

SOLUÇÕES

Nível 4

1. Alternativa D

Dentre as figuras apresentadas, somente a D tem a parte cinza correspondente a 1/3 da área total, pois 3/9 = 1/3. Nas demais, a parte cinza corresponde à metade da figura, ou seja, a ½ da área total.

2. Alternativa D

A única conta que não dá 9 é 256/16, que resulta em 16.

3. Alternativa B

As faces opostas do cubo são quadrados alternados na sua planificação. Olhando os três quadrados na vertical de cada uma das planificações, vemos que em A temos 1 + 5 = 6, em C temos 1 + 3 = 4 e em E temos 1 + 2 = 3. Restam duas possibilidades, B e D, em que 1 + 6 = 7. Olhando na horizontal, em D vemos que 3 + 2 = 5, logo D não é a planificação. Em B vemos que 2 + 5 = 3 + 4 = 7.

4. Alternativa B

A distância total a ser percorrida no desvio é 200 + 800 + 100 + 300 + 200 = 1600 metros. Logo, os esportistas devem caminhar 1600 – 500 = 1100 metros a mais.

5. Alternativa E

O filho menor mede aproximadamente 77 cm. O dobro de 77 é 154. Subtraindo 42 obtemos a altura do filho maior. Assim, a altura do filho maior é aproximadamente 154 – 42 = 112 cm.

Outra solução: O filho menor mede aproximadamente entre 70 cm e 80 cm, então o filho maior não pode ter uma altura igual ou maior do que 2 x 80 – 42 = 160 – 42 = 118 cm. Assim, a altura do filho maior só pode ser a que está marcada com a letra E.

6. Alternativa D

O preço total de todas as camisetas vendidas foi $100 \times 50 + 20 \times 200 + 10 \times 300 + 5 \times 400 = 14000$ reais. A quantidade de camisetas vendidas foi 100 + 200 + 300 + 400 = 1000; logo o preço médio de uma camiseta foi de 14000/1000 = 14 reais.

7. Alternativa D

Os dois triângulos brancos têm a mesma área, pois têm as mesmas medidas de base (25 cm) e de altura (40 cm). Logo, a área total dos dois triângulos brancos é 1000 cm². Assim, a área da parte cinza é 50 x 40 – 1000 = 1000 cm².

8. Alternativa A

Decompomos as figuras em triângulos equiláteros menores, conforme a ilustração:

Os 12 triângulos internos dos hexágonos têm a mesma área que os 12 triângulos internos dos triângulos equiláteros maiores, logo, são todos congruentes. Assim, todos os triângulos menores têm a mesma medida de lado que chamaremos de *a*. O perímetro de um hexágono é, então, 6*a*, igual ao perímetro de um triângulo equilátero maior.

9. Alternativa B

Observe os pontos A e B que estão na mesma reta horizontal na figura abaixo. A corda entre os pontos A e B ficará 100 metros mais curta se o caminhar andar 100 m na direção indicada. Como a roldana atrelada ao bloco divide ao meio esse pedaço da corda, concluímos que o bloco subirá 50 metros.

10. Alternativa C

Se retirarmos o 33 e seu número diametralmente oposto dos 150 números distribuídos em volta da circunferência, ficamos com 148 números, metade deles em um dos arcos (que vai do 33 ao diametralmente oposto a ele) e a outra metade no arco complementar (que vai do diametralmente oposto ao 33). Logo o número diametralmente oposto ao 33 é

$$33 + [(150 - 2)/2] + 1 = 33 + 74 + 1 = 33 + 75 = 108.$$

11. Alternativa C

Caso 1) Suponha que Amélia fala verdade, então Beatriz também fala a verdade e Camila mente. Como Amélia fala verdade, Débora fala mentira.

	Amélia	Beatriz	Camila	Débora
Fala verdade	sim	sim		
Fala mentira			sim	sim

Caso 2) Suponha agora que Amélia seja mentirosa, então Beatriz também é mentirosa e, portanto, Camila diz a verdade. Assim, como Amélia mente, Débora também mente e concluímos que Amélia fala a verdade. Mas Amélia não pode dizer a verdade e ao mesmo tempo, dizer mentira.

Portanto, o caso 2) não é possível. Somente o caso 1) ocorre e exatamente 2 amigas mentem (Camila e Débora).

	Amélia	Beatriz	Camila	Débora
Fala verdade	???	sim	sim	
Fala mentira	sim			sim_

12. Alternativa B

A única possibilidade é 52 x 7 = 364. As outras possibilidades podem ser sistematicamente descartadas, testando-se os valores de R e J. Logo, P representa o algarismo 3.

13. Alternativa D

Denote por a a medida do ângulo A. O triângulo ABP é isósceles, logo, os ângulos da base medem ambos a, o ângulo BPC é externo ao triângulo ABP e portanto mede 2a. Mas o triângulo PBC também é isósceles e tem base PC, logo o ângulo em C mede 2a. Como ABC é isósceles, o ângulo ABC mede 2a. Somando os ângulos internos do triângulo ABC, chegamos a $2a + 2a + a = 5a = 180^\circ$, donde $a = 36^\circ$.

14. Alternativa E

Sejam a, b, c e d as medidas da peça

O perímetro da Figura 1 é 6a + 6b + 4c - 2c = 6a + 6b + 2c

O perímetro da Figura 2 é 6a + 6b + 2c - 2c + 2d = 6a + 6b + 2d.

Como c < d, concluímos que o perímetro da Figura 1 é menor do que o perímetro da Figura 2, embora as áreas sejam iguais, pois ambas são feitas com a mesma quantidade de peças idênticas na forma de um trapézio.

15. Alternativa B

 $x^3 - x^2y = x^2 (x - y) = 49$. Logo, x^2 é positivo e é fator de 49. Os únicos fatores naturais de 49 são 1, 7 e 49.

Se $x^2 = 1$ então x = 1 pois x > 0

Sendo x = 1, então 1 - y = 49 e y = -48

Se $x^2 = 7$, então x não é inteiro.

Se $x^2 = 49$, então x = 7 pois x > 0.

Sendo x = 7, então 7 - y = 1 e y = 6.

Somente (7,6) satisfaz o enunciado.

16. Alternativa C

Aárea da região cinza é a soma das áreas do trapézio APQD e trapézio PBCQ. Observe a figura. O primeiro trapézio tem área [(10+5)/2].h e a área do segundo é [(10+5)/2]. (10 – h). Somando, obtemos que a área da região cinza, igual a 75 cm².

17. Alternativa C

Se o teto for azul, podemos pintar as 4 paredes de $4! = 4 \times 3 \times 2 \times 1 = 24$ formas diferentes (não há problemas com as paredes azul e branca).

Se o teto for branco, podemos pintar as 4 paredes de 4! formas diferentes (não há problemas com as paredes azul e branca).

Se o teto não for nem azul nem branco, há 3 escolhas para o teto. Escolhida a cor do teto, escolhemos uma das 4 paredes e a pintamos de branco (4 possibilidades), feita essa escolha, podemos pintar a parede em frente a ela de duas cores, pois não podemos usar o azul. Há 2 possibilidades para se pintar a terceira parede e a cor que resta só pode ser usada para a quarta parede (há, portanto $3 \times 4 \times 2 \times 2 = 48$ possibilidades).

Somando os dois casos, teremos 48 + 48 = 96 maneiras de pintar as paredes da casa.

Uma outra solução: Se não houvesse nenhuma restrição, o número total de maneiras de pintar as paredes seria $5 \times 4 \times 3 \times 2 \times 1 = 120$. Vamos descontar os casos em que há uma parede azul oposta a uma parede branca. Cada uma das 4 paredes laterais poderia ser pintada de azul. Em cada caso, a parede da frente teria que ser branca. Para pintar as 3 paredes restantes, teríamos $3 \times 2 \times 1$ possibilidades. Portanto, o número de casos proibidos seria $4 \times 3 \times 2 \times 1 = 24$. O número total de casos com restrições, seria, portanto, 120 - 24 = 96.

18. Alternativa C

Observemos como maximizar a quantidade de calorias em 4 dias seguidos:

300 300 300 300 (total de 1200) ou

500 200 200 200 (total de 1100).

A primeira opção é a melhor

A cada 4 dias seguidos o cão pode comer 1200 Kcal. Como 30 dividido por 4 dá 7 com resto 2, nos 28 primeiros dias ele pode se alimentar de $7 \times 1200 = 8400$ Kcal; restam ainda dois dias e há 3 opções:

500, 200 ou 300, 300 ou 300, 500.

A melhor é a terceira. Assim o total de calorias maximizado é 8400 + 800 = 9200 Kcal.