# OSPC Dynamic Scoring Model: An Open Source Model for Dynamic Revenue Estimates

April 1, 2015

#### Overview of the Model

- Households
  - forward looking
  - Live up to 100 periods
  - endogenous labor supply and savings decisions
- Firms
  - fully dynamic
  - endogenous investment and financial policy
- Government
  - taxes, transfers, production of public and private goods, can run deficits
- Rest of world: TBD (currently closed economy)



## What's unique?

- 100-period lived households (80 working periods)
- Rich population dynamics (fertility, mortality, immigration)
- Multiple treatments of bequests
- · Large set of production industries
- Multiple assumptions about government budget balance
- Nonlinear solution of steady-state and transition path
- Integration of the microsimulation model
- Open source



### Household Sector

- OLG model with 100-period-lived agents
- Realistic Demographics: Fertility, Immigration, Mortality
- Realistic Earnings Ability Calibration
- Households Leave Intentional and Unintentional Bequests

### **Production Sector**

- Infinitely lived, representative firms for each production industry
- Firms finance investment with debt, equity, and retained earnings
- Price of capital varies across production industry

### **Model Dimensions**

- · Households:
  - 80 years of economic life
  - 7 lifetime income groups
  - 17 consumption goods
- Firms:
  - 24 production industries
  - Corporate and non-corporate sectors in most industries

# **Consumption Goods**

|    | Consumption Good Category                                |  |  |
|----|----------------------------------------------------------|--|--|
| 1  | Food                                                     |  |  |
| 2  | Alcohol                                                  |  |  |
| 3  | Tobacco                                                  |  |  |
| 4  | Household fuels and utilities                            |  |  |
| 5  | Shelter                                                  |  |  |
| 6  | Furnishings                                              |  |  |
| 7  | Applicances                                              |  |  |
| 8  | Apparel                                                  |  |  |
| 9  | Public transportation                                    |  |  |
| 10 | New and used cars, fees, and maintenance                 |  |  |
| 11 | Cash contributions and personal care (personal services) |  |  |
| 12 | Financial services                                       |  |  |
| 13 | Reading and entertrainment (recreation)                  |  |  |
| 14 | Household operations (nondurables)                       |  |  |
| 15 | Gasoline and motor oil                                   |  |  |
| 16 | Health care                                              |  |  |
| 17 | Education                                                |  |  |



### **Production Industries**

| Industry Number | NAICS Code           | Industry                                         |
|-----------------|----------------------|--------------------------------------------------|
| 1               | 11                   | Agriculture, Forestry, Fishing and Hunting       |
| 2               | 211                  | Oil and Gas Extraction                           |
| 3               | 212 and 213          | Mining and Support Activities for Mining         |
| 4               | 22                   | Utilities                                        |
| 5               | 23                   | Construction                                     |
| 6               | 32411                | Petroleum Refineries                             |
| 7               | 336                  | Transportation Equipment Manufacturing           |
| 8               | 3391                 | Medical Equipment and Supplies Manufacturing     |
| 9               | Other codes in 31-33 | Manufacturing                                    |
| 10              | 42                   | Wholesale Trade                                  |
| 11              | 44-45                | Retail Trade                                     |
| 12              | 48-49                | Transportation and Warehousing                   |
| 13              | 51                   | Information                                      |
| 14              | 52                   | Finance and Insurance                            |
| 15              | 53                   | Real Estate and Rental and Leasing               |
| 16              | 54                   | Professional, Scientific, and Technical Services |
| 17              | 55                   | Management of Companies and Enterprises          |
| 18              | 56                   | Administrative and Support                       |
| 19              | 61                   | Educational Services                             |
| 20              | 62                   | Health Care and Social Assistance                |
| 21              | 71                   | Arts, Entertainment, and Recreation              |
| 22              | 72                   | Accommodation and Food Services                  |
| 23              | 81                   | Other Services (except Government Enterprise)    |
| 24              | 92                   | Government Enterprise                            |

## Population Dynamics

New cohort every year.

Becomes economically active at age E=20. Immigration and mortality over time.

$$\omega_{1,t+1} = \sum_{s=1}^{E+S} f_s \omega_{s,t} \quad \forall t$$
 $\omega_{s+1,t+1} = (1 + i_s - \rho_s) \omega_{s,t} \quad \forall t, 1 \le s \le E + S - 1$ 
 $N_t \equiv \sum_{s=E}^{E+S} \omega_{s,t} \quad \forall t$ 

▶ demographics

# Population Dynamics – Population Distribution

#### Initial and Steady State Population Distributions by Age





## Households – Utility Function

Utility from Consumption, Leisure and Bequests Mortality Risk; Leisure Utility Weights Vary by Age

$$U_{j,s,t} = \sum_{u=0}^{E+S-s} \beta^{u} \left[ \prod_{v=s-1}^{s+u-1} (1 - \rho_{v}) \right] u \left( c_{j,s+u,t+u}, n_{j,s+u,t+u}, b_{j,s+u+1,t+u+1} \right)$$

$$u \left( c_{j,s,t}, n_{j,s,t}, b_{j,s+1,t+1} \right) = \frac{\left( c_{j,s,t} \right)^{1-\sigma} - 1}{1 - \sigma}$$

$$+ e^{g_{y}t(1-\sigma)} \chi_{s}^{n} \left( b \left[ 1 - \left( \frac{n_{j,s,t}}{\tilde{I}} \right)^{v} \right]^{\frac{1}{v}} + k \right)$$

$$+ \rho_{s} \chi^{b} \frac{\left( b_{j,s+1,t+1} \right)^{1-\xi} - 1}{1 - \xi}$$

Overview

## Households – Budget Constraint

Sources: Labor and Capital Income, Bequests Uses: Consumption, Savings and Taxes

$$c_{j,s,t} + b_{j,s+1,t+1} + T_{j,s,t} \le w_t e_{j,s} n_{j,s,t} + (1 + r_t) b_{j,s,t} + \frac{BQ_{j,t}}{\lambda_j N_t}$$
  
 $b_{j,1,t} = 0$ 

$$BQ_{j,t+1} = (1 + r_{t+1})\lambda_j \left( \sum_{s=E+1}^{E+S} \rho_s \omega_{s,t} b_{j,s+1,t+1} \right) \quad \forall j,t$$

# Households – Earnings Abilities

#### Seven ability groups:

- Top 1%
- Top 2-10%
- Top 11-20%
- Top 21-30%
- Top 31-50%
- Top 51-75%
- Bottom 25%

Overview Households Firms Government Solution and Simulation Summary

## Households – Earnings Abilities

#### Figure: Log of Earnings Abilities by Age and Type





### Households - Tax Structure

$$T_{j,s,t}^{I} = \tau^{I}(\hat{a}_{j,s,t})a_{j,s,t}$$
where  $\hat{a}_{j,s,t} \equiv \frac{a_{j,s,t}}{e^{g_{y}t}}$  and  $a_{j,s,t} \equiv (r_{t}b_{j,s,t} + w_{t}e_{j,s}n_{j,s,t})$ 

$$T_{j,s,t}^{P} = \begin{cases} \tau^{P}w_{t}e_{j,s}n_{j,s,t} & \text{if } s < R \\ \tau^{P}w_{t}e_{j,s}n_{j,s,t} - \theta_{j}w_{t} & \text{if } s \geq R \end{cases}$$

$$T_{j,t}^{BQ} = \tau^{BQ}\frac{BQ_{j,t}}{\lambda_{j}\tilde{N}_{t}}$$

$$T_{j,s,t}^{W} = \tau^{W}(\hat{b}_{j,s,t})b_{j,s,t}, \quad \text{where} \quad \hat{b}_{j,s,t} \equiv \frac{b_{j,s,t}}{e^{g_{y}t}}$$

$$T_{j,s,t} = T_{j,s,t}^{I} + T_{j,s,t}^{P} + T_{j,t}^{BQ} + T_{j,s,t}^{W} - T_{t}^{L}$$

### Households – Tax Structure

Say something about how tax functions estimated from microsimulation output...

### Households - Income Tax

### Log scale versus normal scale





#### Firms – Solutions

#### Perfectly Competitive CRS Firms Labor-augmenting Technology

$$Y_{t} = AK_{t}^{\alpha} \left(e^{g_{y}t}L_{t}\right)^{1-\alpha} \quad \forall$$

$$W_{t} = (1-\alpha)\frac{Y_{t}}{L_{t}} \quad \forall t$$

$$r_{t} = \alpha\frac{Y_{t}}{K_{t}} - \delta \quad \forall t$$

#### Government

Government collects income, payroll, bequest and wealth taxes and refunds them lump-sum.

$$T_t^L = \frac{1}{\tilde{N}_t} \sum_{s} \sum_{i} \left( T_{j,s,t}^I + T_{j,s,t}^P + T_{j,s,t}^{BQ} + T_{j,s,t}^W \right)$$

# Stationarizing the Model

#### **Table: Stationary variable definitions**

| Soi                                                                                                 | Not                                                                |                                                                                  |                      |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|
| $e^{g_y t}$                                                                                         | $	ilde{	extsf{N}}_t$                                               | $e^{g_y t} 	ilde{N}_t$                                                           | growing <sup>a</sup> |
| $\hat{c}_{j,s,t} \equiv rac{c_{j,s,t}}{e^{g_{y}t}}$                                                | $\hat{\omega}_{s,t} \equiv rac{\omega_{s,t}}{	ilde{	extsf{N}}_t}$ | $\hat{Y}_t \equiv rac{Y_t}{e^{g_y t} 	ilde{N}_t}$                               | $n_{j,s,t}$          |
| $\hat{b}_{j,s,t} \equiv rac{b_{j,s,t}}{e^{g_y t}}$                                                 | $\hat{L}_t \equiv rac{L_t}{	ilde{\mathcal{N}}_t}$                 | $\hat{\mathcal{K}}_t \equiv rac{\mathcal{K}_t}{e^{g_y t} 	ilde{\mathcal{N}}_t}$ | $r_t$                |
| $\hat{\textit{bq}}_{j,s,t} \equiv rac{\textit{bq}_{j,s,t}}{\textit{e}^{\textit{g}_{\textit{y}}t}}$ |                                                                    | $\hat{BQ}_{j,t} \equiv rac{BQ_{j,t}}{e^{g_{y}t}	ilde{N}_{t}}$                   |                      |
| $\hat{w}_t \equiv rac{w_t}{e^{g_y t}}$                                                             |                                                                    |                                                                                  |                      |
| $\hat{y}_{j,s,t} \equiv rac{y_{j,s,t}}{e^{g_{y}t}}$                                                |                                                                    |                                                                                  |                      |

<sup>&</sup>lt;sup>a</sup> The interest rate  $r_t$  is already stationary because  $Y_t$  and  $K_t$  grow at the same rate. Individual labor supply  $n_{i,s,t}$  is stationary.

## Steady-State: 2JS equations

#### Definition (Stationary steady-state equilibrium)

A non-autarkic stationary steady-state equilibrium in the overlapping generations model with S-period lived agents and heterogeneous ability  $e_{j,s}$  is defined as constant allocations  $\hat{n}_{j,s,t} = \bar{n}_{j,s}$ ,  $\hat{b}_{j,s+1,t+1} = \bar{b}_{j,s+1}$ , and  $\hat{b}q_{j,E+S+1,t+1} = \bar{b}q_{j,E+S+1}$  and constant prices  $\hat{w}_t = \bar{w}$  and  $\hat{r}_t = \bar{r}$  for all j, s, and t such that the following conditions hold:

- 1 households *J* optimize according to 2*S* Euler equations,
- 2 firms optimize according to 2 FOCs,
- 3 markets clear according to 2 market clearing conditions, and
- 4 the population has reached its stationary steady state distribution  $\bar{\omega}_s$  for all ages s.

### Stationary non-steady-state equilibrium

#### Definition (Stationary non-steady-state equilibrium)

A non-autarkic stationary non-steady-state equilibrium in the overlapping generations model with S-period lived agents and heterogeneous ability  $e_{j,s}$  is defined as allocations  $n_{j,s,t}$ ,  $\hat{b}_{j,s+1,t+1}$ , and  $\hat{bq}_{j,E+S+1,t+1}$  and prices  $\hat{w}_t$  and  $r_t$  for all j, s, and t such that the following conditions hold:

- households have symmetric beliefs  $\Omega(\cdot)$  about the evolution of the distribution of savings, and those beliefs about the future distribution of savings equal the realized outcome (rational expectations),
- 2 households j optimize according to 2S
- 3 firms optimize according to 2 FOCs, and
- 4 markets clear according to 2 market clearing conditions.



# Summary

- Big model
- Efficient code
- · Year by year effects
- Integration with micro model