

Automated and Connected Driving Challenges

Section 4 – Vehicle Guidance

Introduction

Tasks in Section 4

Bastian Lampe

Institute for Automotive Engineering

Introduction – Tasks in Section 4

RWTHAACHEN UNIVERSITY

Navigation

Subdivided into three Subsections: Time Horizon 1 h Implement a module to plan a route on a given map using Lanelet2 **Examine** *osm* map format **Navigation** Using **projection methods** for coordinate transformation **Strategic Level Initializing** a **routing graph Performing graph-search** to find shortest path **Post-processing** of the route Guidance 1 s **Tactical Level Stabilization** 1 ms **Operative Level**

Image: ika

Introduction – Tasks in Section 4

RWTHAACHEN UNIVERSITY

Guidance

Subdivided into three Subsections:

Trajectory-Planning using a direct multiple shooting approach

- Implement the system dynamics model
- **Integrate** different cost terms regarding:
 - Lateral and longitudinal jerk
 - Steering rate
 - Velocity deviation
 - Dynamic objects
- Using a Closed-Loop-Simulation within the ROS-Framework

Introduction – Tasks in Section 4

Stabilization

Subdivided into three Subsections:

Trajectory-Control using Feedback-PID-Controllers

- Based on the previously implemented trajectory-planning approach
- Derive odometry equations
- Calculate control variables
- Implement the output equation of a PID-Controller
- Integrate a longitudinal and a lateral controller
- Using an inverse single-track model

