

Introduction to AI and Reinforcement Learning SHAASTRA, IIT MADRAS

Description

In the world of AI, where we are constantly creating machines that can replicate human behaviour, we aim to introduce one such concept of Reinforcement Learning. It is a type of machine learning where agents are self-trained on reward and punishment mechanisms. We will look at basic concepts of AI, ML and Reinforcement Learning through introduction and interactive hands-on sessions.

Abstract

Session 1	Introduction to AI, RL basics, developing an RL-based solution using MDPs, Q-Learning along with a demo
Session 2	Limitations of Q-Learning, Deep Q-Networks with a demo, Introducing Policy Gradients, Actor Critic with a demo

Relevant for:

• An introductory level workshop for those enthusiastic about Artificial Intelligence and Reinforcement Learning.

Talk Overview (Session - 1, 3hrs):

- Introduction to AI and RL fundamentals
 - What is AI? Clearing various buzzwords (AI vs ML vs DL vs RL) and some real-life applications.
 - o RL-related terminology Agent, Environment, Action, Reward, State
- Developing an RL-based solution
 - Markov Decision Processes, examples, defining your own MDP for a task
 - Concepts of Return, Policy, Value, solution approach to RL (exploration vs exploitation, etc)
 - Model Free algorithms
 - Q-Learning along with a Demo (An interesting one!)

Talk Overview (Session - 2, 3hrs):

Phase 2 - Hands On

- Limitations of Q-Learning
- Deep Q-Networks
 - o DQNs, how they work (explain from scratch), along with a DQN demo
 - o Policy Gradients our first policy-based Deep Learning algo, exploration in policy gradients
 - Actor Critic with a demo (maybe Lunar Lander example)

Prerequisites (Download):

Python programming, no downloads needed (we'll use google colab along with Open AI Gym for demos)

Outcomes:

- Working knowledge of RL
- Hands-on experience due with a fun code-along experience, implementing RL algorithms for real-life examples
- Working with various Python libraries