C2-UA.160: calc 2

Practice Exam

Generated on August 28, 2025

Total: 100 points

- 1. Find the volume of the solid generated by revolving the region bounded by the curves $y = x^2$ and y = 4 about the x-axis. Use the disk/washer method.
 - 2. Evaluate the integral "+($x^3 + 2x^2 5x + 1$) / ($x^2 + 1$) dx using polynomial long division and partial fraction decomposition.
- 3. Determine the convergence or divergence of the series :2 $\tilde{10}$ Fò $\tilde{10}$ ' $\tilde{10}$ ' $\tilde{10}$ ' $\tilde{10}$
- 4. Find the arc length of the curve $y = (x^3/6) + (1/(2x))$ from x = 1 to x = 2.
- 5. Find the area of the surface generated by revolving the curve y = "(x), 1 "d x "d 4, about the x-axis.
- 6. A particle moves along a line so that its velocity at time t is given by $v(t) = t^2 4t + 3$. Find the total distance traveled by the particle from t = 0 to t = 4.
- 7. Find the Taylor series for $f(x) = e^{-(-x^2)}$ centered at x = 0. Write out the first four non-zero terms.
- 8. Evaluate the improper integral "+(0 to ") $x*e^{-(-x^2)} dx$.
- 9. Use the method of cylindrical shells to find the volume of the solid generated by rotating the region bounded by $y = x^3$ and y = x about the y-axis.
 - 10. Find the interval of convergence for the power series :2 \dag ãÓ Fò !â' $[(x-2) \cdot / (n^2 + 1)]$. Include a check for convergence at the endpoints.