

planetmath.org

Math for the people, by the people.

derivation language

Canonical name DerivationLanguage
Date of creation 2013-03-22 18:58:15
Last modified on 2013-03-22 18:58:15

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 13

Author CWoo (3771)
Entry type Definition
Classification msc 68Q42
Classification msc 68Q45

Synonym Szilard language

Background

Let $G = (\Sigma, N, P, \sigma)$ be a formal grammar. A pair (W_1, W_2) of words over Σ is said to correspond to the production $p \to q$ if

$$W_1 = u_1 p v_1 \qquad \text{and} \qquad W_2 = u_2 q v_2$$

for some words u_i, v_j over Σ . We also say that (W_1, W_2) is a derivation step, and write $W_1 \to W_2$.

Recall that a derivation in G is a finite sequence of words

$$W_1, W_2, \ldots, W_n$$

over Σ such that $W_i \Rightarrow W_{i+1}$, for i = 1, ..., n-1. The derivation is also written

$$W_1 \Rightarrow W_2 \Rightarrow \cdots \Rightarrow W_n$$
.

The derivation above has n-1 steps. Zero-step derivations are also permitted. These are just words over Σ .

The reflexive transitive closure of \Rightarrow is \Rightarrow^* . Thus, $V \Rightarrow^* W$ means that there is a derivation starting with V and ending with W. There may be more than one derivation from V to W.

If we consider each production as a "letter" in the alphabet P, then the above derivation can be represented by a "word" over P in the following manner: the "word" is formed by taking concatenations of the "letters", where concatenations correspond to successive applications of productions in P:

$$[p_1 \to q_1][p_2 \to q_2] \cdots [p_{n-1} \to q_{n-1}].$$

Derivation language is thus a certain collection of derivation words, formally defined below.

Definitions

Treating productions as "letters" is really nothing more than labeling each production with some symbol. Formally, call a *labeling* of an alphabet P a surjection $f: F \to P$, where F is some alphabet. For any $p \in P$, a label for p is an element $x \in F$ such that f(x) = p. We will only be interested in injective labeling (hence a bijection) from now on.

Definition. Suppose we are given a labeling f of the set P of productions in the grammar G. Given a derivation $D: W_1 \Rightarrow W_2 \Rightarrow \ldots \Rightarrow W_n$, a derivation word U for D is defined inductively as follows:

- 1. if n=1, then the empty word $U:=\lambda$,
- 2. if n=2, then $U:=x\in F$ is a label for a production that $W_1\Rightarrow W_2$ corresponds to,
- 3. if n > 2, then $U := U_1U_2$, where
 - U_1 is a derivation word for the derivation $W_1 \Rightarrow \cdots \Rightarrow W_i$,
 - U_2 is a derivation word for the derivation $W_i \Rightarrow \cdots \Rightarrow W_n$.

If U is a derivation word for derivation D, let us abbreviate this by writing f[U] = D. Note that we are not applying the labeling f to U, it is merely a notational convenience.

A derivation word is sometimes called a *control word*, for it defines or controls whether and how a word may be derived from another word. Note that any $W_1 \Rightarrow^* W_2$ may correspond to several distinct derivations, and hence several distinct derivation words. Also, the same derivation word may correspond to distinct derivations.

For example, let G be a grammar over two symbols (and) with productions $\sigma \to \lambda$, $\sigma \to (\sigma)$, and $\sigma \to \sigma\sigma$ (G generates the parenthesis language **Paren**₁) Label the productions as a, b, c respectively. Then the derivation $\sigma \Rightarrow^* (()())$ correspond to derivation words bcbbaa and bcbaba. Notice that $\sigma\sigma \Rightarrow (\sigma)\sigma$ and $\sigma\sigma \Rightarrow \sigma(\sigma)$ both correspond to the derivation word b.

Definition. The derivation language of a grammar $G = (\Sigma, N, P, \sigma)$ is the set of all derivation words for derivations on words generated by G. In other words, consider the labeling $f : F \to P$. The derivation language of G is the set

$$\{U \in F^* \mid f[U] \text{ is a derivation of the form } \sigma \Rightarrow^* u \text{ for some } u \in N^*\}.$$

The derivation language of G is also called the *Szilard language* of G, named after its inventor, and is denoted by Sz(G).

For example, let G be the grammar over a the letter a, with productions given by $\sigma \to \sigma$, $\sigma \to a$. If the productions are labeled b, c, then $Sz(G) = \{b^n c \mid n \geq 0\}$. Note that $L(G) = \{a\}$. Likewise, if G' is the grammar over a, with productions $\sigma \to A\sigma$, $A \to \lambda$, and $\sigma \to a$, labeled p, q, r respectively, then $L(G') = \{a\}$. However, Sz(G') is quite different from Sz(G):

$$Sz(G') = \{u \in F^* \mid u = vrw, \text{ where } v \in \{p, q\}^*, w \in \{q\}^*, \\ \#_u(p) = \#_u(q) \text{ and } \#_x(p) \ge \#_x(q) \text{ for all } x \le u\}$$

where

- $F = \{p, q, r\},\$
- $\#_u(r)$ means the number of occurrences of r in word u,
- $v \le u$ means that v is a prefix of u.

Remarks. Let G be a formal grammar.

- Some properties of Sz(G):
 - 1. Sz(G) is always context-sensitive.
 - 2. If G is regular, so is Sz(G).
 - 3. if G is context-free, Sz(G) may not be; in fact, for any context-free language L, there is a context-free grammar G such that L = L(G) but Sz(G) is not context-free.
 - 4. There exists a context-free language L such that Sz(G) is not context-free for any grammar G generating L.
- However, if one considers the subset $Sz_L(G)$ of Sz(G) consisting of all derivation words corresponding to leftmost derivations, then $Sz_L(G)$ is context-free.
- It is an open question that, given any (context-sensitive) language L, whether there is a grammar G such that L = Sz(G).

References

- [1] A. Salomaa, Formal Languages, Academic Press, New York (1973).
- [2] G. E. Révész, *Introduction to Formal Languages*, Dover Publications (1991).