MATH 517, Homework 3

Colin Roberts September 15, 2017

Solutions

Problem 1. (Rudin 3.8) If $\sum a_n$ converges and if $\{b_n\}$ is monotonic and bounded, prove that $\sum a_n b_n$ converges.

:

Proof. Since $\sum a_n$ converges we know that the partial sums A_N form a bounded sequence. Since $\{b_n\}$ is bounded and monotonic we have that $\{b_n\} \to L$. Then if $\{b_n\}$ is nondecreasing we have that $\lim_{n\to\infty} L - b_n = 0$. Call the sequence $\{c_n\} = \{L - b_n\}$, and note that $\sum a_n c_n = \sum a_n b_n - b \sum a_n$ so we have that $\sum a_n b_n$ converges. Otherwise $\{b_n\}$ is nonincreasing so $\lim_{n\to\infty} b_n - L = 0$ and we can call $\{d_n\} = \{b_n - L\}$. Now we have $\sum a_n d_n = L \sum a_n - \sum a_n b_n$. So $\sum a_n b_n$ also converges.

Problem 2. (Rudin 3.16) Fix $\alpha > 0$. Choose $x_1 > \sqrt{\alpha}$ and recursively define the sequence $\{x_n\}$ by

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right)$$

- (a) Prove that $\{x_n\}$ decreases monotonically and that $\lim x_n = \sqrt{\alpha}$.
- (b) Let $\epsilon_n = x_n \sqrt{\alpha}$ be the error in approximating $\sqrt{\alpha}$ by x_n , and show that

$$\epsilon_{n+1} = \frac{e_n^2}{2x_n} < \frac{\epsilon_n^2}{2\sqrt{\alpha}}$$

Conclude that, with $\beta = 2\sqrt{\alpha}$

$$\epsilon_{n+1} < \beta \left(\frac{\epsilon_1}{\beta}\right)^{2n}$$

(c) Part (b) shows that this is an excellent method of approximating square roots. As an example, show that for $\alpha = 3$ and $x_1 = 2$, then $\frac{\epsilon_1}{\beta} < \frac{1}{10}$, and hence

$$\epsilon_5 < 4 \times 10^{-16}$$
 and $\epsilon_6 < 4 \times 10^{-32}$

:

Proof (Part (a)). We will prove monotonicity by induction. So for the base case, consider

$$x_2 = \frac{1}{2} \left(x_1 + \frac{\alpha}{x_1} \right)$$

$$= \frac{x_1}{2} \left(1 + \frac{\alpha}{x_1^2} \right)$$

$$< \frac{x_1}{2} (1+1) \qquad \text{since } x_1^2 > \alpha$$

$$= x_1$$

Now assume this is true for i = 1, ..., n - 1. Then we have to show $x_n < x_{n-1}$. So, assume that $x_n \ge x_{n-1}$ so thus we have that

$$\iff \frac{x_{i+1} \le x_n \le x_i}{2} \le \frac{x_{i-1} + \alpha}{2} \le \frac{x_{i-1} + \alpha}{2}$$

Which contradicts $x_{n-1} < x_{n-2}$, since $x_{n-1} < x_{n-2} < ... < x_{i+1} < x_i$. Thus we have x_n is decreasing. To find $\lim_{n \to \infty} x_n$ show that $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = L$ So we have

$$L = \frac{1}{2} \left(L + \frac{\alpha}{L} \right)$$
$$\frac{L}{2} = \frac{\alpha}{2L}$$
$$L^2 = \alpha$$
$$L = \pm \sqrt{\alpha}$$

We can show that $+\sqrt{\alpha}$ is a lower bound for our sequence $\{x_n\}$ by supposing that for some $x_n \le \sqrt{\alpha}$ and we have that $x_{n+1} \le x_n$. But, instead, we have that

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right)$$
$$> \frac{x_n}{2} (1+1)$$
$$= x_n$$

Which contradicts that x_n is decreasing. Thus we have that $\sqrt{\alpha}$ is a lower bound, thus we can choose the positive root from above, and we are done.

:

Solution (Part (b)). We have

$$\epsilon_{n+1} = x_{n+1} - \sqrt{\alpha}$$

$$= \frac{x_n^2 + \alpha}{2x_n} - \sqrt{\alpha}$$

$$= \frac{(\epsilon_n + \sqrt{\alpha})^2}{2x_n} - \sqrt{\alpha}$$

$$= \frac{\epsilon_n + 2\epsilon\sqrt{\alpha} + 2\alpha}{2x_n} - \sqrt{\alpha}$$

$$= \frac{\epsilon_n^2}{2x_n} + \frac{\epsilon_n\sqrt{\alpha} + \alpha}{\epsilon_n + \sqrt{\alpha}} - \sqrt{\alpha}$$

$$= \frac{\epsilon_n^2}{2x_n} + \sqrt{\alpha} - \sqrt{\alpha}$$

$$= \frac{\epsilon_n^2}{2x_n}$$

$$< \frac{\epsilon_n^2}{2\sqrt{\alpha}}$$

since $x_n > \sqrt{\alpha}$

Then let $\beta = 2\sqrt{\alpha}$ and we have that

$$\frac{\epsilon_{n+1}}{\beta} < \epsilon_n^2$$

$$< \frac{\epsilon_{n-1}^2}{\beta}$$

$$< \left(\frac{\epsilon_{n-2}^2}{\beta}\right)^2$$

$$< \left(\left(\frac{\epsilon_{n-3}^2}{\beta^2}\right)^2\right)^2$$

$$\vdots$$

$$< \left(\frac{\epsilon_1}{\beta}\right)^{2n}$$

$$\implies \epsilon_{n+1} < \beta \left(\frac{\epsilon_1}{\beta}\right)^{2n}$$

Problem 3. (Rudin 3.20) Suppose that $\{p_n\}$ is a Cauchy sequence in a metric space X, and some subsequence $\{p_n\}$ converges to a point $p \in X$. Prove that the full sequence $\{p_n\}$ converges to p. (*Note:* We are not assuming X is compact or \mathbb{R}^k , so you can't immediately say that $\{p_n\}$ is Cauchy and therefore it converges.)

:

Proof. Since $\{p_n\}$ converges we have that for $N_1 \in \mathbb{N}$ that $|p_{n_k} - p| < \frac{\epsilon}{2}$ for $n_k > N_1$. Then since $\{p_n\}$ is Cauchy we have that $|p_n - p_m| < \frac{\epsilon}{2}$ for $n > N_2 \in \mathbb{N}$. Then take $N = \max(\{N_1, N-2\})$ and we have that for $n, n_k > N$

$$\begin{aligned} |p_{n_k} - p| &= |p_{n_k} - p_n + p_n - p| \\ &\leq |p_{n_k} - p_n| + |p_n - p| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{aligned}$$

Which shows that $\{p_n\} \to p$.

Problem 4. Let $\{a_n\}$ be a sequence of real numbers satisfying $\liminf |a_n| = 0$. Prove that there exists a subsequence $\{a_{n_k}\}$ so that $\sum_{k=1}^{\infty} a_{n_k}$ converges.

•

Proof. Since $\liminf |a_n| = 0$ we have that some subsequence $\{a_{n_k}\}$ converges to 0. Fix $\epsilon > 0$ and, specifically, choose $a_{n_k} < \frac{\epsilon}{2^k}$ so that

$$\left| \sum_{k=n}^{m} a_k \right| = \left| \sum_{k=n}^{m} \frac{\epsilon}{2^k} \right|$$

So we have that $\sum_{k=1}^{\infty} a_{n_k}$ converges since we have shown that the series is Cauchy.