# Woche 17: 4. Juli 2024

Thema: Ordnungen und Äquivalenzen

10.1 Äquivalenzrelationen

## Relationen und deren Eigenschaften

Definition. Sei M eine Menge und k > 0.

1. Mit  $M^k$  bezeichnen wir die Menge aller k-Tupel von Elementen aus M. d.h.

$$M^k := \{(a_1, \ldots, a_k) : a_i \in M \text{ für alle } 1 \leq i \leq k\}.$$

Hinweis. Für k = 0 gibt es genau 2 **Leour** über  $M: \emptyset$  und  $\{()\}$ .

2. Eine k-stellige Relation R über M ist eine Teilmengemenge  $R \subseteq M^k$ .

## Relationen und deren Eigenschaften

Definition. Sei *M* eine Menge und k > 0.

1. Mit  $M^k$  bezeichnen wir die Menge aller k-Tupel von Elementen aus M. d.h.

$$M^k := \{(a_1, \ldots, a_k) : a_i \in M \text{ für alle } 1 \leq i \leq k\}.$$

*Hinweis.* Für k = 0 gibt es genau 2 Relationen über  $M: \emptyset$  und  $\{()\}$ .

2. Eine k-stellige Relation R über M ist eine Teilmengemenge  $R \subseteq M^k$ .

## Beispiele.

- Sei M = V(G) die Knotenmenge eines gerichteten Graphs. Dann ist  $E \subseteq M^2$  eine zweistellige Relation über M.
- Sei *M* die Menge aller Bahnhöfe, Zugnummern, Tage und Zeiten.

Dann können wir einen Bahnfahrplan als 4-stellige Relation über M auffassen, mit Einträgen der Form

$$F = \{ \text{ (HBf Berlin, ICE837, 9.7.2024, 9:00h), ...} \}.$$

Stephan Kreutzer

### Binäre Relationen

2-stellige Relationen werden oft als binäre Relationen bezeichnet.

## Spezielle Eigenschaften binärer Relationen.

Sei *M* eine Menge und  $R \subseteq M^2$ .

- R ist reflexiv, wenn  $(a, a) \in R$  für alle  $a \in M$ .
- R ist *irreflexiv*, wenn  $(a, a) \notin R$  für alle  $a \in M$ .
- R ist symmetrisch, wenn für alle  $a, b \in M$  gilt:
  - Wenn  $(a, b) \in R$ , dann auch  $(b, a) \in R$ .
- R ist antisymmetrisch, wenn für alle  $a \neq b \in M$  gilt: Wenn  $(a, b) \in R$ , dann  $(b, a) \notin R$ .
- R ist transitiv, wenn für alle  $a, b, c \in M$  gilt:
  - Wenn  $(a, b) \in R$  und  $(b, c) \in R$ , dann auch  $(a, c) \in R$ .









# Äquivalenzrelationen

Definition. Sei M eine Menge. Eine Äquivalenzrelation über M ist eine reflexive, transitive und symmetrische Relation  $R \subseteq M \times M$ .







#### reflexiv:

 $(a, a) \in R$  für alle  $a \in M$ .

#### symmetrisch:

Wenn  $(a, b) \in R$ , dann  $(b, a) \in R$ .

#### transitiv:

Wenn  $(a, b) \in R$  und  $(b, c) \in R$ , dann  $(a, c) \in R$ .

# Äquivalenzrelationen

Definition. Sei M eine Menge. Eine Äquivalenzrelation über M ist eine reflexive, transitive und symmetrische Relation  $R \subseteq M \times M$ .

## Beispiel.

Für n > 1 ist die Relation

$$R := \{(a, b) : a \equiv b \pmod{n}\}$$

eine Äguivalenzrelation über Z. Denn:

- reflexiv.  $a \equiv a \pmod{n}$  gilt für alle  $a \in \mathbb{Z}$ .
- symmetrisch.

Wenn  $a \equiv b \pmod{n}$ , dann auch  $b \equiv a \pmod{n}$ .

• transitiv. Wenn  $a \equiv b \pmod{n}$  und  $b \equiv c \pmod{n}$ , dann gilt auch  $a \equiv c \pmod{n}$ .

#### reflexiv

 $(a, a) \in R$  für alle  $a \in M$ .

#### symmetrisch:

Wenn  $(a, b) \in R$ , dann  $(b, a) \in R$ .

#### transitiv

Wenn  $(a, b) \in R$  und  $(b, c) \in R$ , dann  $(a, c) \in R$ .

Sei G ein gerichteter Graph und  $R \subseteq V(G) \times V(G)$  definiert durch

$$R = \left\{ (u, v) : \begin{array}{l} \text{es gibt in } G \text{ einen Weg von } u \text{ nach } v \\ \text{und einen Weg von } v \text{ nach } u \end{array} \right\}.$$

Behauptung. R ist eine Äquivalenzrelation.



#### reflexiv

 $(a, a) \in R$  für alle  $a \in M$ .

#### symmetrisch:

Wenn  $(a, b) \in R$ , dann  $(b, a) \in R$ .

#### transitiv

Wenn  $(a, b) \in R$  und  $(b, c) \in R$ , dann  $(a, c) \in R$ .

#### Definition.

Sei G ein gerichteter Graph und  $R \subseteq V(G) \times V(G)$  definiert durch

$$R = \left\{ (u, v) : \begin{array}{l} \text{es gibt in } G \text{ einen Weg von } u \text{ nach } v \\ \text{und einen Weg von } v \text{ nach } u \end{array} \right\}.$$

Behauptung. R ist eine Äquivalenzrelation.

• Offensichtlich gilt  $(u, u) \in R$  für alle  $u \in V(G)$ .

#### reflexiv

 $(a, a) \in R$  für alle  $a \in M$ .

symmetrisch:

Wenn  $(a, b) \in R$ , dann  $(b, a) \in R$ .

transitiv

Wenn  $(a, b) \in R$  und  $(b, c) \in R$ . dann  $(a, c) \in R$ .

Definition.

Sei G ein gerichteter Graph und  $R \subseteq V(G) \times V(G)$  definiert durch

$$R = \left\{ (u, v) : \begin{array}{l} \text{es gibt in } G \text{ einen Weg von } u \text{ nach } v \\ \text{und einen Weg von } v \text{ nach } u \end{array} \right\}.$$

Behauptung. R ist eine Äquivalenzrelation.

- Offensichtlich gilt  $(u, u) \in R$  für alle  $u \in V(G)$ .
- Aus der Symmetrie der Definition von R folgt: Wenn  $(u, v) \in R$ , dann  $(v, u) \in R$ .

#### reflexiv

 $(a, a) \in R$  für alle  $a \in M$ .

#### symmetrisch:

Wenn  $(a, b) \in R$ , dann  $(b, a) \in R$ .

#### transitiv

Wenn  $(a, b) \in R$  und  $(b, c) \in R$ . dann  $(a, c) \in R$ .

#### Definition.

Sei G ein gerichteter Graph und  $R \subseteq V(G) \times V(G)$  definiert durch

$$R = \left\{ (u, v) : \begin{array}{l} \text{es gibt in } G \text{ einen Weg von } u \text{ nach } v \\ \text{und einen Weg von } v \text{ nach } u \end{array} \right\}.$$

Behauptung. R ist eine Äguivalenzrelation.

- Offensichtlich gilt  $(u, u) \in R$  für alle  $u \in V(G)$ .
- Aus der Symmetrie der Definition von R folgt: Wenn  $(u, v) \in R$ , dann  $(v, u) \in R$ .
- Seien  $(u, v) \in R$  und  $(v, w) \in R$ . Zu zeigen:  $(u, w) \in R$ . Nach Definition gibt es Wege

$$P = u e_1 \dots e_{l-1} v \text{ und } P' = v e'_1 s'_2 e'_2 \dots e'_{l'-1} w.$$

Dann ist  $P \cdot P' := u \underbrace{e_1 \dots e_{l-1}}_{v} v e'_1 \dots e'_{l'-1} w$  ein Weg von u nach w.

#### reflexiv

 $(a, a) \in R$  für alle  $a \in M$ .

symmetrisch:

Wenn  $(a, b) \in R$ , dann  $(b, a) \in R$ .

transitiv

Wenn  $(a, b) \in R$  und  $(b, c) \in R$ . dann  $(a, c) \in R$ .

Definition.

Sei G ein gerichteter Graph und  $R \subseteq V(G) \times V(G)$  definiert durch

$$R = \left\{ (u, v) : \begin{array}{l} \text{es gibt in } G \text{ einen Weg von } u \text{ nach } v \\ \text{und einen Weg von } v \text{ nach } u \end{array} \right\}.$$

Behauptung. R ist eine Äquivalenzrelation.

- Offensichtlich gilt  $(u, u) \in R$  für alle  $u \in V(G)$ .
- Aus der Symmetrie der Definition von R folgt: Wenn  $(u, v) \in R$ , dann  $(v, u) \in R$ .
- Seien (u, v) ∈ R und (v, w) ∈ R. Zu zeigen: (u, w) ∈ R.
  Nach Definition gibt es Wege

$$P = u e_1 \dots e_{l-1} v \text{ und } P' = v e'_1 s'_2 e'_2 \dots e'_{l'-1} w.$$

Dann ist  $P \cdot P' := u e_1 \dots e_{l-1} v e'_1 \dots e'_{l'-1} w$  ein Weg von u nach w.

Analog konstruieren wir aus Wegen Q von w nach v und Q' von v nach u einen Weg Q'' von w nach u. Daraus folgt  $(u, w) \in R$ .

reflexiv:

 $(a, a) \in R$  für alle  $a \in M$ .

symmetrisch:

Wenn  $(a, b) \in R$ , dann  $(b, a) \in R$ .

transitiv:

Wenn  $(a, b) \in R$  und  $(b, c) \in R$ , dann  $(a, c) \in R$ .

Definition.

## Äquivalenzrelationen

Definition. Sei R eine Äquivalenzrelation über einer Menge M. Für  $u \in M$  definieren wir die Äquivalenzklasse von u bzgl. R als

$$[u]_R := \{v \in M : (u, v) \in R\}.$$

Stephan Kreutzer Diskrete Strukturen 7 / 35 Sommersemester 2024

# Äquivalenzrelationen

Definition. Sei R eine Äquivalenzrelation über einer Menge M. Für  $u \in M$  definieren wir die Äquivalenzklasse von u bzgl. R als

$$[u]_R := \{ v \in M : (u, v) \in R \}.$$

Beispiel. Sei G ein gerichteter Graph und  $R \subseteq V(G) \times V(G)$  definiert durch

$$R = \left\{ (u, v) : \begin{array}{l} \text{es gibt in } G \text{ einen Weg von } u \text{ nach } v \\ \text{und einen Weg von } v \text{ nach } u \end{array} \right\}.$$

## Beobachtung.

Für  $u \in V(G)$  entspricht Äquivalenzklasse  $[u]_R$  genau der Menge der Knoten der starken Zusammenhangskomponente von u in G.



## Äauivalenzklassen

Definition. Sei R eine Äquivalenzrelation über einer Menge M. Für  $u \in M$  definieren wir die Äquivalenzklasse von u bzgl. R als

$$[u]_R := \{v \in M : (u, v) \in R\}.$$

Lemma. Sei R eine Äquivalenzrelation über M.

Dann gilt  $u \in [u]_R$  für alle  $u \in M$ .

#### reflexiv

 $(a, a) \in R$  für alle  $a \in M$ .

#### symmetrisch:

Wenn  $(a, b) \in R$ , dann  $(b, a) \in R$ .

#### transitiv

Wenn  $(a, b) \in R$  und  $(b, c) \in R$ . dann  $(a, c) \in R$ .

#### Definition.

# Äquivalenzklassen

Definition. Sei R eine Äquivalenzrelation über einer Menge M. Für  $u \in M$  definieren wir die Äquivalenzklasse von u bzgl. R als

$$[u]_R := \{v \in M : (u, v) \in R\}.$$

Lemma. Sei R eine Äquivalenzrelation über M.

Dann gilt  $u \in [u]_R$  für alle  $u \in M$ .

Beweis. Da R reflexiv ist, gilt  $(a, a) \in R$  für alle  $a \in M$ .

Insbesondere gilt also  $(u, u) \in R$  und somit  $u \in [u]_R$ .

#### reflexiv

 $(a, a) \in R$  für alle  $a \in M$ .

#### symmetrisch:

Wenn  $(a, b) \in R$ , dann  $(b, a) \in R$ .

#### transitiv

Wenn  $(a, b) \in R$  und  $(b, c) \in R$ . dann  $(a, c) \in R$ .

#### Definition.

## Äquivalenzklassen

Definition. Sei R eine Äquivalenzrelation über einer Menge M. Für  $u \in M$  definieren wir die Äquivalenzklasse von u bzgl. R als

$$[u]_R := \{ v \in M : (u, v) \in R \}.$$

Lemma. Sei R eine Äquivalenzrelation über M und  $u, v \in M$ . Wenn  $(u, v) \in R$ , dann ist  $[u]_R = [v]_R$ .

#### reflexiv

 $(a, a) \in R$  für alle  $a \in M$ .

#### symmetrisch:

Wenn  $(a, b) \in R$ , dann  $(b, a) \in R$ .

#### transitiv

Wenn  $(a, b) \in R$  und  $(b, c) \in R$ . dann  $(a, c) \in R$ .

#### Definition.

# Äauivalenzklassen

Definition. Sei R eine Äquivalenzrelation über einer Menge M. Für  $u \in M$  definieren wir die Äquivalenzklasse von u bzgl. R als

$$[u]_R := \{ v \in M : (u, v) \in R \}.$$

Lemma. Sei R eine Äquivalenzrelation über M und  $u, v \in M$ . Wenn  $(u, v) \in R$ , dann ist  $[u]_R = [v]_R$ .

Beweis. Wir zeigen  $[u]_R \subseteq [v]_R$ . Der andere Fall ist symmetrisch.

Da  $(u, v) \in R$  und R symmetrisch, folgt  $(v, u) \in R$  und somit  $u \in [v]_R$ . Sei nun  $w \in [u]_R$  und somit  $(u, w) \in R$ . Da auch  $(v, u) \in R$  und Rtransitiv, folgt  $(v, w) \in R$  und somit  $w \in [v]_R$ .

#### reflexiv

 $(a, a) \in R$  für alle  $a \in M$ .

#### symmetrisch:

Wenn  $(a, b) \in R$ , dann  $(b, a) \in R$ .

#### transitiv

Wenn  $(a, b) \in R$  und  $(b, c) \in R$ . dann  $(a, c) \in R$ .

#### Definition.

## Quotientenstruktur

Äquivalenzklassen. Sei R eine Äquivalenzrelation über einer Menge M.

Für  $u \in M$  definieren wir die Äquivalenzklasse von u bzgl. R als  $[u]_R := \{v \in M : (u, v) \in R\}.$ 

Quotientenstruktur. Sei M eine Menge und  $E \subseteq M \times M$  eine Relation.

Sei  $R \subseteq M \times M$  eine Äquivalenzrelation über M. Wir definieren

$$M_{|R} := \{[u]_R : u \in M\}.$$

und eine Relation  $E_{|R} \subseteq M_{|R} \times M_{|R}$  über  $M_{|R}$  wie folgt:

$$E_{|R} := \{([u]_R, [v]_R) : (u, v) \in E\}.$$

Man nennt  $(M_{|R}, E_{|R})$  den Quotient von (M, E) bzgl. R.



## Komponenten-DAG als Quotient

Beispiel. Sei G ein gerichteter Graph und  $R \subseteq V(G) \times V(G)$  definiert durch

$$R = \left\{ (u, v) : \begin{array}{l} \text{es gibt in } G \text{ einen Weg von } u \text{ nach } v \\ \text{und einen Weg von } v \text{ nach } u \end{array} \right\}.$$

Die Äquivalenzklassen  $[u]_R$  entsprechen genau den Knotenmengen der starken Zusammenhangskomponenten von G.

Der Quotient  $(V(G)_{|R}, E(G)_{|R})$  ist der Komponenten-DAG von G.



Quotientenstruktur.

*M* Menge,  $E \subseteq M^2$  Relation.  $R \subset M^2$  Äquivalenzrelation.

#### Definiere

 $M_{|R}:=\{[u]_R:u\in M\}$ 

## und

$$E_{|R} := \{([u]_R, [v]_R) : (u, v) \in E\}.$$

Quotient  $(M_{|R}, E_{|R})$  von (M, E) bzgl. R.

## Weiteres Beispiel: Automaten

Beispiel. Sei  $\mathcal{A} := (Q, \Sigma, q_0, \delta, F)$  ein endlicher Automat.

Wir definieren eine Relation  $\sim \subseteq Q \times Q$  mit  $q \sim q'$  gdw.

für alle Wörter  $w \in \Sigma^*$  gilt:

es gibt einen mit w beschrifteten Weg von q zu einem  $q_f \in F$ gdw. es gibt einen mit w beschrifteten Weg von q' zu einem  $q'_f \in F$ .

Beobachtung. Die Relation ∼ ist eine Äquivalenzrelation.



## Quotienten von Automaten

Beispiel. Sei  $\mathcal{A} := (Q, \Sigma, q_0, \delta, F)$  ein endlicher Automat.

Wir definieren eine Relation  $\sim \subseteq Q \times Q$  mit  $q \sim q'$  gdw.

für alle Wörter  $w \in \Sigma^*$  gilt:

es gibt einen mit w beschrifteten Weg von q zu einem  $q_f \in F$  gdw. es gibt einen mit w beschrifteten Weg von q' zu einem  $q_f' \in F$ .

Beobachtung. Die Relation  $\sim$  ist eine Äquivalenzrelation.

Quotient. Betrachten wir den Automaten als Graph, können wir den Quotienten  $\mathcal{A}_{|\sim}=(\mathcal{Q}_{|\sim},(\mathcal{E}_a)_{|\sim},(\mathcal{E}_b)_{|\sim})$  bilden.

Hier:  $E_a$  sind die mit a und  $E_b$  die mit b beschrifteten Kanten.

Fragen. Entspricht  $\mathcal{A}_{\mid \sim}$  einem Automat? Wenn ja, sind  $\mathcal{A}_{\mid \sim}$  und  $\mathcal{A}$  äquivalent?

[9,



# Quotienten von Automaten

Beispiel. Sei  $\mathcal{A}:=(Q,\Sigma,q_0,\delta,F)$  ein endlicher Automat. Wir definieren eine Relation  $\sim\subseteq Q\times Q$  mit  $q\sim q'$  gdw,  $q_0$ 

für alle Wörter  $w \in \Sigma^*$  gilt:

es gibt einen mit w beschrifteten Weg von q zu einem  $q_f \in F$ gdw. es gibt einen mit w beschrifteten Weg von q' zu einem  $q'_f \in F$ .

Beobachtung. Die Relation ~ ist eine Äquivalenzrelation.

Quotient. Betrachten wir den Automaten als Graph, können wir den Quotienten  $A_{|_{\sim}} = (Q_{|_{\sim}}, (E_a)_{|_{\sim}}, (E_b)_{|_{\sim}})$  bilden.

Hier:  $E_a$  sind die mit a und  $E_b$  die mit b beschrifteten Kanten.

Fragen. Entspricht  $A_{\mid \sim}$  einem Automat?

Wenn ja, sind  $\mathcal{A}_{\mid \sim}$  und  $\mathcal{A}$  äquivalent?

Muss ∼ nicht irgendwie zur Beschriftung der Kanten passen?

Transitionen ähneln doch eher Abbildungen von  $Q \rightarrow Q$  als nur einfachen Kanten?



## Beispiel: Automaten über einem unären Alphabet

Sei  $\Sigma := \{a\}$  und sei  $\mathcal{A}$  folgender Automat.

A akzeptiert  $w \in \Sigma^*$ , wenn die Zahl a's in w durch 3 teilbar ist.

Beobachtung. Man kann also den Buchstaben a auch als Abbildung

$$a:Q o Q$$
 auffassen:  $a(q_0)=q_1$   $a(q_1)=q_2$   $a(q_2)=q_0$ .

D.h. der Automat entspricht dem Paar (Q, a) bestehend aus Q und einer unären Funktion a.

Quotienten. Sei  $\sim$  eine Äguivalenzrelation auf Q.

Wir können nur dann sinnvoll den Quotienten bilden, wenn a alle Elemente einer Äquivalenzklasse auf Elemente derselben anderen Klasse abbildet



# 10.2 Ordnungen

## Partielle Ordnungen

## Definition. Sei *M* eine Menge.

- (i) Eine strikte (partielle) Ordnung auf M ist eine irreflexive, antisymmetrische und transitive Relation R ⊆ M × M.
   D.h. es gilt
  - $(a, a) \notin R$ ,
  - wenn  $(a, b) \in R$  und  $(b, a) \in R$ , dann a = b und
  - wenn  $(a, b) \in R$  und  $(b, c) \in R$  dann auch  $(a, c) \in R$ .
- (ii) Ist *R* reflexiv, antisymmetrisch und transitiv, so heißt *R* partielle Ordnung.
- (iii) Gilt zusätzlich, dass für alle  $u \neq v \in M$  entweder  $(u, v) \in R$  oder  $(v, u) \in R$ , so nennt man R *linear*.

## Partielle Ordnungen

## Definition. Sei *M* eine Menge.

- (i) Eine strikte (partielle) Ordnung auf M ist eine irreflexive, antisymmetrische und transitive Relation R ⊆ M × M.
   D.h. es gilt
  - $(a, a) \notin R$ ,
  - wenn  $(a, b) \in R$  und  $(b, a) \in R$ , dann a = b und
  - wenn  $(a, b) \in R$  und  $(b, c) \in R$  dann auch  $(a, c) \in R$ .
- (ii) Ist *R* reflexiv, antisymmetrisch und transitiv, so heißt *R* partielle Ordnung.
- (iii) Gilt zusätzlich, dass für alle  $u \neq v \in M$  entweder  $(u, v) \in R$  oder  $(v, u) \in R$ , so nennt man R *linear*.

Beispiel. Sei M eine Menge und  $\mathcal{P}(M) := \{S : S \subseteq M\}.$ 

Dann ist  $\subseteq$  eine partielle Ordnung auf  $\mathcal{P}(M)$ .

Beispiel. Sei  $M := \{1, 2, 3\}$ .  $\{1, 2, 3\}$   $\{1, 2\} \quad \{1, 3\} \quad \{2, 3\}$   $\{1\} \quad \{2\} \quad \{3\}$ 

## Partielle Ordnungen

Definition. Sei *M* eine Menge.

- (i) Eine strikte (partielle) Ordnung auf M ist eine irreflexive, antisymmetrische und transitive Relation  $R \subseteq M \times M$ .
- (ii) Ist *R* reflexiv, antisymmetrisch und transitiv, so heißt *R* partielle Ordnung.
- (iii) Gilt zusätzlich, dass für alle  $u \neq v \in M$  entweder  $(u, v) \in R$  oder  $(v, u) \in R$ , so nennt man R *linear*.

Definition. Eine partiell geordnete Menge (poset) ist ein Paar  $(M, \sqsubseteq)$  bestehend aus einer Menge M und einer partiellen Ordnung  $\sqsubseteq$  auf M.

Beispiel. Sei M eine Menge und  $\mathcal{P}(M) := \{S : S \subseteq M\}$ .

Dann ist  $\subseteq$  eine partielle Ordnung auf  $\mathcal{P}(M)$ .

Also ist  $(\mathcal{P}(M), \subseteq)$  ein poset.

Beispiel. Sei  $M := \{1, 2, 3\}$ .  $\{1, 2, 3\}$   $\{1, 2\} \quad \{1, 3\} \quad \{2, 3\}$   $\{1\} \quad \{2\} \quad \{3\}$ 

## Beispiel: gerichtete, azyklische Graphen

Sei G ein azyklischer, gerichteter Graph.

Wir definieren eine Relation über V(G) durch

 $u \sqsubseteq v$  wenn es einen gerichteten Pfad in G von u nach v gibt.

Beispiel. In der durch den folgenden Graph definierten Ordnung  $\sqsubseteq$  gilt z.B.:  $1 \sqsubseteq 2 \sqsubseteq 4 \sqsubseteq \ldots \sqsubseteq 11$ .



## Gerichtete, azyklische Graphen und partielle Ordnungen

Definition. Sei M eine Menge und  $\sqsubseteq$  eine partielle Ordnung auf M.

Für  $v \in M$  heißt ein Element  $u \in M$  ein

- *Vorgänger* von v, wenn  $u \sqsubseteq v$  und es kein  $w \in M \setminus \{u, v\}$  gibt, mit  $u \sqsubseteq w \sqsubseteq v$ .
- Nachfolger von v, wenn  $v \sqsubseteq u$  und es kein  $w \in M \setminus \{u, v\}$  gibt, mit  $v \sqsubseteq w \sqsubseteq u$ .

## Hasse Diagramm.



# Gerichtete, azyklische Graphen und partielle Ordnungen

Definition. Sei M eine Menge und  $\sqsubseteq$  eine partielle Ordnung auf M.

Für  $v \in M$  heißt ein Element  $u \in M$  ein

- *Vorgänger* von v, wenn  $u \sqsubseteq v$  und es kein  $w \in M \setminus \{u, v\}$  gibt, mit  $u \sqsubseteq w \sqsubseteq v$ .
- Nachfolger von v, wenn  $v \sqsubseteq u$  und es kein  $w \in M \setminus \{u, v\}$  gibt, mit  $v \sqsubseteq w \sqsubseteq u$ .

## Hasse Diagramme.

Eine partielle Ordnung kann durch ein *Hasse Diagramm* dargestellt werden.

Dabei zeichnen wir für jedes Element  $x \in M$  eine Kante zu jedem Nachfolger von x.

Zusätzlich wird das Diagramm so gezeichnet, dass wenn  $x \subseteq Y$ , dann wird v weiter oben als x gezeichnet.

#### Hasse Diagramm.



## Gerichtete, azyklische Graphen und partielle Ordnungen

Definition. Sei M eine Menge und  $\sqsubseteq$  eine partielle Ordnung auf M.

Für  $v \in M$  heißt ein Element  $u \in M$  ein

- *Vorgänger* von v, wenn  $u \sqsubseteq v$  und es kein  $w \in M \setminus \{u, v\}$  gibt, mit  $u \sqsubseteq w \sqsubseteq v$ .
- Nachfolger von v, wenn  $v \sqsubseteq u$  und es kein  $w \in M \setminus \{u, v\}$  gibt, mit  $v \sqsubseteq w \sqsubseteq u$ .

Bemerkung. Wenn M endlich ist, können wir  $(M, \sqsubseteq)$  durch einen DAG mit Knotenmenge M repräsentieren, in dem wir Kanten von jedem Knoten zu allen seinen Nachfolgern einfügen.

Umgekehrt definiert jeder DAG eine partielle Ordnung.



Hasse Diagramm.



## Beispiel: gerichtete, azyklische Graphen

Sei G ein azyklischer, gerichteter Graph.

Wir definieren eine Relation über V(G) durch

 $u \sqsubseteq v$  wenn es einen gerichteten Pfad in G von u nach v gibt.



Stephan Kreutzer

## Beispiel: gerichtete, azyklische Graphen

Sei *G* ein azyklischer, gerichteter Graph.

Wir definieren eine Relation über V(G) durch

 $u \sqsubseteq v$  wenn es einen gerichteten Pfad in G von u nach v gibt.

Definition. Eine topologische Ordnung auf G ist eine lineare Ordnung  $\subseteq$  auf V(G) die  $\subseteq$  respektiert, d.h. wenn  $u \subseteq v$  dann auch u < v.

Beispiel. Eine mögliche topologische Ordnung des folgenden Graphen *G* ist 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11.



# Linearisierung partieller Ordnungen

Definition. Sei M eine Menge und  $\sqsubseteq$  eine partielle Ordnung über M.

Eine Linearisierung von  $\sqsubseteq$  ist eine lineare Ordnung  $\leq$  auf M, so dass für alle  $a, b \in M$  gilt: wenn  $a \sqsubseteq b$ , dann  $a \leq b$ .



## Linearisierung partieller Ordnungen

Definition. Sei M eine Menge und  $\sqsubseteq$  eine partielle Ordnung über M.

Eine Linearisierung von  $\sqsubseteq$  ist eine lineare Ordnung  $\leq$  auf M, so dass für alle  $a, b \in M$  gilt: wenn  $a \sqsubseteq b$ , dann  $a \leq b$ .

Beispiel. Sei G ein gerichteter, azyklischer Graph.

Die transitive Hülle von E(G) ist die Relation

 $TC(G) := \{(u, v) : \text{es gibt einen Weg in } G \text{ von } u \text{ nach } v\}.$ 

Wenn G azyklisch ist, dann ist TC(G) eine partielle Ordnung.

Eine topologische Ordnung von G ist eine Linearisierung von TC(G).



# **₡**.3 Verbände

#### Maximale und Minimale Elemente

Definition. Sei M eine Menge und  $\sqsubseteq$  eine partielle Ordnung auf M. Ein Element  $x \in M$  heißt

• maximales Element, wenn es kein  $y \neq x \in M$  mit  $x \sqsubseteq y$  gibt.

Definition. Sei M eine Menge und  $\sqsubseteq$  eine partielle Ordnung auf M. Seien  $x, y \in M$ . Ein Element  $a \in M$  heißt

- obere Schranke für x und y, wenn  $x \sqsubseteq a$  und  $y \sqsubseteq a$ .
- kleinste obere Schranke oder Supremum von x und y, geschrieben x ∨ y, wenn a eine obere Schranke für x und y ist und a ⊆ b für jede obere Schranke b für x und y.



#### Maximale und Minimale Elemente

Definition. Sei M eine Menge und  $\sqsubseteq$  eine partielle Ordnung auf M. Ein Element  $x \in M$  heißt

• maximales Element, wenn es kein  $y \neq x \in M$  mit  $x \sqsubseteq y$  gibt.

Definition. Sei M eine Menge und  $\sqsubseteq$  eine partielle Ordnung auf M. Seien  $x, y \in M$ . Ein Element  $a \in M$  heißt

- obere Schranke für x und y, wenn  $x \sqsubseteq a$  und  $y \sqsubseteq a$ .
- kleinste obere Schranke oder Supremum von x und y, geschrieben x ∨ y, wenn a eine obere Schranke für x und y ist und a ⊆ b für jede obere Schranke b für x und y.

#### Bemerkungen.

- Es muss nicht für alle  $x, y \in M$  obere Schranken geben.
- $x, y \in M$  können obere Schranken haben aber kein Supremum.
- Wenn *M* endlich ist, gibt es immer maximale Elemente.

Beispiel.



Beispiel.



un 3 Hala Seis.

#### Maximale und Minimale Elemente

Definition. Sei M eine Menge und  $\sqsubseteq$  eine partielle Ordnung auf M. Ein Element  $x \in M$  heißt

• minimales Element, wenn es kein  $y \neq x \in M$  mit  $y \sqsubseteq x$  gibt.

Definition. Sei M eine Menge und  $\sqsubseteq$  eine partielle Ordnung auf M. Seien  $x, y \in M$ . Ein Element  $a \in M$  heißt

- untere Schranke für x und y, wenn  $a \sqsubseteq x$  und  $a \sqsubseteq y$ .

#### Beispiel.



### Beispiel.



#### Verbände

Definition. Eine partiell geordnete Menge  $(M, \sqsubseteq)$  heißt *Verband*, wenn es für alle  $x, y \in M$  sowohl ein Supremum als auch ein Infimum gibt.

Beispiel. Für jede Menge M ist  $(\mathcal{P}(M), \subseteq)$  ein Verband, der sogenannte *Teilmengenverband*.



#### Ketten und Antiketten

Definition. Sei M eine Menge und  $\sqsubseteq$  eine partielle Ordnung auf M.

- 1. Eine *Kette* in  $(M, \sqsubseteq)$  ist eine Menge  $S \subseteq M$  so dass für alle  $a, b \in S$  gilt:  $a \sqsubseteq b$  oder  $b \sqsubseteq a$ .
- 2. Eine Antikette in  $(M, \sqsubseteq)$  ist eine Menge  $S \subseteq M$  so dass für alle  $a \neq b \in S$  weder  $a \sqsubseteq b$  noch  $b \sqsubseteq a$  gilt.

Die Länge einer Kette bzw. Antikette S ist die Zahl |S| de Flemente in S

Beispiel. Sei  $M := \{1, 2, 3\}$ .  $\{1, 2, 3\}$   $\{1, 2, 3\}$   $\{1, 2, 3\}$   $\{1, 2, 3\}$   $\{1, 2, 3\}$   $\{2, 3\}$   $\{2, 3\}$ 

# Beispiel: DAGs

Beispiel. Sei G = (V, E) ein gerichteter, azyklischer Graph und  $\sqsubseteq = TC(E)$ .

Die Ketten bzgl.  $(V, \Box)$  sind genau die Mengen von Knoten, die gemeinsam auf einem Pfad in G vorkommen.

Die Antiketten von G sind also Mengen von Knoten, so dass kein Knoten von einem anderen in G erreichbar ist.



# Überdeckungen durch Ketten und Antiketten

Definition. Sei  $(M, \square)$  ein poset.

Eine Zerlegung oder Überdeckung von  $(M, \sqsubseteq)$  in Ketten (Antiketten) ist eine Partition von *M* in disjunkte Ketten (Antiketten).

### Beispiel.



# Überdeckungen durch Ketten und Antiketten

Definition. Sei  $(M, \square)$  ein poset.

Eine Zerlegung oder Überdeckung von  $(M, \sqsubseteq)$  in Ketten (Antiketten) ist eine Partition von M in disjunkte Ketten (Antiketten).

#### Beispiel.



Frage. Was ist die minimale Zahl von Ketten oder Antiketten, in die  $(M, \sqsubseteq)$  zerlegt werden kann?

# Überdeckungen durch Ketten und Antiketten

Definition. Sei  $(M, \square)$  ein poset.

Eine Zerlegung oder Überdeckung von  $(M, \sqsubseteq)$  in Ketten (Antiketten) ist eine Partition von M in disjunkte Ketten (Antiketten).

#### Beispiel.



Frage. Was ist die minimale Zahl von Ketten oder Antiketten, in die  $(M, \sqsubseteq)$  zerlegt werden kann?

Klar: wenn  $S \subseteq M$  eine Antikette der Länge r ist, kann  $(M, \square)$ nicht mit weniger als r Ketten überdeckt werden.

Satz von Dilworth. Sei  $(M, \sqsubseteq)$  ein poset wobei M endlich ist.

Die maximale Länge r einer Antikette in  $(M, \sqsubseteq)$  ist gleich der minimalen Größe k einer Überdeckung von  $(M, \sqsubseteq)$  durch Ketten.



Stephan Kreutzer

Satz von Dilworth. Sei  $(M, \sqsubseteq)$  ein poset wobei M endlich ist.

Die maximale Länge r einer Antikette in  $(M, \sqsubseteq)$  ist gleich der minimalen Größe k einer Überdeckung von  $(M, \sqsubseteq)$  durch Ketten.

#### Beweis.

Wir haben schon gesehen, dass  $k \geq r$ .

Denn sei A eine Antikette in  $(M, \sqsubseteq)$  der Größe r.

Da in einer Kette K je zwei Elemente vergleichbar sind, kann keine Kette mehr als ein Element aus A enthalten.

Also kann  $(M, \sqsubseteq)$  nicht mit weniger als r = |A| Ketten überdeckt werden.

Es bleibt also noch die andere Richtung zu zeigen.



Satz von Dilworth. Sei  $(M, \sqsubseteq)$  ein poset wobei M endlich ist.

Die maximale Länge r einer Antikette in  $(M, \sqsubseteq)$  ist gleich der minimalen Größe k einer Überdeckung von  $(M, \sqsubseteq)$  durch Ketten.

#### Beweis.

Wir haben schon gesehen, dass  $k \geq r$ .

Denn sei A eine Antikette in  $(M, \sqsubseteq)$  der Größe r.

Da in einer Kette K je zwei Elemente vergleichbar sind, kann keine Kette mehr als ein Element aus A enthalten.

Also kann  $(M, \sqsubseteq)$  nicht mit weniger als r = |A| Ketten überdeckt werden.

Es bleibt also noch die andere Richtung zu zeigen.

Lemma. Sei  $(M, \sqsubseteq)$  ein poset wobei M endlich ist. Sei r die maximale Länge einer Kette  $(M, \sqsubseteq)$ . Dann kann M in r Antiketten zerlegt werden.



Lemma. Sei  $(M, \sqsubseteq)$  ein poset wobei M endlich ist. Sei r die maximale Länge einer Kette in  $(M, \sqsubseteq)$ . Dann kann M in r einer Letten zerlegt werden. Anti

Brueis: Industrian is ben /A1.

(IA) /M/=0 /

(IS) /M1 70.

Folia: Polices Sein a # 6 EM mil o E 6, donn ist M eine Anti lette der leigs r=/M/pro M Loun auch V Volter { Eas: a cM ] is be aucht warden.

Folizi eser atLEM a.d. 956. Wille m, mt CM s.d. m & mt and un minimales Elevent van 5 int was invaled a 4 C Down ist ( Sm, m+) ene Keble.



C= {ar, n+) Satz von Dilworth. Sei  $(M, \sqsubseteq)$  ein poset wobei M endlich ist.

Die maximale Länge r einer Antikette in  $(M, \square)$  ist gleich der minimalen Größe einer Überdeckung von  $(M, \sqsubseteq)$  durch Ketten.

Behochie MIC.

a) this hat Berie Antilette des Coio for. Do 1 MICI =/14/ gibtes noch (IV) distribute Com Coi R'creme MIC researche Down i benecht C, Com. Co. M. C, Ca... C. M. C. C. C.

5) MIC hot Anti Solto A con laine T. M+= {xGM: es ex. a cA mila [x]

M= = { kem , es ex, aca wit x sel

(i) H AM = A 100 m cm V un+ cm TV 150 /M// 144 21M/

Noch (IV) Os. Vielon Ci ... Ex ciss. and Pannist Co. Co =: Co Vebe

4 Succede. und Cf. .. Cf die Mt cibroch come { Ca : a BA} is beread/h

(iii) Jose Welk in M Sonn new & 1 Blows A

enthalter. D.h. fi elle a El ar

Ca & E Ca ... Ca?

Ca GE Ci ... Ci > n.d. oc Conc.

- Satz von Dilworth. Sei  $(M, \sqsubseteq)$  ein poset wobei M endlich ist. Die maximale Länge r einer Antikette in  $(M, \sqsubseteq)$  ist gleich der minimalen Größe einer Überdeckung von (M, □) durch Ketten.
- Anwendungen. Aus dem Satz von Dilworth kann man leicht weitere interessante Aussagen folgern.
- Satz von Hall. Ein bipartiter Graph  $G := (A \dot{\cup} B, E)$  mit |A| = |B|enthält ein perfektes matching genau dann, wenn |N(S)| > |S| für alle  $S \subseteq A$ .

Satz. Ein bipartiter Graph  $G := (A \cup B, E)$  mit |A| = |B| enthält ein perfektes matching genau dann, wenn |N(S)| > |S| für alle  $S \subseteq A$ .

Beweis. Sei  $M = A \cup B$  und  $\square$  folgende partielle Ordnung auf M:

$$a \sqsubseteq b \text{ gdw. } \{a, b\} \in E(G).$$

Alle anderen Elemente sind unvergleichbar.

Beobachtung. A ist eine Antikette in  $(M, \sqsubseteq)$ .



Satz. Ein bipartiter Graph  $G := (A \dot{\cup} B, E)$  mit |A| = |B| enthält ein perfektes matching genau dann, wenn  $|N(S)| \geq |S|$  für alle  $S \subseteq A$ .

Beweis. Sei  $M = A \cup B$  und  $\sqsubseteq$  folgende partielle Ordnung auf M:

$$a \sqsubseteq b \text{ gdw. } \{a, b\} \in E(G).$$

Alle anderen Elemente sind unvergleichbar.

Beobachtung. A ist eine Antikette in  $(M, \sqsubseteq)$ .

Behauptung. Es gibt keine größere Antikette.

Beweis. Sei I eine Antikette in  $(M, \sqsubseteq)$ . Definiere  $I_B = I \cap B$  und  $I_A = I \cap A$ .

Betrachte nun  $N = \{ \mathbf{k} \in \mathbf{k} : \text{ es ex. } \mathbf{a} \in \mathbf{k} \text{ mit } \{a, b\} \in E(G) \}.$ 

Nach Konstruktion sind A und N disjunkt.

Nach Voraussetzung gilt  $|N| \ge |I_{\not k}|$ . Also

$$|I| = |I_A| + |I_B| \le |I_A| + |N| \le |A|$$

da  $I_A$  und N disjunkt sind.



Satz. Ein bipartiter Graph  $G := (A \cup B, E)$  mit |A| = |B| enthält ein perfektes matching genau dann, wenn |N(S)| > |S| für alle  $S \subseteq A$ .

Beweis. Sei  $M = A \cup B$  und  $\square$  folgende partielle Ordnung auf M:

$$a \sqsubseteq b \text{ gdw. } \{a, b\} \in E(G).$$

Alle anderen Elemente sind unvergleichbar.

Beobachtung. A ist eine Antikette in  $(M, \sqsubseteq)$ .

Behauptung. Es gibt keine größere Antikette.



Satz. Ein bipartiter Graph  $G := (A \cup B, E)$  mit |A| = |B| enthält ein perfektes matching genau dann, wenn |N(S)| > |S| für alle  $S \subseteq A$ .

Beweis. Sei  $M = A \cup B$  und  $\square$  folgende partielle Ordnung auf M:

$$a \sqsubseteq b \text{ gdw. } \{a, b\} \in E(G).$$

Alle anderen Elemente sind unvergleichbar.

Beobachtung. A ist eine Antikette in  $(M, \sqsubseteq)$ .

Behauptung. Es gibt keine größere Antikette.

Nach dem Satz von Dilworth kann  $(M, \sqsubseteq)$  also durch |A| Ketten  $K_1, \ldots, K_{|A|}$  überdeckt werden.

Jede Kette ist aber eine Kante in G, d.h.  $K_1, \ldots, K_{|A|}$  entspricht einem perfekten matching.



#### Ein Lemma von Erdős und Szekeres

Lemma. Seien  $r, s \in \mathbb{N}$  und sei  $n \geq (r-1) \cdot (s-1) + 1$ .

Sei  $(a_1, \ldots, a_n)$  eine Folge paarweise verschiedener reeller Zahlen.

Dann gibt es

- $1 \le i_1 < i_2 < \ldots < i_r \le n \text{ mit } a_{i_1} < a_{i_2} < \ldots < a_{i_r} \text{ oder}$
- $1 \le i_1 < i_2 < \ldots < i_s \le n \text{ mit } a_{i_1} > a_{i_2} > \ldots > a_{i_s}$ .

#### Ein Lemma von Erdős und Szekeres

Lemma. Seien  $r, s \in \mathbb{N}$  und sei  $n \ge (r-1) \cdot (s-1) + 1$ .

Sei  $(a_1, \ldots, a_n)$  eine Folge paarweise verschiedener reeller Zahlen.

Dann gibt es

- $1 \le i_1 < i_2 < \ldots < i_r \le n \text{ mit } a_{i_1} < a_{i_2} < \ldots < a_{i_r} \text{ oder}$
- $1 \le i_1 < i_2 < \ldots < i_s \le n \text{ mit } a_{i_1} > a_{i_2} > \ldots > a_{i_s}$ .

Stephan Kreutzer