Topology Qualifying Exam Fall 1989

Work 9 of the following problems. Do not turn in more than 9.

For a subset A contained in a topological space X, let A^- denote the closure of A in X, let A° denote the interior of A in X, and let Fr(A) denote the frontier of A in X. All Euclidean spaces will have the usual topology, and all product spaces will have the product topology.

- **1.** For a topological space X, prove that "o–" and "–o" are both idempotent operations on the subsets of X; that is, $A^{o-o-} = A^{o-}$ and $A^{-o-o} = A^{-o}$ for all $A \subseteq X$.
- **2.** Let X and Y be topological spaces. Prove that a bijection $f: X \to Y$ is a homeomorphism if and only if $f[A^-] = f[A]^-$ for all $A \subseteq X$.
- **3.** Prove that the line L defined by the equation x = 0 separates the plane \mathbb{R}^2 into exactly two components and is the frontier of each of them.
- **4.** Prove that [0,1] (with its usual topology) is compact.
- 5. Let X be the unit square in the plane. Give precise descriptions of four quotient maps with domain X whose images are:
 - a) the sphere S^2 ;
 - b) the torus, $S^1 \times S^1$:
 - c) the cylinder, $S^1 \times I$;
 - d) a Möbius band M in \mathbb{R}^3 .
- **6.** A continuous map $f:(X,\tau)\to (Y,\sigma)$ is said to be initial provided that for each topological space (Z,μ) , each set-function $g:Z\to X$ is continuous whenever $f\circ g:(Z,\mu)\to (Y,\sigma)$ is continuous. Prove that:
 - a) The composition of initial maps is initial.
 - b) The "first factor" of an initial map is initial; i.e., if $(X, \tau) \xrightarrow{f} (Y, \sigma) \xrightarrow{h} (W, \nu)$ are continuous maps and $h \circ f$ is initial, then f is initial.
- 7. (a) True-False.
 - (i) Every compact Hausdorff space is metrizable.
 - (ii) If $f, g: X \to Y$ are homotopically equivalent and $h, k: Z \to W$ are homotopically equivalent, then $f \times h$ and $g \times k$ are homotopically equivalent.
 - (iii) The product of connected spaces is connected.
 - (iv) Every retract of a locally connected space is locally connected.
 - (v) A space is T_2 if and only if it is locally T_2 ; i.e., each pt has a base of T_2 neighborhoods.
 - (vi) Every metrizable space is normal.
 - (vii) Every locally compact Hausdorff space is completely reuglar.
 - (viii) Every subspace of a separable Hausdorff space is separable and Hausdorff.

- (b) For each false entry, give a counter example (no proofs).
- 8. Does there exist a subset C of the unit circle $S^1 = \{(x,y) : x^2 + y^2 = 1\}$ such that
 - a) C is closed in S^1
 - b) C contains exactly one point from each pair of diametrically opposite points on S^1 .
- **9.** Compute the fundamental group of the compact surface \hat{T} obtained by removing an open disc from a torus T.
- 10. Prove that every contractible space is pathwise connected.
- 11. Prove that if X is Lindelöf and Y is compact, then $X \times Y$ is Lindelöf.
- 12. Suppose that X and Y are spaces for which the second projection $\pi_2: X \times Y \to Y$ is closed. Suppose also that $q: Y \to Y'$. is a quotient map. Prove or disprove that the second projection $\pi'_2: X \times Y' \to Y'$ is closed.
- 13. a) Give an example of an ultrafilter on the set \mathbb{R} of real numbers.
 - b) Give an example of a filter on \mathbb{R} that is not an ultrafilter.
 - c) Prove that every filter on \mathbb{R} is contained in an ultrafilter on \mathbb{R} .
- **14.** Prove that if a normal space X contians a closed copy of $[0, \infty)$, then X does not have the fixed point properly.
- **15.** Suppose that there is an continuous open surjection $f:[0,1]\to X$ where X is a nondegenerate Hausdorff space.
 - a) Show that f need not be injective.
 - b) Show that X is homeomorphic to [0,1].
- **16.** Let A be a nonempty proper subset of a continuum X. If C is component of A, show that $C \cap Fr(A) \neq 0$.