HWI:

2)c) Assuming F. ali % calculated by weight

Atomic mass of Carbon: n2x1023 n mac Atomic mass of Nitrojen: ~ 2.3 × 10 23 mman

#Glncox:
$$N_G = M_C / 6 M_{ac}$$
 : $N_G = \frac{.15 \times 10^{-12} g}{2 \times 10^{-23} g} = .075 \times 10^{11}$
#Ammonium: $N_A = M_n / M_{an}$: $N_A = \frac{.042 \times 10^{-12} g}{2.3 \times 10^{-23} g} = .018 \times 10^{11}$

$$N_G = 7.5 \times 10^9$$
 $N_A = 1.8 \times 10^9$

De = 1.6700

f)
$$\left(D_f = 1.67 \text{ OD} = 1.67 \times 10^{9} \frac{\text{colls}}{\text{mL}}\right)$$
 find density $\left(D_o = \frac{N_o}{V} = 10^{7} \frac{\text{colls}}{\text{mL}}\right)$ initial density

$$t = t_a \log_2(\frac{D_4}{D_0})$$

$$t = t_a \log_2(\frac{D_4}{D_0})$$
So $n \leq n_0 m_0 \leq n_0 \leq$