Tutorial-2 Solutions

Venkat Ramaswamy, Ph.D.

Prove the following sequent.

1.
$$(p \land q) \land r, s \land t \vdash q \land s$$
.

Solution: $1.(p \land q) \land r$ premise $2.s \land t$ premise $3.(p \land q)$ $\land e1 1$ 4.q $\land e2 3$ 5.s $\land e1 2$ $6.q \land s$ $\land i$ 4,5

2.
$$p \to (p \to q), p \vdash q$$
.

Solution: 1. p premise $2. p \rightarrow (p \rightarrow q)$ premise $3.p \rightarrow q$ $\rightarrow e 2,1$ 4.q $\rightarrow e 3,1$

3.
$$p \land (q \land r), \neg s \rightarrow \neg r, p \rightarrow t \vdash t \land s$$

Solution: $1.p\Lambda(q\Lambda r)$ premise

2. $\neg s \rightarrow \neg r$ premise

3.p→t premise

 $5.t \rightarrow e 3,4$

 $6.q\Lambda r$ $\Lambda e2 1$

7.r \wedge e2 6

 $8. \neg \neg r \qquad \neg \neg i \quad 7$

9. $\neg \neg s$ MT 2,8

10.s $\neg \neg e 9$

11.t Λ s Λ i 5,10

4.
$$p \land (q \rightarrow r), \neg q \rightarrow s \vdash p \land (\neg r \rightarrow s)$$

Solution:

$$1.p\Lambda(q\rightarrow r)$$
 premise

2.
$$\neg q \rightarrow s$$
 premise

8.
$$\neg r \rightarrow s \rightarrow i \quad 5-7$$

9.
$$p \wedge (\sim r \rightarrow s) \wedge i 3, 8$$

Solution:

1.p∧q	assumption
2.p	Λe1 1

$$3.p \land q \rightarrow p \rightarrow i \quad 1-2$$

6.
$$p\rightarrow q$$
, $r\rightarrow s \vdash p \land r \rightarrow q \land s$

Solution:

1.p→q premise

2.r→s pre

premise

3.p∧r	assumption
3.p∧r 4.p 5.q 6.r	∧e1 3
5.q	→e 1,4
6.r	∧e2 3
7.s	→e 2,6
8.q∧s	∧i 5,7

$$9.p \land r \rightarrow q \land s \rightarrow i \quad 3-8$$