§1. Analytické vyjádření kružnice a kruhu

V.1.1.: . . .

V.1.2.: Nechť $\{a_n\}_{n=1}^{\infty}$ je AP s diferencí d nechť S_n je součet prvních n členů. Pak platí:

$$\forall n \in \mathbb{N} : S_n = \frac{1}{2}n(a_1 + a_n)$$

[Dk: sečteme po dvojicích x-tého prvku od začátku a x-tého prvku od konce. Všechny dvojice mají součet a_1+a_n a případný zbylý člen je $\frac{a_1+a_n}{2}$.]

Př: určete součet prvnich 100 lichych přirozených čísel:

$$\frac{100 \cdot (1+199)}{2} = 10000$$

Součet lihých přirozencyh císel do 2n-1:

$$\frac{n(2n-1+1)}{2} = n^2$$

V.1.3.: Nechť $\{a_n\}_{n=1}^{\infty}$ je AP. Pak platí:

$$\forall n \in \mathbb{N} : a_n = \frac{a_{n-1} + a_{n+1}}{2}$$

[Dk:
$$a_n = a_n - 1 + d \wedge a_n = a_{n+1} - d \Rightarrow a_n = \frac{a_{n-1} + a_{n+1}}{2}$$
]

Pozn: 1) Vyjádření členu předchozí věty je vyjádřením aritmetrického průměru čísel a_{n-1}, a_{n+1} .

2) platí i obrácení V.2.3.

V.1.4.: Nechť $\{a_n\}_{n=1}^{\infty}$ je AP. Pak platí:

- 1. $\{a_n\}_{n=1}^{\infty}$ je rostoucí $\Leftrightarrow d > 0$
- 2. $\{a_n\}_{n=1}^{\infty}$ je klesající $\Leftrightarrow d < 0$
- 3. $\{a_n\}_{n=1}^{\infty}$ je konstantní $\Leftrightarrow d=0$

V.1.5.: Nechť $\{a_n\}_{n=1}^{\infty}$ je AP. Pak platí:

- 1. $\left\{a_n\right\}_{n=1}^{\infty}$ je zdola omezená $\Leftrightarrow d \geq 0$
- 2. $\{a_n\}_{n=1}^{\infty}$ je shora omezená $\Leftrightarrow d \leq 0$
- 3. $\{a_n\}_{n=1}^{\infty}$ je omezená $\Leftrightarrow d=0$