Some Definitions

- n_t : The number of timepoints.
- f_{ai} : The frequency of mutation a at time point i
- f_i : The mean of the two mutations at time point i
- σ_i^2 : The variance of the paired time series at time i
- \bar{d} : The average of the differences between both time series
- σ_p^2 : Variance for the pair of mutational time series.

The Math

The script calculates the relative similarity between all pairs of mutational time series with length n_t containing frequencies 0 <= f <= 1. These are consistent with n independent draws from a normal distribution, assuming a variance of

1.
$$\sigma_i^2 = n_{binom} f_i (1 - f_i)$$

where f_i is the mean frequency of both mutations at each time point and n_{binom} is picked arbitrarily as a value that gives reasonable uncertainties given our data (in this case, $n_{binom}=1/5$). A time series with n_t random draws will have a variance of

2.
$$\sigma_{tot}^2 = \sum_i^{n_t} \sigma_i^2 = n_{binom} \sum_i^{n_t} f_i (1 - f_i)$$

Since we are interested in the similarity between both mutational time series, let $d_i = |_{ai} - f_{bi}|$ for all time points yielding a mean and variance of

3.
$$ar{d} = rac{1}{n_t} \sum_i^{n_t} d_i$$

4. $\sigma_p^2 = rac{\sigma_{tot}^2}{n_t^2} = rac{n_{binom}}{n_t^2} \sum_i^{n_t} f_i (1 - f_i)$

Finally, given σ_d and \bar{d} we can calculate the probability that this pair of mutations belong to the same genotype using the cumulative probability distribution of the normal distribution:

5.

$$p_{pair}=1-\int_{-ar{d}/\sigma_p}^{ar{d}/\sigma_p}rac{1}{\sqrt{2\pi}}e^{-x^2/2}dx\equiv 1-erf[rac{ar{d}}{\sqrt{2\sigma_p^2}}]$$

Notes

For each pair we discarded a time point if both f_{ai} and f_{bi} failed the condition $f_{detected} < f < f_{fixed}$, where $f_{detected} = 0.03$ and $f_{fixed} = 0.97$. Note the these filters check "greater than" and "less than", and NOT "equals to". This won't affect the results that much, but should be clarified since it affects repeatability.