1 Punti di estremo

1.1 Massimo globale

Si dice che M è massimo globale per f su [a,b], e che $x_M \in [a,b]$ è **punto di massimo** per f se:

$$\forall x \in [a, b], f(x) \le f(x_M)$$

1.2 Minimo globale

Si dice che m è **minimo** globale per f su [a,b], e che $x_M \in [a,b]$ è **punto di minimo** per f se:

$$\forall x \in [a, b], f(x) \ge f(x_m)$$

1.3 Massimo locale

Si dice che M è massimo locale per f su [a,b] e x_M è punto di massimo locale se:

$$\exists \delta > 0 : \forall xin[a, b] \cap (x_M - \delta, x_M + \delta), f(x) \leq f(x_M) = M$$

1.4 Minimo locale

Si dice che m è minimo locale per f su [a,b] e x_M è punto di minimo locale se:

$$\exists \delta > 0 : \forall xin[a,b] \cap (x_m - \delta, x_m + \delta), f(x) \ge f(x_m) = m$$

1.5 Massimo locale stretto

Si dice che M è massimo locale stretto per f su [a,b] e x_M è punto di massimo locale stretto se:

$$\exists \delta > 0 : \forall xin[a,b] \cap (x_M - \delta, x_M + \delta), f(x) < f(x_M) = M$$

1.6 Minimo locale stretto

Si dice che m è minimo locale stretto per f su [a,b] e x_M è punto di minimo locale stretto se:

$$\exists \delta > 0 : \forall x in[a,b] \cap (x_m - \delta, x_m + \delta), f(x) > f(x_m) = m$$

2 Problemi di massimo e minimo

Dove si trovano i punti di massimo e minimo per una funzione?

$$f:[a,b]\to\mathbb{R}$$

$$f: \mathbb{R} \to \mathbb{R}$$

Si trovano dove la derivata prima si annulla! Ma non sempre... Ad esempio, f(x) = |x| ha un punto di minimo globale in x = 0. Inoltre, se f: [a,b], a e b sono sicuramente punti di massimo o minimo locale, e potrebbero essere anche punti di massimo o minimo globale.

3 Teorema di Fermat

Sia $f: [a,b] \to \mathbb{R}$, derivabile in $x_0 \in (a,b)$. Se x_0 è punto di estremo locale, allora $f'(x_0) = 0$.

Dimostrazione

$$\exists \delta > 0 : \forall x \in (a,b) \cap (x_0 - \delta, x_0 + \delta), f(x) > f(x_0)$$

Se $x < x_0$, allora $\frac{f(x) - f(x_0)}{x - x_0} \le 0$. Se $x > x_0$, allora $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$. Passando al limite di entrambe:

$$x < x_0 \implies \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

$$x > x_0 \implies \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

Il limite appena calcolato è la derivata prima rispettivamente sinistra e destra di x_0 .

Essendo però f derivabile in quell'intervallo, allora derivate sinistra e destra coincidono, dunque $f'(x_0) = 0$.

4 Teorema di Rolle

Ipotesi Sia $f:[a,b] \to \mathbb{R}$. f continua su [a,b] f derivabile su (a,b) f(a) = f(b)

Tesi

$$\exists c \in (a,b) : f'(c) = 0$$

Dimostrazione Essendo f continua su [a, b], essa ammette massimo e minimo per il Teorema di Weierstrass.

$$\exists x_m, x_M \in [a, b] : \forall x \in [a, b], f(x_m) \le f(x) \le f(x_M)$$

Abbiamo due casi:

- i due estremi coincidono con x_m e x_M , creando allora una funzione costante di derivata prima sempre = 0 - altrimenti, almeno uno tra x_m e x_M è interno all'intervallo (a, b), e per il TEOREMA DI FERMAT allora $\exists c : f'(c) = 0$.

5 Teorema di Cauchy

Ipotesi Siano $f, g : [a, b] \to \mathbb{R}$ tali che: f, g continue su [a, b] f, g derivabili su (a, b)

Tesi

$$\exists c \in (a,b) : (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c)$$

Dimostrazione Costruisco la funzione w(x) = (f(b) - f(a))g(x) = (g(b) - g(a))f(x).

Calcolo w(a) e w(b) (omesso per orario), e scopro w(a) = w(b).

Inoltre, w è continua su [a,b], e derivabile su (a,b). Dal TEOREMA DI ROLLE applicato a w, $\exists c \in (a,b) : w'(c) = 0$