Binding Affinity Prediction of Protein-Ligand complexes using Machine Learning

MSc Project

Abdus Salam Khazi

Supervisors: Simon Bray & Alireza Khanteymoori

October 8, 2021

Table of Contents

- Introduction
 - Biological Background
 - Problem Definition.
- 2 Machine Learning / Project Pipeline
- 3 Data Processing and Analysis
 - Data preprocessing
 - Feature Extraction & Selection
 - Measurement resolution
 - Feature Families Correlations
- Machine Learning Models
- Testing strategy
- 6 Results
 - Simple Linear Regression
 - Random Forest Regression
 - Support Vector Regression
 - Rotation Forest Regression
- Discussion
- A & Q 🔞

Biological Background

What are a proteins and ligands?

- **Proteins:** Complex molecules that are work-horses (machines) of a living organism.
- Ligands: Molecules that bind to particular proteins, called receptor proteins.
- Proteins and ligands bind together to form protein-ligand complexes.

Biological Background

Protein-Ligand complexes

- Any potential binding location in the 3D structure of a protein is called a pocket.
- The pockets of proteins only bind to ligands of complementary shape.
- Drugs are just ligand molecules that bind to protein to cause a therapeutic effect.

Figure: Lock and Key hypothesis in molecular docking.

Biological Background

Understanding Protein-Binding Affinity.

- Assume a dynamic system in which protein P and ligand L are binding and unbinding continously.
- Binding affinity between a protein and a ligand is quantified by the K_d , K_i and IC_{50} . Here K_d refers to the dissociation constant, K_i to inhibition constant, and IC_{50} to inhibitory concentration 50%.
- K_d can be quantified by using protein concentration [P] and ligand concentration [L] at equillibrium.

$$K_d = \frac{[P][L]}{[PL]}$$

• K_i and IC_{50} are similarly defined.

Problem Definition

- Determining if a potential drug (ligand) can bind to a target protein is very costly processes [3].
- The project aims to predict the ligand affinity based on previously recorded data ("In-Silico" method). This reduces the drug discovery costs.
- We use PDB databank, which holds PL affinity data collected over many decades.

Figure: Protein-Ligand problem classifcation.

Machine Learning / Project Pipeline

Data Preprocessing

- Anomalies such as NaN (Not a number) values were removed from the data before sending them as input to the model.
- We used PCA (principle component analysis) to find that the ligand feature *IPC* was having log scale values.

(a) With original Ligand feature IPC.

(b) With log scaled Ligand feature IPC.

Feature Extraction

PDB databank (v2019) was used to extract input features.

- We use *fpocket/dpocket* ligand binding site prediction library to get the features of pockets pockets in proteins.
- RDKit library is used to extract features for each ligand.
- Ligand Features: Using RDKit.Chem.Descriptors, 402 features were extracted for each ligand. Hence the ligand features space was R⁴⁰².
- Protein Features: For every pocket, 55 descriptors are obtained in total. Hence, the input space for protein features is R⁵⁵

The concatinated input feature space before input feature elimination \mathbf{R}^{457} .

Feature Selection

We only had 16000 data points to train a feature space of \mathbf{R}^{457} . We reduced our features using the following feature selection strategies:

- **Output Correlation**: The input features that have the best *Pearson* and *Spearman* correlation were selected.
- **Genetic Algorithms**: Genetic algorithms with the following score function was used to select the best features [4]:

$$score = \mathbf{R}^2 score * Features Eliminated$$

 Manual Feature Selection: A selected list of 121 ligand descriptors was used with all protein descriptors as input to the model.

Dealing with measurement resolution

- In the PDB databank, each complex also has a corresponding measurement resolution.
- The structural detail of the 3D image is inversely proportional to the measurement resolution.
- The weighting of each data point was done according to hyperbolic formulae and linear formulae.

$$W_i = \frac{\max \mathrm{R}_{1...\mathrm{n}}}{R_i}$$
; $W_i = (\max \mathrm{R}_{1...\mathrm{n}} + 1) - R_i$

Feature Family Correlations

- Features can be divided into families.
- Important ones are AUTOCORR2d_, Chi, EState_VSA, PEOE_VSA, SMR_VSA, SlogP_VSA, VSA_EState, and fr_.
- Within Chi and AUTOCORR2d_, the features are correlated.
- ML models need to take into account this issue.

Figure: Correlation Heat Map.

Machine Learning models

Testing strategy

We use the following methods to determine the quality of results and reproducing them:

- Reproducibility: To reproduce the results, we use report random seed (Execution ID) for every execution.
- R^2 score (Coefficient of determination) [?]: $R^2 \in (-\infty, 1.0]$ where 1.0 is the best score.
- **Visualization:** Our model's approximated function $f: \mathbb{R}^n \mapsto \mathbb{R}$ where $n \in \mathbb{I}^+$ is visualized as a 2D scatter plot.

Results

Results:

- 2,3,4
- 0

Discussion

Notable points:

- Best models: Linear Regression and Random Forest Regression.
- RF uses correlated features to make itself more robust.
- RF can deal with both discrete and real valued features.

Limitations:

- Linear regression assumes data linearity.
- RF depends Heavy reliance on ligand features.
- Both models were black box models.
- Testing results were sometimes better than validation results.
 This is because test data < validation data. But the

difference is minimal.

Discussion

Further work:

- Weighting a pocket descriptor based on the overlap between protein and ligand.
- Improvement of feature selection: Build 1 model per family of features. Use the best feature as a family surrogate.
- A more explainable model needs to be built.

Q & A

References

- Du, Li, Xia, Ai, Liang, Sang, Ji and Liu; Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods (2016)
- Le Guilloux, Schmidtke, and Tuffery; Fpocket: An open source platform for ligand pocket detection(2009)
- DiMasi, Grabowski and Hansen; nnovation in the pharmaceutical industry: New estimates of R & D costs (2016)
- John H. Holland. Genetic Algorithms. (1960)
- Is rotation forest the best classifier for problems with continuous features? A. Bagnall, M. Flynn, J. Large, J. Line, A. Bostrom, and G. Cawley (2020)