EE3331 Probability Models in Information Engineering

Semester B 2021-2022

Assignment 3

Due Date: 30 March 2022

1. The joint probability distribution function (PDF) of two random variables X and Y has the form of:

$$p(x,y) = \begin{cases} Ae^{-(3x+4y)}, & x > 0, \ y > 0, \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find the value of A.
- (b) Determine the joint cumulative distribution function of X and Y.
- (c) Find $P(0 \le X < 1, 0 \le Y < 2)$.
- 2. Consider two independent Gaussian random variables $X \sim \mathcal{N}(0,1/2)$ and $Y \sim \mathcal{N}(0,1/2)$. With the use of $\int_0^\infty u e^{-u^2/2} du = 1$, compute the variance of |X-Y|. Note that a linear combination of Gaussian random variables is also a Gaussian random variable.
- 3. The joint probability mass function (PMF) of random variables N and K is given as:

$$P_{NK}(n,k) = \begin{cases} \frac{100^n e^{-100}}{n!} {100 \choose k} p^k (1-p)^{100-k}, & n = 0, 1, \dots, k = 0, 1, \dots, 100\\ 0, & \text{otherwise} \end{cases}$$

Find the marginal PMFs of N and K.

- 4. Given two independent uniform random variables $X \sim \mathcal{U}(0,3)$ and $Y \sim \mathcal{U}(0,3)$, determine $P(\max\{X,Y\} < 1)$.
- 5. Suppose random variables X and Y are independent of each other where $X \sim \mathcal{U}(0,0.2)$, and the PDF of Y is:

$$p_Y(y) = \begin{cases} 5e^{-5y}, & y > 0\\ 0, & \text{otherwise} \end{cases}$$

Find $P(Y \leq X)$.

6. Suppose the plane region D is bounded by the curve y=1/x and 3 straight lines, namely, $y=0, \ x=1,$ and $x=e^2,$ which is shown as follows:

The joint PDF of X and Y obeys a uniform distribution in the region D.

- (a) Find the marginal PDFs of X and Y.
- (b) Are X and Y independent? Briefly explain your answer.
- 7. Consider the problem of estimating a constant A from N observations:

$$r_n = A + w_n$$
, $n = 1, 2, \cdots, N$

where w_n is a white noise with mean 0 and variance σ_w^2 . It is suggested to estimate A using \hat{A} which is given by:

$$\hat{A} = \frac{1}{N-1} \sum_{n=1}^{N} r_n$$

Compute the mean, variance and mean square error of \hat{A} .

8. The joint PMF of random variables X and Y is given as:

$$P_{XY}(x,y) = \begin{cases} 0.01, & x = 1, 2, \dots, 10, \ y = 1, 2, \dots, 10 \\ 0, & \text{otherwise} \end{cases}$$

Let A be the event that $\min(X,Y) > 5$. Find the conditional PMF $P_{XY|A}(x,y)$.

9. The joint PDF of random variables X and Y is given as:

$$P_{XY}(x,y) = \begin{cases} 6e^{-(2x+3y)}, & x \ge 0, \ y \ge 0\\ 0, & \text{otherwise} \end{cases}$$

Let A be the event that $X+Y\leq 1$. Find the conditional PDF $P_{XY|A}(x,y)$.

10. The joint PDF of random variables X and Y is given as:

$$P_{XY}(x,y) = \begin{cases} x+y, & 0 \le x \le 1, \ 0 \le y \le 1\\ 0, & \text{otherwise} \end{cases}$$

Find the conditional PDFs $P_{X|Y}(x|y)$ and $P_{Y|X}(y|x)$.