Analysis für Informatik

 ${\bf Ass. Prof.\ Clemens\ Amstler}$

24. Januar 2019

Inhaltsverzeichnis

1 Reelle Zahlen											
	1.1	Algebi	raische Axiome								
		1.1.0	Proposition								
		1.1.0	Definition (Potenzschreibweise)								
		1.1.0	Bemerkung								
	1.2	$\mathbf{A}\mathbf{n}\mathbf{o}\mathbf{r}\mathbf{d}$	nungsaxiome								
		1.2.0	Proposition								
		1.2.0	Bemerkung								
		1.2.0	Definition								
		1.2.0	Satz								
		1.2.0	Bemerkung (Archimedisches Axiom)								
		1.2.0	Satz (Bernoullische Ungleichung)								
		1.2.0	Korollar								
	1.3	Vollst	ändigkeitsaxiom								
		1.3.0	Definition								
		1.3.0	Beispiel								
		1.3.0	Bemerkung (zur Erinnerung)								
		1.3.0	Satz (Vollständigkeitsaxiom)								
		1.3.0	Bemerkung								
		1.3.0	Proposition								
		1.3.0	Proposition								
_	Komplexe Zahlen 10										
2		-									
	2.0										
	2.0		tion								
	2.0										
	2.0	Propo	sition								
3	Folg	gen un	d Reihen								
	3.1	_	1								
		3.1.0	Beispiel								
		3.1.0	Bemerkung								
		3.1.0	Definition								
		3.1.0	Definition								
		3.1.0	Beispiel								
		3.1.0	Definition (der Konvergenz)								
		3.1.0	Bemerkung								
		3.1.0	Beispiel								
		3.1.0	Definition								
		3.1.0	Satz								
		3.1.0	Bemerkung								
		3.1.0	Satz (Monotoniekriterium)								
		3.1.0	Bemerkung								
		3.1.0	Satz								
		3.1.0	Satz (Rechenregeln für konvergente Folgen)								
		3.1.0	Satz (Sandwich-Theorem)								

	3.1.0	Beispiel
	3.1.0	Definition
	3.1.0	Beispiel
	3.1.0	Definition
	3.1.0	Bemerkung
	3.1.0	Definition
	3.1.0	Bemerkung
	3.1.0	Satz (von Bolzano-Weierstraß)
	3.1.0	Bemerkung
	3.1.0	Definition (Cauchy-Folge)
	3.1.0	Satz
	3.1.0	Beispiel (Verfahren zur Berechnung der Quadratwurzel)
3.2		$1 \cdot \cdot$
0	3.2.0	Definition
	3.2.0	Beispiel
	3.2.0	Satz
	3.2.0	Satz (Cauchy-Kriterium für Reihen)
	3.2.0	Korollar
	3.2.0	Bemerkung
	3.2.0	Definition
	3.2.0	Satz
	3.2.0	Bemerkung
	3.2.0 $3.2.0$	Satz (Majoranten-Kriterium)
	3.2.0 $3.2.0$	Korollar (Minoranten-Kriterium)
	3.2.0 $3.2.0$	Satz (Quotienten-Kriterium)
	3.2.0 $3.2.0$	Korollar (einfaches Quotienten-Kriterium)
	3.2.0 $3.2.0$	Beispiel
	3.2.0 $3.2.0$	•
	3.2.0 $3.2.0$	Bemerkung
		Definition
	3.2.0	Bemerkung
	3.2.0	Satz (Cauchy-Produkt von Reihe)
	3.2.0	Korollar (Funktionalgleichung der Exponentialfunktion)
Ste	tigkeit	2ϵ
4.0	Defini	${ m tion}$
4.0	Beispi	el
4.0	Defini	tion
4.0	Beispi	el
4.0	Defini	tion (Grenzwert einer Funktion)
4.0		tion (Stetigkeit)
4.0	Bemer	kung
4.0	Propo	sition (Rechenregeln)
4.0		$arepsilon - \delta$ Kriterium für Stetigkeit)
4.0		el
4.0	=	kung (Wiederholung Stetigkeit)
4.0		${f Z}$ wischenwertsatz)
4.0	Defini	·

	4.0	Satz (vom Maximum u nd Minimum)	. 8
	4.0	Bemerkung	9
	4.0	Definition	9
	4.0	Satz (von der stetigen Umkehrfunktion)	9
	4.0	Beispiel	0
	4.0	Definition	1
	4.0	Bemerkung	1
	4.0	Definition	1
	4.0	Beispiel (Die komplexe Exponentialfunktion)	
	4.0	Bemerkung	
	4.0	Bemerkung	
	4.0	Definition	
	4.0	Bemerkung	
	4.0	Proposition	
	4.0	Bemerkung	
	4.0	Proposition (Additionstheoreme)	
	4.0	Proposition (Reihendarstellung)	
	4.0	Satz	
	4.0	Definition	
	4.0	Bemerkung	
	4.0	Bemerkung (Eigenschaften von π)	
	4.0	Definition	4
5	Diff	erentialrechnung 3	5
J	5.0	Definition	
	5.0	Bemerkung	
	5.0		
		•	
	5.0	Proposition	
	5.0	Satz (Rechenregeln)	
	5.0	Satz (Kettenregel)	
	5.0	Beispiel	
	5.0	Satz (Ableitung der Umkehrfunktion)	
	5.0	Beispiel	
	5.0	Bemerkung (Anwendung)	8
	5.0	Definition	8
	5.0	Satz (Der Satz von Rolle)	8
	5.0	Satz (Mittelwertsatz der Differenzialrechnung, MWS)	8
	5.0	Bemerkung (Spezialfall)	8
	5.0	Korollar (Verallgemeinerte Mittelwertsatz)	ç
	5.0	Korollar	g
	5.0	Satz	g
	5.0	Definition	
	5.0	Satz	
	5.0	Bemerkung	
	5.0	Satz (Regel von de l'Hospital)	
	0.0		٠.
	5.0	Beispiel	ſ

6	\mathbf{Inte}	egralrechnung	41
	6.0	Bemerkung	41
	6.0	Definition	41
	6.0	Definition (Integral für Treppenfunktion)	41
	6.0	Bemerkung	41
	6.0	Proposition	41
	6.0	Bemerkung (Ziel)	41
	6.0	Satz (Gleichmäßige Stetigkeit)	41
	6.0	Definition	42
	6.0	Beispiel	42
	6.0	Proposition (wichtig)	42
	6.0	Definition (Ober- und Untersumme)	43
	6.0	Satz	43
	6.0	Definition	43
	6.0	Bemerkung	43
	6.0	Satz (Rechenregeln)	43
	6.0	Bemerkung	44
	6.0	Satz (Mittelwertsatz der Integralrechnung)	44
	6.0	Definition (Stammfunktion, unbestimmtes Integral)	44
	6.0	Bemerkung	44
	6.0	Proposition (Hauptsatz der Differential- und Integralrechnung - Teil I)	44
	6.0	Satz (Hauptsatz der Differential- und Integralrechnung - Teil II)	45
	6.0	Beispiel (zu Stammfunktionen)	45
	6.0	Satz (Partielle Integration)	45
	6.0	Satz (Substitutionsregel)	46
	6.0	Bemerkung	46
	6.0	Reispiel	46

1 Reelle Zahlen

Die reellen Zahlen \mathbb{R} erfüllen eine Reihe von Axiomen, die in drei Gruppen unterteilt werden können.

- I. Algebraische Axiome
- II. Anordnungsaxiome
- III. Vollständigkeitsaxiome

1.1Algebraische Axiome

Die reellen Zahlen bilden mit der Addition $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $(a,b) \mapsto a+b$ und der Multiplikation $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $(a, b) \mapsto a * b$ einen Körper $(\mathbb{R}, +, *)$, der folgende Axiome erfüllt:

- 1) \mathbb{R} ist bzgl. der Addition eine Abelsche Gruppe. $(\mathbb{R}, +)$
- 2) $\mathbb{R} \setminus \{0\}$ ist bzgl der Multiplikation eine Abelsche Gruppe. $(\mathbb{R}, *)$
- 3) Das Distributivgesetz gilt: $\forall a, b, c \in \mathbb{R}$ a * (b + c) = a * b + a * c

Andere Beispiele von Körpern: \mathbb{C} , \mathbb{Q} , \mathbb{Z}_p für p prim. Die Natürlichen Zahlen $\mathbb{N}=\{1,\ldots,\infty\}$ und die Ganzen Zahlen Z bilden keinen Körper.

1.1.1. Proposition

 $\forall x \in \mathbb{R} \text{ gilt } 0 * a = 0.$

Beweis:
$$0+0=0$$
 $a(0+0)=a*0$ Distributivgesetz \Rightarrow $a*0+a*0=a*0$ \mathbb{R} assiozativ \Rightarrow $a*0+(a*0-a*0)=(a*0-a*0)$ additives Inverses \Rightarrow $a*0+0=0$ $0+0=0\Rightarrow$ $a*0=0$

q.e.d.

1.1.2. Definition (Potenzschreibweise)
$$\text{F\"{u}r } a \in \mathbb{R} \text{ und } n \in \mathbb{Z} \text{ wird } a^n \text{ folgendermaßen induktiv definiert: } a^n = \begin{cases} 1 & n=0 \\ a(a^{n-1}) & n>0 \\ (a^{-1})^n & n<0 \ \forall a\neq 0 \end{cases}$$

1.1.3. Bemerkung

 $\forall a, b \in \mathbb{R} \setminus \{0\} \text{ und } \forall n, m \in \mathbb{Z} \text{ gilt:}$

$$(1) \ a^n * a^m = a^{n+m}$$

$$(2) a^{n^m} = a^{n*m}$$

(3)
$$a^n * b^n = (a * b)^n$$

Beweis:

(1)
$$a^n * a^{m} \stackrel{\text{n. Def.}}{=} \underbrace{a \dots a}^{n-\text{mal}} * \underbrace{a \dots a}^{m-\text{mal}} = \underbrace{a \dots a}^{n+m-\text{mal}} \stackrel{\text{n. Def.}}{=} a^{n+m}$$

(2)
$$a^{n^m} = a^{\overbrace{n \dots n}^{m-\text{mal}}} = a^{m*n} = a^{n*m}$$

(3)
$$a^n * b^n = \underbrace{a \dots a}^{n-\text{mal}} * \underbrace{b \dots b}^{n-\text{mal}} = \underbrace{a \dots ab \dots b}^{n-\text{mal}} = (a * b)^n$$

1.2 Anordnungsaxiome

Die reellen Zahlen werden in positive Zahlen, negative Zahlen und 0 unterteilt. Dabei ist $x < 0 \Leftrightarrow -x > 0$ Und es gelten folgende Axiome:

- (1) $\forall x \in \mathbb{R}$ gilt genau eine der folgenden Bedingungen: x > 0, x = 0, x < 0
- (2) $\forall x, b \in \mathbb{R}$ x, b > 0 gilt: $a + b > 0 \land a * b > 0$

Wir schreiben für $a, b \in \mathbb{R}$ $a > b \Leftrightarrow a - b > 0$ und $a > b \Leftrightarrow a > b \vee a = b$

1.2.1. Proposition

 $\forall a, b \in \mathbb{R}$ gilt: a < b und $b < c \Rightarrow a < c$

Beweis: Sei a < b und $b < c \Rightarrow a - b < 0$ und $b - c < 0 \Rightarrow a - b + b - c < 0 \Rightarrow a - c < 0 \Rightarrow a < c$ q.e.d.

1.2.2. Bemerkung

 $\forall a, b, c \in \mathbb{R}$ gilt:

- a) $a < b \Rightarrow a + c < b + c$
- b) $a < b \text{ und } c > 0 \Rightarrow a * c < b * c$
- c) $a < b \text{ und } c < 0 \Rightarrow a * c > b * c$
- d) $a \neq 0 \Rightarrow a^2 > 0$ speziell 1 > 0
- e) $0 < a < b \text{ und } a < b < 1 \Rightarrow b^{-1} < a^{-1}$

1.2.3. Definition

Für $a \in \mathbb{R}$ und der Betrag |a| folgendermaßen definiert. $|a| = \begin{cases} a & a > 0 \\ -a & a < 0 \end{cases}$

1.2.4. Satz

 $\forall b \in \mathbb{R} \text{ gilt:}$

- (1) |a*b| = |a|*|b|
- (2) $|a+b| \le |a| + |b|$ (Dreiecksungleichung)
- (3) $|a-b| \ge ||a|-|b||$ (umgekehrte Dreiecksungleichung)

Beweis:

- (1) Beweis durch Falltunterscheidung.
- a < |a| und $b < |b| \Rightarrow a + b < |a| + |b|$
 - $-a \le |a|$ und $-b \le |b|$ \Rightarrow -a + -b \le |a| + |b|

$$\Rightarrow a + b \le |a| + |b| \text{ und } -(a + b) \le |a| + |b| \Rightarrow |a + b| \le |a| + |b|$$

- (3) $\bullet |a| = |a-b+b| \le |a-b| + |b| \Rightarrow |a| |b| \le |a-b|$
 - $|b| = |a b a| \le |a b| + |a| \Rightarrow |b| |a| \le |a b|$
 - $\Rightarrow |a| |b| \le |a b| \text{ und } (|a| |b|) \le |a b|$
 - $\Rightarrow ||a| |b|| \leq |a b|$

1.2.5. Bemerkung (Archimedisches Axiom)

Für zwei positive Zahlen, a, b gibt es immer eine natürliche Zahln, sodass folgendes gilt: n * b > a Also:

$$\forall a, b > 0 \ \exists n \in \mathbb{N} \quad n * b > a$$

Als Folgerung erhalten wir: Setze b=1

$$\forall a > 0 \; \exists n \in \mathbb{N} \quad n > a$$

1.2.6. Satz (Bernoullische Ungleichung)

Sei a > -1 dann gilt

$$\forall n \in \mathbb{N} \ (1+a)^n \ge 1 + na$$

Beweis: IA
$$n = 0$$
: $n = 0$ $1 = (1+a)^0 \ge 1 + 0 * a = 1$

IV $(1+a)^n \ge 1 + na$

IS $n \mapsto n + 1n \mapsto n + 1$
 $(1+a)^{n+1} = (1+a)(1+a)^n$
 $\stackrel{IV}{\ge} (1+a)(1+na)$
 $= 1 + na + a + \underbrace{na^2}_{>0}$
 $\ge 1 + (n+1)a$

1.2.7. Korollar

Sei a > 0.

- (1) Ist $a > 1 \ \forall k > 0 \ \exists n \in \mathbb{N}$, so dass $a^n > k$.
- (2) $0 < a < 1 \ \forall \varepsilon > 0 \ \exists n \in \mathbb{N}, \text{ sodass } a^n < \varepsilon$

Beweis:

- (1) Sei $a = x + 1 > 1 \Rightarrow a^n = (x + 1)^n \stackrel{\text{Bernoulli}}{\geq} 1 + nx$ $\forall n \in \mathbb{N} \exists x > 0 \text{ mit } nx > k - 1 \Rightarrow a^n \geq 1 + nx > 1 + k - 1 = k$
- (2) Sei 0 < a < 1 und $b = \frac{1}{a} > 1 \stackrel{mit(1)}{\Rightarrow} \exists k \in \mathbb{R} \text{ mit } \left(\frac{1}{a}\right)^n = b^n > k = \frac{1}{\varepsilon}$ $\Rightarrow \left(\frac{1}{a}\right)^n > \frac{1}{\varepsilon} \Rightarrow \frac{1}{a^n} > \frac{1}{\varepsilon} \Rightarrow a^n < \varepsilon.$

q.e.d.

1.3 Vollständigkeitsaxiom

Die Zahlengerade \mathbb{R} hat keine Lücken.

1.3.1. Definition

Sei $M \subset \mathbb{R}$ eine Teilmenge.

- 1. $k \in \mathbb{R}$ heißt obere Schranke von M wenn gilt, $\forall x \in M$, $x \leq k$. M heißt nach oben beschränkt, wenn es eine obere Schranke gibt. zB \mathbb{N} ist nicht nach oben beskchränkt, nach dem Archimedischem Axiom.
- 2. $k \in \mathbb{R}$ heißt untere Schranke von M wenn gilt, $\forall x \in M, x \geq k$. M heißt nach unten beschränkt, wenn es eine untere Schranke gibt.
- 3. M heißt beschränkt, wenn eine obere und untere Schranke existiert. Äquivalente Definition für Beschränktheit: $\exists k \in \mathbb{R}, \mid x \mid \leq k \ \forall x \in M$
- 4. $a \in \mathbb{R}$ heißt Infimum von M, falls a größte untere Schranke von M ist. Das heißt a ist untere Schranke von M und ist k eine untere schranke von M, dann folgt $k \leq a$

Schreibweise:
$$a = inf(M)$$

5. $b \in \mathbb{R}$ heißt Supremum von M, falls b kleinste obere Schranke von M ist. Das heißt b ist obere Schranke von M und ist k eine obere schranke von M, dann folgt $k \geq a$

Schreibweise:
$$b = sup(M)$$

1.3.2. Beispiel

Sei a < b dann ist inf[a, b] = a = inf(a, b) und sup[a, b] = b = sup(a, b).

$$[a,b] = \{a \in \mathbb{R} \ : \ a \le x \le b\} \quad \text{heißt abgeschlossenes Intervall}$$

$$(a,b) = \{a \in \mathbb{R} \ : \ a < x < b\} \quad \text{heißt offenes Intervall}$$

8

1.3.3. Bemerkung (zur Erinnerung)

Definition der natürlichen Zahlen (Axiom des kleinsten Element (Pianoaxiome)) Jede Teilmenge der natürlichen Zahlen hat ein kleinstes Element.

1.3.4. Satz (Vollständigkeitsaxiom)

Jede nicht leere, nach unten beschränkte Teilmenge $M \subset \mathbb{R}$ besitzt ein Infimum $inf(M) \in \mathbb{R}$.

 $ohne\ Beweis.$

1.3.5. Bemerkung

inf(M) muss kein Element von M sein.

1.3.6. Proposition

Jede nicht leere nach oben bescrhänkte Teilmenge $M \subset \mathbb{R}$ besitzt ein Supremum $sup(M) \in \mathbb{R}$.

 $\boldsymbol{Beweis:}$ Seien M nach oben beschränkt und a eine obere Schranke von M.

$$\Rightarrow \forall x \in M \quad x \leq a \Rightarrow -a \leq -x \quad \forall x \in M \Rightarrow -a \text{ ist untere Schranke von } -M = \{-x \ : \ x \in M\}$$

 $\Rightarrow -M$ ist nach unten beschränkt. Nach dem Vollständigkeitsaxiom, existiert ein Infimum.

Sei
$$b=inf(-M)\Rightarrow -a\leq b\Rightarrow -b\leq a$$
 und $b\leq -x\Rightarrow x\leq -b\quad \forall x\in M.$

Also -b ist obere Schranke und kleinste obere Schanke. $\Rightarrow -b = sup(M)$

q.e.d.

1.3.7. Proposition

sup(M) und inf(M) sind eindeutig bestimmt.

Beweis: Seien m und m' Suprema von $M \Rightarrow m \leq m'$ und $m' \leq m \Rightarrow m = m'$. analog für Infimum.

2 Komplexe Zahlen

Die Menge der komplexen Zahlen $\mathbb C$ sind die Punkte der Ebene $\mathbb R^2=\{(a,b):a,b\in\mathbb R\}$

$$(a,b) = (a,0) + (0,b) = a(1,0) + b(0,1)$$

Wir setzen $1 = (1,0), i = (0,1) \Rightarrow z = (a,b) = a + ib$

zusätzl
kich verlangen wir $i^2=-1$ Also: $\mathbb{C}=\left\{z=a+ib \ : \ a,b\in\mathbb{R}, i^2=-1\right\}$

2.1. Satz

Es gilt: $\mathbb C$ ist ein Körper.

Beweis: Sei $x, y, z \in \mathbb{C}$ und x = a + ib, y = c + id, z = e + if

- I) C ist eine abelsche Gruppe bezüglich der Addition:
 - i) $x + y = a + ib + c + id = (a + c) + i(b + d) \in \mathbb{C}$
 - ii) x + 0 = a + ib + 0 + i0 = a + ib = x
 - iii) $\exists -x \in \mathbb{C} \text{ mit } x + -x = a + ib a ib = 0$
 - iv) x + y = (a + c) + i(b + d) = (c + a) + i(d + b) = y + x
- II) $\mathbb C$ ist eine abelsche Gruppe bezüglich der Multiplikation:
 - i) $xy = (a+ib)(c+id) = (ac-bd) + i(ad-bc) \in \mathbb{C}$
 - ii) 1x = (1+i0)(a+ib) = a+ib = x
 - iii) $\exists x^{-1} \in \mathbb{C}$ mit $xx^{-1} = (a+ib)\frac{a+ib}{a^2-b^2} = \frac{a^2-b^2}{a^2-b^2} = 1$
 - iv) xy = (ac bd) + i(ad bc) = (ca bd) + i(da cb) = yx
- III) Das Distributivgesetz gilt:

$$\begin{split} z(x+y) &= (e+if)(a+c+ib+id) \\ &= ea + ec - fb - fd + ifa + ifc + ieb + ied \\ &= ea - fb + ifa + ieb + ec - fd + ied + ifc \\ &= xy + xz \end{split}$$

q.e.d.

2.2. Definition

Sei $z = a + ib \in \mathbb{C}$

- $\overline{z} = a ib$ heißt die konjungiert komplexe Zahl von z.
- $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$ heißt Betrag von z.
- a = Re(z) heißt Realteil von z.
- b = Im(z) heißt Imaginärteil von z.

2.3. Satz

Es gilt:

$$Re(z) = \frac{z + \overline{z}}{2}$$
 und $Im(z) = \frac{z - \overline{z}}{2i}$

Beweis:

q.e.d.

2.4. Proposition

Es gilt:

(i)
$$\overline{\overline{z}} = z$$
, $\overline{z_1} + \overline{z_2} = \overline{z_1 + z_2}$, $\overline{z_1} * \overline{z_2} = \overline{z_1 z_2}$, $|\overline{z}| = |z|$

(ii)
$$|z| > 0$$
, $|z| = 0 \Leftrightarrow z = 0$

(iii)
$$|z_1z_2| = |z_1||z_2|$$

(iv)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

Beweis:

(i)
$$\bullet \ \overline{\overline{z}} = \overline{\overline{a+ib}} = \overline{a-ib} = a+ib = z$$

•
$$\overline{z_1} + \overline{z_2} = a - ib + c - id = (a + c) - i(b + d) = \overline{z_1 + z_2}$$

$$\bullet$$
 $\overline{z_1} * \overline{z_2} = (a - ib)(c - id) = (ac + bd) - i(ac + bc) = \overline{z_1 z_2}$

$$\bullet \mid \overline{z} \mid = \sqrt{a^2 + b^2} = \mid z \mid$$

(ii)
$$\bullet |z| = a^2 + b^2 > 0$$

$$\bullet \mid z \mid = a^2 + b^2 = 0 \Leftrightarrow a^2 = -b^2 \Leftrightarrow a = b = 0$$

(iii)
$$|z_1 z_2|^2 = (z_1 z_2)(\overline{z_1 z_2}) = (z_1 \overline{z_1})(z_2 \overline{z_2}) = |z_1|^2 |z_2|^2 \Leftrightarrow |z_1 z_2| = |z_1| |z_2|$$

 $Re(z)^2 = a^2 \le a^2 + b^2 = |z|^2 \Rightarrow Re(z) \le |Re(z)| = \sqrt{Re(z)} \le |z|$

(iv) Sei
$$a, b \in \mathbb{R}$$
 $z \in \mathbb{C}$ $z = a + ib$

$$\Rightarrow Re(z_{1}\overline{z_{2}}) \leq |z_{1}\overline{z_{2}}| = |z_{1}| |\overline{z_{2}}| = |z_{1}| |z_{2}|$$

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2})\overline{(z_{1} + z_{2})} = (z_{1} + z_{2})(\overline{z_{1}} + \overline{z_{2}})$$

$$= z_{1}\overline{z_{1}} + z_{2}\overline{z_{1}} + z_{1}\overline{z_{2}} + z_{2}\overline{z_{2}} \qquad \text{denn } z_{2}\overline{z_{1}} = \overline{z_{1}}\overline{z_{2}}$$

$$= |z_{1}|^{2} + z_{1}\overline{z_{2}} + |z_{2}|^{2} \qquad \text{denn } z_{1}\overline{z_{2}} + \overline{z_{1}}\overline{z_{2}} = 2Re(z_{1}z_{2})$$

$$= |z_{1}|^{2} + 2Re(z_{1}\overline{z_{2}}) + |z_{2}|^{2} \qquad \text{denn } Re(z_{1}z_{2}) \leq |z_{1}| |z_{2}|$$

$$\leq |z_{1}|^{2} + 2|z_{1}| |z_{2}| + |z_{2}|^{2} = (|z_{1}| + |z_{2}|)^{2}$$

$$\Rightarrow |z_{1} + z_{2}| \leq |z_{1}| + |z_{2}|$$

Folgen und Reihen 3

3.1 Folgen

3.1.1. Beispiel

Betrachte

Annahme: $\sqrt{2} \in \mathbb{R}$, aber $\sqrt{2} \notin \mathbb{Q}$

Beweis: Angenommen $\sqrt{2} \in \mathbb{Q}$

 $\sqrt{2} \in \mathbb{Q} \Rightarrow \frac{p}{q}$ mit $p \in \mathbb{Z}, q \in \mathbb{N}$ und p und q nicht beide durch 2 teilbar, sonst kürzen wir.

$$\begin{array}{lll} 2=\frac{p^2}{q^2} & \Rightarrow & \\ 2q^2=p^2 & \Rightarrow & \\ 2q^2=(2m)^2=4m^2 & \Rightarrow & \\ q^2=2m^2 & \text{d.h. } 2|q^2\Rightarrow 2|q \text{ Also p und q sind beide durch 2 teilbar.} \end{array}$$

Widerspruch! p
 und q sind nicht beide durch 2 teilbar. $\Rightarrow \sqrt{2} \notin \mathbb{Q} \Rightarrow \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$

q.e.d.

3.1.2. Bemerkung

 $\sqrt{2}$ ist die positive Lösung von $a^2 = 2 \Leftrightarrow a = \frac{2}{a} \Leftrightarrow 2a = a + \frac{2}{a} \Leftrightarrow a = \frac{1}{2} \left(a + \frac{2}{a} \right)$ Betrachte die rechte Seite dieser Gleichung und berechne diese induktiv Setze zB

$$a_1 = 1$$

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$$

$$a_1 = 1 \qquad a_2 = 1, 5 \qquad a_3 \approx 1.41 \qquad a_3 \approx 1,4142 \qquad \dots$$

Also a_n nähert sich mit wachsendem n immer mehr an $\sqrt{2}$. Dies führt zu dem Begriff Grenzwert einer Folge.

3.1.3. Definition

Eine Folge $(a_n)_{k=0}^{\infty}$ reeller Zahlen ist eine Abbildung $\mathbb{N}_0 \to \mathbb{R}$ mit $n \mapsto a_n$ Bezeichnung: Wir schreiben für Folgen

$$(a_n)_{k=0}^{\infty}$$
 $(a_n)_{n\geq 0}$ $(a_n)_{n\in\mathbb{N}}$ (a_n)

3.1.4. Definition

Eine Folge (a_n) heißt

- 1. (streng) monoton wachsend, wenn $\forall a \in \mathbb{N} \ a_n \leq a_{n+1} \quad (a_n) \nearrow \quad (a_n < a_{n+1} \quad (a_n) \uparrow)$
- 2. (streng) monoton fallend, wenn $\forall a \in \mathbb{N} \ a_n \geq a_{n+1} \quad (a_n) \searrow \quad (a_n > a_{n+1} \quad (a_n) \downarrow)$
- 3. (streng) monoton, sie (streng) monoton wachsend oder (streng) monoton fallend ist.

3.1.5. Beispiel

Ein paar Beispiele zu Folgen:

- (1) Die konstante Folge $a_n = k$ ist monoton fallend und steigend.
- (2) Die harmonische Folge $a_n = \frac{1}{n} \forall n \geq 1$ ist streng monoton fallend.
- (3) Die alternierende Folge $a_n = (-1)^n$ ist nicht monoton.
- (4) Die geometische Folge $a_n = a^n \ \forall n \ge 0$ Sei $a \in \mathbb{R}$ a^n ist $\begin{cases} \text{streng monoton wachsend} & a > 0 \\ \text{streng monoton fallend} & 0 < a < 1 \\ \text{monoton} & a = 1 \\ \text{nicht monoton} \end{cases}$
- (5) Die Fibonacci Folge ist monoton wachsend. $f_n = \begin{cases} 1 & \text{wenn } n = 0, n = 1 \\ f_{n-1} + f_{n-2} & \text{sonst} \end{cases}$

3.1.6. Definition (der Konvergenz)

Eine Folge reeller Zahlen $(a_n)_{n\in\mathbb{N}}$ heißt konvergent gegen $a\in\mathbb{R}$ wenn

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \ge N \quad |a_n - a| < \varepsilon$$

a heißt der Grenzwert oder Limes der Folge (a_n) . Die Folge (a_n) heißt divergent, wenn sie nicht konvergiert. Schreibweise: $\lim a_n = a$ oder $\lim_{n \to k} a_n = a$. Wobei $k \in \mathbb{R} \cup \{\infty, -\infty\}$

3.1.7. Bemerkung

Sei $a \in \mathbb{R}, \varepsilon > 0$. $U_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon) = \{x \in \mathbb{R} \ : \ a - \varepsilon < x < a + \varepsilon\}$ heißt ε -Umgebung von a.

$$a_n \in U_{\varepsilon}(a) \Leftrightarrow a - \varepsilon < a_n < a + \varepsilon \Leftrightarrow -\varepsilon < a_n - a < \varepsilon \Leftrightarrow |a_n - a| < \varepsilon$$

Also: Die Folge (a_n) konvergiert gegen $a \Leftrightarrow$ Die Folgenglieder a_n liegen ab einer Schwelle N alle in der ε -Umgebung von a. (a_n) konvergiert nicht gegen $a \Leftrightarrow \exists \varepsilon > 0 \forall N \in \mathbb{N} \ \exists n \geq N \ | \ a_n - a \ | \geq \varepsilon$.

14

3.1.8. Beispiel

Beispiele zur Konvergenz:

(1) Die harmonische Folge konvergiert: $a_n = \frac{1}{n} \Rightarrow \lim_{n \to \infty} \frac{1}{n} = 0$

$$\textbf{\textit{Beweis:}} \text{ Sei } \varepsilon > 0 \text{ und } N > \frac{1}{\varepsilon} \qquad |a_n - 0| = \left|\frac{1}{n} - 0\right| = \frac{1}{n} \leq \frac{1}{N} < \varepsilon \qquad \qquad q.e.d.$$

(2) Die alternierende Folge $b_n = (-1)^n$ ist divergent

$$\begin{aligned} &\textbf{\textit{Beweis:}} \text{ Angenommen } \exists a \in \mathbb{R} \text{ mit } \lim_{n \to \infty} b_n = b \\ &\text{W\"{a}hle } \varepsilon = \frac{1}{2} > 0 \Rightarrow \exists N \in \mathbb{N} \ \forall n \geq N \ | \ b_n - b \ | < \frac{1}{2}. \ \text{Da} \ b_{n+1} - b_n = \pm 2 \ \text{ist} \ \forall n \geq N \\ &2 = | \ b_{n+1} - b_n \ | = | \ b_{n+1} - b - (b_n - b) \ | \leq | \ b_{b+1} - b \ | + | \ b_n - b \ | < \frac{1}{2} + \frac{1}{2} = 1 \Rightarrow 2 < 1 \\ &\text{Widerspruch!} \ \Rightarrow (b_n) \ \text{ist divergent.} \end{aligned}$$

(3) Ob die geometsiche Folge $(a^n)_{n\geq 1}$ hängt davon ab, welchen Wert a hat.

Beweis: Durch Fallunterscheidung

Fall 3 $a = -1 \Rightarrow$ divergent weil alternierend.

Fall $4 \mid a \mid > 1 \quad \forall K > 0 \; \exists n \in \mathbb{N} \quad \mid a \mid^n > K \; d.h. \; (a^n) \; \text{ist unbeschränkt.}$

q.e.d.

3.1.9. Definition

Eine Folge (a_n) heißt nach oben (unten) beschränkt, wenn es ein $A \in \mathbb{R}$ gibt mit

$$\forall n \in \mathbb{N} \quad a_n \le A \qquad (a_n \ge A)$$

 (a_n) heißt beschränkt, wenn (a_n) nach oben oder unten beschränkt ist. d.h.

$$\exists K \in \mathbb{R} \quad | \ a_n \ | \le K \lor | \ a_n \ | \ge K \quad \forall n \in \mathbb{N}$$

3.1.10. Satz

Jede konvergente Folge (a_n) ist beschränkt.

Beweis:
$$\lim_{n \to \infty} a_n = a$$
. Wähle $\varepsilon = 1 > 0 \Rightarrow \exists N \in \mathbb{N} \quad \forall n \ge N \quad |a_n - a| < 1$. $q.e.d.$ $|a_n| = |a + (a_n - a)| \le |a| + |a_n - a| < |a| + 1 \quad \forall n \ge N$ Sei $K = max\{|a_1|, |a_2|, \dots, |a_{n-1}|, |a| + 1\}$ $|a_n| < K \quad \forall n \ge 1$

3.1.11. Bemerkung

Die Umkehrung gilt nicht. Das heißt eine beschränkte Folge ist nicht konvergent. Gegenbeispiel: die alternierende Folge $(-1)^n$.

3.1.12. Satz (Monotoniekriterium)

Sei (a_n) eine Folge. Dann gilt:

- Ist (a_n) monoton wachsend und nach oben beschränkt, dann ist (a_n) konvergent.
- Ist (a_n) monoton fallend und nach unten beschränkt, dann ist (a_n) konvergent.

Beweis: Es reicht die erste Aussage zu zeigen, denn ist (a_n) monoton fallend und nach unten beschränkt $\Rightarrow (-a_n)$ ist monoton wachsend und nach oben beschränkt $\Rightarrow (a_n)$ ist konvergent.

Sei also $(a_n) \nearrow$ und nach oben beschränkt. Mit dem Vollständigkeitsaxiom $\Rightarrow \exists a = \sup \{a_n : n \in \mathbb{N}\}$. Und sei $\varepsilon > 0 \Rightarrow a - \varepsilon$ ist keine obere Schranke von $\{a_n : n \in \mathbb{N}\} \Rightarrow \exists N \in \mathbb{N} \quad a - \varepsilon < a_N \leq a$.

$$\begin{aligned} \operatorname{Da}\left(a_{n}\right)\nearrow &\Rightarrow \forall n\geq N & a_{N}\leq a_{n} \\ &\Rightarrow a-\varepsilon < a_{N}\leq a_{n}\leq a < a+\varepsilon & \forall n\geq N \\ &\Rightarrow a-\varepsilon < a_{n}< a+\varepsilon & \forall n\geq N \\ &\Rightarrow |a_{n}-a|<\varepsilon & \forall n\geq N \\ &\Rightarrow \lim_{n\to\infty}a_{n}=a \end{aligned}$$

3.1.13. Bemerkung

Das Monotonie-Kriterium ist äquivalent zur Vollständigkeit.

3.1.14. Satz

Der Grenzwert einer Folge ist eindeutig bestimmt.

Beweis: Angenommen
$$\lim_{n\to\infty}a_n=a$$
 und $\lim_{n\to\infty}a_n=b$ und $a\neq b$. Sei $\varepsilon=\frac{1}{2}\mid b-a\mid\Rightarrow \exists N_1\; \forall n\geq N_1\mid a_n-a\mid<\varepsilon$ $\Rightarrow\exists N_2\; \forall n\geq N_2\mid a_n-b\mid<\varepsilon$ Sei $N=\max\{N_1,N_2\}\quad \forall n\geq N\quad \mid b-a\mid=\mid (b-a_n)+(a_n-a)\mid$ $\leq\mid b-a_n\mid+\mid a_n-a\mid$ $=\mid a_n-b\mid+\mid a_n-a\mid$ $<\frac{1}{2}\mid b-a\mid+\frac{1}{2}\mid b-a\mid$ $\Rightarrow\mid b-a\mid<\mid b-a\mid$ Widerspruch! $\Rightarrow a=b$

3.1.15. Satz (Rechenregeln für konvergente Folgen)

Seien (a_n) und (b_n) zwei konvergente Folgen. Dann gilt:

- 1. $(a_n \pm b_n)$ ist konvergent und $\lim_{n \to \infty} a_n \pm b_n = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$.
- 2. $\lambda(a_n)$ ist konvergent und $\lim_{n\to\infty} \lambda a_n = \lambda \lim_{n\to\infty} a_n$.
- 3. $(a_n b_n)$ ist konvergent und $\lim_{n\to\infty} a_n b_n = \lim_{n\to\infty} a_n \lim nb_n$.
- 4. Ist $(b_n) \neq 0 \ \forall n \geq n_0$ und $\lim_{n \to \infty} b_n \neq 0$. Dann ist $\left(\frac{a_n}{b_n}\right)$ konvergent und $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$.
- 5. $a_n \le b_n$ dann ist $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n \ \forall n \ge n_0$.

Beweis: Sei $\lim_{n\to\infty} a_n = 0$ und $\lim b_n = b$

1. Sei
$$\varepsilon > 0 \Rightarrow \exists N_1, N_2, \in \mathbb{N}$$
 $|a_n - a| < \frac{\varepsilon}{2} \quad \forall n \ge N_1 \quad \text{und} \quad |b_n - b| < \frac{\varepsilon}{2} \quad \forall n \ge N_2$

$$\Rightarrow \forall n \ge \max\{N_1, N_2\}$$

$$|(a_n \pm b_n) - (a \pm b)| = |(a_n - a) \pm (b_n - b)|$$

$$\leq |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

$$\Rightarrow (a_n \pm b_n) \text{ beschränkt und } \lim_{n \to \infty} a_n \pm b_n = a + b.$$

2. Sei
$$\varepsilon > 0 \Rightarrow \exists N \in \mathbb{N} \quad |a_n - a| < \frac{\varepsilon}{\lambda} \quad \forall n \ge N$$
$$|\lambda a_n - \lambda a| = |\lambda(a_n - a)| = |\lambda| |a_n - a| < \lambda \frac{\varepsilon}{\lambda} = \varepsilon$$

3. Jede konvergente Folge ist beschränkt
$$\Rightarrow \exists K \in \mathbb{R} \text{ mit } | a_K | \leq K \text{ und } | b | \leq K$$

$$\text{Sei } \varepsilon > 0 \Rightarrow \exists N_1, N_2 \in \mathbb{N} | a_n - a | < \frac{\varepsilon}{2K} \text{ und } | b_n - b | < \frac{\varepsilon}{2K}. \Rightarrow$$

$$\forall n \geq \max\{N_1, N_2\} | a_n b_n - a b | = | a_n b_n - a_n b + a_n b + a b | = | a_n (b_n - b) + b (a_n - a) |$$

$$\leq | a_n (b_n - b) | + | b (a_n - a) |$$

$$= \underbrace{| a_n |}_{\leq K} | b_n - b | + \underbrace{| b |}_{\leq K} | a_n - a | < K \frac{\varepsilon}{2K} + K \frac{\varepsilon}{2K} = \varepsilon$$

4. Zeige
$$\lim_{n\to\infty} \frac{1}{b_n} = \frac{1}{\lim_{n\to\infty} b_n} \implies ||b_n| - |b|| \le |b_n - b| < \frac{|b|}{2} \quad \forall n \ge n_0$$

$$\Rightarrow -\frac{|b|}{2} < |b_n| - |b| < \frac{|b|}{2} \Rightarrow \frac{|b|}{2} < |b_n| \implies \frac{1}{|b_n|} < \frac{2}{|b|} \quad \forall n \ge n_0$$
Sei $\varepsilon > 0 \Rightarrow \exists N \quad \forall n \ge N \quad |b_n - b| < \frac{\varepsilon |b|^2}{2} \Rightarrow$

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{b - b_n}{bb_n} \right| = \frac{1}{|b_n|} \frac{1}{|b|} |b - b_n| < \frac{2}{|b|} \frac{1}{|b|} |b_n - b| < \frac{2}{|b|} \frac{\varepsilon |b|^2}{2} = \varepsilon.$$

5. Sei
$$a_n \leq b_n \quad \forall n \geq n_0$$
. Angenommen $a > b$. Sei $\varepsilon = \frac{a-b}{2} > 0$

$$\Rightarrow \exists N_1, N_2 \in \mathbb{N} \quad | \ a_n - a \ | < \varepsilon \quad \forall n \geq N_1 \quad \text{und} \quad | \ b_n - b \ | < \varepsilon \quad \forall n \geq N_2$$

$$b_n < b + \varepsilon = b + \frac{a-b}{2} = \frac{2b+a-b}{2} = \frac{b+a}{2} = \frac{2a-a+b}{2}$$

$$= a - \frac{a-b}{2} = a - \varepsilon < a_n \quad \forall n \geq \max\{N_1, N_2\}$$

$$\Rightarrow b_n < a_n \quad \forall n \geq \max\{N_1, N_2\} \quad \text{Widerspruch!} \Rightarrow a \leq b$$

3.1.16. Satz (Sandwich-Theorem)

Sei (a_n) und (b_n) zwei konvergente Folgen mit der Eigenschaft, dass $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=a$. Sei (c_n) eine Folge mit der Eigenschaft, dass $a_n \leq c_n \leq b_n \quad \forall n \geq n_0$. Dann ist (c_n) konvergent und $\lim_{n \to \infty} c_n = a$.

Beweis: Sei
$$\varepsilon > 0 \Rightarrow \exists N_1, N_2 \in \mathbb{N}$$

$$a - \varepsilon < a_n < a + \varepsilon \quad \forall n \ge N_1$$

$$a - \varepsilon < b_n < a + \varepsilon \quad \forall n \ge N_2$$

$$\Rightarrow \forall n \ge \max\{N_1, N_2\} \text{ gilt:} \qquad a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon \quad \forall n \ge N$$

$$\Rightarrow |c_n - a| < \varepsilon \Rightarrow \lim_{n \to \infty} c_n = a$$

q.e.d.

3.1.17. Beispiel

Zwei Beispiele zum Sandwich-Theorem:

1. Sei
$$(a_n)$$
 eine Folge mit $0 \le a_n \le \frac{1}{n} \Rightarrow \lim_{n \to \infty} a_n = 0$

2.
$$a_n = \sqrt{2n} - \sqrt{n}$$
 ist divergent, denn
$$a_n = \frac{\left(\sqrt{2n} - \sqrt{n}\right)\left(\sqrt{2n} + \sqrt{n}\right)}{\left(\sqrt{2n} + \sqrt{n}\right)} = \frac{2n - n}{\sqrt{n}\left(\sqrt{2} - 1\right)} \ge \frac{n}{3\sqrt{n}} = \frac{\sqrt{n}}{3} \ge \sqrt{n} \xrightarrow{n \to \infty} \infty.$$

3.1.18. Definition

Eine Folge (a_n) heißt bestimmt divergent gegen $\pm \infty$ wenn gilt:

$$\forall K \in \mathbb{R} \quad \exists N \in \mathbb{N} \quad \forall n \ge N \quad a_n \leqslant K$$

Für jedes K aus \mathbb{R} gibt es ein N aus \mathbb{N} ab dem a_n größer/kleiner als K wird. Schreibweise: $\lim_{n\to\infty} a_n = \pm \infty$

3.1.19. Beispiel

Beispiele zu bestimmt divergenten Folgen:

- 1. Die Fibonacci Folge ist bestimmt divergent gegen $+\infty = \infty$
- 2. Sei $a_n = n$, dann folgt $\lim_{n \to \infty} a_n = \infty$
- 3. Sei $\lim_{n\to\infty} a_n = \infty \Leftrightarrow \lim_{n\to\infty} -a_n = -\infty$
- 4. Die Folge $a_n = (-1)^n$ ist divergent aber nicht bestimmt divergent.
- 5. Sei (a_n) bestimmt divergent und $a_n \neq 0 \quad \forall n \geq n_0$, dann folgt $\lim_{n \to \infty} \frac{1}{a_n} = 0$.

$$\begin{aligned} \textit{\textbf{Beweis:}} \ \operatorname{Sei} \ \lim_{n \to \infty} a_n &= \infty \qquad \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ a_n > \frac{1}{\varepsilon} > 0 \\ & \Rightarrow \frac{1}{a_n} < \varepsilon \Rightarrow \left| \ \frac{1}{a_n} - 0 \ \right| < \varepsilon \\ & \text{da} \ a_n > 0 \Rightarrow \lim_{n \to \infty} \frac{1}{a_n} = 0. \end{aligned}$$

q.e.d.

3.1.20. Definition

Sei (a_n) eine Folge reeller Zahlen und $n_0 < n_1 < n_2 < \cdots < n_k < \ldots$ eine Teilmenge von $\mathbb N$. Dann heißt die Folge $(a_{n_k})_{k\in\mathbb{N}}$ eine Teilfolge von $(a_n)_{n\in\mathbb{N}}$.

3.1.21. Bemerkung

Ist die Folge (a_n) konvergent, dann ist auch jede Teilfolge von (a_n) konvergent.

Beweis: Sei (a_n) konvergent gegen a. Also $\forall \varepsilon > 0 \exists N \in \mathbb{N} \quad |a_n - a| < \varepsilon \quad \forall n \geq N$. Da (a_{n_k}) eine Teilfolge von (a_n) mit $n_0 < n_1 < n_2 < \cdots < n_k < \ldots$ und da n_k monoton steigend ist, ist $k \leq n_k$ und $n_k \geq N \quad \forall k \geq N$ daraus folgt $|a_{n_k} - a| < \varepsilon \quad \forall n \geq N$.

3.1.22. Definition

Sei (a_n) eine Folge. Eine Zahl $a \in \mathbb{R}$ heißt Häufungspunkt (Häufungswert) der Folge (a_n) , wenn es eine Teilfolge von (a_n) gibt, die gegen a konvergiert.

3.1.23. Bemerkung

Beispiele zu Häufungspunkten:

- 1. Sei $\lim_{n\to\infty} a_n = a$, dann ist a der einzige Häufungspunkt der Folge (a_n) .
- 2. Eine bestimmt divergente Folge hat keinen Häufungspunkt.
- 3. Die Folge $a_n = \frac{1}{n} + (-1)^n$ besitzt die zwei Häufungspunkte ± 1 : $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} \frac{1}{2n} (-1)^{2n} = \lim_{n \to \infty} \frac{1}{2n} + 1 = 1$ $\lim_{n \to \infty} a_{2n+1} = \lim_{n \to \infty} \frac{1}{2n+1} (-1)^{2n+1} = \lim_{n \to \infty} \frac{1}{2n+1} 1 = -1$
- 4. Jede konvergente Folge ist beschränkt, aber jede beschränkte Folge muss nicht konvergent sein.

3.1.24. Satz (von Bolzano-Weierstraß)

Jede beschränkte Folge reeller Zahlen besitzt eine konvergente Teilfolge.

Beweis: $(a_n)_{n\in\mathbb{N}_0}$ ist beschränkt, d.h. $\exists A\in\mathbb{R}$ mit $-A\leq a_n\leq A \quad \forall n\geq 0$

Sei $A_k = \{a_m : m \geq k\}$. Beachte: dass jede der Mengen A_k beschränkt ist, durch A

Daraus folgt mit dem Vollständigkeitsaxiom $\exists inf(A_k) \quad \forall A_k \quad \text{Wähle } x_k = inf(A_k).$

$$\mathrm{Da}\ A_0\supset A_1\supset\cdots\supset A_k\supset A_{k+1}\supset\ldots\quad\Rightarrow\quad x_k\leq x_{k+1}\quad\forall k\geq 0.$$

Betrachte die Folge $(x_n)_{k\geq 0}$. (x_n) ist monoton wachsend und durch A beschränkt.

Mit dem Monotoniekritierium konvergiert (x_n) . Sei etwa $\lim_{k\to\infty} x_k = z$

zu zeigen: z ist Häufungspunkt von (a_n)

- 1. Sei $\varepsilon>0$, da $\lim_{k\to\infty}x_k=z\Rightarrow \exists N\in\mathbb{N}$ mit $\mid x_k-z\mid<\frac{\varepsilon}{2}\quad \forall n\geq N$
- 2. Da $x_k = \inf\{A_k\} = \inf\{a_m : m \ge k\} \Rightarrow \exists a_{k_m} \text{ mit } |x_k a_{k_m}| < \frac{\varepsilon}{2}.$ $\Rightarrow |a_{k_m} z| = |a_{k_m} x_k + x_k z| \le |a_{k_m} x_k| + |x_k z| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Also $\forall \varepsilon > 0 \exists N \in \mathbb{N} \quad \forall k \geq N \quad \exists a_{k_m} \in (a_n) \quad |a_{k_m} - z| < \varepsilon$

d.h. die Teilfolge $(a_{k_m})_{m\geq 0}$ ist konvergent gegen z

Also (a_{k_m}) ist eine konvergente Teilfloge von der beschränkten Folge (a_n) .

 $x_k \qquad a_{k_m} \qquad x_k + \frac{\varepsilon}{2}$

3.1.25. Bemerkung

Der Satz von Bolzano-Weierstraß ist äquivalent zum Vollständigkeitsaxiom. Andere äquivalente Formulierungen zu Bolzano-Weierstraß:

- Jede beschränkte Folge reeller Zahlen hat mindestens einen Häufungspunkt.
- Jede beschränkte Folge reeller Zahlen hat einen größten und einen kleinsten Häufungspunkt.

3.1.26. Definition (Cauchy-Folge)

Eine Folge $(a_n)_{n\geq 0}$ heißt CAUCHY-Folge, wenn gilt:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n, m \ge N \quad |a_n - a_m| < \varepsilon$$

3.1.27. Satz

Folgende Aussagen sind äquivalent

- 1. Die Folge (a_n) ist konvergent
- 2. Die Folge (a_n) ist eine Cauchy-Folge

Beweis: 1)
$$\Rightarrow$$
 2) Sei $\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0 \exists N \ \forall m \geq N \ | \ a_n a \ | < \frac{\varepsilon}{2} \Rightarrow \forall n, m \geq N$

$$| \ a_n - a_m \ | = | \ a_n - a + a - a_m \ | \leq | \ a_n - a \ | + | \ a_m - a \ | < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\Rightarrow a_n \text{ ist eine Cauchy Folge}$$

 $(2) \Rightarrow 1)$ Jede Cauchy Folge ist beschränkt.

Sei
$$\varepsilon = 1 \Rightarrow \exists N \in \mathbb{N} \ \forall n, m \geq N \ | \ a_n - a_m \ | < 1 \Rightarrow | \ a_n - a_N \ | < 1$$

$$\Rightarrow | \ a_n \ | = | \ a_n - a_N + a_N \ | \leq | \ a_n - a_N \ | + | \ a_N \ | < 1 + | \ a_N \ | \quad \forall n \geq N$$

$$\Rightarrow \forall n \in \mathbb{N} \ | \ a_n \ | \leq \max\{|\ a_0 \ |, \dots, |\ a_{N-1} \ |, |\ a_N \ | + 1\} \Rightarrow (a_n) \text{ ist beschränkt.}$$

Nach Bolzano-Weierstraß existiert eine konvergente Teilfolge: $(a_{n_k}) \stackrel{k \to \infty}{\longrightarrow} a$

zu zeigen: $\lim_{n \to \infty} a_n = a$.

Sei
$$\varepsilon>0$$
. Wähle m so groß, dass $|a_m-a_n|<\frac{\varepsilon}{2} \quad \forall n,m\geq N$ und
$$|a_{n_k}-a|<\frac{\varepsilon}{2} \quad \forall n_k\geq k\geq N$$

$$\Rightarrow |a - a_n| = |a - a_{n_k} + a_{n_k} - a_n| \le |a - a_{n_k}| + |a_{n_k} - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

3.1.28. Beispiel (Verfahren zur Berechnung der Quadratwurzel)

Seien a = 0, $a_0 > 0$ reelle Zahlen. Wir definieren die Folge (x_n) rekursiv.

$$x_0 = x_0$$

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

Wir zeigen: (x_n) ist konvergent und $\lim_{n\to\infty} x_n = x$ und $x^2 = a$.

Beweis: zu zeigen: nach unten durch 0 beschränkt: $x_n > 0 \quad \forall n \geq 0$

IA
$$n = 0$$
: $x_0 > 0$
IV $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$

Sei
$$x_n > 0 \Rightarrow x_{n+1} = \underbrace{\frac{1}{2}}_{>0} \left(\underbrace{x_n}_{>0} + \underbrace{\frac{s_0}{x_n}}_{>0}\right) > 0 \Rightarrow (x_n)$$
 ist n.u. durch 0 beschränkt.

zu zeigen: $x_n^2 \ge a \quad \forall n \ge 1$ denn

IS $n \mapsto n+1$

$$x_{n+1}^2 - a = \frac{1}{4} \left(x_n + \frac{a}{x_n} \right)^2 - a = \frac{1}{4} \left(x_n^2 + 2x_n \frac{a}{x_n} + \frac{a^2}{x_n^2} \right) - a$$

$$= \frac{1}{4} \left(x_n^2 + \frac{2ax_n}{x_n} + \frac{a^2}{x_n^2} - 4a \right) = \frac{1}{4} \left(x_n^2 + \frac{2ax_n}{x_n} + \frac{a^2}{x_n^2} - \frac{4ax_n}{x_n} \right)$$

$$= \frac{1}{4} \left(x_n^2 - 2x_n \frac{a}{x_n} + \frac{a^2}{x_n^2} \right) = \frac{1}{4} \left(x_n - \frac{a}{x_n} \right)^2 \ge 0$$

 (x_n) ist monoton fallend

$$x_n - x_{n+1} = x_n - \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) = \frac{1}{2} \left(2x_n - x_n - \frac{a}{x_n} \right) = \underbrace{\frac{1}{2x_n \underbrace{(x_n^2 - a)}_{x_n^2 > a}}} \ge 0$$

$$\Rightarrow x_n \ge x_{n+1}$$

Nach dem Monotonie-Kriterium ist (x_n) konvergent.

Sei
$$x = \lim_{n \to \infty} x_n$$
 $x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$

$$= \frac{1}{2} \left(\lim_{n \to \infty} x_n + \frac{a}{\lim_{n \to \infty} x_n} \right) = \frac{1}{2} \left(x + \frac{a}{x} \right)$$

$$\Rightarrow 2x = x + \frac{a}{x} \quad \Rightarrow x = \frac{a}{x} \quad \Rightarrow x^2 = a$$

q.e.d.

Die positive Lösung der Gleichung $x^2 = a$ heißt die Quadratwurzeln von a. Wir schreiben $x = \sqrt{a}$.

3.2 Reihen

3.2.1. Definition

Sei $(a_n)_{n\geq 0}$ eine Folge reeller Zahlen. Sei weiters $S_N=\sum_{n=0}^N a_n$ die N-te Partialsumme, dann heißt die Folge $(S_N)_{N\geq 0}$ der Partialsummen eine unendliche Reihe.

Schreibweise:
$$\sum_{n=0}^{\infty} a_n$$

Konvergiert die Folge (S_N) mit $\lim_{n\to\infty} S_N = s$, dann heißt $\sum_{n=0}^{\infty} a_n = s$ der Wert der Reihe. Man sagt: Die Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert.

Schreibweise:
$$\sum_{n=0}^{\infty} a_n < \infty$$

3.2.2. Beispiel

1. Die geometrische Reihe. Sei $|a| < 1 \Rightarrow \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Ist $|a| \ge 1$, dann ist $\sum_{n=0}^{\infty} a^n$ divergent.

Beweis: IA
$$n = 0: N = 0:$$
 $a^0 = \frac{(1-a)}{(1-a)} = 1$

IV $\sum_{n=0}^{N} a^n = \frac{1-a^{N+1}}{1-a}$

IS $n \mapsto n+1: N \mapsto N+1$

$$\sum_{n=0}^{N+1} a^n = a^{N+1} + \sum_{n=0}^{N} a^n \stackrel{IV}{=} a^{N+1} + \frac{1-a^{N+1}}{1-a} = \dots \text{ selber}$$

Sei $S_N = \sum_{n=0}^{N} a^n = \frac{1-a^{N+1}}{1-a}$

Sei $|a| < 1$. Dann folgt $\lim_{n \to \infty} a^N = 0$
 $\Rightarrow \lim_{n \to \infty} S_N = \lim_{n \to \infty} \frac{1-a^{N+1}}{1-a} = \frac{1}{1-a}$

Sei $a \ge 1 \Rightarrow \sum_{n=0}^{N} a^n \ge \sum_{n=0}^{N} 1 = N+1 \longrightarrow \inf$

Sei $a \le -1 \Rightarrow a = -b \text{ mit } b \ge 1 \Rightarrow \sum_{n=0}^{N} a^n \ge \sum_{n=0}^{N} (-1)^n b^n \text{ divergent}$

2. Die harmonische Reihe: $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$

$$\begin{aligned} \textit{Beweis:} \ S_{2^N} &= \sum_{n=1}^{2^N} \frac{1}{n} = 1 + \underbrace{\frac{1}{2}}_{=\frac{1}{2}} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{=\frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{=\frac{1}{2}} + \underbrace{\frac{1}{9} + \ldots + \frac{1}{16}}_{=\frac{1}{2}} + \ldots + \underbrace{\frac{1}{2^{N-1} + 1} + \ldots + \frac{1}{2^N}}_{=\frac{1}{2}} \\ &\geq 1 + n\frac{1}{2} > \frac{n}{2} \longrightarrow +\infty \end{aligned}$$

Würde $(S_N)_{N\geq 1}$ konvergieren, dann auch die Teilfolge $(S_{2^N})_{N\geq 1}$, da diese dievergiert, divergiert auch $(S_N)_N$

3.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

Beweis:
$$S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N \frac{1}{n} - \frac{1}{n+1} = \sum_{n=1}^N \frac{1}{n} - \sum_{n=1}^N \frac{1}{n+1} = 1 + \sum_{n=2}^N \frac{1}{n} - \sum_{n=2}^{N+1} \frac{1}{n} = 1 + \sum_{n=2}^N \frac{1}{n} - \sum_{n=2}^N \frac{1}{n} + \frac{1}{N+1} = 1 + \frac{1}{N+1} \longrightarrow 1$$

q.e.d.

3.2.3. Satz

Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ zwei konvergente Reihen und $\lambda \in \mathbb{R}$, dann ist auch $\sum_{n=0}^{\infty} \lambda a_n + b_n$ konvergent und $\sum_{n=0}^{\infty} \lambda a_n + b_n = \lambda \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$

Beweis: folgt auf Grund der Rechenregeln für konvergente Folgen.

q.e.d.

3.2.4. Satz (Cauchy-Kriterium für Reihen)

Die Reihe $\sum_{k=0}^{\infty} a_k$ ist konvergent, genau dann wenn gilt:

$$\forall \varepsilon > 0 \; \exists N(\varepsilon) \in \mathbb{N} \quad \forall n \ge m \ge N \qquad \left| \sum_{k=m}^{n} a_k \right| < \varepsilon \qquad (\star)$$

 (\star) bedeutet die $(S_n)_n$ ist eine Cauchy-Folge $\Leftrightarrow (S_n)_n$ ist konvergent

Beweis:
$$S_n - S_m = \sum_{k=0}^n a_k - \sum_{k=0}^m a_k = \sum_{k=m}^n a_k$$
.

q.e.d.

3.2.5. Korollar

Ist $\sum_{k=0}^{\infty} a_k$ konvergent $\Rightarrow \lim_{k \to \infty} a_k = 0$.

Beweis:
$$a_n = \sum_{k=m}^n a_k$$
. Da $\sum_{k=0}^\infty a_k < \infty \overset{\text{Cauchy-Kriterium}}{\Rightarrow} \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \quad \forall n \geq N \ | \ a_N \ | = |\sum_{k=m}^n a_k \ | < \varepsilon \Rightarrow \lim_{n \to \infty} a_n = 0$

q.e.d.

3.2.6. Bemerkung

Die Umkehrung des Korrolars gilt nicht. z.B. $\lim_{n\to\infty}\frac{1}{n}=0$ aber $\sum_{n=0}^{\infty}\frac{1}{n}=\infty$ (harmonische Reihe).

3.2.7. Definition

Die Reihe $\sum_{k=0}^{\infty} a_k$ heißt absolut konvergent, wenn die Reihe $\sum_{k=0}^{\infty} |a_k|$ konvergiert.

3.2.8. Satz

Jede absolut konvergente Reihe ist auch konvergent.

$$\begin{aligned} & \textit{Beweis:} \text{ Sei } \sum_{k=0}^{\infty} \mid a_k \mid < \infty \overset{\text{Cauchy-Kriterium}}{\Rightarrow} \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq m \geq N \ \mid \sum_{k=m}^{n} \mid a_k \mid \mid < \varepsilon \end{aligned} \overset{\text{Dreiecksungleichung}}{\Rightarrow} \\ & \mid \sum_{k=m}^{n} a_k \mid \leq \mid \sum_{k=m}^{n} \mid a_k \mid \mid < \varepsilon \ \textit{gilt} \ \forall n \geq m \geq N \overset{\text{Cauchy-Kriterium}}{\Rightarrow} \sum_{k=0}^{\infty} a_k \ \text{ist konvergent.} \end{aligned}$$

q.e.d.

3.2.9. Bemerkung

Die Umkehrung des Satzes gilt nicht. zB kann man zeigen, dass die Reihe $\sum_{k=0}^{\infty} (-1)^k \frac{1}{k}$ konvergiert. Aber die Reihe $\sum_{k=0}^{\infty} \left| \; (-1)^k \frac{1}{k} \; \right| = \sum_{k=0}^{\infty} \frac{1}{k} = \infty$

3.2.10. Satz (Majoranten-Kriterium)

Sei $\sum_{k=0}^{\infty} b_k$ konvergent mit $b_k \geq 0 \forall k \geq N_0$. Sei $(a_k)_{k=0}^{\infty}$ eine Folge mit $|a_k| \leq b_k \forall k \geq N_0 \Rightarrow \sum_{k=0}^{\infty} a_k$ ist absolut konvergent.

Beweis: Sei $\sum_{k=0}^{\infty} b_k < \infty$ und $b_k > 0$ Cauchy- $\overset{\Rightarrow}{\mathrm{Kriterium}} \forall \varepsilon > 0 \; \exists N \in \mathbb{N} \quad \forall n \geq m \geq N \quad |\sum k = mnb_k| < \varepsilon |\; a_k| \leq b_k \; |\sum k = mn|\; a_k| \; |\leq |\sum k = mnb_k| < \varepsilon \forall n \geq m \geq N$ Cauchy- $\overset{\Rightarrow}{\mathrm{Kriterium}} \sum_{k=0}^{\infty} |\; a_k| \; |\; \text{ist konvergent.} \Rightarrow \sum_{k=0}^{\infty} a_k \; |\; \text{ist absolut konvergent.} \qquad q.e.d.$

3.2.11. Korollar (Minoranten-Kriterium)

Sei $\sum_{k=0}^{\infty} b_k$ divergent mit $b_k \ge 0 \forall k \ge N_0$. und $(a_k)_{k=0}^{\infty}$ eine Folge mit $|a_k| \ge b_k \forall k \ge N_0 \Rightarrow \sum_{k=0}^{\infty} a_k$ ist auch divergent.

Beweis: Wäre $\sum_{k=0}^{\infty} a_k$ konvergent, dann wäre nach dem Majoranten-Kriterium $\sum_{k=0}^{\infty} b_k$ konvergent, da $|b_k| \le a_k$. Widerspruch! q.e.d.

3.2.12. Satz (Quotienten-Kriterium)

Sei $\sum_{n=0}^{\infty} a_n$ eine Reihe mit $a_n \neq 0 \forall n \geq n_0$ Existiert eine reelle Zahl q mit 0 < q < 1 sodass $\left| \frac{a_{n+1}}{a_n} \right| \leq q < 1 \forall n \geq n_0 \Rightarrow \sum_{n=0}^{\infty} a_n$ ist absolut konvergent.

3.2.13. Korollar (einfaches Quotienten-Kriterium)

Sei $a_n \neq 0 \ \forall n > n_0$ und existiert $\lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right|$ und ist $\lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right| < 1 \Rightarrow \sum_{n=0}^{\infty} a_n$ ist absolut konvergent.

Beweis: Sei $\lim_{n\to\infty} \left| \frac{a_n+1}{a_n} \right| = \alpha < 1$

Sei $\varepsilon = \frac{1-\alpha}{2} > 0 \Rightarrow \exists N \ \forall n \geq N \ \left| \left| \frac{a_{n+1}}{a_n} \right| - \alpha \right| < \varepsilon = \frac{1-\alpha}{2} \Rightarrow \left| \frac{a_(n+1)}{a_n} \right| < \frac{1-\alpha}{2} + \alpha = \frac{1+\alpha}{2} \operatorname{da} \alpha < 11 + \frac{1}{2} = 1 \operatorname{Sei} q = \frac{1+\alpha}{2} < 1 \operatorname{und} \left| \frac{a_(n+1)}{a_n} \right| < q < 1 \ \operatorname{Nach \ dem \ Quotienten-Kriterium \ ist} \sum_{n=0}^{\infty} a_n \ \operatorname{absolut \ konvergent}$ q.e.d.

3.2.14. Beispiel 1. $\sum_{n=0}^{\infty} \frac{1}{n^k} < \infty$ $\forall k \geq 2$ [Bemerkung: Die Konvergenz gilt auch $\forall k \in \mathbb{R}, k > 1$ ohne Beweis]

 $\begin{array}{ll} \textit{Beweis:} \ \frac{1}{n^k} \leq \frac{1}{n^2} & \forall k \geq 2 \text{ und} \\ \frac{1}{n^2} \leq \frac{2}{n(n+1)}, \text{ denn } \Leftrightarrow 2n^2 \geq n(n+1) \Leftrightarrow n^2 \geq n \Leftrightarrow n \geq 1 \\ \Rightarrow \frac{1}{n^k} \leq \frac{2}{n(n+1)} \forall k \geq 2 \text{ und} \end{array}$

 $\sum_{n=0}^{\infty} \frac{2}{n(n+1)} = 2 \sum_{n=0}^{\infty} \frac{1}{n(n+1)} = 2 * 1 = 2 Majoranten - Kriterium \sum_{n=0}^{\infty} 1n^k < \infty \forall k \geq 2$ Frage: Wie sind die Werte der Reihe $\sum_{n=0}^{\infty} 1/n^k$ für $k \geq 2$ Euler: $\sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \sum_{n=0}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}, \ldots, \sum_{n=0}^{\infty} \frac{1}{n^{2k}} = C_k \pi^{2k}$ Aber: $\sum_{n=0}^{\infty} \frac{1}{n^3} \in \mathbb{R} \setminus \mathbb{Q}, \sum_{n=0}^{\infty} \frac{1}{n^5} = ?, \ldots, \sum_{n=0}^{\infty} \frac{1}{n^{2k+1}} = ?$ q.e.d.

2. Die Reihe $\sum_{n=0}^{\infty} \frac{n^2}{2^n}$ ist konvergent.

 $Quotienten-Kriterium. \ \left| \ \frac{a_{n+1}}{a_n} \ \right| = \frac{\frac{(n+1)^2}{2^{n+1}}}{\frac{n^2}{2^n}} = \frac{2^n(n+1)^2}{2^{n+1}n^2} = \frac{1}{2} * \left(\frac{n+1}{n}\right)^2 = \frac{1}{2} \left(\frac{1}{1+\frac{1}{n}}\right)^2 \longrightarrow \frac{1}{2} < 1 \qquad q.e.d.$

24

3. Die Exponentialfunktion Die Reihe $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ ist für jedes $x \in \mathbb{R}$ absolut konvergent

$$\begin{array}{c|c} \textit{Quotienten-Kriterium.} & \left| \begin{array}{c} a_{k+1} \\ \hline a_k \end{array} \right| = \left| \begin{array}{c} \frac{x^{k+1}}{(k+1)!} \\ \hline \frac{x^k}{k!} \end{array} \right| = \frac{\left| \begin{array}{c} x^{k+1} \right| * k!}{\left| \begin{array}{c} x^k \\ \hline \end{array} \right| * (k+1)!} = \frac{\left| \begin{array}{c} x \end{array} \right|}{k+1} k \xrightarrow{\longrightarrow} \infty 0 \ \forall x \in \mathbb{R} \\ \Rightarrow \sum_{k=0}^{\infty} \frac{x^k}{k!} \ \text{ist absolut konvergent.} \end{array}$$

- **3.2.15. Bemerkung** 1. Für k=1 ist die harmonische Reihe $\sum_{n=0}^{\infty} \frac{1}{n}$ divergent.
 - 2. Das Quotienten-Kriterium ist hier nicht anwendbar, denn

$$\sum_{n=0}^{\infty} \frac{1}{n} \qquad \frac{a_{n+1}}{a_n} = \frac{1}{1+\frac{1}{n}} \xrightarrow{n \to \infty} n1 \nleq 1$$

$$\sum_{n=0}^{\infty} \frac{1}{n^2} \qquad \frac{a_{n+1}}{a_n} = \left(\frac{1}{1+\frac{1}{n}}\right)^2 \longrightarrow 1 \nleq 1$$

3.2.16. Definition

Die Funktion $exp: \mathbb{R} \to \mathbb{R}$ mit $exp(x) \mapsto e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ heißt Exponentialfunktion. Die Zahl $e = exp(1) = \sum_{n=0}^{\infty} \frac{1^n}{n!}$ heißt Euler'sche Zahl.

3.2.17. Bemerkung

Wir werden später zeigen:

$$e = \frac{1^n}{n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2,71828...$$

3.2.18. Satz (Cauchy-Produkt von Reihe)

Seien die Reihen $\sum_{n=0}^{\infty}a_n$ und $\sum_{n=0}^{\infty}b_n$ absolut konvergent. Für $n\in\mathbb{N}$ definieren wir das Cauchy-Produkt folgendermaßen:

$$c_n = \sum_{k=0} n a_k b_{n-k} = a_0 b_n + \dots + a_n b_0$$

Dann gilt: Die Reihe $\sum_{n=0}^{\infty} c_n$ ist absolut konvergent und $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n) (\sum_{n=0}^{\infty} b_n)$

Beweisidee.

3.2.19. Korollar (Funktionalgleichung der Exponentialfunktion)

Sei $exp(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ die Exponentialfunktion. Dann gilt:

$$exp(x + y) = exp(x)exp(y)$$

 $e^{x+y} = e^x e^y$

Beweis: Wir bilden das Cauchy-Produkt, der absolut konvergenten Reihen e^x und e^y . Dafür verwenden

wir den Binomischen Lehrsatz:
$$(a+n)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n fracn! k! (n-k)! a^k b^{n-k}$$

$$e^x e^y = \left(\sum_{n=0}^\infty \frac{x^n}{n!}\right) \left(\sum_{n=0}^\infty \frac{y^n}{n!}\right) = \sum_{n=0}^\infty \sum_{k=0}^n \frac{x^k}{k!} \frac{y^{n-k}}{(n-k)!}$$

$$= \sum_{n=0}^\infty \frac{1}{n!} \left(\sum_{k=0}^n \frac{n!}{k! (n-k)!} x^k y^{n-k}\right) = \sum_{n=0}^\infty \frac{1}{n!} \left(\sum_{k=0}^n \binom{n}{k} x^k y^{n-k}\right)$$

$$q.e.d.$$

$$Binom.LS \sum_{n=0}^\infty \frac{1}{n!} (x+y)^n = e^{x+y}$$

4 Stetigkeit

4.1. Definition

Sei $D \subset \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ mit $x \mapsto f(x)$. ist eine Vorschrift, die jedes $x \in D$ genau einem WErt f(x) zuordnent.

- **4.2. Beispiel** 1. Für $c \in \mathbb{R}$ $f : \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = c$ heißt die konstante Funktion
 - 2. $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = x$ heißt identische Funktion
 - 3. $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = |x|$ heißt Betragsunktion
 - 4. $f: \mathbb{R} \to \mathbb{R} \text{ mit } x \mapsto f(x) = |x|$
 - 5. $f: \mathbb{R}_+ \to \mathbb{R}$ mit $x \mapsto f(x) = \sqrt{x}$ heißt Wurzelfunktion
 - 6. $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = e^x$ heißt Exponentialfunktion
 - 7. $p: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto p(x) = \sum_{k=0}^n na_k x^k$ mit $a_k \in \mathbb{R}$ heißt Polynomfunktion

4.3. Definition

Seien $f, g: D \to \mathbb{R}$ Funktionen und $\lambda \in \mathbb{R}$. Wir definieren.

$$f + g, fg, \lambda f : D \to \mathbb{R}$$
$$(f + g)(x) = f(x) + g(x)$$
$$(fg)(x) = f(x)g(x)$$
$$(\lambda f)(x) = \lambda f(x)$$

Sei weiters $g(x) \neq 0 \forall x \in D \frac{f}{g}: D \to \mathbb{R} mit\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ Sei $f: D \to \mathbb{R}, g: E \to \mathbb{R}, mitf(D) \subset E(f(D) = \{f(x) : x \in D\} (g \circ f): D \to \mathbb{R} (g \circ f)(x) = g(f(x))..$

4.4. Beispiel 1. $f: \mathbb{R}_+ - > \mathbb{R}mitf(x) = \sqrt{x}g: \mathbb{R} - > \mathbb{R}f \circ g(x) = f(g(x)) = f(x^2) = \sqrt{x^2} = |x|$

2.
$$p(x) = \sum_{k=0} na_k x^k q(x) = \sum_{k=0} nb_k x^k D := \left\{x \in \mathbb{R} : q(x) \neq 0\right\} \\ r = \frac{p}{q} : D \rightarrow \mathbb{R} \\ r(x) = \frac{p(x)}{q(x)} \\ heitrationale Funktion.$$

4.5. Definition (Grenzwert einer Funktion)

Sei $f: D \to \mathbb{R}$ eine Funktion, $a \in \mathbb{R}$ eine Zahl, sodass es mindestens eine Folge (a_n) gibt mit $a_n \in D$ mit $\lim_{n \to \infty} a_n = a$ gibt. Man definiert $\lim_{x \to a} f(x) = c$, wenn gilt: Für jede Folge $(x_n)_{n \ge 0}$ mit $\lim_{n \to \infty} x_n = a$ gilt $\lim_{n \to \infty} f(x_n) = c$.

c heißt dann Grenzwert

4.6. Definition (Stetigkeit)

Sei $f: D \to \mathbb{R}$ und $a \in D$. f heißt stetig in a, wenn $\lim_{x \to a} f(x) = f(a)$. Das heißt für jede Folge (x_n) mit $\lim_{n \to \infty} x_n = a$ ist $\lim_{n \to \infty} f(x_n) = f(a)$. f heißt stetig in D, falls f in jedem Punkt $a \in D$ stetig ist.

4.7. Bemerkung

f ist in $a \in D$ nicht stetig $\Leftrightarrow \exists$ eine Folge (x_n) mit $\lim_{n \to \infty} x_n = a$ aber die Folge $(f(x_n))$ ist divergent oder $\lim_{n \to \infty} f(x_n) \neq f(a)$

- **4.8. Proposition** (Rechenregeln) 1. Seien $f, g: D \to \mathbb{R}$ stetig $\lambda \in \mathbb{R} \Rightarrow f + g, fg, \lambda f: D \to \mathbb{R}$ ist stetig.
 - 2. Sei $g(x) \neq 0 \forall x \in D \Rightarrow \frac{f}{g} : D \to \mathbb{R}$ ist stetig.
 - 3. Seien $f: D \to \mathbb{R}$ und $g: E \to \mathbb{R}$ stetig, mit $f(D) \subset E \Rightarrow g \circ f: D \to \mathbb{R}$ ist stetig.

Beweis: $f+g: D \to \mathbb{R}.Seix_neinebeliebigeFolgemit \lim_{n \to \infty} (x_n) = a. \lim_{n \to \infty} (f+g)(x_n) = nachDefinition = \lim_{n \to \infty} f(x_n) + g(x_n) = RechenregeInfFolgen = \lim_{n \to \infty} f(x_n) + \lim_{n \to \infty} g(x_n) = f(a) + g(a) = nachDefinition = (f+g)(a).$

 $analog frmal, und \lambda und division.$

 $g \circ f: D \to \mathbb{R}.Seix_neinebeliebigeFolgemit \lim_{n \to \infty} (x_n) = a, dafstetigistfolgt: \lim_{n \to \infty} (f(x_n) = f(a)Seiy_n = f(x_n)undb = f(a).Daf(D) \subset Efolgt \lim_{n \to \infty} y_n = b \in E$

Dagstetiginbist, folgt $\lim_{n \to \infty} g(x_n) = g(b)$

Also:
$$\lim_{n \to \infty} (g \circ f)(x) = \lim_{n \to \infty} g(f(x_n)) = \lim_{n \to \infty} g(x_n) = g(b) = g(f(a)) = (g \circ f)(a)$$
 q.e.d.

4.9. Satz $(\varepsilon - \delta \text{ Kriterium für Stetigkeit})$

Sei $f: D \to \mathbb{R}$ eine Funktion und $a \in D$. Dann gilt

$$f$$
 ist stetig in $a \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 : \forall x : |x - a| < \delta$ gilt $|f(x) - f(a)| < \varepsilon$

- **Beweis:** \Leftarrow Sei (x_n) eine Folge mit $\lim_{n\to\infty} x_n = a$. zu zeigen: $\lim_{n\to\infty} f(x_n) = f(a)$ $Sei\varepsilon > 0 \exists \delta > 0 : \forall x : |x-a| < \delta \text{ gilt } |f(x)-f(a)| < \varepsilon$ $Da \lim x_n = a \Rightarrow \exists N = N(\delta) : \forall n \geq N(\delta) \quad |x_n-a| < \delta \overset{\varepsilon-\delta Kriterium}{\Rightarrow} |f(x)-f(a)| < \varepsilon \forall n \geq N(\delta) \quad |x_n-a| < \delta \overset{\varepsilon-\delta Kriterium}{\Rightarrow} |f(x)-f(a)| < \varepsilon \forall n \geq N(\delta) \quad |x_n-a| < \delta \overset{\varepsilon-\delta Kriterium}{\Rightarrow} |f(x)-f(a)| < \varepsilon \forall n \geq N(\delta) \quad |x_n-a| < \delta \overset{\varepsilon-\delta Kriterium}{\Rightarrow} |f(x)-f(a)| < \varepsilon \forall n \geq N(\delta) \quad |x_n-a| < \delta \overset{\varepsilon-\delta Kriterium}{\Rightarrow} |f(x)-f(a)| < \varepsilon \forall n \geq N(\delta)$
 - $\Rightarrow \text{ Sei } f \text{ in } a \text{ stetig.} \quad \text{zu zeigen: ist } \text{ das } \varepsilon \delta \text{-Kriterium. } Angenommen: \varepsilon \delta Kriterium giltnicht: } \\ \exists \varepsilon > 0 \forall \delta > 0: \exists x \in D: |x-a| < \delta \text{ und } |f(x)-f(a)| \geq \varepsilon. \Rightarrow \exists \varepsilon > 0 \forall n \in \mathbb{N} \\ \exists x_n \in D: |x_n-a| < \frac{1}{n} = \delta \text{ und } |f(x_n)-f(a)| \geq \varepsilon Betrachtedie Folge(x_n), da|x_n-a| < \frac{1}{n} \Rightarrow (x_n) \xrightarrow{n \to \infty} a.Dafstetiginaist, folgt \lim_{n \to \infty} f(x_n) = f(a). \\ \text{Widerspruch! } zu|f(x_n)-f(a)| \geq \varepsilon \Rightarrow das\varepsilon \delta Kriterium gilt.$

- **4.10.** Beispiel 1. Die konstante Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = 1$ ist stetig für alle $x \in \mathbb{R}$ Sei $a \in \mathbb{R}$ und (x_n) eine Folge mit $\lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} f(x) = \lim_{n \to \infty} 1 = 1 = f(a)$
 - 2. Die identische Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = x$ ist stetig für alle $x \in \mathbb{R}$ Sei $a \in \mathbb{R}$ und (x_n) eineFolgemit $\lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n = a = f(a)$
 - 3. Jede Polynomfunktion $p: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto p(x) = \sum_{k=0} na_k x^k$ mit $a_k \in \mathbb{R}$ ist auf \mathbb{R} stetig. Dies folgt sofort aus den Rechenregeln.
 - 4. Jede rationale Funktion $r: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto r(x) = \frac{p(x)}{q(x)}$ ist auf ihrem Definitionsbereich stetig. Dies folgt auch sofort aus den Rechenregeln.
 - 5. Die Betragsunktion $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto f(x) = |x|$ ist stetig auf \mathbb{R} Denn $f(x) = \begin{cases} x & x > 0 & die identische Fund -x & x < 0 & (-1)x ist stetig (Region of the following of the f$
 - 6. Die Funktion $|f|: \mathbb{R} \to \mathbb{R}$ ist stetig, wenn $f: D \to \mathbb{R}$ stetig ist. folgt aus den Rechenregeln

7. Sei
$$f: \mathbb{R} \to \mathbb{R}$$
 mit $x \mapsto f(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$ ist in $a = 0$ nicht stetig. $denn: Sei(x_n) = \frac{1}{n} \Rightarrow \lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{n} = 0$ und $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 1 = 1$ $Sei(y_n) = -\frac{1}{n} \Rightarrow \lim_{n \to \infty} y_n = \lim_{n \to \infty} -\frac{1}{n} = 0$ $\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} -1 = -1 \Rightarrow fistnichtstetigina = 0$

8. Die Exponentialfunktion $exp: \mathbb{R} \to \mathbb{R}$ mit $exp(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ ist auf \mathbb{R} stetig.

Beweis: (a) exp ist in a = 0 stetig.

i) Sei
$$|x| < 1 \Rightarrow |a^x - 1| \le 2|x|$$
. $denn : esgilt(n+1)! \ge 2^n, da(n+1)! = \underbrace{(n+1)}_{\geq 2} \underbrace{n - mal}_{=2} \underbrace{1 \ge 2}_{n-mal} \underbrace{1 \ge 2}_{=2}$

 $2^n \forall n \geq 1$

$$Seim \ge 1$$

$$\left| \sum_{n=1}^{m} \frac{x^{n}}{n!} \right| \le \sum_{n=1}^{m} \left| \frac{x^{n}}{n!} \right| = \sum_{n=1}^{m} \frac{|x|^{n}}{n!} = \sum_{n=0}^{m-1} \frac{|x|^{n+1}}{(n+1)!} \le \sum_{n=0}^{m} \frac{|x|^{n+1}}{(n+1)!} = |x| \sum_{n=0}^{m} \frac{|x|^{n}}{(n+1)!} \le |x| \sum_{n=0}^{m}$$

$$Darausfolgt \mid a^{x} - 1 \mid = \left| \sum_{n=1}^{\infty} \frac{x^{n}}{n!} \right| = \lim_{n \to \infty} \left| \sum_{n=1}^{m} \frac{x^{n}}{n!} \right| \le \lim_{n \to \infty} \left| x \right| \sum_{n=0}^{m} \left(\frac{|x|}{2} \right)^{n} = \lim_{n \to \infty} \left| x \right| = \lim_{n \to \infty$$

$$|x| \sum_{n=0}^{\infty} \left(\underbrace{\frac{|x|}{2}}_{<1} \right)^n = |x| \frac{1}{1 - \frac{|x|}{2}} = \frac{2|x|}{2 - |x|} \le 2|x|$$

ii) Sei
$$(x_n)$$
 eine Folge mit $\lim_{n\to\infty} x_n = 0 \Rightarrow \lim_{n\to\infty} |\exp(x_n) - 1| \stackrel{i)}{\leq} \lim_{n\to\infty} 2|x_n| = 0 \Rightarrow \lim_{n\to\infty} \exp(x_n) = 1 = \exp(0)$

(b)
$$exp$$
 ist in $a \in \mathbb{R}$ stetig. $Seia \in \mathbb{R}und(x_n)eineFolgemit \lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} x_n - a = a$

$$0.Daexpstetigin0, folgt \lim_{n \to \infty} exp(x_n - a) = exp(0) = 1 \Rightarrow \lim_{n \to \infty} exp(x_n) = \lim_{n \to \infty} e^{x_n} = \lim_{n \to \infty} e^{(x_n - a) + a} Funktion$$

$$\lim_{n \to \infty} e^{x_n - a} e^a = e^a \lim_{n \to \infty} e^{x_n - a} = e^a 1 = e^a. \Rightarrow expistina \in \mathbb{R} stetig.$$

q.e.d.

4.11. Bemerkung (Wiederholung Stetigkeit)

 $f: D \to \mathbb{R}$ heißt stetig in $x_0 \in D$ wenn gilt:

Für jede Folge (x_n) mit $\lim_{n\to\infty} x_n = x_0$ ist die Folge $(f(x_n))$ konvergent und $\lim_{n\to\infty} f(x_n) = f(x_0)$.

4.12. Satz (Zwischenwertsatz)

Sei $f:[a,b]\to\mathbb{R}$ stetig mit f(a)<0 und f(b)>0. Dann gibt es ein $x\in(a,b)$ mit f(x)=0.

Beweis: Wir konstruieren durch Intervallhalbierung eine Folge, deren Grenzwert eine Nullstelle von f

Wir definieren induktiv zwei Folgen (a_n) und (b_n) mit folgenden Eigenschaften:

- $0 \le b_n a_n \le \frac{b-a}{2n}$
- $f(a_n) < 0 < f(b_n)$

IA n = 0: $a_0 = a$, $b_n = b$

IV Seien a_n und b_n schon konstruiert

Definiere den Mittelpunkt $M = \frac{a_n + b_n}{2}$. Ist f(M) = 0, dann setze x = M

IS $n \mapsto n+1$

Fall 1: Ist $f(M) < 0 : a_{n+1} = M, b_{n+1} = b_n$.

Fall 2: Ist f(M) > 0: $a_{n+1} = b_n, b_{n+1} = M$.

Nach Definition ist $f(a_{n+1}) < 0$ und $f(b_{n+1}) > 0$.

$$0 \le b_{n+1} - a_{n+1} \le \frac{b_n - a_n}{2}$$

Denn Fall 1:
$$b_{n+1} - a_{n+1} = b_n - \frac{a_n + b_n}{2} = \frac{2b_n + a_n - b_n}{2} = \frac{b_n - a_n}{2}$$
 und Fall 2: $b_{n+1} - a_{n+1} = \frac{a_n + b_n}{2} - a_n = \frac{b_n + a_n - 2a_n}{2} = \frac{b_n - a_n}{2} \le \frac{b_{n-1} - a_{n-1}}{2^2} \le \cdots \le \frac{b - a_n}{2^{n+1}}$

Nach Konstruktion ist die Folge (a_n) monoton wachsend und durch b nach oben beschränkt. Die Folge (b_n) ist monoton fallend und durch a nach unten beschränkt. Nach dem Monotoniekriterium konvergieren die beiden Folgen (a_n) und (b_n) . Sei $\lim_{n \to \infty} b_n$ und $\lim_{n \to \infty} a_n = a_0$

die beiden Folgen
$$(a_n)$$
 und (b_n) . Sei $\lim_{n\to\infty} b_n = b_0$ und $\lim_{n\to\infty} a_n = a_0$
Aus $0 \le b_n - a_n \le \frac{b-a}{2}$ folgt $0 \le b_0 - a_0 \le \lim_{n\to\infty} \frac{b-a}{2^n} = 0$ Dann folgt: $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_n = \lim_{$

4.13. Definition

Eine Funktion $f: D \to \mathbb{R}$ heißt beschränkt, wenn die Menge $f(D) = \{f(x) : x \in D\}$ beschränkt ist. d.h. $\exists M \in \mathbb{R} \text{ sodass } | f(x) | \leq M \quad \forall x \in D$

4.14. Satz (vom Maximum u nd Minimum)

Sei [a, b] ein abgeschlossenes Intervall. Dann ist jede stetige Funktion $f : [a, b] \to \mathbb{R}$ beschränkt und nimmt ihr Maximum und Minimum an.

d.h.
$$\exists p, q \in [a, b] \text{ mit } f(p) = \sup\{f(x) : x \in [a, b]\} = \sup_{f} \inf\{g(q) = \inf\{f(x) : x \in [a, b]\} = \inf_{f \in F} \{g(q) = \inf_$$

Beweis: Wir zeigen nur das Maximum. Denn das Minimum ist das Maximum von -f.

Sei
$$M = \sup(\{f(x) : x \in [a, b]\}) \in \mathbb{R} \cup \{\infty\}.$$

1. Ist f nicht nach oben beschränkt, dann gibt es $\forall n \in \mathbb{N}$ ein $f(x_n)$ mit $f(x_n) \ge n \Rightarrow \lim_{n \to \infty} f(x_n) = \infty = M$ 2. Ist f beschränkt $\Rightarrow M \in \mathbb{R}$ und $\forall n \in \mathbb{N}$ $\exists f(x_n)$ mit $M - \frac{1}{n} < f(x_n) \le M \Rightarrow \lim_{n \to \infty} f(x_n) = M$ Also gibt es in beiden Fällen eine Folge (x_n) mit $x_n \in [a, b]$ mit $\lim_{n \to \infty} f(x_n) = M$.

Da $x_n \in [a,b]$ ist die Folge (x_n) beschränkt. Nach dem Satz von Bolzano-Weierstraß besitzt die Folge (x_n) eine konvergente Teilfolge (x_{n_k}) mit $\lim_{k\to\infty} x_{n_k} = p \in [a,b]$. Da $\lim_{n\to\infty} f(x_n) = M$ und jede Teilfolge eine konvergente Folge den selben Grenzwert hat folgt $\lim_{k\to\infty} f(x_{n_k}) = M$

Wir wissen $\lim_{k\to\infty} x_{n_k} = p$. Da f stetig ist, folgt $\lim_{k\to\infty} f(x_{n_k}) = f(p)$. Aber $\lim_{k\to\infty} f(x_{n_k}) = M \Rightarrow M = f(p)$. $\Rightarrow p$ ist Maximum der Funktion f.

4.15. Bemerkung

 $f:(0,1]\to\mathbb{R} \text{ mit } f(x)=\frac{1}{x}$

f ist stetig aber nicht nach oben beschränkt.

4.16. Definition

Eine Funktion $f: D \to \mathbb{R}$ heißt (streng) monoton wachsen wenn gilt: $\forall a, b \in D \quad a \leq b \quad (a < b) \Rightarrow f(a) \leq f(b) \quad (f(a) < f(b))$. Entsprechend für (streng) monoton fallend.

4.17. Satz (von der stetigen Umkehrfunktion)

Sei $f:[a,b]\to\mathbb{R}$ stetig und streng monoton wachsend (fallend). Sei A=f(a) und B=f(b). Dann ist $f:[a,b]\to[A,B]$ bijektiv und die Umkehrabbildung $f^{-1}:[A,B]\to[a,b]$ ist stetig und streng monoton wachsend (fallend).

Beweis: Sei $f:[a,b] \to \mathbb{R}$ stetig und streng monoton wachsend. f(a) = A und f(b) = B.

Sei $x \in [a, b]$ mit a < x < b

$$\stackrel{\nearrow}{\Rightarrow} f(a) < f(x) < f(b) \text{ also } A < f(x) < B \Rightarrow f(x) \in [A, B] \quad \forall x \in [a, b]$$

Injektiv: $x \neq x' \Rightarrow x < x' \Rightarrow f(x) < f(x') \Rightarrow f(x) \neq f(x') \Rightarrow f$ ist injektiv.

Surjektiv: Sei $C \in [A, B]$. Für C = A oder C = B wähle x = a oder x = b.

Sei also $C \in (A, B)$. Betrachte $g : [a, b] \to \mathbb{R}$ mit g(x) = f(x) - C Da f stetig ist, ist auch g stetig. g(a) = f(a) - C = A - C < 0 und g(b) = f(b) - C = B - C > 0 Aus dem Zwischenwertsatz folgt: $\exists p \in [a, b] \text{ mit } g(p) = 0 \text{ also } f(p) - C = 0 \Rightarrow f(p) = C. \Rightarrow f \text{ ist surjektiv.}$ $\Rightarrow f: [a,b] \rightarrow [A,B]$ ist bijektiv.

Betrachte die Umkehrfunktion. $f^{-1}:[A,B]\to[a,b]$. 1. f^{-1} ist streng monoton wachsend: Sei y<y'.zu zeigen: $f^{-1}(y) < f^{-1}(y')$. Angenommen $f^{-1}(y) \ge f^{-1}(y')$, da f streng monoton wachsend ist folgt $f(f^{-1}(y)) \ge f(f^{-1}(y')) \Rightarrow y \ge y'$ Widerspruch! $\Rightarrow f^{-1}(y) < f^{-1}(y')$

2. Noch zu zeigen: $g = f^{-1} : [A, B] \to [a, b]$ ist stetig. Sei $y \in [A, B]$ und (y_n) eine Folge mit $y_n \in [A, B]$ $\min \lim_{n \to \infty} y_n = y.$

zu zeigen: $\lim_{n \to \infty} f^{-1}(y_n) = f^{-1}(y)$

Angenommen, das gilt nicht.

Dann gibt es ein $\varepsilon > 0$, sodass $|f^{-1}(y_n) - f^{-1}(y)| \ge \varepsilon$ für unendlich viele n. d.h. es gibt eine Teilfolge (y_{n_k}) von (y_n) mit $|f^{-1}(y_{n_k}) - f^{-1}(y)| \ge \varepsilon$. Da $a \le f^{-1}(y_{n_k}) \le b$, also beschränkt ist. folgt aus dem Satz von Bolzano-Weierstraß, es gibt eine konvergente Teilfolge $(f^{-1}(y_{n_k}))_{k\geq 0}$ von $(f^{-1}(y_{n_k}))_{k\geq 0}$.

Wir können also annehmen. Es gibt eine konvergente Teilfolge $(f^{-1}(y_{n_{k_l}}))_{l\geq 0}$ von $(f^{-1}(y_n))_{n\geq 0}$ mit $(f^{-1}(y_{n_{k_l}}) = c \text{ und } \left| f^{-1}(y_{n_{k_l}}) - f^{-1}(y) \right| \ge \varepsilon \Rightarrow \left| c - f^{-1}(x) \right| \ge \varepsilon.$

Nach der Definition der Umkehrabbildung ist $f(f^{-1}(y_{n_k})) = y_{n_k}$. Aus der Stetigkeit von f folgt daher $y = \lim_{k \to \infty} y_{n_k} = \lim_{k \to \infty} f(f^{-1}(y_{n_k})) \stackrel{f \text{ stetig}}{=} f(c)$

 $\Rightarrow f^{-1}(y) = f^{-1}(f(c)) = c \Rightarrow |f^{-1}(y) - f^{-1}(y)| \ge \varepsilon > 0 \text{Widerspruch!} \Rightarrow f^{-1} : [A, B] \to [a, b] \text{ ist}$ stetig. q.e.d.

4.18. Beispiel

Beispiele zur...

1. Die Wurzelfunktion $\sqrt[k]{x}$

Sei $f: \mathbb{R}_+ \to \mathbb{R}_+$ mit $f(x) = x^k$ und $k \ge 2$. Für $x \in \mathbb{R}_+$ ist f stetig, streng monoton wachsend und $f(x) \in \mathbb{R}_+ \Rightarrow \text{Es gibt eine streng monoton wachsende und stetige Umkehrfunktion } f^{-1}: \mathbb{R}_+ \Rightarrow \mathbb{R}_+$ $\mathbb{R}_+ \text{ mit } = \sqrt[k]{x}$

Für k ungerade sind f und f^{-1} auf $\mathbb{R} \to \mathbb{R}$ definiert.

2. Der natürliche Logarithmus ln(x)

Die Exponentialfunktion $exp: \mathbb{R} \to \mathbb{R}_+$ mit $exp(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ ist streng monoton wachsend und bijektiv von \mathbb{R} nach \mathbb{R}_+

Beweis: $e^x = e^{\frac{x}{2} + \frac{x}{2}} = e^{\frac{x}{2}}e^{\frac{x}{2}} = (e^{\frac{x}{2}})^2 > 0$

Beweis: $e^{x} = e^{\frac{1}{2} + \frac{1}{2}} = e^{\frac{1}{2}} e^{\frac{1}{2}} = e^$

monoton. d.h. exp ist auf jedem abgeschlossenen Intervall [a, b] stetig und bijektiv.

$$\forall n \in \mathbb{N} \quad exp(n) \ge 1 + n \stackrel{n \to \infty}{\longrightarrow} \infty$$

$$exp(-n) = \frac{1}{exp(n)} \le \frac{1}{1+n} \stackrel{n \to \infty}{\longrightarrow} 0.$$

Also $\lim_{x\to \infty} exp(x) = \infty$ und $\lim_{x\to \infty} exp(x) = 0$ Es gibt daher eine stetige Umkehrfunktion $\ln \mathbb{R}_+ \to 0$ \mathbb{R} mit $x \mapsto ln(x)$ der natürliche Logarithmus. ln ist wieder stetig und streng monoton wachsend.

Es gilt:
$$ln(xy) = ln(x) + ln(y)$$

Beweis:
$$ln(x) = \xi$$
 und $ln(y) = \eta$
d.h. $e^{\xi} = x$ und $e^{\eta} = y$
 $\Rightarrow e^{\xi+\eta} = e^{\xi}e^{\eta} = xy \qquad | ln$
 $\Rightarrow ln(e^{\xi+\eta}) = ln(xy)$
 $\Rightarrow \xi + \eta = ln(xy)$
 $\Rightarrow ln(x) + ln(y) = ln(xy)$
 $\Rightarrow ln(x) + ln(y) = ln(xy)$

3. Die allgmeine Potenz und der allgemeine Logarithmus.

Sei $a < 0, x \in \mathbb{R}$

$$a^x = e^{xln(a)}$$

Beweis: Sei
$$x = n \in N$$
 $e^{nln(a)} = \underbrace{e^{ln(a)} \dots e^{ln(a)}}_{n-\text{mal}} = a \dots a = a^n$ $q.e.d.$

Diese Funtkion $\mathbb{R} \to \mathbb{R}_+$ ist stetig, bijektiv und stereng monoton wachsend. Es gilt: $a^{x+y} = a^x a^y$ $(a^x)^y = a^{xy}$ $a^x b^x = (ab)^x$ $(\frac{1}{a})^x = \frac{1}{a^x} = a^{-x}$

Beweis: Übung. Die Umkehrfunktion $log_a: \mathbb{R}_+ \to \mathbb{R}$ mit $x \mapsto log_a(x)$ heißt der logarithmus zur Basis a.

Also $log_a(a^x) = x$ $_a log(x) = x$.

Es gilt:
$$log_a(x) = \frac{ln(x)}{ln(a)}$$

Beweis: Übung.

4.19. Definition

Sei (z_n) mit $z_n = a_n + ib_n$ eine Folge komplexer Zahlen.

$$\lim_{n \to \infty} z_n = z = a + ib \Leftrightarrow \forall \varepsilon > 0 \exists N \forall n \ge N \quad |z_n - z| < \varepsilon$$

Es gelten alle Sätze auch für komplexe Folgen. Nur das Monotonie-Kriterium gilt nicht, da \mathbb{C} nicht angeordnet ist.

4.20. Bemerkung

Speziell gilt: Sei
$$z_n = a_n + ib_n$$
. $\lim_{n \to \infty} z_n = z = a + ib \Leftrightarrow \lim_{n \to \infty} a_n = aund \lim_{n \to \infty} b_n = b$

Beweis: Sei
$$\lim_{n\to\infty} z_n = a + ib \Rightarrow \forall \varepsilon > 0 \exists N \forall n \geq N \quad |z_n - (a+ib)| < \varepsilon$$

$$\Rightarrow |a_n - a| = |Re(z_n - z)| \le |z_n - z| < \varepsilon \forall n \ge N$$

$$|b_n - b| = |Im(z_n - z)| \le |z_n - z| < \varepsilon \forall n \ge N$$

Sei
$$|z_n - z| = |a_n + ib_n - (a + ib)| = |a_n - a + i(b_n - b)| \le |a_n - a| + |i| |b_n - b| < \varepsilon$$
 q.e.d.

Weiters gilt: $\lim_{n\to\infty} \overline{z_n} = \overline{\lim_{n\to\infty} z_n}$

Beweis:
$$\lim_{n\to\infty} \overline{z_n} = \lim_{n\to\infty} \overline{a_n + ib_n} = \lim_{n\to\infty} a_n - ib_n = \lim_{n\to\infty} a_n - i\lim_{n\to\infty} b_n = \overline{\lim_{n\to\infty} a_n + i\lim_{n\to\infty} b_n} = \overline{\lim_{n\to\infty} z_n}$$
 $q.e.d.$

4.21. Definition

Sei $D \subset \mathbb{C}$. Eine Funktion $f: D \to \mathbb{C}$ heißt stetig in $z \in D$, wenn für jede komplexe Folge $(z_n), z_n \in \mathbb{C}$, mit $\lim_{n \to \infty} z_n = z$ gilt: $\lim_{n \to \infty} f(z_n) = f(z_n)$

4.22. Beispiel (Die komplexe Exponentialfunktion)

$$exp: \mathbb{C} \to \mathbb{C} \setminus \{0\}$$
 mit $exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ ist definiert $\forall z \in \mathbb{C}$ und stetig $\forall z \in \mathbb{C}$

Beweis: Analog zu dem Beweis der Exponentialfunktion im Reellen.

q.e.d.

Achtung: Die komplexe Exponentialfunktion $exp: \mathbb{C} \to \mathbb{C} \setminus 0$ ist nicht bijektiv \Rightarrow Schwierigkeiten beim Logarithmus im Komplexen.

4.23. Bemerkung

Es gilt:
$$\overline{e^z} = e^{\overline{z}} \qquad \forall z \in \mathbb{C}$$

Beweis:
$$\overline{e^z} = \overline{\sum_{n=0}^{\infty} \frac{z^n}{n!}} = \overline{\lim_{N \to \infty} \sum_{n=0}^{n=N} \frac{z^n}{n!}} = \sum_{n=0}^{\infty} \frac{\overline{z}^n}{n!} = e^{\overline{z}}$$
 $q.e.d.$

4.24. Bemerkung

Wir betrachten für $x \in \mathbb{R}$

$$e^{ix} = Re(e^{ix}) + iIm(e^{ix})$$

4.25. Definition

Für $x \in \mathbb{R}$ heißt $\cos x = Re(e^{ix})$ der Kosinus von x und $\sin x = Im(e^{ix})$ der Sinus von x. Es gilt die Eulersche Formel: $e^{ix} = \cos x + i \sin x$

4.26. Bemerkung

Da
$$\overline{ix} = -ix \quad \forall x \in \mathbb{R} \text{ folgt } 1 = e^0 = e^{ix - ix} = e^{ix} e^{-ix} = e^{ix} e^{\overline{ix}} = e^{ix} \overline{e^{ix}} = \left| e^{ix} \right|^2$$

$$\Rightarrow 1 = \left| e^{ix} \right|$$

D.h. e^{ix} liegt auf dem Einheitskreis |z| = 1

4.27. Proposition 1. $\cos x = \frac{e^{ix} + e^{-ix}}{2}$

$$2. \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

3.
$$\cos^2 x + \sin^2 x = 1$$

Beweis: Von a und b:

$$\begin{split} e^{ix} &= Re(e^{ix}) + iIm(e^{ix}) = \cos x + i\sin x \\ e^{-ix} &= e^{\overline{ix}} = \overline{e^{ix}} = Re(e^{ix}) - iIm(e^{ix}) = \cos x - i\sin x \end{split}$$

Also
$$e^{ix} = \cos x + i \sin x$$

$$e^{-ix} = \cos -i \sin x$$

$$\Rightarrow e^{ix} + e^{-ix} = 2\cos x$$
 und $e^{ix} - e^{-ix} = 2i\sin x$

von c:

$$\cos^2 x + \sin^2 x = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^2 + \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^2 = \frac{1}{4}\left(e^{2ix} + 2e^{ix - ix} + e^{-2ix} - e^{2ix} + 2e^{ix - ix} - e^{-2ix}\right) = \frac{1}{4}(2+2) = 1$$

$$q.e.d.$$

4.28. Bemerkung

Die Funktionen cos und sin von $\mathbb R$ nach $\mathbb R$ sind stetig auf $\mathbb R$: Folgt aus den Rechenregeln für stetige Funktionen auf $\mathbb R$

4.29. Proposition (Additionstheoreme)

 $\forall x, y \in \mathbb{R}$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\sin(x+y) = \cos x \sin y + \sin x \cos y$$

Beweis: $\cos(x+y) + i\sin(x+y) = e^{i(x+y)} = e^{ix+iy} = e^{ix} + e^{iy} = (\cos x + i\sin x)(\cos y + i\sin y) = e^{i(x+y)} = e^{i(x+y$ $\cos x \cos y - \sin x \sin y + i(\cos x \sin y + \sin x \cos y)$ Vergleich von Real- und Imaginärteil, folgt die Behauptung. q.e.d.

4.30. Proposition (Reihendarstellung)

 $\forall x \in \mathbb{R} \text{ gilt}$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Beide Reihen konvergieren absolut für alle $x \in \mathbb{R}$

Beweis: Absolute Konvergenz folgt aus der absoluten Konvergenz der Exponentialreihe. (oder aus dem Quotient enkriterium)

$$\cos x + i \sin x = e^{ix} = \sum_{k=0}^{\infty} \frac{(ix)^k}{k!} = \sum_{k=0}^{\infty} i^k \frac{x^k}{k!} = \sum_{n=0}^{\infty} i^{2n} \frac{x^{2n}}{(2n)!} + \sum_{n=0}^{\infty} i^{2n+1} \frac{x^{2n+1}}{(2n+1)!} i^2 = 1 \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} i^n \frac{x^{2n+1}}{(2n+1)!} i^2 = 1 \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} i^n \frac{x^{2n+1}}{(2n+1)!} i^2 = 1 \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} i^n \frac{x^{2n+1}}{(2n+1)!} i^2 = 1 \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} i^n \frac{x^{2n+1}}{(2n+1)!} i^2 = 1 \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} i^n \frac{x^{2n+1}}{(2n+1)!} i^2 = 1 \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n+1)!} i^2 = 1 \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n+1)!} i^2 = 1 \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} i^n \frac{x^{2n}}{(2n+1)!} i^2 = 1 \sum_{n=0}^{\infty} i^n \frac{x^{2$$

Die Formeln folgen durch Vergleich von Real- und Imaginärteil.

q.e.d.

4.31. Satz

Die Funktion $\cos : \mathbb{R} \to \mathbb{R}$ hat im Intervall von [0,2] genau eine Nullstelle x_0 .

Beweis: 1.) Existenz: cos ist stetig, $\cos 0 = 1 > 0$ und $\cos 2 < 0$

zu zeigen: $\cos 2 < 0$

$$a) \forall x \in [0, 2], \forall n \ge 1 \text{ g ilt } -\frac{x^{2n}}{(2n)!} + \frac{x^{2n+2}}{(2n+2)!} < 0$$

denn
$$\forall n \ge 1 \quad (2n+1)(2n+2) > 2 \cdot 2 \ge x^2$$

$$\Rightarrow \cos z < 1 - \frac{1}{2!} + \frac{1}{4!} - 1 - \frac{1}{2} + \frac{1}{24} - 1 - 2 + \frac{1}{3} - \frac{1}{3} < 0$$

Zwischenwertsatz $\exists x_0 \in [0, 2] \text{ mit } \cos x_0 = 0, 2$.) Eindeutigkeit

a)
$$\sin x > 0 \forall x \in (0, 2)$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \underbrace{\frac{x^5}{5!} + \frac{x^7}{7!}}_{>0} + \underbrace{\frac{x^9}{9!} + \frac{x^{11}}{11!}}_{>0} + \dots > x - \frac{x^3}{3!} = \frac{1}{6} (6x - x^3) = \underbrace{\frac{x}{6} (6 - x^2)}_{0 < x < 2} > 0$$

b) $\cos:(0,2)\to\mathbb{R}$ ist streng monoton fallend

Seien
$$0 < x_1 < x_2 < 2$$

Setze
$$x = \frac{x_1 + x_2}{2} \in (0, 2)$$
 und $y = \frac{x_2 - x_1}{2} \in (0, 2)$

$$\Rightarrow x_2 = x + yundx_1 = x - y$$

Aus den Additionstheoremen folgt:

$$\cos x_2 = \cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos x_1 = \cos(x - y) = \cos x \cos(-y) + \sin x \sin(-y) \ qquad \cos -x = \frac{e^{-ix} + e^{ix}}{2} = \cos x$$

$$\sin -x = \frac{e^{-ix} - e^{ix}}{2i} = -\frac{e^{ix} - e^{-ix}}{2i} = -\sin x$$

$$\Rightarrow \cos(x_2) - \cos(x_1) = -2\sin x \sin y = -2\underbrace{\sin(\frac{x_1 + x_2}{2})}_{>0} \underbrace{\sin(\frac{x_2 - x_1}{2})}_{>0} < 0$$

 $\Rightarrow \cos x_2 < \cos x_1 \Rightarrow \cos x_1$ ist auf (0,2) streng monoton fallend, speziell injektiv.

 \Rightarrow cos hat genau eine Nullstelle.

q.e.d.

4.32. Definition

 $Seix_0 \in (0,2)$ die eindeutig bestimmte Nullstelle von $cos:(0,2) \to \mathbb{R}$. Dann definieren wir die Kreiszahl

$$\pi = 2x_0$$

. Also
$$\cos(\frac{\pi}{2}) = 0$$

4.33. Bemerkung

$$\pi \approx 3,1415\dots$$

 π und e sind irrational und transzendent, sind also keine Lösung einer algebraischen Gleichung. Wir werden später (Integralrechnung zeigen, dass π die Fläche des Einheitskreises ist.

4.34. Bemerkung (Eigenschaften von π)

$$\cos\frac{\pi}{2} = 0$$

$$\operatorname{Da} \cos^2 \frac{\pi}{2} + \sin^2 \frac{\pi}{2} = 1 \Rightarrow \sin \frac{\pi}{2} = 1, \text{ da } \sin \frac{\pi}{2} > 0$$

Weiter gilt:

$$e^{i\frac{\pi}{2}} = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = i$$

$$\Rightarrow -1 = i^2 = e^{i\frac{\pi}{2}}e^{i\frac{\pi}{2}} = e^{\pi i}$$

$$\Rightarrow -i = i^2 = e^{\frac{3\pi i}{2}}$$

$$\Rightarrow 1 = i^2 = e^{2\pi i}$$

$$\Rightarrow e^{i(x+2\pi)} = e^{ix+i2\pi} = e^{ix} + e^{i2\pi} = e^{ix}$$

$$\Rightarrow \cos(x+2\pi) + i\sin(x+2\pi) = e^{i(x+2\pi)} = e^{ix} = \cos x + i\sin x$$

Also cos und sin sind 2π -periodische Funktionen. Nullstellen von sin und cos:

$$\sin x = 0 \Leftrightarrow x = k\pi \quad (k \in \mathbb{Z}$$

$$\cos x = 0 \Leftrightarrow x = \frac{pi}{2} + k\pi \quad (k \in \mathbb{Z})$$

ohne Beweis.

4.35. Definition

Der Tangens und Kotangens sind definiert durch:

$$\tan: \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \ : \ k \in \mathbb{Z} \right\} \to \mathbb{R} \ \mathrm{mit} \ \tan x = \frac{\sin x}{\cos x}$$

$$\cot : \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\} \to \mathbb{R} \text{ mit } \cot x = \frac{\cos x}{\sin x}$$

Die Umkehrfunktionen von sin, cos, tan, cot heißen:

$$\arccos: [-1,1] \to [0,\pi]$$

$$\arcsin: [-1,1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$\arccos: \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$$

$$\arccos: \mathbb{R} \to (0, \pi)$$

Diese Funktionen sind wieder stetig und streng monoton.

Differentialrechnung 5

5.1. Definition

Eien Funktion $f: D \to \mathbb{R}$ heißt differenzierbar in $x_0 \in D$, falls $\lim_{h\to 0} \frac{f(x+h)-f(x_0)}{h} = f'(x_0)$

- **5.2.** Bemerkung 1. f differenzierbar in x_0 bedeutet: Für jede Folge (h_n) mit $h_n \neq 0$ und $\lim_{n \to \infty} h_n = 0$ 0 ist die Folge $\left(\frac{f(x_0+h_n)-f(x_0)}{h_n}\right)$ konverrgent. Ihren Grenzwert nennen wir $f'(x_0)=\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)=\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$
 - 2. $f'(x_0) = \lim_{h \to 0} \frac{f(x+h) f(x_0)}{h} = \lim_{x \to x_0 \to 0} \frac{f(x) f(x_0)}{x x_0} = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$
 - 3. GRAFIK grenzwert mit annäherungen der Tangenten
- **5.3. Beispiel** 1. Die konstante Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = c \in \mathbb{R}$ oder $c \in \mathbb{C}$. f'(x) = $\lim_{h \to 0} \frac{f(x+h) - f(x_0)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0 \Rightarrow c' = 0$
 - 2. Eine lineare Funktion $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = ax $a \in \mathbb{R}$ oder $a \in \mathbb{C}$. $f'(x) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = x$ $\lim_{x \to x_0} \frac{ax - ax_0}{x - x_0} = \lim_{x \to x_0} \frac{a(x - x_0)}{x - x_0} = a \Rightarrow (ax)' = a$
 - 3. Eine quadratische Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^2$. $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x_0)}{h} = \lim_{h \to 0} \frac{(x+h)^2 (x_0)^2}{h} = \lim_{h \to 0} \frac{(x+h)^2 (x_0)^2$ $\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x_0^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} 2x + h = 2x \Rightarrow (x^2)' = 2x$
 - 4. eine rationale Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \frac{1}{x}$. $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x_0)}{h} = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{x+h} \frac{1}{x_0} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{x+h} \frac{1}{x_0} \right)$ $\lim_{h\to 0} \frac{1}{h} \left(\frac{x_0 - x + h}{xx_0 + hx_0} \right)$ und dann gleicher nenner und ausrechnen.. $\Rightarrow \left(\frac{1}{x} \right)' = -\frac{1}{x^2}$
 - 5. Die Exponentialfunktion. $\exp: \mathbb{R} \to \mathbb{R}$ mit $exp(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ Wir zeigen $\lim_{h\to 0} \frac{e^h-1}{h} = 1$

$$|h|^2 \sum_{n=0}^{\infty} \frac{1}{2} \left(\frac{|h|}{3}\right)^h = \frac{|h|^2}{2} \sum_{n=0}^{\infty} \underbrace{\left(\frac{|h|}{3}\right)^h}_{\leq 1} \stackrel{\text{geometrische Reihe}}{=} = \frac{|h|^2}{2} \frac{1}{1 - \frac{|h|}{3}} \leq |h^2|$$

$$\Rightarrow \left| \frac{e^h - 1}{h} - 1 \right| \le |h| \xrightarrow{n \to 0} 0 \Rightarrow \lim_{n \to 0} \frac{e^h - 1}{h} = 1$$

$$\Rightarrow (e^x)' = \lim_{h \to 0} \frac{e^{x + h} - e^x}{h} = \lim_{h \to 0} \frac{e^x e^h - e^x}{h} = \lim_{h \to 0} \frac{e^x (e^h - 1)}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x \cdot 1 = e^x$$

$$\Rightarrow (e^x)' = e^x$$

6. Die Ableitungsfunktion $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = |x| ist in x = 0 nicht differenzierbar. $\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = 0$ $\lim_{h \to 0} \frac{\frac{\mid h \mid}{h}}{h}$ $\lim_{h \to 0^+} \frac{\mid h \mid}{h} = 1 \neq -1 = \lim_{h \to 0^-} \frac{\mid h \mid}{h}$

5.4. Proposition

Sei $f: D \to \mathbb{R}$ in $a \in D$ differenzierbar $\Rightarrow f$ ist in a stetig.

Beweis: Wir definieren $\phi: D \to \mathbb{R}$ mit $\phi(x) = \frac{f(x) - f(a)}{x - a} - f'(a) \Rightarrow \lim_{x \to a} \phi(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} - f'(a) = \lim_{x \to a} \frac{f$ f'(a) - f'(a) = 0.

Also:
$$\phi(x) = \frac{f(x) - f(a)}{x - a} - f'(a) \Rightarrow \phi(x)(x - a) = f(x) - f(a) - f'(a)(x - a) \Rightarrow f(x) = f(a) + f'(a)(x - a) + \phi(x)(x - a) \xrightarrow{a \to \Rightarrow} \lim_{x \to a} f(x) = f(a) \Rightarrow f \text{ ist in } f \text{ stetig.}$$

$$q.e.d.$$

5.5. Satz (Rechenregeln)

Seien $f, g: D \to \mathbb{R}$ differenzierbar in $a \in D$ und $\lambda \in \mathbb{R}(\lambda \in \mathbb{C})$. Dann gilt

1. $f + g : D \to \mathbb{R}$ ist in a differenzierbar und

$$(f+g)'(a) = f'(a) + g'(a)$$

2. $\lambda f: D \to \mathbb{R}$ ist in a differenzierbar und

$$(\lambda f)'(a) = \lambda f'(a)$$

3. $fg: D \to \mathbb{R}$ ist in a differenzierbar und

$$(fg)'(a) = f'(a)g(a) + f(a)g'(a)$$
 Produktregel

4. Ist $g(x) \neq 0 \ \forall x \in D$ so ist $\frac{f}{g} : D \to \mathbb{R}$ ist in a differenzierbar und

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(x))^2} \quad \text{Quotient enregel}$$

Beweis: 1. Folgt direkt aus den Rechenregeln für Grenzwerte.

2. Folgt direkt aus den Rechenregeln für Grenzwerte.

3.
$$\frac{f(a+h)g(a+h)-f(a)g(a)}{h} = \frac{1}{h}\left(f(a+h)g(a+h) - f(a+h)g(a) + f(a+h)g(a) - f(a)g(a)\right) = f(a+h)\frac{g(a+h)-g(a)}{h} + g(a)\frac{f(a+h)-f(a)}{h} \xrightarrow{h\to 0} f(a)\lim_{h\to 0} \frac{g(a+h)-g(a)}{h} + g(a)\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f(a)g'(a) + f'(a)g(a)$$

4. Sei
$$f(x) = 1 \quad \forall x \in D \ \frac{1}{h} \left(\frac{1}{g(a+h)} - \frac{1}{g(a)} \right) = \frac{g(a) - g(a+h)}{hg(a+h)g(a)} = -\frac{g(a+h) - g(a)}{h} \frac{1}{g(a+h)g(a)} \xrightarrow{h \to 0} -g'(a) \frac{1}{(g(a))^2}$$
Sei f beliebig. Dann folgt aus der Produktregel:
$$\left(\frac{f}{g} \right)'(a) = \left(f \frac{1}{g} \right)'(a) = f'(a) \frac{1}{g}(a) - \frac{1}{(g(a))^2} f'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(x))^2}$$
 $q.e.d.$

5.6. Satz (Kettenregel)

Seien $f: D \to \mathbb{R}$ und $g: E \to \mathbb{R}$ zwei Funktionen mit $f(D) \subset E$

Ist f in $a \in D$ differenzierbar und g in $f(a) \in E$ differenzierbar, dann ist $g \circ f : E \to \mathbb{R}$ in a differenzierbar und

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

$$Beweisidee. \ \frac{g(f(a+h))-g(f(a))}{h} = \underbrace{\frac{g(f(a+h))-g(f(a))}{f(a+h)-f(a)}}_{\stackrel{h\to 0}{\longrightarrow} g'(f(a))} \underbrace{\frac{f(a+h)-f(a)}{h}}_{\stackrel{h\to 0}{\longrightarrow} f'(a)} \xrightarrow{h\to 0} h = g'(f(a))f'(a) \qquad q.e.d.$$

5.7. Beispiel

Weitere Beispiele

1. Sei
$$f(x) = x^n$$
 mit $n \in \mathbb{Z}$ ist $f'(x) = (x^n)' = nx^{n-1}$

Beweis: Sei $n \ge 0$

IA n = 0, n = 1: schon gezeigt.

$$IV (x^n)' = nx^{n-1}$$

IS
$$n \mapsto n+1$$

$$(x^{n+1})' = (xx^n)' \stackrel{\text{Produktregel}}{=} 1x^n + x(nx^{n-1}) = x^n + nx^n = (n+1)x^n$$

Sei
$$n < 0$$
. Setze $n = -m$ mit $m > 0$

Sei
$$n < 0$$
. Setze $n = -m$ mit $m > 0$
$$x^n = x^{-m} = \frac{1}{x^m} \overset{\text{Quotienten regel}}{\Rightarrow} (x^m)' = \left(\frac{1}{x^m}\right)' = \frac{0x^m - 1mx^{m-1}}{x^2m} = -\frac{mx^m m - 1}{x^m + m} = -\frac{mx^{m-1}}{x^m x^m} = -m\frac{1}{x^m}\frac{1}{x} = -m\frac{1}{m}x^{-1} = nx^nx^{-1} = nx^{n-1}$$
 $q.e.d.$

Seit $f(x) = e^{ax}$ mit $a \in \mathbb{R}, a \in \mathbb{C}$

$$\Rightarrow f'(x) = (e^{ax})' = ae^{ax}$$

Sei
$$g(x) = ax \stackrel{\text{Kettenregel}}{\Rightarrow} (e^{ax})' = (e^{g(x)})' = e^{g(x)}g'(x) = ae^{ax}$$

$$(\sin x)' = \cos x(\cos x)' = -\sin x$$

$$(\sin x)' = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)' = \frac{(e^{ix})' - (e^{-ix})'}{2i} = \frac{ie^{ix} + ie^{-ix}}{2i} = \frac{e^{ix} + e^{-ix}}{2} = \cos x$$

$$(\cos x)' = \left(\frac{e^{ix} + e^{-ix}}{2}\right)' = \frac{(e^{ix})' + (e^{-ix})'}{2} = \frac{ie^{ix} - ie^{-ix}}{2} = i\frac{e^{ix} - e^{-ix}}{2} = \frac{-1}{i}\frac{e^{ix} - e^{-ix}}{2} = \sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \begin{cases} \frac{1}{\cos^2 x} \\ 1 + \tan^2 x \end{cases}$$

$$(\sin^2 x)' = \sin(2x)$$

$$g(x) = x^2, f(x) = \sin x$$

$$(\sin^2 x)' = (g \circ f)'(x) = g'(f(x))f'(x) = 2\sin x \cos x = \sin(2x)$$

5.8. Satz (Ableitung der Umkehrfunktion)

Sei $f:[a,b]\to\mathbb{R}$ stetig und streng monoton, mit f([a,b])=[A,B]. Sei $f^{-1}:[A,B]\to\mathbb{R}$ die Umkehrfunktion. Ist f in $x \in [a, b]$ differenzierbar und $f'(x) \neq 0$ dann ist f^{-1} in y = f(x) differenzierbar und

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

Beweis: Wir wissen, schon f^{-1} ist stetig. Sei (y_n) eine Folge in [A,B] und $\lim_{n\to\infty}y_n=y$

Da f^{-1} stetig in y, folgt $\lim_{n\to\infty} f^{-1}(y_n) = f^{-1}(y)$

Sei
$$x_n = f^{-1}(y_n), x = f^{-1}(y)$$

Da
$$f$$
 in x differenzierbar und $f'(x) \neq 0$ folgt $\lim_{n \to \infty} \frac{f^{-1}(y_n) - f^{-1}(y)}{x_n - y} = \lim_{n \to \infty} \frac{x_n - x}{f(x_n) - f(x)} = \frac{1}{\frac{f(x_n) - f(x)}{x_n - x}} = \frac{1}{\frac{f'(x_n) -$

5.9. Beispiel

 $\ln: \mathbb{R}_+ \to \mathbb{R}$ ist die Umkehrfunktion von $\exp: \mathbb{R} \to \mathbb{R}_+$

$$(\ln x)' = \frac{1}{x}$$

Sei
$$f(x) = \exp(x)$$
, dann ist $f^{-1}(x) = \ln(y)$. Wir wissen $f'(x) = (\exp(x))' = \exp(x) = f(x) \Rightarrow (\ln(x))' = (f^{-1}(y))' = \frac{1}{f'(f^{-1}(y))} = \frac{1}{\exp(\ln(y))} = \frac{1}{y}$

5.10. Bemerkung (Anwendung)

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Beweis:
$$(\ln x)' = \frac{1}{x}$$

$$(\ln 1)' = 1$$

$$(\ln 1)' = 1$$

$$\Rightarrow \lim_{n \to \infty} n \ln \left(1 + \frac{1}{n} \right) = \lim_{n \to \infty} \frac{\ln \left(1 + \frac{1}{n} \right)}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\ln \left(1 + \frac{1}{n} \right) - \ln 1}{\frac{1}{n}} = (\ln 1)' = 1$$

$$\left(1 + \frac{1}{n} \right)^n = e^{n \ln \left(1 + \frac{1}{n} \right)}$$

Da exp setetig ist, folgt
$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} e^{n \ln\left(1 + \frac{1}{n}\right)} = e^{\lim_{n \to \infty} n \ln\left(1 + \frac{1}{n}\right)} = e^1 = e$$
 q.e.d.

5.11. Definition

Sei $f:D\to\mathbb{R}$ differenzierbar, und die Ableitung $f':D\to\mathbb{R}$ in x_0 differenzierbar, dann heißt die Ableitung von f' die zweite Ableitung von f. Man schreibt $(f')'(x_0) = f''(x_0) = \frac{d^2 f}{dx^2}(x_0)$ Allgemeint definiert man induktiv für $n \ge 1$

$$(f^{(n-1)})'(x_0) = f^{(n)}(x_0) = \frac{\mathrm{d}^n f}{\mathrm{d}x^n}(x_0)$$

f heißt stetig differenzierbar, wenn f differenzierbar ist und die Ableitung f' stetig ist.

5.12. Satz (Der Satz von Rolle)

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar. Weiters sei f(a)=f(b)=0. Dann folgt es gibt ein $x_0 \in (a, b) \text{ mit } f'(x) = 0$

Beweis: Ist $f(x) = 0 \ \forall x \in (a,b) \ \Rightarrow \ f'(x) = 0 \ \forall x \in (a,b)$.

Wir können also annehmen: Es gibt ein $x \in (a,b)$ mit f(x) > 0. (Wenn f(x) < 0 betrachte die Funktion -f). Da f auf [a,b] stetig ist, folgt aus dem Satz vom Maximum, dass f an einer Stelle $x_0 \in (a,b)$ ihr Maximum annimmt.

- $\Rightarrow f(x_0) > 0$ und $x_0 \in (a, b)$ und $\forall x \in (a, b) : f(x) \le f(x_0)$
- ⇒ Ist $x > x_0$: $\frac{f_x) f(x_0)}{x x_0} \le 0$ und ist $x < x_0$: $\frac{f_x) f(x_0)}{x x_0} \ge 0$ ⇒ \forall Folge (x_n) mit $x_n > x_0$ und $\lim_{n \to \infty} x_n = x_0$ gilt $f'(x_0) = \lim_{x \to x_n} \frac{f(x_n) f(x_0)}{x_n x_0} \le 0$ und \forall Folge (x_n) mit $x_n < x_0$

$$x_0 \text{ und } \lim_{n \to \infty} x_n = x_0 \text{ gilt } f'(x_0) = \lim_{x \to x_n} \frac{f(x_n) - f(x_0)}{x_n - x_0} \ge 0$$

 $\Rightarrow f'(x_0) \le 0 \text{ und } f'(x_0) \ge 0 \Rightarrow f'(x_0) = 0$
 $q.e.d.$

5.13. Satz (Mittelwertsatz der Differenzialrechnung, MWS)

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar. Dann existiert ein $x_0\in(a,b)$ mit

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Beweis: Sei $g:[a,b]\to\mathbb{R}$ definiert als g(x)=f(x)-rx-s, mit $r,s\in\mathbb{R}$. Da f differenzierbar ist ist auch g differenzierbar. Um den Satz von Rolle anwenden zu können, muss $g(a) = g(b) = 0 \Rightarrow f(a) - ra - s = 0$ f(b) - rb - s = 0

D.h.
$$f(a) = ra - s$$
 und $f(b) = rb - s$ $\Rightarrow f(a) - f(b) = rb - ra \Rightarrow r = \frac{f(a) - f(b)}{b - a}$ $\Rightarrow s = f(a) - ra = f(a) - \frac{f(a) - f(b)}{b - a}a = \frac{f(a)b - f(a)a - f(b)a + f(a)a}{b - a} = \frac{f(a)b - f(b)a}{b - a}$

Nach dem Satz von Rolle gibt es ein $x_0 \in (a, b)$ mit $g'(x_0) = 0$

$$\Rightarrow f'(x_0) - \frac{f(a) - f(b)}{b - a} = 0 \Rightarrow f'(x_0) = \frac{f(a) - f(b)}{b - a}$$
q.e.d.

5.14. Bemerkung (Spezialfall)

Ist f(a) = f(b), dann ist $f'(x_0) = 0$

5.15. Korollar (Verallgemeinerte Mittelwertsatz)

Seien $f, g: [a, b] \to \mathbb{R}$ stetig und auf (a, b) differenzierbar. Sei weiters $g'(x) \neq 0 \ \forall x \in (a, b)$. Dann gilt:

$$g(b) \neq g(a)$$
 und es gibt ein $x_0 \in (a,b)$ mit $\frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$

Beweis: Wäre g(b) = g(a), dann gäbe es nach dem Mittelwertsatz ein $\xi \in (a, b)$ mit $g'(\xi) = 0$ Widerspruch! Denn $g'(x) \neq 0 \Rightarrow g(a) \neq g(b)$

Definiere
$$h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a))$$
, dann ist $h(a) = f(a)$ und $h(b) = f(b) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(b) - g(a)) = f(b) - f(b) + f(a) = f(a)$. Aus dem Mittelwertsatz folgt es gibt ein $x_0 \in (a, b)$, sodass $h'(x_0) = 0$ $\Rightarrow f'(x_0) - \frac{f(b) - f(a)}{g(b - g(a))}g'(x_0) = 0 \Rightarrow \frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b - g(a))}$ $q.e.d.$

5.16. Korollar

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar. Ist $f'(x)=0 \ \forall x\in(a,b)$, dann ist f konstant.

Beweis: Angenommen f ist nicht konstant, dann gibt es $a \le a_1 < b_1 \le b$ mit $f(a_1) \ne f(b_1) \stackrel{MWS}{\Rightarrow} \exists x_0 \in (a_1, b_1)$ mit $f'(x_0) = \frac{f(b_1) - f(a_1)}{b_1 - a_1} \ne 0$ Widerspruch! $f'(x) = 0 \ \forall x \in (a, b) \Rightarrow f$ ist konstant. q.e.d.

5.17. Satz

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar.

Ist $f'(x) > 0 \ \forall x \in (a,b) \Rightarrow f$ ist in [a,b] streng monoton steigend.

Ist $f'(x) < 0 \ \forall x \in (a,b) \Rightarrow f$ ist in [a,b] streng monoton fallend.

Ist $f'(x) \ge 0 \ \forall x \in (a,b) \Rightarrow f$ ist in [a,b] monoton steigend.

Ist $f'(x) \leq 0 \ \forall x \in (a,b) \Rightarrow f$ ist in [a,b] monoton fallend.

Beweis: Wir zeigen nur eine streng monoton steigende Funktion an, der Beweis für anderes Monotonieverhalten ist analog durchführbar.

Angenommen f wäre nicht streng monoton wachsend. \Rightarrow es gibt $a \le a_1 < b_1 \le b$ mit $f(a_1) \ge f(b_1) \stackrel{MWS}{\Rightarrow} \exists x_0 \in (a_1, b_1)$ mit $f'(x) = \frac{f(b_1) - f(a_1)}{b_1 - a_1} \le 0$ Widerspruch! $f'(x) > 0 \ \forall x \in (a, b) \Rightarrow f$ ist streng monoton steigend.

5.18. Definition

Eine Funktion $f: D \to \mathbb{R}$ hat an einer Stelle $x_0 \in D$ ein lokales Maximum (Minimum) wenn es ein $\varepsilon > 0$ gibt mit $f(x) \le (\ge) f(x_0) \, \forall x: |x-a| < \varepsilon \, x_0$ heißt lokales Extremum, wenn x_0 lokales Maximum oder Minimum ist.

5.19. Satz

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar.

- 1. Hat f in $x_0 \in (a, b)$ ein lokales Externum $\Rightarrow f'(x_0) = 0$
- 2. Ist f in $x_0 \in (a, b)$ zweimal differenzierbar und es gibt ein $x_0 \in (a, b)$ mit $f'(x_0) = 0$ und $f''(x_0) < (>)0$ dann ist x_0 ein lokales Maximum (Minimum)

Beweis: 1. Haben wir im Beweis von Satz von Rolle gezeigt.

2. Wir zeigen nur für Maximum, fürs Minimum betrachte -fSei $f'(x_0) = 0$ und $f''(x_0) < 0$. De $f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} < 0 \Rightarrow \exists \varepsilon < 0 \, \forall x \mid x_0 - x \mid < 0$ ε für $x_0 \neq x$ mit $\frac{f'(x) - f'(x_0)}{x - x_0} < 0$

Fall 1 $x < x_0 \Rightarrow f'(x) > f'(x_0) = 0 \Rightarrow$ streng monoton wachsend auf $(x_0 - \varepsilon, x_0)$

Fall 2 $x > x_0 \Rightarrow f'(x) < f'(x_0) = 0 \Rightarrow$ streng monoton fallend auf $(x_0, x_0 + \varepsilon)$

 $\Rightarrow f$ hat in x_0 ein lokales Maximum.

q.e.d.

5.20. Bemerkung

Die Umkehrung des Satzes gilt nicht. zB: $f(x) = x^4$ hat in x = 0 ein Minimum. Aber f'(0) = f''(0) = 0. Für $f(x) = x^3$ ist f'(0) = 0 aber x = 0 ist kein Extremum.

5.21. Satz (Regel von de l'Hospital)

Sei $-\infty \le a < b \le \infty$. Sei $f:(a,b) \to \mathbb{R}$ differenzierbar und es existiert $\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = c \in \mathbb{R}$. Dann gilt:

1. Ist
$$\lim_{x \to a^+} f'(x) = \lim_{x \to a^+} g'(x) = 0 \Rightarrow g(x) \neq 0$$
 und $\lim_{x \to a^+} \frac{f(x)}{g(x)} = c$

2. Ist
$$\lim_{x\to a^+} f'(x) = \lim_{x\to a^+} g'(x) = \pm \infty \Rightarrow g(x) \neq 0$$
 und $\lim_{x\to a^+} \frac{f(x)}{g(x)} = c$

Ebenso für $\lim_{x \to b^-} \frac{f'(x)}{g'(x)} = c$

Beweis: 1. Aus dem verallgemeinerten Mittelwertsatz folgt zu jedem $x \in (a,b)$ gibt es ein $t_x \in (a,x)$ mit $\frac{f'(t_x)}{g'(t_x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f(x)}{g(x)}$ Konvergiert $x \to a \Rightarrow t_x \to a \Rightarrow \lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{t_x \to a^+} \frac{f'(t_x)}{g'(t_x)}$ 2. analog zu 1.

5.22. Beispiel 1.
$$\lim_{x\to 0} \frac{\sin(x)}{x} = \lim_{x\to 0} \frac{\cos(x)}{1} = 1$$

2.
$$\lim_{x \to 0} x \ln(x) = \lim_{x \to 0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0} -x = 0$$

6 Integralrechnung

Folgende Eigenschaften gelten

1. Rechtecksfläche

$$\int_a^b 1 \, \mathrm{d}x = b - a$$

2. Zerschneiden

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x \quad \text{ für } a \le c \le b$$

3. Positivität

$$f(x) \ge 0 \quad \forall x \in [a, b] \Rightarrow \int_a^b f(x) \, \mathrm{d}x \ge 0$$

4. Liniarität

$$\int_a^b \lambda(f(x)+g(x)) \, \mathrm{d}x = \lambda \int_a^b f(x) \, \mathrm{d}x + \lambda \int_a^b g(x) \, \mathrm{d}x \quad \text{ für } \lambda \in \mathbb{R}$$

6.1. Bemerkung

Aus 3. und 4. folgt: Ist $f(x) \leq 0 \ \forall x \in [a,b] \Rightarrow \int_a^b f(x) \, \mathrm{d}x \leq 0$. Denn $-f(x) \geq 0 \Rightarrow \int_a^b -f(x) \, \mathrm{d}x \geq 0 \Rightarrow -\int_a^b f(x) \, \mathrm{d}x \geq 0 \Rightarrow \int_a^b f(x) \, \mathrm{d}x \leq 0$

6.2. Definition

Eine Treppenfunktion $\phi: [a, b] \to \mathbb{R}$ ist folgende Funktion:

Es gibt eine Unterteilung des Intervalls [a, b], mit $a = t_0 < \cdots < t_n = b$ und Konstanten $z_1, \ldots z_n \in \mathbb{R}$, sodass $\phi(x) = c_k \ \forall x \in (t_{k-1}, t_k)$ für $k = 1, \ldots, n$. Die Werte $\phi(t_k)$ für $k = 0, \ldots, n$ sind beliebig.

6.3. Definition (Integral für Treppenfunktion)

Sei $\phi: [a,b] \to \mathbb{R}$ eine Treppenfunktion, bzgl der Unterteilung $a=x_0 < \cdots < x_n=b$ und $\phi(x)=c_k$ für $x \in (x_{k-1}, x_k)$ für $k = 1, \dots, n$. Dann definiert man

$$\int_{a}^{b} f(x) dx = \sum_{k=1}^{n} c_{k}(x_{k} - x_{k-1})$$

6.4. Bemerkung

Man kann sich leicht überlegen dass diese Definition unabhöngig von der Zerlegung ist.

6.5. Proposition

Das Integral für Treppenfunktion erfüllt die Eigenschaften eines Integrals. (Rechtecksfläche, Zerschneiden, Positivität und Liniarität)

Beweis: Folgt direkt aus der Definition des Integrals für Treppenfunktionen.

q.e.d.

6.6. Bemerkung (Ziel)

Erweiterung des Integrals auf stetige und stückweise stetige Funktionen.

(Gleichmäßige Stetigkeit)

Sei [a,b] ein abgeschlossenenes Intervall und $f:[a,b]\to\mathbb{R}$ eine stetige Funktion. Dann gilt:

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x, x' \in [a, b] \text{ mit } |x - x'| < \delta \text{ folgt } |f(x) - f(x')| < \varepsilon$$

41

Beweis: Angenommen f ist nicht gleichmäßig stetig. $\Rightarrow \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x, x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \ \text{mit} \ |x - x'| < 0 \ \forall \delta > 0 \ \exists x' \in [a, b] \$ δ aber $|f(x)-f(x')| \geq \varepsilon$. Speziell gibt es ein $\varepsilon > 0$ derart, dass so zu jedem $n \geq 1$ $x_n, x_n' \in [a,b]$ gibt mit $|x_n - x'_n| < \frac{1}{n}$, aber $|f(x_n) - f(x'_n)| \ge \varepsilon$.

Betrachte die Folge (x_n) .

 (x_n) ist durch a und b beschränkt. Nach dem Satz von Bolzano-Weierstraß gibt es eine konvergente Teilfolge (x_{n_k}) von (x_n) .

Da
$$a \leq x_{n_k} \leq b$$
 folgt: $\lim_{k \to \infty} x_{n_k} = \xi \in [a, b]$.

Nach der Voraussetzung gilt:
$$|x_{n_k} - x'_{n_k}| < \frac{1}{n_k} \stackrel{k \to \infty}{\longrightarrow} 0$$

$$\Rightarrow \lim_{k \to \infty} x'_{n_k} = \lim_{k \to \infty} x'_{n_k} - x_{n_k} + x_{n_k} = \lim_{k \to \infty} x'_{n_k} - x_{n_k} + \lim_{k \to \infty} x_{n_k} = 0 + \xi = \xi$$
Also $\lim_{k \to \infty} x'_{n_k} = \xi$.

Da
$$f$$
 stetig ist, folgt $\lim_{k\to\infty} f(x_{n_k}) - f(x'_{n_k}) = \lim_{k\to\infty} f(x_{n_k}) - \lim_{k\to\infty} f(x'_{n_k}) = f(\xi) - f(\xi) = 0$.
Widerspruch! zu $|f(x_{n_k}) - f(x'_{n_k})| \ge \varepsilon > 0 \ \forall k \in \mathbb{N}$

6.8. Definition

eine Funktion $f:[a,b]\to\mathbb{R}$ heißt stückweise stetig, wenn es eine Unterteilung $a=x_0<\cdots< x_n=b$ gibt, sodass f auf jedem offenen Intervall $(x_{k-1}, x_k) \ \forall k \in 1, \ldots, n$ stetig ist und zu einer stetigen Funktion auf $[x_{k-1}, x_k]$ fortgesetzt werden kann. (d.h. der rechts-/linksseitige Grenzwert existiert für x_{k-1} und x_k .

q.e.d.

6.9. Beispiel 1. Jede Treppenfunktion ist stückweise stetig.

2.
$$f:[0,1] \to \mathbb{R}$$
 mit $f(x) = \begin{cases} \frac{1}{x} & x \in (0,1] \\ 0 & x = 0 \end{cases}$ ist nicht stückweise stetig, denn $\lim_{x \to 0} f(x) = \infty$

6.10. Proposition (wichtig)

Sei $f:[a,b]\to\mathbb{R}$ stückweise stetig und $\varepsilon>0$. Dann gibt es Treppenfunktionen $\phi,\psi:[a,b]\to\mathbb{R}$ mit

1.
$$\phi(x) \le f(x) \le \psi(x) \quad \forall x \in [a, b]$$

2.
$$|\phi(x) - \psi(x)| < \varepsilon \quad \forall x \in [a, b]$$

Beweis: Es genügt die Aussage für stetige Funktionen zu zeigen, sonst die Teilstücke zusammensetzen, wichtig dabei ist, dass f auf $[x_{k-1}, x_k]$ stetig fortgesetzt werden kann.

Sei also $f:[a,b]\to\mathbb{R}$ stetig $\Rightarrow f$ ist gleichmäßig stetig, d.h. $\forall \varepsilon>0 \exists \delta>0 : \forall x,x'\in[a,b]$ mit |x-x'|<0 δ folgt $|f(x) - f(x')| < \varepsilon$

Wähle $n \in \mathbb{N}$ so groß, dass $\frac{b-a}{n} < \delta$ (Archimedisches Axiom)

Definiere $t_k = a + k \frac{b-a}{n}$ für $k = 0, \dots n$. Wir erhalten dann eine äquivalente Unterteilung $a = t_0 < \dots < n$

Für $k = 1n \dots, n$ setze $c_k = f(t_k) + \frac{\varepsilon}{2}$ $c_k' = f(t_k) - \frac{\varepsilon}{2}$ und definieren die Treppenfunktion $\phi, \psi : [a, b] \to \mathbb{R}$ $\phi(a) = \psi(a) = f(a)$

$$\phi(x) = c'_k, \quad \psi(x) = c_k, \text{ für } t_{k-1} < x \le t_k$$

Nach Deifinition folgt
$$\forall x \in (a, b]$$

 $|\psi(x) - \phi(x)| = |f(t_k) + \frac{\varepsilon}{2} - (f(t_k) - \frac{\varepsilon}{2})| > |\frac{\varepsilon}{2} + \frac{\varepsilon}{2}| = \varepsilon \Rightarrow \text{ Eigenschaft 2.}$

Für 1:
$$\phi(a) = f(a) = \psi(a)$$

Sei
$$x \in (t_{k-1}, t_k]$$
 für $k = 1, \dots, n$

$$|x - t_k| \le |t_{k-1} - t_k| = \left|a + (k-1)\frac{b-a}{n} - (a+k\frac{b-a}{n})\right| = \left|-\frac{b-a}{n}\right| = \frac{b-a}{n} \le \delta$$

Mit gleichmäßiger Stetigkeit folgt $|f(x) - f(t_k)| < \frac{\varepsilon}{2}$

$$\Rightarrow -\frac{\varepsilon}{2} < f(x) - f(t_k) < \frac{\varepsilon}{2}$$

$$\Rightarrow f(t_k) - \frac{\varepsilon}{2} < f(x) < f(t_k) + \frac{\varepsilon}{2}$$

$$\Rightarrow c_k' < f(x) < c_k$$

$$\Rightarrow \phi(x) < f(x) < \psi(x) \quad \forall x \in (t_{k-1}, t_k], \quad k = 1, \dots, n$$

$$\Rightarrow \phi(x) < f(x) < \psi(x) \quad \forall x \in [a, b]$$

$$\Rightarrow \text{Eigenschaft 1.}$$

q.e.d.

6.11. Definition (Ober- und Untersumme)

Für $f:[a,b]\to\mathbb{R}$ stückweise stetig heißt Σ_+ $(f)=\left\{\int_a^b\psi(x)\,\mathrm{d}x:\psi:[a,b]\to\mathbb{R}$ ist Treppenfunktion mit $f(x)\le\psi(x)\right\}$ die Obersumme von f und $\Sigma_ (f)=\left\{\int_a^b\phi(x)\,\mathrm{d}x:\phi:[a,b]\to\mathbb{R}$ ist Treppenfunktion mit $\phi(x)\le f(x)\right\}$ die Untersumme von f.

- **6.12.** Satz 1. Für $A_+ \in \Sigma_+(f)$ und $A_- \in \Sigma_-(f)$ gilt $A_- \leq A_+$.
 - 2. Es existieren $\mathcal{I}_{+}(f) = \inf(\Sigma_{+}(f))$ (Oberintegral) und $\mathcal{I}_{-}(f) = \sup(\Sigma_{-}(f))$ (Unterintegral)
 - 3. Es gilt: $\mathcal{I}_{+}(f) = \mathcal{I}_{-}(f)$

Beweis: 1. Seien ϕ, ψ Teppenfunktionen mit $\phi(x) \leq f(x) \leq \psi(x) \Rightarrow \phi(x) \leq \psi(x) \Rightarrow 0 \leq \psi(x) - \phi(x) \Rightarrow 0 \leq \int_a^b \psi(x) - \phi(x) dx = \int_a^b \psi(x) dx - \int_a^b \phi(x) dx dx$.

- 2. Nach Proposition gibt es Treppenfunktionen ϕ, ψ mit $\phi(x) \leq f(x) \leq \psi(x)$ Also: Es gibt Zahlen B_+, B_- mit $B_- \leq B_+$ $\Rightarrow \forall A_- \in \Sigma_-(f)$ gilt $A_- \leq B_+$ und $\forall A_+ \in \Sigma_+(f)$ gilt $A_+ \geq B_-$ d.h. $\Sigma_-(f)$ ist durch B_+ nach oben beschänkt und $\Sigma_-(f)$ ist durch B_- nach unten beschränkt. Nach dem Vollständigkeitsaxiom für reelle Zahlen existieren $\mathcal{I}_+(f) = \inf(\Sigma_+(f))$ und $\mathcal{I}_-(f) = \inf(\Sigma_+(f))$ und $\mathcal{I}_-(f) = \inf(\Sigma_+(f))$ und $\mathcal{I}_-(f) = \inf(\Sigma_+(f))$ und $\mathcal{I}_-(f) = \inf(\Sigma_+(f))$
- 3. Nach Proposition gibt es Treppenfunktionen ϕ, ψ mit $0 \le \psi(x) \phi(x) \le \varepsilon \quad \forall \varepsilon > 0$ $\Rightarrow 0 \le \int_a^b \psi(x) \, \mathrm{d}x \int_a^b \phi(x) \, \mathrm{d}x \le \int_a^b \varepsilon \, \mathrm{d}x = \varepsilon(b-a)$ Wähle $\varepsilon = \frac{1}{n(b-a)} > 0$ $\Rightarrow 0 \le \int_a^b \psi(x) \, \mathrm{d}x \int_a^b \phi(x) \, \mathrm{d}x \le \frac{1}{n} \quad \forall n \ge 1$

 $\Rightarrow 0 \le \mathcal{I}_{+}(f) - \mathcal{I}_{-}(f) \le \frac{1}{n} \quad \forall n \ge 1 \Rightarrow \mathcal{I}_{+}(f) - \mathcal{I}_{-}(f) = 0 \Rightarrow \mathcal{I}_{+}(f) = \mathcal{I}_{-}(f)$

q.e.d.

6.13. Definition

Sei $f:[a,b] \to \mathbb{R}$ stückweise stetig. Dann heißt

 $\sup(\Sigma_{-}(f))$ und es gilt $\mathcal{I}_{-}(f) \leq \mathcal{I}_{+}(f)$.

$$\int_{a}^{b} f = \int_{a}^{b} f(x) dx = \mathcal{I}_{+}(f) = \mathcal{I}_{-}(f)$$

das bestimmte Integral von f.

6.14. Bemerkung

Das Integral $\int_a^b f(x) \, \mathrm{d}x$ ist für alle beschränkten Funkktionen mit $\mathcal{I}_+\left(f\right) = \mathcal{I}_-\left(f\right)$ definiert.

6.15. Satz (Rechenregeln)

Seien $f, g : [a, b] \to \mathbb{R}$ stückweise stetig. Dann gilt:

1.
$$\int_a^b k \, \mathrm{d}x = k(b-a) \quad k \in \mathbb{R}$$

2.
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx = \int_{c}^{b} f(x) dx \quad a \le c \le b$$

3.
$$\int_a^b \lambda(f+g)(x) dx = \lambda \int_a^b f(x) dx + \lambda \int_a^b g(x) dx \quad \lambda \in \mathbb{R}$$

4. Ist
$$f(x) \ge 0 \ \forall x \in [a, b] \Rightarrow \int_a^b f(x) \, \mathrm{d}x \ge 0$$

Beweis: nicht in VO. q.e.d.

6.16. Bemerkung

In Übereinstimmung mit den Rechenregeln setzen wir:

$$\int_a^a f(x) dx = 0 \quad \int_a^b -f(x) dx = -\int_a^b f(x) dx$$

6.17. Satz (Mittelwertsatz der Integralrechnung)

Sei $f[a,b] \to \mathbb{R}$ stetig. Dann gibt es ein $\xi \in [a,b]$ mit

$$\int_{a}^{b} f(x) \, \mathrm{d}x = f(\xi)(b-a)$$

Beweis: $f:[a,b]\to\mathbb{R}$ stetig. Nach dem Satz vom Maximum, existieren $m=\min\{f(x):x\in[a,b]\}$ und $M = max\{f(x) : x \in [a, b]\}.$

$$\Rightarrow m \le f(x) \le M \ \forall x \in [a, b]$$

$$\Rightarrow m \le f(x) \le M \ \forall x \in [a, b]$$
Rechenregel
$$\int_a^b m \, \mathrm{d}x \le \int_a^b f(x) \, \mathrm{d}x \le \int_a^b M \, \mathrm{d}x$$

$$\Rightarrow m(b-a) \le \int_a^b f(x) \, \mathrm{d}x \le M(b-a) \Rightarrow m \le \underbrace{\frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x} \le M$$

$$\Rightarrow$$
Sei $x_0 \in [a,b]$ $f(x_0) = m$ und $x_1 \in [a,b]$ $f(x_1) = M \stackrel{=c}{\Rightarrow} f(x_0) \le c \le f(x_1)$

Definiere (Annahme $x_0 < x_1$ sonst umdrehen): $g: [x_0, x_1] \to \mathbb{R}$ mit g(x) = f(x) - c. g ist wieder stetig. $g(x_0) = f(x_0) - c \le 0$ und $g(x_1) = f(x_1) - c \ge 0$

Nach dem Zwischenwertsatz für stetige Funktionen gibt es ein $\xi \in [x_0, x_1] \subset [a, b]$, mit $g(\xi) = 0$

$$\Rightarrow f(\xi) = c = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x \Rightarrow f(\xi)(b-a) = \int_a^b f(x) \, \mathrm{d}x$$
 q.e.d.

6.18. Definition (Stammfunktion, unbestimmtes Integral)

Sei f eine Funktion. Eine Funktion F heißt Stammfunktion von f, falls F differenzierbar ist und F' = f. Wir schreiben: $F = \int f(x) dx \int f(x) dx$ heißt, das unbestimmte Integral von f.

6.19. Bemerkung

Seien F, G Stammfunktionen von f. Dann ist (F-G)' = F' - G' = f - f = 0. Somit ist $F-G=c \Rightarrow$ F = G + c. Das heißt die Stammfunktion von f nur bis auf eine additive Konstante c eindeutig bestimmt. Man schreibt oft. $F(x) = \int f(t) dt + c$

6.20. Proposition (Hauptsatz der Differential- und Integralrechnung - Teil I)

Sei $f:[a,b]\to\mathbb{R}$ stetig. Definiere $F:[a,b]\to\mathbb{R}$ folgendermaßen

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

Dann ist F eine Stammfunktion von f.

Beweis: zu zeigen ist: F ist differenzierbar und F' = f. wir zeigen: $\lim_{h\to 0} \frac{F(x+h)-F(x)}{h} = f(x)$

Sei (h_n) eine Folge mit $h_n \neq 0$ und $\lim_{n \to \infty} h_n = 0$.

zz:
$$\lim_{n\to\infty} \frac{F(x+h_n)-F(x)}{h_n} = f(x)$$
 o.B.d.A. Sei $h_n > 0$.

$$F(x + h_n) - F(x) = \int_a^{x+h_n} f(t) dt - \int_a^x f(t) dt = \int_x^{x+h_n} f(t) dt$$

Nach dem Mittelwertsatz der Integralrechnung exisitiert ein $x_n \in [x, x+h_n]$ mit $\int_x^{x+h_n} f(t) dt = h_n f(x_n)$. d.h. $\frac{F(x+h_n)-F(x)}{h_n} = f(x_n).$

Da $\lim_{n\to\infty} h_n = 0 \Rightarrow \lim_{n\to\infty} x_n = x$. Da f stetig ist, folgt $\lim_{n\to\infty} f(x_n) = f(x)$. d.h. $\lim_{n\to\infty} \frac{F(x+h_n)-F(x)}{h_n} = \lim_{n\to\infty} f(x_n) = f(x)$.

Also ist F differenzierbar und $F'(x) = f(x) \ \forall x \in [a, b]$ q.e.d.

6.21. Satz (Hauptsatz der Differential- und Integralrechnung - Teil II)

Sei $f:[a,b]\to\mathbb{R}$ stetig und F eine Stammfunktion von f. Dann gilt:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

Man schreibt: $F|_a^b = F(b) - F(a)$

Beweis: Sei $x \in [a, b]$. Dann folgt aus Teil I $F(x) = \int_a^x f_t dt$ ist Stammfunktion von f.

$$\Rightarrow F(x) = \int_a^x f_t dt + c$$
 mit c Konstante

$$\Rightarrow F(b) - F(a) = \int_a^b f_t \, \mathrm{d}t + c - \underbrace{\int_a^a f_t \, \mathrm{d}t - c}_{=0} = \int_a^b f_t \, \mathrm{d}t.$$
 q.e.d.

6.22. Beispiel (zu Stammfunktionen) 1. $\int x^a dx = \frac{x^{a+1}}{a+1}$ für $a \neq -1$

$$2. \int \frac{1}{x} \, \mathrm{d}x = \ln(|x|)$$

3.
$$\int \sin x \, \mathrm{d}x = -\cos x$$

$$4. \int \cos x \, \mathrm{d}x = \sin x$$

$$5. \int e^x \, \mathrm{d}x = e^x$$

$$6. \int \frac{1}{\cos^2 x} \, \mathrm{d}x = \tan x$$

Beweis: Differenzieren der rechten Seite.

zB $\int_0^{\pi} \sin x \, dx = -\cos x |_0^{\pi} = \cos(0) - \cos(\pi) = 1 + 1 = 2$ $\int_0^{2\pi} \sin x \, dx = -\cos x |_0^{2\pi} = \cos(0) - \cos(2\pi) = -1 + 1 = 0$

6.23. Satz (Partielle Integration)

Seien $f, g: [a, b] \to \mathbb{R}$ stetig differenzierbar. Dann ist

$$\int_{a}^{b} f(x)g'(x) \, dx = (f(x)g(x)) \Big|_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx$$

q.e.d.

Beweis: Sei F(x) = f(x)g(x)

Aus der Produktregel folgt F'(x) = f'(x)g(x) + f(x)g'(x)

$$\stackrel{\text{Hauptsatz}}{\Rightarrow} \int_a^b f(x)g'(x) \, \mathrm{d}x + \int_a^b f'(x)g(x) \, \mathrm{d}x = \int_a^b f(x)g'(x) + f'(x)g(x) \, \mathrm{d}x = \int_a^b F'(x) \, \mathrm{d}x = \left. F(x) \right|_a^b = \left. f(x)g(x) \right|_a^b \\
\Rightarrow \int_a^b f(x)g'(x) \, \mathrm{d}x = \left. f(x)g(x) \right|_a^b - \int_a^b f'(x)g(x) \, \mathrm{d}x \qquad \qquad q.e.d.$$

6.24. Satz (Substitutionsregel)

Sei $f: D \to \mathbb{R}$ stetig und $\phi: [a, b] \to \mathbb{R}$ stetig differenzierbar mit $\phi([a, b]) \subset D$. Dann ist

$$\int_a^b f(\phi(t))\phi'(t) dt = \int_{\phi(a)}^{\phi(b)} f(x) dx$$

Beweis: Sei $F:D\to\mathbb{R}$ eine Stammfunktion von f. Nach der kettenregel folgt für $t\in[a,b]$

$$(F \circ \phi)'(t) = F'(\phi(t))\phi'(t))f(\phi(t))\phi'(t)$$

$$\stackrel{\text{Hauptsatz}}{\Rightarrow} \int_a^b f(\phi(t))\phi'(t) \, \mathrm{d}t = \int_a^b (F \circ \phi)'(t) \, \mathrm{d}t = (F \circ \phi)(t) \Big|_a^b = (F \circ \phi)(b) - (F \circ \phi)(a) = F(\phi(b)) - F(\phi(a)) = \int_{\phi(a)}^{\phi(b)} f(t) \, \mathrm{d}t$$

$$q.e.d.$$

6.25. Bemerkung

Schreibt man symbolisch $d\phi(t) = \phi'(t) dt \Rightarrow \int_a^b f(\phi(t))\phi'(t) dt = \int_{\phi(a)}^{\phi(b)} f(x) dx$

- **6.26. Beispiel** 1. $f:[a,b] \to \mathbb{R}$ (0 < a < b) mit f(x) = lnx $\int_a^b ln(x) \, \mathrm{d}x = \int_a^b \underbrace{ln(x)}_f \underbrace{1}_{g'} \, \mathrm{d}x \overset{\text{Partielle Integration}}{=} \ln(x)x \Big|_a^b \int_a^b \frac{1}{x}x \, \mathrm{d}x = \ln(x)x \Big|_a^b (b-a) = \ln(b)b \ln(a)(a) (b-a) = x(\ln(x)-1) \Big|_a^b$ Also $F(x) = x \ln(x) - x$ ist Stammfunktion von $\ln(x)$.
 - 2. Fläche des Einheitskreises

$$x^2 + y^2 = 1 \Rightarrow y^2 = 1 - x^2 \Rightarrow y = \sqrt{1 - x^2}$$
 Sei $f: [0, 1] \to \mathbb{R}$ mit $f(x) = \sqrt{1 - x^2}$

Frage: Was ist $\int_0^1 \sqrt{1-x^2} \, dx$?

Substitution $x = \phi(t) = \sin(t)$, dann ist $\phi'(t) = \cos(t)$. $\phi(0) = \sin(0) = 0$ und $\phi(\frac{\pi}{2}) = \sin(\frac{\pi}{2}) = 1$ $\Rightarrow \int_0^1 \sqrt{1 - x^2} \, \mathrm{d}x = \int_{\phi(0)}^{\phi(\frac{\pi}{2})} f(x) \, \mathrm{d}x \stackrel{\text{Substitutions regel}}{=} \int_0^{\frac{\phi}{2}} f(\phi(t)) \phi'(t) \, \mathrm{d}t = \int_0^{\frac{\phi}{2}} \sqrt{1 - \sin(t)^2} \cos(t) \, \mathrm{d}t = \int_0^{\frac{\phi}{2}} \sqrt{1 - \sin(t)^2} \cos(t) \, \mathrm{d}t$

$$\int_0^{\frac{\phi}{2}} \cos^2(t) \, \mathrm{d}t$$

$$\cos(2t) = \cos(t+t) = \cos(t)\cos(t) - \sin(t)\sin(t) = \cos^2(t) - \sin^2(t) = \cos^2(t) - (1 - \cos^2(t)) = 2\cos^2(t) - 1$$

$$\Rightarrow \cos^2(t) = \frac{1}{2}(\cos(2t) + 1)$$

$$\begin{split} &\Rightarrow \int_0^1 \sqrt{1-x^2} \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \cos^2(t) \, \mathrm{d}t = \tfrac{1}{2} \int_0^{\frac{\pi}{2}} \cos(2t) + 1 \, \mathrm{d}t = \tfrac{1}{2} \big(\int_0^{\frac{\pi}{2}} \cos(2t) \, \mathrm{d}t + \int_0^{\frac{\pi}{2}} + 1 \, \mathrm{d}t \big) = \tfrac{1}{2} \left. \frac{\sin(2t)}{2} \right|_0^{\frac{\pi}{2}} + \tfrac{1}{2} \left. x \right|_0^{\frac{\pi}{2}} = \frac{\sin(\pi)}{4} - \frac{\sin(0)}{4} + \frac{\pi}{4} - \frac{0}{4} = \frac{\pi}{4} \\ &\Rightarrow \text{Fläche des Einheitskreises} = 4 \int_0^1 \sqrt{1-x^2} \, \mathrm{d}x = 4 \frac{\pi}{4} = \pi \end{split}$$

$$\Rightarrow$$
 Fläche des Einheitskreises $=4\int_0^1\sqrt{1-x^2}\,\mathrm{d}x=4\frac{\pi}{4}=\pi$