# Session 3: Financial Agent-Based Models

Co-Pierre Georg

University of Cape Town and Deutsche Bundesbank

> Hanken 01 June 2018

### Day 3: Agent-Based Models

- Part 1: ABM With Rationing Equilibrium [Georg (2013a)]
- Part 2: ABM With Bayesian Equilibrium [Georg (2013b)]
- Part 3: "ABM" with Nash Equilibrium [Ahnert and Georg (2012)]

• In **financial networks** a node represents a bank while an edge represents a relationship between two banks.

| Assets             |     | Liabilities      |     |
|--------------------|-----|------------------|-----|
| Loans to Customers | 100 | Retail Deposits  | 130 |
| Loans to B         | 30  | Borrowing from B | 30  |
| Loans to C         | 30  | Borrowing from C | 30  |
| Other securities   | 40  | Equity Capital   | 10  |
| Total              | 200 |                  | 200 |

Table: Balance sheet of bank A

| Assets             |     | Liabilities      |     |
|--------------------|-----|------------------|-----|
| Loans to Customers | 100 | Retail Deposits  | 130 |
| Loans to A         | 30  | Borrowing from A | 30  |
| Loans to C         | 30  | Borrowing from C | 30  |
| Other securities   | 40  | Equity Capital   | 10  |
| Total              | 200 |                  | 200 |

Table: Balance sheet of bank B

| Assets             |     | Liabilities      |     |
|--------------------|-----|------------------|-----|
| Loans to Customers | 100 | Retail Deposits  | 130 |
| Loans to A         | 30  | Borrowing from A | 30  |
| Loans to B         | 30  | Borrowing from B | 30  |
| Other securities   | 40  | Equity Capital   | 10  |
| Total              | 200 |                  | 200 |

Table: Balance sheet of bank C

■ The banks are completely symmetric w.r.t. deposits, borrowings, securities and equity.

#### The domino case

- Suppose that A makes a loss of 40 on it's loans.
- This wipes out it's equity.
- It has a shortfall of 30 on it's liabilities.
- This shortfall is divided up amongst B and C, each suffering a shortfall of 15 on their **interbank lendings**.
  - $\Rightarrow$  B and C are wiped out as well!
- However: limits on large exposure make direct contagion highly unlikely
- However however: this holds true for **regulated** financial intermediaries

#### Beyond the domino model...

- Bank A makes losses of 5 on it's loan book, halfing it's equity capital to 5.
- The leverage ratio (ratio of assets to equity capital) of A increases from 20 (200/10) to 39 (195/5), putting the bank close to, or below the capital adequacy ratio.
- This forces A to sell some of it's securities.
- They were originally worth 40, but since A has to get rid of them in a fire-sale, the bank sells half of them and recoups only 18.
- This reduces the bank's equity capital to 1.

#### Beyond the domino model (ctd.)...

- B and C are now hit with **two problems**:
  - I Since A has been selling it's securities in a fire-sale, the securities of B and C are now worth only 36. This reduces their equity capital to 6.
  - 2 Needing to shrink their balance sheets and worried about A's solvency, they decide **not to roll-over their loans** to A.
- A now has to repay the loans to B and C, but with almost no equity and the value of it's securities falling, it fails to do so.
- B and C now realize losses on their loans to A and also on their securities.
  - ⇒ B and C are just as vulnerable as A

### Systemic Risk is Dynamic and Takes Various Forms

- Two dimensions of systemic risk
  - Systemic risk slowly builds in tranquil times and abruptly unravels in times of crisis
    - $\Rightarrow$  time-dimension
  - 2 Systemic risk can be transmitted through various channels
    - ⇒ cross-sectional dimension

- Systemic risk channels:
  - ▶ financial contagion: Allen and Gale (2000), Freixas, Parigi, and Rochet (2000)
  - common shocks: Acharya and Yorulmazer (2008)
  - ▶ informational spillovers: Acharya and Yorulmazer (2008b), Nier et al. (2007) Ahnert and Georg (2012)

### Modelling Systemic Risk is a Challenge

Four reasons why modelling systemic risk is a challenge for economists:

- **Heterogeneous agents** → No representative agent(s)
- 2 Complex interactions
- 3 Dynamic structural change
- Deviations from rationality

#### Financial Intermediaries are Heterogeneous



Figure: Concentration of the UK and US banking system. Source: Gai, Haldane and Kapadia (2011).

### Modelling Systemic Risk is a Challenge

Four reasons why modelling systemic risk is a challenge for economists:

- Heterogeneous agents
- **2** Complex interactions  $\rightarrow$  incomplete markets
- 3 Dynamic structural change
- Deviations from rationality

#### Interbank Loans Form a Network Structure



Figure: Different scale free networks

# Modelling Systemic Risk is a Challenge

Four reasons why modelling systemic risk is a challenge for economists:

- Heterogeneous agents
- 2 Complex interactions
- **3 Dynamic structural change**  $\rightarrow$  Processes on different time scales
- Deviations from rationality

# The Financial System is Highly Interconnected



Figure: Interconnectedness of the international banking network in 1980 (left) and 2007 (right). Source: Minoiu and Reyes (2011) using BIS data.

# Modelling Systemic Risk is a Challenge

Four reasons why modelling systemic risk is a challenge for economists:

- Heterogeneous agents
- 2 Complex interactions
- 3 Dynamic structural change
- Deviations from rationality → Agent behaviour matters

# Modelling Systemic Risk is a Challenge

Four reasons why modelling systemic risk is a challenge for economists:

- Heterogeneous agents
- 2 Complex interactions
- 3 Dynamic structural change
- Deviations from rationality

Multi-Agent Simulations can help understand systemic risk

#### Relation to the Literature

#### Literature on Financial Networks

- Allen and Gale (2000), Freixas et al. (2000)
- Haldane and May (2011), Gai, Haldane, and Kapadia (2011), Gai and Kapadia (2008)
- Becher et al. (2008), Gabrieli (2011), Chang et al (2011), Brink and Georg (2011), Markose et al. (2010), Craig and von Peter (2010)

#### Literature on Fire-sales

- Shleifer and Vishny (1992): specialised asset holders are simultaneously in distress and sell to non-specialists
- Allen and Gale (1994): endogenous market participation

#### Literature on Multi-Agent Models:

- lori et al. (2006), Nier et al. (2007), Ladley (2011), Bluhm et. al. (2012)
- **However:** risk-free investments, no central bank, mechanistic agent behaviour, "fine-tuning"

# The Financial System from a Complex Systems Perspective



Figure: The building blocks for a simulation of the financial system

# The Financial System from a Complex Systems Perspective



Figure: The building blocks for a simulation of the financial system

#### Microfoundations of Banks Determine Model



#### The Network Structure Matters



Figure: A scale-free network (k = 4) of contracts amongst 50 banks.

# Agent Behaviour (and Model Dynamics)

 Banks optimize their portfolio structure and -volume according to CRRA preferences

$$u = rac{1}{1- heta} \left( V(1+\lambda \mu - rac{1}{2} heta \lambda^2 \sigma^2) 
ight)^{(1- heta)}$$

where  $\theta$  is risk-aversion parameter,  $\mu$  and  $\sigma^2$  expected return and variance of risky assets

Deviation from Rationality: agents become more (less) risk averse if there are (no) bank defaults in previous period

 $\Rightarrow$  Information Contagion

#### Possible extensions:

- Bayesian updating for expected return and variance of real (and financial) assets
- Agent behaviour is key: alternative implementation with risk neutral agents (see e.g. Baltensperger (2002))

### Model Dynamics - The Update Algorithm



Figure: The first part of the update algorithm.

#### Model Dynamics - The Update Algorithm



Figure: The second part of the update algorithm.

### Model Dynamics - The Update Algorithm



Figure: The third part of the update algorithm.

#### Model Parameters

**Upside:** model is very flexible – 26 parameters

**Downside:** model will be hard to calibrate (if at all possible)

| Parameter type | Parameter name                                                                                                                                             |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Simulation     | numSweeps, numSimulations, numBanks, contractsNetworkFile shockType, liquidationDiscountFactor, riskAversionDiscountFactor riskAversionAmplificationFactor |
| Interest rates | rb, rd                                                                                                                                                     |
| Central bank   | collateralQuality                                                                                                                                          |
| Firm           | $success Probability Firms,\ positive Return Firms,\ firm Loan Maturity\\ as set Number$                                                                   |
| Household      | scaleFactorHouseholds                                                                                                                                      |
| Bank           | dividendLevel, successProbabilityBank, positiveReturnBank thetaBank, xiBank, interbankLoanMaturity                                                         |
| Regulation     | ${\sf r,  sifi Surcharge Factor,  leverage Ratio,  required Capital Ratio}$                                                                                |

Table: Overview of model parameters

### Central Bank Liquidity Stabilizes in the Short-Run...



Figure: The effect of central bank activity  $\alpha^k$  on financial stability in a crisis scenario  $(\rho_f^+=0.09,\rho_f^-=-0.08)$ 

#### ...but the Effect is Non-Monotonic



Figure: The effect of central bank activity  $\alpha^k$  on interbank liquidity in a crisis scenario  $(\rho_f^+=0.09,\rho_f^-=-0.08)$ 

#### Central Bank Liquidity Stabilizes in the Short-Run

- Central bank liquidity provision has non-linear effect on financial stability
  - ⇒ Close threshold value, small changes have significant impact
  - ⇒ Away from threshold value, even large changes can be ineffective
- Stabilizing effect in the short-run only
- Abundant central bank liquidity crowds out interbank liquidity



Figure: The impact of the network topology on financial stability in a normal scenario  $(\rho_f^+ = 0.09, \rho_f^- = -0.05)$  in a random network.



Figure: The impact of the network topology on financial stability in a crisis scenario  $(\rho_f^+ = 0.09, \rho_f^- = -0.08)$  in a random network



Figure: The impact of the network topology on interbank liquidity in a crisis scenario  $(\rho_f^+ = 0.09, \rho_f^- = -0.08)$  in a random network



Figure: The impact of the network topology on financial stability in a crisis scenario  $(\rho_f^+ = 0.09, \rho_f^- = -0.08)$  in a BA network

- Network structure matters in crises
- Relationship between financial stability and interconnectedness in random networks is non-monotonic
- Scale-free networks tend to be more stable than random networks
- Interbank networks are robust-yet-fragile
  - ⇒ Size of endogenous fluctuations matter

### Different Forms of Systemic Risk Require Different Answers



Figure: The impact of different forms of systemic risk on financial stability in a crisis scenario ( $\rho_f^+ = 0.09, \rho_f^- = -0.08$ ) in a random network (connLevel=0.8)

### Different Forms of Systemic Risk Require Different Answers



Figure: The impact of different forms of systemic risk on financial stability in a crisis scenario ( $\rho_f^+ = 0.09, \rho_f^- = -0.08$ ) in a random network (connLevel=0.8)

# Different Forms of Systemic Risk Require Different Answers

- Common shocks can pose greater threat to financial stability
- Contagion mainly reduces liquidity available in the system
- Common shock mainly reduces banking capital and increases (relative) size of endogenous fluctuations
  - ⇒ Different optimal responses, for different forms of systemic risk

# Channels of Systemic Risk

#### Interbank contagion

Interbank contagion is a source of systemic risk, but not the major one

#### Fire-sale

- Common shocks are quantitatively the greater threat
- Fire-sales can be caused by cash-in-the-market pricing:

$$p(\gamma, t, I_l(t)) = \exp\left(-\gamma \cdot \frac{(I(0) - I(t) + I_l(t))}{I(0)}\right)$$

where  $\gamma$  is the liquidationDiscountFactor

#### Information contagion

 $\blacksquare$  Risk aversion  $\theta$  depends on history of loan repayments

# Endogenous Fire Sales - No Information Contagion



Figure: Number of active banks over time for different strengths of fire sales.

# Information Contagion - No Fire Sales



Figure: Investment level over time for different strengths of risk aversion discount and amplification.

## Macroprudential Tools to Alleviate Systemic Risk

A number of tools has been proposed to alleviate systemic risk:

- Time-dimension: countercyclical capital buffer, leverage ratio, dynamic risk-weights, dynamic provisioning, liquidity ratios: LCR, NSFR, reserve requirements
- Cross-sectional dimension: higher capital requirements, concentration limits,
   SIFI surcharge

How these measures are implemented:

- LCR: highly liquid assets → limit on liquidationDiscountFactor
- $lue{NSFR}$ : stable funding sources ightarrow limit on scaleFactorHouseholds
- $\blacksquare$  Countercyclical capital buffer  $\to$  varying required capital during simulation
- $\blacksquare$  Leverage ratio  $\rightarrow$  limit on portfolio expansion when banks are euphoric
- $lue{}$  SIFI surcharge ightarrow additional capital requirements based on interconnectedness

# Countercyclical Capital Buffers



Figure: Number of active banks over time with a countercyclical capital buffer.

# Countercyclical Capital Buffers



Figure: Amount of interbank lending over time with countercyclical capital buffer.

# Leverage Ratio



Figure: Investment in risky assets over time for different leverage ratios.

# Is a SIFI Surcharge Better than Higher Capital Ratios?



Figure: The effect of a SIFI surcharge vs. a flat increase in capital requirements.

# Conclusion (II)

- Heterogeneous agents, complex interactions, and dynamic structural change calls for a more flexible set of models ⇒ Multi-Agent Network Models
- Network models to assess systemic risk can be used to analyse recently proposed macroprudential measures:
- Going forward: consistent agent behaviour and clear notion of equilibrium

# Conclusion (II)

- Heterogeneous agents, complex interactions, and dynamic structural change calls for a more flexible set of models ⇒ Multi-Agent Network Models
- Network models to assess systemic risk can be used to analyse recently proposed macroprudential measures:
- Going forward: consistent agent behaviour and clear notion of equilibrium



All simulations done with black rhino: open source MAS http://cabdyn.ox.ac.uk

# **Learning in ABMs**

### Motivation

- Banks should have private information about their borrowers and learn from their peers
- How did such a large fraction of banks end up investing in toxic assets, i.e. choosing the "wrong" investment strategy?

#### Institutional background: two key developments:

- Direct linkages (e.g. interbank loans, repos, CDS) amongst financial intermediaries increased in the past decade
- Banks increasingly invested into similar assets (e.g. MBS)

#### This paper:

- Develops an agent-based model (ABM) of the financial system with social learning and endogenous network formation
- 2 Methodological contribution: ABM with clear(er) notion of equilibrium

# Summary of Key Results

#### Three main results:

- I show the existence of a *contagious regime* in which banks are connected in an exogenously fixed network and synchronize their investment strategies on a state non-matching action. The contagious regime is lager when the signal structure becomes less informative
- I characterize the equilibrium network structures as the result of an endogenous network formation process. The density of the equilibrium network in the pure coinsurance-counterparty risk case ( $\alpha=\gamma=0, \beta>0$ ) decreases with the informativeness of the signal structure
- In the full model increasing informativeness reduces the contagious regime more than it is increased via the reduction in network density

#### Distinction from Literature

- Starting point: agent based models of financial networks: Iori et al. (2006), Nier et al. (2007), Georg (2013), Bluhm et al. (2013) → mechanistic agent behaviour, no clear notion of equilibrium
- Endogenous network formation: Jackson and Wollinsky (1996), Castiglionesi and Navarro (2011), Babus (2011), Cohen-Cole et al. (2013)
   → no information spillovers and learning
- Related literature on money market freezes: Acharya and Skeie (2011), Acharya, Gale, and Yorulmazer (2011), Afonso, Kovner, and Schoar (2011), Acharya and Merrouche (2013)
  - ightarrow how to understand the persistency of money markets?
- Bayesian (social) learning: Banerjee (1992), Gale and Kariv (2003), Acemoglu, Dahleh, Lobel, and Ozdaglar (2010)
  - ightarrow fixed networks, asymptotic learning

# Model - States and Agents

- Countable number of dates t = 0, 1, ... and n agents. State of the world  $\theta \in \{0, 1\}$  is revealed at each point in time with probability p > 0
- ullet  $\theta=1$  corresponds to boom,  $\theta=0$  to bust
- lacksquare Banks choose one of two investment strategies  $x^i \in \{0,1\}$
- Bank *i*'s individual utility given as:

$$u^{i}(x^{i}, \theta) = \begin{cases} 1 & \text{if } x^{i} = \theta \\ 0 & \text{else} \end{cases}$$

 $\blacksquare$  Once the state of the world is revealed, it changes with probability  $\lambda=\frac{1}{2}$ 

#### Model - The Network

- Banks can form connections in the form of mutual lines of credit
- The set of banks to which bank i is connected is called the neighborhood of i and denoted  $K^i \subseteq N$
- Bank *i* has  $k^i = |K^i|$  neighbors
- A network of banks g is a set of banks together with a set of unordered pairs of banks, called links:

$$L = \bigcup_{i=1}^{n} \{ (i,j) : j \in K^{i} \}$$

lacktriangle The network is implemented through an adjacency matrix  $g^{ij}$ 

### Model Timeline

- In t = 0 there is no endogenously formed link and banks decide their action in autarky
- Banks receive a signal  $s^i \in \overline{S}$  about the state of the world and form private belief determining their action  $x^i$
- lacksquare Signals are independently generated according to probability measure  $\mathbb{F}_{ heta}$  o Signal structure  $(\mathbb{F}_0,\mathbb{F}_1)$
- $\blacksquare$   $\mathbb{F}_0$  and  $\mathbb{F}_1$  are informative, not identical, and absolutely continuous w.r.t. each other
- After receiving the signal, banks decide about mutual lines of credit and network is endogenously formed for the first time

#### Model Timeline

- In t = 1,... banks receive a private signal
- Banks now also observe the actions of their neighbors in the previous period
- Banks update their actions
- New network structure is based on banks' decisions
- This is repeated until state of the world is revealed every 1/p periods
- If state of the world is revealed, banks realize their utility

## Private and Social Beliefs

- lacksquare For each t bank i receives private signal  $s^i$  generated according to  $(\mathbb{F}_0,\mathbb{F}_1)$
- Banks observe actions of their previous neighbors  $K_{t-1}^i$ . Bank i's information set is:

$$I_t^i = \left\{ s_t^i, K_{t-1}^i, x_{t-1}^j \forall j \in K_{t-1}^i \right\}$$

and the set of all possible information sets is denoted as  $\mathcal{I}^i$ 

lacksquare A strategy for bank i is a mapping  $\sigma^i:\mathcal{I}^i o x^i=\{0,1\}$ 

#### Definition

A strategy profile  $\sigma = \{\sigma^i\}_{i \in 1, \dots, n}$  is a pure strategy Bayesian equilibrium of this game of social learning for a bank i's investment if  $\sigma^i$  maximizes the expected pay-off of bank i given the strategies of all other banks  $\sigma^{-i}$ .

# **Optimal Strategy**

- For every  $\sigma$  the expected pay-off of i from  $x^i = \sigma^i(I^i)$  is  $\mathbb{P}_{\sigma}(x^i = \theta|I^i)$
- For any equilibrium  $\sigma$ , i chooses  $x^i$  according to:

$$x^i = \sigma^i(I^i) \in \arg\max_y \mathbb{P}_{(y,\sigma^{-i*})}(y = \theta|I^i) \quad , \quad y \in \{0,1\}$$

## Proposition

Let  $\sigma$  be an equilibrium of the single bank investment game and let  $I_t^i \in \mathcal{I}^i$  be the information set of bank i at time t. Then the strategy decision of bank i,  $x_t^i = \sigma^i(I_t^i)$  satisfies

$$x^{i} = \begin{cases} 1, & \text{if} \quad \mathbb{P}_{\sigma}(\theta = 1|s^{i}) + \mathbb{P}_{\sigma}(\theta = 1|K_{t-1}^{i}, x^{j}, j \in K_{t-1}^{i}) > \overline{x}(k^{i}, n) \\ 0, & \text{if} \quad \underbrace{\mathbb{P}_{\sigma}(\theta = 1|s^{i})}_{\text{private belief}} + \underbrace{\mathbb{P}_{\sigma}(\theta = 1|K_{t-1}^{i}, x^{j}, j \in K_{t-1}^{i})}_{\text{social belief}} < \overline{x}(k^{i}, n) \end{cases}$$
(1)

and  $x^i \in \{0,1\}$  otherwise

# **Optimal Strategy**

■ The threshold  $\overline{x}(k^i, n)$  is given as:

$$\overline{x} = \frac{1}{2} \left( 1 + \frac{k^i}{(n-1)} \right)$$

■ The private belief of bank *i* can be obtained using Bayes' rule:

$$\mathbb{P}( heta=1|s^i) = \left(1+rac{d\mathbb{F}_0}{d\mathbb{F}_1}(s^i)
ight)^{-1} = \left(1+rac{f_0(s^i)}{f_1(s^i)}
ight)^{-1}$$

lacksquare Social belief is formed by averaging over the actions of all neighbors  $j \in K_{t-1}^i$ :

$$\mathbb{P}_{\sigma}(\theta=1|\mathcal{K}_t^i,x^j,j\in\mathcal{K}_{t-1}^i)=1/k^i\sum_{j\in\mathcal{K}_{t-1}^i}x^j$$

 $\rightarrow x^i = 1$  is chosen whenever private + social belief exceed threshold

- Banks gain utility from being interconnected through social learning but face a fixed cost per link
- Net benefit of bank *i* from establishing a link with bank *j*:

$$\alpha \mathbf{g}^{ij}$$
 ,  $\alpha \in \mathbb{R}^+$ 

- Banks that selected a state non-matching action suffer liquidity shortfall
- A mutual line of credit allows a bank with liquidity shortfall to draw liquidity from a bank without liqudity shortfall
- When bank i has a private belief of  $p^i = \frac{1}{2}$  it is entirely uncertain about the underlying state of the world and coinsurance is most valuable
- If bank *i* is certain about the state of the world, it will not value coinsurance at all:

$$q^i(p^i) = \left\{ \begin{array}{ll} 2p^i & \text{ for } p^i \leq \frac{1}{2} \\ 2(1-p^i) & \text{ for } p^i \geq \frac{1}{2} \end{array} \right.$$

Expected utility from coinsurance is given as:

$$\beta q^i(p^i)g^{ij}$$
 ,  $\beta \in \mathbb{R}^+$ 

Analogous, the expected loss from counterparty risk is given as:

$$-eta \left(1-q^i(p^i)
ight)g^{ij} \quad , \quad eta \in \mathbb{R}^+$$

■ This implies the total expected utility, respecting the coinsurance-counterparty tradeoff:

$$\beta(2q^i(p^i)-1)g^{ij}$$

■ Natural interpretation: when bank *i* is certain about the state of the world, it will fear counterparty risk more than it will value coinsurance

I assume that losses are amplified if they occur in bulk:

$$-\gamma |g|q^{i}(p^{i})g^{ij}$$
 ,  $\gamma \in \mathbb{R}^{+}$ 

■ The total number of connections in the financial system are given as:

$$|g| = \sum_{i,j} g^{ij}$$

■ Bank *i*'s total utility of being interconnected:



- An update step consists of agents chosing an optimal strategy based on their private and social beliefs, and a network formation process
- Following Jackson and Wollinsky (1996), an equilibrium of the network formation process can be characterized using the notion of pairwise stability

#### **Definition**

A network defined by an adjacency matrix g is called pairwise stable if

- (i) For all banks i and j directly connected by a link,  $l^{ij} \in L$ :  $u^i(g) \ge u^i(g l^{ij})$  and  $u^j(g) \ge u^j(g l^{ij})$
- (ii) For all banks i and j not directly connected by a link,  $l^{ij} \ni L$ :  $u^i(g + l^{ij}) < u^i(g)$  and  $u^j(g + l^{ij}) < u^j(g)$

## Simulation Results - Fixed Network Structure

- Limiting case with fixed network structure first
- Fully connected network: signals are informative, thus banks coordinate on state-matching action in the long-run
- In an empty network the probability of all banks choosing a state-matching action increases with signal informativeness
- Interim levels of connectivity feature a contagious regime in which all banks choose state non-matching action
- Intuition: positive probability that bank i has a neighborhood with more than half of the banks choosing state non-matching action
  - ightarrow this can offset private signal of bank i
- Size of contagious regime increases with decreasing signal informativeness

## Simulation Results - Fixed Network Structure



Figure: Average actions of agents in t=20 for  $\theta=0$ , varying network densities, and different signal structures: (i) high informativeness,  $\mu_0=0.25, \mu_1=0.75, \sigma_{\{0,1\}}^2=0.1$ ; and (ii) low informativeness,  $\mu_0=0.4, \mu_1=0.6, \sigma_{\{0,1\}}^2=0.1$ .

# Simulation Results - Highly Informative Signal

- Second limiting case with highly informative signal and endogenous network formation
- Two trivial network structures
  - **1**  $\beta = \gamma = 0$ : complete network for  $\alpha > 0$  and empty network for  $\alpha = 0$
  - 2  $\alpha = \beta = 0$ : empty network for all  $\gamma$
- For  $\alpha = \gamma = 0$ ,  $\beta > 0$  bank *i*'s utility from establishing a link is:

$$\beta(2q^i(p^i)-1) \quad \Leftrightarrow \quad u^i>0 \Leftarrow q^i(p^i)>\frac{1}{2}$$

- lacktriangleright For very uninformative signal structures  $\mu_1-\mu_0\approx 0$  banks are almost never certain about the state and coinsurance dominates counterparty risk
- $\blacksquare$  For very informative signal structures  $\mu_1 \mu_0 \approx 1$  resulting network is empty

# Simulation Results - Highly Informative Signal



Figure: Average equilibrium network density as a function of signal informativeness  $(\mu_1 - \mu_0)$  for  $\alpha = \gamma = 0.0, \beta = 0.1$ . Each point is the average of 500 simulations with n = 20 agents and  $\sigma_{\{0,1\}}^2 = 0.1$ .

## Simulation Results – Star Networks

- Another limiting case is that of a star network which is obtained for  $\beta=0, \alpha>0, \gamma>0$
- Star network is characterized by (i) small average shortest path length  $l \simeq 2$ ; (ii) density  $\delta = 1/n$ ; and (iii) a clustering coefficient of zero
- Shortest average path length is defined as:

$$I(i,j) = \sum_{i,j} \frac{d(i,j)}{n(n-1)}$$

■ The local clustering coefficient of a node is given as:

$$c^{i} = \frac{|\{\dot{p}^{ik}, j, k \in K^{i}, \dot{p}^{ik} \in L\}|}{k^{i}(k^{i}-1)}$$

■ Real world interbank networks are a superposition of these basic types

## Simulation Results - Star Networks



Figure: Network density, average clustering coefficient, and average shortest path length for varying amplification parameter  $\gamma \in [0.0, 1.0]$  and fixed learning parameter  $\alpha = 0.01$ . Each point is the average of 500 simulations with n=20 agents and  $\mu_0 = 0.4, \mu_1 = 0.6, \sigma_{\{0.1\}}^2 = 0.1$ .

## Simulation Results – Star Networks



Figure: Network density, average clustering coefficient, and average shortest path length for varying amplification parameter  $\gamma \in [0.0, 1.0]$  and fixed learning parameter  $\alpha = 0.01$ . Each point is the average of 500 simulations with n=20 agents and  $\mu_0 = 0.25, \mu_1 = 0.75, \sigma_{\{0.1\}}^2 = 0.1$ .

# Simulation Results – Social Learning and Endogenous Network Formation

- Trade-off for less informative signals between social learning (larger contagious regime) and endogenous network formation (higher density)
  → Which effect dominates?
- Total utility of the model financial system:

$$U = \sum_{i} \left[ \underbrace{u^{i}(x^{i}, \theta)}_{\text{state-matching action}} + \underbrace{u^{i}(g)}_{\text{interconnectedness}} \right]$$

# Simulation Results – Social Learning and Endogenous Network Formation



Figure: Total utility (individual + network) as a function of signal informativeness  $(\mu_1 - \mu_0)$  for  $\alpha = \gamma = 0.0, \beta = \{0.02, 0.1, 0.4\}$ . Each point is the average of 500 simulations with n = 20 agents and  $\sigma_{\{0.1\}}^2 = 0.1$ .

# Summary of Key Results

#### Ingredients:

- Social learning about previous actions of neighbors
- Endogenous network formation due to three motifs

#### Three main results:

- The Bayesian equilibrium with exogenous network structure exhibits a contagious regime in which all agents choose a state-non-matching action. The contagious regime is lager when the signal structure becomes less informative.
- The density of the pairwise stable equilibrium network that is obtained in the pure coinsurance-counterparty risk case ( $\alpha = \gamma = 0, \beta > 0$ ) decreases with the informativeness of the signal structure.
- In the full model increasing informativeness reduces the contagious regime more than it is increased via the reduction in network density.

#### Conclusion

#### Possible extensions:

- Agent heterogeneity
- Two regions with different business cycles
- Individual learning in addition to social learning

#### Conclusion

- ABM with clear notion of equilibrium possible
- Model relates two sources of systemic risk: common shocks and money market freezes
- With heightened uncertainty about the state of the world, probability of banks synchronizing their investment strategies increases
- Banks become less interconnected if signal informativeness is high, this can explain persistency of money market links despite high counterparty risk

Information Contagion – Full Nash equilibria as an ABM

# What this paper is about

#### Setting the stage

- Our notion of systemic risk: joint default probability of financial intermediaries (banks, mmmf, etc.)
- Information about other banks can be valuable for (at least) two reasons: counterparty risk and common exposures
- Information contagion is the spill-over of information about the health of one bank, adversely affecting other banks

#### Our main research question

- What is the effect of ex-post information contagion on banks' ex-ante optimal portfolio choice?
- What is the welfare loss implied by information contagion due to joint default?

# Information contagion can reduce systemic risk

#### Sneak preview: our results

- Unanticipated information contagion will always increase systemic risk
- When banks are subject to common exposures, information contagion increases systemic risk
- When banks are subject to counterparty risk, anticipated information contagion can reduce systemic risk
- Applied to microfinance, our model predicts group loan default rates to be lower and households holding more durable goods

#### Intuition for our main result

Banks are more prudent when they anticipate information spillover

### Motivation

- Systemic risk comes with large social costs: BIS estimates the cost of systemic bank crises ranging from 3% GDP (US savings and loans) to 30% GDP (Chile 81-87)
- After Lehman insolvency only the Reserve Primary Fund "broke the buck". However, Dumontaux and Pop (2012) show that NBFIs were most affected
- When investors are sensitive to the health of the financial system, information contagion can be a major source of systemic risk
- Two reasons why information about other banks can be useful: counterparty risk and common exposures
- Information contagion is a major source of systemic risk

#### Relation to the literature

- Acharya and Yorulmazer (2008b): interlinkages through correlated portfolio holdings; information contagion creates incentive for correlated investments; ⇒ our paper: exogenous asset correlation, but endogenous portfolio choice (liquidity, interbank insurance, demand deposits)
- Allen, Babus, and Carletti (2012): interaction of asset commonality and funding maturity; portfolio overlap created by network formation model; bad news about aggregate state adversely affect debt roll-over ⇒ our paper: liability diversification; risky and risk-free assets; bank-specific information spillovers
- Allen and Gale (2000): financial contagion in unanticipated aggregate liquidity shock
  - ⇒ **our paper**: solvency shocks with positive probability; optimal portfolio choice

# Model: Timing, agents, and investment opportunities

- Three dates t = 0, 1, 2
- Two regions k = A, B
- Agents (in each region):
  - Continuum of depositors
  - A representative bank (e.g. investment bank, money market fund)
- Two investment opportunities
  - Storage: risk-free, matures after one period
  - ► Long-term investment project: risky, matures after two periods, yields (regional) return *R<sub>k</sub>*:

$$R_k = \begin{cases} R & \text{w.p. } \theta_k \\ 0 & \text{w.p. } 1 - \theta_k \end{cases}$$

where  $\theta_k$  is a solvency shock to region k

▶ Costly liquidation:  $\beta \in [0, 1)$ 

## Model: Depositors

- Liquidity preferences as in Diamond and Dybvig (1983)
  - Uncertainty about liquidity preference at date t = 0
  - Uncertainty resolved at the beginning of t = 1
  - Early despositors of mass  $\lambda$ , late depositors of mass  $1 \lambda$
- Risk averse depositors:

$$U(c_1, c_2) = \begin{cases} u(c_1) & \lambda \\ & \text{w.p.} \\ u(c_2) & 1 - \lambda \end{cases}$$

- Unit endowment
- Store or deposit at bank

### Model: Banks

- lacksquare Collects deposits by offering a demand deposit contract  $(d_1,d_2)$  at t=0
  - ▶ insurance against idiosyncratic liquidity risk for risk-averse depositors
- Choice of interbank insurance  $b \ge 0$  and liquidity y at t = 0
- Free entry ⇒ maximize depositors expected utility
  - deposit in full at bank
- Distributes proceeds equally at t = 2 (mutual bank)
- $lue{}$  Focus on essential bank-runs ightarrow no co-ordination failure

#### Model: Information structure

- All prior distributions are common knowledge
- Depositors receive independent public signals about returns in both regions which are perfectly revealing with probability  $q_k$
- Information about the other region can be valuable for two reasons: counterparty risk and common exposures
- Information contagion occurs if information about the other region's fundamentals is payoff-relevant in your region

## Model: Timeline

| Date 0                                                    | Date 1                                                  | Date 2                                                        |
|-----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|
| 1. Endowed depositors invest or deposit at regional bank  | Regional liquidity     shocks are publicly     observed | 1. Investment projects mature                                 |
| 2. Banks choose portfolio and initiate interbank deposits | 2. Banks settle date-1 interbank claims                 | 2. Banks settle date-2 interbank claims                       |
| ·                                                         | 3. Depositors privately observe liquidity preference    | <ol><li>Banks service<br/>remaining<br/>withdrawals</li></ol> |
|                                                           | 4. Depositors observe regional solvency signals         |                                                               |
|                                                           | 5. Depositors decide whether to withdraw                |                                                               |

## Equilibrium: Outline

#### Outline

- Depositors compare payoffs from withdrawing and not withdrawing, using regional signals
- $\blacksquare$  Essential bank-runs take place if  $\theta < \overline{\theta}$
- Compute expected utility from thresholds
- Globally optimise expected utility w.r.t.  $(d_1, y, b)$  numerically

## Equilibrium: Payoffs

■ In high liquidity demand region H, payoffs are independent of L:

$$d_{H} \equiv y + (1 - y)\beta + b$$

$$c_{2H}^{\mathsf{G}} \equiv \frac{(1 - y)\mathsf{R} + y - \lambda_{H}d_{1} - (\phi - 1)b}{1 - \lambda_{H}}$$

■ In low liquidity demand region, payoffs depend on repayment of b:

$$\begin{array}{ll} d_L^{N,D} & \equiv & y + (1-y)\beta - b + \beta\phi\widetilde{b}, \quad \text{ where } \widetilde{b} \in \{b,0\} \\ c_{2L}^{\text{GN}} & \equiv & \left(\frac{(1-y)\mathsf{R} + (y-\lambda_L d_1) + (\phi-1)b}{1-\lambda_L}\right) \end{array}$$

# Equilibrium: Counterparty risk

- With probability  $q_H$  depositors in H are informed about their region
- Signal thresholds are obtained by comparing payoffs from withdrawing and not withdrawing:

$$\overline{\theta}_{\mathrm{H}} \equiv \frac{u(d_H) - u(c_{2H}^B)}{u(c_{2H}^G) - u(c_{2H}^B)}$$

- lacksquare Essential bank-run takes place if and only if  $heta_H < \overline{ heta}_H$
- When depositors are uninformed, they use prior distribution and not run the bank  $\Rightarrow$  default probability  $a_{1,H} \equiv q_H \overline{\theta}_H$
- Expected utility is given as:

$$EU_{H} = (1 - q_{H}) \left\{ \lambda_{H} u(d_{1}) + (1 - \lambda_{H}) \frac{1}{2} (u(c_{2H}^{G}) + u(c_{2H}^{B})) \right\}$$

$$+ q_{H} \left\{ \overline{\theta}_{H} u(d_{H}) + (1 - \overline{\theta}_{H}) \left( \lambda_{H} u(d_{1}) + (1 - \lambda_{H}) \frac{1}{2} \left[ u(c_{2H}^{G}) + u(d_{H}) \right] \right) \right\}$$

# Equilibrium: Counterparty risk

■ In the low liquidity demand region *L*, the signal threshold depends on default in high liquidity demand region *H*:

$$\overline{\theta}_{1,\mathrm{L}} \equiv \frac{a_{1,\mathrm{H}}[u(d_L^D) - u(c_{2L}^{BD})] + (1 - a_{1,\mathrm{H}})[u(d_L^N) - u(c_{2L}^{BN})]}{a_{1,\mathrm{H}}[u(c_{2L}^{GD}) - u(c_{2L}^{BD})] + (1 - a_{1,\mathrm{H}})[u(c_{2L}^{GN}) - u(c_{2L}^{BN})]}$$

- lacksquare This implies default probability in L to be  $a_{1,L}=q_L\overline{ heta}_L$
- Systemic risk in the case of pure counterparty risk is then

$$A_{CR} = a_{1,\mathrm{L}} a_{1,\mathrm{H}} = q_H q_L \overline{\theta}_{\mathrm{H}} \overline{\theta}_{1,\mathrm{L}}$$

 $lue{}$  Investment returns are independent ightarrow regional expected utilities separately:

$$EU_{CR} = \frac{1}{2}(EU_H + EU_{1,L})$$

# Equilibrium: Counterparty risk and information contagion

- Depositors now receive a signal about returns in the other region too
- Behaviour and expected utility of depositors in H is unaffected
- When depositors in region *L* receive informative signal about *H* they **know** whether interbank loans are being repaid
- There are two thresholds for *L* now, one if *H* defaults and one if *H* survives:

$$\begin{split} \overline{\theta}_{2,L}^{N} & \equiv \frac{u(d_{L}^{N}) - u(c_{2L}^{BN})}{u(c_{2L}^{GN}) - u(c_{2L}^{BN})} \\ \overline{\theta}_{2,L}^{D} & \equiv \frac{q_{H}[u(d_{L}^{D}) - u(c_{2L}^{BD})] + (1 - q_{H})[u(d_{L}^{N}) - u(c_{2L}^{BN})]}{q_{H}[u(c_{2L}^{GD}) - u(c_{2L}^{BD})] + (1 - q_{H})[u(c_{2L}^{GN}) - u(c_{2L}^{BN})]} \end{split}$$

# Equilibrium: Counterparty risk and information contagion

- $\blacksquare$  Thresholds are ranked:  $\overline{\theta}_{2,\mathrm{L}}^{\mathit{N}} < \overline{\theta}_{2,\mathrm{L}}^{\mathit{D}}$
- Systemic risk in the CR + IC case is:

$$A_2 = q_H q_L \overline{\theta}_H \overline{\theta}_{2,L}^D > A_1$$

#### Result 1

If information spillovers are unanticipated, information contagion due to counterparty risk unambiguously increases systemic risk.

Similarly for common exposures

#### Result 2

If information spillovers are unanticipated, information contagion due to common exposures unambiguously increases systemic risk.

## Equilibrium: Optimal portfolio choice

- Because of free entry banks choose portfolio b, y and interim payment  $d_1$  to maximize depositors' ex-ante expected utility
- It is never optimal to over-insure:  $0 \le b^* \le \eta d_1^*$
- It is never optimal to face certain liquidation:  $y^* \ge \lambda_H d_1^* b^* \ge \lambda$
- d₁ is non-negative and bound from above
- $lue{}$  We use CRRA utility function with risk-aversion parameter ho
- Two reasons why an **analytical solution** of this problem is **infeasible**:
  - corner solutions
  - 2 response of thresholds with respect to liquidity is non-monotonic
    - ⇒ Numerical solution!

### Results: Resilience effect

|      | cr only                                                                  | cr + ic                                                                                                                |
|------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|      | $(EU, d_1^*, y^*, b^*)$                                                  | $(EU, d_1^*, y^*, b^*)$                                                                                                |
|      | $(\overline{	heta}_{ m H},\overline{	heta}_{ m 1,L}$ , $	extstyle{A_1})$ | $(\overline{	heta}_{ m H},\overline{	heta}_{ m 2,L}^{\it N}$ , $\overline{	heta}_{ m 2,L}^{\it D}$ , ${\it A}_{ m 2})$ |
| cr   | <b>(0.172</b> ,0.88,0.73,0.08)                                           | <b>(0.096</b> ,0.88,0.73,0.08)                                                                                         |
| only | (0.423,0.23, <b>0.048</b> )                                              | (0.423,0.212,0.252, <b>0.052</b> )                                                                                     |
| cr + |                                                                          | (0.107,0.94,0.8,0.02)                                                                                                  |
| ic   |                                                                          | (0.379,0.211,0.222,0.041)                                                                                              |

Table: Parameters:  $\beta$ =0.7, R=5.0,  $\phi$ =1.0,  $\lambda$ =0.5,  $\eta$ =0.25,  $\rho$ =1.0,  $q_H$ =0.7

### Results: Resilience effect

|      | cr only                                                            | cr + ic                                                                                                                                       |
|------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|      | $(EU, d_1^*, y^*, b^*)$                                            | $(EU, d_1^*, y^*, b^*)$                                                                                                                       |
|      | $(\overline{	heta}_{ m H},\overline{	heta}_{ m 1,L}$ , $A_{ m 1})$ | $(\overline{	heta}_{ m H},\overline{	heta}_{ m 2,L}^{ m 	extsf{N}}$ , $\overline{	heta}_{ m 2,L}^{ m 	extsf{D}},oldsymbol{	extsf{A}_{ m 2}})$ |
| cr   | <b>(0.172</b> ,0.88,0.73,0.08)                                     | (0.096,0.88,0.73,0.08)                                                                                                                        |
| only | (0.423,0.23, <b>0.048</b> )                                        | (0.423,0.212,0.268,0.052)                                                                                                                     |
| cr + |                                                                    | <b>(0.107</b> ,0.94,0.8,0.02)                                                                                                                 |
| ic   |                                                                    | (0.379,0.211,0.226, <b>0.042</b> )                                                                                                            |

Table: Parameters:  $\beta$ =0.7, R=5.0,  $\phi$ =1.0,  $\lambda$ =0.5,  $\eta$ =0.25,  $\rho$ =1.0,  $q_H$ =0.7

## Results: Instability effect

|      | pure ce                     | ce + ic                       |
|------|-----------------------------|-------------------------------|
|      | $(EU, d_1^*, y^*, b^*)$     | $(EU, d_1^*, y^*, b^*)$       |
|      | $(\overline{\theta}, A_5)$  | $(\overline{\theta}, A_6)$    |
| ce   | <b>(0.13</b> ,1.0,0.77,0.0) | (0.137,1.0,0.77,0.0)          |
| only | (0.328, <b>0.161</b> )      | (0.328, 0.161)                |
| ce + |                             | <b>(0.137</b> ,1.01,0.76,0.0) |
| ic   |                             | (0.344, <b>0.168</b> )        |

Table: Parameters:  $\beta$ =0.7, R=5.0,  $\phi$ =1.0,  $\lambda$ =0.5,  $\eta$ =0.25,  $\rho$ =1.0,  $q_H$ =0.7

## Results: Summary

#### Result 3: Resilience Effect

In the setup with counterparty risk, anticipating information contagion reduces systemic risk and expected utility.

### Result 4: Instability Effect

In the setup with common exposures, anticipating information contagion increases systemic risk and expected utility.



Figure: Robustness check for the resilience effect for a variation of  $\beta$ .



Figure: Robustness check for the resilience effect for a variation of R.



Figure: Robustness check for the resilience effect for a variation of  $\lambda$ .



Figure: Robustness check for the resilience effect for a variation of  $q_H$ .



Figure: Robustness check for the instability effect for a variation of  $\beta$ .



Figure: Robustness check for the instability effect for a variation of R.



Figure: Robustness check for the instability effect for a variation of  $\lambda$ .



Figure: Robustness check for the instability effect for a variation of  $q_H$ .

# Conclusion (III)

- Information contagion is a major source of systemic risk
- There are non-trivial equilibrium effects affecting overall systemic financial fragility
- Consequences for ABM: equilibrium behaviour relevant as benchmark; focus on agent-behaviour and system dynamics instead of contagion mechanics;