WHY minimize $\|\mathbf{v}_{\scriptscriptstyle \mathrm{H}}\|$?

We can project a vector \mathbf{x} (think: data point) onto the direction of \mathbf{v}_H and obtain a vector \mathbf{x}_v .

▶ If H has no offset (c = 0), the Euclidean distance of **x** from H is

$$d(\mathbf{x}, H) = \|\mathbf{x}_{\mathbf{y}}\| = \cos \theta \cdot \|\mathbf{x}\|.$$

It does not depend on the length of \mathbf{v}_{H} .

- ▶ The scalar product $\langle \mathbf{x}, \mathbf{v}_H \rangle$ does increase if the length of \mathbf{v}_H increases.
- ▶ To compute the distance $\|\mathbf{x}_{\mathbf{v}}\|$ from $\langle \mathbf{x}, \mathbf{v}_{\mathbf{H}} \rangle$, we have to scale out $\|\mathbf{v}_{\mathbf{H}}\|$:

$$\|\mathbf{x}_{\mathbf{v}}\| = \cos \theta \cdot \|\mathbf{x}\| = \frac{\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle}{\|\mathbf{v}_{\mathsf{H}}\|}$$

WHY minimize $\|\mathbf{v}_{\scriptscriptstyle \mathrm{H}}\|$?

If we scale \mathbf{v}_{H} by α , we have to scale \mathbf{x} by $1/\alpha$ to keep $\langle \mathbf{v}_{\mathrm{H}}, \mathbf{x} \rangle$ constant, e.g.:

$$1 = \langle \mathbf{v}_{\mathsf{H}}, \mathbf{x} \rangle = \langle \alpha \mathbf{v}_{\mathsf{H}}, \frac{1}{\alpha} \mathbf{x} \rangle .$$

A point \mathbf{x}' is precisely on the margin if $\langle \mathbf{x}', \mathbf{v}_H \rangle = 1$. Look at what happens if we scale \mathbf{v}_H :

DISTANCE WITH OFFSET

For an affine plane, we have to substract the offset.

The optimization algorithm can also rotate the vector \mathbf{v}_{H} , which rotates the plane.

SOFT-MARGIN CLASSIFIERS

Soft-margin classifiers are maximum-margin classifiers which permit some points to lie on the wrong side of the margin, or even of the hyperplane.

Motivation 1: Nonseparable data

SVMs are linear classifiers; without further modifications, they cannot be trained on a non-separable training data set.

Motivation 2: Robustness

- Recall: Location of SVM classifier depends on position of (possibly few) support vectors.
- Suppose we have two training samples (from the same joint distribution on (X, Y)) and train an SVM on each.
- ▶ If locations of support vectors vary significantly between samples, SVM estimate of \mathbf{v}_H is "brittle" (depends too much on small variations in training data). \longrightarrow Bad generalization properties.
- Methods which are not susceptible to small variations in the data are often referred to as robust.

SLACK VARIABLES

Idea

Permit training data to cross the margin, but impose cost which increases the further beyond the margin we are.

Formalization

We replace the training rule $\tilde{y}_i(\langle \mathbf{v}_H, \tilde{\mathbf{x}}_i \rangle - c) \geq 1$ by

$$\tilde{y}_i(\langle \mathbf{v}_H, \tilde{\mathbf{x}}_i \rangle - c) \ge 1 - \xi_i$$

with $\xi_i \geq 0$. The variables ξ_i are called **slack variables**.

SOFT-MARGIN SVM

Soft-margin optimization problem

$$\begin{aligned} & \underset{\mathbf{v}_{\mathrm{H}},c}{\min} & & \|\mathbf{v}_{\mathrm{H}}\|^2 + \gamma \sum_{i=1}^n \xi^2 \\ & \text{s.t.} & & \tilde{y}_i(\langle \mathbf{v}_{\mathrm{H}}, \tilde{\mathbf{x}}_i \rangle - c) \geq 1 - \xi_i \quad \text{for } i = 1, \dots, n \\ & & \xi_i \geq 0, \quad \text{for } i = 1, \dots, n \end{aligned}$$

The training algorithm now has a **parameter** $\gamma>0$ for which we have to choose a "good" value. γ is usually set by a method called *cross validation* (discussed later). Its value is fixed before we start the optimization.

Role of γ

- ► Specifies the "cost" of allowing a point on the wrong side.
- \blacktriangleright If γ is very small, many points may end up beyond the margin boundary.
- ▶ For $\gamma \to \infty$, we recover the original SVM.

SOFT-MARGIN SVM

Soft-margin dual problem

The slack variables vanish in the dual problem.

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \qquad W(\boldsymbol{\alpha}) := \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j \tilde{y}_i \tilde{y}_j (\langle \tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j \rangle + \frac{1}{\gamma} \mathbb{I}\{i = j\})$$
s.t.
$$\sum_{i=1}^n \tilde{y}_i \alpha_i = 0$$

$$\alpha_i \geq 0 \quad \text{for } i = 1, \dots, n$$

Soft-margin classifier

The classifier looks exactly as for the original SVM:

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^{n} \tilde{y}_{i} \alpha_{i}^{*} \langle \tilde{\mathbf{x}}_{i}, \mathbf{x} \rangle - c\right)$$

Note: Each point on wrong side of the margin is an additional support vector $(\alpha_i^* \neq 0)$, so the ratio of support vectors can be substantial when classes overlap.

INFLUENCE OF MARGIN PARAMETER

Changing γ significantly changes the classifier (note how the slope changes in the figures). We need a method to select an appropriate value of γ , in other words: to learn γ from data.

TOOLS: OPTIMIZATION METHODS

OPTIMIZATION PROBLEMS

Terminology

An **optimization problem** for a given function $f: \mathbb{R}^d \to \mathbb{R}$ is a problem of the form

$$\min_{\mathbf{x}} f(\mathbf{x})$$

which we read as "find $\mathbf{x}_0 = \arg\min_{\mathbf{x}} f(\mathbf{x})$ ".

A constrained optimization problem adds additional requirements on \mathbf{x} ,

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to
$$\mathbf{x} \in G,$$

where $G \subset \mathbb{R}^d$ is called the **feasible set**. The set G is often defined by equations, e.g.

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to
$$g(\mathbf{x}) \geq 0$$

The equation *g* is called a **constraint**.

TYPES OF MINIMA

Local and global minima

A minimum of f at x is called:

- ▶ **Global** if *f* assumes no smaller value on its domain.
- ▶ Local if there is some open neighborhood U of x such that f(x) is a global minimum of f restricted to U.

OPTIMA

Analytic criteria for local minima

Recall that \mathbf{x} is a local minimum of f if

$$f'(\mathbf{x}) = 0$$
 and $f''(\mathbf{x}) > 0$.

In \mathbb{R}^d ,

$$\nabla f(\mathbf{x}) = 0$$
 and $H_f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_i \partial x_j}(\mathbf{x})\right)_{i,j=1,\dots,n}$ positive definite.

The $d \times d$ -matrix $H_f(\mathbf{x})$ is called the **Hessian matrix** of f at \mathbf{x} .

Numerical methods

All numerical minimization methods perform roughly the same steps:

- \triangleright Start with some point x_0 .
- ▶ Our goal is to find a sequence x_0, \ldots, x_m such that $f(x_m)$ is a minimum.
- ▶ At a given point x_n , compute properties of f (such as $f'(x_n)$ and $f''(x_n)$).
- ▶ Based on these values, choose the next point x_{n+1} .

The information $f'(x_n)$, $f''(x_n)$ etc is always *local at x_n*, and we can only decide whether a point is a local minimum, not whether it is global.

CONVEX FUNCTIONS

Definition

A function f is **convex** if every line segment between function values lies above the graph of f.

Analytic criterion

A twice differentiable function is convex if $f''(x) \ge 0$ (or $H_f(\mathbf{x})$ positive semidefinite) for all \mathbf{x} .

Implications for optimization

If f is convex, then:

- f'(x) = 0 is a sufficient criterion for a minimum.
- ► Local minima are global.
- ▶ If f is **strictly convex** (f'' > 0 or H_f positive definite), there is only one minimum (which is both gobal and local).

GRADIENT DESCENT

Algorithm

Gradient descent searches for a minimum of f.

- 1. Start with some point $x \in \mathbb{R}$ and fix a precision $\varepsilon > 0$.
- 2. Repeat for n = 1, 2, ...

$$x_{n+1} := x_n - f'(x_n)$$

3. Terminate when $|f'(x_n)| < \varepsilon$.

NEWTON'S METHOD: ROOTS

Algorithm

Newton's method searches for a **root** of f, i.e. it solves the equation $f(\mathbf{x}) = 0$.

- 1. Start with some point $x \in \mathbb{R}$ and fix a precision $\varepsilon > 0$.
- 2. Repeat for n = 1, 2, ...

$$x_{n+1} := x_n - f(x_n)/f'(x_n)$$

3. Terminate when $|f(x_n)| < \varepsilon$.

BASIC APPLICATIONS

Function evaluation

Most numerical evaluations of functions $(\sqrt{a}, \sin(a), \exp(a), \text{ etc})$ are implemented using Newton's method. To evaluate g at a, we have to transform x = g(a) into an equivalent equation of the form

$$f(x,a) = 0.$$

We then fix a and solve for x using Newton's method for roots.

Example: Square root

To eveluate $g(a) = \sqrt{a}$, we can solve

$$f(x,a) = x^2 - a = 0.$$

This is essentially how sqrt() is implemented in the standard C library.

NEWTON'S METHOD: MINIMA

Algorithm

We can use Newton's method for minimization by applying it to solve $f'(\mathbf{x}) = 0$.

- 1. Start with some point $x \in \mathbb{R}$ and fix a precision $\varepsilon > 0$.
- 2. Repeat for n = 1, 2, ...

$$x_{n+1} := x_n - f'(x_n)/f''(x_n)$$

3. Terminate when $|f'(x_n)| < \varepsilon$.

MULTIPLE DIMENSIONS

In \mathbb{R}^d we have to replace the derivatives by their vector space analogues.

Gradient descent

$$\mathbf{x}_{n+1} := \mathbf{x}_n - \nabla f(\mathbf{x}_n)$$

Newton's method for minima

$$\mathbf{x}_{n+1} := \mathbf{x}_n - H_f^{-1}(\mathbf{x}_n) \cdot \nabla f(\mathbf{x}_n)$$

The inverse of $H_f(\mathbf{x})$ exists only if the matrix is positive definite (not if it is only semidefinite), i.e. f has to be strictly convex.

The Hessian measures the curvature of f.

Effect of the Hessian

Multiplication by H_f^{-1} in general changes the direction of $\nabla f(\mathbf{x}_n)$. The correction takes into account how $\nabla f(\mathbf{x})$ changes away from \mathbf{x}_n , as estimated using the Hessian at \mathbf{x}_n .

Figure: Arrow is ∇f , $x + \Delta x_{nt}$ is Newton step.