Типове на моногенно унаследяване

X - свързано унаследяване – генеалогични критерии, закономерности, особености. Заболявания с X – свързан тип на унаследяване

Полово свързани гени

- Гените, локализирани върху X или Y хромозомата се наричат полово свързани гени
- Мъжете са хемизиготи по отношение на гените върху X – хромозомата
- Жените унаследяват по една X хромозома от всеки родител

- Синовете и дъщерите на жените хетерозиготи за X – свързан ген могат да унаследят патологичния алел с вероятност 50%
- Директно предаване на X свързания белег от баща на син не може да се осъществи

X – доминантно унаследяване

- Рядко срещащи се състояния
- Мъжкият пол е по-тежко засегнат (някои гени са с летален ефект)
- Жените предават белега на половината от своите деца (дъщери и синове), т.е. генетичният риск е 50%
- Мъжете предават патологичния алел на всички свои дъщери и на **нито един** от своите синове

X – доминантно унаследяване

Pedigree 5. X-linked dominant inheritance.

Критерии за X – доминантно унаследяване

- Всеки болен (мъж или жена) има поне един болен родител
- Рискът за раждане на болни деца е 50% при всяка бременност
- Здравите родственици имат здраво потомство
- Никога не се наблюдава предаване от мъж на мъж (разлика с АД унаследяване)

X – доминантно унаследяване

X – доминантно унаследяване

АД	хд
При хетерозиготи	Хемизиготни мъже Хетерозиготни жени
Вертикален характер	Вертикален характер
Еднаква честота на тежест при двата пола	Мъжкият пол е по-тежко засегнат Женският пол е по-леко засегнат
50% риск за поява или повторение на заболяването в семейството	Болните майки предават 50% на синове и дъщери Болните бащи предават само на дъщерите си
Всяко засегнато дете има болен родител	Всяко засегнато дете има болен родител
Непълна пенетрантност	Непълна пенетрантност
Вариабилна експресивност	
Здравите родственици имат здраво поколение	Здравите родственици имат здраво поколение

Rett синдром

- Rett е нервнопсихическо нарушение в детска възраст, характеризиращо се с нормално развитие след раждането, последвано от загуба на целенасочени движения на ръцете, стереотипни движения на ръцете, забавено нарастване на мозъка и главата, променена походка, припадъци и умствено затруднение. Засяга преди всичко женски пол.
- За пръв път описан от Andreas Rett през 1966.
- Честота 1 на 10 000 15 000 раждания.

	Задължителни критерии	Допълнителни критерии
	Нормално пре- и перинатално развитие	Гърчове
	Загуба на вече придобити умения (напр. моторни и комуникативни)	Абнормна ЕЕГ
	Нормална об. на главичката след раждането и забавяне в нарастването в последствие	Дихателна дисфункция и хипервентилация
	Значително изост. в развитието	Сколиоза/ кифосколиоза
	Стереотипни движения на ръцете	Изоставане в растежа
	Загуба на умението за използване на ръцете	Промяна в мускулния тонус
	Аутистично поведение	Нарушения в ритъма на сън и бодърстване
	Нарушения в походката	Спонт. изблици на смях и плач
	Начало - между 6-18 мес. възраст	Намален отговор на болка

• Класическа форма на синдрома при момчета се наблюдава само в случай на соматичен мозаицизъм или допълнителна X хромозома (синдром на Klinefelter)

Rett синдром

- Етиология loss of function мутации в MECP2 (methyl-CpG-binding protein 2) гена
- Патогенеза МЕСР2 генът кодира нуклеарен протеин, който се свързва към метилираната ДНК. Предполага се, че функцията на МеСР2 е да медиира блокирането на траскрипцията и да упражнява епигенетичен контрол върху гените в съответните метилирани участъци. Следователно нарушенията във функциите на МеСР2 би следвало да водят до неадекватна активация на гени.

Генетичен риск

Около 99.5% от случаите са спорадични, резултат от мутация *de novo* при детето (по-често грешка в сперматогенезата) или унаследена мутация от родител с гонаден мозаицизъм.

 При хетерозиготни жени с нормален фенотип – неслучайна инактивация на едната X-хромозома.

Витамин D – резистентен рахит

- Х доминантен тип на унаследяване
- Хромозомен локус Хр22.2-р22.1
- Ген РНЕХ

делеции

инсерции

nonsense

missense

 По – тежка клинична картина в мъжкия пол: нисък ръст, рахитични промени по дългите кости, genu varum

Хипофосфатемия Хиперфосфатурия

 РНЕХ-гена регулира фосфорната тубулна реабсорбция чрез специфична ендопептидаза, контролираща образуването на фактор (fibroblast growth factor 23), стимулиращ транспорта на НРО4 в бъбречните тубули.

X – рецесивно унаследяване

- Експресия на мутантния алел в женския пол само при хомозиготно състояние
- Патологичният алел винаги се експресира в мъжкия пол
- Белегът се предава от клинично здрави жени носителки на синовете им
- Жените хомозиготи предават белега на всички свои синове

Критерии за X – рецесивно унаследяване

- Засегнат е предимно мъжкия пол
- Родителите на болния са фенотипно здрави, но майката е хетерозиготен носител на патологичния ген.
- Общият риск за потомството на хетерозиготна майка е 25 %, като:
- ✓ Боледуват 50% от момчетата
- ✓ Дъщерите са здрави, но 50% са носителки
- ✓ Болен баща има най-често здраво потомство
- ✓ Дъщерите са здрави, но облигатни хетерозиготи
- ✓ Синовете са фено и генотипно здрави

Х – рецесивно унаследяване

- В мъжкия пол белегът винаги се експресира
- Жените хомозиготи проявяват клиничния фенотип за разлика от хетерозиготите
- Засегнатите мъже унаследяват белега от клинично здрави жени
- Засегнатите жени унасл. заболяването от болен баща и болна майка или майка хетерозигот

Родословна схема на X-рецесивно заболяване. Индивидите III-3 и III-4 не могат да бъдат разграничени фенотипно

Мускулна дистрофия Duchenne/Becker

Абривиатура: DMD

Ген: DYS

Генен продукт: dystrophin

Локус: Хр21.2

Честота

- DMD е най-честата мускулна дистрофия в детската възраст, 1 / 3500 момчета
- Мускулна дистрофия тип Becker 1/20 000
- В една трета от случаите се касае за спонтанна мутация, в останалите случаи заболяването се унаследява **Х-рецесивно**. В около 20% от новопоявилите се случаи се касае за гонаден мозаицизъм.

Ham-ronemmat rem B 40Belikma rehom

DMD/BMD Gene

XP 21 locus

2.4 million base pairs

Exons 1 - 79

"Hotspots" Exons 3 - 19 Exons 42 - 60

Craig M. McDonald, PMScR. Seminar

Дистрофинът в своя N-край се свързва с цитоплазмения актин, а в С-края се свързва с дистрогликани в дистрофин асоциирани протеинни (DAP) комплекси на цитоплазмената мембрана.

Дистрофинът стабилизира клетъчната мембрана и цитоскелета.

При DMD липсата на дистрофин води до намаляване и на DAP комплекса.

EXTRACELLULAR MATRIX

MUSCLE FIBRE

Клинични прояви – мускулна слабост (начало 3-5 год. възраст)

- Разпространение
 Проксимално > Дистално
 Симетрично
 Горни и долни крайници
- Клиничен ход
 Намаляване на моторната функция в първите 2-3г. от началото на КК
 Постоянен регрес на мускулната сила

Белег на <u>Gower</u>: Изправяне с помощта на ръцете

Нарушения в походката: 9 – 13г.

Псевдохипертрофия на подбедриците

Мускулна хипертрофия

- Предимно засягане на подбедриците
- Мускулната хипертрофия може да бъде генерализирана
- Прогресиращ характер
- Най-често в резултат на мускулна фиброза

• Други скелетномускулни прояви

Контрактури Сколиоза

• Други клинични белези

Кардиомиопатия: След 15год. възраст

Умствено изоставане: IQ ~ 88

• Летален изход на заболяването

Между 15 – 25год. възраст поради слабост на дихателната и сърдечната мускулатура

Диагностика

- Серумни проби
- **СК** (креатин киназа) ↑↑↑
- Troponin I ↑
- Чернодробни ензими ↑ AST & ALT

Диагностика

• Мускулна биопсия

Фиброза

Дегенерация на мускулните фибрили

Dystrophin – липсва оцветяване

Други мембранни протеини

- Саркогликани ↓
- Аквапорин 4 ↓

Дистрофинът се оцветява в кафяво в нормалния мускул

Мускулна дистрофия Duchenne

Генотип: DYS

- >96% <u>frameshift</u> мутации
- ➤ 30% от случаите са резултат от нова мутация 10% до 20% от случаите на "нови мутации" са резултат от гонаден мозаицизъм

- Мутациите или делециите, които значимо намаляват дължината или увреждат критични сегменти от дистрофиновия ген водят до фенотипната появата на DMD. Най-значимите мутации засягат големи интрони, както и актин свързващия край на дистрофиновата молекула.
- Мускулната дистрофия Becker корелира с точкови мутации, които запазват рамката на четене или делеции, причиняващи малки структурни промени

DNA анализ на DMD.

Всяка колона съответства на различен пациент с DMD

Western blot

- Линия 1: Дистрофия тип Becker; Дистрофинът е в намалено количество, но с нормален размер.
- Линия 2: Дистрофия тип Becker; Дистрофинът е с намален размер и количество.
- Линия 3: <u>Норма</u>.
- Линия 4: <u>DMD</u>
- Линия 5: <u>DMD</u>; Силно намалено количество на дистрофина.

Хемофилия

Хемофилия

Хемофилия А и В са наследствени нарушения на кръвосъсирването. Те съставляват 90-95% от тежките вродени нарушения на коагулацията. Двете заболявания се разглеждат заедно поради сходство в клиничната картина и тип на унаследяване

Хемофилия A и В Схема на кръвосъсирване

Хемофилия А

• Понижение в нивата на фактор VIII

Честотата на хемофилия А е около
 1/5000 – 10 000 момчета

Генетика

- Генът за фактор VIII (*F8C*) заема около 0.1% от X-хромозомата 186 kb от ДНК
- Мутации –nonsense, missense, делеции (5%)
- В 45% от фамилиите с тежка форма на заболяването се установява <u>инверсия</u>
- Висока честота на новите мутации 1/3 от случаите са спорадични

Клинични и лабораторни находки

- Спонтанно кървене от ранна детска възраст
- Хемартрози
- Ставни деформации
- Удължено АРТТ
- Понижени нива на фактор VIII

Тежка хемофилна артропатия и мускулна хипотрофия

Тежък хроничен артрит, фузия, загуба на хрущял и деформации

Хемофилия В

- Дефицит на фактор IX
- Честота 1на 30 000 мъже
- Ген *F9*, 34 kb
- Точкови мутации и делеции

Синдром на чуплива Х хромозома

Синоними

- FRAX
- Синдром на Martin Bell

Честота

- Популационна честота
 - 1/4000 мъже
 - 1/8000 жени
- По-ниската степен на пенетрантност в женския пол, вариабилната експресивност и X-инактивацията повлияват ефекта на нормалната X-хромозома
- Унаследяване **Х –свързано** (не може да се отнесе към класическото доминантно и рецесивно унаследяване)

Клинични белези

Лек лицев дисморфизъм:
 широко чело
 дълго лице
 големи щръкнали ушни миди
 проминираща брадичка

Клинични белези

- Голям тестикуларен обем в постпубертетния период
- Припадъци
- Аутизъм в над 20% от засегнатите мъже. Аутистично поведение може да се наблюдава и при засегнатите жени.
- Умерено до тежко УИ

Copyright © 2008 by Mosby, Inc., an affiliate of Elsevier Inc.

Идиограма (Giemsa оцветяване)

Синдром на чуплива Х хромозома

Лабораторна диагностика

- Мутацията засяга нестабилен триплет (CGG)_n
- Премутация (55-200 повторения) здрави носители
- Пълна мутация над 200 повторениянастъпва метилация.
- !!! Най-честата форма на унаследяемо умствено изоставане!!!

Синдром на чуплива X хромозома - генотип – фенотип корелация

Брой на триплетните повторения (норма 10-50)	Микроскопски визуализираща се фражилност	Ителигентност
Мъже		
50-200 (премутация)	Не	Нормална (нормални трансмитиращи мъже)
200-2000 (пълна мутация)	Да (в над 50% от клетките)	УИ
Жени		
50-200 (премутация)	Не	Нормална
200-2000 (пълна мутация)	Да (в под 10% от клетките)	50% нормална, 50% леко УИ

Полови хромозоми и полова диференциация

- •До 42 гестационен ден от развитието си мъжкият и женски ембрион са неразграничими!
- Волфовите структури се появяват на 30 ден, а Мюлеровите на 40 48 ден и са налични както в мъжа така и в жената!
- Полова диференциация при човека каскада от процеси !!!

Разстройства на половата диференциация и развитие

Женски псевдохермафродитизъм (46,XX и яйчници, но вирилизирани външни генитали)

- 1. Вродена надбъбречна хиперплазия (21- или 11 хидроксилазен дефицит)
- 2 . Майчин прием на андрогени, прогестерон, андроген-секретиращ тумор
- 3. Локализирана малформация

Мъжки псевдохермафродитизъм (46,ХУ и тестиси, но неразвити външни генитали)

1. Андрогенна нечувсвителност

пълна (тестикулна феминизация)

непълна (непълна тестикулна феминизация, синдром на Reifenstein)

- 2. Вродени грешки на тестостероновата биосинтеза (ензимен дефект) дефицит на 5α редуктаза, 17α хидроксилаза, 17 кетостероидредуктаза
- 3. 45,X/46,XУ мозайка (синдром на Turner)

Истински хермафродизъм (46,XX; 46,XУ; мозайка; и яйчникова и тестикуларна тъкан)

46,ХХ с У налични секвенции; 46,ХХ/46,ХУ химери

Семиниформена тубулна дисгенезия (синдром на Klinefelter)

47,XXY; 48,XXXY; 48,XXYY; 49,XXXXY

Овариална дисгенезия (синдром на Turner)

45,X; 46,X,i(Xq); 46,X,del(Xp); 46,X,r(X)

___ двусмислен пол

хипогонадизъм в пубертет

Карта на пол-определящата област в У хромозомата

Генът наречен SRY (Sex-determining Region Y) играе критична роля за определяне на гонадния пол. Този 35 кв участък от У хромозомата е минималното количество ДНК от У хромозомата необходима за полова реверсия при 46, XX мъже.

Поведение при състояния на двусмислен пол (ambiguous genitalia)

Анамнеза: медикация с вирилизиращ ефект по време на бременност, фамилна история

Обективно изследване: генитална хиперпигментация, асиметрия на лабиоскроталните гънки, лицев дисморфизъм, палпация на гонади, ултразвуков преглед за търсене на матка или тестиси в коремната кухина

Лабораторни изследвания: електролити, глюкоза, албумин в урината, урея, 17 ОН прогестерон, гонадна биопсия, кариотип

Кариотипен пол ≠ граждански (паспортен) пол

Синдром на андрогенна нечувствителност (синдром на Morris, тестикуларна феминизация)

- Унаследяване X-рецесивно
- Честота 1/20 000 живородени
- Молекулярен дефект нарушена функция на андрогенния рецептор (Xq11)
- Първичната диференциация на мъжкия пол зависи от андрогенните хормони тестостерон и дихидротестостерон (DHT), произвеждани от феталните тестиси. Мутациите в андрогенния рецептор възпрепятстват нормалното свързване между лиганд и рецпторна молекула и ембрионът се развива като женски. Освен андрогени клетките на тестисите синтезират анти-Мюлеров хормон, което води до закърняване на структурите, от които биха се развили мат. тръби, матка и горната част на влагалището

Фенотип

- Фенотипно нормални момиченца при раждането, възможно е откриването на двустранна ингвинална херния, съдържаща задържаните тестиси
- Аменорея
- По време на пубертетното развитие тестисите синтезират голямо количество тестостерон, който се превръща в естрогени и се оформя нормален бюст, наблюдава се намалено пубисно окосмяване
- Дифернциална диагноза
 Парциална андрогенна нечувствителност
 46,ХУ жени (SRY mutations)
- Поведение

Отстраняване на тестисите (опасност от малигнизация)

Хормонзаместителна терапия за индуциране на нормално пубертетно развитие и профилактика на ранна остеопороза

Оперативна корекция на влагалището

