

Office européen des brevets

EP 0 933 346 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 04.08.1999 Bulletin 1999/31

(21) Application number: 97933837.3

(22) Date of filing: 30.07.1997

(51) Int. Cl.⁶: **C07C 15/14**, C07C 25/18, C07C 43/20, C07C 47/575, C07C 65/24, C07C 69/734, C07C 69/78, C07C 205/38, C07C 217/80, C07C 233/80, C07C 235/46

(86) International application number: PCT/JP97/02635

(11)

(87) International publication number:WO 98/04508 (05.02.1998 Gazette 1998/05)

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

(30) Priority: 31.07.1996 JP 20185996 30.10.1996 JP 28778296 18.03.1997 JP 8608597

(71) Applicant: SHIONOGI & CO., LTD. Osaka-shi, Osaka 541-0045 (JP)

(72) Inventors:KAWADA, Kenji

Osaka 565 (JP)

OHTANI, Mitsuaki
 Nara 553 (JP)
 SUZUKI Pyriii

SUZUKI, Ryuji
 Nara 633 (JP)

 ARIMURA, Akinori Osaka-shi Osaka 558 (JP)

(74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54) NOVEL p-TERPHENYL COMPOUNDS

(57) The present invention provides a selective suppressor of the IgE production comprising a compound which suppresses the IgE production in a process from a differentiation of a mature B cell into an antibody-producing cell to the production of an antibody and which does not suppress or weakly suppresses the production of IgG, IgM and/or IgA which are produced at the same time, a compound of the formula (I):

$$R^{1}$$
 R^{2}
 R^{3}
 R^{6}
 R^{7}
 R^{10}
 R^{11}
 $X-Y$ (I)

wherein R^1 - R^{13} are hydrogen, halogen, lower alkyl, lower alkoxy or the like, X is - O-, -CH₂-, -NR¹⁴- or -S(O)p- and Y is lower alkyl, lower alkenyl or the like, a process for producing the same and a pharmaceutical composition comprising the same.

Description

Technical Field

[0001] The present invention relates to a novel para-terphenyl compound, a process for producing the same, a selective suppressor of the IgE production, an immunosuppressor and an anti-allergic agent.

Background Art

[0002] A serious problem of a transplantation of a tissue or an organ which is frequently performed in recent years is a rejection symptom for excluding a transplanted part after an operation. Prevention of the rejection symptom is very important for a success of the transplantation.

[0003] Various immunosuppressors such as azathioprine, corticoid, Cyclosporin A, Tacrolimus and the like are developed and come into practical use for prevention and a treatment of a rejection symptom against a transplantation of an organ or a tissue or a graft-versus-host reaction which is caused by a bone marrow transplantation. But they are not so satisfactory in view of their effects and side effects.

[0004] Allergic diseases such as atopic dermatitis, allergic rhinitis, bronchial asthma, allergic conjunctivitis and the like globally tend to increase in recent years and become serious problems. The conventional antiinflammatory agents are suppressors of releasing chemical mediators from mast cells, receptor inhibitors of the chemical mediators released, suppressors of allergic inflammation reaction or the like. All of these are agents for symptomatic therapy and are not fundamental therapeutic agents for allergic diseases.

[0005] As an fundamental therapeutic agent for allergic diseases, a suppressor of the IgE antibody production has been expected.

[0006] One of compounds which have a suppressive effect on the IgE production is Suplatast Tosilate (IPD-1151-T). This is reported to act on T cell of type 2 (Th2 cell) to suppress the IL-4 production and to suppress a differentiation of B cells to IgE antibody-producing cells (Jpn. Pharmacol. (1993) 61, 31-39).

[0007] As compounds which directly act on B cells to suppress the IgE antibody production, for example, DSCG (Intal) or Nedcromil sodium which are degranulation inhibitors of mast cells are exemplified. These are reported to inhibit a class-switch of B cells (J. Exp. Med. (1994) 180: 663-671, J. Allergy Clin. Immunol. (1996) 97: 1141-1150). In J. Med. Chem. (1997) 40: 395-407, a compound which directly acts on B cells to suppress the IgE production is described.

[0008] Because immune globulins are necessary for phylaxis and a suppression of immune globulins other than IgE antibody is not preferable, an inhibitor which has a high selectivity to IgE and a potent effect has been desired.

[0009] The compounds which have an antiinflammatory effect and ortho-terphenyl structure are described in JP-A 60-13730, J. Med. Chem.(1996) 39: 1846-1856 and WO96/10012, and the compounds which have the same effect and biphenyl structure are described in JP-B 43-19935, JP-A 62-294650 and WO96/18606.

[0010] The compounds which have para-terphenyl structure are described in Chemical & Pharmaceutical Bulletin, 24 (4), 613-620 (1976), The Journal of Antibiotics, 32 (6), 559-564 (1979) and Agricultural Biological Chemistry, 49 (3), 867-868 (1985) but an immunosuppressive or antiinflammatory effect of these compounds is not described at all.

40 Disclosure of Invention

[0011] An object of the present invention is to provide a selective suppressor of the IgE production, an immunosuppressor, and/or an anti-allergic agent which has a potent suppressive effect on the IgE production, an immunosuppressive effect and/or an anti-allergic effect. Other object of the present invention is to provide novel compounds which have the above effects and a process for producing the same.

[0012] The present invention provides a selective suppressor of the IgE production, an immunosuppressor and/or an anti-allergic agent comprising a compound which suppresses the IgE production in a process from a differentiation of a mature B cell into an antibody-producing cell to the production of an antibody and which does not suppress or weakly suppresses the production of IgG, IgM and/or IgA which are produced at the same time. The present invention provides a method for selectively suppressing the IgE production or for suppressing an immune reaction or a method for treating and/or preventing allergic diseases comprising administering the compound. In another embodiment, the present invention provides use of the compound for the manufacture of a medicament for selectively suppressing the IgE production, suppressing the immune reaction or treating and/or preventing allergic diseases.

[0013] The present invention provides a compound of the formula (I) as an example of the compounds which has the above effects:

$$R^{1}$$
 R^{4}
 R^{5}
 R^{8}
 R^{9}
 R^{12}
 R^{13}
 R^{13}
 R^{13}

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are each independently hydrogen, hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted lower alkoxycarbonyl, optionally substituted acyloxy, optionally substituted lower alkylsulfonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted lower alkylsulfonyloxy, optionally substituted amino, optionally substituted carbamoyl, optionally substituted sulfamoyl or optionally substituted heterocyclyl,

X is -O-, - CH_2 -,- NR^{14} - wherein R^{14} is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl or acetyl, or -S(O)p- wherein p is an integer of 0 to 2,

Y is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted acyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted aryl or optionally substituted heterocyclyl, and Y may optionally be substituted lower alkoxy when X is - CH₂- and may optionally be substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl when X is -O- or - NR¹⁴-,

R¹ and R⁴, R¹ and R², R² and R³, R⁴ and R⁵, R⁶ and R⁷, R⁸ and R⁹, R¹⁰ and R¹¹, R¹² and R¹³, R¹¹ and -X-Y, or R¹³ and -X-Y taken together may form a 5- or 6-membered ring which may contain one or more of O, S or NR¹⁵ wherein R¹⁵ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted arylsulfonyl and which may optionally be substituted,

excluding compounds wherein one or more of R⁶, R⁷, R⁸ and R⁹ are halogen and the others are hydrogen, all of R⁶, R⁷, R⁸ and R⁹ are halogen and all of R²-R¹³ are hydrogen, halogen or cyano,

provided that R^1 is not hydrogen, fluorine, optionally substituted lower alkyl or optionally substituted lower alkoxy, all of R^2 , R^3 , R^4 , R^5 and R^{12} are hydrogen, or R^{13} is not hydrogen or halogen when R^6 , R^7 , R^8 and R^9 are all simultaneously hydrogen, and further provided that R^1 is not methyl or acetyloxy, R^{13} is not hydrogen, optionally substituted lower alkoxycarbonyl or optionally substituted carbamoyl, or - X-Y is not methoxy when at least one of R^6 , R^7 , R^8 and R^9 is a substituent other than hydrogen,

and excluding a compound of the formula (I'):

10

15

20

25

30

35

40

45

55

wherein R¹ is hydrogen or hydroxy and R^{13'} is hydroxy or methoxy, pharmaceutically acceptable salt, hydrate or prodrug thereof.

[0014] The present invention provides a pharmaceutical composition, more specifically a selective suppressor of the IgE production, an immunosuppressor or an anti-allergic agent, comprising the compound (I), pharmaceutically acceptable salt, hydrate or prodrug thereof.

[0015] The present invention provides a selective suppressor of the IgE production, an immunosuppressor and/or an anti-allergic agent comprising a compound of the formula (I"):

$$R^{2}$$
 R^{3} R^{6} R^{7} R^{10} R^{11} $X-Y$ (I")

10

15

20

25

5

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are each independently hydrogen, hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkenyloxy, optionally substituted lower alkylthio, optionally substituted lower alkylsulfonyl, optionally substituted lower alkylsulfonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted sulfamoyl or optionally substituted heterocyclyl,

X is -O-, -CH₂-, -NR¹⁴- wherein R¹⁴ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl or acetyl, or -S(O)p- wherein p is an integer of 0 to 2,

Y is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkyl, optionally substituted acyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted aryl or optionally substituted heterocyclyl, and Y may optionally be substituted lower alkoxy when X is - CH_2 - and may optionally be substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl when X is -O- or - NR^{14} ,

R¹ and R⁴, R¹ and R², R² and R³, R⁴ and R⁵, R⁶ and R⁷, R⁸ and R⁹, R¹⁰ and R¹¹, R¹² and R¹³, R¹¹ and -X-Y, or R¹³ and -X-Y taken together may form a 5- or 6-membered ring which may contain one or more of O, S or NR¹⁵ wherein R¹⁵ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl or optionally substituted arylsulfonyl and which may optionally be substituted, excluding a compound of the formula (I'):

30

35

40

wherein R^{1} is hydrogen or hydroxy and R^{13} is hydroxy or methoxy, pharmaceutically acceptable salt, hydrate or prodrug thereof.

[0016] The present invention provides a method for selectively suppressing the IgE production, suppressing an immune reaction or treating or preventing allergic diseases comprising administering the compound (I) or (I"). In another embodiment, the present invention provides use of the compound (I) or (I") for manufacturing of a medicament for selectively suppressing the IgE production, suppressing the immune reaction or treating or preventing allergic diseases.

[0017] In one of the other embodiments, the present invention provides a process for producing a compound of the formula (I'''):

50

55

$$R^{1}$$
 R^{3} R^{6} R^{7} R^{10} R^{11} $X-Y$ $(I^{""})$

the compound of the above formula (I) or (I'), pharmaceutically acceptable salt or hydrate thereof

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are each independently hydrogen, hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkenyloxy, optionally substituted lower alkylthio, optionally substituted lower alkylsulfonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted sulfamoyl or optionally substituted heterocyclyl,

X is -O-, -CH₂-, -NR¹⁴- wherein R¹⁴ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl or acetyl, or -S(o)p- wherein p is an integer of 0 to 2,

Y is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted acyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted aryl or optionally substituted heterocyclyl, and Y may optionally be substituted lower alkoxy when X is - CH₂-and may optionally be substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl when X is -O- or - NR¹⁴,

R¹ and R⁴, R¹ and R², R² and R³, R⁴ and R⁵, R⁶ and R⁷, R⁸ and R⁹, R¹⁰ and R¹¹, R¹² and R¹³, R¹¹ and -X-Y, or R¹³ and -X-Y taken together may form a 5- or 6-membered ring which may contain one or more of O, S or NR¹⁵ wherein R¹⁵ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted arylsulfonyl, and which may optionally be substituted,

excluding a compound wherein one or more of R⁶, R⁷, R⁸ and R⁹ are halogen and the others are hydrogen, all of R⁶, R⁷, R⁸ and R⁹ are halogen and all of R²-R¹³ are hydrogen, halogen or cyano,

provided that R¹ is not hydrogen, fluorine, optionally substituted lower alkyl or optionally substituted lower alkoxy, all of R², R³, R⁴, R⁵ and R¹² are hydrogen or R¹³ is not hydrogen or halogen when R⁶, R⁷, R⁸ and R⁹ are all simultaneously hydrogen, and further provided that R¹ is not methyl or acetyloxy, R¹³ is not hydrogen, optionally substituted lower alkoxycarbonyl or optionally substituted carbamoyl or - X-Y is not methoxy when at least one of R⁶, R⁷, R⁸ and R⁹ is a substituent other than hydrogen, pharmaceutically acceptable salt or hydrate thereof, which comprises reacting a compound of the formula (II):

$$Z \xrightarrow{R^{10}} R^{11}$$
 $Z \xrightarrow{R^{12}} R^{13}$
 $X - Y \quad (II)$

with a compound of the formula (III):

5

10

15

20

25

30

35

40

45

50

55

wherein, in the formulas (II) and (III), R¹ - R¹³, X and Y are the same as defined in the above formula (I), either of A and Z is dihydroxyborane, di(lower)alkoxyborane, di(lower)alkylborane,

$$O$$
B- or O B-

and the other is halogen or $-OSO_2(C_qF_{2q+1})$ - wherein q is an integer of 0 to 4,

or reacting a compound of the formula (II'):

$$R^{1}$$
 R^{4}
 R^{5}
 R^{5}
 R^{1}
 R^{2}
 R^{3}
 R^{1}

with a compound of the formula (III'):

$$A = \begin{bmatrix} R^6 & R^7 & R^{10} & R^{11} \\ A & & & & \\ R^8 & R^9 & R^{12} & R^{13} \end{bmatrix} \times (III')$$

wherein, in the formulas (II') and (III'), R¹ - R¹³, X and Y are the same as defined in the above formula (I) and A and Z are the same as defined in the above formulas (II) and (III). As another process, the present invention provides a process for producing the compound of the above formula (I"'), (I) or (I'), pharmaceutically acceptable salt or hydrate thereof comprising the reaction of a compound of the formula (IV):

$$A^{1} \xrightarrow{R^{8} \quad R^{9}} A^{2} \quad (IV)$$

with a compound of the formula (V):

wherein, in the formulas (IV) and (V), R^1 - R^9 are the same as defined in the above formula (I), Z^1 is the same as Z defined in the above formula (II), A^1 and A^2 are each independently the same as A defined in the above formula (III) and the reactivity of A^1 is higher than or equal to that of A^2 , followed by the reaction with a compound of the formula (VI):

$$Z^2 \longrightarrow X-Y \quad (VI)$$
 $R^{12} \quad R^{13}$

wherein R^{10} - R^{13} , X and Y are the same as defined in the above formula (I) and Z^2 is the same as Z defined in the above formula (II) and a process for producing the compound of the above formula (I"), (I) or (I'), pharmaceutically acceptable salt, hydrate thereof comprising the reaction of a compound of the formula (IV'):

$$A^{1} \xrightarrow{R^{8}} A^{2} \quad (IV')$$

wherein R^6 - R^9 is the same as defined in the above formula (I), A^1 and A^2 are each independently the same as A defined in the above formula (III) and the reactivity of A^2 is higher than or equal to that of A^1 , with a compound of the above formula (VI), followed by the reaction with a compound of the above formula (VI).

Brief Description of the Drawings

[0018]

5

10

15

20

25

30

35

Figure 1 shows an antibody production-suppressive effect on human peripheral lymphocytes of the compound (I-839) of the present invention. The ordinate represents a percentage of the amount of antibodies to that of antibodies which are produced in the absence of the compound. The abscissa represents a concentration of the compound.

Figure 2 shows an antibody production-suppressive effect on human peripheral lymphocytes of the compound No. 36. The ordinate represents a percentage of the amount of antibodies to that of antibodies which are produced in the absence of the compound. The abscissa represents a concentration of the compound.

Figure 3 shows an antibody production-suppressive effect on mouse spleen lymphocytes of the compound (I-967) of the present invention. The ordinate represents a percentage of the amount of antibodies to that of antibodies which are produced in the absence of the compound. The abscissa represents a concentration of the compound. Figure 4 shows a suppressive effect of the compound (I-963) of the present invention for an infiltration of inflammatory cells to irrigation water of pulmonary alveolus by an antigen stimulation on mice. The ordinate represents the number of inflammatory cells and the abscissa represents the number of total inflammatory cells, the number of macrophages, the number of eosinophils and the number of neutrophils. The white column represents a group inhaling saline instead of ovalbumin, the black column represents a group inhaling an antigen to cause inflammation with administration of the present invention, and the present invention.

Best Mode for Carrying Out the Invention

[0019] In the present specification, the term "halogen" includes fluorine, chlorine, bromine and iodine. Fluorine or chlorine is preferable. The halogen in the term "halogeno(lower)alkyl", "halogeno(lower)alkenyl" and "halogenoaryl" is the same as above.

[0020] The term "lower alkyl" represents straight or branched chain alkyl having 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms and most preferably 1 to 4 carbon atoms. For example, included are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, hexyl, isohexyl, n-heptyl, isoheptyl, n-octyl, isooctyl, n-nonyl, n-decyl and the like.

[0021] As substituents of the "optionally substituted lower alkyl" in R¹ - R¹³, R¹⁴ and R¹⁵ exemplified are halogen; hydroxy; lower alkoxy optionally substituted with lower alkoxy; carboxy; lower alkoxycarbonyl; acyloxy and the like and the lower alkyl may be substituted with one or more of these substituents at any possible positions.

[0022] As substituents for "optionally substituted lower alkyl" in Y exemplified are halogen; hydroxy; carboxy; lower alkoxycarbonyl; lower alkoxy optionally substituted with lower alkoxy; acyloxy; amino optionally substituted with hydroxy or lower alkyl; imino optionally substituted with hydroxy, lower alkoxy, carboxy(lower)alkoxy, aryl(lower)alkoxy or heterocyclyl; hydrazono optionally substituted with carbamoyl or lower alkoxycarbonyl; cycloalkyl optionally substituted with lower alkyl; cyano; carbamoyl optionally substituted with lower alkyl; or amino; thiocarbamoyl optionally substituted with lower alkyl;

wherein ring A represents cycloalkyl or heterocyclyl;

5

10

15

aryl optionally substituted with lower alkyl, halogeno(lower)alkyl, carboxy(lower)alkyl, lower alkoxycarbonyl(lower)alkyl, halogen, hydroxy, lower alkoxy, carboxy, lower alkoxycarbonyl, lower alkenyloxycarbonyl, acyloxy, nitro, cyano, amino, lower alkoxycarbonylamino, acylamino, lower alkylsulfonylamino, lower alkylamino or guanidino; or

heterocyclyl optionally substituted with lower alkyl (optionally substituted with heterocyclyl), halogen, hydroxy, carbon, lower alkoxycarbonyl, lower alkylsulfonyl, lower alkylarylsulfonyl, mercapto, lower alkylthio or heterocyclyl optionally substituted with aryl.

[0024] The part of lower alkyl in "lower alkoxycarbonyl" is the same as the above defined "lower alkyl" and substituents for "optionally substituted lower alkoxycarbonyl" are the same as those for the above "optionally substituted lower alkoxy".

[0025] The part of "lower alkoxycarbonyl" in "lower alkoxycarbonyl(lower)alkyl", "lower alkoxycarbonyl(lower)alkenyl" or "lower alkoxycarbonylamino" is the same as the above defined "lower alkoxycarbonyl".

[0026] The term "lower alkenyl" represents straight or branched chain alkenyl having 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms and more preferably 3 to 6 carbon atoms. For example included are vinyl, propenyl, isopropenyl, butenyl, isobutenyl, butadienyl, pentenyl, isopentenyl, pentadienyl, hexanyl, isohexenyl, hexadienyl, heptenyl, octenyl, nonenyl, decenyl and the like and these have one or more double bonds at any possible positions. Substituents for "optionally substituted lower alkenyl" are the same as that for the above "optionally substituted lower alkoxy".

[0027] The part of lower alkenyl in "lower alkoxycarbonyl (lower) alkenyl", "halogeno (lower) alkenyl", "lower alkenyloxy", "lower alkenyloxycarbonyl" or "lower alkenylamino" is the same as the above defined "lower alkenyl".

[0028] Substituents for "optionally substituted lower alkenyloxy" are the same as those for the above "optionally substituted lower alkoxy".

[0029] The term "lower alkynyl" represents straight or branched chain alkynyl having 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms and more preferably 3 to 8 carbon atoms. Specifically, included are ethynyl, propynyl, butynyl, pentynyl, heptynyl, octynyl, nonyl, decynyl and the like. These have one or more triple bonds at any possible positions and may further have a double bond. Substituents for "optionally substituted lower alkynyl" are the same as those for the above "optionally substituted lower alkoxy".

[0030] The term "acyl" represents aliphatic acyl which includes chain acyl having 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, most preferably 1 to 4 carbon atoms and cyclic acyl having 3 to 8 carbon atoms, preferably 3 to 6 carbon atoms, and aroyl. Specifically, included are formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, pivaloyl, hexanoyl, acryloyl, propioloyl, methacryloyl, crotonoyl, cyclohexanecarbonyl, benzoyl and the like. Substituents for "optionally substituted acyl" are the same as those for "optionally substituted lower alkoxy" and aroyl may further be substituted with lower alkyl.

[0031] The part of acyl in "acyloxy" or "acylamino" is the same as the above identified "acyl" and substituents for "optionally substituted acyloxy" are the same as those for the above "optionally substituted acyl".

[0032] The term "cycloalkyl" represent cyclic hydrocarbon having 3 to 6 carbon atoms and includes, for example, cyclopropyl, cyclobutyl, cyclopentyl cyclohexyl and the like. As substituents for "optionally substituted cycloalkyl" exemplified are lower alkyl, halogen, hydroxy, carboxy, lower alkoxycarbonyl, lower alkoxy, aryl, heterocyclyl and the like and the cycloalkyl may be substituted at any possible positions.

[0033] The term "cycloalkenyl" represents the group having one or more double bonds at any possible positions in the above cycloalkyl and included are, for example, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cyclohexenyl and the like. Substituents for "optionally substituted cycloalkenyl" are the same as those for the above identified

"cycloalkyl".

45

50

[0034] The term "optionally substituted amino" includes substituted amino and unsubstituted amino and substituents exemplified are lower all optionally substituted with lower alkylaryl etc.; lower alkenyl optionally substituted with halogen; lower alkylsulfonyl; lower alkylarylsulfonyl; lower alkoxycarbonyl; sulfamoyl; acyl optionally substituted with halogen; carbamoyl and the like.

[0035] The term "optionally substituted carbamoyl" includes substituted carbamoyl and unsubstituted carbamoyl and substituents exemplified are lower alkyl; lower alkylsulfonyl; sulfamoyl; acyl optionally substituted with halogen; amino and the like.

[0036] The term "optionally substituted sulfamoyl" includes substituted sulfamoyl and unsubstituted sulfamoyl and substituents exemplified are lower alkyl optionally substituted with aryl; lower alkenyl and the like.

[0037] The term "aryl" includes phenyl, naphthyl, anthryl, indenyl, phenanthryl and the like. Substituents for "optionally substituted aryl" exemplified are lower alkyl optionally substituted with halogen or carboxy; hydroxy; halogen; lower alkoxy; lower acyloxy; carboxy; lower alkoxycarbonyl; lower alkenyloxycarbonyl; amino optionally substituted with lower alkyl, lower alkylsulfonyl, lower alkoxycarbonyl or acyl; guanidino; nitro; aryl; heterocyclyl and the like and "optionally substituted aryl", may be substituted with one or more of these substituents at any possible positions.

[0038] The part of aryl in "lower alkylaryl", "halogenoaryl", "lower alkoxyaryl", "arylsulfonyl", "aryl(lower)alkoxy", "lower alkylarylsulfonyl", "heterocyclyl substituted with aryl", "aroyl" or "aroyloxy" is the same as the above "aryl" and the substitutents for "optionally substituted" are also the same as those for in the above "optionally substituted aryl".

[0039] The term "heterocyclyl" represents a heterocyclic group which contains one or more of hetero atoms arbitrarily selected from a group of O, S and N and exemplified are 5-or 6- membered aromatic heterocyclyl such as pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyridazinyl. pyrmidinyl, pyrazinyl, triazolyl, triazinyl, isoxazolyl, oxazolyl, oxadiazolyl, isothiazolyl, thiazolyl, thiaziazolyl, furyl, thienyl etc., condensed aromatic heterocyclyl such as indolyl, carbazolyl, acridinyl, benzimidazolyl, indazolyl, indolizinyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, naphthyridinyl, quinoxalinyl, purinyl, pteridinyl, benzisoxazolyl, benzoxazolyl, benzoxadiazolyl, benzisothiazolyl, benzothiazolyl aziazolyl, benzofuryl, benzotnienyl, benzotriazolyl etc., and alicyclic heterocyclyl such as dioxanyl, thiiranyl, oxiranyl, oxathioranyl, azetidinyl, thianyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidyl, piperazinyl, morpholinyl etc. As substituents for "optionally substituted heterocyclyl" exemplified are lower alkyl, lower alkenyl, hydroxy, halogen, carboxy, lower alkoxycarbonyl, lower alkoxy, mercapto, lower alkylthio, lower alkylsulfonyl, aryl, heterocyclyl and the like and the heterocyclyl may be substituted with one or more of these substituents at any possible positions. The part of heterocycle in "heterocyclyl substituted with aryl" is the same as the above "heterocyclyl". [0040] The term "5- or 6-membered ring which may contain one or more of O, S or NR¹⁵ and may optionally be substituted" represents a 5- or 6-membered ring which is formed by R1 and R4, R1 and R2, R2 and R3, R4 and R5, R6 and R⁷, R⁸ and R⁹, R¹⁰ and R¹¹, R¹² and R¹³, R¹¹ and -X-Y, or R¹³ and -X-Y with the two carbon atoms constituting phenyl to which the above substituents are attached. For example, the above substituents taken together form -(CH2)3-, - $(CH_2)_4$ -, $-O(CH_2)_mO$ -, $-O(CH_2)_n$ -, $-(CH_2)_nS$ -, $-S(CH_2)_n$ -, $-(CH_2)_nS$ -, $-NR^{15}(CH_2)_mNR^{15}$ -, $-NR^{15}(CH_2)_n$ -, $-(CH_2)_nS$ -, - $(CH_2)_nNR^{15}$ -, $-O(CH_2)_mS$ -, $-S(CH_2)_mO$ -, $-S(CH_2)_mNR^{15}$ -, $-NR^{15}(CH_2)_mS$ -, $-(CH_2)_mNR^{15}$ -, $-NR^{15}(CH_2)_mS$ -, $-(CH_2)_mNR^{15}$ -, $-NR^{15}(CH_2)_mS$ -, $-(CH_2)_mNR^{15}$ -, $-(CH_2)_mNR^{15}$ -, $-(CH_2)_mS$ -, $-(CH_2)_mNR^{15}$ -, $-(CH_2)_mS$ -, CH=N-S-, -O-CH=N-, -N=CH-O-, -O-N=CH-, -CH=N-O-, -NR¹⁵-CH=N-, -N=CH-NR¹⁵-, -NR¹⁵-N=CH-, -CH=N-NR¹⁵-, -N=CH-CH=CH-, -CH=CH-CH=N-, -N=N-CH=CH-, -CH=CH-N=N-, -N=CH-N=CH-, -CH=N-CH=N-, -N=CH-CH=N- (m is 1 or 2 and n is 2 or 3) or the like and further these and the two carbon atoms constituting phenyl taken together form a

[0041] The term "lower alkylidene" represents straight or branched alkylidene having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 to 3 carbon atoms and includes, for example, methylene, ethylidene, isopropylidene, vinylidene, methylidyne and the like.

substituted" are the same as the above unless otherwise defined.

5-or 6- membered ring. These rings may be substituted with one or more of hydroxy; halogen; lower alkyl optionally substituted with lower alkoxycarbonyl or heterocyclyl; lower alkenyl optionally substituted with halogen; lower alkyliden optionally substituted with halogen; or the like. The substituents of "5- or 6-membered ring which may contain one or more of O or NR¹⁵ and may optionally be substituted", "5-or 6- membered ring which contains one or more of O and may optionally be

[0042] The term "all of R²-R¹³ are hydrogen, halogen or cyano" represents, for example, the case that R²-R¹³ are the same or different and hydrogen, halogen or cyano. For example, included are the case that all of R²-R¹³ are hydrogen, the case that all of them are halogen, the case that some are halogen and the others are hydrogen, the case that some are cyano and the others are hydrogen and the like.

[0043] The term "compound (I)", "compound (I")" or "compound (I"")" also includes formable and pharmaceutically acceptable salts of each compounds. As "the pharmaceutically acceptable salt", exemplified are salts with mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid and the like; salts with organic acids such as formic acid, acetic acid, tartaric acid, lactic acid, citric acid, fumaric acid, maleic acid,

succinic acid and the like; salts with organic bases such as ammonium, trimethylammonium, triethylammonium and the like; salts with alkaline metals such as sodium, potassium and the like and salts with alkaline earth metals such as calcium, magnesium and the like.

[0044] The compound of the present invention includes hydrates and all of stereoisomers, for example, atropisomers etc. thereof.

[0045] The compound of the present invention includes prodrugs thereof. The term "prodrug" means a group of compounds which are easily changeable to the compounds (I) or (I") which have activities in living bodies. The prodrug may be prepared by usual reactions. As usual methods for producing predrugs exemplified is the substitution of hydroxy by acyloxy substituted with carboxy, sulfo, amino, lower alkylamino or the like, phosphonoxy or the like. The substitution of hydroxy attached to R¹ by -OCOCH2CH2COOH, -OCOCH=CHCOOH, -OCOCH2SO3H, -OPO3H2, -OCOCH2NMe2, -OCO-Pyr (Pyr is pyridine) or the like is preferable.

[0046] In the present specification, the term "compound (I)" represents a group comprising novel compounds excluding the compound (I'), the term "compound (I')" represents a group comprising the compound (I) and known compounds and the term "compound (I")" represents a group comprising the compound (I) and the compound (I').

[0047] All of the compounds (I) and (I") have a suppressive effect on the IgE production, an immunosuppressive effect and/or an anti-allergic effect and the following compounds are specifically preferable.

[0048] In the formulas (I) and (I").

1) a compound wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are each independently hydrogen, hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkenyl, optionally substituted lower alkylthio, optionally substituted lower alkylsulfonyloxy, formyl, optionally substituted amino, optionally substituted carbamoyl or optionally substituted sulfamoyl,

X is -O-, -CH₂-,-NR¹⁴- wherein R¹⁴ is hydrogen or optionally substituted lower alkyl, or -S(O)p- wherein p is an integer of 0 to 2,

Y is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted acyl or optionally substituted cycloalkenyl, and

 R^1 and R^4 , R^1 and R^2 , R^8 and R^9 , R^{11} and -X-Y, or R^{13} and -X-Y taken together may form a 5- or 6-membered ring which may contain one or more of O or NR^{15} ,

2) a compound wherein R¹ is hydrogen, hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkyl, optionally substituted lower alkylthio, optionally substituted lower alkylsulfonyloxy, lower alkylsulfonyl, formyl, optionally substituted amino, lower alkylsulfinyl, acyloxy, nitro, cyano, optionally substituted sulfamoyl or heterocyclyl,

R² is hydrogen, hydroxy, halogen, optionally substituted lower alkyl or optionally substituted lower alkylsulfonyloxy,

R³ is hydrogen, hydroxy, halogen or optionally substituted lower alkoxy,

R⁴ is hydrogen, optionally substituted lower alkyl, halogen, optionally substituted lower alkoxy, nitro or optionally substituted amino,

R⁵ is hydrogen, optionally substituted lower alkoxy, lower alkoxycarbonyl or carboxy,

R⁶ is hydrogen, halogen, optionally substituted lower alkyl, carboxy, lower alkoxycarbonyl, nitro, formyl, amino or lower alkylsulfonyloxy,

R⁷ and R⁸ are each independently hydrogen, halogen, optionally substituted lower alkyl, optionally substituted lower alkoxy, formyl or optionally substituted amino,

R⁹ is hydrogen, hydroxy, carboxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyloxy, formyl, optionally substituted carbamoyl or optionally substituted amino,

R¹⁰ is hydrogen or lower alkoxy,

R¹¹ is hydrogen, halogen, optionally substituted lower alkyl, carboxy, lower alkoxycarbonyl, optionally substituted lower alkylsulfonyloxy, formyl, nitro or amino,

R¹² is hydrogen,

20

25

30

35

40

45

50

55

R¹³ is hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkenyloxy, optionally substituted acyloxy, optionally substituted lower alkylsulfonyloxy, formyl, nitro or optionally substituted amino, and further R¹³ may be hydrogen in the formula (I"),

Y is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted acyl or optionally substituted cycloalkenyl and Y may be optionally substituted lower

5

10

15

20

25

30

35

45

50

55

alkoxycarbonyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl when X is - O- or -NR¹⁴-, and

 R^1 and R^2 , R^1 and R^4 , R^8 and R^9 , R^{11} and -X-Y, or R^{13} and -X-Y taken together may form a 5- or 6-membered ring which contains one or more of O or NR^{15} wherein R^{15} is the same as defined above and which may optionally be substituted,

3) a compound wherein R¹ is hydrogen, hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkyl, optionally substituted lower alkylthio, optionally substituted lower alkylsulfonyl, optionally substituted lower alkylsulfonyl, lower alkylsulfonyl, formyl, optionally substituted amino, lower alkylsulfinyl, acyloxy, nitro, cyano, optionally substituted sulfamoyl or heterocyclyl (hereinafter referred to as "R¹ is R1-1") or R¹ and R² or R⁴ taken together form a 5- or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined above and which may optionally be substituted,

preferably R^1 is hydrogen, hydroxy, halogen, optionally substituted lower alkoxy, optionally substituted lower alkenyloxy, optionally substituted amino, optionally substituted sulfamoyl (hereinafter referred to as " R^1 is R^1 -2"), or R^1 and R^2 or R^4 taken together form a 5-or 6-membered ring which contains one or more of O or NR^{15} wherein R^{15} is the same as defined above and which may optionally be substituted.

more preferably, R¹ is hydrogen, hydroxy, halogen, lower alkoxy(lower)alkoxy, aryl(lower)alkoxy, lower alkenyloxy, lower alkylsulfonyloxy, amino, lower alkylamino or lower alkenylamino (hereinafter referred to as "R¹ is R1-3"), or R¹ and R² or R⁴ taken together form a 5- or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined above and which may optionally be substituted,

most preferably, R¹ is hydrogen, hydroxy, chlorine, fluorine, methoxymethyloxy, benzyloxy, 3-methyl-2-butenyloxy, methanesulfonyloxy, amino, dimethylamino or 3-methyl-2-butenylamino (hereinafter referred to as "R¹ is R1-4"), or R¹ and R² or R⁴ taken together form -OCH₂O- or -CH=CH-NH-.

- 4) a compound wherein R² is hydrogen, hydroxy, halogen, lower alkyl or optionally substituted lower alkylsulfonyloxy (hereinafter referred to as "R² is R2-1") or R¹ and R² taken together form a 5- or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined above and which may optionally be substituted, preferably R² is hydrogen, halogen or alkyl having 1 to 3 carbon atoms (hereinafter referred to as "R² is R2-2"),
- 5) a compound wherein R³ is hydrogen, hydroxy, halogen or optionally substituted lower alkoxy (hereinafter referred to as "R³ is R3-1"), preferably R³ is hydrogen or halogen (hereinafter referred to as "R³ is R3-2"), more preferably R³ is hydrogen or fluorine (hereinafter referred to as "R³ is R3-3"),
- 6) a compound wherein R⁴ is hydrogen, optionally substituted lower alkyl, halogen, optionally substituted lower alkoxy, nitro or optionally substituted amino (hereinafter referred to as "R⁴ is R4-1") or R⁴ and R¹ taken together may form a 5-or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined above and which may optionally be substituted,

preferably R^4 is hydrogen, lower alkyl, lower alkoxy or halogen (hereinafter referred to as " R^4 is R4-2"), or R^4 and R^1 taken together may form -OCH₂O-,

7) a compound wherein R^5 is hydrogen, optionally substituted lower alkoxy, lower alkoxycarbonyl or carboxy (hereinafter referred to as " R^5 is R5-1"), preferably R^5 is hydrogen, lower alkoxycarbonyl or carboxy (hereinafter referred to as " R^5 is R5-2"), more preferably R^5 is hydrogen (hereinafter referred to as " R^5 is R5-3"),

8) a compound wherein R⁶ is hydrogen, halogen, optionally substituted lower alkyl, carboxy, lower alkoxycarbonyl, nitro, formyl, amino or lower alkylsulfonyloxy (hereinafter referred to as "R⁶ is R6-1"),

preferably R⁶ is hydrogen or lower alkyl or halogen (hereinafter referred to as "R⁶ is R6-2"), more preferably R⁶ is hydrogen, alkyl having 1 to 3 carbon atoms or halogen (hereinafter referred to as "R⁶ is R6-3"),

9) a compound wherein R⁷ is hydrogen, halogen, optionally substituted lower alkyl, optionally substituted lower alkoxy, formyl or optionally substituted amino (hereinafter referred to as "R⁷ is R7-1"),

preferably R7 is hydrogen, lower alkyl or lower alkoxy (hereinafter referred to as "R7 is R7-2").

10) a compound wherein R⁸ is hydrogen, halogen, optionally substituted lower alkyl, optionally substituted lower alkoxy, formyl or optionally substituted amino (hereinafter referred to as "R⁸ is R8-1") or R⁸ and R⁹ taken together

may form a 5-or 6- membered ring which contains one or more of O and which may optionally be substituted,

preferably R8 is hydrogen, lower alkyl or lower alkoxy (hereinafter referred to as "R8 is R8-2"),

11) a compound wherein R⁹ is hydrogen, hydroxy, carboxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyloxy, formyl, optionally substituted carbamoyl or optionally substituted amino (hereinafter referred to as "R⁹ is R9-1") or R⁹ and R⁸ taken together may form a 5- or 6-membered ring which contains one or more of O and which may optionally be substituted,

preferably R⁹ is hydrogen, hydroxy, carboxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyloxy, formyl, optionally substituted carbamoyl or optionally substituted amino (hereinafter referred to as "R⁹ is R9-2"),

more preferably R⁹ is hydrogen, hydroxy, lower alkyl, hydroxy(lower)alkyl, lower alkoxycarbonyl(lower)alkenyl, lower alkoxy(lower)alkoxy, lower alkylsulfonyloxy, di(lower)alkylcarbamoyl, carboxy, lower alkoxycarbonyl or amino (hereinafter referred to as "R⁹ is R9-3"),

most preferably R⁹ is hydrogen, hydroxy, methyl, hydrorymethyl, ethoxycarbonylvinyl, methoxymethyloxy, methanesulfonyl, dimethylcarbamoyl, carboxy, methoxycarbonyl or amino (hereinafter referred to as "R⁹ is R9-4"),

12) a compound wherein R¹⁰ is hydrogen or lower alkoxy (hereinafter referred to as "R¹⁰ is R10-1"), preferably R¹⁰ is hydrogen (hereinafter referred to as "R¹⁰ is R10-2"),

13) a compound wherein R¹¹ is hydrogen, halogen, optionally substituted lower alkyl, carboxy, lower alkoxycarbonyl, optionally substituted lower alkylsulfonyloxy, formyl, nitro or amino (hereinafter referred to as "R¹¹ is R11-1") or R¹¹ and - X-Y taken together form a 5- or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined above and which may optionally be substituted with lower alkenyl, halogeno(lower)alkenyl or the like,

preferably R¹¹ is hydrogen or halogen (hereinafter referred to as "R¹¹ is R11-2"),

14) a compound wherein R¹² is hydrogen,

5

10

15

20

25

30

35

40

45

50

55

15) a compound wherein R¹³ is hydrogen, hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkenyloxy, optionally substituted acyloxy, optionally substituted lower alkylsulfonyloxy, formyl, nitro or optionally substituted amino (hereinafter referred to as "R¹³ is R13-1") or R¹³ and -X-Y taken together form a 5- or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined above and which may optionally be substituted with lower alkenyl, halogeno(lower)alkenyl or the like,

preferably R¹³ is hydrogen, hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkylsulfonyloxy, formyl or optionally substituted amino (hereinafter referred to as "R¹³ is R13-2"), more preferably R¹³ is hydroxy; halogen; lower alkyl optionally substituted with hydroxy or halogen; lower alkoxy optionally substituted with lower alkorycarbonyl or lower alkoxy; lower alkenyloxy optionally substituted with halogen; aroyloxyl; lower alkylsulfonyloxy; formyl or amino (hereinafter referred to as "R¹³ is R13-3"), most preferably R¹³ is hydroxy, fluorine, methyl, hydroxymethyl, iodomethyl, methoxy, ethoxy, isopropyloxy, ethoxycarbonylmethyloxy, methoxymethyloxy, chlorobutenyloxy, bromopropenyloxy, chloropropenyloxy, bromobutenyloxy, dichloropropenyloxy, ethoxycarbonyl, benzoyloxy, methanesulfonyloxy, formyl or amino (hereinafter referred to as "R¹³ is R13-4").

16) a compound wherein X is -O-, -NR¹⁴- or -S(O)p- wherein p is an integer of 0 to 2 (hereinafter referred to as "X is X1"), or X, R¹³ and Y taken together may form a 5-or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined above and may optionally be substituted,

preferably X is -O-, -NH-, -NMe- or -SO₂- (hereinafter referred to as "X is. X2"), more preferably X is -O-, -NH- or -NMe- (hereinafter referred to as "X is X3") most preferably X is -O-,

17) a compound wherein Y is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally sub-

5

10

15

20

25

30

35

45

50

55

stituted lower alkynyl, optionally substituted cycloalkenyl, lower alkylsulfonyl, optionally substituted arylsulfonyl, lower alkoxycarbonyl or optionally substituted acyl (hereinafter referred to as "Y is Y1"), or Y, R¹³ and X taken together may form a 5- or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined above and which may optionally be substituted, preferably Y is lower alkyl optionally substituted with halogen; hydroxy; amino optionally substituted with lower alkyl; lower alkoxy; carboxy; lower alkoxycarbonyl; acyl; cycloalkyl; cycloalkenyl; cyano; imino optionally substituted with hydroxy, lower alkoxy, carboxy(lower)alkoxy, aryl(lower)alkoxy or heterocyclyl; hydrazono optionally substituted with carbamoyl or lower alkoxycarbonyl; carbamoyl optionally substituted with lower alkyl; aryl optionally substituted with lower alkyl or amino; thiocarbamoyl optionally substituted with lower alkyl; aryl optionally substituted with amino (optionally substituted with lower alkyl, acyl, lower alkoxycarbonyl or lower alkyl-sulfonyl), nitro, acyloxy, lower alkyl (optionally substituted with halogen or carboxy), halogen, lower alkoxy, carboxy, lower alkoxycarbonyl, lower alkenyloxycarbonyl or guanidino; or heterocyclyl optionally substituted with halogen or lower alkyl;

lower alkenyl optionally substituted with halogen, hydroxy, cycloalkyl, lower alkoxycarbonyl or aryl-substituted heterocyclyl; lower alkynyl optionally substituted with halogen; or cycloalkenyl (hereinafter referred to as "Y is Y2"),

more preferably Y is lower alkyl optionally substituted with lower alkoxycarbonyl, aryl, lower alkylaryl, halogenoaryl, lower alkoxyaryl, heterocyclyl or acyl; or lower alkenyl optionally substituted with hydroxy, halogen or aryl (hereinafter referred to as "Y is Y3"),

most preferably Y is isopropyl, ethoxycarbonylmethyl, benzyl, methylphenylmethyl, fluorophenylmethyl, dichlorophenylmethyl, methoxyphenylmethyl, pyridylmethyl, benzoylmethyl, propenyl, methylpropenyl, methylputenyl, hydroxymethylbutenyl, pentenyl, methylpentenyl, dimethyloctadienyl, chloropropenyl, dichloropropenyl, bromobutenyl, chlorobutenyl or phenylpropenyl (hereinafter referred to as "Y is Y4"),

18) a compound wherein R^1 is R1-2, R^2 is R2-1, R^3 is R3-1, R^4 is R4-1, R^5 is R5-1, R^6 is R6-1, R^7 is R7-1, R^8 is R8-1, R^9 is R9-2, R^{10} is R10-1, R^{11} is R11-1, R^{12} is hydrogen, R^{13} is R13-1, X is X1 and Y is Y1, and R^1 and R^2 , R^1 and R^4 , R^8 and R^9 , or R^{13} and - X-Y taken together may form a 5- or 6-membered ring which contains one or more of O or NR^{15} wherein R^{15} is the same as defined above and which may optionally be substituted,

19) a compound wherein R^1 is R1-2, R^2 is R2-1, R^3 is R3-1, R^4 is R4-1, R^5 is R5-1, R^6 is R6-1, R^7 is R7-1, R^8 is R8-1, R^9 is R9-1, R^{10} is R10-1, R^{11} is R11-1, R^{12} is hydrogen, R^{13} is R13-2, X is X1 and Y is Y1, and Y1 and Y1

20) a compound wherein R^1 is R1-2, R^2 is R2-1, R^3 is R3-1, R^4 is R4-1, R^5 is R5-1, R^6 is R6-2, R^7 is R7-2, R^8 is R8-2, R^9 is R9-1, R^{10} is R10-1, R^{11} is R11-1, R^{12} is hydrogen, R^{13} is R13-1, X is X1 and Y is Y2, and Y is Y3, and Y4, Y4 and Y4 is Y4, and Y4 is Y4.

21) a compound wherein R¹ is R1-1, R² is R2-1, R³ is R3-1, R⁴ is R4-1, R⁵ is R5-1, R⁶ is R6-2, R⁷ is R7-1, R⁸ is R8-2, R⁹ is R9-2, R¹⁰ is R10-1, R¹¹ is R11-1, R¹² is hydrogen, R¹³ is R13-2, X is X1 and Y is Y1, and R¹ and R², R¹ and R⁴, R⁸ and R⁹, or R¹³ and-X-Y taken together may form a 5- or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined above and which may optionally be substituted,

22) a compound wherein R^1 is R1-1, R^2 is R2-1, R^3 is R3-1, R^4 is R4-1, R^5 is R5-1, R^6 is R6-2, R^7 is R7-1, R^8 is R8-2, R^9 is R9-2, R^{10} is R10-1, R^{11} is R11-1, R^{12} is hydrogen, R^{13} is R13-1, X is X1 and Y is Y2, and Y is Y3, and Y4, Y4 and Y4, Y4,

23) a compound wherein R¹ is R1-1, R² is R2-1, R³ is R3-1, R⁴ is R4-1, R⁵ is R5-1, R⁶ is R6-2, R⁷ is R7-1, R⁸ is R8-2, R⁹ is R9-1, R¹⁰ is R10-1, R¹¹ is R11-1, R¹² is hydrogen, R¹³ is R13-2, X is X1 and Y is Y2, and R¹ and R², R¹ and R⁴, R⁸ and R⁹ or R¹³ and - X-Y taken together may form a 5- or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined above and which may optionally be substituted.

24) a compound wherein R¹ is R1-2, R² is R2-1, R³ is R3-1, R⁴ is R4-1, R⁵ is R5-1, R⁶ is R6-2, R⁷ is R7-1 R⁸ is R8-2, R⁹ is R9-2, R¹⁰ is R10-1, R¹¹ is R11-1, R¹² is hydrogen, R¹³ is R13-2, X is X1 and Y is Y1, and R1 and R², R¹ and R⁴, R⁸ and R⁹, or R¹³ and - X-Y taken together may form a 5- or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined above and which may optionally be substituted.

25) a compound wherein R^1 is R1-2, R^2 is R2-1, R^3 is R3-1, R^4 is R4-1, R^5 is R5-1, R^6 is R6-2, R^7 is R7-1, R^8 is R8-2, R^9 is R9-2, R^{10} is R10-1, R^{11} is R11-1, R^{12} is hydrogen, R^{13} is R13-1, X is X1 and Y is Y2, and Y is Y3, and Y4, Y4 and Y4, Y4

26) a compound wherein R1 is R1-2, R2 is R2-1, R3 is R3-1, R4 is R4-1, R5 is R5-1, R6 is R6-2, R7 is R7-1, R8 is

R8-2, R9 is R9-1, R10 is R10-1, R11 is R11-1, R12 is hydrogen, R13 is R13-2, X is X1 and Y is Y2, and R1 and R2. R1 and R4, R8 and R9, or R13 and - X-Y taken together may form a 5- or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined above and which may optionally be substituted. 27) a compound wherein R¹ is R1-1, R² is R2-1, R³ is R3-1, R⁴ is R4-1, R⁵ is R5-1, R⁶ is R6-2, R⁷ is R7-1, R⁸ is R8-2. R9 is R9-2. R10 is R10-1, R11 is R11-1, R12 is hydrogen, R13 is R13-2, X is X1 and Y is Y2, and R1 and R2, 5 R1 and R4, R8 and R9, or R13 and - X-Y taken together may form a 5- or 6-membered ring which contains one or more of O or NR15 wherein R15 is the same as defined above and which may optionally be substituted, 28) a compound wherein R1 is R1-2, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-2, R7 is R7-2, R8 is R8-2, R9 is R9-2, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-2, X is X2 and Y is Y2, and R1 and R4. or R8 and R9 taken together may form a 5- or 6-membered ring which contains one or more of O, 10 29) a compound therein R1 is R1-3, R2 is R2-2, R3 is R3-2, R4 is R4-2, R3 is R5-2, R6 is R6-2, R7 is R7-2, R8 is R8-2, R^9 is R9-2, R^{10} is R10-2, R^{11} is R11-2, and R^1 and R^4 , or R^8 and R^9 taken together may form a 5- or 6-membered ring which contains one or more of O. 30) a compound wherein R1 is R1-4, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-2, R7 is R7-2, R8 is 15 R8-2, R9 is R9-2, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-2, X is X2 and Y is Y2, and R1 and R4. or R8 and R9 taken together may form -OCH2O-, 31) a compound wherein R1 is R1-2, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-2, R7 is R7-2, R8 is R8-2, R9 is R9-3, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-2, X is X2 and Y is Y2, and R1 and R4. or R8 and R9 taken together may form a 5- or 6-membered ring which contains one or more of O, 32) a compound wherein R1 is R1-2, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-2, R7 is R7-2, R8 is 20 R8-2, R9 is R9-4, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-2, X is X2 and Y is Y2, and R1 and R4, or R8 and R9 taken together may form a 5- or 6-membered ring which contains one or more of O, 33) a compound wherein R1 is R1-2, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-2, R7 is R7-2, R8 is R8-2, R9 is R9-2, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-3, X is X2 and Y is Y2, and R1 and R4, or R8 and R9 taken together may form a 5- or 6-membered ring which contains one or more of O. 25 34) a compound wherein R^1 is R1-2, R^2 is R2-2, R^3 is R3-2, R^4 is R4-2, R^5 is R5-2, R^6 is R6-2, R^7 is R7-2, R^8 is R8-2, R⁹ is R9-2, R¹⁰ is R10-2, R¹¹ is R11-2, R¹² is hydrogen, R¹³ is R13-4, X is X2 and Y is Y2, and R¹ and R⁴. or R8 and R9 taken together may form a 5- or 6-membered ring which contains one or more of O, 35) a compound wherein R1 is R1-2, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-2, R7 is R7-2, R8 is R8-2, R9 is R9-2, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-2, X is X2 and Y is Y3, and R1 and R4, 30 or R8 and R9 taken together may form a 5- or 6-membered ring which contains one or more of O, 36) a compound wherein R^1 is R^1 -3, R^2 is R^2 -2, R^3 is R^3 -2, R^4 is R^4 -2, R^5 is R^5 -2, R^6 is R^6 -2, R^7 is R^7 -2, R^8 is R8-2, R9 is R9-3, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-2, X is X2 and Y is Y2, and R1 and R4, or R8 and R9 taken together may form a 5- or 6-membered ring which contains one or more of O. 37) a compound wherein R1 is R1-3, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-2, R7 is R7-2, R8 is 35 R8-2, R9 is R9-2, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-3, X is X2 and Y is Y2, and R1 and R4, or R8 and R9 taken together may form a 5- or 6-membered ring which contains one or more of O, 38) a compound wherein R1 is R1-3, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-2, R7 is R7-2, R8 is R8-2, R9 is R9-2, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-2, X is X2 and Y is Y3, and R1 and R4, or R⁸ and R⁹ taken together may form a 5- or 6-membered ring which contains one or more of O, 40 39) a compound wherein R1 is R1-2, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-2, R7 is R7-2, R8 is R8-2, R9 is R9-3, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-3, X is X2 and Y is Y2, and R1 and R4, or R8 and R9 taken together may form a 5- or 6-membered ring which contains one or more of O, 40) a compound wherein R1 is R1-2, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-3, R7 is R7-2, R8 is R8-2, R9 is R9-3, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-2, X is X2 and Y is Y3, and R1 and R4, 45 or R8 and R9 taken together may form a 5- or 6-membered ring which contains one or more of O, 41) a compound wherein R1 is R1-2, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-2, R7 is R7-2, R8 is R8-2, R9 is R9-2, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-3, X is X2 and Y is Y3, and R1 and R4. or R8 and R9 taken together may form a 5- or 6-membered ring which contains one or more of O, 42) a compound wherein R1 is R1-3, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-2, R7 is R7-2, R8 is 50 R8-2, R9 is R9-3, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-3, X is X2 and Y is Y2, and R1 and R4, or R8 and R9 taken together may form -OCH₂O-. 43) a compound wherein R1 is R1-3, R2 is R2-2, R3 is R3-2, R4 is R4-2, R5 is R5-2, R6 is R6-2, R7 is R7-2, R8 is R8-2, R9 is R9-3, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-2, X is X2 and Y is Y3, and R1 and R4, or R⁸ and R⁹ taken together may form -OCH₂O₋. 55 44) a compound wherein R¹ is R1-3, R² is R2-2, R³ is R3-3, R⁴ is R4-2, R⁵ is R5-2, R⁶ is R6-2, R⁷ is R7-2, R⁸ is

R8-2, R9 is R9-2, R10 is R10-2, R11 is R11-2, R12 is hydrogen, R13 is R13-3, X is X2 and Y is Y3, and R1 and R4

or R8 and R9 taken together may form -OCH2O-,

45) a compound wherein R^1 is R1-2, R^2 is R2-2, R^3 is R3-3, R^4 is R4-2, R^5 is R5-3, R^6 is R6-2, R^7 is R7-2, R^8 is R8-2, R^9 is R9-3, R^{10} is R10-2, R^{11} is R11-2, R^{12} is hydrogen, R^{13} is R13-3, X is X2 and Y is Y3, and R^1 and R^4 , or R^8 and R^9 taken together may form a 5- or 6-membered ring which contain one or more of O,

46) a compound wherein R^1 is R1-3, R^2 is R2-2, R^3 is R3-3, R^4 is R4-2, R^5 is R5-3, R^6 is R6-3, R^7 is R7-2, R^8 is R8-2, R^9 is R9-3, R^{10} is R10-2, R^{11} is R11-2, R^{12} is hydrogen, R^{13} is R13-3, X is X3 and Y is Y4, and R^1 and R^4 , or R^8 and R^9 taken together may form -OCH₂O-,

47) a compound wherein R^1 is R1-4, R^2 is R2-2, R^3 is R3-3, R^4 is R4-2, R^5 is R5-3, R^6 is R6-3, R^7 is R7-2, R^8 is R8-2, R^9 is R9-4, R^{10} is R10-2, R^{11} is R11-2, R^{12} is hydrogen, R^{13} is R13-4, X is X3 and Y is Y4, R^1 and R^4 taken together may form - OCH_2O - and R^8 and R^9 taken together may form - OCH_2O -,

48) a compound wherein the benzene ring which is substituted with R1 - R5 is

$$HO \longrightarrow MSO \longrightarrow F \longrightarrow H_2N \longrightarrow Me_2N \longrightarrow F$$
 $HO \longrightarrow HO_2C \longrightarrow F_3C \longrightarrow HN \longrightarrow MeO \longrightarrow HN \longrightarrow H_2N \longrightarrow HN \longrightarrow HOO \longrightarrow H$

49) a compound wherein the benzene ring which is substituted with R⁶-R⁹ is

50) a compound wherein the benzene ring which is substituted with R¹⁰-R¹³ is

OH, OMs,
$$CO_2H$$
, OH , F , NH_2 , OH

51) a compound wherein Y is $-CH_2CH=CMe_2$, $-(CH_2)_2CH=CMe_2$, $-CH_2CH=CCI_2$, $-CH_2CH=CBr_2$, $-CH_2CH=CF_2$, $-CH_2CH=CHe_2$, $-CH_2CH$

53) a compound wherein at least seven of the substituents of R¹ - R¹³ are hydrogen, preferably at least eight are hydrogen, more preferably at least nine are hydrogen, and their pharmaceutically acceptable salts, their hydrates and their prodrugs.

[0049] A process for producing the compound (I"") is as follows.

5 Process for producing the compound (I"") [Process a]

[0050] The compound (I"") can be produced by the reaction of a borane compound of the formula (II) and (II') coupled with a biphenyl derivative of the formula (III) and (III') respectively, as shown below.

0

5

10

20

25

wherein R¹ - R¹³, X and Y are the same as defined in the above formula (I"), and A and Z are the same as defined in the above formulas (II) and (III), or

$$R^{1}$$
 Z
 R^{1}
 Z
 R^{1}
 Z
 R^{1}
 Z
 R^{2}
 R^{3}
 R^{1}
 Z
 R^{2}
 R^{3}
 R^{6}
 R^{7}
 R^{10}
 R^{11}
 R^{1}
 $X-Y$
 R^{8}
 R^{9}
 R^{12}
 R^{13}
 R^{13}
 R^{14}
 R^{5}
 R^{8}
 R^{9}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R

wherein R¹ - R¹³, X and Y are the same as defined in the above formula (I"), and A and Z are the same as defined in the above formulas (II) and (III).

[0051] The compounds (II) and (II') are reacted with the compounds (III) and (III') respectively in a mixture system of an appropriate solvent such as benzene, toluene, dimethylformamide, dimethoxyethane, tetrahydrofuran, dioxane, ethanol, methanol or the like and water or in an anhydrous system in the presence of a palladium catalyst such as Pd(PPh₃)₄, PdCl₂(PPh₃)₂, PdCl₂(OAc)₂, PdCl₂(CH₃CN)₂ or the like, preferably Pd(PPh₃)₄, under a basic condition (for example, by K₃PO₄, NaHCO₃, NaOEt, Na₂CO₃, Et₄NCl, Ba(OH)₂, Cs₂CO₃, CsF, NaOH, Ag₂CO₃ or the like) at room temperature or with heating for several tens minutes to several tens hours to obtain the compound (I").

[0052] One of substituents A and Z of the compounds to be reacted may be any of the borane groups which are applicable in the Suzuki Reaction (Chemical Communication 1979, 866, Journal of Synthetic Organic Chemistry, Japan, 1993, Vol.51, No.11, 91-100) and dihydroxyborane is preferable. The other may be any of the leaving groups which are applicable in the Suzuki Reaction, for example, halogen, $-OSO_2(C_qF_{2q+1})$ wherein q is an integer of 0 to 4, or the like. Specifically, halogen, trifluoromethanesulfonyloxy (hereinafter referred to as OTf) or the like is preferable and bromine, iodine or OTf is more preferable.

[0053] The substituents R^1 - R^{13} and -X-Y of the compounds (II), (III), (III) and (IIII) may be any of the groups which do not affect the Suzuki Reaction, for example, any groups other than halogen and $-OSO_2(C_qF_{2q+1})$ wherein q is an integer of 0 to 4.

[0054] For example, Y may be optionally substituted lower alkyl, optionally substituted lower alkynyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted aryl or optionally substituted heterocyclyl, Y may be optionally substituted lower alkoxy when X is -CH₂- and Y may be optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl when X is -O- or -NR¹⁴-. Even if R¹ - R¹³ or Y is halogen, these reactions can be carried out without difficulty when the reactivity of the substituent A with the substituent Z is higher than that of halogen with either of substituents A and Z.

[0055] Even if one of R¹ -R¹³ and -X-Y is hydroxy, the above reactions can be carried out preferably after the protection of hydroxy group with a usual hydroxy-protecting group (for example, metoxymethyl, benzyl, tert-butyldimethylsilyl, methansulfonyl, p-toluenesulfonyl or the like), followed by the removal of them by usual methods.

[0056] As processes for producing the compound (I""), the above mentioned Suzuki Reaction is most preferable in view of the efficiency and easiness but silicon, zinc, tin or the like can be used in place of the borane group in the above

scheme.

25

30

35

40

[0057] For example, in the case that one of A and Z is $-SiR^{17}_{3-r}(Hal)_r$ wherein R^{17} is independently lower alkyl, Hal is halogen and r is an integer of 1 to 3 and the other is halogen or $-OSO_2(C_qF_{2q+1})$ wherein q is an integer of 0 to 4, the coupling reaction may be carried out using a usual palladium catalyst (Synlett (1991) 845-853, J. Org. Chem. 1996, 61, 7232-7233). Examples of preferable palladium catalysts are (i-Pr₃P)₂PdCl₂, [(dcpe)PdCl₂] (dcpe=Cy₂PCH₂CH₂PCy₂), $(\eta^3-C_3H_5PdCl)_2$ and the like.

[0058] Even in the case that one of A and Z is -SnR¹⁸ $_3$ wherein R¹⁸ is each independently lower alkyl and the other is halogen, acetyloxy or -OSO₂(C_qF_{2q+1}) wherein q is an integer of 0 to 4, an objective compound can be obtained using a usual palladium catalyst (preferably Pd(PPh₃)₄ or the like) (Angew. Chem. Int. Ed. Engl. 25 (1986) 508-524).

[0059] In the case that one of A and Z is -Zn(Hal) wherein Hal is halogen and the other is halogen, an objective compound can be obtained (Acc. Chem. Res. 1982, 15, 340-348). Any usual palladium catalyst is applicable and Pd(PPh₃)₄, PdCl₂(dppf), PdCl₂(PPh₃)₂, PdCl₂(P(o-Tolyl)₃)₂, Pd(OAc)₂ and the like are exemplified as preferable examples.

[0060] All of these reactions may be carried out in a suitable solvent (for example, dimethylformamide, tetrahydrofuran or the like) at room temperature or with heating for several tens minutes to several tens hours.

Process for producing the compound (I"") [Process b]

[0061] As another easier processes for producing the compound (I"), the following process wherein the compound of the formulas (IV), (V) and (VI) are coupled is also applicable.

wherein R^1 - R^{13} , X and Y are the same as defined in the above formulas (I), (II) and (III) and A^1 , A^2 , Z^1 and Z^2 are the same as defined in the above A and Z, respectively. The reactivity of A^1 is higher than or equal to that of A^2 in the compound (IV) and the reactivity of A^2 is higher than or equal to that of A^1 in the compound (IV).

[0062] For production of the compound (I'") by the above process the compound (IV) may be reacted with the compound (V), followed by the reaction with the compound (VI) without an isolation. The objective compound can be obtained also by a process wherein the compound (IV') is reacted with the compound (VI), followed by a reaction with the compound (V).

[0063] Because the reactions of the substituents A^1 and Z^1 and the substituents A^2 and Z^2 are necessary to obtain the objective compound, the reactivity of the substituent A^1 and that of A^2 should be different. A preferable example is the combination that A^1 is iodine and A^2 is bromine or -OTf in the compound (IV). Conversely in the compound (IV') iodine for A^2 and bromine or -OTf for A^1 are preferable. In the case that the compound (IV) or (IV') is a symmetry compound, the objective compound is obtained even if A^1 and A^2 are the same group.

[0064] The substituents Z^1 and Z^2 may be the same or different group.

[0065] Various other conditions in this process are the same as those in the "Process a".

Cr.

5

25

[0066] In the above compounds, the substituents R^1 - R^{13} may be any of the groups which do not affect the reaction (for example, a group other than halogen and - $OSO_2(C_qF_{2q+1})$ wherein q is an integer of 0 to 4) or any of the groups which do not affect the reaction and are changeable to R^1 - R^{13} by a usual reaction. In the latter case the substituents may be changed to R^1 - R^{13} in suitable steps according to the reaction of each compound.

[0067] For example, in the case that a substituent is formyl and an objective substituent is hydroxy, after the substituent is changed to formyloxy by the Baeyer-Villiger reaction etc., a usual hydrolysis reaction may be carried out under an acidic or alkaline condition. Specifically, a compound which has formyl is reacted with a peroxy acid such as peracetic acid, perbenzoic acid, m-chloroperbenzoic acid, trifluoroperacetic acid, hydrogen peroxide or the like in a suitable solvent such as 1,2-dichloroethane, chloroform, dichloromethane, carbon tetrachloride, benzene or the like at - 20 °C or with heating for several minutes to several tens hours, followed by the hydrolysis of the obtained compound which has formyloxy under an acidic condition (for example, with heating with hydrochloric acid) or under a basic condition (for example, with heating with sodium hydroxide).

[0068] In the case that a substituent is formyl and an objective substituent is hydrorymethyl, the compound which has formyl may be reacted with a reductant such as sodium borohydride, lithium borohydride, zinc borohydride, triethyllithium borohydride, alminium hydride, diisobutylalminium hydride or the like in a solvent (for example, methanol, ethanol, isopropanol, dimethylsulfoxide, diethylene glycol dimethoxyethane, tetrahydrofuran, benzene, toluene, cyclohexane or the like) which is suitable for the reductant at -20 °C to 80 °C, preferably under ice-cooling or at room temperature, for several tens minutes to several hours.

[0069] In the case that a substituent is formyl and an objective substituent is alkenyl having additional carbon atoms, an objective compound can be obtained by the Wittig Reaction (Organic Reaction, 1965, vol.14, p. 270).

[0070] In the case that a substituent is formyl and an objective substituent is carboxy, the compound which has formyl may be reacted with an oxidizing agent such as sodium chlorite, the Jones Reagent, chromic anhydride or the like in a solvent such as tert-butanol, acetone or the like which is suitable for the oxidizing agent at 0 °C or with heating for several hours. The reaction is preferably carried out by addition of 2-methyl-2-buten, sodium dihydrogenphosphate or the like if needed.

[0071] In the case that a substituent is hydroxy and an objective substituent is substituted lower alkoxy, the compound which has hydroxy may be reacted with a proper alkylating agent in the presence of a base such as sodium carbonate, sodium bicarbonate, potassium carbonate, calcium hydroxide, barium hydroxide, calcium carbonate or the like in a suitable solvent such as tetrahydrofuran, acetone, dimethylformamide, acetonitrile or the like. Specifically, the reaction of a compound which has hydroxy with a proper halogenated compound such as methyl iodoacetate, ethyl chloroacetate, propyl chloroacetate or the like can give a compound of which substituent is alkoxycarbonyl(lower)alkoxy.

[0072] In the case that a substituent is carboxy and an objective substituent is carbamoyl, the compound which has carboxy may be carbamoylated with an amine such as ammonia, dimethylamine or the like at 0 °C or with heating for several minutes to several hours in a suitable solvent such as tetrahydrofuran, dimethylformamide, diethyl ether, dichloromethane or the like, if necessary after activation by an activating agent such as thionyl chloride, an acid halide, an acid anhydride, an activated ester or the like.

[0073] In the case that a substituent is hydrogen and an objective substituent is halogen, the compound which has hydrogen may be halogenated by a halogenating agent which is generally used (for example, bromine, chlorine, iodine, sulfuryl chloride, N-bromosuccinimide, N-iodosuccinimide or the like) in a suitable solvent such as chloroform, dichloromethane, carbon tetrachloride, acetonitrile, nitromethane, acetic acid, acetic anhydride or the like, if necessary in the presence of a catalyst such as the Lewis acid, hydrochloric acid, phosphoric acid or the like at -20 °C or with heating for several minutes to several tens hours.

[0074] The compound (I) can be obtained by a reaction of the compound (II) which has a substituent -X-Y with the compound (III) or a reaction of the compound (III) which has a substituent -X-Y with the compound (II). Further, the compound (I) can also be obtained by a reaction of the compound (II) or (III) which has a substituent - W which is convertible into a substituent -X-Y with the compound (III) or (II), followed by a conversion of a substituent -W into a substituent -X-Y.

[0075] For example, in the case of a compound wherein -W is hydroxy or protected hydroxy, an objective substituent such as lower alkyl, lower alkenyl, lower alkynyl, acyl, cycloalkyl, cycloalkenyl, aryl, heterocyclyl, lower alkoxy or the like may be introduced by a usual reaction.

[0076] Concretely, to obtain a compound wherein X is -O-, a compound wherein - W is hydroxy is synthesized and dissolved in a suitable solvent (for example, dimethylformamide, tetrahydrofuran, acetone, benzene, dioxane, acetonitrile or the like), followed by addition of a base such as hydroxides or carbonates of alkaline metals or alkaline-earth metals (for example, sodium carbonate, sodium bicarbonate, potassium carbonate, calcium hydroxide, barium hydroxide, calcium carbonate and the like) or tertiary amines such as triethylamine and the like. To the reactant is added a compound Y-V wherein V is halogen or $-OSO_2(C_qF_{2q+1})$ wherein q is an integer of 0-4 (for example, prenyl bromide, cyclohexenyl bromide, cinnamyl bromide, 1-bromo-2-penten, geranyl bromide, 5-bromo-2-methyl-2-penten, 1,3-dichloro-2-buten, 3-chloropropyne, prenyl triflate, cyclohexenyl triflate, 1,3-trichloropropene or the like) at - 20 °C or with

heating for several minutes to several tens hours to obtain an objective compound wherein -W has been converted into -O-Y.

[0077] To obtain a compound wherein X is ${}^{\circ}$ CH₂-, ${}^{\circ}$ N R¹⁴- or ${}^{\circ}$ S-, a compound wherein - W is hydroxy is reacted with trifluoromethanesulfonic anhydride etc. in a solvent such as anhydrous dichloromethane, chloroform, carbon tetrachloride or the like in the presence of a base such as pyridine, triethylamine or the like to obtain a triflate. Then, the obtained compound is reacted with Y-V' wherein V' is ${}^{\circ}$ CH₂ZnI, ${}^{\circ}$ SH, ${}^{\circ}$ NHR¹⁴ in the presence of a catalyst such as palladium, nickel or the like in a suitable solvent such as tetrahydrofuran, dimethylformamide, diethyl ether, dimethoxyethane or the like to give an objective compound.

[0078] In the case that X is NR¹⁴, a compound wherein W is NH₂ may be reacted with a ketone or an aldehyde in a suitable solvent such as tetrahydrofuran, methanol or the like, followed by reduction with a suitable reductant such as sodium borohydride, sodium cyanoborohydride, zinc hydrochloride or the like or by catalytic reduction to obtain an objective compound.

[0079] A usual reaction of a compound wherein W is NH₂ with Y-V" wherein Y is acyl, lower alkylsulfonyl optionally substituted or arylsulfonyl optionally substituted and V" is a leaving group such as halogen gives a compound wherein -X-Y is -NH-Y.

[0080] To obtain a compound wherein X is -SO- or -SO₂-, a compound wherein X is - S- which is synthesized by the above mentioned process may be oxidized with a usual oxidizing agent such as m-chloroperbenzoic acid.

[0081] A compound of the present invention wherein -X-Y is lower alkenyloxy is dissolved in a solvent such as ethanol, ethyl acetate or the like and hydrogenated with a catalyst such as Pd-carbon powder, platinum, rhodium, ruthenium, nickel or the like to give a compound wherein -X-Y is lower alkoxy.

[0082] A reaction of a compound wherein -X-Y is lower alkenyloxy with m-chloroperbenzoic acid or the like in a solvent such as dichloromethane, chloroform, benzene, hexane, tert-butanol or the like gives a compound wherein -X-Y is epoxidated lower alkoxy.

[0083] In the case that a compound has a substituent interfering of a reaction, the substituent may be protected with a suitable protecting group in advance and the protecting group may be left in a suitable step by a usual method. For example, if hydroxy interferes the reaction, hydroxy may be protected with methoxymethyl, methanesulfonyl, benzyl, trifluoromethanesulfonyl, tert-butyldimethylsilyl or the like, followed by deprotection in a suitable step.

[0084] For example for a protection of hydroxy with methanesulfonyl, a compound which has hydroxy may be reacted with methanesulfonyl chloride in a solvent such as dichloromethane, chloroform, carbon tetrachloride or the like in the presence of a base such as triethylamine, pyridine or the like under ice-cooling or at room temperature for several hours. The protected compound may be deprotected with 1-4 N sodium hydroxide, potassium hydroxide, aqueous solution thereof sodium methoxide, ethyl magnesium bromide or the like in a solvent such as dimethysulfoxide, dimethylformamide, tetrahydrofuran, dioxane, dimethoxyethane or the like at room temperature or with heating for several tens minutes to several hours.

[0085] When methoxymethyl is used as a protecting group of hydroxy, a compound which has hydroxy may be reacted with chloromethylmethylether in a solvent such as tetrahydrofuran, dioxane, dimethoxyethane or the like in the presence of sodium hydride, diisopropylethylamine or the like to obtain a compound which has a protected hydroxy group. The compound may be subjected to a usual deprotection reaction with hydrochloric acid, sulfuric acid or the like in a solvent such as methanol, tetrahydrofuran, acetic acid or the like for a deprotection.

[0086] When tert-butyldimethylsilyl is used as a protective group, a compound which has hydroxy may be reacted with tert-butyldimethylsilyl chloride, tert-butyldimethylsilyl triflate or the like in a solvent such as dimethylformamide, acetonitrile, tetrahydrofuran, dimethylformamide, dichloromethane or the like in the presence of imidazole, triethylamine, 2, 6-lutidine or the like. For a deprotection reaction the protected compound may be reacted with tetrabutylammonium fluoride or the like in a solvent such as tetrahydrofuran or the like.

[0087] Both of known compounds and the compounds which are produced by the following process may be used as the compounds (III) and (III') in the above scheme.

50

55

or

13

5

10

15

20

25

30

35

[0088] Known compounds (VIII) and (IX), or (VIII') and (IX') wherein A and Z are groups which can be subjected to a coupling reaction by the Suzuki Reaction with each other; for example, one is borane such as dihydroxyborane, di(lower)alkoxyborane or the like and the other is halogen or $-OSO_2(C_qF_{2q+1})$ wherein q is an integer of 0-4; D is a group other than halogen and $-OSO_2(C_qF_{2q+1})$ wherein q is the same as defined above are reacted by the same method as above to obtain a compound (VII) or (VII').

[0089] As described above, instead of a compound which has borane, a compound which has -SiR¹⁷_{3-r}(Hal)_r wherein R¹⁷ is each independently lower alkyl Hal is halogen and r is an integer of 1-3, -SnR¹⁸₃ wherein R¹⁸ is each independently lower alkyl or - Zn(Hal) wherein Hal is halogen may be used for a reaction to obtain an objective compound.

[0090] Then, a substituent D is converted into a substituent A which is applicable to the Suzuki Reaction.

[0091] For example, a compound wherein D is hydrogen may be reacted with a halogenating agent such as bromine, chlorine, iodine, sulfuryl chloride, N-bromosuccinimide or the like in a suitable solvent such as acetic acid, chloroform, dichloromethane, carbon tetrachloride, water, acetic acid-sodium acetate or the like at - 20 °C or with heating for several minutes to several tens hours to give an objective compound wherein A is halogen.

[0092] A compound wherein D is protected hydroxy may be reacted with a trifluoromethanesulfonating agent such as trifluoromethanesulfonic anhydride, trifluoromethansulfonyl chloride or the like in a suitable solvent such as dichloromethane, chloroform, tetrahydrofuran or benzene in the presence of a base such as pyridine or triethylamine at -20 °C or with heating for several minutes to several tens hours to give an objective compound wherein A is OTf.

[0093] A compound of the present invention thus obtained can be converted into prodrug thereof. Any usual methods for conversion into a prodrug may be used. For example, hydroxy or amino which is attached a compound of the present invention at any position may be substituted with a usual group for a prodrug. An example of conversion into a prodrug

is a substitution of hydroxy with acyloxy substituted with carboxy, sulfo, amino, lower alkylamino or the like, phosphonoxy etc. A substitution of hydroxy for R^1 with -OCOCH₂CH₂COOH, -OCOCH=CHCOOH, -OCOCH₂SO₃H, -OPO₃H₂, -OCOCH₂NMe₂, -OCO-Pyr wherein Pyr is pyridine or the like is preferable.

[0094] A selective suppressor of the IgE production of the present invention comprises a compound which suppresses the IgE production in a process from a differentiation of a mature B cell into an antibody-producing cell to the production of an antibody and which does not suppress or weakly suppresses the production of the immunoglobulins IgG, IgM and/or IgA which are produced at the same time.

[0095] The term "suppresses the IgE production in a process from a differentiation of a mature B cell into an antibody-producing cell to the production of an antibody" means to suppress the IgE production by inhibiting one of the following processes.

- 1) A process wherein mature B cells are activated by various factors such as cytokines, i.e., IL-4, IL-5, etc., anti-CD40 antibody or the like,
- 2) A process wherein the activated B cells differentiate into antibody-producing cells such as plasma cells etc. (concretely, a process of switching of the activated B cells to IgE class antibody-producing cells) and/or

15

30

35

of the suppressor.

3) A process wherein the antibody-producing cells produce immunoglobulins (specifically, a process of the IgE production)

[0096] An inhibition of "a process wherein a mature B cell is activated by various factors" in the process 1) does not include an inhibition of a process wherein the factors are produced from other cells and the like.

[0097] The term "suppresses the IgE production and does not suppress or weakly suppresses the production of the immunoglobulins IgG, IgM and/or IgA which are produced at the same time" means that the IgE production is suppressed enough to suppress allergy reactions and that the IgG, IgM and/or IgA production is not suppressed so potent as to badly affect an immune system concerning a living body protection under the condition that IgE and one or more of IgG, IgM and IgA can be produced at the same time. In other words,

[** WARNING! MISSING DATA: <FLA>1<FLAC POS=MID>○</FLAC></FLA> **] The suppression of the IgE production is 5,000 times, preferably 10,000 times, more preferably 15,000 times, most preferably 20,000 times or more as potent as those of the IgG, IgM and/or IgA production and/or [** WARNING! MISSING DATA: <FLA>2<FLAC POS=MID>○</FLAC></FLA> **] The IgG, IgM and/or IgA production is not suppressed to less than 50 % even at 5,000 times, preferably 10,000 times, more preferably 15,000 times, most preferably 20,000 times the concentration at which 50 % of the IgE production is suppressed as compared with that in the absence

[0098] The term "the concentration at which 50 % of the IgE production is suppressed as compared with that in the absence of the suppressor" means a concentration at which the IgE production is limited to 50 % of the production in the absence or without administration of the selective suppressor of the IgE production of the present invention under the condition that the IgE can be produced. The suppressor is useful as a medicament when it has a selectivity for the IgE as compared with at least one of IgG, IgM or IgA, preferably with all of them.

[0099] The selective suppressor of the IgE production of the present invention suppresses 90 % or more of the IgE production as compared with that without administration of the suppressor at a dosage that the suppressor does not suppress or weakly suppresses the IgM, IgG and/or IgA production when the suppressor is administered to a mammal, which includes human, sensitized by an allergen. The term "allergen" means any substance that can induce the IgE production and an allergic reaction. Clinical examples are pollen, a acarid, house dust, albumin, milk, a soybean etc. and experimental examples are ovalbumin, bovine gamma globulin, bovine Serum albumin, an antigen protein of cedar pollen (Cryj I and Cryj II), an antigen protein for acarid (Derf I and Derf II) etc. The term "a dosage that the suppressor does not suppress or weakly suppresses the IgM, IgG and/or IgA production" means the dosage at which the suppression rate of the IgG, IgM and/or IgA is 10 % or less, preferably 5 % or less, more preferably 3 % or less as compared with those produced without administration of the selective suppressor of the IgE production of the present invention.

[0100] The selective suppressor of the IgE production of the present invention suppresses infiltration of an inflamma-

[0100] The selective suppressor of the IgE production of the present invention suppresses infiltration of an inflammatory cell to a tissue. The term "inflammatory cell" includes all of a lymphocyte, an eosinophil, a neutrophile and a macrophage, and an eosinophil and/or a neutrophile are preferable.

[0101] The effect of the selective suppressor on the IgE production of the present invention is potent for its direct action to B cells. Because the suppressor does not affect the humoral immunity concerning a biological protective reaction, it has many advantages, for example, little side effect such as infections etc.,

[0102] All of compounds that have the above effect are useful as an immunosuppressor regardless of the structure

and one of the examples is the compound (I) or (I") of the present invention.

[0103] The compounds of the present invention also include ones which have the suppressive effect on a mitogen reaction and/or a cytokine reaction.

[0104] Specifically, the compounds have a potent antiproliferative effect on T and/or B cells and/or a suppressive effect on the IL-5 and/or IL-4 production. They selectively suppress the IL-4 and/or IL-5 production and do not suppress the IL-2 production.

[0105] The immunosuppressor or anti-allergic agent of the present invention is useful for prevention or a treatment of allergic diseases such as a rejection symptom against a transplantation of an organ or a tissue, a graft-versus-host reaction which is caused by a bone marrow transplantation, atopic allergic diseases (for example, a bronchial asthma, an allergic rhinitis, an allergic dermatitis and the like), a hypereosinophils syndrome, an allergic conjunctivitis, a systemic lupus erythematosus, a polymyositis, a dermatomyositis, a scleriasis, MCTD, a chronic rheumatoid arthritis, an inflammatory bowel disease, an injury caused by ischemia-reperfusion, a pollenosis, an allergic rhinitis, an urticaria, a psoriasis and the like.

[0106] When the compound of the present invention is administered as a immunosuppressor and/or anti-allergic agent, it can safely be administered both orally and parenterally. In the case of an oral administration, it may be in any usual forms such as tablets, granules, powders, capsules, pills, solutions, suspensions, syrups, buccal tablets, sublingual tablets and the like for the administration. When the compound is parenterally administered, any usual forms are preferable, for example, injections such as intravenous injections and intramuscular injections, suppositories, endermic agents, vapors and the like. An oral administration is particularly preferable.

[0107] A pharmaceutical composition may be manufactured by mixing an effective amount of the compound of the present invention with various pharmaceutical ingredients suitable for the administration form, such as excipients, binders, moistening agents, disintegrators, lubricants, diluents and the like. When the composition is of an injection, an active ingredient can be sterilized with a suitable carrier to give a pharmaceutical composition.

[0108] Specifically, examples of the excipients include lactose, saccharose, glucose, starch, calcium carbonate, crystalline cellulose and the like, examples of the binders include methylcellulose, carboxymethylcellulose, hydroxypropylcellulose, gelatin, polyvinylpyrrolidone and the like, examples of the disintegrators include carboxymethylcellulose, sodium carboxymethylcellulose, starch, sodium alginate, agar, sodium lauryl sulfate and the like, and examples of the lubricants include talc, magnesium stearate, macrogol and the like. Cacao oil, macrogol, methyl cellulose and the like may be used as base materials of suppositories. When the composition is manufactured as solutions, emulsified injections or suspended injections, dissolving accelerators, suspending agents, emulsifiers, stabilizers, preservatives, isotonic agents and the like may be added. For an oral administration, sweetening agents, flavors and the like may be added.

[0109] Although a dosage of the compound of the present invention as an immunosuppressor and/or anti-allergic agent should be determined in consideration of the patient's age and body weight, the type and degree of diseases, the administration route or the like, a usual oral dosage for human adults is 0.05-100 mg/kg/day and the preferable dosage is 0.1 - 10 mg/kg/day. In the case that it is parenterally administered, although the dosage highly varies with administration routes, a usual dosage is 0.005 - 10 mg/kg/day, preferably, 0.01 - 1 mg/kg/day. The dosage may be administered in one or some separate administrations.

[0110] The present invention is further explained by the following Examples and Experiments, which are not intended to limit the scope of the present invention.

EXAMPLE

45

55

5

[0111] The abbreviations which are used in EXAMPLE mean the following.

Bn benzyl
DME 1, 2-dimethoxyethane
DMF N, N-dimethylformamide

DMSO dimethylsulfoxide

MCPBA m-chloroperbenzoic acid

MOM methoxymethyl Ms methanesulfonyl

Py pyridyl

TBS tert-butyldimethylsilyl
Tf trifluoromethanesulfonyl

Ts p-toluenesulfonyl

Example 1 Synthesis of the comounds (I-1), (I-2) and (I-3)

5

30

(Step 1) Synthesis of the compound 1

[0113] To 300 ml of a solution of 10.63 g (22.08 mmol) of a compound (III-I) in 1, 2-dimethoxyethane was added 3.60 g (3.12 mmol) of tetrakis(triphenylphosphine)palladium (0) at room temperature. To the mixture were added 80 ml of a solution of a compound 2 (9.50 g; 26.5 mmol) in 99% ethanol and 125 ml (250 mmol) of an aqueous solution of 2 M sodium carbonate and the reacted suspension was heated under refluxing in an argon atmosphere for 6 hours. After cooling, the reaction mixture was filtered off to remove an insoluble material and the filtrate was acidified with 2 N hydrochloric acid and extracted with ethyl acetate. The extract was washed with 5 % aqueous solution of sodium bicarbonate and saturated brine successively, then dried and concentrated. After the residue was purified by silica gel chromatography (hexane-ethyl acetate 1:1), the obtained product was recrystallized from hexane-ethyl acetate to give the compound 1 (11.57 g; 87 % yield) as colorless crystals.

(Step 2) Synthesis of the compound (I-2)

[0114] To 60 ml of a suspension of the compound 1 (9.30 g; 15.48 mmol) in anhydrous dichloromethane was added 3.24 ml (23.22 mmol) of triethylamine, followed by addition of 1.80 ml (23.22 mmol) of methanesulfonyl chloride under ice-cooling and stirred for 2 hours at the same temperature. After the solvent was removed, the residue was acidified with 80 ml of 1 N hydrochloric acid and extracted with chloroform. The extract was washed with 1 N hydrochloric acid, 5 % aqueous solution of sodium bicarbonate and saturated brine successively, and the obtained product was dried and concentrated. The obtained residue was recrystallized from hexane-ethyl acetate to give 9.93 g of the compound (1-2) (95 % yield) as colorless crystals.

(Step 3) Synthesis of the compound 3

[0115] Stirred were 300 ml of a solution of 9.76 g (14.38 mmol) of the compound (1-2) and 765 mg (4.31 mmol) of palladium chloride (II) in 1, 4-dioxane under a hydrogen atmosphere at room temperature for 15 hours. An insoluble

material was removed off by filtration with celite and the obtained filtrate was concentrated. The residue was recrystallized from hexane-ethyl acetate to give the compound 3 (8.43 g; 100 % yield) as colorless crystals.

(Step 4) Synthesis of the compound (I-3)

5

15

20

25

30

50

55

[0116] To 40 ml of a solution of the compound 3 (4.01 g; 6.81 mmol) in anhydrous N, N-dimethylformamide were added successive, 1.45 g (10.5 mmol) of potassium carbonate and 1.21 ml (10.5 mmol) of prenyl bromide. After the mixture was stirred under a nitrogen atmosphere for 15 hours at room temperature, the reaction mixture was poured into 230 ml of 6 % aqueous citric acid and extracted with ethyl acetate. The extract was washed with 5 % citric acid, 5 % aqueous solution of sodium bicarbonate and saturated brine successively, followed by being dried and concentrated. The residue was recrystallized from hexane-ethyl acetate to give 4.01 g of the compound (I-3) (90% yield) as colorless crystals.

(Step 5) Synthesis of the compound (I-1)

[0117] To 38 ml of a solution of 3.80 g (5.79 mmol) of the compound (I-3) in dimethylsulfoxide was added 15 ml (60.0 mmol) of 4 N sodium hydroxide and the reaction mixture was warmed at 60 °C for 4 hours. After the mixture was cooled, 100 ml of 1 N hydrochloric acid was added to it and the obtained mixture was extracted with ethyl acetate. The extract was washed with 5 % aqueous solution of sodium bicarbonate and saturated brine successively, then dried and concentrated. The residue was recrystallized from methanol to give 1.72 g of the compound (I-1) (70 % yield) as colorless crystals.

Reference Example 1 Synthesis of the compound 2

Br OBn
$$\xrightarrow{\text{TBSCI}}$$
 Br OBn $\xrightarrow{\text{1) n-Buli, B(Oi-Pr)}_3}$ $\xrightarrow{\text{2) H}_2\text{O}}$ OBn $\xrightarrow{\text{1) n-Buli, B(Oi-Pr)}_3}$ OBn OTBS

[0119] To a solution of the compound 4 (80.0 g; 0.287 mol) in 300 ml of N, N-dimethylformamide were added tert-butyldimethylsilyl chloride (45.87 g; 0.296 mol) and imidazole (21.46 g; 0.315 mol) and stirred at room temperature for 19 hours. The reaction mixture was poured into 1 L of water and extracted with ether. The extract was washed with water and saturated brine successively and then dried and concentrated. The residue was purified by silica gel chromatography (hexane-ethyl acetate 50:1) to give the compound 5 (97.20 g; 86 % yield) as a colorless oil.

[0120] To 850 ml of a solution of the compound 5 (97.20 g; 0.247 mol) in annydrous tetrahydrofuran was added 152 ml (0.252 mol) of a solution of 1.66 N n-butyllithium in hexane under a nitrogen atmosphere at -70 °C and stirred at the same temperature for 1.5 hours. To the mixture was added 171 ml (0.741 mol) of triisopropyl borate at - 70 °C and stirred for 3 hours with gradually warming to room temperature. Under cooling with ice, 500 ml of water and 320 ml of 5 % citric acid were added to the mixture and stirred at the same temperature for 30 minutes. The solution was extracted with ethyl acetate and the extract was washed with water and saturated brine successively, then dried and concentrated. The residue was purified by silica gel chromatography (hexane-ethyl acetate 2:1) to give the compound 2 (51.10 g; 58 % yield) as colorless crystals.

Reference Example 2 Synthesis of the compound (III-1)

5

10

15

20

25

30

40

(Step 1) Synthesis of the compound 8

[0122] To a solution of 15.30 g (62.4 mmol) of a compound 7 (Journal of Chemical Society, 1925, 1998) in 300 ml of 1, 2-dimethoxyethane was added 3.60 g (3.12 mmol) of tetrakis(triphenylphosphine)palladium (0) at room temperature. To the mixture were added a solution of 18.89 g (74.9 mmol) of a compound 6 (GB-A No. 2276162) in 80 ml of 99 % ethanol and 125 ml (250 mmol) of an aqueous solution of 2 M sodium carbonate and the reaction suspension was heated under refluxing in an argon atmosphere for 6 hours. After cooling, the reaction mixture was filtered off to remove an insoluble substance. The filtrate was acidified with 2 N hydrochloric acid and extracted with ethyl acetate. The extract was washed with 5 % aqueous solution of sodium bicarbonate and saturated brine successively, then dried and concentrated. The residue was purified by silica gel chromatography (hexane-ethylacetate 1:1) and recrystallized from hexane-ethyl acetate to give the compound 8 (15.68 g; 97 % yield) as colorless crystals.

(Step 2) Synthesis of the compound 9

[0123] To a suspension of the compound 8 (15.34 g; 59.39 mmol) in 240 ml of anhydrous dichloromethane were added 16.6 ml (118.8 mmol) of triethylamine and 6.93 ml (89.09 mmol) of methanesulfonyl chloride under ice-cooling and stirred at the same temperature for 2 hours. After the solvent was removed, the residue was acidified with 1 N hydrochloric acid (100 ml) and extracted with ethyl acetate. The extract was washed with 1 N hydrochloric acid, 5 % aqueous solution of sodium bicarbonate and saturated brine successively, then dried and concentrated. The residue was recrystallized from hexane-ethyl acetate to give the compound 9 (17.24 g; 86 % yield) as colorless crystals.

(Step 3) Synthesis of the compound (III-24)

[0124] To 210 ml of a suspension of the compound 9 (17.03 g; 50.63 mmol) in acetic acid were added 6.23 g (75.95 mmol) of sodium acetate and 3.91 ml (75.95 mmol) of bromine at room temperature and stirred at the same temperature for 16 hours. After 3.91 ml (75.95 mmol) of bromine was added to the reacted suspension and stirred at 50 °C for 4 hours, 3.91 ml (75.95 mmol) of bromine was added and stirred at 50 °C for 3 hours. The reaction mixture was poured into 1 L of 1 M aqueous sodium thiosulfate and stirred for 30 minutes. The precipitate was collected by filtration and washed with water. The obtained crystals were dissolved in 800 ml of chloroform, washed with 5 % aqueous solution of sodium bicarbonate and saturated brine successively, then dried and concentrated. The residue was recrystallized

from hexane-ethyl acetate to give the compound (III-24) (18.12 g; 86 % yield) as colorless crystals.

(Step 4) Synthesis of the compound 10

[0125] To a suspension of the compound (III-24) (15.80 g; 38.05 mmol) in 400 ml of 1, 2-dichloroethane was added 12.30 g (57.05 mmol) of 80 % m-chloroperoxybenzoic acid at room temperature and stirred at the same temperature for 17 hours. The reaction mixture was poured into 360 ml of 0.2 M aqueous sodium thiosulfate and extracted with chloroform. The extract was washed with 300 ml of 0.2 M sodium thiosulfate and 200 ml of 5 % of sodium bicarbonate (× 2) successively, then dried and concentrated. The residue (15.80 g) was dissolved in 330 ml of 1, 2-dimethoxyethane and 30 ml (120 mmol) of 4 N hydrochloric acid was added. After the reaction mixture was stirred at 50 °C for 12 hours and cooled, the solvent was removed and the residue was extracted with ethyl acetate. The extract was washed with 5 % aqueous solution of sodium bicarbonate and saturated brine successively, then dried and concentrated to give the compound 10 (14.35 g; 97 % yield) as pale brown crystals.

15 (Step 5) Synthesis of the compound (III-1)

[0126] Using an analogous procedure for the compound (I-4), 12.63 g of the compound (III-1) as colorless crystals (88 % yield) was obtained from the compound 10 (12.0 g; 29.76 mmol).

20 Example 2 Synthesis of the compound (I-4)

25

30

35

40

50

(Step 1) Synthesis of the compound 11

[0128] To a solution of 816 mg (2 mmol) of a compound (III-2) in 40 ml of 1, 4-dioxane were added 114 mg (0.1 mmol) of tetrakis(triphenylphosphine)palladium (0), 748 mg (2.09 mmol) of the compound 2 and 589 mg (2.77 mmol) of powders of anhydrous potassium phosphate at room temperature and heated in a nitrogen atmosphere at 85 °C for 23 hours. The reaction mixture was cooled and extracted with ethyl acetate. The extract was washed with 2 N hydrochloric acid, 5 % aqueous sodium bicarbonate and saturated brine successively, then dried and concentrated. The residue was purified by silica gel chromatography (hexane-ethyl acetate 4:1) and crystallized from pentane to give the compound 11 (745 mg; 67 % yield) as pale yellow crystals.

(Step 2) Synthesis of the compound (I-4)

[0129] To a solution of the compound 11 (557 mg; 1 mmol) in 10 ml of dichloromethane was added 259 mg (1.2 mmol) of 80 % m-chloroperbeuzoic acid at room temperature and stirred for 15 hours. The reaction mixture was poured into 0.1 M aqueous sodium thiosulflate and extracted with ethyl acetate. The extract was washed with 0.1 M aqueous sodium thiosulfate, 5 % aqueous sodium bicarbonate and saturated brine successively, then dried and concentrated. To a solution of 650 mg of the obtained residue in 5 ml of methanol was added a solution of 1 M sodium methoxide in 2 ml of methanol under ice-cooling and stirred for 30 minutes. After the reacted solution was acidified with 2 N hydro-

chloric acid and extracted with ethyl acetate, the extract was washed with saturated brine, then dried and concentrated. To a solution of 647 mg of the obtained residue in 10 ml of tetrahydrofuran was added 2 ml of 1 M tetrabutylammonium fluoride in tetrahydrofuran under ice-cooling and stirred for 30 minutes. The obtained reaction mixture was poured into 2 N aqueous hydrochloric acid under ice-cooling to acidiiy and extracted with ethyl acetate. The ethyl acetate layer was washed with water, 5 % aqueous sodium bicarbonate and saturated brine successively, then dried and concentrated. The residue was purified by silica gel chromatography (hexane-ethyl acetate 2:1) to give 275 mg of the compound (I-4) (62 % yield) as powders.

Reference Example 3 Synthesis of the compound (III-2)

10

15

20

25

30

40

45

50

(Step 1) Synthesis of the compound 13

[0131] To 26 ml of a solution of 2.61 g (10 mmol) of a compound 12 (Journal of Organic Chemistry, 1987, 52, 4485) in dimethylformamide were added 400 mg (10 mmol) of 60 % sodium hydride dispersion in oil and 836 mg (11 mmol) of chloromethyl methyl ether under ice-cooling and stirred for 30 minutes. After warming to room temperature, it was further stirred for 1 hours. The reaction mixture was concentrated under reduced pressure and extracted with ethyl acetate. The extract was washed with 5 % aqueous solution of sodium bicarbonate and saturated brine successively, then dried and concentrated. The residue was recrystallized from ethyl acetate-hexane-pentane to give the compound 13 (2.8 g; 92 % yield).

(Step 2) Synthesis of the compound 14

[0132] Using an analogous procedure for the compound 8, the compound 14 was obtained as a pale yellow oil (96 % yield) from the compound 13 and the compound 15 (Tokyo Kasei Kogyo Co., Ltd.).

(Step 3) Synthesis of the compound 16

[0133] To 16 ml of a suspension of 1.38 g (4.3 mmol) of the compound 14 in methanol was added 4 ml of 2 N aqueous hydrochloric acid and stirred for 1 hour under warming at 60 °C. The reaction mixture was concentrated under reduced pressure and extracted with ethyl acetate. The extract was washed with 5 % aqueous sodium bicarbonate and saturated brine successively, then dried and concentrated to give the compound 16 (1.12 g; 94 % yield) as a yellow crystal-line residue.

(Step 4) Synthesis of the compound (III-2)

[0134] To 12 ml of a solution of the compound 16 (1.12 g; 4.05 mmol) in anhydrous dichloromethane was added 1.02 ml (6.08 mmol) of triluoromethanesulfonic anhydride and then 980 ml (12.2 mmol) of pyridine under ice-cooling and stirred for 30 minutes. The reaction mixture was allowed to warm to room temperature and stirred for additional 2 hours and the solvent was removed. The residue was extracted with ethyl acetate, washed with 5 % aqueous sodium bicarbonate and saturated brine successively, then dried and-concentrated. The obtained crude product was purified by sil-

ica gel chromatography to give 1.23 g of the compound (III-2) (74 % yield) as a white crystalline residue.

Example 3 Synthesis of the compounds (I-5), (I-6) and (I-7)

5

10

15

20

25

30

45

50

55

35 (Step 1) Synthesis of the compound (I-5)

[0136] Using an analogous procedure for the compound 1 in Example 1, 634 mg (0.972 mmol) of the compound (I-5) was synthesized from 881 mg (1.50 mmol) of the compound (III-11) and 370 mg (1.95 mmol) of 3-trifluoromethyl boric acid. 65 % yield.

(Step 2) Synthesis of the compound 18

[0137] Using an analogous procedure for the compound 3 in Example 1, the compound 18 (360 mg; 0.640 mmol) was synthesized from 433 mg (0.664 mmol) of the compound (I-5). 96 % yield.

(Step 3) Synthesis of the compound (I-6)

[0138] Using an analogous procedure for the compound (I-3) in Example 1, 185 mg (0.293 mmol) of the compound (I-6) was synthesized from the compound 18 (170 mg; 0.302 mmol). 97 % yield.

(Step 4) Synthesis of the compound (I-7)

[0139] Using an analogous procedure for the compound (I-1) in Example 1, 85 mg (0.179 mmol) of the compound (I-7) was synthesized from 150 mg (0.238 mmol) of the compound (I-6). 75% yield.

Reference Example 4 Synthesis of the compound (III-11)

(Step 1) Synthesis of the compound 19

20

25

45

50

55

[0141] Using an analogous procedure for the compound 10 in Reference Example 2, the compound 19 (24.04 g; 103 mmol) was synthesized from the compound 7 (40.03 g; 163 mmol). 63 % yield.

(Step 2) Synthesis of the compound 20

[0142] To a solution of tert-butylamine (5.0 ml; 47.8 mmol) in 10 ml of toluene was added iodine (5.94 g; 23.39 mmol) under a nitrogen atmosphere and stirred for 50 minutes at room temperature. The compound 19 (5.46 g; 23.43 mmol) was added to the solution under ice-cooling, then warmed to room temperature and stirred for 6 days. The reaction mixture was poured into 1 M of aqueous sodium thiosulfate and extracted with ethyl acetate. The extract was washed with 1 M aqueous sodium thiosulfate and saturated brine successively, then dried and concentrated to give the compound 20 (8.30 g; 23.16 mmol). 99 % yield.

(Step 3) Synthesis of the compound 21

[0143] Using an analogous procedure for the compound 1 in Example 1, the compound 21 (2.10 g: 4.87 mmol) was synthesized from the compound 20 (8.70g; 24.20 mmol). 20 % yield.

40 (Step 4) Synthesis of the compound (III-11)

[0144] Using an analogous procedure for the compound (I-2) in Example 1, 2.61 g (4.44 mmol) of the compound (III-11) was synthesized from the compound 21 (3.20 g: 7.42 mmol). 60 % yield.

Example 4 Synthesis of the compound (I-9)

5

10

15

20

25

30

(Step 1) Synthesis of the compound 22

[0146] Using an analogous procedure described in Reference Example 1, 1.53 g (3.63 mmol) of the compound (I-1) was silylated and the obtained crude product was crystallized from methanol to obtain the compound 22 (2.62 g; 95 % yield) as colorless crystals.

I-9

(Step 2) Synthesis of the compound 23

[0147] To a solution of the compound 22 (2.38 g; 3.1 mmol) in 90 ml of acetone were added 415 mg (3.74 mmol) of trimethylamine-N-oxide dihydrate and 1.60 ml of 5 % aqueous solution of osmium tetroxide (0.3 mmol) and stirred for 1 hour at room temperature. After 20 ml of water was added to the reaction mixture, 4.0 g of sodium bicarbonate and 4.0 g of sodium bisulfite were added and stirred for 30 minutes. The reaction mixture was concentrated under reduced pressure and the residue was extracted with ethyl acetate. The extract was washed with saturated brine, then dried and concentrated.

[0148] A solution of 1.96 g (9.16 mmol) of sodium periodate in 33 ml of water was added dropwise to a solution of 2.46 g of the residue obtained by the above method in 90 ml of ethanol with stirring at room temperature. After stirring for 2 hours, 100 ml of water was added to the reaction mixture and the precipitate was collected by filtration and dried to give the compound 23 (1.98 g; 87 % yield) as powder.

(Step 3) Synthesis of the compound (I-9)

[0149] To a suspension of 146 mg (0.38 mmol) of n-propyltriphenylphosphonium bromide in 2.5 ml of anhydrous tetrahydrofuran was added 32 mg (0.29 mmol) of potassium tert-butoxide in a nitrogen atmosphere at 0 °C and stirred at the same temperature for 1 hour. The reaction mixture was cooled to -78 °C, a solution of the compound 23 (70 mg; 0.095 mmol) in 1.5 ml of anhydrous tetrahydrofuran was added and stirred for 30 minutes at the same temperature and for additional 1 hour at room temperature. The reaction mixture was poured into an ice-cooling aqueous solution of saturated ammonium chloride and extracted with ethyl acetate. The extract was washed with saturated brine, then dried and concentrated.

[0150] Using an analogous procedure described in Example 2 Step 2, 70 mg of the residue obtained by the above method was desilylated and the obtained crude product was purified by silica gel chromatography (toluene-ethyl acetate 4:1) to give 37 mg of the compound (I-9) as pale yellow crystals.

Example 5 Synthesis of the compound (I-565)

(Step 1) Synthesis of the compound (I-563)

20

25

50

[0152] Using an analogous procedure for the compound 2 in Example 1, 850 mg of the compound (I-563) was obtained from a compound (III-27) (800 mg; 1.59 mmol) and the compound 2 (1.25 g; 3.50 mmol) as colorless crystals (86 % yield).

(Step 2) Synthesis of the compound (I-565)

[0153] To a solution of 120 mg (0.193 mmol) of the compound (I-563) in 3 ml dimethoxyethane and 1 ml of ethyl acetate was added 2.4 ml of 4 N hydrochloric acid at 40 °C and stirred at the same temperature for 2 hours 20 minutes. After cooling, the reaction mixture was neutralized with aqueous solution of saturated sodium bicarbonate and extracted with ethyl acetate. The extract was washed with saturated aqueous solution of sodium bicarbonate and saturate brine, then dried and concentrated. The obtained crude product was crystallized from hexane-ethyl acetate to give 93 mg of the compound (I-565) as pale yellow crystals (92 % yield).

35 Reference Example 5 Synthesis of the compound (III-27)

(Step 1) Synthesis of the compound 24

[0155] In a mixture of 17.5 ml of tert-butanol and 5.3 ml of 2-methyl-2-butene was suspended 415 mg (1.00 mmol) of the compound (III-24), 6.7 ml of aqueous solution of 724 mg (8.00 mmol) of sodium chlorite and 968 mg (6.20 mmol) of sodium dihydrogen phosphate dihydrate was added and stirred at the same temperature for 4 hours 30 minutes. The solution of 1 M sodium thiosulfate was added to the reaction mixture and the mixture was extracted with ethyl acetate.

Then, organic layer was extracted with aqueous solution of saturated sodium bicarbonate. Then the aqueous layer was acidified with conc. hydrochloric acid and extracted with ethyl acetate. The extract was washed with saturated brine, then dried and concentrated to give the compound 24 (384 mg; 89 % yield) as colorless crystals.

(Step 2) Synthesis of the compound (III-27)

5

15

20

25

40

45

50

55

[0156] To 10 ml of a suspension of the compound 24 (1.50 g; 3.48 mmol) in tert-butanol were added 0.533 ml (3.83 mmol) of triethylamine, followed by 0.825 ml (3.83 ml) of diphenyl phosphate azide, and the mixture was stirred at 100 °C for 23 hours. After the reaction mixture was cooled, water was added to it and the mixture was extracted with ethyl acetate. The extract was washed with saturated aqueous solution of sodium bicarbonate and saturated brine, then dried and concentrated. The residue was purified by silica gel chromatography (hexane-ethyl acetate 2.5:1) to give 1.43 g of the compound (III-27) as colorless form product (82 % yield).

Example 6 Synthesis of the compound (I-480)

[0158] To a solution of 120 mg of a compound which was eliminated a Boc group of the compound (I-479) in 2 ml of tetrahydrofuran and 0.5 ml of methanol were added 33 ml (0.34 mmol) of 3-methyl-2-butenal and 90 ml (0.26 mmol) of 3 M aqueous solution of sulfuric acid at 0 °C and stirred for 10 minutes. Further, 19.6 mg of sodium borohydride was added in small portions to the mixture and stirred at room temperature for 1 hour. The saturated aqueous solution of sodium bicarbonate was added to the reaction mixture and extracted with ethyl acetate. The extract was washed with saturated brine, then dried and concentrated. The residue was purified by silica gel chromatography (hexane-ethyl acetate 3:1) to give 98 mg of the compound (I-480) as colorless crystals (78 % yield).

35 Example 7 Synthesis of the compound (I-628)

[0160] Using an analogous procedure for the compound 1 in Example 1, 1.2 g (2 mmol) of the compound (III-44) was reacted with 551 mg (2.2 mmol) of 4-bromomethanesulfonyl anilide were reacted, followed by desilylated by an analogous procedure described in Example 1 Step 2. The obtained crude product was crystallized from ethyl acetate-hexane to obtain 760 mg of the compound (I-628) as pale yellow crystals (73 % yield).

Reference Example 6 Synthesis of the compound (III-44)

(Step 1) Synthesis of the compound 25

5

10

15

20

35

50

[0162] Using an analogous procedure for the compound 5 in Reference Example 1, a crude product was synthesized by the reaction of 22.2 g (52.7 mmol) of the compound 21, 8.95 g (132 mmol) of imidazole and 17.5 g (1.16 mmol) of tert-butyldimethylsilyl chloride. The obtained product was purified by silica gel chromatography (ethyl acetate:hexane=1:20) and crystallized from ethyl acetate-hexane to give 29.7 g of the compound 25 as colorless crystals (85% yield).

(Step 2) Synthesis of the compound (III-44)

[0163] Using an analogous procedure for the compound 2 in Reference Example 1, 402.7 g (610 mmol) of the compound 25 was reacted with 678 ml (814 mmol) of 1.08 N s-butyl lithium in cyclohexane, followed by addition of 282 ml (1.22 mol) of triisopropyl borate to give 246 g of the compound (III-44) as colorless powders (65 % yield).

Example 8 Synthesis of the compound (I-233)

[0165] In an argon atmosphere, 2.87 g (8.0 mmol) of the compound 20 was dissolved in 32 ml of dimethoxyethane and 8 ml of ethanol, 3.01 g of the compound 2 and 16 ml of 2 M aqueous solution of sodium carbonate were added and the reaction mixture was degassed. To the mixture was added 462 mg (0.4 mmol) of palladium tetrakistriphenylphosphine and the mixture was heated under refluxing for 2 hours. After the reaction mixture was cooled to room temperature, 2.02 g (12.0 mmol) of 4-methylthiophenyl boronic acid, 462 mg (0.4 mmol) of palladium tetrakistriphenylphosphine, 16 ml of 2 M aqueous solution of sodium carbonate, 32 ml of dimethoxyethane and 8 ml of

ethanol were added to it. Then, the reaction mixture was degassed again and heated under refluxing for 16 hours. After the reaction mixture was cooled to room temperature, 100 ml of 5 % aqueous citric acid was added and stirred at the same temperature for 1 hour. Ethyl acetate was added to the reaction mixture and the organic layer was washed with 5 % aqueous citric acid, water, saturated aqueous solution of sodium bicarbonate and saturated brine successively, then dried and concentrated. The residue was purified by silica gel chromatography (hexane-ethyl acetate 3:1) to obtain 2.13 g of crude crystals. The obtained crude crystals were recrystallized from hexane-ethyl acetate to give 1.66 g of the compound (I-233) as colorless crystals (44 % yield)

Example 9 Synthesis of other compounds

[0166] Following compounds (I) were synthesized by analogous procedures described above. The structures and physical constants of the compounds (III) and (I) are as follows.

		OMe	OMe III-12 MeO Br
5	III-1		MeO OMOM
		MeO OMs OMe	OMe
•	III-2	F—()—()—OTI	III-13 MsO-(Br
10	0	MeO CHO	MeÓ ÒMOM
		OMe	III-14 MeO-
	- 111-3	MsO-\Br	
15		MeO ─OMOM OMe	OMe
	III - 4	MsO-Br	III-15 Me ₂ N————————————————————————————————————
	•	MeO CONMe ₂	MeO CHO
20	w e	F_OMe	OMe
	111-5	MsO———Br	MeO OMs
		MeO OMs	OMe
.25	III-6	HO-{Br	III-17 MsO————————————————————————————————————
	III-7	OMe	Meď CHO Me
	111-7	MeO CHO	III-18 MsO-Br
30		OMe	Me F
	III-8	MsO-()-OTf	III-19 MsO
35	III-9	MeÓ MsO-(T)-OTf	F OMe
33		MsO————OTf OMs	III-20 HO——————Br
		OMe	MeÓ ÒH OMe
40	III-10	F——————OTI	III-21 MeO-(Br
		MeÓ OMe	MeO O-
	III-11	Br—OBn	OMe
45		MeO OMs OMs	III-22 MeO Br
			MeÓ Ò─

5

	OMe		OMe
III-23	MsO——————Br	III-34	Br————OBn
	MeO CO₂Me		MeO OMS OTBS
	OMe		OMe
111-24	MsO-(Br	111-35	Br————OBn
	мео сно		MeÓ ÒMs F
	OMe		OMe
III-25	MsO-\Br	III-36	Br————OBn
•	MeÓ CH ₂ OH		MeO OMOM OTBS OMe
III-26	OMe MeO——————Br	111-37	Br—————OBn
20	MeO — Br		MeO O- OH
	. `OH		OMe
111-27	OMe	III-38	TfO-(-)-OBn
111-27	MsO———Br		MeO OMs
	F MeÓ NHBoc		OMe C
III-28	MsO OMe	111-39	TfO-C-DBn
111-28	Br		MeÓ NO₂ OMe
	MeÖ OMe	III-40	TfO-COMOM
III-29	MsO-()-OTI		MeO F
	F MeO		OMe
111-30	OMe	III- 4 1	TfO-\NHBoc
	MeO ₂ C-√OTf		MeO F
	MeÓ OMe	111. 40	OMe O ₂
III-31	NC-(OTI	III-42 _.	
	MeO OMe		MeO OHC OMe
III-32	O ₂ N-{}OTf	111-43	TfO-(-)-OBn
	MeOO		MeO OMs
III-33	MsO-()-OTf	111-44	<i>—</i>
	F MeO CHO	***	(HO)₂B OTBS OTBS
			0.00 0.00

5	III-45	MsO OH	Ш-56	MsO OMe HO—Br MeO
10	III-46	MsO—————————Br MeO CH ₂ OH	111-57	HO————————————————————————————————————
15	Ш-47	HO————————————————————————————————————	III-58	но-Сэно онс
75	III-48	. HO—Br EtO OH	III-59	MsO——————————Br EtO OMs
20	III-49	HO—Br	Ш-60	MsO————————————————————————————————————
25	Ш-50	MsO————————————————————————————————————	Ш-61	MsO————————————————————————————————————
30	III-51	MsO OH	Ш-62	MOMOH ₂ C OMe MeO CHO
35	III-52	MsO — Br	Ш-63	MsO-OTf Me
40	Ш-53	MsO————————————————————————————————————	III-64	HO-CI-OTf
4 5	III-54	MsO————————————————————————————————————	III-65	OMe B(OH) ₂
50	III-55	HO————————————————————————————————————	П1-66	OMe

	Me		Me
III-67	TBSO-()-B(OH)2	Ш-77	Br-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Mé OMe		Mé F
III-68		FFF 60	Me /=
111-00	Me ₂ N-(_)-B(OH) ₂	III-78	TfO-(OBn
	MeÓ Me		iPr F
III-69	Me ₂ N-\B(OH) ₂	TTT 70	
111.07		111-79	TfO—————OBn
	Mé		Me F
	TBSO_OMe		_CI
III-70	Me ₂ N-()-B(OH) ₂	III-80	TfO-{-}-
	MeO		CI OMe
	Me /=		Me
****		III-81	T10-{-}-
III-71	Br————O)—(
	Mé ÒMe		Mé ÖMs ÖMs
	NMe ₂		_Me _
III-72	Br—()	III-82	Tf0-{-}-{-}-0
	Me ₂ N OH		MeO F
	Me		Me
ПІ- 7 3	Br—(T)—O	Ш-83	Tf0-{\big }-6\big
	Me OH		
	Et 🧢		MeO OMe
III-74			
111-74	Br———O	III-84	TfO-(O
	Eť ÒH		MeÓ F
	Me S		Me
III-75	_ Br-{	III-85	(HO) ₂ B-
	MeO OH OMe		Me OMe
	Me		
III-76			Me
111-70	Br————O	Ш-86	(HO) ₂ B-()-()-(
	MeÖ ÖH ÖH		Me F

		OMe	>		
•	F.	I но-{_}	_o I-14	MsO-(
5		MeO OH	ЭН	MeO =0	–∕(OMs
	•	OMe	<i></i>	Me ₂ N	\
	I-2	MsO-(T)-(T)	-0 I-15	OMe	
		MeO OMs O	Ms .	MsO-(_} - 0
10		OMe	, L	MeO =O	OMs
	I- 3			OMe	>
			F-16	но-{¯}-{¯}-{¯	<u></u>
		OMe	Ms /=>	MeO =0	{ ○H
15	I-4		_,~<	Me ₂ N	· · ·
•	·	MeO OH O	U 147	OMe C	
		OMe	H i-17	MsO-(<i>_</i> }~°
	I-5		.,~(_)	MeÓ OMs OMe	F \
20	•	F ₃ C MeO OMs O	Ms I-18	но-{-}-	- √
		OMe	,	~ ~ ~ ~	√ °
	- I-6		رسر -ه	MeÖ ÖH F, OMe	F
		F ₃ C MeO OMs O	Ms , I-19	MsO-	₹
25		OMe	>		₹ 0 _
	1-7		٠ - ٥	MeÓ OMs F, OMe	ОН
•		F ₃ C MeO OH O	H 1-20	MsO-(
		OMe		MeO OMs	OMs ,
30	I-8	MsO-()-()-()-	o' _ /	F OMe	<i></i>
		MeO CO₂H	/ I-21	MsO-(
		OMe OH		MeO OMs	-(OMs
	1-9	но-{_}-{_}-		F, OMe	>
35		MeO OH OH	I-22	HO-	<u>`</u> }-o^-
		OMe	√	MeO OH	ў ОН
	I-10	MsO-()-()-()-()		OMe	
		MeO CH2OH OMS OMe	I-23	MsO-{}	~~~
40	i-11	McO_	<i>,</i> /	MeO OMs	сн⁵он
	1-11			ОМе	_}_
		MeÓ CH₂OH ÒMs OMe	I-24	MsO-{}-{}-	〉 oʻ
	I-12	но-{-}-	<i></i>	MeO OMs	Me
45				OMe	
		MeÓ CH₂OH ÒH OMe	I-25	HO-()-(")-(")-(")-(")-(")-(")-(")-(")-(")-	> -o ⁻
	I-13		\prec	MeO OH	Me
50		MeÓ ≻O OH Me ₂ N		•	

1-26	но	1-39 HO-
i-27	MSO-OH-OH-OH-OH-OH-OH-OH-OH-OH-OH-OH-OH-OH	мео он он ОМе 1-40 но — Ме
I-28	MsO—OMs —OMs —OMs —	MeO OH OH OH OH
l-29	но-{>-{>-{	HeO OH OH OMe Br
1-30	MsO OMs OMs	HeO OMS OMS OME Br
l-31	но-С	H-43 HO
I-32	MeO OH OH OMe	I-44 MsO OMs OMs OMs OMe
I-33	MeO OMS OMS OME HO————————————————————————————————————	I-45 HO OH OH OH OME
I-34	OMe	I-46 HO————————————————————————————————————
I-35	но-С	I-47 HO OH OH OH OME
I-36		I-48 HO————————————————————————————————————
I-37	MeO OMS OMS OME	ј-49 но-Оме ОН ОН ОН
I-38	MeO OMs OMs	I-50 HO MEO OH OH

	•		110
5	I-51	HO OME HO OH	I-63 HO OME OH OH
. 10	i-52	OMe_	MeO OMs OMe
	I-53	HO————————————————————————————————————	I-65 OME OMS
15	I-54	HO————————————————————————————————————	I-66 OH OH MSQ OMe
20	I-5 5	HO————————————————————————————————————	I-67 HO OMS OMS
25	I-56	HO————————————————————————————————————	MeO OMe
30	I-57	MeO OMS OMS	I-69 MsO OMs OMs I-70 MsO OMs
	1-58	OMe MeO OMs OMs	I-70 MsO OMs OMe
35	1-59	POMe MeO OH OH	MeO OH OMe
40	I-60	OMe MeO OH OH	MeO OMe F
45	l-61	OMe OMs OMs	I-74 MsO-OMs OH
50	I-62	MeO OH OH	I-75 MsO OMs OMs

	>	OMe
I-76	MsO-OMs OMs	I-89 HO MeO OH F
I-77	HO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO	I-90 MsO
	он он	MeO OMs. F
I-78	MeO OH	I-91 MOMO - OME
1-79	OMe OH	MeO OMOM OMOM OMe
	MeO OMs	I-92 MeO O OH
1-80	MeO OMs	OMe
I-81	OMe	1-93 HO OH OH
1-01	MeO OH OH	I-94 HO
I-82		MeO OH OH
I- 8 3	MeO OCH ₂ CO ₂ Et	I-95 HO
	MeO OMs CHO	MeO OH OH OMe
I-84	MsO-Charles Control of the Control o	1-96 но— — — — — — — — — — — — — — — — — — —
	MeO OMS CO ₂ Et	I-97 MsO-
I-85	MsO OH	MeO OMs OMs
I-86	CO ₂ Et OMe	I-98 MsO
1-00	MeO OMs CH₂I	MeO OMs OMs
1-87	HO OMe	I-99 MsO OMS OMS
	MeO OMs	I-100 MsO
I-88	MsO OMs OCOPh	MeO OMs OMs

	OMe OMe	
5	F-101 HO	
	MeÓ OH OH OME OME I-102 HO OME I-115 HO F	
10	мео он он	
	I-103 HO OH OH OH OH	
15	I-104 HO OH OH OH	B
20	I-105 HO-OME I-118 HO-OME OH OH	
25	I-106 HO OME I-119 HO OME OH OH	
	I-107 MeO Me OH OH OH CI	
30	I-108 MsO OMOM OH OH OH	
35	I-109 MsO OMS OMS CI MeO OMS OH	
40	I-110 MsO OMs OMs OMs OMs MeO CO ₂ H OMs OMs OMs OMs OMs OMs OMs OMs	
	I-111 MsO N I-124 HO MeO CO-H OH	
4 5	I-112 MsO I-125 MsO OMe	
50	MeÓ OMS OMS MeO CO ₂ Me OMS I-113 MsO MeO OMS OMS	

			OMe	(l-139	OMe	NOMe
I-126	но-{-	}	> -{	<u>`</u> }~~	но-{		-0
		MeO	CO ₂ Me	Он	I-140	MeÓ ÖH ÖI OMe	H
I-127	но-{-		OMe		но-{=	\rightarrow	و السر
		MeO	CO2H	OH ′ √_O	<u></u>	MeO OH OI	
	_		OMe_	_сно>—	I-141	OMe /=\	N-o' \ <u></u>
I-128	MsO-{	<u>}</u>	` <u>}</u> -{	<u>}</u>	HO-()		0
		MeÓ	OMs OMe	OMs	⊩142 <u>/</u>	MeO OH OH	N-N NMe
I-129	MsO-		- }~=		но-{		·o′
	~	MeO	OMs	-(/ OMs	I-143	MeÓ ÖH ÖI OMe	N-N_O
l-130	M20-/=	=_/=	OMe -⟨ /=	<u> </u>	но	$ \hspace{-1em} -$	٠
	mso-//	MeO	OMS	√S OMs		MeO OH O	н
	_	co	OMe	CHO	⊩144 √ HO√		-0
I-131	MsO-{	<u>}~</u>	$\gg <$	\nearrow \checkmark		MeO OH O	$\overrightarrow{\ }$
		MeÓ	OMs OMe	OMs	1 445	OMe	CO ₂ Et
l-132	MsO-	<u></u>	-	.}_s′	I-145 HO√=	\rightarrow	-6 \
	~	MeO	OMs	《 OMs 、		MeO OH F	:
l-133	/=	=\ /=	OMe -	_CH₂OH <i>}</i>	I-146	OMe	
1-133	но-{		~~~	∕ _°	MsO-{	MeO CONH ₂ C	-0 <u></u>
		MeO 	OMe_	ОН	i-147	OMe	ZIVIS
I-134	но-{	<u>}</u>	\sim	_s	но-{	$\mathbb{A}^{\mathbb{Z}}$	-o
		MeÓ	ОН ОМе	он		MeO CONH₂ O	H ·
I-135	но-{=		-		_{Me} I-148	OMe C	
		ے کے MeO	ОН	√	MsO≺		<i>}</i> -₀′
1 400		-\ <i>/</i> =	OMe	,	H	MeÖ ÖMs OMe	CO₂H \
I-136	но—) —о он	I-149 HO		
		MeO	OH OMe_	OH -		MeO OH	
l-137	но-{_	<u>}</u>	\rightarrow	} ~९	I-150	OMe C	
		MeÓ	OH OMe.	OH NOH	MsO≺		<i>}</i> −ó
I-138	но-{=		- - - -	`}-o'		MeÓ ÒMs	CH ₂ OH
	<u>~</u>	MeO	∕° /	ОН			

55

5	0Me 1-151 HO————————————————————————————————————	I-164 MsO OMOM OMS
10	I-152 OME CHO OH	I-165 HO MeO OMOM OH
	I-153 HO-OMEOOH	I-166 MsO OH OMs
15	I-154 MsO-OMe OMs OMs	I-167 MsO
20	I-155 HO———————————————————————————————————	мео о омs Оме
25	I-156 MsO OMs OH	MeO O OH OMe
20	I-157 MsO OMs OMs OMs	MeO O OMS OME
30	I-158 MsO OMs OMs OMs	MeO O— OH OMe
<i>35</i>	I-159 MsO OMs OCH ₂ CO ₂ Me	MeO OMs OMs OMe OMs
	I-160 HO OH OCH ₂ CO ₂ H	H-172 HO MeO OH OH OMe
40	I-161 MsO	I-173 HO OH OH OH OME
45	MeÓ OMs OCH ₂ CO ₂ Me OMe I-162 HO	I-174 HO MeO OH O Br
50	MeO OH OCH₂CO₂H OMe I-163 MsO MeO OMOM OH	I-175 HO-OHOHOH

OMe
-188 F ₃ C-
I-176 MsO OMs OMs OMs OMs
MeO OMS OMS I-189 F3C
I-177 MsO-OMS OMS OMS OMS
MeO OMs OMs / I-190 F ₃ C
OMe MeO OH OH
I-178 MsO I-191 N-
MeO OMs OMs
OMe
I-179 MsO
MeO OMs OMs MeO CH ₂ OH OH
I-180 MsO I-193 HO OME
Moo OMe OMe
OME-OH (
I-181 HO O O I-194 N
MeO OH OH OH MeO CH ₂ OH OMs OMe
1-182 HO-()-()-()-()-()-()-()-()-()-()
MeO OH OH (,)
OMe MeO O OMS OMe OMe
I-183 HO JUNE I-196 HO JUNE JUNE JUNE JUNE JUNE JUNE JUNE JUNE
MeO OH OH
OMe CO2H
I-185 MsO
MeO OMS OMe CO ₂ Me OMe CO ₂ Et
I-186 HO
MeO O OH OMe CO ₂ H
MeO OH OME CO2H OME OHC
MeO OMs OH
1-200 MsO-(
MeO OMs OMs

5	I-201 MsO OMe	I-213 HO OMe
	MeO OMs OMs OMe	MeO OH OH OH
10	I-202 MsO OMs OMs	HeO OMS OMS OMS OMS
	I-203 MsO	I-215 MsO
15	MeO OMs OMs OMs	MeO OMS OMS OME O2Me MSO
	MeO OMs OMs	MeO OMs OMs OMe
	I-205 MsO OMs OMs	I-217 HO MEO OH OH OH
25	I-206 но————————————————————————————————————	I-218 F ₃ C MeO OH OH
	MeO OH OH OMe	I-219 OMe
30	MeO OH OH OH OME	F ₃ C MeO OMs OMs OMe
	MeO OH OH OMe	F ₃ C MeO OH OH OH OMe
35	I-209 HO MeO OH OH	MeO OMs OMs
40	04.	I-222 MsO OMS OMS
40	MeO OH OH OME	I-223 но — — — — — — — — — — — — — — — — — —
- 45	MeO OH OH OME	MeÓ OH OH OMe OMe STATE OF ST
	I-212 но-	MeO OH OH OH OMe
50	MeO OH OH	I-225 но — — — S — — — — — — — — — — — — — — —

- 45

OMe >	OMe 🦱
	1-239 MeO ₂ C
1-226 HO	
MeÓ ÒH ÒH Ò	MeO OMs OMs OMe
OMe OMe	
1-227 HO-()-(s' \)	1-240 N-()-()-()
MeO OH OH	MeO OMs OMs OMe
OMe	
I-228 MsO-{ }-{ }-(I-241 N
MeO Me OMs	MeÓ OMs OMs OMs
OMe	
I-229 HO-(1-242 N-()-(
MeO Me OH	MeÓ ÖMs ÖMs OMe
OMe	
I-230 MsO	1-243 MsO \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
MeO Me OMs	MeO CH₂OH CH₂OH
OMe OWS	OMe
I-231 HO-(1-244 MsO-(-)-0
MeÓ Me ÓH OMe	MeO CH₂OH CH₂OH
	OMe 🤝
	1245
MeO OMs OMs OMe	1-243 Me—
I-233 MeS	MeO OMs OMs OMe
	1-246
MeO OH OH)— OMe)—	
1-234 MeO ₂ C	MeO OMs CO ₂ Me
	1-247 MsO-
MeO OMs OMs OMe	
I-235 HO₂C \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	MeÖ ÖMs CO₂Me OMe
- MeO OMs OMs	I-248 MsO-
OMe	MeO OMs OMe
I-236 HO ₂ C ⟨	OMe (=
MeO OH OH	1-249 ¬¬ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
OMe	
I-237MeO ₂ C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	MeO OH OMeOH
MeO OH OH	I-250 OME OH
OMe	
I-238 MeO ₂ C	MeO O— OH
MeO OMs OMs	

	OMe >
5	I-251 MeO CO-H OMS
10	I-252 MeO OME I-264 F MeO OMS F
	1-253 OMe OMe CH ₃ S OMe
15	HO ₂ C — MeO OMS OMS OMS OMS OMS OMS OMS OMS OMS OM
20	HO ₂ C — MeO OH F OMe F OMe F OME
	HeO OH OH I-268 HO TO THE OMS
25	I-256 MeO CO ₂ H OH OMe
<i>30</i>	I-257 HO————————————————————————————————————
30	MeÓ CH ₂ OH CH ₂ OH I-270 Me MeO OH OH OME OME
<i>35</i>	I-258 MsO OMe OMe OMe OMe OMe OMe OMe OMe OMe OM
	I-259 MsO OMS OMS Nec ONS
4 0 .	I-260 но-(
45	I-261 HO OME OME OME OME
	F MeO OH OH OH OMS
50	MeO CHO OMS MeO OH OH

I-301	OMe HO	I-313 HO————————————————————————————————————
	MeO OH OH OME NNHCONH₂	MeO OH OH
I-302		I-314 HO CH ₂ OH _{OH}
I-303	HO————————————————————————————————————	I-315 MsO
I-304	MsO OMs OMs	I-316 HO
I-305	MsO OMs OMs	H-317 F- CO ₂ H OH OH OMS
I-306	MsO OMs OMs	I-318 ————————————————————————————————————
I-307	MsO OMs OMs	I-319 FOR CO2Me OMS
I-308		I-320 F————————————————————————————————————
I-309	MeO OMS OMS OMe HO————————————————————————————————————	I-321 MeO CO ₂ Me OMs
l-310	HO————————————————————————————————————	I-322 MsO OMs OMs
l-311	HO-OMe	I-323 MsO OMs OMs OMs
l-312	MeO OH OH MeO OH OH	I-324 HO OH OH
		I-325 MsO OMs OMs

OMe CO₂H /=	HO ₂ C OMe
I-326 но—	I-339 но-{
MeO OH OH	MeO OMs
O ₂ N OMe NO ₂	OHC OMe
I-327 MsO-(I-340 Mso-(
MeO OMs OMs	MeÓ OMs HO₂C OMe ∕≕
O ₂ N OMe NO ₂	I-341 Ms0
I-328 HO	MeO OMs
MeO OH OH OMe CI	HO ₂ C OMe
I-329 MsO-(I-342 HO-()-()-()
MeO OMs OMs	MeO OH
OMe	HOH ₂ C OMe
I-330 MsO-(1-343 но-
MeÓ CO₂Me F OMe	MeO OMS OHC OMe
I-331 MsO-	I-344 AcO
MeO CO ₂ Me F	MeO OMs
OMe /	HO ₂ C OMe
I-332 но-(I-345 Aco-()-()
MeÓ CO₂H F OMe ∕≕	MeÓ ÖMs MeO ₂ C OMe /=-
1-333 MsO	I-346 Aco-(
MeO CO₂Me F	MeO OMe OMs
OMe OMe	- 1247 - /=\ /=\ /=\ /=\
1-334 MsO-(
MeÓ CO₂Me F OMe	OMe
I-335 но√ → √ → √ → √	1-348 F
MeO CO₂H F	MeO CO₂H OH OMe
OMe OMe	1-349 F
I-336 но-()-()-()-()-()-()-()-()-()-()-()-()-()-	MeO CO₂H OH
MeÖ CO₂H F OMe ∕≕	OMe
I-337 но-{-}	— I-350 MeS————————————————————————————————————
MeO CO₂H F	MeÓ OMS OMS
OHC OMe	
I-338 но-{	,
MeO OMs	

		OMe
1-376	OMe OMe	- I-389 HO
1370		MeO OH OMe
	MeO OH F	I-390 HO
I-377	MSO N	MeO OH
	MeO CO2Me F	OMe
		- I-391 () - ()
I-378	HO N	MsHN MeO OH OH OME OME
	MeO CO ₂ H F	F392 HO
1-379		MeO CH2OH OMe
	MeO CHO F	OMe
	OMe OMe	— I-393 НО-{\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{
1-380		MeO OH OH
	MeO CHO F	I-394 но-{
I-381		
	MeO CHO F	MeO OH OHOON
1-382		1-395 MsO-
	MeO CO ₂ H F	MeO OMs OMs O
		- I-396 MsO-(")-(")-(")-(")-(")-(")-(")-(")-(")-(")
1-383		MeO OMS OMS
	MeO CO ₂ H F	1-397 MsO-NH
I-384		MeO OMs OMs
	MeO CO₂H F	OMe N
	OMe	1-398 MsO \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
I-385		MeO OMS OMS HN
	MeO OMs OMe	OMe S CI
1-386	MsO \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1-399 MsO
	MeO OMs OMe /=	, MeÓ ÖMs ÖMs OMe
1-387	MSO \	1-400 MsO
	MeO OMs \	MeO OMs OMs
	OMe	
I-388		
	MeÓ `OH	

		OMe F_F		OMe S
5	I-401	MsO	I-413	HO-C
	٠	MeO OMs OMs CO2N	Ae	MeÓ ÖH ÖH OMe
	1-402	MsO	1-414	HO-{}-{}-
10		MeÓ ÖMs ÖMs ÖMe		MeO OH OH
	1-403		I-415	HO
		MeO OMs OMs	• • • •	MeÓ OMe NO₂
15	I-404	MsO-(I-416	MsO————————————————————————————————————
		MeÓ ÖMs ÖMs OMe	1 447	MeO OMe NO2
	I-405	MsO-()-()-()-()-()-()-()-()-()-()-()-()-()-	I-417	MsO OMe NO2
20		MeO OMs OMs/ OMe	I-41B	
	1-406	Mso-(S)-(S)-(S)-(S)-(S)-(S)-(S)-(S)-(S)-(S)		MeO OMe NH ₂
		MeO OMs OMs	I-419	HO-{}-
25				MeO OMe NH ₂
	I-407	MsO-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-	I-420	MSO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO
30	•	MeO OMs OMs		MeO OMe NHMs
	1-408	MsO-()	I-421	MsO
		MeO _{OMe} OMs OMs		MeÓ NHCOCF ₃
<i>35</i>	1-409	HO ()	I-422	Mso-()-()
		MeO OH OH		MeO OMs CF ₃ OMe
	J-410	HO-	1-423	MSO
40		MeO OH OH		MeO OMs CF ₃
	I-411		I-424	OMe OME
			1-424	MsO OMs CF ₃
45		OMe C		MeO OMs CF ₃
70	I-412	HO-CA-CO	1-425	Mso-()-()-()-()-()-()-()-()-()-()-()-()-()-
		MeO OH OH		MeO OMs CF ₃

	OMe >		OMe (
1-476	ACHN-	I-489	MeO ₂ C — MeO OH
	MeO OMe F	1 400	OMe
1-477	H₂N-C-N- Ö MeO OMe F	1-490	MeO ₂ C OMs
1-478	HO————NHBoc		OMe
	MeO OMe F	I-491	HO ₂ C-
I-479	MsO-NHBoc	I - 492	MeO OMe OMs
	MeO OMe F	1-452	Max Cu
I-480	MsO NH	I-493	NC-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-481	MeO OMe F		MeO OMe OMs
. 40.	MsO OMe F	1-494	MeO ₂ C -
I-482	MsO		MeO OMe OMs
	MeÓ OMe F	I -4 95	MeO ₂ C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1-483	N—————————————————————————————————————		MeO OMs OMs
1-484	MeO OMe F	1-496	
1-404	MeO OMe F		MeÓ CO₂Me OMs OMe
I-485	N	I-497	>
1-403	MeO OMe F		MeO CO₂Me OMs OMe
I-486	»-ССССССССССССС-	I-498	N
	MeO F		MeO CO₂Me OMs
I-487	HO	I-499	OMe
	MeO OMe		N— O CO₂Me OH
I-488	MSO-ONSON	1-500	OMe OMe
	MeO	1-300	MeO₂C OMe OMs OH
			-

	OMe OMe
5	I-501 I-514 HO MeO CH ₂ OH OMe
	I-502 MsO
10	MeO CHO OMe MeO OMe
	MeO CH ₂ OH OMe HeO OMe MeO NHMe
15	I-504 MsO————————————————————————————————————
20	I-505 HO NHMs OMe CO ₂ Me
	I-506 HO OMS OMS
25 .	MeO CO ₂ H OMe MeO MeO MeO MeO MeO MeO MeO MeO MeO
	I-507 HO OMS OMS OMS OMS OMS OMS OMS OMS OMS OM
30	I-508 MsO — MeO OMs OMs
35	I-509 MsO I-521 HO OME CO ₂ H
	MeÓ CH₂OH OMe
40	MeO CH ₂ OH OMe MeO OH OH
	OMe CH ₂ OH OMe Me Me Me OMs
4 5	I-512 HO I-524 MsO
	I-513 HO- I-525 HO- I-525 HO-
50	MeO CH ₂ OH OMe

Ts	
I-526 MsO	I-539 MsO-OAc
MeÓ OMs OMs H OMe N	MeÓ OMs OMs
I-527 MsO - OMe N	I-540MsO
MeO OMs OMs OMs	MeO OMs OMs BocHN OMe
I-528 MsO Ms OMs	I-541 MsO
OMeN=	MeO OMs OMs H ₂ N
I-529 MsO OMs OMs H	I-542 MsO-()-()-()-()-()-()-()-()-()-()-()-()-()-
OMe	MeO OMs OMs
I-530 HO OH OH	0 ₂ N OMe NO ₂
OMe CN	MeO OH OH H ₂ N OMe NH ₂
i-531 MsO Ms OMs	MeO OH OH H ₂ N OMe NH ₂
OMe	MeO OH OH
I-532 MsO CO ₂ Me	MeO OH OH OH OH
MeO OMs OMs OMe — — — — — — — — — — — — — — — — — — —	
MsO————————————————————————————————————	MeO OMOM OMS OMe
MeO OMs OMs OMe	1-546 F
I-534 MsO CONH₂	MeÓ ÒH ÒH OMe
MeO OMS OMS	I-547
1-535 /=\	MeO OMOM OH
MsO—()—()—()—()—()—()—()—()—()—()—()—()—()—	
MeO OMs OMs	1-548 F—()—()—o'
1-536 MsO————————————————————————————————————	MeÓ ÖMOM ÖMS OMe
MeO OMs OMs	1-549 F—
	MeO OH OMs
MsO-()-d	I-550 OMe
MeÓ OMs OMs OMe /≕ CO₂H	1-930 =
I-538 MsO	MeO OMOM OMS
. MeO OMs OMs	

	OMe	OMe
I-5 51		1-564 HO-(
	MeÓ ÒMOM ÒH OMe	F MeO OMe CO₂H
I-552		I-565 MsO-
		MeO NH₂ OH
		OMe
I-553	MSO-(T)-(T)-(T)-(T)-(T)-(T)-(T)-(T)-(T)-(T)	I-566 HO-(
	F Me OMs	MeO NH₂ OH OMe
I-554	MsO	I-567 MsO-
	Me F OMs	F_MeO_OMe_CO2H_
I-555	MsO-{-}-	I-568 MsO
		MeO NHBoc OMs
I-556		- OMe
		I-539 MsO-(
I-557		MeO NH ₂ OMs OMe /=\
	HO-C->-C->-C	I-570 MsO-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-
	Me F OH	MeO NHCOCF3 OMS
1-558	HO	MeO ₂ C OMe
	F Me OH	I-571 Aco-()-()-()-()
I-559	HO-{\}-{\}-\\	MeO OMs MeO ₂ C OMe
	Me OMe OH	I-572 HO
I-5 6 0	но-{_}-{_}-	MeO OMs
	F MeO OMe CH ₂ OH	HO ₂ C OMe
I-561	MsO ()	I-573 F-\(\bigcirc \
	F MeO OMe CHO	MeO OMs MeO₂C OMe
1-562		I-574 HO
		Мео
I-563		HO ₂ C OMe
1-565		1-575 HO
	MeO NHBoc OH	MeO OH

,F	OMe)
I-601 HO F OMe OH	I-614 F————————————————————————————————————
	MeO CH₂OH OMe /=\
I-602 F	I-615 F-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-
OMe	MeO CH2OH
I-603 F	H-616 F
MeO CHO OMe	MeO CH₂OH ,
	OMe Me
	H-617 HO
MeO CHO OMe	MeO OH Me
I-605 F	OMe Me
Nac OH	I-618 HO
OMe	MeO OH Me
I-606 F	OMe Me
MeO OH ,	I-619 HO—
OMe	MeO OH Me
I-607 F-	OMe
MeO OH \	I-620 MsO-()-()-0
OMe	MeO NHBoc OMs
I-608 F—(OMe
MeO CO ₂ H	I-621 MsO-(")(")(")(")
OMe	MeO NHBoc OMs
I-609 F—()—()—()—()—()—()—()—()—()—()	OMe
MeO CO₂H ,	I-622 MsO-{\bigcirc}-\sqrt{\bigcirc}-\sqrt{\bigcirc}-\sqrt{\bigcirc}
OMe	MeO NH ₂ OMs
I-610 F	OMe
MeO CO ₂ H \	I-623 HO—
OMeMe/	MeO NH ₂ OH
I-611 MsO-	OMe
MeO OMs Me	I-624 HO
OMe Me	N N
i-612 MsO-	
MeO OMs Me	1-625 F
OMe Me	MeO
I-613 MsO-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-	
MeO OMs Me	

OMe 🧢	
I-626 N-N	I-638 N- OH OH
1-627 N.N.	Med ome OH
H MeO OMe OH	O ₂ N MeO OMs OH
MeO OH OH	I-640 Me OMS OMS
L629 MSHN MeO OMS OMS	I-641 Me
MeO OMS OMS OMS OMS OMS OMS	O ₂ N MeO OH OH
MeO OMS OMS	I-642 Me OMS OMS
I-631 Neo OMs OMs	0Me
1-632 N-(-)-0Me	MSHN MeO OMS OMS
MeO OMs OMs OMe	I-644 Me OMs OMs OMs OMs
I-633 N- N- OH OH OH	I-645 Me
OMe OMe	I-646 Me Theo on on on on on on on on one one
Ms MeO OMs OMs OMe	MSN MeO OMS OMS Me OMe
I-635 MsHN MeO OMS OMS	I-647 Me
I-636 MsHN	MsN MeO OH OH OH OMe
MeO OH OH OME	MsHN MeO OMs OMs
I-637 N N N N N N N N N N N N N N N N N N N	I-649 Me OMS OMS OMS OMS
	I-650 Me OMe
	Ms MeO OH OH

I-651 OMe	I-664 HO
HO ₂ CMeO OH OH OME	MeO OH OH OMe N-N N-N H-665 HO
I-653 MeO ₂ C MeO OMs OMs MeO ₂ C MeO OMs OMs	I-666 MsO OMs OMs
I-654	I-667 MsO
I-655 HO ₂ C MeO OH OH	MeO OMs OMs OMe
I-656 MsO NH ₂ OMs OMe	MeO OH OH OMe ONE N
I-657 HO NH2 OH	MeO OMS OMS OMS ONS ONS ONS ONS ONS ONS ONS ONS ONS ON
I-658 MsO OMs OMs	MeO OMs OMs OMe 1-671 MsO
I-659 MsO OMs OMs	MeO OMS OMS OMe N 1-672 MsO-N N
I-660 MsO — EtO OMs OMs	MeÓ OMS OMS H ₂ N OMe
I-661 HO OH OH	MeO OH OH ACHN OMe I-674 MsO
I-662 HO	MeO OMs OMs MsHN
I-663 HO-CHOHOH	I-675 MsO OMS OMS

Ms ₂ N	OMe 🦳
1-676 MsO	H689 HO-
MeO OMs OMs Ms·N	MeÓ CO₂H OMe
I-677 MsO-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-	1-690 HO-√
MeO OMS OMS N	MeÓ CO ₂ H OMÉ (5)
1-678 Ms0-()-()-()-()-()-()-()-()-()-()	H691 F-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-
MeO OMs OMs	MeO OMS OH OMe —
1-679 F—	H692 F-√
MeO OMOM OMs	MeÓ ÒMS ÒMOM OMe
OMe OMe	H693 F
	MeÓ ÒH ÒMOM
OMe	MSO OME
I-681 F————————————————————————————————————	MeO O
OMe CI	Me S
HeO OH OMS OME	1-695 F-√
OMe	ме он
1-683	MsO OMe
MeO OMOM OH	1-696 MsO-()-()-()-()
I-684	MeÓ ÒН Me
MeÓ OH OMS	I-697 F
I-685 MsO-()-()-()-()	Me Me OMs
MeO CO₂Me OMe	1-698
I-686 MsO-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-	Me Me OMs
MeO CO ₂ Me OMe	1-699 F OMs
1-687 MsO	Me OMS
MeO CO₂Me OMe	1-700 F
I-688 HO	Mé ÒMs
MeO CO₂H	
· · · · · · · · · · · · · · · · · · ·	

•	MsQ OMe		OMe	Й- <i>И</i>	-CU
I-701		I-714 MsO-			-SH
	MeÓ OMs	I-715 _{MSO}	MeÓ ÒMs OMe =\ ∕=⟨ /:	OMs N-N	-SMe
I-702		MSO	MeO OMs	OMS	
l-703		I-716 MsO-	OMe MeO OMs		ОН
5 I-704	Mé ÒH		OMe	OMs ACHN	
1-70-4	Me OH	I-717 HO-	MeO OH	OH MSHN	
I-705		I-718 HO	OMe		
I-706	OMe		MeO OH	OH	
i-7 0,0	MeO OH OMs	І-719 но—(ABO OH		
I-707 MC	OMOCH ₂ —OMEOOHOH	I-720 _{MsO}	AeÓ ÖH OMe	OH NI	НВос
) I-708	MeO OH OH OMe MsO	WISO_	MeO OMs	OMs	
1-708	MeO OMS	I-721 MsO-	OMe		H ₂
i-709 ⊦	HOCH ₂ —OMe		MeO OMs OMe	OMsNH	łAc
	MeO OH OH	I-722 _{MsO}			
, I-710			MeÓ OMs OMe	OMs NH	lMs
I-711	MeO - OH OH OMe S NH ₂	1-723 MsO-	MeO OMs	OMs N	
ī	MeO OMs OMs	-724 MsO-	OMe	OMs N-	Ms
I-712	HO	ك	MeO OMs	OMs Ms	Me
, I-713		-725 MsO-	OMe		IAIC
1-710	MeO OH OH		MeÓ ÒMs	ÒMs	

10

15

20

25

30

35

45

50

55

OMe OMe I-738 MsO **I-726** MeÓ OMs `OMs NH MeÓ `OMs `OMs ОМе ОМе NH₂ 1-739 HO 1-727 MsO ОМе OMe `OMs ÒMs NH₂ OMe 1-740 HO I-728 `OMe HO' Me ю 'nн NHMs OMe 1-741 MsO 1-729 HO HO' MeÓ ю, 1-742 HO ОМе HO' HO' I-730 HO Mé MeÓ ОМе HO' 'nОН MeÓ I-743 HO 'он HO' Mé MeÓ 1-731 MsO OMe OMe HO' OMe 1-744 HO-I-732 MsO HO' HO' MeÓ MsQ ОМе ОМе `OMs OMe 1-745 MsO-1-733 MsO `OMs MeÓ MsQ `OMs `OMs MeÓ ОМе I-746 MsO-1-734 MsO `OMs MeÓ ОМе `OMs I-747 HO ОМе I-735 MsO HO' Mé Ó OMe MsQ OMs OMe 1-748 MsO ОМе Me MsO-`OMs MeÓ OMe 1-736 `OMs `OMs 1-749 Mé ОМе Me MeÓ ÒMs MOMO' I-737 MsO-·oʻ ОМе `OMs `OMs Me MeÓ 1-750 MeÓ нó MOMO

	,		OMe	
I-751 -		I-763 F—€		-N \
MeO OMs			MeÓOMe	
I-752 F	, 	I-764 F—		NO
MeO OH OMe	ОМОМ	7=	MeO OMe	
I-753 F─(1-765 HO-	MeO OMe	∕—NH F
MeO OMs OEt	ОН	I-766 HO-		≻-N-S
I-754 MsO-			MeO OMe	F
EtO OMS OEt	. он ————————————————————————————————————	I-767 F-√		-NH
I-755 HO	OH OH	I-768 ACHN-	MeO OMe	
I-756 MsO-(F	MeO OH OMe	ОН _
EtO OMs		1-769 ACHN-		
I-757 MsO-	DEt	-	MeO OMs OMe	OMs
EtO C	OMs OMs	1-770 AcHN	MeO OMs	ОН
I-758 HO-		1 774 AAUN.	OMe	OMs -
EtÓ OH OEt	ОН	I-771 AcHN	MeO OMs OMe	_/_O OMs
I-759 HO		- I-772 _{ACHN} -{	OMe	<u></u>
OMe	N—	F	MeO OMs OMe	OMs
I-760 MsO MeO OMS		I-773 ACHN-		<u>}</u> ~~
OMe I-761 HO		F	MeO OH OMe	
MeO	OH OH	I-774 AcHN-√	MeO OH	
I-762 F————————————————————————————————————	>~<		MeÓ ÒH OMe ∕≕∖ ∕≕ ✓-	`он =\ _ √
MeO		1-775 F—<	MeO OH	OH .

.

	,Me ,}
I-776 F———————————————————————————————————	I-788 MsO
Me MeO OMS OMS	Me OMs Me
I-777 F—()—()—()—()—()—()—()—()—()—()	I-789 MsO-
	Me OMs
Me MeO OMs OMs	I-790 MsO-(
I-778 F	Me OMs
Me MeO OH OH OMe	Me
1-779 F	I-791 HO-()-()-()
Me MeO OH OH	Me OH
OMe	I-792 HO-
I-780 F	Me OH
(MeÒ ÖH ÒH OH OMe —	I-793 но-
I-781 F	Me Me OH
MeO OMS OMS	I-794 MsO-(\$)-0
I-782 F	Me OMs
	Me Me
HO— MeÓ OMS OMS	I-795 MsO Me OMs
I-783 F	Me
HO- MeO OH OH	1-796 MsO-
1-784 NC-	Me OMS
MeO OMs	I-797 HO-
Me A	Me OH
I-785 MsO — — OH —	I-798 HO-
	Me OH
1-760 mas () () () ()	Me A
Me	I-799 MsO
I-787 MsO — — — OMs	Mé ÒH ÒH OMe ———————————————————————————————————
Mé OMS	I-800
	MeO OMs OCOPh

	OMe	OMe N=
I-801		I-813 HO
	F MeO OMs OH	MeO OH OMe N=
i-802		2 ₂ Me I-814 HO-
1-602		
	MeÓ ÒMs ÒMs ,OMe _N N	MeÓ ÒH ÒH Họ
I-803) · · · N=N	OMe
	MeO OH OH	1 I-815 Ms0-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)-(1)
	OMe N-N	MeÓ OMs OMs OMe
I-804	HO-CO-OFO	/ /
	MeO OH OH	
1 005	OMe	H ₅ MeO OMS OMS NHAc
I-805	MsO-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	I-817 MsO-
	MeÓ OMs OMs OMeCeH.	MeO OMs OMs
I-806		
	HO-CON-CON-CON-CON-CON-CON-CON-CON-CON-CO	I-818 MsO-NHBoc
	MeÓ ÒH ÒH OMe	MeO OMs OMs
I-807	MsO-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	I-819 Mso—NHMs
	MeO OMs OMs	
	OMe N=	MeO OMs OMS F OMe
I-808	MsO-N-O	I-820 MsO-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-
	MeO OMs OMs	MeO OMs OMs
	MsO-N-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-	F OMe
I-809	MSO NO NO	/ \ \
	MeO OMs OMs	MeO OH OH L OMe —
1-810	OMe N=Cel	I-822 MOMOH₂C-
	MeO OMs OMs	OMe
I-811 A	VISO - NEW	I-823 HOH ₂ C
		MeÓ ÒMs ÒMs OH
	MeO OMs OMs OMe N=	1-824 MsO
1-812 _N	ASO N	
	MeO OMs OMs	OMs
		1-825 MsO-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-
		MeO OMe OMs

I-826 MsO OMe OMs	I-838 EtO ₂ C — OMe OH OH OH
I-827 HO OME OH	I-839 HO OH OH
I-828 HO OME OH	I-840 HO
I-829 MsO OMe OMs	I-841 HO Me OH OH
I-830 MsO OMe OMs	I-842 HO Me OMS OH OME
I-831 HO	I-843 F ₃ C-C-N-OMS OMS
I-832 HO OME OH	I-844 EtO ₂ C OMe OMs OMs OMs
I-833 MsO-OMs OMs	I-845 MsO
I-834 H ₂ N OH OH	I-846 HO Me Et F I-847 HO OH
I-835 F ₃ C-C-N-OH OH OH	I-848 MsO————————————————————————————————————
I-836 MsO Me OMs OMs	I-849 MsO————————————————————————————————————
I-837 MsO Me OMs OMs	I-850 HO OMS OMS

		\		HQ N-
5	I-851	HO-()-()-()-()-()-()-()-()-()-()-()-()-()-	I-864	
	I- 8 52	Me OMe F	I-865	MsO N-
10		MeO OMs OT1		MsO N N- OMs
	I-853	MeO OMs OTf	i-866	HQ N- OMs
15	1-854	OMe OMs OTI	I- 8 67	
20	I-855	F—()—()—()—()—()—()—()—()—()—()—()—()—()—	I-868	HO
	1-856	OMe	1-869	MeO MeÓ OH OH OMe
25	I-857	OMe	I-870	MeO MeO OMS OMS OMe
30	I-858	MsO OMs OMe NH ₂	I-871	
35	1-859	HO————————————————————————————————————	l-872	MeO MeO OMs OMs OMe
40	I-860	HO-OH OH	I-873	EtO OMS OH OME
	I-861	MsO-C		MeO OH OH
45	1-862	MsO-OMS	1-874	HO₂C MeO O H O H
50	I-863	HO-OH OH	Į l-875	HO ₂ C MeO OMs OMs

OMe DA SHOP OME
1-876 MeO ₂ C I-888 F ₃ C-C-N
MeO OMS OMS MeO OMS OMS OMS OMS
I-877 HO ₂ C MeO OH OH MeO OMe OMs OMs
OMe F ₃ C OMe OMe
I-878 MeO ₂ C MeO OH OH MeO OMs OMs
OMe OF SOME OME
Ms Mac
OMe F OMe
I-880 HOH ₂ C
MeO OH OH F OME
I-881 MsO
MeÓ CH₂OH F MeÓ ÒH ÒH OMe
I-882 HO - I-894 HN -
MeO CH ₂ OH F CI MeO OH OH OH OMe CI F OMe
I-883 HO
MeO CH ₂ OH F MeO OH OH F ₂ C OMe MeO OMe
F ₃ C OMe
MeO OH OH , MeO OMe OH OH
I-885 F ₃ C-C-N-OMe OMe OMe
MeO OMs OMs MeO OMe OMs OMs
I-886 OMe OMe
F ₃ C-C-N-(-N-(-N-(-N-(-N-(-N-(-N-(-N-(-N-(-
MeO OMS OMS
F ₃ C-C-N-NH
MeO OMs OMs MeO OH OMe
I-900 MsO
Me OMs OMs

	,OMe
	-1-913 F₃сосни-
I-901 MsO-(MeO OMs OMs Me
Et OMs	
I-902 HO-	Me OMe
Et ÖH	I-915 HO-
I-903 MsO-()-()-()-()	Me OMe
Me OMs OMs	F ₃ C OMe
1-904 но	MeO OMS OMS
Me Me OMe	MeQ OMe
I-905 MsO-	1-917 ()-()-()-()-()-()-()-()-()-()
Me OMs	MeO OMe OH OH
1-906 	1-918 H ₂ N
HO Mé OMe	MeO OH OH
I-907 но-С	I-919 MsO
Me OMs OH	HO Me OMs
I-908 HO	1-920 Ms-N-
Me OH OH	MeO OH OH
1-909 H ₂ N	I-921 MsO
Мео ОН ОН	HSO Me OMS
I-910 BocHN	OMe
- MeO OMs OMs	I-922 HOH ₂ C
I-911 H ₂ N → OMe	MeO CH₂OH CH₂OH
MeO OMs OMs	I-923 NHBoc
I-912 OMe	Me Me F
F₃COCHN———————————————————————————————————	
wied ums ums	I-925 N- NH
	Me F

	Me	MeQ OMe
1-926	N-NHCOCF ₃	I-939 MOMO
I-927	>	MeÓ OME OH OH
l-928	Me Me F O O O O O O O O O O O O O O O O O O	H-940 MeO OMe OMs OMs
I- 92 9	N-C-NH ₂ Me OMe CF ₃	HN- OH OH
1-930	MsO OMs OMs _{Br}	I-942 Me OMs OMs OMs
l-931	HO————————————————————————————————————	I-943 H ₂ N OMS OMS
I-932	HO————————————————————————————————————	I-944 H ₂ N OMe OH OH
I-933	HO-OME MeO OH HN OME	I-945 MsO — Me Me F
I-934	HO-OH NH ₂ OMe	I-946 MsO Me Me F
1-935	HO OH HN-Ac OMe	I-947 MsO Me Me F
1-936	HO	I-948 HO Me Me F
1-937	HO OH F	I-949 OMe OH F
I-93 8		I-950 Neo OMS F

5 1-952 N 10 ОН ОМе 15 20 1-956 Me-1-968 MeÓ но но 25 1-969 HO MeO НО ОМе I-958 HO 30 1-970 HO OMe ОМе Оме NHMe ОМе 1-959 HO-I-971 MsO 35 MeÓ MeÓ ОН нó СН2ОН СН2ОН 40 I-973 HOH2C-CH2OH CH2OH 45 `OMs I-975 50 MeÓ ÒMs

1-976	OMe OMe	I-988 HO OH OH
I-977	MeO OH OH MsO OMe	I-989 HO
I-978	MeO OMs OMs OMs OMe	I-990 HO Me OH OH OH
l-979	MeO OMS OMS OMS OMS	I-991 MsO————————————————————————————————————
I-980	MeO OMs OMs OMe	I-992 MsO MeO Me OMs I-993 HO
l-981	MeO OMS OMS OH OME	MeO OMe OH >
1-982	MeÓ OH OH HO OMe	MeO OMe
I - 983	MeÓ ÓH ÓH Me HO————————————————————————————————————	HO Me OH I-996 Et OMe F ₃ C-C-N-
- I-984	Me F	1-997 F ₃ C OMe OH OH
I-9 8 5		MeO OMS OMS MeO OMe I-998
I-986		MeO OMe OH OH MeO OMe I-999 MOMOH ₂ C
I-987		I-1000 F ₃ C-C-N
	Mé OMs	MeO OMs OMs

5	F ₃ C OMe	I-1013 HO————————————————————————————————————
	MeO OH OH MeO OMe HOH ₂ C	HOH₂C OMe H-1014 AcHN MeO OMs OMs
10	MeO OMe OMs OMs F ₃ C OH I-1003 H ₃ C-C-N	I-1015 ACHN
15	MeO OH OH	MeO OMS OMS F OME - I-1016 MsO
	I-1004 F ₃ C-C-N MeO OMS OMS Et OME	MeO OMs F OMe
20	I-1005 F ₃ C-C-N-MeO OMs OMs	MeO OH OH F OMe
25	I-1006 HN MeO OH OH	F ₃ C OMe
30	I-1007 H ₂ N MeO OH OH	H ₃ C-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C
30	I-1008 CI	I-1020 MsO OMs OMs OMs OMe
35	MeO OH OH OMe	I-1021 H ₂ N————————————————————————————————————
40	MeO OMS OMS OMS	I-1022 O H OH OH OME
	MeO OH OH OH OME	I-1023 MsO OMs OMs
45	MeO OMs OMs CH ₂ OH	I-1024 HO————————————————————————————————————
50	I-1012 O————————————————————————————————————	HO OH OH OMS
		MeÓ OMS OMS

	Br,
I-1026 MsO	I-1039 HO-
MeO OMs OEt	MeO OH OH
I-1027 MeO-	I-1040 HO-
Ме́ ОМе F	MeO OH OH
MeO OH OEt	I-1041 HO-()-()-()-()-()-()-()-(_
I-1029 MeO — — — — — — — — — — — — — — — — — — —	H-1042 HN OME
I-1030 Mso-	MeO OMs OMs OMe
MeO OMs OEt	HO OH OH
I-1031 HO MeO OH OF	H-1044 F
MeO OH OEt CH₂OH	MeO OMs OMe OMe
I-1032 MsO————————————————————————————————————	I-1045 HO
I-1033 MsO-	OMe
HOH₂Ć OMs ,CH₂OH	F MeO OMs OMe
I-1034 HO	I-1047 AcO
I-1035 Me OH	CHF ₂ F
Me Me F	I-1048 MeO OMs OMe
	CH ₂ OH
I-1037 Me — Me F	I-1049 HOH2C OMe F
Me Me F	I-1050 F
I-1038 CI————————————————————————————————————	MeO OH OMe

Ме

	I-1051		>	l-1063	MsO-	Me.		√ >
	I-1052		OMe	i-1064	MsO-	Me	Me F	+
)	l-1053	OMe	-o	l-1065	MsO-	Me	Me F	
5	l-1054	,CI	OMe	l-1066	но{		Me ├──ੑ Me F	_}_
	I-1055	→ → →	>-	l-1067	MsO-{	Me Me	OH Me Me	+
,	I-1056	MsO-CI CI)—o	1-1068	MsO-		Me Me	<i>_</i>
5	l-1057		OMs)	I-1069	но-{[Me M		<i></i>
	l-1058	CI OMe C)—́м́	⊢1070) - -(_	}	Ae F	
	l-1059		-NH	l-1071	\n-<	Me M	-С-ОН	`
5	I-1060	Me Me	-NH	I-1072	N-{_		₹	<i></i>
	I-1061	Me OMe O	Me NHCOCF ₃	l-1073	но-{	MeO OH	Me F NAc H OMe	<i></i>
	I-1062 F	MeO OM	F B NHCOCI	I-1074 ı	H ₂ N————————————————————————————————————	Me Me		<i>}</i> —
5	·	MeO	F	{ -1075	HN-MeO	Me	e ————NH OMe	}

OMe	OMe
I-1076 MsO-	I-1088 HO
OMs OH	ОН ОН
CF3 CF3	OMe OMe
I-1077 HO-	I-1089 Ms0
CF ₃ OMe	MeO OMs OiPr
I-1078 HO-(I-1090 MsO-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-
CF ₃ OMs	MeO OMs CI OMe
I-1079 MsO-(I-1091 HO
CF ₃ OMe	MeO OH OiPr
I-1080 MsO-(OMe
OH OMs	I-1092 MsO
I-1081 HO-	MeÓ ÖMS ÖiPr OMe
MeO OH OH OMe	I-1093 HO
I-1082 MsO	MeO OH OiPr OMe
OMs OMe	I-1094 HO-
OMe	MeO OH CI
I-1083 MsO OMs OMs	OMe
CF ₃	NH
I-1084 MsO-(MeO OMe F
,CF₃ OMe →	,
I-1085 HO	I-1097 NHMe
CF ₃ OMe	/ <u> </u>
I-1086 но-	I-1098 MeS-
CH \	
OMe —	Me —
I-1087 HO	I-1099 HOH₂C —
ОН ОМе	Mé Me F
	I-1100 MeS
	Me´ F

	·
5	I-1101 MsO OMs CI I-1113 MsO NHAC OMS OME
10	I-1102 HO OH CI I-1114 MsO NHAC OMS OME OME
	I-1103 HO————————————————————————————————————
15	I-1104 HO HO NHAC OH OME OME
20	I-1105 MsO OMs OMe I-1117 O ₂ N OMe OM OH OH
2 5	I-1118 O ₂ N MeO OMs OMs OMe OMs OMe
30	I-1107 HO OMS OMS OMS OMS OMS OMS
	I-1108 MsO-OH OH OH OH
35	I-1109 Me CI I-1121 HO MEO OME OH CHF2
40	HO Mé F I-1122 AcO → F₂HC Me F
	I-1111 MsO OH OMe OMe
45	I-1112 HO OMS OME CHF2
50	Me CI I-1125 HO F ₂ HC F

					OMe	///
	\	OMe	I-1138 H	10-{-}-{-	\	
l-112	5	} ~(_}~		MeO	он он	
	MeÓ	OMs OMe Me	-1139 H		OMe	<i>)</i> =
l-112	7 но-{-}-	-	>	MeO	OH OH	
	MeO	OH OMe			OMe	S_CO2H
l-112	· _/=\ /=	OMe	i-1140 H	ہے ہے		
• • • • • • • • • • • • • • • • • • • •					OH ÖH OMe	S_CO ₂ Me
	MeO	OH OMe Me	-1141 H	$\sim \sim $	\leftarrow \sim	
l-1129	Mso-()	<u></u>	<u>I</u>	MeÓ	OH OH	O _~ /CO₂Me
	MeÓ	OMs OMe	-1142 M	so-{		- 0
I-1130	MsO-(MeO	OMs OMs	CI
	MeO F	OMs OMe OMe	. I-1143 Ms	so-{¯}-\¯	OMe	<i>]</i>
l-1131	HN-	NH NH		MeO	OMS OMS	CI
_	MeO	ے دے F ،	I-1144 Ms	so_(=)(=	〈 <i>┌</i> ═╮ ╭╴	<i></i>
l-1132		Me		MeO	OMs OMs	
	HO Me	OMe F			OMe	ОН
l-1133	MsO-{-}		-1145 Ms	MeO	OMS OMS	
	EtO	OMs OMe			OMS OMS OMe	ОН
l-1134	MsO-(=)	OMe	I-1146 ^{HO}		~_\~`	
	EtO	OMs OMe		MeO O	H ÖH	OMe
l-1135		OMe	I-1147 HO		-⟨_}~ ¯	
17133	~y_(OH OMe		MeO O	H ÖH OMe	,
	/=\	OMe	i-1148 Msd	> -	+	
I-1136	MsO-{	$\leftarrow \sim$			OMS OMS HO	
	MeÓ	OMs OMs OMe //			Me	⊫N ⁄~OH
I-1137		_ _\	I-1149 HO			-N
	MeO	OMs OMs		=	H ÒH DMe	//
			I-1150 но	$\not \leftarrow \supset \not \leftarrow \supset \rangle$	~{_}~~	
				MeÓ c	он он	

							E	OMe	CI CI
I-1151	но-	OMe		CI <u>=</u>	l-1163	HN-	MeO	OMs OMe	}_0 F
l-l-1152	но-{	leO OH OMe	ОН ОН	=_//-cı	I-1164	G' GI F₃COCŅ- Me	MeÓ		OMs _
I-1153	MeC		OMe OMs OMs		F1165	F₃COCN-	√ MeÓ		OMs
	O H F ₃ C-C-N		OMe		. I- 1166	F₃COCŅ− Me	MeÓ		OMs
l-1155	O MeC F ₃ C-C-N-	MeO	OMS OMS		I-1167	HN-	MeO	OH OMe)—о́ Он <u> </u>
I-1156	MeO 0 H F ₃ C-C-N-		OMe ├─ੑੑ}_ó	_}_	l-1168	MeHN-	MeO	\leftarrow	-о ⁻
I-1157	F ₃ C-C-N-		OMs OMs OMe	_}	I-1169 i	w	MeO	OH OH	-6 ⁻⁷ -1 _}_
I-1158	, 0 H F₃C-Ö-N-(OMs OMs OMe		I-1170	Me-S- <u>{</u>	MeO	OH O	
I-1159	0 H F₃C-Ö-N—		OH F OMe		I-1171 I-1172	\n_(_	MeO	ONTE	-NHCOCF3
l-1160	MeO HN	MeO OH	OMS F O)	l-1173		MeO HO	F OMe	-NH
I-1161	MeO H ₂ N	OMe		-	I-1173	но-{	MeO (
I-1162	HN	eÓ OH OMe	ОН		I-1175	MsO-	CI'	CI ON	. ~ >
_	<u> </u>	leÓ ÒH	ОН					J.	Me

, OMe 🦳
I-1176 MsO II-1189 F ₃ COCHN II-1176 MsO III-1176 MsO
T MEO ONS
CI CI OMe OMe
I-1177 но———————————————————————————————————
C/ OMe / F MeO OMs OMs \
OMe
H1178 N- NHCOCF ₃ I-1191 HN- NHCOCF ₃ I-1191
MeO OM CI F MeO OH OH \
HQ OMe
I-1179 N- NH I-1192 HO-NH
Med Me CI
I-1180 MsO Me Me Me
Me I-1193 N-(_)-0
Me OH
I-1181 MsO-()-()-()-()-()-()-()-(
Me I-1194 Bn ₂ N-O ₂ S-()-()-OBn
Me OH OH
I-1182 MSO OME
Me I-1195 Bn ₂ N-O ₂ S OBn
Me / MeO OMs OMs
I-1183 MSO OME OME
Me Me > I-1196 HN-0 ₂ S-
I-1184 MsO OMs OMs OMs
Me
I-1185 HO-OMS OMS \
Me
Me Me I-1198 ACHN
I-1186 MsO Me OMe OMe
Me — Me — Me
Me /
I-1187 HO Ac I-1199 Ac Ac
MeÓ Me OMe OMe
OMe I-1200 MsO OH
I-1188 — — — — — — — — — — — — — — — — — —
MeO OMs HN-COCCI3
MIEO CIME

OMe
OMe I-1213 NHSO ₂ CF ₃
I-1201 MsO MeO Me OMe
MeO OMS HN-COCCI3 I-1214 HO
I-1202 F ₃ COC COCF ₃ MeO Me OMe
MeO Me OMe OMe I-1215 HO
I-1203 MeO Me F CI CI
MeO OMe OH J I-1216 HO
I-1204 HO————————————————————————————————————
Me OMe FF
I-1205 HO————————————————————————————————————
MeO OH F MeO OH OH
I-1206 MsO
Me NO ₂ OMe MeO OMs OMs ,
OMe)
I-1207 HO Ne Me Me I-1220 TsN
I-1208 HO OMS OMS OMS OMS OMS
Me NO ₂ OMe I-1221 TSN
I-1209 MsO OMs OMs OMs OMe
Me NH ₂ OMe I-1222 TSN
I-1210 MsO- MeO OH OH
Me NO ₂ OMe I-1223 MsO OMe
I-1211 HO OME
Me NH ₂ OMe
I-1212 HO Me HN-O₂S I-1224 MeO OH OH OH OH OH OH OH OH OH
Me NO ₂ OMe MeÓ ÓH ÓH
I-1225 MsO
-

CI, OMe
OMe >1-1238 MsO-(>-OH
I-1226 MeO OMS OME
H ₂ N-O ₂ S CI OMe
MeO OH OH OH OMEO OME
MeO OMS OMe
1-1227 MSU
OMe I-1240 HO
MeO OH OME
1-1241 msc
I-1229 HO Me
CMA CAMPAGE TO CAMPAGE
I-1230 MeO Neo
MeO OH OH , I-1243 HO-
Me MeO OH OH OH OMe
1-1231 Ms0-
Me NH ₂ OMe I-1244 HO
I-1232 HO OME OME
Me NH ₂ OMe 1-1245 HO
Me MeO OH OH
I-1233 MsO
Me NHAC OME 1-1246 HO
Me MeÓ ÒH ÒH OMe
1-1234 HO- 1-1247 HO- 1-1247 HO-
Me NHAC OME 1-1247 HO MEO OH O
I-1235 HO-
HeO Me F I-1248 HO-
MeO OH OH CO2H
1-1236 MSO—
CI OMe
I-1237 MsO OH OH OMe OMe
MeO OMS OME 1-1250 HO
мео он он

5	OMe -1263 HO-
	I-1251 HO OH OH OH OH
	OMe I-1264 F ₃ C-C-C-N-
10	MeO OH OH I-1265 F ₃ C-C-N-OMe OMe
	I-1253 HO————————————————————————————————————
15	MeÓ OH I-1266 HO
	I-1254 HO — MeO OH F
20	I-1267 MsO
	I-1255 N- NH ₂ NH ₂ OMe I-1268 F ₃ C-C-N- OMe
25	I-1256 N- NUSC Ms F MeO OMS OMS
20	MeO F I-1269 F ₃ C-C-N-
	I-1257 N-O-NHSO ₂ Et Me Me OH
30	MeO MeF CI I-1270 MsO MeO OMs F MeO OMs F
	I-1258 N OME F OME OME F OME
35	I-1259 MeO — F MeO OH OH
	MeÓ OMe OMe OH I-1272 F ₃ C-C-N- Me
40	I-1260 MsO Me Me OMs
	OMe F I-1273 HO ON F
4 5	I-1261 MsO OH F Me OH F Me OH F Me
	OMe Me OMe
	F Me
50	Me OMs

OMe X
F Me CI I-1288 HO
I-1276 HN—OMe Me OM OMe Me
CI CI F Me I-1289 HO
I-1277 HN OMe CI
Me OH) I-1290 HO
I-1278 HO Meo Me OMe)_
Me Me F
I-1279 MsO-OMe OMe OMe CI CI
Me_OMe_F I-1292 HOO
I-1280 HO Me Me OMe F
Me OMe OMe
Me NHMs OMe I-1294 MsO
I-1282 MsO
Me Me OMe OMe OMe OMe CI
I-1283 HO
Me OMe CI MeO OH OEt Me
I-1284 HO
MeO OH OMe Me OMe F
I-1285 HO - NBn ₂ I-1298 MsO - NBn ₂ MeO OH F
La 1396 HO
Me OMe OMe MeO OMs 5
OMe OMe
OH OME I-1300 MsO NH2
√

5	I-1301 MsO
10	I-1302 MsO OMs F I-1314 N Me OH OMe Me OH OH Me OH
10	I-1303 HO OH F I-1315 N Me Me Me
15	I-1304 HO OH F I-1316 N-OCF3
20	I-1305 MsO-NBn ₂ I-1317 NBn ₂
25	I-1306 MsO NH ₂ I-1318 S NH ₂
25	I-1307 MsO NHCOCF ₃ I-1319 F ₃ C-C-N Et Me Me OH
30	I-1308 MsO OMS F I-1320 F ₃ C-C-N Et Me Me OMe OME OME
35	I-1309 HO OH F I-1322 F ₃ C-C-N
40 .	I-1310 HO — I-1323 F ₃ C-C-N — Me OMS
	I-1311 HO CI I-1324 HN F
4 5	I-1312 HO — Me OH F

Table 1

=	m.p.201-203°C
=	1HNMR(DMSO-da) 5 3.44(s,3H),3.48(s,3H),3.62(s,3H),3.92(s,3H),7.09(s,1H),7.40.7.53(m,2H),7.65.7.78(m,2H)
=	HINMR(CDCI ₃) δ 3.47(8,3H),3.94(8,3H),7.13-7.24(m,3H),7.50-7.59(m,2H),10.41(8,1H)
7-111	IR(KBr)1700,1562,1479,1438,1393,1226,1199,1180,1161,1076,1047cm 1
	m.p.181-182°C '
Ē	¹ HNMR(CDCL ₃) & 3.21(s,3H),3.40(s,3H),3.49(s,3H),3.90(s,3H),4.81(s,2H),4.85(s,2H),6.86(s,1H),7.32-7.40(m,2H),7.60-7.68(m,
e-III	
	IR(KBr)1504,1467,1370,1235,1152,1038,1010,870,846,785cm ⁻¹
111-4	1HNMR(CDCl ₃) & 2.95(8,3H),3.18(8,3H),3.21(8,3H),3.41(8,3H),3.91(8,3H),6.84(8,1H),7.37(d,J=8.9Hz,2H),7.63(d,J=8.9Hz,2H)
	m.p.140-141°C
9:11	111NMR(CDCla) & 3.21(8,311),3.45(8,311),3.48(8,311),3.96(8,311),7.40(d,J=8.9Hz,211),7.54(d,J=8.9Hz,211)
	1R(KBr)1446,1426,1409,1370,1362,1184,1153,1029,973,920,870,849,776cm ⁻¹
9-111	Tokyo Kasei Kogyo Co., Ltd.
	111NMR(CDCla) 6:3.51(8,3H),3.92(8,3H),6.05(8,2H),6.92(d,J=8.1Hz,1H),7.02(d,J=8.1Hz,1H),7.07(9,1H),7.18(8,1H),10.40(8,1H)
111.7	
	IR(KBr)1691,1600,1577,1474,1447,1422,1388,1352,1252,1237,1227,1201,1134,1124,1082,1038cm ⁻¹
111.8	1HNMR(CDCl ₃) & 3.20(s,3H),3.77(s,3H),3.90(s,3H),6.86(s,1H),6.98(s,1H),7.32-7.37(m,2H),7.51-7.56(m,2H)
9.111	HNMR(CDCl ₃) & 3.20(s,3H),3.34(s,3H),7.37.7.47(m,3H),7.53.7.63(m,3H),7.71(d,J=2.1Hz,1H)
111.10	111NMR(CUCI.) & 3.76(8,3H),3.90(8,3H),6.85(8,1H),6.97(8,1H),7.08-7.15(m,2H),7.42-7.49(m,2H)
111	lio
111-111	1HNMR(CDCl ₃) & 2.72(s,3H),3.11(s,3H),3.75(s,3H),3.92(s,3H),5.17(s,2H),7.05-7.16(m,2H),7.24-7.50(m,2H).

Table 2

111-12	oil HINMR(CDCB ₃) & 3.51(s,311),3.70(s,311),3.86(s,311),5.28(s,211),6.65(s,111),6.97&7.47(ABq,J=8.6Hz,411)
	m.p. 120-122°C HINMR(CDCl ₃) & 3.20(s,3H),3.53(s,3H),3.70(s,3H),3.89(s,3H),5.28(s,2H),6.63(s,1H),7.32-7.37(m,2H),7.56-7.61
III-13 (m,2II)	(m,211) IR(KBr)1505,1468,1427,1375,1237,1175,1153,1100,1072,1003,972cm ⁻¹
	m.p.146·147°C
F::	IIINMR(CDCB) & 3.86(9.3H),6.94-7.01(m,2H),7.38-7.56(m,6H)
	IR(KBr)1603,1522,1481,1288,1255,1036cm
111.15	1HNMR(CDCl ₃) & 3.07(s,6H),3.49(s,3H),3.92(s,3H),6.95(brs,2H),7.20(s,1H)7.51(d,J=8.7Hz,2H),10.42(s,1H)
111.16	111NMR(CDC13) & 3.48(s,3H),3.50(s,3H),3.92(s,3H),6.81(s,1H),7.70(s,4H)
111.17	HINMR(CDCH3) & 3.24(8,3H),3.49(8,3H),3.94(8,3H),7.21(8,1H),7.42(d,J=8.4Hz,2H),7.65(d,J=8.4Hz,2H),10.41(8,1H)
	m.p.88-89°C
111.18	1HNMR(CDCl ₃) & 2.20(s,3H),2.38(s,3H),3.19(s,3H),7.06(s,1H),7.33(s,4H),7.45(s,1H)
	IR(KBr)1479,1366,1195,1173,1151,970,865,850,796cm ⁻¹
	m.p.72-73°C
61:111	1HNMR(CDCl ₃)δ 3.20(8,3H),7.20(dd,J=6.6,8.4Hz,1H),7.35·7.44(m,3H),7.53·7.60(m,2H)
	IR(KBr)1514,1481,1364,1335,1182,1144,979,870,798cm ⁻¹
	m.p.144.146°C
111.20	'HNMR(CDCl ₃) δ 3.45(8,3H),3.89(8,3H),4.99(brs,2H),6.19(8,1H),6.42(8,1H),6.88-6.94(m,2H),7.44-7.49(m,2H)
	IR(KBr)3471,3392,29863,1612,1596,1461,1410,1223,1175,1099,1079,1011cm ⁻¹

Table 3

25 ·

	lio
16	HINMR(CDCL ₃) δ 1.09(t,J=7.5Hz,3H),1.82-1.94(m,2H),3.58(s,3H),3.86(s,3H),4.06(t,J=6.6Hz,2H),6.63(s,1H),6.94-6.99(m,2H),
19.11	7.44·7.49(m,211)
	IR(film):3100-2800(br), 1609, 1583, 1513, 1466, 1423, 1401, 1378, 1291, 1249, 1232, 1178, 1127, 1097, 1034, 1012cm ⁻¹
	m.p.83.5-84.5 C
96 11	$^{1}\text{HINMIR}(\text{CDCI}_3) \delta \ \ 3.20 (\text{br, 1H}), \\ 3.54 (\text{s, 3H}), \\ 3.85 \cdot 3.90 (\text{m, 2H}), \\ 3.86 (\text{s, 3H}), \\ 3.90 (\text{s, 3H}), \\ 3.90 (\text{s, 3H}), \\ 4.29 \cdot 4.32 (\text{m, 2H}), \\ 6.66 (\text{s, 1H}), \\ 6.95 \cdot 7.00 (\text{m, 2H}) \\ \\ 1.00 (\text{m, 2H}), \\ 1.00 (\text{m, 2H}$
77-111	,7.45-7.50(m,2H)
	IR(KBr)3600-2800(br), 1608, 1583, 1513, 1467, 1441, 1421, 1398, 1365, 1290, 1247, 1178, 1133, 1097, 1079, 1028, 1007cm ⁻¹
	m.p.99-101°C
111.23	1HNMR(CDCl ₁₃) & 3.20(s,3H),3.39(s,3H),3.91(s,3H),3.99(s,3H),6.89(s,1H),7.37(d,J=8.7Hz,2H),7.64(d,J=8.7Hz,2H)
	IR(KBr)1747,1466,1367,1348,1153,1059,968,859,794cm ⁻¹
111.24	¹ HINMR(CDCl ₃) δ 3.22(s,3H),3.45(s,3H),3.94(s,3H),7.04(s,1H),7.32-7.43(m,2H),7.58-7.69(m,2H),10.42(s,1H)
111-25	1HNMR(CDCl3) & 2.46(broad, 1H), 321(s, 3H), 3.43(s, 3H), 3.90(s, 3H), 4.94(s, 2H), 6.83(s, 1H), 7.42-7.51(m, 2H), 7.57-7.68(m, 2H)
	m.p.109·110℃
20 111	1HNMR(CDCl ₃) ô 1.97(br, 1H), 3.21(t, J=6.6Hz, 2H), 3.86(s, 3H), 3.89(s, 3H), 3.90(t, J=6.9Hz, 2H), 6.76(s, 1H), 6.95-7.00(m, 2H), 7.49.
07-111	7.53(m,2H)
	$1R(\mathrm{KBr})3600\cdot2800(\mathrm{br}), 1609, 1581, 1511, 1462, 1441, 1426, 1385, 1289, 1250, 1237, 1179, 1116, 1078, 1046, 1031, 1005cm^{-1}$
	foam
111.27	111NMR(CDCl ₃) δ 1.52(8,911),3.20(8,311),3.41(8,3H),3.90(8,3H),6.16(8,1H),6.76(8,1H),7.35(4,J=8.7Hz,2H),7.61(4,J=8.7Hz,2H)
	IR(KBr)3371,1718,1505,1497,1367,1241,1151,872cm ⁻¹

Table 4

5

111.28	m.p.167-170°C HINMR(CDCl ₃) & 2.73(s,311),3.74(s,311),3.92(s,311),7.08-7.17(m,311),7.31-7.36(m,211) HR(CDCl ₃)2934_1593_1560_1512_1477_1436_1411,1372,1167,1107,1076,997,958,892,839,815cm ⁻¹
	11110MR(CDCl ₃₁) & 3.27(s,3H),3.79(s,3H),3.90(s,3H),6.86(s,1H),6.97(s,1H),7.29(ddd,J=8.4,2.2,0.9Hz,1H),7.39(dd,J=11.0,2.2Hz
111.29	,1II),7.43(t,1=8.4Hz,1H)
	HR(KBr)1504, 1421, 1344, 1225, 1208, 916, 824cm
111.30	$1110MR(CDCl_3) \delta \ 3.77(s,3H), 3.91(s,3H), 3.95(s,3H), 6.87(s,1H), 7.01(s,1H), 7.56(d,J=8.1Hz,2H), 8.09(d,J=8.1Hz,2H)$
111-31	$HINMR(\mathrm{CDCL}_3) \ \delta \ 3.78(s,3H), 3.91(s,3H), 6.88(s,1H), 6.97(s,1H), 7.60(d,J=8.1Hz,2H), 7.71(d,J=8.1Hz,2H)$
	m.p.147·148℃
111.32	III.32 HHNMR(CDCl ₃) & 3.79(s,3H),3.92(s,3H),6.89(s,1H),7.01(s,1H),7.64-7.69(m,2H),8.26-8.31(m,2H)
	IR(KBr)3600-2800(br), 1595, 1511, 1490, 1422, 1354, 1249, 1215, 1145, 1106, 1032cm ⁻¹
9	¹ HNMR(CDCl ₃) δ 3.31(s,3H), 3.53(s,3H), 3.94(s,3H), 7.19(s,1H), 7.39(ddd,J=8.3,2.3,1.0Hz,1H), 7.39(dd,J=10.3,2.3Hz,1H),
66-111	7.43 (t,J=8.311z, 111), 10.40(s, 1H)
7011	$^{1} \text{HNMR}(\text{CDCI}_{3}) \ \delta \ 0.13(s,6H), 0.97(s,9H), 2.51(s,3H), 3.73(s,3H), 3.93(s,3H), 5.09(s,2H), 6.84-6.99(m,2H), 6.89(s,1H), 7.05(s,1H), 7.0$
111.34	29.7.48(m,5H)
	m.p.124-128°C
111.35	1HNMR(CDCl:1) & 2.62(8,3H),3.74(8,3H),3.91(8,3H),5.19(8,2H),7.00-7.18(m,4H),7.30-7.49(m,5H)
	IR(CHCl ₃)2930,1607,1517,1480,1369,1148,1118,1082,1025,969,872cm ⁻¹

Table 5

38.	oil HINMR(CDCE) & 0.13(s,6H),0.96(s,3H),3.01(s,3H),3.69(s,3H),3.86(s,3H),4.81(s,2H),5.08(s,2H),6.88-6.94(m,3H),7.30.7.47(m,3H)
	511)
	IR(KBr)3023,2932,2858,1579,1512,1471,1381,1264,1120,1083cm-1
	lio
111,27	
	11R(CH ₃ Cl)::3543,3200-2800(br),1587,1511,1465,1412,1376,1285,1248,1118,1081,1031cm ⁻¹
	m.p.104-105°C
111 20	1HNMR(CDCl3) & 3.11(8,3H),3.77(8,3H),3.90(8,3H),5.17(8,2H),6.84(8,1H),6.98(8.1H),7.11(4.1=8.7Hz.1H),7.37.7.48(7.1 E
00.111	1(d,J=2.4Hz,1H)
	1R(KBr)3600-2800(br), 1503, 1420, 1389, 1364, 1246, 1215, 1185, 1132, 1117, 1097, 1030cm-1
	m.p.134.136°C
111,30	1HNMR(CDCl3) & 3.78(s,3H),3.91(s,3H),5.29(s,2H),6.86(s,1H),6.97(s,1H),7.17(d,J=8.7Hz.1H),7.31.7 51(m,7H),7.63(dd,1=9.4
	8.71lz, 111),8.01(d, J=2.411z, 111)
	IR(KBr)3434,1620,1532,1494,1413,1280,1222,1206,1133,1108,1037cm-1
	m.p.100-101°C
111-40	111-40 HNMR(CDCl ₃) & 3.55(e,3H),3.77(e,3H),3.90(s,3H),5.26(e,2H),6.84(e,1H),6.97(e,1H),7.16-7.31(m,3H)
	IR(KBr)3600-2800(br), 1524, 1503, 1449, 1401, 1380, 1268, 1246, 1222, 1200, 1156, 1126, 1098, 1078, 1030cm-1
	m.p.109-110°C
111.41	1HNMR(CDCl ₃) & 1.54(8,9H), 3.76(8,3H), 3.50(8,3H), 6.75(br,1H), 6.84(8,1H), 6.97(8,1H), 7.21.7.29(m, 2H), 8, 13(1,1)=8, 7H ² , 1H)
	IR(KBr)3600-2800(br), 1720, 1593, 1531, 1509, 1427, 1393, 1245, 1223, 1214, 1201, 1162, 1137, 1105, 1029cm ⁻¹

Table 6

III-42	foam !HNMR(CDCLi,)
111-43	foam HINMR(CDCh ₃) & 3.14(s,311),3.51(s,311),3.93(s,311),5.20(s,211),7.17(d,J=8.4Hz,1H),7.20(s,1H),7.38(m,6H),7.59(d,J=1.8Hz,1H),10.40(s,111) 1R(CHCh ₃)2941,1703,1613,1603,1580,1513,1475,1426,1372,1295,1264,1169,1137,1112,1088,1044,971,954,932,838cm ¹
111.44	1HNMR(CDCl ₃) δ 0.20(s,6H),0.13(s,6H),0.77(s,9H),0.97(s,9H),3.73(s,3H),3.83(s,3H)),5.08(s,2H),6.06(s,2H),6.88·6.96(m,3H),7.01(s,1H),7.30-7.49(m,5H)
111-45	mp 106-108°C III-45 IIINMR (CDCl:) & 3.21(s,3H),3.43(s,3H),3.94(s,3H),5.87(s,1H),7.39(d,J=9.0Hz,2H),7.55(d,J=9.0Hz,2H) IR(KBr)3410,1460,1422,1362,1146,1037,874,915,787cm ⁻¹
111-46	mp123·124°C !HNMR(CDCl ₃) ô 2.48(brs, 1H), 3.21(s, 3H), 3.43(s, 3H), 3.94(s, 3H), 4.93(brs, 2H), 6.83(s, 1H), 7.37(d, J=9.0Hz, 2H), 7.63(d, J=9.0Hz, 2H)) J=9.0Hz, 2H) !R(RBy)3524,1463,1352,1233,1152,1009,979,869cm ⁻¹
111-47	mp107-109°C HINMR(CDCI ₃) & 1.93(a,6H),2.45(a,6H),4.75(brs,1H),6.87-6.96(m,4H) HR(KB ₇)3367,1612,1509,1433,1214,990,824cm ⁻¹

Table 7

	lio
07 11	HINMR(CDCE) & 1.14(t, J=6.9Hz, 3H), 1.46(t,J=6.9Hz, 3H), 3.58(q,J=6.9Hz, 2H), 3.58(q,J=6.9Hz, 2H), 6.19(a,1H),
111-48	6.41(s,1H), 6.86-6.92 (m,2H), 7.43-7.49(m,2H)
	1R(CHCl3)3688,3594,3502,2982,1612,1517,1172,1080,1026,925cm ⁻¹
97 111	111NMR(CDCl ₃) \$ 0.02(s,6H),0.12(s,6H),0.90(s,9H),0.93(s,9H),4.54(s,2H),4.76(s,2H),6.84-6.89(m,2H),7.16-7.22(m,2H),7.37(s,
n1-43	111), 7.69(s, 111)
	mp173-176\tau
111.50	III-50 IINMR(CDCl ₃) & 3.21(s,3H),3.47(s,3H),3.89(s,3H),6.15(s,1H),6.42(s,1H),7.24·7.37(m,2H),7.61·7.66(m,2H)
	IR(KBr)3408,2934,1604,1480,1360,1146,1089,1004,865,709,547cm ⁻¹
-	mp 156-158 C
111-51	111NMR(CDCL) & 3.21(s,3H),3.39(s,3H),3.90(s,3H),6.05(s,1H),7.36-7.44(m,4H)
	IR(KBr)3410,2938,1505,1457,1413,1337,1194,1143,1084,1014,876,826,542,519cm ⁻¹
	mp181.183℃
111-52	HINMR(CDCl ₃) δ 3.19(s,3H),3.88(s,3H),4.21-4.24(m,2H),4.39-4.42(m,2H),6.49(s,1H),7.45(ABq,J=8.7Hz,4H)
	IR(KBr)3435,1598,1505,1474,1425,1366,1178,1147,1113cm ⁻¹
	mp155-167°C
62 111	$ HNMR(CDC!_3) \delta \cdot 0.11 \cdot 0.02 (m, 2H), 0.33 \cdot 0.44 (m, 2H), 0.91 (m, 1H), 3.20 (s, 3H), 3.41 (d, J=7.0 Hz, 2H), 3.50 (s, 3H), 3.92 (s, 3H), 6.88$
00-111	(s, 1H), 7.51(ABq,J=8.6Hz,4H)
	IR(KBr)3434,1505,1472,1416,1386,1371,1357,1242,1179,1149,1084cm ⁻¹
	mp105-107°C
III-54	¹ HNMR(CDCl ₃) δ 3.20(s,3H),3.39(s,3H),3.89(s,3H),4.77(s,2H),6.40(s,1H),7.33-7.55(m,5H)
	IR(KBr)3411,1592,1572,1507,1482,1467,1437,1360,1339,1232,1204,1175,1148,1125,1092cm ⁻¹

Table 8

	mp138-140°C
	$^{1} HNMR(CDCL_3) \delta - 1.14(t,J=7.011z,311), -3.59(q,J=7.011z,211), -3.88(s,311), -4.97(bs,111), -6.42(s,111), -6.86\cdot6.94(m,211), -7.43\cdot7.51$
111-55	111-55 (m,2H)
	IR(KBr)3384,3291,2978,1614,1593,1576,1519,1484,1469,1455,1436,1417,1366,1306,1285,1257,1203,1171,1127,1094,1029c
	m.1
	mp162-164C
H-56	111-56 111NMR(CDCL ₃) & 2.77(8,311),3.17(8,311),3.75(8,311),3.92(8,311),7.10(8,211),7.35-7.43(m,411)
	IR(CHCh) 1594,1561,1507,1478,1464,1374,1331,1178,1149,1109,1080,1000,970,894,871,844cm ⁻¹
	mp95-97°C
11	1HNMR(CDCl ₃) δ 2.35(s,3H),3.77(s,3H),6.84·6.87(m,2H),7.12(s,1H),7.13(s,1H),7.35·7.38(m,2H)
) ($IR(CHCl_3)3596,2959,2959,2939,2840,1611,1563,1517,1489,1464,1438,1384,1367,1329,1295,1258,1173,1102,1049,1035,1001,911,12001,111,12001,111,111,111,111,111,1$
	891,835cm ⁻¹
	mp173-176°C
111.58	¹ HNMR(CDCl ₃) δ 6.91-6.94(m,2H),7.31-7.34(m,2H),7.87(s,1H),8.09(s,1H),9.89(s,1H),10.28(s,1H)
	IR(CHCl ₃)3437,1685,1610,1516,1456,1394,1370,1270,1261,1238,1214,1173,1144,1053,1012,939,905,829,808,557,458cm ⁻¹
	mp173-176℃
111 50	$^{\rm I} {\rm HNMR} ({\rm CDC} _3) \ \delta \ 1.10 (t,J=6.9 Hz,3 H), \ 1.48 (t,J=6.9 Hz,3 H), \ 3.20 (s,3 H), \ 3.47 (s,3 H), \ 3.66 (q,J=6.9 Hz,2 H), \ 4.11 (q,J=6.9 Hz,2 Hz,2 Hz,2 Hz,2 Hz,2 Hz,2 Hz,2 Hz,2$
60.111	6.79 (s,1H), 7.32-7.39(m,2H),7.60-7.66(m,2H)
	IR(CHCl ₃)1502,1458,1372,1176,1148,1074,1023,967,870cm ⁻¹
111.60	111.60 HINMR(CDCl ₃) & 2.17(6,3H),2.39(6,3H),3.19(6,3H),5.80(6,1H),6.71(6,1H),7.33(6,4H)

Table 9

-	
	mp107-108%
111-61	HINMR(CDCB)
	1R(KBr) 1704, 1422, 1358, 1224, 1148, 1090, 1026, 974, 876cm ⁻¹
	mp121-122 C
	HINMR(CDCl3) & 3.45(8,3H), 3.47(8,3H), 3.93(8,3H), 4.68(8,2H), 4.77(8,2H), 7.22(8,1H), 7.49(d,J=8.1Hz,2H), 7.56(d, J=8.1Hz,
70-III	21I), 10.42 (s,1II)
	1R(KBr)1695,1476,1422,1232,1189,1130,1040,860cm ⁻¹
	mp113-115°C
111.63	'HNMR(CDCl.;)
	1R(KBr)1497,1413,1354,1230,1146,1097,976,864cm ⁻¹
111-64	HINMR(CDCl ₃) & 5.65(s, 1H), 7.18(s, 1H), 7.30-7.35(m, 2H), 7.46-7.50(m, 3H)
20	1HNMR(CDCl3) \$\delta\$: 1.30(d, J=7.2Hz, 6H), 2.96(quintet, J=7.2Hz, 1H), 3.82(8, 3H), 3.91(8, 3H), 5.92(brs, 2H), 6.91(s, 1H), 7.30(d, J=8.1)
60-111	Hz,2H),7.44(s,1H),7.49(d,J=8.1Hz,2H)
	mp118-122°C
99-111	¹ HINMR(CDCl ₃) δ 3.80(s,3H),3.91(s,3H),5.88(s,2H),6.84·6.92(m,3H),7.39·7.47(m,3H)
	1R(KBr)3600-2800(br), 1606, 1517, 1492, 1461, 1415, 1397, 1330, 1265, 1205, 1171, 1052cm ⁻¹
	mp227-230°C
111-67	¹ HNMR(CDCl ₃) & 0.25(s,6H), 1.02(s,9H), 2.33(s,3H), 2.82(s,2H), 6.88-6.93(m,2H), 7.16(s,1H), 7.21-7.25(m,3H), 8.11(s,1H)
	IR(KBr)3600-2800(br), 1608, 1514, 1393, 1346, 1267, 1167cm ⁻¹
	mp134·137℃
1I-68	¹ HNMR(CDCl ₃) δ 3.00(s,6H),3.81(s,3H),3.91(s,3H),6.00(s,2H),6.77-6.82(m,2H),6.90(s,1H),7.41(s,1H),7.46-7.51(m,3H)
	IR(KBr)3600-2800(br), 1601, 1528, 1494, 1466, 1439, 1399, 1362, 1321, 1198, 1166, 1118, 1051cm ⁻¹

Table 10

	mp 144-148°C
69:111	111NMR(CDCl ₃) & 2.38(s,3H),2.82(s,3H),3.01(s,6H),7.79.7.83(m,2H),7.18(s,1H),7.27.7.31(m,2H),8.11(s,1H)
	IR(KBr)3600-2800(br), 1612, 1523, 1443, 1389, 1328, 1271, 1160cm ⁻¹
	mp 122-126°C
	¹!INΜΙΚ(CDCl ₁) δ 0.10(8,9H), 0.78(8,6H), 2.96(8,6H), 3.75(8,3H), 3.84(8,3H), 6.08(8,2H), 6.72-6.78(m,2H), 7.01(8,1H), 7.22-
07.111	7.29 (m, 211)
	HR(KHr)3600-2800(br), 1613, 1528, 1463, 1416, 1402, 1360, 1345, 1251, 1218, 1195, 1136, 1092, 1062, 991cm ⁻¹
t	$1110MR(CD(CJ)) \delta \ 2.21(s,3H), 2.37(s,3H), 3.89(s,3H), 5.19(s,2H), 6.75(d,d,J=8.4\&2.1Hz,1H), 6.81(d,J=2.1Hz,1H), 6.92(d,J=8.4Hz,1H), 6.92(d,J=8.$
17.111	,1H),7.08(s,1H),7.30-7.50(m,6H)
	lio
5	111NMR(CDC3.) δ 2.51(s,6H), 2.75(s,6H), 5.15(s,2H), 5.67(s,1H), 6.94(s,1H), 6.96(d,J=8.4Hz,1H), 7.04(dd,J=2.1,8.4Hz,1H),
21.111	7.18 (s, 111), 7.20(d, J=2.1Hz, 1H), 7.37-7.47(m, 5H)
	IR(CHCl ₃)3032,3428,3000-2800(br),1730,1611,1525,1489,1455,1256,1171,1137,1100,1036cm ⁻¹
6	$HNMR(\mathrm{CD(CL)}) \ \delta \ 2.21(s,3H), 2.37(s,3H), 5.15(s,2H), 5.69(br,1H), 6.73(dd,J=8.4,1.8Hz,1H), 6.89\cdot6.99(m,2H), 7.07(s,1H), 7.26\cdot7.4$
111-7.3	6(m,6H)
	'HNMR(CDCl ₃) δ 1.09(t,J=7.2Hz,3H), 1.22(t,J=7.5Hz,3H), 2.55(q,J=7.2Hz,2H), 2.72(q,J=7.5Hz,2H), 6.15(s,2H), 6.70(s,1H),
111.74	6.73 (dd, J=8.4,1.8Hz,1H), 6.89(d,J=1.8Hz,1H),6.95(d,J=8.4Hz,1H),7.04(e,1H),7.38-7.47(m,6H)
	IR(CHCl ₃)3542,2970,2933,1586,1508,1480,1384,1324,1290,1160,1127,1064,1011,930,898,879,857cm ⁻¹
26-111	$^{1}\text{HNMR}(\text{CDC}_{13}) \ \delta \ 2.04(s,3H), 3.70(s,3H), 3.90(s,3H), 5.19(s,2H), 5.50(m,1H), 6.73(dd,J=2.1Hz,1H), 6.97\cdot7.00(m,2H), 7.29\cdot7.48(m,2H), 1.29\cdot7.48(m,2H), 1.29\cdot7.48(m$
6/-111	,5H)

Table 11

	HNMR(CDC33) δ 2.04(s,3H),3.90(s,3H),5.15(s,2H),5.49(s,1H),5.74(s,1H),6.71(dd,J=8.1,2.1Hz,1H),6.85(d,J=2.1Hz,1H),6.99-
111.76	7.03 (m, 211), 7.39-7.45(m,511)
	HR(CHCR)33529,2963,2940,1731,1587,1566,1510,1480,1455,1412,1382,1323,1290,1248,1128,1099,1009,935,879cm ⁻¹
	mp87.89°C
111.77	1HINMR(CDCh3) & 2.20(s,3H),2.37(s,3H),5.18(s,2H),6.90-7.10(m,4H),730-7.51(m,6H)
	IR(CHCh)1510,1482,1381,1298,1267,1233,1127,1008,952,875,812cm ⁻¹
	HINMR(CDCM ₃) & 1.25(d,J=6.9Hz,6H), 2.24(s,3H), 3.26(sept,J=6.9Hz,HI), 5.20(s,2H), 6.95(ddd,J=8.3,2.2,1.2Hz,1H), 7.06 (t,
111.78	J=8.311z, 111), 7.06(dd,J=11.9,2.2Hz,1H),7.10(s,1H),7.17(s,1H),7.32-7.51(m,5H)
	IR(KBr)1492,1420,1228,1203,1140,1012,989,841cm ⁻¹
	HINMR(CDCE) & 2.43(s,311),5.19(s,2H),7.06(t,J=8.9Hz,1H),7.18-7.48(m,10H)
67-111	1R(KBr)1491,1437,1214,1135,890,810,748cm ⁻¹
	mp77.79°C
111-80	¹ HNMR(CDCl ₃) & 3.921(s,3H),5.21(s,2H),6.90-6.99(m,3H),7.31-7.50(m,7H)
	IR(KBr)3600-2800(br), 1518, 1477, 1418, 1237, 1212, 1167, 1140cm ⁻¹
	mp103·105℃
111-81	¹ HNMR(CDCl ₃) δ 2.16(s,3H),2.37(s,3H),2.42(s,3H),3.16(m,3H),5.21(s,2H),7.16-7.17(m,3H),7.24-7.27(m,1H),7.36-7.48(m,5H)
	IR(CHCl3)2940,1613,1514,1478,1455,1423,1366,1331,1292,1264,1176,1140,1126,1096,1045,1009,972,955,920,843cm ⁻¹
111-82	1HNMR(CDCl ₃) δ 2.19(8,3H),3.88(8,3H),5.20(8,2H),6.84(8,1H),6.95(m,1H),7.03-7.05(m,3H),7.35-7.49(m,5H)
	mp83-85°C
60 11	$^{1}HNMR(CDCl_{3}) \delta \ 2.19(s,3H), \ 3.88(s,3H), \ 3.91(s,3H), \ 5.21(s,3H), \ 6.76(dd,J=8.4,2.1Hz,1H), \ 6.82(d,J=2.1Hz,1H), \ 6.87(s,1H), $
CO-111	6.93(d, J=8.4Hz, 1H), 7.08(s,1H),7.32-7.50(m,5H)
	IR(CHCh3)2962,2937,1613,1679,1499,1464,1465,1443,1421,1319,1249,1170,1140,1103,1029,1008,989,901,832cm ⁻¹

10 .

•^

Table 12

	lio
111.84	111.84 HINMR(CDCL) 3 1.44(d,J=6.911z,311),2.19(s,311),4.09(q,J=6.91tz,2H),5.20(s,2H),6.82(s,1H),6.94·7.08(m,3H),7.32·7.49(m,6H)
	IR(CHCh)3597,2928,1731,1609,1523,1494,1476,1387,1298,1261,1173,1127,1048,834cm ⁻¹
111-85	111.85 111NMR(CDC) ₃) \$ 2.26(8,311), 2.52(8,311), 3.90(8,311), 4.59(bra,211), 5.20(8,211), 6.73-7.10(m,411), 7.27-7.52(m,611)
00 111	11 11 11 11 11 11 11 11 11 11 11 11 11

Table 13

	m.p.155.5-156°C
-	HINMR(acetone-da) δ 1.77(brs,3H), 1.79(brs,3H), 3.37(s,3H), 3.73(s,3H), 4.63(brd,J=6.6Hz,2H), 5.52(m,1H), 6.49(1H,s), 6.83(d
<u>:</u>	d,J=2.2and8.2Hz,HH),6.92(d,J=2.2Hz,HH),6.94(m,2H),6.96(d,J=8.2Hz,HH),7.54(m,2H),7.62(brs,HH),7.78(s,HH),8.64(brs,HH)
	IR(KBr)3393,2932,1611,1588,1522,1490,1117,1071,1001cl-3m
	HNMR(CDCl3) δ 2.67(8,3H),3.13(s,3H),3.21(s,3H),3.56(s,3H),3.78(s,3H),5.19(s,2H),6.84(s,1H),7.15(d,J=8.6Hz,1H),7.30-7.
1.2	50(m,9H),7.60.7.75(m,2H)
	IR(RBr)1373,1361,1179,1149,1079,874,799cm
	m.p.155-157C
-	"HINMR(CDCI3) \$\delta = 1.76(8,3H), 1.81(8,3H), 2.71(8,3H), 3.21(8,3H), 3.23(8,3H), 3.56(8,3H), 3.78(8,3H), 4.64(d, J=6.6Hz, 2H), 5.43.5.
 	55(m,1H),6.84(s,1H),7.09(d,J=8.4Hz,1H),7.30-7.42(m,4H),7.65-7.75(m,2H)
	IR(KBr)1519,1481,1364,1179,1153,1083,970,877,796cm ⁻¹
	111NMR(CDCL3) & 3.45(s,3H),3.75(s,3H),5.16(s,2H),6.44(s,1H),6.92-7.19(m,5H),7.34-7.44(m,5H),7.57-7.66(m,2H)
1.4	IR(KBr)3538,3510,3460,3330,1605,1521,1490,1455,1247,1220,1120,1070,1010cm ⁻¹
	m.p.136·138°C
	$^{1}\text{HNMR}(\text{CDCM}_{3}) \delta \ 2.68(\text{s},3\text{H}), 3.13(\text{s},3\text{H}), 3.55(\text{s},3\text{H}), 3.80(\text{s},3\text{H}), 5.19(\text{s},2\text{H}), 6.86(\text{s},1\text{H}), 7.16(\text{d},J=8.7\text{Hz},1\text{H}), 7.33\cdot7.49(\text{m},7\text{H}), 7.16(\text{s},2\text{Hz},1\text{H}), 7.16(\text{d},2\text{Hz},1\text{H}), 7.16(\text{d},2\text{Hz},1\text{H}), 7.16(\text{d},2\text{Hz},1\text{H}), 7.16(\text{d},2\text{Hz},1\text{H}), 7.16(\text{d},2\text{Hz},1\text{H}), 7.16(\text{d},2\text{Hz},1\text{H}), 7.16(\text{d},2\text{Hz},1\text{Hz},1\text{Hz},1\text{Hz}), 7.16(\text{d},2\text{Hz},1\text{Hz}$
<u>.</u>	55-7.69(m,211),7.82-7.87(m,211)
	IR(KBr)3433,2937,1609,1519,1474,1463,1364,1322,1295,1274,1235,1183,1167,1120,1095,1077,1016cm ⁻¹
-	foam
2	$^1 \text{HNMR}(\text{CDCL}_3) \ \delta \ 1.77(\text{s}, 3\text{H}), 1.81(\text{s}, 3\text{H}), 2.72(\text{s}, 3\text{H}), 3.24(\text{s}, 3\text{H}), 3.49(\text{s}, 3\text{H}), 3.80(\text{s}, 3\text{H}), 4.64(\text{d}, J=6.9\text{Hz}, 2\text{H}), 5.50(\text{m}, 11\text{H}), 6.86(\text{s}, 2\text{H}), 4.64(\text{d}, J=6.9\text{Hz}, 2\text{Hz}, 2\text{H}), 4.64(\text{d}, J=6.9\text{Hz}, 2\text{Hz}, 2\text{Hz}), 4.64(\text{d}, J=6.9\text{Hz}, 2\text{Hz}, 2\text{Hz}, 2\text{Hz}), 4.64(\text{d}, J=6.9\text{Hz}, 2\text{Hz}), 4.64(\text{d}, J=6.9\text{Hz}), 4.64(\text{d}, J=6.9\text{Hz}), 4.64(\text{d}, J=6.9\text{Hz}), 4.64(\text{d}, $
<u>.</u>	1H),7.10(d,J=8.7Hz,1H),7.35(dd,J=2.1,8.7Hz,1H),7.39(d,J=2.1Hz,1H),7.55·7.69(m,2H),7.82·7.87(m,2H).
	IR(CHCl ₃)3030,1608,1518,1480,1369,1322,1269,1230,1179,1131,1120,1097,1081,1015cm ⁻¹

5

Table 14

	in (12,44 °).
	m.p.sz.51 5 HINMBECTALS & 1767 340 1896 310 3 467 310 3 774 310 4 6974 1=6 911z 210 5 317m 110 5 717a 110 5 857a 110 6 477a
1.7	1111/1111((477.51))
	[11],6.93(aq,J=1.8,8.7112,111),0.97(a,J=6.7112,111),7.03(a,J=6.5112),7.03(a,J=6.7112,11),7.03(aq,J=1.8,2.7),7.03(aq,J=1.8,7),7.03(aq,J=1.8),7.03(aq,J=1.8),7.03(aq,J=1.112),7.03
	111NMR(CDCl3) & 3.22(8,3H),3.45(8,3H),3.77(8,3H),4.74(8,2H),5.15(8,2H),6.93(8,1H),7.01(d,J=8.7Hz,2H),7.32-7.48(m,9H),7.
F-8	73(d,J=9.011z,211)
	IR(KBr)3400,1721,1612,1509,1471,1362,1242,1153,1040,1018cm ⁻¹
	111NMR(CDCl3) \$\delta\$ 1.03(t,J=7.2Hz,3H),2.16(dq,J=7.2,6.0Hz,2H),3.46(8,3H),3.74(8,3H),4.68(d,J=5.4Hz,2H),5.70(m,2H),6.45(
6.1	s, 1H), 6.91(d, J=8.7Hz, 2H), 6.96(brs, 2H), 7.07(brs, 1H), 7.53(d, J=8.7Hz, 2H)
	IR(Nujol)3445,3369,1612,1578,1523,1489,1268,1243,1112,1102,1071,1011,998,944,824,805,781cm ⁻¹
	m.p.174-175°C
	'HNMR(CDCl ₃) δ 3.11(s,3H),3.21(s,3H),3.45(s,3H),3.73(s,3H),4.49(brs,2H),5.18(s,2H),6.85(s,1H),7.15(d,J=8.4Hz,1H),7.27(
1.10	dd,J=8.4Hz,J=2.1Hz,1H),7.35-7.49(m,8H),7.70(m,2H)
	IR(KBr)1519,1467,1360,1346,1331,1295,1229,1180,1151,1122,1101,1081,1022,980,971,954,875,849,814,798,742,525
	cm - 1
	$^{\rm 1} \rm HNMR(CDCl_3) \ \delta \ 1.77(s,3H), 1.82(s,3H), 3.22(s,6H), 3.45(s,3H), 3.74(s,3H), 4.49(brs,2H), 4.64(d,J=7.2Hz,2H), 5.45\cdot5.55(m,1H)$
1.1	,6.85(s,1H),7.08(d,J=8.7Hz,1H),7.26(dd,J=8.7and2.1Hz,1H),7.33(d,J=2.1Hz,1H),7.36-7.41(m,2H),7.65-7.75(m,2H)
	IR(KBr)3553,3434,1516,1472,1365,1176,1150,973,871cm ⁻¹
	1HNMR(DMSO-d6) & 1.72(8,3H),1.77(8,3H),3.35(8,3H),3.65(8,3H),4.20(brs,2H),4.47(brt,J=4.4Hz,1H),4.55(brd,J=6.6Hz,2H),
1.12	5.40-5.57(m,1H),6.64(dd,J=8.2,2.0Hz,1H),6.70(d,J=2.0Hz,1H),6.75-7.00(m,4H),7.40-7.55(m,2H)
	IR(KBr)3435,1518,1475,1459,1261,1223,988cm ⁻¹

Table 15

	ATTO ACCOUNTS ACCOUNTS
:	$^{1}\text{HNMR}(\text{CDC}_{13}) \ \delta \ 2.71(\text{s}, 3\text{H}), 2.84(\text{s}, 3\text{H}), 3.20(\text{s}, 3\text{H}), 3.72(\text{s}, 3\text{H}), 3.76(\text{s}, 3\text{H}), 5.13(\text{s}, 2\text{H}), 5.67(\text{s}, 1\text{H}), 6.90(\text{s}, 1\text{H}), 6.89-6.96(\text{m}, 2\text{H}), 6.90(\text{s}, 1\text{H}), 6.90(\text{s}, 1\text$
1-13	7.00(m,J=1.8Hz,1H <u>J,7.32.7.50(m,7H),7.70(d,J=9.0Hz,2H)</u>
	m.p.140-141°C
	$HINMR(CDCR_3) \delta = 2.71(s, 3H), 2.83(s, 3H), 3.15(s, 3H), 3.21(s, 3H), 3.42(s, 3H), 3.77(s, 3H), 5.16(s, 2H), 6.90(s, 1H), 7.09(d, J=8.9Hz, J=8.9H$
<u>:</u>	2H), 7.30-7.50(m,9H), 7.70(d,J=8.9Hz,2H)
	IR(KBr)1642,1516,1467,1362,1180,1151,1118,1050,867,803,708cm ⁻¹
	m.p. 161-162 C
	$HINMIK(CIICU_3) \ \delta - 1.76(s,3H), 1.81(s,3H), 2.72(s,3H), 2.85(s,3H), 3.21(s,3H), 3.23(s,3H), 3.42(s,3H), 3.77(s,3H), 4.61(d,J=6.6Hz, J=6.6Hz, J=$
61.15	2H), $5.49(t, J=6.6Hz, 1H)$, $6.90(S, 1H)$, $7.02(d, J=8.1Hz, 1H)$, $7.31-7.37(m, 2H)$, $7.38(d, J=8.9Hz, 2H)$, $7.70(d, J=8.9Hz, 2H)$
	IR(KBr)1643,1516,1467,1362,1277,1236,1180,1150,974,882,868,847,802,710 cm ⁻¹
	m.p.206-207°C
	$HNMR(CDC(1_3) \ \delta \ 1.71(\$,311), 1.76(\$,311), 2.62(\$,311), 2.69(\$,311), 3.27(\$,311), 3.71(\$,311), 4.53(4,J=6.811z,211), 5.47(t,J=6.611z,111)$
1.16), 6.61(dd, J=8.3and2.1Hz, 1H), 6.71(d, J=2.1Hz, 1H), 6.86(d, J=8.7Hz, 2H), 6.87(d, J=8.3Hz, 1H), 6.95(8, 1H), 7.47(d, J=8.7Hz, 2H), 8.87(d, J=8.3Hz, 1H), 6.95(8, 1H), 7.47(d, J=8.7Hz, 2H), 8.87(d, J=8.3Hz, 1H), 9.87(d, J=8.3Hz, 2H), 9.87(d,
	.83(brs,1H),9.59(brs,1H)
	IR(KBr)3427,3020,1608,1517,1467,1379,1233,1053,1005,839,799,759,543cm ⁻¹
	m.p.171-172°C
ţ	1HNMR(DMSO-d6) § 1.74(d,J=0.9Hz,3H),1.77(9,3H),2.97(9,3H),3.45(9,3H),3.51(9,3H),3.77(8,3H),4.65(d,J=6.6Hz,2H),5.48(
1:1/	m,1H),7.06-7.27(m,4H),7.48&7.74(ABq,J=9.0Hz,4H)
	IR(KBr)1523,1483,1394,1366,1271,1175,1151,1087,1071,872,861,847,796cm ⁻¹
	111111111111111111111111111111111111
1.18	45(s,1H),6.88-6.97(m,2H),7.04(dd,J=9.0,9.0Hz,1H),7.15-7.29(m,2H),7.45-7.60(m,2H)
	IR(KBr)3393, 1523, 1490, 1466, 1403, 1267, 1229, 1113, 1070cm ⁻¹

Ю

Table 16

1-19 1-10 1-20 1-20 1-20 1-20 1-21 1-21 1-21	111NMR(CDCL3) & 2.56(s,3H),3.21(s,3H),3.52(s,3H),3.69(s,3H),5.19(s,2H),5.76(s,1H),6.92(dd,J=8.4and2.0Hz,1H),7.04(d,J=8
	.411z, 11), 7.05(d,J=2.0Hz, 111), 7.35-7.51(m,J11), 7.60(d,J=8.6Hz,211)
	111111111111111111111111111111111111
	59(d,J=8.7Hz,2H)
	15°C
	$ \text{HNMR}(\text{CDCL}_3) \ \delta \ \ 2.73 (\text{s}, 3\text{H}), 3.21 (\text{s}, 3\text{H}), 3.24 (\text{s}, 3\text{H}), 3.53 (\text{s}, 3\text{H}), 3.71 (\text{s}, 3\text{H}), 4.65 (\text{d}, \text{J} = 6.9\text{Hz}, 2\text{H}), 5.50 (\text{t}, \text{J} = 6.9\text{Hz}, 1\text{H}), 7.12 (\text{d}, \text{J} = 6.9\text{Hz}, 2\text{Hz}, 2\text{Hz}) (\text{s}, \text{J} = 6.9\text{Hz}, 2\text{Hz}, 2\text{Hz}, 2\text{Hz}) (\text{s}, \text{J} = 6.9\text{Hz}, 2\text{Hz}, 2\text{Hz}, 2\text{Hz}) (\text{s}, \text{J} = 6.9\text{Hz}, 2\text{Hz}, 2Hz$
	8.6Hz, 1H), 7.36(dd,J=8.6nnd2.1Hz, 1H), 7.41(d,J=2.1Hz,2H), 7.41(d,J=8.8Hz,2H), 7.59(d,J=8.8Hz,2H)
	IR(KBr)1516,1367,1180,1152,1039,975,869,799cm ¹
	.150°C
	$^{1}HNMR(CDCl_{3}) \ \delta \ \ 3.42(s,3H), 3.65(s,3H), 4.63(d,J=6.9Hz,2H), 4.98(brs,1H), 5.53(t,J=6.9Hz,1H), 6.92-6.96(m,4H), 7.07(s,1H), 7.$
	.43(d,J=8.6Hz,2H)
	IR(KBr)3398, 1612,1587,1523,1462,1410,1261,1211,1099,1036,984,952,919,838,815cm ⁻¹
	$^{1} HNMR(CDCl_{3}) \ \delta \ 2.28(t, J=6.3Hz, 1H), 2.60(s, 3H), 3.21(s, 3H), 3.55(s, 3H), 3.77(s, 3H), 4.78(d, J=6.3Hz, 2H), 5.18(s, 2H), 6.84(s, 1H), 1.18(s, 2H), 1.18(s, 2H)$
	J=9.0Hz,1H),7.29-7.48(m,9H),7.69(d,J=8.7Hz,2H)
HNMR	$^{1} \text{HNMR}(\text{CDCL}_{\text{i}}) \ \delta \ \ 1.76(\text{s}, 3\text{H}), 1.81(\text{s}, 3\text{H}), 2.26(\text{s}, 3\text{H}), 2.50(\text{s}, 3\text{H}), 3.21(\text{s}, 3\text{H}), 3.56(\text{s}, 3\text{H}), 3.77(\text{s}, 3\text{H}), 4.57(\text{d}, J=6.2\text{Hz}, 2\text{H}), 5.51(\textbf{t}, J=6.2\text{Hz}, J=6.2H$
1.24 =6.2Hz,1H),6	1H),6.83(s,1H),6.92(d,J=9.0Hz,1H),7.17-7.29(m,2H),7.36(d,J=8.7Hz,2H),7.70(d,J=8.7Hz,2H)
IR(KBr)3	IR(KBr)3434, 1608, 1512, 1479, 1364, 1234, 1175, 1150, 1078, 1017cm ⁻¹
'HNMR($!HNMR(CDCL_3) \ \delta \ 1.75(s,3H), 1.80(s,3H), 2.27(s,3H), 3.46(s,3H), 3.74(s,3H), 4.57(d,J=6.2Hz,2H), 4.95(s,1H), 5.53(t,J=6.2Hz,1H), 1.80(s,J=6.2Hz,J$
1.25),5.86(s,1H),6	1H),6.45(s,1H),6.91(d,J=8.7Hz,2H),6.92(d,J=9.0Hz,1H),7.24(d,J=9.0Hz,1H),7.26(s,1H),7.53(d,J=8.7Hz,2H)
IR(KBr)3	IR(KBr)3399,1612,1566,1581,1520,1486,1237,1115,1078,1001cm ⁻¹

Table 17

	m.p.246-247°C
97-	1HNMR(DMSO-da) & 5.16(s,3H),6.84-6.87(m,2H),7.05(s,2H),7.14(s,1H),7.32-7.43(m,3H),7.49-7.64(m,8H)
	IR(KBr)3600-3100(br), 1594, 1453, 1387, 1296, 1253, 1010cm ⁻¹
i S	111NMIK(DMSO-da) & 3.38(8,311),3.43(8,311),5.28(8,211),7.36-7.54(m,811),7.69-7.86(m,811)
1.2.1	IR(KBr)1488,1354,1286,1178,1151,1116cm ¹
	m.p. 162-163°C
-	*HINMR(CDCha) & 1.77(8,3H), 1.82(8,3H), 3.19(8,3H), 3.23(8,3H), 4.64(4,J=6.6Hz,2H), 5.25-5.48(m,1H), 7.09(4,J=9.0Hz,1H), 7.3
\$2.	6-7.40(m,211),7.52(dd,J=2.4,9.0Hz,1H),7.59(d,J=2.4Hz,1H),7.62(s,4H),7.63-7.69(m,2H)
	IR(KBr)1489,1363,1290,1177,1154,1115,971,860,809cm ⁻¹
	m.p.195°C
	1HNMR(DMSO-d6) 5 1.72(8,311), 1.75(8,311), 4.57(4,J=6.3Hz,211), 5.45-5.50(m,1H), 6.84-6.87(m,2H), 6.98-7.11(m,311), 7.50-7.6
62:-	4(m,GH)
	IR(KBr)3600·3200(br),1609,1594,1497,1257,991cm ⁻¹
	m.p.145·148°C
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
?	H),6.84(s,1H),7.12(d,J=8.6Hz,1H),7.34·7.40(m,4H),7.69(m,2H)
-	IR(KBr)1517,1481,1390,1362,1270,1244,1180,1151,1077,1012,973,960,873,817,799,521cm ⁻¹
	m.p.108·110°C
	$\text{HNMR}(\text{CDC}1_3) \ \delta \ \ 1.60 \cdot 2.20 (\text{m,6H}), 3.46 (\text{s,3H}), 3.75 (\text{s,3H}), 4.86 (\text{m,1H}), 5.02 (\text{bs,1H}), 5.75 (\text{s,1H}), 5.90 (\text{m,1H}), 5.91 (\text{s,1II}), 6.00 (\text{m,1H}), 6.00 ($
	111),6.45(8,111),6.90-7.07(m,5H),7.53(m,2H)
	IR (KBr)3485,1614,1523,1491,1457,1407,1312,1287,1269,1238,1195,1170,1115,1072,1014cm ⁻¹

.

.

Table 18

	m.p.188-190°C
	$^{111} \text{NMR} \text{(CDCIs)} \ \delta \ \ 2.69 (\text{s}, 311), 3.21 (\text{s}, 311), 3.26 (\text{s}, 311), 3.56 (\text{s}, 311), 3.78 (\text{s}, 311), 4.84 (\text{m}, 211), 6.42 (\text{dt}, J=15.6 \text{Hz}, J=5.7 \text{Hz}, 111), 6.79 (\text{dt}, J=15.6 \text{Hz}, J=15.6 H$
1.32	J=15.6Hz,1H),6.84(s,1H),7.15(d,J=8.4Hz,1H),7.28-7.43(m,9H),7.68(m,2H)
	IR(KBr)1519,1479,1447,1391,1360,1301,1273,1241,1228,1201,1175,1152,1120,1079,1014,974,959,947,868,819,795,777,74
	3,521cm t
	m.p.157-159°C
	111NMR(CDCE) & 3.46(s,311),3.75(s,311),4.81(m,211),4.93(bs,111),5.70(s,111),5.91(s,111),6.45(s,111),6.46(dt,J=15.911z,J=6.0H
55-I	z, 1H),6.76(d,J=15.9Hz,1H),6.90-7.09(m,5H),7.26-7.46(m,5H),7.54(m,2H)
	IR(KBr)3466,1611,1522,1489,1461,284,1248,1192,1165,1114,1073cm ⁻¹
	m.p.127.129°C
	'HNMR(CDCl3) 8 1.03und 1.04(botht, bothJ=8.0Hz, total3H), 2.07-2.19(m,2H), 2.71and 2.72(boths, total3H), 3.21(s, 3H), 3.24(s,
1.34	311), 3.56(8,311), 3.78(8,311), 4.60and 4.71 (bothm, total 2H), 5.66·5.75 and 5.90·5.99 (bothm, total 2H), 6.84(8, 1H), 7.09 (d, J=8.4Hz, 1
	H),7.33·7.41(m,4H),7.68(m,2H)
	IR(KBr)1519,1482,1390,1362,1232,1180,1150,1077,974,873,815,799,522cm-1
	m.p.166-168°C
20. 1	111NMR(CDCIs) & 1.04and 1.05(botht,bothJ=7.5Hz,total3H),2.09-2.19(m,2H),3.46(s,3H),3.74(s,3H),4.58and4.68(bothm,tota
	1211),5.01(hs, 111),5.69-5.78and5.87-5.95(bothm,total411),6.45(s,1H),6.90-7.06(m,5H),7.53(m,2H)
	IR(KBr)3531,3489,3306,1523,1492,1459,1408,1314,1287,1270,1255,1234,1224,1118,1072,1018,1005,822cm ⁻¹
	m.p. 148-150°C
	HNMR(CDCl ₃) § 1.62(s, 3H), 1.69(s, 3H), 1.76(s, 3H), 2.08-2.20(m, 4H), 2.71(s, 3H), 3.21(s, 3H), 3.24(s, 3H), 3.56(s, 3H), 3.78(s, 3H),
1.36	4.66(d,J=6.3Hz,2H),5.09(m,1H),5.50(t,J=6.3Hz,1H),6.84(s,1H),7.10(d,J=8.4Hz,1H),7.33.7.41(m,4H),7.68(m,2H)
	IR(KBr)1519,1480,1464,1449,1389,1366,1291,1271,1233,1200,1176,1150,1118,1079,1012,973,946,876,841,816,801,523,51
	0cm ⁻¹

Table 21

1.50	111NMR(acetone-da) 5 1.75(m,3H),3.39(s,3H),3.72(s,3H),4.72(m,2H),5.73-5.75(m,2H),6.48(s,1H),6.83(dd,J=2.0and7.8Hz,1H
2),6.92-6.95(m,3H),6.97(d,J=7.8Hz,1H),7.52(m,2H)
<u> </u>	111NMR(acetone-da) & 1.77(s,3H), 1.79(s,3H), 3.41(s,3H), 3.72(s,3H), 4.66(m,2H), 5.53(m,1H), 6.49(s,1H), 6.85(m,2H), 7.04(d, J=
	8.1Hz, 1H), 7.10(dd, J=2.1and8.1Hz, 1H), 7.19(d, J=2.1Hz, 1H), 7.25(m, 2H)
1.50	111NMR(CDCLs) & 2.58(t,J=2.211z,111),2.73(s,311),3.22(s,311),3.26(s,311),3.56(s,311),4.83(s,311),4.83(d,J=2.2Hz,211),6.85(s,1H
3).7.21(d,J=8.411z,111),7.35-7.46(m,4H),7.64-7.74(m,2H)
1.53	"HINMR(CDCl3) & 3.45(s,3H),3.76(s,3H),4.36(d,J=1.5Hz, HI),4.55(s,2H),4.76(dd,J=1.8and0.6Hz, HI),5.02(brs, HI),5.97(d,J=
	0.911z, 1H), 6.45(s, 1H), 6.90-6.96(m, 2H), 6.96-7.05(m, 2H), 7.10-7.12(m, 1H), 7.50-7.58(m, 2H)
1.54	1HNMR(CDCl ₃) & 1.76(s,3H), 1.82(s,3H), 2.61(s,3H), 3.53(s,3H), 3.77(s,3H), 4.61(d,J=6.9Hz,2H), 5.17(brs,1H), 5.45-5.50(m,1H)
	,5.72(s,1H),6.84(s,1H),6.88-7.00(m,4H),7.02(d,J=1.8Hz,1H),7.50-7.57(m,2H)
.55	1HNMR(CDCl ₃) & 0.99(d,J=6.5Hz,6H), 1.74(q,J=6.5Hz,2H), 1.85(m,1H), 3.46(s,3H), 3.75(s,3H), 4.12(t,J=6.5Hz,2H), 4.97(s,1H)
	,5.65(s,1H),5.90(s,1H),6.45(s,1H),6.92(m,2H),6.95(m,2H),7.06(m,1H),7.54(m,2H)
	'HNMR(CDCl3) & 1.34(s,3H),1.35(s,3H),3.15(dd,J=3.6and6.6Hz,1H),3.39(s,3H),3.72(s,3H),4.10(dd,J=6.6and11.1Hz,1H),4.
1.56	34(dd,J=3.6and11.1Hz,1H),6.49(s,1H),6.83(dd,J=1.8and8.1Hz,1H),6.93(d,J=8.7Hz,2H),6.94(d,J=1.8Hz,1H),7.00(d,J=8.1Hz
	,1H),7.52(d,J=8.7Hz,2H)
	1HNMR(CDCl ₃) δ 2.68(s,3H),3.13(s,3H),3.53(s,3H),3.78(s,3H),5.19(s,2H),6.83(s,1H),7.10-7.19(m,3H),7.31-7.50(m,7H),7.57.
1.57	
	IR(KBr)1607,1520,1481,1373,1231,1176,1119,1078cm-1
	1HNMR(CDCl ₃) & 1.76(6,3H), 1.82(8,3H), 2.72(8,3H), 3.23(6,3H), 3.53(8,3H), 3.78(8,3H), 4.64(d,J=6.6Hz,2H), 6.84(t,J)
1.58	=6.6Hz, HJ), 6.83(s, HJ), 7.06-7.20(m, 3H), 7.31-7.40(m, 2H), 7.56-7.65(m, 2H)
	IR(KBr)1603,1521,1483,1376,1366,1176,1085cm ⁻¹

Table 22

	1HNMR(CDCl ₃) \$\delta\$ 1.76(8,3H), 1.82(8,3H), 3.45(8,3H), 3.75(8,3H), 4.62(d, J=6.9Hz, 2H), 5.52(t, J=6.9Hz, 1H), 5.71(brs, 1H), 5.89(8,
1.59	1H),6.44(s,1H),6.90-719(m,5H),7.56-7.67(m,2H)
	IR(KBr)3545,3385,1605,1586,1661,1520,1384,1311,1284,1225,1121,1096cm ⁻¹
	1HNMR(CDCl ₃) δ 3.49(s,3H),3.74(s,3H),5.15(s,2H),5.68(s,1H),5.91(s,1H),6.02(s,2H),6.43(s,1H),6.88-7.19(m,6H),7.31-7.48(
1.60	m,5H)
	IR(CHCla)35535,1615,1588,1519,1500,1482,1410,1290,1241,1204,1092,1041cm · 1
	$HINMR((31)(31) \delta - 1.76(8,311), 1.81(8,311), 2.73(8,311), 3.23(8,311), 3.57(8,311), 3.77(8,311), 4.64(d,J=6.6Hz,1H), 5.50(t,J=6.6Hz,1H)$
-),6.03(s,211),6.83(s,111),6.91(d,J=8.111z,111),7.08(d,J=8.111z,114),7.09(d,J=8.114z,114),7.14(s,114),7.34(d,J=8.114z,114),7.39(s,111),7.39
10-1	(H
	IR(CHCl ₃)1607,1518,1477,1453,1369,1240,1178,1081cm · ¹
	$^{\rm HINMR(CDCl_3)} \delta 1.76 (s, 3H), 1.82 (s, 3H), 3.49 (s, 3H), 3.74 (s, 3H), 4.61 (d, J=6.9Hz, 2H), 5.53 (t, J=6.9Hz, 1H), 5.68 (s, 1H), 6.02 (s, 2H), 1.60 (s, 2H)$
1.62),6.43(s,1H),6.88-6.96(m,3H),7.03-7.18(m,3H)
	IR(KBr)3494, 1610, 1583, 1561, 1519, 1480, 1460, 1409, 1286, 1243, 1191, 1127, 1089, 1036cm ⁻¹
	m.p.201-202°C
	IIINMR(CDCl ₃) & 3.78(s,6H),5.16(s,4H),5.69(s,2H),6.93(s,2H),6.99(d,J=8.4Hz,2H),7.08(dd,J=2.1and8.4Hz,2H),7.22(d,J=2.
	1Hz,2H),7.37.7.47(m,10H),
	IR(KBr)3600-3100(br), 1584, 1523, 1454, 1272, 1245, 1210, 1130cm ⁻¹
	m.p.173·175℃
I-64	"HNMR(CDCl ₃) δ 3.12(8,6H),3.80(8,6H),5.18(8,4H),6.92(8,2H),7.12(d,J=8.7Hz,2H),7.36-7.50(m,12H),7.60(d,J=2.1Hz,2H)
	IR(KBr)1523,1492,1356,1290,1263,1210,1182,1114cm ⁻¹

Table 25

	m.p.174·176℃
1 22	IINMR(CDCL), 5 1.72(s, 3H), 1.76(s, 3H), 4.55(d, J=6.0Hz, 2H), 5.45-5.49(m, 1H), 6.82-7.43(m, 10H), 8.84(s, 1H), 9.45(s, 1H), 9.53(
: :-	(8,111)
	IR(KBr)3600-3100(br), 1610, 1594, 1532, 1496, 1444, 1409, 1305, 1245, 1209cm ⁻¹
	m.p.134-135%
06.1	HINMR(CDCI) & 3.78(s,311),3.79(s,311),5.17(s,211),5.70(s,111),6.91(s,111),6.95(s,111),6.99(d,J=8.4Hz,111),7.07-7.14(m,3H),7.
<u> </u>	22(d,J=2.111z,111),7.36-7.47(m,611),7.52-7.57(m,211)
.	1R(KBr)3600-3100(br), 1524, 1494, 1462, 1381, 1273, 1248, 1213cm
	1HNMR(CDCl ₃) & 3.12(s,3H),3.79(s,3H),3.80(s,3H),5.18(s,2H),6.92(s,1H),6.94(s,1H),7.09-7.15(m,3H),7.38-7.56(m,8H),7.60(
1.79	d,J=2.1Hz,1H)
	IR(KBr)1522,1493,1467,1387,1365,1279,1213,1112cm 1
	m.p.110·1111°C
1.80	¹ HNMR(CDCl ₃) & 1.77(s,3H), 1.81(s,3H), 3.22(s,3H), 3.78(s,3H), 3.80(s,3H), 4.63(d,J=6.9Hz,2H), 5.50-5.57(m,1H), 6.91(s,1H), 6.
3	94(s, 111),7.04-7.14(m,3H),7.47-7.58(m,4H)
	IR(KBr)1552, 1493, 1364, 1212, 1110, 970cm 1
	1HNMIR(CI)CL ₃) δ 1.77(8,3H), 1.82(8,3H), 3.78(8,3H), 3.79(8,3H), 4.62(d,J=6.9Hz,2H), 5.50.5.56(m,1H), 5.72(8,1H), 6.91-6.95(m,
1.81	
	IR(KBr)3536,1520,1493,1386,1271,1241,1210cm ⁻¹
	111NMR(CDCla) & 1.29(t,J=7.2Hz,3H), 1.76(s,3H), 1.79(s,3H), 3.78(s,6H), 3.78(q,2H), 4.64(d,J=6.3Hz,2H), 4.72(s,2H), 5.53-5.78
1.82	(m,111),6.61(s,111),6.94(s,111),6.98(d,J=8.711z,111),7.09-7.20(m,411),7.52-7.57(m,2H)
	IR(KBr)1758,1524,1496,1461,1387,1263,1209,1147cm ⁻¹

Table 26

	111111111111111111111111111111111111
1.8:3	60-7.71(m,3H),7.92(s,1H)
	HR(KBr)1684,1606,1512,1478,1177,1150,1080,1016cm
	111111111111111111111111111111111111
1-84	16.511z, 111),6.89(s, 1H),7.13(s, 2H),7.27(d, J=8.411z, 1H),7.35-7.50(m,8H),7.69(d, J=8.4Hz,2H)
	IR(KBr)1708,1633,1513,1465,1367,1271,1230,1176,1151,1120,1017cm
1.85	16.511z, 111), 6.69(dd, J=8.4nnd2.411z, 111), 6.88(8, 211), 7.00(d, J=8.411z, 111), 7.33·7.50(m, 8H), 7.70(d, J=8.4Hz, 2H)
	IR(KBr)3398,1675,1627,1581,1512,1465,1370,1284,1256,1221,1148,1074,1017cm ⁻¹
	$ \text{1-HNMR}(\text{CDC}1_3) \ \delta \ \ 2.53(s,3H), 3.21(s,3H), 3.56(s,3H), 3.77(s,3H), 4.58(s,2H), 5.24(s,2H), 6.83(s,1H), 6.96(d,J=8.4Hz,1H), 7.28-7. $
1.86	57(m,9H),7.69(d,J=8.4Hz,2H)
	IR(KBr)1605,1512,1479,1366,1233,1175,1149,1080,1015cm ⁻¹
	$HNMR(CDCl_3) \delta 1.76(s,3H), 1.81(s,3H), 3.27(s,3H), 3.78(s,3H), 3.79(s,3H), 4.63(d,J=6.6Hz,2H), 5.40-5.50(m,1H), 5.71(s,1H), 6.71(s,1H), $
1.87	07(s,111),6.91-6.95(m,311),7.05-7.20(m,311),7.43-7.51(m,2H)
	IR(KBr)3600-3200(br), 1617, 1525, 1494, 1464, 1361, 1292, 1208, 1178, 1101, 1033cm ⁻¹
	1HNMR(CDC13) & 2.57(s, 3H), 3.20(s, 3H), 3.56(s, 3H), 3.79(s, 3H), 5.18(s, 2H), 6.84(s, 1H), 7.06-7.15(m, 1H), 7.20-7.40(m, 9H), 7.47-
1-88	7.57(m,2H),7.60-7.75(m,3H),8.20-8.25(m,2H)
	111NMR(CDCD3) \$\partial 3.44(8,3H), 3.75(8,3H), 5.01(6,1H), 5.18(8,2H), 6.01(8,1H), 6.45(8,1H), 6.88-6.97(m,2H), 7.07(dd, J=8.4and8.4)
1-89	Hz,1H),7.15-7.21(m,1H),7.27(dd,J=12.3and2.1Hz,1H),7.29-7.43(m,3H),7.45-7.56(m,4H)

3	14NMR(CDC33) \(\delta\) 1.68(s,3H), 1.75(d,J=0.9Hz,3H), 2.55(dt,J=6.9and6.9Hz,2H), 2.70(s,3H), 3.21(s,3H), 3.55(s,3H), 3.77(s,3H), 4.04(t,J=6.9Hz,2H), 5.17-5.28(m,1H), 6.84(s,1H), 7.04(dd,J=8.4and8.4Hz,1H), 7.11-7.22(m,2H), 7.34-7.42(m,2H), 7.65-7.75(m,2H)
3	H) IR(KBr)1522,1483,1361,1352,1176,1156,1079,963,873,801cm ⁻¹
	111NMR(CDCl ₃) δ 2.96(s,3H),3.52(s,3H),3.58(s,6H),3.73(s,3H),4.89(s,2H),5.19(s,2H),5.23(s,2H),5.25(s,2H),6.68(s,1H),6.98(d ₄ ,J=8.4Hz,1H),7.04(dd ₄ ,J=8.4and2.1Hz,1H),7.11(m,2H),7.25(d ₄ ,J=2.1Hz,1H),7.30-7.40(m,5H),7.51(m,2H)
<u>e</u>	
3	mp122-124°C ¹ HNMR(CDCl ₃) δ 2.70(brs, 3H), 3.55-3.60(br, 2H), 3.60(s, 3H), 3.75(s, 3H), 3.81-3.83(m, 2H), 3.87(s, 3H), 5.15(s, 2H), 5.68(s, 1H), 6.
76-1	69(s, 111),6.94(dd,J=2.1,8.4Hz,111),6.97-7.03(m,311),7.07(d,J=1.8Hz,111),7.38-7.48(m,5H),7.51-7.56(m,2H) IR(KBr)3600-2800(br), 1607, 1597, 1550, 1518, 1477, 1462, 1452, 1392, 1289, 1248, 1228, 1175, 1122, 1096, 1084, 1015cm ⁻¹
1.93	1HNMR(CDCl ₃) δ 2.59(dt,J=6.6,6.6Hz,2H),3.45(s,3H),3.74(s,3H),4.15(t,J=6.6Hz,2H),5.15(dm,J=10.2Hz,1H),5.21(dm,J=17.
	IR(Nujol)3670,3526,3336,3205,1616,1696,1524,1493,1409,1316,1286,1264,1239,1225,1117,1072,821,783cm ⁻¹
	$^{1}\text{HNMR}(\text{CDCl}_3) \ \delta \ 0.36 (\text{m}, 2\text{H}), 0.66 (\text{m}, 2\text{H}), 1.31 (\text{m}, 1\text{H}), 3.45 (\text{s}, 3\text{H}), 3.74 (\text{s}, 3\text{H}), 3.91 (\text{d}, J=7.2\text{Hz}, 2\text{H}), 6.44 (\text{s}, 1\text{H}), 6.91 (\text{d}, J=8.7\text{Hz}, 2\text{Hz}, 2\text{Hz}), 0.36 (\text{m}, 2\text{Hz}, 2\text$
I-94	2H),6.93(m,2H),7.07(d,J=1.8Hz,1H),7.53(d,J=8.7Hz,2H) IR(Nujol)3570,3491,3364,3178,1617,1598,1583,1524,1494,1408,1313,1285,1266,1240,1224,1115,1072,1011,822,786cm ⁻¹
	1HNMR(CDCl3) 6 1.86(8,3H),3.45(8,3H),3.74(8,3H),4.54(8,2H),5.04(brs,1H),5.12(brs,1H),6.45(8,1H),6.91(d,J=8.7Hz,2H),6.9
1.95	6(m,2H),7.08(brs,1H),7.53(d,J=8.7Hz,2H)
	IR(Nujol)3536,3364,3179,1614,1586,1524,1493,1407,1309,1284,1265,1238,1226,1115,1073,1011,887,821,782cm ⁻¹

Table 28

.

1.96	HINMR(CDCL ₃) 6 2.58(t, J=2.4Hz, 1H), 3.45(s, 3H), 3.74(s, 3H), 4.79(d, J=2.4Hz, 2H), 6.45(s, 1H), 6.92(d, J=8.7Hz, 2H), 6.98(dd, J=8.4, 2.1Hz, 1H), 7.07(d, J=8.4Hz, 1H), 7.09(d, J=2.1Hz, 1H), 7.53(d, J=8.7Hz, 2H) 8.4, 2.1Hz, 1H), 7.07(d, J=8.4Hz, 1H), 7.09(d, J=2.1Hz, 1H), 7.53(d, J=8.7Hz, 2H)
1.97	
1-98	m.p.200-203°C 141NMR(CDCI);) 6 2.38(s,311),2.67(s,341),3.12(s,341),3.21(s,341),3.56(s,341),3.77(s,341),5.14(s,241),6.84(s,141),7.15(d,J=8.7Hz, 141),7.21(d,J=8.1Hz,214),7.34(d,J=8.111z,241),7.34(dd,J=8.7,2.411z,141),7.38(d,J=8.7Hz,241),7.40(d,J=2.4Hz,141),7.68(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.38(d,J=8.7Hz,241),7.38(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.34(d,J=8.7Hz,241),7.38(d,J=8.7Hz,241),7.38(d,J=8.7Hz,241),7.34(d,J=
66.7	IR(Nujol)1608,1520,1480,1359,1173,1156,1078,1016,976,948,872,818,791cm ⁻¹ IH(Nujol)1608,1520,1480,1359,1173,1156,1078,1016,976,948,872,818,791cm ⁻¹ IHNMR(CI)Cl ₃) δ 2.72(8,3H),3.13(8,3H),3.21(8,3H),3.55(8,3H),3.78(8,3H),5.15(8,2H),6.84(8,1H),7.09(d,J=8.7Hz,1H),7.12(dd,J=8.7,5.1Hz,1H),7.38(d,J=8.7Hz,2H),7.40(d,J=2.1Hz,1H),7.46(dd,J=8.7,5.1Hz,1H),7.68(d,J=8.7Hz,2H),7.40(d,J=2.1Hz,1H),7.46(dd,J=8.7,5.1Hz,1H),7.68(d,J=8.7Hz,2H),7.40(d,J=2.1Hz,1H),7.46(d,J=8.7Hz,2H),7.40(d,J=2.1Hz,2H),7.40(d,J=8.7Hz,2Hz,2Hz,2H),7.40(d,J=8.7Hz,2Hz,2Hz,2Hz,2H),7.40(d,J=8.7Hz,2Hz,2Hz,2H),7.40(d,J=8.7Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2
	2,211)
I·100	911NMR(CDCU ₃) & 2.76(8,311),3.19(8,311),3.21(8,311),3.55(8,31),3.78(8,31),5.25(8,21),6.85(8,111),7.13(d,J=8.4Hz,111),7.32(dd,J=8.4,1.8Hz,111),7.38(d,J=8.7Hz,211),7.42(d,J=1.8Hz,111),7.45(d,J=1.8Hz,111),7.59(d,J=8.4Hz,111),7.68(d,J=8.7Hz,211)
1.101	m.p.103·105°C !HNMR(CDCl ₃) δ 2.18(dd,J=1.5,1.2Hz,3H),3.45(s,3H),3.74(s,3H),4.79(dd,J=5.7,1.2Hz,2H),5.81(dt,J=5.7,1.5Hz,2H),6.45(s, 1H),6.92(d,J=8.7Hz,2H),6.95(s,1H),6.96(s,1H),7.07(s,1H),7.52(d,J=8.7Hz,2H) IR(KBr)3527,3328,2930,1614,1593,1523,1492,1463,1408,1262,1235,1119,1072,1010,828,805cm ⁻¹

Table 29

	m.p.95-99°C
1.102	111100 (HICDCH3) 6 3.45(8,3H),3.74(8,3H),4.67(8,2H),5.47(m,1H),5.55(dd,J=2.7,1.2Hz,1H),6.45(8,1H),6.92(d,J=8.7Hz,2H),7.0
	1(m,211),7.04(d,J=1.811z,111),7.53(d,J=8.711z,211)
3	111NMIR(CDC33) \$\delta\$ 3.45(8,311), 3.75(8,311), 4.59(4,J=4.2112,211), 6.45(8,111), 6.45(m,111), 6.55(d,J=12.9Hz,111), 6.92(d,J=8.7Hz,2)
1-10.8	11),6.96(brs, 211),7.08(bts, 111),7.53(d,J=8.7Hz,211)
-	111NMR(CDCL3) & 3.45(s, 3H), 3.75(s, 3H), 4.64(dd, J=6.0and 1.2Hz, 2H), 6.23(dt, J=13.2and 6.0Hz, 1H), 6.42(dt, J=13.2and 1.2Hz,
-104	111), 6.45(8,111), 6.91(d, J=8.711z, 211), 6.96(brs, 211), 7.08(brs, 111), 7.58(d, J=8.711z, 211)
105	111 H NMR(CDC13) & 3.46(8,311),3.75(8,311),3.98(d-like,J=7.2Hz,111),4.64(d-like,J=3.9Hz,1H),6.04(dt,J=15.3,4.8Hz,1H),6.06(1
eor-1	11,dt,J=15.3,6.0Hz,1H),6.45(s,1H),6.92(d,J=8.7Hz,2H),6.95(s,1H),7.08(s,2H),7.53(d,J=8.7Hz,2H)
	foam
301	111NMR(CDCl ₃) δ 1.76(s,3H),1.83(s,3H),2.08(s,3H),3.36(s,3H),3.71(s,3H),4.61(d,J=7.0Hz,2H,),4.94(s,1H),5.54(t,J=7.0Hz,1
901:	H),5.70(s,1H),6.70(dd,J=8.4,2.0Hz,1H),6.74(s,1H),6.84(d,J=2.0Hz,1H)
	IR(KBr)3410,1520,1476,1390,1243,1225,1101,1084,834,812,775cm ⁻¹
	m.p.112-114°C
	1 HNMR(CDCl ₃) δ 3.03(s,3H),3.57(s,3H),3.74(s,3H),3.87(s,3H),4.90(S,2H),5.15(s,2H),5.63(brs,1H),6.68(s,1H),6.91.7.07(m,5
1.107	H),7.38-7.51(m,5H),7.53(m,2H)
	IR(KBr)3512,2952,2936,1607,1519,1468,1442,1382,1284,1253,1229,1215,1186,1156,1112,1079,1065,1020,983,956,914,83
	lcm ⁻¹
100	"HNMR(CDCl ₃) & 2.20(d,J=1.2Hz,3H),2.76(s,3H),3.22(s,3H),3.24(s,3H),3.56(s,3H),3.78(s,3H),4.65(m,2H),5.96(m,1H),7.07(
1.100	d,J=8.4Hz,1H),7.34-7.41(m,4H),7.68(m,2H)

.

Table 30

	m.p.153·154 C
501	$ \text{IINMR(CDCB} \delta - 2.20 (\text{d,J=1.5Hz,3H}), 2.75 (\text{s,3H}), 3.21 (\text{s,3H}), 3.23 (\text{s,3H}), 3.56 (\text{s,3H}), 3.78 (\text{s,3H}), 4.81 (\text{m,2H}), 5.80 (\text{m,1H}), 6.84 ($
601·I	8,111),7.10(d,J=8.1Hz,111),7.34·7.41(m,411),7.68(m,211)
	IR(KBr)1519,1481,1390,1364,1234,1177,1150,1119,1077,1011,969,945,876,816,799,521cm ⁻¹
-	$^{\rm HNMR(CDC33)} \delta - 2.68(8,3H), 3.11(8,3H), 3.21(8,3H), 3.56(8,3H), 3.78(8,3H), 3.83(8,3H), 5.11(9,2H), 6.84(8,1H), 6.93(4,J=8.7Hz,$
011:	211),7.16(d,1=8.711z,111),7.35(dd,J=8.7,2.111z,111),7.36-7.40(m,511),7.68(d,J=8.7Hz,211)
	HINMR(CDCD) & 2.78(4,3H),3.22(4,6H),3.56(4,3H),3.78(4,3H),5.23(4,2H),6.86(4,1H),7.08(4,J=8.7Hz,1H),7.34(dd,J=8.7,2.1
=	112,111),7.39(d,J=8.7Hz,211),7.42(d,J=2.1Hz,1H],7.44(brs,2H),7.68(d,J=8.7Hz,2H),8.70(brs,2H)
	1HINMR(CDCl3) & 2.70(s,3H),3.21(s,3H),3.24(s,3H),3.55(s,3H),3.78(s,3H),5.33(s,2H),6.84(s,1H),7.15(d,J=8.4Hz,1H),7.27(dd
1.112	1.112 J.J=7.5,4.2Hz,1H),7.33(dd,J=8.4,2.4Hz,1H),7.38(d,J=8.7Hz,2H),7.42(d,J=2.4Hz,1H),7.62(brd,J=7.5Hz,1H),7.68(d,J=8.7Hz,2H)
	H).7.76(ddd,J=7.5,7.5,1.8Hz,1H).8.61(d,J=4.2Hz,1H)
	$^{1}\text{HNMR}(\text{CDCI}_{3}) \ \delta \ \ 2.76(s,3H), 3.15(s,3H), 3.21(s,3H), 3.55(s,3H), 3.78(s,3H), 5.22(s,2H), 6.85(s,1H), 7.17(d,J=8.4Hz,1H), 7.38(dd,J=8.4Hz,1H), 7.38(dd,J=8.4Hz$
1.113	1.113 (.)=8.4,2.1Hz,1H),7.38(m,1H),7.39(d,J=8.7Hz,2H),7.42(d,J=2.1Hz,1H),7.68(d,J=8.7Hz,2H),7.88(d,J=7.8Hz,1H),7.64(brs,1H)
	,8.73(brs, 111)
	111NMR(CDCl ₃) δ 3.45(s,3H),3.74(s,3H),5.10(s,2H),6.45(s,1H),6.91(d,J=8.7Hz,2H),6.95(dd,J=8.4,2.1Hz,1H),7.03(d,J=8.4Hz
1.114	1-114 111),7.08(d,J=2.111z,111),7.23(brd,J=7.8Hz,211),7.34(brd,J=7.8Hz,2H),7.53(d,J=8.7Hz,2H)
	IR(Nujol)3464,3344,1611,1581,1523,1490,1266,1113,1073,1011,1000,821,782cm ⁻¹
	1HNMR(CDCl ₃) ô 3.45(8,3H),3.75(8,3H),5.11(8,2H),6.45(8,1H),6.92(d,J=8.7Hz,2H),6.96(dd,J=8.4,2.1Hz,1H),7.01(d,J=8.4Hz
1.115	1.115 1.11),7.09(d,J=2.111z,111),7.11(dd,J=8.7,8.711z,211),7.42(dd,J=8.7,5.4Hz,211),7.54(d,J=8.7Hz,211)
	IR(Nujol)3560,3400,1612,1589,1522,1492,1260.1225,1116,1068,1006,992,841,826,803,786cm ⁻¹

Table 31

	¹ HNMR(CDCl ₃) δ 3.45(s,3H),3.75(s,3H),5.23(s,2H),6.45(s,1H),6.92(d,J=8.7Hz,2H),6.97(brs,2H),7.11(brs,1H),7.31(dd,J=8.4,
1.116	1-116 2.111z,111),7.46(d,J=8.411z,111),7.47(d,J=2.111z,111),7.54(d,J=8.711z,211)
	IR(Nujol)3460,3359,1610,1594,1522,1490,1264,1164,1110,1072,1008,877,824,781cm ⁻¹
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1-117	1-117 =8.4,1.8Hz,1H),7.04(d,J=8.4Hz,1H),7.08(d,J=1.8Hz,1H),7.37(d,J=8.7Hz,2H),7.53(d,J=9.0Hz,2H)
	IR(Nujol)3400,1612,1586,1516,1488,1246,1174,1113,1070,1011,823cm ⁻¹
	111NMR(1)MSO-d6) \(\delta\) 3.29(8,311),3.64(8,311),5.20(8,211),6.39(8,111),6.64(dd,J=8.4,2.1Hz,111),6.79(d,J=2.1Hz,111),6.84(d,J=8.
1.118	711z,211),6.92(d,J=8.4Hz,111),7.43(d,J=8.7Hz,2H),7.52(d,J=6.0Hz,2H),8.59(d,J=6.0Hz,2H)
	IR(Nujol)3473,3441,1610,1582,1523,1493,1404,1241,1112,1074,1005,816,782cm ⁻¹
	1HINMR(CDCl ₃) & 3.45(s,3H),3.74(s,3H),5.27(s,2H),6.45(s,1H),6.92(dd,J=8.4,1.8Hz,1H),6.93(d,J=8.7Hz,2H),7.11(d,J=8.4Hz
-	., 1H), 7.12(d, J=1.8Hz, 1H), 7.31(m, 1H), 7.36(brd, J=7.5Hz, 1H), 7.53(d, J=8.7Hz, 2H), 7.77(ddd, J=7.5, 7.5, 1.8Hz, 1H), 8.66(d, J=5.0
	Hz,111)
	IR(Nujol)3555,3467,3342,1608,1597,1586,1522,1466,1210,1117,1080,1016,822,761cm ⁻¹
	$^{1}\text{HNMR(CDCl}_{3}) \delta \ \ 3.45 (\text{s}, 3\text{H}), 3.74 (\text{s}, 3\text{H}), 5.21 (\text{s}, 2\text{H}), 6.46 (\text{s}, 1\text{H}), 6.91 (\text{d}, \text{J=8.7Hz,} 2\text{H}), 6.99 (\text{brs,} 2\text{H}), 7.11 (\text{brs,} 1\text{H}), 7.40 (\text{dd,} \text{J=7.5}, \text{J=7.5})$
1.120	5.011z,11H),7.53(d,J=8.711z,2H),7.83(d,J=7.5Hz,1H),8.64(brd,J=5.0Hz,1H),8.74(bre,1H)
	IR(Nujol)3342, 1609, 1586, 1522, 1489, 1253, 1118, 1074, 1010, 827, 782cm ⁻¹
	m.p.166·168°C
101	1HNMR(CDCl ₃) δ 3.45(s,3H),3.75(s,3H),4.77(d,J=6.3Hz,2H),6.22(t,J=6.3Hz,1H),6.93(d,J=8.7Hz,2H),6.93(d,J=8.7Hz,1H),6.
171.1	98(dd,J=8.7,1.8Hz,1H),7.08(d,J=1.8Hz,1H),7.53(d,J=8.7Hz,2H)
	IR(KBr)3474,3411,2957,2930,1615,1589,1569,1623,1492,1407,1286,1263,1230,1113,1070,825cm-1

Table 32

1:122	m.p.190-192°C HINMR(CDChh) & 2.56(8,311),3.22(8,311),3.56(8,311),3.79(8,311),5.17(8,211),5.73(8,111),6.84(8,111),6.93(dd,J=8.1and1.9Hz,111) ,7.02(d,J=8.1Hz,111),7.05(d,J=1.9Hz,111),7.37-7.45(m,111),7.71(d,J=8.6Hz,211) IR(KBr)3512,1519,1484,1367,1174,1150,1078,957,870,798cm
1.123	fourn HINMR(CDC3a) & 3.08(a,3H),3.21(a,3H),3.44(a,3H),3.78(a,3H),5.15(a,2H),6.95(a,1H),7.11(d,J=8.7Hz,1H),7.33-7.47(m,9H),7. 71(d,J=8.7Hz,2H),13.3-14.5(bra,1H) IR(KBr):3422,1735,1702,1520,1471,1366,1175,1150,1118,971,954,863,807cm ⁻¹
1.124	m.p.258-259°C (dec) IINMR(DMSO-d ₆) δ 3.32(s,3H),3.69(s,3H),5.10(2H,s),6.65(dd,J=8.4,2.1Hz,1H),6.79(d,J=2.1Hz,1H),6.86(d,J=8.4Hz,2H),6. 90(s,1H),6.94(d,J=8.4Hz,1H),7.30-7.54(m,7H),8.98(s,1H),9.63(s,1H) IR(KBr):3437,3157,1702,1610,1590,1521,1474,1464,1379,1260,1245,1224,1061,1014,962,834,793,748,698cm ⁻¹
1.125	HNMR(CI)Cl ₁₃ δ 1.75(s,3H),1.81(s,3H),3.21(s,3H),3.41(s,3H),3.68(s,3H),3.77(s,3H),4.61(d,J=6.8Hz,2H),5.50(t,J=6.8Hz,1H),6.93(s,1H),7.02(d,J=8.5Hz,1H),7.27(d,J=8.65,2.3Hz,1H),7.33(dd,J=2.3Hz,1H),7.38(d,J=8.6Hz,2H),7.71(d,J=8.6Hz,2H) HNMR(CDCl ₃) δ 1.75(s,3H),1.81(s,3H),3.41(s,3H),3.65(s,3H),3.76(s,3H),4.59(d,J=6.6Hz,2H),5.06(s,1H),5.51(t,J=6.6Hz,1H),5.67(s,1H),6.83(dd,J=8.4.2.1Hz,1H),6.80-6.93(m,3H),6.98(d,J=2.1Hz,1H),7.54(d,J=9.0Hz,2H)
1.127	m.p.116-117°C ¹ HNMR(DMSO-d ₆) δ 1.72(8,3H),1.76(8,3H),3.32(8,3H),3.70(8,3H),4.53(d,J=7.1Hz,2H),5.48(t,J=7.1Hz,1H),6.65(dd,J=8.4,2.1 ¹ HNMR(DMSO-d ₆) δ 1.72(8,3H),1.76(8,3H),3.32(8,3H),3.70(8,3H),4.53(d,J=7.1Hz,2H),5.48(t,J=7.1Hz,1H),6.65(dd,J=8.4Hz,1H),6.93(8,1H),7.47(d,J=8.6Hz,2H),8.84(8,1H),9.62(8,1H),1.9.13.4(brs,1H) ¹ B-13.4(brs,1H) ¹ R(KBr):3446,1703,1611,1693,1520,1471,1380,1260,1225,1081,997,952,838cm ⁻¹

Table 33

5

 	oil !HNMR(CDCEs) & 1.65(s,3H),1.78(s,3H),2.96(s,3H),3.22(s,3H),3.25(s,3H),3.55(s,3H),3.79(s,3H),4.77(d,J=7.8Hz,2H),5.53(t,J
	=7.8Hz, 1H), 6.87(s, 1H), 7.39&7.67(ABq,J=8.7Hz,4H), 7.70(d,J=2.1Hz,1H), 7.86(d,J=2.1Hz,1H), 10.36(s,1H) HR(CHCE) 1691, 1473, 1374, 1230, 1226, 1209, 1178, 1152, 1086, 969, 874, 805cm ⁻¹
	lio
190	HINMR(CDCl ₃) & 1.73(d,J=0.9Hz,3H),1.80(s,3H),2.89(s,3H),3.20(s,3H),3.22(s,3H),3.54(e,3H),3.79(s,3H),4.66(d,J=7.8Hz,2
(7)	11),4.77(s,211),6.55(m,111),6.85(s,111),7.39&7.68(ABq,J=9.0Hz,411),7.39(d,J=2.1Hz,1H),7.44(d,J=2.1Hz,1H)
	IR(CHCl.)1475,1372,1230,1178,1151,1085,969,874cm 1
	m.p.189-190°C
061	"HNMR(CDCl ₃) § 1.36(s,9H),2.81(s,3H),3.22(s,3H),3.30(s,3H),3.56(s,3H),3.79(s,3H),6.86(s,1H),7.36-7.42(m,3H),7.54(d,J=1
001-1	.8Hz, HI), 7.67-7.72(m, 3H)
	1R(KBr)1472,1363,1331,1179,1153,1082,961,950,877,846,817,791,526cm ⁻¹
	m.p.147·148℃
1.1.1	111NMR(CDCL3) & 2.95(8,3H),3.18(8,3H),3.22(8,3H),3.55(8,3H),3.79(8,3H),5.28(8,2H),6.86(8,1H),7.38-7.44(m,7H),7.67(m,2H
),7.75(d,J=2.1Hz,1H),7.83(d,J=2.1Hz,1H)
	IR(KBr)1687,1512,1472,1365,1352,1234,1201,1180,1151,1082,971,947,870,846,810,794,703,523cm ⁻¹
	m.p.122.124°C
1.139	¹ HNMR(CDCl ₃) δ 1.68(s,3H),1.74(s,3H),2.80(s,3H),3.22(s,3H),3.28(s,3H),3.56(s,3H),3.62(d,J=7.8Hz,2H),3.78(s,3H),5.31(m,
	IR(KBr)1474,1362,1180,1151,1076,1014,968,944,870,816,799,521cm ⁻¹
	1HNMR(CDCl3) 6 1.73(d,J=0.9Hz,3H),1.82(8,3H),3.44(8,3H),3.75(8,3H),4.54(d,J=6.9Hz,2H),4.78(8,2H),5.30(8,1H),5.61(m,1
I.133	II),5.67(s,1H),6.01(s,1H),6.45(s,1H),6.92&7.52(ABq,J=8.7Hz,4H),7.02(d,J=2.1Hz,1H),7.05(d,J=2.1Hz,1H)
	IR(KBr)3428,1612,1522,1483,1458,1403,1362,1334,1304,1266,1226,1174,1116,1083,1024,970,938cm-1

Table 34

1.134	m.p.167-168°C HINMR(CDCh) & 1.39(d,J=1.2Hz,3H), 1.70(s,3H),3.36(d,J=8.1Hz,2H),3.45(s,3H),3.74(s,3H),4.98(s,1H),5.29(m,1H),5.96(s,1H),6.45(s,1H),6.78(s,1H),6.93&7.54(ABq,J=8.7Hz,4H),6.96(dd,J=7.8Hz,1H),7.09(d,J=1.8Hz,1H),7.49(d,J=7.8Hz,1H),1.10(d,J=7.8Hz,1Hz,1H),1.10(d,J=7.8Hz,1Hz,1H),1.10(d,J=7.8Hz,1Hz,1H),1.10(d,J=7.8Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1
	IR(KBr)3413,3365,2931,1611,1552,1520,1502,1475,1455,1441,1402,1360,1323,1262,1227,1206,1182,1170,1162,1114,1100,1081,1052,1014,941,835,816,587,542cm ¹
	m.p. 18:3-184°C HINMIR(CDCl ₃) & 3.46(s,3H),3.74(s,3H),3.83(s,3H),4.78(m,2H),5.99(m,1H),6.44(m,1H),6.45(s,1H),6.92(d,J=8.7Hz,2H),6.94(
1.135	dd,J=8.1,1.8Hz,1H),7.00(d,J=8.1Hz,1H),7.10(d,J=1.8Hz,1H),7.53(d,J=8.7Hz,2H) IR(KBr)3383,2929,1699,1523,1491,1405,1262,1236,1206,1173,1116,1071,1011,822cm ⁻¹
	11 HNMR(CD ₃ OD) δ 1.26(8,3H), 1.29(8,3H), 3.38(8,3H), 3.68(8,3H), 3.80(dd,J=8.4,2.7Hz,1H), 3.96(dd,J=9.6,8.4Hz,1H), 4.34(dd,J=9.6,2.7Hz,1H), 6.85(4.J=8.7Hz,2H), 6.86(d.J=1.8Hz,1H), 7.96(d.J=8.1Hz,1H), 7.46(d.J=1.8Hz,1H), 7.48(d.J=1.8Hz,1H), 7.48(d.J=1.8Hz,1Hz,1H), 7.48(d.J=1.8Hz,1Hz,1H), 7.48(d.J=1.8Hz,1Hz,1H), 7.48(d.J=1.8Hz,1Hz,1H), 7.48(d.J=1.8Hz,1Hz,1H), 7.48(d.J=1.8Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1
I.136	8.7Hz,2H)
	III(NUJO)(2007, 1012, 1000, 1023, 1103, 1207, 1220, 1110, 11
1.137	3(s,1H),6.83-6.87(m,3H),6.85(d,J=8.7Hz,2H),7.46(d,J=8.7Hz,2H) IR(Nujol)3410,1612,1588,1522,1487,1269,1231,1114,1071,1011,947,824cm ⁻¹
	$^{1}\text{HNMR}(\text{CD}_{3}\text{OD}) \ \delta \ \ 3.38(\text{s},3\text{H}), \\ 3.68(\text{s},3\text{H}), \\ 4.70(\text{d},J=5.4\text{Hz},2\text{H}), \\ 6.43(\text{s},1\text{H}), \\ 6.80(\text{dd},J=8.1,2.1\text{Hz},1\text{H}), \\ 6.85(\text{d},J=8.4\text{Hz},2\text{H}), \\ 6.88(\text{dd},J=8.1,2.1\text{Hz},1\text{H}), \\ 6.86(\text{dd},J=8.4\text{Hz},2\text{H}), \\ 6.86(\text{dd},J=8.4\text{Hz},2\text{H}), \\ 6.86(\text{dd},J=8.1,2.1\text{Hz},1\text{H}), \\ 6.86(\text{dd},J=8.4\text{Hz},2\text{H}), \\ 6.86(\text{dd},J=8.1,2.1\text{Hz},1\text{H}), \\ 6.86(\text{dd},J=8.1,2.1\text{Hz},1\text{H}), \\ 6.86(\text{dd},J=8.1,2.1\text{Hz},1\text{H}), \\ 6.86(\text{dd},J=8.1,2.1\text{Hz},1\text{H}), \\ 6.86(\text{dd},J=8.1,2.1\text{Hz},1\text{H}), \\ 6.86(\text{dd},J=8.1,2.1\text{Hz},1\text{H}), \\ 6.86(\text{dd},J=8.1,2.1\text{Hz},1\text{Hz},1\text{H}), \\ 6.86(\text{dd},J=8.1,2.1\text{Hz},1\text{Hz},1\text{Hz},1\text{Hz},1\text{Hz}), \\ 6.86(\text{dd},J=8.1,2.1\text{Hz},1\text$
1.138	d,J=2.1Hz,1H),6.98(d,J=8.1Hz,1H),7.46(d,J=8.4Hz,2H),7.62(t,J=5.4Hz,1H) IR(Nujol)3368,1612,1689,1523,1489,1253,1226,1114,1072,1011,940,825cm ⁻¹
	1HNMR(CDCl3) & 3.45(8,3H),3.74(8,3H),3.92(8,3H),4.75(d,J=5.1Hz,2H),6.45(8,1H),6.91(d,J=8.7Hz,2H),6.92(d,J=6.0Hz,1H),
I-139	7.00(dd,J=6.0,1.8Hz,1H),7.09(d,J=1.8Hz,1H),7.52(d,J=8.7Hz,2H),7.58(t,J=5.1Hz,1H)
	11((Nujol)5533, 1012, 1053, 1053, 1463, 1262, 1116, 10 (4, 1045, 1014, 34 1, 0500)

	1HNMR(CD ₃ OD) δ 3.38(s,3H),3.68(s,3H),4.51(s,2H),4.71(d,J=5.4Hz,2H),6.43(s,1H),6.80(dd,J=8.4.2.1Hz,1H),6.85(d,J=8.4H
1-140	1.140 z,2H),6.87(d,J=2.1Hz,1H),6.98(d,J=8.4Hz,1H),7.46(d,J=8.4Hz,2H),7.75(t,J=5.4Hz,1H)
	IR(Nujol)3384,1611,1588,1523,1489,1252,1227,1115,1072,1014,824,758cm ⁻¹
<u>,</u>	41NMR(CDC3.) § 3.45(s,3H),3.74(s,3H),4.76(d,J=5.1Hz,2H),5.15(s,2H),6.46(s,1H),6.86(d,J=8.4Hz,1H),6.92(d,J=8.7Hz,2H),
1-141	1-141 6.94(dd,J=8.4,2.1Hz,1H),7.08(d,J=2.1Hz,1II),7.31-7.40(m,5H),7.53(d,J=8.7Hz,2H),7.65(t,J=5.1Hz,1H)
	IR(Nujol)3399,1611,1588,1523,1489,1251,1225,1115,1072,1013,940,825cm ⁻¹
	$^{11} \text{INMR} (\text{CDC1}_3\text{-CD}_3\text{OD1};1) \ \delta \ \ 3.26 (\text{s},3\text{H}), 2.64 (\text{m},4\text{H}), 3.13 (\text{m},4\text{H}), 3.44 (\text{s},3\text{H}), 3.73 (\text{s},3\text{H}), 4.78 (\text{d},\text{J}=4.6\text{Hz},2\text{H}), 6.46 (\text{s},1\text{H}), 6.90 (\text{s},1\text{H}), 6.46 (\text{s},1\text{H}), 6.46$
1.142	1.142 d,J=8.7Hz,2H),6.90(dd,J=8.4,2.1Hz,1H),6.99(d,J=2.1Hz,1H),7.00(d,J=8.4Hz,1H),7.12(t,J=4.5Hz,1H),7.49(d,J=8.7Hz,2H)
	IR(Nujol)3492,3297,1607,1561,1523,1486,1247,1224,1113,1011,957,828,799cm ⁻¹
	111NMIR(CDCha) & 3.09(m,411),3.45(s,311),3.74(s,311),3.86(m,411),4.82(d,J=4.2Hz,2H),6.44(s,1H),6.92(d,J=8.7Hz,211),6.98(dd
1-143	1-143 (J=8.4, 1.8Hz, 111),7.00(t,J=4.2Hz,111),7.04(d,J=8.4Hz,111),7.07(d,J=1.8Hz,111),7.53(d,J=8.7Hz,2H)
	IR(Nujol)3366,1611,1586,1523,1488,1268,1227,1114,1070,1011,823cm ⁻¹
	1HNMR(CDCl ₃) δ 1.29(t,J=6.9Hz,3H),2.65(dd,J=15.9,6.6Hz,1H),2.81(dd,J=15.9,6.6Hz,1H),3.44(s,3H),3.75(s,3H),4.03(dd,J
1.144	1.144 = 11.4,6.9Hz, 1H), 4.20(q, J=6.9Hz, 2H), 4.35(dd, J=11.4,2.4Hz, 1H), 4.66(ddt, J=6.9,6.6,2.4Hz, 1H), 6.44(8, 1H), 6.92(d, J=8.7Hz, 2)
	H),6.96.7.01(m,3H),7.53(d,J=8.7Hz,2H)
	lio
1146	1HNMR(CDCl ₃) δ 1.68(s,3H),1.74(d,J=0.9Hz,3H),2.55(m,2H),3.44(s,3H),3.76(s,3H),4.04(t,J=7.2Hz,2H),4.97(brs,1H),5.23(
041.1	m,1H),6.00(s,1H),6.45(s,1H),6.92&7.53(ABq,J=8.7Hz,4H),7.02(m,1H),7.17-7.22(m,2H)
	IR(KBr)1613, 1525,1490,1475,1463,1464,1402,1304,1269,1231,1112,1072,1019,827cm-1

Table 36

1.146	m.p.256-257°C HINMR(DMSO-da) & 3.35(8,311),3.44(8,311),3.74(8,311),5.22(8,211),7.06(8,111),7.28-7.56(m,1111),7.69(8,111),7.76(d,J=8.6Hz,2
	H) H(KBr):3479,3360, 1672, 1517,1465,1361, 1339, 1295, 1261, 1228, 1172, 1144, 1118, 1013,957,870,862,804,751cm ⁻¹
	m.p163-164°C 11 NMR(CDCta) & 1.74(8,311), 1.81(8,311), 3.43(8,311), 3.74(8,311), 4.58(d, J=6.811z,211), 5.50(t, J=6.811z,111), 5.80(8,111), 6.37(8,111
1.147),6.86-6.95(m,5H),6.90(d,J=8.6Hz,2H),6.99(s,1H),7.49(d,J=8.6Hz,2H) 1R(KBr):3533,3412,3350,1655,1609,1588,1519,1469,1373,1274,1245,1227,1131,1082,1060,999,954,838cm ⁻¹
1.148	1HNMR(CDCL3) & 2.88(8,3H),3.22(8,3H),3.54(8,3H),3.77(8,3H),5.35(m,2H),6.85(8,1H),7.24(d,J=9.0Hz,1H),7.39(d,J=8.7Hz,2
5	H),7.42-7.46(m,5H),7.65(d.d,J=9.0&2.1Hz,1H),7.68(d,J=8.7Hz,2H),8.26(d,J=2.1Hz,1H) H),7.42-7.46(m,5H),7.65(d.d,J=9.0&2.1Hz,1H),7.68(d,J=8.7Hz,2H),8.26(d,J=2.1Hz,1H) H),7.42-7.46(m,5H),7.65(d.d,J=9.0&2.1Hz,1H),7.68(d,J=8.7Hz,2H),8.26(d,J=8.1Hz,1H)
1.149	8.4Hz,211),7.14(d,J=8.7Hz,111),7.49(d,J=8.4Hz,2H)7.70(d.d,J=8.7&2.1Hz,1H),8.28(d,J=2.1Hz,1H)
	IR(KBr)3472,1707,1671,1610,1520,1482,1460,1426,1269,1226,1119,1076,1012cm ⁻¹
	111111111111111111111111111111111111
1.150	
	IR(KBr)3432,1607,1512,1479,1364,1234,1176,1151,1079,1016cm ⁻¹
	$HINMII(CDCI_3) \delta - 1.58(8,311), 1.81(8,311), 3.45(8,311), 3.73(8,311), 4.61(d, J=6.6Hz, 2H), 4.72(8,211), 5.52(t, J=6.6Hz, 111), 6.45(8,111), 6.45$
1-151),6.91(d,J=8.7Hz,2H),6.98(d,J=8.4Hz,1H),7.36(d.d,J=8.4&2.1Hz,1H),7.38(d,J=2.1Hz,1H),7.50(d,J=8.4Hz,2H)
	IR(KBr)3580,3411,1611,1521,1485,1464,1397,1233,1113,1077,1024,1001cm ⁻¹
	HNMR(CDCl ₃) δ 3.50(s, 3H), 3.77(s, 3H), 5.15(s, 2H), 5.72(s, 1H), 6.03(s, 2H), 6.71(d.d, J=8.4&2.1Hz, 1H), 6.91(d, J=8.4Hz, 1H), 6.
1.152	97(s,1H),6.98(d,J=8.4Hz,1H),7.07(s,1H),7.09(d.d,J=8.4&2.1Hz,1H),7.16(d,J=2.1Hz,1H),7.34-7.50(m,5H),989(s,1H)
	IR(KBr)3446,1697,1587,1511,1470,1383,1285,1240,1127,1036cm ⁻¹

-	$ \text{HINMR}(\text{CDCL}_3) \ \delta \ \ 3.78(\text{s},3\text{H}), 3.79(\text{s},3\text{H}), 4.87(\text{s},1\text{H}), 5.16(\text{s},2\text{H}), 5.70(\text{s},1\text{H}), 6.88-6.91(\text{m},2\text{H}), 6.97(\text{s},1\text{H}), 7.00(\text{s},1\text{H}), 6.99(\text{d},\text{J}=8) \text{ and } 1.00(\text{s},1\text{H}), 1.0$
001-1	.4Hz,1H),7.08(dd,J=2.1,8.4Hz,1H),7.23(d,J=2.1Hz,1H),7.34-7.49(m,7H)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1.154	1.154 18-5.27(m, 111),6.92(s, 111),6.95(s, 111),7.05(d, J=8.7Hz, 111),7.32-7.37(m, 2H),7.49(dd, J=2.1,8.7Hz, 111),7.58(d, J=2.1Hz, 111),7.6
	0.7.64(m,211)
1	HINMR(CDCla) & 1.69(s,3H),1.75(s,3H),2.53(q,J=6.9Hz,2H),3.77(s,3H),3.78(s,3H),4.07(t,J=6.9Hz,2H),4.97(s,3H),5.20-5.25
661-1	(m,111), 5.71(s,111), 6.87-6.93(m,311), 7.07(dd, J=1.8,8.4112,111), 7.20(d, J=1.8112,111), 7.45-7.50(m,2H)
	m.p.163.175 C
221.1	1HNMR(CDCl ₃) δ 2.76(9,3H),3.19(8,3H),3.22(8,3H),3.54(8,3H),3.79(8,3H),5.20(8,2H),5.68(8,1H),6.84(8,1H),6.97(d,J=1.9Hz,
001-1	1H),6.99(d,J=1.8Hz,1H),7.37.7.47(m,7H),7.68(m,2H)
	IR(KBr)3436,1480,1415,1391,1363,1233,1178,1151,1079,1024,969,953,875,801,522cm ⁻¹
	m.p.176.178°C
	1HNMR(CDCl:1) & 2.08(s,3H),2.40,(s,3H),2.72(s,3H),3.21(s,3H),3.22(s,3H),3.55(s,3H),3.79(s,3H),5.13(s,2H),6.86(s,1H),7.39a
/ 61-1	nd7.68(ABq,J=8.7Hz,4H),7.47(d,J=2.1Hz,1H),7.49(d,J=2.1Hz,1H)
	IR(KBr)1770,1747,1477,1391,1366,1235,1180,1152,1077,873,799,522cm ⁻¹
	m.p.175-177°C
0 11	1HNMR(CDCl ₃) δ 2.87(s,3H),3.13(s,6H),3.22(s,3H),3.55(s,3H),3.81(s,3H),5.22(s,2H),6.86(s,1H),7.38-7.45(m,7H),7.51-7.53(
961.1	m,2H),7.67(m,2H)
	IR(KBr)1479,1367,1180,1151,1080,1019,966,876,798,525cm ¹

Table 38

1.159	foam HINMR(CDCL ₃) & 2.44(a,3H),3.21(a,3H),3.54(a,3H),3.76(a,3H),3.79(a,3H),4.77(a,2H),5.24(a,2H),6.83(a,1H),6.90-7.00(m,3H), 7.30-7.48(m,5H),7.37(d,J=8.8Hz,2H),7.69(d,J=8.8Hz,2H) HRKRP-1758.1519.1481,1365,1236,1176,1150,1079,1013,963,872,798cm ⁻¹
091:1	m.p146-147°C HINMR(DMSO-dc) & 3.31(8,3H),3.65(8,3H),4.63(8,2H),5.15(8,2H),6.40(8,1H),6.83-6.90(m,4H),7.05(d,J=8.4Hz,1H),7.32-7.52 (m,7H) 8.57(8,1H),9.50(8,1H),12.0-13.9(brs,1H)
191-1	IR(KBr):3422,1728,1611,1624,1489,1455,1405,1247,1142,1118,1080,1012,818,749,742,698cm ⁻¹ IHNMR(CDCl ₃) & 1,76(s,3H),1.79(s,3H),2.57(s,3H),3.21(s,3H),3.56(s,3H),3.77(s,3H),3.80(s,3H),4.64(d,J=6.5Hz,2H),4.74(s,
I.162	ZHJ, 3.54(t, J=0.5012, 111), 0.63(s, 111), 0.63(u, J=1.5112, 111), 1.52 (s, 151), 1.53(s, 151), 1.5
	8,111),12.8(brs,111) IR(KBr):3483,3376,1737,1612,1523,1489,1460,1397,1271,1231,1175,1120,1072,1012,904,820cm ⁻¹
1.163	m.p.144-145°C !HINMR(CDC! ₁) δ 3.04(s,3H),3.20(s,3H),3.59(s,3H),3.75(s,3H),4.90(s,2H),5.16(s,2H),5.65(s,1H),6.67(s,1H),6.92(dd,J=2.1,8. 4Hz,1H),7.00(d,J=8.4Hz,1H),7.06(d,J=2.1Hz,1H),7.26-7.47(m,7H),7.61-7.66(m,2H) IR(KBr)3600-3200(br),1517,1447,1342,1382,1361,1277,1235,1199,1150,1112,1079,1064,1010,997cm ⁻¹
J-164	m.p.80-83°C 'HNMR(CDCl ₃)

Table 39

1.165	m.p.148-151 °C HINMR(CDCl3) & 3.03(s,3H),3.57(s,3H),3.74(s,3H),4.89(s,1H),4.90(s,2H),5.15(s,2H),5.64(s,1H),6.67(s,1H),6.88-6.93(m,3H), 6.99(d,J=8.4Hz,1H),7.06(d,J=1.8Hz,1H),7.20-7.49(m,7H)
	IR(KIR)3600-3200(br), 1609, 1599, 1519, 1477, 1459, 1381, 1253, 1216, 1111, 1077, 1006, 1012cm
*	m.p.199°C IIINMR(CDCi3) δ 3.10(8,3H),3.21(8,3H),3.44(8,3H),3.76(8,3H),5.17(8,2H),6.03(8,1H),6.44(8,1H),7.14(d,J=8.4Hz,1H),7.36-7.
1.166	49(m,811),7.52(d,J=2.111z,111),7.67-7.72(m,211) IR(KBr)3600·3200(br),1520,1486,1362,1183,1152,1110,971cm ⁻¹
	m.p.113-115°C
,	1HNMR(CDCl ₃) & 0.76(t,J=7.2Hz,3H), 1.46-1.55(m,2H),3.11(s,3H),3.20(s,1H),3.63(s,1H),3.71(t,J=6.6Hz,2H),5.18(s,2H),6.64
1.167	(s, 1H),7.11(d,J=8.7Hz,1H),7.33-7.50(m,9H),7.60-7.65(m,2H)
	IR(KBr)1517,1475,1365,1345,1293,1233,1177,1149,1109,1079,1017,956cm ⁻¹
	m.p.56-58°C
9	$^{1}\text{HNMR(CDC}_{13}) \ \delta \ 0.76 (t, J=7.5 \text{Hz}, 3\text{H}), 1.44 \cdot 1.56 (m, 2\text{H}), 3.61 (s, 3\text{H}), 3.71 (t, J=6.6 \text{Hz}, 2\text{H}), 3.74 (s, 3\text{H}), 4.86 (s, 1\text{H}), 5.15 (s, 2\text{H}), 5.63 \text{Hz}, 2\text{Hz}, 2H$
1.168	(s,1H),6.65(s,1H),6.88-6.93(m,3H),6.98(d,J=8.4Hz,1H),7.04(d,J=1.8Hz,1H),7.37·7.50(m,7H)
	IR(KBr)3600-3200(br), 1611, 1690, 1619, 1476, 1404, 1379, 1262, 1230, 1110, 1078, 1015cm ⁻¹
	m.p.101.103°C
	$^{1}\text{HNMR(CDCl}_{3}) \delta 0.77 (t, J = 7.5 \text{Hz}, 3 \text{H}), 1.44 \cdot 1.55 (m, 2 \text{H}), 1.76 (s, 3 \text{H}), 1.81 (s, 3 \text{H}), 3.20 (s, 3 \text{H}), 3.21 (s, 3 \text{H}), 3.63 (s, 3 \text{H}), 3.71 (t, J = 6.6)$
1.169	$H_{Z,2H}$), 3.76(s, 3H), 4.63(d, J=6.6Hz, 2H), 5.48-5.53(m, 1H), 6.64(s, 1H), 7.04(d, J=8.4Hz, 1H), 7.32-7.38(m, 3H), 7.42(d, J=2.1Hz, 1H), 7.24(d, J=8.4Hz, 1H), 7.32-7.38(m, 3H), 7.42(d, J=2.1Hz, 1H), 7.42(d, J=8.4Hz, 1H), 7.32-7.38(m, 3H), 7.42(d, J=8.4Hz, 1H), 7.32(d, J=8.4Hz, 1
),7.60-7.65(m,2H)
	IR(KBr)1514,1473,1370,1359,1290,1233,1174,1149,1107,970cm ⁻¹

	m.p.64-66°C
	1HNMR(CDCh3) & 0.77(t,J=7.5Hz,3H), 1.44-1.55(m,2H), 1.76(s,3H), 1.81(s,3H), 3.20(s,3H), 3.21(s,3H), 3.63(s,3H), 3.71(t,J=6.6
I.170	Hz,211),3.75(s,3H),4.63(d,J=6.6Hz,2H),5.48-5.53(m,1H),6.64(s,1H),7.04(d,J=8.4Hz,1H),7.32·7.38(m,3H),7.42(d,J=2.1Hz,1H
),7.60-7.65(m,2H)
	1R(KBr)3600-2800(br), 1612, 1590, 1520, 1475, 1462, 1405, 1381, 1285, 1244, 1226, 1110, 1079, 988cm ⁻¹
	m.p.148-150°C
	111111111111111111111111111111111111
	11),5.55(m,111),6.85(s,111),7.39&7.67(ABq,J=8.711z,411),7.40(s,211)
	IR(KBr)1514,1479,1411,1366,1179,1152,1079,1022,968,875,799,525cm ⁻¹
	111NMR(CDCl.) \$\delta\$ 0.94(t, J=7.2Hz, 3H), 1.45(tq, J=7.2, 7.2Hz, 2H), 2.13(m, 2H), 3.46(s, 3H), 3.74(s, 3H), 4.68(d, J=5.4Hz, 2H), 5.72(
2/1:1	m,2H),6.45(s,1H),6.92(d,J=8.7Hz,2H),6.96(brs,2H),7.07(brs,1H),7.53(d,J=8.7Hz,2H)
	1HNMR(CDCl ₁₃) & 1.76(brd,J=6.3Hz,3H),3.46(e,3H),3.74(e,3H),4.70(d,J=5.4Hz,2H),5.77(m,2H),6.45(e,1H),6.91(d,J=8.7Hz,2
[-173	H),6.96(hrs,2H),7.07(brs,1H),7.53(d,J=8.7Hz,2H)
	IR(Nujol)3350, 1613, 1587, 1523, 1491, 1287, 1261, 1238, 1114, 1071, 1011, 936, 820, 783cm ⁻¹
7 2 2	1HNMR(CDCl ₃) & 3.45(8,3H),3.76(8,3H),4.56(8,2H),5.55(8,1H),6.45(8,1H),6.93(d,J=8.7Hz,2H),7.01(d,J=8.4Hz,1H),7.08(dd,J
ħ/1-I	=8.4,2.1Hz,1H),7.27(d,J=2.1Hz,1H),7.54(d,J=8.7Hz,2H)
	1HNMR(CDCl ₃) δ 3.45(8,3H),3.74(8,3H),4.82(dd,J=6.6,1.5Hz,2H),5.28(d,J=10.5Hz,1H),5.35(d,J=16.5Hz,1H),5.75(dt,J=10.8
-	,6.6Hz,1H),6.26(dd,J=10.5,10.5Hz,1H),6.45(s,1H),6.66(ddd,J=16.5,10.5,10.5Hz,1H),6.92(d,J=8.7Hz,2H),6.96(m,2H),7.07(br
91:1	s,1H),7.53(d,J=8.7Hz,2H)
	IR(Nujol)3399,1611,1591,1523,1489,1248,1226,1113,1071,1009,825cm ⁻¹

Table 41

1.176	¹ HNMR(CDCl ₃) δ 1.59(m,6H),2.17(m,2H),2.24,(m,2H),2.71(s,3H),3.21(s,3H),3.24(s,3H),3.56(s,3H),3.78(s,3H),4.65(d,J=7.2 ¹ L176 Hz,2H),5.43(t,J=7.2Hz,1H),6.84(s,1H),7.10(d,J=8.4Hz,1H),7.34(dd,J=8.4,2.1Hz,1H),7.38(d,J=8.7Hz,2H),7.39(d,J=2.1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,
1.177	m.p.177-178°C !!INMR(CDC!;) .73(t,J=5.7Hz,2I !!),7.:18(d,J=8.7I
1.178	-
1.179	¹ HINMIR(CDCU ₃) δ 1.05(t,J=7.5Hz,3H),1.76(s,3H),2.10(q,J=7.5Hz,2H),2.71(s,3H),3.21(s,3H),3.24(s,3H),3.56(s,3H),3.78(s,3H),1.76(s,3H),1.76(s,J=6.9Hz,2H),7.34(dd,J=8.4,2.1Hz,1H),7.38(d,J=8.7Hz,2H),7.39(d,J=2.1Hz,1H),7.68(d,J=8.7Hz,2H),7.39(d,J=8.7Hz,2Hz,2H),7.39(d,J=8.7Hz,2Hz,2H),7.39(d,J=8.7Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2
I-180	¹ HNMR(CDCl ₃) δ 1.76(s,3H),1.80(s,6H),2.72(s,3H),3.21(s,3H),3.21(s,3H),3.56(s,3H),3.78(s,3H),4.61(s,2H),6.84(s,1H),7.10(d,J=8.4Hz,1H),7.34(dd,J=8.4,2.1Hz,1H),7.38(d,J=8.7Hz,2H),7.39(d,J=2.1Hz,1H),7.68(d,J=8.7Hz,2H)
I-181	

IR(KBr)3410,2924,2854,1609,1567,1523,1490,1462,1405,1254,1221,1198,1119,1069,824,813cm⁻¹

45(s,1H),6.91(d,J=8.4Hz,2H),6.96(br.s,2H),7.06(br.s,1H),7.52(d,J=8.4Hz,2H)

I:181

}

Table 42

1.182 4	UINMR(DMS()-da) & 2.2(t.J=5.4Hz,2H) 2.32(t.J=5.4Hz,2H) 3.30(s.3H) 3.56(t.J=5.4Hz,2H) 3.61(t.J=5.4Hz,2H) 3.64(s.3H)
	HINMROMSO 46 6 2 22(1,1=5 4 1/2 21) 2 32(1,1=5 4 1/2 21) 3 30(8 31) 3 56(1,1=5 4 1/2 21) 3 61(1,1=5 4 1/2 21) 3 64(8 31)
	4.59(d,J=6.6Hz,2H),5.54(t,J=6.6Hz,1H),6.39(s,1H),6.64(dd,J=8.4,2.1Hz,1H),6.73(d,J=2.1Hz,1H),6.84(d,J=8.7Hz,2H),6.89(d
_	J=8.4Hz, 1H), 7.43(d,J=8.4Hz,2H)
1	IR(KBr)3392,2948,1609,1586,1522,1492,1271,1239,1219,1118,1076,1007,818cm ⁻¹
=	m.p.149-150°C
	111111111111111111111111111111111111
9 81.1	64(d,J=6.6Hz,2H),5.48(t,J=6.6Hz,1H),6.45(s,1H),6.92(d,J=8.7Hz,2H),6.97(dd,J=7.8,1.5Hz,,1H),6.97(d,J=7.8Hz,1H),7.06(d,
<u></u>	J=1.5Hz,1H),7.52(d,J=8.7Hz,2H)
	IR(KBr)3398,2963,2934,1671,1610,1523,1493,1465,1407,1259,1224,1118,1071,813cm ¹
=	m.p.217.218%
	14111111111111111111111111111111111111
1.184 (r	(m,5H),7.54-7.58(m,2H),7.60(s,4H)
=	IR(KBr)3600-3200(hr), 1605, 1590, 1493, 1298, 1282, 1253, 1206, 1183, 1022cm ⁻¹
-	$HINMR(CDCL_3) \delta - 1.21(t, J=6.911z, 311), 1.77(s, 311), 1.82(s, 311), 2.38-2.46(m, 2H), 2.72-2.84(m, 2H), 3.18(s, 3H), 3.21(s, 3H), 3.35(s, 2.10)$
	3H), 3.70(s, 3H), 4.06(q, J=6.9Hz, 2H), 4.63(d, J=6.6Hz, 2H), 5.52(t, J=6.6Hz, 1H), 6.75(s, 1H), 7.07(d, J=8.4Hz, 1H), 7.13(d.d, J=8.4&
2	2.1Hz,1H),7.21(d,J=2.1Hz,1H),7.37(d,J=9.0Hz,2H),7.69(d,J=9.0Hz,2H)
Ξ	IR(KBr)1727,1517,1469,1364,1291,1234,1179,1152,1118,1080,1003cm ⁻¹
=	111NMR(CDCL3) & 1.76(8,3H), 1.82(8,3H), 2.42.2.53(m,2H), 2.72.2.86(m,2H), 3.35(8,3H), 3.69(8,3H), 4.61(d,J=6.6Hz,2H), 5.53(t,
J. 196	J=6.6Hz,1H),5.71(s,1H),6.68(d.d,J=8.4&2.1Hz,1H),6.76(s,1H),6.81(d,J=2.1Hz,1H),6.91(d,J=8.4Hz,2H),6.92(d,J=8.4Hz,1H),
	7.52(d,J=8.4Hz,2H)
11	IR(KBr)3419,1707,1612,1518,1472,1390,1225,1078cm ⁻¹

. 15

__

	111NMR(CI)Cl:a) 5 2.55(s,3H),3.54(s,3H),3.78(s,3H),5.18(s,1H),6.85(s,1H),6.91(d.d,J=8.4&2.1Hz,1H),7.03(d,J=8.4Hz,1H),7.
1.187	1-187 04(d,J=2.1Hz,1H),7.33·7.48(m,5H),7.71(d,J=8.4Hz,2H),7.72(d,J=8.4Hz,2H)
	IR(KBr)3442,1617,1517,1485,1485,1394,1357,1331,1171,1124,1077,1067,1016cm-1
	HINMR(CDCl ₃) δ 2.68(s, 3H), 3.13(s, 3H), 3.54(s, 3H), 3.79(s, 3H), 5.19(s, 2H), 6.86(s, 1H), 7.16(d, J=8.7Hz, 1H), 7.31.7.50(m, 7H), 7.
1.188	72(d,J=8.7Hz,2H),7.76(d,J=8.7Hz,2H)
	IR(KBr)1614,1513,1482,1366,1324,1177,1120,1079,1065,1016cm - 1
	111NMR(CDCl3) & 2.68(9,3H), 3.13(9,3H), 3.54(9,3H), 3.79(8,3H), 5.19(8,2H), 6.86(9,1H), 7.16(d, J=8.7Hz,1H), 7.31-7.50(m,7H), 7.
1.189	72(d,J=8.7Hz,2H),7.76(d,J=8.7Hz,2H)
	IR(KBr)1614,1513,1482,1366,1324,1177,1120,1079,1065,1016cm ⁻¹
	1HNMR(CDCl ₃) & 1.76(s,3H), 1.82(s,3H), 3.46(s,3H), 3.76(s,3H), 4.62(d,J=8.4Hz,2H), 5.53(t,J=8.4Hz,1H), 5.71(e,1H), 5.85(s,1H)
061-I	I-190),6.46(s,111),6.94(d.d,J=8.1&1.8Hz,1H),6.98(d,J=8.1Hz,1H),7.05(d,J=1.8Hz,1H),7.71(d,J=8.1Hz,2H),7.77(d,J=8.1Hz,2H)
	IR(KBr)3552,3505,3466,1613,1509,1487,1397,1324,1288,1245,1163,1110,1065cm-1
	HINMR(CDCl ₃) & 3.02(s,6H),3.48(s,3H),3.76(s,3H),5.15(s,2H),5.67(s,1H),5.95(s,1H),6.47(s,1H),6.81(d,J=8.7Hz,2H),6.96(d,
1.191	d,J=8.4&2.111z,111),7.04(d,J=8.411z,111),7.10(d,J=2.1Hz,1H),7.31-7.49(m,5H),7.55(d,J=8.7Hz,2H)
	$IR(KBr)3543,3500,1605,1526,1486,1459,1245,1198,1110,1070,999cm^{-1}$
	mp122.124℃
1.199	111NMR(CDCh) & 2.70(brs,3H),3.55-3.60(br,2H),3.60(s,3H),3.75(s,3H),3.81-3.83(m,2H),3.87(s,3H),5.15(s,2H),5.68(s,1H),6.
	69(s, 111), 6.94(dd, J=2.1, 8.4Hz, 111), 6.97-7.03(m, 3H), 7.07(d, J=1.8Hz, 1H), 7.38-7.48(m, 5H), 7.51-7.56(m, 2H)
	IR(KBr)3600-2800(br), 1607, 1597, 1550, 1518, 1477, 1462, 1452, 1392, 1289, 1248, 1228, 1175, 1122, 1096, 1084, 1015cm-1

· Table 44

	m.p.160-163C
-	¹ HINMR(CDCl ₃) δ 3.60(s,3H),3.60-3.64(br,2H),3.76(s,3H),3.77-3.80(m,2H),5.15(s,2H),5.69(s,1H),5.88(s,1H),6.69(s,1H),6.90-
1-193	6.94(m,3H),7.02(d,J=8.4Hz,1H),7.08(d,J=2.1Hz,1H),7.38·7.51(m,7H)
	1R(KBr)3600-3200(br), 1613, 1588, 1519, 1477, 1462, 1397, 1256, 1189, 1117, 1078, 1011cm ⁻¹
	111NMR((CDCh.) & 3.02(s,6H),3.11(s,3H),3.50(s,3H),3.72(s,3H),4.43(brs,1H),4.58(brs,1H),5.18(s,2H),6.82(d,J=8.7Hz,2H),6.9
1-194	2(s, 11j),7.16(d,J=9.3Hz, 1H),7.31-7.51(m,7H),7.55(d,J=8.7Hz,2H)
	IR(KBr)3432,1611,1526,1476,1356,1291,1232,1186,1117,1079,1012cm ¹
	m.p.157-158°C
į	1HNMR(CDCl ₃) δ 3.10(s,3H),3.21(s,3H),3.56(s,3H),3.69(s,3H),3.76(s,3H),4.47(s,2H),5.17(s,2H),6.68(s,1H),7.12(d,J=8.2Hz,
661-1	1H), 7.34-7.50(m,9H), 7.63(d,J=8.6Hz,2H)
	IR(KBr):1748,1517,1476,1366,1232,1150,1114,968,873,812,791,750,707cm ⁻¹
	m.p.189.191°C(dec)
701	1HNMR(DMSO-da) & 3.45(s,3H),3.67(s,3H),4.25(s,2H),5.12(s,2H),6.66(dd,J=8.4,2.0Hz,1H),6.69(s,1H),6.77(d,J=2.0Hz,1H),6
061-1	.80(d,J=8.6Hz,2H),6.98(d,J=8.4Hz,1H),7.33-7.54(m,7H),9.01(s,1H),9.54(brs,1H)
	IR(KBr):3422,3245,1733,1611,1596,1522,1478,1400,1262,1248,1222,1207,1130,1084,1011,836,781,744,699cm ⁻¹
	m.p.161-162°C
	1HNMR(CDCl ₃) δ 1.76(s,3H), 1.81(s,3H), 3.20(s,3H), 3.21(s,3H), 3.56(s,3H), 3.70(s,3H), 3.75(s,3H), 4.47(s,2H), 4.63(d,J=6.9Hz,
I.197	2H), 5.51(t, J=6.9Hz, 1H), 6.68(s, 1H), 7.05(d, J=8.4Hz, 1H), 7.36(dd, J=8.4, 2.1Hz, 1H), 7.36(d, J=8.9Hz, 2H), 7.41(d, J=2.1Hz, 1H), 7.
	63(d,J=8.9Hz,2H)
	IR(KBr):1751,1517,1475,1366,1234,1150,1113,968,872,812,707cm ⁻¹

50	45 .	40	35	30	25	20	15	10	5
1.198	m.p.155-156°C HINMR(DMS d,J=8.4,1.9Hz ,55(s,1H),11.2 IR(KBr):3411	da) & 1.72(s,3F 1),6.69(s,1H),6 3.6(brs,1H)	O.da) & 1.72(s,3H), 1.76(s,3H), 3.42(s,3H), 3.67(s,3H), 4.25(s,2H), 4.54(d, J=6.8Hz, 2 ,1H), 6.69(s,1H), 6.73(d, J=1.9Hz,1H), 6.84(d, J=8.4Hz,2H), 7.36(d, J=8.4Hz,1H), 7.4 -13.6(brs,1H) -3243, 1733, 1611, 1594, 1522, 1477, 1398, 1247, 1207, 1126, 1083, 1015, 835, 788cm ⁻¹	12(s,3H),3.67(IH),6.84(d,J≕,	8,3H),4.25(8,2 8.4Hz,2H),7.3	2H),4.54(d,J=6)(G(d,J=8.4Hz,1)	.8Hz,2H),5.49 H),7.41(d,J=8	(t,J=6.8Hz,1H),	3.65(d 1H),9
1.199	1HNMR(CDC 11),7.36-7.50(n 1R(KB _r)1698,	ô 2.68(s,3H),5 11),7.81(d,J=8, 12,1481,1351,1	3.13(s,3H),3.55(t) 4Hz,2H),7.98(d, 232,1182,1079c	s,3H),3.80(s,3 ,J=8.4Hz,2H) m-1	II),5.19(8,2H),6.88(s,1H),7.	16(d,J=8.7Hz,	1H),7.34(d,J=2.	IHz,1
1.200	¹ HNMR(CDCl ₃) & 2.42(s,3H),2.71(s,3H),3.03(s,3H),3.21(s,3H),3.56(s,3H),3.79(s,3H),5.17(s,2H),6.84(s,1H),7.19(d,J=8.4Hz,1H),7.22-7.30(m,3H),7.37(dd,J=8.4,2.1Hz,1H),7.38(d,J=8.7Hz,2H),7.41(d,J=2.1Hz,1H),7.41-7.45(m,1H),7.68(d,J=8.7Hz,2H),1.21(d,J=2.1Hz,1H),7.41-7.45(m,1H),7.68(d,J=8.7Hz,2H),1.21(d,J=8.7Hz,2H),1.41(d,J=8.7Hz,1H),7.41-7.45(m,1H),7.1151,1079,970,875,798cm ⁻¹	\$ 2.42(s,3H),2 3H),7.37(dd,J= 19,1480,1177,	(m,311),7.37(dd,J=8.4,2.111z,111),7.38(d,J=8.7F),1519,1480,1177,1151,1079,970,875,798cm ⁻¹	3,3H),3.21(9,3 7,38(d,J=8.7H	H),3.56(s,3H)	,3.79(8,3H),5.1 J=2.1Hz,1H),	.7(s,2H),6.84(e	4,1H),7.19(d,J=8 4),7.68(d,J=8.7F	.4Hz,
1.201	¹ HNMR(CDCl ₃) & 2.38(s,3H),2.67(s,3H),3.14(s,3H),3.21(s,3H),3.8 ¹ H1),7.17(brd,J=7.5Hz,1H),7.23-7.30(m,3H),7.34(dd,J=8.4,1.8Hz, ¹ Hz,2H) IR(Nujol)1606,1519,1482,1180,1150,1078,1011,979,876,790cm ⁻¹	5 2.38(s,3H),2 .6Hz, HI),7.23	.67(s,3H),3.14(s .7.30(m,3H),7.3	4(dd,J=8.4,1.)	H),3.56(8,3H), 8Hz,1H),7.38	3.78(e,3H),5.1 (d,J=8.7Hz,2E	5(a,2H),6.84(a	3) \$\delta\$ 2.38(8,3H), 2.67(8,3H), 3.14(8,3H), 3.21(8,3H), 3.56(8,3H), 3.78(8,3H), 5.15(8,2H), 6.84(8,1H), 7.14(d, J=8.4Hz, I=7.511z, I11), 7.23-7.30(m, 311), 7.34(dd, J=8.4, 1.811z, 1H), 7.38(d, J=8.7Hz, 2H), 7.41(d, J=1.8Hz, I11), 7.68(d, J=8.7, 1519, 1482, 1180, 1150, 1078, 1011, 979, 876, 790cm^{-1}	4Hz,
-202	¹ HNMR(CDCl ₃) δ 2.30(e,3H),2.38(s,6H),2.74(e,3H),2.94(e,3H),3.21(e,3H),3.57(e,3H),3.79(e,3H),5.13(e,2H),6.85(e,1H),6.91(brs,2H),7.37(d,J=8.7Hz,2H),7.40(brs,2H),7.41(dd,J=8.4,1.8Hz,1H),7.69(d,J=8.7Hz,2H) 1R(CHCl ₃)1610,1518,1477,1370,1177,1149,1082,970,873cm ⁻¹	2.30(a,3H),2. 8.7Hz,2H),7.4(518,1477,1370,	38(s,6H),2.74(s, 0(brs,2H),7.41(d, 1177,1149,1082	,3H),2.94(s,3F ld,J=8.4,1.8H: 2,970,873cm ⁻	1),3.21(6,3H), 2,1H),7.69(d,	3.57(s,3H),3.7 J=8.7Hz,2H)	9(s,3H),5.13(s	,2H),6.85(a,1H),	6.91(
.203	¹ HNMR(CDCl ₃) δ 2.34(s, 6H), 2.66(s, 3H), 3.15(s, 3H), 3.21(s, 3H), 3.56(s, 3H), 3.78(s, 3H), 5.12(s, 2H), 6.84(s, 1H), 6.99(brs, 1H), 7.06(brs, 2H), 7.14(d, J=8.4Hz, 1H), 7.33(dd, J=8.4, 2.1Hz, 1H), 7.38(d, J=8.7Hz, 2H), 7.40(d, J=2.1Hz, 1H), 7.68(d, J=8.7Hz, 2H), 1R(Nujol))1607, 1519, 1480, 1178, 1162, 1097, 1014, 969, 876, 824, 797cm ⁻¹	2.34(s,6H),2. =8.4Hz,1H),7. 19,1480,1178,1	3) δ 2.34(s, GH), 2.66(s, 3H), 3.15(s, 3H), 3.21(s, 3H), 3.56(s, 3H), 3.78(s, 3H), 5.12(s, 2H), 6.84(s, 1H), 6.99(brs, (d, J=8.4Hz, 1H), 7.33(dd, J=8.4, 2.1Hz, 1H), 7.38(d, J=8.7Hz, 2H), 7.40(d, J=2.1Hz, 1H), 7.68(d, J=8.7Hz, 2H), 1.1519, 1480, 1178, 1162, 1097, 1014, 969, 876, 824, 797cm ⁻¹	3H),3.21(s,3F Hz,1H),7.38(c 969,876,824,7	l),3.56(8,3H), l,J=8.7Hz,2H	3.78(s,3H),5.1!),7.40(d,J=2.1]	2(s,2H),6.84(s, Hz,1H),7.68(d	1H), 6.99 (brs, 1H),7.0

Table 46

	HINMR(CDCI3) & 2.72(s,3H),3.16(s,3H),3.21(s,3H),3.55(s,3H),3.78(s,3H),3.94(s,3H),5.25(s,2H),6.84(s,1H),7.11(d,J=8.4Hz,
700	111),7.34(dd,J=8.4,2.111z,111),7.38(d,J=8.711z,211),7.42(d,J=2.111z,111),7.55(d,J=8.411z,2H),7.68(d,J=8.7Hz,2H),8.09(d,J=8.4
1-204	Hz,2H)
	IR(Nujol)1719,1610,1519,1480,1177,1151,1119,1080,1016,969,875,798cm ⁻¹
	m.p.153-157C
	$ \text{IIINMR}(\text{CDCl}_3) \ \delta 2.70(\text{s},3\text{H}), 3.16(\text{s},3\text{H}), 3.21(\text{s},3\text{H}), 3.56(\text{s},3\text{H}), 3.78(\text{s},3\text{H}), 5.13(\text{s},2\text{H}), 6.41(\text{dd},J=3.3,2.0\text{Hz},1\text{H}), 6.49(\text{d},J=3.3,2.0\text{Hz},1\text{H}), 6.49(\text{d},J=3.3,2.0\text{Hz},1\text{Hz},1\text{H}), 6.49(\text{d},J=3.3,2.0\text{Hz},1\text{Hz},$
1.205	11z, 111), 6.84(8, 111), 7.20(d, J=8.711z, 111), 7.37(dd, J=8.7, 2.111z, 111), 7.38(d, J=8.7Hz, 211), 7.41(d, J=2.1Hz, 111), 7.46(d, J=2.0Hz, 1
	H),7.68(d,J=8.7Hz,2H)
	IR(Nujol)1605,1518,1482,1375,1361,1180,1150,1079,1013,977,876,814,800cm ¹
	$HINMR(\mathrm{CDCl}_3) \ \delta \ \ 2.41(s, 3H), 3.46(s, 3H), 3.75(s, 3H), 5.13(s, 2H), 6.45(s, 1H), 6.92(d, J=8.7Hz, 2H), 6.99(dd, J=8.4, 2.11Iz, 1H), 7.07(s, 2H), 7.07(s, 2H$
1.206	(d,J=8.4Hz,1H),7.09(d,J=2.1Hz,1H),7.22-7.34(m,3H),7.40(brd,J=7.8Hz,1H),7.53(d,J=8.7Hz,2H)
	IR(Nujol)3471,3436,3339,1612,1581,1523,1489,1266,1245,1228,1185,1110,1070,1011,998,945,823,781cm ⁻¹
	$\mathtt{HINMR}(\mathrm{CDCB}_3) \ \delta \ 2.40(8,311), 3.45(8,311), 3.75(8,311), 5.11(8,211), 6.45(8,111), 6.91(4,J=8.711z,211), 6.95(4d,J=8.4,1.811z,111), 7.01$
1.207	1-207 (d,J=8.411z,111),7.09(d,J=1.811z,111),7.19(brd,J=7.511z,111),7.22-7.34(m,3H),7.53(d,J=8.7Hz,2H)
	IR(Nujol)3410,1611,1589,1523,1489,1246,1225,1114,1071,1011,939,824,814,778cm-1
	m.p.230-236°C
	$HINMR(DMSO-d_4) \ \delta \ 2.25(8,311), 2.35(8,611), 3.31(8,311), 3.65(8,311), 5.00(8,211), 6.39(8,111), 6.69(dd, J=8.4,1.811z,111), 6.76(d,J=1.211), 6.111, 6.$
007:1	.811z,111),6.84(d,J=8.7Hz,111),6.90(brs,2H),7.06(d,J=8.4Hz,3H),7.44(d,J=8.7Hz,2H)
	IR(Nujol)3475,3361,1609,1579,1521,1260,1244,1110,1071,1012,988,822,782cm ⁻¹
	$^{1}\text{HNMR}(\text{CDC1}_{3}) \ \delta \ \ 2.35(8,6\text{H}), \\ 3.45(8,3\text{H}), \\ 3.75(8,3\text{H}), \\ 5.07(8,2\text{H}), \\ 6.45(8,1\text{H}), \\ 6.91(d,J=8.7\text{Hz},2\text{H}), \\ 6.91(d,J=8.7\text{Hz},2\text{H}), \\ 6.95(dd,J=8.4,1.8\text{Hz},1\text{H}), \\ 7.01(1,2)(1,2)(1,2)(1,2)(1,2)(1,2)(1,2)(1,2$
1.209	(brs,1H),7.02(d,J=8.4Hz,1H),7.06(brs,2H),7.08(d,J=1.8Hz,1H),7.53(d,J=8.7Hz,2H)
	IR(Nujol)3410,1610,1588,1523,1489,1248,1225,1114,1071,1011,940,825,808,cm ⁻¹

Table 47

	111NMR(C:D3(O;D) & 3.37(s,311),3.67(s,311),5.25(s,211),6.43(s,111),6.77(dd,J=8.4,2.1Hz,111),6.84(d,J=8.7Hz,211),6.89(d,J=2.1Hz,111)
1-210	z,111),6.94(d,J=8.411z,111),7.45(d,J=8.711z,211),7.60(d,J=8.411z,211),8.04(d,J=8.4Hz,211)
	IR(Nujol)33384,1694,1612,1591,1523,1488,1249,1113,1071,1013,940,826,812,765cm · 1
	111NMR(CDCl3) § 3.45(s,311),3.74(s,311),5.09(s,311),6.41(dd,J=3.3,1.811z,111),6.45(s,111),6.47(d,J=3.3Hz,111),6.92(d,J=8.7Hz
1.211	$, 211), 6.97 (\mathrm{dd}, \mathrm{J} = 8.4, 2.1 \mathrm{Hz}, 111), 7.07 (\mathrm{dd}, \mathrm{J} = 2.1 \mathrm{Hz}, 111), 7.08 (\mathrm{dd}, \mathrm{J} = 8.4 \mathrm{Hz}, 111), 7.48 (\mathrm{dd}, \mathrm{J} = 1.8, 1.0 \mathrm{Hz}, 111), 7.54 (\mathrm{dd}, \mathrm{J} = 8.7 \mathrm{Hz}, 211), 7.08 (\mathrm{dd}, \mathrm{J} = 1.8, 1.0 \mathrm{Hz}, 111), 7.08 (\mathrm{dd}, \mathrm{J} = 1.0 \mathrm{Hz}, 111)$
	IR(Nujol)3410,1612,1589,1523,1489,1226,1113,1071,1011,939,815,747cm-1
	m.p.156-158°C
010	$^{1}\text{HINMR}(\text{CDCL}_{1}) \delta - 1.06 (t, \text{J} = 7.4 \text{Hz}, \text{3H}), 1.75 (s, \text{3H}), 2.10 (q, \text{J} = 7.4 \text{Hz}, \text{2H}), 3.46 (s, \text{3H}), 3.75 (s, \text{3H}), 4.64 (d, \text{J} = 7.0 \text{Hz}, \text{2H}), 5.52 (t, \text{J} = 7.1 \text{Hz}, \text{J} = 7.1 $
717.1	0Hz,1H),6.45(s,1H),6.92(d,J=8.6Hz,2H),6.96(br.s,2H),7.06(br.s,1H),7.53(d,J=8.6Hz,2H)
	IR(KBr)3392,2960,2934,1610,1583,1568,1523,1492,1465,1406,1259,1241,1224,1198,1118,1071,824,812cm ⁻¹
	m.p.175·177°C
1 010	1 HNMR(CDCl ₃) $^{\circ}$ 1.77(s,3H),1.80(s,6H),3.46(s,3H),3.75(s,3H),4.59(s,2H),6.45(s,1H),6.92(d,J=8.7Hz,2H),6.96(br.s,2H),7.06(
617-1	br.s,1H),7.53(d,J=8.7Hz,2H)
	IR(KBr)3449,2929,1612,1581,1523,1489,1403,1262,1243,1228,1113,1070,823,807cm ⁻¹
	1HNMR(CDCl3) 5 1.66(tt,J=6.6,6.6Hz,2H),1.74(tt,J=6.6,6.6Hz,2H),2.32(t,J=6.6Hz,2H),2.34(t,J=6.6Hz,2H),2.71(s,3H),3.21(
1.914	s,3H),3.24(s,3H),3.56(s,3H),3.78(s,3H),4.62(d,J=6.9Hz,2H),5.60(m,1H),6.84(s,1H),7.09(d,J=8.7Hz,1H),7.34(dd,J=8.7,2.1Hz,
#17:1	1H),7.37(d,J=8.7Hz,2H),7.38(d,J=2.1Hz,1H),7.67(d,J=8.7Hz,2H)
	IR(KBr)2941,1610,1518,1418,1365,1177,1151,1079,847,818cm ⁻¹
	HNMR(CDCl ₃) δ 1.57-1.72(m,4H),2.05-2.13(m,4H),2.70(s,3H),3.21(s,3H),3.23(s,3H),3.56(s,3H),3.78(s,3H),4.48(s,2H),5.86(
1.215	s,1H),6.84(s,1H),7.09(d,J=8.4Hz,1H),7.34(dd,J=8.4,2.1Hz,1H),7.38(d,J=8.7Hz,2H),7.38(d,J=2.1Hz,1H),7.67(d,J=8.7Hz,2H)
	IR(KBr)2936,1610,1518,1481,1365,1177,1151,1079,818cm ⁻¹

-10

· Table 48

	$HNMR(CDCL_3) \ \delta \ 1.74 (d,J = 6.6 Hz, 3 H), 2.54 (d,J = 2.1 Hz, 1 H), 2.70 (s, 3 H), 3.21 (s, 3 H), 3.24 (s, 3 H), 3.56 (s, 3 H), 3.78 (s, 3 H), 5.00 (dd, J = 0.1 Hz, 1 \mathsf$
	=6.6,2.111z,111),6.84(s,111),7.28(d,J=8.711z,111),7.36(dd,J=8.7,2.111z,111),7.38(d,J=8.7Hz,2H),7.41(d,J=2.1Hz,1H),7.68(d,J=6.6,2.111z,111),6.84(s,111),7.88(d,J=8.7Hz,2H),7.41(d,J=2.1Hz,1H),7.68(d,J=8.7Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1
912-1	8.7112,211)
	IR(KBr)3282,3023,2940,1609,1519,1481,1365,1177,1151,1079,970,815cm ¹
	m.p.80.85°C
	$111NMR(CDCL) \delta -1.62 \cdot 1.77 (m, 4H), 2.25 \cdot 2.39 (m, 4H), 3.46 (s, 3H), 3.75 (s, 3H), 4.60 (d, J=7.0 Hz, 2H), 5.63 (m, 1H), 6.45 (s, 1H), 6.92 (s, 2H), 2.25 \cdot 2.39 (m, 2H), 3.46 (s, 3H), 3.46 (s, $
1.217	$d_1d=8.611z_1111_1,6.95(br.s.,211_1,7.06(br.s.,111_1),7.68(d_1d=8.611z_1211_1)$
	IR(KBr)3282,3023,2940,1609,1519,1481,1365,1177,1151,1079,970,815cm ⁻¹
	foam
	111NMR(CDCE) & 3.45(8,311),3.77(8,311),5.16(8,211),5.69(brs,111),5.86(8,111),6.47(8,111),6.95(dd,J=2.1,8.4Hz,1H),7.04(d,J=8.
817.	411z, 111),7.08(d, J=2.1Hz, 1H),7.34·7.65(m,711),7.83·7.92(m,2H)
	IR(CHCl ₃)3530,3022,1614,1588,1500,1485,1463,1405,1326,1290,1249,1168,1130,1117,1073,1011cm ⁻¹
	Cosm
	111111111111111111111111111111111111
1.219	21(m,111),6.85(s,111),7.08(d,J=8.7Hz,1H),7.35(dd,J=2.1,8.7Hz,1H),7.39(d,J=2.1Hz,1H),7.55-7.69(m,2H),7.81-7.87(m,2H)
	IR(CHCl ₃)3024,1609,1519,1481,1467,1396,1369,1321,1272,1179,1122,1082,1015cm ⁻¹
	m.p.124-126°C
	$^{\rm IIINMR(CI)Cl_3)} \delta 1.69(s,3H), 1.76(s,3H), 2.50-2.57(m,2H), 3.46(s,3H), 3.76(s,3H), 4.07(t,J=6.9Hz,2H), 5.22(m,1H), 5.69(brs,1H), $
022-1),5.84(s,1H),6.46(s,1H),6.93-7.05(m,3H),7.55-7.65(m,2H),7.82-7.91(m,2H).
	IR(KBr)3406,2935,1587,1519,1501,1488,1459,1359,1323,1304,1291,1274,1223,1170,1126,1113,1075,1018cm ⁻¹

Table 49

66.	m.p.187-189°C HINMR(CDCl ₃) & 2.33(8,3H),2.69(8,3H),3.21(8,3H),3.24(8,3H),3.55(8,3H),3.77(8,3H),4.17(8,2H),6.84(8,1H),7.12&7.25(ABq,
	J=8.71[z,41]),7.31(dd,J=8.11fz,J=1.51[z,11]),7.38&7.67(ABq,J=8.7Hz,41]),7.42(d,J=8.1Hz,11]),7.46(d,J=1.5Hz,11]) IR(KBr)1512,1474,1417,1391,1356,1343,1177,1149,1082,1054,1013,976,961,939,867,854,844,820,812,799,523cm ⁻¹
	m.p.107-112°C HINMP(11) Y.J.S. 9 737, 341) 3 99/, 341) 3 98/, 341) 3 55/, 341) 3 77/, 341) 4 34/, 941) 6 84/, 141) 7 10/m 141) 7 30/dd 1-9 14
1-222	z,J=1.8Hz,1H),7.34-7.41(m,3H),7.46(d,J=1.8Hz,1H),7.49(d,J=8.1Hz,1H),7.62-7.69(m,3H),8.55(m,1H)
	IR(KBr)1474,1389,1364,1179,1151,1081,937,873,813,797,523cm '
	m.p.212.214°C
1 999	$ \text{HNMR(CDCl}_{13} + \text{CD}_{3} \text{OD}) \ \delta 3.45 \\ (8,3H), 3.74 \\ (8,3H), 4.13 \\ (8,2H), 6.45 \\ (8,1H), 6.90 \\ \cdot 6.96 \\ (m,3H), 7.12 \\ (d,J=1.8Hz,1H), 7.18 \\ \cdot 7.26 \\ (m,2H), 1.10 \\ \cdot 1.10$
677-1	H), 7.48-7.54(m,3H), 7.68(m,1H), 8.63(m,1H)
	IR(KBr)3504,3272,1612,1596,1574,1521,1492,1463,1436,1405,1362,1310,1265,1222,1172,1116,1083,1052,1017,828cm ⁻¹
	m.p.199·200°C
	111111111111111111111111111111111111
1.224	3&7.53(ABq,J=8.7Hz,4H),7.00(m,2H),7.05(m,1H)
	IR(KB1)3404,2999,2932,1612,1595,1522,1483,1454,1432,1401,1376,1357,1271,1223,1119,1080,1055,1015,974,938,829,81
	7cm 1
	m.p.181·183℃
	1HNMR(CDCl ₃) δ 1.37(s,9H),3.45(s,3H),3.75(s,3H),4.93(brs,1H),6.00(s,1H),6.46(s,1H),6.93&7.54(ABq,J=8.7Hz,4H),6.99(s,
1.225	1H), 7.01(dd,J=8.4Hz,J=1.5Hz,1H), 7.16(d,J=1.5Hz,1H), 7.49(d,J=8.4Hz,1H)
	R(KBr)3495,3412,2959,2931,1610,1568,1552,1521,1499,1477,1459,1400,1364,1319,1270,1227,1192,1161,1116,1102,1090
	,1052,1019,942,833,817,588cm ⁻¹

Table 50

	m.p.154·156°C
	$ \text{HINMR}(\text{CDCL}_3) \ \delta \ 2.33 (s, 3H), 3.45 (s, 3H), 3.75 (s, 3H), 3.90 (s, 2H), 4.68 (s, 1H), 5.97 (s, 1H), 6.45 (s, 1H), 6.60 (s, 1H), 6.90 \cdot 6.98 (m, 3H), \\ \text{HINMR}(\text{CDCL}_3) \ \delta \ 2.33 (s, 3H), 6.45 (s, 1H), 6.45 (s,$
1.226	7.10(s,5H),7.41(d,J=8.1Hz,1H),7.53(m,2H)
	$1R(\mathrm{KBr})$ 3.462,3368,1611,1550,1621,1499,1472,1455,1437,1401,1362,1321,1293,1267,1229,1187,1174,1164,1118,1077,1050
	,1011,821cm ' ,
ţ	$HINMR(CDCl_3) \ \delta \ 1.38(d,J=1.211z,311), 1.76(s,311), 3.44(s,311), 3.75(s,311), 3.87(d,J=7.811z,211), 5.08(brs,111), 5.26(m,111), 6.08(s)$
122-1	,111),6.45(s,111),6.94&7.53(ABq,J=8.7Hz,414),7.11-7.14(m,211),7.62(d,J=8.7Hz,1H),8.87(s,1H)
	IR(KBr)3412,1613,1520,1478,1458,1443,1404,1360,1346,1290,1270,1224,1200,1171,1119,1078,1054,945cm ⁻¹
	m.p.173·175°C
0	111111111111111111111111111111111111
977-1	8Hz,2H),5.21·5.25(m,1H),6.73(s,1H),7.03·7.18(m,2H),7.23·7.25(m,2H),7.37(d,J=8.6Hz,2H),7.69(d,J=8.8Hz,2H)
	IR(KBr)3600-3200(br),3100-2800(br),1610,1627,1523,1477,1432,1365,1240,1172,1160,955,923cm ⁻¹
	m.p.148·150°C
	1HNMR(CDCl ₃) § 1.70(8,3H),1.77(8,3H),2.09(8,3H),2.48-2.62(m,2H),3.38(8,3H),3.73(8,3H),4.09(t,J=7.0Hz,2H),4.84(br,1H),
1.229	5.19-5.22(m,1H),5.70(s,1H),6.71-6.96(m,6H),7.55(d,J=8.2Hz,2H)
	1R(KBr)3700-3200(br),3100-2800(br),1612,1584,1560,1448,1428,1390,1339,1310,1284,1246,1110,1100,1123,1010,939cm
	m.p.194·195°C HNMR(CDCl ₃) & 2.10(s,3H),2.39(s,3H),3.10(s,3H),3.21(s,3H),3.36(s,3H),3.71(s,3H),5.13(s,2H),6.73(s,1H),7.14·7.18(m,8H),
1.230	7.69(d,J=9.0Hz,2H)
	IR(KBr)3600-3200(br),3100-2800(br),1616,1475,1360,1332,1292,1266,1228,1199,1174,1151,1119,1098,1084,1005,968cm

Table 51

1.231	m.p.178-180°C ¹ HINMR(CDCl ₃) δ 2.09(s,3H),2.40(s,3H),3.37(s,3H),3.72(s,3H),4.97(brs,1H),5.10(s,2H),5.67(br,1H),6.70-6.75(m,2H),6.86-7. 03(m,3H),7.22-7.26(m,2H),7.32-7.34(m,2H),7.54(d,J=8.2Hz,2H) ¹ IR(KBr)3600-3200(br),3100-2800(br),1611,1519,1479,1463,1388,1339,1314,1286,1258,1246,1225,1128,1098,1077,1007cm
78:2-1	m.p.177-179°C HINMR(CDCla) & 2.54(4,3H),2.69(4,3H),3.13(4,3H),3.54(4,3H),3.77(4,3H),5.19(6,2H),6.85(8,1H),7.15(d,J=8.4Hz,2H),7.30-7. 49(m,9H),7.53-7.59(m,2H) IR(CHCla)15.16,1476,1368,1266,1176,1118,1077,1080,1013,970,876,820cm ⁻¹
1.233	amorphouspowder ¹ HNMR(CDCl ₃) δ 2.54(s,3H),3.46(s,3H),3.75(s,3H),5.15(s,2H),5.67(brs,1H),5.90(s,1H),6.46(s,1H),6.95(d.d,J=1.8&8.1Hz,1H),7.02(d,J=8.1Hz,1H),7.09(d,J=1.8Hz,1H),7.31-7.49(m,7H),7.55-7.62(m,2H) IR(CHCl ₃)3526,1517,1483,1414,1389,1289,1246,1192,1114.,1070,1010,937,818cm ⁻¹
I.234	 ΗΝΜΙΚ(CDCh.) δ 1.76(8,3H), 1.81(8,3H), 2.73(8,3H), 3.24(8,3H), 3.53(8,3H), 3.79(8,3H), 3.96(8,3H), 4.64(d,J=6.9Hz,2H), 5.49(t,J=6.9Hz,1H), 6.87(8,1H), 7.09(d,J=8.4Hz,1H), 7.35(d,d,J=8.4&2.1Hz,1H), 7.39(d,J=2.1Hz,1H), 7.71(d,J=8.4Hz,2H), 8.13(d,J=8.4Hz,2H) 4Hz,2H)
1.235	¹ HNMR(CDCl ₃) δ 2.69(s,3H),3.14(s,3H),3.55(s,3H),3.80(s,3H),5.20(s,2H),6.89(s,1H),7.16(d,J=9.0Hz,1H),7.34(d,J=2.1Hz,1 H),7.36-7.51(m,6H),7.75(d,J=8.4Hz,2H),8.23(d,J=8.4Hz,2H) IR(KBr)3427,1724,1685,1606,1509,1481,1369,1272,1235,1179,1120,1084,1017cm ⁻¹
1.236	'HNMR(CDCl ₃) & 3.46(s,3H),3.77(s,3H),5.16(s,3H),6.50(s,3H),6.96(dd,J=84&2.1Hz,1H),7.03(d,J=8.4Hz,1H),7.09(d,J=2.1 Hz,1H),7.34-7.50(m,5H),7.75(d,J=8.1Hz,2H),8.17(d,J=8.1Hz,2H)

	$^{\rm i} {\rm HNMR}({\rm CDCI}_3) \ \delta \ \ 3.44 (s,3H), 3.76 (s,3H), 3.96 (s,3H), 5.16 (s,2H), 5.69 (s,1H), 5.89 (s,1H), 6.49 (s,1H), 6.96 (d,d,J=84\&2.1Hz,1H), 6.40 (s,1H), 6.40$
1-237	7.03(d,J=8.4Hz,1H),7.09(d,J=2.1Hz,1H),7.32-7.50(m,5H),7.73(d,J=8.4Hz,2H),8.13(d,J=8.4Hz,2H)
	IR(KBr)3497,3443,1708,1608,1585,1487,1460,1443,1395,1281,1113,1068,1008cm ⁻¹
	111111111111111111111111111111111111
1.238	50(m,7H),7.71(d,J=8.4Hz,2H),8.13(d,J=8.4Hz,2H)
	1R(KBr)1719,1608,1481,1366,1278,1118,1080,1017cm 1
	$HINMR(CDCL3) \\ \delta = 2.38(8,311), \\ 2.68(8,311), \\ 3.12(8,311), \\ 3.53(8,311), \\ 3.79(8,311), \\ 3.96(8,311), \\ 5.14(8,211), \\ 6.87(8,111), \\ 7.16(4,J=8.711z, 111), \\ 7.16($
900	111), 7.21(d, J=8.411z, 211), 7.34(d, J=8.411z, 211), 7.36(d, J=8.711z, 111), 7.40(d, J=2.111z, 111), 7.71(d, J=8.711z, 211), 8.13(d, J=8.411z, 211), 7.21(d, J=8.711z, 211), 8.13(d, J=8.411z, 211), 7.21(d, J=8.711z, 211), 8.13(d, J=8.711z, 211), 9.13(d, J=8.711z, 211)
1.239	
	11K(KBr)1718,1607,1519,1481,1355,1280,1232,1182,1121,1079,1018cm ⁻¹
	1HNMR(CDCl3) & 2.70(8,3H), 3.03(8,3H), 3.12(8,3H), 3.55(8,3H), 3.77(8,3H), 5.18(8,2H), 6.78-6.89(broad,1H), 6.86(8,1H), 7.14(d,
1.240	J=8.4Hz,1H),7.31-7.49(m,8H),7.55(d,J=8.4Hz,2H)
	IR(KBr)1604,1526,1483,1395,1374,1360,1292,1231,1177,1119,1078,1014cm ⁻¹
	111NMR(CDCI3) 6 2.37(8,3H), 2.69(8,3H), 3.05(8,3H), 3.12(8,3H), 3.55(8,3H), 3.77(8,3H), 5.14(8,2H), 6.85(8,1H), 6.81-6.91(broad,
1.241	2H),7.14(d,J=8.4Hz,1H),7.21(d,J=8.1Hz,1H),7.34(d,J=8.1Hz,2H),7.40(d,J=2.1Hz,1H),7.56(d,J=8.4Hz,2H)
	IR(KBr)1605,1529,1484,1396,1356,1275,1233,1178,1121,1078,1016cm ⁻¹
	$^{\rm i} {\rm HNMR(CDCI_3)} \ \delta \ 1.76(s,3H), 1.81(s,3H), 2.73(s,3H), 3.03(s,6H), 3.22(s,3H), 3.55(s,3H), 3.77(s,3H), 4.63(d,J=6.6Hz,2H), 5.49(t,J=6.4Hz,2H), 5.49(t,J=6.4Hz,2Hz,2H), 5.49(t,J=6.4Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2$
0701	=6.6Hz,1H),6.75.6.91(broad,2H),6.86(s,1H),7.08(d,J=8.7Hz,1H),7.34(d.d,J=8.7&2.1Hz,1H),7.39(d,J=2.1Hz,1H),7.55(d,J=8.
1.242	7Hz,1H)
	IR(KBr)1609,1529,1482,1363,1235,1178,1117,1078,1013cm ⁻¹
I.243	IR(KBr)3409,1608,1509,1464,1367,1230,1175,1149,1079,1018cm ⁻¹

	111NMR(CDCl3) & 1.72(s,3H), 1.76(s,3H), 2.55(m,2H), 3.22(s,3H), 3.45(s,3H), 3.72(s,3H), 4.07(d, J=6.6Hz,2H), 4.46(d, J=10.5Hz,
3	$111), 4.51 \\ (d, J = 10.511z, 111), 4.66 \\ (d, J = 10.511z, 111), 4.75 \\ (d, J = 10.511z, 111), 5.24 \\ (brs, 111), 6.84 \\ (s, 111), 6.95 \\ (d, J = 8.714z, 111), 7.02 \\ (s, 111), 111), 11111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111,$
1.5.1.),7.21(d,J=8.7Hz,1H),7.39(d,J=9.0Hz,2H)7.71(d,J=9.0Hz,2H)
	IR(KBr)3307,1609,1509,1465,1364,1235,1180,1152,1082,1021cm ⁻¹
	m.p.182-184C
1.245	ЧИМК(СЮС!а) δ 2.42(s,3H),2.70(s,3H),3.13(s,3H),3.53(s,3H),3.77(s,3H),5.19(s,2H),6.86(s,1H),7.13·7.53(m,12H)
	IR(KBr)3434,3030,2937,1605,1522,1483,1366,1274,1235,1176,1119,1086,1011cm ⁻¹
	$ \text{HINMR(CDCII_3)} \ \delta \ 2.58(s,3H), 3.21(s,3H), 3.55(s,3H), 3.77(s,3H), 3.91(s,3H), 5.26(m,2H), 6.84(s,1H), 7.12(d,J=9.0\text{Hz},1H), 7.27-7. \\$
1.246	54(m,8H),7.60(d,J=8.7Hz,2H),7.90(d,J=2.1Hz,1H)
	IR(KBr)1728,1699,1605,1513,1480,1362,1239,1175,1150,1083,1017cm ⁻¹
1.247	IR(KBr)1729,1607,1512,1479,1366,1234,1177,1151,1079,1015cm ⁻¹
	1H NMR (CDC13) & 1.75 (8, 3H), 1.79 (s, 3H), 2.57 (s, 3H), 3.21 (s, 3H), 3.56 (s, 3H), 3.78 (s, 3H), 3.89 (s, 3H), 4.63 (d, J =
1.248	6.6Hz, 2H), 5.49 - 5.58 (m, 1H), 6.85 (s, 1H), 6.93 - 7.00 (m, 3H), 7.38 (d, J = 8.7Hz, 2H), 7.70 (d, J = 8.7Hz, 2H)
	IR(KBr)1603, 1518, 1482, 1365, 1239, 1176, 1150, 1078cm ⁻¹
	foam
5	$^{\rm i} {\rm HNMR}({\rm CDCl_3}) \ \delta \ 2.30 ({\rm br, 1H}), 2.76 - 2.82 ({\rm m, 2H}), 3.64 - 3.68 ({\rm m, 2H}) \\ 3.87 ({\rm s, 1H}), 5.14 ({\rm s, 2H}), 5.70 ({\rm s, 1H}), 6.70 ({\rm dd, J} = 2.1, 8.4 \\ {\rm Hz, 1H}), 6.10 ({\rm dd, J} = 2.1, 8.4 \\ {\rm Hz, 1H}), 6.10 ({\rm dd, J} = 2.1, 8.4 \\ {\rm Hz, 1H}), 6.10 ({\rm dd, J} = 2.1, 8.4 \\ {\rm Hz, 1H}), 6.10 ({\rm dd, J} = 2.1, 8.4 \\ {\rm Hz, 1H}), 6.10 ({\rm dd, J} = 2.1, 8.4 \\ {\rm Hz, 1H}), 6.10 ({\rm dd, J} = 2.1, 8.4 \\ {\rm dd, J} = 2.1, 8$
1.249	.78(s, 111),6.84(d,J=1.811z, 111),6.97-7.01(m,3H),7.37-7.49(m,511),7.56-7.61(m,2H)
	IR(KBr)3600-2800(br), 1608, 1583, 1517, 1464, 1387, 1287, 1247, 1225, 1178, 1082, 1015cm ⁻¹
	m.p.104-105°C
9	$^{\rm i} {\rm HNMR}({\rm CDCl_3}) \ \delta \ 0.76 (t,J=7.5 {\rm Hz},3 {\rm H}), 1.44 \cdot 1.54 (m,2 {\rm H}), 3.61 (s,3 {\rm H}), 3.71 (t,J=6.6 {\rm Hz},2 {\rm H}), 3.74 (s,3 {\rm H}), 3.87 (s,3 {\rm H}), 5.16 (s,2 {\rm H}), 5.63 \\ {\rm HNMR}({\rm CDCl_3}) \ \delta \ 0.76 (t,J=7.5 {\rm Hz},3 {\rm H}), 1.44 \cdot 1.54 (m,2 {\rm H}), 3.61 (s,3 {\rm H}), 3.71 (t,J=6.6 {\rm Hz},2 {\rm H}), 3.74 (s,3 {\rm H}), 3.87 (s,3 {\rm H}), 5.16 (s,2 {\rm H}), 5.63 \\ {\rm HNMR}({\rm CDCl_3}) \ \delta \ 0.76 (t,J=7.5 {\rm Hz},3 {\rm Hz}), 1.44 \cdot 1.54 (m,2 {\rm H}), 3.61 (s,3 {\rm H}), 3.71 (t,J=6.6 {\rm Hz},2 {\rm H}), 3.74 (s,3 {\rm H}), 3.87 (s,3 {\rm H}), 5.16 (s,2 {\rm H}), 5.63 \\ {\rm HNMR}({\rm CDCl_3}) \ \delta \ 0.76 (t,J=7.5 {\rm Hz},3 {\rm H}), 1.44 \cdot 1.54 (m,2 {\rm H}), 3.61 (s,3 {\rm H}), 3.74 (s,3 {\rm H}), 3.74 (s,3 {\rm H}), 3.87 (s,3 {\rm H}), 3.87 (s,3 {\rm Hz}), 3.14 \\ {\rm HNMR}({\rm CDCl_3}) \ \delta \ 0.76 (t,J=7.5 {\rm Hz},3 {\rm Hz}), 3.87 (s,3 {\rm Hz}), 3$
007-1	(8,1H),6.66(6,1H),6.90(dd,J=2.1,8.4Hz,1H),6.96-7.01(m,4H),7.04(d,J=1.8Hz,1H),7.37-7.48(m,5H),7.51-7.56(m,2H)
	IR(KBr)3600·2800(br), 1608, 1593, 1518, 1474, 1462, 1379, 1294, 1251, 1226, 1183, 1109, 1078, 1040, 1008cm ⁻¹

Table 54

	m.p.103-105°C
	$\text{IIINMR}(\text{CDCI}_3) \ \delta \ 0.78 (\text{t,J} = 7.2 \text{Hz,3 II}), 1.15 - 1.27 (\text{m,2 II}), 1.43 - 1.51 (\text{m,2 II}), 3.61 (\text{e,3 II}), 3.73 - 3.77 (\text{m,2 II}), 3.74 (\text{e,3 II}), 3.87 (\text{e,3 II}), 5.61 (\text{e,3 II}), 3.61 (\text{e,3 II}), 3.74 (\text{e,3 II}), 3.74 (\text{e,3 II}), 3.87 (\text{e,3 II}), 5.61 (\text{e,3 II}), 3.74 (\text{e,3 II}), 3.74 (\text{e,3 II}), 3.87 (\text{e,3 II}), 5.61 (\text{e,3 II}), 3.74 (\text{e,3 II}), 3.$
1.251	.16(s,2H),5.63(s,1H),6.65(s,1H),6.90(dd,J=2.1,8.1Hz,1H),6.96-7.01(m,3H),7.04(d,J=2.1Hz,1H),7.37-7.48(m,5H),7.51-7.56(m
	(112)
	IR(KBr)3600-2800(br), 1607, 1518, 1467, 1375, 1288, 1251, 1179, 1113, 1084, 1020, 1008cm ⁻¹
	m.p.111.5-112.5°C
	$HINMR(\mathrm{CDCB}) \ \delta \ 0.78(t, J = 7.5Hz, 3H), 1.15 - 1.27(m, 2H), 1.41 - 1.50(m, 2H), 3.10(e, 3H), 3.61(e, 3H), 3.73 - 3.78(m, 2H), 3.74(e, 6H), 5$
797-1	. 18(s,211),6.66(s,111),6.96-7.01(m,2H),7.10(d,J=8.711z,1H),7.26-7.55(m,9H)
	IR(KBr)3600-2800(br),1609,1518,1464,1440,1375,1355,1289,1269,1249,1181,1170,1107,1080,1019cm ⁻¹
	11 HNMR(CDCl3) 6 1.76(8,3H), 1.82(8,3H), 3.45(8,3H), 3.76(8,3H), 4.62(d,J=8.4Hz,2H), 5.54(t,J=8.4Hz,1H), 6.49(8,1H), 6.91-6.99
1.253	1.253 (m,2H),7.05(d,J=1.5Hz),7.74(d,J=8.7Hz,2II),8.15(d,J=8.7Hz,2H)
	IR(KBr)3474,1687,1607,1509,1417,1397,1316,1287,1240,1109,1071,1006cm ⁻¹
	1HNMR(CDCI3) & 2.39(8,3H),3.45(8,3H),3.76(8,3H),5.11(8,2H),6.49(8,1H),6.94(dd,J=8.4&1.8Hz,1H),7.04(d,J=8.4Hz,1H),7.0
1.254	6(d,J=1.8Hz),7.19-7.38(m,4H),7.73(d,J=8.4Hz,2H),8.14(d,J=8.4Hz,2H)
	IR(KBr)3549,3466,1668,1603,1518,1489,1465,1449,1421,1397,1372,1288,1236,1186,1117,1074,1017cm ⁻¹
	1HNMR(CDCl3) & 1.76(s, 3H), 1.82(s, 3H), 3.02(s, 6H), 3.48(s, 3H), 3.74(s, 3H), 4.61(d, J=7.2Hz, 2H), 5.53(t, J=7.2Hz, 1H), 5.66(s, 1H
1.255),5.92(s,1H),6.47(s,1H),6.81(broad,2H),6.95(s,2H),7.06(s,1H),7.56(d,J=8.7Hz,2H)
	IR(KBr)3535,3494,3452,1606,1526,1487,1406,1357,1288,1242,1195,1112cm ⁻¹
	111111111111111111111111111111111111
1 0 2 6	2H), 6.96(dd, J=8.1&1.8Hz, 1H), 7.02(d, J=8.1Hz, 1H), 7.08(d, J=1.8Hz, 1H), 7.23(d, J=7.8Hz, 2H), 7.34(d, J=7.8Hz, 2H), 7.56(d, J=8.1Hz, 2H), 7.56(d, J=
007-1	4Hz,2H)
	IR(KBr)3536,3379,1610,1586,1528,1489,1460,1443,1361,1288,1250,1225,1195,1117,1072,1008cm ⁻¹

Table 55

.

	HNMR(CDCl ₃) δ 1.71(s,3H),1.76(s,3H),2.49.2.60(m,2H),3.44(s,3H),3.70(s,3H),4.06(t,J=6.3Hz,2H),4.48(d,J=6.0Hz,2H),4.7
1 050	1(d,J=8.7Hz,2H),5.23(t,J=8.7Hz,1H),5.37(broads,1H),6.84(s,1H),6.91-6.97(m,1H),6.92(d,J=8.4Hz,2H),7.18-7.23(m,2H),7.52
762-1	(d, J=8.711z, 211)
	IR(KBr)3398,1612,1518,1465,1389,1232,1174,1131,1101,1081,1023cm 1
	1HNMR(CDCl ₃) \(\delta \) :3.21(s,3H),3.41(s,3H),3.63(s,3H),3.77(s,3H),4.76(s,2H), \(\text{ 5.15(s,2H),6.94(s,1H),6.99(d,J=8.7Hz,1H),7.23-} \)
1.258	1.258 7.49 (m, 911), 7.71(d,J=8.711z,211)
	HR(KBr)3497, 1738, 1721, 1607, 1509, 1469, 1362, 1242, 1452, 1056, 1017cm ⁻¹
	foam
1 950	$^{I}HNMR(CDCI_{3}) \ \delta \ \ 2.35(s,6H), 2.73(s,3H), 2.79(t,J=5.7Hz,2H), 3.21(s,3H), 3.31(s,3H), 3.56(s,3H), 3.78(s,3H), 4.19(t,J=5.7Hz,2H), 3.21(s,3H), 3.21(s,3H$
667.1),6.84(s,111),7.09(d,J=8.4Hz,1H),7.34-7.41(m,4H),7.66-7.71(m,2H)
	1R(KBr)3600-2700(br),1519,1481,1365,1273,1200,1177,1151,1120,1079,1015cm-1
	Гоат
1 960	$^{1}HNMR(CDCl_{3}+CD_{3}OD) \ \delta \ \ 2.71(t,J=5.1Hz,2H),3.46(s,6H),3.73(s,6H),4.11(t,J=5.1Hz,2H),6.44(s,1H),6.87\cdot6.99(m,4H),7.04(d,2H),1.04(d,$
007:1	,J=2.1Hz,1II),7.49.7.53(m,2II)
	IR(KBr)3600-2200(br),1607,1583,1519,1475,1407,1390,1275,1252,1226,1114,1062cm ⁻¹
	m.p.85-87°C
1 961	1HNMR(CDCl3) § 3.49(8,3H),3.75(8,3H),5.15(8,2H),5.23(brs,1H),5.68(brs,1H),5.89(8,1H),6.43(8,1H),6.95(dd,J=8.3,2.1Hz,1
103.1	H),7.03(d,J=8.3Hz,1H),7.08(d,J=2.1Hz,1H),7.08(t,J=8.7Hz,1H),7.33(ddd,J=8.7,2.1,1.2Hz1H),7.37.7.47(m,6H)
	IR(KBr)3410,1525,1488,1284,1248,1102,1010,759,704cm ⁻¹

Table 56

1.262	m.p.138-140°C HINMR(CDCl ₃) δ 1.77(s,3H),1.82,(s,3H),3.21(s,3H),3.22(s,3H),3.48(s,3H),3.78(s,3H),4.64(d,J=6.5Hz,2H),5.51(t,J=6.5Hz,1 H),7.05(d,J=8.5Hz,1H),7.08(s,1H),7.14(dd,J=8.5,2.2Hz,1H),7.34(d,J=2.2Hz,1H),7.40(d,J=8.7Hz,2H),7.69(d,J=8.7Hz,2H),10 .00(s,1H) HRCR-P.1693.1514.1470.1361.1348.1275.1239,1175,1151,979,969,867,845,815cm ⁻¹
1.263	foam HINMIK(DMSO-da) & 1.74(8,311), 1.78(8,311), 3.32(8,311), 3.44(8,311), 3.76(8,311), 4.66(d,J=6.6Hz,211), 5.49(t,J=6.6Hz,111), 7.11(8, 1H), 7.23.7.25(m,3H), 7.48(d,J=8.6Hz,2H), 7.77(d,J=8.6Hz,2H), 13.1(brs,1H) IR(KBr)3431, 1737, 1518, 1471, 1177, 1151,972, 864, 849cm ⁻¹
1.264	m.p. 153.5-155.5°C ¹ HNMR(CDCl ₃) δ 2.58(s,3H),3.52(s,3H),3.77(s,3H),5.21(s,2H),6.83(s,1H),7.04-7.24(m,5H),7.30-7.49(m,5H),7.56-7.65(m,2H)) ¹ R(CHCl ₃)1607,1520,1481,1412,1368,1298,1267,1131,1080,1012,960,942,907,869,836,812cm ⁻¹
1.265	dp>116°C ¹ HNMR(CDCl ₃ +CD ₃ OD) δ 2.69(8,3H),3.15(8,3H),3.16(8,3H),3.57(8,3H),3.80(8,3H),5.21(8,2H),6.88(8,1H),7.19(d,J=8.4Hz,1H ¹ A.34-7.51(m,7H),7.83-7.90(m,2H),8.01-8.07(m,5H) ¹ A.7.34-7.51(m,7H),7.83-7.90(m,2H),8.01-8.07(m,5H) ¹ A.7.34-7.51(m,7H),7.83-7.90(m,2H),9.01-8.07(m,5H)
1.266	m.p.136·138°C !HNMR(CDCl ₃)

Table 57

1-267	foam HINMR(CDCla) & 2.38(s,311),3.10(s,311),3.21(s,311),3.41(s,311),3.67(s,311),3.77(s,311),5.11(s,211),6.93(s,111),7.09(d,J=8.6Hz,111),7.21(d,J=8.2Hz,211),7.21(d,J=8.2Hz,211),7.21(d,J=8.9Hz,211),7.21(d,J=8.9Hz,211),7.21(d,J=8.9Hz,211),7.10(d,J=8.9Hz,211) HR(KBr)1733,1518,1471,1367,1297,1177,1151,1118,1059,971,862,815cm ⁻¹
1-268	amorphous 'IINMR(DMSO-d ₆) δ 1.64(s,3H),1.70(s,3H),2.44(q,J=7.2Hz,2H),3.30(s,3H),3.70(s,3H),3.93(t,J=7.2Hz,2H),5.26(t,J=7.2Hz,1 'II),6.64(dd,J=8.6,2.1Hz,1H),6.74(d,J=2.1Hz,1H),6.87(d,J=8.9Hz,2H),6.87(d,J=8.6Hz,1H),6.96(s,1H),7.48(d,J=8.9Hz,2H),8. 84(s,1H),9.59(s,1H),12.8(brs,1H) IR(CHCl ₃)3594,3540,1743,1707,1520,1470,1260,1058cm ⁻¹
1.269	m.p.206-208°C (dec.) 1HNMR(l)MSO-d ₆) δ 2.32(s,3H),3.32(s,3H),3.66(s,3H),5.05(s,2H),6.66(dd,J=8.2,2.1Hz,1H),6.79(d,J=2.1Hz,1H),6.83(s,1H),6 .84(d,J=8.6Hz,2H),6.89(d,J=8.2Hz,1H),7.20(d,J=8.0Hz,2H),7.38(d,J=8.0Hz,2H),7.45(d,J=8.6Hz,2H),8.91(s,1H),9.68(s,1H), 12.7(brs,1H) IR(KBr)3413,1710,1612,1691,1520,1471,1377,1227,1083,1059,1013,837,809cm ⁻¹
1.270	
1.271	m.p.143·145°C 'HNMR(CDCl ₃) δ 2.70(8,3H),3.12(8,3H),3.54(8,3H),3.73(8,3H),3.84(8,3H),5.18(8,2H),6.83(8,1H),7.00·7.07(m,2H),7.14(d,J=8 .4Hz,1H),7.33·7.49(m,9H) IR(KBr)3434,2940,1609,1520,1482,1396,1369,1293,1283,1243,1178,1114,1080,1021,1009cm ⁻¹

Table 58

1-272 HINMR(CDCla) HINMR(CDCla) HINCHCDCla) HR(CHCla) HR(CHCla) HINMR(CDCla) HIN, G.86(s, 1H), T HR(KBr) HR(KBr) HN, G.86(s, 1H), T HN, G.86(s, 1H), T HN, G.83(s, 1H), T HR(KBr) HN, G.83(s, 1H), T HN, G.83(s,	foam HINMR(CDCl ₃) δ 3.45(8,3H),3.71(8,3H),3.86(8,3H),5.15(8,2H),5.67(8,1H),5.84(8,1H),6.42(8,1H),6.98(dd,J=1.8,8.4Hz,1H),7. 01-7.07(m,2H),7.11(d,J=1.8Hz,1H),7.35-7.45(m,8H) IR(CHCl ₃)3534,3024,1617,1587,1517,1503,1483,1462,1409,1290,1247,1226,1215,1122,1104,1072,1013cm ⁻¹ IR(CHCl ₃)3534,3024,1617,1587,1517,1503,1483,1462,1409,1290,1247,1226,1215,1122,1104,1072,1013cm ⁻¹ IR(CHCl ₃)3534,3024,1617,1587,1517,1503,1483,1462,1409,1290,1247,1226,1215,1122,1104,1072,1013cm ⁻¹ IR(CHCl ₃)3534,3024,1617,1587,1517,1503,1483,1365,1292,1273,1176,1119,1084,1011cm ⁻¹ IR(KBr)3434,2935,1605,1522,1465,1388,1365,1292,1273,1176,1119,1084,1011cm ⁻¹ IR(CHCl ₃)38-140°C
	3. 45(8,3H), 3.71(8,3H), 3.86(8,3H), 5.15(8,2H), 5.67(8,1H), 5.84(8,1H), 6.42(8,1H), 6.98(dd,J=1.8,8.4Hz,1H), 7.11(d,J=1.8Hz,1H), 7.35-7.45(m,8H) 1,3024,1617,1587,1517,1503,1483,1462,1409,1290,1247,1226,1215,1122,1104,1072,1013cm ⁻¹ 1,3024,1617,1587,1517,1503,1483,1462,1409,1290,1247,1226,1215,1122,1104,1072,1013cm ⁻¹ 1) 5 1.76(8,3H), 1.81(8,3H), 2.42(8,3H), 2.73(8,3H), 3.23(8,3H), 3.53(8,3H), 3.77(8,3H), 4.63(d,J=6.6Hz,2H), 5.49(m, 7.09(d,J=8.4Hz,1H), 7.25-7.53(m,6H) 1,7.09(d,J=8.4Hz,1H), 7.25-7.53(m,6H) 1,935,1605,1522,1465,1388,1365,1292,1273,1176,1119,1084,1011cm ⁻¹
	7.11(d,J=1.8Hz,1H),7.35-7.45(m,8H) 1,3024,1617,1587,1517,1503,1483,1462,1409,1290,1247,1226,1215,1122,1104,1072,1013cm ⁻¹ 1,3024,1617,1587,1517,1503,1483,1462,1409,1290,1247,1226,1215,1122,1104,1072,1013cm ⁻¹ 1) \(\delta\) 1.76(8,3H),1.81(8,3H),2.42(8,3H),2.73(8,3H),3.23(8,3H),3.53(8,3H),3.77(8,3H),4.63(d,J=6.6Hz,2H),5.49(m, 1,7.09(d,J=8.4Hz,1H),7.25-7.53(m,6H) 1935,1605,1522,1465,1388,1365,1292,1273,1176,1119,1084,1011cm ⁻¹
	1,3024,1617,1587,1517,1503,1483,1462,1409,1290,1247,1226,1215,1122,1104,1072,1013cm ⁻¹ 1) δ 1.76(8,3H), 1.81(8,3H),2.42(8,3H),2.73(8,3H),3.23(8,3H),3.53(8,3H),3.77(8,3H),4.63(d,J=6.6Hz,2H),5.49(m,7.09(d,J=8.4Hz,1H),7.25-7.53(m,6H) 1935,1605,1522,1465,1388,1365,1292,1273,1176,1119,1084,1011cm ⁻¹
	a) & 1.76(s,3H), 1.81(s,3H), 2.42(s,3H), 2.73(s,3H), 3.23(s,3H), 3.53(s,3H), 3.77(s,3H), 4.63(d,J=6.6Hz,2H), 5.49(m, 7.09(d,J=8.4Hz,1H), 7.25-7.53(m,6H) 935, 1605, 1522, 1465, 1388, 1365, 1292, 1273, 1176, 1119, 1084, 1011cm ⁻¹
	3) & 1.76(8,3H), 1.81(8,3H), 2.42(8,3H), 2.73(8,3H), 3.23(8,3H), 3.53(8,3H), 3.77(8,3H), 4.63(d,J=6.6Hz,2H), 5.49(m, 7.09(d,J=8.4Hz,1H), 7.25-7.53(m,6H) 935, 1605, 1522, 1465, 1388, 1365, 1292, 1273, 1176, 1119, 1084, 10Hcm ⁻¹
	,7.09(d,J=8.411z,111),7.25-7.53(m,G11) .935,1605,1522,1465,1388,1365,1292,1273,1176,1119,1084,1011cm ⁻¹
	.935, 1605, 1522, 1465, 1388, 1365, 1292, 1273, 1176, 1119, 1084, 1011cm - '
	
1H),6.83(s,1F IR(KBr)3433 m.p.95-97°C	111111111111111111111111111111111111
IR(KBr)3433,295 m.p.95-97°C	1H),6.83(s,1H),7.01-7.04(m,2H),7.08(d,J=8.4Hz,1H),7.26(d,J=0.6Hz,1H),7.34·7.43(m,3H)
m.p.96.97C	,2937,1608,1519,1480,1400,1368,1292,1271,1244,1179,1112,1081,1011cm ⁻¹
	111111111111111111111111111111111111
1-275 1H),6.95-7.07(m,	1H),6.95-7.07(m,3H),7.25-7.28(m,2H),7.52-7.55(m,2H)
IR(KBr)3479,293	IR(KBr)3479,2935,1613,1585,1523,1509,1490,1458,1415,1395,1362,1315,1249,1196,1112,1070,1005cm ⁻¹
m.p.155-158°C	
	1000000000000000000000000000000000000
1.27b),5.82(s,1H),6.42(),5.82(s,1H),6.42(s,1H),6.96-7.09(m,4H),7.35-7.41(m,2H)
IR(KBr)3428,300	3005,2952,1613,1583,1517,1505,1487,1464,1451,1411,1387,1359,1317,1289,1245,1140,1101,1070,1013cm ⁻¹

Table 59

45 50		m.p.173-175°C ¹ HNMR(CDCU3) δ 1.68(s,3H),1.74(s,3H),2.42(s,3H),2.51-2.60(m,2H),2.75(s,3H),3.21(s,3H),3.53(s,3H),3.76(s,3H),4.07(t,J=6, ¹ HNMR(CDCU3) δ 1.68(s,3H),1.74(s,3H),2.42(s,3H),2.51-2.60(m,2H),7.35(dd,J=2.1,8.7Hz,1H),7.40(d,J=2.1Hz,1H),7.50-7.5	3(m,2H) HR(KBr)3434,2934,1606,1523,1482,1388,1369,1277,1236,1177,1118,1085,1012cm ⁻¹	m.p.151-154°C HINMR(CDCh.) Ø 1.69(8,3H), 1.74(d,J=0.9Hz,3H),2.51-2.59(m,2H),2.75(8,3H),3.21(8,3H),3.54(8,3H),3.73(8,3H),3.84(8,3H),4.	07(t,J=6.9Hz,2H),5.21(m,1H),6.83(s,1H),7.00-7.08(m,3H),7.34-7.43(m,4H) IR(KBr)3434,2935,1610,1581,1522,1479,1399,1362,1283,1246,1180,1125,1114,1082,1046cm ⁻¹	m.p.90-92°C HNMR(CDC),) & 1.69(s.3H) 1.75(s.3H) 2.42(s.3H) 2.49-2.56(m.2H) 3.45(s.3H) 3.74(s.3H) 4.06(t.J=6.6Hz.2H) 5.22(m.1H) 5	1-279 (67(s,1H),5.90(s,1H),6.46(s,1H),6.94·7.06(m,3H),7.25·7.28(m,2H),7.52·7.56(m,2H) (1R(KBr)3529,3381,2927,1616,1586,1522,1490,1465,1418,1398,1360,1315,1289,1251,1225,1192,1114,1070,1011cm ⁻¹		1.280 .67(s,1H),5.82(s,1H),6.42(s,1H),6.92-7.09(m,5H),7.35-7.43(m,2H) IR(KBr)3420,3326,2935,1615,1583,1518,1504,1486,1466,1410,1316,1289,1249,1122,1101,1071,1018cm ⁻¹		-281
40		1.68(s,3H),1.74 1),6.86(s,1H),7.	,1606,1523,148	1.69(s,3H), 1.74	5.21(m,1H),6.85 .1610,1581,152	1 69(s 3H) 1 75	1),6.46(s,1H),6.9 2927,1616,1580	1.69(s,3H), 1.75	2(s,1H),6.42(s,1H),6.92-7.09(m,5H),7.35-7.43(m,2H) ,3326,2935,1615,1583,1518,1504,1486,1466,1410,13	2.38(s,3H),2.69 ₍	.2941,1608,1521,1498,1482,1466,1397,1368,1284,1243,1177,1113,1079,1019cm ⁻¹
35		1(s,3H),2.42(s,3.06(d,J=8.7Hz	12,1388,1369,1	(d,J=0.9Hz,3H	3(s, 114), 7.00-7. 2, 1479, 1399, 1	(8 3H) 2 42(s 3	94-7.06(m,3H) 6,1522,1490,1	(8,3H),2.49-2.5	92-7.09(m,5H) 3,1518,1504,1	(s,3H),3.11(s,3	8,1482,1466,1;
30		3H),2.51-2.60((277,1236,1177	l),2.51-2.59(m,	08(m,3H),7.34 362,1283,1246	H) 2 49-2 56(n	,7.25-7.28(m,2 466,1418,1398	56(m,2H),3.45(,7.35-7.43(m,2)	H),3.54(e,3H),	397,1368,1284
25		m,2H),2.75(s,3 (m,2H),7.35(d	,1118,1085,10	211),2.75(6,3H	-7.43(m,411) ,1180,1125,11	n 2H) 3 46(9 3	H),7.52-7.55(n	s,3H),3.71(s,3	H) ,1316,1289,12	3.73(s,3H),3.8	1243,1177,11
20		H),3.21(8,3H),	12cm ⁻¹),3.21(s,3H),3.	14,1082,1046c	H) 3 74(8 3H) 4	n,2H) 89,1251,1225,	H),3.85(8,3H),4	49,1122,1101,	4(8,3H),5.14(8,	13,1079,1019cı
15		3.53(s,3H),3.7 1H),7.40(d,J≕)	,	54(a,3H),3.73(- E	.06(t.J=6.6H3	192,1114,107	.06(t,J=6.6Hz	.071,1018cm	2H),6.83(s,1H	- - u
10	· .	;C (!), 5 1.68(s,3H),1.74(s,3H),2.42(s,3H),2.51-2.60(m,2H),2.75(s,3H),3.21(s,3H),3.53(s,3H),3.76(s,3H),4.07(t,J=6, 1(m,1H),6.86(s,1H),7.06(d,J=8.7Hz,1H),7.25-7.28(m,2H),7.35(dd,J=2.1,8.7Hz,1H),7.40(d,J=2.1Hz,1H),7.50-7.5		s,3H),3.84(s,3H		. 2H) 5.22(m.1H	10,1011cm ⁻¹	,2H),5.22(m,1H),7.00-7.44(m,1	
5		.o.		4.		10		ro,		Ξ	

1.282	m.p.109-111 °C HINMR(CDCL ₃) & 2.39(s,3H),3.45(s,3H),3.71(s,3H),3.85(s,3H),5.10(s,2H),5.67(s,1H),5.83(s,1H),6.42(s,1H),6.95-7.41(m,11H)
	IR(CHCh)3497,2935,1610,1583,1519,1499,1481,1465,1399,1312,1274,1245,1185,1120,1102,1067,1012cm ⁻¹
	$^{1}\text{HINMR}(\text{CDCh}_{3}) \ \delta \ \ 2.38(\text{s}, 3H), 2.68(\text{s}, 3H), 3.12(\text{s}, 3H), 3.53(\text{s}, 1H), 3.77(\text{s}, 3H), 5.14(\text{s}, 2H), 6.83(\text{s}, 1H), 7.10-7.24(\text{m}, 5H), 7.33(\text{d}, J=1.10), 1.10 \ \text{m}$
1.283	8.4112,111),7.34(d,J=8.4112,211),7.40(d,J=2.1112,111),7.56-7.64(m,211)
	IR(KBr)1603,1520,1482,1367,1297,1277,1251,1232,1176,1120,1084,1012cm ¹
	1HNMR(CDCl ₃) & 2.39(8,3H),3.45(8,3H),3.75(8,3H),5.10(8,2H),5.68(8,1H),5.88(8,1H),6.44(8,1H),6.95(dd,J=8.4&2.1Hz,1H),7
I-284	.03(d,J=8.4Hz,1H),7.07(d,J=2.1Hz,1H),7.08·7.29(m,4H),7.34(d,J=8.4Hz,2H),7.56·7.65(m,2H)s
	IR(KBr)3504,3330,1604,1596,1490,1461,1455,1424,1360,1318,1242,1223,1121,1071,1009cm ⁻¹
	111NMR(CDCL ₃) ô 2.69(s,3H),3.13(s,3H),3.56(s,3H),3.78(s,3H),5.19(s,2H),6.86(s,1H),7.05-7.16(m,1H),7.15(d,J=8.4Hz,1H),7.
1.285	30-7.49(m,10H)
	IR(KBr)1610,1583,1517,1475,1455,1359,1296,1270,1239,1180,1116,1088,1013cm ⁻¹
	111NMR(CDCL ₃) \$\tilde{0}\$ 3.47(9,3H),3.76(8,3H),5.15(8,2H),5.68(9,1H),5.89(8,1H),6.46(8,1H),6.95(dd,J=8.4&2.1Hz,1H),7.03(d,J=8.4
1.286	IIz, III), 7.04-7.12(m,2H), 7.35-7.51(m,9II)
	IR(KBr)3543,3346,1612,1586,1566,1518,1502,1479,1407,1362,1320,1239,1110,1068,1006cm ⁻¹
	1HNMR(CDCl3) & 2.68(8,3H),3.14(8,3H),3.58(8,3H),3.81(8,3H),5.20(8,2H),6.88(8,1H),7.16(d,J=8.7Hz,1H),7.32.7.49(m,7H),7.
1.287	60-7.68(m,1H),7.98-8.04(m,1H),8.24-8.29(m,1H),8.44-8.47(m,1H)
	IR(KBr)1609,1531,1362,1270,1239,1178,1122,1085,1014cm ⁻¹
	1HNMR(CDCl ₃) δ 3.49(s,3H),3.78(s,3H),5.17(s,2H),5.71(s,1H),5.83(s,1H),6.49(s,1H))6.95(dd,J=12.3&1.2Hz,1H),7.02(d,J=1
1.288	2.3Hz,1H),7.08(d,J=1.2Hz,1H),7.33-7.50(m,5H),7.60-7.68(m,1H),7.97-8.06(m,1H),8.21-8.27(m,1H),8.52(s,1H)
	IR(KBr)3528,3358,1588,1527,1499,1454,1406,1348,1314,1241,1122,1070,1009cm ⁻¹

	1HNMR(CDCl ₃) & 2.68(s, 3H), 3.13(s, 3H), 3.55(s, 3H), 3.77(s, 3H), 5.19(s, 2H), 6.79-6.88(m, 1H), 6.86(s, 1H), 7.02-7.10(m, 2H), 7.15(
1-289	d,J=8.41[z,111),7.26-7.50(m,8H)
	HK(NB)3479,3388,1023,1003,1018,1478,1396,1368,1176,1118,1081,1013cm ⁻¹
1.290	33-7.50(m,9H),7.52(d,d=2.1Hz,1H)
	IR(KBr)3504,1612,1578,1519,1498,1464,1391,1355,1290,1276,1239,1183,1167,1107,1070,1004cm-1
	HINMR(CDClat CDa(D)) & 3.44(4,311),3.75(4,311),4.74(4,211),5.13(4,211),111),6.86-6.95(m,311),6.99(d,J=8.7112,111),7.30-7.48(
1.291	m,7H),7.52(d,J=8.7Hz,2H)
	IR(KBr)3433,1707,1611,1518,1473,1463,1379,1250,1174,1132,1089,1058,1016cm ⁻¹
000	¹ HINMIR(CDCl ₃ +CD ₃ OD) & 3.41(s,3H),3.62(s,3H),3.75(s,3H),4.74(s,2H),5.15(s,2H),6.87-7.01(m,4H),7.30-7.55(m,9H)
767-1	IR(KBr)3386,1722,1611,1518,1464,1343,1271,1245,1233,1215,1168,1082,1060,1021cm-1
1.993	1HNMR(CDCl3) & 2.38(8,3H), 2.69(8,3H), 3.12(8,3H), 3.56(8,3H), 3.78(8,3H), 5.14(8,2H), 6.85(8,1H), 7.05-7.45(m,12H)
	IR(KBr)1607,1584,1519,1479,1401,1364,1348,1280,1237,1178,1164,1115,1081,1016cm ⁻¹
	found
1,904	$111NMR(CDCl_3) \delta \ 3.45(s,3H), 3.75(s,3H), 4.36(d,J=2.1Hz,1H), 4.55(s,2H), 4.76(d,J=2.1Hz,1H), 6.45(s,1H), 6.92(d,J=8.7Hz,2H) \\ = 2.11111111111111111111111111111111111$
-	,6.99(d,J=8.4Hz,1H),7.20(dd,J=1.5and8.4Hz,1H),7.11(d,J=1.5Hz,1H),7.53(d,J=8.7Hz,2H)
Ī	IR(Nujol)3425,1612,1588,1523,1487,1295,1268,1228,1113,1069,825cm ⁻¹
	form
905	$^{11} \text{INMR} (\text{CDCL}_3) \ \delta \ 2.78 (\text{s}, 3\text{H}), 3.21 (\text{s}, 3\text{H}), 3.23 (\text{s}, 3\text{H}), 3.55 (\text{s}, 3\text{H}), 3.78 (\text{s}, 3\text{H}), 4.79 (\text{d}, \text{J} = \text{6.6Hz}, \text{2H}), \text{6.21} (\text{t}, \text{J} = \text{6.6Hz}, 1\text{H}), \text{6.85} (\text{s}, 1\text{H})$
),7.08(d,J=8.7Hz,1H),7.37(dd,J=8.7,2.1Hz,1H),7.38(d,J=8.7Hz,2H),7.41(d,J=2.1Hz,1H),7.68(d,J=8.7Hz,2H)
	IR(Nujol)1632,1607,1519,1482,1180,1150,1079,1011,976,876,814,798cm ⁻¹

967-1	foam HINMR(CD ₃ OD) & 3.38(s,3H),3.68(s,3H),4.12(bra,2H),4.65(bra,2H),5.01(m,2H),6.43(s,1H),6.78(dd,J=8.7,1.8Hz,1H),6.85(d, J=8.7,2H),6.86(d,J=1.8Hz,1H),6.94(d,J=8.4Hz,1H),7.46(d,J=8.7Hz,2H) IR(Nujol)3411,1612,1591,1520,1485,1461,1253,1115,1008,971,944,842,810,785cm ⁻¹
1.297	foam 1HNMR(CD ₃ OD) & 3.38(8,3H),3.68(8,3H),4.73(d,J=5.1Hz,2H),4.23(d,J=5.1Hz,2H),5.83(m,2H),6.43(8,1H),6.79(dd,J=8.7,1.8 1Iz,1H),6.85(d,J=8.7,2H),6.86(d,J=1.8Hz,1H),6.94(d,J=8.7Hz,2H) 1R(Nujol)3393,1611,1588,1523,1489,1460,1248,1114,1071,1013,940,824cm ⁻¹
1.298	fonm 1HNMR(CD ₃ OD) & 1.77(s,3H),3.38(s,3H),3.68(s,3H),4.00(s,2H),5.72(d,J=6.3Hz,2H),5.81(t,J=6.3Hz,1H),6.43(s,1H),6.79(dd, J=8.7,1.8Hz,1H),6.85(d,J=8.7,2H),6.86(d,J=1.8Hz,1H),6.94(d,J=8.4Hz,1H),7.46(d,J= 1R(Nujol)3384,1608,1585,1523,1494,1457,1262,1227,1116,1078,1008,985,822,781cm ⁻¹
1.299	foam 'HNMR(CD ₃ OD) & 1.87(s,3H),3.83(s,3H),3.68(s,3H),4.17(s,2H),4.69(d,J=6.6Hz,2H),5.68(t,J=6.3Hz,1H),6.43(s,1H),6.79(dd, J=8.7,1.8Hz,1H),6.85(d,J=8.4,2H),6.85(d,J=1.8Hz,1H),6.94(d,J=8.4Hz,1H),7.46(d,J=8.7Hz,2H) IR(Nujol)3350,3236,1606,1589,1524,1490,1463,1247,1227,1079,1011,992,819,790cm ⁻¹
1.300	foam 'HNMR(CDCl ₃) & 1.87(s,3H),2.10(s,3H),3.45(s,3H),3.74(s,3H),4.68(s,2H),4.71(d,J=6.0Hz,2H),5.77(t,J=6.0Hz,1H),6.44(s,1H),6.92(d,J=8.0Hz,2H),6.95(m,2H),7.07(brs,1H),7.53(d,J=6.0Hz,2H)),6.92(d,J=8.0Hz,2H),6.95(m,2H),7.07(brs,1H),7.53(d,J=6.0Hz,2H) IR(Nujol)3409,1724,1612,1587,1523,1489,1460,1239,1114,1071,1012,940,825,781cm ⁻¹

Table 63

	foam
	HINMR(CD3(OL)) δ 2.93(d,J=2.1Hz,1H),3.38(s,3H),3.68(s,3H),4.06(dd,J=9.9,7.8Hz,1H),4.20(dd,J=9.9,3.6Hz,1H),4.74(ddd,J
1.301	=7.8,3.6,2.1Hz,1H),6.44(s,1H),6.80(dd,J=8.4,1.8Hz,1H),6.85(d,J=8.7,2H),6.87(d,J=1.8Hz,1H),6.96(d,J=8.4Hz,1H),7.46(d,J=8.7Hz,2H) 8.7Hz,2H)
	IR(Nujol)3282, 1655, 1612, 1588, 1523, 1489, 1460, 1254, 1226, 1072, 1013, 940, 825cm - 1
	болт
1,309	HINMR(CD ₃ OD) δ 3.30(8,3H),3.68(8,3H),4.75(d,J=5.1Hz,2H),6.44(8,1H),6.80(dd,J=8.4,1.8Hz,1H),6.85(d,J=8.4,2H),6.92(d,
700-1	J=1.8Hz, 111), 6.99(d, J=8.7Hz, 1H), 7.42(t, J=5.1Hz, 1H), 7.46(d, J=8.4Hz, 2H)
	IR(Nujol)3474,3316,1678,1611,1584,1523,1487,1458,1268,1231,1115,1171,1011,942,824,758cm-1
	foam
1.303	111NMR(CD3OD) & 1.24(d,J=7.2Hz,3H),3.38(s,3H),3.68(s,3H),4.12(q,J=7.2Hz,2H),4.76(d,J=4.8Hz,2H),6.43(s,1H),6.80(dd,J
000-1	=8.4,1.8Hz,1H),6.85(d,J=8.7,2H),6.91(d,J=1.8Hz,1H),6.99(d,J=8.4Hz,2H),7.46(d,J=8.7Hz,2H),7.52(t,J=4.8Hz,1H)
	IR(Nujol)3306,1715,1612,1587,1523,1487,1460,1266,1232,1115,1070,824,760cm-1
	form
	1 HNMR(CDCl ₃) δ 2.34(8,3H),2.38(8,3H),2.70(8,3H),3.07(6,3H),3.21(8,3H),3.56(6,3H),3.78(8,3H),5.13(8,2H),6.84(8.1H),7.03(
I-304	d,J=7.8Hz,1H),7.06(s,1H),7.18(d,J=8.4Hz,1H),7.28(d,J=7.8Hz,1H),7.36(dd,J=2.1,8.4Hz,1H),7.38(d,J=8.7Hz,2H),7.40(d,J=2.1,8.4Hz,1H),7.38(d,J=8.7Hz,2H),7.40(d,J=8.7Hz,2H),7.40(d,J=8.7Hz,2H),7.40(d,J=8.7Hz,2H),7.40(d,J=8.4Hz,1H
	IR(KBr)1611,1518,1480,1365,1177,1151,1080,876,816cm-1
	foam
	$ \text{HNMR}(\text{CDC}_{13}) \delta - 1.25(\text{d},\text{J}=6.9\text{Hz},6\text{H}), 2.67(\text{s},3\text{H}), 2.93(\text{q},\text{J}=6.9\text{Hz},1\text{H}) 3.13(\text{s},3\text{H}), 3.21(\text{s},3\text{H}), 3.56(\text{s},3\text{H}), 3.78(\text{s},3\text{H}), 5.15(\text{s},2\text{H}) \text{HNMR}(\text{CDC}_{13}) \delta - 1.25(\text{d},\text{J}=6.9\text{Hz},6\text{H}), 2.67(\text{s},3\text{H}), 2.93(\text{q},\text{J}=6.9\text{Hz},1\text{H}) 3.13(\text{s},3\text{H}), 3.21(\text{s},3\text{H}), 3.56(\text{s},3\text{H}), 5.15(\text{s},2\text{H}) \text{HNMR}(\text{CDC}_{13}) \delta - 1.25(\text{d},\text{J}=6.9\text{Hz},6\text{H}), 2.67(\text{s},3\text{H}), 2.93(\text{q},\text{J}=6.9\text{Hz},1\text{H}) 3.13(\text{s},3\text{H}), 3.21(\text{s},3\text{H}), 3.56(\text{s},3\text{H}), 3.78(\text{s},3\text{H}), 5.15(\text{s},2\text{H}) \text{HNMR}(\text{CDC}_{13}) \delta - 1.25(\text{d},\text{J}=6.9\text{Hz},6\text{H}), 3.78(\text{s},3\text{H}), 3.28(\text{s},3\text{H}), 3.28(\text{s}$
1.305),6.84(8,1H),7.16(d,J=8.7Hz,1H),7.26(d,J=8.4Hz,2H),7.34(dd,J=2.4,8.7Hz,1H),7.38(d,J=8.4Hz,4H),7.40(d,J=2.4Hz,1H),7.68
	(d,J=8.4Hz,2H)
	IR(KBr)1609,1519,1481,1365,1177,1151,1080,875,819cm ⁻¹

Table 64

5

foam 11NMR(CDC'L ₃) δ 2.62(e,31l),3.15(e,31l),3.21(e,31l),3.55(e,31l),3.77(e,31l),5.36(e,21l), 1.306 11l),7.33(dd,J=2.1,8.4Hz,1H),7.38(d,J=8.7Hz,2H),7.41(d,J=2.1Hz,1H),7.51(m,2H),7.55 21l),784-7.93(m,4H) 1R(Klb-)1609,1519,1480,1364,1177,1151,1079,876,819,797cm ⁻¹ foam 11NMR(CDC'l ₃) δ 2.64(s,31l),3.21(s,31l),3.28(s,31l),3.55(s,31l),3.77(s,31l),5.51(s,2H),6 7.76(dt,J=2.4,7.2Hz,1H),7.37(d,J=8.7Hz,2H),7.42(d,J=2.4Hz,1H),7.58(dt,J=2.4,7.2Hz,1H),7.58(dt,J=2.4,7.2Hz,1H),7.58(dt,J=2.4,7.2Hz,1H),7.66(d,J=7.2Hz,1H),7.66(d,J=7.2Hz,1H),7.66(d,J=7.2Hz,1H),7.66(d,J=7.2Hz,1H),7.66(d,J=8.7Hz,2H),7.42(d,J=2.1Hz,1H),7.61(d,J=8.7Hz,2H),7.67(d,J=2.1,8.4Hz,1H),7.38(d,J=8.7Hz,2H),7.42(d,J=2.1Hz,1H),7.61(d,J=8.7Hz,2H),7.67(d,J=8.7Hz,2H),7.42(d,J=2.1Hz,1H),7.61(d,J=8.7Hz,2H),7.67(d,J=8.7Hz,1H),7.66(d,J=8.7Hz,1H),7.68(d,J=8.7Hz,1H),7.68(d,J=8.4Hz,1H),7.68(d,J=8.4Hz,1H),7.68(d,J=8.4Hz,1H),7.68(d,J=8.4Hz,1H),7.08(d,J=8.1Hz,1H),7.28(d,J=8.1Hz,1H),7.28(d,J=8.1Hz,1H),7.28(d,J=8.1Hz,1H),7.28(d,J=8.1Hz,1H),7.28(d,J=8.1Hz,1H),7.28(d,J=8.1Hz,1H),7.28(d,J=8.1Hz,2H),2.11(B,1118,1Hz,1H),7.28(d,J=8.1Hz,2H),2.11(B,1118,1Hz,1H),7.28(d,J=8.1Hz,2H),2.11(B,1118,23cm ⁻¹) 18R(KBr)3486,1611,1522,1489,1265,1113,1072,1011,823cm ⁻¹ 18R(KBr)3486,1611,1522,1489,1265,1113,1072,1011,823cm ⁻¹ 18R(KBr)346,1611,1522,1489,1265,1113,1072,1011,823cm ⁻¹ 18R(KBr)346,1611,1522,1489,1265,1113,1072,1011,823cm ⁻¹ 18R(KBr)346,1611,1522,1489,1265,1113,1072,1011,823cm ⁻¹		
		foam
111), 7.33(dd, J. 211), 7.33(dd, J. 211), 7.84-7.93 IR(KBr)1608 foum '11NMR(CDC ', J=2.4, 8.4Hz, 7.76(dt, J=2.4) IR(KBr)1603 foam 'HNMR(CDC ', J=2.1, 8.4Hz, IR(KBr)1610 m.p.221-2227 'HNMR(CDC Hz, 1H), 7.06(6) IR(KBr)3475, m.p.153-1557 'HNMR(CDC 6.96(dd, J=2.1) 2H) IR(KBr)3486,		111111111111111111111111111111111111
	1-306	$111), 7.33(\mathrm{dd,J} = 2.1, 8.4\mathrm{Hz}, 111), 7.38(\mathrm{d,J} = 8.7\mathrm{Hz}, 211), 7.41(\mathrm{d,J} = 2.1\mathrm{Hz}, 111), 7.51(\mathrm{m,2}11), 7.57(\mathrm{dd,J} = 1.8, 8.4\mathrm{Hz}, 111), 7.68(\mathrm{d,J} = 8.7\mathrm{Hz}, 111), 7.68(\mathrm{d,J} = 1.8, 8.4\mathrm{Hz}, 111), 7.68(\mathrm{d,J} = 1.8, 8.4), 7.68(\mathrm{d,J} = $
		2H),7.84-7.93(m,4H)
		IR(RBr)1608,1519,1480,1364,1177,1151,1079,876,819,797cm 1
		foam
		$HINMR(CDC13) \delta - 2.64(s, 311), 3.21(s, 311), 3.28(s, 311), 3.55(s, 311), 3.77(s, 311), 5.51(s, 211), 6.83(s, 111), 7.18(d, J=8.4 Hz, 111), 7.31(dd, J=8.4 Hz, I11), 7.31($
	1-307	$, J = 2.4, 8.4 \text{Hz}, 1 \text{H}), 7.37 \\ (d, J = 8.7 \text{Hz}, 2 \text{H}), 7.42 \\ (d, J = 2.4 \text{Hz}, 1 \text{H}), 7.58 \\ (dt, J = 2.4, 7.2 \\ \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.7 \\ \text{Hz}, 2 \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{Hz}, 1 \text{H}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{Hz}, 1 \text{Hz}, 1 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{Hz}, 1 \text{Hz}, 1 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{Hz}, 1 \text{Hz}, 1 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{Hz}, 1 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{Hz}, 1 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{Hz}, 1 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{Hz}, 1 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 1 \text{Hz}, 1 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 2 \text{Hz}, 2 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 2 \text{Hz}, 2 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 2 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 2 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 2 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 2 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 2 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 2 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 2 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 2 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 2 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text{Hz}, 2 \text{Hz}), 7.67 \\ (d, J = 8.4 \\ \text$
		,7.76(dt,J=2.4,7.2Hz,1H),7.85(d,J=7.2Hz,1H),8.06(d,J=7.2Hz,1H),8.23(d,J=7.2Hz,1H)
		IR(KBr)1603,1519,1480,1365,1177,1151,1080,876,824,797cm ¹
		foam
	900	$^{1}\text{HNMR}(\text{CDC} _{3}) \ \delta \ \ 2.76(s,3H), 3.17(s,3H), 3.21(s,3H), 3.55(s,3H), 3.78(s,3H), 5.25(s,2H), 6.86(s,1H), 7.12(d,J=8.7Hz,1H), 7.35(dd,J=8.7Hz,1H), 7.35(dd,J=8.7Hz,1Hz,1Hz,1H), 7.35(dd,J=8.7Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz,1Hz$
	90e-1	, J=2.1, 8.4 Hz, 1H), 7.38 (d, J=8.7 Hz, 2H), 7.42 (d, J=2.1 Hz, 1H), 7.61 (d, J=8.7 Hz, 2H), 7.67 (d, J=8.4 Hz, 2H), 7.68 (d, J=8.7 Hz, 2H)
		IR(KBr)1610,1522,1489,1402,1245,1181,1164,1110,1071,821,805cm ⁻¹
		m.p.221-222°C
	000	$^{1}\text{HNMR}(\text{CDC}1_{3}) \ \delta 2.36(s,3H), \\ 2.36(s,3H), \\ 2.36(s,3H), \\ 3.46(s,3H), \\ 3.75(s,3H), \\ 3.75(s,3H), \\ 5.09(s,2H), \\ 6.45(s,1H), \\ 6.45(s,1H), \\ 6.92(d,J=8.4Hz,2H), \\ 6.98(dd,J=2.1,8.1), \\ 6.16(s,2H), \\ 6.16(s,2H$
	1.309	Hz,1H),7.06(d,J=8.4Hz,1H),7.08(d,J=2.1Hz,1H),7.08(e,1H),7.28(d,J=8.4Hz,1H),7.53(d,J=8.4Hz,2H)
		IR(KBr)3475,1610,1522,1489,1402,1245,1181,1164,1110,1071,821,805cm ⁻¹
		m.p.153-155°C
6.96(dd,J=2.1, 2H) IR/KBr)3486.		$^{1}\text{HNMR}(\text{CDC}_{13}) \ \delta \ 1.27 (\text{d},\text{J}=6.9\text{Hz},6\text{H}), 2.95 (\text{q},\text{J}=6.9\text{Hz},1\text{H}), 3.45 (\text{e},3\text{H}), 3.74 (\text{e},3\text{H}), 5.11 (\text{e},2\text{H}), 6.45 (\text{e},1\text{H}), 6.91 (\text{d},\text{J}=8.4\text{Hz},2\text{H}), \\ \text{Hz},2\text{H}, \text{Hz},2H$
2H) IR(KBr)3486.1611.1522.1489.1265.1113.1072.1011.823cm ⁻¹		6.96(dd, J=2.1, 8.1 Hz, 1H), 7.03(d, J=8.1 Hz, 1H), 7.08(d, J=2.1 Hz, 1H), 7.28(d, J=8.1 Hz, 2H), 7.38(d, J=8.1 Hz, 2H), 7.53(d, J=8.4
IR/KBr)3486.1611.1522.1489.1265.1113.1072.1011.823cm ⁻¹		2H)
		IR(KBr)3486,1611,1522,1489,1265,1113,1072,1011,823cm ⁻¹

Table 65

	m.p.176-177°C
-	411NMR(CDCLa) & 3.45(8,311),3.75(8,311),5.32(8,211),6.45(8,111),6.91(d,J=8.4Hz,211),6.97(dd,J=2.1,8.4Hz,111),7.06(d,J=8.4Hz
<u> </u>	,111),7.10(d,J=2.1Hz,1H),7.53(d,J=8.4Hz,2H),7.50-7.57(m,3H),7.82-7.92(m,4H)
	IR(KBr)3476,1610,1522,1488,1469,1401,1263,1246,1173,1112,1073,1014,1002,819,806cm ¹
	m.p.235-237°C '
	111NMR(CDCl3) § 3.44(s,3H),3.73(s,3H),5.49(s,2H),6.44(s,1H),6.92(d,J=8.4Hz,2H),6.93(dd,J=2.1,8.4Hz,1H),7.14(d,J=2.1Hz
1.312	, 111), 7.18(d, J=8.411z, 111), 7.38(d, J=8.411z, 111), 7.52(d, J=8.411z, 211), 7.58(dd, J=7.2, 7.211z, 111), 7.77(dd, J=7.2, 7.211z, 111), 7.85(d,
	J=7.2Hz,111),8.21(d,J=7.2Hz,111),8.22(d,J=7.2Hz,111)
	IR(KBr)3378,1609,1522,1488,1268,1229,1205,1114,1072,1016,825,782cm ⁻¹
	m.p.159-161°C
516	$^{1}\text{HNMR}(\text{CDCI}_{3}) \delta 3.45(8,3\text{H}), 3.75(8,3\text{H}), 5.22(8,2\text{H}), 6.45(8,1\text{H}), 6.92(d,J=8.4\text{Hz,2H}), 6.96(br.s,2\text{H}), 7.11(br.s,1\text{H}), 7.53(d,J=8.4\text{Hz,2H}), 6.96(br.s,2\text{H}), 7.11(br.s,1\text{H}), 7.53(d,J=8.4\text{Hz,2H}), 6.96(br.s,2\text{H}), 7.11(br.s,1\text{H}), 7.53(d,J=8.4\text{Hz,2H}), 6.96(br.s,2\text{Hz,2H}), 6.96(br.s,2Hz,2$
1.013	Hz,2H),7.57(d,J=8.4Hz,2H),7.68(d,J=8.4Hz,2H),
	IR(KBr)3433,1613,1523,1490,1326,1251,1166,1113,1066,1014,825,cm ⁻¹
	m.p.92-93°C
7101	1HNMR(CDCl ₃) δ 1.63(8,3H), 1.74(8,3H), 2.34-2.39(m,1H), 2.67-2.72(m,2H), 3.47(8,3H), 3.74(8,3H), 4.52-4.54(m,2H), 5.30-5.33(
F10-1	m,2H),6.78-6.97(m,4H),7.20(d,J=7.2Hz,1H),7.56(d,J=8.0Hz,2H)
	IR(KBr)3410,2932,1613,1519,1473,1444,1390,1263,1228,1174cm ⁻¹
	m.p.85-86℃
101	1 HNMR(CDCl ₃) δ 1.76(s,3H),1.83(s,3H),2.17-2.40(m,1H),2.65-2.71(m,2H),3.24(s,3H),3.46(s,3H),3.80(s,3H),4.50-4.52(m,2H)
010:1),6.70(s,1H),7.28·7.43(m,5H),7.73(d,J=8.6Hz,2H)
	IR(KBr)3432,2938,1731,1513,1469,1366,1180,1151,970,868cm ⁻¹

Table 66

	m.p.179.180°C
3	411NMR(CDCL3) & 1.72(8,311), 1.76(8,311), 2.15-2.35(m,111), 2.61-2.70(m,241), 3.46(8,311), 3.76(8,311), 4.47-4.50(m,211), 6.68(8,111
9 9:- 1),7.17.7.52(m,5H),7.69(d,J=8.4Hz,2H)
	IR(KBr)3427,2934,1612,1576,1519,1465,1443,1415,1376,1228,1174,846cm '
	m.p.141-142°C
	111NMR(CD(3.3) & 1.75(s,3H),1.80(s,3H),3.21(s,3H),3.39(s,3H),3.68(s,3H),3.77(s,3H),4.61(d,J=7.2Hz,2H),5.50(t,J=7.0Hz,1H
/15:-1),6.93(s,111),6.99-7.33(m,511),7.57-7.65(m,211)
	IR(KBr)3432,2938,1724,1519,1474,1365,1346,1294,1262,1244,1220,1163,1119,1059,953,842,805cm ⁻¹
	m.p.127·128°C
	"IINMR(CDCl ₃) δ 1.68(s,3H),1.74(s,3H),2.54(dt,J=4.2,4.6Hz,2H),3.20(s,3H),3.39(s,3H),3.68(s,3H),3.76(s,3H),4.05(t,J=4.4H
1.318	z,2H),5.21(t,J=4.6Hz,1H),6.93(s,1H),7.00(d,J=5.6Hz,1H),7.11·7.18(m,2H),7.25·7.35(m,3H),7.61(dd,J=3.8,5.8Hz)
	IR(KBr)3447,2974,2940,1740,1519,1471,1365,1343,1295,1262,1226,1182,1161,1119,1058,952,843,814cm ⁻¹
	m.p.171·172°C
9	$^{1}\text{HINMR}(\text{CDC}_{13}) \delta \ \ 2.38(s,3H), 3.10(s,3H), 3.39(s,3H), 3.66(s,3H), 3.77(s,3H), 5.11(s,2H), 6.93(s,1H), 7.07-7.36(m,9H), 7.61(dd,J=1.00,0.0)$
616-1	3.4,5.6Hz,2H)
	IR(KBr)3431,2937,1724,1519,1474,1440,1346,1296,1259,1243,1222,1165,1121,1060,953,843,804cm ⁻¹
	m.p. 166-156V
0001	¹ HNMR(CDCl ₃) δ 3.40(8,3H),3.69(8,3H),3.77(8,3H),5.13(8,2H),5.70(brs,1H),6.82-7.42(m,5H),7.39-7.42(m,5H),7.62(dd,J=5.4
1-320	,8.6Hz)
	IR(KBr)3550,3481,2956,1723,1519,1467,1435,1344,1285,1261,1238,1223,1130,1058,1013,840cm ⁻¹

50	45	4 0	35·	30	25	20	15	10	
·									
1.321		m.p.159-160°C HINMIR(CDCL ₃) & 3.11(a,311),3.40(a,311),3.66(a,311),3.77(a,311),5.16(a,211),6.93(a,111),7.07-7.49(m,511),7.62(dd,J=3.0,8.4Hz,2 H) IR(KBr)3441,2952,1732,1519,1469,1445,1381,1356,1342,1291,1273,1243,1226,1162,1119,1081,1067,999,950,842,805cm ⁻	40(4,311),3.66(s,311),3.77(s,3	H), 5.16(8, 2H),6.93(s, 1H),7.0 13,1226,1162,11	7.7.49(m,5H)	.7.62(dd,J=3.0,	8.4H
1-322		m.p.160-161°C. HINMIR(CDCl ₃) & 2.37(s,3H),2.93(s,3H),3.19(s,3H),3.22(s,3H),3.55(s,3H),3.79(s,3H),5.23(s,2H),6.86(s,1H),7.20(d,J=8.1Hz,2H),7.30(d,J=8.1Hz,2H),7.36-7.41(m,2H),7.64-7.70(m,2H),7.74(d,J=2.1Hz,1H),7.83(d,J=2.1Hz,1H),10.16(s,1H) IR(CHCl ₃)3027,2940,1692,1473,1373,1227,1152,1085cm ⁻¹	93(s,3H),3.19 H(m,2H),7.64 1373,1227,11	(s,3H),3.22(s,3 -7.70(m,2H),7. 52,1085cm ⁻¹	HI),3.55(s,31	1),3.79(8,311),5.2 [z,1H),7.83(d,J=	2.1Hz,1H),10	(s,1H),7.20(d,J=	-8.1H
1-323	powder 'HNMR(CDCI ₃) d,J=7.8Hz,2H),7	° 29.	86(s,3H),3.13(7.65-7.70(m,2)	(s,3H),3.21(s,3 H) 51,1084cm ⁻¹	Н),3.54(в,3Н	2.37(s,3H),2.86(s,3H),3.13(s,3H),3.21(s,3H),3.54(s,3H),3.79(s,3H),4.64(s,2H),5.11(s,2H),6.85(s,1H),7.21(2-7.44(m,6H),7.65-7.70(m,2H) 39,1475,1372,1228,1178,1151,1084cm ⁻¹	4(8,2H),5.11(8,2H),6.85(8,1H	1),7.2
1.324	powder 1HNMR(CDCl ₃)),6.45-6.95(m,2H 1R(CHCl ₃)3514,5	 J.89-1.98(bre, 1H), 2.39(s, 3H), 3.45(s, 3H), 3.75(s, 3H), 4.77(s, 2H), 5.01(s, 3H), 5.46(s, 1H), 5.99(s, 1H), 6.45(s, 1H), 7.05(s, 2H), 7.24(d, J=8.1Hz, 2H), 7.38(d, J=8.1Hz, 2H), 7.50-7.56(m, 2H) 2937, 1731, 1613, 1522, 1484, 1403, 1228, 1173, 1082cm⁻¹ 	1H),2.39(s,3H f(d,J=8.1Hz,2 1522.1484.140),3.45(8,3H),3. H),7.38(d,J=8.	75(s,3H),4.7' 1Hz,2H),7.5(7(s,2H),5.01(s,3	H),5.46(8,1H)	,5.99(a, 1H),6.4	5(s, 1I
1.325	powder ¹ HINMR(CDCl ₃) δ 2.31(8,3H),2.88(8,3H),3.07(8,3H),3.22(8,3H),3.0 7.32-7.41(m,4H),7.62-7.68(m,3H),8.03(8,1H) ¹ IR(CHCl ₃)3026,2939,1742,1472,1374,1227,1179,1129,1085cm ⁻¹	ô 2.31(s,3H),2.88(s,3H),3.07(s,3H),3.22(s,3H),3.51(s,3H),3.74(s,3H),5.23(s,2H),6.83(s,1H),7.11-7.18(m,2H),7.62-7.68(m,3H),8.03(s,1H)	8(s,3H),3.07(s, ,8.03(s,1H)	,3H),3.22(8,3I	l),3.51(s,3H),	.3.74(8,3H),5.23	(a,2H),6.83(e,	1H),7.11-7.18(a	m,2H

1.326	powder HINMR(CD ₄ (OD)
1.327	powder 'HNMR(CDCl ₃) & 1.72(s,3H),1.79(s,3H),3.12(s,3H),3.21(s,3H),3.27(s,3H),3.52(s,3H),3.53(s,3H),4.81(d,J=7.5Hz,2H),5.51(m, 1H1),7.38-7.43(m,2H),7.45-7.50(m,2H),7.80(d,J=2.1Hz,1H),7.97(d,J=2.1Hz,1H) IR(CHCl ₃)3032,2941,1543,1377,1209cm ⁻¹
1-328	m.p.205-206°C 'HNMR(CDCl ₃) ô 1.75(s,3H),1.80(s,3H),3.41(s,3H),3.47(s,3H),4.66(d,J=6.6Hz,2H),5.06(s,1H),5.53(m,1H),6.33(s,1H),6.89-6. 95(m,2H),7.28-7.34(m,2H),7.38-7.40(m,1H),7.99(d,J=2.1Hz,1H),10.83(d,J=0.6Hz,1H) IR(KBr)3476,2940,1614,1532,1371,1238,1094,1035cm ⁻¹
1.329	m.p.144·145°C !HNMR(CDCl ₃) & 2.83(a,3H)3.22(a,3H),3.28(a,3H),3.55(a,3H),6.86(a,1H),7.37·7.45(m,3H),7.47·7.53(m,3H),7.65· 7.70(m,2H) !R(KBr)343,3019,2939,1515,1480,1370,1176,1150,1081cm ⁻¹
1.330	nmorphous 1.330),5.23(t,J=7.2Hz,2H),1.74(s,3H),2.54(q,J=7.2Hz,2H),3.21(s,3H),3.41(s,3H),3.65(s,3H),3.77(s,3H),4.03(t,J=7.2Hz,2H 2.2H),7.71(d,J=8.7Hz,2H) IR(CHCl3)1732,1621,1471,1375,1262,1230,1150,1061,874cm ⁻¹

	m.p.146-148°C HINMR(CDCE) & 1.56(8,311), 1.80(8,311), 3.21(8,311), 3.41(8,311), 3.65(8,311), 3.77(8,31), 4.61(4,1=6.911=9.1), 5.446, 1=6.911=1.11
1-331),6.94(s,111),6.98(t,J=8.411z,111),7.05(ddd,J=8.4,2.4,0.911z,111),7.14(dd,J=12.0,2.4Hz,1H),7.38(d,J=8.7Hz,2H),7.71(d,J=8.7Hz,211)
	IR(KBr)1736,1519,1471,1357,1257,1150,1061,984,872cm ⁻¹
	m.p.170-171°C
1.332	111NMIX(DMSO-46) 0 1.73(8,3H),1.77(8,3H),3.31(8,3H),4.62(d,J=7.0Hz,2H),5.48(t,J=7.0Hz,1H),6.87(d,J=8.9Hz,2 H),7.00(8,1H),7.03(ddd,J=8.7,2.3,0.9Hz,1H),7.10(dd,J=12.3,2.3Hz,1H),7.18(t,J=8.7Hz,1H),7.48(d,J=8.9Hz,2H),9.60(8.1H),1.18(f,J=8.7Hz,1H),7.48(f,J=8.9Hz,2H),9.60(8.1H),1.18(f,J=8.7Hz,1H),7.48(f,J=8.9Hz,2H),9.60(8.1H),1.18(f,J=8.7Hz,1H),1.18(f,J=8.7Hz
	IR(KBr)3258,1687,1615,1523,1465,1373,1260,1233,1057,994,835,823cm ⁻¹
	m.p.172-174°C
1.333	7.49(m,7H),7.70(d,J=9.0Hz,2H)
	IR(KBr)1725,1522,1463,1346,1261,1230,1147,1058,878,756cm ⁻¹
	m.p.149-151°C
	111NMR(CDC)3) \$\delta \cdot 2.36(8,311), 3.21(8,311), 3.41(8,311), 3.61(8,311), 5.13(8,311), 6.13(8,211), 6.93(8,111), 7.00-7.03(m,211), 7.12-7.17(
1-334	m, 1H), 7.20(d, J=8.4Hz, 2H), 7.36(d, J=8.4Hz, 2H), 7.38(d, J=8.7Hz, 2H), 7.70(d, J=8.7Hz, 2H) [R/RR-11731 1510 1479 1970 1970 1970 1970 1970 1970 1970 19
	. W. 1919, 1919, 1919, 1919, 1909, 1909, 1909, 1909, 1910, 1909, 1910, 1

Table 70

	m.p.173-174°C
	111 HINMR(DMSO-da) 5 1.64(8,3H), 1.70(8,3H), 2.45(q,J=6.9Hz,2H), 3.31(8,3H), 3.73(8,3H), 4.04(t,J=6.9Hz,2H), 5.22(t,J=6.9Hz,1
1.335	11),6.87(d,J=8.711z,211),6.99(s,111),7.03(ddd,J=8.7,2.1,0.9Hz,111),7.10(dd,J=12.3,2.1Hz,1H),7.16(t,J=8.7Hz,1H),7.48(d,J=8.7
	Hz,2H),9.61(s,1H),12.9(brs,1H)
	IR(KBr)3303, 1696,1523,1473,1371,1261,1241,1061,1009,839cm ⁻¹
	m.p.222-224°C
	111NMR(DMSO-da) \$\delta \text{3.31(e,311),3.73(e,311),5.20(e,211),6.87(d,J=8.7112,211),7.00(e,111),7.03-7.07(m,111),7.13(dd,J=12.3,2.11)}
1.336	z,111),7.26(t,J=8.7Hz,1H),7.36-7.52(m,711),9.61(s,111),12.9(brs,1H)
	IR(KBr)3268, 1689, 1523, 1465, 1374, 1261, 1055, 836cm ¹
	m.p.205-206°C
	·HNMR(DMSO-d ₆)δ 2.32(s,3H),3.31(s,3H),3.72(s,3H),5.15(s,2H),6.87(d,J=8.7Hz,2H),6.99(s,1H),7.04(ddd,J=9.0,1.9,0.9Hz,
1.337	1H),7.12(dd,J=12.3,1.9Hz,1H),7.23(d,J=8.0Hz,2H),7.24(t,J=9.0Hz,1H),7.38(d,J=8.0Hz,2H),7.48(d,J=8.7Hz,2H),9.60(s,1H),
	12.9(brs,1H)
	IR(KBr)3303, 1696,1523,1464,1261,1241,1056,993,838,811,791cm ⁻¹
	m.p.120.121°C
	1 HNMR(CDCl ₃) δ 3.13(8,3H),3.50(8,3H),3.78(8,3H),5.08(8,1H),5.20(8,2H),6.90(m,2H),7.09(8,1H),7.15-7.19(m,3H),7.37-7.50(
1.338	m,5H),7.56(dd,J=10.8,2.1Hz,1H),7.64(d,J=2.4Hz,1H),9.90(e,1H)
	$IR(KB_r)3460,2934,1694,1609,1585,1518,1467,1442,1348,1295,1273,1255,1238,1171,1123,1075,1003,960,828,807,755,700,\\$
	653,582,522cm ⁻¹
	m.p.256·258°C
900	$^{1}\text{HNMR(I)MSO-} \text{d}_{6}) \ \delta \ \ 3.34(\text{s}, 3\text{H}), 3.35(\text{s}, 3\text{H}), 5.28(\text{s}, 2\text{H}), 6.76(\text{d}, J = 8.1 \text{Hz}, 2\text{H}), 7.05-7.11(\text{m}, 3\text{H}), 7.36-7.45(\text{m}, 4\text{H}), 7.56(\text{m}, 4\text{H}), 7.56(\text$
1-559	3(d,J=8.1Hz,2H),7.60-7.66(m,2H),9.44(s,1H),12.84(s,1H)
	IR(KBr)3459,2940,2563,1706,1612,1522,1469,1349,1294,1258,1185,1114,1082,1063,1000,961,919,827,756,699,524cm-'

Table 71

5	(m,9H),7.	m,9H),7.	548,526c	7.51(m,8	Н),7.56(
10	,1H),7.29-7.50	1H),7.30-7.500	11.7.52(m,6H) 3,792,743,697,	9(m,3H),7.37.	,7.28-7.50(m,7 313cm ⁻¹
15	7.17(d,J=8.4Hz	0.1002.971.878	7.17(m,4H),7.3 18,864,835,813	m,3H),7.16-7.1	.16-7.19(m,3H) 3,962,912,848,6
20	H),7.11(6,1H),7.112	H),6.97(a, 1H),7	.97(s,1H),7.01-	1H),6.85-6.89(f),7.10(s,1H),7.
25	(e,3H),5.21(e,2 331.1293.1255	(a,3H),5.20(a,2)	6-6.78(m,2H),6 3,1234,1130,10	(8,2H),5.48(br,	8,3H),5.20(8,2F
30	m.p.165-166℃ HINMR(CDCl ₃) δ 3.14(s,3H),3.19(s,3H),3.51(s,3H),3.76(s,3H),5.21(s,2H),7.11(s,1H),7.17(d,J=8.4Hz,1H),7.29-7.50(m,9H),7.57(dd,J=8.1,2.1Hz,1H),7.65(d,J=2.1Hz,1H),10.02(s,1H) 67(dd,J=8.1,2.1Hz,1H),7.65(d,J=2.1Hz,1H),10.02(s,1H) IR(CHCl ₃)2938,2844,1698,1613,1590,1515,1469,1372,1331,1293,1255,1174,1150,1122,1092,1005,969,873,816cm ⁻¹	δ 3.13(s,3H),3.18(s,3H),3.47(s,3H),3.77(s,3H),5.20(s,2H),6.97(s,1H),7.17(d,J=8.7Hz,1H),7.30-7.50(m,9H),7. Hz,1H),7.67(d,J=1.8Hz,1H) 1740,1707,1601,1516,1472,1371,1293,1260,1174,1149,1117,1082,1060,1002.971,875cm ⁻¹	m.p.207.209°C ¹ HNMR(CD ₃ OD) δ 3.40(s,3H),3.72(s,3H),5.21(s,2H),6.76-6.78(m,2H),6.97(s,1H),7.01-7.17(m,4H),7.31-7.52(m,6H) IR(KBr)3366,1705,1612,1591,1522,1473,1434,1375,1253,1234,1130,1084,1061,998,918,864,835,813,792,743,697,648,526c m ⁻¹	m.p.206-208°C. HINMR(CDCl ₃) δ 3.14(s,3H),3.48(s,3H),3.72(s,3H),5.20(s,2H),5.48(br,1H),6.85-6.89(m,3H),7.15-7.19(m,3H),7.37-7.51(m,8 H),7.56(dd,J=8.4,2.4Hz,1H),7.68(d,J=2.4Hz,1H) IR(CHCl ₃)3320,2938,1612,1520,1474,1371,1292,1257,1172,1120,1090,1005,972.867,837,818cm ⁻¹	5 2.33(s,3H),3.13(s,3H),3.50(s,3H),3.76(s,3H),5.20(s,2H),7.10(s,1H),7.15-7.19(m,3H),7.28-7.50(m,7H),7.56(H),7.64(d,J=2.4Hz,1H),9.93(s,1H) 836,1750,1695,1588,1513,1465,1369,1329,1220,1166,1122,1091,1003,962,912,848,813cm ⁻¹
35	(I),3.19(s,3II),5 5(d,J=2.1Hz,11 1613,1590,151	δ 3.13(s,3H),3.18(s,3H),3.4 [z,1H),7.67(d,J=1.8Hz,1H] 1740,1707,1601,1516,1472]	91,1522,1473,	\$ 3.14(s,3H),3.48(s,3H),3.72(s, ,2.4Hz,1H),7.68(d,J=2.4Hz,1H)	5 2.33(s,3H),3.13(s,3H),3.50(s,3H) H),7.64(d,J=2.4Hz,1H),9.93(s,1H) 836,1750,1695,1588,1513,1465,13
40		τ Σ13, δ 3.13(s,31 1.81(z,111),7.67 38,1740,1707,	C OD) δ 3.40(s,3 ,1705,1612,15	δ 1,2 29:2	∞ ≞ %
45	m.p.165-166°C 'HNMR(CDCI ₃) 57(dd,J=8.1,2.11 IR(CHCI ₃)2938,	m.p. 195-197°C ¹ HNMR(CDCl ₃) ⁵⁸ (dd,J=8.7,1.81 ¹ R(CHCl ₃)2938,	m.p.207-209°C ¹HNMR(CD₃O! IR(KBr)3366,1 m-1	m.p.206-208°C ¹ HNMR(CDCl ₃) δ H),7.56(dd,J=8.4,2 IR(CHCl ₃)3320,293	m.p.187-190°C 'HNMR(CDCl ₃) δ dd,J=8.7,2.4Hz,1H IR(CHCl ₃)2930,28
50	1.340	1:81	1.342	I-343	1.344

Table 72

	m.p.218-220°C
	1[INMR(DMSO-da) & 2.29(s,3H),3.36(s,3H),3.37(s,3H),3.76(s,3H),5.29(s,2H),7.11·7.16(m,3H),7.31·7.46(m,6H),7.52·7.55(m,
1.345	21I),7.62.7.68(m,2H),13.00(br,1H)
	IR(KBr)3433,2940,2600,1757,1713,1652,1611,1518,1471,1365,1295,1260,1216,1200,1171,1117,1082,1061,1022,998,975,9
	16,897,829,804,735,697,525cm ^{- 1}
	m.p.206-208°C
	111111111111111111111111111111111111
1:340	m,7H),7.57(dd,J=8.7,2.4Hz,1H),7.67(d,J=2.4Hz,1H)
	m.p.201-203℃
	111NMR(1)MSO-da) & 1.72(8,311),1.76(8,311),3.34(8,311),3.63(8,311),4.51(d,J=4.2Hz,2H),5.49(t,J=4.6Hz,1H),6.66(8,1H),6.76(8,
1.347	21I), 6.86(s, 11I), 7.23-7.29(m, 21I), 7.62-7.66(m, 21I)
	IR(KBr)3431,2935,1575,1516,1462,1444,1421,1397,1375,1224,1159,1063,837cm ⁻¹
	m.p.265-266°C
9	$^{1} \text{HNMR} \text{(DMSO-} d_{6}) \ \delta \ \ 2.31 (8,311), 3.33 (8,311), 3.62 (8,311), 5.03 (8,211), 6.66 (8,111), 6.72-6.90 (m,411), 7.18-7.28 (m,311), 7.38 (d,J=5.2) \\ (Most of the property o$
1-348	Hz,2H),7.64(dd,J=4.0,5.4Hz,2H)
	IR(KBr)3428,2925,1675,1516,1463,1442,1396,1374,1248,1221,1129,1087,1068cm ⁻¹
	m.p.262-263°C
-	$ \text{1-HNMR}(\text{I)MSO-d}_6) \ \delta 1.64(9,3H), 1.70(9,3H), 2.43(4t,J=4.6,5.0Hz,2H), 3.34(9,3H), 3.62(9,3H), 3.91(t,J=4.8Hz,2H), 5.25(t,J=4.6,1.1) $
1-54B	Hz,1H),6.70(s,1H),6.76(s,2H),6.87(s,1H),7.23-7.29(m,2H),7.64(dd,J=2.0,5.8Hz,2H)
	IR(KBr)3430,2934,1575,1516,1464,1443,1422,1398,1375,14246,1225,1065,1015cm ⁻¹

Table 73

	1HNMR(CDCl3) & 1.76(s, 3H), 1.81(d, J=0.6Hz, 3H), 2.54(s, 3H), 2.73(s, 3H), 3.23(s, 3H), 3.54(s, 3H), 3.77(s, 3H), 4.63(d, J=6.6Hz, 2
1.350	1-350 H),5.49(m,1H),6.85(s,1H),7.09(d,J=8.4Hz,1H),7.30-7.40(m,4H),7.53-7.59(m,2H)
	11 H N M R (CDCl ₃) & 1.68(8,3H), 1.74(d, J=0.9Hz,3H), 2.48-2.60(m,5H), 2.75(8,3H), 3.21(8,3H), 3.54(8,3H), 3.77(8,3H), 4.07(t, J=6.9
1.351	1.351 Hz,2H),5.21(m,1H),6.85(s,1H),7.07(d,J=8.7Hz,1H),7.30-7.42(m,4H),7.53·7.59(m,2H)
	IR(CHCI3)2928,1607,1517,1476,1367,1267,1118,1080,1014,971,892,822cm ⁻¹
	m.p.201-203°C
5	ЧИММВ(СОСЛ:) δ 3.35(s,3H),3.75(s,3H),3.76(s,3H),5.26(s,2H),6.79-6.83(m,2H),6.97(s,1H),7.01(s,1H),7.31-7.54(m,10H),9.4
ZGS-1	5(s,1H)
	IR(KBr)3600-2800(br), 1610, 1525, 1492, 1462, 1377, 1337, 1298, 1208, 1171, 1114, 1054, 1031cm-1
	m.p.141-143°C
Calc	$^{1}\text{HNMR}(\text{CDC}\text{L}_{3}) \delta 3.56(s, 3\text{H}), 3.78(s, 3\text{H}), 3.80(s, 3\text{H}), 4.86(s, 1\text{H}), 5.26(s, 2\text{H}), 6.88\cdot6.92(m, 2\text{H}), 6.92(s, 1\text{H}), 6.93(s, 1\text{H}), 7.24\cdot7.29(s, 1\text{H}), 6.92(s, 1\text{H}), 6.92(s, 1\text{H}), 6.92(s, 1\text{H}), 6.92(s, 1\text{H}), 7.24\cdot7.29(s, 1\text{H}), 6.92(s, 1\text{H})$
I-333	m,2H),7.36-7.41(m,1H),7.45-7.50(m,2H)
	IR(KBr)3600-2800(br), 1612, 1524, 1491, 1463, 1448, 1378, 1263, 1205, 1177, 1153, 1071, 1053, 1026cm ⁻¹
	m.p.115-115.5°C
7 20 1	'HNMR(CDC!3) δ 3.19(s,3H),3.56(s,3H),3.79(s,3H),3.80(s,3H),5.27(s,2H),6.93(s,1H),6.94(s,1H),7.25·7.27(m,2H),7.32·7.40(
1-334	m,3H),7.60·7.64(m,2H)
	IR(KBr)3600-2800(br), 1524, 1492, 1463, 1379, 1266, 1210, 1174, 1154, 1126, 1082, 1053, 1029cm ⁻¹
	m.p.139-140°C
2 2 2	1HINMR(CDCl ₃) δ 1.77(d,J=0.6Hz,3H),1.81(d,J=0.9Hz,3H),3.82(s,6H),4.64(d,J=6.9Hz,2H),5.52-5.57(m,1H),6.95(s,1H),6.97(
000-1	s,1H),7.04(t,J=8.4Hz,1H),7.26-7.31(m,1H),7.37(dd,J=2.1,12.6Hz,1H),7.73-7.77(m,2H),8.26-8.31(m,2H)
	IR(KBr)3600-2800(br), 1593, 1524, 1508, 1486, 1464, 1380, 1355, 1278, 1264, 1211, 1054, 1029cm ¹

Table 74

	foam
1-356	!!!NMR(CDC!!;)
	7.54(m,211) 1970 - Area 1590 1489 1365 1939 1177 1119 1082 1013cm ¹
	11 NMR(CDCB) \$ 2.39(8.3H), 3.48(8.3H), 3.75(8.3H), 5.11(8,2H), 5.67(8,1H), 5.88(8,1H), 6.46(8,1H), 6.95(d.d,J=8.7&1.8Hz,1H),
1:357	7.02-7.11(m,111),7.03(d,J=8.7Hz,111),7.07(d,J=1.8Hz,111),7.22(d,J=8.7Hz,2H),7.34(d,J=8.7Hz,2H),7.36-7.47(m,3H)1R(KBr)
	3546,3511,1611,1586,1517,1478,1405,1360,1318,1240,1109,1068,1007cm ⁻¹
	$HNMR(CDC1_3) \ \delta \ \ 3.03(s, 6H), \\ 3.48(s, 3H), \\ 3.77(s, 3H), \\ 5.15(s, 2H), \\ 5.71(s, 1H), \\ 6.73(dd, J = 8.7 \& 1.8 Hz, 1H), \\ 6.82(d, J = 8.4 Hz, 2H), \\ 6.9$
1-358	7(d,J=1.8Hz,1H),6.98(dJ=8.7Hz,1H),7.11(s,1H),7.33-7.48(m,5H),7.56(d,J=8.7Hz,2H),9.92(s,1H)
	IR(KBr)3524,347,1697,1612,1586,1525,1468,1364,1283,1257,1230,1201,1127,1103,1073,1020cm ⁻¹
	$HNMR(CDCl_3) \ \delta \ \ 3.04(8,6H), 3.14(8,3H), 3.48(8,3H), 3.76(8,3H), 5.17(8,2H), 6.84(d,J=8.7Hz,2H), 7.06\cdot7.17(m,3H), 7.34(d,J=1.8)$
1.359	Hz,1H),7.35-7.50(m,6H),7.55(d,J=8.7Hz,2H),10.08(s,1H)
	IR(KBr)1698,1610,1627,1470,1357,1290,1232,1183,1115,1083,1018cm ⁻¹
	1 HNMR(CDCl ₃) δ 2.56(8,3H),3.02(8,6H),3.54(8,3H),3.76(8,3H),5.16(8,2H),5.67(8,1H),6.80(d,J=8.4Hz,2H),6.86(8,1H),6.91(d.
1.360	d,J=8.4&2.1Hz,1H),7.01(d,J=8.4Hz,1H),7.05(d,J=2.1Hz,1H),7.30-7.47(m,5H),7.65(d,J=8.7Hz,2H)
	IR(KBr)3542,3436,1605,1530,1483,1391,1360,1287,1253,1234,1169,1074,1016cm ⁻¹
	1HNMR(CDCl3) & 1.31(d,J=6.9Hz,6H),2.57(s,3H),2.97(quint,J=6.9Hz,1H),3.54(s,3H),3.76(s,3H),5.17(s,2H),5.68(s,1H),6.86(
	$8,1H$), 6.92 (dd, $J=8.4$ & $2.1Hz$, $1H$), 7.02 (d, $J=8.4Hz$, $1H$), 7.05 (d, $J=2.1Hz$, $1H$), 7.31 (d, $J=8.1Hz$, $2H$), $7.34\cdot 7.46$ (m, $5H$), 7.55 (d, $J=8.1Hz$, $2H$), $1.34\cdot 7.34\cdot 7.46$ (m, $5H$), $1.35\cdot 1.46$
1-301	Hz,2H)
	IR(KBr)3446,1606,1585,1522,1484,1457,1394,1356,1289,1257,1228,1172,1076,1018,1007cm ⁻¹

Table 75

	"HNMR(CDCl3) & 1.31(d,J=6.9Hz,6H),2.98(quint,J=6.9Hz,1H),3.46(s,3H),3.74(s,3H),5.15(s,2H),5.67(s,1H),5.92(s,1H),6.48(
1 260	s, 1H), 6.97(dd, J=8.4&1.8Hz, 1H), 7.03(d, J=8.4Hz, 1H), 7.10(d, J=1.8Hz, 1H), 7.25(s, 1H), 7.31(d, J=7.8Hz, 2H), 7.34-7.49(m, 5H), 7.
700-1	$57(d_1J=7.8Hz,2H)$
	1R(KBr)3538,3505,3465,1610,1586,1552,1518,1584,1458,1398,1281,1288,1245,1198,1112,1071,1002cm ⁻¹
u	HINMR(CDCL) & 2.66(s, 3H), 3.06(s, 3H), 3.13(s, 3H), 3.57(s, 3H), 3.67(s, 3H), 3.78(s, 3H), 5.19(s, 2H), 6.44(s, 1H), 6.85(s, 1H), 7.15(
I-363	
	IR(KBr)3443,1604,1518,1479,1364,1237,1177,1163,1118,1078,1014cm
	HNMR(CDCl ₃) & 1.77(s,3H), 1.81(s,3H), 2.70(s,3H), 3.06(s,3H), 3.24(s,3H), 3.58(s,3H), 3.78(s,3H), 4.64(d,J=6.6Hz,2H), 5.49(t,J
1.364	=6.6Hz,1H),6.42(s,1H),6.85(s,1H),7.09(d,J=8.4Hz,1H),7.28-7.49(m,5H)
	IR(KBr)3432,3285,1604,1518,1479,1364,1328,1291,1269,1237,1177,1154,1117,1078cm-1
	HNMR(CDCl ₃) δ 1.57(s,3H), 1.67(s,3H), 1.77(s,3H), 1.81(s,3H), 2.70(s,3H), 2.96(s,3H), 3.24(s,3H), 3.53(s,3H), 3.78(s,3H), 4.32(s,3H), 4
1 265	d,J=7.211z,211),4.64(d,J=6.9Hz,211),5.25(t,J=6.9Hz,111),5.49(t,J=7.211z,111),6.85(e,111),7.09(d,J=8.711z,111),7.31-7.41(m,3H)
600 <u>-1</u>	,7.44-7.64(m,3H)
	IR(KBr)3433,1600,1517,1474,1365,1339,1237,1178,1153,1118,1078,1014cm ⁻¹
	1HNMR(CDCl3) & 1.76(8,3H), 1.82(8,3H), 3.08(8,3H), 3.48(8,3H), 3.75(8,3H), 4.62(d,J=7.2Hz,2H), 5.54(t,J=7.2Hz,1H), 5.70(8,1H)
1.366	1-366 (5.85(8,111),6.40(8,1H),6.46(8,1H),6.89-7.00(m,2H),7.05(d,J=1.5Hz,1H),7.43-7.51(m,3H)
	IR(KBr)3437,1605,1585,1518,1482,1386,1323,1243,1152,1114,1071,1002cm-1
	1HNMR(CDCl ₃) & 2.37(s,3H),3.21(s,3H),3.47(s,3H),3.64(s,3H),3.77(s,3H),3.84(s,3H),5.17(s,2H),6.63(s,1H),6.78(s,1H),7.10(s)
1.367	,1H),7.20(d,J=8.1Hz,2H),7.40(d,J=8.1Hz,2H),7.41(d,J=9.3Hz,2H),7.70(d,J=9.3Hz,2H)
	IR(KBr)1702,1607,1589,1518,1468,1356,1216,1151,1067,1039,1018cm ⁻¹

Table 76

1.369 11(RB)3514,1608,1516,1465,1255,1215,1149,1076,1039,1017cm ⁻¹ 11(RB)3514,1608,1516,1465,1355,1215,1149,1076,1039,1017cm ⁻¹ 11(RB)3514,1608,1516,1465,1355,1215,1149,1076,1039,1017cm ⁻¹ 11.369 11(RB)3434,2943,1611,1680,1620,1499,1480,1398,1297,1268,1245,1179,1129,1079,1009cm ⁻¹ 11(RB)3434,2943,1611,1680,1620,1499,1480,1398,1297,1268,1245,1179,1129,1079,1009cm ⁻¹ 11(RB)3391,2937,1615,1683,1520,1503,1482,1464,1405,1359,1314,1292,1273,1239,1121,1108,1069,1 11(RB)3391,2937,1615,1683,1520,1503,1482,1464,1405,1359,1314,1292,1273,1239,1121,1108,1069,1 11(RB)3391,2937,1615,1683,1520,1503,1482,1464,1405,1359,1314,1292,1273,1239,1121,1108,1069,1 11(RB)3391,2937,1615,1683,1520,1503,1482,1464,1405,1359,1314,1292,1273,1239,1121,1109,1089,1081,1109,1089,1081,1109,10174,10174,10174,10174,10174,10174,10171,101110m ⁻¹ 11(RB)3318,2937,1612,1698,1609,1485,1464,1450,1361,1298,1276,1240,1104,1072,1011cm ⁻¹ 11(RB)3318,2937,1612,1698,1609,1485,1464,1450,1361,1298,1276,1240,1104,1072,1011cm ⁻¹ 11(RB)3318,2937,1612,1698,1609,1485,1460,1360,1361,1298,1276,1240,1104,1072,1011cm ⁻¹ 11(RB)3318,2937,1612,1698,1609,1485,1460,1360,1361,1298,1276,1240,1104,1072,1011cm ⁻¹ 11(RB)3318,2937,1612,1698,1600,1485,1460,1360,1361,1298,1276,1240,1104,1072,1011cm ⁻¹ 11(RB)3318,2937,1612,1699,1485,1464,1450,1361,1298,1276,1240,1104,1072,1011cm ⁻¹ 11(RB)3318,2937,1612,1699,1485,1464,1450,1361,1298,120,1110,1072,1011cm ⁻¹ 11(RB)3318,2937,1612,1699,1485,1464,1450,1361,1298,1276,1240,1104,1072,1011cm ⁻¹ 11(RB)3318,2937,1612,1699,1485,1464,1450,1361,1298,1276,1240,1104,1072,1011cm ⁻¹ 11(RB)3318,2937,1612,1698,1465,1464,1450,1361,1298,1276,1240,1104,1072,1011cm ⁻¹ 11(RB)3318,2937,1612,1618,1118,1118,1073,1118,1073,1118,1073,1118,1118,1118,1118,1118,1118,1118,11	$HINMR(CDCL_3) \ \delta \ 2.37(s,311), 3.21(s,311), 3.48(s,611), 3.65(s,311), 3.73(s,311), 3.83(s,311), 4.32(d,J=11.4Hz,111), 4.51(d,J=11.4Hz,111), 4.51(d,J=111), 4.51(d,J=11$
	D,6.93(s, 111),6.71(s, 111),6.88(s, 111),7.21(d,J=8.4Hz,2H),7.32-7.41(m,4H),7.73(d,J=8.4Hz,2H)
	,1355,1215,1149,1076,1039,1017cm ^{· 1}
	3.52(s,311),3.73(s,311),3.84(s,311),5.20(s,211),6.83(s,114),7.00-7.48(m,1211)
	,1520,1498,1480,1398,1297,1268,1245,1179,1129,1079,1009cm '
	3.3 6 3.43(s,311),3.71(s,311),3.85(s,311),5.19(s,211),5.92(s,111),6.43(s,1H),7.01·7.51(m,12H)
	2937, 1615, 1583, 1520, 1503, 1482, 1464, 1405, 1359, 1314, 1292, 1273, 1239, 1121, 1108, 1069, 1005cm ⁻¹
	$HNMR(CDCL_3) \ \delta \ 1.76(s,3H), 1.81(s,3H), 2.70(s,3H), 3.53(s,3H), 3.73(s,3H), 3.84(s,3H), 4.63(d,J=6.9Hz,2H), 5.53(m,1H), 6.84(s,3H), 2.84(s,3H), 3.84(s,3H), 3$
	2938, 1609, 1581, 1523, 1499, 1480, 1401, 1368, 1297, 1268, 1240, 1178, 1118, 1079, 1021cm ⁻¹
	$^{1} \rm{HNMR}(CDCl_{3}) \ \delta \ \ 1.68(s,3H), 1.74(d,J=0.6Hz,3H), 2.50.2.59(m,2H), 2.71(s,3H), 3.53(s,3H), 3.73(s,3H), 3.84(s,3H), 4.04(t,J=7.2), 3.73(s,3H), 3.84(s,3H), 3.84($
-	,7.00.7.42(m,7H)
	IR(CHCI3)3011,2938,1612,1581,1522,1500,1480,1465,1398,1370,1301,1268,1238,1209,1176,1119,1081,1017cm ⁻¹
HH),7.01-7.42 IR(KBr)3318	$^{4} \text{HINMR}(\text{CDC})_{3}) \ \delta \ 1.76 (\text{a}, 3\text{H}), 1.80 (\text{a}, 3\text{H}), 3.43 (\text{a}, 3\text{H}), 3.72 (\text{a}, 3\text{H}), 3.85 (\text{a}, 3\text{H}), 4.63 (\text{d}, J = 6.6 \text{Hz}, 2\text{H}), 5.56 (\text{m}, 1\text{H}), 5.92 (\text{a}, 1\text{H}), 6.43 (\text{a}, 3\text{Hz}), 2.43 (a$
IR(KBr)3318,2937,1612,1598,1500,1485,1464,1450,1361,1298,1275,1240,	
	,2937, 1612,1598,1500,1485,1464,1450,1361,1298,1275,1240,1104,1072,1011cm ⁻¹

Table 77

	m.p.69-71°C
-	HINMR(CDCE) & 1.68(8,3H), 1.74(d,J=0.6Hz,3H), 2.50-2.60(m,2H), 3.43(9,3H), 3.71(6,3H), 3.85(8,3H), 4.04(t,J=7.2Hz,2H), 5.2
V.S:-	3(m,111),5.91(s,1H),6.43(s,1H),7.00-7.42(m,7H)
	IR(KBr)3385,2933,1611,1583,1521,1503,1485,1466,1403,1358,1299,1276,1241,1122,1104,1071,1011cm-1
	m.p.105-107°C
1.375	HINMR(CDCla) & 2.36(8,3H),2.59(8,3H),3.52(8,3H),3.73(8,3H),3.84(8,3H),5.16(8,2H),6.83(8,1H),7.00-7.42(m,11H)
	IR(KBr)3433,2940, 1609, 1581, 1522, 1499, 1481, 1461, 1401, 1366, 1296, 1269, 1240, 1178, 1117, 1079, 1021, 1011cm
	m.p.142-144°C
1.376	"HNMR(CDCla) & 2.37(s,3H),3.42(s,3H),3.71(s,3H),3.85(s,3H),5.14(s,2H),5.91(s,1H),6.43(s,1H),7.01-7.42(m,11H)
	IR(KBr)3367,2936,1615,1583,1520,1502,1482,1464,1447,1405,1359,1317,1291,1274,1239,1121,1109,1070,1009cm-1
-	m.p.174.176°C
1 977	1HNMR(CDCl3) § 3.21(s, 3H), 3.41(s, 3H), 3.63(s, 3H), 3.77(s, 3H), 5.30(s, 2H), 6.94(s, 1H), 7.03-7.05(m, 2H), 7.15-7.20(m, 1H), 7.25(
1.0.1	m, 1H), 7.38(d, J=8.9Hz, 2H), 7.62(d, J=7.8Hz, 1H), 7.71(d, J=8.9Hz, 2H), 7.76(dt, J=7.8, 1.5Hz, 1H), 8.60(m, 1H)
	IR(KBr)1732,1523,1474,1368,1148,1061,863,845,790cm ⁻¹
	m.p.>260°C
	$^{1}\text{HNMR}(\text{DMSO-}46) \ \delta \ \ 3.32(8,3\text{H}), 3.73(8,3\text{H}), 5.28(8,2\text{H}), 6.87(4,J=8.7\text{Hz},2\text{H}), 7.00(8,1\text{H}), 7.04(4d,J=8.9,1.8\text{Hz},1\text{H}), 7.16(4d,J=1) \ $
1.378	2.3,1.8Hz,1H),7.26(t,J=8.9Hz,1H),7.39(m,1H),7.57(d,J=8.7Hz,2H),7.58(d,J=7.8Hz,1H),7.89(dt,J=7.8,1.5Hz,1H),8.61(m,1H)
	,9.61(s,1H),12.9(brs,1H)
	IR(KBr)3383,1735,1705,1610,1522,1471,1272,1226,1059,1014,838,762cm-1
	m.p.137·138°C
1 270	1HNMR(CDCl ₃) δ 1.77(s,3H), 1.82(s,3H), 3.46(s,3H), 3.79(s,3H), 4.64(d, J=4.6Hz,1H), 5.56(t, J=4.6Hz,1H), 6.92-7.20(m,6H), 7.6
2	1(dd,J=3.6,5.8Hz,2H),9.96(Brs,1H)
	IR(KBr)3434,2966,2935,2839,1702,1695,1521,1466,1378,1299,1287,1272,1240,1012,840cm ⁻¹

.

Table 78

	m.p.98-99°C HINMR(CDChi) & 2.37(8,311),3.45(8,311),3.78(8,311),5.15(8,211),6.93-7.26(m,411),7.36(d,J=7.8Hz,211),7.62(dd,J=4.0,8.8Hz,2
1:380	H),9.94(s,1H) IR(KBr)3446,2933,2845,1699,1521,1473,1463,1381,1293,1261,1238,1221,1131,803cm ⁻¹
	m.p.118-119°C HINMR(CDC!a) & 1.69(s.3H), 1.74(s,3H), 2.54(dt,J=5.0,7.8Hz,2II), 3.45(s,3H), 3.78(s,3H), 4.05(t,J=7.2Hz,2H), 5.24(t,J=4.4Hz,
1:381	1H),6.95-7.16(m,6H),7.61(dd,J=3.4,8.8Hz,2H),9.95(brs,HH) IR(KBr)3433,2959,2930,2842,1701,1602,1522,1464,1379,1303,1263,1222,1132,1018cm ⁻¹
	m.p.93-94°C HNMR(I)MSO-d ₆) δ 1.74(8,3H),1.78(8,3H),3.32(8,3H),3.71(8,3H),4.62(d,J=7.0Hz,2H),5.48(t,J=5.8Hz,1H),6.91(8,1H),7.09-7
1.382	.35(m,211),7.64-7.71(m,211) IR(KBr)3433,2976,2937,1707,1604,1520,1472,1376,1300,1265,1226,1160,1131,1060,839cm ⁻¹
	m.p.98-99°C
1.383	·HNMR(DMSO-d ₆) δ 2.32(s,3H),3.31(s,3H),3.70(s,3H),5.13(s,2H),6.88(s,1H),7.14-7.39(m,5H),7.63-7.70(m,2H) IR(KB ₁)3433,2981,2937,1704,1603,1620,1470,1375,1301,1266,1226,1169,1061,839cm ⁻¹
	oil 1HNMR(DMSO-d ₆) § 1.68(e,3H),1.74(e,3H),2.48-2.56(m,2H),3.57(e,3H),3.77(e,3H),3.98(t,J=4.8Hz,2H),5.26(t,J=4.2Hz,1H),
1.384	6.84(s,1H),7.05-7.36(m,5H),7.63-7.70(m,2H) IR(KBr)3433,2979,2938,1726,1603,1622,1470,1376,1301,1264,1226,1160,1132,1080,1058,840cm ⁻¹
	m.p.137-138°C
1 208	$ HNMR(CDCl_3) \delta 1.77(8,3H), 1.82(8,3H), 2.55(8,3H), 3.21(8,3H), 3.57(8,3H), 3.78(8,3H), 4.56(d, J=7.0Hz, 2H), 5.52(t, J=7.4Hz, 1H)$
666-1),6.84(8,1H),7.02(d,J=8.8Hz,2H),7.34-7.40(m,4H),7.70(d,J=8.8Hz,2H) IR(KBr)3434,2938,1607,1519,1366,1244,1174,1151,1072,871,796cm ⁻¹

Table 79

m.p.169-170°C HINMR(CDC4a)
NMR(CDCL ₄) & 2.48(s,311),3.21(s,311),3.56(s,311),3.77(s,311),5.08(s,211),6.84(s,111),7.07(d,J=5.8Hz,2H),7.19-7.39(m,4H),7.
The ATT OFF
(U(d,d=0.0112,Z11)
IR(KB ₁)3432,3016,2935,1605,1519,1479,1368,1357,1233,1176,1151,1076,876,843,798cm ⁻¹
m.p.140-141°C
$ \left. \text{HNMR(CDCL}_{3}\right) \delta - 1.68(s,3H), 1.75(s,3H), 2.51(dt,J=4.4,4.6Hz,2H), 2.55(s,3H), 3.21(s,3H), 3.56(s,3H), 3.77(s,3H), 3.97(t,J=4.8H) \right \\$
z,211),5.26(t,J=4.0Hz,111),6.84(s,111),6.99(d,J=5.8Hz,211),7.34-7.39(m,411),7.70(d,J=5.8Hz,211)
IR(KBr)3445,2937,1608,1519,1480,1391,1361,1351,1237,1177,1154,1077,962,871,862,800cm ¹
m.p.124-125 C
1HNMR(DMSO-d ₆) δ 1.73(9,3H),1.75(8,3H),3.30(8,3H),3.65(8,3H),4.54(d,J=6.6Hz,2H),5.47(t,J=6.4Hz,1H),6.40(8,1H),6.82·6
.94(m,4H),7.20(d,J=8.6Hz,2H),7.44(d,J=8.2Hz,2H)
IR(KBr)3411,2934,1608,1523,1487,1396,1231,1175,1105,1072,996,898cm ⁻¹
m.p.93-94°C
111NMR(DMSO-d6) & 2.32(8,3H),3.32(8,3H),3.64(8,3H),5.08(8,2H),6.40(8,1H),6.84(d,J=8.6Hz,2H),6.98(d,J=8.6Hz,2H),7.19-7
.23(m,4H),7.34-7.46(m,4H)
IR(KBr)3398,2933., 1609,1523,1486,1461,1398,1235,1174,1119,1071,997,829cm ⁻¹
$ \text{HINMR}(\text{DMSO-}d_6) \ \delta 1.72(8,311), 1.74(8,311), 2.52(dt,J=4.8,5.011z,2H), 3.24(8,3H), 3.58(8,3H), 4.06(t,J=7.2Hz,2H), 5.24(t,J=4.4) $
11z,111),6.80-6.95(m,411),7.22(d,J=8.4Hz,2H),7.46(d,J=8.2Hz,2H)
IR(KBr)3340,2934,1608,1522,1486,1396,1285,1230,1175,1106,1072,996,828cm ⁻¹
$^{1}\text{HNMR}(\text{CDCl}_{3}+\text{CD}_{3}\text{OD}) \ \delta \ 3.05(\text{s},3\text{H}), 3.48(\text{s},3\text{H}), 3.75(\text{s},3\text{H}), 5.16(\text{s},2\text{H}), 5.97(\text{s},1\text{H}), 6.02(\text{s},1\text{H}), 6.47(\text{s},1\text{H}), 6.94(\text{d},d,J=8.4\&1.8) \ \text{e.b.} \ \delta \ $
Hz,1H),7.04(d,J=8.4Hz,1H),7.07(d,J=1.8Hz,1H),7.22·7.52(m,9H)
IR(KBr)3548,3357,1603,1589,1520,1487,1460,1445,1410,1329,1286,1247,1153,1115,1077,1010cm ⁻¹

Table 80

. 10

1-392	HINMR(CDCh ₃) δ 2.37(s,3H),2.77-2.88(broad,1H),3.47(s,3H),3.64(s,3H),3.72(s,3H),3.82(s,3H),4.32(d,J=11.1&0.6Hz,1H), 4.45-4.56(brond,1H),4.92(s,1H),5.16(s,2H),6.70(d,J=9.3Hz,2H),6.88(s,1H),6.92(d,J=9.0Hz,2H),7.22(d,J=8.4Hz,2H),7.38(d,J=8.4Hz,2H),7.56(d,J=9.0Hz,2H)
	1R(KBr)3476,1610,1519,1476,1463,1386,1265,1215,1074,1041,1010cm
1:393	foam HINMR(CD ₃ (OD) & 2.34(a,3H),3.38(a,3H),3.68(a,3H),4.00(dd,J=9.9,8.7Hz,1H),4.17(dd,J=9.9,3.0Hz,1H),5.06(dd,J=8.7,3.0Hz HH),6.43(a,1H),6.78(dd,J=8.7,1.8,1H),6.85(d,J=8.7Hz,2H),6.88(d,J=1.8Hz,1H),6.91(d,J=8.4Hz,1H),7.20(d,J=8.1Hz,2H),7.3
	0(d.3-8.1112,211); 1-30(d.3-8.112,112,113); 1489,1459,1254,1225,1115,1072,1015,941,817cm ⁻¹
1.394	$four \\ \text{i+HNMR(CD_3OD)} \ \delta \ \ 3.38(8,3H), 3.67(8,3H), 4.02(dd,J=10.2,9.0Hz,1H), 4.20(dd,J=10.2,3.3Hz,1H), 5.11(dd,J=9.0,3.3Hz,1H), 6.41(dd,J=8.4,2.1,1H), 6.85(d,J=8.7Hz,2H), 6.88(d,J=2.1Hz,1H), 6.91(d,J=8.4Hz,1H), 7.46(d,J=8.7Hz,2H), 7.30 \\ \sim 7.50(4,J=8.4,2.1,1H), 6.85(d,J=8.7Hz,2H), 6.88(d,J=2.1Hz,1H), 6.91(d,J=8.4Hz,1H), 7.46(d,J=8.7Hz,2H), 7.30 \\ \sim 7.50(4,J=8.4,2.1,1H), 6.85(d,J=8.7Hz,2H), 6.88(d,J=2.1Hz,1H), 6.91(d,J=8.4Hz,1H), 7.46(d,J=8.7Hz,2H), 7.30 \\ \sim 7.50(4,J=8.4,2.1,1H), 6.85(4,J=8.7Hz,2H), 6.88(4,J=2.1Hz,1H), 6.91(4,J=8.4Hz,1H), 7.46(4,J=8.7Hz,2H), 7.30 \\ \sim 7.50(4,J=8.4,J=8.7Hz,2H), 6.85(4,J=8.7Hz,2H), 6.88(4,J=8.1Hz,1H), 6.91(4,J=8.4Hz,1H), 7.46(4,J=8.7Hz,2H), 7.30 \\ \sim 7.50(4,J=8.4,J=8.7Hz,2H), 6.85(4,J=8.7Hz,2H), 6.81(4,J=8.7Hz,2H), 7.46(4,J=8.7Hz,2H), 7.30 \\ \sim 7.50(4,J=8.7Hz,2H), 6.85(4,J=8.7Hz,2H), 6.81(4,J=8.7Hz,2H), 7.46(4,J=8.7Hz,2H), 7.46(4,J=8.7Hz,2H), 7.30 \\ \sim 7.50(4,J=8.7Hz,2H), 7.30(4,J=8.7Hz,2H), 7.30(4,J=8.7Hz,2H), 7.46(4,J=8.7Hz,2H), 7.30(4,J=8.7Hz,2H), 7.30(4$
	m,511) IR(Nujol)3368,1655,1612,1587,1523,1489,1456,1254,1225,1114,1072,1014,941,825,764cm ⁻¹
1.395	foam 1HNMR(CDCl ₃) \(\delta \) 2.48(s,3H),2.82(s,3H),3.16(s,3H),3.54(s,3H),3.77(s,3H),6.85(s,3H),7.34~7.38(m,2H),7.38(d,J= 8.1Hz,2H),7.39(d,J=8.7Hz,2H),7.46(d,J=1.8Hz,1H),7.46(d,J=8.7Hz,2H),7.82(d,J=8.1Hz,2H)
1.396	IR(Nujoi)1597, 1514, 1415, 1417, 1417, 1417, 152, 153, 153, 153, 153, 153, 153, 153, 153

Table 81

20 .

	foam
1	HNMR(CDC3) & 2.73(s,3H),3.21(s,6H),3.55(s,3H),3.77(s,3H),5.20(s,2H),6.84(s,1H),7.16(brs,1H),7.22(d,J=8.1Hz,1H),7.33,(
789-1	d,J=2.4Hz,1H),7.37(brs,2H),7.38(d,J=8.7Hz,2H),7.65(brs,1H),7.67(d,J=8.7Hz,2H)
	IR(Nujol)1608,1519,1480,1464,1176,1151,1080,972,876,846,798cm ⁻¹
	foam
-	HINMR(CDCh.) & 2.91(s,3H),3.19(s,3H),3.22(s,3H),3.54(s,3H),3.78(s,3H),5.26(s,2H),5.34(s,2H),7.04(brs,1H),7.05(s,2H),7.1
£ 5.23	2(brs, 1H),7.39(d,J=8.7Hz,2H),7.36~7.43(m,3H),7.67(d,J=8.7Hz,2H)
	IR(Nujol)1608,1519,1480,1463,1176,1151,1079,972,876,799cm.1
	m.p.203-205 C
900	IIINMR(DMSO-d6) § 2.87(s, 3H), 3.35(s, 3H), 3.45(s, 3H), 3.52(s, 3H), 3.78(s, 3H), 5.39(s, 2H), 7.07(s, 1H), 7.08(d, J=3.9Hz, 1H), 7.16
1.000	(d,J=3.9Hz,1H),7.31(dd,J=9.0,1.8Hz,1H),7.33(s,1H),7.42(d,J=9.0Hz,1H),7.49(d,J=8.7Hz,2H),7.74(d,J=8.7Hz,2H)
	IR(Nujol)1609,1520,1481,1455,1231,1080,1013,984,947,878,832,798cm ⁻¹
	бат
1.400	$^{11} \text{IINMR}(\text{CDCL}) \ \delta \ \ 2.72(8,311), 3.14(8,311), 3.21(8,311), 3.55(8,311), 5.77(8,311), 5.14(8,211), 6.84(8,111), 7.11(4,J=8.7112,111), 7.34(4d) \\ $
	J=2.1,8.7Hz,1H),7.34(d,J=8.4Hz,2H),7.37(d,J=8.4Hz,2H),7.41(d,J=2.1Hz,1H),7.54(d,J=8.4Hz,2H),7.68(d,J=8.4Hz,2H)
	foam
107	$^{1}\text{HINMR}(\text{CDCl}_3) \ \delta \ \ 2.83(9.3\text{H}), 3.14(8.3\text{H}), 3.22(9.3\text{H}), 3.55(8.3\text{H}), 3.78(9.3\text{H}), 5.26(9.2\text{H}), 6.86(9.1\text{H}), 7.24(d,J=8.4\text{Hz},1\text{H}), 7.38(d,J=8.4\text{Hz},1\text{H}), 7.38(d,J=8.4\text{Hz},1\text{Hz},1\text{H}), 7.38(d,J=8.4\text{Hz},1\text{Hz},1\text{Hz},1\text{Hz}), 7.38(d,J=8.4\text{Hz},1\text{Hz},1\text{Hz},1\text{Hz},1\text{Hz},1\text{Hz}), 7.38(d,J=8.4\text{Hz},1Hz$
101:-1	J=8.4Hz,1H),7.41(dd,J=2.1,8.4Hz,1H),7.44(d,J=2.1Hz,1H),7.67(d,J=8.4Hz,2H)
	IR(KBr)1609,1523,1509,1481,1367,1402,1178,1152,1080,973,943,876,798cm ⁻¹

Table 82

	foam
1.402	
	.67(d,J=8.4Hz,2H)
	form
	111111111111111111111111111111111111
1.403	, J = 1.5, 8.411z, 111), 7.38(d, J = 8.411z, 211), 7.41(d, J = 1.511z, 111), 7.46(m, 211), 7.54(d, J = 8.111z, 211), 7.62(m, 311), 7.64(d, J = 8.111z, 211), 7.64(d, J = 8.11z, 211), 7.
	7.68(d,J=8.4Hz,211)
	IR(KBr)1609, 1519, 1481, 1365, 1177, 1151, 1079, 1014, 876, 818, 797cm ⁻¹
	m.p.128-130°C
	HNMR(CDCl ₃) δ 2.75(s,3H),2.92(s,3H),3.18(t,J=6.9Hz,2H),3.21(s,3H),3.55(s,3H),3.77(s,3H),4.34(t,J=6.9Hz,2H),6.81(s,1H
I-404	1.404),7.08(d,J=8.4Hz,1H),7.29(m,2H),7.32(br.s,3H),7.35(dd,J=2.1,8.4Hz,1H),7.38(d,J=8.4Hz,2H),7.39(d,J=2.1Hz,1H),7.67(d,J=
	8.4Hz,2H)
	IR(KBr)1609, 1520,1481,1364,1177,1151,1080,872,815,797cm ⁻¹
	foam
	$^{1}\text{HNMR}(\text{CDC}_{13}) \circ 1.71 (\text{d}, \text{J}=6.3\text{Hz}, \text{3H}), 2.45 (\text{br.s}, \text{3H}), 3.20 (\text{s}, \text{3H}), 3.28 (\text{s}, \text{3H}), 3.53 (\text{s}, \text{3H}), 3.75 (\text{s}, \text{3H}), 5.43 (\text{q}, \text{J}=6.3\text{Hz}, \text{1H}), 6.81 (\text{s}, \text{JH}), 6.81$
I-405	111),6.90(d,J=8.4Hz,1H),7.16(dd,J=2.1,8.4Hz,1H),7.30(m,1H),7.36(d,J=2.1Hz,1H),7.37(d,J=8.4Hz,2H),7.35-7.41(m,4H),7.6
	6(d,J=8.4IIz,2H)
	IR(KBr)1609,1518,1480,1365,1177,1151,1078,874,818,798cm ⁻¹

Table 83

1.406	foam !HNMR(CDC!3;) \(\delta \) 1.02(t,J=9.0Hz,3H),2.04(dq,J=6.3,9.0Hz,2H),2.39(br.s,3H),3.20(s,3H),3.30(s,3H),3.53(s,3H),3.75(s,3H),5. 18(t,J=6.3Hz,1H),6.80(s,1H),6.88(d,J=8.4Hz,1H),7.14(dd,J=2.4,8.4Hz,1H),7.25-7.40(m,7H),7.66(d,J=8.4Hz,2H) 1R(KBr)1609,1518,1480,1365,1177,1151,1079,874,819,797cm \)
1-407	foam HINMR(CDCE) & 2.46(a,3H),3.07(a,3H),3.20(a,3H),3.54(a,3H),3.76(a,3H),6.33(a,1H),6.82(a,1H),6.99(d,J=9.0Hz,1H),7.19(dd,J=2.1,9.0Hz,1H),7.26-7.40(m,9H),7.43-7.47(m,4H),7.66(d,J=8.4Hz,2H) R(KBr)1607,1518,1481,1364,1177,1151,1081,873,822,798cm
1.408	m.p.179·180°C ¹ HNMR(CDCl ₃) δ 1.69(d,J=6.3Hz,3H),234(br.s,3H),2.45(s,3H),3.20(s,3H),3.27(s,3H),3.54(s,3H),3.75(s,3H),5.40(q,J=6.3Hz,1H),6.81(s,1H),6.92(d,J=8.7Hz,1H),7.15(d,J=8.7Hz,2H),7.16(dd,J=2.1,8.4Hz,1H),7.27(d,J=8.7Hz,1H),7.35(d,J=2.1Hz,1H),7.37(d,J=8.4Hz,2H),7.66(d,J=8.4Hz,2H) ¹ R(KBr)1609,1518,1480,1365,1177,1161,1078,874,819,797cm ⁻¹
I-409	m.p.243-244°C 'HNMR(DMSO-d ₆) δ 3.30(8,3H),3.64(8,3H),5.19(8,2H),6.39(8,1H),6.64(dd,J=1.8,8.4Hz,1H),6.77(d,J=1.8Hz,1H),6.83(d,J=8.4Hz,2H),6.97(d,J=8.4Hz,1H),7.37(t,J=7.5Hz,1H),7.44(d,J=8.4Hz,2H),7.48(t,J=8.4Hz,2H),7.60(d,J=8.4Hz,2H),7.67.7.73(m,5H) 18(KBr)3421,1610,1523,1488,1463,1403,1176,1115,1072,821cm ⁻¹
1.410	foam !HNMR(CDCl ₃) & 3.18(t,J=6.9Hz,2H),3.45(s,3H),3.73(s,3H),4.31(t,J=6.9Hz,2H),6.44(s,1H),6.91(d,J=8.4Hz,2H),6.94(br.s,2 H),7.03(br.s,1H),7.23-7.37(m,5H),7.53(d,J=8.4Hz,2H) IR(KBr)3434,1612,1587,1523,1489,1455,1403,1250,1113,1070,1011,825,815cm ⁻¹

Table 84

5

	foain
1.411	¹ HNMR(CDCl ₃) δ 1.70(d,J=6.0Hz,3H),3.44(s,3H),3.72(s,3H),5.36(q,J=6.0Hz,1H),6.42(s,1H),6.78(d,J=8.1Hz,1H),6.81(dd,J=1.5,8.7Hz,1H),6.91(d,J=8.4Hz,2H),7.06(d,J=1.5Hz,1H),7.26-7.42(m,4H),7.51(d,J=8.4Hz,2H) ¹ (R(KBr)3472,1612,1587,1523,1488,1454,1403,1248,1113,1070,1011,825,cm ⁻¹)
1.412	foam IHNMR(CDCIs) & 1.03(t,J=7.2Hz,3H),1.94(m,1H),2.06(m,1H),3.43(s,3H),3.72(s,3H),5.08(dd,J=7.2,5.4Hz,1H),6.43(s,1H),6.7 3(d,J=8.4Hz,1H),6.78(dd,J=1.8,8.4Hz,1H),6.90(d,J=8.4Hz,2H),7.05(d,J=1.8Hz,1H),7.25-7.38(m,5H),7.51(d,J=8.4Hz,2H) IR(KBr)343,1612,1522,1488,1454,1403,1247,1113,1070,1011,826,811cm ⁻¹
1.413	foam !HNMR(CDCl ₃) & 3.44(s,3H),3.73(s,3H),6.25(s,1H),6.43(s,1H),7.26(m,2H),6.90(d,J=8.4Hz,2H),7.08(d,J=2.1Hz,1H),7.29.7.4 3(m,10H),7.51(d,J=8.4Hz,2H) IR(KBr)3432,1611,1523,1489,1464,1402,1226,1110,1069,1011,825cm ⁻¹
1.414	foam 'HNMR(CDCla) & 1.69(d,J=6.3Hz,3H),235(8,3H),3.44(8,3H),3.72(8,3H),5.33(q,J=6.3Hz,1H),6.42(8,1H),6.80(br.8,2H),6.90(d,J=8.4Hz,21l),7.05(br.8,1H),7.18(d,J=7.8Hz,2H),7.29(d,J=7.8Hz,2H),7.51(d,J=8.4Hz,2H) IR(KBr)3433,1612,1522,1488,1459,1403,1248,1113,1069,1011,817cm ⁻¹
1.415	m.p.164-167°C ¹ HNMR(CDCl ₃) δ 3.79(s,3H),3.80(s,3H),4.81(brs,1H),5.29(s,2H),6.88-6.94(m,4H),7.16(d,J=8.7Hz,1H),7.32-7.52(m,7H),7.73 (dd,J=2.1,8.7Hz,1H),8.10(d,J=2.1Hz,1H) ¹ R(KBr)3513,2930,1618,1529,1497,1448,1387,1354,1296,1257,1211,1168,1091,1064,1024cm ⁻¹

Table 85

	m.p.155-159°C
	4HNMR(CDCE) δ 3.20(8,3H),3.39(8,3H),3.82(8,3H),3.83(8,3H),6.95(8,1H),6.96(8,1H),7.34-7.38(m,2H),7.58-7.64(m,3H),7.87(
=======================================	dd,J=2.1,8.4Hz,1H),8.26(d,J=2.1Hz,1H)
	IR(KBr)3433,2944,1539,1519,1487,1358,1216,1176,1150,1086,1057,1031cm ⁴
	m.p.124-126°C
	HINMR(CDCΩ) δ 3.19(s,3H),3.80(s,6H),5.30(s,2H),6.93(s,1H),6.94(s,1H),7.18(d,J=9.0Hz,1H),7.32-7.52(m,7H),7.59-7.64(m,
: ::	2H),7.73(dd,J=2.1,9.0Hz,1H),8.10(d,J=2.1Hz,1H)
	IR(KBr)3433,2937,1619,1531,1491,1465,1450,1358,1290,1256,1211,1176,1150,1088,1062,1033cm ⁻¹
	m.p.151-153°C
1-418	1HNMR(CDCl3) § 3.18(s,3H),3.781(s,3H),3.784(s,3H),5.14(s,2H),6.90-7.00(m,5H),7.31-7.50(m,7H),7.60-7.65(m,2H)
	IR(KBr)3480,3383,2930,1610,1523,1489,1467,1383,1358,1330,1211,1175,1147,1024cm ⁻¹
	m.p.198.200°C
1.419	¹ HNMR(CDCl ₁₃) δ 3.77(s,6H),5.13(s,2H),6.86-7.00(m,7H),7.34-7.50(m,7H)
	IR(KBr)3403,3327,1611,1592,1525,1492,1462,1444,1384,1318,1273,1243,1209,1178,1149,1110,1058,1037,1006cm ⁻¹
	m.p.168-171°C
007	1HNMR(CDCl ₃) δ 2.99(s,3H),3.19(s,3H),3.80(s,3H),3.81(s,3H),5.16(s,2H),6.83(brs,1H),6.92(s,1H),6.96(s,1H),7.06(d,J=8.7H)
024-1	z,1H),7.32-7.46(m,8H),7.60-7.64(m,2H),7.81(d,J=2.1Hz,1H)
	IR(KBr)3403,3327,1611,1592,1525,1492,1462,1444,1384,1318,1273,1243,1209,1178,1149,1110,1058,1037,1006cm ⁻¹
	m.p.168·171°C
107	$^{1}\text{HNMR}(\text{CDCl}_{3}) \ \delta \ 3.19(\text{s},3\text{H}), 3.80(\text{s},3\text{H}), 3.81(\text{s},3\text{H}), 5.23(\text{s},2\text{H}), 6.93(\text{s},1\text{H}), 6.97(\text{s},1\text{H}), 7.07(\text{d},J=8.7\text{Hz},1\text{H}), 7.33-7.45(\text{m},8\text{H}), 7.100(\text{s},2\text{Hz},2$
1.41	61.7.65(m,2H),8.58(d,J=2.4Hz,1H),8.66(brs,1H)
	IR(KBr)3401,1723,1613,1595,1549,1518,1486,1385,1365,1330,1299,1256,1212,1151,1119,1060,1037,1017cm ⁻¹

Table 86

m.p.159-160°C HINMIR(CIDCL3) & 1.69(s,31l), 1.74(s,31l), 2.55(g,J=7.21lz,21l), 2.73(s,31l), 3.22(s,31l), 3.55(s,31l), 3.77(s,31l), 4.06(t,J=7.21hz,21l), 1.76(t,J=8.01lz,11l), 7.39(d,J=8.71hz,21l), 7.55(dd,J=8.6.2.11hz,11l), 7.63(d,J=8.71hz,11l), 7.65(dd,J=8.6.2.11hz,11l), 7.63(d,J=2.11hz,11l), 7.63(d,J=8.71hz,21l), 1.81(k1l), 1.30(t,J=8.71hz,21l), 1.35(s,31l), 3.78(s,31l), 3.78(s,31l), 4.06(d,J=6.31hz,11l), 7.68(d,J=8.71hz,11l), 1.81(k1l), 1.81(k1l), 1.30(t,J=8.71hz,11l), 7.56(d,J=8.71hz,11l), 7.69(d,J=8.71hz,11l), 7.69(d,J=8.61hz,11l), 7.69(d,J=8.71hz,11l), 7.69(d,J=8.61hz,11l), 7.69(d,J=8.71hz,11l), 7.69(d,J=8.61hz,11l), 7.69(d,	
H), 5.24(t, J=7 8(d, J=8.71Iz, S 1R(KBr)1515, m.p. 180-1827 111NMR(CHC) H), 6.85(s, 1H) 1R(KBr)1514, m.p. 176-1787 111NMR(CHC) 54(dd, J=8.6, 2 111NMR(CHC) 111NMR(CHC) J=8.0Hz, 2H), 7 1R(KBr)1517, amorphous 1R(KBr)1517, amorphous 1R(KBr)1617, amorphous 1R(KBr)1617, A 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.211z,211),2.73(s,311),3.22(s,311),3.56(s,311),3.77(s,3H),4.06(t,J=7.2Hz,2
	.2Hz,1H),6.85(8,1H),7.07(d,J=8.6Hz,1H),7.39(d,J=8.7Hz,2H),7.55(dd,J=8.6,2.1Hz,1H),7.63(d,J=2.1Hz,1H),7.6
	99cm ^{- 1}
H),6.85(8,1H) IR(KBr)1514, m.p.176-1787 'IINMR(CDC 54(dd,J=8.6,2 IR(KBr)1517, m.p.199-2007 'IINMR(CDC J=8.0Hz,2H), IR(KBr)1517, amorphous 'HNMR(CDC 7.2Hz,1H),6.0 (d,J=2.0Hz,1H)	, 3.22(8,311), 3.55(8,311), 3.78(8,311), 4.06(d, J=6.3Hz, 2H), 5.50(t, J=6.3Hz, 11), 3.55(8, 311),
IR(KBr)1514, m.p.176-1787 '!!NMR(C!)C 54(dd,J=8.6,2 IR(KBr)1517, m.p.199-2007 '!!NMR(C!)C J=8.0Hz,2H), IR(KBr)1517, amorphous 'HNMR(CDC 7.2Hz,1H),6.0 (d,J=2.0Hz,1H)	7.09(d,J=8.7Hz,1H),7.39(d,J=8.7Hz,2H),7.55(dd,J=8.7,2.0Hz,1H),7.64(d,J=2.0Hz,1H),7.68(d,J=8.7Hz,2H)
m.p.176-178% "IINMIR(CI)C 54(dd,J=8.6,2 IR(KBr)1517, m.p.199-200% "IINMIR(CI)C J=8.0Hz,2H), IR(KBr)1517, IR(KBr)1517, amorphous "HNMR(CDC 7.2Hz,1H),6.0 (d,J=2.0Hz,1H)	00cm ⁻¹
111NMR(CDC 54(dd,J=8.6,2 1R(KBr)1517, m.p.199-2007 111NMR(CDC J=8.0Hz,2H); 1R(KBr)1517, amorphous 1HNMR(CDC 7.2Hz,1H),6.0 (d,J=2.0Hz,1H	
	$13) \ \delta \ 2.64(8,311), 3.22(8,311), 3.55(8,311), 3.78(8,311), 5.26(8,211), 6.85(8,111), 7.14(d,J=8.6Hz,111), 7.33\cdot7,48(m,711), 7.33\cdot7,48$
	878,797cm ⁻¹
_	
	3.55(s,3H),3.78(s,3H),5.21(s,2H),6.84(s,1H),7.13(d,J=8.7Hz,1H),7.20(d,
),7.53(dd,J=8.7,1.8Hz,1H),7.66(d,J=1.8Hz,1H),7.68(d,J=9.0Hz,2H)
	871,798cm ⁻¹
	-
	2Hz,2H),3.44(e,3H),3.75(e,3H),4.05(t,J=7.2Hz,2H),.5.07(e,1H),5.24(t,J=
(d,J=2.0Hz,1H)	,7.41(d,J=8.6Hz,1H),7.53(d,J=8.6Hz,2H),7.59(dd,J=8.6,2.0Hz,1H),7.63
IR(CHCl ₃)3595,3506,1614,1523,1489,1326,1281,1258,1122,1079,1057cm ⁻¹	8,1122,1079,1067cm ⁻¹

Table 87

.

1-427 1,6.46(s, 1H),6.93(d, J=8.9Hz,2H), 1R(KBr)3406,1615,1522,1488,137 1-428 11),7.32-7.49(m,5H),7.53(d, J=8.6H),7.32-7.49(m,5H),7.53(d, J=8.6H),7.32-7.49(m,5H),7.53(d, J=8.6H),7.32-7.49(m,6H),7.53(d, J=8.6H),7.32-7.49(m,6H),7.21(d, J=8.1Hz,2H) 1R(KBr)3481,3376,1612,1523,1489,146 1-429 1-8.4Hz,1H),7.21(d, J=8.1Hz,2H) 1R(KBr)3481,3376,1616,1520,146 1-430 7.30-7.44(m,6H),7.53-7.59(m,2H) 1R(CHCl ₃)1608,1517,1476,1367,1 1H),6.46(s,1H),6.92-7.08(m,3H),7 1R(CHCl ₃)3518,2968,1584,1516,1 1-432 1-431 1R(CHCl ₃)3518,2968,1584,1516,1 1-432 1-433 1-431 1	HNMR(CDC13,) & 1.75(s,311), 1.80(s,311), 3.44(s,311), 3.76(s,311), 4.66(d,J=6.6Hz,2H), 4.87(s,111), 5.52(t,J=6.6Hz,1H), 6.02(s,1H
1,6.46(8,111),6 1R(KBr)3406, 1m.p.133-1357, 1HNMR(CDC 1H,7.32-7.49(1),1R(KBr)3397, 1R(KBr)3481,3 1R(CHCIs)160 1R, 1.40-1687 1R(CHCIs)160 1R, 1.40-1681,1 1R(CHCIs)361 1R, 1.70-1817 1R(CHCIs)361 1R(CHCIs)361 1R(CHCIs)361	
IR(KIBr)3406, III,7.32-7.49(1) III,7.32-7.49(1) IR(KIBr)3397, IR(KIBr)3381, IR(KBr)3481, IR(KBr)3481, IR(KBr)3481, IR(CHCI ₃)160 III,6.46(8,1H) IR(CHCI ₃)160 III),6.46(8,1H) IR(CHCI ₃)361 III),6.46(8,1H) IR(CHCI ₃)361 III),6.46(8,1H) IR(CHCI ₃)361 III),6.46(8,1H) IR(CHCI ₃)361	.93(d,J=8.9Hz,2H),7.06(d,J=8.4Hz,1H),7.53(d,J=8.9Hz,2H),7.59(dd,J=8.4,2.1Hz,1H),7.71(d,J=2.1Hz,1H),
m.p.133-135°C HINMIR(CDC HI),7.32-7.49(t) IR(KBr)3397, HNDMR(CDC J=8.4Hz,111),7 IR(KBr)3481,3 IR(KBr)3481,3 IR(CHCla)160 m.p.164-168°C HNMR(CDC 1H),6.46(s,1H) IR(CHCla)3511 m.p.179-181°C HNMR(CDC HNMR(CDC 1H),6.46(s,1H) IR(CHCla)3511	1615,1522,1488,1399,1324,1280,1256,1138,1116,1076,1054,996,835,826cm ^{··}
HINMR(CDC 11),7.32-7.49(t) IR(KBr)3397, IR(KBr)3397, HNMR(CDC J=8.4Hz,111),7 IR(KBr)3481, IR(KBr)3481, IR(KBr)3481, IR(CHCl3)160 IR(CHCl3)160 IR(CHCl3)160 IR(CHCl3)160 IR(CHCl3)161 IR(CHCl3)351 IR(CHCA)351 IR(CH	
	13) δ 3.44(8,3H),3.75(8,3H),4.87(8,1H),5.23(8,2H),6.03(8,1H),6.46(8,1H),6.93(d,J=8.6Hz,2H),7.11(d,J=8.4Hz,1
	11),7.32.7.49(m,511),7.53(d,J=8.6Hz,2H),7.60(dd,J=8.4,2.1Hz,1H),7.75(d,J=2.1Hz,1H),
	1612,1523,1489,1400,1321,1257,1132,1084,1056,1002,832cm ⁻¹
J=8.4Hz,111); IR(KBr)3481, ¹ HNMR(CDC) 7.30-7.44(m,6] IR(CHCL ₁₃)160 m.p.164-168°C ¹ HNMR(CDC) IH),6.46(s,1H IR(CHCL ₁₃)351 m.p.179-181°C ¹ HNMR(CDC) 4Hz,1H),7.03(·HNMR(CDCl ₃) δ 2.37(s,3H),3.44(s,3H),3.75(s,3H),4.88(s,1H),5.18(s,2H),6.02(s,1H),6.45(s,1H),6.93(d,J=8.6Hz,2H),7.11(d,
1R(KBr)3481, 14NMR(CDC) 7.30-7.44(m,6) IR(CHCla)160 m.p.164-168°C 111),6.46(s,114) IR(CHCla)3561 m.p.179-181°C 141x,111),7.03(J=8.4Hz,111),7.21(d,J=8.1Hz,2H),7.36(d,J=8.1Hz,2H),7.53(d,J=8.6Hz,2H),7.59(dd,J=8.4,2.1Hz,1H),7.74(d,J=2.1Hz,1H),
14NMR(CDC) 7.30-7.44(m,6) IR(CHCl ₃)160 m.p.164-168°C 14NMR(CDC) 1H),6.46(s,1H IR(CHCl ₃)351 m.p.179-181°C 14Hz,1H),7.03(3376,1616,1520,1491,1327,1260,1119,1081,1004,827cm ⁻¹
	[3] \$\delta\$ 2.37(8,3H),2.54(8,3H),2.68(8,3H),3.12(8,3H),3.54(8,3H),3.77(8,3H),5.14(8,2H),6.85(8,1H),7.12-7.24(m,3H),
	.3-7.59(m,2H)
	IR(CHCl ₃)1608,1517,1476,1367,1117,1080,1013,970,876cm ⁻¹
1H),6.46(s,1H) IR(CIICIs)351 m.p.179-181°C !HNMR(CDCI	$HNMR(CDC_{\mathbb{H}}) \delta \ 1.76 (s, 3H), 1.82 (s, 3H), 2.54 (s, 3H), 3.47 (s, 3H), 3.75 (s, 3H), 4.62 (d, J=6.9Hz, 2H), 5.53 (m, 1H), 5.69 (s, 1H), 5.89 ($
IR(CIICI ₃)351 m.p.179-181°C ¹ HNMR(CDCl 4Hz,1H),7.03(,6.92.7.08(m,3H),7.30-7.38(m,2H),7.55·7.62(m,2H)
m.p.179-181 C !HNMR(CDC! 4Hz,1H),7.03(8,2968,1584,1516,1483,1460,1414,1388,1310,1289,1243,1114,1069,1011,936,818cm ⁻¹
1HNMR(CDC) 4Hz, 1H), 7.03(
_	3) \$\delta 2.39(8,3H), 2.54(8,3H), 3.46(8,3H), 3.74(8,3H), 5.10(8,2H), 5.67(8,1H), 5.89(8,1H), 6.46(8,1H), 6.81(dd, J=2.1,8.
	4Hz,1H),7.03(d,J=8.4Hz,1H),7.08(d,J=2.1Hz,1H),7.20·7.26(m,2H),7.31·7.37(m,4H),7.55·7.61(m,2H)
IR(CHCl ₃)3524,2930,158	IR(CHCl ₃)3524,2930, 1585, 1517, 1483, 1460, 1414, 1389, 1310, 1289, 1245, 1114, 1090, 1070, 1009, 937, 818cm ⁻¹

Table 88

	m.p.111-112°C
EE1-1	HNMR(CDCL3)
	IR(CHCh3)2932, 1607, 1520, 1481, 1368, 1266, 1080, 1012, 961, 907, 836, 812cm
	m.p.97.101°C
	HINMR(CDCB) & 1.69(s,3H), 1.75(d,J=0.9Hz,3H), 2.48-2.58(m,5H),3.46(s,3H),3.47(s,3H),4.06(t,J=6.9Hz,2H),5.22(m,1H),5.6
-	7(s, 111),5.88(s, 111),6.46(s, 111),6.92-6.97(m, 211),7.05(m, 111),7.30-7.38(m, 211),7.65-7.62(m, 211)
	HR(CHCh.)3518,2928,1584,1517,1483,1414,1388,1290,1246,1114,1090,1070,1011,937,907,818cm ⁻¹
	m.p.127-129°C
	111NMR(CDCI3) Ø 1.68(s, 3H), 1.74(d, J=1.2Hz, 3H), 2.50-2.60(m, 2H), 2.71(s, 3H), 3.52(s, 3H), 3.77(s, 3H), 4.04(t, J=7.2Hz, 2H), 5.2
1-435	3(m,1H),6.83(s,1H),7.00-7.21(m,5H),7.57-7.64(m,2H)
	IR(CHCl ₃)2930,1607,1520,1481,1368,1266,1080,1012,960,836,812cm ⁻¹
	m.p.159-161°C
967	1HINMR(CDCL ₃) δ 2.36(s,3H), 2.57(s,3H), 3.52(s,3H), 3.77(s,3H), 5.16(s,2H), 6.83(s,1H), 7.05-7.24(m,7H), 7.31-7.37(m,2H), 7.56
1-430	7.65(m,2H)
	IR(CHCl ₃)1520,1481,1368,1267,1131,1080,1012,960,836cm ⁻¹
	m.p.120-124°C
t c	$HNMR(CDCl_3) \ \delta \ \ 1.76 (d,J = 0.6 Hz,3 H), 1.81 (d,J = 0.6 Hz,3 H), 3.43 (s,3 H), 3.67 (s,3 H), 4.63 (d,J = 6.6 Hz,2 H), 5.56 (m,1 H), 5.96 (s,1 H), 1.81 (d,J = 0.6 Hz,3 H), 3.43 (s,3 H), 3.67 (s,3 H), 4.63 (d,J = 6.6 Hz,2 H), 5.56 (m,1 H), 5.96 (s,1 H), 1.81 (d,J = 0.6 Hz,2 H), 1.81 (d,J = 0.6 Hz,3 Hz), 1.81 (d,J = 0.6 Hz), 1.8$
1-437), 6.44(8,111), 7.00-7.24(m,511), 7.57-7.66(m,211)
	IR(CHCl ₃)3522,2930,1586,1518,1484,1415,1390,1311,1290,1248,1115,1090,1071,1012,938,818cm ⁻¹

Table 89

-	m.p.140.5-141.5°C HINMR(CDCh.) & 2.37(s,3H),3.43(s,3H),3.75(s,3H),5.14(s,2H),5.97(s,1H),6.44(s,1H),7.04-7.28(m.7H),7.36(d.1=8.1H2.1H),7
1-459	57-7.65(m,2H)
	IR(CHCh)3496,2932,1613,1520,1488,1460,1391,1313,1267,1113,1069,1010,934,825cm-1
	m.p.76.5-77.5°C
5	111NMR(CDCL3) & 1.68(8,311), 1.74(d,J=0.9Hz,3H), 2.49-2.60(m,2H), 3.43(8,3H), 3.75(8,3H), 4.05(t,J=7.2Hz,2H), 5.23(m,1H), 5.9
6011	6(s, 111), 6.44(s, 111), 6.99-7.28(m, 511), 7.57-7.66(m, 211)
	IR(CHCl ₃)3498,2930,1613,1521,1489,1391,1310,1267,1113,1070,1011,934,825cm ⁻¹
	m.p.174·176°C
24	HINMR(CDCL) & 2.80(s,3H),3.46(s,3H),3.76(s,3H),5.16(s,2H),5.71(s,1H),5.88(s,1H),6.47(s,1H),6.95(dd,J=1.8.8.4Hz,1H),7
2	04(d,J=8.4Hz,1H),7.08(d,J=1.8Hz,1H),7.34-7.49(m,5H),7.72-7.85(m,4H)
	IR(CHCl ₃)3518,1587,1516,1483,1459,1415,1387,1290,1114,1070,1041,1011,936.821cm ⁻¹
	m.p.199-202℃
1441	"HINMIR(d6-DMSO) & 3.28(s,311),3.34(s,311),3.67(s,311),5.14(s,211),6.52(s,111),6.66(dd,J=2.1,8.4Hz,111),6.79(d,J=2.1Hz,111),
	6.97(d,J=8.4Hz,HI),7.30-7.56(m,5H),7.86-7.93(m,2H),7.98-8.04(m,2H),8.65-9.02(brs,2H)
	IR(KBr)3487,3413,3004,1597,1518,1500,1482,1456,1360,1310,1281,1231,1146,1118,1090,1068,1016,1004,961cm-1
	m.p.80.84°C
1,449	1HNMR(CDCl ₃) & 1.15(t,J=7.2Hz,3H),3.60(q,J=7.2Hz,2H),3.75(s,3H),5.03(s,1H),5.15(s,2H),5.69(s,1H),5.98(s,1H),6.45(s,1H
),6.88-6.94(m,2H),6.96(dd,J=2.1,8.1Hz,1H),7.02(d,J=8.1Hz,1H),7.10(d,J=2.1Hz,1H),7.34-7.49(m,5H),7.51-7.59(m,2H)
	IK(CHCl ₃)3528, 1612, 1521, 1488, 1454, 1412, 1383, 1286, 1246, 1113, 1069, 1023,886,825cm ⁻¹

Table 90

1.443	m.p.168-169°C !HNMR(CDCh.) & 1.14(t,J=6.9Hz,3H),2.66(s,3H),3.13(s,3H),3.20(s,3H),3.72(q,J=6.9Hz,2H),3.78(s,3H),5.19(s,2H),6.84(s,1H),7.15(d,J=8.4Hz,1H),7.31-7.49(m,9H),7.66-7.73(m,5H) 1R(CHCh.)1517,1479,1369,1148,1117,1082,969,873cm ⁻¹
1-444	m.p.192-194°C THNMR(CDCh.) & 3.13(a,3H),3.44(a,3H),3.63(a,3H),3.76(a,3H),5.14(br,1H),5.19(a,2H),6.81-6.84(m,2H),6.94(a,1H),7.14(d,J=8.41hz,1H),7.22-7.25(m,2H),7.37-7.50(m,5H),7.57(dd,J=8.7,2.1Hz,1H),7.67(d,J=2.1Hz,1H) 1R(CHCh.)3595,3441,1730,1613,1522,1472,1371,1291,1258,1172,1164,1003,972,961,904,838cm ⁻¹
1-445	m.p.179·180°C HINMR(CDCl ₃) & 1.77(s,3H),1.82(s,3H),2.31(s,3H),3.24(s,3H),3.45(s,3H),3.58(s,3H),3.76(s,3H),4.64(d,J=6.9Hz,2H),6.95(s,1H),7.06·7.13(m,3H),7.35·7.38(m,2H),7.57(dd,J=8.4,2.4Hz,1H),7.06·7.13(m,3H),7.35·7.38(m,2H),7.445,1370,1345,1290,1228,1200,1169,1116,1081,1003,973,905,846,829cm ⁻¹
1-446	m.p.137-138°C HINMR(CDC3;) δ 3.13(8,3H),3.45(8,3H),3.59(8,3H),3.77(8,3H),3.88(8,3H),4.23(8,2H),5.19(8,2H),6.96(8,1H),7.15(d,J=8.7Hz, 1H),7.35-7.50(m,9H),7.60(dd,J=8.7,2.4Hz,1H),7.67(d,J=2.4Hz,1H) IR(CHCl3)2954,1750,1734,1614,1516,1471,1387,1372,1345,1291,1258,1173,1147,1118,1081,1064,1004,877cm ⁻¹
1.447	m.p.184·185°C 'HNMR(CDCl3) & 3.44(s,3H),3.60(s,3H),3.74(s,3H),4.70(br,2H),5.17(s,2H),6.95·7.02(m,4H),7.17(dd,J=8.4,2.1Hz,1H),7.25(s,1H),7.31·7.34(d,J=8.7Hz,2H),7.38·7.47(m,5H) IR(CHCl3)3541,2937,1776,1733,1608,1519,1474,1442,1344,1291,1157,1130,1085,1063,1002,900,862,835cm ⁻¹

Table 91

	m.p.176.178\C
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
<u>\$</u>	.411z,111),7.28-7.49(m,711),7.57(dd,J=8.7,2.411z,111),7.67(d,J=2.411z,111)
	IR(CHCl ₃)2953,2939,1758,1732,1610,1519,1471,1444,1371,1345,1291,1177,1117,1085,1064,1002,973,961,904,837cm ⁻¹
	m.p.124-126℃
	$^{1}\text{HNMR}(\text{CDCL}_3) \ \delta \ 1.69(\text{s}, 3\text{H}), 1.74(\text{d}, \text{J}=0.9\text{Hz}, 3\text{H}), 2.31(\text{s}, 3\text{H}), 2.53\cdot2.60(\text{m}, 2\text{H}), 3.23(\text{s}, 3\text{H}), 3.44(\text{s}, 3\text{H}), 3.58(\text{s}, 3\text{H}), 3.76(\text{s}, 3\text{H}), 4. \ \ $
1-4-19	09(t,J=6.6Hz,2H),5.22(m,1H),6.95(s,1H),7.07(d,J=8.4Hz,1H),7.10-7.13(m,2H),7.34-7.37(m,2H),7.57(dd,J=9.0,2.4Hz,1H),7.6
	4(d, J=2.4Hz, 1H)
	IR(CHCl ₃)2938, 1732, 1614, 1518, 1469, 1445, 1370, 1291, 1257, 1170, 1167, 1081, 1004, 973, 961, 906, 846cm ⁻¹
	m.p.160·161℃
	$^{1} \text{HINMR}(\text{CDCL}_{3}) \ \delta \ \ 1.69(\text{s}, 3\text{H}), 1.74(\text{d}, \text{J} = 0.9, 3\text{H}), 2.53.2.60(\text{m}, 2\text{H}), 3.23(\text{s}, 3\text{H}), 3.44(\text{s}, 3\text{H}), 3.62(\text{s}, 3\text{H}), 3.76(\text{s}, 3\text{H}), 4.08(\text{d}, \text{J} = 6.6\text{Hz})$
1.450	,2H),4.91(br,1H),5.20-5.25(m,1H),6.83-6.86(m,2H),6.94(s,1H),7.06(d,J=8.7Hz,2H),7.23-7.26(m,2H),7.57(dd,J=8.7,2.4Hz,1H
),7.64(d,J=2.4Hz,1H)
	IR(CHCl ₃)3595,3448,2937,1730,1613,1522,1469,1445,1370,1345,1292,1260,1172,1117,1081,1064,1003,973,864,837cm ⁻¹
	m.p.182-184°C
	'HNMR(CDCl ₃) δ 1.70(d, J=0.6Hz, 3H), 1.81(d, J=0.9Hz, 3H), 3.24(s, 3H), 3.45(s, 3H), 3.63(s, 3H), 3.75(s, 3H), 4.64(d, J=6.6Hz, 2H),
I-451	5.48 - 5.54 (m, 1 H), 5.76 (br, 1 H), 6.78 - 6.82 (m, 2 H), 6.95 (s, 1 H), 7.08 (d, J = 8.7 Hz, 1 H), 7.19 - 7.24 (m, 2 H), 7.56 (dd, J = 8.7, 2.4 Hz, 1 H), 7.6 (m, 2 H), 7.10 - 7.24 (m, 2 H), 7.20 (
	$4(d_1J=2.4Hz_1H)$
	IR(CHCl ₃)3595,3445,2939,1730,1613,1522,1471,1445,1369,1345,1291,1257,1172,1116,1081,1064,1002,973,904,838cm ⁻¹
	m.p.250-253℃(dec.)
750	$ HNMR(CD_3OD) \delta - 3.41(s,3H), 3.71(s,3H), 4.58(s,2H), 5.21(s,2H), 6.29.6.95(m,3H), 7.02.7.03(m,2H), 7.17(s,1H), 7.26.7.41(m,5)$
705-1	H),7.49-7.52(m,2H)
	IR(KBr)3424,2933,2553,1709,1608,1519,1467,1383,1333,1291,1229,1129,1084,1060,1001,915,861,841,727,697cm ⁻¹

Table 92

	(n go)
	HINMDICTIVE A COC. 5110 1-10 1
115.3	1114WHX(CDCB) 0 1.09(8,311),1.70(d,J=1.2112,311),2.51-2.58(m,ZH),3.43(8,3H),3.62(8,3H),3.75(8,3H),4.08(t,J=6.9Hz,2H),4.8
	5(br, 111),5.23(m, 111),5.71(br, 111),6.82-6.85(m,2H),6.90-6.94(m,2H),7.16(dd,J=8.4,2.1Hz,1H),7.23-7.26(m,3H)
	IR(CHCHCh3)3596,3541,2936,1730,1612,1590,1522,1470,1395,1345,1290,1258,1173,1130,1081,1063,1004,861,836cm ⁻¹
	in.p.166-167℃
<u>.</u>	$HNMR(\mathrm{CDCB}) \ \delta 1.77(\mathrm{s}, 3\mathrm{H}), 1.82(\mathrm{s}, 3\mathrm{H}), 3.48(\mathrm{s}, 3\mathrm{H}), 3.75(\mathrm{s}, 3\mathrm{H}), 4.64(\mathrm{d}, \mathrm{J} = 6.6\mathrm{Hz}, 2\mathrm{H}), 5.51.5.55(\mathrm{m}, 1\mathrm{H}), 5.75(\mathrm{br}, 1\mathrm{H}), 6.77.6.80($
	m,211),6.93-6.96(m,211),7.17(dd,J=8.1,2.1112,111),7.23-7.28(m,311)
	1R(KBr)3447,2937,1590,1559,1522,1473,1382,1338,1295,1259,1131,1080,1059,999,918,862,837,815,791,754cm ⁻¹
	m.p.168-170℃
	$^{1}\text{HNMR}(\text{CD}_{3}\text{OD}) \delta - 1.68(\text{s},3\text{H}), 1.74(\text{s},3\text{H}), 2.50 \cdot 2.58(\text{m},2\text{H}), 3.41(\text{s},3\text{H}), 3.73(\text{s},3\text{H}), 4.05(\text{t},\text{J}=6.9\text{Hz},2\text{H}), 5.29(\text{m},1\text{H}), 6.76 \cdot 6.79(\text{m},\text{H}), 4.05(\text{m},\text{H}), 4.05($
1.455	m,2H),6.98-7.17(m,6H)
	IR(KBr)3411,2964,2936,1685,1613,1590,1523,1472,1379,1293,1259,1229,1131,1082,1061,1000,962,861,838,814,791,764,5
	29cm. ¹
	m.p.163-165C
1 450	$^{1}\text{HNMR}(\text{CDCl}_3) \ \delta \ \ 3.14(s,3\text{H}), 3.50(s,3\text{H}), 3.77(s,3\text{H}), 5.20(s,2\text{H}), 7.10 \cdot 7.28(m,6\text{H}), 7.38 \cdot 7.50(m,5\text{H}), 7.56(dd,J=8.4,2.1\text{Hz},1\text{H}), 7.$
001-1	65(d,J=2.1Hz,1H),9.98(s,1H)
	IR(CHCl ₃)2938,2843,1697,1604,1590,1517,1469,1372,1331,1293,1254,1172,1159,1123,1093,1005,963,818cm ⁻¹
	m.p.143·145°C
1 457	1HNMR(CDCl ₃) δ 1.77(s,3H), 1.83(s,3H), 3.44(s,3H), 3.63(s,3H), 3.75(s,3H), 4.63(d,J=6.6Hz,2H), 5.53(m,1H), 5.72(br,1H), 6.82
	6.85(m,2H),6.92-6.95(m,2H),7.16(dd,J=8.4,2.4Hz,1H),7.23-7.26(m,3H)
	IR(CHCl ₃)3595,3537,2938,1729,1612,1591,1522,1473,1395,1344,1290,1258,1173,1129,1081,1063,1003,900,862,836cm ⁻¹

Table 93

	powder IIINMR(CDC);) & 2.37(s,3H),3.08(s,3H),3.11(s,3H),3.21(s,3H),3.51(s,3H),3.52(s,3H),5.26(s,2H),7.19-7.23(m,2H),7.36-7.43(
1-458	m,4H),7.45-7.50(m,2H),7.82(d,J=2.1Hz,1H),7.98(d,J=2.1Hz,1H)
	IR(CHCl3)3033,2942,1543,1377,1220,1181,1153,1034cm ⁻¹
	m.p.182-187°C(dec.)
27	HINMR(CDCl3) & 2.36(s,3H),2.73(s,3H),3.16(s,3H),3.22(s,3H),3.43(s,3H),3.47(s,3H),5.08(s,2H),6.85(brs,1H),6.92(brs,1H),7
1-40A	. 17-7.21(m,211),7.32-7.38(m,2H),7.39-7.44(m,2H),7.50-7.55(m,2H)
	IR(CHCl ₃)3030,2939,1618,1599,1513,1468,1416,1372,1178,1150,1031cm ⁻¹
	powder
1 460	1HNMR(CDCh3) δ 2.38(8,3H),2.83(8,3H),3.05(8,3H),3.22(8,3H),3.56(8,3H),3.80(8,3H),3.91(8,3H),5.13(8,2H),6.86(8,1H),7.20-
1-400	7.24(m,211),7.37-7.46(m,4H),7.65-7.70(m,3H),7.89(d,J=2.1Hz,1H)
	IR(CHCl ₃)3032,2940,1728,1473,1373,1232,1179,1150,1085cm ⁻¹
	amorphous .
1 461	111NMR(CDCL ₃) & 3.78(8,6H),5.16(8,2H),5.31(d,J=3.6Hz,1H),5.72(8,1H),6.91(8,1H),6.94(6,1H),6.99(d,J=8.2Hz,1H),7.04(t,J=
101:-1	8.6Hz,1H),7.08(dd,J=8.2,2.1Hz,1H),7.22(d,J=2.1Hz,1H),7.25(ddd,J=8.6,1.8,0.9Hz,1H),7.34-7.46(m,6H)
	IR(CHCl ₃)3577,3548,1526,1495,1280,1635cm ⁻¹
	m.p.163-166°C
1 460	1HNMR(CDCl ₃) δ 3.12(s,3H),3.26(s,3H),3.80(s,3H),3.81(s,3H),5.18(s,2H),6.91(s,1H),6.94(s,1H),7.12(d,J=8.4Hz,1H),7.36-7.
704-1	50(m,8H),7.59(d,J=1.8Hz,1H)
	IR(CHCl ₃)1494,1367,1212,1180,1116,872,808cm ⁻¹

Table 94

1-463	m.p.125-127°C HINMR(CDCL3) & 1.77(s,3H),1.82(s,3H),3.23(s,3H),3.27(s,3H),3.80(s,3H),3.82(s,3H),4.64(d,J=6.7Hz,2H),5.51(t,J=6.7Hz,1H 1-463),6.91(s,1H),6.95(s,1H),7.06(d,J=8.7Hz,1H),7.37(dd,J=8.7,1.9Hz,1H),7.40-7.47(m,2H),7.50(d,J=2.4Hz,1H),7.57(d,J=1.9Hz,1H 11) 1R(KBr)1523,1496,1370;1213,1175,1116,1035,977,832,807cm '
1.464	m.p. 149-151°C HINMIR(CEDCE) & 1.69(s, 311), 1.74(s, 311), 2.55(q, J=7.011z, 211), 3.21(s, 311), 3.26(s, 311), 3.80(s, 311), 3.81(s, 311), 4.07(t, J=7.0Hz, 2H), 5.21(t, J=7.011z, 111), 6.91(s, 111), 6.94(s, 111), 7.05(d, J=8.411z, 111), 7.37(dd, J=8.4, 2.11tz, 111), 7.40-7.47(m, 2H), 7.50(d, J=2.11tz, 1 H), 7.57(d, J=2.11tz, 111) IR(KBr) 1523, 1495, 1368, 1212, 1176, 1116, 1035, 976, 832, 806cm ⁻¹
1-465	m.p.148-150°C !HNMR(CDCl ₃) & 2.38(s,3H),3.11(s,3H),3.26(s,3H),3.80(s,3H),3.81(s,3H),5.13(s,2H),6.91(s,1H),6.94(s,1H),7.12(d,J=8.4Hz, 1H),7.22(d,J=7.8Hz,2H),7.35(d,J=7.8Hz,2H),7.37(dd,J=8.4,1.8Hz,1H),7.40-7.50(m,3H),7.59(d,J=1.8Hz,1H) IR(KBr)1523,1490,1370,1181,1115,971,868,806cm ⁻¹
1.466	m.p.109-112°C 'HNMR(CDCl ₃) δ 1.76(s,3H),1.82(s,3H),3.79(s,6H),4.62(d,J=6.9Hz,2H),5.26(d,J=3.9Hz,1H),5.52(t,J=6.9Hz,1H),5.72(s,1H), 6.91(s,1H),6.93(d,J=8.6Hz,1H),6.94(s,1H),7.04(t,J=8.7Hz,1H),7.07(dd,J=8.6,2.1Hz,1H),7.19(d,J=2.1Hz,1H),7.25(ddd,J=8.7, 1.8,0.9Hz,1H),7.37(dd,J=12.0,1.8Hz,1H) 1.8,0.9Hz,1H),7.37(dd,J=12.0,1.8Hz,1H)

	amorphous HINMR(CI)Cl ₃) & 2.39(s,3H),3.79(s,6H),5.11(s,2H),5.40(brs,1H),5.73(s,1H),6.91(s,1H),6.94(s,1H),6.99(d,J=8.4Hz,1H),7.04(
1-467	t, J=8.711z, 111), 7.08(dd, J=8.4, 2.111z, 111), 7.21(d, J=2.111z, 111), 7.23(d, J=7.711z, 211), 7.25(ddd, J=8.7, 2.1, 1.21z, 111), 7.34(d, J=7.71z, 111), 7.34(
	Hz,21l),7.37(dd,J=11.7,2.1Hz,1H)
	[R(CHCh.)3577,3545,1526,1495,1280,1055,1035,868cm ⁻¹
	amorphous .
	$HINMR(\mathrm{CDCl}_3) \ \delta = 1.69(8,311), 1.75(8,311), 2.53(q, J=7.011z, 211), 3.78(8,311), 3.79(8,311), 4.07(t, J=7.211z, 211), 5.22(t, J=7.011z, 111), 1.011z, 111, 1.011z, 1.011z, 111, 111, 111, 111, 111, 111, 111,$
1-468	5.27(d,J=3.911z,111),5.71(s,1H),6.91(s,111),6.91(d,J=8.6Hz,1H),6.94(s,1H),7.04(t,J=8.4Hz,1H),7.06(dd,J=8.6,2.1Hz,1H),7.19
_	(d,J=2.1Hz,1H),7.25(ddd,J=8.4,1.9,1.1Hz,1H),7.37(dd,J=12.0,1.9Hz,1H)
	IR(CHCl ₃)3578,1526,1495,1280,1055,1035cm ⁻¹
<u> </u>	m.p.190-191°C
	1HNMR(CDCl.1) 6 2.38(9,3H),3.11(9,3H),3.19(9,3H),3.80(9,6H),5.13(9,2H),6.92(9,1H),6.94(9,1H),7.12(d,J=8.7Hz,1H),7.22(d,
1-409	J=7.8Hz,1H),7.32-7.37(m,4H),7.49(dd,J=2.1,8.4Hz,1H),7.59(d,J=1.8Hz,1H),7.60-7.65(m,2H)
	IR(KBr)3600-2800(br),1521,1492,1468,1386,1366,1336,1292,1272,1259,1202,1174,1150,1113cm ⁻¹
	m.p.147-148°C
	1HNMR(CDCl ₃) δ 2.37(8,3H),3.19(8,3H),3.79(8,3H),3.80(8,3H),5.16(8,2H),6.92(8,1H),6.93(8,1H),7.06(t,J=8.7Hz,1H),7.20-7.2
1.470	7(m,311),7.32-7.41(m,5H),7.60-7.64(m,2H)
1	IR(KBr)3600-2800(br), 1523, 1492, 1462, 1454, 1379, 1359, 1278, 1264, 1210, 1175, 1151, 1129, 1054, 1031, 1009cm ⁻¹
-	m.p.170-172°C
	1HNMR(CDCl ₃) δ 3.19(8,3H),3.24(8,3H),3.79(8,3H),3.80(8,3H),5.12(8,2H),6.92(8,1H),6.94(8,1H),7.11(d,J=8.7Hz,1H),7.26-7.
1.4.1	30(m,2H),7.32-7.37(m,2H),7.47(dd,J=2.4,8.4Hz,1H),7.61-7.64(m,3H),7.74-7.80(m,1H),8.61-8.63(m,1H)
	IR(KBr)3600-2800(br), 1522,1491,1462,1361,1296,1264,1212,1177,1149,1115,1030cm ⁻¹

Table 96

m.p.174-175 C HINMR(CDCL;) & 3.19(s,311),3.79(s,311),3.80(s 1-472 12-7.37(m,211),7.41(dd,J=1.8,12.61fz,111),7.60 11R(KBr)3600-2800(br),1524,1491,1464,1380,1 11,6.91(s,111),6.93(s,111),7.02(t,J=8.711z,111),7 11R(KBr)3600-2800(br),1625,1527,1491,1461,1 11.6.91(s,111),6.93(s,111),7.02(t,J=8.711z,111),7 11R(KBr)3600-2800(br),1625,1527,1491,1461,1 11.474 1.6.93(s,111),6.94(s,111),7.03(t,J=8.41z,111),7.26 11NMR(CDCL;) & 1.77(s,311),1.81(s,311),3.80(s,111),6.94(s,111),7.03(t,J=8.71tz,111),7.26-7.31(m,110),7.26-7.31(m,	
	$ \text{HINMR(CDCL}_3) \ \delta \ 3.19(\text{s},311), 3.79(\text{s},311), 3.80(\text{s},311), 5.33(\text{s},211), 6.92(\text{s},111), 6.93(\text{s},111), 7.07(\text{d},\text{J}=8.7\text{Hz},111), 7.23-7.28(\text{m},211), 7.07(\text{d},\text{J}=8.7\text{Hz},111), 7.23-7.28(\text{m},211), 7.23-7.28(\text{m},2$
	7.41(dd,J=1.8,12.6Hz,1H),7.60-7.64(m,3H),7.73-7.79(m,1H),8.60-8.63(m,1H)
	IR(KBr)3600-2800(br),1524,1491,1464,1380,1361,1302,1267,1209,1172,1149,1130,1034,1024,1008cm ⁻¹
	$+ HNMR(CDCh_3) \delta - 1.77(8,3H), 1.80(d_1J=0.9Hz_3H), 3.78(8,3H), 3.79(8,3H), 4.63(d_1J=6.9Hz_2H), 5.52-5.57(m,1H), 6.73-6.78(m,2H), 6.73-6.78$
	H),6.91(s,1H),6.93(s,1H),7.02(t,J=8.7Hz,1H),7.26-7.30(m,1H),7.35-7.43(m,3H)
	IR(KBr)3600-2800(br), 1625, 1527, 1491, 1461, 1449, 1378, 1298, 1279, 1259, 1207, 1184, 1125, 1055, 1031cm ⁻¹
	$^{1}HNMR(CDCl_{3}) \delta \ 1.77(s,3H),1.81(s,3H),3.08(s,3H),3.80(s,3H),3.81(s,3H),4.64(d,J=6.6Hz,2H),5.52-5.58(m,1H),6.43(brs,1H) \\ + \frac{1}{2} (1.5) \delta (1$
	,6.93(s,1H),6.94(s,1H),7.03(t,J=8.4Hz,1H),7.26-7.30(m,3H),7.37(dd,J=1.8,12.6Hz,1H),7.57-7.61(m,2H)
	IR(KBr)3600·2800(br), 1526, 1495, 1463, 1382, 1325, 1300, 1267, 1210, 1156, 1139, 1129, 1054, 1032cm ⁻¹
	1111 HINMR (CDC)3, 5 1.77(8,3H), 1.81(8,3H), 3.80(8,6H), 4.64(d, J=6.6Hz,2H), 4.73(brs,2H), 5.53-5.57(m,1H), 6.51(brs,1H), 6.93(s,1
	.03(t,J=8.7Hz,1H),7.26-7.31(m,3H),7.37(dd,J=2.1,12.6Hz,1H),7.57-7.61(m,2H)
	IR(KBr)3600-2800(br),1527,1495,1462,1395,1326,1299,1264,1208,1170,1130,1054,1031cm ⁻¹
94(s,1H),7.03(t	1000000000000000000000000000000000000
	,J=8.4Hz,1H),7.20(brs,1H),7.26-7.30(m,1H),7.37(dd,J=2.1,12.6Hz,1H),7.56(m,4H)
IR(KBr)3600·2800(br),1666,1604,1627,1494,1.	IR(KBr)3600-2800(br), 1666, 1604, 1627, 1494, 1463, 1448, 1379, 1317, 1299, 1264, 1209, 1130, 1055, 1032cm ⁻¹

Table 97

m.p.200-202°C HINMR(CDC1 ₃ +CD ₃ OD) & 1.77(s,3H), 1.81(s,3H), 3.79(s,3H), 3.80(s,3H), 4.64(d,J=6.6Hz,2H), 5.52-5.57(m,1H), 6.93(s,1H), 6.9 4(s,1H), 7.03(t,J=9.0Hz,1H), 7.27-7.30(m,1H), 7.34-7.41(m,3H), 7.52-7.55(m,2H) HR(KBr)3600-2800(br), 2404, 1684, 1660, 1584, 1528, 1493, 1462, 1386, 1301, 1274, 1263, 1209, 1132, 1053, 1029cm ⁻¹ m.p. 195-196.5°C HINMRODEL A SECTION 3.78(s, 3H) 3.79(s, 3H) 4.85(s, 1H) 6.75(brs, 1H) 6.88-6.92(m, 2H) 6.92(s, 1H), 6.93(s, 1H), 7.31-7.3
1.196.5°C (2010) 3 1 55(e 911) 3 78(e 311) 3 79(e 311) 4 85(e 111) 6 75(hrs. 111) 6 88-6 92(m. 211) 6 92(e, 111) 6 93(e 111) 7.31-7.3
9(m,3H),7.45-7.49(m,2H),8.12(t,J=7.5Hz, H) IR(KBr)3600-2800(br),1729,1590,1531,1500,1464,1394,1261,1240,1199,1156,1055,1033,1023cm ⁻¹
m.p.172-174°C !HNMR(CDCl ₃) & 1.55(s,9H),3.19(s,3H),3.79(s,3H),3.80(s,3H),6.75(d,J=2.1Hz,1H),6.92(s,1H),6.94(s,1H),7.26-7.39(m,5H),7. 60-7.65(m,2H) IR(KBr)3600-2800(br),1728,1590,1531,1513,1494,1464,1391,1367,1352,1240,1206,1179,1145,1056,1033,1024cm ⁻¹
m.p. 152-153°C HINMR(CDCL ₃) & 1.74(s,311),1.77(s,311),3.18(s,311),3.78(d,J=9.911z,211),3.79(s,611),3.93(brs,111),5.35-5.40(m,111),6.75(t,J=8 .4Hz,111),6.91(s,111),6.95(s,111),7.24-7.36(m,411),7.60-7.65(m,211) IR(KBr)3600-2800(br),1630,1530,1488,1466,1380,1366,1346,1259,1213,1176,1149,1124,1054,1027cm ⁻¹
foam 'HNMR(CDCl ₃)
REPROSON SEM

Table 98

	m.p.201-203 C HINMR(CDCl ₃) & 2.45(s,3H),3.20(s,3H),3.82(s,6H),6.95(s,1H),6.98(s,1H),7.32-7.48(m,6H),7.61-7.66(m,2H),7.80-7.84(m,2H),8.10(d,J=3.3Hz,1H),8.55(d,J=8.4Hz,1H)
I	IR(KBr)3600-2800(br), 1671, 1592, 1524, 1494, 1388, 1366, 1328, 1265, 1207, 1172, 1160, 1052, 1024cm ¹
_	m.p.132-134°C
1.483	1HNMR(CDCl _{ii}) & 1.55(s,9H),3.00(s,6H),3.79(s,6H),6.73(d,J=2.4Hz,1H),6.81(m,2H),6.92(s,1H),6.96(s,1H),7.32-7.39(m,2H), 7.48-7 59(m, 2H),8.10,1=8.1Hz,1H)
	IR(KBr)3600-2800(br), 1728, 1610, 1591, 1533, 1499, 1459, 1446, 1381, 1365, 1238, 1206, 1159, 1055, 1030cm ⁻¹
	foam HINMR(CDCl ₃) & 1.74(s,3H),1.77(s,3H),3.00(s,6H),3.78(d,J=9.6Hz,1H),3.78(s,3H),3.79(s,3H),5.34-5.38(m,1H),6.75(t,J=8.4
	Hz, HH, 6.92(s, HH), 6.94(s, HH), 6.93-6.95(m, HH), 7.23-7.32(m, 3H), 7.48-7.52(m, 2H)
1	IK(N.BF)300U-200U(UF), 1023, 1011, 1031, 1434, 1440, 1000, 1010, 1201, 1201, 1003, 1003, 1003, 1003, 1003, 1003
	foam HINMR(CDCl3) & 2.40(8,311),3.00(8,611),3.76(8,311),3.77(8,3H),6.70(t,J=2.4Hz,1H),6.80(t,J=8.7Hz,2H),6.87(8,1H),6.94(8,1H
1-485),7.24-7.33(m,4H),7.46-7.50(m,2H),7.60(t,J=9.0Hz,1H),7.71-7.75(m,2H) 1R(KBr)3600-2800(br),1609,1529,1493,1446,1381,1340,1208,1164,1090,1054,1031cm ⁻¹
-	m.p.184-186°C HINMR(CDCh) & 2.45(a.3H), 3.01(s.6H), 3.80(a.3H), 3.81(a,3H), 6.82(d,J=7.5Hz,2H), 6.95(a,1H), 6.98(a,1H), 7.32(d,J=8.1Hz,2
I.486	H),7.40-7.52(m,4H),7.80-7.84(m,2H),8.08(d,J=2.7Hz,1H),8.52(t,J=8.4Hz,1H) IRKR-13600-28000hr) 1647 1608 1530 1497 1379 1365 1284 1267 1206 1051,1030cm ⁻¹

Table 99

1-487	foam HINMR(CDCB) & 2.36(8,3H),3.77(8,6H),4.81(brs,1H),6.69(dd,J=0.9,3.6Hz,1H),6.88-6.92(m,2H),6.94(8,1H),6.95(8,1H),7.23-7.26(m,2H),7.53(dd,J=1.5,8.4Hz,1H),7.59(d,J=3.6Hz,1H),7.73(d,J=0.9Hz,1H),7.80-7.84(m,2H),8.02(d,J=8.4Hz,1H) 4Hz,1H) 1R(KBr)3600-2800(br),1611,1594,1520,1498,1459,1444,1369,1259,1208,1170,1129,1092,1051,1028cm ⁻¹
1.488	m.p.219-220°C !IINMR(CDCI:) \$\partial 2.37(8,311),3.19(8,311),3.78(8,311),6.70(dd,J=0.9,3.6Hz,1H),6.94(8,1H),6.97(8,1H),7.24-7.27(m,2 H),7.32-7.37(m,2H),7.53(dd,J=1.8,8.7Hz,1H),7.60(d,J=3.6Hz,1H),7.61-7.66(m,2H),7.73(d,J=0.9Hz,1H),7.80-7.84(m,2H),8.0 3(d,J=8.7Hz,1H) IR(KBr)3600-2800(br),1513,1494,1464,1444,1373,1209,1173,1155,1122,1049cm ⁻¹
I-489	¹ HNMR(CDCl ₃) δ 3.79(s,3H),3.80(s,3H),3.94(s,3H),5.17(s,2H),5.71(s,1H),6.96(s,1H),6.97(s,1H),6.99(d,J=8.7Hz,1H),7.09(d.d,J=8.7&2.4Hz,1H),7.22(d,J=2.4Hz),7.26(s,1H),7.32.7.49(m,5H),7.66(d,J=8.7Hz,2H),8.09(d,J=8.7Hz,2H) 1R(KBr)3383,1702,1606,1489,1381,1291,1206,1111,1032,1002cm ⁻¹
1.490	"HINMIL(CDCL), \$\delta \text{ 3.12(4,3H), 3.79(4,3H), 3.81(4,3H), 3.95(4,3H), 5.18(4,2H), 6.96(4,2H), 7.12(d, J=8.4Hz, 1H), 7.31-7.53(m,6H), 7. 60(d, J=2.1Hz, 1H), 7.65(d, J=8.7Hz, 2H), 8.10(d, J=8.7Hz, 2H) \text{1.10} \te
1.491	'IINMR(CDCl ₃) ô 3.12(a,3H),3.80(a,3H),3.81(a,3H),5.18(a,2H),6.92(a,1H),6.96(a,1H),7.13(d,J=8.4Hz,1H),7.31·7.52(m,6H),7.70(d,J=2.1Hz,1H),7.66·7.77(m,4H) IR(KBr)3433,1685,1606,1509,1492,1372,1318,1264,1211,1183,1111,1055,1031cm ⁻¹
1.492	¹ HNMR(CDCl ₃) & 3.79(e,3H),3.80(e,3H),5.17(e,2H),5.71(e,2H),6.91(e,1H),6.97(e,1H),7.00(d,J=8.4Hz,1H),7.08(dd,J=8.4&2.4 Hz,1H),7.22(d,J=2.4Hz,1H),7.32-7.49(m,5H),7.70(e,4H) IR(KBr)3291,2242,1607,1579,1488,1384,1324,1272,1209,1130,1054,1001cm ⁻¹

Table 100

	"HNMR(CDCl ₃) \(\delta\) 3.12(8,3H),3.80(8,3H),3.81(8,3H),5.18(8,2H),6.92(8,1H),6.96(8,1H),7.12(d,J=8.4Hz,1H),7.31-7.72(m,6H),7.
1.493	-
-	IR(KB·)22223,1604,1490,1363,1296,1264,1213,1172,1117,1055,1036,1026cm ¹
	HINMR(CDC3) & 1.77(s,3H), 1.81(s,3H), 3.23(s,3H), 3.80(s,3H), 3.81(s,3H), 3.95(s,3H), 4.64(d,J=6.6Hz,2H), 5.51(t,J=6.6Hz,1H
1.494	$1.494 \ \).6.96(8,211),7.06(4,J=8.711z,111),7.50(4.4,J=8.7&2.111z,111),7.59(4,J=2.111z,111),7.65(4,J=8.711z,211),8.10(4,J=8.711z,211) \\ \ \ \ \ \ \ \ \ \ \ \ \ \$
	HKKBr)1720,1608,1508,1492,1384,1357,1273,1179,1110,1026,1019cm
	HINMIR(CDCLs) & 2.38(a,311),3.12(a,311),3.80(a,611),3.81(a,311),3.95(a,311),5.14(a,211),6.96(a,211),7.13(d,J=8.4Hz,111),7.21(d,
1.495	J=7.8Hz,2H),7.35(d,J=7.8Hz,2H),7.49(d.d,J=8.4&1.8Hz,1H),7.60(d,J=1.8Hz,1H),7.65(d,J=8.7Hz,2H),8.10(d,J=8.7Hz,2H)
	IR(KBr) 1697, 1607, 1492, 1364, 1286, 1263, 1213, 1178, 11115, 1057, 1030cm - 1
1.496	I-496 IR(KBr)1730,1701,1610,1515,1465,1359,1238,1186,1116,1082,1064,1016cm ⁻¹
	"HINMR(CDCl ₃) & 1.75(8,3H), 1.80(8,3H), 2.89(8,6H), 3.21(8,3H), 3.44(8,3H), 3.68(8,3H), 3.77(8,1H), 4.61(d,J=8.4Hz,2H), 5.49(t,J)
1 407	$= 8.4 \text{Hz}, 1 \text{H}), 6.92 (8,1 \text{H}), 7.01 (4, \text{J} = 8.4 \text{Hz}, 1 \text{H}), 7.25 \cdot 7.28 (\text{m}, 3 \text{H}), 7.33 (4, \text{J} = 2.1 \text{Hz}, 1 \text{H}), 7.52 (4 \text{d}, \text{J} = 8.4 \text{Rz}, 1 \text{H}), 7.66 (4, \text{J} = 2.4 \text{Hz}, \text{Hz}, \text{Hz}) = 1.4 \text{Hz}, 1 \text{Hz}, 1$
7.C.F1	H1
	IR(KBr)1727,1598,1515,1467,1360,1295,1258,1241,1116,1084cm-1
	1HNMR(CDCl3) δ 2.38(6,3H),2.89(8,6H),3.10(8,3H),3.44(8,3H),3.66(8,3H),3.77(8,3H),5.11(8,3H),6.93(8,1H),7.06-7.15(m,2H),
1.498	7.17-7.29(m,4H),7.31-7.37(m,3H),7.53(d.d,J=8.7&1.8Hz,1H),7.66(dJ=1.8Hz,1H)
	IR(KBr)1732,1701,1598,1518,1466,1352,1294,1121,1085,1060,1015cm ⁻¹
	1HNMR(CDCl ₃) 6 2.88(s,6H),3.44(s,3H),3.64(s,3H),3.77(s,3H),5.17(s,2H),5.65(s,1H),6.84(dd,J=8.1&2.1Hz,1H),6.92(s,1H),6
1.499	.95(d,J=8.1Hz,1H),7.01(d,J=2.1Hz,1H),7.12(d,J=8.4Hz,1H),7.31-7.46(m,6H),7.53(d,d,J=8.4&1.8Hz,1H),7.66(d,J=1.8Hz,1H)
	IR(KBr)3526,3434,1732,1598,1515,1460,1344,1260,1240,1222,1061,1013cm ⁻¹

	HNMR(CDCh) & 2.60(8,3H),3.43(8,3H),3.72(8,3H),3.75(8,3H),5.17(8,2H),5.67(8,1H),6.77(8,1H),6.94(dd,J=8.4&1.8Hz,1H),7
1.500	
	IR(KBr)1732,1719,1585,1521,1481,1403,1352,1289,1253,1225,1172,1073,1012cm ⁻¹
	1HNMR(CDCl3) 6 2.73(s,3H),3.12(s,3H),3.43(s,3H),3.72(s,3H),3.76(s,3H),5.19(s,2H),6.78(s,1H),7.15(d,J=8.4Hz,1H),7.31.7.
1-501	63(m, 10H), 9.96(d, J=6.6Hz, 1H)
	IR(KBr)1726,1609,1520,1480,1400,1371,1294,1262,1179,1075,1009cm '
	$ \text{HINMR}(\text{CDC13}) \ \delta \ \ 1.78(\text{s},3\text{H}), 1.81(\text{s},3\text{H}), 3.22(\text{s},3\text{H}), 3.48(\text{s},3\text{H}), 3.71(\text{s},3\text{H}), 3.77(\text{s},3\text{H})), 3.82(\text{s},3\text{H}), 4.66(\text{d},\text{J}=\text{6}.9\text{Hz},2\text{H}), 5.56(\text{t},\text{M}), 3.77(\text{s},3\text{H}), 3.82(\text{s},3\text{H}), 4.66(\text{d},\text{J}=\text{6}.9\text{Hz},2\text{H}), 5.56(\text{t},\text{M}), 3.77(\text{s},3\text{H}), 3.82(\text{s},3\text{H}), 4.66(\text{d},\text{J}=\text{6}.9\text{Hz},2\text{H}), 5.66(\text{t},\text{M}), 3.77(\text{s},3\text{H}), 3.82(\text{s},3\text{H}), 4.66(\text{d},\text{J}=\text{6}.9\text{Hz},2\text{H}), 5.66(\text{t},\text{M}), 3.77(\text{s},3\text{H}), 3.82(\text{s},3\text{H}), 4.66(\text{d},\text{J}=\text{6}.9\text{Hz},2\text{H}), 5.66(\text{t},\text{M}), 3.77(\text{s},3\text{H}), 3.82(\text{s},3\text{H}), 3.82(\text{s}$
1.502	J=6.9Hz, 111), 6.62(s, 111), 6.70(s, 111), 7.11(s, 111), 7.38(d, J=8.7Hz, 111), 7.69(d, J=8.7Hz, 111)
	IR(KBr)1699,1607,1587,1516,1468,1354,1216,1152,1067,1044,1004cm ⁻¹
	$^{1}\text{HINMR(CDCL:j)} \ \delta \ 1.78(8,3H), 1.81(8,3H), 3.21(8,3H), 3.78(8,3H), 3.72(8,3H), 3.74(8,3H), 3.82(8,3H), 4.33(4,J=11.7Hz,1H), 4.54(d), 3.11(1.21,1.21,1.21,1.21,1.21,1.21,1.21,1$
	.J=11.711z,111),4.65(d,J=8.411z,111),5.57(t,J=8.411z,111),6.68(s,111),6.69(s,111),6.89(s,111),7.38(d,J=8.711z,211),7.73(d,J=8.711z,111)
600-T	z,2H)
	IR(KBr)3530,1609,1515,1467,1356,1214,1174,1151,1075,1039,1004cm ⁻¹
	$111NMR(CIDCI_3) \delta -1.77(4,311), 1.80(4,311), 3.22(4,311), 3.45(4,311), 3.75(4,311), 3.77(4,311), 3.81(4,311), 4.62(4,J=6.9Hz,211), 5.55(t,J=6.9Hz,211), 5.$
1.504	=6.9Hz,1H),6.64(s,1H),6.77(s,1H),6.97(s,1H),7.39(d,J=8.7Hz,2H),7.72(d,J=8.7Hz,2H)
	IR(KBr)3431,1735,1706,1609,1514,1474,1367,1206,1176,1150,1055,1039cm ⁻¹
	'HNMR(CDCl ₃) & 1.77(s, 3H), 1.80(s, 3H), 2.94(broad, 1H), 3.47(s, 3H), 3.72(s, 3H), 3.73(s, 3H), 3.81(s, 3H), 4.32(s, 1H), 4.36(s, 1H), 4.
1-505	.65(d, J=6.6Hz, 2H), 5.34(s, 1H), 5.57(t, J=6.6Hz, 1H), 6.69(s, 1H), 6.70(s, 1H), 6.89(s, 1H), 6.91(d, J=8.1Hz, 2H), 7.55(d, J=8.1Hz, 2H)
	IR(KBr)3466,1610,1517,1475,1463,1386,1265,1215,1170,1147,1075,1042,1007cm ⁻¹
	1HNMR(CDCl ₃) δ 1.76(s,3H),1.79(s,3H),3.44(s,3H),3.74(s,3H),3.76(s,3H),3.80(s,3H),4.63(d,J=7.2Hz,2H),5.30(s,1H),5.49-
1.506	5.60 (m, 1H), 6.63(e,1H),6.78(e,1H),6.94(d,J=8.7Hz,2H),6.97(e,1H),7.54(.d,J=8.7Hz,2H)
	IR(KBr)3382, 1726, 1699, 1611, 1519, 1470, 1206, 1174, 1143, 1074, 1056, 997cm ⁻¹

Table 102

	HNMR(CDC)33 & 1.77(8,311), 1.79(8,314), 3.41(8,311), 3.60(8,311), 3.74(8,314), 3.77(8,314), 3.81(8,314), 4.63(d,J=6.9Hz,2H),
1.507	4.74-5.02 (brond, 1H), 5.52-5.60(m,1H), 6.63(s,1H), 6.75(s,1H), 6.91(d, J=8.7Hz,2H), 6.94(s,1H), 7.54(d, J=8.7Hz,2H)
	[R(KBr)3423,1734,1612,1520,1475,1441,1395,1337,1267,1215,1173,1140,1017,cm ⁻¹
	$HINMR(CDCR_3) \ \delta \cdot 3.21(8,311), 3.45(8,311), 3.73(8,311), 4.41.4.62(m,211), 5.16(8,211), 5.71(8,111), 6.79(d,d,J=8.1\&2.1Hz,111), 6.84(8,211), 6.8$
1.508	,1H),6.92(d,J=2.1Hz,1H),7.01(d,J=8.1Hz,1H),7.32-7.50(m,7H),7.71(d,J=8.4Hz,2H)
	IR(KBr)3496,3255,1607,1590,1528,1473,1464,1358,1247,1147,1071,1017cm ⁻¹
	111111111111111111111111111111111111
609-1	85(8,111),6.89(d,J=2.1Hz,1H),6.97(d,J=8.1Hz,1H),7.29.7.51(m,7H),7.71(d,J=8.7Hz,2H)
	1R(KBr)3412,1603,1586,1515,1464,1364,1242,1175,1151,1081,1020,1006cm ⁻¹
	$HNMR(\mathrm{CDCl_3}) \ \delta \ 1.76(s,3H), 1.80(s,3H), 3.22(s,3H), 3.45(s,3H), 3.73(s,3H), 3.87(s,3H), 4.52(s,2H), 4.64(d,J=6.6Hz,2H), 5.57(t,J=1)$
1.510	=6.6H1z,1H1),6.83(dd,J=7.5&1.2Hz,1H),6.86(d,J=1.2Hz,1H),6.96(d,J=7.5Hz,1H)
	1R(KBr)3433,1598,1579,1517,1469,1372,1244,1221,1174,1149,1072,1017cm ⁻¹
	1HNMR(CDCl ₃) & 2.36(8,3H),3.21(8,3H),3.45(8,3H),3.72(8,3H),3.88(8,3H),4.50(8,2H),5.16(8,2H),6.80(dd,J=8.1&2.1Hz,1H),6
1.511	.85(s,1H),6.88(d,J=2.1Hz,1H),6.97(d,J=8.1Hz,1H),7.20(d,J=8.4Hz,2H),7.33-7.42(m,4H),7.71(d,J=8.4Hz,2H)
	IR(KBr)3502,1604,1510,1465,1383,1360,1266,1239,1227,1147,1071,1008cm ⁻¹
	HNMR(CDCl3) & 3.45(8,3H), 3.72(8,3H), 3.89(8,3H), 4.48(8,2H), 5.20(8,2H), 6.81(dd, J=8.1&2.1Hz,1H), 6.86(8,1H),6.88-
1.512	6.99 (m, 4H), 7.27-7.43 (m, 3H), 7.46-7.54(m, 4H)
	IR(KBr)3528,1610,1591,1617,1474,1461,1438,1388,1263,1239,1173,1140,1017,cm ⁻¹
	HNMR(CDCl3) & 1.75(8,3H),1.79(8,3H),2.47(broads,1H),3.45(8,3H),3.73(8,3H),3.86(8,3H),4.52(8,2H),4.63(d,J=6.6Hz,2H),5.
1.513	16(s,1H),5.56(d,J=6.6Hz,1H),6.82-6.97(m,6H),7.53(d,J=9.0Hz,2H)
	IR(KBr)3477,3246,1609,1586,1618,1464,1439,1387,1266,1240,1221,1173,1141,1079,1011,1002cm ⁻¹

Table 103

1-514	¹ HNMR(CDCE) & 2.36(s,3H), 2.48(broad,1H), 3.44(s,3H), 3.72(s,3H), 3.88(s,3H), 4.50(s,2H), 5.16(s,3H), 6.76-6.98(m,6H), 7.19 (d, J=7.8Hz, 2H), 7.36(d,J=7.8Hz,2H),7.52(d,J=8.7Hz,2H) [1.19 (d, J=7.8Hz, 2H), 7.36(d,J=7.8Hz,2H),7.52(d,J=8.7Hz,2H) [1.18 (Klbr)3544,3239,1614,1593,1519,1463,1386,1266,1240,1218,1173,1139,1074,1010cm ⁻¹
1.515	m.p. 159-160°C HINMR(CDCL ₃) & 3.19(8,3H),3.34(8,3H),3.79(8,3H),5.18(ABq,J=12.3Hz,2H),6.92(8,1H),6.93(8,1H),7.08(d,J=8.7H z,1H),7.33-764(m,1HH) HR(KBr)3433,2937,1694,1520,1492,1369,1288,1243,4211,1176,1150,1100cm.
1.516	HINMR(CDCh) & 2.91(s,3H),3.777(s,3H),3.783(s,3H),4.85(brs,1H),5.12(s,2H),6.87-7.00(m,7H),7.32-7.50(m,7H) HR(KBr)3432,2938,1609,1590,1525,1494,1380,1254,1207,1174,1152,1058,1031cm ⁻¹
I-617	m.p.213-215°C !HNMR(CDCl ₃) & 2.99(s,3H),3.779(s,3H),3.804(s,3H),4.86(brs,1H),5.16(s,2H),6.83(brs,1H),6.93(s,1H),6.94(s,1H),7.06(d,J= 8.7Hz,1H),7.35(dd,J=2.1,8.7Hz,1H),7.41-7.49(m,7H),7.81(d,J=2.1Hz,.1H) IR(KBr)3409,3374,1610,1525,1491,1371,1321,1251,1208,1145,1120,1037cm ⁻¹
1.518	powder ¹ HNMR(CDCl ₃) & 1.75(s, 3H), 1.81(s, 3H), 2.84(s, 3H), 3.21(s, 3H), 3.22(s, 3H), 3.55(s, 3H), 3.79(s, 3H), 3.93(s, 3H), 4.67(d, J=7.2Hz, ² 2H), 5.59(m, 1H), 6.85(s, 1H), 7.36-7.42(m, 2H), 7.62(d, J=2.1Hz, 1H), 7.65-7.70(m, 2H), 7.86(d, J=2.1Hz, 1H) ¹ IR(CHCl ₃)3026, 2940, 1728, 1510, 1473, 1373, 1179, 1150, 1086cm ⁻¹
1-519	powder ¹ HINMR(CDCl ₃) & 1.69(s,3H),1.74(s,3H),2.52-2.61(m,2H),2.86(s,3H),3.20(s,3H),3.21(s,3H),3.55(s,3H),3.79(s,3H),3.93(s,3H), ⁴ .21(t,J=6.9Hz,2H),5.26(m,1H),6.86(s,1H),7.36-7.42(m,2H),7.62(d,J=2.1Hz,1H),7.65-7.70(m,2H),7.86(d,J=2.1Hz,1H) ¹ IR(CHCl ₃)3024,2939,1729,1511,1475,1447,1373,1179,1150,1085cm ⁻¹

Table 104

1.520	powder HINMR(CDCh.) & 2.84(s.3H), 3.21(s,3H), 3.22(s,3H), 3.56(s,3H), 3.81(s,3H), 3.88(s,3H), 5.30(s,2H), 6.86(s,1H), 7.26-7.32(m,1H), 7.37-7.42(m,2H), 7.65-7.72(m,4H), 7.76-7.83(m,1H), 7.92(d,J=2.1Hz,1H), 8.60-8.63(m,1H) HR(KB+33434.3019.9940.1730.1511.1474.1967.1178.1161.1089
1-621	
1-522	m.p.240-243°C 'HNMR(CDCla+CDaOD) & 3.44(s,3H),3.75(s,3H),5.31(s,2H),6.46(s,1H),6.89-6.95(m,2H),7.30-7.31(m,1H),7.35-7.42(m,2H),7 -47-7.53(m,2H),7.56(d,J=2.4Hz,1H),7.79-7.86(m,1H),8.65-8.68(m,1H) IR(KBr)3411,2937,1683,1611,1521,1406,1230,1115,1082,1026cm ⁻¹
1-523	m.p.136-137°C !IINMR(CDCl ₃) & 2.25(s,311),2.29(s,311),3.12(s,311),3.20(s,311),5.18(s,211),7.11(s,111),7.14(s,111),7.23-7.51(m,1211) !R(KBr)1518,1488,1357,1263,1170,1150,1110,970,873,848,809cm ⁻¹
1.524	m.p.121·122°C ¹ HNMR(CDCl ₃) & 1.77(s, 3H), 1.82(s, 3H), 2.25(s, 3H), 2.29(s, 3H), 3.20(s, 3H), 3.23(s, 3H), 4.64(d, J=6.6Hz, 2H), 5.52(t, J=6.6Hz, 1H), 7.06(d, J=8.411z, 1H), 7.11(s, 1H), 7.14(s, 1H), 7.24(d, J=2.1Hz, 1H), 7.31·7.45(m, 5H) ¹ R(KBr)1518, 1487, 1363, 1170, 1160, 1108, 970, 869, 848, 808cm ⁻¹
1-525	m.p.149-151℃ !HNMR(CDCl ₃) δ 1.77(s,3H),1.83(d,J=0.6Hz,3H),2.26(s,3H),2.28(s,3H),4.62(d,J=6.9Hz,2H),4.80(s,1H),5.53(m,1H),5.72(s,1 H),6.82(dd,J=2.1,8.4Hz,1H),6.85-6.94(m,3H),6.96(d,J=2.1Hz,1H),7.10(s,1H),7.12(s,1H),7.21-7.28(m,2H) IR(KBr)3521,3395,1612,1584,1522,1490,1457,1285,1263,1242,1200,1170,1125,1014,834cm ⁻¹

Table 105

5
10
15
20
25
30
35
40
45

50

55

1-526	foam HINMR(CDCha) & 2.43(8,3H),2.76(8,3H),2.90(8,3H),3.22(8,3H),3.56(8,3H),3.80(8,3H),5.30(8,2H),6.28(t,J=3.3Hz,1H),6.42(dd,J=3.3,1.6Hz,1H),6.85(8,1H),7.12,(d,J=8.4Hz,1H),7.32(d,J=8.7Hz,2H),7.34~7.37(m,2H),7.39(d,J=8.7Hz,2H),7.40(d,J=1.8Hz,1H),7.69(d,J=8.7Hz,2H),7.78(d,J=8.7Hz,2H) HR(Nujol)1608,1597,1519,1480,1464,1176,1152,1087,972,875,817,798cm ⁻¹
1.527	foam HINMR(CDCh ₃) δ 2.96(8,3H),3.21(8,3H),3.37(8,3H),3.52(8,3H),3.77(8,3H),5.58(8,2H),6.84(8,1H),7.19(d,J=8.4Hz,1H),7.24~7.28(m,4H),7.31,(dd,J=8.4,1.8Hz,1H),7.33(d,J=1.8Hz,1H),7.38(d,J=8.7Hz,2H),7.67(d,J=8.7Hz,2H) IR(Nujol)1664,1609,1519,1480,1457,1176,1151,1079,970,947,876,798,748cm ⁻¹
1.528	foam 'HNMR(CDCI3) & 2.73(s,3H),2.94(s,3H),3.21(s,3H),3.33(t,J=6.3Hz,2H),3.55(s,3H),3.77(s,3H),4.55(t,J=6.3Hz,2H),6.83(s,1H) 1-528),7.14(d,J=8.1Hz,1H),7.18(brdd,J=7.8,5.1Hz,1H),7.33(brd,J=7.8Hz,1H),7.35(dd,J=8.1,1.8Hz,1H),7.37(d,J=1.8Hz,1H),7.38(d,J=8.7Hz,2H),7.65(m,1H),7.67(d,J=8.7Hz,2H),8.56(brd,J=5.1Hz,1H)
1.529	m.p.203-205 °C HNMR(DMSO-dc) δ 2.42(s,3H),2.80(s,3H),3.45(s,3H),3.51(s,3H),3.56(s,3H),3.78(s,3H),5.36(s,2H),7.07(s,1H),7.23(s,1H),7.2 6~7.28(m,3H),7.48,(d,J=8.7Hz,2H),7.74(d,J=8.7Hz,2H) IR(Nujol)1599,1518,1480,1466,1176,1081,1013,976,870,830,797,755cm ⁻¹
1.530	foam ¹HNMR(CD₃OD) & 3.38(s,3H),3.68(s,3H),5.41(s,2H),6.44(s,1H),6.82(dd,J=8.4,2.1Hz,1H),6.85(d,J=8.7Hz,2H),6.93(d,J=2.1H z,1H),7.06(d,J=8.4Hz,1H),7.27(m,2H),7.46(d,J=8.7Hz,2H),7.60(m,2H) IR(Nujol)3304,161,1590,1522,1488,1458,1254,1115,1074,1046,1014,942,825,745cm ⁻¹

Table 106

.

	m.p.159-162°C
- 1	$^{\rm HNMR(DMSO-d_6)} \ \delta \ 2.92 (s, 311), 3.41 (s, 311), 3.45 (s, 311), 3.52 (s, 311), 3.79 (s, 311), 5.33 (s, 211), 7.09 (s, 111), 6.82 \\ \sim 7.45 (m, 311), 7.49 (d, 211), 2.45 (m, 311), 2.45 (m, 311), 3.45 (m, 311),$
56-	,J=9.011z,211),7.75(d,J=9.0Hz,211)
	IR(Nujol)1604,1519,1481,1469,1235,1171,1154,1085,1012,967,874,849,798cm ⁻¹
	m.p.214-216°C
-	$^{4} \text{HINMR}(\text{DMSO-d}_6) \ \delta \ 2.84(\text{s}, 3\text{H}), 3.42(\text{s}, 3\text{H}), 3.45(\text{s}, 3\text{H}), 3.52(\text{s}, 3\text{H}), 3.73(\text{s}, 3\text{H}), 3.79(\text{s}, 3\text{H}), 4.99(\text{s}, 2\text{H}), 7.08(\text{s}, 1\text{H}), 7.24(\text{dJ}=9.3\text{H}), 3.79(\text{s}, 3\text{H}), 4.99(\text{s}, 2\text{H}), 7.98(\text{s}, 1\text{H}), 7.24(\text{dJ}=9.3\text{H}), 3.79(\text{s}, 3\text{H}), 4.99(\text{s}, 2\text{H}), 7.98(\text{s}, 1\text{H}), 7.24(\text{dJ}=9.3\text{H}), 3.79(\text{s}, 3\text{H}), 3.79(\text{s},$
79:9:-	z,111),7.29(dd,J=9.3,1.811z,111),7.30(d,J=1.811z,111),7.48(d,J=8.711z,211),7.74(d,J=8.711z,211)
	IR(Nujol)1767,1606,1521,1481,1463,1216,1175,1151,1080,1013,977,946,878,821,798cm ⁻¹
	m.p.225-227°C
6	'HNMR(DMSO-d _{ii}) & 2.86(8,3H),3.45(8,3H),3.46(8,3H),3.52(8,3H),3.78(8,3H),4.46(8,2H),7.08(8,1H),7.20(d,J=8.4Hz,1H),7.28
666-1	-7.32(m,211),7.48(d,J=8.711z,2H),7.74(d,J=8.711z,2H)
	IR(Nujol)3340,1677,1619,1519,1477,1463,1443,1176,1150,1088,971,871,829,794cm ⁻¹
	foam
20	111NMR(DMSO-d ₆) & 2.96(9,3H), 3.45(8,3H), 3.47(8,3H), 3.52(8,3H), 3.79(8,3H), 4.64(8,2H), 7.08(8,1H), 7.18(d,J=8.4Hz,1H), 7.31
1-0-1	(dd,J=8.4,1.8112,1H),7.34(d,J=1.8Hz,1H),7.48(d,J=8.7Hz,2H),7.74(d,J=8.7Hz,2H)
	IR(Nujol)3464,3362,1693,1606,1520,1481,1176,1151,1080,876,822,799cm ⁻¹
	m.p.163-165°C
	1HNMR(CDCl ₃) δ 2.73(8,3H),3.16(8,3H),3.21(8,3H),3.55(8,3H),3.78(8,3H),4.85(ddd,J=1.5,1.5,5.4Hz,2H),5.25(8,2H),5.31,(dd
1.535	d,J=1.5,3.0,10.5,Hz,1H),5.43(ddd,J=1.5,3.0,17.1Hz,1H),6.05(ddd,J=5.4,10.5,17.1Hz,1H),6.84(e,1H),7.11(d,J=8.7Hz,1H),7.3
	4(dd,J=2.1,8.7Hz,1H),7.38(d,J=8.4Hz,2H),7.41(d,J=2.1Hz,1H),7.56(d,J=8.4Hz,2H),7.67(d,J=8.4Hz,2H),8.11(d,J=8.4Hz,2H)
	IR(KBr)1718,1612,1519,1481,1365,1273,1177,1151,1119,1080,1015,969,876cm ⁻¹

	m.p.115-117°C
	1HNMR(CDCL3) δ 2.68(s,3H),3.13(s,3H),3.21(s,3H),3.55(s,3H),3.68(s,2H),3.78(s,3H),4.61(ddd,J=1.5,1.5,5.7Hz,2H),5.17(s,2
202	11), 5.23, (ddd, J=1.5, 3.0, 10.5, Hz, 111), 5.28(ddd, J=1.5, 3.0, 16.8Hz, 111), 5.91(ddd, J=5.7, 10.5, 16.8Hz, 111), 6.84(e, 111), 7.13(d, J=8.4
000-1	Hz, 111), 7.33(d, J=8.1 Hz, 211), 7.34(dd, J=2.1,8.4 Hz, 1 H), 7.38(d, J=8.4 Hz, 2 H), 7.40(d, J=2.1 Hz, 1 H), 7.42(d, J=8.1 Hz, 2 H), 7.68(d, J=8.1 Hz, 2 H
	=8.4Hz,2H)
	IR(KBr)1734,1609,1520,1481,1365,1236,1177,1151,1119,1079,970,876,797cm ⁻¹
	m.p.227-229%
	"HNMR(CDCU.) & 2.73(s,3H),3.16(s,3H),3.21(s,3H),3.54(s,3H),3.77(s,3H),5.26(s,2H),6.83(s,1H),7.11(d,J=12.3Hz,2H),7.32(s,
/56-1	,1H),7.37(d,J=12.3Hz,2H),7.41(s,1H),7.57(d,J=12.3Hz,1H),7.66(d,J=12.3Hz,2H),8.13(d,J=12.3Hz,2H)
	IR(KBr)3430,1694,1612,1519,1481,1365,1177,1151,1079,875,798cm ⁻¹
	m.p.149-151°C
002	1HNMIR(CDCl ₃) δ 2.66(8,3H),3.13(8,3H),3.21(8,3H),3.55(8,3H),3.68(8,2H),3.77(8,3H),5.17(8,2H),6.84(8,1H),7.13(d,J=8.4Hz,
000-1	1H),7.30-7.55(m,4H),7.38(d,J=8.4Hz,2H),7.67(d,J=8.4Hz,2H),7.67(m,2H)
	IR(KBr)3423,1716,1610,1519,1481,1365,1235,1177,1161,1119,1080,876,798cm ⁻¹
	m.p.144-146°C
	1HNMR(CDCl ₃) δ 2.32(8,3H), 2.69(8,3H), 3.14(8,3H), 3.21(8,3H), 3.56(8,3H), 3.78(8,3H), 5.18(8,2H), 6.84(8,1H), 7.14(d, J=8.7Hz,
I-539	2H), 7.15(d, J=8.4Hz, 1H), 7.34(dd, J=2.1, 8.4Hz, 1H), 7.38(d, J=8.4Hz, 2H), 7.40(d, J=2.1Hz, 1H), 7.48(d, J=8.7Hz, 2H), 7.67(d, J=8.4Hz, 2H), 7.67(d, J=8
	Hz,2II)
	IR(KBr)1760,1519,1481,1365,1177,1151,1119,1079,876,797cm ⁻¹
	m.p.228-231°C
67.2	1 HNMR(CDCl ₃) δ 2.81(e,3H),3.20(e,3H),3.21(e,3H),3.55(e,3H),3.78(e,3H),5.30(e,2H),6.85(e,1H),7.11(d,J=8.4Hz,1H),7.35(dd
050-1	,J=2.1,8.4Hz,1H),7.39(d,J=8.4Hz,2H),7.41(d,J=2.1Hz,1H),7.67(d,J=8.4Hz,2H),7.69(d,J=8.7Hz,2H),8.28(d,J=8.7Hz,2H)
	IR(KBr)1608,1521,1481,1361,1179,1148,1080,880,799cm ⁻¹

`

	m.p.153-156°C
	$HINMR(CDC3.) \ \delta -1.53(s,9H), 2.69(s,3H), 3.15(s,3H), 3.21(s,3H), 3.55(s,3H), 3.78(s,3H), 5.19(s,2H), 6.84(s,1H), 7.10(dd, J=7.5,7.)$
1-541	511z, 111),7.17(d,J=7.511z, 111),7.23(d,J=8.411z, 111),7.26(dd,J=7.5,7.511z, 111),7.33(d,J=7.511z, 111),7.37(dd,J=2.1,8.41z, 111),7.
	38(d,J=8.411z,2H),7.40(d,J=2.111z,1H),7.67(d,J=8.411z,2H)
	1R(KBr)3405,1724,1519,1480,1366,1236,1177,1153,1080,970,875,798cm ⁻¹
	m.p.178-182℃
1 7.40	111NMR(CDCE) & 2.70(8,3H),3.15(8,3H),3.21(8,3H),3.55(8,3H),3.78(8,3H),5.14(8,2H),6.76(m,2H),6.84(8,1H),7.19(m,2H),7.26
71.C-1	(d,J=8.7Hz,1H),7.37(d,J=2.7Hz,1H),7.36(dd,J=2.7,8.7Hz,1H),7.38(d,J=8.7Hz,2H),7.68(d,J=8.7Hz,2H)
	IR(KBr)3448, 1627, 1608, 1519, 1497, 1364, 1177, 1151, 1079, 971, 876, 798cm ⁻¹
	m.p.187.189℃
640	¹ HINMR(CDCl ₃) δ 2.38(s,3H),3.39(s,3H),3.45(s,3H),5.11·5.14(m,3H),5.89(s,1H),6.33(s,1H),6.88·6.94(m,2H),7.20·7.36(m,6H
040-1),7.43(d,J=2.1Hz,1H),7.76(d,J=0.6Hz,1H)
	IR(KBr)3414,2942,1613,1534,1469,1355,1266,1172,1092,1030cm ⁻¹
	m.p.207.215℃(dec.)
1 544	1HNMR(d6-D)MSO) & 2.37(8,3H),3.67(brs,2H),4.56(brs,2H),4.90(s,2H),6.14.6.20(m,2H),6.86(d,J=8.7Hz,2H),7.11-7.22(m,4H
F-10-1),7.42(d,J=8.7Hz,2H),7.62(s,1H),8.94(s,1H),9.47(s,1H)
	IR(KBr)3388,3301,2932,1612,1591,1521,1458,1413,1288,1030cm ⁻¹
	m.p.108-110°C
	11 IINMR(CDCl ₃) δ 1.69(8,3H),1.74(8,3H),249-2.59(m,2H),3.03(8,3H),3.20(8,3H),3.56(8,3H),3.75(8,3H),4.06(t,J=6.6Hz,2H),4.
1.545	93(8,2H),5.22(m,1H),6.66(8,1H),7.04(d,J=8.7Hz,1H),7.09-7.17(m,2H),7.37(dd,J=2.1,8.7Hz,1H),7.44(d,J=2.1Hz,1H),7.51.7.5
	8(m,2H)
	IR(KBr)3434,2933,1604,1521,1473,1383,1360,1278,1160,1121,1084,1017cm ⁻¹

	m.p.109-110°C
1	HINMR(CDCB) & 1.69(s,3H), 1.75(s,3H), 248-2.58(m,2H), 4.07(t,J=6.6Hz,2H), 5.22(m,1H), 5.69(s,1H), 5.87(s,1H), 6.44(s,1H), 6.
1.546	93-6.95(m,211),7.04-7.06(m,1H),7.10-7.18(m,2H),7.58-7.64(m,2H)
	IR(KBr)3411,2932,1608,1587,1522,1491,1226,1111,1074,1017cm ⁻¹
	m.p.141.142°C
	HINMR(CDCB) & 3.03(8,3H), 3.57(8,3H), 3.75(8,3H), 4.90(8,2H), 5.16(8,2H), 5.65(brs,1H), 6.66(8,1H), 6.92(dd, J=1.8,8.4Hz,1H),
1-5-17	6.99(d,J=8.4Hz,1H),7.06(d,J=1.8Hz,1H),7.10·7.17(m,2H),7.35·7.47(m,5H),7.52·7.59(m,2H)
	IR(KBr)3529,3439,2932,1601,1518,1477,1461,1380,1251,1224,1157,1113,1094,1076cm-1
	m.p.133-136°C
1	$^{\rm 1} {\rm HNMR}({\rm CDCI_3}) \delta - 2.98 (s, 3H), 3.12 (s, 3H), 3.56 (s, 3H), 3.75 (s, 3H), 4.94 (s, 2H), 5.18 (s, 2H), 6.67 (s, 1H), 7.09-7.17 (m, 3H), 7.34-7.49 (s, 2H), 6.18 (s, 2H)$
1.548	m,7H),7.51·7.58(m,2H)
	IR(KBr)3434,2941,1598,1519,1481,1383,1365,1279,1231,1164,1099,1081cm ⁻¹
	m.p.161.162°C
1	111NMR(CDCE) & 3.10(s,3H),3.42(s,3H),3.76(s,3H),5.17(s,2H),6.05(s,1H),6.44(s,1H),7.11-7.20(m,3H),7.33-7.50(m,7H),7.52(
1-549	d,J=2.1Hz,HI),7.57-7.65(m,2H)
	IR(KBr)3488,2938,1613,1523,1486,1290,1223,1107,1071,1012cm ⁻¹
	m.p.113-115°C
i i	$^{1}\text{HNMR}(\text{CDC}1_{3}) \ \delta \ 2.37(s, 3H), 2.98(s, 3H), 3.11(s, 3H), 3.56(s, 3H), 3.75(s, 3H), 4.93(s, 2H), 5.13(s, 2H), 6.66(s, 1H), 7.09-7.17(m, 3H), 1.000 \ A_{1} \ A_{2} \ A_{2} \ A_{3} \ A_{$
000-1	7.18-7.23(m,2H),7.32-7.39(m,3H),7.45(d,J=1.8Hz,1H),7.51·7.58(m,2H)
	IR(KBr)3434,2934,1738,1601,1520,1478,1466,1376,1356,1236,1159,1109,1070,1014cm ⁻¹

Table 110

	m.p.138-140°C
	HINMR(CDCE) & 2.38(8,3H),3.04(8,3H),3.57(8,3H),3.74(8,3H),4.90(8,2H),5.11(8,2H),5.63(8,1H),6.66(8,1H),6.91(dd,J=2.1,8
1.551	411z, 111),6.99(d, J=8.4Hz, 1H),7.05(d, J=1.8Hz, 1H),7.08·7.17(m, 2H),7.22(d, J=7.8Hz, 2H),7.33(d, J=7.8Hz, 2H),7.52·7.59(m, 2H)
) IR(KBr)3446,2934,1601,1518,1476,1461,1379,1252,1224,1158,1092,1011cm ⁻¹
	m.p.188-190°C
-	111NMR(CDCL) δ 2.38(s,3H),3.10(s,3H),3.42(s,3H),3.75(s,3H),5.12(s,2H),6.04(s,1H),6.43(s,1H),7.11-7.25(m,5H),7.35(d,J=7)
1.552	.8Hz,2H),7.42(dd,J=2.4,8.7Hz,1H),7.51(d,J=2.4Hz,1H),7.57.7.65(m,2H)
	IR(KBr)3433,2963,1611,1523,1485,1355,1282,1226,1163,1106,1071cm ⁻¹
	m.p.149-150°C
3 1 1	HNMR(CDCl ₃) § 3.13(s,3H),3.21(s,3H),5.20(s,2H),7.17(d,J=8.4Hz,1H),7.24(m,1H),7.36-7.54(m,9H),7.58(dd,J=1.2,2.4Hz,1
1.553	H),7.60-7.67(m,2H)
	IR(KBr)1524,1485,1354,1292,1263,1181,1150,1114,977,869,858.850,812,796 cm ⁻¹
	m.p.92-93°C
1	IHNMR(CDCh) & 1.69(8,3H), 1.74(d,J=1.2Hz,3H), 2.25(8,3H), 2.28(8,3H), 2.56(dt,J=6.6,7.2Hz,2H), 3.20(6,3H), 3.21(8,3H), 4.07(
1.554	t,J=7.2Hz,2H),5.22(m,1H),7.05(d,J=8.4Hz,1H),7.11(s,1H),7.13(s,1H),7.26(dd,J=2.1,8.4Hz,1H),7.31-7.43(m,5H)
	IR(KBr)1518,1488,1355,1293,1264,1169,1151,1109,970,872,818cm ⁻¹
	m.p.126-127°C
i i	"HNMR(CDCL:1) & 1.77(8,3H), 1.82(8,3H), 3.20(8,3H), 3.23(8,3H), 4.65(d,J=6.6Hz,2H), 5.50(m,1H), 7.10(d,J=8.7Hz,1H), 7.18-7.2
000-1	
	IR(KBr)1527,1489,1359,1295,1266,1177,1153,1118,974,894,874cm ⁻ '

Table 111

1.556	m.p.154-155°C 4HNMR(CDCLs) & 2.25(s,3H),2.28(s,3H),2.38(s,3H),3.11(s,3H),3.20(s,3H),5.13(s,2H),7.11(s,1H),7.14(s,1H),7.19-7.28(m,4H),
	7.31-7.43(m,711) IR(KBr)1520,1487,1365,1284,1260,1192,1172,1152,1108,967,867,809,795cm ⁻¹
	m.p.112-113°C 111NMR(CDCl ₃) & 1.69(8,3H), 1.76(8,3H), 2.26(8,3H), 2.27(8,3H), 2.54(dt, J=7.2,6.9Hz,2H), 4.07(t, J=6.9Hz,2H), 4.86(8,1H), 5.23(
1-557	m,111),5.71(s,111),6.82(dd,J=2.1,8.411z,111),6.85-6.93(m,311),6.96(d,J=2.111z,111),7.10(s,111),7.12(s,111),7.22-7.27(m,2H) IR(KBr)3380.1613,1586,1523,1490,1471,1431,1391,1293,1261,1246,1205,1171,1130,836cm ⁻¹
	m.p.141-142°C 1HNMR(CDCl ₃) δ 1.77(s,3H),1.82(s,3H),4.63(d,J=6.9Hz,2H),5.06(s,1H),5.52(m,1H),5.75(s,1H),6.89-6.97(m,3H),7.07(dt,J=8
1.558	.4,1.8Hz,1H),7.14-7.23(m,3H),7.44-7.51(m,2H) IR(KBr)3429,1612,1594,1531,1489,1467,1449,1401,1259,1213,1169,1132,835,781cm ⁻¹
	m.p.179.180°C 111NMR(CDCl ₃) § 2.26(8,311),2.28(8,311),2.39(8,311),4.81(8,111),5.11(8,211),5.70(8,111),6.83(dd,J=2.1,8.4Hz,111),6.86-6.91(m,2
1-659	H),6.98(d,J=8.4Hz,1H),6.98(d,J=2.1Hz,1H),7.10(s,1H),7.12(s,1H),7.21·7.28(m,4H),7.32·7.38(m,2H) IR(KBr)3317,1609,1520,1489,1426,1378,1247,1206,1175,1124,1006,792cm ⁻¹
	foam 1HNMR(DMSO-dc) & 3.74(s,3H),3.75(s,3H),4.62(d,J=5.0Hz,2H),5.02(t,J=5.0Hz,1H),5.19(s,2H),6.94(s,1H),6.99(s,1H),7.06(d
099-1	,J=8.0Hz,1H),7.22(ddd,J=8.6,2.0,0.8Hz,1H),7.32-7.52(m,8H),7.57(d,J=2.4Hz,1H),9.91(brs,1H) IR(KBr)3257,1525,1491,1464,1453,1382,1207,1035,764,737cm ⁻¹

Table 112

	m.p.147.148°C
	HINMR(CDCL3) & 3.27(s, 3H), 3.79(s, 3H), 3.82(s, 3H), 5.26(s, 2H), 6.92(s, 1H), 6.95(s, 1H), 7.13(d, J=8.7Hz, 1H), 7.35-7.50(m, 8H), 7.
199-1	80(dd,J=8.7,2.7Hz,1H),8.05(d,J=2.7Hz,1H),10.62(s,1H)
	HR(KBr)1682,1606,1489,1377,1345,1261,1209,1168,1119,1038,871,832cm ⁻¹
	m.p.189-191\C
i	111NMIR(DMSO-da) & 3.53(s,311),3.80(s,311),3.80(s,311),5.27(s,211),7.05(s,111),7.10(s,111),7.25(d,J=8.7Hz,111),7.30-7.59(m,7
Z96-1	11),7.66(dd,J=11.7,2.111z,111),7.67(dd,J=8.7,2.311z,111),7.84(d,J=2.311z,111),12.7(brs,111)
	IR(KBr)3433,1705,1492,1371,1250,1207,1168,1033,868cm ¹
	m.p.204-207°C
-	1100 (11) 6 1.36(s,9H), 3.20(s,3H), 3.41(s,3H), 3.74(s,3H), 5.15(s,2H), 5.65(s,1H), 5.77(s,1H), 6.80(s,1H), 6.83(dd, J=8.4,2.
F-563	0Hz,1H),6.96(d,J=2.0Hz,1H),6.98(d,J=8.4Hz,1H),7.34-7.45(m,7H),7.68(d,J=8.7Hz,2H)
	IR(KBr)3408,3337,1692,1498,1474,1466,1347,1251,1150,870,855cm ⁻¹
	m.p.179.182°C
Š	111NMR(1)MSO-d6) 5 3.76(8,311),3.76(9,311),5.26(8,211),6.99(8,111),7.00(t,J=8.7Hz,111),7.01(8,111),7.22(ddd,J=8.7,2.4Hz,J=1.
1.004	2Hz,1H),7.24(d,J=8.9Hz,1H),7.32-7.54(m,6H),7.65(dd,J=8.9,2.4Hz,1H),7.82(d,J=2.4Hz,1H),9.91(s,1H),12.6(brs,1H)
	IR(KBr)3422,3277,1726,1526,1491,1416,1396,1284,1210,1031cm ⁻¹
	m.p.178·180°C
1	$^{1}\text{HNMR}(\text{DMSO-}d_{6}) \ \delta \ 3.30(s,3H), 3.43(s,3H), 3.61(s,3H), 4.31(s,2H), 5.14(s,2H), 6.25(s,1H), 6.61(dd,J=8.4,1.9Hz,1H), 7.05(d,J=8)$
1-909	.4Hz,1H),7.33·7.44(m,6H),7.50·7.54(m,2H),7.70(d,J=8.7Hz,2H),9.08(s,1H)
	IR(KBr)3435,3378,1593,1518,1481,1360,1245,1147,1119,1010,871cm ⁻¹

Table 113

1-566	foam HINMR(DMSO-dc) & 3.27(9,3H),3.59(9,3H),4.21(8,2H),5.13(9,2H),6.17(6,1H),6.60(dd,J=8.3,1.4Hz,1H),6.70(d,J=1.4Hz,1H),6. .82(d,J=8.4Hz,2H),7.03(d,J=8.3Hz,1H),7.33-7.53(m,7H),9.07(brs,1H),9.45(brs,1H) IR(KBr)3390,1609,1592,1522,1484,1247,1227,1119,1011,812cm ⁻¹
1.567	m.p.146-148°C !IINMR(DMSO-d ₆) & 1.64(s,3H),1.70(s,3H),2.44(q,d=6.9Hz,2H),3.53(s,3H),3.78(s,3H),3.80(s,3H),4.05(t,d=6.9Hz,2H),5.26(t,d=6.9Hz,2H),7.05(s,1H),7.10(s,1H),7.19(d,d=8.4Hz,1H),7.50(dd,d=8.4,2.0Hz,1H),7.57(t,d=8.3Hz,1H),7.65(ddd,d=8.3,1.9,0.9Hz,1H),7.66(dd,d=11.9,1.9Hz,1H),7.79(d,d=2.0Hz,1H),12.5(brs,1H) Hz,1H),7.66(dd,d=11.9,1.9Hz,1H),7.79(d,d=2.0Hz,1H),12.5(brs,1H)
899-1	m.p.179-181°C HNMR(CDCl ₃) & 1.31(s,9H),3.11(s,3H),3.20(s,3H),3.39(s,3H),3.74(s,3H),5.16(s,2H),5.98(s,1H),6.79(s,1H),7.09(d,J=8.5Hz, 1H),7.29(dd,J=8.5,1.9Hz,1H),7.35-7.49(m,8H),7.66(d,J=8.7Hz,2H) IR(KBr)3404,3341,1690,1517,1465,1369,1348,1174,1151,869,814cm ⁻¹
I-569	m.p.189-191°C 1HNMR(DMSO-d ₆) & 3.31(s,3H),3.33(s,3H),3.43(s,3H),3.64(s,3H),4.48(s,2H),5.25(s,2H),6.28(s,1H),7.24(dd,J=9.0,2.0Hz,1H) 7.24(d,J=2.0Hz,1H),7.34.7.46(m,6H),7.52-7.55(m,2H),7.70(d,J=9.0Hz,2H) IR(Klir)3490,3392,1596,1518,1483,1364,1150,872,813cm ⁻¹
1.570	m.p.194-196°C 'HNMR(CDCl ₃) & 3.07(s,3H),3.22(s,3H),3.36(s,3H),3.77(s,3H),5.16(s,2H),6.92(s,1H),7.13(d,J=8.6Hz,1H),7.25(dd,J=8.6,2.1 Hz,1H),7.29(d,J=2.1Hz,1H),7.36-7.47(m,7H),7.63(brs,1H),7.67(d,J=8.4Hz,2H) IR(KBr)3433,3329,1737,1518,1476,1369,1168,1148,878cm ⁻¹

Table 114

1-571	m.p.184-186°C HNMR(CDCL ₃) & 2.31(s,3H),2.38(s,3H),3.12(s,3H),3.45(s,3H),3.58(s,3H),3.76(s,3H),5.14(s,2H),6.95(s,1H),7.11-7.23(m,5H), 7.34-7.37(m,4H),7.57(dd,J=8.7,2.4Hz,1H),7.66(d,J=2.4Hz,1H)
1.672	III(C.H.C.I.)2352, I.732, I614, 1539, 1518, 1467, 1445, 1370, 1256, 1169, 1117, 1081, 1064, 1003, 973, 905, 827cm - 1 m.p.218-220°C ¹ HNMR(CDCl ₃) δ 2.38(s, 3H), 3.12(s, 3H), 3.44(s, 3H), 3.63(s, 3H), 3.76(s, 3H), 5.14(s, 2H), 6.80-6.83(m, 2H), 6.94(s, 1H), 7.14(d, J=8.7Hz, 1H), 7.21-7.23(m, 4H), 7.35-7.37(m, 2H), 7.56(dd, J=8.7, 2.4Hz, 1H), 7.66(d, J=2.4Hz, 1H) (HCHCl ₃)3596, 2939, 1720, 1613, 1522, 1466, 1445, 1370, 1346, 1291, 1258, 1183, 1172, 1116, 1081, 1064, 1003, 973, 904, 866, 837cm
1.573	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
1-574	m.p.151·153°C*HNMR(CDCl ₃) & 2.39(s,3H),3.44(s,3H),3.54(s,3H),5.74(s,3H),5.12(s,2H),5.78(br,2H),6.78·6.81(m,2H),6.94(s,1H),6.99(d,J=8.4Hz,1H),7.15·7.25(m,6H),7.33·7.36(m,2H) IR(CHCl ₃)3595,3541,2952,1730,1612,1591,1521,1474,1395,1345,1323,1290,1258,1173,1129,1081,1063,1004,901,863,836c,m ⁻¹
1.575	m.p.195-196°C ¹ HNMR(CD ₃ OD) δ 2.34(8,3H),3.40(8,3H),3.72(8,3H),5.16(8,2H),6.75-6.78(m,2H),6.96(6,1H),7.02(8,1H),7.14-7.21(m,6H),7.3 ¹ -575 6-7.39(m,2H) ¹ -575 10.7.39(m,2H) ¹ -575 10.7.39(m,2H) ¹ -575 10.7.39(m,2H) ¹ -575 10.7.39(m,2H) ¹ -575 10.7.39(m,2H)

Table 115

	m.p.82-84°C
	HNMR(CDCD3) & 1.70(s, 3H), 1.75(s, 3H), 2.54-2.59(m, 2H), 3.24(s, 3H), 3.50(s, 3H), 3.77(s, 3H), 4.10(t, J=6.9Hz, 2H), 5.23(m, 1H), 7
2/c-	.07-7.12(m,4H),7.23-7.28(m,2H),7.57(dd,J=8.7,2.4Hz,HI),7.63(d,J=2.4Hz,HH),9.99(s,1H)
	IR(CHCh, 2936, 1697, 1604, 1591, 1518, 1469, 1445, 1371, 1331, 1294, 1232, 1172, 1159, 1123, 1093, 1005, 964cm
	m.p.126-128°C
	111NMR(CD3OD) & 1.70(8,3H), 1.74(d,J=0.9Hz,3H),2.53-2.61(m,2H),3.25(8,3H),3.44(8,3H),3.75(8,3H),4.13(t,J=6.3Hz,2H),5.
1-577	29(m,1H),7.04-7.11(m,3H),7.24(d,J=8.7Hz,1H),7.33-7.38(m,2H),7.68-7.65(m,2H)
	IR(KBr)3432,2940,2566,1735,1711,1646,1613,1519,1470,1447,1366,1297,1264,1228,1172,1118,1081,1063,1001,962,920,8
	98,871,828,796,695,524cm ⁻¹
	m.p.202.204°C
6 t	1HNMR(CDCl ₃) & 3.13(s,3H),3.45(s,3H),3.61(s,3H),3.76(s,3H),5.19(s,2H),6.95(s,1H),7.05-7.11(m,2H),7.14(d,J=8.7Hz,1H),7.
9/0-1	30-7.49(m,7H),7.57(dd,J=8.7,2.4Hz,1H),7.67(d,J=2.4Hz,1H)
	IR(CHCl ₃)2952,1731,1603,1519,1472,1445,1371,1345,1291,1172,1159,1117,1081,1064,1004,972,960,904cm ¹
	m.p.197·199℃
2	1 HNMR(CDCl ₃) δ 2.71(8,3H),3.56,(8,3H),3.75(8,3H),5.18(8,2H),5.72,(8,1H),6.86(8,1H),7.00(d,J=8.4Hz1H),7.12-7.18(m,3H),7
6/0-1	.24(d,J=2.1Hz,1H),7.38-7.46(m,7H)
	IR(CHCl ₃)3543,2939,1602,1521,1482,1465,1394,1370,1328,1254,1178,1159,1130,1081,1005,964,840,816cm ⁻¹
	m.p.199-201°C
	1HNMR(CD ₃ OD) δ 3.40(8,3H),3.73(8,6H),5.22(8,2H),7.00(8,1H),7.03·7.11(m,4H),7.17(m,1H),7.31·7.41(m,5H),7.49·7.52(m,2
1.580	H)
	IR(KBr)3527,3434,2940,1701,1591,1518,1465,1380,1335,1320,1291,1270,1222,1161,1130,1078,1056,1002,916,868,837,74
	7,698,633,599,526,480cm ⁻¹

Table 116

1-581 1.23-7.27(m,2H),7.56(dd,J=8.7,2.1Hz,1H) 1R(CHCL ₃)2938,1679,1604,1591,1517,14 m.p.158-159°C 1HNMR(CDCl ₃) & 2.69(s,3H),3.13(s,3H), 1.582 1HNMR(CDCl ₃) & 2.68(s,3H),3.13(s,3H), 1.583 23(m,3H),7.33-7.49(m,8H) 1R(CHCl ₃)2938,1731,1603,1520,1482,133 1HNMR(CDCl ₃) & 3.47(s,3H),3.74(s,3H), 1.584 27(d,J=2.1Hz,1H),7.36-7.48(m,7H) 1R(CHCl ₃)3540,2938,1603,1568,1522,144 m.p.133-134°C 1HNMR(CD ₃ OD) & 1.80(d,J=0.9Hz,3H), 1.585 H),7.06-7.12(m,3H),7.26(d,J=8.7Hz,1H),7100,1503,1503,1510	¹ HNMR(CDCl ₃) & 1.78(s,3H),1.82(s,3H),3.25(s,3H),3.50(s,3H),3.76(s,3H),4.66(d,J=6.9Hz,2H),5.52(m,1H),7.09-7.14(m,4H), 7.23-7.27(m,2H),7.56(dd,J=8.7,2.1Hz,1H),7.63(d,J=2.1Hz,1H),9.99(s,1H) IR(CHCl ₃)2938,1679,1604,1591,1517,1469,1445,1371,1331,1292,1172,1159,1122,1092,1004,973cm ⁻¹
	J=8.7,2.1Hz,1HJ,7.63(d,J=2.1Hz,1H),9.99(s,1H) 1,1591,1517,1469,1445,1371,1331,1292,1172,1159,1122,1092,1004,973cm ⁻¹
	1,1591,1517,1469,1445,1371,1331,1292,1172,1159,1122,1092,1004,973cm ⁻¹
	1HNMR(CDCh) & 2.69(s,3H),3.13(s,3H),3.57(s,3H),3.76(s,3H),5.19(s,2H),6.85(s,1H),7.13-7.18(m,3H),7.37-7.49(m,7H),7.56(
	1,J=2.111z,111)
	IR(CHCl ₃)2939,1603,1521,1482,1464,1294,1253,1177,1119,1082,1003,963,876,842cm ⁻¹
	1HNMR(CDCl ₃) δ 2.68(s,3H),3.54(s,3H),3.56(s,3H),3.75(s,3H),5.21(s,2H),5.27(s,2H),6.85(s,1H),7.00(d,J=8.7Hz,1H),7.13·7.
	IR(CHCl ₃)2938, 1731, 1603, 1520, 1482, 1370, 1249, 1178, 1158, 1134, 1081, 1004, 961, 840, 815cm ⁻¹
	HNMR(CDCl ₃) & 3.47(s,3H),3.74(s,3H),5.18(s,2H),5.72(s,1H),6.00(s,1H),6.46(s,1H),7.01(d,J=8.4Hz,1H),7.10-7.19(m,3H),7.
	18(m,7H)
	,2938,1603,1568,1522,1490,1464,1416,1396,1325,1263,1158,1111,1072,1002,838cm ⁻¹
	HNMR(CD ₃ OD) δ 1.80(d,J=0.9Hz,3H), 1.82(d,J=0.9Hz,3H), 3.26(ε,3H), 3.44(ε,3H), 3.76(ε,3H), 4.71(d,J=6.9Hz,2H), 5.55(m,1
71 9871 0000 0076("BM/BI	,3H),7.26(d,J=8.7Hz,1H),7.34-7.36(m,2H),7.58-7.63(m,2H)
11(0011,0002,2220(1011)111	R(KBr)3422,2939,1736,1702,1603,1519,1472,1368,1293,1228,1187,1173,1117,1081,1061,1003,975,961,920,827,759,701,6
23cm ⁻¹	

5	
10	
15	
20	
25	
30	
35	
4 0	

1.586	m.p.152-153°C ¹ HNMR(CDCl ₃) δ 1.69(s,3H),1.74(d,J=0.9Hz,3H),2.55-2.57(m,2H),3.23(s,3H),3.44(s,3H),3.60(s,3H),3.77(s,3H),4.09(t,J=6.6 ¹ HNMR(CDCl ₃) δ 1.69(s,3H),7.05-7.11(m,3H),7.30-7.35(m,2H),7.57(dd,J=8.7,2.4Hz,1H),7.64(d,J=2.4Hz,1H)
1.587	m.p.132·133°C HINMR(CDCl ₃) & 3.44(8,3H),3.61(8,3H),3.75(8,3H),5.18(8,2H),5.71(8,1H),6.95(8,1H),6.99·7.10(m,3H),7.17(dd,J=8.4,2.1Hz,1 H),7.25·7.47(m,8H)
1-588	m.p.92-94°C ¹ HNMR(CDCl ₃) & 1.69(d,J=0.6Hz,3H), 1.76(d,J=1.2Hz,3H), 2.51-2.58(m,2H), 3.45(s,3H), 3.75(s,3H), 4.09(t,J=6.9Hz,2H), 5.23(¹ m,1H), 5.70(hr,1H), 6.92(d,J=8.4Hz,1H), 6.97(s,1H), 7.05-7.10(m,2H), 7.16(dd,J=8.4,2.1Hz,1H), 7.23(d,J=2.1Hz,1H), 7.33-7.38(¹ m,2H) ¹ R(KBr)3534, 3432, 2936, 1713, 1597, 1519, 1473, 1377, 1322, 1260, 1231, 1158, 1130, 1081, 1063, 1004, 961, 919, 837, 808, 791, 754, 7 ¹ G6, 521cm ⁻¹
1-689	m.p. 120-122°C HINMR(CDCl ₃) & 1.69(s,3H),1.76(s,3H),2.51-2.58(m,2H),3.44(s,3H),3.61(s,3H),3.75(s,3H),4.09(t,J=6.6Hz,2H),5.23(m,1H),5.73(s,1H),6.92(d,J=8.4Hz,1H),6.96(s,1H),7.04-7.10(m,2H),7.16(dd,J=8.1,1.8Hz,1H),7.23(d,J=1.8Hz,1H),7.31-7.36(m,2H) IR(CHCl ₃)3541,2937,1731,1598,1519,1471,1391,1345,1323,1290,1265,1159,1130,1080,1063,1005,839cm ⁻¹
1.590	m.p.154-156°C ¹ HNMR(CDCl ₃)

	m.p.181.182°C
	$ HINMR(C1)_3OD) \delta -1.77(s, 3H), 1.80(d, J=0.9Hz, 3H), 3.42(s, 3H), 3.74(s, 3H), 4.65(d, J=6.9Hz, 2H), 5.55(m, 1H), 6.99-7.11(m, 5H), 7$
1.69.1	.15(d,J=2.1Hz,1H),7.32-7.36(m,2H)
	IR(KBr)3529,3424,2937,1714,1598,1519,1473,1417,1372,1336,1321,1258,1235,1167,1129,1080,1062,1004,989,917,854,83
	9,807,791,752,703cm ¹
	m.p.109-110°C
3	$HINMR(CDC33) \ \delta \ 1.78(8,3H), 1.83(8,3H), 3.44(8,3H), 3.61(8,3H), 3.75(8,3H), 4.63(d,J=6.6Hz,2H), 5.63(m,1H), 5.72(8,1H), 6.94(d,J=6.6Hz,2H), 5.63(m,1H), 6.94(d,J=6.6Hz,2H), 6.94(d,J=$
760-1	J=8.1Hz,1H),6.96(s,1H),7.04-7.10(m,2H),7.16(dd,J=8.4,2.1Hz,1H),7.23(d,J=2.1Hz,1H),7.31-7.36(m,2H)
	IR(CHCl ₃)3538,2938,1731,1598,1519,1473,1391,1345,1290,1264,1159,1129,1080,1063,1004,900,862,839cm ⁻¹
	m.p.185-187°C
600	$^{1}\text{HNMR}(\text{CDC}1_{3}) \ \delta \ 3.78(s,3H), 3.80(s,3H), 4.82(s,1H), 6.61(m,1H), 6.88-6.93(m,2H), 6.96(s,1H), 7.04(s,1H), 7.23-7.25(m,1H), 7.46$
1-593	(d,J=0.9Hz,1H),7.48·7.53(m,2H),7.83(d,J=0.9Hz,1H),8.18(brs,1H)
	IR(KBr)3600-3200(br),1611,1523,1496,1464,1447,1388,1268,1239,1202,1046,1025cm ⁻¹
	m.p.188·189°C
7 0 1	4 HNMR(CDCl ₃) δ 3.19(s,3H),3.79(s,3H),3.81(s,3H),6.61-6.62(m,1H),6.96(s,1H),7.06(s,1H),7.24-7.26(m,1H),7.33-7.37(m,2H
F-00-1),7.45(brs,211),7.64-7.68(m,2H),7.84(d,J=0.9Hz,1H),8.21(brs,1H)
	IR(KBr)3600-3200(br),1518,1494,1465,1419,1389,1351,1331,1314,1213,1177,1145,1051,1027cm ⁻¹
	m.p.98·101℃
	11 NMR(CDCL3) & 1.77(8,311), 1.78(8,311), 1.82(8,311), 1.86(8,311), 3.78(8,311), 3.79(8,311), 4.56(d, J=6.9Hz, 2H), 4.72(d, J=6.9Hz, 2
1.595	H), $5.39-5.44$ (m, 1H), $5.52-5.57$ (m, 1H), 6.53 (d, $J=3.0$ Hz, 1H), $6.97-7.03$ (m, 4 H), 7.12 (d, $J=3.3$ Hz, 1H), 7.38 (d, $J=8.4$ Hz, 1H), 7.45 (dd, $J=8.4$ Hz, J
	J=1.8,8.7Hz,1H),7.52·7.57(m,2H),7.81(d,J=1.5Hz,1H)
	IR(KBr)3600-2800(br),1606,1498,1476,1463,1382,1262,1241,1206,1177,1052,1030cm ⁻¹

.

	m.p.207-210°C
	111NMR(CDCl3) \$\delta\$ 3.19(s,3H), 3.80(s,3H), 3.81(s,3H), 5.50(s,2H), 6.65(d, J=3.0Hz,1H), 6.81(d, J=7.8Hz,1H), 6.96(s,1H), 7.05(s,1H)
969-1	11),7.19-7.22(m,111),7.25-7.45(m,6H),7.54-7.60(m,1H),7.64-7.69(m,2H),7.86(brs,1H),8.61-8.64(m,1H)
	IR(KBr)3600-3200(br), 1496, 1478, 1364, 1347, 1210, 1176, 1155, 1052, 1028cm
	m.p.222-224℃
	HINMR(CDCl ₃) δ 2.36(s,3H),2.53(s,3H),3.77(s,3H),3.78(s,3H),6.69(dd,J=0.9,4.2Hz,1H),6.95(s,1H),6.96(s,1H),7.23-7.28(m,2
766-1	H),7.31-7.35(m,2H),7.51-7.54(m,3H),7.59(d,J=3.3Hz,1H),7.73(d,J=1.2Hz,1H),7.80-7.84(m,2H),8.03(d,J=1.2Hz,1H)
	IR(KBr)3600-3200(br), 1509, 1487, 1464, 1444, 1366, 1208, 1172, 1129, 1092, 1049, 1028cm ⁻¹
	m.p.126-127°C
1 800	1HNMR(CDCl ₃) δ 1.69(s,3H), 1.71(d,J=0.9Hz,3H), 2.56(dt,J=6.6,6.9Hz,2H), 3.20(s,3H), 3.22(s,3H), 4.08(t,J=6.9Hz,2H), 5.21(m
000-1	,111),7.08(d,J=8.411z,111),7.18-7.27(m,211),7.36-7.43(m,211),7.50(dd,J=1.8,8.4Hz,111),7.56(d,J=1.8Hz,111),7.59-7.66(m,2H)
	IR(KBr)1528,1488,1469,1395,1362,1342,1297,1265,1201,1176,1162,1116,968,890,872,818cm ⁻¹
	m.p.169-170°C
1 500	1HNMR(DMSO-d6) § 2.32(s,3H),3.37(s,3H),3.45(s,3H),5.23(s,2H),7.23(d,J=7.8Hz,2H),7.37·7.44(m,3H),7.47·7.53(m,2H),7.5
660-1	6-7.66(m,4H),7.75(d,J=7.5Hz,2H)
	IR(KBr)1525,1485,1366,1355,1291,1262,1181,1150,1116,969,869,811cm ⁻¹
	m.p.123·124°C
1 600	1HNMR(CDCl ₃) & 1.68(s,3H),1.75(d,J=0.9Hz,3H),2.53(dt,J=7.2,6.9Hz,2H),4.07(t,J=6.9Hz,2H),4.91(s,1H),5.22(m,1H),5.72(s
000-1	,1II),6.89-6.95(m,2H),7.07(m,1H),7.14-7.22(m,4H),7.44-7.51(m,2H)
	IR(KBr)3448,1612,1593,1530,1489,1475,1401,1262,1212,1181,1169,1132,839,779cm ⁻¹

	m.p.184-185°C HINMR(DMSO-da) & 2.31(s,3H),5.13(s,2H),6.85-6.91(m,2H),6.97(m,1H),7.07(d,J=8.4Hz,1H),7.07(d,J=1.8Hz,1H),7.20(d,J=
109-1	8.111z,211),7.32-7.48(m,611)
	IR(KBr)3290, 1614, 1529, 1491, 1459, 1449, 1405, 1380, 1267, 1254, 1167, 1132, 763cm
	m.p.141-142°C
300	$ HINMR(CDCL_3) \delta - 1.77(s, 3H), 1.82(s, 3H), 3.46(s, 3H), 3.78(s, 3H), 4.56(d, J=6.8Hz, 2H), 5.54(t, J=6.6Hz, 1H), 6.96-7.26(m, 7H), 7.6$
700-1	1(dd,J=5.2,8.611z,211),9.88(e,111)
	IR(KBr)3433,2955,2922,2865,2833,1687,1604,1515,1462,1288,1258,1232,1180,1160,1070,998,845cm ⁻¹
	m.p.169-170°C
1-603	1HNMR(CDCL:1) & 2.38(s,3H),3.46(s,3H),3.77(s,3H),5.07(s,2H),7.02-7.38(m,7H),7.61(dd,J=5.4,8.8Hz,2H),9.89(brs,1H)
	IR(KBr)3433,2936,2840,1698,1517,1462,1251,1233,1067,999,837cm ⁻¹
	m.p.120-121°C
	111 HNMR(CDC13) & 1.68(8,3H), 1.74(8,3H), 2.50-2.57(m,2H), 3.46(8,3H), 3.77(8,3H), 3.98(t,J=7.0Hz.,2H), 5.24(t,J=7.0Hz,1H), 6.9
1.604	4.7.26(m,711),7.61(dd,J=5.4,8.8Hz,2H),9.88(brs,1H)
	IR(KBr)3435,2960,2937,2876,1698,1605,1516,1464,1441,1379,1296,1272,1233,1221,1161,1073,1024,845,807cm ⁻¹
	m.p.151-152°C
	1HNMR(DMSO-d6) & 1.34(e,6H),3.07-3.15(m,1H),3.32(e,3H),3.67(e,3H),3.97-4.08(m,1H),4.28-4.34(m,1H),6.48(e,1H),7.00(d,
c09-1	J=7.8Hz,2H),7.22-7.35(m,4H),7.66(dd,J=3.2,6.0Hz,2H),8.72(brs,1H)
	IR(KBr)3460,2960,2935,1607,1621,1488,1456,1392,1244,1226,1160,1122,1073,818cm ⁻¹
	m.p.164-165°C
500	1 HNMR(DMSO-d ₆) δ 2.32(8,3H),3.31(8,3H),3.66(8,3H),5.08(8,2H),6.46(8,1H),6.99(d,J=5.8Hz,2H),7.20-7.38(m,4H),7.65(dd,J)
000-1	
	IR(KBr)3367,2940,1605,1519,1484,1466,1449,1390,1229,1101,1100,1002,1000,301,011,011

	m.p.103-104°C
500	-НИМВК(DMSO-d ₆) δ 1.37(8,6H),2.47-2.59(m,2H),3.31(8,3H),3.66(8,3H),3.94-4.05(m,1H),4.26-4.34(m,1H),6.44(8,1H),7.02(d,
/00-1	J=7.6Hz,2H),7.18-7.35(m,4H),7.64(dd,J=3.4,6.6Hz,2H),8.77(brs,1H)
	IR(KBr)3400,2993,2961,2930,1607,1522,1486,1471,1454,1393,1226,1123,1072,835,819cm 1
	m.p.157-158°C
96.5	111 HINMR(DMSO-ds) & 1.73(s,311), 1.77(s,311), 3.31(s,311), 3.72(s,311), 4.54(d, J=6.9Hz,2H), 5.47(t, J=7.2Hz, 1H), 6.93(d, J=8.7Hz, 2)
80 0-1	11),7.05(s, 111),7.19(d,J=9.011z,211),7.30-7.36(m,211),7.70(dd,J=5.4,8.711z,211)
	IR(KBr)3406,2936,1712,1608,1519,1472,1444,1375,1235,839cm ⁻¹
	m.p.215-216°C
000	1HNMR(DMSO-d6) § 2.34(s,3H),3.33(s,3H),3.74(s,3H),5.09(s,2H),7.00-7.07(m,3H),7.22-7.39(m,8H),7.73(dd,J=5.6,8.0Hz,2H
£00-1	
-	IR(KBr)3494,3289,2938,1745,1698,1520,1471,1461,1378,1296,1239,1183,1159,829cm ⁻¹
	m.p.169.170°C
91.5	1HNMR(DMSO-da) 5 1.64(8,3H),1.71(8,3H),2.41-2.46(m,2H),3.32(8,3H),3.73(8,3H),3.97(t,J=6.6Hz,2H),5.23(t,J=7.2Hz,1H),
20-1	6.93(d,J=8.1Hz,2H),7.05(s,1H),7.20(d,J=7.2Hz,2H),7.30·7.36(m,2H),7.70(dd,J=4.5,7.5Hz,2H)
	IR(KBr)3424,2933,1701,1609,1519,1471,1379,1294,1248,1061,839cm ⁻¹
	m.p.167-168°C
113	1HNMR(CDCl ₃) & 1.75(s, 3H), 1.82(s, 3H), 2.35(s, 6H), 2.45(s, 3H), 3.21(s, 3H), 3.56(s, 3H), 3.70(s, 3H), 4.35(d, J=6.9Hz, 2H), 5.60(t, J
 	= 7.211z,111), 6.84(8,111), 7.08(8,211), 7.38(4, J=8.711z,211), 7.70(4, J=9.011z,211)
	IR(KBr)3433,2932,1509,1475,1376,1359,1232.,1177,1152,1085,966,874,797cm ⁻¹

1115 12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	- HINMR(CDC3a) δ 2.35(8,6H), 2.39(8,3H), 2.49(8,3H), 3.21(8,3H), 3.56(8,3h), 3.79(8,3H), 4.83(8,2H), 6.84(8,1H), 7.10(8,2H), 7.22(d), 3=7.5Hz,2H), 7.38(d, J=8.4Hz,4H), 7.70(d, J=9.0Hz,2H) - HIR(KBr)3434,2936, 1510, 1475, 1363, 1229, 1176, 1152, 1083,964,871,803cm ⁻¹ - m.p. 138-139 ℃ - HINMR(CDC3a) δ 1.69(8,3H), 1.75(8,3H), 2.33(8,6H), 2.52-2.55(m,2H), 3.21(8,3H), 3.56(8,3H), 3.78(8,3H), 3.79(t, J=6.9Hz,2H), 6.31(t, J=6.9Hz,2H), 7.38(d, J=8.7Hz,2H), 7.70(d, J=9.0Hz,2H) - HIR(KBr)3432,2939, 1509, 1476, 1448, 1362, 1237, 1172, 1155, 1103, 1081, 963, 873, 800cm ⁻¹ - m.p. 89-90 ℃
	(t,J6.6Hz,1H),6.83(н,ЗН),7.08(н,6H),7.38(d,J=8.7Hz,2H),7.70(d,J=9.0Hz,2H) (КВг)3432,2939,1509,1476,1448,1362,1237,1172,1155,1103,1081,963,873,800cm ⁻¹ p.89-90°C
	(KBr)3432,2939,1509,1476,1448,1362,1237,1172,1155,1103,1081,963,873,800cm ¹ p.89-90°C
ואוו	p.89-90°C
d'uı	
	111NMR(DMSO-d ₆) δ 1.74(s,3H), 1.77(s,3h), 3.36(s,3H), 3.67(s,3H), 4.22(d,J=3.0Hz,2H), 4.56(d,J=6.3Hz,2H), 5.48(t,J=5.7Hz,1
9'(11	H),6.93-6.96(m,3H),7.11(d,J=8.7Hz,2H),7.28-7.34(m,2H),7.68(dd,J=6.0,8.7Hz,2H)
IR(I	IR(KBr)3528,3418,2935,1608,1518,1472,1233,1004,836cm ⁻¹
m.p	m.p.89.90°C
	141NMR(DMSO-da) & 2.33(8,311),3.36(8,311),3.67(8,311),4.22(4,J=3.9Hz,211),4.59(t,J=4.2Hz,111),5.09(8,211),6.94(8,111),7.02(d
8=P' G19-1	J=8.4Hz,2H),7.22(d,J=8.4Hz,4H),7.28-7.39(m,4H),7.68(dd,J=5.7,8.4Hz,2H)
IRU	IR(KBr)3485,2931,1517,1473,1460,1383,1243,1225,1079,1014,1001,834,798cm ⁻¹
lio	
	$^{1} \text{HINMR} \text{(DMSO-} d_{6}) \delta \ \ 1.75 (\text{e}, 3\text{H}), 1.78 (\text{e}, 3\text{H}), 2.47 \cdot 2.52 (\text{m}, 2\text{H}), 3.39 (\text{e}, 3\text{H}), 3.71 (\text{e}, 3\text{H}), 4.25 (\text{d}, J=3.3\text{Hz}, 2\text{H}), 4.49 (\text{d}, J=6.3\text{Hz}, 2\text{Hz}, 2H$
1.010	5.46(t,J=5.7Hz,1H),6.91-6.95(m,3H),7.13(d,J=8.4Hz,2H),7.24·7.32(m,2H),7.67(dd,J=5.7,8.4Hz,2H)
IR(I	IR(KBr)3528,3419,2935,1608,1518,1472,1383,1232,1004,837cm ⁻¹

	m.p.138-139X
<u>-</u>	111NMR(DMSO-4a) & 1.70(s, 3H), 1.77(s, 3H), 2.24(s, 6H), 3.30(s, 3H), 3.64(s, 3H), 4.31(d, J=6.9Hz, 2H), 5.56(t, J=6.6Hz, 1H), 6.39(s,
19-1	111), 6.84(d, J=8.411z, 211), 6.91(s, 2H), 7.44(d, J=8.4Hz, 2H), 8.50(s, 1H), 9.50(s, 1H)
	IR(KBr)3400,2966,2934,1609,1519,1465,1444,1389,1362,1269,1228,1211,1194,1171,1118,1089,1027,953cm ⁻¹
	m.p.122-123°C
3	HNMR(DMSO-ds) & 2.29(s,6H),2.37(s,3H),3.30(s,3H),3.67(s,3H),4.81(s,2H),6.43(s,1H),6.86(d,J=7.5Hz,2H),6.97(s,2H),7.27
<u>\$</u>	(d,J=6.911z,211),7.42-7.48(m,211),8.54(s,111),9.52(s,111)
	1R(KBr)3483,3423,2931,1735,1709,1612,1520,1477,1454,1411,1395,1362,1224,1176,1117,1089,1028cm ⁻¹
	m.p.81-82°C
	HINMR(DMSO-d ₆) δ 1.70(s,311),1.76(s,311),2.18-2.30(m,2H),2.27(s,6H),3.34(s,3H),3.68(s,3H),3.80(t,J=4.5Hz,2H),5.34(t,J=
6-1	5.111z, 111),6.43(s, 111),6.88(d,J=7.511z,211),6.94(s,611),7.46-7.50(m,2H),8.53(s,1H),9.54(s,1H)
	IR(KBr)3410,2930,1612,1521,1479,1454,1395,1361,1265,1227,1174,1117,1090,1028,825cm ⁻¹
	m.p.161-162°C
000	$^{1}\text{IINMR}(\text{CDCI}_{3}) \circ -1.32(\text{s},9\text{H}), 2.38(\text{s},3\text{H}), 3.10(\text{s},3\text{H}), 3.20(\text{s},3\text{H}), 3.39(\text{s},3\text{H}), 3.74(\text{s},3\text{H}), 5.12(\text{s},2\text{H}), 5.96(\text{s},1\text{H}), 6.79(\text{s},1\text{H}), 7.09(\text{s},1\text{H}), 1.09(\text{s},1\text{H}), 1.09(\text{s},1\text{H}),$
070-1	d,J=8.411z,111),7.21(d,J=7.8Hz,2H),7.28(dd,J=8.4,1.8Hz,1H),7.33-7.38(m,5H),7.67(d,J=8.4Hz,2H)
	IR(KBr)3398,1718,1518,1472,1366,1173,1151,877,867,813cm ⁻¹
-	m.p.139-141°C
	1 HNMR(CDCl ₃) 3 1.33(e,9H), 1.68(e,3H), 1.74(e,3H), 2.54(q,J=6.9Hz,2H), 3.19(e,3H), 3.20(e,3H), 3.39(e,3H), 3.73(e,3H), 4.05(t,J
1.621	=6.9Hz,2H),5.21(t,J=6.9Hz,1H),5.95(s,1H),6.79(s,1H),7.02(d,J=8.4Hz,1H),7.29(dd,J=8.4,1.9Hz,1H),7.33(d,J=1.9Hz,1H),7.3
	6(d,J=8.7Hz,2H),7.66(d,J=8.7Hz,2H)
	IR(KBr)3416,1720,1519,1469,1365,1237,1152,1117,975,872,815cm ⁻¹

Table 124

5

1-622	m.p.197-199°C HINMR(DMSO-d ₆) & 2.33(8,3H),3.31(8,6H),3.43(8,3H),3.64(8,3H),3.74(8,3H),4.47(8,2H),5.19(8,2H),6.28(8,1H),7.21-7.25(m,4 H),7.35(d,J=8.7Hz,1H),7.40-7.44(m,4H),7.70(d,J=9.0Hz,2H) IR(KB _P)3482,3385,1597,1519,1484,1368,1353,1150,872,813cm
1-623	m.p.99-101% HINMR(1)MSO-da) & 2.32(8,311),3.27(8,311),3.59(8,311),4.21(8,211),5.08(8,211),6.17(8,111),6.58(dd,J=8.0,1.8Hz,111),6.69(d,J=1 .811z,111),6.82(d,J=8.711z,211),7.01(d,J=8.011z,111),7.21(d,J=7.811z,211),7.39(d,J=7.81tz,211),7.41(d,J=8.711z,211),9.02(brs,111),9.45(brs,111) IR(KBr)3390,1609,1592,1521,1484,1246,1227,1117,1011,810cm ⁻¹
1-624	m.p.215-217°C HINMR(CDCl ₃ +CD ₃ OD)d3.78(s,3H),3.79(s,3H),5.49(s,2H),6.64(dd,J=0.6,2.7Hz,1H),6.79(d,J=8.1Hz,1H),6.90(d,J=8.7Hz,2 H),6.96(s,1H),7.02(s,1H),7.19-7.32(m,3H),7.40-7.50(m,3H),7.56-7.60(m,1H),7.85(d,J=0.9Hz,1H),8.58-8.60(m,1H) IR(KBr)3600-2600(hr),1611,1599,1500,1477,1445,1395,1264,1238,1210,1052,1029,1008cm ⁻¹
1-625	m.p.21:3-214°C; !HNMR(CDCl ₃)
979-1	¹ HINMR(CDCD ₃ +CD ₃ OD) δ 3.13(9,3H),3.81(8,3H),3.82(9,3H),6.19(8,2H),6.97(8,1H),6.99(8,1H),7.14(d,J=8.7Hz,1H),7.34-7.52(m,6H),7.61(d,J=2.1Hz,1H),7.73(d,J=8.4Hz,2H),8.12(d,J=8.4Hz,2H) 1R(KBr)3432,1616,1520,1494,1452,1388,1352,1282,1261,1211,1186,1175,1113,1058,1033cm ⁻¹
1-627	¹ HNMR(CDCl ₃) δ 3.81(s,6H), 5.17(s,2H), 6.99(s,1H), 7.00(d,J=8.4Hz,1H), 7.09(dd,J=8.4&1.8Hz,1H), 7.23(d,J=1.8Hz,1H), 7.33-7.50 (m, 5H), 7.76(.d,J=8.4Hz,2H), 8.10(d,J=8.4Hz,2H) 1.33-7.50 (m, 5H), 7.76(.d,J=8.4Hz,2H), 8.10(d,J=8.4Hz,2H) 1.37-7.50 (m, 5H), 7.76(.d,J=8.4Hz,2H), 8.10(d,J=8.4Hz,2H)

1.629 6(d 1111 1.629 50(1111 1.630 7.44	6(d,J=1.8Hz,1H),7.30(d,J=8.1Hz,2H),7.36-7.51(m,5H),7.63(d,J=8.1Hz,2H) IR(KBr)3525,3472,1609,1588,1522,1487,1455,1407,1321,1286,1242,1148,1115,1071,1013cm ⁻¹ III(KBr)3525,3472,1609,1588,1522,1487,1455,1407,1321,1286,1242,1148,1115,1071,1013cm ⁻¹ 50(m,9H),7.62(d,J=9.0Hz,2H) IR(KBr)3432,1611,1522,1482,1462,1392,1358,1295,1233,1178,1154,1119,1082,1012cm ⁻¹ III(KBr)3432,1611,1522,1482,1462,1392,1358,1295,1233,1178,1154,1119,1082,1012cm ⁻¹ 7.43 (d.d, J=8.4&2.1Hz, 1H), 7.54-7.65(m,4H) IR(KBr)3432,1612,1519,1481,1367,1332,1232,1177,1154,1077,1011cm ⁻¹
	((KBr)3525,3472,1609,1588,1522,1487,1455,1407,1321,1286,1242,1148,1115,1071,1013cm ⁻¹ INMR(CDCL3) & 2.68(s,3H),3.07(s,3H),3.14(s,3H),3.55(s,3H),3.78(s,3H),5.19(s,2H),6.85(s,1H),7.16(d,J=8.7Hz,1H),7.27-7. ((m,9H),7.62(d,J=9.0Hz,2H) ((KBr)3432,1611,1522,1482,1462,1392,1358,1295,1233,1178,1154,1119,1082,1012cm ⁻¹ INMR(CDCL3) & 2.88(s,3H), 3.08(s,3H), 3.28(s,3H), 3.30(s,3H), 3.54(s,3H), 3.79(s,3H), 6.87(s,1H), 7.32(d,J=8.4Hz,2H), 43 (d.d, J=8.4&2.1Hz, 1H), 7.54-7.65(m,4H) ((KBr)3432,1612,1519,1481,1367,1332,1232,1177,1154,1077,1011cm ⁻¹
	INMR(CDCIa) δ 2.68(s,3H),3.07(s,3H),3.14(s,3H),3.56(s,3H),3.78(s,3H),5.19(s,2H),6.85(s,1H),7.16(d,J=8.7Hz,1H),7.27-7. (m,9H),7.62(d,J=9.0Hz,2H) (KBr)3432,1611,1522,1482,1462,1392,1358,1295,1233,1178,1154,1119,1082,1012cm ⁻¹ (KBr)3432,1611,1522,1482,1462,1392,1358,1296,1233,1178,1154,1119,1082,1012cm ⁻¹ (KBr)3432,1611,1522,1482,1481,1367,1332,1232,1177,1154,1077,1011cm ⁻¹
	((KBr)3432,1611,1522,1482,1462,1392,1358,1295,1233,1178,1154,1119,1082,1012cm ⁻¹ ((KBr)3432,1611,1522,1482,1462,1392,1358,1295,1233,1178,1154,1119,1082,1012cm ⁻¹ ((KBr)3432,1612,111,111,111,112,111), 3.28(s,311), 3.30(s,311), 3.54(s,311), 3.79(s,311), 6.87(s,111), 7.32(d,J=8.4Hz,2H), 43 (d,d,J=8.4&2.1Hz,111), 7.54-7.65(m,4H) ((KBr)3432,1612,1519,1481,1367,1332,1232,1177,1154,1077,1011cm ⁻¹
	(KBr)3432,1611,1522,1482,1462,1392,1358,1295,1233,1178,1154,1119,1082,1012cm ⁻¹ INMR(CDCh3) & 2.88(s,311), 3.08(s,311), 3.28(s,311), 3.30(s,311), 3.54(s,311), 3.79(s,311), 6.87(s,111), 7.32(d,J=8.4Hz,2H), 43 (d.d, J=8.4&2.1Hz, 111), 7.54-7.65(m,411) (KBr)3432,1612,1519,1481,1367,1332,1232,1177,1154,1077,1011cm ⁻¹
	INMR(CDCB ₃) & 2.88(8,311), 3.08(8,311), 3.28(8,311), 3.30(8,311), 3.54(8,311), 3.79(8,311), 6.87(8,111), 7.32(d,J=8.4Hz,2H), 43 (d.d, J=8.4&2.1Hz, 111), 7.54-7.65(m,411) (KBr)3432,1612,1519,1481,1367,1332,1232,1177,1154,1077,1011cm ⁻¹
	43 (d.d., J=8.4&2.1Hz, 1H), 7.54·7.65(m,4H) (KBr)3432,1612,1519,1481,1367,1332,1232,1177,1154,1077,1011cm ⁻¹
701	(KBr)3432,1612,1519,1481,1367,1332,1232,1177,1154,1077,1011cm ⁻¹
H	'HNMR(CDCl ₃) δ 1.57(s,3H), 169(s,3H), 2.66(s,3H), 2.97(s,3H), 3.13(s,3H), 3.54(s,3H), 3.77(s,3H), 4.31(d,J=7.2Hz,2H),
I-631 5.19	5.19(s,2H), 5.21-5.32 (m,1H), 6.86(s,1H),7.15(d,J=8.7Hz,1H),7.30-7.52(m,9H),7.63(d,J=8.4Hz,2H)
IR	IR(KBr)1609, 1520, 1481, 1365, 1338, 1294, 1270, 1233, 1178, 1153, 1118, 1078, 1015, 947cm ⁻¹
H ₁	HNMR(CDCl ₁₁) δ 1.45(s, 3H), 1.59(s, 3H), 1.66(s, 3H), 1.70(s, 3H), 2.97(s, 3H), 3.11(s, 3H), 3.64(s, 3H), 3.75(s, 3H), 4.28(d, J=8.4Hz,
I-632 2H)	2H),4.32(d,J=8.4Hz,2H),5.18(s,2H),5.23(t,J=8.4Hz,1H)),5.29(t,J=8.4Hz,1H),6.70(s,1H),7.10(d,J=8.4Hz,1H)7.30-7.51(m,9H)
,7.5	,7.58(d,J=8.4Hz,2H)
HI.	HINMR(CDCl ₃) δ 1.58(s,3H), 1.69(s,3H), 2.97(s,3H), 3.45(s,3H), 3.75(s,3H), 4.33(d,J=7.5Hz,2H), 5.16(s,2H), 5.24-5.33(m,1H),
5.69	5.69 (s, 1H),5.87(s,1H),6.47(s,1H),6.95(d,d,J=8.4&2.1Hz,1H),7.03(d,J=8.4Hz,1H),7.09(,d,J=2.1Hz,1H),7.31-7.50(m,7H),
	7.65 (d, J=8.4Hz, 2H)
IRO	IR(KBr)3450,1609,1590,1558,1524,1487,1448,1421,1320,1233,1143,1117,1073,1019cm ⁻¹
NH.	HNMR(CDCl ₃) δ 1.57(8,3H), 1.68(8,3H), 2.66(8,3H), 2.70(8,3H), 3.13(8,3H), 3.54(8,3H), 3.78(8,3H), 4.33(d,J=8.4Hz,2H), 5.19(8,
I.634 2H),	2H), 5.26(t, J=8.4Hz), 6.86(s, 1H), 7.15(d, J=8.7Hz, 1H), 7.30-7.49(m, 9H), 7.63(d, J=8.4Hz, 2H)
IRG	IR(KBr)1615,1517,1480,1372,1337,1233,1213,1178,1154,1076,1014cm ⁻¹

Table 126

, **5**

	$HINMR(\mathrm{CDCL}_3) \ \delta \ 1.58(s, 3H), 1.69(s, 3H), 2.82(s, 3H), 2.97(s, 3H), 3.29(s, 3H), 3.53(s, 3H), 3.77(s, 3H), 4.33(d, J=7.2Hz, 2H), 5.27(t, J=7.2Hz, 2H), 3.29(s, 3H), 3.77(s, 3H)$
1-635	= 7.2 Hz, 111), 6.25(s, 114), 6.86(s, 111), 7.17(d, J = 9.0 Hz, 114)), 7.23.7.32(m, 214), 7.41(d, J = 8.7 Hz, 214), 7.63(d, J = 8.7 Hz, 214)
	IR(KBr)3431,1611,1522,1482,1364,1337,1294,1231,1178,1153,1077,1014cm ⁻¹
	$HINMR(CDC13) \ \delta \ 1.76(s,3H), 1.82(s,3H), 3.09(s,3H), 3.47(s,3H), 3.75(s,3H), 4.62(d,\mathbf{J}=6.9Hz,2H), 5.47\cdot5.58(m,1H), \ 5.71(s,1H), \ 5.71($
1-636	1-636 5.87 (s, 111), 6.45(s, 111), 6.60(s, 111), 6.89-7.01(m, 211), 7.05(d, J=0.611z, 111), 7.30(d, J=8.711z, 211), 7.65(d, J=8.711z, 211).
	1R(KBr):3448,3265,1612,1585,1521,1487,1330,1287,1243,1225,1152,1112,1069,971cm ⁻¹
	$411NMAR(CDCE) \delta - 1.57(8,311), 1.69(8,311), 1.77(8,311), 1.81(8,311), 2.70(8,311), 2.97(8,311), 3.24(8,311), 3.54(8,311), 3.78(8,311), 4.32(8,311)$
t c	$d, J = 6.9 Hz, 211), 4.64 (d, J = 6.6 Hz, 211), 5.27 (t, J = 6.9 Hz, 111), 5.49 (t, J = 6.6 Hz, 111), 6.86 (s, 11), 7.09 (d, J = 8.4 Hz, 111), 7.32 \cdot 7.44 (m, 4H)$
1.03/	,7.63(d,J=8.411z,2H)
	IR(KBr)1609,1520,1481,1365,1339,1292,1270,1236,1178,1153,1118,1078,1015cm ⁻¹
	"HNMR(CDCII.) & 1.58(s,3H), 1.69(s,3H), 1.76(s,3H), 1.82(s,3H), 2.97(s,3H), 3.46(s,3H), 3.75(s,3H), 4.32(d,J=7.8Hz,2H),
000	$4.63(.d.J=7.8Hz,2H), \\ 6.23\cdot 5.33(m,1H), \\ 5.48\cdot 5.57(m,1H), \\ 5.69(s,1H), \\ 5.85(s,1H), \\ 6.46(s,1H), \\ 6.46(s,1H), \\ 6.89\cdot 7.02(m,2H), \\ 7.05(d,J=1.8Hz,$
1-036	1H), 7.40 (d, J= 8.7Hz, 2H), 7.65(d,J=8.7Hz,2H)
	IR(KBr)3450,1609,1588,1557,1525,1487,1445,1327,1248,1114,1012,1015cm ⁻¹
	'HNMR(CDCl ₃) & 2.55(8,3H), 2.67(8,3H), 3.58(8,3H), 3.79(8,3H), 5.18(8,2H), 5.71(8,1H), 6.85(8,1H), 6.91 (d.d. J=8.4&
1-639	1-639 2.1Hz, 1H), 7.03(d,J=8.4Hz,1H), 7.04(d,J=2.1Hz,1H), 7.32-7.48 (m, 6H), .7.85(.d.d,J=7.8&1.5Hz,1H), 8.22(d,J=1.5Hz,1H)
	IR(KBr)3457,1739,1529,1481,1407,1376,1346,1279,1243,1177,1128,1071,1012cm-1
	1HNMR(CDC13) 6 2.67(8,3H),2.68(8,3H),3.13(8,3H),3.58(8,3H),3.80(8,3H),5.19(8,2H),6.86(8,1H),7.15(d,J=8.7Hz,1H),7.31
1.640	I-640 7.49 (m, 8H), 7.83 (d.d,J=8.1&1.8Hz,1H),8.21(d,J=1.8Hz,1H)
	IR(KBr)3433,1609,1530,1481,1372,1290,1268,1238,1177,1118,1075,1012cm ⁻¹

Table 127

	"HINMR(CDCI3,) \$\preceq\$ 2.67(s,3H), 3.50(s,3H), 3.77(s,3H), 5.16(s,2H), 5.70(s,1H), 5.83(s,1H), 6.47(s,1H), 6.94 (d.d, J=8.7)
1.641	&1.8Hz,1H), 7.04 (.d, J=8.7Hz, H), 7.07(d,J=1.8Hz, H),7.34-7.48(m,5H),7.82(d.d,J=8.1&1.8Hz,1H),8.26(.d,J=1.8Hz,1H)
	HK(KBr)3555,3377,1590,1529,1503,1451,1414,1341,1324,1242,1225,1121cm ⁻¹
	$HINMR(CDC33) \delta - 2.29(8,3H), 2.68(8,3H), 3.12(8,3H), 3.56(8,3H), 3.76(8,3H), 5.18(6,2H), 6.85(8,1H), 7.00-7.20(m,4H), 7.31-7.49(m,4H), 7.40(m,4H), 7$
1-642	m,7II)
	IR(KBr)3407,1624,1518,1480,1361,1287,1270,1234,1175,1117,1084,1009cm ¹
	111111111111111111111111111111111111
1.643	1-643 d,J=8.4Hz,111),7.30-7.49(m,9H),7.69(d,J=1.8Hz,1H)
	IR(KBr)3433,3304,1608,1519,1481,1365,1326,1294,1269,1237,1177,1156,1114,1079,1015cm ⁻¹
-	1HNMR(CDCh3) δ 2.09(8,3H),2.39(8,3H),2.68(8,3H),3.13(8,3H),3.49(8,3H),3.76(8,2H),5.19(8,2H),6.30(8,1H),6.77(8,1H),7.12
1-644	7.24(m,3H),7.31-7.49(m,9H),7.54(d,J=1.8Hz,1H),7.67(d,J=8.4Hz,2H)
	IR(KBr)3434,1608,1519,1481,1366,1293,1269,1237,1164,1114,1081,1016cm-1
	1HNMR(CDCl ₃) δ 2.09(s,3H), 2.39(s,3H), 3.43(s,3H), 3.73(s,3H), 5.16(s,2H), 5.30(s,1H), 5.68(s,1H), 5.89(s,1H), 6.32(s,1H),
270	6.36 (s, 111), 6.95(d.d,J=8.7&2.1112,111), 7.03(d,J=8.7112,111), 7.08(d,J=2.1112,111), 7.14-7.28(m,3H), 7.34-7.50(m,5H), 7.61 (.d,
ero-1	J=1.5Hz,1II), 7.68 (d,J=8.4Hz,2H)
	IR(KBr)3465,3270,1612,1587,1558,1519,1487,1454,1384,1244,1160,1123,1105,1091,1070,1009cm ⁻¹
	"HNMR(CDCL ₃) δ 2.48(8,3H),2.63(8,3H),3.02(8,3H),3.13(8,3H),3.28(8,2H),3.54(8,3H),3.78(8,3H),5.19(8,2H),6.85(8,1H),7.15(
1.646	d,J=8.4Hz,1H),7.30-7.49(m,9H),7.59(s,1H)
	IR(KBr)3433,1606,1519,1481,1364,1341,1292,1272,1233,1178,1148,1118,1082cm ⁻¹
	'HNMR(CDCl ₁) δ 2.48(8,3H), 3.02(8,3H), 3.28(8,3H), 3.46(8,3H), 3.76(8,3H), 5.16(8,2H), 5.70(8,1H), 5.84(8,1H), 6.47(8,1H),
1.647	6.94 (d.d, J=8.4&2.1Hz,1H), 7.03(.d,J=8.4Hz,1H), 7.07(d,J=2.1Hz,1H), 7.33-7.53(m,7H), 7.62(d,J=1.8Hz,1H)
	IR(KBr)3528,3429,1609,1584,1558,1517,1487,1454,1331,1317,1115,1115,1068,1002cm ⁻¹

Table 128

-

HINMIR(CD)C13/6, 11II), G.84(6, 11I), 7.17(d, J=8.714z, 11I), 7.25-7.32(m, 21I), 7.39(d, J=8.44z, 11I), 7.17(d, J=8.714z, 11I), 7.25-7.32(m, 21I), 7.39(d, J=8.44z, 11I), 7.17(d, J=8.14z, 11I), 7.25-7.32(m, 21I), 2.66(a, 31I), 2.66(a, 3II),		1111MB/(1971) & 1 65/2 211) 9 45/2 311) 9 70/2 311) 3 10/8 311) 3 29/8 311) 3 52/8 311) 3 77/8 311) 4 12-4 31(m.2H) 5.22-5.31(
		111111111(CD) (11) (11) (11) (11) (11) (12) (11) (13) (13) (13) (13) (13) (13) (13
	1.648	
		111NMR(CDCh.) & 1.54(s, 311), 1.68(s, 311), 1.76(s, 311), 1.81(s, 311), 2.45(s, 311), 2.68(s, 311), 3.02(s, 311), 3.24(s, 311), 3.52(s, 311), 3.78(s, 311), 3.24(s, 311),
		.3H, $4.10-4.34$ $(m, 2H)$, 4.64 $(d, J=7.2Hz, 2H)$, $5.21-5.30$ $(m, 1H)$, $5.45-5.53$ $(m, 1H)$, 6.84 $(8, 1H)$, 7.08 $(d, J=8.4Hz, 1H)$, $7.31-7.48$ $(m, 4H)$
	-649),7.53(d,J=1.5Hz,H])
		IR(KBr)3432,1606,1518,1481,1362,1340,1292,1276,1236,1177,1163,1116,1076,1010cm ⁻¹
		$ + HNMR(CDCl_3) \delta - 1.56(s, 3H), 1.68(s, 3H), 1.76(s, 3H), 1.82(s, 3H), 2.44(s, 3H), 3.02(s, 3H), 3.45(s, 3H), 3.75(s, 3H), 4.10-4.32(m, 2H), 4.10-4.32(m,$
		4.62 (d,J=7.2Hz,2H),5.22-5.32(m,1H),5.48-5.57(m,1H),5.60-5.80(brroad,1H), 5.82(a,1H), 6.46(a,1H), 6.92 (d.d, J=8.1
	1.650	$\&1.8Hz_1H), 6.97(d, \ J=8.1Hz, \ 1H), 7.04(d, J=1.8Hz_1H), 7.38(d, J=8.1Hz_1H), 7.47(d, d, J=8.1\&1.8Hz_1H), 7.57 (d, J=8.1\&1.8Hz_1H), 7.57 $
		J=1.8Hz,1H)
<u> </u>		IR(KBr)3433,1610,1586,1557,1518,1486,1336,1240,1149,1110,1069cm ⁻¹
		HNMR(CD3OD) 6 3.33(s,3H),3.66(s,3H),5.18(s,2H),6.42(s,1H),1H),6.75(dd,J=8.4&2.1Hz,1H),6.87(d,J=2.1Hz,1H),6.95(d,J=1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
	1.651	=8.4Hz,1H),7.26-7.58(m,8H),7.81(d.d,J=7.8&1.2Hz,1H)
		IR(KBr)3446,1698,1586,1517,1498,1481,1454,1408,1287,1247,1117,1069,1010cm ⁻¹
		$^{\rm i} {\rm HNMR}({\rm CDCl_3}) \ \delta \ 1.76(8,3H), 1.81(8,3H), 2.76(8,3H), 3.23(8,3H), 3.43(8,3H), 3.72(8,3H), 3.76(8,3H), 4.64(d,J=6.6Hz,2H), 5.50(t,J=1)$
	1.652	=6.6Hz,1H),6.78(s,1H),7.08(d,J=8.7Hz,1H),7.33-7.51(m,4H),7.56-7.63(m,1H),7.96(d.d,J=7.5&1.2Hz,1H)
		IR(KBr)1725,1609,1520,1480,1400,1366,1295,1260,1178,1119,1073,1010cm ⁻¹
		HINMR(CDCl ₃) & 2.38(s,3H),2.72(s,3H),3.12(s,3H),3.43(s,3H),3.73(s,3H),3.76(s,3H),5.14(s,2H),6.79(s,1H),7.13-7.24(m,3H),
IR(KBr)1725,1610,1520,1481,1401,1370,1293,1262,1179,1119,1076,1011cm ⁻¹	I-653	7.30-7.38(m,3H),7.41-7.51(m,3H),7.56-7.63(m,1H),795(d.d,J=7.5&1.2H2,1H)
		IR(KBr)1725,1610,1520,1481,1401,1370,1293,1262,1179,1119,1076,1011cm ⁻¹

1-654	HINMR(CDCl ₃) & 1.75(s, 3H), 1.81(s, 3H), 3.56(s, 3H), 3.72(s, 3H), 4.60(d, J=6.6Hz, 2H), 5.29(s, 1H), 5.46-5.56(m, 1H), 5.56-6.00(broad, 1H), 6.42(s, 1H), 6.94(s, 2H), 7.05(s, 1H), 7.43-7.52(m, 2H), 7.56-7.65(m, 1H), 7.99(.d, J=8.7Hz, 1H) IR(KBr)3433, 1697, 1585, 1517, 1481, 1454, 1410, 1287, 1244, 1117, 1068cm.
1-655	111NMR(CDC!3,) & 2.39(s,3H),3.37(s,3H),3.72(s,3H),5.10(s,2H),6.41(s,1H),6.94(dd,J=8.1&2.1Hz,1H),7.02(d,J=8.1Hz,1H),7.0 6(d,J=2.1Hz,1H),7.23(d,J=7.8Hz,2H),7.35(d,J=7.8Hz,2H),7.42·7.63(m,3H),7.96(d,J=7.8Hz,1H) IR(KBr)3538,3443,1685,1518,1458,1413,1253,1116,1069,1010cm ⁻¹
1-656	nr.p. 110-112°C. HNMR(CDCl ₃) & 1.69(s,3H),1.74(s,3H),2.55(q,J=7.1Hz,2H),3.20(s,3H),3.21(s,3H),3.39(s,3H),3.70(s,3H),4.07(t,J=7.1Hz,2H),5.22(t,J=7.1Hz,1H),6.28(s,1H),7.09(d,J=8.4Hz,1H),7.32(dd,J=8.4,2.0Hz,1H),7.36(d,J=8.9Hz,2H),7.37(d,J=2.0Hz,1H),7.69(d,J=8.9Hz,2H)]R(KBr)3477,3402,1607,1618,1481,1365,1161,1111,872,813cm ⁻¹
1-657	m.p.159-162°C 'HNMR(DMSO-d ₆) δ 1.64(s,3H), 1.71(s,3H), 2.45(q,J=6.7Hz,2H), 3.27(s,3H), 3.59(s,3H), 3.96(t,J=6.7Hz,2H), 4.22(s,2H), 5.26(t,J=6.7Hz,1H), 6.17(s,1H), 6.60(dd,J=8.1,2.0Hz,1H), 6.67(d,J=2.0Hz,1H), 6.83(d,J=8.7Hz,2H), 6.95(d,J=8.1Hz,1H), 7.42(d,J=8.7Hz,2H), 8.89(s,1H), 9.46(s,1H) 11z,2H), 8.89(s,1H), 9.46(s,1H) 11R(KBr)3447,3401,3361,1611,1622,1486,1260,1228,1122,1001,814cm ⁻¹
1.658	m.p.146-147°C ¹ HNMR(CDCl ₃) ô 1.14(t,J=7.2Hz,3H),1.76(d,J=0.9Hz,3H),1.81(d,J=0.3Hz,3H),2.70(e,3H),3.20(e,3H),3.23(e,3H),3.72(q,J=7.2Hz,2H),3.78(s,3H),4.64(d,J=6.6Hz,2H),5.49(m,1H),6.84(e,1H),7.09(d,J=8.4Hz,1H),7.31·7.41(m,4H),7.66·7.74(m,2H) ¹ IR(CHCl ₃)2930,1608,1517,1479,1369,1148,1116,1082,969,872cm ⁻¹
1.659	m.p.174·175°C ¹ HNMR(CDCl ₃) ô 1.14(t,J=6.9Hz,3H),2.37(s,3H),2.65(s,3H),3.12(s,3H),3.20(s,3H),3.72(q,J=6.9Hz,2H),3.77(s,3H),5.14(s,2H),6.84(s,1H),7.15(d,J=8.4Hz,1H),7.18·7.42(m,6H),7.66·7.73(m,2H) ¹ 1R(CHCl ₃)1517,1479,1369,1268,1148,1117,1082,969,872cm ⁻¹

	m.p.147.5-148°C
	411NMR(CDCB) & 1.14(t,J=7.2Hz,3H), 1.68(s,3H), 1.74(d,J=0.9Hz,3H), 2.50·2.69(m,2H), 2.72(s,3H), 3.20(s,3H), 3.22(s,3H), 3.7
099-1	$2(q_1J=7.211z_12H), 3.77(s_13H), 4.07(d_1J=6.911z_12H), 5.21(m_1H), 6.84(s_1H), 7.07(d_1J=8.7Hz_1H), 7.31-7.42(m_14H), 7.66-7.74(m_12H), 7.01(m_1H), 7.01(m_1H),$
	(Fi
	IR(CHCh)2930,1607,1517,1480,1369,1148,1118,1082,1025,969,872cm
	m.p.154-157°C
1 00	$^{111} \text{NMR}(\text{CDCI}_3) \ \delta \ \ 1.15(\textbf{t}, \textbf{J} = 7.2 \text{Hz}, 3 \text{H}), 1.76(\textbf{s}, 3 \text{H}), 1.82(\textbf{s}, 3 \text{H}), 3.60(\textbf{q}, \textbf{J} = 7.2 \text{Hz}, 2 \text{H}), 3.76(\textbf{s}, 3 \text{H}), 4.61(\textbf{d}, \textbf{J} = 6.9 \text{Hz}, 2 \text{H}), 4.93(\textbf{s}, 1 \text{H}), \\ \text{1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
199-1	5.53(m,1H),5.69(s,1H),5.96(s,1H),6.45(s,1H),6.80-6.98(m,4H),7.07(m,1H),7.51-7.58(m,2H)
	IR(CHCl ₃)3592,3528,2976,2934,1611,1521,1488,1460,1384,1286,1243,1169,1112,1068,994,885,824cm ⁻¹
	m.p.130.5-133℃
	"HNMR(CDCl ₃) & 1.15(t,J=7.2Hz,3H),2.39(s,3H),3.59(q,J=7.2Hz,2H),3.74(s,3H),4.83(s,1H),5.10(s,2H),5.66(s,1H),5.97(s,1H
1.662),6.44(s,1H),6.87-6.94(m,2H),6.96(dd,J=1.8,8.4Hz,1H),7.02(d,J=8.4Hz,1H),7.09(d,J=1.8Hz,1H),7.19-7.26(m,2H),7.30-7.38(
	m,2H),7.51·7.58(m,2H)
	IR(CHCh3)3524, 1612, 1521,1488,1460, 1383, 1286, 1246,1113,1069,1027,907,873cm ⁻¹
	aniorphous powder
	1HNMR(CDCl ₃) δ 1.15(t,J=7.2Hz,3H), 1.68(d,J=0.6Hz,3H), 1.74(d,J=0.9Hz,3H), 2.48·2.56(m,2H), 3.60(q,J=7.2Hz,2H), 3.74(e,
1-663	$3H), 4.06(d, J=6.9Hz, 2H), 7.05(s, 1H), 5.22(m, 1H), 5.68(s, 1H), 5.96(s, 1H), 6.44(s, 1H), 6.88\cdot6.99(m, 4H), 7.06(d, J=1.2Hz, 1H), 7.51-10.000000000000000000000000000000000$
	7.58(m,2H)
	IR(CHCl ₃)3528,2972,1611,1521,1488,1384,1286,1246,1112,1068,1024,883,824cm ⁻¹
	m.p.113-116°C
1 664	1 HNMR(CDCl ₃) δ 2.55(s,6H),3.45(s,3H),3.74(s,3H),5.31(s,2H),6.44(s,1H),6.92(d,J=8.7Hz,2H),6.94(dd,J=8.4,2.1Hz,1H),7.10
7:00-1	
	IR(Nujol)3491,3443,3304,3155,1662,1608,1523,1492,1464,1251,1215,1111,1067,811,782cm ⁻¹

1-665	m.p.>260°C HINMR(CD ₃ OD) & 3.39(8,3H),3.68(8,3H),5.40(8,2H),6.44(8,1H),6.83(dd,J=8.4,2.1Hz,1H),6.86(d,J=8.7,2H),6.90(d,J=2.1Hz,1 H),7.11(d,J=8.4Hz,1H),7.46(d,J=8.7Hz,2H) H(Nujol)3350,2668,1611,1595,1530,1488,1458,1402,1253,1213,1116,1073,1016,837,817,781cm ⁻¹
999-1	foam HINMR(CDCL ₃) & 2.34(s,311),2.44(s,311),2.83(s,311),3.12(s,311),3.22(s,311),3.55(s,311),3.78(s,311),4.92(s,211),6.85(s,111),7.17(d,J=8.4Hz,111),7.37~7.42(m,211),7.39(d,J=8.7Hz,211),7.68(d,J=8.7Hz,211) IR(Nujol)1638,1608,1519,1480,1459,1177,1151,1079,971,876,844,798cm ⁻¹
1-667	foam ¹ HNMR(CDCl ₃) & 2.07(8,3H),2.53(8,3H),2.96(8,3H),3.23(8,3H),3.27(8,3H),3.54(8,3H),3.78(8,3H),4.86(8,2H),6.86(8,1H),7.11(d,J=9.0Hz,1H),7.33~7.41(m,2H),7.39(d,J=8.7Hz,2H),7.67(d,J=8.7Hz,2H) IR(Nujol)1724,1688,1610,1520,1481,1464,1234,1177,1151,1123,1081,876,798cm ⁻¹
1.668	m.p.221·223°C 'HNMR(DMSO-da)
699-1	foam HINMR(CDCI:) & 2.79(s, 3H), 3.17(s, 3H), 3.22(s, 3H), 3.55(s, 3H), 3.78(s, 3H), 5.21(s, 2H), 6.85(s, 1H), 7.19(d, J=8.4Hz, 1H), 7.23(s, 1H), 7.38(dd, J=8.7, 2.1Hz, 1H), 7.39(d, J=8.7Hz, 2H), 7.42(d, J=2.1Hz, 1H), 7.68(d, J=8.7Hz, 2H), 7.94(s, 1H) IR(Nujol) 1608, 1519, 1480, 1463, 1177, 1151, 1119, 1079, 971, 876, 798cm ⁻¹

1-670	m.p.198-201°C 1HNMR(DMSO-dc) & 2.88(s,3H),3.39(s,3H),3.45(s,3H),3.52(s,3H),3.78(s,3H),4.58(s,2H),5.60(s,1H),7.07(s,1H),7.29(dd,J=9.0 ,1.8Hz,1H),7.30(d,J=1.8,Hz,1H),7.37(d,J=9.0Hz,1H),7.48(d,J=8.7Hz,2H),7.74(d,J=8.7Hz,2H),9.39(s,1H) 1R(Nujol)3576,3500,3405,3391,1668,1607,1590,1520,1480,1462,1175,1156,1081,1014,880,836,826,801cm ⁻¹
1-0-1	foam HINMR(CDCB ₃) & 2.61(a,3H),2.73(a,3H),3.21(a,3H),3.23(a,3H),3.55(a,3H),3.78(a,3H),5.32(a,2H),6.84(a,1H),7.17(d,J=8.4Hz, HD,7.36(dd,J=8.4,2.1Hz,1H),7.38(d,J=8.7,Hz,2H),7.43(d,J=2.1Hz,1H),7.68(d,J=8.7Hz,2H),8.46(a,1H),8.75(a,1H) HR(Najol)1608,1519,1481,1463,1177,1151,1080,971,876,798cm ⁻¹
1.672	foam HINMR(CDCL ₃) & 2.75(s,3H),3.21(s,3H),3.25(s,3H),3.55(s,3H),5.37(s,2H),6.84(s,1H),7.17(d,J=8.4Hz,1H),7.36(dd ,J=8.4,2.1Hz,1H),7.38(d,J=8.7,Hz,2H),7.43(d,J=2.1Hz,1H),7.68(d,J=8.7Hz,2H),8.59(s,1H),8.92(s,1H) IR(Nujol)1608,1519,1480,1463,1177,1151,1080,971,876,798cm ⁻¹
1.673	foam !HNMK(CDCL3) & 2.70(6,3H),3.16(6,3H),3.21(6,3H),3.55(6,3H),3.78(6,3H),5.14(6,2H),6.77(m,2H),6.84(6,1H),7.19(m,2H),7.26 (d,J=8.4Hz,1H),7.37(d,J=2.1Hz,1H),7.38(dd,J=2.1,8.4Hz,1H),7.68(d,J=8.4Hz,2H)
1-674	m.p.153·156°C ¹ HNMR(CDCl ₃) δ 2.18(8,3H),2.81(8,3H),3.18(8,3H),3.52(8,3H),3.55(8,3H),3.79(8,3H),5.14(8,2H),6.86(8,1H),7.18(dd,J=8.1,8.1Hz,1H),7.24(d,J=8.1Hz,1H),7.26(d,J=8.4Hz,1H),7.36(d,J=1.8Hz,1H),7.38(d,J=8.4Hz,2H),7.39(dd,J=1.8,8.4Hz,1H),7.43(dd,J=8.1,8.1Hz,1H),7.67(d,J=8.4Hz,2H),7.90(d,J=8.1Hz,1H) ¹ J=8.1,8.1Hz,1H),7.67(d,J=8.4Hz,2H),7.90(d,J=8.1Hz,1H) ¹ IR(KBr)3384,1689,1519,1481,1364,1177,1151,1079,970,874,798cm ⁻¹

1-675	foam HINMR(CDCL _i) & 2.76(s,3H),3.16(s,3H),3.22(s,3H),3.23(s,3H),3.55(s,3H),3.78(s,3H),5.23(s,2H),6.85(s,1H),7.23(dd,J=7.5,7. 5Hz,1H),7.37(s,2H),7.38(d,J=8.4Hz,2H),7.43(m,3H),7.54(d,J=7.5Hz,1H),7.68(d,J=8.4Hz,2H) IR(KBr)3435,1609,1519,1481,1364,1177,1152,1079,972,876,798cm ⁻¹
1.676	m.p.163-165°C HINMR(CDCL ₃) δ 2.78(8,3H),3.03(8,3H),3.21(8,3H),3.45(8,6H),3.55(8,3H),3.79(8,3H),5.31(8,2H),6.84(8,1H),7.22(d,J=8.4Hz, HI),7.37(dd,J=2.4,8.4Hz,HI),7.38(d,J=8.4Hz,2H),7.42(m,2H),7.53(m,2H),7.67(d,J=8.4Hz,2H),7.68(m,1H) HR(KBr)1609,1519,1481,1365,1176,1161,1080,973,875,799cm ¹
1-677	m.p.153·156°C ¹ HINMR(CDCl ₃) δ 2.69(s,3H),2.98(s,3H),3.17(s,3H),3.21(s,3H),3.33(s,3H),3.56(s,3H),3.78(s,3H),5.44(s,2H),6.84(s,1H),7.21(d,J=8.7Hz,1H),7.31·7.46(m,5H),7.38(d,J=8.4Hz,2H),7.68(d,J=8.4Hz,2H),7.72(m,1H) IR(KBr)1610,1519,1481,1365,1177,1149,1079,963,876,799cm ⁻¹
1.678	foam HINMR(CDCB) & 2.60(s,3H),2.75(s,6H),3.17(s,3H),3.21(s,3H),3.55(s,3H),3.78(s,3H),5.31(s,2H),6.83(s,1H),7.08(dd,J=7.5,7.5Hz,1H),7.16(d,J=8.4Hz,1H),7.17(d,J=7.5Hz,1H),7.30(dd,J=2.1,8.4Hz,1H),7.32(dd,J=7.5,7.5Hz,1H),7.37(d,J=8.4Hz,2H),7.38(d,J=2.1Hz,1H),7.52(d,J=7.5Hz,1H),7.68(d,J=8.4Hz,2H) IR(KBr)1609,1519,1480,1365,1235,1177,1161,1079,970,874,797cm ⁻¹
1.679	m.p.95-97°C 'HNMR(CDCL ₃) & 1.76(s,3H),1.80(s,3H),3.03(s,3H),3.21(s,3H),3.56(s,3H),3.75(s,3H),4.63(d,J=6.9Hz,2H),4.93(s,2H),5.51(m, 1H),6.66(s,1H),7.05(d,J=8.4Hz,1H),7.09-7.17(m,2H),7.37(dd,J=2.4,8.4Hz,1H),7.44(d,J=2.4Hz,1H),7.51-7.58(m,2H) IR(KBr)3435,2936,1605,1519,1475,1382,1365,1232,1161,1109,1080cm ⁻¹

Table 134

1.680	m.p.142-144 °C HINMR(CDCL ₃) & 1.76(s,311), 1.81(s,311), 3.07(s,311), 3.57(s,311), 3.74(s,311), 4.61(d,J=6.6Hz,211), 4.90(s,211), 5.51(m,111), 5.66(s,111), 6.92(m,211), 7.03(m,111), 7.09-7.17(m,211), 7.52-7.58(m,211) HIK(Rb)3455,2964,2932, 1606,1683,1519,1479,1387,1283,1227,1153,1115,1080,1094,1004cm ⁻¹
189-1	m.p.158-160°C HINMR(CDCE) 5 1.76(s,3H), 1.81(s,3H), 3.20(s,3H), 3.42(s,3H), 3.76(s,3H), 4.63(d,J=6.6Hz,2H), 5.51(m,1H), 6.04(s,1H), 6.43(s, HB,7.07(d,J=8.4Hz,1H), 7.11-7.19(m,2H), 7.42(dd,J=2.1,8.4Hz,1H), 7.50(d,J=2.1Hz,1H), 7.58-7.65(m,2H) HR(KBr)3505,3440,1613,1522,1489,1386,1352,1292,1227.1109,1013cm ⁻¹
1-682	m.p.175-178°C ¹ HNMR(CDCl ₃)
1.683	powder IIINMR(CDCM ₃) δ 1.69(8,3H), 1.75(8,3H), 2.48-2.57(m,2H), 3.08(8,3H), 3.57(8,3H), 3.74(8,3H), 4.06(t,J=6.9Hz,2H), 4.90(8,2H), 5. 22(m,1H), 5.64(8,1H), 6.66(8,1H), 6.91(m,2H), 7.03(m,1H), 7.08-7.17(m,2H), 7.52-7.59(m,2H) IR(KBr)3432,2930,1604,1583,1518,1475,1382,1280,1249,1222,1160,1111,1082cm ⁻¹
1.684	m.p.151-153°C !HNMR(CDCl3) & 1.69(s,3H),1.73(s,3H),2.50-2.59(m,2H),3.19(s,3H),3.42(s,3H),3.76(s,3H),4.06(t,J=6.9Hz,2H),5.21(m,1H),6. .02(s,1H),6.43(s,1H),7.05(d,J=8.4Hz,1H),7.11-7.19(m,2H),7.42(dd,J=2.4,8.4Hz,1H),7.50(d,J=2.4Hz,1H),7.57-7.65(m,2H) IR(KBr)3457,2937,1613,1523,1489,1465,1390,1361,1295,1234,1185,1110,1072,1013cm ⁻¹

	m.p.156-158C
800	$ \text{HINMR}(\text{CDCB}) \delta 1.76(8,311), 1.81(8,311), 3.21(8,311), 3.42(8,311), 3.76(8,311), 4.54(4,J=6,911z,211), 5.52(t,J=6.911z,111), 6.94(8,111) $
CQQ-1), 6.94(d,J=8.7Hz,2H), 7.29(d,J=8.7Hz,2H), 7.37(d,J=8.7Hz,2H), 7.71(d,J=8.7Hz,2H)
	IR(KBr)1734,1517,1464,1360,1237,1150,1061,988,862cm
	m.p.189.191°C
	$ \text{HINMR}(\text{CDCL}_3) \ \delta 3.21(8,3H), 3.21(8,3H), 3.21(8,3H), 3.61(8,3H), 3.76(8,3H), 5.09(8,2H), 6.94(8,1H), 7.10(d,J=8.4Hz,2H), 7.28.7. \\$
989-1	48(m,9H),7.71(d,J=8.4Hz,2H)
	IR(KBr)1727,1518,1469,1365,1239,1152,1061,865cm.
	m.p.112-113°C
100	$^{1}\text{HNMR}(\text{CDC}!_{3}) \ \delta \ \ 1.68(s,3H), 1.74(s,3H), 2.50(q,J=7.2Hz,2H), 3.21(s,3H), 3.42(s,3H), 3.62(s,3H), 3.76(s,3H), 3.96(t,J=7.2Hz,2H), 3.10(s,3H), 3.10(s,3H), 3.10(s,3H), 3.10(t,J=7.2Hz,2H), 3.10(t,J=7.2Hz,2Hz,2H), 3.10(t,J=7.2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,2Hz,$
1-00-1),5.23(t,J=7.2Hz,1H),6.92(d,J=8.8Hz,2H),6.93(s,1H),7.28(d,J=8.8Hz,2H),7.37(d,J=8.8Hz,2H),7.71(d,J=8.8Hz,2H)
	IR(KBr)1735,1519,1469,1361,1246,1153,1059,877,861,847,791cm ⁻¹
	m.p.191-193°C
000	1HNMR(1)MSO-da) & 1.73(8,3H), 1.76(8,3H), 3.31(8,3H), 3.71(8,3H), 4.54(d,J=6,9Hz,2H), 5.46(t,J=6.9Hz,1H), (8,1H), 6.87(d,J=8
000-1	.7Hz,2H),6.91(s,1H),6.92(d,J=8.7Hz,2H),7.19(d,J=8.7Hz,2H),7.48(d,J=8.7Hz,2H),9.59(s,1H),12.8(brs,1H)
	IR(KBr)3462,1695,1609,1520,1472,1231,1177,1062,1001,837cm ⁻¹
	m.p.229.232°C
1 600	1HNMR(DMSO-d6) & 3.31(8,3H),3.71(8,3H),5.12(8,2H),6.87(d,J=8.8Hz,2H),6.98(8,1H),7.01(d,J=8.8Hz,2H),7.21(d,J=8.8Hz,2
1-003	H),7.34-7.50(m,7H),9.58(s,1H),12.8(brs,1H)
	IR(KBr)3424,3238,1685,1610,1521,1464,1379,1235,1180,1057,1001,826cm ⁻¹

à,

	m.p.171,172°C
	HINMR(DMSO-da) & 1.64(a,3H), 1.70(a,3H),2.43(q,J=6.9Hz,2H),3.31(a,3H),3.70(a,3H),3.96(t,J=6.9Hz,2H),5.23(t,J=6.9Hz,1
1-630	H), 6.87(d, J=8.8Hz, 2H), 6.91(d, J=8.8Hz, 2H), 6.98(s, 1H), 7.19(d, J=8.8Hz, 2H), 7.48(d, J=8.8Hz, 2H), 9.58(s, 1H), 12.8(brs, 1H)
	1R(KBr)3402,3266,1689,1612,1521,1470,1376,1241,1181,1063,1001,829cm"
	mp191-193℃
-	"HINMR(CDCla) & 2.55(s,3H), 3.52(s,3H), 3.77(s,3H), 5.17(s,2H), 6.70(s,1H), 6.83(s,1H), 6.91(dd,J=1.8,8.1Hz,1H),7.00-
	7.05(m,211), 7.10 · 7.19 (m,2H), 7.34-7.45(m,5H),7.57-7.65(m,2H)
	1R(KBr)3030,2934,1606,1523,1487,1391,1358,1290,1228,1077,1019,947,831,815,803cm ⁻¹
	mp172.173℃
1 000	¹ HNMR(CDCl ₃) δ 2.47(s, 3H), 3.52(s, 3H), 3.53(s, 3H), 3.77(s, 3H), 5.21(s, 2H), 6.25(s, 2H), 6.82(s, 1H), 7.01-7.03(m, 2H), 7.11-
760-1	7.18(m,2H), 7.22-7.41 (m,6H), 7.57-7.63(m,2H)
	IR(KBr)3010,2931,1602,1519,1484,1385,1369,1232,1174,1085,847,806,729,527cm ⁻¹
	mp129-132°C
0001	"HNMR(CDCl ₃) δ 3.44(s,3H), 3.53(s,3H), 3.75(s,3H), 5.20(s,2H), 5.26(s,2H), 5.91(s,1H), 6.44(s,1H), 7.01(d,J=8.1Hz,1H),
660-1	7.08 (dd, J=1.8Hz, 8.1Hz,1H), 7.11·7.18(m,2H),7.28·7.50(m,6H),7.57·7.64(m,2H)
	IR(KBr)2996,2952,2932,2895,1609,1522,1488,1229,1120,1075,999,911,815,724,582cm ⁻¹
	mp124-126°C
1 604	1HNMR(CDCl ₃) δ 1.76(d,J=0.6Hz,3H), 1.80(d,J=0.9Hz,3H), 2.69(2H,8), 3.54(8,3H), 3.57(8,3H), 3.76(8,3H),
#.co.1	4.64(d,J=6.6Hz,2H), 5.26(s,3H), 5.54(m,1H),6.86(s,1H),6.98(d,J=8.7Hz,1H),7.13-7.25(m,3H),7.38-7.43(m,3H)
	IR(CHCl ₃)2935,2855,1675,1603,1520,1481,1387,1370,1247,1178,1158,1134,1081,1003,961,839,814cm ⁻¹

Table 137

	mp141.142°C
900	"HNMR(CDC13) & 2.34(8,311), 2.48(8,311), 5.16(8,211), 5.70(8,111), 6.82(dd,J=8.4,2.114z,111), 6.97-7.00(m,211), 7.07-
669-1 	7.13(m,4H), 7.32·7.46(m,7H)
	118(CHCla)3543,3023,2871,1604,1587,1520,1489,1469,1383,1267,1243,1158,1126,1014,957,877,839cm ⁻¹
	mp178-180°C
	HINMR(CDCB) & 2.75(8,3H), 3.18(8,3H), 3.55(8,3H), 3.76(8,3H), 5.18(8,2H), 5.72(8,1H), 6.87(8,1H), 7.00(4,J=8.7Hz,1H),
060-1	7.15 (dd, J=8.7, 2.1Hz, 1H), 7.24-7.28(m,2H), 7.36-7.50(m,8H)
	IR(CHCI;)3543,3027,2939,1519,1481,1371,1330,1254,1204,1177,1150,1082,1005,969,873cm ⁻¹
	mp129-130°C
1-697	I-697 (HNMR(CDCl ₃) ô 2.24(s,3H), 2.29(s,3H), 3.12(s,3H), 5.18(s,2H), 7.08-7.14(m,5H), 7.25-7.50(m,9H)
	IR(CHCl ₁₃)2925,2871,1604,1520,1490,1455,1369,1291,1262,1169,1111,1007,972,957,882,840,816cm ⁻¹
	mp124.125°C
0001	1 HNMR(CDCl ₃) δ 1.77(s,3H), 1.81-1.82(d,J=0.9Hz,3H), 2.24(s,3H), 2.28(s,3H), 3.22(s,3H), 4.63(d,J=6.6Hz,2H), 5.52(m,1H),
960-1	7.04-7.14(m,511), 7.24-7.34(m,4H)
	1R(KBr)2978,2924,2868,1893,1771,1604,1520,1489,1368,1290,1261,1169,1109,1046,973,957,882,740,816cm·
	lio
005	"HNMR(CDCl ₃) δ 1.69(s,3H), 1.74-1.75(d,J=0.9Hz,3H), 2.24(s,3H), 2.28(s,3H), 2.55(m,2H), 3.21(e,3H), 4.05-
660-1	4.10(t,J=6.9Hz,2H), 5.22(m,1H), 7.03-7.14(m,5H), 7.24-7.34(m,4H)
	IR(CIICL3)2970, 2926, 2875, 1605, 1520, 1490, 1470, 1368, 1292, 1277, 1169, 1110, 1016, 973, 958, 878, 840, 819cm ⁻¹
	mp121-123℃
1.700	"HNMR(CDCl ₃) & 2.24(8,3H), 2.83(8,3H), 2.98(8,3H), 3.11(8,3H), 5.13(8,2H), 7.08-7.14(m,4H), 7.21-7.37(m,9H)
	IR(CHCl ₃)2925,1605,1520,1489,1369,1262,1169,1014,1003,972,957,882,840,816cm ⁻¹

Table 138

1.701	mp 215-217 °C HI NMR (CDCl ₃)
	oil ¹ H NMR (CDCl ₃) δ 1.69 (s, 3H), 1.75-1.76 (d, J = 0.9 Hz, 3H), 2.24 (s, 3H), 2.28 (s, 3H), 2.50-2.57 (td, J = 6.9, 6.3 Hz, 2H),
1.703	1.703 4.05-4.10 (t, J = 6.3 Hz, 2H), 5.24 (m, 1H), 5.70 (8, 1H), 6.81 (dd, J = 8.4, 1.8 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.96 (d, J = 1.8
	Hz, 1H), 7.06-7.13 (m, 4H), 7.26-7.34 (m, 2H) IR (CHCl ₃) 3540, 2972, 2925, 2877, 1604, 1585, 1520, 1490, 1387, 1293, 1267, 1245, 1158, 1127, 1016, 957, 839 cm ⁻¹
	mp 113-115 °C ¹ H NMR (CDCl ₃) & 2.24 (8, 3H), 2.28 (8, 3H), 2.39 (8, 3H), 5.11 (8, 2H), 5.69 (8, 1H), 6.82 (dd, J = 8.4, 2.4 Hz, 1H), 6.97-
1.704	I-704 7.00 (m, 2H), 7.07-7.13 (m, 3H), 7.22-7.36 (m, 7H) IR (CHCl ₃) 3541, 2925, 2871, 1604, 1586, 1620, 1490, 1469, 1380, 1324, 1308, 1292, 1267, 1243, 1201, 1158, 1126, 1013,
	957, 876, 839 cm ⁻¹

50 -

	foam
	111 NMR (CDCE) 6 3.20 (s, 3H), 3.27 (s, 3H), 3.43 (s, 3H), 3.73 (s, 3H), 4.37 (br d, J = 5.7 Hz, 2H), 4.58 (s, 2H), 5.16 (s,
1.705	2H), 5.68 (s, 1H), 6.82 (dd, J = 8.2, 1.7 Hz, 1H), 6.88 (s, 1H), 6.97 (d, J = 1.7 Hz, 1H), 6.98 (d, J = 8.2 Hz, 1H), 7.35-7.47 (m,
	7H), 7.71 (d, J = 8.7 Hz, 2II)
	IR (KBr) 3464, 1515, 1474, 1369, 1230, 1199, 1176, 1149, 1039, 873 cm ⁻¹
	foam
ì	111 NMR (CDCE) & 2.42 (br s, 111), 3.12 (s, 311), 3.22 (s, 311), 3.45 (s, 311), 3.74 (s, 311), 4.49 (br s, 111), 5.18 (s, 211), 6.85 (s,
907.1	11I), 7.15 (d, J = 8.6 Hz, 11I), 7.27 (dd, J = 8.6, 2.0 Hz, 11I), 7.35·7.50 (m, 8H), 7.71 (d, J = 8.6 Hz, 2H)
	IR (KBr) 3583, 3435, 1519, 1467, 1412, 1229, 1180, 1150, 1022, 875, 849, 798, 742, 706 cm ⁻¹
	mp 120·121 ℃
	111 NMR (CDCE) 3 3.45 (8, 311), 3.45 (8, 311), 3.75 (8, 311), 4.66 (8, 211), 4.77 (8, 211), 5.15 (8, 211), 5.67 (8, 111), 5.91 (8, 111),
1.707	6.47 (s, 1H), 6.96 (dd, J = 8.4, 1.9 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 7.09 (d, J = 1.9 Hz, 1H), 7.37.7.47 (m, 7H), 7.64 (d, J =
	8.4 Hz, 2H)
	IR (KBr) 3504, 3461, 1522, 1485, 1466, 1384, 1466, 1384, 1283, 1245, 1197, 1110, 1042, 925, 812, 749 cm ⁻¹
	mp 156-158 Ն
100	¹ H NMR (CDCl ₃) δ 3.11 (s, 3H), 3.21 (s, 3H), 3.28 (s, 3H), 3.42 (s, 3H), 3.73 (s, 3H), 4.38 (s, 2H), 4.58 (s, 2H), 5.18 (s, 2H),
80/- 1	6.88 (s, 1H), 7.12 (d, J = 8.7 Hz, 1H), 7.27 (dd, J = 8.7, 2.1 Hz, 1H), 7.35-7.50 (m, 8H), 7.70 (d, J = 8.7 Hz, 2H)
	IR (KBr) 1514, 1469, 1360, 1177, 1149, 1099, 1042, 870 cm 1
	mp 188-190 ℃
	1H NMR (CDCl ₃) 6 1.70 (t, J = 5.7 Hz, 1H), 3.45 (s, 3H), 3.75 (s, 3H), 4.77 (d, J = 5.7 Hz, 2H), 5.16 (s, 2H), 5.68 (s, 1H),
I-709	5.91 (s, 1H), 6.47 (s, 1H), 6.96 (dd, J = 8.5, 1.7 Hz, 1H), 7.03 (d, J = 8.5 Hz, 1H), 7.09 (d, J = 1.7 Hz, 1H), 7.37-7.48 (m, 7H),
	7.65 (d, J = 8.4 Hz, 2H)
	IR (KBr) 3547, 3492, 3451, 1521, 1487, 1385, 1288, 1249, 1209, 1108, 1011, 746, 702 cm ⁻¹

Table 140

	mp 178-180 C
	41 NMR (CDCl3) & 2.43 (br s, 111), 3.44 (s, 311), 3.72 (s, 311), 4.52 (m, 211), 4.93 (s, 111), 5.15 (s, 211), 5.70 (s, 111), 6.79 (dd,
1.710	
	511), 7.54 (d, J = 9.0 Hz, 211)
	IR (KBr) 3447, 3214, 1609, 1518, 1477, 1459, 1391, 1260, 1221, 1008, 984, 833, 799, 751 cm.
	ши
	111 NMR (CDCI) 3 2.85 (4, 3H), 3.22 (4, 3H), 3.30 (4, 3H), 3.54 (4, 3H), 3.78 (6, 3H), 5.02 (6, 2H), 6.85 (6, 1H), 7.08 (d, J =
<u>=</u>	8.4 Hz, 111), 7.32 (d, J = 2.1 Hz, 111), 7.37 (dd, J = 8.4, 2.1 Hz, 111), 7.39 (d, J = 8.7 Hz, 211), 7.67 (d, J = 8.7 Hz, 211)
	IR (Nujol) 3423, 3320, 3215, 1610, 1519, 1480, 1454, 1176, 1151, 1080, 969, 876, 798 cm ⁻¹
	mvoj.
2	¹ H NMR (CDCl ₃) δ 2.62 (s, 3H), 3.45 (s, 3H), 3.74 (s, 3H), 5.28 (s, 2H), 6.45 (s, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.95 (dd, J =
711:1	8.4, 2.1 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.11 (d, J = 2.1 Hz, 1H), 7.53 (d, J = 8.7 Hz, 2H), 8.50 (brs, 1H), 8.60 (brs, 1H)
	IR (Nujol) 3207, 1611, 1589, 1523, 1489, 1460, 1227, 1116, 1072, 1014, 943, 822, 759 cm ⁻¹
	mp 231-233T.
	1H NMR (CDCl ₃) δ 3.30 (8, 3H), 3.64 (8, 3H), 5.28 (8, 2H), 6.39 (8, 1H), 6.67 (dd, J = 8.4, 2.1 Hz, 1H), 6.80 (d, J = 2.1 Hz,
1.713	1H), 6.84 (d, J = 8.7 Hz, 2H), 7.01 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 8.7 Hz, 2H), 8.64 (d, J = 2.4 Hz, 1H), 8.67 (dd, J = 2.4, 1.2)
	$Hz_1 III)$, 8.94 (d, $J = 1.2 IIz_1 III$)
	IR (Nujol) 3369, 3164, 1612, 1600, 1585, 1522, 1493, 1385, 1255, 1118, 1073, 1013, 934, 824, 798, 778 cm ⁻¹
	foam
1 217	¹ H NMR (CDCl ₃) δ 2.83 (s, 3H), 3.22 (s, 3H), 3.27 (s, 3H), 3.55 (s, 3H), 3.78 (s, 3H), 5.18 (s, 2H), 6.85 (s, 1H), 7.20 (d, J =
<u> </u>	8.4 Hz, 1H), 7.39 (d, J = 8.7 Hz, 2H), 7.40 (dd, J = 8.4, 2.1 Hz, 1H), 7.45 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 8.7 Hz, 2H)
	IR (Nujol) 3264, 1650, 1607, 1517, 1480, 1175, 1150, 1078, 946, 876, 798 cm ⁻¹

Table 141

	form
	HI NMR (CDCl3) & 2.76 (8, 3H), 2.77 (8, 3H), 3.21 (8, 3H), 3.24 (8, 3H), 3.55 (8, 3H), 3.78 (8, 3H), 5.35 (8, 2H), 6.84 (8, 1H),
1.715	
	211)
	IR (Nujol) 1607, 1578, 1519, 1465, 1176, 1151, 1079, 971, 947, 876, 846, 797 cm ⁻¹
	mp 227-229°C
1 716	111 NMR (DMSO-dc) 5 2.87 (8, 311), 3.39 (8, 311), 3.45 (8, 311), 3.52 (8, 311), 3.79 (8, 311), 5.23 (8, 211), 7.08 (8, 111), 7.33 (d, J
97:1	= 2.1 Hz, 1H), 7.35 (dd, J = 8.4, 2.1 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 8.7 Hz, 2H), 7.74 (d, J = 8.7 Hz, 2H)
	IR (Nujol) 3276, 1651, 1605, 1520, 1480, 1463, 1174, 1150, 1079, 947, 879, 798 cm ⁻¹
	m.p 180-181°C
714	¹ H NMR (CDCl ₃) δ 3.07 (s, 3H), 3.45 (s, 3H), 3.75 (s, 3H), 5.18 (s, 2H), 6.45 (s, 1H),6.92 (d, J= 8.7 Hz, 2H), 6.99 (dd, J=
3 .	1.8, 8.4 Hz, 1H), 7.08 (d, J = 1.8 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.25 (t, J = 7.2 Hz, 1H), 7.44 (m, 2H), 7.53 (d, J = 8.7 Hz,
	2H), 7.61 (d, $J = 8.1$ Hz, $1H$)
	бовт
1.719	¹ H NMR (CDCl ₃) δ 3.06 (s, 3H), 3.45(s, 3H), 3.74(s, 3H), 5.17 (s, 2H), 6.45 (s, 1H), 6.93 (d, J= 8.7 Hz, 2H), 6.98 (dd, J= 8.7
017.1	Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.24 (m, 1H), 7.43 (m, 2H), 7.51 (d, J= 8.7 Hz, 2H), 7.61 (m, 1H)
	IR (KBr) 3430, 1611, 1590, 1523, 1490, 1402, 1323, 1242, 1149, 1112, 1070, 1010, 971, 826 cm ⁻¹
	foam
1.719	¹ H NMR (CDCl ₃) δ 2.80 (s, 6H), 3.47 (s, 3H), 3.76 (s, 3H), 5.08 (s 2H), 6.46 (s, 1H), 6.92 (d, J= 8.7 Hz, 3H), 7.10 (d, J= 2.1
	Hz, 1H), 7.15 (d, J = 8.7 Hz, 1H), 7.20 (d, J = 7.2 Hz, 1H), 7.34-7.45 (m, 3H), 7.55 (d, J = 8.7 Hz, 2H)
	IR (KBr) 3427, 1611, 1585, 1522, 1488, 1404, 1224, 1113, 1069, 1011, 940, 824, 767 cm ⁻¹

Table 142

	41 NMR (CDCla) & 1.52 (s, 911), 2.67 (s, 311), 3.19 (s, 311), 3.21 (s, 311), 3.56 (s, 311), 3.78 (s, 311), 5.17 (s, 211), 6.54 (br.s.
1.720	111), 7.11 (m, 111), 7.12 (d, J = 9.0 Hz, 111), 7.25 (m, 111), 7.30 (d, J = 7.5 Hz, 111), 7.32 (dd, J = 1.8, 9.0 Hz, 111), 7.36 (d, J =
	8.7 Hz, 211), 7.41 (d, J = 1.8 Hz, 111), 7.60 (s, 111), 7.67 (d, J = 8.7 Hz, 211)
	IR (KBr) 1724, 1610, 1520, 1481, 1366, 1234, 1177, 1153, 1079, 969, 875, 797 cm ⁻¹
	m.p 187-191 °C
	41 NMR (CDCa) & 2.66 (s, 311), 3.17 (s, 311), 3.21 (s, 311), 3.55 (s, 311), 3.78 (s, 311), 5.11 (s, 211), 6.65 (d, J = 8.4 Hz, 1H),
1.721	6.81 (m, 211), 6.84 (s, 111), 7.12 (d, J = 8.7 Hz, 111), 7.17 (t, J = 8.7 Hz, 111), 7.32 (dd, J = 2.1, 8.7 Hz, 111), 7.37 (d, J = 8.7 Hz,
	2H), 7.40 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 8.7 Hz, 2H)
	IR (KBr) 1624, 1606, 1519, 1481, 1361, 1176, 1148, 1081, 980, 876, 780 cm ⁻¹
	m.p 143.146 °C
	111 NMR (CDCI ₃) δ 2.18 (s, 3H), 2.71 (s, 3H), 3.18 (s, 3H), 3.21 (s, 3H), 3.55 (s, 3H), 3.78 (s, 3H), 5.18 (s, 2H), 6.84 (s, 1H),
1.722	7.12 (d, J = 8.7 Hz, 1H), 7.17 (d, J = 7.2 Hz, 1H), 7.33 (m, 2H), 7.37 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 2.1 Hz, 1H), 7.45 (d, J =
	7.2 Hz, 1H), 7.67 (d, J = 8.7 Hz, 2H), 7.67 (m, 1H)
	IR (KBr) 1693, 1609, 1519, 1481, 1364, 1364, 1173, 1149, 1079, 874, 802 cm ⁻¹
	foam
	111 NMR (CI)CI:) 6 2.86 (s, 3H), 3.00 (s, 3H), 3.22 (s, 3H), 3.55 (s, 3H), 3.78 (s, 3H), 5.22 (s, 2H), 6.59 (s, 1H), 6.85 (s, 1H),
1.723	7.10 (d, J = 8.4 Hz, 1H), 7.25 (m, 3H), 7.32 (d, J = 2.1, 8.7 Hz, 1H), 7.37 (m, 1H), 7.38 (d, J = 2.1 Hz, 1H), 7.38 (d, J = 8.7 Hz,
	1H), 7.67 (d, J = 8.7 Hz, 2H)
	IR (KBr) 1610, 1519, 1480, 1364, 1176, 1150, 1079, 971, 876, 797 cm ⁻¹

	foam
	11 NMR (CDCh) 6 2.74 (8, 311), 3.18 (8, 311), 3.21 (8, 311), 3.43 (8, 611), 3.55 (8, 311), 3.78 (8, 311), 5.24 (8, 211), 6.84 (8, 111),
1.724	7.13 (d, J= 8.4 Hz, 1H), 7.36 (dt, J = 2.1, 8.4 Hz, 1H), 7.37 (m, 1H), 7.39 (d, J = 8.7 Hz, 2H), 7.40 (d, J = 2.1 Hz, 1H), 7.51 (m,
	211), 7.61 (s, 111), 7.67 (d, J = 8.7 Hz, 211)
	IR (KBr) 1609, 1523, 1481, 1353, 1176, 1161, 1080, 890, 799 cm ⁻¹
	m.p 147-150 °C
	11 NMR (CDCI3) & 2.79 (s, 31j), 2.83 (s, 31l), 3.20 (s, 31l), 3.21 (s, 31l), 3.35 (s, 3H), 3.55 (s, 3H), 3.78 (s, 3H), 5.22 (s, 2H),
1.725	6.85 (s, 111), 7.11 (d, J = 8.7 Hz, 1H), 7.32-7.46 (m, 7H), 7.62 (s, 1H), 7.67 (d, J = 8.4 Hz, 2H)
	IR (KBr) 1608, 1518, 1480, 1364, 1178, 1153, 1077, 968, 795 cm ⁻¹
	m.p 224-226 C
	1H NMR (CDCl ₃) & 2.85 (s, 3H), 2.91 (s, 6H), 3.36 (s, 3H), 3.45 (s, 3H), 3.51 (s, 3H), 3.78 (s, 3H), 5.19 (s, 2H), 6.69 (d, J =
1.726	8.1 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.89 (e, 1H), 7.07 (e, 1H), 7.20 (t, J = 8.1 Hz, 1H), 7.30 (m, 3H), 7.48 (d, J = 8.7 Hz, 2H),
	7.74 (d, J = 8.7 Hz, 2H)
	IR (KBr) 1608, 1519, 1480, 1360, 1178, 1146, 1081, 879, 826 cm ⁻¹
	foam
!	III NMR (CDCI ₃) \$ 2.82 (8, 3H), 3.18 (8, 6H), 3.21 (8, 3H), 3.53 (8, 3H), 3.76 (8, 3H), 5.17 (8, 2H), 6.84 (8, 1H), 7.11 (d, J=
1.727	8.4 Hz, 1H), 7.20 (d, J = 4.8 Hz, 1H), 7.30-7.47 (m, 8H), 7.76 (d, J = 8.7 Hz, 2H)
	IR (KBr) 3430, 1677, 1609, 1519, 1481, 1364, 1202, 1177, 1160, 1079, 876, 799 cm. 1
	form
	1H NMR (CDCl ₃) δ 3.45 (8, 3H), 3.75 (8, 3H), 5.06 (8, 2H), 6.45 (8, 1H), 6.68 (d, $J = 7.5$ Hz, 1H), 6.77 (8, 1H), 6.82 (d, $J = 7.5$
1.728	Hz, 1H), 6.91 (d, $J = 8.7$ Hz, 2H), 6.93 (dd, $J = 1.8$, 8.4 Hz, 1H), 6.99 (d, $J = 8.4$ Hz, 1H), 7.07 (d, $J = 1.8$ Hz, 1H), 7.19 (t, $J = 1.8$ Hz, 1H)
	7.5 Hz, 1H), 7.54 (d, $J = 8.7$ Hz, 2H)
	IR (KBr) 3413, 1611, 1522, 1488, 1461, 1405, 1251, 1119, 1076, 1007, 813, 784 cm ⁻¹

	2
	m.p 90-93 C
	1H NMR (CDCl3) & 3.01 (s, 3H), 3.45 (s, 3H), 3.75 (s, 3H), 5.16 (s, 2H), 6.45 (s, 1H), 6.81 (s, 1H), 6.92 (d, J = 8.7 Hz, 2H),
1.729	6.95 (d, J = 1.8 Hz, 1H), 6.96 (m, 2H), 7.24 (m, 2H), 7.40 (t, J = 7.2 Hz, 1H), 7.52 (d, J = 8.7 Hz, 2H)
	IR (KBr) 3434, 1612, 1592, 1623, 1489, 1325, 1248, 1224, 1147, 1113, 1070, 1010, 972 cm ⁻¹
	mp 79-81 °C
į	111 NMR (CDCE) & 2.34 (9, 6H), 3.48 (8, 3H), 3.76 (8, 3H), 4.72 (brs, 1H), 5.16 (8, 2H), 5.68 (brs, 1H), 5.93 (brs, 1H), 6.44
1.730	(s, 111), 6.99-7.10 (m, 311), 7.26-7.49 (m, 711)
	IR(KBr) 3467, 2933, 1613, 1701, 1517, 1482, 1454, 1424, 1389, 1321, 1196, 1148, 1113, 1073 cm ⁻¹
	mp189-191 °C
i	1H NMR (CDC13) & 3.20 (s, 3H), 3.81 (s, 6H), 5.14 (s, 2H), 5.65 (brs, 1H), 6.79 (s, 2H), 6.79-7.02 (m, 5H), 7.36-7.46 (m,
1:731	6H), 7.66 (d, $J = 8.6$ Hz, 2H)
	IR(KBr) 3439, 2937, 1594, 1567, 1523, 1487, 1351, 1240, 1202, 1146, 1126, 874 cm ⁻¹
	mp196-197 °C
i i	¹ H NMR (DMSO-d ₆) δ 3.32 (s, 3H), 3.43 (s, 6H), 3.79 (s, 6H), 5.24 (s, 2H), 7.00 (s, 2H), 7.23-7.30 (m, 3H), 7.35-7.55 (m,
1-732	7H), $7.88 (d, J = 8.4 Hz, 2H)$
	IR(KBr) 3434, 1602, 1561, 1523, 1485, 1362, 1288, 1238, 1201, 1181, 1148, 1126, 1115, 966, 914, 813 cm ⁻¹
	mp202-203 °C
1	1H NMR (DMSO-d6) & 2.40 (8, 6H), 3.31 (8, 3H), 3.34 (8, 3H), 3.51 (8, 3H), 3.58 (8, 3H), 3.77 (8, 3H), 5.27 (8, 2H), 7.03 (8,
667-1	1H), 7.32-7.530 (m, 10H)
	IR(KBr) 3434, 3028, 2944, 1515, 1475, 1463, 1361, 1290, 1272, 1247, 1179, 1085, 967, 815, 804 cm ⁻¹

	mp140-141 C
	HI NMR (CDCB) $\delta = 1.77$ (s, 3H), 1.82 (s, 3H), 3.21 (s, 3H), 3.83 (s, 6H), 4.63 (d, J = 4.6 Hz, 2H), 5.52-5.53 (m, 1H), 6.79 (s, 7.95)
F6.7-1	211), 7.05 (d, J = 8.8 Hz, 111), 7.29-7.42 (m, 411), 7.67 (d, J = 8.6 Hz, 2H)
	IR(KBr) 3434, 2936, 1602, 1565, 1487, 1365, 1242, 1182, 1152, 1123, 1113, 974, 874, 811 cm ⁻¹
	mp168-169 C
Î	111 NMR (CDCB) 6 2.38 (s, 311), 3.09 (s. 311), 3.20 (s, 311), 3.81 (s, 611), 5.11 (s, 211), 6.78 (s, 211), 713-7.42 (m, 911), 7.66 (d,
987I	J = 8.8 Hz, 2H)
	IR(KBr) 3433, 1601, 1566, 1486, 1367, 1246, 1182, 1153, 1114, 973, 869, 824 cm ⁻¹
	mp192-194 C
	111 NMR (CDCI3) & 1.77 (s, 3H), 1.82 (s. 3H), 2.47 (s, 6H), 2.72 (s, 3H), 3.24 (s, 3H), 3.36 (s, 3H), 3.57 (s, 3H), 3.79 (s, 3H),
1.736	4.64 (d, J = 6.6 Hz, 2H), 5.47-5.55 (m, 1H), 6.83 (s, 1H), 7.09 (d, J = 9.0 Hz, 1H), 7.33-7.40 (m, 4H)
	IR(KBr) 3435, 1942, 1516, 1474, 1382, 1357, 1288, 1178, 1096, 966, 862, 805 cm ⁻¹
	mp224-225 C
i i	HI NMR (CDCl3) & 2.38 (s, 3H), 2.46 (s, 6H), 2.66 (s. 3H), 3.12 (s, 3H), 3.36 (e, 3H), 3.56 (s, 3H), 3.77 (s, 3H), 5.14 (s, 2H),
1:7:37	6.82 (s, 111), 712-7.40 (m, 9H)
	IR(KBr) 3435, 2941, 1518, 1474, 1360, 1274, 1179, 1095, 1085, 967, 862, 815, 805 cm
	mp203-204 C
	¹ HI NMR (CDCl ₃) δ 1.76 (8, 3H), 1.82 (8. 3H), 2.46 (8, 6H), 2.45-2.58 (m, 2H), 2.73 (8, 3H), 3.22 (8, 3H), 3.35 (8, 3H), 3.55 (8, 3H)
1.738	3H), 3.77 (s, 3H), 4.07 (d, J = 6.6 Hz, 2H), 5.18·5.25 (m, 1H), 6.82 (s, 1H), 7.07 (d, J = 8.2 Hz, 1H), 7.32·7.39 (m, 4H)
	IR(KBr) 3434, 2941, 1519, 1473, 1359, 1276, 1178, 1114, 1085, 967, 860, 811 cm ⁻¹

Table 146

1-739	mp158-159 ℃ ¹ H NMR (DMSO-d ₆) δ 1.72 (8, 3H), 1.76 (8, 3H), 3.72 (8, 6H), 4.54 (d, J = 6.0 Hz, 2H), 5.45-5.52 (m, 1H), 6.55-6.59 (m, 2H), 6.84-6.90 (m, 5H), 7.57 (d, J = 8.2 Hz, 2H), 8.70 (brs, 1H), 9.53 (brs, 1H)
	IR(KBr) 3465, 2932, 1610, 1523, 1487, 1460, 1283, 1281, 1123, 1010, 819 cm ⁻¹
	mp180-181 C
i.	1H NMR (CDCh) & 2.32 (s, 3H), 3.72 (s, 6H), 5.08 (s, 2H), 6.54-6.58 (m, 1H), 6.68 (s, 1H), 6.85-6.95 (m, 5H), 7.21 (d, J =
1:740	7.6 Hz, 2H), 7.39 (d, J = 7.8 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 8.83 (brs, 1H), 9.54 (brs, 1H)
	IR(KBr) 3519, 2937, 1607, 1562, 1523, 1461, 1400, 1246, 1176, 1125, 1003, 821 cm ⁻¹
	mp105-106 °C
į	1H NMR (CDCl3) & 2.13 (s, 6H), 3.17 (s, 3H), 5.16 (s, 2H), 5.85 (brs, 1H), 6.61-6.66 (m, 1H), 6.77 (s, 1H), 7.01 (d, J = 8.2)
1:7/4	Hz, 1H), $7.25 \cdot 7.46$ (m, 9H), 7.65 (d, $J = 8.8$ Hz, 2H)
	IR(KBr) 3466, 3031, 2934, 1585, 1513, 1476, 1366, 1285, 1198, 1175, 1148, 1127, 1014, 968, 868, 840 cm ⁻¹
	mp92.93 °C
	111 NMR (DMSO-d ₆) δ 1.74 (8, 3H), 1.78 (8. 3H), 2.24 (8, 6H), 3.31 (8, 3H), 3.65 (8, 3H), 4.56 (d, J = 6.8 Hz, 2H), 5.52 (t, J =
I-742	1.742 6.0 Hz, 1H), 6.37 (s, 1H), 6.64-6.76 (m, 2H), 6.88-6.93 (m, 1H), 7.16-7.20 (m, 2H), 8.31 (brs, 1H), 8.45 (brs, 1H), 8.73 (brs,
	1H)
	IR(KBr) 3443, 2932, 1707, 1613, 1616, 1484, 1462, 1387, 1280, 1243, 1196, 1114, 1074, 979 cm ⁻¹
	mp180-181 ℃
9	1H NMR (DMSO-d ₆) δ 2.22 (s, 6H), 2.32 (s, 3H), 3.29 (s, 3H), 3.63 (s, 3H), 5.08 (s, 2H), 6.61-6.65 (m, 1H), 6.75 (s, 1H), 6.93
667.1	(d, J = 8.2 Hz, 1H), 7.13-7.22 (m, 4H), 7.39 (d, J = 7.4 Hz, 2H), 8.30 (brs, 1H), 8.44 (brs, 1H), 8.84 (brs, 1H)
	IR(KBr) 3443, 2930, 1686, 1614, 1587, 1518, 14863, 1462, 1385, 1281, 1246, 1197, 1113, 1073, 1009, 806 cm ⁻¹

Table 147

	mp123-124 ℃
	III NMR (DMSO-da) & 1.65 (s, 311), 1.71 (s, 311), 2.23 (s, 611), 2.36-2.51 (m, 2H), 3.31 (s, 3H), 3.64 (s, 3H), 3.91-3.98 (m,
₹ /	211), 5.22-5.28 (m, 1H), 6.36 (s, 1H), 6.65-6.88 (m, 3H), 7.16 (s, 1H), 8.30 (brs, 1H), 8.44 (brs, 1H), 8.70 (brs, 1H)
	1R(KBr) 3444, 2930, 1686, 1613, 1518, 1483, 1390, 1283, 1248, 1198, 1113, 1074, 1013 cm ⁻¹
_	mp 174-177 C
	111 NMR (CDCl3) & 1.77-1.78 (d, J = 0.9 Hz, 3H), 1.82-1.83 (d, J = 0.9 Hz, 3H), 2.74 (e, 3H), 3.18 (e, 3H), 3.25 (e, 3H), 3.57
1.745	1.745 (8, 311), 3.78 (8, 211), 4.64-4.67 (d, $J = 6.9$ Hz, 211), 5.51 (m, 111), 6.86 (8, 114), 7.09 (d, $J = 8.4$ Hz, 114), 7.35-7.40 (m, 214),
	7.45-7.49 (m, 2II), 7.55-7.60 (m, 2H)
	IR (CHCl3) 2939, 1613, 1519, 1480, 1371, 1331, 1292, 1251, 1176, 1150, 1118, 1082, 971, 871, 849 cm ⁻¹
	mp 134-136 C
	¹ H NMR (CDCl ₃) δ 1.69 (s, 3H), 1.75 (s, 3H), 2.53·2.60 (dt, J = 6.6, 5.7 Hz, 2H), 2.73 (s, 3H), 3.18 (s, 3H), 3.23 (s, 3H), 3.56
I-746	1.746 (s, 3H), 3.78 (s, 3H), 4.07-4.11 (t, $J = 5.7$ Hz, 2H), 5.22 (m, 1H), 6.86 (s, 1H), 7.07 (d, $J = 9.0$ Hz, 1H), 7.35-7.40 (m, 2H),
	7.45-7.49 (m, 2H), 7.55-7.61 (m, 2H)
	IR (CHCL) 2938, 1614, 1619, 1480, 1448, 1371, 1331, 1294, 1228, 1176, 1160, 1119, 1083, 1004, 970, 870, 849, 819 cm.
	mp 182-183 C
1 7.47	¹ H NMR (CDCl ₃) δ 2.26 (s, 3H), 2.28 (s, 3H), 4.74 (s, 1H), 5.16 (s, 2H), 5.69 (s, 1H), 6.81-6.89 (m, 3H), 6.96-6.99 (m, 2H),
ř	7.10-7.12 (d, J = 4.8 Hz, 2H), 7.23-7.26 (m, 2H), 7.39-7.45 (m, 5H)
	IR (CHCLs) 3597, 3543, 2924, 2871, 1611, 1587, 1522, 1490, 1455, 1382, 1171, 1126, 1012, 836 cm ⁻¹
	mp 158-161 Ե
1,748	¹ H NMR (CDCl ₃) δ 2.38 (s, 3H), 2.74 (s, 3H), 3.12 (s, 3H), 3.18 (s, 3H), 3.57 (s, 3H), 3.78 (s, 3H), 5.15 (s, 2H), 6.86 (s, 1H),
2	7.16 (d, J = 8.7 Hz, 1H), 7.21-7.24 (d, J = 7.8 Hz, 1H), 7.35-7.40 (m, 5H), 7.45-7.49 (m, 2H), 7.52-7.62 (m, 2H)
	IR (CHCl ₃) 2939, 1732, 1614, 1519, 1480, 1331, 1294, 1253, 1176, 1150, 1119, 1082, 1003, 970, 869, 816 cm ⁻¹

Table 148

	mp 174·176 ℃
	¹ H NMR (CDCl ₃) δ 1.75 (s, 3H), 1.79 (s, 3H), 2.58 (s, 3H), 3.52 (s, 3H), 3.53 (s, 3H), 3.78 (s, 3H), 4.62 (d, J = 6.9 Hz, 2H),
I.749	5.48-5.55 (m, 1H), 6.83 (s, 1H), 6.99 (d, J = 8.7 Hz, 1H), 7.09 (dd, J = 1.8, 8.1 Hz, 1H), 7.11-7.19 (m, 2H), 7.22 (d, J = 1.8 Hz,
	1H), 7.57-7.65 (m, 2H)
	IR (KBr) 2932, 1602, 1519, 1485, 1385, 1368, 1174, 1086, 1015, 986, 848, 804, 527 cm ⁻¹
	mp 129-131 °C
	111 NMR (CDCE) 6 1.75 (8, 3H), 1.79 (8, 3H), 3.45 (8, 3H), 3.53 (8, 3H), 3.75 (8, 3H), 4.62 (d, J = 6.6 Hz, 2H), 5.24 (8, 2H),
1.750	5.50-5.58 (m, 1H), 5.90 (s, 1H), 6.44 (s, 1H), 6.99 (d, J = 8.7 Hz, 1H), 7.08-7.18 (m, 3H), 7.29 (d, J = 1.8 Hz, 1H), 7.58-7.64 (m,
	2H)
	IR (KBr) 3361, 2953, 2934, 1522, 1488, 1460, 1391, 1230, 1154, 1121, 1071, 993, 912, 817, 587 cm ⁻¹
	mp 148-150 °C
	¹ H NMR (CDCl ₃) δ 1.68 (s, 3H), 1.74 (s, 3H), 2.51-2.60 (m, 5H), 3.53 (s, 6H), 3.77 (s, 3H), 4.02 (t, J = 7.2 Hz, 2H), 5.19-
1.751	5.25 (m, 3H), 6.83 (s, 1H), 6.98 (d, J = 8.4 Hz, 1H), 7.08 (dd, J = 2.1, 8.4 Hz, 1H), 7.11.7.18 (m, 2H), 7.21(d, J = 2.1 Hz, 1H),
	7.57.7.64 (m, 2H)
	IR (KBr) 2931, 1603, 1519, 1484, 1386, 1370, 1231, 1175, 1086, 1015, 983, 961, 847, 728, 526 cm ⁻¹
	mp 99-101 °C
	1H NMR (CDCl ₃) & 1.68 (s, 3H), 1.73 (s, 3H), 2.65 (q, J = 7.2 Hz, 2H), 3.44 (s, 3H), 3.54 (s, 3H), 3.75 (s, 3H), 4.04 (t, J = 7.2 Hz, 2H), 3.44 (s, 3H), 3.54 (s, 3H), 3.75 (s, 3H), 4.04 (t, J = 7.2 Hz, 2H), 3.44 (s, 3H), 3.54 (s, 3H), 3.75 (s, 3H), 4.04 (t, J = 7.2 Hz, 2H), 3.44 (s, 3H), 3.54 (s, 3H), 3.75 (s, 3H), 4.04 (t, J = 7.2 Hz, 2H), 3.44 (s, 3H), 3.54 (s, 3H), 3.75 (s, 3H), 4.04 (t, J = 7.2 Hz, 2H), 3.44 (s, 3H), 3.54 (s, 3H), 3.75 (s, 3H), 4.04 (t, J = 7.2 Hz, 2H), 3.44 (s, 3H), 3.54 (s, 3H), 3.75 (s, 3H), 4.04 (t, J = 7.2 Hz, 2H), 3.44 (s, 3H), 3.54 (s, 3H), 3.75 (s, 3H), 4.04 (t, J = 7.2 Hz, 2H), 3.44 (s, 3H), 3.54 (s, 3H), 3.75 (s, 3H), 4.04 (t, J = 7.2 Hz, 2H), 3.44 (s, 3H), 3.54 (s, 3H), 3.75 (s, 3H), 4.04 (t, J = 7.2 Hz, 2H), 4.04 (t, J = 7.2 Hz
1.752	Hz, 2H), 5.20-5.25 (m, 3H), 5.89 (s, 1H), 6.44 (s, 1H), 6.98 (d, J = 8.1 Hz, 1H), 7.09-7.18 (m, 3H), 7.26-7.27 (m, 1H), 7.58-7.63
	(m, 2H)
	IR (KBr) 3349, 2930, 1609, 1523, 1489, 1231, 1152, 1121, 1072, 994, 912, 813, 588 cm ⁻¹

	mp 115-117 C
	111 NMR (CDCLs) & 1.69 (s, 3H), 1.75 (s, 3H), 2.53 (q, J = 6.9 Hz, 2H), 2.62 (s, 3H), 3.53 (s, 3H), 3.77 (s, 3H), 4.06 (t, J = 6.9
1.753	1-753 11z, 211), 5.18-5.25 (m, 111), 5.70 (s, 111), 6.83 (s, 111), 6.89-6.95 (m, 2H), 7.02 (d, J = 1.2 Hz, 1H), 7.10-7.18 (m, 2H), 7.57-7.65
 ; <u></u>	(m, 211)
	IR (KBr) 3545, 2931, 1604, 1520, 1485, 1370, 1249, 1232, 1175, 1084, 1012, 813, 526 cm ⁻¹
	111 NMR (CDCl ₃) & 1.14 (t, J = 6.9 Hz, 3H), 1.29 (t, J = 6.9 Hz, 3H), 2.50 (e, 3H), 3.19 (e, 3H), 3.71 (q, J = 6.9 Hz, 2H), 4.00
1 764	(q. J = 6.9 Hz, 211), 5.18 (s, 211), 5.68 (s, 111), 6.83 (s, 111), 6.91 (dd, J = 1.8, 8.4 Hz, 111), 7.00 (d, J = 8.4 Hz, 111), 7.04 (d, J =
<u>.</u>	1.8 Hz, 1H), 7.32-7.48 (m, 7H), 7.66-7.74 (m, 2H)
	IR (CHCl ₃) 3532, 2976, 1586, 1516, 1468, 1369, 1282, 1174, 1148, 1068, 1016, 967, 907, 871 cm ⁻¹
	amorphous powder
	¹ H NMR (CDCl ₃) δ 1.15 (t, J = 6.9 Hz, 3H), 1.28 (t, J = 6.9 Hz, 3H), 3.59 (q, J = 6.9 Hz, 2H), 3.97 (q, J = 6.9 Hz, 2H), 4.89
1.755	(s, 1H), 5.15 (s, 2H), 5.64 (s, 1H), 5.98 (s, 1H), 6.45 (s, 1H), 6.86-6.94 (m, 2H), 6.96-7.04 (m, 2H), 7.12 (d, J = 2.4 Hz, 1H),
	7.35-7.56 (m, 7H),
	IR (CHCh.) 3534, 1610, 1521, 1488, 1383, 1169, 1116, 1064, 1018, 832 cm ⁻¹
	mp 126-129 ℃
	¹ H NMR (CDCl ₃) δ 1.14 (t, J = 6.9 Hz, 3H), 1.30 (t, J = 6.9 Hz, 3H), 1.76 (s, 3H), 1.81 (s, 3H), 2.69 (s, 3H), 3.20 (s, 3H),
1.756	3.23 (s, 3H), 3.72 (q, J = 6.9 Hz, 2H), 4.00 (q, J = 6.9 Hz, 2H), 4.64 (d, J = 6.6 Hz, 2H), 5.49 (m, 1H), 6.84 (s, 1H), 7.08 (d, J =
	8.7 Hz, 1H), 7.32-7.42 (m, 4H), 7.56-7.72 (m, 2H)
	IR (CHCl ₃) 1609, 1516, 1467, 1369, 1267, 1229, 1175, 1148, 1115, 1069, 968, 907, 871 cm ⁻¹

·

Table 150

1.757	mp 123-135 °C (dec.) 11 NMR (CDCl.) δ 1.14 (t, J = 6.9 Hz, 3H), 1.29 (t, J = 6.9 Hz, 3H), 2.37 (s, 3H), 2.64 (s, 3H), 3.12 (s, 3H), 3.20 (s, 3H), 3.71 (q, J = 6.9 Hz, 2H), 4.00 (q, J = 6.9 Hz, 2H), 5.14 (s, 2H), 6.83 (s, 1H), 7.14 (d, J = 8.7 Hz, 1H), 7.18-7.24 (m, 2H), 7.31-7.40 (m, 5H), 7.41 (d, J = 2.1 Hz, 1H), 7.65-7.72 (m, 2H) 11 (CHCl.) 1607, 1517, 1467, 1369, 1330, 1268, 1175, 1148, 1116, 1069, 1026, 967, 907, 871 cm ⁻¹
1.758	amorphous powder II 15 (t, J = 6.9 Hz, 3H), 1.28 (t, J = 6.9 Hz, 3H), 1.76 (s, 3H), 1.82 (d, J = 0.6 Hz, 3H), 3.59 (q, J = 6.9 Hz, 2H), 4.61 (d, J = 6.9 Hz, 2H), 4.87 (s, 1H), 5.53 (m, 1H), 5.66 (s, 1H), 5.97 (s, 1H), 6.45 (s, 1H), 6.86.7.00 (m, 4H), 7.09 (d, J = 1.8 Hz, 1H), 7.50.7.57 (m, 2H) IR (CHCl ₃) 3528, 2978, 1611, 1521, 1487, 1412, 1383, 1168, 1115, 1064, 905, 831 cm ⁻¹
1.759	nmorphous powder 'H NMR (CDCl ₃) δ 1.15 (t, J = 6.9 Hz, 3H), 1.27 (t, J = 6.9 Hz, 3H), 2.39 (s, 3H), 3.59 (q, J = 6.9 Hz, 2H), 3.97 (q, J = 6.9 Hz, 2H), 4.88 (s, 1H), 5.10 (s, 2H), 5.64 (s, 1H), 5.97 (s, 1H), 6.45 (s, 1H), 6.97-7.01 (m, 2H), 7.11 (d, J = 1.5 Hz, 1H), 7.20-7.26 (m, 2H), 7.32-7.37 (m, 2H), 7.50-7.66 (m, 2H) R (CHCl ₃) 3526, 2974, 1612, 1620, 1488, 1412, 1383, 1285, 1246, 1116, 1065, 1027, 870 cm ⁻¹
1.760	mp 169-171 °C 1H NMR (CDCl ₃) δ 2.71 (s, 3H), 3.01 (s, 3H), 3.10 (s, 3H), 3.21 (s, 3H), 3.36 (s, 3H), 3.56 (s, 3H), 3.77 (s, 3H), 4.83 (s, 2H), 6.84 (s, 11I), 7.05 (d, J = 8.4 Hz, 1H), 7.32 (dd, J = 2.1, 8.4 Hz, 1H), 7.36-7.42 (m, 2H), 7.42 (d, J = 2.1 Hz, 1H), 7.65-7.72 (m, 2H) 1R (CHCl ₃) 1666, 1517, 1479, 1368, 1175, 1148, 1119, 1083, 1014, 968, 871 cm ⁻¹

Table 151

	mp 175-177 ℃
1 261	111 NMR (DMSO-ds) & 1.70 (s, 6H), 3.67-3.73 (m, 2H), 3.71 (s, 3H), 3.72 (s, 3H), 4.59 (br, 1H), 5.27-5.31 (m, 1H), 6.50 (d,
10/-1	J = 8.1 Hz, 1H), 6.77-6.95 (m, 6H), 7.34-7.40 (m, 2H), 9.23 (br s, 1H), 9.42 (br s, 1H)
	IR (KBr) 3600-2400(br), 1609, 1622, 1492, 1463, 1384, 1263, 1208, 1174, 1129, 1055, 1033 cm
	mp 151-153 C
	111 NMR (CDCl3) δ 1.78 (8, 3H), 1.85 (8, 3H), 3.78 (8, 3H), 3.80 (8, 3H), 4.72 (d, $J=6.9~{\rm Hz}, 2{\rm H}), 5.39-5.44$ (m, 1H), 6.53 (d, $J=6.9~{\rm Hz}, 2{\rm Hz}, 2{\rm Hz}$)
1.762	J = 3.0 Hz, 111), 6.95 (s, 111), 7.05 (s, 111), 7.09-7.16 (m, 311), 7.38 (d, J = 8.7 Hz, 111), 7.45 (dd, J = 1.8, 8.7 Hz, 111), 7.54-7.60
	(m, $2H$), 7.80 (d, $J = 1.8$ Hz , $1H$),
	IR (KBr) 3600-2800(br), 1509, 1496, 1481, 1462, 1447, 1383, 1207, 1158, 1051 cm ⁻¹
	mp 138-139 Ն
	¹ H NMR (CDCl ₃) δ 3.78 (s, 3H), 3.79 (s, 3H), 6.64 (dd, J = 0.9, 2.7 Hz, 1H), 6.80 (d, J = 7.8 Hz, 1H), 6.94 (s, 1H), 7.04 (s,
1.763	1H), 7.09-7.21 (m, 3H), 7.25-7.27 (m, 1H), 7.32 (d, J = 8.7 Hz, 1H), 7.42 (dd, J = 1.8, 8.4 Hz, 1H), 7.53-7.59 (m, 3H), 8.60-
	8.63 (m, 1H)
	IR (KBr) 3600-2800(br), 1590, 1510, 1497, 1478, 1430, 1384, 1209, 1158, 1053, 1026 cm ⁻¹
	mp 172-174 C
5	¹ H NMR (CDCl ₃) δ 2.32 (s, 3H), 3.78 (s, 3H), 3.79 (s, 3H), 5.30 (s, 2H), 6.59 (d, J = 3.3 Hz, 1H), 6.94 (s, 1H), 7.04 (s, 1H),
1-704	7.04-7.15 (m, 7H), 7.34 (d, J = 8.4 Hz, 1H), 7.41 (dd, J = 1.8, 8.7 Hz, 1H), 7.55-7.69 (m, 2H), 7.82-7.83 (m, 1H)
	IR (KBr) 3600-2800(br), 1516, 1497, 1482, 1466, 1382, 1306, 1219, 1209, 1159, 1051, 1026 cm ⁻¹
	mp 134·136 ℃
1 705	¹ H NMR (DMSO-d ₆) δ 1.70 (9, 3H), 1.71 (8, 3H), 3.72-3.74 (m, 2H), 3.73 (8, 3H), 3.74 (6, 3H), 5.25 (br s, 1H), 5.50-5.58 (m,
1.700	1H), 6.66-6.72 (m, 1H), 6.78-6.83 (m, 1H), 6.92 (s, 3H), 6.95 (s, 3H), 7.19-7.29 (m, 2H), 7.30-7.39 (m, 2H), 9.46 (br s, 3H),
	IR (KBr) 3600-2800(br), 1624, 1610, 1526, 1494, 1461, 1382, 1255, 1208, 1175, 1120, 1054, 1031 cm ⁻¹

Table 152

	mp 166-168 U
-	111 NMR (CDCl3) δ 2.40 (s, 311), 3.77 (s, 611), 4.82 (s, 1H), 6.71 (d, J = 2.4 Hz, 1H), 6.86-6.93 (m, 4H), 7.22-7.32 (m, 4H),
98) 	7.43-7.48 (m, 2H), 7.58-7.64 (m, 1H), 7.71-7.75 (m, 2H)
	1R (KBr) 3600-2800(br), 1611, 1524, 1492, 1382, 1336, 1265, 1209, 1162, 1090, 1053, 1030 cm-1
	mp 139·140 C
	¹ H NMR (CDCL) 6 3.78 (s, 3H), 3.80 (s, 3H), 6.60-6.62 (m, 1H), 6.95 (s, 1H), 7.05 (s, 1H), m), 7.08-7.16 (m, 2H), 7.23-7.26
) 	(m, 111), 7.45 (d, J = 1.2 Hz, 211), 7.54-7.61 (m, 211), 7.83 (d, J = 0.6 Hz, 111), 8.18 (br s, 1H)
	IR (KBr) 3600-2800(br), 1520, 1497, 1465, 1448, 1414, 1383, 1313, 1218, 1205, 1159, 1048, 1024 cm ⁻¹
_	1H NMR (CDCl3) & 2.26 (s, 3H), 3.48 (s, 3H), 3.75 (s, 3H), 5.16 (s, 2H), 5.69 (s, 1H), 5.89 (s, 1H), 6.45 (s, 1H), 6.94 (d.d, J=
1.768	8.4 & 2.1Hz, 1H), 7.02 (d, J = 8.4Hz, 1H), 7.08 (d, J = 2.1Hz, 1H), 7.35 - 7.50 (m, 8H), 8.36 - 8.44 (m, 1H)
	IR (KBr) 3384, 1592, 1525, 1487, 1455, 1397, 1312, 1250, 1122, 1102, 1069, 1011cm ⁻¹
	1H NMR (CDCl ₃) δ 2.26 (s, 3H), 2.68 (s, 3H), 3.13 (s, 3H), 3.56 (s, 3H), 3.78 (s, 3H), 5.19 (s, 2H), 6.84 (s, 1H), 7.15 (d, J=
1.769	8.4 Hz, 1H), 7.30 · 7.51 (m, 10H), 8.37 · 8.47 (m, 1H)
	IR (KBr)3384, 1704, 1590, 1524, 1481, 1389, 1357, 1272, 1240, 1174, 1114, 1082,1017cm ⁻¹
	¹ H NMR (CDCl ₃) δ 2.67 (s, 3H), 2.84 (s, 3H), 3.28 (s, 3H), 3.56 (s, 3H), 3.78 (s, 3H), 6.26 (s, 1H), 6.85 (s, 1H), 7.17 (d, J =
1.770	1-770 9.0 Hz, 1H), 7.24 - 7.33 (m, 2H), 7.35 - 7.50 (m, 3H), 8.37 - 8.50 (m, 1H)
	IR (KBr)3383, 1674, 1595, 1526, 1482, 1363, 1177, 1078, 1012cm ⁻¹
	¹ H NMR (CDCl ₃) δ 1.76 (8, 3H), 1.81 (8, 3H), 2.26 (8, 3H), 2.72 (8, 3H), 3.23 (8, 3H), 3.56 (8, 3H), 3.78 (8, 3H), 4.64 (d, J =
I-771	1-771 7.2 Hz, 2H), 5.44 · 5.53 (m, 1H), 6.84 (s, 1H), 7.09 (.d, J = 8.4 Hz, 1H), 7.30 · 7.53 (m, 5H), 8.38 · 8.47 (m, 1H)
	IR (KBr) 3376, 1697, 1594, 1524, 1481, 1365, 1270, 1239, 1177, 1112, 1079, 1013cm ⁻¹

Table 153

5	
10	
15	
20	
25	
30	
35	
40	
45	

50

55

	1H NMR (CDCl3) & 2.26 (s, 3H), 2.38 (s, 3H), 2.68 (s, 3H), 3.12 (s, 3H), 3.56 (e, 3H), 3.78 (s, 3H), 5.14 (s, 2H), 6.84 (s, 1H),
1.772	1-772 7.12 - 7.50 (m, 9H), 8.35 - 8.44 (m, 1H)
	IR(KBr)3365, 1693, 1622, 1591, 1526, 1477, 1374, 1314, 1291, 1180, 1165,1111, 1078cm ⁻¹
	1H NMR (CDCh.) & 1.76 (s, 3H), 1.82 (s, 3H), 2.26 (s, 3H), 3.48 (s, 3H), 3.75 (s, 3H), 4.62 (d, J = 6.9 Hz, 2H), 5.46 · 5.58
1 773	(m, 1H), 5.71 (s, 1H), 5.86 (s, 1H), 6.44 (s, 1H), 6.87 · 7.00 (m, 2H), 7.05 (d, J = 1.8 Hz, 1H), 7.33 · 7.52 (m, 3H), 8.36 · 8.47
e :-	(m, 1H)
	IR (KBr) 1737, 1604, 1519, 1482, 1392, 1366, 1267, 1173, 1131, 1084, 1062, 1009cm ⁻¹
	1H NMR (CDCL3) & 2.25 (s, 3H), 2.38 (s, 3H), 3.48 (s, 3H), 3.75 (s, 3H), 5.10 (s, 2H), 5.12 (brs, 1H), 5.90 (s, 1H), 6.44 (s,
1774	1H), 6.94 (.d.d., J = 8.4 & 1.8 Hz, 1H), 7.02 (.d., J = 8.4 Hz, 1H), 7.06 (.d., J = 1.8 Hz, 1H), 7.18 · 7.52 (m, 6H), 8.35 · 8.44 (m,
	IH)
	IR (KBr) 1686, 1590, 1524, 1488, 1398, 1314, 1257, 1102, 1068, 1008 cm ⁻¹
	1H NMR (CDCl3) & 3.47 (s, 3H), 3.76 (s, 3H), 5.16 (s, 2H), 5.71 (s, 1H), 5.82 (s, 1H), 6.45 (s, 1H), 6.97 (d.d, J = 8.4 & 2.1Hz,
776	1H), 7.04 (d, $J = 8.4$ Hz, 1H), 7.07 (d, $J = 2.1$ Hz, 1H), $7.22 \cdot 7.30$ (m, 1H), $7.33 \cdot 7.49$ (m, 5H), $7.92 \cdot 7.98$ (m, 1H), $8.09 \cdot 8.14$
91.1	(m, 1H), 10.44 (s, 1H)
	IR (KBr) 3492,3459, 1692, 1605, 1518, 1486, 1388, 1294, 1238, 1200, 1115, 1100, 1070,1008cm ⁻¹
	11 NMR (CDCl ₃) δ 2.35 (d, J = 1.8Hz, 3H), 2.68 (s, 3H), 3.13 (s, 3H), 3.23 (s, 3H), 3.78 (s, 3H), 5.19 (s, 2H), 6.82 (s, 1H),
1.776	I-776 7:04 - 7.17 (m, 2H), 7.30 - 7.49 (m, 9H)
	IR (KBr) 1606, 1518, 1478, 1364, 1295, 1271, 1240, 1182, 1118, 1087, 1077, 1017cm ⁻¹
	1H NMR (CDCl ₃) 6 1.76 (s, 3H), 1.81 (s, 3H), 2.35 (s, 3H), 2.72 (s, 3H), 3.23 (s, 3H), 3.53 (s, 3H), 3.78 (s, 3H), 4.64 (d, J =
1.777	6.6 Hz, 2H), 5.45 · 5.53 (m, 1H), 6.82 (s, 1H), 7.03 · 7.14 (m, 2H), 7.32 · 7.47 (m, 4H)
	IR (KBr) 1607, 1520, 1482, 1374, 1363, 1240, 1179, 1115, 1079cm ⁻¹

Table 154

	111 NMR (CDCl3) & 2.35 (d, J = 1.2Hz, 3H), 3.45 (s, 3H), 3.75 (s, 3H), 5.15 (s, 2H), 5.68 (s, 1H), 5.90 (s, 1H), 6.43 (s, 1H),
1.778	
	1R (KBr) 3536,3398, 1609, 1587, 1518, 1487, 1244, 1192, 1110, 1071, 1010cm ⁻¹
	HI NMR (CDCl3) 6 1.76 (8, 3H), 1.82 (8, 3H), 2.35 (8, 3H), 3.45 (8, 3H), 3.74 (8, 3H), 4.61 (d, J = 6.9 Hz, 2H), 5.43 · 5.60 (m,
. 0770	1H), 6.43 (s, 1H), 6.87 · 7, 15 (m, 4H), 7.36 · 7.51 (m, 2H)
67-1	IR (KBr) 3512,3444, 1611, 1585, 1518, 1488, 1462, 1447, 1416, 1305, 1288, 1243, 1207,
	1112, 1103, 1070, 1012cm ⁻¹
	111 NMR (CDCl3) 6 3.45 (s, 3H), 3.75 (s, 3H), 4.84 (s, 2H), 5.15 (s, 2H), 5.70 (s, 1H), 5.88 (s, 1H), 6.44 (s, 1H), 6.91 · 7.20 (m,
1 700	4H), 7.32 · 7.48 (m, 5H), 7.52 · 7.61 (m, 1H), 7.64 · 7.74 (m, 1H)
1.100	IR (KBr)3523,3428, 1610, 1587, 1516, 1482, 1463, 1400, 1321, 1285, 1238, 1187,
	1106cm ⁻¹
	1H NMIR (CDCI3) & 2.68 (8, 3H), 3.13 (8, 3H), 3.54 (8, 3H), 3.78 (8, 3H), 5.19 (8, 2H), 5.44 (d.d, J = 18 & 0.6Hz, 1H), 5.90
1 701	$(d.d. J = 18 & 0.9Hz, 1H), 6.84 (s, 1H), 6.86 \cdot 6.98 (m, 1H), 7.09 \cdot 7.18 (m, 2H), 7.31 \cdot 7.52 (m, 8H), 7.71 (d.d. J = 7.2 & 2.4)$
101:1	Hz, 1H)
	IR (KBr) 1608, 1518, 1479, 1365, 1235, 1177, 1118, 1079, 1013cm ⁻¹
	¹ H NMR (CDCl ₃) δ 1.59 (d, $J = 6.3$ Hz, 3H), 2.68 (e, 3H), 3.13 (e, 3H), 3.55 (e, 3H), 3.78 (e, 3H), 5.19 (e, 2H), 5.21 · 5.30 (m,
1.782	1H), 6.84 (s, 1H), 7.08 - 7.17 (m, 3H), 7.32 - 7.56 (m, 7H), 7.69 - 7.75 (m, 1H)
	IR (KBr) 3543,3433, 1609, 1518, 1480, 1364, 1235, 1178, 1117, 1078, 1014cm ⁻¹
	¹ H NMR (CDCl ₃) & 1.59 (d, J = 6.0Hz, 3H), 2.01 (brs, 1H), 3.47 (s, 3H), 3.76 (s, 3H), 5.16 (s, 2H), 5.15 - 5.30 (m, 1H), 5.72
1.783	1-783 (8, 1H), 5.91 (8, 1H), 6.46 (8, 1H), 6.89 - 7.16 (m, 4H), 7.30 - 7.60 (m, 6H), 7.68 - 7.85 (m, 1H)
	IR(KBr)3467, 1613, 1586, 1517, 1484, 1455, 1421, 1395, 1287, 1238, 1111,1070, 1010cm ⁻¹

	6) [By (H1 m) kill for a 110 miles
	1H NMR (CDCl3) δ 1.77 (8, 3H), 1.81 (8, 3H), 3.23 (8, 3H), 3.81 (8, 6H), 4.64 (d, $J = 6.6$ Hz, zii), 6.47 (9, 4H) τ
1.784	1H), 6.96 (s, 1H), 7.06 (.d, J = 8.4 Hz, 1H), 7.49 (d.d, J = 8.4 & 2.1 Hz, 1H), 7.58 (d, J = 2.1Hz, 1H), 7.05 (d, J = 1.1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz,
	1038, 1000cm ⁻¹
	mp169.170 °C
1.785	HINMR (CDCl ₃) & 2.07 (s, 6H), 3.20 (s, 3H), 5.16 (s, 2H), 5.71 (brs, 1H), 6.97-7.40 (m, 14H)
	1R(K1br) 3357, 3023, 2933, 1698, 1516, 1478, 1362, 1260, 1227, 1152, 1132, 362, 669 cm
	mp169-170 °C
1.786	1.786 H NMR (CDCl ₃) 8 2.13 (8, 6H), 3.11 (8, 3H), 3.18 (8, 3H), 5.18 (8, 2H), 7.09-7.47 (m, 12H), 1.04 (u, 5 - 3.5 12), 2.13
	IR(KBr) 3434, 3035, 2938, 1516, 1474, 1362, 1290, 1197, 1182, 1174, 1149, 1114, 973, 857, 842 cm
	mp156-157 °C
1.787	1.787 H NMR (CDC13) & 2.08 (s, 6H), 3.12 (s, 3H), 3.21 (s, 3H), 5.18 (s, 2H), 7.12-7.58 (m, 1411)
	IR(KBr) 3494, 3292, 3033, 2934, 1753, 1712, 1517, 1478, 1358, 1294, 1261, 1173, 1151, 967, 870 cm.
	mp105·106 °C
	1H NMR (CDC13) 6 1.75 (8, 3H), 1.85 (8, 3H), 2.12 (8, 6H), 3.18 (8, 3H), 3.22 (8, 3H), 4.04 (0, 9 - 1.9 112, 211), 3.22 (8, 3H)
1.788	H_{z_1} 1H), 7.08 (s, 1H), 7.16-7.38 (m, 6H), 7.64 (d, J = 8.8 Hz, 2H)
-	IR(KBr) 3434, 2934, 1514, 1474 1362, 1285, 1152, 1113, 971, 916, 861, 845 cm.
	mp148-149 C
	1H NMR (CDCl3) 6 2.12 (6, 6H), 2.39 (8, 3H), 3.10 (8, 3H), 3.18 (8, 3H), 5.13 (8, ZH), 1.10-1.55 (111, 1.12-1, 1.15)
1:78	2H)
	IR(KBr) 3435, 3027, 2931, 1678, 1516, 1475, 1362, 1288, 1182, 1191, 1119, 309, 319, 301 311.

Table 156

	mp139-140 °C
	111 NMR (CDCl ₃) & 1.76 (s, 3H), 1.82 (s, 3H), 2.14 (s, 6H), 2.46-2.58 (m, 2H), 3.14 (s, 3H), 3.19 (s, 3H), 4.07 (d, J = 7.0 Hz,
06/-1	211), 5.16-5.23 (m, 111), 7.05 (s, 111), 7.14-7.41 (m, 611), 7.66 (d, J = 8.4 Hz, 2H)
	IR(KBr) 3433, 2946, 1514, 1467, 1360, 1282, 1180, 1152, 1115, 868 cm ⁻¹
	mp123·124 C
	111 NMR (DMSO-d6) δ 1.72 (8, 311), 1.77 (8, 311), 2.03 (8, 614), 4.66 (d, $J=6.6$ Hz, 211), 5.50 (t, $J=6.0$ Hz, 1H), 6.49 (d, $J=6.0$ Hz, 211), 6.49 (d, $J=6.0$ Hz, 1H), 6.49 (d, $J=6.0$ Hz, 211), 6.40 (d,
1.791	9.6 Hz, 1H), 6.55 (s, 1H), 6.83 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.1 Hz, 1H), 7.27 (s, 2H), 7.48 (d, J = 5.6 Hz, 2H), 8.92 (brs,
	1H), 9.48 (brs, 1H)
	IR(KBr) 3337, 2930, 1612, 1518, 1471, 1285, 1258, 1207, 1123, 999, 834 cm ⁻¹
	mp230-231 C
,	1H NMR (DMSO-d ₆) δ 2.04 (8, 6H), 2.33 (8, 3H), 5.09 (8, 2H), 6.50 (d, J = 8.4 Hz, 1H), 6.59 (8, 1H), 6.85 (d, J = 8.1 Hz, 2H),
1.792	7.04 (d, J = 5.4 Hz, 1H), 7.23 (d, J = 7.5 Hz, 2H), 7.29 (e, 1H), 7.41 (d, J = 7.8 Hz, 2H), 7.49 (d, J = 8.7 Hz, 2H), 9.05 (bre,
	1H), 9.50 (brs, 1H)
	IR(KBr) 3287, 1609, 1519, 1475, 1298, 1245, 1126, 1006, 841 cm ⁻¹
	mp118·119 ℃
	¹ H NMR (DMSO-d ₆) δ 1.64 (s, 3H), 1.70 (s, 3H), 2.03 (s, 6H), 2.42.2.60 (m, 2H), 3.96 (t, J = 6.9 Hz, 2H), 5.27 (t, J = 7.2 Hz,
1.793	2H), 6.49 (d, J = 8.1 Hz, 1H), 6.55 (s, 1H), 6.84 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.1 Hz, 1H), 7.27 (s, 2H), 7.48 (d, J = 8.7 Hz,
	2H), 8.89 (brs, 1H), 9.48 (brs, 1H)
	IR(KBr) 3392, 2928, 1610, 1619, 1466, 1250, 1230, 1205, 1178, 1128, 1031, 834, 808 cm ⁻¹
	mp139.140 C
706.1	¹ H NMR (DMSO-d ₆) δ 1.75 (s, 3H), 1.77 (s, 3H), 2.50 (s, 6H), 3.39 (s, 3H), 3.44 (s, 3H), 4.69 (d, J = 6.2 Hz, 2H), 5.50 (t, J =
F61:1	6.6 Hz, 1H), 7.29-7.33 (m, 3H), 7.41-7.47 (m, 4H), 7.59-7.68 (m, 2H)
	IR(KBr) 3433, 2933, 1675, 1516, 1473, 1366, 1358, 1292, 1259, 1182, 1172, 1151, 969, 873 cm ¹

Table 157

962-1	
	[R(RIS) 3434, 3023, 2928, 1017, 1477, 1309, 1233, 1201, 1304
	mp 159·160 ℃ III NMR (DMSO-d ₆)
1.796	Hz, 211), 5.21-5.27 (m, 111), 7.28-7.34 (m, 311), 7.41-7.47 (m, 411), 7.59-7.64 (m, 2H) (KBr) 3434, 2938, 1519, 1478, 1439, 1362, 1295, 1269, 1173, 1152, 1125, 960, 870, 839 cm ¹
	mp130-131 $\mathbb C$ 1.72 (s, 3H), 1.75 (s, 3H), 2.02 (s, 6H), 4.59 (d, J = 6.4 Hz, 2H), 5.48 (t, J = 7.2 Hz, 1H), 6.81-7.07
1.797	(m, 7H), 7.25 (s, 2H), 8.96 (brs, 1H), 9.41 (brs, 1H) IR(KBr) 3392, 1608, 1589, 1518, 1475, 1322, 1258, 1170, 1127, 974, 836, 808 cm ⁻¹
1.798	mp 143-144 C 14 NMR (DMSO-de) 5 2.03 (s, 6H), 2.32 (s, 3H), 5.12 (s, 2H), 6.82-7.41 (m, 13H), 9.10 (brs, 1H), 9.41 (brs, 1H)
	IR(KBr) 3344, 1609, 1521, 1427, 1255, 1236, 1205, 1129, 998, 832, 806, 792 cm ⁻¹
	mp163·164 ℃ 1H NMR (DMSO-d ₆) δ 1.87 (8, 3H), 1.90 (8, 3H), 3.42 (8, 3H), 5.15 (8, 2H), 6.88·7.03 (m, 4H), 7.24·7.58 (m, 9H), 7.97 (brs,
1.799	1H), 9.02 (brs, 1H) IR(KBr) 3563, 3476, 3001, 2922, 1698, 1527, 1512, 1476, 1359, 1303, 1261, 1237, 1210, 1195, 1167, 1146, 871 cm. ¹
	1H NMR (CDCl3) 6 1.30 (d, J = 6.6Hz, 6H), 2.58 (s, 3H), 2.97 (quintet, J = 6.6Hz, 1H), 3.54 (s, 3H), 3.77 (s, 3H), 5.17 (s,
008-1	2H), 6.87 (s, 1H), 7.11 (d, J = 9.0 Hz, 1H), 7.22 - 7.35 (m, 8H), 7.47 - 7.68 (m, 6H), 8.19 - 8.20 (m, 2H) IR (KBr) 1737, 1604, 1519, 1482, 1392, 1366, 1267, 1173, 1131, 1084, 1062, 1009cm ⁻¹

	11 NMR (CDCh3) 6 2.56 (s, 3H), 3.55 (s, 3H), 3.78 (s, 3H), 5.17 (s, 2H), 5.69 (s, 1H), 6.84 (s, 1H), 6.91 (d.d, J = 8.4 & 1.8
1.801	Hz, 111), 7.02 (d, $J = 8.4$ Hz, 1H), 7.04 (d, $J = 1.8$ Hz, 1H), $7.04 \cdot 7.14$ (m, 1H), $7.33 \cdot 7.47$ (m, 8H)
	IR(KBr)3446, 1613, 1585, 1522, 1477, 1396, 1357, 1291, 1243, 1204, 1174, 1076,1017, 1006cm ⁻¹
	foam
	1H NMR (CDCl ₃) & 2.82 (s, 3H), 3.22 (s, 3H), 3.25 (s, 3H), 3.26 (s, 3H), 3.55 (s, 3H), 3.78 (s, 3H), 5.48 (s, 2H), 6.85 (s, 1H),
1.802	7.27 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 8.7 Hz, 2H), 7.40 (dd, J = 8.4, 2.1 Hz, 1H), 7.43 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 8.7 Hz,
	211)
	IR (Nujol) 1608, 1519, 1480, 1462, 1365, 1176, 1151, 1079, 970, 876, 798 cm ⁻¹
	foam
-	1H NMR (CD3OD) 6 3.28 (s, 3H), 3.68 (s, 3H), 5.17 (s, 2H), 6.43 (s, 1H), 6.81 (dd, J = 8.4, 2.1 Hz, 1H), 6.85 (d, J = 8.7 Hz,
1-803	2H), 6.89 (d, J = 2.1 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 8.7 Hz, 2H)
	IR (Nujol) 3342, 1611, 1592, 1523, 1488, 1460, 1251, 1225, 1114, 1072, 1012, 941, 826, 756 cm ⁻¹
	mp 150-152°C
	1H NMR (DMSO-d6) 6 3.31 (s, 3H), 3.64 (s, 3H), 5.00 (s, 2H), 6.39 (s, 1H), 6.66 (dd, J = 8.4, 2.1 Hz, 1H), 6.79 (d, J = 2.1
1-804	Hz, 1H), 6.84 (d, J = 8.7 Hz, 2H), 6.98 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 8.7 Hz, 2H)
	IR (Nujol) 3459, 3291, 1612, 1694, 1522, 1489, 1458, 1257, 1226, 1101, 1073, 1011, 960, 823 cm ⁻¹
	mp 190-192°C
	1H NMR (DMSO-d6) & 2.88 (8, 3H), 3.41 (8, 3H), 3.45 (8, 3H), 3.52 (8, 3H), 3.79 (8, 3H), 5.43 (8, 2H), 7.08 (8, 1H), 7.16 (8,
I-805	1H), $7.32 \sim 7.36$ (m, 2H), 7.46 (d, $J = 8.4$ Hz, 1H), 7.49 (d, $J = 8.7$ Hz, 2H), $7.53 \sim 7.64$ (m, 3H), 7.74 (d, $J = 8.7$ Hz, 2H), 7.88
	\sim 7.91 (m, 2H)
	IR (Nujol) 1604, 1519, 1481, 1462, 1367, 1175, 1081, 1009, 878, 841, 816, 801 cm ⁻¹

1-806	foam ¹ H NMR (CDCh ₃)
1.807	foam 111 NMR (CDCE) & 2.76 (a, 311), 3.21 (a, 311), 3.30 (b, 311), 3.56 (s, 311), 3.78 (s, 311), 5.38 (s, 211), 6.84 (a, 111), 7.21 (d, J = 8.4 Hz, 111), 7.38 (d, J = 8.7 Hz, 211), 7.38 (d, J = 8.7 Hz, 211), 7.38 (d, J = 8.7 Hz, 211), 8.80 (a, 111), 7.38 (d, J = 8.7 Hz, 211), 8.80 (a, 111), 7.38 (d, J = 8.7 Hz, 211), 8.80 (a, 111), 8.80 (a, 111), 9.11,
1.808	mp 193-195 °C. 14 NMR (CDCl ₃)
1.809	foam 1H NMR (CDCl ₃) & 1.42 (t, J = 7.5 Hz, 3H), 2.73 (s, 3H), 2.96 (q, J = 7.5 Hz, 2H), 3.21 (s, 3H), 3.31 (s, 3H), 3.56 (s, 3H), 3.78 (s, 3H), 5.28 (s, 2H), 6.84 (s, 1H), 7.21 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 8.7 Hz, 2H), 7.38 (dd, J = 8.4, 2.1 Hz, 1H), 7.44 (d, J = 2.1 Hz, 1H), 7.68 (d, J = 8.7 Hz, 2H) 1R (KBr) 3434, 1609, 1579, 1519, 1481, 1365, 1177, 1151, 1080, 970, 876, 797 cm ⁻¹

Table 160

1.810	foam III NMR (CDCla) & 2.71 (s, 3H), 3.21 (s, 3H), 3.35 (s, 3H), 3.56 (s, 3H), 3.78 (s, 3H), 5.38 (s, 2H), 6.84 (s, 1H), 7.25 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 8.7 Hz, 2H), 7.40 (dd, J = 8.4, 2.1 Hz, 1H), 7.46 (d, J = 2.1 Hz, 1H), 7.54~7.64 (m, 3H), 7.68 (d, J = 8.7 Hz, 2H), 8.12~8.16 (m, 2H) 1R (KBr) 3433, 1609, 1561, 1519, 1480, 1365, 1177, 1151, 1081, 971, 876, 798 cm ⁻¹
1.811	fonim 111 NMR (CDCl ₃) & 2.51 (8, 311), 2.54 (8, 311), 2.63 (8, 311), 2.72 (8, 311), 3.16 (8, 311), 3.21 (8, 311), 3.56 (8, 311), 3.78 (8, 311), 3.78 (8, 311), 3.78 (8, 311), 3.78 (9, 3
1-812	fourn 1H NMR (CDCl ₃) & 2.74 (s, 6H), 3.17 (s, 3H), 3.21 (s, 3H), 3.55 (s, 3H), 5.38 (s, 3H), 5.35 (s, 2H), 6.84 (s, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.36 (dd, J = 8.4, 2.1 Hz, 1H), 7.38 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 2.1 Hz, 1H), 7.68 (d, J = 8.7 Hz, 2H), 8.41 (d, J = 2.4 Hz, 1H), 8.50 (d, J = 2.4 Hz, 1H) J = 2.4 Hz, 1H), 8.50 (d, J = 2.4 Hz, 1H) IR (KBr) 3433, 1609, 1519, 1481, 1364, 1177, 1151, 1080, 971, 876, 798 cm ⁻¹
1.813	foam 'H NMR (DMSO-d ₆)

1.814	IND 240-241°C III NMIR (DMSO-d ₆) δ 2.66 (s, 3H), 3.30 (s, 3H), 3.64 (s, 3H), 5.26 (s, 2H), 6.39 (s, 1H), 6.66 (dd, J = 8.4, 2.1 Hz, 1H), 6.77 I-814 (d, J = 2.1 Hz, 1H), 6.84 (d, J = 8.7 Hz, 2H), 7.02 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 8.7 Hz, 2H), 8.48 (d, J = 2.7 Hz, 1H), 8.53 (d, J = 2.7 Hz, 1H)
	IR (Nujol) 3513, 3491, 3070, 1610, 1581, 1523, 1488, 1459, 1408, 1275, 1236, 1216, 1111, 1065, 1040, 821, 785 cm 1
	mp 288-290℃ (decomp.)
	11 NMR (DMSO-da) 6 2.89 (8, 311), 3.41 (8, 311), 3.45 (8, 311), 3.52 (8, 311), 3.79 (8, 314), 4.95 (8, 211), 5.65 (8, 111), 7.08 (8,
1-815	1-815 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.33 (dd, J = 8.4, 2.1 Hz, 1H), 7.38 (d, J = 2.1 Hz, 1H), 7.49 (d, J = 8.7 Hz, 2H), 7.74 (d, J = 8.7 Hz, 2H), 7
	11z, 211),
	IR (Nujol) 3120, 1712, 1671, 1604, 1516, 1480, 1462, 1364, 1172, 1078, 1015, 970, 874, 841, 796 cm ⁻¹
	mp 204-206℃
•	1H NMR (DMSO-d6) δ 2.87 (s, 3H), 3.45 (s, 3H), 3.46 (s, 3H), 3.52 (s, 3H), 3.78 (s, 3H), 5.40 (s, 2H), 7.08 (s, 1H), 7.32 (dd,
1.816	1-816 J = 8.4, 2.1 Hz, 111), 7.33 (d, J = 8.4 Hz, 111), 7.39 (d, J = 2.1 Hz, 111), 7.48 (d, J = 8.7 Hz, 211), 7.71 (dd, J = 5.1, 1.2 Hz, 111),
	$7.74\cdot(d, J = 8.7 \text{ Hz, } 2\text{H}), 8.88\cdot(d, J = 5.1 \text{ Hz, } 1\text{H}), 9.21\cdot(d, J = 1.2 \text{ Hz, } 1\text{H})$
	IR (Nujol) 1608, 1586, 1557, 1521, 1480, 1464, 1360, 1352, 1176, 1156, 1078, 884, 835, 818, 799 cm ⁻¹
	foan
010	1H NMR (CDCl3) 6 2.20 (8, 3H), 3.45 (8, 3H), 3.75 (8, 3H), 5.15 (8, 2H), 6.45 (8, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.94 (dd, J =
/10:1	1.8, 8.4 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 7.09 (d, J = 1.8 Hz, 1H), 7.18 (m, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.53 (d, J = 8.7 Hz,
	2HJ), 7.55 (m, 2H)

Table 162

	m.p 163-166 C
	111 NMR (CDCE) & 1.53 (s, 911), 2.67 (s, 311), 3.11 (s, 311), 3.21 (s, 311), 3.56 (s, 311), 3.77 (s, 311), 5.12 (s, 2H), 6.52 (s, 1H),
1.818	6.84 (s, 111), 7.13 (d, J = 8.4 Hz, 111), 7.33 (dd, J = 2.1, 8.4 Hz, 111), 7.38 (d, J = 8.7 Hz, 2H), 7.39 (m, 5H), 7.74 (d, J = 8.7 Hz,
	IR (KBr) 1692, 1614, 1520, 1480, 1390, 1367, 1231, 1175, 1152, 1078, 876, 799 cm ⁻¹
	m.p 172 °C
	111 NMR (CDCL ₃) & 2.77 (s, 3H), 3.05 (s, 3H), 3.16 (s, 3H), 3.22 (s, 3H), 3.36 (s, 3H), 3.78 (s, 3H), 5.16 (s, 2H), 6.46 (s, 1H),
1.819	6.85 (s, 111), 7.14 (d, J = 8.4 Hz, 1H), 7.25 (d, J = 8.7 Hz, 2H), 7.35 (dd, J = 2.1, 8.4 Hz, 1H), 7.39 (d, J = 8.7 Hz, 2H), 7.40 (d,
	J = 2.1, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.7 Hz, 2H)
	IR (KBr) 1608, 1519, 1480, 1361, 1175, 1154, 1079, 972, 876, 801 cm ⁻¹
	mp 180-182 ℃
0	1H NMR (CDCl ₃) 6 2.69 (s, 3H), 3.14 (s, 3H), 3.21 (s, 3H), 3.53 (s, 3H), 3.71 (d, J = 0.9 Hz, 3H), 5.20 (s, 2H), 6.93 (d, J = 8.4
028-1	Hz, 1H), 7.34-7.49 (m, 9H), 7.59 (dd, J = 9.0, 1.2 Hz, 2H)
	IR (KBr) 1518, 1469, 1357, 1179, 1151, 1038, 871, 821 cm ⁻¹
	mp 183-185 ℃
	1H NMR (CDCl.) 6 3.41 (s, 3H), 3.66 (d, J = 0.9 Hz, 3H), 4.91 (s, 1H), 5.17 (s, 2H), 5.62 (s, 1H), 5.70 (s, 1H), 6.92-6.96 (m,
178-1	2H), 6.97 (dd, J = 8.4, 2.0 Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 7.10 (d, J = 2.0 Hz, 1H), 7.36-7.48 (m, 7H)
	IR (KBr) 3541, 3398, 1588, 1523, 1461, 1410, 1320, 1261, 1217, 1037, 836, 747 cm ⁻¹
	mp 108-110 °C
000	111 NMR (CDCl ₃) 6 2.69 (8, 311), 3.13 (8, 311), 3.45 (8, 311), 3.53 (8, 311), 3.77 (8, 311), 4.66 (8, 211), 4.76 (8, 211), 5.19 (8, 211),
778-1	6.86 (s, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.33.7.48 (m, 9H), 7.62 (d, J = 8.4 Hz, 2H)
	IR (KBr) 1482, 1390, 1307, 1276, 1177, 1083, 1053, 1013, 807 cm ⁻¹

1.823	mp 192-194 °C 111 NMR (CDCl ₃) & 1.70 (br s, 1H), 2.69 (s, 3H), 3.13 (s, 3H), 3.53 (s, 3H), 3.77 (s, 3H), 4.78 (s, 2H), 5.19 (s, 2H), 6.87 (s, 1H), 7.15 (d, J = 8.4 Hz, 1H), 7.35 (dd, J = 8.4, 2.3 Hz, 1H), 7.37-7.49 (m, 8H), 7.63 (d, J = 7.8 Hz, 2H) 1R (KBr) 3554, 3434, 1522, 1481, 1389, 1364, 1277, 1234, 1174, 1085, 1012, 807 cm ⁻¹
1.824	mp. 135-137 °C 1H NMR (CDCl ₃) \$\tilde{a}\$ 3.19 (s, 3H), 3.60 (s, 3H), 3.71 (s, 3H), 4.96 (s, 1H), 5.18 (s, 2H), 5.78 (s, 1H), 6.73 (s, 1H), 6.88 (dd, J = 8.3, 2.1 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.08 (d, J = 8.3 Hz, 1H), 7.34 (d, J = 8.6 Hz, 2H), 7.41-7.47 (m, 5H), 7.63 (d, J = 8.6 Hz, 2H) Hz, 2H) IR (KBr) 3479, 1473, 1347, 1149, 1010, 869, 803, 784, 747 cm ⁻¹
1-825	mp 149-151 °C III NMR (CDCL3)
1.826	mp 82-85 °C 1H NMR (CDCl ₃) δ 1.78 (s, 3H), 1.82 (s, 3H), 2.70 (s, 3H), 3.20 (s, 3H), 3.25 (s, 3H), 3.69 (s, 3H), 3.70 (s, 3H), 4.65 (d, J = 6.9 Hz, 1H), 7.11 (d, J = 8.8 Hz, 1H), 7.21 (s, 1H), 7.37 (d, J = 8.9 Hz, 2H), 7.38 (dd, J = 8.8, 2.2 Hz, 1H), 7.42 (d, J = 2.2 Hz, 1H), 7.63 (d, J = 8.9 Hz, 2H) 1H, 7.42 (d, J = 2.2 Hz, 1H), 7.63 (d, J = 8.9 Hz, 2H) 1R (KBr) 1516, 1468, 1363, 1180, 1151, 1045, 967, 846, 788 cm ⁻¹
1.827	amorphous 1H NMR (CDCl ₃) 6 1.77 (s, 3H), 1.83 (s, 3H), 3.58 (s, 3H), 3.70 (s, 3H), 4.64 (d, J = 6.7 Hz, 2H), 4.97 (s, 1H), 6.04 (s, 1H), 5.53 (t, J = 6.7 Hz, 1H), 5.81 (s, 1H), 6.73 (s, 1H), 6.87 (dd, J = 8.1, 2.0 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 6.99 (d, J = 2.0 Hz, 1H), 7.00 (d, J = 8.1 Hz, 1H), 7.47 (d, J = 8.7 Hz, 2H) 1H, 7.00 (d, J = 8.1 Hz, 1H), 7.47 (d, J = 8.7 Hz, 2H) 1R (CHCl ₃) 3595, 3536, 1613, 1584, 1521, 1474, 1406, 1356, 1266, 1094, 1062, 1014, 973, 835 cm. ¹

Table 164

I-828	mp 161-162 Ե
	111 NMR (CDCl ₃) & 3.58 (8, 3H), 3.71 (8, 3H), 4.85 (8, 1H), 4.93 (8, 1H), 5.18 (8, 2H), 5.78 (8, 1H), 6.73 (8, 1H), 6.87-6.92 (m, 3H), 7.02 (d, J = 1.8 Hz, 1H), 7.07 (d, J = 8.1 Hz, 1H), 7.37-7.51 (m, 7H)
	11f (N.N.F) 3510, 3442, 3520, 1523, 1469, 1453, 1539, 1539, 1001, 1003, 572, 830, 753 cm ·
	mp 65-67 C *H NMR (CDCh)
1.829 3.	3.69 (s, 311), 4.09 (t, J = 6.9 Hz, 211), 5.22 (t, J = 6.9 Hz, 111), 7.10 (d, J = 8.4 Hz, 114), 7.21 (s, 114), 7.37-7.44 (m, 911), 7.63 (d,
<u></u>	J = 8.4 Hz, 211
=	IR (KBr) 1519, 1468, 1362, 1179, 1150, 1046, 967, 865, 847 cm ⁻¹
<u> </u>	mp 160·162 °C
	1H NMR (CDCl3) 6 2.38 (s, 3H), 2.68 (s, 3H), 3.12 (s, 3H), 3.20 (s, 3H), 3.69 (s, 3H), 3.70 (s, 3H), 5.15 (s, 2H), 7.16-7.25 (m,
1.030	4H), 7.34-7.44 (m, 6H), 7.63 (d, J = 8.1 Hz, 2H)
1	IR(KBr) 1519, 1469, 1365, 1173, 1149, 1049, 965, 873, 849, 808 cm ⁻¹
=	amorphous
	11 NMR (CDCl.) 6 1.69 (8, 311), 1.76 (8, 3H), 2.55 (q, J = 6.9 Hz, 1H), 3.58 (8, 3H), 3.69 (8, 3H), 4.08 (t, J = 6.9 Hz, 2H),
I-831 4.	4.98 (s, 1H), 5.18 (g, 1H), 5.23 (t, J = 6.9 Hz, 1H), 5.80 (g, 1H), 6.72 (g, 1H), 6.86-6.89 (m, 3H), 6.97-7.00 (m, 3H), 7.47 (d, J
11	= 8.4 Hz, 2H)
Ĩ.	IR (KBr) 3595, 3538, 1521, 1471, 1265, 1173, 1095, 1063, 1015, 835 cm ⁻¹
<u> </u>	mp 200-201 °C
<u> </u>	1H NMR (CDCl ₃) δ 2.40 (s, 3H), 3.58 (s, 3H), 3.70 (s, 3H), 4.80 (s, 1H), 4.92 (s, 1H), 5.13 (s, 2H), 5.77 (s, 1H), 6.73 (s, 1H),
I-832 6.8	6.88 (dd, J = 8.1, 2.0 Hz, 1H), 6.89 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 1.8 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 7.8 Hz,
12	2H), 7.35 (d, $J = 7.8$ Hz, 2H), 7.48 (d, $J = 8.4$ Hz, 2H),
IR	IR (KBr) 3419, 1610, 1623, 1485, 1393, 1243, 1065, 1004, 972, 833, 795 cm ¹

	mp141.142 C
1 6.0.0	III NMR (CDCl ₃) 6 2.03 (s, 3H), 2.11 (s, 3H), 2.54 (s, 3H), 3.15 (s, 3H), 3.21 (s, 3H), 5.20 (s, 2H), 7.12-7.26 (m, 5H), 7.38-
CC0-1	7.50 (m, 8H)
	IR(KBr) 3435, 3033, 2938, 1518, 1470, 1364, 1178, 1149, 1109, 970, 871, 839 cm ⁻¹
	mp188-189 C
,	¹ H NMR (CDCl ₃) δ 3.49 (s, 3H), 3.72 (s, 3H), 5.15 (s, 2H), 5.68 (brs, 1H), 5.84 (brs, 1H), 6.42-6.56 (m, 3H), 6.98-7.08 (m,
1.834	3H), 7.23-7.31 (m, 3H), 7.23-7.31 (m, 2H), 7.38-7.45 (m, 4H)
	IR(KBr) 3420, 3328, 1627, 1584, 1523, 1489, 1460, 1412, 1316, 1288, 1249, 1172, 1128, 1115, 1068, 1000, 849, 812, 746
	cm ⁻¹
	mp180-181 °C
100	¹ H NMR (CDCl ₃) δ 3.51 (s, 3H), 3.75 (s, 3H), 5.17 (s, 2H), 5.70 (brs, 1H), 5.77 (brs, 1H), 6.45 (s, 1H), 6.95-7.10 (m, 4H),
1.033	7.27.7.46 (m, 8H), 7.96 (brs, 1H))
	IR(KBr) 3422, 3358, 1706, 1602, 1489, 1454, 1410, 1289, 1253, 1203, 1180, 1125, 1101, 1071, 1015 cm ⁻¹
	mp148-149 C
2001	¹ H NMR (DMSO-d ₆) δ 1.77 (8, 3H), 1.80 (8, 3H), 2.54 (8, 6H), 3.35 (8, 3H), 3.42 (8, 3H), 3.48 (8, 3H), 4.73 (d, J = 4.5 Hz,
066-	2H), 5.50-5.53 (m, 1H), 7.30-7.54 (m, 8H)
	IR(KBr) 3495, 3293, 1754, 1712, 1516, 1359, 1359, 1243, 1175, 1147, 971, 866, 845 cm ⁻¹
	mp136-138 °C
1.837	¹ H NMR (DMSO·d ₆) δ 2.32 (s, 3H), 2.50 (s, 6H), 3.31 (s, 3H), 3.35 (s, 3H), 3.44 (s, 3H), 5.23 (s, 2H), 7.21-7.47 (m, 12H)
	IR(KBr) 3495, 3292, 3028, 2934, 1754, 1710, 1516, 1357, 1176, 1147, 972, 868, 842 cm ⁻¹

Table 166

1.838	
	5.66 (brs, 1H), 5.72 (brs, 1H), 6.27 (s, 1H), 7.01 (s, 2H), 7.13 (s, 1H), 7.38-7.46 (m, 7H) 1R(KBr) 3485, 2937, 1713, 1580, 1464, 1455, 1407, 1324, 1243, 1123, 1102, 1069, 1014, 763 cm. ¹
	mp150-151 °C
1.839	41 NMR (DMSO-dc) & 1.72 (s, 311), 1.76 (s, 311), 1.88 (s, 311), 1.90 (s, 311), 4.55 (d, J = 5.8 Hz, 211), 5.44-5.50 (m, 111), d. so.c. 97 (m, 811), 7.81 (brs. 111), 8.85 (brs. 111), 9.38 (brs. 111)
	IR(KBr) 3495, 3293, 1753, 1711, 1429, 1390, 1360, 1242, 1217, 1178, 1143, 781 cm ⁻¹
	mp149-150 °C
	1H NMR (DMSO-d ₆) 5 1.71 (s, 3H), 1.75 (s, 3H), 2.00 (s, 6H), 2.59 (s, 3H), 4.57 (d, J = 6.4 Hz, 2H), 5.42-5.47 (m, 1H),
1.840	6.84.7.13 (m, 8H), 9.13 (brs, 1H), 9.50 (brs, 1H)
	IR(KBr) 3451, 2933, 1612, 1587, 1518, 1472, 1348, 1259, 1211, 1171, 1121, 1087, 969, 872, 835, 813 cm ⁻¹
	ուր203-204 Ն
1 0 4 1	1H NMR (DMSO-d6) 6 1.87 (8, 3H), 1.89 (8, 3H), 2.31 (8, 3H), 5.09 (8, 2H), 6.80-7.00 (m, 8H), 7.20 (d, J = 7.8 Hz, 2H), 7.39
1.641	(d, J = 7.8 Hz, 2H), 7.81 (brs, 1H), 8.97 (brs, 1H), 9.38 (brs, 1H)
	IR(KBr) 3491, 3398, 2921, 1611, 1516, 1476, 1259, 1183, 1155, 996, 794 cm ⁻¹
	mp128-129 C
070 1	1H NMR (DMSO-d6) 8 2.01 (8, 6H), 2.34 (8, 3H), 2.63 (8, 3H), 5.12 (8, 2H), 6.85-7.13 (m, 8H), 7.18 (d, J = 7.6 Hz, 2H), 7.36
750-1	(d, J = 7.6 Hz, 2H), 9.15 (brs, 1H), 9.55 (brs, 1H)
	IR(KBr) 3432, 3305, 1735, 1607, 1523, 1482, 1398, 1360, 1294, 1284, 1179, 1080, 816 cm ⁻¹

-	· · · · · · · · · · · · · · · · · · ·)	5))	5)	
1-843	mp203-204 °C 4H NMR (CDCl ₃) & 2 (brs, 1H)	C (Cla) & 2.66 (8, 311), 3.13 (8, 311), 3.59 (8, 311), 3.76 (8, 311), 5.19 (8, 211), 6.85 (8, 111), 7.13-7.69 (m, 1111), 8.07	3 (s, 311), 3.59	(s, 3H), 3.76	(s, 311), 6.19 (t	, 211), 6.85 (s,	111), 7.13-7.0	69 (m, 11II), a	3.07
	1R(KBr) 3432, 3305, 1735, 1607, 1523, 1482, 1398, 1360, 1294, 1284, 1179, 1080, 816 cm ⁻¹	735, 1607, 1523,	1482, 1398, 1	360, 1294, 13	84, 1179, 108), 816 cm ⁻¹			
	mp109-110 °C 'H NMR (DMSO-da) 8	SO-da) \(\delta\) 1.36 (t, J = 7.2 Hz, 311), 2.82 (s, 311), 3.24 (s, 311), 3.47 (s, 311), 3.66 (s, 311), 3.79 (s, 6H), 4.38 (a, J =	Hz, 3H), 2.82	(8, 3H), 3.24	(e, 3H), 3.47 (3, 3H), 3.66 (8,	3H), 3.79 (8.	. 6H), 4.38 (a.	1
1-844	7.0.11z, 2H), 5.26 (9, 2H), 6.78 (8, 1H), 7.32-7.52 (m, 10H) IR(KBr) 3432, 2940, 1716, 1579, 1465, 1407, 1366, 1322, 1240, 1179, 1123, 1078, 815, 796 cm ⁻¹	l), 6.78 (s, 1H), '	7.32-7.52 (m, 1 1407, 1366, 1	10H) 322, 1240, 1)	79, 1123, 107	. 815. 796 cm	:		
	mp 113-115 C	2000							
1-845	11 NWH (CDCL) 0 2.25 (8, 311), 2.27 (8, 311), 3.20 (8, 311), 5.20 (8, 2H), 7.03-7.16 (m, 5H), 7.33-7.51 (m, 9H)) R (CHCl ₃) 2925, 1618, 1580, 1521, 1455, 1373, 1314, 1299, 1268, 1174, 1149, 1126, 1018, 970, 874 cm ⁻¹	25 (8, 311), 2.27 1580, 1521, 14((s, 3H), 3.20 (55, 1373, 1314	s, 311), 5.20 (. 1299, 1268.	s, 2H), 7.03.7. 1174, 1149. 1	15 (m, 5H), 7.3 126. 1018. 970	3-7.51 (m, 9) 874 cm ⁻¹	H))	··
	mp 155-157 C								
918-1	11 NMR (CDCL ₃) & 2.26 (s, 6H), 4.69 (s, 1H), 5.19 (s, 2H), 6.87-6.90 (m, 2H), 7.03-7.15 (m, 5H), 7.22-7.50 (m, 7H)	26 (я, 6П), 4.69	(в. 111), б. 19 (с	s, 2H), 6.87-6	.90 (m, 2H), 7	03-7.16 (m, 6F	I), 7.22-7.50	(m, 711)	
	IR (CHCL) 3596, 2952, 2924, 1612, 1582, 1523, 1490, 1455, 1425, 1383, 1259, 1171, 1125, 1012, 956, 877 cm mp 81-84 °C	2924, 1612, 158	32, 1523, 1490	, 1455, 1425,	1383, 1259, 1	171, 1125, 101	2, 956, 877 c	J.W.	
	H NMR (CDCl ₃) & 1.07-1.14 (m, 6H), 2.55-2.66 (m, 4H), 4.73 (s, 1H), 5.16 (s, 2H), 5.70 (s, 1H), 6.82-6.91 (m, 3H), 6.92-	07-1.14 (m, 6H)	ı, 2.55-2.66 (m	, 4H), 4.73 (ı	ı, 1H), 5.16 (e,	2H), 5.70 (s, 1	IH), 6.82-6.9	01 (m, 3H), 6.	92.
-847	6.99 (m, 2H), 7.10·7.12 (d, J = 4.2 Hz, 2H), 7.22·7.25 (m, 2H), 7.38·7.49 (m, 5H)	(d, $J = 4.2 \text{ Hz}, 2$	H), 7.22-7.25	(m, 2H), 7.38	-7.49 (m, 5H)				
	IR (CHCl ₃) 3596, 3542, 2968, 2932, 2872, 1731, 1611, 1588, 1520, 1489, 1465, 1380, 1327, 1289, 1266, 1171, 1126, 1011, 903, 878, 836 cm ⁻¹	2968, 2932, 28	72, 1731, 161	1, 1588, 1520), 1489, 1455,	1380, 1327, 12	89, 1256, 1⊺	171, 1126, 10	11,
	mp 125-127 °C								T
978	1H NMR (CDCl3) & 1.77 (s, 3H), 1.82 (s, 3H), 2.26 (s, 3H), 2.28 (s, 3H), 3.20 (s, 3H), 4.63-4.65 (d, J = 6.9 Hz, 2H), 5.56 (m,	77 (s, 3H), 1.82 ((s, 3H), 2.26 (s	ı, 3H), 2.28 (s	, 3H), 3.20 (s,	3H), 4.63-4.65	(d, J = 6.9 H	Iz, 2H), 5.56 (Ë
	1H), 7.02-7.13 (m, 5H), 7.31-7.43 (m, 4H)	7.31-7.43 (m, 4F	£						
	IR (CHCl ₃) 2924, 1619, 1578, 1488, 1373, 1298, 1266, 1174, 1149, 1125, 970, 874 cm ⁻¹	1578, 1488, 137	3, 1298, 1266,	1174, 1149,	1125, 970, 874	cm. ₁			
									1

Table 168

mp 141-143 111 NMR (CD) 1-849 7.27 (m, 2H), IR (CHCl ₃) 23 mp 90-91 °C 1-850 11 (CHCl ₃) 35 mp 94-96 °C 1-851 mp 94-96 °C 1-851 mp 94-96 °C in NMR (CD) 1-851 in OG-108 °C in NMR (CD) 1-851 in OG-108 °C in NMR (CD) in OG-108 °C in NMR (CD)	mp 141-143 °C. 111 NMR (CDCb3) & 1.07-1.14 (m, 6H), 2.53-2.65 (m, 4H), 3.12 (s, 3H), 3.20 (s, 3H), 5.18 (s, 2H), 7.10-7.14 (m, 3H), 7.24- 7.27 (m, 2H), 7.33-7.50 (m, 9H) 118 (CHCb3) 2969, 2934, 1614, 1517, 1487, 1371, 1331, 1289, 1263, 1173, 1149, 1111, 970, 938, 872 cm ⁻¹ mp 90-91 °C. 111 NMR (CDCb3) & 2.13 (s, 3H), 2.29 (s, 3H), 2.35 (s, 3H), 3.16 (s, 3H), 5.21 (s, 2H), 6.87-6.90 (m, 2H), 7.09-7.49 (m, 11H) 118 (CHCb3) 3596, 1731, 1613, 1520, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ mp 94-96 °C. 111 NMR (CDCb3) & 1.76-1.77 (d, J = 0.3 Hz, 3H), 1.81-1.82 (d, J = 0.9 Hz, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 4.62-4.64 (d, J = 0.9 Hz, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 4.62-4.64 (d, J = 0.9 Hz, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 3.10 (s, 3H)
	MR (CDCl ₃) & 1.07-1.14 (m, 6H), 2.53-2.65 (m, 4H), 3.12 (s, 3H), 3.20 (s, 3H), 5.18 (s, 2H), 7.10-7.14 (m, 3H), 7.24-m, 2H), 7.33-7.50 (m, 9H) (ICl ₃) 2969, 2934, 1614, 1517, 1487, 1371, 1331, 1289, 1263, 1173, 1149, 1111, 970, 938, 872 cm ⁻¹ (ICl ₃) 2969, 2934, 1614, 1517, 1487, 1371, 1331, 1289, 1263, 1173, 1149, 1111, 970, 938, 872 cm ⁻¹ (ICl ₃) 2969, 2934, 1614, 1517, 1487, 1371, 1331, 1289, 1263, 1173, 1149, 1111, 970, 938, 872 cm ⁻¹ (ICl ₃) 3696, 1731, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ (ICl ₃) 3596, 1731, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ (ICl ₃) 3596, 1731, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ (ICl ₃) 3596, 1731, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ (ICl ₃) 3596, 1731, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ (ICl ₃) 3596, 1731, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ (ICl ₃) 3596, 1731, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ (ICl ₃) 3596, 1731, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ (ICl ₃) 3596, 1731, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ (ICl ₃) 3596, 1731, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ (ICl ₃) 3596, 1731, 1613, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ (ICl ₃) 3596, 1731, 1613, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1026, 972, 953, 874 cm ⁻¹ (ICl ₃) 3596, 1731, 1613, 1613, 1614, 181, 181, 182, 183, 184, 184, 184, 184, 184, 184, 184, 184
	m, 2H), 7.33-7.50 (m, 9H) HCl ₃) 2969, 2934, 1614, 1517, 1487, 1371, 1331, 1289, 1263, 1173, 1149, 1111, 970, 938, 872 cm ⁻¹ HCl ₃) 2969, 2934, 1614, 1517, 1487, 1371, 1331, 1289, 1263, 1173, 1149, 1111, 970, 938, 872 cm ⁻¹ HR (CDCl ₃) & 2.13 (s, 3H), 2.29 (s, 3H), 2.35 (s, 3H), 3.16 (s, 3H), 5.21 (s, 2H), 6.87-6.90 (m, 2H), 7.09-7.49 (m, 11H) HCl ₃) 3596, 1731, 1613, 1520, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ HR (CDCl ₃) & 1.76-1.77 (d, J = 0.3 Hz, 3H), 1.81-1.82 (d, J = 0.9 Hz, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 4.62-4.64 (d, J =
	HCB ₃) 2969, 2934, 1614, 1517, 1487, 1371, 1331, 1289, 1263, 1173, 1149, 1111, 970, 938, 872 cm ⁻¹ b-91 °C AR (CDCb ₃) δ 2.13 (s, 3H), 2.29 (s, 3H), 2.35 (s, 3H), 3.16 (s, 3H), 5.21 (s, 2H), 6.87-6.90 (m, 2H), 7.09-7.49 (m, 11H) HCb ₃) 3596, 1731, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ b6 °C AR (CDCb ₃) δ 1.76-1.77 (d, J = 0.3 Hz, 3H), 1.81-1.82 (d, J = 0.9 Hz, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 4.62-4.64 (d, J =
	7-91 °C AR (CDCL ₃) & 2.13 (s, 3H), 2.29 (s, 3H), 2.35 (s, 3H), 3.16 (s, 3H), 5.21 (s, 2H), 6.87-6.90 (m, 2H), 7.09-7.49 (m, 11H) (CD ₃) 3596, 1731, 1613, 1520, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ -96 °C AR (CDCL ₃) & 1.76-1.77 (d, J = 0.3 Hz, 3H), 1.81-1.82 (d, J = 0.9 Hz, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 4.62-4.64 (d, J =
	AR (CDCl ₃) δ 2.13 (s, 3H), 2.29 (s, 3H), 2.35 (s, 3H), 3.16 (s, 3H), 5.21 (s, 2H), 6.87-6.90 (m, 2H), 7.09-7.49 (m, 11H) (ICl ₃) 3596, 1731, 1613, 1620, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 963, 874 cm ⁻¹ -96 ℃ AR (CDCl ₃) δ 1.76-1.77 (d, J = 0.3 Hz, 3H), 1.81-1.82 (d, J = 0.9 Hz, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 4.62-4.64 (d, J = 1.10 CDCl ₃)
	ICha) 3596, 1731, 1613, 1520, 1478, 1362, 1261, 1173, 1119, 1086, 1025, 972, 953, 874 cm ⁻¹ -96 °C -177 (d, J = 0.3 Hz, 3H), 1.81·1.82 (d, J = 0.9 Hz, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 4.62·4.64 (d, J =
	-96 °C AR (CDCl ₃) & 1.76-1.77 (d, J = 0.3 Hz, 3H), 1.81-1.82 (d, J = 0.9 Hz, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 4.62-4.64 (d, J =
	418 (CDCL ₃) & 1.76-1.77 (d, J = 0.3 Hz, 3H), 1.81-1.82 (d, J = 0.9 Hz, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 4.62-4.64 (d, J =
	
IR (CHC mp 106-	., 211), 4.71 (s, 1H), 5.56 (m, 1H), 6.87-6.91 (m, 2H), 7.00-7.13 (m, 5H), 7.23-7.27 (m, 2H)
inp 106-	IR (CHCl ₁₃) 3596, 2923, 1675, 1613, 1579, 1523, 1490, 1386, 1297, 1171, 1124, 990, 956, 877, 836 cm ⁻¹
IMN II	6.108 C
1 950	111 NMR (CDCl.3) 6 2.63 (s, 311), 3.52 (s, 3H), 3.77 (s, 3H), 5.24 (s, 2H), 6.84 (s, 1H), 6.84 (s, 1H), 7.12-7.20 (m, 3H), 7.35-
7.50 (m, 7H),	n, 7H), 7.56·7.64 (m, 2H)
IR (KBr)	IR (KBr) 2935, 1604, 1523, 1483, 1373, 1232, 1086, 1011, 945, 847, 728, 605, 523, 506 cm ⁻¹
mp 136-138	6-138 °C
H NMR	1H NMR (CDCl ₃) δ 1.77 (8, 3H), 1.81 (8, 3H), 2.67 (8, 3H), 3.53 (8, 3H), 3.78 (8, 3H), 4.67 (d, $J = 6.9$ Hz, 2H), 5.47-5.53 (m,
1H), 6.84 (8,	.84 (8, 1H), 7.10-7.19 (m, 3H), 7.31 (d, J = 2.1 Hz, 1H), 7.38 (dd, J = 2.1, 8.1 Hz, 1H), 7.57-7.64 (m, 2H)
IR (KBr)	IR (KBr) 2936, 1604, 1523, 1484, 1435, 1373, 1225, 1086, 1011, 943, 848, 783, 606, 508 cm ⁻¹

mp 128-130 ° HI NMR (C!) 111 NMR (C!) 1-854 6.86 (s, 111), 7 (m, 211)				·					
IR (KBr) 2940	130°C (CDCl ₃) & 1. 1H), 7.01 (dd, J) 2940, 1600, 15	mp 128-130 °C IH NMR (CDCEs) & 1.74 (s, 31H), 1.81 (s, 31H), 2.62 (s, 31H), 3.52 (s, 31H), 3.79 (s, 31H), 4.63-4.67 (m, 2H), 5.45-5.53 (m, 1H), 5.86 (s, 1H), 7.01 (dd, J = 2.1 Hz, 8.4 Hz, 1H), 7.10 (d, J = 1.8 Hz, 1H), 7.13-7.20 (m, 2H), 7.29 (d, J = 8.4 Hz, 1H), 7.59-7.64 (m, 2H) (m, 2H) (RBr) 2940, 1600, 1518, 1484, 1418, 1366, 1232, 1080, 984, 893, 838, 812, 621, 524 cm ⁻¹	(s, 3H), 2.62 [z, 1H], 7.10 ((a, 3II), 3.52 (d, J = 1.8 Hz 1080, 984, 88	(s, 3H), 3.79 (c, 1H), 7.13-7.20	, 3H), 4.63-4 (m, 2H), 7.2 1, 524 cm ⁻¹	.67 (m, 2H), 9 (d, J = 8.4	6.46-5.53 (m, 1 Hz, 1H), 7.59-7	H),
mp 141-143 ¹ 111 NMR (CD) 1-855 1H), 5.70 (s, 1 2H), 7.59-7.64 IR (KBr) 3531	143 °C (CDCl3) & 1°C (CDCl3) &	np 141-143 °C. HINMR (CDCha) & 1.76 (s. 3H), 1.82 (s. 3H), 2.61 (s. 3H), 3.53 (s. 3H), 3.77 (s. 3H), 4.62 (d. J = 6.9 Hz, 2H), 6.47-5.53 (m. 1H), 5.70 (s. 1H), 6.83 (s. 1H), 6.91 (dd, J = 2.1, 8.1 Hz, 1H), 6.96 (d, J = 8.1 Hz, 1H), 7.02 (d, J = 2.1 Hz, 1H), 7.10-7.19 (m. 2H), 7.59-7.64 (m. 2H) R (KBr) 3531, 2931, 1604, 1520, 1484, 1372, 1233, 1175, 1083, 1011, 814, 800, 781, 727, 526 cm ²	(a, 3H), 2.61 , J = 2.1, 8.1 1372, 1233,	(s, 3H), 3.53 Hz, 1H), 6.90 1175, 1083,	(s, 311), 3.77 (s, (d, J = 8.1 Hz, 1011, 814, 800,	3H), 4.62 (d. 1H), 7.02 (d. 781, 727, 526	J = 6.9 Hz, J = 2.1 Hz, cm ⁻¹	2H), 6.47-6.53 (1H), 7.10-7.19	É É
mp 217-220 % 1H NMR (CD) 7.20 (m, 3H), 1R (KBr) 3434	mp 217-220 °C 1H NMR (CDCl ₃) δ 2.7 7.20 (m, 3H), 7.32 (d, J 3) IR (KBr) 3434, 2941, 16	mp 217-220 °C ¹ H NMR (CDCl ₃)	(s, 3H), 3.7E '.68-7.63 (m, 1363, 1209,	(s, 3H), 5.78 211) 1076, 891, 81	3 (a, 1H), 6.85 (8, 621, 573, 51	s, 1H), 7.03 (dd, J = 1.8, {	8.4 Hz, 1H), 7.	÷
mp 183-185 °C 1'H NMR (CDC 6.94 (m, 2H), 7 1R (KBr) 3030,	185 ℃ (CDCl ₃)	mp 183·185 °C ¹ H NMR (CDCl ₃) & 1.92 (s, 3H), 3.20 (s, 3H), 3.53 (s, 3H), 3.78 (s, 3H), 3.93 (s, 3H), 4.31 (s, 4H), 6.79·6.83 (m, 2H), 6.90·6.94 (m, 2H), 7.16·7.41 (m, 12H), 7.66·7.71 (m, 2H), 10 (KBr) 3030, 2936, 1604, 1517, 1482, 1362, 1232, 1132, 1180, 1120, 1082, 877, 799, 701, 526 cm. ¹	(s, 3H), 3.53 7.71 (m, 2H), 1362, 1232,	(s, 3H), 3.78	(s, 3H), 3.93 (g	, 3H), 4.31 (s	, 4H), 6.79-6 6 cm ^{.1}	.83 (m, 2H), 6.9	.00
mp 192-194 % 1-858 7.67-7.72 (m, 5 1R (KBr) 3451	Σ13) δ 2H) 3368.	; (a) 5 2.57 (s, 3H), 3.21 (s, 3H), 3.56 (s, 3H), 3.77 (s, 3H), 3.87 (s, 3H), 6.77-6.89 (m, 4H), 7.34-7.40 (m, 2H), (H) 3368, 2937, 1622, 1624, 1481, 1359, 1174, 1149, 1086, 962, 869, 802, 525 cm.	(s, 3H), 3.56 1481, 1359.	(s, 3H), 3.77	(e, 3H), 3.87 (e	3H), 6.77-6.	89 (m, 4H), 7	7.34-7.40 (m, 2l	1),

	mp 210-212 $ \mathfrak{C}$
	111 NMR (CDCA3) & 1.92 (8, 3H), 2.23 (8, 3H), 3.46 (8, 3H), 3.74 (8, 3H), 3.89 (8, 3H), 5.24 (8, 1H), 5.80 (8, 1H), 5.94 (8, 1H),
1-859	6.46 (s, 111), 6.90-6.96 (m, 111), 7.01 (d, J = 1.8 Hz, 111), 7.08 (dd, J = 1.8, 8.1 Hz, 111), 7.50-7.55 (m, 2H), 7.76 (s, 1H), 8.52
	(d, J = 8.1 Hz, 1H),
	IR (KBr) 3420, 2938, 1636, 1610, 1526, 1496, 1398, 1225, 1164, 1073, 1026, 831 cm ⁻¹
	mp 183-185 ℃
000	111 NMR (DMSO-ds) δ 2.43 (s, 611), 2.45 (s, 611), 6.13 (s, 211), 6.76-6.82 (m, 4H), 6.91 (dd, J = 2.1, 8.4 Hz, 1H), 7.01 (d, J =
098-1	8.4 Hz, 1H), 7.09 (d, J = 2.1 Hz, 1H), 7.31-7.43 (m, 5H), 7.48-7.53 (m, 2H), 9.02 (br s, 1H), 9.32 (br s, 1H)
	IR (KBr) 3600-2800(br), 1609, 1581, 1521, 1493, 1455, 1437, 1384, 1321, 1275, 1215, 1193, 1142, 1007 cm ⁻¹
	mp 172-174 °C
	¹ H NMR (CDCl ₃) δ 2.50 (s, 6H), 2.53 (s, 6H), 3.11 (s, 3H), 3.19 (s, 3H), 5.18 (s, 2H), 6.89 (s, 1H), 6.93 (s, 1H), 7.12 (d, $J = J_{\rm c} = $
1.36.1	8.4 Hz, 1H), 7.30-7.54 (m, 8H), 7.66-7.71 (m, 2H), 7.73 (d, J = 2.1 Hz, 1H)
	IR (KBr) 3600-2800(br), 1613, 1518, 1491, 1455, 1361, 1348, 1276, 1178, 1159, 1109, 970 cm ⁻¹
	mp 173-175 ℃
-	1H NMR (CDCl ₃) 6 1.77 (8, 3H), 1.82 (8, 3H), 2.51 (8, 6H), 2.53 (8, 6H), 3.19 (8, 3H), 3.22 (8, 3H), 4.63 (d, J = 7.2 Hz, 2H),
1.862	5.49.5.53 (m, 1H), 6.89 (s, 1H), 6.93 (s, 1H), 7.05 (d, J = 9.0 Hz, 1H), 7.26-7.35 (m, 2H), 7.51 (dd, J = 1.8, 8.1 Hz, 1H), 7.67-
	7.70 (m, 3H)
	IR (KBr) 3600-2800(br), 1519, 1491, 1363, 1331, 1291, 1257, 1175, 1147, 1105, 1013, 980, 966 cm ⁻¹
	mp 150.152 °C
90	1H NMR (DMSO.d6) & 1.72 (s, 3H), 1.76 (s, 3H), 2.43 (s, 6H), 2.45 (s, 6H), 4.55 (d, J = 6.6 Hz, 2H), 5.47-5.51 (m, 1H),
1-803	6.78.6.83 (m, 4H), 6.90-7.06 (m, 3H), 7.38-7.42 (m, 2H), 8.87 (br s, 1H), 9.39 (br s, 1H)
	IR (KBr) 3600-2800(br), 1610, 1585, 1522, 1495, 1476, 1448, 1385, 1292, 1275, 1199, 1171, 1136, 985, 948 cm ⁻¹

Table 171

	J. 175-177 & C. 100 110 115-177 & C. 100 110 110 110 110 110 110 110 110 11
1.864	1H NMR (DMSO-dc) & 2.44 (s, 12H), 5.13 (s, 4H), 6.77 (s, 2H), 6.90-7.09 (m, 8H), 7.33-7.52 (m, 8H), 9.01 (s, 2H)
	IR (KBr) 3600-2800(br), 1582, 1518, 1491, 1454, 1384, 1328, 1270, 1242, 1191, 1141, 1123, 1046, 1006 cm ⁻¹
	mp 175-177 C
, ,	¹ H NMR (CDCl ₃) δ 2.52 (e, 12H), 3.11 (s, 6H), 5.17 (s, 4H), 6.91 (s, 2H), 7.11 (d, J = 8.4 Hz, 2H), 7.36·7.52 (m, 12H), 7.72
698- -	(d, 1 = 2.1 Hz, 2H)
_	IR (KBr) 3600-2800(br), 1612, 1520, 1496, 1465, 1364, 1348, 1265, 1184, 1164, 1117, 1005, 971 cm ⁻¹
	mp 180-182 Ն
	1H NMR (CDCl3) 6 1.77 (s, 6H), 1.81 (s, 6H), 2.52 (s, 12H), 3.22 (s, 6H), 4.63 (d, J = 6.9 Hz, 2H), 5.49-5.54 (m, 2H), 6.90
998-1	(8, 2H), 7.04 (d, $J = 8.4 \text{ Hz}$, 2H), 7.50 (dd, $J = 2.1$, 8.4 Hz, 2H), 7.04 (d, $J = 2.1 \text{ Hz}$, 2H)
_	1R (KBr) 3600-2800(br), 1520, 1494, 1365, 1274, 1186, 1161, 1113, 996, 973 cm ⁻¹
	mp 165-168 C
	¹ H NMR (DMSO-d ₆) δ 1.72 (s, 6H), 1.76 (s, 6H), 2.45 (s, 12H), 4.55 (d, J = 6.0 Hz, 4H), 5.45-5.55 (m, 2H), 6.77 (s, 2H).
1-867	6.89-6.98 (m, 4H), 7.03-7.07 (m, 2H), 8.86 (br s, 2H)
	IR (KBr) 3600-2800(br), 1579, 1519, 1497, 1476, 1456, 1384, 1277, 1238, 1195, 1142, 1126, 1050, 994 cm ⁻¹
	mp 76-78 ℃
	1H NMR (CDCI) 6 3.47 (8, 3H), 3.75 (8, 3H), 3.94 (8, 3H), 5.15 (8, 2H), 5.68 (8, 1H), 5.69 (8, 1H), 5.92 (8, 1H), 6.46 (8, 1H),
898-1	6.93.7.15 (m, 5H), 7.22 (d, J = 1.5 Hz, 1H), 7.34-7.49 (m, 5H)
	IR (CHCl ₃) 3528, 1586, 1520, 1489, 1461, 1399, 1287, 1260, 1110, 1070, 1010, 907, 819 cm ⁻¹
	mp 140-142 C
	¹ H NMR (CDCl ₃) δ 2.65 (8, 3H), 3.13 (8, 3H), 3.25 (8, 3H), 3.57 (8, 3H), 3.78 (8, 3H), 3.94 (8, 3H), 5.19 (8, 2H), 6.85 (8, 1H),
698-1	7.13·7.19 (m, 2H), 7.30·7.50 (m, 9H)
	IR (CHCl ₃) 1598, 1516, 1480, 1367, 1266, 1176, 1115, 1081, 1012, 969, 918, 867, 808 cm ⁻¹

mp 189-190 °C 11 NMR (CIDCIs) \$ 1.76 (d, J = 0.9 Hz, 31D, 1.81 (s, 31D, 2.69 (s, 3H), 3.24 (s, 3H), 3.25 (s, 3H) 1-870 3394 (s, 3H), 4.64 (d, J = 6.6 Hz, 2H), 5.49 (m, 1H), 6.85 (s, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.17 7.30-7.42 (m, 4H) 1R (CHCla) 2932, 1599, 1516, 1480, 1367, 1329, 1266, 1177, 1115, 1082, 1032, 1013, 970, 907, 86 mp 187-190 °C 11 NMR (CIDCis) \$ 2.38 (s, 3H), 2.64 (s, 3H), 3.13 (s, 3H), 3.25 (s, 3H), 3.68 (s, 3H), 3.78 (s, 3H) 18 (CHCla) 2992, 1599, 1516, 1480, 1462, 1369, 1267, 1177, 1116, 1082, 1032, 970, 907, 86 mp 192-194 °C 18 (CHCla) 2996, 1598, 157, 1480, 1462, 1369, 1267, 1177, 1116, 1082, 1032, 970, 907, 86 mp 192-194 °C 18 (CHCla) 2996, 1598, 1517, 1480, 1462, 1369, 1267, 1177, 1116, 1082, 1032, 970, 907, 86 mp 192-194 °C 18 (CHCla) 3536, 2934, 1609, 1520, 1482, 1410, 1366, 1279, 1243, 1172, 1128, 1080, 1029, 972, 9 18 (CHCla) 3536, 2934, 1609, 1520, 1482, 1410, 1366, 1279, 1243, 1172, 1128, 1080, 1029, 972, 9 18 (KIDr) 3536, 2934, 1609, 1520, 1482, 1410, 1366, 1279, 1243, 1172, 1166, 1110, 1069, 1001cm ⁻¹ 18 (KIDr) 3536, 2939, 1732, 1619, 1417, 1438, 1393, 1249, 1217, 1166, 1110, 1069, 1001cm ⁻¹ 18 (KIDr) 3536, 2939, 1732, 1619, 1410, 1316, 1456, 138, 1239, 1239, 1112, 1072, 1017cm ⁻¹ 18 (KIDr) 3536, 2939, 1732, 1619, 1410, 1516, 1456, 1396, 1294, 1217, 1166, 1110, 1069, 1001cm ⁻¹ 18 (KIDr) 3536, 2938, 1732, 1619, 1811, 1639, 1304, 1217, 1166, 1110, 1069, 1001cm ⁻¹ 18 (KIDr) 3536, 2938, 1732, 1698, 1561, 156, 68, 61, 733, 77, 48, 111, 703 (d, J = 8.4 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 7.33 (d, J = 8.		
		ည 189-190 🕽
		111 NMR (CDCLs) & 1.76 (d, J = 0.9 Hz, 3H), 1.81 (s, 3H), 2.69 (s, 3H), 3.24 (s, 3H), 3.25 (s, 3H), 3.58 (s, 3H), 3.78 (s, 3H),
		3.94 (s, 3H), 4.64 (d, J = 6.6 Hz, 2H), 5.49 (m, 1H), 6.85 (s, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.17 (d.d, J = 2.1, 8.4 Hz, 1H),
		7.30-7.42 (m, 4H)
		IR (CHCl ₃) 2932, 1599, 1516, 1480, 1367, 1329, 1266, 1177, 1115, 1082, 1032, 1013, 970, 907, 868, 807 cm ⁻¹
		որ 187-190 ℃
6.84 (8, 1H), IR (CHCl ₂) 2 mp 192-194 iH NMR (Cl 4.61 (d, J = 7.52-7.58 (m) IR (CHCl ₃) 3 iH NMR (CL 6.96 (d.d, J = IR (KBr) 353 iH NMR (CL 1H), 7.03 (d, IR (KBr) 338 iH NMR (CL 1H), 7.03 (d, IR (KBr) 338 iH NMR (CL 7.15 (d, J = 8) IR (KBr) 173		111 NMR (CDCL) 6 2.38 (8, 311), 2.64 (8, 311), 3.13 (8, 311), 3.25 (8, 311), 3.58 (8, 311), 3.78 (8, 311), 3.94 (8, 311), 6.14 (8, 211),
IR (CHCl ₃) 2 mp 192-194 iH NMR (Cl 4.61 (d, J = 7.52-7.58 (m) IR (CHCl ₃) 3 iH NMR (CL 6.96 (d.d, J = 1H), 7.03 (d IH), 7.03 (d IH), 7.03 (d IH), 7.03 (d IR (KBr) 338 iH NMR (CL 7.15 (d, J = 8 IR (KBr) 173		5.84 (s, 111), 7.13-7.24 (m, 411), 7.30-7.42 (m, 611)
mp 192-194 'H NMR (CI 4.61 (d, J = 7.52-7.58 (m) IR (CHCl3) 3 'H NMR (CI 6.96 (d.d, J = 1R (KBr) 353 'H NMR (CI 1H), 7.03 (d, IR (KBr) 338 'H NMR (CI 7.16 (d, J = 8)		IR (CHCl ₁₎ 2966, 1598, 1517, 1480, 1462, 1368, 1329, 1267, 1177, 1116, 1082, 1032, 970, 907, 867, 808 cm ⁻¹
1H NMR (CI 4.61 (d, J = 7.52.7.58 (m) 1R (CHCl ₃) 3 1H NMR (CL 6.96 (d.d, J = 1H, NMR (CL 1H), 7.03 (d, 1H), 7.03 (d, 1H, NMR (CL 7.15 (d, J = 8) 1R (KBr) 338		np 192-194 C
4.61 (d, J = 7.52.7.58 (m) 1R (CHCl ₃) 3 1H NMR (CL 6.96 (d.d, J = 1R (KBr) 353 1H NMR (CL 1H), 7.03 (d, IR (KBr) 338 1H NMR (CL 7.15 (d, J = 8 1R (KBr) 173		14 NMR (CDCl ₃) δ 1.15 (t, J = 6.9 Hz, 3H), 1.76 (s, 3H), 1.82 (s, 3H), 2.69 (s, 3H), 3.69 (q, J = 6.9 Hz, 2H), 3.77 (s, 3H),
7.52-7.58 (m, IR (CHCL)) 31 1H NMR (CD 6.96 (d.d, J = IR (KBr) 353 1H NMR (CD 1H), 7.03 (d, IR (KBr) 338 1H NMR (CD 7.15 (d, J = 8.) 1R (KBr) 173 1R (KBr) 173		1.61 (d, J = 6.9 Hz, 2H), 4.99 (s, 1H), 5.50 (m, 1H), 5.70 (s, 1H), 6.84 (s, 1H), 6.88-6.97 (m, 3H), 7.02 (d, J = 1.8 Hz, 1H),
IR (CHCI ₃) 33 'H NMR (CD 6.96 (d.d, J = IR (KBr) 353 'H NMR (CD 1H), 7.03 (d, IR (KBr) 338 'II NMR (CD 7.15 (d, J = 8) IR (KBr) 173		
1H NMR (CD 6.96 (d.d, J = 1R (KBr) 353 1H), 7.03 (d, IH), 7.03 (d, IH) NMR (CD 7.15 (d, J = 8.16 (KBr) 173 1R (KBr) 173		IR (CHCI;) 3536, 2934, 1609, 1520, 1482, 1410, 1365, 1279, 1243, 1172, 1128, 1080, 1029, 972, 962, 872, 833, 812 cm ⁻¹
6.96 (d.d, J = IR (KBr) 353 1H NMR (CD 1H), 7.03 (d, IR), KRS) 338 1H NMR (CD 7.15 (d, J = 8) 1R (KBr) 173	<u>:</u> _	H NMR (CDCl ₃) δ 3.46 (s, 3H), 3.70 (s, 2H), 3.74 (e, 3H), 3.75 (s, 3H), 5.15 (s, 2H), 5.67 (s, 1H), 5.90 (s, 1H), 6.47 (s, 1H),
IR (KBr) 353 IH NMR (CD) IH), 7.03 (d, IR (KBr) 338 III NMR (CD) 7.15 (d, J = 8) IR (KBr) 173		3.96 (d.d., J = 8.4 & 1.8 Hz, 1H), 7.03 (d., J = 8.4 Hz, 1H), 7.09 (d., J = 1.8 Hz, 1H), 7.33 - 7.44 (m, 7H), 7.61 (.d., J = 8.4 Hz, 2H)
1H NMR (CD 1H), 7.03 (.d, IR (KBr) 338 1H NMR (CD 7.15 (d, J = 8 IR (KBr) 173 IR (KBr) 173		IR (KBr) 3536,3389, 1732, 1587, 1519, 1487, 1438, 1393, 1249, 1217, 1166, 1110, 1069,1001cm ⁻¹
1H), 7.03 (.d, IR (KBr) 338 II NMR (CD 7.15 (d, J = 8 IR (KBr) 173		H NMR (CDC13) & 3.46 (6, 3H), 3.74 (6, 5H), 5.15 (8, 2H), 5.68 (8, 1H), 5.91 (6, 1H), 6.47 (6, 1H), 6.96 (d.d., J=8.4 & 1.8 Hz.
IR (KBr) 338 111 NMR (CD 7.15 (d, J = 8 IR (KBr) 173		(H), 7.03 (d, $J = 8.4 \text{ Hz}$, 1H), 7.09 (d, $J = 8.4 \text{Hz}$, 1H), 7.32 · 7.49 (m, 7H), 7.62 (d, $J = 8.1 \text{Hz}$, 2H)
H NMR (CD 7.15 (d, J = 8 IR (KBr) 173		R (KBr) 3381, 1715, 1698, 1608, 1581, 1523, 1485, 1455, 1396, 1294, 1235, 1112, 1072,1017cm ⁻¹
		H NMR (CDCI.) & 2.69 (6, 3H), 3.13 (6, 3H), 3.54 (6, 3H), 3.70 (8, 2H), 3.74 (8, 3H), 3.77 (8, 3H), 5.19 (6, 2H), 6.86 (6, 1H),
IR (KBr) 1734, 1721, 1606, 1481, 1398, 1361, 1244, 1175, 1120, 1078, 1010cm ⁻¹	1.875	
		R (KBr) 1734, 1721, 1606, 1481, 1398, 1361, 1244, 1175, 1120, 1078, 1010cm ⁻¹

Table 173

	111 NMR (CDCL3) & 1.76 (s, 311), 1.81 (s, 311), 2.73 (s, 311), 3.23 (s,311), 3.54 (s, 311), 3.70 (s, 211), 3.74 (s, 311), 3.77 (s, 311),
	4.64 (d, J = 6.9Hz, 2H), 5.46 - 5.55 (m, 1H), 6.86 (e, 1H), 7.09 (d, J = 8.4Hz, 1H), 7.35 (d.d, J = 8.4 & 2.1Hz, 1H), 7.37
1.876	(d, J = 8.111z, 211), 7.39 $(d, J = 2.1 Hz, 111), 7.59$ $(d, J = 8.111z, 211)$
	III NMR (CDCI ₃) δ
	IR (KBr) 3447, 1735, 1608, 1522, 1482, 1365, 1177, 1117, 1078, 1013cm ⁻¹
770-1	5.69 (8, 111), 5.89 (8, 111), 6.47 (8, 111), 6.96 (8, 211), 7.06 (8, 111), 7.38 (d, $J = 8.4$ Hz, 211), 7.62 (d, $J = 8.4$ Hz, 2H)
	111 NMR (CDCL3) & 1.76 (s, 3H), 1.82 (s, 3H), 3.46 (s, 3H), 3.70 (s, 2H), 3.74 (s, 6H), 4.62 (d, J = 6.9 Hz, 2H), 5.46 - 5.58 (m,
1-878	1H), 5.68 (s, 1H), 5.88 (s, 1H), 6.47 (s, 1H), 6.96 (s, 2H), 7.06 (s, 1H), 7.37 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H)
	IR (KBr) 3527,3386, 1734, 1609, 1586, 1520, 1487, 1439, 1396, 1219, 1167, 1111, 1068,1010 cm ⁻¹
	mp 136-139 °C
	14 NMR (CDCl3) 6 1.7 (br s, 1H), 1.76 (s, 3H), 1.81 (s, 3H), 2.73 (s, 3H), 3.23 (s, 3H), 3.53 (s, 3H), 3.78 (s, 3H), 4.64 (d, J =
I-879	6.7 Hz, 2H), 4.78 (s, 2H), 5.49 (t, J = 6.8 Hz, 1H), 6.87 (s, 1H), 7.09 (d, J = 8.6 Hz, 1H), 7.35 (dd, J = 8.6, 2.1 Hz, 1H), 7.40 (d, J = 8.6, 2.1 Hz,
	J = 2.1 Hz, 1H), 7.47 (d, $J = 8.1 Hz$, 2H), 7.64 (d, $J = 8.1 Hz$, 2H)
	IR (KBr) 3553, 3434, 1481, 1389, 1363, 1235, 1175, 1084, 1011, 972, 806 cm ⁻¹
	inp 180.181 °C
	'H NMR (CDCl ₃) δ 1.70 (br s, 1H), 1.76 (s, 3H), 1.82 (s, 3H), 3.46 (s, 3H), 3.75 (s, 3H), 4.62 (d, J = 6.9 Hz, 2H), 4.77 (s,
1.880	2H), 5.53 (t, J = 6.9 Hz, 1H), 5.69 (s, 1H), 5.89 (s, 1H), 6.47 (s, 1H), 6.94-6.96 (m, 2H), 7.05-7.07 (m, 1H), 7.46 (d, J = 8.1 Hz,
	211), $7.65 (d, J = 8.4 \text{ Hz}, 2\text{H})$
	IR (KBr) 3509, 3367, 1522, 1487, 1461, 1396, 1289, 1249, 1213, 1116, 1071, 1009, 992, 942, 797, 782 cm ⁻¹

1-881	mp 122-123 °C HI NMR (CDCl ₃) & 1.77 (s, 3H), 1.82 (s, 3H), 2.34 (t, J = 6.5 Hz, 1H), 3.22 (s, 3H), 3.45 (s, 3H), 3.73 (s, 3H), 4.5 (m, 2H), 4.64 (d, J = 6.6 Hz, 2H), 5.56 (t, J = 6.6 Hz, 1H), 6.84 (s, 1H), 6.99-7.10 (m, 3H), 7.39 (d, J = 8.7 Hz, 2H), 7.71 (d, J = 8.7 Hz, 2H) 2H)
1-882	mp 156-158 °C III NMR (CDCl ₃)
1.883	mp 168-170 °C ¹ H NMR (CDCl ₃) δ 2.50 (t, J = 6.5 Hz, 1H), 3.44 (s, 3H), 3.73 (s, 3H), 4.49 (br s, 2H), 4.78 (d, J = 6.1 Hz, 2H), 5.06 (s, 1H), 6.24 (t, J = 6.1 Hz, 1H), 6.85 (s, 1H), 6.93 (d, J = 8.6 Hz, 2H), 6.97·7.13 (m, 3H), 7.53 (d, J = 8.6 Hz, 2H) ¹ IR (KBr) 3544, 3412, 3267, 1613, 1621, 1476, 1263, 1229, 1011, 884, 816 cm ⁻¹
1.884	mp153·154 °C 1H NMR (CDCl ₃) δ 3.49 (s, 3H), 3.77 (s, 3H), 5.17 (s, 2H), 5.76 (brs, 2H), 6.45 (s, 1H), 6.91·7.07 (m, 3H), 7.26·7.45 (m, 5H), 7.93 (d, J = 8.2 Hz, 2H), 8.00 (brs, 1H), 8.27 (d, J = 8.4 Hz, 2H) IR(KBr) 3448, 2962, 2938, 1738, 1627, 1604, 1689, 1519, 1486, 1319, 1250, 1153, 1115, 1071, 1011 cm ⁻¹
I.885	mp81-82 ℃ 1H NMR (CDCl ₃) δ 1.51 (s, 3H), 1.54 (s, 3H), 1.74 (s, 3H), 2.70 (s, 3H), 3.24 (s, 3H), 3.60 (s, 3H), 3.78 (s, 3H), 4.38 (d, J = 7.5 Hz, 2H), 4.65 (d, J = 6.6 Hz, 2H), 6.86 (s, 1H), 7.06-7.11 (m, 3H), 7.35-7.41 (m, 2H), 7.52-7.57 (m, 1H) 1R(KBr) 3433, 2938, 1699, 1618, 1621, 1481, 1367, 1209, 1178, 1115, 1081, 972, 950, 813, 793 cm ⁻¹

	mp208-209 °C
	¹ H NMR (CDCE) & 1.77 (s, 3H), 1.81 (s, 3H), 2.71 (s, 3H), 3.23 (s, 3H), 3.60 (s, 3H), 3.76 (s, 3H), 4.64 (d, J = 7.2 Hz, 2H),
1.886	5.49 (t, J = 8.7 Hz, 1H), 6.85 (s, 1H), 7.09 (d, J = 8.7 Hz, 1H), 7.26-7.40 (m, 3H), 7.52-7.58 (m, 1H), 7.69-7.73 (m, 1H), 8.02
	(brs, 1H)
	IR(KBr) 3357, 2939, 1736, 1606, 1523, 1483, 1398, 1370, 1294, 1243, 1179, 1111, 1079, 965, 827, 814, 795 cm.1
	mp89⋅90 ℃
t	111 NMR (CDCl3) 6 2.34 (8, 311), 2.38 (8, 311), 2.64 (8, 311), 3.12 (8, 311), 3.53 (8, 3H), 3.77 (8, 3H), 4.92 (8, 2H), 5.14 (8, 2H),
1.887	6.83 (s, 1H), 6.89 (d, J = 8.7 Hz, 2H), 7.11-7.46 (m, 12H)
	IR(KBr) 3434, 2939, 1699, 1617, 1520, 1481, 1367, 1211, 1178, 1114, 1081, 952, 813, 794 cm ⁻¹
	mp181-182 ზ
	1H NMR (CDCl ₃) δ 2.38 (s, 3H), 2.66 (s, 3H), 3.12 (s, 3H), 3.59 (s, 3H), 3.76 (s, 3H), 5.14 (s, 2H), 6.85 (s, 1H), 7.14·7.41 (m,
1-888	8H), 7.52-7.58 (m, 1H), 7.69-7.73 (m, 1H), 8.02 (brs, 1H)
	IR(KBr) 3348, 3030, 2940, 1733, 1607, 1523, 1482, 1397, 1366, 1281, 1242, 1212, 1179, 1128, 1112, 1080, 971, 944, 815,
	799 cm ⁻¹
	mp165-167 ℃
000	1H NMR (CDCl ₃) δ 1.46 (t, J = 7.0 Hz, 3H), 1.76 (s, 3H), 1.82 (s, 3H), 2.73 (s, 3H), 3.23 (s, 3H), 3.56 (s, 3H), 3.74 (s, 3H),
1.883	4.46 (q, J = 7.4 Hz, 2H), 4.65 (d, J = 7.2 Hz, 2H), 5.48-5.54 (m, 1H), 6.69 (s, 1H), 7.09 (d, J = 8.4 Hz, 2H), 7.28-7.47 (m, 4H)
	IR(KBr) 3434, 2938, 1716, 1579, 1477, 1464, 1409, 1366, 1241, 1178, 1124, 1078, 955, 815, 796 cm ⁻¹
	mp82.83 ℃
1 000	1H NMR (CDCl ₃) δ 2.67 (8, 3H), 3.13 (8, 3H), 3.58 (8, 3H), 3.80 (8, 3H), 5.19 (8, 2H), 6.84 (8, 1H), 7.13-7.49 (m, 8H), 7.89-
1-030	7.96 (m, 2H), 8.27 (brs, 1H), 8.27-8.31 (m, 1H)
	IR(KBr) 3447, 3033, 2940, 1743, 1521, 1482, 1367, 1312, 1272, 1249, 1178, 1119, 1080, 957, 817, 799 cm ⁻¹

Table 176

H 1-891	mp86-87 ℃
	HI NMR (CDC3) & 2.68 (s, 3H), 3.10 (s, 3H), 3.15 (s, 3H), 3.62 (s, 3H), 3.81 (s, 3H), 5.22 (s, 2H), 6.85 (s, 1H), 7.16-7.50 (m,
	9H), 7.88-7.94 (m, 2H)
=	IR(KBr) 3413, 2938, 1519, 1483, 1366, 1313, 1162, 1119, 1090, 1079, 957, 812 cm ⁻¹
E	mp97.98 °C
=	HI NMIR (CDCD ₃) & 1.53 (s, 3H), 1.55 (s, 3H), 1.76 (s, 3H), 1.78 (s, 3H), 3.63 (s, 3H), 3.75 (s, 3H), 4.26 (d, J = 7.4 Hz, 2H),
1.892 4.	4.62 (d, J = 6.8 Hz, 211), 5.65 (brs, 111), 5.72 (brs, 111), 6.84 (s, 111), 7.04-7.13 (m, 311), 7.35-7.43 (m, 2H), 7.51-7.58 (m, 1H)
=	IR(KBr) 3453, 3379, 2973, 2931, 1719, 1629, 1629, 1490, 1406, 1313, 1288, 1247, 1193, 1101, 1072, 1015, 993, 816, 786
ı	cm.¹
ш	mp89-90 °C
=	11 NMR (DMSO-d ₆) δ 1.75 (8, 311), 1.78 (8, 311), 3.31 (8, 3H), 3.62 (8, 3H), 4.56 (d, J = 6.9 Hz, 2H), 5.52 (t, J = 6.0 Hz, 1H),
1.893 6.	6.33 (s, 111), 6.34-6.47 (m, 2H), 6.74 (brs, 2H), 6.74-6.75 (m, 1H), 6.87-6.91 (m, 1H), 7.11-7.12 (m, 1H), 7.32-7.34 (m, 1H),
<u> </u>	8.52 (brs, 111), 8.75 (brs, 111)
II	IR(KBr) 3424, 2933, 2614, 1719, 1625, 1585, 1523, 1488, 1408, 1287, 1247, 1125, 1070, 819, 788 cm ⁻¹
<u> </u>	mp167·168 ℃
	14 NMR (CDCl ₃) δ 2.31 (s, 3H), 2.38 (s, 3H), 3.52 (s, 3H), 3.76 (s, 3H), 4.91 (s, 2H), 5.13 (s, 2H), 5.65 (brs, 1H), 5.77 (brs,
1-694	1H), 6.85 (s, 1H), 6.84-6.93 (m, 2H), 7.10-7.44 (m, 12H)
11	IR(KBr) 3425, 2933, 2614, 1719, 1625, 1585, 1522, 1488, 1408, 1287, 1247, 1125 cm ⁻¹
E	mp93-94 °C
=	14 NMR (DMSO-d6) 6 2.11 (8, 3H), 3.34 (8, 3H), 3.62 (8, 3H), 5.10 (8, 2H), 6.32 (8, 2H), 6.41-6.49 (m, 2H), 6.65 (d, J = 9.3
I-895 H	Hz, 1H), 6.78 (g, 1H), 6.95 (d, J = 8.7 Hz, 1H), 7.09-7.14 (m, 1H), 7.22 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H), 8.49 (brs,
=	1H), 8.87 (brs, 1H)
11	IR(KBr) 3424, 2932, 1717, 1626, 1585, 1523, 1488, 1409, 1248, 1125, 1106, 1070, 811, 793 cm ⁻¹

		_
	mp149-150 C	
-	HI NMR (DMSO-d ₆) δ 1.72 (s, 3H), 1.77 (s, 3H), 3.32 (s, 3H), 3.55 (s, 3H), 3.76 (s, 6H), 4.55 (d, J = 6.3 Hz, 2H), 5.50 (t, J =	_
968-1	6.6 Hz, 1H), 6.15 (s, 1H), 6.68 (d, J = 2.1 Hz, 1H), 6.91 (d, J = 8.7 Hz, 1H), 7.30 (s, 2H), 8.41 (brs, 1H), 8.74 (brs, 1H)	
	IR(KBr) 3423, 2936, 1694, 1578, 1459, 1410, 1319, 1229, 1126, 1067 cm 1	
	mp107.108 °C	
, t	111 NMR (CDCL) 5 2.70 (8, 3H), 3.12 (8, 3H), 3.55 (8, 3H), 3.72 (8, 3H), 3.78 (8, 6H), 5.18 (8, 2H), 6.65 (8, 1H), 6.70 (d, J =	
7.68-1	4.2 Hz, 1HI), 7.14 (d, J = 8.4 Hz, 1HI), 7.26.7.48 (m, 9H)	
	IR(KBr) 3434, 2941, 1517, 1488, 1366, 1353, 1261, 1177, 1102, 1074, 844, 818, 796 cm ⁻¹	
	powder	
1	¹ H NMR (CDCl ₃) δ 1.63 (9, 3H), 1.70 (8, 3H), 3.48 (8, 3H), 3.73-3.76 (m, 7H), 3.87 (8, 3H), 4.98 (9, 1H), 5.24-5.32 (m, 2H),	
1-898	5.90 (s, 1H), 6.47 (s, 1H), 6.89-7.02 (m, 5H), 7.51-7.57 (m, 2H)	
	IR (KBr) 3447, 2930, 1612, 1523, 1488, 1455, 1398, 1230, 1120, 1080, 1037, 818, 592 cm ⁻¹	
	mp 171-173 C	
900	'H NMR (CDCl ₃) & 1.73 (s, 3H), 1.76 (s, 3H), 3.48 (s, 3H), 3.73-3.76 (m, 5H), 4.23 (s, 1H), 4.92 (s, 1H), 5.37-5.43 (m, 1H),	
1-899	5.84 (s, 1H), 6.46 (s, 1H), 6.70 (d, J = 8.1 Hz, 1H), 6.86-7.01 (m, 5H), 7.51-7.56 (m, 2H)	
	IR (KBr) 3392, 2934, 1612, 1626, 1489, 1398, 1222, 1116, 1075, 829, 590 cm ⁻¹	
	mp 78-79 °C	
000	1H NMR (CDCl ₃) δ 2.14 (8, 3H), 2.29 (8, 3H), 2.36 (8, 3H), 3.16 (8, 3H), 3.20 (8, 3H), 5.22 (8, 2H), 7.10 (8, 1H), 7.16 (d, J =	
006-1	8.7 Hz, 1H), 7.22-7.49 (m, 11H)	
	IR (CHCl ₃) 2939, 1612, 1516, 1476, 1415, 1370, 1291, 1269, 1174, 1150, 1119, 1087, 1018, 971, 954, 873 cm ⁻¹	

Table 178

	mn 114.116 Y
	III NMR (CDC ₁₃) & 1.08-1.14 (m, GIP), 1.77 (s, 3IP), 1.81-1.82 (d, J = 0.6 Hz, 3H), 2.53-2.65 (m, 4H), 3.21 (s, 3H), 3.23 (s,
1.901	3H), 4.62-4.65 (d, J = 6.6 Hz, 2H), 5.52 (m, 1H), 7.04-7.13 (m, 2H), 7.23-7.26 (m, 2H), 7.32-7.42 (m, 5H)
	IR (CHCL ₃) 2970, 2934, 2874, 1674, 1614, 1572, 1517, 1487, 1415, 1370, 1331, 1288, 1262, 1172, 1149, 1109, 971, 937, 872.
	849 cm·t
	mp 97-99 ℃
	111 NMR (CDCl ₃) δ 1.07-1.14 (m, 6H), 1.77 (s, 3H), 1.83 (s, 3H), 2.55-2.66 (m, 4H), 4.61-4.64 (d, $J = 6.6$ Hz, 2H), 5.06 (s,
1.902	111), 5.54 (m, 111), 5.77 (s, 111), 7.24.7.64 (m, 411), 6.97 (d, J = 2.1 Hz, 111), 7.10.7.12 (d, J = 5.7 Hz, 2H), 7.23.7.26 (m, 2H)
	IR (CHCl ₃) 3596, 3537, 2969, 2933, 27873, 1675, 1612, 1586, 1520, 1489, 1385, 1327, 1290, 1257, 1171, 1125, 996, 903, 877,
	836 cm ^{.1}
	mp 69-71 %:
000	1H NMR (CDCl ₃) δ 1.78 (s, 3H), 1.82 (s, 3H), 2.15 (s, 3H), 2.30 (s, 3H), 2.43 (s, 3H), 2.43 (s, 3H), 3.21 (s, 3H), 3.27 (s, 3H),
1-903	4.64-4.67 (d, J = 6.9 Hz, 2H), 5.50 (s, 2H), 7.10-7.13 (d, J = 9.9 Hz, 2H), 7.23-7.29 (m, 2H), 7.34-7.42 (m, 5H)
	IR (CHCl ₃) 2939, 1612, 1516, 1476, 1415, 1370, 1331, 1290, 1268, 1174, 1150, 1119, 1086, 971, 954, 873 cm ⁻¹
	mp 125-127 °C
1	1H NMR (CDCl ₃) δ 2.27 (8, 6H), 3.91 (8, 3H), 4.88 (br, 1H), 5.20 (8, 2H), 6.83·6.96 (m, 5H), 7.12·7.13 (d, J = 4.5 Hz, 2H),
1-304	7.22-7.50 (m, 7H)
	IR (CHCl ₁) 3596, 2957, 2936, 1611, 1586, 1522, 1490, 1464, 1454, 1326, 1257, 1172, 1138, 1033, 835 cm ⁻¹
	mp 145-146 ℃
100	1H NMR (CDCl ₃) 6 2.26 (8, 3H), 2.28 (8, 3H), 3.20 (8, 3H), 3.91 (8, 3H), 5.21 (8, 2H), 6.83 (dd, J = 8.1, 2.1 Hz, 1H), 6.91
006-1	6.96 (m, 2H), 7.11 (s, 1H), 7.15 (s, 1H), 7.32-7.50 (m, 9H)
	IR (CHCl ₃) 2938, 1604, 1584, 1519, 1488, 1464, 1454, 1373, 1330, 1260, 1175, 1149, 1033, 1018, 970, 873, 847 cm ⁻¹

1.906	mp 132-134 °C 'II NMR (CDCL ₃)
1.907	mp 181-182 °C '!H NMR (CDCl ₃)
1-908	mp 167-168 °C "II NMR (CDCD:) \$\delta\$ 1.77-1.78 (d, J = 0.9 Hz, 3H), 1.84 (s, 3H), 2.08 (s, 3H), 2.15 (s, 3H), 4.63-4.65 (d, J = 6.9 Hz, 2H), 4.82 (s, 1H), 5.05 (s, 1H), 5.55 (m, 1H), 5.80 (m, 1H), 6.74 (s, 1H), 6.78 (dd, J = 8.4, 2.1 Hz, 1H), 6.87-6.95 (m, 3H), 7.00 (d, J = 8.4 Hz, 1H), 7.23-7.26 (m, 2H) IR (CHCD:) 3594, 3534, 2923, 2869, 1675, 1613, 1584, 1520, 1488, 1455, 1399, 1289, 1247, 1166, 1127, 1091, 994, 948, 835 cm ⁻¹
606-1	mp 170-172 °C 'H NMR (DMSO-de)

Table 180

	mp 207-209 °C
016.	III NMR (CDCB) 6 1.54 (8, 9H), 2.69 (8, 3H), 3.12 (8, 3H), 3.52 (8, 5H), 3.77 (8, 5H), 0.10 (8, 2H), 0.50 (8, 2H)
2	7.14 (d, J = 8.7 Hz, 1H), 7.32-7.48 (m, 9H), 7.57 (d, J = 8.7 Hz, ZH)
	IR (KBr) 3373, 1734, 1525, 1369, 1227, 1177, 1158, 1080, 816, 793 cm.
	mp 214-216 ℃
,	111 NMR (DMSO-de) 6 2.84 (a, 311), 3.33 (a, 311), 3.46 (a, 311), 3.75 (a, 311), 5.26 (a, 2H), 5.30 (a, 2H), 6.66 (d, J = 8.7 Hz,
<u>.</u>	211), 6.93 (s, 111), 7.24-7.45 (m, 811), 7.52 (m, 211)
	IR (KBr) 3468, 3386, 1604, 1523, 1482, 1392, 1361, 1175, 1085, 815 cm ⁻¹
	mp 215-218 C
	1H NMR (CDCI3) & 2.67 (8, 3H), 3.13 (8, 3H), 3.53 (8, 3H), 3.78 (8, 3H), 5.19 (8, 2H), 6.86 (8, 1H), 7.15 (d, J = 8.4 Hz, 1H),
1.912	7.32.7.48 (m, 7H), 7.69 (s, 4H), 8.02 (br s, 1H)
	IR (KBr) 3307, 1733, 1482, 1393, 1361, 1284, 1177, 1084, 1012, 967, 945, 816 cm ⁻¹
	mp 203-205 °C
	111 NMIR (CDCl3) & 1.77 (8, 3H), 1.81 (6, 3H), 2.71 (8, 3H), 3.24 (8, 3H), 3.54 (8, 3H), 3.79 (8, 3H), 4.64 (d, J = 6.8 Hz, 2H),
1.913	5.50 (t, J = 6.8 Hz, 1H), 6.86 (s, 1H), 7.09 (d, J = 8.4 Hz, 1H), 7.35 (dd, J = 8.4, 2.0 Hz, 1H), 7.39 (d, J = 2.0 Hz, 1H), 7.69 (s,
	4H), 8.01 (br s, 1H)
	IR (KBr) 3311, 1735, 1482, 1393, 1362, 1177, 1083, 976, 945, 818 cm ⁻¹
	mp 105·107 °C
	¹ H NMR (CDCl ₃) δ 1.76 (e, 3H), 1.80, (e, 3H), 2.27 (e, 3H), 2.29 (e, 3H), 3.20 (e, 3H), 3.89 (e, 3H), 4.63-4.65 (d, J = 6.6 Hz, 1.40 NMR (CDCl ₃)
1.914	2H), 5.57 (m, 1H), 6.87-6.96 (m, 3H), 7.12 (s, 1H), 7.17 (s, 1H), 7.33-7.43 (m, 4H)
	IR (CHCl ₃) 2937, 2866, 1604, 1583, 1519, 1488, 1464, 1373, 1331, 1259, 1175, 1149, 1035, 970, 873 cm ⁻¹

	mn 164-165 \(\)
	111 NMR (CDCl ₃) & 1.75-1.76 (d, J = 0.6 Hz, 3H), 1.79-1.80 (d, J = 0.9 Hz, 3H), 2.27 (s, 3H), 2.28 (s, 3H), 3.89 (s, 3H),
1.915	4.62-4.65 (d, J = 6.6 Hz, 211), 4.78 (br, 111), 5.57 (m, 111), 6.86-6.96 (m, 4H), 7.12 (s, 1H), 7.15 (s, 1H), 7.22-7.27 (m, 3H)
	IR (CHCh.) 3596, 2936, 2865, 1676, 1611, 1584, 1522, 1490, 1464, 1385, 1327, 1257, 1172, 1138, 1100, 1035, 996, 952, 896.,
	835 cm·l
	mp172.173 °C
	41 NMR (CDCL) & 1.72 (8, 311), 1.77 (8, 611), 1.81 (8, 311), 2.70 (6, 311), 3.11 (8, 311), 3.24 (8, 311), 3.57 (8, 311), 3.80 (8, 311),
916-1	4.06-4.27 (m, 2H), 4.64 (d, J = 7.2 Hz, 2H), 5.37-5.50 (m, 2H), 6.85 (s, 1H), 7.10 (d, J = 8.6 Hz, 1H), 7.32-7.39 (m, 2H), 7.52
	(d, J = 8.4 Hz, 1H), 7.84 (d, J = 9.6 Hz, 1H), 7.94 (s, 1H)
	IR(KBr) 3434, 1519, 1482, 1366, 1346, 1308, 1178, 1157, 1120, 1090, 1078, 957, 805 cm ⁻¹
	mp78-80 ℃
	1H NMR (CDCl3) 6 3.47 (8, 3H), 3.69 (8, 6H), 3.80 (8, 6H), 5.14 (8, 2H), 5.66 (brs, 1H), 5.76 (brs, 1H), 6.30 (8, 1H), 6.69 (d,
1.917	J = 8.2 Hz, 2H), 7.02 (s, 2H), 7.14 (s, 1H), 7.34-7.46 (m, 6H)
	IR(KBr) 3443, 2935, 1614, 1587, 1517, 1470, 1250, 1110, 744 cm ⁻¹
	mp83.84 ℃
	1H NMR (DMSO-d6) δ 3.34 (8, 3H), 3.72 (8, 3H), 5.13 (8, 2H), 5.72 (brs, 2H), 6.41 (8, 1H), 6.62-6.93 (m, 4H), 7.32-7.61 (m,
1-918	7H), 8.54 (brs, 1H), 8.88 (brs, 1H)
	IR(KBr) 3398, 2936, 1731, 1633, 1586, 1521, 1489, 1455, 1432, 1402, 1291, 1216, 1112, 1071 cm ⁻¹
	mp74-75 ℃
950	1H NMR (CDCl ₃) δ 2.02 (e, 6H), 3.11 (e, 3H), 3.21 (e, 3H), 5.02 (brs, 1H), 5.18 (e, 2H), 6.96 (e, 1H), 7.04-7.18 (m, 3H),
616-1	7.37-7.59 (m, 9H)
	IR(KBr) 3503, 3032, 2937, 1513, 1474, 1365, 1289, 1197, 1175, 1149, 1114, 970, 867, 811 cm ⁻¹

	3. 61.879 C
	\simeq
1-920	J = 6.8 Hz, 211), 5.41-5.55 (m, 2H), 5.73 (s, 1H), 5.82 (s, 1H), 6.47 (s, 1H), 6.94-7.05 (m, 3H), 7.53 (d, J = 8.0 Hz, 1H), 7.86 (d,
	J = 8.6 Hz, 1H), 8.00 (s, 1H)IR(KBr) 3449, 2971, 2935, 1519, 1489, 1424, 1338, 1310, 1226, 1152, 1117, 1070, 1059, 773 cm ⁻¹
	mp176-177 °C
	HI NMR (CDCta) 6 2.10 (s, 3H), 2.18 (s, 3H), 2.47 (s, 3H), 3.12 (s, 3H), 3.23 (s, 3H), 5.20 (s, 2H), 7.09-7.21 (m, 3H), 7.39-
1-921	7.51 (m, 811), 7.60 (d, $J = 8.4$ Hz, $2H$).
	IR(KBr) 3433, 3033, 2937, 1516, 1470, 1360, 1291, 1267, 1176, 1160, 1119, 976, 867 cm.1
	mp 170-172 ℃
	111 NMR (DMSO-d6) δ 3.36 (8, 311), 3.66 (8, 311), 4.22 (br d, J = 2.5 Hz, 2H), 4.50 (t, J = 4.5 Hz, 1H), 4.57 (d, J = 5.7 Hz,
1.922	2H), $4.60 (d, J = 5.7 Hz, 2H)$, $4.97 (t, J = 5.7 Hz, 2H)$, $5.17 (s, 2H)$, $5.23 (t, J = 5.7 Hz, 1H)$, $6.93 (s, 1H)$, $7.04 (d, J = 8.4 Hz, 1H)$
	1H), 7.14 (dd, J = 8.4, 2.3 Hz, 1H), 7.28-7.37 (m, 2H), 7.40-7.45 (m, 4H), 7.49-7.53 (m, 2H), 7.61 (d, J = 8.1 Hz, 2H)
	IR (KBr) 3322, 1462, 1385, 1228, 1037, 1006, 750, 700 cm ⁻¹
	mp 130-132 C
(¹ H NMR (CDCl ₃) δ 1.55 (s, 9H), 1.62 (s, 3H), 2.30 (s, 12H), 3.00 (s, 6H), 6.73 (br s, 1H), 6.78-6.82 (m, 2H), 7.07-7.14 (m,
1-923	4H), 7.24-7.27(m, 2H), 8.07-8.13 (m, 2H)
	IR (KBr) 3600-2800(br), 1732, 1624, 1610, 1583, 1530, 1493, 1366, 1347, 1320, 1236, 1164 cm ⁻¹
	mp 104-106 °C
	1H NMR (CDCl3) 6 2.27 (8, 3H), 2.30 (8, 3H), 3.00 (8, 6H), 3.74 (br s, 2H), 6.77-6.85 (m, 3H), 6.96 (dd, J = 1.8, 8.1 Hz, 1H),
1.924	7.03 (dd, J = 2.1, 12.0 Hz, 1H), 7.09 (s, 1H), 7.13 (s, 1H), 7.24-7.29 (m, 2H)
	IR (KBr) 3600-2800(br), 1631, 1608, 1580, 1530, 1487, 1436, 1363, 1233, 1195 cm.

	mp 100-102 °C
	¹ H NMR (CDCl ₃) δ 1.75 (d, J = 0.6 Hz, 3H), 1.78 (d, J = 0.6 Hz, 3H), 2.29 (s, 3H), 2.30 (s, 3H), 3.00 (s, 6H), 3.77 (d, J = 6.6
1.925	1.925 Hz, 211), 3.87 (br s, 2H), 5.37-5.40 (m, 1H), 6.71-6.83 (m, 3H), 7.00-7.03 (m, 2H), 7.11 (s, 1H), 7.13 (s, 1H), 7.25-7.29 (m,
	211)
	IR (KBr) 3600-2800(br), '1623, 1610, 1529, 1490, 1441, 1348, 1328, 1253, 1229, 1120, 1065 cm ⁻¹
	mp 178-180 °C
390	111 NMR (CDCl3) & 2.27 (8, 311), 2.32 (8, 311), 3.01 (8, 611), 6.78-6.83 (m, 2H), 7.10 (8, 1H), 7.16 (8, 1H), 7.18-7.28 (m, 4H),
076-1	8.12 (br s, 111), 8.27-8.33 (m, 1H)
	IR (KBr) 3600-2800(br), 1709, 1613, 1532, 1490, 1356, 1283, 1229, 1188, 1167 cm ⁻¹
	mp 154·156 C
1 007	¹ H NMR (CDCl ₃) δ 1.94 (d, J = 1.2 Hz, 3H), 2.26 (d, J = 1.2 Hz, 3H), 2.27 (s, 3H), 2.31 (s, 3H), 3.00 (s, 6H), 5.79-5.80 (m,
176.1	1H), 6.78-6.82 (m, 3H), 7.09-7.16 (m, 4H), 7.16-7.24 (m, 2H), 8.38-8.44 (m, 1H)
	1R (KBr) 3600-2800(br), 1681, 1665, 1643, 1610, 1528, 1506, 1487, 1442, 1359, 1317, 1237, 1198, 1159 cm 1
	mp 183-186 Ե
1 000	¹ H NMR (CDCl ₃) δ 1.44 (t, J = 7.5 Hz, 3H), 2.27 (s, 3H), 2.31 (s, 3H), 3.16-3.23 (m, 2H), 6.53 (d, J = 2.4 Hz, 1H), 6.78.
076-1	6.82 (m, 2H), 7.09 (s, 1H), 7.14-7.18 (m, 3H), 7.24-7.27 (m, 3H), 7.59-7.65 (m, 1H)
	IR (KBr) 3600-2800(br), 1607, 1627, 1491, 1451, 1436, 1359, 1336, 1271, 1222, 1163, 1110 cm ⁻¹
	mp 184-186 ℃
1 000	¹ H NMR (CDCl ₃) δ 2.26 (s, 3H), 2.32 (s, 3H), 3.01 (s, 6H), 6.78-6.83 (m, 2H), 7.10 (s, 1H), 7.18 (s, 1H), 7.23-7.27 (m, 1H),
676.	7.65 (dd, J = 1.8, 8.1 Hz, 1H), 7.70 (d, J = 2.1 Hz, 1H), 8.19-8.24 (m, 1H)
	IR (KBr) 3600-2800(br), 1721, 1612, 1636, 1490, 1325, 1282, 1242, 1197, 1169, 1123, 1054 cm ⁻¹

Table 184

.

086-1	mp 212-215 °C. 1H NMR (DMSO-d ₆) δ 2.83 (s, 311), 3.43 (s, 311), 3.45 (s, 311), 3.52 (s, 311), 3.79 (s, 311), 4.87 (s, 211), 7.08 (s, 111), 7.21 (d, J = 8.4 Hz, 111), 7.27~7.32 (m, 2H), 7.48 (d, J = 8.7 Hz, 211), 7.74 (d, J = 8.7 Hz, 2H) 1R (Nuiol) 1731, 1604, 1519, 1480, 1237, 1174, 1081, 1013, 876, 839, 822, 804 cm ⁻¹
1.931	mp 166-168°C 111 NMR (CDCh ₃)
1-932	foam ¹ H NMR (CDCl ₃)
1-933	mp 120-123 °C III NMR (CDCl ₁) & 1.69 (s, 3H), 1.74 (s, 6H), 1.80 (s, 3H), 3.49 (s, 3H), 6.68-3.75 (m, 5H), 4.58 (d, J = 6.6 Hz, 2H), 5.31- 5.41 (m, 1H), 5.50-5.56 (m, 1H), 5.81 (s, 1H), 6.46 (s, 1H), 6.68-6.74 (m, 2H), 6.85-6.93 (m, 3H), 7.50-7.56 (m, 2H) IR (KBr) 3460, 2969, 2929, 1609, 1523, 1490, 1398, 1247, 1117, 1078, 1013, 824, 778, 708, 589 cm ⁻¹
1-934	mp 171-173 °C ¹ H NMR (CI)Cl ₃)

	mp 220-221 °C
	111 NMR (DMSO-d6) 5 1.74 (s, 3H), 1.77 (s, 3H), 2.08 (s, 3H), 3.30 (s, 3H), 3.64 (s, 3H), 4.64 (d, J = 7.2 Hz, 2H), 5.48-5.54
1-935	1-935 (m, 111), 6.40 (s, 1H), 6.80-6.87 (m, 2H), 6.93-7.03 (m, 2H), 7.42-7.46 (m, 2H), 7.85 (s, 1H), 8.58 (s, 1H), 8.96 (s, 1H), 9.56 (s,
	III)
	IR (KBr) 3476, 3400, 3322, 2935, 1658, 1610, 1542, 1520, 1487, 1270, 1258, 1225, 1115, 1010, 825, 596 cm ⁻¹
	mp 149.150 °C
	111 NMR (CDCh.) 5 1.48 (s, 3H), 1.67 (s, 3H), 1.76 (s, 3H), 1.80 (s, 3H), 3.63 (s, 3H), 3.74 (s, 3H), 4.27 (d, J = 7.5 Hz, 2H),
1.936	4.63 (d, J = 6.6 Hz, 2H), 5.01 (s, 1H), 5.20-5.28 (m, 1H), 5.52-5.60 (m, 1H), 6.66 (s, 1H), 6.91 (d, J = 8.7 Hz, 2H), 7.01 (t, J =
	8.7 Hz, 1H), 7.10-7.22 (m, 2H), 7.48 (d, J = 8.7 Hz, 2H)
	IR (KBr) 3335, 2936, 1671, 1614, 1596, 1522, 1441, 1403, 1369, 1265, 1233, 1111, 1077, 1008, 945, 832 cm ⁻¹
	mp 122.123 C
	1H NMR (CDC13) 6 3.44 (s, 3H), 3.76 (s, 3H), 4.77 (d, J = 6.3 Hz, 2H), 5.05 (s, 1H), 6.04 (s, 1H), 6.24 (t, J = 6.3 Hz, 1H),
1.937	6.45 (s, 111), 6.92 (d, J = 8.7 Hz, 2H) 7.01 (t, J = 8.7 Hz, 1H), 7.19-7.30 (m, 2H), 7.53 (d, J = 8.7 Hz, 2H)
	IR (KBr) 3582, 3502, 3237, 2950, 1614, 1524, 1490, 1453, 1403, 1301, 13267, 1231, 1112, 1073, 1019, 881, 827 cm ⁻¹
	mp143-144 °C
-	1H NMR (CDCl ₃) 6 1.79 (s, 3H), 1.84 (s, 3H), 2.10 (s, 3H), 2.17 (s, 3H), 2.47 (s, 3H), 3.23 (s, 3H), 3.24 (s, 3H), 4.66 (d, J =
1.938	6.6 Hz, 2H), 5.20.5.55 (m, 1H), 7.09-7.16 (m, 4H), 7.40 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 8.1 Hz, 2H)
	IR(KBr) 3433, 2935, 1513, 1472, 1366, 1188, 1178, 1152, 1117, 974, 867 cm ⁻¹
	mp80.81 °C
000	1H NMR (CDCl ₃) δ 3.47 (s, 3H), 3.48 (s, 3H), 3.68 (s, 3H), 3.81 (s, 6H), 4.79 (s, 2H), 5.13 (s, 2H), 5.14 (s, 2H), 5.65 (s, 1H),
1-939	5.75 (s, 1H), 6.28 (s, 1H), 6.69 (s, 2H), 7.01 (s, 2H), 7.14 (s, 1H), 7.40-7.45 (m, 5H)
	IR(KBr) 3433, 2937, 1720, 1582, 1508, 1455, 1407, 1285, 1239, 1125, 1069, 1051, 1011 cm ⁻¹

Table 186

1-940	mp71.72 °C ¹ HI NMR (CDCh) & 1.76 (s, 3H), 1.81 (s, 3H), 2.73 (s, 3H), 3.21 (s, 3H), 3.55 (s, 3H), 3.72 (s, 3H), 3.78 (s, 6H), 4.63 (d, J = 6.8 Hz, 2H), 5.46-5.52 (m, 1H), 6.65 (s, 1H), 6.70 (d, J = 3.8 Hz, 2H), 7.07 (d, J = 8.4 Hz, 1H), 7.34-7.46 (m, 3H) [1] (KBr) 3433, 2938, 1674, 1609, 1587, 1518, 14732, 1365, 1252, 1178, 1109, 1077, 971, 945, 815, 796 cm ⁻¹
1.941	mp98-99 °C III NMR (CDCl ₃) & 1.74 (s, 3H), 1.78 (s, 3H), 3.50 (s, 3H), 3.71 (s, 3H), 3.72 (d, J = 8.1 Hz, 2H), 5.35 (t, J = 7.2 Hz, 1H), 5.64 (s, 1H), 5.77 (s, 1H), 6.43 (s, 1H), 7.02-7.15 (m, 3H), 7.32-7.41 (m, 2H), 7.49-7.56 (m, 1H) IR(KBr) 3408, 2934, 1627, 1529, 1491, 1444, 1405, 1246, 1175, 1102, 1069, 822, 783 cm ⁻¹
1.942	¹ H NMR (CDCl ₃) δ 1.77 (8, 3H), 1.82 (8, 3H), 2.68 (8, 3H), 2.73 (8, 3H), 3.25 (8, 3H), 3.60 (8, 3H), 3.81 (8, 3H), 4.65 (d, J = 6.3 Hz, 2H), 5.44 · 5.53 (m, 1H), 6.87 (s, 1H), 7.10 (d, J = 8.7 Hz, 1H), 7.30 · 7.47 (m, 3H), 7.84 (d.d, J = 7.8 & 2.1 Hz, 1H), 8.22 (d, J = 2.1Hz, 1H) 18.22 (d, J = 2.1Hz, 1H) 18. (KBr) 1530, 1480, 1362, 1272, 1237, 1179, 1077cm ⁻¹
1.943	111 NMR (CDCl ₃) δ 2.69 (e, 3H), 3.12 (e, 3H), 3.56 (e, 3H), 3.77 (e, 3H), 3.84 (e, 2H), 5.18 (e, 2H), 6.82 (e, 1H), 6.84 (d, J = 1.943 8.1 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.21 · 7.50 (m, 9H) 11.943 8.1 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.21 · 7.50 (m, 9H) 11.943 R1 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.21 · 7.50 (m, 9H)
1.944	¹ H NMR ((3DCh ₃) & 1.76 (s, 3H), 1.82 (s, 3H), 3.49 (s, 3H), 3.75 (s, 3H), 4.61 (d, J = 6.6 Hz, 2H), 5.48 · 5.57 (m, 1H), 5.59 · 1.944 5.75 (m, 1H), 5.88 (s, 1H), 6.43 (s, 1H), 6.83 · 7.07 (m, 4H), 7.21 · 7.30 (m, 1H), 7.35 (d.d, J = 12.3 & 1.8Hz, 2H) 1R (KBr) 3465,3377, 1634, 1525, 1488, 1460, 1400, 1287, 1245, 1195, 1105, 1068cm ⁻¹
1.945	¹ H NMR (CDCl ₃) & 2.02 (s, 6H), 2.15 (s, 3H), 3.20 (s, 3H), 6.20 (s, 3H), 6.81 · 6.86(m, 1H), 6.93 (d.d, J = 10.7 & 2.1Hz, 1H), 1.945 (s, 1H), 7.04 · 7.12 (m, 1H), 7.31 · 7.52 (m, 9H) (RSr) 1513, 1468, 1362, 1295, 1264, 1227, 1193, 1171, 1151, 1003,965cm ⁻¹

.946	L
	IR (KBr) 3414, 1624, 1595, 1518, 1473, 1369, 1294, 1170, 1144, 1129, 1104, 1010cm. II NMR (CDCl ₃) & 1.77 (a, 311), 1.82 (a, 311), 2.02 (a, 611), 2.16 (a, 311), 3.20 (a, 31), 4.64 (d, J = 6.6Hz, 2H), 5.53-5.61 (m,
1-947	111), 6.82 - 7.09 (m, 411), 7.33 (d, J = 9.0Hz, 211), 7.39 (d, J = 9.0 Hz, 211) 1R (KBr) 1514, 1468, 1376, 1294, 1262, 1175, 1152,992,968cm ⁻¹
1.948	111 NMR (CDCl.) & 1.77 (a, 3H), 1.82 (a, 3H), 2.02 (a, 6H), 2.17 (a, 3H), 4.64 (d, J = 6.6Hz, 2H), 4.81 (a, 1H), 5.52 · 5.50 (m, 1H), 6.82-7.08 (m, 6H), 7.22 (d, J = 8.7Hz, 2H)
949	
026-1	
1.951	¹ H NMR (CDCl ₃) & 2.76 (s, 3H), 3.02 (s, 6H), 3.54 (s, 3H), 3.76 (s, 3H), 5.28 (s, 1H), 6.81 (d, J = 9.0Hz, 2H), 6.86 (s, 1H), 7.64 (d, J = 9.0Hz, 2H) 7.04 - 7.23 (m, 3H), 7.54 (d, J = 9.0Hz, 2H) IR (KBr) 3375, 1607, 1530, 1483, 1395, 1346, 1292, 1228, 1163, 1077, 1009cm ⁻¹
1.952	

	111 NAMP (CHICL.) & 1.76 (s. 311) 1.80 (s. 311), 3.02 (s. 611), 3.47 (s. 311), 3.75 (s. 311), 4.63 (d. J = 6.9 Hz, 2H), 5.51 · 5.60 (m.
252	111) 6.03 (s. 111) 6.47 (s. 111), 6.82 (d. J. = 8.7 Hz, 211), 6.99 · 7.08 (m, 111), 7.16 · 7.29 (m, 211), 7.55 (d. J = 8.7 Hz, 2H)
	118 (KBr) 3498 1604 1528, 1488, 1360, 1266, 1234, 1198, 1110, 1067cm 1
	III NMR (CDCl ₃) \$ 3.02 (8, 6H), 3.47 (8, 3H), 3.75 (8, 3H), 5.14 (8, 1H), 6.03 (8, 1H), 6.47 (8, 1H), 6.82 (d, J = 9.0Hz, 2H),
1.954	1.954 7.02 - 7.09 (m, 1H), 7.15 - 7.29 (m, 2H), 7.55 (d, J = 9.0Hz, 2H)
	IR (KBr) 3492,3383, 1607, 1529, 1488, 1397, 1223, 1403, 1065, 1006cm ⁻¹
	111 NMR (CDCl3) & 2.01 (s, 6H), 2.17 (s, 3H), 4.75 (s, 1H), 5.19 (s, 2H), 6.83 · 7.15(m, 7H), 7.30 · 7.53 (m, 6H)
1.955	IR (KBr) 3542, 1607, 1579, 1513, 1469, 1263, 1126, 1107, 1015cm ⁻¹
	1H NMR (CDCl3) & 1.76 (s, 3H), 1.82 (s, 3H), 2.66 (s, 3H), 3.50 (s, 3H), 3.77 (s, 3H), 4.62 (d, J = 6.4Hz, 2H), 5.48 · 5.56 (m,
	111), 5.71 (s, 111), 5.81 (s, 114), 5.47 (s, 114), 6.90 - 7.00 (m, 214), 7.04 (d, J = 1.8 Hz, 114), 7.42 (d, J = 7.8 Hz, 214), 7.82 (d.d, J
926-1	= 7.8 & 1.8 Hz, 1H), $8.26(.d, J = 1.5 Hz, 1H)$
	IR (KBr) 3520,3419, 1585, 1529, 1506, 1344, 1313, 1290, 1251, 1226, 1118, 1079cm ⁻¹
	mp 123.126 C
	111 NMR (CDCM ₃) δ 1.75 (8, 311), 1.78 (d, J = 0.9 Hz, 311), 3.47 (8, 311), 3.75 (8, 3H), 3.87 (8, 3H), 3.88 (8, 3H), 4.63 (d, J = 6.6
1.957	Hz, 2H), 5.57 (m, 1H), 5.92 (s, 1H), 6.47 (s, 1H), 6.95-7.40 (m, 5H), 7.56-7.62 (m, 2H)
	IR (CHCl ₃) 3510, 2934, 1608, 1519, 1489, 1461, 1394, 1285, 1243, 1175, 1115, 1075, 1034, 1008, 926, 823 cm ⁻¹
	mp 163-164 C
1	1H NMR (CDCl3) & 1.75 (e, 3H), 1.78 (e, 3H), 3.61 (e, 3H), 3.65 (e, 3H), 3.75 (e, 3H), 3.88 (e, 3H), 4.64 (d, J = 6.6 Hz, 2H),
1-958	4.99 (s, 1H), 5.58 (m, 1H), 6.68 (s, 1H), 6.88-6.98 (m, 5H), 7.46-7.52 (m, 2H)
	IR (CHCl ₃) 3592, 2934, 1610, 1517, 1461, 1387, 1237, 1171, 1136, 1111, 1084, 1036, 1012, 830 cm ⁻¹

Table 189

	mp 142-146 C
1.959	HI NMR (CDCL) 5 1.76 (s, 3H), 1.82 (s, 3H), 3.47 (s, 3H), 3.75 (s, 3H), 3.94 (s, 3H), 4.61 (d, J = 6.6 Hz, 2H), 5.53 (m, 1H), 5.69 (s, 1H), 5.70 (s, 1H), 5.91 (s, 1H), 6.46 (s, 1H), 6.94-7.26 (m, 6H)
	IR (CHCl ₃) 3526, 2930, 1585, 1520, 1489, 1460, 1399, 1287, 1260, 1110, 1070, 1010, 819 cm ⁻¹
	mp 141-145 C
-	¹ H NMR (CDCL ₃) δ 2.39 (8, 311), 3.47 (8, 311), 3.94 (8, 311), 5.10 (8, 211), 5.68 (8, 111), 5.69 (8, 111), 5.92 (8, 111), 6.46 (8, 111),
0 5:- -	6.93.7.38 (m, GH)
	IR (CHCL ₃) 3528, 1585, 1519, 1489, 1460, 1399, 1260, 1110, 1070, 1009, 863 cm ⁻¹
	mp 152.154 °C
	¹ H NMR (CDCl ₃) δ 2.26 (s, 3H), 4.79 (br, 1H), 5.19 (s, 2H), 6.87-6.90 (m, 2H), 7.03-7.15 (m, 4H), 7.22-7.26 (m, 2H), 7.34-
1.961	7.50 (m, GH)
	IR (CHCl ₃) 3596, 2925, 2869, 1612, 1581, 1523, 1490, 1455, 1383, 1313, 1298, 1259, 1171, 1125, 1100, 1012, 956, 877, 836
	cm.t
:	mp 150-151 'C
9	¹ H NMR (CDCl ₃) δ 2.28 (s, 3H), 3.90 (s, 3H), 4.77.4.79 (d, J = 6.0 Hz, 2H), 6.26 (d, J = 6.0 Hz, 1H), 6.88-6.91 (m, 5H),
70G-I	7.13.7.14 (d, J = 2.7 Hz, 2H), 7.24-7.27 (m, 2H)
	IR (CHCl3) 3596, 2958, 1732, 1612, 1587, 1522, 1490, 1464, 1325, 1257, 1172, 1139, 1100, 1032, 886, 835 cm ⁻¹
	mp 93.94 °C
1 000	¹ H NMR (CDCl ₃) δ 2.27 (8, 3H), 4.76-4.79 (d, J = 6.0 Hz, 2H), 5.12 (br, 1H), 6.24 (t, J = 6.0 Hz, 1H), 6.88-7.15 (m, 7H),
206-1	7.22.7.26 (m, 2H)
	IR (CHCl ₃) 3596, 2925, 2867, 1613, 1583, 1523, 1490, 1468, 1424, 1388, 1258, 1171, 1126, 1100, 1022, 956, 886, 836 cm ⁻¹

Table 190

1-96-1	foam 111 NMR (CDCl ₃) & 3.47 (s, 3H), 3.74 (s, 3H), 5.06 (s, 1H), 5.15 (s, 2H), 5.70 (s, 1H), 5.94 (s, 1H), 6.46 (s, 1H), 6.81-7.50 (m, 12H)
	IR (CHCh) 3534, 1609, 1587, 1518, 1504, 1482, 1463, 1455, 1407, 1322, 1290, 1249, 1200, 1112, 1072, 1011 cm ⁻¹
990	foam 111 NMR (CDCl ₃) & 3.61 (8, 311), 3.75 (8, 311), 5.16 (8, 211), 5.72 (8, 211), 6.46 (8, 1H), 6.83 (8, 1H), 6.94 (dd, J = 2.0, 8.4 Hz,
6005-f	111), 7.00-7.12 (m, 411), 7.29-7.50 (m, 711) IR (CHCl ₃) 3531, 1587, 1516, 1498, 1482, 1462, 1455, 1410, 1362, 1308, 1288, 1248, 1202, 1121, 1092, 1070, 1006 cm ⁻¹
	mp 174-175 °C III NMR (CDCI:)
996-1	1.8, 8.4 Hz, 111), 7.04 (d, J = 8.4 Hz, 1H), 7.11 (d, J = 1.8 Hz, 1H), 7.22-7.49 (m, 9H) IR (KBr) 3516, 3398, 1587, 1516, 1500, 1484, 1453, 1412, 1306, 1285, 1247, 1231, 1202, 1126, 1101, 1072, 1019, 769, 737
	cm.1
1.967	mp 103·104 °C 1Н NMR (CDCh) & 2.26 (в. 6H), 4.61-4.78 (m, 3H), 4.84 (в, 1Н), 6.84·6.92 (m, 2Н), 6.97·7.16 (m, 5Н), 7.21·7.27 (m, 2Н)
	IR (KBr) 3409, 1742, 1523, 1489, 1315, 1295, 1259, 1231, 1206, 1193, 1124, 1001, 834, 815 cm ⁻¹
	mp 90-91 C
1.968	1H NMI((CDCl ₃) o 1.77 (8, 6H), 1.82 (a, J = 0.9 fiz, or), 2.24 (8, 6H), 4.00 (a, J = 0.0 fiz, 2.13), 0.15 (a, G = 0.0 fiz, 2.13), 0.94-7.00 (m, 2H), 7.01-7.14 (m, 5H), 7.26-7.31 (m, 2H)
	IR (KBr) 1608, 1522, 1488, 1378, 1299, 1288, 1273, 1259, 1242, 1196, 1176, 1014, 831, 811, 776 cm.1

mp 200-203 °C 11 NMR (CIDCIA) δ 2.00 (s, 3H), 2.25 (s, 3H), 3.46 (s, 3H), 3.73 (s, 3H), 5.25 (s, 1H), 6.01-6.03 (m, 11) MMR (CIDCIA) δ 2.00 (s, 3H), 2.25 (s, 3H), 3.47.52 (m, 2H) 11 (KIR7) 3433, 2937, 1721, 1651, 1523, 1489, 1398, 1264, 1225, 1136, 1071, 1035, 927, 823, 530 cm ⁻¹ 11 (KIR7) 3433, 2937, 1721, 1651, 1523, 1489, 1398, 1264, 1225, 1136, 1071, 1035, 927, 823, 530 cm ⁻¹ 11 (KIR7) 3433, 2937, 1721, 1651, 1652, 1489, 1398, 1264, 1225, 1136, 1071, 1035, 927, 823, 530 cm ⁻¹ 12 (10 5.50-5.57 (m, 11), 5.82 (s, 11), 6.46 (s, 11), 6.66 (d, J = 2.1 Hz, 11), 6.73 (dd, J = 2.1, 8.1 Hz, 1H), 6.86-6.94 (m, 2H) 13 (KIR7) 3332, 2934, 1611, 1523, 1490, 1397, 1242, 1216, 1112, 1074, 1002, 592 cm ⁻¹ 14 (KIR7) 3332, 2934, 1611, 1523, 1490, 1397, 1242, 1216, 1112, 1074, 1002, 592 cm ⁻¹ 15 (c) Hz, 2H), 5.52 (t, J = 6.9 Hz, 1H), 6.73 (s, 1H), 7.06 (d, J = 8.4 Hz, 1H), 7.14 (dd, J = 8.4, 2.1 Hz, 1H), 7.23 (d, 1H), 7.36 (d, J = 8.9 Hz, 2H), 7.69 (d, J = 8.9 Hz, 2H) 16 (KIR7) 1515, 1474, 1365, 1229, 1175, 1151, 1096, 973, 879, 810 cm ⁻¹ 27 (2) Hz, 2H), 4.72 (d, J = 7.2 Hz, 2H), 5.53 (t, J = 6.6 Hz, 1H), 6.86 (s, 1H), 6.96 (d, J = 8.7 Hz, 1H), 7.21.7.30 (m, 4 H), 117, 211, 211, 211, 211, 211, 211, 211		
.1	696-1	mp 200-203 °C 1H NMR (CDC13) \$\delta \tilde{2}.00 (a, 3H), 2.25 (a, 3H), 3.46 (a, 3H), 3.73 (a, 3H), 3.83 (a, 3H), 5.25 (a, 1H), 6.01-6.03 (m, 1H), 6.06 (a, 1H), 6.45 (s, 1H), 6.86-6.90 (m, 2H), 7.04-7.14 (m, 3H), 7.47-7.52 (m, 2H) 1R (KBr) 3433, 2937, 1721, 1651, 1523, 1489, 1398, 1264, 1225, 1136, 1071, 1035, 927, 823, 530 cm ⁻¹
	1.970	<u> </u>
amorphous 'H NMR (CD Hz, 2H), 4.72 8.1 Hz, 2H) IR (KBr) 359	1.971	mp 153-155 °C 11 NMR (CDChh) δ 1.77 (s, 3H), 1.82 (s, 3H), 2.10 (s, 3H), 3.20 (s, 3H), 3.21 (s, 3H), 3.36 (s, 3H), 3.71 (s, 3H), 4.63 (d, J = 6.9 Hz, 2H), 6.73 (s, 1H), 7.06 (d, J = 8.4 Hz, 1H), 7.14 (dd, J = 8.4, 2.1 Hz, 1H), 7.23 (d, J = 2.1 Hz, 1H), 7.36 (d, J = 8.9 Hz, 2H), 7.69 (d, J = 8.9 Hz, 2H) 11 (KBr) 1515, 1474, 1365, 1229, 1175, 1151, 1096, 973, 870, 810 cm ⁻¹
	1.972	amorphous ¹ H NMR (CDCl ₃) δ 1.77 (s, 3H), 1.82 (s, 3H), 2.43 (s, 3H), 3.44 (s, 3H), 3.71 (s, 3H), 4.49 (d, J = 9.9 Hz, 2H), 4.62 (d, J = 6.6 Hz, 1H, 2H), 4.72 (d, J = 7.2 Hz, 2H), 5.53 (t, J = 6.6 Hz, 1H), 6.86 (s, 1H), 6.96 (d, J = 8.7 Hz, 1H), 7.21.7.30 (m, 4H), 7.54 (d, J = 8.1 Hz, 2H) ^{8.1} Hz, 2H) ¹ IR (KBr) 3599, 1463, 1386, 1081, 1007 cm ⁻¹

Table 192

1.973	mp 83-86 °C HI NMR (DMSO-d ₆) & 1.74 (8, 3H), 1.77 (8, 3H), 3.36 (8, 3H), 3.65 (8, 3H), 4.23 (d, J = 23.1 Hz, 2H), 4.48 (t, J = 4.4 Hz, 1H), 4.52 (d, J = 5.4 Hz, 2H), 4.52.4.60 (m, 4H), 4.89 (t, J = 5.6 Hz, 1H), 5.22 (t, J = 5.9 Hz, 1H), 5.48 (t, J = 6.6 Hz, 1H), 6.92 (s, 1H), 6.96 (d, J = 8.6 Hz, 1H), 7.12 (dd, J = 8.6, 1.5 Hz, 1H), 7.26 (d, J = 1.5 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 8.0 Hz, 2H)
1.974	mp 177-179 °C 1H NMR (CDCl ₃)
1.975	mp 180-182 °C 1H NMR (CIOCI3) \(\beta \) 1.31 (d, \(J = 6.6 \) Hz, 6H), 1.76 (s, 3H), 1.81 (s, 3H), 2.74 (s, 3H), 2.98 (sept., \(J = 6.6 \) Hz, 1H), 3.22 (s, 3H), 3.54 (s, 3H), 3.77 (s, 3H), 4.63 (d, \(J = 6.7 \) Hz, 2H), 5.49 (t, \(J = 6.7 \) Hz, 1H), 6.87 (s, 1H), 7.08 (d, \(J = 8.4 \) Hz, 1H), 7.31 (d, \(J = 8.1 \) Hz, 2H), 7.35 (dd, \(J = 8.4 \) 2.1 Hz, 1H), 7.40 (d, \(J = 2.1 \) Hz, 1H), 7.54 (d, \(J = 8.1 \) Hz, 2H) 1R(KBr) 1520, 1481, 1366, 1177, 1083, 1012, 975, 944, 815, 797 cm ⁻¹
1.976	mp 125-126 °C 141 NMR (CDCl ₃) δ 1.31 (d, J = 6.9 Hz, 6H), 1.76 (s, 3H), 1.82 (s, 3H), 2.97 (sept, J = 6.9 Hz, 1H), 3.46 (s, 3H), 3.74 (s, 3H), 1.976 4.61 (d, J = 7.1 Hz, 2H), 5.53 (t, J = 7.1 Hz, 1H), 5.68 (s, 1H), 5.91 (s, 1H), 6.48 (s, 1H), 6.95-6.96 (m, 2H), 7.06-7.07 (m, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H) 1R (KBr) cm ⁻¹

Table 193

	foam 111 NMR (CDCl ₃) & 2.68 (s, 311), 3.13 (s, 311), 3.20 (s, 311), 3.57 (s, 311), 3.79 (s, 314), 5.19 (s, 211), 6.86 (s, 111), 7.15 (d, J =
1-977	8.7 Hz, 111), 7.31-7.62 (m; 11H) IR (CHCl ₃) 1517, 1475, 1371, 1227, 1219, 1176, 1117, 1081, 968, 925, 856, 821 cm ⁻¹
	foam IH NMR (CDCl ₃) & 2.65 (8, 3H), 2.94 (8, 3H), 3.14 (8, 3H), 3.59 (8, 3H), 3.76 (8, 3H), 5.19 (8, 2H), 6.86 (8, 1H), 7.16 (d, J =
1.978	8.7 Hz, 1HJ, 7.33-7.57 (m, 11H) IR (CHCl ₃) 1517, 1477, 1398, 1370, 1268, 1233, 1216, 1177, 1159, 1079, 972, 894, 856, 818 cm ⁻¹
1.070	foam iH NMR (CDCl ₃) & 1.77 (s, 3H), 1.81 (s, 3H), 2.69 (s, 3H), 2.94 (s, 3H), 3.25 (s, 3H), 3.60 (s, 3H), 3.76 (s, 3H), 4.64 (d, J = 1.4 NMR (CDCl ₃) & 1.77 (s, 3H), 1.81 (s, 3H), 2.69 (s, 3H), 2.94 (s, 3H), 3.25 (s, 3H), 3.60 (s, 3H), 3.76 (s, 3H), 4.64 (d, J = 1.4 NMR (CDCl ₃) & 1.77 (s, 3H), 1.81 (s, 3H), 2.69 (s, 3H), 2.94 (s, 3H), 3.25 (s, 3H), 3.60 (s, 3H), 3.76 (s, 3H), 4.64 (d, J = 1.4 NMR (CDCl ₃) & 1.77 (s, 3H), 1.81 (s, 3H), 2.69 (s, 3H), 2.94 (s, 3H), 3.25 (s, 3H), 3.60 (s, 3H), 3.76 (s, 3H), 4.64 (d, J = 1.4 NMR (CDCl ₃)) & 1.77 (s, 3H), 1.81 (s, 3H), 2.69 (s, 3H), 2.94 (s, 3H), 3.25 (s, 3H), 3.60 (s, 3H), 3.76 (s, 3H), 4.64 (d, J = 1.4 NMR (CDCl ₃)) & 1.77 (s, 3H), 1.81 (s, 3H), 1.81 (s, 3H), 2.94 (s, 3H), 3.25 (s, 3H), 3.60 (s, 3H), 3.76 (s, 3H), 4.64 (d, J = 1.4 NMR (CDCl ₃)) & 1.77 (s, 3H), 3.76 (s, 3H), 3.75 (s, 3H), 3.76 (s, 3H), 3
	6.9 Hz, 2H), 5.50 (m, 1H), 6.86 (s, 1H), 7.10 (u, 3 - 5.11.2), 7.77, 1178, 1169, 1105, 1079, 972, 895, 854, 814, 801 cm ⁻¹
1.980	foam 1H NMR (CDCl ₃) & 1.76 (d, J = 0.9 Hz, 3H), 1.81 (d, J = 0.9 Hz, 3H), 2.71 (e, 3H), 3.20 (e, 3H), 3.24 (e, 3H), 3.57 (e, 3H), 1H NMR (CDCl ₃) & 1.76 (d, J = 6.9 Hz, 1H), 6.86 (e, 1H), 7.09 (d, J = 8.7 Hz, 1H), 7.31-7.40 (m, 3H), 7.48-7.55 (m, 3H)
	1R (CHCl ₁₃) 1517, 1474, 1365, 1269, 1236, 1177, 1140, 1116, 1078, 964, 923, 854, 814 cm ⁻¹
	mp 122-123 $^{\circ}$ C II (8, 3H), 1.82 (d, J = 0.4 Hz, 3H), 3.62 (s, 3H), 3.75 (s, 3H), 4.63 (d, J = 6.6 Hz, 2H), 5.53 (m, 1H), H NMR (CDCl ₃) δ 1.77 (s, 3H), 1.82 (d, J = 0.4 Hz, 3H), 3.62 (s, 3H), 3.75 (s, 3H), 4.63 (d, J = 6.6 Hz, 2H), 5.53 (m, 1H),
1.981	5.70 (s, 111), 5.73 (s, 111), 6.46 (s, 111), 6.86 (s, 111), 6.89-7.13 (m, 411), 7.29-7.40 (m, 511) IR (KBr) 3366, 1587, 1496, 1482, 1462, 1449, 1408, 1371, 1313, 1290, 1245, 1210, 1126, 1093, 1073, 1001, 783, 770 cm. 1

Table 194

	mp 171.172 °C:
	111 NMR (CDCL) 5 1.76 (8, 311), 1.82 (8, 311), 3.48 (8, 311), 3.74 (8, 311), 4.61 (d, J = 6.9 Hz, 211), 4.91 (8, 111), 5.53 (m, 1H),
1.982	5.70 (s, 111), 5.91 (s, 111), 6.46 (s, 111), 6.86 (m, 111), 6.91-7.02 (m, 211), 7.06 (m, 111), 7.13 (m, 111), 7.21 (m, 114), 7.32 (m,
	IR (KBr) 3368, 1585, 1519, 1507, 1484, 1460, 1460, 1403, 1294, 1255, 1237, 1206, 1110, 1072, 1006, 789, 766 cm 1
	mp 92.6-93 ℃
000	111 NMR (CDCl3) & 1.77 (s, 3H), 1.83 (d, J = 0.9 Hz, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 4.63 (d, J = 6.9 Hz, 2H), 5.13 (d, J = 3.9
1-983	Hz, 1H), 5.55 (m, 1H), 6.98-7.14 (m, 8H)
	IR (CHCl.) 3578, 2922, 1618, 1522, 1490, 1383, 1282, 1120, 979, 873, 824 cm ⁻¹
	mp 89-95 ℃
. 1	'H NMR (CDCl ₃) 6 1.77 (s, 6H), 1.81 (d, J = 0.9 Hz, 6H), 2.27 (s, 6H), 4.63 (d, J = 6.6 Hz, 4H), 5.55 (m, 2H), 6.98.7.14 (m,
1.984	H8
	HR (CHCH) 2930, 1676, 1620, 1490, 1382, 1296, 1270, 1127, 987, 874 cm ¹
	mp 74.75 C
	1H NMR (CDCl ₃) δ 2.16 (8, 3H), 2.69 (8, 3H), 3.14 (8, 3H), 3.20 (8, 3H), 3.56 (8, 3H), 5.20 (8, 2H), 7.16-7.49 (m, 11H), 7.65-
1.985	7.68 (m, 211)
	IR (CHCl ₃) 2939, 1732, 1613, 1618, 1478, 1464, 1416, 1371, 1331, 1292, 1268, 1176, 1160, 1118, 1088, 1010, 969, 950, 872
	cm.¹
	mp 50-52 C
Š	111 NMR (CDCM3) 6 1.77 (8, 3H), 1.82 (8, 3H), 2.16 (8, 3H), 2.74 (8, 3H), 3.20 (8, 3H), 3.24 (8, 3H), 3.57 (8, 3H), 4.64-4.66 (d,
086-1	J = 6.3 Hz, 2H), 5.50 (m, 1H), 7.10·7.39 (m, 6H), 7.66·7.68 (m, 2H)
	IR (CHCl ₃) 2938, 1613, 1518, 1477, 1370, 1331, 1290, 1267, 1176, 1150, 1117, 1088, 970, 949, 871 cm ⁻¹

Table 195

:

1.987	1H NMR (CDCh.) & 1.59-1.60 (d, J = 0.6 Hz, 3H), 1.70-1.71 (d, J = 0.9 Hz, 3H), 2.26(s, 3H), 2.28 (s, 3H), 2.36 (m, 1H), 2.77
	(m, 111), 3.20 (s, 311), 3.23 (s, 311), 0.24 (m, 111), 0.12 (s, 111), 0.10 (s), 0.10 (s, 111), 0.20 (s)
	mp 153-151 C 1H NMR (CDCl ₃) & 1.76 (s, 3H), 1.82 (s, 3H), 2.12 (s, 3H), 3.48 (s, 3H), 4.61-4.64 (d, J = 6.6 Hz, 2H), 4.75 (br, 1H), 5.54 (m,
1.988	1H), 5.69 (s, 1H), 5.73 (s, 1H), 6.77-6.98 (m, 6H), 7.51-7.54 (m, 2H)
	тр 126-128 °C тр 126-128 °С г. н. NMR (CDCIs) 8 2.25 (8, 3H), 3.78 (8, 3H), 5.16 (8, 2H), 5.75 (br, 1H), 6.83-6.89 (m, 4H), 6.98-7.00 (m, 2H), 7.17 (8, 1H),
1-989	7.40-7.47 (m, 7H) IR (CHCl ₃) 3596, 3543, 2937, 1610, 1588, 1523, 1493, 1465, 1455, 1388, 1328, 1315, 1262, 1173, 1126, 1038, 1012, 835 cm
066-1	mp 87-90 °C ¹ H NMR (CDCl ₃) & 1.59-1.60 (d, J = 0.6 Hz, 3H), 1.72-1.73 (d, J = 0.9 Hz, 3H), 2.26 (e, 3H), 2.28 (e, 3H), 2.34-2.37 (m, 2H), ² 2.66-2.71 (m, 2H), 4.84-4.86 (br, 2H), 5.28 (m, 1H), 6.79 (d, J = 1.5 Hz, 1H), 6.86-6.89 (m, 3H), 7.11-7.17 (m, 3H), 7.23-7.26
	(m, 2H) IR (CHCl ₃) 3598, 2925, 2859, 1612, 1569, 1521, 1488, 1450, 1425, 1414, 1328, 1267, 1171, 1101, 958, 836 cm ⁻¹
	mp 174·176 °C 114. 115 °C 115 (8, 3H), 3.13 (8, 3H), 3.18 (8, 3H), 3.80 (8, 3H), 5.19 (8, 2H), 6.84 (8, 1H), 7.13 (d, J = 8.4 Hz, 1H),
1.001	7.18 (s, 1H), 7.28-7.50 (m, 9H), 7.59-7.62 (m, 2H) IR (CHCls) 2940, 1732, 1613, 1620, 1490, 1465, 1465, 1415, 1371, 1331, 1291, 1260, 1173, 1149, 1111, 1038, 1018, 1003,
	971, 872, 813 cm ⁻¹

Table 196

	mp 136-137 Ը
	111 NMR (CDCH.) 6 1.77-1.78 (d, J = 0.9 Hz, 3H), 1.82-1.83 (d, J = 0.6 Hz, 3H), 2.26 (s, 3H), 3.18 (s, 3H), 3.24 (s, 3H), 3.80
9	(s, 311), 4.64 (d, J = 6.6 11z, 211), 5.52 (m, 111), 6.84 (s, 111), 7.07 (d, J = 8.7 11z, 111), 7.18 (s, 111), 7.25-7.35 (m, 411), 7.59-7.62
266-1	(m, 211)
	1R (CHCL ₁) 3596, 3539, 2937, 1610, 1587, 1523, 1492, 1464, 1454, 1388, 1328, 1315, 1292, 1261, 1173, 1126, 1038, 996, 834
	cm. ₁
	mp 131-133 ℃
	111 NMR (CDCI ₁₃) & 1.77 (s, 3H), 1.83 (s, 3H), 2.26 (s, 3H), 3.78 (s, 3H), 4.61-4.64 (d, J = 6.9 Hz, 2H), 5.17 (br, 1H), 5.35 (m,
1.993	111), 5.78 (hr. 111), 6.83-6.99 (m, 611), 7.17 (s, 111), 7.44-7.47 (m, 2H)
	IR (CHCL) 3596, 3539, 2937, 1610, 1687, 1523, 1492, 1464, 1464, 1388, 1328, 131, 1292, 1261, 1173, 1126, 1038, 996, 834
	cm.¹
	mp 127-130 °C
	111 NMR (CDCI3) 6 1.73 (d, J = 0.9 Hz, 3H), 1.76 (d, J = 0.9 Hz, 3H), 2.99 (e, 6H), 3.73-3.76 (m, 2H), 3.78 (e, 6H), 3.88 (e,
1.994	311), 5.37-5.40 (m, 1H), 5.83 (d, J = 7.8 Hz, 1H), 6.78-6.84 (m, 2H), 6.95 (s, 1H), 6.96 (s, 1H), 7.06-7.12 (m, 2H), 7.48-7.53 (m,
	2H)
	mp91-93 C
	111 NMR (CDCh.) 6 1.78 (e, 311), 1.84 (e, 311), 2.02 (e, 6H), 4.63 (d, J = 6.4 Hz, 2H), 5.07 (e, 1H), 5.15 (e, 1H), 5.55 (t, J = 7.0
1-995	Hz, 1H), 6.63 (dd, J = 2.0, 8.2 Hz, 1H), 6.77 (d, J = 2.0 Hz, 1H), 6.93-6.99 (m, 4H), 7.39 (d, J = 8.6 Hz, 2H)
	IR(KBr) 3423, 2921, 1611, 1518, 1474, 1282, 1244, 1205, 1125, 1089, 995, 837, 815, 785 cm ⁻¹
	mp185·186 ℃
90	1H NMR (CDCl ₃) & 1.32 (t, J = 7.5 Hz, 3H), 2.71 (q, J = 7.5 Hz, 2H), 3.46 (s, 3H), 3.76 (s, 3H), 5.15 (s, 2H), 5.69 (s, 1H),
066-1	5.89 (e, 1H), 6.94-7.08 (m, 3H), 7.37-7.46 (m, 5H), 7.54-7.59 (m, 2H), 7.82 (brs, 1H), 7.93 (d, J = 8.1 Hz, 1H)
	IR(KBr) 3504, 3269, 2968, 2936, 1708, 1532, 1518, 1487, 1311, 1286, 1193, 1121, 1071, 1014 cm.1

Table 197

	mp77-78 °C
	HI NMR (CDCII) & 1.73 (8, 311), 1.77 (8, 311), 1.82 (8, 311), 2.70 (8, 311), 3.25 (8, 3H), 3.55 (8, 3H), 3.82 (8, 3H), 4.65 (d, J =
1.997	6.9 Hz, 2H), 4.94 (d, J = 7.5 Hz, 2H), 5.31 (t, J = 8.7 Hz, 1H), 5.50 (t, J = 6.6 Hz, 1H), 6.87 (e, 1H), 7.10 (d, J = 8.4 Hz, 1H),
	7.28-7.39 (m, 3H), 7.87 (d, J = 8.1 Hz, 1H), 7.99 (s. 1H)
	IR(KBr) 3431, 2939, 1702, 1518, 1483, 1368, 1308, 1204, 1177, 1121, 1092, 1079, 957, 804 cm ⁻¹
	mp144-145 C
	HI NMR (CDCl ₃) δ 1.76 (8, 3H), 1.82 (8, 3H), 3.48 (8, 3H), 3.69 (8, 3H), 3.80 (8, 6H), 4.61 (d, $J = 6.9$ Hz, 2H), 5.51 (t, $J = 4.8$
1.998	Hz, 111), 5.66 (brs, 1H), 5.76 (brs, 1H), 6.30 (s, 1H), 6.69 (d, J = 8.1 Hz, 2H), 6.93-7.01 (m, 2H), 7.11 (d, J = 2.1 Hz, 1H),
	7.31-7.37 (m, 1H)
	IR(KBr) 3476, 2936, 1589, 1517, 1500, 1472, 1408, 1288, 1249, 1111 cm ⁻¹
	mp82-83 ℃
666-1	5.19 (s, 2H), 6.69 (s, 1H), 7.14-7.17 (m, 1H), 7.36-7.49 (m, 8H)
	IR(KBr) 3434, 2939, 1719, 1613, 1581, 1508, 1463, 1396, 1365, 1294, 1272, 1238, 1177, 1122, 1078, 814 cm ⁻¹
	mp86-86 C
	¹ H NMR (CDC) ₃) δ 1.31 (t, $J = 7.5$ Hz, 3H), 2.66 (s, 3H), 2.71 (q, $J = 7.6$ Hz, 2H), 3.13 (s, 3H), 3.55 (s, 3H), 3.78 (s, 3H),
1.1000	5.19 (8, 2H), 6.85 (8, 1H), 7.15 (d, J = 8.8 Hz, 1H), 7.33-7.59 (m, 4H), 7.85 (brs, 1H), 7.94 (d, J = 8.4 Hz, 1H)
	1R(KBr) 3432, 2939, 1727, 1519, 1480, 1365, 1237, 1165, 1079, 959, 803 cm ⁻¹
	mp105-106 C
	1H NMR (CDCl ₃) δ 1.76 (s, 6H), 1.79 (s, 3H), 1.82 (s, 3H), 3.49 (s, 3H), 3.75 (s, 3H), 3.81 (d, J = 6.6 Hz, 2H), 4.62 (d, J = 7.2
1.1001	Hz, 2H), 5.37 (t, J = 6.3 Hz, 1H), 5.53 (t, J = 6.9 Hz, 1H), 5.68 (brs, 1H), 5.87 (brs, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.95 (s, 2H),
	7.05 (s, 1H), 7.26 (s, 1H), 7.69 (dd, J = 2.1, 8.4 Hz, 1H), 7.75 (brs, 1H)
	IR(KBr) 3459, 2934, 1622, 1582, 1525, 1493, 1467, 1327, 1240, 1139, 1113, 1070, 817 cm.

Table 198

	mp89-91 °C 111 NMR (CDCL) & 270 (s. 3H), 3.12 (s. 3H), 3.55 (s. 3H), 3.71 (s. 3H), 3.79 (s. 6H), 4.77 (s. 2H), 5.18 (s. 2H), 6.69 (s. 2H),
1.1002	7.14 (d, J = 8.8 Hz, 1H), 7.38-7.52 (m, 8H) IR(KBr) 3440, 2939, 1721, 1612, 1581, 1508, 1463, 1395, 1364, 1238, 1178, 1120, 1078, 962, 814, 523 cm ⁻¹
	mp196-197 °C 11 NMR (CDCL) & 2.26 (8.3H), 3.48 (8.3H), 3.76 (8.3H), 5.16 (8,2H), 5.69 (brs, 1H), 5.83 (brs, 1H), 6.44 (8,1H), 6.93
£001·1	7.05 (m, 4H), 7.26-7.45 (m, 6H), 7.84 (d, J = 8.1 Hz, 1H), 7.92 (s, 1H), 8.29 (brs, 1H) 1R(KBr) 3407, 2934, 1672, 1589, 1524, 1459, 1425, 1400, 1316, 1288, 1213, 1119, 1067, 1006, 745 cm ⁻¹
	mp80-81 °C
1.1004	H NMR (CDCl ₃)
	1H), 6.87 (s, 1H), 7.08-7.12 (m, 2H), 7.34-7.41 (m, 3H), 7.61 (s, 1H)
	IR(KBr) 3434, 2974, 2938, 1694, 1517, 1480, 1366, 1237, 1202, 1177, 1080, 972, 807, 523 cm ⁻¹
	mp167-158 ზ
	1H NMR (CDCl3) & 1.31 (t, J = 7.8 Hz, 3H), 1.77 (s, 3H), 1.81 (s, 3H), 2.71 (s, 3H), 2.71 (q, J = 7.8 Hz, 2H), 3.24 (s, 3H),
I.1005	3.55 (s, 3H), 3.78 (s, 3H), 4.64 (d, J = 6.6 Hz, 2H), 5.50 (t, J = 8.1 Hz, 2H), 6.85 (e, 1H), 7.09 (d, J = 8.4 Hz, 1H), 7.33-7.38 (m,
	2H), 7.52 (d, J = 8.1 Hz, 1H), 7.58 (s, 1H), 7.84 (brs, 1H), 7.94 (d, J = 8.1 Hz, 1H)
	IR(KBr) 3434, 3350, 2938, 1727, 1523, 1480, 1368, 1248, 1178, 1165, 1080, 972, 816, 802, 522 cm ⁻¹
	mp91-93 °C
	111 NMR (CDCl ₃) δ 1.30 (t, J = 7.5 Hz, 3H), 1.75 (s, 6H), 1.79 (s, 3H), 1.81 (s, 3H), 2.55 (q, J = 7.5 Hz, 2H), 3.48 (s, 3H),
I-1006	I-1006 3.74 (s, 3H), 3.79 (d, J = 6.3 Hz, 2H), 4.61 (d, J = 6.6 Hz, 2H), 5.41 (t, J = 6.0 Hz, 1H), 5.53 (t, J = 6.9 Hz, 1H), 5.67 (brs, 1H),
	5.94 (brs, 1H), 6.48 (s, 1H), 6.72 (d, J = 8.4 Hz, 1H), 6.95 (s, 2H), 7.07 (s, 1H), 7.37-7.45 (m, 2H), 7.64 (d, J = 7.5 Hz, 1H), .
	IR(KBr) 3433, 2932, 1609, 1521, 1489, 1461, 13958, 1308, 1286, 1245, 1192, 1114, 1072, 1011, 811 cm ⁻¹

Table 199

1.1007	mp71-72 °C III NMR (CDCth) δ 1.31 (t, $J = 7.5$ Hz, 3H), 1.76 (s, 3H), 1.82 (s, 3H), 2.60 (q, $J = 7.2$ Hz, 2H), 3.47 (s, 3H), 3.75 (s, 3H), 4.61 (d, $J = 6.6$ Hz, 2H), 5.53 (t, $J = 6.9$ Hz, 2H), 5.69 (brs, 1H), 5.93 (brs, 1H), 6.47 (s, 1H), 6.78 (d, $J = 8.1$ Hz, 1H), 6.95 (s, 2H), 7.06 (s, 1H), 7.26 (s, 1H), 7.39 (s, 1H)
1.1008	mp 171-173 °C 111 NMR (CDCE), 5 3.46 (s, 3H), 3.75 (s, 3H), 5.15 (s, 2H), 5.68 (s, 1H), 5.88 (s, 1H), 6.44 (s, 1H), 6.95 (dd, J = 8.4, 1.9 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 7.08 (d, J = 1.9 Hz, 1H), 7.37-7.48 (m, 7H), 7.59 (d, J = 8.4 Hz, 2H) 1R (KBr) 3544, 3514, 3462, 1517, 1482, 1388, 1284, 1247, 1089, 1107, 1069, 1006, 938, 822 cm ⁻¹
1.1009	mp 180·182 °C ¹ H NMR (CDCl ₃)
1.1010	mp 128-130 °C 1H NMR (CDCl ₃) δ 1.76 (s, 3H), 1.82 (s, 3H), 3.46 (s, 3H), 3.75 (s, 3H), 4.62 (d, J = 7.0 Hz, 2H), 5.53 (t, J = 7.0 Hz, 1H), 5.69 (s, 1H), 5.85 (s, 1H), 6.44 (s, 1H), 6.93 (dd, J = 8.4, 1.6 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 7.05 (d, J = 1.6 Hz, 1H), 7.42 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H) IR (KBr) 1517, 1482, 1287, 1244, 1106, 1070, 1013, 822, 783 cm ⁻¹
1.1011	mp 138·140 °C ¹ H NMR (CDCl ₃) & 1.76 (s, 3H), 1.81 (s, 3H), 2.72 (s, 3H), 3.23 (s, 3H), 3.54 (s, 3H), 3.78 (s, 3H), 4.64 (d, J = 6.5 Hz, 2H), ¹ H NMR (CDCl ₃) & 1.76 (s, 3H), 1.81 (s, 3H), 2.72 (s, 3H), 3.23 (s, 3H), 3.54 (s, 3H), 3.78 (s, 3H), 4.64 (d, J = 6.5 Hz, 2H), ¹ F NMR (CDCl ₃) & 1.76 (s, 3H), 7.09 (d, J = 8.3 Hz, 1H), 7.34 (dd, J = 8.3, 2.0 Hz, 1H), 7.39 (d, J = 2.0 Hz, 1H), 7.43 (d, J = 8.6 Hz, 2H), 7.57 (d, J = 8.6 Hz, 2H) ¹ H NMR (KBr) 1518, 1478, 1369, 1177, 1083, 972, 814, 795 cm ⁻¹

Table 200.

	mp 135-138 C
	111 NMR (CDC13) & 1.55-1.63 (m, 211), 1.77 (s, 611), 1.83 (s, 611), 4.56 (d, J = 6.6 Hz, 4H), 4.66 (d, J = 4.5 Hz, 4H), 5.50-5.58
7.1017	(m, 2H), 6.96-7.01 (m, 4H), 7.32-7.38 (m, 4H), 7.45 (s, 2H)
	IR (KBr) 3339, 2914, 1609, 1520, 1488, 1385, 1289, 1238, 1177, 1000, 834, 651 cm ⁻¹
	mp 202-205 °C
	1H NMR (CDCl ₃ +CD3OD) & 1.78 (8, 3H), 1.82 (8, 3H), 4.57 (d, J = 6.6 Hz, 2H), 4.62 (8, 4H), 5.50-5.56 (m, 1H), 6.86-7.00
1.1013	(m, 4H), 7.24-7.37 (m, 4H), 7.44 (s, 2H)
	IR (KBr) 3399, 2974, 2930, 1610, 1522, 1489, 1438, 1383, 1238, 1176, 999, 903, 838, 538 cm ⁻¹
	mp 219-221 ℃
	1H NMR (CDCl ₃) 6 2.22 (8, 3H), 2.69 (8, 3H), 3.13 (8, 3H), 3.53 (8, 3H), 3.77 (8, 3H), 5.19 (8, 2H), 6.85 (8, 1H), 7.15 (d, J=
1.1014	8.4 Hz, 1H), 7.32.7.49 (m, 7H), 7.60 (s, 4H)
	IR (KBr) 3384, 1701, 1604, 1524, 1482, 1355, 1294, 1176, 1084, 1011, 945, 818 cm ⁻¹
	mp 173.175 ℃
	1H NMR (DMSO-d6) 6 1.74 (8, 3H), 1.77 (8, 3H), 2.08 (8, 3H), 2.87 (8, 3H), 3.35 (8, 3H), 3.47 (8, 3H), 3.77 (8, 3H), 4.68 (d, J
1.1015	= 6.4 Hz, 2H), 5.48 (t, J = 6.4 Hz, 1H), 7.02 (s, 1H), 7.26-7.29 (m, 3H), 7.57 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 8.7 Hz, 2H), 10.07
	(s, 1H)
·	IR (KBr) 3383, 1704, 1235, 1524, 1481, 1360, 1177, 1083, 976, 816 cm ⁻¹
-	mp 144-145 C
	1H NMR (CDCl ₃) 6 1.77 (s, 3H), 1.81 (s, 3H), 2.70 (s, 3H), 3.21 (s, 3H), 3.52 (s, 3H), 3.69 (d, J = 1.6 Hz, 3H), 4.65 (d, J = 6.8
1.1016	1.1016 Hz, 2H), 5.53 (t, J = 6.8 Hz, 1H), 7.08 (t, J = 8.4 Hz, 1H), 7.16 (dd, J = 8.4, 1.8 Hz, 1H), 7.20 (dd, J = 11.7, 1.8 Hz, 1H), 7.41
	(d, J = 8.8 Hz, 2H), 7.59 (dd, J = 8.8, 1.4 Hz, 2H)
	IR (KBr) 1521, 1470, 1368, 1265, 1177, 1151, 1038, 971, 875 cm.1

	mp 196-198 С
	111 NMR (DMSO-da) & 1.72 (8, 311), 1.76 (8, 311), 2.07 (8, 311), 3.31 (8, 311), 3.65 (8, 311), 4.55 (d, J = 6.6 Hz, 211), 5.49 (t, J =
1.1017	1.1017 6.6 Hz, 111), 6.43 (s, 111), 6.65 (dd, J = 8.4, 1.9 Hz, 111), 6.73 (d, J = 1.9 Hz, 111), 6.90 (d, J = 8.4 Hz, 111), 7.55 (d, J = 8.6 Hz,
	2H), 7.66 (d, J = 8.6 Hz, 211), 8.58 (br s, 111), 8.70 (br s, 1H), 10.02 (s, 1H)
	IR (KBr) 3358, 1661, 1596, 1523, 1489, 1396, 1308, 1254, 1227, 1114, 1074 cm ⁻¹
	mp 141-143 C
	11 NMR (CDCB) & 1.76 (8, 3H), 1.81 (8, 3H), 3.40 (8, 3H), 3.64 (d, J = 0.9 Hz, 3H), 4.64 (d, J = 6.9 Hz, 2H), 4.89 (8, 1H),
1.1018	1.1018 5.56 (t, J = 6.9 Hz, 1H), 5.70 (s, 1H), 6.94 (d, J = 8.7 Hz, 2H), 7.06 (t, J = 8.7 Hz, 1H), 7.21 (ddd, J = 8.4, 2.1, 1.1 Hz, 1H),
	7.27 (dd, J = 12.3, 2.1 Hz, 1H), 7.44 (dd, J = 8.7, 1.5 Hz, 2H)
	IR (KBr) 3485, 1523, 1466, 1402, 1266, 1173, 1036, 961, 918, 837, 814 cm.1
	mp81.82 ℃
	1H NMR (CDC13) 8 1.77 (8, 3H), 1.81 (8, 3H), 2.26 (8, 3H), 2.72 (8, 3H), 3.23 (8, 3H), 3.57 (8, 3H), 3.79 (8, 3H), 4.64 (d, J=
1.1019	1.1019 6.3 Hz, 2H), 5.49 (t, J = 6.3 Hz, 1H), 6.83 (s, 1H), 7.09 (d, J = 8.4 Hz, 1H), 7.33-7.39 (m, 2H), 7.48 (e, 1H), 7.82 (d, J = 6.0 Hz,
	1H), 7.88 (s, 1H), 8.32 (brs, 1H)
	IR(KBr) 3382, 2939, 1736, 1520, 1483, 1365, 1293, 1178, 1119, 1078, 958, 802, 621 cm ⁻¹
	mp33.94 °C
000	¹ H NMR (CDCl ₃) δ 2.62 (e, 3H), 2.99 (e, 3H), 3.16 (e, 3H), 3.20 (e, 3H), 3.83 (e, 3H), 5.21 (e, 2H), 6.91 (e, 2H), 7.17 (d, J =
1.1020	8.2 Hz, 1H), 7.35-7.48 (m, 8H), 7.63 (d, J = 8.4 Hz, 2H)
	IR(KBr) 3434, 3033, 2938, 1611, 1520, 1479, 1366, 1179, 1151, 1085, 969, 850, 793, 519 cm ⁻¹

Table 202

	mp74.75 ℃
	1H NMR (CDCl ₃) & 1.76 (8, 3H), 1.82 (8, 3H), 3.48 (8, 3H), 3.75 (8, 3H), 4.61 (d, J = 6.3 Hz, 2H), 5.53 (t, J = 5.4 Hz, 1H),
1.1021	1.1021 5.69 (brs, 111), 5.86 (brs, 111), 6.42 (s, 111), 6.83 (d, J = 8.7 Hz, 111), 6.91-6.98 (m, 2H), 7.04 (s, 1H), 7.62 (d, J = 8.7 Hz, 1H),
	7.73 (s, 111)
	IR(KBr) 3495, 3398, 2935, 1633, 1622, 1487, 1291, 1246, 1112, 1072, 821, 788 cm ⁻¹
	mp76.77 ℃
	111 NMR (CDCL ₃) & 1.77 (s, 311), 1.82 (s, 311), 1.84 (s, 311), 3.52 (s, 311), 3.78 (s, 3H), 4.63 (d, J = 6.9 Hz, 2H), 5.53 (t, J = 6.6
1.1022	1-1022 Hz, 1H), 5.74 (brs, 1H), 5.80 (brs, 1H), 6.47 (s, 1H), 6.92-7.00 (m, 2H), 7.04 (s, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.93 (d, J = 8.1
	Hz, 1H), 8.04 (s, 1H)
	IR(KBr) 3411, 2934, 1662, 1519, 1488, 1425, 1309, 1245, 1175, 1128, 1071, 1050 cm ⁻¹
	mp81.82 ℃
	11 NMR (CDCL) & 1.77 (s, 3H), 1.81 (s, 3H), 2.66 (s, 3H), 2.99 (s, 3H), 3.18 (s, 3H), 3.25 (s, 3H), 3.82 (s, 3H), 4.64 (d, J =
1.1023	6.6 Hz, 2H), 5.49 (t, J = 6.0 Hz, 1H), 6.90 (s, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.38-7.43 (m, 3H), 7.62 (d, J = 8.8 Hz, 1H), 8.02 (s,
	1H)
·	IR(KBr) 3434, 3027, 2938, 1672, 1611, 1520, 1479, 1365, 1179, 1117, 1074, 970, 847, 793, 519 cm ⁻¹
	mp77-79 C
7007	1H NMR (CDCl ₃) & 1.78 (e, 3H), 1.83 (e, 3H), 3.77 (e, 3H), 4.63 (d, J = 6.6 Hz, 2H), 5.53 (t, J = 6.2 Hz, 1H), 5.76 (brs, 2H),
1.1024	6.52 (s, 1H), 6.91.7.02 (m, 6H), 7.46 (d, J = 8.4 Hz, 2H)
	IR(KBr) 3465, 2935, 1613, 1686, 1624, 1487, 1369, 1282, 1245, 1222, 1173, 1167, 1112, 1065, 974, 867, 521 cm ⁻¹
	mp78·79 ℃
1006	1H NMR (CDCl ₃) δ 2.73 (e, 3H), 2.78 (e, 3H), 3.15 (e, 3H), 3.21 (e, 3H), 3.62 (e, 3H), 5.22 (e, 2H), 7.20 (d, J = 8.4 Hz, 1H),
0701-1	7.37-7.44 (m, 10H), 7.68 (d, J = 8.8 Hz, 2H)
	IR(KBr) 3433, 3032, 2939, 1519, 1473, 1366, 1178, 1151, 1004, 966, 870, 847, 795, 524 cm ⁻¹

Table 203

1.1026	mp 158-159 °C 111 NMR (CDCh) & 1.47 (t, J = 6.9 Hz, 3H), 2.41 (s, 3H), 3.21 (s, 3H), 3.55 (s, 3H), 3.77 (s, 3H), 4.14 (q, J = 6.9 Hz, 2H), 5.22 (s, 2H), 6.83 (s, 1H), 6.91 (dd, J = 2.1, 8.1 Hz, 1H), 6.96-7.01 (m, 2H), 7.28-7.48 (m, 7H), 7.66-7.72 (m, 2H) 1R (KBr) 1517, 1482, 1392, 1362, 1240, 1194, 1175, 1146, 1084, 963, 878, 797 cm ⁻¹
1.1027	mp 106-107 % 1-1027 ¹ H NMR (CDC1 ₃) & 2.27 (s, 6H), 3.87 (s, 3H), 5.20 (s, 2H), 6.93-7.00 (m, 2H), 7.01-7.17 (m, 5H), 7.23-7.52 (m, 7H) 1R (KBr) 1607, 1522, 1490, 1467, 1455, 1383, 1294, 1267, 1246, 1178, 1125, 1028, 1011, 836, 813, 744 cm. ¹
1.108	mp 162-163 °C. 11 NMR (CDCE) \$\delta\$ 1.45 (t, J = 6.9 Hz, 3H), 3.46 (s, 3H), 3.74 (s, 3H), 4.15 (q, J = 6.9 Hz, 2H), 4.98 (s, 1H), 5.19 (s, 2H), 5.91 (s, 1H), 6.45 (s, 1H), 6.88-6.94 (m, 2H), 6.95-7.03 (m, 2H), 7.05 (d, J = 1.2 Hz, 1H), 7.27-7.41 (m, 3H), 7.45-7.56 (m, 4H) IR (KBr) 3424, 3343, 1611, 1521, 1488, 1462, 1454, 1400, 1379, 1358, 1317, 1290, 1278, 1262, 1240, 1225, 1201, 1185, 1127, 1110, 1068, 1026, 1007, 828, 731 cm ⁻¹
1.1029	mp 73-74 °C 111 NMR (CDCB ₃)
1.1030	IND 86-87 °C. 11 NMR (CDCI3) & 1.46 (t, J = 6.9 Hz, 3H), 1.75 (s, 3H), 1.79 (d, J = 0.9 Hz, 3H), 2.54 (s, 3H), 3.21 (s, 3H), 3.56 (s, 3H), 3.78 (s, 3H), 4.12 (q, J = 6.9 Hz, 2H), 4.63 (d, J = 6.3 Hz, 2H), 5.63 (m, 1H), 6.84 (s, 1H), 6.93-7.01 (m, 3H), 7.35-7.41 (m, 2H), 7.67-7.73 (m, 2H) 2H), 7.67-7.73 (m, 2H) IR (KBr) 1518, 1480, 1449, 1413, 1389, 1366, 1239, 1199, 1180, 1160, 1082, 970, 872, 798 cm ⁻¹

Table 204

	mp 145-146 C
	1H NMR (CDC)3) & 1.44 (t, J = 6.9 Hz, 3H), 1.74 (s, 3H), 1.77 (d, J = 0.9 Hz, 3H), 3.47 (s, 3H), 3.75 (s, 3H), 4.13 (q, J = 6.9 Hz, 3H)
1.1031	1-1031 Hz, 2H), 4.63 (d, J = 6.6 Hz, 2H), 5.10 (s, 1H), 5.56 (m, 1H), 6.91 (s, 1H), 6.46 (s, 1H), 6.89-6.94 (m, 2H), 6.95-7.03 (m, 3H),
	7.50.7.56 (m, 2H)
	IR (KBr) 3404, 1611, 1520, 1487, 1464, 1442, 1391, 1358, 1293, 1264, 1237, 1224, 1192, 1112, 1071, 1030, 1002, 831 cm ⁻¹
	mp 142·145 ℃
	111 NMR (CDCM) 6 3.13 (8, 311), 3.21 (8, 311), 4.63 (8, 211), 4.65 (8, 211), 5.19 (8, 2H), 7.15 (d, J = 8.4 Hz, 1H), 7.33-7.52 (m,
1.1032	13H)
	IR (KBr) 3519, 3422, 3380, 3032, 2933, 1611, 1519, 1487, 1364, 1171, 1148, 1109, 969, 871, 817, 527 cm ⁻¹
	mp 103-106 C
	111 NMR (CDC);4+CD3OD) 6 1.78 (g, 3H), 1.82 (g, 3H), 3.22 (g, 3H), 3.24 (g, 3H), 4.58-4.67 (m, 6H), 5.46-5.54 (m, 1H), 7.09
1.1033	(d, J = 8.4 Hz, 1H), 7.33-7.53 (m, 8H)
	IR (KBr) 3512, 3414, 3012, 2941, 1612, 1519, 1488, 1362, 1335, 1146, 997, 972, 876, 524 cm ⁻¹
	mp 184-187 C
	111 NMR (CDC)3+CD3OD) 6 1.78 (6, 3H), 1.82 (6, 3H), 4.59-4.65 (m, 6H), 5.52-5.59 (m, 1H), 6.84-6.98 (m, 5H), 7.23-7.28
1.1034	(m, 2H), 7.44 (s, 1H), 7.45 (s, 1H)
	IR (KBr) 3400, 2931, 1611, 1521, 1491, 1247, 1203, 1009, 987, 834 cm ⁻¹
	mp 95-96 ℃
1.1035	1-1035 111 NMR (CDCE) 6 2.27 (a, 6H), 2.41 (a, 3H), 5.19 (a, 2H), 7.02-7.18 (m, 6H), 7.22-7.54 (m, 9H)
	IR (KBr) 1522, 1512, 1454, 1377, 1309, 1297, 1274, 1267, 1236, 1125, 1008, 877, 822, 742, 696 cm ⁻¹
	mp 95-96 ℃
1.1036	1.1036 H NMR (CDCl ₃) & 2.24 (s, 3H), 2.27 (s, 3H), 5.19 (s, 2H), 6.99-7.15 (m, 5H), 7.26-7.52 (m, 9H)
	IR (KBr) 1518, 1499, 1482, 1464, 1380, 1300, 1278, 1262, 1227, 1125, 1090, 1021, 1015, 875, 834, 817, 739 cm ⁻¹

Table 205

1-1037	mp 58-59 °C IH NMR (CDCL ₃) & 1.77 (d, J = 0.6 Hz, 311), 1.81 (d, J = 0.9 Hz, 311), 2.27 (s, 6H), 2.41 (s, 3H), 4.63 (d, J = 6.6 Hz, 2H), 5.56 (m, 1H), 6.98-7.14 (m, 5H), 7.21-7.29 (m, 4H) IR (KBr) 1520, 1490, 1460, 1444, 1385, 1294, 1271, 1262, 1232, 1125, 1001, 828, 818 cm ⁻¹
1.1038	
1.1039	mp 153·155 $\[C$ IH NMR (CDCl ₃) δ 3.45 (8, 3H), 3.75 (8, 3H), 4.84 (d, J = 4.2 Hz, 2H), 6.43 \sim 6.51 (m, 2H), 6.45 (8, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.94 \sim 7.00 (m, 2H), 7.08 (brs, 1H), 7.53 (d, J = 8.7 Hz, 2H) IR (KBr) 3411, 1612, 1588, 1523, 1489, 1245, 1224, 1113, 1070, 1011, 938, 824 cm. ¹
1.1040	
I.1041	foam 1H NMR (CDCl ₃) 6 3.45 (s, 3H), 3.75 (s, 3H), 4.90 (d, J = 1.8 Hz, 2H), 5.55 (dd, J = 10.8, 2.4 Hz, 1H), 5.71 (dd, J = 17.7, 2.4 Hz, 1H), 5.85 (ddt, J = 17.7, 10.8, 1.8 Hz, 1H), 6.45 (s, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.97 (dd, J = 8.4, 2.1 Hz, 1H), 7.07 (d, J) = 8.4 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 7.53 (d, J = 8.7 Hz, 2H) 1R (KBr) 3433, 1612, 1689, 1623, 1489, 1286, 1224, 1192, 1112, 1070, 1002, 937, 825, 815 cm ⁻¹

Table 206

	mp 185-187 (;
	41 NMR (CDC3) δ 1.76 (s, 311), 1.81 (s, 311), 2.76 (s, 311), 3.23 (s, 311), 3.50 (s, 311), 3.78 (s, 311), 4.64 (d, $J = 6.6$ Hz, 2H).
1.1042	
	11z, 11!), 7.42 (d, J = 2.1 11z, 11!), 7.45-7.51 (m, 2!!), 7.89 (s, 11!), 8.26 (br s, 11!)
	IR (KBr) 3418, 1473, 1362, 1177, 1079, 961, 817, 796 cm ⁻¹
	ար 162-164 Ն
	111 NMR (CHCL) δ 1.76 (8, 311), 1.82 (8, 311), 3.43 (8, 311), 3.76 (8, 311), 4.61 (4, J = 6.9 Hz, 2H), 5.53 (t, J = 6.9 Hz, 1H),
1.1043	1.1043 5.69 (s, 111), 5.98 (s, 111), 6.55 (s, 111), 6.63 (t, J = 2.1 IIz, 111), 6.94-7.01 (m, 211), 7.10 (d, J = 0.9 Hz, 111), 7.25-7.27 (m, 111),
	7.46 (d, J = 8.4 Hz, 1H), 7.51 (dd, J = 8.5, 1.5 Hz, 1H), 7.89 (e, 1H), 8.24 (br s, 1H)
	IR (CHCl ₃) 3529, 3480, 1515, 1495, 1407, 1291, 1246, 1107, 1070 cm. ¹
	mp 127.128 C
,	¹ H NMR (CDCl ₃) 6 2.45 (8, 3H), 3.52 (8, 3H), 3.77 (8, 3H), 3.91 (8, 3H), 5.22 (8, 2H), 6.84 (8, 1H), 6.91 (dd, J = 8.4, 2.1 Hz,
1.104	1H), 6.79-7.00 (m, 2H), 7.12-7.18 (m, 2H), 7.30-7.47 (m, 5H), 7.59-7.63 (m, 2H)
	IR (CHCh) 2038, 2843, 1606, 1585, 1520, 1483, 1464, 1443, 1390, 1368, 1174, 1141, 1083, 1013, 962, 936, 865, 838 cm ⁻¹
	mp 124-127 C
	1H NMR (CDCl3) 6 2.46 (6, 3H), 3.55 (8, 3H), 3.77 (6, 3H), 3.91 (8, 3H), 5.21 (8, 2H), 5.42 (br, 1H), 6.82 (8, 1H), 6.90 (dd, J =
1-1045	8.4, 1.8 Hz, 111), 6.97-7.10 (m, 3H), 7.29-7.47 (m, 7H)
	IR (CHCl ₃) 3579, 2938, 1600, 1523, 1484, 1464, 1393, 1368, 1327, 1282, 1174, 1141, 1081, 1036, 1012, 962, 908 cm ⁻¹
	mp 178·180 C
	¹ H NMR (CDCl ₃) δ 2.44 (e, 3H), 3.29 (e, 3H), 3.58 (e, 3H), 3.78 (e, 3H), 3.91 (e, 3H), 5.22 (e, 2H), 6.83 (e, 1H), 6.99 (dd, J =
1.1046	8.1, 2.1 Hz, 1H), 6.97-7.25 (m, 2H), 7.31-7.58 (m, 8H)
	IR (CHCl ₃) 2939, 2840, 1591, 1519, 1483, 1464, 1374, 1331, 1173, 1141, 1116, 1082, 1012, 964, 863 cm ⁻¹

Table 207

1.107	mp 98-99 °C. -III NMR (СРСРа)
1.1048	mp 112-114 °C 111 NMR (CIDCl ₃) & 1.75-1.76 (d, J = 0.6 Hz, 3H), 1.78-1.79 (d, J = 0.9 Hz, 3H), 2.57 (e, 3H), 3.53 (e, 3H), 3.78 (e, 3H), 3.89 1-10-18 (e, 3H), 4.62-4.64 (d, J = 7.5 Hz, 2H), 5.54 (e, 1H), 6.84 (e, 1H), 6.96-6.97 (m, 3H), 7.12-7.18 (m, 2H), 7.59-7.64 (m, 2H) 1R (CHCl ₃) 2938, 1606, 1583, 1519, 1483, 1464, 1443, 1416, 1389, 1368, 1175, 1141, 1083, 1038, 1013, 962, 936, 865, 838 cm ⁻¹
J.1049	111 203-204 °C 14 NMR (CD3OD) & 4.53 (6, 2H),4.55 (8, 2H), 5.21 (8, 2H), 6.84-6.88 (m, 2H), 7.12-7.50 (m, 12H) 118 (KBr) 3380, 1611, 1586, 1523, 1490, 1462, 1434, 1380, 1317, 1300, 1258, 1194, 1173, 1128, 1033, 1007, 906, 871, 836, 817, 787, 730, 693, 646 cm ⁻¹
I.1050	mp 99·100 ℃ ¹ II NMR (CDCl ₃) δ 1.75 (a, 3H), 1.78·1.79 (d, J = 0.9 Hz, 3H), 3.46 (a, 3H), 3.75 (a, 3H), 3.88 (a, 3H), 4.62·4.64 (d, J = 6.6 Hz, 2H), 6.57 (m, 1H), 5.89 (a, 1H), 6.46 (a, 1H), 6.96·7.02 (m, 3H), 7.12·7.18 (m, 2H), 7.59·7.64 (m, 2H) IR (CHCl ₃) 3513, 2938, 1605, 1583, 1490, 1423, 1407, 1392, 1362, 1318, 1269, 1177, 1168, 1140, 1118, 1078, 1038, 1012, 930, 846, 826 cm ⁻¹
1.1061	mp 163-164 °C 1H NMR (CDCl ₃)

Table 208

	amorphous
	41 NMR (CDCB) 6 2.12 (8, 3H), 3.47 (8, 3H), 6.15 (8, 2H), 5.82-6.08 (m, 3H), 6.70-6.96 (m, 5H), 7.02 (d, J = 8.1 Hz, 1H),
1.1052	7.39.7.52 (m, 711)
	1R (CHCL ₃) 3597, 3535, 2937, 1731, 1612, 1589, 1622, 1489, 1455, 1401, 1382, 1328, 1309, 1288, 1173, 1128, 1096, 1011,
	939, 835 cm ⁻¹
	mp 141-142 C
	111 NMR (CDCE) δ 1.75 (8, 3H), 1.78-1.79 (d, $J=0.9$ Hz, 3H), 3.49 (8, 3H), 3.76 (8, 3H), 3.89 (8, 3H), 4.62-4.64 (d, $J=6.6$
3	Hz, 211), 5.30 (d, J F.H = 3.3 Hz, 114), 5.57 (m, 111), 5.88 (s, 114), 6.46 (s, 114), 6.99-7.11 (m, 4H), 7.33 (m, 114), 7.43 (dd, J =
1.1053	11.7, 2.1 Hz, 1H)
	IR (CHCl ₃) 3578, 3514, 1621, 1600, 1583, 1523, 1492, 1464, 1397, 1320, 1279, 1176, 1140, 1116, 1100, 1076, 1038, 1011,
	902 cm ¹
	140 C
	1H NMIR (CDCh) 6 5.17 (s, 2H), 5.60 (s, 1H), 5.72 (s, 1H), 6.98-7.02 (m, 2H), 7.10-7.14 (m, 3H), 7.18 (s, 1H), 7.35 (s, 1H),
1.1054	7.37-7.47 (m, 511), 7.59-7.61 (m, 211)
	IR (KBr) 3600-2800(br), 1590, 1528, 1503, 1483, 1454, 1386, 1294, 1254, 1223, 1187, 1132, 1086, 1009 cm ⁻¹
	mp 176-178 Ը
1.1055	1.1055 H NMR (CDCl ₃) 6 3.13 (8, 3H), 3.32 (8, 3H), 5.19 (8, 2H), 7.16 (d, J = 8.7 Hz, 1H), 7.37.7.55 (m, 9H), 7.61.7.64 (m, 4H)
	IR (KBr) 3600-2800(br), 1611, 1525, 1503, 1469, 1359, 1290, 1244, 1170, 1088, 979 cm ⁻¹
	mp 134-136 C
	¹ H NMR (CDCl ₃) δ 1.77 (8, 3H), 1.81 (8, 3H), 3.23 (8, 3H), 4.64 (6, J = 6.9 Hz, 1H), 5.48-5.54 (m, 1H), 7.10 (d,
0001-1	J = 8.4 Hz, 1H), 7.44·7.55 (m, 4H), 7.58·7.65 (m, 4H)
	IR (KBr) 3600-2800(br), 1609, 1527, 1504, 1469, 1351, 1289, 1277, 1186, 1171, 1115, 1089, 973 cm ⁻¹

Table 209

1.1057	mp 97-100 °C. 111 NMR (CH)CH ₃) δ 1.77 (d, J = 0.9 Hz, 3H), 1.82 (d, J = 0.9 Hz, 3H), 4.63 (d, J = 7.2 Hz, 2H), 5.50-5.54 (m, 1H), 5.62 (br s, 1H), 5.74 (br s, 1H), 6.95 (d, J = 8.7 Hz, 1H), 7.12 (dd, J = 2.4, 8.7 Hz, 1H), 7.18 (s 1H), 7.24 (d, J = 2.4 Hz, 1H), 7.36 (s, 1H), 7.42-7.46 (m, 2H), 7.58-7.62 (m, 2H) 7.42-7.46 (m, 2H), 7.58-7.62 (m, 2H) 1R (KHsr) 3600-2800(br), 1599, 1528, 1482, 1385, 1326, 1252, 1212, 1193, 1132, 1112, 1084, 1056, 1001 cm ⁻¹
1.1058	,
1.1059	mp 122-123 °C 'II NMR (CDCl ₃) \$\delta\$ 1.74 (d, \(\mathcal{J} = 0.6 \) Hz, 3H), 1.78 (d, \(\mathcal{J} = 0.6 \) Hz, 3H), 2.26 (e, 3H), 2.29 (e, 3H), 3.77 (d, \(\mathcal{J} = 6.9 \) Hz, 2H), 1-1059 4.83 (hr, 1H), 5.36-5.41 (m, 1H), 6.61-6.77 (m, 1H), 6.86-6.91 (m, 2H), 6.99-7.04 (m, 2H), 7.10 (e, 1H), 7.11 (e 1H), 7.21-7.26 (m, 2H) (m, 2H) (R, \(\text{KBr} \) 3600-2800(hr), 1626, 1608, 1526, 1489, 1428, 1336, 1300, 1252, 1209, 1187 cm ⁻¹
I-1060	mp foam 1H NMR (CDCl3)
f.1061	mp 191-193 °C 'H NMR (CDCl ₃) δ 3.01 (s, 6H), 3.79 (s, 3H), 3.80 (s, 3H), 6.79-6.83 (m, 2H), 6.92 (s, 1H), 6.98 (s 1H), 7.41-7.51 (m, 4H), 8.12 (br s, 1H), 8.26-8.32 (m, 1H) IR (KBr) 3600-2800(br), 1712, 1617, 1600, 1536, 1494, 1460, 1446, 1385, 1364, 1290, 1212, 1162, 1067, 1035 cm ⁻¹

Table 210

·

	the state of the s
	mp 240-245 C
2901-1	
	IR (KBr) 3600-2800(br), 1725, 1598, 1544, 1492, 1381, 1294, 1215, 1197, 1165, 1109, 1055, 1033 cm ⁻¹
	111 NMR (CDCl ₃) & 1.99 (s, 611), 2.17 (s, 311), 3.21 (s, 3H), 5.20 (s, 2H), 6.96 · 7.11 (m, 4H), 7.23 (d, J = 8.7 Hz, 2H), 7.33 ·
1.1063	1-1063 7.52 (m, 711)
	1R (KBr) 1617, 1577, 1513, 1366, 1295, 1267, 1198, 1173, 1149, 1127, 1106cm ⁻¹
	111 NMR (CIUCE) 6 1.39 (8, 6H), 2.17 (8, 3H), 3.21 (8, 3H), 5.18 (d, J = 3.9 Hz, 1H), 6.97 · 7.10 (m, 4H), 7.23 (d, J = 8.7Hz,
1.1064	1.1064 = 211, $7.37 = 8.7$ Hz, $2H$)
	IR (KBr) 3442, 1620, 1597, 1519, 1472, 1356, 1279, 1232, 1174, 1147, 1103cm ⁻¹
	111 NMR (CDCla) & 1.78 (s, 3H), 1.83 (s, 3H), 2.00 (s, 6H), 2.19 (s, 3H), 3.22 (s, 3H), 4.65 (d, J = 6.3Hz, 2H), 5.52-5.62 (m,
1.1065	1.1065 111), 6.96.7.13 (m, 411), 7.24 (d, J = 8.711z, 2H), 7.38 (d, J= 8.7 Hz, 2H)
	IR (KBr)1617, 1576, 1514, 1466, 1359, 1297, 1268, 1204, 1151, 1002cm ⁻¹
	1H NMR (CDCl3) & 1.77 (8, 3H), 1.81 (8, 3H), 2.01 (8, 6H), 2.18 (8, 3H), 4.63 (d, J = 6.9 Hz, 2H), 4.76 (8, 1H), 5.52 · 5.60 (m,
1.1066	1-1066 111), 6.82 · 7.11 (m, 811)
	IR (KBr) 3433, 1606, 1517, 1466, 1297, 1269, 1221, 1128, 1107, 1004cm.
	'H NMR (CDC13) 6:2.25 (s, 3H), 2.27 (s, 3H), 2.31 (s, 3H), 3.20 (s, 3H), 4.75 (s, 1 H), 6.83 (d, J= 8.4 Hz, 1H), 7.05
1.1067	1.1067 7.14 (m, 4H), 7.34 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H)
	IR (KBr)3494,3435, 1604, 1517, 1488, 1375, 1327, 1199, 1171, 1148, 1118 cm ⁻¹
	111 NMR (CDC13) 6 1.77 (s, 3H), 1.82 (s, 3H), 2.25 (s, 3H), 2.28 (s, 6H), 3.20 (s, 3H), 4.58 (d, J = 6.6 Hz, 2H), 5.50 - 5.58
1.1068	1.1068 (m, 1H), 6.88 (d, J = 9.0 Hz, 1H), 7.08 - 7.16 (m, 4H), 7.34 (d, J = 8.7 Hz, 2H), 742 (d, J = 8.7 Hz, 2H)
	IR (KBr) 1604, 1513, 1486, 1367, 1238, 1176, 1163, 1131, 1002 cm ⁻¹

Table 211

	111 NMR (CDCla) & 1.76 (s, 3H), 1.81 (s, 3H), 2.26 (s, 3H), 2.28 (s, 6H), 4.57 (d, J = 6.6Hz, 2H), 4.80 (s, 1H), 5.50 - 5.58
1.1069	1-1069 (m, 111), 6.85 · 6.91 (m, 311), 7.09 · 7.17 (m, 311), 7.21 · 7.28 (m, 311) 118 (KBr) 3436, 1608, 1518, 1488, 1238, 1130, 1008, m ⁻¹
	11 NMR (CDCh.) \$: 2.26 (8, 311), 2.30 (8, 311), 3.00 (8, 6H), 5.19 (8, 211), 6.80 (.d, J = 8.7 Hz, 2H), 7.02 · 7.16 (m, 5H), 7.26
1.1070	1.1070 (d, $J = 8.7 \text{ Hz}$, 2H), 7.33 · 7.51 (m, 5H)
	IR (KBr) 1608, 1527, 1490, 1355, 1297, 1270, 1262, 1231, 1121, 1022 cm.1
	111 NMR (CDCl ₃) & 2.26 (8, 3H), 2.30 (8, 3H), 3.01 (8, 6H), 5.09 (8, 1H), 6.80 (d, J = 8.4 Hz, 2H), 7.01 · 7.16(m, 5H), 7.27 (d,
1.107.1	
	IR (KBr) 3432, 1613, 1590, 1526, 1489, 1307, 1283, 1241, 1138, 1111 cm.1
	1H NMR (CDCl3) 6:1.77 (s, 3H), 1.81 (s, 3H), 2.27 (s, 3H), 2.30 (s, 3H), 3.00 (s, 6H), 4.63 (d, J=6.6 Hz, 2H), 5.51-5.59 (m,
1-1072	Ĥ
	IR (KBr) 1611, 1528, 1489, 1353, 1297, 1266, 1228, 1122, 1011 cm ⁻¹
	mp 182.184 ℃
	111 NMR (CDCl ₃) δ 1.48 (s, 3H), 1.67 (s, 3H), 1.91 (s, 3H), 3.46 (s, 3H), 3.76 (s, 3H), 3.84 (s, 3H), 3.94-4.03 (m, 1H), 4.05-
1.1073	-
	3H)
	IR (KBr) 3400, 2934, 1625, 1523, 1396, 1227, 1119, 1077, 1036, 826, 589 cm ⁻¹
	mp 163-154 °C
1074	¹ H NMR (CDCl ₃) δ 1.74 (e, 3H), 1.78 (e, 3H), 2.30 (e, 3H), 2.31 (e, 3H), 3.75 (d, $J = 6.6$ Hz, 2H), 3.86 (e, 3H), 3.87 (e, 3H),
	5.37.5.46 (m, 1H), 6.66 (d, J = 8.4 Hz, 1H), 6.74-6.83 (m, 6H), 6.89 (dd, J = 1.8, 8.1 Hz, 1H), 7.14 (e, 1H), 7.16 (e, 1H)
	IR (KBr) 3408, 3389, 3294, 3210, 2919, 2835, 1628, 1495, 1275, 1208, 1032, 866, 826 cm ⁻¹

Table 212

	mp 168-171 °C
	111 NMR (CDCM3) δ 1.74 (s, 6H), 1.77 (s, 6H), 2.31 (s, 6H), 3.75 (d, J = 6.9 Hz, 4H), 3.86 (s, 6H), 5.37-5.45 (m, 2H), 6.66 (d,
1.1075	J = 8.1 Hz, 211), 6.80 (d, J = 1.8 Hz, 211), 6.89 (dd, J = 1.8, 8.1 Hz, 2H), 7.16 (s, 1H)
	1R (KBr) 3423, 2968, 2927, 2912, 2849, 1609, 1526, 1498, 1454, 1261, 1209, 1135, 1030, 855, 803 cm ⁻¹
	mp79.80 °C
	111 NMR (CDCL) 3 2.54 (8, 3H), 3.19 (8, 3H), 3.85 (8, 3H), 6.17 (8, 2H), 6.71 (brs, 1H), 6.93 (d, J = 8.1 Hz, 1H), 7.01-7.07
1.1076	(m, 3H), 7.24-7.26 (m, 2H), 7.37-7.43 (m, 7H), 7.66 (d, $J = 8.7$ Hz, 2H)
	IR(KBr) 3466, 3029, 2939, 2937, 1610, 1520, 1482, 1365, 1246, 1201, 1175, 1150, 1073, 969, 872, 839, 804 cm ⁻¹
	mp151-152 C
	1H NMR (CDCh3) 6 4.00 (s, 3H), 4.91 (brs, 1H), 5.24 (s, 2H), 6.89 (d, J = 8.2 Hz, 2H), 7.00 (d, J = 8.0 Hz, 1H), 7.12-7.47 (m,
1-1077	1011), 7.71 (d, J = 7.4 Hz, 1H), 7.89 (s, 1H)
	IR(KBr) 3422, 1612, 1526, 1491, 1454, 1329, 1287, 1269, 1248, 1171, 1136, 1103, 1019, 827 cm ⁻¹
	mp173.174 C
	111 NMR (CDCI ₃) δ 3.13 (s, 311), 4.92 (brs, 1H), 5.19 (s, 2H), 6.88 (d, J = 8.6 Hz, 2H), 7.15-7.26 (m, 4H), 7.35-7.59 (m, 7H),
8/01-1	7.69 (d, J = 9.4 Hz, 1H), 7.86 (s, 1H)
	1R(KBr) 3426, 1613, 1527, 1489, 1435, 1361, 1330, 1294, 1243, 1164, 1118, 1070, 978, 821 cm ⁻¹
	тр168·169 С
	¹ H NMR (CDCl ₃) δ 3.20 (s, 3H), 3.99 (s, 3H), 5.22 (s, 2H), 6.89 (d, J = 8.8 Hz, 1H), 7.11-7.15 (m, 2H), 7.31-7.49 (m, 10H),
6/01-1	7.73 (d, $J = 7.4$ Hz, 1H), 7.90 (s, 1H)
	IR(KBr) 3434, 1603, 1524, 1488, 1369, 1335, 1244, 1178, 1143, 1119, 1006, 871 cm.1

Table 213

	mp68-69 C
1.1080	
2001-1	111), 7.89 (s, 11
	IR(KBr) 3431, 3034, 2938, 1613, 1524, 1487, 1367, 1330, 1293, 1242, 1175, 1161, 1118, 970, 872, 828 cm ⁻¹
	IND74.76 C
	4H NMR (CDCE) δ 1.78 (8, 3H), 1.84 (8, 3H), 3.51 (8, 3H), 4.64 (d, $J = 5.6$ Hz, 2H), 5.08 (brs, 2H), 5.49-5.54 (m, 1H), 5.75
<u> </u>	(brs, 111), 5.85 (brs, 111), 6.14 (g, 111), 6.89-7.12 (m, 511), 7.53 (d, J = 8.4 Hz, 2H)
	IR(KBr) 3444, 2934, 1612, 1523, 1485, 1403, 1360, 1251, 1172, 1006, 971, 837, 527 cm ⁻¹
	mp71.72 C
	111 NMR (CI)CI.) 6 2.46 (s, 3H), 3.20 (s, 3H), 3.86 (s, 3H), 3.91 (s, 3H), 5.21 (s, 2H), 6.87-7.03 (m, 3H), 7.11 (s, 1H), 7.24-
1.1082	_
	IR(KBr) 3434, 3028, 2936, 1609, 1521, 1482, 1365, 1239, 1176, 1074, 969, 869, 804 cm ⁻¹
	mp73-74 °C
	111 NMIR (CDCI3) δ 2.66 (8, 311), 3.13 (8, 311), 3.20 (8, 311), 3.86 (8, 3H), 5.19 (8, 2H), 7.08 (d, $J = 1.6$ Hz, 1H), 7.16 (d, $J = 8.4$
1.1083	Hz, 1H), 7.21-7.28 (m, 2H), 7.37-7.42 (m, 8H), 7.66 (d, J = 8.4 Hz, 2H)
į	IR(KBr) 3432, 3031, 2938, 1610, 1523, 1480, 1365, 1176, 1161, 1074, 970, 876, 807, 524 cm ⁻¹
	mp110-111 C
700	14 NMR (CDCl3) 6 1.78 (9, 3H), 1.81 (9, 3H), 3.21 (6, 3H), 3.98 (6, 3H), 4.67 (d, J = 6.6 Hz, 2H), 5.67 (t, J = 6.8 Hz, 1H),
1.1064	7.01 (d, J = 8.0 Hz, 1H), 7.15-7.21 (m, 2H), 7.28-7.45 (m, 4H), 7.76 (d, J = 7.6 Hz, 1H), 7.93 (s, 1H), 8.03 (s, 1H)
	IR(KBr) 3434, 3010, 2931, 1524, 1488, 1368, 1336, 1247, 1173, 1149, 1121, 1007, 871, 562 cm ⁻¹

Table 214

	mp147-148 C
	111 NMR (CDCL1) & 1.76 (8, 3H), 1.79 (8, 3H), 3.96 (8, 3H), 4.65 (d, J = 6.3 Hz, 2H), 4.91 (brs, 1H), 5.56 (t, J = 5.7 Hz, 1H),
1.1085	6.88 (d, J = 8.1 Hz, 2H), 6.99 (d, J = 8.4 Hz, 1H), 7.12.7.26 (m, 4H), 7.36 (d, J = 8.1 Hz, 1H), 7.89 (s, 1H)
	IR(KBr) 3450, 2938, 1612, 1524, 1490, 1436, 1340, 1264, 1230, 1212, 1139, 1123, 984, 835 cm ⁻¹
	mp134-135 C
	11 NMR (CDCL) 5 1.77 (s, 311), 1.82 (s, 311), 4.64 (d, $J = 6.6$ Hz, 211), 4.84 (brs, 111), 5.52 (t, $J = 7.2$ Hz, 1H), 5.77 (s, 1H),
1.1086	6.87 (d, J = 8.7 Hz, 2H), 6.96 (d, J = 8.4 Hz, 1H), 7.12 (dd, J = 2.4, 8.7 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.70 (d, J = 8.4 Hz,
	111), 7.89 (s, 111)
	IR(KBr) 3367, 1610, 1489, 1442, 1333, 1265, 1193, 1165, 1124, 834, 805 cm ⁻¹
	mp166-157 C
	1H NMR (CDCl3) & 1.78 (s, 3H), 1.81 (s, 3H), 3.82 (s, 3H), 3.89 (s, 3H), 4.65 (d, J = 6.2 Hz, 2H), 4.95 (brs, 1H), 5.22 (brs,
1.1087	1H), 5.58 (t, J = 6.0 Hz, 1H), 6.73 (s, 1H), 6.87-7.00 (m, 6H), 7.63 (d, J = 8.4 Hz, 2H)
	IR(KBr) 3394, 2934, 1610, 1526, 1499, 1455, 1402, 1240, 1221, 1139, 1099, 894, 815 cm ⁻¹
	mp69.70 ℃
	1H NMR (CDCl.3) 6 1.77 (8, 3H), 1.83 (8, 3H), 3.80 (8, 3H), 4.63 (d, J = 7.0 Hz, 2H), 4.93 (brs, 1H), 5.22 (brs, 1H), 5.52 (t, J
1.1088	= 7.0 Hz, 1H), 5.78 (bre, 1H), 6.70 (d, J = 1.6 Hz, 1H), 6.83-7.01 (m, 6H), 7.51 (d, J = 8.8 Hz, 2H)
	IR(KBr) 3411, 2933, 1611, 1526, 1492, 1453, 1263, 1242, 1220, 1190, 1172, 1096, 907, 822 cm ⁻¹
	mp 160-161 C
	1H NMR (CDCl ₃) & 1.39 (d, J = 6.0 Hz, 6H), 2.40 (s, 3H), 3.21 (s, 3H), 3.55 (s, 3H), 3.77 (s, 3H), 4.55 (m, 1H), 5.20 (s, 2H),
1.1089	1.1089 6.83 (s, 111), 6.93 (dd, J = 1.8, 8.1 Hz, 1H), 7.01 (d, J = 8.1 Hz, 1H), 7.01 (d, J = 1.8 Hz, 1H), 7.28-7.48 (m, 7H), 7.66-7.72 (m,
	2H)
	IR (KBr) 1515, 1480, 1463, 1391, 1363, 1239, 1192, 1176, 1149, 1082, 1018, 962, 873, 800 cm ⁻¹

Table 215

	mp 154-155 C
00001	411 NMR (CDCl.) 5 2.59 (8, 311), 3.21 (8, 311), 3.54 (8, 311), 3.77 (8, 311), 5.23 (8, 211), 6.84 (8, 114), 7.06 (d, J = 8.4 Hz, 111),
9601.1	7.24-7.50 (m, 9H), 7.65-7.71 (m, 2H)
	IIR (KBr) 1513, 1479, 1365, 1267, 1232, 1178, 1150, 1079, 971, 959, 875, 797 cm ⁻¹
	mp 137-138 °C
	1H NMR (CDCl3) 5 1.38 (d, J = 6.3 Hz, 6H), 3.46 (s, 3H), 3.74 (s, 3H), 4.54 (m, 1H), 4.96 (s, 1H), 5.17 (s, 2H), 5.92 (s, 1H),
601-1	6.15 (a, 111), 6.89-6.94 (m, 211), 7.00-7-11 (m, 311), 7.27-7.41 (m, 311), 7.45-7.56 (m, 4H)
	1R (KBr) 3443, 3356, 1611, 1521, 1488, 1458, 1393, 1269, 1236, 1138, 1112, 1074, 1013, 830, 743 cm ⁻¹
	mp 75·76 ℃
	1H NMR (CDC), 6 1.37 (d, J = 5.8 Hz, 6H), 1.75 (s, 3H), 1.79 (s, 3H), 2.53 (s, 3H), 3.21 (s, 3H), 3.56 (s, 3H), 3.78 (s, 3H),
1.1092	4.51 (m, 111), 4.61 (d, J = 6.6 Hz, 2H), 5.52 (m, 111), 6.84 (e, 111), 6.96-7.02 (m, 3H), 7.34-7.42 (m, 2H), 7.65-7.74 (m, 2H)
	IR (KBr) 1516, 1480, 1449, 1360, 1332, 1240, 1199, 1177, 1162, 1083, 964, 873, 797 cm ⁻¹
	mp 119.120 C
	111 NMR (CDCl3) 5 1.37 (d, J = 6.3 Hz, 6H), 1.73 (s, 3H), 1.77 (d, J = 0.9 Hz, 3H), 3.46 (s, 3H), 3.76 (s, 3H), 4.51 (m, 1H),
1.1093	4.61 (d, J = 6.6 Hz, 2H), 5.14 (e, 1H), 5.54 (m, 1H), 5.93 (e, 1H), 6.46 (e, 1H), 6.89-6.95 (m, 2H), 6.98 (d, J = 8.1 Hz, 1H),
	7.01.7.07 (m, 2H), 7.50.7.56 (m, 2H)
	IR (KBr) 3426, 1610, 1522, 1488, 1465, 1402, 1267, 1237, 1174, 1135, 1112, 1079, 1020 cm ⁻¹
	mp 150.151 C
	¹ H NMR (CDCl ₃) δ 3.44 (s, 3H), 3.75 (s, 3H), 4.90 (s, 1H), 5.20 (s, 2H), 5.99 (s, 1H), 6.44 (s, 1H), 6.88-6.95 (m, 2H), 7.04 (d,
1-1034	J = 8.4 Hz, 1H), 7.29-7.44 (m, 4H), 7.47-7.56 (m, 5H)
	IR (KBr) 3410, 1610, 1519, 1484, 1463, 1455, 1410, 1382, 1369, 1285, 1264, 1229, 1118, 1074, 1060, 1014, 995 cm.
	1H NMR (CDCl ₃) δ 0.96 (e, 3H), 0.98 (e, 3H), 1.53-1.82 (m, 3H), 2.99 (e, 6H), 3.20 (t, J = 7.2 Hz, 2H), 3.78 (e, 3H), 3.79 (e,
1-1095	3H), 3.87 (br, 1H), 6.71-6.83 (m, 3H), 6.92 (s, 1H), 6.94 (s 1H), 7.23-7.31 (m, 2H), 7.47-7.52 (m, 2H)

Table 216

	nn 87.89 °C
	11 NMR (CDC) 5 170 (8 3H) 175 (8 3H) 2.82 (8 3H), 3.00 (8, 3H), 3.74-3.80 (m, 2H), 3.78 (8, 3H), 3.80 (8, 3H), 5.29-
1.1096	2017 11 C 20 C
	3.34 (m, 111), c./3-6.34 (m, 211), c./3-6.31 (m, 213) (m, 213) (m, 213) (m, 213) (m, 213) (m, 213)
	IR (KBr) 3600-2800(br), 1613, 1631, 1495, 1460, 1448, 1380, 1359, 1253, 1210, 1057, 1036 cm.1
	mp 167.169 C
	1H NMR (CDCI.) & 2.92 (8, 3H), 3.00 (8, 6H), 3.78 (8, 3H), 3.79 (8, 3H), 4.02 (br, 1H), 6.71-6.83 (m, 3H), 6.92 (8, 1H), 6.95
1.1097	(я, 111), 7.26-7.32 (m, 211), 7.47-7.62 (m, 211)
	IR (KBr) 3600-2800(br), 1625, 1613, 1533, 1497, 1462, 1445, 1381, 1358, 1328, 1262, 1205, 1163, 1051, 1031 cm ⁻¹
	mp 114-115 ℃
1.1098	1.1098 111 NMR (CDCII) & 2.27 (8, 611), 2.54 (8, 311), 5.19 (8, 211), 7.00-7.16 (m, 6H), 7.26-7.51 (m, 9H)
	IR (KBr) 1519, 1501, 1483, 1454, 1310, 1295, 1263, 1232, 1123, 998, 744 cm.1
	mp 68-69 C
	1H NMR (CDCl3) & 1.62 (br s, 111), 1.77 (s, 311), 1.82 (s, 311), 2.27 (s, 311), 2.28 (s, 311), 4.64 (d, J = 6.8 Hz, 2H), 4.76 (s,
6601-1	211), 5.56 (m, 111), 7.00-7.16 (m, 5H), 7.33-7.48 (m, 4H)
	IR (KBr) 3433, 1522, 1490, 1384, 1311, 1296, 1266, 1232, 1194, 1122, 1025, 1013, 992, 841, 818 cm ⁻¹
	ည 68-69 င
	1H NMR (CDCl3) & 1.62 (br s, 1H), 1.77 (s, 3H), 1.82 (s, 3H), 2.27 (s, 3H), 2.28 (s, 3H), 4.64 (d, J = 6.8 Hz, 2H), 4.76 (s,
0011-1	2H), 5.56 (m, 1H), 7.00-7.16 (m, 5H), 7.33-7.48 (m, 4H)
	IR (KBr) 3433, 1522, 1490, 1384, 1311, 1296, 1266, 1232, 1194, 1122, 1025, 1013, 992, 841, 818 cm.1

Table 217

1011:1	mp 171 °C ¹
	IR (KBr) 1510, 1477, 1376, 1358, 1349, 1294, 1237, 1196, 1173, 1145, 1077, 1004, 958, 861, 801 cm-1
1.1102	mp 168-169 °C 111 NMR (CDCl3) \$ 1.76 (d, J = 0.3 Hz, 3H), 1.80 (d, J = 0.9 Hz, 3H), 3.44 (s, 3H), 3.75 (s, 3H), 4.64 (d, J = 6.6 Hz, 2H), 4.97 1-1102 (s, 1H), 5.55 (m, 1H), 6.00 (s, 1H), 6.45 (s, 1H), 6.89-6.95 (m, 2H), 7.01 (d, J = 8.4 Hz, 1H), 7.33 (dd, J = 2.1, 8.4 Hz, 1H), 7.51 (d, J = 2.1 Hz, 1H), 7.51-7.56 (m, 2H) 1R (KBr) 3396, 1613, 1521, 1485, 1467, 1440, 1408, 1384, 1357, 1286, 1264, 1229, 1116, 1076, 1056, 993, 834 cm ⁻¹
1.1103	mp 176-177 °C ¹ H NMR (CDCl ₃) & 1.77 (e, 3H), 1.80 (e, 3H), 2.09 (e, 3H), 2.16 (e, 3H), 3.87 (e, 3H), 4.65 (d, J = 7.2 Hz, 2H), 4.78 (br e, 1H), ² 5.06 (e, 1H), 5.40-5.60 (m.1H), 6.76 (e, 1H), 6.82-6.91 (m, 4H), 7.02 (d, J = 7.8 Hz, 1H), 7.22-7.27 (m, 2H) ³ 111 (CHCl ₃) 3597, 3593, 3026, 3010, 2921, 1731, 1612, 1520, 1488, 1240, 1172 cm ⁻¹
1.1104	mp 185-186 °C III NMII (CDCl ₃) & 1.78 (s, 3H), 1.82 (s, 3H), 2.06 (s, 3H), 2.15 (s, 3H), 4.66 (d, J =6.9 Hz, 2H), 4.71 (s, 1H), 4.89 (s, 1H), 6.53-5.58 (m, 1H), 6.75 (s, 1H), 6.86-6.91 (m, 2H), 6.90-7.00 (m, 3H), 7.21-7.26 (m, 2H) IR (CHCl ₃) 3691, 3698, 3546, 3068, 2922, 1674, 1613, 1520, 1488, 1298, 1262, 1165 cm ⁻¹
1-1105	mp 143-144 °C 111 NMR (CDCl ₃)

Table 218

	mp 128-130 C
	HI NMR (CDCL) δ 1.76 (8, 3H), 1.80 (8, 3H), 2.59 (8, 3H), 3.21 (6, 3H), 3.53 (6, 3H), 3.67 (d, $J=0.9$ Hz, 3H), 3.90 (6, 3H),
901-	4.64 (d, J = 6.9 Hz, 2H), 5.55 (t, J = 6.9 Hz, 1H), 6.97-7.00 (m, 3H), 7.41 (d, J = 8.8 Hz, 2H), 7.60 (dd, J = 8.8, 1.1 Hz, 2H)
	IR (KBr) 1519, 1361, 1258, 1175, 1148, 1041, 978, 874 cm ⁻¹
	mp 168-170 °C
	111 NMR (CDCt.) & 1.76 (8, 311), 1.79 (8, 311), 3.43 (8, 311), 3.63 (d, J = 0.9 Hz, 311), 3.89 (8, 311), 4.65 (d, J = 6.8 Hz, 211),
1.117	5.01 (s, 111), 5.57 (t, J = 6.8 Hz, 111), 5.65 (s, 111), 6.90-7.06 (m, 511), 7.43 (dd, J = 8.7, 1.5 Hz, 2H)
	IR (KBr) 3433, 1523, 1464, 1397, 1253, 1216, 1038, 977, 838, 814 cm ⁻¹
	mp 127.128 C
	1H NMR (CDCl ₃) 6 2.25 (s, 3H), 2.27 (s, 3H), 3.20 (s, 3H), 5.22 (s, 2H), 7.02 (d, J = 8.4 Hz, 1H), 7.10 (s, 1H), 7.11 (s, 1H),
8011-1	7.18 (dd, J = 2.1, 8.4 Hz, 1H), 7.31-7.54 (m, 10H)
	IR (KBr) 1513, 1484, 1369, 1284, 1243, 1175, 1150, 1061, 984, 968, 868, 847, 791, 718 cm 1
	mp 161.162 C
	"H NMR (CDCL ₃) & 2.26 (8, 3H), 2.28 (8, 3H), 5.16 (8, 2H), 5.19 (8, 2H), 5.70 (br s, 1H), 6.82 (dd, J = 2.1, 8.4 Hz, 1H), 6.96
6011-1	7.16 (m, 7H), 7.31-7.51 (m, 10H)
	IR (KBr) 3449, 1521, 1492, 1470, 1455, 1394, 1294, 1279, 1247, 1232, 1199, 1185, 1129, 1013, 740, 695 cm ⁻¹
	mp 133-134 C
	1H NMR (CDCl ₃) 6 2.26 (9, 6H), 4.80 (br 8, 1H), 5.21 (8, 2H), 6.85-6.93 (m, 2H), 7.02 (d, J = 8.4 Hz, 1H), 7.09 (8, 1H), 7.17
2	(s, 11H), 7.15-7.52 (m, 9H)
	IR (KBr) 3350, 1601, 1519, 1485, 1453, 1387, 1289, 1255, 1169, 1060, 839, 813, 731 cm ⁻¹

<u> </u>	mp 83-84 °C 111 NMR (CDCI ₃) & 1.78 (d, J = 0.3 Hz, 3H), 1.82 (d, J = 0.9 Hz, 3H), 2.26 (e, 3H), 2.27 (e, 3H), 3.20 (e, 3H), 4.65 (d, J = 6.6 1-1111 Hz, 2H), 5.55 (m, 1H), 6.99 (d, J = 8.4 Hz, 1H), 7.11 (e, 1H), 7.12 (e, 1H), 7.19 (dd, J = 2.1, 8.4 Hz, 1H), 7.38 (d, J = 2.1 Hz, 1H), 7.32-7.43 (m, 4H)
1112	mp 86-87 °C 111 NMR (CDCh3)
1.1113	
11114	mp 173-175 °C "H NMR (CIDCl ₃) \$ 1.76 (s, 3H), 1.81 (s, 3H), 1.97 (s, 3H), 3.19 (s, 6H), 3.21 (s, 3H), 3.37 (s, 3H), 3.75 (s, 3H), 4.62 (d, J = 1.1114 6.9 l1z, 21!), 5.50 (t, J = 6.9 Hz, 1H), 6.85 (m, 2H), 7.06 (d, J = 8.4 Hz, 1!!), 7.25 (m, 1H), 7.37 (br s, 1H), 7.66 (d, J = 8.7 Hz, 2H) 2H) IR (KBr) 3421, 1518, 1470, 1366, 115, 1107, 970, 814 cm ⁻¹

Table 220

. 45

	mp 96-98 °C
	111 NMR (1)MSO-d ₆) δ 1.72 (8, 311), 1.77 (8, 311), 3.27 (8, 311), 3.59 (8, 311), 4.21 (8, 21), 4.55 (d, J = 6.3 Hz, 21), 5.50 (t, J = 6.3 Hz, 2
1.1115	1-1115 6.3 Hz, 111), 6.17 (8, 111), 6.59 (dd, J = 8.1, 1.8 Hz, 111), 6.66 (d, J = 1.8 Hz, 111), 6.82 (d, J = 8.7 Hz, 2H), 6.97 (d, J = 8.1 Hz,
	1H), 7.42 (d, $J = 8.7$ Hz, 2H), 8.89 (br s, 1H), 9.45 (br s, 1H)
	IR (KBr) 3431, 3396, 3319, 1611, 1521, 1486, 1264, 1172, 1111, 987, 826 cm ⁻¹
	mp 186-188 C
	111 NMR (DMSO da) δ 1.72 (8, 311), 1.76 (8, 611), 3.28 (8, 311), 3.68 (8, 311), 4.54 (d, $J=6.6$ Hz, 2H), 5.48 (t, $J=6.6$ Hz, 1H),
1.1116	1.1116 6.53.6.58 (m, 111), 6.65 (d, J = 1.8 Hz, 111), 6.83-6.89 (m, 4H), 7.43 (d, J = 8.4 Hz, 2H), 8.73 (br s, 1H), 8.96 (br s, 1H), 9.53
	(br s, 1H)
	IR (KBr) 3429, 1652, 1611, 1619, 1474, 1250, 1080, 1018, 981, 836 cm ⁻¹
	mp 210.213 ℃
	"HI NMIR (CDCM3) & 3.48 (9, 3H), 3.77 (8, 3H), 5.16 (8, 2H), 6.71 (8, 1H), 5.86 (8, 1H), 6.48 (8, 1H), 6.95 (dd, J = 8.4, 2.1]
1-1117	Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 7.07 (d, J = 2.1 Hz, 1H), 7.40-7.48 (m, 5H), 7.83 (d, J = 9.0 Hz, 2H), 8.32 (d, J = 9.0 Hz, 2H)
	IR (KBr) 3499, 1511, 1343, 1284, 1247, 1195, 1109, 1070, 1013 cm ⁻¹
	mp 156-158 °C
	1H NMR (CDCIS) 5 2.67 (s, 3H), 3.14 (s, 3H), 3.56 (s, 3H), 3.80 (s, 3H), 5.20 (s, 2H), 6.87 (s, 1H), 7.16 (d, J = 8.7 Hz, 1H),
8111:	7.32-7.48 (m, 7H), 7.82 (d, J = 9.2 Hz, 2H), 8.32 (d, J = 9.2 Hz, 2H)
	IR (KBr) 1518, 1479, 1350, 1177, 1119, 1079, 947, 816 cm ⁻¹
	mp 173-175 °C
	111 NMIR (CDC) ₁₃) δ 1.77 (e, 3H), 1.81 (e, 3H), 2.71 (e, 3H), 3.24 (e, 3H), 3.57 (e, 3H), 3.80 (e, 3H), 4.64 (d, J = 6.7 Hz, 2H),
011111	1-1119 5.50 (t, $J = 6.7 \text{ Hz}$, 1H), 6.87 (s, 1H), 7.10 (d, $J = 8.4 \text{ Hz}$, 1H), 7.35 (d, $J = 8.4$, 2.1 Hz, 1H), 7.39 (d, $J = 2.0 \text{ Hz}$, 1H), 7.82 (d, $J = 8.4$, 2.1 Hz, 1H), 7.89 (d, $J = 2.0 \text{ Hz}$, 1H), 7.82 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (d, $J = 3.0 \text{ Hz}$, 1H), 7.83 (
	= 9.0 Hz, 2H), 8.32 (d, $J = 9.0 Hz$, 2H)
	IR (KBr) 1519, 1479, 1360, 1178, 1075, 946, 850, 799 cm ⁻¹

	5)	5)	5	9	· . 5)	
	ար 191-193 Շ								
·	111 NMR (CDCl ₃) δ 1.77 (8, 311), 1.82 (8, 311), 3.48 (8, 3H), 3.77 (8, 311), 4.63 (d, $J = 6.6$ Hz, 2H), 5.53 (t, $J = 6.6$ Hz, 1H),	δ 1.77 (s, 3H),	1.82 (s, 3H),	3.48 (я, 3Н), 3	777 (s, 3H), 4	.63 (d, J = 6.6)	Hz, 2H), 5.6	3(t, J = 6.6	Hz, 1H),
1.1120	1.1120 5.72 (s, 111), 5.83 (s, 111), 6.48 (s, 111), 6.93 (dd, J = 8.1, 1.8 Hz, 111), 6.98 (d, J = 8.1 Hz, 1H), 7.04 (d, J = 1.8 Hz, 1H), 7.83 (d,	s, 111), 6.48 (s, 1	H), 6.93 (dd, J	= 8.1, 1.8 Hz,	111), 6.98 (d,	J = 8.1 Hz, 1H), 7.04 (d, J =	: 1.8 Hz, 1H)	, 7.83 (d,
	J = 9.0 Hz, 2H, 8.3	II), 8.32 (d, $J = 9.0$ Hz, $2H$)	r, 2H)			٠			
	IR (KBr) 3492, 1588, 1511, 1482, 1345, 1283, 1244, 1116, 1069, 1010 cm 1	88, 15f1, 1482,	1345, 1283, 12	44, 1116, 106	9, 1010 cm ⁻¹				
	mp 135-138 °C	·							· · · · · ·
	HINMR (CDCL) δ 1.76 (8, 3H), 1.82 (8, 3H), 3.61 (8, 3H), 3.67 (8, 3H), 3.73 (8, 3H), 4.62 (d, $J=6.9~{\rm Hz}$, 2H), 5.00 (br. 8,	δ 1.76 (s, 3H),	1.82 (s, 311), 3	3.61 (8, 311), 3	.67 (8, 311), 3	.73 (8, 3H), 4.6	2 (d, J = 6.9)	Hz, 2H), 6.0	00 (br. s,
1711-1	111), 5.50-5.57 (m, 111), 5.69 (hr. s, 111), 6.65 (s, 111), 6.86-6.96 (m, 411), 7.00 (d, J = 1.8 Hz, 111), 7.48 (d, J = 8.4 Hz, 211)	1H), 5.69 (hr. s,	111), 6.65 (s, 1	III), 6.86-6.96	(m, 4II), 7.00	(d, J = 1.8 Hz,	1H), 7.48 (d	J = 8.4 Hz	2H)
	IR (KBr) 3428, 2938, 1680, 1613, 1594, 1520, 1479, 1460, 1393, 1260, 1226, 1104, 1081, 993, 834 cm.	38, 1680, 1613,	1594, 1520, 14	79, 1460, 139;	3, 1260, 1226,	1104, 1081, 9	3, 834 cm ⁻¹		
	mp 140-142 C								
001	HI NMR (CDCL) 5 1.78 (s, 3H), 1.82 (s, 3H), 2.34 (s, 3H), 4.65-4.67 (d, J = 6.9 Hz, 2H), 5.55 (m, 1H), 6.41-6.78 (dt, J F-H	δ 1.78 (s, 3H),	1.82 (s, 3H), 2	.34 (8, 3H), 4.0	55-4.67 (d, J =	= 6.9 Hz, 2H),	5.55 (m, 1H),	6.41-6.78 (lt, J F.H
7711:1), 7.05-7.25 (m, t	5H), 7.26-7.45	(m, 2H), 7.75	(m, 2H)				
	IR (CHCl ₃) 1752, 1523, 1493, 1435, 1385, 1301, 1272, 1169, 1132, 1070, 1037, 916, 889 cm ⁻¹	1523, 1493, 1435	, 1385, 1301,	1272, 1169, 11	32, 1070, 100	17, 916, 889 cm	1.1		
	mp 178-180 ℃								
100	H NMR (CDCl ₃) δ 1.75 (8, 3H), 1.78-1.79 (d, $J = 0.6$ Hz, 3H), 2.13 (8, 3H), 3.50 (8, 3H), 3.87 (8, 3H), 4.63-4.65 (d, $J = 6.6$	δ 1.75 (s, 3H),	1.78-1.79 (d, J	l = 0.6 Hz, 3H), 2.13 (s, 3H)), 3.50 (в, 3Н),	3.87 (s, 3H),	4.63-4.65 (d	9.9 = 6.6
6711-1	Hz, 2H), 5.00 (br, 1H), 5.57 (m, 1H), 5.75 (s, 1H), 6.79 (s, 1H), 6.84-7.00 (m, 5H), 7.50-7.53 (m, 2H)	1H), 5.57 (m, 1H), 5.75 (s, 1H),	6.79 (a, 1H),	6.84-7.00 (m,	6H), 7.60-7.53	(m, 2H)		
	IR (CHCh.) 3596, 3528, 2937, 1612, 1584, 1522, 1489, 1464, 1400, 1259, 1173, 1139, 1102, 1009, 930, 865, 835 cm ⁻¹	1528, 2937, 1612	, 1584, 1522, 1	1489, 1454, 14	100, 1259, 117	3, 1139, 1102,	8,026,6001	65, 835 cm ⁻¹	
	mp 173-174 C								
1.1124	III NMR (CDCIA) 6 3.03 (a, 6H), 3.54 (a, 3H), 3.76 (a, 3H), 3.91 (a, 3H), 5.22 (a, 2H), 6.80-6.99 (m, 6H), 7.28-7.58 (m, 7H)	δ 3.03 (s, 6H),	3.54 (s, 311), 3.	76 (8, 3H), 3.9	11 (e, 3H), 5.2	2 (s, 2H), 6.80-	6.99 (m, 6H),	, 7.28-7.58 (m, 7H)
,	IR (CHCl ₃) 2938, 1731, 1609, 1627, 1485, 1442, 1394, 1365, 1174, 1141, 1082, 1037, 1013, 961, 936, 863 cm ⁻¹	731, 1609, 1527	, 1485, 1442, 1	1394, 1365, 11	74, 1141, 108	12, 1037, 1013,	961, 936, 86	3 cm ⁻¹	

Table 222

_	mp 103-106 °C
	11 NMR (CDCL) 5 1.78 (9, 3H), 1.82-1.83 (d, J = 0.9 Hz, 3H), 4.65-4.67 (d, J = 6.9 Hz, 2H), 5.55 (m, 1H), 6.41-6.78 (td, J
- 1	F-H = 54.9, 2.7 Hz, 211), 6.94-7.31 (m, 7H), 7.73 (m, 2H)
	IR (CHCh.) 3592, 1612, 1525, 1495, 1385, 1301, 1263, 1187, 1173, 1132, 1069, 1936, 917, 889, 838 cm ⁻¹
	mp 153-155 °C '
	111 NMR (CDCL) & 1.75 (8, 3H), 1.78-1.79 (d, J = 0.9 Hz, 3H), 2.58 (8, 3H), 3.03 (8, 6H), 3.55 (8, 3H), 3.77 (8, 3H), 3.88 (8,
1.1126	311), 4.61-4.64 (d, $J = 6.9 \text{ Hz}$, 211), 6.54 (m, 111), 6.80-6.97 (m, 611), 7.54-7.57 (d, $J = 8.7 \text{ Hz}$, 211)
	•_•
	mp 160-161 C
	1H NMR (CDCl3) 6 2.12 (8, 3H), 3.49 (8, 3H), 3.89 (8, 3H), 4.89 (br, 1H), 5.21 (8, 2H), 5.76 (8, 1H), 6.79-6.92 (m, 5H), 7.00
1.1127	1.1127 (d, $J = 8.4$ Hz, 1H), 7.31-7.53 (m, 7H)
	IR (CHCL ₁₎ 3594, 3517, 2937, 1731, 1612, 1589, 1622, 1489, 1455, 1400, 1327, 1259, 1240, 1173, 1139, 1102, 1011, 930, 865,
	835 cm ⁻¹
	mp 149-150 °C
	s, 3H), 4.62-4.64 (d, J = 6.6 Hz, 2H), 5.57 (m, 1H), 5.95 (s, 1H), 6.49 (s, 1H), 6.81-6.84 (m, 2H), 6.95-7.03 (m, 3H), 7.55-7.58
0711:1	(m, 2H)
	IR (CHCl ₁₃) 3509, 2937, 1675, 1610, 1584, 1528, 1492, 1464, 1397, 1362, 1323, 1197, 1175, 1140, 1117, 1078, 1038, 1011,
	929, 835 cm ¹
	mp 163-165 C
-	14 NMR (CDCl3) 6 2.15 (8, 3H), 2.47 (8, 3H), 3.20 (8, 3H), 3.55 (8, 3H), 3.90 (8, 3H), 5.22 (8, 2H), 6.80 (dd, J = 8.4, 2.1 Hz.
6211.1	1HJ, 6.88 (d, J = 2.1 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 7.17 (s, 1H), 7.35-7.47 (m, 7H), 7.66-7.69 (m, 2H)
	IR (CHCl ₃) 2938, 1604, 1684, 1518, 1478, 1370, 1331, 1241, 1176, 1150, 1010, 987, 937, 872, 846 cm ⁻¹

	mp 142-144 C
	111 NMR (CDCE) 6 1.76-1.77 (d, J = 0.9 Hz, 3H), 1.79-1.80 (d, J = 0.9 Hz, 3H), 2.16 (e, 3H), 2.60 (e, 3H), 3.20 (e, 3H), 3.57
e 	(s, 311), 3.88 (s, 311), 4.62-4.65 (d, J = 6.6 Hz, 211), 5.55 (m, 1H), 6.83-6.87 (m, 2H), 7.00 (d, J = 8.4 Hz, 1H), 7.18 (s, 1H),
·	7.35-7.38 (m, 2H), 7.67-7.70 (m, 2H)
	IR (CHCII) 1604, 1582, 1517, 1478, 1416, 1370, 1332, 1240, 1176, 1150, 1093, 1008, 987, 936, 872 cm 1
	ړ
•	111 NMR (DMSO-d ₆) δ 1.70 (8, 3H), 1.71 (8, 3H), 3.71-3.75 (m, 4H), 3.75 (8, 6H), 5.21-5.27 (m, 2H), 5.54-5.59 (m, 2H),
1:13	6.65-6.71 (m, 2H), 6.95 (s, 2H), 7.19-7.29 (m, 4H)
	IR (KBr) 3600-2800(br), 1627, 1536, 1497, 1470, 1454, 1375, 1341, 1257, 1208, 1125, 1053, 1035 cm ⁻¹
	mp 169-170 C
	111 NMR (CDCE) 6 1.77 (d, J = 0.6 Hz, 3H), 1.81 (d, J = 0.9 Hz, 3H), 2.26 (g, 6H), 4.63 (d, J = 6.6 Hz, 2H), 5.31 (g, 1H), 5.34
1.1132	1.1132 (8, 111), 5.55 (m, 111), 6.80 (dd, J = 2.1, 8.1 Hz, 111), 6.89 (d, J = 2.1 Hz, 111), 6.92 (d, J = 8.1 Hz, 111), 6.98-7.13 (m, 5H)
	IR (KBr) 3338, 1619, 1595, 1523, 1492, 1475, 1451, 1427, 1385, 1367, 1309, 1298, 1270, 1223, 1193, 1172, 1122, 1113, 999,
	983, 871, 819, 785 cm ⁻¹
	mp 135-136 ℃
	11 NMR (CDCl3) 6 1.14 (t, J = 6.9 Hz, 3H), 2.42 (e, 3H), 3.20 (e, 3H), 3.73 (q, J = 6.9 Hz, 2H), 3.77 (e, 3H), 3.91 (e, 3H),
1.1133	1.1133 5.22 (s, 2H), 6.84 (s, 1H), 6.91 (dd, J = 1.8, 8.4 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.98 (d, J = 1.8 Hz, 1H), 7.28-7.47 (m, 7H),
	7.68-7.73 (m, 2H)
	IR (KBr) 1516, 1481, 1381, 1363, 1332, 1238, 1228, 1175, 1147, 1080, 1036, 865, 843, 800 cm ⁻¹

Table 224

	mp 154-155 C
	111 NMR (CDCl3) & 1.15 (t, J = 7.2 Hz, 3H), 1.75 (d, J = 0.9 Hz, 3H), 1.79 (d, J = 0.9 Hz, 3H), 2.54 (s, 3H), 3.21 (s, 3H), 3.72
1.1134	1-1134 (q, J = 7.2 Hz, 211), 3.78 (s, 311), 3.88 (s, 311), 4.63 (d, J = 6.9 Hz, 211), 5.54 (m, 111), 6.85 (s, 111), 6.95-6.98 (m, 311), 7.34-7.40
	(m, 2H), 7.68-7.74 (m, 2H)
	IR (KBr) 1519, 1481, 1467, 1365, 1335, 1245, 1231, 1184, 1157, 1081, 1038, 972, 889, 872, 840, 800 cm ⁻¹
	mp 136-137 Ը
	111 NMR (CDCE) 6 1.16 (t, J = 6.9 Hz, 3H), 1.74 (e, 3H), 1.78 (e, 3H), 3.61 (q, J = 6.9 Hz, 2H), 3.76 (e, 3H), 3.88 (e, 3H),
	4.63 (d, J = 6.9 Hz, 2H), 5.03 (s, 1H), 5.57 (m, 1H), 5.99 (s, 1H), 6.46 (s, 1H), 6.89-6.94 (m, 2H), 6.97 (d, J = 8.7 Hz, 1H), 7.01
1.1135	(d, $J = 1.8 \text{ Hz}, 111), 7.02 \text{ (dd, } J = 1.8, 8.7 \text{ Hz}, 111), 7.51-7.57 \text{ (m, 2H)}$
	IR (KBr) 3433, 1613, 1522, 1489, 1464, 1443, 1402, 1383, 1364, 1270, 1235, 1214, 1174, 1140, 1113, 1072, 1036, 983, 825
	cm.i
	mp 155-157°C
	1H NMR (CDCI:) 6 2.05 (t, J = 2.7 Hz, 1H), 2.76 (dt, J = 6.3, 2.7 Hz, 2H), 2.77 (s, 3H), 3.21 (s, 3H), 3.28 (s, 3H), 3.56 (s,
1.1136	1-1136 311), 3.78 (s, 311), 4.23 (t, J = 6.3 Hz, 2H), 6.84 (s, 1H), 7.09 (d, J = 8.4 Hz, 1H), 7.36 (dd, J = 8.4, 2.1 Hz, 1H), 7.38 (d, J = 8.7)
	Hz, 2H), 7.41 (d, $J = 2.1$ Hz, 1H), 7.68 (d, $J = 8.7$ Hz, 2H)
	IR (Nujol) 3285, 1608, 1519, 1176, 1151, 1119, 1079, 970, 870, 815, 797 cm.
	foam
	1H NMR (CDCl ₃) 6 1.83 (8, 3H), 2.58 (t, J = 6.6 Hz, 2H), 2.74 (8, 3H), 3.21 (8, 3H), 3.22 (8, 3H), 3.56 (8, 3H), 3.78 (8, 3H),
1.1137	1.1137 4.22 (t, J = 6.6 Hz, 211), 4.84 (brs, 111), 4.89 (brs, 111), 6.84 (s, 111), 7.10 (d, J = 8.4 Hz, 111), 7.32~7.43 (m, 411), 7.68 (d, J =
	8.7 Hz, 2H),
	IR (Nujol) 1608, 1519, 1176, 1160, 1119, 1078, 968, 869, 816 cm ⁻¹

Table 225

1.1138	form 1H NMR (CDCh.) & 1.81 (s, 311), 2.55 (t, J = 6.6 Hz, 211), 3.45 (s, 311), 3.74 (s, 311), 4.20 (t, J = 6.6 Hz, 211), 4.85 (brs, 111), 4.89 (brs, 111), 6.45 (s, 111), 6.86~7.07 (m, 511), 7.53 (d, J = 8.7 Hz, 211), 1R (Nujol) 3531, 3328, 1612, 1587, 1623, 1489, 1287, 1226, 1115, 1072, 1011 cm. ¹
1.139	from III NMR (CDCh ₃) δ 2.07 (t, J = 2.7 Hz, 1H), 2.72 (dt, J = 6.6, 2.7 Hz, 2H), 3.45 (e, 3H), 3.75 (e, 3H), 4.21 (t, J = 6.6 Hz, 2H), 6.45 (e, 1H), 6.87 \sim 7.10 (m, 5H), 7.53 (d, J = 8.7 Hz, 2H) IR (Nujol) 3482, 3305, 1609, 1597, 1527, 1494, 1253, 1240, 1227, 1118, 1079, 1010 cm. ⁴
1.1140	m.p 194-197 °C 1H NMR (JMSO) \$\delta\$ 3.29 (s, 3H), 3.64 (s, 3H), 5.42 (s, 2H), 6.38 (s, 1H), 6.61 (dd, J = 2.0, 8.2 Hz, 1H), 6.74 (d, J = 2.0 Hz, 1.1140 1H), 6.84 (d, J = 8.6 Hz, 2H), 6.96 (d, J = 8.2 Hz, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.43 (d, J = 8.4 Hz, 2H) 2H) IR (KBr) 3432, 1611, 1566, 1523, 1488, 1430, 1400, 1380, 1241, 1113, 1071, 814 cm ⁻¹
1.1141	foam 1H NMR (CDCl ₃) & 3.45 (s, 3H), d 3.75 (s, 3H), 3.92 (s, 3H), 5.53 (s, 2H), 6.45 (s, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.94 (dd, J = 1.1141 2.1, 8.7 Hz, 1H), 7.01 (d, J = 8.7 Hz, 1H), 7.10 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 4.8 Hz, 1H), 7.52 (d, J = 4.8 Hz, 1H), 7.53 (d, J = 8.4 Hz, 2H) = 8.4 Hz, 2H) IR (KBr) 3423, 1702, 1684, 1611, 1523, 1489, 1439, 1402, 1282, 1112, 1073, 1010, 814 cm. ¹
1.1142	foam 1H NMR (CDCl ₃)

Table 226

foam 11 NMR (CDCL ₃) & 2.77 (s, 311), 3.21 (s, 311), 3.23 (s, 314), 3.56 (s, 311) 11.143 211), 6.84 (s, 14), 7.11 (d, J = 8.4 Hz, 111), 7.36 (dd, J = 2.1, 8.4 Hz, 114 7.67 (d, J = 8.7 Hz, 214) 11R (KBr) 1609, 1519, 1481, 1367, 1177, 1150, 1079, 970, 876, 797 cm ⁻¹ foam 11 NMR (CDCl ₃) & 2.75 (s, 311), 3.21 (s, 314), 3.24 (s, 314), 3.55 (s, 314), 1.1144 = 4.5 Hz, 114), 6.06 (t, J = 5.1 Hz, 114), 6.84 (s, 114), 7.07 (d, J = 8.7 Hz, 11 211), 7.40 (d, J = 2.1 Hz, 114), 7.67 (d, J = 8.7 Hz, 214) 11R (KBr) 1609, 1519, 1481, 1364, 1177, 1151, 1079, 969, 874, 797 cm ⁻¹ 11R (KBr) 1609, 1519, 1481, 1364, 1177, 1151, 1079, 969, 874, 797 cm ⁻¹ 11R (KBr) 3443, 1606, 1519, 1481, 1360, 1179, 1150, 1079, 877, 798 cm ⁻¹ 11R (KBr) 3443, 1606, 1519, 1481, 1360, 1179, 1150, 1079, 877, 798 cm ⁻¹ 11R (KBr) 3443, 1606, 1519, 1481, 1368, 1314), 4.23 (t, J = 1.8 Hz, 214)	4	
11 143 211), 6.84 (s, 1H), 7.11 (d, J = 8.4 Hz, 1H), 7.36 (dd, J = 7.67 (d, J = 8.7 Hz, 2H) 12 (d, J = 8.7 Hz, 2H) 13 (H (KBr) 1609, 1519, 1481, 1367, 1177, 1150, 1079, 970 14 (KBr) 1609, 1519, 1481, 1367, 1177, 1150, 1079, 970 15 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Loam	
1.1143 2H), 6.84 (s, 1H), 7.11 (d, J = 8.4 Hz, 1H), 7.36 (dd, J = 7.67 (d, J = 8.7 Hz, 2H) 1R (KBr) 1609, 1519, 1481, 1367, 1177, 1150, 1079, 970 foam 11 NMR (CDCl ₃)	THE NAME (CDC)	11 NMR (CDCL ₃) & 2.77 (s, 311), 3.21 (s, 311), 3.23 (s, 31), 3.56 (s, 311), d 3.78 (s, 311), d.18 (m, 2H), 4.78 (m, 2H), 6.94 (m,
167 (d, J = 8.7 Hz, 2H) 18 (KBr) 1609, 1519, 1481, 1367, 1177, 1150, 1079, 970 foam 11 INMR (CDCl ₃) & 2.75 (s, 3H), 3.21 (s, 3H), 3.24 (s, 3 1.1144 = 4.5 Hz, 1H), 6.06 (t, J = 5.1 Hz, 1H), 6.84 (s, 1H), 7.07 2H), 7.40 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 8.7 Hz, 2H) 18 (KBr) 1609, 1519, 1481, 1364, 1177, 1151, 1079, 969 m.p 203-205 C 14 NMR (CDCl ₃) & 2.83 (s, 3H), 3.22 (s, 3H), 3.25 (s, 3) 111, 7.67 (d, J = 8.7 Hz, 2H) IR (KBr) 3443, 1606, 1519, 1481, 1360, 1179, 1150, 1077 m.p 173-174 C 11 NMR (CD30D) & 3.38 (s, 3H), 3.68 (s, 3H), 4.23 (t, 1) 11 146		H), 7.11 (d, $J = 8.4 \text{ Hz}$, 111), 7.36 (dd, $J = 2.1$, 8.4 Hz, 111), 7.38 (d, $J = 8.7 \text{ Hz}$, 2H), 7.40 (d, $J = 2.1 \text{ Hz}$, 1H),
IR (KBr) 1609, 1519, 1481, 1367, 1177, 1150, 1079, 970 foam 11 NMR (CDCl ₃)	7.67 (d, J = 8.7)	112, 211)
foam 11.1144 = 4.5 Hz, 1H), 6.06 (t, J = 5.1 Hz, 1H), 6.84 (s, 1H), 7.07 211), 7.40 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 8.7 Hz, 2H) 11.1145 HR (KBr) 1609, 1519, 1481, 1364, 1177, 1151, 1079, 969 m.p 203-205 C 14. NMR (CDCl ₃) \(\delta\) 2.83 (s, 3H), 3.22 (s, 3H), 3.25 (s, 3H), 1.145 11.1145 Hz, 2H), 6.84 (s, 1H), 7.20 (d, J = 8.7 Hz, 1H), 7.37 (f) 111, 7.67 (d, J = 8.7 Hz, 2H) m.p 173-174 \(\text{C}\) m.p 173-174 \(\text{C}\) 11. NMR (CD30D) \(\delta\) 3.38 (s, 3H), 3.68 (s, 3H), 4.23 (t, 1.146)	1R (KBr) 1609,	1519, 1481, 1367, 1177, 1150, 1079, 970, 876, 797 cm ⁻¹
1.1144 = 4.5 Hz, 1H), 6.06 (t, J = 5.1 Hz, 1H), 6.84 (s, 1H), 7.07 2 2 Hz, 1H), 6.06 (t, J = 5.1 Hz, 1H), 6.84 (s, 1H), 7.07 2 Hz, 7.40 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 8.7 Hz, 2H) 1R (KBr) 1609, 1519, 1481, 1364, 1177, 1151, 1079, 969 m.p 203-205 C Hr NMR (CDCla) & 2.83 (s, 3H), 3.22 (s, 3H), 3.25 (s, 3H), 1145 1.8 Hz, 2H), 6.84 (s, 1H), 7.20 (d, J = 8.7 Hz, 1H), 7.37 (s, Hz, 2H) 1110, 7.37 (d, J = 8.7 Hz, 2H) 1110, 1110, 1110, 1110, 1110, 1110, 1110, 1110, 1110, 1110, 1110, 1110, 1110, 1110, 1110, 1110, 11110, 11110, 11110, 11110, 11110, 11110, 11110, 11110, 11110, 111110, 11	foam	
1-1144 = 4.5 Hz, 1H), 6.06 (t, J = 5.1 Hz, 1H), 6.84 (s, 1H), 7.07 211), 7.40 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 8.7 Hz, 2H) IR (KBr) 1609, 1519, 1481, 1364, 1177, 1151, 1079, 969 m.p 203-205 C H NMR (CDCl ₃) & 2.83 (s, 3H), 3.22 (s, 3H), 3.25 (s, 3H), 1.145 1.8 Hz, 2H), 6.84 (s, 1H), 7.20 (d, J = 8.7 Hz, 1H), 7.37 (e) HI, 7.67 (d, J = 8.7 Hz, 2H) IR (KBr) 3443, 1606, 1519, 1481, 1360, 1179, 1150, 107 m.p 173-174 C HI NMR (CD30D) & 3.38 (s, 3H), 3.68 (s, 3H), 4.23 (t, 1.146)	IN NMR (CDC)	11 NMR (CHCH) 6 2.75 (8, 311), 3.21 (8, 311), 3.24 (8, 311), 3.55 (8, 311), d 3.78 (8, 311), d.11 (m, 2H), d.64 (m, 2H), 6.05 (t, J
211), 7.40 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 8.7 Hz, 2H) 1R (KBr) 1609, 1519, 1481, 1364, 1177, 1151, 1079, 969 m.p 203-205 °C 1H NMR (CDCl ₃) \$ 2.83 (s, 3H), 3.22 (s, 3H), 3.25 (s, 3) 1.1145 1.8 Hz, 2H), 6.84 (s, 1H), 7.20 (d, J = 8.7 Hz, 1H), 7.37 (c) 1H), 7.67 (d, J = 8.7 Hz, 2H) m.p 173-174 °C m.p 173-174 °C 11 NMR (CD30D) \$ 3.38 (s, 3H), 3.68 (s, 3H), 4.23 (t, 1) 1-1146	44 = 4.5 Hz, 1H, 6.	1-1144 = 4.5 Hz, 1H), 6.06 (t, J = 5.1 Hz, 1H), 6.84 (s, 1H), 7.07 (d, J = 8.7 Hz, 1H), 7.35 (dd, J = 2.1, 8.7 Hz, 1H), 7.38 (d, J = 8.7 Hz,
IR (KBr) 1609, 1519, 1481, 1364, 1177, 1151, 1079, 969 m.p 203-205 °C ¹ H NMR (CDCl ₃) δ 2.83 (s, 3H), 3.22 (s, 3H), 3.25 (s, 3 ¹ -1145 1.8 Hz, 2H), 6.84 (s, 1H), 7.20 (d, J = 8.7 Hz, 1H), 7.37 (c) ¹ -1145 1.8 Hz, 2H), 6.84 (s, 1H), 7.20 (d, J = 8.7 Hz, 1H), 7.37 (c) ¹ -1145 1.8 Hz, 2H) ¹ -1146 m.p 173-174 °C ¹ -1146 (CD3OD) δ 3.38 (s, 3H), 3.68 (s, 3H), 4.23 (t, 1.1146)	211), 7.40 (d, J =	: 2.1 Hz, 1H), 7.67 (d, J = 8.7 Hz, 2H)
m.p 203-205 °C 14 NMR (CDCl ₃)	IR (KBr) 1609,	1519, 1481, 1364, 1177, 1151, 1079, 969, 874, 797 cm ⁻¹
11.145 1.8 Hz, 2H), 6.84 (s, 1H), 7.20 (d, J = 8.7 Hz, 1H), 7.37 (s, H), 7.67 (d, J = 8.7 Hz, 1H), 7.37 (s, H), 7.67 (d, J = 8.7 Hz, 2H) 111, 7.67 (d, J = 8.7 Hz, 2H) 112 (KBr) 3443, 1606, 1519, 1481, 1360, 1179, 1150, 1077 m.p 173-174 \(\mathcal{C}\) 111 NMR (CD3OD) \(\delta\) 3.38 (s, 3H), 3.68 (s, 3H), 4.23 (t, H)	m.p 203-205 C	
1.1145 1.8 Hz, 2H), 6.84 (s, 1H), 7.20 (d, J = 8.7 Hz, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.57 (d, J = 8.7 Hz, 2H) III (KBr) 3443, 1606, 1519, 1481, 1360, 1179, 1150, 107 m.p 173-174 °C HI NMR (CD3OD) 6 3.38 (s, 3H), 3.68 (s, 3H), 4.23 (t, J), 4.23 (t,	IH NMR (CDC)	1H NMR (CDCl ₃) δ 2.83 (s, 3H), 3.22 (s, 3H), 3.25 (s, 3H), 3.56 (e, 3H), d 3.79 (s, 3H), 4.30 (t, $J = 1.8$ Hz, 2H), 4.88 (t, $J = 1.8$
	45 1.8 Hz, 2H), 6.8 ⁴	1.1145 1.8 Hz, 2H), 6.84 (s, 1H), 7.20 (d, J = 8.7 Hz, 1H), 7.37 (dd, J = 2.1, 8.7 Hz, 1H), 7.39 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 2.1 Hz,
	111), 7.67 (d, J =	: 8.7 Hz, 2H)
	IR (KBr) 3443,	1606, 1519, 1481, 1360, 1179, 1150, 1079, 877, 798 cm ⁻¹
	m.p 173-174 C	
		111 NMR (CH3OH) 6 3.38 (a, 3H), 3.68 (a, 3H), 4.23 (t, J = 1.8 Hz, 2H), 4.83 (t, J = 1.8 Hz, 2H), 6.43 (a, 1H), 6.79 (dd, J =
		2.1, 8.1 Hz, 1H), 6.85 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 2.1 Hz, 1H), 7.04 (d, J = 8.1 Hz, 1H), 7.45 (d, J = 8.7 Hz, 2H)
IR (KBr) 3399, 1612, 1586, 1523, 1487, 1401, 1217, 111-	IR (KBr) 3399,	IR (KBr) 3399, 1612, 1586, 1523, 1487, 1401, 1217, 1114, 1067, 1013, 996, 828 cm ⁻¹

Table 227

50	45	40	35	30	25	20	15	10	5
1147	foam 'II NMR (CDCh.) & 3.39 (s, 3H), 3.45 (s, 3H), 3.74 (s, 3H), 4.17 (t, J = 1.8 Hz, 2H), 4.83 (t, J = 1.8 Hz, 2H), 6.45 (s, 1H), 6.91 (d, J = 8.7 Hz, 2H), 6.97 (dd, J = 2.1, 8.1 Hz, 1H), 7.05 (d, J = 8.1 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 7.52 (d, J = 8.7 Hz, 2H)	(a) \$\delta\$ (b) 3.39 (c) 3H), 3.44 (c) 3H), 4.17 (t, J = 1.8 Hz, 2H), 4.83 (t, J = 1.8 Hz, 2H), 6.45 (c) 1H), Hz, 2H), 6.97 (dd, J = 2.1, 8.1 Hz, 1H), 7.05 (d, J = 8.1 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 7.52 (d, J = 8.7 Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz,), 3.45 (s, 3H)	r, 3.74 (s, 3H), [z, 1H], 7.05 (4.17 (t, J =)	.8 Hz, 2H), 4.6	33 (t, J = 1.8 J = 2.1 Hz, 1F	Hz, 2H), 6.45 1), 7.52 (d, J =	(s, 1H), 8.7 Hz,
1148	forum 11 NMR (CDC) 3.78 (s, 3H), 4.8 J = 2.1 Hz, 1H), 1R (KBr) 2232,	(a) 5 (b) 6 (c) 1365, 1769, 1769, 1224, 1114, 1071, 1010, 939, 816 cm ⁻¹ (b) 6 (c) 1.14 (t, J = 7.5 Hz, 3H), 2.23 (q, J = 7.5 Hz, 2H), 2.71 (s, 3H), 0 (s, 2H), 6.84 (s, 1H), 7.20 (d, J = 9.0 Hz, 1H), 7.37 (dd, J = 2.1, 9.0 Hz, 2.68 (d, J = 8.7 Hz, 2H))	7.5 Hz, 340, 3 111), 7.20 (d, J Iz, 2H)	2.23 (q, J = 7.) = 9.0 Hz, 1H)	71, 1010, 939 5 Hz, 2H), 2.7 7.37 (dd, J =	, 816 cm. ¹ 71 (s, 3H), 3.21 2.1, 9.0 Hz, 1F	(e, 3H), 3.27 H), 7.38 (d, J =	(6, 3H), 3.60 ((s, 3H),
1149		omp.) ·dε) δ 3.30 (8, 3H), 3.64 (8, 3H), 4.85 (8, 2H), 6.39 (8, 1H), 6.69 (dd, J = 8.4) J = 8.7 Hz, 2H), 6.94 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 8.7 Hz, 2H), 8.54 (8, 1H) 1707, 1671, 1611, 1586, 1523, 1489, 1288, 1259, 1211, 1115, 1075, 1019, 914	3H), 3.64 (s, 3 6.94 (d, J = 8.	H), 4.85 (s, 21) 4 Hz, 1H), 7.4	1), 6.39 (s, 11- 4 (d, J = 8.7 F	[], 6.69 (dd, J = [z, 2H], 8.54 (e	= 8.4, 2.1 Hz, , 1H)	1H), 6.79 (d, c	J = 2.1
150	from 11 NMR (CDCl ₃) & 1.91 (8, 3H), 3.45 (8, 3H), 3.75 (8, 3H), 4.89 (8, 2H), 5.29 (bre, 1H), 6.36 (bre, 1H), 6.45 (8, 1H), 6.9 J = 8.7 Hz, 2H), 6.97 (dd, J = 8.4, 2.1 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 7.54 (d, J = 8.7 Hz, 2H) R (KBr) 3432, 1612, 1588, 1623, 1489, 1288, 1224, 1192, 1113, 1070, 1010, 938, 935, 932	6.97 (dd, J = 8.4, 2.1 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 7.54 (d, J = 8.7 Hz, 2H) 6.07 (dd, J = 8.4, 2.1 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 7.54 (d, J = 8.7 Hz, 2H)	3.45 (s, 3H), 3.1 (s, 1Hz, 1H), 7.1 (s, 1288 1288 1288 1288 1288 1288 1288 128	3.75 (s, 3H), 4. 07 (d, J = 8.4	Hz, 1H), 7.08	29 (bre, 1H), 6. (d, J = 2.1 Hz, 0.12	36 (brs, 1H), 1.54 (d,	6.45 (s, 1H), 6 J = 8.7 Hz, 2H	.92 (d,
151		δ 3.45 (s, 3H), 3.75 (s, 3H), 4.98 (d, J = 1.8 Hz, 2H), 5.92 (dt, J = 7.5, 1.8 Hz, 1H), 6.45 (s, 1H), 6.46 (d, J 2 (d, J = 8.7 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 7.53 (2, 1589, 1523, 1489, 1403, 1224, 1112, 1070, 1011, 938, 826 cm ⁻¹	3.75 (s, 311), 4 2H), 6.98 (dd,	.98 (d, J = 1.8 J = 8.4, 2.1 H 24, 1112, 107(Hz, 2H), 6.95 z, 1H), 7.09 (2 (dt, J = 7.5, 1 d, J = 2.1 Hz, 1	8 Hz, 1H), 6. IH), 7.11 (d, J	45 (s, 1H), 6.4(= 8.4 Hz, 1H)	3 (d. J

Table 228

finam 11 NMR (CDC13) 6 3.45 (a, 31), 3.75 (a, 31), 4.89 (d, J = 2.1 Hz, 2H), 5.97 (dt, J = 13.8, 11.1152 = 13.8 Hz, 11l), 6.92 (d, J = 8.7 Hz, 2H), 6.97 (dd, J = 8.4, 2.1 Hz, 1H), 7.04 (d, J = 8.4 Hz, J Hz, 2H) (d, J = 8.7 Hz, 2H) (e, J = 8.7 Hz, 2H) (f(Hr) 3342, 1612, 1638, 1523, 1489, 1403, 1226, 1192, 1176, 1113, 1070, 1011, 938, 9 (h) NMR (CDC13) 6 2.17 (a, 3H), 2.67 (a, 3H), 3.74 (a, 3H), 3.98 (a, 3H), 4.18 (a, 3H), 5.31 (h) NMR (CDC13) 6 2.17 (a, 3H), 2.67 (a, 3H), 3.13 (a, 3H), 3.57 (a, 3H), 3.79 (a, 3H), 5.1154 (h) NMR (CDC13) 6 2.17 (a, 3H), 2.67 (a, 3H), 3.13 (a, 3H), 3.57 (a, 3H), 3.24 (a, 3H), 3.54 (a, 3H),		
· · · · · · · · · · · · · · · · · · ·		foam
		MR (C)
		= 13.8 Hz, 111), 6.92 (d, J = 8.7 Hz, 2H), 6.97 (dd, J = 8.4, 2.1 Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 7.09 (d, J = 2.1 Hz, 1H), 7.54
		(d, J = 8.7 Hz, 2H)
		1R (KHr) 3427, 1612, 1588, 1523, 1489, 1403, 1226, 1192, 1176, 1113, 1070, 1011, 938, 918, 826 cm ⁻¹
		mp188-189 °C
	3	11 NMR (CDCL ₃) & 2.84 (s, 311), 3.33 (s, 311), 3.74 (s, 311), 3.98 (s, 311), 4.18 (s, 311), 5.38 (s, 211), 7.05 (s, 111), 7.36-7.64 (m,
IR(KBr) 338 mp78-80 °C 1H NMR (CD 8.6 II2, 1H), IR(KBr) 3338 mp74-75 °C 1H NMR (CD 3.88-4.02 (m, IR(KBr) 3412 mp72-74 °C 1H NMR (CD 6.6 Hz, 2H), (brs, 1H) IR(KBr) 3407	11163	1011), 8.61 (d, J = 8.7 Hz, 111), 8.82 (brs, 111)
mp78-80 °C 14 NMR (CD 8.6 Hz, 1H), 11R(KBr) 3398 mp74-75 °C 14 NMR (CD 3.88-4.02 (m, 11R(KBr) 3415 mp72-74 °C 14 NMR (CD 14 NMR (CD 6.6 Hz, 2H), (brs, 1H)		IR(KBr) 3381, 2942, 1724, 1538, 1481, 1369, 1296, 1177, 1163, 1082, 963, 821 cm ⁻¹
14 NMR (CD 8.6 II2, 1H), 'IR(KBr) 3398 mp74-75 °C 1H NMR (CD 3.88-4.02 (m, IR(KBr) 3412 mp72-74 °C 1H NMR (CD 6.6 Hz, 2H), (brs, 1H)		
8.6 Hz, 1H), 1R(KBr) 3398 mp74-75 C 4H NMR (CD 3.88-4.02 (m, 1R(KBr) 3412 mp72-74 C 4H NMR (CD 6.6 Hz, 2H), (brs, 1H) RKKBr) 3403	;	1H NMR (CDCl.) 6 2.17 (8, 3H), 2.67 (8, 3H), 3.13 (8, 3H), 3.57 (8, 3H), 3.79 (8, 3H), 5.19 (8, 2H), 6.83 (8, 1H), 7.15 (d, J =
IR(KBr) 3398 mp74-75 C 1H NMR (CD 3.88-4.02 (m, IR(KBr) 3415 mp72-74 C 1H NMR (CD 6.6 Hz, 2H), (brs, 1H)	1.1154	8.6 Hz, 1H), 7.31-7.45 (m, 7H), 7.62 (d, J = 8.2 Hz, 1H), 7.79 (s, 1H), 8.44 (d, J = 8.6 Hz, 1H), 8.51 (brs, 1H)
mp74-75 C 1H NMR (CD 3.88-4.02 (m, IR(KBr) 3412 mp72-74 C 1H NMR (CD 6.6 Hz, 2H), (brs, 1H)		IR(KBr) 3398, 2939, 1739, 1529, 1477, 1368, 1287, 1240, 1177, 1119, 1078, 957, 815, 796, 522 cm ⁻¹
1H NMR (CD 3.88-4.02 (m. 3.88-4.02 (m. IR(KBr) 3412 mp72.74 °C iH NMR (CD 6.6 Hz, 2H), (brs, 1H)		mp74-75 C
3.88-4.02 (m, IR(KBr) 3412 mp72-74 °C iH NMR (CI) 6.6 Hz, 2H), (brs, 1H)		1H NMR (CDCl ₃) & 1.68 (s, 3H), 1.76 (s, 6H), 1.81 (s, 3H), 2.69 (s, 3H), 3.24 (s, 3H), 3.52 (s, 3H), 3.80 (s, 3H), 3.88 (s, 3H),
	11155	3.88-4.02 (m, 211), 4.64 (d, J = 7.2 Hz, 2H), 5.25 (t, J = 7.8 Hz, 1H), 5.50 (t, J = 5.7 Hz, 1H), 6.88 (s, 1H), 7.08-7.38 (m, 6H)
		IR(KBr) 3412, 2939, 1697, 1519, 1483, 1366, 1268, 1207, 1178, 1080, 964, 808, 523 cm ⁻¹
		mp72.74 °C
1.1156 6.6 Hz, 2H), 5.68 (t, J = 5.7 Hz, 1H), 7.04 (s, 1H), 7.27 (d, J = 8.1 H (brs, 1H)) (brs, 1H) (RKRr) 3407, 2940, 1731, 1601, 1538, 1481, 1366, 1294, 1178, 1168		1H NMR (CDCl ₃) 6 1.95 (8, 3H), 1.99 (8, 3H), 2.87 (8, 3H), 3.42 (8, 3H), 3.74 (8, 3H), 3.97 (8, 3H), 4.16 (8, 3H), 4.82 (d, J =
(brs, 1H) (RKRr) 3407, 2940, 1731, 1601, 1638, 1481, 1366, 1294, 1178, 1166	1.1156	6.6 Hz, 2H), 5.68 (t, J = 5.7 Hz, 1H), 7.04 (s, 1H), 7.27 (d, J = 8.1 Hz, 1H), 7.39-7.56 (m, 4H), 8.60 (d, J = 8.4 Hz, 1H), 8.81
RKKBr) 3407, 2940, 1731, 1601, 1538, 1481, 1366, 1294, 1178, 1166		(brs, 1H)
		IR(KBr) 3407, 2940, 1731, 1601, 1638, 1481, 1366, 1294, 1178, 1165, 1079, 805, 562 cm ⁻¹

Table 229

	mp68-69 °C:
	1H NMR (CDCh) 6 1.70 (s, 3H), 1.77 (s, 3H), 1.81 (s, 3H), 2.70 (s, 3H), 3.25 (s, 3H), 3.55 (s, 3H), 3.81 (s, 3H), 4.64 (d, J =
1.1157	1.1157 6.6 Hz, 211), 5.27 (t, $J = 7.5$ Hz, 111), 5.50 (t, $J = 6.9$ Hz, 114), 6.86 (s, 111), 7.10 (d, $J = 8.4$ Hz, 114), 7.25-7.40 (m, 3H), 7.57 (d,
	J = 8.1 Hz, 111), 7.76 (s. 111)
	IR(KBr) 3422, 2939, 1701, 1519, 1480, 1368, 1203, 1177, 1078, 957, 801, 522 cm ⁻¹
	mp64.66 C
1.1158	411 NMR (CDCb) 6 3.47 (8, 311), 3.74 (8, 311), 5.19 (8, 211), 5.86 (brs, 111), 6.44 (6, 111), 7.08-7.69 (m, 1111), 8.06 (brs, 111)
	IR(KBr) 3399, 2938, 1726, 1624, 1604, 15263, 1487, 1403, 1302, 1208, 1178, 1068, 695, 520 cm ⁻¹
	mp68-70 °C
611.1	I-119 14 NMR (CDCl ₃) & 2.57 (s, 3H), 3.57 (s, 3H), 3.76 (s, 3H), 6.21 (s, 2H), 6.84 (s, 1H), 7.11-7.73 (m, 11H), 8.29 (brs, 1H)
	HR(KBr) 3422, 2939, 1728, 1605, 1523, 1482, 1397, 1367, 1233, 1209, 1178, 1078, 795, 725, 542 cm ⁻¹
	mp72.73 °C
	'HI NMR (CDCI3) 6 1.75 (s, 6H), 1.78 (s, 3H), 1.82 (s, 3H), 3.48 (s, 3H), 3.75 (s, 3H), 3.76 (d, J = 7.2 Hz, 2H), 3.89 (s, 3H),
0911-1	1-1160 4.38 (brs, 1H), 4.61 (d, J = 6.9 Hz, 2H), 5.41 (t, J = 6.3 Hz, 1H), 5.53 (t, J = 6.9 Hz, 1H), 5.68 (brs, 1H), 5.94 (brs, 1H), 6.49 (s,
	311), 6.69 (d, J = 8.4 Hz, 1H), 6.95 (s, 1H), 7.06 (s, 1H), 7.13·7.15 (m, 2H), 7.26 (s, 1H)
	IR(KBr) 3423, 2932, 1608, 1528, 1490, 1459, 1250, 1113, 1071, 805, 757 cm ⁻¹
	mp68-69 °C
13111	¹ H NMR (CDCl ₃) δ 1.76 (e, 3H), 1.81 (s, 3H), 3.48 (s, 3H), 3.75 (e, 3H), 3.91 (e, 3H), 4.61 (d, $J = 7.2 \text{ Hz}$, 2H), 5.53 (t, $J = 6.0 \text{ Hz}$
1011-1	Hz, 1H), 5.91 (brs, 2H), 6.47 (s, 1H), 6.83 (d, J = 8.1 Hz, 2H), 6.95 (s, 1H), 7.06-7.09 (m, 2H), 7.16 (s, 1H), 7.26 (s, 1H)
	IR(KBr) 3406, 2933, 1524, 1490, 1397, 1270, 1241, 1116, 1075, 1069, 811, 773 cm ⁻¹

Table 230

	mp81-83 °C H1 (CDCE) & 1.76 (6, 6H), 1.79 (6, 3H), 1.81 (8, 3H), 3.50 (8, 3H), 3.75 (8, 3H), 3.80 (d, J = 6.6 Hz, 2H), 4.36 (brs, 1H),
1.1162	1.1162 4.61 (d, J = 6.9 Hz, 2H), 5.39 (t, J = 6.3 Hz, 1H), 5.53 (t, J = 6.6 Hz, 1H), 5.68 (brs, 1H), 5.90 (brs, 1H), 6.43 (e, 1H), 6.73 (d, J
	= 8.4 Hz, 1H), 6.95 (s, 1H), 7.05 (s, 1H), 7.26 (d, J = 0.9 Hz, 1H), 7.47 (dd, J = 2.1, 8.4 Hz, 1H), 7.59 (d, J = 2.1 Hz, 1H)
	114(KBr) 3484, 2931, 1607, 1525, 1488, 1310, 1243, 1114, 1070, 1009, 808 cm 1
	np87.89 ℃
	111 NMR (CDC13) δ 2.81 (8, 311), 3.60 (8, 311), 3.77 (8, 311), 3.98 (d, $J=6.3$ Hz, 211), 4.80 (d, $J=6.3$ Hz, 211), 6.07 (t, $J=6.0$
	Hz, III), 6.25 (t, J = 6.3 Hz, IH), 6.46-6.53 (m, 21I), 6.86 (e, IH), 7.05-7.38 (m, 4H)
	IR(KBr) 3411, 2937, 1628, 1527, 1482, 1364, 1233, 1176, 1077, 960, 879, 792, 524 cm ⁻¹
	amorphous
	41 NMR (CDCE) 6, 311), 3.13 (e, 311), 3.43 (e, 311), 3.64 (e, 311), 3.80 (e, 311), 5.19 (e, 2H), 6.87 (e, 1H), 7.16 (d, J =
1.1164	8.7 Hz, 1H), 7.32.7.49 (m, 9H), 7.69 (d, J = 8.4 Hz, 2H)
	IR (KBr) 1698, 1522, 1482, 1367, 1080, 1014, 947, 815, 795 cm.1
	foam
	111 NMR (CDCl3) & 1.47 (8, 3H), 1.72 (8, 3H), 1.77 (8, 3H), 1.81 (8, 3H), 2.71 (8, 3H), 3.24 (8, 3H), 3.51 (8, 3H), 3.80 (8, 3H),
1.1165	1-1165 4.37 (d, J = 7.8 Hz, 2H), 4.64 (d, J = 6.6 Hz, 2H), 5.29 (t, J = 7.8 Hz, 1H), 5.50 (t, J = 6.6 Hz, 1H), 6.88 (s, 1H), 7.09 (d, J = 8.4)
	Hz_1 1H), 7.27 (d, $J = 8.7$ Hz, 2H), 7.35 (dd, $J = 8.4$, 2.3 Hz, 1H), 7.39 (d, $J = 2.3$ Hz, 1H), 7.66 (d, $J = 8.7$ Hz, 2H)
	IR(KBr) 1696, 1521, 1482, 1366, 1177, 1080, 972, 946, 814, 795 cm ⁻¹
	mp 135-136 C
	111 NMR (CDCl3) 6 1.77 (8, 3H), 1.81 (8, 3H), 2.71 (8, 3H), 3.24 (8, 3H), 3.54 (8, 3H), 3.80 (8, 3H), 4.64 (d, J = 6.7 Hz, 2H),
1.1166	5.50 (t, J = 6.7 Hz, 1H), 6.87 (e, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.34 (d, J = 8.1 Hz, 2H), 7.35 (dd, J = 8.4, 2.2 Hz, 1H), 7.39 (d,
	J = 2.2 Hz, 1 H, 7.69 (d, J = 8.1 Hz, 2 H)
	IR (KBr) 1702, 1522, 1481, 1362, 1275, 1150, 1081, 1014, 978, 817, 793 cm ⁻¹

1.1167	mp 169-171 °C ¹ H NMR (DMSO-dc)
1.1168	mp 159-160 °C. 111 NMR (DMSO-da) δ 1.72 (h, 311), 1.76 (h, 311), 3.31 (h, 31D), 3.64 (h, 31D), 4.54 (d, J = 6.8 Hz, 21I), 6.49 (t, J = 6.8 Hz, 11B), 111 NMR (DMSO-da) δ 1.72 (h, 31I), 1.76 (h, 31I), 1.31 (h, 31 + 1.1), 1.20 Hz, 11H), 6.73 (d, J = 2.0 Hz, 11H), 6.88 (d, J = 8.1 Hz, 11H), 7.39 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 8.42 (br s, 11H), 8.70 (br s, 11H) 111 (KRr) 3458, 3332, 1609, 1624, 1492, 1411, 1393, 1295, 1234, 1107, 1071, 1012, 994, 781 cm.¹
1.1169	mp 183-184 °C 'H NMR (CDCl ₃) 6 1.76 (d, J = 0.6 Hz, 3H), 1.82 (s, 3H), 3.13 (s, 3H), 3.48 (s, 3H), 3.76 (s, 3H), 4.63 (d, J = 6.9 Hz, 2H), 'H NMR (CDCl ₃) 6 1.76 (d, J = 0.6 Hz, 3H), 6.93 (dd, J = 1.8, 8.4 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 1.8 1-1169 5.53 (m, 1H), 5.72 (s, 1H), 5.83 (s, 1H), 6.46 (s, 1H), 6.93 (dd, J = 1.8, 8.4 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 1.8 11z, 111), 7.82-7.89 (m, 211), 8.00-8.06 (m, 211) 11R (KBr) 3.445, 1593, 1499, 1482, 1461, 1387, 1311, 1278, 1245, 1189, 1146, 1111, 1086, 1068, 1010, 997, 942, 766 cm ⁻¹
1.1170	mp 178-179 °C "H NMR (CDCl ₃)

Table 232

	mp 136-139 C
,	111 NMR (CDCCs) $\delta = 1.73$ (8, 311), 1.77 (8, 311), 2.99 (8, 611), 3.71 (d, $J = 6.6$ Hz, 211), 3.76 (8, 311), 3.78 (8, 311), $5.32-5.37$ (m,
1.1171	111), 6.36-6-46 (m, 2H), 6.79-6.84 (m, 2H), 6.89 (s, 1H), 6.95 (s, 1H), 7.18-7.24 (m, 1H), 7.47-7.52 (m, 2H)
	IR (KBr) 3600-2800(hr), 1626, 1609, 1531, 1493, 1460, 1444, 1388, 1345, 1232, 1207, 1173, 1124, 1050, 1028 cm·l
	mp 113-114 C
	111 NMR (CDCE) & 3.00 (6, 6H), 3.77 (8, 3H), 3.78 (8, 3H), 6.78-6.84 (m, 2H), 6.88 (6, 1H), 6.98 (8, 1H), 7.31 (dd, J = 2.1,
1.1172	8.4 Hz, 111), 7.43-7.53 (m, 311), 7.58 (dd, 3 = 1.8, 11.1 Hz, 1H)
	IR (KBr) 3600-2800(br), 1711, 1609, 1533, 1493, 1464, 1390, 1212, 1181, 1162, 1052, 1027 cm ⁻¹
	mp 141-143 C
	111 NMR (CHOCH) 6 1.75 (d, J = 0.9 Hz, 3H), 1.78 (d, J = 0.9 Hz, 3H), 2.99 (e, 6H), 3.50 (e, 3H), 3.74 (e, 3H), 3.78 (d, J = 6.6
	11z, 211), 3.93 (br, 111), 5.35-5.40 (m, 111), 5.86 (s, 111), 6.44 (s, 111), 6.74-6.86 (m, 3H), 7.30-7.38 (m, 4H)
	IR (KBr) 3600-2800(br), 1625, 1611, 1530, 1491, 1458, 1444, 1400, 1348, 1333, 1250, 1217, 1103, 1075 cm ⁻¹
	mp 226-228 ℃
	111 NMR (CDC13) 6 3.93 (s, 3H), 4.95 (s, 1H), 5.21 (s, 2H), 6.90-6.94 (m, 2H), 6.96 (s, 1H), 6.97 (s, 1H), 7.03 (d, J = 0.9 Hz,
1.1174	1-1174 [1H), 7.30-7.49 (m, 1H)
	IR (KBr) 3600-2800(br), 1608, 1589, 1520, 1471, 1446, 1384, 1358, 1270, 1250, 1238, 1210, 1172, 1141, 1093, 1031, 997
	cm.¹
	mp 143-145 C
1.1176	1-1175 H NMR (CDCL) 6 3.21 (6, 3H), 3.93 (6, 3H), 5.22 (6, 2H), 6.97 (6, 2H), 7.03 (6, 1H), 7.30-7.55 (m, 11H)
	IR (KBr) 3600-2800(br), 1602, 1517, 1468, 1368, 1348, 1248, 1210, 1176, 1151, 1095, 1038, 989 cm ⁻¹

Table 233

1.1176	mp 98-100 °C 4H NMR (CDCh)
1.1177	mp 118-120 °C 1H NMR (CDCh ₃)
f-1178	·
1.1179	mp 135-137 °C ¹ H NMR (CDCl ₃) δ 1.74 (e, 3H), 1.78 (e, 3H), 3.00 (e, 6H), 3.78 (e, 3H), 3.79 (e, 3H), 4.29 (d, J = 6.6 Hz, 1H), 5.35-5.40 (m, 1H), 6.71 (d, J = 8.4 Hz, 1H), 6.80-6.83 (m, 2H), 6.90 (e, 1H), 6.94 (e, 1H), 7.38-7.42 (m, 1H), 7.48-7.56 (m, 3H) ¹ R (KB _T) 3600-2800(b _T), 1612, 1532, 1495, 1460, 1444, 1385, 1365, 1273, 1267, 1203, 1059, 1039, 1029 cm ⁻¹
1.1180	111 NMR (CDCl ₃) & 1.57 (d, J = 6.3Hz, 3H), 2.26 (s, 3H), 2.28 (s, 3H), 5.18 (s, 2H), 5.22 (q, J = 6.3 Hz, 1H), 7.02 (d, J = 8.4 L-1180 Hz, 1H), 7.12 (s, 1H), 7.15 (s, 1H), 7.23 (d.d, J = 8.4 & 2.1 Hz, 1H), 7.30 - 7.51 (m, 10H) 11 (KBr) 3557, 1605, 1486, 1370, 1235, 1177, 1149, 1078, 1017 cm ⁻¹
1811-1	14 NMR (CDCl ₃) & 1.66 (s, 6H), 2.27 (s, 3H), 2.28 (s, 3H), 3.20 (s, 3H), 4.22 (s, 1H), 5.22 (s, 2H), 7.06 (d, J = 8.4 Hz, 1H), 7.12 (s, 1H), 7.14 (s, 1H), 7.23 (d.d, J = 8.4 & 2.1Hz, 1H), 7.30 · 7.51 (m, 10H) 1R (KBr)3544,3441, 1604, 1512, 1485, 1367, 1222, 1173, 1149 cm ⁻¹

Table 234

1.1182	11 NMR (CDCl ₃) 6 1.28 (t, J = 7.2Hz, 3H), 2.26 (s, 3H), 2.28 (s, 3H), 2.70 (q, J = 7.2Hz, 2H), 3.20 (s, 3H), 4.73 (s, 1H), 6.82 (d, J = 8.4Hz, 1H), 7.03 · 7.11 (m, 2H), 7.14 (s, 1H), 7.15 (s, 1H), 7.29 · 7.46 (m, 4H)
1.1183	11 NMR (CDCh.) & 1.29 (d, J = 6.9Hz, 6H), 2.27 (s, 3H), 2.28 (s, 3H), 3.20 (s, 3H), 3.27 (qintet, J = 6.9Hz, 1H), 4.76 (s, 1H), 6.81(d, J = 7.8Hz, 1H), 7.07(d.d., J = 7.8 & 2.1 Hz, 1H), 7.11 (s, 1H), 7.15 (s, 1H), 7.20 (d, J = 2.1 Hz, 1H), 7.34 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.7 Hz, 2Hz, 2H), 7.42 (d, J = 8.7 Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2Hz, 2Hz,
1.1184	(s, 3H), 4.58 (d, J = 6.6 Hz, 2H), 5.48 · 5.57 (m, 1H), 6.90 (d, J = 7.8 Hz, 1H), 7.08 · 7.13 (m, 2H), 7.16 (s, 2H), 7.23 · 7.47 (m, 4H) (R, 3H), 4.58 (d, J = 6.6 Hz, 2H), 5.48 · 5.57 (m, 1H), 6.90 (d, J = 7.8 Hz, 1H), 7.08 · 7.13 (m, 2H), 7.16 (s, 2H), 7.23 · 7.47 (m, 4H)
1.1185	1H NMR (CDCl ₃) 6 1.23 (t, J = 7.5Hz, 3H), 1.76 (a, 3H), 1.81 (a, 3H), 2.27 (a, 3H), 2.29 (a, 3H), 2.70 (q, J = 7.5Hz, 2H), 1.1185 4.57 (d, J = 6.6 Hz, 2H), 4.79 (brs, 1H), 5.49 · 5.58 (m, 1H), 6.83 · 6.92 (m, 3H), 7.08 · 7.19 (m, 4H), 7.27 (d, J = 8.4 Hz, 2H) IR (KBr) 3529, 1608, 1519, 1487, 1241, 1136, 1024 cm ⁻¹
I-1186	1H NMR (CDCl ₃) & 1.23 (d, J = 1.8Hz, 6H), 1.76 (s, 3H), 2.27 (s, 3H), 2.29 (s, 3H), 3.20 (s, 3H), 3.40 (quintet, J = 1.8Hz, 1H), 4.58 (d, J = 6.6 Hz, 2H), 5.48 - 5.59 (m, 1H), 6.90 (d, J = 7.8 Hz, 1H), 7.10 - 7.44 (m, 8H) 1R (KBr)1602, 1468, 1369, 1232, 1174, 1151 cm ⁻¹
1-1187	¹ H NMR (CDCl ₃) δ 1.24 (d, J = 6.9Hz, 6H), 1.76 (s, 3H), 1.81 (s, 3H), 2.27 (s, 3H), 2.29 (s, 3H), 3.40 (quintet, J = 6.9Hz, 1H), 4.58 (d, J = 6.6 Hz, 2H), 4.79 (broad, s., 1H), 5.50 · 5.57 (m, 1H), 6.84 · 6.93 (m, 3H), 7.09 · 7.16 (m, 3H), 7.00 · 7.28 (m, 3H)

Table 235

1.1188	1H NMH (CDCl ₃) & 1.31 (d, J = 6.9Hz, 6H), 1.44 (s, 3H), 1.67 (s, 3H), 2.97 (quintet, J = 6.9Hz, 1H), 3.78 (s, 3H), 3.80 (s, 3H), 3.92 (s, 3H), 4.20 · 4.30 (broad, 1H), 5.17 · 5.30 (m, 1H), 6.96 (s, 1H), 6.99 (s, 1H), 7.07 · 7.35 (m, 5H), 7.52 (d, J = 8.1 Hz, 2H) [1z, 2H] [1] [1] [2] [3] [4] [5] [6] [6] [6] [6] [6] [7] [6] [6
1.1189	1H NMR (CDCl ₃) & 2.67 (s, 3H), 3.13 (s, 3H), 3.57 (s, 3H), 3.79 (s, 3H), 5.19 (s, 2H), 6.84 (s, 1H), 7.15 (d, J = 9.0 Hz, 1H), 1-1189 7.31 · 7.50 (m, 8H), 7.55 (d.d, J = 12.0 & 1.8 Hz, 1H), 8.34 · 8.41 (m, 1H) 1R (KBr)3428, 1740, 1601, 1535, 1482, 1366, 1292, 1238, 1177, 1164, 1112, 1079, 1013cm ⁻¹
1.1190	11 NMR (CDCl ₃) & 1.48 (s, 3H), 1.70 (s, 3H), 1.77 (s, 3H), 1.81 (s,3H), 2.70 (s, 3H), 3.24 (s, 3H), 3.55 (s, 3H), 3.81 (s, 111), 4.09 - 4.20 (m, 1H), 4.53 - 4.68 (m, 3H), 5.18 - 5.30 (m, 1H), 5.43 - 5.54 (m, 1H), 6.86 (s, 1H), 7.06 - 7.51 (m, 6H) 1R (KBr) 1702, 1521, 1482, 1367, 1204, 1177, 1115, 1080 cm ⁻¹
1.1191	1
1.1192	1H NMR (CDCl ₃) & 1.75 (8, 3H), 1.78 (8, 3H), 3.49 (8, 3H), 3.73 (8, 3H), 3.78 (d, J = 6.9 Hz, 2H), 5.32 · 5.43 (m, 1H), 6.74 (8, 1H), 6.73 · 6.97 (m, 4H), 7.25 · 7.37 (m, 2H) 1.1192 6.44 (8, 1H), 6.73 · 6.97 (m, 4H), 7.25 · 7.37 (m, 2H) 1R (KBr)3551,3437,3310, 1607, 1529, 1491, 1463, 1402, 1362, 1269, 1255, 1184, 1099,1070, 1013 cm ⁻¹
1.1193	¹ H NMR (CDCl ₃) δ 2.28 (s, 3H), 2.30 (s, 3H), 3.00 (s, 6H), 5.16 (s, 2H), 5.69 (s, 1H), 6.80 (d, J = 8.7 Hz, 2H), 6.84 (d.d, J = 8.1 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 7.12(s, 1H), 7.13 (s, 1H), 7.27 (d, J = 8.7 Hz, 2H), 7.34 - 7.50 (m, 5H) ¹ R (KBr)1605, 1525, 1490, 1417, 1242, 1199, 1127, 1006 cm ⁻¹

Table 236

	mp 174-175 °C
	11 NMR (CDCL ₃) & 3.48 (s, 3H), 3.78 (s, 3H), 4.41 (s, 4H), 5.17 (s, 2H), 5.71 (s, 1H), 5.88 (s, 1H), 6.48 (s, 1H), 6.94-7.50 (m,
	1811), 7.86 (ABq, J = 8.4 Hz, 4H)
	1R (KBr) 3463, 3409, 1588, 1519, 1482, 15455, 1417, 1385, 1321, 1285, 1247, 1154, 1112, 1096, 1067, 1015 cm ⁻¹
	mp 165-167 C
1	111 NMR (CDCL ₃) & 2.68 (8, 311), 3.14 (8, 311), 3.56 (8, 311), 3.81 (8, 311), 4.40 (8, 411), 5.20 (8, 211), 6.86 (8, 111), 7.09-7.50 (m,
2611-	1811), 7.79 (ABq, J = 8.1 Hz, 411)
	IR (KBr) 3434, 2938, 1606, 1596, 1518, 1478, 1455, 1368, 1335, 1293, 1268, 1239, 1174, 1157, 1118, 1079 cm ⁻¹
	mp 176-178 C
	111 NMR (CDCl ₃) & 1.58 (s, 311), 1.66 (s, 311), 1.77 (s, 3H), 1.81 (e, 3H), 2.71 (s, 3H), 3.24 (s, 3H), 3.55 (s, 3H), 3.64 (m, 2H),
1.1196	1.1196 3.80 (8, 3H), 4.28 (t, J = 6.0 Hz, 1H), 4.64 (d, J = 6.9 Hz, 2H), 5.10 (m, 1H), 5.49 (m, 1H), 6.86 (8, 1H), 7.10 (d, J = 8.4 Hz,
	1H), 7.35 (dd, $J = 2.1$, 8.4 Hz, 1H), 7.39 (d, $J = 2.1$ Hz, 1H), 7.87 (ABq, $J = 8.7$ Hz, 4H)
	IR (KBr) 3434, 3321, 2939, 1517, 1477, 1366, 1325, 1292, 1269, 1240, 1176, 1156, 1120, 1077 cm ⁻¹
	mp 180-181 C
1	111 NMIR (DMSC) δ 1.74 (8, 311), 1.77 (8, 311), 2.87 (8, 311), 3.36 (8, 311), 3.51 (8, 3H), 3.79 (8, 3H), 4.68 (d, J = 6.6 Hz, 2H),
1.1197	5.48 (m, 1H), 7.10 (s, 1H), 7.28-7.30 (m, 3H), 7.45 (bs, 2H), 7.87 (ABq, J = 8.7 Hz, 4H)
·	IR (KBr) 3340, 3238, 2939, 1598, 1518, 1481, 1362, 1333, 1291, 1270, 1239, 1172, 1161, 1120, 1076, 1007 cm 1
	oil
	111 NMIR (CDCI3) & 1.45 (g, 3H), 1.66 (g, 3H), 1.87 (g, 3H), 2.24 (g, 3H), 2.27 (g, 3H), 2.30 (g, 3H), 3.84 (g, 3H), 3.92 (g, 3H),
1.1198	3.95-4.03 (m, 1H), 4.50-4.58 (m, 1H), 5.22-5.29 (m, 1H), 6.87-6.99 (m, 4H), 7.09-7.17 (m, 3H), 7.80 (s, 1H), 8.34-8.42 (m, 1H)
	IR (CHCl ₃) 3673, 3021, 1685, 1639, 1525, 1495, 1406, 1237, 1128, 1037 cm ⁻¹

Table 237

1-1	mp 177-179 °C ¹ H NMR (CDCh ₃) & 1.45 (s, GH), 1.66 (s, GH), 1.87 (s, GH), 2.29 (s, GH), 3.85 (s, GH), 3.95-4.04 (m, 2H), 4.50-4.59 (m, 2H), 5.23-5.29 (m, 2H), 6.90-6.95 (m, 4H), 7.10-7.15 (m, 2H), 7.19 (s, 2H) IR (KBr) 2929, 1661, 1492, 1405, 1288, 1214, 1030, 869, 829 cm ⁻¹
1.1200	
1.1201	powder 1H NMR (CDCE) 6 1.77 (s, 3H), 1.82 (s, 3H), 2.80 (s, 3H), 3.21 (s, 3H), 3.56 (s, 3H), 3.79 (s, 3H), 4.67 (d, J = 6.6 Hz, 2H), 5.46-5.51 (m, 1H), 6.84 (s, 1H), 7.05 (d, J = 8.1 Hz, 1H), 7.22-7.26 (m, 1H), 7.36-7.41 (m, 2H), 7.67-7.71 (m, 2H), 8.35 (d, J = 1.8 Hz, 1H), 9.24 (s, 1H) 1R (KBr) 3385, 2937, 1718, 1532, 1479, 1362, 1175, 1152, 1078, 973, 876, 797, 526 cm ⁻¹
1.1202	
1.1203	

Table 238

	C 10-00 du
	111 NMR (CDCE) δ 1.72 (s, 311), 1.79 (s, 311), 2.26 (s, 611), 4.69 (d, $J=7.2$ Hz, 2H), 4.9-5.0 (brs, 1H), 5.57 (t, $J=7.2$ Hz,
1.124	1H), $6.85 \cdot 7.0$ (m, 4H), 7.10 (d, $J = 8.7$ Hz, 2H), 7.23 (d, $J = 8.7$ Hz, 2H)
	IR (KBr) 3253, 3013, 2979, 2928, 1676, 1584, 1521, 1492, 1232, 1034, 950, 848, 825 cm ⁻¹
	mp 131-132 C
	111 NMR (CDCL ₃) δ 1.73 (8, 311), 1.79 (8, 311), 3.43 (8, 311), 3.76 (8, 311), 4.68 (d, $J = 6.9 \text{ Hz}$, 2H), 4.9-5.1 (brs, 1H), 5.58 (t, $J = 6.9 \text{ Hz}$, 2H), 4.9-5.1 (brs, 1H), 5.58 (t, $J = 6.9 \text{ Hz}$, 2H), 4.9-5.1 (brs, 1H), 5.58 (t, $J = 6.9 \text{ Hz}$, 2H), 4.9-5.1 (brs, 1H), 5.58 (t, $J = 6.9 \text{ Hz}$, 2H), 4.9-5.1 (brs, 1H), 5.58 (t, $J = 6.9 \text{ Hz}$, 2H), 4.9-5.1 (brs, 1H), 5.58 (t, $J = 6.9 \text{ Hz}$, 2H), 4.9-5.1 (brs, 1H), 5.58 (t, $J = 6.9 \text{ Hz}$, 2H), 4.9-5.1 (brs, 1H), 5.58 (t, $J = 6.9 \text{ Hz}$, 2H), 4.9-5.1 (brs, 1H), 5.58 (t, $J = 6.9 \text{ Hz}$, 2H), 4.9-5.1 (brs, 1H), 5.58 (t, $J = 6.9 \text{ Hz}$, 2H), 4.9-5.1 (brs, 1H), 5.58 (t, $J = 6.9 \text{ Hz}$, 2H)
1-1205	= 7.2 Hz, 111), 6.09 (brs, 111), 6.44 (s, 111), 6.92 (d, J = 8.4 Hz, 211), 7.0-7.1 (m, 211), 7.52 (d, J = 8.4 Hz, 211)
	IR (KBr) 3428, 2951, 2932, 1671, 1611, 1523, 1491, 1402, 1233, 1111, 1077, 1027, 969, 833 cm ⁻¹
	mp 191-192 °C
	111 NMR (CDC13) δ 2.15 (8, 6H), 3.22 (8, 3H), 3.87 (8, 3H), 5.18 (AB q, J = 12.0 Hz, 2H), 6.74 (dd, J = 2.1, 8.1 Hz, 1H), 6.78
1-1206	(d, J = 2.1 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 7.24 (s, 1H), 7.30-7.50 (m, 9H)
	IR (KBr) 1528, 1479, 1453, 1364, 1326, 1262, 1243, 1223, 1209, 1200, 1176, 1162, 1137, 963, 870, 846, 754 cm ⁻¹
	mp 108-109 °C
1	111 NMR (CDCh) 6 1.77 (8, 3H), 1.82 (d, J = 0.6 Hz, 3H), 2.27 (8, 3H), 2.28 (8, 3H), 4.56 (d, J = 6.6 Hz, 2H), 4.89 (8, 1H),
1.1207	5.54 (m, 111), 6.86-6.92 (m, 2H), 6.94-7.00 (m, 2H), 7.12 (s, 1H), 7.13 (s, 1H), 7.22-7.27 (m, 2H), 7.27-7.31 (m, 2H)
	IR (KBr) 3349, 1608, 1520, 1488, 1439, 1383, 1287, 1263, 1236, 1176, 999, 979 cm ⁻¹
	mp 194-195 °C
	14 NMR (CDC13) 6 2.14 (8, 3H), 2.16 (8, 3H), 3.87 (8, 3H), 4.97 (8, 1H), 5.17 (AB q, J = 12.6 Hz, 2H), 6.74 (dd, J = 2.1, 8.1
1.1208	1.1208 Hz, 111), 6.79 (d, J = 2.1 Hz, 1H), 6.88-6.93 (m, 2H), 6.93 (d, J = 8.1 Hz, 1H), 7.17-7.22 (m, 2H), 7.24 (s, 1H), 7.29-7.49 (m,
	EH)
	IR (KBr) 3408, 1611, 1526, 1479, 1463, 1455, 1382, 1263, 1242, 1225, 1212, 1143, 997, 751 cm ⁻¹

Table 239

1-1209	np 183-184 °C 111 NMR (CDCL.)
1.1210	
1.1211	mp 243-244 °C 1H NMR (DMSO-da) 6 1.91 (s, 3H), 1.96 (s, 3H), 3.77 (s, 3H), 4.05 (br s, 2H), 5.12 (s, 2H), 6.40 (s, 1H), 6.71 (dd, J = 1.8, 8.1) 1H NMR (DMSO-da) 6 1.91 (s, 3H), 7.06-7.12 (m, 2H), 7.16 (d, J = 8.1 Hz, 1H), 7.32-7.52 (m, 5H), 9.38 (s, 1H) 1Hz, 1H), 6.77-6.84 (m, 3H), 7.06-7.12 (m, 2H), 7.16 (d, J = 8.1 Hz, 1H), 7.32-7.52 (m, 5H), 9.38 (s, 1H) 1H (KBr) 3378, 3289, 1609, 1586, 1518, 1483, 1454, 1402, 1267, 1236, 1207, 1171, 1136, 1024, 863, 835, 816, 753, 730, 695 cm. ¹
1.1212	mp 195-196 °C, [4] A 1.75 (8, 311), 1.79 (8, 311), 2.15 (8, 311), 2.16 (8, 311), 3.85 (8, 311), 4.61 (d, J = 6.9 Hz, 211), 4.97 (8, 111), 6.16-6.79 (m, 211), 6.89-6.94 (m, 311), 7.18-7.23 (m, 211), 7.24 (8, 111) (6.76-6.79 (m, 211), 6.89-6.94 (m, 311), 7.18-7.23 (m, 211), 1137, 983, 835 cm ⁻¹ 1R (KBr) 3462, 1611, 1519, 1479, 1459, 1431, 1379, 1271, 1240, 1228, 1211, 1137, 983, 835 cm ⁻¹
1.1213	1.1213 IR (KBr) 3275, 1494, 1462, 1444, 1387, 1371, 1232, 1212, 1183, 1141 cm
1-124	mp 106-108 °C ¹ H NMR (CDCl ₃) δ 2.24 (s, 3H), 3.79 (s, 3H), 4.72 (br, 1H), 5.20 (s, 2H), 6.72-7.18 (m, 8H), 7.36-7.50 (m, 6H) ¹ H NMR (CDCl ₃) 3596, 1610, 1523, 1493, 1465, 1455, 1388, 1318, 1298, 1262, 1173, 1127, 1038, 834 cm ⁻¹

Table 240

	mp 108-110 °C 1177 (s, 311), 1.82 (s, 311), 2.25 (s, 311), 3.79 (s, 311), 4.63-4.65 (d, J = 7.2 Hz, 2H), 5.56 (s, 2H), 6.81 (s,
1.1215	111), 6.87-7.18 (m, 6H), 7.44-7.47 (m, 2H)
	IR (CHCh.) 3596, 2937, 1610, 1523, 1493, 1465, 1446, 1387, 1297, 1261, 1173, 1125, 1038, 993, 834 cm ⁻¹
	mp 121.122 C
	111 NMR (CDCL ₁) & 2.24 (8, 3H), 3.79 (8, 3H), 4.78-4.80 (d, J = 6.9 Hz, 2H), 6.24 (t, J = 6.9 Hz, 1H), 6.80 (8, 1H), 6.87-7.19
9121-1	(m, 6H), 7.43-7.48 (m, 2H)
	IR (CHCh) 3596, 1612, 1523, 1493, 1464, 1389, 1300, 1269, 1173, 1127, 1038, 886, 834 cm ⁻¹
	mp 163-165 ℃
	1H NMR (CDCI3) 6 2.26 (s, 3H), 2.28 (s, 3H), 4.78 (br s, 1H), 4.78 (d, J =6.5 Hz, 2H), 5.60 (s, 1H) 6.23 (t, J =6.5 Hz, 1H),
1.121.7	6.83-6.92 (m, 4H), 6.99 (d, J =2.1 Hz, 1H), 7.10 (s, 1H), 7.11 (s, 1H), 7.22-7.27 (m, 2H)
	IR (CHCl.) 3597, 3548, 3027, 3010, 1613, 1588, 1522, 1490, 1218, 1208, 1171 cm ⁻¹
	foam
	111 NMR (CDCh) 6 2.37 (8, 3H), 3.39 (8, 3H), 3.73 (8, 3H), 5.15 (8, 2H), 5.68 (8, 1H), 5.92 (8, 1H), 6.46 (8, 1H), 6.71 (dd, J=
	3.7, 0.7 Hz, 1H), 6.96 (dd, J = 8.4, 2.1 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 7.09 (d, J = 2.1 Hz, 1H), 7.26 (dd, J = 8.6, 0.7 Hz,
1-1218	2H), $7.37.7.45$ (m, 5H), 7.60 (dd, $J = 8.7$, 1.5 Hz, 1 H), 7.61 (d, $J = 3.7$ Hz, 1 H), 7.78 (d, $J = 1.5$ Hz, 1 H), 7.82 (d, $J = 8.6$ Hz,
	1H), 8.05 (d, J = 8.7 Hz, 1H)
	IR (KBr) 3476, 1457, 1371, 1254, 1107, 1131, 1107, 1011, 814, 685, 581 cm ⁻¹
	mp 217.219 ℃
	1H NMR (CDCl ₃) & 2.37 (8, 3H), 2.69 (8, 3H), 3.12 (8, 3H), 3.47 (8, 3H), 3.76 (6, 3H), 5.18 (8, 2H), 6.71 (d, J = 3.8 Hz, 1H),
1.1219	6.86 (a, 111), 7.15 (d, J = 8.4 Hz, 1H), 7.26 (d, J = 8.7 Hz, 2H), 7.32.7.48 (m, 7H), 7.56 (dd, J = 8.7, 1.8 Hz, 1H), 7.61 (d, J =
	3.8 Hz, 1H), 7.78 (d, J = 1.8 Hz, 1H), 7.82 (d, J = 8.7 Hz, 1H), 8.05 (d, J = 8.7 Hz, 1H)
	IR (KBr) 1366, 1174, 1079, 963, 814, 686, 586 cm ⁻¹

Table 241

	mp $208.210~{ m C}$
	111 NMR (CDCla) $\delta = 2.37$ (s, 311), 2.72 (s, 311), 3.23 (s, 311), 3.47 (s, 311), 3.76 (s, 311), 4.63 (d, $J = 6.6$ Hz, 2H), 5.49 (t, $J = 6.6$
3	Hz, 1H), 6.71 (d, J = 3.8 Hz, 1H), 6.86 (s, 1H), 7.09 (d, J = 8.4 Hz, 1H), 7.26 (d, J = 8.3 Hz, 2H), 7.35 (dd, J = 8.4, 2.1 Hz, 1H),
0221	7.40 (d, J = 2.1 Hz, 1H), 7.56 (dd, J = 8.4, 1.7 Hz, 1H), 7.61 (d, J = 3.8 Hz, 1H), 7.78 (d, J = 1.7 Hz, 1H), 7.82 (d, J = 8.3 Hz,
	2H), 8.05 (d, J = 8.7 Hz, 1H)
	IR(KBr) 1466, 1445, 1365, 1174, 1116, 1079, 964, 812, 686, 584 cm ⁻¹
	ար 203-205 Ն
	111 NMR (CDCl3) 6 1.76 (8, 3H), 1.81 (8, 3H), 2.39 (8, 3H), 2.69 (8, 3H), 2.97 (t, J = 8.6 Hz, 2H), 3.23 (8, 3H), 3.50 (8, 3H),
	3.77 (s, 3H), 3.98 (t, J = 8.6 Hz, 2H), 4.63 (d, J = 6.6 Hz, 2H), 5.49 (t, J = 6.6 Hz, 1H), 6.80 (s, 1H), 7.08 (d, J = 8.5 Hz, 1H).
1221	7.24-7.28 (m, 2H), 7.33 (dd, $J = 8.5$, 2.0 Hz, 1H), $7.37-7.39$ (m, 2H), $7.41-7.45$ (m, 1H), 7.71 (d, $J = 8.4$ Hz, 1H), 7.73 (d, $J = 1.24$
	8.1 Hz, 2H)
	IR (KBr) 1474, 1362, 1241, 1166, 1079, 975, 808 cm ⁻¹
	amorphous
	111 NMR (CDCl.) 6 1.76 (6, 3H), 1.82 (8, 3H), 2.39 (8, 3H), 2.98 (t, J = 8.4 Hz, 2H), 3.43 (6, 3H), 3.73 (8, 3H), 3.98 (t, J = 8.4
1222	1222 Hz, 2H), 4.61 (d, J = 6.6 Hz, 2H), 5.53 (t, J = 6.6 Hz, 1H), 5.68 (s, 1H), 5.86 (s, 1H), 6.40 (s, 1H), 6.93-6.95 (m, 2H), 7.03-7.05
	(m, 1H), $7.23.7.27$ (m, 2H), $7.35.7.37$ (m, 1H), $7.45.7.50$ (m, 1H), 7.71 (d, $J = 8.4$ Hz, 1H), 7.74 (d, $J = 8.4$ Hz, 2H)
	IR (KBr) 3457, 1480, 1354, 1244, 1164, 1099, 978, 817 cm ⁻¹
	mp 199.201 C
	¹ H NMR (CDCl ₃) δ 3.19 (s, 3H), 3.72 (s, 3H), 3.90 (s, 3H), 4.20-4.27 (m, 4H), 5.20 (s, 2H), 6.53 (s, 1H), 6.90-6.99 (m, 3H),
1223	7.25-7.65 (m, 9H)
	IR (KBr) 3434, 2938, 1604, 1586, 1522, 1484, 1465, 1432, 1368, 1339, 1326, 1249, 1226, 1203, 1174, 1146, 1136, 1106, 1027
	cm ⁻¹

Table 242

1.1224	mp 127-129 °C ¹ II NMR (CDCL ₃) δ 1.57 (s, 311), 1.65 (s, 311), 1.76 (s, 311), 1.82 (s, 311), 3.46 (s, 3H), 3.64 (m, 2H), 3.76 (s, 3H), 4.30 (t, J = 11 NH) (CDCL ₃) δ 1.57 (s, 11), 4.62 (d, J = 6.9 Hz, 2H), 5.10 (m, 1H), 5.53 (m, 1H), 5.72 (s, 1H), 5.85 (s, 1H), 6.47 (s, 1H), 6.93 (dd, J = 1.8, 8.4 Hz, 1H), 112, 111), 6.98 (d, J = 8.4 Hz, 1H), 7.05 (d, J = 1.8 Hz, 1H), 7.88 (ABq, J = 8.7 Hz, 4H) ¹ IR (KBr) 3478, 3314, 2937, 1585, 1556, 1518, 1501, 1484, 1460, 1417, 1387, 1363, 1328, 1279, 1243, 1228, 1191, 1156, 1129, 1113, 1090, 1068, 1013 cm ⁻¹
1.1225	mp 162-164 °C 1-1225 ¹ H NMR (CDCl ₃) δ 3.19 (s, 3H), 3.72 (s, 3H), 4.19-4.23 (m, 4H), 5.18 (s, 2H), 6.52 (s, 1H), 7.03-7.64 (m, 12H) 1R (KBr) 3433, 2933, 1523, 1483, 1463, 1435, 1377, 1360, 1269, 1227, 1172, 1149, 1126, 1096 cm. ¹
1.1226	mp 188-190 °C ¹ H NMR (DMSO) δ 1.72 (s, 3H), 1.75 (s, 3H), 3.33 (s, 3H), 3.67 (s, 3H), 4.55 (d, J = 6.9 Hz, 2H), 5.49 (m, 1H), 6.50 (s, 1H), 6.66 (dd, J = 2.1, 8.1 Hz, 1H), 6.74 (d, J = 2.1 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 7.42 (bs, 2H), 7.85 (ABq, J = 8.4 Hz, 4H), 8.75 (bs, 2H) 1R (Kbr) 3465, 2937, 1588, 1517, 1500, 1483, 1470, 1446, 1415, 1385, 1340, 1308, 1283, 1246, 1224, 1201, 1186, 1168, 1130, 1116, 1091, 1067, 1011 cm ⁻¹
1.1227	

Table 243

55

5	2H),	(bs,	(m,
10	17 (d, J = 7.2 Hz, ? 1H), 6.979 (d, J =	6.3 Hz, 2H), 4.94	3) δ 1.75 (s, 3H), 1.81 (s, 3H), 3.45 (s, 3H), 3.75 (s, 3H), 3.87 (s, 3H), 4.61 (d, J = 6.6 Hz, 2H), 5.54-5.58 (m, J. 5.91 (s, 1H), 6.46 (s, 1H), 6.93-7.06 (m, 5H), 7.58 (d, J = 8.7 Hz, 2H) 2939, 1680, 1609, 1582, 1520, 1487, 1458, 1397, 1284, 1246, 1191, 1179, 1115, 1067, 1015, 940, 822, 794
15	20 (s, 3H), 3.4 d, J = 1.8 Hz,	l), 4.62 (d, J = 1103 cm ⁻¹	11 (d, J = 6.6 l 9, 1115, 1067
20	.44 (s, 3H), 3. r, 1H), 6.976 (:0-4.25 (m, 4H	87 (s, 3H), 4.6 .7 Hz, 2H) 46, 1191, 117
25	.98 (m, 1H), 2 J = 1.8, 8.1 Hz	87 (s, 3H), 4.2	.75 (s, 3H), 3.3 7.58 (d, J = 8 397, 1284, 12.
30	.42 (m, 2H), 0 H), 6.91 (dd, c	1.71 (8, 311), 3. 1) 122, 1371, 126	3.45 (s, 3H), 3 -7.06 (m, 5H), 1487, 1458, 13
35	(m, 2H), 0.34-0, , 2H), 6.85 (s, 1	a) 0 1.74 (s, 3H), 1.78 (s, 3H), 3.7 H), 6.55 (s, 1H), 6.89-7.50 (m, 7H) 2933, 1611, 1522, 1484, 1462, 142), 1.81 (s, 31!), 346 (s, 1H), 6.93
40	3) & -0.07-0.02 11 (s, 3H), 5.22 (s 73 (m, 9H)	1.74 (8, 31 ¹ . 55 (8, 111), G	1.75 (s, 3H 1 (s, 1H), 6. , 1680, 160
45	III NMR (CDCl ₃) & -0.07-0.02 (m, 2H), 0.34-0.42 (m, 2H), 0.98 (m, 1H), 2.44 (s, 3H), 3.20 (s, 3H), 3.47 (d, J = 7.2 Hz, 2H), 0.11 NMR (CDCl ₃) & -0.07-0.02 (m, 2H), 0.34-0.42 (m, 2H), 0.98 (m, 1H), 2.44 (s, 3H), 3.20 (s, 3H), 3.47 (d, J = 7.2 Hz, 2H), 0.34-0.47 (s, 3H), 3.91 (s, 3H), 5.22 (s, 2H), 6.85 (s, 1H), 6.91 (dd, J = 1.8, 8.1 Hz, 1H), 6.976 (d, J = 1.8 Hz, 1H), 6.979 (d, J = 8.1 Hz, 1H), 7.26-7.73 (m, 9H)	mp 172-174 °C III NMR (CDCl ₃) & 1.74 (a, 3H), 1.78 (a, 3H), 3.71 (a, 3H), 3.87 (a, 3H), 4.20-4.25 (m, 4H), 4.62 (d, J = 6 .3 Hz, 2H), 4.94 (ba, 1H), 5.57 (m, 1H), 6.55 (s, 1H), 6.89-7.50 (m, 7H) IR (KBr) 3410, 2933, 1611, 1522, 1484, 1462, 1422, 1371, 1264, 1238, 1224, 1173, 1134, 1103 cm ⁻¹	mp 149-151 °C ¹ H NMR (CDCl ₃)
50	mt 111 8 3.7 8 11z	9 IH 2H	m H H H

1.1228

ت

1.1230

1.1229

Table 244

· 50

1.1232	mp 198-199°C. HI NMIR (DMSO-da) & 1.72 (s, 3H), 1.77 (s, 3H), 1.91 (s, 3H), 1.95 (s, 3H), 3.75 (s, 3H), 4.04 (s, 2H), 4.55 (d, J = 6.9 Hz, 2H), 5.48 (m, 1H), 6.40 (s, 1H), 6.69 (dd, J = 1.8, 8.1 Hz, 1H), 6.75 (d, J = 1.8 Hz, 1H), 6.77-6.83 (m, 2H), 7.05-7.11 (m, 3H), 9.39 (s, 1H) H. (KBr) 3375, 3287, 2913, 1609, 1687, 1578, 1518, 1484, 1434, 1403, 1270, 1235, 1207, 1171, 1136, 1032, 1009, 863, 863,
1.1233	mp 198-199 °C 1H NMR (CDCl ₃) δ 1.77 (s, 3H), 1.80 (s, 3H), 1.91 (s, 3H), 2.11 (s, 3H), 2.13 (s, 3H), 3.20 (s, 3H), 3.84 (s, 3H), 4.64 (d, J = 1.1233 (s, 2H), 5.58 (m, 1H), 6.46 (s, 1H), 6.69-6.74 (m, 2H), 6.96 (d, J = 8.4 Hz, 1H), 7.11 (s, 1H), 7.32-7.38 (m, 2H), 7.40-7.46 (m, 2H) (m, 2H) IR (KBr) 1651, 1513, 1470, 1448, 1414, 1368, 1330, 1267, 1241, 1214, 1199, 1175, 970, 869 cm ⁻¹
1.1232	mp 193-194 °C HI NMR (CDCE)
1-1235	mp 114-115 °C. 1H NMR (CDCl ₃)

Table 245

	powder
3000	111 NMR (CDCl.) 3 3.22 (s, 3H), 3.38 (s, 3H), 3.46 (s, 3H), 3.92 (s, 3H), 5.22 (s, 2H), 5.76 (s, 1H), 6.97-7.09 (m, 3H), 7.32-
927-1	7.51 (m, 9H)
	IR (KBr) 3448, 2935, 1516, 1455, 1394, 1366, 1352, 1246, 1148, 1076, 1015, 972, 881, 699, 541, 524 cm ⁻¹
	mp 169-172 ℃
	111 NMR (CDCl3) 6 2.49 (8, 3H), 3.21 (8, 3H), 3.47 (8, 3H), 3.50 (8, 3H), 3.92 (8, 3H), 5.23 (8, 2H), 6.95-7.04 (m, 3H), 7.31-
1.12:37	7.49 (m, 9H)
	IR (KBr) 3009, 2932, 1518, 1459, 1370, 1362, 1250, 1176, 1151, 872, 809, 542, 527 cm ⁻¹
	mp 182-184 C
	1H NMR (CDCI3) 6 2.67 (s, 3H), 3.21 (s, 3H), 3.48 (s, 3H), 3.50 (s, 3H), 3.93 (s, 3H), 5.77 (s, 1H), 6.98-7.06 (m, 3H), 7.38-
9621-1	7.51 (m, 411)
	IR (KBr) 3548, 3502, 2938, 1602, 1519, 1389, 1364, 1176, 1159, 1012, 963, 875, 521 cm ⁻¹
	mp 132-135 °C
	11 NMR (CDCh) 5 1.77 (s, 3H), 1.80 (s, 3H), 2.62 (s, 3H), 3.21 (s, 3H), 3.48 (s, 3H), 3.51 (s, 3H), 3.90 (s, 3H), 4.64 (d, J =
6521-1	6.6 Hz, 2H), 5.51-5.58 (m, 1H), 6.97-7.04 (m, 3H), 7.37-7.51 (m, 4H)
	IR (KBr) 2936, 1518, 1464, 1375, 1362, 1246, 1175, 1153, 1013, 968, 872, 805, 529 cm ⁻¹
	mp 169-172 °C
	1H NMR (CDCl3) 6 1.76 (s, 3H), 1.80 (s, 3H), 3.38 (s, 3H), 3.47 (s, 3H), 3.89 (s, 3H), 4.65 (d, J = 6.6 Hz, 2H), 5.06 (s, 1H),
0.51.1	5.54-5.61 (m, 1H), 5.83 (s, 1H), 6.92-7.00 (m, 3H), 7.05-7.09 (m, 2H), 7.28-7.33 (m, 2H)
	IR (KBr) 3458, 2935, 1611, 1520, 1458, 1392, 1244, 1222, 1015, 828, 803 cm ⁻¹

.

Table 246

1-1241	mp 170-173 °C III NMR (CDCl ₃)
1.1242	
1.1243	foam 1H NMR (CDCl ₃) & 3.43 (s, 3H), 3.72 (s, 3H), 5.03 (s, 2H), 6.43 (s, 1H), 6.93 (dd, J = 8.4, 2.1 Hz, 1H), 6.94 (d, J = 8.7 Hz, 2H), 7.09 (d, J = 2.1 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 7.29 (ddd, J = 7.8, 4.8, 1.5 Hz, 1H), 7.49 (brd, J = 7.8 Hz, 1H), 7.53 (d, J = 8.7 Hz, 2H), 7.70 (ddd, J = 7.8, 7.8, 1.5 Hz, 1H), 8.61 (brd, J = 4.8 Hz, 1H) 1R (KBr) 3432, 1611, 1588, 1562, 1523, 1488, 1467, 1226, 1114, 1071, 1015, 939, 824, 778, 758 cm. 1
I-1244	foam 111 NMR (CDCl ₃) & 3.45 (s, 3H), 3.75 (s, 3H), 5.01 (s, 2H), 6.45 (s, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.99 (dd, J = 8.4, 2.1 Hz, 1H), 7.10 (d, J = 2.1 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.30 ~ 7.36 (m, 3H), 7.46 ~ 7.49 (m, 2H), 7.54 (d, J = 8.7 Hz, 2H) IR (KBr) 3433, 1612, 1589, 1623, 1489, 1403, 1224, 1192, 1113, 1070, 1013, 938, 813, 758 cm ⁻¹
1-1245	foam 1H NMR (CDCl ₃) & 3.45 (8, 3H), 3.75 (8, 3H), 5.01 (8, 2H), 6.45 (8, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.99 (dd, J = 5.1, 3.6 Hz, 1H), 6.99 (dd, J = 8.4, 2.1 Hz, 1H), 7.10 (d, J = 2.1 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 7.27 (dd, J = 3.6, 1.0 Hz, 1H), 7.29 (dd, J = 5.1, 1.0 Hz, 1H), 7.54 (d, J = 8.7 Hz, 2H) = 5.1, 1.0 Hz, 1H), 7.54 (d, J = 8.7 Hz, 2H) IR (KBr) 3433, 1612, 1589, 1523, 1488, 1403, 1241, 1224, 1192, 1113, 1070, 1011, 826 cm. ¹

Table 247

. **55**

1-1246	foam HI NMR (CDCl3) & 3.45 (s, 311), 3.75 (s, 311), 4.93 (s, 211), 5.70 (d, J = 1.5 Hz, 111), 5.75 (d, J = 1.5 Hz, 111), 6.45 (s, 111), 1.1246 6.92 (d, J = 8.7 Hz, 211), 6.99 (dd, J = 8.4, 2.1 Hz, 111), 7.05 (d, J = 8.4 Hz, 111), 7.10 (d, J = 2.1 Hz, 111), 7.54 (d, J = 8.7 Hz, 211) 211) 121)
1.1247	form 111 NMR (CDCl ₃) & 3.45 (e, 311), 3.75 (e, 314), 5.53 (d, J = 10.5 Hz, 111), 5.69 (d, J = 16.5 Hz, 114), 6.11 (ddd, J = 16.5, 10.5, 11.1247 6.3 Hz, 111), 6.44 (d, J = 6.3 Hz, 114), 6.45 (e, 114), 6.88 (d, J = 8.4 Hz, 114), 6.91 ~ 6.93 (m, 214), 6.92 (d, J = 8.7 Hz, 214), 7.53 (d, J = 8.7 Hz, 214) 1.53 (d, J = 8.7 Hz, 214) 1.64 (KBr) 3433, 1611, 1592, 1522, 1485, 1403, 1226, 1106, 1059, 814 cm. ¹
1.1248	foam 1H NMR (CDCl ₃)
1.1249	foam ¹ H NMR (CDCl ₃) & 3.38 (a, 3H), 3.67 (a, 3H), 5.12 (a, 2H), 6.43 (a, 1H), 6.56 (d, J = 3.3 Hz, 1H), 6.79 (dd, J = 2.1, 8.1 Hz, 1H), 6.84 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 2.1 Hz, 1H), 7.02 (d, J = 3.3 Hz, 1H), 7.02 (d, J = 8.1 Hz, 1H), 7.45 (d, J = 8.7 Hz, 2H) 2H) IR (KBr) 3431, 1698, 1611, 1523, 1489, 1405, 1246, 1114, 1071, 1012, 816, 786 cm ⁻¹
1.1250	¹ H NMR (CDCl ₃) 6 3.38 (s, 3H), 3.67 (s, 3H), 4.66 (tt, J = 2.7, 6.9 Hz, 2H), 4.90 (tt, J = 2.7, 6.9 Hz, 2H), 5.43 (tt, J = 6.9, I-1250 (e.9 Hz, 1H), 6.45 (s, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.96 (br.s, 2H), 7.07 (s, 1H), 7.53 (d, J = 8.7 Hz, 2H) (b. 18.7 Hz,

Table 248

1-1251	foam 111 NMR (CDCl3) \(\delta\) 1.69 (dd, \(delta\) = 3.3, 6.9 Hz, 3H), 3.46 (s, 3H), 3.74 (s, 3H), 4.63 (dd, \(delta\) = 2.4, 6.3 Hz, 2H), 5.28 (m, 1H), 1-1251 5.33 (m, 1H), 6.45 (s, 1H), 6.92 (d, \(delta\) = 8.7 Hz, 2H), 6.95 (d, \(delta\) = 1.5 Hz, 1H), 6.96 (br.s, 1H), 7.06 (d, \(delta\) = 1.5 Hz, 1H), 7.52 (d, \(delta\) = 8.7 Hz, 2H) 1-1251 = 8.7 Hz, 2H) 1-1251 Hz, 2H) 1-1251 Hz, 2H) 1-1251 E.33 (m, 1H), 6.45 (s, 1H), 6.92 (d, \(delta\) = 1.3 Hz, 2H), 6.95 (d, \(delta\) = 1.5 Hz, 1H), 7.52 (d, \(delta\) = 1.7 Hz, 2H) 1-1251 E.33 (m, 1H), 6.45 (s, 1H), 6.92 (d, \(delta\) = 1.7 Hz, 2H), 6.95 (d, \(delta\) = 1.5 Hz, 1H), 1.11z, 1011, 1011, 1098, 824 cm ⁻¹
1-1252	fonum 11 NMR (CDCl ₃) δ 1.02 (t, J = 7.2 Hz, 31!), 2.05 (ddq, J = 3.3, 6.3, 7.2 Hz, 21!), 3.46 (s, 31!), 3.74 (s, 3H), 4.64 (dd, J = 2.4, 11.252 G.0 Hz, 21!), 5.40 (m, 2H), 6.45 (s, 1H), 6.91 (d, J = 8.7 Hz, 2H), 6.94 (d, J = 2.1, 8.4 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 7.06 (d, J = 2.1 Hz, 1H), 7.54 (d, J = 8.7 Hz, 2H) 11 (KBr) 3479, 2960, 2933, 1964, 1612, 1582, 1522, 1489, 1403, 1242, 1113, 1072, 1011, 999, 944, 872 cm ⁻¹
1.1253	foam 1H NMR (CDCl ₃) δ 1.03 (d, J = 6.6 Hz, 6H), 2.34 (m, 1H), 3.46 (s, 3H), 3.74 (s, 3H), 4.63 (dd, J = 2.7, 6.3 Hz, 2H), 5.33 (m, 1H), 5.44 (m, 1H), 6.45 (s, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.93 (d, J = 1.8, 7.8 Hz, 1H), 6.97 (d, J = 7.8 Hz, 1H), 7.06 (d, J = 1.8 Hz, 1H), 7.53 (d, J = 8.7 Hz, 2H) 11z, 11l), 7.53 (d, J = 8.7 Hz, 2H) 11R (KBr) 3434, 2958, 1960, 1612, 1589, 1523, 1489, 1226, 1113, 1071, 1011, 939, 825 cm. ¹
1.124	foam 'H NMR (CDCl ₃)

5

	mp85-86 ℃
3	4H NMR (CDC3) & 2.85 (8, 3H), 3.32 (8, 3H), 3.82 (8, 3H), 3.96 (8, 3H), 5.38 (8, 2H), 7.04 (8, 1H), 7.22 (8, 1H), 7.25 (d, J =
1-1265	8.4 Hz, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.48-7.67 (m, 7H), 8.45 (brs, 1H)
	IR(KBr) 3432, 2938, 1740, 1608, 1517, 1483, 1396, 1366, 1271, 1179, 1111, 1080, 832, 810, 698 cm ⁻¹
	mp79-80 ℃
	111 NMR (CDCl3) & 2.14 (s, 311), 3.50 (s, 311), 4.95 (brs, 1H), 5.22 (s, 211), 5.88 (brs, 1H), 6.81 (s, 1H), 6.94 (d, J = 8.1 Hz,
9071-1	211), 7.02-7.14 (m, 311), 7.37-7.56 (m, 711)
	IR(KBr) 3409, 2933, 1612, 1522, 1488, 1454, 1400, 1266, 1229, 1199, 1162, 1007, 834, 696 cm ⁻¹
	mp87-88 ℃
	1H NMR (CDCII) & 2.13 (s, 3H), 2.59 (s, 3H), 3.20 (s, 3H), 3.55 (s, 3H), 5.22 (s, 2H), 6.99-7.17 (m, 5H), 7.34-7.48 (m, 6H),
1.1267	7.67 (d, J = 8.4 Hz, 2H)
	IR(KBr) 3428, 2931, 1612, 1522, 1488, 1454, 1400, 1266, 1230, 1163, 1007, 835 cm ⁻¹
	mp76.77 ℃
	111 NMR (CDCl3) & 1.72 (8, 3H), 1.77 (8, 6H), 1.81 (8, 3H), 2.69 (8, 3H), 3.24 (8, 3H), 3.61 (6, 3H), 3.79 (8, 3H), 4.12-4.20 (m,
1.1268	1-1268 1H), 4.55-4.61 (m, 1H), 4.64 (d, J = 6.6 Hz, 2H), 5.25 (t, J = 7.5 Hz, 1H), 5.50 (t, J = 6.4 Hz, 1H), 6.85 (s, 1H), 7.05-7.11 (m,
	2H), 7.34-7.40 (m, 3H)
	IR(KBr) 3423, 2939, 1707, 1521, 1484, 1367, 1241, 1178, 1079, 1034, 972, 799, 521 cm ⁻¹
	mp73.74 C
0.701	111 NMR ((3)(2), 5 2.17 (e, 3H), 2.28 (e, 3H), 5.16 (e, 2H), 5.71 (bre, 1H), 6.83 (d, J = 8.1 Hz, 1H), 6.97-7.00 (m, 2H), 7.08
6971-1	(s, 1H), 7.15 (s, 1H), 7.32-7.33 (m, 2H), 7.36-7.45 (m, 5H), 7.60 (d, J = 10.5 Hz, 1H), 8.05 (brs, 1H)
	IR(KBr) 3410, 2923, 1718, 1606, 1540, 1521, 1489, 1424, 1282, 1179, 976, 728 cm ⁻¹

Table 252

11 NMR (C) 11 1270 5.53 (t, J = 6 11 (KBr) 343	
1	
1	_
1R(KI)	5.53 (t, J = 6.6 Hz, 1H), 7.01-7.11 (m, 3H), 7.18 (s, 1H), 7.37 (d, J = 8.7 Hz, 2H), 7.67 (d, J = 8.7 Hz, 2H),
-66am	IR(KBr) 3434, 2938, 1519, 1478, 1365, 1267, 1176, 1151, 968, 871, 799, 524 cm ⁻¹
	mp99-100 ℃
N II	111 NMR (CDCL) δ 1.76 (8, 6H), 1.79 (8, 3H), 1.81 (8, 3H), 3.52 (8, 3H), 3.72 (8, 3H), 4.61 (d, $J = 7.2 \mathrm{Hz}$, 2H), 5.36 (t, $J = 6.6 \mathrm{Hz}$
1-1271 Hz, 11	1.1271 Hz, 111), 5.53 (t, J = 5.7 Hz, 1H), 5.69 (brs, 1H), 5.81 (brs, 1H), 6.43 (s, 1H), 6.46-6.52 (m, 1H), 6.95 (s, 2H), 7.05 (s, 1H),
7.10-7	7.10-7.16 (m, 1H)
IR(KB	IR(KBr) 3496, 3407, 2933, 1638, 1535, 1493, 1098, 1000 cm ⁻¹
mp75	mp75-76 ℃
	1H NMR (CDCl ₃) δ 2.17 (8, 3H), 2.28 (8, 3H), 3.12 (8, 3H), 5.18 (8, 2H), 7.09-7.14 (m, 4H), 7.26-7.47 (m, 8H), 7.61 (d, $J=1$
1-1272 11.4 F	11.4 Hz, 1H), 8.00 (brs, 1H)
IRKK	IR(KBr) 3330, 2927, 1731, 1607, 1541, 1521, 1488, 1364, 1290, 1169, 1105, 975, 878, 811 cm.
mp11	mp112-113 C
	1H NMR (CDCl ₃) δ 1.76 (8, 3H), 1.81 (8, 3H), 2.11 (8, 3H), 3.47 (8, 3H), 4.64 (d, $J = 6.6$ Hz, 2H), 4.83 (brs, 1H), 5.56 (t, $J = 1.0$
I-1273 7.2 Hz	7.2 Hz, 1H), 5.84 (brs, 1H), 6.78 (s, 1H), 6.91 (d, $J = 8.7$ Hz, 2H), 7.02-7.10 (m, 3H), 751 (d, $J = 8.4$ Hz, 2H), .
IR(KI	IR(KBr) 3498, 2978, 1613, 1522, 1487, 1453, 1302, 1204, 1232, 1196, 987, 812 cm ⁻¹
oil	(Hz 2H) 3 13 (Hz 9) 20 6 (Hz 2) 60 6 (Hz 2) 60 7 10 7 20 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Ž H	1H NMR (CDCl ₃) & 1.73 (8, 3H), 1.76 (8, 3H), 1.77 (8, 5H), 1.79 (8, 5H), 2.22 (8, 0H), 2.22 (8, 0H), 2.23 (8, 0H), 2.33 (8, 3H), 1.76 (8, 3H), 1.77 (8, 5H), 1.79 (8, 5H), 2.72 (8, 0H), 2.23 (8, 0H), 2.24 (8, 0H
1.1274 3.88 (s, 3H),	8, 3H), 4.63 (d, $J = 6.6 \text{ Hz}$, 2H), 5.36 (t, $J = 6.0 \text{ Hz}$, 1H), 5.57 (t, $J = 6.6 \text{ Hz}$, 1H), 6.40-6.51 (m, 2H), 6.87-6.95 (m, 3H),
7.06-7	7.05-7.14 (m, 3H)
. IR(CI	IR(CHCl ₃) 3021, 2934, 1628, 1523, 1492, 1235, 1219, 1139 cm ⁻¹

Table 253

1.1275	mp64-65 ℃ II NMR (CDCh) δ 1.74 (s, 3H), 1.77 (s, 6H), 1.82 (s, 3H), 2.16 (s, 3H), 2.29 (s, 3H), 3.23 (s, 3H), 4.36 (d, J = 7.5 Hz, 2H), 4.64 (d, J = 6.3 Hz, 2H), 5.28 (t, J = 8.4 Hz, 1H), 5.51 (t, J = 6.3 Hz, 1H), 7.01.716 (m, 6H), 7.94.735 (m, 9H)
	IR(KBr) 3422, 2926, 1698, 1519, 1489, 1367, 1209, 1170, 962, 807 cm ⁻¹
	io
	¹ H NMR (CDCl ₃) δ 2.21 (8, 3H), 2.26 (8, 3H), 3.95 (d, J = 6.6 Hz, 2H), 4.28 (brs, 1H), 4.78 (d, J = 6.0 Hz, 2H), 6.05 (t, J =
0/21-1	6.3 Hz, 1H), 6.24 (t, J = 6.3 Hz, 1H), 6.36-6.49 (m, 2H), 6.97-7.15 (m, 6H)
	IR(CHCl ₃) 3446, 3009, 1628, 1525, 1492, 1274, 1224, 1130, 883 cm ⁻¹
	mp64⋅65 ℃
	111 NMR (CDCLs) δ 1.76 (s, 3H), 1.80 (s, 6H), 1.85 (s, 3H), 2.23 (s, 3H), 2.30 (s, 3H), 3.74 (d, J = 6.3 Hz, 2H), 4.64 (d, J = 6.0
1171-1	11z, 2H), 5.38 (t, J = 6.6 Hz, 1H), 5.55 (t, J = 6.9 Hz, 1H), 5.73 (brs, 1H), 6.41-6.50 (m, 2H), 6.84-7.15 (m, 6H)
	IR(KBr) 3354, 2971, 1627, 1522, 1490, 1274, 1200, 1128, 990, 843 cm ⁻¹
	mp 153-154 ℃
	11 NMR (CDCl ₃) δ 1.77 (s, 3H), 1.82 (s, 3H), 1.95 (s, 12H), 4.64 (d, J = 6.9 Hz, 2H), 4.78 (s, 1H), 5.57 (t, J = 6.9 Hz, 1H),
1.1278	1.1278 6.85 (ddd, J = 8.3, 2.1, 1.2 Hz, 1H), 6.90 (d, J = 8.6 Hz, 2H), 6.92 (dd, J = 12.0, 2.1 Hz, 1H), 7.04 (d, J = 8.6 Hz, 2H), 7.04 (t, J
	= 8.3 Hz, 1H),
	IR (KBr) 3433, 1514, 1293, 1262, 1242, 1112, 984 cm ⁻¹
	mp 116-117 C
1 1970	¹ H NMR (CDCl ₃) δ 1.76 (8, 3H), 1.81 (8, 3H), 2.23 (8, 3H), 3.21 (8, 3H), 3.81 (8, 3H), 4.63 (d, $J = 6.6$ Hz, 2H), 5.55 (t, $J = 6.6$
6171.1	Hz, 1H), 6.81 (9, 1H), 7.02 (t, $J = 8.6$ Hz, 1H), 7.20 (8, 1H), 7.24-7.28 (m, 1H), 7.33-7.44 (m, 3H)
	IR (KBr) 3434, 1522, 1492, 1337, 1218, 1200, 1148, 979, 876 cm ⁻¹

Table 254

	mp 88-90 ℃
	111 NMR (CDCL) δ 1.76 (8, 311), 1.80 (8, 311), 2.24 (8, 311), 3.80 (8, 311), 4.63 (4, $J=6.7$ Hz, 211), 4.88 (br 8, 1H), 5.55 (t, $J=1$
1.1280	1.1280 6.7 Hz, 1H), 6.83 (s, 1H), 6.90 (d, J = 8.7 Hz, 2H), 7.01 (t, J = 8.6 Hz, 1H), 7.18 (s, 1H), 7.24-7.28 (m, 3H), 7.36 (dd, J = 12.9,
	2.1 Hz, 111)
	IR (KBr) 3400, 1523, 1493, 1263, 1217, 1128, 977, 836 cm ⁻¹
	mp 158-159 °C
	1H NMIR (CDCl ₃) & 1.76 (8, 3H), 1.80 (d, J = 0.3 Hz, 3H), 2.10 (8, 3H), 2.34 (8, 3H), 2.50 (8, 3H), 3.87 (8, 3H), 4.63 (d, J = 6.9
1.1281	1.1281 Hz, 211), 5.14 (s, 1H), 5.55 (m, 1H), 5.88 (s, 1H), 6.77-6.82 (m, 2H), 6.85-6.91 (m, 2H), 6.98 (d, J = 8.1 Hz, 1H), 7.13 (s, 1H),
	7.18-7.24 (m, 2H)
	IR (KBr) 3465, 1610, 1516, 1473, 1382, 1322, 1307, 1266, 1240, 1213, 1179, 1168, 1147, 1100, 982, 836 cm ⁻¹
	mp 85-86 ℃
	1H NMR (CDCl ₃) 6 0.99 (d, J = 6.2 Hz, 6H), 1.71-1.98 (m, 3H), 2.27 (s, 3H), 2.29 (s, 3H), 3.20 (s, 3H), 3.88 (s, 3H), 4.10 (t, J
1.1282	= 6.8 Hz, 211), 6.88 (dd, J = 2.0, 8.6 Hz, 111), 6.88 (d, J = 2.0 Hz, 111), 6.95 (d, J = 8.6 Hz, 111), 7.30-7.46 (m, 4H)
	IR (KBr) 1519, 1488, 1375, 1255, 1243, 1214, 1204, 1173, 1154, 1134, 867, 850, 792 cm ⁻¹
	mp 117-118 °C
	14 NMR (CDCl ₃) & 0.99 (d, J = 6.3 Hz, 6H), 1.75-1.94 (m, 3H), 2.27 (s, 3H), 2.28 (s, 3H), 3.88 (s, 3H), 4.10 (t, J = 6.6 Hz,
1.1283	2H), 4.91 (s, 1H), 6.86-6.91 (m, 4H), 6.94 (d, J = 8.7 Hz, 1H), 7.12 (s, 1H), 7.15 (s, 1H), 7.22-7.27 (m, 2H)
	IR (KBr) 3438, 1611, 1522, 1490, 1475, 1464, 1446, 1256, 1242, 1212, 1180, 1171, 1137, 1032, 834, 818 cm ⁻¹
	mp 156-157 °C
	14 NMR (CDCl ₃) & 3.46 (8, 3H), 3.76 (8, 3H), 3.89 (8, 3H), 4.78 (d, J = 6.3 Hz, 2H), 4.99 (8, 1H), 5.96 (8, 1H), 6.25 (t, J = 6.3
1.1284	1.1284 Hz, 1H), 6.47 (s, 1H), 6.90-6.95 (m, 2H), 6.93 (d, J = 7.8 Hz, 1H), 7.04 (dd, J = 2.1, 7.8 Hz, 1H), 7.04 (d, J = 2.1 Hz, 1H),
-	7.51.7.57 (m, 2H)
	IR (KBr) 3455, 1612, 1622, 1487, 1456, 1396, 1269, 1234, 1223, 1209, 1173, 1140, 1115, 1024, 885, 825, 813 cm ⁻¹

Table 255

	mp 84-85 Ն
1988	
	IR (KBr) 3389, 1523, 1491, 1476, 1427, 1301, 1276, 1233, 1196, 1168, 1126, 836, 815 cm ⁻¹
	mp 152-153 C
2001	
0071.	
	HR (CHCl.) 3596, 3440, 3011, 2935, 1676, 1612, 1588, 1518, 1473, 1449, 1259, 1238, 1173 cm.1
	mp 123-125 ℃
1.1287	¹ H NMR (CDCL ₃) δ -0.01-0.08 (m, 2H), 0.44-0.50 (m, 2H), 1.01 (m, 1H), 3.21 (s, 3H), 3.34 (d, J = 7.5 Hz, 2H), 3.75 (s, 3H),
	3.91 (s, 3H), 5.21 (s, 2H), 6.08 (s, 1H), 6.45 (s, 1H), 6.97.7.04 (m. 3H), 7.26.7.72 (m, 9H)
	mp 177-178 ℃
	1H NMR (CDCl3) 6 0.27 (t, J = 4.8 Hz, 1H), 0.60 (dd, J = 4.8, 8.7 Hz, 1H), 1.13 (s, 3H), 1.17 (s, 3H), 1.13-1.22 (m, 1H), 3.46
1980	(s, 3H), 3.75 (s, 3H), 3.80 (s, 3H), 4.00 (dd, J = 7.8, 10.5 Hz, 1H), 4.12 (dd, J = 6.6, 10.5 Hz, 1H), 4.95 (bs, 1H), 5.91 (s, 1H).
0071	6.46 (s, 1H), 6.91-7.02 (m, 5H), 7.52-7.56 (m, 2H)
	IR (KBr) 3479, 3434, 3389, 2940, 1614, 1589, 1523, 1490, 1466, 1395, 1361, 1319, 1271, 1238, 1218, 1174, 1137, 1117,
	1072, 1011 cm ⁻¹
	mp 163.165 C
1000	¹ H NMR (CDCl ₃) δ 1.76 (8, 3H), 1.80 (8, 3H), 2.25 (8, 3H), 3.80 (8, 3H), 3.89 (8, 3H), 4.63-4.65 (d, J = 6.6 Hz, 2H), 4.80 (br.)
6071.	1H), 5.57 (m, 1H), 6.86-6.97 (m, 6H), 7.18 (s, 1H), 7.45-7.48 (m, 2H)
	IR (CHCl ₃) 3596, 1609, 1523, 1493, 1464, 1387, 1256, 1173, 1138, 1042, 1032, 997, 834 cm ⁻¹

Table 256

1-1290	mp 150-152 ℃ ¹ H NMR ((3DCh ₃) δ 2.25 (9, 3H), 3.80 (8, 3H), 3.90 (8, 3H), 4.74-4.80 (m, 3H), 6.26 (t, J = 6.0 Hz, 1H), 6.85-6.92 (m, 6H), 7.19 (8, 1H), 7.45-7.48 (m, 2H)
	IR (CHCL) 3596, 2958, 2938, 1609, 1523, 1493, 1464, 1389, 1328, 1257, 1173, 1140, 1102, 1030, 886, 854, 834 cm ⁻¹
	mp 117-118 C
	111 NMR (CDCM) 6 1.76 (s, 311), 1.79 (s, 311), 2.28 (s, 3H), 2.31 (s, 3H), 3.01 (s, 6H), 3.88 (s, 3H), 4.63 (d, J = 6.6Hz, 2H),
	5.53 · 5.60 (m, 1H), 6.76 · 6.96 (m, 5H), 7.15 (s, 2H), 7.28 (d, J = 8.7 Hz, 2H)
	IR (KBr) 1611, 1529, 1490, 1447, 1359, 1322, 1239, 1214, 1193, 1135, 1038,cm ⁻¹
	mp 116-118 C
	1H NMR (CDCl ₃) 2.24 (8, 3H), 3.81 (8, 3H), 4.77 (d, J = 6.3 Hz, 2H), 4.90 (br s, 1H), 6.23 (t, J = 6.3 Hz, 1H), 6.83 (s, 1H), 6.90
1-1292	1.1292 (d, J = 8.7 Hz, 2H), 6.99 (t, J = 8.6 Hz, 1H), 7.17 (s, 1H), 7.25 (d, J = 8.7 Hz, 2H), 7.27 (ddd, J = 8.6, 2.1, 1.2 Hz, 1H), 7.37
	(dd, J = 12.6, 2.1 Hz, 1H)
	IR (KBr) 3596, 1731, 1613, 1623, 1493, 1259, 1130, 1033, 886 cm ⁻¹
	mp 151-154 C
1000	¹ H NMR (CDCl ₃) δ 2.23 (8, 3H), 3.21 (8, 3H), 3.80 (8, 3H), 3.93 (8, 3H), 5.20 (8, 2H), 6.81 (8, 1H), 6.95 (d, J = 8.4 Hz, 1H),
6671-1	7.05 (dd, J = 8.4, 2.1 Hz, 1H), 7.15 (d, J = 2.1 Hz, 1H), 7.21 (s, 1H), 7.30-7.50 (m, 9H)
	IR (KBr) 1490, 1361, 1243, 1148, 1032, 876 cm ⁻¹
	mp 119-121°C
	1H NMR (CDCl ₃) δ 1.76 (9, 3H), 1.79 (9, 3H), 2.24 (9, 3H), 3.21 (9, 3H), 3.80 (9, 3H), 3.91 (9, 3H), 4.63 (d, J = 6.5 Hz, 2H),
1.1294	1.1294 5.56 (t, J = 6.5 Hz, 1H), 6.82 (e, 1H), 6.94 (d, J = 8.4 Hz, 1H), 7.10 (dd, J = 8.4, 1.5 Hz, 1H), 7.13 (d, J = 1.5 Hz, 1H), 7.23 (e,
	1H), 7.36 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H)
	IR (KBr) 1519, 1490, 1364, 1156, 1031, 971, 858 cm ⁻¹

Table 257

55

50	45	40	35	30	25	20	15	10	5
1.1295	mp 135-137 °C 'II NMR (CDCl3)	Cla) & 1.75 (s, 3H), 1.78 (s, 3H), 2.25 7 Hz, 1H), 6.84 (s, 1H), 6.90 (d, J = 8.7 D, 7.21 (s, 1H), 7.26 (d, J = 8.7 Hz, 2H) 3, 1609, 1523, 1493, 1258, 1219, 1142,	(d, J = 8.7 H ² (d, J = 8.7 H ²	2.25 (s, 3H), = 8.7 Hz, 2H), z, 2H)	3.80 (s, 311), 6.94 (d, J = 1 cm.1	3.90 (6, 3H), 4.0 8.3 Hz, 1H), 7.1	63 (d, J = 6.7	Cl ₃) δ 1.75 (8, 3H), 1.78 (8, 3H), 2.25 (8, 3H), 3.80 (8, 3H), 3.90 (8, 3H), 4.63 (d, J = 6.7 Hz, 2H), 4.95 (8, 1H), 7 Hz, 1H), 6.84 (8, 1H), 6.90 (d, J = 8.7 Hz, 2H), 6.94 (d, J = 8.3 Hz, 1H), 7.10 (dd, J = 8.3; 2.1 Hz, 1H), 7.13 (d, D, 7.21 (8, 1H), 7.26 (d, J = 8.7 Hz, 2H) 3, 1609, 1523, 1499, 1258, 1219, 1142, 1033, 834 cm ⁻¹	, 1H), 13 (d,
1.1296	mp 140-141 °C 111 NMR (CDCl ₃)	δ 1.46 (t, J = 6), 6.25 (t, J = 6. 33, 1613, 1521,	5.9 Hz, 3H), 3. 0 Hz, 1H), 6.4 1491, 1259,	46 (s, 3H), 3.7 17 (s, 1H), 6.90 1400, 1267, 13	6 (s, 3H), 4.1 0-6.97 (m, 3f 235, 1204, 1	13 (q, J = 6.9 Hz 1), 7.01-7.06 (m 167, 1136, 1112	, 2H), 4.77 (d , 2H), 7.50-7.	, J = 6.0 Hz, 2H) 57 (m, 2H) , 1019, 993, 882,	6.06
-1297	mp 204-205 % IH NMR (DM 4H), 7.13-7.1	SO-da) 6 2.21 (8, 3H), 2.22 (8, 3H), 2.87 (8, 3H), 3.02 (8, 3H), 4.96 (8, 2H), 9 (m, 2H), 7.20-7.27 (m, 1H) 1644, 1590, 1522, 1487, 1437, 1314, 1264, 1231, 1197, 1127, 1067, 833 cm ⁻¹	3H), 2.22 (s, 3 7 (m, 1H) 1487, 1437, 13	iH), 2.87 (6, 3]	H), 3.02 (s, 3	3H), 4.96 (s, 2H), 6.80-6.86 (m, 2H), 7.05-7.1	1 (m,
.1298	mp 155-158 T 1H NMR (CDC 7.11 (m, 1II), 7 IR (KBr) 3445	δ 3.21 (s, 3H), 7.39 (m, 13H), °	3.45 (s, 3H), 7.67-7.72 (m, 3	3.75 (s, 3H), 4 2H) 149, 875, 707,	i.42 (s, 4H), 546, 526 cm	5.93 (a, 1H), 6.4	14 (s, 1H), 6.9	10-6.96 (m, 1H),	7.06-
1299	mp 174-175 °C ¹ H NMR (CDCl ₃)	. [1 ₃) 6 2.15 (s, 3H), 3.20 (s, 3H), 3.53 (s, 3H), 3.78 (s, 3H), 4.40 (s, 4H), 6 7.65-7.70 (m, 2H) 2936, 1618, 1520, 1482, 1365, 1176, 1151, 1079, 871, 798, 698, 527 cm ⁻¹	3.20 (s, 3H), 3482, 1365, 11	3.53 (s, 3H), 3	.78 (s, 3H), .	4.40 (s, 4H), 6.8 698, 527 cm ⁻¹	12 (s, 1H), 6.9	1-7.01 (m, 2H),	7.11-

Table 258

	mp 218.221 ℃
9000	111 NMR (CDCI3) & 2.69 (s, 311), 3.21 (s, 311), 3.55 (s, 311), 3.77 (s, 311), 6.83 (s, 111), 6.86-6.93 (m, 111), 7.02-7.15 (m, 211),
0051-1	7.35-7.41 (m, 2H), 7.66-7.71 (m, 2H)
	IR (KBr) 3435, 3389, 2940, 1635, 1525, 1362, 1175, 1152, 1076, 962, 874, 802, 527 cm ⁻¹
	mp 209.211 ℃
1000	HI NMR (CDCl3) & 2.91 (6, 3H), 3.22 (6, 3H), 3.54 (8, 3H), 3.78 (6, 3H), 6.86 (6, 1H), 7.26-7.33 (m, 2H), 7.37-7.42 (m, 2H),
201	7.64-7.71 (m, 211), 8.15 (s, 111), 8.34-8.41 (m, 111)
	IR (KBr) 3336, 2943, 1736, 1539, 1480, 1356, 1174, 1151, 1077, 881, 799, 523, 507 cm ⁻¹
	powder
0001	¹ HI NMIR (CDCl ₃) δ 1.50 (e, 3H), 1.71 (e, 3H), 2.78 (e, 3H), 3.23 (e, 3H), 3.55 (e, 3H), 3.78 (e, 3H), 4.11-4.20 (m, 1H), 4.54-
7001-1	4.63 (m, 1H), 5.20-5.28 (m, 1H), 6.87 (s, 1H), 7.25-7.31 (m, 3H), 7.37-7.42 (m, 2H), 7.66-7.72 (m, 2H)
	IR (KBr) 2941, 1702, 1482, 1369, 1203, 1176, 1152, 1080, 964, 873, 797, 525 cm ⁻¹
	mp 133-136 L
1909	111 NMR (CDCl ₃) & 1.73 (8, 3H), 1.77 (8, 3H), 3.45 (8, 3H), 3.74-3.78 (m, 5H), 4.96 (8, 1H), 5.34-5.42 (m, 1H), 5.94 (8, 1H),
1.1303	6.45 (s, 1H), 6.75-6.81 (m, 1H), 6.89-6.95 (m, 2H), 7.10-7.18 (m, 2H), 7.51-7.56 (m, 2H)
	IR (KBr) 3401, 2935, 1626, 1614, 1527, 1490, 1402, 1267, 1223, 1113, 1071, 1005, 829, 589 cm ⁻¹
	mp 170-171 ℃
1001	1H NMR (CDCl ₃) & 2.11 (8, 3H), 3.47 (8, 3H), 4.40 (8, 4H), 4.91 (8, 1H), 5.81 (6, 1H), 6.77 (8, 1H), 6.86-7.08 (m, 5H), 7.22-
1-1304	7.33 (m, 10H), 7.48-7.53 (m, 2H)
	IR (KBr) 3483, 3029, 1612, 1523, 1489, 1453, 1400, 1265, 1215, 834, 749, 698, 494, 526 cm ⁻¹

	որ 166-168 Ն
1 1005	111 NMR (CDCl3) & 2.15 (s, 311), 2.17 (s, 311), 3.19 (s, 311), 4.21-4.59 (m, 4H), 6.84-7.05 (m, 3H), 7.14-7.15 (m, 1H), 7.20-
600-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	7.38 (m, 1211), 7.63-7.69 (m, 2H)
	IR (KBr) 3028, 2938, 1519, 1476, 1454, 1363, 1174, 1151, 969, 873, 801, 700, 525 cm ⁻¹
	mp 210.212 °C
•	111 NMR (CDCl3) & 2.11 (8, 3H), 2.90 (8, 3H), 3.44 (8, 3H), 3.52 (8, 3H), 6.82-7.02 (m, 3H), 7.30 (8, 1H), 7.44-7.49 (m, 2H),
1.1306	
	IR (KBr) 3401, 2850, 1632, 1478, 1365, 1177, 1151, 967, 877, 800, 526 cm ⁻¹
	mp 171-173 ℃
1001	1H NMR (CDCl3) & 2.13 (s, 3H), 2.95 (s, 3H), 3.22 (s, 3H), 3.55 (s, 3H), 7.17-7.22 (m, 3H), 7.35-7.41 (m, 2H), 7.64-7.69 (m,
1001.1	2H), 8.17 (s, 1H), 8.37-8.43 (m, 1H)
	IR (KBr) 3431, 3034, 2942, 1741, 1538, 1478, 1364, 1291, 1152, 971, 870, 801, 525 cm ⁻¹
	powder 'H NMR (CDCl3) & 1.47 (8.3H) 1.70 (8.3H) 2.11 (8.3H) 2.67.3.15 (m.3H) 3.22 (8.3H) 3.56 (8.3H) 4.13.4.22 (m.1H)
I-1308	4.54-4.63 (m, 1H), 5.21-5.28 (m, 1H), 7.09-7.42 (m, 6H), 7.63-7.71 (m, 2H)
	IR (CHCl ₃) 2940, 1700, 1519, 1478, 1372, 1175, 1151, 968 cm ⁻¹
	mp 139.141 C
1 1 2 0 0	¹ H NMR (CDCl ₃) & 1.74 (8, 3H), 1.78 (8, 3H), 2.13 (8, 3H), 3.48 (8, 3H), 3.77 (d, J = 6.6 Hz, 2H), 4.70-5.20 (br s, 1H), 5.35-
- FOOT-1	5.42 (m, 1H), 5.77 (s, 1H), 6.77-6.83 (m, 2H), 6.88-6.99 (m, 4H), 7.48-7.54 (m, 2H)
	IR (KBr) 3525, 3377, 2931, 1625, 1526, 1488, 1222, 1164, 1011, 833 cm ⁻¹

` *30*

	mp 177-179 °C
	11 NMR (CDCE) 5 1.76 (8, 311), 1.81 (8, 311), 3.20 (t, J = 8.4 Hz, 211), 3.21 (t, J = 8.4 Hz, 211), 4.521 (d, J = 7.2 Hz, 2H),
1.1310	1-1310 4.523 (t, J = 8.4 Hz, 2H), 4.90 (brs, 1H), 5.53 (t, J = 6.8 Hz, 1H), 6.71 (s, 1H), 6.89 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.7 Hz,
	2H), 7.41 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 9.0 Hz, 2H)
	IR (KBr) 3389, 2971, 2911, 1611, 1525, 1394, 1238, 1175, 997, 828 cm ⁻¹
	mp 175-177 Ե
	11 NMR (CDCl3) 6 3.20 (t, J = 8.3 Hz, 4H), 4.53 (t, J = 8.4 Hz, 4H), 4.70 (d, J = 6.3 Hz, 2H), 4.88 (brs, 1H), 6.19 (t, J = 6.2
1:1311	Hz, 1H), 6.89 (d, J = 8.7 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 7.41 (d, J = 9.0 Hz, 2H), 7.47 (d, J = 8.7 Hz, 2H)
	IR (KBr) 3409, 3269, 2934, 2901, 1524, 1480, 1395, 1235, 1223, 1003, 881, 817 cm ⁻¹
	mp 186-187 ℃
	1H NMR (CDCL3) 6 2.06 (s, 3H), 2.16 (s, 3H), 4.72 (s, 1H), 4.80 (d, J=6.3 Hz, 2H), 4.83 (s, 1H), 6.25 (t, J=6.3 Hz, 1H), 6.76
1:1312	(s, 111), 6.86-6.92 (m, 2H), 7.03-7.13 (m, 3H), 7.21-7.26 (m, 2H)
	IR (CHCl ₃) 3689, 3598, 3551, 3024, 3008, 1732, 1614, 1520, 1487, 1260, 1223 cm ⁻¹
	mp 201 °C
	1H NMR (CDCL3) & 2.08 (s, 3H), 2.17 (s, 3H), 3.88 (s, 3H), 4.80 (d, J=6.3 Hz, 2H), 4.90 (br s, 1H), 4.99 (s, 1H), 6.26 (t, J
1.1313	=6.3 Hz, 1H), 6.77 (s, 1H), 6.85-6.92 (m, 4H), 7.01 (d, J =6.9 Hz, 1H), 7.22-7.27 (m, 2H)
	IR (CHCl ₃) 3688, 3598, 3538, 3024, 3014, 2938, 1731, 1631, 1520, 1488, 1240, 1172 cm ⁻¹
	mp 132-134 °C
	1H NMR (CDCl ₃) δ 2.12 (s, 3H), 2.29 (s, 3H), 3.00 (s, 6H), 3.74 (br, 2H), 6.62 (dd, J = 2.4, 8.1 Hz, 1H), 6.77-6.82 (m, 3H),
1.1314	7.01.7.05 (m, 2H), 7.12 (s, 1H), 7.26.7.31 (m, 2H)
	IR (KBr) 3600-2800(br), 1610, 1623, 1483, 1443, 1325, 1297 cm ⁻¹

Table 261

1.1316	mp 123-125 °C III NMR (CDCh) δ 2.13 (s, 3H), 2.29 (m, 4H), 3.00 (s, 6H), 3.98 (br, 3H), 6.63 (dd, J = 2.4, 8.1 Hz, 1H), 6.77-6.81 (m, 3H), 7.02 (s, 1H), 7.09-7.13 (m, 2H), 7.25-7.32 (m, 2H) IR (KBr) 3600-2800(br), 1609, 1625, 1488, 1443, 1356, 1232, 1194 cm ⁻¹
1.1316	mp 125-127 °C 11 NMR (CDCl ₃)
1.1317	mp 94-95 °C 1-1317 III NMR (CDCl3) 6 1.77 (s, 3H), 1.81 (s, 3H), 2.26 (s, 6H), 4.63 (d, J = 6.6 Hz, 2H), 5.51 · 5.60 (m, 1H), 6.01 (s, 2H), .6.78 · 6.89 (m, 3H), 6.97-7.16 (m, 5H)
1.1318	¹ H NMR (CDCl ₃) δ 1.77 (s, 3H), 1.82 (s, 3H), 2.29 (s, 6H), 4.64 (d, J = 6.3 Hz, 2H), 5.53 · 5.60 (m, 1H), 6.99 · 7.21 (m, 5H), 7.33 · 7.39 (m, 2H), 7.49 (d.d, J = 5.4 & 0.3 Hz, 1H), 7.80 (s, 1H), 7.92 (d, J = 8.1 Hz, 1H)
F.1319	mp188-189 °C 'H NMR (CDCl ₃)
I-1320	mp167-159 °C ¹ H NMR (CDCl ₃)

Table 262

5

	100 100 100 J
	mptoo-10/
1001	111 NMR (CDCIs) & 1.30 (t, J = 8.4 Hz, 3H), 2.26 (s, 3H), 2.27 (s, 3H), 2.68 (q, J = 7.5 Hz, 2H), 5.20 (s, 2H), 7.04·7.14 (m,
1.1321	6H), 7.26-7.50 (m, 6H), 7.79 (brs, 1H), 7.86 (d, J = 8.7 Hz, 1H)
	IR(KBr) 3436, 3266, 1709, 1536, 1521, 1487, 1267, 1199, 1176, 744, 697 cm ⁻¹
	mp136-137 C
	"H NMR (CDCh.) 6 1.32 (t, J = 7.5 Hz, 311), 2.28 (s, 3H), 2.30 (s, 3H), 2.70 (q, J = 7.5 Hz, 2H), 3.13 (s, 3H), 5.19 (s, 2H),
725.1.1	7.12.7.15 (m, 311), 7.26.7.29 (m, 311), 7.37.7.50 (m, 511), 7.80 (brs, 111), 7.87 (d, J = 9.0 Hz, 111)
	IR(KBr) 3435, 1725, 1536, 1486, 1363, 1292, 1266, 1179, 1163, 1108, 7970, 895, 811, 525 cm ⁻¹
	mp150.151 ℃
991	1H NMR (CDCl ₃) 6 2.18 (s, 3H), 2.27 (s, 3H), 5.20 (s, 2H), 7.04-7.14 (m, 6H), 7.26-7.50 (m, 6H), 7.60 (d, J = 12.0 Hz, 1H),
1.1323	7.94 (brs, 11j)
	IR(KBr) 3421, 3302, 1712, 1523, 1490, 1422, 1299, 1274, 1205, 1176, 1132, 743, 697 cm ⁻¹
	mp83.84 ℃
	1H NMR (CDCl.3) 6 1.30 (t, J = 7.6 Hz, 3H), 1.77 (s, 3H), 1.78 (s, 3H), 1.81 (s, 6H), 2.31 (s, 3H), 2.34 (s, 3H), 2.56 (q, J = 7.6
1-1324	1-1324 Hz, 2H), 3.80 (d, J = 6.4 Hz, 2H), 3.90 (e, 3H), 4.65 (d, J = 6.2 Hz, 2H), 5.44 (d, J = 6.2 Hz, 2H), 5.44 (t, J = 5.2 Hz, 1H), 5.69
	(t, J = 5.4 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 6.92-6.94 (m, 3H), 7.12-7.20 (m, 4H)
	IR(KBr) 3428, 3374, 2964, 1607, 1519, 1494, 1458, 1311, 1256, 1239, 1139, 1036, 1002, 855, 820 cm ⁻¹
	mp113.114 °C
	1H NMR (CDCl ₃) 6 1.30 (t, J = 7.4 Hz, 3H), 1.76 (s, 3H), 1.78 (s, 3H), 1.80 (s, 3H), 1.84 (s, 3H), 2.30 (s, 3H), 2.32 (s, 3H),
I-1325	1-1325 2.55 (q, J = 7.6 Hz, 2H), 3.79 (d, J = 6.6 Hz, 2H), 4.63 (d, J = 6.6 Hz, 2H), 5.43 (t, J = 5.6 Hz, 1H), 5.55 (t, J = 6.6 Hz, 1H),
	5.73 (brs, 1H), 6.72 (d, J = 8.0 Hz, 1H), 6.83-6.98 (m, 3H), 7.11-7.19 (m, 4H)
	IR(KBr) 3413, 3298, 2965, 2924, 1518, 1494, 1435, 1242, 1127, 1013, 883 cm·l

Table 263

	mp81-82 ℃
	"H NMR (CDCl3) & 1.29 (t, J = 7.4 Hz, 3H), 1.74 (s, 3H), 1.77 (s, 3H), 1.78 (s, 3H), 1.81 (s, 3H), 2.27 (s, 3H), 2.31 (s, 3H),
1.1326	2.54 (q, J = 7.2 Hz, 2H), 3.79 (d, J = 7.2 Hz, 2H), 4.63 (d, J = 6.6 Hz, 2H), 5.42 (t, J = 6.4 Hz, 1H), 5.55 (t, J = 6.6 Hz, 1H),
	6.71 (d, J = 8.0 Hz, 1H), 7.04-7.19 (m, 7H)
	IR(KBr) 3413, 2969, 2912, 2856, 1613, 1520, 1492, 1295, 1261, 1127, 1004, 881, 813 cm ⁻¹
	ար94-95 Ն
1 1997	111 NMR (CDCl ₃) 6 1.74 (s, 3H), 1.77 (s, 6H), 1.81 (s, 3H), 2.21 (s, 3H), 2.26 (s, 3H), 3.72 (d, J = 6.9 Hz, 2H), 4.63 (d, J = 6.3
7701-1	Hz, 211), 5.35 (t, J = 6.9 Hz, 111), 5.55 (t, J = 6.9 Hz, 111), 6.37-6.48 (m, 2H), 7.01-7.13 (m, 6H)
	HR(KBr) 3423, 2967, 2918, 1627, 1525, 1488, 1296, 1267, 1129, 981, 837, 805 cm ⁻¹
	mp 178-180°C (decomp.)
1 1900	¹ H NMR (DMSO-d6) δ 3.30 (8, 3H), 3.64 (8, 3H), 4.45 (8, 2H), 5.65 (8, 2H), 6.39 (8, 1H), 6.65 (dd, J = 8.4, 2.1 Hz, 1H), 6.74
0761-1	(d, J = 2.1 Hz, 1H), 6.84 (d, J = 8.7 Hz, 2H), 6.99 (d, J = 8.4 Hz, 1H), 7.43 (d, J = 8.7 Hz, 2H), 9.26 (8, 1H)
	IR (Nujol) 3487, 3382, 1696, 1670, 1591, 1523, 1491, 1458, 1243, 1202, 1114, 1077, 1013, 937, 811 cm ⁻¹
	mp 205-210°C (decomp.)
1 1990	1H NMR (DMSO-d6) 6 3.34 (8, 3H), 3.44 (8, 3H), 3.67 (8, 3H), 4.93 (8, 2H), 6.43 (8, 1H), 6.76 (dd, J = 8.4, 2.1 Hz, 1H), 6.86
6701.1	(d, $J = 2.1 \text{ Hz}$, 1H), 6.86 (d, $J = 8.7 \text{ Hz}$, 2H), 7.04 (d, $J = 8.4 \text{ Hz}$, 1H), 7.46 (d, $J = 8.7 \text{ Hz}$, 2H)
	IR (Nujol) 3388, 3333, 3270, 1671, 1614, 1679, 1666, 1623, 1443, 1223, 1172, 1121, 1033, 922, 813 cm ⁻¹
	mp 185-187℃
	1H NMR (CDCl ₃) δ 1.79 (t, J = 2.6 Hz, 3H), 2.69 (m, 2H), 2.75 (s, 3H), 3.21 (s, 3H), 3.29 (s, 3H), 3.56 (s, 3H), 3.77 (s, 3H),
I-1330	1-1330 4.17 (t, J = 6.6 Hz, 2H), 6.84 (s, 1H), 7.08 (d, J = 9.0 Hz, 1H), 7.36 (dd, J = 9.0, 2.1 Hz, 1H), 7.38 (d, J = 8.7 Hz, 2H), 7.40 (d,
	J = 2.1 Hz, 1H), 7.68 (d, $J = 8.7 Hz$, 2H)
	IR (Nujol) 1604, 1520, 1480, 1175, 1151, 1081, 1012, 971, 948, 878, 840, 807 cm ⁻¹

Table 264

1-1331	foum IH NMR (CDCl ₃) & 1.81 (t, J = 2.4 Hz, 3H), 2.65 (m, 2H), 3.45 (s, 3H), 3.74 (s, 3H), 4.16 (t, J = 6.6 Hz, 2H), 6.45 (s, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.95 (m, 2H), 7.07 (brs, 1H), 7.07 (d, J = 8.7 Hz, 2H) IR (Nujol) 3427, 1612, 1586, 1523, 1489, 1251, 1224, 1113, 1071, 1012 cm ⁻¹
1.1332	foam III NMR (CDCL ₃) & 3.45 (s, 3H), 3.75 (s, 3H), 4.16 (m, 2H), 4.76 (m, 2H), 5.89~6.02 (m, 2H), 6.45 (s, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.96 (m, 2H), 7.09 (brs, 1H), 7.53 (d, J = 8.7 Hz, 2H) IR (Nujol) 3433, 1612, 1588, 1523, 1489, 1286, 1248, 1224, 1176, 1113, 1070, 1011 cm ⁻¹
1-1333	foam ¹ H NMR (CDCl ₃) δ 3.45 (e, 3H), 3.74 (e, 3H), 4.11 (m, 2H), 4.67 (m, 2H), 5.96~6.12 (m, 2H), 6.45 (e, 1H), 6.92 (d, J = 8.7 Hz, 1H), 6.96 (dd, J = 8.4, 2.1 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 7.53 (d, J = 8.7 Hz, 2H) IR (Nujol) 3434, 1612, 1688, 1623, 1489, 1285, 1248, 1124, 1112, 1070, 1011 cm ⁻¹
1.1334	foam 111 NMR (CDCl ₃) & 1.95 (e, 311), 3.45 (e, 311), 3.75 (e, 311), 4.11 (e, 211), 4.68 (d, J =6.9 Hz, 211), 5.75 (d, J = 6.9 Hz, 111), 6.45 (s, 111), 6.91 (d, J = 8.7 Hz, 211), 6.96 (e, 211), 7.08 (e, 111), 7.53 (d, J = 8.7 Hz, 211) 1R (KBr) 3390, 1612, 1585, 1523, 1491, 1225, 1072, 1003, 822 cm ⁻¹
1.1335	m.p 179-180 °C 'H NMR (CDCl ₃) δ 1.88 (s, 3H), 3.45 (s, 3H), 3.75 (s, 3H), 4.07 (s, 2H), 4.69 (d, J =6.6 Hz, 2H), 5.89 (d, J = 6.6 Hz, 1H), 1-1335 6.45 (s, 1H), 6.91 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.4 Hz, 1H), 6.96 (dd, J = 1.8, 8.4 Hz, 1H), 7.07 (d, J = 1.8 Hz, 1H), 7.53 (d, J = 8.7 Hz, 2H) 1 = 8.7 Hz, 2H) 1R (KBr) 3392, 1609, 1584, 1523, 1492, 1226, 1116, 1072, 1002, 813, 782 cm. ¹

ļ	
1.136	foam 111 NMR (CD3OD) 5 3.38 (8, 3H), 3.67 (8, 3H), 3.88 (dd, J = 7.8, 9.9 Hz, 1H), 4.10 (dd, J = 3.6, 9.9 Hz, 1H), 4.51 (m, 1H), 5.25 (dt, J = 10.5, 1.5 Hz, 1H), 5.44 (dt, J = 17.4, 1.5 Hz, 1H), 6.00 (ddd, J = 5.4, 10.5, 17.4 Hz, 1H), 6.43 (8, 1H), 6.79 (dd, J = 1.8, 8.4 Hz, 1H), 6.85 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 1.8 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 7.45 (d, J = 8.7 Hz, 2H) 1R (KBr) 3399, 2934, 1612, 1688, 1623, 1489, 1264, 1114, 1071, 1012, 939, 816 cm ⁻¹
1.1337	
1.1338	
1-1339	foam 'H NMR (CDCl ₃)
1.1340	mp 171-172 °C ¹ H NMR (CDCl ₃) & 1.50 (s, 3H), 1.67 (s, 3H), 1.96 (s, 3H), 3.45 (s, 3H), 3.77 (s, 3H), 4.13-4.49 (m, 2H), 5.23-5.30 (m, 1H), 5.59 (s, 1H), 6.13 (s, 1H), 6.47 (s, 1H), 6.92-6.98 (m, 2H), 7.18-7.35 (m, 3H), 7.50-7.57 (m, 2H) IR (KBr) 3390, 3140, 2935, 1640, 1523, 1401, 1240, 1119, 1070, 835, 820 cm ⁻¹

Table 266

	010 010 %
	111 2.10.2.10 J
10.41	111 NMR (CDCl3+CD3OD) & 1.46 (s, 3H), 1.67 (s, 3H), 1.95 (s, 3H), 2.10 (s, 3H), 3.46 (s, 3H), 4.16-4.47 (m, 2H), 5.21-5.28
	(m, 111), 6.79 (s, 111), 6.88-6.95 (m, 211), 7.11-7.27 (m, 311), 7.45-7.52 (m, 2H)
	IR (KBr) 3337, 3099, 2928, 1637, 1608, 1587, 1521, 1444, 1409, 1261, 1232, 1161, 836, 769, 592, 540 cm ⁻¹
	mp 103-105 C
3	1H NMR (CDCl ₃) 6 1.15 (d, J = 6.8 Hz, 6H), 2.26 (s, 3H), 3.08 (sept, J = 6.8 Hz, 1H), 4.94 (s, 1H), 5.20 (s, 2H), 6.88 (d, J =
1.1.342	8.7 Hz, 2H), 7.04-7.07 (m, 3H), 7.12-7.18 (m, 1H), 7.18 (s, 1H), 7.20 (d, J = 8.7 Hz, 2H), 7.32-7.51 (m, 5H)
	IR (KBr) 3429, 1522, 1490, 1262, 1227, 1128, 1011, 833 cm ⁻¹
	mp 115-117 C
	"H NMR (CDCL:) 8 1.15 (d, J = 6.6 Hz, 6H), 1.77 (s, 3H), 1.82 (s, 3H), 2.27 (s, 3H), 3.08 (sept, J = 6.8 Hz, 1H), 4.64 (d, J =
I-1343	1-1343 6.9 Hz, 2H), 4.86 (s, 1H), 5.56 (t, J = 6.9 Hz, 1H), 6.89 (d, J = 8.6 Hz, 2H), 7.03 (t, J = 8.4 Hz, 1H), 7.05-7.19 (m, 3H), 7.19 (s,
	1H), 7.21 (d, $J = 8.6$ Hz, 2H)
	IR (KBr) 3524, 1611, 1523, 1489, 1260, 1228, 1200, 1128, 836 cm ⁻¹
	mp 119-120 °C
	1H NMR (CDCl ₃) δ 1.15 (d, J = 6.9 Hz, 6H), 2.26 (s, 3H), 3.08 (sept, J = 6.8 Hz, 1H), 4.79 (d, J = 6.3 Hz, 2H), 4.85 (s, 1H),
I-1344	6.25 (t, J = 6.3 Hz, 1H), 6.89 (d, J = 8.7 Hz, 2H), 7.01 (t, J = 8.4 Hz, 1H), 7.07.7.12 (m, 2H), 7.15 (dd, J = 12.0, 2.1 Hz, 1H),
	7.18 (s, 1H), 7.20 (d, J = 8.7 Hz, 2H)
	IR (KBr) 3425, 1610, 1523, 1488, 1300, 1263, 1300, 1263, 1227, 1134, 1038, 896 cm ⁻¹
	mp 109-110 °C
11946	¹ H NMR (CDCl ₃) δ 1.34 (d, J = 6.9 Hz, 3H), 2.24 (e, 3H), 4.00 (q, J = 6.9 Hz, 2H), 4.77-4.79 (m, 3H), 6.24 (t, J = 6.3 Hz,
1-1340	1H), 6.86-6.90 (m, 2H), 6.98-7.19 (m, 4H), 7.47-7.50 (m, 2H)
	IR (CHCl ₃) 3596, 2927, 1612, 1523, 1493, 1476, 1388, 1299, 1259, 1173, 1127, 1049, 885, 834 cm ⁻¹

1-1346	mp 114-116 °C. 11 NMR (CDCh ₃)
1.1347	mp 144-146 °C III NMR (CDCl ₃)
1.1348	mp 156·159 °C ¹ H NMR (CDCl ₃)
1-1349	mp 155-156 °C ¹ HI NMR (CDCl ₃) ô 1.15 (t, J = 6.9 Hz, 311), 3.60 (q, J = 6.9 Hz, 2H), 3.75 (e, 3H), 3.90 (e, 3H), 4.93 (bs, 1H), 5.20 (e, 2H), 5.98 (s, 1H), 6.46 (s, 1H), 6.90-7.05 (m, 5H), 7.26-7.56 (m, 7H) 1R (KBr) 3409, 2938, 1613, 1622, 1438, 1416, 1396, 1382, 1360, 1268, 1232, 1211, 1169, 1131, 1113, 1078, 1022, 1006 cm ⁻¹
1.1360	mp 58-60 °C ¹ H NMR (DMSO-d ₆) δ 1.71 (s, 6H), 2.21 (s, 3H), 2.22 (s, 3H), 3.71-3.75 (m, 2H), 5.11 (br s, 2H), 5.25-5.29 (m, 1H), 5.50- ⁵ 5.3 (m, 1H), 6.60-6.63 (m, 2H), 6.66-6.73 (m, 1H), 6.95-7.05 (m, 6H) ¹ R (KBr) 3600-2800(br), 1623, 1527, 1492, 1454, 1428, 1331, 1269, 1257, 1184, 1116 cm ⁻¹

Table 268

	mp 140·142 °C (dec.)
	1H NMR (CDCl3) 6 2.33 (8, 3H), 4.93 (8, 1H), 5.19 (8, 2H), 6.89 (d, J = 8.7 Hz, 2H), 7.06 (t, J = 8.6 Hz, 1H), 7.23 (d, J = 8.7 Hz, 2H), 7.06 (t, J = 8.6 Hz, 1H), 7.23 (d, J = 8.7 Hz, 2H), 7.06 (t, J = 8.6 Hz, 1H), 7.23 (d, J = 8.7 Hz, 2H), 7.06 (t, J = 8.6 Hz, 1H), 7.23 (d, J = 8.7 Hz, 2H), 7.06 (t, J = 8.6 Hz, 1H), 7.23 (d, J = 8.7 Hz, 2H), 7.06 (t, J = 8.6 Hz, 1H), 7.23 (d, J = 8.7 Hz, 2H), 7.06 (t, J = 8.6 Hz, 1H), 7.23 (t, J = 8.7 Hz, 2H), 7.06 (t, J = 8.6 Hz, 1H), 7.23 (t, J = 8.7 Hz, 2H), 7.06 (t, J = 8.6 Hz, 1H), 7.23 (t, J = 8.7 Hz, 2H), 7.06 (t, J = 8.6 Hz, 1H), 7.23 (t, J = 8.7 Hz, 2H), 7.06 (t, J = 8.6 Hz, 1H), 7.23 (t, J = 8.7 Hz, 2H), 7.06 (t, J = 8.6 Hz, 1H), 7.23 (t, J = 8.7 Hz, 2H), 7.06 (t, J = 8.8 Hz, 2H), 7.06 (t, J = 8.7 Hz, 2H), 7.06 (t, J = 8.7 Hz, 2H), 7.28 (t, J
- 199 -	Hz, 2H), 7.24-7.50 (m, 10H)
	1R (KBr) 3400, 1609, 1529, 1490, 1269, 1243, 1005, 807, 745 cm ⁻¹
	mp 114.116 °C
	111 NMR (CDC3.) 5 1.77 (8, 311), 1.81 (8, 311), 2.33 (8, 311), 4.63 (d, J = 6.9 Hz, 211), 4.89 (8, 111), 5.54 (t, J = 6.9 Hz, 111),
7001-1	6.89 (d, J = 8.6 Hz, 2H), 7.04 (t, J = 8.6 Hz, 1H), 7.23 (d, J = 8.6 Hz, 2H), 7.25-7.43 (m, 5H)
	IR (KBr) 3368, 1609, 1526, 1490, 1271, 1241, 1131, 991, 827, 811 cm ⁻¹
	mp 78-79 ℃
1.1353	1.1353 H NMR (CDCl ₃) δ 1.77 (8, 3H), 1.82 (8, 3H), 2.24 (8, 3H), 2.27 (8, 3H), 4.64 (d, $J = 6.6$ Hz, 2H), 5.51 · 5.59 (m, 1H), 6.98 ·
	7.20 (m, 7H), 7.28 · 7.36 (m, 2H)
	7.20 (m, 7H), .7.28 - 7.36 (m, 2H)

Table 269

5			:CMe2	=CMe2	-CC12	CMe	-4-Me	=CMe2	CCI.	CMe	4 – Me	=CMe2	CCI2	CMe	4-Me	=CMe2	CCl2	Me
10	·	Y	-CH2CH=CMe2	-(CH ₂) ₂ CH=CMe ₂	- CH2CH = CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	$-(CH_2)_2CH = CMe_2$	-CH2CH=CCI	– CH₂C≡CMe	-CH2C6H4-4-Me	-(CH2)2CH=CMe2	-CH2CH=CCl2	CH ₂ C≡CMe	-CH2C6H4-4-Me	- (CH2)2CH=CMe2	-CH2CH=CCl2	-CH2C≡CMe
15		×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		R13	OMs	OMs	OMs	OMs	OMs	СООН	C00H	Н000	С00Н	СН2ОН	СН2ОН	СН2ОН	СН2ОН	면	Œ	(z.
20		R12	Н	Н	H	Н	Н	Н	Н	H	Ë	H	王	Ξ	H	H	H	H
		Ri	H	푀	Ξ	Н	Н	Н	Н	Н	Н	Ή	Ħ	Ή	H	H	H	H
	€ .	R10	II	H	Н	H	Н	Н	Ξ	Ξ	Ξ	Ξ	H	H	H	Ξ	Ξ	H
25		R 9	110	НО	НО	ЮН	ЮН	НО	OII	ОН	ЮН	НО	ОН	НО	НО	НО	НО	ЮН
<i>30</i>	7,47,4°,8°,8°,1°,2°,1°,1°,1°,1°,1°,1°,1°,1°,1°,1°,1°,1°,1°	R 8	OMe	ОМе	OMe	ОМе	ОМе	ОМе	OMe	OMe	ОМе	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe
	2. L	R 7	ОМе	ОМе	OMe	OMe	OMe	ОМе	OMe	OMe	ОМе	ОМе	ОМе	OMe	OMe	OMe	OMe	ОМе
35	T Y	¥	=	Ξ	포	Ξ	Ξ	Ξ	=	Ξ	H	H	프	H	Ξ	田	Ħ	H
	24. A. 4.	≥ ≥	Ξ	포	Ξ	H	Н	Ξ	=	=	H	H	王	H	H	Ħ	田	H
	_	*≃	=	=	H	H	Н	H	=	=	H	H	Ξ	王	三	王	王	H
40		R 3	H	Н	Ξ	Ξ	王	Ξ	=	=	三	王	=	三	国	E	H	H
		R 2	=	H	표	=	H	王	=	=	Ξ	王	=	Ξ	Ξ	포	王	H
45		۱ ۲	110	OH	ЮН	OH	ЮН	НО	HO	OII	НО	НО	IIO	НО	ОН	ЮН	НО	НО
50			354	355	320	357	358	329	8	<u> </u>	362	363	264	65	99	19	89	69

THIS PAGE BLANK (USPTO)

Table 271

5	
10	
15	
20	
25	
30	
35	
40	
45	

1-1391	110	=	=	=	=	=	OMe		OMe CIL2OH	H	Ξ	H	Ю	0	-(CH ₂) ₂ CH=CMe ₂
1.1392	HO	H	王	Ξ	H	Ξ	OMe	OMe	СПлОН	H	H	Н	ЮН	0	-CH2CH=CCl2
L-1393	HO	Ξ	=	=	王	Ξ	ОМе	OMe	СИ2ОН	Ξ	王	프	ЮН	0	–CH ₂ C≡CMe
1.1394	НО	Ξ	Ξ	H	H	Ξ	OMe	OMe	СН2ОН	王	王	Ξ	ОН	0	-CH2C6H4-4-Me
1.1395	IIO	Ξ	Ξ	Ξ	Ξ	=	OMe	ОМе	СН2ОН	Ξ	H	H	OMs	0	-CH2CH=CMe2
1.1396	IIO	=	=	=	Ξ	=	OMe	OMe	СН2ОН	Ξ	Ξ	H	OMs	0	-(CH2)2CH=CMe2
I.1397	HO	=	Ξ	포	Ξ	Ξ	OMe	OMe	СН2ОН	H	H	H	OMs	0	-CH2CH=CCl2
1.1398	ЮН	Ξ	H	王	H	Ξ	OMe	OMe	СН2ОН	Ξ	H	H	OMs	0	CH2C≡CMe
1.1399	НО	Ξ	Ξ	=	H	Ξ	ОМе	OMe	СН2ОН	프	Ξ	王	OMs	0	-CH ₂ C ₆ H ₄ -4-Me
I-1400	НО	H	H	Ξ	Н	H	OMe	ОМе	СН2ОН	三	H	프	нооо	0	-CH2CH=CMe2
1.1401	НО	Н	H	H	Н	Н	OMe	OMe	СН2ОН	H	H	H	соон	0	-(CH2)2CH=CMe2
1.1402	ОН	H	Н	Н	Н	Н	ОМе	OMe	СН2ОН	Ξ	Ξ	Ξ	соон	0	-CH2CH=CCl2
1.1403	НО	Н	Н	Н	Н	Н	ОМе	OMe	СН2ОН	王	Ξ	Ξ	соон	0	CH2C≡CMe
I-1404	ОН	Н	Н	Н	Н	Н	ОМе	ОМе	СН2ОН	H	H	Ξ	соон	0	-CH2C6H4-4-Me
I.1405	ЮН	Н	Н	Н	Н	Н	ОМе	OMe	СН2ОН	Ξ	Ħ	Ξ	СН2ОН	0	-CH2CH=CMe2
I-1406	ОН	Н	Н	Н	H	Н	OMe	OMe	СН2ОН	H	Ħ	H	СН20Н	0	-CH2CH=CCl2
I-1407	ЮН	Н	Н	Н	H	H	ОМе	OMe.	СН2ОН	Ξ	H	Ħ	СН2ОН	0	-CH2C≡CMe
I-1408	ОН	H	H	Н	Н	Н	OMe	ОМе	СН2ОН	王	Ξ	H	CH ₂ OH	0	-CH2C6H4-4-Me
I-1409	OH	H	Н	Н	Н	H	OMe	OMe	СН2ОН	三	王	H	ርተ	0	-CH2CH=CMe2
1.1410	ОН	H	Ξ	H	H	H	OMe	ОМе	СН2ОН	王	王	Н	泛	0	-(CH2)2CH=CMe2
1.1411	ЮН	H	Ħ	H	Ħ	H	OMe	ОМе	СН2ОН	Ξ	三	H	Ā	0	-CH2CH=CCl2

' Table 272

≡CMe	CH ₂ C ₆ H ₄ -4-Me	I=CCl ₂	≡CMe	=CMez	H=CMe ₂	I=CCl ₂	≡CMe	CH ₂ C ₆ H ₄ -4-Me	=CMe2	H=CMe2	1=CCl ₂	≡CMe	CH2C6H4-4-Me	=CMe2	H=CMe2	CH2CH=CCl2	≡CMe	CH2C6H4-4-Me	=CMe2	J=CMps
-CH2C≡CMe	-CH2C6H	-CH2CH=CCl2	-CH2C≡CMe	-CH ₂ CH = CMe ₂	- (CH2)2CH=CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H	-CH2CH=CMe2	-(CH2)2CH=CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H	-CH2CH=CMe2	-(CH2)2CH=CMe2	-CH2CF	-CH2C≡CMe	-CH2C6H	-CH2CH=CMe2	-(CH.), CH = CMo.
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
(Er	F	ЮН	ОН	ОМв	ОМв	ОМв	ОМв	ОМв	СООН	соон	соон	С00Н	С00Н	СН2ОН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	ম	Ğ
H	Н	H	H	Ξ	Ξ	Ξ	Ξ	H	Н	H	H	Н	Н	н	Ħ	H	Ξ	Ħ	Ή	Þ
Œ	Н	Ξ	Ξ	=	=	Ξ	Ξ	H	H	Ξ	H	H	H	H	Ħ	H	Ħ	H	H	Þ
	Н	Ξ	Ξ	=	=	Ή	Н	H	H	Н	H	Н	Н	Н	Ξ	H	Ξ	H	Ξ	2
СН2ОН	СН2ОН	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	7.7
OMe	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	ОМе	ОМе	OMe	OMe	OMe	ОМе	ОМе	OMe	ОМе	OMe	OMe	2
OMe	ОМе	ОМе	ОМе	OMe	OMe	OMe	ОМе	ОМе	OMe	OMe	ОМе	ОМе	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	7.00
=	Ξ	Н	H	11	=	H.	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	**
Ξ	Ξ	Н	Н	Н	П	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	
Ξ	=	Н	Н	Н	11	H	Н	П	Н	Н	Н	Н	Н	Н	Ξ	Н	Н	Н	Н	**
=	=	Ξ	Н	Н	11	П	Н	Н	Н	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	:
	Ξ	Η	Н	H	=	Ξ	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	
OH	HO	OH	HO	OH.	110	OH	OH	0Н	НО	ЮН	HO	НО	ОН	Н0	0Н	НО	0Н	0Н	НО	
1.1412	1.1413	1.1414	1.1415	1.1416	1.1417	1.1418	1.1419	1.1420	1.1421	1.1422	1.1423	I-1424	1.1425	I-1426	I-1427	1.1428	I-1429	1.1430	1.1431	

Table 273

_		
၁		

1.1433	110	Ξ	=		Ξ	Ε	OMe	OMe	Me	H	Н	H	ম	0	CH2CH=CCl2
1-1434	IIO	H	=	H	Н	H	OMe	OMe	Me	프	н	Н	凡	0	-CH₂C≡CMe
1.1435	HO	H	Ξ	Н	Н	Н	OMe	ОМе	Me	H	王	H	E,	0	-CH2C6H4-4-Me
1.1436	HO	H	H	Н	Н	Н	OMe	OMe	Н	H	Ħ	Ξ	ЮН	0	-CH2CH=CCl2
I.1437	110	Ħ	Ξ	Н	Н	Н	OMe	OMe	Ξ	Ξ	王	王	ОН	0	−CH ₂ C≡CMe
1.1438	IIO	=	=	=	Н	H	ОМе	OMe	Н	H	H	Ξ	ЮН	0	-CH2C6H,-4-Me
1.1439	HO	H	Ή	H	Н	Н	ОМе	OMe	Н	Н	H	Ξ	ОМв	0	-(CH2)2CH=CMe2
1.1440	HO	н	Н	Н	Н	Н	OMe	ОМе	Н	H	Ξ	王	ОМв	0	-CH2CH=CCl2
1.1441	НО	H	Н	Н	Н	Н	OMe	ОМе	Н	H	Н	王	ОМв	0	-CH2C≡CMe
I.1442	НО	Ħ	H	н	Н	Н	OMe	ОМе	Н	H	Ή	Ħ	ОМв	0	-CH2C6H4-4-Me
1-1443	НО	Ξ	H	Н	Н	Н	OMe	ОМе	Н	H	Ħ	Ħ	СООН	0	-CH2CH=CMe2
1.1444	HO	Н	Н	Н	Н	Н	OMe	ОМе	H	H	王	H	соон	0	-(CH ₂) ₂ CH=CMe ₂
I-1445	НО	Н	Н	Н	Н	H	ОМе	ОМе	Н	H	н	Н	СООН	0	-CH2CH=CCl2
I-1446	HO	Ħ	Ξ	Н	Н	Н	ОМе	ОМе	Н	Н	Ħ	Н	соон	0	– CH₂C≡CMe
1.1447	HO	=	=	=	I	Н	θМО	OMe	Н	Н	Н	Н	СООН	0	-CH2C6H4-4-Me
1.1448	HO	Н	H	Н	Н	Н	ОМе	ОМе	Н	Н	Н	Н	СН2ОН	0	-CH2CH=CMe2
I.1449	НО	Н	Н	Н	Н	Н	ОМе	ОМе	H	Н	H	Н	СН2ОН	0	-(CH ₂) ₂ CH=CMe ₂
I-1450	HO	H	H	H	Н	Н	OMe	OMe	Н	Н	Н	Н	СН2ОН	0	-CH2CH=CCl2
1.1451	НО	H	Н	H	Н	Н	OMe	OMe	Н	Н	Н	Н	СН2ОН	0	-CH2C≡CMe
1.1452	ОН	Н	Н	H	Н	Н	ОМе	OMe	H	H	프	H	СН2ОН	0	-CH ₂ C ₆ H ₄ -4-Me
1.1453	НО	Н	Н	Н	Н	H	ОМе	OMe OMe	Н	Н	H	Н	দ	0	-(CH ₂) ₂ CH=CMe ₂

Table 274

	F O -CH2CH=CCl2	F 0 −CH ₂ C≡CMe	F 0 -CH ₂ C ₆ H ₄ -4-Me	OH O -(CH2)2CH=CMe2	OH O -CH2CH=CCl2	OII O −CH2C≡CMe	OH O -CH ₂ C ₆ H ₄ -4-Me	OMs O -CH2CH=CMe2	OMs 0 -(CH2)2CH=CMe2	OMs O -CH2CH=CCl2	OMs O −CH ₂ C≡CMe	OMs O -CH ₂ C ₆ H ₄ -4-Me	COOH O -CH2CH=CMe2	COOH 0 - (CH2)2CH=CMe2	COOH 0 -CH2CH=CCl2	COOH O −CH2C≡CMe	COOII 0 -CH2C6H4-4-Me	CH2OH 0 -CH2CH=CMe2	$CH_2OH = 0 = -(CH_2)_2CH = CMe_2$	CH ₂ OH 0 -CH ₂ CH=CCl ₂	CHOH O CHOCK
-		H		H	=	Ⅱ	H	H	H	H	H	Н	Н	Н	ЭН	Н	Н	H	H	Н	5
\vdash	三	H	王	H	H	=	H	H	H	H	H	H	H	H	Н	H	Н	H	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	H	-
-	Ξ	표	=	=			=	H			=	H	H	H	H	H	=	H	H		ח
	H	Н	Н	НО	ЮН	011	НО	НО	НО	НО	ЮН	НО	ОН	НО	НО	НО	НО	НО	НО	НО	חכ
	OMe	OMe	OMe	ОМе	OMe	OMe	ОМе	OMe	ОМе	ОМе	OMe	ОМе	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMC
	OMe	OMe	OMe	ОМе	OMe	OMe	ОМе	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	2,74
Ī	Н	II	=	<u></u>	<u>:-</u> ,	~	F	[단,	F	2	ᅜ	দ	5-		ᄯ	F	드	F	F	দে	ū
	Н	=	=	王	Ξ	=	Н	Н	Н	Н	Н	H	Ξ	Ξ	Н	Н	Н	II	Н	Н	=
	Н	三	=	Ξ	=	=	Ħ	Н	H	Ξ	三	王	Ξ	=	H	H	Н	Н	H	Н	:
Ī	Ξ	=	=	王	=	=	=	Ħ	Ξ	王	Ξ	Ξ	=	=	Ξ	田	=	=	王	H	:
	H	=	Ξ	Ξ	=	=	=	H	Ξ	Ξ	H	≖	=	=	Ξ	Ħ	Ξ	=	Ξ	H	:
	HO	OII	НО	HO	IIO	IIO	IIO	НО	НО	НО	НО	НО	IIO	IIO	НО	НО	IIO	IIO	НО	НО	
	1.1454	1.1455	1.1456	1-1457	1.1458	1-1-159	1.1460	I-1461	1-1462	1.1463	I-1464	1-1465	1.1466	1.1467	1.1468	1-1469	1.1470	1.1471	I-1472	I.1473	

Table 275

5	
10	
15	
20	
25	
<i>30</i>	•
<i>35</i> ု	
40	
45	

1.1475	НО	E	=	E	E	1	OMe	OMe	HO	E	E	н	СН2ОН	0	-CH ₂ C ₆ H ₄ -4-M _e
1.1476	IIO	=	Ξ	Ξ	Ξ	F	OMe	ОМе	НО	H	H	Н	표	0	- CH ₂ CH = CMe ₂
1.1477	НО	포	=	Ξ	Ξ	Ţ.	OMe	OMe	но	Ξ	Н	Н	Ŧ	0	-(CH2)2CH = CMe2
1.1478	IIO	=	=	크	=	~	ОМе	OMe	OH	H	H	H	F	0	-CH2CH=CCl2
1.1479	HO	=	=	Ξ	Н	Ŀ	OMe	OMe	НО	H	Н	Н	F	0	- CH2C≡CMe
1.1480	011	=	=	=	11	<u>:</u> -,	OMe	ОМе	ЮН	Ξ	Н	Н	F	0	-CH ₂ C ₆ H ₄ -4-Me
I-1481	OMs	Ξ	Ξ	Ξ	H	н	OMe	ОМе	НО	Н	Н	Н	но	0	-CH2CH=CMe2
1.1482	OMs	=	=	=	Ξ	=	ОМе	OMe	НО	H	H	H	но	0	-(CH2)2CH=CMe2
1.1483	OMs	Ξ	Η	H	H	H	ОМе	ОМе	ОН	Н	Н	Н	ОН	0	- CH2CH=CCl2
I-1484	ОМв	표	H	H	H	Н	ОМе	OMe	ОН	Н	Н	Н	ОН	0	- CH₂C≡CMe
I.1485	ОМв	표	Ξ	Н	H	Ή	OMe	OMe	ОН	H	H	Н	ОН	0	-CH2CeH4-4-Me
1.1486	OMB	=	=	H	Ξ	Ξ	OMe	ОМе	ОН	Н	Н	Н	ОМв	0	- CH ₂ CH=CMe ₂
1.1487	OMs	Ξ	Ξ	Н	Ή	H	OMe	ОМе	ЮН	Ħ	Н	H	ОМв	0	$-(CH_2)_2CH=CMe_2$
I-1488	OMs	Н	H	Н	Н	Ξ	OMe	OMe	ОН	Н	Н	Н	ОМв	0	- CH2CH=CCl2
I.1489	OMs	H	H	H	Н	H	OMe	OMe	ОН	Н	Н	H	OMs	0	- CH₂C≡CMe
1.1490	OMs	=	=	Ξ	=	=	OMe	OMe	OH	Ξ	H	H	ОМв	0	-CH2C6H4-4-Me
I-1491	OMs	H	H	H	H	H	ОМе	OMe	ОН	H	H	H	нооэ	0	-CH2CH=CMe2
I-1492	OMs	н	H	Ξ	H	H	ОМе	OMe	НО	Ξ	Н	H	соон	0	$-(CH_2)_2CH=CMe_2$
1.1493	OMs	Ή	王	Ή	H	Ξ	ОМе	OMe	ОН	Ξ	Н	H	соон	0	-CH2CH=CCl2
1.1494	ОМв	H	Ξ	H	H	Ξ	OMe	OMe	НО	H	Ή	Ξ	СООН	0	-CH2C≡CMe
I-1495	OMs	Н	Н	Н	H	Н	OMe	ОМе	ОН	H	Н	Ħ	НООО	0	-CH2C6H4-4-Me

Table 276

CH2OH O -CH2CH=CMe2	CH ₂ OH O - (CH ₂) ₂ CH=CMe ₂	CH2OH 0 -CH2CH=CCl2	CH2OH O −CH2C≡CMe	CH2OH O -CH2CaH4-4-Me	F 0 -CH ₂ CH=CMe ₂	F 0 -(CH ₂) ₂ CH=CMe ₂	F 0 -CH2CH=CCl2	F 0 −CH2C≡CMe	F 0 -CH ₂ C ₆ H ₄ -4-Me	OH O -CH ₂ CH=CMe ₂	OH O -(CH ₂) ₂ CH=CMe ₂	OH O -CH2CH=CCl2	OH 0 −CH ₂ C≡CM _e	OH 0 -CH ₂ C ₆ H ₄ -4-Me	OMs O -CH2CH=CMe2	OM8 0 -(CH2)2CH=CMe2	OM8 O -CH2CH=CCl2	OMs O −CH ₂ C≡CMe	OMs O -CH2C6H4-4-Me	-
H	H	H	Ξ	H	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	프	H	H	H	H	Ħ	三	Ξ	E	_
H	H	Н	H	H	Ξ	H	H	H	H	Н	H	H	Н	Н	H	H	H	Н	H	
Ξ	H	H	H	H	Ξ	Ή	Н	Н	H	Ħ	H	Н	Н	H	H	Н	H	Ξ	H	
OH	ОН	ОН	110	011	110	ЮН	НО	ЮН	ЮН	СООН	нооо	НООО	нооэ	COOH	Н000	Н000	Н000	Н000	Н000	
ОМе	OMe	ОМе	ОМе	ОМе	OMe	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	OMe	ОМе	OMe	
ОМе	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	OMe	ОМе	ОМе	OMe	ОМе	ОМе	ОМе	ОМе	
H	Ξ	H	Ξ	=	=	Ξ	Ŧ	Н	H	H	=	Н	Н	Ξ	Н	Н	Н	Н	Н	
Н	Н	=	Ξ	Ξ	=	Ξ	H	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	ĺ
Н	=	=	Ξ	Ξ	=	=	Ξ	H	=	=	Ξ	H	H	=	H	Н	Н	Н	Н	
Н	=	=	=	=	=	=	Ξ	Ξ	Ξ	Ξ	=	H	Ξ	=	H	Ξ	Ξ	E	Ħ	Ī
Н	=	=	=	=	=	Ξ	Ξ	=	=	H	Ξ	Ξ	H	Ξ	Ξ	Ξ	Ξ	Ξ	н	
OMs	OMs	OMs	OMs	OMs	OMe	OMs	OMs	OMs	OMs	OMs	OMs	OMs	OMs	OMs	OMs	OMs	OMs	OMs	OMs	
1.1496	1.1497	1.1498	1.1499	1.1500	1501	1.1502	1.1503	1.154	1.1505	1-1506	1.1507	1.1508	1.1509	1.1510	1.1511	1.1512	1.1513	1.1514	1-1515	

Table 277

;	5	

5

.

1.1517	OMs	Ξ		=	Ξ	Ξ	OMe	OMe	СООН	Ξ	Ξ	Ξ	соон	0	-(CH ₂) ₂ CH=CMe ₂
1.1518	ОМв	=	=	=	Ξ	=	OMe	OMe	СООН	=	Ξ	H	COOH	0	-CH ₂ CH=CCl ₂
1.1519	OMs	Ξ	=	=	프	Ξ	OMe	ОМе	СООН	프	H	H	соон	0	-CH2C≡CMe
I-1520	OMs	픠	프	Ξ	三	프	ОМе	OMe	СООН	H	Ξ	<u>. =</u>	соон	0	-CH ₂ C ₆ H ₄ -4-Me
I-1521	OMs	Ξ	Ξ	Ξ	Ξ	포	OMe	OMe	СООН	Ξ	Н	Н	СН2ОН	0	-CH ₂ CH=CMe ₂
1.1522	OMs	=	=	=	=	=	OMe	OMe	COOL	=	H	H	СН2ОН	0	-(CH ₂) ₂ CH=CMe ₂
1.1523	OMs	=	=	Ξ	Ξ	Ξ	OMe	OMe	СООН	Н	Н	Н	СН2ОН	0	-CH2CH=CCl2
I-1524	OMs	三	Ξ	Ξ	Ξ	H	ОМе	OMe	C00H	田	H	Н	СН2ОН	0	-CH2C≡CMe
I-1525	OMs	H	H	H	H	프	ОМе	ОМе	СООН	Ξ	Ξ	Ξ	СН2ОН	0	-CH2C6H4-4-Me
1.1526	OMs	Н	H	Н	H	Ξ	0Me	ОМе	СООН	H	H	H	F	0	-CH2CH=CMe2
I-1527	OMs	Ξ	Ξ	Н	Н	프	ОМе	OMe	С00Н	Н	H	H	F	0	$-(CH_2)_2CH=CMe_2$
I-1528	OMs	Н	H	Н	H	H	ОМе	ОМе	СООН	Н	Н	Н	F	0	- CH ₂ CH = CCl ₂
1.1529	ОМв	Н	Ξ	Н	H	H	ОМе	OMe	соон	Н	H	H	F	0	-CH2C≡CMe
1.1530	OMs	н	Ξ	Ξ	H	Ξ	ОМе	OMe	СООН	Н	H	H	ਸ਼	0	-CH ₂ C ₆ H ₄ -4-Me
I-1531	OMs	H	F	H	H	H	OMe	ОМе	СН2ОН	Н	Ħ	H	НО	0	$-(CH_2)_2CH=CMe_2$
1.1532	ОМв	Η	Ξ	Ξ	Ξ	H	OMe	OMe	СН2ОН	H	H	H	НО	0	-CH2CH=CCl2
1.1533	OMs	H	Ξ	三	王	三	OMe	ОМе	СН2ОН	H	H	Н	НО	0	-CH2C≡CMe
I-1534	OMs	H	王	Ξ	Ξ	H	ОМе	OMe	СН2ОН	H	Н	Н	НО	0	-CH2C6H4-4-Me
I-1535	OMs	H	Ξ	H	H	H	OMe	OMe	СН2ОН	H	Н	H	ОМв	0	-(CH ₂) ₂ CH=CMe ₂
I-1536	OMs	Ξ	国	三	王	Ξ	OMe	ОМе	СН2ОН	Ή	H	Н	ОМв	0	-CH2CH=CCl2
1.1537	OMs	Ή	Ξ	H	H	H	OMe	OMe	CH ₂ OH	H	H	Н	OMe	0	-CH2C≡CMe

Table 278

I.1538	OMs	Ξ	H	Ξ	Ξ	Ξ	OMe	OMe	CH2OH	Ξ	H	田	OMs	0	-CH ₂ C ₆ H ₄ -4-Me
1.1539	ОМя	=	Ξ	=	=	=	OMe	OMe	CH2OH	=	H	H	СООН	0	-CH2CH=CMe2
1.1540	OMs	Ξ	H	H	H	Η	OMe	OMe	CII20H	Ξ	Н	Η	СООН	0	$-(CH_2)_2CH = CMe_2$
1.1541	OMs	Ξ	Ξ	Н	Ξ	Ξ	OMe	OMe	СН2ОН	H	H	Н	соон	0	- CH2CH = CCl2
1.1542	OMs	H	Н	Н	Н	H	ОМе	OMe	СП2ОН	Ξ	Н	Ξ	СООН	0	-CH2C≡CMe
1-1543	ОМв	=	=	=	=	=	OMe	OMe	CHZOII	=	=	=	СООН	0	-CH ₂ C ₆ H ₄ -4-Me
1.1544	OMs	Ξ	Ξ	Η	Н	H	OMe	ОМе	СН2ОН	三	Ξ	Ξ	СН2ОН	0	$-(CH_2)_2CH=CMe_2$
I.1545	OMs	Ξ	Η	Н	Н	Н	ОМе	ОМе	СН2ОН	Ξ	H	H	СН2ОН	0	-CH2CH=CCl2
1.1546	OMs	Н	Н	Н	Н	Н	ОМе	OMe	СН2ОН	Ή	Η	H	СН2ОН	0	-CH2C≡CMe
1.1547	OMs	H	Н	Н	Н	Н	ОМе	ОМе	СН2ОН	Ξ	Ξ	H	СН2ОН	0	-CH2C6H4-4-Me
I-1548	OMs	Н	Н	Н	Н	H	ОМе	ОМе	СН2ОН	Ξ	н	王	দে	0	-CH2CH=CMe2
1.1549	OMs	Ξ	H	Η	H	Ξ	OMe	ОМе	СН2ОН	Ξ	Ξ	王	F	0	-(CH ₂) ₂ CH=CMe ₂
1.1550	OMs	Н	Н	Н	Н	Н	ОМе	ОМе	СН2ОН	H	Ξ	H	Ŧ	0	-CH2CH=CCl2
I-1551	OMs	H	H	Н	H	H	OMe	OMe	СН2ОН	Ξ	H	田	ᅜ	0	-CH2C≡CMe
I-1652	OMs	H	Ξ	H	포	Ξ	OMe	OMe	СН2ОН	Ξ	Ξ	田	ম	0	-CH2C6H4-4-Me
1.1553	OMe	Ξ	Ξ	Ξ	H	Ξ	OMe	OMe	Me	H	H	Ξ	НО	0	-CH2CH=CMe2
1.1554	OMs	Ξ	Ξ	H	H	H	OMe	OMe	Me	H	王	Ξ	НО	0	-(CH2)2CH=CMe2
I-1555	OMs	H	Ξ	Ή	Ŧ	Ξ	OMe	ОМе	Me	H	国	王	НО	0	-CH2CH=CCl2
I-1556	OMs	H	Н	H	H	H	OMe	OMe	Me	H	Ξ	三	ЮН	0	-CH ₂ C≡CMe
1.1557	OMs	Η	H	Ξ	Ξ	Ξ	OMe	OMe	Me	田	王	三	ОН	0	-CH2C6H4-4-Me
1-1558	OMs	H	H	H	田	H	OMe	OMe	Me	H	H	H	OMs	0	-CH2CH=CMe2

Table 279

_	
Э.	
_	

1	100	=	:	-	Ŀ	:		⊢	L	Ŀ					
6001.1	OMS	1	1		1	1	OMe	OMe	Me	=		1	OM8	익	-CH2CH=CCI2
1.1560	OMs	=	=		Ξ	Ξ	OMe	OMe	Me		Ξ	Ξ	OMs	0	−CH2C≡CMe
1.1561	OMs	=		=	=	Ξ	OMe	OMe	Me	Ξ	Н	Ξ	СООН	0	-CH2CH=CMe2
1.1562	OMs	=	프	Ξ	크		OMe	OMe	Me	H	H	H	СООН	0	-(CH ₂) ₂ CH=CMe ₂
1.1563	OMs	Ξ	Ξ	Ξ	Ξ	Ξ	ОМе	ОМе	Me	=	Н	H	НООЭ	0	- CH2CH=CCl2
1.1564	ОМв	=	=	=	Ξ	=	OMe	ОМе	Me	=	王	三	СООН	0	-CH2C≡CMe
I-1565	OMs	Ξ		ェ	Ξ	Ξ	ОМе	ОМе	Me	Н	Ξ	Ξ	СООН	0	-CH2C6H4-4-Me
1.1566	OMs	포	듸	Ξ	포	H	OMe	OMe	Me	Ξ	Ξ	H	СН2ОН	0	-CH2CH=CMe2
1.1567	OMs	丰	王	H	三	H	OMe	OMe	Me	H	Н	Н	СН2ОН	0	$-(CH_2)_2CH = CMe_2$
I-1568	OMs	王	=	Ξ	Ξ	H	OMe	ОМе	Me	H	H	Н	СН2ОН	0	- CH2CH=CCl2
1.1569	OMs	=	=	=	Ξ	Ξ	OMe	OMe	Ме	Ξ	H	Н	СН2ОН	0	-CH2C≡CMe
1.1570	OMs	H	Ξ	Ξ	Н	Н	ОМе	ОМе	Me	=	Ξ	H	СН2ОН	0	-CH2C6H4-4-Me
I-1571	OMs	Н	Ξ	王	Н	Н	OMe	ОМе	Me	Н	н	Н	F	0	- CH ₂ CH = CMe ₂
I-1572	OMs	Ξ	=	Ξ	Ξ	=	OMe	ОМе	Me	H	Н	Н	낸	0	$-(CH_2)_2CH = CMe_2$
1.1573	OMs	H	Ξ	Н	Ħ	王	ОМе	ОМе	Me	H	Н	Н	化	0	- CH ₂ CH=CCl ₂
1.1574	OMs	н	H	H	H	H	ОМе	ОМе	Me	Н	Н	Н	H	0	-CH2C≡CMe
1.1575	OMs	H	Н	H	H	Ξ	ОМе	ОМе	Me	H	Н	Н	댐	0	-CH2C6H4-4-Me
1.1576	OMs	H	H	Н	Н	Ξ	OMe	ОМе	H	Н	Н	Н	0Н	0	-CH2CH=CMe2
1.1577	OMs	Ξ	王	H	H	H	OMe	OMe	Н	Н	Н	Н	ОН	0	$-(CH_2)_2CH = CMe_2$
1.1578	OMs	E	王	H	Ξ	王	OMe	OMe	Н	Н	Н	Н	НО	0	- CH2CH=CCl2
I-1579	OMs	Н	H	Ξ	н	Ξ	OMe	OMe	Ξ	Н	H	7	но	-	WUII UII I

Table 280

	F	ŀ							L	L			
-1	되	三	三	三	OMe	OMe	Ξ	픠	픠	픠	Ħ	의	-CH ₂ C ₆ H ₄ -4-Me
=		포	H	三	OMe	ОМе	Н	=	三	Ξ	OMs	0	-CH2CH=CCl2
=		Ξ	=	Ξ	OMe	OMe	=	Ξ	王	Ξ	OMs	0	-CH2C≡CMe
=	\dashv	王	H	E	OMe	ОМе	Ξ	三	円	王	Н000	0	$-CH_2CH = CMe_2$
Ξ		H	=	=	OMe	ОМе	=	Ξ	=	工	СООН	0	-(CH2)2CH = CMe2
=		=	=	=	OMe	OMe	=	=	=	Ξ	СООН	9	-CH2CH=CCI2
=		Ţ	王	E	OMe	OMe	H	=	王	王	СООН	0	−CH ₂ C≡CMe
피		王	王	Ξ	OMe	OMe	H	Ξ	Ξ	Ħ	соон	0	-CH2C6H4-4-Me
피		H	H	H	OMe	OMe	Ħ	Ξ	H	H	СН2ОН	0	-CH2CH=CMe2
=		Ξ	I	I	OMe	OMe	Ħ	Ξ	Ξ	Ξ	СН2ОН	0	- (CH2)2CH=CMe2
田		H	王	Ξ	OMe	OMe	H	Ξ	Ξ	Ξ	СН2ОН	0	$-CH_2CH = CCI_2$
H		H	H	H	OMe	OMe	H	프	프	Ξ	СН2ОН	0	– CH₂C≡CMe
푀		田	田	Ξ	OMe	ОМе	Н	프	Ξ	Ξ	СН2ОН	0	-CH2CaH4-4-Me
=		=	=	=	OMe	ОМе	Н	=	Ξ	=	দে	0	-(CH2)2CH = CMe2
푀		H	H	H	OMe	OMe	H	Ξ	H	三	Œ,	0	-CH2CH = CCl2
푀		H	H	Ħ	OMe	ОМе	H	三	포	프	F	0	– CH₂C≡CMe
工	[H	H	E,	OMe	OMe	ЮН	王	크	픠	НО	0	-CH2CH=CMe2
=		三		<u>-</u>	OMe	OMe	B	=	三	픠	НО	0	-(CH2)2CH = CMe2
I	-	H	H	<u>(2,</u>	ОМе	OMe	ОН	Ξ	三	三	ЮН	0	-CH2CH=CC12
Ξ		H	田	ſĿ,	ОМе	OMe	ЮН	三	Ξ	Ξ	НО	0	–CH2C≡CMe
H			H	Œ,	ОМе	OMe	НО	H	Ħ	三	ОН	0	-CH2C6H4-4-Me

Table 281

5	
10	
15	
20	
<i>2</i> 5	
30	
35	
40	

Table 282

-CH ₂ C≡CMe	-CH2CH=CCl2	– CH₂C≡CMe	-CH2CH=CMe2	$-(CH_2)_2CH=CMe_2$	-CH2CH=CCh2	CH₂C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH = CMe2	- CH ₂ CH = CCl ₂	–CH₂C≡CMe	-CH ₂ C ₆ H ₄ -4-Me	−CH2CH=CCl2	– CH₂C≡CMe	-CH2CH=CCl2	– CH₂C≡CMe	CH2CH=CMe2	$-(CH_2)_2CH = CMe_2$	-CH2CH=CCl2	−CH2C≡CMe
0	0	0	0	0	၁	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
НО	ОМв	OMs	СООН	СООН	11000	СООН	СООН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	Œ,	F	НО	НО	OMs	ОМв	ОМв	OMe
H	Ħ	Ξ	·H	Ξ	=	H	H	H	Н	H	H	H	H	Н	H	H	H	H	H	H
포	H	Н	H	Ξ	=	Ξ	H	H	H	Н	H	H	H	H	H	H	H	H	H	H
H	Ξ	Ή	Ξ	=	=	=	Ξ	=	H	H	Ξ	王	王	H	Ξ	H	H	H	H	H
НО	ЮН	ОН	ЮН	HO	ПО	ОН	НО	IIO	ОН	НО	ОН	НО	НО	. НО	СООН	СООН	СООН	нооэ	нооэ	соон
OMe	OMe	OMe	OMe	OMe	OMc	ОМе	ОМе	OMe	ОМе	ОМе	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe
ОМе	ОМе	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe
H	П	Ξ	H	=	=	Н	H	=	Н	Н	Н	Н	H	Н	H	Ξ	Н	H	Ξ	Н
Н	П	Н	Н	=	=	H	Н	==	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	П	Н	Н	Н	=	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	H	Н
王	Ξ	Ξ	Н	=	=	Н	Ή	H	Н	Н	Н	H	Н	Н	Н	Н	H	H	н	Н
Ξ	=	Н	Н	=	=	Н	Н	=	H	Н	11	Н	Н	H	H	Н	Н	Н	Н	Н
<u>(</u> -	4	F	Ŋ	· 4	-	F.	ı.	Ŗ	F	Į.	F	٦.	F	F	F.	F	R	ન	F	स
1.1622	1-1623	1.1624	1.1625	1.1626	1.1627	I-1628	I-1629	0691.1	1.1631	1.1632	1.1633	1.1634	1.1635	I.1636	1-1637	1.1638	1-1639	1.1640	1.1641	J.1642

Table 283

5																					
5	– Me	Me ₂	CMe ₂	Cl2	Me	Me	Me2	CMe ₂	Cl	Me	Me	Cl2	Me	Mez	CMe ₂	Cl2	Ме	– Me	Mez	Me	Cl2
10	-CH ₂ C ₆ H ₄ -4-Me	$-CH_2CH = CMe_2$	-(CH2)2CH = CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH = CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CCl2	– CH₂C≡CMe	-CH2CH=CMe2	$-(CH_2)_2CH = CMe_2$	-CH2CH=CCl2	-CH2C≡CMe	-CH ₂ C ₆ H ₄ -4-Me	-CH2CH=CMe2	-(CH2)2CH = CMe2	-CH2CH=CC12
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	OMs	СООН	COOH	соон	С00Н	С00Н	СН2ОН	СН2ОН	СН₂ОН	СН2ОН	СН2ОН	ርዲ	GZ.,	ОН	НО	ЮН	ОН	OH	ОМв	ОМв	ОМв
20	Н	H	H	· Ħ	H	H	H	H	H	H	Ξ	H	H	王	田	H	H	Ħ	H	Ξ	H
	H	H	H	H	Н	H	Н	Н	Н	H	H	H	Ħ	国	田	Ξ	H	H	H	H	H
	H	H	H	Н	Ξ	Ξ	Н	Н	Н	H	Ή	Ξ	H	田	王	王	田	Ξ	H	Ξ	H
25	СООН	COOII	C00H	C00H	C00H	C00H	C00H	C00H	С00Н	C00H	С00Н	C00H	Н000	СН20Н	СН2ОН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	СН2ОН
30	ОМе	OMe	OMe	ОМе	ОМе	OMe	ОМе	ОМе	ОМе	ОМе	OMe	OMe	ОМе	OMe	ОМе	ОМе	OMe	OMe	ОМе	OMe	ОМе
	OMe	OMe	ОМе	OMe	OMe	OMe	ОМе	ОМе	OMe	ОМе	ОМе	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	OMe	OMe	OMe	OMe
35	Ξ		Ξ	ェ	Ξ	=	三	Ξ	포	포	프	王	Ξ	H	H	Н	Н	Н	H	H	H
	=		Ξ	王	Ξ	=	三	포	Ħ	H	Н	H	H	H	H	Н	Н	H	H	H	H
	Ξ	=	Ξ	王	Ξ	=	=	Ξ	Ξ	Ħ	H	포	H	H	H	H	Ξ	Н	Н	Ħ	H
40	=	=	=	H	=	=	Н	Ξ	Н	Ξ	王	Ξ	=	프	H	H	H	王	Ή	Ξ	H
	=	Ξ	=	三	Ξ	=	H	H	H	Ξ	H	=	H	Н	Ξ	H	H	프	Ξ	H	H
45	Œ	æ	F	٤.	<u>-</u>	-	હ	ૃ	Œ	હ	Ŀ	F	F	Œ,	Œ,		Œ,	Œ,	स	FI	Œ
50	643	644	345	946	347	91:	349	350	351	352	553	154	55	999	22	28	69	09	19	62	63

Table 284

	-	Γ	-	τ –	Τ-			г —	_	т —	·		, 							
-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH ₂) ₂ CH=CMe ₂	-CH2CII=CCI2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH ₂ CH=CMe ₂	-(CH2)2CH=CMe2	-CH2CH=CC12	- CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	$-(CH_2)_2CH=CM_{62}$	- CH2CH = CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH=CMe2	- CH2CH=CCl2	-CH2C≡CMe
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OMs	OMs	Н000	Н000	ROOD	соон	HOOD	СН2ОН	СН2ОН	CH2OH	СН2ОН	СНДОН	F	F	년	뚀	দ	НО	ОН	НО	НО
Ξ	Н	H	H	Ξ	Н	Н	Н	Н	H	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н
Ξ	H	=	Ξ	H	н	Н	Н	H	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н
	H	=	Н	П	н	Н	Н	H	H	Н	Н	Н	Н	Н	Н	Н	Н	Ξ	Н	Н
ПОЛІЗ	СИ2ОН	СПДОН	СН₂ОН	СП2ОН	СПОН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	CH2OH	СН2ОН	CH ₂ OH	СН2ОН	СН2ОН	СН2ОН	Me	Me	Me	Me
ОМе	OMe	OMe	OMe	ОМе	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	OMe	ОМе	ОМе	OMe	ОМе	OMe	OMe	OMe
OMe	OMe	OMe	ОМе	OMe	OMe	ОМе	ОМе	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	OMe	ОМе	OMe	ОМе	ОМе	ОМе
=	=	=	Ξ	=	=	Ξ	H	Ξ	王	王	Ξ	Н	Н	Н	Ξ	H	王	三	포	Н
=	=	Ξ	Η	Ξ	=	H	H	프	Ξ	H	H	H	H	H	Ξ	프	Ξ	Ξ	H	Н
	=	=	=	Ξ	=	H	H	王	H	Ξ	Η	H	Н	H	Ξ	Ξ	王	Ξ	田	H
=	=	=	=	=	=	H	Ξ	Ξ	Ξ	H	Ξ	王	H	Ξ	Ξ	Ξ	H	国	I	H
	Ξ	=	=	=	=	Ξ	H	Ŧ	Ħ	Ħ	H	Ξ	H	Ή	Ξ	H	丰	Ξ	=	H
F	-	=	1	Ľ.	3-	ᄄ	ম	Œ	F	F	F	ધ	Œ	F	٤.	CŁ,	Œ	Œ	. I	Ā
1.1664	1.1665	1.1666	1-1667	1.1668	1.1669	1.1670	1.1671	1.1672	1-1673	1.1674	1.1675	I-1676	I-1677	I-1678	1.1679	I.1680	1.1681	1.1682	1.1683	1.1684

Table 285

ı	,		
	ì	,	

1.1685	E-	프	=	Ξ	Ξ	=	ОМе	OMe	Me	Н	五	Ξ	НО	0	-CH ₂ C ₆ H ₄ -4-Me
1.1686	£.	=	=	Ξ	=	Ξ	OMe	OMe	Me	Н	Н	H	OMs	0	-CH2CH=CMe2
1.1687	2	듸	=	三	=	=	OMe	OMe	Me	Ξ	Н	Н	OMs	0	-(CH ₂) ₂ CH=CMe ₂
1.1688	54	=	프	프	Ξ	=	OMe	OMe	Me	H	Н	Н	OM8	0	-CH2CH=CCl2
1-1689	٤.	=		Ξ	=	=	ОМе	ОМе	Me	Ħ	Ξ	H	OMB	0	-CH2C≡CMe
1.1690	-	=	=	=	=	=	OMe	ОМе	Me	H	Ξ	Ξ	OMs	0	-CH2C6H4-4-Me
1.1691	٤.	三	픠	· =	=	=	OMe	OMe	Me	Ξ	Ξ	H	СООН	0	-CH2CH=CMe2
1.1692	[24	王	王	픠	Ξ	크	OMe	ОМе	Me	王	Ξ	Н	СООН	0	-(CH ₂) ₂ CH=CMe ₂
1.1693	F	三	=		프	Ξ	OMe	OMe	Me	H	Н	Н	СООН	0	CH2CH=CCl2
1.1694	-	三	Ξ	프	Ξ	Ξ	OMe	OMe	Me	Ξ	Ξ	Н	соон	0	- CH ₂ C≡CMe
1.1695	Œ	三	Ξ	三	Ξ	Ξ	ОМе	ОМе	Me	H	Н	H	нооэ	0	-CH2C6H4-4-Me
1.1696	뚀	Ξ	Ξ	Ξ	Ξ	Η	OMe	OMe	Me	Н	H	H	СН2ОН	0	-CH2CH=CMe2
1.1697	<u></u>	Ξ	Ξ	Ξ	Ξ	=	OMe	ОМе	Me	Н	H	Н	СН2ОН	0	-(CH2)2CH=CMe2
1.1698	۳.	프	Ξ	=	Ξ	H	OMe	OMe	Me	Н	Н	Н	СН2ОН	0	-CH2CH=CCl2
1.1699	Ċ.	H	H	H	Ξ	Ξ	OMe	ОМе	Me	Н	Н	Н	СН2ОН	0	-CH₂C≡CMe
1.1700	Œ,	Н	Ξ	H	H	H	ОМе	OMe	Me	Н	H	Н	СН2ОН	0	-CH2C6H4-4-Me
1.1701	Ľ.	H	Н	H	Н	H	ОМе	OMe	Me	H	H	Н	F	0	- CH ₂ CH = CMe ₂
1.1702	F	Ξ	Ξ	H	Ξ	H	ОМе	OMe	Me	H	Н	Н	Ŧ.	0	$-(CH_2)_2CH = CMe_2$
1.1703	단	Ξ	Ξ	丰	H	H	OMe	OMe	Me	Н	Н	Н	F	0	-CH2CH=CCl2
I-1704	म	Ξ	Ή	H	Ħ	王	OMe	OMe	Me	Ξ	H	Н	F	0	- CH ₂ C≡CMe
I.1705	ţŦ	H	H	H	H	H	OMe	OMe	Me	Н	H	Н	[œ	0	-CH2CaH4-4-MA

Table 286

28	le ₂	_~		Me	[e ₂	-2		Me	, a	[62	~	Γ	Je	29	62	~-		Je Je	2	8
- CH ₂ CH = CMe ₂	- (CH2)2CH = CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH2CaH4-4-Me	-(CH2)2CH=CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	- (CH2)2CH=CMe2	CII2CII=CCI2	-CH2C≡CMe	CH2C6H4-4-Me	- CH ₂ CH=CMe ₂	$-(CH_2)_2CH = CMe_2$	- CH ₂ CH = CCl ₂	-CH2C≡CMe	CH2C6H4-4-Me	-CH2CH=CMe2	- (CH ₀) ₂ CH = CM ₀
HzCH	H ₂)2C	H2CF	CH2C	LCaH.	H ₂)2C	H2CH	CH2C	Cch.	Н2СН	H ₂)2CI	II2CII	CH2C	2C ₆ H ₄	НаСН	12)2CI	н2сн)H2C≡	2C6H4	42CH:	H)o(o
٦) -)_	'	10 –	(C)))—	но-) –	-(Cl) –	Ī	-СН	-C	-(CI)-C)-	-СН	-C	-(CF
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U
ОН	НО	но	НО	ЮН	ОМв	вМО	OMs	OMs	СООН	С00Н	COOH	соон	С00Н	СН₂ОН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	F	Œ
Ξ	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	н	Н	Н	표	H	Н	H	Н	Ή
Ξ	H	H	Н	=	H	H	H	Н	Н	Н	Н	Н	Н	Н	H	H	Ή	Н	Ξ	H
=	=	=	H	=	H	Н	Н	Н	Н	Н	11	Н	H	Ξ	=	Ξ	H	Ξ	H	H
H	H	H	Н	II	Н	I	Ŧ	Н	H	Ξ	Ξ	Н	H	=	=	H	Н	Н	Н	Н
OMe	OMe	OMe	ОМе	ОМе	ОМе	OMe	ОМе	ОМе	OMe	ОМе	ОМо	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe
OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe
H	H	Ξ	П	=	=	=	王	Ξ	H	Ξ	=	Ξ	Ξ	王	=	H	H	Ξ	H	H
H	П	Ξ	H	Ξ	H	H	H	Ή	H	王	=	Ŧ	H	=	=	H	H	Ξ	Ή	H
Ξ	Н	Ξ	Н	=	H	H	포	프	Ξ	Ξ	Ξ	Ξ	H	Ξ	=	Ξ	Ξ	Ξ	Н	H
Ξ	=	=	Ħ.	=	=	=	=	Ή	H	国	=	Ξ	Ξ	=	=	三	Ξ	目	H	H
=	=		Ξ	=	프	=	=	Ξ	H	Ξ	=	H	Ή	Ħ	=	王	H	Ξ	Ή	Н
-	લ	5-	સ	=	~	~	19	<u>-</u>	<u>-</u>	GE.	-		Œ	E-	=	Ŀ	Œ,	드	ম	GE .
1.1706	1.1707	1.1708	1.1709	1.1710	1.1711	1.1712	1.1713	1.1714	I-1715	I.1716	1.1717	1.1718	1.1719	I.1720	1.1721	1.1722	I-1723	1.1724	1.1725	I.1726

Table 287

5	
10	
15	
20	
25	
<i>30</i> ·	
35	
40	
45	

\neg		اق	- 5			9		ę,			9	\neg	24	_		8)	. 1	2		
-CH2CH=CCl2	– CH2C≡CMe	-CH2C6H4-4-Me	-(CH2)2CH = CMe2	-CH2CH=CCl2	-CH₂C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH = CMe2	-CH2CH=CCl2	– CH2C≡CMe	-CH2C6H4-4-Me	$-CH_2CH = CMe_2$	-(CH2)2CH = CMe2	-CH2CH=CCl2	– CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH = CMe2	-CH2CH=CCI2	- CH2C≡CMe
0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ľ.	F	ন	ОН	НО	011	ОН	ОМв	ОМв	ОМв	ОМв	OMs	нооэ	соон	нооэ	СООН	соон	СН2ОН	СН2ОН	СН2ОН	СН2ОН
H	Н	H	H	Ξ	=	Н	Ξ	H	H	H	Н	H	H	H	Н	H	H	Ξ	H	H
H	Ξ	王	H	Ξ	=	H	H	Н	H	Н	Н	Н	Н	Н	Н	H	Н	H	Н	H
H	H	=	H	Ξ	=	Н	H	Н	H	H	Ή	H	н	Н	Н	H	H	Ξ	H	H
Ξ	Ξ	=	IIO	HO	5	IIO	ОН	НО	ЮН	НО	НО	НО	OH	ОН	ОН	ОН	ОН	ОН	ОН	Н0
OMe	OMe	OMe	ОМе	OMe	OMe	ОМе	ОМе	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe
ОМе	ОМе	OMe	ОМе	ОМе	OMe	ОМе	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	ОМе	OMe	OMe
Ξ	Ξ	Ξ	~	<u></u>	=	<u>-</u>	۲.	4	Ŀ	<u>-</u>	G.	G.	<u>r</u> .	ſr.	Œ	Œ	ſz.	Œ	Œ	Œ,
프	Ξ	=	=	=	=	H	H	H	11	Н	Н	H	=	Ξ	H	H	Ξ	H	王	H
Ξ	王	Ξ	=	=	=	Ξ	H	¥	H	Н	Н	Н	Ξ	Ξ	H	H	H	H	H	H
Ξ	=	=	=	=	=	Ξ	=	Ξ	=	H	Η	Н	Ξ	H	H	F	H	Ξ	田	Ή
	Ξ	=	=	=	=	H	Ξ	H	Ξ	Ξ	H	Ξ	H	H	H	H	H	H	王	H
ા	<u>-</u>	٢.	-	۲.	2-	F .	Ŋ	<u>-</u>	4	Ę.	۲	ī.	-	£	ᄕ	[±,	·	ſ£,	٤.	ſ z ,
1.1727	1.1728	1.1729	1.1730	1.1731	1.1732	1.1733	1.1734	1.1735	1.1736	1.1737	I.1738	1-1739	1.1740	1.1741	I-1742	I-1743	1.1744	1.1745	1.1746	I-1747

Table 288

. 45

-CH ₂ C ₆ H ₄ -4-Me	-CH2CH=CMe2	-(CH2)2CH=CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH ₂ C ₆ H ₄ -4-Me	-CH2CH=CMe2	-(CH2)2CH=CMe2	-CH2CH=CCl2	-CH ₂ C≡CMe	-CH2C6H4-4-Me	-CH ₂ CH=CM ₆₂	- (CH2)2CH=CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH ₂ C ₆ H ₄ -4-Me	-CH2CH=CMe2	-(CH2)2CH=CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
СН2ОН	F	ᅜ	ᅜ	다	Ħ	ОН	ОН	ОН	ОН	ОН	ОМв	ОМв	ОМв	OMs	OMe	нооэ	С00Н	С00Н	соон	соон
Ξ	Н	H	Н	Н	H	Н	Н	H	Н	Н	H	Ξ	H	H	H	H	Ξ	Ξ	н	H
Ħ	Н	Ŧ	Н	Η	H	Н	Н	Н	Н	H	H	Ή	H	H	Ξ	王	H	Ξ	포	Ξ
H	Н	Н	H	Ξ	Ŧ	H	Ξ	Н	Н	Н	=	Ξ	H	王	Ξ	丰	Ξ	Ξ	田	H
HO	НО	ОН	ОН	НО	ОН	ОН	ОН	ОН	OH	ОН	IIO	ОН	ЮН	НО	011	ОН	НО	НО	ОН	НО
OMe	ОМе	OMe	ОМе	OMe	ОМе	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	ОМе	OMe	OMe	OMe
OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe
F	સ	7	<u>ج</u>	<u></u>	~	H	Ξ	Ξ	Ή	Ξ	=	Ξ	三	王	=	王	王	Ξ	王	田
Ξ	Н	Ξ	Ξ	=	=	Ξ	=	Ξ	H	Ξ	=	Ξ	H	田	=	Ξ	Ξ	Ŧ	Ξ	H
Ξ	Ξ	Ξ	Ξ	H	=	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
=	H	=	Ξ	Ξ	=	Ξ	=	Ξ	Ξ	H	=	=	H	H	=	프	H	Ξ	H	H
=	=	Η	H	=	=	Н	=	Ή	H	H	=	=	Ξ	田	=	Ξ	王	Ξ	Ξ	Ħ
드	2.	54	હ	Œ	:-	-0cH20-*	*-05H20-	+-0CH2O-	-0CH20-	-0cH20-*	-()(;H ₂ ()-*	OCH2O	-0cH20-*	-0CH20-*	*-02H2O-	+-0 ² H20-	-0cH20-*	-0CH ₂ O-*	-0cH20-*	-0cH20-*
1.1748	1.1749	1.1750	1.1751	1.1752	1.1753	1-1754	1.1755	1.1756	I.1757	1.1758	1.1769	1.1760	I.1761	1.1762	1.1763	I-1764	1.1765	1.1766	1.1767	1.1768

Table 289

5	
10	
15	
20	
25	
30	
35	
40	
45	

900	0 11100	Ŀ	Ŀ	L					L	L						_
اع	* - 051150 - *	1	=	*	=	=	OMe	OMe	ē				CH ₂ OH	0	CH2CH=CMe2	,
1.1769	-OCH2O-*	=	=	*	프	=	ОМе	OMe	ЮН	Ξ	Ξ	Ξ	СН2ОН	0	-(CH2)2CH=CMe2	
1.1770	-OcH20-*		Ξ	*	=	=	OMe	OMe	OH	=	H	H	СН2ОН	0	-CH2CH=CCl2	
1.1771	-0cHz0-*		Ξ	*	Ξ	Ξ	OMe	OMe	OH	H	Н	H	но ^г но	0	-CH2C≡CMe	
1.1772	-0cH20-*		Ξ	*	=	=	ОМе	ОМе	OH	Н	H	Н	СН2ОН	0	-CH2C6H4-4-Me	
1-177:1	-()(;H ₂ ()-*	=	Ξ	*	=	=	OMe	OMe	OH	Π	Н	H	સ	0	-CH2CH=CMe2	
1.1774	-0CH20-*	=	Ξ	*	Ξ	三	OMe	OMe	HO	Н	Н	Н	F	0	- (CH ₂) ₂ CH = CMe ₂	
1.1775	-0cH20-	Ξ	Ξ	*	Ξ	Ξ	ОМе	OMe	НО	H	Н	Н	F	0	-CH2CH=CCl2	
1.1776	-0CH20-*	표	Ξ	*	H	Ξ	OMe	OMe	НО	Н	Н	Н	F	0	- CH2C≡CMe	
1.1777	-0CH ₂ O-*	Н	Ξ	*	Ξ	Ξ	ОМе	ОМе	НО	Н	Н	Н	F	0	-CH2C6H4-4-Me	
I-1778	-0CH ₂ 0-*	Ξ	Ξ	*	田	H	OMe	ОМе	СООН	H	H	Н	ОН	0	-CH2CH=CMe2	
1.1779	-0CH20-	Ξ	=	*	=		OMe	ОМе	СООН	H	H	H	ОН	0	-(CH2)2CH=CMe2	
I-1780	-0CH20-*	Η	표	*	三	国	OMe	OMe	нооо	王	H	Н	ОН	0	-CH2CH=CCl2	
I-1781	-0CH20-	H	Ξ	*	王	王	OMe	OMe	соон	Н	Н	Н	Н0	0	- CH₂C≡CMe	
I-1782	-0cH20-*	Ξ	Ξ	*	王	Ξ	OMe	OMe	нооэ	Н	Н	Н	Н0	0	-CH2C6H4-4-Me	
1.1783	-0cH20-*	=	=	*	王	=	ОМе ОМе	ОМе	нооэ	H	H	Н	ОМв	0	-CH ₂ CH=CMe ₂	
I-1784	-0cH20-*	E	三	*	田	H	OMe	OMe	НООО	H	н	Н	ОМв	0	-(CH ₂) ₂ CH=CMe ₂	
1.1785	-0cH20-	Ξ	F	*	Ξ	Ξ	OMe	OMe	НООЭ	Ħ	H	Н	OMs	0	-CH ₂ CH=CCl ₂	
I.1786	-0CH20-*	H	Ξ	*	三	=	OMe	OMe	Н000	王	H	H	OMs	0	– CH2C≡CMe	
1.1787	-OCH2O-*	H	三	*	王	크	OMe	OMe	СООН	H	Ξ	田	ОМв	0	-CH2C6H4-4-Me	
1.1788	-0CH2O-*	H	H	*	H	H	OMe OMe	OMe	соон	Н	Н	Н	СООН	0	-CH2CH=CMe2	

55

Table 290

CMez	CCI	Me	1-Me	Mez	CMe2)CI2	₩	- Me	Mez	CMe2	ĬĊĮ,	Me	-Me	Me2	CMez	ت ت	Me	- Me	Mez	
-(CH2)2CH=CMe2	-CH2CH=CCI2	CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH = CMe2	- CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	- (CH ₂) ₂ CH = CMe ₂	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH=CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	- (OII.) OII.
-	-	_	-	-	-	-		<u> </u>	Ī) –	_		2	Ĭ)-	Ī	'	 - 	-	١
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	<
1000	Н000	COOII	соон	CH2OH	СН2ОН	СН2ОН	СН₂ОН	CH ₂ OH	দ	ᄺ	F	F	प्र	но	но	НО	НО	0Н	ОМв) NO
=	H	Н	Н	Н	Н	Н	Н	H	Н	Н	н	Н	H	Н	Н	Н	Н	Н	Н	п
Ξ	H	Н	Н	Н	H	н	H	Н	H	Н	H	Н	H	Н	Н	Н	Н	Н	Н	77
Ξ	Н	H	H	Н	H	Н	Н	Н	Н	Н	П	Н	Н	Н	Н	Н	Н	Н	Н	п
СООН	СООН	СООН	СООН	СООН	СООН	Н000	С00Н	соон	соон	СООН	СООН	соон	С00Н	СН2ОН	CH ₂ OH	СН2ОН	СН2ОН	СН2ОН	СН2ОН	CHOH
OMe	ОМе	ОМе	OMe	ОМе	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	ОМе	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe
ОМе	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe
Ξ	=	=	Ξ	Ξ	=	Ξ	H	H	王	프	=	Ξ	×	E	H	H	田	=	H	Ħ
Ξ	=	=	H	H	H	H	H	H	H	Ξ	Ξ	H	H	王	H	H	三	Ξ	Ξ	Ħ
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
=	=	=	=	=	Ξ	=	H	王	三	Ξ		三	H	王	王	王	田		王	H
=	=	=	포	=	=	H	王	三	三	王	国	王	田	王	国	三	王	=	三	H
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
-0cH20	-0cH20	OZH20-	OTHO -	-OCH2O	-00H20	-0CH2O	-0CH ₂ O	-0CH20-	-0CH2O-	-0CH20-	-0cH20-	-04H20-	-0CH2O-	-0cH20-	-0CH20-	-0CH20-	-0CH20-	-0CH2O-	-07H20-	-0CH20-
							- 1										o		-+	
1.1789	1.1790	1.1791	1.1792	1.1793	1.1794	1.1795	1.1796	1.1797	I-1798	I-1799	1.1800	1.1801	I-1802	I-1803	1.1804	I-1805	I-1806	1.1807	I.1808	I-1809

' Table 291

5	
10	
15	
20	

		a)		64			60									_		-		r
- CH2CH=CCl2	−CH ₂ C≡CMe	CH2C6H4-4-Me	-CH2CH=CMe2	- (CH2)2CH=CMe2	-CH2CH=CCl2	- CH ₂ C≡CMe	-CH2C6H4-4-Me	- CH2CH=CMe2	- (CH2)2CH=CMe2	- CH2CH=CCl2	-CH ₂ C≡CMe	-CH2C6H4-4-Me	- CH2CH=CMe2	-(CH2)2CH = CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	$-CH_2CH = CMe_2$	$-(CH_2)_2CH=CMe_2$	-CH ₂ CH=CC)
		Ĭ	•	Ī			-	1)-(_	<u> </u>)-		<u> </u>	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
OMs	OMs	ОМв	СООН	СООН	СООН	Соон	С00Н	СН2ОН	СН2ОН	CH ₂ OH	СН2ОН	СН2ОН	ત	स	F	F	F	ОН	ОН	НО
Ξ	Ħ	Ħ	Ξ	Н	H	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Ξ	Ξ	三	Ξ	Ξ	H	H	Н	H	Н	Н	Н	Н	H	Н	Н	H	Н	Н	Н	Н
Ξ	Ξ	Ξ	Ξ	Ξ	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CH2OH	СП2ОН	CHZOH	СИ2ОН	СПлОН	СПДОН	СН2ОН	СН2ОН	СН2ОН	CH ₂ OH	CH ₂ OH	Но₂нэ	СН2ОН	СН₂ОН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	Me	Me	Me
OMe	OMe	ОМе	OMe	OMe	OMe	ОМе	ОМе	ОМе	ОМе	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	OMe	OMe	OMe	OMe
ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe
Ξ	=	=	Ξ	Ξ	Ξ	工	王	Н	Н	Н	Н	Н	Н	Н	Ή	Н	H	H	H	H
=	Ξ	Ξ	Ξ	Ξ	=	=	Н	H	Н	Н	H	Н	Н	Ξ	Н	н	Н	Н	H	H
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Ξ		Ξ	Ξ	=	=	포	Ξ	Ξ	Н	H	H	Н	Н	Ξ	H	H	H	H	H	H
듸	Ξ	=	Ξ	프	=	Ξ	Ξ	=	H	H	Ξ	Н	H	Н	Н	Н	Н	Н	Ξ	Ή
+-0 ² H:)0-	-0cH30-*	+-OtH:0-+	-0CH20-*	+-0cH20-	+-0cH20-	-0cH20-	+-0 ² H20-	-0cH20-*	-0CH ₂ 0-*	-0CH ₂ 0-*	-0cH ₂ 0-*	-OCH2O-*	-0cH20-*	-0cH20-	-0CH ₂ O-*	-0CH ₂ O-*	-OCH2O-*	-0cH20-	+-0cH20-	-0CH ₂ O-*
1.1810	1.1811	1.1812	1-1813	1.1814	1.1815	I.1816	I-1817	1.1818	[.1819	I.1820	1.1821	I.1822	1.1823	I-1824	I-1825	I-1826	I.1827	1.1828	I.1829	I.1830

Table 292

	Je je	54	63		<u> </u>	<u>e</u>		6	<u> </u>	<u> </u>	<u>e</u>	T		Π		۰	<u> </u>	20	_	
-CH2C≡CMe	-CH2C6H4-4-Me	-CH ₂ CH=CMe ₂	$-(CH_2)_2CH = CMe_2$	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH = CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH ₂ CH=CMe ₂	$-(CH_2)_2CH = CMe_2$	- CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	$-(CH_2)_2CH = CMe_2$	-CH2CH=CCl2	– CH°C≡CM°
- C	CH2	HO	-(CH;	-CE	D-	-CH2	HO-	-(CH ₂	HO-	-C	-CH2C	-CH	-(CH2	-CH	- CF	-CH2C	-CH	(zH2) –	HO-	H) I
0	0	0	0	0	၁	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
НО	ОН	OMs	OMs	ОМв	OMs	OMB	Соон	СООН	COOH	нооэ	соон	СН2ОН	CH ₂ OH	но ^z но	СН2ОН	CH ₂ OH	F	F	F	Ŀ
Ξ	H	Н	H	H	H	Н	Н	H	H	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	Н	Н	Н	H	=	Ħ	H	H	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	н
	Ξ	Ξ	H	=	=	Ξ	H	Н	H	Н	Н	Ξ	Н	Н	Н	Н	Н	H	H	Ξ
Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me
ОМе	ОМе	ОМе	ОМе	ОМе	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe
ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	ОМе	OMe
=	=	=	三	=	=	Ξ	H	H	=	H	H	=	Ξ	H	포	H	王	H	H	H
	프	三	=	三	=	H	H	Ξ	=	H	H	=	H	Ξ	Ξ	王	Ξ	国	H	H
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	三	Ξ	Ξ	=	=	=	H	H	=	Н	H	=	田	王	三	丰	=	王	H	H
	=	Ξ	Ξ	=	=	H	H	H	=	Η	Ξ	=	Ξ	Ξ	H	王	=	H	国	H
+-07H2O-+	-0cH20-*	-0cH20-*	-0cH20-*	-04H20-	-07H20-*	-0cH20-*	-0cH20-*	-0CH ₂ O-*	+-()() z()	-OCH ₂ O-*	OCH20-*	+-07H2O-	-0CH20-*	-0CH20-*	-0CH20-*	-0CH ₂ O-*	-0cH20-*	-0cH20-*	-0CH ₂ O-*	-0CH ₂ 0-*
1.1831	1.1832	1.1833	1-1834	1.1835	1.1836	1.1837	I-1838	1.1839	1.1840	1.1841	1.1842	1.1843	1.1844	1-1845	1.1846	I.1847	1.1848	I-1849	I-1850	I-1851

Table 293

55

5	- CH2CeH4-4-Me	- CH2CH=CMe,	- (CH ₂) ₂ CH = CMe ₂	-CH2CH=CCl2	−CH ₂ C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	- (CH ₂) ₂ CH=CMe ₂	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CII=CMe2	- (CH2)2CH=CMe2	-CH2CH=CCl2	CH2C≡ CMe	CH2C6H4-4-Me	-CH2CH=CMe2	- (CH ₂) ₂ CH = CMe ₂	-CH2CH=CCl2	- CH2C≡CMe	-CH2C6H4-4-Me
10	\vdash	-	H	-		-CH2(- CH	-(CH ₂	-СН	-CF	-CH2C	CH2	-(CH ₂)	-CH2	—СН	-CH ₂ C	-CH2	-(CH ₂)	-CH2	-CH	-CH2Ce
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	E-	НО	НО	НО	ОН	ОН	OMB	OMs	OMs	OMs	OMs	СООН	СООН	соон	соон	СООН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	СН2ОН
20	H	Ξ	Ξ	Ξ	Н	H	Ξ	Н	Н	Н	Н	Н	Н	Ħ	H	Н	H	H	Н	Н	H
	Ξ	Ξ	H	Ξ	н	Ξ	Ξ	Н	Н	Н	Н	H	H	Н	Ξ	Н	Н	Н	Н	Н	H
	Ξ	=	Ξ	=	=	Ξ	Ξ	Н	Н	H	Н	Н	H	H	田	王	H	H	Н	H	H
25	Me	11	Н	Н	Ξ	Ξ	H	Н	Н	Н	Н	H	Н	Н	Н	=	H	H	Н	н	H
30	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	OMe
	ОМе	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe
35	Ξ	·=	=	픠		=	=	三	프	王	王	Ξ	Ξ	田	三	=	Ŧ	Ξ	H	H	H
	=	=	Ξ			=	=	ェ	三	田	H	H	H	H	H	=	H	H	H	H	H
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
40	=	=	=	=	=	=	=	Ξ	Ξ	Ξ	王	=	=	王	Ξ	=	国	=	三	王	王
	Ξ	릐	Ξ	=	Ξ	=	=	H	Н	H	Ξ	=	=	王	Ξ	=	田	Ξ	国	王	王
45	-0cH ₂ 0-*	-O:H:O-*	-07H20-*	-0cH ₂ 0-*	-0cH20-*	-001120-*	-0CH20-*	-0cH20-*	-0cH20-*	-0CH ₂ O-*	-0CH ₂ O-*	-0CH20-	-0CH20-*	-0cH20-*	-0cH20-*	-OCH2O-*	-0CH20-*	-0CH20-*	-0CH2O-*	-0CH ₂ O-*	-0CH20-*
50	1.1852	1.1853	1.1854	1.1855	1-1856	1.1857	1.1858	1.1859	I.1860	I-1861	I-1862	1.1863	1.1864	I-1865	1.1866	1.1867	1.1868	I-1869	I-1870	1.1871	1.1872

Table 294

	T .		Т	1 0	,T	T -	т-	1	T -	_	_	1		τ	_		1		,	
-CH2CH=CMe	-(CH ₂) ₂ CH=CMe ₃	-CH2CH=CCI	-CH2C≡CMe	-CH2C6H4-4-MA	-CH2CH=CMe3	-(CH ₂) ₂ CH=CMe ₂	- CH2CII = CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH ₂) ₂ CH=CMe ₂	-CH2CH=CCl	-CH ₂ C≡CMe	-CH ₂ C ₆ H ₄ -4-M _e	-CH2CH=CMe,	$-(CH_2)_2CH = CMe_2$	-CH2CH=CCl2	-CH ₂ C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ম	- E	£.	1	[24,	HO	НО	HO	HO	HO	OMs	OMe	OMs	OMs	OMs	НООО	СООН	СООН	H000	Н000	СН2ОН
H	=	Ξ	Ξ	=	Ξ	三	=	Ħ	Н	Н	Н	Н	н	Ξ	H	H	Н	Н	Н	Н
H	=	Ξ	=	Ξ	Ξ	H	Ξ	Н	Н	Н	Н	H	H	Н	Н	Н	Н	Н	Н	Н
Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	II	Н	Н	II	Н	Н	Н	Η	Н	Н	Н	Н	Н	Н
Ξ	H	Н	11	H	ЮН	ОН	110	OH	НО	ЮН	ОН	ЮН	ОН	OH	Н0	Н0	ЮН	ЮН	НО	ОН
OMe	OMe	ОМе	OMe	ОМе	ОМе	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	ОМе	OMe
ОМе	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	OMe	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	OMe
	Ξ	Η	=	Н	Ţ	F	<u>-</u>	٤.	Ē.	5-	Z.	ᄄ	DZ,	Έ.	Œ,	Œ,	Œ	E.	Œ,	Ē.
	Ξ	=	=	H	Н	Ħ	=	=	Ξ	=	Ξ	H	H	=	Ξ	H	国	H	田	H
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	=		=	Ξ	=	=	=	H	Ŧ	=	三	Ή	Ξ	=	=	=	三	三	王	H
	Ξ	Ξ		=	픠	王	=	=	Ξ	=	Ξ	H	Ŧ	=	国	H	田	王	田	H
+-04H20-+	-0cH20-*	-0cH20-*	+-OcH2O-+	-0cH20-*	-0cH20-*	-0cH20-*	-()(H ₂ ()-*	-0cH20-*	-0CH ₂ 0-*	-OCH ₂ O-*	-OCH2O-*	-0CH2O-*	-0cH20-*	-OCH2O-*	-0CH ₂ O-*	-0CH ₂ O-*	-0CH20-*	-0cH20-*	-0cH20-*	-0cH20-*
1.1873	1.1874	1.1875	1.1876	1.1877	1.1878	I.1879	1.1880	1.1881	I.1882	I.1883	1.1884	I.1885	I.1886	1.1887	1.1888	I.1889	I-1890	1.1891	1.1892	I.1893

Table 295

5		
10	-(CH ₂) ₂ CH=CMe ₂	
15	0	۱ (
·	H CH2OH O	
20	H	:
	Н	:
	Н	:
25	OH	
30	F OMe OMe	, , ,
	ОМе	710
35	12	
	Н	:
	*	+
40	H	
	11	•••
45	OCH20-* II II	* * * * * * * * * * * * * * * * * * * *

55

1.1894	-0cH20-*		Ξ	*	Ξ	5-	OMe	OMe	HO	Ξ	Ξ	H	CH2OH	0	- (CH ₂) ₂ CH=CMe ₂
1.1895	+-07II7O-	=	프	*	프	-	OMe	OMe	НО	Ξ	Ξ	H	СН2ОН	0	- CH2CH=CCl2
1.1896	-0cH20-*	=		*	Ξ	<u>F</u>	OMe	OMe	OII	Ξ	H	H	CH2OH	0	-CH2C≡CMe
1.1897	-0cH20-*	=	=	*	프	<u>1</u>	OMe	OMe	OH	Ξ	H	Ħ	СН2ОН	0	-CH2C6H4-4-Me
1.1898	-0cH20-*	三		*	=	<u></u>	OMe	OMe	НО	=	Ξ	H	F	0	-CH2CH=CMe2
1.1899	+-OZH2O-+	=	=	*	=	-	OMe	OMe	OH	=	H	H	स	0	-(CH2)2CH=CMe2
1.1900	-0cH20-*	프	Ξ	*	H	<u>ج</u>	OMe	OMe	НО	Н	Н	Н	F	0	-CH2CH=CCl2
I.1901	-0cH20-*	프	王	*	H	<u>[+</u>	ОМе	OMe	ЮН	H	H	Н	F	0	-CH2C≡CMe
1.1902	+-0 ² H20-+	三	Ξ	*	H	드	ОМе	OMe	ЮН	H	王	H	저	0	-CH ₂ C ₆ H ₄ -4-Me
1.1903	NMe2	=	=	H	=	Ξ	ОМе	ОМв	НО	Ξ	H	Н	ОН	0	-(CH2)2CH=CMe2
I.1904	NMe ₂	Ξ	H	Н	H	Н	ОМе	ОМе	ЮН	Н	Н	H	ОН	0	-CH2CH=CCl2
1.1905	NMe ₂	王	Ξ	Н	H	Ξ	OMe	OMe	НО	Н	Н	H	ОН	0	-CH2C≡CMe
1.1906	NMe ₂	=	=	Ξ	H	=	OMe	OMe	НО	Н	Н	Н	OMe	0	-CH2CH=CMe2
1.1907	NMe ₂	H	H	H	H	Ή	OMe	ОМе	НО	Н	Н	H	OMs	0	-(CH ₂) ₂ CH=CMe ₂
I-1908	NMe ₂	H	Ή	H	H	H	OMe	ОМе	НО	Н	Н	H	OMs	0	-CH2CH=CCl2
1.1909	NMe ₂	H	Ξ	Ή	Ξ	Ή	OMe	ОМе	НО	Η	Н	Н	OMs	0	−CH ₂ C≡CMe
1.1910	NMe2	Ħ	Ξ	Ξ	三	Ξ	OMe	ОМе	НО	H	Н	H	OMs	0	-CH2C6H4-4-Me
1.1911	NMe ₂	H	H	H	H	H	OMe	ОМе	ОН	Н	H	Н	соон	0	-CH2CH=CMe2
1.1912	NMe ₂	Н	H	H	Ħ	H	ОМе	OMe	НО	H	H	H	нооэ	0	$-(CH_2)_2CH=CMe_2$
I.1913	NMe ₂	Ξ	H	H	三	H	OMe	ОМе	ОН	H	H	H	СООН	0	-CH2CH=CCl2
I.1914	NMe2	H	H	H	H	H	OMe	OMe	НО	H	H	H	COOH	0	-CH2C≡CMe

Table 296

·

Me	29	[ez	24		Je	2	62	~		Je	2	62			le		62			စ
-CH2C6H4-4-Me	- CH ₂ CH=CMe ₂	$-(CH_2)_2CH = CMe_2$	CH2CII=CC12	– CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH=CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	- CH ₂ CH=CMe ₂	-(CH2)2CH = CMe2	- CH2CH = CCl2	СМе	- CH2C6H4-4-Me	-CH ₂ CH=CMe ₂	-(CH2)2CH=CMe2	-CH2CH=CCl2	CMe	-CH2C6H4-4-Me
C ₆ H ₄	²CH=	ı)2CH	[2CII	H2C≡	CeH4-	²CH=)2CH	2CH=	12C≡	}6H4-	=HO	CH:	2CH=	-CH2C≡CMe	%H4-	CH=	2CH:	CH=	– CH2C≡CMe	-}H4
-CH2	-CH	-(CH	-CH	-CI	·CH2(-CH	·(CH2	–CH	-CI	CH2(-CH	(CH2	-СН	-CF	CH2C	-CH2	(CH2	-CH	-CE	CH2C
0	0	0	0	0	- 0	0	0	0	0	- 0	0	0	0	0			\dashv			
-		-					\dashv				\dashv	\dashv		\dashv	0	0	0	0	0	0
СООН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	CH2OH	ł.	ম	Œ	Ŧ	ᅜ	OH	ЮН	ОН	НО	НО	OMs	OMs	OMs	OMs	OMs
E	H	Ξ	Ξ	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	H	Н	H	Ή	Ξ	H
Ξ	H	王	H	×	H	Н	Ħ	H	Н	Н	H	Н	H	Н	Ξ	Н	Ή	Ξ	H	H
=	H	H	Н	=	Ξ	H	Ξ	H	Н	H	Ξ	Ξ	H	Ξ	H	H	H	Ή	H	H
OH	OH	ОН	ОН	=	Ξ	Н	H	H	Н		H	H	HC	H	Ħ	Ħ	H	H	H	Ħ
	0	0	0	НО	ᆼ	ОН	ЮН	НО	Ю	НО	СООН	СООН	СООН	СООН	C00H	C00H	СООН	C00H	С00Н	C00H
ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	ОМе
OMe	ОМе	ОМе	OMe	ОМе	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	ОМе	OMe	OMe	ОМе	ОМе	OMe	ОМе
三	=	=	H	=	=	Ξ	H	H	H	H	Ξ	=	Ξ	王	=	¥	H	H	田	H
Ξ	=	Ξ	Ħ	=	=	Ξ	王	Ξ	H	Ξ	=	王	H	王	=	王	王	H	Ξ	H
=	Ξ	Ξ	三	=	=	王	王	三	H	Ξ	=	Ξ	H	Ξ	=	Ξ	H	H	H	H
=	=	Ξ	Ŧ	=	=	=	Ξ	王	王	H	=		王	=	=	Ŧ	H	H	三	H
=	=	三	王	=	=	=	王	三	Ξ	H	=	三	Ή	田	=	王	王	田	H	田
							1					_					7	_	\neg	ㅓ
NMc	NMc2	NMe ₂	NMe ₂	NMe ₂	NMe.	NMe ₂	NMc2	NMe ₂	NMe ₂	NMe ₂	NMc2	NMe ₂	NMe ₂	NMe ₂	NMe ₂	NMe ₂				
Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Ž	Z	Z
1.1915	1.1916	1.1917	1.1918	1.1919	1.1920	1.1921	1.1922	1.1923	I.1924	I.1925	1-1926	1.1927	I.1928	1.1929	1.1930	1.1931	1.1932	I-1933	I-1934	I.1935
	<u> </u>	<u> </u>	<u> </u>	<u>-</u>	<u>-</u>	<u> </u>	=	三	\exists	<u> </u>	<u> </u>	Ξ	三	크	_∃	Ξ	Ξ	Ξ	⊒	Ξ

. Table 297

į	5	i	

1.1936	NMez	=	=	=	=	=	OMe	OMe	COOII	Ξ	Ξ	E	11000	0	-CH2CH=CMe2
1-1937	NMe ₂	=		=	=	三	OMe	OMe	СООН	H	H	H	соон	0	-(CH2)2CH = CMe2
1.1938	NMe ₂	=		Ξ	Ξ	=	OMe	OMe	Н000	H	H	Н	Соон	0	-CH2CH=CCl2
1.199	NMe	픠	프	Ξ	王	Ξ	ОМе	ОМе	СООН	Ξ	프	프	соон	0	-CH2C≡CMe
1.190	NMe ₂	Ξ	Ξ	Ξ	Ξ	=	OMe	OMe	СООН	=	Ξ	Ξ	СООН	0	-CH ₂ C ₆ H ₄ -4-Me
1.1941	NMe	Ξ	=	=	=	Ξ	OMe	OMe	СООН	Ξ	王	H	СН2ОН	0	-CH2CH=CMe2
1.1942	NMe ₂	Ξ	=	Ξ	Ξ	=	OMe	ОМе	СООН	Ξ	Ξ	Н	СН2ОН	0	-(CH2)2CH = CMe2
1.1943	NMe ₂	王	Ħ	王	三	王	OMe	OMe	СООН	三	Ξ	Ξ	СН2ОН	0	-CH2CH=CCl2
1.1944	NMe ₂	Ξ	H	田	H	H	OMe	ОМе	СООН	Ξ	Ξ	H	СН2ОН	0	CH2C≡CMe
I.1945	NMe2	H	프	H	H	Ξ	OMe	OMe	СООН	Ξ	H	H	СН2ОН	0	-CH ₂ C ₆ H ₄ -4-Me
I.1946	NMe ₂	크	Ξ	Ξ	Н	Н	OMe	OMe	H000	H	H	H	F	0	-CH2CH=CMe2
1.1947	NMe2	Ξ	Ξ	Ξ	H	Ξ	OMe	ОМе	НООО	H	포	Н	F	0	-(CH2)2CH=CMe2
I-1948	NMe ₂	H	H	H	H	H	OMe	ОМе	СООН	H	H	Н	Ţ.	0	- CH2CH=CCl2
I-1949	NMe ₂	Н	H	H	Ħ	H	ОМе	ОМе	СООН	H	H	H	ዝ	0	CH2C≡CMe
1.1950	NMe ₂	Ξ	Ξ	Ξ	Ξ	H	ОМе	ОМе	СООН	Н	H	H	ᅜ	0	-CH2C6H4-4-Me
1.1951	NMe ₂	=	H	H	Ξ	H	ОМе	OMe	СН2ОН	표	Н	H	НО	0	-CH2CH=CMe2
I-1952	NMe ₂	Ξ	Ħ	H	H	H	ОМе	ОМе	СН2ОН	H	Н	Н	НО	0	$-(CH_2)_2CH=CMe_2$
1.1953	NMe2	Ξ	Ξ	н	H	田	OMe	OMe	СН2ОН	Ξ	Н	Н	НО	0	-CH2CH=CCl2
1.1954	NMe	H	王	田	H	王	OMe	OMe	СН2ОН	H	Н	H	НО	0	– CH2C≡CMe
1.1955	NMe ₂	Ξ	Ξ	H	H	Ξ	OMe	OMe	CH ₂ OH	H	H	Η	ОН	0	-CH2C6H4-4-Me
1.1956	NMe2	H	H	H	Н	Ξ	OMe	OMe	CH ₂ OH	H	H	H	OMe	0	- CH2CH=CMe2

Table 298

CH ₂ OH H H H OMs O -(CH ₂) ₂ CH=CMe ₂	CH ₂ OH H H H OM8 O -CH ₂ CH=CCl ₂	CH2OH H H OM8 O −CH2C≡CMe	CH2OH H H OM8 O -CH2C6H4-4-Me	CH2OH II II H COOII O -CH2CH=CMe2	CH2OH II II II COOH O - (CH2)2CH=CMe2	CH ₂ OH H H H COOH O -CH ₂ CH=CCl ₂	CH ₂ OH H H H COOH O −CH ₂ C≡CMe	CH2OH H H H COOH O -CH2C6H4-4-Me	CH2OH H H H CH2OH O -CH2CH=CMe2	CH2OH H H H CH2OH O -(CH2)2CH=CMe2	CH2OH H H H CH2OH O -CH2CH=CCl2	CH ₂ OH H H H CH ₂ OH O −CH ₂ C≡CMe	CH ₂ OH H H H CH ₂ OH O -CH ₂ C ₆ H ₄ -4-Me	CH2OH H H H F O -CH2CH=CMe2	CH ₂ OH H H H F O $-(CH2)2CH=CMe2$	CH2OH H H H F O -CH2CH=CCl2	CH ₂ OH H H H F O −CH ₂ C≡CMe	CH ₂ OH H H H F O -CH ₂ C ₆ H ₄ -4-Me	Me H H H OH O -CH.CH=CMe.
OMe	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	OMe	ОМе	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	OMe
OMe	OMe	ОМе	OMe	OMe	OMe	OMe	ОМе	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe
Ξ	=	=	=	11	=	=	Ξ	Ξ	Н	Н	H	Ħ	H	H	H	H	H	Ξ	Ξ
=	=	Ξ	=	Η	=	Ξ	=	Ξ	Н	Ξ	=	王	田	H	H	H	Н	Н	H
=	=	Ξ	=	Ξ	=	Ξ	=	Ξ	Ή	H	Ξ	王	Ξ	H	Ŧ	H	Н	Н	Н
=	=	=	=	Ξ	=		=	Ξ	Ξ	王	Ξ	Ξ	田	H	H	H	Н	Н	H
=	Ξ	=	=	Ξ	=	=	Ξ	Ξ	Ξ	H	Ξ	Ξ	H	H	H	H	Н	Н	Ξ
NMe2	NMez	NMe,	NMcs	NMe	NMe ₂	NMc	NMe ₂	NMe2	NMe ₂	NMe ₂	NMe2	NMe ₂	NMe ₂	NMe2	NMe ₂	NMe2	NMe ₂	NMe ₂	NMe ₂
1.1957	1.1958	1.1959	1-1960	1.1961	1.1962	1.1963	1.1964	1.1965	1.1966	1.1967	1.198	1-1969	1.1970	I-1971	1.1972	1.1973	I-1974	I.1975	I-1976

Table 299

1.1979 NMe2 11 11 11 11 OM6 OM6 M6 11 11 OM9 OM6 O		1	-			Т						_									
NM62	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH = CMe2	-CH2CH=CCI2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	$-(CH_2)_2CH = CMe_2$	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH=CMe2	$-CH_2CH = CCl_2$	-CH ₂ C≡CMe	-CH2C6H4-4-Me	- CH ₂ CH=CMe ₂	$-(CH_2)_2CH=CMe_2$	-CH,CH=CCI,
NMe2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
NMc2	НО	ЮН	ЮН	OMs	OMs	OMs	OMs	OMs	СООН	соон	соон	пооэ	нооэ	но ^г но	СН2ОН	СН2ОН	СН2ОН	СН2ОН	F	F	Ĺz.
NMe2	=	Ξ	H	Н	Ξ	Ħ	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н
NMe2	Ξ	Ξ	Н	H	H	Ξ	Н	H	Н	Н	Н	=	Н	Н	Н	Н	Н	Н	Н	Н	Н
NMe2		Ξ	Ξ	=	Ξ	=	Н	Н	H	Н	Н	Ξ	Н	Н	Н	=	H	Н	Н	H	Ħ
NMe2	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me							
NMe ₂			— ∔	OMe	ОМе	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	OMe	OMe	ОМе	ОМе	OMe	OMe	ОМе	OMe	OMe	OMe
NMe2 H H H H H H H H H H H H H H H H H H H	OMe	ОМе	OMe	ОМе	OMe	OMe	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	
NMe2 H H H H H H H H H H H H H H H H H H H	Ξ	H	Ξ	=	Ξ	=	H	Н	H	H	H	=	=	Н	H	=	H	王	Ξ	王	
NMe2 H H H H H H H H H		=	=	=	=	=	Н	Н	Н	Н	H	=	=	Ħ	H	=	王	王	Ξ	Ξ	Н
NMe2	E	=	포	=	Ξ	=	Ξ.	H	Н	Н	Н	=	=	H	. =	=	Ξ	Ή	H	田	Ξ
NMe2 NM		=	=	=	=	=	Ξ	H	Ξ	Ξ	=	=	=	Ξ	Ξ	=	Ξ	H	三	Ξ	H
		=		=	٥	=	Ξ	Ξ	H	Н	H	=	=	H	Ξ	=	Ξ	Ξ	三	三	Ή
1.1978 1.1980 1.1982 1.1982 1.1984 1.1985 1.1986 1.1989 1.1990 1.1991 1.1995 1.1996 1.1996 1.1996 1.1996 1.1996	NMe ₂	NMc ₂	NMe ₂	NMe ₂	NMez	NMe ₂	NMe ₂	NMe	NMe ₂	NMe ₂	NMe ₂	NMe ₂	NMe ₂	NMe ₂	NMe2	NMe ₂	NMe ₂				
· · · · · · · · · · · · · · · · · · ·	1.1978	1.1979	1.1980	1-1981	1.1982	1.1983	1.1984	1.1985	1.1986	I.1987	I.1988	1.1989	1.1990	I-1991	1.1992	[·1993	I-1994	1-1995	1.1996	1.1997	1.1998

Table 300

5

H H H H OMC OME ME H H H F O -CH2C=CMe	II II II OME OME ME H H H F O -CH2C6H4-4-Me	II II II OMe OMe H II H H OH O -CH ₂ CH=CMe ₂	H H H OMe OMe H H H H OH O -(CH2)2CH=CMe2	II II II OMe OMe II II H H OII O -CH2CH=CCl2		II II II OMe OMe II II II II OII O -CH2C6II-4-Me	H H H H OMe OMe H H H H OMB O -CH ₂ CH=CMe ₂	H H H OMe OMe H H H H OMs O -(CH2)2CH=CMe2	H H H H OMe OMe H H H H OM8 O -CH2CH=CC12	H H H H OMe OMe H H H H OMs O -CH2C≡CMe	II H H H OME OME H H H H OMB O -CH2CaH-4-Me	II H H H OMe OMe H II H H COOH O -CH2CH=CMe2	H H H H OMe OMe H H H H COOH O -(CH2)2CH=CMe2	H H H H OME OME H H H H COOH O -CH2CH=CCl2	H H H H OMe OMe H H H H COOH O −CH2C≡CMe		H H H H OMe OMe H H H H COOH O -CH2CeH4-4-	H H H OMe OMe H H H H COOH O H H H OMe H H H H H O	H H H OMe OMe H H H H COOH O H H H H H H H H H O O O H H H H H H H H H O O O	H H H OMe OMe H H H H H COOH H H H OMe OMe H H H H CH2OH H H H OMe OMe H H H CH2OH
1	H OMe	H OMe	1 OMe	1 OMc	1 ОМе H О	H ОМе Н ОМе Н ОМе Н ОМе	H ОМе Н ОМе Н ОМе	H OMe H OMe	н ОМе Н ОМе	н ОМе		н ОМе	H OMe	н ОМе	H OMe		н ОМе	H OMe	H OMe H OMe H OMe	H OMe H OMe H OMe
	++	-		-								-		\dashv	-	_	\dashv	+		- - -
=	:	=	=	=	11	II	Н	Н	Н	Н	н	=	Н	H	H	11	=	==	ц ш ш	= = =
	H	Ξ	Ξ	=	н	=	Н	Н	Н	Н	II	Ξ	Н	Н	Н	Н		Н	ΗΞ	田田田
1.1999 NMe ₂		I-2001 NMez	I.2002 NMe2	1-2003 NMez	1.204 NMe2	.9	I-2006 NMe ₂	I-2007 NMe ₂	I-2008 NMe ₂	I-2009 NMe ₂	1.2010 NMe2	I-2011 NMe2	I-2012 NMe ₂	I-2013 NMez	1.2014 NMe ₂	I-2015 NMe ₂				

Table 301

25 H H II OWe OWe III H II OWe Ow
H H OMe OMe H H H H H H H H H
H F OMe OMe H F OMe OMe H F OMe OMe
H II F OMe OMe OMe OH H H H F OMe OMe OH H H H F OMe OMe OH H
H F OMe OMe OH H F OMe OMe OH H F OMe OMe OH
H H F OMe OMe OH H H F OMe OME OH
H F OMe OMe OH H F OMe OMe OH

Table 302

NMez	Ξ	=	Ξ	Ξ	£.	OMe	OMe	HO		三	国	СН2ОН	0	-CH2CH=CMe2
NMe ₂	H	Ξ	Н	Н	<u></u>	OMe	OMe	ОН	Ξ	Ξ	픠	CH ₂ OH	0	-(CH2)2CH=CMe2
NMe2	=	=	=	=	=	OMe	ОМе	ЮН	三	国	=	CH2OII	0	-CH2CII=CCI2
NMe ₂	=	=	=	Ξ	~	OMe	UMe	НО	=	三	Ξ	СН2ОН	0	−CH ₂ C≡CMe
NMe ₂	=	=	=	=	۳.	OMe	ОМе	HO	=	Ξ	Ξ	СН₂ОН	0	-CH2C6H4-4-Me
NMe ₂	=	=	=	=	<u>-</u>	OMe	OMe	HO	=	Ξ	H	ų	0	-CH2CH=CMe2
NMe ₂	Ξ	=	Ξ	Ξ	드	OMe	ОМе	НО	Ξ	Н	Ħ	F	0	- (CH ₂) ₂ CH=CMe ₂
NMe ₂	표	H	Ξ	Η	ম	ОМе	OMe	Ю	H	H	H	ম	0	-CH2CH=CCl2
NMe ₂	Н	Ξ	Ξ	H	ĽŁ,	ОМе	OMe	НО	H	H	Н	ম	0	CH2C≡CMe
NMe ₂	Н	Ξ	H	H	Œ	ОМе	ОМе	НО	Н	H	Н	Ŗ	0	-CH ₂ C ₆ H ₄ -4-Me
СООН	Ξ	=	=	Ξ	H	OMe	ОМе	НО	Н	H	H	НО	0	-(CH ₂) ₂ CH=CMe ₂
COOII	=	=	Ξ	=	=	ОМе	ОМе	ЮН	H	포	H	ЮН	0	-CH2CII=CCI2
СООН	Ξ	Ξ	Ή	H	H	ОМе	ОМе	НО	Н	H	Η	ОН	0	−CH2C≡CMe
СООН	王	王	H	H	Ή	OMe	ОМе	НО	Н	H	Н	ОМв	0	$-CH_2CH=CMe_2$
00011	Ξ	=	Ξ	Ŧ	王	OMe	ОМе	ЮН	Η	H	Н	OMB	0	-(CH ₂) ₂ CH=CMe ₂
COOH	Ξ	王	王	王	王	OMe	OMe	ЮН	Н	H	H	ОМв	0	-CH2CH=CCl2
СООН	Ξ	프	Ξ	H	H	OMe	ОМе	НО	Ή	H	Н	OMs	0	−CH2C≡CMe
СООН	王	Ξ	王	E	三	OMe	ОМе	ОН	Ξ	H	H	ОМв	0	-CH2C6H4-4-Me
СООН	Ξ	三	H	王	目	OMe	OMe	ОН	H	H	H	СООН	0	-CH2CH=CMe2
СООН	H	三	Ξ	田	王	ОМе	ОМе	ОН	Н	H	Н	нооэ	0	-(CH2)2CH=CMe2
СООН	H	H	H	H	H	ОМе	ОМе	ОН	H	H	H	нооэ	0	-CH2CH=CCl2

Table 303

10	
15	
20	
25	
30	
35	

1-2062	00011	=	=	Ξ	Ξ	H	OMe	OMe	IIO	Ξ	E	E	COOII	0	-CH ₂ C≡CM ₀
1.2063	COOII	=	=	Ξ	포	=	OMe	OMe	Ю	H	Ή	Н	СООН	0	-CH2C6H4-4-Me
1.2064	COOH	Ξ	=		=	=	OMe	OMe	io	Ξ	王	H	СН2ОН	0	-CH2CII=CMe2
1.2065	0001	릐	=	=	=	=	OMe	OMe	НО	=	Ξ	Ξ	СН2ОН	0	-(CH ₂) ₂ CH=CMe ₂
1.2066	11002		릐	=	=	=	ОМе	OMe	HO	=	Ξ	H	СН2ОН	0	-CH2CH=CCl2
1.2067	11000		릐	=	Ξ	=	OMe	OMe	OII	=	Ξ	H	CH2OH	0	-CH2C≡CMe
1.2068	H000	픠		=	픠	Ξ	ОМе	OMe	OH	Ξ	Н	H	СН2ОН	0	-CH ₂ C ₆ H ₄ -4-Me
1.2069	Н000	픠	=	三	Ξ	Н	OMe	OMe	НО	H	H	Н	F	0	- CH ₂ CH=CMe ₂
1.2070	н000	Ξ	H	三	三	F	OMe	ОМе	ОН	Ξ	王	Н	H	0	-(CH2)2CH=CMe2
1.2071	Н000	포	Ξ	프	Ξ	Н	OMe	OMe	ОН	Н	Н	Н	H.	0	-CH2CH=CCl2
1.2072	С00Н	Ξ	H	포	Ξ	H	OMe	ОМе	ОН	Н	Н	Н	स	0	-CH2C≡CMe
1.2073	Н000	Ξ	H	포	프	H	OMe	ОМе	ЮН	Н	Н	Н	দ	0	-CH2C6H4-4-Me
1.2074	Н000	Ξ	H	Ξ	Ħ	Н	ОМе	OMe	СООН	Н	H	H	НО	0	-CH2CH=CMe2
1.2075	Н000	H	H	H	H	H	ОМе	ОМе	соон	Н	Н	Н	ЮН	0	$-(CH_2)_2CH=CMe_2$
1.2076	00011	=	=	H	Ξ	Ξ	ОМе	ОМе	СООН	Ξ	Н	Н	но	0	- CH ₂ CH=CCl ₂
1.2077	Н000	Ξ	Ξ	프	Н	Ξ	ОМе	ОМе	НООО	Н	Н	Н	НО	0	- CH₂C≡CMe
1.2078	Н000	Н	H	H	Н	H	OMe	ОМе	Н000	H	Н	Н	ОН	0	-CH2C6H4-4-Me
1.2079	С00Н	H	Ξ	H	Н	н	OMe	ОМе	СООН	H	H	Н	OMs	0	-CH ₂ CH=CMe ₂
1.2080	СООН	=	=	王	H	=	OMe	ОМе	соон	Ħ	H	H	OMB	0	-(CH2)2CH = CMe2
1.2081	Н000	H	H	H	H	H	OMe	ОМе	соон	Н	Н	Н	OMs	0	-CH2CH=CCl2
1.2082	СООН	H	H	H	Н	H	OMe	OMe	H000	Н	H	Н	OMa	0	-CH2C≡CMe

Table 304

5

1.2083	COOII						OMe	OMe	СООН	Ξ	H	H	OMB	0	-CH ₂ C ₆ H ₄ -4-Me
1.2084	.H000	=	=	=	=	=	OMe	OMe	COOH	H	Н	Н	соон	0	-CH2CH=CMe2
1.2085	COOII	=	=	=	=	=	OMe	OMe	COOII	=	=	H	COOII	0	-(CH2)2CH=CMe2
1.2086	COOII	=	=	=	=	Ξ	OMe	OMe	COOH	=	Ξ	Ξ	11000	0	-CH2CH=CCl2
1.2087	COOH	Ξ	=	Ξ	Ξ	Ξ	OMe	OMe	СООН	=	Н	Н	соон	0	-CH2C≡CMe
1.2088	COOH	=	=	Ξ	=	=	OMe	OMe	COOH	=	=	Н	COOII	0	-CII2Calla-4-Me
1.2089	11000	Ξ	Ξ	Ξ	Ξ	H	OMe	OMe	СООН	Ξ	Н	Ξ	СН2ОН	0	-CH2CH=CMe2
1.2090	C00H	Ξ	프	Ξ	Ξ	Ξ	OMe	OMe	СООН	Ή	H	Ξ	СН2ОН	0	-(CH2)2CH=CMe2
1.5091	Н000	Н	X	H	Н	Ή	OMe	ОМе	соон	H	Н	H	СН2ОН	0	-CH2CH=CCl2
1.2092	н000	Ξ	Ξ	H	H	Н	OMe	OMe	СООН	H	Н	H	СН2ОН	0	– CH2C≡CMe
1.2093	Н000	H	H	×	H	H	OMe	ОМе	СООН	H	H	Ξ	СН2ОН	0	-CH2C6H4-4-Me
1.2094	H000	H	H	Η	Н	Н	ОМе	ОМе	соон	Η	H	H	드	0	-CH2CH=CMe2
1.2095	COOH	Ħ	프	Н	H	H	ОМе	ОМе	СООН	н	Ξ	田	Œ,	0	$-(CH_2)_2CH = CMe_2$
1.2096	Н000	H	H	Н	H	H	ОМе	ОМе	нооэ	Ħ	H	H	뚄	0	−CH2CH=CCl2
1.2097	Н000	Η	Ξ	H	Н	Ξ	OMe	ОМе	СООН	Ξ	H	田	£.	0	-CH2C≡CMe
1.2098	Н000	Η	포	H	H	Ξ	ОМе	OMe	СООН	Ξ	Ξ	H	Ŗ,	0	-CH2C6H4-4-Me
I.2099	СООН	Н	Н	Н	H	Ħ	ОМе	ОМе	СН2ОН	H	н	Ξ	НО	0	-CH2CH=CMe2
1.2100	Н000	H	H	H	Н	H	OMe	ОМе	СН2ОН	Ξ	H	Ξ	ОН	0	$-(CH_2)_2CH = CMe_2$
1.2101	Н000	H	Н	Н	Н	H	OMe	OMe	СН2ОН	三	三	王	НО	0	-CH2CH=CCl2
1.2102	Н000	Ξ	Н	Н	H	Н	OMe	ОМе	CH ₂ OH	Ξ	Ξ	Ξ	НО	0	– CH₂C≡CMe
1.2103	Н000	H	н	Ħ	H	H	OMe	ОМе	СН2ОН	H	H	H	ОН	0	-CH ₂ C ₆ H ₄ -4-Me

Table 305

1.2104 COOH H H H OM6 OM6 CH ₂ OH H H H OM6 O C(H ₂ O) ₂ CH=CM ₂ CM ₂ 1.2106 COOH H H H H OM6 OM6 CH ₂ OH H H H OM6 O C(H ₂ O) ₂ CH=CM ₂ 1.2107 COOH H H H H OM6 OM6 CH ₂ OH H H H OM6 O C(H ₂ OH CH ₂ OH 1.2108 COOH H H H H OM6 OM6 CH ₂ OH H H H COOH O C(H ₂ OCH=CM ₂ 1.2110 COOH H H H H OM6 OM6 CH ₂ OH H H COOH O C(H ₂ OCH=CM ₂ 1.2111 COOH H H H H OM6 OM6 CH ₂ OH H H COOH O C(H ₂ OCH=CM ₂ 1.2112 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2113 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2114 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2115 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2116 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2117 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2118 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2119 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2112 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2113 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2114 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2115 COOH H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2117 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2118 COOH H H H H OM6 OM6 CH ₂ OH H H CH ₂ OH O C(H ₂ OCH=CM ₂ 1.2112 COOH H H H H OM6 OM6 CH ₂ OH O C(H ₂ OH O C(H ₂ OCH=CM ₂ 1.2112 COOH H H H				j						_											
COUIT II II II II OME OME CII2OH II H H OME COUIT II II II II OME OME CII2OH II H H H OME COUIT II II II II II OME OME CII2OH II H H H OME COUIT II II II II II OME OME CII2OH II H H H OME COUIT II II II II II OME OME CII2OH II H H H COOH COUIT II II II II II OME OME CII2OH II H H GOOH COUIT II II II II II OME OME CII2OH II H H COOH COUIT II II II II OME OME CII2OH II H H COOH COOIT II II II II OME OME CII2OH II H H COOH COOIT II II II II OME OME CII2OH II H H COOH COOIT II II II II OME OME CII2OH II H H COOH COOIT II II II II OME OME CII2OH II H H CIIAOH COOIT II II II II II OME OME CII2OH II H H CIIAOH COOIT II II II II OME OME CII2OH II II II COOH COOIT II II II II OME OME CII2OH II II II CIIAOH COOOT II II II II OME OME CII2OH II II II CIIAOH COOOT II II II II OME OME CII2OH II II II CIIAOH COOOT II II II II OME OME CIIAOH II II II CIIAOH COOOT II II II II OME OME CIIAOH II II II CIIAOH COOOT II II II II OME OME CIIAOH II II II CIIAOH COOOT II II II II OME OME CIIAOH II II II CIIAOH COOOT II II II II II OME OME CIIAOH II II II II CIIAOH COOOT II II II II II OME OME CIIAOH II II II II CIIAOH COOOT II II II II II OME OME CIIAOH II II II II II OME OME CIIAOH II II II II II OME OME CIIAOH II II II II II II OME OME CIIAOH II	-CH2CH=CMe2	$-(CH_2)_2CH = CMe_2$	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CII=CMe2	-(CH2)2CH=CMe2	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH=CMe2	-CH2CH=CCl2	– CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	$-(CH_2)_2CH=CMe_2$	$-CH_2CH = CCI_2$	–CH2C≡CMe	-CH2C6H4-4-Me	- CH2CH=CMe2
COOII II	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COOH H H H OMe OMe CH2OH H H COOH H H H H H OMe CH2OH H H COOH H H H H OMe CH2OH H H COOH H H H H H OMe OMe CH2OH H H COOH H H H H OMe OMe CH2OH H H COOH H H H H OMe OMe CH2OH H H COOH H	OMs	OMs	ОМв	OMs	OMs	соон	соон	СООН	СООН	СООН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	F	F	F	ഥ	দ	НО
COOII II II II II II II II II OMe CH2OH II COOH II II II II OMe CH2OH II COOII II II II II OMe CH2OH II COOII II II II II II OMe CH2OH II COOII II II II II II OMe CH2OH II COOII II II II II II II OMe CH2OH II COOII II II <td>田</td> <td>H</td> <td>Ξ</td> <td>Н</td> <td>Н</td> <td>11</td> <td>Н</td> <td>H</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>Ξ</td> <td>H</td> <td>H</td> <td>Ξ</td> <td>Ξ</td>	田	H	Ξ	Н	Н	11	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Ξ	H	H	Ξ	Ξ
COOII II	Н	Ξ	Ξ	H	Ξ	Ξ	H	Ħ	Ħ	Н	Ξ	Н	H	Н	Н	Н	Н	Н	Н	H	H
COOH H H H H OMe OMe COOH H H H H H H OME OME COOH H H H H H H OME OME COOH H H H H H OME OME COOH H H H H H H OME OME COOH H H H H H H OME OME	=	三	=		Ξ	=	王	프	H	Н	Н	Н	Н	Н	H	H	Н	Н	Н	Ξ	H
COOH H H H H H OWe		СН2ОН	CH2OH	СН2ОН	CH ₂ OH	HO*HO	СН₂ОН	СН2ОН	СН2ОН	СН2ОН	СН2ОН	CH ₂ OH	CH ₂ OH	CH ₂ OH	СН2ОН	СН2ОН	CH ₂ OH	СН2ОН	CH ₂ OH	СН2ОН	Me
COOH H H H H OME COOH H H H H OME COOH H H H H H H OME		\rightarrow	OMe		ОМе	OMe	OMe	ОМе	OMe		OMe		OMe	ОМе	ОМе	OMe	ОМе	OMe	OMe	OMe	OMe
H H H H H H H H H H H H H H H H H H H	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	ОМе	OMe	ОМе	ОМе	ОМе	ОМе	OMe	OMe	ОМе	OMe	OMe	
H H H H H H H H H H H H H H H H H H H	Ξ	=	=	Ξ	Ξ	=	Ξ	Ξ	=	=	H	Н	H	Н	Н	H	H	H	Н	H	H
H H H H H H H H H H H H H H H H H H H	Ξ	H	=	=	×	=	=	=	Ξ	Ξ	Н	Н	Н	H	Н	Ξ	Н	H	Η	Ξ	H
H HOOD H H H HOOD H H H HOOD H H H HOOD H H H H H H H H H	=	H	=	=	Ξ	=	=	H	H	H	Н	Н	H	Н	Н	Н	H	Н	H	Ξ	H
H000 H000 H000 H000 H000 H000 H000 H00	Ξ	=	=	Ħ.	Н	=	Н	Н	Н	Н	H	Н	Ξ	Ξ	H	Ξ	H	H	Ξ	Ξ	Ξ
	=	Ξ	=	=	H	=	H	H	H	Н	Н	Н	H	Н	Н	H	Н	H	н	H	H
1.2104 1.2105 1.2106 1.2107 1.2109 1.2110 1.2111 1.2116 1.2116 1.2116 1.2116 1.2117 1.2120 1.2121 1.2120 1.2121 1.2121 1.2121	COOII	НООО	11000	COOII	COOH	11000	Н000	COOH	11000	COOH	COOII	СООН	COOH	H000	H000	HOOD	Н000	Н000	СООН	Н000	H000
	1.2104	1.2105	1.2106	1.2107	1.2108	1.2109	1.2110	1.2111	1.2112	1.2113	1.2114	1.2115	1.2116	1.2117	1.2118	1.2119	1.2120	1.2121	1.2122	1.2123	1.2124

.

Table 306

– (CH°)"CH≅CMe.	-CH2CH=CCl2	– CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH ₂) ₂ CH=CMe ₂	-CH2CH=CC12	−CH ₂ C≡CMe	CH2C6H4-4-Me	-CH2CH=CMe2	$-(CH_2)_2CH = CMe_2$	-CH2CH=CCl2	−CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH=CMe2	-CH2CH=CCl2	−CH ₂ C≡CMe	-CH ₂ C ₆ H ₄ -4-Me	-CH2CH=CMe2	
)-	┼	0)0	0) 0	0	0)-	0)0	0	0	0	- 0	0	0	0	0 0	- 0	_
70	НО	ОН	ЮН	ОМв	OMs	OMs	OMs	ОМв	нооэ	соон	нооэ	соон	нооэ	СН2ОН	СН2ОН	СН2ОН	СН2ОН	CH ₂ OH	Ē,	
=	=	Ξ	. =	=	포	三	포	王	Ξ	Ξ	Ξ	표	Ξ	×	H	H	H	H	H	-
=	=	Н	Ξ	Ξ	=	H	H	H	H	H	H	H	Ξ	H	H	Ξ	Ξ	H	田	
=	=	H	Н	=	=	=	H	Ξ	H	Н	H	Ŧ	=	H	Ξ	三	포	H	Ξ	:
N.	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	,
NO.	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	
QM ₂	OMe	ОМе	ОМе	OMe	OMe	OMe	ОМе	OMe	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	-
=	=	H	Н	H	П	Ξ	Н	H	Н	Н	Н	H	H	H	H	Ξ	H	H	Н	
	=	Н	Н	11	П	Н	Н	Н	Н	Н	Н	Н	Н	Н	Ή	H	Н	Н	Н	
[=	=	Ξ	H	Ξ	Η	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	
[=	=	Ξ	H	11	П	II	Н	Н	Н	Н	Н	П	Н	Н	H	Ξ	Н	Н	Н	
=	=	=	Н	II	=	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	II	Н	Н	
INVA	COOH	COOII	COOH	00011	COOH	COOH	C0011	C00H	C0011	C00H	COOII	C00II	C00H	С00Н	C00H	СООН	11000	СООН	СООН	
20101	1.2126	1.2127	1.2128	1.2129	1.2130	1.2131	1.2132	1-2133	1.2134	1.2135	1.2136	1.2137	1.2138	1.2139	1.2140	1.2141	1.2142	1.2143	1.2144	

Table 307

55

5																					
10	-CH2CH=CCl2	-CH₂C≡CMe	-CH ₂ C ₆ H ₄ -4-Me	-CH2CH=CMe2	-(CH2)2CH = CMe2	-CH2CH=CCI2	-CH2C≡CMe	-CH ₂ C ₆ H ₄ -4-M ₆	-CH ₂ CH=CMe ₂	-(CH2)2CH=CMe2	-CH2CH=CCl2	−CH ₂ C≡CMe	-CH ₂ C ₆ H ₄ -4-Me	-CH ₂ CH=CMe ₂	$-(CH_2)_2CH = CMe_2$	-CH2CH=CCl2	-CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH=CMe2	-CH2CH=CCl2
15	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	Œ	<u>:</u> 1	단	НО	НО	OH	НО	ЮН	OMs	ОМв	ОМв	OMe	OMe	СООН	СООН	НООО	СООН	СООН	СН2ОН	СН2ОН	СН2ОН
20	=	=	Ή	Н	Н	Н	H	Н	Н	H	Н	H	Ξ	H	H	H	H	H	H	H	H
•.	H	=	H	H	Н	Ξ	Н	H	Н	Ξ	H	H	Ħ	Ħ	Н	H	포	H	H	H	H
	=	=	H	Η	Ξ	=	H	Ξ	H	王	×	田	田	H	Ξ	Ξ	田	囯	H	H	H
25	Me	Me	Me	H	Н	=	H	Н	Ħ	Н	H	Н	H	Н	H	Н	Н	H	н	Н	Н
30	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	OMe
	ОМе	OMe	OMe	ОМе	ОМе	OMe	ОМе	OMe	OMe	ОМе	OMe	OMe	ОМе	OMe	OMe	ОМе	ОМе	ОМе	OMe	OMe	ОМе
35	=	=	Ξ	=	Ξ	=	=	Ξ	H	H	H	H	H	H	Ξ	Ξ	H	H	H	H	H
	Ξ	=	=	=	Η	=	H	H	Н	F	H	H	H	H	H	H	Ξ	H	H	Ξ	Ξ
	=	=	=	=	Н	=	H	H	Н	H	H	H	Ξ	Ξ	=	H	H	H	H	田	H
40	=	=	=	=	H	=	Н	H	H	=	Ξ	H	Ξ	三	Ħ	Ξ	田	三	H	王	H
	=	=	Ξ	=	=	=	Н	Н	Н	Ξ	H	H	Ξ	田	王	王	Ξ	Ξ	H	王	Н
45	COOH	0001	11000	11003	COOH	HOOD	COOH	СООН	C00H	С00Н	С00Н	С00Н	COOH	С00Н	Н000	С00Н	Н000	Н000	Н000	Н000	Н000
50	1.2146	1.21.17	1.2148	1.2149	1.2150	1.2151	1.2152	1.2153	1.2154	1.2155	1.2156	1.2157	1.2158	1.2159	I.2160	1.2161	1.2162	1.2163	I.2164	1.2165	1.2166

Table 308

– CH₂C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH = CMe2	- CH2CH=CCI2	CH2C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	- (CH2)2CH=CMe2	-CH2CH=CCl2	– CH₂C≡CMe	-CH2Cell4-4-Me	- CH2CH=CMe2	- (CH2)2CH=CMe2	-CH2CH=CCl2	– CH₂C≡CMe	-CH ₂ C ₆ H ₄ -4-Me	-CH2CH=CMe2	-(CH2)2CH=CMe2	-CH2CH=CCl2	
-CH		-CH2	-(CH ₂)	-CH;	CH	-CH2C	-CH2	-(CH ₂)	-CH2	-СН	-CH2C	-CH2	-(CH ₂)	-CH2	-СН	-CH2C	-CH2(-(CH ₂)	-CH2	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
СН2ОН	но≉но	ᄕᅩ	ᅜ	F	1	ᄄ	ЮН	ОН	НО	ОН	НО	OMs	OMs	OMs	ОМв	OMs	нооэ	СООН	СООН	
H	Ξ	Ξ	Ξ	H	H	H	프	H	H	H	Ξ	Ξ	H	Ξ	Ξ	Ξ	프	H	Н	
H	H	Ξ	Ξ	H	Ξ	H	×	H	H	H	H	Ξ	Ξ	H	H	H	王	H	Η	
Ξ	Ξ	Ξ	Ξ	Ξ	=	H	H	Н	Н	Н	Н	=	Н	Ξ	H	H	H	H	Н	
H	Н	Ξ	Н	H	=	Н	ОН	ОН	ОН	ОН	ОН	ОН	ОН	НО	НО	ЮН	НО	ЮН	ОН	
OMe	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	ОМе	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	
OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	
Ξ	=	Ħ	王	Ξ	=	H	<u>-</u>	<u>-</u>	Ŀ	F	1	1,	Ŀ	Ŀ	[2,	[z.	[]	(z.,	F	
Ξ	H	Н	H	Н	Ξ	Н	Н	Н	Н	Н	H	=	Н	H	프	Н	H	H	Н	
Ξ	Н	H	H	Н	Ξ	H	포	=	H	Н	H	=	H	王	Ξ	田	H	H	Н	
=	=	Ŧ	=	H	=	=	Ξ	=	Ξ	Н	=	=	H	Ξ	Ξ	Ξ	H	H	H	_
=	Ξ	Ξ	王	H	=	Ξ	Ξ	=	Ξ	Н	Ξ	=	王	H	=	H	E	H	H	_
ПООЭ	11000	11000	COOH	COOH	COOH	COOH	H002	COOII	11000	СООН	COOH	COOII	СООН	Н000	11000	Н000	Н000	Н000	Н000	
1-2167	1.2168	1.2169	1.2170	1.2171	1.2172	1.2173	1.2174	1.2175	1.2176	1-2177	1.2178	1.2179	1.2180	1.2181	1.2182	1.2183	I.2184	1.2185	1.2186	

Table 309

55

5																					
10 	-CH ₂ C ₆ H ₄ -4-Me	-CH2CH=CMe2	-(CH2)2CH = CMe2	-CH2CH=CCl2	– CH₂C≡CMe	-CH2C6H4-4-Me	-CH2CH=CMe2	-(CH2)2CH = CMe2	-CH2CH=CCl2	−CH2C≡CMe	-CH2C6H4-4-Me	-(CH2)2CH = CMe2	-(CH2)2CH=CMe2	$-(CH_2)_2CH=CMe_2$	$-(CH_2)_2CH=CMe_2$	-(CH2)2CH = CM62	-CH2CH=CMe2	-CH2C6H6	-CH2CH=CMe2	-CH2C6H8	
15	0	၁	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
	С00Н	CH2OII	СН₂ОН	CH ₂ OH	CH ₂ OH	СН2ОН	Ŗ	ţ	伍	F	Ŗ	OMs	ОМв	ОМв	OMs	ОМв	НО	ОН	NH2	NH2	_
20	Н	=	Ξ	王	Ŧ	Ξ	H	H	H	Н	Н	Н	Н	H	Н	Ξ	Н	Н	H	Ħ	_
	Н	=	포	Ξ	王	=	표	Ħ	Ξ	H	H	Н	Ξ	Н	Н	=	H	Н	H	Ξ	
25	н	=	Ξ	H	Ξ	=	H	Н	Н	Н	Н	Н	H	NO ₂	н	=	Н	Н	Н	Η	_
	ЮН	OII	TO	B	OH	ō	ᆼ	ОН	НО	НО	НО	H	Ξ	Н	Н	H	ОМв	ОМв	ОМв	ОМв	
30	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	ОМе	ОМе	ОМе	ОМе	OMe	OMe	OMe	ОМе	OMe	ОМе	
	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	ОМе	OMe	OMe	OMe	OMe	
35	드	<u>-</u>	<u></u>	드	-	~	<u></u>	드	Œ	[2.	E	Ξ	=	Ή	H	=	=	Ξ	H	Ξ	
	=	=		Ξ		=	Ξ	Ξ	三	Ξ	Ξ	Ξ	=	H	포	=	Ξ	Ξ	Ħ	H	
	=	=		Ξ	=	=	Ξ	Ξ	三	Ξ	Ξ	Ξ	=	Ħ	王	=	H	H	H	Н	
40	=	=		=	=	=	=	Ξ	픠	三	Ξ	Ξ	=	王	포	=	Ξ	Η	Н	H	
	Ξ	=	=	Ξ	Ξ	=	Ξ	Ξ		Ξ	E	Ξ	NO2	H	Ξ	S	Ξ	H	Н	프	
45	11000	COOH	11000	СООН	COOH	COOII	11000	Н000	СООН	Н000	СООН	NO ₂	OMs	OMs	CN	ОМв	ОН	НО	НО	НО	
50	1.2188	1.2189	1.2190	1.2191	1.2192	1.2193	1.2194	1.2195	1.2196	1.2197	1.2198	1.2199	1.2200	1.2201	1.2202	1.2203	1.2204	1.2205	1.2206	1-2207	

402

1.2208

Table 310

NH ₂ 0 -CH ₂ CH=CMe ₂	OH O -CH2C6H6	NH ₂ 0 -CH ₂ CH=CMe ₂	NH2 0 -CH2C6Hs	OII 0 -CH2CH=CMe2	NII ₂ 0 -CH ₂ CII=CMe ₂	NH ₂ 0 -CH ₂ C ₆ H ₆	OH O -CH2CH=CMe2	OH O -CH2C6Hs	NH ₂ 0 -CH ₂ CH=CMe ₂	NH ₂ 0 -CH ₂ C ₆ H ₈	OH O -CH2CH=CMe2	OH O -CH2C6H6	NH ₂ 0 -CH ₂ CH=CMe ₂	NH ₂ 0 -CH ₂ C ₆ H ₆	OH O -CH2CH=CMe2	OH O -CH2C6H6	NH ₂ 0 -CH ₂ CH=CMe ₂	NH ₂ 0 -CH ₂ C ₆ H ₆	OH O -CH2CII=CMe2	n-y-ny-
H	H	H	H	H	=	H	H	H	H	Н	H	H	H	H	H	H	H	H	H	;
H	エ	田	工	H	=	王	H	H	H	H	H	H	Н	H	H	н	Н	Н	Ξ	:
H	=	H	Ξ	=	=	H	H	H	H	H	Ξ	Н	Н	田	H	H	H	H	=	;
IIO	=	Н	Н	NH2	Ž Z	NH2	OH	ОН	НО	НО	OMs	OMs	OMs	OMs	ОН	НО	НО	НО	H	•
OEt	Me	Me	Me	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OEt	OEt	OEt	OEt	Me	-
OMe	Me	Me	Me	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	ОМе	OMe	ОМе	OMe	OMe	Me	;
=	=	=	=	=	=	Н	H	Н	Н	Н	II	H	H	Н	Н	Н	Н	Н	Н	;
=	=	Н	Н	Н	П	Н	Н	Н	Н	Н	П	Н	Н	Н	Н	Н	Н	Н	Н	;
=	Ξ	H	Ξ	H	=	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	
=	=	Ξ	H	H	=	H	Н	Н	Н	Н	Н	Н	H	H	Н	Н	Н	Н	Н	
=	=	Н	Ξ	=	=	Н	Н	Н	Н	Н	H	Н	H	Н	Н	Н	Н	Н	Н	
IIO	IIO	HO	HO	HO	IIO	ОН	HO	НО	НО	НО	OMs	OMs	OMs	OMs	OMs	OMs	OMs	OMs	OMs	
1.2209	1.2210	1.2211	1.2212	1.2213	1.221.1	1.2215	1.2216	1.2217	1.2218	1.2219	1.2220	1.2221	1.2222	1.2223	1.2224	1.2225	1.2226	1.2227	1.2228	

Table 311

								. [
1.2230	OMs	H	Ξ	H	H	Н	Me	Me	Н	H	王	Ξ	NH2	0	-CH2CH=CMe2
1.2231	OMs	=	=	Ξ	=	=	Me	Me	11	H	Ξ	H	NH ₂	0	-CH2C6H6
1.2232	OMs	Ξ	=	=	Ξ	Ξ	OMe	OMe	NH2	H	Ξ	Ξ	ОН	0	-CH2CH=CMe2
1-2233	OMs	Н	Ŧ	П	H	=	OMe	OMe	NH2	II	Ξ	Ξ	NH2	0	-CH2CH=CMe2
1.2234	OMs	H	Н	Н	Н	H	ОМе	ОМе	NH2	H	Ξ	Ξ	NH2	0	-CH2C6H6
1.2235	OMs	=	=	=	=	=	OMe	ОМе	OH	11	=	Ξ	ЮН	0	-CH2CH=CMe2
1.2236	OMs	П	=	. H	H	Ξ	OMe	ОМе	НО	II	H	Ξ	ОН	0	-CH2C6H6
1.2237	OMs	Н	П	Н	н	Н	OMe	ОМе	OH	H	Œ	H	NH2	0	-CH2CH=CMe2
1.2238	OMs	Н	Н	Н	Н	H	OMe	ОМе	НО	Н	프	H	NH2	0	-CH2C6H6
1.2239	CF3	Н	Н	Н	Н	Н	ОМе	ОМе	OMs	Н	Ħ	Ξ	ОН	0	-CH2CH=CMe2
1.2240	cF ₃	н	Н	Н	Н	H	ОМе	ОМе	OMs	Н	王	Ξ	ЮН	0	-CH2C6H6
1.2241	CF_3	Н	Н	Н	Н	н	OMe	OMe	OMs	H	표	Ħ	NH2	0	-CH2CH=CMe2
1-2242	CF_3	Н	Н	Н	Н	Н	ОМе	OMe	ОМв	H	Ξ	H	NH2	0	-CH2C6H6
1.2243	CF3	Н	Н	Н	Н	н	ОМе	OEt	НО	H	Ξ	H	Н0	0	-CH2CH=CMe2
1.2244	CF3	Н	Н	Н	Н	Н	ОМе	OEt	ЮН	H	H	H	НО	0	-CH2C6H6
1-2245	CF3	Н	Н	Н	Н	Н	ОМе	OEt	НО	н	H	H	NH2	0	-CH2CH=CMe2
1.2246	CF3	Н	Н	Н	H	Ħ	OMe	OEt	ЮН	Н	H	Н	NH2	0	-CH2C6H6
I-2247	CF3	Н	Н	Н	H	н	Me	Me	H	Н	H	H	НО	0	-CH2CH=CMe2
1.2248	CF3	Н	Н	Н	H	Н	Me	Me	Ή	H	H	H	НО	0	-CH2C6H8
1.2249	CF3	Н	Н	Н	포	王	Me	Me	Н	Н	H	H	NH2	0	-CH2CH=CMe2
I.2250	CF3	Н	Н	Н	H	H	Me	Me	H	Н	H	H	NH2	0	-CH2C6H8

Table 312

= :	= :	= :	= :	= :	ОМе	OMe	NIIz	H	Н	Н	HO	0	-CH2CH=CMe2 -CH2CH2
	= =	= =	= =	= =	OMe	OMe	Z Z	=	H	Н	NH2	0	-CH2CH=CMe2
-	=	=	=	Ξ	OMe	OMe	NH2	Н	Н	H	NH2	0	-CH2CeIIs
├	=	=	Ξ	Ξ	ОМе	ОМе	но	Ξ	H	H	НО	0	-CH2CH=CMe2
-	=	=	=	=	OMe	OMe	OII	H	Ξ	Ξ	OH	0	-CH2C6H6
-	=	Ξ	Н	=	ОМе	OMe	ЮН	Ŧ	H	H	NH2	0	- CH2CH=CMe2
	H	Н	Н	Н	OMe	ОМе	НО	Н	H	H	NH2	0	-CH2C6Hs
<u> </u>	Н	Н	Н	Н	OMe	ОМе	OMs	H	田	H	Н	0	-CH2CH=CMe2
<u> </u>	=	Н	Н	Н	ОМе	ОМе	ОМв	H	田	Н	НО	0	-CH2C6H6
	Н	Н	Н	H	OMe	ОМе	OMs	Н	프	H	NH2	0	$-CH_2CH = CMe_2$
	H	Н	Н	Н	OMe	ОМе	OMs	H	田	Ή	NH2	0	-CH2C6H6
	Ξ	Н	Н	н	OMe	OEt	НО	Н	三	Ξ	ОН	0	-CH2CH=CMe2
<u> </u>	H	Н	Н	н	OMe	OEt	НО	Н	Ξ	H	НО	0	-CH2C6H6
	H	Н	Н	H	OMe	OEt	ЮН	Н	H	Ħ	NH2	0	- CH2CH = CMe2
	Н	Н	Н	н	OMe	OEt	НО	Н	H	H	NH2	0	-CH2C6H6
	Н	Н	Н	Н	Me	Me	н	Н	프	H	ЮН	0	-CH ₂ CH=CMe ₂
	=	Н	П	=	Ме	Me	=	=	Ħ	H	ОН	0	-CH2C6H6
	Н	Н	王	Ξ	Me	Me	H	H	H	H	NH2	0	-CH2CH=CMe2
	Н	Н	H	H	Me	Me	н	H	H	H	NH2	0	-CH2C6H8
	Н	н	H	H	OMe	OMe	NH2	н	Ξ	Н	ОН	0	-CH2CH=CMe2

Table 313

-CH ₂ C ₆ H ₆	-CH2CH=CMe2	-CH2C6H6	-CH2CH=CMe2	- CH2C6H6	-CII2CH=CMe2	-CH2C6H8	-CH2CH=CMe2	-(CH2)2CHMe2	Me	·CH2CH=CMe2	·CH2CH=CCl2	-CH2CH=CMe2	-(CH2)2CHMe2	Ме	-CH2CH=CMe2	-CH2CH=CCI2	-CH2CH=CMe2	-(CH2)2CHMe2	Me	.CH2CH=CM62
0	0	0	0	0	0	0	HN	NH	NMe	0	0	NH	NH	NMe	0	0	NH	NH	NMe	0
НО	NH2	NH2	ЮН	OH	NH2	NH2	OMe	OMe	OMe	ОМе	ОМе	Н	Н	Н	Н	Н	OEt	OEt	OEt	OEt
Ξ	Ξ	Ξ	Ξ	Ή	Н	H	Н	Н	Н	Н	Н	F	F	Œ,	Ē,	Œ,	Н	Н	Н	Н
=	H	H	Η	H	H	H	Н	Н	Н	H	Н	Н	Н	Ħ	Н	Н	Н	H	Н	Н
=	Ξ	H	Ξ	=	Н	=	Ħ	Н	Н	H	н	Н	Н	H	Н	Н	Н	H	н	Н
Ĭ.	NH ₂	NH2	ОН	IIO	ЮН	IIO	H	Н	Н	Н	Н	Н	н	H	н	H	Н	Ξ	E	Н
OMe	OMe	OMe	OMe	OMe	OMe	OMe	Me													
OMc OMe	OMe	OMe	ОМе	OMe	OMe	OMe	Me													
=	=	=	=	=	=	=	Me													
=	=	=	=	=	=	=	H	Ξ	Η	H	H	Ξ	H	H	Ξ	Ξ	Н	Ξ	田	Н
Ξ	Π	Ξ	=	=	=	Ξ	Н	Н	Н	Н	Ξ	н	Н	H	Ξ	H	H	Ξ	H	Н
Ξ	=	Ξ	=	Ξ	Ξ	Ξ	[±4	댼	伍	ഥ	F	મ	Ħ	Œ	Ŀ	F	F	Ŀ	Ŀ.	F
Ξ		Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	I	Ξ	Ξ	픠	Ξ	三	三	H	Ξ	Н	Н	Н	Н
7IIN	FIN FIN	NH2	ZIIZ	NII.	NII.	NII.	·NHCH2CH=CMe2	-NHCH2CH=CMe2	·NHCH2CH=CMe2	·NHCH2CH=CMe2	·NHCH2CH=CMe2	·NHCH2CH=CMe2	-NHCH2CH=CMe2	.NHCH2CH=CMe2	·NHCH2CH=CMe2	.NHCH2CH=CMe2	.NHCH2CH=CMe2	.NHCH2CH=CMe2	.NHCH2CH=CMe2	-NHCH2CH=CMe2
1.2272	1.2273	1-2274	1.2275	1.2276	1-2277	1.2278	1.2279	1.2280	1.2281	1.2282	1.2283	1.2284	1.2285	I.2286	1.2287	1.2288	1.2289	I-2290	1.2291	1-2292

5

Table 314

.CH2CH=CCl2	-CH2CH=CMe2	-(CH2)2CHMe2	Me	-CH2CH=CMe2	.CH2CH=CCl2	-CH2CH=CMe2	·(CH ₂) ₂ CHMe ₂	Me	-CH2CH=CMe2	·CH2CH=CCl2	·CH2CH=CMe2	-(CH2)2CHMe2	Me	-CH2CH=CMe2	-CH2CH=CCl2	-CH2CH=CMe2	-(CH2)2CHMe2	Me	-CH2CH=CMe2	·CH2CH=CCl2
0	HN	HN	NMe	0	0	NH	NH	NMe	0	0	NH	NH	NMe	0	0	HN	NH	NMe	0	0
OEt	OMe	OMe	OMe	ОМе	OMe	н	H	H	H	H	OEt	OEt	OEt	OEt	OEt	OMe	OMe	OMe	OMe	OMe
H	Н	H	H	Н	Ξ	댠	도	íz,	Į.	ᅜ	H	H	H	Н	H	Ξ	H	H	Ξ	Н
H	Н	H	Н	Н	Ξ	Н	Н	Н	Н	H	H	Ħ	H	Н	Ξ	Н	Ŧ	H	H	Н
Ξ	Н	H	Н	Н	П	Н	Н	Н	Н	Н	H	H	H	Н	H	Н	Н	н	н	Н
Н	OH	ОН	ЮН	ЮН	E	ЮН	ЮН	ОН	ОН	ЮН	IIO	НО	НО	НО	НО	НО	НО	НО	НО	ОН
Me	ОМе	OMe	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	OMe	ОМе	OMe	Me	Me	Me	Me	Me
Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	н	H	H	н	Н
Me	Н	Ξ	Η	=	11	Н	H	Н	Н	Н	Ш	Н	Н	Н	Ξ	Me	Me	Me	Me	Me
Н	II	=	H	H	=	Н	Ξ	Н	Н	Н	11	Н	Н	Н	H	H	H	H	Ξ	Н
Ξ	Н	Ή	Н	H	11	Н	H	Н	Н	Н	Н	Н	Н	Н	H	Н	H	H	H	Н
<u></u>	드	ᄄ	[<u>r</u>	ন	<u>-</u>	[±	Œ,	দে	F	F	ત	F	F	F	F	F	伍	F	F	F
Ξ	Н	H	Н	H	=	Н	Н	H	Н	H	Н	Н	Н	Н	Н	Н	Н	Ξ	Н	Н
-NHCH2CH=CMe2	:	-NHCH2CH=CMe2	.NHCH2CH=CMe2	-NHCH2CH=CMe2	-NHCHECHECMe2		-NHCH2CH=CMe2	-NHCH2CH=CMe2	.NHCH2CH=CMe2	-NHCH2CH=CMe2	i	.NHCH2CH=CMe2	-NHCH2CH=CMe2	-NHCH2CH=CMe2	-NHCH2CH=CMe2	-NHCH2CH=CMe2	-NHCH2CH=CMe2		-NHCH2CH=CMe2	
1-2293	1.2294	1.2295	1.2296	1.2297	1.2298	1.2299	1.2300	1.2301	1.2302	1.2303	1-2304	1.2305	I.2306	1.2307	1.2308	1.2309	1.2330	1.2331	1.2332	I-2333

Table 315

																		_		
-CH2CH=CMe2	-(CH2)2CHMe2	Me	-CH2CH=CMe2	.CH2CH=CCl2	-CH2CH=CMe2	·(CH2)2CHMe2	Me	·CH2CH=CMe2	-CH2CH=CCl2	.CH2CH=CMe2	·(CH ₂) ₂ CHMe ₂	Me	-CH2CH=CMe2	.CH2CH=CCl2	-CH2CH=CMe2	-(CH2)2CHMe2	Me	·CH2CH=CMe2	-CH2CH=CCI2	-CH2CH=CMe2
NH	HN	NMe	0	0	NH	NH	NMe	0	0	NH	NH	NMe	0	0	NH	NH	NMe	0	0	NH
Н	Н	Н	Н	Н	OEt	OEt	OEt	OEt	OEt	ОМе	OMe	OMe	OMe	OMe	Н	н	H	Н	Н	OEt
F	प	F	7	£.	Ξ	H	Н	н	н	Н	Н	Н	Н	Н	Ŀ	Œ	F	F	F	Н
H	Н	Н	Н	H	Н	Н	н	Н	Н	Н	H	Н	Н	H	Н	H	н	Н	Н	Н
E	H	Н	H	Н	H	Н	H	H	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
НО	OII	ОН	ОН	OH	ОН	ЮН	ОН	ОН	ОН	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me
Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me
=	H	Н	Н	Н	Н	Н	Н	Н	Н	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me
Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н
=	Ξ	Ξ	Н	Н	Н	Н	Н	Н	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	Н
=	Ξ	Н	H	Н	H	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	H
=	=	ŀ		Œ	F	댼	F.	£	F	F	F	Ŀ	F	F	F	F	Œ,	F	F	F
上三	三	=	H	Н	Н	Н	Н	Н	Ξ	H	Н	E	H	Н	Н	Н	Н	Н	Н	H
·NIICH2CH=CMe2	D'HOHN-	1		!	-NHCH2CII=CMe2		.NHCH2CH=CMe2	1	-NHCH2C			1	l	i	İ	i	ı	l '	i	-NHCH2C
1.2334	1.2335	1.2336	1-2337	1.2338	1-2339	1.2340	1.2341	1.2342	1.2343	1.2344	I-2345	1.2346	1.2347	1.2348	I.2349	1.2350	1.2351	1.2352	1.2353	1.2354

Table 316

-(CH2)2CHMe2	Me	·CH2CH=CMe2	·CH2CH=CCl2	-CH2CH=CMe2	-(CH2)2CHMe2	Me	-CH2CH=CMe2	-CH2CH=CCl2	-CH2CH=CMe2	·(CH2)2CHMe2	Me	-CH2CH=CMe2	-CH2CH=CCl2	-CH2CH=CMe2	-(CH ₂) ₂ CHMe ₂	Me	.CH2CH=CMe2	·CH2CH=CCl2	·CH2CH=CMe2	-(CH2)2CHMe2
HH	NMe	0	0	NH	NH	NMe	0	0	NH	NH	NMe	0	0	HN	HN	NMe	0	0	HN	HN
OEt	OEt	OEt	OEt	OMe	OMe	ОМе	ОМе	OMe	Н	H	Н	П	Н	OEt	OEt	OEt	OEt	OEt	ОМе	ОМе
E	Н	田	Ŧ	Ή	H	H	H	H	Œ,	ᄄ	Œ,	Ŀ.	Œ	H	H	H	H	Ξ	H	Н
Ξ	Н	H	Н	н	H	Ξ	H	Н	H	H	Н	н	三	H	н	Ή	Н	Н	Н	Н
=	II	H	Н	H	=	н	Н	H	Н	Н	Н	=	H	H	Н	Η	H	H	H	Н
Mc	Me	Me	Me	HO	IIO	ЮН	ОН	НО	НО	НО	НО	НО	НО	Н	НО	НО	НО	НО	H	н
Me	Me	Me	Me	OF	OEt	OEt	OEt	OEt	OEt	OEt	OEt	OEt	OEt	OEt	OEt	OEt	OEt	OEt	Me	Me
Me	Me	Me	Me	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	ОМе	ОМе	OMe	ОМе	Me	Me
=	Ξ	=	H	=	=	=	H	Ξ	=	H	Ξ	Ξ	포	Н	H	Ξ	H	H	Me	Me
=	=	Ξ	Ξ	=	=	Ξ	Ή	Н	Ξ	Н	H	=	Ξ	Ξ	H	Ξ	H	H	H	Н
=	=	Ξ	Ξ	Ξ	=	Η	Н	Н	H	Н	Н	=	Ξ	Ξ	Ξ	Ξ	H	H	H	H
드	٤.	드	Ŀ	<u>-</u>	<u>-</u>	Ŀ	Œ,	দ	H	H	F	P	Ŀ	F	দ	Ŀ	Œ,	伍	Ŀ	Œ
	=	픠	Ξ	Ξ	크	Ξ	田	Ξ	Ξ	H	Η	=	프	Н	Н	H	H	Н	H	H
-NHCH2CH=CMe2	.NHCH2CH=CMe2	.NHCH2CH=CMe2	.NHCH2CH=CMe2	.NHCH.CH=CMe2	.NIICH±CH=CMe2	.NHCH2CH=CMe2	.NHCH2CH=CMe2	-NHCH2CH=CMe2	-NHCH2CH=CMe2	-NHCH2CH=CMe2	-NHCH2CH=CMe2	-NHCH2CH=CMe2	.NHCH2CH=CMe2	.NHCH2CH=CMe2	·NHCH2CH=CMe2	.NHCH2CH=CMe2	.NHCH2CH=CMe2	-NHCH2CH=CMe2	.NH2	.NH2
1-2355	1-2:356	1.2357	1-2358	1.2359	1-2360	1.2361	1.2362	1-2363	1.2364	1.2365	1.2366	1.2367	1.2368	I-2369	1.2370	1.2371	1.2372	1.2373	1.2374	1.2375

Table 317

<u> </u>								-				- 1			-					
Me	-CH2CH=CMe2	.CH2CH=CCl2	.CH2CH=CMe2	·(CH2)2CHMe2	Me	·CH2CH=CMe2	·CH2CH=CCl2	·CH2CH=CMe2	-(CH ₂) ₂ CHMe ₂	Me	.CH2CH=CMe2	.CH2CH=CCl2	-CH2CH=CMe2	-(CH ₂) ₂ CHMe ₂	Me	-CH2CH=CMe2	·CH2CH=CCl2	-CH2CH=CMe2	-(CH ₂) ₂ CHMe ₂	Me
NMe	0	0	NH	NH	NMe	0	0	NH	NH	NMe	0	0	NH	NH	NMe	0	0	HN	HN	NMe
OMe	OMe	OMe	H	H	=	H	H	OEt	OEt	OEt	OEt	OEt	OMe	ОМе	ОМе	OMe	OMe	H	Н	H
H	H	Н	<u>.</u>	ţz.	-	Œ,	Ŀ	Н	Ξ	Ξ	Н	H	Н	Ħ	Н	Н	H	Œ	Œ	Œ
H	Н	Н	Н	H	=	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	H	Н
H	П	Н	H	H	=	Н	H	Н	Ξ	H	Н	H	Н	H	Н	Н	H	Н	Н	Н
H	==	Н	11	Ξ	=	H	Н	Н	Ξ	Н	Н	H	ОН	ЮН	ЮН	ОН	ОН	ОН	ОН	НО
Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	OMe	OMe	OMe	ОМе	OMe	ОМе	ОМе	OMe
Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me
Me	ğ	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Н	Н	Н	Н	Н	Н	Н	Н
Ħ	=	H	Ξ	H	Ξ	Н	Н	11	=	Н	Н	=	H	Н	Н	Н	Н	Н	Н	Н
Ξ	=	Ξ	Ξ	Ξ	=	Н	Н	Н	Ξ	Н	H	Η	Н	Н	Н	Н	Н	Н	Н	H
<u>-</u>	<u>-</u>	[2,	-	-3	=	뜨	F	H	-	F	F	-	Œ	F	F	F	F	F	Œ	Œ
Ξ	=	=	三	=	Ξ	三	H	Н	Ξ	Ξ	Ξ	Ξ	H	H	Н	Ξ	Н	Н	H	Ξ
Î.		-NH2	.NH.	.NI.	il.	.HV.	"IIN.	.NN.	ZIN.	·NH2	.HX.	ĨI.	.NH2	.NH2	.NH	.NH2	.NH.	.NH2	·NH2	NH.
1.2376	771.6.1	1-2378	1.2379	1.230	1.2:381	1.2382	I.2383	1.2384	1-2:385	1.2386	1.2387	1.2388	1.2389	1.2390	I.2391	1.2392	1.2393	1.2394	1.2395	1 9306

Table 318

1.2398		=	6	Ξ	Ξ	=	Me	OMe	НО	Ή	Ħ	ᄄ	Н	0	.CH2CH=CMe2
1.2000	-1 -			: =	: =	=	Me	OMe	ЮН	Н	王	ᄄ	Н	0	.CH2CH=CCl2
1 9900	ZIN.	=	. [=	: =	=	=	Me	OMe	НО	H	Н	н	OEt	HN	.CH2CH=CMe2
0007-1	EN.	=	· '=	Ξ	=	Ξ	Me	OMe	ОН	Н	H	н	OEt	HN	-(CH ₂) ₂ CHMe ₂
1.9301		=	<u>~</u>	=	Ξ	=	Me	OMe	Н0	I	Ξ	표	OBt	NMe	Me
1.2302	i Z	Ξ	~	=	=	=	Me	OMe	011	=	=	Ξ	OEt	0	-CH2CH=CMe2
1.9303	TIX.	Ξ	<u> </u>	=	=	=	Me	OMe	OH	Ξ	三	Ξ	OEt	0	·CH2CH=CCl2
1.9304	îl X.	H	ĹŦ.	H	Ξ	Me	Н	Me	ОН	H	픠	프	ОМе	H	-CH2CH=CMe2
1.2305		=	<u>[=</u> ,	=	=	Me	H	Me	НО	Ξ	프	Ξ	OMe	HN	-(CH2)2CHMe2
1.2306		H	Œ,	H	H	Me	Н	Me	НО	н	프	当	OMe	NMe	Me
1.237	NH ₂	H	ſz,	H	Н	Me	Н	Me	НО	Ξ	三	田	OMe	0	.CH2CH=CMe2
1.9308		Ξ	[-	Ξ	Ξ	Me	H	Me	ЮН	Ħ	Ħ	프	OMe	0	.CH2CH=CCl2
1.9300	- TX	Ξ	=	=	=	Me	H	Me	OII	=	Ξ	<u> </u>	=	Ŧ	·CH2CH=CMe2
1.2310	NH2	二	Ŀ	H	H	Me	Н	Me	НО	프	三	Œ	н	HH	-(CH ₂) ₂ CHMe ₂
1.9311	·NH2	H	(5,	Ħ	Н	Me	Н	Me	ЮН	프	三	Œ,	Н	NMe	Me
1.2312	EN-	H	Œ	Н	Н	Me	Н	Me	ЮН	Ħ	三	Œ,	Ŧ	0	.CH2CH=CMe2
1.9313	NH.	Ξ	G.	H	Н	Me	Н	Me	ЮН	F	王	Œ,	Н	0	CH2CH=CCl2
1.9314	.NH2	王	Œ	H	Н	Me	Н	Me	ЮН	H	田	Ξ	OEt	HN	-CH2CH=CMe2
1.2315	.NH2	王	ᄕᅩ	H	Н	Me	Н	Me	ЮН	Ξ	프	Ξ	OEt	HN	·(CH2)2CHMe2
1.236	.HN.	H	ᄕ	H	Н	Me	Н	Me	Ю	Ξ	田	H	OEt	NMe	Me
1.237	.NH2	H	F	Н	Н	Me	Ξ	Me	НО	н	三	H	OEt	0	.CH2CH=CMe2

Table 319

1.9319	, IIV.	E	<u></u>	Ξ	=	Me	=	Me	HO	H	н	н	OEt	0	.CH2CH=CCl2
01.00	Ž	=	-	=	=	=	Me	Me	Me	=	=	Н	OMe	NH	-CH2CH=CMe2
() () () () () () ()	Ž.	=	=	=	=	=	Me	Me	Me	Н	H	H	OMe	HN	·(CH ₂) ₂ CHMe ₂
	-NE	E	=	Ξ	=	Н	Me	Me	Me	н	H	H	OMe	NMe	Me
(6).6.	ZIIN.	=	=	Ξ	Ξ	Ξ	Me	Me	Me	Ξ	Ξ	H	OMe	0	.CH2CH=CMe2
1.2793	.NI.	=	2-	Ξ	Ξ	н	Me	Me	Me	Ξ	H	H	OMe	0	.CH2CH=CCl2
1.2394	IN.	Ξ	<u></u>	Ξ	Η	н	Me	Me	Me	Ξ	Ξ	Ŀ	Ħ	HN	-CH2CH=CMe2
1.2,195	ZIN.	Ξ	-	Ξ	Ξ	н	Me	Me	Me	Ξ	H	Œ,	Ħ	HN	-(CH ₂) ₂ CHMe ₂
336	.NH2	Ξ	<u>E</u> ,	Ξ	Н	Н	Me	Me	Me	Ħ	Ή	Œ	표	NMe	Me
1.2397	.NH2	프	[±,	Ξ	H	Н	Me	Me	Me	H	三	Œ	F	0	-CH2CH=CMe2
1.2398	.NH2	田	ᄕ	Н	Н	Н	Me	Me	Me	H	프	Œ	Ħ	0	.CH2CH=CCl2
1.2390	IIV.	Ξ	<u>-</u>	Ξ	H	Н	Me	Me	Me	H	Ξ	H	OEt	HN	-CH2CH=CMe2
1.2330	.NH2	Ξ	Œ,	H	Н	Н	Me	Me	Me	Ξ	Ξ	H	OEt	HN	·(CH ₂) ₂ CHMe ₂
1.2331	.NH2	田	<u>E</u> ,	Н	Н	Н	Me	Me	Me	H	Ξ	Ħ	OEt	NMe	Me
1.2332	.NH2	H	压	Ξ	Н	Н	Me	Me	Me	Н	Ξ	H	OEt	0	-CH2CH=CMe2
1.23 etc.	IN.	=	Έ	-	11	н	Me	Me	Me	=	Ξ	Ξ	OB E	0	.CII2CII=CCI2
1.2334	.NH2	H	ſz,	Н	Н	Н	OMe	OEt	ЮН	Ħ	Ξ	H	OMe	HN	-CH2CH=CMe2
1.2335	.NH2	H	[Z,	Н	Н	н	ОМе	OEt	ЮН	Ħ	프	H	OMe	HN	·(CH ₂) ₂ CHMe ₂
1.2336	.NI.	11	F	Н	Н	Н	ОМе	OEt	ЮН	Ξ	Ξ	Ξ	ОМе	NMe	Me
1.23:17	NI.	Ξ	伍	Ξ	Ξ	н	OMe	OEt	ОН	Ξ	三	Ξ	OMe	0	-CH2CH=CMe2
1.2338	.NH2	Н	Œ,	H	Н	Н	OMe	OEt	ОН	H	H	H	OMe	0	-CH2CH=CCl2

Table 320

Mez	Mez		Mez	CCIz	Mez	Mez)Me2	CCl2)Me2	Mez		Mez	CCIs)Me2	Mez		Mez	CCI2	;Me ₂
-CH2CH=CMe2	-(CH2)2CHMe2	Æ	CH2CH=CMe2	CH2CH=CCl2	.CH2CH=CMe2	·(CHz)zCHMez	Me	CH2CH=CMe2	-CH2CH=CCl2	CH2CH=CMe2	·(CH2)2CHMe2	Me	-CH2CH=CMe2	CH2CH=CCl2	-CH2CH=CMe2	-(CH ₂) ₂ CHMe ₂	Me	CH2CH=CMe2	-CH2CH=CCl2	-CH2CH=CMe2
·CH,	C.		·CH2	H)	·CH2	E)		·CH2	H).	·CH2	HO)-		·CH2	CH.	-CH2	E)		·CH2	-CH	-CH2
HN	HN	NMe	0	0	HN	H	NMe	0	0	HN	HH	NMe	0	0	HN	HN	NMe	0	0	HN
11	H	Н	H	H	OEt	OEt	OEt	OEt	OEt	ОМе	OMe	OMe	OMe	OMe	H	H	H	H	Н	OEt
Ŀ		균	Œ	દ	=	н	H	Н	H	Н	Ξ	H	H	H	Ŀ	Ŀ	Ľ.	Œ	í.	Ξ
Н	Н	Н	Н	Н	·H	Н	н	Н	Н	н	H	Н	Н	Н	Н	H	H	Н	H	H
II	Н	Н	П	=	==	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Ξ
011	OH	НО	ОН	ОН	IIO	OH	HO	НО	НО	н	Н	Н	H	H	Н	H	H	H	H	Ħ
OEt	OEt	OEt	OEt	OEt	OEt	OEt	OEt	OEt	OEt	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	×
οМΟ	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	M
=	Ξ	H	н	Ξ	П	H	н	Н	Н	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	M
=	=	=	Ξ	П	П	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Ħ
=	Ξ	=	Ξ	H	11	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	T
٤.	~	-	<u>-</u>	년	-	댼	J	댠	ഥ	Н	Ξ	Н	H	H	Н	H	H	Н	H	Н
=	=	Ξ	=	11	=	Ξ	Ξ	Ξ	Ξ	H	Ξ	Ξ	H	H	Н	Н	H	Н	Н	Н
IN.	ZIN-	.NII.	.NII.	.NII.	IN.	-IIN-	ZIIN.	.NH	.NH2	.NHCH2CH=CMe2	-NHCH2CH=CMe2			.NHCH2CH=CMe2	.NHCH2CH=CMe2	.NHCH2CH=CMe2	.NHCH2CH=CMe2	.NHCH2CH=CMe2	.NHCH2CH=CMe2	NHCH.CH=CMe
1-2339	1.2340	1.2341	1-2342	1-2343	1.2344	1.2345	1.2346	1.2347	1-2348	1-2349	1.2350	1.2351	1.2352	1.2353	1.2354	1.2355	1.2356	1.2357	1.238	1 0050

Table 321

·(CH2)2CHMe2	Me	-CH2CH=CMe2	-CH2CH=CCl2	.CH2CH=CMe2	·(CII2)2CHMe2	Me	-CH2CH=CMe2	.CH2CH=CCl2	-CH2CH=CMe2	·(CH ₂) ₂ CHMe ₂	Me	-CH2CH=CMe2	·CH2CH=CCl2	.CH2CH=CMe2	-(CH ₂) ₂ CHMe ₂	Me	-CH2CH=CMe2	.CH2CH=CCl2	-CH2CH=CMe2	-(CH2)2CHMe2
HN	NMe	0	0	NH	NH	NMe	0	0	NH	HN	NMe	0	0	HN	HN	NMe	0	0	HH	H
OBt	OEt	OEt	OEt	ОМе	OMe	OMe	ОМе	OMe	Н	Н	H	H	Н	OEt	OEt	OEt	OEt	OEt	ОМе	OMe
Ξ	Н	Н	H	Н	Ξ	Н	Н	н	Œ	Œ,	Ŀ	Ŀ	Œ,	H	H	н	Ξ	н	н	Ħ
Ξ	Н	H	H	H	=	Ξ	Н	Н	Н	Н	Н	Н	H	Н	Ξ	H	Н	Н	н	H
=	Ξ	Ξ	H	Ξ	=	H	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
=	Н	II	Н	OH	OH	ОН	ОН	ЮН	ОН	0Н	OH .	HO.	ЮН	ОН	НО	ЮН	ОН	OH	ЮН	НО
Me	Me	Me	Me	ОМе	OMe	ОМе	ОМе	ОМе	ОМе	ОМе	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	Me	Me
Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Ме	Me	Me	Me	Me	Н	Н
Me	Me	Me	Me	Н	Ξ	H	Н	П	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Me	Me
=	H	H	Н	II	=	H	Н	H	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	H
Ξ	Ξ	Ξ	Н	H	Ξ	Н	H	H	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н
	=	Ξ	H	H	Ξ	H	H	H	Н	H	H	Ξ	H	Н	Н	H	H	Н	H	Ħ
	Ξ	Ξ	Ξ	H	=	=	Ξ	Ξ	H	Н	H	Ξ	Η	Н	Н	H	H	Н	H	Ξ
-NHCH2CH=CMe2				L			•	1	•		ì	l	í			.NHCH2CH=CMe2	l	1	1	ı
1.2360	1.2361	1.2362	1.2363	1.2364	1.2365	1.2366	1.2367	1.2368	1.2369	1.2370	1.2371	1-2372	1.2373	1.2374	1.2375	1.2376	1.2377	1.2378	I.2379	1.2380

5

Table 322

														÷						
Me	-CH2CH=CMe2	.CH2CH=CCl2	·CH2CH=CMe2	-(CH2)2CHMe2	Me	·CIIzCH=CMez	.CH2CH=CCl2	.CH2CH=CMe2	-(CH ₂) ₂ CHMe ₂	Me	.CH2CH=CMe2	.CH2CH=CCl2	-CH2CH=CMe2	-(CH2)2CHMe2	Me	.CH2CH=CMe2	.CH2CH=CCl2	-CH2CH=CMe2	·(CH2)2CHMe2	Me
NMe	0	0	HN	HN	NMe	0	0	NH	NH	NMe	0	0	HN	HN	NMe	0	0	HN	NH	NMe
ОМе	OMe	OMe	포	H	=	=	H	OEt	OEt	OEt	OEt	OEt	OMe	OMe	OMe	OMe	ОМе	H	=	Н
H	=	Ξ	Ŀ	Œ	-	2	Œ,	H	H	H	H	H	H	H	H	H	H	Œ,	<u>-</u>	F
H	=	Н	Ξ	Ξ	Ξ	H	Н	H	H	Н	Н	Н	Н	H	H	Н	Н	Н	H	Н
=	Ξ	Ξ	Ξ	H	Ξ	=	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H
НО	011	OH	HO	HO	O	OII	ОН	ЮН	ОН	ОН	ОН	ОН	Me	Me	Me	Me	Me	Me	Me	Me
Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Ме	Me	Me	Me	Me	Me
Ξ	Н	H	Π	Ξ	11	11	Н	Н	Н	Н	Н	H	Me	Me	Me	Me	Me	Me	Me	Me
Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Н	Н	Н	Н	Н	Н	Н	Н
=	=	=	Ξ	H	П	П	Н	==	Н	Н	Ξ	Ξ	Н	Н	Н	Н	Н	Н	П	Н
Ξ	=	=	11	Н	=	П	Н	H	H	Ξ	Ξ	H	Н	Н	Н	Н	Н	H.	Н	Н
H	=	Ξ	Н	Н	П	=	H	H	H	H	H	H	H	Н	Н	Н	Н	Н	Н	Н
Ξ	=	=	Ξ.	Η	П	Ξ	Ξ	Ξ	H	H	Ξ	Ξ	H	H	Ξ	Н	Н	Н	Н	H
-NHCH2CH=CMe2	1	-NIICHACII	-NIICH2CH	1		ì	-NHCH2CH	.NHCH2CII	-NHCH2CH	.NHCH2CH	-NIICH2CH	-NIICIIACII	-NHCH2CH		,	<u> </u>	į .	-NHCH2CE	NIICH,CI	1
1.2:381	1.2.382	1.2383	1.2384	1.2385	1.236	1.2387	1.2388	1.2389	1.2390	1.2391	1-2392	1.2393	1.2394	1.2395	1.2396	1.2397	1.2398	1.2399	1.2400	1.2401

Table 323

1.2402	-NHCH2CH=CMe2	Ξ	=	Н	Ξ	=	Me	Me	Me	H	H	ᅜ	Н	0	.CH2CH=CMe2
1.2403	1	=	H	=	=	=	Me	Me	Me	н	Н	F	H	0	.CH2CH=CCl2
1.2404	NHCH2C	Ξ	H	≖	=	=	Me	Me	Me	Н	H	Н	OEt	NH	-CH2CH=CMe2
1.2405	NICH.C	Ξ	=	=	=	Ξ	Me	Me	Me	Η	王	H	OEt	Ħ	·(CH2)2CHMe2
1-2406	<u>L</u>	Ξ	Н	Н	Н	Н	Me	Me	Me	H	王	Ħ	OEt	NMe	Me
1.2407	L	Ξ	Ξ	11	Ш	=	Me	Me	Me	H	H	H	OEt	0	.CH2CH=CMe2
1.2408	1	Ξ	Ξ	Ξ	Ξ	=	Me	Me	Me	H	王	H	OEt	0	.CH2CH=CCl2
1.2409	NICHAC	Ξ	=	=	=	П	OMe	OEt	OH	H	Н	Н	ОМе	HN	.CH2CH=CMe2
1.2410	1	Ξ	H	H	Н	Н	ОМе	OEt	OH	Н	Н	Н	ОМе	HN	·(CH ₂) ₂ CHMe ₂
1.2411	.NHCH ₂ C	H	H	H	H	H	ОМе	OEt	ОН	Н	H	Н	OMe	NMe	Me
1.2412	-NHCH2C	Ή	Н	H	Н	Н	OMe	OEt	ОН	Н	H	Н	ОМе	0	-CH2CH=CMe2
1.2413	·NHCH2C	Ξ	H	Ξ	Н	H	OMe	OEt	ОН	Н	Н	Н	ОМе	0	.CH2CH=CCl2
1.2414		Ξ	Н	H	H	H	ОМе	OEt	0Н	Н	H	F	H	HN	.CH2CH=CMe2
1.2415	<u> </u>	H	Н	H	Н	Н	οМе	OEt	0Н	Н	H	Я	Ħ	HN	-(CH2)2CHMe2
1.2416	-NHCH2C	H	Н	Н	Н	Н	OMe	OEt	ОН	Н	Ħ	R	H	NMe	Me
1.2417	-NIICH2C	Ξ	Н	Н	Н	Н	ОМе	OEt	ЮН	Н	H	स	H	0	-CH2CH=CMe2
1.2418	I	H	Н	Н	Н	Н	ОМе	OEt	ОН	Н	프	দ্র	Н	0	.CH2CH=CCl2
1.2419	.NHCH2C	Н	Н	Н	Н	Н	OMe	OEt	ОН	Н	Ξ	Н	OEt	HN	.CH2CH=CMe2
1.2420	1	Н	Н	Н	Н	Н	ОМе	OEt	ОН	Н	×	H	OEt	H	·(CH2)2CHMe2
1.2421	NHCH2C	H	Н	Н	Н	Н	ОМе	OEt	ОН	Н	Ξ	Н	OEt	NMe	Me
I.2422	-NHCH2C	H	Н	H	H	Н	ОМе	OEt	ОН	Н	Ħ	Н	OEt	0	-CH2CH=CMe2

Table 324

1.24.23																-					
OMC-OMC-OMC-OMC-OMC-OMC-OMC-OMC-OMC-OMC-	.CH2CH=CCl2	-CH2CH=CMe2	-(CH2)2CHMe2	Me	-CH2CH=CMe2	-CII2CH=CCl2	-CH2CH=CMe2	·(CH ₂) ₂ CHMe ₂	Me	.CH2CH=CMe2	-CH2CH=CCl2	·CH2CH=CMe2	-(CH ₂) ₂ CHMe ₂	Me	-CH2CH=CMe2	-CH2CH=CCl2	-CH2CH=CMe2	-(CH ₂) ₂ CHMe ₂	Me	-CH2CH=CMe2	-CH2CH=CCl2
OMC OME	0	ij	H	NMe	0	0	H	H	NMe	0	0	Ħ	H	NMe	0	0	HN	HN	NMe	0	0
	OEt	OMe	OMe	ОМе	OMe	OMe	Н	Н	Н	Н	H	OEt	OEt	OEt	OEt	OEt	OMe	OMe	OMe	OMe	OMe
OMC. OMC. II II II II II MC OMC OBL OH II II OMC. OMC. II II II II II MC OMC. OMC. II II II II II II II II II OMC. OMC. II	H	11	Н	Н	Н	=	۲۵.	(Z.	Œ,	íż.	<u>F-</u>	H	Н	Н	H	H	H	H	Н	H	H
	Н	Н	Н	H	Н	=	н	H	Н	H	H	Н	Н	Н	Н	H	Н	Н	H	Ή	H
OMC: OMC: OMC: OMC: OMC: OMC: OMC: OMC:	=	=	Н	Н	H	11	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	H
OMC	НО	=	H	н	н	=	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	ОН	ОН	ОН	ЮН	ОН
OMC	OEt	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	ОМе	OMe	ОМе	OMe	OMe
OMC	OMe	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me
OMe	=	Me	Me	¥ W	ğ	ŝ	Me	Æ	Me	Βe	Me	Me	Me	₩	Me	Me	Н	Н	Н	Н	Н
OMe H H H OMe OMe H H H	=	=	=	Ξ	=	=	=	H	Ξ	H	H	H	Ħ	H	H	H	Н	Н	Н	Н	H
OMC	Ξ	=	Ξ	Ξ	=	=	Ξ	Ξ	Ξ	Ξ	H	H	Ξ	E	H	H	H	H	H	Н	Н
OMe	=	=	Ξ	: =	: =	=	Ξ	Ξ	H	Ξ	王	H	Ξ	H	H	E	Ξ	Н	H	Н	Н
MO.	Ξ	: =	=	=	=	: =	Ξ	=	Ξ	Ξ	H	H	Ξ	: =	Ξ	Ξ	H	H	Н	H	H
1-2423 1-2426 1-2426 1-2426 1-2429 1-2430 1-2431 1-2434 1-2436 1-	I.)"II.JIIN	WO THE TAIL	OMe	OMe	aWO.	O.O.	oMO.	OMG.	OMe.	OMe.	.OMe	OMe.	OMo.	O.Me	OMe	OMe.	OMe			-OMe	ОМе
	1.0404	6262-1	19495	2676 1	1.9497	1.9.49.R	0676	0.00	1.9431	1.9439	1.9433	1.9434	1.9435	1.9436	1 9437	1.9438	1.9439	1.2440	1.9441	1.2442	1.2443

Table 325

		Ŀ	-	-	\vdash	:	:			=	:	2	=	157	- 10 110
1-2444	-OMe	=	1	1	=	Ξ	Me	OMe	5	=		1	=	E	-Cn2Cn-CMe2
1.2445	-OMe	H	H	H	Ξ	H	Me	ОМе	ЮН	Ξ	Ξ	Œ	н	¥	-(CH ₂) ₂ CHMe ₂
1.2446	-OMe	Ξ	H	П	Ξ	Ξ	Me	ОМе	OH	Ξ	王	Ŀ	Н	NMe	Me
1.2447	OMe.	H	H	Н	Ξ	Н	Me	OMe	НО	田	프	Œ	H	0	-CH2CH=CMe2
1.2.148	-OMe	H	H	H	=	H	Me	OMe	ОН	Ξ	Ξ	伍	H	0	CH2CH=CCl2
1.2.1.49	-OMe	Ξ	Ξ	П	=	=	Me	ОМе	IIO	=	Ξ	Ξ	OEt	H	-CII,CII=CMe2
1.2450	-OMe	Ξ	H	H	Ξ	Ξ	Me	ОМе	ОН	Ŧ	Ξ	Ξ	OEt	HN	-(CH2)2CHMe2
1-2451	-OMe	H	Н	Н	Ξ	H	Me	OMe	ОН	Ξ	Ξ	Ξ	OEt	NMe	Me
1-2452	OMe.	H	Н	H	H	Н	Me	OMe	ЮН	Н	Ħ	Ξ	OEt	0	-CH2CH=CMe2
1-2453	-OMe	H	Н	Н	Н	Н	Me	ОМе	НО	Н	프	Ħ	OEt	0	.CH2CH=CCl2
1.2454	OMe	Ξ	Ξ	Ξ	=	Me	H	Me	OH	H	H	Ξ	ОМе	HN	-CH2CH=CMe2
1.2455	-OMe	H	H	H	H	Me	Н	Me	ОН	Н	H	H	ОМе	HN	·(CH2)2CHMe2
1.2456	-OMe	Н	Н	H	H	Me	Н	Me	ОН	Н	프	표	OMe	NMe	Me
1.2457	-OMe	H	H	Н	H	Me	Н	Me	ОН	Н	王	Н	OMe	0	.CH2CH=CMe2
1-2458	-OMe	Ξ	Н	H	H	Me	H.	Me	ОН	Н	H	Ħ	OMe	0	.CH2CH=CCl2
1.2459	-OMe	H	H	H	王	Me	Н	Me	ОН	Н	三	2	H	HN	-CH2CH=CMe2
1.2460	-OMe	Ξ	田	H	Ξ	Me	Н	Me	ОН	Н	프	<u>F4</u>	H	NH	-(CH ₂) ₂ CHMe ₂
1.2461	-OMe	H	H	H	Ξ	Me	Н	Me	ОН	Н	Ξ	Œ,	H	NMe	Me
1.2462	-OMe	Ξ	H	H	H	Me	Н	Me	ОН	Н	Ξ	드	Ŧ	0	.CH2CH=CMe2
1-2463	-ОМе	王	Ξ	Ξ	프	Me	Н	Me	НО	Н	≖	E,	Ξ	0	.CH2CH=CCl2
1.2464	-OMe	Н	Н	Н	Н	Me	Н	Me	ОН	Н	Н	Н	OEt	NH	-CH2CH=CMe2

' Table 326

1.9465	O.	=	E	E	Ξ	Me	=	Me	НО	=	H	H	OBt	NH	·(CH2)2CHMe2
1.2466	9МО.	=	Ξ	Į≖	=	Me	=	Me	IIO	Н	H	Н	OEt	NMe	Me
1.2467	-OMe	=	ェ	Ξ	Ξ	Me	H	Me	HO	н	H	Н	0Et	0	-CH2CH=CMe2
1.2468	-OMe	=	=	Ξ	Ξ	Me	II	Me	ОН	Ξ	Η	Н	OEt	0	.CH2CH=CCl2
1.2469	-OMe	=	Ξ	Ξ	н	H	Me	Me	Me	H	포	Ξ	OMe	Æ	-CH2CH=CMe2
1.2470	-OMe	=	=	Ξ	H	11	Me	Me	Me	Ξ	H	Η	OMe	HN	-(CH ₂) ₂ CHMe ₂
1.2471	OMe.	Ξ	Ξ	H	Н	Н	Me	Me	Me	H	H	Н	OMe	NMe	Me
1.2472	-OMe	=	Ξ	田	Н	Н	Me	Me	Me	H	Н	H	OMe	0	-CH2CH=CMe2
1.2473	-OMe	=	Ξ	Н	Н	Н	Me	Me	Me	Н	Н	H	OMe	0	-CH2CH=CCl2
1.2474	OMe.	Ξ	H	Ξ	Н	Н	Me	Me	Me	H	H	Ŀ	Ξ	H	-CH2CH=CMe2
1.2475	-OMe	三	Ŧ	Н	Н	H	Me	Me	Me	H	H	F	H	HN	-(CH ₂) ₂ CHMe ₂
1.2476	-OMe	=	Ξ	Н	Н	Н	Me	Me	Me	Н	Н	E.	H	NMe	Me
1.2477	-OMe	=	Ξ	Ξ	H	H	Me	Me	Me	Ξ	H	F	H	0	-CH2CH=CMe2
1.2478	OMe.	Ξ	Ξ	王	Н	Н	Me	Me	Me	Н	H	F	H	0	.CH2CH=CCl2
1.2479	OMe.	Ξ	Ξ	Ξ	Н	Н	Me	Me	Me	H	H	Н	OEt	HN	.CH2CH=CMe2
1.2480	OMe.	Ξ	Ξ	Ξ	Н	Н	Me	Me	Me	Ħ	Ξ	H	OE	HN	-(CH ₂) ₂ CHMe ₂
1.2481	OMe.	H	H	H	Н	H	Me	Me	Me	H	Ħ	프	OEt	NMe	Me
1.2482	OMe.	Ξ	Ξ	표	Н	Н	Me	Me	Me	Ξ	표	H	OEt	0	·CH2CH=CMe2
1.2483	OMe.	H	H	H	Н	Н	Me	Me	Me	H	H	H	OEt	0	-CH2CH=CCl2
1.2484	.OMe	H	H	Ή	Н	Н	OMe	OEt	ЮН	H	Н	Н	OMe	HN	·CH2CH=CMe2
1.2485	OMe.	王	Ξ	王	H	H	ОМе	OEt	ЮН	H	H	Ξ	ОМе	HN	·(CH2)2CHMe2

Table 327

	,															_
1.2486	-OMe	Н	Ξ	H	Ξ	H	OMe	OEt	ОН	Н	三	H	ОМе	NMe	Me	
1-2487	.OMe	Ξ	Ш	Ξ	H	Ξ	ОМе	OEt	011	=	Ħ	H	ОМе	0	-CH2CII=CMe2	
1.2488	-OMe	H	H	Н	Н	н	ОМе	OEt	Ю	Н	王	Н	ОМе	0	.CH2CH=CCl2	
1.2.189	.OMe	7	Ξ	Н	II	Н	ОМе	OEt	OH	Н	Ξ	Œ	H	HN	-CH2CH=CMe2	
1-2490	.OMe	Ξ	H	Н	Н	Н	ОМе	OEt	НО	Н	Ξ	দ	Н	HN	·(CH ₂) ₂ CHMe ₂	
1.2491	OMe.	=	H	=	II	11	OMe	OEt	ОН	Н	H	C.	Н	NMe	Me	
1-2492	.OMe	H	H	Н	Н	Н	ОМе	OEt	OH	Н	H	ন	Н	0	-CH2CH=CMe2	
1.2493	.OMe	Н	H	H	Н	Н	ОМе	OEt	НО	Н	H	Œ	Н	0	·CH2CH=CCl2	
1.2494	.OMe	Н	Н	Н	Н	Н	ОМе	OEt	НО	Н	Н	Н	OEt	HN	-CH2CH=CMe2	
1.2495	.ОМе	Н	Н	H	Н	Н	ОМе	OEt	НО	н	Н	Н	OEt	HN	-(CH2)2CHMe2	
1.2496	•МО-	Н	H	Н	Н	Н	ОМе	OEt	0Н	Н	Н	Н	OEt	NMe	Me	
1.2497	-OMe	Н	Н	Н	Н	Н	ОМе	OEt	НО	Н	Н	Н	OEt	0	-CH2CH=CMe2	
.2498	-OMe	Н	Н	Н	Н	H	OMe	OE E	ЮН	H	Н	H	OEt	0	.CH2CH=CCl2	

[0167] In the above tables, "-OCH₂O-*" and "*" mean that they taken together form a ring.

Experiment 1 Suppressive effect on a mitogenic activity of mouse splenocytes in vitro

[0168] In 96-well microtiter plate 5 x 10^5 C3H/HeN mouse splenocytes suspended in 0.1 ml of 10 % fetal bovine serum-fortified RPMI 1640 medium containing 2 mM of sodium bicarbonate, 50 units/ml of penicillin, 50 μ g/ml of streptomycin and 5 x 10^{-5} M of 2-mercaptoethanol were added. Then, 5 μ g/ml of Concanavalin A (Con A) or 10 μ g/ml of lipopolysaccharide (LPS) as a mitogen and the compound of a pre-determined concentration of the present invention were added to each well so that a final volume of each well reached 0.2 ml. Each compound of the present invention was dissolved in dimethylsulfoxide (DMSO) and diluted with the above RPMI 1640 medium to adjust the final concentration of 100 ng/ml or less. The splenocytes in the 96-well microtiter plate were cultivated at 37 °C for 3 days in an incubator keeping the humidity 100 %, carbon dioxide 5 % and air 95 %. Then, 25 μ l of 6 mg/ml MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (Sigma) was added to the each well and cultivated at 37 °C for 4 hours under the same conditions. After the cultivation, 50 μ l of 0.02 N hydrochloric acid in 20 % sodium dodecyl sulfate (SDS) was added to formazan generated and left at 37 °C for 24 hours for dissolving formazan. An absorption intensity (OD) of formazan generated in proportion to the number of living cells was measured with an immunoreader (InterMed) equipped with a 570 nm filter (The Journal of Immunological Method, 65, 55-63, 1983). The 50 % inhibitory concentration of a cell proliferation (IC 50) was calculated from a correlation between the concentration of the compound of the present invention and the absorption intensity.

Experiment 2 Anti-proliferative activity on EL4 cells

[0169] In 96-well microtiter plate 4 x $10^4/0.1$ ml of mouse thymoma strain EL4 cells were added and 0.1 ml of the compound of the present invention was added to the mixture so that the concentration was in the range of 0-5,000 ng/ml. After the cultivation for 3 days, the IC₅₀ was calculated by the MTT method as described in Experiment 1. [0170] The results are shown in Tables 328-329.

Table 328

	ConA	LPS	EL-4
Compound	IC ₅₀	IC50	IC50
	(ng/ml)	(ng/ml)	(ng/ml)
I-1	0.86	1.92	8.56
I.9	<20	<20	<20
I-12	1.3	2.8	46.2
I-22	5.62	4.26	6.2
I-35	19.5	39.4	140
I-40	6.1	16.5	37.4
I-41	0.73	1.74	4.89
I-46	10.6	23.9	67.5
I-49	8.89	16.2	31.7
I-50	3.83	9.2	11.9
I-51	· 6.6	14.7	70.0
I-59	8.5	22.4	140
I-62	29.2	25	23.4
I-63	13	27	16
I-66	0.22	0.35	0.48
I-71	4.56	14.2	31.2
I-101	0.8	0.5	1.8
I-103	3.4	3.7	4.6
I-104	3.0	3.1	4.8
I-106	0.6	0.4	2.7
I-107	0.6	0.7	12
I-121	0.8	1.2	0.8
I-163	<20	<20	<20
I-173	<20	<20	<20
I-175	<20	29.4	<20
I-187	12.0	25.1	36.2
I-211	<20	<20	<20
I-248	<10	<10	312
I-250	<10	<10	88.3
I-251	<10	<10	97.4

I-255	<20	<20	<20
I-256	<20	28.7	310
I-275	6.34	13.5	100
I-276	1.8	3.1	200
I-299	5.53	7.85	13.6
I-301	7.06	11.0	15.8
I-360	<20	<20	99.8
I-361	<20	<20	124
I-418	255	497	>10000
I-427	255	497	>10000
I-457	<20	<20	205
I-466	<20	<20	46
I-484	14.7	32.2	91.4
I-513	6.89	11.1	61.8
I-525	0.76	1.11	5.0
I-639	4.59	6.25	50
I-661	0.67	1.28	50
I-739	18.8	20.7	430
I-742	. 10	20	45.2
I-758	6.78	9.63	55.1
I-773	8.45	12.6	92.9
I-797	1.75	3.71	26.5
I-834	36	46	226
I-839	1.48	1.87	20.7
I-840	5.31	6.94	31.9
I-878	14.1	27.4	194
I-880	23.0	41.1	105
I-892	<0.2	<0.2	1.41
I-8 9 3	0.49	1.05	7.06

Table 329

Compo	ConA IC ₅₀ (ng/ml)	LPS IC ₅₀	EL-4 IC ₅₀
I-907	23.4	(ng/ml) 44.5	(ng/ml) 82.7
I-908	0.45	0.86	3.50
I-909	<20	<20	20
I-931	2.93	5.76	4.37
I-934	16.1	22.2	52.7
I-943	2.97	4.89	46.8
I-962	12.1	16.3	20.4
I-970	<20	<20	50.3
I-976	17.7	34.2	330
I-981	14.9	27.1	>100
I-982	2.0	3.75	55.3
I-988	0.2	0.31	1.23
I-993	5.10	7.54	13.8
I-995	20.9	25.2	49.2
I-1006	8.66	12.3	33.0
I-1007	8.05	10.4	13.1
I-1017	9.74	16.7	72.9
I-1031	<20	21.2	41.7
I-1040	1.80	5.31	1.85
I-1043	2.19	3.27	9.70
I-1058	21.2	30.2	48.8
I-1066	3.91	4.87	20.6
I-1095	6.90	9.57	34.2
I-1103	4.7	6.9	31.4
I-1107	5.8	9.1	34.1
I-1115	<20	<20	<20
I-1121	3.12	9.0	18.6
I-1123	0.80	2.00	3.9
I-1124	94	272	>10000
1-1126	79	234	>10000
I-1127	44	111	412
I-1128	5.00	11.4	26.0
I-1135	1.00	2.70	11.7

10.6	14.1	97.4
2.4	4.2	33.2
0.65	1.95	30.9
0.08	0.23	8.1
0.26	0.54	12.5
0.63	0.64	27.5
13.1	19.4	>100
16.4	31.1	>100
12.2	20.8	47.2
0.16	0.66	22.8
1.46	5.3	50
14.1	>100	43.5
12.87	24.2	85.0
<20	<20	<20
197	423	>10000
5.95	8.05	20.4
12.0	15.3	5.22
3.77	4.93	15.1
2.50	3.34	11.8
25.9	36.8	118
0.68	1.35	2.90
6.30	10.7	27.8
<20	<20	29.8
0.10	0.32	1.66
0.33	1.38	1.44
<20	31.3	105
<20	<20	<20
<20	<20	41.7
<20	<20	<20
<20	<20	<20
<20	<20	<20
<20	<20	27.3
<20	<20	<20
<20	<20	39.7
	2.4 0.65 0.08 0.26 0.63 13.1 16.4 12.2 0.16 1.46 14.1 12.87 <20 197 5.95 12.0 3.77 2.50 25.9 0.68 6.30 <20 0.10 0.33 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20	2.4 4.2 0.65 1.95 0.08 0.23 0.26 0.54 0.63 0.64 13.1 19.4 16.4 31.1 12.2 20.8 0.16 0.66 1.46 5.3 14.1 >100 12.87 24.2 <20

[0171] As shown in the above, the compound of the present invention has immunosuppressive and anti-allergic effects.

Experiment 3 Suppressive effect on the antibody production against bovine y globulin (BGG)

[0172] On an immunizing day and 7 days after, 50 µg of BGG was subcutaneously inoculated to backs of BALB/c mice (male, 6-8 weeks old) for inducing an immune reaction. After the compound of the present invention was dissolved or suspended in N, N-dimethylacetoamide, the mixture was diluted with miglyol 812 neutral oil. A proper volume of the compound was orally administered (p.o.) to mice every day from the next day of the immunizing. A two hundredth weight to body weight of miglyol was administered to mice in a control group. After 21 days, blood was drawn from each mouse and a serum was separated. BGG-specific IgE in a serum was measured by the sandwich ELISA method using a BGG-coating plate. The suppressive rate of IgE production was calculated from the dilution rate of the serum which has the same absorption intensity as that of the control group for judging the effect of the compound of the present invention. The results are shown in Table 330.

Table 330

Compound	Dose (mg/kg)	Suppressive rate of anti- gen-specific IgE (%)
I-525	100	>95
I-915	100	>99
I-892	5	>99
I-963	50	>99
l-1031	100	>99
l-1093	100	>99

Experiment 4 Suppressive effect on the IgE production against ovalbumin (OVA)

30 1) Animals

15

20

25

40

50

[0173] BALB/c mice (female, 8-10 weeks old) and Wistar rats (female, 8-10 weeks old) which were bought from Japan SLC, Inc. (Shizuoka) were used.

2) Immunizing method

[0174] BALB/c mice were immunized by an intraperitoneal administration of 0.2 ml suspension of 2 μ g of ovalbumin (OVA) and 2 mg of aluminium hydroxide gel in physiological saline. After 10 days, blood was drawn from hearts, sera were separated and stocked at -40 °C till the measurement of an IgE antibody titer.

3) Compounds

[0175] After the compound of the present invention was dissolved or suspended in N, N-dimethylacetoamide, the mixture was diluted 20 times with miglyol 812 neutral oil. The obtained solution was orally administered to mice at 0.1 ml per mouse. The administration was continued for 10 days from the immunizing day to the day before drawing blood. IPD-1151-T (a compound described in Jpn. Pharmacol. (1993) 61, 31-39) and a compound No. 36 (a compound 36 described in J. Med. Chem. (1997) 40: 395-407) were examined as controls by the same method.

4) Measurement of anti-OVA IgE antibody titer (PCA titer)

[0176] The samples 2-fold diluted with physiological saline were prepared from the obtained mouse serum and each $50~\mu$ l of the solution was intradermally injected to backs of Wistar rats which previously hair cut. After 24 hours, a passive cutaneous anaphylaxis reaction (PCA) was induced by an intravenous injection of 0.5 ml of physiological saline containing 1 mg of OVA and 5 mg of Evans' blue dye. After 30 minutes, the rats were sacrificed and the highest dilution rate of the serum giving bluing with a diameter of more than 5 mm was recorded as the PCA titer. For example, when a serum is positive for the PCA reaction till 2^7 times dilution, the anti-OVA IgE antibody titer of the mouse is defined as 7. The results are shown in Table 331.

Table 331

Compound Dose (mg/kg) PCA Tit I-484 40 <0 I-839 40 2.4* I-851 40 1.8* I-892 40 <0 I-893 40 2.5* I-908 40 3.4* I-915 40 <0 I-925 40 1** I-928 40 <0 I-948 40 2.6* I-957 40 4.5* I-962 40 <0	۵r
I-839 40 2.4* I-851 40 1.8* I-892 40 <0 I-893 40 2.5* I-908 40 3.4* I-915 40 <0 I-925 40 1** I-928 40 <0 I-948 40 2.6* I-957 40 4.5* I-962 40 <0	
I-851 40 1.8* I-892 40 <0	
1-892 40 <0 1-893 40 2.5* 1-908 40 3.4* 1-915 40 <0 1-925 40 1** 1-928 40 <0 1-948 40 2.6* 1-957 40 4.5* 1-962 40 <0	*
I-893	*
I-908	
I-915 40 <0	*
I-925 40 1**	*
I-928	
I-948 40 2.6* I-957 40 4.5* I-962 40 <0	
I-957 40 4.5* I-962 40 <0	
I-962 40 <0	*
	*
I-963 40 3.6*	*
I-988 40 0.8*	*
I-1031 40 4.4*	*
I-1043 40 4.8*	*
I-1066 40 <0	
I-1072 40 0.8*	*
I-1095 40 <0	
i-1123 40 2.4*	*
I-1135 40 4.8*	*
I-1167 40 4.4*	*
I-1171 40 <0	
I-1177 40 . 3.6*	*
I-1229 40 <0	-
i-1232 40 1.8*	*
I-1242 40 2.8*	*
I-1258 40 1.2°	*
I-1271 40 <0	
IPD-1151-T 50 9.8	
No.36 10 10.4	

^{** • • •} P<0.01 vs vehicle

[0177] The PCA ticers of mice in a group to which any compound was not administered were 9-12.

IPD-1151-T · · ·

5

No. 36 • • •

15

10

20

25

[0179] As shown in the above, the compound of the present invention has a suppressive effect on the antibody production.

Experiment 5 Suppressive effect on the antibody production of human lymphocytes

- 1. Experimental method
- 1) Human peripheral blood
- 30 [0180] Human peripheral blood was drawn from healthy male adults by plastic syringes filled with heparin (final concentration 1.5%). Lymphocytes were collected immediately after blood was drawn.
 - 2) Medium
- [0181] RPMI medium (Nissui Pharmaceutical Co., Ltd.) containing 10% fetal bovine serum (HyClone Lab.) inactivated at 56 °C for 30 minutes, penicillin (100 units/ml) and streptomycin (100 μg/ml) (GIBCO) was used.
 - 3) Compounds
- 40 [0182] After the compound (I-839) of the present invention was dissolved in dimethylsulfoxide (Nakaraitesk) at 2 μg/ml, the solution was diluted with the medium to adjust a final concentration to be 0.01 pg/ml 10 μg/ml. The compound No. 36 was examined as a control by the same method.
 - 4) Human lymphocytes

45

[0183] Human peripheral blood was stratified in a tube filled with Ficoll-Hypaque mixture solution (Dainippon Pharmaceutical Co., Ltd. (Osaka), Mono-poly resolving medium) at the same volume and centrifuged at 300 x g at 15 °C for 30 minutes to obtain a lymphocytes layer. After the collected cell suspension was washed with sterile Hanks' solution (Nissui Pharmaceutical Co., Ltd.) by centrifugation, sterile distilled water was added to the suspension. After 30 seconds, twice-concentrated Hanks' solution of which amount is equal to the water was added for removal of contaminating erythrocytes. Lymphocytes which were filtered by a nylon mesh and washed by centrifugation were used for experiments as human lymphocytes.

5) Induction of the IgE antibody production by stimulation of B cells

55

[0184] In 96-well cultivating plate (Sumitomo bakelite) the lymphocytes were inoculated 2 x 10^5 cells per well, and the compound, anti-human CD 40 antigen (Pharmingen, 2 μ g/ml), human recombinant interleukin-4 (IL-4) (Genzyme, 0.1 μ g/ml) and human recombinant interleukin-10 (IL-10) (Genzyme, 0.2 μ g/ml) were added and cultivated at 37 °C under

5% of CO_2 (0.2 ml/well). After the cultivation for 10 days, the amount of antibody in a supernatant was quantified by ELISA method.

6) Quantification of the IgE antibody

[0185] A commercial kit MESACUP IgE test (Medical & Biological Laboratories Co., Ltd.) was used for the quantification of the IgE. The experiment followed an instruction manual and was carried out in triplicate to calculate the average.

7) Quantification of the IgG and IgM antibodies

[0186] ELISA method was used for the quantification. In 96-well plate (Nunc) 50 μ l of 1 μ g/ml F(ab')₂ Goat Anti-human IgG + A + M (H+L) (ZYMED Laboratories) was added and the plate was coated at 4 °C overnight. The plate was washed twice with 0.05 % Tween/PBS (PBST) solution and 100 μ l of 0.5% gelatin/PBST was added for blocking at room temperature for 2 hours. After washing three times with PBST, 100 μ l of a sample diluted with PBS or 100 μ l of human Plasma IgG standard solution or IgM standard solution (BioPur AG, Switzerland) of a pre-determined concentration was added and incubated at room temperature for 1 hour. After washing three times with PBST, 100 μ l of a peroxydase-labeled anti-human IgG antibody or anti-human IgM antibody (Southern Biotechnology, Birmingham) which was diluted two thousandth with PBS was added and incubated at room temperature for 1 hour. After washing four times with PBST, 100 μ l of a substrate, o-phenylenediamine dihydrochloride, was added for color development. After 30 minutes, the reaction was terminated by addition of 50 μ l of 2 N HCl, and the absorption at 492 nm was measured with a microplate reader and the amount of the IgG and IgM was calculated from a standard curve of a standard solution.

2. Results

10

30

35

45

50

[0187] The results are shown in Figures 1 and 2. The compound (I-839) of the present invention has a selective suppressive effect on the IgE antibody production and the intensity was 2,000 times or more of that of the IgG production and 30,000 times or more of that of the IgM. The suppressive effects of the typical compounds on the antibody production are shown in Table 332.

Table 332

Compound	IC ₅₀ (ng/ml)		
	IgE	lgG	IgM
1-839	<0.00001	0.027	0.37
1-892	<0.00001	<0.00001	>1
l-121	<0.0001	<0.0001	>1
1-988	<0.00001	<0.00001	>1
1-893	<0.00001	<0.0001	>1

Experiment 6 Suppressive effect on antibody production of mouse spleen lymphocytes

- 1. Experimental method
- 1) Animals
- [0188] BALB/c (nu/nu) mice were bought from Japan SLC, Inc. (Shizuoka) and 7 weeks old-male mice here used.
- 2) Medium
- [0189] RPMI medium (Nissui Pharmaceutical Co., Ltd.) containing 10 % fetal bovine serum (HyClone Lab.) inactivated at 56 °C for 30 minutes, penicillin (100 units/ml) and streptomycin (100 µg/ml) (GIBCO) was used for experiments.

3) Compounds

5

[0190] Each of the compounds was dissolved in dimethylsulfoxide (Nakaraitesk) at 2 μ g/ml and diluted with the medium to adjust a final concentration to 0.1 pg/ml - 10 μ g/ml.

4) Mouse spleen lymphocytes

[0191] A spleen of mouse was taken out and put in a cultivating schale which was filled with Hanks' solution. The spleen was crushed and the cells were pushed out from the organ and filtered through a metal mesh (200 mesh). After the collected cell suspension was washed by centrifugation with sterile Hanks' solution (Nissui Pharmaceutical Co., Ltd.), sterile distilled water was added. After 30 seconds, an equal amount of twice-concentrated Hanks' solution was added for removal of contaminating erythrocytes. The cell suspension, filtered by a nylon mesh and washed by centrifugation, were used as mouse spleen lymphocytes for experiments.

5) Induction of the IgE antibody production by the B cell stimulation

[0192] In 96-well cultivating plate (Sumitomo Bakelite Company Limited) mouse spleen lymphocytes were inoculated 2 x 10^5 cells per well. The compound of the present invention, lipopolysaccharide (DIFCO Lab., 2 μ g/ml) and mouse recombinant interleukin-4 (IL-4) (Genzyme, 50 ng/ml) were added to the well and cultivated at 37 °C under 5 % CO₂ (0.2 ml/well). After the cultivation for 10 days, the amount of the antibody in a supernatant was quantified by ELISA method.

6) Quantification of the IgE antibody

[0193] A commercial mouse IgE EIA kit (Yamasa Shoyu Co., Ltd.) was used for the quantification of the IgE. The experiment followed an instruction manual and was carried out in triplicate to calculate the average.

7) Quantification of the IgG1, IgG2a and IgM antibodies

[0194] In 96-well plate 50 μl of 10 μg/ml Goat Anti-Mouse Ig (IgM+G+A, H+L) (Southern Biotechnology, Birmingham) was added and the plate was coated at 4 °C overnight. After the plate was washed twice with a PBST solution, 100 μl of 0.5 % gelatin/PBST was added and the plate was blocked at room temperature for 2 hours. After washing three times with PBST, 100 μl of culture supernatant which was diluted with PBS or 100 μl of an antibody standard solution (Mouse IgG1 standard, Mouse IgG2a standard, Mouse IgM standard, BETHYL Laboratories) of a pre-determined concentration was added and incubated for 1 hour. After washing three times with PBST, 100 μl of diluted solution of alkalinephosphatase-labeled anti-mouse IgG1, IgG2a or IgM antibody (Southern Biotechnology, Birmingham) was added and incubated at room temperature for 1 hour. After washing four times with PBST, a substrate, p-nitrophenyl phosphate disodium, was added, and after 30 minutes-incubation period, after 5 N-NaOH was added to stop the reaction. The absorption at 405 nm was measured with a microplate reader, and the amount of the antibody was calculated from the standard curve. For the dilution of the mouse sample and the standard solution was used 10 % FCS/PBS.

2. Results

[0195] The results are shown in Figure 3. The figure shows that the compound (I-967) has a suppressive effect on the IgG1, IgG2a and IgM antibodies production only at 1000 ng/ml or more but has a dose-dependent suppressive effect on the IgE production at 0.01 ng/ml or more. In Table 333 the suppressive effects of the representative compounds on the IgE, IgM, IgG1 and IgG2a production are shown.

Table 333

Compound	IC ₅₀ (ng/ml)			
	lgE	lgG1	lgG2a	IgM
I-73	0.044	2600	4900	4200
I-963	0.00026	510	3600	3500
1-967	0.1	3500	3600	>10000

Experiment 7 Suppressive effect on bronchial inflammatory cell infiltration by inhalation of antigen

- 1. Experimental method
- 1) Animals

10

20

25

30

50

[0196] BALB/c mice bought from Japan SLC, Inc. (Shizuoka) (female, 8-11 weeks old) were used for experiments.

2) Sensitizing and challenge of antigen

[0197] For immunizing, 0.2 ml of a suspension of 2 μ g of ovalbumin (OVA; Grade V, SIGMA) and 2 mg of aluminium hydroxide gel in physiological saline was intraperitoneally injected. After 2 weeks, 0.2 ml of a solution of 2 μ g of OVA in physiological saline was intraperitoneally injected for a booster. After 1 week, each of mice was put in a nebulizing container (an airtight polycarbonate container, 24.5 cm in inner diameter and 20 cm in effective inner height, equipped with 12 cylindrical tubes of 4.8 cm in inner diameter and 12 cm in height) and made inhale a solution of 5 % ovalbumin (Grade III, SIGMA) in physiological saline for 20 minutes with an ultrasonic neblizer (Omron Tateisi Elec-Tronics co., NE-U12) for the challenge of antigen.

3) Administration of the compound of the present invention

[0198] The compound (I-963) of the present invention was dissolved in N, N-dimethylacetoamide (Nakaraitesk) and diluted one twentieth with miglyol 812 neutral oil (Mitsuba Trading Co., Ltd.) and the solution was orally administered to mice at 40 mg/kg. The administration was continued for 9 days from the booster day to the day before broncho-alveolar lavage.

4) Broncho-alveolar lavage (BAL)

[0199] After 48 hours of the challenge of antigen, the mice were exsanguinated from hearts under ether anesthetic, and the trachea was then cannulated. 0.3 ml of PBS were injected into the lungs and collected, and reinjected four times more (total 1.5 ml).

5) Measurement of the total cell number in BAL solution and classification of inflammatory cells

[0200] After calculation of the total cell number by coloring of a part of BAL solution with Türk solution, cells in BAL solution were put on a slide glass with cytospin (SHANDON) for May-Grünwald-Giemsa (MERCK) staining. Under a microscope, 500 cells were classified to a macrophage, an eosinophil, a neutrophil and a lymphocyte and a proportion of each type of the cells was calculated. The number of each type of the cells was calculated by a multiplication of its proportion and the total cell number.

2. Results

[0201] The results are shown in Figure 4. As shown in the figure, the compound (I-963) of the present invention significantly suppresses increasing number of eosinophils and neutrophils by the challenge of antigen.

45 Experiment 8 Suppressive effect on the cytokine production of a mouse T cell strain EL-4

[0202] In 48-well plate were added 2 x 10⁵ mouse T cell strain EL-4 which were suspended in 0.2 ml of 1 % fetal bovine serum-added RPMI 1640 medium (2 mM of sodium bicarbonate, 50 units/ml of penicillin, 50 μg/ml of streptomycin and 5 x 10⁻⁵ M of 2-mercaptoethanol were added) and the compound of the present invention of a pre-determined concentration. TPA was added as a cell stimulater at a final concentration of 10 ng/ml to adjust a final volume of each well to 0.4 ml. Each compound of the present invention was dissolved in DMSO and diluted with the above RPMI 1640 medium, and then for added at a final concentration of 100 ng/ml or less. The cells in the 48-well plate were cultivated in an incubator keeping the humidity 100 %, carbon dioxide 5 % and air 95 % at 37 °C for 24 hours to collect a supernatant of each well. The amount of IL-2, IL-4 and IL-5 released in the medium of each well were measured with the ELISA kit (Amersham K. K.) to be taken as an index of the cytokine production of the cells. TPA free group (-TPA) was used as a control. The results are shown in Table 334.

Table 334

C	ICso (ng/ml)		
Compound	IL-2	IL-4	IL-5
I-4	>500	14	120
I-37	>500	7	110
I-39	1300	7	130
I-70	>2000	0.2	1000
I-73	500	20	15
I-83	>10000	140	1000
I-128	>10000	140	450
I-148	>10000	100	11000
I-157	>10000	170	>10000
I-189	>10000	100	10000
I-190	>100	7	10
I-202	>2000	<20	<20
I-209	>200	14	12
I-213	>1000	25	23
I-218	>1000	4.8	30
I-220	>1000	150	720
I-223	1000	16	45
I-226	880	17	300
I-228	>1000	21	30
I-229	>1000	42	80
I-230	>1000	13	20
I-231	>500	9.6	9.2
I-233	>1000	12	3.8
I-237	>100	17	100

I-238	>1000	35	>1000
I-239	>1000	54	900
I-242	>1000	100	880
I-243	>500	63	>550
I-279	>1000	38	90
I-282	>500	<5	130
I-292	>1000	72	600
I-296	>1000	70	47
I-301	500	<10	120
I-302	>1000	25	280
I-305	>1000	10	340
I-307	>1000	52	23
I-309	>500	29	10
I-318	>1000	68	58
I-323	>1000	230	24
I-368	>1000	72	380
I-375	>1000	200	>1000
I-379	>1000	88	>1000
I-386	>1000	68	40
I-387	>1000	75	40
I-390	>1000	200	160
I-392	>1000	50	>1000
I-395	>1000	1-10	>1000
I-403	>1000	13	>1000
I-720	>500	6	110

Formulation Example 1

45 [0203]

_	_	
5	0	
_	•	

The compound of the present invention	15 mg
Starch	15mg
Lactose	15 mg
Crystalline cellulose	19 mg
Polyvinyl alcohol	3 mg
Distilled water	30 ml
Calcium stearate	3 mg

[0204] After all of the above ingredients except for calcium stearate were uniformly mixed, the mixture was crushed and granulated, and dried to obtain a suitable size of granules. After calcium stearate was added to the granules, tablets were formed by compression molding.

5 Industrial Applicability

[0205] As indicated in the above experiments, the compound of the present invention has a potent immunosuppressive and/or anti-allergic activity. The compound of the present invention and a substance which has the same activity as the compound of the present invention are very useful for a selective suppressor of the IgE production, an immunosuppressive agent and/or an anti-allergic agent.

Claims

15

20

25

30

35

45

50

55

- A selective suppressor of the IgE production comprising a compound which suppresses the IgE production in a
 process from a differentiation of a mature B cell into an antibody-producing cell to the production of an antibody and
 which does not suppress or weakly suppresses the production of IgG, IgM and/or IgA which are produced at the
 same time.
- 2. The selective suppressor of the IgE production claimed in claim 1, wherein a suppression of the IgE production is 10,000 times or more that of the IgG, IgM and/or IgA production.
- 3. The selective suppressor of the IgE production claimed in claim 1 which does not suppress 50 % or more of the IgG, IgM and/or IgA production even at 10,000 times of the concentration at which 50 % of the IgE production is suppressed as compared with that in the absence of the suppressor.
- 4. The selective suppressor of the IgE production claimed in claim 1, 2 or 3 which suppresses 90 % or more of the IgE production, as compared with that without administration of the suppressor, at which dosage the suppressor does not suppress or weakly suppresses the IgM, IgG and/or IgA production when the suppressor is administered to a mammal sensitized by an allergen.
- 5. The selective suppressor of the IgE production claimed in claim 1, 2, 3 or 4 which suppresses infiltration of an inflammatory cell to tissue.
- **6.** The selective suppressor of the IgE production claimed in claim 5 wherein the inflammatory cell is an eosinophil and/or a neutrophile.
- 7. A compound of the formula (I):

$$R^{1} \xrightarrow{R^{2}} R^{3} R^{6} R^{7} R^{10} R^{11} \times X - Y \qquad (I)$$

$$R^{4} R^{5} R^{8} R^{9} R^{12} R^{13}$$

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are each independently hydrogen, hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted lower alkylthio, optionally substituted lower alkylsulfonyl, optionally substituted lower alkylsulfonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted lower alkylsulfonyloxy, optionally substituted lower alkylsulfonyloxy, optionally substituted amino, optionally substituted carbamoyl, optionally substituted sulfamoyl or optionally substituted heterocyclyl.

X is -O-, -CH₂-,-NR¹⁴- wherein R¹⁴ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl or acetyl, or -S(O)p- wherein p is an integer of 0 to 2,

EP 0 933 346 A1

Y is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted acyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted acyl or optionally substituted heterocyclyl, and Y may optionally be substituted lower alkoxy when X is -CH₂- and may optionally be substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl when X is -O- or -NR¹⁴-.

R¹ and R⁴, R¹ and R², R² and R³, R⁴ and R⁵, R⁶ and R⁷, R⁸ and R⁹, R¹⁰ and R¹¹, R¹² and R¹³, R¹¹ and -X-Y, or R¹³ and -X-Y taken together may form a 5- or 6-membered ring which may contain one or more of O, S or NR¹⁵ wherein R¹⁵ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted arylsulfonyl and which may optionally be substituted,

excluding compounds wherein one or more of R⁶, R⁷, R⁸ and R⁹ are halogen and the others are hydrogen, compounds wherein all of R⁶, R⁷, R⁸ and R⁹ are halogen and compounds wherein all of R²-R¹³ are hydrogen, halogen or cyano,

provided that R^1 is not hydrogen, fluorine, optionally substituted lower alkyl or optionally substituted lower alkoxy, all of R^2 , R^3 , R^4 , R^5 and R^{12} are hydrogen, or R^{13} is not hydrogen or halogen when R^6 , R^7 , R^8 and R^9 are all simultaneously hydrogen, and further provided that R^1 is not methyl or acetyloxy, R^{13} is not hydrogen, optionally substituted lower alkoxycarbonyl or optionally substituted carbamoyl, or - X-Y is not methoxy when at least one of R^6 , R^7 , R^8 and R^9 is a substituent other than hydrogen, and excluding a compound of the formula (I'):

wherein $R^{1'}$ is hydrogen or hydroxy and $R^{13'}$ is hydroxy or methoxy, pharmaceutically acceptable salt, hydrate or prodrug thereof.

8. The compound claimed in claim 7 wherein R¹ is hydrogen, hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkylthio, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyl, formyl, optionally substituted amino, lower alkylsulfinyl, acyloxy, nitro, cyano, optionally substituted sulfamoyl or heterocyclyl,

R² is hydrogen, hydroxy, halogen, optionally substituted lower alkyl or optionally substituted lower alkylsulfonyloxy,

R³ is hydrogen, hydroxy, halogen or optionally substituted lower alkoxy.

R⁴ is hydrogen, optionally substituted lower alkyl, halogen, optionally substituted lower alkoxy, nitro or optionally substituted amino,

R⁵ is hydrogen, optionally substituted lower alkoxy, lower alkoxycarbonyl or carboxy,

R⁶ is hydrogen, halogen, optionally substituted lower alkyl, carboxy, lower alkoxycarbonyl, nitro, formyl, amino or lower alkylsulfonyloxy.

R⁷ and R⁸ are each independently hydrogen, halogen, optionally substituted lower alkyl, optionally substituted lower alkoxy, formyl or optionally substituted amino,

R⁹ is hydrogen, hydroxy, carboxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyloxy, formyl, optionally substituted carbamoyl or optionally substituted amino,

R¹⁰ is hydrogen or lower alkoxy,

5

10

15

20

25

30

35

40

45

50

55

R¹¹ is hydrogen, halogen, optionally substituted lower alkyl, carboxy, lower alkoxycarbonyl, optionally substituted lower alkylsulfonyloxy, formyl, nitro or amino, R¹² is hydrogen.

R¹³ is hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkenyloxy, optionally substituted lower alkylsulfonyloxy, formyl, nitro or optionally substituted amino,

Y is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl,

EP 0 933 346 A1

optionally substituted acyl or optionally substituted cycloalkenyl and Y may be optionally substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl when X is - O- or -NR¹⁴-.

and R¹ and R², R¹ and R⁴, R⁸ and R⁹, R¹¹ and -X-Y, or R¹ and -X-Y taken together may form a 5- or 6-membered ring which contains one or more of O or NR¹⁵ wherein R¹⁵ is the same as defined in claim 7 and which may optionally be substituted, pharmaceutically acceptable salt, hydrate or prodrug thereof.

- The compound, pharmaceutically acceptable salt or hydrate thereof claimed in claim 7 or 8 which has an immunosuppressive effect.
- **10.** The pharmaceutical composition comprising the compound, pharmaceutically acceptable salt, hydrate or prodrug thereof claimed in claim 7 or 8.
- 5 11. An immunosuppressor comprising the compound, pharmaceutically acceptable salt, hydrate or prodrug thereof claimed in claim 7 or 8.
 - 12. An anti-allergic agent comprising the compound, pharmaceutically acceptable salt, hydrate or prodrug thereof claimed in claim 7 or 8.
 - 13. An immunosuppressor comprising a compound of the formula (I"):

5

10

20

25

30

35

45

50

55

$$R^{1}$$
 R^{4}
 R^{5}
 R^{8}
 R^{9}
 R^{10}
 R^{10}
 R^{11}
 $X-Y$
 (I''')

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are each independently hydrogen, hydroxy, halogen, carboxy, optionally substituted lower alkyl optionally substituted, lower alkoxy, optionally substituted lower alkenyl, optionally substituted lower alkylthio, optionally substituted lower alkylsulfonyl, optionally substituted lower alkylsulfonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted lower alkylsulfonyl, optionally substituted amino, optionally substituted carbamoyl, optionally substituted sulfamoyl or optionally substituted heterocyclyl,

X is -O-, -CH₂-, -NR¹⁴- wherein R¹⁴ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl or acetyl, or -S(O)p- wherein p is an integer of 0 to 2,

Y is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted acyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted aryl or optionally substituted heterocyclyl, and Y may optionally be substituted lower alkoxy when X is - CH₂- and may optionally be substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl when X is - O-or -NR¹⁴-,

R¹ and R⁴, R¹ and R², R² and R³, R⁴ and R⁵, R⁶ and R⁷, R⁸ and R⁹, R¹⁰ and R¹¹, R¹² and R¹³, R¹¹ and -X-Y, or R¹³ and -X-Y taken together may form a 5-or 6-membered ring which may contain one or more of O, S or NR¹⁵ wherein R¹⁵ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl or optionally substituted arylsulfonyl and which may optionally be substituted, excluding a compound of the formula (I'):

wherein R^{1'} is hydrogen or hydroxy and R^{13'} is hydroxy or methoxy, pharmaceutically acceptable salt, hydrate or prodrug thereof.

- 14. An anti-allergic agent comprising the compound of the formula (I"), pharmaceutically acceptable salt, hydrate or prodrug thereof according to claim 13.
 - 15. A process for producing a compound of the formula (I""):

5

10

20

25

30

35

40

45

50

55

$$R^{1}$$
 R^{2} R^{3} R^{6} R^{7} R^{10} R^{11} $X-Y$ (I''') R^{4} R^{5} R^{8} R^{9} R^{12} R^{13}

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are each independently hydrogen, hydroxy, halogen, carboxy, optionally substituted lower alkyl, optionally substituted lower alkoxy, optionally substituted lower alkenyl, optionally substituted lower alkylthio, optionally substituted lower alkylsulfonyl, optionally substituted lower alkylsulfonyl, optionally substituted lower alkylsulfonyloxy, optionally substituted lower alkylsulfonyloxy, optionally substituted lower alkylsulfonyloxy, optionally substituted amino, optionally substituted carbamoyl, optionally substituted sulfamoyl or optionally substituted heterocyclyl.

X is -O-, -CH₂-, NR¹⁴- wherein R¹⁴ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl or acetyl, or -S(o)p- wherein p is an integer of 0 to 2,

Y is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted acyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted aryl or optionally substituted heterocyclyl, and Y may optionally be substituted lower alkoxy when X is - CH₂- and may optionally be substituted lower alkoxycarbonyl, optionally substituted lower alkylsulfonyl or optionally substituted arylsulfonyl when X is - O- or -NR¹⁴-.

R¹ and R⁴, R¹ and R², R² and R³, R⁴ and R⁵, R⁶ and R⁷, R⁸ and R⁹, R¹⁰ and R¹¹, R¹² and R¹³, R¹¹ and -X-Y, or R¹³ and -X-Y taken together may form a 5-or 6-membered ring which may contain one or more of O, S or NR¹⁵ wherein R¹⁵ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted arylsulfonyl, and which may optionally be substituted.

excluding a compound wherein one or more of R⁶, R⁷, R⁸ and R⁹ are halogen and the others are hydrogen, compounds wherein all of R⁶, R⁷, R⁸ and R⁹ are halogen and compounds wherein all of R²-R¹³ are hydrogen, halogen or cyano,

provided that R^1 is not hydrogen, fluorine, optionally substituted lower alkyl or optionally substituted lower alkoxy, all of R^2 , R^3 , R^4 , R^5 and R^{12} are hydrogen or R^{13} is not hydrogen or halogen when R^6 , R^7 , R^8 and R^9 are all simultaneously hydrogen,

and further provided that R¹ is not methyl or acetyloxy, R¹³ is not hydrogen, optionally substituted lower alkoxycarbonyl or optionally substituted carbamoyl or - X-Y is not methoxy when at least one of R⁶, R⁷, R⁸ and R⁹ is a substituent other than hydrogen, pharmaceutically acceptable salt or hydrate thereof, which comprises reacting a compound of the formula (II):

$$Z \xrightarrow{R^{10}} R^{11}$$
 $Z \xrightarrow{R^{12}} R^{13}$
 $X - Y \quad ([])$

with a compound of the formula (III):

wherein, in the formulas (II) and (III), R¹-R¹³, X and Y are the same as defined in claim 7, either of A and Z is dihydroxyborane, di(lower)alkoxyborane, di(lower)alkylborane,

and the other is halogen or $-OSO_2(C_qF_{2q+1})$ - wherein q is an integer of 0 to 4, or reacting a compound of the formula (II'):

$$R^1$$
 R^4
 R^5
 R^3
 R^1
 R^4
 R^5

with a compound of the formula (III'):

$$A = \begin{bmatrix} R^6 & R^7 & R^{10} & R^{11} \\ & & & & \\ R^8 & R^9 & R^{12} & R^{13} \end{bmatrix} \times Y$$
 (III')

wherein, in the formulas (II') and (III'), R^1 - R^{13} , X and Y are the same as defined in claim 7 and A and Z are the same as defined in the above formulas (II) and (III).

16. The process for producing the compound of the formula (I"), pharmaceutically acceptable salt or hydrate thereof according to claim 15 comprising the reaction of a compound of the formula (IV):

$$A^{1} \xrightarrow{R^{8} R^{7}} A^{2} \quad (IV)$$

with a compound of the formula (V):

wherein, in the formulas (IV) and (V), R¹ - R⁹ are the same as defined in the formula (I) in claim 7, Z¹ is the same as Z defined in the formula (II) in claim 15, A¹ and A² are each independently the same as A defined in the formula (III) in claim 15, and the reactivity of A¹ is higher than or equal to that of A², followed by the reaction with a compound of the formula (VI):

$$Z^2 \xrightarrow{R^{10}} R^{11}$$
 $Z^2 \xrightarrow{X-Y} (VI)$

wherein R^{10} - R^{13} , X and Y are the same as defined in the formula (I) in claim 7 and Z^2 is the same as Z defined in the above formula (II).

17. The process for producing the compound of the formula (I"), pharmaceutically acceptable salt or hydrate thereof according to claim 15 comprising the reaction of a compound of the formula (IV'):

$$A^{1} \xrightarrow{R^{8} R^{9}} A^{2} \quad (IV')$$

wherein R^6 - R^9 is the same as defined in the formula (I) in claim 7, A^1 and A^2 are each independently the same as A defined in the formula (III) in claim 15, and the reactivity of A^2 is higher than or equal to that of A^1 , with a compound of the formula (VI) in claim 16, followed by the reaction with a compound of the formula (V) in claim 16.

Figure 1

Figure 2

Figure 3

Figure 4

International application No.

PCT/JP97/02635

	PC	1/319//02635	
A. CLASSIFICATION OF SUBJECT MATTER Int. C1 ⁶ C07C15/14, C07C25/18 C07C69/734, C07C69/78, C07C205 According to International Patent Classification (IPC) or to be B. FIELDS SEARCHED	3/38, C07C217/80, C0	/575, C07C65/24, 7C233/80,	
			
Minimum documentation searched (classification system followed Int. C1 ⁶ C07C15/14, C07C25/18 C07C69/734, C07C69/78, C07C205	, C07C43/20, C07C47		
Documentation searched other than minimum documentation to the	e extent that such documents are included	in the fields searched	
Electronic data base consulted during the international search (name CA (STN), REGISTRY (STN)	e of data base and, where practicable, se	erch terms used)	
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category* Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.	
X JP, 5-25145, A (Mochida Ph Ltd.), February 2, 1993 (02. 02. Page 4, left column, lines & WO, 93/1815, Al & EP, 54	93), s 2 to 11; example	1 - 6	
Antibody Synthesis Modula	Brune, K. 'IPD-1151T: A Prototype Drug for Ice Antibody Synthesis Modulation', Agents and Actions Supplements, 1991, Vol. 34, p. 369-378		
Y terphenyl derivatives with A properties from the fruit leucopus (Basidiomycetes)	Tringali, C. et al. 'Previously unreported p- terphenyl derivatives with anti-biotic 15 - 17 properties from the fruiting bodies of Sarcodon leucopus (Basidiomycetes).', Can. J. Chem., 1987, Vol. 65, p. 2369-2372		
X Kallitsis, J.K., 'Synthe: Y Characterization of Solub Containing Oligophenyl Mo Chain.', Macromolecules, p. 4509-4515	le Aromatic Polyeste ieties in the Main	7 - 9 15 - 17 10 - 14	
X Further documents are listed in the continuation of Box	C. See patent family annex		
to be of particular relevance	Special categories of cited documents: "T" later document published after the international filing date or priority document defining the general state of the art which is not considered to understand		
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be			
"O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family			
Date of the actual completion of the international search October 15, 1997 (15. 10. 97) Date of mailing of the international search report October 28, 1997 (28. 10. 97)			
Name and mailing address of the ISA/ Authorized officer			
Japanese Patent Office			
Facsimile No.	Telephone No.	· · · · · · · · · · · · · · · · · · ·	
Form PCT/ISA/210 (second sheet) (July 1992)			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/02635

		PCT/J	P97/02635
C (Continu	nation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.
X Y A	Kakali, F. et al. 'Synthesis and Characterization of Soluble Aromatic Polymer from Substituted Terphenyl and Quinquephenyl Diols', J. Polymer Science Polymer Chemistry, June 1996, Vol. 34, p. 1581-1587	e part A	7 - 9 15 - 17 10 - 14
X Y A	Wagner, Gabriele et al. 'Ferrocene deri containing anthracene linked by spacers J. Organomet. Chem., June 1996, Vol. 51 p. 225-232	5 ¹ ,	7, 9 15 - 17 8, 10-14
Y	Akira Suzuki, Norio Miyaura, "Reactions Organoboron Compounds in the Presence of Transition Metal Catalysts (in Japanese The Journal of Synthetic Organic Chemis Japan, 1993, Vol. 51, No. 11, pages 91	of e)", stry,	15 - 17
A	JP, 6-507987, A (Merck Patent GmbH.), September 8, 1994 (08. 09. 94), Example 3 & WO, 93/22397, A1 & EP, 5915	508, Al	7-9, 15-17
P	JP, 8-277247, A (Merck Patent GmbH.), October 22, 1996 (22. 10. 96), Pages 4, 6; example & GB, 2299333, A		7-9, 15-17
		:	
	·		-
	•		
	-		
		·	
:	•		
·			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No.

PCT/JP97/02635

A. (Continuation) CLASSIFICATION OF SUBJECT MATTER

C07C235/46, C07C251/34, C07C275/28, C07C281/02, C07C281/06, C07C311/22, C07C317/16, C07C323/10, C07D213/30, C07D215/14, C07D233/64, 103, C07D257/04, C07D295/22, C07D303/26, C07D309/22, C07D317/54, C07D319/20, C07D493/05, C07D271/10, C07D333/28, A61K31/09, A61K31/10, A61K31/11, A61K31/135, A61K31/15, A61K31/155, A61K31/165, A61K31/17, A61K31/18, A61K31/19, A61K31/195, A61K31/215, A61K31/235, A61K31/24, A61K31/255, A61K31/27, A61K31/275, A61K31/335, A61K31/34, A61K31/35, A61K31/36, A61K31/38, A61K31/41, A61K31/415, A61K31/44, A61K31/47, A61K31/535, A61K31/60

B. (Continuation) FIELDS SEARCHED

C07C235/46, C07C251/34, C07C275/28, C07C281/02, C07C281/06, C07C311/22, C07C317/16, C07C323/10, C07D213/30, C07D215/14, C07D233/64, 103, C07D257/04, C07D295/22, C07D303/26, C07D309/22, C07D317/54, C07D319/20, C07D493/05, C07D271/10, C07D333/28, A61K31/09, A61K31/10, A61K31/11, A61K31/135, A61K31/15, A61K31/165, A61K31/17, A61K31/18, A61K31/19, A61K31/195, A61K31/215, A61K31/235, A61K31/24, A61K31/255, A61K31/27, A61K31/275, A61K31/335, A61K31/34, A61K31/35, A61K31/36, A61K31/38, A61K31/41, A61K31/415, A61K31/44, A61K31/47, A61K31/535, A61K31/60

Form PCT/ISA/210 (extra sheet) (July 1992)

THIS PAGE BLANK (USPTO)