4. Aufgabenblatt zur Vorlesung

Nichtsequentielle und Verteilte Programmierung

SoSe 2018

Anton Oehler, Mark Niehues

Aufgabe 1 Lineare Temporale Logik I

10 Punkte

(a)

Anhand der Grafik lässt sich erkennen, dass die Aussage nicht für alle Belegungen gilt.

 $\Diamond \Box p \Leftrightarrow \Box \Diamond p$

(b)

$$((\Box p \Rightarrow \Diamond q) \land \Diamond \Box q) \Rightarrow \Diamond q \tag{1}$$

Die Aussage gilt für alle Belegungen, da die schwächere Aussage $\Diamond \Box q \Rightarrow \Diamond q$ für alle Belegungen gilt: Wenn ab einem Zeitpunkt q immer true ist, dann ist q auch irgendwann in der Zukunft true.

- (c) (i) zu Zeigen: $(\Box p \wedge \Box q) \Leftrightarrow \Box (p \wedge q)$ $\Box p_i \wedge \Box q_i := \forall j \geq i : p_j \wedge \forall j \geq i : q_j => \forall j \geq i : p_j \wedge q_j$ $\Box (p_i \wedge q_i) := \forall j \geq i : p_j \wedge q_j$ q.e.d.
 - (ii) zu Zeigen: $(\lozenge p \vee \lozenge q) \Leftrightarrow \lozenge(p \vee q)$ $\lozenge p_i \vee \lozenge q_i := \exists j \geq i : p_j \vee \exists j \geq i : q_j => \exists j \geq i : p \vee q$ $\lozenge(p \vee q) := \exists j \geq i : p \vee q$ q.e.d.

Aufgabe 2 Lineare Temporale Logik II

10 Punkte

(a) (i)
$$I_x(\alpha U\beta) = I_x(\alpha)\dot{U}I_x(\beta)$$
 mit $\dot{U}: \{t, f\}^{NxN} \to \{t, f\}^N$ wobei $\dot{U}((a_i)_{i \in N}, (b_i)_{i \in N}) = (w_i)_{i \in N}$ und $w_i = \begin{cases} t & falls \ \exists j \geq i : b_j = t \land \forall k \in [i, ..., j) : a_k = t \\ f & sonst \end{cases}$

Abbildung 1: Beispiel für den bis Operator

Abbildung 2: Beispiel für den nächster Operator

(ii)
$$I_x(\bigcirc \alpha) = \dot{\bigcirc} I_x(\alpha) \text{ mit } \dot{\bigcirc} : \{t, f\}^N \to \{t, f\}^N$$

wobei $\dot{\bigcirc} ((a_i)_{i \in N}) = (w_i)_{i \in N}$
und $w_i = \begin{cases} t, & falls \ a_{i+1} = t \\ f, & sonst \end{cases}$

- (b) Falls mehrere Threads im Spiel sind, ist der nächste Schritt unter Annahme schwacher Fairness nicht genau definiert.
- (c) $\lozenge a \equiv true Ua$, da letzteres true ist, wenn $\exists j \geq i : a_j = true \land true$

 $\Box a \equiv \neg(\Diamond(\neg a)) \equiv \neg(true U \neg a)$, die Herleitung folgt dementsprechend aus dem 1. Fall.

Aufgabe 3 Der Algorthmus von Peterson II

10 Punkte

```
global adrin = false, bdrin = false, letzter = a
a1: U
                           | b1: U
a2: adrin <- true
                           | b2: bdrin <- true
a3: letzter <- a
                           | b3: letzter <- b
a4: while bdrin &&
                           | b4: while adrin &&
          letzter = a do
                                       letzter = b do
a5:
        NOP
                           | b5:
                                     NOP
a6: K
                           | b6: K
                           | b7: bdrin <- false
a7: adrin <- false
```

Für alle möglichen Zustandsfolgen gilt:

- $\Box(a_1 \Rightarrow \Diamond(a_2 \vee a_\perp))$
- $\Box(a_2 \Rightarrow \Diamond a_3)$
- $\Box(a_3 \Rightarrow \Diamond a_4)$
- $\Box(a_4 \Rightarrow \Diamond(a_5 \vee a_6))$
- $\Box(a_5 \Rightarrow \Diamond a_4)$
- $\Box(a_6 \Rightarrow \Diamond a_7)$
- $\Box(a_7 \Rightarrow \Diamond a_1)$
- $\Box(a_{\perp} \Rightarrow \Box a_{\perp})$
- Analog für die Zustände von b

Außerdem legen wir folgende Invarianten fest:

- 1) $\Box(letzter = a \lor letzter = b)$
- 2) $\square(adrin \equiv a_3 \lor a_4 \lor a_5 \lor a_6 \lor a_7)$
- 3) $\Box(bdrin \equiv b_3 \lor b_4 \lor b_5 \lor b_6 \lor b_7)$
- (a) Zu beweisen:
 - $(a_6 \land (b_4 \lor b_5)) \Rightarrow (adrin \land letzter = b)$ Beweis durch Widerspruch:

$$\neg((a_6 \land (b_4 \lor b_5)) \Rightarrow (adrin \land letzter = b))$$
$$(a_6 \land (b_4 \lor b_5)) \land \neg(adrin \land letzter = b)$$

$$(a_6 \wedge (b_4 \vee b_5)) \wedge (\neg adrin \vee letzter \neq b)$$

Aus Invariante 1) folgt:

$$(a_6 \wedge (b_4 \vee b_5)) \wedge (\neg adrin \vee letzter = a)$$

Nach Invariante 2) und a_6 ist adrin = true:

$$(a_6 \land (b_4 \lor b_5)) \land (false \lor letzter = a)$$

 $a_6 \land (b_4 \lor b_5) \land letzter = a$

Aus $(b_4 \lor b_5)$ und Invariante 3) folgt bdrin = true

b befindet sich in der Schleife, wartet also darauf dass a adrin auf false setzt. Ist aber letzter = a und bdrin = true, so hätte a niemals von a_4 nach a_6 gehen dürfen.

Folglich kann nicht gleichzeitig a_6 , $(b_4 \vee b_5)$ und letzter = a gelten: Widerspruch!

- $((a_4 \lor a_5) \land b_6) \Rightarrow (bdrin \land letzter = a)$ Beweis analog zu vorherigem, nur mit a und b vertauscht.
- (b) Zu zeigen:

• $\Box[(a_4 \land \Box \neg a_6) \Rightarrow \Box \Diamond (bdrin \land letzter \neq b)]$ Invariante 1): $letzter \neq b \equiv letzter = a$

$$\Box [(a_4 \land \Box \neg a_6) \Rightarrow \Box \Diamond (bdrin \land letzter = a)]$$

Es gilt immer, dass, wenn a einerseits bei a_4 , also vor bei der Überprüfung der Schleife ist, andererseits niemals (immer nicht) a_6 eintreten wird, daraus folgt, dass immer irgendwann bdrin = true und letzter = a sein muss.

Beweis durch Widerspruch: Nehmen wir an, a ist bei a_4 und es wird niemals a_6 eintreten, irgendwann wird aber bdrin = false oder $letzter \neq a$. Dann könnte im Folgenden a einen Schritt machen, die Schleifenbedingungen sind nicht erfüllt und a würde von a_4 in a_6 übergehen. Dass niemals a_6 eintreten kann wurde aber vorausgesetzt: Widerspruch! Formal:

$$\neg \left(\Box \left[(a_4 \land \Box \neg a_6) \Rightarrow \Box \Diamond (bdrin \land letzter = a) \right] \right)$$

$$\Diamond \left(\neg \left[(a_4 \land \Box \neg a_6) \Rightarrow \Box \Diamond (bdrin \land letzter = a) \right] \right)$$

$$\Diamond \left[(a_4 \land \Box \neg a_6) \land \neg \Box \Diamond (bdrin \land letzter = a) \right]$$

$$\Diamond \left[(a_4 \land \Box \neg a_6) \land \Diamond \neg \Diamond (bdrin \land letzter = a) \right]$$

$$\Diamond \left[(a_4 \land \Box \neg a_6) \land \Diamond \Box \neg (bdrin \land letzter = a) \right]$$

$$\Diamond \left[(a_4 \land \Box \neg a_6) \land \Diamond \Box \neg (bdrin \lor letzter \neq a) \right]$$

Ist nun bdrin = false oder $letzter \neq a$, wird der rechte Teilausdruck zu true ausgewertet, der linke Teilausdruck jedoch irgendwann(nämlich wenn a den nächsten Schritt macht) zu false, da a dann bei a_6 ist, was jedoch niemals eintreten sollte.

• $\Box[\Diamond\Box(\neg bdrin)\lor\Diamond(letzter=b)]$

Es gilt immer, dass entweder irgendwann immer bdrin = false ist oder dass irgendwann letzter = b sein wird.

Damit bdrin dauerhaft (immer) false bleiben würde, müsste b in b_1 abstürzen und zu b_{\perp} übergehen, da bdrin nur in b_1 und b_2 false ist und wir eingangs gefordert haben, dass immer auf b_2 irgendwann b_3 folgt, wodurch dem bdrin wieder auf true gesetzt werden würde. Nur wenn b von a_1 zu a_{\perp} übergeht, in dem es daraufhin für immer verweilen würde (siehe ebenfalls aufgestellte Bedingungen), kann bdrin für immer false bleiben.

Stürzt b jedoch nicht ab und geht folglich von b_1 zu b_2 über, wird es immer auch irgendwann zu b_3 und weiter zu b_4 übergehen, wonach letzter = b gelten würde, womit $\Diamond(letzter = b)$ gelten würde. Also:

$$\Diamond \Box (\neg bdrin) \equiv b_{\perp}$$

Falls b_{\perp} , dann $\Diamond \Box (\neg bdrin)$, sonst $\Diamond (letzter = b)$

• $\Box[(a_4 \land \Box \neg a_6 \land \Diamond(letzter = b)) \Rightarrow \Diamond \Box(letzter = b))]$

global adrin = false, bdrin = false, letzter = a

a1: U | b1: U

 a2: adrin <- true</td>
 | b2: bdrin <- true</td>

 a3: letzter <- a</td>
 | b3: letzter <- b</td>

 a4: while bdrin &&
 | b4: while adrin &&

letzter = a do | letzter = b do

a5: NOP | b5: NOP

a6: K | b6: K

a7: adrin <- false | b7: bdrin <- false