28p

5 54309 NASA TN D-1612

TECHNICAL NOTE

D-1612

PRESSURE DISTRIBUTIONS OVER THE FORWARD PORTION

OF THE PROJECT FIRE SPACE-VEHICLE CONFIGURATION AT

MACH NUMBERS FROM 0.25 TO 0.60

By William P. Henderson

Langley Research Center Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON February 1963

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1612

PRESSURE DISTRIBUTIONS OVER THE FORWARD PORTION

OF THE PROJECT FIRE SPACE-VEHICLE CONFIGURATION AT

MACH NUMBERS FROM 0.25 TO 0.60

By William P. Henderson

SUMMARY

An investigation was made in the Langley 7- by 10-foot transonic tunnel to determine the pressure distributions over a 0.0628-scale model of the forward portion of the Project Fire space-vehicle configuration. Tests were made at Mach numbers of 0.248, 0.395, and 0.585. Data are presented for the model at angles of attack ranging from -8° to 8° and at roll angles of 0° , 15° , 30° , 50° , and 90° .

INTRODUCTION

Project Fire is a flight reentry program being conducted by the National Aeronautics and Space Administration for the purpose of studying total heat transfer, ultrahigh-temperature air radiance, materials response, and radio blackout effects at hyperbolic velocities. The Project Fire vehicle consists of a reentry package which is attached by an adapter to an Antares II-A2 rocket motor. These components are enclosed by a shroud and a guidance-unit shell. This assembly (designated velocity package) is mounted by means of an adapter to an Atlas D first-stage launch vehicle, which will launch the velocity package on a ballistic trajectory. Prior to reentry, the Antares motor will accelerate the reentry package to a velocity of about 37,000 feet per second. When this velocity is reached, the reentry package separates from the Antares motor and reenters the atmosphere.

The purpose of this paper is to present subsonic pressure distributions over the forward portion of the Project Fire space-vehicle configuration to aid in the structural design of this configuration. The tests were made in the Langley 7- by 10-foot transonic tunnel at Mach numbers from 0.25 to 0.60 and at angles of attack from -8° to 8° .

SYMBOLS

$^{\mathrm{C}}\mathrm{p}$	pressure coefficient, $\frac{p_l - p_{\infty}}{q_{\infty}}$
ı	length of model, in.
М	Mach number
P_{∞}	free-stream static pressure, lb/sq ft
p_l	local orifice pressure, lb/sq ft
${f q}_{f \infty}$	free-stream dynamic pressure, lb/sq ft
R	Reynolds number based on a length of 1 foot
x	orifice location measured from model nose, in.
α	angle of attack, deg
Ø	angle of roll of orifices, measured clockwise from the vertical as viewed from rear of model, deg (see fig. 1)

MODEL

Details of the 0.0628-scale model tested are given in figure 1, and a photograph is presented in figure 2. The model represents the velocity package attached by an adapter to a portion of an Atlas D first-stage launch vehicle. The model was sting supported and instrumented with forty-two 0.043-inch-diameter pressure orifices located along the surface. In order to simplify construction, a single row of orifices was used, and the model was rotated through the angle ϕ to obtain the complete pressure distributions. (See fig. 1.)

TESTS AND CORRECTIONS

The investigation was made in the Langley 7- by 10-foot transonic tunnel at Mach numbers of 0.248, 0.395, and 0.585 which correspond to dynamic pressures of 87.8, 207.9, and 403.9 pounds per square foot, respectively. The Reynolds number per foot for each test Mach number is shown in figure 3. Pressure orifices were used to measure the pressures along the model (which are presented in the form of pressure coefficient C_p) for an angle-of-attack range of -8° to 8° and for roll angles of 0°, 15°, 30°, 50°, and 90°. The tests were conducted without artificial transition strips placed on the model.

The angles of attack have not been corrected for the deflections of the sting-support system under load; however, it was estimated that the maximum correction would be about $\pm 0.1^{\circ}$. The accuracy of the pressure coefficients is estimated to be within the following limits:

M																																C _p
																																±0.0400
0.395	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	٠	٠	•	•	•	±0.0150
0.585						•	•			•	•				•		•		•		•		•		•	•	•	•	•		•	±0.0060

PRESENTATION OF RESULTS

The pressure coefficients are presented in tables I, II, and III for Mach numbers of 0.248, 0.395, and 0.585, respectively. Representative plots of the pressure distributions over the model are presented as follows:

	Figure
The combined effect of Reynolds number and Mach number on the pressure distribution over the model. $\alpha = 0^{\circ}$; $\phi = 0^{\circ}$	4
The effect of angle of attack on the pressure distribution over the model. $\phi = 0^{\circ}$; M = 0.585	5
model. $\phi = 90^{\circ}$; M = 0.585	6
$\alpha = 0^{\circ}$; M = 0.585	7
The effect of roll angle on the pressure distribution over the model. $\alpha = 8^{\circ}$; M = 0.585	8

SUMMARY OF RESULTS

A detailed discussion of the results obtained in the low-speed investigation of the pressure distributions over the forward portion of the Project Fire space-vehicle configuration has been omitted in order to expedite publication of the data. However, some of the results obtained in the investigation are mentioned here. Increasing the Mach number to 0.395 and the Reynolds number to 2.53 \times 106 resulted in essentially no change in the pressures obtained over most of the model surface; however, further increases in the Mach number and Reynolds number resulted in slight increases in the pressures. (See fig. 4.) At the low roll angles (corresponding to the upper surface of the model) the pressures obtained over most of the model length were decreased with increasing angle of attack. (See fig. 5.) However, at the higher roll angles (corresponding to the side of the model) variations in the angle of attack had no significant effect on the pressure distribution. (See fig. 6.) Increasing the roll angle from 0° to 90°

had no significant effect on the pressures obtained on the model at angles of attack of 0° and 8° . (See figs. 7 and 8.)

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., November 20, 1962.

TABLE I $\label{eq:pressure coefficients over surface of model at $M=0.248$ }$

(a) $\alpha = -8^\circ$

x/z		C_{P}	at \$ of	r:	
	0°	15°	30°	50°	90°
.000 .005 .010 .020 .040 .060 .079 .099 .139 .179 .198 .208 .227 .237 .257 .276 .302 .311 .331 .351 .371 .391 .412 .422 .442 .461 .481 .505 .525 .525	.9220 .7003 .3436 .2545 .2955 .2786 .2714 .2593 .2135 .0810 0130 1600 3553 0974 0613 064 1600 0637 .2352 .1653 .1725 .2207 .2496 .2159 .1894 .1894 .1725 .1604 .1436 .1291	.9294 .6795 .3238 .2277 .2781 .2589 .2564 .2469 .2108 .0690 0175 1713 4165 0968 0656 0632 1617 0824 .2277 .1603 .2133 .2469 .2060 .1844 .1867 .1652 .1483 .1387 .1123	.9358 .6465 .2940 .2041 .2600 .2333 .2382 .2235 .1871 .0461 0317 1799 4400 0973 0827 0755 1630 0973 .2090 .1312 .1482 .1968 .2308 .1895 .1628 .1579 .1458 .1336 .1312 .1020	.9754 .5886 .2137 .1516 .2137 .1921 .1993 .1921 .1564 .0250 0562 1994 4526 1087 0873 0801 1494 1064 .1396 .1396 .1396 .1396 .1396 .1396 .1396 .1491 .1420 .1277 .1182 .1062 .0871	90° 1.0018 .366601740103 .1035 .1012 .1059 .0988 .0585045813112662519814061097083709560814 .0870 .1059 .1083 .1462 .1604 .1154 .0893 .0774 .0703 .0537 .0443 .0230
.604 .644 .683 .723 .763 .802 .822 .851 .861 .881 .921	.1002 .0761 .0520 .0279 0058 0950 1842 3408 2011 1432 0998 1119	.0906 .0738 .0498 .0234 0030 0968 1882 3444 2146 1498 1065	.0704 .0607 .0388 .0048 0317 1071 1946 3526 2091 1581 1119	.0536 .0536 .0536 .0274 0037 0371 1207 1947 3547 2138 1541 1135 1159	0126 0197 0387 0743 1051 1714 2496 3894 2496 1808 1382 1335

TABLE I.- Continued $\label{eq:pressure coefficients over surface of model at $M=0.248$ }$

(b) $\alpha = -4^{\circ}$

x/z		Cp C	it ø of:		
	0°	15°	30°	50°	90°
.000 .005 .010 .020 .040 .060 .079 .099 .139 .179 .198 .208 .227 .237 .257 .257 .276 .302 .311 .331 .351 .371 .391 .412 .422 .442 .461	9385 .5557 .1728 .1364 .2068 .2043 .2019 .1898 .1462 .010507912270428014210937079113971033 .1801 .1389 .1438 .1922 .2164 .1801 .1534 .1438	.9201 .5582 .1770 .1387 .2105 .1985 .2010 .1865 .1458 .014007472233453413230891077113710987 .1818 .1410 .1507 .1914 .2154 .1794 .1458 .1410 .1338	.9382 .5468 .1628 .1166 .1992 .1919 .1944 .1750 .1336 .0072 0876 2383 5057 1362 1022 0925 1508 1094 .1676 .1312 .1385 .1750 .2066 .1676 .1409 .1215	1.0040 .5203 .1281 .0968 .1859 .1738 .1811 .1738 .1306 .0054 0908 2304 4974 1221 0884 0812 1269 1005 .1618 .1402 .1353 .1835 .1835 .2051 .1642 .1425 .1306	90° 1.0018 .36820006 .0160 .1271 .1318 .1342 .1177 .0798038414012630513611640951069108810715 .1223 .1460 .1483 .1862 .1886 .1554 .1294 .1153 .0988
.505 .525 .564 .604 .644 .683 .723 .763 .802 .822 .851 .861 .881 .921	.1171 .0977 .0783 .0468 .0372 .0105 0186 0597 1421 2197 3699 2245 1663 1179 1106	.1123 .1027 .0763 .0475 .0428 .0211 0147 0507 1298 2185 3672 2258 1563 1179 1011	.0971 .0850 .0631 .0291 .0291 .0023 0341 0706 1483 2383 3890 2431 1726 1289 1216	.1017 .0776 .0608 .0391 .0343 .0103 0186 0571 1366 2111 3724 2256 1678 1197 1100	.0798 .0703 .0467 .0207 .0065 0172 0479 0833 1637 2394 3789 2394 1802 1235 1117

TABLE I.- Continued $\label{eq:pressure coefficients over surface of model at $M=0.248$ }$

(c) $\alpha = 0^{\circ}$

X/Z		Cp a	t of of:		
	0°	15°	30°	50°	90°
.000	.9343	.9946	.9969	1.0136	1.0019
•005	• 3959	-4104	.4056	•4136	• 3793
.010	0007	.0098	.0129	.0200	0004
.020	.0185	•0360	.0297	.0320	•0350
-040	•1315	•1505	-1446	.1472	• 1435
•060	.1387	•1505	-1470	.1568	. 1411
.079	•1339	.1480	-1470	.1544	.1481
•099	.1243	.1361	.1374	.1423	.1317
-139	• 0834	•0956	.0967	-1064	- 0939
.179	0368	0308	0302	0184	0288
198	1329	1214	1140 2720	1096 2585	1466 2716
.208 .227	2795 4935	2669 4886	5114	5008	5027
.237	1498	1357	1331	1288	1184
.257	1040	0904	0925	0904	0924
.276	0801	0713	0757	0712	0641
.302	1137	1023	1043	1000	0877
.311	0896	0785	0757	0760	0593
.331	.1267	.1409	.1374	.1448	.1458
.351	.1363	.1457	.1374	.1448	. 1576
.371	.1339	.1505	.1398	.1496	.1599
.391	.1700	.1862	.1781	.1856	. 1954
.412	.1916	•2052	.1949	-2024	.2118
.422	.1531	.1647	• 1566	.1664	. 1717
.442	.1243	.1289	.1255	.1376	.1387
.461	.1123	.1194	.1110	. 1208	. 1293
.481	.0906	•0979	.1039	.1016	-1104
-505	•0786	.0836	.0752	.0848	.0963
•525	-0642	.0717	•0680	.0655	-0869
-564	-0401	.0479	-0440	.0512	.0656
-604	.0113	.0241	•0106	.0224	.0373
-644	.0041	•0121	•0177	.0272	-0185
-683	0175	0141	0134	0016	0099
.723	0560	0522	0565	0425	0475
.763	0848 1665	0809	0876 - 1571	0784 1504	0829 1489
.802 .822		1548 2407	1571 2552	2368	2268
.851	2506 3853	3813	3845	3688	3660
.861	2483	2359	2432	2393	2244
.881	1762	1643	1762	1672	1632
.921	1257	1166	1235	1241	1159
.960	1232	1095	1163	1168	1041

TABLE I.- Continued $\label{eq:coefficients} \mbox{ PRESSURE COEFFICIENTS OVER SURFACE OF MODEL AT } \mbox{ } \mbox{M} = 0.248$

(d) $\alpha = 4^{\circ}$

X/Z		C_{p}	at \$\phi\$ of	•	
	0°	15°	<i>30°</i>	50°	90°
•000	1.0039	.9058	.9051	-9942	.9661
•005	•2066	•2369	.2514	•2571	• 3697
.010	1922	1706	1564	1139	0033
•020	0979	0723	0744	0436	•0276
-040	.0495	•0668	•0655	•0898	. 1274
•060	•0422	.0620	.0655	.1019	• 1322
•079	•0688	.0835	.0776	.1019	.1345
•099	.0543	.0739	.0632	•0825	.1060
139	.0229	.0380	.0318	-0486	.0680
.179	1318	1059	1178	0678	0414
-198	1849	1634	1781	1550	1530 2813
.208	3348	3145	3300 3493	3151 4411	5308
•227 •237	3348	3168 1874	2046	1648	1459
.257	2091 1172	1011	1178	1048	1007
.276	0762	0651	0888	0823	0793
.302	0786	0627	0864	0945	1055
.311	0617	0507	0671	0630	0722
.331	.0567	.0787	.0680	•0995	1203
.351	•1123	.1267	.1210	.1213	.1322
.371	.1244	.1410	.1307	1262	.1416
.391	.1461	.1650	.1524	.1650	.1750
.412	.1606	.1770	.1766	.1722	. 1915
.422	.1291	.1410	•1331	.1407	.1535
.442	.0977	.1123	.0994	.1068	.1203
.461	.0833	.0955	.0752	.0898	.1060
.481	.0616	.0691	.0583	•0680	.0941
•505	.0446	•0500	.0390	•0559	.0727
•525	•0229	.0451	.0270	.0486	•0561
-564	0013	.0211	0019	.0219	.0419
•604	0303	0147	0358	0097	.0133
-644	0448	0244	0382	0193	.0062
.683	0690	0507	0671	0387	0270
.723	1028	0843	0937	0726	0627
.763	1318	1083	1298	1090	0888
.802	2067	1850	1997	1818	1625
•822	2816	2545	2818	2666	2528
851	4049	3792	4048	3927	3834
.861	2671	2450	2673	2569	2480
.881	2019	1730	2022	1914	1743
.921	1487	1226	1443	1405	1269
.960	1463	1203	1395	1356	1150

TABLE I.- Concluded $\label{eq:pressure coefficients over surface of model at $M=0.248$ }$

(e) $\alpha = 8^{\circ}$

X/Z		C_{p}	at \$ of	· .	
	0°	15°	30°	50°	90°
.000 .005 .010 .020 .040 .060 .079 .099 .139 .179 .198 .208 .227 .237 .257 .257 .276 .302 .311 .351 .371 .391 .412 .422 .442 .461 .481 .505 .525 .564 .604 .683 .723 .763	.9769 .0268 3762 2395 0050 0050 0121 .0097 0172 1613 2199 3665 3371 2199 1271 0782 0782 0490 .0585 .1074 .1123 .1318 .1391 .1098 .0780 .0585 .0390 .0145 0050 0367 0587 0734 1027 1320 1515	.9185 .0504 3443 1992 .0076 .0076 .0385 .0266 0043 1446 2017 3349 3134 1992 1018 0543 0543 0495 0352 .0789 .1218 .1265 .1456 .1479 .1194 .0885 .0695 .0433 .0266 .0076 0209 0495 0637 0851 1113 1422	.9314 .0728 3287 1835 .0003 0021 .0245 .0075 0215 1666 2174 3697 3673 2174 1206 0820 0626 .0680 .0946 .0970 .1284 .1357 .0946 .0934 .0438 .0196 0021 0118 0384 0650 0820 0650 0820 1062 1351 1738	.9388 .1596 2480 1323 .0270 .0367 .0367 .0246 0116 1178 1611 1178 0888 0840 0598 .0704 .0922 .1041 .1307 .1355 .1041 .0704 .0583 .0439 .0174 0212 0502 0671 0888 1105 1443	.9191 .3635 0101 .0136 .1034 .1153 .1129 .0940 .0467 0715 1424 2795 5301 1401 1141 0904 0975 0762 .0822 .1058 .1153 .1460 .1626 .1177 .0893 .0798 .0656 .0467 .0373 .0207 0101 0266 0479 0739 1117
.802 .822 .851 .861 .881 .921	2199 2932 4153 2736 2101 1564 1564	2040 2825 3824 2634 1874 1375 1350	2367 3045 4109 2875 2150 1691	2118 2915 4097 2794 2071 1419	1826 2654 3978 2583 1920 1377 1282

TABLE II $\label{eq:pressure coefficients over surface of model at $M=0.395$ }$

(a) $\alpha = -8^\circ$

x/z		C_{p}	at & of	•	
	0°	15°	30°	50°	90°
.000 .005 .010 .020 .040 .060 .079 .139 .179 .198 .227 .257 .276 .302 .311 .331 .351 .371 .412 .422 .441 .481 .505 .525 .564 .604 .644 .683 .723 .763	.9526 .7047 .3327 .2311 .2779 .2565 .2534 .2332 .1935 .0198 0433 2109 2790 1704 1022 0982 1936 1276 .2596 .1864 .1884 .2413 .2758 .2372 .2047 .1985 .1803 .1712 .1549 .1325 .0980 .0888 .0634 .0279 0118	.9658 .6969 .3294 .2258 .2725 .2522 .2563 .2400 .1944 .0431 0401 2086 2523 1589 1000 0939 1904 1325 .2603 .1852 .1852 .2411 .2746 .2319 .2014 .1791 .1700 .1568 .1304 .0959 .0857 .0614 .0258 0158	.9801 .6639 .2859 .1863 .2463 .2259 .2299 .2148 .1731 .0287 0597 2222 1756 1623 1044 1023 1907 1420 .2361 .1741 .1720 .2259 .2584 .2117 .1852 .1782 .1588 .1487 .1355 .1132 .0816 .0714 .0461 .0084 0353	1.0046 .5833 .1944 .1146 .1914 .1681 .1783 .1671 .1288 0097 1037 2582 2239 1815 1279 1148 1764 1552 .1853 .1489 .1428 .1933 .2237 .1792 .1489 .1428 .1933 .2237 .1792 .1489 .1428 .1937 .1136 .0984 .0711 .0378 .0368 .0105 0259 0643	90° 1.0230 .356705750524 .0726 .0586 .0716 .0586 .024510551886339637962126158512651225 .0606 .0966 .1016 .1406 .1566 .1146 .0846 .0756 .0486 .0345 .0196001503740385064510051335
.802 .822 .851 .861 .881 .921	1002 1977 3604 2364 1753 1306 1388	0990 1934 3630 2391 1762 1335	1115 2060 3707 2487 1847 1410	1472 2330 3967 2734 2117 1633	2115 2915 4376 3136 2445 1905 1855

TABLE II.- Continued $\label{eq:pressure coefficients over surface of model at $M=0.395$ }$

(b) $\alpha = -4^{\circ}$

.000	X/Z		C_{p}	at \$\phi\$ of	•	
005		0°	15°	30°	50°	90°
.802 1422 1352 1508 1551 1927 .822 2359 2228 2411 2428 2799 .851 3906 3829 3983 3983 4231 .861 2685 2520 2695 2751 3019 .881 1961 1855 2025 2055 2297	.005 .010 .020 .040 .060 .079 .099 .139 .179 .198 .227 .257 .257 .257 .257 .257 .257 .257	1.0013 .5654 .1653 .1164 .1969 .1837 .1816 .1633 .1246 0495 1076 2777 3255 2095 1259 1076 1626 1361 .1846 .1704 .1684 .2152 .2417 .1990 .1622 .1531 .1337 .1225 .1052 .0859 .0451 .0381 .0126 0210	1.0028 .5626 .1659 .1186 .2001 .1901 .1719 .1357 0425 0980 2702 3175 1967 1191 0980 1503 1281 .1941 .1800 .1790 .2222 .2485 .2052 .1740 .1639 .1437 .1276 .1115 .0884 .0592 .0471 .0229 0124	.9974 .5430 .1413 .0946 .1839 .1697 .1798 .1616 .1180043311532827318120351275108215891376 .1727 .1676 .1627 .2103 .2357 .1900 .1595 .1494 .1281 .1149 .0967 .0744 .0389 .0317 .00840311	1.0289 .5030 .0993 .0680 .1680 .1538 .1598 .1478 .1064 0319 1278 2853 1238 1238 1036 1419 1308 .1568 .1639 .1619 .2043 .2306 .1871 .1538 .1427 .1185 .1064 .0933 .0660 .0347 .0236 .0024 0349	1.0370 .383103950235 .1026 .0957 .1047 .0866 .0526080617973279 -
.921	.822 .851 .861 .881	2359 3906 2685 1961 1432	2228 3829 2520 1855 1322	2411 3983 2695 2025 1498	2428 3983 2751 2055 1510	2799 4231 3019 2297 1747

(c) $\alpha = 0^{\circ}$

X/Z		C_{P}	at \phi of	•	
	0°	15°	30°	50°	90°
.000 .005 .010 .020 .040 .060 .079 .099 .139 .179 .198 .208 .227 .237 .257 .257 .257 .257 .276 .302 .311 .331 .351 .371 .391 .412 .422 .442 .461 .481	1.0044 .399802500017 .1152 .0939 .1193 .1020 .0654106316423319354222821337105211741093 .0899 .1538 .1610 .1966 .2168 .1752 .1376 .1244 .1031 .0888	.9946 .3962 0245 0024 .1147 .0925 .1167 .1016 .0673 1063 1628 3313 3505 2264 1355 1073 1194 1083 .0925 .1551 .1581 .1984 .2156 .1742 .1389 .1207 .1006	.9975 .400202900047 .1168 .0905 .1147 .1026 .0651106016573337358022941363110012121120 .0884 .1532 .1603 .1957 .2190 .1735 .1360 .1219 .0976 .0824	1.0320 .4024 0157 .0045 .1233 .0992 .1233 .1092 .0709 0983 1567 3229 3451 2182 1284 1003 1103 1103 1043 .1002 .1596 .1657 .2019 .2220 .1848 .1455 .1294 .1083 .0921	1.0330 .3928 0266 0015 .1199 .0988 .1199 .1039 .0668 0988 1650 3235 3557 2182 1320 0998 1119 1068 .0979 .1520 .1620 .1982 .2203 .1801 .1440 .1219 .0988 .0828
.525 .564 .604 .644 .683 .723 .763 .802 .822 .851 .861 .881	.0705 .0441 .0085 0017 0260 0616 0971 1794 2679 4091 2852 2100 1591 1510	.0652 .0431 .0098 0044 0327 0629 1003 1810 2707 4110 2849 2102 1557 1497	.0631 .0379 .0075 0068 0301 0654 1029 1819 2739 4157 2882 2163 1636 1545	.0780 .0488 .0135 .0055 0197 0549 0902 1718 2604 4045 2796 2090 1527 1456	.0707 .0396 .0115 0005 0296 0647 0968 1771 2654 4068 2814 2112 1590 1450

TABLE II.- Continued

PRESSURE COEFFICIENTS OVER SURFACE OF MODEL AT M = 0.395

(d) $\alpha = 4^{\circ}$

X/Z		C_{μ}	at p	of:	
	0°	15°	30°	50°	90°
.000 .005 .010 .020 .040 .060 .079 .099 .139 .179 .198 .227 .237 .257 .276 .302 .311 .331 .351 .371 .412 .422 .441 .481 .505 .525 .525 .564 .604 .683 .723 .763 .802 .822 .851	1.0340 .2104 2267 1374 .0370 .0208 .0482 .0381 .0066 1587 2146 3788 3747 2449 1414 0999 0837 .0583 .1282 .1465 .1749 .1861 .1526 .1749 .1861 .1749	.9915 .219921461267 .0431 .0309 .0572 .0431 .0098153921053751372123581387101409330842 .0662 .1329 .1502 .1774 .1895 .1572 .1168 .0945 .0703 .0512 .0319 .007702460408	9903 -2389 -1905 -1084 -0491 -0359 -0581 -0430 -0054 -158121503764377424851449111410520941 -0602 -1242 -1394 -1719 -1830 -1465 -1059 -0896 -0643 -0450 -0246 -00140332045304531429220130534301	1.0128 .2694 1503 0805 .0661 .0448 .0702 .0520 .0135 1392 2039 3647 3667 2393 1402 1058 1058 1058 1471 .1773 .1884 .1511 .1773 .1884 .1511 .1773 .1884 .1511 .1773 .1884 .1511 .1773 .1884 .1511 .1773 .1884 .1511 .1773 .1884 .1511 .1773 .1884 .1511 .1773 .0550 .0409 .0135 0199 0300 0552 0886 1250 2049 2888 4153	1.0000 .389702750015 .1156 .1166 .1176 .1006 .05861045164532263436218512951065135508051076 .1406 .1566 .1917 .2056 .1707 .1226 .1156 .0946 .0756 .0386 .00850054029406150955177527264076
.861 .881 .921 .960	3038 2328 1740 1709	2953 2256 1690 1660	3073 2342 1835 1723	2980 2231 1685 1624	2826 2085 1595 1496

TABLE II.- Concluded $\label{eq:pressure coefficients over surface of model at $M=0.395$ }$

(e) $\alpha = 8^{\circ}$

X/Z	Cp at \$\phi\$ of:				
	0°	15°	30°	50°	90°
.000 .005 .010 .020 .040 .060 .079 .099 .139 .179 .198 .208 .227 .237 .257 .257 .276 .302 .311 .331 .351 .371 .391 .412 .422 .442 .441	.9935 .0128 4185 2701 0277 0317 0024 0125 0427 1964 2499 4075 3762 2448 1368 0922 0751 0680 .0582 .1208 .1410 .1633 .1723 .1380 .0986 .0754 .0482	.9967 .0280 3926 2557 0163 0163 0078 0022 0364 1883 2447 4006 3724 2376 1341 0878 0766 0646 .0642 .1266 .1447 .1668 .1738 .1396 .1034 .0792 .0521	9871 .0501 3755 2502 0262 0313 0038 0181 0527 2054 2594 4204 3979 2635 1118 0976 0812 .0512 .1062 .1215 .1479 .1489 .1174 .0786 .0563 .0257	.9662 .1308 3010 1725 0148 0148 01471 2029 2575 4133 4011 2697 1635 1240 1058 0886 .0398 .0925 .1086 .1369 .1450 .1450 .1056 .0681 .0499 .0266	900 9416 3581 -0508 -0196 0758 0808 0838 0648 0196 -1241 -1974 -3520 -3701 -2244 -1532 -1260 -1341 -0969 0628 0980 1090 1511 1592 1190 0799 0728 0547
.505 .525 .564 .604 .683 .723 .763 .802 .822 .851 .861 .881 .921	.0259 .0098 0196 0549 0671 0903 1236 1580 2277 3054 4216 2984 2246 1721	.0300 .0129 0144 0505 0646 0878 1229 1522 2256 3020 4107 2960 2236 1683 1692	-0074 -0130 -0364 -0731 -0853 -01057 -01433 -01760 -02482 -03307 -04346 -03175 -02462 -01912 -01861	-0064 -0098 -0360 -0664 -0796 -1028 -1321 -1685 -2423 -3324 -4456 -3213 -2494 -1918 -1817	.0387 .0216 0005 0307 0437 0658 1010 1301 2095 3059 4364 3139 2386 1843 1752

(a) $\alpha = -8^{\circ}$

×/Z	Cp at \$\phi\$ of:				
	0°	15°	30°	50°	90°
.000 .005 .010 .020 .040 .060 .079 .139 .179 .198 .227 .257 .257 .257 .257 .257 .257 .257	1.0069 .7198 .3100 .2171 .2782 .2412 .2618 .2402 .1986 .024105502363312818601028096216961382 .2480 .2207 .2217 .2731 .3091 .2684 .2340 .2248 .1992 .1879 .1755 .1489 .1124 .1020 .0744	1.0154 .7354 .3499 .2382 .2935 .2596 .2826 .2548 .2152 .0287 -0293 2084 1703 0940 0878 1724 1442 .2742 .2293 .2225 .2841 .3176 .2695 .2507 .2298 .2120 .2010 .1844 .1619 .1269 .1186 .0908	1.0317 .7074 .3216 .2128 .2803 .2443 .2618 .2458 .2051 .0482 0383 2127 2606 1637 0915 0817 1539 1354 .2499 .2247 .2175 .2721 .2942 .2597 .2283 .2200 .2045 .1911 .1767 .1515 .1168 .1117 .0844	1.0481 .6235 .2192 .1309 .2161 .1839 .2026 .1875 .1522001408812568241218041208104715401457 .1849 .1885 .1823 .2342 .2643 .2170 .1870 .1772 .1549 .1449 .1309 .1040 .0697 .0656 .0359	1.0746 .403602940377 .0986 .0698 .0960 .0817 .056413271693346738582470154411061014 .0600 .1253 .1382 .1799 .1989 .1521 .1197 .1038 .0827 .0683 .0534 .0241009401240387
.723 .763 .802 .822 .851 .861 .881 .921	.0415 .0029 0981 2004 3914 2589 1845 1325	.0527 .0125 0779 1786 3730 2445 1713 1222	.0452 .0060 0807 1776 3679 2410 1693 1194 1203	0003 0382 1270 2219 4073 2812 2059 1545	076811171945281444953205239818161771

TABLE III.- Continued $\label{eq:coefficients} \mbox{ OVER SURFACE OF MODEL AT } \mbox{ } \mbox{M} = 0.585$

(b) $\alpha = -4^{\circ}$

x/z	Cp at \$\phi\$ of:				
	0°	15°	30°	50°	90°
.000 .005	1.0514	1.0588 .5994	1.0631 .5826	1.0766 .5467	1.0824 .4235
.010	.2117	.1834	.1675	.1245	0163
020	.1436	.1289	.1121	.0820	0123
.040	.2251	.2167	2099	.1893	• 1238
.060	. 1936	.1830	.1726	.1706	• 1028
.079	.2168	.2083	.1974	.1825	•1192
•099	-1998	.1918	. 1830	.1691	.1069
.139	• 1555	•1533	.1467	•1256	• 0752
.179	0301	0294	0402	0246	1043
•198	0898	0907	0966	1142	1595
•208	2765	2736	2799	2899	3381
.227	3455	3338	3353	2987	3698
•237	2110	2018	2048	1925	2312
.257	1228	1136	1131	1168	1350
.276	1059	0939	0934	0977	1023
302	1533	1301	1267	1257	1007
.311	1398	1239	1204	1174	0941
.331	.1720	•1663	.1581	•1515	• 0839
.351	•2096	.2171	•2119	.1991	• 1642
.371	•2085 •25 7 5	•2156 •2603	.2109 .2565	.2011 .2442	. 1765
.412	.2911	•2904	•2303 •2818	.2701	•2113 •2353
.422	.2411	•2426	•2384	.2214	. 1944
.442	.2049	•2068	.2032	.1904	1545
.461	.1926	.1944	.1886	.1769	1376
481	.1746	.1715	.1669	.1545	.1085
.505	.1580	.1586	.1529	.1359	.0937
.525	.1442	.1419	.1338	.1214	.0783
.564	.1189	.1170	.1110	.0893	.0512
-604	•0823	.0827	.0743	.0634	.0174
-644	•0699	.0718	.0675	•0546	-0097
.683	.0426	.0438	.0412	•0235	0189
.723	.0060	•0079	•0038	0107	0522
•763	0368	0316	0355	0485	0874
.802	1249	1198	1251	1392	1760
.822	2265	2190	2208	2334	2670
.851	4115	3976	4021	4116	4347
.861	2801	2678	2716	2811	3038
.881	1986	1888	1934	2023	2235
.921	1419	1292	1329	1437	1627
•960	1347	1198	1235	1371	1534

TABLE III.- Continued $\label{eq:pressure coefficients over surface of model at $M=0.585$ }$

(c) $\alpha = 0^{\circ}$

г					
x/z	Cp at ϕ of:				
	0°	15°	<i>30°</i>	50°	90°
.000	1.0568	1.0594	1.0616	1.0813	1.0793
.005	.4915	.4319	.4365	. 4404	.4376
.010	.0701	0124	0065	0019	0047
.020	.0512	-0016	.0048	•0095	•0076
-040	.1644	.1354	•1412	.1422	. 1416
.060	.1379	.1119	•1153	-1184	.1174
.079	.1608	•1365	•1403	•1437	.1420
-099	.1445	.1213	.1257	•1277	.1261
-139	.1061	•0833	•0858	.0919	• 0882
.179	0784	0946	0927	0890	0893
.198	1333	1565	1539	1533	1525
.208	3229	3397	3354	3316	3309 3612
•227	3675	3713	3671	3622 2212	
.237	2271	2299	2260		2206 1211
.257	1323	1278	1244 0938	1237 0931	0893
.276	1036 - 1105	0956	0947	0947	0908
•302	1195 1128	0988 0930	0917	0895	0853
.331	.1086	.0901	.0883	.0945	.0922
.351	•1865	.1796	.1801	.1827	.1810
.371	.2004	.1998	2004	.2019	.2016
.391	2428	•2363	•2372	-2408	.2385
.412	.2634	.2560	.2569	.2589	.2601
422	.2188	.2155	.2175	.2195	.2190
.442	.1794	.1754	.1755	.1781	.1800
.461	.1665	.1556	.1579	.1614	-1594
.481	.1466	.1318	.1319	.1355	•1318
•505	.1281	.1151	.1138	.1199	•1133
•525	.1091	.0964	•0967	•0930	.1045
•564	•0856	•0698	.0707	.0722	.0712
-604	-0481	.0339	.0350	•0386	-0358
-644	-0374	.0215	.0235	•0277	.0277
-683	•0091	0046	0035	0009	0005
.723	0282	0405	0388	0341	0344
.763	0682	0785	0776	0755	0713
.802	1528	1679	1648	1626 2596	1627 2581
.822	2543	2642	2623	4193	4182
•851 •861	4234 2932	4255 2928	4226 2935	2912	2909
.881	2096	2132	2100	2078	2063
.921	1471	1477	1467	1455	1483
960	1384	1383	1336	1357	1349
1.700	1304	• 1303	1330	• 1 3 3 1	1 37/

(d) $\alpha = 4^{\circ}$

	<u> </u>			·		
X/Z	Cp at \$\phi\$ of:					
	0°	15°	30°	50°	90°	
•000	1.0869	1.0568	1.0599	1.0625	1.0551	
.005	.2830	.2483	.2718	•3140	. 4348	
.010	1602	2075	1863	1373	0062	
•020	1024	1284	1162	0756	.0127	
.040	.0705	•0595	•0676	•0832	.1381	
.060	•0555	.0458	.0562	.0712	•1139	
-079	•0808	.0730	.0791	•0900	.1385	
.099	.0669	-0584	.0640	•0764 0775	•1180	
.139	.0313	.0215 1497	.0256 1437	.0375 1321	.0816 0945	
.179	1483 2045	2121	2071	1949	1567	
208	3888	3917	3864	3739	3375	
.227	3965	3895	3875	3847	3657	
.237	2515	2428	2440	2389	2255	
.257	1416	1321	1323	1306	1249	
.276	1018	0900	0929	0947	0956	
• 302	0879	0754	0783	0859	1013	
.311	0843	0686	0706	0720	0781	
.331	.0612	.0672	.0702	-0827	.1020	
.351	.1530	.1530	.1518	.1537	.1724	
.371	.1783	.1816	• 1783	.1786	. 1956	
.391	.2150	.2118	.2110	.2150	.2330	
-412	•2268	•2259	•2225	-2274	• 2505	
.422	.1901	.1900	•1908	-1916	-2089	
• 442	.1505	.1489	• 1461	-1485	. 1657	
•461	.1272	.1265	.1263	•1298	- 1493	
.481	.1019	.0974	.0978	•1035	. 1277	
•505	.0818	.0776	•0785	•0853	.1067	
•525	.0617	•0589	.0594 .0297	•0656 •0365	.0918	
•564 60h	•0333 - 0053	.0292 0057	0076	.0044	.0328	
.604 .644	0053 0162	0212	0175	0071	.0194	
.683	0451	0212	0461	0371	0062	
.723	0802	0821	0788	0724	0391	
763	1220	1190	1167	1077	0781	
802	2020	2044	2024	1938	1639	
822	3005	2954	2960	2903	2645	
.851	4465	4343	4342	4335	4196	
.861	3191	3099	3106	3080	2917	
.881	2365	2262	2269	2255	2096	
.921	1694	1649	1651	1617	1490	
-960	1638	1602	1552	1508	1376	
L		<u> </u>	<u> </u>	<u> </u>		

TABLE III.- Concluded

PRESSURE COEFFICIENTS OVER SURFACE OF MODEL AT M = 0.585

(e)	α	=	8°
-----	---	---	----

×z	Cp at \$of:				
	0°	15°	30°	50°	90°
.000 .005 .010 .020 .040 .060 .079 .099 .139 .179	1.0610 .0743 3817 2467 0013 0081 .0194 .0070 0297 1974 2533	1.0526 .0568 4026 2653 0057 0108 .0173 .0016 0347 1919 2543	1.0384 .1004 3590 2578 .0045 0023 .0261 .0107 0255 1871 2470	1.0178 .1769 2841 1752 .0168 .0111 .0359 .0168 0209 1799 2423	.9934 .4082 0315 0088 .0934 .0821 .0996 .0775 .0375 1318 1837
.208 .227 .237 .257 .276 .302 .311 .331	4329 4071 2554 1369 0898 0717 0645 .0619 .1399	4292 3968 2486 1295 0857 0660 0551 .0734	4205 3926 2470 1308 0869 0684 0550 .0742 .1397	4152 4034 2568 1432 1014 0812 0648 .0576 .1196	3647 3915 2546 1539 1215 1153 0829 .0498 .1176
.371 .391 .412 .422 .442 .461 .481 .505	.1684 .1933 .2031 .1700 .1275 .1021 .0737 .0510	.1723 .1968 .2045 .1717 .1296 .1015 .0734 .0485	.1650 .1897 .1949 .1624 .1206 .0958 .0674 .0457	.1433 .1753 .1825 .1490 .1098 .0860 .0607 .0401	.1408 .1830 .1928 .1485 .1130 .0960 .0800 .0641
.525 .564 .604 .644 .683 .723 .763 .802	0292 0013 0402 0521 0790 1147 1525 2300 3191	0040 0400 0540 0795 1134 1482 2283 3125	0017 0390 0513 0771 1097 1453 2279 3125	0053 0390 0513 0797 1112 1458 2289 3250	-0467 -0230 -0084 -0217 -0500 -0793 -1159 -2011 -3050
.851 .861 .881 .921	4536 3274 2435 1814 1762	4354 3183 2351 1721 1711	4261 3105 2315 1705 1649	4535 3239 2387 1783 1696	4547 3262 2428 1811 1703

Figure 1.- Drawing of model. All dimensions in inches.

Figure 2.- Photograph of model. L-62-4498

Figure 3.- Variation of Reynolds number with Mach number.

°00 = ø ; o 18 ರ model. pressure distribution over 4. - Effect of Mach number and Reynolds number on Pigure

Figure 5.- Effect of angle of attack on pressure distribution over model. $\phi = 0^{\circ}$; M = 0.585.

Figure 6.- Effect of angle of attack on pressure distribution over model. ϕ

Figure 7.- Effect of roll angle on pressure distribution over model. $\alpha = 0^{\circ}$; M = 0.585.

Figure 8.- Effect of roll angle on pressure distribution over model.