Einführung in die Computergrafik SS 2019 Übungsblatt 6

Aaron Winziers - 1176638

27. Mai 2019

Aufgabe 1

a)

(A, F, B, C, A, E, F, D, C, E)

b)

(F, A, B, C, D, E, A),(A, B, C, D, E)

Aufgabe 2

a)

Sei n die Anzahl der Kanten und $V_n=\{v_0,...,v_{n-1}\}$ die Menge der Knoten im Polygon und seien die Knoten gegen den Uhrzeigersinn durchnummeriert. Dann ist $A(n)=(n-2)*\pi$

Induktionsanfang Sei n = 3. Dann ist $A(n) = A(3) = (3-2) * \pi = \pi \checkmark$

Induktionsschritt A(n+1). Bilde ein Dreieck mit Knoten v_0, v_{n-2}, v_{n-1} und ein weiteres Polygon mit Knoten $v_0, ..., v_{n-2}$ (in Abbildung 1 an einem Beispiel mit n=5 verdeutlicht), dann ist

$$A(n+1) = A(n) + A(3)$$

= $(n-2) * \pi + \pi$

Abbildung 1: Beispiel

b)

Da jeder Außenwinkel durch $\pi-Innenwinkel$ berechnet werden kann und A(n) die Summe aller Innenwinkel berechnet:

Sei n die Anzahl der Kanten in einem Polygon

$$\begin{split} \Sigma(Aussenwinkel) &= (\pi*n) - A(n) \\ &= \pi n - (n-2)*\pi \\ &= \pi n - (\pi n - 2\pi) \\ &= 2\pi \end{split}$$