Metodi di Machine Learning per l'Analisi Predittiva di Prestazioni di Squadre in Ambito Sportivo

Candidato
Mirco Ceccarelli

Relatore
Prof. Marco Sciandrone

Correlatore
Dott. Matteo Lapucci

Introduzione del contesto sportivo

- In questa tesi abbiamo considerato la Serie A di Pallavolo maschile
 - Il campionato della Lega Pallavolo Serie A è strutturato in 2 fasi:

```
1ª fase: Regular Season
```

2ª fase: Playoff

- Tutte le **squadre** di Serie A partecipano alla prima fase di **Regular Season.**
- Solo le **prime** *n* **squadre classificate** accedono alla fase dei **Playoff** che assegna a fine stagione il titolo di campioni.

Machine Learning per lo Sport

• Il Machine Learning nello **sport** è utilizzato per

Migliorare le prestazioni sportive dei giocatori e delle squadre Ridurre il rischio di infortuni

Obiettivo della tesi

 Predire a inizio campionato, tramite l'utilizzo di modelli di apprendimento automatico, quali saranno le squadre che accederanno ai i Playoff.

Apprendimento Supervisionato

Per questa tesi è stata utilizzata questa classe di tecniche dell'Apprendimento Automatico.

Un problema risolvibile utilizzando questi metodi è:

• Classificazione: gli output sono costituiti da un numero finito di classi distinte (due nel nostro caso)

Sono stati utilizzati i seguenti modelli di Apprendimento Supervisionato:

- Regressione Logistica
- Support Vector Machine (SVM)

Modello Lineare

Modello Non Lineare

Il Dataset della Lega Pallavolo Serie A maschile

La Lega Pallavolo Serie A ci ha fornito un dataset rappresentante:

- Le statistiche (battuta, ricezione, attacco, muro), sia positive che negative, di tutti i giocatori (Centrali, Liberi, Palleggiatori, Schiacciatori) di ogni squadra per le stagioni che vanno dal 2001/2002 al 2017/2018.
- Informazioni relative ai Playoff $\begin{cases} 1 & \text{se Squadra } i \text{ Sì Playoff} \\ 0 & \text{se Squadra } i \text{ No Playoff} \end{cases}$ e **Posizione** in classifica.

Stagione	Squadra	C1_bat_pos	C1_bat_neg	C1_ric_pos	C1_ric_neg	C1_att_pos	C1_att_neg	C1_mur_pos	C1_mur_neg	C2_bat_pos
2001	Asystel Milano	0,305479608	0,633914331	0,563636364	0,375757576	0,898312572	0,041081368	0,832374377	0,107019563	0,301570681
2001	Borgocanale Taranto	0,256178288	0,525639894	0,706158358	0,075659824	0,718582888	0,063235294	0,675206612	0,10661157	0,223145933
2001	Bossini Sangemini Montichiari	0,257604256	0,293910896	0,472727273	0,078787879	0,503257576	0,048257576	0,456426332	0,095088819	0,159543777
2001	Casa Modena Salumi	0,429498261	0,412925981	0,727548209	0,114876033	0,789885956	0,052538286	0,778171546	0,064252696	0,18103109
2001	Icom Latina	0,1904	0,427781818	0,449586777	0,168595041	0,577448908	0,040732911	0,581385281	0,036796537	0
2001	Itas Diatec Trentino	0,206336088	0,44214876	0,459343434	0,189141414	0,61003713	0,038447718	0,613990974	0,034493875	0,155515832
2001	Lube Banca Marche Macerata	0,325219485	0,395992637	0,495833333	0,225378788	0,672541365	0,048670757	0,662735463	0,058476658	0,208605779
2001	Maxicono Parma	0,258035947	0,451054962	0,607792208	0,101298701	0,671272727	0,037818182	0,671770335	0,037320574	0,162085976
2001	Noicom Brebanca Cuneo	0,35906895	0,525779534	0,767981704	0,116866781	0,823503947	0,061344538	0,660606061	0,224242424	0,341467629
2001	Roma Volley	0,053620955	0,12213662	0,043939394	0,131818182	0,160340245	0,015417331	0,164772727	0,010984848	0,017112299
2001	Sempre Volley Padova	0,274263764	0,489372599	0,624793388	0,138842975	0,726686217	0,036950147	0,617408124	0,14622824	0,074618526
2001	Sira Cucine Ancona	0,195854922	0,404145078	0,458823529	0,141176471	0,573248408	0,026751592	0,534782609	0,065217391	0
2001	Sisley Treviso	0,301237374	0,613914141	0,721561772	0,193589744	0,861899164	0,053252351	0,828583129	0,086568387	0,27199123
2001	Yahoo! Italia Volley Ferrara	0,21630094	0,38369906	0,56	0,04	0,564516129	0,035483871	0,506896552	0,093103448	0,205194805
2002	Asystel Milano	0,197083224	0,354431927	0,551515152	0	0,507974482	0,04354067	0,506797707	0,044717445	0,108835187
2002	Bossini Gabeca Montichiari	0,286142164	0,435069957	0,607336523	0,113875598	0,681404959	0,039807163	0,655146889	0,066065232	0,237684538
2002	Canadiens Verona	0,097466977	0,29041181	0,387878788	0	0,358787879	0,029090909	0,349090909	0,038787879	0
			-	-		-			-	

1	5 10 7 4 11
1	7
1	4
0	11
0	9
1	1
1	3
1	6
0	14
0	13
0	12
1	2
1	8
1	4
0	10
0	13

Struttura Modello di Apprendimento

• Possibili azioni per ciascun ruolo:

Baseline

- È stata eseguita un **analisi di base** per capire quali **risultati** aspettarsi di **ottenere** e possibilmente **migliorare**.
- Si è osservato quante **squadre** entrate ai **Playoff** in una **determinata stagione**, fossero riuscite a **rientrare** ai **Playoff** anche nella **stagione successiva**.

Il risultato è che il **72**% delle squadre che partecipa in una stagione ai Playoff, è riuscita ad accedervi anche nella stagione precedente.

Analisi dei Risultati per la Regressione Logistica

• Divisione del Dataset: Test Set Stagioni dal 2001/02 al 2014/15

Stagioni dal 2015/16 al 2017/18

- Viene utilizzata come metrica: F1_score
- Cross-Validation per individuare il valore ottimale dell'iperparametro C tra $[2^{-8}, 2^{-7}, \dots, 2^7]$.
- L'esperimento è stato eseguito 50 volte

Classificatore	F1_score Medio
Regressione Logistica	75,9%

Analisi dei Risultati per SVM Modello Lineare

• Divisione del Dataset: Test Set Stagioni dal 2001/02 al 2014/15

Stagioni dal 2015/16 al 2017/18

- Viene utilizzata come metrica: F1_score
- Cross-Validation per individuare il valore ottimale dell'iperparametro C tra $[2^{-8}, 2^{-7}, \dots, 2^7]$.
- L'esperimento è stato eseguito 50 volte

Classificatore	Tipo di Kernel	F1_score Medio
Support Vector Machine (SVM)	lineare	73,3%

Analisi dei Risultati per SVM Modello Non Lineare

- Divisione del Dataset: $\begin{cases} \text{Training Set} & \longrightarrow & \text{Stagioni dal } 2001/02 \text{ al } 2014/15 \\ \text{Test Set} & \longrightarrow & \text{Stagioni dal } 2015/16 \text{ al } 2017/18 \end{cases}$
- Viene utilizzata come metrica: F1_score
- Cross-Validation per individuare il valore ottimale dell'iperparametro \mathbf{C} e γ (parametro del kernel 'gaussiano'). Dove $C \in [2^{-8}, 2^{-7}, \dots, 2^7]$ e $\gamma \in [\gamma_0 \cdot 2^i | i = -8, \dots, 7]$ con $\gamma_0 = \frac{1}{numeroFeatures} = \frac{1}{20}$
- L'esperimento è stato eseguito 50 volte

Classificatore	Tipo di Kernel	F1_score Medio
Support Vector Machine (SVM)	gaussiano	82,5%

Esempio di output per il test su una determinata Stagione

Squadra	Stagione	PlayoffProbability	PredictionPlayoff	RealPlayoff	Posizione	Errore	
Azimut Modena	2017	0.982443	1	1	3	0	
BCC Castellana Grotte	2017	0.067559	0	0	14	0	
Bios Indexa Sora	2017	0.548391	0	0	13	0	
Bunge Ravenna	2017	0.626912	0	1	8	1	
Calzedonia Verona	2017	0.735027	1	1	5	0	
Cucine Lube Civitanova	2017	0.980922	1	1	2	0	
Diatec Trentino	2017	0.888063	1	1	4	0	
Gi Group Monza	2017	0.652279	0	0	10	0	
Kioene Padova	2017	0.571705	0	0	9	0	
Revivre Milano	2017	0.739374	1	1	6	0	
Sir Safety Conad Perugia	2017	0.987725	1	1	1	0	
Taiwan Excellence Latina	2017	0.519721	0	0	11	0	
Tonno Callipo Calabria Vibo Valentia	2017	0.687317	1	0	12	4	
Wixo LPR Piacenza	2017	0.929060	1	1	7	0	

Numero Squadre Playoff= 8
Numero Squadre Stagione=14

C_max e gamma_max=[(16, 0.025)]

Sviluppi futuri

 Raffinare i modelli di apprendimento automatico proposti, con lo scopo di renderli più robusti.

Integrando dati relativi alle squadre nel loro complesso.

• Rendere completo il Dataset finale

Comprendendo anche i giocatori provenienti da altri campionati.

• Utilizzare queste tecniche di predizione per altri Sport.

Metodi di Machine Learning per l'Analisi Predittiva di Prestazioni di Squadre in Ambito Sportivo

Candidato
Mirco Ceccarelli

Relatore
Prof. Marco Sciandrone

Correlatore
Dott. Matteo Lapucci