Elektronika III. kolokvij

Osnovni pojmovi o pojačalima.

Pojačala su linearni elektronički sklopovi namijenjeni pojačavanju električkih signala. Električki signal koji se pojačava može biti bilo strujni bilo naponski.Generator ulaznog signala priključen je na ulazne stezaljke, a na izlazne stezaljke priključeno je trošilo kojemu se predaje pojačani signal, sl.1.1.

Sl.1.1. Pojačalo električnih signala

Veličine U_{ul} i I_{ul} su efektivne vrijednosti ulaznog napona i ulazne struje, dok su veličine U_{iz} i I_{iz} efektivne vrijednosti izlaznog napona i izlazne struje.

Definicija pojačanja i računanje pojačanja u decibelima.

Pojačanje snage definirano je omjerom snage izmjeničnog signala predanog trošilu i snage signala predanog ulaznom krugu pojačala:

$$G = \frac{P_{iz}}{P_{vi}} \tag{15}$$

Pojačanje snage obično se izražava u decibelima [dB], na sljedeći način: $G[dB] = 10 \log \frac{P_{iz}}{P_{ul}}$

Npr. za P_{II}= 1 mW i P_{Iz}= 1W, pojačanje snage iznosi 1000 puta, odnosno 30 dB.

Ako se prema slici 1.6. snaga P_{iz} i P_{ul} izrazi pomoću odgovarajućih napona dobiva se:

$$P_{iz} = \frac{U_{iz}^{2}}{R_{n}} \quad ; \quad P_{ul} = \frac{U_{ul}^{2}}{R_{ul}}$$
 (17)

$$G = 20\log \frac{U_{iz}}{U_{ul}} + 10\log \frac{R_{ul}}{R_{p}} \quad [dB]$$
 (18)

Sl.1.6. Pojačanje snage pojačala

Ako je ispunjen uvjet R_{ul}=R_p tada je pojačanje snage u decibelima jednako:

$$G = 20\log\frac{U_{iz}}{U_{ul}} \quad [dB]$$
 (19)

Isto tako može se pisati da je:

$$P_{iz} = I_{iz}^2 \cdot R_p$$
; $P_{ul} = I_{ul}^2 \cdot R_{ui}$

$$G = 20 \log \frac{I_{iz}}{I_{ul}} + 10 \log \frac{R_p}{R_{ul}} \quad [dB]$$
 (21)

Ako je ispunjen uvjet $R_{ul}=R_p$ tada je pojačanje snage u decibelima jednako: $G=20\log\frac{I_{iz}}{I_{vl}}$ $\left[dB\right]$

Pojačanje napona i struje također se izražava u decibelima:

$$A_{v} = 20 \log \frac{U_{iz}}{U_{ul}} \quad [dB] \qquad A_{i} = 20 \log \frac{I_{iz}}{I_{ul}} \quad [dB]$$

Osnovne vrste pojačala

Strujno pojačalo

Idealno stujno pojačalo može se definirati sklopom na slici 1.2. Na ulaz pojačala priključen je strujni generator koji pojačalu daje strujni signal I_ui.

U idealnom strujnom pojačalu u izlaznom krugu nalazi se idealni strujni izvor koji daje struju: $I_{iz}=A_iI_{ui}=A_iI_g$ Faktor proporcionalnosti A_i je faktor strujnog pojačanja pojačala.

Za razliku od ulaznog izmjeničnog napona koji je jednak nuli, izlazni izmjenični napon idealnog strujnog pojačala ima vrijednost određenu izrazom:

$$U_{iz}=I_{iz}R_n=A_iI_{ul}R_n=A_iI_gR_n$$

Budući da je snaga ulaznog signala jednaka nuli, pojačanje snage signala (definirano omjerom izlazne i ulazne snage) je beskonačno veliko.

$$G = \frac{P_{iz}}{P_{i}} \tag{3}$$

Naravno,uz P_{ul}=0 konačnu snagu na izlazu pojačala dobiva se na račun snage iz istosmjernog izvora priključenog na pojačalo.

Naponsko pojačalo

Idealno naponsko pojačalo definirano je sklopom na slici 1.3. Ulazni izmjenični naponski signal U_{ul} generira u svakom trenutku na izlaznim stezaljkama pojačala napon U_{ir} .

Izlazni napon određen je relacijom:

$$U_{iz} = A_v U_{ul} = A_v U_g \tag{4}$$

Faktor proporcionalnosti A_v je faktor naponskog pojačanja. Idealno naponsko pojačalo ima ulazni otpor beskonačno velik, a izlazni otpor jednak nuli. Ulazna struja I_{ul} je prema tome jednaka nuli, a izlazna prema slici 1.3 iznosi:

$$I_{iz} = \frac{U_{iz}}{R_p} = \frac{A_{\nu}U_{ul}}{R_p} = \frac{A_{\nu}U_g}{R_p}$$
 (5)

Ulazna snaga izmjeničnog signala jednaka je nuli, a izlazna je:

$$P_{iz} = U_{iz}I_{iz} = \frac{(A_{\nu}U_{ul})^2}{R_{n}} = \frac{(A_{\nu}U_{g})^2}{R_{n}}$$
 (6)

Strminsko pojačalo

U određenim vrstama pojačala ulazni naponski signal generira izlazni strujni signal pa je prijenosna funkcija jednaka omjeru izlazne struje i ulaznog napona. Ova vrsta pojačala naziva se strminsko pojačalo jer promjena ulaznog napona izaziva promjenu izlazne struje što se povezuje s pojmom strmine, npr. kod unipolarnih tranzistora.

Idealno strminsko pojačalo definirano je na slici 1.4.

Na ulaz pojačala priključen je naponski generator elektromotorne sile U_g koji daje pojačalu ulazni naponski signal U_{ul} . Budući da je ulazni otpor pojačala beskonačno velik, ulazni napon U_{ul} jednak je elektromotornoj sili U_g . Izlazna struja je:

$$I_{iz} = G_m U_{ul} = G_m U_g \tag{7}$$

Faktor proporcionalnosti je strmina pojačala G_m koja je jednaka omjeru struje i napona pa se najčešće izražava u mA/V.

Napon na trošilu priključenom na izlazu strminskog pojačala iznosi: $U_{iz} = I_{iz}R_p = G_mU_{ul}R_p = G_mU_{el}R_p$

Idealno strminsko pojačalo ima naponsko pojačanje:

$$A_{v} = \frac{U_{iz}}{U_{vl}} = G_{m}R_{p} \tag{9}$$

Snaga predana trošilu je:

$$P_{iz} = U_{iz} I_{iz} = (G_m U_{ul})^2 R_n$$
 (10)

Otporno pojačalo

Idealno otporno pojačalo definirano je sklopom na slici 1.5. Na ulaz pojačalu dovodi se strujni signal iz strujnog generatora. Budući da je ulazni otpor pojačala jednak nuli,ulazna struja pojačala I_{ul} jednaka je je struji generatora I_e.

Izlazni napon proporcionalan je ulaznoj struji:

$$U_{iz} = R_m I_{id} = R_m I_g \tag{11}$$

Faktor proporcionalnosti R_m je prijenosni otpor i izražava se u omima $[\Omega]$.

Izlazna struja iznosi:
$$I_{iz} = \frac{U_{iz}}{R_n} = \frac{R_m I_{ul}}{R_n}$$

Strujno pojačanje je:
$$A_i = rac{I_{iz}}{I_{ul}} = rac{R_m}{R_p}$$

Snaga predana trošilu je:
$$P_{\rm iz} = U_{\rm iz} I_{\rm iz} = \frac{\left(R_{\rm m} I_{\rm ul}\right)^2}{R_{\rm p}}$$

Model bipolarnog tranzistora u statičkim uvjetima rada

Istosmjerni model (DC (direct current) model)

Bipolarni tranzistor se u istosmjernim uvjetima može nadomjestiti odgovarajućim modelom, ovisno o tome nalazi li se tranzistor u aktivnom području rada ili u području zasićenja. Za aktivno područje nadomjesni sklop sadrži jedan naponski izvor (U_{Beakt}) i jedan strujni izvor (β_{IB}), slika 1, dok za područje zasićenja nadomjesni sklop sadrži dva naponska izvora (U_{BEzas} i U_{CEzas}), slika 2. Tipične vrijednosti za silicijske tranzistore su: U_{BEzas} =0,8 V i U_{CEzas} =0,3 V.

Aktivno područje rada:

Slika 1. Model bipolarnog tranzistora u aktivnom području rada

Područje zasićenja:

Slika 2. Model bipolarnog tranzistora u području zasićenja

Statička radna točka (definicija, određivanje statičke radne točke, stabilizacija)

Definicija

Iz obitelji izlaznih karakteristika izdvoji se jedna koja je definirana strujom baze tranzistora I_B . Zatim se u istom koordinatnom sustavu ucrta radni pravac, a u sjecištu tog radnog pravca i zadane karakteristike nalazi se statička radna točka (Q) koja je definirana naponom (U_{CEO}) i strujom (I_{CO}).

$$U_{CC} = I_C \cdot R_C + U_{CE}$$
 ... jednadžba radnog pravca

Statička radna točka općenito je radan točka definirana naponom (U_{CEQ}) i strujom (I_{CQ}), a određuje se sjecištem statičkog radnog pravca i jedne izlazne karakteristike.

Određivanje statičke radne točke

Transformacija sklopa prema Theveninovom teoremu:

Djelitelj napona u krugu baze R₁-R₂ može se nadomjestiti izvorom i otporom:

Iz (1) i (2) slijedi:

$$I_{C} = \frac{\beta(U_{BB} - U_{BE}) + I_{CEO}(R_{B} + R_{E})}{R_{B} + (1 + \beta)R_{E}}$$
(3)

Ako je $(1+\beta)R_E >> R_B$ te ako je $\beta >> 1$, tada je:

$$I_C \approx \frac{U_{BB} - U_{BE}}{R_F} + \frac{I_{CE0}}{1 + \beta} \left(1 + \frac{R_B}{R_F} \right) \tag{4}$$

Budući da je kod silicijskih tranzistora $I_{CEO} <<$ izraz (4) može se svesti na jednostavan oblik:

$$I_{CQ} \approx \frac{U_{BB} - U_{BEQ}}{R_F},\tag{5}$$

gdje je U_{BEO} napon U_{BE} u radnoj točki Q.

Prema izrazu (5) vidi se da struja I_{CQ} (struja kolektora u radnoj točki Q) ne ovisi o parametrima tranzistora koji su funkcija temperature, već samo o vrijednosti otpornika R_E .

Stabilizacija

Tranzistor u spoju zajedničkog emitera raspolaže značajnim strujnim pojačanjem ako mu je statička radna točka smještena u normalnom aktivnom području. Stoga je vrlo bitno pravilno odrediti položaj statičke radne točke tranzistora. Da bi se izbjeglo pomicanje statičke radne točke prema području zasićenja koje bi dovelo do izobličenja ulaznog izmjeničnog signala, potrebno je izvršiti temperaturnu stabilizaciju statičke radne točke. Jedan od načina stabilizacije postiže se na način da se otpor u bazi R_B zamijeni djeliteljem R₁-R₂, a u krug emitera spoji se otpor R_E. U dinamičkim uvjetima rada otpornik R_E ima određeni negativni utjecaj na pojačanje sklopa pa se ovakva stabilizacija radne točke naziva stabilizacijom pomoću emiterske degeneracije.

Dinamička svojstva u spoju zajedničkog emitera. Hibridni model

Dinamičku anlizu moguće je provesti analitičkim postupkom ako se tranzistor zamjeni nadomjesnim sklopom za *mali signal* i *srednje frekvencije*. Mali signali ili linearni režim rada su termini koji se odnose na izmjenične komponente napona i struje. Amplitude promjena tih veličina su malene u usporedbi s istosmjernim vrijednostima u statičkoj radnoj točki pa se nelinearna karakteristika tranzistora u tom malom segmentu može linearizirati, a sam tranzistor nadomjestiti linearnim aktivnim četveropolom. Najčešće je to hibridni nadomjesni sklop koji je za spoj zajedničkog emitera prikazan na slici 2.1.

Sl.2.1. Spoi zajedničkog emitera

SI2.2. Hibridni nadomjesn isklop bipolarnog tranzistora za spojzajedničkog emitera

Termin zajednički emiter znači da je emiter uzemljen, odnosno on je zajednička elektroda ulaznog dijela (krug baza - emiter) i izlaznog dijela (krug kolektor - emiter) tranzistora za izmjenični signal. Hibridni nadomjesni sklop opisan je hibridnim jednadžbama:

$$U_{be} = h_{ie}I_b + h_{re}U_{ce}$$
 (1)

$$I_c = h_{fe}I_b + h_{oe}U_{ce}$$
 (2)

gdje su h_{ie} , h_{re} , h_{fe} , h_{oe} hibridni parametri tranzistora u spoju zajedničkog emitera. Hibridni ili [h] parametri definirani su prema jednadžbama (1) i (2) kao:

$$h_{ie} = rac{U_{be}}{I_{\perp}} | U_{ce} = 0$$
 ulazni otpor uz kratko spojeni izlaz

$$h_{re} = rac{U_{be}}{U_{\cdots}} ig| I_b = 0$$
 faktor naponskog povratnog djelovanja uz otvoreni ulaz

$$h_f = \frac{I_c}{I_c} | U_{ce} = 0$$
 faktor strujnog pojačanja uz kratko spojeni izlaz

$$h_{oe} = rac{I_c}{U_{ce}}ig|I_b = 0$$
 izlazna vodljivost uz otvoreni ulaz

Na temelju provedene analize za pojačalo u spoju zajedničkog emitera može se zaključiti:

- U području relativno niskih frekvencija strujno pojačanje je, uz realno trošilo, negativan broj veći od jedinice, osim kod vrlo visokih vrijednosti otpora trošila. Ako je ispunjen uvjet h_{oe}R_p<0,1, tada je prema relaciji (7), strujno pojačanje A_i=-h_{fe}, dakle neovisno o otporu trošila.
- Naponsko pojačanje je, uz realno trošilo, negativan broj veći od jedinice, osim kod sasvim malih vrijednosti otpora priključenog trošila. S porastom otpora trošila iznos naponskog pojačanja raste i kada R_p→∞ prema relaciji

$$A_{v} = -\frac{h_{fe}}{h_{te} \left(h_{oe} + \frac{1}{R_{p}}\right) - h_{re}h_{fe}}$$
 (15)

Teži prema vrijednosti:

$$A_{v} = -\frac{h_{fe}}{h_{ie}h_{oe} - h_{re}h_{fe}}$$
 (16)

3. Ulazni otpor prema relaciji (10) ima vrijednost h_{ie} kod malih iznosa otpora trošila R_p. S porastom otpora trošila ulazni otpor opada, težeći prema iznosu

$$R_{ul} = h_{ie} - \frac{h_{re}h_{fe}}{h_{..}} \tag{17}$$

kada $R_n \rightarrow \infty$.

4. Izlazni otpor pojačala u spoju zajedničkog emitera prema relaciji (14) opada s porastom unutrašnjeg otpora generatora signala.

Idealizirani hibridni model

Ako je ispunjen uvjet $h_{oe}R_p<0,1$, što znači da uz tipični iznos $h_{oe}<10^{-4}$ S otpor trošila mora biti $R_p<1$ k Ω . Tada će u nadomjesnom sklopu pojačala na slici 2.5. praktički sva struja h_{fe} koju daje strujni izvor u izlaznom krugu, teći kroz trošilo, pa strujno pojačanje neće ovisiti o njegovu otporu .U tom slučaju vodljivost h_{oe} može se zanemariti u odnosu prema vodljivosti priključenog trošila. S druge strane, moguća su pojednostavnjenja i u ulaznom krugu pojačala. Ako je na primjer $h_{re}=10^{-4}$ i $A_v=-100$, tada je:

$$h_{re}U_{ce} = h_{re}A_{v}U_{be} = 10^{-4} \cdot (-100) \cdot U_{be} = -0.01U_{be}$$
 (18)

a to znači da je u ulaznom krugu nadomjesnog sklopa pojačala elektromotornu silu $h_{re}U_{ce}$ moguće zanemariti u odnosu prema ulaznom naponu U_{be} . U tom slučaju se ulazni krug tranzistora može dovoljno točno aproksimirati otporom h_{le} . U navedenim uvjetima hibridni nadomjesni sklop tranzistora u spoju zajedničkog emitera poprima oblik prikazan na slici 2.7.

SI.2.7. Idealiziani model tranzistora za spoj zajedničkog emitera

Dinamička svojstva u spoju zajedničke baze

Praktična izvedba pojačala u spoju zajedničke baze prikazana je na slici 2.9.U dinamičkim uvjetima baza je uzemljena tj. ona je zajednička elektroda ulaznom i izlaznom krugu sklopa.

SI.2.9.Pojačalo u spoju zajedničke baze

Otpornici R_1 , R_2 , R_p i R_E s izvorom napajanja sklopa U_{CC} osiguravaju odgovarajuću statičku radnu točku u normalnom aktivnom području rada. Ulazni izmjenični signal priključen je na emiter, a izlazni signal se uzima na kolektoru . Kondezator C_S odvaja statičke uvjete od kruga generatora signala, a kondezator C_B na frekvenciji signala ima zanemarivo malu reaktanciju te praktički u dinamičkim uvjetima bazu tranzistora spaja na zajedničku točku – uzemljenje. U području srednjih frekvencija je reaktancija kondezatora C_S zanemarivo malena.

Nadomjesni sklop pojačala sa slike 2.10. za mali izmjenični signal prikazan je na slici 2.11.

Sl.2.11. Nadomjesni sklop pojačala zajedničke baze

Strujno pojačanje:

$$A_{i} = \frac{I_{p}}{I_{a}} = -\frac{I_{c}}{I_{a}} = -\frac{h_{fb}}{1 + h_{ob}R_{p}}$$
 (22)

Budući da je redovito $h_{ob}R_p <<1$, strujno pojačanje A_i je:

$$A_i \approx -h_{fb} \approx 1 \tag{23}$$

Ulazni otpor:

$$R_{ul} = \frac{U_{eb}}{I_e} = h_{ib} + h_{rb} A_i R_p = h_{ib} - \frac{h_{rb} h_{fb}}{h_{ob} + \frac{1}{R_p}}$$
(24)

Zbog malog iznosa parametra h_{rb} redovito je drugi član u izrazu (24) puno manji od h_{lb} , pa se za R_{ul} može pisati približan izraz:

$$R_{ul} \approx h_{ib}$$
 (25)

Naponsko pojačanje:

$$A_{v} = \frac{U_{p}}{U_{eb}} = \frac{I_{p}R_{p}}{I_{e}R_{ul}} = A_{l}\frac{R_{p}}{R_{ul}} = -\frac{h_{fb}}{h_{ib}\left(h_{ob} + \frac{1}{R_{p}}\right) - h_{rb}h_{fb}}$$
(26)

Zbog odnosa $\frac{1}{R_{_{p}}}>>h_{_{ob}}$ i $\frac{h_{_{ib}}}{R_{_{p}}}>>h_{_{rb}}h_{_{fb}}$ za A $_{\rm v}$ može se približno pisati:

$$A_{v} = -h_{fb} \cdot \frac{R_{p}}{h_{ib}} \approx \frac{R_{p}}{h_{ib}} \tag{27}$$

Izlazni otpor:

$$R_{iz} = \frac{1}{h_{ob} - \frac{h_{rb}h_{fb}}{R'_{o} + h_{ib}}}$$
 (28)

gdje je $R_g^{'}=R_g^{} \|R_E^{}$.

Osnovne karakteristike pojačala u spoju zajedničke baze:

- U području relativno niskih frekvencija strujno pojačanje je, uz realno trošilo, pozitivan broj iznosa blizu jedinice, osim kod vrlo visokih iznosa otpora trošila. Ako je ispunjen uvjet h_{ob}R_p<0,1 tada je strujno pojačanje A_i ≈1, dakle neovisno o otporu trošila. Ta činjenica ukazuje na mogućnost primjene ovog sklopa kao praktički idealnog zavisnog strujnog izvora upravljanog ulaznim strujnim generatorom.
- Naponsko pojačanje je, uz realno trošilo, pozitivan broj veći od jedinice, osim kod sasvim malih iznosa otpora trošila. S porastom otpora trošila naponsko pojačanje raste i kada R_p→∞, prema relaciji (26) teži iznosu:

$$A_{v} = -\frac{h_{fb}}{h_{ib}h_{ob} - h_{rb}h_{fb}}$$
 (29)

3. Ulazni otpor , prema relaciji (24), ima vrijednost h_{ib} kod niskih iznosa otpora trošila. Porastom otpora trošila ulazni otpor raste težeći prema iznosu:

$$R_{ul} = h_{ib} - \frac{h_{rb}h_{fb}}{h_{ob}} \tag{30}$$

kada $R_n \rightarrow \infty$.

Po iznosu je ulazni otpor pojačala u spoju zajedničke baze manji nego kod pojačala u spoju zajedničkog emitera. Dok ulazni otpor pojačala u spoju zajedničkog emitera opada s otporom trošila, ulazni otpor pojačala u spoju zajedničke baze raste s otporom trošila.

4. Izlazni otpor pojačala u spoju zajedničke baze veći je nego kod pojačala u spoju zajedničkog emitera i raste s porastom unutrašnjeg otpora generatora signala na ulazu sklopa.

Pojednostavljeni prikaz pojačala u spoju zajedničke baze

Ako se za spoj zajedničke baze primjeni, radi jednostavnosti, idealizirani hibridni nadomjesni sklop tranzistora u spoju zajedničkog emitera, dobiva se idealizirani nadomjesni sklop pojačala u spoju zajednilke baze,sl.12.

Sl.2.12. Pojednostavnjeni sklop pojačala u spoju zajedničke baze

Tipična izvedba pojačala u spoju zajedničkog kolektora prikazana je na slici 2.13.

Sl.2.14. Pojačalo u spoju zajedničkog kolektora

Trošilo se nalazi u krugu emitera, dok je kolektor izravno spojen na kolektorsku bateriju U_{cc} i time uzemljen za izmjenični signal. Naponsko djelilo u krugu baze R_1 - R_2 osigurava određenu struju baze tranzistora. U dinamičkim uvjetima ta dva otpornika su paralelno spojena, sl 2.15.

cjeloviti sklop pojačala u spoju zajedničkog kolektora za mali izmjenični signal i srednje frekvencije, sl. 2.16.

Sl.2.16. Nadomjesni sklop pojačala u spoju zajedničkog kolektora

Strujno pojačanje:

$$A_{i} = \frac{I_{p}}{I_{b}} = -\frac{I_{e}}{I_{b}} = \frac{-h_{fc}}{1 + h_{oc}R_{p}}$$
(39)

Ako je ispunjen uvjet $h_{oc}R_{p}$ < 0,1, strujno pojačanje približno iznosi – h_{fc} . Prema relacijama konverzije parametri za zajednički kolektor mogu se zamjeniti parametrima za zajednički emiter pa izraz za strujno pojačanje ima oblik:

$$A_{i} = \frac{1 + h_{fe}}{1 + h_{oc}R_{p}} \tag{40}$$

Dakle uz uvjet h_{oe}R_p< 0,1:

$$A_i=1+h_{fe} \tag{41}$$

U izrazima (40) i (41) su prema relacijama konverzije uvršteni hibridni parametri za zajednički emiter:

$$h_{fc} = -(1 + h_{fe})$$
 (42)

$$h_{oc} = h_{oe} \tag{43}$$

Strujno pojačanje pojačala u spoju zajedničkog kolektora je pozitivno i redovito puno veće od jedinice.

Ulazi otpor:

$$R_{ul} = \frac{U_{bc}}{I_{b}} = h_{ic} + h_{rc} A_{i} R_{p}$$
 (44)

ako se preko relacija konverzije uvrste hibridni parametri za zajednički emiter:

$$h_{ic} = h_{ie}$$
; $h_{rc} = 1 - h_{re}$ (45)

$$R_{ul} = h_{ie} + (1 - h_{re}) \frac{1 + h_{fe}}{1 + h_{oe} R_p} \cdot R_p$$
 (46)

Budući da je h_{re}<<1 i h_{oe}R_o<0,1 imamo:

$$R_{ul} = h_{ie} + (1 + h_{fe})R_{p} \tag{47}$$

Ulazni otpor pojačala u spoju zajedničkog kolektora je prema relaciji (47) velik, i to prije svega zbog člana $(1+h_{fe})R_p$. Ako je npr. $h_{fe}=99$ i $R_p=2$ k Ω , R_{ul} će iznositi 200 k Ω , uz zanemarenje otpora h_{le} koji npr. može imati vrijednost oko $1k\Omega$.

Naponsko pojačanje:

$$A_{v} = \frac{U_{p}}{U_{bc}} = \frac{U_{ec}}{U_{bc}} = -\frac{h_{fc}}{h_{ic} \left(h_{oc} + \frac{1}{R_{p}}\right) - h_{rc}h_{fc}} = \frac{1 + h_{fe}}{h_{ie} \left(h_{oe} + \frac{1}{R_{p}}\right) + \left(1 - h_{re}\right)\left(1 + h_{fe}\right)}$$
(48)

Ako je $h_{oe}R_p < 0.1$ te uz $h_{re} << 1$;

$$A_{v} = \frac{1}{1 + \frac{h_{ie}}{(1 + h_{fe})R_{p}}}$$
(49)

Otpor R_p je obično istog reda veličine kao i h_{ie} te je redovito $h_{fe} >> 1$, stoga je prema relaciji (49) naponsko pojačanje pojačala u spoju zajedničkog kolektora pozitivno i tek neznatno manje od jedinice. Toznači da svaka promjena napona na bazi izaziva praktički jednaku promjenu napona na emiteru, tj. da emiterski napon slijedi bazni. Zato se pojačalo u spoju zajedničkog kolektora zove i *emitersko sljedilo*.

Izlazni otpor:

$$R_{iz} = \frac{1}{h_{oc} - \frac{h_{rc}h_{fc}}{R_{o}^{'} + h_{ie}}} = \frac{1}{h_{oe} + \frac{(1 - h_{re})(1 + h_{fe})}{R_{o}^{'} + h_{ie}}}$$
(50)

Gdje je $R_{g} = R_{g} | R_{g}$.

Budući da je h_{re}<<1 i da je drugi članu izrazu (49) u nazivniku puno veći od prvog člana, za izlazni otpor može se pisati izraz:

$$R_{iz} \approx \frac{R_g^{'} + h_{ie}}{1 + h_c} \tag{51}$$

Osnovne karakteristike pojačala u spoju zajedničkog kolektora:

- U području relativno niskih frekvencija strujno pojačanje je, uz realno trošilo , pozitivan broj veći od jedinice.
- 2. Naponsko pojačanje je, uz realno trošilo, pozitivno i blizu jedinice, ali uvijek manje od jedinice.
- 3. Ulazni otpor je velik i znatno veći od ulaznog otpora za spoj zajedničkog emitera i zajedničke baze.
- 4. Izlazni otpor je mali, manji nego kod pojačala sa zajedničkim emiterom i zajedničkom bazom.

Definicija statičkih uvjeta rada unipolarnih tranzistora

Unipolarni tranzistori (FET-ovi) mogu biti tehnološki izvedeni kao spojni FET-ovi ili kao MOSFET-ovi. Spojni FET-ovi su komponente osiromašenog tipa, dok MOSFET-ovi mogu biti ili komponente obogaćenog tipa ili komponente osiromašenog tipa. MOSFET-ovi osiromašenog tipa mogu raditi i s negativnim i s pozitivnim naponom na kontrolnoj ili upravljačkoj elektrodi. Zajedničko svojstvo svih FET-ova je vrlo visok ulazni otpor između kontrolne elektrode (vrata) i uvoda pa se FET-ovi upravljaju naponskim signalom za razliku od bipolarnih tranzistora koji se zbog niskog iznosa ulaznog otpora uglavnom upravljaju strujnim signalom.

Na slici 3.1. prikazane su izlazne statičke karakteristike idealnog n-kanalnog MOSFET-a osiromašenog tipa.

Slika 3.1. Izlazne karakteristike MOSFET-a osiromašenog tipa

Lijevo od krivulje $U_{DS}=U_{GS}-U_{GSO}$, gdje je U_{DS} napon između odvoda i uvoda, U_{GS} napon između vrata (kontrolne elektrode) i uvoda, a U_{GSO} napon praga je **triodno područje**. Struja odvoda I_D raste s naponom U_{DS} , uz stalan iznos napona U_{GS} sukladno izrazu:

$$I_D = K \left[(U_{GS} - U_{GS0}) U_{DS} - \frac{1}{2} U_{DS}^2 \right]$$
 (3.1.)

u području U_{DS}<U_{GS}-U_{GS0}.

K je konstanta MOSFET-a određena izrazom:

$$K = \mu_0 \frac{\mathcal{E}_{0x}}{t_{0x}} \cdot \frac{w}{L}$$
 (3.2.)

u kojem je:

 μ_0 površinska pokretljivost slobodnih elektrona u kanalu između uvoda i odvoda, ϵ_{0x} je dielektrička konstanta (permitivnost), t_{0x} je debljina sloja silicij-dioksida (SiO₂) iznad područja kanala, w je širina, a L duljina kanala.

Zbog pojava na površini silicija i na međupovršini između silicija i oksidnog sloja površinska pokretljivost je manja od volumne.

Područje karakteristika gdje je U_{DS}>U_{GS}-U_{GSO} opisano je jednadžbom:

$$I_D = \frac{K}{2} (U_{GS} - U_{GS0})^2 \tag{3.3.}$$

Pri naponu U $_{\rm GS}$ =0 struja $I_{\scriptscriptstyle D}=\frac{K}{2} \left(-U_{{\scriptscriptstyle GS0}}\right)^2=I_{{\scriptscriptstyle DSS}}$ pa se relacija (3.3.) može pisati kao:

$$I_D = I_{DSS} \left(1 - \frac{U_{GS}}{U_{GS0}} \right)^2 \tag{3.4.}$$

Struja I_{DSS} je struja odvoda u području zasićenja pri naponu U_{GS}=0.

Određivanje statičke radne točke pojačala s unipolarnim tranzistorom

Triodno područje je područje relativno malog iznosa dinamičkog otpora, jer struja odvoda I_D pri konstantnom naponu U_{GS} relativno brzo raste s naponom U_{DS} te se u tom području idealni FET ne može u izlaznom krugu tretirati ni kao idealni naponski ni kao idealni strujni izvor.

Područje zasićenja je područje konstantne struje odvoda pri konstantnom naponu U_{GS}, te se u tom području rada idealni FET u izlaznom krugu ponaša kao idealni strujni izvor. Da bi se MOSFET doveo u statičku radnu točku u području zasićenja, potrebno je osigurati odgovarajuće napone U_{DS} i U_{GS}, što je i ilustrirano crtežom 3.2.

Slika 3.2. n-kanalni MOSFET. Definicija statičkih uvjeta.

Na slici 3.2. odabran je pozitivan predznak napona U_{GS} = U_{GG} , što znači da n-kanalni MOSFET osiromašenog tipa radi u obogaćenom modu. Ako bi napon U_{GG} bio negativan, MOSFET bi radio u osiromašenom modu. Iz izlaznog kruga sklopa slijedi jednadžba radnog pravca:

$$U_{DD} = U_{DS} + I_D \cdot R_D \tag{3.5.}$$

Odsječak radnog pravca na apscisi je UDD, a na ordinati UDD/RD, slika 3.3.

Slika 3.3. Radni pravac u polju izlaznih karakteristika MOSFET-a

U odabranoj statičkoj radnoj točki napon U_{GS}=+1 V.

Praktična izvedba sklopa za podešavanje istosmjernih uvjeta (statičke radne točke) prikazana je na slici 3.4.

Slika 3.4. Sklop za podešavanje statičke radne točke MOSFET-a

Budući da je istosmjerna struja vrata (kontrolne elektrode) jednaka nuli, istosmjerni napon U_{GG} iznosi:

$$U_{GG} = U_{DD} \frac{R_2}{R_1 + R_2} \tag{3.6.}$$

Za ulazni krug sklopa (krug vrata-uvod) vrijedi jednadžba naponske ravnoteže:

$$U_{GG} = U_{GS} + I_D \cdot R_S \tag{3.7.}$$

Napon U_{GG} , odnosno potencijal elektrode G prema uzemljenoj točki je stalan i određen je relacijom (3.6.). Stoga svaka promjena potencijala točke S (uvoda) prema uzemljenju uvjetuje odgovarajuću promjenu napona U_{GG} , odnosno struje I_D .

Za izlazni krug sklopa na slici 3.4. vrijedi jednadžba naponske ravnoteže:

$$U_{DD} = I_D (R_D + R_S) + U_{DS},$$
 (3.8.)

koja je ujedno i jednadžba radnog pravca u polju izlaznih karakteristika. Pomoću radnog pravca i izlaznih karakteristika može se odrediti prijenosna karakteristika, slika 3.5.

Slika 3.5. Konstrukcija prijenosne karakteristike

Jednadžba (3.7.) je ujedno jednadžba radnog pravca u polju prijenosne karakteristike. Odsječak radnog pravca na apscisi je U_{GG} , a na ordinati U_{GG}/R_{S_r} slika 3.6. Statička radna točka Q određena je sjecištem radnog pravca i prijenosne karakteristike.

Slika 3.6. Određivanje statičke radne točke na prijenosnoj karakteristici

Na slici 3.6. ucrtana su (iscrtkano) još dva radna pravca za ilustraciju promjene statičke radne točke promjenom otpora R_S . Radna točka Q_1 kojoj odgovara otpor $R_{S_1} > R_S$ je na ordinati gdje je $U_{GS} = 0$, te MOSFET radi na granici obogaćenog i osiromašenog područja (moda). Radna točka Q_2 kojoj odgovara otpor R_{S_2} je u području negativnih napona U_{GS} , te MOSFET radi u osiromašenom modu. Dakle, osim stabilizacijskog djelovanja na sklop, otpor R_S omogućava rad i u obogaćenom i u osiromašenom modu.

Unipolarni tranzistor u dinamičkim uvjetima rada. Nadomjesni model

Trenutna totalna vrijednost struje odvoda i_D može pisati kao:

$$i_d = g_m u_{gs} + \frac{1}{r_d} u_{ds} {(3.14.)}$$

Na temelju relacije (3.14.) može se u uvjetima malih izmjeničnih signala i srednjih frekvencija nacrtati nadomjesni sklop, slika 3.7.

Slika 3.7. Nadomjesni sklop MOSFET-a za mali izmjenični signal sa strujnim izvorom

Množenjem lijeve i desne strane jednadžbe (3.14.) s veličinom r_d dobiva se:

$$i_d \cdot r_d = g_m \cdot r_d \cdot u_{gs} + u_{ds} \tag{3.15.}$$

 $Umnožak \ g_m r_d \ označava \ se \ simbolom \ \mu \ i \ poznat \ je \ kao \ faktor \ pojačanja, \ a \ sama \ jednadžba$

$$g_m \cdot r_d = \mu \tag{3.16.}$$

kao Barkhausenova jednadžba.

Dakle, (3.15.) može se pisati kao:

$$u_{ds} = -\mu \cdot u_{gs} + i_d \cdot r_d \tag{3.17.}$$

Na temelju relacije (3.17.) može se nacrtati nadomjesni sklop za mali izmjenični signal s naponskim izvorom.

Slika 3.8. Nadomjesni sklop MOSFET-a za mali izmjenični signal s naponskim izvorom

Dinamička svojstva pojačala u spoju zajedničkog uvoda

Na slici 3.9. prikazana je izvedba pojačala u spoju zajedničkog uvoda sa stabilizacijom statičke radne točke pomoću otpornika R_S u krugu uvoda. Dakle, uvod nije izravno uzemljen već je uzemljen (spojen na zajedničku točku) preko otpornika R_S . Ulazni signal je priključen na vrata (upravljačku elektrodu G), a izlazni signal se uzima s odvoda D. Otpornik R_D je ujedno i trošilo ako na izlaz sklopa nije uključen neki drugi otpornik.

Slika 3.9. Pojačalo u spoju zajedničkog uvoda s otpornikom R_s u krugu uvoda

Nadomjesni sklop pojačala sa slike 3.9. u dinamičkim uvjetima prikazan je na slici 3.10. Istosmjerni naponski izvor U_{DD} je za izmjenični signal kratki spoj te je otpornik R_1 paralelno spojen otporniku R_2 : $R_1 \mid R_2 = R_G$.

Slika 3.10. Nadomjesni sklop pojačala u spoju zajedničkog uvoda s otpornikom R_s u krugu uvoda

Izraz za struju odvoda:

$$I_d = \frac{\mu U_{ul}}{R_D + r_d + (1 + \mu)R_c},$$
(3.21.)

gdje je $\mu = g_m \cdot r_d$.

Napon U₁₇ na trošilu R_D iznosi:

$$U_{i\sigma} = -I_d \cdot R_D \tag{3.22.}$$

Naponsko pojačanje je po definiciji:

$$A_{V} = \frac{U_{iz}}{U_{ul}} = -\frac{I_{d} \cdot R_{D}}{U_{ul}} = -\frac{\mu R_{D}}{R_{D} + r_{d} + (1 + \mu)R_{S}}$$
(3.23.)

Otpornik R_S u krugu uvoda smanjuje naponsko pojačanje to više što je otpor R_S veći. To je degenerativni utjecaj (degeneracija uvoda) otpora R_S na naponsko pojačanje sklopa. Degenerativni utjecaj otpornika R_S može se u velikoj mjeri reducirati paralelno spojenim kondenzatorom koji na frekvenciji izmjeničnog signala praktički kratko spaja otpornik. U tom slučaju naponsko pojačanje slijedi iz izraza (3.23.) uz uvjet R_S =0.

$$A_{V} = -\frac{\mu R_{D}}{R_{D} + r_{d}} \tag{3.24.}$$

Pojačanje određeno izrazom (3.24.) je veće u odnosu prema pojačanju određenom izrazom (3.23.).

Ako su ispunjeni uvjeti:

$$\mu >> 1; r_d >> R_D$$
 (3.25.)

relacija (3.23.) svodi se na oblik:

$$A_V \approx -\frac{g_m}{1 + g_m R_s} \cdot R_D = -g_m^{\prime} \cdot R_D \tag{3.26.}$$

Veličina $g_m^{'} = \frac{g_m}{1 + g_m R_S}$ (3.27.) naziva se efektivna strmina.

Ako je još ispunjen uvjet:

$$g_{\scriptscriptstyle m}R_{\scriptscriptstyle S}>>1\tag{3.28}$$

tada (3.26.) prelazi u oblik:

$$A_{V} \approx -\frac{R_{D}}{R_{S}} \tag{3.29.}$$

što znači da naponsko pojačanje ne ovisi o parametrima tranzistora, već o stabilnim pasivnim komponentama (otpornicima) kojima je moguće ostvariti naponsko pojačanje s velikom stabilnošću u širokom rasponu temperatura.

Izlazni otpor pojačala može se odrediti pomoću relacije (3.21.):

$$\mu U_{ul} = I_d [r_d + (1 + \mu)R_S] + I_d \cdot R_D$$
 (3.30.)

i prema njoj nacrtanog nadomjesnog sklopa za izlazni krug pojačala:

Slika 3.11. Određivanje izlaznog otpora pojačala u spoju zajedničkog uvoda

Dakle, izlazni otpor jednak je:

$$R_{iz} = r_d + (1 + \mu)R_S \tag{3.31.}$$

Degeneracijom uvoda povećava se izlazni otpor za iznos $(1+\mu)R_s$. Ako je otpornik R_s premošten kondenzatorom, tada Riz, uz uvjet R_s =0, iznosi:

$$R_{iz} = r_d \tag{3.32.}$$

Ulazni otpor sklopa na slici 3.9. jednak je R_G i ne ovisi o degeneraciji uvoda.

Dinamička svojstva pojačala u spoju zajedničkog odvoda

Osnovni sklop pojačala u spoju zajedničkog odvoda prikazan je na slici 3.12.

Slika 3.12. Pojačalo u spoju zajedničkog odvoda

Ulazni signal dovodi se na upravljačku elektrodu G, a izlazni signal se uzima s elektrode uvoda, gdje je otpornik R_S ujedno i trošilo sklopa. Nadomjesni sklop prikazan je na slici 3.13.

Slika 3.13. Nadomjesni sklop pojačala u spoju zajedničkog odvoda

Prema ulaznog krugu osnovnog pojačala, slika 3.12., može se napisati relacija:

$$U_{gs} = U_{ul} - U_{ir} {3.33.}$$

Za izlazni krug nadomjesnog sklopa, slika 3.13., vrijedi relacija:

$$U_{iz} = g_m U_{gg}(r_d || R_g)$$
 (3.34.)

Izraz za naponsko pojačanje sklopa može se odrediti pomoću relacija (3.33.) i (3.34.):

$$A_{V} = \frac{U_{iz}}{U_{ul}} = \frac{g_{m}(r_{d}||R_{S})}{1 + g_{m}(r_{d}||R_{S})}$$
(3.35.)

Naponsko pojačanje pojačala u spoju zajedničkog odvoda je pozitivno, što znači da sklop ne obrće fazu izmjeničnog signala.

Kod realnih sklopova je obično ispunjen uvjet:

$$r_d >> R_S \tag{3.36.}$$

pa se izraz (3.35.) može svesti na jednostavniji oblik:

$$A_V \approx \frac{g_m}{1+g} \cdot R_S \tag{3.37.}$$

Ako je usto ispunjen uvjet $g_m R_s >> 1$, tada je pojačanje A_v približno jednako jedinici.

Izlazni otpor pojačala može se odrediti na isti način kao i za pojačalo u spoju zajedničkog uvoda.

Iz izlaznog kruga nadomjesnog sklopa slijedi izraz za struju I_d:

$$I_{d} = \frac{U_{iz}}{R_{s}} = \frac{A_{v}U_{ul}}{R_{s}}$$
 (3.38.)

Uvrštavanjem izraza za A_V (3.35.) u izraz (3.38.) dobiva se:

$$\frac{\mu}{1+\mu}U_{ul} = I_d \frac{r_d}{1+\mu} + I_d \cdot R_S$$
 (3.39.)

što odgovara nadomjesnom sklopu, slika 3.14.:

Slika 3.14. Određivanje izlaznog otpora pojačala u spoju zajedničkog uvoda

Dakle, za izlazni otpor pojačala u spoju zajedničkog odvoda može se pisati izraz:

$$R_{iz} = \frac{r_d}{1 + \mu} \tag{3.40.}$$

Kako je redovito μ>>1, izlazni otpor je R_{iz}<<r_d.

Dinamička svojstva pojačala u spoju zajedničke upravljačke elektrode

Osnovni sklop pojačala u spoju zajedničke upravljačke elektrode (vrata), prikazan je na slici 3.15. Izmjenični ulazni signal dovodi se u krug uvoda, a izlazni signal se uzima s odvoda.

Slika 3.15. Pojačalo u spoju zajedničke upravljačke elektrode

Upravljačka elektroda je za izmjenični signal uzemljena preko kondenzatora, slika 3.16.

Slika 3.16. Prikaz pojačala u spoju zajedničke upravljačke elektrode u dinamičkim uvjetima

Nadomjesni sklop pojačala u spoju zajedničke upravljačke elektrode prikazan je na slici 3.17.

Slika 3.17. Nadomjesni sklop pojačala u spoju zajedničke upravljačke elektrode

Za sklop na slici 3.17. mogu se napisati ove relacije:

$$U_{yd} = U_{iz} - I_{d} \cdot r_{d} \tag{3.41.}$$

$$I_{d}^{'} = I_{d} - g_{m} U_{\sigma s} \tag{3.42.}$$

$$U_{iz} = -I_d \cdot R_D \tag{3.43.}$$

$$U_{gs} = -U_{yl} \tag{3.44.}$$

Na temelju gornjih relacija slijedi izraz za struju odvoda:

$$I_d = -\frac{(1+\mu)U_{ul}}{r_d + R_D},\tag{3.45.}$$

odnosno naponsko pojačanje:

$$A_V = \frac{U_{iz}}{U_{ul}} = \frac{(1+\mu)R_D}{r_d + R_D}$$
 (3.46.)

Naponsko pojačanje je pozitivan broj što znači da su ulazni i izlazni signal u fazi. Nadalje, iz izraza (3.46.) se vidi da naponsko pojačanje raste s otporom trošila od $A_v=0$ pri $R_0=0$ do $A_v=1+\mu$ pri $R_0\to\infty$.

Ulazni otpor pojačala R_{ul} određen je izrazom:

$$R_{ul} = \frac{U_{ul}}{-I_d} = \frac{U_{ul}}{U_{ix}} \cdot R_D = \frac{R_D}{A_V},$$
(3.47.)

odnosno

$$R_{ul} = \frac{R_D + r_d}{1 + \mu} \,, \tag{3.48.}$$

а

$$R_{ul}^{'} = R_{ul} || R_S \tag{3.49.}$$

Izlazni otpor dobiva se kao omjer izlaznog napona i izlazne struje pri kratko spojenom naponu U₂, slika 3.18.

Slika 3.18. Određivanje izlaznog otpora

Za sklop na slici 3.18. mogu se napisati ove jednadžbe:

$$U_{iz} = I_{d}^{'} \cdot r_{d} + I_{d} \cdot R_{\sigma}^{'}$$
 (3.50.)

$$I_{d}^{'} = I_{d} - g_{m} U_{gg} \tag{3.51.}$$

$$U_{gs} = -I_d \cdot R_g \tag{3.52.}$$

Iz navedenih relacija može se odrediti omjer U_{iz}/I_d, odnosno izraz za izlazni otpor sklopa:

$$R_{iz} = \frac{U_{iz}}{I} = r_d + (1 + \mu)R_g$$
(3.53.)

Pojačalo u spoju zajedničke upravljačke elektrode ima mali ulazni otpor, a veliki izlazni otpor.

Frekvencijska karakteristika elektroničkih sklopova

Frekvencijska karakteristika pojačala – ovisnost pojačanja o frekvenciji

U području srednjih frekvencija pojačanje ne ovisi o frekvenciji (referentno pojačanje A0).U točkama u kojima je vrijednost pojapanja definiranesu dvije karakteristične frekvencije: gornja i donja granična frekvencija.

Postojanje donje granične frekvencije uvjetovano je konstrukcijom sklopa (vezni kondenzatori na ulazu i izlazu pojačala). Gornja granična frekvencija je rezultat fizikalnih pojava u radu tranzistora. Gornja granična frekvencija može se poveüati izborom odgovarajućeg tranzistora i konstrukcijom sklopa, ali je njen iznos uvijek konačan. Frekvencijska karakteristika idealnog pojačala bila bi horizontalan pravac. Realna pojačala uvijek unose određeni fazni pomak između izlaznog i ulaznog signala. Taj pomak je posljedica konačnog vremena nabijanja i pražnjenja barijernih kapaciteta, konačnog vremena proleta nosilaca naboja kroz tranzistor i djelovanja vremenskih konstanti pasivnih dijelova pojačala.

Donja granična frekvencija fd definira se kao ona frekvencija u području niskih frekvencija kod koje pojačanje padne na 0,707 vrijednosti pojačanja pri srednjim frekvencijama (u dB ako padne za 3 dB u odnosu na srednje). Javlja se zbog toga što pri niskim frekvencijama reaktancije vezanih kondenzatora nisu zanemarive pa se izlazni napon pojačava, a samim time i pojačanej smanjuje.

Giacolettov model. Parametri Giacolettovog modela

Giacolettov model (hibridni A-model) uključuje barijernu i difuzijsku kapacitivnost tranzistora koje su ključne za ponašanje tranzistora na visokim frekvencijama.

Otpor $r_{ab'}$ je raspodijeljeni serijski otpor između vanjskog priključka baze B i aktivnog područja baze ispod emitera (tzv. interna baza B'). Tipija vrijednost otpora $r_{ab'}$ iznosi od 10 do 100.

Otpor $\eta_{\sigma'e}$ je dinamijki otpor pn-spoja između interne baze i emitera. Tipijna vrijednost ovog otpora iznosi 1 k Ω . Kapacitet Ce je ukupni kapacitet između interne baze i emitera. Taj kapacitet jednak je sumi difuzijskog i barijernog kapaciteta, a tipiđna mu je vrijednost od 10-100 pF. Otpor $\eta_{D'\sigma}$ nastaje kao posljedica Earlyjeva efekta, a tipična vrijednost mu je reda veličine 1 M Ω . Kapacitet Cc je tranzitni (barijerni) kapacitet pn spoja kolektor-baza koji je u normalnim aktivnim uvjetima rada tranzistora nepropusno polariziran. Tipičan iznos je reda veličine 1 pF. Otpor η_{Ce} je dinamički otpor između kolektora i emitera tranzistora. Tipičan iznos tog otpora je nekoliko desetaka k Ω . Strujni izvor gm $U_{D'e}$ određen je strminom tranzistora u odgovarajućoj radnoj točki i naponom između interne baze i emitera.

Model unipolarnog tranzistora u području visokih frekvencija i definicija parametara modela

Kapacitet Cgs je parazitni kapacitet između vrata i uvoda. Kapacitet Cgd je parazitni kapacitet između vrata i odvoda. Kapacitet Cds je parazitni kapacitet odvoda prema uvodu. Parametar rd je dinamički otpor u odabranoj radnoj točki tranzistora. Strujni izvor gmUgs određen je strminom tranzistora u odabranoj radnoj točki i naponom između vrata i uvoda, Ugs.

Bodeov prokaz frekvencijskih karakteristika

Grafički prikaz: pojačanje (izraženo u dB) i fazni kut kao funkcija frekvencije (logaritamsko mjerilo) – Bodeov prikaz. Prikaz pojačanja u ovisnosti o frekvenciji – amplitudn karakteristika. Prikaz faznog kuta u ovisnosti o frekvenciji - fazna karakteristika.

Amplitudna karakteristika

Frekvencijska karakteristika

Lomljena karakteristika dobivena je tako da je za 0 < f < 0,1fd fazna karakteristika aproksimirana faznim kutom I=90°, dok je za 0,1fd < f<10 fd fazna karakteristika aproksimirana pravcem koji kroz točke s koordinatama f=fd i I=45° prolazi pod nagibom -45° po dekadi.

Operacijsko pojačalo. Definicija parametara idelanog operacijskog pojačala.

Mogućnost vršenja nekih matematičkih i drugih operacija: zbrajanje, oduzimanje, integriranje, deriviranje ulaznog signala...

Tri stupnja:

- ulazni stupanj (velik ulazni otpor i pojačanje signala, mogućnost dva ulazna signala);
- □ srednji stupanj (veoma veliko pojačanje);
- □ izlazni stupanj (malen izlazni otpor i velik hod izlaznog signala).

Idealno operacijsko pojačalo trebalo bi imati osobine:

- pojačanje beskonačno (i negativno);
- ulazni otpor beskonačan;
- □ izlazni otpor nula;
- prijenos svih frekvencija od nule do beskonačnosti (istosmjerno poiačalo).

Pojačanje operacijskog pojačala s jedim invertirajućim ulazom.

Neinvertirajući ulaz (uobičajena oznaka "+") je uzemljen. Na invertirajući ulaz (oznaka "-") doveđen je signal.

Kako je:

Primjeriori načela superpozicija:

$$p_{gl} = p_{g} \cdot \frac{Z_{2}}{Z_{1} + Z_{2}} + p_{gr} \cdot \frac{Z_{1}}{Z_{1} + Z_{2}}$$

Iz (3) je vidljivo da pri velikom pojačanju A pojačanje operacijskog pojačala A_{OP} ovisi samo o vanjskim impedancijama Z_t i Z_2 .

za pojačanje operacijskog pojačala A_{\odot} slijedi:

Drugi pristup: odredi se ulazna impedancija Z_n:

$$Z_{at} = \frac{\rho_{at}}{\varepsilon}$$
,

Struja i se odredi iz pada napona na impedanciji Z₂:

$$I = \frac{u_w - u_w}{Z_2} = \frac{u_w - A \cdot v_w}{Z_2} = \frac{u_w \cdot (1 - A)}{Z_2}$$
, e slijedi za ulaznu impedancjiu:

odakle slijedi za ulaznu impedanciju:

ulaznu impedanciju:
$$Z_{s} = \frac{Z_{s}}{1 - 2} = 0.$$

Na temelju izraza (6) dolazimo do zaključka da na ulazu u pojačalo A vlada tzv. virtualna nula.

Millerov efekt – impedancija Z₂ preslikava se na ulaz pojačala umanjena (1-A) puta.

Nadomjesni sklop operacijskog pojačala:

Iz prvog nadomiesnog sklopa je

$$(-\frac{u_r}{Z})$$
 is struja tede i kroz izlazni krug:

 $u_{n} = -i \cdot Z_{n} = -i$

Pojačanje operacijskog pojačala je tad:

$$A_{aa} = \frac{a_a}{a_c} = -\frac{Z_2}{Z_c}$$
(9)

Iz drugog nadomjesnog sklopa:

$$= u_{ij} - u_{ij} \cdot \frac{Z_{ij}}{1 - A}, \qquad (10)$$

$$= \frac{Z_{ij} + Z_{ij}}{Z_{ij} + Z_{ij}}.$$

$$u_{ij} = A \cdot u_{ij} = A \cdot u_{ij} \cdot \frac{Z_2}{Z_1 + (1 - 2V_1 \cdot Z_1)},$$
 (1)

$$A_{iii} = \frac{n_{ii}}{n_{ii}} = -\frac{Z_2}{Z_1} \cdot \frac{1}{1 + \frac{1}{4} \cdot (1 + \frac{Z_2}{Z})}$$
, (12)

Operacijsko pojačalo s dva ulaza. Primjeri primjene operacijskog pojačala.

Primjenom superpozicije:

Primjenom superpozicije:
$$u_{B1} = u_{s1} \cdot \frac{R_2}{R_1 + R_2} + u_{iz} \cdot \frac{R_1}{R_1 + R_2}$$

$$u_{B2} = u_{s2} \cdot \frac{R_4}{R_3 + R_4} + u_{iz} \cdot \frac{R_3}{R_3 + R_4}$$
(14)

$$u_{B2} = u_{s2} \frac{R_4}{R_2 + R_4} + u_{iz} \cdot \frac{R_3}{R_2 + R_4} \tag{14}$$

$$u_{nl} = u_{R2} - u_{R1} \tag{15}$$

$$u_{iz} = A \cdot u_{ul} = A \cdot (u_{B2} - u_{B1}) \tag{16}$$

$$u_{iz} = \frac{A}{1 - A \cdot \left(\frac{R_3}{R_3 + R_4} - \frac{R_1}{R_1 + R_2}\right)} \cdot \left(u_{s2} \cdot \frac{R_4}{R_3 + R_4} - u_{s1} \cdot \frac{R_2}{R_1 + R_2}\right)$$
(17)

Pojačanje $A=u_{i}/u_{ij}$, gdje je napon u_{ij} pozitivan na neinvertirajućem ulazu te je pojačanje A pozitivno.

Uz u_{s2} =0, R_3 =0 i R_4 = ∞ :

$$A_{OP} = \frac{u_{iz}}{u_{s1}} = -\frac{A \cdot \frac{R_2}{R_1 + R_2}}{1 + A \cdot \frac{R_1}{R_1 + R_2}} \bigg|_{A \to \infty} = -\frac{R_2}{R_1}$$
 (18)

$$\begin{aligned} & u_{n} - u_{n} = 0 \\ & u_{n} = u_{n} - u \\ & u_{n,t} = u_{n} - \frac{R_{t}}{R_{t} + R_{t}} \\ & u_{n} = A \cdot \frac{R_{t}}{R_{t} - R_{t}} \cdot u_{n} - A \cdot u_{n} + A \cdot u_{n} \\ & u_{n} = -\frac{A}{R_{t} - R_{t}} \cdot u_{n} - A \cdot u_{n} + A \cdot u_{n} \end{aligned}$$