00-							
1-0-							

Из примера прошлой лекции получаем следующую таблицу. Необходимо обозначить позиции, где импликант покрывает конъюнкцию. Ставим крестик × на пересечении импликанта и конъюнкции.

	0000	0001	0010	1000	1001	1100	1101
00-0	×		×				
-00-	×	×		×	×		
1-0-				×	×	×	×

Правило работы с таблицами

- 1. Если в столбце имеется лишь один крестик, то соответствующая строка (т.е. импликант) должна быть выбрана обязательно (т.к. только этот импликант покрывает соответствующую конъюнкцию).
- 2. Множество таких строк (т.е. импликантов) отражает ядро задачи.
- 3. Далее, вычеркиваем все столбцы, у которых на пересечении с данной строкой есть крестик (т.е. конъюнкция покрывается импликантом).

Ответ для примера из таблицы 1

В примере 1 в ядро задачи входят все импликанты. Следовательно, минимальным представлением для функции f(x,y,z,t) является $\overline{x}\overline{y}\overline{t} \vee \overline{y}\,\overline{z} \vee x\overline{z}$, т.е.

$$f(x, y, z, t) = \overline{x} \overline{y} \overline{t} \vee \overline{y} \overline{z} \vee x \overline{z}$$
.

После работы с таблицей

Возможные варианты:

- 1) после выделения ядра еще остаются элементарные конъюнкции, подлежащие покрытию. Необходимо составить следующую таблицу из оставшихся импликантов и конъюнкций;
- 2) останутся простые импликанты, которые не покрывают ни одну элементарную конъюнкцию, не покрытую элементами ядра. Такие импликанты являются лишними.

Пусть получили следующие импликанты и конъюнкции.

Расставьте крестики в таблице.

			n b rac	1					
	0000	0100	1000	0011	0101	0110	1010	1011	0111
01									
0-00									
-000									
101-									
-011									
0-11									10

1(

	0000	0100	1000	0011	0101	0110	1010	1011	01111
01		×			×	×			×
0-00	×	×							
-000	×		×						
101-							×	×	
-011				×				×	
0-11				×					×

Выделим ядро и перейдем к следующей таблице, в которую входят импликанты, не входящие в ядро, и еще не покрытые конъюнкции.

В ядро входят 3 импликанта: $\overline{x}y \vee \overline{y} \, \overline{z} \overline{t} \vee x \overline{y} z$.

	0011
0-00	
-011	
0-11	

Снова расставляем крестики в тех позициях, где импликант покрывает конъюнкцию.

	0011					
0-00						
-011	×					
0-11	×					

Элементарная конъюнкция 0011 покрывается любым из импликантов –011 и 0–11.

0-00 - лишний импликант.

Для примера из таблицы 2 получаем два неизбыточных выражения (ядро + один из последних импликантов):

$$f(x, y, z, t) = \overline{x}y \vee \overline{y} \, \overline{z} \overline{t} \vee x \overline{y} z \vee \overline{y} z t,$$

$$f(x, y, z, t) = \overline{x}y \vee \overline{y} \, \overline{z} \overline{t} \vee x \overline{y} z \vee \overline{x} z t.$$

Найдем минимальное представление следующей функции: f(x, y, z, t) = (10011111110110000).

	Имплик.	0000	0100	1000	0011	0101	0110	1010	1011	01111
a	0-00									
b	-000									
C	10-0									
d	-011									
e	0-11									
f	101-									
g	01									

Необходимо расставить крестики в позициях, где импликанты покрывают конъюнкции.

	Имплик.	0000	0100	1000	0011	0101	0110	1010	1011	01111
a	0-00	×	×							
b	-000	×		×						
c	10-0			×				×		
d	-011				×				×	
e	0-11				×					×
f	101-							×	×	
g	01		×			×	×			×

Определите ядро, постройте следующую таблицу.

Ядро 01-- покрывает 0100, 0101, 0110, 0111. Вычеркивая соответствующие строки и столбцы, получаем следующую таблицу.

Изобразите следующую таблицу.

		0000	1000	0011	1010	1011
a	0-00					
b	-000					
С	10-0					
d	-011					
e	0-11					
f	101-					

Расставьте крестики в тех позициях, где импликант покрывает конъюнкцию.

		0000	1000	0011	1010	1011
a	0-00	×				
b	-000	×	×			
C	10-0		×		×	
d	-011			×		×
e	0-11			×		
f	101-				×	×

Видим, что существует большое количество решений. В таких случаях удобно обозначить импликанты символами и перечислить их для каждой конъюнкции.

		0000	1000	0011	1010	1011
a	0-00	×				
b	-000	×	×			
c	10-0		×		×	
d	-011			×		×
e	0-11			×		
f	101-				×	×

Из таблицы следует, что ЭК 0000 покрывается импликантами a или b ($a \lor b$), ЭК 1000 — импликантами b или c ($b \lor c$) и т.д.

$$(a \lor b)(b \lor c)(d \lor e)(c \lor f)(d \lor f)g,$$

где после раскрытия скобок и упрощений получаются 5 конъюнкций, четыре из которых соответствуют минимальным ДНФ функции.

 $bdgf \lor befg \lor bcdg \lor acdg \lor acefg$.

Заметим, что в любое представление входит импликант g, т.к. он является ядром.

Ответ. Минимальными являются следующие 4 функции:

1)
$$f(x, y, z, t) = \overline{yz}\overline{t} \vee \overline{y}zt \vee \overline{x}y \vee x\overline{y}z$$
;

2)
$$f(x, y, z, t) = \overline{yz}\overline{t} \vee \overline{x}y \vee \overline{x}zt \vee x\overline{y}z$$
;

- 3) ...
- 4) ...

Остальные ДНФ в качестве упражнения предлагается выписать самостоятельно.

Тема следующей лекции:

«Полнота и замкнутость систем логических функций».