Exercise: training with Matlab

Develop an algorithm that counts the number of particles within each voxel of the MxMxM voxels forming a cubic box of side L. Each voxel will have volume (L/M)x(L/M)x(L/M).

The function will be defined as follows:

```
function C=CountParticles(pos,L,M)
```

```
%Syntax C=CountParticles(pos,L,M);
%
%Input:
%pos is a Nx3 array containing the positions of N
%particles randomly distributed within the box.
%
%L is the box side.
%
%M is the number of voxels along one dimension.
%
%Output:
```

%C is a MxMxM matrix having the (i,j,k)-th element %equal to the number of particles within the (i,j,k)-

If the array pos contains 10⁶ particles distributed in 10⁶ voxels, a fast algorithm should perform the computation in less than 1 second by a i7 Intel CPU. Suggestion: try to use built-in Matlab functions optimized for matrix computation.

%th voxel of the box.

Note: it's not only a matter of speeding up your code, verify if your algorithm performs a correct particle counting (e.g. by simulating a few particles).