

팀원

정우섭 김유민 김유진 장동언 황정묵 Smart Factory Data & Preprocessing 03 Modeling CONTENTS Parameters Optimization Ensemble Model

1.1 Importance of Smart Factory

스마트팩토리 시장의 성장에 따라 제조 생산현장의 작업자의 안전과 불량품 발생으로 인한 품질 비용을 절감할 수 있는 대안 필요

IoT, 센서, 머신러닝 등 기술 발전과 함께 제조 지능화의 가속화를 통한 높은 생산성 및 품질관리 수준 확보.

"품질 편차를 최소화해 생산성과 안정성을 극대화할 수 있는 스마트 공장의 제어시스템 구축 필요"

2.1 Data

Columns

- ['LINE'] 제품의 공정 LINE 6종류 ('T050304', 'T050307', 'T100304', 'T100306', 'T010306', 'T010305')
- ['PRODUCT_CODE']: 제품의 CODE 3종류 ('A_31', 'T_31', 'O_31')
- ['PRODUCT_ID'], ['TIMESTAMP']
- ['Y_Quality'] : 제품 품질

Target features

- ['Y_Class']: 제품 품질의 상태
- 0: 부적합
- 1: 적합
- 2: 부적합

2.2 EDA

Feature Correlation

- 높은 상관관계 보인 변수
- ['X 58' & 'X 51']
- ['X 721' & 'X 443']

2.2 EDA

- Feature Importance
 - ['X_1834']: 가장 제일 중요한 변수

2.3 Preprocessing

1. Drop features

• ['PRODUCT ID', 'TIMESTAMP', 'Y Quality'] 변수 제거

2. Label Encoding

• ['LINE', 'PRODUCT_CODE'] 모델 적합을 위해 범주형에서 수치형 변수로 변환

3. Missing Values

- ['LINE', 'PRODUCT_CODE'] <-- fillna(0)
- 여러 데이터가 합쳐진 형태 (mean, median의 신뢰도가 떨어짐)

LINE	PRODUCT_CODE
T050304	A_31
T050307	A_31
T050304	A_31
T050307	A_31
T050304	A_31

2.3 Preprocessing

4. Feature Scaling

• 변수 값 범위를 일정한 범위 내로 조정

4.1 MinMax Normalization

- ['MinMaxSclaer']
 - -0.4부터 40000까지 다양한 변수의 값 변위
 - 모든 변수가 최소 0, 최대 1의 값을 따르도록 정규화

3.1 Machine Learning Models

- 1. Random Forest Classifier
- 2. Gradient Boosting Classifier
- 3. XGB Classifier
- 4. LGBM Classifier
- 5. CatBoost Classifier
- 6. Ridge Classifier
- 7. Bagging Classifier
- 위 모델들을 사용하여 각각의 test set accuracy score 도출
- 그 결과를 ensemble 과정의 가중치 설정의 근거로 활용 (5장 참고)

3.2.1 Tree Models

Random Forest Classifier

- 의사결정나무(Decision Tree)를 여러 개 합 쳐서 만든 앙상블 모델
- 장점: Overfitting 예방 & 일반화 성능 향상

N₁ features N₂ features N₃ features N₄ features TREE #1 TREE #2 TREE #3 TREE #4 CLASS C CLASS D CLASS B CLASS C MAJORITY VOTING FINAL CLASS

Gradient Boosting Classifier

- 여러 개의 의사결정나무(Decision Tree)를 연속적으로 만들어 예측 모델을 개선
- 첫번째 Decision Tree 학습 후, 첫번째에 학습하지 않은 부분을 학습하여 예측

3.2.2 Gradient Boosting

XGB Classifier

- Gradient Boosted Tree 기반 앙상블 모델
- 장점
 - 대용량 데이터셋에서 높은 예측 성능
 - 다양한 hyperparameter 제공해 모델 성능 조정 가능

LGBM Classifier

- 경량화 된 Gradient Boosting 알고리즘
- 장점:
 - 대용량 데이터셋을 빠르게 처리 가능
 - 범주형 변수의 처리, early stopping, 분산 학습 기능 제공

3.2.3 Boosting & Bagging

Catboost Classifier

- 범주형 변수 처리에 특화된 알고리즘
- 장점
 - 빠른 속도, 높은 예측 성능
 - 범주형 변수가 많은 데이터셋에서 좋은 성능

Tree growth examples:

Bagging Classifier

- Random Forest와 유사한 앙상블 모델
- 샘플링을 통해 여러 개의 분류 모델 만들어 해당 예측 결과를 결합해 최종 예측 도출
- 장점:
 - 대용량 데이터셋에서 높은 예측 성능
 - 모델의 일반화 성능 향상

3.2.4 Ridge Classifier

- Ridge Classifier
 - Ridge 회귀를 분류 문제에 적용한 모델
 - L2 정규화 적용해 모델 일반화
 - 장점
 - 작은 데이터 셋에도 잘 작동

3.3 Used Models

ML models' test set accuracy

• 각 Machine Learning classification 모델 별 test set accuracy score 도출

Models' accuracy

• RF: 0.78

• GBC: 0.81

• XGB: 0.77

LGBM: 0.78

• CatBoost: 0.81

• Ridge: 0.76

• Bagging: 0.75

3.4 Sequential MLP

1. Multilayer Perceptron class 정의

- 2개의 hidden layer 사용하여 MLP 구현
- nn.Linear 클래스 사용해 선형 층 정의
- Hidden layer에 ReLU activation function 적용
- Output layer에 softmax activation function 적용 --> 결과를 확률 값 형태로 반환

2. Forward function

- MLP의 정방향 계산으로, 층을 차례로 통과하며 결과 출력
- apply_softmax = True: 출력층에서 softmax 함수 사용

3. Modeling

- 256개의 데이터 (batch)를 입력으로 받음
- 입력 벡터 크기 = 학습 데이터 크기 (train_x.shape[-1])
- torch.rand 함수 사용해 입력 데이터 (x_in) 생성하여 모델 적용 후 결과 출력

4.1 Optimization

1. 2-Models Parameters

Test set accuracy 상위 2개 모델:
 Catboost & Gradient Boosting Classifier 선정

2. Optimization

hyperparameters optimization
 GridSearch & Optuna

3. Find best parameters

4.2.1 Gradient Boosting Classifier Optimization

Params

 $\begin{array}{lll} n_estimators & (100^{5000}, step=100) \\ learning_rate & (1e-4 ^ 0.3) \\ max_depth & (3 ^ 9) \\ subsample & (0.5 ^ 0.9, step=0.1) \\ max_features & ("auto", "sqrt", "log2") \\ random_state & (42) \end{array}$

Best Params

n_estimators : 1200 learning rate : 0.0091

max_depth : 9

subsample : 0.8

max_features : 'auto'

	precision	recall	f1-score	support
0	0.69	0.43	0.53	21
1	0.81	0.97	0.89	131
2	1	0.39	0.56	28
accuracy			0.82	180
macro avg	0.84	0.6	0.66	180
weighted avg	0.83	0.82	0.79	180

Optuna Accuracy Score: 81.7%

< Hyperparameter 중요도 >

4.2.1 CatBoost Classifier Optimization

Params

Iterations (100~1000) learning rate (1e-3 ~ 1e-1) depth (4 ~ 10) 12 leaf reg (1e-8 ~ 1e-1) Booststrap type ("Bayesian") Random strength (1e-8 ~ 10.0) Bagging_temp $(0.0 \sim 10.0)$ Od type ('IncToDec', 'Iter') Od wait $(10 \sim 50)$

Best Params

Iterations : 857 learning rate : 0.0709 depth : 8 12 leaf reg : 0.00012 Booststrap type : 'Bavesian' Random strength : 5.359 Bagging temp : 0.714 Od type : 'IncToDec'

: 'od wait'

Od wait

	precision	recall	f1-score	support
0	0.67	0.38	0.48	21
1	0.8	0.97	0.88	131
2	1	0.32	0.49	28
accuracy			0.8	180
macro avg	0.82	0.56	0.62	180
weighted avg	0.81	0.8	0.77	180

Optuna Accuracy Score: 80.0%

< Hyperparameter 중요도 >

5.1 Ensemble techniques

Ensemble techniques

- 다수의 학습 모델을 조합하여 단일 모델의 성능 보다 더 발전된 성능을 얻는 기법
- 1) Bagging: 다수결 투표 기반 학습
- 2) Boosting: bootstrap 샘플 기반 분류 모델
- 3) Stacking: 다수의 학습 모델 결합

Voting Classifier: majority voting

- M-Ensemble learning: 다수결 투표로 성능 향상
- 3-Ensemble model의 우수한 성능:
- 1) Multilayer Perceptron-based classification,
- 2) 4-Ensemble model 보다 높은 accuracy

Figure 1. Framework of Majority Voting with the M-Ensemble Model.

5.2 3-Ensemble Voting Classifier

3 Models Ensemble

- Accuracy 상위 2개 + Overfitting 방지 목적 하위 1개 모델 앙상블
- models = [CatBoostClassifier, GradientBoostingClassifier, XGBClassifier]
- weight = [2, 2, 1]
- voting = 'hard'

weight	MODEL	ACCURACY	ENSEMBLE
2	CatBoost	0.816667	high training accuracy
2	GradientBoosting	0.811111	high training accuracy
X	RandomForest	0.788889	inferior to Gradient-boosted trees on compelx problem
X	LGBM	0.788889	lower performance than XGBoost
1	XGBoost	0.772222	prevent overfitting
Χ	Ridge	0.761111	low training accuracy
Χ	Bagging	0.75	low training accuracy

5.3 Final Submission Model

- 3-Ensemble Model's validation accuracy: 100%
 - scores = sklearn.metrics.accuracy_score(y_test, preds)
- Modeling Assumption:
 - train.csv test set 특성 및 분포가 미래 데이터인 test.csv 에도 보편적으로 적용될 것
 - train.csv 에서 좋은 성능을 보인 모델이 test.csv 에서도 좋은 성능을 보일 것
- Final Model:
 - test set validation accuracy 100% 성능을 보인 3-ensemble model 제출

References

- Label Encoding: https://paperswithcode.com/paper/label-encoding-for-regression-networks-1
- MinMax: Patro, S. G. O. P. A. L., and Kishore Kumar Sahu. "Normalization: A preprocessing stage." arXiv preprint arXiv:1503.06462 (2015).
- Random Forest Classifier: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
- Gradient Boosting Classifier:
 - https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
 - Lusa, Lara. "Gradient boosting for high-dimensional prediction of rare events." Computational Statistics & Data Analysis 113 (2017): 19-37

XGBoost Classifier:

- https://xgboost.readthedocs.io/en/stable/
- Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016.
- **LGBM Classifier:** https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
- CatBoost Classifier:
 - https://catboost.ai/en/docs/concepts/python-reference_catboostclassifier
 - Hancock, John T., and Taghi M. Khoshgoftaar. "CatBoost for big data: an interdisciplinary review." Journal of big data 7.1 (2020): 1-45.
- Ridge Classifier: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html
- Bagging Classifier: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
- Ensemble voting classifier:
 - Rojarath, Artittayapron, Wararat Songpan, and Chakrit Pong-inwong. "Improved ensemble learning for classification techniques based on majority voting." 2016 7th IEEE international conference on software engineering and service science (ICSESS). IEEE, 2016.
 - Ruta, Dymitr, and Bogdan Gabrys. "Classifier selection for majority voting." Information fusion 6.1 (2005): 63-81.

THANK YOU

