线性代数 Linear Algebra

刘鹏

复旦大学通信科学与工程系 光华楼东主楼1109 Tel: 65100226 pliu@fudan.edu.cn

三、内积的坐标表示

ightharpoons n 维欧氏空间 V 中任意取定 基 ε_1 , ε_2 ,..., ε_n , 对 V 中任意两个向量 α , β 有 $(\alpha,\beta)=X^TAY$

其中
$$A = \begin{bmatrix} (\varepsilon_1, \varepsilon_1) & (\varepsilon_1, \varepsilon_2) & \cdots & (\varepsilon_1, \varepsilon_n) \\ (\varepsilon_2, \varepsilon_1) & (\varepsilon_2, \varepsilon_2) & \cdots & (\varepsilon_2, \varepsilon_n) \\ \cdots & \cdots & \cdots & \cdots \\ (\varepsilon_n, \varepsilon_1) & (\varepsilon_n, \varepsilon_2) & \cdots & (\varepsilon_n, \varepsilon_n) \end{bmatrix}$$

$$\alpha = \sum_{i=1}^n x_i \, \varepsilon_i \qquad \beta = \sum_{j=1}^n y_j \, \varepsilon_j$$

$$X = \begin{bmatrix} x_1, x_2, \cdots, x_n \end{bmatrix}^T \qquad Y = \begin{bmatrix} y_1, y_2, \cdots, y_n \end{bmatrix}^T$$

▶ 矩阵 A 称为基 ε_1 , ε_2 , ..., ε_n 的 <u>度量矩阵</u>, 也称格拉姆(Gram)方阵 ⇒格拉姆行列式(习题20)

四、标准正交基

标准正交基类似于几何空间中的直角坐标系: 表示方便,计算方便,计算稳定.

定义 4.11 在欧氏空间 V 中,一组非零向量,如果它们两两正交,就称它为正交向量组。

定理 4.6 设 $\alpha_1, \alpha_2, ..., \alpha_m$ (m \leq n) 是 n 维欧氏空间 V 中的一组正交向量,则 $\alpha_1, \alpha_2, ..., \alpha_m$ 线性无关。

定义 4.12 在 n 维欧氏空间 V 中,由 n 个 两两正交的非零向量所构成的正交向量组称为正交基;

- ✓ 由单位向量构成的正交基称为标准正交基。
- > 标准正交基的度量矩阵为单位阵.

$$A = \begin{bmatrix} (\varepsilon_{1}, \varepsilon_{1}) & (\varepsilon_{1}, \varepsilon_{2}) & \cdots & (\varepsilon_{1}, \varepsilon_{n}) \\ (\varepsilon_{2}, \varepsilon_{1}) & (\varepsilon_{2}, \varepsilon_{2}) & \cdots & (\varepsilon_{2}, \varepsilon_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ (\varepsilon_{n}, \varepsilon_{1}) & (\varepsilon_{n}, \varepsilon_{2}) & \cdots & (\varepsilon_{n}, \varepsilon_{n}) \end{bmatrix} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix} = E$$

<u>定理 4.7</u> 任一n维欧氏空间(n≥1)都必有 <u>正交基</u>(orthogonal basis)。

- ho 设向量组 $\alpha_1,\alpha_2,...,\alpha_n$ 是n 维欧氏空间的 任意一个基,我们可以由它构造一个正交基
 - 构造正交基 施密特正交化过程
- ▶ 可进一步求出标准正交基.

定义(投影) 若 α 与 β 是 n 维内积空间中的 向量,则 β 到 α 的标量投影(scalar projection)为

$$\frac{(\alpha,\beta)}{\|\alpha\|}$$

则 β 到 α 的向量投影(vector projection) η 为

$$\eta = \frac{(\alpha, \beta)}{\|\alpha\|} \cdot \frac{\alpha}{\|\alpha\|} = \frac{(\alpha, \beta)}{(\alpha, \alpha)} \alpha = proj_{\alpha} \beta$$

➤ Schmidt 正交化思路就是利用投影原理, 在已有正交基的基础上构造一个新的正交基。

$$\beta_1 = \alpha_1,$$

$$\beta_2 = \alpha_2 - \alpha_2$$

$$\beta_2 = \alpha_2 - proj_{\beta_1} \alpha_2$$

$$\beta_3 = \alpha_3 - proj_{\beta_2} \alpha_3 - proj_{\beta_1} \alpha_3$$

$$\beta_n = \alpha_n - \sum_{j=1}^{n-1} \operatorname{proj}_{\beta_j} \alpha_n$$

例: 令矩阵
$$A = \begin{bmatrix} 1 & -2 & -1 \\ 2 & 0 & 1 \\ 2 & -4 & 2 \\ 4 & 0 & 0 \end{bmatrix} \qquad \eta = \frac{(\alpha, \beta)}{\|\alpha\|} \cdot \frac{\alpha}{\|\alpha\|}$$
$$= \frac{(\alpha, \beta)}{(\alpha, \alpha)} \alpha = \operatorname{proj}_{\alpha} \beta$$

$$\eta = \frac{(\alpha, \beta)}{\|\alpha\|} \cdot \frac{\alpha}{\|\alpha\|}$$

$$= \frac{(\alpha, \beta)}{(\alpha, \alpha)} \alpha = proj_{\alpha} \beta$$

试求: A 的列空间的一组标准正交基。

解: 显然 A 的3个列向量线性无关,它们构成 R4 的3 维子空间的一组基,可以使用施密特正交化过程

ightharpoonup 正交化、标准化同时进行,ightharpoonup $r_{11} = ||\alpha_1|| = 5$,

$$\mathbf{q}_1 = \frac{\alpha_1}{r_{11}} = \left(\frac{1}{5}, \frac{2}{5}, \frac{2}{5}, \frac{4}{5},\right)^T$$

$$ightharpoonup
ightharpoonup
igh$$

$$\mathbf{\alpha_2} - r_{12}\mathbf{q_1} = \left(-\frac{8}{5}, \frac{4}{5}, -\frac{16}{5}, \frac{8}{5},\right)^T$$

$$\mathbf{q}_1 = \frac{\alpha_1}{r_{11}} = \left(\frac{1}{5}, \frac{2}{5}, \frac{2}{5}, \frac{4}{5},\right)^T$$

$$\alpha_2 - r_{12} \alpha_1 = \left(-\frac{8}{5}, \frac{4}{5}, -\frac{16}{5}, \frac{8}{5},\right)^T$$

$$\mathbf{q}_{1} = \frac{\alpha_{1}}{r_{11}} = \left(\frac{1}{5}, \frac{2}{5}, \frac{2}{5}, \frac{4}{5}, \right)^{T}$$

$$\alpha_{2} - r_{12}\mathbf{q}_{1} = \left(-\frac{8}{5}, \frac{4}{5}, -\frac{16}{5}, \frac{8}{5}, \right)^{T},$$

$$A = \begin{bmatrix} 1 & -2 & -1 \\ 2 & 0 & 1 \\ 2 & -4 & 2 \\ 4 & 0 & 0 \end{bmatrix}$$

$$r_{22} = \|\boldsymbol{\alpha}_2 - r_{12}\mathbf{q}_1\| = 4,$$

$$r_{22} = \|\boldsymbol{\alpha}_2 - r_{12}\boldsymbol{q}_1\| = 4, \quad \boldsymbol{q}_2 = \frac{\boldsymbol{\alpha}_2 - r_{12}\boldsymbol{q}_1}{r_{22}} = \left(-\frac{2}{5}, \frac{1}{5}, -\frac{4}{5}, \frac{2}{5}\right)^T$$

$$r_{13} = (\mathbf{q}_1, \boldsymbol{\alpha}_3) = 1, \quad r_{23} = (\mathbf{q}_2, \boldsymbol{\alpha}_3) = -1, \quad | \ \boldsymbol{\alpha}_1 = \mathbf{q}_1 r_{11}$$

$$\mathbf{\alpha}_3 - r_{13}\mathbf{q}_1 - r_{23}\mathbf{q}_2 = \left(-\frac{8}{5}, \frac{4}{5}, \frac{4}{5}, -\frac{2}{5}\right)^T, \mathbf{\alpha}_2 = \mathbf{q}_1r_{12} + \mathbf{q}_2r_{22} \\ \mathbf{\alpha}_3 = \mathbf{q}_1r_{13} + \mathbf{q}_2r_{23} + \mathbf{q}_3r_{33}$$

$$r_{33} = \|\mathbf{\alpha}_3 - r_{13}\mathbf{q}_1 - r_{23}\mathbf{q}_2\| = 2,$$

$$\alpha_1 = q_1 r_{11}$$

$$\mathbf{\alpha_2} = \mathbf{q_1} r_{12} + \mathbf{q_2} r_{22}$$

$$\mathbf{q}_{3} = \mathbf{q}_{1}r_{13} + \mathbf{q}_{2}r_{23} + \mathbf{q}_{3}r_{33}$$

$$: A = [\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3]$$

$$\begin{bmatrix} \mathbf{q}_3 = \frac{\mathbf{\alpha}_3 - r_{13}\mathbf{q}_1 - r_{23}\mathbf{q}_2}{r_{33}} = \begin{pmatrix} -\frac{4}{5}, & \frac{2}{5}, & \frac{2}{5}, & -\frac{1}{5} \end{pmatrix}^T = \begin{bmatrix} \mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{22} & r_{23} \\ r_{33} \end{bmatrix}$$

 \triangleright 向量组 q_1 , q_2 , q_3 就是 A 的列空间的一组标准正交基.

定理(QR分解) 若 A 是一秩为 n 的 mxn 阶矩阵,则A 可以 分解为乘积 QR, 其中 Q 为列正交的mxn 阶矩阵, R 为对角线元素均为正的 nxn 阶上三角阵。

➤ 例中的 QR 分解为

的 QR 分解为
$$\begin{bmatrix}
1 & -2 & -1 \\
2 & 0 & 1 \\
2 & -4 & 2 \\
4 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
\frac{1}{5} & -\frac{2}{5} & -\frac{4}{5} \\
\frac{2}{5} & \frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & -\frac{4}{5} & \frac{2}{5} \\
\frac{4}{5} & \frac{2}{5} & -\frac{1}{5}
\end{bmatrix} \begin{bmatrix} 5 & -2 & 1 \\ 4 & -1 \\ 2 \end{bmatrix}$$

超定方程组的最小二乘解 给定一个 mxn 阶方程组 AX=b, 其中 m> n, 这类方程组通常是不相容的。

- ➤ 只能期望找到一个近似解 X', 使得AX' 尽可能接近 b
- \rightarrow 二者的残余误差 (residual)最小 $r(X') = \mathbf{b} AX'$
- ightharpoonup 即向量 b 和向量 AX' 最接近,距离最小 $||r(X')|| = ||\mathbf{b} AX'|| = \min$
- ▶ 使得这个距离最小化的X' 称为方程组的最小二乘解.
- \rightarrow 令 p= AX', p 就是 A 的列空间中最接近 b 的向量.
- ▶ 如何寻找X'? 要用到子空间的直和、正交等概念
- ▶ 结论: AX=b 的最小二乘解是 X'=R-1 QT b

例: 求方程组
$$\begin{bmatrix} 1 & -2 & -1 \\ 2 & 0 & 1 \\ 2 & -4 & 2 \\ 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -2 \end{bmatrix}$$

的最小二乘解.

解: 设 AX' = QR X' = b,则 $R X' = Q^T b = y$

$$\mathbf{y} = \mathbf{Q}^{T} \mathbf{b} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} & \frac{2}{5} & \frac{4}{5} \\ -\frac{2}{5} & \frac{1}{5} & -\frac{4}{5} & \frac{2}{5} \\ -\frac{4}{5} & \frac{2}{5} & \frac{2}{5} & -\frac{1}{5} \end{bmatrix} \begin{bmatrix} -1\\1\\1\\-2 \end{bmatrix} = \begin{bmatrix} -1\\-1\\2 \end{bmatrix} \qquad \begin{bmatrix} 5 & -2 & 1\\4 & -1\\2 \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} = \begin{bmatrix} -1\\-1\\2 \end{bmatrix}$$

> 回代求解 RX' = y, 得 $X' = \left(-\frac{2}{5} \ 0 \ 1\right)^{1}$

□ 标准正交基上的坐标

ightharpoonup 若 ightharpoonup₁, ightharpoonup₂, ..., ightharpoonup_n 是 n 维欧氏空间 V 中的一个标准正交基,任一向量 α ∈ V ,设

$$\alpha = x_1 \mathcal{E}_1 + x_2 \mathcal{E}_2 + \dots + x_n \mathcal{E}_n$$

标量投影

ightharpoonup 用 ε_i 与上式两边做内积,可得 $x_i = (\varepsilon_i, \alpha)$

$$\alpha = (\varepsilon_1, \alpha)\varepsilon_1 + (\varepsilon_2, \alpha)\varepsilon_2 + \dots + (\varepsilon_n, \alpha)\varepsilon_n$$

利用标准正交基的度量矩阵,两个向量的内积变得 非常简单

$$(\alpha, \beta) = X^T E Y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

$$(\alpha, \alpha) = x_1^2 + x_2^2 + \dots + x_n^2$$

 ∇ 定理 4.8: 设 ϵ_1 , ϵ_2 , ..., ϵ_n 是 n 维欧氏空间 ∇ 中的一个标准正交基,若:

$$[\eta_1, \eta_2, \dots, \eta_n] = [\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n] A$$

其中 $A=[a_{ij}]_{n\times n}$,则向量组 $\eta_1,\eta_2,...,\eta_n$ 是标准正交基的充要条件是 A 为一个正交阵.

▶ 即:同一欧氏空间中,两组标准正交基间的 过渡矩阵是正交阵。

§ 4.4 子空间的交、和、直和及正交

- 目的: 了解子空间相互之间的关系与运算
- 一、子空间的交与和

定义 4.13 设 W_1 , W_2 是线性空间 V 的两个子空间,则 W_1 , W_2 的交是

$$W_1 \cap W_2 = \left\{ \alpha \mid \alpha \in W_1, \quad \alpha \in W_2 \right\}$$

 W_1 , W_2 的<u>和</u>是

$$W_1 + W_2 = \left\{ \alpha + \beta \mid \alpha \in W_1, \quad \beta \in W_2 \right\}$$

例: 在线性空间 R² 中, 若

 W_1, W_2 分别表示 x轴与 y轴,则 $W_1 \cap W_2 = \{0\}$ $W_1 + W_2 = R^2$

定理 4.9 设 W_1 , W_2 是线性空间 V 的子空间,则 $W_1 \cap W_2$, $W_1 + W_2$ 都是 V 的子空间.

证明: 首先证明 $W_1 \cap W_2$ 是V的子空间

定理 4.1(判定子空间): W 是 V 的子集, 满足条件:

- (1) W 非空;
- (2) 如果 α , $\beta \in W$, 则 $\alpha + \beta \in W$;
- (3) 如果 $\alpha \in W$, $\lambda \in P$ 则 $\lambda \alpha \in W$;
- ► 因为 $0 \in W_1$, $0 \in W_2$, 故 $0 \in W_1 \cap W_2$, $W_1 \cap W_2$ 非空;

- 》设 α , $\beta \in W_1 \cap W_2$,则 α , $\beta \in W_1$, α , $\beta \in W_2$
- ► 因为 W_1 是<u>子空间</u>,所以 $\forall k \in F$ $\alpha + \beta \in W_1$, $k\alpha \in W_1$;
- ➤ 因为 W_2 是<u>子空间</u>,所以 $\forall k \in F$ $\alpha + \beta \in W_2$, $k\alpha \in W_1$;
- ▶ 于是α+ β ∈ W_1 ∩ W_2 , kα ∈ W_1 ∩ W_2 , 因此, W_1 ∩ W_2 是 V的子空间.

再证明 $W_1 + W_2$ 是V 的子空间,记: $W = W_1 + W_2$

由定义:
$$W = W_1 + W_2 = \left\{ \alpha_1 + \alpha_2 \mid \alpha_1 \in W_1, \quad \alpha_2 \in W_2 \right\}$$

- ▶ 因为 $0 \in W_1$, $0 \in W_2$, 故 $0 \in W_1 + W_2$ $\Rightarrow W$ 非空;
- \triangleright 设 α , $\beta \in W$, 则有

$$\alpha = \alpha_1 + \alpha_2, \quad \alpha_1 \in W_1, \alpha_2 \in W_2;$$

$$\beta = \beta_1 + \beta_2, \quad \beta_1 \in W_1, \beta_2 \in W_2;$$

 \triangleright 由于 W_1 , W_2 是 V 的子空间:

$$\alpha_1 + \beta_1 \in W_1, \quad \alpha_2 + \beta_2 \in W_2;$$

$$\alpha + \beta = (\alpha_1 + \alpha_2) + (\beta_1 + \beta_2) = (\alpha_1 + \beta_1) + (\alpha_2 + \beta_2)$$

$$\therefore \quad \alpha + \beta \in W_1 + W_2;$$

ightarrow 同理, $\forall k \in F$

$$k\alpha = k(\alpha_1 + \alpha_2) = k\alpha_1 + k\alpha_2 \in W_1 + W_2$$

 \triangleright 根据定理 4.1, $W_1 + W_2$ 是 V 的子空间.

例: 在线性空间 R3 中, 若

 R_{xy} 表示向量 $[x, y, 0]^T$ 的全体;

 R_{vz} 表示向量 $[0, y, z]^T$ 的全体;

 R_z 表示向量 $[0,0,z]^T$ 的全体;

则它们都是 R3 的子空间,并且:

$$R_{xy} \cap R_{yz} = [0, y, 0]^T$$
 的全体;

$$R_{xy} + R_{yz} = R^3$$
;

$$R_{xy} + R_z = R^3$$
;

$$R_{yz} + R_z = R_{yz}$$
;

$$R_{xy} \cap R_z = \{0\}; \qquad R_{yz} \cap R_z = R_z;$$

$$R_{yz} \cap R_z = R_z;$$

図 两子空间的并集未必为V的子空间

例: 在线性空间 R² 中, 若

 W_1, W_2 分别表示 x轴与y轴,则 W_1, W_2 分别是 R^2 的子空间;

但是,若向量 $\alpha_1 \in W_1, \alpha_2 \in W_2$, $\alpha_1 + \alpha_2 \notin W_1 \cup W_2$.

- \triangleright 所以, $W_1 \cup W_2$ 对数乘封闭,对加法不一定封闭.
- > 如何封闭 W₁∪ W₂? ✓ 生成子空间.
- $> W_1 \cup W_2$ 的生成子空间为 $W_1 + W_2$
- $> W_1 + W_2 是 V$ 中含 $W_1 \cup W_2$ 的<u>最小</u>子空间(量身定做)

❖ 布置习题 P 188:

30. 31. 34. 36.

②例:设 $\alpha_{1,}$ α_{2} ,..., α_{l} 与 β_{1} , β_{2} ,..., β_{s} 是 线性空间 V 中的两个向量组,则有

$$L(a_{1,} a_{2},..., a_{l}) + L(\beta_{1}, \beta_{2},..., \beta_{s})$$

$$= L(a_{1,} a_{2},..., a_{l}, \beta_{1}, \beta_{2},..., \beta_{s}).$$

证明: 设 $L(\alpha_1, \alpha_2, \dots, \alpha_l) = W_1 \subseteq V$ $L(\beta_1, \beta_2, \dots, \beta_s) = W_2 \subseteq V$ $L(\alpha_1, \alpha_2, \dots, \alpha_l, \beta_1, \beta_2, \dots, \beta_s) = W_3 \subseteq V$

ightharpoonup 对 $W_1 + W_2$ 中任一向量 $\eta = \alpha + \beta$,其中 $\alpha \in W_1$, $\beta \in W_2$,所以 $\alpha \setminus \beta$ 都属于 W_3 ,即

$$\eta = \alpha + \beta \in W_3$$

$$\therefore W = W_1 + W_2 \subseteq W_3;$$

► 另一方面W₃中的任一向量

$$\eta = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \dots + \lambda_l \alpha_l + \mu_1 \beta_1 + \mu_2 \beta_2 + \dots + \mu_s \beta_s$$

 $ill \qquad \alpha = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \dots + \lambda_l \alpha_l \in W_1$ $\beta = \mu_1 \beta_1 + \mu_2 \beta_2 + \dots + \mu_s \beta_s \in W_2$ $protection \qquad \eta = \alpha + \beta \in W_1 + W_2$ $W_3 \subseteq W_1 + W_2$

> 于是证明了

$$L(a_{1,} a_{2},..., a_{l}) + L(\beta_{1}, \beta_{2},..., \beta_{s})$$

$$= L(a_{1,} a_{2},..., a_{l}, \beta_{1}, \beta_{2},..., \beta_{s}).$$

② (升级为)性质: 设 $a_{1,}$ a_{2} ,..., a_{l} 与 β_{1} , β_{2} ,..., β_{s} 是线性空间中的 两个向量组,则有

$$L(a_{1,} a_{2},..., a_{l}) + L(\beta_{1}, \beta_{2},..., \beta_{s})$$

$$= L(a_{1,} a_{2},..., a_{l}, \beta_{1}, \beta_{2},..., \beta_{s}).$$

性质 设 W_1 , W_2 , W_3 是线性空间 V 的子空间,则它们满足交换律与结合律:

(1) 交換律: $W_1 \cap W_2 = W_2 \cap W_1$

$$W_1 + W_2 = W_2 + W_1$$

(2) 结合律: $(W_1 \cap W_2) \cap W_3 = W_1 \cap (W_2 \cap W_3)$

$$(W_1 + W_2) + W_3 = W_1 + (W_2 + W_3)$$

定理4.10(维数公式) 设 W_1 , W_2 是线性空间 V 的子空间, $\dim W_1 + \dim W_2 = \dim(W_1 + W_2) + \dim(W_1 \cap W_2)$.

例:在三维几何空间 V_3 中,设 W_1 是过原点O的一个平面, W_2 是过O的另一个平面,且它们相交于直线 L

- \triangleright 则: W_1 , W_2 , L都是 V_3 的子空间,并且 $W_1 \cap W_2 = L$
- V_3 中每个向量 α 可以表示成 W_1 中一个向量与 W_2 中一个向量的和,所以 $W_1+W_2=V_3$

$$W_1 + W_2 = \left\{ \alpha + \beta \mid \alpha \in W_1, \quad \beta \in W_2 \right\}$$

 \rightarrow 由于dim W_1 =dim W_2 =2,dimL=1,dim V_3 =3,因此有

$$\dim W_1 + \dim W_2 = \dim(W_1 + W_2) + \dim(W_1 \cap W_2)$$

定理4.10(维数公式) 设 W_1 , W_2 是线性空间 V 的子空间, $\dim W_1 + \dim W_2 = \dim(W_1 + W_2) + \dim(W_1 \cap W_2)$.

证明:设 W_1 的维数是 n_1 , W_2 的维数是 n_2 , $W_1 \cap W_2$ 的维数是m.

- \triangleright 取 W_1 ∩ W_2 的一个基 $\gamma_1,\gamma_2,\cdots,\gamma_m$
- > 将它扩充成 W_1 的一个基 $\gamma_1, \gamma_2, \dots, \gamma_m, \alpha_1, \alpha_2, \dots, \alpha_{n_1-m}$
- ▶ 同理可将它扩充成W₂的一个基

$$\gamma_1, \gamma_2, \cdots, \gamma_m, \beta_1, \beta_2, \cdots, \beta_{n_2-m}$$

因此 $W_1 = L(\gamma_1, \gamma_2, \dots, \gamma_m, \alpha_1, \alpha_2, \dots, \alpha_{n_1-m})$ $W_2 = L(\gamma_1, \gamma_2, \dots, \gamma_m, \beta_1, \beta_2, \dots, \beta_{n_2-m})$

 $W_1 \cap W_2$ 的基: $\gamma_1, \gamma_2, \dots, \gamma_m$

▶ 根据例2,我们有

$$W_1 + W_2 = L(\gamma_1, \gamma_2, \dots, \gamma_m, \alpha_1, \alpha_2, \dots, \alpha_{n_1 - m}, \beta_1, \beta_2, \dots, \beta_{n_2 - m})$$

> 为考察线性相关性,作线性组合

$$c_{1}\gamma_{1} + c_{2}\gamma_{2} + \dots + c_{m}\gamma_{m} + a_{1}\alpha_{1} + a_{2}\alpha_{2} + \dots + a_{n_{1}-m}\alpha_{n_{1}-m}$$

$$+ b_{1}\beta_{1} + b_{2}\beta_{2} + \dots + b_{n_{2}-m}\beta_{n_{2}-m} = 0$$

$$(4.1)$$

- $\Rightarrow \alpha = c_1 \gamma_1 + c_2 \gamma_2 + \dots + c_m \gamma_m + a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_{n_1 m} \alpha_{n_1 m}$ $= -(b_1 \beta_1 + b_2 \beta_2 + \dots + b_{n_2 m} \beta_{n_2 m})$ (4.2)
- 由 (4.2) 第一行知, $\alpha \in W_1$; 由第二行知 $\alpha \in W_2$; 所以 $\alpha \in W_1 \cap W_2$ \Rightarrow α 可经向量组 γ 线性表示 $\alpha = l_1\gamma_1 + l_2\gamma_2 + \dots + l_m\gamma_m$

$$\alpha = c_1 \gamma_1 + c_2 \gamma_2 + \dots + c_m \gamma_m + a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_{n_1 - m} \alpha_{n_1 - m}$$

$$= -(b_1 \beta_1 + b_2 \beta_2 + \dots + b_{n_2 - m} \beta_{n_2 - m})$$

$$(4.2)$$

$$l_1 \gamma_1 + l_2 \gamma_2 + \dots + l_m \gamma_m + b_1 \beta_1 + b_2 \beta_2 + \dots + b_{n_2 - m} \beta_{n_2 - m} = 0$$

$$\triangleright$$
 由于 $\gamma_1, \gamma_2, \dots, \gamma_m, \beta_1, \beta_2, \dots, \beta_{n_2-m}$ 是 W_2 的一个基

只可能:
$$l_1 = l_2 = \dots = l_m = b_1 = b_2 = \dots = b_{n_2 - m} = 0$$

▶ 由(4.2),有

$$c_1 \gamma_1 + c_2 \gamma_2 + \dots + c_m \gamma_m + a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_{n_1 - m} \alpha_{n_1 - m} = 0$$

 \triangleright 由于 $\gamma_1, \gamma_2, \dots, \gamma_m, \alpha_1, \alpha_2, \dots, \alpha_{n_1-m}$ 是 W_1 的一个基

$$c_1 = c_2 = \dots = c_m = a_1 = a_2 = \dots = a_{n_1 - m} = 0$$

$$c_{1}\gamma_{1} + c_{2}\gamma_{2} + \dots + c_{m}\gamma_{m} + a_{1}\alpha_{1} + a_{2}\alpha_{2} + \dots + a_{n_{1}-m}\alpha_{n_{1}-m}$$

$$+ b_{1}\beta_{1} + b_{2}\beta_{2} + \dots + b_{n_{2}-m}\beta_{n_{2}-m} = 0$$

$$(4.1)$$

▶ 因此,要(4.1)成立,只能是

$$c_1 = c_2 = \dots = c_m = a_1 = a_2 = \dots = a_{n_1 - m} = b_1 = b_2 = \dots = b_{n_2 - m} = 0$$

▶ 所以,向量组

$$\gamma_1, \gamma_2, \cdots, \gamma_m, \alpha_1, \alpha_2, \cdots, \alpha_{n_1-m}, \beta_1, \beta_2, \cdots, \beta_{n_2-m}$$
 线性无关。

▶ 由定理4.4(2): 生成子空间的维数等于生成元的秩

$$W_1 + W_2 = L(\gamma_1, \gamma_2, \dots, \gamma_m, \alpha_1, \alpha_2, \dots, \alpha_{n_1 - m}, \beta_1, \beta_2, \dots, \beta_{n_2 - m})$$

 \rightarrow 故 W_1+W_2 的维数是 $m+(n_1-m)+(n_2-m)=n_1+n_2-m$

 $\sqrt{\text{所以<u>维数公式</u>成立,即:}$ 设 W_1 , W_2 是线性空间 V 的子空间,则 $\dim(W_1+W_2)=\dim W_1+\dim W_2-\dim(W_1\cap W_2)$ 或 $\dim W_1+\dim W_2=\dim(W_1+W_2)+\dim(W_1\cap W_2)$.

河例: $W_1 = L(\alpha_1, \alpha_2)$, $W_2 = L(\beta_1, \beta_2)$, 其中 $\alpha_1 = (1, 2, 1, 0)^T$, $\alpha_2 = (-1, 1, 1, 1)^T$, $\beta_1 = (2, -1, 0, 1)^T$, $\beta_2 = (1, -1, 3, 7)^T$,

求 W_1 与 W_2 的和与交的基及维数.

解: 因 $W_1+W_2=L(\alpha_1,\alpha_2)+L(\beta_1,\beta_2)=L(\alpha_1,\alpha_2,\beta_1,\beta_2)$

》所以, W_1+W_2 的维数是向量组 α_1 , α_2 , β_1 , β_2 的极大线性无关组所含向量的个数;

将它们构成矩阵,做初等变换,得

$$\begin{bmatrix} 1 & -1 & 2 & 1 \\ 2 & 1 & -1 & -1 \\ 1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 7 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \cdots \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c}
R_2 - 2R_1 \\
\hline
R_3 - R_1
\end{array}
\cdots
\begin{bmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

- \triangleright 这表明 α_1 , α_2 , β_1 是 W_1+W_2 的一个基,故dim $(W_1+W_2)=3$.
- \triangleright 同时也知道, β_2 可经 α_1 , α_2 , β 线性表示,其形式为

$$\beta_2 = -\alpha_1 + 4\alpha_2 + 3\beta_1$$

- \triangleright 故: $3\beta_1 \beta_2 \in W_1 \cap W_2$.
- \triangleright 因为 α_1 , α_2 线性无关, β_1 , β_2 线性无关. 由维数公式易得

$$\dim(W_1 \cap W_2) = 2 + 2 - 3 = 1$$

故 α₁- 4 α₂=(5, -2, -3, -4) 是 W₁ ∩ W₂的一个基.

例: 设 $R^{2\times 2}$ 的两个子空间为 $(\alpha_1,\alpha_2,\alpha_3)\cdot P=(\gamma_1,\gamma_2,\gamma_3)$

$$(\alpha_1, \alpha_2, \alpha_3) \cdot P = (\gamma_1, \gamma_2, \gamma_3)$$

$$W_{1} = \left\{ A \mid A = \begin{pmatrix} x_{1} & x_{2} \\ x_{3} & x_{4} \end{pmatrix}, x_{1} - x_{2} + x_{3} - x_{4} = 0 \right\}$$

$$W_2 = L(B_1, B_2), \quad B_1 = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}, B_2 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

- (1) 将 W_1+W_2 表示为生成子空间 $x_1 = x_2 x_3 + x_4$

解: 先将 W_1 表示为生成子空间

方程 $x_1 - x_2 + x_3 - x_4 = 0$ 的基础解系为:

(2) 求
$$W_1+W_2$$
 的基和维数;
(3) 求 $W_1\cap W_2$ 的基和维数.
解: 先将 W_1 表示为生成子空间
$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix} = t_1 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + t_3 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$egin{aligned} egin{aligned} oldsymbol{lpha}_1 &= oldsymbol{\gamma}_1, & oldsymbol{lpha}_2 &= oldsymbol{\gamma}_1 + oldsymbol{\gamma}_2, \ oldsymbol{lpha}_3 &= oldsymbol{\gamma}_2 + oldsymbol{\gamma}_3 \end{aligned}$$

$$\alpha_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T, \alpha_2 = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}^T, \alpha_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^T$$

所以
$$W_1$$
 的一个基是: $A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$

$$W_{1} = \left\{ A \mid A = \begin{pmatrix} x_{1} & x_{2} \\ x_{3} & x_{4} \end{pmatrix}, x_{1} - x_{2} + x_{3} - x_{4} = 0 \right\}$$

$$W_2 = L(B_1, B_2), \quad B_1 = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}, B_2 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

(1) 将 W_1+W_2 表示为生成子空间.

$$W_1$$
的一个基是: $A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$

于是 : $W_1 = L(A_1, A_2, A_3)$, 由前页定理 $W_1 + W_2 = L(A_1, A_2, A_3, B_1, B_2) \Leftarrow$ 生成子空间

(2) 求 W_1+W_2 的基和维数.

思路: "全权代表" $\Rightarrow A_1, A_2, A_3, B_1, B_2$ 在标准基下的坐标为 $\alpha_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T, \alpha_2 = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}^T, \alpha_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^T$ $\beta_1 = \begin{bmatrix} 1 & 0 & 2 & 3 \end{bmatrix}^T, \beta_2 = \begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix}^T$

$$\alpha_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T, \alpha_2 = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}^T, \alpha_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^T$$

$$\beta_1 = \begin{bmatrix} 1 & 0 & 2 & 3 \end{bmatrix}^T, \beta_2 = \begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix}^T$$

 $\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2$ 的一个极大无关组为: $\alpha_1,\alpha_2,\alpha_3,\beta_2$

- \triangleright (2) W_1+W_2 的维数为 4, 基为 A_1,A_2,A_3,B_2
 - (3) 求 $W_1 \cap W_2$ 的基和维数.
 - ▶ 设矩阵 $A \in W_1 \cap W_2$,则 A 可写为

$$A = k_1 A_1 + k_2 A_2 + k_3 A_3 = l_1 B_1 + l_2 B_2$$

$$\mathbb{P}: \quad k_1 A_1 + k_2 A_2 + k_3 A_3 - l_1 B_1 - l_2 B_2 = 0$$

▶代入各个矩阵

$$A = k_1 A_1 + k_2 A_2 + k_3 A_3 = l_1 B_1 + l_2 B_2$$

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, B_1 = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}, B_2 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

$$k_1 A_1 + k_2 A_2 + k_3 A_3 - l_1 B_1 - l_2 B_2 = 0$$

$$\begin{cases} k_1 - l_1 - l_2 = 0 \\ k_1 + k_2 + l_2 = 0 \\ k_2 + k_3 - 2l_1 = 0 \\ k_3 - 3l_1 - l_2 = 0 \end{cases}$$
 方程组通解为:
$$\begin{pmatrix} k_1 \\ k_2 \\ k_3 \\ l_1 \\ l_2 \end{pmatrix} = k \begin{pmatrix} 1 \\ -1 \\ 3 \\ 1 \\ 0 \end{pmatrix}$$

$$A = l_1 B_1 + l_2 B_2 = k \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$$

 \triangleright (3) $W_1 \cap W_2$ 的维数为 1 ,基为 $\begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$